

Probabilistic Hierarchical Reconciliation via a Non-parametric Bootstrap Approach

Puwasala Gamakumara

with
Anastasios Panagiotelis, George Athanasopoulos and
Rob J. Hyndman

39th International Symposium on Forecasting

Introduction

Introduction

Example: Forecasting the revenue of a large organisation

- **Hierarchical time series:** A collection of multiple time series that has an inherent aggregation structure
- Forecasts should add up. We call it *coherent*
- Why coherent forecasts?

Preliminaries

Notations

$$\mathbf{y}_{t} = [y_{Tot,t}, y_{A,t}, y_{B,t}, y_{AA,t}, y_{AB,t}, y_{BA,t}, y_{BB,t}]^{T}$$

$$\mathbf{b}_{t} = [y_{AA,t}, y_{AB,t}, y_{BA,t}, y_{BB,t}]^{T}$$

$$m = 4$$

$$n = 7$$

$$\mathbf{S} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Due to the aggregation nature of the hierarchy we have,

$$\mathbf{y}_t = \mathbf{S} \mathbf{b}_t$$

Coherent subspace: $\mathfrak{s} = Span(\mathbf{S}), \quad \mathfrak{s} \subset \mathbb{R}^n$

Preliminaries: Coherent forecasts

- Three dimensional hierarchy, $y_{Tot} = y_A + y_B$.
- $\vec{s}_1 = (1, 1, 0)'$ and $\vec{s}_2 = (1, 0, 1)'$ form a basis for \mathfrak{s} .

Preliminaries: Point forecasts reconciliation

Let $\hat{\mathbf{y}} \in \mathbb{R}^n$ be an incoherent forecast. Then, the reconciled forecasts $\tilde{\mathbf{y}}_{T+h}$ are given by,

$$\tilde{\mathbf{y}}_{T+h} = \mathbf{S}\mathbf{G}\hat{\mathbf{y}}_{T+h}$$

Method	G
BU	$(0_{m \times n - m} \mathbf{I}_{m \times m})$
OLS	$egin{array}{c} (0_{m imes n-m} \mathbf{I}_{m imes m}) \ (\mathbf{S}'\mathbf{S})^{-1} \mathbf{S}' \end{array}$
WLS	$\left(\mathbf{S}'\hat{\mathbf{W}}_{T+1}^{wls}\mathbf{S}\right)^{-1}\mathbf{S}'\hat{\mathbf{W}}_{T+1}^{wls}$
MinT(Shrink)	$(\mathbf{s}'\hat{\mathbf{w}}_{T+1}^{shr}\mathbf{s})^{-1}\mathbf{s}'\hat{\mathbf{w}}_{T+1}^{shr}$

Probabilistic forecasts for hierarchical time series

Motivation

- Lack of attention in probabilistic forecasts
 - Ben Taieb et al. (2017)
 - Jeon, Panagiotelis, and Petropoulos (2018)
- Probabilistic forecasts should reflect the inherent properties of real data. In particular,
 - * Aggregation structure
 - ⋆ Correlation structure
- Extending the "reconciliation" method into probabilistic framework

Probabilistic forecast reconciliation

- Often parametric densities are unavailable but we can simulate a sample from the predictive distribution.
- Suppose $\hat{\mathbf{y}}_{T+h}^{[1]},...,\hat{\mathbf{y}}_{T+h}^{[l]}$ is a sample from the incoherent predictive distribution.
- Then setting $\tilde{\mathbf{y}}_{T+h}^{[j]} = \mathbf{S}\mathbf{G}\hat{\mathbf{y}}_{T+h}^{[j]}$ produces a sample from the reconciled predictive distribution with respect to \mathbf{G} .

Non-parametric bootstrap approach

- **I** Fit univariate models at each node using data up to time T.
- Let $\Gamma_{(T \times n)} = (\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_T)'$ be a matrix of in-sample residuals where $\boldsymbol{e}_t = \boldsymbol{y}_t \hat{\boldsymbol{y}}_t$.
- Let $\Gamma^b_{(H \times n)} = (\boldsymbol{e}^b_1,...,\boldsymbol{e}^b_H)'$ be a block bootstrap sample of size H from Γ .
- **4** Generate h-step ahead sample paths from the fitted models incorporating Γ^b . Denote these by $\hat{\mathbf{y}}_{T+h}^b$, for h=1,...,H.
- **5** Repeat step 3 and 4 for b=1,...,B times. Denote these as $\hat{\Upsilon}_{T+h}=(\hat{\pmb{y}}_{T+h}^1,...,\hat{\pmb{y}}_{T+h}^B)'$ for all h.
- 6 Setting $\tilde{\Upsilon}_{T+h} = \mathbf{SG}\hat{\Upsilon}'_{T+h}$ produces a sample from the reconciled distribution.

Optimal reconciliation of future paths

We propose to find an optimal G_h matrix by minimizing Energy score.

$$\underset{\boldsymbol{G}_h}{\operatorname{argmin}} \quad \mathsf{E}_{\boldsymbol{Q}}[\mathsf{eS}(\tilde{\boldsymbol{F}},\boldsymbol{y}_{T+h})], \quad \tilde{\boldsymbol{F}} := \tilde{\boldsymbol{\Upsilon}}_{T+h} = \boldsymbol{S}\boldsymbol{G}_h \hat{\boldsymbol{\Upsilon}}'_{T+h}$$

where.

$$\mathsf{eS}(\tilde{\boldsymbol{F}}, \boldsymbol{y}_{T+h}) = \mathsf{E}_{\tilde{\boldsymbol{F}}} \|\tilde{\boldsymbol{Y}}_{T+h} - \boldsymbol{y}_{T+h}\|^{\alpha} - \frac{1}{2} \mathsf{E}_{\tilde{\boldsymbol{F}}} \|\tilde{\boldsymbol{Y}}_{T+h} - \tilde{\boldsymbol{Y}}_{T+h}^*\|^{\alpha},$$
$$\alpha \in (0, 2]$$

Optimal reconciliation of future paths

Monte-Carlo approximation to the objective function is,

Optimal reconciliation of future paths Cont.

■ We impose the following structure to the G_h matrix

$$\boldsymbol{G}_h = \left(\boldsymbol{S}' \boldsymbol{W}_h \boldsymbol{S}\right)^{-1} \boldsymbol{S}' \boldsymbol{W}_h \tag{1}$$

■ We propose four methods to optimise **G**_h

Method 1: Optimising **W**_h

Method 2: Optimising Cholesky decomposition of W_h $W_h = R'_h R_h$ where R_h is an upper triangular matrix

Method 3: Optimising Cholesky of W_h - restricted for scaling $W_h = R'_h R_h$ s.t $i'W_h i = 1$ where i = (1, 0, ..., 0)'

Method 4: Optimising G_h such that $G_hS = I$

Monte-Carlo Simulation

Data generating process

DGP was designed such that we have much noisier series in the bottom level.

Monte-Carlo Simulation

Monte-Carlo Simulation Cont.

Optimisation	Hierarchy 1				Hierarchy 2			
method	h = 1		h = 3		h = 1		h = 3	
	ES	VS	ES	VS	ES	VS	ES	VS
Method 1	2.48	0.11	2.75	0.11	5.36	1.21	5.83	1.38
Method 2	2.48	0.11	2.75	0.11	5.37	1.21	5.83	1.37
Method 3	2.48	0.11	2.75	0.11	5.37	1.21	5.83	1.37
Method 4	2.48	0.11	2.75	0.11	5.38	1.21	5.83	1.38

Parameterisation does not matter

Monte-Carlo Simulation Cont.

Comparison with point forecast reconciliation methods.

Reconciliation	Hierarchy 1			Hierarchy 2				
method	h =	h=1 $h=3$		= 3	h = 1		h = 3	
	ES	VS	ES	VS	ES	VS	ES	VS
Optimal G	2.48*	0.106	2.75*	0.106	5.36*	1.21*	5.83*	1.38*
MinT(Shrink)	2.47*	0.105	2.74*	0.105	5.33*	1.19*	5.77*	1.34*
WLS	2.46*	0.105	2.74*	0.105	5.43*	1.23	5.98*	1.40*
OLS	2.54*	0.105	2.80*	0.105	5.51*	1.23	5.98*	1.40*
Base	2.67	0.105	2.94	0.105	5.71	1.28	6.27	1.49

[&]quot;*" indicates if the average score for a particular reconciliation method is significantly different from that of base forecasts.

- Reconciliation methods perform better than Base forecasts.
- MinT(Shrink) is at least as good as Optimal method. Thus going forward with MinT projection.

Forecasting Australian domestic tourism flows

Forecasting Australian domestic tourism flows

Geographical hierarchical structure for Australia

Level	No.Series per level
Total (Australia)	1
Level-1 (States)	7
Level-2 (Zones)	27
Level-3 (Regions)	75

- Data: monthly "overnight trips" over the period January 1998 -December 2017
- Source of data: National Visitor Survey (NVS) [Tourism Research Australia]

Forecasting Australian domestic tourism flows

Analysis set up:

- First training sample is set from 1998:Jan to 2006:Apr
- Univariate ARIMA models were fitted for each series in the hierarchy.
- Reconciled probabilistic forecasts were produced for six months ahead (2006:May to 2006:Oct)
- Then the training window is rolled by one month ahead at a time.
- This leads to 140 1-step-ahead, 139 2-steps-ahead, through 135 6-step-ahead forecasts available for evaluation.

Results

Results

Probabilistic forecast performance for different levels

Conclusions

Conclusions

- We introduce a novel non-parametric bootstrap approach for producing reconciled probabilistic forecasts
- Simulation study evident that the optimal reconciliation with respect to energy score is equivalent to reconciling each sample path via MinT approach
- We apply this non-parametric bootstrap approach to obtain coherent probabilistic forecasts for domestic tourism flow in Australia

References

- Ben Taieb, S., R. Huser, R. J. Hyndman, and M. G. Genton (2017). "Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression". In: *IEEE Transactions on Smart Grid* 7.5, pp. 2448–2455.
- Gneiting, T. and A. E. Raftery (2007). "Strictly Proper Scoring Rules, Prediction, and Estimation". In: *Journal of the American Statistical Association* 102.477, pp. 359–378.
- Gneiting, T., L. I. Stanberry, E. P. Grimit, L. Held, and N. A. Johnson (2008). "Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds". In: *Test* 17.2, pp. 211–235.
- Jeon, J., A. Panagiotelis, and F. Petropoulos (2018). "Reconciliation of probabilistic forecasts with an application to wind power". In: European Journal of Operational Research. arXiv: arXiv:1808.02635v1.

References

Scheuerer, M. and T. M. Hamill (2015). "Variogram-Based Proper Scoring Rules for Probabilistic Forecasts of Multivariate Quantities *". In: *Monthly Weather Review* 143.4, pp. 1321–1334.

THANK YOU!

Email: puwasala.gamakumara@monash.edu

Appendix

Appendix: Probabilistic forecasts evaluation

$$= \mathsf{E}_{\breve{\boldsymbol{F}}} \|\breve{\mathbf{Y}}_{T+h} - \mathbf{y}_{T+h}\|^{\alpha} - \frac{1}{2} \mathsf{E}_{\breve{\boldsymbol{F}}} \|\breve{\mathbf{Y}}_{T+h} - \breve{\mathbf{Y}}_{T+h}^*\|^{\alpha}, \quad \alpha \in (0,2]$$

 $eS(\mathbf{\breve{Y}}_{T+h},\mathbf{y}_{T+h})$

$$LS(\mathbf{\breve{F}}, \mathbf{y}_{T+h}) = -\log \mathbf{\breve{f}}(\mathbf{y}_{T+h})$$

Variogram score

$$VS(\breve{F}, y_{T+h}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (|y_{T+h,i} - y_{T+h,j}|^{p} - E_{\breve{F}} |\breve{Y}_{T+h,i} - \breve{Y}_{T+h,j}|^{p})^{2}$$

CRPS

$$\mathsf{CRPS}(\breve{F}_i, y_{T+h,i})$$

$$=\quad \mathsf{E}_{\breve{F}_i} |\breve{\mathsf{Y}}_{T+h,i} - y_{T+h,i}| - \tfrac{1}{2} \mathsf{E}_{\breve{F}_i} |\breve{\mathsf{Y}}_{T+h,i} - \breve{\mathsf{Y}}_{T+h,i}^*|$$

 $reve{Y}_{T+h}$ and $reve{Y}_{T+h}^*$

Independent random vectors from the coherent

YT+h

Vector of realizations.

forecast distribution **F**.