ELSEVIER

Contents lists available at ScienceDirect

Journal of Molecular Graphics and Modelling

journal homepage: www.elsevier.com/locate/JMGM

Endohedral complex of fullerene C₆₀ with tetrahedrane, C₄H₄@C₆₀

Xiao-Yuan Ren^a, Cai-Ying Jiang^a, Jiang Wang^a, Zi-Yang Liu^{b,*}

ARTICLE INFO

Article history:
Received 3 June 2008
Received in revised form 19 September 2008
Accepted 22 September 2008
Available online 2 October 2008

Keywords: Quantum chemistry Endohedral fullerene Tetrahedrane Electronic spectrum

ABSTRACT

B3LYP/6-31G(d) hybrid HF/DFT calculations were carried out to determine the structural and electronic properties of the endohedral complex of C_{60} with tetrahedrane C_4H_4 . It was demonstrated that C_4H_4 was seated in the center of the C_{60} cage and existed in a molecular form inside the fullerene. The formation of this complex was endothermic with inclusion energy of 141.05 kcal/mol. C_4H_4 endohedral doping slightly perturbed the molecular orbitals of C_{60} . The calculated HOMO-LUMO gaps, the electron affinity (EA) and the ionizational potential (IP) indicated that $C_4H_4@C_{60}$ seemed to be more kinetically reactive than C_{60} . The IR active modes and harmonic vibrational frequencies of $C_4H_4@C_{60}$ were also discussed. © 2008 Published by Elsevier Inc.

1. Introduction

Since lanthanum atom was firstly placed into the fullerene C_{60} cage [1], endohedral fullerenes, the spherical carbon molecules incorporating single atoms [2-5] and noble gases [6-8] or small molecules and clusters [9-11] inside the framework have attracted great interest in their physical and/or chemical properties such as pseudoatom behavior, magnetism, nonlinear optical behaviors, and superconductivity. However, the production rate of the endohedral fullerenes is quite low compared with the ordinary fullerenes. The preparation of endohedral fullerenes has so far relied on hard to control physical processes, such as covaporization of carbon and metal atoms [2] or high-pressure/ high-temperature treatment with noble gases [7], which yield only limited quantities (e.g., only a few milligrams) of a pure product after laborious isolation procedures. Due to the extreme difficulties in producing macroscopic quantities and isolating pure samples, theoretical studies are helpful tools in investigating and predicting the structural and electronic properties of endohedral fullerenes. For example, theoretical calculations on lanthanum metallofullerene La@C₈₂ [12,13] suggested that the La atom donated its three valence electrons to C_{82} to form an endohedral complex $La^{3+}C_{82}^{3-}$, which was confirmed by electron paramagnetic resonance (EPR) studies [14]. Gauge-independent atomic orbital (GIAO) and the nucleus-independent chemical shift (NICS) calculations for the encapsulated hydrogen in $H_2@C_{60}$ and its derivatives interpreted well the experimental data [11]. In $N@C_{60}$, $P@C_{60}$ and $C@C_{60}$, the N, P and C atoms retain their atomic character when trapped in the cage [4,15–17], while towards encaged small molecules, C_{60} acted as a polarizable sphere that stabilized the polar molecules and destabilized the nonpolar ones [18,19].

Tetrahedrane C₄H₄ (THD) is a theoretically interesting molecule, and the problem of its synthesis was recognized more than half a century ago but only its derivatives had been obtained [20,21]. As a result of the enormous angular strain [22], theoretical works predicted its stability in the absence of other reactants [23], while in the derivatives the lability of THD is circumvented by means of spatial shielding of the tetrahedrane framework by four bulky groups [21]. Since the fullerene cage may act as a partial Faraday cage that shields the atom on molecule trapped inside from the majority of the field applied [4,24], it can be viewed as a nearly ideal "container" or "trap" for any highly reactive complex. Here we study the endohedral complexes of fullerenes C_{60} with THD. A question of major interest is whether the fullerene cage can stablize the trapped tetrahedrane. On the other hand, as tetrahedrane can isomerizes to cyclobutadiene [25], we also consider the inclusion of D_{2h} cyclobutadiene in the fullerene cage. We hope that the present study will encourage further theoretical and experimental analysis of the system.

2. Computational details

Geometry optimizations were performed at the B3LYP/6-31G(d) hybrid HF/DFT level of theory. To ensure that true stationary points had been found, harmonic vibrational frequencies were also

^a Collage of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

^b Department of Chemistry, Zhejiang University, Hangzhou 310027, China

^{*} Corresponding author. Tel.: +86 571 87951158; fax: +86 571 86843198. E-mail addresses: pine_ren@yahoo.com.cn (X.-Y. Ren), zyliu@zju.edu.cn (Z.-Y. Liu).

calculated by analytic evaluation of the second derivative of the energy with respect to nuclear displacement. The B3LYP functional was chosen because the inclusion of electron correlation was important for accurate geometry prediction. Our experiences of theoretical calculations on C_{60} related derivatives also indicate that DFT is a very successful method for studying fullerene compounds [17,26–29]. All calculations were carried out with the GAUSSIAN 03 program package [30] executed on a SGI Onyx3900 workstation and the results were calculated to machine precision.

3. Results and discussions

The B3LYP/6–31G(d) optimized geometries were shown in Fig. 1. Some geometry parameters were listed in Table 1. The bond lengths of C_{60} are 1.395 and 1.454 Å for the 6/6 and 6/5 bonds respectively. This calculation result agrees satisfactorily with the measured values [31] as well as the results of the previous highest level calculations, MP2 with triple ξ plus polarization basis set [32].

The optimized bond lengths and bond angles of tetrahedrane with T_d symmetry are $r_1 = 1.073 \text{ Å}$, $r_2 = 1.480 \text{ Å}$, $\alpha_1 = 144.7^{\circ}$, α_2 = 60.0°. The C–C–C angles deviate far from the normal 109° 28' formed by sp³ hybridized carbon atoms, which means that the tetrahedrane is subject to large stress [33,34]. Geometry parameters of the optimized D_{2h} cyclobutadiene are $r_{C-H} = 1.084 \, \text{Å}$, $r_{\text{C--C}} = 1.334 \text{ Å}, \quad r_{\text{C-C}} = 1.578 \text{ Å}, \quad \alpha_{\text{C-C-C}} = 90^{\circ}, \quad \alpha_{\text{C-C-H}} = 134.6^{\circ} \text{ or}$ 135.4°. The C-C-C angles also deviate from 120° formed by sp² hybridized carbon atoms. To investigate if the fullerene cage can stabilize T_d C₄H₄, we performed ab initio Hartree-Fock and density functional calculations on C₄H₄@C₆₀. The energy minimum was found by full geometry optimization without symmetry limitation at HF/STO-3G level of theory (the lowest frequency was 84.54 cm^{-1}) and the final B3LYP/6-31G(d) yielded the geometry of the complex as listed in Fig. 1. The T_d C₄H₄ is seated in the center of the C_{60} cage and the highly symmetrical I_h of the cage is reduced to C_{3v} for $C_4H_4@C_{60}$. Both the fullerene cage and the encaged tetrahedrane experienced considerable structural changes. The cage of C_{60} is elongated by about 0.8 Å. Confinement of T_d C_4H_4 in a cage of spherical symmetry leads to anisotropic deformation of atomic charge and spin distribution. According with the previous studies [18,19], The C-C and C-H bonds of the encaged nonpolar molecule tetrahedrane C₄H₄ are shortened and the C-H bond along the 3-fold symmetry axis C₃ is the mostly shortened. The C-C-H bond angles also are a bit distorted. These changes of the bond lengths, the bond angles and the twist angles of other neighboring carbon atoms thus lead to symmetry-reducing distortion of the cage. The distances between the H as well as the C atoms in C₄H₄ and the nearest C atoms in C_{60} (d_{C-H} , d_{C-C}) are 1.814 and 2.794 Å, respectively, implying that the encapsulated T_d C₄H₄ only exists in a molecular form inside the fullerene and does not adsorb to the internal surface of the carbon structure. On the other hand, the

Table 1 B3LYP/6-31G(d) optimized geometry parameters (bond length in Å and bond angles in degrees).

	C_4H_4	C ₆₀	C ₄ H ₄ @C ₆₀
r_1	1.073		1.022-1.024
r_2	1.480		1.432
α_1	144.7		144.4-145.3
α_2	60.0		60.0
r _{6/5 C-C}		1.454	1.451-1.477
r _{6/6 C-C}		1.395	1.398-1.422
d		7.101	7.117-7.182
d_{C-H}			1.814
d_{C-C}			2.794

study of C_{60} including D_{2h} cyclobutadiene gave no result. The larger geometrical dimensions of cyclobutadiene (the longest distance between two H atoms is 4.230 Å) prevent its formation in the C_{60} cage.

Mulliken population analysis showed that substantial electronic charge transfer had occurred from fullerene C_{60} cage to the C_4H_4 sites in $C_4H_4@C_{60}$. As listed in Table 2, the central guest tetrahedrane C_4H_4 gained appreciable charge (-0.257) from the cage. This is different from other endohedral fullerenes in which the guests either gain positive charges from the cage or remain intact. It seems that with the fullerene cage acting as an electron-donating substituent [35], the highly strained tetrahedrane C_4H_4 might be stabilized in the fullerene cage as negative charge accumulated on the skeleton.

To assess the relative stabilities, binding energies (BE) were calculated according to the gas phase reaction: nX + mY = XnYm. This means that BE(XnYm) = E(XnYm) - nE(X) - mE(Y), and a more thermodynamic stable species should have a more negative BE. The inclusion energy (E_{inclu}) of endohedral complex was also evaluated by comparing the energy of C₄H₄@C₆₀ to the sum of the energies of the isolated components T_d C₄H₄ and C₆₀, that is, $E_{inclu} = E(C_4H_4@C_{60}) - [E(C_4H_4) + E(C_{60})]$. Our results indicated that the formation of $C_4H_4@C_{60}$ from the free molecules T_d C_4H_4 and C_{60} is energetically unfavorable at B3LYP/6-31G(d)//B3LYP/6-31G(d) level with inclusion energy of 141.05 kcal/mol. However, the binding energy of $C_4H_4@C_{60}$ is -10304.93 kcal/mol, which is more negative than -9660.6 kcal/mol of the ground state of N@C₆₀, suggesting that C₄H₄@C₆₀ may exist as stable species but rigorous conditions are needed to synthesize this compound and experimental attempts in this direction should be rewarding.

It was well known that the highest occupied molecular orbital HOMO and the lowest unoccupied molecular orbital LUMO play a predominant role in chemical reactions [36,37]. HOMO–LUMO energy separation has been used as a conventional measure of kinetic stability for various π -electron systems [38–44]. A large HOMO–LUMO gap can be associated with high-kinetic stability

Fig. 1. B3LYP/6-31G(d) hybrid HF/DFT optimized geometries: (a) C_4H_4 , (b) C_3 axis view of C_4H_4 @ C_{60} , and (c) σ_v plane view of C_4H_4 @ C_{60} .

Table 2
Results of B3LYP/6-31G(d)//B3LYP/6-31G(d) calculations.

	Charges on C ₄ H ₄	Total dipole moment (D)	$\Delta E_{ m HOMO-LUMO}$ (eV)	Total energies (a.u.)
C ₄ H ₄	C1 -0.144, H ₁ 0.144 C ₂ -0.144, H ₂ 0.144 C ₃ -0.144, H ₃ 0.144 C ₄ -0.144, H ₄ 0.144	0	-9.25	-154.636686560
C ₆₀		0	-2.77	-2286.17306739
C ₄ H ₄ @C ₆₀	$\begin{array}{l} C_1 - 0.022, H_1 - 0.043 \\ C_2 0.018, H_2 - 0.082 \\ C_3 0.018, H_3 - 0.082 \\ C_4 0.018, H_4 - 0.082 \end{array}$	0.0461	-2.10	-2440.58498211

Fig. 2. Electronic energy levels of C_{60} and $C_4H_4@C_{60}$ other oxides near the HOMO–LUMO gap obtained at B3LYP/6–31G(d) level of theory, solid and dashed lines refer to the occupied and unoccupied states, respectively.

because it is energetically unfavorable to add electrons to a highlying LUMO or to extract electrons from a low-lying HOMO and so to form the activated complexes of any potential reaction [38].

Table 2 shows that $C_4H_4@C_{60}$ has a smaller HOMO-LUMO gap than C_{60} , which indicates that the inclusion of C_4H_4 can make the

fullerene cage more reactive. Relative to C_{60} , the HOMOs and LUMOs of the $C_4H_4@C_{60}$ are perturbed by the inclusion and the degenerate energy levels are split. Fig. 2 displays the electronic levels near the HOMO and LUMO energy gap obtained from the B3LYP/6–31G(d) level calculations. Compared with C_{60} , the HOMO of $C_4H_4@C_{60}$ is slightly lifted by 0.52 eV and LUMO is lowered by 0.15 eV. The reduction of the degeneration of electronic levels is obvious for $C_4H_4@C_{60}$. The HOMOs are two degenerate orbitals and LUMO is one orbital. The energy gap between the HOMO and LUMO levels is 2.10 eV, 0.67 eV less compared with 2.77 eV of C_{60} . From this point of view, $C_4H_4@C_{60}$ seems to be more kinetically reactive than C_{60} [6,29].

The electron affinity (EA) and ionization potential (IP) of $C_4H_4@C_{60}$ are calculated at B3LYP/6–31G(d)/B3LYP/6–31G(d) to be 3.37 and 5.47 eV, respectively. Compared with the values of 3.22 and 5.99 eV for C_{60} calculated at the same theory of level, it is more possible for $C_4H_4@C_{60}$ to accept or donate electrons from the enhanced EA and reduced IP. Then, $C_4H_4@C_{60}$ is more chemically reactive than C_{60} and other oxides, as suggested by the abovementioned HOMO–LUMO gap. In order to gain insight into the HOMO and LUMO properties of $C_4H_4@C_{60}$, we plot the probability density contours of the two levels. As shown in Fig. 3, electron distribution away from the C_4H_4 site is clearly seen. HOMO and LUMO are found to be localized on the carbon cage, suggesting the reactive sites of this compound.

Our calculation on HF/STO-3G theory of level indicated that there are 18 infrared active modes in $C_4H_4@C_{60}$. The harmonic vibrational frequencies and intensities of these modes are 599 (1), 639 (12), 640 (3), 643 (16), 646 (31), 648 (3), 666 (2), 912 (1), 975 (1), 1363 (23), 1566 (4), 1569 (3), 1574 (10), 1621 (1), 1658 (1), 1754 (2), 4432 (87) and 4466 (60); IR intensities (in km/mol) of

Fig. 3. Isodensity surface (0.02 e/a.u. 3) associated with $C_4H_4@C_{60}$ Hartree–Fock: (a) HOMO and (b) LUMO.

Fig. 4. . Calculated IR spectra of $C_4H_4@C_{60}$ and C_{60} , the latter is indicated by dashed lines.

active modes are in parenthesis. The strongest band with intensity of 87 km/mol is associated with highest frequency mode at $4432~\rm cm^{-1}$. This normal mode is identified to correspond mainly with C–H stretches for the guest molecule C_4H_4 in the σ_v plane. A complete list of all vibrational modes (a total of 198) is available upon request from the corresponding author. The calculated spectrum of $C_4H_4@C_{60}$ is shown in Fig. 4; for comparison, the spectrum of C_{60} calculated at the same theory level was also given. The most intensive vibration of spectrum of the endohedral complex is about two times more intensive than that of C_{60} . The IR spectrum of single T_d C_4H_4 was also computed at the same theory level. The strongest band with intensity of $62~\rm km/mol$ is associated with the frequency $772~\rm cm^{-1}$. This mode is identified to correspond with bending vibrations of C–H bonds in the σ_v plane.

4. Summary

We have studied the structural and electronic properties of C₄H₄@C₆₀ via Hartree-Fock self-consistent field (SCF) and density functional B3LYP levels of theory with the STO-3G and 6-31G(d) basis sets. The T_d C₄H₄ is seated in the center of the C₆₀ cage and the highly symmetrical I_h of the cage is reduced to C_{3v} for C₄H₄@C₆₀. Both the fullerene cage and the encaged tetrahedrane experienced considerable structural changes. However, the encapsulated C₄H₄ only exists in a molecular form inside the fullerene and does not adsorb to the internal surface of the carbon structure. With the fullerene cage acting as an electron donor, the highly strained tetrahedrane C₄H₄ might be stabilized in the fullerene cage as negative charge accumulates on the skeleton. The inclusion energy and binding energy were evaluated to assess the relative stabilities. The calculated HOMO-LUMO gaps as well as the EA and the IP are also presented as an indicator of the kinetic stability. There are 18 infrared active modes in C₄H₄@C₆₀ and the most intensive vibration of C₄H₄@C₆₀ is nearly two times more intense than that of C₆₀. The molecular properties calculated for this compound may serve as valuable predictions for future experimental research.

References

- J.R. Heath, S.C. O'Brien, Q. Zhang, Y. Liu, R.F. Curl, H.W. Kroto, F.K. Tittel, R.E. Smalley, Lanthanum complexes of spheroidal carbon shells, J. Am. Chem. Soc. 107 (1985) 7779–7780.
- [2] H. Shinohara, Endohedral metallofullerenes, Rep. Prog. Phys. 63 (2000) 843-892.

- [3] E. Nishibori, M. Takata, M. Sakata, H. Tanaka, M. Hasegawa, H. Shinohara, Giant motion of La atom inside C₈₂ cage, Chem. Phys. Lett. 330 (2000) 497–502.
- [4] B. Pietzak, M. Waiblinger, T. Almeida Murphy, A. Weidinger, M. Höhne, E. Dietel, A. Hirsch, Buckminsterfullerene C₆₀: a chemical Faraday cage for atomic nitrogen, Chem. Phys. Lett. 279 (1997) 259–263.
- [5] H. Shiotani, T. Ito, Y. Iwasa, A. Taninaka, H. Shinohara, E. Nishibori, M. Takata, M. Sakata, Quantum chemical study on the configurations of encapsulated metal ions and the molecular vibration modes in endohedral dimetallofullerene La₂@C₈₀, J. Am. Chem. Soc. 126 (2004) 364–369.
- [6] E. Shabtai, A. Weitz, R.C. Haddon, R.E. Hoffman, M. Rabinovitz, A. Khong, R.J. Cross, M. Saunders, P.C. Cheng, L.T. Scott, ³He NMR of He@C₆₀⁶⁻ and He@C₇₀⁶⁻. New records for the most shielded and the most deshielded ³He inside a fullerene, J. Am. Chem. Soc. 120 (1998) 6389–6393.
- [7] M. Saunders, R.J. Cross, H.A. Jiménez-Vázquez, R. Shimshi, A. Khong, Noble gas atoms inside fullerenes, Science 271 (1996) 1693–1697.
- [8] M. Saunders, H.A. Jiménez-Vázquez, R.J. Cross, R.J. Poreda, Stable compounds of helium and neon: He@C₆₀ and Ne@C₆₀, Science 259 (1993) 1428–1430.
- Y. Murata, M. Murata, K. Komatsu, 100% encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H₂@C₆₀, J. Am. Chem. Soc. 125 (2003) 7152–7153.
- [10] T. Peres, B.P. Cao, W.D. Cui, A. Khong, R.J. Cross, M. Saunders, C. Lifshitz, Some new diatomic molecule containing endohedral fullerenes, Int. J. Mass Spectrom. 210 (2001) 241–247.
- [11] M. Murata, Y. Murata, K. Komatsu, Synthesis and properties of endohedral C₆₀ encapsulating molecular hydrogen, J. Am. Chem. Soc. 128 (2006) 8024–8033.
- [12] S. Nagase, K. Kobayashi, A theoretical approach to C₈₂ and LaC₈₂, Chem. Phys. Lett. 201 (1993) 475–480.
- [13] K. Laasonen, W. Andreoni, M. Parrinello, Structural and electronic properties of La@Coo. Science 258 (1992) 1916–1918.
- [14] R.D. Johnson, M.S. de Vries, J. Salem, D.S. Bethune, C.S. Yannoni, Electron paramagnetic resonance studies of lanthanum-containing C₈₂, Nature 355 (1992) 239–240.
- [15] H. Mauser, N.J.R. van Eikema Hommes, T. Clark, A. Hirsch, B. Pektzak, A. Weidinger, L. Dunsch, Stabilization of atomic nitrogen inside C₆₀, Angew. Chem. Int. Ed. Engl. 36 (1997) 2835–2838.
- [16] J.A. Larssona, J.C. Greer, Phosphorous trapped within buckminsterfullerene, J. Chem. Phys. 116 (2002) 7849–7854.
- [17] X.Y. Ren, Z.Y. Liu, M.Q. Zhu, K.L. Zheng, DFT studies on endohedral fullerene C@C₆₀: C centers the C₆₀ cage, J. Mol. Struct. (THEOCHEM) 710 (2004) 175–178.
- [18] J. Cioslowski, Endohedral chemistry: electronic structures of molecules trapped inside the C₆₀ cage, J. Am. Chem. Soc. 113 (1991) 4139–4141.
- [19] Y.H. Hu, E. Ruckenstein, Endohedral complexes of C₅₈ cage with H₂ and CO, Chem. Phys. Lett. 390 (2004) 472–474
- [20] G. Maier, S. Pfriem, U. Schäfer, R. Matusch, Tetra-tert-butyltetrahedrane, Angew. Chem. Int. Ed. Engl. 17 (1978) 520–521.
- [21] G. Maier, J. Neudert, O. Wolf, D. Pappusch, A. Sekiguchi, M. Tanaka, T. Matsuo, Tetrakis(trimethylsilyl)tetrahedrane, J. Am. Chem. Soc. 124 (2002) 13819– 13826.
- [22] N.G. Mikhail, L. Sergei, P. Addy, Thermochemistry of cyclobutadiene and tetrahedrane: a high-level computational study, J. Phys. Chem. 99 (1995) 6828-6831.
- [23] B.A. Hess, L.J. Schaad, Ab initio second-order Moeller-Plesset calculation of the vibrational spectrum of tetrahedrane, J. Am. Chem. Soc. 107 (1985) 865–866.
- [24] P. Delaney, J.C. Greer, C₆₀ as a Faraday cage, Appl. Phys. Lett. 84 (2004) 431–433
- [25] A.T. Balaban, M. Banciu, V. Ciorba, Annulenes, Benzo-, Hetero-, Homo-Derivatives and their Valence Isomers, vol. 2, CRC Press, Boca Raton, Florida, 1986, pp. 1–5.
- [26] X.Y. Ren, Z.Y. Liu, Structural and electronic properties of S-doped fullerene C₅₈, where is the S atom situated? J. Chem. Phys. 122 (2005) 034306.
- [27] X.Y. Ren, Z.Y. Liu, Endohedral complex of fullerene C_{60} with tetrahedral N_4 , N_4 @ C_{60} , Struct. Chem. 16 (2005) 567–570.
- [28] X.Y. Ren, Z.Y. Liu, X.H. Guo, Gas-phase synthesis and the structural and electronic properties of C₆₀S* studied by mass spectrometry and molecular orbital calculation, J. Mol. Struct. (THEOCHEM) 686 (2004) 43–46.
- [29] X.Y. Ren, Z.Y. Liu, Structural and electron properties of the highest epoxygenated fullerene C₆₀O₃₀, a DFT study, J. Mol. Graph. Model 26 (2007) 336–341.
- [30] M.J. Frisch, et al., Gaussian 03, Revision C.02, Gaussian Inc., Wallingford, CT, 2004.
- [31] W.I.F. David, R.M. Ibberson, J.C. Matthewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.M. Walton, Crystal structure and bonding of ordered C₆₀, Nature 353 (1991) 147–149.
- [32] M. Häser, J. Almlö, G.E. Scuseria, The equilibrium geometry of C_{60} as predicted by second-order (MP2) perturbation theory, Chem. Phys. Lett. 181 (1991) 497–500.
- [33] B.S. Jursic, Computing the heat of formation for cubane and tetrahedrane with density functional theory and complete basis set ab initio methods, J. Mol. Struct. (THEOCHEM) 499 (2000) 137–140.
- [34] K.B. Wiberg, R.F.W. Bader, C.D.H. Lau, Theoretical analysis of hydrocarbon properties. 2. Additivity of group properties and the origin of strain energy, J. Am. Chem. Soc. 109 (1987) 1001–1012.
- [35] I. Novak, Substituent effects on steric strain, Chem. Phys. Lett. 380 (2003) 258– 262.
- [36] K. Fukui, T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys. 20 (1952) 722–725.
- [37] K. Fukui, Recognition of stereochemical paths by orbital interaction, Acc. Chem. Res. 4 (1971) 57–64.

- [38] D.E. Manolopoulos, J.C. May, S.E. Down, Theoretical studies of the fullerenes: C_{34} to C_{70} , Chem. Phys. Lett. 181 (1991) 105–111.
- [39] X. Liu, T.G. Schmalz, D.J. Klein, Favorable structures for higher fullerenes, Chem. Phys. Lett. 188 (1992) 550–554.
- [40] M.D. Diener, J.M. Alford, Isolation and properties of small-bandgap fullerenes, Nature 393 (1998) 668–671.
- [41] B.A. Hess Jr., L.J. Schaad, Hueckel molecular orbital .pi. resonance energies. Benzenoid hydrocarbons, J. Am. Chem. Soc. 93 (1971) 2413–2416.
- [42] R.C. Haddon, T. Fukunaga, Unified theory of the thermodynamic and kinetic criteria of aromatic character in the [4n+2] annulenes, Tetrahedron Lett. 21 (1980) 1191–1192.
- [43] T.G. Schmalz, W.A. Seitz, D.J. Klein, G.E. Hite, Elemental carbon cages, J. Am. Chem. Soc. 110 (1988) 1113–1127.
- [44] Z. Zhou, R.G. Parr, New measures of aromaticity: absolute hardness and relative hardness, J. Am. Chem. Soc. 111 (1989) 7371–7379.