Freescale Semiconductor

Data Sheet: Technical Data

Document Number: MCF51JM128

Rev. 3, 6/2009

MCF51JM128

MCF51JM128 ColdFire Microcontroller

The MCF51JM128 is a member of the ColdFire[®] family of 32-bit reduced instruction set computing (RISC) microprocessors. This document provides an overview of the MCF51JM128 series, focusing on its highly integrated and diverse feature set.

The MCF51JM128 series is based on the V1 ColdFire core and operates at processor core speeds up to 50.33 MHz. As part of Freescale's Controller Continuum[®], it is an ideal upgrade for designs based on the MC9S08JM60 series of 8-bit microcontrollers.

The MCF51JM128 features the following functional units:

- V1 ColdFire core with background debug module
- Up to 128 KBytes of flash memory
- Up to 16 Kbytes of static RAM (SRAM)
- Multipurpose clock generator (MCG)
- Dual-role Universal Serial Bus On-The-Go device (USBOTG)
- Controller-area network (MSCAN)
- Cryptographic acceleration unit (CAU)
- Random number generator accelerator (RNGA)
- Analog comparators (ACMP)
- Analog-to-digital converter (ADC) with up to 12 channels
- Two Inter-integrated circuit (IIC) modules
- Two serial peripheral interfaces (SPI)
- Two serial communications interfaces (SCI)
- Carrier modulation timer (CMT)
- Eight-channel timer/pulse-width modulators (TPM)
- Real-time counter (RTC)
- 66 general-purpose input/output (GPIO) modules plus Interrupt request input
- Eight keyboard interrupts (KBI)
- 16-bit Rapid GPIO

44 LQFP 10 mm × 10 mm 14 mm × 14 mm

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2008-2009. All rights reserved.

Table of Contents

2.1 Parameter Classification 15	1	MCF51JM128 Family Configurations	3	- Low Drive (PTxDSn = 0)
1.3 Feature 5		1.1 Device Comparison	3	
1.3 Features		1.2 Block Diagram	4	- High Drive (PTxDSn = 1)
1.3.1 Feature List		1.3 Features	5	
1.5 Pinouts and Packaging		1.3.1 Feature List	6	
1.5 Pinouts and Packaging		1.4 Part Numbers	8	Figure 9.ADC Input Impedance Equivalency Diagram 24
Preliminary Electrical Characteristics		1.5 Pinouts and Packaging	.10	
2.1 Parameter Classification 15 Figure 12.Timer External Clock 29 2.2 Absolute Maximum Ratings 15 Figure 13.Timer Input Capture Pulse 30 2.3 Thermal Characteristics 16 Figure 14.SPI Master Timing (CPHA = 0) 32 2.4 Electrostatic Discharge (ESD) Protection Figure 16.SPI Slave Timing (CPHA = 1) 32 2.5 DC Characteristics 18 Figure 17.SPI Slave Timing (CPHA = 1) 32 2.5 DC Characteristics 21 21 MCG Specifications 23 2.6 Supply Current Characteristics 23 23 Table 1. MCF51JM128 Series Device Comparison 3 2.9 External Oscillator (XOSC) Characteristics 26 Table 2. MCF51JM128 Series Functional Units 5 2.10 MCG Specifications 27 Table 3. Orderable Part Number Summary 8 2.11 AC Characteristics 28 Table 4. Pin Assignments by Package and Pin Sharing Priority 12 Table 6. Absolute Maximum Ratings 16 2.12 SPI Characteristics 31 Table 6. Absolute Maximum Ratings 16 2.12 SPI Characteristics 31 Table 7. Thermal Characteristics 18 <td>2</td> <td>Preliminary Electrical Characteristics</td> <td>.15</td> <td></td>	2	Preliminary Electrical Characteristics	.15	
2.2 Absolute Maximum Ratings 2.3 Thermal Characteristics 3.1 Figure 13. Timer Input Capture Pulse. 3.2 Figure 14. SPI Master Timing (CPHA = 0) 3.2 Action of the provided in t		2.1 Parameter Classification	.15	
2.3 Thermal Characteristics				
Figure 15. SPI Master Timing (CPHA = 1) 32		2.3 Thermal Characteristics	.16	
Characteristics		2.4 Electrostatic Discharge (ESD) Protection		
2.6 Supply Current Characteristics 21 2.7 Analog Comparator (ACMP) Electricals 23 2.8 ADC Characteristics 23 2.9 External Oscillator (XOSC) Characteristics 26 Table 1. MCF51JM128 Series Device Comparison 3 2.10 MCG Specifications 27 Table 2. MCF51JM128 Series Functional Units 5 2.10 MCG Specifications 27 Table 3. Orderable Part Number Summary 8 2.11 AC Characteristics 28 Table 4. Pin Assignments by Package and Pin Sharing Priority 12 2 2.11.1 Control Timing 28 Table 4. Pin Assignments by Package and Pin Sharing Priority 12 2 2.11.2 Timer/PWM (TPM) Module Timing 29 Table 6. Absolute Maximum Ratings 16 2.11.2 Timer/PWM (TPM) Module Timing 29 Table 6. Absolute Maximum Ratings 16 2.12 SPI Characteristics 16 2.1 SPI Characteristics 16 2.12 SPI Characteristics 31 Table 8. ESD and Latch-Up Protection Characteristics 18 2.14 SPI Characteristics 34 Table 9. ESD and Latch-Up Protection Characteristics 18 <td></td> <td></td> <td>.17</td> <td></td>			.17	
2.7 Analog Comparator (ACMP) Electricals 2.3 List of Table 2. 2.8 ADC Characteristics 2.3 Table 1. MCF51JM128 Series Device Comparison 3. 2.9 External Oscillator (XOSC) Characteristics 2.6 Table 2. MCF51JM128 Series Functional Units 5. 2.10 MCG Specifications 2.7 Table 3. Orderable Part Number Summary 8. 2.11 AC Characteristics 2.8 Table 4. Pin Assignments by Package and Pin Sharing Priority 12. 2.11.1 Control Timing 2.8 Table 5. Parameter Classifications 15. 2.11.2 Timer/PWM (TPM) Module Timing 2.9 Table 5. Parameter Classifications 15. 2.11.3 MSCAN 30 Table 7. Thermal Characteristics 16. 2.12 SPI Characteristics 31 Table 8. ESD and Latch-up Test Conditions 17. 2.13 Flash Specifications 34 Table 9. ESD and Latch-up Protection Characteristics 18. 2.14 USB Electricals 34 Table 10.DC Characteristics 18. 2.15 EMC Performance 35 Table 11. Supply Current Characteristics 21. 2.15.1 Radiated Emissions 35 Table 12. Analog Comparator Electrical Specifications 23. 3.1 Mechanical Outline Drawings 36 Table 12. Analog Comparator Electrical Specifications 23. 3.1 80-pin LQFP 36 Table 3. Volt 12-bit ADC Operating Conditions 23. 3.1 80-pin LQFP 39 VSSA) 24. 3.2 64-pin QFP 42 Table 5. Oscillator Electrical Specifications (Temperature Range 4. VSSA) 24. 44-pin LQFP 45 Table 16. MCG Frequency Specifications (Temperature Range 4. Table 16. MCG Frequency Specifications (Temperature Range 4. Table 17. Control Timing 2.8 Table 17. Control Timing 2.8 Table 18. TPM Input Timing 2.9 Table 19. MSCAN Wake-up Pulse Characteristics 30. 5 Table 23. Changes Between Revisions 4. 4 Table 23. Changes Between Revisions 4.		2.5 DC Characteristics	.18	Figure 17.SPI Slave Timing (CPHA = 1)
2.8 ADC Characteristics 23 Table 1. MCF51JM128 Series Device Comparison 3 2.9 External Oscillator (XOSC) Characteristics 26 Table 2. MCF51JM128 Series Functional Units 5 2.10 MCG Specifications 27 Table 3. Orderable Part Number Summary 8 2.11 A Control Timing 28 Table 4. Pin Assignments by Package and Pin Sharing Priority 12 12 2.11.1 Control Timing 28 Table 5. Parameter Classifications 15 2.11.2 Timer/PWM (TPM) Module Timing 29 Table 6. Absolute Maximum Ratings 16 2.12 SPI Characteristics 31 Table 6. Absolute Maximum Ratings 16 2.13 Flash Specifications 34 Table 8. ESD and Latch-up Test Conditions 17 2.13 Flash Specifications 34 Table 9. ESD and Latch-up Protection Characteristics 18 2.14 USB Electricals 34 Table 10.DC Characteristics 18 2.15.1 Radiated Emissions 35 Table 11. Supply Current Characteristics 21 2.15.1 Radiated Emissions 36 Table 13.5 Volt 12-bit ADC Operating Conditions 23 3.1 80-pin LQFP 36		2.6 Supply Current Characteristics	.21	List of Tables
2.9 External Oscillator (XOSC) Characteristics 26		2.7 Analog Comparator (ACMP) Electricals	.23	
2.10 MCG Specifications 27 Table 3. Orderable Part Number Summary 8 2.11 AC Characteristics 28 Table 4. Pin Assignments by Package and Pin Sharing Priority 12 2.11.1 Control Timing 28 Table 5. Parameter Classifications 15 2.11.2 Timer/PWM (TPM) Module Timing 29 Table 6. Absolute Maximum Ratings 16 2.11.3 MSCAN 30 Table 7. Thermal Characteristics 16 2.12 SPI Characteristics 31 Table 8. ESD and Latch-up Test Conditions 17 2.13 Flash Specifications 34 Table 10.DC Characteristics 18 2.14 USB Electricals 34 Table 10.DC Characteristics 18 2.15 EMC Performance 35 Table 11. Supply Current Characteristics 21 2.15.1 Radiated Emissions 35 Table 12. Analog Comparator Electrical Specifications 23 3. Mechanical Outline Drawings 36 Table 13.5 Volt 12-bit ADC Operating Conditions 23 3.1 80-pin LQFP 36 Table 14.5 Volt 12-bit ADC Characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA}) 24 3.3 64-pin QFP 42 Table 16.MCG Frequency Specifications (Temperature Range = -40 to 105°C Ambient) 27 Table 19.MSCAN Wake-up Pulse Characteristics 30 Figure 2.80-pin LQFP 10 Table 19.MSCAN Wake-up Pulse Characteristics 30 Figure 3.64-pin QFP 11 Table 20.SPI Timing 31 Figure 4.44-pin LQFP 11 Table 20.SPI Timing 31 Figure 4.44-pin LQFP 12 Table 21. Internal USB 3.3V Voltage Regulator Characteristics 35 Figure 5. Typical Low-side Drive (sink) characteristics 48 Figure 5. Typical Low-side Drive (sink) characteristics 48		2.8 ADC Characteristics	.23	·
2.11 AC Characteristics 28		2.9 External Oscillator (XOSC) Characteristics	.26	
2.11.1 Control Timing		2.10 MCG Specifications	.27	
2.11.2 Timer/PWM (TPM) Module Timing 29		2.11 AC Characteristics	.28	
2.11.3 MSCAN 30 Table 7. Thermal Characteristics. 16 2.12 SPI Characteristics 31 Table 8. ESD and Latch-up Test Conditions 17 2.13 Flash Specifications 34 Table 9. ESD and Latch-up Protection Characteristics. 18 2.14 USB Electricals 34 Table 10.DC Characteristics. 18 2.15 EMC Performance. 35 Table 11. Supply Current Characteristics. 21 2.15.1 Radiated Emissions 35 Table 12. Analog Comparator Electrical Specifications 23 3 Mechanical Outline Drawings 36 Table 13.5 Volt 12-bit ADC Operating Conditions 23 3.1 80-pin LQFP 36 Table 14.5 Volt 12-bit ADC Characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA}) 24 3.3 64-pin QFP 39 V _{SSA}) 24 3.3 64-pin QFP 42 Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient) 26 4 Revision History 48 Table 16.MCG Frequency Specifications (Temperature Range = -40 to 105°C Ambient) 27 Table 17. Control Timing 28 Figure 2. 80-pin LQFP 10 Table 18. TPM Input Timing 29 Figure 3. 64-pin QFP 11 Table 20. SPI Timing 31 Table 29. Internal USB 3.3V Voltage Regulator Characteristics 35 Table 21. Internal USB 3.3V Voltage Regulator Characteristics 35 Table 21. Internal USB 3.3V Voltage Regulator Characteristics 35 Table 23. Changes Between Revisions 48		2.11.1 Control Timing	.28	
2.12 SPI Characteristics 31 Table 8. ESD and Latch-up Test Conditions 17		2.11.2 Timer/PWM (TPM) Module Timing	.29	
2.13 Flash Specifications 34 Table 9. ESD and Latch-Up Protection Characteristics. 18 2.14 USB Electricals 34 Table 10.DC Characteristics. 18 2.15 EMC Performance 35 Table 11. Supply Current Characteristics. 21 2.15.1 Radiated Emissions 35 Table 12.Analog Comparator Electrical Specifications 23 3 Mechanical Outline Drawings 36 Table 13.5 Volt 12-bit ADC Operating Conditions 23 3.1 80-pin LQFP 36 Table 14.5 Volt 12-bit ADC Characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{DDA} , V _{REFL} = V _{SSA}) 24 3.2 64-pin LQFP 39 Table 15.Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient) 26 4 Revision History 48 Table 16.MCG Frequency Specifications (Temperature Range = -40 to 125°C Ambient) 27 4 Revision History 48 Table 17.Control Timing 28 Figure 2.80-pin LQFP 10 Table 18.TPM Input Timing 29 Figure 2.80-pin LQFP 10 Table 19.MSCAN Wake-up Pulse Characteristics 30 Figure 3.64-pin QFP and LQFP 11 Table 20.SPI Timing 31 Figure 5. Typical Low-side Drive (sink) characteristics Table 21.Flash Characteristics 34 </td <td></td> <td>2.11.3 MSCAN</td> <td>.30</td> <td></td>		2.11.3 MSCAN	.30	
2.14 USB Electricals		2.12 SPI Characteristics	.31	
2.15 EMC Performance. 35 Table 11. Supply Current Characteristics. 21 2.15.1 Radiated Emissions. 35 Table 12.Analog Comparator Electrical Specifications. 23 35 Table 12.Analog Comparator Electrical Specifications. 23 36 Table 13.5 Volt 12-bit ADC Operating Conditions. 23 36 Table 13.5 Volt 12-bit ADC Characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA}). 24 36 Table 14.5 Volt 12-bit ADC Characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA}). 24 36 Table 15.Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient). 26 Table 15.Oscillator Electrical Specifications (Temperature Range = -40 to 125°C Ambient). 26 Table 16.MCG Frequency Specifications (Temperature Range = -40 to 125°C Ambient). 27 Table 17.Control Timing. 28 Table 17.Control Timing. 28 Table 17.Control Timing. 28 Table 18.TPM Input Timing. 29 Table 19.MSCAN Wake-up Pulse Characteristics. 30 Table 19.MSCAN Wake-up Pulse Characteristics. 30 Table 20.SPI Timing. 31 Table 20.SPI Timing. 31 Table 21.Flash Characteristics. 34 Table 22.Internal USB 3.3V Voltage Regulator Characteristics. 35 Table 22.Internal USB 3.3V Voltage Regulator Characteristics. 35 Table 23.Changes Between Revisions. 48 Table 23.Changes Between Revisions.		2.13 Flash Specifications	.34	·
2.15.1 Radiated Emissions. 35 Mechanical Outline Drawings. 36 Mechanical Outline Drawings. 36 3.1 80-pin LQFP. 36 3.2 64-pin LQFP. 39 3.3 64-pin QFP. 42 3.4 44-pin LQFP. 45 4 Revision History. 48 Figure 1.MCF51JM128 Block Diagram. 4 Figure 2.80-pin LQFP. 10 Figure 3.64-pin QFP. 11 Figure 4.44-pin LQFP. 12 Figure 5. Typical Low-side Drive (sink) characteristics - High Drive (PTxDSn = 1) Table 12.Analog Comparator Electrical Specifications. 23 Table 12.Analog Comparator Electrical Specifications. 23 Table 12.Analog Comparator Electrical Specifications. 23 Table 13.5 Volt 12-bit ADC Operating Conditions. 23 Table 14.5 Volt 12-bit ADC Operating Conditions. 23 Table 13.5 Volt 12-bit ADC Operating Conditions. 23 Table 13.5 Volt 12-bit ADC Operating Conditions. 23 Table 13.5 Volt 12-bit ADC Operating Conditions. 23 Table 14.5 Volt 12-bit ADC Characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{DDA} , V		2.14 USB Electricals	.34	
Table 13.5 Volt 12-bit ADC Operating Conditions 23		2.15 EMC Performance	.35	
Table 14.5 Volt 12-bit ADC Characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA})		2.15.1 Radiated Emissions	.35	
3.2 64-pin LQFP .39 V _{SSA}) .24 3.3 64-pin QFP .42 Table 15.Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient) .26 4 Revision History .48 Table 16.MCG Frequency Specifications (Temperature Range = -40 to 125°C Ambient) .27 List of Figures Table 17.Control Timing .28 Figure 1.MCF51JM128 Block Diagram .4 Table 18.TPM Input Timing .29 Figure 2.80-pin LQFP .10 Table 19.MSCAN Wake-up Pulse Characteristics .30 Figure 3.64-pin QFP and LQFP .11 Table 20.SPI Timing .31 Figure 4.44-pin LQFP .12 Table 21.Flash Characteristics .34 Figure 5. Typical Low-side Drive (sink) characteristics .34 - High Drive (PTxDSn = 1) .20 Table 23.Changes Between Revisions .48	3	Mechanical Outline Drawings	.36	
3.3 64-pin QFP 42 Table 15.Oscillator Electrical Specifications (Temperature Range = 3.4 44-pin LQFP 45 -40 to 105°C Ambient) 26 4 Revision History 48 Table 16.MCG Frequency Specifications (Temperature Range = -40 to 125°C Ambient) 27 List of Figures Table 17.Control Timing 28 Figure 1.MCF51JM128 Block Diagram 4 Table 18.TPM Input Timing 29 Figure 2.80-pin LQFP 10 Table 19.MSCAN Wake-up Pulse Characteristics 30 Figure 3.64-pin QFP and LQFP 11 Table 20.SPI Timing 31 Figure 4.44-pin LQFP 12 Table 21.Flash Characteristics 34 Figure 5. Typical Low-side Drive (sink) characteristics Table 22.Internal USB 3.3V Voltage Regulator Characteristics 35 High Drive (PTxDSn = 1) 20 Table 23.Changes Between Revisions 48		3.1 80-pin LQFP	.36	Table 14.5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{DDA}$)
3.4 44-pin LQFP		3.2 64-pin LQFP	.39	
4 Revision History .48 Table 16.MCG Frequency Specifications (Temperature Range = -40 to 125°C Ambient) .27 List of Figures Table 17.Control Timing .28 Figure 1.MCF51JM128 Block Diagram .4 Table 18.TPM Input Timing .29 Figure 2.80-pin LQFP .10 Table 19.MSCAN Wake-up Pulse Characteristics .30 Figure 3.64-pin QFP and LQFP .11 Table 20.SPI Timing .31 Figure 4.44-pin LQFP .12 Table 21.Flash Characteristics .34 Figure 5. Typical Low-side Drive (sink) characteristics .34 - High Drive (PTxDSn = 1) .20 Table 23.Changes Between Revisions .48		3.3 64-pin QFP	.42	
to 125°C Ambient). 27 List of Figures Table 17. Control Timing. 28 Figure 1. MCF51JM128 Block Diagram. 4 Table 18. TPM Input Timing. 29 Figure 2. 80-pin LQFP. 10 Table 19. MSCAN Wake-up Pulse Characteristics. 30 Figure 3. 64-pin QFP and LQFP. 11 Table 20. SPI Timing. 31 Figure 4. 44-pin LQFP. 12 Table 21. Flash Characteristics. 34 Figure 5. Typical Low-side Drive (sink) characteristics Table 22. Internal USB 3.3V Voltage Regulator Characteristics. 35 High Drive (PTxDSn = 1) 20 Table 23. Changes Between Revisions. 48		3.4 44-pin LQFP	.45	
List of Figures Table 17. Control Timing 28 Figure 1. MCF51JM128 Block Diagram 4 Table 18. TPM Input Timing 29 Figure 2. 80-pin LQFP 10 Table 19. MSCAN Wake-up Pulse Characteristics 30 Figure 3. 64-pin QFP and LQFP 11 Table 20. SPI Timing 31 Figure 4. 44-pin LQFP 12 Table 21. Flash Characteristics 34 Figure 5. Typical Low-side Drive (sink) characteristics Table 22. Internal USB 3.3V Voltage Regulator Characteristics 35 High Drive (PTxDSn = 1) 20 Table 23. Changes Between Revisions 48	4	Revision History	.48	
Figure 1.MCF51JM128 Block Diagram 4 Table 18.TPM Input Timing 29 Figure 2.80-pin LQFP 10 Table 19.MSCAN Wake-up Pulse Characteristics 30 Figure 3.64-pin QFP and LQFP 11 Table 20.SPI Timing 31 Figure 4.44-pin LQFP 12 Table 21.Flash Characteristics 34 Figure 5.Typical Low-side Drive (sink) characteristics Table 22.Internal USB 3.3V Voltage Regulator Characteristics 35 - High Drive (PTxDSn = 1) 20 Table 23.Changes Between Revisions 48	Li	ist of Figures		
Figure 2.80-pin LQFP 10 Table 19.MSCAN Wake-up Pulse Characteristics 30 Figure 3.64-pin QFP and LQFP 11 Table 20.SPI Timing 31 Figure 4.44-pin LQFP 12 Table 21.Flash Characteristics 34 Figure 5.Typical Low-side Drive (sink) characteristics Table 22.Internal USB 3.3V Voltage Regulator Characteristics 35 - High Drive (PTxDSn = 1) 20 Table 23.Changes Between Revisions 48	Fi	figure 1.MCF51JM128 Block Diagram	. 4	•
Figure 3.64-pin QFP and LQFP 11 Table 20.SPI Timing 31 Figure 4.44-pin LQFP 12 Table 21.Flash Characteristics 34 Figure 5. Typical Low-side Drive (sink) characteristics Table 22.Internal USB 3.3V Voltage Regulator Characteristics 35 - High Drive (PTxDSn = 1) 20 Table 23.Changes Between Revisions 48				
Figure 4.44-pin LQFP				·
Figure 5. Typical Low-side Drive (sink) characteristics - High Drive (PTxDSn = 1)				
- High Drive (PTxDSn = 1)				
			20	
	Fi			•

1 MCF51JM128 Family Configurations

1.1 Device Comparison

The MCF51JM128 series consists of the devices compared in Table 1.

Table 1. MCF51JM128 Series Device Comparison

Footore	M	CF51JM1	28	MCF51JM64			MCF51JM32		
Feature	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin	80-pin	64-pin	44-pin
Flash memory size (Kbytes)		128			64		32		
RAM size (Kbytes)	16							16	
V1 ColdFire core with BDM (background debug module)					Yes				
ACMP (analog comparator)	Yes								
ADC channels (12-bit)	1	2	8	1	2	8	1	2	8
CAN (controller area network)	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No
RNGA + CAU		l		II.	Yes ¹	I	I.		I.
CMT (carrier modulator timer)					Yes				
COP (computer operating properly)					Yes				
IIC1 (inter-integrated circuit)	Yes								
IIC2	Yes	N	lo	Yes No		lo	Yes No		
IRQ (interrupt request input)	Yes								
KBI (keyboard interrupts)	8	8	6	8	8	6	8	8	6
LVD (low-voltage detector)		l .		II.	Yes		II.		II.
MCG (multipurpose clock generator)					Yes				
Port I/O ²	66	51	33	66	51	33	66	51	33
RGPIO (rapid general-purpose I/O)	16	6	0	16	6	0	16	6	0
RTC (real-time counter)		I		I	Yes		I	I	I
SCI1 (serial communications interface)					Yes				
SCI2	Yes								
SPI1 (serial peripheral interface)	Yes								
SPI2					Yes				
TPM1 (timer/pulse-width modulator) channels	6	6	4	6	6	4	6	6	4
TPM2 channels					2		•		•
USBOTG (USB On-The-Go dual-role controller)									
XOSC (crystal oscillator)					Yes				
4	-								

Only existed on special part number

MCF51JM128 ColdFire Microcontroller, Rev. 3

MCF51JM128 Family Configurations

 $^{2}\,$ Up to 16 pins on Ports A, H, and J are shared with the ColdFire Rapid GPIO module.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51JM128 series pins and modules.

Figure 1. MCF51JM128 Block Diagram

1.3 Features

Table 2 describes the functional units of the MCF51JM128 series.

Table 2. MCF51JM128 Series Functional Units

Unit	Function
CF1CORE (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides a single-pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
SYSCTL (system control)	Provides LVD, COP, external interrupt request, and so on
FLASH (flash memory)	Provides storage for program code and constants
RAM (random-access memory)	Provides storage for program code, constants, and variables
RGPIO (rapid general-purpose input/output)	Allows I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management throughout the device
USBOTG (USB On-The-Go)	Supports the USB On-The-Go dual-role controller
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
TPM1, TPM2 (timer/pulse-width modulators)	Provide a variety of timing-based features
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
CAU (cryptographic acceleration unit)	Co-processor support for DES, 3DES, AES, MD5, and SHA-1
RNGA (random number generator accelerator)	32-bit random number generator that complies with FIPS-140
RTC (real-time counter)	Provides a constant-time base with optional interrupt
ACMP (analog comparator)	Compares two analog inputs
CMT (carrier modulator timer)	Infrared output used for the Remote Controller
IIC1, IIC2 (inter-integrated circuits)	Supports the standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
XOSC (crystal oscillator)	Supports low/high range crystals
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs that can support RS-232 and LIN protocols
SPI1, SPI2 (serial peripheral interfaces)	Provide a 4-pin synchronous serial interface

MCF51JM128 Family Configurations

1.3.1 Feature List

- 32-Bit Version 1 ColdFire® Central Processor Unit (CPU)
 - Up to 50.33 MHz at 2.7 V 5.5 V
 - Performance (Dhrystone 2.1):
 - 0.94 Dhrystone 2.1 MIPS per MHz when running from internal RAM
 - 0.76 Dhrystone 2.1 MIPS per MHz when running from flash
 - Implements Instruction Set Revision C (ISA_C)
 - Supports up to 30 peripheral interrupt requests and seven software interrupts
- · On-chip memory
 - Up to 128 KBytes Flash memory with read/program/erase over full operating voltage and temperature range
 - Up to 16 KBytes static random access memory (RAM)
 - Security circuitry to prevent unauthorized access to RAM and flash contents
- · Power-saving modes
 - Two low-power stop plus wait modes
 - Peripheral clock enable register can disable clocks to unused modules, thereby reducing currents; this behavior allows clocks to remain enabled to specific perhipherals in Stop3 mode
 - Very lower power real-time counter for use in run, wait, and stop modes with internal and external clock sources
- Four Clock Source Options
 - Oscillator (XOSC) Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - FLL/PLL controlled by internal or external reference
 - Trimmable internal reference allows 0.2% resolution and 2% deviation
- System protection features
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source or bus clock
 - Low-voltage detection with reset or interrupt; selectable trip points
 - Illegal opcode and illegal address detection with programmable reset or exception response
 - Flash block protection
- Debug support
 - Single-wire Background debug interface
 - 4 Program Counters plus two address (optional data) breakpoint registers with programmable 1- or 2-level trigger response
 - 64-entry processor status and debug data trace buffer with programmable start/stop conditions
- Universal Serial Bus (USB) On-The-Go dual-role controller
 - Full-speed USB device controller
 - Fully compliant with USB specification 1.1 and 2.0
 - 16 bidirectional endpoints, with double buffering to provide the maximum throughput
 - Supports control, bulk, interrupt, and isochronous endpoints
 - Supports bus-powered capability with low-power consumption
 - Full-speed / low-speed host controller
 - Host mode allows control, bulk, interrupt, and isochronous transfers
 - OTG protocol logic

6

- On-chip USB transceiver
- On-chip 3.3 V USB regulator and pull-up resistors save system cost

- Controller area network (MSCAN)
 - Implementation of the CAN protocol Version 2.0A/B
 - Five receive buffers with FIFO storage scheme
 - Three transmit buffers with internal prioritization using a "local priority" concept
 - Flexible maskable identifier filter programmable as 2x32-bit, 4x16-bit, or 8x8-bit
 - Programmable wakeup functionality with integrated low-pass filter
 - Programmable loopback mode supports self-test operation
 - Programmable bus-off recovery functionality
 - Internal timer for time-stamping of received and transmitted messages
- Cryptographic acceleration unit (CAU)
 - Co-processor support of DES, 3DES, AES, MD5, and SHA-1
- Random number generator accelerator (RNGA)
 - 32-bit random number generator that complies with FIPS-140
- Analog-to-digital converter (ADC)
 - 12-channel, 12-bit resolution
 - Output formatted in 12-, 10-, or 8-bit right-justified format
 - Single or continuous conversion, and selectable asynchronous hardware conversion trigger
 - Operation in Stop3 mode
 - Automatic compare function
 - Internal temperature sensor
- Analog comparators (ACMP)
 - Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output
 - Option to compare to fixed internal bandgap reference voltage
 - Option to route output to TPM module
 - Operation in Stop3 mode
- Inter-integrated circuit (IIC)
 - Up to 100 kbps with maximum bus loading
 - Multi-master operation
 - Programmable slave address
 - Supports broadcast mode and 10-bit address extension
- Serial communications interfaces (SCI)
 - Two SCIs with full-duplex, non-return-to-zero (NRZ) format
 - LIN master extended break generation
 - LIN slave extended break detection
 - Programmable 8-bit or 9-bit character length
 - Wake up on active edge
- Serial peripheral interfaces (SPI)
 - Two serial peripheral interfaces with full-duplex or single-wire bidirectional
 - Double-buffered transmit and receive
 - Programmable transmit bit rate, phase, polarity, and Slave Select output
 - MSB-first or LSB-first shifting
- Timer/pulse width modulator (TPM)
 - 16-bit free-running or modulo up/down count operation
 - Up to eight channels, where each channel can be an input capture, output compare, or edge-aligned PWM
 - One interrupt per channel plus terminal count interrupt

MCF51JM128 Family Configurations

- RTC
 - 8-bit modulus counter with binary- or decimal-based prescaler
 - External clock source for precise time base, time-of-day, calendar or task scheduling functions
 - Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components
- Carrier modulator timer (CMT)
 - carrier generator, modulator, and transmitter drive the infrared out (IRO) pin
 - operation in independent high/low time control, baseband, FSK, and direct IRO control modes
- Input/Output
 - 66 GPIOs
 - Eight keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; configurable slew rate and drive strength on all output pins
 - 16 bits of Rapid GPIO connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (Kbytes)	Package	Temperature
MCF51JM128EVLK	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	80 LQFP	−40 to +105 °C
MCF51JM128VLK	MCF51JM128 ColdFire Microcontroller	128 / 16	80 LQFP	-40 to +105 °C
MCF51JM128EVLH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 LQFP	−40 to +105 °C
MCF51JM128VLH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 LQFP	-40 to +105 °C
MCF51JM128EVQH	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	64 QFP	−40 to +105 °C
MCF51JM128VQH	MCF51JM128 ColdFire Microcontroller	128 / 16	64 QFP	-40 to +105 °C
MCF51JM128EVLD	MCF51JM128 ColdFire Microcontroller with CAU and RNGA Enabled	128 / 16	44 LQFP	−40 to +105 °C
MCF51JM128VLD	MCF51JM128 ColdFire Microcontroller	128 / 16	44 LQFP	-40 to +105 °C
MCF51JM64EVLK	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	80 LQFP	−40 to +105 °C
MCF51JM64VLK	MCF51JM64 ColdFire Microcontroller	64 / 16	80 LQFP	-40 to +105 °C
MCF51JM64EVLH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 LQFP	−40 to +105 °C
MCF51JM64VLH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 LQFP	-40 to +105 °C
MCF51JM64EVQH	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	64 QFP	−40 to +105 °C
MCF51JM64VQH	MCF51JM64 ColdFire Microcontroller	64 / 16	64 QFP	-40 to +105 °C

MCF51JM128 Family Configurations

Table 3. Orderable Part Number Summary (continued)

Freescale Part Number	Description	Flash / SRAM (Kbytes)	Package	Temperature
MCF51JM64EVLD	MCF51JM64 ColdFire Microcontroller with CAU and RNGA Enabled	64 / 16	44 LQFP	-40 to +105 °C
MCF51JM64VLD	MCF51JM64 ColdFire Microcontroller	64 / 16	44 LQFP	-40 to +105 °C
MCF51JM32EVLK	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	80 LQFP	-40 to +105 °C
MCF51JM32VLK	MCF51JM32 ColdFire Microcontroller	32 / 16	80 LQFP	−40 to +105 °C
MCF51JM32EVLH	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	64 LQFP	-40 to +105 °C
MCF51JM32VLH	MCF51JM32 ColdFire Microcontroller	32 / 16	64 LQFP	-40 to +105 °C
MCF51JM32EVQH	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	64 QFP	-40 to +105 °C
MCF51JM32VQH	MCF51JM32 ColdFire Microcontroller	32 / 16	64 QFP	-40 to +105 °C
MCF51JM32EVLD	MCF51JM32 ColdFire Microcontroller with CAU and RNGA Enabled	32 / 16	44 LQFP	−40 to +105 °C
MCF51JM32VLD	MCF51JM32 ColdFire Microcontroller	32 / 16	44 LQFP	-40 to +105 °C

1.5 Pinouts and Packaging

Figure 2 shows the pinout of the 80-pin LQFP.

Figure 2. 80-pin LQFP

11

Figure 3 shows the pinout of the 64-pin LQFP and QFP.

Figure 3. 64-pin QFP and LQFP

MCF51JM128 Family Configurations

Figure 4 shows the pinout of the 44-pin LQFP.

Figure 4. 44-pin LQFP

Table 4 shows the package pin assignments.

Table 4. Pin Assignments by Package and Pin Sharing Priority

Pin	Num	ber	< Lov	< Lowest Priority> Highest				
80	64	44	Port Pin	Alt 1	Alt 2			
1	1	1	PTC4		_			
2	2	2	_	IRQ	TPMCLK			
3	3	3	_	RESET	_			
4	4	4	PTF0	TPM1CH2	_			
5	5	5	PTF1	TPM1CH3	_			
6	6	_	PTF2	TPM1CH4	_			
7	7	_	PTF3	TPM1CH5	_			
8	8	6	PTF4	TPM2CH0	BUSCLK_OUT			
9	9	_	PTC6	RXCAN	_			
10	10	_	PTF7	TXCAN	_			
11	11	7	PTF5	TPM2CH1	_			
12	12	_	PTF6	_	_			
13	13	8	PTE0	TXD1	_			
14	14	9	PTE1	RXD1	_			
15	15	10	PTE2	TPM1CH0	_			

MCF51JM128 ColdFire Microcontroller, Rev. 3

Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)

Pin Number			< Lov	vest Priority >	Highest
80	64	44	Port Pin	Alt 1	Alt 2
16	16	11	PTE3	TPM1CH1	_
17	_	_	PTC7	_	_
18	_	_	PTH0	SDA2	_
19	_	_	PTH1	SCL2	_
20	_	_	PTH2	RGPIO8	_
21	_	_	PTH3	RGPIO9	_
22	_	_	PTH4	RGPIO10	_
23	17	12	PTE4	MISO1	_
24	18	13	PTE5	MOSI1	_
25	19	14	PTE6	SPSCK1	_
26	20	15	PTE7	SS1	_
27	21	16	_	_	V _{DD}
28	22	17	_	_	V _{SS}
29	23	18	_	_	USBDN
30	24	19	_	_	USBDP
31	25	20	_	_	VUSB33
32	26	21	PTG0	KBIP0	USB_ALT_CLK
33	27	22	PTG1	KBIP1	_
34	28	_	PTA0	RGPIO0	USB_SESSVLD
35	29	_	PTA1	RGPIO1	USB_SESSEND
36	30	_	PTA2	RGPIO2	USB_VBUSVLD
37	31	_	PTA3	RGPIO3	USB_PULLUP(D+)
38	32	_	PTA4	RGPIO4	USB_DM_DOWN
39	33	_	PTA5	RGPIO5	USB_DP_DOWN
40	_	_	PTA6	RGPIO6	USB_ID
41	_	_	PTA7	RGPI07	_
42	34	23	PTB0	MISO2	ADP0
43	35	24	PTB1	MOSI2	ADP1
44	36	25	PTB2	SPSCK2	ADP2
45	37	26	PTB3	SS2	ADP3
46	38	27	PTB4	KBIP4	ADP4
47	39	28	PTB5	KBIP5	ADP5
48	40	_	PTB6	ADP6	_

MCF51JM128 Family Configurations

Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)

Pin Number			< Lov	vest Priority>	Highest
80	64	44	Port Pin	Alt 1	Alt 2
49	41	_	PTB7	ADP7	_
50	42	29	PTD0	ADP8	ACMP+
51	43	30	PTD1	ADP9	ACMP-
52	44	31	_	_	V_{DDA}
53	45		_	_	V _{REFH}
54	46	32	_	_	V _{REFL}
55	47		_	_	V _{SSA}
56	48	33	PTD2	KBIP2	ACMPO
57	_	_	PTJ0	RGPIO11	_
58	_	_	PTJ1	RGPIO12	_
59	-	-	PTJ2	RGPIO13	_
60	_	_	PTJ3	RGPIO14	_
61	_	_	PTJ4	RGPIO15	_
62	49	-	PTD3	KBIP3	ADP10
63	50	_	PTD4	ADP11	_
64	51	_	PTD5	_	_
65	52	_	PTD6	_	_
66	53	_	PTD7	_	_
67	54	34	PTG2	KBIP6	_
68	55	35	PTG3	KBIP7	_
69	56	36	_	BKGD	MS
70	57	37	PTG4	XTAL	
71	58	38	PTG5	EXTAL	
72	59	39	_	_	V _{SS}
73	_	_	_	_	V _{DD}
74	_	_	PTG6	_	_
75	_	_	PTG7	_	_
76	60	40	PTC0	SCL1	_
77	61	41	PTC1	SDA1	_
78	62	42	PTC2	IRO	_
79	63	43	PTC3	TXD2	_
80	64	44	PTC5	RXD2	

This section contains electrical specification tables and reference timing diagrams for the MCF51JM128 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 5. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled C in the parameter tables where appropriate.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}).

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to 5.8	V
Input voltage	V _{In}	-0.3 to $V_{DD} + 0.3$	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C
Maximum junction temperature	T _J	150	°C

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is small.

Table 7. Thermal Characteristics

Rating		Symbol	Value	Unit
Operating temperature range (packaged)		T _A	-40 to 105	°C
Thermal resistance ^{1,2,3,4}				
80-pin LQFP				
	1s		52	
	2s2p		40	
64-pin LQFP				
	1s		65	
	2s2p	$\theta_{\sf JA}$	47	°C/W
64-pin QFP				
	1s		54	
	2s2p		40	
44-pin LQFP				
	1s		69	
	2s2p		48	

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

 $^{^{2}}$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load shunt current is greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples: if no system clock is present or if the clock rate is low, which would reduce overall power consumption.

Junction to Ambient Natural Convection

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, ${}^{\circ}C\theta_{JA}$ = Package thermal resistance, junction-to-ambient, ${}^{\circ}C/WP_D$ = P_{int} + $P_{I/O}P_{int}$ = $I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273^{\circ}C)$$
 Eqn. 2

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 8. ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	
Latch-up	Minimum input voltage limit	_	-2.5	V
Laterrup	Maximum input voltage limit	_	7.5	V

³ 1s - Single Layer Board, one signal layer

⁴ 2s2p - Four Layer Board, 2 signal and 2 power layers

Table 9. ESD and Latch-Up Protection Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human Body Model (HBM)	V_{HBM}	±2000	_	V
2	Charge Device Model (CDM)	V _{CDM}	±500	_	V
3	Latch-up Current at T _A = 105°C	I _{LAT}	±100	_	mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Table 10. DC Characteristics

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1		Operating voltage ²		2.7	_	5.5	V
		Output high voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = -4 mA 3 V, I _{Load} = -2 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -1 mA	V _{OH}	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8		 - -	v
2	Р	Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = -15 mA 3 V, I _{Load} = -8 mA 5 V, I _{Load} = -8 mA 3 V, I _{Load} = -4 mA	* VOH	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8		1111	v
		Output low voltage — Low Drive (PTxDSn = 0) 5 V, I_{Load} = 4mA 3 V, I_{Load} = 2 mA 5 V, I_{Load} = 2 mA 3 V, I_{Load} = 1 mA	V	_ _ _ _		1.5 1.5 0.8 0.8	v
3	Р	Output low voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = 15 mA 3 V, I _{Load} = 8 mA 5 V, I _{Load} = 8 mA 3 V, I _{Load} = 4 mA	V _{OL}	_ _ _ _		1.5 1.5 0.8 0.8	v
4	Р	Output high current — Max total I _{OH} for all ports 5V 3V	I _{OHT}	_ _		100 60	mA
5	Р	Output low current — Max total I _{OL} for all ports 5V 3V	I _{OLT}			100 60	mA
		Input high voltage; all digital inputs					
6	Р	$V_{DD} = 5V$ $V_{DD} = 3V$	V _{IH}	3.25 2.10		_ _	V

MCF51JM128 ColdFire Microcontroller, Rev. 3

Table 10. DC Characteristics (continued)

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
7	Р	Input low voltage; all digital inputs $V_{DD} = 5V$ $V_{DD} = 3V$	V _{IL}	_	_	1.75 1.05	V
8	Р	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$			mV
9	Р	Input leakage current; input only pins ³	II _{In} I	_	0.1	1	μА
10	Р	High Impedance (off-state) leakage current ³	II _{OZ} I	_	0.1	1	μА
11	Р	Internal pullup resistors ⁴	R _{PU}	20	45	65	kΩ
12	Р	Internal pulldown resistors ⁵	R _{PD}	20	45	65	kΩ
13		Internal pullup resistor to USBDP (to V _{USB33}) Idle Transmit	R _{PUPD}	900 1425	1300 2400	1575 3090	kΩ
14	С	Input Capacitance; all non-supply pins	C _{In}	_	_	8	pF
15	Р	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
16	D	POR rearm time	t _{POR}	10	_	_	μS
17	Р	Low-voltage detection threshold — high range ${\rm V_{DD}\ falling} \\ {\rm V_{DD}\ rising}$	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
18	Р	Low-voltage detection threshold — low range ${\rm V_{DD}\ falling} \\ {\rm V_{DD}\ rising}$	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
19	С	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
20	Р	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	V
21	Р	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
22	С	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V
23	Т	Low-voltage inhibit reset/recover hysteresis 5 V 3 V	V _{hys}		100 60	_ _	mV

¹ Typical values are based on characterization data at 25°C unless otherwise stated.

MCF51JM128 ColdFire Microcontroller, Rev. 3

² Operating voltage with USB enabled can be found in Section 2.14, "USB Electricals."

- ³ Measured with $V_{In} = V_{DD}$ or V_{SS} .
- 4 Measured with $V_{\mbox{\scriptsize In}}$ = $V_{\mbox{\scriptsize SS}}.$
- ⁵ Measured with $V_{In} = V_{DD}$.

Figure 5. Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1)

Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0)

Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)

Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	С	Run supply current ³ measured at (CPU clock =		5	4.0	7	mA
		2 MHz, f _{Bus} = 1 MHz)		3	4.0	7	11111
2	Р	Run supply current ³ measured at (CPU clock =	RI _{DD}	5	19	30	mA
_		16 MHz, f _{Bus} = 8 MHz)		3	18.7	30	110
3	С	Run supply current ³ measured at (CPU clock =		5	45	70	mA
	J	48 MHz, f _{Bus} = 24 MHz)		3	44	70	1117 (

Table 11. Supply Current Characteristics

Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
4	С	Wait mode supply current ³ measured at	(CPU		5	2.03	3	mA
4		clock = 2 MHz, f _{Bus} = 1 MHz)			3	2	3	IIIA
5	С	Wait mode supply current ³ measured at	(CPU	WI _{DD}	5	7.73	12	mA
		clock = 16 MHz, f _{Bus} = 8 MHz)			3	7.7	12	IIIA
6	С	Wait mode supply current ³ measured at	(CPU		5	22	30	mA
		clock = 48 MHz, f _{Bus} = 24 MHz)			3	21.9	30	1117.
7	С	Stop2 mode supply current	–40 °C 25 °C 105 °C	S2I _{DD}	5	1.35	3 3 35	μА
			–40 °C 25 °C 105 °C	55	3	1.25	3 3 35	μА
8	Р	Stop3 mode supply current	–40 °C 25 °C 105 °C	S3I _{DD}	5	1.41	3 3 35	μА
	-		–40 °C 25 °C 105 °C	OO DD	3	1.35	3 3 35	μА
9	С	Stop4 mode supply current	–40 °C 25 °C 105 °C	S4I _{DD}	5	106	200	μА
			–40 °C 25 °C 105 °C	bb	3	96	200	μА
10	Р	RTC adder to stop2 or stop3 ⁴ , 25°C			5	300	_	nA
		Title dade to stope of stope , 25 C		S23I _{DDRTC}	3	300	_	nA
11	Р	Adder to stop3 for oscillator enabled ⁵		S23I _{DDOSC}	5	5	_	μА
1		(ERCLKEN =1 and EREFSTEN = 1)		DDOSC	3	5	_	μΑ

¹ Typicals are measured at 25°C.

² Values given here are preliminary estimates prior to completing characterization.

³ All modules' clocks are switched on, code runs from flash, in FEI mode, and there are no DC loads on port pins.

⁴ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode.

 $^{^{5}}$ Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0)

2.7 Analog Comparator (ACMP) Electricals

Table 12. Analog Comparator Electrical Specifications

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1		Supply voltage	V_{DD}	2.7	_	5.5	V
2		Supply current (active)	I _{DDAC}	_	20	35	μΑ
3		Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DD}	V
4		Analog input offset voltage	V _{AIO}		20	40	mV
5		Analog Comparator hysteresis	V _H	3.0	6.0	20.0	mV
6		Analog input leakage current	I _{ALKG}	_	_	1.0	μΑ
7		Analog Comparator initialization delay	t _{AINIT}	_	_	1.0	μS
8		Bandgap Voltage Reference Factory trimmed at V _{DD} = 3.0 V, Temp = 25°C	V _{BG}	1.19	1.20	1.21	V

2.8 ADC Characteristics

Table 13. 5 Volt 12-bit ADC Operating Conditions

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V_{DDA}	2.7	_	5.5	V	
Supply voltage	Delta to V _{DD} (V _{DD} -V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	100	mV	
Ref Voltage High		V _{REFH}	2.7	V_{DDA}	V_{DDA}	V	
Ref Voltage Low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input Resistance		R _{ADIN}	_	3	5	kΩ	
	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_	_ _	2 5		
Analog Source Resistance	10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_	_	5 10	kΩ	External to MCU
	8 bit mode (all valid f _{ADCK})		_	_	10		
ADC Conversion	High Speed (ADLPC=0)	f .	0.4	_	8.0	MHz	
Clock Freq.	Low Power (ADLPC=1)	f _{ADCK}	0.4	_	4.0	IVII IZ	

Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Figure 9. ADC Input Impedance Equivalency Diagram

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Supply Current ADLPC=1 ADLSMP=1 ADCO=1		Т	I _{DDA}	_	133	_	μΑ	
Supply Current ADLPC=1 ADLSMP=0 ADCO=1		Т	I _{DDA}	_	218	_	μА	
Supply Current ADLPC=0 ADLSMP=1 ADCO=1		Т	I _{DDA}	_	327	_	μА	
Supply Current ADLPC=0 ADLSMP=0 ADCO=1		Р	I _{DDA}	_	0.582	1	mA	
Supply Current	Stop, Reset, Module Off		I _{DDA}	_	0.011	1	μΑ	
ADC	High Speed (ADLPC=0)	_		2	3.3	5	N 41 1-	t _{ADACK} =
Asynchronous Clock Source	Low Power (ADLPC=1)	Т	f _{ADACK}	1.25	2	3.3	MHz	1/f _{ADACK}

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
	Short Sample (ADLSMP=0)	_		_	20	_	ADCK	
(Including sample time)	Long Sample (ADLSMP=1)	Т	t _{ADC}	_	40	_	cycles	
Sample Time	Short Sample (ADLSMP=0)	Т		_	3.5	_	ADCK	
Sample Time	Long Sample (ADLSMP=1)	'	t _{ADS}	_	23.5	_	cycles	
	12 bit mode	Т		_	±3.0	_		
Total Unadjusted Error	10 bit mode	Р	E _{TUE}	_	±1	±2.5	LSB ²	Includes quantization
	8 bit mode	Т		_	±0.5	±1.0		4
	12 bit mode	Т		_	±1.75	_		
Differential Non-Linearity	10 bit mode ³	Р	DNL	_	±0.5	±1.0	LSB ²	
	8 bit mode ³	Т		_	±0.3	±0.5		
	12 bit mode	Т		_	±1.5	_		
Integral Non-Linearity	10 bit mode	Т	INL	_	±0.5	±1.0	LSB ²	
•	8 bit mode	Т		_	±0.3	±0.5		
	12 bit mode	Т		_	±1.5	_		
Zero-Scale Error	10 bit mode	Р	E _{ZS}	_	±0.5	±1.5	LSB ²	$V_{ADIN} = V_{SSA}$
	8 bit mode	Т		_	±0.5	±0.5		
	12 bit mode	Т			±1	_		
Full-Scale Error	10 bit mode	Т	E_{FS}		±0.5	±1	LSB ²	$V_{ADIN} = V_{DDA}$
	8 bit mode	Т		_	±0.5	±0.5		
_	12 bit mode			_	-1 to 0	_		
Quantization Error	10 bit mode	D	E_Q	_	_	±0.5	LSB ²	
	8 bit mode			_	_	±0.5		
	12 bit mode			_	±1	_		
Input Leakage Error	10 bit mode	D	E _{IL}	_	±0.2	±2.5	LSB ²	Pad leakage ⁴ * R _{AS}
	8 bit mode			_	±0.1	±1	1	- A3

Typical values assume V_{DDA} = 5.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105°C Ambient)

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1) PEE or PBE mode ³ • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fll} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1 1		38.4 5 16 16 8	kHz MHz MHz MHz MHz
2		Load capacitors	C ₁ C ₂			or resonato ecommend	
3		Feedback resistor • Low range (32 kHz to 38.4 kHz) • High range (1 MHz to 16 MHz)	R _F		10 1		ΜΩ ΜΩ
4	_	Series resistor • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz • High range, low gain (RANGE = 1, HGO = 0) • High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S	_ _ _ _	0 100 0		kΩ
5	Т	Crystal start-up time ⁴ • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1) • High range, low gain (RANGE = 1, HG0 = 0) ⁵ • High range, high gain (RANGE = 1, HG0 = 1) ⁵	tCSTL-LP tCSTL-HGO tCSTH-LP tCSTH-HGO	_ _ _ _	200 400 5 15	_ _ _ _	ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) • FEE or FBE mode ² • PEE or PBE mode ³ • BLPE mode	f _{extal}	0.03125 1 0	_ _ _	5 16 40	MHz MHz MHz

¹ Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.

When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz

⁴ This parameter is characterized and not tested on each device. Proper PC board-layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

2.10 **MCG Specifications**

Table 16. MCG Frequency Specifications (Temperature Range = -40 to 125°C Ambient)

Num	С	Rat	ing	Symbol	Min	Typical ¹	Max	Unit
1	Р	Internal reference frequenc = 5 V and temperature = 25		f _{int_ft}	_	32.768	_	kHz
2	Р	Average internal reference	frequency – untrimmed	f _{int_ut}	31.25	_	39.0625	kHz
3	Т	Internal reference startup ti	me	t _{irefst}	_	60	100	μS
	Р	DCO output frequency	Low range (DRS=00)		16	_	20	
4	Р	range - untrimmed ²	Mid range (DRS=01)	f _{dco_ut}	32	_	40	MHz
	Р	High range (DRS=10)			48	_	60	
	Р	DCO output frequency ²	Low range (DRS=00)		_	19.92	_	
5	Р	Reference =32768Hz	Mid range (DRS=01)	f _{dco_DMX32}	_	39.85	_	MHz
	Р	and DMX32 = 1	High range (DRS=10)		_	59.77	_	
6	D	Resolution of trimmed DCC voltage and temperature (u		Δf _{dco_res_t}	_	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCC voltage and temperature (n		Δf _{dco_res_t}	_	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed Devoltage and temperature	OCO output frequency over	Δf _{dco_t}	_	0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed E fixed voltage and temperate		Δf_{dco_t}	_	±0.5	±1	%f _{dco}
10	D	FLL acquisition time ³		t _{fll_acquire}	_	_	1	ms
11	D	PLL acquisition time ⁴		t _{pll_acquire}	_	_	1	ms
12	D	Long term Jitter of DCO ou 2ms interval) ⁵	tput clock (averaged over	C _{Jitter}	_	0.02	0.2	%f _{dco}
13	D	VCO operating frequency		f _{vco}	7.0	_	55.0	MHz
14	D	Jitter of PLL output clock m	easured over 625 ns ⁶	f _{pll_jitter_625ns}	_	0.566 ⁵	_	%f _{pll}
15	ם	Lock entry frequency tolera		D _{lock}	±1.49	_	±2.98	%
16	D	Lock exit frequency toleran	ce ⁸	D _{unl}	±4.47	_	±5.97	%
17	D	Lock time — FLL		t _{fII_lock}	-	_	t _{fll_acquire+} 1075(1/ ^f int_t)	s
18	D	Lock time — PLL		t _{pll_lock}	_	_	t _{pll_acquire+} 1075(1/ ^f pll_r ef)	s
19	D	Loss of external clock minir = 0	mum frequency – RANGE	f _{loc_low}	$(3/5) \times f_{int}$	_	_	kHz

¹ Data in Typical column was characterized at 5.0 V, 25C or is typical recommended value

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- 6 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁸ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.11.1 Control Timing

Table 17. Control Timing

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1		Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	_	24	MHz
2		Internal low-power oscillator period	t _{LPO}	700	_	1300	μS
3		External reset pulse width ² (t _{cyc} = 1/f _{Self_reset})	t _{extrst}	100	_	_	ns
4		Reset low drive	t _{rstdrv}	$66 \times t_{cyc}$	_	_	ns
5		Active background debug mode latch setup time	t _{MSSU}	500	_	_	ns
6		Active background debug mode latch hold time	t _{MSH}	100	_	_	ns
7		IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
8		KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9		Port rise and fall time (load = 50 pF) ⁴ Slew rate control disabled (PTxSE = 0) High drive Slew rate control enabled (PTxSE = 1) High drive Slew rate control disabled (PTxSE = 0) Low drive Slew rate control enabled (PTxSE = 1) Low drive	^t Rise ^{, t} Fall	_	11 35 40 75	_	ns

Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

MCF51JM128 ColdFire Microcontroller, Rev. 3

² This is the shortest pulse guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 $^{^4}$ Timing is shown with respect to 20% $\rm V_{DD}$ and 80% $\rm V_{DD}$ levels. Temperature range –40°C to 105°C.

Figure 10. Reset Timing

Figure 11. IRQ/KBIPx Timing

2.11.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 18. TPM Input Timing

NUM	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
2	_	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Figure 12. Timer External Clock

Figure 13. Timer Input Capture Pulse

2.11.3 MSCAN

Table 19. MSCAN Wake-up Pulse Characteristics

	Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
Ī	1	D	MSCAN Wake-up dominant pulse filtered	t _{WUP}			2	μS
	2	D	MSCAN Wake-up dominant pulse pass	t _{WUP}	5		5	μS

Typical values are based on characterization data at $V_{DD} = 5.0V$, 25°C unless otherwise stated.

2.12 SPI Characteristics

Table 20 and Figure 14 through Figure 17 describe the timing requirements for the SPI system.

Table 20. SPI Timing

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1	_	t _{SPSCK}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK}
4	D	Clock (SPSCK) high or low time Master Slave	t _{WSPSCK}	t _{cyc} – 30 t _{cyc} – 30	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	_	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v	_	25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11	D	Rise time Input Output	t _{RI}	_	t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI}	_	t _{cyc} – 25 25	ns ns

NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI Master Timing (CPHA = 0)

NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 1)

1. Not defined but normally MSB of character just received

Figure 16. SPI Slave Timing (CPHA = 0) $\overline{\text{SS}} \\ \text{(INPUT)}$ 3 2 11) **SPSCK** (CPOL = 0)(INPUT) **SPSCK** (CPOL = 1) (INPUT) (9 10) MISO MSB OUT BIT 6.. SLAVE LSB OUT SLAVE (OUTPUT) (5)→ **∢(6)**> MOSI LSB IN BIT 6.. (INPUT) MSB IN

1. Not defined but normally LSB of character just received

NOTE:

Figure 17. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply.

Table 21. Flash Characteristics

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1		Supply voltage for program/erase	V _{prog/erase}	2.7		5.5	V
2		Supply voltage for read operation	V _{Read}	2.7 5.5		V	
3		Internal FCLK frequency ²	f _{FCLK}	150		200	kHz
4		Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μS
5		Byte program time (random location) ⁽²⁾	t _{prog}	9			t _{Fcyc}
6		Byte program time (burst mode) ⁽²⁾	t _{Burst}	4			t _{Fcyc}
7		Page erase time ³	t _{Page}	4000			t _{Fcyc}
8		Mass erase time ⁽²⁾	t _{Mass}	20,000			t _{Fcyc}
9	С	Program/erase endurance ⁴ T _L to T _H = -40°C to + 105°C T = 25°C		10,000	 100,000	_	cycles
10		Data retention ⁵	t _{D_ret}	15	100	_	years

 $[\]overline{}^{1}$ Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25°C unless otherwise stated.

2.14 USB Electricals

The USB electricals for the USBOTG module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

If the Freescale USBOTG implementation requires additional or deviant electrical characteristics, this space would be used to communicate that information.

² The frequency of this clock is controlled by a software setting.

These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

⁴ Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory.*

Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.

Table 22. Internal USB 3.3V Voltage Regulator Characteristics

	Symbol	Unit	Min	Тур	Max
Regulator operating voltage	V _{regin}	V	3.9	_	5.5
VREG output	V _{regout}	V	3	3.3	3.6
Vusb33 input with internal Vreg disabled	V _{usb33in}	V	3	3.3	3.6
VREG Quiescent Current	I _{VRQ}	mA	_	0.5	_

2.15 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.15.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

3 Mechanical Outline Drawings

3.1 80-pin LQFP

** freescale
semiconductor
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.
FLECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED
DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED
VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED
COPY" IN RED.

MECHANICAL OUTLINES DICTIONARY

DOCUMENT NO: 98ARL10530D PAGE: 1418 REV: С

DO NOT SCALE THIS DRAWING

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.

4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.

5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT, MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.

6. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.

/7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

/8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.

TITLE: 80LD LQFP, 14 X 14 X 1.4 PKG, 0.65 PITCH, CASE OUTLINE PACKAGE CODE: 8245

CASE NUMBER: 1418-01 STANDARD: NON-JEDEC SHEET: 3 OF 4

MCF51JM128 ColdFire Microcontroller, Rev. 3 38 Freescale Semiconductor

3.2 64-pin LQFP

MCF51JM128 ColdFire Microcontroller, Rev. 3 40 Freescale Semiconductor

* freescale *
nemiconductor
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED
DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED
VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED
VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED CONTROLLED
COPY" IN RED.

MECHANICAL	OUTLINES
DICTIO	NARY

DOCUMENT NO: 98ASS23234W PAGE: 840F REV: F

DO NOT SCALE THIS DRAWING

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.

 $\overline{/4}$ dimensions to be determined at seating plane c.

THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.

6 THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0. 25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.

/T. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN O. 1 mm AND O. 25 mm FROM THE LEAD TIP.

TITLE: 64LD LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, CASE OUTLINE CASE NUMBER: 840F-02 STANDARD: JEDEC MS-026 BCD PACKAGE CODE: 8426 SHEET:

3.3 64-pin QFP

	L DO NOT SOME THIS DOMING	DOCUMENT NO: 98ASB42844B
FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		PAGE: 840B
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED CONTROLLED EXCEPT WHEN STAMPED "CONTROLLED CONTROLLED CONTROLLED EXCEPT WHEN STAMPED "CONTROLLED CONTROLLED EXCEPT WHEN STAMPED "CONTROLLED CONTROLLED CONTROLLED EXCEPT WHEN STAMPED "CONTROLLED CONTROLLED "CONTROLLED "CONTROLLED CONTROLLED "CONTROLLED "CONTROLLED "CONTROLLED CONTROLLED "CONTROLLED "CONT		REV: B

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETER.

RADIUS OR THE FOOT.

- 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUMS A-B AND -D- TO BE DETERMINED AT DATUM PLANE -H-.

⚠ DIMENSIONS TO BE DETERMINED AT SEATING PLANE -C	
DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PE SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE	R -H-
DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDICTION. DAMBAR CANNOT BE LOCATED ON THE LOWER	

TITLE:	CASE NUMBER: 840B-01
64LD QFP (14 X 14)	STANDARD: NON-JEDEC
	PACKAGE CODE: 6057 SHEET: 3 OF 4

3.4 44-pin LQFP

A Avenue alex	MECHANICAL DUTLINES DICTIONARY	DOCUMENT NO: 98ASS23225W
FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		PAGE: 824D
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE THIS DRAWING	REV: D

NOTES:

- 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUMS L, M AND N TO BE DETERMINED AT DATUM PLANE H.

 $\sqrt{5}$. DIMENSIONS TO BE DETERMINED AT SEATING PLANE T.

- DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE DIMENSION TO EXCEED 0.53. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07.

TITLE:	CASE NUMBER: 824D-02
44 LD LQFP,	STANDARD: JEDEC MS-026 BCB
10 X 10 PKG, 0.8 PITCH, 1.4 THICK	PACKAGE CODE: 8256 SHEET: 3 OF 4

Revision History

4 Revision History

This section lists major changes between versions of the MCF51JM128 Data Sheet document.

Table 23. Changes Between Revisions

Revision	Description
1	Updated features list Updated the figures Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1), Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0), and Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1) Added the figure Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0) Updated the table Supply Current Characteristics Updated the table Oscillator Electrical Specifications (Temperature Range = -40 to 105×C Ambient) Updated the table SPI Electrical Characteristic, DC Characteristics
2	Updated the table Orderable Part Number Summary, DC Characteristics, and Supply Current Characteristics
3	Updated the table Orderable Part Number Summary, MCG Characteristics, SPI Characteristics, and Supply Current Characteristics Changed V _{DDAD} to V _{DDA} , V _{SSAD} to V _{SSA} Updated the table Device comparison

Revision History

MCF51JM128 ColdFire Microcontroller, Rev. 3

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF51JM128

Rev. 3 6/2009

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

