4/18/2020 HW10

Chem 30324, Spring 2020, Homework 10

Due April 24, 2020

Thermodynamics from scratch.

Let's calculate the thermodynamic properties of an ideal gas of CO molecules at 1 bar pressure. CO has a rotational constant B = 1.931 cm $^{-1}$ and vibrational frequency v = 2156.6 cm $^{-1}$. Suppose you have a 20 dm 3 cubic bottle containing 1 mole of CO gas that you can consider to behave ideally.

- 1. The characteristic temperature Θ of a particular degree of freedom is the characteristic quantum of energy for the degree of freedom divided by k_B . Calculate the characteristic translational, rotational, and vibrational temperatures of CO.
- 2. Calculate the *translational partition function* of a CO molecule in the bottle at 298 K. What is the unit of the partition function?
- 3. Plot the rotational and vibrational partition functions of a CO molecule in the bottle from T = 200 to 2000 K (assume the CO remains a gas over the whole range). Hint: Use your answer to Problem 1 to simplify calculating the rotational partition function.
- 4. Plot the *total translational, rotational, and vibrational energies* of CO in the bottle from T=200 to 2000 K (assume the CO remains a gas over the whole range). Which (if any) of the three types of motions dominate the total energy?
- 5. Plot the total translational, rotational, and vibrational constant volume molar heat capacities of CO in the bottle from T=200 to 2000 K. Which (if any) of the three types of motions dominate the heat capacity?

4/18/2020 HW10

6. Plot the *total translational, rotational, and vibrational Helmholtz energies* of CO in the bottle from T=200 to 2000 K. Which (if any) of the three types of motions dominate the Helmholtz energy?

7. Use your formulas to calculate ΔP , ΔU , ΔA , and ΔS associated with isothermally expanding the gas from 20 dm³ to 40 dm³.

Reactions from scratch

In 1996, Schneider and co-workers used quantum chemistry to compute the reaction pathway for unimolecular decomposition of trifluoromethanol, a reaction of relevance to the atmospheric degradation of hydrofluorocarbon refrigerants (*J. Phys. Chem.* 1996, 100, 6097- 6103, doi:10.1021/jp952703m) (https://pubs.acs.org/doi/abs/10.1021/jp952703m)): $CF_3OH \rightarrow COF_2 + HF$

Following are some of the reported results, computed at 298 K:

	CF ₃ OH	C(O)F ₂	HF	
$E^{ m elec}$	-412.90047	-312.57028	-100.31885	(Hartree)
ZPE	0.02889	0.01422	0.00925	(Hartree)
$oldsymbol{U}^{trans}$	3.7	3.7	3.7	$(kJ \text{ mol}^{-1})$
$oldsymbol{U}^{ m rot}$	3.7	3.7	2.5	$(kJ \text{ mol}^{-1})$
$oldsymbol{U}^{ ext{vib}}$	4.3	1.2	0	$(kJ \text{ mol}^{-1})$
$q^{ m trans}$ / V	7.72×10^{32}	1.59×10^{32}	8.65×10^{31}	(m^{-3})
$q^{\rm rot}$	61830	679	9.59	
$q^{ m vib}$	2.33	1.16	1	

8. Using the data provided, determine ΔU° (298 K)), in kJ mol^{-1} , assuming ideal behavior and 1 M standard state. Recall that U(T) is the sum of the contributions of all degrees of freedom.

4/18/2020 HW10

9. Using the data provided, determine ΔA° (298 K) in kJ mol $^{-1}$, assuming ideal behavior and 1 M standard state. Recall that $A^\circ = E^{\mathrm{elec}} + \mathrm{ZPE} - RT \ln(q^\circ) - RT$ and that $q^\circ = (q^{\mathrm{trans}}/V)q^{\mathrm{rot}}q^{\mathrm{vib}}/c^\circ$ in units corresponding with the standard state.

- 10. Determine ΔG° (298 K). Recall that G=A+PV=A+RT for an ideal ga.
- 11. Determine ΔS° (298 K), in J mol $^{-1}$ K $^{-1}$, assuming a 1 M standard state. Recall that S=(U-A)/T .
- 12. Using the data provided, determine K_c (298 K), assuming a 1 M standard state. You may either determine from partition functions of from the relationship between K_c and ΔG° .
- 13. 1 mole of CF₃OH is generated in a 20 L vessel at 298 K and left long enough to come to equilibrium with respect to its decomposition reaction. What is the composition of the gas (concentrations of all the components) at equilibrium (in mol/L)?
- 14. How, directionally, would your answer to Question 13 change if the vessel was at a higher temperature? Use the van'T Hoff relationship to determine the equilibrium constant and equilibrium concentrations at 273 and 323 K. How good was your guess?
- 15. How, directionally, would your answer to Question 13 change if the vessel had a volume of 5 L? Redo the calculation at this volume to verify your guess.
- 16. Consult a thermodynamics source (e.g. https://webbook.nist.gov/chemistry/)) to determine ΔH° (298 K), ΔS° (298 K), and ΔG° (298 K) for the homologous reaction CH₃OH (g) \rightarrow H₂ (g) + H₂CO (g). Does the substitution of F by H make the reaction more or less favorable?

|--|