Active GNN reading notes

S2: An efficient graph based active learning algorithm with application to nonparametric classification

- Problem setup
 - o active learning for binary label prediction on a graph
 - o nonparametric active learning, S2 sequentially select vertices to be labeled
 - cut-set: $C=\{\{x,y\}\in E: f(x)\neq f(y)\}$
 - boundary: $\partial C = \{x \in V : \exists e \in C \text{ with } x \in e\}$ goal is to identify ∂C
 - algorithm assume a noiseless oracle that return label of a multiset of vertices, noisy oracle version algorithms can be transferred from noiseless
 - can be extended to multi-class
- Datasets
 - o Digits:
 - Cedar Buffalo binary digits database
 - construct symmetrized 10-nearest-neighbor graph
 - Congressional Voting Records (CVR):
 - 380 vertices, boundary size of 234
 - Grid:
 - synthetic example of a 15x15, positive core in the center
- Methods
 - S2: Shortest Shortest Path

Algorithm 1 S2: Shortest Shortest Path

```
Input Graph G = (V, E), BUDGET \leq n
 1: L \leftarrow \emptyset
 2: while 1 do
       x \leftarrow \text{Randomly chosen unlabeled vertex}
 4:
       do
 5:
         Add (x, f(x)) to L
         Remove from G all edges whose two ends have different labels.
 6:
         if |L| = BUDGET then
 7:
            Return LABELCOMPLETION(G, L)
 8:
         end if
 9:
       while x \leftarrow MSSP(G, L) exists
10:
11: end while
```

■ LABELCOMPLETION: Any off-the-shelf graph prediction algorithms

■ MSSP: return midpoint on the shortest among all the shortest-paths that connect oppositely labeled vertices in L

Sub-routine 2 MSSP

```
Input Graph G = (V, E), L \subseteq V

1: for each v_i, v_j \in L such that f(v_i) \neq f(v_j) do

2: P_{ij} \leftarrow shortest path between v_i and v_j in G

3: \ell_{ij} \leftarrow length of P_{ij} (\infty if no path exists)

4: end for

5: (i^*, j^*) \leftarrow \arg\min_{v_i, v_j \in L: f(v_i) \neq f(v_j)} \ell_{ij}

6: if (i^*, j^*) exists then

7: Return mid-point of P_{i^*j^*} (break ties arbitrarily).

8: else

9: Return \emptyset

10: end if
```

- Can be seen as: random sampling + aggressive search
 - aggressive search: like binary search to find the cut-edge, then unzip the cut-edge
- Baselines
 - measure query complexity
 - AFS On the complexity of finding an unknown cut via vertex queries
 - ZLG Combining active learning and semi- supervised learning using Gaussian fields and harmonic functions
 - BND Towards active learning on graphs: An error bound minimization approach

Active Learning for Networked Data

- Problem setup
 - classifying nodes (labels prediction)
 - node features
 - graph structure
 - features/labels of neighbor nodes
 - collective classification:
 - simultaneously predicting labels of all nodes
 - active learning
 - request labels, with goals of decreasing number of labels needed
 - pool-based setting:
 - initially provided with pool of unlabeled examples
 - each step select batch of instances, remove from pool, add to labeled corpus
 - task:
 - collective classification as base learner

- train: active learning learn CC, CO
- test: ICA + CC
- Methods
 - 1. cluster nodes based on graph structure: modularity clustering
 - 2. iterate:
 - 1. re-train CO, CC
 - 2. score clusters based on CO/CC disagreement, pick top k clusters
 - 3. label one of unlabeled node from each of the k clusters, remove them from pool
 - the node with greatest disagreement LD between CO, CC, majority is picked
 - 4. Semi-supervision and Dimensionality reduction
 - semi-supervised collective classification method, use CO to predict unobserved neighbor
 - 2. PCA
 - o note:
 - CC: $P(Y_i|X_i, \operatorname{aggr}(N_i))$, consider neighbor labels
 - CO: $P(Y_i|X_i)$ local classifier with only node features
- Datasets
 - Cora & CiteSeer
 - citation network
 - ignore directions
 - cleaned up
- Baselines
 - 1. Semi-supervision and Dimensionality Reduction (Base Learner)
 - 1. CO
 - 2. CC
 - 3. CC+Semi-supervision
 - 4. CC+Semi-supervision+PCA
 - 2. ALFNET
 - 1. Random
 - 2. Uncertainty sampling
 - 3. Ablation
 - 1. disagreement: no cluster structure
 - 2. clustering: select cluster randomly

Active Discriminative Network Representation Learning

Problem setup

- a network representation learning method under active learning principle
- pool-based active learning setting, select most informative instance given query strategy
- Then label the selected node, add to labeled set for network representation learning
- Method
 - AL Query Strategy
 - uncertainty measure:
 - Information Entropy: prediction from node embedding
 - representativeness measure:
 - Node centrality: PageRank centrality
 - Information density: K-means on node embedding
 - Active Node Selection
 - Multi-Armed Bandit Method
 - Reward Scheme
 - Active Discriminative Network Representation
 - GCN
- Datasets
 - Citeseer, Cora, Pubmed
 - sparse BOW feature vector for each document
 - citation links
- Baselines
 - GCN: randomly select node
 - AGE: linearly combination of AL query strategy
 - ANRMAB-exclude:
 - ANRMAB-entropy
 - ANRMAB-centrality
 - ANRMAB- density
 - Metrics:
 - Macro-F1
 - Micro-F1

Towards Active Learning on Graphs: An Error Bound Minimization Approach Quanquan

- Problem setup:
 - adaptive method
 - o non-adaptive method: this paper developed

- present data-dependent generalization error bound for LLGC, using transductive
 Rademacher Complexity
- actively select nodes by minimizing the empirical transductive Rademacher complexity of LLGC on a graph
- present sequential optimization algorithm to select labeled data
- use LLGC as classfier on labeled data
- Method:
 - LLGC:
 - graph-based(semi-supervised) learning method
 - add Graph Regrlarization
 - Objective function (for selection):
 - expected error on unlabeled <= empirical error on the labeled data + empirical transductive
 Rademacher complexity + confidence term
 - non-adaptive, do not know empirical error on the labeled data until label nodes
 - only minimize empirical transductive Rademacher complexity for LLGC
 - Sequential optimization
 - sequentially select nodes to be labeled is to optimize the above objective.
 - Algorithm 1 Active Learning on Graphs via Generalization Error Bound Minimization (Bound)

Input: Adjacency matrix \mathbf{W} , number of nodes to select l, regularization parameter μ ; Compute $\mathbf{L} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$ Perform eigen decomposition $\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$ Initialize $\mathbf{H}_0 = \mathbf{\Gamma}^{-1}$, $\mathcal{L}_0 = \emptyset$ for $k = 0 \rightarrow l - 1$ do Compute $i_{k+1} = \arg\max_{i \in \mathcal{V}/\mathcal{L}_k} \frac{\mathbf{u}_i^T \mathbf{H}_k^{-1} \mathbf{\Lambda}^{-1} \mathbf{H}_k^{-1} \mathbf{u}_i}{1 + \mathbf{u}_i^T \mathbf{H}_k^{-1} \mathbf{u}_i}$; Update $\mathcal{L}_{k+1} = \mathcal{L}_k \cup \{i_{k+1}\}$ Update $\mathbf{H}_{k+1}^{-1} = \mathbf{H}_k^{-1} - \frac{\mathbf{H}_k^{-1} \mathbf{u}_{i_{k+1}} \mathbf{u}_{i_{k+1}}^T \mathbf{H}_k^{-1}}{1 + \mathbf{u}_{i_{k+1}}^T \mathbf{H}_k^{-1} \mathbf{u}_{i_{k+1}}}$ end for

- Learning pipline:
 - select nodes by active learning
 - train classifier(LLGC) on the graph
- Datesets
 - Cora
 - 2 datasets from DS, PL

- largest connected component is used
- undirected
- Coauthor
 - from DBLP
 - author as nodes, weighted edge by papers co-authored
- Baselines
 - active learning:
 - Random
 - Variance Minimization (VM)
 - METIS
 - Ψ Maximization (Ψ-Max)
 - BOUND: Proposed
 - o classifier:

LLGC: ProposedGFHF: used in VM

■ MinCut: used in Ψ-Max

Active Learning on Graphs via Spanning Trees

- Problem setup:
 - node classification, focus on prediction that rely on network topology only
 - homophily bias: linked entities tend to have same class-->clusters
- Method:
 - define:
 - cutsize $\Phi(y)$: number of edges connecting nodes with different labels
 - function $\Psi^*(L)$: small value correspond to good choice of tranining nodes L that satisfy homophily
 - Together bound from above the number of mistakes on non-training nodes
 - approach:
 - ullet use SEL to minimize Ψ^* on a spanning tree of graph
 - label propagation on entire graph, yields a fast classifier that is better than random selection
- Datasets
 - RCV1 corpus
 - build weighted graph using k-NN
 - DBLP network
 - CORA network

- Baselines
 - Spanning trees generation:
 - RST(Random)
 - BFST(Breadth-first)
 - random selection
 - o high-degree

Bayesian Semi-supervised Learning with Graph Gaussian Processes

- Problem setup:
 - o graph-based semi-supervised learning: relational graph of data points is available
 - propose Gaussian process model, scalable variational inducing approximation method to perform inference
 - o review:
 - Gaussian Process
 - priors on functions in Bayesian Inference
 - Scalable Variational Inference for GP
 - Graph Laplacian
 - $\mathbf{L} = \mathbf{D} \mathbf{A}$
 - ullet Graph Laplacian can be viewed as operator on space of functions $g:V o\mathbb{R}$

$$\mathbf{L}(g) = \sum_{v \in Ne(n)} [g(n) - g(v)]$$

- Method
 - Graph Gaussian Process
 - Variational Inference with Inducing Points
 - Active learning:
 - GGP as classification model paired with Σ- optimal (SOPT) to form active learner, select + retrain classifier for 50 times
- Datasets
 - Cora, Citeseer, Pubmed
- Baselines
 - semi-supervised settings
 - GCN, MoNet, DCNN, DeepWalk, Planetoid, ICA, LP, SemiEmb, ManiReg
 - Active learning setting:

- SOPT+GCN/LP
- RAND+GGP/GCN/LP

Batch Mode Active Learning for Networked Data

- Problem setup
 - Batch mode active learning
 - ullet query k labels of instances S to improve quality of learned classification model
 - ullet define an objective function for active selection Q
 - ullet design efficient algorithms to maximize Q(S)
 - selection combine both context and link information
 - present objective function based on maximum uncertainty, maximum impact, and minimum redundancy
 - Underlying model: Framework of Random Walk
- Method
 - \circ Objective function Q(S): combine maximum uncertainty and the maximum impact, naturally satisfy minimum redundancy
 - Use Framework of Random Walk as classification model
 - Combining Link Information: integrate link information into similarity matrix, extend similarity measure with Pagerank
 - o Optimization: Greedy selection, monitonic submodular, have good error bound

ALGORITHM 1: Greedy algorithm for batch mode active selection. The algorithm iteratively selects a sample that can maximize Q(S)

```
Input: U, L, G, \mathbf{x}, \mathbf{y}, k
Output: S, s.t.|S| = k
Calculate transition matrix P;
Calculate probability vector p;
for v \in U do
    H[v] \leftarrow p_v \log \frac{1}{p_v} + (1 - p_v) \log \frac{1}{1 - p_v};
    initialize: C[v] \leftarrow 0, \max[v] \leftarrow 0;
end
initialize: S \leftarrow \emptyset;
while |S| < k do
    for v \in U - S \operatorname{do}
         C[v] \leftarrow The summation over j \in U;
                    of (H[j])^{\beta} (\max{\{\max[j], w(v, j)\}^{1-\beta}});
     end
     Find v \in U - S to maximize:
          \alpha C[v] + (1-\alpha)H[v];
     update: S \leftarrow S \cup \{v\};
     update: \max[j] \leftarrow \max\{\max[j], w(v, j)\};
end
```

- Speed up with parallel algorithm
- Datasets
 - Gaussian Synthetic Dataset
 - random generated, 17 Gaussian distributions
 - no link information
 - use KNN to learn classification model
 - The Networked Synthetic Dataset
 - without content information
 - Real world with links:
 - Cora, Citeseer, WebKB
 - cast as multiple binary
 - Real World without Links:
 - UCI 20 Newsgroup classification tasks
- Baselines
 - Real world with links
 - Random
 - Most Uncertainty: largest entropy
 - Active Learning Using Gaussian Fields
 - Hybrid
 - k-means
 - Real world without links
 - Random
 - Most Uncertainty: largest entropy
 - Active Learning Using Gaussian Fields
 - SVM
 - Fisher
 - On Gaussian Synthetic Dataset:
 - Maximum Uncertainty
 - Without Maximum Uncertainty
 - Without Minimum Redundancy

FEW-SHOT LEARNING ON GRAPHS VIA SUPER- CLASSES BASED ON GRAPH SPECTRAL MEASURES

- Problem setup:
 - o few-shot setting:

- training: classifier must generalize well after seeing abundant base-class samples
- testing: very few samples from novel class
- Details
 - training: set of base class labeled graphs $G_B = \{(g_i^{(B)}, y_i^{(B)})\}_{i=1}^n$, set of novel class labeled graphs $G_N = \{(g_i^{(N)}, y_i^{(N)})\}_{i=1}^m$ used for fine-tuning, where m << n, set of labels from base class graphs and novel class graphs are disjoint.
 - ullet testing: set of ublabeled unseen graphs $G_U = \{g_i^{(U)}\}_{i=1}^t$
- · Method:
 - Computing super classes
 - Prototype Graphs:
 - lacksquare partitioned G_B according to graph labels, $G_B = \cup_{i=1}^K G^{(i)}$
 - lacktriangle pick prototype graph p_i for the i-th class with least average spectral distance to rest graphs in the same class
 - Clustering prototype graphs:
 - k-means
 - into *k* super classes
 - GNN
 - GIN as graph feature extractor
 - Classifier
 - build super-graph:
 - node is graph feature vector
 - build on a batch of base-labeled graphs as a collection of k-NN graphs
 - each constituent k-NN graph is built on the graphs belonging to the same super-class
 - super graph passed through multi-layered graph attention network GAT
 - graph embedding passed into MLP to learn associated super-class labels
 - add cross-entropy losses associated with GAT and MLP
 - o fine-tune:
 - fix GIN, MLP, tune GAT
- Datasets:
 - Letter-High, TRIANGLES, Reddit-12K, and ENZYMES.
- Baselines:
 - k-NN search on embeddings
 - Supervised:
 - GIN, CapsGNN, Diffpool
 - Unsupervised:
 - AWE, Graph2Vec, Weisfeiler- Lehman subtree Kernel, Graphlet count kernel
 - Few-shot:
 - replace GAT with GCN

■ replace classifier with k-NN: GIN-k-NN