Advanced Macroeconomics Kernelemente von Wachstumsmodellen

Termin 4

Claudius Gräbner University of Duisburg-Essen Institute for Socio-Economics &

Johannes Kepler University Linz Institute for Comprehensive Analysis of the Economy (ICAE)

www.claudius-graebner.com | www.uni-due.de | www.jku.at/icae

Outline

- Vorbemerkungen: Beschreibung vs. Erklärung und Schließung von Modellen
- Überblick über Elemente von Wachstumsmodellen
- Modelle für Produktion und die Social Accounting Matrix
- Modelle für den Arbeitsmarkt
- Modelle f
 ür Konsum- und Investitionsverhalten
- Zusammenfassung

Elemente von Wachstumsmodellen

- Wir betrachten zunächst Wachstumsmodelle mit den endogenen Variablen:
 - Wachstum des Kapitalstocks g_k , Profitrate v, Reallohn w und Konsum c
 - Wir brauchen also 4 Modellgleichungen
- Dazu werden folgende 3 Bereiche betrachtet:

Firmensektor

Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

Elemente von Wachstumsmodellen

- Wachstumsmodelle betrachten mindestens drei Bereiche
 - Die theoretischen Überlegungen führen zu mindestens vier Modellgleichungen

Firmensektor Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

Determinanten der Arbeitsnachfrage

- Gehen wir mal davon aus, dass die Produktionstechnik in unserem Produktionsmodell bereits gewählt wurde
- Woran bemisst sich nun die Nachfrage nach Arbeit?
 - ullet Menge an vorhandenem Kapital K
 - Kapitalintensität (Kapital pro Arbeiter) k
- Das macht macht die ganze Sache recht unspektakulär:

Determinanten der Arbeitsnachfrage

- Was aber wenn es viele Produktionstechniken gibt?
 - Dann hängt die Nachfrage nach Arbeit von der Wahl der Produktionstechnik ab
 - Entrepreneure wählen die profitmaximierende Produktionstechnik aus
 - Bei höherem Lohn sind das kapitalintensivere Techniken $\rightarrow N^d$ sinkt

Die Beschreibung solcher
 Zusammenhänge ist über
 Paradigmen sehr unterschiedlich

Das klassische conventional wage model

- In der ökonomischen Klassik nahm man den Reallohn in der Regel als exogen gegeben an \rightarrow dieser bestimmt dann N^d und darüber auch N^s
 - Das Arbeitsangebot maßgeblich durch die Bevölkerungsgröße determiniert, welche wiederum vom Reallohn abhängig war
 - In der langen Frist: N^s gegeben durch Subsistenzlohn \rightarrow T5 Wirtschaftsgeschichte
- Es gibt verschiedene klassische Begründungen warum das Arbeitsangebot horizontal durch den conventional wage gegeben ist und horizontal verläuft
 - Auch zentral im Lewis-Modell
 → T2 Wirtschaftsgeschichte
 - Bei nur einer
 Produktionstechnik bestimmt
 das CWM den Lohn und K
 bestimmt X und N

Das klassische conventional wage model

- In der ökonomischen Klassik nahm man den Reallohn in der Regel als exogen gegeben an \rightarrow dieser bestimmt dann N^d und darüber auch N^s
 - Das Arbeitsangebot maßgeblich durch die Bevölkerungsgröße determiniert, welche wiederum vom Reallohn abhängig war
 - In der langen Frist: N^s gegeben durch Subsistenzlohn \rightarrow T5 Wirtschaftsgeschichte
- Es gibt verschiedene klassische Begründungen warum das Arbeitsangebot horizontal durch den conventional wage gegeben ist und horizontal verläuft
 - Auch zentral im Lewis-Modell
 - → T2 Wirtschaftsgeschichte
 - Bei mehreren Produktionstechniken bestimmt es den Lohn und die profitmaximierende Produktionstechnik

Das klassische conventional wage model

- In der ökonomischen Klassik nahm man den Reallohn in der Regel als exogen gegeben an \rightarrow dieser bestimmt dann N^d und darüber auch N^s
 - Das Arbeitsangebot maßgeblich durch die Bevölkerungsgröße determiniert, welche wiederum vom Reallohn abhängig war
 - In der langen Frist: N^s gegeben durch Subsistenzlohn \rightarrow T5 Wirtschaftsgeschichte
- Es gibt verschiedene klassische Begründungen warum das Arbeitsangebot horizontal durch den conventional wage gegeben ist und horizontal verläuft
- Das CVM bietet also eine neue Modellgleichung: $w = \bar{w}$
 - ullet Der herkömmliche Reallohn $ar{w}$ kommt dabei als exogene Variable hinzu
 - Daraus kann die Profitrate ableitet werden
 - ullet Damit würde nur der Konsum c und das Wachstum des Kapitalstocks übrig bleiben
 - → dieser wird dann über Sparen und Konsum im Haushaltssektor erklärt

Das neoklassische full employment model

- In diesen Modellen ist es nicht der Reallohn, sondern das Arbeitsangebot, das exogen gegeben ist
- Haushalte bieten hier eine unelastische Menge an Arbeit an
 - Menge ändert sich nur als Reaktion auf (exogene) Änderung in der Bevölkerungsgröße:

- Damit es hier zu einem sinnvollen $\mbox{Gleichgewicht kommt muss } N^d \mbox{ irgendwie}$ $\mbox{gematched werden}$
- N^d hängt vom Kapitalstock ab
 - Wenn dieser mit der gleichen Rate n wächst wie die Bevölkerung passt es!

Das neoklassische full employment model

 Eine mögliche zusätzliche Modellgleichung wäre also die Gleichsetzung des Wachstums vom Kapitalstock mit dem exogenen Bevölkerungswachstum:

$$\frac{N_{t+1}^d}{N_t^d} = \frac{K_{t+1}/k_{t+1}}{K_t/k_t} = \frac{N_{t+1}^s}{N_t^s} = 1 + n$$

• Im Gleichgewicht mit $k_{t+1} = k$ ergibt sich daraus:

$$\frac{K_{t+1}}{K_t} = 1 + g_K = 1 + n$$

- ullet Wobei n immer das exogen gegebene Bevölkerungswachstum ist
- Der Lohn ergibt sich hier dann über den Wachstums- und Verteilungsplan
- Was wenn wir die Wahl zwischen verschiedenen Produktionstechniken haben?

Das neoklassische full employment model

- Bei Überangebot von Arbeit würde der Lohn sinken und die Entrepreneure zu weniger kapitalintensiven Produktionstechniken wechseln $\to N^d \uparrow$
 - ullet So wird Vollbeschäftigung endogen über die Wahl von T_t sichergestellt

• Da die Wahl von T_t mit der Wahl der Kapitalintensität einhergeht kann das Modell beschrieben werden als:

$$\frac{K}{k(w)} = \bar{N}$$

• Wobei \bar{N} die exogen bestimmte Bevölkerungsgröße, bzw. Arbeitsangebot ist

Zusammenfassung Arbeitsmarkt

- Über die Betrachtung des Arbeitsmarktes bekommen wir eine weitere Modellgleichung für unser Wachstumsmodell
- Wir haben verschiedene Herangehensweisen an die Modellierung des Arbeitsmarkts kennen gelernt:

	Conventional wage model	Full employment model (ohne Technologiewahl)	Full employment model (mit Technologiewahl)
Exogene Variablen	$ar{w}$	n	$ar{N}$
Endogene Variablen	\boldsymbol{w}	g_K	k(w)
Gleichung	$w = \bar{w}$	$\frac{K_{t+1}}{K_t} = 1 + g_K = 1 + n$	$\frac{K}{k(w)} = \bar{N}$

Für ein vollständiges Wachstumsmodell fehlt nur noch der Haushaltssektor

Drei Bereich und vier Gleichungen

Firmensektor

Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

14 Claudius Gräbner

Wiederholungsfragen

- Welche Entscheidungen werden auf dem Arbeitsmarkt getroffen?
- Welche drei Modelle vom Arbeitsmarkt haben wir kennen gelernt?
- Was sind die zentralen Annahmen, welche die drei Ansätze voneinander abgrenzen?
- Beschreiben Sie, wie in der kurzen Frist im FEM die Wahl der Produktionstechnik Vollbeschäftigung sicherstellt.
- Was ist die Modellgleichung des CWM?
- Was ist die Modellgleichung des FEM mit nur einer Produktionstechnik?
- Was ist die Modellgleichung des FEM mit vielen Produktionstechniken?

Elemente von Wachstumsmodellen

- Wachstumsmodelle betrachten mindestens drei Bereiche
 - Die theoretischen Überlegungen führen zu mindestens vier Modellgleichungen

Firmensektor Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

16 Claudius Gräbner

Der Haushaltssektor Die Entscheidung zwischen Sparen und Konsum

- Klassische Annahme: Arbeiterklasse konsumiert gesamtes Einkommen
 - Das machte sie in gewisser Weise auch zur Arbeiterklasse
 - Gilt aber nur aggregiert für die gesamte Klasse → einzelne Arbeiter:innen sparen schon
- Sparen ist damit ausschließlich Sache der Kapitalist:innen
 - Diese sehen einen Trade-Off: Konsum jetzt vs. Sparen und Konsum später
 - Das führt zu einem intertemporalen Enscheidungsproblem → Kern unserer Modelle
- Standardvorgehen: intertemporale Nutzenoptimierung
 - Problem: 'echte' Unsicherheit → Annahme, dass zukünftige Profitraten bekannt sind
 - Alternativen werden später behandelt, sind aber häufig Simulationsmodelle
- Wir nutzen das um die Lagrange-Methode zur Optimierung zu wiederholen:
 - 1. Lösung eines Optimierungsproblem mit der Lagrange Methode für zwei Zeitschritte
 - 2. Generalisierung zu n-Perioden-Fall → Herleitung der vierten Gleichung

Entscheidungsproblem der Kapitalisten: Zwei-Perioden Beispiel

- Ein intuitives Beispiel, anhand dessen wir uns die technischen Grundlagen anschauen ist das folgende:
 - Ein:e Kapitalist:in lebt für zwei Zeitperioden
 - Der Nutzen wird über eine Cobb-Douglas-Nutzenfunktion repräsentiert
- Die Kapitalist:in startet mit einem Vermögen von K_0
- Die Netto-Profitrate in der ersten Periode ist r_0
- Daraus ergibt sich ihr Vermögen am Ende von Periode 1:

$$K_0 + r_0 K_0 = (1 + r_0) K_0$$

Das kann nun konsumiert oder gespart werden

Entscheidungsproblem der Kapitalisten: Zwei-Perioden Beispiel

- K_2 würde hier für das Sparen für eine unbestimmte Zukunft stehen
- Es ergeben sich daraus die Budgetbeschränkungen:

$$C_0 + K_1 \le (1 + r_0)K_0$$
$$C_1 + K_2 \le (1 + r_1)K_1$$

 Den zweiten Teil können wir ausformulieren:

$$C_1 + K_2 \le (1 + r_1) \Big(((1 + r_0)K_0) - C_0 \Big)$$

Um zu sehen wie sie sich entscheidet spezifizieren wir eine Nutzenfunktion

Entscheidungsproblem der Kapitalisten: Zwei-Perioden Beispiel

 Die Kapitalisten erfahren Nutzen nur aus unmittelbarem Konsum, nicht über das Sparen an sich

 Wir verwenden eine Cobb-Douglas-Nutzenfunktion um den Nutzen aus Konsum zu modellieren:

$$u(C_0, C_1) = \ln \left[C_0^{1-\beta} \cdot C_1^{\beta} \right] = (1-\beta) \ln C_0 + \beta \ln C_1$$

• Der Parameter β spielt die Rolle eines Diskont-Faktors, der die Gewichtung der Konsumzeitpunkte für den Gesamtnutzen bestimmt

Entscheidungsproblem der Kapitalisten: Zwei-Perioden Beispiel

- Jetzt geht es darum, diese Nutzenfunktion zu maximieren
 - Und zwar unter Einhaltung der Budgetbeschränkung von vorher!

$$\max_{C_0,C_1\geq 0}$$

$$\max_{C_0, C_1 \ge 0} \left[\left(1 - \beta \right) \ln C_0 + \beta \ln C_1 \right]$$

Zu maximierender Ausdruck

Parameter, die man manipulieren kann

s.t.
$$C_0 + K_1 \le (1 + r_0)K_0$$

$$C_1 + K_2 \le (1 + r_1) \Big(((1 + r_0)K_0) - C_0 \Big)$$

Einzuhaltende NB

- Die Lösung erhalten wir durch Anwendung der Lagrange-Methode
 - Gibt die zu manipulierenden Parameter als Funktion von gegebenen Werten an:

$$C_0 = (1 - \beta) (1 + r_0) K_0$$

$$C_1 = (1 + r_1) K_1 = \beta (1 + r_1) (1 + r_0) K_0$$

 $K_1 = \beta (1 + r_0) K_0$

Hinweis zum Exkurs: Wie wir Optimierungsprobleme mit der Lagrange Methode lösen

Nur relevant für alle, die Lagrange noch nicht kennen, oder es wiederholen wollen. In dem Handout wird die Lagrange-Methode kurz wiederholt und die Lösung für das Zwei-Perioden Optimierungsproblem hergeleitet.

Entscheidungsproblem der Kapitalisten: n-Perioden Lösung

- In der Regel nehmen wir an, dass ökonomische Akteure ihren Nutzen über einen unendlich großen Zeithorizont maximieren
 - Historischer Ausgangspunkt: Ricardianische Äquivalenz
- Wir betrachten also unendlich viele Zeitschritte: t = 0,1,2,3,...
- Wir starten wieder mit K_0 und verwenden gleiche Budgetbeschränkungen:

$$C_0 + K_1 \le (1 + r_0)K_0$$

 $C_1 + K_2 \le (1 + r_1)K_1$
 \vdots
 $C_t + K_{t+1} \le (1 + r_t)K_t$
 \vdots

ullet Daraus ergibt sich eine Reihe von Konsumleveln, der Konsumpfad $\left\{C_{t}
ight\}_{t=0}^{\infty}$

Entscheidungsproblem der Kapitalisten: n-Perioden Lösung

• Wir maximieren nun den Nutzen wie vorher, nur eben über $\left\{C_t\right\}_{t=0}^{\infty}$:

$$u(C_0, C_1) = (1 - \beta) \ln C_0 + \beta \ln C_1 \longrightarrow u(\{C_t\}_{t=0}^{\infty}) = (1 - \beta) \sum_{t=0}^{\infty} \beta^t \ln C_t$$

Daraus ergibt sich dann folgendes Maximierungsproblem:

$$\max_{\left\{C_{t} \geq 0, K_{t+1} \geq 0\right\}_{t=0}^{\infty}} \left[\left(1 - \beta\right) \sum_{t=0}^{\infty} \beta^{t} \ln C_{t} \right]$$
s.t. $C_{t} + K_{t+1} \leq (1 + r_{t})K_{t}$ $t = 0,1,...$
given: $K_{0}, \left\{r_{t}\right\}_{t=0}^{\infty}$

Entscheidungsproblem der Kapitalisten: n-Perioden Lösung

$$\max_{\{C_t \ge 0, K_{t+1} \ge 0\}_{t=0}^{\infty}} \left[(1 - \beta) \sum_{t=0}^{\infty} \beta^t \ln C_t \right]$$
s.t. $C_t + K_{t+1} \le (1 + r_t) K_t$ $t = 0, 1, ...$
given: $K_0, \{r_t\}_{t=0}^{\infty}$

Die Lösung erhalten wir wieder über die Lagrange-Methode:

$$C_{t} = (1 - \beta) (1 + r_{t}) K_{t}$$

$$K_{t+1} = \beta (1 + r_{t}) K_{t}$$

$$1 + g_{Kt} = \frac{K_{t+1}}{K_t} = \beta \left(1 + r_t \right)$$

Kapitalist:innen konsumieren und sparen konstante Anteile ihres Vermögens

Wachstum des Vermögens wird vollständig durch β und r_t bestimmt

Cambridge Gleichung

Bezug zum einfachen neoklassischen Wachstumsansatz

- Das gerade behandelte Optimierungsproblem ist auch in vielen modernen neoklassischen Modellen enthalten
 - Ältere Modelle enthalten oft die die Annahme einer konstanten Spar-Investment-Beziehung:

$$I = s \cdot X$$

 Diese Formulierung kann leicht zu dem von uns verwendeten Modell in Bezug gesetzt und damit als Spezialfall identifiziert werden:

$$I_{t} = K_{t+1} - K_{t} + \delta K_{t} = \beta \left(1 + r_{t} \right) K_{t} - K_{t} + \delta K_{t} = K_{t} \left(\beta \left(1 + r_{t} \right) - (1 - \delta) \right)$$

$$= \frac{X}{\rho_{t}} \left(\beta \left(1 + r_{t} \right) - \left(1 - \delta_{t} \right) \right) = \frac{\left(\beta v_{t} - \left(1 - \beta \right) \left(1 - \delta_{t} \right) \right)}{\rho_{t}} X_{t}$$

$$K_{t}$$

• Solange v, ρ und δ konstant bleiben, sind die Modelle identisch

Merkhilfe:

$$K_t = X_t/\rho$$

$$r = v - \delta$$

Zusammenfassung Haushaltssektor

- Wir haben als letztes Puzzlestück den Haushaltssektor betrachtet
- Hier ging es um den Trade-Off zwischen Konsum und Sparen
- Die Arbeiterklasse konsumiert per definitionem alles hier gibt es keinen TO
- Bei den Kapitalist:innen haben wir den Trade-Off als intertemporales
 Optimierungsproblem repräsentiert
- Wenn die Nutzenfunktion eine Cobb-Douglas-Form annimmt impliziert die Nutzenmaximierung der Kapitalist:innen, dass ein konstanter Teil des Vermögens gespart wird
 - Zumindest solange v, ρ und δ konstant bleiben
 - Dieser neoklassische Ansatz auch außerhalb des Paradigmas weit verbreitet
- Ergebnis ist die Cambridge Gleichung das letzte fehlende Teil auf dem Weg zum kompletten Wachstumsmodell

Drei Bereiche und vier Gleichungen

Firmensektor

Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

 Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

28 Claudius Gräbner

Wiederholungsfragen

- Welche Akteure sparen im bisherigen Modell-Framework?
- Welchem Trade-Off sehen sich die Kapitalist:innen gegenüber?
- Schreibt jeweils die Budgetbeschränkungen im Entscheidungsproblem der Kapitalist:innen für zwei und n Perioden auf.
- Formuliert die Nutzenfunktion der Kapitalist:innen, die wir verwendet haben.
 Aus welchen ökonomischen Aktivitäten ziehen die Kapitalist:innen ihren
 Nutzen, aus welchen nicht?
- Wie verändert sich der Anteil am Gesamteinkommen der Kapitalist:innen für den Konsum über die Zeit wenn wir eine Cobb-Douglas-Nutzenfunktion verwenden?

Drei Bereiche und vier Gleichungen

$$w = x - vk \qquad c = x - (g_K + \delta) k$$

$1 + g_{Kt} = \frac{K_{t+1}}{K_t} = \beta \left(1 + r_t \right)$

Firmensektor

Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

$$w = \bar{w}$$

oder

$$\frac{K}{k(w)} = \bar{N}$$

$$\frac{K_{t+1}}{K_t} = 1 + g_K = 1 + n$$

Abschließende Zusammenfassung

- Wachstumsmodelle bestehen aus endogenen und exogenen Variablen
- Variation in den endogenen Variablen wird erklärt
 - Für jede endogene Variable brauchen wir eine Modellgleichung, die einen wichtigen Mechanismus repräsentiert
- Daher bestehen Wachstumsmodelle mindestens aus drei Elementen:
 - Einem Produktionssektor, wo über Produktionstechniken und Output entschieden wird
 - Einem Haushaltssektor, in dem Haushalte sparen und konsumieren
 - Einem Arbeitsmarkt, in dem sich Arbeiter:innen und Firmen koordinieren
- Es gibt auch komplexere Modelle, die mehr endogene Variablen erklären
- Der Produktionssektor wird in verschiedenen Paradigmen ähnlich gehandhabt,
 bei den beiden anderen Bereichen gibt es große Unterschiede
 - Wobei unsere Betrachtung des Haushaltssektors ebenfalls recht neoklassisch ausfiel

Wiederholungsfragen

- Welche drei Bereiche der Ökonomie haben wir betrachtet? Was waren jeweils die zentralen Mechanismen, die wir modelliert haben?
- Was versteht man unter einer Social Accounting Matrix? Erläutern Sie anhand eines fiktiven Beispiels!
- Was versteht man unter der Schließung eines Modells? Was hat das mit der Anzahl endogener Variablen in einem Modell zu tun?
- Unter welchen Bedingungen führt das Modell des Sparverhaltens der Kapitalist:innen, das wir betrachtet haben, zu einer konstanten Sparquote?
- Was verstehen wir unter (a) einer Produktionstechnik, (b) einer Technologie und (c) technologischem Wandel?
- Was verstehen wir unter der Effizienzgrenze einer Technologie?

