Package 'automl'

October 12, 2022

Type Package
Title Deep Learning with Metaheuristic
Version 1.3.2
BugReports https://github.com/aboulaboul/automl/issues
Description Fits from simple regression to highly customizable deep neural networks either with gradient descent or metaheuristic, using automatic hyper parameters tuning and custom cost function. A mix inspired by the common tricks on Deep Learning and Particle Swarm Optimization.
<pre>URL https://aboulaboul.github.io/automl</pre>
https://github.com/aboulaboul/automl
License GNU General Public License
Encoding UTF-8
LazyData TRUE
Imports stats, utils, parallel
Suggests datasets
RoxygenNote 6.1.1
NeedsCompilation no
Author Alex Boulangé [aut, cre]
Maintainer Alex Boulangé <aboul@free.fr></aboul@free.fr>
Repository CRAN
Date/Publication 2020-01-16 11:40:09 UTC
R topics documented:
automl_predict automl_train automl_train_manual autopar hpar pso

2 automl_predict

Index 12

 $automl_predict \\ automl_predict$

Description

Predictions function, to apply a trained model on datas

Usage

```
automl_predict(model, X, layoutputnum)
```

Arguments

model model trained previously with automl_train or automl_train_manual

X inputs matrix or data.frame (containing numerical values only)

layoutputnum which layer number to output especially for auto encoding (default 0: no partic-

ular layer, the last one)

Examples

```
##REGRESSION (predict Sepal.Length given other parameters)
data(iris)
xmat <- as.matrix(cbind(iris[,2:4], as.numeric(iris$Species)))</pre>
ymat <- iris[,1]</pre>
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,</pre>
hpar = list(modexec = 'trainwpso', verbose = FALSE))
res <- cbind(ymat, automl_predict(model = amlmodel, X = xmat))</pre>
colnames(res) <- c('actual', 'predict')</pre>
head(res)
#
## Not run:
##CLASSIFICATION (predict Species given other Iris parameters)
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)</pre>
lghlab <- length(lab2pred)</pre>
iris$Species <- as.numeric(iris$Species)</pre>
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat),</pre>
lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0</pre>
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,</pre>
hpar = list(modexec = 'trainwpso', verbose = FALSE))
res <- cbind(ymat, round(automl_predict(model = amlmodel, X = xmat)))</pre>
colnames(res) <- c(paste('act',lab2pred, sep = '_'),</pre>
paste('pred',lab2pred, sep = '_'))
head(res)
## End(Not run)
```

automl_train 3

automl_train

Description

The multi deep neural network automatic train function (several deep neural networks are trained with automatic hyperparameters tuning, best model is kept)

This function launches the automl_train_manual function by passing it parameters for each particle at each converging step

Usage

```
automl_train(Xref, Yref, autopar = list(), hpar = list(), mdlref = NULL)
```

Arguments

Xref inputs matrix or data.frame (containing numerical values only) Yref target matrix or data.frame (containing numerical values only) autopar list of parameters for hyperparameters optimization, see autopar section Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time) list of parameters and hyperparameters for Deep Neural Network, see hpar sechpar Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time) mdlref model trained with automl_train to start training with saved hpar and autopar (not the model)

nb: manually entered parameters above override loaded ones

Examples

```
## Not run:
##REGRESSION (predict Sepal.Length given other Iris parameters)
data(iris)
xmat <- cbind(iris[,2:4], as.numeric(iris$Species))
ymat <- iris[,1]
amlmodel <- automl_train(Xref = xmat, Yref = ymat)

## End(Not run)
##CLASSIFICATION (predict Species given other Iris parameters)
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)</pre>
```

4 automl_train_manual

automl_train_manual

automl_train_manual

Description

The base deep neural network train function (one deep neural network trained without automatic hyperparameters tuning)

Usage

```
automl_train_manual(Xref, Yref, hpar = list(), mdlref = NULL)
```

Arguments

Xref inputs matrix or data.frame (containing numerical values only)

Yref target matrix or data.frame (containing numerical values only)

hpar list of parameters and hyperparameters for Deep Neural Network, see hpar section

Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)

mdlref model trained with automl train or automl train manual to start training from

model trained with automl_train or automl_train_manual to start training from a saved model (shape, weights...) for fine tuning

nb: manually entered parameters above override loaded ones

Examples

autopar 5

```
psopartpopsize = 50))
#with PSO and custom cost function
f <- 'J=abs((y-yhat)/y)'
f <- c(f, 'J=sum(J[!is.infinite(J)],na.rm=TRUE)')</pre>
f \leftarrow c(f, 'J=(J/length(y))')
f <- paste(f, collapse = ';')</pre>
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,</pre>
                                  hpar = list(modexec = 'trainwpso',
                                               numiterations = 30,
                                               psopartpopsize = 50,
                                               costcustformul = f))
##CLASSIFICATION (predict Species given other Iris parameters)
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)</pre>
lghlab <- length(lab2pred)</pre>
iris$Species <- as.numeric(iris$Species)</pre>
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)</pre>
ymat <- (ymat == as.numeric(iris$Species)) + 0</pre>
#with gradient descent and 2 hidden layers
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,</pre>
                                  hpar = list(layersshape = c(10, 10, 0),
                                              layersacttype = c('tanh', 'relu', 'sigmoid'),
                                               layersdropoprob = c(0, 0, 0))
#with gradient descent and no hidden layer (logistic regression)
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,</pre>
                                  hpar = list(layersshape = c(0),
                                               layersacttype = c('sigmoid'),
                                               layersdropoprob = c(0))
#with PSO and softmax
amlmodel <- automl_train_manual(Xref = xmat, Yref = ymat,</pre>
                                  hpar = list(modexec = 'trainwpso',
                                               layersshape = c(10, 0),
                                               layersacttype = c('relu', 'softmax'),
                                               layersdropoprob = c(0, 0),
                                               numiterations = 50,
                                               psopartpopsize = 50))
## End(Not run)
```

autopar

parameters for automatic hyperparameters optimization

Description

List of parameters to allow multi deep neural network automatic hyperparameters tuning with Particle Swarm Optimization

Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)

6 autopar

Arguments

psopartpopsize number of particles in swarm, the main argument that should be tuned (default

value 8, which is quite low)

#tuning priority 1

psoxxx see pso for other PSO specific arguments details

numiterations number of convergence steps between particles (hyperparameters), default value

3)

#tuning priority 1

auto_modexec if 'TRUE' the type of Neural Net optimization will be randomly choosen be-

tween 'trainwgrad' and 'trainwpso' for each particle

default value is 'FALSE' (so default value of argument 'modexec' in automl_train_manual

function, actually 'trainwgrad' as default is more suited to large data volume)

the value can be forced if defined in hpar list

auto_runtype if '2steps' the 2 following steps will be run automatically (default value is 'nor-

mal'):

1st overfitting, the goal is performance 2nd regularization, the goal is generalization

nb: 'overfitting' or 'regularization' may be directly specified to avoid the 2 steps

auto_minibatchsize

see below

auto_minibatchsize_min

see below

auto_minibatchsize_max

'auto_minibatch' default value 'TRUE' for automatic adjustment of 'minibatch-

size' argument in automl_train_manual function

the minimum and maximum value for 'minibatchsize' corespond to 2 to the

power value (default 0 for 'auto_minibatchsize_min' and 9 for 'auto_minibatchsize_max')

auto_learningrate

see below

auto_learningrate_min

see below

auto_learningrate_max

'auto_learningrate' default value 'TRUE' for automatic adjustment of 'learn-

ingrate' argument in automl_train_manual function

the minimum and maximum value for 'learningrate' correspond to 10 to the

power negative value (default -5 for 'auto_learningrate_min' and -2 for 'auto_learningrate_max')

auto_beta1 see below

auto_beta2 'auto_beta1' and 'auto_beta2' default value 'TRUE' for automatic adjustment

of 'beta1' and 'beta2' argument in automl_train_manual function

auto_psopartpopsize

see below

auto_psopartpopsize_min

see below

auto_psopartpopsize_max 'auto_psopartpopsize' default value 'TRUE' for automatic adjustment of 'psopartpopsize' argument in automl_train_manual function (concern only 'modexec' set to 'trainwpso') the minimum and maximum value for 'psopartpopsize'; default 2 for 'auto psopartpopsize min' and 50 for 'auto_psopartpopsize_max') auto_lambda see below auto_lambda_min see below auto_lambda_max 'auto_lambda' default value 'FALSE' for automatic adjustment of 'lambda' regularization argument in automl_train_manual function the minimum and maximum value for 'lambda' correspond to 10 to the power value (default -2) for 'auto_lambda_min' and (default 4) for 'auto_lambda_max') auto_psovelocitymaxratio see below auto_psovelocitymaxratio_min see below auto_psovelocitymaxratio_max 'auto_psovelocitymaxratio' default value 'TRUE' for automatic adjustment of 'psovelocitymaxratio' PSO velocity max ratio argument in automl_train_manual function the minimum and maximum value for 'psovelocitymaxratio'; default 0.01 for 'auto_psovelocitymaxratio_min' and 0.5 for 'auto_psovelocitymaxratio_max' auto_layers see below ('auto_layers' default value 'TRUE' for automatic adjustment of layers shape in automl_train_manual function) auto_layers_min (linked to 'auto_layers' above, set hpar 'layersshape' and 'layersacttype') the minimum number of hidden layers (default 1 no hidden layer) auto_layers_max (linked to 'auto_layers' above, set hpar 'layersshape' and 'layersacttype') the maximum number of hidden layers (default 2) auto_layersnodes_min (linked to 'auto_layers' above, set hpar 'layersshape' and 'layersacttype') the minimum number of nodes per layer (default 3) auto_layersnodes_max (linked to 'auto_layers' above, set hpar 'layersshape' and 'layersacttype') the maximum number of nodes per layer (default 33) auto_layersdropo see below auto_layersdropoprob_min see below auto_layersdropoprob_max 'auto_layersdropo' default value 'FALSE' for automatic adjustment of hpar 'layersdropoprob' in automl_train_manual function) the minimum and maximum value for 'layersdropoprob'; default 0.05 for 'auto_layersdropoprob_min' and 0.75 for 'auto_layersdropoprob_max'

8 hpar

seed seed for reproductibility (default 4)

nbcores number of cores used to parallelize particles optimization, not available on Win-

dows (default 1, automatically reduced if not enough cores)

verbose to display or not the costs at each iteration for each particle (default TRUE)

subtimelimit time limit in seconds for sub modelizations to avoid waiting too long for a spe-

cific particle to finish its modelization (default 3600)

back to automl_train

hpar Deep Neural Net parameters and hyperparameters

Description

List of Neural Network parameters and hyperparameters to train with gradient descent or particle swarm optimization

Not mandatory (the list is preset and all arguments are initialized with default value) but it is advisable to adjust some important arguments for performance reasons (including processing time)

Arguments

modexec 'trainwgrad' (the default value) to train with gradient descent (suitable for all

volume of data)

'trainwpso' to train using Particle Swarm Optimization, each particle represents a set of neural network weights (CAUTION: suitable for low volume of data,

time consuming for medium to large volume of data)

Below specific arguments to 'trainwgrad' execution mode

learningrate learningrate alpha (default value 0.001)

#tuning priority 1

beta1 see below

beta2 'Momentum' if beta1 different from 0 and beta2 equal 0)

'RMSprop' if beta1 equal 0 and beta2 different from 0

'adam optimization' if beta1 different from 0 and beta2 different from 0 (default)

(default value beta1 equal 0.9 and beta2 equal 0.999)

#tuning priority 2

1rdecayrate learning rate decay value (default value 0, no learning rate decay, 1e-6 should

be a good value to start with)

#tuning priority 4

chkgradevery epoch interval to run gradient check function (default value 0, for debug only)

chkgradepsilon epsilon value for derivative calculations and threshold test in gradient check

function (default 0.0000001)

Below specific arguments to 'trainwpso' execution mode

hpar 9

psoxxx see pso for PSO specific arguments details

costcustformul custom cost formula (default ", no custom cost function)

standard input variables: yhat (prediction), y (target actual value)

custom input variables: any variable declared in hpar may be used via alias mydl (ie: hpar(list = (foo = 1.5)) will be used in custom cost formula as mydl\$foo))

result: J

see 'automl_train_manual' example using Mean Average Percentage Error cost

function

nb: X and Y matrices used as input into automl_train_manual or automl_train_manual

functions are transposed (features in rows and cases in columns)

Below arguments for both execution modes

numiterations number of training epochs (default value 50))

#tuning priority 1

seed seed for reproductibility (default 4)

minibatchsize mini batch size, 2 to the power 0 for stochastic gradient descent (default 2 to the

power 5) #tuning priority 3

layersshape number of nodes per layer, each nodes number initialize a hidden layer

output layer nodes number, may be left to 0 it will be automatically set by Y

matrix shape

default value one hidden layer with 10 nodes: c(10, 0)

#tuning priority 4

layersacttype activation function for each layer; 'linear' for no activation or 'sigmoid', 'relu'

or 'reluleaky' or 'tanh' or 'softmax' (softmax for output layer only supported in

trainwpso exec mode)

output layer activation function may be left to ", default value 'linear' for re-

gression, 'sigmoid' for classification

nb: layersacttype parameter vector must have same length as layersshape pa-

rameter vector

default value c('relu', '')
#tuning priority 4

layersdropoprob

drop out probability for each layer, continuous value from 0 to less than 1 (give

the percentage of matrix weight values to drop out randomly)

nb: layersdropoprob parameter vector must have same length as layersshape

parameter vector

default value no drop out: c(0, 0) #tuning priority for regularization

printcostevery epoch interval to test and print costs (train and cross validation cost: default

value 10, for 1 test every 10 epochs)

testcvsize size of cross validation sample, 0 for no cross validation sample (default 10, for

10 percent)

testgainunder threshold to stop the training if the gain between last train or cross validation

cost is smaller than the threshold, 0 for no stop test (default 0.000001)

10 pso

costtype cost type function name 'mse' or 'crossentropy' or 'custom'

'mse' for Mean Squared Error, set automatically for continuous target type

('mape' Mean Absolute Percentage Error may be specified) 'crossentropy' set automatically for binary target type

'custom' set automatically if 'costcustformul' different from ''

lambda regularization term added to cost function (default value 0, no regularization) batchnor_mom batch normalization momentum for j and B (default 0, no batch normalization,

may be set to 0.9 for deep neural net)

epsil epsilon the low value to avoid dividing by 0 or log(0) in cost function, etc ...

(default value 1e-12)

verbose to display or not the costs and the shapes (default TRUE)

back to automl_train, automl_train_manual

See Also

Deep Learning specialization from Andrew NG on Coursera

pso

PSO parameters and hyperparameters

Description

List of parameters and hyperparameters for Particle Swarm Optimization

Arguments

All PSO parameters and hyperparameters are preset with default value

number of particles in swarm (discrete value)

('autopar' context: default value 8, which means that 8 different neural net hyperparameters sets will be tested

('hpar' context: default value 50, which means that 50 neural net weights sets will be tested

#tuning priority 1(impact on memory consumption)

CAUTION: you should only change the values below if you know what you are doing

psopartpdpsize Minimum value for particles positions (default value -10)

psovarvalmax maximum value for particles positions (default value 10)

psovelocitymaxratio

ratio applied to limit velocities (continuous value between 0 and 1, default value 0.2)

pso 11

psoinertiadampratio

inertia damp ratio (continuous value between 0 and 1, default value 1 equivalent

to OFF)

psokappa kappa (default value 1)
psophi1 Phi 1 (default value 2.05)
psophi2 Phi 2 (default value 2.05)

back to autopar, hpar

See Also

PSO video tutorial from Yarpiz

Index

```
automl_predict, 2 automl_train, 2, 3, 3, 4, 8, 10 automl_train_manual, 2-4, 4, 6, 7, 10 autopar, 3, 5, 11 hpar, 3, 4, 6, 7, 8, 11 pso, 6, 9, 10
```