CSC 143 Java

Sorting N&H Chapters 13, 17

(c) 2001-2003, University of Washington

16-1

Sorting

- Binary search is a huge speedup over sequential search
 - But requires the list be sorted
- Slight Problem: How do we get a sorted list?
- · Maintain the list in sorted order as each word is added
- · Sort the entire list when needed
- Many, many algorithms for sorting have been invented and analyzed
- · Our algorithms all assume the data is already in an array
 - · Other starting points and assumptions are possible

(c) 2001-2003, University of Washington

16-2

Insert for a Sorted List

- Exercise: Assume that words[0..size-1] is sorted. Place new word in correct location so modified list remains sorted
 - Assume that there is spare capacity for the new word (what kind of condition is this?)
- · Before coding:
 - · Draw pictures of an example situation, before and after
 - · Write down the postconditions for the operation

// given existing list words[0..size-1], insert word in correct place and increase size void insertWord(String word) {

size++

(c) 2001-2003, University of Washington

16-3

Insertion Sort

- Once we have insertWord working...
- We can sort a list in place by repeating the insertion operation

```
void insertionSort( ) {
  int finalSize = size;
  size = 1;
  for (int k = 1; k < finalSize; k++) {
    insertWord(words[k]);
  }
}</pre>
```

(c) 2001-2003, University of Washington

16-4

Insertion Sort As A Card Game Operation

- A bit like sorting a hand full of cards dealt one by one:
 - Pick up 1st card it's sorted, the hand is sorted
 - Pick up 2nd card; *insert* it after or before 1st both sorted
 - · Pick up 3rd card; insert it after, between, or before 1st two
 - ...
- · Each time:
 - · Determine where new card goes
 - · Make room for the newly inserted member.

(c) 2001-2003, University of Washington

Insertion Sort Trace

- · Initial array contents
 - 0 pear
 - 1 orange
 - 2 apple
 - 3 rutabaga
 - 4 aardvark 5 cherry
 - 6 banana
 - 7 kumquat

(c) 2001-2003, University of Washington

16-8

Insertion Sort Performance

- · Cost of each insertWord operation:
- Number of times insertWord is executed:
- Total cost:
- · Can we do better?

(c) 2001-2003, University of Washington

16-9

Analysis

- Why was binary search so much more effective than sequential search?
 - Answer: binary search divided the search space in half each time; sequential search only reduced the search space by 1 item
- Why is insertion sort O(n2)?
 - Each insert operation only gets 1 more item in place at cost O(n)
 - O(n) insert operations
- Can we do something similar for sorting?

(c) 2001-2003, University of Washington

16-10

Where are we on the chart?

N 	log ₂ N	5N	N log ₂ N	N ²	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~109
64	6	320	384	4096	~1019
128	7	640	896	16384	~1038
256	8	1280	2048	65536	~1076
10000	13	50000	105	108	~103010

(c) 2001-2003, University of Washington

6-11

Divide and Conquer Sorting

- Idea: emulate binary search in some ways
- 1. divide the sorting problem into two subproblems;
- 2. recursively sort each subproblem;
- 3. combine results
- Want division and combination at the end to be fast
- Want to be able to sort two halves independently
- This is a an algorithm strategy known as "divide and conquer"

(c) 2001-2003, University of Washington

Quicksort

- Invented by C. A. R. Hoare (1962)
- Idea
 - · Pick an element of the list: the pivot
 - Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right
 - · Recursively sort each of the halves
- Before looking at any code, see if you can draw pictures based just on the first two steps of the description

(c) 2001-2003, University of Washington

16-13

Code for QuickSort

```
// Sort words[0..size-1]

void quickSort() {
    qsort(0, size-1);
}

// Sort words[lo..hi]

void qsort(int lo, int hi) {
    // quit if empty partition
    if (lo > hi) { return; }
    int pivott.ocation = partition(lo, hi);
    qsort(pivott.ocation-1);
    qsort(pivott.ocation+1, hi);
}
```

(c) 2001-2003, University of Washington

....

Recursion Analysis

· Base case? Yes.

// quit if empty partition if (lo > hi) { return; }

· Recursive cases? Yes

qsort(lo, pivotLocation-1); qsort(pivotLocation+1, hi);

 Observation: recursive cases work on a smaller subproblem, so algorithm will terminate

(c) 2001-2003, University of Washington

6-15

A Small Matter of Programming

- · Partition algorithm
 - · Pick pivot
 - Rearrange array so all smaller element are to the left, all larger to the right, with pivot in the middle
- · Partition is not recursive
- · Fact of life: partition is tricky to get right
- · How do we pick the pivot?
 - For now, keep it simple use the first item in the interval
 - · Better strategies exist

(c) 2001-2003, University of Washington

16-16

Partition design

- We need to partition words[lo..hi]
- Pick words[lo] as the pivot
- Picture:

(c) 2001-2003, University of Washington

A Partition Implementation

- · Use first element of array section as the pivot
- Invariant:

(c) 2001-2003, University of Washington

Partition Algorithm: PseudoCode

The two-fingered method

// Partition words[lo..hi]; return location of pivot in range lo..hi int partition(int lo, int hi)

(c) 2001-2003, University of Washington

6-19

Partition Test

- Check: partition(0,7)
 - 0 orange
 - 1 pear
 - 2 apple
 - 3 rutabaga
 - 4 aardvark
 - 5 cherry
 - 6 banana
 - 7 kumquat

(c) 2001-2003, University of Washington

16-20

Complexity of QuickSort

- Each call to Quicksort (ignoring recursive calls):
 - One call to partition = O(n), where n is size of part of array being sorted

Note: This n is smaller than the N of the original problem

- Some O(1) work
- Total = O(n) for n the size of array part being sorted
- Including recursive calls:
 - Two recursive calls at each level of recursion, each partitions "half" the array at a cost of O(N/2)
 - · How many levels of recursion?

(c) 2001-2003, University of Washington

16-21

QuickSort Performance (Ideal Case)

- · Each partition divides the list parts in half
 - Sublist sizes on recursive calls: n, n/2, n/4, n/8....
 - · Total depth of recursion:
 - Total work at each level: O(n)
 - Total cost of quicksort: ______
- For a list of 10,000 items
 - Insertion sort: O(n2): 100,000,000
 - Quicksort: O(n log n): 10,000 log₂ 10,000 = 132,877

(c) 2001-2003, University of Washington

16-23

Best Case for QuickSort

- Assume partition will split array exactly in half
- Depth of recursion is then log, N
- Total work is O (N) *O (log N) = O (N log N), much better than O (N²) for selection sort
- Example: Sorting 10,000 items:
 - Selection sort: 10,000² = 100,000,000
 - Quicksort: 10,000 log₂ 10,000 ≈ 132,877

(c) 2001-2003, University of Washington

Worst Case for QuickSort

• If we're very unlucky, then each pass through partition removes only a single element.

• In this case, we have N levels of recursion rather than log₂N. What's the total complexity?

(c) 2001-2003, University of Washington

QuickSort Performance (Worst Case)

- Each partition manages to pick the largest or smallest item in the list as a pivot
 - · Sublist sizes on recursive calls:
 - Total depth of recursion:
 - Total work at each level: O(n)
 - Total cost of quicksort:

(c) 2001-2003, University of Washington

16-26

Worst Case vs Average Case

- QuickSort has been shown to work well in the average case (mathematically speaking)
- In practice, Quicksort works well, provided the pivot is picked with some care
- Some strategies for choosing the pivot:
 - Compare a small number of list items (3-5) and pick the median for
 - Pick a pivot element randomly in the range lo..hi

(c) 2001-2003, University of Washington

QuickSort as an Instance of Divide and Conquer

Generic Divide and Conquer	QuickSort
1. Divide	Pick an element of the list: the pivot
	Place all elements of the list smaller than the pivot in the half of the list to its left; place larger elements to the right
2. Solve subproblems separately (and recursively)	Recursively sort each of the halves
3. Combine subsolutions to get overall solution	Surprise! Nothing to do

(c) 2001-2003, University of Washington

Another Divide-and-Conquer Sort: Mergesort

- 1. Split array in half
 - just take the first half and the second half of the array, without rearranging
- · 2. Sort the halves separately
- 3. Combining the sorted halves ("merge")
 - repeatedly pick the least element from each array
 - compare, and put the smaller in the resulting array
 - example: if the two arrays are

1 5 6 12 13 15 20 21 30

12 15 21 30 5 6 13 The "merged" array is

note: we will need a temporary result array

Summary

- Recursion
 - · Methods that call themselves
 - · Need base case(s) and recursive case(s)
 - · Recursive cases need to progress toward a base case
 - Often a very clean way to formulate a problem (let the function call mechanism handle bookkeeping behind the scenes)
- Divide and Conquer
 - · Algorithm design strategy that exploits recursion
 - · Divide original problem into subproblems
 - · Solve each subproblem recursively
 - Can sometimes yield dramatic performance improvements

(c) 2001-2003, University of Washington