1. Introduction

- return on a stock $E(r_{t+1}) = rac{E(p_{t+1}\!\!+\!d_{t+1}\!\!)}{p_t} 1$
- · risk-expected return trade-off: there will be a positive relation between risk and expected returns
- · only risk determines expected return
- small company has higher average return and higher SD than large company
- · Investment in stocks should be for the long run, In the short run, volatility is high
- · Asset pricing
 - Risk-based models
 - In an efficient market there is no free lunch
 - Relative pricing
 - o given the price of the second asset we know the price of the first asset
 - Behavioral biases
 - Investors are not always rational. Hence, prices might deviate from the true prices
- · Roles of the financial markets
 - Boosting economic growth
- · Fixed Income
 - Money market
 - TED spread: The spread of 3-month LIBOR over 3-month T-Bill rates
 - Bond market
 - Mortgage-backed bonds
 - o collateral is the houses
 - · increase of the loan supply
 - 。 subprime crisis (次贷危机)
 - World recession
- Stock market indexes
 - Price weighted indexes: Dow Jones Industrial Average (DJIA)
 - Value weighted indexes: S&P 500
 - Equal weighted indexes: S&P 500 equal weighted index (gives equal weight to the return)
- · total returns
 - reinvested in the whole market

2. Bond valuation

- Coupons are paid once a year (in Europe) or once every six months (in the US).
- TIPS = Treasury Inflation Protected Securities
- The correlation between government bonds and stocks is close to 0 in normal times
- · CR>r, trades at a premium
- · CR=r, trades at par
- · bond prices move to the par value but not monotonic
- · Interest rate risk
 - Price risk
 - bond price will change (interest rate up -> price down)
 - short-term investors face
 - risk more when YTM longer
 - o short-term inflation-indexed government bond: safest asset for short term investors
 - o coupon bond face less price risk
 - long duration bonds has higher price risk
 - Reinvestment risk
 - reinvesting return change (interest rate down -> reinvesting down)
 - · long-term investors face
 - for long term invester: long zero > long coupon > roll over short
- · YTM vs realized yield
 - YTM like IRR
 - interest rate change -> YTM stay, realized yield changed
- · HPR (Holding Period Return)
 - realized yield for one unit period

3. Term Structure

- · determination of the interest rates for different horizons
 - The expectations hypothesis
 - o investors are risk neutral
 - bonds to different maturities are perfect substitutes
 - The liquidity preference theory
 - investors are risk averse
 - have short investment horizons
 - o investors require a higher rate of return on investments in longer term bonds
 - o risk aversion: forward rate > expected rate
 - o long term bond should offer a risk premium
 - LP: liquidity premium: (forward rate expected rate)
 - In the data, the liquidity preference theory gains empirical support
 - inflation risk premium
- · Forward interest rate
 - f
- · The yield curve usually increases
 - steeply upward sloping
 - interest rates are expected to increase
 - o a serious economic crisis is expected
 - declining yield curve
 - · declining interest rates
 - declining inflation rates

4. Bond Portfolio

- · a low interest rate environment is problematic for pension funds
 - it's moredifficult to finance future obligations
- The prices of long term bonds are more sensitive to interest rates than short term
- Duration
 - $w_t = [CF_t/(1+y)^t]/price$
 - $lacksquare Macaulay duration: D = \sum_{t=1}^T t * w_t$
 - the elasticity of the bond's price to changes in the average interest rate.
 - Ela = % change in P / % change in Y = -(YdP)/(PdY)
 - high Duration: long time to maturity, low coupon, low YTM
 - Modified Duration
 - $D^* = D/(1 + YTM)$
 - $\circ~D^* = -(rac{\Delta P}{P})/\Delta YTM$
 - if D* = -5, it means -5%
 - ullet consider convexity: $rac{\Delta P}{P} = -D^* \Delta y + 0.5 Conveixity (\Delta y)^2$
 - \circ D of portfolio: $\sum w_i ar{D}_i$
- · bank's duration
 - banks make sure their duration does not deviate by much from 0

5. Equity valuation

- · Dividend Discount Model
 - $\bullet P_0 = \sum_{t=1}^{\infty} \frac{E(D_t)}{(1+k)^t}$
 - $k = E(D_1)/P_0 + g$
- · The Gordon model
 - $P_0 = \frac{E(D_1)}{k-a}$
- · Stock prices and investment opportunities
 - $lacksquare P = rac{EPS}{k} + (PVGO per share)$
- PE ratio (price to earnings)
 $PE = \frac{P}{EPS} = 1/k * [1 + \frac{PVGOPS}{(EPS/k)}]$
 - high PE:
 - o low risk
 - good investment opportunities
 - current stock price / sum of earnings in the past 12 month
 - or / expectations for next year's earnings
- · PEG ratio
 - PEG = (P/E)/Growth
 - when PEG is below 1, the stock might be underpriced
- · Shiller's CAPE
 - CAPE = Cyclically Adjusted PE
 - current stock price / average of earnings in the past 10 years

6. Portfolio

•
$$\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N w_{iP} w_{jP} \sigma_{ij}$$

- · Firm-specific Risk and Market Risk
- $oldsymbol{\sigma}_P = w \sigma_x$ where w is the risky weight
- The index model

$$lacksquare Cov(r_i,r_j)=eta_ieta_j\sigma_m^2$$

• risk of security i in the portfolio: $\underbrace{wiP\sum_{j=1}^{N}wjPij}$

$$wiP\sum_{j=1}^{N}w_{j}P_{ij}$$

• the contribution of security i to the volatility of the whole portfolio

7. CAPM, market efficiency

- CAPM
- · Market efficiency
 - asset prices reflect the full information in the market
 - Weak form efficiency: past price
 - Semi-strong form efficiency: public
 - Strong form efficiency: all
- · Calendar anomalies
 - January effect
 - The Monday effect

8. Fama French, alternative assets, long Term Investing

- SPY: S&P 500 Total Return
- RSP: S&P 500 equal-weighted index
- Fundamental indices: Research Affiliates Fundamental Index (RAFI)
 - companies with higher book value, cash flow, sales, and dividends receive larger weights
- · Fama French 5 factor model
 - The market portfolio
 - SMB
 - HML
 - RMW
 - CMA
- · Carhart's momentum factor
 - WML
- · Asset class investing
 - Stocks, Bonds, Cash
 - Real estate
 - Private equity
 - Industries
 - Derivatives
 - Corporate bonds
 - Commodities
 - Currencies
 - International equity
 - Style
- · long-term investing
 - Rebalancing is important

9. Performance evaluation

- · Active portfolio management
 - Stock picking
 - Asset class investing
 - Market timing (rebalancing)
- · Performance measures
 - Sharpe ratio
 - The M2 measure
 - M2=r_P*-r_M
 - r_P* use P and risk-free asset, have same volatility with market
 - Jensen's alpha (The CAPM alpha)
 - kind of investor: invest in many different funds
 - Treynor measure
 - · excess risk-free return / beta