Posons
$$u_n = 5^n + 4n + 15$$

Alors
$$u_0 = 16$$
 et $u_0 = 0$ [8]

Démontrons que si $u_n \equiv 0$ [8] est vrai alors $u_{n+1} \equiv 0$ [8] est également vrai.

$$u_{n+1} = 5^{n+1} + 4(n+1) + 15 = 5.5^n + 4n + 4 + 15 = 5.5^n - 5^n + 4 + (5^n + 4n + 15)$$

$$u_{n+1} = 4.5^n + 4 + u_n = 4(5^n + 1) + u_n \\$$

Si
$$u_n \equiv 0$$
 [8] alors $u_{n+1} \equiv 4(5^n + 1)$ [8]

5 est impair donc 5^n est impair et $5^n + 1$ est pair et $4(5^n + 1) \equiv 0$ [8]

Donc
$$u_{n+1} \equiv 0 [8]$$

On en déduit par récurrence que pour tout $n \in N$, u_n est divisible par 8.