

Circles Ex 16.4 Q4

We have to find x in each figure. (i) It is given that $\angle AOC = 135^{\circ}$

$$\angle AOC + \angle COB = 180^{\circ}$$
 [Linear pair] $\angle COB = 180^{\circ} - 135^{\circ}$

As we know the angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Now ,
$$x=rac{1}{2}oldsymbol{\angle COB}=22rac{1^{0}}{2}$$

Hence
$$x = 22\frac{1}{2}^{\circ}$$

(ii)
$$\angle CAB = \angle CDB = x$$

As we know that $\angle CAB = \angle CDB$

[Angles in the same segment]

Now ΔCBD are isosceles triangle and line AB is diameter passing through centre. So

$$\angle CBD + \angle BCD + \angle CDB = 180^{\circ}$$

 $80^{\circ} + \angle CDB + \angle BCD = 180^{\circ}$
 $2(\angle CDB) = 180^{\circ} - 80^{\circ}$
 $2(\angle CDB) = 100^{\circ}$

$$\angle CDB = \frac{100^{\circ}}{2}$$
$$= 50^{\circ}$$

Hence

$$x = 50^{\circ}$$

(iii) It is given that

$$\angle AOC = 120^{\circ}$$

$$\angle ABC = \frac{1}{2}$$
 (reflection)

$$\Rightarrow \angle AOC = \frac{1}{2} \left(360^{\circ} - 120^{\circ} \right)$$

So
$$\angle AOC = 120^{\circ}$$
 (1)

And
$$\angle ABC + \angle CBD = 180^{\circ}$$

$$\angle 120^{\circ} + \angle CBD = 180^{\circ} \dots (2)$$

Then
$$\angle CBD = 60^{\circ}$$

Hence
$$x = 60^{\circ}$$

(iv)
$$\angle DBC = 65^{\circ}$$

$$\angle ABC + \angle DBC = 180^{\circ}$$
 (Linear angle)

$$\angle ABC = 180^{\circ} - 65^{\circ}$$

$$=115^{\circ}$$

And

$$\angle x^0 = 2(\angle ABC)$$
$$= 2 \times 115^0$$
$$= 230^0$$

Hence

$$x = 230^{\circ}$$