ELEMENTARY COMBINATORICS & PROBABILITY

Lecture 2

Principle of Inclusion-Exclusion

LAST TIME

- The basics of set theory
- Basic counting principles
 - Rule of sum
 - Rule of product
 - Other useful tricks
- Applying those to solve problems

TODAY

- Basic counting principles: review
- Finish Problem Set 1

- Principle of exclusion-inclusion
 - How to apply rule of sum when the sets are not disjoint?
- Problem Set 2.

PROBLEM SET 1

COMPLEMENT OF A COMPLEMENT

•
$$(A^{C})^{C} = ?$$

COMPLEMENT OF A COMPLEMENT

•
$$(A^{C})^{C} = ?$$

COMPLEMENT OF A COMPLEMENT

$$\bullet$$
 (A^C)^C = A

ABSORPTION LAW 2

• A
$$\cup$$
 (A \cap B) = ?

ABSORPTION LAW 2

• $A \cup (A \cap B) = ?$

ABSORPTION LAW 2

 $\bullet A \cup (A \cap B) = A$

SHOPPING

- A woman has decided to shop at one store today, either in the north part of town or the south part of town.
 - North: shop at either a mall, a furniture store, or a jewelry store.
 - South: shop at either a clothing store or a shoe store.
- How many stores can the woman choose from?

SHOPPING

- A woman has decided to shop at one store today, either in the north part of town or the south part of town.
 - North: shop at either a mall, a furniture store, or a jewelry store.
 - South: shop at either a clothing store or a shoe store.
- How many stores can the woman choose from?

Sum rule:

3 options in the north part + 2 options in the south part = 2 + 3 = 5 different stores to visit

WORKOUTS

- You want to design a 30-minute workout.
 - First 15 minutes: running, rowing, kickboxing or skipping.
 - Second 15 minutes: squats, pull-ups or core routine.
- How many such workouts are possible?

WORKOUTS

- You want to design a 30-minute workout.
 - First 15 minutes: running, rowing, kickboxing or skipping.
 - Second 15 minutes: squats, pull-ups or core routine.
- How many such workouts are possible?

Product rule:

4 options for the first part x 3 options for the second part = $4 \times 3 = 12$ options for the

• How many integer numbers from 1 to 999 don't contain digit 7?

• How many integer numbers from 1 to 999 don't contain digit 7?

1 - 9:

10 - 99:

100 – 999:

• How many integer numbers from 1 to 999 don't contain digit 7?

1 - 9:

8 numbers (everything but 7)

10 - 99:

100 – 999:

• How many integer numbers from 1 to 999 don't contain digit 7?

1 - 9:

8 numbers (everything but 7)

10 - 99:

8 x 9 numbers (1st digit: anything but 0 or 7, 2nd digit: anything but 7)

100 – 999:

• How many integer numbers from 1 to 999 don't contain digit 7?

1 - 9:

8 numbers (everything but 7)

10 - 99:

8 x 9 numbers (1st digit: anything but 0 or 7, 2nd digit: anything but 7)

100 - 999:

 $8 \times 9 \times 9$ (1st digit: anything but 0 or 7, 2nd and 3rd digits: anything but 7)

• How many integer numbers from 1 to 999 don't contain digit 7?

1 - 9:

8 numbers (everything but 7)

10 - 99:

8 x 9 numbers (1st digit: anything but 0 or 7, 2nd digit: anything but 7)

100 - 999:

 $8 \times 9 \times 9$ (1st digit: anything but 0 or 7, 2nd and 3rd digits: anything but 7)

Sum rule:

 $8 + 8 \times 9 + 8 \times 9 \times 9$ numbers from 1 to 999 **don't** contain digit 7

• How many integer numbers from 1 to 999 don't contain digit 7?

Other solution:

• How many integer numbers from 1 to 999 don't contain digit 7?

Other solution:

Number between 1 and 999:

* * *

(6 is represented as 006, 45 is represented as 045)

• How many integer numbers from 1 to 999 don't contain digit 7?

Other solution:

Number between 1 and 999:

* * *

(6 is represented as 006, 45 is represented as 045)

Every digit * can be anything but 7, therefore:

• How many integer numbers from 1 to 999 don't contain digit 7?

Other solution:

Number between 1 and 999:

(6 is represented as 006, 45 is represented as 045)

Every digit * can be anything but 7, therefore:

$$9 \times 9 \times 9$$

• How many integer numbers from 1 to 999 don't contain digit 7?

Other solution:

Number between 1 and 999:

(6 is represented as 006, 45 is represented as 045)

Every digit * can be anything but 7, therefore:

$$9 \times 9 \times 9 - 1$$

(000 should not be considered, because we're interested numbers from 1 to 999)

• How many integer numbers from 1 to 999 contain digit 7?

• How many integer numbers from 1 to 999 contain digit 7?

There are 999 numbers between 1 and 999.

728 don't contain digit 7 (previous step).

• How many integer numbers from 1 to 999 contain digit 7?

There are 999 numbers between 1 and 999.

728 don't contain digit 7 (previous step).

Therefore, 999 – 728 – 271 numbers contain digit 7.

• How many integer numbers from 1 to 999 contain digit 7 exactly once?

• How many integer numbers from 1 to 999 contain digit 7 exactly once?

Numbers from 1 to 999: ***

How many integer numbers from 1 to 999 contain digit 7 exactly once?

Numbers from 1 to 999: ***

Contain 7 exactly once ⇔

How many integer numbers from 1 to 999 contain digit 7 exactly once?

Numbers from 1 to 999: ***

Contain 7 exactly once \Leftrightarrow three possibility:

7 * *

* 7 *

* * 7

How many integer numbers from 1 to 999 contain digit 7 exactly once?

Numbers from 1 to 999: ***

Contain 7 exactly once \Leftrightarrow three possibility:

7 * *

9 x 9 options

* 7 *

* * 7

How many integer numbers from 1 to 999 contain digit 7 exactly once?

Numbers from 1 to 999: ***

Contain 7 exactly once \Leftrightarrow three possibility:

7 * *

9 x 9 options

* 7 *

9 x 9 options

* * 7

How many integer numbers from 1 to 999 contain digit 7 exactly once?

Numbers from 1 to 999: ***

Contain 7 exactly once \Leftrightarrow three possibility:

7** 9 x 9 options

* 7 * 9 x 9 options

* * 7 9 x 9 options

How many integer numbers from 1 to 999 contain digit 7 exactly once?

Numbers from 1 to 999: ***

Contain 7 exactly once \Leftrightarrow three possibility:

7 * * 9 x 9 options

* 7 * 9 x 9 options

* * 7 9 x 9 options

Sum rule:

 $9 \times 9 + 9 \times 9 + 9 \times 9 = 243$ numbers from 1 to 999 contain digit 7 **exactly** once

• How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

• How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

• How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

$$10 - 99$$
:

1 option (number 7)

• How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

• How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

1 option (number 7)

7* (9 options) *7

• How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

1 option (number 7)

7* (9 options)

*7 (8 options)

<u> 100 – 999:</u>

 How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

 How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

 How many integer numbers from 1 to 999 contain digit 7 exactly once?

Other solution:

Sum rule: $1 + 9 + 8 + 9 \times 9 + 8 \times 9 + 8 \times 9 = 243$ numbers from 1 to 999 contain digit 7 **exactly** once

• How many integer numbers from 1 to 999 contain digit 7 more than once?

How many integer numbers from 1 to 999 contain digit 7 more
 than once?

There are 999 numbers from 1 to 999.

How many integer numbers from 1 to 999 contain digit 7 more
 than once?

There are 999 numbers from 1 to 999.

728 don't contain digit 7 (previous steps).

How many integer numbers from 1 to 999 contain digit 7 more
 than once?

There are 999 numbers from 1 to 999.

728 don't contain digit 7 (previous steps).

243 of them contain digit 7 exactly once (previous step).

How many integer numbers from 1 to 999 contain digit 7 more
 than once?

There are 999 numbers from 1 to 999.

728 don't contain digit 7 (previous steps).

243 of them contain digit 7 exactly once (previous step).

Therefore,

How many integer numbers from 1 to 999 contain digit 7 more
 than once?

There are 999 numbers from 1 to 999.

728 don't contain digit 7 (previous steps).

243 of them contain digit 7 exactly once (previous step).

Therefore,

$$999 - 728 - 243 = 28$$

numbers from 1 to 999 contain digit 7 **more than** once

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

How many numbers between 0 and 9999 contain digit 3 three times?

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

How many numbers between 0 and 9999 contain digit 3 three times?

333

333*

33*3

3*33

*333

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

How many numbers between 0 and 9999 contain digit 3 three times?

$$=> 1 + 9 + 9 + 9 + 8 = 36$$
 numbers

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

How many numbers between 0 and 9999 contain digit 3 four times?

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

How many numbers between 0 and 9999 contain digit 3 four times?

Just one: 3333

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

There are 10000 numbers between 0 and 9999.

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

There are 10000 numbers between 0 and 9999.

1 contains digit 3 four times (previous step).

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

There are 10000 numbers between 0 and 9999.

1 contains digit 3 four times (previous step).

36 contain digit 3 three times (previous step).

How many numbers between 0 and 9999 contain digit 3 less than 3 times?

There are 10000 numbers between 0 and 9999.

1 contains digit 3 four times (previous step).

36 contain digit 3 three times (previous step).

Therefore, 10000 - 1 - 36 = 9963 numbers between 0 and 9999 contain digit 3 less that three times.

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

At least one digit = 1, 2, 3, 4, 5 or 6 digits

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

At least one digit = 1, 2, 3, 4, 5 or 6 digits

Too difficult.

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

At least one digit = 1, 2, 3, 4, 5 or 6 digits

Too difficult.

At least one digit = any number of digits but 0

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

At least one digit = 1, 2, 3, 4, 5 or 6 digits

Too difficult.

At least one digit = any number of digits but 0 Easier!

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

6-character passwords with any number of digits

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

 $36 \times 36 \times 36 \times 36 \times 36 \times 36 = 36^6$ 6-character passwords with *any* number of digits

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

 $36 \times 36 \times 36 \times 36 \times 36 \times 36 = 36^6$ 6-character passwords with *any* number of digits

6-character passwords with no digits

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

 $36 \times 36 \times 36 \times 36 \times 36 \times 36 = 36^6$ 6-character passwords with *any* number of digits

> $26 \times 26 \times 26 \times 26 \times 26 \times 26 = 26^6$ 6-character passwords with *no* digits

• A password should be 6 characters long. Each character can be an uppercase letter or a digit. At least one character <u>must</u> be a digit. How many such passwords are there?

 $36 \times 36 \times 36 \times 36 \times 36 \times 36 = 36^6$ 6-character passwords with *any* number of digits

> $26 \times 26 \times 26 \times 26 \times 26 \times 26 = 26^6$ 6-character passwords with *no* digits

36⁶ – 26⁶ passwords with at least one digit

• How many numbers between 0 and 999999 don't have two similar digits next to each other?

• How many numbers between 0 and 999999 don't have two similar digits next to each other?

0 - 9:

10 - 99:

100 – 999:

• How many numbers between 0 and 999999 don't have two similar digits next to each other?

0 - 9:

10 numbers (anything)

10 - 99:

100 – 999:

• How many numbers between 0 and 999999 don't have two similar digits next to each other?

0 - 9:

10 numbers (anything)

10 - 99:

9 x 9 (1st digit anything but 0; 2nd digit anything but the previous one)

100 – 999:

• How many numbers between 0 and 999999 don't have two similar digits next to each other?

0 - 9:

10 numbers (anything)

10 - 99:

9 x 9 (1st digit anything but 0; 2nd digit anything but the previous one)

100 – 999:

9 x 9 x 9 (1st digit anything but 0; 2nd and 3rd digits anything but the previous one)

• Let C, M and I be the sets of people who like Chinese, Mexican and Italian food respectively.

People who like Chinese or Mexican cuisine:

• Let C, M and I be the sets of people who like Chinese, Mexican and Italian food respectively.

• People who like Chinese or Mexican cuisine: $C \cup M$

• People who like Mexican and Italian cuisine:

• Let C, M and I be the sets of people who like Chinese, Mexican and Italian food respectively.

• People who like Chinese or Mexican cuisine: $C \cup M$

• People who like Mexican and Italian cuisine: $M \cap I$

• People who like at least one of the cuisine:

• Let C, M and I be the sets of people who like Chinese, Mexican and Italian food respectively.

• People who like Chinese or Mexican cuisine: $C \cup M$

• People who like Mexican and Italian cuisine: $M \cap I$

• People who like at least one of the cuisine: $C \cup M \cup I$

• People who like all three cuisines:

• Let C, M and I be the sets of people who like Chinese, Mexican and Italian food respectively.

• People who like Chinese or Mexican cuisine: $C \cup M$

• People who like Mexican and Italian cuisine: $M \cap I$

• People who like at least one of the cuisine: $C \cup M \cup I$

• People who like all three cuisines: $C \cap M \cap I$

THE PRINCIPLE OF INCLUSION-EXCLUSION

• How many numbers between 1 and 100 are divisible by 3?

• How many numbers between 1 and 100 are divisible by 3?

Every 3rd number is divisible by 3: 3, 6, 9, ..., 93, 96, 99.

• How many numbers between 1 and 100 are divisible by 3?

Every 3rd number is divisible by 3: 3, 6, 9, ..., 93, 96, 99.

Thus, there are [100 / 3] = 33 of them.

• How many numbers between 1 and 100 are divisible by 5?

• How many numbers between 1 and 100 are divisible by 5?

Every 5th number is divisible by 5: 5, 10, 15, ..., 95, 95

• How many numbers between 1 and 100 are divisible by 5?

Every 5th number is divisible by 5: 5, 10, 15, ..., 95, 95, 100.

Thus, there are [100 / 5] = 20 of them.

- How many numbers between 1 and 100 are divisible by 3?
- How many numbers between 1 and 100 are divisible by 5?
- How many numbers between 1 and 100 are divisible by 3 or 5?

- How many numbers between 1 and 100 are divisible by 3?
- How many numbers between 1 and 100 are divisible by 5?
- How many numbers between 1 and 100 are divisible by 3 or 5? Sum rule:
 - 33 numbers divisible by 3 + 20 numbers divisible by 5 = 53 numbers divisible by 3 or 5.

- How many numbers between 1 and 100 are divisible by 3?
- How many numbers between 1 and 100 are divisible by 5?
- How many numbers between 1 and 100 are divisible by 3 or 5?

33 numbers divisible by 3 + 20 numbers divisible by 5 = 53 numbers divisible by 3 or 5.

ADDITION PRINCIPLE

$$|A \cup B| = |A| + |B|$$

ADDITION PRINCIPLE

$$|A \cup B| = |A| + |B|$$

$$|A \cup B| = |A| + |B|$$

$$|A \cup B| = |A| + |B|$$

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Sum rule:

• Problem:

Sum rule:

• Problem: there are numbers which are divisible both by 3 and 5 (e.g., 15, 30, 45, ...).

Sum rule:

33 numbers divisible by 3 + 20 numbers divisible by 5 = = 53 numbers divisible by 3 or 5.

• Problem: there are numbers which are divisible both by 3 and 5

(e.g., 15, 30, 45, ...).

Sum rule:

33 numbers divisible by 3 + 20 numbers divisible by 5 = = 53 numbers divisible by 3 or 5.

• Problem: there are numbers which are divisible both by 3 and 5

(e.g., 15, 30, 45, ...).

• How many numbers between 1 and 100 are divisible by 3 or 5?

$$|D_3 \cup D_5| =$$

• How many numbers between 1 and 100 are divisible by 3 or 5?

$$|D_3 \cup D_5| = |D_3| + |D_5| - |D_{15}| =$$

• How many numbers between 1 and 100 are divisible by 3 or 5?

$$|D_3 \cup D_5| = |D_3| + |D_5| - |D_{15}| =$$

= 33 + 20 - 6 = 47.

PRINCIPLE OF INCLUSION-EXCLUSION FOR TWO SETS

For every two finite sets A and B

$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

• In particular, if A and B are disjoint, then $|A \cap B| = \emptyset$ and

$$|A \cup B| = |A| + |B|$$
.

EXAMPLE: STUDENTS

- In a discrete mathematics course, there are
 - 17 students majoring in computer science
 - 11 students majoring in mathematics
 - 5 students majoring in both.

How many students major in computer science or mathematics?

- In a discrete mathematics course, there are
 - 17 students majoring in computer science set C
 - 11 students majoring in mathematics set M
 - 5 students majoring in both.

How many students major in computer science or mathematics?

- In a discrete mathematics course, there are
 - 17 students majoring in computer science set C
 - 11 students majoring in mathematics set M
 - 5 students majoring in both.

How many students major in computer science or mathematics?

Students majoring in CS or Math:

- In a discrete mathematics course, there are
 - 17 students majoring in computer science set C
 - 11 students majoring in mathematics set M
 - 5 students majoring in both.

How many students major in computer science or mathematics?

Students majoring in CS or Math: $C \cup M$

- In a discrete mathematics course, there are
 - 17 students majoring in computer science set C
 - 11 students majoring in mathematics set M
 - 5 students majoring in both.

How many students major in computer science or mathematics?

Students majoring in CS or Math: $C \cup M$

$$|C \cup M| =$$

- In a discrete mathematics course, there are
 - 17 students majoring in computer science set C
 - 11 students majoring in mathematics set M
 - 5 students majoring in both.

How many students major in computer science or mathematics?

Students majoring in CS or Math: $C \cup M$

$$|C \cup M| = |C| + |M| - |C \cap M| =$$

- In a discrete mathematics course, there are
 - 17 students majoring in computer science set C
 - 11 students majoring in mathematics set M
 - 5 students majoring in both.

How many students major in computer science or mathematics?

Students majoring in CS or Math: $C \cup M$

$$|C \cup M| = |C| + |M| - |C \cap M| =$$

= 17 + 11 - 5 = 23 students majoring in CS of Math

- In a discrete mathematics course, there are
 - 17 students majoring in computer science
 - 11 students majoring in mathematics
 - 5 students majoring in both.

- In a discrete mathematics course, there are
 - 17 students majoring in computer science
 - 11 students majoring in mathematics
 - 5 students majoring in both.

- In a discrete mathematics course, there are
 - 17 students majoring in computer science
 - 11 students majoring in mathematics
 - 5 students majoring in both.

- In a discrete mathematics course, there are
 - 17 students majoring in computer science
 - 11 students majoring in mathematics
 - 5 students majoring in both.

• How many 8-bit sequences begin with 110 or end with 1100?

How many 8-bit sequences begin with 110 or end with 1100?

$$N = N_{\text{begin with }110} + N_{\text{end with }1100} - N_{\text{begin with }110 \text{ and end with }1100}$$

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110:

end with 1100:

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110:

end with 1100:

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110:

$$N_{110} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$$

1	1	0	*	*	*	*	*
---	---	---	---	---	---	---	---

end with 1100:

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110: $N_{110} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$

end with 1100:

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110: $N_{110} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$ 1 1 0 * * * * *

end with 1100: $N_{1100} = 2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110: $N_{110} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$

1 1 0 * * * *

end with 1100: $N_{1100} = 2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$

begin with 110 and end with 1100:

1 1 0 * 1 0 0

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110: $N_{110} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$

1 1 0 * * * *

end with 1100: $N_{1100} = 2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$

* * * 1 1 0 0

begin with 110 **and** end with 1100: $N_{110,1100} = 2$

1 1 0 * 1 0 0

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110: $N_{110} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$

1 1 0 * * * *

end with 1100: $N_{1100} = 2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$

* * * 1 1 0 0

begin with 110 **and** end with 1100: $N_{110,1100} = 2$

1 1 0 * 1 0 0

N =

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110: $N_{110} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$

1 1 0 * * * *

end with 1100: $N_{1100} = 2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$

* * * 1 1 0 0

begin with 110 **and** end with 1100: $N_{110,1100} = 2$

1 1 0 * 1 0 0

 $N = N_{110} + N_{1100} - N_{110,1100} =$

How many 8-bit sequences begin with 110 or end with 1100?

begin with 110: $N_{110} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5 = 32$

1 1 0 * * * *

end with 1100: $N_{1100} = 2 \cdot 2 \cdot 2 \cdot 2 = 2^4 = 16$

* * * * 1 1 0 0

begin with 110 **and** end with 1100: $N_{110,1100} = 2$

1 1 0 * 1 0 0

 $N = N_{110} + N_{1100} - N_{110,1100} = 32 + 16 - 2 = 46$

$$|D \cup C| = |D| + |C| - |D \cap C|$$

$$|D \cup C| = |D| + |C| - |D \cap C|$$

$$|D \cup C| = |D| + |C| - |D \cap C|$$

 $|D| + |C| = 30 + 25 = 55$

$$|D \cup C| = |D| + |C| - |D \cap C|$$

 $|D| + |C| = 30 + 25 = 55$
 $|D \cup C| \le 50$

$$|D \cup C| = |D| + |C| - |D \cap C|$$

 $|D| + |C| = 30 + 25 = 55$
 $|D \cup C| \le 50$
 $50 \ge 55 - |D \cap C|$

$$|D \cup C| = |D| + |C| - |D \cap C|$$

 $|D| + |C| = 30 + 25 = 55$
 $|D \cup C| \le 50$
 $50 \ge 55 - |D \cap C|$
 $|D \cap C| \ge 5$

• In a group of 50 people, 30 own a dog and 25 own a cat. What can we say about the number of people who own both a dog and a cat?

$$|D \cup C| = |D| + |C| - |D \cap C|$$

 $|D| + |C| = 30 + 25 = 55$
 $|D \cup C| \le 50$
 $50 \ge 55 - |D \cap C|$
 $|D \cap C| \ge 5$

At least 5 people must own both a dog and a cat.

LET'S PRACTICE!

https://docs.google.com/document/d/1VIDmtgY9qrhqisifcF6R_E37QSOH7-g0lb25bX4vxiw/edit?usp=sharing

PART I

PRINCIPLE OF INCLUSION-EXCLUSION FOR THREE SETS

• For any finite sets A, B and C

$$|A \cup B \cup C| =$$

PRINCIPLE OF INCLUSION-EXCLUSION FOR THREE SETS

• For any finite sets A, B and C

PRINCIPLE OF INCLUSION-EXCLUSION FOR THREE SETS

For any finite sets A, B and C

$$|A \cup B \cup C| =$$

$$= |A| + |B| + |C| -$$

$$- |A \cap B| - |A \cap C| - |B \cap C| +$$

• For any finite sets A, B and C

$$|A \cup B \cup C| =$$

$$= |A| + |B| + |C| -$$

$$- |A \cap B| - |A \cap C| - |B \cap C| +$$

$$+ |A \cap B \cap C|$$

Travelers are surveyed about the city they want to visit:

- Las Vegas: 26
- NY: 31
- Orlando: 36
- Las Vegas and NY: 12
- Las Vegas and Orlando: 11
- NY and Orlando: 13
- all three: 5

Travelers are surveyed about the city they want to visit:

- Las Vegas: 26
- NY: 31
- Orlando: 36
- Las Vegas and NY: 12
- Las Vegas and Orlando: 11
- NY and Orlando: 13
- all three: 5

How many of these travelers want to visit at least one of the cities?

 $|L \cup N \cup O| =$

Travelers are surveyed about the city they want to visit:

- Las Vegas: 26
- NY: 31
- Orlando: 36
- Las Vegas and NY: 12
- Las Vegas and Orlando: 11
- NY and Orlando: 13
- all three: 5

$$|L \cup N \cup O| =$$

$$= |L| + |N| + |O| -$$

$$-|L \cap N| - |L \cap O| - |N \cap O| +$$

$$+|L \cap N \cap O| =$$

Travelers are surveyed about the city they want to visit:

- Las Vegas: 26
- NY: 31
- Orlando: 36
- Las Vegas and NY: 12
- Las Vegas and Orlando: 11
- NY and Orlando: 13
- all three: 5

$$|L \cup N \cup O| =$$

$$= |L| + |N| + |O| -$$

$$-|L \cap N| - |L \cap O| - |N \cap O| +$$

$$+|L \cap N \cap O| =$$

$$= 26 + 31 + 36 -$$

$$-12 - 11 - 13 +$$

$$+ 5 = 62$$

Travelers are surveyed about the city they want to visit:

- Las Vegas: 26
- NY: 31
- Orlando: 36
- Las Vegas and NY: 12
- Las Vegas and Orlando: 11
- NY and Orlando: 13
- all three: 5

Travelers are surveyed about the city they want to visit:

- Las Vegas: 26
- NY: 31
- Orlando: 36
- Las Vegas and NY: 12
- Las Vegas and Orlando: 11
- NY and Orlando: 13
- all three: 5

Travelers are surveyed about the city they want to visit:

- Las Vegas: 26
- NY: 31
- Orlando: 36
- Las Vegas and NY: 12
- Las Vegas and Orlando: 11
- NY and Orlando: 13
- all three: 5

"at least two cities" =
all three cities
NY and L but not O
NY and O but not L
L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

• NY and Orlando: 13

• all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L

L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

NY and Orlando: 13

• all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L
L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

• NY and Orlando: 13

• all three: 5

"at least two cities" =

all three cities

NY and L but not O

NY and O but not L

L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

• NY and Orlando: 13

• all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L
L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

• NY and Orlando: 13

• all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L
L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

NY and Orlando: 13

• all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L

L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

• NY and Orlando: 13

• all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L

L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

• NY and Orlando: 13

• all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L

L and O but not NY

Travelers are surveyed about the city they want to visit:

• Las Vegas: 26

• NY: 31

• Orlando: 36

Las Vegas and NY: 12

• Las Vegas and Orlando: 11

• NY and Orlando: 13

• all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L

L and O but not NY

Travelers are surveyed about the city they want to visit:

- Las Vegas: 26
- NY: 31
- Orlando: 36
- Las Vegas and NY: 12
- Las Vegas and Orlando: 11
- NY and Orlando: 13
- all three: 5

"at least two cities" =
all three cities

NY and L but not O

NY and O but not L

L and O but not NY

$$5 + 6 + 8 + 7 = 26$$
 people

- 60 students:
 - 31 students like **b**eef;
 - 32 students like **c**hicken;
 - 31 students like **f**ish;
 - 15 students like beef and chicken;
 - 12 students like beef and fish;
 - 19 students like chicken and fish;
 - 8 students like all three.
- How many like none of these?

• 60 students:

Students who like b, c or f: $B \cup C \cup F$

- 31 students like **b**eef;
- 32 students like chicken;
- 31 students like **f**ish;
- 15 students like beef and chicken;
- 12 students like beef and fish;
- 19 students like chicken and fish;
- 8 students like all three.
- How many like none of these?

- 60 students:
 - 31 students like **b**eef;
 - 32 students like chicken;
 - 31 students like fish;
 - 15 students like beef and chicken;
 - 12 students like beef and fish;
 - 19 students like chicken and fish;
 - 8 students like all three.
- How many like none of these?

Students who like b, c or f: $B \cup C \cup F$

$$|B \cup C \cup F| =$$
 $= |B| + |C| + |F| -|B \cap C| - |B \cap F| - |C \cap F|$
 $+|B \cap C \cap F| =$

- 60 students:
 - 31 students like **b**eef;
 - 32 students like chicken;
 - 31 students like **f**ish;
 - 15 students like beef and chicken;
 - 12 students like beef and fish;
 - 19 students like chicken and fish;
 - 8 students like all three.
- How many like none of these?

Students who like b, c or f: $B \cup C \cup F$

$$|B \cup C \cup F| =$$
 $= |B| + |C| + |F| -|B \cap C| - |B \cap F| - |C \cap F|$
 $+|B \cap C \cap F| = 31 + 32 + 31 - 15 -12 - 19 + 8 = 56$

- 60 students:
 - 31 students like **b**eef;
 - 32 students like chicken;
 - 31 students like fish;
 - 15 students like beef and chicken;
 - 12 students like beef and fish;
 - 19 students like chicken and fish;
 - 8 students like all three.
- How many like none of these?

Students who like b, c or f: $B \cup C \cup F$

$$|B \cup C \cup F| =$$

$$= |B| + |C| + |F| -$$

$$-|B \cap C| - |B \cap F| - |C \cap F|$$

$$+|B \cap C \cap F| = 31 + 32 + 31 - 15 -$$

$$-12 - 19 + 8 = 56$$

- 60 students:
 - 31 students like **b**eef;
 - 32 students like chicken;
 - 31 students like fish;
 - 15 students like beef and chicken;
 - 12 students like beef and fish;
 - 19 students like chicken and fish;
 - 8 students like all three.
- How many like none of these?

Students who like b, c or f: $B \cup C \cup F$

$$|B \cup C \cup F| =$$

$$= |B| + |C| + |F| -$$

$$-|B \cap C| - |B \cap F| - |C \cap F|$$

$$+|B \cap C \cap F| = 31 + 32 + 31 - 15 -$$

$$-12 - 19 + 8 = 56$$

$$(B \cup C \cup F)^c$$

$$|(B \cup C \cup F)^c| =$$

- 60 students:
 - 31 students like **b**eef;
 - 32 students like chicken;
 - 31 students like fish;
 - 15 students like beef and chicken;
 - 12 students like beef and fish;
 - 19 students like chicken and fish;
 - 8 students like all three.
- How many like none of these?

Students who like b, c or f: $B \cup C \cup F$

$$|B \cup C \cup F| =$$

$$= |B| + |C| + |F| -$$

$$-|B \cap C| - |B \cap F| - |C \cap F|$$

$$+|B \cap C \cap F| = 31 + 32 + 31 - 15 -$$

$$-12 - 19 + 8 = 56$$

$$(B \cup C \cup F)^c$$

$$|(B \cup C \cup F)^c| = |U| - |B \cup C \cup F|$$

- 60 students:
 - 31 students like **b**eef;
 - 32 students like chicken;
 - 31 students like fish;
 - 15 students like beef and chicken;
 - 12 students like beef and fish;
 - 19 students like chicken and fish;
 - 8 students like all three.
- How many like none of these?

Students who like b, c or f: $B \cup C \cup F$

$$|B \cup C \cup F| =$$

$$= |B| + |C| + |F| -$$

$$-|B \cap C| - |B \cap F| - |C \cap F|$$

$$+|B \cap C \cap F| = 31 + 32 + 31 - 15 -$$

$$-12 - 19 + 8 = 56$$

$$(B \cup C \cup F)^c$$

$$|(B \cup C \cup F)^c| = |U| - |B \cup C \cup F|$$

= 60 - 56 = 4

$$|A \cup B \cup C \cup D| =$$

$$|A \cup B \cup C \cup D| =$$

= $|A| + |B| + |C| + |D|$

$$|A \cup B \cup C \cup D| =$$
 $= |A| + |B| + |C| + |D| -|A \cap B| - |A \cap C| - |A \cap D| -|B \cap C| - |B \cap D| - |C \cap D|$

$$|A \cup B \cup C \cup D| =$$

$$= |A| + |B| + |C| + |D| -$$

$$-|A \cap B| - |A \cap C| - |A \cap D| -$$

$$-|B \cap C| - |B \cap D| - |C \cap D| +$$

$$+|A \cap B \cap C| + |B \cap C \cap D|$$

$$+|A \cap B \cap D| + |A \cap C \cap D|$$

$$|A \cup B \cup C \cup D| =$$

$$= |A| + |B| + |C| + |D| -$$

$$-|A \cap B| - |A \cap C| - |A \cap D| -$$

$$-|B \cap C| - |B \cap D| - |C \cap D| +$$

$$+|A \cap B \cap C| + |B \cap C \cap D| +$$

$$+|A \cap B \cap D| + |A \cap C \cap D| -$$

$$-|A \cap B \cap C \cap D|.$$

LET'S PRACTICE!

https://docs.google.com/document/d/1VIDmtgY9qrhqisifcF6R_E37QSOH7-g0Ib25bX4vxiw/edit?usp=sharing

PART II