OPSM Assignment

Nirav Mahnot

2023-03-31

#Loading Libraries

```
library(mice)
## Warning: package 'mice' was built under R version 4.2.3
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
##
       filter
## The following objects are masked from 'package:base':
##
##
       cbind, rbind
library(Amelia)
## Warning: package 'Amelia' was built under R version 4.2.3
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.8.1, built: 2022-11-18)
## ## Copyright (C) 2005-2023 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.2
library(forecast)
```

```
## Warning: package 'forecast' was built under R version 4.2.3
 ## Registered S3 method overwritten by 'quantmod':
 ##
      method
 ##
      as.zoo.data.frame zoo
 library(tseries)
 ## Warning: package 'tseries' was built under R version 4.2.3
 library(readx1)
 ## Warning: package 'readxl' was built under R version 4.2.3
 library(VIM)
 ## Warning: package 'VIM' was built under R version 4.2.3
 ## Loading required package: colorspace
 ## Loading required package: grid
 ## VIM is ready to use.
 ## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
 ##
 ## Attaching package: 'VIM'
 ## The following object is masked from 'package:datasets':
 ##
 ##
        sleep
#Loading dataset
 getwd()
 ## [1] "C:/Users/Nirav Mahnot/Desktop"
```

setwd("C:/Users/Nirav Mahnot/Desktop/Ultimately Useless/OPsm324- B.A of analytics/ydiskolaveri")

getwd()

[1] "C:/Users/Nirav Mahnot/Desktop/Ultimately Useless/OPsm324- B.A of analytics/ydiskolaveri"

```
data <- read.csv("Final BA.csv")
md.pattern(data)</pre>
```


#MICE

```
imputed_data <- mice(data, m=10, maxit=10, seed=500, print=F)</pre>
```

```
## Warning: Number of logged events: 3
```

```
mice_fit <- with(imputed_data, lm(Incoming.Examinations ~ Year + Month))
mice_pooled_fit <- pool(mice_fit)
pool.r.squared(mice_fit, adjusted = TRUE)</pre>
```

```
## est lo 95 hi 95 fmi
## adj R^2 0.8403302 0.7699623 0.8906402 2.222222e-09
```

```
summary(mice_pooled_fit)
```

```
## term estimate std.error statistic df p.value

## 1 (Intercept) -1.206115e+06 54611.53124 -22.085354 91.05338 2.445273e-38

## 2 Year 6.009950e+02 27.17660 22.114434 91.05338 2.209954e-38

## 3 Month 6.486233e+01 18.03837 3.595797 91.05338 5.249589e-04
```

```
completedDataMice <- complete(imputed_data)
completedDataMice</pre>
```

##		Incoming.Examinations	Year	Month	Х	X.1	X.2
##	1	4610	2013	1	NA		
##	2	4841	2013	2	NA		
##	3	5172	2013	3	NA		
##	4	4351	2013	4	NA		
##	5	4730	2013	5	NA		
##	6	4706	2013	6	NA		
##	7	5000	2013	7	NA		
##	8	4978	2013	8	NA		
##	9	5008	2013	9	NA		
##	10	6094	2013	10	NA		
##	11	4874	2013	11	NA		
##	12	5933	2013	12	NA		
##	13	2789	2012	1	NA		
##	14	3455	2012	2	NA		
##	15	2940	2012	3	NA		
##	16	2968	2012	4	NA		
##	17	3466	2012	5	NA		
##	18	3037	2012	6	NA		
##	19	3946	2012	7	NA		
##	20	3459	2012	8	NA		
##	21	3446	2012	9	NA		
##	22	3258	2012	10	NA		
##	23	4729	2012	11	NA		
##	24	3694	2012	12	NA		
##	25	1934	2011	1	NA	MICE	NOICE
##	26	2334	2011	2	NA		
##	27	1973	2011	3	NA		
##	28	2262	2011	4	NA		
##	29	2259	2011	5	NA		
##	30	2217	2011	6	NA		
##	31	2739	2011	7	NA		
##	32	2772	2011	8	NA		
##	33	3383	2011	9	NA		
##	34	2869	2011	10	NA		
##		2239			NA		
##		2940				MICE	
##			2010			MICE	
##		1578				MICE	
##		1578			NA		
##		1604			NA		
##		1758			NA		
##		1457				MICE	
##		1457			NA		
##		1607			NA		
##		1808			NA		
##		1866			NA		
##		1934			NA		
##		2294			NA		
##		1004			NA		
##		1065			NA		
##		1263			NA		
π#	ノエ	1203	2003	د	IVA		

123, 0	.201 101				
##	52	962	2009	4	NA
##	53	1065	2009	5	NA
##	54	1429	2009	6	NA
##	55	1205	2009	7	NA
##	56	890	2009	8	NA
##	57	1320	2009	9	NA
##	58	1276	2009	10	NA
##	59	1757	2009	11	NA
##	60	1757	2009	12	NA
##	61	875	2008	1	NA
##	62	840	2008	2	NA
##	63	724	2008	3	NA
##	64	1115	2008	4	NA
##	65	997	2008	5	NA
##	66	775	2008	6	NA
##	67	886	2008	7	NA
##	68	1041	2008	8	NA
##	69	1011	2008	9	NA
##	70	3110	2008		NA
##	71	939	2008	11	NA
##	72	1065	2008	12	NA
##	73	398	2007	1	NA
##	74	311	2007	2	NA
##	75		2007		NA
##	76		2007		NA
##	77		2007		NA
	78		2007		NA
##	79		2007		NA
	80		2007	8	
##			2007		NA
##	82		2007		NA
##			2007		NA
##			2007		NA
##	85		2006	1	
##	86		2006	2	
	87		2006		NA
##	88		2006		NA
##	89		2006	5	
##			2006		NA
##	91		2006	7	
##	92		2006	8	NA NA
	93		2006	9 10	NA NA
	94		2006		NA NA
	95		2006	11	
##	90	411	2006	12	NA

```
write.csv(completedDataMice, "cleaned_dataset.csv", row.names=F)

completedDataMice <- completedDataMice %>%
    dplyr::arrange(Year)
```

xyplot(imputed_data, Incoming.Examinations ~ Year, pch=18,cex=2)

Density plot of the imputed dataset (96 observations)
#densityplot(imputed_data, n=96)

```
# create time series
ts = ts(completedDataMice$Incoming.Examinations, start=c(2006, 1), end=c(2013,12),frequency=12)
# plot the time series
plot(ts, xlab="Time", ylab="Incoming Examinations")
```


decompose the time series to understand the prevalence of three componenets: trend, seasonalit
y, and error/irregularity
components.ts = decompose(ts)

we see that the data is not stationary
plot(components.ts)

3/31/23, 6:26 PM OPSM Assignment

Decomposition of additive time series

we can test this another way by using seasonal decomposition in loess smoothing
plot(stl(log(ts), s.window="period"))

autocorrelation function shows data is not stationary. Correlates set of observations # at current time to set of observastions at k periods earlier. acf(ts)

Series ts

run ADF test to confirm our hypothesis that data is not stationary
adf.test(ts)

```
##
## Augmented Dickey-Fuller Test
##
## data: ts
## Dickey-Fuller = -0.46095, Lag order = 4, p-value = 0.9818
## alternative hypothesis: stationary
```

estimate the number of differences required to make a given time series stationary ndiffs(ts)

```
## [1] 1
```

```
# differentiate the data to make it stationary. We differentiate it twice to remove what appears
to be a quadratic trend.
diff_ts <- diff(ts, differences=2)</pre>
```

take a look at the differentiated data
plot(diff_ts)


```
# run ADF to confirm data is now stationary
adf.test(diff_ts)
```

Warning in adf.test(diff_ts): p-value smaller than printed p-value

```
##
## Augmented Dickey-Fuller Test
##
## data: diff_ts
## Dickey-Fuller = -9.4906, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
```

```
\# review the ACF chart of the differenced time series. This plots the AC at various lags for the stationary/differenced time series. Acf(diff_ts)
```

Series diff_ts

correlation between an observation at current period and an observation at k periods earlier w ith observations between removed.

Pacf(diff_ts)

Series diff_ts


```
# Automated forecasting using an ARIMA model
fitauto <- auto.arima(ts)
summary(fitauto)</pre>
```

```
## Series: ts
## ARIMA(1,1,1) with drift
##
## Coefficients:
                             drift
##
             ar1
                      ma1
         -0.2096 -0.6164 54.6354
##
## s.e.
         0.1291
                   0.0967 13.2146
##
## sigma^2 = 163854: log likelihood = -703.98
## AIC=1415.96
                 AICc=1416.4
                               BIC=1426.17
##
## Training set error measures:
##
                              RMSE
                                        MAE
                                                 MPE
                                                          MAPE
                                                                    MASE
                       ME
## Training set -1.059456 396.2662 256.6438 -14.6042 23.24845 0.3590261
## Training set -0.005927131
```

correlation of custom ARIMA fitted values to actual values
cor(fitted(fitauto),ts)^2

```
## [1] 0.9361093
```

accuracy(fitauto) # check accuracy for ARIMA auto fit

```
## ME RMSE MAE MPE MAPE MASE

## Training set -1.059456 396.2662 256.6438 -14.6042 23.24845 0.3590261

## ACF1

## Training set -0.005927131
```

```
# checking residuals
```

summary(residuals(fitauto))

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -800.42 -206.91 -30.97 -1.06 89.43 1983.63
```

boxplot(residuals(fitauto))

plot(residuals(fitauto))

compare ARIMA models to time series
plot(ts)
lines(fitted(fitauto), col="red", lwd="2")

create forecast for auto ARIMA model
forecast_arimaauto <- forecast(fitauto, h=12)</pre>

plot auto generated forecast
plot(forecast_arimaauto)

Forecasts from ARIMA(1,1,1) with drift

show forecasted incoming exams for next 12 months using the auto ARIMA model forecast arimaauto

```
##
            Point Forecast
                              Lo 80
                                       Hi 80
                                                 Lo 95
                                                          Hi 95
## Jan 2014
                  5482.531 4963.773 6001.289 4689.159 6275.903
## Feb 2014
                  5643.029 5116.472 6169.585 4837.730 6448.327
## Mar 2014
                  5675.477 5118.976 6231.978 4824.383 6526.571
## Apr 2014
                  5734.762 5155.366 6314.158 4848.653 6620.872
## May 2014
                  5788.423 5185.933 6390.913 4866.994 6709.852
## Jun 2014
                  5843.263 5218.750 6467.776 4888.153 6798.373
## Jul 2014
                  5897.856 5252.026 6543.685 4910.145 6885.566
## Aug 2014
                  5952.500 5286.044 6618.955 4933.244 6971.756
## Sep 2014
                  6007.133 5320.670 6693.597 4957.278 7056.989
## Oct 2014
                  6061.769 5355.864 6767.674 4982.181 7141.358
## Nov 2014
                  6116.405 5391.580 6841.229 5007.881 7224.929
## Dec 2014
                  6171.040 5427.777 6914.303 5034.317 7307.763
```

#Forecasting with Holt's (with MICE imputed dataset)

```
# generate time series
ts = ts(completedDataMice$Incoming.Examinations, start=c(2006, 1), end=c(2013,12),frequency=12)
```

Holt's approach but with multiplicative error and multiplicative trend. fitholts $_{\rm m}$ <- ets(ts, model="MMN")

Holt's model (additive)
fitholts_a <- ets(ts, model="AAN")</pre>

check Holt's multiplicative accuracy.
accuracy(fitholts_m)

ME RMSE MAE MPE MAPE MASE ACF1
Training set 32.80243 407.0672 264.4954 -11.81497 22.19381 0.3700098 0.1492489

check Holt's additive model accuracy
accuracy(fitholts_a)

Training set 60.6548 383.3351 259.3693 -4.553655 20.56221 0.3628389 -0.08718459

create Holts multiplicative forecast
forecast_m <- forecast(fitholts_m, 12)</pre>

create Holts additive forecast for comparison
forecast_a <- forecast(fitholts_a, 12)</pre>

plot Holts multiplicative forecast
plot(forecast_m, main="(Holt's Multiplicative) Forecast for Incoming Examinations",ylab="Inc. Ex
ams", xlab="Months", flty=2)

(Holt's Multiplicative) Forecast for Incoming Examinations

plot Holts forecast
plot(forecast_a, main="(Holt's Additive) Forecast for Incoming Examinations", ylab="Inc.Exams",
xlab="Months", flty=2)

(Holt's Additive) Forecast for Incoming Examinations

show forecasted incoming exams for next 12 months by Holts_m model
forecast m

```
##
            Point Forecast
                              Lo 80
                                        Hi 80
                                                  Lo 95
                                                            Hi 95
## Jan 2014
                  5747.502 3722.853
                                     7802.523 2623.163
                                                         8851.292
## Feb 2014
                  5934.660 3887.895
                                     7996.718 2792.182
                                                         9070.853
## Mar 2014
                  6127.912 3962.535
                                     8228.738 2908.320
                                                         9445.132
## Apr 2014
                  6327.458 4045.951
                                     8480.900 2855.054
                                                         9749.163
## May 2014
                  6533.501 4175.469
                                     8776.152 3074.198
                                                         9959.735
## Jun 2014
                                     9127.789 3065.471 10351.574
                  6746.254 4425.775
## Jul 2014
                  6965.935 4496.113
                                     9458.795 3134.126 10758.241
## Aug 2014
                  7192.769 4686.414 9701.536 3257.633 11069.503
## Sep 2014
                  7426.990 4820.380 10049.082 3485.924 11511.102
## Oct 2014
                  7668.838 5035.754 10342.344 3591.059 11939.407
                  7918.561 5149.100 10712.080 3676.503 12199.618
## Nov 2014
## Dec 2014
                  8176.416 5293.368 11139.425 3817.259 12783.936
```

show forecasted incoming exams for next 12 months by Holts_a model
forecast_a

3/31/23, 6:26 PM OPSM Assignment

```
##
            Point Forecast
                              Lo 80
                                       Hi 80
                                                 Lo 95
                                                          Hi 95
                  5747.274 5245.444 6249.104 4979.791 6514.756
## Jan 2014
## Feb 2014
                  5878.159 5370.489 6385.829 5101.745 6654.574
## Mar 2014
                  6009.044 5493.895 6524.194 5221.191 6796.898
## Apr 2014
                  6139.930 5615.514 6664.345 5337.905 6941.954
## May 2014
                  6270.815 5735.226 6806.403 5451.703 7089.927
## Jun 2014
                  6401.700 5852.941 6950.460 5562.445 7240.955
## Jul 2014
                  6532.585 5968.594 7096.577 5670.036 7395.135
## Aug 2014
                  6663.471 6082.153 7244.788 5774.423 7552.519
## Sep 2014
                  6794.356 6193.609 7395.103 5875.593 7713.119
## Oct 2014
                  6925.241 6302.975 7547.508 5973.567 7876.916
## Nov 2014
                  7056.127 6410.283 7701.970 6068.395 8043.859
## Dec 2014
                  7187.012 6515.581 7858.443 6160.147 8213.877
```

#summaries of Holt's multiplicative and additive models

summary(fitholts_m\$residuals)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.847856 -0.148299 -0.007788 -0.017017 0.102030 1.785697
```

summary(fitholts a\$residuals)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -657.89 -151.41 49.72 60.65 180.27 2081.26
```