NA 568 - Winter 2024

Particle Filtering

Minghan Zhu and Maani Ghaffari

January 24, 2024

Nonlinear Dynamic Systems Excited by Noise

Nonlinear process model:

$$x_k = f(u_k, x_{k-1}, w_k)$$

► Nonlinear measurement model:

$$z_k = h(x_k, v_k)$$

Uncertainty Propagation

Q. How to map belief (a probability distribution) through a nonlinear function?

Key ideas:

- ► Linearization via Taylor expansion
 - → Extended Kalman Filter (EKF)
- Unscented Transform (deterministic sampling)
 - → Unscented Kalman Filter (UKF)
- Monte Carlo methods (random sampling)
 - → Sequential Monte Carlo methods (Particle Filters)

Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) methods are a set of simulation-based methods for computing posterior distributions.

- Observations arrive sequentially in time and we wish to perform online inference;
- The posterior distribution is updated as data become available (recursive Bayesian estimation/learning);
- SMC methods are used when dealing with non-Gaussian, high-dimensionality, and nonlinearity where often obtaining an analytical solution is not possible.

Sequential Monte Carlo methods

Remark

SMC methods can be used for inferring both filtering and smoothing posterior distributions.

The Dirac delta function, for $x \in \mathbb{R}$, is defined by the properties

$$\delta(x) = \begin{cases} \infty & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) \mathrm{d}x = 1$$

For any smooth function f and $a \in \mathbb{R}$, we have:

$$\int_{-\infty}^{\infty} \delta(x - a) f(x) = f(a)$$

which is a Lebesgue integral with respect to the measure δ (thought as a point mass). This can be generalized to \mathbb{R}^n or any set with the similar idea to define δ measure or unit mass concentrated at a point.

We can also denote $\delta_a(x) = \delta(x-a)$.

Suppose we can simulate n independent and identically distributed (i.i.d.) random samples (particles), $\{x_i\}_{i=1}^n$ according to p(x). An empirical estimate of this distribution is given by

$$p_n(x) = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}(x)$$

Suppose we can simulate n independent and identically distributed (i.i.d.) random samples (particles), $\{x_i\}_{i=1}^n$ according to p(x). An empirical estimate of this distribution is given by

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}(x)$$

Then, the following integral can be computed:

$$I_n(f) = \int f(x)p_n(x)dx = \frac{1}{n}\sum_{i=1}^n f(x_i),$$

Suppose we can simulate n independent and identically distributed (i.i.d.) random samples (particles), $\{x_i\}_{i=1}^n$ according to p(x). An empirical estimate of this distribution is given by

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}(x)$$

Then, the following integral can be computed:

$$I_n(f) = \int f(x)p_n(x)dx = \frac{1}{n}\sum_{i=1}^n f(x_i),$$

which is an approximation of $\mathbb{E}[f(X)]$ under the true distribution p(x):

$$\mathbb{E}[f(X)] \equiv I(f) = \int f(x)p(x)dx \approx I_n(f)$$

- This estimate is unbiased;
- if the posterior variance is bounded, i.e., $\sigma_f^2 := \mathbb{E}[f^2(X)] \mathrm{I}^2(f) < \infty;$
- ▶ then $\mathbb{V}[\mathrm{I}_n(f)] = \frac{\sigma_f^2}{n}$ (sample variance);
- ▶ and from the law of large numbers, $n \to \infty$, almost surely, $I_n(f) \to I(f)$;
- ▶ moreover, if $\sigma_f^2 < \infty$, then a central limit theorem holds; that is $n \to \infty$, $\sqrt{n}(\mathrm{I}_n(f) \mathrm{I}(f))$ converges in distribution to $\mathcal{N}(0, \sigma_f^2)$.

- ightharpoonup We can easily estimate any quantity I(f);
- the rate of convergence is independent of the integrand dimension;
- any deterministic numerical integration method has a rate of convergence that decreases as the dimension of the integrand increases.

- We can easily estimate any quantity I(f);
- the rate of convergence is independent of the integrand dimension;
- any deterministic numerical integration method has a rate of convergence that decreases as the dimension of the integrand increases.
- ▶ What if it is hard to sample from p(x)?

We can sample from a distribution q(x) on which we know how to sample.

$$\mathbb{E}[f(X)] = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$\approx \frac{1}{n} \sum_{i=1}^{N} f(x_i) \frac{p(x_i)}{q(x_i)}$$

where x_i 's are sampled from q(x) distribution.

We can sample from a distribution q(x) on which we know how to sample.

$$\mathbb{E}[f(X)] = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$\approx \frac{1}{n} \sum_{i=1}^{N} f(x_i) \frac{p(x_i)}{q(x_i)}$$

where x_i 's are sampled from q(x) distribution.

Terminologies:

- ▶ Target distribution p(x);
- ▶ Importance or proposal distribution q(x);
- ▶ Likelihood ratio p(x)/q(x).

We assume f(x)p(x) = 0 wherever q(x) = 0.

We generalize X above to a time series $X_{0:k}$.

We generalize X above to a time series $X_{0:k}$.

Suppose we can simulate n independent and identically distributed (i.i.d.) random samples (particles), $\{x_{0:k}^i\}_{i=1}^n$ according to $p(x_{0:k}|z_{1:k})$. An empirical estimate of this distribution is given by

$$p_n(x_{0:k}|z_{1:k}) = \frac{1}{n} \sum_{i=1}^n \delta_{x_{0:k}^i}(x_{0:k})$$

We generalize X above to a time series $X_{0:k}$.

Suppose we can simulate n independent and identically distributed (i.i.d.) random samples (particles), $\{x_{0:k}^i\}_{i=1}^n$ according to $p(x_{0:k}|z_{1:k})$. An empirical estimate of this distribution is given by

$$p_n(x_{0:k}|z_{1:k}) = \frac{1}{n} \sum_{i=1}^n \delta_{x_{0:k}^i}(x_{0:k})$$

Then, the following integral can be computed:

$$I_n(f) = \int f(x_{0:k}) p_n(x_{0:k}|z_{1:k}) dx_{0:k} = \frac{1}{n} \sum_{i=1}^n f(x_{0:k}^i) \approx \mathbb{E}[f(X_{0:k})]$$

We generalize X above to a time series $X_{0:k}$.

Suppose we can simulate n independent and identically distributed (i.i.d.) random samples (particles), $\{x_{0:k}^i\}_{i=1}^n$ according to $p(x_{0:k}|z_{1:k})$. An empirical estimate of this distribution is given by

$$p_n(x_{0:k}|z_{1:k}) = \frac{1}{n} \sum_{i=1}^n \delta_{x_{0:k}^i}(x_{0:k})$$

Then, the following integral can be computed:

$$I_n(f) = \int f(x_{0:k}) p_n(x_{0:k}|z_{1:k}) dx_{0:k} = \frac{1}{n} \sum_{i=1}^n f(x_{0:k}^i) \approx \mathbb{E}[f(X_{0:k})]$$

However, we do not know $p(x_{0:k}|z_{1:k})!$

- We introduce an *importance sampling distribution* (also called *proposal distribution*), $\pi(x_{0:k}|z_{1:k})$;
- we also assume the support of $\pi(x_{0:k}|z_{1:k})$ includes the support of $p(x_{0:k}|z_{1:k})$; we get:

- We introduce an importance sampling distribution (also called proposal distribution), $\pi(x_{0:k}|z_{1:k})$;
- we also assume the support of $\pi(x_{0:k}|z_{1:k})$ includes the support of $p(x_{0:k}|z_{1:k})$; we get:

$$I(f) = \frac{\int f(x_{0:k})w(x_{0:k})\pi(x_{0:k}|z_{1:k})dx_{0:k}}{\int w(x_{0:k})\pi(x_{0:k}|z_{1:k})dx_{0:k}}$$
$$= \frac{\int f(x_{0:k})p(x_{0:k}|z_{1:k})dx_{0:k}}{\int p(x_{0:k}|z_{1:k})dx_{0:k}} = \int f(x_{0:k})p(x_{0:k}|z_{1:k})dx_{0:k}$$

where $w(x_{0:k})$ is known importance weight:

$$w(x_{0:k}) = \frac{p(x_{0:k}|z_{1:k})}{\pi(x_{0:k}|z_{1:k})}$$

Drawing n i.i.d. particles according to $\pi(x_{0:k}|z_{1:k})$:

$$\hat{\mathbf{I}}_n(f) = \frac{\frac{1}{n} \sum_{i=1}^n f(x_{0:k}^i) w(x_{0:k}^i)}{\frac{1}{n} \sum_{i=1}^n w(x_{0:k}^i)} = \sum_{i=1}^n f(x_{0:k}^i) \tilde{w}_k^i$$

where the normalized importance weights are given by

$$\tilde{w}_k^i = \frac{w(x_{0:k}^i)}{\sum_{i=1}^n w(x_{0:k}^i)}$$

but this is not adequate for recursive estimation!

Let us factor the importance sampling distribution as follows:

$$\pi(x_{0:k}|z_{1:k}) = \pi(x_{0:k-1}|z_{1:k-1})\pi(x_k|x_{0:k-1}, z_{1:k})$$
$$= \pi(x_0) \prod_{j=1}^k \pi(x_j|x_{0:j-1}, z_{1:j})$$

Let us factor the importance sampling distribution as follows:

$$\pi(x_{0:k}|z_{1:k}) = \pi(x_{0:k-1}|z_{1:k-1})\pi(x_k|x_{0:k-1}, z_{1:k})$$
$$= \pi(x_0) \prod_{j=1}^k \pi(x_j|x_{0:j-1}, z_{1:j})$$

then:

$$\tilde{w}_{k}^{i} \propto \tilde{w}_{k-1}^{i} \frac{p(z_{k}|x_{k}^{i})p(x_{k}^{i}|x_{k-1}^{i})}{\pi(x_{k}^{i}|x_{0:k-1}^{i}, z_{1:k})} \quad (w(x_{0:k}) = \frac{p(x_{0:k}|z_{1:k})}{\pi(x_{0:k}|z_{1:k})})$$

Recall:
$$p(x_{0:k}^i|z_{1:k}) = p(x_{0:k-1}^i|z_{1:k-1}) \frac{p(z_k|x_k^i)p(x_k^i|x_{k-1}^i)}{p(z_k|z_{1:k-1})}$$

Remark

In filtering, we often set $\pi(x_k|x_{0:k-1},z_{1:k})=\pi(x_k|x_{k-1},z_k)$ so that the importance sampling distribution only depends on x_{k-1} and z_k .

Remark

A special case is when the importance sampling distribution is chosen to be the prior distribution, or in robotics the robot motion model $p(x_k|x_{k-1},u_k)$. Note that u_k is deterministic and the motion model does not depend on the measurement z_k .

Recall that:

$$\tilde{w}_k^i \propto \tilde{w}_{k-1}^i \frac{p(z_k|x_k^i)p(x_k^i|x_{k-1}^i)}{\pi(x_k^i|x_{0:k-1}^i, z_{1:k})}$$

Then the weights can be computed using:

$$\tilde{w}_k^i \propto \tilde{w}_{k-1}^i p(z_k | x_k^i)$$

SIS Particle Filter Algorithm

Algorithm 1 sis-particle-filter

Require: particles
$$\mathcal{X}_{k-1} = \{x_{k-1}^i, w_{k-1}^i\}_{i=1}^n$$
, measurement z_k ;

- 1: $\mathcal{X}_k \leftarrow \emptyset$
- 2: for each $x_{k-1}^i \in \mathcal{X}_{k-1}$ do
- 3: $x_k^i \sim \pi(x_k^i | x_{k-1}^i, z_k)$
- 4: $w_k^i \leftarrow w_k^i \frac{p(z_k|x_k^i)p(x_k^i|x_{k-1}^i)}{\pi(x_k^i|x_{k-1}^i,z_k)}$
- 5: $\mathcal{X}_k \leftarrow \mathcal{X}_k \cup \{x_k^i, w_k^i\}$

- ▶ sample from proposal distribution
 - ▶ update importance weights
- ▶ add i-th weighted sample to the new set

6: return \mathcal{X}_k

Degeneracy Problem

- As time increases, the distribution of the of the weights, \tilde{w}_k^i becomes more and more skewed, in practice, reducing to one particle with non-zero weight after a few iterations;
- be the resampling idea was introduced to fix this problem.

Degeneracy Problem

Measure of degeneracy using the effective sample size:

$$n_{\mathsf{eff}} = \frac{1}{\sum_{i=1}^{n} (\tilde{w}_k^i)^2} \quad 1 < n_{\mathsf{eff}} < n$$

- Two extreme cases:
 - all particles have the same weights (uniform): $\forall i \in \{1:n\}$, $\tilde{w}_k^i = \frac{1}{n} \Longrightarrow n_{\text{eff}} = n$;
 - the entire distribution mass is placed in one particle (singular): $\forall i \in \{1: j-1, j+1: n\}, \ \tilde{w}_k^i = 0 \ \text{and} \ \tilde{w}_k^j = 1 \Longrightarrow n_{\text{eff}} = 1;$

Sample Impoverishment

Although resampling step reduces the effect of degeneracy, it introduces a new problem known as *sample impoverishment*.

- ▶ It limits the parallel implementation of the algorithm since all particles must be combined;
- the particles with high weights are selected many times, leading to the loss of diversity.

Generic Particle Filter Algorithm

> sample from proposal distribution

Algorithm 2 generic-particle-filter

Require: particles $\mathcal{X}_{k-1} = \{x_{k-1}^i, \tilde{w}_{k-1}^i\}_{i=1}^n$, measurement z_k , resampling threshold n_t (e.g. n/3);

- 1: $\mathcal{X}_k \leftarrow \varnothing$
- 2: for each $x_{k-1}^i \in \mathcal{X}_{k-1}$ do
- 3: draw $x_k^i \sim \pi(x_k^i|x_{k-1}^i,z_k)$
- 4: $w_k^i \leftarrow \tilde{w}^i \frac{p(z_k|x_k^i)p(x_k^i|x_{k-1}^i)}{\pi(x_k^i|x_{k-1}^i,z_k)}$ ightharpoonup update importance weights
- 5: $w_{\text{total}} \leftarrow \sum_{i=1}^n w_k^i
 ightharpoonup \text{compute total weight to normalize importance weights}$
- 6: $\mathcal{X}_k \leftarrow \mathcal{X}_k \cup \{x_k^i, w_k^i/w_{\text{total}}\}_{i=1}^n$ \triangleright add weighted samples to the new set
- 7: $n_{\mathrm{eff}} \leftarrow 1/\sum_{i=1}^n (\tilde{w}_k^i)^2$ ightharpoonup compute effective sample size
- 8: if $n_{\rm eff} < n_{\rm t}$ then
- 9: $\mathcal{X}_k \leftarrow \text{resample using } \mathcal{X}_k \triangleright \text{use a resampling algorithm to draw particles}$ with higher weights
- 10: return \mathcal{X}_k

A Basic Particle Filter Algorithm in Robotics

Algorithm 3 particle-filter

Require: particles $\mathcal{X}_{k-1} = \{x_{k-1}^i, \tilde{w}_{k-1}^i\}_{i=1}^n$, action u_k , measurement z_k , resampling threshold n_t (e.g. n/3);

- 1: $\mathcal{X}_k \leftarrow \varnothing$
- 2: **for** each $x_{k-1}^i \in \mathcal{X}_{k-1}$ **do**
- 3: draw $x_k^i \sim p(x_k|x_{k-1}^i, u_k)$

ightharpoonup sample from motion model

4: $w_k^i \leftarrow \tilde{w}_{k-1}^i p(z_k|x_k^i)$

- ▶ update importance weights
- 5: $w_{\text{total}} \leftarrow \sum_{i=1}^n w_k^i \triangleright$ compute total weight to normalize importance weights
- 6: $\mathcal{X}_k \leftarrow \mathcal{X}_k \cup \{x_k^i, w_k^i/w_{\mathsf{total}}\}_{i=1}^n$ \triangleright add weighted samples to the new set
- 7: $n_{\text{eff}} \leftarrow 1/\sum_{i=1}^{n} (\tilde{w}_{k}^{i})^{2}$

▷ compute effective sample size

- 8: if $n_{\rm eff} < n_{\rm t}$ then
- 9: $\mathcal{X}_k \leftarrow \text{resample using } \mathcal{X}_k \triangleright \text{use a resampling algorithm to draw particles}$ with higher weights
- 10: return \mathcal{X}_k

Resampling

- Resampling eliminates particles with low weights and multiplies particles with high weights;
- ▶ the particles with high weights are selected many times, leading to the loss of diversity (i.e., loss of alternative hypotheses).

A Resampling Algorithm

Algorithm 4 low-variance-resampling

```
Require: particles \mathcal{X}_k = \{x_k^i, \tilde{w}_k^i\}_{i=1}^n;
 1: w_c \leftarrow compute the vector of cumulative sum of the weights using \{\tilde{w}_i^k\}_{i=1}^n
                                    \triangleright w_{c} is the Cumulative Distribution Function (CDF)
 2: r \leftarrow \operatorname{rand}(0, n^{-1})
                                  \triangleright draw a uniform random number between 0 and n^{-1}
 3: j \leftarrow 1

    ▶ dummy index to climb the CDF and select particles

 4: for all i \in \{1 : n\} do
       u \leftarrow r + (i-1)n^{-1}
                                                                            ▶ move along the CDF
      while u>w_c^j do
       i \leftarrow i + 1
 7:
      x_k^i \leftarrow x_k^j
 8.
                                                                 > replicate the survived particle
        \tilde{w}_{h}^{i} \leftarrow n^{-1}
                                            \triangleright set the weight to n^{-1} (uniform distribution)
 g.
10: return \mathcal{X}_k
```

A Resampling Algorithm

Example: PF Target Tracking

A target is moving in a 2D plane. The ownship position is known and fixed at the origin. We have access to relative noisy range and bearing measurements of the target position at any time step.

$$x_k = f(u_k, x_{k-1}) + w_k = x_{k-1} + w_k$$

$$z_k = h(x_k) + v_k = \begin{bmatrix} \sqrt{x_k[[1]^2] + \mathbf{x}_k^{[2]^2}} \\ \operatorname{atan2}(\mathbf{x}_k^{[1]}, \mathbf{x}_k^{[2]}) \end{bmatrix} + v_k$$

$$Q_k = 0.1 \ I_2, \ R_k = \operatorname{diag}(0.05^2, 0.01^2)$$

Example: PF Target Tracking

See pf_single_target.m for code.

Example: PF Target Tracking, Constant Velocity Motion Model

There is no knowledge of the target motion, but this time, we assume a constant velocity random walk motion model and estimate the target velocity along with the position.

$$x_k = f(u_k, x_{k-1}) + w_k = F_k x_{k-1} + w_k$$

$$F_k = \left[\begin{array}{cc} I & \Delta tI \\ 0 & I \end{array}\right] \qquad \Delta t : \text{sampling time}$$

$$z_k = h(x_k) + v_k = \begin{bmatrix} \sqrt{x_k^{12} + x_k^{22}} \\ \operatorname{atan2}(x_k^1, x_k^2) \end{bmatrix} + v_k$$

$$Q_k = \text{diag}(0.1^2, 0.1^2, 0.01^2, 0.01^2), R_k = \text{diag}(0.05^2, 0.01^2)$$

Example: PF Target Tracking, Constant Velocity Motion Model

See pf_single_target_cv.m for code.

SMC and **PF** Summary

- SMC methods can solve complex nonlinear, non-Gaussian online estimation problems. For example, dealing with global uncertainty in robot localization and solving the "kidnapped robot" problem.
- The algorithms are applicable to a very large class of models and are often straightforward to implement.
- The price to pay for this simplicity is inefficiency in some application domains.

Readings (Particle Filtering)

- Probabilistic Robotics: Ch. 4
- ► State Estimation for Robotics: Ch. 4 (4.2.8)
- Lecture Notes for Mobile Robotics: Ch. 8
- Sequential Monte Carlo Methods in Practice: Ch. 1

Next Time

- ► Friday: Hands-on Lecture on Bayes Filter. Walk you through implementing the Bayes filter in Python for the grid world localization problem (Markov Localization).
- Monday: Rigid Body Motion MG
- Readings:
 - ▶ State Estimation for Robotics: Ch. 6
 - ▶ Lecture Notes for Mobile Robotics: Ch. 3