День 5: автоэнкодеры, глубокие сети, GANs, Style Transfer.

1 Pretrained VGG16

Используем pretrained сеть VGG16 для классификации изображений.

- 1. Классификация. Разобраться с кодом в файле day-4/solutions/visualize_results.ipynb. Запустить на паре примеров.
- 2. Сегментация. Разобраться с кодом в файле day-4/solutions/visualize_results_segm.ipynb. Запустить на паре примеров.
- 3. Сегментация со скользящим окном. Закройте часть изображения на экране серым квадратом и посмотрите как изменится скор для заданного класса. Если провести это для каждого участка изображения, то получися хитмап важности данной области для данного класса.
- 4. ** Повторить эксперимент используя другую сеть ¹. Веса доступны по ссылке https://github.com/tensorflow/models/tree/master/research/slim.

2 Автоэнкодеры для реконструкции изображений.

- 1. Запустить код autoencoder_denoising/convolutional_autoencoder_starter.ipynb'
- 2. Попробовать заменить текущий лосс на cross_entropy_loss. Как изменились картинки?
- 3. Как изменится перформанс если сделать архитектуру меньше.
- 4. На сколько хорошо восстанавливается изображение?
- 5. Заменить MNIST на SVHN датасэт 2 .
- 6. ** Попробуйте подавать на вход энкодера чб изображение из SVHN датасэта, а на выходе получать оригинальное цветное.
- 7. ** Предыдущее задание не будет хорошо работать, если не подавать несколько случайных цветных пикселей. Т.е. сделать почти все пиксели $\frac{4}{5}$, кроме 20 случайных пикселей на картинке.

¹https://github.com/tensorflow/models/blob/master/research/inception/inception/slim/README.md ²http://ufldl.stanford.edu/housenumbers/

3 GANs

- 1. Просмотреть и запустить ноутбук day-5/gan/gan_notebook_starter.ipynb. Тренировка может занять очень много времени, до 20 часов на GPU. Так что стоит останавливать раньше.
- 2. Если сеть тренируеся слишком медленно уменьшить количество параметров сети.
- 3. Попробовать заменить MNIST на SVHN и повторить тренировку.