

RISC-V 安卓的产品 化探索

毛晗

阿里巴巴达摩院 技术专家

RISC-V 安卓产品化里程碑

2022年9月

AOSP 主线

开始支持 RISC-V架构

- 硬件外设支持
- 综合性能调优
- 系统稳定性

2023年8月

XuanTie 安卓 SDK V0.7

> 支持 场景原型

- 封闭场景应用构建
- 场景性能调优
- 产品维测支持

2024年8月

XuanTie 安卓 SDK V1.0

> 封闭场景 产品试点

- RISC-V 安卓ABI定义
- 开放应用生态
- 完成CTS认证

基于RISC-V的 安卓认证产品

产品化探索

金融支付终端			云桌面终端				弹性物理服务器		
验证	美颜	支付	1080P@30	高色彩保真	多屏异显	远程主机	图形化控制	可更新镜像	
Alipay服务	ННВ	XTVPP	移动云服务	Media Codec	Gstreamer	ADB	Scrcpy	Fastboot	
Camera HAL	SHL	RIL	OMX	Codec 2	HWC	ADBD	CSI-G2D	USB Device	
摄像头	NPU	蓝牙键盘	VPU	MIPI-HDMI	DPU	Cluster	干兆ETH	ВМС	
	4666								

金融支付终端

XTVPP预处理加速

运行时优化

全链路零拷贝

SHL AI加速

OpenGL Shader

AVB 可信引导

TEE 可信验证

处理器自动变频

外设Power Gating

云桌面终端

移动云桌面远程控制 window系统 (TH1520)

1080P @30FPS 视频流

- 运行时优化
- VPU硬件加速
- 全链路零拷贝

Rust组件

- Cargo包管理
- NDK跨语言链接

多屏异显

- 运行时优化
- · VPU硬件加速
- 全链路零拷贝

高色彩保真

- YUV444
- 清晰文本显示

EM-RV1弹性物理服务器

Specifications

System

SoC T-Head 1520

- CPU (C910) RV64GC 4 cores 1,85 GHz
- GPU (OpenCL 1.1/1.2/2.0, OpenGL ES 3.0/3.1/3.2, Vulkan1.1/1.2, Android NN HAL)
- VPU (H.265/H.264/VP9 video encoding/decoding)
- NPU(4TOPS@INT8 1GHz,Tensorflow, ONNX, Caffe)

Memory

16GB LPDDR4

Storage

128 GB eMMC

Network

- 100 Mbit/s ethernet network card
- Public IPv4 and IPv6 addresses included

Operating System

Debian, Ubuntu, Alpine

Energy

An average power consumption of 1.3W per core

7 **产品应用构建** 版本兼容 工具支持 三方闭源库

应用性能优化 运行时优化 性能分析 第

运行时优化 性能分析 零拷贝 硬件加速

产品维测支持

 User版本 OTP烧写产测 OTA升级

挑战 Challenges

→ 01 产品应用构建

版本兼容 工具支持 三方闭源库

产品应用构建

应用代码与现有工具兼容性不足

- 修改代码,使用较新的API Level
- 反向适配旧版本NDK和AGP插件

依赖库使用rust构建,旧版本对RISC-V 支持不完善

• 基于新版本工具进行适配

使用了三方闭源库

• 使用开源算法库进行替换

AGP	Gradle	NDK
3.0.x	4.4	NDK r18
3.4.x	5.1	NDK r21
7.4.x	7.5	NDK r23
8.3.x	8.5	NDK r27

应用性能优化

性能分析 运行时优化 零拷贝 硬件加速

应用性能分析

应用典型场景性能较对比平台有一定差距,通过诊断工具定位性能瓶颈点

Perfetto

通过时间轴图和依赖关系确认各线程的时间占用

- 线程切换过多,导致时间片分配不足
- 冗余的应用逻辑开销
- 关键线程优先级不足,被抢占
- 资源等待消耗过高

simpleperf

通过热点函数和调用链确定瓶颈点

- 过多内存拷贝
- 常用函数可实现汇编加速
- 热点指令流水可优化
- 过多cache刷新

运行时优化

全链路零拷贝

- · 支持从surface -> 图像获取 -> 后处理 -> 算法预处理 -> 视觉算法的全链路零拷贝能力
- 应用场景中实际提升链路性能172%
- 视频编码/解码流程也支持全链路零拷贝

AI算法加速

XuanTie Android AI子系统

- 支持caffe, TF, PyTorch 等主流框架及模型格式
- SHL EP: 提供ONNX Runtime快速评估

通过集成SHL并优化数据链路,算法模型处理效率提升81%+

代码生成

- 同时支持离线和在线编译二进制
- CPU 和 NPU 代码独立生成

CPU极致性能

- 支持Im2col, Winograd 快速卷积
- XuanTie Vector 0.7.1 扩展指令集优化
- 汇编级微内核优化

图优化

- 算子融合,算子拆分,常量折叠等常 规图优化
- 量化信息传播,零点合并等量化后计算图优化

量化

- 对称量化,非对称量化,通道量化多种算法
- int8, uint8, int16, float16, float32 多数据类型
- 量化损失评估工具,自动混合量化

→ 03 产品维测支持

User版本 OTP烧写 产测 OTA升级

产品维测支持

User版本

玄铁 Android SDK框图

功能完善:

提供基于TH1520完整的商业化开发套件, 支持LicheePi 4A开发板

工具套件:

集成玄铁Clang 15工具链,兼容历史 API Level版本的应用构建

深度优化:

针对ART/Bionic/Skia/Zlib等核心组件提供 玄铁专有优化,支持Camera、多媒体全链 路零拷贝

AI加速:

提供HHB/SHL/XTVPP的AI套件

安全系统:

集成玄铁TEE OS, 支持 RISC-V标准的三种安全权限模式

稳定性:

通过3*24 Monkey/MTBF压测

复用Chromium生态能力

- 通过添加xthead指令扩展支持、优化指令生成器后端、精简 跳板机制指令对Chromium进行了深度优化
- 支持PGO,优化分支命中,可提升典型场景运行性能
- 可支持浏览器、小程序、JS应用多种应用生态能力

相关信息

玄铁 RISC-V 安卓主页

玄铁 RISC-V生态及软件团队维护的玄铁安卓主页: https://www.xrvm.cn/soft-tools/os/Android

玄铁 RISC-V安卓开源代码仓库

玄铁 RISC-V生态及软件团队维护的玄铁安卓开源代码仓库: https://gitee.com/xuantie-android/xuantie-android

RISC-V Android SIG

RISC-V International下的安卓特别兴趣小组: https://lists.riscv.org/g/sig-android

RISC-V Android问题跟踪器

Google 维护的RISC-V Android通用问题跟踪器: https://github.com/google/android-riscv64

Thank you ••

玄铁中文站

玄铁海外站

