- RESUMÃO - INTEGRAIS

(Cálculo)
Formulário, Dicas e Macetes para a Prova

Você me pergunta o que é integral. Eu te respondo: é uma área! =)

Propriedades das Integrais

Estas são coisas que nunca esquecemos: o dia do nosso aniversário, nosso filme favorito e as propriedades das integrais!

$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$	$\int_{a}^{a} f(x)dx = 0$
$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$	$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
$\int_{a}^{b} c dx = c(b-a), \qquad c \text{ constante}$	$\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} f(x) dx,$ $c \text{ constante}$

Se
$$f(x) \ge g(x)$$
 para $a \le x \le b$, então $\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$

Integral Definida e Indefinida

Hora do Bizu:

A Integral DEFINIDA dá um valor como resultado; a Integral INDEFINIDA dá uma função.

NÃÃÃÃÃÃÃ esquece da constante de integração na INDEFINIDA, hein!!

Principais Primitivas

Que bom que alguém resolveu montar essa tabelinha de primitivas pra você, né? Afinal, elas sempre aparecem!

As mais comuns				
$\int k dx = kx + C$		$\int x^n dx = \frac{x^{n+1}}{n+1} + C (n \neq -1)$		
$\int \frac{1}{x} dx = \ln x + C$	$\int e^x dx = e^x + C$		$\int a^x dx = \frac{a^x}{\ln a} + C$	
Trigonométricas				
$\int \operatorname{sen} x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$		$\int \sec^2 x dx = \operatorname{tg} x + C$	
$\int \operatorname{cossec}^2 x \ dx = -\operatorname{cotg} x + C$	$\int \sec x \cdot \operatorname{tg} x dx = \sec x + C$		$\int \operatorname{cossec} x \cdot \operatorname{cotg} x dx = -\operatorname{cossec} x + C$	
$\int \frac{1}{x^2 + 1} dx = \arctan x + C$		$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$		

Teorema Fundamental do Cálculo

O T.F.C. é meio assim...

A parte 1 diz que a derivada da integral da função recupera a própria função. A parte 2 diz que integral da derivada da função recupera a função também. Mas cadê os detalhes, então?

Parte 1	Parte 2			
 ✓ Pelo menos um dos limites de integração é uma função de uma variável diferente daquela na qual integramos. ✓ f é contínua no intervalo de integração. 	✓ Começamos com uma integral definida.			
Fórmulas				
$\left(\int_{a}^{g(x)} f(t)dt\right)' = f(g(x))g'(x)$	$\int_{a}^{b} F'(x)dx = F(b) - F(a)$			

Chegou o site que todo aluno de Engenharia sonhava!

Clique aqui: WWW.RESPONDEAL.COM.BR

Integral por Substituição

- Simplifica a visualização: chegamos a uma integral conhecida.
- Use quando você conseguir dividir o que está sendo integrado em duas partes: uma função (u) vezes a derivada dessa função (du).
- Mudança de variáveis (para integrais definidas, muda-se os limites de integração).

A forma como resolver está abaixo. Parece até um poema romântico, não?

$$\int 6x^2 \sqrt{x^3 + 1} \, dx$$

Fazemos $\int 2.\sqrt{x^3+1}.3x^2 dx$ e definimos $u=x^3+1$, de modo que $du=3x^2 du$.

Substituindo:
$$\int 2.\sqrt{x^3+1}.3x^2\,dx = \int 2.u^{\frac{1}{2}}du = 2.\frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{4}{3}\sqrt{u^3} + C$$

Voltando DE u para $x:\frac{4}{3}\sqrt{u^3} + C = \frac{4}{3}\sqrt{(x^3+1)^3} + C$.
Ok, e se fosse $\int_0^1 6x^2\sqrt{x^3+1}\,dx$?

Resolve tudo e substitui os limites no final:

$$\int_0^1 6x^2 \sqrt{x^3 + 1} \, dx$$

$$= \frac{4}{3} \sqrt{(x^3 + 1)^3} \Big|_0^1$$

$$= \frac{4}{3} \sqrt{8} - \frac{4}{3} = \frac{4}{3} (2\sqrt{2} - 1)$$

Resolve em função de u e muda os limites:

$$u = x^{3} + 1: \begin{cases} x = 0 \to u = 1\\ x = 1 \to u = 2 \end{cases}$$
$$\int_{0}^{1} 6x^{2} \sqrt{x^{3} + 1} \, dx = \int_{0}^{1} 2u^{\frac{1}{2}} \, dx$$
$$= \frac{4}{3} \sqrt{u^{3}} \Big|_{1}^{2}$$
$$= \frac{4}{3} \sqrt{8} - \frac{4}{3} = \frac{4}{3} (2\sqrt{2} - 1)$$

Chegou o site que todo aluno de Engenharia sonhava!

OU

Integral por Partes

$$\int u(x)v'(x) dx = u(x)v(x) - \int v(x)u'(x) dx$$

Como escolher o u(x)? \rightarrow Seguir a ordem das letras na palavra **LIATE**.

L \rightarrow Logarítmica ($\ln x$)

I \rightarrow Inversa trigonométrica ($\arcsin x$, $\arctan x$, $\arctan x$, ...)

A \rightarrow Algébrica (ou polinomial) (x^n)

T \rightarrow Trigonométrica ($\sec x$, $\cos x$, $\sec x$, ...)

E \rightarrow Exponencial (e^x)

Ou seja, apareceu multiplicação entre uma função logarítmica e uma exponencial, tente primeiro fazer a logarítmica = u(x). O termo do v'(x) é o que sobra.

Ex:
$$\int x \cdot \operatorname{sen}(x) dx$$

Opa, pintou uma função polinomial (algébrica) e uma trigonométrica! Então escolhemos a polinomial primeiro: u(x) = x. E sobrou o quê? v'(x) = sen(x), viu?

Lembre-se que
$$u(x) = x \rightarrow u'(x) = 1$$
 e $v'(x) = \operatorname{sen}(x) \rightarrow v(x) = -\cos(x)$.
Então fica: $\int x \cdot \operatorname{sen}(x) \, dx = \int u(x) v'(x) \, dx = u(x) v(x) - \int v(x) u'(x) \, dx$.

Substituindo:
$$\int x. \operatorname{sen}(x) dx = x. (-\cos(x)) - \int (-\cos(x)). (1) dx$$

= $-x. \cos(x) + \int \cos(x) dx$
= $-x. \cos(x) + \sin(x) + C$

Paaaaaaara tudo! E se fosse Integral Definida? Bom, era só carregar os limites de integração...

Ex:
$$\int_0^{\pi} x \cdot \sin(x) dx = -x \cdot \cos(x) + \sin(x)|_0^{\pi}$$

= $[-\pi \cdot \cos(\pi) + \sin(\pi)] - [0 \cdot \cos(0) + \sin(0)]$
= π

Integrais Trigonométricas

A dica é usar as relações trigonométricas listadas aqui para chegar a uma integral que a gente consiga executar:

$\sin^2\theta + \cos^2\theta = 1$	$1 + tg^2 \theta = \sec^2 \theta$		$1 + \cot^2 \theta = \csc^2 \theta$
$\operatorname{sen}(x \pm y) = \operatorname{sen} x \cdot \cos y \pm \operatorname{sen} y \cdot \cos x$		$cos(x \pm y) = cos x \cdot cos y \mp sen x \cdot sen y$	
$tg(x \pm y) = \frac{tg x \pm tg y}{1 \mp tg x \cdot tg y}$		$\operatorname{sen}(2x) = 2\operatorname{sen} x \cdot \cos x$	
$\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$		$\cos^2 x = \frac{1 + \cos 2x}{2}$	
$\operatorname{sen}^2 x = \frac{1 - \cos 2x}{2}$		$\operatorname{sen} x \cdot \cos y = \frac{1}{2} \left[\operatorname{sen}(x+y) + \operatorname{sen}(x-y) \right]$	
$\cos x \cdot \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$		sen $x \cdot$ sei	$ay = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$

Tipo assim... o cara pediu a integral do $sen^2(x)$. Não sabemos isso, mas sabemos que $cos(2x) = 1 - 2sen^2(x)$. Viu, ali na tabela?

Então fica fácil: $sen^2(x) = \frac{1-\cos(2x)}{2}$. Logo:

$$\int \sin^2(x) dx = \int \frac{1 - \cos(2x)}{2} dx = \frac{1}{2} \int dx - \frac{1}{2} \int \cos(2x) dx = \frac{x}{2} - \frac{\sin(2x)}{4} + C.$$

Integral por Substituição Trigonométrica

Esse método é ótimo para resolver as integrais com quocientes de polinômios em que algum termo seja similar a $(x^2 \pm a^2)$ ou $(a^2 - x^2)$ elevado a algum expoente.

Também vale se o termo estiver dentro da raiz (como é em 90% dos casos).

Esse método é complicadinho, mas tem um passo a passo. Se liga no passo a passo com o exemplo:

$$\int \frac{\sqrt{4-x^2}}{x^2} dx$$

 Identificar o caso da substituição trigonométrica de acordo com o quadro abaixo e quem \acute{e} o a.

Expressão	Substituição		
$\sqrt{a^2-x^2}$	$x = a.sen\theta$, com $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$		
$\sqrt{a^2+x^2}$	$x = a.tg\theta$, com $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$		
$\sqrt{x^2-a^2}$	$x = a. \sec \theta, \text{ com } 0 \le \theta \le \frac{\pi}{2}$ ou $\pi \le \theta \le \frac{3\pi}{2}$		

Bem, como temos $\sqrt{4-x^2} \rightarrow a=2$ e temos que olhar para o 1º caso na tabela.

2. Aplicar a substituição recomendada e calcular dx

$$x = 2.sen\theta$$
, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
 $dx = 2\cos\theta d\theta$

3. Substituir na integral dada

$$\frac{\sqrt{4-x^2}dx}{x^2} = \frac{\sqrt{4-4sen^2\theta} \cdot 2\cos\theta \, d\theta}{4sen^2\theta} = \frac{\sqrt{4(1-sen^2\theta)} \cdot 2\cos\theta \, d\theta}{4sen^2\theta} = \frac{\sqrt{4\cos^2\theta} \cdot 2\cos\theta \, d\theta}{4sen^2\theta} = \frac{2|\cos\theta| \cdot 2\cos\theta \, d\theta}{4sen^2\theta}$$

Mas no intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, o cosseno é sempre positivo. Por isso, $|\cos(\theta)|=\cos(\theta)$.

$$\frac{4\cos^2\theta}{4\sin^2\theta}d\theta = \cot g^2\theta d\theta$$

4. Resolver a integral na variável θ

$$\int \cot g^2 \theta d\theta = \int (\cos \sec^2 \theta - 1) d\theta = -\cot g\theta - \theta + C$$

(Usamos a identidade trigonométrica $cossec^2\theta = 1 + cotg^2\theta$)

5. Usar o triângulo retângulo para converter o θ na variável inicial

Vamos imaginar um pouco agora... se $x=2\mathrm{sen}(\theta)$, vamos desenhar um triângulo que tem um ângulo θ cujo seno valha x/2, conforme a equação. Percebeu? O outro cateto dá para achar usando Teorema de Pitágoras: $\sqrt{4-x^2}$.

Agora, pela figura, cadê a $cotg(\theta)$?

$$\cot g(\theta) = \frac{1}{tg(\theta)} = \frac{\sqrt{4 - x^2}}{x}$$

E, naturalmente, se $x = 2\text{sen}(\theta)$, o que se há de dizer sobre θ ? Bem, $\theta = \arcsin\left(\frac{x}{2}\right)$.

Substituindo finalmente os valores:
$$-\cot g(\theta) - \theta + C = -\frac{\sqrt{4-x^2}}{x} - \arcsin \left(\frac{x}{2}\right) + C$$
.

Deu trabalho, eu sei. Mas tudo que você precisa está aqui nesse resumão! =)

Frações Parciais

Hora da "mágica": transformar uma fração de polinômios em duas ou mais frações.

Por quê? Porque não dá ou é difícil de integrar a fração original.

Como? Usando um método de abertura dos termos.

E o que eu preciso? Que o grau do numerador seja menor que o do denominador.

Algum conhecimento prévio? Bem, vale lembrar alguns métodos de divisão polinomial:

Caso 1: denominador é produto de termos de grau 1 distintos

$$\frac{3x}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$$

$$\frac{5x}{x^2+4x+3} = \frac{5x}{(x+1)(x+3)} = \frac{A}{x+1} + \frac{B}{x+3}$$

Caso 2: denominador é produto de alguns termos de grau 1 repetidos

$$\frac{x^2}{(x+1)^3} = \frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3}$$
$$\frac{3x-7}{x^3(x-5)^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{(x-5)} + \frac{E}{(x-5)^2} + \frac{F}{(x+1)}$$

Chegou o site que todo aluno de Engenharia sonhava!

Clique aqui: WWW.RESPONDEAL.COM.BR

Caso 3: denominador possui termos de grau 2 irredutíveis

$$\frac{4x+13}{(x^2+x+1)(x^2+1)} = \frac{Ax+B}{(x^2+x+1)} + \frac{Cx+D}{(x^2+1)}$$

$$\frac{121x^2-7x+3}{x^2(x^2+13)^3(7-x)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{(x^2+13)} + \frac{Ex+F}{(x^2+13)^2} + \frac{Gx+H}{(x^2+13)^3} + \frac{I}{7-x}$$

Agora, amigo, é só juntar todos os termos do lado direito e resolver o sistema pelas igualdades geradas.

Daí, você achará as variáveis (A, B, etc). Depois, é só integrar as frações individualmente! ;)

Integral Imprópria

É hora de pensar no infinito...

E isso pode surgir de duas formas:

Teorema de Comparação

Em alguns casos, teremos que analisar a convergência de uma integral. Para isso, basta usar o **Teorema de Comparação**:

Se $f(x) \ge g(x)$ no intervalo analisado, então:

- se $\int_a^\infty f(x) dx$ é convergente, então $\int_a^\infty g(x) dx$ será convergente também; se $\int_a^\infty g(x) dx$ é divergente, então $\int_a^\infty f(x) dx$ será divergente também.

Área entre Curvas

Áreas: todo o propósito da integral.

Imaginando um intervalo [a, b] para o qual f(x) seja maior que g(x) em todo intervalo, teríamos a área dessa forma:

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

Fique atento: se aparecer algo do tipo $A = \int f(y)dy$, a função é do tipo x = f(y) e a área calculada é entre a curva e o eixo y!!!

Volumes com Integrais

Calculamos o volume por dois métodos:

Suas fórmulas seriam, pensando que giram em torno ou de um y=L paralelo a x ou de um eixo x=L paralelo ao y.

1. **seções transversais**: usado quando giramos a f(x) em torno de x

$$V = \int_a^b \pi [f(x) - L]^2 dx$$

2. **cascas cilíndricas**: quando f(x) é girada em torno do eixo y

$$V = \int_a^b 2\pi (x - L) f(x) dx$$

Hora do Bizu:

Pode ser necessário calcular diferença de volumes, é só fazer de cada parte e subtrair.

Comprimento de Arco

Só fazer a fórmula e correr para o abraço:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$

A função inversa também pode aparecer né, algo do tipo x=g(y), aí a fórmula fica assim:

$$L = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} dy$$

Muita coisa para estudar em pouco tempo?

No Responde Aí, você pode se aprofundar na matéria com explicações simples e muito didáticas. Além disso, contamos com milhares de exercícios resolvidos passo a passo para você praticar bastante e tirar todas as suas dúvidas.

Acesse já: www.respondeai.com.br e junte-se a outros milhares de alunos!

Excelentes notas nas provas, galera:)

Chegou o site que todo aluno de Engenharia sonhava!

Clique aqui: WWW.RESPONDEAL.COM.BR

EXPLICAÇÕES SEM LERO LERO + DE 10 MIL EXERCÍCIOS RESOLVIDOS PASSO A PASSO PROVAS ANTIGAS
RESOLVIDAS