José María Martín Luque José Luis Ruiz Benito Ricardo Ruiz Fernández de Alba

Probabilidad D. G. en Ing. Informática y Matemáticas UNIVERSIDAD DE GRANADA

23 de diciembre de 2019

Entrega 2. Ejercicio de la relación 4.

EJERCICIO 14. Sea (X, Y) un vector aleatorio distribuido uniformemente en el paralelogramo de vértices (0,0); (2,0); (3,1); (1,1). Calcular el error cuadrático medio asociado a la predicción de X a partir de la variable Y y a la predicción de Y a partir de la variable aleatoria X. Determinar la predicción más fiable a la vista de los resultados obtenidos.

Solución. Comenzamos recordando que si estamos estimando el valor de X a partir de una función φ de Y, podemos calcular el error cuadrático medio de dicha estimación utilizando la expresión

$$ECM(\varphi(Y)) = E[X^2] - E[E[X/Y]^2].$$

Análogamente, si estimamos el valor de Y a partir de una función ψ de X, el error cuadrático medio es

$$ECM(\psi(X)) = E[Y^2] - E[E[Y/X]^2].$$

En consecuencia, necesitamos hallar:

- 1 La función de densidad conjunta del vector aleatorio.
- (2) Las distribuciones marginales de X e Y.
- (3) Las distribuciones condicionadas X/Y e Y/X.
- 4 Las esperanzas $E[X^2]$ y $E[Y^2]$.
- (5) Las esperanzas condicionadas E[X/Y] y E[Y/X].
- 6 Las esperanzas $E[E[X/Y]^2]$ y $E[E[Y/X]^2]$.
- 7 Las razones de correlación $\eta_{X/Y}^2$ y $\eta_{Y/X}^2$ para determinar qué ajuste es mejor. Vayamos paso por paso.

① Sabemos que el vector aleatorio se distribuye de forma uniforme, luego la función de densidad conjunta será de la forma f(x, y) = k, con $k \in \mathbb{R}$. Debemos hallar el valor de k teniendo en cuenta la región en la que está definido, que podemos ver en la Figura 1. Para ello integramos

$$\int_0^1 \int_y^{y+2} k \, \mathrm{d}x \, \mathrm{d}y = \int_0^1 \left[kx \right]_y^{y+2} \, \mathrm{d}y = \int_0^1 2k \, \mathrm{d}y = 2k.$$

Como se trata de una función de densidad dicha integral debe tener valor 1, luego k = 1/2.

FIGURA 1: Región del plano en la que está distribuido el vector aleatorio (X, Y).

(2) La distribución marginal de *X* viene dada por la función de densidad

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y = \begin{cases} \int_0^x 1/2 \, \mathrm{d}y = x/2 & \text{para } 0 < x < 1, \\ \int_0^1 1/2 \, \mathrm{d}y = 1/2 & \text{para } 1 < x < 2, \\ \int_{x-2}^1 1/2 \, \mathrm{d}y = (3-x)/2 & \text{para } 2 < x < 3. \end{cases}$$

La distribución marginal de Y viene dada por la función de densidad

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{y}^{y+2} 1/2 dx = 1$$
 para $0 < y < 1$.

 \bigcirc La distribución condicionada X/Y está determinada por la función de densidad

$$f_{X/Y=y_0}(x) = \frac{f(x, y_0)}{f_Y(y_0)} = \frac{1/2}{1} = 1/2$$
 para $0 < y_0 < 1$, $y_0 < x < y_0 + 2$.

Por otro lado, la distribución condicionada Y/X está determinada por la función de densidad

$$f_{Y/X=x_0}(y) = \frac{f(x_0, y)}{f_X(x_0)} = \begin{cases} \frac{1/2}{x_0/2} = 1/x_0 & \text{para } 0 < x_0 < 1, & 0 < y < x_0; \\ \frac{1/2}{1/2} = 1 & \text{para } 1 < x_0 < 2, & 0 < y < 1; \\ \frac{1/2}{(3-x_0)/2} = 1/(3-x_0) & \text{para } 2 < x_0 < 3, & x_0 - 2 < y < 1. \end{cases}$$

(4) Las esperanzas $E[X^2]$ y $E[Y^2]$ vienen dadas por

$$E[X^{2}] = \int_{0}^{1} x^{2} \frac{x}{2} dx + \int_{1}^{2} x^{2} \frac{1}{2} dx + \int_{2}^{3} x^{2} \frac{3-x}{2} dx$$

$$= \left[\frac{x^{4}}{8} \right]_{0}^{1} + \left[\frac{x^{3}}{6} \right]_{1}^{2} + \left[\frac{x^{3}}{2} - \frac{x^{4}}{8} \right]_{2}^{3}$$

$$= \frac{1}{8} + \frac{8}{6} - \frac{1}{6} + \left(\left(\frac{27}{2} - \frac{81}{8} \right) - \left(\frac{8}{2} - \frac{16}{8} \right) \right)$$

$$= \frac{8}{3},$$

y

$$E[Y^2] = \int_0^1 y^2 dy = \left[\frac{y^3}{3}\right]_0^1 = \frac{1}{3}.$$

(5) Las esperanzas condicionadas E[X/Y] y E[Y/X] vienen dadas por

$$E[X/Y] = \int x f_{x/y} dx = \int_{y}^{y+2} x/2 dx = \left[\frac{x^2}{4}\right]_{y}^{y+2} = 1 + y/2 \quad \text{para } 0 < y < 1,$$

y

$$\mathsf{E}[Y/X] = \int y f_{y/x} \, \mathrm{d}y = \frac{1}{x} \left[\frac{y^2}{2} \right]_0^x = \frac{x}{2} \qquad \text{para } 0 < x < 1,$$

$$\mathsf{E}[Y/X] = \int y f_{y/x} \, \mathrm{d}y = \left[\frac{y^2}{2} \right]_0^1 = \frac{1}{2} \qquad \text{para } 1 < x < 2,$$

$$\int_{x-2}^1 y \frac{1}{3-x} \, \mathrm{d}y = \frac{1}{3-x} \left[\frac{y^2}{2} \right]_{x-2}^1 = \frac{x-1}{2} \quad \text{para } 2 < x < 3.$$

 \bigcirc Finalmente, calculamos las esperanzas $E[E[X/Y]^2]$ y $E[E[Y/X]^2]$, que vienen dadas por

$$E[E[X/Y]^{2}] = \int_{0}^{1} (E[X/Y])^{2} f_{Y}(y) dy = \int_{0}^{1} (1 + y/2)^{2} \cdot 1 dy$$
$$= \int_{0}^{1} (1 + y + y^{2}/4) dy = \left[y + y^{2}/2 + y^{3}/12 \right]_{0}^{1} = 1 + \frac{1}{2} + \frac{1}{12} = \frac{19}{12}$$

y

$$E[E[Y/X]^{2}] = \int_{0}^{3} (E[Y/X])^{2} f_{X}(x) dx$$

$$= \int_{0}^{1} \left(\frac{x}{2}\right)^{2} \frac{x}{2} dx + \int_{1}^{2} \left(\frac{1}{2}\right)^{2} \frac{1}{2} dx + \int_{2}^{3} \left(\frac{x-1}{2}\right)^{2} \frac{3-x}{2} dx$$

$$= \frac{1}{32} + \frac{1}{8} + \frac{11}{96} = \frac{13}{48}$$

Por tanto, el error cuadrático medio obtenido al estimar X a partir de Y es

$$ECM(\varphi(Y)) = E[X^2] - E[E[X/Y]^2] = \frac{8}{3} - \frac{19}{12} = \frac{13}{12} \approx 1,0833$$

y el obtenido al estimar Y a partir de X,

$$ECM(\psi(X)) = E[Y^2] - E[E[Y/X]^2] = \frac{1}{3} - \frac{13}{48} = \frac{1}{16} = 0,0625$$

7 Calculamos primero las esperanzas de X e Y, que necesitaremos posteriormente para calcular las razones de correlación:

$$E[X]$$

$$= \int_0^3 x f_X(x) dx$$

$$= \int_0^1 x \frac{x}{2} dx + \int_1^2 x \frac{1}{2} dx + \int_2^3 x \frac{3-x}{2} dx$$

$$= \frac{1}{6} + \frac{3}{4} + \frac{7}{12} = \frac{3}{2}$$

$$E[Y]$$

$$= \int_0^1 y f_Y(y) dy$$

$$= \int_0^1 y dy$$

$$= \frac{1}{2}$$

Ahora podemos calcular las razones de correlación:

$$\eta_{X/Y}^2 = 1 - \frac{ECM(\varphi(Y))}{Var[X]} = 1 - \frac{ECM(\varphi(Y))}{E[X^2] - E[X]^2} = 1 - \frac{\frac{13}{12}}{\frac{8}{3} - \left(\frac{3}{2}\right)^2} = \frac{-8}{5}???$$

$$\eta_{Y/X}^2 = 1 - \frac{ECM(\psi(X))}{\text{Var}[Y]} = 1 - \frac{ECM(\psi(X))}{\text{E}[Y^2] - \text{E}[Y]^2} = 1 - \frac{\frac{1}{16}}{\frac{1}{3} - \left(\frac{1}{2}\right)^2} = \frac{1}{4} = 0,25$$

La predicción más fiable es la que tiene una mayor razón de correlación.