

KI Labor - Wintersemester 2021

Computer Vision 1

Schedule

Datum	Thema	Inhalt	Präsenz
01.10.21	Allg.	Organisation, Teamfindung	Nein
08.10.21	cv	Vorstellung CV	Nein
15.10.21	CV	Q&A Sessions	Nein
22.10.21	CV	Sprintwechsel, Vorstellung Assignment	Ja
29.10.21	CV	Q&A Sessions	Nein
05.11.21	CV / NLP	Abgabe CV, Vorstellung NLP	Ja
12.11.21	NLP	Q&A Sessions	Nein
19.11.21	NLP	Sprintwechsel, Vorstellung Assignment	Ja
26.11.21	NLP	Q&A Sessions	Nein
03.12.21	NLP	Q&A Sessions	Nein
10.12.21	NLP / RL	Abgabe NLP, Vorstellung RL	Ja
17.12.21	RL	Q&A Sessions	Nein
14.01.22	RL	Sprintwechsel, Vorstellung Assignment	Ja
21.01.22	RL	Q&A Sessions	Nein
28.01.22	RL	Abgabe RL, Abschluss KI Labor	Ja

Agenda for today

- 1. Introduction
- 2. Deep Learning
- 3. Overfitting
- 4. Exercise Notebooks

Introduction

What is Computer Vision (CV)?

CV has a number of challenges to overcome

Viewpoint variation Scale variation Deformation Occlusion Background clutter Intra-class variation Illumination conditions

Can we trust machines to make fair decisions?

Research shows AI is often biased. Here's how to make algorithms work for all of us

RETAIL OCTOBER 11, 2018 / 1:04 AM / UPDATED 3 YEARS AGO

Amazon scraps secret AI recruiting tool that showed bias against women

Battling bias and other toxicities in natural language generation

Despite numerous and concerted efforts to train NLG systems to generate content without offensive elements, success is still elusive.

Your favorite A.I. language tool is toxic

BY JONATHAN VANIAN September 29, 2020 5-25 PM GMT+2

Predictive policing algorithms are racist. They need to be dismantled.

Lack of transparency and biased training data mean these tools are not fit for purpose. If we can't fix them, we should ditch them.

by Will Douglas Heaven

July 17, 2020

The SOTA algorithms for solving CV problems are based on deep learning

Deep Learning

What is deep learning?

"[...] very large neural networks we can now have and ... huge amounts of data that we have access to [...]" - Andrew Ng (2015)

"Deep learning methods aim at learning feature hierarchies [...] at multiple levels of abstraction allow[ing] a system to learn complex functions mapping the input to the output directly from data, without depending completely on human-crafted features." - Yoshua Bengio (2009)

"It has been obvious since the 1980s that backpropagation through deep autoencoders would be very effective for nonlinear dimensionality reduction, provided that computers were fast enough, data sets were big enough, and the initial weights were close enough to a good solution. All three conditions are now satisfied." - Geoffrey Hinton (2006)

Let's start with building a simple Neural Network Multi-Layer Perceptron

We can learn complex functions by applying non-linear activation functions

Sigmoid

tanh

tanh(x)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

ReLU $\max(0, x)$

Leaky ReLU max(0.1x, x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

But how do we actually learn?

Let's advance to more complex Neural Networks Convolutional Neural Network

Can we show the discriminative power of NNs?

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Overfitting

Underfitting: Model is too simple

Overfitting: Model is too complex

Optimal model complexity

What about neural networks?

 Compared to polynomials, the complexity / variance of neural networks is extremely high

The tasks / targets are also very complex

Preventing overfitting in neural networks

- Using Validation set
 - Network size fine-tuning
 - Early stopping
- Regularization methods
 - Weight regularization
 - Dropout
- Data based methods
 - Data Augmentation
 - Noise
 - Extending the dataset

Early Stopping

Weight regularization

- Large weights in a NNs are a sign of a more complex network that has overfit the training data
- Penalizing a NN based on the size of the weights during training can reduce overfitting
- An L1 or L2 vector norm penalty can be added to the optimization of the network to encourage smaller weights

weight decay
$$L1 = \sum_{i} |\theta_{i}|$$

weight decay
$$L2 = \sum_{i} \theta_i^2$$

- Variation of scales of input variables causes the scale of the weights of the network to vary accordingly
 - Problematic for weight regularization
 - Solution: normalization, standardization

Dropout

- "Ephemeral sparsity"
- applied only during the training phase

(a) Standard Neural Net

(b) After applying dropout.

Data based methods

- Data Augmentation
 - Synthetic data generation
 - Data modification

Noise

- Useful for natural signals
- Extending the dataset
 - Used in real world & kaggle competitions

Original Image

De-texturized

De-colorized

Edge Enhanced

Salient Edge Map

Flip/Rotate

CIFAR-10 dataset

Canadian Institute for Advanced Research

- 60k RGB images
- 32x32 pixel
- 10 classes

