Réactions acido-basiques en solution aqueuse

Définition du pH I.

$$pH = -\log[H_3O^+]$$

Les réactions de l'eau

Couple	Equation	pK _A
H_30^+ / H_20	$H_30^+ + H_20 = H_20 + H_30^+$	$pK_A = 0$
H_2O / HO^-	$2H_2O = HO^- + H_3O^+$	$pK_{e} = 14$

III. Echelle de pH

Acide	Neutre	Basique	
$[H_30^+] > [H0^-]$	$[H_3O^+] = [HO^-]$	$[H_30^+] < [H0^-]$	
$pH < \frac{pK_e}{2}$	$pH = \frac{pK_e}{2} = 7$	$pH > \frac{pK_e}{2}$	

IV. Constante d'acidité d'un couple acido-basique

$$HA_{(eq)} + H_2O_{(l)} = A^-_{(aq)} + H_3O^+_{(aq)}$$
 $K_A = \frac{[A^-]_{(eq)}[H_3O^+]_{(eq)}}{[HA]_{(eq)}}$

$$K_{A} = \frac{[A^{-}]_{(eq)}[H_{3}O^{+}]_{(eq)}}{[HA]_{(eq)}}$$

$$pK_{A} = -\log K_{A}$$

$$pH = pK_A - log\left(\frac{[HA]_{(eq)}}{[A^-]_{(eq)}}\right)$$

Acides et bases fortes

	Fort(e)	Faible	
Acide	$pK_A < 0$	$pK_A > 0$	
Base	$pK_{A} > 14$	pK _A < 14	
Réaction avec l'eau	Totale	Non-totale	

VI. Titrage

Pour
$$V = \frac{V_{eq}}{2}$$
, on a pH = pK_A

VII. Indicateurs colorés

Indicateur	Zone de virage	Couleur acide	Couleur basique
Méthylorange	3.2 - 4.4	Rouge	Jaune
Bleu de bromothymol	6.0 - 7.6	Jaune	Bleu
Phénolphtaléine	8.0 - 10	Incolore	Rose