UFSM - CT Sistemas de Informação 21/03/2025

Engenharia Econômica

Unidade 3 – Taxas de juros

Docente responsável: Julio Siluk, Dr. Docente orientado: Alexandre Stephan

Processo de Decisão de Alternativas Econômicas

Aplicações da Engenharia Econômica

Estudar a melhor alocação dos recursos (**limitados**) a fim de produzir bens e serviços que atendam às necessidades humanas (**ilimitadas**) da melhor forma possível.

- Avaliar quantitativamente as vantagens do negócio;
- Determinar o investimento necessário (presente e futuro);
- Estimar custos;
- Avaliar receitas (vendas, mercado, entre outros);
- Conhecimento técnico do processo em estudo;
- Não considera o imponderável (status, prestígio, valor promocional e sentimental).

Aplicações da Engenharia Econômica

Para Atividades de Engenharia

- Uma nova técnica de aglutinação deve ser incorporada à manufatura de pastilhas de freio de automóveis?
- Se um sistema de verificação computadorizado substituir a mão-de-obra humana na execução de testes de qualidade em uma linha de soldagem de automóveis, os custos operacionais decrescerão em cinco anos?
- É uma decisão economicamente prudente atualizar o centro de produção de componentes de uma fábrica de aviões a fim de reduzir os custos em 20%?
- Um desvio rodoviário deve ser construído em torno de uma cidade de 25.000 habitantes, ou a atual rodovia que atravessa a cidade deve ser ampliada?
- Obteremos a taxa de retorno necessária se adotarmos a tecnologia recentemente proposta para nossa linha de manufatura de produtos médicos a laser?

Para Projetos Destinados ao Setor Público e a Órgãos Governamentais

- Que incremento na arrecadação de impostos uma cidade deve fazer para pagar os custos de atualização do sistema de distribuição de energia elétrica?
- Os benefícios compensam os custos de construção de uma ponte sobre o canal de navegação intracosteiro?

Terminologias Iniciais

OBS.1: "n" e "i" sempre devem estar na mesma unidade para serem inseridas nas fórmulas.

OBS.2: Sempre desenhar o diagrama de fluxo de caixa para entender o problema.

P = Valor ou quantidade de dinheiro em um tempo designado como o presente ou tempo 0. P também é chamado de capital presente (CP), valor presente (VP), valor presente líquido (VPL); Valor expresso em unidades monetárias.

F = Valor ou quantidade de dinheiro em algum tempo futuro. F também é chamado de valor futuro (VF) e capital futuro (CF). Valor expresso em unidades monetárias.

A = Série de montantes consecutivos, iguais e em fim de período. A também é chamado de valor anual (VA), valor anual uniforme equivalente (VAUE), custo anual uniforme equivalente (CAUE). Valor expresso em unidades monetárias por período.

n = Número de períodos de juros. Valor expresso em anos, meses, dias, bimestres, semestres, etc.

i = Taxa de juros. Valor expresso em porcentagem ao ano, porcentagem ao mês, porcentagem ao dia, etc.

Fluxo de caixa: As entradas (receitas) e saídas (custos) de capital são chamadas de fluxos de caixa. Essas estimativas são feitas para cada alternativa.

Diagrama de Fluxo de Caixa

Taxas de Juros

Juros: será a remuneração recebida (ou paga) em troca de algum recurso financeiro. É a diferença de valor entre uma quantia de dinheiro no fim e no inicio de um período. Juros podem ser **PAGOS** ou **GANHOS**.

 $Juros = quantia\ que\ se\ deve\ atualmente\ -valor\ original$

Taxa de juros: é a constante de proporcionalidade entre os juros produzidos e o capital aplicado numa unidade de tempo (período de juros).

$$Taxa\ de\ Juros\ (\%) = \frac{juros\ acumulados\ por\ unidade\ de\ tempo}{valor\ original} \times 10$$

Ex. 1: Uma pessoa toma por empréstimo R\$10.000 no dia 1° de maio e deve reembolsar um total de R\$10.700 exatamente **1 ano depois**. Determine o valor dos juros e a taxa de juros paga.

$$Juros = 10,700 - 10,000 = 700$$

Taxa de Juros (%) =
$$\frac{700}{10.000} \times 100 = 7\%$$
 ao ano

Taxas de Juros

Ex. 2: Uma empresa planeja retirar empréstimo de R\$ 20.000 de um banco, durante 1 ano, a taxa de juros de 9%, para adquirir o novo equipamento. Calcule os juros e o valor devido após **1 ano**.

$$Juros = 20,000 * (0,09) = 1.800$$

Juros Simples

No regime de juros simples apenas o valor principal rende juros, isto é, os juros são diretamente proporcionais ao capital emprestado. As fórmulas do juros simples são:

Para calcular o valor futuro em regime de juros simples:

$$F = P + J$$

Para calcular o valor total de juros em regime de juros simples:

$$J = i.n.P$$

Para calcular o valor futuro em regime de juros simples:

$$F = P.(1 + i.n)$$

Onde:

F = Valor Futuro (R\$)

P = Valor Presente (R\$)

J = Juros Acumulados

n = Número de períodos

i = Taxa de juros (%)

Regime de Capitalização Simples - Conceitos

No Regime de **Capitalização Simples**, os **Juros de cada período são os mesmos**, pois esses são SEMPRE calculados aplicando uma porcentagem (taxa de juros) sobre o Capital Inicial.

Suponha que você tenha um Capital de R\$ 1.000,00 e decida aplicar por 5 meses em um investimento que renda 10% ao mês.

No Regime de Juros Simples, <u>os Juros são SEMPRE os mesmos em todos os períodos (pois são calculados sobre o Capital Inicial) e serão iguais a</u>:

$$Juros = \frac{10}{100} \times 1.000 \rightarrow Juros = 100$$

Construindo uma tabela para melhor visualização teremos:

Período	Juros	Montante = C + J
1	$J = 0.1 \times 1.000 = 100$	1.000 + 100 = 1.100
2	$J = 0.1 \times 1.000 = 100$	1.100 + 100 = 1.200
3	$J = 0.1 \times 1.000 = 100$	1.200 + 100 = 1.300
4	$J = 0.1 \times 1.000 = 100$	1.300 + 100 = 1.400
5	$J = 0.1 \times 1.000 = 100$	1.400 + 100 = 1.500

Juros Simples

Ex. 3: Caso você queira produzir um montante de R\$ 8.000,00 daqui a três meses a uma taxa de juros simples de 20% a.m. Qual é o investimento necessário que você deve fazer?

$$F = P.(1 + i.n)$$

 $8.000 = P.(1 + 0.2*3)$
 $8.000 = 1.6 P$
 $P = 5000$

Ex. 4: Um capital de R\$ 3.000,00 é aplicado por um ano à taxa de juros simples de 25% a.a. Qual os juros ganhos na aplicação?

```
J = i.n.P

J = 3000*0,25*1

J = 750 reais
```

Ex. 5: Qual é a taxa de juros simples que permite transformar uma aplicação de R\$ 4.500,00 em um valor futuro de R\$ 8.100 no prazo de um ano?

$$F = P.(1 + i.n)$$

 $8.100 = 4.5000*(1+i*1)$
 $i = 80\%$ a.a.

Juros Compostos

No regime de juros compostos depois de cada período de capitalização, os juros são somados a dívida anterior, e passam a render mais juros no mês seguinte. Tudo passa como se a cada mês fosse renovado o empréstimo, o valor do principal mais os juros relativos ao mês anterior.

Para calcular o valor futuro em regime de juros compostos:

$$F = P.(1+i)^n$$

Para calcular o valor presente em regime de juros compostos:

$$P=\frac{F}{(1+i)^n}$$

Para calcular o valor total de juros em regime de juros compostos:

$$J = P.[(1+i)^n - 1]$$

Onde:

F = Valor Futuro (R\$)

P = Valor Presente (R\$)

J = Juros Acumulados

n = Número de períodos

i = Taxa de juros (%)

Regime de Capitalização Composta - Conceitos

No cálculo dos **Juros Compostos**, os **rendimentos em cada período são incorporados ao Capital**, de forma que os Juros, ao final do período seguinte, **incidem NÃO SÓ sobre o Capital Inicial, MAS TAMBÉM sobre os Juros anteriores** que foram incorporados ao Capital (e assim Capitalizados).

Utilizaremos o mesmo exemplo dos Juros Simples para começarmos a notar as diferenças entre os regimes. Suponha que você tenha um Capital de R\$ 1.000,00 e decida aplicar por 5 meses em um investimento que renda 10% (0,1) ao mês (em regime de Juros compostos).

Período	Juros	Montante = C + J
1	$J = 0.1 \times 1.000 = 100$	1.000 + 100 = 1.100
2	$J = 0.1 \times 1.100 = 110$	1.100 + 110 = 1.210
3	$J = 0.1 \times 1.210 = 121$	1.210 + 121 = 1.331

Juros Compostos

Ex. 6: Suponha que você fez uma aplicação de R\$ 3500,00 por 8 meses a juros compostos de 20% a. m. Qual o valor que você vai receber ao final desse período?

$$F = P. (1 + i)^n$$

 $F = 3.500 (1 + 0.2)^8$
 $F = 15.049.37$

Ex. 7: Qual o valor acumulado correspondente a um empréstimo de R\$1.000,00 pelo prazo de 12 meses, sabendo que a taxa de juros compostos cobrada é de 0,6% a.m.?

$$F = P. (1 + i)^n$$

 $F = 1.000 (1 + 0.006)^{12}$
 $F = 10.074,42$

Ex. 8: Uma dívida deverá ser paga em uma única parcela de R\$ 9.552,42 daqui a meio ano. Considerando uma taxa de juros de 3% a. m. Qual o valor emprestado?

$$F = P. (1 + i)^n$$

 $9.552,42 = P (1 + 0.03)^6$
 $P = 8.000,00$

Juros Simples **X Juros Compostos

Tabela comparativa entre os juros calculados para 12 períodos (i = 5% a.m.) em um valor presente de 100,00

Paríada (mâs)	Montante (F=P+J)		
Período (mês)	Juros Simples	Juros Compostos	
0	100,00	100,00	
1	105,00	105,00	
2	110,00	110,25	
3	115,00	115,76	
		•••	
12	160,00	179,59	

Regimes de Capitalização (Aspectos Conceituais)

Capitalização Simples	Capitalização Composta
Os Juros de cada período são iguais	Os Juros são diferentes em cada período
Os Juros são SEMPRE calculados em cima do Capital Inicial	Os Juros são calculados em cima do Capital Inicial mais os Juros dos períodos anteriores
Os Juros não são Capitalizados	Os Juros são Capitalizados
Valores dos Montantes → P.A. $razão = Juros$	Valores dos Montantes $ ightarrow$ P.G. raz ã $o=1+i$
Gráfico → função do primeiro grau	Gráfico → função exponencial

Questões de Concurso

(SEFAZ ES - 2022) Marlene comprou uma mercadoria que custava R\$ 400,00 e pagou em duas parcelas: R\$ 200,00 no ato da compra e R\$ 280,00 um mês após a compra.

A taxa de juro mensal paga por Marlene foi de

- a) 40%
- b) 30%
- c) 25%
- d) 20%
- e) 15%

Marlene comprou uma mercadoria que custava R\$ 400,00 e pagou em duas parcelas: R\$ 200,00 no ato da compra e R\$ 280,00 um mês após a compra. <u>Graficamente</u> teremos:

Ora, se a mercadoria custava R\$ 400,00 e Marlede deu R\$ 200,00 de entrada, é porque ainda falta pagar um Capital de R\$ 200,00, concorda?

Então, faltava pagar um Capital de R\$ 200,00 e ela pagou um Montante de R\$ 280,00 um mês após.

Vamos aplicar a fórmula do Montante para uma unidade de tempo e calcular a taxa de juro mensal paga por Marlene:

$$F p \\ M = C \times (1 + i \times t)$$

$$280 = 200 \times (1 + i \times 1)$$

$$(1 + i) = \frac{280}{200}$$

$$1 + i = 1,4$$

$$i = 1,4 - 1 \rightarrow i = 0,4 \text{ ou } 40\% \text{ ao } m^2s$$

Gabarito: Alternativa A

Questões de Concurso

(Inédita - 2022) Após passar para Auditor, um ex-concurseiro contraiu um consignado de R\$ 100.000,00 a uma taxa de juros simples de 3% ao mês sobre o saldo devedor. O pagamento será feito em duas parcelas. A primeira, no valor de R\$ 46.000,00, será paga ao final do segundo mês e a segunda, ao final do quinto mês.

Sendo assim, o valor da segunda parcela será igual a:

- a) R\$ 71.000,00.
- b) R\$ 69.000,00.
- c) R\$ 67.600,00.
- d) R\$ 65.400,00.
- e) R\$ 64.500,00.

Um ex-concurseiro contraiu um consignado de R\$ 100.000,00.

Vamos calcular o <u>Saldo Devedor deste empréstimo ao final do segundo mês</u>, já que haverá o pagamento de uma parcela.

Iremos aplicar diretamente a **fórmula do Montante em regime de Juros Simples** e calcular o Saldo Devedor ao final do segundo mês.

$$M = C \times (1 + i \times t)$$

$$M = 100.000 \times (1 + 0.03 \times 2)$$

$$M = 100.000 \times (1 + 0.06)$$

$$M = 100.000 \times 1.06 \rightarrow M = 106.000$$

$$106.000$$

Ao final do segundo mês, há um pagamento de R\$ 46.000,00.

Sendo assim, o Saldo Devedor ao final do segundo mês será de 60.000 (106.000 – 46.000).

Os juros continuarão incidindo sobre este Saldo Devedor por mais três meses, uma vez que o pagamento da segundo parcela acontece ao final do quinto mês.

Vamos então aplicar novamente a fórmula do Montante em regime de Juros Simples e calcular o Saldo Devedor ao final do quinto mês.

$$M = C \times (1 + i \times t)$$

$$M = 60.000 \times (1 + 0.03 \times 3)$$

Observe que o Capital desta fórmula é o valor de R\$ 60.000,00, afinal é em cima desse valor que os Juros incidirão. E o tempo é igual a 3 meses, pois já estamos no mês 2 e queremoso valor do Saldo Devedor no mês 5. Continuando:

Logo, para quitar este financiamento, o pagamento da segunda parcela, ao final do quinto mês, deverá ser de R\$ 65.400,00.

"Professor, eu teria que desenhar todo esse fluxo na hora da prova?"

ENGENHARIA ECONÔMICA sexta edição

Leland Blank • Anthony Tarquin

UFSM - CT Sistemas de Informação 21/03/2025

Engenharia Econômica

♣ Julio Siluk✓ jsiluk@ufsm.com

▲ Alexandre Stephan

astephan2005@gmail.com

