Matrices orthogonales et isométries

I. Matrices orthogonales

1. Définitions et premières propiétés

Définition. Une matrice $M \in M_n(\mathbb{R})$ est dite orthogonale si ${}^tMM = I_n$ On note $O_n(\mathbb{R})$ l'ensemble des matrices de $M_n(\mathbb{R})$ orthogonales.

Proposition. Soit $M \in M_n(\mathbb{R})$, on a:

$$M \in O_n(\mathbb{R}) \Longleftrightarrow \begin{cases} M \in GL_n(\mathbb{R}) \\ M^{-1} = {}^tM \end{cases} \Longleftrightarrow {}^tM \in O_n(\mathbb{R})$$

Proposition. Soit $M \in M_n(\mathbb{R})$. La matrice M est orthogonale si, et seulement si, ses colonnes forment une bon pour le produit scalaire canonique de \mathbb{R}^n .

Corollaire. Soit $M \in M_n(\mathbb{R})$. La matrice M est orthogonale si, et seulement si, ses lignes forment une bon pour le produit scalaire canonique de \mathbb{R}^n .

Proposition. Les matrices de $O_2(\mathbb{R})$ sont les matrices de la forme

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad ou \quad S(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \quad avec \quad \theta \in \mathbb{R}$$

Proposition. L'ensemble $(O_n(\mathbb{R}), \times)$ est un sous-groupe de $GL_n(\mathbb{R})$.

Proposition. Si $M \in O_n(\mathbb{R})$, alors det $M = \pm 1$.

Définition. Une matrice $M \in O_n(\mathbb{R})$ est dite positive si $\det M = 1$ et négative sinon On note $SO_n(\mathbb{R})$ l'ensemble des matrices de $M_n(\mathbb{R})$ orthogonales positives.

Proposition. L'ensemble $SO_n(\mathbb{R})$ est un sous-groupe de $O_n(\mathbb{R})$.

Corollaire. Pour tout $(\theta, \theta') \in \mathbb{R}^2$, on a $R(\theta)R(\theta') = R(\theta')R(\theta) = R(\theta + \theta')$. Ainsi, $SO_2(\mathbb{R}) = \{R(\theta), \theta \in \mathbb{R}\}$ est un groupe commutatif.

2. Matrices orthogonales et bases orthonormales

Dans la suite E désigne un espace euclidein de dimension n.

Théorème. Soient \mathcal{B} une bon de E et \mathcal{B}' une base de E.

La base \mathcal{B}' est orthonormale si, et seulement si, la matrice de passage $P_{\mathcal{B},\mathcal{B}'}$ est orthogonale.

Proposition. Soient \mathcal{B} une bon directe de E et \mathcal{B}' une base de E.

La base \mathcal{B}' est orthonormale directe si, et seulement si, la matrice de passage $P_{\mathcal{B},\mathcal{B}'}$ est orthogonale positive.

Corollaire. Soient $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (f_1, ..., f_n)$ deux bases orthonormales de E et P la matrice de passage de \mathcal{B} dans \mathcal{B}' .

Les bases \mathcal{B} et \mathcal{B}' ont la même orientation si, et seulement si, $\det P = 1$

Proposition. Soient $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (f_1, ..., f_n)$ deux bases orthonormales directes de E, alors $\det_{\mathcal{B}} = \det_{\mathcal{B}'}$.

Définition. Soit E euclidien de dimension n.

Le déterminant dans n'importe quelle base orthonormée directe est appelée le produit mixte. Le produit mixte de vecteurs $x_1, ..., x_n$ est noté $Det(x_1, ..., x_n)$ ou $[x_1, ..., x_n]$.

Proposition. Soit E euclidien de dimension $n, f \in (E)$ et $(x_1, ..., x_n)$. On a $[f(x_1), ..., f(x_n)] = \det f \times [x_1, ..., x_n]$

II. Isométries

Définition. On appelle isométrie vectorielle de E tout endomorphisme de E qui conserve la norme, i.e. vérifiant

$$\forall x \in E, \|f(x)\| = \|x\|.$$

L'ensemble des isométries de E est noté O(E)

Proposition. Tout isométrie vectorielle est un automorphisme.

Proposition. L'ensemble $(O(E), \circ)$ est un groupe appelé groupe orthogonal.

Proposition. Un endomorphisme de E est une isométrie si, et seulement, s'il conserve le produit scalaire i.e. si, et seulement si,

$$\forall (x,y) \in E^2, \langle f(x), f(y) \rangle = \langle x, y \rangle$$

 $\textbf{Corollaire.}\ L'image\ de\ deux\ vecteurs\ orthogonaux\ par\ une\ isom\'etrie\ vectorielle\ est\ deux\ vecteurs\ orthogonaux.$

Une isométrie vectorielle est aussi appelée un automorphisme orthogonal.

Définition. On appelle symétrie orthogonale toute symétrie par rapport à un sev F parallèlement à son orthogonal F^{\perp} .

Proposition. Toute symétrie orthogonale est une isométrie vectorielle.

Théorème. Soit f un endomorphisme de E et \mathcal{B} une bon de E. Il y a équivalence entre :

- f est une isométrie,
- f transforme toute bon en une bon,
- f transforme \mathcal{B} en une bon.

Théorème. Soit $f \in \mathcal{L}(E)$ et \mathcal{B} une bon de E. On a :

$$f \in O(E) \iff Mat_{\mathcal{B}} f \in O_n(\mathbb{R}).$$

Corollaire. Les isométries de \mathbb{R}^2 sont les rotations et les symétries par rapport à une droite.

Proposition. Soit $\theta \in \mathbb{R}$ et \mathcal{B} une base orthonormée directe et r l'endomorphisme de E tel que $Mat_{\mathcal{B}}f = R(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Alors, dans toute base orthonormée directe \mathcal{B}' , $Mat_{\mathcal{B}'}f = R(\theta)$. L'endomorphisme f est appelé la rotation d'angle θ .

Proposition. Si \vec{u} et \vec{v} sont deux vecteurs unitaires de \mathbb{R}^2 , alors il existe une unique rotation qui transforme \vec{u} en \vec{v} .

Son angle est appelé angle orienté entre les vecteurs \vec{u} et \vec{v} et noté (\vec{u}, \vec{v}) . Il est unique modulo 2π .

Définition. Soient \vec{u} et \vec{v} sont deux vecteurs non nuls de \mathbb{R}^2 . On appelle angle orienté entre les vecteurs \vec{u} et \vec{v} et on note (\vec{u}, \vec{v}) , l'angle entre les vecteurs $\frac{\vec{u}}{\|\vec{u}\|}$ et $\frac{\vec{v}}{\|\vec{v}\|}$.