3.2 Soient $a, b, k \in \mathbb{Z}$.

1) Montrons que $D(a, b) \subset D(a - k b, b)$.

Soit $d \in D(a, b)$ un diviseur commun à a et b.

Au vu de l'exercice 1.1 6), l'hypothèse $d \mid a$ et $d \mid b$ implique que $d \mid (m \, a + n \, b)$ quels que soient les entiers m et n.

En choisissant m = 1 et n = -k, on obtient que $d \mid (1 \cdot a + (-k)b)$, c'est-à-dire $d \mid (a - kb)$.

Ainsi d est un diviseur de a-k b et de b, ce qui signifie que $d \in D(a-k$ b, b).

2) Montrons que $D(a - k b, b) \subset D(a, b)$.

Soit $d \in D(a - kb, b)$ un diviseur commun à a - kb et b.

Toujours d'après l'exercice 1.1 6), l'hypothèse $d \mid (a-kb)$ et $d \mid b$ entraı̂ne que $d \mid (m(a-kb)+nb)$ quels que soient les entiers m et n.

En particulier, lorsque m = 1 et n = k, on a $d \mid (1 \cdot (a - kb) + kb)$ ou encore $d \mid a$.

En d'autres termes, d est un diviseur de a et de b, de sorte que $d \in D(a, b)$.