ECE374 SP23 HW4

Contributors

Zhirong Chen (zhirong4)

Ziyuan Chen (ziyuanc3)

Problem 2

Consider the following variants of the Towers of Hanoi. For each variant, describe an algorithm to solve it in as few moves as possible. Prove that your algorithm is correct.

- Initially, all the n disks are on P_1 , and you need to move the disks to P_2 .
- You are not allowed to put a bigger disk on top of a smaller disk.
- (a) Hanoi_1 : You are forbidden to move any disk directly between P_1 and P_2 . Exactly how many moves does your algorithm make as a function of n?
- **(b)** Hanoi₂: You are only allowed to move disks from P_0 to P_1 , from P_1 to P_2 , or from P_2 to P_0 . Provide an upper bound, as tight as possible, on the number of moves that your algorithm uses.
- (c) $Hanoi_3$: The largest remaining disk disappears if there is nothing on top of it. The goal is to get all the disks to disappear. Again, provide a tight upper bound on the number of moves.

Solution

Base Algorithm

```
egin{aligned} \operatorname{Hanoi}(n,\operatorname{src},\operatorname{dst},\operatorname{tmp}) \ & \operatorname{if} n>0 \ & \operatorname{Hanoi}(n-1,\operatorname{src},\operatorname{tmp},\operatorname{dst}) \ & \operatorname{MoveOne}(\operatorname{src},\operatorname{dst}) \ & \operatorname{Hanoi}(n-1,\operatorname{tmp},\operatorname{dst},\operatorname{src}) \end{aligned}
```

Complexity

$$T(n) = 2T(n-1) + 1 \ T(n) + 1 = 2(T(n-1) + 1) \ T(n) + 1 = 2^n \ T(n) = 2^n - 1$$

The algorithms are called as $\mathrm{Hanoi}_i(n,P_1,P_2,P_0)$ in all the problem variants. src , dst , tmp are parameters instead of specific pegs.

(a)
$$3^n - 1$$

$$ext{Hanoi}_1(n, \operatorname{src}, \operatorname{dst}, \operatorname{tmp}) \ ext{if } n > 0 \ ext{Hanoi}_1(n-1, \operatorname{src}, \operatorname{dst}, \operatorname{tmp}) \ ext{MoveOne}(\operatorname{src}, \operatorname{tmp}) \ ext{Hanoi}_1(n-1, \operatorname{dst}, \operatorname{src}, \operatorname{tmp}) \ ext{MoveOne}(\operatorname{tmp}, \operatorname{dst}) \ ext{Hanoi}_1(n-1, \operatorname{src}, \operatorname{dst}, \operatorname{tmp}) \ ext{Hanoi}_1(n-1, \operatorname{src}, \operatorname{$$

Complexity

$$egin{aligned} T_1(n) &= 3T_1(n-1) + 2 \ T_1(n) + 1 &= 3(T_1(n-1) + 1) \ T_1(n) + 1 &= 3^n \ T_1(n) &= 3^n - 1 \end{aligned}$$

Step	P_1	P_0	P_2
0	[1:n]	Ø	Ø
1	n	Ø	[1:n-1]
2	Ø	n	[1:n-1]
3	[1:n-1]	n	Ø
4	[1:n-1]	Ø	n
5	Ø	Ø	[1:n]

Correctness. Moves at the base case are

- $\mathrm{src} o \mathrm{tmp} o \mathrm{dst}$ (Steps 1, 5)
- $\mathrm{dst} \to \mathrm{tmp} \to \mathrm{src}$ (Step 3)

All the moves are legal.

(b)
$$O(4^n)$$

$$egin{aligned} \operatorname{Hanoi}_2(n,\operatorname{src},\operatorname{dst},\operatorname{tmp}) \ & \operatorname{if} n>0 \ & \operatorname{Hanoi}_2(n-1,\operatorname{src},\operatorname{dst},\operatorname{tmp}) \ & \operatorname{Hanoi}_2(n-1,\operatorname{dst},\operatorname{tmp},\operatorname{src}) \ & \operatorname{MoveOne}(\operatorname{src},\operatorname{dst}) \ & \operatorname{Hanoi}_2(n-1,\operatorname{tmp},\operatorname{src},\operatorname{dst}) \ & \operatorname{Hanoi}_2(n-1,\operatorname{src},\operatorname{dst},\operatorname{tmp}) \end{aligned}$$

Complexity

$$T_2(n)=4T_2(n-1)+1 \ O(n)=4^n$$

Step	P_1	P_0	P_2
0	[1:n]	Ø	Ø
1	n	Ø	[1:n-1]
2	n	[1:n-1]	Ø
3	Ø	[1:n-1]	n
4	[1:n-1]	Ø	n
5	Ø	Ø	[1:n]

Correctness. Moves at the base case are

- $\mathrm{src} o \mathrm{dst}$ (Steps 1, 5)
- $\mathrm{dst} \to \mathrm{tmp}$ (Step 2)
- $\mathrm{tmp} \to \mathrm{src}$ (Step 4)

All the moves are legal.

(c)
$$O(2^n)$$

 $\operatorname{Hanoi}_3(n,\operatorname{src},\operatorname{dst},\operatorname{tmp})$ if n>1 // The final plate will disappear by itself

 $\operatorname{Hanoi}(n-1,\operatorname{src},\operatorname{dst},\operatorname{tmp})$ // Call the base algorithm // The n^{th} plate on src disappears

 $\operatorname{Hanoi}_3(n-1,\operatorname{dst},\operatorname{src},\operatorname{tmp})$ // Swap src and dst, recurse

Complexity

$$S(n) = 2S(n-1) + 1 \quad // ext{ Base algorithm} \ = 2^n - 1$$

$$egin{aligned} T_3(n) &= \sum_{k=1}^{n-1} S(k) \ &= \sum_{k=1}^{n-1} 2^k - \sum_{k=1}^{n-1} 1 \ &= 2^n - n - 1 \ O(n) &= 2^n \end{aligned}$$

Correctness. The intuition is to "toss" the upper plates back and forth between P_1 and P_2 .