ECE Life Supporting Cabin Research

Colin Hunt, Mitchell Stride, Mohamed Birama, Sakif Mohammed

Introduction

Most important parameters:

- Temperature
- Pressure
- Oxygen

- Things to consider:

- Sensors
- Equipment to regulate these factors
- Reaction of system

- Other possible passenger issues to consider:

- Humidity
- Air exchange/filtration (dispose of CO2)
- Emergency Escape (into vacuum tube)
- Crash Event
- Positive and negative acceleration limits (More mechanical)
- Light
- Noise
- Motion Sickness
- Motor failure (catastrophic)
- Pod going too fast? (Speed detection)
- Passengers compromising system

Multiple options for temperature sensing:

- Resistance temperature detector
- Thermocouple
- Semiconductor-based sensor
- Thermistor

1. Resistance temperature detector (or resistance thermometer):

- Exhibits predictable and precise change in resistance in response to temperature changes. As temperature increases, resistance decreases.
- High accuracy, which is due to large changes in resistance per degree Celsius
- However, they exhibit a low operating temperature range (-50°C to 250°C).

2. Thermocouple

- The voltage at the junction between two different conductors reflects changes in temperature.
- Very high operating range: -200°C to 1750°C
- But low accuracy (anywhere from 0.5°C to 5°C discrepancy)

3. Semiconductor-based sensor

- Changes in current-voltage characteristics reflect changes in temperature in diodes. This is a linear response.
- Disadvantages include a low operating range (-70°C to 150°C), slow responsiveness, and low accuracy (1° C to 5°C discrepancy).

4. Thermistor

- Correlates the resistance of a circuit element to the temperature
- Consist of a film or wire wrapped around a ceramic or glass core
- Thermistors have both very high accuracy and a very wide operating range (-200°C to 600°C).
- However, they are expensive.

The best option would be a **thermocouple** for temperature sensing in a life-supporting pod. A very high operating temperature range is necessary in order to detect extreme temperatures in case a component overheats.

The low accuracy is not a major issue because the main necessity is to detect if a system is getting too hot so that measures can be taken to cool the system down.

Pressure System

Why detect Pressure:

- Lowest tolerable pressure for humans is Armstrong's Limit (61.8 mbar or 0.0618 atm).
 - At this point water boils at the temperature of the human body 37 deg C
- Ideal is 1013.25 mbar = atmospheric pressure at sea level.
 - 21% oxygen partial pressure, at this point, enough oxygen to saturate hemoglobin
- Lowest breathable air pressure is 121.7 mbar
- Less pressure = less oxygen

Pressure System

What Needs to Happen:

- Pump air into cabin after sensing low pressure and out when sensing high pressure.
 - Intake of low pressure from track and regulate it using electronic compressor.
 - Supplemented by air tanks.
 - 2 posterior Overflow valve controlled by pressurization system and by Pod Operators.
 - Slowly open when pressure is high or to exchange air.
 - Close when pressure is low.

Pressure System

Sensing:

- Piezoresistive Pressure Sensor:
 - diaphragm formed on piezo-silicon substrate that flexes with applied positive or negative pressure.
 - Change in structure causes change in Resistance
 - Have a higher gage factor than bonded foil strain gages
 - Significantly higher mv/V sensitivity .(millivolts per Volt output signal)
 - less noisy output signal.

Oxygen System

System Behaviour:

- Detect low/high oxygen (Titania Sensor)
- Attempt to regulate through oxygen generation method (Oxygen Candle)
- Time the regulation attempt (Microcontroller)
- Timeout regulation attempt drop direct oxygen masks (Stored O2)
- Attempt to finish trip (short duration)
- Monitor direct oxygen flow (pressure sensor)
- Oxygen flow failure emergency stop distress signal (release tube vacuum)

Oxygen Sensor

Titania Sensor

- Dynamic resistance based on partial pressure of O2
- Solid State Semiconductor device
- Small
- High response time
- No reference air just calibration
- Not vulnerable to water

Oxygen Candle

- Main source of oxygen
- Indefinite shelf life
- Compact
- Smolders at 600° C
- Reaction happens in a controllable unit

Control Unit

Oxygen Supply Controller

- Responds to signal from Titania Sensor
- Can signal stored oxygen or backup candle (Candle failure)
- Timeout feature if not regulating then drop emergency masks
- Monitor mask oxygen flow for failure
- Send emergency signal to stop and pressurize the tube

Implementation of Life Support Systems to Paradigm's Pod

Implementation of Life Support Systems to Paradigm's Pod

Important Implementation Aspects

- Scope includes problem detection and system response.
- Redundancy (safety critical system)

Temperature Sensing - Thermocouple

- K-Type Thermocouples
 - Thermoelectric Effect
- MAX31855
- Use a SPI bus to any MC
- Libraries to interface with MAX

IC already created

Response: Energize Heater

Pressure Sensing

- Piezoresistive and Capacitance Pressure Transducers
 - Changes resistance when strained
 - Generates charge when strained
 - Could be embedded into interior walls
 - Requires simple amp circuit

- Pirani Gauge
 - Alternative or Redundant System
 - Measurement of pressure in Vacuum
 - Pressure is proportional to heat loss time

Questions?