An adaptive test based on Kendall's tau for independence in high dimensions

Sam Olson

Synopsis of Paper

- Testing the mutual independence for high-dimensional data.
- Known that L_2 -type statistics have lower power under sparse alternatives and L_∞ -type statistics have lower power under dense alternatives in high dimensions.
- ullet With this in mind, develop an adaptive test based on Kendall's au to compromise both situations of the alternative, which can automatically be adapted to the underlying data.
- Establish the asymptotic joint distribution of L_2 -type and L_∞ -type statistics based on Kendall's τ under mild assumptions and the asymptotic null distribution of the proposed statistic.
- Apply simulation to assess how well the test does compared to other testing methods, results that indicate the adaptive test performs well in either dense or sparse cases.

What is Kendall's au

$$\tau = \frac{(\mathsf{Count\ of\ concordant\ pairs}) - (\mathsf{Count\ of\ discordant\ pairs})}{(\mathsf{Number\ of\ pairs})}$$

- Where concordant: Text
- And where discordant: Text
- There are other types of Kendall's au, e.g., au-a, au-b, au-c

How Does This Fit Into a Broader Narrative?

- 1897 Fechner introduces the method of signs for succession-dependence.
- 1938 Kendall develops the τ rank correlation coefficient.
- 1958 Kruskal broadens Kendall's ideas into a general nonparametric testing framework.
- 1958–1990s Others (e.g., El-Shaarawi, 1992) apply rank-based methods to time series.
- 2024 Shi et al. develop adaptive high-dimensional independence tests using Kendall's τ .
- 2025 Han et al. extend to a broader class of sum-of-powers tests.

General Summary I

In Kollektivmasslehre (Fechner 1897) created a "precursor" to Kendall's τ . His method of signs looked for consecutive-dependence in sequences of observations: Assess concordance and discordance using only the signs of differences, not their magnitudes.

Kendall (Kendall 1938) generalized Fechner's idea by considering all possible pairs of observations, not just consecutive ones. His τ statistic became the canonical rank correlation coefficient, widely adopted as a nonparametric alternative to Pearson's correlation.

Kruskal (Kruskal 1958) emphasized τ 's place within a broader family of nonparametric statistics for ordinal data, within the framework of formal hypothesis testing.

Rank-based measures then spread to time series, enabling tests for persistence/independence in various settings (El-Shaarawi and Niculescu 1992; Hamed 2011).

General Summary II

And now, we apply these methods (use Kendall's τ) for the purposes of robust, distribution-free procedures, assessing both how and under what circumstances these tests of independence may be applied (e.g., whether the type of data or problem would lend itself to such an application) (Shi et al. 2024; Han, Ma, and Xie 2025).

How Is This Non-Parametric?

- We make no distributional assumptions of the variables (covariates or otherwise) we wish to test for independence.
- ullet Doesn't mean the statistic (Kendall au) is distribution-free though! Just the inputs going into it!

Why This, and Why Now?

Modern work continues to exploit distribution-free, rank-based tests of independence:

Adaptive high-dimensional tests building on Kendall's τ (Shi et al. 2024; Han, Ma, and Xie 2025).

Time-series applications echoing Fechner's focus (El-Shaarawi and Niculescu 1992).

Broader treatments of ordinal association and nonparametric effects (Kruskal 1958; Newson, n.d.).

Persistence testing with ranks in environmental contexts (Hamed 2011).

In Detail: Shi et al. (2024) I

Problem

 $H_0: X_1, \ldots, X_d$ are mutually independent

Why Kendall's τ ?

Rank-based; distribution-free; robust to heavy tails.

Dense vs. Sparse

- **Dense:** many weak deps \Rightarrow sum-type (L_2) .
- **Sparse:** few strong deps \Rightarrow max-type (L_{∞}) .

In Detail: Shi et al. (2024) II

Method (sketch)

- Build L_2 and L_{∞} from pairwise $\tau_{k\ell}$.
- $S_{\tau} \Rightarrow N(0,1); M_{\tau} \Rightarrow \mathsf{Gumbel}.$
- Adaptive p-value:

$$C_{\tau} = \min\left(1 - \Phi(S_{\tau}), 1 - F_{\text{Gumbel}}(M_{\tau})\right)$$

Theory (high level)

 $S_{ au}$ and $M_{ au}$ asymptotically independent; $W=\min U_1, U_2$ with $U_i \sim \mathrm{Unif}(0,1)$ so $H(t)=2t-t^2.$

Results I

Under various settings, we compare the following methods:

 S_r : Text

 TS_{τ} : Text

 MS_{τ} : Text

 M_r : Text

 $TM\tau$: Text

 MM_{τ} : Text

 $TC\tau$: Text

 $MC\tau$: Text

PEr: Text

 U_{\min} : Text

Results II

n d		5	0		100				
	50	100	200	400	50	100	200	400	
Model 1									
S _r	0.042	0.055	0.048	0.053	0.047	0.044	0.047	0.049	
TS_{τ}	0.044	0.053	0.049	0.049	0.050	0.043	0.053	0.053	
MS _T	0.046	0.057	0.052	0.051	0.056	0.045	0.055	0.055	
Mr	0.013	0.007	0.001	0.001	0.021	0.020	0.013	0.009	
TM_{τ}	0.029	0.028	0.018	0.013	0.029	0.027	0.027	0.033	
MM_{τ}	0.044	0.063	0.052	0.051	0.041	0.047	0.044	0.052	
TC_{τ}	0.037	0.037	0.031	0.029	0.040	0.036	0.037	0.044	
MC_{τ}	0.042	0.056	0.047	0.040	0.049	0.048	0.056	0.053	
PE_r	0.168	0.135	0.080	0.073	0.068	0.058	0.053	0.051	
U _{min}	0.060	0.073	0.065	0.072	0.062	0.060	0.061	0.055	
Model 2									
Sr	0.418	0.439	0.432	0.440	0.578	0.568	0.577	0.574	
TS _T	0.040	0.057	0.054	0.044	0.047	0.053	0.049	0.045	
MS_{τ}	0.043	0.057	0.056	0.047	0.051	0.054	0.053	0.045	
M_r	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
TM_{τ}	0.024	0.020	0.016	0.014	0.032	0.036	0.037	0.028	
MM_{τ}	0.041	0.056	0.052	0.040	0.054	0.054	0.058	0.051	
TC_{τ}	0.038	0.040	0.038	0.033	0.044	0.043	0.049	0.035	
MC_{τ}	0.045	0.055	0.052	0.045	0.052	0.055	0.072	0.043	
PE_r	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
U _{min}	NA								
Model 3									
Sr	0.056	0.057	0.061	0.059	0.051	0.062	0.051	0.059	
TS_{τ}	0.048	0.045	0.047	0.056	0.047	0.049	0.046	0.048	
MS _T	0.049	0.049	0.050	0.057	0.052	0.052	0.049	0.049	
Mr	0.091	0.156	0.225	0.360	0.141	0.264	0.493	0.765	
TM_{τ}	0.033	0.020	0.016	0.017	0.034	0.026	0.030	0.030	
MM_{τ}	0.052	0.045	0.053	0.042	0.055	0.043	0.051	0.052	
TC_{τ}	0.044	0.031	0.033	0.034	0.041	0.041	0.042	0.031	
MC _T	0.047	0.046	0.052	0.048	0.053	0.049	0.063	0.041	
PEr	0.387	0.448	0.564	0.731	0.198	0.284	0.427	0.677	
Umin	NA	0.057	NA	NA	0.046	0.056	0.053	NA	

Figure 1: Empirical sizes of tests

Results III

n d		5	0		100				
	50	100	200	400	50	100	200	400	
Model 4									
Sr	0.434	0.918	0.999	1.000	0.178	0.651	0.993	1.000	
TS_{τ}	0.375	0.876	0.998	1.000	0.158	0.574	0.986	1.000	
MS _T	0.362	0.873	0.998	1.000	0.155	0.577	0.986	1.000	
M _r	0.015	0.018	0.008	0.003	0.036	0.026	0.021	0.024	
TM _₹	0.036	0.044	0.040	0.041	0.040	0.044	0.046	0.053	
MM _T	0.071	0.099	0.120	0.113	0.063	0.069	0.079	0.094	
TC _T	0.380	0.878	0.999	1.000	0.168	0.582	0.988	1.000	
MC _τ	0.393	0.894	0.999	1.000	0.192	0.621	0.989	1.000	
PE _r	0.510	0.925	0.999	1.000	0.207	0.654	0.994	1.000	
U _{min}	0.999	1.000	1.000	1.000	0.993	1.000	1.000	1.000	
Model 5									
Sr	0.891	0.927	0.956	0.971	0.866	0.914	0.947	0.972	
\dot{TS}_{τ}	0.856	0.952	0.990	1.000	0.752	0.887	0.976	0.995	
MS_{τ}	0.853	0.951	0.990	0.999	0.748	0.888	0.977	0.995	
M _r	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
TM _₹	0.426	0.514	0.594	0.722	0.308	0.407	0.530	0.684	
MM_{τ}	0.545	0.691	0.823	0.907	0.377	0.492	0.639	0.801	
TC _τ	0.888	0.967	0.994	1.000	0.794	0.908	0.987	0.997	
MCτ	0.896	0.973	0.997	1.000	0.819	0.923	0.992	0.998	
PEr	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Umin	NA								

Figure 2: Empirical powers of tests in dense cases.

Results IV

n d		5	0		100				
	50	100	200	400	50	100	200	400	
Model 6									
Sr	0.053	0.060	0.054	0.055	0.082	0.069	0.056	0.054	
TS_{τ}	0.050	0.058	0.051	0.050	0.077	0.062	0.059	0.054	
MS_{τ}	0.048	0.059	0.054	0.048	0.077	0.064	0.061	0.055	
M_r	0.201	0.307	0.504	0.757	0.845	0.963	0.999	1.000	
TM_{τ}	0.210	0.329	0.533	0.793	0.786	0.936	0.996	1.000	
MM_{τ}	0.260	0.425	0.645	0.861	0.809	0.944	0.997	1.000	
TC_{τ}	0.182	0.281	0.473	0.746	0.734	0.918	0.993	1.000	
MC_{τ}	0.194	0.323	0.531	0.767	0.754	0.926	0.995	1.000	
PEr	0.492	0.605	0.760	0.926	0.860	0.956	0.997	1.000	
U_{\min}	0.233	0.289	0.371	0.347	0.763	0.874	0.946	0.976	
Model 7									
Sr	0.433	0.435	0.431	0.436	0.577	0.568	0.578	0.575	
TS_{τ}	0.086	0.077	0.057	0.052	0.075	0.057	0.057	0.043	
MS _T	0.081	0.076	0.056	0.049	0.073	0.059	0.062	0.045	
M_r	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
TM_{τ}	0.806	0.869	0.924	0.951	0.646	0.727	0.783	0.836	
MM _T	0.834	0.904	0.952	0.967	0.687	0.760	0.820	0.870	
TC_{τ}	0.755	0.833	0.895	0.933	0.592	0.682	0.755	0.798	
MCτ	0.769	0.853	0.918	0.941	0.615	0.704	0.778	0.812	
PEr	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Umin	NA								

Figure 3: Empirical powers of tests in sparse cases.

Results V

n d		5	0		100				
	50	100	200	400	50	100	200	400	
$\rho = 0.02$									
TS _T	0.078	0.185	0.400	0.782	0.168	0.413	0.822	0.993	
MS_{τ}	0.072	0.179	0.399	0.776	0.168	0.420	0.828	0.993	
TM_{τ}	0.033	0.024	0.014	0.018	0.045	0.054	0.045	0.029	
MM_{τ}	0.056	0.062	0.055	0.057	0.073	0.077	0.074	0.057	
TC _T	0.093	0.191	0.404	0.783	0.179	0.430	0.827	0.993	
MC _T	0.101	0.225	0.450	0.815	0.201	0.461	0.856	0.994	
$\rho = 0.04$									
TS_{τ}	0.387	0.764	0.972	0.998	0.809	0.990	1.000	1.000	
MS _T	0.375	0.759	0.972	0.998	0.803	0.990	1.000	1.000	
TM _τ	0.043	0.044	0.022	0.029	0.089	0.082	0.087	0.101	
MM ₊	0.080	0.108	0.081	0.074	0.126	0.130	0.141	0.160	
TC _T	0.395	0.766	0.974	0.998	0.814	0.991	1.000	1.000	
MC _T	0.415	0.796	0.981	0.998	0.826	0.991	1.000	1.000	
$\rho = 0.06$									
TS _T	0.781	0.981	0.998	1.000	0.993	1.000	1.000	1.000	
MS-	0.772	0.980	0.998	1.000	0.993	1.000	1.000	1.000	
TM_{τ}	0.061	0.065	0.055	0.048	0.142	0.183	0.172	0.177	
MM ₊	0.110	0.128	0.149	0.132	0.211	0.257	0.270	0.279	
TC,	0.786	0.981	0.998	1.000	0.993	1.000	1.000	1.000	
MC _T	0.799	0.983	0.998	1.000	0.995	1.000	1.000	1.000	
$\rho = 0.08$									
TS_{τ}	0.958	0.998	1.000	1.000	1.000	1.000	1.000	1.000	
MS ₊	0.957	0.998	1.000	1.000	1.000	1.000	1.000	1.000	
TM _T	0.125	0.106	0.091	0.074	0.283	0.299	0.356	0.376	
MM ₊	0.182	0.201	0.245	0.176	0.379	0.402	0.486	0.527	
TC _T	0.961	0.998	1.000	1.000	1.000	1.000	1.000	1.000	
MC _τ	0.964	0.998	1.000	1.000	1.000	1.000	1.000	1.000	

Figure 4: Empirical powers under various strengths of dependence in dense cases.

Results VI

n d		5	0		100				
	50	100	200	400	50	100	200	400	
$\rho = 0.6$									
TS_{τ}	0.056	0.064	0.054	0.042	0.111	0.078	0.051	0.062	
MS_{τ}	0.057	0.062	0.055	0.044	0.108	0.079	0.055	0.059	
TM_{τ}	0.571	0.408	0.271	0.174	0.990	0.973	0.952	0.891	
MM_{τ}	0.636	0.511	0.399	0.274	0.993	0.979	0.957	0.911	
TC _τ	0.512	0.363	0.238	0.155	0.984	0.962	0.926	0.866	
MC_{τ}	0.534	0.399	0.287	0.179	0.986	0.965	0.942	0.875	
$\rho = 0.7$									
TS_{τ}	0.085	0.070	0.055	0.045	0.204	0.095	0.055	0.058	
MS_{τ}	0.077	0.070	0.056	0.045	0.203	0.097	0.055	0.062	
TM_{τ}	0.876	0.828	0.698	0.561	1.000	1.000	0.999	0.997	
MM_{τ}	0.902	0.875	0.806	0.651	1.000	1.000	0.999	0.998	
TC _τ	0.902	0.875	0.806	0.651	1.000	1.000	0.999	0.998	
MC_{τ}	0.860	0.803	0.690	0.535	1.000	1.000	0.999	0.997	
$\rho = 0.8$									
TS_{τ}	0.129	0.087	0.060	0.045	0.356	0.122	0.062	0.059	
MS_{τ}	0.117	0.080	0.061	0.044	0.354	0.126	0.066	0.061	
TM_{τ}	0.992	0.988	0.973	0.951	1.000	1.000	1.000	1.000	
MM_{τ}	0.995	0.996	0.988	0.969	1.000	1.000	1.000	1.000	
TC_{τ}	0.987	0.983	0.960	0.929	1.000	1.000	1.000	1.000	
MC_{τ}	0.987	0.987	0.974	0.942	1.000	1.000	1.000	1.000	
$\rho = 0.9$									
TS_{τ}	0.197	0.097	0.062	0.050	0.621	0.201	0.082	0.065	
MS_{τ}	0.187	0.096	0.064	0.046	0.616	0.204	0.089	0.065	
TM_{τ}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
MM_{τ}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
TCτ	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
MC_{τ}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

Figure 5: Empirical powers under various strengths of dependence in sparse cases.

Conclusion

Rank-based adaptive tests are practical and robust; 2025 work generalizes to sum-of-powers (Han, Ma, and Xie 2025).

Next Steps

- Consulting applications (survey, environmental, biochemical).
- \bullet Reflection: Kendall's τ connects classic nonparametric tests to modern high-dimension inference.

References I

- El-Shaarawi, A. H., and Stefan P. Niculescu. 1992. "On Kendall's Tau as a Test of Trend in Time Series Data." *Environmetrics* 3 (4): 385–411.
- Fechner, Gustav Theodor. 1897. *Kollektivmasslehre*. Leipzig: Verlag von Wilhelm Engelmann. https://www.google.com/books/edition/Kollektivmasslehre/bgQZAAAAMAAJ?hl=en.
- Hamed, K. H. 2011. "The Distribution of Kendall's Tau for Testing the Significance of Cross-Correlation in Persistent Data." *Hydrological Sciences Journal* 56 (5): 841–53. https://doi.org/10.1080/02626667.2011.586948.
- Han, Lijuan, Yun Ma, and Junshan Xie. 2025. "An Adaptive Test of the Independence of High-Dimensional Data Based on Kendall Rank Correlation Coefficient." *Journal of Nonparametric Statistics* 37 (3): 632–56. https://doi.org/10.1080/10485252.2024.2435852.
- Kendall, M. G. 1938. "A New Measure of Rank Correlation." *Biometrika* 30 (1/2): 81–93. https://www.jstor.org/stable/2332226.
- Kruskal, William H. 1958. "Ordinal Measures of Association." Journal of the American Statistical Association 53 (284): 814–61. https://doi.org/10.1080/01621459.1958.10501481.
- Newson, Roger. n.d. "Parameters Behind 'Nonparametric' Statistics: Kendall's Tau, Somers' d and Median Differences." Working paper, King's College London.

References II

Shi, Xiangyu, Yuanyuan Jiang, Jiang Du, and Zhuqing Miao. 2024. "An Adaptive Test Based on Kendall's Tau for Independence in High Dimensions." *Journal of Nonparametric Statistics* 36 (4): 1064–87. https://doi.org/10.1080/10485252.2023.2296521.