ADVANCED ALGORITHM DESIGN

Homework 3

November 17, 2024

Problem 1

This problem explores compressed sensing schemes that work when noise/numerical precision is not an issue. Let $q_1, \dots, q_n \in \mathbb{R}$ be any set of distinct numbers. E.g. we could choose $q_i = i$. Consider the sensing matrix $A \in \mathbb{R}^{2k \times n}$:

$$A = \begin{bmatrix} 1 & 1 & \cdots & \cdots & 1 \\ q_1 & q_2 & \cdots & \cdots & q_n \\ q_1^2 & q_2^2 & \cdots & \cdots & q_n^2 \\ \vdots & \vdots & & & \vdots \\ q_1^{2k-1} & q_2^{2k-1} & \cdots & \cdots & q_n^{2k-1} \end{bmatrix}.$$

Show that if $x \in \mathbb{R}^n$ is a k-sparse vector, that is, $||x||_0 \le k$, then x can be recovered uniquely given Ax, which is a vector with length 2k. You don't need to give an efficient algorithm. Just argue that for any given $y \in \mathbb{R}^{2k}$, there is at most one k-sparse x such that y = Ax.

Solution

We assume $n \geq 2k$, that is, A is horizontally wide.

WLOG, $q_1 < \cdots < q_n$. For any index set $S = \{i_1, \cdots, i_{2k}\}$ with $1 \le i_1 < \cdots < i_{2k} \le n$, we denote by A_S the $2k \times 2k$ matrix formed by taking only the columns i_1, \cdots, i_{2k} from A. This is a Vandermonde matrix with determinant $\det A_S = \prod_{\alpha > \beta} (q_{i_\alpha} - q_{i_\beta}) \ne 0$.

Let $\boldsymbol{x}, \boldsymbol{z} \in \mathbb{R}^n$ be k-sparse vectors such that $A\boldsymbol{x} = A\boldsymbol{z}$. Take $S := \operatorname{supp}(\boldsymbol{x} - \boldsymbol{z})$ so that $|S| \leq 2k$ (WLOG take it to be 2k by adding more indices which could be 0 in $\boldsymbol{x} - \boldsymbol{z}$). WLOG say $S = \{1, \dots, 2k\}$ in an increasing order. Then A_S is invertible by the previous paragraph. Next note that if $\boldsymbol{v} \in \mathbb{R}^{2k}$ then $\boldsymbol{v}\boldsymbol{e}_i^{\top}$ is the $2k \times 2k$ matrix whose i^{th} column is all \boldsymbol{v} and 0 everywhere else. Take $\boldsymbol{v} := \boldsymbol{x} - \boldsymbol{z}$ now. The next key observation is that $A_S = \sum_{i \in S} A\boldsymbol{e}_i\boldsymbol{e}_i^{\top}$ and that $\boldsymbol{v}_S = \sum_{j \in S} \boldsymbol{e}_j\boldsymbol{e}_j^{\top}\boldsymbol{v}$ where \boldsymbol{v}_S is the restriction of \boldsymbol{v} to only the indices in S. Here $\operatorname{supp}\boldsymbol{v} \subseteq S$. Therefore $A_S\boldsymbol{v}_S = \sum_{i \in S} A\boldsymbol{e}_i\boldsymbol{e}_i^{\top}\boldsymbol{v} = \sum_{i \in S} A\boldsymbol{e}_i\boldsymbol{e$

In this problem, we will come up with two alternate characterizations of the minimum distance of a binary linear code. Let $E: \mathbb{F}_2^k \to \mathbb{F}_2^n$ be a linear error correcting code that stretches k bits into n bits. Let $\mathbf{g}_i = E(\mathbf{e}_i)$ be the encoding of the standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_k$ in the k dimensions. Let G be the $k \times n$ matrix with ith row equal to \mathbf{g}_i .

- (a) Let $C = \operatorname{Span}(g_1, g_2, \dots, g_k)$ be the linear subspace \mathbb{F}_2^n . Prove that every element of C is an encoding of some message.
- (b) Argue that minimum distance of the code defined by E equals the smallest number of 1s in any non-zero element of C.
- (c) Prove that if every subset of k columns of G are linearly independent, then, E has minimum distance $d \ge n k + 1$. (Hint: use the conclusion from part (a) and remember that if every k columns of G are linearly independent then every $k \times k$ submatrix of G must be full rank.)

Solution

Assume E is injective.

- (a) Let $\mathbf{v} \in C$. Then $\mathbf{v} = \sum_{i=1}^k a_i \mathbf{g}_i$ for some scalars $a_i \in \mathbb{F}_2$. So, $\mathbf{v} = \sum_{i=1}^k a_i E(\mathbf{e}_i) = E\left(\sum_{i=1}^k a_i \mathbf{e}_i\right)$. So \mathbf{v} is the encoding of $\sum_{i=1}^k a_i \mathbf{e}_i$.
- (b) Recall the definition of minimum distance: $\Delta = \min_{\boldsymbol{x},\boldsymbol{y} \in \mathbb{F}_2^k, \boldsymbol{x} \neq \boldsymbol{y}} \|E(\boldsymbol{x}) E(\boldsymbol{y})\|_0. \text{ By linearity of } E,$ $\Delta = \min_{\boldsymbol{x},\boldsymbol{y} \in \mathbb{F}_2^k, \boldsymbol{x} \neq \boldsymbol{y}} \|E(\boldsymbol{x} \boldsymbol{y})\|_0 = \min_{\boldsymbol{z} \in \mathbb{F}_2^k, \boldsymbol{z} \neq 0} \|E(\boldsymbol{z})\|_0 = \min_{\boldsymbol{z} \in \mathbb{F}_2^k, \boldsymbol{z} \neq 0} \|E(\boldsymbol{z})\|_0 = \min_{\boldsymbol{v} \in E(\mathbb{F}_2^k) = C, \boldsymbol{v} \neq 0} \|\boldsymbol{v}\|_0.$
- (c) Every subset of k columns of G is linearly independent. Note that $\mathbf{g}_i = G^{\top}\mathbf{e}_i = E(\mathbf{e}_i)$. Say $\mathbf{a} = E(\mathbf{x}) \in C$ has $\geq k$ zero entries, that is, $\|\mathbf{a}\|_0 \leq n-k$. WLOG, entries at $S = \{1, \cdots, k\}$ in \mathbf{a} are 0. The submatrix G_S of G^{\top} formed by taking the first k rows has size $k \times k$ and is full rank, thus invertible. Then $\begin{bmatrix} G_S^{-1} & \mathbf{0}_{k \times (n-k)} \end{bmatrix} G_{n \times k}^{\top} = I_k$ where I_k is the $k \times k$ identity matrix. Therefore, $\mathbf{x} = \begin{bmatrix} G_S^{-1} & \mathbf{0}_{k \times (n-k)} \end{bmatrix} G_{n \times k}^{\top} \mathbf{x} = \begin{bmatrix} G_S^{-1} & \mathbf{0}_{k \times (n-k)} \end{bmatrix} \mathbf{a} = \mathbf{0}$ where the last equality is true because the last n-k columns of the matrix are 0 are the first k entries of k are 0. Therefore k and k are 1 for any nonzero k and 1 for any nonzero k are 1 for any nonzero k are 1 for any nonzero k are 1 for any nonzero k and 1 for any nonzero k are 1 for any nonzero k and 2 for any nonzero k are 1 for any nonzero k and 2 for any nonzero k are 1 for any nonzero k are 2 for any nonzero k are 2 for any nonzero k are 2 for any nonzero k and 2 for any nonzero k are 3 for any nonzero k are 2 for any nonzero k are 3 for any nonzero k and 2 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k and 3 for any nonzero k any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for any nonzero k are 3 for any nonzero k and 3 for

- (a) Let M be the transition matrix of a ergodic random walk with mixing time t_0 . Let $M' = \frac{1}{2}(I+M)$ be the "lazy" version of this Markov Chain. Show that the mixing time of M' is at most $10t_0$. It's fine to have any constant (instead of 10) in this bound.
- (b) Let M be the transition matrix of a random walk on an undirected d-regular graph G on n vertices that defines an ergodic Markov Chain with stationary distribution π . In the class, we defined the mixing time of this Markov Chain as the smallest integer t_0 such that for every distribution x on the vertices of G, $\|M^{t_0}x \pi\|_1 \leq \frac{1}{4}$. Justify this definition by arguing that the distance to stationary distribution shrinks exponentially: i.e., show that after kt_0 steps, $\|M^{kt_0}x \pi\|_1 \leq 2^{-k}$.

Solution

Lemma 1

Let $\boldsymbol{x}, \boldsymbol{y} \in \Delta_{n-1}$ be two probability distributions, that is, $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n, \boldsymbol{x} \geq 0, \boldsymbol{y} \geq 0$ and $\|\boldsymbol{x}\|_1 = \|\boldsymbol{y}\|_1 = 1$. Then $\|\boldsymbol{x} - \boldsymbol{y}\|_1 = 2\sum_{i \in [n]} \mathbf{1}[x_i < y_i] \cdot (y_i - x_i)$.

Proof. Let I denote the set of all $i \in [n]$ for which $x_i = \boldsymbol{e}_i^\top \boldsymbol{x} < \boldsymbol{e}_i^\top \boldsymbol{y} = y_i$. And denote $\boldsymbol{v} \coloneqq \boldsymbol{x} - \boldsymbol{y}$. Then $\sum_i v_i = 0$. Furthermore $v_i < 0 \iff i \in I$. So $I = \{i \in [n] \mid v_i < 0\}$. Then the sum on the RHS of the given statement is simply $-2 \sum_{i \in S} v_i$. Note that $\|\boldsymbol{x} - \boldsymbol{y}\|_1 = -\sum_{i \in I} v_i + \sum_{i \notin I} v_i = -\sum_{i \in I} v_i + 0 - \sum_{i \in I} v_i$ which is exactly the required quantity.

Lemma 2

Let $x, y \in \Delta_{n-1}$ be two probability distributions. For any $i, j \in [n]$, define

$$f(i,j) = \begin{cases} \min\{x_i, y_j\} & \text{if } i = j\\ \frac{2\max\{x_i - y_i, 0\} \max\{y_j - x_j, 0\}}{\|\mathbf{x} - \mathbf{y}\|_1} & \text{otherwise} \end{cases}.$$

Then $\sum_{i \in [n]} f_t(i,j) = y_j \ \forall \ j \in [n], \sum_{j \in [n]} f_t(i,j) = x_i \ \forall \ i \in [n] \ \text{and} \ \frac{1}{2} \| \boldsymbol{x} - \boldsymbol{y} \|_1 = \sum_{i \in [n]} \sum_{j \in [n]} \mathbf{1}_{i \neq j} f(i,j).$ Essentially this implies that f is a joint distribution with marginals \boldsymbol{x} and \boldsymbol{y} .

Proof. Let $S := \{i \in [n] \mid x_i \geq y_i\}$. This S is simply the complement of I in the proof of lemma 1.

So
$$\sum_{j \in [n]} f(i,j) = \min\{x_i, y_i\} + 2 \max\{x_i - y_i, 0\} \sum_{j \in [n] \setminus \{i\}} \frac{\max\{y_j - x_j, 0\}}{\|\mathbf{x} - \mathbf{y}\|_1}$$
.

We will only show $\sum_{j \in [n]} f(i,j) = x_i \ \forall \ i \in [n]$ because the proof for $\sum_{i \in [n]} f(i,j) = y_j \ \forall \ j \in [n]$ is exactly the same.

If $i \in S$, we have

$$\sum_{j \in [n]} f(i,j) = \min \{x_i, y_i\} + 2\max \{x_i - y_i, 0\} \sum_{j \in [n] \setminus \{i\}} \frac{\max \{y_j - x_j, 0\}}{\|\boldsymbol{x} - \boldsymbol{y}\|_1}$$

$$= y_i + (x_i - y_i) \sum_{j \in [n] \setminus \{i\}} 2\frac{\max \{y_j - x_j, 0\}}{\|\boldsymbol{x} - \boldsymbol{y}\|_1} = y_i + (x_i - y_i) \cdot 1 = x_i$$

where the second-last equality follows from lemma 1.

If $i \notin S$, we have

$$\sum_{j \in [n]} f(i,j) = \min \{x_i, y_i\} + 2\max \{x_i - y_i, 0\} \sum_{j \in [n] \setminus \{i\}} \frac{\max \{y_j - x_j, 0\}}{\|x - y\|_1}$$
$$= x_i + 2 \cdot 0 \cdot \sum_{j \in [n] \setminus \{i\}} \frac{\max \{y_j - x_j, 0\}}{\|x - y\|_1} = x_i.$$

Finally we show
$$\| \boldsymbol{x} - \boldsymbol{y} \|_1 = \sum_{i \in [n]} \sum_{j \in [n]} \mathbf{1}_{i \neq j} f(i, j)$$
. Indeed $\sum_{i \in [n]} \sum_{j \in [n]} \mathbf{1}_{i \neq j} f(i, j) = \sum_{i \in [n]} (x_i - \min\{x_i, y_i\}) = \sum_{i \in S} (x_i - \min\{x_i, y_i\}) + \sum_{i \notin S} (x_i - \min\{x_i, y_i\}) = \sum_{i \in S} (x_i - y_i) \stackrel{\text{lemma } 1}{=} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{x} \|_1$

Corollary 3

Let M be the (symmetric) transition matrix of the random walk on a graph G with n vertices. Define $d(t) \coloneqq \sup_{\boldsymbol{x}, \boldsymbol{y} \in \Delta_{n-1}} \left\| M^t \boldsymbol{x} - M^t \boldsymbol{y} \right\|_1$ for any $t \in \mathbb{N}$. Then $d(s+t) \leq \frac{1}{2} d(s) d(t)$.

Proof. Fix $s,t \in \mathbb{N}$. Let $\boldsymbol{x},\boldsymbol{y} \in \Delta_{n-1}$. Note that $M^s(\Delta_{n-1}) \subseteq \Delta_{n-1}$. Use the f in the above lemma by replacing \boldsymbol{x} (in the lemma) with $M^s\boldsymbol{x}$ and \boldsymbol{y} with $M^s\boldsymbol{y}$. Note that $\boldsymbol{e}_i^{\top}M^{t+s}\boldsymbol{x} = \sum_{k=1}^n \boldsymbol{e}_i^{\top}M^t\boldsymbol{e}_k(M^s\boldsymbol{x})_k = \sum_{k=1}^n \boldsymbol{e}_i^{\top}M^t\boldsymbol{e}_k(M^s\boldsymbol{x})_k$

$$\sum_{k=1}^{n} \boldsymbol{e}_{i}^{\top} M^{s} \boldsymbol{e}_{k} \sum_{j=1}^{n} f(k,j) = \sum_{j \in [n]} \sum_{k \in [n]} f(k,j) \boldsymbol{e}_{i}^{\top} M^{s} \boldsymbol{e}_{k}. \text{ Similarly, } \boldsymbol{e}_{i}^{\top} M^{s+t} \boldsymbol{y} = \sum_{j \in [n]} \sum_{k \in [n]} f(k,j) \boldsymbol{e}_{i}^{\top} M^{s} \boldsymbol{e}_{j}.$$
Therefore

$$\begin{split} \left\| M^{s+t}(\boldsymbol{x} - \boldsymbol{y}) \right\|_1 &= \sum_i \left| \sum_j \sum_k f(k,j) \boldsymbol{e}_i^\top M^s(\boldsymbol{e}_k - \boldsymbol{e}_j) \right| \\ &\leq \sum_{j,k} \sum_i f(k,j) \left| \boldsymbol{e}_i^\top M^s(\boldsymbol{e}_k - \boldsymbol{e}_j) \right| \\ &= \sum_{j,k} f(k,j) \left\| M^s \boldsymbol{e}_k - M^s \boldsymbol{e}_j \right\|_1 \\ &= \sum_{j,k} \mathbf{1}_{j \neq k} f(k,j) \left\| M^s \boldsymbol{e}_k - M^s \boldsymbol{e}_j \right\|_1 \\ &\leq d(s) \sum_{j,k} \mathbf{1}_{j \neq k} f(k,j) \stackrel{\text{lemma 2}}{=} \frac{1}{2} d(s) d(t). \end{split}$$

Since this was for arbitrary $x, y \in \Delta_{n-1}$, taking sup gives the desired result.

- (b) Let π be the stationary distribution. Clearly $\sup_{\boldsymbol{x}\in\Delta_{n-1}}\|M^t\boldsymbol{x}-\boldsymbol{\pi}\|_1 \leq \sup_{\boldsymbol{x},\boldsymbol{y}\in\Delta_{n-1}}\|M^t\boldsymbol{x}-M^t\boldsymbol{y}\|_1$ since the constraint $\boldsymbol{y}=\pi$ only makes the feasible set smaller, thus lowering the maximum value. Corollary 3 with induction gives $\sup_{\boldsymbol{x}\in\Delta_{n-1}}\|M^{kt_0}\boldsymbol{x}-\boldsymbol{\pi}\|_1 \leq d(kt_0) \leq \frac{d(t_0)}{2^k}$ (d is as in corollary 3). But $d(t_0)=\sup_{\boldsymbol{x},\boldsymbol{y}\in\Delta_{n-1}}\|M^{t_0}\boldsymbol{x}-M^{t_0}\boldsymbol{y}\|_1 \leq \sup_{\boldsymbol{x},\boldsymbol{y}\in\Delta_{n-1}}(\|M^{t_0}\boldsymbol{x}-\boldsymbol{\pi}\|_1+\|M^{t_0}\boldsymbol{y}-\boldsymbol{\pi}\|_1)<1$. Therefore $\sup_{\boldsymbol{x}\in\Delta_{n-1}}\|M^{kt_0}\boldsymbol{x}-\boldsymbol{\pi}\|_1 \leq 2^{-k}$. Note that d-regularity was not used.
- (a) Assume that the graph is d-regular. M is the transition matrix of this random walk. Say its eigenvalues are $1 = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n (>-1)$. $P = \frac{1}{2}(I+M)$ is the lazy version. We want to bound $\|P^t(\boldsymbol{x}-\boldsymbol{\pi})\|_1$ where $\boldsymbol{\pi}$ is the stationary distribution of M, hence the stationary distribution of P. The eigenvalues of M and P are related as $\lambda_i \leftrightarrow \mu_i \coloneqq \frac{1+\lambda_i}{2}$. Since M is ergodic, $\mu_2 < 1$ and $\mu_n > 0$. Let $\boldsymbol{x} \in \Delta_{n-1}$ and denote $\boldsymbol{v} \coloneqq \boldsymbol{x} \boldsymbol{\pi}$. It's worth noting that $\|M^s\boldsymbol{v}\|_1 \leq \|M^s\|_1 \|\boldsymbol{v}\|_1 = \|\boldsymbol{v}\|_1 \leq \|\boldsymbol{x}\|_1 + \|\boldsymbol{\pi}\|_1 = 2$ where we used that $\|M^s\|_1$ is the maximum of the absolute value column sums which is 1. Take $t \coloneqq 100t_0$.

$$\begin{split} \left\| P^{t} \boldsymbol{v} \right\|_{1} &= \left\| \frac{1}{2^{t}} \sum_{i=0}^{t} {t \choose i} M^{i} \boldsymbol{v} \right\|_{1} \\ &\leq \frac{1}{2^{t}} \sum_{i=0}^{t} {t \choose i} \left\| M^{i} \boldsymbol{v} \right\|_{1} \\ &= \frac{1}{2^{t}} \sum_{i=0}^{t/4} {t \choose i} \left\| M^{i} \boldsymbol{v} \right\|_{1} + \frac{1}{2^{t}} \sum_{25t_{0} < i \leq t} {t \choose i} \left\| M^{i} \boldsymbol{v} \right\|_{1} \\ &\leq 2 \sum_{i=0}^{t/4} {t \choose i} 2^{-t} + \frac{1}{2^{t}} \sum_{25t_{0} < i \leq t} {t \choose i} \left\| M^{i} \boldsymbol{v} \right\|_{1} \end{split}$$

We use the lower-tail Chernoff bound 1 that if $X_1, \cdots, X_t \in \{0, 1\}$ are outcomes of a fair coin toss with $X = \sum_{i=1}^t X_i$ then $\mu = \mathbb{E}[X] = \frac{t}{2}$ and $p := \sum_{i=0}^{t/4} \binom{t}{i} 2^{-i} = \mathbb{P}\left[X \le \frac{t}{4} = (1 - \frac{1}{2})\mu\right] \le \exp\left\{-\frac{\mu \cdot (1/2)^2}{2}\right\} = \exp\left\{-\frac{t}{16}\right\} = \exp\left\{-\frac{100t_0}{16}\right\} \stackrel{[\cdot:t_0 \ge 1]}{\le} \exp\left\{-\frac{100t_0}{16}\right\} \le e^{-6}.$

Moreover we have (independently) proven in (b) that $\|M^{kt_0} \boldsymbol{x} - \boldsymbol{\pi}\|_1 \le 2^{-k}$ whence if $i \ge 25t_0$ then $\|M^i(\boldsymbol{x} - \boldsymbol{\pi})\|_1 \le \|M^{i-25t_0}\|_1 \|M^{25t_0}(\boldsymbol{x} - \boldsymbol{\pi})\|_1 = 1 \cdot \|M^{25t_0} \boldsymbol{x} - \boldsymbol{\pi}\|_1 \le 2^{-25}$

Then we have
$$\|P^t \pmb{v}\|_1 \le 2p + 2^{-t} \sum_{25t_0 < i \le t} {t \choose i} \|M^i \pmb{v}\|_1 \le 2p + 2^{-t} \sum_{25t_0 < i \le t} {t \choose i} 2^{-25} = 2p + (1-p) \cdot 2^{-25} = p(2-2^{-25}) + 2^{-25} \le 2e^{-6} + 2^{-25} < \frac{1}{8} + \frac{1}{8} = \frac{1}{4}.$$

(In fact one can improve the above constant 100 to 18 by breaking the sums into $\sum_{i=0}^{t/6} \cdot + \sum_{i>t/6} \cdot$).

 $^{^{1}\}mathbb{P}\left[X\leq(1-\delta)\mu\right]\leq\exp\left\{-\mu\delta^{2}/2\right\}\;\forall\;\delta\in(0,1)$

Let M be the Markov chain of a 5-regular undirected graph that is connected. Each node has self-loops with probability 1/2. We saw in class that 1 is an eigenvalue with eigenvector 1. Show that every other eigenvalue has magnitude at most $1 - \frac{1}{10n^2}$. What does this imply about the mixing time for a random walk on this graph from an arbitrary starting point?

Solution

Let $\mathcal{L}=5I-A$ where A is the adjacency matrix of a connected 5-regular graph (without self loops) G=([n],E). \mathcal{L},A have the same eigenvectors. Since A has eigenvalues in [-5,5] with the second highest eigenvalue <5 (because connected), the eigenvalues of \mathcal{L} are in [0,10] where the second smallest eigenvalue (call it λ) is >0. We will first show that $\lambda \geq \frac{1}{n^2}$.

$$\begin{array}{l} \text{Now}^2 \; \lambda = \pmb{v}^\top \mathcal{L} \pmb{v} = \sum\limits_{\{i,j\} \in E} (v_i - v_j)^2 \geq (v_{x_1} - v_{x_2})^2 + \dots + \left(v_{x_r} - v_{x_{r+1}}\right)^2 \overset{\text{Cauchy-Schwarz}}{\geq} \\ \frac{1}{r} \left(\sum\limits_{i=1}^r (v_{x_i} - v_{x_{i+1}})\right)^2 > \frac{1}{nr} \geq \frac{1}{n^2} \; \text{where the last inequality follows because } r+1 \leq n. \end{array}$$

The second smallest eigenvalue λ of $\mathcal L$ corresponds to the second largest eigenvalue μ_2 of A with the relation that $\lambda=5-\mu_2$ so that $\mu_2=5-\lambda$. The random walk described in the question has the transition matrix $\frac{1}{2}\left(I+\frac{1}{5}A\right)$. This matrix has all eigenvalues ≥ 0 and its second largest eigenvalue is $\tilde{\lambda}=\frac{1+\mu_2/5}{2}=\frac{5+\mu_2}{10}=\frac{10-\lambda}{10}=1-\frac{\lambda}{10}\leq 1-\frac{1}{10n^2}$.

Let $(a_1, b_1), \dots, (a_n, b_n) \in \mathbb{F}^2$ where $\mathbb{F} = GF(q)$ and $q \gg n$. We say that a polynomial p(x) describes k of these pairs if $p(a_i) = b_i$ for k values of i. This question concerns an algorithm that recovers p even if k < n/2 (in other words, a majority of the values are wrong).

- (a) Show that there exists a bivariate polynomial Q(z,x) of degree at most $\lceil \sqrt{n} \rceil + 1$ in z,x such that $Q(b_i,a_i)=0$ for each $1 \leq i \leq n$. Show also that there is an efficient (poly(n) time) algorithm to construct such a Q.
- (b) Show that if R(z, x) is a bivariate polynomial and g(x) a univariate polynomial then z g(x) divides R(z, x) iff R(g(x), x) is the 0 polynomial.
- (c) Suppose p(x) is a degree d polynomial that describes k of the points. Show that if d is an integer and $k > (d+1)(\lceil \sqrt{n} \rceil + 1)$ then z p(x) divides the bivariate polynomial Q described in part (a).

Solution

- (a) Take degree $D = \lceil \sqrt{2n} \rceil$ (I couldn't do $\lceil \sqrt{n} \rceil + 1$). To ensure Q has degree $\leq D$, each monomial x^iz^j should satisfy $j+i\leq D$. Define $Q(z,x)=\sum\limits_{i=0}^D\sum\limits_{j=0}^{D-i}c_{ij}x^iz^j$. Treat the c_{ij} 's as the variables and and we try to solve for the simultaneous system of equations $Q(b_l,a_l)=0$ ($\forall \ 1\leq l\leq n$) which are all linear in c_{ij} 's. The number of unknown c_{ij} we want to determine is precisely $\sum\limits_{i=0}^D (D-i+1)=(D+1)^2-\frac{D(D+1)}{2}=\frac{(D+2)(D+1)}{2}>\frac{2n}{2}=n$. Therefore we have more variables than constraints (namely n). So the $\{c_{ij}\}$ admit a nontrivial solution, which can be easily found by Gaussian elimination by forming the required matrix obtained from the equations $\sum\limits_{i=0}^d\sum\limits_{j=0}^{d-j}c_{ij}x_l^iz_l^j=0$ for $1\leq l\leq n$.
- (b) Suppose z-g(x)|R(x,z) in $\mathbb{F}[z,x]$. Then $\exists f(x,z)\in\mathbb{F}[z,x]$ such that R(z,x)=(z-g(x))f(z,x). Setting z=g(x) gives R(g(x),x)=0.
 - Suppose R(g(x),x)=0. Recall that $\mathbb{F}[x]$ is an Euclidean domain and so $\mathbb{F}[z,x]\cong (\mathbb{F}[x])[z]$ is a polynomial ring over a Euclidean domain. In simpler words it means that we can divide (with well defined "smaller" remainders) the same way as in $\mathbb{Z}[z]$. The notion of smallness is gives by the degree (in z) of the polynomials. So $\exists q,r\in\mathbb{F}[z,x]$ such that R(z,x)=(z-g(x))q(z,x)+r(z,x) where either r=0 or $\deg_z(r)=0$. This simply means that $r\in\mathbb{F}[x]$ and we can write R(z,x)=(z-g(x))q(z,x)+r(x). Plugging in z=g(x) gives 0=r(x). So R=(z-g)f, whence $z-g(x)\mid R(z,x)$.
- (c) $\deg p(x) = d$ and define $f(x) \coloneqq Q(p(x), x)$. Then f has k zeroes (among the first coordinates of the data points). Let's compute the degree of f. Each term $x^iz^j = x^ip(x)^j$ contributes a degree of $i + dj \le i + d(D-i) = dD (d-1)i \le dD = d\left\lceil \sqrt{2n}\right\rceil$. If $k > d\left\lceil \sqrt{2n}\right\rceil$, then f has more roots than its degree whence f is the zero polynomial (again, I could not do it for $k > (d+1)\left(\left\lceil \sqrt{n}\right\rceil + 1\right)$). By (b), $z p(x) \mid Q(z,x)$.