INFOMLSAI Logics for Safe AI Final Exam

This is an open-book examination

You can use your notes, the textbook, lecture slides and recordings etc.

Answer ALL questions

Marks available for each question part are shown in brackets in the right-hand margin. This exam is marked out of 100.

The suggested time to answer all four questions is about 2 hours.

You can write your answers using word processing software, and also include within the document scanned or photographed portions that you have written by hand, or write it all by hand and scan or photograph it to produce a single PDF.

Use the standard naming convention for your submission: YourSolisId.pdf. Write your Solis ID number at the top of each page of your answers. Do not include your name.

This is an individual assessment. Under no circumstances are you to discuss any aspect of this assessment with anyone; nor are you allowed to share this document, ideas or solutions with others using email, social media, instant messaging, websites, or any other means. Your attempts at these questions must be entirely your own work. Those found to have collaborated with others will receive a mark of 0.

Supplementary Material

The language of LTL:

$$\varphi := \top \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \varphi \rightarrow \psi \mid X\varphi \mid F\varphi \mid \varphi U \psi \mid G\varphi$$

where \top is an always true formula and p is a propositional variable.

The language of CTL:

 $\varphi := \top \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \varphi \rightarrow \psi \mid EX\varphi \mid EF\varphi \mid E\varphi U \psi \mid EG\varphi \mid AX\varphi \mid AF\varphi \mid A\varphi U \psi \mid AG\varphi$ where \top is an always true formula and p is a propositional variable.

The language of ELCD:

$$\varphi := \top \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \varphi \rightarrow \psi \mid K_i \varphi \mid E_A \varphi \mid C_A \varphi \mid D_A \varphi$$

where \top is an always true formula, p is a propositional variable, and A is a set of agents.

The language of ATL:

$$\varphi := \top \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \varphi \rightarrow \psi \mid \langle\!\langle A \rangle\!\rangle X \varphi \mid \langle\!\langle A \rangle\!\rangle F \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \, U \, \psi \mid \langle\!\langle A \rangle\!\rangle G \, \varphi$$

where \top is an always true formula, p is a propositional variable, and A is a set of agents.

Q1 Consider the state transition system M in Figure 1. Propositions are false in states unless indicated to be true, e.g., p is false in state s_1 and true in s_2 .

Figure 1: State transition system M.

- (i) Express in LTL: $\neg p$ holds now, and it holds globally that if p is true, then in the next state $\neg p$ is true. Is this formula true on all paths starting in s_1 ? Explain why with reference to the truth definition for LTL. (5 marks)
- (ii) Express in CTL: it is not possible to reach a state where in all states on all paths in the future p holds. Is this formula true in s_1 ? Explain why with reference to the truth definition for CTL. (5 marks)
- (iii) What does the formula $AG(\neg p \lor EXp)$ mean? Is it true in s_1 ? Explain why with reference to the truth definition for CTL. (5 marks)
- (iv) What does the formula $A(p \lor \neg p) U EG p$ mean? Is it true in s_1 ? Explain why with reference to the truth definition for CTL. (5 marks)
- (v) Trace the CTL global model checking algorithm for the formula $E \top U AXp$, where \top is a tautology (formula which is true everywhere) on the state transition system M. That is, list the values of the variables at each step of the algorithm until the algorithm terminates (see the model answer to the mock exam). Use the algorithm presented in Lecture 2/2 (slides 7–10). (5 marks)

Q2 Consider the Kripke model M_{kripke} in Figure 2. Possible worlds or states are nodes labelled by two propositional variables, for example fish_a and fish_b. (X_a means that a is having X for dinner, and Y_b means that b is having Y for dinner.)

A line with a label a denotes an indistinguishability relation \sim_a . Note that not all relations are depicted, since \sim_a is also reflexive (each state is connected to itself by \sim_a) and transitive (if fish_afish_b is connected to fish_ameat_b, and fish_ameat_b is connected to fish_aveg_b, then fish_afish_b is connected by \sim_a to fish_aveg_b). Same for \sim_b .

Figure 2: Kripke model M_{kripke}

- (i) Represent this model with states (possible worlds) w_1, \ldots, w_9 , two agents a and b with indistinguishability relations \sim_a and \sim_b , and propositions fish_a, fish_b, meat_a, meat_b, veg_a, veg_b, which are true in those states where they are part of the label in Figure 2. States are numbered from the top row and left to right, so that the state in top left corner is w_1 labelled with fish_afish_b. (2 marks)
- (ii) What are the states reachable by $\sim_{a,b}^{D}$ (distributed knowledge) relation from w_1 (fish_afish_b)? What are the states reachable by $\sim_{a,b}^{C}$ (common knowledge) relation from w_1 (fish_afish_b)? (5 marks)
- (iii) Express in epistemic logic: agent a knows that he does not know what agent b is having for dinner (fish, meat, or veg). Is this formula true in w_1 ? Justify your answer with reference to the truth definition for epistemic logic formulas in Kripke models.

(5 marks)

- (iv) Express in epistemic logic: it is common knowledge between agents a and b that agent a knows what he is having for dinner. Is this true in w_1 ? Justify your answer with reference to the truth definition for epistemic logic formulas in Kripke models. (5 marks)
- (v) Model the following scenario as a Kripke model. There are three agents 1, 2 and 3, and each of them is either busy or not. Agent 1 knows whether it is busy, and can also see agents 2 and 3 and knows whether they are busy or not. Agent 2 knows whether it is busy, and can see agent 3 and knows whether agent 3 is busy (but does not know about agent 1). Agent 3 only knows about its own business but not about agents 1 and 2. Assume propositions busy₁, busy₂, busy₃.

Q3 Consider the concurrent game structure M_3 in Figure 3. There are two agents, a and b. Each agent has two actions in each state, 0 and 1. Transitions are by a pair of actions by a and b, as indicated in edge labels, for example from q_0 there is a transition by (0,0) to q_2 and by (0,1) to q_1 . There is a propositional variable p that is true only in q_1 .

Figure 3: CGS M_3 .

- (i) Specify each component in $M_3 = \langle Agt, St, \mathcal{V}, Act, d, o \rangle$ based on Figure 3. (2 marks)
- (ii) Express in ATL: agent a has a strategy to make p true at some point in the future. Is this formula true in q_0 ? Justify your answer with reference to the truth definition for ATL. If the formula is true, give a witness strategy.) (5 marks)
- (iii) Express in ATL: agents a and b have a strategy to make p false forever. Is this formula true in q_0 ? Justify your answer with reference to the ATL semantics. If the formula is true, give a witness strategy. (5 marks)
- (iv) Suppose a modality B with the following truth definition is added to ATL:

 $M, q \models \langle \langle A \rangle \rangle B \varphi$ if, and only if, there is a collective strategy s_A such that, for every path $\lambda \in out(q, s_A)$, there exists an $i \geq 0$, such that for all $j \geq i$, $M, \lambda[j] \models \varphi$.

Give pseudocode for the case in the global model checking algorithm for $\langle\!\langle A \rangle\!\rangle B\varphi$; use the algorithm presented in Lecture 7/1 (slides 4–5) as a template. (7 marks)

(v) Consider the algorithm ALG below that takes as input a CGS $M = \langle Agt, St, \mathcal{V}, Act, d, o \rangle$, a state $q \in St$, a set of states $Q \subseteq St$ and a non-empty coalition $A \subseteq Agt$, and returns true or false. Below, $d_A(q)$ is the set of joint actions by A from q and $d_{Agt}(q)$ is the set of joint actions by all agents from q. For a joint action by all agents $\alpha \in d_{Agt}(q)$, α_A is the sub-action of α which consists of actions by A. Assume that for actions $\sigma \in d_A(q)$ and $\alpha \in d_{Agt}(q)$ it is possible to check in constant time whether $\sigma = \alpha_A$. It is also possible to check in constant time whether $o(q, \alpha) \in Q$ holds or not.

```
\begin{aligned} & \textbf{function} \ \mathsf{ALG}(M,q,Q,A) \\ & \textbf{for} \ \sigma \in d_A(q) \ \textbf{do} \\ & check \leftarrow true \\ & \textbf{for} \ \alpha \in d_{Agt}(q) \ \textbf{do} \\ & \textbf{if} \ \sigma = \alpha_A \ \textbf{and} \ o(q,\alpha) \not \in Q \ \textbf{then} \\ & check \leftarrow false \\ & \textbf{if} \ check \ \textbf{then} \\ & \textbf{return} \ true \\ & \textbf{return} \ false \end{aligned}
```

State the big-O complexity of this algorithm in terms of the number of transitions m in M (that is, the size of the table defining o). Is it polynomial or exponential in m? (6 marks)

Q4 Consider the concurrent epistemic game structure M_4 in Figure 4. There are two agents, a and b. Each agent has two actions, 0 and 1, which are both available in s_1 and s_2 ; in s_3 and s_4 agent a also has both actions but agent b has only action 0, and in s_5 and s_6 both agents only have action 0. Transitions are by a pair of actions by a and b, as indicated in edge labels, for example from s_1 there is a transition by (0,1) to s_3 and by (1,1) to s_4 . Indistinguishability relations are indicated by a dotted line with the agent's name, for example s_5 and s_6 are indistinguishable for b. There is a propositional variable p that is true only in s_5 .

Figure 4: CEGS M_4 .

- (i) Specify each component in $M_4 = \langle Agt, St, \{\sim_i | i \in Agt\}, \mathcal{V}, Act, d, o \rangle$ based on Figure ??. (2 marks)
- (ii) Is the formula $\langle\langle a\rangle\rangle Fp$ true in M_4 , s_1 under ATL_{ir} semantics? Justify your answer with reference to the truth definition for ATL_{ir}. If the formula is true, give a witness strategy. (5 marks)
- (iii) Is the formula $\langle \langle a, b \rangle \rangle F \langle \langle b \rangle \rangle Xp$ true in s_1 under ATL_{ir} semantics? Justify your answer with reference to the truth definition for ATL_{ir} . If the formula is true, give a witness strategy. (5 marks)
- (iv) In an interpreted system corresponding to M_4 , how many local states for agents a and b would there be and why? (5 marks)
- (v) Consider the problem of checking whether $M, q \models_{ir} \langle \langle A \rangle \rangle X \varphi$, where M is A CEGS and q a state in M. Explain why finding a joint action by A in q and checking whether the same action enforces φ from all $q' \sim_A^E q$ does not correspond to the truth definition for ATL_{ir} semantics if A contains more than one agent. (8 marks)