Übungen zu Analysis I für Ingenieure und Informatiker

(Abgabe bis Freitag, 04.07.2014 um 08:20 Uhr, H3)

1. Die Funktionen Kosinus Hyperbolicus cosh : $\mathbb{R} \to [1, \infty)$ und Sinus Hyperbolicus sinh : $\mathbb{R} \to \mathbb{R}$ sind definiert durch

$$\cosh x := \frac{e^x + e^{-x}}{2} \text{ und } \sinh x := \frac{e^x - e^{-x}}{2}.$$

Zeige für $x \in \mathbb{R}$:

- (a) $\cosh^2 x \sinh^2 x = 1$
- (b) $(\sinh x)' = \cosh x$ und $(\cosh x)' = \sinh x$
- (c) Zeige, dass die Funktion sinh umkehrbar auf $\mathbb R$ ist.
- (d) Bestimme die Ableitung der Umkehrfunktion von sinh. Dabei wird die Umkehrfunktion mit Arsinh (*Areasinushyperbolicus*) bezeichnet.
- (e) Zeige die Gültigkeit der Identität Arsinh $(x) = \ln(x + \sqrt{x^2 + 1})$.

(10 Punkte)

2. (a) Bestimme alle lokalen und globalen Extrema von $f(x) = \frac{x^4}{2} - \frac{8}{3}x^3 + 3x^2 + 5$

i. auf \mathbb{R}

ii. auf [-1, 4].

(b) Bestimme alle lokalen und globalen Extrema von $g(x) = x \cdot e^{-2x}$ auf [0,2].

(7+4 Punkte)

3. Bestimme, falls existent, folgende Grenzwerte.

(a)
$$\lim_{x \to 1^{-}} \frac{\frac{\pi}{2} - \arcsin x}{\sqrt{1 - x}}$$

(e)
$$\lim_{x \to \infty} \frac{\sinh x}{\cosh x}$$

(b)
$$\lim_{x \to \infty} \frac{\ln(x^m + 1)}{\ln x^n}$$
 $(m, n \in \mathbb{N})$

(f)
$$\lim_{x \to 0} \frac{\arctan(x) - x}{x^3}$$

(c)
$$\lim_{x \to \frac{\pi}{2}} \frac{\exp(\cos(x)) - \sin(x)}{\pi - 2x}$$

(g)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\ln(x+1)} \right)$$

(d)
$$\lim_{x \to 1} x^{\frac{1}{x-1}}$$

(h)
$$\lim_{x\to 0} \frac{x(1-x)}{1+\sin(x)}$$

(12 Punkte)

- 4. (a) Berechne mit Hilfe des Satzes von Taylor $\sin\left(\frac{1}{10}\right)$ bis auf einen Fehler von 10^{-4} genau.
 - (b) Bestimme für $x \ge -1$ das Taylor-Polynom dritter Ordnung von $f(x) = \sqrt{1+x}$ um $x_0 = 0$.

(5+3 Punkte)