Série 3 Travaux dirigés d'algèbre tensoriel

Exercice 1

Soit un espace vectoriel E_2 ayant pour base $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$. On considère deux vecteurs : $\overrightarrow{X} = 4\overrightarrow{e_1} + 3\overrightarrow{e_2}$ $\overrightarrow{Y} = \overrightarrow{e_1} + 5\overrightarrow{e_2}$.

- 1. Déterminer les composantes contravariantes du produit tensoriel de \overrightarrow{X} par \overrightarrow{Y} . Écrire la matrice de ce tenseur sur la base $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$.
- 2. On effectue un changement de base défini par :

$$\begin{bmatrix} \overrightarrow{e_1'} \\ \overrightarrow{e_2'} \end{bmatrix} = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \overrightarrow{e_1'} \\ \overrightarrow{e_2'} \end{bmatrix}$$

Déterminer les nouvelles composantes contravariantes du produit tensoriel.

3. Écrire la matrice du produit tensoriel pour $\alpha = \frac{\pi}{2}$.

Exercice 2

1. Écrire chacune des expressions suivantes en utilisant la convention d'Einstein:

a.
$$a_{j1}x^{1} + a_{j2}x^{2} + \dots + a_{jN}x^{N}$$

b. $ds^{2} = g_{11}dx^{1}dx^{1} + g_{22}dx^{2}dx^{2} + g_{33}dx^{3}dx^{3}$
c. $d\phi = \frac{\partial \phi}{\partial x_{1}}dx^{1} + \frac{\partial \phi}{\partial x_{2}}dx^{2} + \dots + \frac{\partial \phi}{\partial x_{n}}dx^{n}$

2. Écrire les termes dans les sommes suivantes :

a.
$$A_{pq}A^{qr}$$
 avec $q = 1, \dots N$
b. $g'_{rs} = g_{jk} \frac{\partial x^j}{\partial x'^r} \cdot \frac{\partial x^k}{\partial x'^s}$ avec $N = 3$
c. $\overrightarrow{e_i} = \begin{bmatrix} \beta_i^j \end{bmatrix} \overrightarrow{E_j'}$ avec $i, j = 1, \dots, 3$

Exercice 3

Soit un repère $\overrightarrow{e_i}$ avec (1=1,2,3) d'origine O, tel que $\overrightarrow{e_1}$ soit orthogonal à $\overrightarrow{e_2}$, mais tel que $\overrightarrow{e_3}$ ne soit pas orthogonal au plan $(\overrightarrow{e_1},\overrightarrow{e_2})$. On effectue le changement de base suivant :

$$\overrightarrow{E_1} = \overrightarrow{e_1}$$
 $\overrightarrow{E_2} = \overrightarrow{e_2}$ $\overrightarrow{E_3} = -\overrightarrow{e_3}$

- 1. Un vecteur $\overrightarrow{OM} = \overrightarrow{x}$ a pour composante (x^1, x^2, x^3) dans la base $\overrightarrow{e_i}$. Donner ces composantes contravariantes X^i dans la base $\overrightarrow{E_i}$.
- 2. Donner les matrices de changement de base pour les vecteurs de base et les composantes de \overrightarrow{x} . Écrire ces expressions sous forme tensorielle.