ADDITIONAL CAS FUNCTIONS

Functions and graphs

two_points(x1,y1,x2,y2)

two_points(-2, 4, 2, 0) \rightarrow equation: y=2-x

 \rightarrow midpoint: (0,2)

 \rightarrow length: $4\sqrt{2}$

stationary(f(x),x)

stationary $(x^4 - 2x^2, x)$

$$\rightarrow \begin{bmatrix} x & -1 & 0 & 1 \\ y & -1 & 0 & -1 \end{bmatrix}$$

Complex numbers

cis(x)

$$\frac{\operatorname{cis}(\frac{\pi}{6})}{3} + \frac{1}{2}i$$

to_polar(z)

to_polar
$$(5 + 5\sqrt{3}i)$$

 $\rightarrow 10 \operatorname{cis}(\frac{\pi}{3})$

Geometry

circle_line(cx,cy,r,l)

 $circle_line(2, 1, 3, 2x)$

 \rightarrow pizza1: 9.96

 \rightarrow pizza
2: 18.31

 \rightarrow triangle: 7.2

Vectors

angle_between(v1, v2)

angle_between(
$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 & \sqrt{3} \end{bmatrix}$)
 $\rightarrow \frac{\pi}{3}$

scalar_resolute(v1,v2)

scalar_resolute(
$$\begin{bmatrix} 1 & 2 \end{bmatrix}$$
, $\begin{bmatrix} 3 & 4 \end{bmatrix}$)
$$\rightarrow \frac{11}{5}$$

vector_resolute(v1,v2)

$$\begin{aligned} \text{vector_resolute}(\begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 1 \end{bmatrix}) \\ & \rightarrow \begin{bmatrix} \frac{4}{5} & \frac{2}{5} \end{bmatrix} \end{aligned}$$