

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07053526 A

(43) Date of publication of application: 28.02.95

(51) Int. CI

C07D239/38 A01N 43/54 C07D239/56 C07D239/60

(21) Application number: 05258981

(22) Date of filing: 24.09.93

(30) Priority:

23.10.92 JP 04307813 08.06.93 JP 05163335 (71) Applicant:

NIPPON BAYERAGROCHEM KK

(72) Inventor:

GOSHIMA TOSHIO KITAGAWA YOSHINORI HAYAKAWA HIDENORI SHIBUYA KATSUHIKO **ITOU NARIYUKI** MINEGISHI NATSUKO UKAWA KAZUHIRO YAMAOKA TATSUYA **UENO CHIEKO ITO AKIMI** KYO YOSHIKO

(54) HERBICIDAL PYRIDINYLTHIOALKANE **DERIVATIVE**

(57) Abstract;

PURPOSE: To obtain a new pyridinylthioalkane derivative exhibiting effective herbicidal action and having excellent selectivity.

CONSTITUTION: A compound of formula I [R1 is a (halogeno)-1-4C alkyl, a (halogeno)-1-4C alkoxy or halogen; R2 is a (halogeno)-1-4C alkoxy, halogen or a halogeno-1-4C alkyl; R us a 3-7C cycloalkyl which may be substituted by a 1-4C alkyl or a 1-15C alkyl which may be substituted; R is halogen or formula II (R⁵ is O or S; R' is H, a 1-4C alkoxy-carbonyl, carboxyl or a 1-20C saturated carbon chain, a 3-20C unsaturated carbon chain, phenyl, a heterocyclic group, a condensed heterocyclic group, a 3-8C cycloalkyl all of which may be substituted, or formula III or formula IV; (n) is 0-6], e.g. 1-chloro-2-(4,6-

dimethoxy-2-pyrimidinylthio)-3-methylbutane. The compound is obtained by reacting a compound of formula V with a halogenating agent or a compound of formula VI (R7 is CI, Br or I).

COPYRIGHT: (C)1995,JPO

$$\begin{array}{c}
R^{*} \\
\end{array}$$

$$\begin{array}{c}
R^{*} \\
\end{array}$$

$$\begin{array}{c}
R^{*} \\
\end{array}$$

$$\begin{array}{c}
R^{*} \\
\end{array}$$

$$-\mathbf{R}, -\mathbf{C} - \mathbf{R},$$
 Π

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-53526

(43)公開日 平成7年(1995)2月28日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 7 D 239/38		8615-4C		
A 0 1 N 43/54	C	9155-4H		
C 0 7 D 239/56		8615-4C		
239/60		8615-4C		

審査請求 未請求 請求項の数4 FD (全176頁)

[21] 出願番号	特顯平5-258981	(71)出願人	000232564
			日本パイエルアグロケム株式会社
(22) 出顧日	平成5年(1993)9月24日		東京都港区高輪4丁目10番8号
		(72)発明者	五島 敏男
31)優先権主張番号	特願平4-307813		栃木県下都賀郡国分寺町小金井214-18
(32)優先日	平4 (1992)10月23日	(72)発明者	北川 芳則
33)優先権主張国	日本 (JP)		栃木県真岡市荒町1085
31)優先権主張番号	特顧平5-163335	(72)発明者	早川 秀則
32) 優先日	平5 (1993) 6月8日		埼玉県鳩ヶ谷市八幡木3-7-1
33)優先権主張国	日本(JP)	(72)発明者	渋谷 克彦
			栃木県小山市大字神鳥谷1425-2
		(74)代理人	弁理士 川原田 一穂

(54) 【発明の名称】 除草性ピリミジニルチオアルカン誘導体

(57)【要約】

【目的】 下記式で表されるピリミジニルチオアルカン 誘導体の合成

【構成】 式:

【化1】

$$\begin{array}{c|c}
R^{1} \\
\hline
N \\
R^{2}
\end{array}$$

$$\begin{array}{c|c}
R^{3} \\
\hline
R \\
R \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} \\
\hline
R \\
\end{array}$$

(式中、R¹及びR²はC¬アルコキシ等を示し、R³はC¬アルキル等を示し、R¹はハロゲン等を示す)で表されるピリミジニルチオアルカン誘導体及び除草剤としての利用。

【効果】 本発明化合物は、有効な除草作用を表し、かつ優れた選択性を有す。

【特許請求の範囲】

【請求項1】 式: 【化1】

$$\begin{array}{c|c}
R^{1} \\
\hline
 & \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{3} \\
\hline
 & \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{3} \\
\hline
 & \\
R^{2}
\end{array}$$

式中、R¹は、Ci,アルキル、Ci,アルコキシ、ハ ロゲン原子、ハロゲノーCiaアルキル、又はハロゲノ -Ci4アルコキシを示し、R²は、Ci4アルコキ シ、ハロゲン原子、ハロゲノーCロアルキル、又はハ ロゲノーCiaアルコキシを示し、R'は、Ciaアル キル置換されていてもよいCs-1シクロアルキル、又は 置換されていてもよいC₁₋₁₅アルキルを示し、R¹は、

*ハロゲン又は 【化2】

を示し、R⁶は、酸素原子、又は硫黄原子を示し、そし てR⁶は、水素原子、任意に置換されていてもよいC 1-20飽和炭素鎖、任意に置換されていてもよいC3-20不 飽和炭素鎖、任意に置換されていてもよいフェニル、任 10 意に置換されていてもよい複素環式基、任意に置換され ていてもよい縮合複素環式基、任意に置換されていても よいCs-eシクロアルキル、任意に置換されていてもよ いCssシクロアルケニル、Ciaアルコキシーカルボ ニル、カルボキシル又はその塩、又は、下記式:

$$-(CH_{z}) n - C - O - CH_{z} - CH - S - N$$

$$R^{3}$$

$$| N - C - O - CH_{z} - CH - S - N$$

$$R^{2}$$

(式中、R'、R'及びR'は、前記と同じ、nは、0 から6の整数を示す)又は、

※【化4】

*

(式中、R¹、R²及びR³は、前記と同じ)を示す、 で表されるピリミジニルチオアルカン誘導体。

【請求項2】 R¹が、メトキシ、ジフルオロメトキシ、 又はトリフルオロメトキシを示し、R²が、メトキシ、 ジフルオロメトキシ、又はトリフルオロメトキシを示 し、R³が、C₁₂アルキル置換されていてもよいC se シクロアルキル、又は任意に置換されていてもよい C17アルキルを示し(置換基は、ハロゲン、C34シ クロアルキルか又は任意に置換されていてもよいフェニ ル【置換基は、シアノ、ニトロ、ハロゲン、Ciaアル キル、Ciaアルコキシ、ハロゲノーCiaアルキル又 はハロゲノーCェアルコキシから任意に選ばれる}か ら任意に選ばれる)、R'が、クロロ、ブロモ又は 【化5】

を示し、R⁶が、水素原子、

任意に置換されていてもよいC₁₋₁₂アルキル(置換基 は、ハロゲン、シアノ、ニトロ、Ciiアルキル置換さ

★れていてもよいCseシクロアルキル、Ci4アルコキ シ、C14アルキルチオ、ハロゲノーC14アルコキ シ、ハロゲノーCロアルキルチオ、カルボキシル又は その塩、C14アルキルーカルボニル、C14アルコキ シーカルボニル、Ciaアルキルチオーカルボニル、ア ミノ、Ciaアルキルーアミノ、ジーCiaアルキルー アミノ、任意に置換されていてもよいフェニル {置換基 は、シアノ、ニトロ、ハロゲン、Ciaアルキル、C 14アルコキシ、C14アルキルチオ、ハロゲノーC 40 ₁₄アルキル、ハロゲノーC₁₄アルコキシ又は、ハロ ゲノーCuアルキルチオから選ばれる 、任意に置換 されていてもよいフェノキシ {置換基は、シアノ、ニト ロ、ハロゲン、Ciaアルキル、Ciaアルコキシ、C ロアルキルチオ、ハロゲノーCロアルキル、ハロゲ ノーCi4アルコキシ、ハロゲノーCi4アルキルチ オ、置換されていてもよいフェノキシ〈置換基は、ハロ ゲン、Cuアルキル又はハロゲノーCuアルキルか ら任意に選ばれる〉、置換されていてもよいピリミジル オキシ〈置換基は、ハロゲン、Cirアルキル又はハロ ★50 ゲノーC₁₄アルキルから任意に選ばれる〉、置換され

ていてもよいキノキサリルオキシ〈置換基は、ハロゲ ン、Cuアルキル又はハロゲノーCuアルキルから 任意に選ばれる〉、置換されていてもよいベンゾチアゾ リルオキシ(置換基は、ハロゲン、Ciaアルキル又は ハロゲノーCirアルキルから任意に選ばれる〉又は、 置換されていてもよいベンゾオキサゾリルオキシ(置換 基は、ハロゲン、Ciaアルキル又はハロゲノーCia アルキルから任意に選ばれる〉から任意に選ばれる〉、 任意に置換されていてもよいフェニルチオ {置換基はシ アノ、ニトロ、ハロゲン、Ciaアルキル、Ciaアル コキシ、Ciaアルキルチオ、ハロゲノーCiaアルキ ル、ハロゲノーCuアルコキシ、ハロゲノーCuア ルキルチオ、フェニルーCiaアルコキシ、置換されて いてもよいフェノキシ〈置換基は、ハロゲン、Ciaア ルキル又はハロゲノーCiaアルキルから任意に選ばれ る〉、置換されていてもよいピリミジルオキシ〈置換基 は、ハロゲン、Ciaアルキル又はハロゲノーCiaア ルキルから任意に選ばれる〉、置換されていてもよいキ ノキサリルオキシ〈置換基は、ハロゲン、Craアルキ ル又はハロゲノーCiaアルキルから任意に選ばれ る〉、置換されていてもよいベンゾチアゾリルオキシ (置換基は、ハロゲン、Ci,アルキル又はハロゲノー Ciaアルキルから任意に選ばれる〉又は、置換されて いてもよいベンゾオキサゾリルオキシ〈置換基は、ハロ ゲン、Cirアルキル又はハロゲノーCirアルキルか ら任意に選ばれる〉、から任意に選ばれる〉、ナフチ ル、任意に置換されていてもよいナフトキシ {置換基 は、シアノ、ニトロ、ハロゲン、Ciaアルキル、C 14アルコキシ、C14アルキルチオ、ハロゲノーC 14アルキル、ハロゲノーC14アルコキシ、ハロゲノ -Cirアルキルチオ、置換されていてもよいフェノキ シ〈置換基は、ハロゲン、Ciaアルキル又はハロゲノ -Ciaアルキルから任意に選ばれる〉、置換されてい てもよいピリミジルオキシ〈置換基は、ハロゲン、C 14アルキル又はハロゲノーC14アルキルから任意に 選ばれる〉、置換されていてもよいキノキサリルオキシ 〈置換基は、ハロゲン、Cia アルキル又はハロゲノー Ciaアルキルから任意に選ばれる〉、置換されていて もよいベンゾチアゾリルオキシ〈置換基は、ハロゲン、

* Ciaアルキル又はハロゲノーCiaアルキルから任意 に選ばれる〉又は、置換されていてもよいベンゾオキサ ゾリルオキシ〈置換基は、ハロゲン、Ciaアルキル又 はハロゲノーCinアルキルから任意に選ばれる〉、か ら任意に選ばれる}、Ci+アルキルスルホニルオキ シ、又は置換されていてもよいベンゼンスルフォニルオ キシ {置換基は、ハロゲン又はCirアルキルから任意 に選ばれる)、から任意に選ばれる)、を示すか又は、 R⁶が、任意に置換されていてもよいC₂₋₁₂アルケニル (置換基は、ハロゲン、Ci, アルキル、カルボキシル 10 又はその塩、又は、ハロゲノ又はCiaアルキルによっ て任意に置換されていてもよいフェニルから選ばれ る)、Cs-nアルキニル、Cs-nアルカジエン、任意に 置換されていてもよいフェニル(置換基は、シアノ、ニ トロ、ハロゲン、Ciaアルキル、Ciaアルコキシ、 Craアルキルチオ、ハロゲノーCraアルキル、ハロ ゲノーCロアルコキシ又は、カルボキシル又は、その 塩から選ばれる)、任意に置換されていてもよい5員又 は6員の複素環式基(該複素環のヘテロ原子は酸素原 20 子、硫黄原子、窒素原子から選ばれ、置換基は、シア ノ、ニトロ、ハロゲン、Ciaアルキル、Ciaアルコ キシ、Ciaアルキルチオ、ハロゲノーCiaアルキ ル、ハロゲノーCi-、アルコキシ、任意に置換されてい てもよいフェニル{置換基は、ハロゲン、ニトロ、C ıı アルキル、Cıı アルコキシ、ハロゲノーCıı ア ルキル又はハロゲノーCiaアルコキシから選ばれ る}、フェノキシ、又は、カルボキシル又はその塩から 選ばれる)、任意に置換されていてもよい9員又は10 員の縮合複素環式基(該複素環のヘテロ原子は酸素原 30 子、硫黄原子、窒素原子から選ばれ、置換基は、シア ノ、ニトロ、ハロゲン、Cuアルキル、Cuアルコ キシ、Ciaアルキルチオ、ハロゲノーCiaアルキル 又はハロゲノーCiアルコキシから選ばれる)、C ロアルキル又はカルボキシル又はその塩によって置換 されていてもよいCsaシクロアルキル、Ciaアルキ ル又はカルボキシル又はその塩によって置換されていて もよいCseシクロアルケニル、C14アルコキシーカ ルボニル、カルボキシル又はその塩又は、下記式

$$-(CH_{2})n - C - O - CH_{2} - CH - S - N$$

$$= \begin{cases}
R^{3} \\
| \\
N = \begin{cases}
R^{1} \\
N = \begin{cases}
R^{2} \\
N = \\
N = \begin{cases}
R^{2} \\
N = (R^{2} \\
N = (R^{2}$$

(式中、R¹、R²又はR³は、前記と同じ、nは、0 から6の整数を示す)又は、 ※【化7】

(式中、R¹、R²又はR³は、前記と同じ)を示す、請求項第1項記載のピリミジニルチオアルカン誘導体。 【請求項3】R¹が、メトキシを示し、R²が、メトキシを示し、R³が、メチル置換されていてもよいシクロペンチル、メチル置換されていてもよいシクロペキシル、又は、任意に置換されていてもよいCii アルキル(置換基は、フルオロ、クロロ、ブロモ、シクロプロパン、シクロペンタン、シクロペキサンか又は、置換されていてもよいフェニル(置換基は、シアノ、ニトロ、フルオロ、クロロ、ブロモ、メチル、メトキシ、トリフルオロメチル又はトリフルオロメトキシから任意に選ばれる)から任意に選ばれる)を示し、R¹が、クロロ、ブロモ又は

【化8】

を示し、そしてR⁶が、水素原子、 任意に置換されていてもよいCiaアルキル(置換基 は、フルオロ、クロロ、ブロモ、シアノ、ニトロ、メチ ル置換されていてもよいシクロペンチル、メチル置換さ れていてもよいシクロヘキシル、CIIアルコキシ、カ ルボキシル又はそのナトリウム塩、メチルカルボニル、 メトキシカルボニル、アミノ、ジメチルアミノ、任意に 置換されていてもよいフェニル {置換基は、シアノ、ニ トロ、フルオロ、クロロ、メチル、メトキシ、又はカル ボキシルから任意に選ばれる)、任意に置換されていて もよいフェノキシ {置換基は、シアノ、ニトロ、フルオ ロ、クロロ、メチル、任意に置換されていてもよいフェ ノキシ〈置換基は、フルオロ、クロロ、又はトリフルオ ロメチルから任意に選ばれる〉、任意に置換されていて もよいピリジンー2ーイルオキシ〈置換基は、フルオ ロ、クロロ、又はトリフルオロメチルから任意に選ばれ る〉、任意に置換されていてもよいキノキサリン-2-イルオキシ〈置換基は、フルオロ、クロロ、又はトリフ ルオロメチルから任意に選ばれる〉、任意に置換されて いてもよいベンゾチアゾールー2ーイルオキシ〈置換基 は、フルオロ、クロロ、又はトリフルオロメチルから任 意に選ばれる〉、又は、任意に置換されていてもよいべ ンゾオキサゾールー2ーイルオキシ〈置換基は、フルオ ロ、クロロ、又はトリフルオロメチルから任意に選ばれ る〉から任意に選ばれる〉、任意に置換されていてもよ いフェニルチオ {置換基は、フルオロ、クロロ、メチ ル、フェニルメトキシ、任意に置換されていてもよいフ *50

*ェノキシ〈置換基は、フルオロ、クロロ、Cir アルキ ル又はハロゲノーCコアルキルから任意に選ばれ る〉、任意に置換されていてもよいピリジルオキシ〈置 10 換基は、フルオロ、クロロ、又はトリフルオロメチルか ら任意に選ばれる〉、任意に置換されていてもよいキノ キサリルオキシ〈置換基は、フルオロ、クロロ、又はト リフルオロメチルから任意に選ばれる〉、任意に置換さ れていてもよいベンゾチアゾリル〈置換基は、フルオ ロ、クロロ、又はトリフルオロメチルから任意に選ばれ る〉、任意に置換されていてもよいベンゾオキサゾリル 〈置換基は、フルオロ、クロロ、又はトリフルオロメチ ルから任意に選ばれる〉から任意に選ばれる〉、ナフチ ル、任意に置換されていてもよいナフトキシ {置換基 は、任意に置換されていてもよいフェノキシ〈置換基 は、フルオロ、クロロ、又はトリフルオロメチルから任 意に選ばれる〉から選ばれる}又は、任意に置換されて いてもよいベンゼンスルフォニルオキシ {置換基は、フ ルオロ、クロロ、又はメチルから任意に選ばれるとから 任意に選ばれる)、を示すか又は、R⁶が、任意に置換 されていてもよいCs・アルケニル(置換基は、フルオ ロ、クロロ、ブロモ、カルボキシル又は、任意に置換さ れていてもよいフェニル {置換基は、フルオロ又はクロ ロから選ばれる) から選ばれる)、C to アルキニル、 30 任意に置換されていてもよいフェニル (置換基は、シア ノ、ニトロ、フルオロ、クロロ、ブロモ、エチル、プロ ピル、イソプロピル、(n-、tert-)ブチル、メ トキシ、エトキシ、トリフルオロメチル又はトリフルオ ロメトキシから選ばれる)、任意に置換されていてもよ い5員又は6員の複素環式基 (該複素環はチエニル、チ アゾリル、イソキサゾリル、チアジアゾリル、イミダゾ リル、ピラゾリル、フリル、ピリジル、ピリミジル、ピ リダジル、ピラジル及びオキサゾリルから選ばれ、該複 素環の置換基は、フルオロ、クロロ、ブロモ、メチル、 40 メトキシ、メチルチオ、トリフルオロメチル、トリフル オロメトキシ、カルボキシル又は、フルオロ、クロロ、 ニトロ、メチル、エチル、メトキシ又はトリフルオロメ チル、置換されていてもよいフェニルから選ばれる)、 任意に置換されていてもよい9員又は10員の縮合複素 環式基(該縮合複素環はキノリル又はインドリルから選 ばれ、該縮合複素環の置換基は、フルオロ、クロロ、ブ ロモ、メチル、メトキシ、メチルチオ、トリフルオロメ チル、又はトリフルオロメトキシから選ばれるか)又 は、任意に置換されていてもよいシクロプロピル、シク

ロペンチル又はシクロヘキシルを示し(置換基は、メチ

ル、エチル又は、カルボキシルから選ばれる)、任意に 置換されていてもよいシクロペンテニル又はシクロヘキ セニルを示し(置換基は、メチル、エチル又は、カルボ * * キシルから選ばれる)、メトキシカルボニル、カルボキ シル又はその塩、又は下記式

【化9】

$$-(CH_{2})n - C - O - CH_{2} - CH - S - N$$

$$R^{3}$$

$$N = N$$

$$N = N$$

$$R^{2}$$

(式中、 R^1 、 R^2 及び R^3 は、前記と同じ、nは、0から6の整数を示す)又は、

※【化10】

*

(式中、R¹、R²及びR³は、前記と同じ)を示す、 請求項第1項記載のピリミジニルチオアルカン誘導体。 【請求項4】 請求項第1項記載のピリミジニルチオア ルカン誘導体を有効成分として含有する除草剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ピリミジニルチオアルカン誘導体、その製法及び除草剤としての利用に関する。

[0003]

開平3年240777号)。

【発明が解決しようとする課題と手段】本発明者等は下記式(I)で表されるピリミジニルチオアルカン誘導体を合成することに成功した。式:

★【従来の技術】置換α-ピリミジニルチオカルボン酸誘

20 開平2年85262号、特開平3年135963号、特

導体が除草活性を有することはすでに知られている (特

【化11】

[0002]

 $\begin{array}{c|c}
R & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$

式中、R¹は、Ci¬アルキル、Ci¬アルコキシ、ハロゲン原子、ハロゲノーCi¬アルキル、又はハロゲノーCi¬アルコキシを示し、R²は、Ci¬アルコキシ、ハロゲン原子、ハロゲノーCi¬アルキル、又はハロゲノーCi¬アルコキシを示し、R³は、Ci¬アルキル置換されていてもよいCi¬シクロアルキル、又は置換されていてもよいCi¬アルキルを示し、R¹は、ハロゲン又は

【化12】

☆を示し

【0004】R°は、酸素原子、又は硫黄原子を示し、そしてR°は、水素原子、任意に置換されていてもよい C₁₋₂₀飽和炭素鎖、任意に置換されていてもよいフェニル、 任意に置換されていてもよいフェニル、 任意に置換されていてもよい複素環式基、任意に置換されていてもよいに もよい C₃₋₆ シクロアルキル、任意に置換されていてもよい C₃₋₆ シクロアルケニル、 C₁₋₄ アルコキシーカル ボニル、カルボキシル又はその塩、又は、下記式: 【化13】

(I)

9
$$-(C H_{z}) n - C - O - C H_{z} - C H - S - N$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}$$

(式中、R¹、R²及びR³は、前記と同じ、nは、0 から6の整数を示す)又は、

*【化14】

(式中、R1、R2及びR1は、前記と同じ)を示す。 【0005】本発明化合物は、例えば、下記の方法、 ※式:

【化15】

a) R'がハロゲンを示す場合:

(II)

(式中、R¹、R²およびR³は、前記と同じ)で表さ れる化合物をハロゲン化剤とを反応させることにより合 成でき、又は、

★基を示す場合:前記式 (II) で表される化合物と、 式:

(III)

☆基を示す場合:前記式(II)で表される化合物と、

【化17】

【0006】b)R'が

【化16】

(式中、R⁶は前記と同じ、R¹は塩素原子、臭素原子 又はよう素原子を示す) で表される酸塩化物とを反応さ せることによって合成することができ、又は、

【0007】c)R⁴が

【化18】

式:

(式中、R°は、同一又は異なっていてもよく、前記と 同じ定義を示す)で表される酸無水物とを反応させるこ とにより合成でき、又は、

【化20】

【化19】

$$-s$$
 $-c$ $-R$

(IV)

◆基を示す場合:式:

【化21】

$$\begin{array}{c}
 & 11 \\
 & R^{1} \\
 & N \\
 &$$

(式中、R¹、R³及びR'は、前記と同じ) で表される化合物と、式:

(式中、R[®]は前記と同じ)で表される化合物とを反応 させることにより合成することができる。

【0009】本発明式(I)の化合物は強力な除草活性を示す。意外にも、驚くべきことに、本発明によれば、式(I)のピリミジニルチオアルカン誘導体は、特開平2年85262号、特開平3年135963号、特開平3年240777号に記載されている置換αーピリミジニルチオカルボン酸誘導体に比して、実質的に極めて卓越した除草活性作用を現わす。

【0010】本発明式(I)の化合物、並びに製造中間 体の各式に於て、ハロゲン及びハロゲノーアルキルのハ ロゲンは、フルオル、クロル、ブロム、ヨードを示し、 好ましくは、クロル又はフルオルを示す。Ciaアルキ ル、Ciaアルコキシ、Ciaアルキルチオ、並びにハ ロゲノーCiaアルキル、ハロゲノーCiaアルコキ シ、ハロゲノーCロアルキルチオのアルキル部分は、 直鎖又は分岐状の炭素数が1から4のアルキルを示し、 メチル、エチル、プロピル、イソプロピル、n-(se cー、iso-、tert-) ブチルを示す。炭素鎖1 -20の飽和炭素鎖は、上記C14アルキルで示した例 に加え、n-(sec-、iso-)ペンチル、ヘキシ ル、ヘプチル、オクチル、ノニル、デシル、ウンデシ ル、ドデシル、トリデシル、テトラデシル、ペンタデシ ル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナ デシル、イコシル、1-エチル-1-メチルプロパン、 1,1-ジメチルプロパン等を例示できる。

【0011】炭素数2-20の不飽和炭素鎖は、直鎖又は分岐状のアルケニル、アルキニル、アルカジエニル等を示し、プロパルギル、プロピニル、2-プロペニル、40ビニル、1-プロペニル、9-デセニル、8-トリデセニル、10-ナノデセニル、8-ヘプタデセニル、8-ペンタデセニル、1,1-ジメチル-3-ブテニル等を例示できる。5員又は6員の複素環は、窒素、酸素、又は硫黄から選ばれるヘテロ原子を1~4含む環状の基で、例としてはチアジアゾリル、チアゾリル、イミダゾリル、ピラゾリル、フリル、チエニル、ピリジニル、イソキサゾリル、ピリミジニル、ピリダジニル、ピラジニル等をあげることができる。ベンゾ縮合複素環は、上記5員又は6員の複素環が、フェニルと縮合した9~10※50

*【化22】

(VI)

※員の2環式基を示し、例としてはキノリル、ベンゾオキサゾリル、ベンゾチアゾリル、ベンゾイミダゾリル、フタラジニル等をあげることができる。

【0012】本発明式(I)に於て好ましくは、R

'は、メトキシ、ジフルオロメトキシ、又はトリフルオロメトキシを示し、R²は、メトキシ、ジフルオロメトキシ、又はトリフルオロメトキシを示し、R³は、C

'2アルキル置換されていてもよいC**シクロアルキル、又は任意に置換されていてもよいC**アルキルを示し(置換基は、ハロゲン、C**シクロアルキルか又は任意に置換されていてもよいフェニル{置換基は、シアノ、ニトロ、ハロゲン、C**アルキル、C**アルコキシ、ハロゲノーC**アルキル又はハロゲノーC**アルコキシから任意に選ばれる}から任意に選ばれる)、R*は、クロロ、ブロモ又は

【化23】

を示し、

30

【0013】R⁶は、水素原子、任意に置換されていて もよいC1-12アルキル(置換基は、ハロゲン、シアノ、 - ニトロ、Ciaアルキル置換されていてもよいCsaシ クロアルキル、Ciaアルコキシ、Ciaアルキルチ オ、ハロゲノーC14アルコキシ、ハロゲノーC14ア ルキルチオ、カルボキシル又はその塩、Ciaアルキル ーカルボニル、C₁₄アルコキシーカルボニル、C₁₄ アルキルチオーカルボニル、アミノ、Cnアルキルー 40 アミノ、ジーC14アルキルーアミノ、任意に置換され ていてもよいフェニル {置換基は、シアノ、ニトロ、ハ ロゲン、Ciaアルキル、Ciaアルコキシ、Ciaア ルキルチオ、ハロゲノーCiaアルキル、ハロゲノーC ııアルコキシ又は、ハロゲノーCııアルキルチオか ら選ばれる }、任意に置換されていてもよいフェノキシ {置換基は、シアノ、ニトロ、ハロゲン、Cir アルキ ル、Cii アルコキシ、Cii アルキルチオ、ハロゲノ -Ciaアルキル、ハロゲノ-Ciaアルコキシ、ハロ ゲノーCiaアルキルチオ、置換されていてもよいフェ ノキシ(置換基は、ハロゲン、Ciaアルキル又はハロ

ゲノーCirアルキルから任意に選ばれる〉、置換され ていてもよいピリミジルオキシ〈置換基は、ハロゲン、 Ciaアルキル又はハロゲノーCiaアルキルから任意 に選ばれる〉、置換されていてもよいキノキサリルオキ シ (置換基は、ハロゲン、Cia アルキル又はハロゲノ -Crアルキルから任意に選ばれる〉、置換されてい てもよいベンゾチアゾリルオキシ(置換基は、ハロゲ ン、Ciaアルキル又はハロゲノーCiaアルキルから 任意に選ばれる〉又は、置換されていてもよいベンゾオ キサゾリルオキシ〈置換基は、ハロゲン、Ciaアルキ ル又はハロゲノーCiaアルキルから任意に選ばれる〉 から任意に選ばれる}、任意に置換されていてもよいフ ェニルチオ {置換基はシアノ、ニトロ、ハロゲン、C₁-⋆アルキル、C₁₄アルコキシ、C₁₄アルキルチオ、 ハロゲノーC14アルキル、ハロゲノーC14アルコキ シ、ハロゲノーCiaアルキルチオ、フェニルーCia アルコキシ、置換されていてもよいフェノキシ〈置換基 は、ハロゲン、Ciaアルキル又はハロゲノーCiaア ルキルから任意に選ばれる〉、置換されていてもよいピ リミジルオキシ(置換基は、ハロゲン、Ciaアルキル 又はハロゲノーCェアルキルから任意に選ばれる〉、 置換されていてもよいキノキサリルオキシ〈置換基は、 ハロゲン、Ciaアルキル又はハロゲノーCiaアルキ ルから任意に選ばれる〉、置換されていてもよいベンゾ チアゾリルオキシ〈置換基は、ハロゲン、Criアルキ ル又はハロゲノーCiaアルキルから任意に選ばれる〉 又は、置換されていてもよいベンゾオキサゾリルオキシ 〈置換基は、ハロゲン、Ci+アルキル又はハロゲノー Ciaアルキルから任意に選ばれる〉、から任意に選ば れる }、ナフチル、任意に置換されていてもよいナフト キシ {置換基は、シアノ、ニトロ、ハロゲン、Ciiア ルキル、C14アルコキシ、C14アルキルチオ、ハロ ゲノーCiaアルキル、ハロゲノーCiaアルコキシ、 ハロゲノーCiaアルキルチオ、置換されていてもよい フェノキシ〈置換基は、ハロゲン、Cュアルキル又は ハロゲノーCmアルキルから任意に選ばれる〉、置換 されていてもよいピリミジルオキシ〈置換基は、ハロゲ ン、Cirアルキル又はハロゲノーCirアルキルから 任意に選ばれる〉、置換されていてもよいキノキサリル オキシ〈置換基は、ハロゲン、Cirアルキル又はハロ ゲノーCiaアルキルから任意に選ばれる〉、置換され

*グン、Cirアルキル又はハロゲノーCirアルキルから任意に選ばれる〉又は、置換されていてもよいベンソオキサゾリルオキシ〈置換基は、ハロゲン、Cirアルキル又はハロゲノーCirアルキルから任意に選ばれる〉、から任意に選ばれる〉、Cirアルキルスルホニルオキシ、又は置換されていてもよいベンゼンスルフォニルオキシ〈置換基は、ハロゲン又は、Cirアルキルから任意に選ばれる〉、を示すか又は、

10 【0014】R°は、任意に置換されていてもよいC 2-12アルケニル (置換基は、ハロゲン、C14アルキ ル、カルボキシル又はその塩、又は、ハロゲノ又はC ロアルキルによって任意に置換されていてもよいフェ ニルから選ばれる)、Cs-nアルキニル、Cs-nアルカ ジエン、任意に置換されていてもよいフェニル(置換基 は、シアノ、ニトロ、ハロゲン、Ciaアルキル、C 14 アルコキシ、C14アルキルチオ、ハロゲノーC 14アルキル、ハロゲノーC14アルコキシ又は、カル ボキシル又は、その塩から選ばれる)、任意に置換され ていてもよい5員又は6員の複素環式基(該複素環のへ テロ原子は酸素原子、硫黄原子、窒素原子から選ばれ、 置換基は、シアノ、ニトロ、ハロゲン、Craアルキ ル、Ciaアルコキシ、Ciaアルキルチオ、ハロゲノ - C₁₄アルキル、ハロゲノ- C₁₄アルコキシ、任意 に置換されていてもよいフェニル {置換基は、ハロゲ ン、ニトロ、Ciaアルキル、Ciaアルコキシ、ハロ ゲノーCiaアルキル又はハロゲノーCiaアルコキシ から選ばれる〉、フェノキシ、又は、カルボキシル又は その塩から選ばれる)、任意に置換されていてもよい9 30 員又は10員の縮合複素環式基(該複素環のヘテロ原子 は酸素原子、硫黄原子、窒素原子から選ばれ、置換基 は、シアノ、ニトロ、ハロゲン、Ciaアルキル、Ci ィアルコキシ、Crrアルキルチオ、ハロゲノーCrr アルキル又はハロゲノーCロアルコキシから選ばれ る)、Cirアルキル又はカルボキシル又はその塩によ って置換されていてもよいCsaシクロアルキル、C 14アルキル又はカルボキシル又はその塩によって置換 されていてもよいCseシクロアルケニル、Craアル コキシーカルボニル、カルボキシル又はその塩又は、下 40 記式

【0015】 【化24】

$$-(CH_{2})n - C - O - CH_{2} - CH - S - N$$

$$R^{3}$$

$$| N - |$$

(式中、R¹、R²又はR³は、前記と同じ、nは、O から6の整数を示す) 又は、

ていてもよいベンゾチアゾリルオキシ〈置換基は、ハロ *

※【化25】

$$- \bigvee_{C - O - C \text{ H }_{z} - C \text{ H} - S}^{O - C \text{ H}_{z} - C \text{ H} - S} - \bigvee_{N = -\infty}^{N}$$

(式中、R¹、R²又はR³は、前記と同じ)を示す。 【0016】特に好ましくは、R'は、メトキシを示 し、R²は、メトキシを示し、R³は、メチル置換され ていてもよいシクロペンチル、メチル置換されていても よいシクロヘキシル、又は、任意に置換されていてもよ いCirアルキル(置換基は、フルオロ、クロロ、ブロ モ、シクロプロパン、シクロペンタン、シクロヘキサン か又は、置換されていてもよいフェニル {置換基は、シ アノ、ニトロ、フルオロ、クロロ、ブロモ、メチル、メ トキシ、トリフルオロメチル又はトリフルオロメトキシ から任意に選ばれる}から任意に選ばれる)を示し、R 'は、クロロ、ブロモ又は

【化26】

を示し、そして

【0017】R⁶は、水素原子、任意に置換されていて もよいCuアルキル(置換基は、フルオロ、クロロ、 ブロモ、シアノ、ニトロ、メチル置換されていてもよい シクロペンチル、メチル置換されていてもよいシクロへ キシル、Ciaアルコキシ、カルボキシル又はそのナト リウム塩、メチルカルボニル、メトキシカルボニル、ア ミノ、ジメチルアミノ、任意に置換されていてもよいフ エニル{置換基は、シアノ、ニトロ、フルオロ、クロ ロ、メチル、メトキシ、又はカルボキシルから任意に選 ばれる}、任意に置換されていてもよいフェノキシ {置 換基は、シアノ、ニトロ、フルオロ、クロロ、メチル、 任意に置換されていてもよいフェノキシ〈置換基は、フ ルオロ、クロロ、又はトリフルオロメチルから任意に選 ばれる〉、任意に置換されていてもよいピリジンー2-イルオキシ〈置換基は、フルオロ、クロロ、又はトリフ ルオロメチルから任意に選ばれる〉、任意に置換されて いてもよいキノキサリンー2ーイルオキシ〈置換基は、 フルオロ、クロロ、又はトリフルオロメチルから任意に 選ばれる〉、任意に置換されていてもよいベンゾチアゾ ールー2ーイルオキシ (置換基は、ブルオロ、クロロ、 又はトリフルオロメチルから任意に選ばれる〉、又は、 任意に置換されていてもよいベンゾオキサゾールー2ー イルオキシ〈置換基は、フルオロ、クロロ、又はトリフ ルオロメチルから任意に選ばれる〉から任意に選ばれ る}、任意に置換されていてもよいフェニルチオ {置換 基は、フルオロ、クロロ、メチル、フェニルメトキシ、

*ルオロ、クロロ、Ciaアルキル又はハロゲノーCia アルキルから任意に選ばれる〉、任意に置換されていて もよいピリジルオキシ〈置換基は、フルオロ、クロロ、 又はトリフルオロメチルから任意に選ばれる〉、任意に 置換されていてもよいキノキサリルオキシ〈置換基は、 フルオロ、クロロ、又はトリフルオロメチルから任意に 選ばれる〉、任意に置換されていてもよいベンゾチアゾ リル〈置換基は、フルオロ、クロロ、又はトリフルオロ メチルから任意に選ばれる〉、任意に置換されていても よいベンゾオキサゾリル〈置換基は、フルオロ、クロ ロ、又はトリフルオロメチルから任意に選ばれる〉から 任意に選ばれる〉、ナフチル、任意に置換されていても よいナフトキシ {置換基は、任意に置換されていてもよ いフェノキシ〈置換基は、フルオロ、クロロ、又はトリ フルオロメチルから任意に選ばれる〉から選ばれる}又 は、任意に置換されていてもよいベンゼンスルフォニル オキシ {置換基は、フルオロ、クロロ、又はメチルから 任意に選ばれる} から任意に選ばれる)、を示すか又 は、

16 R¹

【0018】R⁶は、任意に置換されていてもよいC 3-6 アルケニル(置換基は、フルオロ、クロロ、ブロ モ、カルボキシル又は、任意に置換されていてもよいフ エニル {置換基は、フルオロ又はクロロから選ばれる} 30 から選ばれる)、C₃₋₆アルキニル、任意に置換されて いてもよいフェニル(置換基は、シアノ、ニトロ、フル オロ、クロロ、ブロモ、エチル、プロピル、イソプロピ ル、(nー、tertー)ブチル、メトキシ、エトキ シ、トリフルオロメチル又はトリフルオロメトキシから 選ばれる)、任意に置換されていてもよい5員又は6員 の複素環式基(該複素環はチエニル、チアゾリル、イソ キサゾリル、チアジアゾリル、イミダゾリル、ピラゾリ ル、フリル、ピリジル、ピリミジル、ピリダジル、ピラ ジル及びオキサゾリルから選ばれ、該複素環の置換基 40 は、フルオロ、クロロ、ブロモ、メチル、メトキシ、メ チルチオ、トリフルオロメチル、トリフルオロメトキ シ、カルボキシル又は、フルオロ、クロロ、ニトロ、メ チル、エチル、メトキシ又はトリフルオロメチル、置換 されていてもよいフェニルから選ばれる)、任意に置換 されていてもよい9員又は10員の縮合複素環式基(該 縮合複素環はキノリル又はインドリルから選ばれ、該縮 合複素環の置換基は、フルオロ、クロロ、ブロモ、メチ ル、メトキシ、メチルチオ、トリフルオロメチル、又は トリフルオロメトキシから選ばれるか)又は、任意に置 任意に置換されていてもよいフェノキシ〈置換基は、フ *50 換されていてもよいシクロプロピル、シクロペンチル又

はシクロヘキシルを示し(置換基は、メチル、エチル又は、カルボキシルから選ばれる)、任意に置換されていてもよいシクロペンテニル又はシクロヘキセニルを示し(置換基は、メチル、エチル又は、カルボキシルから選 *

* ばれる)、メトキシカルボニル、カルボキシル又はその 塩、又は下記式

[0019]

【化27】

$$-(CH_2)n - C - O - CH_2 - CH - S - N$$

$$R^3$$

$$N$$

$$N$$

$$R^2$$

 (式中、R¹、R²及びR³は、前記と同じ、nは、0
 ※【化28】

 から6の整数を示す)又は、
 ※

(式中、R¹、R²及びR³は、前記と同じ)を示す。★合物を例示することができる。【0020】本発明(I)の化合物として、後記実施例20【0021】にあげた化合物に加え、下記第1、第2及び第3表の化 ★【表1】

第1表

R1	R ²	R3	R ⁴
OCH ₃	осн3	C ₂ H ₅	CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	CI
СНз	СНз	CH(CH ₃) ₂	CI
OCHF ₂	OCHF ₂	CH(CH ₃) ₂	CI
OCF ₃	OCF ₃	CH(CH ₃) ₂	CI
осн3	OCH3	CH(CH ₃) ₂	CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	CI
OCH3	OCH3	CH2CH(CH3)2 .	CI
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	CI
СНз	CH ₃	C(CH ₃) ₃	CI
OCH ₃	OCH3	C(CH ₃) ₃	CI
OCHF ₂	OCHF ₂	C(CH ₃) ₃	CI
OCF ₃	OCF ₃	C(CH ₃) ₃	CI
OCH ₃	OCH3	(CH ₂) ₄ CH ₃	CI
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	CI
OCH3	OCH3	CH(C ₂ H ₅) ₂	CI
OCH3	OCH3	C(CH ₃) ₂ CH ₂ CH ₃	CI
OCH3	OCH3	CH ₂ C(CH ₃) ₃	CI
OCH3	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	CI
ОСН₃	OCH3	(CH ₂) ₅ CH ₃	CI

[0022]

	21		22
		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴ -
	0011		·CI
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	CI
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	Cl
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	. CI
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	Cl
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	CI -
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	Cl
OCH ₃	OCH3	. C(C ₂ H ₅) ₃	CI
OCH ₃	OCH ₃	$\overline{}$	CI
осн _з	OCH3	CH₃	CI
оснэ	OCH ₃	\rightarrow	СІ
OCH ₃	OCH3		CI
OCH ₃	OCH ₃	SCH³	CI
OCH ₃	OCH ₃	─	CI
ОСН3	OCH ₃	CH₃	CI
осн _з	OCH3.	CH₂	CI

[0023]

		第 1 表	(続き)	<u>.</u>
R ¹	R ²	- Н ³	R ⁴	-
OCH ₃	OCH ₃	CH₃ —CH—	CI	
OCH3	OCH ₃	CH₃ CH₃	CI	
OCH ₃	OCH ₃	-CH ₂ -	CI	
OCH ₃	OCH₃	CH-CH-CH3	CI ·	
OCH ₃	OCH3	CH ₃	CI	
осн3	OCH ₃	GH ₂	CI	
OCH₃	OCH₃	—cH-€	CI	
OCH3	OCH ₃	CH ₃	CI	
OCH ₃	OCH ₃	-CH ₂ -	CI	
			····	

[0024]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH-CH-CH-	CI
OCH ₃	осн _з	CH ₃	CI
OCH ₃	OCH ₃	−CH ₂ -€CI	CI
OCH ₃	осн3	CH3—CI	CI
осн3	осн _з	C ₂ H ₅ Cl	CI
OCH ₃	OCH ₃	CH₃ -CH- -CH- -F	CI
OCH ₃	OCH3	-CH-CI	CI
осн₃	OCH3	CH ₂ CF ₃	CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CI	CI
OCH ₃	OCH3	C ₂ H ₅	Br
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	Br
OCH₃	OCH ₃	CH(CH ₃) ₂	Br
OCHF ₂	_	CH(CH ₃) ₂	8r
OCF ₃	OCF ₃	CH(CH₃)₂	Br .

[0025]

		第 1 表	(続き)
R1	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	. Br
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	Br
OCH₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	Br
OCH ₃	OCH ₃	C(CH ₃) ₃	Br
OCH3	OCH ₃	(CH ₂) ₄ CH ₃	Br
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	Br
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	Br
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	Br
OCH ₃	OCH ₃	CH ₂ C(CH ₃) ₃	Br
OCH3	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	Br
OCH3	OCH ₃	(CH ₂) ₅ CH ₃	Br
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	Br
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	Br
OCH ₃	OCH ₃	C(C2H5)2CH3	Br
OCH3	OCH3	CH(CH ₃)(CH ₂) ₄ CH ₃	Br .
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	Br
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	Br
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	Br
OCH3	OCH ₃	C(C ₂ H ₅) ₃	Br
OCH ₃	OCH ₃	$\overline{}$	Br
505	565	•	- ·
OCH ₃	· OCH3	— CH₃	Br
			•
OCH ₃	OCH ₃	\rightarrow	Br
OCH ₃	OCH ₃	$\overline{}$	Br

[0026]

		第 1 表	(続き)	•
R ¹	R ²	R ³	R ⁴	
OCH ₃	OCH ₃	CH₃	Br	·
OCH ₃	OCH ₃	-	Br	
OCH ₃	OCH₃	CH₃	Br	
осн _з	осн _з	-CH ₂ -	Br	
OCH ₃	OCH ₃	—CH-←	Br	
OCH ₃	OCH3	-cH ₃ CH ₃	Br	
OCH ₃	OCH ₃	-CH ₂ -	Br	
OCH ₃	OCH3	—CH- CH₃	Br	
OCH ₃	OCH ₃	CH ₃	Br	•
OCH ₃	OCH ₃	-CH ₂ -	Br	

[0027]

R¹ R² R³ R⁴ CH₃ CCH₃ CCH₃ CCH₃ CCH₃ CCH₃ CCH₃ CCH			第 1 表	(続き)	
OCH ₃ OCH ₃ CH ₃ CH ₃ OCH ₃ OC	R ¹	R²	R ³	R ⁴	
OCH ₃ OCH ₃ -CH ₂ Br OCH ₃ OCH ₃ CH ₃ Br OCH ₃ OCH ₃ CH ₃ Br OCH ₃ OCH ₃ CH ₂ Br	OCH ₃	оснз	CH ₃	Br	
OCH ₃ OCH ₃ CH ₃ C	OCH ₃	OCH ₃	CH ₃	Br	
OCH ₃ OCH ₃ CH ₃ CH ₃ OCH ₃ OCH ₃ Br OCH ₃ OCH ₃ CH ₂ CH OCH ₃ OCH ₃ CH CH CH CH CH CH CH CH CH C	OCH ₃	OCH ₃	-CH ₂ -	Br	
OCH ₃ OCH ₃ $-CH_2$ $-CH_2$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_4$ $-CH_5$	OCH3	OCH₃		Br	
OCH ₃ OCH ₃ CI CH ₂ CH ₃	OCH ₃	OCH ₃	-Ç- CH₃	Br	
OCH ₃ OCH ₃ CH ₃ C	OCH ₃	ОСН3	-CH₂-CI	Br ·	
OCH ₃ OCH ₃ CI Br	OCH ₃	OCH ₃	-CH ₂ -	Br	
—cH-()-cı	OCH ₃	OCH3	CI CI	Br	
	OCH ₃	OCH₃	—CH-√CI	Br	

	33	第 1- 表	³⁴ (続き)
		75 2 60	
R1	R ²	R ³	R ⁴
OCH ₃	OCH ₃	-CH₂- ()-F	Br
OCH3	OCH ₃	CH₃ —CH-∕_F	B r
OCH ₃	OCH ₃	CH ₃ CH ₃ CI	Br
OCH3	OCH ₃	CH ₂ CF ₃	Br
OCH ₃	OCH ₃	CH ₂ CH ₂ CI	Br
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ Br	O II O-C-CH ₂ CH ₃
OCH ₃	OCH₃	C(CH ₃) ₂ CH ₂ Br	O II —O-C—(CH ₂) ₁₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ Br	o-c-(-\sqrt{\bigs_N}

C(CH₃)₂CH₂CI

C(CH₃)₂CH₂Br

CI

Br

O ... $-O-G-(CH_2)_7CH=CH(CH_2)_3CH_3$

[0029]

OCH₃

OCH₃

OCH₃

OCH3

		第 1 表	(続き) -
R ¹	R ²	R ³	R ⁴
ОСН₃	осн₃	C(CH ₃) ₂ CH ₂ CI	O II O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CI	-o-c-
оснз	OCH ₃	C(CH₃)₂CH₂CI	
OCH3	OCH ₃	C(CH ₃) ₂ CH ₂ CI	Cl
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ Cl	Br
осн _з	осна	с ₂ Н ₅	O II O-C-CH ₃
осн _з	осн ₃	CH ₂ CH ₂ CH ₃	O II O-C-CH ₃
OCH ₃	ОСН₃	CH(CH ₃) ₂	O II —O-C-CH ₃
OCHF ₂	OCHF ₂	CH(CH ₃) ₂	О II О-С-СН ₃
OCF ₃	OCF ₃	CH(CH ₃) ₂	O II O-C-CH ₃
осн _з	OCH3	CH ₂ CH(CH ₃) ₂	O II O-C-CH ₃

		第 1 表	(続き)
R ¹	R ²	H3	R ⁴
OCH ₃	OCH ₃	СН(СН ₃)СН ₂ СН ₃	O II O-C-CH ₃
OCH ₃	OCH ₃	С(СН ₃) ₃	-O-C-CH ₃
OCHF ₂	OCHF ₂	C(CH ₃) ₃	O-C-CH3
ocf ₃	OCF ₃	C(CH ₃) ₃	O-С-СН ₃
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	O II O-C-CH ₃
OCH ₃	OCH ₃	CH(CH₃)(CH₂)₂CH₃	
OCH3	OCH ₃	CH(C ₂ H ₅) ₂	—O-С-СН ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	O
осн _з	OCH ₃	CH ₂ C(CH ₃) ₃	O-C-CH3
OCH ₃	OCH3	(CH ₂) ₂ CH(CH ₃) ₂	O O-C-CH ₃ O-C-CH ₃
OCH ₃	OCH ₃	(CH ₂) ₆ CH ₃	O O-C-CH ₃

[0031]

【表11】

第	1	表	(続き)

R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	СН(СН ₃)(СН ₂) ₃ СН ₃	O II O-C-CH ₃
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O II O-C-CH ₃
OCH₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	O II O-C-CH ₃
OCH ₃	OCH3	CH(CH ₃)(CH ₂) ₄ CH ₃	O II O-C-CH ₃
OCH ₃	DCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	-O-C-CH3
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	O II O-C-CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	O Ⅱ O-C-CH₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	O II O-C-CH ₃
осн ₃	OCH3	$\overline{}$	—о-с-сн ₃
OCH ₃	OCH ₃	——CH₃	О О-С-СН ₃

		第 1 表	(続き) -	
R ¹	R ²	R ³	R ⁴	
OCH ₃	OCH ₃	\rightarrow	—О-С-СН ₃	
осн₃	OCH ₃	$\overline{}$	O II O-C-CH ₃	
осн ₃	осн _з	CH₃	O II O-C-CH ₃	
OCH ₃	och ₃	$\overline{}$	O II 	
OCH ₃	OCH ₃	CH₃	О О-С-СН ₃	
осн₃	OCH ₃	-CH ₂ -	O II 	
OCH3	OCH ₃	—сн-< Сн-<	O II O CH3	
OCH ₃	OCH ₃	CH³	O II 	
OCH ₃	OCH ₃	-CH ₂ -	О О-С-СН ₃	
OCH ₃	OCH ₃	—ĊH- CH³	-O-C-CH ₃	

[0033]

		第 1 表	(続き)
R1	. R ²	R ³	R ⁴
ОСН3	OCH ₃	CH ₃	O II
OCH ₃ .	OCH3	-CH ₂ -	—O-C-CH ₃
OCH ₃	OCH₃	-CH-CH-	—О-С-СН ₃ О
OCH₃	ОСН₃	-cH ₃	—о-с-сн ₃
осн ₃	OCH₃	—CH-⟨⟩	O II
OCH ₃	OCH ₃	-CH ₂	О О-С-СН ₃
OCH ₃	OCH ₃	CH ₃	O Ⅱ O-C-CH₃
OCH ₃	OCH3	-CH ₂ -CI	-O-C-CH ₃
OCH ₃	OCH₃	-CH ₂	O II O-CCH ₃
	•		

[0034]

【表14】

R¹ R² R³ R⁴ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH			第 l 表	(続き)
OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃	R ¹	R ²	R ³	R ⁴
OCH ₃ OCH ₂ OCH ₂ CH ₂ CH ₃ OCH ₂ CH ₂ CH ₂ CH ₃ OCH ₂ CH ₂ CH ₂ CH ₃ OCH ₃	OCH ₃	OCH ₃	CH-CH-CH	O II -O-C-CH ₃
OCH ₃ OCH ₃	OCH ₃	осн _з	CH- CH₃ CH-	
OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ C	OCH3	OCH ₃	-CH ₂ F	—o-c-ch₃
OCH ₃ OCH ₃ C ₂ H ₅ O-C-CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ O-C-CH ₂ CH ₃ OCH ₃ OCH ₃ CH(CH ₃) ₂ O-C-CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₃ O-C-CH ₂ CH ₃	OCH ₃	OCH ₃	-CH-CH-F	-O-C-CH ₃
OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ -O-C-CH ₂ CH ₃ OCH ₃ OCH ₃ CH(CH ₃) ₂ -O-C-CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₃	OCH ₃	осн3	CH ₃ CI	O II O O
OCH ₃ OCH ₃ CH(CH ₃) ₂ —O-C-CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₃	ОСН₃	OCH ₃	C₂H5	O II O-C-CH₂CH₃
OCH ₃ OCH ₃ CH(CH ₃) ₂ —O-C-CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃ OCH ₃ OCH ₃ CH ₂ CH ₂ CH ₃	осн₃	OCH3	CH ₂ CH ₂ CH ₃	O II O-C-CH ₂ CH ₃
0	OCH ₃	OCH ₃	CH(CH ₃) ₂	O II O-C-CH₂CH₃
О ОСН ₃ ОСН ₃ СН ₂ СН(СН ₃) ₂ —О−С−СН ₂ СН ₃	OCH3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O II O-C-CH₂CH₃
<u> </u>	OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O II O-C-CH₂CH₃

[0035]

第	1	表	(続き)
213			

R1	R ²	- R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O II O-C-CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O II O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	O II O-C-CH₂CH₃
OCH ₃	OCH3	CH(CH ₃)(CH ₂) ₂ CH ₃	O II O-C-CH₂CH₃
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	O II O-C-CH₂CH₃
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₃
осн ₃	OCH ₃	CH ₂ C(CH ₃) ₃	O II —O−C−CH₂CH₃
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	O II —O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	O II —O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	O II —O-C−CH₂CH₃
OCH₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₃

第	1	表	(続き)

		75 - 20	
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH3	C(C ₂ H ₅) ₂ CH ₃	O Ⅱ —O-C-CH ₂ CH ₃
OCH3	осн3	CH(CH ₃)(CH ₂) ₄ CH ₃	O II O-C-CH₂CH₃ O
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O II O-C-CH₂CH₃
осн₃	OCH ₃	СН(СН ₃)(СН ₂)₅СН ₃	O II O-CCH₂CH₃
OCH ₃	осн _з	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	O O-C-CH₂CH₃
OCH ₃	OCH3	C(C ₂ H ₅) ₃	O II O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	$\overline{}$	O II —O−C−CH₂CH₃
OCH ₃	OCH ₃	CH₃ —	O O-C-CH₂CH₃
OCH₃	OCH ₃	\rightarrow	O II O-C-CH ₂ CH ₃
OCH ₃	OCH₃	$\overline{}$	O II O-C-CH2CH3
OCH ₃	OCH ₃	≥CH ₃	—о-с-сн₂сн₃

l		第 1 表	(統き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	→CH ₃	O II O-CCH₂CH₃
OCH ₃	OCH ₃	\bigcirc	O ∥ —O−C−CH₂CH₃
OCH ₃	OCH ₃	-CH ₂ -	O II O-C-CH ₂ CH ₃
ОСН3	OCH ₃	CH-✓	O II —O-G-CH ₂ CH ₃
OCH ₃	осн _з	CH₃	O II O-C-CH ₂ CH ₃
осн _з	OCH3	-CH ₂ -	O II O-C-CH ₂ CH ₃
OCHs	OCH ₃	—cн- cн³	O II —O-C-CH ₂ CH ₃
осн3	OCH₃	-cH₃ CH₃	О О-С-СН ₂ СН ₃
OCH ₃	OCH ₃	-CH ₂ -	О О-С-СН₂СН₃
осн _з	OCH ₃	-CH-CH-	O II O-C-CH₂CH₃
	•		

		第 1 表	(続き)
R ¹	R ²	- R3	R ⁴
OCH ₃	OCH ₃	CH ₃ CH ₃ CH ₃	O II —O−C−CH₂CH₃
	·	CH₃ —CH-	Q.
OCH ₃	OCH ₃	—CH-()	O O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	-CH ₂	O II —O−C−CH₂CH₃
OCH ₃	ОСН ₃	CH₃ CH₃	O II O-C-CH ₂ CH ₃
осн ₃	OCH₃	-CH ₂ -CI	O O-C-CH ₂ CH ₃
. OCH₃	ОСН₃	-CH ₂ -CI	O II O-C-CH₂CH₃
OCH3	осн _з	CH-CH-CH3	O II
OCH ₃	OCH ₃	—CH-CI	O II O-CCH₂CH₃
OCH ₃	ОСН3	−CH ₂ -√_F	O II O-C-CH₂CH₃

[0039]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH3	•	O II O-C-CH₂CH₃
OCH ₃	OCH ₃	CH ₃ CI	O II —O−C−CH₂CH₃
OCH ₃	OCH ₃	C₂H5	O O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₂CH₃
осн3	ocH₃	CH(CH ₃)₂	O II O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O II O-CCH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	CH₂CH(CH₃)ϩ	O II O-C-CH₂CH₂CH₃
OCH ₃	OCH₃	CH(CH₃)CH₂CH₃	O II —O-C-CH ₂ CH ₂ CH ₃
OCH3	OCH3	C(CH ₃) ₃	O II —O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	(CH ₂)₄CH ₃	O II O-CCH ₂ CH ₂ CH ₃

[0040]

第 1 表

(舵き)

58

		第 1 X	(1942)
R1	R ²	R ³	R ⁴
осн3	ОСН3	CH(CH ₃)(CH ₂) ₂ CH ₃	O II —O−C −CH₂CH₂CH₃
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	O II O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	O II —O-C-CH₂CH₂CH₃
OCH ₃	OCH ₃	CH ₂ C(CH ₃) ₃	O II O-C-CH₂CH₂CH₃
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	O II —O−C−CH₂CH₂CH₃
OCH₃	OCH ₃	(CH ₂) ₅ CH ₃	O II —O-C-CH ₂ CH ₂ CH ₃
осн _з	OCH ₃	СН(СН ₃)(СН ₂) ₃ СН ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O 1 O-C-CH₂CH₂CH₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O II —O-C-CH₂CH₂CH₃

[0041]

		第 l 表	(続き)
R ¹	R ²	- R ³	R ⁴
OCH ₃	OCH3	CH(CH ₃)(CH ₂) ₅ CH ₃	O II O-C-CH₂CH₂CH₃
OCH ₃	OCH3	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH3	OCH ₃	C(C ₂ H ₅) ₃	O II —O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	$\overline{}$	O II O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH3	——CH₃	O II —O−C−CH₂CH₂CH₃
OCH3	осн3	\rightarrow	O II —O−C−CH₂CH₂CH₃
OCH ₃	ОСН3		O II —O−C−CH₂CH₂CH₃
OCH ₃	ОСН₃	CH³	O II —O-C-CH₂CH₂CH₃
осн₃	ОСН₃	$\overline{}$	O II —O~C~CH₂CH₂CH₃
OCH₃	OCH ₃	CH³	O II O-C-CH₂CH₂CH₃
			·

[0042]

	——————————————————————————————————————	第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	-CH ₂ -	O II —O−C−CH₂CH₂CH₃
OCH ₃	осн _з	—сн-<	O Ⅱ —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	—ÇH₃ —CH₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	-CH ₂ -	O II —O−C−CH₂CH₂CH₃
осн3	ОСН3	—CH- CH3	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	−cH ₃ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	-CH ₂ -	O II —O−C−CH₂CH₂CH₃
OCH ₃	осн _з	—CH-CH-	O II —O−C−CH₂CH₂CH₃
OCH ₃	осн _з	$-\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}}}}}}}}}}}}$	O II —O−C−CH₂CH₂CH₃
OCH₃	OCH3	CH₃ -CH-	O II O-C-CH2CH2CH3

第	1	表	(続き

R ¹	R2	R3	R ⁴
OCH ₃	OCH ₃	-CH ₂ -	O
OCH ₃	OCH ₃	CH ₃	O II O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	-CH ₂ -CI	O II
OCH3	OCH ₃	-CH ₂ -	O O-C-CH2CH2CH3
OCH ₃	OCH ₃	CH ₃	O II —O-C-CH2CH2CH3
OCH ₃	OCH ₃	—CH- CH₃ —CH₃	O II O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	-CH ₂ -F	O ∥ —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	-CH-CH-F	O ∥ O-C-CH₂CH₂CH₃
OCH ₃	OCH₃	CH ₃ CI	O II —O−C−CH₂CH₂CH₃

[0044]

		第 l 表	(続き)
R¹	R ²	R ³	R ⁴
OCH ₃	осн _э	C₂H₅	-o-c
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-o-c
OCH ₃	OCH ₃	CH(CH ₃) ₂	-o-c-
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-o-c
OCH ₃	OCH ₃	CH₂CH(CH₃)₂	-o-c-
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c
OCH ₃	осн _з	(CH₂)₄CH₃	-o-ë<
OCH ₃	OCH ₃	CH(CH₃)(CH₂)₂CH₃	-o-ë<
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	-o-c

[0045]

		第 1 表	(続き)
R ¹	R ²	R ³	R⁴
OCH ₃	ОСН3	C(CH ₃) ₂ CH ₂ CH ₃	-o-c-
OCH ₃	OCH ₃	CH₂C(CH₃)₃	-o-c-
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	-o-c
осн3	OCH ₃	(CH₂)₅CH₃	-o-c-
осн3	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	-o-c-
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	-o-c-
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	-o-c-
OCH ₃	OCH₃	CH(CH ₃)(CH ₂) ₄ CH ₃	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	-o-c-
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	-o-c-
	•		

[0046]

		第 1 表	(続き)
R1	R ²	R ³	R ⁴
осн _з	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	-o-c
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	-o-c
OCH3	OCH ₃	$\overline{}$	o-c
OCH ₃	OCH ₃	сн₃	-o-c
OCH ₃	OCH ₃	\rightarrow	-o-c
OCH3	OCH ₃		-o-c
OCH ₃	OCH ₃	CH₃	_o-c
OCH ₃	OCH ₃		-o-c
осн3	осн3	CH3	-o-c-
осн _з	OCH ₃	-CH₂-	-o-c
	•		

[0047]

50		第 1 表	(続き)
R ¹	H2	- R³	R ⁴
OCH ₃	OCH ₃	—cH-≺	-o-c
OCH ₃	осн _з	СН ₃ СН ₃	-o-ë<
OCH ₃	OCH ₃	-CH ₂ -	-o-c-
OCH3	OCH ₃	—cH- CH₃	-o-c-
OCH ₃	осн _з	CH₃ CH₃	-o-c
OCH ₃	осн _з	-CH ₂ -	-o-c
осн _з	OCH ₃	—сн- Сн³	-o-c-
осн _з	осн₃	−ÇH ₃	-o-c
OCH ₃	OCH ₃	—СН- СН₃ СН₃	-o-c

[0048]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH ₃ CH ₃	-o-c
OCH ₃	OCH ₃	-CH ₂ -CI	-o-c 0
OCH ₃	OCH₃	-CH ₂ -CI	-o-c-
OCH ₃	OCH ₃	—CH₃ CI	-o-c
OCH ₃	OCH3	CH-CI	-o-c-
OCH ₃	OCH ₃	-CH ₂ F	-o-c-
OCH ₃	ОСН3	-CH ₂	-o-c
осн _з	OCH ₃	CH ₃ —F	-o-c-
осн3	OCH3	CH ₃ CI	-o-c-<

[0049]

		第 1 表	(続き)
R1	R ²	R ³	R ⁴
осн3	осн ₃	C ₂ H ₅	O II —O-C-CH₂CH₂CH₂CH₃
ОСН3	OCH ₃	CH ₂ CH ₂ CH ₃	O II O-C-CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	CH(CH₃)₂	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
осн _з	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	O II O-CCH ₂ CH ₂ CH ₃
OCH ₃	осн₃	CH(CH ₃)(CH ₂) ₂ CH ₃	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH3	OCH3	CH(C ₂ H ₅) ₂	O II
осн3	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃

[0050]

		第 1 表	(続き)
. R¹	R ²	R3	R ⁴
ОСН₃	OCH ₃	CH₂C(CH₃)₃	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	осн _з	(CH ₂) ₅ CH ₃	O Ⅲ —O-C-CH₂CH₂CH₂CH₃
OCH3	ОСН₃	СН(СН ₃)(СН ₂) ₃ СН ₃	O
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
осн _э	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	ОСН ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH3	C(C ₂ H ₅) ₃	O II —O-C−CH₂CH₂CH₂CH₃

[0051]

【表31】

79	第 1 表	80 (続き)
R ¹ R ²	R3	R ⁴
		_
OCH ₃ OCH ₃	$-\!$	O II —O~C~CH ₂ CH ₂ CH ₂ CH ₃
OCH3 · OCH3	CH₃ —	O II O-C-CH₂CH₂CH₂CH₃
OCH ₃ OCH ₃	\rightarrow	O II
OCH3 OCH3		O II
OCH ₃ OCH ₃	CH ₃	O II O-C-CH₂CH₂CH₂CH₃ ·
OCH ₃ OCH ₃	$\overline{}$	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃ OCH ₃	CH₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH3 OCH3	-CH ₂ -	O !I
OCH ₃ OCH ₃	—сн- сн-<	O II —O−C−CH₂CH₂CH₂CH₃
OCH3 OCH3	CH₃ CH₃	O II —O∽C−CH₂CH₂CH₃

[0052]

【表32】

82

		第一集	(続き)
R ¹	R ²	R ³	R ⁴ -
OCH ₃	OCH₃	-CH ₂ -	O II
OCH3	OCH3	CH₃ CH₃	O II O-C-CH2CH2CH2CH3
OCH ₃	OCH ₃	−ç- cH₃	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
ОСН₃	OCH ₃	-CH ₂ -	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	—CH-CH-CH3	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	−Ç ← CH ₃	O II O-C-CH₂CH₂CH₂CH₃
OCH ₃	OCH3	CH-⟨⟩	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	ОСН ₃	-CH ₃	O II O-CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	-CH ₂ -CI	O II —O-C-CH₂CH₂CH₃CH₃
	•		

[0053]

		. 第 1 表	(統き)
R ¹	R ²	H3	R ⁴
OCH ₃	OCH ₃	-CH₂-	O II —O−C−CH₂CH₂CH₂CH₃
осн3	OCH ₃	CH3	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	—CH- —CH- —CH3	O II O-C-CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	−CH ₂ —F	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	-CH ₂ -	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH3	—CH- —F	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
осн _з	OCH3	CH ₃ CI	O II —O-C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	C₂H₅	O
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O II
OCH₃	OCH ₃	CH(CH ₃)₂	O II

	85		86	
		第 1 表	(続き)	
R ¹	R ²	R³	R⁴	
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O -0-C-C(CH ₃) ₃	
осн _з	осн _з	CH ₂ CH(CH ₃) ₂	0-C-C(CH ₃) ₃	
осн3	OCH ₃	CH(CH₃)CH₂CH₃	O - -O-C-C(CH ₃) ₃	
ОСН ₃	осн _з	. C(CH ₃) ₃	O II —O-C-C(CH ₃) ₃	
ОСН3	OCH3	(CH ₂) ₄ CH ₃	O II O-C-C(CH ₃) ₃	
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	O II O-C-C(CH ₃) ₃	-
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	-0-C-C(CH ₃) ₃	
OCH3	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	-0-C-C(CH3)3	
OCH ₃	OCH ₃	CH ₂ C(CH ₃) ₃	-0-C-C(CH3)3	

[0055]

OCH₃

OCH₃

OCH₃

(CH₂)₂CH(CH₃)₂

(CH₂)₅CH₃

第	1	表	(続き)

R1 R2 R3 R4 OCH3 OCH3 CH(CH3)(CH2)3CH3 —O-C-C(CH3)3 OCH3 OCH3 C(CH3)2CH2CH2CH3 —O-C-C-C(CH3)3 OCH3 OCH3 C(C2H5)2CH3 —O-C-C-C(CH3)3 OCH3 OCH3 CH(CH3)(CH2)4CH3 —O-C-C-C(CH3)3 OCH3 OCH3 CH(CH3)(CH2)5CH3 —O-C-C-C(CH3)3 OCH3 OCH3 CH(CH3)(CH2)5CH3 —O-C-C-C(CH3)3 OCH3 OCH3 CH(CH3)(CH2)5CH3 —O-C-C-C(CH3)3 OCH3 OCH3 C(CC2H5)3 —O-C-C-C(CH3)3 OCH3 OCH3 C(CC2H5)3 —O-C-C-C(CH3)3 OCH3 OCH3 C(CC2H5)3 —O-C-C-C(CH3)3 OCH3 OCH3 —O-C-C-C(CH3)3				
OCH ₃ OCH ₃ C(CH ₃) ₂ CH ₂ CH ₂ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₂ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₃ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₅ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ -O-C-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C-C(CH ₃) ₃	· R ¹	R ²	R ³	R ⁴ -
OCH ₃ OCH ₃ C(CH ₃) ₂ CH ₂ CH ₂ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₂ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₃ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₅ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ -O-C-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C-C(CH ₃) ₃				0
OCH ₃ OCH ₃ C(C ₂ H ₅) ₂ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ CH(CH ₂)(CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₃ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₅ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C-C(CH ₃) ₃	OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	
OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₃ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₅ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C(CH ₃) ₃	OCH ₃ .	ОСН3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O Ⅱ O-C-C(CH ₃) ₃
OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₃ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₅ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C(CH ₃) ₃	осн _з	OCH3	C(C ₂ H ₅) ₂ CH ₃	O O-C-C(CH ₃) ₃
OCH ₃ OCH ₃ CH(CH ₃)(CH ₂) ₅ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C(CH ₃) ₃ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ -O-C-C(CH ₃) ₃	осн _з	осн3	CH(CH ₃)(CH ₂) ₄ CH ₃	O
OCH ₃ OCH ₃ C(CH ₃) ₂ (CH ₂) ₄ CH ₃ $-O-C-C(CH_3)_3$ OCH ₃ OCH ₃ C(C ₂ H ₅) ₃ $-O-C-C(CH_3)_3$ OCH ₃ OCH ₃ $-O-C-C(CH_3)_3$ OCH ₃ OCH ₃ $-O-C-C(CH_3)_3$	ОСН3	OCH3	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O II O-C-C(CH ₃) ₃
OCH ₃ OCH ₃ $C(C_2H_5)_3$ $-O-C-C(CH_3)_3$ OCH ₃ OCH ₃ CH_3 O	ОСН3	OCH3	CH(CH ₃)(CH ₂) ₅ CH ₃	O O-C-C(CH ₃) ₃
осн ₃ осн ₃ — О — О — О — О — О — О — О — О — О —	ОСН3	OCH3	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	O O-C-C(CH ₃) ₃
CH ₈ O	OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	O O-C-C(CH ₃) ₃
	OCH ₃	OCH ₃	$\overline{}$	O O-C-C(CH ₃) ₃
} }	OCH ₃	осн3	CH ₃	O

	89	第 1 表	(続き)
R1	H ²	R3	R ⁴
OCH ₃	OCH ₃	\rightarrow	O II O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	$\overline{}$	О О-С-С(СН ₃) ₃
OCH ₃	OCH₃	CH₃	O O-C-C(CH ₃) ₃
OCH ₃	OCH3		O O-C-C(CH ₃) ₃
OCH ₃	ОСН₃	CH3	O O-C-C(CH ₃) ₃
OCH ₃	осн3	-CH₂-<	O Ⅱ O-C-C(CH ₃) ₃
OCH3	осн _з .	—сн- < сн- <	O O-C-C(CH ₃) ₃
осна	OCH₃	CH ₃ CH ₃	O II
OCH ₃	OCH ₃	-CH ₂ -	O II O-C-C(CH ₃) ₃
OCH ₃	OCH₃	—cн- CH₃	О II —О-С-С(СН ₃) ₃

[0057]

	 -	第 1 表	(続き)
R1	R ²	R ³	R ⁴
осн _з	осн3	-cH ₃ CH ₃	O II
OCH ₃	OCH ₃	-CH ₂ -	O II
OCH₃	осн _з	—CH-CH-CH3	O II O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	CH ₃	O 1
OCH ₃	OCH ₃	—CH- CH₃	O
OСН ₃	OCH ₃	CH ₃	O O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	-CH ₂ -CI	O II O-C-C(CH ₃) ₃
OCH ₃	· OCH3	-CH ₂ -CI	O II O-C-C(CH ₃) ₃
OCH ₃	осн _з	CH ₃	O II O-C-C(CH ₃) ₃

第	1	亵	(続き
513	Τ.	ax.	CIINE C

R1	H2	H3	R ⁴ .
OCH ₃	OCH ₃	CH ₃ —CI	O Ⅲ· —O-C-C(CH₃)₃
OCH ₃	OCH ₃	-CH ₂ -F	O
OCH ₃	OCH ₃	-CH ₂	O
осн₃	OCH₃	CH₃ —CH√F	O O-C-C(CH₃)₃
ОСН3	OCH ₃	CH ₃ CI	0 Ⅱ ⊶0-C-C(CH ₃) ₃
осн ₃	осн₃	C₂H₅	-o-c-
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	o-c-
ОСН3	осн3	CH(CH ₃) ₂	o-c-
OCHF ₂	OCHF ₂	CH(CH ₃) ₂	-o-c-
OCF ₃	OCF ₃	CH(CH ₃) ₂	o-C-

		第一章	(続き) ⁻
R ¹	R ²	H ³	R ⁴
OCH ₃	ОСН ₃	CH ₂ CH ₂ CH ₂ CH ₃	-o-c-(
осн _з	осн3	CH ₂ CH(CH ₃) ₂	-o-c-(
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	-o-c-(
OCH ₃	OCH ₃	C(CH ₃) ₃ -	-o-c-<
OCH ₃	ОСН3	(CH₂)₄CH₃	-o-c-(
OCH ₃	OCH ₃	СН(СН ₃)(СН ₂) ₂ СН ₃	-o-c-
OCH ₃	OCH ₃	СН(С ₂ Н ₅) ₂	-o-c
осн3	ОСН₃	CH(C₂H₅)₂	-o-c-CI

[0060]

第	1	表	(続き)

			
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	—о-с — Сн₃
OCH ₃	ОСН ₃	C(CH ₃) ₂ CH ₂ CH ₃	-o-c-\cN
OCH ₃	осн3	CH ₂ C(CH ₃) ₃	-o-c NO ₂
OCH ₃	осн _з	(CH ₂) ₂ CH(CH ₃) ₂	-0-C-NO ₂
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	-o-c
OCH ₃	OCH ₃	СН(СН ₃)(СН ₂) ₃ СН ₃	-o-c ← F
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	-0-C Br
OCH ₃	ОСН3	C(C₂H₅)₂CH₃	-0-C
осн ₃	осн ₃	СН(СН₃)(СН₂)₄СН₃	-o-c-√och₃
	<u> </u>		

第	1	表	(続き)

R1	R ²	R ³	R ⁴ -
OCH ₃	OCH3	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	-0-C-C-CF3
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	o-c-
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	-o-c
OCH ₃	OCH ₃	$\overline{}$	_O_CC₂H₅
OCH ₃	OCH3	CH³ -	o-c-
OCH ₃	OCH ₃		-0-C-C-C(CH ₃) ₃
OCH3	OCH ₃		O II —O-C—CH(CH ₃) ₂
OCH ₃	OCH ₃	CH₃	$-O-C$ NO_2

[0062]

		第 l 表	(統き)
R ¹	R ²	- R ³	R ⁴
OCH ₃	осн₃		-0-C
OCH ₃	осн3	CH₃	-0-C-(CH ₂) ₃ CH ₃
OCH ₃	OCH3	CH ₂	-0~C- -02H ₅
OCH ₃	ОСН3	—cн-✓	o-c
OCH ₃	ОСН3	—cH₃	-o-c-
ОСН ₃	OCH ₃	-CH ₂ -	o-c-(-\(\)
OCH ₃	OCH ₃	CH₃ —CH-	o-c-
OCH₃	ОСН3	CH ₃ −CH ₃	-o-c-
OCH ₃	OCH ₃	-CH ₂ -	-o-c-

[0063]

	103		104
		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴ -
OCH ₃	OCH3	—CH-⟨CH³	_O_II _O_CNO₂
OCH ₃	осн _з		-0-C-NO ₂
OCH ₃	OCH3	CH₃ —CH-	o-c CI
OCH ₃	осн _з	CH ₃	-0-C-C-CF3
OCH ₃	OCH ₃	-CH ₂ -CI	-o-c-CF3
OCH ₃	OCH ₃	CH ₂ ←	-o-c-CF ₃
1		ī · · · · ·	CF ₃

[0064]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH₃	OCH ₃	CH ₃ —CI	-0-C-NO ₂
OCH ₃	OCH ₃	CH₃ —CH- —CH-	-o-c-C-CN
OCH ₃	OCH ₃	-CH ₂ -F	-O-C-C-CH3
OCH ₃	OCH ₃	CH ₃ CI	O-C-C-CH ₃
OCH₃	OCH₃	C ₂ H ₅	-o-c
OCH ₃	OCH ₃	CH₂CH₂CH₃	-o-c
OCH ₃	OCH ₃	CH(CH ₃) ₂	o-c
OCH ₃	OCH₃	CH₂CH₂CH₂CH₃ ·	o-c
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	_o_cı
	•		

		第 1 表	(続き) <u></u>
R ¹	R ²	R ³	Ŗ ⁴
осн _з	OCH₃	CH(CH ₃)CH ₂ CH ₃	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₃	o-c>-cı
OCH ₃	OCH ₃	(CH₂)₄CH₃	-o-c
OCH ₃	OCH ₃	.СН(СН ₃)(СН ₂) ₂ СН ₃	-o-c
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	o-c-\cı
OCH₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	o-c-\cı
OCH ₃	OCH ₃	CH₂C(CH₃)₃	-o-c
OCH₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	-o-c
ocH₃	OCH ₃	(CH ₂) ₅ CH ₃	-0-C
OCH ₃	OCH ₃	СН(СН ₃)(СН ₂) ₃ СН ₃	-o-c-\c

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴ .
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	_o_ccı
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	o-cı
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	-o-c
OCH ₃	OCH ₃	СН(С [:] Н ₃)(СН ₂) ₅ СН ₃	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	-0-C
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	-o-c
OCH ₃	осн3	\rightarrow	-o-c
OCH ₃	OCH ₃	CH3	-o-c-(
	:		

[0067]

		111		112
r			第 1 表	(続き)
	R ¹	R ²	R ³	R ⁴
	OCH3	осн _з	\rightarrow	o-c
	OCH ₃	OCH ₃	$\overline{}$	-o-c
	OCH ₃	осн3	∑CH ₃	-o-c
	OCH ₃	OCH ₃		-o-ccc
	OCH ₃	OCH ₃	CH ₃	-o-c-(
•	OCH ₃	OCH3	-CH ₂ -	-o-c-(
	ОСН3	OCH ₃	CH₃ —CH-	-0-C
	OCH₃	OCH ₃	CH₃ CH₃	-o-c
	OCH3	OCH ₃	-CH ₂ -	o-c

[0068]

		第 1 表	(続き) -	
R1	R ²	R ³	R ⁴	
осн _з	OCH ₃	—CH- CH₃	-o-c-(-)-cı	. •
OCH ₃	OCH ₃	-cH ₃	-o-c	
OCH ₃	OCH ₃	-CH2-	-o-c	
OCH ₃	OCH ₃	-CH-CH-CH3	-o-c-(
осн _з	ОСН3	−cH ₃ ←	o-c	
OCH ₃	OCH ₃	—CH- CH₃	o-c	
OCH ₃	OCH ₃	-CH ₂	-o-c	
OCH ₃	OCH ₃	CH ₃	o-c	
OCH ₃	OCH ₃	-CH ₂ - (_)-CI	-o-c	

		第 1 表	(続き)
R ¹	R ²	R3	R ⁴ ·
OCH ₃	OCH ₃	-CH ₂ -	oc-
OCH3	OCH ₃	CI CH3 CH3	_o_c_c_
OCH3	OCH ₃	—CH- CH- CH₃ —CI	-o-c
OCH ₃	OCH3	-CH ₂ -F	-o-c
OCH ₃	OCH ₃	CH₃ —CH- —F	-o-c
OCH3	ocH₃	CH ₃ CH ₃	-o-c
ОСН₃	och₃	C ₂ H ₅	o-c-(\sqrt{-N}
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-o-c
OCH ₃	OCH ₃	CH(CH₃)₂	-o-c-(-\square\)
L			* · · ·

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	осн _з	CH ₂ CH ₂ CH ₂ CH ₃	-o-c-
OCH ₃ .	осн3	CH ₂ CH(CH ₃) ₂	-o-c-(-\sqrt{-N}
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C
OCH ₃	OCH ₃	C(CH ₃) ₃	o-c-(-\square\)
OCH3	OCH ₃	(CH ₂) ₄ CH ₃	-o-c-(-\)
OCH ₃	осн _з	CH(CH ₃)(CH ₂) ₂ CH ₃	-o-c-(-\sqrt{=N}
OCH ₃	OCH ₃	CH(G ₂ H ₅) ₂	-o-c-(=N
OCH₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	-0-C-(_N
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-\(\bigcup_{\mu}\)

	113	第 1 表	(続き) -
R ¹	R ²	R ³	R ⁴
осн _з	OCH ₃	CH(CH₃)₂	o-c-_\n
осн _з	осн3	C(CH ₃) ₃ -	o-c-(N-)
OCH ₃	OCH ₃	CH(CH ₃)₂	-0-G-N-
ОСН₃	OCH3	C(CH ₃) ₃	-0-C
OCH3	OCH ₃	CH(CH ₃)₂	o-c- CI
OCH ₃	ОСН ₃	C(CH ₃) ₃	-o-c
OCH₃	ОСН₃	CH(CH₃)₂	CI CI
OCH ₃	ОСН3	C(CH ₃) ₃	-0-C-N Br

[0072]

		第 1 表	(続き)
R ¹	R ²	R³	R ⁴ -
OCH3	OCH ₃	CH(CH ₃)₂	O - C - N Br
OCH ₃	OCH ₃		o-c-(-\square\)
OCH ₃	OCH ₃	$\overline{}$	o-c
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	-o-c-(-\square\)
OCH ₃	OCH3	CH(CH ₃)(CH ₂) ₃ CH ₃	o-c
OCH ₃	OCH ₃		o-c
OCH3	OCH3	CH(CH ₃)₂	-0-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
OCH ₃	OCH3	С(СН3)3	
OCH ₃	OCH3	С(СН3)3	-o-c-N=

[0073]

【表53】

		123		124
			第 1 表	(統き)
	R ¹	R ²	R ³	R ⁴
	OÇH₃	OCH ₃	СН(СН ₃) ₂	-0-C-N=
	OCH ₃	OCH ₃	CH-✓	-o-c-(_N
	OCH ₃	OCH ₃	C(CH3)3	-o-c-(-\)
	OCH ₃	OCH ₃	CH(CH ₃) ₂	-o-ë-(-\)
	OCH ₃	OCH3	С(СН3)3	-0-C-(-)-a
	осн₃	OCH ₃	CH ₃ CH ₃ CH ₃	o-c-(=N
	OCH ₃	ОСН₃	CH(CH ₃) ₂	-0-C-(-N-CI
	OCH3	OCH ₃	С(СН3)3	-o-c-N
1		•		1

		第 1 表	(続き)
R1	R ²	- R ³	R ⁴
осн _з	OCH ₃	$-\overset{\text{CH}_3}{\overset{\text{CH}_3}{\longleftarrow}}$	-o-c-(-\sqrt{-N})
ОСН₃	OCH ₃	CH(CH ₃)₂	-o-c-N
OCH3	OCH ₃	CH ₃	-o-c-(-\sqrt{-N}
OCH ₃	OCH ₃	С(СН3)3	-0-c-0 Br
OCH ₃	ОСН3	-CH ₂ -Cl	-o-c-(-N)
ОСН3	ОСН3	CH ₂ -	-o-c-(
ОСН₃	OCH ₃	CH(CH ₃) ₂	-o-c
OCH₃	OCH ₃	C(CH3)3	-o-c
OCH ₃	осн ₃	−CH ₂ F	-o-c-(-\sqrt{N})

[0075]

		第 1 表	(続き)	
R ¹	R ²	R³	R ⁴	
OCH ₃	OCH ₃	CH(CH ₃) ₂	-o-ë-(s)	
OCH ₃	OCH3	CH(CH ₃) ₂	-0-6-18-CI	
OCH ₃	OCH ₃	C₂H₅	o-c	
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	_o_c	
OCH ₃	OCH3	CH(CH ₃) ₂	-o-c	
OCH ₃	OCH₃	CH₂CH₂CH₂CH₃	o-c	
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	o-c	
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-C-N-CI	
OCH ₃	OCH ₃	C(CH ₃) ₃	o-c	
OCH ₃	OCH ₃	(CH₂)₄CH₃	o-c	

[0076]

		第 1 表	(税き)
R1	R ²	R ³	R ⁴ -
OCH ₃ .	ОСН₃	C(CH3)3	-o-c
ОСН3	OCH ₃	CH(C₂H₅)₂	-o-c
OCH ₃	ОСН3	C(CH ₃) ₂ CH ₂ CH ₃	-0-C
OCH ₃	осн3	С(СН3)3	-0-ÇN'. We
OCH ₃	OCH ₃	ĊH(CH3)2	-o-ç _ v. We
OCH₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	-o-c
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	-0-C
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	o-c
OCH ₃	OCH ₃	- ⊲	-o-c-(=N-c)

1	131	第 1 接	(続き)
R1	R ²	R ³	R ⁴
OCH ₃	OCH ₃	\longrightarrow	-o-c
OCH ₃	OCH ₃	$\overline{}$	-o-c-(=N-ci
ОСН ₃	осн _з	CH ₂	-0-C
OCH ₃	OCH ₃	-CH2-	-o-c
OCH ₃	OCH3	CH- CH₃	O-C
OCH ₃	OCH3	CH ₃	-0-c-(-N-c)
OCH₃.	OCH₃	-CH ₂ -CI	O-C-(=N-CI
ОСН₃	OCH ₃	CH ₃	-o-c

		第 1	(続き)
R ¹	R ²	H ³	R ⁴
OCH ₃	OCH ₃	СН³ —СН-∕СІ	-o-c-(=N-ci
OCH ₃	OCH ₃	-CH ₂	-o-c
OCH ₃	OCH ₃	CH₃ CH₃ CH₃	o-c
OCH ₃	осн ₃	C₂H₅	O II S-C-CH₃
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	O II S-C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃)₂	O ∥ S-C-CH₃
OCH ₃	OCH₃	CH ₂ CH ₂ CH ₂ CH ₃	O II s-c-ch3
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	-s-c-cH₃
осн _з	OCH3	CH(CH ₃)CH ₂ CH ₃	O S-C-CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O ∥ s-c-ch₃

	135	第一1 表	(続き)
R ¹	R ²	R³	R4 -
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	O II S-C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	O II S-C-CH₃
OCH ₃	осн _э	CH(C ₂ H ₅) ₂	O II S-C-CH ₃
ОСНа	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	—s-c-сн _з
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	O II S-C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	O II S-C-CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O II S-C-CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	O Ⅱ —S-C-CH₃
OCH ₃	OCH3		-s-C-CH ₃
ОСН3	осн _з	\rightarrow	O II S-C-CH ₃
OCH ₃	OCH ₃	—	O II —S-C-CH ₃

		第 1 表	(続き)	
R1	R ²	- R ³	R ⁴	-
OCH ₃	OCH3	$\overline{}$	-S-C-CH ₃	
OCH ₃	OCH ₃	-CH2-	O II S-C-CH₃	
OCH₃	OCH ₃	—cH- CH- CH-	-s-c-cH ₃	
OCH ₃	OCH ₃	-CH ₂ -	-s-c-ch₃	i
OCH ₃	OCH ₃	—cH- CH- CH- CH-	O II s-C-CH ₃	
OCH ₃	осн _а	CH ₃ CH ₃ CH ₃	O II —S-C-CH ₃	
OCH ₃	OCH ₃	—cH-€	O II —S−C−CH₃	
осн ₃	осн ₃	—CH₃	О S-С-СН ₃	
OCH ₃	OCH ₃	-CH ₂ —	O II -S-C-CH ₃	
OCH ₃	OCH ₃	C₂H₅	-s-c-	

[0081]

140

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	-s-c-
OCH ₃	OCH3	CH(CH ₃) ₂	-s-c-
OCH ₃	осн _з	CH ₂ CH ₂ CH ₂ CH ₃	_s_c
OCH ₃	осн3	CH ₂ CH(CH ₃) ₂	_s-c-
OCH ₃	осн3	CH(CH ₃)CH ₂ CH ₃	-s-c-
осн3	осн3	С(СН ₃) ₃	-s-c-
OCH ₃	OCH3	(CH ₂)₄CH ₃	s-c
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	-s-c-
ОСН₃	OCH ₃	CH(C₂H₅)₂	-s-c-
			-

[0082]

第	1	表	(続き)

			(104 6 7
R1	R ²	R ³	R4
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	-s-C-
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	s-c-
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	-s-c-
OCH ₃	OCH ₃	$\overline{}$	-s-c-
OCH ₃	осн _з		-s-c-(
OCH ₃	ОСН3	-CH ₂ -	_s-c-
OCH3	OCH ₃	—СH- СН- СН-	_s-c-
OCH3	OCH ₃	-CH ₂ -	-s-c-
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	о o-ё-сн=сн-()
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	о -o-ё-сн=сн-{_>-сі

	第	1	丧	(続き)
-				

R ¹	R ²	R ³	R ⁴
			-
OCH ₃ .	осн3	CH ₂ CH(CH ₃) ₂	O -O-Ĉ—(CH ₂)₄CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-Ö—(CH₂)₅CH₃
OCH₃	OCH ₃	CH ₂ CH(CH ₃) ₂	О -O-Ё—(СН ₂) ₆ СН ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O −O-Ö—(CH ₂) ₇ CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-Ö(CH ₂) ₈ CH ₃
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-Ö—(CH₂) ₉ CH₃
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	O O-Ö(CH₂)₁₀CH₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C—(CH ₂) ₁₁ CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O —O-Ö—(CH₂)₁₂CH₃
ОСН3	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-Ö-(CH ₂) ₁₃ CH ₃
ОСН₃	OCH ₃	CH₂CH(CH₃)₂	O -O-Ö-(CH₂)₁₄CH₃
осн ₃	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-(CH ₂) ₁₅ CH ₃

	145		146
9		第 1 表	(続き)
R1	R²	R ³	R ⁴ -
OCH ₃	OCH ₃	CH₂CH(CH₃)₂	O —O-C—(CH ₂) ₁₆ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O —O-Ö—(CH ₂) ₁₇ CH ₃
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	O-C-(CH ₂) ₁₉ CH ₃
OCH3	OCH3	CH(GH ₃)CH ₂ CH ₂ CH ₃ ⁻	O −O-Ö—(CH₂) ₉ CH <u>—</u> CH(CH₂) ₇ CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-(CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃
			_
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-Ö-(CH₂) ₇ CH≕CH(CH₂)₅CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-(CH ₂),CH=CH(CH ₂),CH ₃
OCH3	OCH ₃	. CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-(CH ₂) ₈ CHCH ₂
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH ₃ −O·C-CH₂CH(CH₂)₂CH=C(CH₃)₂
осн _з	OCH ₃	CH(CH₃)CH₂CH₂CH₃	-O-C-(CH ₅)3-

第	1	溭	(続き)
-11			

			
R1	R ²	R ³	R ⁴
OCH ₃	OCH ₃	СН ₂ СН(СН ₃) ₂	O -O-C-(CH ₂) ₂ -
OCH ₃	осн₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-CH ₂ -CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH ₂ -
OCH ₃	OCH ₃	CH(CH3)CH2CH2CH3	-o-c CH3
OCH ₃	осн3	CH₂CH(CH₃)₂	-0-CH3
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -o-c-ch≔ch-(ch₂)₄ch₃
OCH₃	ОСН₃	CH₂CH(CH₃)₂	О -
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	—О-Ö-Ö-CH₂-CH=CH₂ CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O·C-(CH ₂) ₄ CH=CH ₂

		第 1 表	(続き)
R1	R ²	R ^S	R ⁴
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₂CH₃	O II -O-C-CH=CH-CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH ₃ II CH ₂ -O-C-C=CH ₂
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O·C-CH₂-CH≕CH₂
оснз	OCH₃	CH ₂ CH(CH ₃) ₂	O II O·C-CH=CH₂
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₂CH₃	-O·C−C≕CH
осн _з	OCH ₃	CH ₂ CH(CH ₃) ₂	O II -O·C-C=C-CH3
ОСН₃	OCH ₃	CH(CH₃)CH₂CH₂CH₃	0 -0·C-C≡C-C ₂ H ₅
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	O II -O-C-(CH ₂)₂C ≕ CH
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-o-c-ch=ch-ch=chch3
OCH ₃	осн3	CH ₂ CH(CH ₃) ₂	-0·C-CH ⁵ -C-CH ³ 0 0

	151		152
		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-o-e-
осн _з	OCH ₃	CH ₂ CH(CH ₃) ₂	-o-e
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O ∥ -O·C~CH=CH-{CH₂}₂CH₃
осн _з	осн3	CH₂CH(CH₃)₂	O -O-C-CH ₂ -CH==CH-C ₂ H ₅
OCH ₃	OCH3	СН(СН ₃)СН ₂ СН ₂ СН ₃	$ \begin{array}{ccc} O & CH_3 \\ -O \cdot C - C = CH - C_2H_5 \end{array} $
OCH ₃	ОСН3	CH₂CH(CH₃)₂ ˙	-o-c-
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-O-C-CH=CCH3
OCH ₃	OCH ₃	CH₂CH(CH₃)₂	O II -O∙C-CH=CH-C₂H₅
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-(CH ₂) ₂ CH=CH ₂
			ÇH₃

O.CH₃

OCH₃

CH₂CH(CH₃)₂

	•	第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O Ⅱ -O·C-C⊫C(CH ₂) ₄ CH ₃
ОСН3	OCH ₃	CH ₂ CH(CH ₃) ₂	O II -O·C-(CH ₂) ₂ -
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-(CH ₂) ₂
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-О-С-СН₂СН(СНЭ)₂ . О
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O CH3 -O-C-CHCH₂CH3
OCH ₃	OCH3	CH ₂ CH(CH ₃) ₂	 -O−C−CH₂C(CH₃)₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₂CH₃	O II -O-CCH(C ₂ H ₅) ₂
ОСНз	осн3	CH ₂ CH(CH ₃) ₂	O -O-C-(CH ₂) ₂ CH(CH ₃) ₂
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C−CH(CH₃)(CH₂)₃CH₃
OCH ₃	OCH3	CH₂CH(CH₃)₂	O O-C→CH(C₂H₅)(CH₂)₂CH₃

[0089]

第 1 表	(続き)
-------	------

R1	R ²	- R ³	R ⁴
OCH ₃	OCH3	CH(CH₃)CH₂CH₂CH₃	O -O-C-C(C ₂ H ₅)(CH ₃) ₂
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-CH(CH ₃)(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C−CH₂CH(CH₃)CH₂CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-CH(C ₂ H ₅)(CH ₂) ₃ CH ₃
осн _з	ОСН3	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-CH(CH ₂ CH ₂ CH ₃) ₂
OCH ₃	ОСН3	CH(CH ₃) ₂	_о-ё-сн=сн- ⟨ _>
OCH ₃	осн _з	CH(CH ₃)CH ₂ CH ₃	о -o-ё-сн=сн-()-сі
осн _з	OCH ₃	CH(CH ₃) ₂	O -O-Ö(CH₂)₄CH₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	О -O-Ё—(СН ₂) ₅ СН ₃
OCH ₃	OCH ₃	CH(CH₃)₂	О -O-Ё—(СН ₂) ₆ СН ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O-Ö—(CH ₂) ₇ CH ₃

[0090]

		第 1 表	(続き)
R ¹	R²	Ra	R ⁴
OCH₃	OCH ₃	CH(CH ₃) ₂	O -O-Ö(CH ₂) ₆ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	О -O-Ё—(СН ₂) ₉ СН ₃
OCH₃	OCH ₃	· CH(CH ₃) ₂	O -O-Ö-(CH ₂) ₁₀ CH ₃
осн _з	ОСН ₃	CH(CH₃)CH₂CH₃	O -O-Ö—(CH ₂) ₁₁ CH ₃
OCH₃	OCH ₃	CH(CH ₃) ₂	O —O-Ö—(CH ₂)₁₂CH₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O-Ö—(CH₂)₁₃CH₃
OCH ₃	OCH ₃	CH(CH ₃)₂ ·	O −O∙Ö—(CH ₂) ₁₄ CH ₃
осн₃	OCH ₃	CH(CH₃)CH₂CH₃	O -O-Ö—(CH₂)₁₅CH₃
OCH ₃	OCH ₃	CH(CH ₃)₂	O —O-Ö—(CH ₂) ₁₆ CH ₃
осн₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O —O-Ö—(CH ₂) ₁₇ CH ₃
ОСН₃	OCH ₃	CH(CH₃)CH₂CH₃	O
OCH ₃	OCH3	СН(СН3)₂ −0	O O-C—(CH ₂) ₉ CH===CH(CH ₂) ₇ CH ₃

[0091]

【表71】

		第 1 表	(続き)
R ¹ .	R ²	R ³	R ⁴
		•	
OCH ₃	OCH ₃	СН(СН₃)СН₂СН ₃	O -O-Ö-(CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃
OCH ₃	осн _а	CH(CH ₃) ₂	O -O-Ö-(CH ₂) ₇ CH=CH(CH ₂) ₅ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	Q ,-O-C-(CH₂),CH=CH(CH₂),CH₃
OCH ₃	OCH ₃	СН(СН ₃)₂	O -O-Ö-(CH₂) ₈ CHCH₂
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O CH3 -0-C-CH2CH(CH3)2CH=C(CH3)2
		•	
OCH ₃	OCH ₃	СН(СН ₃)₂	O
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O -O-C-(CH ₂) ₂ -
OCH3	OCH₃	CH(CH₃)₂	-о-с-сн₂-Ссн₃
OCH₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O-C-CH₂

		第 1 表	(続き)
R1	R ²	R ³	R ⁴
OCH3	ОСН3	CH(CH ₃) ₂	-O-C CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-C-CH3
осн3	OCH ₃	CH(CH ₃) ₂	O -O-C-CH==CH-(CH ₂) ₄ CH ₃
OCH ₃	ОСН₃	CH(CH₃)CH₂CH₃	-0-C-CH ₂ -
OCH ₃	OCH ₃	CH(CH₃)₂	O CH ₃ IIO-C-C-CH ₂ -CH=CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O II O-C-(CH ₂) ₄ CH==CH ₂
OCH3	OCH3	CH(CH ₃) ₂	-o-c-
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	o-c
OCH ₃	OCH ₃	CH(CH ₃) ₂	O II -O·C-CH=CH-(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O II -O·C-CH ₂ -CH=CH-C ₂ H ₅

OCH₃

OCH₃

	·	第 1 衰	(続き)
R1	R ²	R ³	R ⁴
			0
OCH ₃	OCH ₃	CH(CH ₃) ₂	$ \begin{array}{ccc} O & CH_3 \\ H & -C - C - C - CH - C_2H_5 \end{array} $
OCH ₃	OCH ₃	- СН(СН ₃)СН ₂ СН ₃	-o-ë
		٠	O CH₃

CH(CH₃)₂

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃) ₂	O II -O·C-C=CH
OCH ₃	OCH ₃	CH(CH₃)₂	O II -O·C-C=C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O·C-C=C-C ₂ H ₅
OCH ₃	OCH ₃	CH(CH ₃)₂	O I O-C-(CH₂)₂C≔CH
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O II -O-C-CH=CH-CH=CHCH ₃
OCH ₃	OCH ₃	CH(CH ₃)₂	O O II II -O·C-CH ₂ -C-CH ₃
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O II -O·C−C⊫C(CH ₂) ₄ CH ₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O -O-C-(CH ₂) ₂ -
OCH ₃	осн3	 СН(СН ₃) ₂	O II -O-C-(CH ₂) ₂
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O -OCCH ₂ CH(CH ₃) ₂
ОСН3	OCH3	CH(CH ₃) ₂	O CH ₃ '- -O-CCHCH ₂ CH ₃

		第 1 表	(続き)
R ¹	R²	- R ³	R ⁴
ОСН₃	OCH₃	CH(CH₃)CH₂CH₃	O II −O−C−CH₂C(CH₃)₃
OCH ₃	осн3	CH(CH ₃) ₂	O II -O-C-CH(C ₂ H ₅) ₂
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O -O-C(CH ₂) ₂ CH(CH ₃) ₂
OCH ₃	OCH ₃	CH(CH₃)₂	O -O-C~CH(CH ₃)(CH ₂) ₃ CH ₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O -O-C-CH(C ₂ H ₅)(CH ₂) ₂ CH ₃
осн3	осн3	CH(CH ₃) ₂ .	O $ -O-C-C(C_2H_5)(CH_3)_2$
ОСН₃	осн3	CH(CH₃)CH₂CH₃	O -O-C-CH(CH₃)(CH₂)₂CH₃
OCH ₃	OCH3	CH(CH ₃) ₂	O -O-C-CH ₂ CH(CH ₃)CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O-C-CH(C ₂ H ₅)(CH ₂) ₃ CH ₃
OCH ₃	OCH ₃	CH(CH ₃) ₂	O -O-C-CH(CH ₂ CH ₂ CH ₃) ₂
	· ·		

第	1	表	(続き)

		97 I W	
R ¹	R ²	R ³	R ⁴ "
осн3	OCH ₃	C(CH ₃) ₃	о —о-ё—сн=сн- ()
OCH ₃	OCH3	C(CH ₃) ₃	о -o-ё-сн=сн-()-сі
осн _з	OCH3	C(CH ₃) ₃	O -O-Ö—(CH₂)₄CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-Ö—(CH ₂)₅CH₃
осн _з	осн3	C(CH ₃) ₃	O -O∙Ö—(CH₂)₅CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O −O-Ö —(CH ₂) ₇ CH ₃
OCH3	OCH ₃	C(CH ₃) ₃	O -O-Ü(CH ₂) ₈ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	О -О-С-(СН ₂) ₉ СН ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-Ö-(CH ₂) ₁₀ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-Ö—(CH ₂) ₁₁ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O O-Ö(CH ₂) ₁₂ CH ₃
OCH ₃	OCH ₃	- C(CH ₃) ₃	O -O-Ö-(CH ₂) ₁₃ CH ₃

	171		172
		第 1	表 (続き)
R1	R ²	R3	R4
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-Ö(CH ₂) ₁₄ CH ₃
OCH ₃	OCH3	C(CH ₃) ₃	O -O∙Ö-(CH₂)₁5CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O —O-Ö—(CH₂) ₁₆ CH₃
OCH ₃	осн ₃	C(CH ₃) ₃	O —O-Ö—(CH₂)₁⁊CH₃
осн ₃	осн _з	C(CH ₃) ₃	O (CH ₂) ₁₉ CH ₃
OCH3	OCH ₃	C(CH ₃) ₃ -	O −O-Ö−(CH₂)gCH==CH(CH₂)7CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-C-(CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-C-(CH ₂) ₇ CH=CH(CH ₂) ₅ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-Ö-(CH₂)7CH≔CH(CH₂)3CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-Ö(CH₂)₅CH===CH₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ II -O·C-CH ₂ CH(CH ₂) ₂ CH=C(CH ₃) ₂
1			1

	173	第 1 表	174 (続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	- С(СН ₃)3	O
OCH ₃	OCH3	C(CH ₃) ₃	O - -O-C-(CH ₂) ₂ -
ОСН3	OCH ₃	C(CH ₉) ₃	O -o-c-cн₂-⟨cн₃
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-CH2-
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-C CH ₃
OCH ₃	OCH ₃	С(СН ₃) ₃	-0-CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	-O-C-CH=CH-(CH ₂) ₄ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-CH ₂
осн ₃	осн _з	C(CH ₃) ₃	O CH₃ —O-G-C-CH₂-CH=CH₂ CH₃

第	1	表	(続き)
212	-	20	1430 - 1

			万	数 (1190 C /
R ¹		R ²		R4
oci	Нз	OCH ₃	C(CH ₃) ₃	O -O·C-(CH ₂) ₄ CH=CH ₂
oci	-l ₃	OCH3	C(CH ₃) ₃	-o-ë-
oci	Нз	OCH3	C(CH ₃) ₃	o-c-
oci	Нз	OCH ₃	C(CH ₃) ₃	O II -O·C-CH=CH-(CH ₂) ₂ CH ₃
ocı	Нз	OCH ₃	C(CH ₃) ₃	O II -O·C-CH ₂ -CH=CH-C ₂ H ₅
oci	Нз	OCH ₃	C(CH ₃) ₃	O CH ₃ -O-C-C=CH-C ₂ H ₅
OCI	Нз	OCH3	C(CH₃)₃	-o-c-
OCI	Нз	OCH ₃	C(CH ₃) ₃	-0.C-CH=CCH3
OCI	Нз	OCH3	C(CH ₃) ₃ -	O II −O·C−CH=CH−C₂H₅
OCI	- 1₃	OCH ₃	C(CH ₃) ₃	O -O·C-(CH ₂) ₂ CH=CH ₂

		(3	· · · · · · · · · · · · · · · · · · ·
	177	第 1	178 (航き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	C(CH ₃) ₃	-O·C-Ç=CH-CH³
OCH ₃	осн _з	C(CH ₃) ₃	O II -O·C-CH=CH-CH ₃
осн ₃	OCH3	C(CH ₃) ₃	O CH ₃ -O-C-C==CH ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O II -O-C-CH ₂ -CH = CH ₂
OCH ₃	осн _з	С(СН ₃) ₃	O -O·C-CH=CH₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O II -O-C-C==CH
OCH ₃	OCH ₃	C(CH ₃) ₃	-O·C-C≡C-CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	0 -O-C-C==C-C ₂ H ₅
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O·C-(CH ₂) ₂ C==CH
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-CCH=CH-CH=CHCH3
OCH ₃	OCH ₃	C(CH ₃) ₃	O O II III -O-C-CH ₂ -C-CH ₃

[0101]

		第 1. 表	(続き)
R1	R ²	- R³	R ⁴
ОСН3	осн ₃	C(CH ₃) ₃	O -O·C-Ç==C(CH ₂) ₄ CH ₃
осн _з	OCH3	C(CH ₃) ₃	O 1 -O·C-(CH ₂) ₂ —
OCH ₃	OCH3	C(CH ₃) ₃	O -O-C-(CH ₂) ₂ -CH ₃
OCH ₃	осн₃	C(CH ₃) ₃	O II −O−C−CH₂CH(CH₃)₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH₃ II CHCH₂CH₃
OCH3	OCH ₃	C(CH ₃) ₃	O -OCCH₂C(CH₃)₃
OCH3	OCH ₃	C(CH ₃) ₃	O -O-C-CH(C ₂ H ₅) ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-G(CH ₂) ₂ CH(CH ₃) ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-C-CH(CH ₃)(CH ₂) ₃ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-C-CH(C ₂ H ₅)(CH ₂) ₂ CH ₃

		第 1 表	(統き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH3	C(CH ₃) ₃	O - -O-C-C(C ₂ H ₅)(CH ₃) ₂
OCH ₃	OCH3	C(CH ₃) ₃	O -O-C-CH(CH₃)(CH₂)₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O II -O-C-CH ₂ CH(CH ₃)CH ₂ CH ₃
OCH3	OCH ₃	C(CH ₃) ₃	О -О-С-СН(С ₂ Н ₅)(СН ₂) ₃ СН ₃
OCH3	осн _з	C(CH ₃) ₃	O -O-C-CH(CH ₂ CH ₂ CH ₃) ₂
осн₃	осн ₃		
ОСН₃	OCH3		-o-c-сн=сн-(сı
осн _з	OCH3	C(C ₂ H ₅)(CH ₃) ₂	O -O-Ö—(CH₂)₄CH₃
ОСН3	OCH ₃	-cH ₃ CH ₃	О -O-Ё—(СН₂)₅СН₃
OCH3	OCH3	CH3	О -О^Ё(СН ₂) ₆ СН ₃

		第 1 表	(続き)
R ¹	R ²	R3	R ⁴
осн₃	ОСН3	CH3	O −O•Ċ—(CH₂) ₇ CH₃
OCH ₃	OCH ₃	CH ₂ C(CH ₃) ₃	O -O-C-(CH ₂) ₈ CH ₃
OCH ₃	OCH ₃		O -O∙Ö(CH₂)₃CH₃
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O -O-C-(CH ₂) ₁₀ CH ₃
OCH ₃	OCH ₃	-cH ₃ CH ₃	O -O-Ö—(CH₂)₁₁CH₃
OCH ₃	OCH ₃		O
OCH ₃	OCH ₃		O -O-Ö-(CH₂)₁₃CH₃
OCH ₃	ОСН3	CH₃	O -O-C-(CH ₂) ₁₄ CH ₃
OCH ₃	OCH ₃	CH₃	O −O-Ö—(CH₂) ₁₅ CH₃
OCH3	осн ₃	$\overline{}$	O —O-C—(CH ₂), ₆ CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O -O-Ö-(CH ₂) ₁₇ CH ₃

[0104]

186

	199		100
···		第 1 5	と (続き)
R ¹	R ²	H3	R ⁴ -
OCH ₃	OCH ₃	-	O ∥ —O∙C—(CH₂)₁9CH₃
OCH ₃	OCH ₃	$\overline{}$	O —O-Ö(CH ₂) ₉ CHCH(CH ₂) ₇ CH ₃
осн _з	OCH3	CH₃	-O-С-(СН ₂) ₇ СН=СН(СН ₂) ₇ СН ₃
OCH ₃	OCH3	CH₃	Q -O-C-(CH ₂) ₇ CH=CH(CH ₂) ₅ CH ₃
осн _з	ОСН3	C(C ₂ H ₅)(CH ₃) ₂	-O-C-(CH ₂) ₇ CH=CH(CH ₂) ₃ CH ₃
0СН3	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂ ·	
OCH ₃	OCH3	$\overline{}$	O CH ₃ O-C-CH₂CH(CH₂)₂CH=C(CH ₃)₂
OCH ₃	`OCH₃	CH³	O
OCH ₃	OCH ₃	$\overline{}$	-O-C-(CH ₂) ₂ -
OCH ₃	OCH ₃	CH3	-O-C-CH₂ ← CH₃
			[事Ω5]

	187		188
		第 1 表	(続き)
R1	R ²	R ³	R ⁴ -
осн _з	осн _з	CH3	 O
OCH ₃	OCH ₃	CH ₃ CH ₃ CI	-0-C
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	-0-C CH3
OCH ₃	OCH ₃	G(C ₂ H ₅)(CH ₃) ₂	O -O-C-CH=CH-(CH ₂) ₄ CH ₃
OCH ₃	OCH3	$\overline{}$	-0-C-CH ₂ -
OCH ₃	OCH ₃		CH₃ —O-C-C-CH₂-CH=CH₂ CH₃
OCH ₃	OCH ₃	CH₃	O -O-C-(CH ₂) ₄ CH=CH ₂
OCH3	ОСН3	∠CH ₃	-o-c-
OCH ₃	ОСН3	$\overline{}$	-o-c-

[0106]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴ "
OCH ₃	OCH ₃	→	O II -O-C-CH=CH-(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O II -O-C-CH ₂ -CH=CH-C ₂ H ₅
осн _з	OCH ₃	-CH ₃	O CH ₃ -O-C-C=CH-C₂H ₅
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	-o-ë-
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	-0.C-CH=C\(\frac{CH3}{CH3}\)
OCH₃	OCH ₃	——————————————————————————————————————	O II −O-C−CH=CH-C₂H₅
OCH ₃	OCH ₃	CH ₃	$O = O \cdot C - (CH2)2CH = CH2$
OCH3	OCH ₃	$\overline{}$	-O·C-C=CH-CH ₃
OCH ₃	OCH ₃	CH₃	O II −O·C−CH=CH-CH₃
	•		10

		第一十一表	(続き)
R ¹	R ²	R ³	R ⁴
осн _з	OCH3	C(C ₂ H ₅)(CH ₃) ₂	O CH ₃ -O-C-C=CH ₂
ОСН3	OCH ₃	CH ₃	O -O-C-CH ₂ -CH=CH ₂
OCH ₃	осн3		O II -O-C-CH=CH ₂
OCH ₃	OCH ₃	$\overline{}$	O II -O-C-C≔CH
OCH3	осн3	∑ _{CH} ³	O -O·C-C=C-CH ₃
OCH ₃	OCH ₃	CH3	O II -O·C-C=C-C ₂ H ₅
осн _з	OCH ₃		O -O·C-(CH ₂) ₂ C==CH
ОСН₃	осн _з	$\overline{}$	O O O O O
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O O II II II -O·C-CH₂-C-CH₃
осн3	OCH ₃	CH ₃	O -O·C-C≡C(CH ₂) ₄ CH ₃

[0108]

【表88】

第	1	亵	(続き)
	-		

R1	R ²	R ³	R ⁴
		•	
OCH ₃	OCH ₃	$-\!$	O -O·C-(CH ₂) ₂
OCH ₃	OCH ₃	$\overline{}$	-O-C-(CH ₂) ₂ -CH ₃
OCH ₃	OCH ₃	$\overline{}$	O -O-CCH₂CH(CH₃)₂
OCH3	OCH ₃	CH₃	O CH₃ II CHCH₂CH₃
OCH ₃	OCH ₃	CH3	O -O-C-CH₂C(CH₃)₃
OCH3	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O II -O-CCH(C₂H₅)₂
OCH ₃	OCH ₃	CH ₃	O -O~C—(CH₂)₂CH(CH₃)₂
OCH₃	OCH₃	→	O -O-C-CH(CH₃)(CH₂)₃CH₃
OCH3	OCH₃	CH₃	O -O-C-CH(C ₂ H ₅)(CH ₂) ₂ CH ₃

[0109]

第	1 .	表	(続き)
212			4.1.5 w — .

<u> </u>		第 1 改	(REC)
R ¹ .	R ²	R ³	R ⁴
осн ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O -O-C-C(C ₂ H ₅)(CH ₃) ₂
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O O-CCH(CH ₃)(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O II -O-C-CH ₂ CH(CH ₃)CH ₂ CH ₃
OCH ₃	осн ₃	- ←	O -O-C-CH(C₂H₅)(CH₂)₃CH₃
OCH ₃	OCH ₃		O -O-C-CH(CH₂CH₂CH₃)₂
OCH ₃	OCH ₃	CH(CH₃)₂	о -о-с-н
OCH ₃	осн3	C(CH ₃) ₃	о осн
OCH ₃	OCH ₃	CH(CH ₃)₂	O
OCHF ₂	OCHF ₂	CH(CH ₃)₂	—о—с—сн₂сі
OCF ₃	OCF ₃	CH(CH ₃)₂	—o—c—cH₂cı

····	197	第一1表	(続き) - 190
R ¹	R ²	R ³	R ⁴
OCH₃	OCH ₃	C(CH ₃) ₃	O —O—C—CH₂CI
OCHF ₂	OCHF ₂	C(CH ₃) ₃	O
OCF ₃	OCF ₃	C(CH ₃) ₃	O
OCH₃	OCH ₃	CH(CH ₃)₂	-0-C-CH CI
OCH3	OCH3	C(CH ₃) ₃	
OCH ₃	OCH ₃	CH(CH₃)₂	O II —O−C−CH₂CH₂CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O II O C CH ₂ CH ₂ CI
OCH3	OCH ₃	CH(CH₃)₂	O II O-C-CHBr∙CH₂Br
ОСН₃	OCH ₃	C(CH ₃) ₃	O Ⅱ O-C-CHBr·CH₂Br
OCH ₃	ÓCH₃	CH(CH₃)₂	O CH ₃ O-C-C=CH ₂
<u></u>	•	*	

		第 1 表	(統き)
R1	R ²	R3	. R ⁴
OCH ₃	осн _з	CH(CH ₃) ₂	O II O-C-CH ₂ CH ₂ Br
OCH ₃	OCH ₃	C(CH ₃) ₃	O II O-C-CH ₂ CH ₂ B1
OCH ₃	осн _з	CH(CH ₃)₂	O CI
OCH ₃	OCH3	C(CH ₃) ₃	-0-C-CH-
OCH ₃	OCH ₃	CH(CH₃)₂	
OCH3	OCH3	С(СН ₃) ₃	-0-C
осн ₃	OCH ₃	CH(CH₃)₂	o-c
OCH ₃	OCH3	С(СН ₃) _З	o-c
OCH ₃	OCH₃	CH(CH₃)₂	-o-c-(сн³
L	·		

		第 1 表	(続き)
Ri	R ²	R ³	R ⁴
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-C-CH ₃
OCH ₃	OCH3	СН(СН ₃) ₂	o-c-C-CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-C-CH3
OCH ₃	OCH ₃	CH(CH ₉)₂	-0-C
OCH ₃	ОСН₃	C(CH ₃) ₃	o-c
OCH ₃	OCH3	сн(сн _з)₂	—()-C———Br
OCH ₃	ОСН ₃	C(CH ₃) ₃	-()-C-Br
OCH3	OCH ₃	СН(СН ₃) ₂	o-c

	203		204
		第 1 表	
R ¹	R ²	R ³	R ⁴
осн _з	OCH3	C(CH ₃) ₃	O Br
ОСН3	OCH₃	CH(CH₃)₂	-o-c- Br
OCH ₃	OCH ₃	C(CH ₃) ₃	o-c
ОСНз	OCH ₃	CH(CH ₃)₂	O_CF
OCH₃	OCH₃	C(CH ₃) ₃	-o-c
OCH ₃	OCH ₃	CH(CH₃)₂	-o-c
OCH ₃	OCH3	C(CH ₃) ₃	o-ë-
OCH ₃	OCH ₃	CH(CH ₃)₂	o-c

	200	第 1	表 (統き)
R ¹	R ²	R ³	H ⁴
OCH₃	OCH ₃	C(CH ₃) ₃	o-c
OCH ₃	OCH3	СН(СН ₃) ₂	-0-C-NO2
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c
OCH ₃	осн _з	CH(CH₃)₂	-o-c NO2
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-NO2
OCH3	OCH ₃	CH(CH₃)₂	o-c- NO ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-Ü
OCH ₃	OCH ₃	CH(CH₃)₂	

[0115]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH₃	C(CH ₃) ₃	-o-c
осн3	OCH ₃	СН(СН ₃) ₂	-o-c CI
ОСН₃	OCH ₃	C(CH ₃) ₃	o-c
OCH ₃	OCH ₃	CH(CH₃)₂	
OCH3	OCH ₃	С(СН ₃) ₃	
осн _з	OCH3	CH(CH ₃)₂	-o-c-CI
OCH3	OCH ₃	C(CH ₃) ₃	

[0116]

•		第 1 表	(税き)
R ¹	H ²	R ³	R ⁴
OCH ₃	. OCH3	CH(CH₃)₂	O O O O O O O O O O
OCH ₃	осн3	C(CH ₃) ₃	CH ₃
OCH ₃	ОСН₃	СН(СН ₃) ₂	-O-C CH ₃ CH ₃
OCH3	осн₃	C(CH ₃) ₃	-O-C-CH ₃ -CH ₃
OCH3	осн ₃	CH(CH₃)₂	o-c-
OCH ₃	осн3	C(CH ₃) ₃	o-c-
OCH ₃	OCH ₃	CH(CH ₃) ₂	o-c

		第 1	表	(税き)
R1	R ²	R ³		R ⁴
OCH ₃	ОСН3	C(CH ₃) ₃		-o-c
ОСН3	осн₃	CH(CH ₃)₂		OCH ₃
ОСН3	осн₃	C(CH ₃) ₃		OCH ₃
OCH ₃	осн _з	CH(CH₃)₂		O OCH ₃ OCH ₃
OCH3	осн3	C(CH ₃) ₃	·	OCH3
OCH ₃	OCH ₃	CH(CH ₃)₂		OCH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃		OCH ₃

435	1	表	(続き)
邪	T	æ	(MOCE)

į		- P - W	(NOC)
R ¹	R ²	R ³	R ⁴ .
OCH ₃	OCH ₃	CH(CH ₃) ₂	OCH3
осн3	OCH3	C(CH ₃) ₃	-o-с — осн ₃
OCH3	OCH3	CH(CH₃)₂	$-0-\overset{\circ}{\text{C}}$ NO_2 NO_2
OCH ₃	OCH ₃	C(CH ₃) ₃	-0 NO_2 NO_2
OCH ₃	OCH ₃	СН(СН ₃) ₂	-0 NO_2 NO_2
OCH ₃	OCH₃	C(CH ₃) ₃	O-C
осн _з	OCH ₃	CH(CH ₃)₂ .	-o-c

[0119]

	215		210
		. 第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH₃)₂	O Ⅱ —O—C—CH₂CH₂Br
OCH ₃	OCH ₃	C(CH ₃) ₃	O II —O—C—CH ₂ CH ₂ Br
OCH ₃	OCH ₃	CH(CH₃)₂	-0-C-CH-
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-CH-
		-	
			·

[0120]

【表100】

		第 . 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	. OCH3	C₂H₅ -	-0-C-CH ₂
∞H₃	OCH ₃	CH(CH ₃) ₂	-0-C-CH ₂
OCH3	OCH ₃	C(CH₃)₃	-o-ё-сн₂
OCH ₃	OCH ₃	CH₂CH₂CH₃	-o-c-cH₂
OCH ₃	∞H₃	CH(CH₃)₂	-o-ë-ch₂
OCH ₃	∞H₃	C(CH ₃) ₃	o-ç-cH⁵
OCH₃	∞H₃	C ₂ H ₅	-0-G-CH₂
OCH ₃	OCH ₃	CH(CH ₃) ₂	—o-с-сн₂-(СI
OCH ₃	OCH ₃	C(CH ₃) ₃	O-С-СH ₂ -
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	O-C-CH ₂ -CI
OCH₃	OCH₃	СН(СН ₃)₂	-0-C-CH ₂

[0121]

219				
	笛	1	裘	(線き)

		23 1 45	(1)50 (2.7
R ¹	R²	R ³	R ⁴
OCH ₃	OCH ₃	C(CH ₃) ₃	o-ë-cH₂
OCH₃	OCH ₃	C₂H₅	O-C-CH ₂
ocH₃	OCH₃	CH(CH ₃) ₂	O Br
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-CH ₂
OCH ₃	OCH3	CH₂CH₂CH₃	O-C-CH ₂ Br
OCH ₃	OCH3	CH(CH ₃) ₂	O-C-CH ₂ -Br
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-Ö-CH ₂ Br
OCH₃	OCH3	CH₂CH₂CH₃	O CH ₃
OCH ₃	OCH3	CH(CH ₃) ₂	O CH ₃
осн ₃	ОСН₃	C(CH ₃) ₃	O-C-CH ₂
OCH ₃	OCH₃	C₂H₅	-O-C-CH ₂ -CH ₃

[0122]

【表102】

		第 l	(航き)
R ¹	R²	R ³	R ⁴
OCH3	OCH ₃	CH(CH₃)₂	-0-CH2 CH3
OCH₃	OCH3	C(CH ₃)₃	O -0-C-CH₂ CH₃
OCH ₃	OCH3	CH₂CH₂CH₃	_o-ё-сн₂ —о-ё-сн₂ —сн₂
OCH₃	OCH3	CH(CH₃)₂	_о-с-сн₂<>-сн₂
OCH₃	OCH ₃	C(CH ₃) ₃	_0-CH2
OCH₃	OCH ₃	C ₂ H ₅	-o-ë-cH₂
осн _а	ССН₃	CH(CH ₃) ₂	-o-с-сн ₂
OCH₃	OCH ₃	C(CH ₃) ₃	O-C-CH ₂
OCH ₃	OCH₃	CH₂CH₂CH₃	-o-c-cH₂
OCH₃	ОСН₃	CH(CH ₃) ₂	O CI CI CI

· 5	3 】 表	(船き)
4 ²	R ³	R ⁴
OCH₃	C(CH ₃) ₃	-o-ë-cH ₂ -cI
OCH₃	CH ₂ CH ₂ CH ₃ -	-O-C-CH₂ CI
OCH3	CH(CH₃)₂	O O-C-CH ₂ CI CI
OCH3	C(CH₃)₃	O -O-C-CH₂ CI
OCH3	CH₂CH₂CH₃	-0-C-CH ₂
OCH3	CH(CH ₃) ₂	-0-Ç-CH⁵ € CI
OCH₃	C(CH ₃) ₃	O -O-C-CH₂
		· ·
	CCH ₃ CCH ₃ CCH ₃	CH ₃ C(CH ₃) ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH(CH ₃) ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃

[0124]

		第 1 表 (続き)	
R1	R2	R3	R4
OCH ₃	OCH ₃	C ₂ H ₅	0 0-0-0-0-0-0-1
осн ₃	OCH3	CH ₂ CH ₂ CH ₃	o_c—ar₅oar₽
оснз	оснз	CH(CH ₃) ₂	0-c-ahoah
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	_o_c_arearr
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₃	o_c_a+oa+
OCH ₃	осн ₃	CH ₂ CH(CH ₃) ₂	0 0 0-C-04,004,
OCH ₃	OCH3	- C(CH ₃) ₃	O C C 20043
OCH ₃	осн _з	C ₂ H ₅	0- <u>c</u> -a+²oc²+²
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O
осн3	осн3	CH(CH ₃) ₂	O —O-Ü—CH₂OC₂H₅
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O —O-Ö-CH₂OC₂H₅
OCH3	OCH3	CH(CH ₃)CH ₂ CH ₃	O —o-Ё-α+₂∞₂+₅
ОСН3	OCH3	CH ₂ CH(CH ₃) ₂	O
оснз	оснз	C(CH ₃) ₃	O OÖGH2OC2H5
осн3	осн3	C ₂ H ₅	ooa+_aa+_},a+3

[0125]

【表105】

		第 1 表 (続き	•)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O
оснз	осн3	CH(CH ₃) ₂	O
осн3	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	୦ ୦-୯-୦୷୦(୦୷)₃୦୷₃
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	o_c_a4,o(a4,)₃a4₃
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	—ი~ი–ი⊬ი(ი⊬)³a4° ბ
OCH ₃	OCH ₃	C(CH ₃) ₃	_o_c_aho(ah);ah;
OCH ₃	OCH3	C ₂ H ₅	о
OCH3	OCH3	CH ₂ CH ₂ CH ₃	о —о-сан _г ан _г оан,
OCH ₃	OCH3	CH(CH ₃) ₂	о
OCH3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	o —o-c-atatoat
осн3	оснз	СН(СН3)СН2СН3	_o_c_afafaaf o_c_afafaaf
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	० ० ८аңаң००ң
OCH3	OCH3	C(CH ₃) ₃	—ഠ−്റ–വ [്] വ‱
оснз	оснз	C ₂ H ₅	O O O O O O O O O O O O O O O O O O O
OCH3	осн3	CH ₂ CH ₂ CH ₃	о о

【表106】

		第 1 表 (続き	
R1	R2	R3	R4
осн ₃	оснз	CH(CH ₃) ₂	_o_o_o_o—ooH₃
осн3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	o-ccooh3
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	o o o-c-c-oc+₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	o o o-c-c-c-∞H₃
осн3	OCH ₃	C(CH ₃) ₃	O O
осн3	OCH3	C ₂ H ₅	O O O
осн3	OCH ₃	CH ₂ CH ₂ CH ₃	O O O
осн3	OCH ₃	CH(CH ₃) ₂	O O O O O O O O O O O O O O O O O O O
осн3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-c-a4-c-∞43
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	0C-a4²-C-∞a4³
OCH ₃	OCH3	C(CH ₃) ₃	0-C-aH2-C-00H3
OCH ₃	осн ₃	C ₂ H ₅	O O
ОСНЗ	осн3	CH ₂ CH ₂ CH ₃	O O O
OCH ₃	OCH3	CH(CH ₃) ₂	-0-C-(OH2)2-C-OOH8

			AM 1 -+- (A+/-)-	`
R	 1	R2	<u>第 1 表 (続き</u> R3	R4
OC		OCH ₃		O O O O O O O O O O O O O O O O O O O
oc	Нз	осн3	CH(CH ₃)CH ₂ CH ₃	O O O
ос	Нз	OCH ₃	CH ₂ CH(CH ₃) ₂	O O
oc	Нз	OCH ₃	C(CH ₃) ₃	O O O O O O O O O O O O O O O O O O O
ОС	Нз	OCH ₃	C ₂ H ₅	0 -0-0-0-0-12-0-
ос	Нз	OCH ₃	CH ₂ CH ₂ CH ₃	0 0-c-a+2-0-
ОС	Нз	осн3	CH(CH ₃) ₂	-0-c-a45-0-(
ос	Нз	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	0 -0-c-a42-0-
ос	Нз	осн3	CH(CH ₃)CH ₂ CH ₃	0 0-c-aH2-0-(==)
ос	Нз	осн3	CH ₂ CH(CH ₃) ₂	-0-C-0H2-0-()
ос	Нз	OCH ₃	C(CH ₃) ₃	-0-c-aH2-0-()
ОС	нз	OCH3	C ₂ H ₅	-0-0-0H2-0-(-)-CI
ОС	НЗ	ОСН3	CH ₂ CH ₂ CH ₃	-0-C-CH2-O-(-)-CI
1				

[0128]

		第 1 表 (読き)
R1	R2	R3	R4
OCH3	OCH3	CH(CH ₃) ₂	-0-C-CH2-O-(CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH2-0-()-CI
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O-C-OH2-O-()-CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH5-0-()-CI
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-0-0H2-0-()-CI
осн ₃	OCH ₃	C ₂ H ₅	-0-c-aH⁵-0-<
OCH ₃	ОСНз	CH ₂ CH ₂ CH ₃	-0-0-0H ₂ -0-
OCH ₃	OCH ₃	CH(CH ₃) ₂	O O O O O O O O O O O O O O O O O O O
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O -0-0-0-0H2-0-
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-CH2-O-
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-Ö-CH ₂ -O-

[0129]

		第 1 表 (続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-CH2-O-
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-CH2-O-CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-0-0H2-0-
OCH ₃	OCH ₃	CH(CH ₃) ₂	0-C-OH2-O-CI
OCH3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O -0-C-CH ₂ -O-
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-OH2-O-
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-0-0H2-0-
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-OH2-O-
OCH ₃	OCH ₃	C ₂ H ₅	-0-c-at-0-()-at-3
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-c-ar-o-(ar3

[0130]

<u> </u>		第 1 表 (続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	-0-c-a45-0-{
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-c-a45-0-{
осн ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-c-at-0-()-at3
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH2-O-()-CH3
осн3	OCH ₃	C(CH ₃) ₃	-0-C-CH2-O-()-CH3
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-CH2-O-CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	CI CI -O-O-OH ₂ -O-
OCH3	OCH ₃	CH(CH ₃) ₂	-0-C-CH ₂ -O-CI
OCH ₃	осн3	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-OH2-O-
осн3	OCH3	CH(CH3)CH2CH3	-0-C-CH ₂ -O-CI
ОСН3	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH2-O-CI

[0131]

		239		240
			第 1 表	(続き)
F	२1	R2	R3	R4
00	СНз	OCH3	C(CH ₃) ₃	CI
				-0-0-0H2-0-()-CI
			• • •	- 🖳
	CH3	OCH ₃	C ₂ H ₅	
				-0-ç-aH⁵-0-⟨
0	CH3	OCH ₃	CH ₂ CH ₂ CH ₃	CI
				-0-0-045-0-(
0	СНз	осн3	CH(CH ₃) ₂	CI
				-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
0	CH3	осн3	CH ₂ CH ₂ CH ₂ CH ₃	CI
				-0-C-CH2-0-(=)-CI
0	СНз	OCH ₃	CH(CH ₃)CH ₂ CH ₃	,cı
		-		-0-C-CH-O-()-CI
	011	0011		
	СНз	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH2-O-(-)-CI
				-0-C-042-0-()-ci
0	CH3	OCH ₃	C(CH3)3	CI
				-0-0-0-0-0-0-0-cı
O	СНз	осн3	C ₂ H ₅	н
				-0-0-04-0-
	∩⊔_	OCH ₃	CH ₂ CH ₂ CH ₃	
	СНЗ	ОСПЗ	Ongongong	O H₃C →
				-0-0-0H2-0-()-CI
1			•	

[0132]

【表112】

	211		212 244 t. 1
			(統き)
R1	R2	R3	R4
осн3	оснз	CH(CH ₃) ₂	н₃с
			-0-C-CH ₂ -0-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
			-0-C-CH2-O-()-CI
OCU-	OCU.	CH-CH-CH-CH-	
OCH ₃	Oung	CH ₂ CH ₂ CH ₂ CH ₃	H₃C
			-0-C-OH2-O-
			-0-C-Q-2-O
OCH ₃	OCH ₃	CH(CH3)CH2CH3	H₃Cੑ
	0 - 1.0		0
			-0-c-a4-0-<
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	Ӊ₃Ҁ
			0-C-CH2-O-
OCH ₃	OCH3	C(CH ₃) ₃	H₃C
1			-0-C-CH2-0-()-CI
			-0-C-042-0-()/-CI
осн3	OCH ₃	C ₂ H ₅	Cl
00.13	001/3	02/15	0 GH
			-0-C-CH-O-()-CI
•			
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	CI
		2, 2	o cH₃ >=
ļ			-0-C-QH-O-()-CI
1 .			
оснз	оснз	CH(CH ₃) ₂	Cĺ
		·	O OH₂ \
1			-0-c-aH-o-()-cı
	0011		` <i>'</i>
OCH3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O CH \
}			-0-C-OH-O-()-CI
оснз	OCH*	CH(CH ₃)CH ₂ CH ₃	<u> </u>
COFIS	Cong	51 NO1 13/01 1201 13	o ar 🏸
			-0-C-OH-O-()-CI

		第 1 表	(統き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-o-c-aH-o-⟨
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-aH-o- o dH³ CI CI
OCH ₃	OCH ₃	C ₂ H ₅	O CH3 CI CI
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	-0-C-CH-O-CI CI
осн ₃	OCH ₃	CH(CH ₃) ₂	O CH CI CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH-O-CI CI
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-CH-O-CI CI
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH CI CI
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-CH-O-CI CI
осн ₃	OCH ₃	C ₂ H ₅	-0-c-aH-o-

	210	第1表(続き)
R1	R2	R3	R4
осн3	оснз	CH ₂ CH ₂ CH ₃	-o-¢-aн-o-⟨>-cı
OCH ₃	OCH ₃	CH(CH ₃) ₂	-o-c-a+-o-()-cı
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH-0-()-CI
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₃	0 CH3 -0-C-CH3 -0-CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	0 CH3 -0-C-CH-O-()-CI
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-QH-0-(-)-CI
осн ₃	OCH3	C ₂ H ₅	-0-C-QH-0- O CH ₈
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-C-OH-O-
OCH ₃	OCH ₃	CH(CH ₃) ₂	-o-c-aH-o- o ar ci
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-0-0H3 CI
OCH3	OCH3	CH(CH ₃)CH ₂ CH ₃	-0-C-CH-O-CI

		第 1 表 (6 to 4.)
R1	Ħ2	斯工女(R3	<u>続き)</u> R4
OCH ₃	OCH3	CH ₂ CH(CH ₃) ₂	-0-C-OH-O-
OCH ₃	осн _з	C(CH ₃) ₃	-o-c-aH-o-⟨ o al ci
OCH3	OCH ₃	C ₂ H ₅	-o-c-ан-о-(СI
осн3	осн ₃	CH ₂ CH ₂ CH ₃	о он, -o-с-ан-о-()
OCH3	оснз	CH(CH ₃) ₂	-o-c-a+-o-⟨ o ch* CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-o-c-aH-o-(
осн ₃	оснз	СН(СН3)СН2СН3	-0-C-QH-O-(
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O OH, CI
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-QH-0-CI
OCH ₃	OCH3	C ₂ H ₅	-0-0-(CH ₂)3-0-CI

[0136]

		<u>第1表</u>	(続き)
R1	R2	R3	R4
ОСН3	OCH ₃	CH ₂ CH ₂ CH ₃	-0-C-(CH ₂) ₃ -0-CI
осн3	OCH ₃	CH(CH ₃) ₂	-0-C-(CH ⁵) ³ -0-CI
OCH3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O -O-C-(OH ₂) ₃ -O- -CI
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-(CH ⁵) ³ -0-CI
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-(CH ₂) ₃ -O- -CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O O-C-(OH ₂) ₃ -O- CI
осн ₃	OCH ₃	C ₂ H ₅	— oссан
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	—о-с-с-он О О
OCH ₃	OCH ₃	CH(CH ₃) ₂	—о-с-с-он
OCH3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	о о о-с-с-он
осн ₃		CH(CH ₃)CH ₂ CH ₃	О О
осн ₃	_	CH ₂ CH(CH ₃) ₂	—о-с-с-он
OCH ₃	OCH ₃	C(CH ₃) ₃	O-C-C-OH

[0137]

【表117】

	251		252
		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C ₂ H ₅	O O
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	
OCH ₃	OCH ₃	CH(CH ₃) ₂	O O OCCH2-COH
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	—О-С-СН²-С-ОН О О
осн3	осн3	СН(СН ₃)СН ₂ СН ₃	O-C-CH2-C-OH
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	0-C-CH²-COH
OCH ₃	OCH ₃	C(CH ₃) ₃	О-С-ОН2-С-ОН
ОСН3	осн3	C ₂ H ₅	O O
осн3	OCH3	CH ₂ CH ₂ CH ₃	O O O
OCH ₃	OCH ₃	CH(CH ₃) ₂	O-C-(CH ₂) ₂ C-OH
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O O O O O O O O O O O O O O O O O O O
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	
OCH3	OCH ₃	C(CH ₃) ₃	
оснз	оснз	C ₂ H ₅	O O

[0138]

	500	AA- 4	/4+ > \
D4		第 1 表	
R1	R2	R3	R4
OCH ₃	ОСНЗ	CH ₂ CH ₂ CH ₃	O O
			OCC-ONa
OCH3	оснз	CH(CH ₃) ₂	O O
			O O O O O O O O O O O O O O O O O O O
OCH ₃	OCH3	CH2CH2CH2CH3	0 0
			O O
OCH ₃	OCH ₃	CH(CH3)CH2CH3	
		· 0/ 2 0	O O
OCHo	OCHa	CH ₂ CH(CH ₃) ₂	
00.13	00.13	01/201/(01/3/2	O O
0011	0011	0(011.)	
OCH3	ОСНЗ	C(CH ₃) ₃	O O OCONa
			OCC-ONa
OCH3	OCH3	C ₂ H ₅	o o
			O O O-C-OH₂-CONa
OCHo	OCHo	CH ₂ CH ₂ CH ₃	
00113	00113	01/201/201/3	O O
			—0C-OH2-C-ONA
OCH3	OCH ₃	CH(CH ₃) ₂	o o
			O_C_OH₂-C_ONa O O
OCH	OCH-	CH-CH-CH-CH-	_
ОСПЗ	ОСПЗ	CH ₂ CH ₂ CH ₂ CH ₃	O O O-C-OH2-C-ONa
			0C-CH2-CUNa
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	0 0
	_		O-C-OH ₂ -CONa O O
	0011		
OCH3	ОСНЗ	CH ₂ CH(CH ₃) ₂	
OCHa	OCH3	C(CH3)3	
	0	- (- 0/0	O O
OCH3	OCH3	C ₂ H ₅	O O '''
			—O—C−(CH₂)₂—C−ONa
OCH ₂	OCH ₂	CH ₂ CH ₂ CH ₃	0 0
- 33			O O

[0139]

	200	第1表	(4± ±)
R1	R2	<u>第 1 表</u> R3	<u>(続き)</u> R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	O O O O O O O O O O O O O O O O O O O
осн3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O O O O O O O O O O O O O O O O O O O
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O O
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O O
OCH ₃	OCH ₃	C(CH ₃) ₃	O O ''
OCH ₃	OCH ₃	C ₂ H ₅	-o-c-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-
ОСН3	OCH ₃	CH ₂ CH ₂ CH ₃	-o-c-c- σ _σ -σ-σ-σ-σ-σ-σ-σ-σ-σ-σ-σ-σ-σ-σ-σ-σ-σ-σ
осн ₃	OCH ₃	CH(CH ₃) ₂	o-c-c-c
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-o-c-c
осн ₃	OCH3	CH(CH ₃)CH ₂ CH ₃	O OCH ₃
осн ₃	осн3	CH ₂ CH(CH ₃) ₂	-o-c-c-c
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-c-c-c

[0140]

		257		258
			第 1 表	(続き)
	R1	R2	R3	R4
	OCH ₃	осн ₃	C ₂ H ₅	-0-C-a+0-soz
	OCH ₃	осн3	CH ₂ CH ₂ CH ₃	-0-C-a+0-so2-{_}-a+3
	OCH ₃	OCH ₃	CH(CH ₃) ₂	- o сн _а - сн _а - сн _а - сн _а
	OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH3 -0-C-CH0-SO2-C->-CH3
	OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O CH3 -0-C-CH0-SO2-C->-CH3
	OCH ₃	осн _з	CH ₂ CH(CH ₃) ₂	O CH3 -0-C-CH0-SO2-CH3
	OCH ₃	осн ₃	C(CH ₃) ₃	-0-C-a+0-s02
	OCH ₃	осн ₃	C ₂ H ₅	-o-c-a+2-s
	OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-o-c-a-2-s
	OCH ₃	OCH3	CH(CH ₃) ₂	-0-C-012-S
	OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH2-S-CI
	OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-o-c-a+2-s
l	OCHa	OCHa	CH ₂ CH(CH ₃) ₂	0

[0141]

【表121】

		第 1 表	(続き)
R1	R2	R3	R4
осн ₃	осн3	C(CH ₃) ₃	-0-C-CH2-S
OCH ₃	OCH ₃	С ₂ Н ₅	O-QH2-S
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	0-0-c-0-12-s
осн3	OCH3	CH(CH ₃) ₂	0-0H ₂
осн ₃	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	O-CH ₂
осн ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	0-CH ₂ 0-CH ₂ -0-C-CH ₂ -S
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O-QH ₂
осн ₃	OCH ₃	C(CH ₃) ₃	0-a4 0-a4 -0-c-a4-s

[0142]

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH3	C ₂ H ₅	O-(
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-C-QH-O
осн3	осн ₃	CH(CH3)2	-o-c-aH-o
осн3	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	0 0H)
осн ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-c-aH-o
осн _з	оснз	CH ₂ CH(CH ₃) ₂	O OH >
осн3	осн _з	C(CH ₃) ₃	O CH O CI
			-o-c-a+-o

[0143]

【表123】

		第 1 表	(続き)
R1	R2	R3	R4
ОСНЗ	ОСН3	C2H5	O—CF,
осн ₃	осн3	CH ₂ CH ₂ CH ₃	O CH
осн ₃	OCH ₃	CH(CH ₃) ₂	O CH -O-C-CH-O O-CF ₃
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH
осн ₃	оснз	СН(СН ₃)СН ₂ СН ₃	O CH, -O-C-CH-O
осн ₃	осн _з	CH ₂ CH(CH ₃) ₂	O CH
OCH ₃	осн ₃	C(CH ₃) ₃	O CH, -O-C-CH-O -CF,
оснз	ОСНЗ	C2H5	O CH C CH C
			O CH

[0144]

【表124】

266

		<u>第1表</u>	(続き)
R1	R2	R3	R4
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	O CH CI
OCH ₃	OCH ₃	CH(CH ₃) ₂	-o-c-cH-o
оснз	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH O CI
осн3	осн3	СН(СН ₃)СН ₂ СН ₃	O CH — CI
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH CI
оснз	OCH ₃	C(CH ₃) ₃	O CH O CI
оснз	осн3	C2H5	O CH
осн ₃	осн ₃	CH ₂ CH ₂ CH ₃	O CH CI
			O CH, ———————————————————————————————————

[0145]

【表125】

		第 1 表	(続き)
R1	R2_	R3	R4
осн ₃	OCH ₃	CH(CH ₃) ₂	O CH CI
осн3	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH-O
осн ₃	осн _З	СН(СН ₃)СН ₂ СН ₃	-0-C-CH-0
ОСН ₃	ОСН ₃	CH ₂ CH(CH ₃) ₂	O CH N CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH O N CI
осн ₃	осн _з	C ₂ H ₅	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O CH ₃

[0146]

【表126】

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH3	CH(CH ₃) ₂	O CH ₃ F -0-C-CH-O
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH F -0-C-CH-O
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O CH3 F F
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH3 F
OCH ₃	оснз	C(CH3)3	O CH3 F F -0-C-CH-O
OCH ₃	OCH ₃	C ₂ H ₅	O CH ₃ -O-C-OH-O
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O CH3 CD-CF3

[0147]

【表127】

271		272
	第 1 表	(続き)
R2	R3	R4
OCH ₃	CH(CH ₃) ₂	O-\N=\-CF_3
осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₈
OCH ₃	CH(CH ₃)CH ₂ CH ₃	0 CH ₈ \
OCH ₃	CH ₂ CH(CH ₃) ₂	O OH ₈
ОСН3	C(CH ₃) ₃	0 CH ₃ -0-C-CH-O O-N
OCH ₃	C ₂ H ₅	O CH ₃
OCH _{3.}	CH ₂ CH ₂ CH ₃	-0-C-CH-O OCH3 CI -0-C-CH-O
	OCH ₃ OCH ₃ OCH ₃	照 1 表 R3 OCH3 CH(CH3)2 OCH3 CH2CH2CH3 OCH3 CH2CH(CH3)2 OCH3 CH2CH(CH3)2 OCH3 C(CH3)3 C(CH3)3 C(CH3)3 C(CH3)3

[0148]

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	осн ₃	CH(CH ₃) ₂	O CH ₃ CI -O-C-CH-O
OСН ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₃ CI CI
ОСН3	осн ₃	CH(CH ₃)CH ₂ CH ₃	O CH ₃ CI -O-C-CH-O
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH ₃ CI
осн3	оснз	C(CH3)3	O CH ₃ CI -0-C-CH-O
OCH ₃	OCH ₃	C₂H₅	O CH3
OCH3	OCH3	CH ₂ CH ₂ CH ₃	O CH3 -CI

[0149]

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	0 0H ₃
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₃ CI
осн ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O OH3
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH C
осн ₃	OCH ₃	C(CH ₃) ₃	0 0H ₃ CI
OCH ₃	OCH ₃	С ₂ Н ₅	0 CH 0 CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O CH3 () -0.0-CH-0

[0150]

	277		278
			(続き)
R1	R2	R3	R4
ОСН3	OCH3	CH(CH ₃) ₂	O CH ₃ CI O CH-O
осн ₃	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₃ CI
осн ₃	OCH ₃	CH(CH3)CH2CH3	O CH3 CI
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH ₃ CI
осн3	OCH ₃	C(CH ₃) ₃	O CH CI
осн ₃	OCH ₃	С ₂ Н ₅	O CH ₃ CI

[0151]

		第 1 表	(続き)
R1	R2	R3	R4
осн3	осн3	CH ₂ CH ₂ CH ₃	0 CH S CI
ОСН3	OCH ₃	CH(CH ₃) ₂	0 CH ₃ CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₃ CI
осн ₃	OCH ₃	CH(CH3)CH2CH3	0 0H3 CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH S CI
OCH ₃	OCH ₃	C(CH3)3	O CH3 CI

[0152]

	201		LOL
		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	осн ₃	C ₂ H ₅	O CH3 -OC-CH-O
ОСН3	OCH3	CH ₂ CH ₂ CH ₃	O CH3 CI
OCH ₃	OCH ₃	CH(CH ₃) ₂	O CH ₃ CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH3 -OC-CH-O
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O CH ₃ CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O OH3 CI

[0153]

【表133】

		第 1 表	(続き)
R1	R2	R3	R4
оснз	OCH ₃	C(CH ₃) ₃	ÇF₃
•			O CH3 CI
осн3	OCH ₃	C ₂ H ₅	o-ca+2-an
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	o-ç-a+²·av
осн ₃	OCH ₃	CH(CH ₃) ₂	
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	o-c-a+2-an
оснз	OCH3	CH(CH ₃)CH ₂ CH ₃	
OCH ₃	OCH3	CH ₂ CH(CH ₃) ₂	oca+2-an
OCH3	OCH3	C(CH ₃) ₃	o-c-a+2 an
OCH ₃	OCH ₃	C ₂ H ₅	O CH3 O-C-(OH2)3-N CH3
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O
оснз	OCH3	CH(CH ₃) ₂	CH3
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	OH3

		第 1 表 (続き	<u>(i)</u>
R1	R2	R3	R4
оснз	OCH ₃	C(CH ₃) ₃	—o-c-c, Br
осн _з	OCH ₃		—o-с-ан,
оснз	OCH ₃	C(CH ₃) ₃	0 oc
ОСН3	OCH ₃	C(CH ₃) ₃	-0-C-F-F
осн _з	OCH ₃	C(CH ₃) ₃	O CI SCH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	0=C Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-
OCH ₃	OCH ₃	C(CH ₃) ₃	
OCH ₃	OCH ₃	C(CH ₃) ₃	oc
осн _з	OCH ₃	C(CH ₃) ₃	O Br CH₃
оснз	осн3	C(CH ₃) ₃	о —о-с-ана₂

[0155]

【表135】

		第1表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-c CH2 S
OCH ₃	OCH ₃	C(CH ₃) ₃	—о-с СI СI СI СI
OCH ₃	OCH ₃	C(CH ₃) ₃	OCCC ₃
OCH ₃	OCH3	C(CH ₃) ₃	o-C
OCH ₃	OCH ₃	C(CH ₃) ₃	$-o$ - $\stackrel{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$
осн ₃	OCH3	C(CH ₃) ₃	—о-с — — — — — — — — — — — — — — — — — — —
OCH ₃	OCH3	C(CH ₃) ₃	—о-с ан=а́н —о-с с—ан
OCH ₃	OCH ₃	C(CH ₃) ₃	—о—с — с — с — с — с — с — с — с — с — с
OCH ₃	OCH ₃	C(CH ₃) ₃	—о-Ё — сі Сі Сі
осн ₃	осн ₃	С(СН3)3	О-С О-С О-С О-С О-С

		203		250
			第 1 表	(続き)
F	31	R2	R3	R4
O	CH3	OCH ₃	C(CH ₃) ₃	0= C OH
00	CH3	OCH ₃	С(СН ₃) ₃	-o-c
00	CH3	OCH3	C(CH ₃) ₃	-o-c-s
00	CH3	OCH ₃	C(CH ₃) ₃	O CI
00	CH3	OCH ₃	C(CH ₃) ₃	-o-c-s
00	CH3	OCH ₃	C(CH ₃) ₃	
00	CH ₃	OCH ₃	C(CH ₃) ₃	O CI
00	CH3	OCH ₃	C(CH ₃) ₃	-0-6-0
00	СНз	OCH ₃	C(CH ₃) ₃	0 = CI

[0157]

【表137】

	291		292
		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-(c+2)c+3
OCH ₃	OCH ₃	C(CH ₃) ₃	
OCH ₃	осн ₃	C(CH ₃) ₃	CI CI V OH ₃
OCH3	OCH ₃	C(CH3)3	-0-C-OF ₂ -0-
OCH3	OCH ₃	C(CH ₃) ₃	-0-C-_0_N
осн ₃	OCH ₃	C(CH ₃) ₃	
OCH ₃	OCH3	C(CH ₃) ₃	—O—Ç—ĆH O CH³
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-c-0-a+2
ОСН3	OCH3	C(CH3)3	-0-C-CH2-O-CI

쐀	1	Æ	/全志	* 1	

R1	R2	第 1 表 (R3	R4
осн3	OCH ₃	C(CH ₃) ₃	O CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-c-(N-N-CH² CH² CH²
осн ₃	OCH ₃	С(СН ₃) ₃	O: CH3 O: CH3 O: CH3 O: CH3
оснз	OCH3	C(CH ₃) ₃	-o-c
OCH ₃	осн _з	C(CH ₃) ₃	OCH _{3N} CH ₃ N CH ₃
OCH3	OCH ₃	CH(CH ₃) ₂	-c-(0,N
och ₃	OCH ₃	CH(CH ₃) ₂	
осн ₃	OCH ₃	CH(CH ₃) ₂	H ₃ C O N
OCH3	OCH ₃	C(CH ₃) ₃	H ₃ C O N

[0159]

【表139】

新	表	/\$E	31	ı
73.3 I	. arc	LATE	~	

R1	R2	第 1 表 (i R3	R4
осн ₃	OCH ₃	CH(CH ₃) ₂	H ₃ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N
OCH ₃	OCH ₃	C(CH ₃) ₃	O CI
осн ₃	OCH ₃	CH(CH ₃) ₂	H ₃ C O N
осн3	OCH ₃	C(CH ₃) ₃	H ₃ CON
осн3	осн ₃	C(CH ₃) ₃	H ₃ C O N
осн3	осн ₃	C(CH ₃) ₃	O CH ₃
осн ₃	осн ₃	C(CH ₃) ₃	O H ₃ C O N CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ H ₃ C O N CH ₃

[0160]

【表140】

44	•	22.2	16t:	
狐	1	表	(A)E	,3 I

R1	R2	第 1 表 (R4
OCH ₃	осн ₃	C(CH ₃) ₃	-0-C N C(CH3)3
OCH ₃	OCH ₃	СН(СН ₃) ₂	H ₃ C O N CI
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N CI
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N NO ₂
осн ₃	OCH ₃	C(CH ₃) ₃	H ₃ C N NO ₂
осн _з	OCH ₃	СН(СН ₃) ₂	O NO ₂ H ₃ C O N NO ₂
осн ₃	OCH ₃	C(CH ₃) ₃	O N NO ₂
OCH ₃	OCH ₃	СН(СН ₃) ₂	H ₃ C O N NO ₂
осн3	OCH ₃	C(CH ₃) ₃	H ₃ C NO ₂

[0161]

【表141】

第 1	表	(続き	()
-----	---	-----	-----

R1	R2	第 1 表 (R3	R4
осн ₃	осн ₃	C(CH ₃) ₃	H ₃ C NO ₂
OCH3	OCH ₃	CH(CH ₃) ₂	H ₃ C O N CF ₃
осн ₃	осн ₃	C(CH ₃) ₃	O CF ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N
осн3	осн3	C(CH ₃) ₃	O E N
осн3	OCH ₃	C(CH ₃) ₃	0 CI
осн ₃	OCH ₃	C(CH ₃) ₃	-c
осн ₃	OCH ₃	СН(СН ₃) ₂	-c -c
осн ₃	OCH ₃	C(CH ₃) ₃	O H ₃ C CH ₃

[0162]

【表142】

AA	4	-12	(絵	æ	١.
狐	1	-	[**	2	•

R1	R2	第 1 表 (R3	従き) R4
осн ₃	OCH ₃	CH(CH ₃) ₂	O H ₃ C CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃
осн _з	OCH ₃	СН(СН3)2	O CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	O C(CH ₃) 3
осн ₃	OCH3	C(CH ₃) ₃	Ö CI CI
осн ₃	OCH ₃	СН(СН ₃) ₂	O CI CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O CI
ocH ₃	OCH ₃	C(CH ₃) ₃	O N
OCH ₃	OCH ₃	C(CH ₃) ₃	O C(CH ₃) 3
OCH ₃	OCH ₃	CH(CH ₃) ₂	O C(CH ₃) 3

[0163]

【表143】

第 1 表 (続き)

R1	R2	羽 1 <i>。</i> R3	だ(統き) R4
осн ₃	осн ₃	C(CH ₃) ₃	O = C O CH3 CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ C(CH ₃) 3
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	O N CI
OCH ₃	OQH ₃	CH(CH ₃) ₂	O N CI
OCH3	осн ₃	C(CH ₃) ₃	O N CI
осн3	OCH ₃	CH(CH ₃) ₂	CI N CI
осн ₃	OCH ₃	C(CH ₃) ₃	CI ON CI
OCH3	осн3	C(CH ₃) ₃	O N CI
OCH ₃	осн ₃	C(CH ₃) ₃	O CH ₃
оснз	OCH ₃	CH(CH ₃) ₂	O CH ₃

[0164]

AAc.	-1		164		
筝	- 1	4X	(統	, T	1

R1	R2	<u> </u>	<u>炎 (税き)</u> R4
OCH ₃	осн ₃	C(CH ₃) ₃	-c(cH ₃) 3
осн ₃	оснз	C(CH ₃) ₃	O CH ₃
осн3	осн ₃	C(CH ₃) ₃	O CH ₃ CI
OCH ₃	OCH ₃	СН(СН ₃) ₂	O CH ₃ CI
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ CI
OCH ₃	OCH3	C(CH ₃) ₃	O CH3 CI
осн3	OCH ₃	C(CH ₃) ₃	O CH ₃ CH ₃ CH ₃
осн ₃	осн3	C(CH ₃) ₃	OCH3 C(CH3) 3
OCH ₃	OCH ₃	CH(CH ₃) ₂	O CH ₃ C(CH ₃) 3
OCH ₃	осн3	CH(CH ₃) ₂	0
осн ₃	OCH ₃	C(CH ₃) ₃	
осн _з	осн3	CH(CH ₃) ₂	O _ C _ S _ N
OCH ₃	осн3	C(CH ₃) ₃	O

[0165]

【表145】

		第13	そ(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	O-CH3
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	N O C(CH3) 3
осна	OCH3	C(CH ₃) ₃	-c-NO ₂
осна	OCH ₃	CH(CH ₃) ₂	O -C -C -NO ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O - NO ₂
осна	OCH ₃	C(CH ₃) ₃	-c-N _{NO2}
OCH ₃	OCH3	C(CH ₃) ₃	-ÜNNO ₂
осн3	осн ₃	С(СН ₃₎₃	-CF ₃
осн ₃	оснз	CH(CH ₃) ₂	O CF3

【0166】 【表146】

30	9	AAr 1	310
54			長(続き)
R1	R2	R3	R4
OCH ₃	OCH3	C(CH ₃) ₃	-O-C
оснз	OCH ₃	C(CH3)3	H _s CON F
OCH3	OCH ₃	C(CH ₃) ₃	H ₃ C N Br
OCH ₃	OCH ₃	C(CH ₃) ₃	-O-Ö-N-F
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-0-N F
OCH ₃	OCH3	C(CH ₃) ₃	O H,C O H,C OH,
осн ₃	OCH3	С(СН3)3	H ₃ C ON CF ₃
осн ₃	OCH ₃	С(СН ₃) ₃	-0-C
осн ₃	оснз	C(CH ₃) ₃	-0-C0-N

[0167]

OCH₃

OCH₃

【表147】

 $C(CH_3)_3$

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-_N
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₃	O CH ₃ O-C-(OH ₂) ₃ -N CH ₃
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O-C-(OH2)3-N O-CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH3 OC-(CH2)3-N CH3
OCH ₃	оснз	C(CH ₃) ₃	-0-C-(CH ₂) ₃ -0-CI

[0168]

【表148】

第 2 表

			· · · · · · · · · · · · · · · · · · ·
R1	R2	R3	n
осн _з	OCH ₃	CH ₃	0
OCH ₃	OCH3	CH ₂ CH ₃	0
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	0
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	2
осн3	OCH3	CH(CH ₃) ₂	0
OCH3	OCH ₃	CH(CH ₃) ₂	2
OCH3	OCH3	CH(CH ₃) ₂	4
OCH3	OCH3	CH(CH ₃) ₂	6
оснз	OCH3	C(CH ₃) ₃	0
осн3	OCH3	C(CH3)3	1
OCH3	OCH3	C(CH ₃) ₃	2
OCH3	OCH3	C(CH ₃) ₃	3
осн3	OCH ₃	C(CH ₃) ₃	4
OCH ₃	OCH ₃	C(CH ₃) ₃	5
осн3	OCH ₃	CH ₂ CH ₂ CH ₃	6
осн3	OCH3	CH2CH2CH3	0
OCH3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	1
осн3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	2
осн3	OCH3	CH2CH2CH3	4
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	0
осн3	осна	CH ₂ CH(CH ₃) ₂	2
ОСН3	OCH3	CH(CH ₃)CH ₂ CH ₃	2
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	0

[0169]

【表149】

316

R1	R2	R3	結合位置
OCH3	OCH ₃	CH ₃	р
оснз	OCH ₃	CH₂CH₃	ρ
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	m
OCH3	осн3	СН ₂ СН ₂ СН ₃	р
OCH ₃	OCH ₃	CH(CH ₃) ₂	o
OCH3	OCH ₃	CH(CH ₃) ₂	m
OCH ₃	OCH ₃	CH(CH ₃) ₂	р
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	m
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	р
осн3	OCH3	CH(CH ₃)CH ₂ CH ₃	0
OCH3	OCH3	CH(CH ₃)CH ₂ CH ₃	m
OCH3	OCH ₃	CH(CH3)CH2CH3	р
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	0
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	m
OCH3	OCH3	CH ₂ CH(CH ₃) ₂	p
OCH ₃	OCH ₃	C(CH ₃) ₃	0
OCH ₃	OCH3	C(CH3)3	m
OCH ₃	OCH3	C(CH ₃) ₃	p

【0170】製法aの例として、例えば、2- (4, 6 -ジメトキシ-2-ピリミジニルチオ) -3-メチルブ タノールと塩化チオニルとを用いると、反応式は下記の *

*ように表される。

【化29】

【0171】製法bの例として、例えば、2-(4,6 ※と、反応式は下記のように表される。 -ジメトキシ-2-ピリミジニルチオ) -3-メチルブ

【化30】

タノールと4-クロロフェニルクロライドとを用いる ※

$$H_3C - O$$
 $H_3C - O$
 CH
 $S - CH - CH_2 - OH + CI - C - CI$
 $H_3C - O$

【0172】製法cの例として、例えば、2- (4, 6 *に表される。 ージメトキシー2ーピリミジニルチオ) -3-メチルブ 【化31】 タノールと無水酢酸とを用いると、反応式は下記のよう *

【0173】製法 dの例として、例えば、1ークロロー ※式は下記のように表される。 2-(4,6-ジメトキシ-2-ピリミジニルチオ)-【化32】 3, 3-ジメチルブタンとチオ酢酸とを用いると、反応 ※

$$\begin{array}{c}
 & C H_3 \\
 & \downarrow \\
 & \downarrow$$

***** 50

【0174】上記製法a、b及びcに於て、原料の式 (II) の化合物は、前記R'、R'及びR'の定義に 基づいたものを示し、好ましくは、前記R'、R'およ びR³のそれぞれ好ましい定義に基づいたものを示す。 式(II)の化合物は、特願平4年194529号に記 載されている方法に準じ合成することができる。式(Ⅰ 1) の化合物の例として、下記の化合物をあげることが できる。2-(4,6-ジメトキシ-2-ピリミジニル チオ) -3-メチルブタノール、2-(4,6-ジメト キシ-2-ピリミジニルチオ) -3, 3-ジメチルブタ ノール、2-(4,6-ジメトキシ-2-ピリミジニル チオ) ブタノール、2-(4,6-ジメトキシ-2-ピ リミジニルチオ) ペンタノール、2- (4, 6-ジメト キシ-2-ピリミジニルチオ) -3-メチルペンタノー ル、2-(4,6-ジメトキシ-2-ピリミジニルチ オ) -4-メチルペンタノール及び2-(4,6-ジメ トキシー2-ピリミジニルチオ) -2-シクロペンチル エタノール。

【0175】上記製法 a に於て、使用されるハロゲン化 剤の例として、下記の化合物をあげることができる。メタンスルホニルクロライド、塩化チオニル及び臭化チオニル。上記製法 b に於て、原料の式(III)の酸塩化物は、前記 R⁶ および R⁷ の定義に基づいたものを示し、R⁶ は好ましくは、前記 R⁶ の好ましい定義に基づいたものを示し、R⁷ は、好ましくは、塩素又は臭素を示す。式(III)の酸塩化物の例として、下記の化合物をあげることができる。

ベンゾイルクロライド又はブロマイド、ケイヒ酸クロライド又はプロマイド、プロピオン酸クロライド又はブロマイド、ニコチン酸クロライド又はブロマイド、pークロロベンゾイルクロライド又はブロマイド、クロロ酢酸クロライド又はブロマイド、4ークロロー2ーメチルフェノキシ酢酸クロライド、3ーフェニルプロピオン酸クロライド。

*【0176】上記製法 c に於て、原料の式 (IV)の酸無水物は、前記R⁶の定義に基づいたものを示し、R⁶ は好ましくは、前記R⁶の好ましい定義に基づいたもの 20 を示す。式 (IV)の酸無水物の例として、下記の化合物をあげることができる。無水酢酸、無水プロピオン酸、酢酸蟻酸無水物。

【0177】上記製法 d に於て、原料の式 (V) の化合物は、前記R¹、R²、R³及びR¹の定義に基づいたものを示し、R¹、R²、R³は好ましくは、前記R¹、R²、R³の好ましい定義に基づいたものを示す。式 (V) の化合物は、前記製法 a により合成される本発明化合物である。式 (V) の化合物の例として、下記の化合物をあげることができる。1ークロロー2ー30 (4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3ーメチルーブタン、1ーブロモー2ー(4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3ーメチルーブタン、1ークロロー2ー(4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3,3ージメチルーブタン、1ーブロモー2ー(4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3,3ージメチルーブタン、1ーブロモー2ー(4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3,3ージメチルーブタン。

【0178】上記製法 d に於て、原料の式 (V I) の化合物は、前記R⁶の定義に基づいたものを示し、R⁶は40 好ましくは、前記R⁶の好ましい定義に基づいたものを示す。式 (V I) の化合物の例として、下記の化合物をあげることができる。チオ酢酸、チオ安息香酸、チオプロピオン酸。

【0179】上記製法 a の実施に際しては、適当な希釈剤として、すべての不活性な有機溶媒を挙げることができる。斯かる希釈剤の例としては、脂肪族、環脂肪族および芳香族炭化水素類(場合によっては塩素化されてもよい)例えば、ペンタン、ヘキサン、シクロヘキサン、石油エーテル、リグロイン、ベンゼン、トルエン、キシレン、ジクロロメタン、クロロホルム、四塩化炭素、

1, 2-ジクロロエタン、エチレンクロライド、クロル ベンゼン、ジクロロベンゼン:その他、エーテル類例え ば、ジエチルエーテル、メチルエチルエーテル、ジイソ プロピルエーテル、ジブチルエーテル、ジオキサン、ジ メトキシエタン (DME) 、テトラヒドロフラン (TH F)、ジエチレングリコールジメチルエーテル(DG M) ; その他、ケトン類、例えばアセトン、メチルエチ ルケトン (MEK)、メチルイソプロピルケトン、メチ ルイソブチルケトン (MIBK) ; その他、ニトリル類 例えば、アセトニトリル、プロピオニトリル、アクリロ ニトリル;その他、エステル類例えば、酢酸エチル、酢 酸アミル;その他酸アミド類例えば、ジメチルホルムア ミド (DMF) 、ジメチルアセトアミド (DMA) 、N -メチルピロリドン、1,3-ジメチル-2-イミダゾ リジノン、ヘキサメチルフォスフォリックトリアミド (HMPA) ;その他、スルホン、スルホキシド類例え ば、ジメチルスルホキシド (DMSO)、スルホラン; 等をあげることができる。

【0180】製法aは、実質的に広い温度範囲内におい て実施することができる。一般には、約-20~約12 0℃、好ましくは、約0~約60℃の間で実施できる。 また、該反応は常圧の下で行うことが望ましいが、加圧 または減圧下で操作することもできる。製法aを実施す るにあたっては、例えば、式 (II) の化合物1モルに 対し、希釈剤例えばクロロホルム中、1モル量乃至1. 2 モル量のハロゲン化剤を反応させることによって目的 化合物を得ることができる。

【0181】上記製法bの実施に際しては、適当な希釈 剤として、すべての不活性な有機溶媒を挙げることがで きる。斯かる希釈剤の例としては、脂肪族、環脂肪族お よび芳香族炭化水素類 (場合によっては塩素化されても よい) 例えば、ペンタン、ヘキサン、シクロヘキサン、 石油エーテル、リグロイン、ベンゼン、トルエン、キシ レン、ジクロロメタン、クロロホルム、四塩化炭素、 1, 2-ジクロロエタン、エチレンクロライド、クロル ベンゼン、ジクロロベンゼン;その他、エーテル類例え ば、ジエチルエーテル、メチルエチルエーテル、ジイソ プロピルエーテル、ジブチルエーテル、ジオキサン、ジ メトキシエタン (DME) 、テトラヒドロフラン (TH F)、ジエチレングリコールジメチルエーテル (DG) M) ; その他、ケトン類例えばアセトン、メチルエチル ケトン (MEK) 、メチルイソプロピルケトン、メチル イソブチルケトン (MIBK) ; その他、ニトリル類例 えば、アセトニトリル、プロピオニトリル、アクリロニ トリル;その他、エステル類例えば、酢酸エチル、酢酸 アミル;その他、酸アミド類例えば、ジメチルホルムア ミド (DMF) 、ジメチルアセトアミド (DMA) 、N ーメチルピロリドン、1,3-ジメチル-2-イミダゾ リジノン、ヘキサメチルフォスフォリックトリアミド (HMPA) ; その他、スルホン、スルホキシド類例え

ば、ジメチルスルホキシド (DMSO)、スルホラン: その他、および塩基例えば、ピリジン等をあげることが できる。

【0182】製法bは、酸結合剤の存在下で行うことが でき、斯かる酸結合剤としては、無機塩基としてアルカ リ金属の水酸化物、炭酸塩、重炭酸塩およびアルコラー ト等例えば、炭酸水素ナトリウム、炭酸水素カリウム、 炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸 化ナトリウム、水酸化カリウム、水酸化カルシウムを例 示することができる。無機アルカリ金属アミド類、例え 10 ば、リチウムアミド、ナトリウムアミド、カリウムアミ ド等を挙げることができる。有機塩基として第3級アミ ン類、ジアルキルアミノアニリン類及びピリジン類、例 えば、トリエチルアミン、1,1,4,4-テトラメチ ルエチレンジアミン (TMEDA)、N, N-ジメチル アニリン、N, N-ジエチルアニリン、ピリジン、4-ジメチルアミノピリジン (DMAP)、1,4-ジアザ ビシクロ [2, 2, 2] オクタン (DABCO) 及び 1,8-ジアザビシクロ[5,4,0]ウンデクー7ー 20 エン (DBU) 等を挙げることができる。有機リチウム 化合物、例えば、メチルリチウム、n-ブチルリチウ ム、secーブチルリチウム、tertーブチルリチウ ム、フェニルリチウム、ジメチルカッパーリチウム、リ チウムジイソプロピルアミド、リチウムシクロヘキシル イソプロピルアミド、リチウムジシクロヘキシルアミ ド、nーブチルリチウム・DABCO、nーブチルリチ ウム・DBU、nーブチルリチウム・TMEDA等を挙 げることができる。

【0183】製法bは、実質的に広い温度範囲内におい て実施することができる。一般には、約-40~約10 0℃、好ましくは、約0~約60℃の間で実施できる。 また、該反応は常圧の下で行うことが望ましいが、加圧 または減圧下で操作することもできる。製法bを実施す るにあたっては、例えば、式 (II) の化合物1モルに 対し、例えばピリジン中、1モル量乃至1.2モル量の 式(III)の酸塩化物反応させることによって目的化 合物を得ることができる。

【0184】上記製法cの実施に際しては、適当な希釈 剤として、すべての不活性な有機溶媒を挙げることがで きる。斯かる希釈剤の例としては、脂肪族、環脂肪族お よび芳香族炭化水素類(場合によっては塩素化されても よい) 例えば、ペンタン、ヘキサン、シクロヘキサン、 石油エーテル、リグロイン、ベンゼン、トルエン、キシ レン、ジクロロメタン、クロロホルム、四塩化炭素、 1, 2-ジクロロエタン、エチレンクロライド、クロル ベンゼン、ジクロロベンゼン;その他、エーテル類例え ば、ジエチルエーテル、メチルエチルエーテル、ジイソ プロピルエーテル、ジブチルエーテル、ジオキサン、ジ メトキシエタン (DME) 、テトラヒドロフラン (TH 50 F)、ジエチレングリコールジメチルエーテル (DG

324

M) ; その他、ケトン類例えばアセトン、メチルエチル ケトン (MEK) 、メチルイソプロピルケトン、メチル イソブチルケトン (MIBK); その他、ニトリル類例 えば、アセトニトリル、プロピオニトリル、アクリロニ トリル;その他、エステル類例えば、酢酸エチル、酢酸 アミル;その他、酸アミド類例えば、ジメチルホルムア ミド (DMF) 、ジメチルアセトアミド (DMA) 、N -メチルピロリドン、1,3-ジメチル-2-イミダゾ リジノン、ヘキサメチルフォスフォリックトリアミド (HMPA) ; その他、スルホン、スルホキシド類例え ば、ジメチルスルホキシド (DMSO)、スルホラン; その他、および塩基例えば、ピリジン等をあげることが できる。

【0185】製法 c は、酸結合剤の存在下で行うことが でき、斯かる酸結合剤としては、無機塩基としてアルカ リ金属の水酸化物、炭酸塩、重炭酸塩およびアルコラー ト等例えば、炭酸水素ナトリウム、炭酸水素カリウム、 炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸 化ナトリウム、水酸化カリウム、水酸化カルシウムを例 示することができる。無機アルカリ金属アミド類、例え ば、リチウムアミド、ナトリウムアミド、カリウムアミ ド等を挙げることができる。有機塩基として第3級アミ ン類、ジアルキルアミノアニリン類及びピリジン類、例 えば、トリエチルアミン、1,1,4,4ーテトラメチ ルエチレンジアミン (TMEDA)、N, N-ジメチル アニリン、N, N-ジエチルアニリン、ピリジン、4-ジメチルアミノピリジン (DMAP)、1,4-ジアザ ビシクロ [2, 2, 2] オクタン (DABCO) 及び 1, 8-ジアザビシクロ [5, 4, 0] ウンデクー7-エン (DBU) 等を挙げることができる。有機リチウム 化合物、例えば、メチルリチウム、n-ブチルリチウ ム、secーブチルリチウム、tertーブチルリチウ ム、フェニルリチウム、ジメチルカッパーリチウム、リ チウムジイソプロピルアミド、リチウムシクロヘキシル イソプロピルアミド、リチウムジシクロヘキシルアミ ド、n-ブチルリチウム・DABCO、n-ブチルリチ ウム・DBU、nーブチルリチウム・TMEDA等を挙 げることができる。

【0186】製法 c は、実質的に広い温度範囲内におい て実施することができる。一般には、約-40~約10 0℃、好ましくは、約0~約60℃の間で実施できる。 また、該反応は常圧の下で行うことが望ましいが、加圧 または減圧下で操作することもできる。製法cを実施す るにあたっては、例えば、式 (II) の化合物1モルに 対し、例えばピリジン中、1モル量乃至1.2モル量の 式(IV)の酸無水物を反応させることによって目的化 合物を得ることができる。

【0187】上記製法dの実施に際しては、適当な希釈 剤として、すべての不活性な有機溶媒を挙げることがで きる。斯かる希釈剤の例としては、脂肪族、環脂肪族お

よび芳香族炭化水素類(場合によっては塩素化されても よい) 例えば、ペンタン、ヘキサン、シクロヘキサン、 石油エーテル、リグロイン、ベンゼン、トルエン、キシ レン、ジクロロメタン、クロロホルム、四塩化炭素、 1, 2-ジクロロエタン、クロルベンゼン、ジクロロベ ンゼン;その他、エーテル類例えば、ジエチルエーテ ル、メチルエチルエーテル、ジイソプロピルエーテル、 ジブチルエーテル、ジオキサン、ジメトキシエタン (D ME)、テトラヒドロフラン(THF)、ジエチレング リコールジメチルエーテル (DGM) ; その他、ケトン 類例えばアセトン、メチルエチルケトン (MEK)、メ チルイソプロピルケトン、メチルイソブチルケトン (M IBK);その他、ニトリル類例えば、アセトニトリ ル、プロピオニトリル、アクリロニトリル;その他、エ ステル類例えば、酢酸エチル、酢酸アミル;その他、酸 アミド類例えば、ジメチルホルムアミド (DMF) 、ジ メチルアセトアミド (DMA)、N-メチルピロリド ン、1,3ージメチルー2ーイミダゾリジノン、ヘキサ メチルフォスフォリックトリアミド (HMPA);その 他、スルホン、スルホキシド類例えば、ジメチルスルホ キシド (DMSO) 、スルホラン; その他、および塩基 例えば、ピリジン等をあげることができる。

【0188】製法は、酸結合剤の存在下で行うことが でき、斯かる酸結合剤としては、無機塩基としてアルカ リ金属の水酸化物、炭酸塩、重炭酸塩およびアルコラー ト等例えば、炭酸水素ナトリウム、炭酸水素カリウム、 炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸 化ナトリウム、水酸化カリウム、水酸化カルシウムを例 示することができる。無機アルカリ金属アミド類、例え ば、リチウムアミド、ナトリウムアミド、カリウムアミ ド等を挙げることができる。有機塩基として第3級アミ ン類、ジアルキルアミノアニリン類及びピリジン類、例 えば、トリエチルアミン、1,1,4,4-テトラメチ ルエチレンジアミン (TMEDA)、N, N-ジメチル アニリン、N, N-ジエチルアニリン、ピリジン、4-ジメチルアミノピリジン (DMAP) 、1, 4-ジアザ ビシクロ [2, 2, 2] オクタン (DABCO) 及び 1,8-ジアザビシクロ[5,4,0]ウンデクー7-エン (DBU) 等を挙げることができる。有機リチウム 40 化合物、例えば、メチルリチウム、n-ブチルリチウ ム、secーブチルリチウム、tertーブチルリチウ ム、フェニルリチウム、ジメチルカッパーリチウム、リ チウムジイソプロピルアミド、リチウムシクロヘキシル イソプロピルアミド、リチウムジシクロヘキシルアミ ド、n-ブチルリチウム・DABCO、n-ブチルリチ ウム・DBU、nープチルリチウム・TMEDA等を挙 げることができる。

【0189】製法dは、実質的に広い温度範囲内におい て実施することができる。一般には、約-10~約12 0℃、好ましくは、約0~約50℃の間で実施できる。

20

30

326

また、該反応は常圧の下で行うことが望ましいが、加圧 または減圧下で操作することもできる。製法 d を実施す るにあたっては、例えば、式 (V) の化合物 1 モルに対 し、希釈剤例えばジメチルホルムアミド中、1 モル量乃 至1. 2 モル量の酸結合剤例えば水素化ナトリウム、1 モル量乃至1. 2 モル量の式 (VI) の化合物を反応さ せることによって目的化合物を得ることができる。

【0190】本発明の活性化合物は、除草剤として使用することができる。雑草とは広義には、望ましくない場所に生育するすべての植物を意味する。本発明化合物は、使用濃度によって非選択性、又は選択性除草剤として作用する。本発明の活性化合物は、例えば下記の植物との間で使用できる。

【0191】双子葉雑草の属:カラシ(Sinapis)、マメグンバイナズナ(Lepidium)、ヤエムグラキヌタソウ(Galium)、ハコベ(Stellaria)、アカザ・アリタソウ(Chenopodium)、イラクサ(Urtica)、ハンゴンソウ・ノボロギク・キオン(Senecio)、ヒユ・ハゲイトウ(Amaranthus)、スベリヒユ・マツバボタン(Portulaca)、オナモミ(Xanthium)、アサガオ(Ipomoea)、ミチヤナギ(Polygonum)、ブタクサ(Ambrosia)、ノアザミ・フジアザミ(Cirsium)、ノゲシ(Sonchus)、ナス・ジャガイモ(Solanum)、イヌガラシ(Rorippa)、オドリコソウ(Lamium)、クワガタソウ・イヌノフグリ(Veronica)、チョウセンアサガオ(Datura)、スミレパンジー(Viola)、チシマオドロ(Galeopsis)、ケシ(Papaver)、ヤグルマギク(Centaurea)、ハキダメギク(Galinsoga)、キカシグサ(Rotala)、アゼナ(Lindernia)等々。

双子葉栽培植物の属:ワタ(Gossypium)、ダイズ(Glyci ne)、フダンソウ・サトウダイコン(Beta)、ニンジン(Daucus)、インゲンマメ・アオイマダ(Phaseolus)、エンドウ(Pisum)、ナス・ジャガイモ(Solanum)、アマ(Lin um)、サツマイモ・アサガオ(Ipomoe)、ソラマメ・ナンテンハギ(Vicia)、タバコ(Nicotiana)、トマト(Lycope rsicon)、ナンキンマメ(Arachis)、アブラナ・ハクサイ・カブラ・キャベツ(Brassica)、アキノノゲシ(Lactu ca)、キュウリ・メロン(Cucumis)、カボチャ(Cucurbi ta)等々。

【0192】単子葉雑草の属:ヒエ(Echinochloa)、エノコロ・アワ(Setaria)、キビ(Panicum)、メヒシバ(Digitaria)、アワガエリ・チモシー(Phleum)、イチゴツナギ・スズメノカタビラ(Poa)、ウシノケグサ・トボシガラ(Festuca)、オヒシバ・シコクビエ(Eleusine)、ドクムギ(Lolium)、キツネガヤ・イヌムギ(Bromus)、カラスムギ・オートムギ(エンバク)(Avena)、カヤツリグサ・パピルス・シチトウイ・ハマスゲ(Cyperus)、モロコシ(Sorghum)、カモジグザ(Agropyron)、コナギ(Monochoria)、テンツキ(Fimbristylis)、オモダカ・クワイ(Sagittaria)、ハリイ・クログワイ(Eleocharis)、ホタルイ・ウキヤグラ・フトイ(Scirpus)、スズメノヒエ(P

aspalum)、カモノハシ(Ischaemum) 、ヌカボ(Agrostis)、スズメノテッポウ(Alopecurus)、ギョウギシバ(Cynodon) 等々。

単子葉栽培植物の属:イネ(Oryza)、トウモロコシ・ホップコーン(Zea)、コムギ(Triticum)、オオムギ(Horde um)、カラスムギ・オートムギ (エンバク) (Avena)、ライムギ(Secale)、モロコシ(Sorghum)、キビ(Panicum)、サトウキビ・ワセオバナ(Saccharum)、パイナップル(Ananas)、アスパラガス(Asparagus)、ネギ・ニラ (Allium)等々。

【0193】本発明化合物の使用は、上記の植物に限定されることはなく、他の植物に対しても同様に適用され得る。また、使用濃度によって、活性化合物は、雑草を非選択的に防除でき、例えば、工場等の産業用地、鉄道軌道、道路そして植林地並びに非植林地等に於いて使用できる。更に、活性化合物は、多年性植物栽培において、雑草防除に使用でき、例えば、植林、観賞用植林、果樹園、ブドウ園、カンキツ果樹園、ナッツ果樹園、バナナ栽培場、コーヒー栽培場、茶栽培場、ゴム栽培場、ギネアアブラヤシ栽培場、ココア栽培場、小果樹園及びホップ栽培地に適用でき、また一年性植物栽培に於いて、選択的雑草防除のために、適用できる。

【0194】本発明の活性化合物は通常の製剤形態にす

ることができる。そして斯かる形態としては、液剤、水和剤、エマルジョン、懸濁剤、粉剤、泡沫剤、ペースト、粒剤、錠剤、エアゾール、活性化合物浸潤ー天然及び合成物、マイクロカプセル、種子用被覆剤、燃焼装置を備えた製剤(例えば燃焼装置としては、くん蒸及び煙霧カートリッジ、かん並びにコイル)、そしてULV [コールドミスト(coldmist)、ウオームミスト(warmmist)]を挙げることができる。これらの製剤は、公知の方法で製造することができる。斯かる方法は、例えば、活性化合物を、展開剤、即ち、液体希釈剤;液化ガス希釈剤;固体希釈剤又は担体、場合によっては界面活性剤、即ち、乳化剤及び/又は分散剤及び/又は泡沫形成剤を用いて、混合することによって行なわれる。

【0195】展開剤として水を用いる場合には、例えば、有機溶媒はまた補助溶媒として使用されることができる。液体希釈剤又は担体としては、概して、芳香族炭40 化水素類 (例えば、キシレン、トルエン、アルキルナフタレン等)、クロル化芳香族又はクロル化脂肪族炭化水素類 (例えば、クロロベンゼン類、塩化エチレン類、塩化メチレン等)、脂肪族炭化水素類 [例えば、シクロヘキサン等、パラフィン類 (例えば鉱油留分等)〕、アルコール類 (例えば、ブタノール、グリコール及びそれらのエーテル、エステル等)、ケトン類 (例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン又はシクロヘキサノン等)、強極性溶媒 (例えば、ジメチルホルムアミド、ジメチルスルホキシド等)そして水も挙50 げることができる。液化ガス希釈剤又は担体は、常温常

圧でガスであり、その例としては、例えば、ブタン、プロパン、窒素ガス、二酸化炭素、そしてハロゲン化炭化水素類のようなエアゾール噴射剤を挙げることができる。固体希釈剤としては、土壌天然鉱物(例えば、カオリン、クレー、タルク、チョーク、石英、アタパルガイド、モンモリロナイト又は珪藻土等)、土壌合成鉱物(例えば、高分散ケイ酸、アルミナ、ケイ酸塩等)を挙げることができる。

【0196】粒剤のための固体担体としては、粉砕且つ 分別された岩石(例えば、方解石、大理石、軽石、海泡 石、白雲石等)、無機及び有機物粉の合成粒、そして有 機物質(例えば、おがくず、ココやしの実のから、とう もろこしの穂軸そしてタバコの茎等)の細粒体を挙げる ことができる。乳化剤及び/又は泡沫剤としては、非イ オン及び陰イオン乳化剤〔例えば、ポリオキシエチレン 脂肪酸エステル、ポリオキシエチレン脂肪酸アルコール エーテル (例えば、アルキルアリールポリグリコールエ ーテル、アルキルスルホン酸塩、アルキル硫酸塩、アリ ールスルホン酸塩等)]、アルブミン加水分解生成物を 挙げることができる。分散剤としては、例えば、リグニ ンサルファイト廃液、そしてメチルセルロースを包含す る。固着剤も、製剤(粉剤、粒剤、乳剤)に使用するこ とができ、斯かる固着剤としては、カルボキシメチルセ ルロースそして天然及び合成ポリマー(例えば、アラビ アゴム、ポリビニルアルコールそしてポリビニルアセテ ート等)を挙げることができる。着色剤を使用すること もでき、斯かる着色剤としては、無機顔料 (例えば酸化 鉄、酸化チタンそしてプルシアンブルー)、そしてアリ ザリン染料、アゾ染料又は金属フタロシアニン染料のよ うな有機染料そして更に、鉄、マンガン、ボロン、銅、 コバルト、モリブデン、亜鉛のそれらの塩のような微量 要素を挙げることができる。

【0197】該製剤は、一般には、前記活性成分を0. 1~95重量%、好ましくは0.5~90重量%含有することができる。本発明の活性化合物はそれ自体で、又はそれらの製剤形態で、雑草防除のために、使用でき、また公知除草剤との混合剤としても、使用でき、斯る混 *

* 合剤は、最終的製剤形態又はタンクミックスの双方を可 能にしている。混合剤としての可能な組み合わせとして は、例えば、下記の公知除草剤を例示できる。禾穀類栽 培に於ける雑草防除に対して、4-アミノー6-(1, 1-ジメチルエチル) -3-エチルチオー1、2、4-トリアジン-5 (4H) -オン、1-アミノ-6-エチ ルチオ-3-(2,2-ジメチルプロピル)-1,3,5-トリアジン-2, 4 (1H, 3H) -ジオン、又は N- (2-ベンゾチアゾリル) -N, N' -ジメチルウ 10 レア等々; さとうきび栽培に於ける雑草防除に対して、 4-アミノ-3-メチル-6-フェニル-1, 2, 4-トリアジン-5(4H)-オン等々;大豆栽培に於ける 雑草防除に対して、4-アミノー6-(1, 1-ジメチ ルエチル) -3-メチルチオ-1, 2, 4-トリアジン -5 (4H) -オン等々。驚くべきことに、本発明化合 物のいくつかの混合剤はまた、相乗効果を現わす。

【0198】本発明の活性化合物を使用する場合、そのまま直接使用するか、又は散布用調製液、乳剤、懸濁剤、粉剤、ペーストそして粒剤のような製剤形態で使用するか、又は更に希釈して調製された使用形態で使用することができる。活性化合物は、液剤散布(watering)、噴霧(spraying atomising)、散粒等で使用することができる。本発明活性化合物は、植物の発芽前及び発芽後のいずれにも、使用することができる。また、それらは播種前に、土壌中に取り込まれることもできる。活性化合物の濃度は、実質範囲内でかえることができる。それは、望むべき効果の性質によって、基本的に異なる。除草剤として使用する場合、使用濃度としては、例えば、1ヘクタール当り、活性化合物として、約0.001~約10kg、好ましくは約0.01~約5kgを例示できる。

【0199】次に本発明化合物の製造及び用途を下記の 実施例により、具体的に示すが、本発明はこれのみに限 定されるべきものではない。

【実施例】

[合成例1]

【化33】

$$H_3C - O$$
 $C H_3$
 $C H_3$

2- (4, 6-ジメトキシ-2-ピリミジニルチオ) - 3-メチルブタノール (5.0g) をクロロホルム (3 0ml) に溶かし、室温で塩化チオニル (2.5g) を滴下する、滴下終了後40~50℃に1時間加温し、再び室温へ戻し溶媒を減圧留去する。得られた油状物を酢酸エチルに溶かし、水、重曹水、水の順で洗浄し、無水硫 ※50

※酸ナトリウムで乾燥する、有機層を減圧留去し、1-クロロ-2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3-メチルーブタン(4.5g)を得た。

n₀²⁰1. 5178

【0200】〔合成例2〕

【化34】

2-(4.6-ジメトキシ-2-ピリミジニルチオ)-3-メチル-1-ブタノール(1.0g)をピリジン (4ml) に溶解し、室温で無水酢酸 (4ml) を滴下す る。3時間攪拌した後、反応液を氷水中に注ぎ酢酸エチ ルで抽出し、1規定塩酸水、水の順で洗浄する。無水硫 酸ナトリウムで乾燥後、減圧に溶媒を留去し、得られた 油状物をシリカゲルカラムクロマトグラフィーで精製す *

*ると、2-(4.6-ジメトキシ-2-ピリミジニルチ $n_0^{20}1.49$ 10 得た。

74

【0201】〔合成例3〕 【化35】

チオ酢酸(1.1g)のジメチルホルムアミド(30m 1) 溶液に炭酸カリウム (2.1g) を室温で加える。 1時間攪拌後、1-クロロ-2-(4,6-ジメトキシ -2-ピリミジニルチオ)-3,3-ジメチルブタン (2.1g) のジメチルホルムアミド溶液を室温を保ち ながら滴下する。滴下後、8時間攪拌し反応液に水を加 え、酢酸エチルで抽出する。無水硫酸ナトリウムで乾燥 後、減圧下に溶媒を留去し得られた油状物をシリカゲル ※

※クロマトグラフィーで精製すると、2-(4,6-ジメ トキシー2ーピリミジニルチオ) -3,3-ジメチルー 1- (アセチルチオ) ブタン (1.5g) を得た。 $n_0^{20}1.5430$

【0202】下記に、上記合成例1~3と同様にして合 成した化合物を、合成例1~3で合成した化合物と共に 記す。

化合物番号1:1-クロロ-2-(4,6-ジメトキシ-2-ピリミジニルチオ

) -3-メチルブタン

 $n_0^{20}1.5178$

化合物番号2:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3-メチ

ルー1-ブタノール 酢酸 エステル $n_{D}^{20}1.4974$

化合物番号3:1-クロロー2-(4,6-ジメトキシー2-ピリミジニルチオ

) ブタン mp. 68~70.5℃

化合物番号4:2-(4,6-ジメトキシ-2-ピリミジニルチオ)ブタノール 酢酸 エステル $n_0^{20}1.5138$

化合物番号5:2-(4,6-ジメトキシ-2-ピリミジニルチオ)ブタノール p-クロロ安息香酸 エステル n_p²⁰1. 5628

化合物番号6:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-

ジメチルブタノール 酢酸 エステル $n_{\rm D}^{20}1.5156$

化合物番号7:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール n-プロピオン酸 エステル

 $n_0^{20}1.5060$

化合物番号8:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-

ジメチルブタノール n-酪酸 エステル noⁿ1.5043

化合物番号9:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール シクロプロパンカルボン酸 エステル

n₀²⁰1. 5222

化合物番号10:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

332

-ジメチルブタノール 安息香酸 エステル

 $n_{D}^{20}1.5520$

[0203]

化合物番号11:2-(4,6-i)メトキシ-2-iリミジニルチオ) -4-iチルペンタノール 酢酸 エステル $n_0^{20}1.5112$

化合物番号12:3-シクロヘキシル-2-(4,6-ジメトキシ-2-ピリミジニルチオ)プロパノール n-プロピオン酸 エステル

 $n_0^{20}1.5153$

化合物番号13:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3-iェニルブタノール 酢酸 エステル $n_0^{20}1.5445$

化合物番号14:2-(4,6-i)メトキシ-2-iリミジニルチオ) -3-iチルブタノール 吉草酸 エステル n_p 1.4807

化合物番号15:2-(4,6-i)メトキシ-2-iリミジニルチオ) -3-iチルブタノール オクタン酸 エステル $n_0^{20}1.4930$

化合物番号16:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3-iチルブタノール ラウリン酸 エステル n_0 ²⁰1.4825

化合物番号17:2-(4,6-i) ルージメトキシー2-i リミジニルチオ) -3-i チルブタノール ミリスチン酸 エステル

 $n_0^{20}1.4923$

化合物番号18:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3-メ チルブタノール p-メチル安息香酸 エステル

 $n_0^{20}1.5576$

化合物番号19:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3-メチルブタノール ピバリン酸 エステル n_0 $^{20}1.4858$

化合物番号20:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3-iチルブタノール p-t e r t -iチル安息香酸 エステル

 $n_0^{20}1.5437$

[0204]

化合物番号21:1-クロロ-2-(4, 6-ジメトキシ-2-ピリミジニルチオ) -3, 3-ジメチルブタン n_{D} ²⁰1.5334

化合物番号 22:2-(4,6-i) メトキシー 2-i リミジニルチオ) -3,3 -ジメチルブタノール + e + (1-i) + ルブタル + (1-i

 $n_0^{20}1.4868$

化合物番号 23:2-(4,6-i) メトキシー 2-i リミジニルチオ) -3,3 -ジメチルブタノール チオ酢酸 エステル

 $n_{D}^{20}1.5430$

化合物番号24:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 吉草酸 エステル

 $n_0^{20}1.4819$

化合物番号25:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール p-クロロ安息香酸 エステル

 $n_0^{20}1.5229$

化合物番号26:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール α-クロロフェニル酢酸 エステル

 $n_0^{20}1.5481$

化合物番号27:2-(4,6-ジメトキシ-2-ピリミジニルチオ) -3-メ チルペンタノール 酢酸 エステル n_0 *1.5168

化合物番号28:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール ビニル酢酸 エステル

n₀²⁰1. 5079

化合物番号29:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 2-チオフェンカルボン酸 エステル

n₀²⁰1. 5548

化合物番号30:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 3-クロロプロピオン酸 エステル

 $n_0^{20}1.5006$

[0205]

化合物番号31:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール 3-ブロモプロピオン酸 エステル n_0 *1.5052

化合物番号32:2-(4,6-i) パーション・ 2-i パーション・ 3-i アーション・ 3-i アーション・

 $n_{p}^{\infty}1.5054$

化合物番号33:2-(4,6-i) ルトキシ-2-i リミジニルチオ) -3,3 - ジメチルプタノール 2-i ロモアクリル酸 エステル

 $n_{D}^{20}1.5148$

化合物番号34:3-(4-メトキシフェニル)-2-(4,6-ジメトキシー2-ピリミジニルチオ)プロパノール 酢酸 エステル

 $n_0^{20}1.5404$

化合物番号35:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール イソ吉草酸 エステル

 $n_0^{20}1.5042$

化合物番号36:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール o-クロロ安息香酸 エステル

 $n_{D}^{20}1.5378$

化合物番号37:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール m-クロロ安息香酸 エステル

 $n_0^{20}1.5493$

化合物番号38:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 2-クロロプロピオン酸 エステル n_0 *1.5223

化合物番号39:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール トリフルオロ酢酸 エステル

mp. 67.5 ~ 69.5 ℃

化合物番号40:2-(4,6-i) ルトキシ-2-i リミジニルチオ) -3,3 - ジメチルブタノール n-x クタン酸 エステル

 $n_0^{20}1.4940$

[0206]

化合物番号 41:2-(4,6-i) メトキシー 2-i リミジニルチオ) -3,3 - i -

n_p²⁰1. 4859

化合物番号42:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール ラウリン酸 エステル

 $n_0^{20}1.4903$

化合物番号43:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール ミリスチン酸 エステル

 $n_0^{20}1.4820$

化合物番号44:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール ペンタフルオロ安息香酸 エステル

 $n_0^{20}1.5122$

336

```
化合物番号45:2-(4,6-i)メトキシ-2-iピリミジニルチオ) -3,3
-ジメチルブタノール 5-0ロロ-6-xチルチオニコチン
```

酸 エステル

n_p²⁰1.5438

 $n_0^{20}1.5382$

化合物番号47:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-2-シ クロペンチルエタノール酢酸 エステル n_0 ²⁰1.5335

化合物番号 48:2-(4,6-i) メトキシー 2-i リミジニルチオ) -3,3 -i メチルプタノール 2-i エステル n_0 $^{20}1.5507$

化合物番号49:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール α -ピコリン酸 エステル

 $n_0^{20}1.5378$

化合物番号 5 0:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール ニコチン酸 エステル

 $n_{p}^{20}1.5452$

[0207]

化合物番号51:2-(4,6-i) ルトキシー2-i リミジニルチオ) -3,3 -ジメチルブタノール クロロ酢酸 エステル

 $n_0^{20}1.5200$

化合物番号52:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール イソニコチン酸 エステル

 $n_0^{20}1.5172$

化合物番号53:2-(4,6-i) ルトキシー2-i リミジニルチオ) -3,3 - ジメチルブタノール 2-0 ロロイソニコチン酸 エステル

 $n_0^{20}1.5320$

化合物番号54:2-(4,6-i) ルトキシー2-i リミジニルチオ) -3,3 -ジメチルブタノール シュウ酸 ジエステル

 $n_0^{20}1.5336$

化合物番号 5 5 : 2 - (4, 6 - ジメトキシ- 2 - ピリミジニルチオ) - 3, 3 - ジメチルブタノール フタル酸 ジエステル

 $n_0^{20}1.5298$

 $n_0^{20}1.5361$

化合物番号57:2-(4,6-i)メトキシー2-iピリミジニルチオ) -3-iチルブタノール メトキシ酢酸 エステル

 $n_0^{20}1.5182$

化合物番号 5 8:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール メトキシ酢酸 エステル

 $n_0^{20}1.5041$

化合物番号59:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール フェノキシ酢酸 エステル

 $n_0^{20}1.5408$

化合物番号60:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール (2,4-ジクロロフェノキシ)酢酸 エステル no²⁰1.5309

```
(170)
    337
化合物番号61:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール (4-クロロ-2-メチルフェノキシ
         ) 酢酸 エステル
                               n_{D}^{20}1.5312
化合物番号62:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール αートリフロロメチルーαーメトキシ
         フェニル酢酸 エステル
                              n_0^{20}1.5191
化合物番号63:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 2- (p-トリスルホニルオキシ)プ
         ロピオン酸 エステル
                              mp. 81~85℃
化合物番号64:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール p-クロロフェニルチオ酢酸 エステ
                              n_n^{20}1.5704
化合物番号65:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール p-ベンジルオキシフェニルチオ酢酸
          エステル
                              n_0^{20}1.5701
化合物番号66:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール メトキシカルボニルカルボン酸 エス
                              n_{D}^{20}1.5112
化合物番号67:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール メトキシカルボニル酢酸 エステル
                              n_0^{20}1.5142
化合物番号68:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール 3-メトキシカルボニルプロピオン酸
          エステル
                              n_{p}^{20}1.5142
化合物番号69:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 3-メトキシカルボニルプロピオン酸
          エステル
                              n<sub>p</sub><sup>20</sup>1. 5039
化合物番号70:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール コハク酸モノ エステル
                              n_0^{20}1.5141
化合物番号71:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール コハク酸モノ エステル ナトリウム
化合物番号72:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール シクロヘキサンカルボン酸 エステル
                              n_0^{20}1.5122
化合物番号73:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 1-プロモ-2, 2-ジメチル酪酸
         エステル
                              n_0^{20}1.5181
化合物番号74:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール ジクロロ酢酸 エステル
                              mp. 87~89℃
化合物番号75:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール チエニル酢酸 エステル
                              n<sub>0</sub><sup>20</sup>1. 5632
化合物番号76:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 1,2-ジクロロマレイン酸モノ エ
         ステル
                              アモルファス
化合物番号77:2-(4.6-ジメトキシ-2-ピリミジニルチオ)-3.3
```

[0209]

-ジメチルブタノール トリクロロ酢酸 エステル

n_p²⁰1. 5283

化合物番号78:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

-ジメチルブタノール 4-トリフルオロメチル安息香酸 エ

ステル n₀²⁰1.5126

化合物番号79:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3,3-ジメチルブタノール6-0ロロニコチン酸 エステル

mp. 78~81℃

化合物番号80:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

-ジメチルブタノール 2-ヒドロキシカルボニルピコリン酸

エステル n₀[∞]1.5485

[0210]

化合物番号81:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール マレイン酸モノ エステル

 $n_0^{20}1.5323$

化合物番号82:2- (4,6-ジメトキシー2-ピリミジニルチオ) -3,3

ージメチルブタノール 2ーヒドロキシカルボニルー1ーシク

ロヘキセンカルボン酸 エステル $n_0^{20}1.5210$

化合物番号83:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

-ジメチルブタノール 4,5-ジクロロフタル酸モノ エステル n_0 ²⁰1.5629

化合物番号84:2-(4,6-i) パーション・ボーシー 2-i ピリミジニルチオ) -3,3 ージメチルブタノール フェニルプロピオン酸 エステル

n₀²⁰1. 5379

化合物番号85:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 2ーヒドロキシカルボニルシクロヘキ

サンカルボン酸 エステル

 $n_0^{20}1.5066$

化合物番号86:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 2ーヒドロキシカルボニルー1ーシク

ロペンテンカルボン酸 エステル mp. 85.5~88℃

化合物番号87:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール フタル酸モノ エステル

n₀²⁰1.5492

化合物番号88:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 2ークロロー4ーフルオロ安息香酸

エステル n₀[∞]1.5439

化合物番号89:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール ベンゾ [b] チオフェン-2-カルボ

ン酸 エステル n_p²⁰1.5879

化合物番号90:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 3-クロロベンゾ [b] チオフェンー

2-カルボン酸 エステル no²⁰1.5865

[0211]

化合物番号91:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール 2-メチルチオニコチン酸 エステル

n₀²⁰1. 5653

化合物番号92:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 3-tertーブチルー2-メチルピ

ラゾール-3-カルボン酸 エステル n₀²⁰1.5213

化合物番号93:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

-ジメチルブタノール けい皮酸 エステル

 $n_{p}^{20}1.5724$

化合物番号94:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 ージメチルブタノール 2- [4-(6-クロロー2-キノキ サニロキシ) フェノキシプロピオン酸 エステル

 $n_0^{20}1.5691$

化合物番号95:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3.3 -ジメチルブタノール フェニル酢酸 エステル

 $n_0^{20}1.5441$

化合物番号96:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 ージメチルブタノール 4-n-ブチル安息香酸 エステル

 $n_0^{20}1.5389$

化合物番号 97:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3ージメチルブタノール 2,5-ジクロロ安息香酸 エステル $n_{p}^{20}1.5515$

化合物番号98:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 ージメチルブタノール 1,4-ベンゾオキサン-2-カルボ ン酸 エステル $n_{P}^{20}1.5202$

化合物番号99:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 ージメチルブタノール イソキサゾリルー5ーカルボン酸 エ ステル mp. 77. $5 \sim 79.5 \%$

化合物番号100:2-(4,6-i)メトキシ-2-iリミジニルチオ) -3, 3-ジメチルブタノール 5-ブロモニコチン酸 エステル

 $n_{D}^{20}1.5441$

[0212]

化合物番号101:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3. 3-ジメチルブタノール 2,6-ジクロロイソニコチン酸 エステル $n_0^{20}1.5306$

化合物番号102:2-(4,6-i) + (4) 100 + (4) 100 + (4) 100 + (5) 100 + (7) 100 + (7) 100 + (8) 100 + (100) + 3-ジメチルブタノール 4-クロロー2-メチルフェノキ シ酪酸 エステル $n_0^{20}1.5349$

化合物番号103:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3, 3-ジメチルブタノール 2,4,5-トリクロロフェノキ シ酢酸 エステル $n_{D}^{20}1.5526$

化合物番号104:2-(4,6-i)メトキシ-2-iリミジニルチオ)-33-ジメチルブタノール 3-ヒドロキシカルボニルイソニ コチン酸 エステル n₀²⁰1. 5353

化合物番号105:2-(4.6-ジメトキシ-2-ピリミジニルチオ)-33-ジメチルブタノール 3-クロロチオフェン-2-カル ボン酸 エステル $n_0^{20}1.5523$

化合物番号106:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3, 3-ジメチルブタノール 2-メチルプロピオン酸 エステ $n_0^{20}1.4995$

化合物番号107:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3, 3-ジメチル-1-ブタノール 5-メチルイソキサゾリル -3-カルボン酸 エステル mp. 90. $5 \sim 92 \%$

化合物番号108:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3, 3-ジメチル-1-ブタノール 3,5-ジメチルイソキサ プリルー4-カルボン酸 エステル no™1.5292

化合物番号109:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,

344

3-ジメチル-1-ブタノール 4-メチル-1, 2, 3-チアジアゾリル-5-カルボン酸 エステル

mp. 66.5∼68℃

【0213】 (生物試験例)

試験例1

畑地雑草に対する発芽後茎葉処理試験

活性物質の調整

担体 : アセトン5重量部

乳化剤: ベンジルオキシポリグリコールエーテル1重

量部

活性物質の調合剤は1重量部の活性化合物と、上述の分量の担体および乳化剤とを混合し、乳剤として得られる。その調合剤の所定薬量を水で希釈して調整する。 試験方法

温室内において、畑土壌を詰めた120cm²ポットに、 ヒエ及びイヌビユの各種子を播種覆土し生育させた。1 0日後、上記調整の所定薬量を各試験ポットの供試植物 * * の茎葉部に均一に散布した。散布3週間後に除草効果を 調査した。なお、除草効果は、完全枯死した場合を10 0%とし、無処理と同等の場合は0%とした。

【0214】試験例2

畑地雑草に対する発芽前土壌処理試験 試験方法

10 温室内において、畑土壌を詰めた120cm²ポット表層に、ヒエ、イヌビユの各種子を播種覆土した。上記試験例1と同様に調整した所定の薬量を各試験ポットの土壌表層に均一に散布した。散布4週間後に除草効果の程度を調査した。試験例1及び2の結果を第4表に示す。

[0215]

【表150】

第 4 表

化合物番号	棄 量	発芽症	前処理	発芽征	多処理
	(kg/ha)	٤x	アオビユ	ヒエ	アオピユ
1	2	100	100	90	95
2	2	100	100	100	100
3	2	90	100	80	80
4	2	100	100	90	90
5	2	95	100	80	100
6	2	100	100	100	100
7	2	100	100	100	100
8	2	100	100	100	100
9	2	100	100	100	100
1 0	2 .	100	100	100	100
1 1	2	95	100	90	90
1 4	2	100	100	90	90
1 5	2	100	100	100	100
16	2	100	100	95	90
1 7	2	100	100	90	90
1 8	2	95	100	95	100
1 9	2	95	100	80	90
2 0	2	95	100	80	90
2 1	2	100	100	100	100
2 2	2	100	100	100	100
2 3	2	90	90	80	80
2 4	2	90	90	100	100
2 5	2	100	100	90	100

【0216】 【表151】

第 4 表(統き)

化合物番号	薬 量	発芽前処理		発芽(美処理
	(kg∕ha)	tΙ	アオビユ	ヒエ	アオピユ
2 8	2	90	100	100	80
2 9	2	90	100	100	100
3 1	2	90	100	100	90
3 5	2	90	90	100	90
3 7	2	100	100	80	80
3 8	2	90	100	80	100
4 1	2	80	100	80	80
4 8	2	90	100	50	70
5 0	2	100	100	90	90
5 1	2	100	100	100	90
5 2	2	90	100	90	90
5 3	2	100	100	100	100
5 4	2	100	100	90	90
5 8	2	90	100	100	90
5 9	2	100	100	100	100
6 1	2	90	100	60	90
6 4	2	90	100	90	90
6 5	2	100	90	90	90
6 8	2	90	100	100	80
6 9	2	90	100	90	80
7 1	2	90	90	100	80
7 2	2	90	90	90	100
7 4	2	90	90	100	100

[0217]

【表152】

第 4 表(続き)

化合物番号	重 薬	発芽前処理		発芽後処理	
	(kg∕ha)	ヒエ	アオビユ	ヒエ	アオビユ
7 8	2	90	100	100	90
7 9	2	100	90	100	100
8 0	2	90	100	100	100
8 1	2	100	100	100	100
8 2	2	100	100	100	100

[0218]

*により合成することができるとともに、除草剤として有効な作用をあらわす。

【発明の効果】本発明の新規な除草性ピリミジニルチオアルカン誘導体は、実施例で示された通り、一般的製法 *

フロントページの続き

(72) 発明者 伊藤 整志 栃木県小山市駅東通り1-39-1

(72)発明者 峯岸 なつこ栃木県小山市若木町1-9-31

(72)発明者 宇川 和博 栃木県小山市駅東通り1-23-13 (72)発明者 山岡 達也

栃木県小山市大字神鳥谷934-7

(72)発明者 上野 知恵子

栃木県小山市大字神鳥谷934-7

(72)発明者 伊藤 暁美

栃木県小山市大字神鳥谷934-7

(72) 発明者 京 嘉子

栃木県小山市大字神鳥谷934-7

→、第4図は分解斜視図である。

2 / 一金属基板、2、3 - 屈曲壁、7 - 嵌装溝、8 - 摺動溝、/2 - 浮上用接触片、/5 · 圧電 素子ユニット、2 / - ハンマー、2 4 - 打圧用 はね、25 - 操作杆、26 - 係合孔、28 · 戻しばむ、29 - 作動板、30 - 係止鉤、3/・

: 質斜先端、32 - 係合度部、33 - 線はね

ε 出願人 日本特殊陶業株式会社

代理人 園 部 祐 夫

世 代理人 野 口 宏_学

il

12

13

14

15