HAI406 - Feuille de TD nr.5

N.B: Le symbole (\bullet) signale les exercices à travailler en priorité et le symbole (\star) les exercices facultatifs.

Exercice 1. (•) Vrai ou faux ?

- 1. Une base de \mathbb{R}^6 est toujours composée de six vecteurs.
- 2. Dans \mathbb{R}^2 , il n'existe qu'une seule base : la base canonique.
- 3. Si deux vecteurs ont la même colonne de coordonnées dans une base \mathcal{B} , alors ils sont égaux.
- 4. $\mathcal{B} = (U_1, U_2, U_3)$ est une base de \mathbb{R}^3 si seulement si aucun des vecteurs U_i n'est nul.
- 5. Si \mathcal{B} et \mathcal{B}' sont deux bases de \mathbb{R}^3 , la matrice passage de \mathcal{B} à \mathcal{B}' est carrée, d'ordre 3 et non-inversible.
- 6. Soit P la matrice de passage d'une base \mathcal{B} à une base \mathcal{B}' dans \mathbb{R}^4 . Si $V \in \mathbb{R}^4$, la colonne de ses coordonnées dans \mathcal{B}' s'obtient en faisant le produit de P^{-1} par la colonne de ses coordonnées dans \mathcal{B} .
- 7. Si P est la matrice de passage d'une base \mathcal{B} à une base \mathcal{B}' dans \mathbb{R}^5 , la 3ème colonne de P est la colonne des coordonnées du 3ème vecteur de \mathcal{B} dans la base \mathcal{B}' .

Exercice 2. (•) Dans chacun des cas suivants, dire si la famille \mathcal{B} est une base de l'espace considéré et, le cas échéant, calculer la colonne Coord $_{\mathcal{B}}(V)$ des coordonnées du vecteur V dans \mathcal{B} .

1. Espace:
$$\mathbb{R}^2$$
; $\mathcal{B} = (U_1, U_2)$ avec $U_1 = \begin{bmatrix} -1 \\ \sqrt{2} \end{bmatrix}$, $U_2 = \begin{bmatrix} \sqrt{2} \\ -2 \end{bmatrix}$ et $V = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

2. Espace:
$$\mathbb{R}^2$$
; $\mathcal{B} = (U_1, U_2)$ avec $U_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $U_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ et $V = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

3. Espace:
$$\mathbb{R}^2$$
; $\mathcal{B} = (U_1, U_2, U_3)$ avec $U_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $U_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, $U_3 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ et $V = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$.

4. Espace:
$$\mathbb{R}^3$$
; $\mathcal{B} = (U_1, U_2, U_3)$ avec $U_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $U_2 = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$, $U_3 = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix}$ et $V = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$.

5. Espace:
$$\mathbb{R}^3$$
; $\mathcal{B} = (U_1, U_2)$ avec $U_1 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$, $U_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ et $V = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

Exercice 3. (•) On considère dans \mathbb{R}^2 les deux familles de vecteurs suivantes: $\mathcal{B} = (U_1, U_2)$ et $\mathcal{B}' = (U'_1, U'_2)$ définies par :

$$U_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 , $U_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $U_1' = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $U_2' = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

- 1. Vérifier que \mathcal{B} et \mathcal{B}' sont des bases de \mathbb{R}^2 .
- 2. Calculer la matrice de passage P de \mathcal{B} à \mathcal{B}' . En déduire les formules exprimant les vecteurs de \mathcal{B}' en fonction de ceux de \mathcal{B} . Calculer la matrice de passage de \mathcal{B}' à \mathcal{B} .

1

- 3. Soit le vecteur $V = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$. Calculer la colonne $\operatorname{Coord}_{\mathcal{B}}(V)$. En utilisant, la formule de changement de coordonnées, calculer $\operatorname{Coord}_{\mathcal{B}'}(V)$. En déduire l'expression du vecteur V d'abord en fonction de U_1 et U_2 , puis en fonction de U_1' et U_2' .
- 4. Faites un schéma illustrant la situation dans le plan euclidien rapporté à un repère orthonormé (on y fera notamment figurer le vecteur V et les différentes bases mises en jeu).

Exercice 4. (•) On se place dans \mathbb{R}^3 , muni de sa base canonique $\mathcal{B}_0 = (E_1, E_2, E_3)$. On considère de plus la famille de vecteurs $\mathcal{B} = (U_1, U_2, U_3)$ définie par :

$$U_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 , $U_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $U_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- 1. Vérifier que \mathcal{B} est une base de \mathbb{R}^3 .
- 2. Calculer la matrice de passage U de \mathcal{B}_0 à \mathcal{B} . Puis celle de \mathcal{B} à \mathcal{B}_0 .
- 3. Si $V = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, écrire la colonne $\operatorname{Coord}_{\mathcal{B}_0}(V)$ puis calculer la colonne $\operatorname{Coord}_{\mathcal{B}}(V)$.

Exercice 5. (•) On se place dans \mathbb{R}^2 . On considère l'application linéaire $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - x_2 \\ x_1 + 3x_2 \end{bmatrix}$, et la famille $\mathcal{B} = (U_1, U_2)$ constituée des deux vecteurs $U_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ et $U_2 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

- 1. Montrer que la famille \mathcal{B} est une base de \mathbb{R}^2 , puis écrire la matrice de passage U de \mathcal{B}_0 à \mathcal{B} .
- 2. Donner la matrice $A = M_{\mathcal{B}_0}(\phi)$ de ϕ dans la base canonique, et sa matrice $A' = M_{\mathcal{B}}(\phi)$ dans la nouvelle base \mathcal{B} .
- 3. Soit $V \in \mathbb{R}^2$. Notons $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \operatorname{Coord}_{\mathcal{B}}(V)$ et $\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \operatorname{Coord}_{\mathcal{B}}(\phi(V))$. Exprimer y_1' et y_2' en fonction de x_1' et x_2' .

Exercice 6. (•) Soit $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire et \mathcal{B} une base de \mathbb{R}^3 . Montrer que les nombres $\operatorname{Tr}(M_{\mathcal{B}}(\phi))$ et $\det(M_{\mathcal{B}}(\phi))$ ne dépendent pas du choix de la base \mathcal{B} .

Exercice 7. (\star) Soit $\mathcal{B} = (U_1, \dots, U_n)$ une <u>famille</u> de n vecteurs de \mathbb{R}^n . Montrez que les trois assertions suivantes sont équivalentes :

- 1. Tout vecteur V de \mathbb{R}^n peut se décomposer suivant une combinaison linéaire des U_i .
- 2. Pour toute famille $(\lambda_1, \ldots, \lambda_n)$ de n réels, si $\lambda_1 U_1 + \cdots + \lambda_n U_n = 0$ alors tous les λ_j sont nuls.
- 3. \mathcal{B} est une base de \mathbb{R}^n .