IERG 6154: Network Information Theory Homework 3

Due: February 4, 2019

1. Determine the capacity and the capacity achieving distribution of the Z channel depicted below

Figure 1: Z Channel

2. Independently generated codebooks: Consider a joint distribution p(x, y), and let $p_X(x)$ and $p_Y(y)$ be its marginal distributions. Generate two codebooks $\mathcal{C}_1 = \{X_1^n,, X_{2^n R_1}^n\}$, and $\mathcal{C}_2 = \{Y_1^n,, Y_{2^n R_2}^n\}$ respectively by generating each X^n sequence independently according to $\prod_{i=1}^n p_X(x_i)$ and each Y^n sequence independently according to $\prod_{i=1}^n p_Y(y_i)$. Define the set

$$\mathcal{C} = \{(x^n, y^n) \in \mathcal{C}_1 \times \mathcal{C}_2 \text{ such that } (x^n, y^n) \in \mathcal{T}_{\epsilon}^{(n)}(X, Y)\}.$$

Show that the expected size of \mathcal{C} satisfies

$$\lim_{n\to\infty} \frac{1}{n} \log_2 \mathrm{E}(|\mathcal{C}|) = R_1 + R_2 - I(X;Y).$$

3. Erasure degradation: Consider a DMC $(\mathcal{X}, p(y|x), \mathcal{Y})$ and let Z be a noisy version of Y, $Z = \mathcal{Y} \cup \{E\}$ (where $E \notin \mathcal{Y}$ is an erasure symbol), such that $P(Z = y|Y = y) = 1 - e, P(Z = E|Y = y) = e, \forall y$. Further assume that $X \to Y \to Z$ is Markov. Show that for all p(x), we have

$$I(X; Z) = (1 - e)I(X; Y).$$

4. Capacity of product channel: Consider two DMCs $(\mathcal{X}_1, p_1(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p_2(y_2|x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 respectively. A new channel

is $(\mathcal{X}_1 \times \mathcal{X}_2, p_1(y_1|x_1)p_2(y_2|x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$ is formed in which a symbol $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$ is transmitted resulting in outputs y_1, y_2 respectively. Find the capacity of this product channel.

- 5. Capacity of sum channel: Consider two DMCs $(\mathcal{X}_1, p_1(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p_2(y_2|x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 respectively. Let $\mathcal{X}_1 \cup \mathcal{X}_2 = \emptyset$, $\mathcal{Y}_1 \cup \mathcal{Y}_2 = \emptyset$. A new channel is $(\mathcal{X}_1 \cup \mathcal{X}_2, p(y|x), \mathcal{Y}_1 \cup \mathcal{Y}_2)$ is formed in which a symbol $x_1 \in \mathcal{X}_1$ or $x_2 \in \mathcal{X}_2$ is transmitted resulting in outputs $y_1 \in \mathcal{Y}_1$, $y_2 \in \mathcal{Y}_2$ respectively. Hence $p(y|x) = p_1(y_1|x_1)$ if $x_1 \in \mathcal{X}_1$ and $p(y|x) = p_2(y_2|x_2)$ if $x_2 \in \mathcal{X}_2$. Find the capacity of this sum channel.
- 6. Consider two DMCs, where the first channel is a BSC(p) (binary symmetric channel) and the second channel is a BEC(e). Let the output of the first channel be called Y and the output of the second channel be called Z. Assume both channels to have the same input X. (Therefore Y and Z are two different noisy versions of X.) Let $P(X = 0) = x, 0 \le x \le 1$. Define the function D(x) = I(X; Z) I(X; Y). Show that
 - (a) D(x) is concave in x if and only if $e \le 4p(1-p)$.
 - (b) $D(x) \ge 0, \forall x \in [0,1]$ if and only if $e \le H(p) = -p \log_2 p (1-p) \log_2 (1-p)$.

Convexity of $H(p * H^{-1}(u))$ in u may be useful.

- 7. Let $U, X, Y \sim p(u, x, y)$ be discrete random variables. Let $0 < \delta_n < \epsilon_n$ such that $\epsilon_n \to 0$ and $\delta_n \sqrt{n}$, $(\epsilon_n \delta_n) \sqrt{n} \to \infty$. For any n, consider a fixed $u_0^n \in T_{\delta_n}(U)$. Let $\mathcal{A}_n = \{x^n : (u_0^n, x^n) \in T_{\epsilon_n}(U, X)\}$ and let $\mathcal{B}_n = \{y^n : (u_0^n, y^n) \in T_{\epsilon_n}(U, Y)\}$. Let $\mathcal{C}_n \subseteq \mathcal{A}_n \times \mathcal{B}_n$ be defined by $\mathcal{C}_n = \{(x^n, y^n) : (x^n, y^n) \in T_{\epsilon_n}(X, Y)\}$. Show that
 - (a) If X^n is generated according to $\prod_{i=1}^n p(x_i|u_{0i})$, then $P(X^n \in \mathcal{A}_n) \to 1$. Similarly if Y^n is generated according to $\prod_{i=1}^n p(y_i|u_{0i})$, then $P(Y^n \in \mathcal{B}_n) \to 1$.
 - (b) Show that

$$\frac{1}{n}\log P((X^n,Y^n)\in\mathcal{C}_n|\{X^n\in\mathcal{A}_n,Y^n\in\mathcal{B}_n\})\to -\min_{p(u,x,y)\in Q}I(X;Y|U),$$

where Q is the collection of distributions on (U, X, Y) such that q(u, x) = p(u, x), q(u, y) = p(u, y), and q(x, y) = p(x, y).