Pledge: I pledge my honor that I have abided by the Stevens Honor System. -Eric Altenburg

1: Show that the contrapositive of an implication is logically equivalent to the implication itself.

The implication $P \Rightarrow Q$ is logically equivalent to $\neg P \lor Q$. By using this, we can take the contrapositive implication and apply the same steps:

$$\neg Q \Rightarrow \neg P \equiv Q \vee \neg P$$

Which is essentially the same as $\neg P \lor Q$ with the order simply switched.

2: Prove that for an integer n, if n^2 is even, then n is even.

Proof. The way the current theorem is formatted cannot be proven with a direct proof, instead, it can be proven with a contrapositive. It can then be rewritten as:

If n is not even, then n^2 is not even.

We can write an odd number as n = 2k + 1 where k is some integer and substitute that n into n^2 to get:

$$n^{2} = (2k + 1)^{2}$$
$$= 4k^{2} + 4k + 1$$
$$= 2(2k^{2} + 2k) + 1$$

Since we know that the contents of the parenthesis $(2k^2 + 2k)$ will be another integer, then we can let $x = 2k^2 + 2k$. Now the final line of the equation can be rewritten as 2x + 1 which is the definition of an odd number.

3: Let $x \in \mathbb{R}$. Prove that if $x^5 - x^4 + 7x^3 - x^2 + 5x - 8 \ge 0$, then $x \ge 0$.

Proof. Once again, proving this theorem as it stands is difficult, so we can rewrite it as a contrapositive:

Let
$$x \in \mathbb{R}$$
. If $x < 0$, then $x^5 - x^4 + 7x^3 - x^2 + 5x - 8 < 0$.

We can rearrange the even and odd powers of the second proposition so it reads $x^5 + 7x^3 + 5x < x^4 + x^2 + 8$. Because we know that x < 0, this inequality will always hold, therefore the original proposition $(x^5 - x^4 + 7x^3 - x^2 + 5x - 8 \ge 0)$ will not hold if $x \ge 0$.

4: Prove the following statements. Decide whether a direct proof or providing the contrapositive is more appropriate.

Theorem 1. If n is odd, then 8 divides $n^2 - 1$.

Proof. (Direct because it is easier)

Given that n is odd, we can let n = 2k + 1 where k is some integer. Substituting this into $n^2 - 1$ gives:

$$n^{2} - 1 = (2k + 1)^{2} - 1$$
$$= 4k^{2} + 4k + 1 - 1$$
$$= 4k^{2} + 4k$$
$$= 4k(k + 1)$$

We have $4 \cdot k \cdot (k+1)$, we know $k \cdot (k+1)$ is an even number because one of the numbers is even. Because of this we can rewrite $k \cdot (k+1) = 2x$ where x is some integer. This gives the final equation $4k(k+1) = 4 \cdot 2x = 8x$ which is divisible by 8.

Theorem 2. If $n \in \mathbb{Z}$, then 4 does not divide $n^2 - 3$.

Proof. (Contrapositive) The implication is rewritten as:

If 4 divides $n^2 - 3$, then $n \in \mathbb{Z}$.

For n^2-3 to be divisible there needs to be a factor of 4, so it can be rewritten as $n^2-3=4(\frac{n^2-3}{4})$. In this form there needs to be some sort of decimal to have this number be divisible by 4 and because of this requirement, n cannot be an integer.