CLAIMS:

5

10

15

20

- 1. A method of operating a DC/DC up-down converter which has
 - an input voltage (U_{in}) and at least a first and a second output voltage (U_A, U_B),
 - at least one inductive energy storage means (L₁), which is connected with a first terminal (X₁) to a main switching means (T₁) and can be connected with a second terminal (Y₁) to at least two outputs (A B) via switching means (T₃, D₃),
 - output switching means (T₃, D₃) for providing electrical energy for the first and second output voltages(U_A, U_B) by supplying a coil current (I_{L1}),
 - a main switching means (T_1) between the inductive energy storage means (L_1) and a DC voltage source generating the input voltage (U_{in}) ,
 - a free-wheeling switching means $(T_2 D_2)$ which makes possible the continuation of the current flow in the inductive means (L_1) if the main switching means (T_1) is switched off and
 - a control means (controller) for selective actuation of all switching means (T₁, T₂, T₃, T₄),

wherein

- the first output voltage (U_A), which is lower than the input voltage (U_{in}), is present on the first output (A) and
- the second output voltage (U_B), which is higher than the input voltage (U_{in}), is present on the second output (B)
 - at least a further switching means (T₃) for controlling the direction of the coil current (I_{L1}) into the first output (A) or into the second output (B) is connected in series with the first output (A),

characterized in that the control means (controller)

- -- controls the output switching means (T_3, T_4) , so that in the course of one switching cycle (SZ_1, SZ_2) the coil current (I_{L1}) flows from the second terminal (Y_1) into both output branches (A, B) and
- -- controls the main switch (T₁) in the transient state of the up-down converter, so that the average voltage on the first terminal (X₁) is equal to the voltage on the second terminal (Y₁).
- A method as claimed in claim 1 in which the control means (controller) generates switching phases (Φ₂, Φ₃ and Φ₅, Φ₆, respectively) for the switching means
 (T₁, T₂, T₃, T₄) and the course of the coil current (I_{L1}) comprises an up-conversion phase and a down-conversion phase, characterized in that the down-conversion phase of the coil current (I_{L1}) comprises at least two switching phases (Φ₂, Φ₃ and Φ₅, Φ₆, respectively).
- 15 3. A method as claimed in claim 2, characterized in that the switching cycle (SZ1, SZ2) has all the switching phases (Φ_1 , Φ_2 , Φ_3 and Φ_4 , Φ_5 , Φ_6 , respectively), exactly once.
- 4. A method of operating a DC/DC up-down converter which has
 20 an input voltage (U_{in}) and at least a first and a second output voltage (U_D, U_E),
 - at least one inductive energy storage means (L₂), which is connected with a first terminal (X₂) to a DC voltage source generating in the input voltage (U_{in}) and can be connected with a second terminal (Y₂) to the outputs (D, E) via the switching means (T₆, D₄),
- output switching means T₆, D₄) for providing electrical energy for the first and the second output voltage (U_D, U_E) by supplying a coil current (I_{L2}),
 - a main switching means (T₅) between a second terminal (Y₂) of the inductive energy storage means (L₂) and the other pole of the DC voltage source, and
- a control means (controller) for selectively actuating all switching means (T_5 , T_6 , T_7),

wherein

5

15

- the first output voltage (U_D), which is lower than the input voltage (U_{in}), is present on the first output (D) and
- the second output voltage (U_E), which exceeds the input voltage (U_{in}), is present on the second output (E),
- at least a further switching means (T₆) for controlling the direction of the coil current (I_{L2}) into the first output (D) or into the second output (E) is connected in series with the first output (D),

characterized in that the control means (controller)

- -- controls the output switching means (T₆, T₇), so that in the course of one switching cycle (SZ₃, SZ₄) the coil current (I_{L2}) flows from the second terminal (Y₂) into both output branches (D, E, F) at least once and and
 - -- controls the main switch (T_5) in the transient state of the up-down converter so that the average voltage on the second terminal (Y_2) of the cloil (L_2) is equal to the voltage on the first terminal (X_1) , thus equal to the input voltage (U_{in}) .
- A method as claimed in claim 4, wherein the control means (controller) generates switching phases (Φ₇, Φ₈, Φ₉ and Φ₁₀, Φ₁₁, Φ₁₂, Φ₁₃ respectively) for each switching means (T₅, T₆, T₇) and the pattern of the coil current (I_{L2}) has an upconversion phase and a down-conversion phase, characterized in that the upconversion phase of the coil current (I_{L2}) comprises at least two switching phases (Φ₇, Φ₈ and Φ₁₀, Φ₁₁ respectively).
- 6. A method as claimed in claim 5, characterized in that the switching cycle
 25 (SZ₃, SZ₄) comprises all switching phases (Φ₇, Φ₈, Φ₉ and Φ₁₀, Φ₁₁, Φ₁₂, Φ₁₃, respectively), exactly once.
- 7. A method as claimed on one of the preceding claims, characterized in that the switching means (T₁, T₂, ..., T₇) are MOSFETs; IGBTs, GTOs or bipolar
 30 transistors.

WO 2005/074112 PCT/IB2004/052900

8. Implementation of a method as defined in the Claims 1 to 9, for the operation of a DC/DC up-down converter in electronic appliances in which consumers are to be supplied with different voltages such as, for example, in mobile telephones, PDAs (Personal Digital Assistants) or MP3 players.