

Fiji workshop 2025

- Day 1:
 - Image data visualization in Fiji
- Day 2:
 - Quantitative image analysis in Fiji
- Day 3:
 - One-on-one analysis support with your own image data

Joel Ryan, Philip Kesner, Barbara Da Rocha, Mar Garcia Ferrés

ABIF

March 4 to 6 2025

https://github.com/ABIF-McGill/ABIF-Fiji-Workshop-2025

Day 1: Data visualization in Fiji

- Today's goals
 - Get acquainted with Fiji!
 - LUTs, contrast
 - Composite images
 - Intro to scripting!
 - Look at data from 3D images
 - Look at data from timelapse images
 - Images for publications

Fiji is awesome! But it has some drawbacks...

- Why should you use Fiji?
 - Free open-source software
 - Huge development community
 - Librairies to open nearly any microscope image (!)
 - Automation and scripting with multiple programming languages (!)

- When should you use something else than Fiji?
 - More powerful computation
 - Better 3D visualization
 - Many deep learning tools
 - Instrument-specific processing

Digital images

- A digital image is simply a table of numbers
- Each number represents the intensity value of a pixel
- The intensity value is proportional to the amount of light collected at that location
- Software such as Fiji simply displays each number as a certain shade or colour

Figure 1: Images of CHO-K1 cells stained with Phalloidin Alexa Fluorophore 488 and stained with the nuclear probe DAPI. Images were flat field corrected using images of a fluorescent plastic slide imaged on the same microscope. Images were collected on an upright Zeiss Axioskop with a EC PlanNeoFluar 20x/0.5 NA objective lens with an AxioCam ICm1 camera. DAPI was imaged using a DAPI cube and an exposure time of 50 ms. Actin was imaged with a FITC cube and a 150 ms exposure. Brightness, gamma and contrast were adjusted to visualize the actin features well. The scale bar is 50 μ m. Box plot of actin intensity for control (n=110) and treated (n=149) cells. T-test was done with a two sample t-test, unequal variance, two tailed. *** corresponds to P<0.001.

C. elegans embryo
eGFP-H2B
eGFP-gamma-tubulin
Max projection movie
One z-stack per minute acquisition
4 frames-per-second playback

0 minutes 2 minutes

4 minutes

8 minutes

Imaris demo image

Pyramidal cell z-stack 69 z-slices 15 frames-per-second playback

Maximum intensity projection (Fiji) Scalebar: 10 um

Imaris demo image

Drosophila egg Chamber
3 channels x 98 z-slices
16 frames-per-second playback

Orthogonal slice views

Exercise 1 – raw vs composite RGB images

demo_DAPI_Phalloidin_Mitotracker_001.tif

Raw image, drag-and-drop in powerpoint.

demo_DAPI_Phalloidin_Mitotracker_001.tif (RGB).tif

Composite RGB image generated with Exercise 1 macro, drag-and-drop in powerpoint.

Day 2: Quantitative imaging analysis in Fiji

• Goal:

Why quantitative analysis?

Why quantitative analysis?

Why quantitative analysis?

- Measured quantity (space, time, intensity etc)
- Increases robustness of observations
- Elucidate patterns that are not easily visible by eye

Better questions, better science!

Images can be quantitative:

- A digital image is simply a table of numbers
- Each number represents the intensity value of a pixel
- The intensity value is proportional to the amount of light collected at that location

Value at each pixel = **Signal + Background + Noise**

• Goal:

• Goal:

Open an image

• Goal:

Open an image

Processing such as filtering

• Goal:

Open an image

Processing such as filtering

Segmentation or object detection

• Goal:

Open an image

Processing such as filtering

Segmentation or object detection

Data extraction from segmented objects

- -Number of objects
- -Shape / size
- -Intensity within object...

• Goal:

- Why Fiji?
 - Free open-source software
 - Huge development community
 - Librairies to open nearly any microscope image (!)
 - Automation and scripting with multiple programming languages (!)

• Today:

- Load images in Fiji, get familiarised with the program
- Processing using convolutional filters
- Segmentation with thresholding
- Data extraction
 - ...plotting?


```
for (i = 0; i < numROI; i++) {
    roiManager("Select", i);
    Stack.setChannel(2);
    run("Measure");
}</pre>
```

```
for (i = 0; i < numROI; i++) {</pre>
     roiManager("Select", i);
     Stack.setChannel(2);
     run("Measure");
```

```
for (i = 0; i < numROI; i++) {</pre>
     roiManager("Select", i);
     Stack.setChannel(2);
     run("Measure");
```

first, "build a sequence of integers going from the Start Value, to the End value, with an increment of 1"

```
for (i = 0; i < numROI; i++) {</pre>
     roiManager("Select", i);
     Stack.setChannel(2);
     run("Measure");
```

```
first, "build a sequence of integers going from the Start Value, to the End value, with an increment of 1" --- in the case of numROI being 5: 0, 1, 2, 3, 4
```

```
for (i = 0; i < numROI; i++) {</pre>
     roiManager("Select", i);
     Stack.setChannel(2);
     run("Measure");
```

first, "build a sequence of integers going from the Start Value, to the End value, with an increment of 1" ----in the case of numROI being 5: 0, 1, 2, 3, 4,

"Run the { content of the loop } replacing i with the first integer of the sequence.

Then run the { content of the loop } replacing i with the second integer in the sequence... " and so on...

```
for (i = 0; i < numROI; i++) {
      roiManager("Select", i);
      Stack.setChannel(2);
      run("Measure");
```

```
i = 0
roiManager("Select", i);
Stack.setChannel(2);
run("Measure");
i = 1
roiManager("Select", i);
Stack.setChannel(2);
run("Measure");
i = 2
roiManager("Select", i);
Stack.setChannel(2);
run("Measure");
i = 3
roiManager("Select", i);
Stack.setChannel(2);
run("Measure");
. . .
```

• Sometimes objects are too close for adequate thresholding

DAPI image

Otsu threshold image

• Machine learning tools trained on cell images can help distinguish close objects

DAPI image

Nuclei masks identified with *Cellpose*

DAPI image + mask outlines

• Using the DAPI masks, we can then quantify intensities of other stainings in the nucleus

DAPI image + nucleus mask outlines

LIN28-GFP image

LIN28-GFP image + nucleus mask outlines

• Using the DAPI masks, we can then quantify intensities of other stainings in the nucleus

LIN28-GFP image + nucleus mask outlines

Plotting resources

SuperPlots: Communicating reproducibility and variability in cell biology

Samuel J. Lord¹, Katrina B. Velle², R. Dyche Mullins¹, and Lillian K. Fritz-Laylin²

- SuperPlots provides guidelines for presenting experimental data.
- Best to show all data points and colour code them per experimental replicate.
- For statistics the *n* value should be the number of experiments.

Plotting resources

PlotsOfData - Plots all Of the Data

