Curvas em \mathbb{R}^2 e em \mathbb{R}^3

- 1. Identifique as curvas seguintes e esboce-as no plano ou no espaço, conforme o caso:
 - (a) $\vec{f}(t) = (t 1, t^2), \quad t \in \mathbb{R}.$
 - (b) $\vec{f}(t) = (1 2t^2, t + 1), \quad t \in \mathbb{R}.$
 - (c) $\vec{f}(t) = (1+2t)\vec{e}_1 + (3-4t)\vec{e}_2, \quad t \in \mathbb{R}.$
 - (d) $\vec{f}(t) = (1+2t)\vec{e}_1 + (3-4t)\vec{e}_2 + 5\vec{e}_3, \quad t \in \mathbb{R}.$
 - (e) x = -1 t, y = 2 t, $t \in [1, 2]$.
 - (f) $\vec{f}(t) = (2\sin(2t), 2\cos(2t)), \quad t \in [0, \pi].$
 - (g) $\vec{f}(t) = (-1 + 2\cos(\pi t), 2 + 2\sin(\pi t)), \quad t \in \mathbb{R}.$
 - (h) $\vec{f}(t) = (-1 + 2\cos(\frac{\pi}{2}t), 4, 2 + 2\sin(\frac{\pi}{2}t)), \quad t \in [0, 2\pi].$
 - (i) $\vec{f}(t) = (2\sin t, \cos t), \quad t \in \mathbb{R}.$
 - (j) $\vec{f}(t) = (2\sin(\frac{\pi}{2} + t), 1 + \cos(\frac{\pi}{2} + t)), \quad t \in \mathbb{R}.$
 - (k) $x = \ln t, \ y = t, \quad t \in [1, 2].$
 - (1) x = t, $y = e^t$, $t \in \mathbb{R}$.
 - (m) x = t + 1, $y = t^3$, z = 5, $t \in [0, 4]$.
- 2. Em cada alínea, considere as descrições do movimento de duas partículas. Explique a diferença entre o movimento das partículas. Indique o sentido segundo o qual as curvas são percorridas, o ponto inicial e o ponto final.
 - (a) $\vec{f}(t) = (t 1, t^2), t \in [-5, 5[; \quad \vec{f}(t) = (\cos t 1, \cos^2 t), t \in [0, 2\pi[.$
 - (b) $\vec{f}(t) = (1+2t)\vec{e}_1 + (3-4t)\vec{e}_2, t \in \mathbb{R}; \quad \vec{f}(t) = (1+2\cosh t)\vec{e}_1 + (3-4\cosh t)\vec{e}_2, t \in \mathbb{R}.$
 - (c) $\vec{f}(t) = (2\cos t)\vec{e}_1 + (2\sin t)\vec{e}_2, t \in [0, 2\pi[; \quad \vec{f}(t) = (2\cos(\frac{\pi}{2} + t))\vec{e}_1 + (2\sin(\frac{\pi}{2} + t))\vec{e}_2, t \in [0, 2\pi[.$
 - (d) $\vec{f}(t) = (-1 + 2\cos t)\vec{e}_1 + (1 + \sin t)\vec{e}_2, t \in [0, 2\pi[; \quad \vec{f}(t) = (-1 + 2\cos(\pi 3t))\vec{e}_1 + (1 + \sin(\pi 3t))\vec{e}_2, t \in [0, \pi[.$
 - (e) $\vec{f}(t) = (1+2t)\vec{e}_1 + (3-4t)\vec{e}_2$, $t \in [0,2[; \quad \vec{f}(t) = (-1+2u)\vec{e}_1 + (7-4u)\vec{e}_2$, $u \in [1,3[.$
- 3. Em cada alínea, determine o vetor tangente à curva descrita por $\vec{r}(t)$ no instante indicado $t=t_0$ e descreva a reta tangente à curva no ponto $\vec{r}(t_0)$:
 - (a) $\vec{r}(t) = (t 1, t^2), t \in \mathbb{R}$, para $t_0 = 2$.
 - (b) $\vec{r}(t) = (\exp t^3, \ln(t+1) t^3), t \ge 0, \text{ para } t_0 = 1.$
 - (c) $\vec{r}(t) = (\frac{t^2 1}{t + 2}, \tan t), t \in \mathbb{R}$, para $t_0 = 0$.
 - (d) $\vec{r}(t) = (\sqrt{t-1}, 3t^4 1), t \in \mathbb{R}, \text{ para } t_0 = 3.$
- 4. Determine o instante em que o vetor tangente à curva $\vec{r}(t) = (t^3 1, t^2 + t), t \in \mathbb{R}$ é paralelo à reta $x = -1 + 3t, y = 4 t, t \in \mathbb{R}$.
- 5. Considere a curva $\vec{r}(t) = (\cos t, t^2 t), t \in \mathbb{R}$.

- (a) Determine o instante em que o vetor tangente à curva é vertical.
- (b) Determine o instante em que o vetor tangente à curva é horizontal.
- 6. Considere a curva $\vec{r}(t) = (\frac{t^4}{4} + \frac{t^3}{3} + 1, \frac{t^3}{3} + 2t 1), t \in \mathbb{R}$ e a curva $\vec{u}(t) = (\frac{t^4}{4} + t 1, \frac{t^2}{2} + 2t), t \in \mathbb{R}$.
 - (a) Determine o instante em que o vetor tangente à curva $\vec{r}(t)$ é paralelo ao vetor tangente à curva $\vec{u}(t)$.
 - (b) Escreva as equações das rectas tangentes a essas curvas nesse instante.