Presentation Title

Presenter Name

Complete Institute Name

July 19, 2025

- 1 Introduction
- Related Work
- 3 Proposed Method
- 4 Result
- Discussion
- 6 Conclusion

short institute name

Introduction •0000

- 1 Introduction

short institute name

Presentation Title

Presenter Name

Motivation

Introduction

- This is the first highlighted keyword to emphasize an important concept.
- The second point addresses another key idea in [1].

Objectives Scope

Introduction 00000

Sample Block Title

This block presents a key concept that is crucial for understanding the topic.

Sample Alert Block Title

This block presents a more alarming key concept that is crucial for understanding the topic.

Actors & Features

Introduction

Actors:

Features:

Contributions

Introduction

Scientific Contribution

Real-world Contribution

- Related Work

Advancements

Presenter Name short institute name

Research gaps

Research gap

⇒ Concluding statement.

- 3 Proposed Method

Presenter Name short institute name Presentation Title 11/21

Overview

Sample Process Algorithm Pseudocode

- Goal:
- Result:
- Step:
- Scope:

short institute name

- 1 Introduction
- Related Work
- 3 Proposed Method
- 4 Result
- 5 Discussion
- **6** Conclusion

Presenter Name short institute name
Presentation Title 14/21

Result

Prototyping

GitHub repository: Demo Website:

Figure: The caption of the figure.

Figure: The caption of the figure.

- Discussion

short institute name

Limitations

 \Rightarrow Concluding statement.

Table: Comparison of different methods (✓: YES, ✗: NO).

-	Your Method	Method B	Method C	Method D	Method E	Method F
Feature 1	✓	✓	Х	✓	Х	√
Feature 2	✓	×	✓	✓	✓	X
Feature 3	×	✓	✓	×	×	✓
Feature 4	✓	/	×	×	/	×
Feature 5	×	×	✓	✓	×	✓
Feature 6	✓	×	✓	×	×	X

- 1 Introduction
- 2 Related Work
- 3 Proposed Method
- 4 Result
- 6 Discussion
- **6** Conclusion

Presenter Name short institute name
Presentation Title 19 / 21

Demonstration

Process A

Scenario 1

Scenario 2

Process B

Presenter Name
Presentation Title

short institute name

Scope Back to Objectives

ㅁ▶ ◀鬪▶ ◀불▶ ◀불▶ 불|ㅌ 쒸٩ଙ

Formalizing - Sample Algorithm Back to Sample process

Algorithm 1 (Result) \leftarrow Sample(Input1)

Require: Input1 is a predefined parameter.

```
1: Set ← ∅
```

2: **for** element ∈ Input1 **do**

3: **if** Condition(element) is true **then**

4: Set \leftarrow Set \cup {Process(element)}

5: **else**

6: **continue**

7: end if

8: end for

9: Intermediate ← Transform(Set)

10: return Result

Formalizing - Sample Pseudocode Back to Sample process

```
Algorithm 2 (Result) \leftarrow Sample(Input1)
```

```
Require: Input1 is a predefined parameter.

1: Set ← ∅

2: for element ∈ Input1 do

3: if Condition(element) is true then

4: Set ← Set ∪ {Process(element)}

5: else

6: continue

7: end if

8: end for

9: Intermediate ← Transform(Set)
```


10: return Result

References I

[1] Donald E. Knuth. "Literate Programming". In: *The Computer Journal* 27.2 (1984), pp. 97–111.

