Algebraens fundamentalsætning

- Nu med et geometrisk bevis

 $Dan\ Saattrup\ Nielsen$

Algebraens fundamentalsætning er en af de sætninger, som vi alle nok er bekendt med og som dukker op igen og igen. I KomAn beviser vi sætningen analytisk. I Alg3 beviser vi sætningen algebraisk¹. Man kunne så, bare sådan lidt for sjov, tænke over om man også kunne bevise den geometrisk. Svaret er ja. Here we go.

Sætning 1 (Algebraens fundamentalsætning) $Lad\ p(z) = a_n z^n + \cdots + a_1 z + a_0 \in \mathbb{C}[x]$ være et komplekst polynomium af $grad \geq 1$. Da har p en rod i \mathbb{C} .

Bevis. Idéen i beviset er det følgende. Vi vælger en cirkel C_r i $\mathbb C$ med tilstrækkelig stor radius r>0, så $p(C_r)$ ligger tæt på cirklen C_{r^n} med radius r^n . Bemærk at $p(C_r)$ er tilnærmelsesvis "cirkelformet", da p er kontinuert. Uden tab af generalitet er $p(0)=a_0\neq 0$, så hvis vi kontinuert formindsker C_r til 0, så vil $p(C_r)$ blive kontinuert formindsket til a_0 . Men i denne proces vil $p(C_r)$ ramme 0 på et tidspunkt, da $p(C_r)$ ligger rundt om 0 fra valget af r. Se tegningen.

 $^{^1{\}rm Okay}$ okay, ikke100%algebraisk. Men det er tæt på.

Denne intuitive idé er god at huske, for det formelle bevis giver ikke ligeså meget indsigt. Antag altså at p ikke har nogen rødder i \mathbb{C} ; vi skal vise at p har grad 0. Antag uden tab af generalitet at p er monisk. Vælg nu r > 0 så $r^n > |a_{n-1}|r^{n-1} + \cdots + |a_1|r + |a_0|$ (samme r som ovenfor). Definér stien $\alpha : [0,1] \to \mathbb{S}^1$ givet ved

$$\alpha(s) := \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|},$$

som giver mening, da vi har antaget at $p(r) \neq 0$. Det ses at α er en lukket sti med $\alpha(0) = \alpha(1) = 1$ (Her har vi "normaliseret" $p(C_r)$ til en delmængde af \mathbb{S}^1 , så a_0 vil svare til punktet 1). Lad $e_1:[0,1]\to\mathbb{S}^1$ betegne den konstante sti på 1 $(e_1(s):=1)$, og lad $\mu_n(s):[0,1]\to\mathbb{S}^1$ være standard løkken $\mu_n(s):=e^{2\pi i n s}$. Vi viser at (i) $e_1\sim\alpha$ og (ii) $\mu_n\sim\alpha$, som så resulterer i $e_1\sim\mu_n$. Dette tvinger n til at være 0, da vi har isomorfien $\pi(\mathbb{S}^1,1)\cong\mathbb{Z}$ bemærk dog at dette resultat ikke er trivielt.

(i) Definér funktionen $H:[0,1]\times[0,1]\to\mathbb{S}^1$ givet ved

$$H(s,t) := \frac{p(tre^{2\pi is})/p(tr)}{|p(tre^{2\pi is})/p(tr)|}.$$

Det kan tjekkes at H faktisk er en homotopi mellem e_1 til α . Dette er den tidligere nævnte formindskning af cirklerne.

(ii) Definér funktionen $G: \mathbb{C} \times [0,1] \to \mathbb{C}$ givet ved $G(z,t):=(1-t)z^n+tp(z)$ og definér derudover $F:[0,1]\times [0,1] \to \mathbb{S}^1$ givet

 $^{^2{\}rm Her}$ betyder $\sim homotopiækvivalens, som betyder, at der findes en kontinuert deformation af de to stier.$

 $^{^3}$ Her er $\pi(\mathbb{S}^1,1)$ gruppen af alle løkker i $\mathbb{S}^1\subseteq\mathbb{C}$ startende på $1\in\mathbb{C}$, kaldet fundamentalgruppen af \mathbb{S}^1 .

ved

$$F(s,t) := \frac{G(re^{2\pi i s}, t)/G(r, t)}{|G(re^{2\pi i s}, t)/G(r, t)|}.$$

Denne homotopi svarer altså til deformationen mellem $p(C_r)$ og C_{r^n} . Vi starter med at tjekke at vi ikke dividerer med nul her. Per definition af G har vi at $z^n = G(z,t) - t(a_{n-1}z^{n-1} + \cdots + a_1z + a_0)$, hvor vi brugte antagelsen om at p er monisk, og trekantsuligheden giver da at

$$|z^n| \le |G(z,t)| + t(|a_{n-1}||z|^{n-1} + \dots + |a_1||z| + |a_0|).$$

Da får vi at

$$|G(re^{2\pi is},t)| \ge r^n - t(|a_{n-1}|r^{n-1} + \dots + |a_1|r + |a_0|)$$

$$\ge r^n - (|a_{n-1}|r^{n-1} + \dots + |a_1|r + |a_0|)$$

$$> 0.$$

hvor sidste ulighed kom fra valget af r. Altså er F veldefineret. Ved indsætning ses det også at $F(s,0) = \mu_n(s)$ og $F(s,1) = \alpha(s)$, så F er dermed en homotopi fra μ_n til α , som ønsket. Da er n = 0 fra det tidligere argument.