MTH 416: Lecture 12

Cliff Sun

October 10, 2024

Lecture Span

- Invertibility
- \bullet Isomorphisms

Recall

$$T: V \to W \equiv A = [T]^{\gamma}_{\beta} \tag{1}$$

But "left multiplication" does the following: given $A \in M_{m \times n}(\mathbb{R})$,

$$L_A: \mathbb{R}^n \to \mathbb{R}^m \tag{2}$$

$$L_A(v) = Av (3)$$

Claim: given β, γ are the standard ordered basis for $\mathbb{R}^n, \mathbb{R}^m$

$$[L_A]^{\gamma}_{\beta} = [A] \tag{4}$$

Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \tag{5}$$

Then

$$L_A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{pmatrix} x + 2y + 3z \\ 4x + 5y + 6z \end{pmatrix}$$
 (6)

Then

$$L_A(e_1) = \begin{pmatrix} 1\\4 \end{pmatrix} \tag{7}$$

$$L_A(e_2) = \begin{pmatrix} 2\\5 \end{pmatrix} \tag{8}$$

$$L_A(e_3) = \begin{pmatrix} 3\\6 \end{pmatrix} \tag{9}$$

Thus

$$[L_A]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \end{pmatrix} \iff [A] \tag{10}$$

Inverse Functions

Suppose $f: S \to T$ is any function, then

Theorem 0.1. f has an inverse \iff f is bijective (one-to-one \mathscr{C} onto), that is

$$g \circ f = I_S \wedge f \circ g = I_T \tag{11}$$

Then

$$g(f(s)) = s \land f(g(t)) = t \tag{12}$$

for all $s \in S$ and $t \in T$. Note, if f has an inverse, then it is unique and we call it $f^{-1} = g$

Goal: understand invertibility of linear transformations. Let $T:V\to W$ be a linear transformation, then

- 1. When does T have an inverse?
- 2. What can we say about T^{-1} when it exists?

Example:

Let $V = W = \mathbb{R}^2$, and

$$T: \mathbb{R}^2 \to \mathbb{R}^2: T(x, y) = (-y, x) \tag{13}$$

We define

$$U(x,y) = (y, -x) \tag{14}$$

then

$$T(U(x,y)) = T(y,-x) \to (-(-x),y) \iff (x,y)$$

$$\tag{15}$$

similarly,

$$U(T(x,y)) = U(-y,x) \to (x,-(-y)) \iff (x,y)$$

$$\tag{16}$$

Thus $U = T^{-1}$

Theorem 0.2. If T is invertible, then T^{-1} is also a linear transformation.

Proof. Suppose T is an invertible linear transformation, then let $w_1, w_2 \in W$ and $c \in \mathbb{R}$. We claim that

$$T^{-1}(cw_1 + w_2) = cT^{-1}(w_1) + T^{-1}(w_2)$$
(17)

Let $v_1 = T^{-1}(w_1)$ and $v_2 = T^{-1}(w_2)$, then $T(v_1) = w_1$ and $T(v_2) = w_2$.

$$T(cv_1 + v_2) \iff cT(v_1) + T(v_2) \tag{18}$$

$$\iff cw_1 + w_2 \tag{19}$$

Therefore.

$$T^{-1}(cw_1 + w_2) = cv_1 + v_2 (20)$$

But this is nothing but

$$\iff cT^{-1}(w_1) + T^{-1}(w_2)$$
 (21)

Theorem 0.3. Suppose $T: V \to W$ is an invertible linear transformation, and β is a basis for V. Then

$$\gamma = \{T(v) : v \in \beta\} \text{ is a basis for } W$$
(22)

Corollary 0.4. If V is n-dimensional, then W is too.

Proof. Proof of theorem in finite dimensional case. Suppose $T:V\to W$ is an invertible linear transformation. Let

$$\beta = \{v_1, \dots, v_n\} \tag{23}$$

be a basis for V. Then we claim that

$$\gamma = \{T(v_1), \dots, T(v_n)\}\tag{24}$$

is a basis for W.

Spanning Proof

Let $w \in W$, then we claim that w is a linear combination of γ . Then let $v = T^{-1}(w)$, then

$$v = a_1 v_1 + \dots + a_n v_n \tag{25}$$

for some constants a_i . Applying T to both sides, we yield

$$T(v) = T(a_1v_1 + \dots + a_nv_n) \tag{26}$$

Then

$$w = a_1 T(v_1) + \dots + a_n T(v_n) \tag{27}$$

So $w \in span(T(v_1), \dots, T(v_n))$

Linear Independent

Suppose

$$a_1T(v_1) + \dots + a_nT(v_n) = 0$$
 (28)

for some $a_i \in \mathbb{R}$. We claim that all of these a_i 's are equal to 0. We take T^{-1} of both sides:

$$T^{-1}(a_1T(v_1) + \dots + a_nT(v_n)) \iff a_1v_1 + \dots + a_nv_n = 0$$
(29)

But because β is linearly independent, we have that all a_i 's are 0. Thus, γ is linearly independent. Therefore, γ is a basis for W.

Definition 0.5. 1. We call vector spaces V and W <u>isomorphic</u> if there exists an invertible linear transformation from one to another.

2. Any invertible linear transformation is called <u>isomorphism</u> Notation: $V \cong W \iff V$ and W are isomorphic.

If $V \cong W$, then an isomorphism $T: V \to W$ allows us to translate any linear algebra fact about V to one about W and so one. In other words, any properties that we discover of V can be applied to W due to symmetry. "V and W are like the same vector space written in different ways".

Example

$$P_2(\mathbb{R}) \stackrel{\sim}{=} \mathbb{R}^3 \tag{30}$$

We define an isomorphism T to be

$$T(ax^2 + bx + c) = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (31)

Example

$$M_{2\times 2}(\mathbb{R}) \stackrel{\sim}{=} \mathbb{R}^4 \tag{32}$$

Then

$$U\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \tag{33}$$

is also an isomorphism.

Note

The relation $V \cong W$ is an equivalence relation, this implies

- 1. $V \stackrel{\sim}{=} V$
- 2. $V \cong W \implies W \cong V$
- 3. $V \cong W \land W \cong X \implies V \cong X$

Theorem 0.6. Suppose V is finite dimensional and W is any vector space. Then

$$V \stackrel{\sim}{=} W \iff \dim(W) = \dim(V)$$

Proof. \implies is the corollary from earlier. Suppose $\dim(W) = \dim(V) = n$. We claim that

$$V \stackrel{\sim}{=} \mathbb{R}^n \stackrel{\sim}{=} W \tag{34}$$

Which implies $V \cong W$. For that, we choose an isomorphism

$$T(v) = [v]_{\beta} \tag{35}$$

So $V \cong \mathbb{R}^n$. Similarly for W. Thus, this proves the theorem.

Conclusion: all n-dimensional vector spaces are isomorphic to each other, in fact, they are <u>only</u> isomorphic to each other. That is, all n-dimensional vector spaces "look alike", that is they look like \mathbb{R}^n if you choose coordinates.

Note about matrix invertibility

Definition 0.7. An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix B such that

$$AB = BA = I \tag{36}$$

Lemma 0.8. If A^{-1} exists, then it is unique.

Proof. Suppose A has two inverses B, C. Then

$$AB = AC = BA = CA = I \tag{37}$$

Then

$$CAB = C(AB) \iff CI = (CA)B \iff IB \iff C = B$$
 (38)

Connecting it to linear transformations

Let T be a linear transformation from $V \to W$, where $\dim(V) = \dim(W) = n$. And let β, γ be basis for V, W respectively.

Claim: If A is $[T]^{\gamma}_{\beta}$, then $A^{-1} = [T^{-1}]^{\gamma}_{\beta}$.

Proof.
$$AA^{-1} = [T]_{\beta}^{\gamma}[T^{-1}]_{\gamma}^{\beta} = [T \circ T^{-1}]_{\gamma}^{\gamma} = I$$