# ADL HW3

tags: write-up

備註:所有 f1-score 都有乘上倍率 100。

## Q1: Model (2%)

### Q1.1 Model (1%)

我 pre-trained model 使用了 MT5ForConditionalGeneration 的 "google/mt5-small",config 部分皆採取原 model 的預設值。

mT5 是建立在 T5 之上,使用更多種語言的資料庫、更多的超參數選擇、改動 activation function 使得下游 (metric, task) 表現更好; T5 使用了 C4 (Common Crawl's web crawl corpus) 資料做訓練,基於 BERT 與 transformer 的模型架構,並加上 Encoder-Decoder 與 mask (填空) 的改動,由於 encoder 的 self-attention 與 decoder 的 auto-regressive,還有 Fine-tuning 階段採取並行 (同步) 更新 encoder & decoder 使得模型表現的較為優秀。

#### config

```
"architectures": [
    "MT5ForConditionalGeneration"
  "d ff": 1024,
  "d_kv": 64,
  "d model": 512,
  "decoder_start_token_id": 0,
  "dropout_rate": 0.1,
  "eos token id": 1,
  "feed_forward_proj": "gated-gelu",
 "initializer factor": 1.0,
  "is encoder decoder": true,
  "layer_norm_epsilon": 1e-06,
  "model type": "mt5",
  "num decoder layers": 8,
  "num heads": 6,
  "num layers": 8,
  "pad_token_id": 0,
  "relative_attention_num_buckets": 32,
  "tie word embeddings": false,
  "tokenizer_class": "T5Tokenizer",
  "vocab_size": 250112
}
```

## Q1.2 Preprocessing (1%)

tokenization 部分使用 AutoTokenizer 的 "google/mt5-small",策略一樣採取 SentencePiece 做出分詞,其切割出 subword units 使用了 byte-pair-encoding (BPE) [Sennrich et al.] and unigram language model [Kudo.] 兩種方法。

preprocessing 部分,因為起初使用 huggingface transformers 的 summarization sample code 遇到諸多麻煩,所以自己寫了一個 MT5Dataset 繼承自 torch.utils.data.Dataset,做的操作除了 tokenizer 之外就只有將 input/output truncate 至大小為 256/64 長度。

# Q2: Training (2%)

## Q2.1 Hyperparameter (1%)

test tw\_rouge under num\_beams = 2

| Hyperparameter | Value             |
|----------------|-------------------|
| batch_size     | 16                |
| max_input      | 256               |
| max_output     | 64                |
| num_epoch      | 25                |
| optimizer      | torch.optim.AdamW |
| lr             | 1e-4              |
| weight_decay   | 5e-5              |

為了能夠在手邊的 GPU 能夠訓練與 loss value 可以下降,還有在有限時間內通過 baseline,所以選擇了上述的 hyperparameters。

## Q2.2 Learning Curves (1%)



|                 | rouge-1 f1 | rouge-2 f1 | rouge-l f1 |
|-----------------|------------|------------|------------|
| Public baseline | 22.0       | 8.5        | 20.5       |
| my best score   | 26.670     | 10.699     | 23.809     |

# Q3: Generation Strategies(6%)

## Q3.1 Stratgies (2%)

### Greedy

num\_beams = 1,顧名思義,只記錄目前最大可能性的結果。

#### **Beam Search**

num\_beams > 1,如此可以保存前 num\_beams 個最佳可能,避免在遍歷 tree 時 missing hidden high probability word sequences。

#### **Top-k Sampling**

根據 probability 做排序,超過 top\_k 的選擇將被丟棄,如此再次計算每個選擇的機率,換句話說,只考慮前 top\_k 最有可能的結果。

#### Top-p Sampling

在 top\_k 設定之下,選擇字詞 probability 超過 top\_p 且字詞長度最短的選擇。

#### **Temperature**

溫度又好比熱力學的狀態,又或者可以理解成 "創造力",Temperature 設定越靠近 0,表示輸出越趨向於 model 的 argmax (aka. max likelihood);而 Temperature 越大,表示輸出越趨向於其他可能,例如機率第二大 & 第三大的可能字詞。

### Q3.2 Hyperparameters (4%)

#### Q3.2.1 compare the result

for Top-k Sampling: num\_beams = 5, top\_p = 1.0, temperature = 1.0 for Top-p Sampling: num\_beams = 5, top\_k = 150, temperature = 1.0 for Temperature: num\_beams = 5, top\_k = 150, top\_p = 1.0

| Stratgies                     | rouge-1 f1 | rouge-2 f1 | rouge-l f1 |
|-------------------------------|------------|------------|------------|
| greedy (num_beams = 1)        | 25.143     | 9.446      | 22.489     |
| beam_search (num_beams = 2)   | 26.194     | 10.320     | 23.428     |
| beam_search (num_beams = 3)   | 26.442     | 10.541     | 23.663     |
| beam_search (num_beams = 5)   | 26.670     | 10.699     | 23.809     |
| beam_search (num_beams = 7)   | 26.609     | 10.748     | 23.767     |
| Top-k Sampling (top_k = 25)   | 26.207     | 10.260     | 23.436     |
| Top-k Sampling (top_k = 50)   | 26.047     | 10.301     | 23.273     |
| Top-k Sampling (top_k = 75)   | 26.108     | 10.339     | 23.322     |
| Top-k Sampling (top_k = 100)  | 26.216     | 10.369     | 23.380     |
| Top-k Sampling (top_k = 125)  | 26.091     | 10.318     | 23.370     |
| Top-k Sampling (top_k = 150)  | 26.174     | 10.268     | 23.329     |
| Top-p Sampling (top_p = 0.75) | 26.293     | 10.383     | 23.509     |
| Top-p Sampling (top_p = 0.8)  | 26.128     | 10.238     | 23.345     |
| Top-p Sampling (top_p = 0.85) | 26.135     | 10.312     | 23.344     |
| Top-p Sampling (top_p = 0.9)  | 26.030     | 10.249     | 23.250     |
| Top-p Sampling (top_p = 0.95) | 26.060     | 10.243     | 23.342     |
| Top-p Sampling (top_p = 1.0)  | 26.174     | 10.268     | 23.329     |

| Stratgies                       | rouge-1 f1 | rouge-2 f1 | rouge-l f1 |
|---------------------------------|------------|------------|------------|
| Temperature (temperature = 0.8) | 25.134     | 9.789      | 22.678     |
| Temperature (temperature = 1.0) | 26.174     | 10.268     | 23.329     |
| Temperature (temperature = 4.0) | 5.238      | 0.138      | 4.493      |

#### Q3.2.2 final generation strategy

經過測試發現 beam\_search (num\_beams = 5) 還是表現比較好。

# Bonus: Applied RL on Summarization (2%)

### Algorithm (1%)

我採取助教的建議,使用 policy gradient 計算 num\_beams=5 的 ROUGE-L F1-score 作為 reward (loss 的 multiplier);其餘參數則與 Q2.1 Hyperparameter 描述相同。

### Compare to Supervised Learning (1%)

all test under num\_beams = 5

| type                   | rouge-1 f1 | rouge-2 f1 | rouge-l f1 |
|------------------------|------------|------------|------------|
| supervised-learning    | 26.670     | 10.699     | 23.809     |
| reinforcement learning | 26.859     | 10.940     | 24.020     |

reinforcement learning model 使用從 fine-tune mT5 supervised-learning 最好表現的 model checkpoint,之後再訓練 10 個 epoch 找出表現最佳的 RL 模型。

由於 supervised-learning fine-tune model 表現已經不錯 (接近 overfit),所以在 loss & output texts 看不出多大的差異。但是因為 RL policy gradient 以 ROUGE-L F1-score 作為 reward (學習對象),所以其f1-score 還可以再推升大約 1 個單位。