COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

March 30, 2023

Lecture 25: Undecidability

Recap

- ▶ Turing machines definition (single tape, deterministic), examples.
- Languages Turing recognizable vs Turing decidable
- Robustness: TMs are externely robust
- Variants: k-tapes, doubly infinite tapes, Enumerators, NTMs, Queue machines, 2 stacks, counter machines,...

Recap

- ▶ Turing machines definition (single tape, deterministic), examples.
- Languages Turing recognizable vs Turing decidable
- Robustness: TMs are externely robust
- Variants: k-tapes, doubly infinite tapes, Enumerators, NTMs, Queue machines, 2 stacks, counter machines,...
- Today: undecidability.

Turing recognizability vs Decidability

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that $\forall w \in L$, M has at least one accepting run on w. For words not in L

- the machine may run forever
- or may reach q_{rej}

Turing recognizability vs Decidability

Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that $\forall w \in L$, M has at least one accepting run on w. For words not in L

- the machine may run forever
- or may reach q_{rej}

A language L is said to be Turing decidable if there is a Turing machine M such that for all $w \in \Sigma^*$, M halts on w and

- ▶ if $w \in L$, M has an accepting run on w.
- if $w \notin L$, all runs of M on w are rejecting runs.

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

Regular \subsetneq Context-free \subsetneq Decidable \subsetneq Turing Recongizable

DFA/NFA/2-DFA/2-NFA < NPDA < Algorithms < Semi-algorithms

▶ Regular and context-free languages are decidable.

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

DFA/NFA/2-DFA/2-NFA < NPDA < Algorithms < Semi-algorithms

▶ Regular and context-free languages are decidable.

$$A_M = \{ \langle M, w \rangle \mid w \in L(M) \}$$

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

DFA/NFA/2-DFA/2-NFA < NPDA < Algorithms < Semi-algorithms

▶ Regular and context-free languages are decidable.

$$A_M = \{ \langle M, w \rangle \mid w \in L(M) \}$$

$$E_M = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

DFA/NFA/2-DFA/2-NFA < NPDA < Algorithms < Semi-algorithms

Regular and context-free languages are decidable.

$$A_M = \{ \langle M, w \rangle \mid w \in L(M) \}$$

$$E_M = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

$$EQ_M = \{\langle M_1, M_2 \rangle \mid L(M_1) = L(M_2)\}$$

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

DFA/NFA/2-DFA/2-NFA < NPDA < Algorithms < Semi-algorithms

Regular and context-free languages are decidable.

$$A_M = \{ \langle M, w \rangle \mid w \in L(M) \}$$

$$E_M = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

$$EQ_M = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$

▶ Reading exercise: Theorems 4.2-4.9 in Sipser's book.

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

DFA/NFA/2-DFA/2-NFA < NPDA < Algorithms < Semi-algorithms

Regular and context-free languages are decidable.

$$A_M = \{ \langle M, w \rangle \mid w \in L(M) \}$$

$$E_M = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

$$EQ_M = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$

- ▶ Reading exercise: Theorems 4.2-4.9 in Sipser's book.
- Important: Encoding programs as data.

Every TM can be represented as a string in $\{0,1\}^*$.

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM.

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM. If a string does not represent any TM, as per our encoding, let us assume that it represents a TM that does nothing.

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM. If a string does not represent any TM, as per our encoding, let us assume that it represents a TM that does nothing.

Every TM is represented by infinitely many strings.

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM. If a string does not represent any TM, as per our encoding, let us assume that it represents a TM that does nothing.

Every TM is represented by infinitely many strings.

Any encoding of TMs will have a null character, say 010101. Then for any string $\alpha \in \{0,1\}^*$, suppose it represents machine M then all strings of the form $(010101)^*\alpha$ also represent the same machine M.

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM.

If a string does not represent any TM, as per our encoding, let us assume that it represents a TM that does nothing.

Every TM is represented by infinitely many strings.

Any encoding of TMs will have a null character, say 010101. Then for any string $\alpha \in \{0,1\}^*$, suppose it represents machine M then all strings of the form $(010101)^*\alpha$ also represent the same machine M.

This has a similar effect as adding comments in the C program.

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM.

If a string does not represent any TM, as per our encoding, let us assume that it represents a TM that does nothing.

Every TM is represented by infinitely many strings.

Any encoding of TMs will have a null character, say 010101. Then for any string $\alpha \in \{0,1\}^*$, suppose it represents machine M then all strings of the form $(010101)^*\alpha$ also represent the same machine M.

This has a similar effect as adding comments in the C program.

Notation

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM.

If a string does not represent any TM, as per our encoding, let us assume that it represents a TM that does nothing.

Every TM is represented by infinitely many strings.

Any encoding of TMs will have a null character, say 010101. Then for any string $\alpha \in \{0,1\}^*$, suppose it represents machine M then all strings of the form $(010101)^*\alpha$ also represent the same machine M.

This has a similar effect as adding comments in the C program.

Notation

 $M \longrightarrow \langle M \rangle$, a string representation of M.

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM.

If a string does not represent any TM, as per our encoding, let us assume that it represents a TM that does nothing.

Every TM is represented by infinitely many strings.

Any encoding of TMs will have a null character, say 010101. Then for any string $\alpha \in \{0,1\}^*$, suppose it represents machine M then all strings of the form $(010101)^*\alpha$ also represent the same machine M.

This has a similar effect as adding comments in the C program.

Notation

 $M \longrightarrow \langle M \rangle$, a string representation of M.

 $\alpha \longrightarrow M_{\alpha}$, a machine corresponding to α .

Every TM can be represented as a string in $\{0,1\}^*$. Just encode the description of the machine.

Every string over $\{0,1\}^*$ represents some TM.

If a string does not represent any TM, as per our encoding, let us assume that it represents a TM that does nothing.

Every TM is represented by infinitely many strings.

Any encoding of TMs will have a null character, say 010101. Then for any string $\alpha \in \{0,1\}^*$, suppose it represents machine M then all strings of the form $(010101)^*\alpha$ also represent the same machine M.

This has a similar effect as adding comments in the C program.

Notation

 $M \longrightarrow \langle M \rangle$, a string representation of M.

 $\alpha \longrightarrow M_{\alpha}$, a machine corresponding to α .

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Proof.

Let $x \in \{0, 1\}^*$.

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Proof.

Let $x \in \{0, 1\}^*$.

Let $\phi(x)$ be defined as the number in $y \in \mathbb{N}$ such that

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Proof.

Let $x \in \{0, 1\}^*$.

Let $\phi(x)$ be defined as the number in $y \in \mathbb{N}$ such that y is a binary encoding of the number 1x.

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Proof.

Let $x \in \{0, 1\}^*$.

Let $\phi(x)$ be defined as the number in $y \in \mathbb{N}$ such that y is a binary encoding of the number 1x.

 ϕ is a map from $\{0,1\}^*$ to \mathbb{N} .

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Proof.

Let $x \in \{0, 1\}^*$.

Let $\phi(x)$ be defined as the number in $y \in \mathbb{N}$ such that y is a binary encoding of the number 1x.

 ϕ is a map from $\{0,1\}^*$ to \mathbb{N} .

If $|x| \neq |x'|$ then $\phi(x) \neq \phi(x')$.

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Proof.

Let $x \in \{0, 1\}^*$.

Let $\phi(x)$ be defined as the number in $y \in \mathbb{N}$ such that y is a binary encoding of the number 1x.

 ϕ is a map from $\{0,1\}^*$ to \mathbb{N} .

If $|x| \neq |x'|$ then $\phi(x) \neq \phi(x')$. If |x| = |x'|, then $\sin(1x) \neq \sin(1x')$ as long as $x \neq x'$.

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Proof.

Let $x \in \{0, 1\}^*$.

Let $\phi(x)$ be defined as the number in $y \in \mathbb{N}$ such that y is a binary encoding of the number 1x.

 ϕ is a map from $\{0,1\}^*$ to \mathbb{N} .

If $|x| \neq |x'|$ then $\phi(x) \neq \phi(x')$. If |x| = |x'|, then $\sin(1x) \neq \sin(1x')$ as long as $x \neq x'$.

Hence the map ϕ is injective.

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to \mathbb{N} .

Lemma

The set $\{0,1\}^*$ is countable.

Proof.

Let $x \in \{0, 1\}^*$.

Let $\phi(x)$ be defined as the number in $y \in \mathbb{N}$ such that y is a binary encoding of the number 1x.

 ϕ is a map from $\{0,1\}^*$ to \mathbb{N} .

If $|x| \neq |x'|$ then $\phi(x) \neq \phi(x')$. If |x| = |x'|, then $\sin(1x) \neq \sin(1x')$ as long as $x \neq x'$.

Hence the map ϕ is injective.

Cantor's diagonalisation

```
Theorem (Cantor, 1891)
```

There is no bijection between $\mathbb N$ and $2^{\mathbb N}$ (set of all subsets of $\mathbb N$).

Proof.

Suppose for the sake of contradiction that there is a bijection, say f, between set of all subsets of \mathbb{N} .

```
| 0 1 2 3 ... | Ø | {1} | {2} | {3 | ... | | {1,2} | {1,2} | {2} | {1,2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2}
```

Cantor's diagonalisation

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and $2^{\mathbb N}$ (set of all subsets of $\mathbb N$).

Proof.

Suppose for the sake of contradiction that there is a bijection, say f, between set of all subsets of \mathbb{N} .

	0	1	2	3	
Ø	X	Х	Х	Х	
{1}	X	✓	X	X	
$\{2\}$	X	X	\checkmark	X	
$\{1, 2\}$	X	✓	\checkmark	X	
:					
:					

Cantor's diagonalisation

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and $2^{\mathbb N}$ (set of all subsets of $\mathbb N$).

Proof.

Suppose for the sake of contradiction that there is a bijection, say f, between set of all subsets of \mathbb{N} .

	0	1	2	3	
Ø	✓	Х	Х	Х	
{1}	X	X	X	X	
$\{2\}$	X	X	X	X	
$\{1, 2\}$	X	✓	✓	\checkmark	
:					
•					

Cantor's diagonalisation

```
Theorem (Cantor, 1891)
```

There is no bijection between \mathbb{N} and $2^{\mathbb{N}}$ (set of all subsets of \mathbb{N}).

Proof.

Suppose for the sake of contradiction that there is a bijection, say f, between set of all subsets of \mathbb{N} .

	0	1	2	3	
Ø	/	X	X	Х	
{1}	X	X	X	X	
$\{2\}$	X	X	X	X	
$\{1, 2\}$	X	✓	\checkmark	✓	
:					
:					

The inverted diagonal set does not belong to any of the existing sets!

Lemma

There exists a language which is not Turing recognizable.

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

Let L be a language, i.e. $L \subseteq \Sigma^*$

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

$$\chi_L(w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{otherwise} \end{cases}$$

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

Let L be a language, i.e.
$$L \subseteq \Sigma^*$$
, $w \in \Sigma^*$.

$$\chi_L(w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{otherwise} \end{cases}$$

languages over
$$\Sigma^* \xrightarrow{\text{bijection}} 2^{\mathbb{N}}$$

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

Let L be a language, i.e. $L \subseteq \Sigma^*$, $w \in \Sigma^*$.

$$\chi_L(w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{otherwise} \end{cases}$$

languages over $\Sigma^* \xrightarrow{\text{bijection}} 2^{\mathbb{N}}$

▶ Therefore, set of all languages is uncountable.

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

$$\chi_L(w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{otherwise} \end{cases}$$

languages over
$$\Sigma^* \xrightarrow{\text{bijection}} 2^{\mathbb{N}}$$

- ► Therefore, set of all languages is uncountable.
- ▶ However, the set of all TMs is countable.

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

$$\chi_L(w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{otherwise} \end{cases}$$

languages over
$$\Sigma^* \xrightarrow{\text{bijection}} 2^{\mathbb{N}}$$

- ► Therefore, set of all languages is uncountable.
- ▶ However, the set of all TMs is countable. $(\{0,1\}^*$ is countable.)

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ .

$$\chi_L(w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{otherwise} \end{cases}$$

languages over
$$\Sigma^* \xrightarrow{\text{bijection}} 2^{\mathbb{N}}$$

- Therefore, set of all languages is uncountable.
- ▶ However, the set of all TMs is countable. $(\{0,1\}^*)$ is countable.
- There must be a language which is not Turing recognizable.

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

Lemma

 A_{TM} is Turing recognizable.

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

Lemma

 A_{TM} is Turing recognizable.

Proof sketch

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

Lemma

 A_{TM} is Turing recognizable.

Proof sketch

Design a TM, say N such that

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

Lemma

 A_{TM} is Turing recognizable.

Proof sketch

Design a TM, say N such that,

N behaves like M on w at each step

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

Lemma

 A_{TM} is Turing recognizable.

Proof sketch

Design a TM, say N such that,

N behaves like M on w at each step,

if M reaches q_{acc} then N also accepts.

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$$

Lemma

 A_{TM} is Turing recognizable.

Proof sketch

Design a TM, say N such that,

N behaves like M on w at each step,

if M reaches q_{acc} then N also accepts.

Is A_{TM} decidable?

Lemma

 $A_{TM} = \{(M, w) \mid M \text{ accepts } w\} \text{ is not Turing decidable.}$

Lemma

 $A_{TM} = \{(M, w) \mid M \text{ accepts } w\} \text{ is not Turing decidable.}$

Lemma

 $A_{TM} = \{(M, w) \mid M \text{ accepts } w\} \text{ is not Turing decidable.}$

Lemma

 $A_{TM} = \{(M, w) \mid M \text{ accepts } w\} \text{ is not Turing decidable.}$

Lemma

 $A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$ is not Turing decidable.

Lemma

 $A_{TM} = \{(M, w) \mid M \text{ accepts } w\}$ is not Turing decidable.

Lemma

 A_{TM} is not Turing decidable.

Assume that there exists H such that H decides A_{TM} .

What happens if we give D as input to itself?

Lemma

 A_{TM} is not Turing decidable.

Assume that there exists H such that H decides A_{TM} .

What happens if we give D as input to itself?

Lemma

 A_{TM} is not Turing decidable.

Lemma

 A_{TM} is not Turing decidable.

If D accepts $\langle D \rangle$

Lemma

 A_{TM} is not Turing decidable.

If D accepts $\langle D \rangle$ then D rejects $\langle D \rangle$.

Lemma

 A_{TM} is not Turing decidable.

If D accepts $\langle D \rangle$ then D rejects $\langle D \rangle$.

If D rejects $\langle D \rangle$

Lemma

 A_{TM} is not Turing decidable.

If D accepts $\langle D \rangle$ then D rejects $\langle D \rangle$.

If D rejects $\langle D \rangle$ then D accepts $\langle D \rangle$.

Lemma

 A_{TM} is not Turing decidable.

If D accepts $\langle D \rangle$ then D rejects $\langle D \rangle$.

If D rejects $\langle D \rangle$ then D accepts $\langle D \rangle$. \bigodot

Note the following about the proof.

Note the following about the proof.

H accepts $\langle M, w \rangle$ when M accepts w.

Note the following about the proof.

H accepts $\langle M, w \rangle$ when M accepts w.

D rejects $\langle M \rangle$ when M accepts $\langle M \rangle$.

Note the following about the proof.

H accepts $\langle M, w \rangle$ when M accepts w.

D rejects $\langle M \rangle$ when M accepts $\langle M \rangle$.

D rejects $\langle D \rangle$ when D accepts $\langle D \rangle$.

Behaviour of the machines.

Behaviour of the machines.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		
$\overline{M_1}$	✓		✓	√	
M_2	✓	×		×	✓×✓

Behaviour of the machines.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		
M_1	~		✓	√	
M_2	~	×		×	✓×✓
M_3 \vdots	×	×	✓	×	✓×✓ ✓

Behaviour of H.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		
$\overline{M_1}$	~	×	✓	······	
M_2	~	×	×	×	✓×✓
M_3 \vdots	×	×	✓	×	√

Behaviour of H.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		
$\overline{M_1}$	~	×	✓	✓	
M_2	~	×	X	×	······································
M_3 \vdots	×	×	~	×	√

Behaviour of D.

Behaviour of D on itself.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\ldots \langle D \rangle \ldots$	
$\overline{M_1}$	₩/×	×	✓	✓	
M_2	✓	* ~	×	×	 ✓×✓
M_3 :	×	×	₩//×	×	√
: D				?	

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

• A_{TM} is Turing recongizable.

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

- A_{TM} is Turing recongizable.
- ▶ If $\overline{A_{TM}}$ is also Turing recognizable, then A_{TM} will be decidable!

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

- A_{TM} is Turing recongizable.
- ▶ If $\overline{A_{TM}}$ is also Turing recognizable, then A_{TM} will be decidable!

Corollary

 $\overline{A_{TM}}$ is not Turing recognizable.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Lemma

Universal Turing machine (UTM) exists.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Lemma

Universal Turing machine (UTM) exists. [Turing, 1937]

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Lemma

Universal Turing machine (UTM) exists. [Turing, 1937]

Proof.

We will prove the lemma by explicitly constructing such a machine.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Lemma

Universal Turing machine (UTM) exists. [Turing, 1937]

Proof.

We will prove the lemma by explicitly constructing such a machine.

Proof idea:

• Find a good encoding for Turing machines.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Lemma

Universal Turing machine (UTM) exists. [Turing, 1937]

Proof.

We will prove the lemma by explicitly constructing such a machine.

- Find a good encoding for Turing machines.
- ${\it 2}$ Tape 1: Hold the input, namely M and w.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Lemma

Universal Turing machine (UTM) exists. [Turing, 1937]

Proof.

We will prove the lemma by explicitly constructing such a machine.

- Find a good encoding for Turing machines.
- $oldsymbol{2}$ Tape 1: Hold the input, namely M and w.
- $oldsymbol{\circ}$ Tape 2: Copy the decription of M and use it for referencing moves.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Lemma

Universal Turing machine (UTM) exists. [Turing, 1937]

Proof.

We will prove the lemma by explicitly constructing such a machine.

- Find a good encoding for Turing machines.
- $oldsymbol{2}$ Tape 1: Hold the input, namely M and w.
- $oldsymbol{\circ}$ Tape 2: Copy the decription of M and use it for referencing moves.
- $oldsymbol{0}$ Tape 3: Store the current state M and letter of w being read.

Definition

A Turing machine is called a Universal Turing machine if it can given the description of any Turing machine M and an input w, simulate the machine M on w.

Lemma

Universal Turing machine (UTM) exists. [Turing, 1937]

Proof.

We will prove the lemma by explicitly constructing such a machine.

- Find a good encoding for Turing machines.
- \odot Tape 2: Copy the decription of M and use it for referencing moves.
- $oldsymbol{3}$ Tape 3: Store the current state M and letter of w being read.