МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО"

КАФЕДРА КОНСТРУЮВАННЯ ЕОА

3BIT

з лабораторної роботи №6 по курсу «Основи теорії кіл -2» на тему «Частотні характеристики лінійних ланцюгів»

Виконав:

студент гр. ДК-82

Сопіра Р. Я.

Перевірив:

доцент

Короткий Є. В.

Дослідження частотних властивостей RC кола

Мал. 1

Використані значення:

$$R_1 = R_3 = 9.8 \ \mbox{кOM}, \qquad R_2 = 983 \ \mbox{Om},$$
 $C_1 = 9.8 \ \mbox{кOM}$

Теоретичний розрахунок

Коло на мал. 1 можна спростити до подільника напруги, де один із опорів, а саме Z, ε залежним від частоти вхідного гармонічного сигналу.

Мал. 2

Напруга на виході такого подільника $U_{\it eux} = \frac{U_{\it ex} \cdot Z}{R_1 + \dot{Z}}$, звідки виходить

наступне:

$$\frac{\dot{x}_{0} = R_{x} - \dot{y}_{0}}{\dot{x}_{0} = \alpha_{x} + j \delta_{x}} = \frac{R_{3} \dot{x}_{0}}{R_{3} + \dot{x}_{0}} \times_{\delta} = R_{2} + \dot{x}_{0}$$

$$\frac{\dot{x}_{0} = R_{x} - \dot{y}_{0}}{\dot{y}_{0}} = \alpha_{x} + j \delta_{x}$$

$$\frac{\dot{z}_{0} = R_{x} - \dot{y}_{0}}{(R_{3} + \alpha_{x}) + j \delta_{x}} = \frac{(R_{3} A_{x} + j R_{3} \delta_{x})}{(R_{3} + \alpha_{x}) + j \delta_{x}} \times_{\delta} ((R_{3} + \alpha_{x}) - j \delta_{x}) = 3$$

$$= \frac{R_{3}^{2} \alpha_{x} + R_{3} \alpha_{x}^{2} + j R_{3} \alpha_{x} \alpha_{x} + j R_{3} \alpha_{x} \alpha_{x} + k_{3} \delta_{x}^{2}}{(R_{3} + \alpha_{x})^{2} + \delta_{x}^{2}} + j \frac{R_{3}^{2} \delta_{x}}{(R_{3} + \alpha_{x})^{2} + \delta_{x}^{2}} = 3$$

$$= \frac{R_{3}^{2} \alpha_{x} + R_{3} \alpha_{x}^{2} + R_{3} \delta_{x}^{2} + j R_{3} \delta_{x}^{2} + j R_{3} \delta_{x} \alpha_{x} \alpha_{x}^{2} + R_{3} \delta_{x}^{2}}{(R_{3} + \alpha_{x})^{2} + \delta_{x}^{2}} + j \frac{R_{3}^{2} \delta_{x}}{(R_{3} + \alpha_{x})^{2} + \delta_{x}^{2}} = 3$$

$$= \frac{R_{3}^{2} \alpha_{x} + R_{3} \alpha_{x}^{2} + R_{3} \delta_{x}^{2} + j R_{3} \delta_{x}^{2} + j R_{3}^{2} \delta_{x}^{2} + k_{3}^{2}}{(R_{3} + \alpha_{x})^{2} + \delta_{x}^{2}} = 3$$

$$= \frac{R_{3}^{2} \alpha_{x} + R_{3} \alpha_{x}^{2} + R_{3} \delta_{x}^{2} + k_{3}^{2} \delta_{x}^{2} + j R_{3}^{2} \delta_{x}^{2} + k_{3}^{2}}{(R_{3} + \alpha_{x})^{2} + \delta_{x}^{2}} = 3$$

$$= \frac{R_{3}^{2} \alpha_{x} + R_{3} \alpha_{x}^{2} + R_{3} \delta_{x}^{2} + k_{3}^{2} \delta_{x}^{2} +$$

Побудуємо таблицю для кількох значень модуля та аргументу $K_u(\omega)$, розраховуючи кожну комплексну величину окремо для кожної частоти з обраного інтервалу:

$$X_c(\omega_i) \rightarrow X_0(\omega_i) \rightarrow Z(\omega_i) \rightarrow K_u(\omega_i)$$

	х	(0	2	Z	Ku		
f, Hz	Re	Im	Re	Im	Re	Im	
100	9,83E+02	-1,21E+04	5,84E+03	-4,43E+03	4,20E-01	-1,64E-01	
500	9,83E+02	-2,41E+03	1,32E+03	-1,90E+03	1,43E-01	-1,46E-01	
1000	9,83E+02	-1,21E+03	1,00E+03	-9,84E+02	1,00E-01	-8,19E-02	
5000	9,83E+02	-2,41E+02	8,98E+02	-1,99E+02	8,42E-02	-1,70E-02	
10000	9,83E+02	-1,21E+02	8,95E+02	-9,96E+01	8,37E-02	-8,53E-03	

Таб. 1

Із останніх двох стовпців таблиці отримуємо:

f, Hz		Theoretical Ku	ı
	Abs	Gain, dB	Phase, °
100	0,4509	-6,92	-21,35
500	0,2048	-13,77	-45,53
1000	0,1295	-17,75	-39,23
5000	0,0860	-21,32	-11,44
10000	0,0842	-21,50	-5,82

Таб. 2

А за таблицею - приблизний графік самої залежності:

Тепер перевіримо отриману залежність за допомогою симуляції у LTSpice та експериментально.

Симуляція в LTSpice:

Експериментальне:

Можемо спостерігати, що отримана теоретично залежність близька і до отриманої в симуляції, і до експериментальної.

Висновок

Результатом виконання даної лабораторної роботи є отримання теоретичної та експериментальної залежності цієї характеристики і розрахункової формули для модуля та аргументу (зсуву фаз) передаточної характеристики $K_u(\omega)$ лінійного кола.

Обидві залежності збігаються з малою похибкою, обумовленою, я вважаю, можливими неточностями вимірювань.

Остаточна таблиця побудована за розрахунками та результатами експерименту:

f, Hz	Theoretical Ku			Experimental Ku			Error, %	
	Abs	Gain, dB	Phase, °	Abs	Gain, dB	Phase, °	Abs	Phase
100	0,4509	-6,92	-21,35	0,4457	-7,02	-21,74	1,15	1,84
500	0,2048	-13,77	-45,53	0,2030	-13,85	-45,15	0,87	0,84
1000	0,1295	-17,75	-39,23	0,1294	-17,76	-38,89	0,08	0,86
5000	0,0860	-21,32	-11,44	0,0860	-21,31	-11,51	0,06	0,65
10000	0,0842	-21,50	-5,82	0,0841	-21,50	-5,87	0,02	0,88

Таб. 3

Репозиторій на GitHub: [===]