Date:

Signals tutorial 7 Esmund Lim 1) $\chi(t) = \frac{\pi}{3} + \sin \omega_0 t + 2\cos \omega_0 t + \frac{15}{2}\cos \left(2\omega_0 t + \frac{\pi}{4}\right)$ $\chi(t) = \frac{2}{5}\cos \left(2\omega_0 t + \frac{\pi}{4}\right)$ convert to complex exponential form $x(t) = \frac{\pi}{3} + \frac{1}{j2} \left(e^{j\omega_0 t} - e^{-j\omega_0 t} \right) + 2 \left[\frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) \right] + \frac{J_5}{2} \left[\frac{1}{2} \left(e^{j\omega_0 t + \pi/4} \right) \right] + \frac{J_5}{2} \left[\frac{1}{2} \left(e^{j\omega_0 t + \pi/4} \right) \right]$ Euler identities $\cos \phi = \frac{e^{i\phi} + e^{-i\phi}}{2}$ $= \frac{\pi}{3} + \frac{1}{j2} (e^{j\omega_0 t} - e^{-j\omega_0 t}) + (e^{j\omega_0 t} + e^{-j\omega_0 t}) + \frac{\sqrt{5}}{4} (e^{j(2\omega_0 t + \pi/4)} + e^{-j(2\omega_0 t + \pi/4)})$ $= \frac{\pi}{3} + \frac{1}{j2} (e^{j\omega_0 t} - e^{-j\omega_0 t}) + (e^{j\omega_0 t} + e^{-j\omega_0 t}) + \frac{\sqrt{5}}{4} (e^{j(2\omega_0 t)} + e^{-j(2\omega_0 t)} + e^{-j(2\omega_0 t)})$ $= \frac{\pi}{3} + (1 + \frac{1}{j_2})e^{j\omega_0 t} + (1 - \frac{1}{j_2})e^{-j\omega_0 t} + (\frac{\sqrt{5}}{4}e^{j(\pi/4)})e^{j(2\omega_0 t)} + (\frac{\sqrt{5}}{4}e^{-j(\pi/4)})e^{-j(2\omega_0 t)}$ a) $C_0 = \frac{\pi}{3} + j0$ ($\frac{\pi}{3}$,0) if $C_0 = -\frac{\pi}{3} + j0$ ($-\frac{\pi}{3}$,0) Complex Number $|\zeta_0| = \int \left(\frac{\pi}{3}\right)^2 + 0^2 \quad = \zeta_0 = +\alpha_0^{-1} \left(\frac{\circ}{\pi/3}\right) \quad = \zeta_0 = 180^\circ$ [Rect]: Z = X+jy = rcoso+jrsino = 0° [Polar]: Z = r L 0 [Exp]: Z = rejoy prose DC component = TE 3 =r[cosotisino] C1 = 1 + 1 = $1 + \frac{1 \times j}{J^2 \times j}$ (To get rid of the bottom j) $|z|=\Gamma$ $\theta=\tan^{-1}(\frac{y}{x})$ = Jz2+y2 z=rcoso y=rsino = |+ (-1)j $j = J - i^2 = j \times j \quad j^3 = j \times j^2$ $|C_1| = \sqrt{(1)^2 + (-\frac{1}{2})^2}$ $4C_1 = +an^{-1}(\frac{-0.5}{1})$ \=-1 =-j = -26.56505118° j4= j2xj2 = 1 C-1= 1- 12 $=1-\frac{1\times i}{j2\times j}$ b) ac component of xct1 -> all the remaining terms that involves Wo = 1 - 1 = 1+(=)5 | (-1 = \(\left(1)^2 + (\frac{1}{2})^2 \rightarrow (1 = \frac{1}{1}) \) c) fundamental angular frequency of 2nd harmonics = \(\sum_{\frac{5}{2}}\) = 26.56505118° = 2W0 With a magnitude contribution of 15 at 2Wo and 4 at -2Wo (2 sided spectrum) (2= 15 e)(I) (-2= 15 e)(I) Aejo |(2|= 年 *(2= 年 |(-2|= 年 *(-): -元4 = 450 d) fundamental angular frequency of 3rd harmonics = 3 Wo With zero contribution e) fundamental angular frequency = Wo

f) Fourier series coefficients of the signal X(t)

$$C_{0} = \frac{\pi}{3} + j0 \qquad C_{1} = 1 + \frac{1}{2j} \qquad C_{-1} = 1 - \frac{1}{2j}$$

$$= \frac{\pi}{3} e^{j(0^{\circ})} \qquad = \frac{\sqrt{5}}{2} e^{j(-26.57^{\circ})} \qquad = \frac{\sqrt{5}}{2} e^{j(26.57^{\circ})}$$

$$= \frac{\pi}{3} L 0^{\circ} \qquad = 1.18033989 L - 26.57^{\circ} \qquad = 1.12 L 26.57^{\circ}$$

$$= 1.047 L 0^{\circ} \qquad \approx 1.12 L - 26.57^{\circ}$$

$$C_{2} = \frac{\sqrt{5}}{4}e^{j(\pi/4)}$$

$$= \frac{\sqrt{5}}{4}e^{-j(\pi/4)}$$

$$= 0.5590169944 245^{\circ}$$

2 0.559 L 45°

g) Amplitude spectrum (Cal of 2(t)

Phase spectrum & Cn of xCt)

2a)	$\chi(t) = \cos t + \sin \sqrt{2} t$	Summation o	f two sinusoids
	$\omega_i = 1$ $\omega_i = 1$	>>(1t);	Olzet) periodic C-T signal
	$\omega_1 = 1 \qquad \omega_1 = 1$ $\omega_2 = \sqrt{2} \qquad \omega_2 \qquad \sqrt{2}$	with T	, Tz fundamental period
	: XCt) is not periodic	→ x(t)	enedic + penedic
	4 No F.S representation		not always periodic
		check	10 habane
b)	x(t) = cos 等t + sin 等t	七	m = Integer = rational number
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	r labenee
	$W_2 = \frac{\pi}{4} W_2 \frac{\pi}{4} 3$	- W2 =	fi = Integer
	: XG) is periodic	ifit	is periodic
Wo: 2なら。 : 2な(元)	$T_1 = \frac{2\pi}{\pi I_3}$ $T_2 = \frac{2\pi}{\pi I_4}$ or $Q_0 = GCF(\frac{\pi}{3}, \frac{\pi}{4})$: LCM (T., T2)
$T_0 = \frac{2\pi}{\omega}$:6 :8 =?	- t	= GCF (f1, f2)
	To = LCM (Ti, Tz)		285 * (33%)
2 6,8	= LCM (6,8)	3 800 7 E F	
LCM: 2x3x4 = 24	: 24	(十十十十五)	265
		13	
(٤)	$\chi(t) = \sin^2(\frac{5\pi}{4}t) + \cos(3\pi t + \frac{\pi}{3})$		
	= \frac{1}{2}(1-\cos[2x\frac{5}{4}t]) + \cos(3\pi t + \frac{7}{3})		
	= \frac{1}{2} - \frac{1}{2} \cos (\frac{52}{2} t) + \cos (3\pi t + \frac{5}{2})		
SWIFTEN AND	$\omega_1 = \frac{5\pi}{2} \omega_1 = \frac{5\pi}{2} \omega_2 = \frac{5\pi}{3\pi} = \frac{5}{6}$ $\omega_2 = 3\pi \omega_3 = \frac{5\pi}{3\pi} = \frac{5}{6}$		

<u> </u>	" X(t) is periodic		
	$T_1 = \frac{2\pi}{5\pi I_2} \qquad T_2 = \frac{2\pi}{3\pi}$	\$15+56 \{ \}	
	= \frac{1}{5} = \frac{2}{3}		
4 X 15 3 X 15	$T_0 = LCM(\frac{4}{5}, \frac{2}{3})$	Ü	get rid of denominator by
= 12 10	= 4		multiplying product of 2
LCM (12,10)			denominator
2 12,10	00	_	get LCM
2×6×5 = 60	$\omega_0 = GCF\left(\frac{5\pi}{2}, 3\pi\right)$	(3)	divide it back
	= ?		
: Lan= 60 15			
=4			

3) For Ons 2(a)

-> No Fourier series representation

For Qns 2(b)

$$W_0 = \frac{2\pi}{T_0}$$
* Find Wo first, from Wo then we know what is the corresponding Ω

$$= \frac{12\pi}{24\pi}$$

$$= \frac{\pi}{12}$$

$$\chi(t) = \cos \frac{\pi}{3} t + \sin \frac{\pi}{4} t \qquad \qquad 1. \ \omega_0 = \frac{\pi}{3} \qquad \qquad n. \ \omega_0 = \frac{\pi}{4}$$

$$= \cos 4 \omega_0 t + \sin 3 \omega_0 t \qquad \qquad n = \frac{\pi}{3} \div \omega_0 \qquad \qquad n = \frac{\pi}{4} \div \frac{\pi}{12}$$

$$q_4 = 1 \quad , \quad b_3 = 1 \qquad (\text{Trigonometric form}) \qquad = \frac{\pi}{3} \div \frac{\pi}{12} \qquad = 3$$

$$n = \frac{\pi}{3} \div \omega_0$$

I sided plot: n is positive

2 sided plot: n is both positive and negative

(complex)

+ + cos (SWot + T)

$$\chi(t) = \frac{1}{2} - \frac{1}{2} \cos \left(\frac{5\pi}{2} t \right) + \cos \left(3\pi t + \frac{\pi}{3} \right)$$

$$\omega_0 = \frac{2\pi}{T_0}$$

$$=\frac{2\pi}{4}$$

$$=\frac{2\pi}{4} \qquad n\omega_0 = \frac{5\pi}{2} \qquad n\omega_0 = 3\pi$$

$$=\frac{\pi}{2} \qquad n = \frac{5\pi}{2} \div \frac{\pi}{2} \qquad n = 3\pi \div \frac{\pi}{2}$$

$$\chi(t) = \frac{1}{2} - \frac{1}{2} \cos(5\omega_0 t) + \cos(6\omega_0 t + \frac{\pi}{3})$$

=
$$\frac{1}{2} + \frac{1}{2} \cos (5 \omega_0 t + \pi) + \cos (6 \omega_0 t + \frac{\pi}{3})$$
 amplitude/Magnitude always positive

(Amplitude phase form.)

take care of the '-' sign by

A6=1 06= = or 600

$$X(t) = \frac{1}{2} - \frac{1}{2} \cos(3\omega_0 t) + \cos(6\omega_0 t + \frac{\pi}{3})$$

=
$$\frac{1}{2} - \frac{1}{2} \cos(5\omega \cot) + \frac{1}{2} \cos(6\omega \cot) - \frac{13}{2} \sin(6\omega \cot)$$
 [Trigonometric form]

$$a_0 = \frac{1}{2}$$
 , $a_5 = -\frac{1}{2}$, $a_6 = \frac{1}{2}$, $b_6 = -\frac{\sqrt{3}}{2}$

Date:

For Qns 1

Let Wo= 5

=
$$\frac{\pi}{3}$$
 + $\sqrt{5}$ cos(5t-26.565°) + $\frac{\sqrt{5}}{2}$ cos(10t+ $\frac{7}{4}$) (Amplitude-phase)

 $A_{1} = \sqrt{5} \qquad A_{1} = \sqrt{5} \qquad O_{1} = -26.565^{\circ}$ $A_{2} = \sqrt{5} \qquad O_{2} = 45^{\circ}$ $O_{1} = \sqrt{3} \times 4 \times 5 \times 6 \qquad O_{3} = 0$

Acos 0 = 2 - 0

-Asino= |

Asin0 = -1 - (2)

(1)2+(2)2

A 20020 + A 2 Sin 20 = 22+(-1)2

A2 = 5

 $\frac{0}{0} : \frac{A\sin\theta}{A\cos\theta} : \frac{-1}{2}$

0= -26.565°

$$a_0 = \frac{\pi}{3}$$
 $a_1 = 2$ $a_2 = \frac{\sqrt{10}}{4}$ $a_n = 0$ for $n \frac{7}{3}$
 $b_1 = 1$, $b_2 = -\frac{\sqrt{10}}{4}$ $b_n = 0$ for $n \frac{7}{3}$