Proof Rules and Proofs for Correctness Triples

Part 2: Conditional and Iterative Statements CS 536: Science of Programming, Fall 2022

A. Why?

- Proof rules give us a way to establish truth with textually precise manipulations
- We need inference rules for compound statements such as conditional and iterative.

B. Outcomes

At the end of this topic you should know

- The rules of inference for if-else statements.
- The rule of inference for while statements.
- The impracticality of the wp and sp for loops; the definition and use of loop invariants.

C. Rules for Conditionals

• There are two popular ways to characterize correctness for *if-else* statements

If-Else Conditional Rule 1

- The sp-oriented basic rule is
 - 1. $\{p \land B\} S_1 \{q_1\}$
 - 2. $\{p \land \neg B\} S_2 \{q_2\}$
 - 3. $\{p\}$ if B then S_1 else S_2 fi $\{q_1 \lor q_2\}$

if-else 1, 2¹

• In proof tree form:

$$\frac{\{p \land B\} S_1 \{q_1\} \qquad \{p \land \neg B\} S_2 \{q_2\} \qquad \text{if-else}}{\{p\} \text{if B then } S_1 \text{ else } S_2 \text{ fi} \{q_1 \lor q_2\}}$$

- · The rule says that
 - If running the true branch S_1 in a state satisfying p and B establishes q_1 ,
 - And running the false branch S_2 in a state satisfying p and $\neg B$ establishes q_2 ,
 - Then you know that running the *if-else* in a state satisfying p establishes $q_1 \vee q_2$.

¹ The rule name can be *conditional* or *if-else*; your choice. A postcondition $q_1 \vee q_1$ can be abbreviated to q_1 .

- **Example 1**: Here's a proof of $\{T\}$ if $x \ge 0$ then y := x else y := -x fi $\{y \ge 0\}$. We need
 - $\{x \ge 0\}$ $y := x\{y \ge 0\}$ for the true branch (line 1 below).
 - $\{x < 0\}$ $y := -x\{y \ge 0\}$ for the false branch (lines 2 4 below).

1.	$\{x \ge 0\} y := x \{y \ge 0\}$	assignment (backward)
2.	$\{x < 0\} y := -x \{x < 0 \land y = -x\}$	assignment (forward)
3.	$x < 0 \land y = -x \rightarrow y \ge 0$	predicate logic

4.
$$\{x < 0\}$$
 $y := -x$ $\{y \ge 0\}$ postcondition weakening, 2, 3

5. {*T*} if
$$x \ge 0$$
 then $y := x$ else $y := -x$ fi $\{y \ge 0\}$ if-else 1, 4

• The proof above used forward assignment; backward assignment works also: Lines 2 – 4 become

2.	$\{-x \ge 0\} y := -x \{y \ge 0\}$	assignment (forward)
3.	$x < 0 \rightarrow -x \ge 0$	predicate logic
4.	$\{x < 0\} y := -x \{y \ge 0\}$	precondition strengthening 3, 2

If-Else Conditional Rule 2

- Conditional rule 2: An equivalent, more goal-oriented / wp-oriented conditional rule is:
 - 1. $\{p_1\} S_1 \{q_1\}$
 - 2. $\{p_2\} S_2 \{q_2\}$
 - 3. $\{p_0\}$ if B then S_1 else S_2 fi $\{q_1 \lor q_2\}$ if-else where $p_0 = (B \rightarrow p_1) \land (\neg B \rightarrow p_2)$
- If we add a preconditioning strengthening step of $p \to (B \to p_1) \land (\neg B \to p_2)$ to the rule above, we get the same effect as the old precondition $(p \land B \rightarrow p_1) \land (p \land \neg B \rightarrow p_2)$.
- We can derive this second version of the conditional rule using the first version. The assumptions below become the antecedents of the derived rule above; the conclusion below becomes the consequent of the derived rule above.

1.	$\{p_1\}S_1\{q_1\}$	assumption 1
2.	$p_0 \wedge B \rightarrow p_1$	predicate logic
	where $p_0 = (p \land B \rightarrow p_1) \land (p \land \neg B \rightarrow p_2)$	
3.	$\{p_0 \wedge B\}S_1\{q_1\}$	precondition strengthening 2, 1
4.	$\{p_2\}S_2\{q_2\}$	assumption 2
5.	$p_0 \wedge \neg B \rightarrow p_2$	predicate logic
6.	$\{p_0 \land \neg B\} S_2 \{q_2\}$	precondition strengthening 5, 4
7.	$\{p_0\}$ if B then S_1 else S_2 fi $\{q_1 \vee q_2\}$	if-else 3, 6

If-Then Statement Rule

- An *if-then* statement is an *if-else* with $\{p \land \neg B\}$ skip $\{p \land \neg B\}$ as the false branch.
 - 1. $\{p \land B\} S_1 \{q_1\}$
 - 2. $\{p \land \neg B\}$ skip $\{p \land \neg B\}$ skip
 - 3. $\{p\}$ if B then S_1 fi $\{q_1 \lor (p \land \neg B)\}$ *if-else* 1, 2

Nondeterministic Conditionals

• Perhaps surprisingly, the proof rules for nondeterministic conditionals are almost exactly the same as for deterministic conditionals.

Nondeterministic if-fi rule 1: (sp-like)

- 1. $\{p \land B_1\} S_1 \{q_1\}$
- 2. $\{p \land B_2\} S_2 \{q_2\}$
- 3. $\{p\} if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 fi \{q_1 \vee q_2\}$

if-fi 1, 2

Nondeterministic if-fi rule 1: (wp-like)

- 1. $\{p_1\} S_1 \{q_1\}$
- 2. $\{p_2\} S_2 \{q_2\}$
- 3. $\{p_0\}$ if $B_1 \to S_1 \square B_2 \to S_2$ fi $\{q_1 \lor q_2\}$ if-fi 1, 2 where $p_0 \equiv (p \land B_1 \to p_1) \land (p \land B_2 \to p_2)$

D. Problems With Calculating the wp or sp of a Loop

- What is wp(W, q) for a typical loop W = while B do S od? It turns out that some wp(W, q) have no finite representation. (sp(W, p)) has the same problem.)
 - Let's look at the general problem of wp(W, q).
 - First, define w_k to be the weakest precondition of W and q that requires exactly k iterations.
 - Let $w_0 = \neg B \land q$ and for all $k \ge 0$, define $w_{k+1} = B \land wp(S, w_k)$.
 - If we know that W will run for, say, ≤ 3 iterations, then $wp(W, q) \Leftrightarrow w_0 \vee w_1 \vee w_2 \vee w_3$.
 - But in general, W might run for any number of iterations, so $wp(W, q) \Leftrightarrow w_0 \vee w_1 \vee w_2 \vee ...$
 - If this infinitely-long disjunction collapses somehow, then we can write wp(W, q) finitely.
 - E.g., if $w_{k+1} \rightarrow w_k$ when $k \ge 5$, then $wp(W, q) \Leftrightarrow w_0 \lor w_1 \lor w_2 \lor w_3 \lor w_4 \lor w_5$.
 - Or, if there's a predicate function $P(k) \Leftrightarrow W_k$ (i.e., if the W_k are parameterized by k), then $W_k(W, q) \Leftrightarrow \exists n. P(n)$.

E. Using Invariants to Approximate the wp and sp With Loops

Basic notions

- If we can't calculate wp(S, q) or sp(p, W) exactly, the best we can do is to approximate it.
- The simplest approximation is a predicate p that implies all the w_k .
 - If $p \Rightarrow w_k$ for all k, then $p \Rightarrow w_0 \lor w_1 \lor w_2 \lor ...$, so $p \Rightarrow wp(S, q)$.

- **Definition:** A **loop invariant for** W =**while** B do S **od** is a predicate p such that $\vdash \{p \land B\} S \{p\}$. It follows that $\vdash \{p\} W \{p \land \neg B\}$.²
 - Under partial correctness, if W terminates, it must terminate satisfying $p \land \neg B$.
 - Note this is for partial correctness only: To get total correctness, we'll need to prove that the loop terminates, and we'll address that problem later.
- *Notation*: To indicate a loop's invariant, we'll add it as an extra clause: $\{inv \ p\}$ while B do S od. This declares that p is not only a precondition of the loop, it's an invariant.

Need Useful Invariants

- Not all invariants are useful. E.g., any tautology is an invariant: $\{T \land B\} S \{T\}$, so $\{T\} W \{T \land \neg B\}$. (For that matter, contradictions are invariants too, but they're even less useful.)
- The key is to find an invariant that:
 - 1. Can be established using simple loop initialization code: $\{p_0\}$ initialization code $\{p\}$.

 - 3. When combined with $\neg B$ and loop termination code, implies the postcondition we want: $\{p \land \neg B\}$ termination code $\{q\}$. If $p \land \neg B \rightarrow q$, then we don't need any termination code.
- There's no general algorithm for generating useful invariants. In a future class, we'll look at some heuristics for trying to find them.

Semantics of Invariants

- How do invariants fit in with the semantics of loops?
- Recall if we take the loop $W = \{ inv \ p \}$ while B do S od and run it in state σ_0 , then one iteration takes us to state σ_1 , the next to σ_2 , and so on: $\sigma_{k+1} = M(S, \sigma_k)$ for all k, and $M(W, \sigma_0)$ is the first σ_k that satisfies $\neg B$; if there is no such state, then we write $\bot_d \in M(W, \sigma_0)^3$
- The invariant p must be satisfied by every possible τ_0 , τ_1 , ..., which implies that it's an approximation to various wp and sp for the loop and loop body:

Predicate	Approximates	Because
p	the wp of the loop	$p \to wp(W, p \land \neg B)$
<i>p</i> ∧ <i>B</i>	the wp of the loop body	$p \wedge B \rightarrow wp(S, p)$
<i>p</i> ∧ ¬ <i>B</i>	the sp of the loop	$sp(p, W) \rightarrow p \land \neg B$
p	the sp of the loop body	$sp(S, p \land B) \rightarrow p$

² We've been using "p" as a generic name for a predicate. From now on, it may or may not stand for a loop invariant, depending on the context.

³ If W is nondeterministic, it's a bit more complicated: For each possible sequence of τ_k , $M(W, \tau_0)$ either contains the first τ_k that satisfies $\neg B$ or \bot_d if that sequence can be continued infinitely.

Loop Initialization and Cleanup

- The purpose of loop initialization code is to establish the loop invariant: $\{p_0\}$ initialization code $\{p\}$. Typically, we initialize any variables that appear fresh in the invariant; e.g., $\{n \ge 0\}$ k := 0 $\{0 \le k \le n\}$.
- If $p \land \neg B \to q$, the desired postcondition for the loop, then no cleanup is necessary, otherwise we need loop termination code: $\{p \land \neg B\}$ termination code $\{q\}$.

F. While Loop Rule; Loop Invariant Example

- The proof rule for a loop only has one antecedent, which requires us to have a loop invariant.
 - 1. $\{p \land B\} S \{p\}$
 - 2. {inv p} while B do S od { $p \land \neg B$ }

loop (or while), 1

• As a triple, the loop behaves like $\{p\}$ while B do S od $\{p \land \neg B\}$, so any precondition strengthening is relative to p, and any postcondition weakening is relative to $p \land \neg B$.

Example 2: Correctness of a Loop Body Using an Invariant

- We want to show that the loop W establishes s = sum(0, n), given
 - $p = 0 \le k \le n \land s = sum(0, k)$
 - W = while k < n do k := k+1; s := s+k od
- First, let's write out a full proof of correctness for this program, then we can analyze its parts:

1.	$\{p[s+k/s]\}$ $s := s+k\{p\}$	assignment (backward)
2.	$\{p[s+k/s][k+1/k]\}\ k := k+1\ \{p[s+k/s]\}$	assignment (backward)
3.	$\{p[s+k/s][k+1/k]\}\ k := k+1; s := s+k\{p\}$	sequence 2, 1
4.	$p \wedge k < n \rightarrow p[s+k/s][k+1/k]$	predicate logic
5.	$\{p \land k < n\} k := k+1; \ s := s+k\{p\}$	precondition str 4, 3
6.	$\{inv\ p\}\ W\{p\land k\ge n\}$	loop 5
7.	$p \wedge k \ge n \rightarrow s = sum(0, n)$	predicate logic
8.	$\{inv \ p\} \ W \{s = sum(0, n)\}$	postcondition weakening 6, 7

- The key requirement is showing that p is indeed invariant (line 5). Using the loop rule will let us conclude $\{inv \ p\} \ W\{p \land k \ge n\}$ (line 6).
- Once the loop terminates, we know $p \land k \ge n$ holds, but our final goal is to show s = sum(0, n). It turns out that postcondition weakening is sufficient (we don't need any cleanup code). This completes the loop
- Turning back to the loop body $\{p \land k < n\} \ k := k+1; \ s := s+k \{p\}$, since this is a sequence, we need to show correctness of each assignment statement (lines 1 and 2) and combine them into a sequence (line 3).
 - We use the backward assignment rule twice, but the proof can certainly be done with forward assignment (see Example 3 below). The structure of the triple makes it easy to infer that backward assignment is being used, so "backward" can be omitted.

- When we combine the assignments to form the sequence (line 3), the resulting precondition is p[s+k/s][k+1/k], so we use precondition strengthening to get $p \land k < n$, which is the form required by the loop rule.
- A reminder: The implication in line 4, $p \land k < n \rightarrow p[s+k/s][k+1/k]$, is a predicate logic obligation. We're concentrating on correctness triples, which is why we're omitting formal proofs of the obligations. Still, it's good to convince ourselves that the implication is correct:
- First, let's expand the substitutions used. For $p \land k < n \rightarrow p[s+k/s][k+1/k]$, we get
 - $p[s+k/s] = (0 \le k \le n \land s = sum(0, k))[s+k/s] = 0 \le k \le n \land s+k = sum(0, k)$
 - $p[s+k/s][k+1/k] = (0 \le k \le n \land s+k = sum(0,k))[k+1/k] = 0 \le k+1 \le n \land s+k+1 = sum(0,k+1)$
 - $(p \land k < n) \equiv (0 \le k \le n \land s = sum(0, k) \land k < n)$
- So $p \land k < n \rightarrow p[s+k/s][k+1/k]$ expands to an implication that's easy to see is correct. $0 \le k \le n \land s = sum(0, k) \land k < n) \rightarrow 0 \le k+1 \le n \land s+k+1 = sum(0, k+1)$
- There's also an obligation in line 7, $(p \land k \ge n \rightarrow s = sum(0, n))$ but this one is easier to see: $p \land k \ge n$ implies $k \le n \land k \ge n$, so k = n. Along with s = sum(0, k) from p, we get s = sum(0, n).

Example 3: Correctness of the Same Loop Body Using sp

• Above, we showed correctness of the loop body using wp; it's also possible to prove correctness using sp instead. We have to replace lines 1 – 5 of the proof above, but lines 6 – 8 don't change because they don't rely on how the loop body was proved to be correct.

1.	$\{p \land k < n\} k := k+1 \{p_1\}$	assignment
	where $p_1 = (p \land k < n)[k_0/k] \land k = k[k_0/k]$	
2.	$\{p_1\}s := s+k\{p_2\}$	assignment
	where $p_2 = p_1[S_0/S] \land S = S_0 + k$	
3.	$\{p \land k < n\} k := k+1; s := s+k \{p_2\}$	sequence 1, 2
4.	$p_2 \rightarrow p$	predicate logic
5.	$\{p \land k < n\} k := k+1; s := s+k \{p\}$	postcondition weak. 4, 3

• Here are the expansions of p_1 and p_2 used in the new proof:

• $p_1 = (p \land k < n) \lceil k_0/k \rceil \land k = k \lceil k_0/k \rceil$

```
 = ((0 \le k \le n \land s = sum(0, k)) \land k < n)[k_0/k] \land k = k[k_0/k] 
 = 0 \le k_0 \le n \land s = sum(0, k_0) \land k_0 < n \land k = k_0+1 
• p_2 = p_1[s_0/s] \land s = s_0+k 
 = (0 \le k_0 \le n \land s = sum(0, k_0) \land k_0 < n \land k = k_0+1)[s_0/s] \land s = s_0+k 
 = 0 \le k_0 \le n \land s_0 = sum(0, k_0) \land k_0 < n \land k = k_0+1 \land s = s_0+k
```

Example 4: Another Loop Example

• Here's a simple loop program that calculates s = sum(0, n) = 0+1+...+n where $n \ge 0$. (If n < 0, define sum(0, n) = 0.) Note the loop invariant appears explicitly.

```
{n ≥ 0}

k := 0; s := 0;

{inv p₁ = 0 ≤ k ≤ n ∧ s = sum(0, k)}

while k < n do

s := s+k+1;

k := k+1

od

{ s = sum(0, n)}
```

- Informally, to see that this program works, we need
 - {n ≥ 0} k := 0; s := 0 { p₁ = 0 ≤ k ≤ n ∧ s = sum(0, k)}
 {p₁ ∧ k < n} s := s+k+1; k := k+1 { p₁ }
 p₁ ∧ k ≥ n → s = sum(0, n)
- It's straightforward to use *wp* or *sp* to show that the two triples are correct. A bit of predicate logic gives us the implication, which we need to weaken the loop's postcondition to the one we want.
- We'll do a detailed analysis in a little while.

G. Alternative Invariants Yield Different Programs and Proofs

- The invariant, test, initialization code, and body of a loop are all interconnected: Changing one can change them all. For example, we use s = sum(0, k) in our invariant, so we have the loop terminate with k = n.
- If instead we use s = sum(0, k+1) or s = sum(0, k-1) in our invariant, we must terminate with k+1 = n or k-1 = n respectively, and we change the increment of s.
- **Example 5**: Using s = sum(0, k) as the invariant.

```
\{n \ge 0\}

k := 0; s := 0;

\{inv \ p_1 = 0 \le k \le n \land s = sum(0, k)\}

while k < n do

s := s + k + 1;

k := k + 1

od

\{s = sum(0, n)\}
```

• **Example 6:** Using s = sum(0, k+1) as the invariant.

```
{n > 0}
k := 0; s := 1;
\{inv \ p_2 = 0 \le k < n \land s = sum(0, k+1)\}
while k < n-1 do
    s := s + k + 2;
    k := k+1
od
{s = sum(0, n)}
```

• **Example 7:** Using s = sum(0, k-1) as the invariant.

```
\{n \ge 0\}
k := 1; s := 0;
\{inv \ p_2 \equiv 1 \le k \le n+1 \land s = sum(0, k-1)\}
while k \le n do
    s := s + k;
    k := k+1
od
{s = sum(0, n)}
```