Total No. of Questions: 8]

SEAT No.:

P3338

[Total No. of Pages: 4

[5353]-504 T.E. (Civil)

STRUCTURAL ANALYSIS - II

(2015 Pattern) (Semester - I)

Time : 2½ *Hours*]

[Max. Marks: 70]

Instructions to the candidates:

- Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- Figures to the right indicate full marks. 2)
- Use of non-programmable calculator is allowed. 3)
- Assume suitable data, if necessary. 4)

Analyze the beam by slope deflection method. Draw B.M.D. **Q1)** a)

Take EI = constant.

[10]

Analyze the frame as shown by moment distribution method. Draw b) [10] B.M.D.

Q2) a) Analyze the continuous beam by moment distribution method. Draw S.F.D. and B.M.D. [10]

b) Analyze the beam by flexibility method if support B sink by 25mm. Take $EI = 3800 \text{kN.m}^2$. [10]

[16]

[16]

Q3) Analyze the beam by stiffness matrix method. Draw B.M.D.

Q4) Analyze the frame by stiffness matrix method. Draw B.M.D.

Q5) a) Find the nodal deflection for the beam by using FDM. Take 5 Nodes.[6]

[12]

[6]

b) Analyze the frame by portal method. Draw B.M.D.

OR

Q6) a) Find the maximum deflection for the beam by using FDM. Take 3 Nodes.

- b) Analyze the frame shown in fig. Q.5 (b) by cantilever method. Draw B.M.D. [12]
- **Q7)** a) Explain plain stress and plain strain problem with example. [8]
 - b) Explain the concept of Pascals Triangle. [4]
 - c) Define CST and LST. [4]

OR

00)	`	D .C	
	a)	Define	۰
Q8)	a j	Define	٠

[8]

- Isoparametric element i)
- Subparametric element ii)
- Superparametric element iii)
- Shape function iv)
- Explain the concept of Discretization with example. b)

[4]

Derive the equation for minimum potential energy. c)

[4]

And the state of t