

NÚMEROS PRIMOS

Alan Reyes-Figueroa Teoría de Números

(AULA 04) 20.JULI0.2021

Recordemos:

Teorema (Teorema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que Ma + Nb = d, d = (a, b).

Propiedad

La ecuación diofantina xa + yb = c admite solución en \mathbb{Z} si, y sólo si, $d \mid c$, donde d = (a, b).

Si (x_0,y_0) es una solución particular de la ecuación, entonces todas las otras soluciones son de la forma

$$x = x_0 + \frac{b}{d}t, \qquad y = y_0 - \frac{a}{d}t, \qquad t \in \mathbb{Z}.$$

Prueba: (\Rightarrow) Como d=(a,b) existen enteros $r,s\in\mathbb{Z}$ con a=dr,b=ds.

Si existe una solución $(x_0, y_0) \in \mathbb{Z}^2$, entonces

$$c = x_0 a + y_0 b = x_0 (dr) + y_0 (ds) = d(x_0 r + y_0 s) \quad \Rightarrow \quad d \mid c.$$

(\Leftarrow) Sea $d \mid c$. Entonces c = dq, para algún $q \in \mathbb{Z}$. Por el Teorema de Bézout, existen enteros $M, N \in \mathbb{Z}$ tales que d = Ma + Nb. Entonces

$$(Mq)a + (Nq)b = (Ma + Nb)q = dq = c,$$

y $(Mq,Nq)\in\mathbb{Z}^2$ es una solución de xa+yb=c.

Para la segunda afirmación del teorema, supongamos que se conoce una solución $(x_0, y_0) \in \mathbb{Z}^2$ de la ecuación dada. Si $(x', y') \in \mathbb{Z}^2$ es cualquier otra solución, entonces $ax_0 + by_0 = c = ax' + by'$. Lo anterior es equivalente a $a(x' - x_0) = b(y_0 - y')$.

Tenemos $a(x' - x_0) = b(y_0 - y')$.

De nuevo, como d=(a,b), existen enteros primos relativos r y s, tales que a=dr, b=ds. Sustituyendo estos valores en la ecuación anterior y cancelando el factor común d, entonces

$$r(x'-x_{o})=s(y_{o}-y').$$

La situación es ahora la siguiente: $r \mid s(y_0 - y')$, con (r, s) = 1. Del lema de Euclides, $r \mid y_0 - y'$; ó, en otras palabras, $y_0 - y' = rt$ para algún número entero $t \in \mathbb{Z}$.

Sustituyendo, obtenemos

$$x'-x_0=st.$$

Esto lleva a las fórmulas

$$x' = x_o + st = x_o + \frac{b}{d}t,$$
 $y' = y_o - rt = y_o - \frac{a}{d}t.$

Sin importar el valor de $t \in \mathbb{Z}$, estos valores satisfacen la ecuación diofantina, pues

$$ax' + by' = a(x_0 + \frac{b}{d}t) + b(y_0 - \frac{a}{d}t) = (ax_0 + by_0) + (\underbrace{\frac{ab}{d} - \frac{ab}{d}}_{=0})t$$

$$= c$$

Entonces, existen infinitas soluciones a la ecuación, una para cada $t \in \mathbb{Z}$, en la forma requerida. \Box

Corolario

Si (a,b)=1 y si $(x_0,y_0)\in\mathbb{Z}^2$ es una solución particular de la ecuación diofantina xa+yb=c, entonces todas las soluciones son de la forma

$$x = x_0 + bt$$
, $y = y_0 - at$, $t \in \mathbb{Z}$.

Sean $a \ge b \ge$ o. Recordemos que si el Algoritmo de Euclides hace k+1 divisiones para hallar d=(a,b), entonces en cada paso $r_{k+1}=q_kr_{k-1}+r_k$, $q_k \ge 1$, $b>r \ge$ o, se tiene

$$a = qb + r \ge b + r > 2r, \Rightarrow r < \frac{a}{2}.$$

Similarmente, $r_1 < \frac{b}{2} \le \frac{a}{2}$, $r_2 < \frac{r}{2} < \frac{a}{4}$, $r_3 < \frac{r_1}{2} < \frac{b}{4} \le \frac{a}{4}$, ..., y en general

$$r_{2j} < \frac{a}{2^j}, \qquad r_{2j+1} < \frac{a}{2^j} \qquad \text{para } j = 1, 2, \dots, (k+1)/2.$$

Por otro lado, existe $t \in \mathbb{Z}^+$ tal que $a < 2^t \Rightarrow \log_2 a < t$ $\Rightarrow r_{2t} < \frac{a}{2^t} < 1 \Rightarrow r_{2t} = 0$. (i.e., el algoritmo acaba a lo sumo en 2t pasos)

Si a tiene N dígitos en su representación decimal, entonces $a < 10^N$. Luego, $\log_2 a < N \log_2 10$.

Así

$$k+1=2t\leq 2(\lfloor \log_2 a\rfloor+1)\leq 2(N\lfloor \log_2 10\rfloor+1)\approx 6.6N.$$

(LAMÉ, 1844).

Se puede mostrar que para que el Algoritmo de Euclides efectúe n pasos (n=k+1), se debe tomar al menos $a=F_{n+2},\ b=F_{n+1}$. En particular $n<2\log_2 a \Rightarrow \frac{n}{2}<\log_2 a \Rightarrow a>2^{n/2}$.

Recordemos la **Fórmula de** BINET (1843)

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

Como $\left(\frac{1-\sqrt{5}}{2}\right)^n o$ o, cuando $n o \infty$, podemos simplificar

$$F_n pprox rac{1}{\sqrt{5}} \Big(rac{1+\sqrt{5}}{2}\Big)^n = rac{1}{\sqrt{5}} arphi^n,$$

donde $\varphi = \frac{1+\sqrt{5}}{2}$ es la razón aúrea. (i.e., los F_n se parecen a los φ^n)

Recordemos que φ satisface $\varphi^2 - \varphi - 1 = 0$, de modo que $\varphi^2 = \varphi + 1$. Afirmamos que $F_n \ge \varphi^{n-1}$, para todo $n \ge 1$.

 $F_1=1\geq \varphi^0$, $F_2=2\geq \varphi$. Asumiendo la hipótesis inductiva que $F_k\geq \varphi^{k-1}$ siempre que $k\leq n$, entonces $F_{n+1}=F_n+F_{n-1}\geq \varphi^{n-1}+\varphi^{n-2}=\varphi^{n-2}(\varphi+1)=\varphi^{n-2}\varphi^2=\varphi^n$, lo que completa la afirmación.

Luego, $a=F_{n+2}\geq \varphi^{n+1}$ y vale que $n\leq n+1=\log_{\varphi}\varphi^{n+1}\leq \log_{\varphi}a$.

De esta última desigualdad, obtenemos

$$n \leq \log_{\varphi} a = \frac{\log_{10} a}{\log_{10} \varphi} \approx 4.7851..(\log_{10} a) < 5\log_{10} a \leq 5N.$$

(Teorema de LAMÉ, 1844).

Números Primos

Definición

Un entero p > 1 es llamado un número **primo** si sus únicos divisores positivos son 1 y p. Un número mayor a 1 que no es primo se llama **compuesto**.

Ejemplo:

 $2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 91, 97, \dots$

Propiedad

Si p es primo y p | ab, entonces p | a \acute{o} p | b.

<u>Prueba</u>: Si $p \mid a$, acabó. Supongamos entonces que $p \nmid a$. Como los únicos divisores positivos de p son 1 y p, entonces (p,a) = 1. Por el Lema de Euclides, entonces $p \mid b$.

Números Primos

Corolario

Si p es primo y p $\mid a_1 a_2 \cdots a_n$, entonces p $\mid a_k$ para algún k, donde $1 \le k \le n$.

<u>Prueba</u>: Por inducción sobre *n*, el número de factores.

Cuando n = 1, la conclusión es inmediata; para n = 2, el resultado es el contenido de la propiedad anterior.

Suponga que n>2 y que siempre que p divide al producto de menos de n factores, divide al menos uno de los factores. Ahora $p\mid a_1a_2\cdots a_n$. De la propiedad anterior, $p\mid a_n$ ó $p\mid a_1a_2\cdots a_{n-1}$. Si $p\mid a_n$, listo! En el caso, $p\mid a_1a_2\cdots a_{n-1}\Rightarrow p\mid a_k$, para algún $1\leq k\leq n-1$. En cualquier caso, p divide uno de los factores. \square

Corolario

Si p, q_1, q_2, \ldots, q_n son primos y $p \mid q_1q_2\cdots q_n$, entonces $p=q_k$, para algún $1 \leq k \leq n$.

<u>Prueba</u>: Del colorario arriba sabemos que $p \mid q_k$ para algún $1 \le k \le n$. Como q_k es primo, q_k sólo tiene divisores positivos 1 ó q_k . Entonces p = 1 ó $p = q_k$. Pero p al ser primo, satisface p > 1. Portanto, $p = q_k$. \square

Teorema Fundamental de la Aritmética

Teorema (Teorema Fundamental de la Aritmética)

Todo entero positivo n > 1 es primo o es producto de primos. Esta representación es única, a menos del orden en los factores.

<u>Prueba</u>: Se n > 1. Entonces n es primo o es compuesto. En el primer caso, no hay nada que probar. Si n es compuesto, entonces existe un entero d que satisface $d \mid n$ y 1 < d < n.

Elija p_1 el menor entre todos esos enteros d (esto es posible por el principio de buen orden). Entonces, p_1 es primo. De lo contrario, también tendría un divisor q con $1 < q < p_1$; pero entonces $q \mid p_1 \text{ y } p_1 \mid n \Rightarrow q \mid d$, lo que contradice la elección de p_1 como el menor divisor positivo de n.

Portanto, podemos escribir $n = p_1 n_1$, donde p_1 es primo y $1 < n_1 < n$. Caso contrario, repetimos el argumento anterior para producir un segundo número primo p_2 tal que $n_1 = p_2 n_2$, con $1 < p_2, n_2 < n_1$, esto es

Teorema Fundamental de la Aritmética

$$n = p_1 p_2 n_2,$$
 $1 < n_2 < n_1.$

Si n_2 es primo, no es necesario ir más lejos. De lo contrario, escriba $n_2=p_3n_3$, con p_3 primo.

Continuando este proceso, la secuencia decreciente $n > n_1 > n_2 > ... > 1$, no puede continuar indefinidamente, de modo que después de un número finito de pasos n_{k-1} es un primo, digamos p_k . Así, obtenemos la existencia de una factoración en primos

$$n=p_1p_2\cdots p_k$$
.

Para la unicidad, supongamos que n admite dos representaciones como producto de primos de dos formas; decir,

$$n=p_1p_2\cdots p_r=q_1q_2\cdot q_s, \qquad r\leq s,$$

donde p_i y q_j son todos primos, escritos en magnitud creciente de modo que $p_1 \le p_2 \le \ldots \le p_r$ y $q_1 \le q_2 \le \ldots \le q_s$. Como $p_1 \mid q_1 q_2 \cdots q_s$, por el el Corolario 2 anterior, $p_1 = q_k$ para algún $1 \le k \le s$. Esto implica que $p_1 \ge q_1$.

Teorema Fundamental de la Aritmética

Un razonamiento similar produce $q_1 \ge p_1$, de modo que $p_1 = q_1$ Podemos cancelar este factor común y obtener

$$p_2p_3\cdots p_r=q_2q_3\cdot q_s.$$

Repetimos el agrumento anterior para obtener $p_2 = q_2$ y, a su vez,

$$p_3p_4\cdots p_r=q_3q_4\cdot q_s$$
.

Continuando de esta forma, si la desigualdad r < s fuese válida, eventualmente tendríamos que 1 = $q_{r+1}q_{r+2}\dots q_s$, lo cual es absurdo, ya que cada $q_j >$ 1. Por lo tanto, r = s, lo que hace idénticas las dos factoraciones de n. Esto completa la prueba. \square