11. Detectia de persoane

11.1. Introducere

Scopul acestei lucrari este de a implementa o metoda de detectie de persoane sau parti corporale. Metoda se bazaeaza pe detectia de trasaturi de tip Haar calculate pe sub-regiuni din imagine folosind imaginea integrala (vezi cursul 7-8), si identificarea prezentei persoanelor sau a unor parti ale corpului uman cu un clasificator de tip cascada.

Modelele clasificatorilor cascada bazati pe trasaturi Haar pentru detectia de persoane sunt disponibile in locatia: %OPENCV_DIR%\data\haarcascades\ si sunt urmatorii:

haarcascade_fullbody.xml haarcascade_lowerbody.xml haarcascade_upperbody.xml haarcascade_mcs_upperbody.xml

11.2. Mersul lucrării

- 1. Se va crea o functie de procesare folosind sablonul de la metoda de detectie a fetelor pe imagini statice (L9), cu calea spre fisierul imagine specificata in codul sursa. Se va modifica aceasta functie pentru a incarca modelele de clasificatori pentru persoane (fullbody, lowerbody, upperbody). Se va apela functia de detectie a obiectelor detectMultiScale pentru fiecare dintre cele 3 modele.
- 2. Se va parcurge lista de obiecte obtinuta pentru fiecare tip de obiect, si se vor afisa dreptunghiurile care incadreaza fiecare parte corporala in culori distincte: cyan: *fullbody*, magenta: *upperbody*, yellow:*lowebody*.

Fig. 11.1. Rezultate detectie (detcetia pt. fiecare model in parte *fullbody*, *lowerbody*, *upperbody* se va afisa/incadra cu cate un dereptunchi de culoare diferita)

Observatie: ultimii 2 parametrii ai functiei detectMultiScale specifica dimensiunea minima initiala (width, height) a zonei rectangulare in care se se cauta partile corpului. Pt. fiecare tip de obiect se vor respecta proportiile corporale:

```
(fullbody, lowerbody, upperbody) \rightarrow width \sim 0.3 ... 0.4 * person_height;
(lowerbody, upperbody) <math>\rightarrow height \sim 0.5 * person_height;
fullbody <math>\rightarrow height = person_height (aprox 100 ... 150 pt. imaginile de test din arhiva Persons.zip)
```

3. Se va face o validare suplimentara pe baza stabilirii unui set de reguli legate de proportiile obiectelor detectate si de pozitia lor relativa. Pt. fiecare obiect detectat se va afisa un scor de incredere.

Exemplu:

- Daca se detecteaza *3 obiecte* (*fullbody*, *lowerbody*, *upperbody*) cu centrele aproximativ pe acceasi verticala **ŞI** centrul lui *upperbody* este detectat deasupra lui *lowerbody* **ŞI** *fullbody* ∩ (*lowerbody* ∪ *upperbody*) este apox. 70% dun *fullbody* (se vor compara ariile dreptunghiurilor: width x height) **atunci** scorul este **0.99** (vezi ex. din fig. 11.1).
- Daca se detecteaza 2 obiecte (lowerbody, upperbody) cu centrele aproximativ pe acceasi verticala **ŞI** upperbody este detectat deasupra lui lowerbody si distanta pe vertical intre centrele lor este < person_height **atunci** scorul este **0.66**.
- Daca se detecteaza 2 *obiecte* (*upperbody*, *fullbody*) cu centrele aproximativ pe acceasi verticala **ŞI** centrul lui *upperbody* este detectat deasupra centrului lui *fullbody* **SI** (*upperbody* ∩ *fullbody*) este mai mare de 50% din *uperbody* (se vor compara ariile dreptunghiurilor: width x height) **atunci** scorul este **0.66**.
- Daca se detecteaza 2 *obiecte* (*lowerbody*, *fullbody*) cu centrele aproximativ pe acceasi verticala **ŞI** centrul lui *lowerbody* este detectat sub centrul lui *fullbody* **SI** (*lowerbody* ∩ *upperbody*) este mai mare de 50% din *lowerbody* (se vor compara ariile dreptunghiurilor: width x height) **atunci** scorul este **0.66**.
- Daca se detecteaza un singur obiect (pe acceasi linie fasie / verticala) nu se mai gasesc alte obiecte sau daca pe acceasi linie (fasie verticala) se gasesc mai multe obiecte dar distanta intre centrele lor este mai mare decat *person_height* atunci se raporteaza ca si personae distinctre cu scorul de **0.33**.
- Daca se detecteaza mai multe obiecte de acelasi tip pe acceasi fasie verticala si distanta intre centrele lor este mai mica decat person_height atuni cele 2 obiecte se fuzioneaza (se raporteaza ca un singur obiect)

BD cu imagini si secvente video pt. test gasiti disponibile la adresa: http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm

Exemple (imaginile de test) sunt selectate din : http://www.emt.tugraz.at/~pinz/data/GRAZ_01/) si se gasesc la locatia: http://users.utcluj.ro/~tmarita/HCI/Media/Images/Persons.zip

Pt. a rezolva/testa si punctul 3 este recomandat sa lucrati atat pe imagini cu o persoana (011, 096) cat si pe imagini cu persoane multiple (133, 138, 230)

ANEXE

1. Calculul intersectiei dintre 2 dreptunghiuri

```
) {
    int[] xs = { x1, x2, x3, x4 };
    int[] ys = { y1, y2, y3, y4 };
    sort(xs);
    sort(ys);

// bottom-left: xs[1], ys[1]
    // top-right: xs[2], ys[2]
}
```

2. Calculul reuniunii dintre 2 dreptunghiuri (dreptunghiul de arie minima care contine cele doua dreptunghiuri componente)

OpenCV (Rect): http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html#rect

```
rect = rect1 | rect2 (rectangle union)
Rezultate detectii pt. pct 2 cu urmatorii paarametrii de apel:
int minBodyHeight = 100;
fullbody_cascade.detectMultiScale(frame_gray, bodies, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE,
Size(minBodyHeight*0.3f, minBodyHeight));
upperbody_cascade.detectMultiScale(frame_gray, ubodies, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE,
Size(minBodyHeight*0.3f, minBodyHeight*0.5));
lowerbody_cascade.detectMultiScale(frame_gray, lbodies, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE,
Size(minBodyHeight*0.3f, minBodyHeight*0.5));
```


person_138.bmp

