Antes de continuar, dé el comando format short e. Este comando hará que los números aparezcan en notación científica. En MATLAB, por ejemplo, 1. e–5 representa 10^{-5} .

a) Introduzca

$$f=1.e-5; C=A; C(3,3)=A(3,3)+f;$$

Verifique que C es invertible y encuentre inv (C).

- **b)** Repita para f=1.e-7 y f=1.e-10.
- c) Comente acerca del tamaño de los elementos de inv(C) (realizando una comparación con el tamaño de los elementos de C) conforme f se hace pequeño, es decir, conforme C se acerca más a no ser invertible.
- d) Se investigará la exactitud de las soluciones a los sistemas en los que la matriz de coeficientes es cercana a ser invertible. Observe que si

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 + f \end{pmatrix} \quad \mathbf{y} \quad \mathbf{b} = \begin{pmatrix} 6 \\ 15 \\ 24 + f \end{pmatrix}$$

entonces Cx=b, donde $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$; es decir, \mathbf{x} es la solución exacta. Introduzca $\mathbf{x} = [1;1;1]$.

Para cada f utilizada en a) y b), forme C y b y resuelva el sistema Cy=b haciendo uso de inv (C) (dando el nombre de y a la solución). Encuentre z=x-y. ¿Qué tan cercana es la solución calculada y a la solución exacta x? ¿Cómo cambia la exactitud conforme f se hace más pequeña, es decir, conforme C se acerca a no ser invertible?

- 8. Este problema se refiere al modelo de insumo-producto de Leontief. Resuelva los problemas usando $(I-A)^{-1}$, donde A es la matriz tecnológica que describe las demandas internas. Interprete sus resultados. [Sugerencia de MATLAB: La matriz I de $n \times n$ se puede generar con eye (n).]
 - a) El problema 45 de esta sección.
 - b) El problema 9b) de la sección de MATLAB 1.3.

Utilice format long si desea más dígitos en las respuestas.

9. Criptografía

Uno de los procedimientos que se utilizan para encriptar un mensaje secreto es hacer uso de una determinada matriz cuadrada cuyos elementos son enteros y cuya matriz inversa también contiene elementos enteros. Se recibe un mensaje, se asigna un número a cada letra (por ejemplo A=1, B=2, etc., y espacio =27), se arreglan los números en una matriz de izquierda a derecha en cada renglón, donde el número de elementos en el renglón es igual al tamaño de la matriz de código, se multiplica esta matriz por la matriz de código *por la derecha*, se transcribe el mensaje a una cadena de números (que se lee de izquierda a derecha a lo largo de cada renglón) y se manda el mensaje.

El destinatario del mensaje conoce la matriz de código. Él o ella reacomodan el mensaje encriptado en una matriz de izquierda a derecha en cada renglón, en donde el número de elementos en un renglón coincide con el tamaño de la matriz de código, multiplica *por la derecha* por el inverso de la matriz de código y puede leer el mensaje decodificado (de izquierda a derecha en cada renglón).

a) (Lápiz y papel) Si se arregla el mensaje en una matriz realizando una lectura de izquierda a derecha de manera que el número de elementos en un renglón coincida con el tamaño de la