```
In []: #this assignment students will build the random forest model after normalizing the
    #variable to house pricing from boston data set.

In [68]: #import module and datset
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn import datasets

In [69]: #import Dataset
    boston = datasets.load_boston()

In [70]: print(boston.keys())
    dict_keys(['data', 'target', 'feature_names', 'DESCR'])
```

```
In [71]: print(boston.DESCR)
         Boston House Prices dataset
         Notes
         _ _ _ _ _
         Data Set Characteristics:
             :Number of Instances: 506
             :Number of Attributes: 13 numeric/categorical predictive
             :Median Value (attribute 14) is usually the target
             :Attribute Information (in order):
                 - CRIM
                            per capita crime rate by town
                 - ZN
                            proportion of residential land zoned for lots over 25,000 s
         q.ft.
                 - INDUS
                            proportion of non-retail business acres per town
                            Charles River dummy variable (= 1 if tract bounds river; 0 o
                 - CHAS
         therwise)
                            nitric oxides concentration (parts per 10 million)
                 NOX
                 - RM
                            average number of rooms per dwelling
                            proportion of owner-occupied units built prior to 1940
                 - AGE
                 - DIS
                            weighted distances to five Boston employment centres
                 - RAD
                            index of accessibility to radial highways
                 - TAX
                            full-value property-tax rate per $10,000
                 - PTRATIO
                            pupil-teacher ratio by town
                            1000(Bk - 0.63)^2 where Bk is the proportion of blacks by to
         wn
                 - LSTAT
                            % lower status of the population
                 - MEDV
                            Median value of owner-occupied homes in $1000's
             :Missing Attribute Values: None
             :Creator: Harrison, D. and Rubinfeld, D.L.
         This is a copy of UCI ML housing dataset.
```

http://archive.ics.uci.edu/ml/datasets/Housing (http://archive.ics.uci.edu/ml/datasets/Housing)

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression problems.

^{**}References**

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing) (http://ar chive.ics.uci.edu/ml/datasets/Housing))

```
In [72]: features = pd.DataFrame(boston.data, columns=boston.feature_names)
    targets = boston.target
```

In [73]: features.describe()

Out[73]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.593761	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.79
std	8.596783	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.10
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.12
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.10
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.20
75%	3.647423	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.18
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.12

In [74]: features.isnull().sum()

Out[74]: CRIM

0 ΖN 0 **INDUS** 0 **CHAS** 0 NOX 0 RM0 AGE 0 DIS 0 RAD 0 TAX **PTRATIO** В 0 LSTAT dtype: int64

In [75]: features.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 13 columns): CRIM 506 non-null float64 ΖN 506 non-null float64 **INDUS** 506 non-null float64 CHAS 506 non-null float64 NOX 506 non-null float64 RM506 non-null float64 506 non-null float64 AGE DIS 506 non-null float64 RAD 506 non-null float64 TAX 506 non-null float64 **PTRATIO** 506 non-null float64 В 506 non-null float64 LSTAT 506 non-null float64 dtypes: float64(13)

dtypes: float64(13)
memory usage: 51.5 KB

In [76]: sns.heatmap(features.corr())

Out[76]: <matplotlib.axes._subplots.AxesSubplot at 0xd79ca20>

In [77]: features.head(5)

Out[77]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
4													

```
In [78]: # Split the train and test data
         X train, X test, y train, y test = train test split(features, targets, test size=
In [79]: # Data Preparaion : As all the features are numeric no LabelEncoder, OneHotEncoder
         #Data normalization by standard scaler
         sc = StandardScaler()
         X train = sc.fit transform(X train)
         X test = sc.transform(X test)
In [80]: # building the RandomForestRegressor model for the boston housing data
         from sklearn.ensemble import RandomForestRegressor
         rf = RandomForestRegressor(n estimators=500, oob score=True, random state=0)
         rf.fit(X train, y train)
Out[80]: RandomForestRegressor(bootstrap=True, criterion='mse', max depth=None,
                    max features='auto', max leaf nodes=None,
                    min impurity decrease=0.0, min impurity split=None,
                    min samples leaf=1, min samples split=2,
                    min weight fraction leaf=0.0, n estimators=500, n jobs=1,
                    oob_score=True, random_state=0, verbose=0, warm_start=False)
In [81]: # Calculate the absolute errors & mean absolute error (mae)
         from sklearn import metrics
         errors = abs(y_pred - y_test)
         print('MAE:', metrics.mean absolute error(y test, y pred))
         MAE: 2.061590196078432
In [82]:
         # Calculate mean absolute percentage error (MAPE) & Accuracy
         mape = 100 * (errors / y_test)
         accuracy = 100 - np.mean(mape)
         print('Accuracy:', round(accuracy, 2), '%.')
```

Accuracy: 88.87 %.

```
In [83]: #visualization
    plt.scatter(y_test, y_pred)
    plt.xlabel("Actual Prices")
    plt.ylabel("Predicted prices")
    plt.title("Actual Prices vs Predicted prices")
    plt.show()
```



```
In [ ]:
```