SUYASH GOYAL

Assignment - 1 Stochastic Processes (Mc303)---A Stochastic Process is defined as a collection of random variables X = { X = + ET3 defined on a common probability space , taking values in a common set S. (the state space) and indexed by a set T, often either Nor [0,00); and thought of -as-time (discrete or continuous respectively). Stochastic Processes can be divided into 4 types based on nature of State space and index set (s and T) :-(i) Both T and 5 are discrete. Eq. Xn represents outcome of nth toss of fair dice. S = {1,2,3,9,5,63 and T = : [1,2,3,] (ii) T is discrete and 5 is continuous Eg. Xn represents temperature at theend of no hour. S = (0°c .: 60°c) - and T = {1,2,3; -3. (iii) T is continuous and 5 is discrete. Eg. Xn : represents - no. of phone calls received in interval (0, t). S = {1,2,3, --- 3 and T = (0,t). Livi. Both T and S. are Continuous. Eg. Xn represents maximum temperature in interval (0, 6). S = (10°c, 60°c) and T = (0,t). (A2) A Bernoulli Process is a finite or infinite sequence of binary random variables is so it is adiscrete - time stochastic process that takes only two values , canonically o and I . The component Bernoulli Variables Xi are identically distributed and independent. (i) 7 success in to trials (Assuming P(success) = p. 7: 1 - p = q) P (5=K) = "CK p" (1-p)"-K 10C7 p7 (45p)40-7 = 120p7 (4-p) (ii) 7th Success in 10 trials (Assuming Plaucess=pf1=p=q) P(T,=K)= (1-p)K-1 p = p(1-p)

7 -1-	-				-
(EA)	A merged process of two independent Bernoulli Processes				
	is still a Bernoulli Process with a computed parameter. The				
	indep	endence pr	opertu	is crucial for the merged process, ensuring	20
	that	the R.V. is	differe	nt time slots are independent. Collisions	0
				e original processes are counted as one	
				process.	
3:-			9.0	ble are given that there is an arrival in	
2,	1	12-P19.	. P9	We are given that there is an arrival in either Xx or Yx, hence,	
	0	(1-p)(1-q)	P(4-9)	Probability of arrival in merged	
14		0	2	process = (1-p)q + p(1-q) = p+q-2pq	
	:	-7" "a 14.	. 2: S	Process (1 - Proj Pro	
(PA)					
	with rate (or intensity) 2, 2 > 0 if:				
	WIGH		ncensico	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
				\	_
				dependent increments.	_
				vents in any time interval of length t is	
				with mean At . That is, N (15, 12) = Poi (At)	-
				-2t /4.17	-
		n . n	PINKS,	(2t) = n) = e-2t (2t)", n & No.	
	Fom (t) = 2"t" - 2t - n!				
	(n-i)!				
	$F_{x_1 g_2} (x_{1}, g_2) = F_{x_1} (x_{1}) - F_{x_2} (g_2 - x_{1})$ $F_{x_1 g_2} (x_{1}, g_2) = \lambda^2 e^{-\lambda x_{1}} e^{-\lambda (g_2 - x_{1})} = \lambda^2 e^{-\lambda g_2}$				
1.75.91	Fxrs	(X,: 52) =	22 c-x	11 6-3 (21-X1) = 32 6- X25	
	FxI	Xny Sm (N)	in Nh	1 = x - enp (-xn, -xn = xn)	
	Letti	na Sna XI	+ + X	in and substituting -5n = X1 Xn-1 For Xn,	
20:50	A	F 81	Xno Sn	(min, Mer, Sh) = 2 e 750 Hence Shown	
	PIN	4(0,27)=4	1 = 6	2x (2x) = 2 x e-12x	
			-	4! - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	PIN	([4.78])=:) = (e.	12 (1273 = 343 23 e-12	
					-

A renewal process is a point process in which the interevent LASI intervals are independent and drawn from the same probability density. More specifically, let Ti be independent, identically distributed interevent times from the probability density p(t). Let so = ITi. The process Sr is a renewal process. For renewal process N(t), we define the renewal function H(t) by, HILL ECNIELL ESO and the renewal density h(E) by.

h(t) = H'(t) - t 20 When the lifetime distribution is an exponential distribution with parameter 2 , so that f(t) = 2e-2t, t20; then [Nit):- t2a3 is a Poisson process with rate 2. In this case, Sn. has a gamma distribut--ion with parameters in and , and N(t) has a Poisson distribution with parameter At. The exponential distributions are the only ones with the memoryless "property = == Let the input space be x and F: x - R be a function from the (Ve) input: space to the reals. We then say that f is a Gaussian process if for any vector of inputs x = [xi, xz, ..., xn] 5.t. xie X Vi, the vector of outputs: F(x) = [F(x), F(xe), ..., F(xn)] is Gaussian distributed. To prove wide and strict sense stationary att equivalent: μx (ti) = μx(tj) = μx vi, j and (cx(ti+Δ; tj+Δ) = Cx.(ti,tj)=cx(ti-tj) From above we conclude that the mean victor and covariance matrix of x (t,), x (t2),, X (tx)... is the same as the mean vector and covariance matrix of χ (t,+Δ), X (t+Δ), X (t+ +Δ).

Hence Proved.

Littles To the term of the term of the second to the term of the t

[A7] A stachastic process B = {B(t): t > 03: possessing continuous: sample paths is called standard Brownian motion dif :-(A) B(t) - B(s) has a normal distribution with mean 0 and variance t-s, For Brownian motion with variance of and drift : H. X(t) = o B(t) + Ht, the definition is some except: (iii) must be modified: (iii) X(t)-X(s) has a normal distribution with mean H(t-s) and variance .. o 2 (t-5) anicone We observe that the vector (BIt);; B (to)) bas a multivariate normal distribution because the event - { B(t.) = x1 ; == 3 B(tn) = xn3 can be re-written in terms of independent increment events, E B(t,)=x,, B(tz) - B(t,) = xz-x, , B(tn) - B(t;z,) = xn-xn-13, yielding the joint density of (B(t1),, B(tn)) as;

F(x,,...,xn) = f(1) ft-tn (x2-x1) ftn-tn-1 (xn-xn-1) where $f_{t}(x) = \frac{1}{\sqrt{2\pi t}} e^{-x^{2}/2t}$ is the density for the N(0,t) distrib--ation. $\frac{1}{\sqrt{2\pi t}} e^{-x^{2}/2t}$ is the density for the N(0,t) distrib-For a Gaussian Process, $m(t) \stackrel{def}{=} E(X(t))$, $a(s_{1}t) \stackrel{def}{=} cov(X-(s_{1},X(t)), a(s_{2}t))$ For a standard BM , m(t) = 0 and a (5; t) = var (B(5)) +0 =5. Thus standard BM is the unique Gaussian Process with mitt = 0 and a(s,t) = min {5, t}. (18) A random walk is a stochastic process that describes a path that consists of a succession of random steps on some mathemati--cal space which starts at 0 and at each step moves +1 or -1 with equal probability. Real work processes which can be realized as random walk are path of a molecule, search path of a foraging animal, price of a fluctuating Stock and the financial Status

of a gambler. Types-of random walk include Unrestricted,

2-D. 3- D. etc. Problem of interest is to determine P(rvin) For given Xo.

Restricted with Absorbing barriers, Restricted with Reflecting barriers

Plabsorption occurs at a 1 = (PA) Plabsonption occurs at b) = 1 - Plabsorption occurs at a) Here a = 5, b=4 (Because formula assames - b 1) p= 0.3 and q=0.4. P(absorption at a) = $(0.3)^{\frac{5}{3}} \cdot \frac{(0.3)^{\frac{4}{3}} - (0.4)^{\frac{4}{3}}}{(0.3)^{\frac{9}{3}} - (0.4)^{\frac{9}{3}}}$ => P (absorption atb) = 1 - Plabsorption at a) = 0.8246 *Also, Plabsorption occurs - 1 for any N: So: For N 210, -Plabsorption occurs) = 1: E(N)= apa (pb-qb) - bqb (pa-qa) (pxq) (p-q) (pa+6 - qa+6) 5 (0-3)5 (0-34-0-41) - 4 (0.4)4 (0-35-0-45 (0.3-0.4) (0.39-0.49) This mean absorption is likely to occur by the time the particle takes 25 steps. To Find the MGF of Xn, Eleaxn), we'll first calculate the (ALO) Mar of a single step z;. $M_{Z_1}(\alpha) = E^{C}(e^{\alpha Z_1}) = e^{\alpha}p + e^{-\alpha}q$ Since Xn is sum of n IID random variables zi, the MGF of Xn ig: E(e e xn) = (E (e xz;)) = (e p + e xq) The asymptotic behaviour of Xn largely depends on the value of p and q: (i) If p=q then xn behaves like a normal distribution by the CLT For large n with mean o and var n. Hence Xn & NT Z. (ii) If p / q Bien Xn will drift with mean n (2p-1) and its variance temains n, so it tends to a normal distribution with non-zero

mean and variance h.

(A21)

Given Xn, the distribution of the sum of the increments From m+1 to n is s.t. the increments are evenly distributed.

In particular E(×n/xn) should be allinear function of Xn. To compute E (xm | xn) - note that the increments between times m and n will average out. Specifically, the walk is equally likely to have any value from m to n-due to symmetry and linearity.

For m >n :-

In this case Xn'is already determined so Xm 15 just xn plus the increments from n+1 to m which are independent of Xn and hence have no effect on F (Xm | Xn) ...

· · E (XmlXn) = Xn.