

Artificial Neural Networks

Feed Forward Networks

Applications
Classical Examples

Multi Layer Networks

Possible Mappings Backprop Algorithm Practical Problems

Deep Networks

Vanishing Gradients
Convolutional Networks

Feed Forward Networks

Applications Classical Examples

Multi Layer Networks

Possible Mappings Backprop Algorithm Practical Problems

Deep Networks

Vanishing Gradients Convolutional Networks

Artificial Neural Networks (ANN)

- ► Inspired from the nervous system
- Parallel processing

We will focus on one class of ANNs:

Feed-forward Layered Networks

Applications

Operates like a general "Learning Box"!

Classification

Function Approximation

Multidimensional Mapping

Classical Examples

ALVINN

Autonomous driving

Trained to mimic the behavior of human drivers

Classical Examples

NetTalk

Speech Synthesis

Trained using a large database of spoken text

Feed Forward Networks Applications Classical Examples

Multi Layer Networks Possible Mappings Backprop Algorithm Practical Problems

Deep Networks
Vanishing Gradients
Convolutional Networks

What is the point of having multiple layers?

A two layer network can implement arbitrary decision surfaces ...provided we have *enough hidden units*

How can we train a multi layer network?

Neither perceptron learning, nor the delta rule can be used

Fundamental problem:

When the network gives the wrong answer there is no information on in which direction the weights need to change to improve the result

Trick:

Use threshold-like, but continuous functions

First layer response

Second layer response

Learning strategy:

Minimize the error (E) as a function of all weights (\vec{w})

- 1. Compute the direction in weight space where the error increases the most $\operatorname{grad}_{\vec{w}}(E)$
- 2. Change the weights in the opposite direction

$$\mathbf{w}_i \leftarrow \mathbf{w}_i - \eta \frac{\partial \mathbf{E}}{\partial \mathbf{w}_i}$$

Normally one can use the error from each example separately (Stochastic Gradient Descent)

$$E = \frac{1}{2} \sum_{k \in \text{Out}} (t_k - y_k)^2$$

A common "threshold-like function" is

$$\rho(\mathbf{x}) = \frac{1}{1 + \mathbf{e}^{-\mathbf{x}}}$$

The gradient can be expressed as a function of a local generalized error δ

$$\frac{\partial E}{\partial \mathbf{w}_{ji}} = -\delta_i \mathbf{x}_j \qquad \mathbf{w}_{ji} \leftarrow \mathbf{w}_{ji} + \eta \delta_i \mathbf{x}_j$$

Output layer:

$$\delta_k = \mathbf{y}_k \cdot (1 - \mathbf{y}_k) \cdot (\mathbf{t}_k - \mathbf{y}_k)$$

Hidden layers:

$$\delta_j = h_j \cdot (1 - h_j) \cdot \sum_k \mathbf{w}_{kh} \delta_k$$

The errors δ propagate backwards through the layers *Error backpropagation (BackProp)*

Things to think about when using BackProp

- Sloooow
 - Normal to require thousands of iterations through the dataset
- Gradient following
 - Risk of getting stuck in local minima
- Many parameters
 - Step size ηNumber of layers
 - Number of hidden unit
 - Number of hidden units
 - Input and output representation
 - Initial weights

Feed Forward Networks

Applications
Classical Examples

Multi Layer Networks

Possible Mappings Backprop Algorithm Practical Problems

Deep Networks

Vanishing Gradients
Convolutional Networks

Deep networks — Networks with many layers

- ► Error gradients become smaller from layer to layer
- ▶ Pure Backprop becomes unusable for deep networks

Deep Belief Networks

- Unsupervised learning of features
 Restricted Boltzmann Machine
- Greedy learning from the bottom, layer by layer
 Optimize for ability to reconstruct previous layer
- Supervised Backprop to finalize classifier

Convolutional Networks

- Alternating convolution and subsampling layers
- Weight sharing
- ► Trained using Backprop