TABLE OF CONTENTS

Warmup

Evaluate $\int_3^7 \frac{1}{\sqrt{x^2 + 2x + 1}} dx$.

$$\int_{3}^{7} \frac{1}{\sqrt{x^{2} + 2x + 1}} dx = \int_{3}^{7} \frac{1}{\sqrt{(x+1)^{2}}} dx$$
$$= \int_{3}^{7} \frac{1}{|x+1|} dx$$

When $3 \le x \le 7$, we have |x + 1| = x + 1.

$$= \int_{3}^{7} \frac{1}{x+1} dx$$
$$= [\log |x+1|]_{3}^{7}$$
$$= \log 8 - \log 4 = \log 2$$

Idea: $\sqrt{\text{(something)}^2} = |\text{something}|$. We cancelled off the square root.

Evaluate
$$\int \frac{1}{\sqrt{x^2 + 1}} dx$$
.

We still want to cancel off the square root, but $x^2 + 1$ is not obviously of the form (something)².

Let $x = \tan \theta$, $dx = \sec^2 \theta d\theta$.

$$\int \frac{1}{\sqrt{x^2 + 1}} dx = \int \frac{1}{\sqrt{\tan^2 \theta + 1}} \sec^2 \theta d\theta = \int \frac{\sec^2 \theta}{\sqrt{\sec^2 \theta}} d\theta$$
$$= \int \frac{\sec^2 \theta}{\sec \theta} d\theta = \int \sec \theta d\theta = \log|\sec \theta + \tan \theta| + C$$

We need to get these back in terms of x. From our substitution, we know $\tan \theta = x$. From simplifying our denominator, we also know $\sec \theta = \sqrt{x^2 + 1}$.

$$= \log \left| \sqrt{x^2 + 1} + x \right| + C$$

Same idea: $\sqrt{\text{(something)}^2} = |\text{something}|$; cancel off the square root.

CHECK OUR WORK

Let's verify that
$$\int \frac{1}{\sqrt{x^2 + 1}} =$$
 Seems improbable, right?

$$\frac{d}{dx} \left[\log \left| \sqrt{x^2 + 1} + x \right| + C \right] = \frac{1}{\sqrt{x^2 + 1} + x} \cdot \left(\frac{2x}{2\sqrt{x^2 + 1}} + 1 \right)$$
$$= \frac{x + \sqrt{x^2 + 1}}{(\sqrt{x^2 + 1} + x)\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

So, our answer works!

METHOD (ONE STANDARD CASE)

- ► An integrand has the form: √quadratic, and we'd like to cancel off the square root.
- ► So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:
 - $x = \sin \theta, 1 \sin^2 \theta = \cos^2 \theta$ changes $\sqrt{1 x^2}$ into
 - $x = \tan \theta, 1 + \tan^2 \theta = \sec^2 \theta \text{ changes } \sqrt{1 + x^2} \text{ into}$
 - $ightharpoonup x = \sec \theta$, $\sec^2 \theta 1 = \tan^2 \theta$ changes $\sqrt{x^2 1}$ into
- ► After integrating, convert back to the original variable (possibly using a triangle–more details later)

FOCUS ON THE ALGEBRA

$$1 - \sin^2 \theta = \cos^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\sec^2\theta - 1 = \tan^2\theta$$

Choose a trigonometric substitution that will allow the square root to cancel out of the following expressions:

$$\sqrt{x^2 - 1}$$
 Let $x = \sec \theta$, so $\sqrt{x^2 - 1}$ becomes $\sqrt{\sec^2 \theta - 1} = \sqrt{\tan^2 \theta} = |\tan \theta|$

$$\sqrt{x^2 + 1}$$
 Let $x = \tan \theta$, so $\sqrt{x^2 + 1}$ becomes $\sqrt{\tan^2 \theta + 1} = \sqrt{\sec^2 \theta} = |\sec \theta|$

►
$$\sqrt{1-x^2}$$

Let $x = \sin \theta$ so $\sqrt{1-x^2}$ becomes $\sqrt{1-\sin^2 \theta} = \sqrt{\cos^2 \theta} = |\cos \theta|$
(Alternately, $x = \cos \theta$ works as well)

FOCUS ON THE ALGEBRA

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \qquad 1 + \tan^2 \theta = \sec^2 \theta \qquad \qquad \sec^2 \theta - 1 = \tan^2 \theta$$

Choose a trigonometric substitution that will allow the square root to cancel out of the following expressions:

- ► $\sqrt{x^2 + 7}$ Adjust a given identity by multiplying both sides by 7: $7 \tan^2 \theta + 7 = 7 \sec^2 \theta$. Now we see we want $x^2 = 7 \tan^2 \theta$. That is, $x = \sqrt{7} \tan \theta$: $\sqrt{x^2 + 7} = \sqrt{7 \tan^2 \theta + 7} = \sqrt{7(\sec^2 \theta)} = \sqrt{7} |\sec \theta|$
- Adjust a given identity by multiplying both sides by 3: $3 3\sin^2\theta = 3\cos^2\theta$. Now we see we want $2x^2 = 3\sin^2\theta$, so $x = \sqrt{\frac{3}{2}}\sin\theta$: $\sqrt{3 2x^2} = \sqrt{3 2\left(\frac{3}{2}\sin^2\theta\right)} = \sqrt{3 3\sin^2\theta} = \sqrt{3\cos^2\theta} = \sqrt{3}|\cos\theta|$

Consider the substitution $x = \sin \theta$, $dx = \cos \theta d\theta$ for the integral:

$$\int_0^1 \sqrt{1-x^2} \, \mathrm{d}x$$

When x=0 (lower limit of integration), what is θ ? When x=1 (upper limit of integration), what is θ ? If x=0, then $\sin\theta=0$, but there are infinitely many values of θ that could make this true. To use the substitution $x=\sin\theta$, we need the function $x=\sin\theta$ to be invertible. That way, we can unambiguously convert between x and θ . With that in mind, we'll actually set $\theta=\arcsin x$. Now θ is restricted to the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \int_{\arcsin 0}^{\arcsin 1} \sqrt{1 - \sin^{2} \theta} \cos \theta \, d\theta = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2} \theta} \cdot \cos \theta \, d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} |\cos \theta| \cdot \cos \theta \, d\theta$$

For $0 \le \theta \le \frac{\pi}{2}$, we have $\cos \theta \ge 0$, so $|\cos \theta| = \cos \theta$.

More generally, suppose a is a positive constant and we use the substitution $x = a \sin \theta$ for the term $\sqrt{a^2 - x^2}$.

Now, consider the substitution $x = a \tan \theta$ for $\sqrt{a^2 + x^2}$, where a is a positive constant.

Finally, consider the substitution $x = a \sec \theta$ for $\sqrt{x^2 - a^2}$, where a is a positive constant.

ABSOLUTE VALUES

From now on, we will assume:

- ▶ With the substitution $x = a \sin \theta$ for $\sqrt{a^2 x^2}$, $|\cos \theta| = \cos \theta$
- ▶ With the substitution $x = a \tan \theta$ for $\sqrt{a^2 + x^2}$, $|\sec \theta| = \sec \theta$

Identities

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \sin(2\theta) = 2\sin\theta\cos\theta$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$

$$\sec^2 \theta - 1 = \tan^2 \theta \qquad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

Evaluate
$$\int_0^1 (1+x^2)^{-3/2} dx$$

Let $x = \tan \theta$, $dx = \sec^2 \theta \ d\theta$. When x = 0, then $\theta = \arctan 0 = 0$; when x = 1, then $\theta = \arctan 1 = \frac{\pi}{4}$.

$$\int_{0}^{1} (1+x^{2})^{-3/2} dx = \int_{\theta=0}^{\theta=\pi/4} \frac{1}{\sqrt{1+\tan^{2}\theta^{3}}} \sec^{2}\theta d\theta$$
$$= \int_{0}^{\pi/4} \frac{\sec^{2}\theta}{\sqrt{\sec^{2}\theta^{3}}} d\theta = \int_{0}^{\pi/4} \frac{\sec^{2}\theta}{|\sec\theta|^{3}} d\theta$$

Identities

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \sin(2\theta) = \cos \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$

$$\sec^2 \theta - 1 = \tan^2 \theta \qquad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

Evaluate $\int \sqrt{1-4x^2} \, dx$

Under the square root, we have "one minus a term with a variable," which matches the identity $1 - \sin^2 \theta$. So, we want $4x^2$ to become $\sin^2 \theta$. That is, $x = \frac{1}{2} \sin \theta$. Then $dx = \frac{1}{2} \cos \theta \ d\theta$.

$$\int \sqrt{1 - 4x^2} \, dx = \int \sqrt{1 - 4\left(\frac{1}{2}\sin\theta\right)^2} \cdot \frac{1}{2}\cos\theta \, d\theta$$
$$= \frac{1}{2} \int \sqrt{1 - \sin^2\theta} \cdot \cos\theta \, d\theta = \frac{1}{2} \int \sqrt{\cos^2\theta} \cdot \cos\theta \, d\theta$$

CHECK OUR WORK

In the last example, we computed

$$\int \sqrt{1-4x^2} \, \mathrm{d}x =$$

To check, we differentiate.

$$\frac{d}{dx} \left\{ \frac{1}{4} \left(\arcsin(2x) + 2x\sqrt{1 - 4x^2} \right) + C \right\}$$

$$= \frac{1}{4} \left(\frac{2}{\sqrt{1 - (2x)^2}} + 2x\frac{-8x}{2\sqrt{1 - 4x^2}} + 2\sqrt{1 - 4x^2} \right)$$

$$= \frac{1}{4} \left(\frac{2}{\sqrt{1 - 4x^2}} - \frac{8x^2}{\sqrt{1 - 4x^2}} + \frac{2(1 - 4x^2)}{\sqrt{1 - 4x^2}} \right)$$

$$= \frac{1}{4} \left(\frac{2 - 8x^2 + 2 - 8x^2}{\sqrt{1 - 4x^2}} \right) = \frac{1 - 4x^2}{\sqrt{1 - 4x^2}} = \sqrt{1 - 4x^2}$$

Identities

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \sin(2\theta) = \cos \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$

$$\sec^2 \theta - 1 = \tan^2 \theta \qquad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

Evaluate
$$\int \frac{1}{\sqrt{x^2 - 1}} dx$$

We use the substitution $x = \sec \theta$, $dx = \sec \theta \tan \theta d\theta$.

To make the substitution work, we're actually taking $\theta = \arccos\left(\frac{1}{x}\right)$, and so $0 \le \theta \le \pi$.

Note that the integrand exists on the intervals x < -1 and x > 1.

- ► When *x* > 1, then $0 < \frac{1}{x} < 1$, so $0 < \arccos(\frac{1}{x}) < \frac{\pi}{2}$. That is, $0 < \theta < \frac{\pi}{2}$, so $|\tan \theta| = \tan \theta$.
- When x < -1, then $-1 < \frac{1}{x} < 0$, so $\frac{\pi}{2} < \arccos\left(\frac{1}{x}\right) < \pi$. That is, $\frac{\pi}{2} < \theta < \pi$, so $|\tan \theta| = -\tan \theta$.

CHECK OUR WORK

Let's check our result,
$$\int \frac{1}{\sqrt{x^2 - 1}} dx =$$

$$\frac{d}{dx} \left\{ \log \left| x + \sqrt{x^2 - 1} \right| + C \right\} = \frac{1 + \frac{2x}{2\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}} = \frac{1 + \frac{x}{\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}}$$

$$= \frac{1 + \frac{x}{\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}} \left(\frac{\sqrt{x^2 - 1}}{\sqrt{x^2 - 1}} \right) = \frac{(\sqrt{x^2 - 1} + x)}{\left(x + \sqrt{x^2 - 1} \right) \sqrt{x^2 - 1}}$$

$$= \frac{1}{\sqrt{x^2 - 1}}$$

So, our answer works.

COMPLETING THE SQUARE

Choose a trigonometric substitution to simplify $\sqrt{3-x^2+2x}$.

Identities have two "parts" that turn into one part:

$$1 - \sin^2 \theta = \cos^2 \theta$$

$$4 - 4\sin^2 \theta = 4\cos^2 \theta$$

$$4 - 4\sin^2\theta = 4\cos^2\theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

But our quadratic expression has *three* parts.

Fact:
$$3 - x^2 + 2x = 4 - (x - 1)^2$$

$$\sqrt{3 - x^2 + 2x} = \sqrt{4 - (x - 1)^2}$$

We want
$$(x - 1)^2 = 4\sin^2 \theta$$
, so let $(x - 1) = 2\sin \theta$

$$= \sqrt{4 - 4\sin^2\theta} = \sqrt{4\cos^2\theta} = 2\cos\theta$$

COMPLETING THE SQUARE

$$(x+b)^2 = x^2 + 2bx + b^2$$
$$c - (x+b)^2 = (c-b^2) - x^2 - 2bx$$

Write $3 - x^2 + 2x$ in the form $c - (x + b)^2$ for constants b, c.

- 1. Find *b*:
- 2. Solve for *c*:
- 3. All together:

Evaluate
$$\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} \, \mathrm{d}x.$$

Identities have two "parts" that turn into one part:

$$1 - \sin^2 \theta = \cos^2 \theta$$

$$ightharpoonup 1 + \tan^2 \theta = \sec^2 \theta$$

$$ightharpoonup \sec^2 \theta - 1 = \tan^2 \theta$$

One of those parts is a constant, and one is squared. Write $6x - x^2$ as $c - (x + b)^2$.

$$c - (x + b)^{2} = (c - b^{2}) - x^{2} - 2bx$$

$$6x = -2bx \implies b = -3$$

$$0 = c - b^{2} = c - 9 \implies c = 9$$

$$6x - x^{2} = 9 - (x - 3)^{2}$$

Evaluate
$$\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} dx = \int \frac{(x - 3)^2}{\sqrt{9 - (x - 3)^2}} dx$$
.

We use the identity $9 - 9\sin^2 \theta = 9\cos^2 \theta$.

We want $(x-3)^2 = 9\sin^2\theta$, so take $(x-3) = 3\sin\theta$, $dx = 3\cos\theta d\theta$.

$$\int \frac{(x-3)^2}{\sqrt{9-(x-3)^2}} dx = \int \frac{9\sin^2\theta}{\sqrt{9-9\sin^2\theta}} 3\cos\theta d\theta$$

$$= \int \frac{9\sin^2\theta}{\sqrt{9\cos^2\theta}} 3\cos\theta d\theta = \int 9\sin^2\theta d\theta$$

$$= \frac{9}{2} \int (1-\cos 2\theta) d\theta = \frac{9}{2} \left(\theta - \frac{1}{2}\sin 2\theta\right) + C$$

$$= \frac{9}{2} \left(\theta - \sin\theta\cos\theta\right) + C$$

$$= \frac{9}{2} \left(\arcsin\left(\frac{x-3}{3}\right) - \frac{x-3}{3} \cdot \frac{\sqrt{6x-x^2}}{3}\right) + C$$

CHECK OUR WORK

Let's verify that

$$\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} =$$

$$\frac{d}{dx} \left\{ \frac{9}{2} \left(\arcsin\left(\frac{x-3}{3}\right) - \frac{x-3}{3} \cdot \frac{\sqrt{6x-x^2}}{3} \right) + C \right\}$$

$$= \frac{9}{2} \left(\frac{1/3}{\sqrt{1 - \left(\frac{x-3}{3}\right)^2}} - \frac{x-3}{3} \cdot \frac{3-x}{3\sqrt{6x-x^2}} - \frac{1}{9}\sqrt{6x-x^2} \right)$$

$$= \frac{9}{2} \left(\frac{9}{9\sqrt{6x-x^2}} - \frac{6x-x^2-9}{9\sqrt{6x-x^2}} - \frac{6x-x^2}{9\sqrt{6x-x^2}} \right)$$

$$= \frac{9-6x+x^2}{\sqrt{6x-x^2}}$$

So, our answer works.