ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231245425

Pyridylphosphines

ARTICLE in CHEMICAL REVIEWS · SEPTEMBER 1993	
Impact Factor: 46.57 · DOI: 10.1021/cr00022a006	
CITATIONS	READS
241	7

1 AUTHOR:

George Richard Newkome

University of Akron

497 PUBLICATIONS 12,637 CITATIONS

SEE PROFILE

Pyridylphosphines

George R. Newkome

Center for Molecular Design and Recognition, Department of Chemistry, University of South Florida, Tampa, Florida 33620

Received March 29, 1993 (Revised Manuscript Received June 25, 1993)

Contents

I.	Introduction	2067
II.	General Synthetic Methods	2067
III.	Reactions	2070
	A. N- and P-Derivatives	2070
	B. Fragmentation Reactions	2072
	C. Metal Ion Coordination	2073
	D. Catalytic Reactions of Pyridylphosphine Complexes	2074
	1. Formylation/Carbonylation Reactions	2074
	2. Chlorinations	2077
	3. Mitsunobu Esterification	2077
	4. Epoxidation of Alkenes	2080
	5. Metal-Catalyzed Cycloadditions	2080
	6. Dimerization of Isoprene	2080
IV.	Conclusions	2080
٧.	Acknowledgments	2087
VI.	Note Added in Proof	2087
VII	References	2087

I. Introduction

The general preparation of phosphines has recently been overviewed1 by Gilheany and Mitchell; however, their excellent review contained only two references (out of 394) that specifically addressed the area of pyridylphosphines. Their review should be the starting point with the following presentation being considered an addendum which covers the novel synthetic problems, reactions, and catalytic properties as well as lists the known metal complexes of the pyridylphosphines. It is hoped that this review will open new synthetic thoughts toward unique P- and N-ligands as well as to other combinations affording novel and useful complexes. In view of the increasing usage of pyridylphosphines in metal ion coordination through the 1980s, coupled with their novel fragmentation and derivatization, this field will continue to expand as new structural combinations are prepared.

II. General Synthetic Methods

The first reported preparation of a pyridylphosphine was presented² in 1944 by Davies and Mann as part of a study on the optical resolution of tertiary phosphines. Pyridylmagnesium bromide, initially generated via the entrainment process,³ was treated with phenyl(4-bromophenyl)chlorophosphine to afford (5%) the first pyridylphosphine 1 (Scheme 1). Interestingly, when 3-pyridylmagnesium bromide was reacted similarly² the only known, to the best of my knowledge,⁴ 3-pyridylphosphine 2 was prepared in a poor 7% yield.

George R. Newkome is currently Vice President for Research and Distinguished Research Professor of Chemistry at the University of South Florida. Dr. Newkome has published over 250 papers in international journals and numerous books in the areas of organic and organometallic chemistry. He is a Fellow of the American Association for the Advancement of Science and a recent recipient of the Florida Award of the Florida Section of the American Chemical Society.

Scheme 1

The tri-2-pyridylphosphine (5) was prepared (13%) from 2-pyridylmagnesium bromide with PCl₃, whereas in 1948, this procedure was extended⁵ to the synthesis of 3 and 4. Numerous modifications of this general approach have appeared^{6,79,156} utilizing the corresponding 2-lithiopyridine with PCl₃ at lower (-65 to -100 °C) temperatures to afford 5 in improved (66%)¹⁵⁶ yields. Care must be taken to ensure complete formation of pyridyllithiums prior to the addition of the phosphorus halide^{7,8} since using traditional lithium-bromine exchange⁹ procedures followed by addition of PBr₃ generally gave rise to a mixture of di-2-pyridylbutylphosphine and dipyridine.

In a benchmark series of papers, ¹⁰⁻¹³ Holm et al. established the optimum conditions for the use of pyridyllithiums in the synthesis of pyridylphosphines as well as a variety of related ligands incorporating pyridine rings. Very low temperatures (-65 to -100 °C) were shown to be essential, depending on the specific bromopyridine, in order to ensure pyridyllithium formation. ^{14,15} An outstanding example demonstrating this procedure is the selective preparation of 6-bromo-

Scheme 3

$$\begin{array}{c|c}
\hline
 & ZnCl_2 \\
\hline
 & PhPCl_2 \\
\hline
 & PhPCl_2 \\
\hline
 & PhPCl_2 \\
\hline
 & 11
\end{array}$$

$$\begin{array}{c|c}
\hline
 & PhPCl_2 \\
\hline
 & Cl \\
 & Cl \\
\hline
 & Cl \\
 & Cl \\
\hline
 & Cl \\
 &$$

2-lithiopyridine and its subsequent conversion (75%) at -90 °C to the tris(6-bromo-2-pyridyl)phosphine (6, Scheme 2). Phosphines 7 and 8 were prepared by reaction of the appropriate pyridyllithium with PCl3 in 17% and 40% yields, respectively. Their conversion of acetal 8 to the corresponding oxime eventually afforded novel entrance to three-dimensional macrocycles capable of metal ion encapsulation. As a synthetic sidenote the use of diethyl ether permitted selective formation of the monolithiated bromopyridine; whereas with THF, 2,6-dilithiopyridine (9) was generated. 16

The addition of 2-lithiopyridine to several chlorophosphines was later repeated¹⁷ to generate 3 (44%), 4 (39%), and 5 (20%). Diphenyl-4-pyridylphosphine was similarly prepared⁸¹ (39%) by the reaction of 4-lithiopyridine with chlorodiphenylphosphine. The alkyl 2-pyridylphosphine 10 was prepared (43%) by using methyl dichlorophosphine. 18 Bis(pyridylphosphines) were prepared¹⁹ from 2-lithiopyridine via its conversion to the novel zinc intermediate 11, which upon the addition of phenyldichlorophosphine at -20 °C was transformed (50% overall) to the chloro-2pyridylphenylphosphine (12) (Scheme 3). Subsequent reduction of 12 with Na⁰ ("is capricious and may take from a few hours to several weeks...")19 afforded the corresponding phosphide 13, which on addition of an dichloroalkane gave a series of bis-P,N-ligands 14. The use of activated Lio in this reduction is quicker but gives rise to less pure products.

In 1965, direct nucleophilic substitution by phosphide on pyridine occurred 20 since when 9-chloroacridine was treated with $KP(C_6H_5)_2$ in dioxane, phosphine 15 resulted (48%); whereas, when unsubstituted acridine was treated with $LiP(C_6H_5)_2$, the dihydro derivative 16 was formed in 31% yield (Scheme 4).

Scheme 4

Scheme 5

Scheme 6

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

This general procedure was extended²¹ to numerous halopyridines; the 2- and 4-derivatives were reactive under the reaction conditions, and the 3-halopyridines were inert. Later, Balch et al.22 reported that the similar treatment of 2-chloropyridine with LiP(C₆H₅)₂, generated from diphenylphosphine with butyllithium in THF at 20 °C, gave excellent (94%) yields of 3. Modification²³ of this procedure and the analogous reaction with NaP(C₆H₅)₂ have been reported;²⁴ whereas with NaP(CH₃)₂, 17 has been formed (62%)¹⁸ (Scheme 5). When McFarlane et al. 25,26 treated 2,6-difluoropyridine with NaP(C₆H₅)₂ in liquid ammonia, a convenient one-pot procedure of 2,6-bis(diphenylphosphino)pyridine was realized (40%). 6,6'-Dibromo-2,2'-dipyridine was smoothly transformed (65%) with LiP(C₆H₅)₂ to the corresponding bis-phosphine; subsequent oxidation with hydrogen peroxide afforded (89%) the bis-Poxide.21

Reduction of diethyl 2-pyridylphosphonate $(18)^{27,28}$ with LiAlH₄ gave (ca. 80%) the related 2-pyridylphosphine $(19)^{29}$ (Scheme 6). Selective abstraction of protons from 19 and/or (C_6H_5)PH₂ or (C_6H_5)₂PH offers interesting opportunities to prepare novel *P*-ligands, since 19 is a stronger P-H acid than the other two. The lithio 2-pyridyl phosphide was smoothly converted into

useful mono- and bidentates, and it readily, but reversibly, undergoes a Michael addition to α,β -unsaturated esters, including dimethyl vinylphosphonate. This reduction of pyridylphosphonates with LiAlH₄ should be applicable to other interesting esters, such as diethyl 4-pyridylphosphonate,³⁰ dimethyl [(4'-methyl-2,2'-bipyridin-4-yl)methyl]phosphonate,31 (3- and 4-phosphonoalkyl) pyridine derivatives, 32 2,6-pyridinyl methylphosphonates,33 and (pyridylamino)methyl-(phosphonoalkyl)phosphinates.34,35

The related (pyridylalkyl) phosphines were prepared 36 by reduction of phosphonates 2037,38,39,40,41 with LiAlH4 to afford (64%) 21 (n = 2) (Scheme 7). Nucleophilic addition of lithio or sodio phosphides (e.g. 21, n = 2) to 2-vinylpyridine gave access to mono- and dialkylphosphines (refs 42, 43 and 36, 44, respectively). A modification of the Uhlig and Maaser procedure⁴² for 2-pyr(CH₂)₂P(C₆H₅)₂ was recently presented; 45 however, the advantages were not obvious. DuBois et al. reported75 the free-radical addition of phenylphosphine to 2-vinylpyridine in the presence of AIBN under irradiation to afford [2-pyr(CH₂)₂]₂P(C₆H₅), as a useful tridentate ligand. Similarly, treatment of 2,6-pyridinedimethanol with sodium hydride followed by allyl chloride afforded a diallyl ether, which, when irradiated in benzene in the presence of AIBN and excess $(C_6H_5)_2$ -PH, gave (91%) 2,6-pyr[CH₂O(CH₂)₃P(C₆H₅)₂]₂.46

Simple nucleophilic substitution⁴⁷ of α -chloromethvlheteroaryls with lithio or potassio diphenylphosphide (ref 48 and 49, respectively) under strictly air-free conditions has been shown to give variable yields (54-94%) of diverse pyridines 22 and 23 as well as pyridinerelated bisphosphines (24) (Scheme 8). Speigel and Stetzer reported³⁶ that 2-(chloromethyl)pyridine dimerized to give 6,12-dihydrodipyrido[1,2-a:1',2'-d]pyrazinediylium dichloride (25), which with LiP(C₆H₅)₂ gave the known⁵⁰ dipyrido[1,2-a:1',2'-d]pyrazine. However when 2-(chloromethyl) pyridine was treated with C₆H₅-PHNa in THF at -78 °C exchange occurred to afford (74%) 2-pyrCH₂PH(C₆H₅); whereas using C₆H₅PHLi, (2-pyrCH₂)₂ was formed.³⁶

2,6-Bis[2-(diphenylphosphino)ethyl]pyridine (28) was prepared⁵¹ in three steps from lutidine utilizing a combination of known procedures (Scheme 9). 2,6-Lutidine was converted (8%) to the desired 2,6-bis(2hydroxyethyl)pyridine (26) along with a mixture of related alcohols, via the method of Loffler and Theil.⁵² Conversion of (impure) 26 to the corresponding chloride 27 was conducted (50%) by treatment with thionyl

Scheme 8

Scheme 9

chloride. By using the general procedure of Issleib,⁵³ 27 with NaP(C_6H_5)₂ was transformed (23.8%) to the symmetrical diphosphine 28. Also isolated was the unsymmetrical 29, which was derived from the original impurities in starting material 27.

Recently, an approach to chiral pyridylphosphine ligand 30 has been reported.⁵⁴ Complex 31 was prepared from the phospha-Wittig reagent, but it readily loses CO to form the stable chelate 32. Decomplexation of 32 by treatment with DIPHOS at 100 °C afforded 30 (Scheme 10); the retention of stereochemistry is proposed but not yet established.

The use of the Arbuzov reaction to prepare phosphinoacetonitriles⁵⁵ has been recently applied to the synthesis of (pyridylalkyl)dialkylphosphines. 56,57 Although LiAlH4 can be used in the reduction of the pyridylphosphoryl intermediates, silanes are recommended in this procedure when sensitive functionality is to be retained.55,58

The preparation of 2-[bis(diphenylphosphino)methyl]pyridine (33) was reported,⁵⁹ but the preferred method of synthesis⁶⁰ of 33 was by the generation of 2-(lithiomethyl)pyridine at -78 °C and subsequent addition to $(C_6H_5)_2PCl$ (Scheme 11). The related 2-[bis-(diphenylphosphino)methyl]-6-methylpyridine (34) was prepared^{61,62} in a similar manner. Treatment of 3-ethyl-4-methylpyridine or 9-methyloctahydroacridine with n-butyllithium, followed by (C₆H₅)₂PCl and subsequent

Scheme 11

Scheme 12

oxidation afforded low yields (ca. 21-26%) of the corresponding 4-substituted P-oxides. 63

Pyridylphosphaalkenes⁶⁴ (35) were prepared from the appropriate pyridinecarboxaldehyde and ArP(Li)-SiMe₂t-bu, where Ar is 2,4,6-tri-tert-butylphenyl, via the procedure of Yoshifuji et al.^{65,66} (Scheme 12). These phosphaalkenes exist as E- and Z-isomers, can be separated by chromatography, are air stable, and can be stored for weeks at -25 °C.

Synthesis of the first known phosphorus analogue of 2,2'-bipyridyl, 2-(2-pyridyl)-4,5-dimethylphosphorin (NIPHOS; 38), was reported by Mathey et al.⁶⁷ Initially 1-phenyl-3,4-dimethylphosphole was treated with picolinic acid chloride to give P-oxide 36, which was transformed to the P-sulfide 37. Pyrolysis of 37 in the presence of nickel gave the desired phosphorin 38 (Scheme 13). In view of the notable p K_a (5.25) for pyridine and the inability to measure a p K_a for phosphorin, ligand 38 was shown to be monobasic.⁶⁸

Table 1 gives the ³¹P NMR data for most of the known pyridylphosphines, and Table 2 presents the ³¹P NMR

Scheme 13

spectral data for several lithiophosphide, which were key intermediates in several of the reaction sequences.

III. Reactions

A. N- and P-Derivatives

Typical P-derivatives of pyridylphosphines include oxides, 5,7,80-84 sulfides, 2,5,7,83 selenides, 7 methides, 17,18,80 and methylphosphonium salts.^{2,5,17,18} Pyridylphosphines were smoothly converted to the corresponding P-oxides with chloroamine- T^5 or aqueous H_2O_2 ; 5,80,84,85,153 whereas, the use of m-chloroperbenzoic acid or peracetic acid can result in both P- and N-oxidation. 80,81,86 The preparation of P-sulfides^{2,5} or P-selenides^{7,87} was readily accomplished by melting the corresponding phosphine with molecular sulfur or selenium, respectively. Bisphosphine 39 in the presence of neat excess MeI afforded the trismethiodide 40, which loses 1 equiv of MeI on standing at room temperature or heating (80) °C) for 3 h in vacuo giving the bis-P,P-methiodide 41.25 Slow aerial oxidation of 39 occurred upon standing for several weeks to generate the P.P-dioxide (42), whereas with sulfur or selenium, it was converted stepwise to the mono-P-derivatives 43 and then bis-P,P-derivatives²⁵ 44 (Scheme 14).

Scheme 14

44

Table 1. 31P NMR Data for the Ligands

pyridylphosphine	solvent	δ (ppm)	¹ J (PH)	ref(s)
2-pyrPH ₂		-121.4	203	29
2-pyrPHD		-124.3	$204, 32 (^{1}J_{PD})$	29
2-pyrPD ₂		-127.0	$32({}^{1}J_{ m PD})$	29
2-pyrPH(SiMe ₃)	$t ext{-BuOMe}$	-118.6	194	29
2-pyrP(SiMe ₃) ₂	t-BuOMe	-125.1		29
(2-pyrPH) ₂ CH ₂	DMF	-50.9, -54.8	223	29
2-pyrPHMe	DMF	-70.7	206	29
2-pyrPMe ₂	CH_2Cl_2	20.6	200	29
z-pyrr wieg		41.62		18
0	C_6D_6			
2-pyrPMe ₃ (I ⁻)	CF₃CO₂H	27.05		18
2-pyrPMe ₂ (=CH ₂)	CDCl₃	5.69		18
(2-pyr) ₂ PMe	$CDCl_3$	-19.82		18
$(2-pyr)_2PMe_2(I^-)$	$CDCl_3$	17.59		18
$(2-pyr)_2PMe(=CH_2)$	$C_6D_5CD_3$	13.06		18
2-pyrPH ₂ ·N-MeI	CH_2Cl_2	-130.2	218	29
2-pyrPH ₂ ·N-HCl	$\mathrm{CH_2Cl_2}$	-132.4	216	29
2-pyrPH(CMe ₂ CH ₂ COMe)	$t ext{-BuOMe}$	-9.0	215	29
2-pyrPH(CH ₂ CH ₂ CO ₂ Me)	$t ext{-BuOMe}$	-49.6	210	29
2-pyrPH(CH ₂ CHMeCO ₂ Me)	t-BuOMe	-57.1, -58.3	211, 210	29
2-pyrPHCH(C ₆ H ₅)CH ₂ CO ₂ Me	t-BuOMe	-23.3, 25.2	214, 210	29
2-руг HOH (Оф15) СН2 СО2 МС 2-ругРН (СН2) 2PH2	t-BuOMe	-46.8, -128.8	209, 190	29
2-pyrP(C ₆ H ₅)OMe	CDCl ₃	110.2	200, 100	69
2-pyrP(C ₆ H ₅)OMe 2-pyrP(C ₆ H ₅) ₂ (3)	CD_2Cl_2	-3.36		70
4-pyrr (08r18/2 (a)				70 71
	$CDCl_3$	-3.95		
		-3.28		76, 111
		-2.7		70
	~- ~-	-4.03		23, 72
$2\text{-pyrP}(O)(C_6H_5)_2(N\text{-}O)$	$CDCl_3$	19.1		86
$(2-pyr)_2P(C_6H_5)$ (4)	$CDCl_3$	-1.9		69
$6,6'' - (C_6H_5)_2P(\text{terp})P(C_6H_5)_2^a$	$CDCl_3$	-0.62		47
$2-[6-(C_6H_6)_2P(pyr)]_2$	$CDCl_3$	-1.65		21, 47, 7
$2-[6-(C_6H_5)_2PCH_2(pyr)]_2$	$\mathrm{CDCl_3}$	-9.32		47
2,6-[(C ₆ H ₅) ₂ PCH ₂] ₂ (pyr)	$\overline{\mathrm{CDCl}_3}$	-9.20		47
$2-[(C_6H_5)_2P](phen)^b$	$CDCl_3$	-0.83		47
2-[(Caris)2r](phen)*	CDCl ₃	0.52		47
$2,9-[(C_6H_5)_2P]_2(phen)^b$				47
$2,9-[(C_6H_5)_2PCH_2]_2(phen)^b$	CDCl ₃	-12.74		
$2,7-[(C_6H_5)_2P]_2(naph)^c$	$CDCl_3$	1.96		47
structure 30	C_6D_6	9.06		54
2-pyr(CH ₂) ₂ PH ₂	neat	-142.1	192	36
$2-\text{pyr}(\text{CH}_2)_2\text{PH}(\text{C}_6\text{H}_5)$	neat	-53.7	208	36
		-52.4		74
$2-pyr(CH_2)_2P(C_6H_5)_2$	$CDCl_3$	-14.9		45
2-pyr(CH2)2P(O)(C6H5)2	$CDCl_3$	31.5		45
[2-pyr(CH2)2P(CCl2H)(C6H5)2]Cl	$CDCl_3$	39.3		45
[2-pyr(CH2)2P(CClH2)(C6H6)2]Cl	$CDCl_3$	30.7		45
[2-pyr(CH2)2P(C6H5)2(OCH2CHMe2)]Cl	$CDCl_3$	73.1		45
$2-pyr(CH_2)_2PH(t-Bu)$	neat	-26.5	189	36
$\frac{2-\text{pyr}(\text{CH}_2)_2\text{PH}(i-\text{Pr})}{2-\text{pyr}(\text{CH}_2)_2\text{PH}(i-\text{Pr})}$	neat	-38.3	192	36
	Et ₂ O	-48.0	209	36
2-pyrCH ₂ PH(C ₆ H ₅)			209	
2-pyrCHP(C ₆ H ₅) ₂ (OSiMe ₃)	C_6D_6	2.8	015 011	36
2-pyrCHPH(C ₆ H ₅)(OSiMe ₃)	Et ₂ O	-21.2, -33.1	217, 211	36
2-pyr(CH ₂) ₂ PHSiMe ₃	Et ₂ O	-154.1	186	36
2-pyr(CH2)2P(C6H5)SiMe3	$\mathbf{Et_2O}$	-86.7		36
[2-pyr(CH ₂) ₂] ₂ PH	Et_2O	-70.9	199	36
$[2-pyr(CH_2)_2]_2P(C_6H_5)$	\mathbf{THF}	-24.4		36
	$CDCl_3$	-24.4^d		75
2-(pyr) ₃ P (5)	$CDCl_3$	-0.05		76, 84
$[(C_6H_5)(2-pyr)P]_2CH_2$	$\mathrm{CDCl_3}$	-19.2	>30 (J _{PP})	19
$(C_6H_5)(2-pyr)PCH_2]_2$	$CDCl_3$	-10.4	$\approx 35 (J_{PP})$	19
$(C_6H_5)(2-pyr)PCH_2]_2CH_2$	$CDCl_3$	-14.5	<1 (Jpp)	19
$(C_6H_6)(2-pyr)^{\frac{1}{2}}C_1H_2$ 2,6-[(C_6H_6) ₂ P] ₂ pyr	C- C18	-4.5	- (OPP)	25
-,~ L(~0**0/2* 12PJ*		-3.4		77
$2,6-[(C_6H_5)_2P(O)]_2$ pyr		19.8		25
e'o-f(∩8112\51 (∩\15h\t		20.86		25 85
O C I (C.H.) D/Q\lmmID/C H \ 1				25
$2.6 \cdot [(C_6H_5)_2P(S)]pyr[P(C_6H_5)_2]$		35.6, -2.6		20
2,6-[(C ₆ H ₅) ₂ P(S)] ₂ pyr		37.7	#40.41 T :	25
$2,6-[(C_6H_5)_2P(S_6)]pyr[P(C_6H_5)_2]$		30.8, -2.8	$748 (^1J_{PSe})$	25
$2,6-[(C_6H_5)_2P(S_6)]_2$ pyr		31.6	$741~(^{1}J_{PSe})$	25
$2,6-[(C_6H_6)_2P(Me)]_2pyr[2I-]$		21.1		25
$(5)-[N-CH(CH_2)SO_3-(CH_2)_nCH_3]$	D_2O	-22.52		78
E-(2-pyrCH=PAr)	CDCl ₃	285.41		64
Z-(2-pyrCH=PAr)	CDCl ₃	259.6		64
$E_{\perp}E_{\perp}E_{\perp}E_{\perp}E_{\perp}E_{\perp}E_{\perp}E_{\perp}$	CDCl ₃	283.01		64 64
	CDCl ₃			
$E,Z-[2,6-pyr(CH=PAr)_2]$		281.51, 256.9		64
2,6-pyr[CH2O(CH2)8P(C6H5)2]2	CH_2Cl_2	-15.9		46
structure 36	$CDCl_3$	20.4		67
				67
structure 37	$CDCl_3$	23.4		61
structure 37	$\begin{array}{c} \mathrm{CDCl_3} \\ \mathrm{CDCl_3} \end{array}$	23.4 184.9		67
structure 37 NIPHOS ^e (38)				67 79

^a Terp = 4'-phenyl-2,2':6',2''-terpyridine. ^b Phen = 1,10-phenanthroline. ^c Naph = 2,7-naphthyridine. ^d Calculated value δ =22.0. ^e NIPHOS (38) = 2-(2-pyridyl)-4,5-dimethylphosphorin.

Table 2. 31P NMR for the Lithiopyridylphosphines

lithiopyridylphosphines	solvent	δ (ppm)	¹ J (PH)	ref
2-pyrPHLi	t-BuOMe	-96.6	195	29
2-pyrPLi(SiMe ₃)	t-BuOMe	-112.7		29
2-pyrCH ₂ PLi(C ₆ H ₅)	THF-Me	-46.9		36
2-pyr(CH ₂) ₂ PHLi	THF-Me	-162.2	155	36
2-pyr(CH ₂) ₂ PLi(C ₆ H ₅)	THF-Me	-58.5		36
2-pyr(CH ₂) ₂ PLi(t-Bu)	THF-Me	-27.3		36
2-pyr(CH ₂) ₂ PLi(i-Pr)	THF-Me	-40.1		36

NHR
$$(CH_2O)_n$$
EtOH

45

 $(X = Cl \text{ or } H)$
 CH_2OEt

THF

 CH_2OEt
 $CIPPh_2$
 CH_2Ph_2
 CH

Scheme 16

Halogenated 3-[N-alkyl-N-[(diphenylphosphinoyl)methyl]amino]pyridines (47) were prepared (85-91%) by treatment of the intermediate N, O-acetals 46, generated from 3-(N-alkylamino)-2-chloro- or 2,6-dichloropyridines (45) via the Mannich reaction, with $(C_6H_5)_2$ PCl⁸⁸ (Scheme 15).

Formation of *P*-methyl pyridylphosphonium salts 48 was accomplished by treatment of the phosphine with cold methyl iodide.⁵ These salts can be readily converted to the *P*-methiodide 49 upon reaction with KH¹⁸ or trimethylphosphine methide¹⁷ (Scheme 16).

B. Fragmentation Reactions

Unusual fragmentations of pyridylphosphine derivatives were first noted² as early as 1944, when the *P*-sulfide of 3 was heated with methyl iodide and surprisingly only tetramethylphosphonium iodide was isolated. Later it was found⁵ that 5, when treated with methyl iodide at 100 °C afforded only 2,2'-dipyridine dimethyl iodide (50), whereas the *P*-sulfide of 5 gave phosphonium sulfide 51 under similar reaction conditions (Scheme 17). This fragmentation-recombination was initially rationalized by the formation of 2-pyridyl radicals, which subsequently recombined to afford the bipyridine products.

During his attempted synthesis of tris(6-acetylpyridinyl)phosphine (52), Parks¹⁴ discovered that addition of methylmagnesium iodide to the corresponding trisnitrile gave predominantely 6,6'-diacetyl-2,2'-dipyridine (53) via a similar expulsion process (Scheme 18).

More recently during the preparation of pyridylphosphine macrocycles, Newkome and Hager⁸⁹ treated ligand 55 with alkoxide and isolated not the desired

Scheme 17

Scheme 18

Scheme 19

P-macrocycle 54 but rather 56, which was free of phosphorus (Scheme 19). It was demonstrated⁸⁹ that P-oxides readily undergo a benzylic acid like rearrangement with the extrusion of a phosphorus moiety, whereas the parent phosphine of 55 was smoothly converted (47%) to the desired P-macrocycle. Further treatment of P-oxide 55 with sodium gycolate at 90–100 °C in toluene afforded (32%) the ring-contracted 56. The proposed⁸⁹ benzylic acid type rearrangement is similar to that suggested below by Oae and Uchida. This extrusion was not limited to P-oxides but that also S-dioxides^{90,91} and dipyridyl ketones⁹² undergo a similar reaction under basic conditions.

56

Oae and co-workers⁹³⁻⁹⁵ have reexamined in detail this extrusion process in related examples. When 5 was heated with 2-pyridyllithium, 2,2-dipyridine was

Scheme 21

isolated in 81% yield. This transformation was rationalized as nucleophilic attack of the heteroaryllithium, or more generally an organometallic reagent on the phosphorus atom to generate a pentacoordinate intermediate 57, from which the equitorial group couples with the axial substituent to give the products (Scheme 20). Phosphonium salts and P-oxides possessing at least two 2-pyridyl groups, when treated with acid or neutral solvents, save the corresponding 2,2'-dipyridine. One and Uchida have recently reviewed the ligand-coupling reactions of hypervalent specie of which these transformations can be envisioned as but examples.

Bis-phosphines, e.g. 58, react with various reagents to give derivatives of 2-[(diphenylphosphino)methyl]-pyridine. Treatment of 58 with acetic acid, bromine, or methyl iodide under diverse conditions gave 59, 60, or 61, respectively, with the loss of one of the P-moieties (Scheme 21). A rationale for these degradations was presented. 62

C. Metal Ion Coordination

It was nearly two decades before pyridylphosphines were first reported as ligands in metal ion complexation. In 1966, Uhlig and Maaser initially reported⁴² the preparation of Ni(II), Co(II), Zn(II), and Cu(I) complexes of 2-pyr(CH₂)₂P(C₆H₅)₂. They confirmed the structural assignments of these 1:1- and 1:2-complexes by conductivity, electronic spectra, and analytical data; since these were simple structures, these supportive data were marginally sufficient.

Scheme 22

The first pivotal point in better understanding the complexation of pyridylphosphines was the rapid acquisition of X-ray crystallographic data. The earliest example was reported by Park, Wagner, and Holm in their 1970 communication, 10 when they synthesized hexacoordinate complexes possessing nonoctahedral stereochemistry. Their three-dimensional macrocycles incorporated a substituted tri-2-pyridylphosphine moiety, which utilized the three directed pyridine N-electron pairs along with the corresponding juxtaposed oxime groups. These structures were supported by electronic spectra, infrared data, conductivity studies, ¹⁹F NMR spectroscopy, and analytical data. Although the synthetic methodology and these traditional supportive data strongly supported the assigned structures, it was footnoted that Churchill and Reis⁹⁷ had completed a single-crystal X-ray study of {Ni[P(2,6 $pyrCH=NO)_3BF](BF_4)$ (62, Scheme 22), thus confirming the unique solid state structure.

Holm et al.¹¹ elaborated on their initial studies of these "clathro chelate" ⁹⁸ structures, and Churchill and Reis added the key X-ray data^{97,99,100} supporting the structures as well as revealing the structural solid-state subtleties, that were impossible to obtain from classical methods. Although these initial X-ray studies were directed mainly at the N-coordination of these complexes, it will be demonstrated that without X-ray data the full understanding of pyridylphosphine complexation would not have been possible.

Throughout the 1970s, a few research groups utilized other simple pyridylphosphines to prepare various uncomplicated metal ion complexes, which were characterized by the application of the traditional techniques, such as IR, 44,51,61,83,101-103 conductivity, 51,61,83,101,102 molecular weight, 51,61,102 magnetic susceptibility, 43,61,101-103 electronic spectra, 43,44,51,61,83,102,103 X-ray powder diffraction, 51 and elemental analyses, 43,44,51,61,83,101-103 as well as studies of their electrochemical properties. 104,105

The second major breakthrough in the chemistry of pyridylphosphines came when NMR spectral information became readily available for phosphorus (³¹P) and other metal centers (e.g., ¹⁹⁵Pt), thus permitting a quick snapshot of the P-center as well as dimagnetic metal center(s). This was especially true with the advent of di- and polynuclear metal complexes, bridged by N,P-ligands. In 1980, three groups^{8,74,121} initially utilized this spectral NMR technique to establish the foundation for the more complicated complexes to follow. Although the traditional spectral and analytical data were still acquired, the combination of ³¹P NMR and single-crystal X-ray analysis as the pivotal tools for most researchers in the field, opened the threshold to numerous new metallomacrocycles.

Scheme 24

Scheme 25

With the growing interest in binuclear complexes, 106 Balch et al. 110 found 3 to be a convenient building block to evaluate the stepwise introduction of similar and different metal atoms. Thus, the addition of Rh₂(μ -Cl)(CO)₄ to 3 generated the P,P-complex 63, which with an additional equivalent of Rh₂(μ -Cl)₂(CO)₄ was converted to Rh₂(3)₂(μ -CO)(Cl₂) (64), although with Pd-(COD)Cl₂ the binuclear complex 65 formed (Scheme 23). 31 P NMR and single-crystal X-ray data were primary spectral tools to establish these structures, as well as numerous related binuclear transition metal complexes.

Generally 3 acts as a P-monodentate ligand as noted by the initial generation of 63; however, N-monodentate coordination and P,N-chelation of a single metal ion are also possible. Addition of chlorine to $[Ru(3)(CO)_3]_3$ was a convenient route to 66, which possesses a strained, four-membered chelate ring and is a single isomer even though four geometrical isomers are possible 70 (Scheme 24).

The creation of polynuclear complexes was possible utilizing 2,6-bis(diphenylphosphino)pyridine (39), which with PdCl₂ readily formed the stable P-trimer 67¹⁰⁸ (Scheme 25), suggesting possible limited structural flexibility. The addition of [Rh(CO)₂Cl]₂ to 39, however, gave rise to the dinuclear complex 68¹⁴⁹ which with tin(II) chloride afforded 69. This insertion of a central metal atom is quite rare due to the rigidity of the bridging ligand 68. The attempted incorporation of a central rhodium ion by the addition of [Rh₂(CO)₄-Cl₂] resulted in a cleavage–recombination of 68 to create the tetranuclear complex 70, in which each ligand bridges three rhodium atoms and is stable in solution. ¹⁰⁸

There appears to be a reversible molecular reorganization¹⁵⁰ of 69 to 70 in which two rhodium atoms have been eliminated; treatment of 70 with $Rh(\mu-Cl)_2(CO)_4$ regenerates 69 (Scheme 26).

It is beyond the scope of this review to discuss the myriad of polynuclear metal pyridylphosphines; however, relevant data for most of the known complexes that have been thoroughly characterized are summarized in Tables 3–8. Tables 3–7 present the key ³¹P NMR results, as well as other pertinent data associated with the central metal atom(s); Table 8 presents a list of pertinent bond angles and distance from the known X-ray crystal studies yet conducted.

D. Catalytic Reactions with Pyridylphosphine Complexes

1. Formylation/Carbonylation Reactions

Although hydrogenation of alkenes using RhCl[5]₂, $\{Rh(C_6H_{12})[5]_2\}[PF_6]$, or RhHCl[5]₃ was unsuccessful, when excess 5 and low CO and hydrogen (1:1) pressures were used with RhH(CO)[P(C_6H_5)₃][5]₂, as catalyst

Scheme 26

Table 3. ⁸¹P NMR for the Palladium Pyridylphosphine Complexes

palladium complexes	solvent/temp (K)	δ (ppm)	³ J (Hz)	ref(s)
Pd(t-BuNC)(3)Cl ₂	CDCl ₃	24.5	· · · · · · · · · · · · · · · · · · ·	107
Pd(CH ₂ CMeCH ₂)(3)Cl is-Pd(pyrH)(4)Cl ₂	$rac{ ext{CDCl}_3/255}{ ext{DMSO-}d_6}$	24.3 30.5		107
is, cis , $trans$ - $Pd_3\{\mu$ - $[(C_6H_5)_2P]_2$ pyr $_3Br_6$	1711100-46	36.4, 19.9, 14.7		69 77
$is, cis, trans-Pd_3\{\mu-\{(C_6H_5)_2P\}_2pyr\}_3Cl_6$	CD_2Cl_2	37.8, 23.0, 17.1		108, 77
$ans-\mathrm{Pd}(3)_2\mathrm{Cl}_2$	$rac{ ext{CD}_2 ext{Cl}_2}{ ext{CDCl}_3}$	23.8, 23.4 22.9		22, 109, 110 111
$s ext{-Pd}(3)_2 ext{Cl}_2$	CD_2Cl_2	29.3, 29.5		22, 109, 110
	$CDCl_3$	28.5		111
pyr(CH2)2P(C6H5)PdMeCN[BF4]2	CD ₃ CN	47.0		75
s-PdCl ₂ (5) ₂ s-PdBr ₂ (5) ₂	$\frac{\mathrm{CD_2Cl_2/203}}{\mathrm{CD_2Cl_2/203}}$	34.6 32.1		111 111
$rans-PdI_2(5)_2$	$CD_2Cl_2/203$	7.0		111
$s-PdCl_2(4)_2$	CD_2Cl_2	30.9		111
$rans-\mathrm{PdCl}_2(4)_2$	$egin{array}{c} ext{CDCl}_3 \ ext{CD}_2 ext{Cl}_2 \end{array}$	29.4 17.7		69 111
6/16 1 dO12(1/2)	$\overline{\mathrm{CDCl_{3}/203}}$	17.7		69
s-PdBr ₂ (4) ₂	$\mathrm{CD_2Cl_2/203}$	27.9		111
$egin{aligned} & cans-PdI_2(4)_2 \ & s-PdBr_2(3)_2 \end{aligned}$	$\frac{\mathrm{CD_2Cl_2/203}}{\mathrm{CD_2Cl_2/203}}$	8.9 20.5		111 111
$ans-PdI_2(3)_2$	$CD_{2}Cl_{2}/203$ $CD_{2}Cl_{2}/203$	9.6		111
$dCl_2(5)_2$	$\mathrm{CD_2Cl_2}$	6.3		111
dBr ₂ (5) ₂	CD_2Cl_2	4.35		111
$egin{array}{l} ext{dI}_2(5)_2 \ ext{d}_2 ext{Cl}_2(4)_2 \end{array}$	$rac{ ext{CD}_2 ext{Cl}_2}{ ext{CDCl}_3}$	0.55 5.2		111 111
$l_2Br_2(4)_2$	CDCl_3	3.28		111
$I_2I_2(4)_2$	CDCl ₃	-0.16		111
$l_2Cl_2(3)_2$	$rac{ ext{CD}_2 ext{Cl}_2}{ ext{CDCl}_3}$	4.4 4.4		22 111
$d_2Br_2(3)_2$	CDCl ₃	2.92		111 111
$l_2I_2(3)_2$	$\mathrm{CD_2Cl_2}$	-0.44		111
$l_2Cl_2(5)_2(\mu\text{-DMAD})$	$CDCl_3$	34.1		111
${}_{2}\mathrm{Cl}_{2}(4)_{2}(\mu\text{-DMAD})$ ${}_{2}\mathrm{Cl}_{2}(3)_{2}(\mu\text{-DMAD})$	${ m CDCl_3} \ { m CDCl_3}$	35.5, 35.3, 33.8, 33.3 35.8		111 111
$_{2}^{(1)}(H_{2}O)_{2}(5)_{2}[BF_{4}]$	CD ₃ CN	-21.8		111
	D_2O	-19.8		111
$_{2}(H_{2}O)_{2}(5)_{2}[PF_{6}]$ $_{2}(H_{2}O)_{2}(5)_{2}[B(C_{6}H_{6})_{4}]_{2}$	${ m CD_3CN} \ { m CD_3COCD_3}$	-22.2 -22.6		111
1(3) ₂ C1[PF ₆]	CDCl ₃	42.7, -4 2.3		111 110
$lMo(\mu-3)_2(\mu-CO)(CO)_2Cl_2$	$CDCl_3$	21.67, 31.09	(9.7)	112
$\frac{\text{buNC}_{2}\text{Cl}_{2}\text{Rh}(\mu-3)\text{Pd}(\mu-\text{Cl}]_{2}}{\text{Pd}(\mu-3)}$	$CDCl_3$	10.3, 11.1	110 (17 4)	107
$Pd(\mu-3)_2(CO)Cl_3$	$\mathrm{CD_2Cl_2}$	21.9, 16.1	$113 \ (17.4) \ 2.3 \ (^2J_{ m RhP})$	113, 121
$nPd(\mu-3)_2(CO)Br_3$	$CDCl_3$	19.6, 14.3	112.0 (17.3)	107
$hPd(\mu-3)_2(MeNC)_2Cl_2[PF_6]$	$^{\mathrm{CDCl_3}}$	26.9, 17.5	108.9 (17.7)	107
nPd(µ-3)2(MeNC)2Cl2[B(C6H5)4] nPd(µ-3)2(MeNC)2Cl2[B(C6H5)4]	${^{ ext{CDCl}_3}}{^{ ext{CDCl}_3}}$	7.9 27.6	94.2 109.3 (17.1)	107 107
$\{[(C_6H_5)_2P]_2pyr\}_2Cl_2$	02013	28.0, -1.6	100.0 (11.1)	107 77
$d\{[(C_6H_5)_2P]_2pyr\}_2Br_2\}_n$		18.1		77
T-[Pd ₂ Cl ₂ (µ-Me ₂ Ppyr) ₂] T-[Pd-Br-(µ-Me ₂ Ppyr) ₂]		-23.56 -25.82		114
T -[Pd ₂ Br ₂ (μ -Me ₂ Ppyr) ₂] T -[Pd ₂ I ₂ (μ -Me ₂ Ppyr) ₂]		-25.83 -30.17		114 114
$H-[\mathrm{Pd_2Cl_2}(\mu-\mathrm{Me_2Ppyr})_2]^a$		-33.17		114
H-[Pd ₂ Br ₂ (μ-Me ₂ Ppyr) ₂] ^a		-36.29		114
$H_{-}[\mathrm{Pd}_{2}\mathrm{Br}_{2}(\mu\mathrm{-Me}_{2}\mathrm{Ppyr})_{2}]^{a} \ \Gamma_{-}[\mathrm{PdPtCl}_{2}(\mu\mathrm{-Me}_{2}\mathrm{Ppyr})_{2}]$		-41.73 -20.98	3910 (¹J _{PPt})	114 114
Γ -[PdPtBr ₂ (μ -Me ₂ Ppyr) ₂]		-22.88	3849 (¹ J _{PPt})	114
Γ -[PdPtI ₂ (μ -Me ₂ Ppyr) ₂]		-26.79	3764 (1J _{PPt})	114
Γ-[Pd ₂ Cl ₂ (μ-3) ₂] Γ-[Pd ₂ R ₇₋ (μ-3) ₂]		-3.72		114
$\begin{bmatrix} -[\mathrm{Pd_2Br_2(\mu-3)_2}] \\ -[\mathrm{Pd_2I_2(\mu-3)_2}] \end{bmatrix}$		2.31 0.37		114 114
H -[Pd ₂ Cl ₂ (μ -3) ₂] ^a		-12.38		114
$H - [Pd_2Br_2(\mu-3)_2]^a$		-14.31		114
$H-[\mathrm{Pd}_2\mathrm{I}_2(\mu ext{-}3)_2]^a \ \Gamma-[\mathrm{PdPtCl}_2(\mu ext{-}3)_2]$		-16.6 7.06 - 7.59	4040 (1 I_ \	114
. [1 01 1012(µ-0/2]	CDCl_3	7.06, -7.52 7.4, -6.7	$4049 (^{1}J_{\mathrm{PPt}}) \ 4048 (^{1}J_{\mathrm{PPt}})$	114 117
T -[PdPtBr ₂ (μ -3) ₂]	•	5.89, -8.89	$3978 (^1J_{\rm PPt})$	114
$H_{-}[\mathrm{PdPtI}_{2}(\mu-3)_{2}]$ $H_{-}[\mathrm{PdPtI}_{3}(\mu-3)_{2}]$	$CDCl_3$	-0.06	$3213 (^{1}J_{\text{PPt}})$	117
Γ -[PdPtI $_2(\mu$ -3) $_2$]	$CDCl_3$	3.46, -10.93 3.9, -10.5	$3894 (^{1}J_{\text{PPt}}) \\ 3891 (^{1}J_{\text{PPt}})$	114 117
$h(\eta^5-C_5H_5)(t-BuNC)Pd(\mu-3)(t-BuNC)Cl[PF_6]$	CDCl ₃	37.19	148.4 (¹ J _{PRh})	117
$h(\eta^5-C_5H_5)(t-BuNC)Pd(\mu-3)(t-BuNC)Cl[Cl]$	$CDCl_3$	37.19	$148.4~(^{1}J_{\mathrm{PRh}})$	115
C_5H_5)Rh(CO)(μ -3)PdCl ₂ Ru(3) ₂ (CO) ₂ Cl ₂	CDCl ₃	38.92	$158.7\ (^{1}J_{PRh})$	115
$ Ru(3)_2(CO)_2Cl_2 Ru(3)_2(CO_2)_2Cl_2$	$egin{array}{c} \mathrm{CD_2Cl_2} \ \mathrm{CD_2Cl_2} \end{array}$	38.9, 17.9 20.1, 16.5		22 22
$o_2[2-(C_6H_5)_2Ppyr(6-O^-)]\cdot PdCl_2$	$CDCl_3$	16		116
$o_2[2-(C_6H_5)_2Ppyr(6-O^-)]\cdot PdBr_2$	$CDCl_3$	16		116
$\frac{1}{1}C_{12}[2-(C_{6}H_{5})_{2}P_{pyr}(6-O^{-})]_{2}$ $\frac{1}{1}C_{12}[2-(C_{13}H_{2})_{2}P_{pyr}(6-O^{-})]_{2}$	${ m CDCl_3} \ { m CD_3CN}$	17 75.5		116 79
$dCl(NIPHOSHOH)(PMe_3)[FdCl_3(PMe_3)]^b$	CD ₃ CN CD ₃ CN	107.7		79 79

^a These complexes are only observed spectroscopically. b NIPHOS (38) = 2-(2-pyridyl)-4,5-dimethylphosphorin.

Table 4. ³¹P NMR for Platinum Pyridylphosphine Complexes

platinum complexes	solvent/temp (K)	δ (ppm)	¹ J (Pt-P) [² J _{PP}]	ref(s)
Pt(5)4	CDCl ₃ /228	30.1	3829	76
(9)	toluene-d ₈	-538.3 [δ Pt] 57.02	3840 4444	76
(3) ₃	228	-300.3 [δ Pt]	4444	10
ns-Pt(H)Cl(3)2	$\overline{\mathrm{CD_2Cl_2/298}}$	30.00	3031	76
$uns-PtIMe(3)_2$	$CDCl_3/298$	26.82	3078	76
ans-PtIMe(5) ₂	CDCl ₃ /298	25.64	3133	76 71
s-PtMe ₂ (3) ₂ ans-PtMeCl(3) ₂	${^{ ext{CDCl}_3}_{ ext{CDCl}_3}}$	$27.3 \\ 22.0$	1875 3157	71 71
ans-PtMeI(3) ₂	$CDCl_3$ $CDCl_3$	25.9	3091 [12]	$\frac{71}{71}$
$tMe(\eta^2-3)(3)[B(C_6H_5)_4]$	$\overline{\mathrm{CDCl}_3}$	-17.6	1391 [12]	71
D+M-/CCl \/9\		19.2	4226 [12] 3060	71
$cans$ -Pt $\mathbf{Me}(\mathbf{SnCl_3})(3)_2$		61.7	$217~(^2J_{SnP})$	71
is -Pt(3) $_2I_2$	$\mathrm{CDCl_3}$	6.7	3514	70, 117
D4(0) I	CDCI	11.9	3453	118
rans-Pt(3) ₂ I ₂ Pt(3) ₂ I]I	${^{ ext{CDCl}_3}}{^{ ext{CDCl}_3}}$	9.8 19.3	2503 3637	70, 117, 11 117, 118
1 ((3/21)1	CDOI3	-61.2	3241	111, 110
$t(3)_2(\eta^2\text{-CH}_2\text{CHCN})$	$\mathrm{CDCl_{3}/298}$	30.7	3445 [34.7]	76
WAR COLD CITATION	CDC1 /000	31.7	3969	70
$t(5)_2(\eta^2\text{-CH}_2CHCN)$	$\mathrm{CDCl_3/228}$	34.6 35.4	3406 [31.9] 3934	76
$t(3)_2(\eta^2\text{-CH}_2\text{CMeCN})$	CDCl ₃ /298	31.3	353 4 3538 [35.2]	76
-	- -	31.3	3718	
$t(3)_2(\eta^2\text{-CHMe}\text{CHCN})$	$\mathrm{CDCl_{3}/298}$	31.8	3265 [38.5]	76
$t(3)_2(\eta^2\text{-CHMe}\text{CHCN})$	CDCl ₃ /298	32.6 31.6	4095 3240 [39.4]	76
0(0)2(1)	OD 018/ 200	32.1	4086	, ,
$t(3)_2(\eta^2-C_4H_2O_3)$	CDCl ₃ /298	27.0	3841	76
$t(3)_2[\eta^2$ -cis-(CHCO ₂ Et) ₂]	CDCl ₃ /298	30.0	3750	76
t(3) ₂ [η²-trans-(CHCO ₂ Et) ₂] Pt{[(C ₆ H ₅) ₂ P] ₂ pyr} ₂ Cl ₂ } _n	$CDCl_3/298$	28.1 14.3	3815 3647	76 77
$cans, trans-Pt_2\{[\mu-(C_6H_5)_2P\}_2pyr\}_2I_4$		6.2	2595	77
$[T-[Pt_2Cl_2(\mu-Me_2Ppyr)_2]$		-31.78	3985 [18.9]	114
// ID+ D- / M- D 1		0410	$213 (^2 J_{\text{PPt}})$	114
$[T-[\mathrm{Pt_2Br_2}(\mu-\mathrm{Me_2Ppyr})_2]$		-34.13	3919 [18.9] 212.4 (² J _{PPt})	114
$[T-[\mathrm{Pt}_2\mathrm{I}_2(\mu\mathrm{-Me}_2\mathrm{Ppyr})_2]$		-38.00	3827 [18.9]	114
$[H-[\operatorname{Pt}_2\operatorname{I}_2(\mu-\operatorname{Me}_2\operatorname{Ppyr})_2]^a$		-16.84	199.1 (² J _{PPt}) 2957	114
$T-[\mathrm{PtPdI}_2(\mu ext{-Me}_2\mathrm{Ppyr})_2]$		-37.16	131.2 (² J _{PPt}) 3910 [14.5]	114
			$90.1~(^2J_{\rm PPt})$	
$[T-[\mathrm{PtPdBr_2}(\mu\mathrm{-Me_2Ppyr})_2]$		-39.34	3849 [15.6] 71.2 (² J _{PPt})	114
$[T-[\mathrm{PtPdI}_2(\mu\mathrm{-Me}_2\mathrm{Ppyr})_2]$		-42.96	3764 [16.7]	114
. 1 [1 01 012(# 1.0021 P) 072]			$37.8 \ (^2J_{\rm PPt})$	
[H-[PtPdI ₂ (μ-Me ₂ Ppyr) ₂] ^α		-27.08	2912	114
T -[Pt ₂ Cl ₂ (μ -3) ₂]	$\mathrm{CDCl_3}$	-2.29 -1.5	4128 [17.8] 4124 [17.8]	114 117
T -[Pt ₂ Br ₂ (μ -3) ₂]	02013	-3.75	4048 [17.8]	114
			$213.5~(^2J_{\rm PPt})$	
T -[Pt ₂ I ₂ (μ -3) ₂]	CDCl_3	−6.25 −5.7	3965 [20.0] 3905 [17.7]	114 117
$[H-[\operatorname{Pt_2Cl_2}(\mu-3)_2]]$	ODO13	-5.7 14.64	0000 [11.1]	114
	CDCl_3	9.6	3263	117
$[H-[Pt_2Br_2(\mu-3)_2]]$		12.17	3589 160.1 (² J _{PPt})	114
$[H-[ext{Pt}_2 ext{I}_2(\mu-3)_2]$		9.34	3263	114
	CDCl_3	9.6	3263	117
$[T-\{\mathrm{PtPdCl_2}(\mu-3)_2]$	CDCl_3	−7.52 −6.7	4049 [14.5]	114 117
$T-[\mathrm{PtPdBr}_2(\mu ext{-}3)_2]$	CDCI3	-6.7 -8.89	4048 [14.3] 3978 [15.6]	114
	CDCl_3	-0.06	$91.2~(^2\!J_{ exttt{PPt}})\ 3213$	117
$[H-[\operatorname{PtPdI}_2(\mu ext{-3})_2]] \ [T-[\operatorname{PtPdI}_2(\mu ext{-3})_2]]$	CDCt3	-0.06 -10.93	3894 [16.1]	114
	CDCl_3	-10.5	3891 [16.0]	117
$s ext{-} ext{Pt}(3)_2 ext{Cl}_2$	CD_2Cl_2	11.62	3675.6	113
Pt(3)₂Cl]Cl	${^{ ext{CDCl}_3}_{ ext{CDCl}_3}}$	11.6 15.2	3676 3304	117, 118 117, 118
, v(u)201101	ODOIS	-50.03	3339	111, 110
$t(3)_2Br_2$	$\mathrm{CD_2Cl_2}$	10.86	3618	113
$t(3-PO)Br_4$ $tCl_2[pyr(CH_2)_2PH(C_6H_5)]$		25.4 33.64		82 74
renamente de la		33.64		74

Table 4 (Continued)

platinum complexes	solvent/temp (K)	δ (ppm)	${}^{1}J(Pt-P)[{}^{2}J_{PP}]$	ref(s
PtMo(μ-3) ₂ (μ-CO)(CO) ₂ Cl ₂	CDCl ₃	34.4	3064	119
PtRh(3) ₂ (CO)Cl ₃	$\mathrm{CD_2Cl_2}$	1.04	4035 [14.0] ≈133 (² J _{PPt})	113
PtRh(3) ₂ (CO)Cl ₅	$\mathrm{CD_2Cl_2}$	-17.9	2793.3 [19.7] 63.0 (² J _{PPt})	113
$PtRh(3)_2(CO)Br_3$	$\mathrm{CD_2Cl_2}$	0.13	3950 [15]	113
$PtRh(3)_{2}(CO)Br_{5}$	$\mathrm{CD_2Cl_2}$	-20.7	2776 [15] 368 (² J _{PPt})	113
$[Pt(3)_2Cl][Rh(CO)_2Cl_2]$	$\mathrm{CD_2Cl_2}$	15.24	3704	113
$(\eta-C_5H_5)Rh(\mu-CO)(\mu-3)Pt(Me)_2$	CDCl_3	50.0	$125.6~(^2J_{\rm PPt})$	115
η -C ₅ H ₅)Rh(Cl)(μ -3)Pt(CO)Cl	$CDCl_3$	40.93	$165.9~(^2J_{\rm PPt})$	115
$Pt(3)_2Cl][Rh(CO)_2Cl_2]$	$CDCl_3$	15.2, -50.3	3704, 3339	117
$Pt(3)_2I][PF_6]$	$\mathrm{CDCl_3}$	19.3, -61.2	3637, 3241	117
$PtRh[P(C_6H_5)_2](pyrCH[P(C_6H_5)_2]_2)-$	$CH_{2}Cl_{2}/163$	157.2	$129~(J_{\rm RhP})$	120
$(pyrCH_2P(C_6H_5)_2)(P(C_6H_5)_3)[BF_4]_2$		29.4	130	
		27.62	$3115 (J_{PtP})$	
		19.62		
		17.55	$3457 (J_{PtP})$	
$PtCl(NIPHOS)P(C_6H_5)_3][PtCl_3P(C_6H_5)_3]^b$	$CDCl_3$	155.1	4526	79
$PtCl(NIPHOS)(PMeC_6H_5)_2][PtCl_3(PMeC_6H_5)_2]^b$	$CDCl_3$	155.0	4582	79
$PtCl(NIPHOS)(PMe_2C_6H_5)[PtCl_3(PMe_2C_6H_5)]^b$	$CDCl_3$	154.8	4634	79
PtCl(NIPHOS)(PMe ₃)][PtCl ₃ (PMe ₃)] ^b	$CDCl_3$	152.0	4658	79
$PtCl(NIPHOS)(Pbu_8)][PtCl_8(Pbu_3)]^b$	$CDCl_3$	151.6	4536	79
PtCl(NIPHOSH-OH)(P(C_6H_5) ₃)] + b	$CDCl_3$	50.9	3936	78
$PtCl(NIPHOSH \cdot OH)(PMe(C_6H_5)_2)]^{+b}$	$CDCl_3$	53.5	3987	79
PtCl(NIPHOSH-OH)(PMe ₂ C ₆ H ₅)1+ b	$CDCl_3$	52.8	4002	79
PtCl(NIPHOSH-OH)(PMe ₃)]+ b	$CDCl_3$	54.7	4059	78
PtCl(NIPHOSH-OH)(Pbu ₃)]+ b	$\overrightarrow{\mathrm{CDCl}_3}$	54.5	4152	79
PtCl(NIPHOSH-OH)(AsMe ₂ C ₆ H ₅)]+ b	$\widetilde{\mathbf{CDCl}_3}$	55.0	3873	79
PtCl(NIPHOSH-OMe)(PMe ₃)]+ b	CD_3CN	80.0	4156	79
PtCl(NIPHOSH-Oi-Pr)(PMe ₃)1+ b	$CDCl_3$	72.0	4138	79
PtCl(NIPHOSH·Oisoamyl)(PMe ₃)]+ b	$CDCl_3$	75.4	4162	79
PtCl(NIPHOSH-OC ₆ H ₅)(PMe ₃)] ^{+ b}	$CDCl_3$	80.4	4296	79
$[PtCl(NIPHOSH \cdot SC_6H_5)(PMe_3)]^{+b}$	$CDCl_3$	28.6	3872	79

^a Mixture of isomers. ^b NIPHOS (38) = 2-(2-pyridyl)-4,5-dimethylphosphorin.

(1:100 complex to alkene ratio), hex-1-ene was selectively hydroformylated to heptanal.⁸ These authors noted their inability to remove the tripyridylphosphine rhodium complex from the product as well as their inability to prepare the corresponding tris(3- or 4-pyridylphosphines) from the corresponding bromopyridines.

Addition of propyne to $Pd(OAc)_2$, $(6-Me-2-pyr)_2-P(C_6H_5)$, 170 and p-toluenesulfonic acid in N-methylpyrrolidine and methanol, followed by treatment with CO (60 bar) afforded (99.9%) methyl methacrylate; the yield was slightly less using 4 (98.3%) or using $(2\text{-pyr})-(4\text{-MeC}_6H_4)P(C_4H_9)$ (98.9%). 171

Several new pyridylphosphine catalysts FeRh- $(3)_2(CO)_3Cl$, NiRh $(3)_2(CO)Cl_3$, and CoRh $(3)_2(CO)Cl_3$ have recently been prepared from Fe $(3)_2(CO)_2(CS_2)$, Ni $(3)_2(CO)_2$, and CoRh $(3)_2Cl_2$, respectively, and successfully used in the carbonylation of methanol. The use of binuclear metal pyridylphosphine complexes in this carbonylation process afforded acetic acid in >94.3% and a combination of acid and methyl ester in >99.11% total yield.

Treatment of cyclopentene with $(C_6H_{11})P[(CH_2)_2(2-pyr)]$ and Ni(COD)₂ under CO₂(1 bar) at 20 °C afforded (95%) a bicyclic Ni complex intermediate, which was readily transformed to a series of functionalized cyclopentanecarboxylic acid derivatives. ¹³⁶

Tetradec-1-ene was hydroformylated⁷⁸ using a water-soluble catalyst consisting of Rh₄(CO)₁₂ and a surface active sulfobetaine derivative of 5. The best yield (79%) was obtained using 5 sulfalkylated by octane-1,2-sultone, as the ligand.

Gladiali et al.¹⁷² utilized $(\eta^5\text{-}C_5H_5)\text{Rh}_2(\mu\text{-}CO)(\mu\text{-}3)$ -(CO)Cl as a hydroformylation catalyst; the formation of the intermediates was followed by ³¹P NMR spectra.

2. Chlorinations

When primary or secondary alkyl alcohols were treated with 2-pyr(CH₂)₂P(C₆H₅)₂ in CCl₄/CHCl₃ at 35–45 °C, high yields of the corresponding alkyl chloride were obtained.⁴⁵ The reaction complexes were studied by ³¹P NMR, and the rate constants were presented.

3. Mitsunobu Esterification

The use of 3 in the Mitsunobu reaction (treatment of carboxylic acids with alcohols in the presence of diisopropyl azodicarboxylate and triphenylphosphine) greatly facilitates the removal of the phosphine oxide byproduct, while maintaining comparable yields of the desired ester.¹⁷⁵ Recycling of the pyridylphosphine was accomplished by the reduction of the corresponding

Table 5. 31P NMR for Rhodium Pyridylphosphine Complexes*

rhodium complexes	solvent/temp (K)	δ (ppm)	$^1J_{ m RhP}$ $[^2J_{ m PP}]$	ref(s)
Rh(3) ₂ (CO)Cl	CDCl ₃	30.13	127.8	110, 121
$Rh(3)_2(CO)Br$	$CDCl_3$	29.1	125.9	110
$Rh(MeNC)_2(3)_2[PF_6]$	$CDCl_3/233$	28.3	130.5	110
$Rh(MeNC)_2(3)_2[B(C_6H_5)_4]$	CDCl ₃ /233	28.3	128.5	110
$RhPd(\mu-3)_2(CO)Cl_3$	CD_2Cl_2	21.9, 16.1	112.7 [17.4]	110, 113, 121
0112 dt (pr 0/2(0 0 / 0 - 0	22	,	$2.3~(^2J_{\rm RhP})$,,
$RhPd(\mu-3)_2(CO)Br_3$	CDCl_3	19.6, 14.3	112.0 [17.3]	110
$RhPd(\mu-3)_2(MeNC)_2Cl_2[PF_6]$	$\overline{\mathrm{CDCl}_3}$	26.9, 17.5	108.9 [17.7]	110
$RhPd(\mu-3)_2(MeNC)_2Cl_2[B(C_6H_5)_4]$	$CDCl_3$	7.9	94.2	110
$\frac{1}{2} \frac{1}{2} \frac{1}$	$CDCl_3$	27.6	109.3 [17.1]	110
C_{0}^{1} C_{0	$toluene-d_8$	27.8	128	107
	215	41.0	140.8 [22]	172
$Rh[P(C_6H_5)_3]_2(3)(CO)(Cl)$	213	45.8		112
DUDYC II VIAV (COVCIV	015		154.8 [22]	150
$Rh[P(C_6H_5)_3](3)_2(CO)(Cl)$	215	42.2	154.5 [37.8]	172
	GT G1 :000	45.9	155.1 [37.8]	
$(\eta^5-C_5H_5)Rh(\mu-DMA)(\mu-3)Rh(CO)\mu-Cl]_2$	$\mathrm{CD_2Cl_2/298}$	53.4	175.9 [4.8]	145
	225	54.1	175.6 [4.8]	
		55.3	174.9 [4.6]	
$(\eta^5-C_5H_5)Rh(\mu-DMA)(\mu-3)Rh(CO)(SO_2)Cl$	$\mathrm{CD_2Cl_2}$	60.9	162 [3.7]	145
Rh(C ₈ H ₁₂)(3)Cl	$CDCl_3$	29.7, 30.6	150.2, 150.3	122
The second of th	$\mathrm{CD_2Cl_2}$	29.3	150.1	107
Rh(acac)(Cl)CH ₂ [Ppyr(C ₆ H ₅)] ₂ CH ₂ [Cl]		63.7, 90.0	122, 139 [15]	147
**************************************		62.9, 93.7	123, 135 [14]	
$\mathrm{Rh}(\mathrm{acac})(\mathrm{Cl})\mathrm{CH}_{2}[\mathrm{Ppyr}(\mathrm{C}_{6}\mathrm{H}_{5})]_{2}(\mathrm{CH}_{2})_{3}[\mathrm{Cl}]$		22.8, 60.9	116, 130 [36]	147
un(acac)(Oi)Oiiglr pyr(O6115)J2(Oii2)3[Oi]		20.4, 60.2	116, 131 [37]	7.41
		23.3, 61.0	116, 125 [50]	
		22.9, 60.7	118, 125 [51]	
$Rh(dpm)(Cl)CH_2[Ppyr(C_6H_5)]_2(CH_2)_2[Cl]$		62.9, 88.1	121, 140 [16]	147
		62.4, 91.2	122, 136 [14]	
$Rh(dpm)(Cl)CH_2[Ppyr(C_6H_5)]_2(CH_2)_3[Cl]$		20.8, 59.9	116, 131 [38]	147
		19.5, 58.6	115, 131 [38]	
$Rh(dpm)(Cl)CH_2[pyrPMe_2][Cl]$		23.8, 54.0	125, 131 [46]	147
$Rh(acac)(Cl)(CH_2Cl)[Ppyr(C_6H_5)]_2CH_2$		-18.8, -11.0	118, 124 [84]	147
		-12.9	117	
$Rh(acac)(Cl)(CH_2Cl)[Ppyr(C_6H_5)]_2(CH_2)_2$		58.6, 61.8	137, 147 [17]	147
(m(acac)(C1)(C112C1)[1 pj1(C6116)12(C112)2		51.5	137	
Ob (coss) (CI) (CU CI) [Drum(C U)] (CU)		19.0, 22.2	126, 134 [40]	147
$Ch(acac)(Cl)(CH_2Cl)[Ppyr(C_6H_5)]_2(CH_2)_3$				147
		24.2	127	=
$Rh(dpm)(Cl)(CH_2Cl)[Ppyr(C_6H_5)]_2CH_2$		-17.5, -11.6	117, 126 [85]	147
		-11.7	117	
$Rh(dpm)(Cl)(CH_2Cl)[Ppyr(C_6H_5)]_2(CH_2)_2$		55.2, 59.2	136, 148 [19]	147
		53.4	137	
$Rh(dpm)(Cl)(CH_2Cl)[Ppyr(C_6H_5)]_2(CH_2)_3$		18.1, 20.7	126, 138 [40]	147
		24.3	129	
$Rh(dpm)[Ppyr(C_6H_5)_2]_2CH_2$		-16.2	159	147
$\frac{\operatorname{Rh}(\operatorname{dpm})[\operatorname{Ppyr}(\operatorname{C}_6H_6)_2]_2(\operatorname{CH}_2)_2}{\operatorname{Rh}(\operatorname{dpm})[\operatorname{Ppyr}(\operatorname{C}_6H_6)_2]_2(\operatorname{CH}_2)_2}$		75.2	189 [48]	147
		39.9	178 [75]	147
$\frac{h(dpm)[Ppyr(C_6H_5)_2]_2(CH_2)_3}{h(dpm)(ppyr(DM_6)_2)_2}$		27.7	186	147
Rh(dpm)(pyrPMe ₂)				
$\frac{\text{Ch}(\text{acac})[\text{Ppyr}(\text{C}_6\text{H}_5)_2]_2(\text{CH}_2)_2}{\text{CH}_2(\text{CH}_2)_2}$		73.8	188 [49]	147
$\frac{\text{Ch}(\text{acac})[\text{Ppyr}(\text{C}_6\text{H}_5)_2]_2(\text{CH}_2)_3}{\text{Ch}(\text{Ch}_2)_3}$	ODOL 1005	38.9	178 [73]	147
$\mathrm{Lh_2(form)_2}(\mu\text{-}\mathrm{O_2CCF_3})(\mu\text{-}3)(\mathrm{O_2CCF_3})$	CDCl ₃ /225	-34.36	82.8 [55.4]	142
	310	30.21	127.0 [5.7]	
		29.53	126.4 [5.3]	
	CD ₃ CN/310	30.9	127.6 [3.3]	
$h(form)_2(\mu-3)_2(O_2CCF_3)_2$	$\mathrm{CDCl_{3}/225}$	-96.05		142
······································	CDCl ₃ /310	29.01	132	
	CD ₃ CN/310	25.83	129.7	
$Rh_2(form)_2(\mu-3)(\mu-O_2CCF_3)][PF_6)$	CDCl ₃ /310	29.68	122.2 [5.2]	142
$h_2(form)_2(\mu-3)(\mu-0_2CCF_3)[fFF_6]$ $h_2(form)_2(\mu-3)(O_2CCF_3)[PF_6]$	CDCl ₃ /310 CDCl ₃ /310	26.8	127.1	142
	CDCl ₃ /310 CDCl ₃ /310	28.74	131.1	142
$R_{12}(form)_{2}(\mu-3)_{2}[(PF_{6})_{2}]$				
$\text{lh}_2(\text{form})_2(\mu-3)(\mu-O_2\text{CCF}_3)[\text{Cl}]$	CDCl ₃ /225	24.35	164.5 [5.8]	142
$Rh_2(form)_2(\mu-3)(\mu-O_2CCF_3)[Br]$	CDCl ₃ /310	28.79	122.2 [5.4]	142
$\frac{\mathrm{Rh}_{2}(\mathrm{form})_{2}(\mu-3)_{2}(\mu-\mathrm{O}_{2}\mathrm{CCF}_{3})}{\mathrm{Cl}}$	CDCl ₃ /310	27.90	131.3	142
$\mathrm{Rh}_2(\mathrm{form})_2(\mu ext{-}3)_2\mathrm{I}_2$	DCCl ₃ /310	27.82	129.9	142
$Rh(\eta^5-C_5H_5)(CO)(3)$	$\mathrm{CDCl_3}$	53.80	199.8	143
η^5 - C_5H_5)Rh(μ -CO)(μ -3)Rh(CO)Cl	$CDCl_3$	52.10	175.6 [5.3]	143
	CDCl_3	60.3	162.2 [3.8]	143
η^5 -C ₅ H ₅)Rh(μ -3)(μ -SO ₂)Rh(CO)Cl		10.3, 11.1	• •	107
η^5 -C ₆ H ₅)Rh(μ -3)(μ -SO ₂)Rh(CO)Cl (t -buNC) ₂ Cl ₂ Rh(μ -3)Pd(μ -Cl)l ₂	CDCl ₂		101	147
η^5 -C ₅ H ₅)Rh(μ -3)(μ -SO ₂)Rh(CO)Cl (t -buNC) ₂ Cl ₂ Rh(μ -3)Pd(μ -Cl)] ₂ Rh(μ -ac)(Ppyr(C ₄ H ₄)] ₂ CH ₅	$\mathrm{CDCl_3}$		164	721
(t-buNC) ₂ Cl ₂ Rh(µ-3)Pd(µ-Cl)] ₂ Rh(acac)[Ppyr(C ₆ H ₅)] ₂ CH ₂	CDCl_3	-19.2	164 194 [51]	
((t-buNC) ₂ Cl ₂ Rh(µ-3)Pd(µ-Cl)] ₂ Rh(acac)[Ppyr(C ₆ H ₅)] ₂ CH ₂ Rh(acac)[Ppyr(C ₆ H ₅)] ₂ (CH ₂) ₂	$\mathrm{CDCl_3}$	-19.2 70.0	194 [51]	147
((t-buNC) ₂ Cl ₂ Rh(µ-3)Pd(µ-Cl)] ₂ Rh(acac)[Ppyr(C ₆ H ₅)] ₂ CH ₂ Rh(acac)[Ppyr(C ₆ H ₅)] ₂ (CH ₂) ₂ Rh(acac)[Ppyr(C ₆ H ₅)] ₂ (CH ₂) ₃	CDCl_3	-19.2 70.0 37.3	194 [51] 182	147 147
$(t-buNC)_2Cl_2Rh(\mu-3)Pd(\mu-Cl)]_2$ $Rh(acac)[Ppyr(C_6H_5)]_2CH_2$ $Rh(acac)[Ppyr(C_6H_5)]_2(CH_2)_2$ $Rh(acac)[Ppyr(C_6H_5)]_2(CH_2)_3$ $Rh(dpm)[Ppyr(C_6H_5)]_2CH_2$	$\mathrm{CDCl_3}$	-19.2 70.0 37.3 -18.5	194 [51] 182 164	147 147 147
$(t-buNC)_2Cl_2Rh(\mu-3)Pd(\mu-Cl)]_2$ $Rh(acac)[Ppyr(C_6H_5)]_2CH_2$ $Rh(acac)[Ppyr(C_6H_5)]_2(CH_2)_2$ $Rh(acac)[Ppyr(C_6H_5)]_2(CH_2)_3$ $Rh(dpm)[Ppyr(C_6H_5)]_2CH_2$ $Rh(dpm)[Ppyr(C_6H_6)]_2CH_2$ $Rh(dpm)[Ppyr(C_6H_6)]_2(CH_2)_2$	•	-19.2 70.0 37.3 -18.5 72.1	194 [51] 182 164 194 [52]	147 147 147 147
$(t-buNC)_2Cl_2Rh(\mu-3)Pd(\mu-Cl)]_2$ $Rh(acac)[Ppyr(C_6H_5)]_2CH_2$ $Rh(acac)[Ppyr(C_6H_5)]_2(CH_2)_2$ $Rh(acac)[Ppyr(C_6H_5)]_2(CH_2)_3$ $Rh(dpm)[Ppyr(C_6H_5)]_2CH_2$	$\mathrm{CDCl_3}$ $\mathrm{C_6D_6/298}$	-19.2 70.0 37.3 -18.5	194 [51] 182 164	147 147 147

Table 5 (Continued)

Table 5 (Continued)				
rhodium complexes	solvent/temp (K)	δ (ppm)	$^1J_{ m RhP}~[^2J_{ m PP}]$	ref(s)
$Rh_2(CO)_2Cl_2[\mu-2,6-pyr(P(C_6H_5)_2)_2]_2$	CDCl ₃ /293	28.6 29.3 30.0	132 124 127	149
$Rh_{4}[2,\!6\text{-pyr}(P(C_{6}H_{5})_{2})_{2}]_{2}(\mu\text{-CO})(CO)_{2}(\mu\text{-Cl})_{2}Cl_{3}$		39.9 36.2	127 129.7 149.7	108, 149
$Rh_{4}[\mu\text{-}2,6\text{-pyr}(P(C_{6}H_{5})_{2})_{2}]_{2}(\mu\text{-}SO_{2})(CO)_{2}Cl_{4}$		35.7	149.7 131 138	150
$[Rh_2(CO)[\mu2,6\text{-pyr}(P(C_6H_5)_2)_2]_2(CH_3OH)Cl]^+$		30.7 31.1 20.4	138 128.2 128.9	150
$rac-[(C_6H_5)pyrP]_2(CH_2)[Rh(CO)Cl_2]_2$	$DMSO-d_6$	36.9	161 [67]	19
$\{meso-\{(C_6H_5)pyrP\}_2(CH_2)_2Rh_2Cl_2\}\{Rh(CO)Cl_2\}_2$	CD ₃ OD-CD ₃ CN	24.0	≈112	19
$[Rh_2(\mu-[(C_6H_6)_2P]pyr]_2(\mu-CO)(\mu-I)][B(C_6H_6)_4]$	CDCl ₃ /298	61.3	153	123
E		-41.3	135	
$\{(C_8H_{12})Rh[(C_6H_5)_2Ppyr]_2\}_2$	$\mathrm{CD_2Cl_2}$	25.1	144	73
$\{(CO)_2Rh[(C_6H_5)_2Ppyr]_2\}_2[BF_4]$	$\mathrm{CD_2Cl_2/183}$	40.5	75	73
RhPt(3) ₂ (CO)Cl ₃	$\mathrm{CD_2Cl_2}$	24.6	114 [2.9]	113
$RhPt(3)_2(CO)Cl_5$	$\mathrm{CD_2Cl_2}$	27.9	110	113
$RhPt(3)_2(CO)Br_3$	$\mathrm{CD_2Cl_2}$	24.0	110	113
$RhPt(3)_2(CO)Br_5$	CD_2Cl_2	27.6	112	113
$Rh_2(3)_2(\mu\text{-CO})Cl_2$	CD_2Cl_2	44.18	144.0 [16.0]	121, 124
			$12.0 \; (J_{RhRh}) -7.39 \; (^2J_{RhP})$,
$(\eta^5 - C_5 H_5)(t-\text{buNC})\text{Rh}(\mu-3)\text{Pd}(t-\text{buNC})(\text{Cl})[\text{PF}_6]$	CDCl_3	37.19	148.4	115
$(\eta^5 - C_5 H_5)(t-\text{buNC})\text{Rh}(\mu-3)\text{Pd}(t-\text{buNC})(\text{Cl})[\text{Cl}]$	$\mathrm{CDCl_3}$	37.19	148.4	115
$(\eta^5\text{-}\mathrm{C}_5\mathrm{H}_5)(\mathrm{CO})\mathrm{Rh}(\mu\text{-}3)\mathrm{Pd}\mathrm{Cl}_2$	$\mathrm{CDCl_3}$	38.92	158.7	115
$(\eta^5\text{-C}_5 ext{H}_5)(\mu\text{-CO}) ext{Rh}(\mu\text{-3}) ext{PtMe}_2$	CDCl_3	50.0	190.2	115
			$125.6~(^2J_{\rm PPt})$	
$(\eta^5 - C_5H_5)(Cl)Rh(\mu-3)Pt(CO)Cl$	CDCl_3	40.93	152.48	115
			$165.9~(^2J_{\rm PPt})$	
$\mathrm{Rh}_2(\mu ext{-}3)_2(\mu ext{-}\mathrm{Cl})(\mathrm{CO})\mathrm{Cl}_3$	24 8	29.7	117.2	125
		23.2	109.9	
$Rh_2(\mu-3)_2(CO)Cl_4$	$(ClCH_2)_2/348$	27.6	≈124.5	125
$Rh_2(\mu-3)_2(CO)_2Cl_4$		22.4	109.9	125
$Rh_2(\mu-3)_2(t-buNC)_2Cl_4$		25.3	113.0	125
$\mathrm{Rh_2(3)}(\mu ext{-}\mathrm{SO_2})\mathrm{Cl_2}$		41.70	138.4 [18]	12 4
			$-6.2~(^{2}J_{\text{PRh}})$	
$Rh_2(CO)[\mu\text{-pyrCH}(P(C_6H_5)_2)_2]_2[B(C_6H_5)_4]_2$	acetone, 293	61.5	136, 130 (J_d)	126
		37.7	$30.5, 30.5 (J_t)$	
$PtRh[P(C_6H_5)_2](pyrCH[P(C_6H_5)_2]_2)(pyrCH_2-P(C_6H_5)_2)(P(C_6H_5)_3)[BF_4]_2$	CH ₂ Cl ₂ /163	157.2	$5129 (J_{RhP})$	127
	,	29.4	130	
		27.62	$3115 (J_{PtP})$	
		19.62		
DI 6 ATT D 6 TT 1 TT 1	~ ~-	17.5	$3457 (J_{PtP})$	
$Rh[pyrCH(P(C_6H_5)_2]_2[BF_4]$	CH_2Cl_2	1.06	$115.6 (J_{RhP})$	128
$RhAg[pyrCH(P(C_6H_5)_2][BF_4][NO_3]$	$\mathrm{CH_2Cl_2}$	53.84	$143 (J_{RhP})[50,37]$	127
D1 4 4 G11 D G 11 4 GG 1 DD 110 4	~ 4.	25.66	$543,468 (J_{AgP})[50,37]$	
$RhAg[pyrCH(P(C_6H_5)_2](CO)_2[BF_4NO_3]$	$\mathrm{CH_2Cl_2}$	51.99	140	127
DIA CONTRACTO INTERPRET	ATT 61	49.93		
$RhAu[pyrCH(P(C_6H_5)_2]Cl[BF_4]$	$\mathrm{CH_{2}Cl_{2}}$	68.89	171	127
DIA COMPANIA DEDE	OTT 01	42.82	4=4	
$RhAu[pyrCH(P(C_6H_5)_2)_2Br[BF_4]$	$\mathrm{CH_2Cl_2}$	68.34	170	127
DIA COMPONIA DE NOI	011 01	43.33	4.00	
$RhAu[pyrCH(P(C_6H_5)_2)_2[BF_4NO_3]$	CH_2Cl_2	76.02	~162	128
${Rh_{2}[pyrCH(P(C_{6}H_{5})_{2})]_{2}(CO)_{2}}[PF_{6}]\cdot C_{3}H_{6}O$	MeCOMe	62.0	$117.9 (J_{RhP});$	129
			$293.5, 54.1 (J_{PP})$	
		40.2	$134.5 (J_{RhP});$	
PL(GO)(GNIGII/D(G II))	N. 00N.	00 -	$293.0, 54.0 (J_{PP})$	100
$Rh(CO)(Cl)[pyrCH(P(C_6H_5)_2)]_2$	MeCOMe	69.1	$168 (J_{RhP})[107]$	129
DL (9)(00) (01(D(0 II)))	OD OI	0.35	[108]	100
$Rh(\mu-S)(CO)_2[pyrCH(P(C_6H_5)_2)]_2$ $Rh(GO)_2(CO)_2$	CDCl ₃	34.1	139	129
$Rh(CO)ZnCl(\mu-Cl)\{2,6-pyr[CH_2O(CH_2)_3P(C_6H_5)_2]_2\}(CF_3SO_3)$	CH ₂ Cl ₂	26.4	119	46
$[Rh_2(NBD)_2(NIPHOS)_2][SbF_6]_2$	$\mathrm{CD_3CN}$	154.9	92.5	130

 $[^]a$ NIPHOS (38) = 2-(2-pyridyl)-4,5-dimethylphosphorin. NBD = norbornadiene. DMA = dimethyl acetylenedicarboxylate. COD = cyclooctadiene. Dpm = 2,2,6,6-tetramethylheptanedioate. acac = acetylacetone. Form = di-p-tolylformamidinate.

P-oxide by a previously reported CeCl₃/LiAlH₄ procedure. The mechanism of this esterification has been further studied 174 using 31P NMR, revealing the presence of a dialkoxyphosphorane intermediate in equilibrium with the alkoxyphosphonium carboxylate species; details were presented.

Camp and Jenkins¹⁷⁴ have used 3 in the Mitsunobu reaction to circumvent the difficulties associated with the use of triphenylphospine oxide. They suggested that 3 stabilizes the (acyloxy)alkoxyphosphorane intermediate through N-coordination with the acetoxy carbonyl carbon, thus stabilizing the phosphorane

Table 6. 31P NMR for Molybdium Pyridylphosphine Complexes

molybdium complexes	solvent	δ (ppm)	$^1J_{ m PH}$	ref
cis-Mo(CO)(3) ₂	CDCl ₃	40.65		112
$PdMo(\mu-3)_2(\mu-CO)(CO)_2Cl$	$CDCl_3$	21.67, 31.09	9.7 (³ J)	112
2-pyrPH ₂ Mo(CO) ₅	$\mathrm{CD_2Cl_2}$	-83.1	339 ` ´	29
(2-pyrPH2)2Mo(CO)4	$\mathrm{CD_2Cl_2}$	-56.0	330	29
32	$\mathrm{CDCl_3}$	61.1		54
35	$CDCl_3$	60.24		54
$2-pyr(CH_2)_2PH_2Mo(CO)_4$	C_6D_6	-81.8	322	36
2-pyrCH ₂ PH ₂ Mo(CO) ₄	CD_2Cl_2	-1.4	345	36
2-pyr(CH ₂) ₂ PH(C ₆ H ₅)Mo(CO) ₄	$\mathrm{CD_2Cl_2}$	-5.3	337	36
[2-pyr(CH2)2PH2]2Mo(CO)4	THF	<i>−</i> 75.7	318	36
$2-pyr(CH_2)_2PH_2Mo(CO)_4P(C_6H_5)H_2$	$\mathrm{CD_2Cl_2}$	-61.8, -74.7	$22~(^{2}J_{PP})$	36
2-pyr(CH ₂) ₂ PH ₂ Mo(CO) ₅	C_6D_6	-80.8	318	36
2-pyrCH ₂ PH(C ₆ H ₅)Mo(CO) ₅	$\mathrm{CD_2Cl_2}$	-4.4	339	36
2-pyr(CH ₂) ₂ PH ₂ [Mo(CO) ₂ (η^5 -C ₅ H ₅)] ₂	$\mathrm{CD_2CL_2}$	-14.3	334	36
2-pyr(CH ₂) ₂ PH(C ₆ H ₅)[Mo(CO) ₂ (η^5 -C ₅ H ₅)] ₂	$\mathrm{CD_2Cl_2}$	48.8	345	36
$2,6-[(C_6H_5)_2P]pyr[Mo(CO)_5]_2$		39.5		25
$2,6-[(C_6H_5)_2P]pyr[Mo(CO)_4pip]^a$		36.5, -4.8	$239 (^{1}J_{PW})$	25
$2,6-[(C_6H_5)_2P]pyr[Mo(CO)_4pip]_2^a$			45.6	25
$Mo(CO)_5(3)$	$CDCl_3$	40.78		131
$Mo(CO)_4(3)_2$	$CDCl_3$	40.52		131
		40.7		119
$Mo_2(\eta-C_5H_5)_2(CO)_4(3)_2$	$\mathrm{CDCl_3}$	58.0		132
$Mo_2[2-(C_6H_5)_2Ppyr(6-O^-)]_4$	$\mathrm{CDCl_3}$	-8. 3		116
$Mo_2[2-(C_6H_5)_2Ppyr(6-O^-)]_4\cdot Mo(CO)_3$	$\mathrm{CDCl_3}$	35		116
$Mo_2[2-(C_6H_5)_2Ppyr(6-O^-)]_4\cdot PdCl_2$	$CDCl_3$	16		116
$Mo_2[2-(C_6H_5)_2Ppyr(6-O^-)]_4\cdot PdBr_2$	$CDCl_3$	16		116
$MoPt(\mu-3)_2(\mu-CO)(CO)_2Cl_2$	$CDCl_3$	34.4	$3064 (J_{PtP})$	119
Pip = piperidine.				

structure 72 and rendering the carboxylate a much poorer leaving group (Scheme 27). ³¹P NMR chemical shift data for diverse dialkoxydiphenyl(2-pyridyl)-phosphoranes have been determined¹⁷⁵ and compared to the corresponding triphenylphosphine betaines.

4. Epoxidation of Alkenes

It has been reported \$^{176}\$ that ruthenium(II) complexes, specifically RuCl[(C₆H₅)₂P(CH₂)₂(2-pyr)]₂[ClO₄], promote the oxidation of several alkenes by C₆H₅IO, hypochlorates, and hydrogen peroxide. Typically, the reaction of alkene (0.1 M), catalyst (2 mM), and C₆H₅IO in CH₂Cl₂ at 22 °C afforded average (25–55%) yields of the epoxide.

5. Metal-Catalyzed Cycloadditions

Recently, the Ni(0) P-complex catalyzed, one-step, α -pyrone synthesis from CO₂ and diynes has been reported. The use of (2-pyr)(CH₂)₂P(bu)₂ has been shown to give enhanced yields of the desired α -pyrone product(s) over simple trialkylphosphines, suggesting that functionalized phosphines are unique due to intramolecular coordination of the pyridyl moiety to the nickel atom via a six-membered chelate ring. This procedure provides a facile, general, and convenient method for forming α -pyrones.

6. Dimerization of Isoprene

Hoberg and Minato¹⁷⁷ reported the easy Pd-catalyzed dimerization of isoprene, using Pd(acac)₂, (C₆H₁₁)-P[(CH₂)₂(2-pyr)]₂, and DBU under CO₂ pressure in the presence of tri-n-butyltin ethoxide. A mixture of two "C₁₀H₁₅CO₂CH₃" esters was isolated (68%); each major component was characterized. Although these authors noted the "obscure" effect of DBU, no mention was

made to the rationale for the particular pyridylphosphine. A similar functionalization was reported ¹³⁵ using cyclooctene.

IV. Conclusions

Although pyridylphosphines have been known for nearly five decades, the synthetic and instrumental tools are now available to permit the construction and characterization of new types of complexes and organometallic structures possessing a pyridylphosphine subunit. Synthetic approaches presented in this review can be applied to numerous new combinations as well as applied to the incorporation of other N-heterocycles related to pyridine. The use of nitrogen in cryptand construction is quite common; however, the use of phosphorus has been limited, thus expansion of Holm's clathrochelate structures¹⁰ in view of Vögtle's superstructures¹⁷⁸ has great potential.

The metallomacrocycles, derived from pyridylphosphines, are readily prepared and can complex diverse substrates. The preparation of other metallomacrocycles with different structural composition will afford information into unique geometries and the effect on substrate inclusion and/or interactions. The expansion to oligomeric pyridylphosphines will afford access to linear coordination of metal ions, whereas the construction of bridged pyridylphosphine superstructures will lead to polymetallopolymacrocycles.

The catalytic aspects of pyridylphosphines has only recently been explored. The advantage of the basic pyridine coupled with the desirable coordination of phosphine(s) to metal ions offers a utilitarian slant. Application of this feature to reactions currently using triphenylphosphine can simplify the difficult removal of triphenylphosphine oxide, as demonstrated by Camp and Jenkins¹⁷⁴ in their studies of the Mitsunobu reaction.

Table 7. 31P NMR for Other Pyridylphosphine Complexes

complexes	solvent/temp (K)	δ (ppm)	$^1\!J_{ m PH}$	ref(s)
$\eta^5 - C_5 H_4) Co_2 (CH_3) Co(3) I_2$	CDCl ₃	35.8	010	133
2-pyrPH ₂ Ni(CO) ₃ Re ₂ (CO) ₈ [η^2 , η^2 -pyrCH(P(C ₆ H ₅) ₂) ₂]	$ ext{CD}_2 ext{Cl}_2 \ ext{CD}_2 ext{Cl}_2$	-71.1 21.3	313	29 148
$Re_2(CO)_7[\mu-\eta^1,\eta^4-pyrCH-$	CDCl ₃ /253	70.3	$24 (J_{PP})$	148
$(P(C_6H_5)_2)_2][\mu - P(C_6H_5)_2]$	-	-12.8	$22 (J_{PP})$	
Re ₂ Cl ₄ (3) ₃	CDCl ₃ -CH ₂ Cl ₂ (1:1)	-6.150, -5.45, -0.37	$11.1 (^{2}J_{PP}), 6.7, 4.9 (^{3}J_{PP})$	23
$Re_{2}Cl_{3}(3)_{2}[(C_{6}H_{5})(C_{6}H_{4})Ppyr]$ $Re_{2}Cl_{2}(3)_{4}[PF_{6}]$	$CDCl_3-CH_2Cl_2$ (1:1) $CDCl_3-CH_2Cl_2$ (1:1)	-25.81, -0.88, 14.66 11.76	$16.3 \ (^2J_{PP}), 9.3, 6.9 \ (^3J_{PP})$	23, 134 23
$Re_2Cl_4(3)_2(PEt_3)$	CDCl ₃ -CH ₂ Cl ₂ (1:1)	-25.48, -7.24, 13.68		23
ReCl ₄ (3) ₂ (Pbu ₃)	CDCl ₃ -CH ₂ Cl ₂ (1:1)	-29.71, -8.31, 13.73	$10.0 \ (^2J_{PP}), 7.0, 3.9 \ (^3J_{PP})$	23
2-pyrPH ₂ W(CO) ₅	CD ₂ Cl ₂	-89.9	343	29
C6H11 C6H11 X \	\mathbf{DMF} - d_7	36.1		135
(N)				
C ₆ H ₁₁ C ₆ H ₁₁	$\mathrm{CD_2Cl_2}$	38.3		136
√ N _N →				
$\searrow \checkmark$				
$\langle \mathcal{O} \rangle$				
Pro-(n-m2C(O)C-H-)(n-m2 Prom(C-H-)(CO)-	CDCI.	49.09		146
$Ru_3(\mu-\eta^2C(O)C_6H_5)(\mu_3-\eta^2-Ppyr(C_6H_5)(CO)_9$ $Ru_3(\mu-\eta^2C(O)C_6H_5)(\mu_3-\eta^2-Ppyr(C_6H_5)-$	${^{ ext{CDCl}_3}_{ ext{CDCl}_3}}$	48.93 49.53, 26.26	17.60 (J_{PP})	146 146
$(CO)_8[P(C_6H_5)_3]$	-			
$Ru3(\mu-H)(\mu3-\eta2-Ppyr(C6H5)(CO)9$	$CDCl_3$	118.05		146
$_{,6-[(C_6H_6)_2P]_2pyr[Cr(CO)_6]_2}$ $_{,6-[(C_6H_6)_2PO]pyr[P(C_6H_6)_2Cr(CO)_5]}$		57.5 58.3, 19.3	$2.4~(J_{\mathrm{PP}})$	25 25
$(C_6H_5)_2P_1$ pyr[W(CO) ₅] ₂		23.1	239 (¹J _{PW})	25
$,6-[(C_6H_5)_2P]pyr[W(CO)_5]$		21.7, -3.3	·	25
$u_2(\mu-3)_2(MeCN)_2[BF_4]_2$	$\frac{\mathrm{CD_{2}Cl_{2}/295}}{\mathrm{CD_{2}Cl_{2}/295}}$	7.44, 4.68		137
$\begin{array}{l} \log_2(\mu-3)_2({f MeCN})_4[{f BF_4}]_2 \\ \log_2(\mu-3)_3[{f BF_4}]_2 \end{array}$	CD ₂ Cl ₂ /295	7.69, 4.77 4.63		137 137
$u_2(\mu-3)_3(\text{MeCN})[\text{BF}_4]_2$	$CD_2Cl_2/295$	5.45		137
$u_2(\mu-3)_3[P(OMe)_3]_2[BF_4]_2$	CDCl ₃ /293	1.70		137
$\begin{array}{l} { m Cu}_2(\mu ext{-3})_3({ m PMe}_3)_2[{ m BF}_4]_2 \ { m Cu}_2(\mu ext{-3})_3(4 ext{-Mepyr})_2[{ m BF}_4]_2 \end{array}$	CDCl ₃ /293 CDCl ₃ /293	1.46, -43.11 1.82		137 137
$Cu_2(\mu-3)_3(2-Mepyr)_2(BF_4)_2$	CDCl ₃ /293	4.79		137
$Cr(CO)_{\delta}(3)$	CDCl ₃	59.37		131
V(CO) ₅ (3)	CDCl ₃	24.36	$122.07 (J_{PW})$	131
Cr(CO) ₄ (3) ₂ V(CO) ₄ (3) ₂	${ m CDCl_3} \ { m CDCl_3}$	75.52 25.03		131 131
$JO_2(NO_3)_2[(C_6H_5)_2PO]$ pyrO	CDCl ₃ /300	31.1		86
$lu_3(CO)_9(3)_3$	CD_2Cl_2	37.7		22
lu ₃ (3) ₂ (CO) ₃ lu(3)(CO ₂)Cl ₂	$egin{array}{c} \mathrm{CD_2Cl_2} \ \mathrm{CD_2Cl_2} \end{array}$	57.8 -6.8		22 22, 70
Ru(3)(CO) ₂ Cl ₂	CD_2Cl_2 CD_2Cl_2	21.5		22, 10
luPd(3)2(CO)Cl2	CD_2Cl_2	38.9, 17.9, 20.1, 16.5		22
Ru(3)(CO) ₂ Br ₂	CD_2Cl_2	-8.87		70
lu(3) ₂ (CO ₂)Cl ₂ .u(2-pyrPMe ₂)Cl	$ ext{CD}_2 ext{Cl}_2 \ ext{CDCl}_3$	21.49 -5.95		70 18
.u[(2-pyr) ₂ PMe]Cl	CDCl ₃	19.60		18
.u[(2-pyr) ₃ P]Cl	CDCl ₃	32.24		18
.u[(2-pyr)P(C ₆ H ₆) ₂]Cl .u[(2-pyr) ₂ P(C ₆ H ₆)]Cl	${ m CDCl_3} \ { m CDCl_3}$	32.66 32.41		18 18
RuH(Cl)(5) ₃	CD_2Cl_2	74.7		8
$\operatorname{cu}(\operatorname{Cl})_2(5)_2$	$\overline{\mathrm{CD_2Cl_2}}$	-0.3		8
Ir ₂ (COD) ₂ (NIPHOS) ₂][SbF ₆] ^a	CD ₃ CN	108.0		130
$\begin{array}{l} \operatorname{Ir_2(NBD)_2(NIPHOS)_2][SbF_6]^a} \\ \operatorname{r(C_8H_{12})[pyrCH(P(C_6H_6)_2)_2][BF_4]} \end{array}$	$(\mathrm{CD_3})_2\mathrm{CO} \ \mathrm{CH_2Cl_2}$	107.9 9.6		130 129
$r_2(\mu-CO)(CO)_2[pyrCH(P(C_6H_5)_2)_2][BF_4]_2$	MeCOMe	28.1		129
r(CO)[pyrCH(P(C6H5)2)2][BF4]	CH_2Cl_2	~30		129
$r_2(CO)_2(I)[pyrCH(P(C_6H_5)_2)_2][BF_4]$	CH ₂ Cl ₂	8.83, 18.5, 31.6, 39.2		129
$pyrP(C_6H_5)_2Fe(CO)_3]_2$ $V(NIPHOS)(CO)_5^a$	$rac{ ext{CD}_2 ext{Cl}_2/298}{ ext{CDCl}_3}$	76.2 160.5	$273~(^{1}J_{PW})$	73 68
V(NIPHOS)(CO) ₄ ^a	CDCl ₃	205.2	273 (-Jpw) 271 (¹ Jpw)	68
r(NIPHOS)(CO) ₅ a	CDCl ₃	208.6		68
9s ₃ (CO) ₁₀ (μ-3)	$\begin{array}{c} \mathrm{CD_2Cl_2} \\ \mathrm{DCCl_3} \end{array}$	5.6		169
9s ₃ (CO) ₁₁)(3) 9s ₃ (CO) ₁₀ (5)	CD_2Cl_2	4.2 12.7		169 169
S ₃ (CO) ₁₀ (μ- 4)	CD_2Cl_2	8.4		169
ED-(0.4.6.Ma.C.H.)[0CH.D/C.H.)	сим.	11.0		100
liBr(2,4,6-Me ₃ C ₆ H ₂)[2-pyrCH ₂ P(C ₆ H ₅) ₂] n{2,6-pyr[CH ₂ O(CH ₂) ₃ P(C ₆ H ₅) ₂] ₂ }(CF ₃ SO ₃) ₂	C_6H_5Me CH_2Cl_2	30 -9.5		138 46
$nCl(\mu-Cl)Rh(CO)\{2,6-pyr[CH_2O-$	CH ₂ Cl ₂	26.4	119	46
CH DC H DCECO	-			-
(CH2)3P(C6H5)2]2(CF3SO3)	ODOI	0.40.0		
$r(\text{NIPHOS})(\text{CO})_4^a$	${ m CDCl_3} \ { m C_6D_6}$	249.6 247		68 68

Table 8. Crystal Structures of Pyridylphosphine Ligands and Complexes

			bond distances (Å)		bond angles (deg)	es (deg)	distance (Å)	ce (Å)	miscellaneous distances	
crystal structures ^a	metal	M-P	M-N	M-X	X-M-P	N-M-P	M-M	P-Cpyr	(A) or angles (deg)	ref(s)
2-pyrP(C ₆ H ₅₎₂ (3)								1.837(3)	0.83(3)-0.99(3) [C-H]	139
(2-pyr) ₃ P (5)								1.824(3) 1.826(2) 1.834(3)	110.7(z)~1z3.8(z) [C~C~H] 102.7(1), 101.9(1), 101.0(1) [C~P~C]	140
$2\text{-pyrCH} = \text{PC}_6\text{H}_2(t\text{-bu})_3$								(0)=00:-	-177.7(8) [C7-P-C1-C2]	75 25
$\operatorname{PtMe}(\eta^2\text{-}3)(3)[\operatorname{B}(\operatorname{C}_6\operatorname{H}_5)_4]$	Pt	2.325(5)	2.07(2)			70.4(5)		1.81(2)	2.05(2) [Pt-CH ₃]	4 1.7
Pt(3-P0)Br4	五	(0)107:3	2.102(14)	2.465(2) 2.471(2)		(*)0:011		1.812(18)	1.527(13) [P-0] 2.106(11) [Pt-0]	83
				2.429(2) 2.404(2)					177.6(1) [Br-Pt-Br] 89.3(1) [Br-Pt-Br]	
$trans$ -Rh(CO)(C1)(3) $_2$ Rh $_2$ (form) $_2(\mu$ -3)(CF $_3$ CO $_2)_2$	Rh (1) Rh(2)		2.050(4)-2.139(4)	2.399(7)			2.5406(6)	1.86(1) 1.834(6)	1.83 [Rh-CO] 2.407(4) [Rh-O] 9.397(4) [Rh-O]	141 142
$(\eta^5\text{-}\mathrm{C}_6\mathrm{H}_6)\mathrm{Rh}(\mu\text{-}\mathrm{CO})(\mu\text{-}3)$ -	Rh(1)	2.222(2)	(T) (OT (T)				2.648(1)	1.877(9)	1.925(12) [Rh-Cp*]	143
$\begin{array}{c} \text{Kh(CU)CI} \\ (\eta^5\text{-}\text{C}_5\text{H}_6)\text{Rh}(\mu\text{-}\text{I})(\mu\text{-}3)\text{Rh}(\text{CO})\text{I}_2 \end{array}$	Rh(2)		2.107(8)	2.346(3) 2.630(1) 2.648(1)	91.9(1)		2.686(1)	1.832(6)	1.847(8) [Rh-Cp*] 1.811(8) [Rh-CO]	143
				2.647(1)						
$\mathrm{RhPd}(\mu extsf{-3})_2(\mathrm{CO})\mathrm{Cl}_3$	Rh	2.243(3)	2.16(1)	2.399(3)	92.6(1)	178.1(3)	2.594(1)	1.823(4)	1.82(1) [Rh-CO]	110, 121
$\mathrm{PdMo}(\mu-3)_2(\mu\text{-CO})(\mathrm{CO})_2$	Pd Pd	2.220(4) 2.221(2)	2.13(1) 2.113(5)	2.393(4) 2.391(2)	88.4(1) 95.14(7)	177.9(3) 173.4(1)	2.817(1)	1.835(4) 1.844(6)	176.68(6) [Mo-Pd-Cl]	112, 144
Clg-0.5CHgClg [(f-buNC)gClgRh(µ-3)-	Mo Rh	2.559(2)	2.320(5) 2.10(2)	2.165(6) 2.487(2) 2.520(7)	91.31(6)	95.5(1)	2.612(3)	1.827(6) 1.82(3)	158.26(5) [CI-Mo-Pd]	107
Pd(μ-Ul)]2	Pd	2.185(6)		2.380(6) 2.388(7)	94.6(3)					
$(C_6H_{12})Rh(\mu$ -Cl) $(\mu$ -3)-Pacti-CH-Cl.	R F	(0)976 6	2.05(2)	2.479(9) 2.399(8)			3.210(4)	1.93(3)		107
$[(\eta^5C_6H_6)Rh(\mu-DMA)(\mu-3)Rh-(CO)(\mu-Cl)]_TCH_2Cl_2$	Rh(1)	(2)00000	2.133(4)	2.516(1) 2.670(1)			2.661(1)		1.919(9) [Rh—Cp*] 1.822(6) [Rh—CO]	145
${ m Ru_3}(\mu \! - \! \eta^2 \! - \! { m C}(O){ m C_6H_6})[\mu_3 \! - \! \eta^2 \! - { m Ppyr}({ m C_6H_6})]({ m CO})_9$	Ru(2)	2.220(1) 2.356(2) 9.385(9)	2.165(8)				2.821(1)		2.877(1) [Ru(1)-Ru(3)] 3.639(1) [Ru(2)-Ru(3)]	146
$\mathrm{Ru}_{3}[\mu \text{-}\eta^{2}\text{-}\mathrm{C}(\mathrm{O})\mathrm{C}_{6}\mathrm{H}_{5}](\mu_{3}\text{-}\eta^{2}\text{-}\\\mathrm{Ppyr})(\mathrm{CO})_{8}[\mathrm{P}(\mathrm{C}_{6}\mathrm{H}_{6})_{3}]$	Ru(1)	2.369(1) 2.405(1) 2.405(1)	2.158(3)				2.842(1)		2.883(1) [Ru(1)-Ru(3)] 3.671(1) [Ru(2)-Ru(3)] 106.36(4) [P-Ru(2)-P]	146
cis-Pd(4) ₂ Cl ₂	Pd	2.2469(18) 2.2569(13)		2.3573(14) 2.3485(22)	168.73(11) 83.91(6) 85.82(8)			1.835(13)	100.46(6) [P-Pd-P] 91.86(6) [Cl-Pd-Cl]	69
cis-Pd(4) ₂ Cl ₂ -C ₆ H ₆	Pd	2.2624(8) 2.2623(8)		2.3495(9) 2.3550(9)	170.87(8) 84.79(3) 170.87(5) 171.76(6) 87.54(3)			1.835(10)	96.69(2) [P-Pd-P] 92.18(3) [Cl-Pd-Cl]	69

69	69	147	148	111	111	108	149				108 149	100, 110		150		151 152		153	154	154	155 19	19	
1.980(3) [Pd-Cl]	1.479(6) [P-0]	2.023(3) Rh-C	1.318(7) Re-CH 1.825(7) P-CH			only perspective	173.2(2) [P-Rh-P] 97.5(2) [Cl-Rh-Cl] 1.85(2) [Rh-CO]	1.92(2) [Rh-CO]	171.4(9) [N-Sn-N]	91.3(2) [CI–Sn–Cl] 92.5(2) [CI–Sn–Cl]	99.7(2) [CI-Sn-Ci] 168.0(1) [Rh(1)-	Rh(2)-Rh(2')]		1.78(1) [Rh-CO]	[ON-IW] (01)600:1	114.0(6) [Au-P-C]	114.4(5) [Au-P-C']				1.797(6) [Rh-CO]	1.808(6) [Rh-CO] 1.79(1) [Rh-CO]	foo mil (1)to:
1.829(9)	1.812(12)			1.823(5)	1.845(4) 1.860(3)											1.84(1)					1.80(2)-1.85(2) 1.837(6)	1.854(6) 1.829(9)	1.814(9)
			4.189(0)	2.5970(5)			2.601(2)	2.588(2)	2.601(2) 2.688(9)	2.587(3)	2.921(2)	(2)172017	2.594(2)	5.425(2)							3.093(1)	2.650(1)	
			75.6(2)	169.4(1)	174.81(8) 171.57(8)																91.9(1)	93.4(1)	174.8(2) 94.2(2) 175.9(2)
90.47(3)	78.41(24) 95.24(10) 88.34(10) 86.86(10)	169.83(4)	(+)00.06	97.48(4)	95.71(4) 98.71(4)		86.6(2) 88.4(2) 87.6(2) 95.9(2)									178.0					176.46(8)	175.76(8)	85.34(9) 86.29(8)
2.3807(9)	2.411(3) 2.425(3) 2.324(2) 2.268(2)	2.415(1)		2.6958(5)	2.373(1) 2.384(1)	•	2.489(5) 2.387(6)		2.421(5)	2.409(6) 2.400(5)	2.390(6)	2.355(4)	2.555(5) 1.88(2) 1.97(2)	2.321(6)		2.234(4)	,				2.393(2)	2.379(2)	2.511(2)
			2.228(5)	2.121(4)	2.128(3) 2.127(3)	:			2.62(1)									2.04(3)-2.11(3)	2.050(3) 2.047(3)	2.178(4) 9.159(4)	2.06(1) - 2.09(1) $2.134(5)$	2.148(5)	2.193(6) 2.185(7)
2.2433(8)	2.228(2)	2.206(1)	2.520(2) 2.520(2) 2.429(2) 9.541(9)	2.217(1)	2.2434(9) 2.2260(9)	•	2.349(5) 2.330(5)	2.304(5)	7.200(0)					2.313(4)	2.333(4) 2.329(4)	2.286(4)	•				2.212(2)	2.219(2)	2.244(3) 2.261(2)
Pd	Pd	Rh	Re(1) Re(2)	Pd(1)	Pd(1) Pd(2)	Pd	Rh(1)	Rh(2)	Sn(1)	Sn(2)	Rh(1)	(1)	Rh(2)	Rh(1)	Rh(2)	Au		Ru	Zu	Zn	Ru Rh(1)	Rh(2) Rh(1)	Rh(2)
$cis ext{-Pd}(4)_2(2 ext{-pyrH}) ext{Cl}_2 ext{-} ext{C}_6 ext{H}_6$	[Pd[(C ₆ H ₆) ₂ P(2,6)pyrP(0)- (C ₆ H ₆) ₂]Cl ₂] ₂	[(dpm)Rh(Cl)(CH2pyrP(C6H5)-	Reg[u-P(C ₆ H ₆)2](u-ŋ¹,ŋ⁴- CHP(C ₆ H ₆)2pyr)(CO) ₇	$\mathrm{Pd}_2\mathrm{I}_2(3)_2\text{-}0.5\mathrm{C}_3\mathrm{H}_6\mathrm{O}$	$\mathrm{Pd_2Cl_2(5)_3(\mu\text{-}DMAD)\cdot 2CH_2Cl_2}$	$\mathrm{Pd_3(2,6-pyr[P(C_6H_6)_2]_2)_3-}$ $\mathrm{CL_rn\text{-}CH_9Cl_9}$	Rh ₂ Si ₁₀ (CO) ₂ Cl ₆ [2,6-pyr- (P(C ₆ H ₆) ₂) ₂] ₂ ² CH ₂ Cl ₂				$\{u-2.6$ -pyr(P(C_aH_5),), Phys	$(\mu - CO) - (CO)_2(\mu - CI)_2CI_2$	$2\mathrm{CH_2Cl_2^-}2\mathrm{N_2}$	$[{ m Rh}_2[\mu-2,6-{ m pyr}({ m P}({ m C}_6{ m H}_5)_2]_2^{-2}$		AuCl(3) AuCl(5)		$\{\text{Ru}[5\text{-PO}][2\text{-pyr}]_2P(0)O]\}$	$Z_{\rm n}(5)({ m NO_3})_2$	$\mathrm{Zn}(5)_2[\mathrm{ClO}_4]_2$	$[\mathrm{Ru}(5)_2](\mathrm{tos})_2\cdot\mathrm{C}_2\mathrm{H}_5\mathrm{OH}$ $\mathrm{rac}\cdot\{[\mathrm{C}_6\mathrm{H}_5)\mathrm{pyrP}]_2\mathrm{CH}_2\}[\mathrm{Rh}\cdot$	(CO)Cl ₂ l ₂ ·2MeCN meso-{[(C ₆ H ₅)pyrP) ₂ (CH ₂) ₃]- pt. Cl. (PL/CO) (21.1	21202(00)1441(00)20212

₽
۹
3
Ħ
:2
=
0
\mathbf{c}
ح
œ
0
_
_
6

Table 6 (Continued)										
		pono	bond distances (Å)	(Å)	bond ang	bond angles (deg)	dist	distance (Å)	miscellaneous distances	
crystal structures ^a	metal	M-P	M-N	M-X	X-M-P	N-M-P	M-M	P-C _{pyr}	(Å) or angles (deg)	ref(s)
Rh ₂ [µ-[2,6-pyr(P(C ₆ H ₆) ₂) ₂] ₂ - (µ-CO)(µ-1)1[R(C ₂ H ₆) ₃ .	Rh(1)	2.292(4)	2.081(9)	1.859(2)	91.9(1)	176.1(3) 69.8(3)	2.568(2)	1.834(13)	2.02 [Rh-CO] 107.4(1) [P-Rh-P]	123
2CH ₂ Cl ₂	Rh(2)	2.303(3)	2.106(10)	2.919(2)	93.8(1)	176.8(3)	2.577(2)	1.854(14)	2.04 [Rh-CO] 107.1(1) [P-Rh-P]	
Pt ₂ {[µ-(C ₆ H ₅₎₂ P] ₂ pyr _{f2} Cl ₂ -6CH ₂ Cl ₂	£	2.252(7) 2.278(7)		2.356(7) 2.363(7)	176.6(2) 86.5(2) 89.2(2)			1.828(26)	88.4(2) [CI-Pt-CI] 96.2(2) [P-Pt-P]	77
Pt ₂ {[µ-(C ₆ H ₆) ₂ P] ₂ pyr} ₂ L ₄ ·2CH ₂ Cl ₂	Pt	2.307(4) 2.306(5)		2.602(1) 2.607(1)	93.2(1) 89.8(1) 87.3(1) 90.0(1)			1.840(18)		77
[Pt(3) ₂ Cl][Rh(CO) ₂ Cl ₂]-0.5CH ₂ Cl ₂	# #	2.223(6) 22.32(6)	2.07(2)	2.340(5) 2.353(5) 2.342(6)	166.8(2) 92.2(2)	70.8(5) 171.1(5)		1.84(2) 1.86(2)	91.7(2) [Cl-Rh-Cl] 1.79(2), 1.86(2) [RhCO]	113
$\mathrm{Rh}_2(3)_2(\mu\text{-CO})\mathrm{Cl}_2$	Rh(1)	2.206(1)	2.116(5)	2.355(1) 2.355(1)	91.9(.1)	172.0(.1)	2.612(1)	1.831(6)	84.3 [Rh-C-Rh]	121, 124
Cu ₂ (μ-3) ₃ (MeCN)[BF ₄] ₂	Cu(1)	2.196(2) 2.310(3) 2.274(2)	2.056(6) 2.048(4) 2.089(5) 2.114(4)			132.3(2) 127.7(2) 108.5(1) 116.6(1) 97.7(2)	2.721(3)	1.842(6) 1.838(7) 1.832(7)		137
PtMo(u-3) ₂ (u-CO)(CO) ₂ Cl ₂ 0.406CH ₂ Cl ₂	Pt Mo	2.348(5) 2.227(5)	2.301(17) 2.315(12)	2.324(4)	95.5(2) 93.4(2)		2.845(1)		166.1(2) [P-Pt-P] 2.218(17) [Pt-C0] 1.907(20) [Mo-C0] 1.950(18) [Mo-C0]	119
Mo ₂ (3) ₂ (Cl) ₂ (AcO) ₂ ·2CH ₂ Cl ₂ Mo ₂ (r-C ₆ H ₆) ₂ (CO) ₄ (3) ₂ ·2Et ₂ O (r ⁵ -C ₆ H ₆)(t-buNC)Rh(µ·3)Pd-	Mo Rh	2.5341(7) 2.412(6) 2.241(2)	2.240(2)	2.7544(7)	79.12(2)	165.72(8)	2.1900(3) 3.276(3) 2.631(1)	1.844(3) 1.83(2) 1.820(6)	2.110(3), 2.116(3) [Mo-O] 1.96 [Mo-CO]	156 132 115
$(t ext{-buNC})(\text{Cl})\text{PF}_6\text{-}\text{C}_6\text{H}_6\text{-MeOH}$ $\text{PdW}(\mu ext{-3})_2(\mu ext{-CO})(\text{CO}_2)\text{Cl}_2$	2 ≥ 2	2.541(2)	2.112(6)	2.406(2) $2.480(2)$	90.73(6)	95.0(1)	2.8119(5)	1.839(7)		157
0.7CH ₂ Cl ₂ Co(3PO) ₂ Cl ₂	දී දී	7.205(2)	2.134(5) 2.134(5) 9.134(5)	2.305(3) 2.305(2) 9.305(2)	91.4(2)	1 (3.6(2)		1.835(7)	2.23(1) [Co-CO] 1.30(3) [P-O]	85
$Co(4)Cl_2^{-1}/_2EtOH$	సి		2.031(2)	2.221(1)					94.8(1) [N-Co-N] 116.2(1) [Cl-Co-Cl]	158
$C_0(0)C_0(1)(\mu-3)_2(\mu-CO)(CO)C1$	Co(1)		2.137(7)	2.238(3)			2.441(2)	1.873(8)	143.33(7) [Co-Co-Cl]	159
	Co(2)	2.177(3)						1.867(8)		
$\mathrm{Co}(\mathbf{I})\mathrm{Co}(\mathbf{II})(\mu ext{-3})_2(\mu ext{-}\mathrm{CO})_2\mathrm{Cl}_3$	Co(1)	2.305(10)		2.374(4)	94.1(4)		2.685(1)	1.83(2)		160
	Co(2)	(2)	2.248(14)	2.485(4)				1.84(3)		
$cis ext{-Re}_2(\mu ext{-AcO})_2 ext{Cl}_2(\mu ext{-3})_2 ext{[PF}_6 ext{]}$	Re(1) Re(2)	2.401(6)	2.13(1)	2.506(5)	83.6(2)	91.7(5)	2.261(1)			161
Re ₂ Cl ₃ (3) ₂ [(C ₆ H ₆)(C ₆ H ₄)Ppyr]	Re(1)	2.359(10)	2.08(2)	2.578(9)	85.3(3) 96.3(3) 80.5(3)	163.3(3)	2.336(2)	1.80(3)-1.84(3) 1.84(3)	85.0(3) [Cl-Re-Cl] 98.3(3) [P-Re-P]	23, 134
	Re(2)	2.354(9)	2.17(3)	2.568(9)	82.8(3)	170.5(7)			2.16(3) [Re-C]	

$\mathrm{Re_2Cl_2(3)_4[PF_6]_2^*2Me_2CO}$	Re(1)	2.436(5) 2.429(5)	2.19(2) 2.210(15)	2.575(5)	86.3(2) 88.0(2)	91.1(4) 87.9(4)	2.300(1)	1.82(2)-1.83(2) 1.83(2)	174.4(2) [P-Re-P] 169.5(6) [N-Re-N]	23
	Re(2)	2.428(6) 2.433(6)	2.18(2) 2.227(15)	2.628(6)	88.1(2) 86.0(2)	88.1(2) 91.9(4) 91.4(5) 87.2(4) 92.8(5)			174.0(2) [P-Re-P] 169.3(6) [N-Re-N]	
Re ₂ CL ₄ (3) ₂ (PEt ₃)	Re(1)	2.365(2) 2.480(3)	2.206(7)	2.616(2) 2.406(2)	77.50(8) 84.08(9) 165.40(8)	87.6(3) 92.0(2) 162.9(2)	2.270(1)	1.829(8)–1.84(9) 1.84(9)	89.65(8) [Cl-Re-Cl] 100.25(9) [P-Re-P]	73
	Re(2)	2.346(2)	2.076(7)	2.355(2)	85.07(5) 87.30(9) 15.4.75(9)	93.5(2)			85.1(1) [Cl-Re-Cl]	
$\mathrm{Os_2(AcO)(3)_2CI_4^{*2}CH_2CI_2}$	Os(1)	2.329(5)	2.09(2)	2.428(6)	134.73(9) 83.6(2)	90.8(4)	2.395(1)	1.82(2)	2.10(1) [0s-0]	162
	$O_8(2)$	2.331(6)	2.06(2)	2.421(6)	83.3(2)	90.2(1)		1.81(2)	87.3(2) [CI-O8-CI] 2.10(1) [O8-O]	
$Os_2(AcO)(3)_2Cl_4\cdot 2Me_2CO$	Os(1)	2.332(2)	2.066(6)	2.365(6) 2.362(2)	84.23(8)	90.6(2)	2.388(1)	1.834(8)	88.6(2) [CI-O8-CI] 2.096(5) [Os-O]	162
	Os(2)	2.338(2)	2.060(6)	2.436(2) 2.433(2)	84.09(7)	90.9(2)		1.831(8)	86.91(8) [CI-Os-CI] 2.110(5) [Os-O]	
$\mathrm{Rh_2(AcO)_2(3)_2Cl_2}$	Rh(1)	2.212(3)	2.046(10)	2.538(3)	97.8(1)	91.2(3)	2.518(1)	1.853(11)	86.42(1) [CI-O8-CI]	162
$\mathrm{UO_2(NO_3)_2[(C_6H_6)_2P(O)]pyrO}$	Kn(z)		2.000(9)	2.531(3)	97.3(1)	90.9(3)		1.847(13) 1.82(1)	2.41(1) U-0(P)	98
Mo ₂ (NCS) ₄ (3) ₂ ·2THF·2(C ₆ H ₆ CH ₃)	Mo	2.545(2)	2.288(5)			96.2(2)	2.191(1)		2.38(1) U-O(N) 2.086(5) Mo-N(CS)	163
Mo2[(C6H6)2Fpyr(b-U7)14 [Ag(3)Cl]4	Mo Ag(1)	2.387(5)		2.538(5)	138.9(2)		2.103(1)		1.834(16) [Cl-Ag-Cl]	116 164
	Ag(2)	2.396(5)		2.646(5) 2.586(4)	119.2(2) 132.2(2)				1.826(16) [Cl-Ag-Cl]	
	Ag(3)	2.429(5)		2.803(3) 2.646(4)	114.8(1) 125.8(1)				1.824(16) [Cl-Ag-Cl]	
	Ag(4)	2.404(5)		2.628(4)	130.2(1) 130.6(1)				1.828(16) [Cl-Ag-Cl]	
$Ag_2(3)_3Cl_2$	Ag(1)	2.432(3) 2.452(3)		2.103(4) 2.618(2) 2.701(4)	116.4(1) 110.0(1) 106.25(9)		3.074(2)	1.85(1)	98.1(1) [Cl-Ag-Cl]	151
	Ag(2)	2.436(4)	2.451(9)	2.638(4)	112.70(9) 100.7(1) 112.1(1)	126.7(2)			100.23(1) [Cl-Ag-Cl]	
$\mathrm{RuPd}(3)_2(\mathrm{CO})_2\mathrm{Cl}_2\mathrm{1.25\mathrm{CH}}_2\mathrm{Cl}_2$	Ru	2.396(2)	2.178(5)	2.601(9) 2.477(2)	107.4(1) 100.6(1)	91.1(1)	2.660(1)	1.836(6)		22
$\mathrm{Ru}(3)(\mathrm{CO})_2\mathrm{Cl}_2$	Ru Bu	2.190(z) 2.322(2)	2.126(5) 2.119(6)	2.426(2)	99.4(1) 160.4(1)	167.3(1) 68.7(2)		1.859(8)	1.877(8), 1.874(8) [Ru-CO]	02
$[Au(2-pyrPMe_2)]_2[BF_4]$	Au	2.215(6)	2.086(16)	2.41 (2)	98.8(1)	176.1(5)	2.776(1)	1.83(2)	87.1(1) [Au-Au-P]	18
PtRh[\(\mu-\text{P}(C_6H_6)_2 (\(\mu-\text{pyrCH}[P(C_6H_6)_2]_2)-\) \(\text{(pyrCH}_2P(C_6H_6)_2)(P(C_6H_6)_3)[BF_4]_2\)	Ρŧ	2.324(3)					2.708(1)		115.3(/) [AU-F-C] 73.8(1) [Pt-P-Rh]	127
	Rh	2.276(3) 2.282(3) 2.282(3)	2.19(1) 2.12(1)			151.4(3) 86.6(3) 79.4(3) 166.7(3) 96.1(3) 79.4(3)			88.0(4) [N-Rh-N] 110.4(1) [P-Rh-P] 102.5(1) [P-Rh-P] 105.9(1) [P-Rh-P]	

Table 8 (Continued)

		pon	bond distances (Å)	(Å)	bond ang	bond angles (deg)	distance (Å)	e (Å)	miscellaneous distances	
crystal structures ^a	metal	M-P	M-N	M-X	х-м-Р	N-M-P	M-M′	Р-Сруг	(A) or angles (deg)	ref(s)
{Rh2[pyrCH(P(C6H5)2)]2(C0)2}{[PF6]2*C3H6O	Rh	2.271(1)	2.187(5)			77.2(1)	3.054(1)		1.819(6) [Rh-CO] 176.70(6) [P-Rh-P]	129
Rh(CO)ZnCl(µ-Cl){2,6-pyr[CH ₂ O- (CH ₂) ₃ P(C ₆ H ₅₎₂] ₃ (CF ₃ SO ₃)	Rh	2.325(4)	2.00(1)	2.360(4)	91.4(2) 89.8(2)	Ì	4.002(1)		174.0(2) [P-Rh-P] 114.5(2) [Rh-P-Zn] 2.22(1) [Zn-O] 9.3(1) [Zn-O]	46
$\mathrm{Ir}_{2}(\mu\text{-CO})(\mathrm{CO})_{2}[\mathrm{pyrCH}(\mathrm{P}(\mathrm{C}_{6}\mathrm{H}_{6})_{2})]_{2}[\mathrm{BF}_{4}]_{2}$	Ir(1) Ir(2)	2.319(5) 2.348(5) 2.355(5)	2.32(1)	7.201(0)		77.2(1) 100.3(4) 73.4(5)	2.815(1)		172.0(2) [P-Ir-P] 171.3(2) [P-Ir-P]	129
RhAu[pyrCH(P(C ₆ H ₆₎₂₎₂ [BF4NO ₃]	Rh	2.325(5) 2.207(7) 2.227(6)	2.18(2) 2.14(2)			176.1(5) 174.9(7) 77.5(7) 78.9(6)	2.850(2)		103.9(3) [P-Rh-P] 99.9(80) [N-Rh-N] 170.3(3) [P-Au-P]	128
$\mathrm{Rh}_2(\mathrm{CO})[\mu ext{-pyr}\mathrm{CH}(\mathrm{P}(\mathrm{C}_6\mathrm{H}_6)_2)_2]_2 ext{-}[\mathrm{B}(\mathrm{C}_6\mathrm{H}_6)_4]_2 ext{-}2\mathrm{CH}_2\mathrm{Cl}_2$	Au Rh(1) Rh(2)	2.295(6) 2.285(7) 2.297 2.318 2.238 2.228	2.14 2.15			174.6(3) 173.4(3) 77.1(3) 82.5(3)	2.674(1)		172.5(2) [P-Rh-P] 1.78 [Rh-C0] 102.1(2) [P-Rh-P]	126
Ni(3) ₂ (CO) ₂	ž ž	2.213(1)	47670000					1.846(4) 1.839(5)	1.757(6) [Ni-CO] 1.787(5), 112.87(5) [P-Ni-P]	165 165
$N_1[P(2,6-pyrCH==NU)_3BF][BF_4]$	Ĩ	3.452(3)	$2.040(21)^{\circ}$ $2.043(20)^{\circ}$					1.826(10) 1.826(10) 1.850(10)	3.003(11) [IN-D] 1.376(17) [B-F]	5
$Fe[P(2,6\text{-pyrCH}=N0)_3BF][BF]\text{-}CH_2Cl_2$	Fe	3.445(03)	$1.931(11)^b$					1.835(13)	3.035(12) [Fe-B] 1.362(18) [B-F]	99, 166
Co[P(2,6-pyrCH=NO) ₃ BF][BF ₄]·CH ₃ CN	ప	3.428(8)	2.063(18) ⁶ 2.118(36) ^e					1.811(23) 1.823(26)		100, 167
$\rm Zn[P(2,6\text{-}pyrCH=\!NO)_3BF][BF_4]$	Zu	3.399(3)	$2.099(18)^b$ $2.071(22)^c$					1.854(10) 1.837(9) 1.842(9)	3.078(15) [Zn-B] 1.383(16) [B-F]	168
Cr[NIPHOS](CO)4	Ċ	2.280(1)	2.193(4)			76.7(1)			1.928(7), 1.889(7) [Cr-CO]	89
$[PtC](NIPHOSH\cdot OMe)(PMe_3)][SbF_6]$	Pŧ	2.189(1)	2.153(4)	2.354(1)	71.6(05)	83.8(.11)				79
$[Ir_2(COD)_2(NIPHOS)_2][SbF_6]$	Ir(1) Ir(2)	2.424(2) 2.377(4) 2.371(3)	2.128(12)		(6)	80.6(3) 86.3(3) 86.3(3)	2.894(1)		74.1(1), 74.2(1) [Ir-P-Ir]	130
$O_{86}(CO)_{10}(\mu-3)$	0s(1) 0s(2)	2.380(4)	2.22(1)			(6)00.00	2.827(2)	1.85(2)	1.92(2) [Os-CO] 1.87(2) [Os-CO] 9.01(9) 1.04(9) [Os-CO]	169
Cr(NIPHOS)(CO)4	() () ()	2.280(1)	2.193(4)			76.7(1)	(7)676.7		1.825(5), 1.843(5) [Cr-CO] 1.889(7), 1.928(7) [Cr-CO]	130

^a Abbreviations: form, N,N'-di-p-tolylformamidinate; DMA or DMAD, dimethyl acetylenedicarboxylate; dpm, dipivalylmethanate or 2,2,6,6-tetramethyl-heptanedioate; NIPHOS (38), 2-(2-pyridyl)-4,5-dimethylphosphorin. ^b M-N(aldoximo) bond. ^c M-N(pyridyl) bond.

It is hoped that this review will afford a historical insight so that new ligand systems can be designed and constructed on the basis of the unique chemistry of pyridylphosphines.

V. Acknowledgments

I would like to acknowledge the financial support from the National Science Foundation (DMR 89-06792; 92-17331), the Petroleum Research Fund, administered by the American Chemical Society, and NATO Collaborative Research Grant (90/004) as well as give special thanks to Professor Jean-Marie Lehn (Strasbourg) for his warm hospitality on several (mini) sabbaticals. I would like to note David Hager's (LSU) introduction of me to the novel chemistry of pyridvlphosphines and to thank Dr. Gregory Baker (USF) for his assistance in the structures used in this manuscript.

VI. Note Added in Proof

 $(SP-4-3)-\{2-[(C_6H_5)_2PCH_2]C_5H_4N\}\{(1,2,3-\eta)-3-$ (CH₂=CHCMe₂)]Pd[BF₄] was prepared and shown, via NMR spectral data, to isomerize in solution. 179

When 5 was treated with [Ru₃(CO)₁₂] at room temperature in THF and a catalytic amount of N{[P-P](CO)₉} was formed. The proposed intermediates $[Ru_3(CO)_n(5)]$ (n = 10 and/or 11) decarbonylated and the 2-pyridyl moiety underwent a $P \rightarrow Ru$ migration. The use of 4, instead of 5, gave similar results, in which phenyl and 2-pyridyl moieties migrate in almost equal quantities. The mechanism of these results still needs to be determined. 180

Treatment of $[Pt(3)(C_6H_5C = C)_2]$ with 2 equiv of [Cu](or Ag) $(MeCN)_4$]⁺ afforded $\{Pt(3)(C_6H_5C = C)_2$ - $[Cu(MeCN)_2]_2$ $[PF_6]_2$ or $\{Pt(3)_2(C_6H_5C = C)_2$ $[Ag(MeCN)]_2[PF_6]_2$ in high yield; their photophysics and electrochemistry have been determined.¹⁸¹

Reaction of [Rh₂(μ-CO)Cl₂(3)₂] with NaBH₄ gave $Rh_2(\mu\text{-CO})(BH_4)_2(3)_2$, which was characterized by a crystal structure and shown to catalyze ethylene hydrogenation.¹⁸²

Bifunctional 2- $[(C_6H_5)_2P(O)CH_2(C_5H_4N(O))]$ and trifunctional 2,6-[(C_6H_5)₂P(O)CH₂]₂C₅H₃N(O) have been prepared and several f-element $[Pr^{III}, Tb^{III}, Yb^{III}, Th^{IV}]$ ion complexes have been created and confirmed by X-ray crystal data. 183

Treatment of [Rh(COD)Cl]₂ with 2-pyr(CH₂)₂P- $(C_6H_5)(CH_2)_3Y [Y = OEt; OC_6H_5; NHC_6H_5; NHC_6H_{11}]$ in the presence of TlPF₆ (a halogen scavenger) at 0 °C gave $\{Rh(COD)[2-pyr(CH_2)_2P(C_6H_5)(CH_2)_3Y][PF_6]\}$, which catalytically polymerizes phenylacetylene to polyacetylene with improved selectivity and larger $M_{\rm w}$ values over previous catalysts. 184

An $[Os_3(CO)_{10}(\mu-3)]$ cluster possessing a diaxially coordinated 3 bridge reportedly undergoes pyridine transfer between two metal atoms, whereas the P-atom forms a strong bond to the third metal atom. 185

Treatment of cis-[Pt(DMSO)₂Cl₂] with 3 afforded cis-[Pt(DMSO)(3)Cl₂], which possesses a square planar Pt^{II} center and an η^1 -P-Pt bond. cis-[Pt(DMSO)-(3)Cl₂] with an equimolar quantity of cis- $[Pt(DMSO)_2(Me)_2]$ gave the binuclear $[(Me)ClPt(\mu Cl)(\mu-3)Pt(Me)(DMSO)](DMSO)$ and $[Pt_2(\mu-3)Pt(Me)(DMSO)]$ 3)₂Cl₂](DMSO) complexes, which have been supported by X-ray data. 186

Treatment of $\{Fe(CO)_4(H)[Si(OMe)_3]\}$ with 3 gave (75%) {Fe(CO)₃[Si(OMe)₃]3}. Reaction of K{Fe(CO)₃-[Si(OMe)₃](3)} with CdBr₂ afforded [(MeO)₃Si](CO)₃- $Fe(\mu-3)$ ₂ $Cd(\mu-Br)$ ₂, which with 4-picoline gave $\{[(MeO)_3Si](CO)_3Fe(\mu-3)CdBr(4-pic)\},\ whereas$ K{Fe(CO)₃[Si(OMe)₃](3)} with CdBr₂ afforded mer- ${[(MeO)_3Si](CO)_3Fe(\mu-3)}_2Cd.^{187}$

The acyl complex $Ru_3[\mu-C(O)(C_6H_5)][\mu_3-\eta^2-P(C_6H_5)(2-\eta^2-\rho^2)]$ pyr)](CO)₉ with 3 equiv of PH(C_6H_5)₂ and Ru₃[μ_3 - η^2 - $P(C_6H_5)(2-pyr)][\mu-P(C_6H_5)_2](CO)_6(\mu-CO)_2$ with 2 equiv of PH(C_6H_5)₂ both gave Ru₃[μ_3 - η^2 -P(C_6H_5)(2-pyr)][μ - $P(C_6H_5)_2$ 3(CO)₆, by the incorporation of a [(C₆H₅)₂P] moiety into the triruthenium complex shell which contained a face-bridging pyridylphosphine ligand; the structure was supported by X-ray data. 188

VII. References

- (1) Gilheany, D. C.; Mitchell, C. M. In The Chemistry of Organophosphorus Compounds, Hartley, F. R., Ed.; J. Wiley and Sons: New York, 1990; Vol. 1, Chapter 7, pp 151-190. (2) Davies, W. C.; Mann, F. G. J. Chem. Soc. 1944, 276.
- (3) Krubsack, A. J. In Experimental Organic Chemistry; Allyn and Bacon, Inc.: Boston, 1973; p 241.
- (4) A tri-3-pyridylphosphine complex has been reported (ref 139);
- however, no details were presented.
 (5) Mann, F. G.; Watson, J. J. Org. Chem. 1948, 13, 502.
 (6) Płażek, E.; Tyka, R. Zesz. Nauk. Politech. Wrocław., Chem. 1957, No. 4, 79; Chem. Abstr. 1958, 52, 20156c.
- Jakobsen, H. J. J. Mol. Spectrosc. 1970, 34, 245.
- (8) Kurtev, K.; Ribola, D.; Jones, R. A.; Cole-Hamilton, D. J.; Wilkinson, G. J. Chem. Soc. Dalton Trans. 1980, 55.
- Wibaut, J. P.; DeJonge, A. P.; Van der Voort, H. G. P.; Otto, P. P. H. L. Rec. Trav. Chim. 1951, 70, 1054.
- (10) Parks, J. E.; Wagner, B. E.; Holm, R. H. J. Am. Chem. Soc. 1970,
- (11) Larson, E.; LaMar, G. N.; Wagner, B. E.; Holm, R. H. Inorg. Chem. 1972, 11, 2652
- (12) Parks, J. E.; Wagner, B. E.; Holm, R. E. J. Organometal. Chem. 1973, 56, 53.
- (13) Parks, J. E.; Wagner, B. E.; Holm, R. H. Inorg. Chem. 1971, 10,
- (14) Parks, J. E. Ph.D. Dissertation, Univ. of Wisconsin, 1973.
- Wagner, B. E. Ph.D. Dissertation, Massachusetts Institute of Technology, 1972.
- (16) Newkome, G. R.; Roper, J. M. J. Organometal. Chem. 1980, 186,
- (17) Schmidbaur, H.; Inoguchi, Y. Z. Naturforch. 1980, 35b, 1329.
- (18) Inoguchi, Y.; Milewski-Mahrla, B.; Schmidbaur, H. Chem. Ber. 1982, 115, 3085.
- (19) Budzelaar, P. H. M.; Frijns, J. H. G.; Orpen, A. G. Organometallics 1990. 9, 1222.
- (20) Issleib, K.; Brusehaber, L. Z. Naturfosch. 1965, 20b, 181.
 (21) Newkome, G. R.; Hager, D. C. J. Org. Chem. 1978, 43, 947.
 (22) Maisonnet, A.; Farr, J. P.; Olmstead, M. M.; Hunt, C. T.; Balch, A. L. Inorg. Chem. 1982, 21, 3961.
- (23) Barder, T. J.; Cotton, F. A.; Powell, G. L.; Tetrick, S. M.; Walton, R. A. J. Am. Chem. Soc. 1984, 106, 1323.
 (24) Tolmachev, A. A.; Kozlov, E. S.; Pinchuk, A. M. Zh. Obshch. Khim. 1984, 54, 971; Chem. Abstr. 1984, 101, 130794b.
- McFarlane, H. C. E.; McFarlane, W.; Muir, A. S. Polyhedron 1990,
- (26) McFarlane, H. C. E.; McFarlane, W. Polyhedron 1988, 7, 1875.
 (27) Redmore, D. J. Org. Chem. 1970, 35, 4114.

- (21) Redmore, D. J. Off. Chem. 1910, 33, 4114.
 (28) Katritzky, A. R.; Lunt, E. Tetrahedron 1969, 25, 4291.
 (29) Spiegel, G. U.; Stelzer, O. Chem. Ber. 1990, 123, 989.
 (30) Kostka, K.; Ochocki, J. Pol. J. Chem. 1987, 61, 177.
 (31) Campa, C.; Camps, J.; Font, J.; de March, P. An. Quim. 1988, 84C,
- (32) Ornstein, P. L.; Schaus, J. M.; Chambers, J. W.; Huser, D. L.; Leander, J. D.; Wong, D. T.; Pascal, J. W.; Jones, N. D.; Deeter, J. B. J. Med. Chem. 1989, 32, 827.
 (33) Kabachnik, M. I.; Polikarpov, Yu. M.; Bodrin, G. V.; Bel'skii, F.
- I. Izv. Akad. Nauk. SSSR, Ser. Khim. 1988, 921. (34) Ebetino, F. H.; Jamieson, L. A. Phosphorus, Sulfur, Silicon 1990,
- *51/51*, 23
- (35) Ebetino, F. H.; Degenhardt, C. R.; Jamieson, L. A.; Burdsall, D. C. Heterocycles 1990, 30, 855.
 (36) Speigel, G. U.; Stelzer, O. Z. Naturforsch. 1987, 42b, 579.
- (37) Bodalski, R.; Pietrusiewicz, M.; Majewski, P.; Michalski, J. Collect. Czech. Chem. Commun. 1971, 36, 4079.

- (38) Kostka, K.; Ochocki, J. Chem. Anal. (Warsaw) 1983, 28, 717.
- (39) Kostka, K.; Ochocki, J. Pol. J. Chem. 1987, 61, 177.
 (40) Ochocki, J.; Kostka, K.; Zurowska, B.; Mrozinski, J.; Galdecka, E.; Galdecka, Z.; Reedijk, J. J. Chem. Soc. Dalton Trans. 1992, 2955.
 (41) Page, P.; Mazieres, M. R.; Bellan, J.; Sanchez, M.; Chaudret, B.

- Phosphorus, Sulfur Silicon Relat. Elem. 1992, 70, 505.

 (42) Uhlig, E.; Maaser, M. Z. Anorg. Allg. Chem. 1966, 344, 205.

 (43) Issleib, K.; Kipke, A.; Hahnfeld, V. Z. Anorg. Allg. Chem. 1978,
- (44) Uhlig, E.; Keiser, S. Z. Anorg. Allg. Chem. 1974, 406, 1.
 (45) Toto, S. D.; Doi, J. T. J. Org. Chem. 1987, 52, 4999.
- (46) Lockemeyer, J. R.; Rheingold, A. L.; Bulkowski, J. E. Organometallics 1993, 12, 256.
- (47) Ziessel, R. Tetrahedron Lett. 1989, 30, 463.
- (48) McNeil, P. A.; Roberts, N. K.; Bosnich, R. J. Am. Chem. Soc. 1981,
- (49) Dieck, H. T.; Hahn, G. Z. Anorg. Allg. Chem. 1989, 577, 74.
 (50) Winterfeld, K.; Flick, M. Arch. Pharm. 1956, 289, 448.
- (51) Kelley, W. S. J.; Ford, G. H.; Nelson, S. M. J. Chem. Soc. A 1971,
- (52) Loffler, K.; Theil, L. Chem. Ber. 1909, 42, 132.
- (53) Issleib, K. Chem. Ber. 1959, 92, 1124.
- (54) de Vaumas, R.; Marinetti, A.; Ricard, L.; Mathey, F. J. Am. Chem. Soc. 1992, 114, 261
- (55) Dahl, O.; Jensen, F. K. Acta Chem. Scand. 1975, 29B, 863.
- (56) Tsuda, T.; Morikawa, S.; Saegusa, T. J. Chem. Soc., Chem. Commun. 1989, 9,
- Tsuda, T.; Morikawa, S.; Hasegawa, N.; Saegusa, T. J. Org. Chem. 1990, 55, 2978.
- Fritzsche, H.; Hasserodt, U.; Korte, F. Chem. Ber. 1964, 97, 1988; 1965, 98, 1681
- Dahlhoff, W. V.; Dick, T. R.; Ford, G. H.; Kelley, W. S. J.; Nelson, S. M. J. Chem. Soc. A 1971, 261
- (60) Anderson, M. P.; Mattson, B. M.; Pignolet, L. H. Inorg. Chem.
- 1983, 22, 2644.

 (61) Dahlhoff, W. V.; Dick, T. R.; Ford, G. H.; Kelly, W. S. J.; Nelson, S. M. J. Chem. Soc. A 1971, 3495
- (62) Nelson, S. M.; Perks, M.; Walker, B. J. J. Chem. Soc., Perkin Trans. 1976, 1205.
- (63) Effenberger, F.; Niesert, C.-P. Synthesis 1992, 1137.
- (64) Jouaiti, A.; Geoffry, M.; Bernardinelli, G. Tetrahedron Lett. 1992,
- Yoshifuji, M.; Shima, I.; Inamoto, N. J. Am. Chem. Soc. 1981, 103,
- Yoshifuji, M.; Toyota, K.; Inamoto, N. Tetrahedron Lett. 1985, 26,
- (67) Alcaraz, J.-M.; Breque, A.; Mathey, F. Tetrahedron Lett. 1982, 23,
- (68) Bréque, A.; Santini, C. C.; Mathey, F.; Fischer, J.; Mitschler, A. Inorg. Chem. 1984, 23, 3463
- (69) Newkome, G. R.; Evans, D. W.; Fronczek, F. R. Inorg. Chem. 1987, 26, 3500.
- Olmstead, M. M.; Maisonnet, A.; Farr, J. P.; Balch, A. L. Inorg. Chem. 1981, 20, 4060
- (71) Jain, V. K.; Jakkal, V. S.; Bohra, R. J. Organometal. Chem. 1990,
- (72) Zao, W.-J.; Fang, T.-Q.; Zhang, S.-Q.; Zhang, Z.-Z.; Yang, L.-M. J. chem. Eng. Natural Gas 1992, 17, 3.
 (73) Bahsoun, A. A.; Ziessel, R. Nouv. J. Chim. 1985, 9, 225.
 (74) Issleib, K.; Kipke, A. Z. Anorg. Allg. Chem. 1980, 464, 176.
- (75) DuBois, D. L.; Miedaner, A.; Haltiwanger, R. C. J. Am. Chem. Soc.
- Xie, Y.; James, B. R. J. Organometal. Chem. 1991, 417, 277. Xie, Y. Diss. Abstr. Int. B 1992, 52, 5262; Chem. Abstr. 1993, 118, 233427q.
 (77) Wood, F. E.; Hvoslef, J.; Hope, H.; Balch, A. L. Inorg. Chem. 1984,
- 23, 4309.
- (78) Fell, B.; Papadogianakis, G. J. Mol. Catal. 1991, 66, 143.
- (79) Schmid, B.; Venanzi, L. M.; Albinati, A.; Mathey, F. Inorg. Chem. 1991, 30, 4693.

- (80) Weiner, M. A.; Schwartz, P. Inorg. Chem. 1975, 14, 1714.
 (81) Weiner, M. A.; Basu, A. Inorg. Chem. 1980, 19, 2797.
 (82) Wood, F. E.; Olmstead, M. M.; Farr, J. P.; Balch, A. L. Inorg. Chim. Acta 1985, 97, 77.
- (83) Boggess, R. K.; Zatko, D. A. J. Coord. Chem. 1975, 4, 217.
 (84) Griffin, G. E.; Thomas, W. A. J. Chem. Soc. B 1970, 477.
 (85) Zhengzhi, Z.; Xukun, W.; Zhen, X.; Ruji, W.; Honggen, W. J. Struct. Chem. 1989, 8, 107.
- McCabe, D. J.; Russell, A. A.; Karthikeyan, S.; Paine, R. T.; Ryan, R. R.; Smith, B. Inorg. Chem. 1987, 26, 1230.
- (87) Jakobsen, H. J.; Neilsen, J. A. J. Mol. Spectrosc. 1969, 31, 230.
- Couture, A.; Deniau, E.; Grandclaudon, P. Phosphorus, Sulfur, (88)Silicon 1992, 68, 91

- (89) Newkome, G. R.; Hager, D. C. J. Am. Chem. Soc. 1978, 100, 5567.
 (90) Kawai, T.; Furukawa, N.; Oae, S. Tetrahedron Lett. 1984, 25, 2549.
 (91) Oae, S.; Kawai, T.; Furukawa, N. Phosphorus Sulfur 1987, 34, 123.
 (92) Newkome, G. R.; Taylor, H. C. R. J. Org. Chem. 1979, 44, 1362.
 (93) Uchida, Y.; Takaya, Y.; Oae, S. Heterocycles 1990, 30, 347.
 (94) Uchida, Y.; Onoue, K.; Tada, N.; Nagao, F.; Oae, S. Tetrahedron Lett. 1999, 20, 567. Lett. 1989, 30, 567.

- (95) Uchida, Y.; Kozawa, H.; Oae, S. Tetrahedron Lett. 1989, 30, 6365.
- (96) Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202.
 (97) Churchill, M. R.; Reis, A. H., Jr. J. Chem. Soc., Chem. Commun. 1970, 879,
- (98) Busch, D. H. Rec. Chem. Progr. 1964, 25, 107.
- (99) Churchill, M. R.; Reis, A. H., Jr. Inorg. Chem. 1972, 11, 1811.
 (100) Churchill, M. R.; Reis, A. H., Jr. Inorg. Chem. 1972, 11, 2299.
 (101) Ang. H. G.; Kow, W. E.; Mok, K. F. Inorg. Nucl. Chem. Lett. 1972,

- (102) Bressan, M.; Rigo, P. J. Inorg. Nucl. Chem. 1976, 38, 592.
 (103) Issleib, K.; Kipke, A.; Hahnfeld, V. Z. Anorg. Allg. Chem. 1980,
- (104) Boggess, R. K.; Zatko, D. A. Inorg. Chem. 1976, 15, 626.
 (105) Boggess, R. K.; Zatko, D. A. Inorg. Nucl. Chem. Lett. 1976, 12, 7.
 (106) Balch, A. L. Pure Appl. Chem. 1988, 60, 555.
- (107) Arena, C. G., Rotondo, E., Faraone, F., Lanfranchi, M., Tiripicchio, A. Organometallics 1991, 10, 3877.
- (108) Wood, F. E.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 1983, 105, 6332.
- (109) Maisonnat, A.; Farr, J. P.; Balch, A. L. Inorg. Chim. Acta 1981, 53,
- (110) Farr, J. P.; Olmstead, M. M.; Balch, A. L. Inorg. Chem. 1983, 22, 1229.
- (111) Xie, Y.; Lee, C.-L.; Yang, Y.; Rettig, S. J.; James, B. R. Can. J. Chem. 1992, 70, 751.
 (112) Zhang, Z.-Z.; Wang, H.-K.; Wang, H.-G.; Wang, R.-J. J. Organometal. Chem. 1986, 314, 357.
- (113) Farr, J. P.; Olmstead, M. M.; Wood, F. E.; Balch, A. L. J. Am. Chem. Soc. 1983, 105, 792.
- (114) Susuki, T.; Fujita, J. Bull. Chem. Soc. Jpn. 1992, 65, 1016.
- (115) Lo Schiavo, S.; Rotondo, E.; Bruno, G.; Faraone, F. Organometallics 1991, 10, 1613.
- (116) Mashima, K.; Nakano, H.; Mori, T.; Takaya, H.; Nakamura, A. Chem. Lett. 1992, 185.
 (117) Farr, J. P.; Wood, F. E.; Balch, A. L. Inorg. Chem. 1983, 22, 3387.
- (118) Balch, A. L.; Guimerans, R. R.; Linehan, J.; Wood, F. E. Inorg. Chem. 1985, 24, 2021.
- (119) Farr, J. P.; Olmstead, M. M.; Rutherford, N. M.; Wood, F. E.; Balch, A. L. Organometallics 1983, 2, 1758.
- (120) McNair, R. J.; Pignolet, L. H. Inorg. Chem. 1986, 25, 4717.
 (121) Farr, J. P.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 1980, 102, 6654.
- (122) Rontondo, E.; Battaglia, G.; Arena, C. G.; Faraone, F. J. Organometal. Chem. 1991, 419, 399.
 (123) Balch, A. L.; Fossett, L. A.; Olmstead, M. M. Inorg. Chem. 1986,
- (124) Farr, J. P.; Olmstead, M. M.; Hunt, C. H.; Balch, A. L. Inorg. Chem. 1981, 20, 1182.
- (125) Woods, C.; Tortorelli, L. J. Polyhedron 1988, 7, 1751.
- (126) Anderson, M. P.; Pignolet, L. H. Organometallics 1983, 2, 1246. (127) McNair, R. J.; Pignolet, L. H. Inorg. Chem. 1986, 25, 4717.
- (128) McNair, R. J.; Nilsson, P. V.; Pignolet, L. H. Inorg. Chem. 1985,
- 24, 1935. (129) Anderson, M. P.; Tso, C. C.; Mattson, B. M.; Pignolet, L. H. Inorg.
- Chem. 1983, 22, 3267 (130) Schmid, B.; Venanzi, L. M.; Gerfin, T.; Gramlich, V.; Mathey, F. Inorg. Chem. 1992, 31, 5117.
- (131) Zhang, Z.-Z.; Wang, H.-K.; Shen, Y.-J.; Wang, H.-G.; Wang, R.-J. J. Organometal. Chem. 1990, 381, 45.
- (132) Arena, C. G.; Faraone, F.; Fochi, M.; Lanfranchi, M.; Mealli, C.; Seeber, R.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. 1992, 1847.
 (133) Moreno, C.; Macazaga, M. J.; Delgado, S. J. Organometal. Chem. 1990, 397, 93.
- Barder, T. J.; Tetrick, S. M.; Walton, R. A.; Cotton, F. A.; Powell, G. L. J. Am. Chem. Soc. 1983, 105, 4090.
- (135) Hoberg, H.; Ballesteros, A.; Sigan, A. J. Organometal. Chem. 1991, 403, CI9.
- (136) Hoberg, H.; Ballesteros, A.; Sigan, A.; Jegat, C.; Milchereit, A. Synthesis 1991, 395.
- (137) Lastra, E.; Gamasa, M. P.; Gimeno, J.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. 1989, 1499.
- (138) Ceder, R. M.; Cubillo, J.; Muller, G.; Rocamora, M.; Sales, J. J. Organometal. Chem. 1992, 429, 391.
- (139) Charland, J.-P.; Roustan, J.-L.; Ansari, N. Acta Crystallogr. 1989, C45, 680. (140) Keene, F. R.; Snow, M. R.; Tiekink, E. R. T. Acta. Crystallogr.
- 1988, C44, 757.
 (141) Wajda, K.; Pruchnik, F.; Lis, T. Inorg. Chim. Acta 1980, 40, 207.
 (142) Rotondo, E.; Bruno, G.; Nicolò, F.; Lo Schiavo, S.; Piraino, P. Inorg.
- Chem. 1991, 30, 1195. (143) Bruno, G.; Lo Schiavo, S.; Rotondo, E.; Arena, C. G.; Faraone, F.
- Organometallics 1989, 8, 886.
 (144) Zhao, W.; Fang, Y.; Zhang, S.; Li, Y.; Zhang, Z.-Z.; Wang, X. Ion
- Exch. Adsorpt. 1992, 8, 39. (145) Rotondo, E.; Lo Schiavo, S.; Bruno, G.; Arena, C. G.; Gobetto, R.;
- Faraone, F. Inorg. Chem. 1989, 28, 2944.

 (146) Lugan, N.; Lavigne, G.; Bonnet, J.-J. Inorg. Chem. 1986, 25, 7.

 (147) Fennis, P. J.; Budzelaar, P. H. M.; Frijns, J. H. G.; Orpen, A. G. J. Organometal. Chem. 1990, 393, 287.
- (148) Mattson, B. M.; Ito, L. N. Organometallics 1989, 8, 391.

- (149) Balch, A. L.; Hope, H.; Wood, F. E. J. Am. Chem. Soc. 1985, 107,
- (150) Wood, F. E.; Hvoslef, J.; Balch, A. L. J. Am. Chem. Soc. 1983, 105, 6986.
- (151) Alcock, N. W.; Moore, P.; Lampe, P. A.; Mok, K. F. J. Chem. Soc., Dalton Trans. 1982, 207
- (152) Lock, C. J. L.; Turner, M. A. Acta Crystallogr. 1987, C43, 2096. (153) Keene, F. R.; Stephenson, P. J.; Tiekink, E. R. T. Inorg. Chim.
- Acta 1991, 187, 217.
- (154) Gregorzik, R.; Wirbser, J.; Vahrenkamp, H. Chem. Ber. 1992, 125, 1575.
- (155) Keene, F. R.; Snow, M. R.; Stephenson, P. J.; Tiekink, E. R. T.
- Inorg. Chem. 1988, 27, 2040. (156) Cotton, F. A.; Matusz, M. Polyhedron 1988, 7, 2201. (157) Zhang, Z.-Z.; Wang, H.-K.; Seng, Y.-J.; Yao, X.-K.; Wang, H.-K. Chem. J. Chin. Univ. 1990, 11, 255.
- (158) Ehrlich, M. G.; Fronczek, F. R.; Watkins, S. F.; Newkome, G. R.;
- Hager, D. C. Acta Crystallogr. 1984, C40, 78.

 (159) Zhang, Z.-Z.; Wang, H.-K.; Xi, Z.; Yao, X.-K.; Wang, R.-J. J.

 Organometal. Chem. 1989, 376, 123.

 (160) Zhang, Z.-Z.; Wang, X.-K.; Xi, Z.; Wang, H.-G.; Wang, R.-J. Sci.
- China (Ser. B) 1989, 32, 385.
- (161) Schrier, P. W.; Derringer, D. R.; Fanwick, P. E.; Walton, R. A. Inorg. Chem. 1990, 29, 1290.
- (162) Cotton, F. A.; Matusz, M. Inorg. Chim. Acta 1988, 143, 45.
 (163) Cotton, F. A.; Matusz, M. Inorg. Chim. Acta 1989, 157, 223.
 (164) Inoguchi, Y.; Milewski-Mahrla, B.; Neugebauer, D.; Jones, P. G.;
- Schmidbaur, H. Chem. Ber. 1983, 116, 1487. (165) Honggen, W.; Ruji, W.; Zhengzhi, Z.; Xukun, W.; Weijun, Z.; Limei, Y. Chem. J. Chin. Univ. 1989, 10, 809.
- (166) Churchill, M. R.; Reis, J. R., Jr. J. Chem. Soc., Chem. Commun.
- 1971, 1307 Churchill, M. R.; Reis, A. H., Jr. J. Chem. Soc., Dalton Trans.
- 1973, 1570 (168) Churchill, M. R.; Reis, A. H., Jr. Inorg. Chem. 1973, 12, 2280.

- (169) Deeming, A. J.; Smith, M. B. J. Chem. Soc., Chem. Commun. 1993,
- (170) Drent, E.; Budzelaar, P. H. M.; Jager, W. W. Eur. Pat. Appl. EP 386,833; Chem. Abstr. 1991, 114, 142679z.
- (171) Drent, E.; Budzelaar, P. H. M. Eur. Pat. Appl. EP 386,834; Chem. Abstr. 1991, 114, 142680t.
- Gladiali, S.; Pinna, L.; Arena, C. G.; Rotondo, E.; Faraone, F. J. Mol. Catal. 1991, 66, 183.
- (173) Imomoto, T.; Takeyama, T.; Kusumoto, T. Chem. Lett. 1985, 1491.
- (174) Camp, D.; Jenkins, I. D. J. Org. Chem. 1989, 54, 3049.
- (175) Camp, D.; Jenkins, I. D. Austr. J. Chem. 1988, 41, 1835.
- (176) Bressan, M.; Morvillo, A. J. Chem. Soc., Chem. Commun. 1988, 650.
- (177) Hoberg, H.; Minato, M. J. Organometal. Chem. 1991, 406, C25.
- (178) Seel, C.; Vögtle, F. Angew. Chem., Int. Ed. Engl. 1992, 31, 528.
- (179) Åkermark, B.; Krakenberger, B.; Hansson, S.; Vitagliano, A. Organometallics 1987, 6, 620.
- (180) Deeming, A. J.; Smith, M. B. J. Chem. Soc. Dalton Trans. 1993, 2041.
- (181) Yam, V. W.-W.; Chan, L.-P.; Lai, T.-F. J. Chem. Soc. Dalton Trans. 1993, 2075.
- (182) Shafiq, F.; Eisenberg, R. Inorg. Chem. 1993, 32, 3287.
- (183) Rapko, B. M.; Duesler, E. N.; Smith, P. H.; Paine, R. T.; Ryan, R. R. Inorg. Chem. 1993, 32, 2164.
- (184) Haupt, H.-J.; Ortmann, U. Z. anorg. allg. Chem. 1993, 619, 1209.
- (185) Demming, A. J.; Smith, M. B. J. Chem. Soc., Chem. Commun. 1993. 844.
- (186) Arena, C. G.; Bruno, G.; De Munno, G.; Rotondo, E.; Drommi, D.; Faraone, F. Inorg. Chem. 1993, 32, 1601.
- (187) Reinhard, G.; Hirle, G.; Schubert, U.; Knorr, M.; Braunstein, P.; DeCian, A.; Fischer, J. Inorg. Chem. 1993, 32, 1656.
- (188) Lugan, N.; Fabre, P.-L.; de Montauzon, D.; Lavigne, G.; Bonnet, J.-J.; Saillard, J.-Y.; Halet, J.-F. Inorg. Chem. 1993, 32, 1363.