Beltrami-Courant Differentials and Homotopy Gerstenhaber algebras

Anton M. Zeitlin

Columbia University, Department of Mathematics Institute des Hautes Études Scientifiques

30th International Collogium on Group Theoretical Methods in Physics

Ghent, Belgium

July 13 - July 19, 2014

Beltrami-Courant Differentials and Homotopy Gerstenhaber algebras

Anton Zeitlin

Jutline

Sigma-models and conformal invariance conditions

gma-model in st-order form

ertex algebroids, ∞ -algebra and \max

instein Equations

Reformulation of ligma-model in irst-order form

instein Equations

Sigma-models and conformal invariance conditions

Reformulation of Sigma-model in first-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

Einstein Equations from G_{∞} -algebras via Beltrami-Courant differential

Sigma-model in first-order form

_{2∞} -algebra and juasiclassical limit

Einstein Equations

Sigma-model:

$$S_{so} = rac{1}{4\pi h} \int d^2z (G_{\mu
u} + B_{\mu
u}) \partial X^\mu ar{\partial} X^
u + \int_{\Sigma} \sqrt{\gamma} R^{(2)}(\gamma) \Phi(X)$$

Symmetries: Diff symmetry and $B \rightarrow B + d\lambda$. Conformal invariance conditions:

$$\mu \frac{d}{d\mu} G_{\mu\nu} = \beta_{\mu\nu}^{G}(G, B, \Phi, h) = 0, \quad \mu \frac{d}{d\mu} B_{\mu\nu} = \beta_{\mu\nu}^{B}(G, B, \Phi, h) = 0,$$

$$\mu \frac{d}{d\mu} \Phi = \beta^{\Phi}(G, B, \Phi, h) = 0$$

at the level h^0 turn out to be Einstein Equations:

$$\begin{split} R^{\mu\nu} &= \frac{1}{4} H^{\mu\lambda\rho} H^{\nu}_{\lambda\rho} - 2 \nabla^{\mu} \nabla^{\nu} \Phi, \\ \nabla_{\mu} H^{\mu\nu\rho} &- 2 (\nabla_{\lambda} \Phi) H^{\lambda\nu\rho} = 0, \\ 4 (\nabla_{\mu} \Phi)^2 &- 4 \nabla_{\mu} \nabla^{\mu} \Phi + R + \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} = 0. \end{split}$$

Early days of string theory: linearized Einstein Equations and their symmetries: $(G_{\mu\nu} = \eta_{\mu\nu} + s_{\mu\nu})$:

$$Q^{\eta}\Psi^{s}=0, \quad \Psi^{s}\to\Psi^{s}+Q\Lambda$$

in a BRST complex associated to certain Virasoro module. It was conjectured (Sen, Zwiebach,...) that Einstein equations with *h*-corrections and their symmetries are Generalized Maurer-Cartan (GMC) Equations and their symmetries:

$$Q\Psi+\frac{1}{2}[\Psi,\Psi]_{\text{h}}+\frac{1}{3!}[\Psi,\Psi,\Psi]_{\text{h}}+...=0$$

$$\Psi \rightarrow \Psi + \mathit{Q}\Lambda + [\Psi, \Lambda]_{\mathit{h}} + \frac{1}{2}[\Psi, \Psi, \Lambda]_{\mathit{h}} + ...,$$

where $[\cdot,\cdot,...,\cdot]_h$ operations generate L_∞ -algebra.

We show that for a proper background, there is a richer structure, namely G_{∞} -algebra, as well as a well-defined classical limit of the L_{∞} -subalgebra, so that GMC equations are equivalent to Einstein Equations.

Beltrami-Courant
Differentials and
Homotopy
Gerstenhaber algebras

Anton Zeitlin

Outline

Sigma-models and conformal invariance conditions

igma-model in irst-order form

vertex algebroids, f_{∞} -algebra and uasiclassical limit

instein Equations

Sigma-model in first-order form

Vertex algebroids, G_{∞} -algebra and

Reformulation of

. Sinatain Emuatian

Gerstenhaber algebras

We start from free action:

$$S_0 = \frac{1}{2\pi i h} \int_{\Sigma} (\langle p \wedge \bar{\partial} X \rangle - \langle \bar{p} \wedge \partial X \rangle),$$

where $p \in X^*(\Omega^{(1,0)}(M)) \otimes \Omega^{(1,0)}(\Sigma)$, $\bar{p} \in X^*(\Omega^{(0,1)}(M)) \otimes \Omega^{(0,1)}(\Sigma)$. Symmetries: $X^i \to X^i - v^i(X), X^{\bar{i}} \to X^{\bar{i}} - v^{\bar{i}}(\bar{X})$,

$$p_{i} \rightarrow p_{i} + \partial_{i} v^{k} p_{k}, \quad p_{\bar{i}} \rightarrow p_{\bar{i}} + \partial_{\bar{i}} v^{\bar{k}} p_{\bar{k}}$$

$$p_{i} \rightarrow p_{i} - \partial X^{k} (\partial_{k} \omega_{i} - \partial_{i} \omega_{k}), \quad p_{\bar{i}} \rightarrow p_{\bar{i}} - \bar{\partial} X^{\bar{k}} (\partial_{\bar{k}} \omega_{\bar{i}} - \partial_{\bar{i}} \omega_{\bar{k}}).$$

Not invariant under general diffeomorphisms, i.e.

$$\delta S_0 = -\frac{1}{2\pi i h} \int (\langle \bar{\partial} v, p \wedge \bar{\partial} X \rangle + \langle \partial \bar{v}, \bar{p} \wedge \partial X \rangle).$$

It is necessary to add extra terms:

$$\delta \mathcal{S}_{\mu} = -rac{1}{2\pi i h}\int (\langle \mu, p \wedge ar{\partial} X
angle + \langle ar{\mu}, \partial X \wedge ar{p}
angle),$$

where $\mu \in \Gamma(T^{(1,0)}M \otimes T^{*(0,1)}(M))$, $\bar{\mu} \in \Gamma(T^{(0,1)}M \otimes T^{*(1,0)}(M))$, so that: $\mu \to \mu - \bar{\partial}v + \dots$, $\bar{\mu} \to \bar{\mu} - \bar{\partial}\bar{v} + \dots$

Reformulation of Sigma-model in first-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

Einstein Equations

$$\tilde{S} = \frac{1}{2\pi i h} \int_{\Sigma} (\langle p \wedge \bar{\partial} X \rangle - \langle \bar{p} \wedge \partial X \rangle - \langle \mu, p \wedge \bar{\partial} X \rangle - \langle \bar{\mu}, \partial X \wedge \bar{p} \rangle - \langle b, \partial X \wedge \bar{\partial} X \rangle),$$

where

$$\begin{split} &\mu^{i}_{\bar{j}} \rightarrow \\ &\mu^{i}_{\bar{j}} - \partial_{\bar{j}} v^{i} + v^{k} \partial_{k} \mu^{i}_{\bar{j}} + v^{\bar{k}} \partial_{\bar{k}} \mu^{i}_{\bar{j}} + \mu^{i}_{\bar{k}} \partial_{\bar{j}} v^{\bar{k}} - \mu^{k}_{\bar{j}} \partial_{k} v^{i} + \mu^{i}_{\bar{l}} \mu^{k}_{\bar{j}} \partial_{k} v^{\bar{l}}, \\ &b_{i\bar{j}} \rightarrow \\ &b_{i\bar{j}} + v^{k} \partial_{k} b_{i\bar{j}} + v^{\bar{k}} \partial_{\bar{k}} b_{i\bar{j}} + b_{i\bar{k}} \partial_{\bar{j}} v^{\bar{k}} + b_{l\bar{j}} \partial_{i} v^{l} + b_{i\bar{k}} \mu^{k}_{\bar{j}} \partial_{k} v^{\bar{k}} + b_{l\bar{j}} \bar{\mu}^{\bar{k}}_{\bar{i}} \partial_{\bar{k}} v^{l}, \end{split}$$

so that:

$$X^{i} \to X^{i} - v^{i}(X, \bar{X}), \quad p_{i} \to p_{i} + p_{k}\partial_{i}v^{k} - p_{k}\mu_{\bar{i}}^{k}\partial_{i}v^{\bar{i}} - b_{j\bar{k}}\partial_{i}v^{\bar{k}}\partial X^{j},$$

$$X^{\bar{i}} \to X^{\bar{i}} - v^{\bar{i}}(X, \bar{X}), \quad \bar{p}_{\bar{i}} \to \bar{p}_{\bar{i}} + \bar{p}_{\bar{k}}\partial_{\bar{i}}v^{\bar{k}} - \bar{p}_{\bar{k}}\bar{\mu}_{\bar{i}}^{\bar{k}}\partial_{i}v^{l} - b_{jk}\partial_{\bar{i}}v^{k}\bar{\partial}X^{\bar{j}}.$$

Reformulation of Sigma-model in first-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

Einstein Equations

Similarly, the 1-form transformation:

$$\begin{split} b_{i\bar{j}} &\to b_{i\bar{j}} + \partial_{\bar{j}}\omega_i - \partial_i\omega_{\bar{j}} + \mu_{\bar{j}}^i(\partial_i\omega_k - \partial_k\omega_i) + \\ \bar{\mu}_i^{\bar{s}}(\partial_{\bar{j}}\omega_{\bar{s}} - \partial_{\bar{s}}\omega_{\bar{j}}) + \bar{\mu}_j^{\bar{i}}\mu_{\bar{k}}^{\bar{s}}(\partial_s\omega_{\bar{i}} - \partial_{\bar{i}}\omega_s) \end{split}$$

such that

$$\begin{split} & p_i \to p_i - \partial X^k \big(\partial_k \omega_i - \partial_i \omega_k\big) - \partial_{\bar{r}} \omega_i \partial X^{\bar{r}} - \bar{\mu}_k^{\bar{s}} \partial_i \omega_{\bar{s}} \partial X^k, \\ & p_{\bar{i}} \to p_{\bar{i}} - \bar{\partial} X^{\bar{k}} \big(\partial_{\bar{k}} \omega_{\bar{i}} - \partial_{\bar{i}} \omega_{\bar{k}}\big) - \partial_r \omega_{\bar{i}} \bar{\partial} X^r - \mu_{\bar{k}}^{\bar{s}} \partial_i \omega_s \bar{\partial} X^{\bar{k}}. \end{split}$$

$$\tilde{\mathbb{M}} = \begin{pmatrix} 0 & \mu \\ \bar{\mu} & b \end{pmatrix}.$$

Introduce $\alpha \in \Gamma(E)$, i.e. $\alpha = (v, \overline{v}, \omega, \overline{\omega})$. Let $D : \Gamma(E) \to \Gamma(\mathcal{E} \otimes \overline{\mathcal{E}})$, such that

$$D\alpha = \left(\begin{array}{cc} 0 & \bar{\partial} \mathbf{v} \\ \partial \bar{\mathbf{v}} & \partial \bar{\omega} - \bar{\partial} \omega \end{array} \right).$$

Then the transformation of $\tilde{\mathbb{M}}$ can be expressed:

$$\tilde{\mathbb{M}} \to \tilde{\mathbb{M}} - D\alpha + \phi_1(\alpha, \tilde{\mathbb{M}}) + \phi_2(\alpha, \tilde{\mathbb{M}}, \tilde{\mathbb{M}}).$$

Let us describe ϕ_1,ϕ_2 algebraically. In order to do that we need to pass to jet bundles, i.e.

$$\alpha \in J^{\infty}(\mathfrak{O}_{M}) \otimes J^{\infty}(\bar{\mathfrak{O}}(\bar{\mathcal{E}})) \oplus J^{\infty}(\mathfrak{O}(\mathcal{E})) \otimes J^{\infty}(\bar{\mathfrak{O}}_{M}),$$

$$\tilde{\mathbb{M}} \in J^{\infty}(\mathfrak{O}(\mathcal{E})) \otimes J^{\infty}(\bar{\mathfrak{O}}(\bar{\mathcal{E}}))$$

Beltrami-Courant Differentials and Homotopy Gerstenhaber algebras

Anton Zeitlin

Outline

Sigma-models and conformal invariance conditions

Reformulation of Sigma-model in first-order form

Vertex algebroids, G_{∞} -algebra and

instein Equation

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

instein Equations

$$\alpha = \sum_{J} f^{J} \otimes \bar{b}^{J} + \sum_{K} b^{K} \otimes \bar{f}^{K},$$
$$\tilde{\mathbb{M}} = \sum_{J} a^{J} \otimes \bar{a}^{J},$$

where $a^I, b^J \in J^{\infty}(\mathbb{O}(\mathcal{E})), f^I \in J^{\infty}(\mathbb{O}_M)$ and $\bar{a}^I, \bar{b}^J \in J^{\infty}(\bar{\mathbb{O}}(\bar{\mathcal{E}})), \bar{f}^I \in J^{\infty}(\bar{\mathbb{O}}_M)$. Then

$$\phi_1(\alpha, \tilde{\mathbb{M}}) = \sum_{I,J} [b^J, a^I]_D \otimes \bar{f}^J \bar{a}^I + \sum_{I,K} f^K a^I \otimes [\bar{b}^K, \bar{a}^I]_D,$$

where $[\cdot,\cdot]_D$ is a Dorfman bracket:

$$[v_1, v_2]_D = [v_1, v_2]^{Lie}, \quad [v, \omega]_D = L_v \omega,$$

$$[\omega, v]_D = -i_v d\omega, \quad [\omega_1, \omega_2]_D = 0.$$

Similarly:

$$\phi_{2}(\alpha, \tilde{\mathbb{M}}, \tilde{\mathbb{M}}) = \tilde{\mathbb{M}} \cdot D\alpha \cdot \tilde{\mathbb{M}}$$

$$\frac{1}{2} \sum_{I,J,K} \langle b^{I}, a^{K} \rangle a^{J} \otimes \bar{a}^{J} (\bar{f}^{I}) \bar{a}^{K} + \frac{1}{2} \sum_{I,J,K} a^{J} (f^{I}) a^{K} \otimes \langle \bar{b}^{I}, \bar{a}^{K} \rangle \bar{a}^{J}.$$

Relation to standard second order sigma-model: Let us fill in 0 in $\tilde{\mathbb{M}}$:

$$\mathbb{M} = \begin{pmatrix} \mathsf{g} & \mu \\ \bar{\mu} & \mathsf{b} \end{pmatrix}.$$

$$\begin{split} S_{\text{fo}} &= \frac{1}{2\pi i h} \int_{\Sigma} (\langle p \wedge \bar{\partial} X \rangle + \langle \bar{p} \wedge \partial X \rangle - \\ &- \langle g, p \wedge \bar{p} \rangle - \langle \mu, p \wedge \bar{\partial} X \rangle - \langle \bar{\mu}, \bar{p} \wedge \partial X \rangle - \langle b, \partial X \wedge \bar{\partial} X \rangle). \end{split}$$

Same formulas express symmetries. If $\{g^{i\bar{j}}\}$ is nondegenerate, then :

$$S_{so} = rac{1}{4\pi h} \int d^2z ig(G_{\mu
u} + B_{\mu
u} ig) \partial X^\mu ar\partial X^
u,$$

$$\begin{array}{lll} G_{s\bar{k}} & = & g_{\bar{i}j}\bar{\mu}_{s}^{\bar{i}}\mu_{\bar{k}}^{j} + g_{s\bar{k}} - b_{s\bar{k}}, & B_{s\bar{k}} = g_{\bar{i}j}\bar{\mu}_{s}^{\bar{i}}\mu_{\bar{k}}^{j} - g_{s\bar{k}} - b_{s\bar{k}} \\ G_{si} & = & -g_{i\bar{j}}\bar{\mu}_{s}^{\bar{j}} - g_{s\bar{j}}\bar{\mu}_{i}^{\bar{j}}, & G_{\bar{s}\bar{i}} = -g_{\bar{s}j}\mu_{\bar{i}}^{j} - g_{\bar{i}j}\mu_{\bar{s}}^{j} \\ B_{si} & = & g_{s\bar{j}}\bar{\mu}_{i}^{\bar{j}} - g_{i\bar{j}}\mu_{\bar{s}}^{\bar{j}}, & B_{\bar{s}\bar{i}} = g_{\bar{i}j}\mu_{\bar{s}}^{j} - g_{\bar{s}j}\mu_{\bar{i}}^{j}, \end{array}$$

Symmetries: infinitesimal diffeomorphism transformations and the 2-form ${\cal B}$ symmetry

$$G \to G - L_v G$$
, $B \to B - L_v B$
 $B \to B - 2d\omega$

if $\alpha=(\mathbf{v},\boldsymbol{\omega})$, so that $\mathbf{v}\in\Gamma(TM)$, $\boldsymbol{\omega}\in\Omega^1(M)$.

Beltrami-Courant
Differentials and
Homotopy
Gerstenhaber algebras

Anton Zeitlin

Outline

Sigma-models and conformal invariance conditions

Reformulation of Sigma-model in first-order form

/ertex algebroids, G_{∞} -algebra and pussiclassical limit

nstein Equations

The CFT corresponding to the chiral part of the free first order action

$$S_0 = rac{1}{2\pi i h} \int_{\Sigma} \langle p \wedge ar{\partial} X
angle - \int R^{(2)}(\gamma) \phi'(X)$$

is locally described via VOA:

$$X^{i}(z)p_{j}(w)\sim rac{h\delta_{j}^{i}}{z-w}$$

with Virasoro element

$$T(z) = \frac{1}{h} : \langle p(z)\partial X(z)\rangle : +\partial^2 \phi'(X(z)).$$

The corresponding space of states $V = \sum_{n=0}^{+\infty} V_n$,

$$V_0 \to \mathcal{O}_M \otimes \mathbb{C}[h] = \mathcal{O}_M^h, \quad V_1 \to \mathcal{V} = \mathcal{O}(\mathcal{E}) \otimes \mathbb{C}[h] \equiv \mathcal{O}(\mathcal{E})^h$$

The structure of vertex algebra imposes algebraic relations on $V_0 \oplus V_1$ giving it a structure of a *vertex algebroid*.

Reformulation of Sigma-model in irst-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

instein Equations

A vertex \mathcal{O}_M -algebroid is a sheaf of \mathbb{C} -vector spaces \mathcal{V} with a pairing $\mathcal{O}_M \otimes_{\mathbb{C}[h]} \mathcal{V} \to \mathcal{V}$, i.e. $f \otimes v \mapsto f * v$ such that 1 * v = v, equipped with a structure of a Leibniz $\mathbb{C}[h]$ -algebra $[\ ,\]: \mathcal{V} \otimes_{\mathbb{C}[h]} \mathcal{V} \to \mathcal{V}$, a $\mathbb{C}[h]$ -linear map of Leibniz algebras $\pi: \mathcal{V} \to \Gamma(TM)$ usually referred to as an anchor, a symmetric \mathbb{C} -bilinear pairing $\langle\ ,\ \rangle: \mathcal{V} \otimes_{\mathbb{C}[h]} \mathcal{V} \to \mathcal{O}_M^h$ a \mathbb{C} -linear map $\partial: \mathcal{O}_M \to \mathcal{V}$ such that $\pi \circ \partial = 0$, which satisfy the relations

$$f * (g * v) - (fg) * v = \pi(v)(f) * \partial(g) + \pi(v)(g) * \partial(f),$$

$$[v_{1}, f * v_{2}] = \pi(v_{1})(f) * v_{2} + f * [v_{1}, v_{2}],$$

$$[v_{1}, v_{2}] + [v_{2}, v_{1}] = \partial(\langle v_{1}, v_{2} \rangle), \quad \pi(f * v) = f\pi(v),$$

$$\langle f * v_{1}, v_{2} \rangle = f \langle v_{1}, v_{2} \rangle - \pi(v_{1})(\pi(v_{2})(f)),$$

$$\pi(v)(\langle v_{1}, v_{2} \rangle) = \langle [v, v_{1}], v_{2} \rangle + \langle v_{1}, [v, v_{2}] \rangle,$$

$$\partial(fg) = f * \partial(g) + g * \partial(f),$$

$$[v, \partial(f)] = \partial(\pi(v)(f)), \quad \langle v, \partial(f) \rangle = \pi(v)(f),$$

where $v, v_1, v_2 \in \mathcal{V}, f, g \in \mathcal{O}_M^h$.

Reformulation of Sigma-model in irst-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

Einstein Equations

$$\begin{split} \partial f &= df, \quad \pi(v)f = -hv(f), \quad \pi(\omega) = 0, \\ f * v &= fv + hdX^i \partial_i \partial_j fv^j, \quad f * \omega = f\omega, \\ [v_1, v_2] &= -h[v_1, v_2]_D - h^2 dX^i \partial_i \partial_k v_1^s \partial_s v_2^k, \\ [v, \omega] &= -h[v, \omega]_D, \quad [\omega, v] = -h[\omega, v]_D, \quad [\omega_1, \omega_2] = 0, \\ \langle v, \omega \rangle &= -h\langle v, \omega \rangle^s, \quad \langle v_1, v_2 \rangle = -h^2 \partial_i v_1^j \partial_i v_2^i, \quad \langle \omega_1, \omega_2 \rangle = 0, \end{split}$$

Given a holomorphic volume form on open neighborhood U of M, one can associate a homotopy Gerstenhaber algebra to the vertex algebroid on U.

Consider the light modes of the corresponding BRST complex, (i.e. $L_0 = 0$). The resulting complex (\mathcal{F}_h, Q) is:

div stands for divergence operator with respect to the nonvanishing volume form applied to sections of $\Gamma(U, T^{(1,0)}(M))$,

etormulation of gma-model in est-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

instein Equations

The homotopy associative and homotopy commutative product of Lian and Zuckerman:

$$(A,B) = Res_z \frac{A(z)B}{z}$$

$$\begin{split} &Q(a_1,a_2)_h = (Qa_1,a_2)_h + (-1)^{|a_1|}(a_1,Qa_2)_h, \\ &(a_1,a_2)_h - (-1)^{|a_1||a_2|}(a_2,a_1)_h = \\ &Qm(a_1,a_2) + m(Qa_1,a_2) + (-1)^{|a_1|}m(a_1,Qa_2), \\ &Q(a_1,a_2,a_3)_h + (Qa_1,a_2,a_3)_h + (-1)^{|a_1|}(a_1,Qa_2,a_3)_h + \\ &(-1)^{|a_1|+|a_2|}(a_1,a_2,Qa_3)_h = ((a_1,a_2)_h,a_3)_h - (a_1,(a_2,a_3)_h)_h \end{split}$$

Operator **b** of degree -1 on (\mathcal{F}_h, Q) which anticommutes with Q:

$$\begin{array}{ccc}
\mathcal{V} & \stackrel{-id}{\longleftarrow} & \mathcal{V} \\
& \bigoplus & \bigoplus \\
\mathcal{O}_{M}^{h} & \stackrel{id}{\longleftarrow} & \mathcal{O}_{M}^{h} & \mathcal{O}_{M}^{h} & \stackrel{-id}{\longleftarrow} & \mathcal{O}_{M}^{h}
\end{array}$$

deformulation of ligma-model in irst-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

instein Equations

$$(-1)^{|a_1|} \{a_1, a_2\}_h = \mathbf{b}(a_1, a_2)_h - (\mathbf{b}a_1, a_2)_h - (-1)^{|a_1|} (a_1 \mathbf{b}a_2)_h,$$

$$\begin{split} &\{a_1,a_2\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2,a_1\} = \\ &(-1)^{|a_1|-1} (Qm'_h(a_1,a_2) - m'_h(Qa_1,a_2) - (-1)^{|a_2|} m'_h(a_1,Qa_2)), \\ &\{a_1,(a_2,a_3)_h\}_h = (\{a_1,a_2\}_h,a_3)_h + (-1)^{(|a_1|-1)||a_2|} (a_2,\{a_1,a_3\}_h)_h, \\ &\{(a_1,a_2)_h,a_3\}_h - (a_1,\{a_2,a_3\}_h)_h - (-1)^{(|a_3|-1)|a_2|} (\{a_1,a_3\}_h,a_2)_h = \\ &(-1)^{|a_1|+|a_2|-1} (Qn'_h(a_1,a_2,a_3) - n'_h(Qa_1,a_2,a_3) - \\ &(-1)^{|a_1|} n'_h(a_1,Qa_2,a_3) - (-1)^{|a_1|+|a_2|} n'_h(a_1,a_2,Qa_3), \\ &\{\{a_1,a_2\}_h,a_3\}_h - \{a_1,\{a_2,a_3\}_h\}_h + \\ &(-1)^{(|a_1|-1)(|a_2|-1)} \{a_2,\{a_1,a_3\}_h\}_h = 0. \end{split}$$

The conjecture of Lian and Zuckerman, which was later proven by series of papers (Kimura, Zuckerman, Voronov; Huang, Zhao; Voronov) says that the symmetrized product and bracket of homotopy Gerstenhaber algebra constructed above can be lifted to G_{∞} -algebra.

Sigma-models and conformal invariance conditions

eformulation of igma-model in rst-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

Finetoin Equation

Let $\mathcal{V}|_{h=0} = \mathcal{V}^0$.

One can see that $(\mathcal{F},Q)\cong (\mathcal{F}_1,Q)$ is a subcomplex of (\mathcal{F}_h,Q) , which is:

Then

$$(\cdot,\cdot)_h: \mathcal{F}^i \otimes \mathcal{F}^j \to \mathcal{F}^{i+j}[h], \quad \{\cdot,\cdot\}: \mathcal{F}^i \otimes \mathcal{F}^j \to h\mathcal{F}_{i+j-1}[h],$$

 $\mathbf{b}: \mathcal{F}^i \to h\mathcal{F}^{i-1}[h],$

so that

$$(\cdot,\cdot)_0=\lim_{h\to 0}(\cdot,\cdot)_h,\quad \{\cdot,\cdot\}_0=\lim_{h\to 0}h^{-1}\{\cdot,\cdot\}_h,\quad \boldsymbol{b}_0=\lim_{h\to 0}h^{-1}\boldsymbol{b}$$

are well defined.

Conjecture: This G_{∞} -algebra is G_3 -algebra (no higher homotopies).

This is very close to the classical limit procedure for vertex algebroid: $[\cdot, \cdot]_0 = \lim_{h \to 0} \frac{1}{\epsilon} [\cdot, \cdot], \ \pi_0 = \lim_{h \to 0} \frac{1}{\epsilon} \pi, \ \langle \cdot, \cdot \rangle_0 = \frac{1}{\epsilon} \langle \cdot, \cdot \rangle.$

As a result we get a Courant algebroid:

A Courant \mathcal{O}_M -algebroid is an \mathcal{O}_M -module Ω equipped with a structure of a Leibniz \mathbb{C} -algebra $[,]_0: \Omega \otimes_{\mathbb{C}} \Omega \to \Omega$, an \mathcal{O}_M -linear map of Leibniz algebras (the anchor map) $\pi_0: \Omega \to \Gamma(TM)$, a symmetric \mathcal{O}_M -bilinear pairing $\langle \cdot, \cdot \rangle: \Omega \otimes_{\mathcal{O}_M} \Omega \to \mathcal{O}_M$, a derivation $\partial: \mathcal{O}_M \to \Omega$ which satisfy

$$egin{aligned} \pi \circ \partial &= 0, & [q_1,fq_2]_0 = f[q_1,q_2]_0 + \pi_0(q_1)(f)q_2 \ & \langle [q,q_1],q_2
angle + \langle q_1,[q,q_2]
angle = \pi_0(q)(\langle q_1,q_2
angle_0), \ & [q,\partial(f)]_0 = \partial(\pi_0(q)(f)) \ & \langle q,\partial(f)
angle = \pi_0(q)(f) & [q_1,q_2]_0 + [q_2,q_1]_0 = \partial(\langle q_1,q_2
angle_0) \end{aligned}$$

for $f \in \mathcal{O}_M$ and $q, q_1, q_2 \in \mathcal{Q}$. In our case $\mathcal{Q} \cong \mathcal{O}(\mathcal{E})$, π_0 is just a projection on $\mathcal{O}(TM)$

$$[q_1, q_2]_0 = -[q_1, q_2]_D, \quad \langle q_1, q_2 \rangle_0 = -\langle q_1, q_2 \rangle^s, \quad \partial = d.$$

Question: Is there a direct path (avoiding vertex algebra) from Courant algebroid to G₃-algebra?

Beltrami-Courant
Differentials and
Homotopy
Gerstenhaber algebras

Anton Zeitlin

Jutline

Sigma-models and conformal invariance conditions

igma-model in rst-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

instein Equations

eformulation of gma-model in est-order form

/ertex algebroids, G_{∞} -algebra and quasiclassical limit

Einstein Equations

Subcomplex (\mathcal{F}_{sm}, Q) :

The G_{∞} algebra degenerates to G-algebra. Moreover, due to \mathbf{b}_0 it is a BV-algebra. Combine chiral and antichiral part:

$$\boldsymbol{\mathsf{F}}_{\mathit{sm}}^{\cdot}=\boldsymbol{\mathfrak{F}}_{\mathit{sm}}^{\cdot}{\otimes}\boldsymbol{\bar{\mathfrak{F}}}_{\mathit{sm}}^{\cdot}$$

$$(-1)^{|a_1|}\{a_1,a_2\} = \mathbf{b}^-(a_1,a_2) - (\mathbf{b}^-a_1,a_2) - (-1)^{|a_1|}(a_1\mathbf{b}^-a_2),$$

where $\mathbf{b}^- = \mathbf{b} - \mathbf{\bar{b}}$.

Maurer-Cartan elements, closed under **b**⁻:

$$\Gamma(\mathit{T}^{(1,0)}(\mathit{M}) \otimes \mathit{T}^{(0,1)}(\mathit{M})) \oplus \circlearrowleft(\mathit{T}^{(0,1)}(\mathit{M}) \oplus \circlearrowleft(\mathit{T}^{(1,0)}(\mathit{M}) \oplus \circlearrowleft_{\mathit{M}} \oplus \bar{\circlearrowleft}_{\mathit{M}}$$

Components: $(g, \bar{v}, v, \phi, \bar{\phi})$.

The Maurer-Cartan equation is equivalent to:

- 1). Vector field $div_{\Omega}g$, where $\Omega=\Omega'e^{-2\phi+2\bar{\phi}}$ is determined by $f\equiv -2\Phi_0=-2(\Phi_0'+\phi-\bar{\phi})$ and $\partial_i\partial_{\bar{j}}\Phi_0=0$, is such that its $\Gamma(T^{(1,0)}M)$, $\Gamma(T^{(0,1)}M)$ components are correspondingly holomorphic and antiholomorphic.
- 2). Bivector field $g \in \Gamma(T^{(1,0)}M \otimes T^{(0,1)}M)$ obeys the following equation:

$$[[g,g]] + \mathcal{L}_{div_{\Omega}(g)}g = 0,$$

where $\mathcal{L}_{\mathit{div}_{\Omega}(g)}$ is a Lie derivative with respect to the corresponding vector fields and

$$[[g,h]]^{k\bar{l}} \equiv (g^{i\bar{j}}\partial_i\partial_{\bar{j}}h^{k\bar{l}} + h^{i\bar{j}}\partial_i\partial_{\bar{j}}g^{k\bar{l}} - \partial_i g^{k\bar{j}}\partial_{\bar{j}}h^{i\bar{l}} - \partial_i h^{k\bar{j}}\partial_{\bar{j}}g^{i\bar{l}})$$

3). $div_{\Omega}div_{\Omega}(g)=0$.

The infinitesimal symmetries of the Maurer-Cartan equation coincide with the holomorphic coordinate transformations of the volume form and tensor $\{g^{i\bar{j}}\}$.

Beltrami-Courant
Differentials and
Homotopy
Gerstenhaber algebras

Anton Zeitlin

Outline

Sigma-models and conformal invariance conditions

eformulation of igma-model in rst-order form

/ertex algebroids, G_{∞} -algebra and puasiclassical limit

Einstein Equations

Reformulation of Sigma-model in first-order form

Vertex algebroids G_{∞} -algebra and quasiclassical limi

Einstein Equations

These are Einstein equations with the following constraints:

$$\begin{split} G_{i\bar{k}} &= g_{i\bar{k}}, \quad B_{i\bar{k}} = -g_{i\bar{k}}, \quad \Phi = \log\sqrt{g} + \Phi_0, \\ G_{ik} &= G_{\bar{i}\bar{k}} = G_{ik} = G_{\bar{i}\bar{k}} = 0, \end{split}$$

Physically:

$$\begin{split} &\int [dp][d\bar{p}][dX][d\bar{X}]e^{-\frac{1}{2\pi i\hbar}\int_{\Sigma}(\langle p\wedge\bar{\partial}X\rangle-\langle\bar{p}\wedge\partial X\rangle-\langle g,p\wedge\bar{p}\rangle)+\int_{\Sigma}R^{(2)}(\gamma)\Phi_{0}(X)}=\\ &\int [dX][d\bar{X}]e^{\frac{-1}{4\pi\hbar}\int d^{2}z(G_{\mu\nu}+B_{\mu\nu})\partial X^{\mu}\bar{\partial}X^{\nu}+\int R^{(2)}(\gamma)(\Phi_{0}(X)+\sqrt{g})} \end{split}$$

Einstein Equations

Consider

$${\bf F}_{b^-}^{\cdot}={\mathcal F}^{\cdot}{\otimes}\bar{{\mathcal F}}^{\cdot}|_{b^-=0}$$

with the L_{∞} -algebra structure given by Lian-Zuckerman construction. One can explicitly check that GMC symmetry

$$\Psi \rightarrow \Psi + Q\Lambda + [\Psi, \Lambda]_h + \frac{1}{2}[\Psi, \Psi, \Lambda]_h + ...,$$

reproduces

$$\mathbb{M} \to \mathbb{M} - D\alpha + \phi_1(\alpha, \mathbb{M}) + \phi_2(\alpha, \mathbb{M}, \mathbb{M}).$$

up to the second order in \mathbb{M} .

Conjecture: The corresponding Maurer-Cartan equation gives Einstein equations on G, B, Φ expressed in terms of Beltrami-Courant differential. The symmetries of the Maurer-Cartan equation reproduce mentioned above symmetries of Einstein equations.

Thank you!

Beltrami-Courant Differentials and Homotopy Gerstenhaber algebras

Anton Zeitlin

Outline

conformal invariance conditions

Reformulation of Sigma-model in first-order form

Vertex algebroids, G_{∞} -algebra and quasiclassical limit

Einstein Equations