Chaikin's scheme (step 0)

Chaikin's schemeRefine 1 Step 1

Chaikin's schemeRefine 1 Step 2

Chaikin's schemeRefine 1 Step 3

• Chakin's scheme

 $4 \text{ CPs} \rightarrow 6 \text{ CPs}$

General case: (n) CPs \rightarrow (2n-2) CPs

Step 0

- Surface subdivision scheme
- Generalize Chaïkin's scheme to meshes with quadrangles.
- (Can be further generalized to any mesh.)

General principle

Start from a mesh

On a 3x3 « patche »

Compute a refined 4x4 patch*

Loop over all 3x3 « patches »

Assemble the refined 4x4 patches together

Assemble the refined 4x4 patches together

 Repeat refinement: loop over the 3x3 patches and redo the preceeding operations...

• Computing a refined 4x4 patch from a 3x3 patch:

Extract the wanted 3x3 patch*

^{*}This step is already implemented in the provided code.

Computing a refined 4x4 patch from a 3x3

patch:

Extract the wanted 3x3 patch

Consider each "quadrant"

Computing a refined 4x4 patch from a 3x3

^{*}You must implement this step.

Computing a refined 4x4 patch from a 3x3 patch:

Computing a refined 4x4 patch from a 3x3

patch:

u ¥

Computing a refined 4x4 patch from a 3x3

patch:

u ¥

Computing a refined 4x4 patch from a 3x3

patch:

Finally,
 assemble the
 3x3 sub patches
 together*.

^{*}You must implement this step.

• Computing a refined 4x4 patch from a 3x3 patch:

Finally,
 assemble the
 3x3 sub patches
 together*.

^{*}You must implement this step.

- Computing a 3x3 sub-patch:
 - Start from the points of the initial 3x3 patch.
 - Compute the four 3x3 matrices S_u , S_v , S_u^T and S_v^T (see lecture 5, pp. 61-62.)
 - Apply these matrices to the 3x3 matrix P of points of the initial 3x3 patch.

Reminder: The choice of the applied matrices on **P** will determine on which quadrant your are computing a subpatch.

$$Q_{00} = S_u P S_u^T$$

$$Q_{01} = S_u P S_v^T$$

• • •

Tip: use the class Square_Matrix (in linear_algebra.h) for performing matrix-matrix multiplications.

 Result: you should obtain a subdivision surface that tends to a degree-2 B-Spline surface with uniform nodal sequences.

(Given as a red surface in the code.)

