Техническое задание на разработку хранилища данных. Этап 1.

Введение.

Сегодня ваш первый день работы инженером по данным в компании такси "Везу и точка". К вам приходит начальник и говорит тоном, не терпящим возражений: "Что это мы живём без нормальных отчётов? Мне нужно, чтобы ты закончил работу по их созданию". После чего подмигивает и уходит. От коллеги справа, который работает с операционной системой, в которой ведётся деятельность компании, вы узнаёте, что ваш предшественник начал делать эту задачу, но внезапно решил уволиться.

Открыв папку с документацией, где предшественник всё хранил, вы находите документ, который описывает источник, актуальность которого подтверждает всё тот же коллега справа, а также описание целевой структуры хранилища. Чтобы не терять времени вы решаете использовать её.

Ваша первая задача - настроить ETL процесс, который будет забирать данные из источника и раскладывать их по целевым таблицам в описанную в документации структуру в хранилище.

Описание источников данных.

1. Источник данных - СУБД PostgreSQL

Реквизиты подключения к источнику техническим пользователем:

• host: de-edu-db.chronosavant.ru

port: 5432database: taxischema: mainuser: etl_tech_user

password: etl_tech_user_password

ER-диаграмма.

Описание сущностей.

Таблица main.rides

Заказы, поступающие от клиентов.

PK	NAME	TYPE	DESCRIPTION
PK	ride_id	INTEGER	Идентификатор заказа-поездки. Автоинкремент.
	dt	TIMESTAMP(0)	Дата и время заказа.
	client_phone	CHAR(18)	Номер телефона клиента.

card_num	CHAR(19)	Карта клиента (обратите внимание, при разных заказах одного и того же клиента может быть разной).
point_from	VARCHAR(200)	Начальный адрес.
point_to	VARCHAR(200)	Конечный адрес.
distance	NUMERIC(5,2)	Дистанция поездки.
price	NUMERIC(7,2)	Цена поездки.

Таблица main.movement

Статусы машин, направленных на заказ. Каждый статус добавляется новой строкой с временной меткой. При успешно выполненном заказе по одному заказу будет три записи - подача машины (READY), начало поездки (BEGIN) и окончание поездки (END). Отмена заказа (CANCEL) возможна только до его начала, при этом завершения заказа (END) не будет.

PK	NAME	TYPE	DESCRIPTION
PK	movement_id	INTEGER	Идентификатор факта перемещения. Автоинкремент.
FK	car_plate_num	CHAR(9)	Номер машины.
FK	ride	INTEGER	Ссылка на заказ-поездку.
	event	VARCHAR(6)	Произошедшее событие: READY - машина подана BEGIN - начало выполнения заказа CANCEL - отмена заказа (при таком статусе END не будет) END - завершение заказа (если он начал выполняться)
	dt	TIMESTAMP(0)	Дата и время события.

Таблица main.car_pool

Машины, зарегистрированные в автопарке. Машина регистрируется при первом участии ее в любой поездке. Каждые три дня машина должна проходить осмотр, отметка о проведении осмотра обновляется в таблице. Если машина больше не работает с компанией - обновляется соответствующий флаг (в данном кейсе таких ситуаций нет).

PK	NAME	TYPE	DESCRIPTION
PK	plate_num	CHAR(9)	Номер автомобиля

model	VARCHAR(30)	Марка автомобиля
revision_dt	DATE	Дата последнего осмотра
register_dt	TIMESTAMP(0)	Дата первой регистрации машины в парке
finished_flg	CHAR(1)	Машина списана (больше не работает в парке): Y/N

Таблица main.drivers

Водители, работающие в компании. Водители могут добавляться независимо от поездок. Иногда у водителя может меняться номер карты, это изменение фиксируется обновлением соответствующего поля.

PK	NAME	TYPE	DESCRIPTION
PK	driver_license	CHAR(12)	Номер водительского удостоверения
	first_name	VARCHAR(20)	Фамилия
	last_name	VARCHAR(20)	Имя
	middle_name	VARCHAR(20)	Отчество
	driver_valid_to	DATE	Срок действия водительского удостоверения
	card_num	CHAR(19)	Номер карты водителя
	update_dt	TIMESTAMP(0)	Дата и время обновления записи

2. Источник данных - файловые выгрузки.

Реквизиты подключения к FTP over TLS техническим пользователем:

• host: de-edu-db.chronosavant.ru

port: 21

user: etl_tech_user

• password: etl_tech_user_password

Каталог waybills содержит путевые листы, в одном файле один путевой лист. Путевые листы содержат информацию о том, какой водитель в какой период времени на какой машине работал.

Файлы выгружаются по факту появления. Маска имени waybill_NNNNN.xml, номер NNNNNN возрастает по порядку начиная с 1.

Структура файла:

Каталог payments содержит бухгалтерские выписки о поступлении денег от клиентов на счет компании. Файлы выгружаются раз в полчаса. Маска имени payment_YYYY-MM-DD_HH-MI.csv.

Структура файла (разделители - табуляция):

Поле	Формат	Длина
Дата и время	DD.MM.YYYY HH24:MI:SS	19
Номер карты	иииииииииииииииииииииииииииииииииииииии	16
Сумма платежа	##N.NN	4-6

Требования к хранилищу данных.

На первом этапе от вас требуется создать детальный слой хранилища данных. В детальном слое обычно создаются таблицы, описывающие каждую бизнес-сущность, существующую в компании. В нашем случае это будут: заказы (поездки), клиенты, машины, водители и платежи. Также необходима техническая таблица, связывающая водителей и машины - в нашем случае это информация о путевых листах.

Приемник данных (хранилище) - СУБД PostgreSQL

Реквизиты подключения к хранилищу техническим пользователем:

• host: de-edu-db.chronosavant.ru

• port: 5432

database: dwh

• schema: dwh_<имя_города_вашей_команды>

• user: dwh_<имя_города_вашей_команды>

• password: <пароль_вашей_команды>

ER-диаграмма целевого хранилища данных.

Обратите внимание что вам необходимо строго следовать правилам именования всех объектов. Типизацию выбирайте из соображений разумной потребности (например, поле last_name вряд ли стоит назначать типом DATE, разумнее выбрать VARCHAR. Длину поля тоже имеет смысл сделать 50 символов, а не 25000, это, кстати, может быть поводом для отдельного исследования).

В хранилищах данных, как правило, не назначаются ограничения целостности типа unique, pk, fk (из-за их большой ресурсоемкости), поэтому проверка constraints не предусмотрена.

Возможно создание дополнительных объектов, если это обосновано. Все технические таблицы, если они вам потребуются, должны быть промаркированы префиксом work_. Целесообразность использования технических таблиц будет рассмотрена экспертами при оценке.

Фактовые таблицы:

- fact_rides
- fact_payments
- fact_waybills

Таблицы-измерения:

- dim_clients
- dim_cars
- dim_drivers

Заполнение фактовой таблицы fact_rides должно производиться только для завершенных поездок. То есть в источнике для поездки должен стоять либо статус END, либо статус CANCEL. Незавершенные поездки недопустимы. Правила заполнения полей следующие:

- ride_arrival_dt время прибытия машины на заказ (статус READY),
- ride_start_dt время начала заказа (статус BEGIN, если заказ был отменен то NULL),
- ride_end_dt время завершения или отмены заказа (статус END или CANCEL).

Во всех таблицах измерений должны быть корректно заполнены версии, то есть

- поля, определяющие ключ
- start dt
- end_dt.

Знания и технологии, которые вам пригодятся.

Во-первых, рекомендуется почитать про хранилища данных. Начните отсюда - https://panoply.io/data-warehouse-guide/, обратите внимание на понятие фактовых таблиц и таблиц измерений.

Вам нужно изучить два полезных понятия, используемых в хранилищах:

- форматы хранения таблиц измерений (SCD), рекомендуем формат SCD2. Начать можно с английской википедии https://en.wikipedia.org/wiki/Slowly_changing_dimension, но с точки зрения практического опыта там есть некорректные вещи, например, "перехлест" версий и null в поле end_dt.
- понятие об инкрементальной загрузке (не надо каждый раз выгружать весь источник, выгружайте только изменения).

Что от вас требуется?

• Сервер, который выполняет процессы загрузки - это ваш компьютер. Инструмент исполнения процессов - python.

- При этом целевой инструмент для подключения и загрузки данных python. Целевой инструмент для обработки и преобразования данных - SQL.
- Ваша разработка должна запускаться ежедневно, "захватывать" данные из источника и "укладывать" их в определенном формате в хранилище данных. Попутно можете проводить необходимые преобразования.

Обратите внимание, что защищенными с точки зрения информационной безопасности считаются только СУБД источника, FTP сервер источника, если обмен данными с ним происходит через TLS, а также СУБД хранилища.

Критерии оценки.

К оцениванию проекта невозможно применить некую объективную шкалу оценки (например, 50 строк кода это лучше чем 20 строк кода, или пять таблиц в отчете лучше, чем три). Поэтому проект будет оцениваться экспертной оценкой по шести показателям. В качестве экспертов выступают менторы. Оценка выставляется аргументировано и может обсуждаться, но не изменяться.

У ментора есть право добавить дополнительные баллы за сложные решения в проекте (не сложное решение простой задачи, а именно решение сложной задачи), или вычесть баллы за грубые нарушения (например, хардкод).

Критерий	Диапазон	Комментарий
Структурированность кода	05	Оценивается читаемость кода (отступы, табуляции),чистота, комментирование, разделение на отдельные файлы логических блоков, как python, так и SQL.
Качество обработки инкремента	05	Оценивается насколько сильно вы нагружаете источник при ежедневной загрузке данных.
Общая сложность проекта	05	Оценивается каким образом вы разобрались с основными технологиями хранения данных в хранилищах данных и каким образом вы их реализовали. Также оценивается применение целевых инструментов для соответствующих задач.
Качество получаемого результата	05	Оценивается реализация всех перечисленных в задании требований. Оценивается качество данных, загруженных в таблицы (отсутствие дублей, корректность истории, соответствие источнику).

Безопасность данных	05	Проект оценивается с точки зрения информационной безопасности - есть ли потенциальные угрозы утечки данных.
Дополнительные баллы за сложные или плохие решения	-55	Эксперты обсудят ваш проект, и если встретятся оригинальные решения сложных задач - баллы будут добавлены. Если обнаружатся грубые ошибки или попытки обмануть систему - баллы будут сняты.