Lecture 17: Convergence in Distribution

Mathematical Statistics I, MATH 60061/70061

Tuesday November 16, 2021

Reference: Casella & Berger, 5.5.3

Convergence in distribution

A sequence of random variables $X_1, X_2, ...$, converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous.

Convergence in distribution

A sequence of random variables $X_1, X_2, ...$, converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous.

- We only need to consider the convergence at x that is a continuity point of F_X .
- It is really the CDFs that converge, not the random variables.

Example: Maximum of Uniforms

Let X_1, X_2, \ldots are iid $\mathrm{Unif}(0,1)$ and $X_{(n)} = \max_{i=1,\ldots,n} X_i$. For every $\epsilon > 0$,

$$P(|X_{(n)} - 1| \ge \epsilon) = P(X_{(n)} \ge 1 + \epsilon) + P(X_{(n)} \le 1 - \epsilon)$$

$$= 0 + P(X_{(n)} \le 1 - \epsilon)$$

$$= P(X_i \le 1 - \epsilon, i = 1, \dots, n)$$

$$= (1 - \epsilon)^n,$$

which goes to 0 as $n \to \infty$. So, $X_{(n)}$ converges in probability to 1.

Example: Maximum of Uniforms

Let X_1, X_2, \ldots are iid $\mathrm{Unif}(0,1)$ and $X_{(n)} = \max_{i=1,\ldots,n} X_i$. For every $\epsilon > 0$,

$$P(|X_{(n)} - 1| \ge \epsilon) = P(X_{(n)} \ge 1 + \epsilon) + P(X_{(n)} \le 1 - \epsilon)$$

= 0 + P(X_{(n)} \le 1 - \epsilon)
= P(X_i \le 1 - \epsilon, i = 1, \dots, n)
= (1 - \epsilon)^n,

which goes to 0 as $n \to \infty$. So, $X_{(n)}$ converges in probability to 1.

However, if we take $\epsilon = t/n$, we then have

$$P(X_{(n)} \le 1 - t/n) = (1 - t/n)^n \to e^{-t}$$

 $\Rightarrow P(n(1 - X_{(n)}) \le t) \to 1 - e^{-t}.$

This means, the random variable $n(1-X_{(n)})$ converges in distribution to $\mathrm{Expo}(1)$.

If the sequence of random variables, X_1, X_2, \ldots , converges in probability to a random variable X, the sequence also converges in distribution to X,

$$X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X.$$

The converse is not true in general. It is true when the limiting random variable is a constant.

If the sequence of random variables, X_1, X_2, \ldots , converges in probability to a random variable X, the sequence also converges in distribution to X,

$$X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X.$$

The converse is not true in general. It is true when the limiting random variable is a constant.

Suppose that $X_n \sim \mathcal{N}(0,1)$ for all n and that $X \sim \mathcal{N}(0,1)$. Obviously, $F_{X_n}(x) \to F_X(x)$, for all $x \in \mathbb{R}$. However, this does not guarantee that X_n will be close to X with high probability.

E.g., if X_n and X are independent, then $Y=X_n-X$ is a $\mathcal{N}(0,2)$ random variable. For $\epsilon>0$, $P(|X_n-X|\leq\epsilon)=P(|Y|\leq\epsilon)$ is a constant. This does *not* converge to 1.

If X_n converges in distribution to a constant μ , then

$$\lim_{n \to \infty} P(X_n \le x) = \begin{cases} 0 & \text{if } x < \mu \\ 1 & \text{if } x > \mu. \end{cases}$$

If X_n converges in distribution to a constant μ , then

$$\lim_{n\to\infty} P(X_n \le x) = \begin{cases} 0 & \text{if } x < \mu \\ 1 & \text{if } x > \mu. \end{cases}$$

For every $\epsilon > 0$,

$$P(|X_n - \mu| \ge \epsilon) = P(X_n - \mu \ge \epsilon) + P(X_n - \mu \le -\epsilon)$$

$$= P(X_n \ge \mu + \epsilon) + P(X_n \le \mu - \epsilon)$$

$$= 1 - P(X_n < \mu + \epsilon) + P(X_n \le \mu - \epsilon)$$

$$\le 1 - P(X_n < \mu + \epsilon/2) + P(X_n \le \mu - \epsilon)$$

$$\to 1 - 1 + 0 = 0.$$

Thus, X_n converges in probability to μ .

Central limit theorem

Let X_1,X_2,\ldots , be a sequence of iid random variables with $E(X_i)=\mu$ and ${\rm Var}(X_i)=\sigma^2<\infty.$ Then

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1),$$

as $n \to \infty$.

Central limit theorem

Let X_1,X_2,\ldots , be a sequence of iid random variables with $E(X_i)=\mu$ and ${\rm Var}(X_i)=\sigma^2<\infty.$ Then

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1),$$

as $n \to \infty$.

To prove the central limit theorem, we will assume that the MGF of X_i exists. This assumption is not necessary, but it does make the proof easier. A more general proof would involve characteristic functions that we do not cover.

We will show that the MGF of Z_n converges to $M_Z(t)=e^{t^2/2}$, the MGF of $Z\sim\mathcal{N}(0,1)$.

Define

$$Y_i = \frac{X_i - \mu}{\sigma},$$

for $i=1,2,\ldots,n$, and let $M_Y(t)$ denote the common MGF of Y (since X_i 's are iid, Y_i 's are iid). Note that the expected value and variance of Y_i are $E(Y_i)=0$ and $\mathrm{Var}(Y_i)=1$.

Express Z_n in terms of Y_i 's:

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i.$$

The MGF of Z_n is given by

$$\begin{split} M_{Z_n}(t) &= E(e^{tZ_n}) = E\left(e^{\frac{t}{\sqrt{n}}\sum_{i=1}^n Y_i}\right) \\ &= E\left(e^{\frac{t}{\sqrt{n}}Y_1}e^{\frac{t}{\sqrt{n}}Y_2}\dots e^{\frac{t}{\sqrt{n}}Y_n}\right) \\ &= \left(E\left(e^{\frac{t}{\sqrt{n}}Y_1}\right)\right)^n \\ &= (M_Y(t/\sqrt{n}))^n. \end{split}$$

Expanding $M_Y(t/\sqrt{n})$ in a Taylor series around 0, we have

$$M_Y(t/\sqrt{n}) = \sum_{k=0}^{\infty} M_Y^{(k)}(0) \frac{\left(\frac{t}{\sqrt{n}} - 0\right)^k}{k!},$$

where

$$M_Y^{(k)}(0) = \frac{d^k}{dt^k} M_Y(t) \Big|_{t=0}.$$

We have

$$M_Y^{(0)}(0) = M_Y(0) = 1$$

 $M_Y^{(1)}(0) = E(Y) = 0$
 $M_Y^{(2)}(0) = E(Y^2) = 1$.

Therefore, the expansion becomes

$$M_Y(t/\sqrt{n}) = 1 + \frac{(t/\sqrt{n})^2}{2!} + R_Y(t/\sqrt{n}),$$

where the remainder term

$$R_Y(t/\sqrt{n}) = \sum_{k=3}^{\infty} M_Y^{(k)}(0) \frac{\left(\frac{t}{\sqrt{n}} - 0\right)^k}{k!}.$$

An application of Taylor's Theorem (see Theorem 5.5.21, CB) shows that, for fixed $t \neq 0$, we have

$$\lim_{n \to \infty} \frac{R_Y(t/\sqrt{n})}{(t/\sqrt{n})^2} = 0.$$

Since t is fixed, we also have

$$\lim_{n \to \infty} \frac{R_Y(t/\sqrt{n})}{(1/\sqrt{n})^2} = \lim_{n \to \infty} nR_Y\left(\frac{t}{\sqrt{n}}\right) = 0,$$

The above is also true at t=0 since $R_Y(0/\sqrt{n})=0$

Thus, for any fixed t, we can write

$$\lim_{n \to \infty} \left(M_Y \left(\frac{t}{\sqrt{n}} \right) \right)^n = \lim_{n \to \infty} \left[1 + \frac{(t/\sqrt{n})^2}{2!} + R_Y \left(\frac{t}{\sqrt{n}} \right) \right]^n$$

$$= \lim_{n \to \infty} \left[1 + \frac{1}{n} \left(\frac{t^2}{2} + nR_Y \left(\frac{t}{\sqrt{n}} \right) \right) \right]^n$$

$$= e^{t^2/2}.$$

Since $e^{t^2/2}$ is the the MGF of the $\mathcal{N}(0,1)$ distribution, the theorem is proved.

Normal approximation to the sample proportion

Suppose X_1, X_2, \ldots, X_n are iid $\mathrm{Bern}(p)$, where $0 . Recall that <math>E(X_1) = p$ and $\mathrm{Var}(X_1) = p(1-p)$.

For Bernoulli random variables, X_i 's are zeros and ones, so \bar{X}_n is a sample proportion (i.e., the proportion of ones in the sample).

The central limit theorem says that

$$\sqrt{n}(\bar{X}_n - p) \xrightarrow{d} \mathcal{N}(0, p(1-p)),$$

or

$$\frac{\bar{X}_n - p}{\sqrt{\frac{p(1-p)}{n}}} \xrightarrow{d} \mathcal{N}(0,1),$$

as $n \to \infty$. This is the foundation for the inference of categorical data.

Slutsky's Theorem

Suppose that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} a$, where a is a constant. Then

- $2 X_n + Y_n \xrightarrow{d} X + a.$

Slutsky's Theorem

Suppose that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} a$, where a is a constant. Then

Let X_1,X_2,\ldots , be a sequence of iid random variables with $E(X_i)=\mu$ and ${\rm Var}(X_i)=\sigma^2<\infty.$ The CLT says

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1),$$

as $n \to \infty$. In practice, we do not know σ and use the sample standard deviation S to replace σ for inference calculations.

By Slutsky's Theorem, we can show that

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1).$$