Graphen und biologische Netze $(WS\ 2016/17)$

Inhaltsverzeichnis

1	Vor	lesung 14.10.2016	1
	1.1	Grundlagen der Graphen und biologische Netze	1
	1.2	Gleichheit von Graphen	2
	1.3	Eigenschaften von Graphen	4
	1.4	Graph-Invarianten	
	1.5	Pfade und Zusammenhänge	
2	Vor	lesung 21.10.2016	6
	2.1	Zusammenhang	
	2.2	Cut-Vertex (Schnittknoten)	7
	2.3	Spezielle Graphen	10
	2.4	algebraische Graphentheorie	11
		2.4.1 Matrizendarstellung von Graphen	11
		2.4.2 Permutationsmatrix	11
	2.5	Spektrum einer Matrix	13
3	Vor	lesung 28.10.2016	14
	3.1	Inzidenzstrukturen	14
		3.1.1 Inzidenzmatrize - ungerichtete Graphen	14
		3.1.2 Inzidenzmatrize - gerichtete Graphen	15
	3.2	Laplace-Matrix	16
		3.2.1 Algebraische Konnektivität	
		3.2.2 Fiedler Vektor	18
		3.2.3 Interlacing Theorem	
		3.2.4 Anzahl nicht-isomorpher Graphen	18
		3.2.5 Isomorphismus auf Bäumen	19
4	Vor	lesung 04.11.2016	22
	4.1	Kreise	22
5	Vor	lesung 11.11.2016	23
6		lesung 18. und 25.11.2016	24
	6.1	Ohrenzerlegung	
	6.0	6.1.1 Algorithmus der Ohrenzerlegung	
	6.2	Unabhaengigkeitssysteme und Matroide	
		6.2.1 Greedy Algorithmen auf Matroiden	
	6.9	6.2.2 Horton-Algorithmus (1972)	
	6.3	Graphen in der Ebene und planare Graphen	
	6.4	Färbung von Graphen	31
7		lesung 02.12.2016	32
	7.1	Cographen & Cotrees	32

8	Vorlesung 09.12.2016	38
9	Vorlesung 16.12.2016	39
10	Vorlesung 21.12.2016	45
	10.1 neighbor joining	45
	10.2 Neighbor Net	

1 Vorlesung 14.10.2016

1.1 Grundlagen der Graphen und biologische Netze

Graph: Knoten, Kanten (binäre Relationen)

<u>Transitivität:</u> implizite Verbindung (abhängig vom Kontext) Labeled Graphs:

- Graph: (V, E)
- Labels: L_V (Knotenlabel), L_E (Kantenlabel)

 $e \in E \Rightarrow \exists x, y \in V : x \text{ und y sind die Endpunkte von e}$

<u>Knoten-Labelfunktion</u> α : $\alpha: V \to L_V: v \mapsto \alpha(v)$ <u>Kanten-Labelfunktion</u> β : $\beta: E \to L_E: e \mapsto \beta(e)$

ungerichtete Graphen

- Kante ist eine Menge von 2 (verschiedenen) Knoten
- $e = \{x,y\} = \{y,x\} \rightarrow$ Reihenfolge egal
- $E \subseteq V^{(2)} \to$ Kante ist Teilmenge von 2 Knoten

gerichtete Graphen

- Kante ist ein geordnetes Paar von 2 (verschiedenen) Knoten
- e = (x, y) entspricht $x \to y$, (y, x) entspricht $y \to x$
- $E \subseteq V \times V$
- gerichtete Kante besteht aus head (in Pfeilrichtung) und tail

Funktionen gerichteter Graphen:

 $h: E \to V: e \mapsto head(e)$ $t: E \to V: e \mapsto tail(e)$

Graphen in denen Kanten zwei verschiedenen Endpunkte haben **UND** zu jeden Paar von Kanten höchstens eine Kante gehört hießen <u>EINFACH</u> oder <u>SIMPLE</u> im gerichteten Fall:

trotzdem einfacher Graph!

 $\overset{\text{erst:}}{\mathsf{X}} \bigvee \mathsf{Y}$

ist Multigraph

Loops:

Abbildung 1: links: gerichtet; rechts: ungerichtet

⇒ einfacher Graph mit Loops

Durch Unterteilung der Kanten in Multigraphen kann eine Transformation in Graphen erzeugt werden:

- ungerichtet: zweifache Unterteilung mittels zweier Knoten
- gerichtet: einfache Unterteilung mittels Knoten

1.2 Gleichheit von Graphen

als labeled graphs: $G_1=G_2=G_4\neq G_3$

 \Rightarrow 2 Graphen $G_1=(V_1, E_1)$ und $G_2=(V_2, E_2)$ sind isomorph wenn es einen bijektive Abbildung¹ $\pi: V_1 \to V_2$ gibt, sodass $\{x, y\} \in E_1 \Leftrightarrow \{\pi(x), \pi(y)\} \in E_1$

¹https://de.wikipedia.org/wiki/Bijektive_Funktion

bijektive Abbildung: jedes Element von

1. wird zu genau einem Element von 2. zugeordnet

$$\pi(a) = w, \pi(b) = u, \pi(c) = x, \pi(d) = v$$

 \rightarrow hier ergibt bijektive Abbildung keinen Isomorpismus, da Bild(d) und Bild(c) Kante haben, jedoch v und x keine Kante haben

Durch folgende bijektive Abbildung wird aber Isomorphie erreicht:

$$\pi(a) = w, \pi(b) = x, \pi(c) = u, \pi(d) = v$$

Bezogen auf die Labels kann es mehrere mögliche Isomorphien geben.

Schreibweise: $G \simeq H$ (G ist isomorph zu H) mit $G \to^{\pi} H, G \leftarrow^{-\pi} H$ sodass π isomorph ist

Reflexivität: Ein Graph ist zu sich selbst immer isomorph: $G \simeq G$ Symmetrie: $G \simeq H \Leftrightarrow H \simeq G$ Transitivität: $G \simeq H, H \simeq K \Rightarrow G \simeq K$

 \simeq ist eine Äquivalenz
relation \to Isomorphie teilt Graphen in Klassen ein (Isomorphie
klassen)

Nebenbemerkung: Labeled Graphen?

Zusätliche Bedingung benötigt: $\lambda(\pi(x)) = \lambda(x) \to \text{Labels müssen erhalten bleiben!}$

Testen auf Gleichheit

Gegeben: $G_1=(V_1, E_1), G_2=(V_2, E_2)$ Frage: Sind die Graphen isomorph?

Grundbedingungen:

1. $|V_1| = |V_2| \rightarrow$ gleiche Anzahl von Knoten

2. $|E_1| = |E_2| \rightarrow$ gleiche Anzahl von Kanten

Eigenschaften von Graphen

Nachbarknoten von v
: $N(v):=\{y\in V|\{v,y\}\in E\}$

deg(v) := |N(v)|

$$\begin{split} \delta(G) &:= \min_{v \in V} deg(v) \\ \Delta(G) &:= \max_{v \in V} deg(v) \end{split}$$

<u>Def:</u> Ein Graph heißt **REGULÄR** wenn $\Delta(G) = \delta(G)$ (wenn alle Knoten gleichen Grad haben)

Gradfolge von G:

 $\mathcal{F} = (n_0, n_1, n_2, \dots, n_{|V|-1}) \text{ mit } n_k := |\{x \in V | deg(x) = k\}|$

 $\delta(G) \ge 0$

 $\Delta(G) < |V| - 1$

Beispiel:

0 1 2 3 4 F= (0 4 0 0 1)

 $F = (0 \ 4 \ 0 \ 0)$

bei Isomorphie: $\mathcal{F}_1 = \mathcal{F}_2 \to \text{Isomorphismus } \pi$ erhält Grad der Knoten!

1.4 Graph-Invarianten

Eigenschaften, die unter Isomorphie erhalten bleiben

 \mathcal{G} ... Menge aller Graphen

F...ist ein Graph invariant wenn

$$F: \mathcal{G} \to X \tag{1}$$

die Eigenschaft hat, dass

$$G \simeq H \Rightarrow F(G) = F(H)$$
 (2)

Invarianten bis jetzt: |V|, |E|, Gradfolge \mathcal{F}

Wenn $F(G) \neq F(H)$ für irgendeine Grapheninvariante $\Rightarrow G \neg \simeq H$

1.5 Pfade und Zusammenhänge

<u>Kantenzug:</u> Folge von Kanten in G" $\overline{x_o, e_1, x_1, e_2}, x_2, \dots, e_l, x_l \text{ sodass } e_i := \{x_{i-1}, x_i\}$

Beispiel:

Weg: Kantenzug sodass $e_i \neq e_j$ für $i \neq j$ (keine Kante doppelt verwenden)

<u>Pfad:</u> Kantenzug sodass $x_i \neq x_j$ für $(i, j) \neq (0, l)$ mit 0=Startknoten und l=Endknoten des Pfades (keinen Knoten mehrfach bis auf x_0, x_l)

- offen: $x_o \neq x_e$
- \bullet geschlossen: $x_0=x_e$ (nur hier 1 Knoten doppelt benutzt!)

<u>Definition:</u> G ist zusammenhängend wenn es zwischen je zwei Knoten $x,y \in V$ einen Kantenzug gibt

Frage:

- 1. Ist Zusammenhang eine Grapheninvariante?
- 2. Kann man in der Definition Kantenzug durch Weg, Pfad oder Kreis ersetzt?

2 Vorlesung 21.10.2016

2.1 Zusammenhang

Zusammenhang ⇒ je zwei Konten sind durch einen {Kanten, Weg, Pfad, Kreis} verbunden

Kreis-zusammenhängend (k-zshgd) \Rightarrow Pfad-zusammenhängend (p-zshgd) \Rightarrow Weg-zusammenhängend (w-zshgd) \Rightarrow Kantenzug-zusammenhängend (kz-zshgd)

Lemma: Jeder Kantenzug zwischen x und y enthält einen Weg zwischen x und y.

Beweis/Idee:

<u>Lemma</u>: Jeder Weg zwischen x und y enthält einen Pfad (Beweis/Idee siehe vorher)

 $\underline{\text{Korollar}}$: Pfad-zusammenhängend (p-zshgd) \Leftrightarrow Weg-zusammenhängend (w-zshgd) \Leftrightarrow Kantenzug-zusammenhängend (kz-zshgd) in Zukunft einfach **zusammenhängend**

Jeder Kantenzug von x nach y und zurück zu x muss u wenigstens 2 mal enthalten und ist deswegen kein Pfad.

Kreis \equiv geschlossener Pfad \Rightarrow \nexists Kreis der x und y enthält.

2.2 Cut-Vertex (Schnittknoten)

Sei G ein zusammenhängender Graph. Dann ist v ein Cut vertex wenn $G\setminus\{v\}$ [= Graph der entsteht wenn v und alle inzidenten Kanten entfernt werden] in wenigstens Z Zusammenhangs-Komponenten zerfällt.

<u>Theorem:</u> Sei G ein zusammenhängender Graph mit mehr als 2 Knoten, dann seien folgende Aussagen äquivalent:

- 1. G ist Kreiszusammenhängen
- 2. G hat keinen cut-vertex

Beweis/Idee: cut-vertex $\Rightarrow \neg$ Kreiszusammenhang

x in G_1 , g in $G_2 \Rightarrow \nexists$ Kreis durch x und y $\Rightarrow \neg$ Kreiszusammenhang

zu 2.:

Kreiszusammenhang $\Rightarrow \nexists$ cut-vertex ($|V(G)| \ge 3$)

Kreiszusammenhang $\Rightarrow \exists$ mindestens 2 disjunkte Wege von x nach y, d.h. es gibt keinen Knoten durch den alle Wege von x nach y gehen \Rightarrow es kann keinen cutvertex geben

Spezialfälle:

- 1. |V(G)|=1 (nur ein Knoten) \Rightarrow zusammenhängend, ¬ Kreiszusammenhängen, kein cut-vertex
- 2. |V(G)| = 2 (zwei Knoten, eine Kante) \Rightarrow zusammenhängend, \neg Kreiszusammenhängen, kein cut-vertex

<u>Def.</u>: Ein Graph G ist 2-zusammenhängend wenn G\v für alle $v \in V(G)$ zusammenhängend und nicht ein einzelner Knoten oder leer ist \Leftrightarrow G\v zusammenhängend und enthält wenigstens 1 Kante

Spezialfälle 1 und 2 sind zusammenhängend aber nicht 2-zusammenhängend

G ist 2-zusammenhängend \Leftrightarrow G enthält keinen cut-vertex

Sei $W \subseteq V(G)$ und G\W der Graph der aus G ensteht, wenn alle Knoten in W und deren inzidenten Kanten entfernt werden.

G ist k-zusammenhängend, wenn G\W für alle W mit |W|=k-1 zusammenhängend und weder K_1 noch leer ist.

<u>Definition:</u> $\kappa(G)$ ist die größte Zahl k sodass G k-zusammenhängend \Leftrightarrow G ist k-zusammenhängend aber nicht (k+1)-zusammenhängend

$\kappa(G)$ heißt die Konnektivität von G

Bemerkung: G ist k-zusammenhängend \Rightarrow G\v ist (k-1)-zusammenhängend für alle veV(G)

2.3 Spezielle Graphen

vollständige Graphen:

Kreise:

<u>Baum:</u> zusammenhängender Baum der keine Kreise enthält <u>Wald:</u> disjunkte Vereinigung von Bäumen \Leftrightarrow kreisfreier Graph Teilgraphen: H(W,F) ist Teilgraph von G(V,E) wenn

- 1. $W \subseteq V$
- 2. $F \subseteq E$
- 3. $\{x,y\} \in F \Rightarrow x,y \in W$

Induzierter Teilgraph: H ist induzierter Teilgraph von wenn

- 1. H Teilgraph von G
- 2. $x,y \in W$ und $\{x,y\} \in E \Rightarrow \{x,y\} \in F$

spannende Teilgraphen (spanning trees): Teilgraphen W=V

Spannbäume (spanning trees): Teilbaum von G, der alle Knoten enthält jeder zusammenhängende Graph hat einen Spannbaum

2.4 algebraische Graphentheorie

Idee: Graphen \Rightarrow Matrizen \Rightarrow Eigensch. der Matrizen \Rightarrow Eigensch. der Graphen

2.4.1 Matrizendarstellung von Graphen

Adjezenz-Matrix A \rightarrow fixe Reihenfolge der Knoten (x < y) $A_{xyy} = \begin{cases} 1 \text{ wenn x,y benachbart}\{x,y\} \in E \\ 0 \text{ sonst} \end{cases}$ Beispiel:

	1	2	3	4
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1
4	0	0	1	0

Eigenschaften von A:

- symetrisch
- für simple Graphen $A_{xx}=0$ für alle A
- für unterschiedlich Nummerierungen unterschiedliche A-Matrizen

2.4.2 Permutationsmatrix

quadratische Matrix P sodass in jeder Zeile und jeder Spalte genau eine 1 steht und sonst 0 $(P=(P_ij))$

Satz: zwei Graphen mit Adjezenz-Matritzen A und B sind isomorph genau dann wenn es eine P gibt sodass $AP=P^TB$

$$PP^T = P^TP = I$$
 ($\hat{=}$ Einheitsmatrix) [... mit $P_{ij}^T = P_{ji}$] $A \cdot P = P \cdot B$ warum hier untransponiert? $A \cdot PP^T = P \cdot B \cdot P^T$

Zwei quadratische Matrizen A,B heißen ähnlich wenn es einer invertierbare Matrix Q gibt, sodass $A\cdot Q=Q\cdot B$

11

Satz: ähnliche Matrizen haben das gleiche Spektrum

$$\begin{array}{l} \mathbf{j}{=}\pi(i) \\ \mathbf{P}_{ij}{=}1 \\ \mathbf{P}_{ij'}{=}0 \text{ für } \mathbf{j}'{\neq}\mathbf{j} \\ \mathbf{P}_{i'j}{=}0 \text{ für } \mathbf{i}'{\neq}\mathbf{i} \end{array}$$

Beispiel:

2.5 Spektrum einer Matrix

- für unsere Fälle quadratisch
- Eigenvektor x und Eigenwerte λ von A erfüllen $A \cdot x = \lambda \cdot x$

Eine nxn-Matrix hat höchstens n verschiedene Eigenwerte

- \bullet wenn A symetrisch (A=A T) sind alle Eigenwerte reell
- \bullet es gibt $det(A-\lambda\cdot I)=0$ \rightarrow liefert Gleichung n
-ten Grades für λ

Bemerkung:
$$det(A) = \sum_{\pi \in S_n} a_{1\pi(1)} \cdot a_{2\pi(2)} \cdot \dots a_{n\pi(n)} \cdot (-1)^{sgn(\pi)}$$

<u>Definition:</u> Das Spektrum einer Matrix ist die Menge der Eigenwerte Graph \to Adjezenz-Matrix \to Spektrum der Adjezenz-Matrix

Satz: das Spektrum einer A-Matrix ist eine Graphinvariante einer Graphenklasse

3 Vorlesung 28.10.2016

3.1 Inzidenzstrukturen

Struktur aus Punktmenge und Menge von Blöcken.

Tripel: (p,B,I)

- $p \cap B = \emptyset$
- $I \subseteq p \times B$
- p = Punkte z.B. Vertices
- \bullet B = Blöcke z.B. Kanten
- I = Inzidenzmatrix

Die Punkte p "inzidieren" demnach mit den Blöcken B, "liegen auf" einem Block. Dieser Block kann, wie in unserem Fall bei Graphen, eine Gerade sein.

3.1.1 Inzidenzmatrize - ungerichtete Graphen

- n Knoten, m Kanten
- $n \times m \text{ Marix } B=b_{i,j}$
- G=(V,E) V={v₁, ..., v_n} E={e₁, ..., e_m} $b_{i,j}$ $\begin{cases}
 1, v_i \in e_j \\
 0, sonst
 \end{cases}$

$$3 \ 0 \ 1 \ 0$$

In dieser Inzidenzmatrize steht Vertex 1 nur auf Kante a, Vertex 2 auf Kante a und b (kann nicht auf c liegen) und Vertex 3 auf Kante b. In Form einer Bildes

könnte das so aussehen:

3.1.2 Inzidenzmatrize - gerichtete Graphen

•
$$b_{i,j}$$

$$\begin{cases} 1, e_j = (v_i, x) \\ 0, v_i \ni e_j \\ -1, e_j = (x, v_i) \end{cases}$$

a b c

1 -1 0 0

2 1 1 0

3 0 -1 0

Hier sind die Kanten gerichtet. Im Gegensatz zur ungerichteten Inzidenzmatrize erhalten "ankommende" Kanten hier ein negatives Vorzeichen. Siehe Kante a zu Vertex 1 und Kante b zu Vertex 3.

3.2 Laplace-Matrix

- G = (V,E)
- \bullet Gradmatrix D=d_{i,j}
- Adjazenzmatrix A=a_{i,j}
- Laplace-Mazrix $L=\operatorname{D-A}=\operatorname{l}_{i,j}$

$$d_{i,j} \begin{cases} deg(v_i), \ i = j \\ 0, \ sonst \end{cases}$$

$$a_{i,j} \begin{cases} 1, \ (i,j) \in E \\ 0, \ sonst \end{cases}$$

- A ist symmetrisch für ungerade Graphen

$$L \begin{cases} deg(v_i), \ i = j \\ -1, \ i \neq j, (i, j) \in E \\ 0, \ sonst \end{cases}$$

- Zusammenhang zur Inzidenzmatrix: $L\!\!=\!\!\mathrm{B} \times \mathrm{B}^{\mathrm{T}}$

Beispiel:

 $\begin{array}{ccc} & 1 & 0 & 0 \\ \text{Gradmatrix:} & 0 & 2 & 0 \end{array}$

0 0 1

0 1 0

Adjazenzmatrix: 1 0 1

0 1 0

1 -1 0

Laplace-Matrix: -1 2 -1

0 -1 1

Eigenschaften:

- symmetrisch
- die Zeilen- und Spaltensumme = 0
- Eigenwert $\lambda_0=0, v_0=(1,\ldots,1) \Rightarrow 2 \ v_0=\lambda_0$
- \bullet Anzahl der 0 Eigenwerte \Rightarrow Anzahl der connected components
- special gap: kleinster Eigenwert $\neq 0$
- algebraische Konnektivität (Fiedler-Wert)
 - zweit-kleinster Eigenwert positiv-semidifinit
 - $-\lambda_i \ge 0$

3.2.1 Algebraische Konnektivität

- beschreibt wie gut verbunden der Graph, global gesehen, ist
- $\bullet\,$ algebraische Konnektivität \leq Vertex-Konnektivität
- |V|=n, min. Durchmesser von d(längster Pfad)
 - -alg. Konn $\geq 4/\mathrm{nd}$

Beispiel:

- \bullet |V|=3
- \bullet d=2
- vert. conn = 1
- alg. conn = $\lambda_z = 0.666$

3.2.2 Fiedler Vektor

- Eigenvektor zur Alg. Konn.
- eignet sich zur Graphpartitionierung

Beispiel:

- $F = \langle 0.4, 0.3, 0.1, -0.2, 0.2, -0.8 \rangle$
- {4,6},{1,2,3,5}

3.2.3 Interlacing Theorem

- Sei A eine reelle, symmetrische Matrix
- mit Eigenvektoren $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$
- sei A' principal Submatrix von A
- \bullet Beispiel: principal Submatrix \Leftrightarrow induzierter Subgraph, ein Vertex weniger $(G\text{-}\{v_i\})$
 - Eigenwerte zu A': $\eta_1 \geq \eta_2 \geq \ldots \geq \eta_{n-1}$
 - dann gilt: $\lambda_i \geq \eta_i \geq \lambda_{i+1}$... $i=1,\,2,\ldots,\,n\text{--}1$

3.2.4 Anzahl nicht-isomorpher Graphen

- $\bullet \ V = \{1, \dots, n\}$
- $E \subseteq \begin{pmatrix} V \\ 2 \end{pmatrix} = [v]^2$
- wie viele versch. Graphen gibt es? $\Rightarrow 2^{\binom{n}{2}}$
 - einige dieser Graphen sind isomorph zueinander
 - wie viele Äquivalenzklassen gibt es für (\cong) auf V = {1,-, n}?

Approximation:

- wie viele isomorphe Graphen gibt es für 6?
- Isomorpge-Bijektion π V \rightarrow V
- Anzahl Permutationen: n!
- Es gib maximal n! isomorphe Graphen auf G

$$\frac{2^{\frac{n}{2}}}{n!} = \frac{\text{Anzahl Graphen}}{\text{mgl. Bijektion fur einen einzelnen Graphen}}$$

• wir haben mit $\frac{2^{\frac{n}{2}}}{n!}$ paarweise nicht-isomorphe Graphen $n! \le n^n$

$$log_2(2^{\binom{n}{2}}) = \binom{n}{2} = \frac{n^2}{2}(1 - \frac{1}{n})$$

$$n! \leq n^{n}$$

$$log_{2}(2^{\binom{n}{2}}) = \binom{n}{2} = \frac{n^{2}}{2}(1 - \frac{1}{n})$$

$$log_{2}(\frac{2^{\binom{n}{2}}}{n!}) = \binom{n}{2} - log(n!) \geq \frac{1}{2}n^{2} - \frac{1}{2}n - nlog_{2}(n)$$

$$= \frac{n^{2}}{2}(1 - \frac{1}{n} - \frac{2log_{2}(n)}{n})$$
Fehler geht gegen $0(2^{O(n^{2})})$

3.2.5 Isomorphismus auf Bäumen

- \bullet das "das ist einfach" \to Programm mit polynomieller Zeit bauen
- Baum codieren via 2n 0en und 1en \hookrightarrow das sei der Code von Baum T
- zu beweisen: isomorph Bäume haben gleiche codes
- drei Klassen von Bäumen:
 - Bäume
 - gewurzelte Bäume
 - gewurzelte Bäume mit Geschwisterordnung

Beispiel:

Algorithmus (gewurzelt, geordnet):

- $\bullet\,$ K1: Blätter werden kodiert als 01
- K2: $v \in V$ mit Kiner $c_1, \dots, c_n \in V$
- $\bullet\,$ Sei A_i der Code von c_i
- \bullet Dann codiert 0 A₁₋A_n 1
 - Isomorphe Bäume werden mit gleichem Code codiert
 - $-\,$ Baum aus Code: Zeigt das nicht-isomorphe Bäume verschiedenen Code haben

Beispiel:

Induktion:

- $\bullet\,$ einzelne Wurzel ,01"
- Schritt: Code K, Länge 2(n+1) mit Form 0A1, $A=A_{1-n}$ bestimme A_1 : Kleinster 0/1 kann mit gleicher Zahl von 0 und 1
- \bullet A_i ist via Induktion des Codes für dazugehörigen gewurzelten, geordneten Baum T_i

"Kleinste maximale Entfernung zwischen den Blättern als Wurzel wählen "

- 4 Vorlesung 04.11.2016
- 4.1 Kreise

5 Vorlesung 11.11.2016

6 Vorlesung 18. und 25.11.2016

6.1 Ohrenzerlegung

Es sei nur dann ein Graph G(V,E) mit |E| >= 2, der 2-Vertex-verbunden ist, gegeben, wenn es eine offene Ohrenzerlegung gibt. Jede Ohrenzerlegeung definiere eine Kreisbasis.

• Kreisbasis:

Ein Ohr Sei ein maximaler Pfad P, |P| >= 1, so dass P nur an Endpunkten Kanten aus $E \notin P$ berührt. Die Knoten in P, die keine Endknoten sind haben immer Grad deg = 2.

• offene Ohrenzerlegung

Eine Folge von Ohren $P_1, P_2, ..., P_k$ ist eine offene Ohrenzerlegung, wenn P_1 ein Kreis, P_k und alle anderen P_i Ohren in $G_i = G_{i+1} \setminus P_{i+1}$

6.1.1 Algorithmus der Ohrenzerlegung

- 1. Finde Spannbaum T für G und wähle eine Wurzel
- 2. Für jede Kante (u,v), die nicht Teil des Spannbaums ist, finde den common lowest ancestor der Knoten u und v.
- 3. Fuer jede Kante (u,v) soll die Hauptkante (w,x) gefunden werden, wobei (u,v) und (w,x) Teil eines Kreises sind und (w,x) einen lowest common ancestor so nah wie moeglich an der Wurzel haben und (w,x) \notin von T ist.
- 4. Für alle (w,x) die nicht aus dem Spannbaum sind, trenne alle Kanten mit gleichem Wert ab. Diese Kanten bilden ein Ohr.
- 5. Ordne die Ohren nach ihrem Gewicht.

6.2 Unabhaengigkeitssysteme und Matroide

Viele *Greedy Probleme* lassen sich mittels Matroiden beschreiben (insbesondere Graphenprobleme).

• Unabhaengigkeitssystem

Ein Unabhaengigkeitssystem ist ein Paar M = (S, l) mit endlicher Menge S und $l \ll P_S(S)$ (Powerset von S). Es besitzt folgende Eigenschaften:

 $1 \emptyset = \in l \to \text{Die leere Menge ist unabhängig}$

 $2 x \subseteq Y \in l \to \text{Erblichkeitseigenschaft}$

Die Elemente $x \in l$ und $y \in P_S(S) \setminus l$ sind unabhängig. \rightarrow Kostenfunktion C: S $\rightarrow \mathbb{R}$

Austauscheigenschaft:

Falls
$$A \in l, B \in l, |A| < |B|, \text{ dann } \exists x, x \in B \setminus A : A \cup \{x\} \in l$$

Matroid

Ein Unabhängigkeitssystem sei ein Matroidfalls die Eigenschaften eines Unabhängigkeitssystems und die Austauscheigenschaft erfüllt sind.

grafischer Matroid

Ein graphischer Matroid $M_G = (S_G, l_G)mitS_G = E(G)$

- \rightarrow für $A \subseteq S_G :\in l_G \leftrightarrow A$ ist kein Kreis
- \to Menge an Kanten ist nur dann unabhängig, wenn $G'=(V(G),\!A)$ einen Wald bilden \to G' bildet keinen Kreis

Extension:

Sei M = (S,l) und x \notin A gegeben, so sei l eine Erweiterung von A, falls $A \cup \{x\}$ unabhängig ist. $(A \cup \{x\} \in l)$

 \rightarrow Kante l ist eine Erweiterung, falls $A \cup \{x\}$ keinen Kreis bilden.

Maximalität:

 $A \in l$ ist maximal, falls es keine Erweiterung für A gibt.

Theorem

Alle maximal unabhängigen Teilmengen in einem Matroid haben die selbe Größe.

Beweis

Wenn das Theorem nicht gilt, so wären die maximal unabhängigen Elemente A und B mit |A| < |B|. Damit würde die Austauscheignschaft zeigen, dass x abhängig von A ist: $\exists x : B \setminus A : A \cup \{x\}$. \rightarrow Beweis durch Widerspruch

Beispiel

Gegeben Graph G gilt, dass alle Spannbäume, die gleiche Anzahl an Kanten haben: |E| = |V| - 1.

• gewichtetes Matroid

Ein Matroid M=(S,l) ist gewichtet, falls es eine Gewichtsfunktion $w(x) > 0 \forall x \in S$ gibt. \rightarrow w(A), $A \subseteq Smitw(A) = \sum_{x \in A} w(x)$.

6.2.1 Greedy Algorithmen auf Matroiden

Gegeben sei M(S,l). Finde $A \in l$, sodass w(A) maximal ist.

Beispiel: Minimallänge Spannbäume mit $w'(x)0w_0 - w(x)$ mit $w_0 = max_x(w(x)) + \epsilon$

$Greedy ext{-}Algorithmus$

- $1 A \leftarrow \{\}$
- 2 sortiere S[M] nach absteigendem Gewicht
- $\exists \ \forall x \in S[M] \{ \text{ if } A \cup \{x\} \in l : \text{ then } A \leftarrow A \cup \{x\} \}$
- 4 return A

Theorem

A ist die optimale Lösung des Greedy-Algorithmus

Beispiel

Betrachte und bilde Kreisbasen L1 oder L2. L1 hat insgesamt weniger Knoten als L2 und ist somit eine bessere Lösung. C(G) ist ein Matroid mit den Elementgewichten $|C| \to$ diese definieren S \to die minimalen Kreisbasen werden in polynomieller Zeit in |C| berechnet.

6.2.2 Horton-Algorithmus (1972)

- 1 Konstruiere die kürzesten Pfadbäume mittels Matroide.
- 2 Extrahiere die fundamentalen/minimalen Kreise der Pfadbäume.
- \rightarrow Berechnung ist polynomiell abhängig von |V|
 - essentielle Kreise sind Kreise, die in allen minimalen Kreisbasen vorkommen.
 - relevante Kreise sind Kreise, die in mindestens einer minimalen Kreisbasenlösung vorkommen.
 - Falls C nicht in ein einfacher Kreis ist, dann ist C keine minimale Kreisbase.

6.3 Graphen in der Ebene und planare Graphen

Topologie

- euklidische Ebene: \mathbb{R}^2
- Liniensegmente { p+x(q-p)} mit $p,q \in \mathbb{R}^2$ und $p \neq q$
- homöomorphisch (bijektive stetige Abbildung) zum Einheitskreis
- Polygonzug (zusammenhängende Folge von Kanten)

Theorem: Jordan'scher Kurvensatz

Für jedes Polygon $P\subseteq\mathbb{R}^2$ hat $\mathbb{R}^2\notin P$ zwei Regionen, wobei P die Grenze bildet \to definiertes außen und innen

Lemma

Seien P_1, P_2, P_3 Polygonzüge mit den Endpunkten x und y, so hat $\mathbb{R}^2 \notin \{P_1 \cup P_2 \cup P_3\}$ drei Facetten mit den Grenzen P_1, P_2, P_3 (ohne die Endpunkte x und y):

- $b_1 := P_1 \cup P_2$
- $b_2 := P_1 \cup P_3$
- $b_3 := P_2 \cup P_3$

 \rightarrow falls P_4 ein Polygonzug zwischen \dot{P}_1 und \dot{P}_3 mit $\dot{P}_4, \dot{P}_3 \subset \mathbb{R}^2 \notin \{P_1 \cup P_3\}$ ist, so schneiden sich $P_4undP_2(\dot{P}_4 \cap \dot{P}_2)$

Graph in Ebene:

Ein Graph in der Ebene (V,E) hat folgende Eigenschaften

- $1 \ V \subset \mathbb{R}$
- 2 Jede Kante sei ein Polygonzug zwischen zwei Knoten
- 3 unterschiedliche Kanten haben unterschiedliche Mengen von Knoten
- 4 das innere einer Kante enthält keinen Knoten und keinen Punkt einer anderen Kante

somit ist ein Graph in der Ebene kreuzungsfrei

Facette

Falls G ein Graph in der Ebene ist, so sind die Regionen $\mathbb{R}^2 \notin G$ die Facetten. Die äußere Facette liegt außerhalb des Graphen und die anderen Facetten liegen per Definition innerhalb.

Lemma

Sei G ein Graph in der Ebene $f \in F(G)$ eine Facette und $H \subseteq G$ ein Subgraph, so gilt:

- H hat eine Facette f' mit f' \subseteq f
- Falls der Rand von $f \subset H$ ist, dann ist f' = f

Theorem: Eulersche Formel

Sei G ein verbundener Graph in der Ebene mit
n Knoten, m
 Kanten und l
 Facetten, so gilt: ${\bf n}$ - ${\bf m}$ + l = 2

Beweis

Sei n fixiert \rightarrow induziere über m.

- ifm < n-1: Graph ist nicht verbunden
- ifm = n 1: Graph ist ein Baum
- $ifm \geq n$: Sei $e \in E(G)$ Kante auf einem Kreis, dann ist G' = G-e \rightarrow e liegt auf der Grenze zweier Facetten f_1undf_2 von G und es gibt eine Facette f_e von G', die \dot{e} enthält.

Zeige, dass $F(G) \notin \{f_1, f_2\} = F(G') \notin \{f_e\}$, womit G' eine Facette und eine Kante weniger hat als G.

- \rightarrow Das entfernen einer Kante kombiniert 2 Facetten
- → Fügt man eine Kante hinzu so wird auch eine Kante hinzugefügt
- $\to |V'| = |V| + 1 \text{ und } |E'| = |E| + 1 \to \text{q.w.e.d.}$

Korollar 1

- 1) Ein Graph in der Ebene mit $n \geq 3$ Knoten hat maximal 3n 6 Kanten
- 2) Jede Triangulation mit n Knoten hat genau 3n 6 Kanten

Korollar 2(nach Kuratowski)

Ein Graph in der Ebene hat weder K_5 noch $K_{3,3}$ als topologischen Minor (K_5 und $K_{3,3}$ sind nicht mehr kreuzungsfrei zeichenbar).

Minor

H ist ein Minor von G, falls G in H durch folgende Operationen transformiert werden kann:

- $G e, e \in E(G)$
- \bullet G-v, v \in V(G) (hierbei werden auch nichtverbundene Kanten gelöscht)
- Kontraktion von $e \in E(G)$ mit $e = u,v, u,v \in V(G)$, wobei u,v zu einem Knoten vereinigt werden und dieser zu allen Nachbarn inzident wird.

planarer Graph

Ein Graph G sei planar, wenn er folgende Eigenschaften erfüllt:

- Eine endliche Anzahl von Facetten bildet eine Kreisbasis
- jede Kante, die zwei Kreisen zugehörig ist, heißt innere Kante
- jede Kante, die einem Kreis zugehörig ist, heißt äußere Kante

2-Basis

Jede Kante ist genau 2 mal in den Kreisbasen vertreten.

Konstruktion 2-Basis

- $F = \bigoplus_{c \in B} c$ Rand der äußeren Facette (äußerer Rand)
- 2-Basis = $B \cup F$

Satz von Mc Lane

G ist planar, wenn G auch eine 2-Basis hat.

Beweis Satz von Mc Lane

1 B sei 2-Basis von G und G sei nicht planar

nach Kuratowski ist Subdivision von K_5 oder $K_{3,3}$ $H \subset G$ möglich Behauptung: \to H hat ebenfalls eine 2-Basis

2 $G \notin e, \forall e$ hat eine 2-Basis

es ist nur in einem Kreis $C \in B$ vorhanden, womit $B \notin C$ entsteht.

e ist in zwei Kreisen vorkommend, womit $B \notin \{C_1, C_2\} \cup \{C_1 \oplus C_2\}$ eine 2-Basis ist

 \rightarrow somit haben alle Teilgraphen eine 2-Basis. Da die Behauptung belegt ist, wird ein Widerspruch

zyklometrische Zahl: Die Anzahl der Bassiselemente einer Kreisbasis nennt man zyklometrische Zahl.

Beispiel: vollständiger Graph K_5

- |V| = 5; |E| = 10
- 2-Basis mit 5 inneren und 5 äußeren Kanten
- $\mu(K_5) = -5 + 10 + 1 = 7$
- 2-Basis hat demnach (2n 6)*7 Kanten = 21 Kanten \rightarrow falsche Aussage

Beispiel: bipartiter Graph $K_{3,3}$

- |V| = 6; |E| = 9
- $\mu(K_{3,3}) = -6 + 9 + 1 = 4$
- 2-Basis hat demnach (2n 6)*4 Kanten = 20 Kanten \rightarrow falsche Aussage

Planaritätstest

- 1 zähle die Kanten
- 2 Tiefensuche \rightarrow Konstruiere einen Spannbaum
- 3 Teste für Kanten $e \leftarrow G \notin T$, ob K_5 oder $K_{3,3}$ entsteht.

6.4 Färbung von Graphen

Vertexfärbung

Zwei durch eine Kante verbundene Knoten haben unterschiedliche Farben. Beispiel wäre eine Landkarte auf der mit so wenig wie möglich Farben die Länder ausgemalt werden, ohne zwei benachbarte Länder gleichfarbig zu haben. Hierbei entspricht jede Facette einen Knoten.

7 Vorlesung 02.12.2016

7.1 Cographen & Cotrees

Phylogenetik

- Erforschung von Abstammung
- Rekonstruktion von phylogenetischen Bäumen ("Stammbäume")
- Speziesbäume/Genbäume

Ergebnisse:

- Genverlust (loss)
- Aufspaltung zu einer neuen Spezies (speciation)
- Duplikation von Genen (ducplication)
- horizontaler Gentransfer (HGT)

<u>Def.:</u> Baum (tree)

Ein Baum T=(V,E) ist ein zusammenhängender Graph, der keine Kreise enthält (azyklisch).

Def.: Zusammenhang

Ein Graph G=(V,E) ist zusammenhängend, wenn es zwischen jedem möglichen Paar von Knoten einen Pfad gibt.

Theorem:

T=(V, E) ist ein Baum $\Leftrightarrow \exists !$ Pfad zwischen zwei zufällig gewählten Knoten existiert. ($\Leftrightarrow \ldots$ aus dem folgt; $\exists ! \ldots$ genau einem)

Beweis:

 \Rightarrow : Da T zusammenhängend ist, gibt es einen Pfad zwischen v, u \in V(T), \forall v, u \in V(T). Angenommen es gäbe noch einen 2. Pfad, dann gibt es einen Kreis; Widerspruch zur Definition.

←: Wenn genau ein Pfad existiert, ist T zusammenhängend, Also gibt es auch keine Kreise; T ist ein azyklischer Graph = Baum.

Def.: Distanz

Die Distanz d(u,v) zwischen zwei Knoten $u, v \in V$ ist gleich der Anzahl der Kanten im kürzesten Pfad zwischen u und v.

<u>Def.:</u> Lowest Common Ancester (lca)

Seien x,y \in V(T) Blätter im Baum T mit Wurzel r. Sei $P_x = \{x, x_1, x_2, \dots, r\}$ der Pfad von x nach r und $P_y = \{y, y_1, y_2, \dots, r\}$ der Pfad von y nach r. Dann $lca(x,y) = min(d(d,v_i),d(y,v_i))$ mit $v_i \in (P_x \cap P_y)$

 v_i ... mehrere v's (kann auch r sein)

r ... root (Wurzel)

•
$$P_{b_2r} = \{b_2, v_3, v_2, r\}$$

•
$$P_{dr} = \{d, v_5, v_4, v_2, r\}$$

•
$$P_{b_2r} \cap P_{dr} = \{v_2, r\}$$

- $d(b_2, v_2) = 2$
- $d(b_2, r) = 3$

Def.:

- Homologie: 2 Gene sind homolog, wenn sie die selben Vorfahren haben
- Orthologie: 2 Gene sind ortholog, wenn ihr lca eine Speziation (Artaufteilungsereignis) ist
- Paralogie: 2 Gene sind paralog, wenn ihr lca eine Duplikation ist

<u>Def.:</u> Θ-Relation (Orthologie-Relation)

Seien $x,y \in H$, H = Menge von Genen

 $(x,y) \in \Theta \Leftrightarrow lca(x,y)$ ist eine Speziation.

Diese Relation ist reflexiv (rückbezüglich), symmetrisch, aber <u>nicht</u> transitiv (mit sich ziehend).

Bestimmung von Orthologie:

Sequenzähnlichkeit

• Syntenie ("Gemeinsamkeiten in der Reihenfolge von Genen oder Gensegmenten auf verschiedenen chromosomalen Abschnitten. [...] ist ein Maß für die genetische Verwandtschaft der beiden Arten."[Wikipedia])

z.B. Tool: ProteinOrtho

 $\underline{\text{Def.:}} \sim \text{-Relation (fast-Orthologie)}$

 $(x,y) \in \sim$, wenn x,y als ortholog eingestuft werden.

Ziel: Korrigieren \sim sodass wir Θ erhalten. Dazu stellen wir \sim und Θ als Graphen dar.

$$G_{\Theta} = (V_{\Theta}, E_{\Theta}) \qquad G_{\sim} = (V_{\sim}, E_{\sim})$$

$$V_{\Theta} = V_{\sim} = Gene$$

$$E_{\Theta} = \{(x, y) \in \binom{V}{2} \mid x\Theta y\} \qquad E_{\sim} = \{(x, y) \in \binom{V}{2} \mid x \sim y, y \sim x\}$$

$$\binom{V}{2} \dots \text{ alle m\"{o}glichen Kombinationen von zwei Knoten}$$

Def.: Komplementgraph (complement)

Sei G=(V,E) ein Graph. Das Komplement \overline{G} von G ist der Graph $\overline{G}=(V,\overline{E})$ mit $\overline{E}=\{(u,v)\in\binom{V}{2}\mid (u,v)\notin E\}$

Def.: Teilgraph

Sei G=(V,E) ein Graph und $H\subseteq G$. H ist Teilgraph von G, wenn $V(H)\subseteq V(G)$, $E(H)\subseteq E(G)$. Ein induzierter Teilgraph ist ein Teilgraph H von G bei dem alle Knoten die in G benachbart sind, auch in H benachbart sein müssen.

$$(v,u) \in E(G) \, \wedge \, u,v \in V(H) \Leftrightarrow (v,u) \in E(H)$$

$\wedge \dots$ Konjunktion

Def.: disjunkte Vereinigungen

Graphen G,H: G+H ist ein Graph mit $V(G) \cup V(H)$ und $E(G) \cup E(H)$.

a
 $^{+}$ H = $^{\setminus}$ $^{\setminus}$

Def.: Cograph

- 1. K_1 ist ein Cograph ${}^{\bullet}K_1$
- 2. G ist ein Cograph $\Leftrightarrow \overline{G}$ ist ein Cograph
- 3. G, H sind Cographen \Leftrightarrow G+H ist ein Cograph

Erstellung von Cographen:

Eigenschaften von Cographen: Sei G=(V,E) ein Cograph und $H\subseteq G,H$ Cograph

- i) G enthält \underline{keine} induzierten P_4 's
- ii) H ist zusammenhängend $\Leftrightarrow \overline{H}$ ist nicht zusammenhängend

iii) G kann aus einzelnen Knoten (K_1) zusammengesetzt werden

$$\Rightarrow P_4 = \overline{P_4}$$

Ein Cograph muss jedoch ein P_4 -freier Graph sein.

 $Cograph = P_4$ -free graphs = complement reducible graphs

Test ob G=(V,E) ein Cograph ist:

```
Input: Graph G i \leq \text{Cograph }(G) \ \{ \\ \text{if } (\mid V(G) \mid < 4) \ \{ \text{return true}; \} \\ c = \{ \text{Zusammenhangskomponenten von } G \} \\ \text{if } (\mid c \mid = 1) \ \{ c' = \{ \text{Komponenten von } \overline{G} \} \} \\ \text{if } (\mid c' \mid = 1) \ \{ \text{return false}; \} \\ \text{else } \{ \\ \text{for each } (c \in C) \\ \{ \text{is Cograph } (c) \ \} \\ \}
```

Bei isCograph: je nachdem ob c oder c' rausgekommen ist, muss c oder c' geprüft werden.

Theorem:

 $\sim = \Theta \Leftrightarrow G_{\Theta} = G_{\sim} \text{ und } G_{\Theta} \text{ ist ein Cograph}$

Damit können wir testen, ob G_{\sim} ein Orthologiegraph ist.

Was passiert wenn $\sim \neq \Theta$ bzw. G_{\sim} kein Graph?

 \Rightarrow aktuelle Forschung \Rightarrow Es gibt Lösungen G_{\sim} zu editieren mit optimalen Kriterien, sodass der editierte G_{\sim} ein Cograph ist. Z.B. ILP (integer linear program), Cograph-editing. Alle Algorithmen, die exakte Möglichkeiten liefern, brauchen sehr lange und sind in der Praxis nicht nutzbar.

Weitere Literatur: Marc Hellmuth

Theorem:

Für jeden Cographen gibt es einen eindeutigen Cotree (Cobaum)

1. Schritt: Komplement

2. Schritt: umgekehrte disjunkte Vereinigung

3. Schritt: Komplement

8 Vorlesung 09.12.2016

9 Vorlesung 16.12.2016

Metrik:

1. $d_{uu} = 0$

$$2. d_{uv} = 0 \Rightarrow u = v$$

 $3. \ d_{uv} = d_{vu}$

4. $d_{uv} + d_{vw} \ge d_{uw}$ (Dreiecksungleichung)

Pseudometrik: -,1,2,3

Metrik: 0,1,2,3

Distanzfunktion: 1,2

4-Punkte-Bedingung:

Eine Distanzfunktion d ist eine additive (Baum) Metrik wenn je vier Punkte so geordnet werden können, daß:

$$d_{xy} + d_{uv} \le d_{xu} + d_{yv} = d_{xv} + d_{yu} \Leftrightarrow \forall x,y,u,v \text{ gilt:}$$

$$d_{xy} + d_{uv} \le max\{d_{xu} + d_{yv}, d_{xv} + d_{yu}\}$$

Isolationsindex:

Isolations index:
$$l(e) = \alpha(A|B) = \max(0, \min_{\substack{x,y \in A \\ u,v \in B}} \frac{1}{2} [\max\{d_{xu} + d_{yv}, d_{xv} + d_{yu}\} - (d_{xy} + d_{uv})])$$

=Länge der Baumkante, die A,B trennt oder ≤ 0 wenn A|B keine Teilbäume bestimmt.

Wenn d eine additive Distanzfunktion:

- $\alpha(A|B) \geq 0$
- A|B entspricht einer Kante im Baum $\Leftrightarrow \alpha(A|B) > 0$

Splitpseudometrik:

$$\delta_{A|B}(x,y) = \begin{cases} 1 : x \in A, y \in B \\ 1 : x \in B, y \in A \\ 0 : x, y \in A \\ 0 : x, y \in B \end{cases}$$
 (3)

x,y durch A|B getrennt $\Leftrightarrow \delta_{A|B}(x,y) = 1$

$$d_T(x,y) = \sum_{(A|B)\in\Sigma(T)} \alpha(A|B) \cdot \delta_{A|B}(x,y)$$

Genau die splits entlang des Pfades von x und y trennen x,y

Splits $\Sigma(T) \to \mathbf{Baum}$

wir wissen $\Sigma(T)$ ist kompatible

 $A|B,C|D \in \Sigma(T)$ dann mindestens einer der vier Durchschnitte:

 $A\cap C, A\cap D, B\cap C, B\cap D$ leer

jeder split-Teil <u>GENAU</u> eine der Mengen

Frage: Wie können Isolationsindizes, schnell und und alle Möglichkeiten durchzuprobieren, erzeugt werden?

Lösung: effiziente Berechnung von $\alpha(A|B) > 0$

Idee: erweitere X schrittweise

$$|A|, |B| = 1$$

$$X' \leftarrow X \cup \{w\}$$

$$A \cup B = X$$

in X':

- $X|\{w\}$
- $A \cup \{w\}|B$
- $B \cup \{w\} | A$

$$\beta_{xy|uv} := \frac{1}{2} \max\{d_{xu} + d_{yv}, d_{xv} + d_{yu}\} - (d_{xy} + d_{uv})$$
 erster Fall:
$$\alpha(\{x\}|X) = \min_{u,v \in X} \beta_{ww|uv} = \min_{u,v \in X} \frac{1}{2} (d_{wu} + d_{wv} - d_{uv})$$
 zweiter Fall:

$$\alpha(A|B) = \min_{\substack{x,y \in A \\ u,v \in B}} \beta_{xy|uv}$$

$$\alpha(A \cup \{w\}|B) = \min\{\min_{\substack{x,y \in A \\ u,v \in B}} \beta_{xy|uv}, \min_{\substack{y \in A \\ u,v \in B}} \beta_{yw|uv}, \min_{\substack{x \in A \\ u,v \in B}} \beta_{xw|uv}\}$$

$$\Rightarrow \alpha(A \cup \{w\}|B) \le \alpha(A|B)$$

Also: wenn $\alpha(A|B) \leq 0 \Rightarrow \alpha(A \cup \{w\}|B)$ auch ≤ 0

 \Rightarrow nur Splits auf X mit $\alpha(A|B) > 0$ müssen erwartet werden

Wenn d additiv \Rightarrow Baum \Rightarrow splits $\Sigma(T)$ kompatibel \Rightarrow es gibt nicht mehr als 2|X|splits

 \Rightarrow Die Isolationsindizes aller Splits mit $\alpha(A|B) > 0$ können in $\mathcal{O}(|x|^5)$ berechnet

|x| Erweiterungsschritte für $\mathcal{O}(|x|)$ splits mit Aufwand $\mathcal{O}(|x|^3)$

Theorem:[Bandelt,Dress]

Sei d eine Peusometrik auf X. Dann gibt es eine Pseudometrik d^0 auf X sodaß $d(x,y) = \sum_{A|B} \underbrace{\alpha(A|B)}_{*} \cdot \delta_{A|B}(x,y) + d^{0}(x,y)$ $* \alpha(A|B) = 0 \text{ wenn } \min_{\substack{x,y \in A \\ x,y \in B}} \beta_{xy|uv} < 0$

*
$$\alpha(A|B) = 0$$
 wenn $\min_{\substack{x,y \in A \\ u,v \in B}} \beta_{xy|uv} < 0$

außerdem gilt: $\Sigma(d) = \{(A|B)\}$

alpha(A|B) > 0 hat höchstens $\mathcal{O}(|x|^2)$ Elemente

alle $\alpha(A|B) > 0$ können in $\mathcal{O}(|x|^6)$ Elemente berechnet werden.

- d additiv $\Rightarrow d^0 = 0$
- d⁰ heißt split-primer
- d heißt total zerlegbar wenn $d^0 = 0$

allgemeine Pseudometrik auf 4 Punkten

Anzahl unabhängigen Distanzen: 6

Baum mit 4 Blättern: 5

$$d_{xu} + d_{xy} - d_{duy}$$

$$(l_x + a + l_u) + (l_x + b + l_y) - l_u - a - b - l_y = 2l_x$$

$$l_x = \frac{1}{2} \begin{bmatrix} d_{xu} + d_{xy} - d_{uy} \end{bmatrix}$$

$$\geq 0 \text{(Dreieck sungleichung)}$$

Split 1:

$$\begin{aligned} d_{xv} + d_{yu} - (d_{xy} + d_{uv}) &= \\ l_x + a + b + l_v \\ + l_y + a + b + l_u \\ - l_x - b - l_y \\ - l_u - b - l_v &= 2a \end{aligned}$$

Split 2:

$$d_{xu} + d_{yv} - (d_{xy} + d_{uv}) = l_x + a + l_u + l_y + a + l_v - l_x - b - l_y - l_y - b - l_u = 2(a - b) \le 2a$$

$$\alpha(\{xy\}|\{uv\}) = a$$
$$\alpha(\{xu\}|\{yv\}) = b$$
Baum \Rightarrow b=0

Messung der Baumartigkeit:

Wiessung der Baumartig
$$B := \frac{1}{\binom{n}{4}} \sum_{\substack{i < j < k < l \\ i,j,k,l \in X}} \frac{b_{ijkl}}{a_{ijkl} + b_{ijkl}}$$
Mittelwerte von in der Boy

Mittelwerte von in der Box

 $B \approx Baumartig$

 $B \approx \frac{1}{2}$ völlig verrauscht, netzwerk-artig

Travelling sales person problem (TSP)

geschlossene Tour Voraussetzung

|X| > 1 (Anzahl der Städte größer 1)

Metrik d auf X gegeben

Tour: Permutation von $X:\pi$

$$L(\pi) = \sum_{i=1}^{|X|} d_{\pi(i-1)\pi(i)} \text{ (lesen als indices modulo } |X|)$$

Definition Mastertour:

Einschränkung von π auf $X'\subseteq X$ löst das TSP auf X

Wenn d eine additive Metrik (Baum) ist dann existiert eine Mastertour (optimale Lösung) die genau ein Mal um den Baum herum führt.

Eine Metrik hat die KALMANSON-Eigenschaft, wenn man X so ordnen kann, daß

$$d_{ij} + d_{kl} \le d_{ik} + d_{jl} \forall i < j < k < l$$

und

$$d_{il} + d_{jk} \le d_{ik} + d_{jl} \forall i < j < k < l$$

→ für jedes Quadrupel tauchen höchstens die Splits ij|kl, il|jk auf d ist Kalmanson ⇔ das TSP mit Distanz d einen Mastertour hat

Wenn d Kalmanson ist (zirkulär zerlegbar) \Rightarrow d splitzerlegbar (planar darstellbar)

≠ (Umkehr falsch)

$$d = \sum_{\substack{A|B\\fast\ immer\ Kalmanson}} \alpha(A|B) \cdot \delta_{A|B} + \underbrace{\delta^0}_{\substack{Rauschen\\Primaeranteil)}}$$

Anteil der Distanz ohne phylogenetische Information:

$$\frac{\sum_{x \neq y} \delta^{0}(x, y)}{\sum_{x \neq y} \delta(x, y)}$$

Anten der Distanz ome phytogenetische $\sum_{x\neq y} \delta^0(x,y)$ $\sum_{x\neq y} \delta(x,y)$ (Maß für die Größe des Rauschens \to keine phylogenetische Information)

10 Vorlesung 21.12.2016

10.1 neighbor joining

geg: Distanzmatrix (d) auf Menge X von Taxa \to Baum (ungewurzelt) Iteration:

- 1. suche $argmin_{x,y}\tilde{d}_{xy} = \{u, v\}$
- 2. ersetze $\{u, v\} \to \text{no (neuer Knoten)}$
- 3. brechne d_{wz} für $z \neq u, v \rightarrow$ Schritt 1

 $d \rightarrow T$

 \tilde{d} Transformation von d

$$F: d \mapsto \tilde{d}$$

$$d_{wz} = \phi(d_{uz}, d_{vz}, d_{uz})$$

Ein Baumrekonstruktionsalgorithmus $\mathcal{A}: d \mapsto T$ ist konsistent wenn: Falls d ein additive Baum-Metrik mit Baum \hat{T} ist, dann ist $\mathcal{A}(d) = \hat{T}$ Beispiel:

$$\tilde{d} = \tilde{d}$$

$$d_{wz} = \frac{1}{2} \cdot d_{uz} + \frac{1}{2} \cdot d_{vz} \text{ (WPGMA)}$$

$$d_{wz} = \frac{|u|}{|u|+|v|} \cdot d_{uz} + \frac{|u|}{|u|+|v|} \cdot d_{vz} \text{ (UPGMA)}$$

Ist der zugehörige Alogrithmus konsistent? Gegenbeispiel:

$$l_a, \tilde{l_b}, q \ll l_c, l_d \Rightarrow argmin_{x,y}\tilde{d}_{xy} = \{a, b\}$$

(Problem: LBA - long branch attraction)

Lösung:

Abstand eines Punktes von allen anderen Punkten berechnen: $r(u) = \sum_{x \neq u} d(x, u)$

$$\tilde{d}_{xy} = d_{xy} - \alpha \cdot r(x) - \beta \cdot r(y)$$

 $\alpha = \beta = \frac{1}{n-2}$ mit n=Zahl der Taxa

Lemma: Wenn d eine additive Baum-Metrik ist und $\{u,v\} = argmin_{x,y}\tilde{d}_{xy} = \{u,v\} \Rightarrow u,v$ wird cherry genannt.

 $\begin{aligned} &\{u,v\}\mapsto w \text{ (u und v mittels Vaterknoten w vereinigen)}\\ &d(u,w)=\tfrac{1}{2}\cdot d(u,v)+\tfrac{1}{2}\cdot \tfrac{1}{n-2}[r(u)-r(v)]\\ &\text{durch Symmetrie: }d(v,w)=\tfrac{1}{2}\cdot d(u,v)+\tfrac{1}{2}\cdot \tfrac{1}{n-2}[r(v)-r(u)]\\ &d(w,z)=\tfrac{1}{2}\cdot [d(u,z)-d(u,w)]+\tfrac{1}{2}\cdot [d(v,z)-d(u,w)]\\ &=\tfrac{1}{2}\cdot [d(u,z)+d(v,z)]-d(u,w) \end{aligned}$

[Paper: Gascuel + Steel, Mol Biol Evol, 23 Seite 1997-2000 (2006)²]

10.2 Neighbor Net

Kalmanson Metrik

→ zirkuläre Ordnung der Taxa

- Auswahl der Nachbarn
- Update der Distanzen

Initialisierung: Jeder Punkt ist in einem separaten Cluster C_i , mit Punkten x,y,...

$$d(C_i, C_j) := \frac{1}{|C_i||C_j|} \sum_{\substack{x \in C_i \\ y \in C_j}} d(x, y)$$

²http://mbe.oxfordjournals.org/content/23/11/1997.long

$$Q(C_i, C_j) := (m-2) \cdot d(C_i, C_j) - \underbrace{\sum_{k \neq i} d(C_i, C_k)}_{(m-2) \cdot r(C_i)} - \underbrace{\sum_{k \neq j} d(C_j, C_k)}_{(m-2) \cdot r(C_j)}$$

mit m= Anzahl Cluster

(NI-Formale für Cluster)

Bestimme $i^*, j^* = argmin_{i,j}Q(C_i, C_j)$

 C_i, C_j enthält jeweils entweder 1 oder 2 Knoten

für Punkte in
$$x_i \in C_i^*$$
 und $x_j \in C_j^*$
$$\hat{Q}(x_i, x_j) = (\hat{m} - 2) \cdot d(x_i, x_j) - \sum_k d(x_i, C_k) - \sum_k d(x_j, C_k)$$

$$\hat{m} = m - \underbrace{2}_{i*,j*} + |C_{i*}| + |C_{j*}|$$

Erkläre x^*, y^* mit $x^* \in C_{i^*}, y^* \in C_{j^*}$ (mit jedem Schritt eine Kante mehr)

y hat 2 (verschiedene) Nachbarn x,z

 $a\neq x,y,z,u,v$

$$d(u, a) = \alpha \cdot d(x, a) + \beta \cdot d(y, a)$$

$$d(v, a) = \beta \cdot d(y, a) + \gamma \cdot d(z, a)$$

$$d(u, v) = \alpha \cdot d(x, y) + \beta \cdot d(x, z) + \gamma \cdot d(y, z)$$

mit
$$\alpha + \beta + \gamma = 1$$
; $\alpha, \beta, \gamma \ge 0$; $\alpha = \beta = \gamma = \frac{1}{3}$

Theorem: Wenn d Kalmanson Eigenschaften hat

⇒ Neighbor Net erzeugt die zugehörige zirkuläre Ordnung und identifiziert damit alle Splits mit nichtnegativen $\beta_{A|B}$

letzter Schritt im Neighbor Net Algorithmus:

letzter Schritt im Neighbor Net Algorithmus:
$$\min_{\substack{\beta_{A|B} \forall A|B \\ cirkul\"{a}re \ Splits}} (\sum_{x,y} (d(x,y) - \sum_{splits} \beta_{A|B} \cdot \delta_{A|B}(x,y))^2) \text{ mit } \beta_{A|B} \geq 0$$