Precalculus Interval notation, the ∈ and the ∪ symbols

Todor Miley

2019

Outline

Interval notation

Outline

Interval notation

Inequalities and interval notation

Review of standard interval notation

• If you are familiar with all aspects of the following notation:

$$x \in (-\infty, 7) \cup (9, 12]$$

Review of standard interval notation

• If you are familiar with all aspects of the following notation:

$$x \in (-\infty, 7) \cup (9, 12]$$

- In particular, in the next two slides we cover:
 - the open/closed/semi-closed interval notation;

Review of standard interval notation

• If you are familiar with all aspects of the following notation:

$$x \in (-\infty, 7) \cup (9, 12]$$

- In particular, in the next two slides we cover:
 - the open/closed/semi-closed interval notation;
 - the "belongs to" ∈ sign;

Review of standard interval notation

• If you are familiar with all aspects of the following notation:

$$x \in (-\infty, 7) \cup (9, 12]$$

- In particular, in the next two slides we cover:
 - the open/closed/semi-closed interval notation;
 - the "belongs to" ∈ sign;
 - the union ∪ sign.

Let a < b be two real numbers.

Definition (Interval notation)

The set (interval) of all real numbers from a to b is denoted as follows.

Notation Endpoints Picture

[a, b]

[a,b)

(a,b]

(a,b)

Let a < b be two real numbers.

Definition (Interval notation)

Let a < b be two real numbers.

Definition (Interval notation)

Let a < b be two real numbers.

Definition (Interval notation)

Notation	Endpoints		Picture	
[- <i>L</i> -1	Social confliction for early and consist to	а	b a	b
[<i>a</i> , <i>b</i>]	including both a and b	а	or l	b
[<i>a</i> , <i>b</i>)	including a but not b	•——	or [<u> </u>
(a b]	in alcoding of book and a	a	b a	b
(a, b]	including <i>b</i> but not <i>a</i>	<u> </u>	or (
(a,b)				

Let a < b be two real numbers.

Definition (Interval notation)

Notation	Endpoints		Picture	
		а	b a	þ
[<i>a</i> , <i>b</i>]	including both <i>a</i> and <i>b</i>	•	or l	-
		а	b a	b
[a, b)	including a but not b	•	∘ or [\longrightarrow
		а	b a	b
(a,b]	including b but not a	o	• or (-
. , ,	•	а	b a	b
(a, b)	including neither a nor b	0	∘ or ()

Let a be a number.

Definition (Infinite intervals)

The set of all numbers greater than/smaller than a is denoted with the help of the ∞ symbol.

Notation

Endpoint

Picture

 (a,∞)

 $[a,\infty)$

 $(-\infty, a)$ $(-\infty, a]$

Let a be a number.

Definition (Infinite intervals)

The set of all numbers greater than/smaller than a is denoted with the help of the ∞ symbol.

Notation **Endpoint Picture** pts. to the right of a excluding a (a,∞)

 $[a,\infty)$

 $(-\infty, a)$ $(-\infty, a]$

Let a be a number.

Definition (Infinite intervals)

The set of all numbers greater than/smaller than a is denoted with the help of the ∞ symbol.

Let a be a number.

Definition (Infinite intervals)

The set of all numbers greater than/smaller than a is denoted with the help of the ∞ symbol.

Let a be a number.

Definition (Infinite intervals)

The set of all numbers greater than/smaller than a is denoted with the help of the ∞ symbol.

Notation	Endpoint	Picture
(a,∞)	pts. to the right of a excluding a	a (
$[a,\infty)$	pts. to the right of a including a	
$(-\infty, a)$	pts. to the left of a excluding a	→ a
$(-\infty, a]$	pts. to the left of a including a	ia ←

Example

Write the set of numbers x satisfying $0 \le x \le 2$ in interval notation.

Example

Write the set of numbers x satisfying $-1 \le x < 1$ in interval notation.

Example

Example

Write the set of numbers x satisfying $0 \le x \le 2$ in interval notation.

Example

Write the set of numbers x satisfying $-1 \le x < 1$ in interval notation.

Example

Example

Write the set of numbers x satisfying $0 \le x \le 2$ in interval notation.

Example

Write the set of numbers x satisfying $-1 \le x < 1$ in interval notation.

Example

Example

Write the set of numbers x satisfying $0 \le x \le 2$ in interval notation.

Example

Write the set of numbers x satisfying $-1 \le x < 1$ in interval notation.

Example

Example

Write the set of numbers x satisfying $0 \le x \le 2$ in interval notation.

Example

Write the set of numbers x satisfying $-1 \le x < 1$ in interval notation.

Example

Example

Write the set of numbers x satisfying $0 \le x \le 2$ in interval notation.

Example

Write the set of numbers x satisfying $-1 \le x < 1$ in interval notation.

Example

Example

Write the set of numbers x satisfying $0 \le x \le 2$ in interval notation.

Example

Write the set of numbers x satisfying $-1 \le x < 1$ in interval notation.

Example

$$(-\infty,2)$$

Let A and B be sets.

- The union of A and B is the set consisting of the elements in A and the elements in B, without additional elements.
- The union of A and B is denoted by

 $A \cup B$

Let A and B be sets.

- The union of A and B is the set consisting of the elements in A and the elements in B, without additional elements.
- The union of A and B is denoted by

 $A \cup B$

Example

Plot the points in the set $[-1,1) \cup (2,3]$.

Let A and B be sets.

- The union of A and B is the set consisting of the elements in A and the elements in B, without additional elements.
- The union of A and B is denoted by

 $A \cup B$

Example

Plot the points in the set $[-1,1) \cup (2,3]$.

Let A and B be sets.

- The union of A and B is the set consisting of the elements in A and the elements in B, without additional elements.
- The union of A and B is denoted by

 $A \cup B$

Example

Plot the points in the set $[-1,1) \cup (2,3]$.

Let A and B be sets.

- The union of A and B is the set consisting of the elements in A and the elements in B, without additional elements.
- The union of A and B is denoted by

 $A \cup B$

Example

Plot the points in the set $[-1, 1) \cup (2, 3]$.

Let A and B be sets.

- The union of A and B is the set consisting of the elements in A and the elements in B, without additional elements.
- The union of A and B is denoted by

 $A \cup B$

Example

Plot the points in the set $[-1, 1) \cup (2, 3]$.

Let A and B be sets.

- The union of A and B is the set consisting of the elements in A and the elements in B, without additional elements.
- The union of A and B is denoted by

 $A \cup B$

Example

Plot the points in the set $[-1, 1) \cup (2, 3]$.

Let A and B be sets.

- The union of A and B is the set consisting of the elements in A and the elements in B, without additional elements.
- The union of A and B is denoted by

 $A \cup B$

Example

Plot the points in the set $[-1,1) \cup (2,3]$.

Plot the points in the set $[-1,2) \cup (1,3]$.

To draw the points of a union draw both on top of one another.

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Let A be a set. The notation

 $x \in A$

is read as

- x belongs to A or
- x is an element of A.

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

?

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

Express the statement x < 0 or $1 \le x < 2$ using the \in symbol and the interval notation.

?

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

$$x \in (-\infty,0) \cup [1,2)$$

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

$$x \in (-\infty,0) \cup [1,2)$$

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

$$x \in (-\infty, 0) \cup [1, 2)$$

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

$$x \in (-\infty,0) \cup [1,2)$$

Let A be a set. The notation

$$x \in A$$

is read as

- x belongs to A or
- x is an element of A.

Example

Express the statement $-1 < x \le 2$ using the \in symbol and the interval notation.

$$x \in (-1, 2]$$

$$x \in (-\infty, 0) \cup [1, 2)$$