

Modeling

School of Information Studies
Syracuse University

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y}_{i})^{2}}$$

OLS Regression Results

Dep. Variable: attend R-sq

Model: OLS

Method: Least Squares

Date:

Time:

No. Observations: 57

Df Residuals: 43

Df Model: 13

Covariance Type: nonrobust

R-squared: 0.639

Adj. R-squared: 0.530

F-statistic: 5.864

Prob (F-statistic): 4.70e-06

Log-Likelihood: -566.87

AIC: 1162.

BIC: 1190.

R-Squared

P-Values

- Low p-value?
 - Highly unlikely to occur randomly, therefore significant
- High p-value?
 - Coefficient might actually be zero, therefore consider removing from model

Im(formula = hardness ~ dens, data = hardness)

Residuals:

Min 1Q Median 3Q Max -338.40 -96.98 -15.71 92.71 625.06

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 183.1 on 34 degrees of freedom

Multiple R-squared: 0.9493, Adjusted R-squared: 0.9478

F-statistic: 637 on 1 and 34 DF, p-value: < 2.2e-16

Model Validation

Collect

Collect new data

Compare

Compare the results with:

- Theoretical expectation (how much should a 0bedroom house cost?)
- Earlier empirical studies
- Simulation (see Chapter 9 examples from text)

Split

Split the original data with one portion for training and one for testing