Advanced Calculus Preliminary Examination January 2001

- 1. (20 pts.) Find the critical points and the values of the maximum and minimum of the function f = x + z on the sphere $x^2 + y^2 + z^2 = 1$.
 - 2. (20 pts.) (a) Fick's law of thermal conduction states that heat flows in the direction of decreasing temperature T at a rate proportional to the temperature gradient, i.e.,

$$\mathbf{u} = -k\nabla T$$

where k is a positive constant and $\int \int_S \mathbf{u} \cdot \mathbf{n} \, dS$ represents the heat flux, i.e. the number of calories crossing the surface S, in the direction normal to S. Let S be a closed surface forming the boundary of a region D. Consider the total amount of heat entering D through S and the rate $\int \int \int_D c\rho \frac{\partial T}{\partial t} dV$ at which heat is absorbed by the material in the region D (where the constants c and ρ are its specific heat and density, respectively), to derive the heat conduction equation in D

$$c\rho \frac{\partial T}{\partial t} = k\nabla^2 T.$$

(b) The magnetic field B generated by a steady current j satisfies

$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{j},$$

where the constant c is the speed of light. Consider an axisymmetric current density $\mathbf{j}=j_z(r)\,\mathbf{e}_z$ with \mathbf{e}_z being the unit vector in the z-direction and r the radial coordinate of a cylindrical coordinate system. Using symmetry arguments, it can be shown that in this case the magnetic field has only an azimuthal component, $\mathbf{B}=B_\phi\mathbf{e}_\phi$ with B_ϕ constant.

- i) Derive an integral expression for the magnetic field in terms of the current density.
- ii) Conclude that for no current density that corresponds to a finite total current one can use this geometry, i.e. a current distribution of the form $\mathbf{j} = j_z(r) \mathbf{e}_z$, to obtain a magnetic field that is homogeneous everywhere within a cylindrical domain of radius R_0 .
- 3. (20 pts.) Consider a one dimensional fluid motion, e.g., the flow is along the x axis. Let v(x,t) be the velocity of the fluid at position x at time t, so that $\frac{dx}{dt} = v$. Let f(x,t) denote the density of the fluid at position x at time t. A piece of fluid of density f initially occupies the interval $a_0 \le x \le b_0$. Then, at time t, it occupies the interval $a(t) \le x \le b(t)$, where $\frac{da}{dt} = v(a,t)$ and $\frac{db}{dt} = v(b,t)$. The mass of the piece of fluid is given by $F(t) = \int_{a(t)}^{b(t)} f(x,t) dx$. Show that $\frac{dF}{dt} = \int_{a(t)}^{b(t)} \left(\frac{\partial f}{\partial t} + \frac{\partial}{\partial x}(fv)\right) dx = \int_{a(t)}^{b(t)} \left(\frac{Df}{Dt} + f\frac{\partial v}{\partial x}\right) dx$. Here, $\frac{Df}{Dt} = \frac{\partial f}{\partial t} + v\frac{\partial f}{\partial t}$ is the material derivative.

Figure 1: Sketch of the three integration paths.

4. (20 pts.) Consider the force field given in cartesian coordinates by

$$\mathbf{F}(x,y,z) = (-ay,bx,-cz). \tag{1}$$

The work W performed by the force when moving a particle along a path C is given by

$$W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}. \tag{2}$$

Calculate the work performed by the force for the following three paths C_i as indicated in fig.1:

i) in a straight line from P = (-1, 0, 0) to Q = (1, 0, 0) (solid line),

ii) in straight lines from P to P' = (-1, 0, -1) to Q' = (1, 0, -1) to Q (dashed line),

iii) along a circular semi-arc with radius 1 that goes from P to Q and that is rotated around the x-axis by an angle $0 \le \alpha \le \pi/2$ with respect to the x-y-plane.

Compare the amounts of work performed in each case.

For which values of a, b, and c can the force field be derived from a potential U, i.e. $\mathbf{F} = -\nabla U$? For that case determine U(x, y, z).

- 5. (20 pts.) Consider a scalar function $F(r,\phi)$ and a vector field $\mathbf{v}(r,\phi,\theta) = v_r(r,\phi)\mathbf{e}_r + v_\phi(r,\phi)\mathbf{e}_\phi$ in spherical coordinates (r,ϕ,θ) with $0 \le r < \infty$, $0 \le \phi < 2\pi$, and $0 \le \theta \le \pi/2$.
 - i) Starting from the gradient operator $\nabla \equiv (\partial_x, \partial_y, \partial_z)$ in cartesian coordinates derive the r- and the ϕ -components of the gradient operator in spherical coordinates, as they are needed to determine $\nabla F(r, \phi)$ in spherical coordinates. Use them to give an explicit expression for $\nabla F(r, \phi)$. (Note, that for this F the θ -component of the gradient vanishes.)
 - ii) Use results from i) to determine $\nabla \cdot \mathbf{v}(r, \phi)$, i.e. determine $\mathbf{div} \ \mathbf{v}(r, \phi)$ (with \mathbf{v} independent of θ).