Matematisk statistik

F 1: Grundläggande sannolikhetslära

Eric Järpe

© 2025 Eric Järpe ITE Högskolan i Halmstad

26. augusti 2025

Eric Järpe

► Jag heter Eric Järpe

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se,

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se, Hemsida: https://hh-erja.github.io/erja.github.io/

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se, Hemsida: https://hh-erja.github.io/erja.github.io/
- ► Kommunicerar via email till er studenter

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se, Hemsida: https://hh-erja.github.io/erja.github.io/
- Kommunicerar via email till er studenter VIKTIGT!!! Att läsa HELA de email jag skickar!

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se, Hemsida: https://hh-erja.github.io/erja.github.io/
- Kommunicerar via email till er studenter VIKTIGT!!! Att läsa HELA de email jag skickar! Jag förutsätter att ni vet det jag meddelat via email.

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se, Hemsida: https://hh-erja.github.io/erja.github.io/
- Kommunicerar via email till er studenter VIKTIGT!!! Att läsa HELA de email jag skickar! Jag förutsätter att ni vet det jag meddelat via email.
- ► Föreläsningar, räkneövningar och både på campus och streamat.

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se, Hemsida: https://hh-erja.github.io/erja.github.io/
- Kommunicerar via email till er studenter VIKTIGT!!! Att läsa HELA de email jag skickar! Jag förutsätter att ni vet det jag meddelat via email.
- ► Föreläsningar, räkneövningar och både på campus och streamat.
- ► Två skriftliga duggor där jag tittar på hela lösningen av problemen.

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se, Hemsida: https://hh-erja.github.io/erja.github.io/
- Kommunicerar via email till er studenter
 VIKTIGT!!! Att läsa HELA de email jag skickar!
 Jag förutsätter att ni vet det jag meddelat via email.
- ► Föreläsningar, räkneövningar och både på campus och streamat.
- ► Två skriftliga duggor där jag tittar på hela lösningen av problemen. Beroende på hur man klarar lösa uppgifterna kan man få bonuspoäng.

- ► Jag heter Eric Järpe
- ► Email: eric.jarpe@hh.se, Hemsida: https://hh-erja.github.io/erja.github.io/
- Kommunicerar via email till er studenter
 VIKTIGT!!! Att läsa HELA de email jag skickar!
 Jag förutsätter att ni vet det jag meddelat via email.
- ► Föreläsningar, räkneövningar och både på campus och streamat.
- ► Två skriftliga duggor där jag tittar på hela lösningen av problemen. Beroende på hur man klarar lösa uppgifterna kan man få bonuspoäng.
- ▶ I slutet av kursen **en** *digital* **tenta** i datorsal på campus.

Matematisk

https://https://hh-erja.github.io/erja.github.io/teach/matstat

- ► URL:
 - https://https://hh-erja.github.io/erja.github.io/teach/matstat
- Kursupplägg

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

 Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter

- ► URL: https://https://hh-erja.github.io/erja.github.io/teach/matstat
- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- ► Information om

Kurshemsidan

Eric Järpe

► URL: https://https://hh-erja.github.io/erja.github.io/teach/matstat

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- Information om
 - kurslitteratur:

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- ▶ Information om
 - kurslitteratur: Sannolikhetsteori och statistikteori med tillämpningar av Gunnar Bolom

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- ▶ Information om
 - kurslitteratur: Sannolikhetsteori och statistikteori med tillämpningar av Gunnar Bolom
 - projektarbete

Kurshemsidan

Eric Järpe

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- ▶ Information om
 - kurslitteratur: Sannolikhetsteori och statistikteori med tillämpningar av Gunnar Bolom
 - projektarbete
 - formelsamling

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- ▶ Information om
 - kurslitteratur: Sannolikhetsteori och statistikteori med tillämpningar av Gunnar Bolom
 - projektarbete
 - formelsamling
 - tidigare tentor

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- Information om
 - kurslitteratur: Sannolikhetsteori och statistikteori med tillämpningar av Gunnar Bolom
 - projektarbete
 - formelsamling
 - tidigare tentor
 - lite om regler vid tentor

Kurshemsidan

Eric Järpe

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- Information om
 - kurslitteratur: Sannolikhetsteori och statistikteori med tillämpningar av Gunnar Bolom
 - projektarbete
 - formelsamling
 - tidigare tentor
 - · lite om regler vid tentor
- Intranet

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- Information om
 - kurslitteratur: Sannolikhetsteori och statistikteori med tillämpningar av Gunnar Bolom
 - projektarbete
 - formelsamling
 - tidigare tentor
 - · lite om regler vid tentor
- ▶ Intranet
 - Allt material där lösenordsskyddat,

Kurshemsidan

Eric Järpe

```
https://https://hh-erja.github.io/erja.github.io/teach/matstat
```

- Kursupplägg med länkade föreläsningshandouts och rekommenderade övningsuppgifter
- Information om
 - kurslitteratur: Sannolikhetsteori och statistikteori med tillämpningar av Gunnar Bolom
 - projektarbete
 - formelsamling
 - tidigare tentor
 - · lite om regler vid tentor
- ▶ Intranet
 - Allt material där lösenordsskyddat, lösenord: hcramer

Eric Järpe

► Ingen filmning eller fotografering i sal!

- ► Ingen filmning eller fotografering i sal!
- Kursambassadörer

- ► Ingen filmning eller fotografering i sal!
- ► Kursambassadörer

► Har alla egen laptop?

- ► Ingen filmning eller fotografering i sal!
- ► Kursambassadörer

► Har alla egen laptop? Miniräknare?

- ► Ingen filmning eller fotografering i sal!
- Kursambassadörer

Några saker till...

Eric Järpe

- ► Ingen filmning eller fotografering i sal!
- Kursambassadörer

► Har alla egen laptop? Miniräknare? På tentan:

► Gör övningar med formelsamling och miniräknare

- ► Ingen filmning eller fotografering i sal!
- Kursambassadörer

- ► Gör övningar med formelsamling och miniräknare
- ► Önskemål om schemaändring

- ► Ingen filmning eller fotografering i sal!
- Kursambassadörer

- ► Gör övningar med formelsamling och miniräknare
- Önskemål om schemaändring helst inte men iaf 3 veckor i förväg

- ► Ingen filmning eller fotografering i sal!
- Kursambassadörer

- ► Gör övningar med formelsamling och miniräknare
- ▶ Önskemål om schemaändring helst inte men iaf 3 veckor i förväg
- ► Var uppmärksamma på ändringar av schemat!

Eric Järpe

► Matematisk statistik indelas i **sannolikhetslära** och **statistik**

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- ► Sannolikhetslära

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- ► Sannolikhetslära
 - att räkna med slumpen

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- ► Sannolikhetslära
 - att räkna med slumpen ofullständig information

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- ▶ Sannolikhetslära
 - att räkna med slumpen ofullständig information
 - delområde till matematiken (måtteori/integrationsteori)

- Matematisk statistik indelas i sannolikhetslära och statistik
- ▶ Sannolikhetslära
 - att räkna med slumpen ofullständig information
 - delområde till matematiken (måtteori/integrationsteori)
 - före observationer

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- ▶ Sannolikhetslära
 - att räkna med slumpen ofullständig information
 - delområde till matematiken (måtteori/integrationsteori)
 - före observationer
 - grunden till statistiken

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- ► Sannolikhetslära
 - att räkna med slumpen ofullständig information
 - delområde till matematiken (måtteori/integrationsteori)
 - före observationer
 - grunden till statistiken
- Statistik

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- ▶ Sannolikhetslära
 - att räkna med slumpen ofullständig information
 - delområde till matematiken (måtteori/integrationsteori)
 - före observationer
 - grunden till statistiken
- Statistik
 - efter observationer

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- Sannolikhetslära
 - att räkna med slumpen ofullständig information
 - delområde till matematiken (måtteori/integrationsteori)
 - före observationer
 - grunden till statistiken
- Statistik
 - efter observationer
 - hur man använder sannolikhetslagarna...

- Matematisk statistik indelas i sannolikhetslära och statistik
- Sannolikhetslära
 - att räkna med slumpen ofullständig information
 - delområde till matematiken (måtteori/integrationsteori)
 - före observationer
 - grunden till statistiken
- Statistik
 - efter observationer
 - hur man använder sannolikhetslagarna...
 - ... för att räkna med gjorda observationer

- ► Matematisk statistik indelas i sannolikhetslära och statistik
- Sannolikhetslära
 - att räkna med slumpen ofullständig information
 - delområde till matematiken (måtteori/integrationsteori)
 - före observationer
 - grunden till statistiken
- Statistik
 - efter observationer
 - hur man använder sannolikhetslagarna...
 - ... för att räkna med gjorda observationer
 - dra slutsatser om den sinnliga världen

Eric Järpe

► Experiment – fenomen/förlopp som man vill beräkna sannolikheter för

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ightharpoonup Utfallsrum mängden Ω av alla de olika utfallen

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ightharpoonup Utfallsrum mängden Ω av alla de olika utfallen
- ▶ **Händelse** union av vissa utfall (A, B, ...)

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ightharpoonup Utfallsrum mängden Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

► Antal utfall uppräkneligt – utfallsrummet diskret,

Eric Järpe

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** mängden Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

► Antal utfall uppräkneligt – utfallsrummet diskret, annars kontinuerligt

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** mängden Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ▶ Mängdoperationer:

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ightharpoonup Mängdoperationer: $A \cup B$ (union),

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ightharpoonup Mängdoperationer: $A \cup B$ (union), $A \cap B$ (snitt),

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ▶ Mängdoperationer: $A \cup B$ (union), $A \cap B$ (snitt), A^* (komplement),

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ▶ Mängdoperationer: $A \cup B$ (union), $A \cap B$ (snitt), A^* (komplement), $A \setminus B$ (differens)

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ▶ Mängdoperationer: $A \cup B$ (union), $A \cap B$ (snitt), A^* (komplement), $A \setminus B$ (differens) Beteckningar:

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** mängden Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ▶ Mängdoperationer: $A \cup B$ (union), $A \cap B$ (snitt), A^* (komplement), $A \setminus B$ (differens) Beteckningar: \emptyset (tomma mängden),

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ► Händelse union av vissa utfall (A, B, . . .)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ▶ Mängdoperationer: $A \cup B$ (union), $A \cap B$ (snitt), A^* (komplement), $A \setminus B$ (differens) Beteckningar: \emptyset (tomma mängden), $a \in A$ (tillhörighet),

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ▶ Mängdoperationer: $A \cup B$ (union), $A \cap B$ (snitt), A^* (komplement), $A \setminus B$ (differens) Beteckningar: \emptyset (tomma mängden), $a \in A$ (tillhörighet), $A \subseteq B$ (delmängd),

- ► Experiment fenomen/förlopp som man vill beräkna sannolikheter för
- ▶ **Utfall** de olika möjliga resultaten $\omega_1, \omega_2, \ldots$ av experimentet
- ▶ **Utfallsrum** $m\ddot{a}ngden$ Ω av alla de olika utfallen
- ightharpoonup Händelse union av vissa utfall (A, B, ...)

- ► Antal utfall uppräkneligt utfallsrummet diskret, annars kontinuerligt
- ▶ Mängdoperationer: $A \cup B$ (union), $A \cap B$ (snitt), A^* (komplement), $A \setminus B$ (differens) Beteckningar: \emptyset (tomma mängden), $a \in A$ (tillhörighet), $A \subseteq B$ (delmängd), |A|

Exempel

▶ **Exempel** Låt $A = \{1, 2, 3\}$,

▶ **Exempel** Låt $A = \{1, 2, 3\}, B = \{3, 4\}$

► **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$.

Exempel Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $Ω = \{1, 2, 3, 4, 5\}$. Beräkna A ∪ B,

Exempel Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $Ω = \{1, 2, 3, 4, 5\}$. Beräkna A ∪ B, A ∩ B,

► Exempel Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* ,

► Exempel Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$,

► **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$.

Exempel Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $Ω = \{1, 2, 3, 4, 5\}$. Beräkna A ∪ B, A ∩ B, A^* , $A \setminus B$, $|A ∪ B^*|$. Avgör om A ⊆ B,

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- Lösning:

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- ► Lösning:

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- ► Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\}$$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- ► Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

- **► Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- ► Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

 $A \cap B$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

 $A \cap B = \{1, 2, 3\} \cap \{3, 4\}$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

 $A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

 $A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$
 A^*

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

 $A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$
 $A^* = \{1, 2, 3\}^*$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

 $A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$
 $A^* = \{1, 2, 3\}^* = \{4, 5\}$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

 $A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$
 $A^* = \{1, 2, 3\}^* = \{4, 5\}$
 $A \setminus B$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S ∈ A^*$.
- Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$$

$$A^* = \{1, 2, 3\}^* = \{4, 5\}$$

$$A \setminus B = \{1, 2, 3\} \setminus \{3, 4\}$$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S ∈ A^*$.
- ► Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$$

$$A^* = \{1, 2, 3\}^* = \{4, 5\}$$

$$A \setminus B = \{1, 2, 3\} \setminus \{3, 4\} = \{1, 2\}$$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- ► Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$$

$$A^* = \{1, 2, 3\}^* = \{4, 5\}$$

$$A \setminus B = \{1, 2, 3\} \setminus \{3, 4\} = \{1, 2\}$$

$$|A \cup B^*|$$

- **Exempel** Låt $A = \{1, 2, 3\}$, $B = \{3, 4\}$ och $\Omega = \{1, 2, 3, 4, 5\}$. Beräkna $A \cup B$, $A \cap B$, A^* , $A \setminus B$, $|A \cup B^*|$. Avgör om $A \subseteq B$, om $S \in A^*$.
- ► Lösning:

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$$

$$A^* = \{1, 2, 3\}^* = \{4, 5\}$$

$$A \setminus B = \{1, 2, 3\} \setminus \{3, 4\} = \{1, 2\}$$

$$|A \cup B^*| = |\{1, 2, 3\} \cap \{3, 4\}^*|$$

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

 $A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$
 $A^* = \{1, 2, 3\}^* = \{4, 5\}$
 $A \setminus B = \{1, 2, 3\} \setminus \{3, 4\} = \{1, 2\}$
 $|A \cup B^*| = |\{1, 2, 3\} \cap \{3, 4\}^*| = |\{1, 2, 3\} \cup \{1, 2, 5\}|$

$$A \cup B = \{1, 2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$A \cap B = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$$

$$A^* = \{1, 2, 3\}^* = \{4, 5\}$$

$$A \setminus B = \{1, 2, 3\} \setminus \{3, 4\} = \{1, 2\}$$

$$|A \cup B^*| = |\{1, 2, 3\} \cap \{3, 4\}^*| = |\{1, 2, 3\} \cup \{1, 2, 5\}| = |\{1, 2, 3, 5\}|$$

$$A \cup B = \{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$$

$$A \cap B = \{1,2,3\} \cap \{3,4\} = \{3\}$$

$$A^* = \{1,2,3\}^* = \{4,5\}$$

$$A \setminus B = \{1,2,3\} \setminus \{3,4\} = \{1,2\}$$

$$|A \cup B^*| = |\{1,2,3\} \cap \{3,4\}^*| = |\{1,2,3\} \cup \{1,2,5\}| = |\{1,2,3,5\}| = 4$$

$$A \cup B = \{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$$

 $A \cap B = \{1,2,3\} \cap \{3,4\} = \{3\}$
 $A^* = \{1,2,3\}^* = \{4,5\}$
 $A \setminus B = \{1,2,3\} \setminus \{3,4\} = \{1,2\}$
 $|A \cup B^*| = |\{1,2,3\} \cap \{3,4\}^*| = |\{1,2,3\} \cup \{1,2,5\}| = |\{1,2,3,5\}| = 4$
 $A \subseteq B$?

$$A \cup B = \{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$$

 $A \cap B = \{1,2,3\} \cap \{3,4\} = \{3\}$
 $A^* = \{1,2,3\}^* = \{4,5\}$
 $A \setminus B = \{1,2,3\} \setminus \{3,4\} = \{1,2\}$
 $|A \cup B^*| = |\{1,2,3\} \cap \{3,4\}^*| = |\{1,2,3\} \cup \{1,2,5\}| = |\{1,2,3,5\}| = 4$
 $A \subseteq B$? $\{1,2,3\} \subseteq \{3,4\}$?

$$A \cup B = \{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$$

 $A \cap B = \{1,2,3\} \cap \{3,4\} = \{3\}$
 $A^* = \{1,2,3\}^* = \{4,5\}$
 $A \setminus B = \{1,2,3\} \setminus \{3,4\} = \{1,2\}$
 $|A \cup B^*| = |\{1,2,3\} \cap \{3,4\}^*| = |\{1,2,3\} \cup \{1,2,5\}| = |\{1,2,3,5\}| = 4$
 $A \subseteq B$? $\{1,2,3\} \subseteq \{3,4\}$? Nej.

$$A \cup B = \{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$$

$$A \cap B = \{1,2,3\} \cap \{3,4\} = \{3\}$$

$$A^* = \{1,2,3\}^* = \{4,5\}$$

$$A \setminus B = \{1,2,3\} \setminus \{3,4\} = \{1,2\}$$

$$|A \cup B^*| = |\{1,2,3\} \cap \{3,4\}^*| = |\{1,2,3\} \cup \{1,2,5\}| = |\{1,2,3,5\}| = 4$$

$$A \subseteq B? \{1,2,3\} \subseteq \{3,4\}? \text{ Nej.}$$

$$5 \in A^*?$$

$$A \cup B = \{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$$

$$A \cap B = \{1,2,3\} \cap \{3,4\} = \{3\}$$

$$A^* = \{1,2,3\}^* = \{4,5\}$$

$$A \setminus B = \{1,2,3\} \setminus \{3,4\} = \{1,2\}$$

$$|A \cup B^*| = |\{1,2,3\} \cap \{3,4\}^*| = |\{1,2,3\} \cup \{1,2,5\}| = |\{1,2,3,5\}| = 4$$

$$A \subseteq B? \{1,2,3\} \subseteq \{3,4\}? \text{ Nej.}$$

$$5 \in A^*? 5 \in \{1,2,3\}^*?$$

$$A \cup B = \{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$$

$$A \cap B = \{1,2,3\} \cap \{3,4\} = \{3\}$$

$$A^* = \{1,2,3\}^* = \{4,5\}$$

$$A \setminus B = \{1,2,3\} \setminus \{3,4\} = \{1,2\}$$

$$|A \cup B^*| = |\{1,2,3\} \cap \{3,4\}^*| = |\{1,2,3\} \cup \{1,2,5\}| = |\{1,2,3,5\}| = 4$$

$$A \subseteq B? \{1,2,3\} \subseteq \{3,4\}? \text{ Nej.}$$

$$5 \in A^*? 5 \in \{1,2,3\}^*? 5 \in \{4,5\}?$$

$$A \cup B = \{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$$

$$A \cap B = \{1,2,3\} \cap \{3,4\} = \{3\}$$

$$A^* = \{1,2,3\}^* = \{4,5\}$$

$$A \setminus B = \{1,2,3\} \setminus \{3,4\} = \{1,2\}$$

$$|A \cup B^*| = |\{1,2,3\} \cap \{3,4\}^*| = |\{1,2,3\} \cup \{1,2,5\}| = |\{1,2,3,5\}| = 4$$

$$A \subseteq B? \{1,2,3\} \subseteq \{3,4\}? \text{ Nej.}$$

$$5 \in A^*? 5 \in \{1,2,3\}^*? 5 \in \{4,5\}? \text{ Ja.}$$

► Beskrivande notation

► Beskrivande notation {1,2,3}

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

- Beskrivande notation
 - $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$
- ► Talmängderna

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

▶ Talmängderna

• \mathbb{Z} (heltalen),

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- $\bullet \ \mathbb{N}$ (de icke-negativa heltalen),

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- \mathbb{N} (de icke-negativa heltalen),
- \mathbb{Q} (de rationella talen),

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- \mathbb{N} (de icke-negativa heltalen),
- \mathbb{Q} (de rationella talen),
- \mathbb{R} (de reella talen),

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- \mathbb{N} (de icke-negativa heltalen),
- \mathbb{Q} (de rationella talen),
- ullet \mathbb{R} (de reella talen),
- \mathbb{R}^+ (de positiva reella talen)

$$\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$$

Talmängderna

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- \mathbb{N} (de icke-negativa heltalen),
- \mathbb{Q} (de rationella talen),
- \mathbb{R} (de reella talen),
- \mathbb{R}^+ (de positiva reella talen)

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

Talmängderna

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- \mathbb{N} (de icke-negativa heltalen),
- \mathbb{Q} (de rationella talen),
- \mathbb{R} (de reella talen),
- \mathbb{R}^+ (de positiva reella talen)

•
$$(a,b) = \{x \in \mathbb{R} : a < x < b\},$$

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

Talmängderna

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- \mathbb{N} (de icke-negativa heltalen),
- \mathbb{Q} (de rationella talen),
- \mathbb{R} (de reella talen),
- \mathbb{R}^+ (de positiva reella talen)

- $(a, b) = \{x \in \mathbb{R} : a < x < b\},\$
- $(a, b] = \{x \in \mathbb{R} : a < x \le b\},$

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

Talmängderna

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- \mathbb{N} (de icke-negativa heltalen),
- Q (de rationella talen),
- \mathbb{R} (de reella talen),
- \mathbb{R}^+ (de positiva reella talen)

- $(a, b) = \{x \in \mathbb{R} : a < x < b\},\$
- $(a,b] = \{x \in \mathbb{R} : a < x \le b\},$
- $[a,b] = \{x \in \mathbb{R} : a \leq x < b\},$

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

Talmängderna

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- \mathbb{N} (de icke-negativa heltalen),
- Q (de rationella talen),
- \mathbb{R} (de reella talen),
- \mathbb{R}^+ (de positiva reella talen)

- $(a, b) = \{x \in \mathbb{R} : a < x < b\},\$
- $(a, b] = \{x \in \mathbb{R} : a < x \le b\},$
- $[a,b) = \{x \in \mathbb{R} : a \le x < b\},\$
- $[a,b] = \{x \in \mathbb{R} : a \leq x \leq b\},$

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

Talmängderna

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- ullet N (de icke-negativa heltalen),
- Q (de rationella talen),
- ℝ (de reella talen),
- \mathbb{R}^+ (de positiva reella talen)

- $(a, b) = \{x \in \mathbb{R} : a < x < b\},\$
- $(a,b] = \{x \in \mathbb{R} : a < x \le b\},$
- $[a,b) = \{x \in \mathbb{R} : a \le x < b\},\$
- $[a,b] = \{x \in \mathbb{R} : a \leq x \leq b\},$
- $(a, \infty) = \{x \in \mathbb{R} : x > a\}$

 $\{1,2,3\} = \{x : x \text{ är ett positivt heltal och } 1 \le x \le 3\}$

▶ Talmängderna

- \mathbb{Z} (heltalen),
- \mathbb{Z}^+ (de positiva heltalen),
- N (de icke-negativa heltalen),
- Q (de rationella talen),
- ℝ (de reella talen),
- \mathbb{R}^+ (de positiva reella talen)

- $(a,b) = \{x \in \mathbb{R} : a < x < b\},$
- $(a,b] = \{x \in \mathbb{R} : a < x \le b\},$
- $[a,b) = \{x \in \mathbb{R} : a \le x < b\},\$
- $[a,b] = \{x \in \mathbb{R} : a \le x \le b\},$
- $(a,\infty) = \{x \in \mathbb{R} : x > a\}$
- $(-\infty, b] = \{x \in \mathbb{R} : x \leq b\}$

• Summa: $a_1 + a_2 + \ldots + a_n = \sum_{i=1}^n a_i$

- Summa: $a_1 + a_2 + \ldots + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$

- Summa: $a_1 + a_2 + \ldots + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$

- Summa: $a_1 + a_2 + \ldots + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$

- Summa: $a_1 + a_2 + ... + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- Om $A \cap B = \emptyset$ så kallas mängderna A och B disjunkta.

- Summa: $a_1 + a_2 + ... + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- Om $A \cap B = \emptyset$ så kallas mängderna A och B disjunkta.

De Morgans lagar

- Summa: $a_1 + a_2 + ... + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- Om $A \cap B = \emptyset$ så kallas mängderna A och B disjunkta.

De Morgans lagar

$$\left(\bigcup_{i=1}^n A_i\right)^* = \bigcap_{i=1}^n A_i^*$$

- Summa: $a_1 + a_2 + \ldots + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- Om $A \cap B = \emptyset$ så kallas mängderna A och B disjunkta.

► De Morgans lagar

$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{*} = \bigcap_{i=1}^{n} A_{i}^{*} \text{ och } \left(\bigcap_{i=1}^{n} A_{i}\right)^{*} = \bigcup_{i=1}^{n} A_{i}^{*}$$

- Summa: $a_1 + a_2 + ... + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- Om $A \cap B = \emptyset$ så kallas mängderna A och B disjunkta.

De Morgans lagar

$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{*} = \bigcap_{i=1}^{n} A_{i}^{*} \text{ och } \left(\bigcap_{i=1}^{n} A_{i}\right)^{*} = \bigcup_{i=1}^{n} A_{i}^{*}$$

Additionssatsen

- Summa: $a_1 + a_2 + ... + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- Om $A \cap B = \emptyset$ så kallas mängderna A och B disjunkta.

De Morgans lagar

$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{*} = \bigcap_{i=1}^{n} A_{i}^{*} \text{ och } \left(\bigcap_{i=1}^{n} A_{i}\right)^{*} = \bigcup_{i=1}^{n} A_{i}^{*}$$

Additionssatsen

$$|A \cup B| = |A| + |B| - |A \cap B|$$

- Summa: $a_1 + a_2 + ... + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- Om $A \cap B = \emptyset$ så kallas mängderna A och B disjunkta.

De Morgans lagar

$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{*} = \bigcap_{i=1}^{n} A_{i}^{*} \text{ och } \left(\bigcap_{i=1}^{n} A_{i}\right)^{*} = \bigcup_{i=1}^{n} A_{i}^{*}$$

Additionssatsen

$$|A \cup B| = |A| + |B| - |A \cap B|$$

► Komplementsatsen

- Summa: $a_1 + a_2 + ... + a_n = \sum_{i=1}^n a_i$
- Produkt: $a_1 a_2 \cdots a_n = \prod_{i=1}^n a_i$
- Union: $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$
- Snitt: $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$
- Om $A \cap B = \emptyset$ så kallas mängderna A och B disjunkta.

De Morgans lagar

$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{*} = \bigcap_{i=1}^{n} A_{i}^{*} \text{ och } \left(\bigcap_{i=1}^{n} A_{i}\right)^{*} = \bigcup_{i=1}^{n} A_{i}^{*}$$

Additionssatsen

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Komplementsatsen

$$|A^*| = |\Omega| - |A|$$

Eric Järpe

Eric Järpe

Exempel

Eric Järpe

Exempel

Låt $A = \{ \text{det regnar} \} \text{ och } B = \{ \text{temperaturen \"{a}r } > 15^{\circ} \}.$

Eric Järpe

► Exempel

Låt $A = \{ \text{det regnar} \} \text{ och } B = \{ \text{temperaturen är } > 15^{\circ} \}.$ Tolka $A \cap B$ och $A \cup B^*$.

Eric Järpe

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen \"{a}r} > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

Lösning:

Eric Järpe

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen \"{a}r} > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

▶ Lösning: $A \cap B$

Eric Järpe

► Exempel

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen \"{a}r} > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

Lösning: $A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"ar } > 15^{\circ} \}$

Eric Järpe

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen \"{a}r} > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
```

Eric Järpe

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen \"ar } > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^{*}
```

Eric Järpe

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen är } > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
```

Eric Järpe

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen är } > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} \le 15^{\circ} \}
```

Eric Järpe

Exempel

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen \"ar } > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} \le 15^{\circ} \}
```

► Exempel Banksy är en berömd men anonym graffitikonstnär.

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen \"ar } > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

```
▶ Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}

= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}

A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*

= \{ \text{det regnar eller temperaturen \"{a}r} \leq 15^{\circ} \}
```

▶ **Exempel** Banksy är en berömd men anonym graffitikonstnär. Låt $B_1 = \{\text{Banksy är i Halmstad}\},$

Eric Järpe

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen är } > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} \le 15^{\circ} \}
```

▶ **Exempel** Banksy är en berömd men anonym graffitikonstnär. Låt $B_1 = \{\text{Banksy är i Halmstad}\}, B_2 = \{\text{Banksy är i Göteborg}\},$

Eric Järpe

Exempel

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen \"ar } > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} \le 15^{\circ} \}
```

Exempel Banksy är en berömd men anonym graffitikonstnär. Låt B₁ = {Banksy är i Halmstad}, B₂ = {Banksy är i Göteborg}, B₃ = {Banksy är i Bristol}.

Eric Järpe

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen \"ar } > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} < 15^{\circ} \}
```

Exempel Banksy är en berömd men anonym graffitikonstnär.
 Låt B₁ = {Banksy är i Halmstad}, B₂ = {Banksy är i Göteborg},
 B₃ = {Banksy är i Bristol}. Bilda partition av Ω = {Banksy är nånstans}.

Exempel

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen \"ar } > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} \le 15^{\circ} \}
```

- **Exempel** Banksy är en berömd men anonym graffitikonstnär. Låt $B_1 = \{\text{Banksy är i Halmstad}\}$, $B_2 = \{\text{Banksy är i Göteborg}\}$, $B_3 = \{\text{Banksy är i Bristol}\}$. Bilda partition av $\Omega = \{\text{Banksy är nånstans}\}$.
- ► Lösning:

Eric Järpe

Exempel

```
Låt A = \{ \text{det regnar} \} och B = \{ \text{temperaturen \"ar } > 15^{\circ} \}.
Tolka A \cap B och A \cup B^*.
```

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} < 15^{\circ} \}
```

- Exempel Banksy är en berömd men anonym graffitikonstnär.
 Låt B₁ = {Banksy är i Halmstad}, B₂ = {Banksy är i Göteborg},
 B₃ = {Banksy är i Bristol}. Bilda partition av Ω = {Banksy är nånstans}.
- **Lösning:** En **partition** är en uppdelning av Ω i disjunkta delmängder.

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen \"ar } > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} \le 15^{\circ} \}
```

- Exempel Banksy är en berömd men anonym graffitikonstnär.
 Låt B₁ = {Banksy är i Halmstad}, B₂ = {Banksy är i Göteborg},
 B₃ = {Banksy är i Bristol}. Bilda partition av Ω = {Banksy är nånstans}.
- **Lösning:** En **partition** är en uppdelning av Ω i disjunkta delmängder. Klart att $B_1 \cap B_2 = \emptyset$,

Eric Järpe

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen \"ar } > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} < 15^{\circ} \}
```

- Exempel Banksy är en berömd men anonym graffitikonstnär.
 Låt B₁ = {Banksy är i Halmstad}, B₂ = {Banksy är i Göteborg},
 B₃ = {Banksy är i Bristol}. Bilda partition av Ω = {Banksy är nånstans}.
- **Lösning:** En **partition** är en uppdelning av Ω i disjunkta delmängder. Klart att $B_1 \cap B_2 = \emptyset$, $B_1 \cap B_3 = \emptyset$,

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen \"{a}r} > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} \le 15^{\circ} \}
```

- Exempel Banksy är en berömd men anonym graffitikonstnär.
 Låt B₁ = {Banksy är i Halmstad}, B₂ = {Banksy är i Göteborg},
 B₃ = {Banksy är i Bristol}. Bilda partition av Ω = {Banksy är nånstans}.
- **Lösning:** En **partition** är en uppdelning av Ω i disjunkta delmängder. Klart att $B_1 \cap B_2 = \emptyset$, $B_1 \cap B_3 = \emptyset$, $B_2 \cap B_3 = \emptyset$

Eric Järpe

Exempel

Låt $A = \{ \text{det regnar} \}$ och $B = \{ \text{temperaturen \"ar } > 15^{\circ} \}$. Tolka $A \cap B$ och $A \cup B^*$.

```
Lösning: A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}
= \{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}
A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*
= \{ \text{det regnar eller temperaturen \"{a}r} \le 15^{\circ} \}
```

- Exempel Banksy är en berömd men anonym graffitikonstnär.
 Låt B₁ = {Banksy är i Halmstad}, B₂ = {Banksy är i Göteborg},
 B₃ = {Banksy är i Bristol}. Bilda partition av Ω = {Banksy är nånstans}.
- **Lösning:** En **partition** är en uppdelning av Ω i disjunkta delmängder. Klart att $B_1 \cap B_2 = \emptyset$, $B_1 \cap B_3 = \emptyset$, $B_2 \cap B_3 = \emptyset$ men $B_1 \cup B_2 \cup B_3 \neq \Omega$.

Eric Järpe ► Exempel

Låt $A = \{ \text{det regnar} \} \text{ och } B = \{ \text{temperaturen \"ar } > 15^{\circ} \}.$ Tolka $A \cap B$ och $A \cup B^*$.

- ▶ **Lösning:** $A \cap B = \{ \text{det regnar} \} \cap \{ \text{temperaturen \"{a}r} > 15^{\circ} \}$ = $\{ \text{det regnar och temperaturen \"{a}r} > 15^{\circ} \}$ $A \cup B^* = \{ \text{det regnar} \} \cup \{ \text{temperaturen \"{a}r} > 15^{\circ} \}^*$ = $\{ \text{det regnar eller temperaturen \"{a}r} < 15^{\circ} \}$
- **Exempel** Banksy är en berömd men anonym graffitikonstnär. Låt $B_1 = \{\text{Banksy är i Halmstad}\}$, $B_2 = \{\text{Banksy är i Göteborg}\}$, $B_3 = \{\text{Banksy är i Bristol}\}$. Bilda partition av $\Omega = \{\text{Banksy är nånstans}\}$.
- **Lösning:** En **partition** är en uppdelning av Ω i disjunkta delmängder. Klart att $B_1 \cap B_2 = \emptyset$, $B_1 \cap B_3 = \emptyset$, $B_2 \cap B_3 = \emptyset$ men $B_1 \cup B_2 \cup B_3 \neq \Omega$. { $B_1, B_2, B_3, (B_1 \cup B_2 \cup B_3)^*$ } är en partition av Ω .

Eric Järpe

Eric Järpe

Grundläggande sannolikhetslära

Definition

Ett sannolikhetsmått $P(\cdot)$ är definierat av att

Definition

Ett sannolikhetsmått $P(\cdot)$ är definierat av att

1 för varje $A \subseteq \Omega$ är $0 \le P(A) \le 1$

Definition

Ett sannolikhetsmått $P(\cdot)$ är definierat av att

- **1** för varje $A \subseteq \Omega$ är $0 \le P(A) \le 1$
- **2** $P(\Omega) = 1$

Definition

Ett sannolikhetsmått $P(\cdot)$ är definierat av att

- **1** för varje $A \subseteq \Omega$ är $0 \le P(A) \le 1$
- **2** $P(\Omega) = 1$
- **3** Om A_1, A_2, \ldots disjunkta så $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \ldots$

Eric Järpe

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Bevis: A, A* disjunkta,

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.\Box$

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.\Box$

Sats

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.\Box$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

så är $P(A \cup B)$

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

så är
$$P(A \cup B) \stackrel{I}{=} P(A) + P(A^* \cap B)$$

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

så är $P(A \cup B) \stackrel{I}{=} P(A) + P(A^* \cap B)$ och P(B)

Eric Järpe

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

så är $P(A \cup B) \stackrel{l}{=} P(A) + P(A^* \cap B)$ och $P(B) \stackrel{\parallel}{=} P(A \cap B) + P(A^* \cap B)$

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.\Box$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

så är $P(A \cup B) \stackrel{I}{=} P(A) + P(A^* \cap B)$ och $P(B) \stackrel{II}{=} P(A \cap B) + P(A^* \cap B)$ dvs $P(A^* \cap B)$

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.\Box$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

så är $P(A \cup B) \stackrel{!}{=} P(A) + P(A^* \cap B)$ och $P(B) \stackrel{||}{=} P(A \cap B) + P(A^* \cap B)$ dvs $P(A^* \cap B) = P(B) - P(A \cap B)$

_

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.\Box$

Sats

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

så är $P(A \cup B) \stackrel{!}{=} P(A) + P(A^* \cap B)$ och $P(B) \stackrel{||}{=} P(A \cap B) + P(A^* \cap B)$ dvs $P(A^* \cap B) = P(B) - P(A \cap B)$ varmed $P(A \cup B)$

Sats

$$P(A^*) = 1 - P(A)$$

Bevis:
$$A, A^*$$
 disjunkta, $A \cup A^* = \Omega$ så $P(A) + P(A^*) \stackrel{3}{=} P(A \cup A^*) = P(\Omega) \stackrel{2}{=} 1.$

Sats

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Bevis: Bilda

I. $\{A, A^* \cap B\}$ (partition av $A \cup B$)

II. $\{A \cap B, A^* \cap B\}$ (partition av B)

så är
$$P(A \cup B) \stackrel{I}{=} P(A) + P(A^* \cap B)$$
 och $P(B) \stackrel{II}{=} P(A \cap B) + P(A^* \cap B)$ dvs $P(A^* \cap B) = P(B) - P(A \cap B)$ varmed $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. \square

Eric Järpe

Eric Järpe

Exampel

Eric Järpe

► Exampel
Johannes åker ibland spontant till Gullevi

Eric Järpe

Grundläggande sannolikhetslära

► Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp)

Eric Järpe

Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar.

Eric Järpe

Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar.

Dock är P(han har gl"omt ta med bollen = 0.1,

Eric Järpe

Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar.

Dock är $P(\text{han har gl\"{o}mt ta med bollen} = 0.1,$

P(planen är upptagen) = 0.3

Eric Järpe

Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar.

Dock är P(han har gl"omt ta med bollen = 0.1,

P(planen är upptagen) = 0.3 och

P(han har gl"omt bollen och planen är upptagen) = 0.05.

Eric Järpe

Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar.

Dock är P(han har gl"omt ta med bollen = 0.1,

P(planen är upptagen) = 0.3 och

 $P(\text{han har gl\"{o}mt bollen och planen \"{a}r upptagen}) = 0.05.$

Vad är sannolikheten att Johannes kan spela?

Eric Järpe

Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är P(han har glömt ta med bollen = 0.1,

Dock at P(nan har glorit ta med bollen :

 $P(planen \ ar \ upptagen) = 0.3 \ och$

 $P(\text{han har gl\"{o}mt bollen och planen \"{a}r upptagen}) = 0.05.$

Vad är sannolikheten att Johannes kan spela?

► Lösning:

Eric Järpe

Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är $P(\text{han har gl\"{o}mt} \text{ ta med bollen} = 0.1, P(\text{planen \"{a}r upptagen}) = 0.3 \text{ och}$

P(han har glömt bollen och planen är upptagen) = 0.05.

Vad är sannolikheten att Johannes kan spela?

► Lösning:

Låt $A = \{\text{han har gl\"omt ta med bollen}\}$

Eric Järpe

► Exampel

```
Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är P(\text{han har gl\"{o}mt} \text{ ta med bollen} = 0.1, P(\text{planen \"{a}r upptagen}) = 0.3 \text{ och } P(\text{han har gl\"{o}mt} \text{ bollen och planen \"{a}r upptagen}) = 0.05. Vad \"{a}r sannolikheten att Johannes kan spela?}
```

```
Låt A = \{han har glömt ta med bollen\} och B = \{planen är upptagen\}
```

Eric Järpe

► Exampel

```
Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är P(\text{han har gl\"{o}mt} \text{ ta med bollen} = 0.1, P(\text{planen \"{a}r upptagen}) = 0.3 \text{ och } P(\text{han har gl\"{o}mt} \text{ bollen och planen \"{a}r upptagen}) = 0.05. Vad \"{a}r sannolikheten att Johannes kan spela?}
```

```
Låt A = \{han har glömt ta med bollen\} och B = \{planen är upptagen\} så har vi att P(A) = 0.1, P(B) = 0.3, P(A \cap B) = 0.05
```

Eric Järpe

► Exampel

```
Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är P(\text{han har gl\"{o}mt} \text{ ta med bollen} = 0.1, P(\text{planen \"{a}r upptagen}) = 0.3 \text{ och } P(\text{han har gl\"{o}mt} \text{ bollen och planen \"{a}r upptagen}) = 0.05. Vad \"{a}r sannolikheten att Johannes kan spela?}
```

```
Låt A = \{\text{han har gl\"omt ta med bollen}\} och B = \{\text{planen \"ar upptagen}\} så har vi att P(A) = 0.1, P(B) = 0.3, P(A \cap B) = 0.05 och vi vill veta
```

Eric Järpe

► Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är $P(\text{han har gl\"{o}mt} \text{ ta med bollen} = 0.1, P(\text{planen \"{a}r upptagen}) = 0.3 \text{ och } P(\text{han har gl\"{o}mt} \text{ bollen och planen \"{a}r upptagen}) = 0.05. Vad \"{a}r sannolikheten att Johannes kan spela?}$

```
Låt A=\{han har glömt ta med bollen\} och B=\{planen är upptagen\} så har vi att P(A)=0.1,\ P(B)=0.3,\ P(A\cap B)=0.05 och vi vill veta P(A^*\cap B^*)
```

► Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är $P(\text{han har gl\"{o}mt} \text{ ta med bollen} = 0.1, P(\text{planen \"{a}r upptagen}) = 0.3 \text{ och } P(\text{han har gl\"{o}mt} \text{ bollen och planen \"{a}r upptagen}) = 0.05. Vad \"{a}r sannolikheten att Johannes kan spela?}$

```
Låt A = \{\text{han har gl\"omt ta med bollen}\}
och B = \{\text{planen \"ar upptagen}\}
så har vi att P(A) = 0.1, P(B) = 0.3, P(A \cap B) = 0.05 och vi vill veta
P(A^* \cap B^*) = P(A^*) + P(B^*) - P(A^* \cup B^*)
```

► Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är $P(\text{han har gl\"omt ta med bollen} = 0.1, P(\text{planen \"{ar upptagen}}) = 0.3 \text{ och } P(\text{han har gl\"omt bollen och planen \"{ar upptagen}}) = 0.05.$

Vad är sannolikheten att Johannes kan spela?

► Lösning:

Låt
$$A = \{$$
han har glömt ta med bollen $\}$ och $B = \{$ planen är upptagen $\}$ så har vi att $P(A) = 0.1$, $P(B) = 0.3$, $P(A \cap B) = 0.05$ och vi vill veta $P(A^* \cap B^*) = P(A^*) + P(B^*) - P(A^* \cup B^*) = P(A^*) + P(B^*) - P((A \cap B)^*)$

► Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar. Dock är $P(\text{han har gl\"omt ta med bollen} = 0.1, P(\text{planen \"{ar upptagen}}) = 0.3 \text{ och}$

P(han har gl"omt bollen och planen är upptagen) = 0.05.

Vad är sannolikheten att Johannes kan spela?

Låt
$$A = \{\text{han har gl\"omt ta med bollen}\}$$

och $B = \{\text{planen \"ar upptagen}\}$
så har vi att $P(A) = 0.1$, $P(B) = 0.3$, $P(A \cap B) = 0.05$ och vi vill veta
 $P(A^* \cap B^*) = P(A^*) + P(B^*) - P(A^* \cup B^*) = P(A^*) + P(B^*) - P((A \cap B)^*) = (1 - P(A)) + (1 - P(B)) - (1 - P(A \cap B))$

Eric Järpe

► Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar.

Dock är P(han har glömt ta med bollen = 0.1,

 $P(planen \ ar \ upptagen) = 0.3 \ och$

 $P(\text{han har gl\"{o}mt bollen och planen \"{a}r upptagen}) = 0.05.$

Vad är sannolikheten att Johannes kan spela?

Låt
$$A = \{\text{han har gl\"omt ta med bollen}\}\$$
 och $B = \{\text{planen \"ar upptagen}\}\$ så har vi att $P(A) = 0.1$, $P(B) = 0.3$, $P(A \cap B) = 0.05$ och vi vill veta $P(A^* \cap B^*) = P(A^*) + P(B^*) - P(A^* \cup B^*) = P(A^*) + P(B^*) - P((A \cap B)^*) = (1 - P(A)) + (1 - P(B)) - (1 - P(A \cap B)) = 0.9 + 0.7 - 0.95$

Eric Järpe

► Exampel

Johannes åker ibland spontant till Gullevi (fotbollsplan i Gullbrandstorp) för att spela fotboll med sina kompisar.

Dock är P(han har glömt ta med bollen = 0.1,

P(planen är upptagen) = 0.3 och

 $P(\text{han har gl\"{o}mt bollen och planen \"{a}r upptagen}) = 0.05.$

Vad är sannolikheten att Johannes kan spela?

Låt
$$A = \{\text{han har gl\"omt ta med bollen}\}$$

och $B = \{\text{planen \"ar upptagen}\}$
så har vi att $P(A) = 0.1$, $P(B) = 0.3$, $P(A \cap B) = 0.05$ och vi vill veta
 $P(A^* \cap B^*) = P(A^*) + P(B^*) - P(A^* \cup B^*) = P(A^*) + P(B^*) - P((A \cap B)^*) = (1 - P(A)) + (1 - P(B)) - (1 - P(A \cap B)) = 0.9 + 0.7 - 0.95 = 0.65.$

Eric Järpe

Eric Järpe

Definition

P är ett likformigt sannolikhetsmått

Eric Järpe

Definition

P är ett **likformigt** sannolikhetsmått på ett ändligt utfallsrum Ω med $|\Omega|=n$

Eric Järpe

Definition

P är ett **likformigt** sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

Eric Järpe

Definition

P är ett **likformigt** sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

Klassisk definition av sannolikhet

Eric Järpe

Definition

P är ett **likformigt** sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

Klassisk definition av sannolikhet

För varje händelse $A = \{\omega_i : V(\omega_i), i = 1, 2, \dots, n\}$ är

Eric Järpe

Definition

P är ett likformigt sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

► Klassisk definition av sannolikhet För varje händelse $A = \{\omega_i : V(\omega_i), i = 1, 2, ..., n\}$ är P(A)

P är ett likformigt sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

Klassisk definition av sannolikhet

För varje händelse $\pmb{A} = \{\omega_i: \pmb{V}(\omega_i), i=1,2,\ldots,n\}$ är

$$P(A) = \frac{|A|}{|\Omega|}$$

Eric Järpe

Definition

P är ett **likformigt** sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

Klassisk definition av sannolikhet

För varje händelse $A = \{\omega_i : V(\omega_i), i = 1, 2, ..., n\}$ är

$$P(A) = \frac{|A|}{|\Omega|} = \frac{|\{\omega_i: V(\omega_i), i=1,2,...,n\}|}{|\{\omega_1,\omega_2,...,\omega_n\}|}$$

P är ett likformigt sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

Klassisk definition av sannolikhet

För varje händelse $A = \{\omega_i : V(\omega_i), i = 1, 2, ..., n\}$ är

$$P(A) = \frac{|A|}{|\Omega|} = \frac{|\{\omega_i: V(\omega_i), i=1,2,\ldots,n\}|}{|\{\omega_1,\omega_2,\ldots,\omega_n\}|} = \frac{m}{n}.$$

P är ett likformigt sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

Klassisk definition av sannolikhet

För varje händelse
$$A = \{\omega_i : V(\omega_i), i = 1, 2, \dots, n\}$$
 är $P(A) = \frac{|A|}{|\Omega|} = \frac{|\{\omega_i : V(\omega_i), i = 1, 2, \dots, n\}|}{|\{\omega_1, \omega_2, \dots, \omega_n\}|} = \frac{m}{n}.$

► Definitionen ovan förutsätter ändligt utfallsrum

P är ett likformigt sannolikhetsmått på ett <u>ändligt</u> utfallsrum Ω med $|\Omega| = n$ om $P(\omega_i) = \frac{1}{n}$ för varje i = 1, 2, ..., n.

Klassisk definition av sannolikhet

För varje händelse
$$A = \{\omega_i : V(\omega_i), i = 1, 2, \dots, n\}$$
 är $P(A) = \frac{|A|}{|\Omega|} = \frac{|\{\omega_i : V(\omega_i), i = 1, 2, \dots, n\}|}{|\{\omega_1, \omega_2, \dots, \omega_n\}|} = \frac{m}{n}.$

▶ Definitionen ovan förutsätter ändligt utfallsrum och likformigt sannolikhetsmått.

Eric Järpe

Eric Järpe

► Från kombinatoriken:

Eric Järpe

► Från kombinatoriken: multiplikationsprincipen,

Eric Järpe

► Från kombinatoriken: multiplikationsprincipen, fakultet,

Eric Järpe

► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ► Totala antalet sätt att ordna *n* olika element:

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ► Totala antalet sätt att ordna *n* olika element: *n*!

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - **utan** återläggning: $\binom{n}{k}$

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - **utan** återläggning: $\binom{n}{k}$
 - **med** återläggning: *n*^k

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - **utan** återläggning: $\binom{n}{k}$
 - **med** återläggning: n^k
- ► Antag *v* st vita, *s* st svarta, drar *n* st

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - utan återläggning: (n/k)
 - **med** återläggning: n^k
- ► Antag v st vita, s st svarta, drar n st
 - utan återläggning.

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - **utan** återläggning: $\binom{n}{k}$
 - **med** återläggning: n^k
- ► Antag *v* st vita, *s* st svarta, drar *n* st
 - **utan** återläggning. Då är *P*(får *k* vita)

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - **utan** återläggning: $\binom{n}{k}$
 - **med** återläggning: n^k
- ► Antag *v* st vita, *s* st svarta, drar *n* st
 - **utan** återläggning. Då är $P(\text{får } k \text{ vita}) = \frac{\binom{v}{k}\binom{s}{n-k}}{\binom{v+s}{n}}$

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - utan återläggning: (n/k)
 - **med** återläggning: n^k
- ► Antag *v* st vita, *s* st svarta, drar *n* st
 - **utan** återläggning. Då är $P(\text{får } k \text{ vita}) = \frac{\binom{r}{k}\binom{s}{n-k}}{\binom{v+s}{n}}$
 - **med** återläggning.

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - utan återläggning: (n/k)
 - **med** återläggning: n^k
- ► Antag *v* st vita, *s* st svarta, drar *n* st
 - **utan** återläggning. Då är $P(\text{får } k \text{ vita}) = \frac{\binom{v}{k}\binom{s}{n-k}}{\binom{v+s}{n}}$
 - **med** återläggning. Då är *P*(får *k* vita)

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - **utan** återläggning: $\binom{n}{k}$
 - **med** återläggning: n^k
- ► Antag *v* st vita, *s* st svarta, drar *n* st
 - utan återläggning. Då är $P(\text{får } k \text{ vita}) = \frac{\binom{k}{k}\binom{n-k}{n-k}}{\binom{k+k}{n}}$
 - **med** återläggning. Då är $P(\text{får } k \text{ vita}) = \frac{\binom{n}{k} v^k s^{n-k}}{(v+s)^n}$

- ► Från kombinatoriken: multiplikationsprincipen, fakultet, binomialkoefficienter
- ▶ Totala antalet sätt att ordna n olika element: n! (OBS! 0! = 1)
- ► Antal sätt att välja k st bland n möjliga
 - utan återläggning: (n/k)
 - **med** återläggning: n^k
- ► Antag *v* st vita, *s* st svarta, drar *n* st
 - utan återläggning. Då är $P(\text{får } k \text{ vita}) = \frac{\binom{k}{k}\binom{n-k}{n-k}}{\binom{k+k}{n}}$
 - **med** återläggning. Då är $P(\text{får } k \text{ vita}) = \frac{\binom{n}{k} V^k s^{n-k}}{(v+s)^n}$
- ► Binomialsatsen: $(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

Eric Järpe

¹Antar P(pojke) = P(flicka) = 0.5.

Eric Järpe

► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns

¹Antar P(pojke) = P(flicka) = 0.5.

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?

¹Antar P(pojke) = P(flicka) = 0.5.

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - de andra kombinationerna?

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - 6 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:

- - ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns a 1 poike och 4 flickor?
 - 2 policer ash 2 flicker
 - **b** 2 pojkar och 3 flickor?
 - o de andra kombinationerna?
 - ► Lösning:
 - a |{1 pojke, 4 flickor}|

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - a $|\{1 \text{ pojke}, 4 \text{ flickor}\}| = {5 \choose 1}$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - a $|\{1 \text{ pojke, 4 flickor}\}| = {5 \choose 1} = 5.$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - o de andra kombinationerna?
- ► Lösning:
 - a $|\{1 \text{ pojke}, 4 \text{ flickor}\}| = {5 \choose 1} = 5.$ Totalt: 2^5

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - o de andra kombinationerna?
- ► Lösning:
 - (a) $|\{1 \text{ pojke, } 4 \text{ flickor}\}| = {5 \choose 1} = 5.$ Totalt: 2^5 så P(1 pojke, 4 flickor)

- ▶ Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - 6 2 pojkar och 3 flickor?
 - **o** de andra kombinationerna?
- ► Lösning:
 - a $|\{1 \text{ pojke, } 4 \text{ flickor}\}| = {5 \choose 1} = 5.$ Totalt: 2^5 så $P(1 \text{ pojke, } 4 \text{ flickor}) = \frac{5}{32}$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj¹ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - de andra kombinationerna?
- ► Lösning:
 - a $|\{1 \text{ pojke, 4 flickor}\}| = {5 \choose 1} = 5.$ Totalt: 2^5 så $P(1 \text{ pojke, 4 flickor}) = \frac{5}{32} = 0.1562.$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj² finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - de andra kombinationerna?
- ► Lösning:

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj² finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - de andra kombinationerna?
- ► Lösning:
 - **b** |{2 pojkar, 3 flickor}|

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamili² finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - **b** $|\{2 \text{ pojkar, 3 flickor}\}| = {5 \choose 2}$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj² finns
 - a 1 pojke och 4 flickor?
 - b 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - **b** $|\{2 \text{ pojkar, 3 flickor}\}| = {5 \choose 2} = 10$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj² finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - **b** $|\{2 \text{ pojkar, } 3 \text{ flickor}\}| = {5 \choose 2} = 10$ varmed P(2 pojkar, 3 flickor)

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj² finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - o de andra kombinationerna?
- ► Lösning:
 - **(b)** $|\{2 \text{ pojkar, } 3 \text{ flickor}\}| = {5 \choose 2} = 10$ varmed $P(2 \text{ pojkar, } 3 \text{ flickor}) = \frac{10}{32}$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj² finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - o de andra kombinationerna?
- ► Lösning:
 - **b** $|\{2 \text{ pojkar, 3 flickor}\}| = {5 \choose 2} = 10$ varmed $P(2 \text{ pojkar, 3 flickor}) = \frac{10}{32} = 0.3125$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - **©** Pga symmetri är $P(3 \text{ pojkar, 2 flickor}) = \frac{10}{32}$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - **©** Pga symmetri är $P(3 \text{ pojkar, 2 flickor}) = \frac{10}{32} \text{ och } P(4 \text{ pojkar, 1 flicka}) = \frac{5}{32}$.

³Antar P(poike) = P(flicka) = 0.5.

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - **©** Pga symmetri är $P(3 \text{ pojkar}, 2 \text{ flickor}) = \frac{10}{32} \text{ och } P(4 \text{ pojkar}, 1 \text{ flicka}) = \frac{5}{32}$. Givetvis blir också P(5 pojkar)

³Antar P(pojke) = P(flicka) = 0.5.

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - **©** Pga symmetri är $P(3 \text{ pojkar, 2 flickor}) = \frac{10}{32} \text{ och } P(4 \text{ pojkar, 1 flicka}) = \frac{5}{32}.$

Givetvis blir också P(5 pojkar) = P(5 flickor)

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - c de andra kombinationerna?
- ► Lösning:
 - Pga symmetri är $P(3 \text{ pojkar}, 2 \text{ flickor}) = \frac{10}{32} \text{ och } P(4 \text{ pojkar}, 1 \text{ flicka}) = \frac{5}{32}$. Givetvis blir också $P(5 \text{ pojkar}) = P(5 \text{ flickor}) = \frac{\binom{5}{5}}{32}$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - de andra kombinationerna?
- ► Lösning:
 - © Pga symmetri är $P(3 \text{ pojkar}, 2 \text{ flickor}) = \frac{10}{32} \text{ och } P(4 \text{ pojkar}, 1 \text{ flicka}) = \frac{5}{32}$. Givetvis blir också $P(5 \text{ pojkar}) = P(5 \text{ flickor}) = \frac{\binom{5}{5}}{22} = \frac{1}{22}$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - o de andra kombinationerna?
- ► Lösning:
 - Pga symmetri är $P(3 \text{ pojkar}, 2 \text{ flickor}) = \frac{10}{32} \text{ och } P(4 \text{ pojkar}, 1 \text{ flicka}) = \frac{5}{32}$. Givetvis blir också $P(5 \text{ pojkar}) = P(5 \text{ flickor}) = \frac{\binom{5}{5}}{22} = \frac{1}{22} = 0.0312$.

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - de andra kombinationerna?

© Pga symmetri är $P(3 \text{ pojkar}, 2 \text{ flickor}) = \frac{10}{32} \text{ och } P(4 \text{ pojkar}, 1 \text{ flicka}) = \frac{5}{32}$. Givetvis blir också $P(5 \text{ pojkar}) = P(5 \text{ flickor}) = \frac{\binom{5}{5}}{32} = \frac{1}{32} = 0.0312$.

Kontroll:
$$2 \cdot \frac{1}{32} + 2 \cdot \frac{5}{32} + 2 \cdot \frac{10}{32}$$

- ► Exempel Vad är sannolikheten att det hos en fembarnsfamilj³ finns
 - a 1 pojke och 4 flickor?
 - **b** 2 pojkar och 3 flickor?
 - de andra kombinationerna?

© Pga symmetri är $P(3 \text{ pojkar, 2 flickor}) = \frac{10}{32} \text{ och } P(4 \text{ pojkar, 1 flicka}) = \frac{5}{32}$.

Givetvis blir också $P(5 \text{ pojkar}) = P(5 \text{ flickor}) = \frac{\binom{5}{5}}{32} = \frac{1}{32} = 0.0312.$

Kontroll: $2 \cdot \frac{1}{32} + 2 \cdot \frac{5}{32} + 2 \cdot \frac{10}{32} = 1$ ok.

► Exempel Kalle köper 5 lotter från ett lotteri

Eric Järpe

► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter

► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-,

Eric Järpe

► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter,

Eric Järpe

► **Exempel** Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter,

► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel

► **Exempel** Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-.

► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- Lösning:

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - a P(minst 3 cyklar)

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - a P(minst 3 cyklar) = P(3 cyklar) + P(minst 4 cyklar) + P(minst 5 cyklar)

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

a
$$P(\text{minst 3 cyklar}) = P(3 \text{ cyklar}) + P(\text{minst 4 cyklar}) + P(\text{minst 5 cyklar})$$

= $\binom{5}{2} \cdot \frac{5}{100} \cdot \frac{4}{90} \cdot \frac{3}{95} \cdot \frac{95}{94} \cdot \frac{94}{95}$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

a
$$P(\text{minst 3 cyklar}) = P(3 \text{ cyklar}) + P(\text{minst 4 cyklar}) + P(\text{minst 5 cyklar})$$

= $\binom{5}{2}, \frac{5}{100}, \frac{4}{90}, \frac{3}{90}, \frac{95}{92}, \frac{94}{92} + \binom{5}{100}, \frac{5}{100}, \frac{4}{90}, \frac{3}{92}, \frac{2}{95}$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

a
$$P(\text{minst 3 cyklar}) = P(3 \text{ cyklar}) + P(\text{minst 4 cyklar}) + P(\text{minst 5 cyklar})$$

$$= \binom{5}{3} \frac{5}{100} \frac{4}{99} \frac{3}{98} \frac{95}{97} \frac{94}{96} + \binom{5}{4} \frac{5}{100} \frac{4}{99} \frac{3}{98} \frac{2}{97} \frac{95}{96} + \binom{5}{5} \frac{5}{100} \frac{4}{99} \frac{3}{98} \frac{2}{97} \frac{1}{96}$$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

a
$$P(\text{minst 3 cyklar}) = P(\text{3 cyklar}) + P(\text{minst 4 cyklar}) + P(\text{minst 5 cyklar})$$

$$= \binom{5}{3} \frac{5}{100} \frac{4}{99} \frac{3}{98} \frac{95}{97} \frac{94}{96} + \binom{5}{4} \frac{5}{100} \frac{4}{99} \frac{3}{98} \frac{2}{97} \frac{95}{96} + \binom{5}{5} \frac{5}{100} \frac{4}{99} \frac{3}{98} \frac{2}{97} \frac{1}{96}$$

$$=\frac{46\,126}{75\,287\,520}$$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

Lösning:

a P(minst 3 cyklar) = P(3 cyklar) + P(minst 4 cyklar) + P(minst 5 cyklar)

$$=\binom{5}{3}\frac{5}{100}\frac{4}{99}\frac{3}{98}\frac{95}{97}\frac{94}{96}+\binom{5}{4}\frac{5}{100}\frac{4}{99}\frac{3}{98}\frac{2}{97}\frac{95}{96}+\binom{5}{5}\frac{5}{100}\frac{4}{99}\frac{3}{98}\frac{2}{97}\frac{1}{96}$$

$$=\frac{46126}{75287520}$$

= 0.0006.

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- Lösning:

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - **b** P(200:-, 1 cykel, 1 kolonilott men inget mer)

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - **b** *P*(200:-, 1 cykel, 1 kolonilott men inget mer)
 - $=\frac{5}{100}\frac{4}{99}\frac{5}{98}\frac{2}{97}\frac{85}{96}\frac{5!}{2!}$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

- **b** P(200:-, 1 cykel, 1 kolonilott men inget mer)
 - $=\frac{5}{100}\frac{4}{99}\frac{5}{98}\frac{2}{97}\frac{85}{96}\frac{5!}{2!}$
 - $=\frac{17\,000}{9\,034\,502\,400}$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

Lösning:

- **b** P(200:-, 1 cykel, 1 kolonilott men inget mer)
 - $=\frac{5}{100}\frac{4}{99}\frac{5}{98}\frac{2}{97}\frac{85}{96}\frac{5!}{2!}$
 - $=\frac{17\,000}{9\,034\,502\,400}$
 - = 0.0001.

Eric Järpe

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - **c** bostad eller pengar?
 - d något överhuvudtaget?
- Lösning:

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - o bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - P(bostad eller pengar)

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - **6** P(bostad eller pengar) = P(minst 1 bostad och/eller minst 1 pengar)

Eric Järpe

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - o bostad eller pengar?
 - d något överhuvudtaget?
- Lösning:
 - **o** P(bostad eller pengar) = P(minst 1 bostad och/eller minst 1 pengar)
 - = P(inte bara cyklar och nitlotter)

Eric Järpe

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

Lösning:

- **©** P(bostad eller pengar) = P(minst 1 bostad och/eller minst 1 pengar)
 - = P(inte bara cyklar och nitlotter) = 1 P(bara cyklar och nitlotter)

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

- **6** P(bostad eller pengar) = P(minst 1 bostad och/eller minst 1 pengar)
 - = P(inte bara cyklar och nitlotter) = 1 P(bara cyklar och nitlotter)
 - $=1-\frac{90}{100}\frac{89}{99}\frac{88}{98}\frac{87}{97}\frac{86}{96}$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

- **©** P(bostad eller pengar) = P(minst 1 bostad och/eller minst 1 pengar)
 - = P(inte bara cyklar och nitlotter) = 1 P(bara cyklar och nitlotter)

$$=1-\frac{90}{100}\frac{89}{99}\frac{88}{98}\frac{87}{97}\frac{86}{96}=1-\frac{5273912160}{9034502400}$$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

- **©** P(bostad eller pengar) = P(minst 1 bostad och/eller minst 1 pengar)
 - = P(inte bara cyklar och nitlotter) = 1 P(bara cyklar och nitlotter)

$$=1-\frac{90}{100}\frac{89}{99}\frac{88}{98}\frac{87}{96}\frac{86}{96}=1-\frac{5273}{9034}\frac{912}{502}\frac{160}{400}$$

= 0.4162.

Eric Järpe

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- Lösning:

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - **d** *P*(något överhuvudtaget)

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - **d** P(något överhuvudtaget) = 1 P(bara nitlotter)

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?
- ► Lösning:
 - **d** $P(\text{något \"{o}verhuvudtaget}) = 1 P(\text{bara nitlotter})$

$$=1-\frac{85}{100}\frac{84}{99}\frac{83}{98}\frac{82}{97}\frac{81}{96}$$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

► Lösning:

d $P(\text{något \"{o}verhuvudtaget}) = 1 - P(\text{bara nitlotter})$

$$=1-\frac{85}{100}\frac{84}{99}\frac{83}{98}\frac{82}{97}\frac{81}{96}$$

$$=1-\frac{3936182040}{9034502400}$$

- ► Exempel Kalle köper 5 lotter från ett lotteri med 100 lotter varav en är vinst på 100 000:-, två är bostadsrätter, två är kolonilotter, fem är cykel och fem är 100:-. Vad är Kalles chans att vinna
 - a minst 3 cyklar?
 - **b** 200:-, 1 cykel, 1 kolonilott men inget mer?
 - bostad eller pengar?
 - d något överhuvudtaget?

d $P(\text{något \"{o}verhuvudtaget}) = 1 - P(\text{bara nitlotter})$

```
=1-\frac{85}{100}\frac{84}{99}\frac{83}{98}\frac{82}{97}\frac{81}{96}
```

$$=1-\frac{3936182040}{9034502400}$$

= 0.5643

Definition

Händelserna A och B kallas **oberoende** $(A \perp B)$

Händelserna A och B kallas **oberoende** $(A \perp B)$ om $P(A \cap B) = P(A)P(B)$.

Händelserna A och B kallas **oberoende** $(A \perp B)$ om $P(A \cap B) = P(A)P(B)$. Om A och B ej oberoende $(A \not\perp B)$

Händelserna A och B kallas **oberoende** $(A \perp B)$ om $P(A \cap B) = P(A)P(B)$. Om A och B ej oberoende $(A \not\perp B)$ så kallas A och B **beroende**.

Händelserna A och B kallas **oberoende** $(A \perp B)$ om $P(A \cap B) = P(A)P(B)$.

Om A och B ej oberoende (A \angle B) så kallas A och B **beroende**.

Observation

Händelserna A och B kallas **oberoende** $(A \perp B)$ om $P(A \cap B) = P(A)P(B)$.

Om A och B ej oberoende (A ∠B) så kallas A och B beroende.

Observation

Additionssatsen-variant:

Händelserna A och B kallas **oberoende** $(A \perp B)$ om $P(A \cap B) = P(A)P(B)$.

Om A och B ej oberoende (A \angle B) så kallas A och B **beroende**.

Observation

Additionssatsen-variant: $P(A \cup B)$

Händelserna A och B kallas **oberoende** $(A \perp B)$ om $P(A \cap B) = P(A)P(B)$.

Om A och B ej oberoende (A ⊥B) så kallas A och B beroende.

Observation

Additionssatsen-variant: $P(A \cup B) \stackrel{A \perp B}{=}$

Händelserna A och B kallas **oberoende** $(A \perp B)$ om $P(A \cap B) = P(A)P(B)$.

Om A och B ej oberoende (A \angle B) så kallas A och B **beroende**.

Observation

Additions sats en-variant: $P(A \cup B) \stackrel{A \perp B}{=} P(A) + P(B) - P(A)P(B)$.

Eric Järpe

Definition

Om P(B) > 0 så är den betingade sannolikheten av A givet B

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

Observation

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

Observation

P(A|B)

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

Observation

$$P(A|B) \stackrel{A \perp B}{=}$$

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

Observation

$$P(A|B) \stackrel{A\perp B}{=} P(A)$$

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

$$P(A|B) \stackrel{A \perp B}{=} P(A)$$

 $P(A \cap B)$

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

$$P(A|B) \stackrel{A \perp B}{=} P(A)$$

 $P(A \cap B) = P(A|B)P(B)$

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

$$P(A|B) \stackrel{A\perp B}{=} P(A)$$

 $P(A\cap B) = P(A|B)P(B) = P(B|A)P(A)$

Om P(B) > 0 så är den betingade sannolikheten av A givet B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(Betingade sannolikheten för A givet B är inte arean av A i proportion till arean av Ω utan arean av $A \cap B$ i proportion till arean av B – rita Venndiagram!)

$$P(A|B) \stackrel{A \perp B}{=} P(A)$$

 $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$
 $P(A|B) \neq P(B|A)$

Sannolikhetslära

Sats

Bayes sats:

Bayes sats:

Sats

Om $\{B_1, B_2, \dots, B_n\}$ är en partition av Ω

Bayes sats:

Sats

Om
$$\{B_1, B_2, \dots, B_n\}$$
 är en partition av Ω så är $P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{i=1}^n P(A|B_i)P(B_i)}$.

Sannolikhetslära

Sannolikhetslära

Exempel

Sannolikhetslära

Eric Järpe

► **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk.

► **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt

Exempel En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41,

Exempel En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34,

▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24

▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är

▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37,

▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45,

▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63

▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)

▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)

4 D > 4 P > 4 E > 4 E > E 990

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - b Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året.

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?
- Lösning:

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - **b** Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?
- Lösning:
 - a P(T)

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?
- Lösning:
 - **a** $P(T) = P(\{T \cap \ell 1\} \cup \{T \cap \ell 2\} \cup \{T \cap \ell 3\})$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

a
$$P(T) = P(\{T \cap \ell 1\} \cup \{T \cap \ell 2\} \cup \{T \cap \ell 3\})$$

= $P(T|\ell 1)P(\ell 1) + P(T|\ell 2)P(\ell 2) + P(T|\ell 3)P(\ell 3)$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - b Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

a
$$P(T) = P(\{T \cap \ell 1\} \cup \{T \cap \ell 2\} \cup \{T \cap \ell 3\})$$

= $P(T|\ell 1)P(\ell 1) + P(T|\ell 2)P(\ell 2) + P(T|\ell 3)P(\ell 3)$
= $0.37 \cdot 0.41 + 0.45 \cdot 0.34 + 0.63 \cdot 0.25$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(T|lab 1) = 0.37, P(T|lab 2) = 0.45, P(T|lab 3) = 0.63 (där $T = \{\text{studenten klarar tentan}\}$.)
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

a
$$P(T) = P(\{T \cap \ell 1\} \cup \{T \cap \ell 2\} \cup \{T \cap \ell 3\})$$

= $P(T|\ell 1)P(\ell 1) + P(T|\ell 2)P(\ell 2) + P(T|\ell 3)P(\ell 3)$
= $0.37 \cdot 0.41 + 0.45 \cdot 0.34 + 0.63 \cdot 0.25$
= 0.4622 .

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - **b** Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?
- Lösning:

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

b
$$P(T|\ell 3) = 0.63$$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - b Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

b $P(T|\ell 3) = 0.63$ är större än både $P(T|\ell 2) = 0.45$ och $P(T|\ell 1) = 0.37$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

b $P(T|\ell 3) = 0.63$ är större än både $P(T|\ell 2) = 0.45$ och $P(T|\ell 1) = 0.37$ så studenten borde välja **lab 3**.

Sannolikhetslära

Eric Järpe

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?
- Lösning:

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?
- ► Lösning:
 - $P(\ell 1 \cup \ell 2 | T)$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?
- ► Lösning:
 - **6** $P(\ell 1 \cup \ell 2 | T) = 1 P(\ell 3 | T)$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

c
$$P(\ell 1 \cup \ell 2 | T) = 1 - P(\ell 3 | T)$$

= $1 - \frac{P(\ell 3 \cap T)}{P(T \cap \{\ell 1 \cup \ell 2 \cup \ell 3\})}$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

©
$$P(\ell 1 \cup \ell 2 | T) = 1 - P(\ell 3 | T)$$

= $1 - \frac{P(\ell 3 \cap T)}{P(T \cap \{\ell 1 \cup \ell 2 \cup \ell 3\})} = 1 - \frac{P(\ell 3 \cap T)}{P(T \cap \ell 1) + P(T \cap \ell 2) + P(T \cap \ell 3)}$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - **b** Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

$$\begin{array}{l} \bullet \quad P(\ell 1 \cup \ell 2 | T) = 1 - P(\ell 3 | T) \\ = 1 - \frac{P(\ell 3 \cap T)}{P(T \cap \{\ell 1 \cup \ell 2 \cup \ell 3\})} = 1 - \frac{P(\ell 3 \cap T)}{P(T \cap \ell 1) + P(T \cap \ell 2) + P(T \cap \ell 3)} \\ = 1 - \frac{P(\ell 3 \cap T)}{P(T | \ell 1) P(\ell 1) + P(T | \ell 2) P(\ell 2) + P(T | \ell 3) P(\ell 3)} \\ = 1 - \frac{0.63 \cdot 0.25}{0.4622} \end{array}$$

- ▶ **Exempel** En student läser en kurs där *en* valfri lab är obligatorisk. Labbarna väljs enligt P(lab 1) = 0.41, P(lab 2) = 0.34, P(lab 3) = 0.24 och baserat på resultatet från tidigare år är P(klara tentan|lab 1) = 0.37, P(klara tentan|lab 2) = 0.45, P(klara tentan|lab 3) = 0.63.
 - a Hur stor är studentens chans att klara kursen?
 - **b** Vilken lab ska studenten välja för att ha störst chans att klara tentan?
 - Studenten får veta att en kompis klarade tentan förra året. Vad är sannolikheten att denne gjorde lab 1 eller lab 2?

$$\begin{aligned} & \bullet \ P(\ell 1 \cup \ell 2 | T) = 1 - P(\ell 3 | T) \\ & = 1 - \frac{P(\ell 3 \cap T)}{P(T \cap \{\ell 1 \cup \ell 2 \cup \ell 3\})} = 1 - \frac{P(\ell 3 \cap T)}{P(T \cap \ell 1) + P(T \cap \ell 2) + P(T \cap \ell 3)} \\ & = 1 - \frac{P(\ell 3 \cap T)}{P(T | \ell 1) + P(T | \ell 2) + P(\ell 2) + P(T | \ell 3) + P(\ell 3)} \\ & = 1 - \frac{0.63 \cdot 0.25}{0.4622} = 0.6592. \end{aligned}$$