Assessing incomplete sampling of disease transmission networks

PMI Monthly Meeting

Derek Sonderegger, PhD - Northern Arizona University May 8, 2019

Collaboration with NAU's Pathogen and Microbiome Institute

Cluster Size Distributions

Cluster Sizes

Defining γ = HAI rate from full data

- For each cluster, the first time a strain is observed it is considered environmentally acquired.
- The second (or third, or fourth, ..) time a strain is observed, it is healthcare acquired.

$$\gamma = \frac{N - ||\mathcal{I}||}{N} = 1 - \frac{||\mathcal{I}||}{N}$$

N = Number of Patients

 $\mathcal{I} = \text{Set of strain identifiers}$

 $||\mathcal{I}|| = \text{Actual Number of Clusters/Strains}$

• Knowing $||\mathcal{I}||$ is the key to calculating HAI rate!

Observed Number of Clusters/Strains under Simple Random Sampling

· Define the following

 α = proportion of the population sampled

 n_i = actual size of the *i*th cluster

 m_i = observed size of the *i*th cluster

Notice that

$$1 \leq m_i \leq n_i$$

and

$$\sum n_i = N$$

$$\sum m_i = \alpha N$$

5/20

Conditional Distribution

 $m_i | n_i \sim \text{ZTHyperGeometric}(n_i, N - n_i, \alpha N) \text{ for } i$

- Zero Truncated HyperGeometric
- Assume approximate independence between observed cluster sizes
- Distribution requires working with hypergeometric terms

$$f(0|n_i) = \frac{\binom{n_i}{0}\binom{N-n_i}{\alpha N}}{\binom{N}{\alpha N}}$$

Notice that α and $f(0|n_i)$ are inversely related and we could crudely approximate

$$f(0|n_i) \approx 1 - \alpha$$

Critical Expectation

$$E[m_i] = E[E(m_i|n_i)] = E[(1 - f(0|n_i))^{-1} \alpha n_i]$$

Utilizing this equation, can derive two different estimators.

- 1. The plug-in estimator that ignores the expectation, and approximates $[1-f(0)]^{-1} \approx \alpha^{-1}$. This results in $\hat{n}_i = m_i$.
- 2. Ignoring the expectations, we could utilize the actual hypergeometric function for $f(0|n_i)$ and solve the following equation for \hat{n}_i . This solution needs to be solved via numerical methods because the "chooses" in $f(0|n_i)$.

Biased Estimator

· Denoting

$$\widehat{n} = \sum \widehat{n}_i$$

I =Set of observed strains

|I| = Observed Number of Clusters/Strains

$$\widehat{\gamma}^* = \frac{1}{\widehat{n}} \sum_{i \in I} (\widehat{n}_i - 1) = \frac{\widehat{n} - ||I||}{\widehat{n}} = 1 - \frac{||I||}{\widehat{n}}$$

Does the plug-in Estimator Work?

Oxfordshire Data - Plugin Estimator

Why doesn't this work?

Oxfordshire Data: Observed cluster sizes

Bias Correction Procedure

- 1. Calculate the sample HAI rate.
- 2. Repeatedly subsample the sample at the designated α fraction.
- 3. For each subsample, calculate the subsample's HAI rate
- 4. Look at the average discrepancy and use that to adjust the sample HAI rate estimate.
- 5. The adjustments are made on the logit scale to force the resulting rate to remain in the [0, 1] interval.

Bias Correction Procedure - Math!

By repeatedly sub-sampling at α rate J times and calculating $\hat{\gamma}_j^*$ for the jth sub-sample,

$$\bar{\delta} = \frac{1}{J} \sum_{j} \left[\operatorname{logit}(\hat{\gamma}^*) - \operatorname{logit}(\hat{\gamma}^*_j) \right]$$

$$\hat{\gamma} = \operatorname{ilogit}\left(\operatorname{logit}(\hat{\gamma}^*) + \bar{\delta} \right)$$

We performed the bias correction step on the logit scale to ensure the resulting estimator is in [0, 1].

Get approximate Confidence Intervals too!

- Standard deviation of the $logit(\widehat{\gamma}_j^*)$ values gives a estimated standard error of $logit(\widehat{\gamma})$ value.
- An approximate 95 confidence interval for γ we use is to add/subtract

ilogit
$$\left[logit(\hat{\gamma}) \pm Z_{0.975} * SE(logit(\hat{\gamma})) \right]$$

Results

Plugin Results - Clinical Data

Hypergeometric Results - Clinical Data

Results - Simulated Populations

The Oxfordshire data could be reasonably modeled using a mixture of two distributions to separate the small clusters sizes from the large. We chose to model the small clusters sizes using a truncated Poisson distribution with the zero truncated out. The large cluster sizes were modeled from a logNormal distribution.

$$n_i \sim \begin{cases} \text{TPoisson}(\lambda) & \text{with probability } 1 - \rho \\ \text{logNormal}(\mu, \sigma) & \text{with probability } \rho \end{cases}$$

for i in \mathcal{I} .

Simulated Data Populations

Simulated Populations

Simulated Data Populations: Results

Bias Corrected Plugin Estimator

Simulated Data Populations: Results

Bias Corrected Hypergeometric Estimator

