Game theory

(I will follow Math 486 Lecture mobs;) from PSU Christopher Griffin

Conditional probability

"IP(A)" means the probability that A happens. its a number between 0 and 1 (inclusive)

PBY

"IP(BIA)" is the probability that B happers, given that A happers.

Ex A = person is sick

B = person is comphine

Suppose: Sick + coughing 0.08

Sick + not coughing 0.02

not sick + coughing 0.85

not sick + not coughing 0.85

$$P(\text{Side} \mid \text{coughing}) = \frac{0.08}{0.08 + 0.05} = \frac{8}{13}$$

in General, the rule is:
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Challenge: (ome up with a formula relating)

P(B|A) and P(A|B) using that definition?

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(A)}{P(B)}$$

The Monty Hall Problem

The host of a game show hides a prize behind one of three doors.

First, you pide a door. (but don't open, +)

The host newbook opens one of the other empty doors, showing there's nothing there.

You can stick with your choice or switch doors.

What Should you do?

What's P(win | switch)?

P(win | don't switch)?

AC you picked wrong to Stort) is 3/3.

in this case it you switch, you wih.

So it your strategy is to always switch, you'll win 3 of the time!

A(win | switch) = 3/3

P(wn | don't switch) = P(yon picked right n) = 1/3.

1) which door its highen 2) Which hoor you choose 3) Which door hist neveral 4) Whether you switch. Reported the gome as a tree. these one not all egnally litely! Hast hides Had reveals DIRE Chase door Switch? Win?

"More assignment": give a set of "moves" S, and every edge should be assyred to one element of 5.

Unfair rock paper scissors

A Strategy for Player i in a

like this is:

a choice of more at every vertex contained by player.

Imperfect information

Now we want to describe games where the player doesn't have complete information

(i.e. player doesn't know which vertex flexive at)

[Ex Rock paper scissors, blackjack, poker, kriegspiel, ... Monty Hall,...

(some of these have an element of chance)

How to formalize this?

Divide the vertices into "information sets":

- -all vertices in an information set much have some player's turn.
- -all vertices in or information set must have the Same "rade types" available to a player.

How to incorporate chance into a game?

Add player O, "Fade"! Now Some

At every "fate" weter, assign prabability
to each edge leaving the weter.