Correspondence basics continued: MAX F and positions

Today's topics:

- 1. Coalescence, Ident aF vs. MAX F constraints continued
- 2. Fixed rankings of MAX F
- 3. Floating features and MAX F constraints; floating tones
- 4. MAX segment_[α E] constraints
- 5. Linearity, segment integrity and segment deletion in a MAX F theory
- 6. Positional correspondence: Beckman's version
- 7. Which position: both UR and SR

MAX F constraints

1. Coalescence can be described in two ways:

a. MAX segment, Ident aF >> Ident -aF, Uniformity

a_1i_2	MAX	Ident [+low], Ident [-back]	Ident [-low], Ident [+back]
☞ e ₁₂			**
a ₁₂		*! [-back]	
i ₁₂		*! [+low]	

b. MAX aF >> MAX -aF

ai	MAX [+low], MAX [-back]	MAX [-low], MAX [+back]
€e		**
a	*! [-back]	
i	*! [+low]	

2. An unsuccessful system based on local conjunction of constraints

a. MAX segment, Ident $\pm F \vee \pm G^1 >> Ident \pm F$, Ident $\pm B$

a_1i_2	MAX	Ident [±low] v [±back]	Ident [±low], Ident [±back]
$\mathcal{F}e_{12}$			**
ℱi ₁2			**
a ₁₂		*!	
i ₁₂		*!	

Similarly this system cannot decide whether to map [eo] to [\emptyset] or [Λ]. It's not obvious that one vowel more marked than the other (in the implicational sense) so we can't rely on * $\Lambda >> *\emptyset$.

3. **Invariant properties of coalescence** (Casali 1997, survey of cca 92 languages):

- [+low] always wins over [-low]
- [-high] over [+high]
- [+round] ... over [-round]

Both systems in (1) can characterize this through fixed correspondence rankings.

¹ Local-conjunction constraint violated by every output segment that violates both Ident [±F] and Ident [±G] wrt any one of its underlying correspondents.

4. Empirical differences:

MAX F can characterize the preservation of floating features. MAX F can characterize F-sensitive segment deletion.

- 5. Floating F: Sanskrit aspiration (Grassmann's Law: Collinge 1984)
 - (a) CVD^h-V..., CVD^h-sonorant: preserved intact (*runad*^h-*mi* 'I obstruct')
 - (b) DVDh-s, DVDh#: aspiration "thrown back" to a voiced stop in root, if any (budh-sa-ti [bhutsati])

What favors $b^hutsati$ over butsati? Not a conjoined constraint. Not Ident [+asp]:

bud ^h -sa-ti	C ^h /_ son	Ident [+asp]	*Ch
but ^h sati	*!		
🕝 butsati		*	
⊗ b ^h utsati		*	*!

The effect of MAX [+asp]

bud ^h -sa-ti	C ^h /_ son	MAX [+asp]	*Ch
but ^h sati	*!		
butsati		*!	
ℱ b ^h utsati			*

Richness of base precludes solutions that bank on the UR's of Sanskrit roots containing only D^hVD^h, not also DVD^h.

6. Linearity among features?

Some constraint penalizes F's surfacing on segments they did not belong to in UR. Otherwise, in a MAX F system, most phonotactic constraints will be satisfied through reassignment of F to the right segment. Assume that features are ordered wrt each other: then Linearity applies to features and this will do it.

a. The effect of Feature-Linearity

bud ^h -sa-ti	C ^h /_ son	MAX [+asp]	F-Linearity
but ^h sati	*!		
butsati		*!	
[®] b ^h utsati			*(h vs. F's in [u])

Two Linearity constraints:

- (a) Weak Linearity: If x precedes y and xRx', yRy' then y' does not precede x' (x, x', y, y') feature values; xRx' = x and x' are correspondents) Violated only by metathesis
- (b) Strong Linearity: If x precedes y and xRx', yRy' then x' precedes y' Violated by metathesis and coalescence.

/ai/	Weak Lin	Strong Lin
ℱe		*
ja	*!	*

7. **Floating T**: Kenstowicz 1987; Kizigula, Bantu. (stressed syllables are in bold characters; L tones not marked)

Toneless roo	ots	H roots
ku-lag a z-a 't	to drop'	ku-lombéz-a 'to request'
ku-gul u k-a	'to run'	ku-ham í l-a 'to bump'
ku-sog e l-a '	to approach'	ku-kazíng-a 'to fry'
ku-songel e z	-a 'to aggravate'	ku-bindilíz-a 'to finish'
ku-lagaz- i l-a	a 'to drop for'	ku-lombez-íl-a 'to request for'
ku-lagaz- a n-	-a 'to drop e.o.'	ku-lombez-án-a 'to request e.o.'
ku-lagaz-il-	an-a 'to drop for e.o.'	ku-lombez-il-án-a 'to request for e.o'
na-lag a z-a 'l	[drop'	a-songeléz-a 'he aggravates'
wa-lag á z-a '	they drop'	a-bíndil í z-a 'he finishes'
wa-lagaz-il-	á n-a 'they drop for e.o.'	a-lômb é z-a 'he requests'

Tone is not a segment in the standard sense (must be realized on a segment) but a feature. Ident H tone is insufficient: only MAX H works here.

	ku, lómbez, il, a	MAX H	*H/stressless	Strong Linearity
a	ku-lómbez- il -a		*!	
b	ku-lombez-il-a	*!		
☞ c	ku-lombez- í l-a			* (H vs. all F's in mbez)

By comparison, consider an analysis based on Ident H and Ident -H

	ku, lómbez, il, a	Ident H	Ident -H	*H/stressless
a	ku-lómbez- il -a			*
b	ku-lombez-il-a	*		>
⊗ c	ku-lombez- í l-a	*	*	

(c), the desired candidate, cannot win under any ranking against (b).

This example suggests that Linearity is differently evaluated depending on which features it relates: Linearity between Tone and segmental features seems to be lower ranked than Linearity between segmental features: Kizigula reorders tones wrt segmental F's but not segmental F's among themselves.

5. **F-Sensitive elision** (Casali 1997):

- *V.V can be satisfied through: **coalescence**: e.g. ai -> e; **glide formation**: e.g. ai -> aj **epenthesis**: ai -> a?i; **elision**: ai -> a or ai -> i
- elision target identified by order $(V_1V_2 \rightarrow V_2)$ or morphology $(V_{root}//V_{affix} \rightarrow V_{root})$
- target may also be identified by its features: e.g. ai -> a, ia -> a

6. **Greek elision** (data in Casali 1997; analysis a bit revised):

i. a//V -> a	ta exo -> taxo	'them I have'
	me ayapai -> mayapai	'me he loves'
	ta onirevome-> tanirevome	'them we dreamt'
ii. mid//high -> mid	to urliazi -> torliazi	'it he howls'
	eu -> e (no cited example)	
iii. round//plain -> round	to edosa – todosa	'it gave'
(same height)	me onirevome -> menirevome (?)	'me we dreamt'

- (a) No coalescence here: eu -> e not o. Ident F will not choose between e and u.
- (b) But feature hierarchies active in coalescence are active here too:

+low > -low: $a//e \rightarrow a$ -high > +high: $o//u \rightarrow o$ +round > -round: $o//e \rightarrow e$ -high > +round $u//e \rightarrow e$

(c) Use MAX α F and F linearity.

eu	F linearity	MAX -high	MAX +round
0	*! ([-high]-[+round])		
u		*!	
€e			*

MAX αF : an αF in S_1 has an identical correspondent in S_2 .

F-Linearity: If $[\alpha F]$ precedes $[\beta G]$ in S_1 , and if they have S_2 correspondents, then the S_2 correspondents stand in the same precedence relation.

(d) Alternative: MAX segment containing $\alpha F \gg$ MAX segment containing βG

eu	MAX seg _{-high}	MAX seg +round
О		
u	*!	
€e		*

MAX seg $_{aF}$ If a segment specified as [aF] exists in S_1 , it has a correspondent in S_2 .

But without MAX F constraints, the parallel typology for feature sensitive elision and coalescence cannot be formally unified:

Coalescence: $a//e \rightarrow \infty$, not Λ requires Ident [+low] >> Ident [-low] F-sensitive elision: $a//e \rightarrow a$, not e requires MAX $eg_{[-low]} >> MAX eg_{[-low]}$

MAX F system unifies these as: MAX [+low] >> MAX [-low]

Coalescence: MAX [+low] >> MAX [-low], Strong Linearity Elision: Strong Linearity, MAX [+low] >> MAX [-low]

7. A similar argument for MAX F: Cantonese (Silverman 1992 Phonology)

(a) Undominated phonotactics are *CC onset/coda and *[-cont,+cons] in coda.

Preserve strident as such thru epenthesis /bus/ -> pasi, not *pat
Turn non-strident fricative to stop /leaf/ -> lip, *lifi

Preserve strident as such thru epenthesis /tips/ -> thipsi, *tip

Drop non-strident coda after C /bend/ -> pen, *penti

(b) A MAX F analysis

MAX [+strident] >> DEP V /bus/ -> pasi, not *pat DEP V >> MAX [+cont] /leaf/ -> lip, *lifi By transitivity: MAX [+strident] >> MAX [+cont]

(c) A MAX seg/Ident [±F] analysis.

Ident [+strid]>> DEP V /bus/ -> pasi, not *pat DEP V >> Ident [+cont] /leaf/ -> lip, *lifi

 $\begin{array}{ll} \text{MAX C}_{\text{[+strid]}} \text{/_\#} >> \text{DEP V} & \text{/tips/} -> \text{tipsi, *tip} \\ \text{DEP V} >> \text{MAX C}_{\text{[-strid]}} \text{/C}_{\text{\#}} & \text{/bend/} -> \text{pen, *penti} \end{array}$

(d) Duplication of constraint families is not the only downside. System actually predicts more patterns than the alternative MAX F account; none of them attested.

Ranking	Predicted pattern
MAX C _{[+strid} DEP V >> Ident [-strid] >>	Stridents modified to surface in their position,
Ident [-strid] >> MAX C _{[-strid}	non-stridents dropped

Imaginary example:

Coda =?, η ,

MAX $C_{[+strid]}$, DEP V >> Ident [+strid] /bus/ -> bu?, *busi

DEP V >> Ident [-strid] >> MAX $C_{\text{[-strid]}}$ /foot/ -> fu, not *fu?

Modeled on Seleyarese where

Coda =?, η , MAX [+strid] >> DEP V /bus/ -> busu DEP V >> MAX F \neq [+strid] /foot/ -> fu?

- 8. Segment deletion in a MAX F system lacking MAX segment constraints
 - In a MAX seg, Ident F system, deletion results from: Ident [aF] >> MAX seg_[aF]
 - In a MAX F system lacking MAX seg constraints, segment deletion requires a different mechanism. Ranking of DEP F wrt MAX F? Not fully explored.

Greek /kekomid-ka/->[kekomika] *[kekomiska]: DEP [+strid] >> MAX coronal /sing/ -> [sɪŋ], *[sɪŋk]: DEP [-voice] >> MAX [-nasal, -son]/context DEP [-nas, -son] >> MAX [+nasal, +son]/context

9. Summary:

- Even when supplemented with MAX $C_{[aF]}$ constraints, a system using Ident aF as a substitute for MAX aF fails to account for the recovery of floating features and for the shared properties between feature sensitive segment deletion and feature modification or coalescence.
- MAX F accounts for all these cases. It must be supplemented by Feature Linearity constraints which penalize migration of features from one segment to the next.
- Segment deletion not explored in MAX F systems. Until then the proposal to replace Ident F by MAX F remains in limbo.

In what follows I use Ident F to maintain intelligibility with the rest of literature.

Positional correspondence

10. Two related effects:

- For every feature F, specific positions where F-contrasts more likely to occur. s-z voicing contrast in _V (*sit*, *zit*) and V_ (*bus*, *buzz*) but nowhere else.
- Phonological processes protect F values in these positions, as against others. voicing assimilation targets in non pre-V position:

- 11. **Standard proposal** (Casali 1997 *Language*, Beckman 1998 *Phonology*):
 - Directional assimilation is the result of:

MAX F in position P, Agree >> MAX F (context free)

Or MAX F in position P, Agree >> MAX F in position other than P

• And not as:

Agree wrt F>> F must be in P >> context free Ident/MAX F

- 12. Which context matters: modified French voicing (Dell *Lingua* 1995)
 - V deletion: aset 'buys' aste 'bought' /aset-e/
 - Voicing assimilation: agəte \sim afte 'has thrown' /agət-e/
 - Assume: a[\varepsilon v 'finishes' azve 'finished' /a[\varepsilon v-e/
- 13. **Surface context**: If a *surface prevocalic* segment s has an underlying counterpart s', then if s' is [+voice], s is also [+voice]. (And likewise [-voice])

a∫əÿe	Agree voice	Id[±voice]/_V _{SR}	Id [\pm voice]/ \neg ($_{SR}$)
a∫fe		*!	*
☞ a3ve			*

14. Not underlying context, in this case: assume that _V refers to UR context

asəye	Agree voice	Id [±voice]/_V _{UR}	Id [±voice]/¬(_V _{UR})
		*	
♥ aʒve		*	

Third candidate will lose eventually: ***DD** (*voiced obstruent cluster)

15. Patterns suggesting the opposite: Hindi place assimilation

• V deletion: kəmər 'waist' kəmrõ 'oblique-pl'

• Place assimilation: underlying NC clusters always homorganic

anken 'mark', *anken

• No post-deletion assimil: sənək 'craze' sənkõ 'oblique-pl'

sənəkõ	Id [±voice]/ (_V _{UR})	Agree place	Id [±voice]/¬(_V _{UR})
ℱsənkõ		*	
səŋkõ	*!		
səntõ	*!		

anken	Id [±voice]/ (_V _{UR})	Agree place	Id [±voice]/¬(_V _{UR})
anken		*!	
ℱaŋken			*
anten	*!		

16. Effect of stress as context: underlying context

- If V is stressed in input, V is preserved
- Eg.g. Catalan (Mascaró 1976 MIT): high vowel glides after V *fránku-jtaljá* Underlyingly stressed V protected: *ruína* 'ruin', *ruinós* 'ruinous'

17. Conclusion:

- Positional correspondence needed
- Two classes of constraints: UR vs. SR position.
- Typology of these effects is not clear at all: for one and the same phenomenon (e.g. preservation of syllabicity under stress; or place assimilation) we don't have both options (Corr/ Context_{UR}) and Corr/Context_{SR}) attested.