Analysis of Algorithms (Week 1):

- Introduction
 - Reasons to analyze algorithms:
 - Predict performance
 - Compare algorithms
 - Provide guarantees
 - Understand theoretical basis
 - PRIMARY PRACTICAL REASON
 - To avoid performance bugs
 - Will your program be able to solve a large practical input?
 - Is it too slow?
 - Does it run out of memory?
 - Insight
 - Use scientific method to understand performance.
 - Scientific method applied to analysis of algorithms
 - A framework for predicting performance and comparing algorithms
 - Scientific method
 - Observe some feature of the natural world.
 - In our case, the run time of our program.
 - Hypothesize a model that is consistent with the observations.
 - Predict events using the hypothesis.
 - Maybe the run time of our program on a larger problem size.
 - Verify the predictions by making further observations.
 - Validate by repeating until the hypothesis and observations agree.
 - Principles
 - Experiments must be reproducible.
 - Hypotheses must be falsifiable.

Observations

- The first step of the scientific method is to make some observations about the running time of the programs.
 - For analysis of algorithms, thats a lot easier than in a lot of scientific disciplines.
 - Example 1: 3-Sum
 - Given N distinct integers, how many triples sum to exactly zero? (Groups of 3 numbers)
 - 3-Sum is actually deeply related to problems in computational geometry.
 - Brute-force method is to just use a triple-for-loop and sum all iterations (i + j + k).
- Empirical analysis
 - Run the program for various input sizes and measure the running time of each go.
 - Data analysis
 - Standard plot
 - \circ Plots the running time T(N) vs. input size N.

- Log-Log plot (Usually results in a straight line)
 - \circ Plots the running time T(N) vs. input size N using log-log scale.

- The slope of the straight line is the key to what's going on. In this case, it is 3 (2.999).
- Regression

0

0

- Fit straight line through data points: aN^b.
- \circ Slope = b.

$$lg(T(N)) = b lg N + c$$

 $b = 2.999$
 $c = -33.2103$
 $T(N) = a N^b$, where $a = 2^c$

- Can disregard image, it's the math explaining aN^b.
- We got b and c from empirical analysis.
- Hypothesis
 - The second step in the scientific method,
 - The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.
 - We got 2.999 from our slope in the log-log plot.
 - This means that the "order of growth" of the running time is about N^3 .

- o Predicting and Verifying
 - The third and fourth steps in the scientific method, we predict future values using our hypothesis and plugging in for N. Then we test them by actually running the program.
 - 51.0 seconds for N = 8000.
 - $1.006 \times 10^{-10} \times 8000^{2.999}$ seconds.
 - Checking with empirical gives us 51.1 as the actual runtime which validates our hypothesis.
 - \blacksquare 408.1 seconds for N = 16000.
 - 1.006 x 10⁻¹⁰ x 16000^{2.999} seconds.
 - Checking with empirical gives us 410.8 as the actual runtime which validates our hypothesis.

o Sidenote

- Doubling hypothesis
 - A quick way to estimate b in a power-law relationship.
 - Run the program, doubling the size of the input and collecting the run times.
 - Then take the ratio between each runtime.
 - After getting a few, take the lg of all the ratios and it will converge to some constant.

N	time (seconds) †	ratio	lg ratio
250	0.0		-
500	0.0	4.8	2.3
1,000	0.1	6.9	2.8
2,000	0.8	7.7	2.9
4,000	6.4	8.0	3.0
8,000	51.1	8.0	3.0
		seems	to converge t

- Hypothesis Running time is about aN^b with b = lg ratio.
- Caveat Cannot identify logarithmic factors with double hypothesis.
- How to estimate a (assuming we know b)?

o Experimental algorithmics

- Bad news Since so many factors, hard to get precise measurements.
- Good news Much easier and cheaper than other sciences.
 - Since it's just a program, we can run it many many times with no cost.
- Mathematical Models
 - \circ Total running time = sum of cost x frequency for all operations.
 - Need to analyze program to determine set of operations.
 - Cost depends on machine, compiler.
 - Frequency depends on algorithm, input data.
 - o Simplification 1 Cost model
 - Cost model
 - Use some basic operation as a proxy for running
 - Simplification
 - Use the most expensive operation (highest frequency) as your cost model and disregard the others.

- o Simplification 2 Tilde Notation
 - Estimate running time (or memory) as a function of input size N.
 - Ignore lower order terms.
 - When N is large, the terms are negligible.
 - When N is small, we don't care.

• By ignoring lower terms, as we get to higher and higher values of N, the terms will be so negligible that it literally wont matter.

Technical definition.
$$f(N) \sim g(N)$$
 means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

operation	frequency	tilde notation	
variable declaration	N + 2	~ N	
assignment statement	N + 2	~ N	
less than compare	½ (N + 1) (N + 2)	~ ½ N²	
equal to compare	½ N (N – 1)	~ ½ N²	
array access	N (N - 1)	~ N ²	
increment	½ N (N − 1) to N (N − 1)	$\sim \frac{1}{2} N^2$ to $\sim N^2$	

- Estimating a discrete sum
 - How to estimate a discrete sum?

0

- Take discrete mathematics course.
- Replace the sum with an integral, and use calculus.

- In this course we'll use approximate models.
- Order-of-Growth Classifications
 - Common order-of-growth classifications

- There is a small set of functions that suffice to describe order-of-growth of typical algorithms.
 -]
 - logN
 - N
 - NlogN
 - N²
 - N³
 - 2^N

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int $i = 0$; $i < N$; $i++$) for (int $j = 0$; $j < N$; $j++$) $\{ \dots \}$	double loop	check all pairs	4
N³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

- Guiding principle
 - Typically, better order of growth means faster in practice.
- Theory of Algorithms

- Types of analyses
 - Best case Lower bound on cost
 - Determined by "easiest" input.
 - Provides a goal for all inputs.
 - Worst case Upper bound on cost
 - Determined by "most difficult" input.
 - Provides a guarantee for all inputs.
 - Average case Expected cost for random input
 - Need a model for "random" input.
 - Provides a way to predict performance.
- o Goals
 - Establish "difficulty" of a problem.
 - Develop "optimal" algorithms.
- Approach
 - Suppress details in analysis
 - Analyze "to within a constant factor".
 - Eliminate variability in the input model by focusing on the worst case.
- Optimal algorithm
 - Performance guarantee (to within a constant factor) for any input.
 - Algorithm must be good enough that no other algorithm can provide a better performance guarantee.
- Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	Θ(N²)	½ N ² 10 N ² 5 N ² + 22 N log N + 3N :	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(N²)	10 N ² 100 N 22 N log N + 3 N :	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	Ω(N²)	½ N ² N ⁵ N ³ + 22 N log N + 3 N :	develop lower bounds

- o Example 1
 - Goals
 - Establish "difficulty" of a problem.
 - Develop "optimal" algorithms.

- E.g., 1-sum: "Is there a 0 in the array?"
- Upper bound
 - A specific algorithm
 - E.g., Brute-force algorithm for 1-sum: Look at every array entry.
 - \circ Running time of the optimal algorithm for 1-sum is O(N).
- Lower bound
 - Proof that no algorithm can do better
 - Eg., Have to examine all N entries (any unexamined might be 0).
 - \circ Running time of the optimal algorithm for 1-sum is $\Omega(N)$.
- Optimal algorithm
 - Lower bound equals upper bound (to within a constant factor).
 - E.g., Brute-force algorithm for 1-sum is optimal.
 - Its running time is $\Theta(N)$.
- o Example 2
 - Goals
 - Establish "difficulty" of a problem.
 - Develop "optimal" algorithms.
 - E.g., 3-sum: "Is there a combination of 3 numbers that add up to 0 in the array?"
 - Upper bound
 - A specific algorithm
 - o E.g., Improved algorithm for 3-sum.
 - \circ Running time of the optimal algorithm for 1-sum is $O(N^2 \log N)$.
 - Lower bound
 - Proof that no algorithm can do better
 - Eg., Have to examine all N entries to solve 3-sum.
 - Running time of the optimal algorithm for 1-sum is $\Omega(N)$.
 - Open problems
 - What is the optimal algorithm for 3-sum? Is there even an optimal algorithm for 3-sum? Is it even subquadratic or quadratic lower bound for 3-sum?
- Algorithm design approach
 - Start
 - Develop an algorithm.
 - Prove a lower bound
 - Gap?
 - Lower the upper bound (discover a new algorithm).
 - Raise the lower bound (more difficult).
- Memory
 - Basics
 - How many bits/bytes does our program use?
 - Bit 0 or 1
 - Byte 8 bits
 - Megabyte (MB) 1 million or 2²⁰ bytes.

- Gigabyte (GB) 1 billion or 2³⁰ bytes.
- o Typical memory usage for primitive types and arrays in Java

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

for primitive types

type	bytes
char[]	2N + 24
int[]	4N + 24
double[]	8N + 24

for one-dimensional arrays

type	bytes
char[][]	~ 2 M N
int[][]	~ 4 M N
double[][]	~ 8 M N

for two-dimensional arrays

o Typical memory usage for objects in Java

```
Object overhead. 16 bytes.
Reference. 8 bytes.
Padding. Each object uses a multiple of 8 bytes.
Ex 1. A Date object uses 32 bytes of memory.
       public class Date
           private int day;
                                       object
                                                        16 bytes (object overhead)
          private int month;
                                      overhead
          private int year;
                                       day
                                                        4 bytes (int)
                                                  int
                                      month
                                                        4 bytes (int)
                                                  values
                                      year
                                                        4 bytes (int)
                                      padding
                                                        4 bytes (padding)
                                                        32 bytes
```

Padding adds enough so that the overall memory adds up to a multiple of
 8.

- Shallow vs Deep memory usage
 - Shallow
 - Don't count referenced objects.
 - Deep
 - If array entry or instance variable is a reference, add memory (recursively) for referenced object.

Summary

- Empirical analysis
 - Execute program to perform experiments.
 - Assume power law and formulate a hypothesis for running time.
 - Model enables us to make predictions.
- Mathematical analysis
 - Analyze algorithm to count frequency of operations.
 - Use tilde notation to simplify analysis.
 - Model enables us to explain behaviour.
- Scientific method
 - Mathematical model is independent of a particular computer system; applies to machines not yet built.
 - Empirical analysis is necessary to validate mathematical models and to make predictions.