

Wykorzystanie mikrokontrolera rodziny STM32 do wykonania analizy FFT fali dźwiękowej

Przedmiot: Zaaw. Zastosowania Układów Mikroprocesorowych

Prowadzący: dr hab. inż. Paweł Piątek prof. AGH

Autorzy: Jakub Pyznar

Jakub Słota

Kierunek: Automatyka i Robotyka KSS

Wydział Elektrotechniki, Automatyki, Informatyki

i Inżynierii Biomedycznej

1. Cele

W ramach poniższej pracy zdecydowano się na zaprezentowanie wstępnych badań dotyczących dostępnych rozwiązań technicznych i informatycznych możliwych do wykorzystania w projekcie docelowym. Pierwszym krokiem do selekcji tematu było ustalenie wstępnego zakresu zadań do wykonania, zarówno koniecznych jak i opcjonalnych:

- Wizualizacja spektrum sygnału dźwiękowego rejestrowanego z wyjścia audio PC (K)
- Próbkowanie sygnału z odpowiednią częstotliwością (K)
- Wykonanie analizy widmowej sygnału po próbkowaniu (K)
- Wizualizacja wyników poprzez wykorzystanie multipleksowanej matrycy LED (K)
- Wizualizacja graficzna w programie komputerowym (O)
- Analiza odmiennych sposobów aplikowania FFT (O)
- Wykonanie equalizer'a (O)

2. Dobór platformy sprzętowej / Próbkowanie sygnału

W celu poprawnego spróbkowania sygnału wejściowego, potrzebny jest przetwornik analogowo – cyfrowy o odpowiedniej rozdzielczości. Zakres dźwięków słyszalnych dla człowieka to około od 20 Hz do 20 KHz. Ze względu na dużą elastyczność i wydajność zdecydowano się na skorzystanie z płytki developerskiej Nucleo z mikrokontrolerem STM32 z rodziny F4. Maksymalna możliwa częstotliwość taktowania układu wynosi 180 MHz, natomiast taktowanie przetwornika ADC możliwe jest z częstotliwością o połowę niższą. Po zarezerwowaniu odpowiedniej liczby cykli koniecznej na poprawny pomiar można stwierdzić iż mikrokontroler będzie w stanie spróbkować sygnały z zadanego zakresu.

Dodatkowo do układu dołączono płytkę ze sterownikiem Audio Codec. Układ ten zaprojektowano z myślą o zastosowaniu w systemach wbudowanych do odbierania i przesyłania sygnałów audio. Istnieje więc możliwość podłączenia do niej źródła dźwięku, spróbkowania sygnału a następnie przesłania go do mikrokontrolera przez interfejs SPI lub I2C.

3. Sposób podłączenia diod

Zdecydowano się na wykorzystanie gotowej matrycy diod LED 8x8. Na płytce znajduję się

sterownik umożliwiający szybką kontrolę stanu każdej diody. Układ komunikuje się z mikrokontrolerem przez magistralę SPI. Przez odpowiednie zaprogramowanie sterownika MAX7219 możliwa będzie wizualizacja wyników operacji FFT. Rozwiązanie to bazuje na idei multipleksowania wejść matrycy, a więc naprzemiennego załączania danych diod z tak dużą częstotliwością, że ludzkie oko widzieć będzie stabilny obraz.

4. Algorytmy FFT

W celu przetworzenia sygnału z opisu w dziedzinie czasu na dziedzinę częstotliwości należy posłużyć się formułą transformaty Fouriera. Pozwala ona na odczyt energetycznego udziału poszczególnych harmonicznych w widmie analizowanego sygnału. Jako, że w projekcie badamy sygnał dyskretny, dlatego też istotna staje się częstotliwość próbkowania f_s ponieważ, analiza spektralna ogranicza się do zakresu częstotliwości $\left[-\frac{f_s}{2};\frac{f^s}{2}\right]$. Należy zauważyć, że podstawowa formuła DFT jest nieoptymalna tj. wymaga znacznie większego nakładu obliczeniowego niż jej zoptymalizowane odpowiedniki. Najczęstszą odmianą szybkiej transformaty Fouriera jest algorytm Cooleya-Tukeya oparty o metodę "dziel i zwyciężaj", który znacznie przyspiesza kalkulację, a jest to kluczowe gdy decydujemy się na przetwarzanie sygnałów online.

5. Algorytm equalizer'a

6. Filtracja pasmowo-przepustowa