Game Theory: Lecture #1

Outline:

- Sociotechnical systems
- Social models
- Game theory
- Course outline

Sociotechnical Systems

•	Enginee	ring	goal:	Optimize	performance	subject '	to constraints
			0	- p	p 0		

common paradigm

"design specification" \longrightarrow "performance"

- Considerations:
 - Cost?
 - Weight?
 - Efficiency?
 - Green/environmental?
- Emerging systems: Integration of social and engineering components

emerging paradigm

"design specification" \longrightarrow "social behavior" \longrightarrow "performance"

- Challenges:
 - Societal behavior is a main driving factor of performance.
 - Optimal design **must** account for societal behavior
- Examples:
 - Transportation networks
 - Smart grid
 - College admissions?
- Question: How do you model/influence societal behavior?
- Game Theory: Set of tools for modeling/predicting social behavior

Transportation Networks

- Engineering: Develop infrastructure necessary to meet societal demands
- Example: Simplistic transportation network model

- Components:
 - Society: 10 drivers seeking to traverse from S to D over shared network
 - Routes: High (H) or Low (L) path
 - Congestion: $c_H(x)$ denotes congestion on H if x drivers use H

- Ex:
$$c_H(5) = 1/2$$
, $c_H(10) = 1$, $c_L(5) = 1$, $c_L(10) = 1$

- Questions: What is optimal routing decision that minimizes average congestion?
- Curiosity: Will drivers efficiently utilize a transportation network?
- ullet System cost: If x_H user take High road, total congestion is

$$C(x_H, x_L) = x_H \cdot C_H(x_H) + x_L \cdot C_L(x_L) = x_H \cdot \left(\frac{x_H}{10}\right) + (10 - x_H) \cdot (1)$$

Optimizing over $x_H \in \{0,1,\cdots,10\}$ gives us $x_H^* = 5$ and the total congestion is

$$C(x_H^* = 5, x_L^* = 5) = 5 \cdot \left(\frac{1}{2}\right) + 5 \cdot (1) = 7.5$$

• Summary: A total congestion of 7.5 is the best-case scenario.

Transportation Networks (2)

• Question: What is a reasonable prediction of social behavior?

- Fact: Social behavior emerges as a result of individual drivers' decisions
- Reasonable driver model: Each driver minimizes their own experienced congestion
- ullet Recall optimal allocation: 5 drivers H, 5 driver L
 - Congestion of users on H route?
 - Congestion of users on L route?
- \bullet Question: Is $n_H^*=5$ and $n_L^*=5$ a reasonable prediction of social behavior? No!
- Question: What is a reasonable prediction of social behavior?
- ullet Answer: $n_H=10$, $n_L=0$

$$C(n_H = 10, n_L = 0) = 10 > C(n_H^* = 5, n_L^* = 5) = 7.5$$

Why?

• Take away: Social behavior far worse than optimal system behavior.

Transportation Networks (3)

- Engineering goal: Augment network to improve resulting behavior
- Challenge: Must account for social dynamics in design process (often overlooked)
- Example:

Network #1 $c_1(x) = x/10$ $c_2(x) = 1$ $c_1(x)$ $c_2(x) = 1$ $c_1(x)$ $c_2(x) = 1$ $c_1(x)$

Network #2

- Components:
 - $-\ 10$ drivers seeking to traverse from S to D over each shared network
 - Network #1: Two paths, $P_1 = \{1, 2\}$, $P_2 = \{3, 4\}$
 - Network #2: Four paths, $P_1 = \{1,2\}$, $P_2 = \{3,4\}$, $P_3 = \{1,5,4\}$, $P_4 = \{3,5,2\}$
 - Congestion additive for drivers, i.e., $c_{P_1}(\cdot) = c_1(\cdot) + c_2(\cdot)$
- ullet Intuition: Quality of emergent behavior Network #2 should be better than Network #1
- What is reasonable prediction of social behavior for each network?
 - Network #1: $n_{P_1} = 5$, $n_{P_2} = 5$

$$C(n_{P_1} = 5, n_{P_2} = 5) = 5 \cdot (1 + 1/2) + 5 \cdot (1 + 1/2) = 15.$$

- Network #2: $n_{P_3} = 10$, $n_{P_1} = 0$, $n_{P_2} = 0$, $n_{P_4} = 0$

$$C(n_{P_1} = 0, n_{P_2} = 0, n_{P_3} = 10, n_{P_4} = 0) = 10 \cdot (1+1) = 20.$$

• Conclusion: "Better" network resulted in worse performance???

Sociotechnical Systems

emerging paradigm

"design specification" \longrightarrow "social behavior" \longrightarrow "performance"

- Challenges:
 - Optimal design must account for social behavior
 - Predicting social behavior non-trivial (and often not optimal)
 - Emergent social behavior often non-intuitive
- Further challenges: "Information" exchange often part of underlying system
- Example: Electrical vehicle charging stations
 - Facility: 5 independent charging stations
 - Customers: 10 users visit facility and seek to utilize charging stations
 - Private information: Different energy requests and time constraints

Which customers should be able to utilize charging stations? schedule?

- Central problem: Decision-making entity does not have access to users' private information
- Possible resolution:
 - Ask users to report their private information
 - Implement mechanism that derives schedule given information received
- If users give correct information, then the resulting schedule should be desireable
- Concerns:
 - Will users provide truthful information?
 - Can users manipulate mechanism by conveying false information?
 - How does the underlying mechanism impact performance?

Information Based Systems

- Example: College admissions
 - Colleges ask for information regarding applicants
 - Every applicant states that UCSB is their top choice
 - Only 25% actually accept their admissions
 - UCSB ECE: Adding 50-75 graduate students per year (admit around 200-250)
- Example: Medical residency programs (limited open spots, must be filled)
- Example: Lottery-based system for school assignment (Mechanism used by Boulder Valley School District)
- Setup:
 - Schools: $\{1,\ldots,m\}$.
 - Number open spots: $\{n_1,\ldots,n_m\}$, $n_i\geq 0$
 - Students: $\{s_1,\ldots,s_n\}$
 - School ranking for each applicant $s: \{q_1^s, \ldots, q_m^s\}$
 - Interpretation: $q_i^s>q_j^s$ means school i is preferred to school j by student s
- Goal: Assign students to schools to maximize social benefit (happiness)
- Implemented mechanism: Students report their top three school choices
 - Round #1: Randomly pick each student. Assign to top choice if available.
 - Round #2: Randomly pick each student not assigned in Round #1. Assign to second choice if available.
 - Round #3: Randomly pick each student not assigned in Round #1 or #2. Assign to third choice if available.
 - If not assigned, then student assigned to home school.
- Q: Will students report truthfully?
- Q: How do you ensure desirable behavior if users will not provide accurate information?

Course Outline

emerging paradigm

 $\text{``design specification''} \ \longrightarrow \ \text{``social behavior''} \ \longrightarrow \ \text{``performance''}$

- Fact: Engineers must successfully understand social behavior to meet the design objectives
- Game theory = Study of *strategic* social behavior, applicable to many various systems
- Detailed (tentative) course outline available on the main syllabus; main topics will be
 - Social Choice (voting)
 - Matching
 - Games, equilibrium, and special types of games
 - Designing games for efficiency
 - Cost sharing
 - Mechanism design
 - Learning in games
 - Game theory for purely engineered systems
- Note: To fully understand social behavior, we will often remove the engineering component. (due to time limitations)