On estimating the structure factor of a point process, with applications to hyperuniformity

Diala Hawat, Guillaume Gautier, Rémi Bardenet, and Raphaël Lachièze-Rey

Université de Lille, CNRS, Centrale Lille ; UMR 9189 – CRIStAL, F-59000 Lille, France. Université de Paris, Map5, Paris, France.

Contents

- 1 Definition
- **2** Estimation of the structure factor
- 3 Hyperuniformity test
- 4 Numerical experiment
- 5 Code availability

Hyperuniformity using the structure factor

Definition

Let $\mathcal{X} \subset \mathbb{R}^d$ be a stationary point process of intensity ho

Structure factor S

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

Structure factor S

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

■ Pair correlation function g

$$\mathbb{E}\left[\sum_{\mathbf{x},\mathbf{y}\in\mathcal{X}}^{\neq} f(\mathbf{x},\mathbf{y})\right] = \int_{\mathbb{R}^d \times \mathbb{R}^d} f(\mathbf{x} + \mathbf{y},\mathbf{y}) \rho^2 g(\mathbf{x}) d\mathbf{x} d\mathbf{y}$$

Structure Factor

Definition

$$\mathcal{X}$$
 is hyperuniform $\iff \lim_{R \to \infty} \frac{\operatorname{Var}(\operatorname{Card}(\mathcal{X} \cap B(0,R)))}{|B(0,R)|} = 0$

Structure factor S

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

 \blacksquare \mathcal{X} is hyperuniform iff

$$S(0) = 0$$

S. Coste. Order, Fluctuations, Rigidities, 2021.

S. Torquato. Hyperuniform States of Matter, 2018.

Hyperuniformity class

Definition

2 \mathcal{X} is hyperuniform with $|S(\mathbf{k})| \sim c ||\mathbf{k}||_2^{\alpha}$ in the neighborhood of 0 then,

α	$\operatorname{Var}\left[\operatorname{Card}(\mathcal{X}\cap B(0,R))\right]$	class
> 1	$O(R^{d-1})$	1
1	$O(R^{d-1}\log(R))$	П
]0, 1[$O(R^{d-\alpha})$	Ш

S. Coste. Order, Fluctuations, Rigidities, 2021.

S. Torquato. Hyperuniform States of Matter, 2018.

Estimation of the structure factor

■
$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

■
$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

■ Box window :
$$W = [-L/2, L/2]^d$$

■
$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(q-1)(\mathbf{k})$$

- Box window : $W = [-L/2, L/2]^d$
- $S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E} \left[\frac{1}{\rho |W|} \Big| \sum_{\mathbf{x} \in \mathcal{X} \cap W} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle} \Big|^2 \right] \rho \left(\prod_{j=1}^d \frac{\sin(k_j L/2)}{k_j \sqrt{L}/2} \right)^2$

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

■ Box window :
$$W = [-L/2, L/2]^d$$

$$S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E} \left[\frac{1}{\rho|W|} \Big| \sum_{\mathbf{x} \in \mathcal{X} \cap W} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle} \Big|^2 \right] - \underbrace{\rho \left(\prod_{j=1}^d \frac{\sin(k_j L/2)}{k_j \sqrt{L}/2} \right)^2}_{\epsilon_0(\mathbf{k}, \mathbf{L})}$$

$$\bullet \epsilon_0(\mathbf{k}, \mathbf{L}) \leq \begin{cases} 0 & \text{if } \exists j \text{ s.t. } k_j = \frac{2\pi n}{L} \text{ with } n \in \mathbb{Z}^* \\ \rho L^d & \text{as } \|\mathbf{k}\|_2 \to 0 \\ 2^{2d} \prod_{j=1}^d \frac{1}{Lk_j^2} & \text{as } \|\mathbf{k}\|_2 \to \infty \end{cases}$$

Estimation of the structure factor

- $S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$
- Box window : $W = [-L/2, L/2]^d$

$$\mathbf{S}(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E}\left[\underbrace{\frac{1}{\rho|\mathcal{W}|} \Big| \sum_{\mathbf{x} \in \mathcal{X} \cap \mathcal{W}} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle} \Big|^{2}}_{\widehat{S}_{\mathrm{SI}}(\mathbf{k})} \right] - \rho \underbrace{\left(\prod_{j=1}^{d} \frac{\sin(k_{j}L/2)}{k_{j}\sqrt{L}/2}\right)^{2}}_{\epsilon_{0}(\mathbf{k}, \mathbf{L})}$$

Allowed wavevectors:

$$\mathbb{A}_{\mathbf{L}} = \{ (k_1, \dots, k_d) \in (\mathbb{R}^d)^*, \exists j \in \{1, \dots, d\}, n \in \mathbb{Z}^* \text{ s.t. } k_j = \frac{2\pi n}{L} \}$$

■ Minimum wavenumber: $\|\mathbf{k}_{min}\|_2 = \frac{2\pi}{L}$

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey *On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.*

Estimation of the structure factor

- $S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$
- Box window : $W = [-L/2, L/2]^d$

$$\mathbf{S}(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E}\left[\underbrace{\frac{1}{\rho|\mathcal{W}|} \Big| \sum_{\mathbf{x} \in \mathcal{X} \cap \mathcal{W}} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle} \Big|^2}_{\widehat{S}_{\mathrm{SI}}(\mathbf{k})} \right] - \rho \underbrace{\left(\prod_{j=1}^{d} \frac{\sin(k_j L/2)}{k_j \sqrt{L}/2}\right)^2}_{\epsilon_0(\mathbf{k}, \mathbf{L})}$$

Allowed wavevectors:

$$\mathbb{A}_{\mathbf{L}} = \{ (k_1, \dots, k_d) \in (\mathbb{R}^d)^*, \exists j \in \{1, \dots, d\}, n \in \mathbb{Z}^* \text{ s.t. } k_j = \frac{2\pi n}{L} \}$$

■ Minimum wavenumber: $\|\mathbf{k}_{min}\|_2 = \frac{2\pi}{L}$

T. A. Rajala, S. C. Olhede, and D. J. Murrell. What is the fourier transform of a spatial point process? 2020.

Estimation of the structure factor

Isotropic case

- Structure factor: $S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$
- Isotropic case:

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$

Bartlett's isotropic estimator

Estimation of the structure factor

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$

■ Ball window : W = B(0, R)

Bartlett's isotropic estimator

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$

- Ball window : W = B(0, R)
- $S(k) = \lim_{R \to \infty} \mathbb{E} \left[1 + \frac{(2\pi)^{\frac{d}{2}}}{\rho |W| \omega_{d-1}} \sum_{\mathbf{x}, \mathbf{y} \in \mathcal{X} \cap W}^{\frac{d}{2}} \frac{J_{d/2-1}(k || \mathbf{x} \mathbf{y} ||_2)}{(k || \mathbf{x} \mathbf{y} ||_2)^{d/2-1}} \right] + \epsilon_1(k, R)$

$$\bullet \epsilon_1(k,R) = \begin{cases} 0 & \text{if } k = \frac{x}{R} \text{ with } J_{d/2}(x) = 0, \\ O(R^d) & \text{as } k \to 0, \\ O\left(\frac{1}{k^d(Rk)^{2/3}}\right) & \text{as } k \to \infty. \end{cases}$$

Bartlett's isotropic estimator

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$

- Ball window : W = B(0, R)
- S(k) =

$$\lim_{R\to\infty} \mathbb{E}\left[\underbrace{1+\frac{(2\pi)^{\frac{d}{2}}}{\rho|W|\omega_{d-1}}\sum_{\mathbf{x},\,\mathbf{y}\in\mathcal{X}\cap W}^{\neq} \frac{J_{d/2-1}(k\|\mathbf{x}-\mathbf{y}\|_{2})}{(k\|\mathbf{x}-\mathbf{y}\|_{2})^{d/2-1}}}\right]+\epsilon_{1}(k,R)$$

$$\widehat{S}_{\mathrm{BI}}(k)$$

- Allowed wavenumbers: $\mathbb{A}_R = \left\{ k = \frac{x}{R} \in \mathbb{R}^*, \text{ s.t. } J_{d/2}(x) = 0 \right\}$
- Minimum wavenumber: $k_{min} = \frac{x_0}{R}$

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

Comparison of the estimators

Comparison of the estimators

Table: Sample integrated variance and MSE

Estimators	iVar	$CI[\widehat{iMSE}]$	iVar	$CI[\widehat{iMSE}]$	iVar	CI[iMSE]
\widehat{S}_{SI}	0.32	0.32 ± 0.02	1.31	1.34 ± 0.06	69.51	70.71 ± 17.95
$\widehat{S}_{\mathrm{BI}}$	3.9×10^{-3}	$4.0 \times 10^{-3} \pm 3 \times 10^{-4}$	0.057	$0.058 \pm 9 \times 10^{-3}$	11.25	11.65 ± 4.71
	Ginibre		Poisson		Thomas	

Hyperuniformity test

Multiscale hyperuniformity test

- Need: Check if $S(\mathbf{0}) = 0$
- Problem: We don't have an unbiased estimator of $S(\mathbf{0})$

- Need: Check if $S(\mathbf{0}) = 0$
- Problem: We don't have an unbiased estimator of $S(\mathbf{0})$
- On allowed wavevectors we have: $S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E} \left[\widehat{S}_{\mathrm{SI}}(\mathbf{k}) \right], \ S(k) = \lim_{R \to \infty} \mathbb{E} \left[\widehat{S}_{\mathrm{BI}}(k) \right]$
- How one can construct unbiased estimators when only biased estimators are available?

Coupled sum estimator

- Need: estimate $\mathbb{E}[Y] := \bar{Y}$
- Able to generate a sequence of r.v. $(Y_m)_m$ s.t. $\bar{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$

C. Rhee and P.W. Glynn. *Unbiased estimation with square root convergence for SDE models*. 2015.

- Need: estimate $\mathbb{E}[Y] := \bar{Y}$
- Able to generate a sequence of r.v. $(Y_m)_m$ s.t. $\bar{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$
- Consider an \mathbb{N} -r.v. M s.t., $\mathbb{P}(M \ge j) > 0$ for all j, and let $Y_0 = 0$

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

C. Rhee and P.W. Glynn. Unbiased estimation with square root convergence for SDE models. 2015

Coupled sum estimator

- Need: estimate $\mathbb{E}[Y] := \bar{Y}$
- Able to generate a sequence of r.v. $(Y_m)_m$ s.t. $\bar{Y} = \lim_{m \to \infty} \mathbb{E}[Y_m]$
- Consider an N-r.v. M s.t., $\mathbb{P}(M \ge j) > 0$ for all j, and let $Y_0 = 0$

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

- $\blacksquare \mathbb{E}[Z_m] = \mathbb{E}[Y_m] \quad \text{and} \quad Z_m \xrightarrow[m \to \infty]{\text{a.s.}} Z := \sum_{j=1}^M \frac{Y_j Y_{j-1}}{\mathbb{P}(M \ge j)}.$
- If $Y_m \xrightarrow{L^2} Y$ + some hypotheses, then $\mathbb{E}[Z] = \bar{Y}$

C. Rhee and P.W. Glynn. Unbiased estimation with square root convergence for SDE models. 2015.

Multiscale hyperuniformity test

- Consider an increasing sequence of sets $(\mathcal{X} \cap W_m)_{m\geq 1}$, with $\{W_m\}_m \uparrow$ and $W_\infty = \mathbb{R}^d$
- \mathbf{k}_m^{\min} minimum allowed wavevector associated to W_m , $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$

- Consider an increasing sequence of sets $(\mathcal{X} \cap W_m)_{m \geq 1}$, with $\{W_m\}_m \uparrow$ and $W_\infty = \mathbb{R}^d$
- \mathbf{k}_m^{\min} minimum allowed wavevector associated to W_m , $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$
- Take $Y_m = 1 \wedge \widehat{S}_m(\mathbf{k}_m^{\min})$
- $Z = \sum_{j=1}^{M} \frac{Y_j Y_{j-1}}{\mathbb{P}(M \ge j)}$ with M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$

Multiscale hyperuniformity test

Hyperuniformity test

- Consider an increasing sequence of sets $(\mathcal{X} \cap W_m)_{m\geq 1}$, with $\{W_m\}_m \uparrow$ and $W_\infty = \mathbb{R}^d$
- \mathbf{k}_m^{\min} minimum allowed wavevector associated to W_m , $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$
- Take $Y_m = 1 \wedge \widehat{S}_m(\mathbf{k}_m^{\min})$
- $Z = \sum_{j=1}^{M} \frac{Y_j Y_{j-1}}{\mathbb{P}(M \ge j)}$ with M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$

Proposition

Assume that $M \in L^p$ for some $p \ge 1$. Then $Z \in L^p$ and $Z_m \to Z$ in L^p . Moreover,

- 1 If \mathcal{X} is hyperuniform, then $\mathbb{E}[Z] = 0$.
- 2 If \mathcal{X} is not hyperuniform and $\sup_{m} \mathbb{E}[\widehat{S}_{m}^{2}(\mathbf{k}_{m}^{\min})] < \infty$, then $\mathbb{E}[Z] \neq 0$.

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

Need: Check
$$\mathbb{E}[Z] = 0$$
, with $Z = \sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}$

Test:

- M a Poisson r.v. of parameter λ
- i.i.d. pairs $(\mathcal{X}_a, M_a)_{a=1}^A$ of realizations of (\mathcal{X}, M)
- lacksquare Asymptotic confidence interval $\mathit{CI}[\mathbb{E}[Z]]$ of level ζ

$$CI[\mathbb{E}[Z]] = \left[\bar{Z}_A - z\bar{\sigma}_A A^{-1/2}, \bar{Z}_A + z\bar{\sigma}_A A^{-1/2}\right]$$

with
$$\mathbb{P}(-z < \mathcal{N}(0,1) < z) = \zeta$$

• Assessing whether 0 lies in $CI[\mathbb{E}[Z]]$

Point processes

Numerical experiment

Multiscale hyperuniformity test

Numerical experiment

$$\mathcal{X}$$
 is hyperuniform $\iff \mathbb{E}[Z] = 0$

Table: Multiscale hyperuniformity test

	\bar{Z}_{50}	$CI[\mathbb{E}[Z]]$	\bar{Z}_{50}	$CI[\mathbb{E}[Z]]$
Ginibre	0.015	[-0.021, 0.051]	0.007	[-0.003, 0.011]
Poisson	0.832	[0.444, 1.220]	0.781	[0.560, 1.001]
Thomas	0.928	[0.788, 1.068]	1	[0.999, 1]
Ŝ	$\widehat{\mathcal{S}}_{ ext{SI}}$		$\widehat{\mathcal{S}}_{\mathrm{BI}}$	

Multiscale hyperuniformity test

Numerical experiment

Figure: $CI[\mathbb{E}[\bar{Z}]]$ for a Poisson point process with the scattering intensity, as a function of the number of realizations of Z.

Thinning HU process

Numerical experiment

- lacksquare $\mathcal X$ a point process of intensity ho
- **2** \mathcal{X}_p an independent *p*-thinning with $p \in (0,1)$

J. Kim and S. Torquato. *Effect of imperfections on the hyperuniformity of many-body systems*, 2018.

M. A. Klatt, G. Last, and N. Henze. A genuine test for hyperuniformity, 2022.

Thinning HU process

Numerical experiment

- lacktriangleright $\mathcal X$ a point process of intensity ho
- \mathcal{X}_p an independent p-thinning with $p \in (0, 1)$
- Intensity: $\rho_p = p \times \rho$

Thinning HU process

- lacksquare $\mathcal X$ a point process of intensity ρ
- \mathcal{X}_p an independent p-thinning with $p \in (0,1)$
- Intensity: $\rho_p = p \times \rho$
- Pair correlation function: $g_p(\mathbf{r}) = g(\mathbf{r})$

Thinning HU process

- lacksquare $\mathcal X$ a point process of intensity ho
- \mathcal{X}_p an independent p-thinning with $p \in (0,1)$
- Intensity: $\rho_p = p \times \rho$
- Pair correlation function: $g_p(\mathbf{r}) = g(\mathbf{r})$
- Structure factor: $S_p(\mathbf{k}) = pS(\mathbf{k}) + 1 p$

Thinning HU process

- lacksquare $\mathcal X$ a point process of intensity ho
- \mathcal{X}_p an independent p-thinning with $p \in (0,1)$
- Intensity: $\rho_p = p \times \rho$
- Pair correlation function: $g_p(\mathbf{r}) = g(\mathbf{r})$
- Structure factor: $S_p(\mathbf{k}) = pS(\mathbf{k}) + 1 p$
- \mathcal{X} is hyperuniform $\implies S_p(\mathbf{0}) = 1 p$

Multiscale hyperuniformity test

Ginibre,
$$S(0) = 0$$

$$p = 0.9, S(0) = 0.1$$

$$p = 0.5$$
, $S(0) = 0.5$ $p = 0.1$, $S(0) = 0.9$

Structure factor

Multiscale hyperuniformity test

Numerical experiment

Table: Multiscale hyperuniformity test obtained using $\widehat{S}_{\rm BI}$ on the thinned Ginibre process.

	\bar{Z}_A	$CI[\mathbb{E}[Z]]$
Ginibre	0.0057	[-0.0042, 0.0156]
Thinning $p = 0.9$, $S(0) = 0.1$	0.0865	[0.0411, 0.1318]
Thinning $p = 0.5$, $S(0) = 0.5$	0.5722	[0.4227, 0.7217]
Thinning $p = 0.1$, $S(0) = 0.9$	0.611	[0.2082, 1.0137]

Properties and limitations

Numerical experiment

■ Validity for any class of hyperuniform point process

Properties and limitations

- Code availability 😉

Properties and limitations

- Validity for any class of hyperuniform point process ②
- Code availability 😉
- Need many realisations of the point process ②

Code availability

Python Package

Code availability

- 1 Open-source Python toolbox called structure_factor 1
- 2 Available on GiThub and PyPl ²
- 3 Detailed documentation ³
- 4 Jupyter notebook tutorial 4

https://github.com/For-a-few-DPPs-more/structure-factor

²https://pypi.org/project/structure-factor/

³https://for-a-few-dpps-more.github.io/structure-factor/

⁴https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks

Code availability

Conclusion

Conclusion

Code availability

- Estimators of the structure factor
- Statistical test of hyperuniformity
- Python toolbox structure-factor

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey. On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.

THANK YOU

Code availability

Documentation

Preprint

Github: https://github.com/For-a-few-DPPs-more/structure-factor
Documentation: https://for-a-few-dpps-more.github.io/structure-factor/
Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.