Statistik I - Sitzung 7

Bernd Schlipphak

Institut für Politikwissenschaft

Sitzung 7

Statistik I - Sitzung 7

Zusammenhangsmaße für ordinal skalierte Variablen

- Metrische Zusammenhangsmaße
 - Einführung
 - Formalia
 - Pearson's r
 - ullet Sonderfall: Spearman's R

Ordinale Zusammenhangsmaße - Übersicht

- Folgende Zusammenhangsmaße gehören zu den wichtigsten ordinalen Zusammenhangsmaßen
 - ullet Kendall's au
 - Somers' d
 - ullet Goodman and Kruskal's γ
 - ullet Spearman's R
- Grundlage für Kendall's τ , Somers' d und Goodman and Kruskal's γ : Anzahl an konkordanten und diskordanten Paaren!
- Spearman's R: Vergleich der Rangplätze!

- 'In a concordant pair, one individual (case) is higher than the other on both variables.' (Johnson/Reynolds 2008: 439)
- Es existieren zwei Fälle i und j. Stellen diese Fälle ein konkordantes Paar dar, so gilt: Wenn $x_j>x_i$, dann $y_j>y_i$ bzw. wenn $x_i>x_j$, dann $y_i>y_j$
- In einem konkordanten Paar weist also ein Fall für beide Variablen eine höhere Kategorie / einen höheren Wert als der andere Fall auf

- 'In a discordant pair, one case is lower on one of the variables but higher on the other.' (Johnson/Reynolds 2008: 439f.)
- Es existieren zwei Fälle i und j. Stellen diese Fälle ein diskordantes Paar dar, so gilt: Wenn $x_j > x_i$, dann $y_j < y_i$ bzw. wenn $x_i > x_j$, dann $y_i < y_j$
- In einem diskordanten Paar weist also ein Fall für eine der beiden Variablen eine höhere Kategorie / einen höheren Wert und für die andere Variablen eine niedrigere Kategorie / einen niedrigeren Wert als der andere Fall auf

- 'A tied pair is a pair in which both cases have the same value on one or both of the variables.' (Johnson/Reynolds 2008: 439f.)
- Es existieren zwei Fälle i und j. Stellen diese Fälle ein verbundenes Paar dar, so gilt $x_j=x_i$ und / oder $y_j=y_i$
- In einem verbundenen Paar weist also ein Fall für mindestens eine der beiden Variablen den gleichen Wert / die gleiche Kategorie auf wie der andere Fall

Table 12-7 Table with Tied Pairs	Concordan	t, Discorda	nt, and	
		Variable X	× 1000000000000000000000000000000000000	
Variable Y	High	Medium	Low	
High	Alex	Dawn	Gus	
Medium		Ernesto	Hera	Grün = Konkordant
Low	Carl	Fay	Ike	Oran Homoradin
			Jasmine	

TABLE 12-7
Table with Concordant, Discordant, and Tied Pairs

		Variable X	
Variable Y	High	Medium	Low
High	Alex	Dawn	Gus
Medium		Ernesto	Hera
Low	Carl	Fay	lke Jasmine

Rot = Diskordant

TABLE 12-7

Table with Concordant, Discordant, and Tied Pairs

		Variable X	
Variable Y	High	Medium	Low
High	Alex	Dawn	Gus
Medium		Ernesto	Hera
Low	Carl	Fay	lke
			Jasmine

Blau = Tied/Verbunden

Ordinale Zusammenhangsmaße - Formales

- Für die Berechnung der Zusammenhangsmaße müssen wir uns nun darauf einigen, dass
 - ullet $N_C=$ die Summe/Anzahl aller konkordanten Paare
 - ullet $N_D=$ die Summe/Anzahl aller diskordanten Paare
 - ullet $N_T=$ die Summe aller möglichen Paare
 - ullet $T_Y = \text{die Summe/Anzahl aller auf Y verbundenen Paare}$
 - ullet $T_X=$ die Summe/Anzahl aller auf X verbundenen Paare

Ordinale Zusammenhangsmaße - Formales

- Wir unterscheiden dabei zwischen den symmetrischen
 Assoziationsmaßen, die keinen gerichteten Zusammenhang
 implizieren, und den asymmetrischen Assoziationsmaßen, die einen
 gerichteten Zusammenhang implizieren
- Symmetrisch: Goodmans and Kruskals Gamma, Kendalls Tau a,b,c
- Asymmetrisch: Somers' d

Ordinale Zusammenhangsmaße - Formales

ullet Goodman and Kruskals Gamma: $\gamma = \frac{N_C - N_D}{N_C + N_D}$

 • Somers d: $d_{YX} = \frac{N_C - N_D}{N_C + N_D + T_Y}$

- Hypothetisches Beispiel: Wir wollen den Zusammenhang zwischen dem Grad an Euroskeptizimus von Befragten und ihren Stolz auf ihre Nationalität berechnen.
- Der Grad an Euroskeptizismus ist die abhängige, der Stolz auf die Nationalität die unabhängige Variable, da wir theoretisch erwarten, dass letzteres auf ersteres wirken sollte
- Beide Variablen sind dreistufig (ordinal) skaliert, mit 1 = sehr euroskeptisch / sehr stolz bis 3 = nicht euroskeptisch / nicht stolz

	$x_1 = sehr \; stolz$	$x_2 = ein wenig stolz$	$x_3 = \text{nicht stolz}$
$y_1 = \text{sehr euroskeptisch}$	10	4	1
$y_2 = \text{wenig euroskeptisch}$	2	12	5
$y_3 = nicht \; euroskeptisch$	2	3	10

$x_1 = sehr \; stolz$	$x_2 = ein wenig stolz$	$x_3 = nicht stolz$
10	4	1
2	12	5
2	3	10
	$x_1 = sehr \; stolz$ 10 2 2	$\begin{array}{c cc} x_1 = sehr \; stolz & x_2 = ein \; wenig \; stolz \\ \hline 10 & 4 \\ \hline 2 & 12 \\ \hline 2 & 3 \\ \end{array}$

• N_C (die Summe/Anzahl aller konkordanten Paare) = 10*(12+5+3+10) + 4*(5+10) + 2*(3+10) + 12*(10) = 506

$y_1 = \text{sehr euroskeptisch}$ 10 4 1 $y_2 = \text{wenig euroskeptisch}$ 2 12 5	sehr stolz $\mid x_2 = ext{ein wenig stolz} \mid x_3 = ext{nicht stolz}$	$x_1 = sehr \; stolz$	
0- 0 1	10 4 1	10	$y_1 = sehr \; euroskeptisch$
	2 12 5	2	$y_2 = \text{wenig euroskeptisch}$
y_3 = nicht euroskeptisch 2 3	2 3 10	2	$y_3 = nicht \; euroskeptisch$

• N_C (die Summe/Anzahl aller konkordanten Paare) = 10*(12+5+3+10) + 4*(5+10) + 2*(3+10) + 12*(10) = 506

4	1
12	5
3	10
	3

• N_C (die Summe/Anzahl aller konkordanten Paare) = 10*(12+5+3+10) + 4*(5+10) + 2*(3+10) + 12*(10) = 506

	$x_1 = sehr \; stolz$	$x_2 = ein wenig stolz$	$x_3 = nicht stolz$
$y_1 = sehr \; euroskeptisch$	10	4	1
$y_2 = \text{wenig euroskeptisch}$	2	12	5
$y_3 = nicht \; euroskeptisch$	2	3	10

• N_D (die Summe/Anzahl aller diskordanten Paare) = 4*(2+2) + 1*(2+12+2+3) + 12*(2) + 5*(2+3) = 84

	$x_1 = sehr \; stolz$	$x_2 = ein wenig stolz$	$x_3 = nicht stolz$
$y_1 = sehr \; euroskeptisch$	10	4	1
$y_2 = \text{wenig euroskeptisch}$	2	12	5
$y_3 = $ nicht euroskeptisch	2	3	10

• N_D (die Summe/Anzahl aller diskordanten Paare) = 4*(2+2) + 1*(2+12+2+3) + 12*(2) + 5*(2+3) = 84

- T_Y (die Summe/Anzahl aller auf Y verbundenen Paare) = 10*(4+1) + 4*(1) + 2*(12+5) + 12*(5) + 2*(3+10) + 3*(10) =**204**
- T_X (die Summe/Anzahl aller X-verbundenen Paare) = 10*(2+2) + 2*(2) + 4*(12+3) + 12*(3) + 1*(5+10) + 5*(10) =**205**
- N_T (die Summe aller möglichen Paare) = [(10 + 4 + 1 + 2 + 12 + 5 + 2 + 3 + 10) * (10 + 4 + 1 + 2 + 12 + 5 + 2 + 3 + 10-1)]/2 =**1176**

	$x_1 = sehr \; stolz$	$x_2 = ein wenig stolz$	$x_3 = \text{nicht stolz}$
$y_1 = \text{sehr euroskeptisch}$	10	4	1
$y_2 = \text{wenig euroskeptisch}$	2	12	5
$y_3 = nicht \; euroskeptisch$	2	3	10

• Goodman and Kruskals Gamma: $\gamma = \frac{N_C - N_D}{N_C + N_D} = \frac{506 - 84}{506 + 84} = 0.72$

• Kendalls tau b:
$$\tau_B = \frac{N_C - N_D}{\sqrt{(N_C + N_D + T_X)(N_C + N_D + T_Y)}} = \frac{506 - 84}{\sqrt{(506 + 84 + 205)(506 + 84 + 204)}} = 0.53$$

• Somers d:
$$d_{YX} = \frac{N_C - N_D}{N_C + N_D + T_Y} = \frac{506 - 84}{506 + 84 + 204} = 0.53$$

- ullet Goodman and Kruskals Gamma: $\gamma=0.72$
- Kendalls tau b: $\tau_B = 0.53$
- Somers d: $d_{YX} = 0.53$
- ACHTUNG: Goodman und Kruskals Gamma überschätzt die Größen des Zusammenhangs meist stark, während Kendalls tau b und Somers d realistischere Maße liefern! Dies liegt am (fehlenden) Einbezug der meist häufig auftretenden - verbundenen Paaren!

- Um zu verstehen, was wir mit den einfachen Zusammenhangsmaßen für metrische Variablen – der Kovarianz und dem Korrelationskoeffizienten – überhaupt messen, schauen wir uns zuerst ein Streudiagramm an
- Ein Streudiagramm (oder auch Punktewolke, engl. Scatterplot)
 beinhaltet alle Fälle eines Datensatzes als Punkte, welche über die Koordinaten der Fälle auf der x- und y-Achse (d.h., über die Werte der Fälle auf den Variablen X und Y) definiert sind

- Perfekter Zusammenhang dann, wenn es nur diskordante oder konkordante Paare gibt
- D.h., perfekter Zusammenhang liegt dann vor, wenn Punkte alle auf einer Linie von links unten nach rechts oben oder von links oben nach rechts unten liegen
- Das wird allerdings in den Sozialwissenschaften niemals der Fall sein eher sehen (starke) Zusammenhänge folgendermaßen aus:

Abbildung: Diaz-Bone 2006: 84

Schlipphak (IfPol)

 Generell ist anhand von Streudiagrammen ein erster 'Trend' zum Zusammenhang zweier Variablen erkennbar

Abbildung: Chapel Hill Expert Survey: Parteienposition aus DE, AUT, CH

26 / 48

- Um nun zu erkennen, wie stark die Variablen miteinander (ungerichtet!) zusammenhängen (oder korrelieren), können wir zwei Maße berechnen
 - Die Kovarianz
 - Den Korrelationskoeffizienten r (oder: Pearson's r)

Metrische Zusammenhangsmaße - Formales

ullet Die Kovarianz wird als cov(x;y) bezeichnet und bildet die Grundlage für den später einzuführenden Korrelationskoeffizienten

$$cov(x;y) = \frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})$$

- Für jeden Fall wird damit das Abweichungsprodukt hinsichtlich der Abweichungen des Falles zum Mittelwert von X und Y berechnet
- Bildung des arithmetischen Mittels auf der Grundlage der Summe der Abweichungsprodukte aller Fälle ⇒ Kovarianz auch als 'durchschnittliches Abweichungsprodukt'

28 / 48

Metrische Zusammenhangsmaße - Formales

- Werte der Kovarianz werden dann extrem, wenn die Fälle gleichermaßen und einem systematischen Trend folgend sehr weit von den Mittelwerten von X und Y entfernt sind
- Ein Nullzusammenhang tritt auf, wenn
 - alle Fälle als x- und / oder y-Werte die jeweiligen Mittelwerte für X und / oder Y aufweisen
 - alle Fälle vollkommen unsystematisch (zufällig) von den Mittelwerten abweichen

Metrische Zusammenhangsmaße - Beispiel

 Beispiel: Gibt es einen Zusammenhang zwischen der grundlegenden Links-Rechts-Positionierung einer Partei und ihrer Positionierung in der Gesellschaftspolitik (libertäre versus autoritäre Positionen)? (Datenquelle: Chapel Hill Expert Survey)

30 / 48

Metrische Zusammenhangsmaße - (vereinfachtes) Beispiel

	Mittelwert LR	Mittelwert Gesellschaftspolitik	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i-\bar{x})(y_i-\bar{y})$
CDU	5.9	6	0.43	0.63	0.27
SPD	3.8	4.2	-1.67	-1.17	1.96
Grüne	3.6	2.2	-1.87	-3.17	5.92
FDP	6.5	3.4	1.03	-1.97	-2.04
Linke	1.2	4.9	-4.27	-0.47	2.02
AfD	8.9	8.7	3.43	3.33	11.42
SPÖ	3.9	4	-1.57	-1.37	2.25
ÖVP	6.1	7.2	0.63	1.83	1.16
FPÖ	8.7	8.8	3.23	3.43	11.08
GRÖ	3	1.7	-2.47	-3.67	9.06
TeamST	7.6	7.2	2.13	1.83	3.90
SVP	8.3	9.4	2.83	4.03	11.41
SP	2.1	1.6	-3.37	-3.77	12.70
FDP	6.9	4.8	1.43	-0.57	-0.82
CVP	5.5	6.5	0.03	1.13	0.04
	$\bar{x} \approx 5.47/s_x \approx 2.35$	$\bar{y} \approx 5.37/s_y \approx 2.49$			$\sum 70.23$

31 / 48

Metrische Zusammenhangsmaße - Beispiel

 In die Formel eingesetzt, ergibt das anhand unseres (realen) Beispiels für den Zusammenhang von genereller LR-Position und gesellschaftspolitischer Position einer Partei

Kovarianz:
$$cov(x; y) = \frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{15}(70.23) \approx 4.68$$

- Die Kovarianz variiert von 0 bis +/- unendlich, wobei 0 einen nicht vorhandenen Zusammenhang bezeichnet.
- Je größer der negative oder positive Wert der Kovarianz, desto stärker ist der negative oder positive Zusammenhang zwischen zwei Variablen.

32 / 48

Metrische Zusammenhangsmaße - Pearson's r

- Aber: Größe der Kovarianz auch von der Dimensionierung der beiden metrisch skalierten Variablen abhängig!
- ullet Daher: Normierung der Kovarianz durch ein anderes Maß auf den Bereich zwischen -1 und +1 notwendig
- Dieses neue Maß ist der Korrelationskoeffizient (Pearson's) r

Schlipphak (IfPol)

Metrische Zusammenhangsmaße - Pearson's r

 Die Normierung erfolgt durch das Teilen der Kovarianz durch die Standardabweichungen von X und Y

$$r = \frac{cov(x; y)}{s_x * s_y}$$

• Auch der Korrelationskoeffizient r weist den Wert 0 auf, wenn kein Zusammenhang existiert. Ein perfekter negativer Zusammenhang ist aber = -1, ein perfekter positiver Zusammenhang = +1

Metrische Zusammenhangsmaße - Pearson's r

Setzen wir die Werte aus dem Beispiel ein, so erhalten wir:

$$r = \frac{cov(x;y)}{s_x * s_y} = \frac{4.68}{2.35 * 2.49} \approx 0.79$$

$0.00 \le r \le 0.05$	keine Korrelation
0.05 < r < 0.20	schwache Korrelation
0,20 < r < 0,50	mittlere Korrelation
0,50 < r < 0,70	starke Korrelation
0.70 < r < 1.00	sehr starke Korrelation

Abbildung: Diaz-Bone 2006: 91

4 D > 4 D > 4 E > 4 E > 9 Q P

Ordinale Zusammenhangsmaße: Spearman's R

- ullet Spearman's R ist ein Sonderfall, weil er eigentlich ein ordinales Zusammenhangsmaß ist, aber im Kern doch metrisches Skalenniveau voraussetzt
- Grundlegend definiert sich Spearman's R über die Differenz zwischen den Rangplätzen, die ein Fall im Hinblick auf zwei unterschiedliche Variablen einnimmt \Rightarrow ordinales Zusammenhangsmaß!
- ullet Diese Differenz nennen wir d bzw. für jeden individuellen Fall d_i
- Die Formel: Spearman's $R=1-\frac{6*\sum d_i^2}{n(n^2-1)}$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

- Was ist denn diese Differenz zwischen den Rangplätzen und woher bekommen wir sie?
- Jeder Fall kann auf zwei Variablen unterschiedliche Rangplätze haben.
 Der Unterschied zwischen diesen Rangplätzen ist die Differenz.
- Beispiel Sport: Jemand kann die schnellste sein (Rang 1), aber nur die zehntbeste Weite im Weitsprung erreichen (Rang 10)
- Die Rangplatzdifferenz d ist in diesem Fall 9, da die Differenz zwischen 1 und 10 (-)9 beträgt.

37 / 48

Schlipphak (IfPol) Stat I - Sitzung 7 Sitzung 7

- Um Spearman's R zu berechnen, benötigen wir also eine andere Tabelle als für die anderen ordinalen Zusammenhangsmaße
- Die Tabelle für Spearman's R enthält für jeden Fall (=Zeile) die
 - absoluten Werte auf den beiden Variablen,
 - den Rang des Falles für beide Variablen, und
 - die Differenz sowie die quadrierte Differenz.

• X = Sympathie Trump (0 = sehr schlecht bis 100 = sehr gut), Y = Vorhergesagter AfD-Wähleranteil

Fall	X	Υ	Rang(X)	Rang (Y)	d_i	d_i^2
1	10	2				
2	25	15				
3	35	10				
4	40	20				
5	30	12				
6	20	5				
7	50	9				
8	15	7				
9	55	13				
10	80	90				
\sum						

• X = Sympathie Trump (0 = sehr schlecht bis 100 = sehr gut), Y = Vorhergesagter AfD-Wähleranteil

Fall	X	Υ	Rang(X)	Rang (Y)	d_i	d_i^2
1	10	2	1	1		
2	25	15	4	8		
3	35	10	6	5		
4	40	20	7	9		
5	30	12	5	6		
6	20	5	3	2		
7	50	9	8	4		
8	15	7	2	3		
9	55	13	9	7		
10	80	90	10	10		
\sum						

• X = Sympathie Trump (0 = sehr schlecht bis 100 = sehr gut), Y = Vorhergesagter AfD-Wähleranteil

Fall	Χ	Υ	Rang(X)	Rang (Y)	d_i	d_i^2
1	10	2	1	1	0	0
2	25	15	4	8	4	16
3	35	10	6	5	1	1
4	40	20	7	9	2	4
5	30	12	5	6	1	1
6	20	5	3	2	1	1
7	50	9	8	4	4	16
8	15	7	2	3	1	1
9	55	13	9	7	2	4
10	80	90	10	10	0	0
\sum						44

41 / 48

Schlipphak (IfPol) Stat I - Sitzung 7 Sitzung 7

- Die Formel: Spearman's $R=1-\frac{6*\sum d_i^2}{n(n^2-1)}$
- Aus Beispiel eingesetzt:
 - $\bullet \ \ \mathsf{Spearman's} \ R = 1 \frac{6*44}{10(10^2-1)}$
 - Spearman's $R=1-\frac{264}{990}$
 - $\bullet \ \, \text{Spearman's} \,\, R = 1 0.27 = 0.73 \\$
- Spearman's $R = 0.73 \Rightarrow$ sehr starke Korrelation!

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- Problem: Was passiert, wenn mehrere Fälle den gleichen Wert auf X bzw. Y aufweisen (also: den gleichen Rang) aufweisen würden?
- Zwei Effekte Berechnung der Ränge und Änderung der Formel
 - Bei der Berechnung sogenannter verbundener Ränge werden die Ränge gemittelt (siehe Beispiel)
 - Die (einfachere) Formel kann nicht mehr verwendet werden.
 Stattdessen wird eine Formel basierend auf dem Pearson'schen Korrelationskoeffizienten verwendet.
 - Spearman's $R = p_{r_x,r_y} = \frac{cov(r_x,r_y)}{s_{r_x} * s_{r_y}}$

43 / 48

Schlipphak (IfPol) Stat I - Sitzung 7 Sitzung 7

ullet X = Sympathie Trump (0 = sehr schlecht bis 100 = sehr gut), Y = Vorhergesagter AfD-Wähleranteil

Fall	X	Y	Rang(X)	Rang (Y)
1	10	5	1,5 = (Rang1 + Rang2/2)	
2	20	10		
3	30	15	6 = (Rang5 + Rang6 + Rang7/3)	
4	30	20	6 = (Rang5 + Rang6 + Rang7/3)	
5	30	10	6 = (Rang5 + Rang6 + Rang7/3)	
6	20	5		
7	50	9		
8	10	7	1,5 = (Rang1 + Rang2/2)	
9	50	20		
10	80	90		
\sum				

44 / 48

Schlipphak (IfPol) Stat I - Sitzung 7 Sitzung 7

 X = Sympathie Trump (0 = sehr schlecht bis 100 = sehr gut), Y = Vorhergesagter AfD-Wähleranteil

Fall	Χ	Y	Rang(X)	Rang (Y)
1	10	5	1,5 = (Rang1 + Rang2/2)	1,5
2	20	10	3,5	5,5
3	30	15	6 = (Rang5 + Rang6 + Rang7/3)	7
4	30	20	6 = (Rang5 + Rang6 + Rang7/3)	8,5
5	30	10	6 = (Rang5 + Rang6 + Rang7/3)	5,5
6	20	5	3,5	1,5
7	50	9	8,5	4
8	10	7	1,5 = (Rang1 + Rang2/2)	3
9	50	20	8,5	8,5
10	80	90	10	10
\sum				

- Was passiert, wenn mehrere Fälle den gleichen Wert auf X bzw. Y aufweisen (also: den gleichen Rang) aufweisen würden?
- Für die Berechnung von $R=p_{r_x,r_y}=\frac{cov(r_x,r_y)}{s_{r_x}*s_{r_y}}$ müsste man dann
 - \bullet für die Variablen Rang(X) und Rang(Y) jeweils die StA (= $s_{r_x}, s_{r_y})$
 - ullet und die Kovarianz (= $cov(r_x,r_y)$) zwischen beiden Variablen berechnen

$$Spearman'sR = \frac{cov(r_x; r_y)}{s_{r_x} * s_{r_y}}$$

- Für Spearman's R berechnen wir also die Kovarianz und die jeweiligen Standardabweichungen der Rang-Variablen
- Problem: Die Rangvariablen sind ordinal! Wir dürfen dafür eigentlich keine auf dem arithmetischen Mittelwert basierenden Maße berechnen!
- Eine solche Anwendung von Spearman's R sollte daher immer kritisch reflektiert und mit anderen ordinalen Zusammenhangsmaßen abgeglichen werden!

Schlipphak (IfPol) Stat I - Sitzung 7

Zusammenfassung

- In dieser Sitzung haben wir vor allem ungerichtete ordinale und metrische Zusammenhangsmaße kennengelernt
- Die ordinalen Zusammenhangsmaße, die auf dem Verhältnis diskordanter und konkordanter Paare beruhen, unterscheiden sich vor allem in ihrer Aufnahme verbundener Paare
- Die metrischen Zusammenhangsmaße drücken nur ungerichtete Zusammenhänge aus - mit der bivariaten Regression lernen wir in der nächsten Sitzung ein gerichtetes Zusammenhangsmaß kennen
- Das Zusammenhangsmaß Spearman's R ist ein Sonderfall, da eigentlich ordinal, aber in seiner 'normalen' Anwendung metrisch skalierte Maße (Mittelwert) verwendend. Dieses Maß ist daher eigentlich nur unter großen Vorbehalten anzuwenden!

Schlipphak (IfPoI) Stat I - Sitzung 7

48 / 48