Оценка качества рекомендательных систем

Июнь 2017

Задачи рекомендательной системы

- предсказать рейтинг конкретного товара
- ранжировать товары по привлекательности для пользователя

Как измерять?

- опросы пользователей
- offline (на отложенных данных)
- online (A/B-testing)

Как проводить эксперименты?

- кросс-валидация:

данные разбиваются случайным образом на К частей. Обучение проходит на К-1 части и валидируется на оставшейся. И так К раз.

- Отсечка по времени.

Оценка точности предсказания

Оценка точности предсказания

MAE:
$$\frac{1}{|K|} \sum_{\{i,j\} \in K} |\hat{r}_{ij} - r_{ij}|,$$
MSE:
$$\frac{1}{|K|} \sum_{\{i,j\} \in K} (\hat{r}_{ij} - r_{ij})^{2},$$
RMSE:
$$\sqrt{\frac{1}{|K|}} \sum_{\{i,j\} \in K} (\hat{r}_{ij} - r_{ij})^{2}$$

Специфика **МАЕ** и **RMSE**

CASE 1: Evenly distributed errors

Error Error^2

CASE 2: Small variance in errors

ID	Error	Error	Error^2
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	1	1	1
6	3	3	9
7	3	3	9
8	3	3	9
9	3	3	9
10	3	3	9

CASE 3: Large error outlier

	0		
ID	Error	Error	Error^2
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0
10	20	20	400
10	20	20	400

MAE	RMSE
2.000	2.000

MAE	RMSE
2.000	2.236

MAE	RMSE
2.000	6.325

Специфика **MAE** и **RMSE**

CASE 4: Errors = 0 or 5

ID	Error	Error	Error^2
1	5	5	25
2	0	0	0
3	5	5	25
4	0	0	0
5	5	5	25
6	0	0	0
7	5	5	25
8	0	0	0
9	5	5	25
10	0	0	0

CASE 5: Errors = 3 or 4

ID	Error	Error	Error^2
1	3	3	9
2	4	4	16
3	3	3	9
4	4	4	16
5	3	3	9
6	4	4	16
7	3	3	9
8	4	4	16
9	3	3	9
10	4	4	16

var	MAE	RMSE
6.944	2.500	3.536

var	MAE	RMSE
0.278	3.500	3.536

Связь **MAE** и **RMSE**

$$MAE \leq RMSE \leq MAE \cdot \sqrt{|K|}$$

decision-supportMETPИКИ

Precision and Recall

	Recommended	Not Recommended	
Preferred	True-Positive (tp)	False-Negative (fn)	#tp+#fn
Not Preferred	False-Positive (fp)	True-Negative (tn)	#fp+#tn
	#tp+#fp		

Precision

$$Precision:P = \frac{\#tp}{\#tp + \#fp}$$

Количество угаданных товаров из всех рекомендованных.

RECALL (True Positive Rate)

$$Recall:R = \frac{\#tp}{\#tp + \#fn}$$

Количество угаданных товаров из всех "хороших" для пользователя

(из всех, что мы должны были угадать)

FPR (False Positive Rate)

$$FalsePositiveRate = \frac{\#fp}{\#fp + \#tn}$$

Ошибка первого рода - вероятность отвергнуть правильную гипотезу.

4 алгоритма

A	Rec	NotRec	
good	63	37	TPR = 0.63
bad	28	72	FPR = 0.28

В	Rec	NotRec	
good	77	23	TPR = 0.77
bad	77	23	FPR = 0.77

C	Rec	NotRec	
good	24	76	TPR = 0.24
bad	88	12	FPR = 0.88

C'	Rec	NotRec	
good	76	24	TPR = 0.76
bad	12	88	FPR = 0.12

4 алгоритма

В реальном мире

Precision -> Precision@K

Recall -> Recall@K

+ усреднение по всем пользователям

Ранговые метрики

Ранговые метрики

- MRR (Mean Reciprocal Rank)
- Доля правильно уопрядоченных пар
- SRC (Spearman's Rank Correlation)
- DCG (Discount Cumulative Gain)

MEAN RECIPROCAL RANK

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

Q - набор запросов

rank_i - ранк первого релевантного объекта в i-ом запросе.

плохо - не берет в учет остальные объекты

Доля правильно упорядоченных пар

$$\frac{TrueOrder}{n(n-1)}$$

Spearman's Rank Correlation

$$SPR = \frac{\sum_{i} (r_{1}(i) - \overline{r})(r_{2}(i) - \overline{r})}{\sqrt{\sum_{i} (r_{1}(i) - \overline{r})^{2}} \sqrt{\sum_{i} (r_{2}(i) - \overline{r})^{2}}}$$

Discounted Cumulative Rate

$$DCG(R) = \sum u(i)d(i)$$

$$nDCG(R) = \frac{DCG(R)}{DCG(trueR)}$$

Discounted Cumulative Rate

$$DCG(R) = \sum u(i)d(i)$$

$$d(i) = \frac{1}{\max(1, \log_2 r(i))}$$

$$d(i) = \frac{1}{2^{\frac{r(i)-1}{\alpha-1}}}$$

"Бизнес-метрики"

Бизнес - метрики

- coverage
- diversity
- serendipity

Coverage

- % товаров, которые рекомендуются пользователям
- % товаров, для которых RecSys умеет делать предсказания

Diversity

Разнообразие рекомендаций:

- удалять из топа слишком похожие
- всегда отсавлять первую рекомендацию
- заменить похожие на (n+1) рекомендацию
- кластеризовать выдачу

Serendipity

- Штрафовать популярные
- "Заставить" потреблять менее популярные

Спасибо за внимание.