HOLMUSK

Data Challenge

Javier Manzano

1. Problem

2. Approach to problem solving

3. Results

1. Problem

2. Approach to problem solving

3. Results

1. Situation (i)

1. Information (ii)

Patients

- Socio-demographics
- Diagnosis
- Lab Values
- Therapies

...

Drugs

- Treatment
- Time
- Bleeding Event

1. Objective & Problem (iii)

Objective:

• To compare the **efficacy of the two drugs** (A and B) in terms of the risk of adverse events

Problem:

- It is not a clinical trial
- The two groups did not have balanced patient characteristics
 - It could mislead results/insights/decisions

How to reduce this problem?

- It is necessary to identify relevant variables and balance the patient characteristics
 - Cox Model and Propensity Score Matching
 - Survival Analysis

1. Problem

2. Approach to problem solving

3. Results

2. Approach

- 1st Step: Unbalanced patient characteristics
 - Relevant variables by using Cox Model
 - Survival time by using KM Method
 - Impacts from unbalanced data

- 2nd Step: Balanced patient characteristics
 - Relevant variables by using Cox Model
 - Randomized controlled trial by using PSM
 - Survival time by using KM Method
 - Impacts from balanced data

3rd Step: Comparison

1. Problem

2. Approach to problem solving

3. Results

3. Results (i)

Unbalanced patient characteristics

Variables	
variables	Hazard
	Ratios
"age"	1.00
"other_drugs_2"	1.26
"other_drugs_3"	1.22
"other_drugs_8"	1.17
"diagnosis_1"	0.89
"diagnosis_4"	0.62
"diagnosis_6"	1.23
"diagnosis_8"	0.92
"diagnosis_9"	0.91
"diagnosis_10"	1.37
"diagnosis_11"	1.18
"diagnosis_12"	3.35
"diagnosis_13"	0.83
"diagnosis_14"	1.42
"lab_1"	1.09
"Diag_Score_1"	1.09
"Diag_Score_2"	1.08

3. Results (ii)

Balanced patient characteristics

(11)	\ Rel	levant	varial	hles
<u> </u>		<u>levant</u>	variai	\cup 1 \cup 3

Variables:	Hazard
	Ratios
"other_drugs_2"	1.10
"other_drugs_8"	1.26
"diagnosis_9"	0.91
"diagnosis_12"	1.40
"diagnosis_14"	0.52
"Diag_Score_1"	1.08
"Diag_Score_2"	1.05
"diagnosis_1"	0.93
"diagnosis_4"	0.72
"diagnosis_11"	1.16
"lab_1"	1.03

* At 5% and 10%

Control

Treatment

3. Results (iii)

- Comparison between coefficients (variables)
 - Unbalanced
 - Higher
 - o For example:
 - "other_drugs_2"
 - "diagnosis_12"
 - "diagnosis_14"
 - Balanced
 - Moderate
 - Unbalanced = Balanced
 - Just in one variable
 - "diagnosis_9"

Variables	Hazard Ratios		
_	UD	BD	
"diagnosis_4"	0.62	0.72	
"other_drugs_8"	1.17 👍	1.26	
"diagnosis_1"	0.89 ┪	0.93	
"diagnosis_9"	0.91	0.91	
"diagnosis_12"	3.35 🎩	1.40	
"diagnosis_14"	1.42	0.52	
"other drugs 2"	1.26	1.10	
"diagnosis_11"	1.18 🚚	1.16	
"lab_1"	1.09 🦊	1.03	
"Diag_Score_2"	1.08	1.05	
"Diag_Score_1"	1.09 🚚	1.08	

1. Problem

2. Approach to problem solving

3. Results

4. Insights (i)

- Unbalanced patient characteristics (UD):
 - There are 17 relevant variables
 - There is statistically significant difference between drugs
 - Questionable results

- **❖** Balanced patient characteristics (BD):
 - There are 11 relevant variables
 - There is no statistically significant difference
 - More accurate results

4. Insights (ii)

- UD vs BD
 - More variables = Complex Analysis
 - Coefficients tend to be higher
 - It could mislead results/decisions
 - Less variables = Simple Analysis
 - Coefficients tend to be moderate
 - It can leads better results/decisions
- Suggestion
 - To work with BD = Better results/decisions

HOLMUSK

Data Challenge

Javier Manzano