Seminar 8

- 1. Evaluati integralele improprii

 - Evaluati integralele impro a) $\int_0^\infty \frac{\arctan x}{1+x^2} dx$ b) $\int_{-1}^1 \frac{x+1}{\sqrt{1-x^2}} dx$ c) $\int_0^\infty x^n e^{-x} dx$, $n \in \mathbb{N}$ d) $\int_1^2 \frac{1}{\sqrt{x(2-x)}} dx$
- 2. Studiati convergenta integralelor improprii

 - a) $\int_0^3 \frac{x^3 + 1}{\sqrt{9 x^2}} dx$ b) $\int_0^\infty \frac{\arctan x}{x} dx$ c) $\int_0^\pi x \ln(\sin x) dx$
- 3. Studiati convergenta integralei improprii

$$I(\alpha) = \int_0^1 \left(\frac{x}{1-x}\right)^{\alpha} dx, \quad \alpha \in \mathbb{R}$$

si calculati valoarea lui $I(\frac{1}{2})$.

4. (functia Gama) Consideram integrala improprie

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \quad \alpha \in \mathbb{R}$$

Demonstrati urmatoarele proprietati

- a) $\Gamma(\alpha)$ este convergenta, $\forall \alpha > 0$
- b) $\Gamma(n+1) = n!, \forall n \in \mathbb{N}$
- c) $\Gamma(\alpha+1) = \alpha\Gamma(\alpha), \quad \forall \alpha > 0$ d) $\Gamma(n+\frac{1}{2}) = \frac{(2n-1)!!}{2^n} \Gamma(\frac{1}{2}), \quad \forall n \in \mathbb{N}^*$
- 5. Exprimati cu ajutorul functie
i Γ valoarea urmatoarelor integrale improprii a
) $\int_0^\infty \mathrm{e}^{-x^2}\,\mathrm{d}x$ b) $\int_{-\infty}^\infty \mathrm{e}^{-\frac{1}{2}x^2}\,\mathrm{d}x$ c) $\int_0^1 (\ln x)^{\frac{1}{3}}\,\mathrm{d}x$

Exercitii suplimentare

- 1. Evaluati integralele improprii a) $\int_0^1 \frac{\sqrt{x + \ln x}}{x} dx$ b) $\int_0^1 \sqrt{\frac{1 + x}{1 x}} dx$ c) $\int_0^\infty e^{-x} \cos x dx$ d) $\int_0^1 \frac{\ln x}{\sqrt{1 x}} dx$ e) $\int_1^\infty \frac{dx}{(x^2 + 1)\sqrt{x^2 1}}$
- 2. Studiati convergenta integralelor improprii

 - a) $\int_0^1 \frac{1}{\sqrt[4]{1-x^4}} \, dx$ b) $\int_0^1 \frac{1}{\sqrt{x(e^x e^{-x})}} \, dx$
 - c) $\int_0^{\pi} (1 \frac{\sin x}{r})^{-1} dx$
- 3. Determinati valorile lui $\alpha>0$ pentru care integrala improprie

$$I(\alpha) = \int_{1}^{\infty} \frac{x - 1}{x^{\alpha} - 1} \, \mathrm{d}x$$

este convergenta. Calculati valoarea lui I(3).

- 4. Fie $f:[1,+\infty) \to [0,+\infty)$ o functie continua, pozitiva si descrescatoare. Aratati ca
 - i) $f(n+1) \le \int_n^{n+1} f(x) \, \mathrm{d}x \le f(n), \quad \forall n \in \mathbb{N}^*$
 - ii) $f(2) + f(3) + \ldots + f(n) \le \int_1^n f(x) dx \le f(1) + f(2) + \ldots + f(n), \quad \forall n \in \mathbb{N}, n \ge 2$
 - iii) (criteriul integral)

Seria $\sum_{n=1}^{\infty} f(n)$ este convergenta \iff integrala $\int_{1}^{\infty} f(x) dx$ este convergenta

iv) Sirul $c_n = f(1) + f(2) + \ldots + f(n) - \int_1^n f(x) dx$ este convergent.