Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université Paris Diderot L2 Informatique & Math-Info Année universitaire 2019-2020

La semaine dernière...

apport de l'hypothèse « L est un tableau $tri\acute{e}$ » sur quelques problèmes manipulant des listes

La semaine dernière...

apport de l'hypothèse « L est un tableau $tri\acute{e}$ » sur quelques problèmes manipulant des listes

 $deux\ exemples\ d'algorithmes\ de\ tri\ par\ comparaisons\ :$

LA SEMAINE DERNIÈRE...

apport de l'hypothèse « L est un tableau trié » sur quelques problèmes manipulant des listes

deux exemples d'algorithmes de tri par comparaisons :

• le tri par sélection

LA SEMAINE DERNIÈRE...

apport de l'hypothèse « L est un tableau trié » sur quelques problèmes manipulant des listes

deux exemples d'algorithmes de tri par comparaisons :

- le tri par sélection
- le tri par insertion

La semaine dernière...

apport de l'hypothèse « L est un tableau trié » sur quelques problèmes manipulant des listes

deux exemples d'algorithmes de tri par comparaisons :

- le tri par sélection
- le tri par insertion

tri par comparaisons : algorithme n'utilisant pas d'autre propriété sur les éléments que l'existence d'un ordre total

⇒ les éléments ne peuvent être utilisés que pour des comparaisons deux à deux

COMPLEXITÉ

Tri par sélection $\Theta(n^2)$ comparaisons dans tous les cas

Tri par insertion $\Theta(n^2)$ comparaisons *au pire*

Questions

- peut-on être plus précis pour le tri par insertion?
- peut-on faire mieux que $\Theta(n^2)$ dans le pire cas?

permutation de taille n = bijection de [1, n] dans lui-même

permutation de taille n = bijection de [1, n] dans lui-même

 $\mathfrak{S}_{\mathfrak{n}}=$ ensemble des permutations de taille \mathfrak{n}

permutation de taille n = bijection de [1, n] dans lui-même

 \mathfrak{S}_n = ensemble des permutations de taille n

notation bilinéaire :
$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

permutation de taille n = bijection de [1, n] dans lui-même

 $\mathfrak{S}_{\mathfrak{n}}=$ ensemble des permutations de taille \mathfrak{n}

notation bilinéaire :
$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

notation linéaire :
$$\sigma = \sigma(1) \ \sigma(2) \ \dots \ \sigma(n)$$

 $\begin{array}{ccccc}
1 & \longrightarrow & 4 \\
2 & \longrightarrow & 2 \\
3 & \longrightarrow & 1 \\
4 & \longmapsto & 6 \\
5 & \longmapsto & 7 \\
6 & \longmapsto & 3 \\
7 & \longmapsto & 5
\end{array}$

notation cyclique : sur cet exemple, $\sigma = (1\ 4\ 6\ 3)\ (2)\ (5\ 7)$, ou plus simplement : $\sigma = (1\ 4\ 6\ 3)\ (5\ 7)$

 $produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$

$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

produit :
$$\sigma \tau = \sigma \circ \tau$$
 : $i \xrightarrow{\tau} \tau(i) \xrightarrow{\sigma} \sigma(\tau(i))$

Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

produit :
$$\sigma \tau = \sigma \circ \tau$$
 : $i \xrightarrow{\tau} \tau(i) \xrightarrow{\sigma} \sigma(\tau(i))$

Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

attention, le produit n'est pas commutatif!

inverse de σ : application τ telle que $\tau\sigma=id_{\pi}=1\;2\;\dots\;n$ notation : σ^{-1}

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

σ	$\tau = \sigma^{-1}$			$\sigma^{-1}\sigma = \mathrm{id}$
1 <		1		1 → 1
2	_	2		2 2
3	3	3		3 → 3
\ /	4	4	=	4 → 4
5 6	5	5		5 → 5
6	6	6		6 → 6
7	7	7		7 → 7

inverse de σ : application τ telle que $\tau\sigma=id_{\pi}=1\;2\;\dots\;n$

notation : σ^{-1}

$$i \; \stackrel{\sigma}{\longmapsto} \; \sigma(i) \; \stackrel{\tau \; = \; \sigma^{-1}}{\longmapsto} \; i$$

inverse de σ : application τ telle que $\tau\sigma=id_{\pi}=1\ 2\ \dots\ n$

notation : σ^{-1}

$$i \; \stackrel{\sigma}{\longmapsto} \; \sigma(i) \; \stackrel{\tau \; = \; \sigma^{-1}}{\longmapsto} \; i$$

inverse de σ : application τ telle que $\tau\sigma=id_n=1\;2\;\dots\;n$

notation : σ^{-1}

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

inverse de σ : application τ telle que $\tau\sigma=id_n=1\;2\;\dots\;n$

notation: σ^{-1}

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

Lemme

- $\sigma \in \mathfrak{S}_n \implies \sigma^{-1} \in \mathfrak{S}_n$
- $\sigma \sigma^{-1} = \sigma^{-1} \sigma = id_n : i = \sigma(j) \xrightarrow{\sigma^{-1}} \sigma^{-1}(i) = j \xrightarrow{\sigma} i$
- $(\sigma^{-1})^{-1} = \sigma$

(on dit que \mathfrak{S}_n a une structure de groupe)

tableau à trier

tableau trié

tableau à trier

tableau trié

tableau à trier

tableau trié

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 2 & 6 & 8 & 4 & 1 & 7 & 5 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 2 & 6 & 8 & 4 & 1 & 7 & 5 & 3 \end{pmatrix}$$
 produit par σ^{-1}
$$id = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$

Tris vs. permutations

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 2 & 6 & 8 & 4 & 1 & 7 & 5 & 3 \end{pmatrix}$$
 produit par σ^{-1}
$$id = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$

Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

Lemme

le nombre de permutations de taille n est n!

Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

Lemme

le nombre de permutations de taille n est n!

Corollaire

un algorithme de tri doit avoir n! comportements différents sur les entrées de taille n

Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

Lemme

le nombre de permutations de taille n est n!

Corollaire

un algorithme de tri doit avoir n! comportements différents sur les entrées de taille n

Corollaire

un algorithme de tri par comparaisons fait au moins $\log_2 n!$ comparaisons dans le pire cas parmi les entrées de taille n

Corollaire

un algorithme de tri par comparaisons fait au moins $\log_2 n!$ comparaisons dans le pire cas parmi les entrées de taille n

Corollaire

un algorithme de tri par comparaisons fait au moins $\log_2 n!$ comparaisons dans le pire cas parmi les entrées de taille n

Question: c'est gros comment, log₂ n!?

Corollaire

un algorithme de tri par comparaisons fait au moins $\log_2 n!$ comparaisons dans le pire cas parmi les entrées de taille n

Question: c'est gros comment, log₂ n!?

Théorème

 $\log_2 n! \in \Theta(n \log n)$

Corollaire

un algorithme de tri par comparaisons fait au moins $\log_2 n!$ comparaisons dans le pire cas parmi les entrées de taille n

Question: c'est gros comment, log₂ n!?

Théorème

 $\log_2 n! \in \Theta(n \log n)$

Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en

 $\Omega(n \log n)$

Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en $\Omega(n \log n)$

Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en $\Omega(n \log n)$

Rappel : le tri par sélection est de complexité $\Theta(n^2)$ dans tous les cas, de même que le tri par insertion dans le pire cas

Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en $\Omega(n \log n)$

Rappel : le tri par sélection est de complexité $\Theta(n^2)$ dans tous les cas, de même que le tri par insertion dans le pire cas

Questions:

BORNE INFÉRIEURE POUR LA COMPLEXITÉ DES TRIS PAR COMPARAISONS

Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en $\Omega(n \log n)$

Rappel : le tri par sélection est de complexité $\Theta(n^2)$ dans tous les cas, de même que le tri par insertion dans le pire cas

Questions:

 existe-t-il des algorithmes de tri de complexité Θ(n log n) en moyenne? dans le pire cas?

Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en $\Omega(n \log n)$

Rappel : le tri par sélection est de complexité $\Theta(n^2)$ dans tous les cas, de même que le tri par insertion dans le pire cas

Questions:

- existe-t-il des algorithmes de tri de complexité Θ(n log n) en moyenne? dans le pire cas?
- quid de la complexité en moyenne du tri par insertion?

- découper le problème en sous-problèmes de taille inférieure
- résoudre *récursivement* le ou les sous-problèmes
- résoudre le problème initial à l'aide des résultats des sous-problèmes

- scinder la liste à trier en deux, gauche et droite
- résoudre *récursivement* le ou les sous-problèmes
- résoudre le problème initial à l'aide des résultats des sous-problèmes

tri utilisant la stratégie « diviser-pour-régner »

• scinder la liste à trier en deux, gauche et droite

• trier gauche et droite

 résoudre le problème initial à l'aide des résultats des sous-problèmes

tri utilisant la stratégie « diviser-pour-régner »

• scinder la liste à trier en deux, gauche et droite

• trier gauche et droite

• fusionner gauche et droite en une unique liste triée

Tri par fusion

tri utilisant la stratégie « diviser-pour-régner »

Étape élémentaire : la fusion de listes triées

2 3 6 8 1 4 5 7

tri utilisant la stratégie « diviser-pour-régner »

Étape élémentaire : la fusion de listes triées

2

3

6

8

 $oxed{1}$

4

5

tri utilisant la stratégie « diviser-pour-régner »

Étape élémentaire : la fusion de listes triées 2 3 6 8 4 5 7

Tri par fusion

tri utilisant la stratégie « diviser-pour-régner »

Étape élémentaire : la fusion de listes triées 6 8 7

tri utilisant la stratégie « diviser-pour-régner »

Étape élémentaire : la fusion de listes triées

8

 $oxed{1} oxed{2} oxed{3} oxed{4} oxed{5} oxed{6} oxed{7}$

tri utilisant la stratégie « diviser-pour-régner »

Étape élémentaire : la fusion de listes triées

 $\fbox{1} \fbox{2} \fbox{3} \fbox{4} \fbox{5} \fbox{6} \fbox{7} \fbox{8}$

tri utilisant la stratégie « diviser-pour-régner »

Étape élémentaire : la fusion de listes triées

 $ig|2\, ig|3\, ig|6\, ig|8\, ig|1\, ig|4\, ig|5\, ig|7$

 $\fbox{1} \fbox{2} \fbox{3} \fbox{4} \fbox{5} \fbox{6} \fbox{7} \fbox{8}$

Fusion de deux listes triées

```
def fusion(L1, L2) :  # version récursive (mal écrite)
  if len(L1) == 0 : return L2
  elif len(L2) == 0 : return L1
  elif L1[0] < L2[0] :
    return [L1[0]] + fusion(L1[1:], L2)
  else :
    return [L2[0]] + fusion(L1, L2[1:])</pre>
```

Fusion de deux listes triées

```
def fusion(L1, L2) :  # version récursive (mal écrite)
  if len(L1) == 0 : return L2
  elif len(L2) == 0 : return L1
  elif L1[0] < L2[0] :
    return [L1[0]] + fusion(L1[1:], L2)
  else :
    return [L2[0]] + fusion(L1, L2[1:])</pre>
```

 $\implies \Theta(n)$ comparaisons, où n est la taille de la liste fusionnée

Fusion de deux listes triées

```
def fusion(L1, L2) :  # version récursive (mal écrite)
  if len(L1) == 0 : return L2
  elif len(L2) == 0 : return L1
  elif L1[0] < L2[0] :
    return [L1[0]] + fusion(L1[1:], L2)
  else :
    return [L2[0]] + fusion(L1, L2[1:])</pre>
```

 $\implies \Theta(n)$ comparaisons, où n est la taille de la liste fusionnée

(ce n'est pas une bonne mesure de la complexité de la fonction écrite ci-dessus : chaque appel récursif travaille sur une **copie** de l'une des deux listes... mais c'est facile à résoudre, soit en dérécursivant la fonction, soit en passant les indices de début et fin en paramètre, et la complexité est alors bien en $\Theta(n)$)

Exemple d'exécution complète :

3 5 7 1 6 4 2

Exemple d'exécution complète :

3 5 7 1 6 4 2

Exemple d'exécution complète :

Exemple d'exécution complète :

 3
 5
 7
 1
 6
 4
 2

Exemple d'exécution complète :

3

5

 $oxed{1}$

7

 $\begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$

Exemple d'exécution complète :

3 5

 $oxed{1}$

7

6

 $oxed{4}$

Exemple d'exécution complète :

 $\mathbf{5}$

3

Exemple d'exécution complète :

7

 $egin{bmatrix} 1 \ \end{bmatrix} egin{bmatrix} 3 \ \end{bmatrix} egin{bmatrix} 5 \ \end{bmatrix}$

6

4

2

Exemple d'exécution complète :

1 3 5 7 6 4 2

Exemple d'exécution complète :

 1
 3
 5
 7
 6
 4
 2

Exemple d'exécution complète :

 1
 3
 5
 7
 4
 6
 2

Exemple d'exécution complète :

1 3 5 7 4 6 2

Exemple d'exécution complète :

1

3

5

 $\mathbf{4}$

6

 $\mathbf{2}$

Exemple d'exécution complète :

 $\boxed{1}\ \boxed{3}\ \boxed{5}\ \boxed{7}$

 $oxed{2} oxed{4} oxed{6}$

Exemple d'exécution complète :

1 3 5 7 2 4 6

Exemple d'exécution complète :

1 3 5 7 **2** 4 0

Exemple d'exécution complète :

3

5

 $oldsymbol{2}$

4

Exemple d'exécution complète :

5

7

 $oxed{2}$

Exemple d'exécution complète :

 $oldsymbol{5}$

4

 $oxed{1} oxed{2} oxed{3}$

Exemple d'exécution complète :

7 1 2 3 4 5

Exemple d'exécution complète :

1 2 3 4 5 6 7

Récapitulatif des étapes de fusion :

Tri par fusion

```
def tri_fusion(T) : # attention, version trop naïve
  if len(T) < 2 : return T
  else :
    milieu = len(T)//2
    gauche = tri_fusion(T[:milieu])
    droite = tri_fusion(T[milieu:])
    return fusion(gauche, droite)</pre>
```

Tri par fusion

```
def tri_fusion(T) : # attention, version trop naïve
  if len(T) < 2 : return T
  else :
    milieu = len(T)//2
    gauche = tri_fusion(T[:milieu])
    droite = tri_fusion(T[milieu:])
    return fusion(gauche, droite)

(encore beaucoup de recopies de tableaux inutiles...)</pre>
```

```
def tri_fusion(T, debut, fin) :
    ''' trie T entre les indices debut (inclus) et fin (exclue) '''
    if fin - debut < 2 : return T[debut:fin]
    else :
        milieu = (debut + fin)//2
        gauche = tri_fusion(T, debut, milieu)
        droite = tri_fusion(T, milieu, fin)
        return fusion(gauche, droite)</pre>
```

Tri par fusion

```
def tri_fusion(T, debut, fin) :
    ''' trie T entre les indices debut (inclus) et fin (exclue) '''
    if fin - debut < 2 : return T[debut:fin]
    else :
        milieu = (debut + fin)//2
        gauche = tri_fusion(T, debut, milieu)
        droite = tri_fusion(T, milieu, fin)
        return fusion(gauche, droite)</pre>
```

Complexité

C(n) : nombre de comparaisons nécessaires pour trier T de taille n

$$C(n) = 2 \times C(n//2) + \Theta(n)$$

Tri par fusion

```
def tri_fusion(T, debut, fin) :
    ''' trie T entre les indices debut (inclus) et fin (exclue) '''
    if fin - debut < 2 : return T[debut:fin]
    else :
        milieu = (debut + fin)//2
        gauche = tri_fusion(T, debut, milieu)
        droite = tri_fusion(T, milieu, fin)
        return fusion(gauche, droite)</pre>
```

Complexité

C(n): nombre de comparaisons nécessaires pour trier T de taille n

$$C(n) = 2 \times C(n//2) + \Theta(n)$$

Et donc???

Théorème

Le tri fusion d'un tableau de taille n s'effectue en $\Theta(n \log n)$ comparaisons

Théorème

Le tri fusion d'un tableau de taille n s'effectue en $\Theta(n \log n)$ comparaisons

Corollaire

Le tri fusion est un tri par comparaison asymptotiquement optimal

Théorème

Le tri fusion d'un tableau de taille n s'effectue en $\Theta(n \log n)$ comparaisons

Corollaire

Le tri fusion est un tri par comparaison asymptotiquement optimal

Points négatifs

- $\Theta(n \log n)$ comparaisons dans tous les cas (et jamais moins)
- la constante cachée dans le Θ est importante
- ne trie *pas en place* : complexité en espace $\in \Theta(n)$