

IR4 Fondamentaux de l'IA

Module 2 Leçon 1 Le Machine Learning

Le Machine Learning

Environnement changeant

Le ML est utile ...

- Quand il faut modifier/ajuster en permanence les règles de fonctionnement ou les algorithmes.
- Dans un environnement évolutif.

Big data

- •Grand volume de données.
- •Données très diverses.
- •Rapidité d'acquisition des données.

Problème complexe

- Le problème n'est pas modélisable simplement.
- Il comprend un grand nombre de paramètres.

Un projet ML

Définition de la question

Préparation des données

Choix de l'Algo: construction du modèle Déploiement et maintenance du modèle

- Définition du besoin: que veut-on résoudre ?
- X Les données sont la source de tout : leur qualité est essentielle
 - X Identifier les données nécessaires et leur lieu de stockage.
 - X Différentes sources de données peuvent être utilisées.
- X Le Data Scientist choisit l'algorithme adéquat.
- X Le modèle est mis à la disposition de tous les utilisateurs.
 - X Automatisation du maximum de tâches et de transferts de données.
 - Maintenance du modèle et mise à jour avec les nouvelles données.

petal

Predict

- Yields in production
- Machine breakdown
- Risks / trust in banking operations or customers
- + Anomaly detection

- Classify
 - Documents
 - Mails : spam sorting
 - Images
 - For images themselves
 - For supervision and process monitoring
 - For manual scripting recognition

Recommendation

- Products to customers
- Chatbots

Spam filter:

- 1. Preparing the text data.
- 2. Creating word dictionary.
- 3. Feature extraction process.
- 4. Training the classifier.

- Predict
 - Yields in production
 - Machine breakdown
 - Risks / trust in banking operations or customers
 - + Anomaly detection

- Classify
 - Documents
 - Mails: spam sorting
 - Images
 - For images themselves
 - For supervision and process monitoring
 - For manual scripting recognition

Document classification:

- 1. Preparing the text data + tokenization, lemmatization.
- 2. Creating word dictionary.
- 3. Feature extraction process : terms frequency.
- 4. Training the classifier: clustering.

- Recommendation
 - Products to customers
 - Chatbots

petal

Predict

- Yields in production
- Machine breakdown
- Risks / trust in banking operations or customers
- + Anomaly detection

Classify

- Documents
- Mails : spam sorting
- Images
 - For images themselves
 - For supervision and process monitoring
- For manual scripting recognition

Image recognition:

- 1- Take a patch of the image
- 2- Slide the patch along the image

OCR = Optical Character Recognition

- 1- Text detection in the image
- 2- Characters segmentation
- 3- Characters classification
- 4- Eventually, spelling correction

- Recommendation
 - Products to customers
 - Chatbots

petal

Predict

- Yields in production
- Machine breakdown
- Risks / trust in banking operations or customers
- + Anomaly detection

- Classify
 - Documents
 - Mails : spam sorting
 - Images
 - For images themselves
 - For supervision and process monitoring
 - For manual scripting recognition

- Recommendation
 - Products to customers
 - Chatbots

mastercard

Supervised learning

- Predictive model : Y= ⊕ X.
- Labelled data

Examples:

- × Regression
- X Decision Tree
- × Random Forest
- × Logistic regression

Unsupervised learning

- →No output categories or labels
- Pattern detection : identify useful associations within data
- Descriptive modeling : dividing a dataset into homogeneous groups = clustering

Reinforcement learning

- The machine is trained to make specific decisions.
- Driverless cars
- Self navigating vaccum cleaners
- Example: Google Deepmind Lab

observation

Common ML algorithms

Training, Validation, Test sets

Training Dataset:

The sample of data used to fit the model.

Validation Dataset:

The sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters. The evaluation becomes more biased as a skill on the validation dataset is incorporated into the model configuration.

Test Dataset:

The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset.