Introduction à l'apprentissage par renforcement sensible au risque avec des mesures de risque dynamiques

Anthony Coache (U. Toronto) anthonycoache.ca

Travaux conjoints avec Sebastian Jaimungal (U. Toronto) Álvaro Cartea (Oxford)

Séminaire STATQAM * 15 février 2024

Table des matières

Motivations

Mesures de risque dynamiques

Problème

Études de simulation

Robustification

Discussion

Table des matières

Motivations

Mesures de risque dynamiques

Problème

Études de simulation

Robustification

Discussion

Motivations 3/3

Apprentissage par renforcement / Reinforcement Learning (RL)

Sous-domaine de l'apprentissage automatique

- Cadre agnostique de modèles pour contrôle fondé sur l'apprentissage
- Apprendre des stratégies optimales à partir d'interactions pour minimiser un signal

Pendant la phase d'apprentissage, l'agent:

- interagit avec un environnement virtuel
- → observe un rendement sous forme de coûts
- → met à jour son comportement pour découvrir la meilleure stratégie

Applications d'intérêt:

- Allocation de portefeuille, couverture, tarification, trading algorithmique
- Contrôle de robots, véhicules autonomes, contrôle en l'agriculture, systèmes biologiques

Motivations 4/3

Notation RL

Processus de décision markovien

- S Ensemble d'états (states)
- A Ensemble d'actions (actions)
- $\pi^{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A})$ Politique (policy)
- $\mathbb{P}: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$ Fonction de transition (transition probabilities)
- $c: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$ Fonction de coût (*cost*)

RL vise à minimiser des problèmes de la forme:

$$\min_{\theta} J\Big(\{c_t^{\theta}\}_t \mid s_0 = s\Big)$$

Motivations 5 / 37

RL sensible au risque

RL standard: $\min_{\theta} \mathbb{E}[Y^{\theta}]$, où $Y^{\theta} = \sum_{t} \gamma^{t} c_{t}^{\theta}$

× L'espérance ignore le risque associé aux coûts!

RL sensible au risque utilise des mesures de risque, p. ex.

- \hookrightarrow Utilité espérée [Nass et al., 2019]: $\mathbb{E}[U(Y^{\theta})]$
- \hookrightarrow Contrainte sur le risque [Di Castro et al., 2019]: $\mathbb{E}[Y^{\theta}]$ tel que $\rho(Y^{\theta}) \leq c^*$
- \rightarrow Mesure de risque cohérente [Tamar et al., 2016]: $\rho(Y^{\theta})$
- \rightarrow Conditional value-at-risk ou expected-shortfall (CVaR $_{\alpha}$):

$$rac{1}{1-lpha}\int_{[lpha,1]}\mathsf{VaR}_u(Y^ heta)\mathrm{d}\iota$$

Motivations 6/37

RL sensible au risque

RL standard: $\min_{\theta} \mathbb{E}[Y^{\theta}]$, où $Y^{\theta} = \sum_{t} \gamma^{t} c_{t}^{\theta}$

× L'espérance ignore le risque associé aux coûts!

RL sensible au risque utilise des mesures de risque, p. ex.

- \hookrightarrow Utilité espérée [Nass et al., 2019]: $\mathbb{E}[U(Y^{\theta})]$
- \hookrightarrow Contrainte sur le risque [Di Castro et al., 2019]: $\mathbb{E}[Y^{ heta}]$ tel que $ho(Y^{ heta}) \leq c^*$
- \hookrightarrow Mesure de risque cohérente [Tamar et al., 2016]: $\rho(Y^{\theta})$
- \hookrightarrow Conditional value-at-risk ou expected-shortfall (CVaR $_{\alpha}$):

$$\frac{1}{1-\alpha}\int_{[\alpha,1]}\mathsf{VaR}_u(Y^\theta)\mathrm{d}u$$

Motivations 6/37

Problème de cohérence temporelle

Minimisons $CVaR_{0.9}$ du coût terminal.

- Actions optimales à s₀:
 Mouvement vers le haut, puis vers le bas
- Actions optimales à s₁^{up'}
 Mouvement vers le haut

Contradiction avec la stratégie optimale initiale...

Motivations 7/3

Problème de cohérence temporelle

Minimisons CVaR_{0.9} du coût terminal.

- Actions optimales à s₀:
 Mouvement vers le haut, puis vers le bas
- Actions optimales à s₁^{up'}
 Mouvement vers le haut

Contradiction avec la stratégie optimale initiale..

Motivations 7/3

Problème de cohérence temporelle

Minimisons CVaR_{0.9} du coût terminal.

- Actions optimales à s₀:
 Mouvement vers le haut, puis vers le bas
- Actions optimales à s₁^{up'}:
 Mouvement vers le haut

Contradiction avec la stratégie optimale initiale...

Motivations 7/37

RL sensible au risque avec mesures de risque dynamiques

Optimiser une mesure de risque statique mène à une politique de pré-engagement optimale

Approches récentes pour remédier à ce problème:

- → Programmation dynamique avec coûts latents et actions aléatoires pour des fonctions de risque conditionnelles de type Kusuoka [Cheng and Jaimungal, 2022]
- Approche bayésienne pour tenir compte de l'incertitude du modèle avec coûts latents et des **filtres de risque récursifs** [Bielecki et al., 2023]
- Algorithme de type deep Q-learning pour des **mesures de risque expectile dynamiques** [Marzban et al., 2023]

→ etc.

Motivations 8/37

Table des matières

Motivations

Mesures de risque dynamiques

Problème

Études de simulation

Robustification

Discussion

Mesures de risque dynamiques

Considérons

- $\mathcal{T} := \{0, \dots, T\}$
- $\mathcal{F}_0 \subseteq \cdots \subseteq \mathcal{F}_T$ Filtration sur $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in \mathcal{T}}, \mathbb{P})$
- $\mathcal{Y}_t := \mathcal{L}_p(\Omega, \mathcal{F}_t, P)$ Variables aléatoires p-intégrables, \mathcal{F}_t -mesurables
- $\mathcal{Y}_{t_1,t_2} := \mathcal{Y}_{t_1} imes \cdots imes \mathcal{Y}_{t_2}$ Séquence de variables aléatoires

Mesure de risque dynamique $\{\rho_{t,T}\}_{t\in\mathcal{T}}$

Séquence de mesures de risque conditionnelles $ho_{t,T}:\mathcal{Y}_{t,T} o\mathcal{Y}_t$ où

$$\rho_{t,T}(Y) \leq \rho_{t,T}(Z)$$
, pour tout $Y, Z \in \mathcal{Y}_{t,T}$ tel que $Y \leq Z$

Forte cohérence dans le temps

Pour tout $Y_{t_1,T}, Z_{t_1,T} \in \mathcal{Y}_{t_1,T}$ et $0 \leq t_1 < t_2 \leq T$, nous avons

$$egin{aligned} Y_{t_1,t_2-1} &= Z_{t_1,t_2-1} \
ho_{t_2,\mathcal{T}}(Y_{t_2,\mathcal{T}}) &\leq
ho_{t_2,\mathcal{T}}(Z_{t_2,\mathcal{T}}) \end{aligned} \implies
ho_{t_1,\mathcal{T}}(Y_{t_1,\mathcal{T}}) \leq
ho_{t_1,\mathcal{T}}(Z_{t_1,\mathcal{T}}).$$

Forte cohérence dans le temps

Pour tout $Y_{t_1, \mathcal{T}}, Z_{t_1, \mathcal{T}} \in \mathcal{Y}_{t_1, \mathcal{T}}$ et $0 \leq t_1 < t_2 \leq \mathcal{T}$, nous avons

$$\frac{Y_{t_1,t_2-1}=Z_{t_1,t_2-1}}{\rho_{t_2,T}(Y_{t_2,T})\leq \rho_{t_2,T}(Z_{t_2,T})} \implies \rho_{t_1,T}(Y_{t_1,T})\leq \rho_{t_1,T}(Z_{t_1,T}).$$

Forte cohérence dans le temps

Pour tout $Y_{t_1,T}, Z_{t_1,T} \in \mathcal{Y}_{t_1,T}$ et $0 \leq t_1 < t_2 \leq T$, nous avons

$$\begin{aligned} Y_{t_1,t_2-1} &= Z_{t_1,t_2-1} \\ \rho_{t_2,T}(Y_{t_2,T}) &\leq \rho_{t_2,T}(Z_{t_2,T}) \\ & \Rightarrow \rho_{t_1,T}(Y_{t_1,T}) \leq \rho_{t_1,T}(Z_{t_1,T}). \end{aligned}$$

Forte cohérence dans le temps

Pour tout $Y_{t_1,T}, Z_{t_1,T} \in \mathcal{Y}_{t_1,T}$ et $0 \leq t_1 < t_2 \leq T$, nous avons

$$egin{aligned} Y_{t_1,t_2-1} &= Z_{t_1,t_2-1} \
ho_{t_2,\mathcal{T}}(Y_{t_2,\mathcal{T}}) &\leq
ho_{t_2,\mathcal{T}}(Z_{t_2,\mathcal{T}}) \end{aligned} \implies
ho_{t_1,\mathcal{T}}(Y_{t_1,\mathcal{T}}) \leq
ho_{t_1,\mathcal{T}}(Z_{t_1,\mathcal{T}}).$$

[Thm. 1, Ruszczyński, 2010]

Soit $\{\rho_{t,T}\}_t$ une mesure de risque dynamique monotone, normalisée et invariante par translation.

 $\{\rho_{t,T}\}_t$ est fortement cohérente dans le temps si et seulement si elle peut être exprimée à l'aide de mesures de risque conditionnelles à une étape (one-step conditional risk measures) $\rho_t: \mathcal{Y}_{t+1} \to \mathcal{Y}_t$:

$$\rho_{t,T}(Y_t,\ldots,Y_T)=Y_t+\frac{\rho_t}{\rho_t}\bigg(Y_{t+1}+\frac{\rho_{t+1}}{\rho_{t+1}}\Big(Y_{t+2}+\cdots+\frac{\rho_{T-1}}{\rho_{T-1}}(Y_T)\cdots\Big)\bigg).$$

Nous pouvons supposer des propriétés supplémentaires pour ρ_t , p. ex. les axiomes pour mesures de risque convexes, cohérentes, spectrales, etc.

Table des matières

Motivations

Mesures de risque dynamiques

Problème

Études de simulation

Robustification

Discussion

Problème 13/3

Problème d'optimisation

Problèmes de la forme suivante:

$$\min_{\theta} \rho_{0,T} \left(\{ c_t^{\theta} \}_t \right) = \min_{\theta} \frac{\rho_0}{\rho_0} \left(c_0^{\theta} + \frac{\rho_1}{\rho_1} \left(c_1^{\theta} + \dots + \frac{\rho_{T-1}}{\rho_{T-1}} \left(c_{T-1}^{\theta} + \frac{\rho_T}{\rho_T} \left(c_T^{\theta} \right) \right) \dots \right) \right)$$

où c_t^{θ} sont des coûts aléatoires \mathcal{F}_{t+1} -mesurables et ρ_t des mesures de risque conditionnelles à une étape.

Programmation dynamique pour la *value function*, c.-à-d. risque futur mobile, pour $s \in \mathcal{S}$:

$$V_t(s; \theta) = \rho_t \left(\underbrace{c_t^{\theta}}_{\text{coût courant}} + \underbrace{V_{t+1}(s_{t+1}^{\theta}; \theta)}_{\text{risque futur pour le prochaines périodes}} \middle| s_t = s \right)$$

Problème 14/37

Problème d'optimisation

Problèmes de la forme suivante:

$$\min_{\theta} \rho_{0,T} \left(\{ c_t^{\theta} \}_t \right) = \min_{\theta} \rho_0 \left(c_0^{\theta} + \rho_1 \left(c_1^{\theta} + \dots + \rho_{T-1} \left(c_{T-1}^{\theta} + \rho_T \left(c_T^{\theta} \right) \right) \dots \right) \right)$$

où c_t^{θ} sont des coûts aléatoires \mathcal{F}_{t+1} -mesurables et ρ_t des mesures de risque conditionnelles à une étape.

Programmation dynamique pour la *value function*, c.-à-d. risque futur mobile, pour $s \in S$:

$$V_t(s; \theta) = \rho_t \left(\underbrace{c_t^{\theta}}_{\text{coût courant}} + \underbrace{V_{t+1}(s_{t+1}^{\theta}; \theta)}_{\text{risque futur pour le prochaines périodes}} \middle| s_t = s \right)$$

Problème 14/37

Méthodes policy-gradient

• Nous désirons optimiser V sur les politiques θ via une méthode policy-gradient:

$$\theta \leftarrow \theta - \eta \, \nabla_{\theta} \, V(\cdot; \theta)$$

Gradient de V [C., Jaimungal, 2023]

Sous certaines hypothèses concernant la forme de l'enveloppe de risque, le gradient de la value function à une période $t \in \mathcal{T}$ et l'état $s \in \mathcal{S}$ pour une mesure de risque dynamique convexe est

$$\nabla_{\theta} \textit{\textbf{V}}_t(\textit{\textbf{s}}; \theta) = \mathbb{E}^{\xi^*}_t \left[\left(\textit{\textbf{c}}(\textit{\textbf{s}}, \textit{\textbf{a}}^{\theta}_t, \textit{\textbf{s}}^{\theta}_{t+1}) + \textit{\textbf{V}}_{t+1}(\textit{\textbf{s}}^{\theta}_{t+1}; \theta) - \lambda^* \right) \nabla_{\theta} \log \pi^{\theta}(\textit{\textbf{a}}^{\theta}_t | \textit{\textbf{s}}) + \nabla_{\theta} \textit{\textbf{V}}_{t+1}(\textit{\textbf{s}}^{\theta}_{t+1}; \theta) \right] - \nabla_{\theta} \rho^*_t(\xi^*)$$

Algorithme acteur-critique composé de deux procédures entrelacées:

- Le critique calcule la value function d'une politique
- L'acteur met à jour la politique en gardant V fixe
- Nous modélisons la politique et la value function par des réseaux de neurones

Problème 15 / 37

Méthodes policy-gradient

• Nous désirons optimiser V sur les politiques θ via une méthode policy-gradient:

$$\theta \leftarrow \theta - \eta \, \nabla_{\theta} \, V(\cdot; \theta)$$

Gradient de V [C., Jaimungal, 2023]

Sous certaines hypothèses concernant la forme de l'enveloppe de risque, le gradient de la value function à une période $t \in \mathcal{T}$ et l'état $s \in \mathcal{S}$ pour une mesure de risque dynamique convexe est

$$\nabla_{\theta} V_t(s;\theta) = \mathbb{E}^{\xi^*}_t \left[\left(c(s, a^{\theta}_t, s^{\theta}_{t+1}) + V_{t+1}(s^{\theta}_{t+1}; \theta) - \lambda^* \right) \nabla_{\theta} \log \pi^{\theta}(a^{\theta}_t|s) + \nabla_{\theta} V_{t+1}(s^{\theta}_{t+1}; \theta) \right] - \nabla_{\theta} \rho^*_t(\xi^*)$$

Algorithme acteur-critique composé de deux procédures entrelacées:

- Le **critique** calcule la *value function* d'une politique
- L'acteur met à jour la politique en gardant V fixe
- Nous modélisons la politique et la value function par des réseaux de neurones

Problème 15 / 37

Résultats principaux

Coache & Jaimungal (2023) Reinforcement Learning with Dynamic Convex Risk Measures. *Mathematical Finance.* DOI: 10.1111/mafi.12388

• Classe de mesures de risque dynamiques convexes:

$$\rho_t(Y) = \sup_{\xi_t \in \mathcal{U}(P)} \left\{ \mathbb{E}_t^{\xi_t} [Y] - \rho_t^*(\xi_t) \right\}$$

$$\mathcal{U}(P) = \left\{ \xi : \sum_{\omega} \xi(\omega) P(\omega) = 1, \ \xi \ge 0, \ \underbrace{g_e(\xi, P) = 0, \forall e \in \mathcal{E},}_{\text{fcts affine w.r.t. } \xi} \underbrace{f_i(\xi, P) \le 0, \forall i \in \mathcal{I}}_{\text{fcts convexes w.r.t. } \xi} \right\}$$

- Algorithme acteur-critique avec un cadre de simulations imbriquées
- Dérivation du gradient de V en utilisant le Envelope theorem for saddle-point problems

• Théorème d'approximation universelle pour $V_t(s;\theta)$

Problème 16/37

Simulations imbriquées

X Les simulations imbriquées sont coûteuses...

Problème 17 / 37

Élicitabilité

Amélioration de l'estimation en limitant les fonctions objectifs

 ρ est élicitable [Gneiting, 2011] si et seulement si il existe une fonction de score $S: \mathbb{R} \times \mathbb{Y} \to \mathbb{R}$ telle que

$$ho(Y) = \arg\min_{\mathfrak{a} \in \mathbb{R}} \mathbb{E}_{Y \sim F_Y} [S(\mathfrak{a}, Y)].$$

$\rho(Y)$	$ig $ \mathbb{E}	Médiane	VaR_lpha	$CVaR_{lpha}$
$S(\mathfrak{a},y)$	$(\mathfrak{a}-y)^2$	$ \mathfrak{a}-y $	$\mathbb{1}_{\mathfrak{a} \leq y} - \alpha$	Ø

Les fonctions non-élicitables peuvent faire partie d'une fonction vectorielle élicitable:

• Élicitabilité de mesures de risque (statiques) spectrales [Fissler and Ziegel, 2016]

Caractérisation de leur fonction de score S

Problème 18/37

Élicitabilité

Amélioration de l'estimation en limitant les fonctions objectifs

 ρ est élicitable [Gneiting, 2011] si et seulement si il existe une fonction de score $\mathcal{S}:\mathbb{R}\times\mathbb{Y}\to\mathbb{R}$ telle que

$$\rho(Y) = \arg\min_{\mathfrak{a} \in \mathbb{R}} \mathbb{E}_{Y \sim F_Y} [S(\mathfrak{a}, Y)].$$

$\rho(Y)$	E	Médiane	VaR_α	$CVaR_{lpha}$
$S(\mathfrak{a},y)$	$(\mathfrak{a}-y)^2$	$ \mathfrak{a}-y $	$\mathbb{1}_{\mathfrak{a} \leq y} - \alpha$	Ø

Les fonctions non-élicitables peuvent faire partie d'une fonction vectorielle élicitable:

- Élicitabilité de mesures de risque (statiques) spectrales [Fissler and Ziegel, 2016]
- Caractérisation de leur fonction de score S

Problème 18/37

Élicitabilité conditionnelle

Exemple: $(VaR_{\alpha}(Y), CVaR_{\alpha}(Y))$ est élicitable, c.-à-d.

$$\left(\mathsf{VaR}_\alpha(Y),\mathsf{CVaR}_\alpha(Y)\right) = \mathop{\mathsf{arg\,min}}_{(\mathfrak{a}_1,\mathfrak{a}_2) \in \mathbb{R}^2} \mathbb{E}_{Y \sim F_Y} \Big[S(\mathfrak{a}_1,\mathfrak{a}_2,Y) \Big]$$

Dans notre problème RL, les coûts dépendent des états $s \in \mathcal{S}$

$$\Big(\mathsf{VaR}_{lpha}(Y|s_t=s), \mathsf{CVaR}_{lpha}(Y|s_t=s)\Big) = lpha_{h_1,h_2:S o\mathbb{R}} \mathbb{E}_{Y\sim F_Y}\Big[S(h_1(s),h_2(s),Y)\Big]$$

Nous modélisons V avec des réseaux de neurones et minimisons l'espérance empirique

$$\arg\min_{\psi,\phi} \sum_{t \in \mathcal{T}} \sum_{i=1}^{n} S\Big(\underbrace{H_{t}^{\psi}(s^{(i)})}_{\mathsf{VaR}_{\alpha}}, \underbrace{V_{t}^{\phi}(s^{(i)})}_{\mathsf{CVaR}_{\alpha}}, \underbrace{c_{t}^{(i)} + V_{t+1}^{\phi}(s_{t+1}^{(i)})}_{\mathsf{coûts al\acute{e}atoires}}\Big)$$

Problème 19/37

Élicitabilité conditionnelle

Exemple: $(VaR_{\alpha}(Y), CVaR_{\alpha}(Y))$ est élicitable, c.-à-d.

$$\left(\mathsf{VaR}_\alpha(Y),\mathsf{CVaR}_\alpha(Y)\right) = \mathop{\mathsf{arg\,min}}_{(\mathfrak{a}_1,\mathfrak{a}_2) \in \mathbb{R}^2} \mathbb{E}_{Y \sim F_Y} \Big[S(\mathfrak{a}_1,\mathfrak{a}_2,Y) \Big]$$

Dans notre problème RL, les coûts dépendent des états $s \in \mathcal{S}$

$$\left(\mathsf{VaR}_{\alpha}(Y|s_t=s), \mathsf{CVaR}_{\alpha}(Y|s_t=s)\right) = \underset{h_1,h_2:\,\mathcal{S}\to\mathbb{R}}{\mathsf{arg}\min}\,\,\mathbb{E}_{Y\sim F_Y}\Big[S(h_1(s),h_2(s),Y)\Big]$$

Nous modélisons V avec des réseaux de neurones et minimisons l'espérance empirique

$$\arg\min_{\psi,\phi} \sum_{t \in \mathcal{T}} \sum_{i=1}^{n} S\Big(\underbrace{H_{t}^{\psi}(s^{(i)})}_{\mathsf{VaR}_{\alpha}}, \underbrace{V_{t}^{\phi}(s^{(i)})}_{\mathsf{CVaR}_{\alpha}}, \underbrace{c_{t}^{(i)} + V_{t+1}^{\phi}(s_{t+1}^{(i)})}_{\mathsf{coûts al\acute{e}atoires}}\Big)$$

Problème 19/37

Élicitabilité conditionnelle

Exemple: $(VaR_{\alpha}(Y), CVaR_{\alpha}(Y))$ est élicitable, c.-à-d.

$$\left(\mathsf{VaR}_{\alpha}(Y),\mathsf{CVaR}_{\alpha}(Y)\right) = \mathop{\mathsf{arg\,min}}_{(\mathfrak{a}_1,\mathfrak{a}_2) \in \mathbb{R}^2} \, \mathbb{E}_{Y \sim F_Y} \Big[S(\mathfrak{a}_1,\mathfrak{a}_2,Y) \Big]$$

Dans notre problème RL, les coûts dépendent des états $s \in \mathcal{S}$

$$\Big(\mathsf{VaR}_{lpha}(Y|s_t=s), \mathsf{CVaR}_{lpha}(Y|s_t=s)\Big) = \operatorname*{\mathsf{arg}\,min}_{h_1,h_2:\,\mathcal{S} o\mathbb{R}} \mathbb{E}_{Y\sim F_Y}\Big[S(h_1(s),h_2(s),Y)\Big]$$

Nous modélisons V avec des réseaux de neurones et minimisons l'espérance empirique

$$\arg\min_{\psi,\phi} \sum_{t \in \mathcal{T}} \sum_{i=1}^{n} S\Big(\underbrace{H_{t}^{\psi}(s^{(i)})}_{\mathsf{VaR}_{\alpha}}, \underbrace{V_{t}^{\phi}(s^{(i)})}_{\mathsf{CVaR}_{\alpha}}, \underbrace{c_{t}^{(i)} + V_{t+1}^{\phi}(s_{t+1}^{(i)})}_{\mathsf{coûts al\acute{e}atoires}}\Big)$$

Problème 19/37

Résultats principaux

Coache, Jaimungal & Cartea (2023) Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning. *SIAM J. Financial Mathematics*. DOI: 10.1137/22M1527209

• Classe de mesures de risque dynamiques spectrales:

$$ho_t^{arphi}(Y) = \int_{[0,1]} \mathsf{CVaR}_{lpha}(Y) \, arphi_t(\mathrm{d}lpha)$$

$$arphi = \sum_{m=1}^{k-1} p_m \delta_{lpha_m}, \quad \mathsf{où} \quad p_m \in (0,1], \ \sum_{m=1}^{k-1} p_m = 1$$

- Algorithme acteur-critique sans simulations imbriquées
- Théorème d'approximation universelle pour $V_t(s;\theta)$

Problème 20 / 37

Table des matières

Motivations

Mesures de risque dynamiques

Problème

Études de simulation

Robustification

Discussion

Études de simulation 21/37

Contrôle de robot

Considérons un robot autonome qui:

- débute à (0,0), désire terminer à (T,0)
- effectue des actions $a_t^{ heta} \sim \pi^{ heta} = \mathcal{N}(\mu^{ heta}, \sigma)$
- bouge de (t, x_t) à $(t + 1, x_t + a_t)$
- reçoit des pénalités s'il tombe dans la falaise et s'éloigne de (T,x)

Études de simulation 22 / 37

Contrôle de robot

Considérons un robot autonome qui:

- débute à (0,0), désire terminer à (T,0)
- effectue des actions $a_t^{ heta} \sim \pi^{ heta} = \mathcal{N}(\mu^{ heta}, \sigma)$
- bouge de (t, x_t) à $(t + 1, x_t + a_t)$
- reçoit des pénalités s'il tombe dans la falaise et s'éloigne de (T,x)

Études de simulation 22 / 37

Couverture d'options

Posons une option d'achat dont le prix de l'actif sous-jacent suit un modèle Heston. L'agent:

- vend l'option d'achat, désire couvrir son risque en transigeant seulement l'actif
- observe sa dernière position, sa richesse totale, le prix de l'actif
- effectue des transactions dans un marché avec frictions
- reçoit un coût qui affecte sa richesse

Études de simulation 23 / 37

Allocation de portefeuille

Considérons un marché avec d actifs. L'agent:

- observe la période t et le prix des actifs $\{S_t^{(i)}\}_{i=1,\dots,d}$
- décide la proportion de sa richesse $\pi_t^{(i)}$ à investir dans l'actif i
- reçoit un coût via la différence de P&L $y_t y_{t+1}$, où sa richesse y_t varie selon

$$dy_t = y_t \left(\sum_{i=1}^d \pi_t^{(i)} \frac{dS_t^{(i)}}{S_t^{(i)}} \right), \quad y_0 = 1.$$

Nous estimons un modèle de co-intégration avec des données quotidiennes de différents actifs et utilisons le modèle estimé résultant comme générateur de trajectoires de prix

$$\Delta S_{\tau} = \alpha \beta^{\mathsf{T}} S_{\tau-1} + \Gamma_1 \Delta S_{\tau-1} + \dots + \Gamma_{k_{\mathsf{ar}}-1} \Delta S_{\tau-k_{\mathsf{ar}}+1} + CD_{\tau} + u_{\tau},$$

Études de simulation 24/37

Allocation de portefeuille

Modèle de co-intégration utilisant des données quotidiennes de 8 actifs cotées sur le NASDAQ entre le 31 septembre 2020 et le 31 décembre 2021.

Études de simulation 25 / 37

Allocation de portefeuille

Modèle de co-intégration utilisant des données quotidiennes de 8 actifs cotées sur le NASDAQ entre le 31 septembre 2020 et le 31 décembre 2021.

Études de simulation 25 / 37

Table des matières

Motivations

Mesures de risque dynamiques

Problème

Études de simulation

Robustification

Discussion

Robustification 26 / 37

Incertitude sur le modèle

- La phase d'apprentissage doit refléter des évènements similaires à la phase de test
- Qu'arrive-t-il en présence d'incertitude sur le modèle?

Robustification des approches RL:

- Algorithme deep RL pour résoudre des problèmes où l'agent minimise une mesure de risque (statique) *RDEU* de variables aléatoires situées dans une **sphère Wasserstein** [Jaimungal et al., 2022]
- \hookrightarrow Algorithme RL robuste, se limitant aux politiques ayant une **divergence KL** à un ϵ près d'une distribution de probabilité d'action de référence [Smirnova et al., 2019]
- Approche bayésienne pour **tenir compte de l'incertitude du modèle** avec coûts latents et des filtres de risque récursifs [Bielecki et al., 2023]

→ etc.

Robustification 27/37

Robustification

Nous incluons des ensembles d'incertitude à l'intérieur des mesures de risque dynamiques [Moresco et al., 2023]

Mesure de risque conditionnelle à une étape robuste

La mesure de risque robuste de $\rho_t(Y)$ sous l'ensemble d'incertitude $\varphi: \mathcal{Y}_{t+1} \to 2^{\mathcal{Y}_{t+1}}$ est

$$\varrho_t^{\varphi}(Y) := \operatorname{ess\,sup}\left\{ \rho_t(Y^{\phi}) \in \mathcal{Y}_t : Y^{\phi} \in \varphi_Y \right\}.$$

- Fonction quantile $\check{F}_{Y|_{\mathcal{F}_*}}$ de Y conditionnel à \mathcal{F}_t
- $\bullet \quad \varphi_{Y}^{\epsilon} = \left\{ Y^{\phi} \in \mathcal{Y}_{t+1} \, : \, \left\| \breve{F}_{Y|_{\mathcal{F}_{t}}} \breve{F}_{Y^{\phi}|_{\mathcal{F}_{t}}} \right\|_{2} \leq \epsilon \right\}$

Robustification 28 / 37

Robustification

Programmation dynamique:
$$V_t(s;\theta) = \varrho_t \left(Y_t^{\theta} \mid s_t = s \right)$$
, où $Y_t^{\theta} := c_t^{\theta} + V_{t+1}(s_{t+1}^{\theta};\theta)$

Nous supposons que ϱ_t est une mesure de distorsion de risque robuste

$$\varrho_t(Y) = \underset{Y^{\phi} \in \varphi_{\mathcal{V}}^{\epsilon_t}}{\operatorname{ess \, sup}} \left\langle \gamma_t, \breve{F}_{Y^{\phi}|_{\mathcal{F}_t}} \right\rangle, \quad \text{où } \gamma_t \text{ est linéaire par morceaux}$$

- prend en compte l'incertitude du modèle
- permet des stratégies prudentes (risk-averse) et hostiles (risk-seeking)
- est élicitable
- devient un problème d'optimisation convexe avec les fonctions quantiles [Pesenti and Jaimungal, 2023]

Robustification 29/37

Résultats principaux

Proposition

Avec $\varphi_{Y_t^{\theta}}^{\epsilon_t} = \{Y^{\phi} \in \mathcal{Y}_{t+1} : \| \check{F}_{Y_t^{\theta}|_{\mathcal{F}_t}} - \check{F}_{Y^{\phi}|_{\mathcal{F}_t}} \|_2 \le \epsilon_t \}$ et une distorsion γ_t non décroissante, la fonction quantile optimale est donnée par $\check{F}^*(\cdot|s) = \check{F}_{Y_t^{\theta}}(\cdot|s) + \frac{\epsilon_t \gamma_t}{\|\gamma_t\|_2}$.

• Cette robustification est équivalente à moduler la fonction de coût

Proposition

Avec $\varphi_{Y_t^{\theta}}^{\epsilon_t} = \{Y^{\phi} \in \mathcal{Y}_{t+1} : \| \breve{F}_{Y_t^{\theta}|\mathcal{F}_t} - \breve{F}_{Y^{\phi}|\mathcal{F}_t} \|_2 \le \epsilon_t, \| \breve{F}_{Y^{\phi}|\mathcal{F}_t} \|_2 = \| \breve{F}_{Y_t^{\theta}|\mathcal{F}_t} \|_2 \}$ et une distorsion γ_t non décroissante, la fonction quantile optimale est donnée par

$$reve{\mathsf{F}}^*(\cdot|s) = rac{\lambda_t^ heta reve{\mathsf{F}}_{Y_t^ heta}(\cdot|s) + \gamma_t}{b_{\lambda_t^ heta}}$$

Robustification 30 / 37

Résultats principaux

Proposition

Avec $\varphi_{Y_t^{\theta}}^{\epsilon_t} = \{Y^{\phi} \in \mathcal{Y}_{t+1} : \| \check{F}_{Y_t^{\theta}|_{\mathcal{F}_t}} - \check{F}_{Y^{\phi}|_{\mathcal{F}_t}} \|_2 \le \epsilon_t \}$ et une distorsion γ_t non décroissante, la fonction quantile optimale est donnée par $\check{F}^*(\cdot|s) = \check{F}_{Y_t^{\theta}}(\cdot|s) + \frac{\epsilon_t \gamma_t}{\|\gamma_t\|_2}$.

Cette robustification est équivalente à moduler la fonction de coût

Proposition

Avec $\varphi_{Y_t^\theta}^{\epsilon_t} = \{Y^\phi \in \mathcal{Y}_{t+1}: \| \breve{F}_{Y_t^\theta|_{\mathcal{F}_t}} - \breve{F}_{Y^\phi|_{\mathcal{F}_t}} \|_2 \leq \epsilon_t, \ \| \breve{F}_{Y^\phi|_{\mathcal{F}_t}} \|_2 = \| \breve{F}_{Y_t^\theta|_{\mathcal{F}_t}} \|_2 \}$ et une distorsion γ_t non décroissante, la fonction quantile optimale est donnée par

$$reve{F}^*(\cdot|s) = rac{\lambda_t^ heta reve{F}_{Y_t^ heta}(\cdot|s) + \gamma_t}{b_{\lambda_t^ heta}}.$$

Robustification 30 / 37

Algorithme

Étape 1: Estimation de la distribution $F_{Y_t^{\theta}}$, où $Y_t^{\theta} := c_t^{\theta} + V_{t+1}(s_{t+1}^{\theta}; \theta)$

→ Continuous ranked probability score:

$$F_Y = \underset{F \in \mathbb{F}}{\arg\min} \, \mathbb{E}_{Y \sim F_Y} \Big[S(F,Y) \Big] \quad \text{with} \quad S(F,z) = \int_{\mathbb{R}} \Big(F(y) - \mathbb{1}_{y \geq z} \Big)^2 \mathrm{d}y$$

Étape 2: Estimation de
$$V_t(s;\theta) = \operatorname{ess\,sup}_{Y^{\phi} \in \varphi_Y^{\epsilon_t}} \left\langle \gamma_t, \breve{F}_{Y^{\phi}|s_t} \right\rangle$$
 par élicitabilité

 \hookrightarrow La fonction quantile optimale \check{F}^* est connue

Étape 3: Mise à jour de π^{θ} via une méthode policy-gradient

→ Problème d'optimisation convexe sur l'espace des fonctions quantile

Robustification 31/37

Algorithme

- **Étape 1**: Estimation de la distribution $F_{Y_t^{\theta}}$, où $Y_t^{\theta}:=c_t^{\theta}+V_{t+1}(s_{t+1}^{\theta};\theta)$
- → Continuous ranked probability score:

$$F_Y = rg \min_{F \in \mathbb{F}} \mathbb{E}_{Y \sim F_Y} ig[S(F,Y) ig] \quad ext{with} \quad S(F,z) = \int_{\mathbb{R}} ig(F(y) - \mathbb{1}_{y \geq z} ig)^2 \mathrm{d}y$$

Étape 2: Estimation de
$$V_t(s; \theta) = \underset{Y^{\phi} \in \varphi_Y^{e_t}}{\operatorname{ess sup}} \left\langle \gamma_t, \widecheck{F}_{Y^{\phi}|_{s_t}} \right\rangle$$
 par élicitabilité

 \hookrightarrow La fonction quantile optimale \check{F}^* est connue

Étape 3: Mise à jour de π^{θ} via une méthode policy-gradient

→ Problème d'optimisation convexe sur l'espace des fonctions quantile

Robustification 31/37

Algorithme

- **Étape 1**: Estimation de la distribution $F_{Y_t^{\theta}}$, où $Y_t^{\theta} := c_t^{\theta} + V_{t+1}(s_{t+1}^{\theta}; \theta)$
- → Continuous ranked probability score:

$$F_Y = rg \min_{F \in \mathbb{F}} \mathbb{E}_{Y \sim F_Y} ig[S(F,Y) ig] \quad ext{with} \quad S(F,z) = \int_{\mathbb{R}} ig(F(y) - \mathbb{1}_{y \geq z} ig)^2 \mathrm{d}y$$

- **Étape 2**: Estimation de $V_t(s; \theta) = \underset{Y^{\phi} \in \varphi_Y^{e_t}}{\operatorname{ess sup}} \left\langle \gamma_t, \breve{F}_{Y^{\phi}|_{s_t}} \right\rangle$ par élicitabilité
- \hookrightarrow La fonction quantile optimale \check{F}^* est connue
- **Étape 3**: Mise à jour de π^{θ} via une méthode policy-gradient
- → Problème d'optimisation convexe sur l'espace des fonctions quantile

Robustification 31/37

Résultats principaux

Coache & Jaimungal (travaux en cours) Robust Reinforcement Learning with Dynamic Risk Measures.

- Classe de mesures de risque dynamiques robustes de distortion
- Algorithme RL prenant en compte simultanément le risque et l'incertitude du modèle
- Dérivation du gradient d'une politique déterministe (deterministic policy gradient)
- Résultats pour des fonctions de distorsion générales γ_t avec des projections isotoniques

Robustification 32/37

Table des matières

Motivations

Mesures de risque dynamiques

Problème

Études de simulation

Robustification

Discussion

Discussion 33/3"

Contributions

Développement de méthodologies profondes pour l'apprentissage par renforcement sensible au risque avec des mesures de risque dynamiques

- Algorithmes RL pour plusieurs classes de mesures de risque dynamiques convexes
- Cadre utilisant des fonctions élicitables pour éliminer les simulations imbriquées
- Robustification pour se protéger contre l'incertitude sur le modèle

Discussion 34/37

Pistes de recherche

- → Robustification sous d'autres ensembles d'incertitude, p. ex. divergence KL
- → Modification des réseaux de neurones, p. ex. RNNs, méchanisme d'attention
- - Étude des situations d'équilibre avec des agent cohérents dans le temps
 - Idées en théorie des jeux à champ moyen, c.-à-d. MFGs
- RL inverse avec mesures de risque dynamiques
 - Peut-on apprendre la fonction objectif d'un agent en observant leur stratégie?
 - Travaux en cours avec Ziteng Cheng et Sebastian Jaimungal

Cheng, Coache & Jaimungal (2023) Eliciting Risk Aversion with Inverse Reinforcement Learning via Interactive Questioning. arXiv. DOI: 10.48550/arXiv.2308.08427

Discussion 35 / 37

Merci!

Pour plus d'informations: anthonycoache.ca

Table des matières

Matériel additionnel

Matériel additionnel 38 / 37

Convex Risk Measures

Consider $\mathcal{Y} := \mathcal{L}_p(\Omega, \mathcal{F}, P) - p$ -integrable, \mathcal{F} -measurable random variables

A convex risk measure $\rho: \mathcal{Y} \to \mathbb{R}$ [Föllmer and Schied, 2002] is

- monotone: $Y_1 \leq Y_2$ implies $\rho(Y_1) \leq \rho(Y_2)$
- translation invariant: $\rho(Y+m) = \rho(Y) + m, \ \forall m \in \mathbb{R}$
- convex: $\rho(\lambda Y_1 + (1 \lambda)Y_2) \le \lambda \rho(Y_1) + (1 \lambda)\rho(Y_2)$

Representation theorem [Shapiro et al., 2014]

A convex risk measure is proper and lower semicontinuous iff there exists a set

$$\mathcal{U}(P)\subsetigg\{\xi:\sum_{\omega}\xi(\omega)P(\omega)=1,\;\xi\geq0igg\},$$

often referred to as risk envelope, such that

$$\rho(Y) = \sup_{\xi \in \mathcal{U}(P)} \left\{ \mathbb{E}^{\xi} \left[Y \right] - \rho^*(\xi) \right\}.$$

Matériel additionnel 39 / 37

Gradient of V for Dynamic Convex Risk

Derivation of the gradient of $V_t(s;\theta)$ using the Envelope theorem for saddle-point problems

Gradient of V [C., Jaimungal, 2023]

Under regularity assumptions on the gradient of $\mathbb{P}^{\theta}(a, s'|s)$, for any state $s \in \mathcal{S}$, the gradient of the value function is given by

$$egin{aligned}
abla_{ heta} V_t(s; heta) &= \mathbb{E}_t^{\xi^*} \left[\left(c(s,a_t^{ heta},s_{t+1}^{ heta}) + V_{t+1}(s_{t+1}^{ heta}; heta) - \lambda^*
ight)
abla_{ heta} \log \pi^{ heta}(a_t^{ heta}|s_t = s) +
abla_{ heta} V_{t+1}(s_{t+1}^{ heta}; heta)
ight] \ &-
abla_{ heta}
ho_{ heta}^*(\xi^*) - \sum_{e \in \mathcal{E}} \left(\lambda^{*,\mathcal{E}}(e)
abla_{ heta} g_e(\xi^*,\mathbb{P}^{ heta})
ight) - \sum_{i \in \mathcal{I}} \left(\lambda^{*,\mathcal{I}}(i)
abla_{ heta} f_i(\xi^*,\mathbb{P}^{ heta})
ight), \end{aligned}$$

where $(\xi^*, \lambda^*, \lambda^{*,\mathcal{E}}, \lambda^{*,\mathcal{I}})$ is any saddle-point of the Lagrangian function.

Matériel additionnel 40 / 37

Universal Approximation Theorem for Dynamic Convex Risk

Approximation of the dynamic risk to any arbitrary accuracy using NNs

Approximation of V [C., Jaimungal, 2023]

Let π^{θ} denote a fixed policy, with corresponding value function $V_t(s;\theta)$. Then for any $\epsilon^* > 0$, there exists a NN V_t^{φ} such that for any $t \in \mathcal{T}$, we have

$$\underset{s \in \mathcal{S}}{\operatorname{ess \, sup}} \ \left\| V_t(s; \theta) - V_t^{\varphi}(s; \theta) \right\| < \epsilon^*.$$

Matériel additionnel 41/37

Elicitable Mappings

Expectation is elicitable:
$$\mathbb{E}[Y] = \arg\min_{\mathfrak{a} \in \mathbb{R}} \mathbb{E}_{Y \sim F_Y} \left[(\mathfrak{a} - Y)^2 \right]$$

$$(\mathsf{VaR}_\alpha,\,\mathsf{CVaR}_\alpha) \text{ is elicitable: } \left(\mathsf{VaR}_\alpha(Y),\mathsf{CVaR}_\alpha(Y)\right) = \underset{(\mathfrak{a}_1,\mathfrak{a}_2) \in \mathbb{R}^2}{\arg\min} \ \mathbb{E}_{Y \sim F_Y} \Big[S(\mathfrak{a}_1,\mathfrak{a}_2,Y) \Big], \text{ with } I = \mathsf{Im}_{X \sim F_Y} \Big[S(\mathfrak{a}_1,\mathfrak{a}_2,Y) \Big]$$

$$S(\mathfrak{a}_1,\mathfrak{a}_2,y) = \left(\mathbb{1}_{y \leq \mathfrak{a}_1} - \alpha\right) \left(G_1(\mathfrak{a}_1) - G_1(y)\right) - G_2(\mathfrak{a}_2) + G_2(y)$$

$$+ G_2'(\mathfrak{a}_2) \left[\mathfrak{a}_2 + \frac{1}{1-\alpha} \left(\mathfrak{a}_1 \left(\mathbb{1}_{y > \mathfrak{a}_1} - (1-\alpha)\right) - y \,\mathbb{1}_{y > \mathfrak{a}_1}\right)\right]$$

Conditional maps are elicitable:

$$\rho(Y \mid s_t = s) = \arg\min_{h: S \to \mathbb{R}} \mathbb{E}_{Y \sim F_Y} \Big[S(h(s), Y) \Big]$$

Any CDF is elicitable:

$$F_Y = \arg\min_{F \in \mathbb{F}} \mathbb{E}_{Y \sim F_Y} \left[\int_{\mathbb{R}} \left(F(y) - \mathbb{1}_{y \geq Y} \right)^2 \mathrm{d}y \right]$$

Matériel additionnel 42/37

Universal Approximation Theorem of Dynamic Spectral Risk

Approximation of the dynamic risk to any arbitrary accuracy using NNs

Theorem [C., Jaimungal, Cartea, 2023]

Suppose π^{θ} is a fixed policy, with its corresponding value function $V_t(s;\theta)$. Then for any $\varepsilon_1^*,\ldots,\varepsilon_k^*>0$, there exist NNs denoted $H_{1,t}^{\psi_1},\ldots,H_{k,t}^{\psi_k}$ such that for any $t\in\mathcal{T}$, we have

$$\operatorname*{ess\,sup}_{s\in\mathcal{S}}\ \left\|V_t(s;\theta)-\left(H_{k,t}^{\psi_k}(s;\theta)+\sum_{m=1}^{k-1}p_m\sum_{l=1}^mH_{l,t}^{\psi_l}(s;\theta)\right)\right\|<\varepsilon^*.$$

Matériel additionnel 43 / 37

Hedging with Friction Example

The asset price $(S_t)_{t \in \mathcal{T}}$ is simulated using the Milstein discretization scheme:

$$dS_t = \mu S_t dt + \sqrt{\nu_t} S_t dW_t^S,$$

$$d\nu_t = \kappa (\vartheta - \nu_t) dt + \varsigma \sqrt{\nu_t} dW_t^{\nu}$$

The agent:

- sells a call option, aims to hedge it trading solely in the underlying asset
- observes the asset price and its previous hedge position
- takes an action a_{t}^{θ} , i.e. the number of shares to hold over the next time interval

Bank account B

$$\begin{cases} B_{t^+} = B_t - \left(a_t^{\theta} - a_{t-1}^{\theta}\right) S_t - \left|a_t^{\theta} - a_{t-1}^{\theta}\right| \epsilon \\ B_{t+1} = e^{r\Delta t} B_{t^+} \\ B_T = e^{r\Delta t} B_{(T-1)^+} + a_{T-1}^{\theta} S_T - \left|a_{T-1}^{\theta}\right| \epsilon - (S_T - K)_+ \end{cases}$$

Wealth y

$$\begin{cases} y_{t+} = B_{t+} + a_t^{\theta} S_t \\ y_{t+1} = B_{t+1} + a_t^{\theta} S_{t+1} \\ y_T = B_T \end{cases}$$

Matériel additionnel 44 / 37

Portfolio Allocation

$$\mathrm{d}S_t^{(i)} = \mu^{(i)}S_t^{(i)}\mathrm{d}t + \sigma^{(i)}S_t^{(i)}\mathrm{d}W_t^{(i)}$$

Drifts and volatilities are $\mu = [0.03; 0.06; 0.09]$ and $\sigma = [0.06; 0.12; 0.18]$

Matériel additionnel 45/37

Portfolio Allocation

$$dX_t^{(i)} = -\kappa X_t^{(i)} dt + \sigma^{(i)} dW_t^{(i)} \quad \text{with} \quad S_t^{(i)} = e^{X_t^{(i)} + \mu^{(i)} t - \frac{1 - e^{-2\kappa t}}{4\kappa} (\sigma^{(i)})^2}$$

Drifts and volatilities are $\mu = [0.03; 0.06; 0.09]$ and $\sigma = [0.06; 0.12; 0.18]$

Matériel additionnel 46 / 37

Optimal Quantile Function

Consider the value function for dynamic robust risk measures, where γ_t is nondecreasing and

$$\varphi_{Y_t^{\theta}}^{\varepsilon_t} = \left\{ Y^{\phi} \in \mathcal{Y}_{t+1} \, : \, \| \breve{F}_{Y_t^{\theta}|_{\mathcal{F}_t}} - \breve{F}_{Y^{\phi}|_{\mathcal{F}_t}} \|_2 \leq \varepsilon_t, \, \, \| \breve{F}_{Y^{\phi}|_{\mathcal{F}_t}} \|_2 = \| \breve{F}_{Y_t^{\theta}|_{\mathcal{F}_t}} \|_2 \right\}.$$

The optimal quantile function is then given by $\breve{F}_{\phi}^*(u|s) = \frac{\lambda^* \breve{F}_{Y_{\theta}}(u|s) + \gamma_{\mathbf{t}}(u)}{b_{\lambda^*}}$, where

$$\begin{split} b_{\lambda^*} &= \frac{\left\| \lambda^* \check{F}_{Y_t^{\theta}}(\cdot|s) + \gamma_t \right\|}{\left\| \check{F}_{Y_t^{\theta}}(\cdot|s) \right\|}, \quad \lambda^* &= \frac{-2 \left\langle \check{F}_{Y_t^{\theta}}(\cdot|s), \gamma_t \right\rangle + \sqrt{\Delta}}{2 \left\| \check{F}_{Y_t^{\theta}}(\cdot|s) \right\|^2}, \quad \mathcal{K} &= \left\| \check{F}_{Y_t^{\theta}}(\cdot|s) \right\|^2 - \frac{\epsilon_t^2}{2} \\ \Delta &= 4 \left(\left\langle \check{F}_{Y_t^{\theta}}(\cdot|s), \gamma_t \right\rangle^2 + \left\| \check{F}_{Y_t^{\theta}}(\cdot|s) \right\|^2 \frac{\left\| \check{F}_{Y_t^{\theta}}(\cdot|s) \right\|^2 \left\langle \check{F}_{Y_t^{\theta}}(\cdot|s), \gamma_t \right\rangle^2 - \mathcal{K}^2 \|\gamma_t\|^2}{\mathcal{K}^2 - \left\| \check{F}_{Y_t^{\theta}}(\cdot|s) \right\|^4} \right). \end{split}$$

The optimal solution remains valid with $\lambda^* = 0$ if the tolerance ϵ_t satisfies

$$\epsilon_t^2 > 2 \left\| reve{F}_{Y_t^{ heta}}(\cdot|s)
ight\|^2 \left(1 - rac{\left\langle \gamma_t, reve{F}_{Y_t^{ heta}}(\cdot|s)
ight
angle}{\left\| reve{F}_{Y_t^{ heta}}(\cdot|s)
ight\| \left\| \gamma_t
ight\|}
ight).$$

Matériel additionnel 47/3

Deterministic Gradient for Robust Dynamic Risk

Consider the value function for dynamic robust risk measures, where γ_t is nondecreasing and

$$\varphi_{Y_t^{\theta}}^{\epsilon_t} = \left\{ Y^{\phi} \in \mathcal{Y}_{t+1} \, : \, \| \breve{F}_{Y_t^{\theta}|_{\mathcal{F}_t}} - \breve{F}_{Y^{\phi}|_{\mathcal{F}_t}} \|_2 \leq \epsilon_t, \, \| \breve{F}_{Y^{\phi}|_{\mathcal{F}_t}} \|_2 = \| \breve{F}_{Y_t^{\theta}|_{\mathcal{F}_t}} \|_2 \right\}.$$

The gradient of the value function is given by

$$\begin{split} \nabla_{\theta} V_t(s;\theta) &= \nabla_{\theta} Q_t(s,\pi^{\theta}(s);\theta) \\ &= \left(\nabla_{a} Q_t(s,a;\theta) \Big|_{a=\pi^{\theta}(s)} - \frac{(b_{\lambda^*} - \lambda^*)^2}{b_{\lambda^*}} \mathbb{E}_{t,s} \left[Y_t^{\theta} \left. \frac{\nabla_{a} F_{Y_t^{\theta}}(x|s,a)}{\nabla_{x} F_{Y_t^{\theta}}(x|s,a)} \right|_{(x,a) = (Y_t^{\theta},\pi^{\theta}(s))} \right] \right) \nabla_{\theta} \pi^{\theta}(s). \end{split}$$

Matériel additionnel 48 / 37

Algorithm – Dynamic Convex Risk

Algorithm 1: Actor-critic algorithm – Nested simulation approach

```
Input: ANNs \pi^{\theta}, V^{\phi}, numbers of epochs K's, mini-batch sizes B's
   Set initial learning rates for \phi, \theta;
   for each iteration k = 1, ..., K do
         for each epoch k^{\phi} = 1, \dots, K^{\phi} do
               Simulate a mini-batch of B^{\phi} episodes induced by \pi^{\theta};
               Generate M^{\phi} additional (inner) transitions induced by \pi^{\theta}:
 5
               Compute the loss \mathcal{L}(\phi): expected square loss between predicted and target values;
 6
               Update \phi by performing an Adam optimisation step, tune the learning rate for \phi;
         for each epoch k^{\theta} = 1, \dots, K^{\theta} do
 8
               Simulate a mini-batch of B^{\theta} episodes induced by \pi^{\theta}:
               Generate M^{\theta} additional (inner) transitions induced by \pi^{\theta}:
               Compute the loss \mathcal{L}(\theta): policy gradient:
11
               Update \theta by performing an Adam optimisation step, tune the learning rate for \theta;
12
   Output: Optimal policy \pi^{\theta} and its value function V^{\phi}
```

Matériel additionnel 49 / 37

Algorithm – Dynamic Elicitable Risk

Algorithm 2: Actor-critic algorithm – Elicitable approach

```
Input: ANNs \pi^{\theta}, V^{\phi}, numbers of epochs K's, mini-batch sizes B's
   Set initial learning rates for \phi, \theta:
   for each iteration k = 1, ..., K do
         for each epoch k^{\phi} = 1, \dots, K^{\phi} do
               Simulate a mini-batch of B^{\phi} episodes induced by \pi^{\theta}:
               Compute the loss \mathcal{L}(\phi): minimization of the expected consistent score;
               Update \phi by performing an Adam optimisation step, tune the learning rate for \phi:
              if k^{\phi} \mod K^* = 0 then
                    Update the target networks \tilde{\phi}:
 8
         for each epoch k^{\theta} = 1, \dots, K^{\theta} do
 9
               Simulate a mini-batch of [B^{\theta}/(1-\alpha)] episodes induced by \pi^{\theta};
10
               Compute the loss \mathcal{L}(\theta): policy gradient;
11
               Update \theta by performing an Adam optimisation step, tune the learning rate for \theta;
12
   Output: Optimal policy \pi^{\theta} and its value function V^{\phi}
```

Matériel additionnel 50 / 37

Algorithm – Dynamic Robust Risk

- Adversary estimates the distribution of the costs-to-go
- Critic calculates the value function of the given policy
- Actor updates the current policy

```
Input: ANNs \pi^{\theta}, V^{\phi}, F^{\vartheta}, numbers of epochs K's
1 for each iteration k = 1, ..., K do
        while convergence is not achieved do
2
             for k^{\vartheta} = 1, \ldots, K^{\vartheta} do
                  Adversary: minimization of the expected scoring rule for F to update \vartheta;
4
             for k^{\phi} = 1, \dots, K^{\phi} do
5
                  Critic: minimization of the expected consistent score to update \phi;
6
       for k^{\theta} = 1, \dots, K^{\theta} do
7
             Actor: policy gradient to update \theta:
8
  Output: Optimal policy \pi^{\theta}, its value function V_t(s;\theta), and the CDF F_{V\theta}
```

Matériel additionnel 51/37

Inverse RL Setup (Infinite-Horizon Setting)

We assume finite state S and action A spaces, and a risk-aversion modeled by a dynamic spectral risk measure (defined through φ).

At each iteration.

- the learner designs a controlled transition matrix $G \in \mathcal{T}(S)^{A}$
- the agent demonstrates its optimal policy satisfying

$$\pi^*(s) \in \operatorname*{arg\,min}_{a \in \mathcal{A}}
ho_{arphi}\left(V^*\left(X^{s,a}_{G}
ight)
ight), \quad s \in \mathcal{S},$$

where

$$V^*(s) = C(s) + r \min_{s \in \mathring{A}} \left\{ \rho_{\varphi} \left(V^* \left(X_G^{s,a} \right) \right) \right\}, \quad s \in \mathcal{S}.$$

The learner aims to identify (C, r, φ) from a set of candidates by only observing $(G_n, \pi_n^*)_{n=1}^N$

Matériel additionnel 52 / 37

Environment Design Approaches

We define:

- Regret: $\Phi^s(a; G, \ell) = \sum_{s \in \mathcal{S}} C_{\ell}(s) + r_{\ell} \rho_{\varphi_{\ell}} \left(V_{G,\ell}^*(X_G^{s,a}) \right) V_{G,\ell}^*(s)$
 - Difference between optimal and actual reward
- Distinguishing power: $\Psi(G, i, j) = -\sum_{s \in S} \Phi^{s} \left(\pi^{*, i}; G, j \right) \Phi^{s} \left(\pi^{*, j}; G, i \right)$
 - $\Psi \leq 0$, and large $|\Psi|$ indicates that G easily distinguishes i and j
- Gibbs measure on the risk candidates: $\mathbb{Q}_N(\{\ell\}) \propto \exp\left(-k\sum_{n=1}^N \Phi(\pi_n^*; G_n, \ell)\right)$

Current belief of the risk candidates being the true risk-aversion

Matériel additionnel 53/37

Main Contributions

Cheng, Coache & Jaimungal (2023) Eliciting Risk Aversion with Inverse Reinforcement Learning via Interactive Questioning. *arXiv*. DOI: 10.48550/arXiv.2308.08427

- Existence of a distinguishing environment
- Gibbs measure \mathbb{Q}_n is consistent, i.e. if $G_n \sim \mathsf{Unif}(\mathcal{T}(\mathcal{S})^{\mathcal{A}})$ iid and (C_0, r_0, φ_0) be the true risk-aversion, then

$$\lim_{N\to\infty}\mathbb{Q}_N(\{0\})=1$$
 a.s.

- Environment design approaches to improve the learning speed:
 - $G_{N+1} \in \arg\min_G \Psi(G, \eta^*, \zeta^*)$, where $\eta = \arg\max \mathbb{Q}_N(i)$, $\zeta = \arg\max \mathbb{Q}_N(i) \setminus \{\eta\}$
 - $G_{N+1} \in \arg\min_{G} \mathbb{E}[\Psi(G, \eta, \zeta)]$, where $\eta \sim \mathbb{Q}_N$, $\zeta \sim \mathbb{Q}_N | \zeta \neq \eta$

Matériel additionnel 54/37