Factorisation of positive definite operators

CAN MURAT DIKMEN AND JOHN B. READE

Abstract. In this paper we prove Reade's result for the positive definite C^1 kernels by using the factorisation method used by Kühn.

Mathematics Subject Classification (2000). Primary 41A60, Secondary 41A36.

 ${\bf Keywords.}$ Weyl numbers, factorisation method, eigenvalues, positive definite, approximation numbers.

1. Introduction. Following a method used by Kühn we prove Reade's result for the positive definite C^1 kernels. (See [5] and [6].) We prove eigenvalues λ_n of positive definite T in the case $K(x,t) \in C^1[0,1]^2$ are $o(1/n^2)$ by factorising the square root operator S via the Banach space C[0,1]. Explicitly we show $S: L^2[0,1] \to C[0,1]$ has approximation numbers $a_n(S) = o(1/\sqrt{n})$ by using the Fejer Kernel method. (See [4].) Then, we use the fact that the identity transformation $I: C[0,1] \to L^2[0,1]$ is 2-summing and has Weyl numbers $x_n(I) = O(1/\sqrt{n})$. (See [2], [3], or [7].)

Submultiplicativity of singular numbers then gives $\lambda_n^{1/2} = o(1/n)$, and hence $\lambda_n = o(1/n^2)$.

2. Singular numbers. We need the following two types of singular numbers.

Approximation numbers (See [1, p. 204]) The *n*th approximation number $a_n(T)$ of the operator $T: X \to Y$ between Banach spaces X, Y is

$$a_n(T) = \inf_{R} \|T - R\|$$

taken over all operators R with rank < n.

Weyl numbers (See [2]) The *n*th Weyl number $x_n(T)$ is

$$x_n(T) = \sup_A a_n(TA)$$

taken over all operators $A: H \to X$ where H is a Hilbert space and $||A|| \leq 1$.

These are all equal to the eigenvalues in the case X=Y=H a Hilbert space. They are all subadditive in the sense that

$$a_{m+n+1}(T+U) \le a_{m+1}(T) + a_{n+1}(U)$$

for $T, U: X \to Y$. They are all submultiplicative in the sense that

$$a_{m+n+1}(TU) \le a_{m+1}(T)a_{n+1}(U)$$

for $U: X \to Y$, $T: Y \to Z$ between the Banach spaces X, Y, Z.

We refer the reader to [1] and [2] for proofs of these properties.

3. Square roots. Any positive definite Fredholm operator

$$Tf(x) = \int_{0}^{1} K(x,t)f(t)dt$$

with $K(x,t) \in C^1[0,1]^2$ has a unique positive square root

$$Sf(x) = \int_{0}^{1} J(x,t)f(t)dt$$

where $J(x,t) \in L^2[0,1]^2$. If the eigenvalues and eigenfunctions of T are λ_n, ϕ_n then by Mercer's theorem we have

$$\sum_{1}^{\infty} \lambda_n < \infty.$$

Therefore

$$J(x,t) = \sum_{1}^{\infty} \lambda_n^{1/2} \phi_n(x) \overline{\phi_n(t)}$$

is a Hilbert-Schmidt kernel.

Lemma 3.1. If $T: L^2[0,1] \to L^2[0,1]$ is a Mercer operator (positive definite with continuous kernel), then its square root $S: L^2[0,1] \to L^2[0,1]$ is into C[0,1].

Proof. If the eigenvalues and eigenfunctions of T are λ_n, ϕ_n then we have

$$Tf(x) = \sum_{1}^{\infty} \lambda_n \langle f, \phi_n \rangle \phi_n(x),$$

$$Sf(x) = \sum_{1}^{\infty} \lambda_n^{1/2} \langle f, \phi_n \rangle \phi_n(x).$$

This series is uniformly convergent over [0, 1] since

$$\left| \sum_{M}^{N} \lambda_{n}^{1/2} \left\langle f, \phi_{n} \right\rangle \phi_{n}(x) \right|^{2} \leq \sum_{M}^{N} \lambda_{n} \left| \phi_{n}(x) \right|^{2} \sum_{M}^{N} \left| \left\langle f, \phi_{n} \right\rangle \right|^{2}.$$

Both summations on the right hand side $\rightarrow 0$ uniformly in x since

$$\sum_{n=1}^{\infty} \lambda_n |\phi_n(x)|^2 = K(x, x)$$

uniformly in x by Mercer's theorem and

$$\sum_{1}^{\infty} \left| \langle f, \phi_n \rangle \right|^2 \le \|f\|_2^2$$

by Bessel's inequality.

Lemma 3.2. $S: L^2[0,1] \to C[0,1]$ defined by

$$Sf(x) = \int_{0}^{1} J(x,t)f(t)dt$$

has $a_n(S) = o(1/\sqrt{n})$.

Proof. Suppose $||f||_2 \le 1$ and $\varepsilon > 0$ are given. Choose $\delta > 0$ such that

$$|\partial K/\partial x(x,t) - \partial K/\partial x(y,u)| < \varepsilon^2$$

for all $|x - y| < \delta$, $|t - u| < \delta$.

Working with the Fejer Kernel on the interval $[-\pi, \pi]$, if we let

$$R_n f(x) = \frac{1}{2\pi n} \int_{-\pi}^{\pi} \frac{\sin^2 nt/2}{\sin^2 t/2} f(x-t) dt,$$

then

$$R_n Sf(x) - Sf(x) = \frac{1}{2\pi n} \int_{-\pi}^{\pi} \frac{\sin^2 nt/2}{\sin^2 t/2} \left(Sf(x-t) - Sf(x) \right) dt$$

where

$$|Sf(x-t) - Sf(x)|^2 = \left| \int_0^1 (J(x-t,u) - J(x,u)) f(u) du \right|^2$$

$$\leq \int_0^1 |J(x-t,u) - J(x,u)|^2 du \int_0^1 |f(u)|^2 du$$

$$\leq \int_{0}^{1} (J(x-t,u) - J(x,u)) \overline{(J(x-t,u) - J(x,u))} du$$

$$= \int_{0}^{1} (J(x-t,u) - J(x,u)) (J(u,x-t) - J(u,x)) du$$

$$\leq |K(x-t,x-t) - K(x,x-t) - K(x-t,x) + K(x,x)|$$

since

$$\int_{0}^{1} J(x,u)J(u,t)du = K(x,t).$$

We also have

$$\begin{aligned} |K(x-t,x-t)-K(x,x-t)-K(x-t,x)+K(x,x)| \\ &=\left|\partial K/\partial x(x-\theta t,x-t)-\partial K/\partial x(x-\theta^{'}t,x)\right||t| \end{aligned}$$

for some $0 < \theta, \, \theta^{'} < 1$ by the mean value theorem. Therefore

$$|Sf(x-t) - Sf(x)|^2 < \begin{cases} \varepsilon^2 |t| & \text{if } |t| < \delta, \\ 2\|\partial K/\partial x\|_{\infty} |t| & \text{otherwise} \end{cases}$$

It follows that if we write

$$R_n Sf(x) - Sf(x) = \frac{1}{2\pi n} \left(\int_{-\pi}^{-\delta} + \int_{-\delta}^{\delta} + \int_{\delta}^{\pi} \right) \frac{\sin^2 nt/2}{\sin^2 t/2} \left(Sf(x-t) - Sf(x) \right) dt,$$

then

$$\left| \frac{1}{2\pi n} \int_{-\delta}^{\delta} \frac{\sin^2 nt/2}{\sin^2 t/2} \left(Sf(x-t) - Sf(x) \right) dt \right| \leq \frac{1}{2\pi n} \int_{-\delta}^{\delta} \frac{\sin^2 nt/2}{\sin^2 t/2} \left| Sf(x-t) - Sf(x) \right| dt$$

$$< \frac{\varepsilon}{2\pi n} \int_{-\delta}^{\delta} \frac{\sin^2 nt/2}{\sin^2 t/2} |t|^{1/2} dt \leq \frac{\varepsilon}{2\pi n} \int_{-\pi}^{\pi} \frac{\sin^2 nt/2}{\sin^2 t/2} |t|^{1/2} dt = \frac{\varepsilon}{\pi n} \int_{0}^{\pi} \frac{\sin^2 nt/2}{\sin^2 t/2} t^{1/2} dt$$

$$\leq \frac{\varepsilon \pi}{n} \int_{0}^{\pi} \frac{\sin^2 nt/2}{t^{3/2}} dt \leq \frac{\varepsilon \pi}{\sqrt{2n}} \int_{0}^{n\pi/2} \frac{\sin^2 u}{u^{3/2}} du \leq \frac{\varepsilon \pi}{\sqrt{2n}} \int_{0}^{\infty} \frac{\sin^2 u}{u^{3/2}} du.$$

Also

$$\begin{split} &\left| \frac{1}{2\pi n} \int\limits_{\delta}^{\pi} \frac{\sin^2 nt/2}{\sin^2 t/2} \left(Sf(x-t) - Sf(x) \right) dt \right| \\ &\leq \frac{1}{2\pi n} \int\limits_{\delta}^{\pi} \frac{\sin^2 nt/2}{\sin^2 t/2} \left| Sf(x-t) - Sf(x) \right| dt \\ &< \frac{\sqrt{2 \left\| \partial K/\partial x \right\|_{\infty}}}{2\pi n} \int\limits_{\delta}^{\pi} \frac{\sin^2 nt/2}{\sin^2 t/2} t^{1/2} dt \\ &< \frac{\sqrt{2 \left\| \partial K/\partial x \right\|_{\infty}}}{2\pi n \sin^2 \delta/2} \int\limits_{0}^{\pi} t^{1/2} dt \\ &< \frac{\varepsilon}{\sqrt{n}} \end{split}$$

for sufficiently large n.

The first integral is handled similarly. Hence the result follows.

References

- [1] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. 51, 201–223 (1974).
- [2] A. Pietsch, Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann. 247, 149–168 (1980).
- [3] A. Pietsch, Eigenvalues and s-Numbers, Cambridge Studies in Advanced Mathematics, London, 1985.
- [4] C. M. DIKMEN, The Hille-Tamarkin Programme, PhD Thesis, University of Manchester, Department of Mathematics, 2000.
- [5] T. KÜHN, Eigenvalues of Integral Operators with Smooth Positive Definite Kernels, Arch. Math. 49, 525–534 (1987).
- [6] J. B. Reade, Eigenvalues of Positive Definite Kernels I, SIAM J. Math. Anal. 14, 152–157 (1983).
- [7] H. KÖNIG, Eigenvalue Distribution of Compact Operators, Birkhäuser Verlag, 1986.

Can Murat Dikmen, Zonguldak Karaelmas Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Blm, 67100 Zonguldak, Turkey

 $e\text{-}mail: \verb|canmuratdikmen@karaelmas.edu.tr|\\$

JOHN B. READE, The University of Manchester, Department of Mathematics, Oxford Road, M13 9PL, Manchester, United Kingdom e-mail: johnr@maths.man.ac.uk

Received: 10 April 2007

Revised: 3 December 2007