

Knowledge-Based Systems

Ontology Modelling: From Semantic Networks to Ontologies

Jeff Z. Pan

http://homepages.abdn.ac.uk/jeff.z.pan/pages/

RDF: Standard of Semantic Network

Building block of RDF: subject-property-value

Some Example RDF Triples in N3

- [ggl:barak-obama rdf:type ggl:Politician .]
- [ggl:Politician rdfs:subClassOf ggl:Person .]
- [ggl:barak-obama ggl:born 1961-08-04 .]
- [ggl:barak-obama ggl:spouse ggl:michelle-obama .]
- [ggl:barak-obama ggl:education ggl:harvard-law-school .]

UNIVERSITY RDF and Semantic Network

[my-chair colour tan .]

[my-chair rdf:type chair .]

[chair rdfs:subClassOf furniture .]

. . .

Roadmap

- Foundation
 - KR, ontology and rule; set theory
- Knowledge capture
- Knowledge representation
 - Ontology: Semantic Web standards RDF and OWL,
 Description Logics
 - Rule: Jess
- Knowledge reasoning
 - Ontology: formal semantics, tableaux algorithm
 - Rule: forward chaining, backward chaining
- Knowledge reuse and evaluation
- Meeting the real world
 - Jess and Java, Uncertainty

Lecture Outline

- Motivation
- RDF, Semantic Networks and OWL
- From Semantic Networks to OWL Ontologies
- Practical

[Section 4.1 - 4.3]

[Chapter 14]

Motivations

- Need to better understand RDF (standard of semantic network)
 - in terms of reasoning
 - in terms of relation to database
- Many human knowledge is still represented in natural language
- Ontology modelling
 - natural language -> semantic network
 - semantic network -> OWL ontologies

Lecture Outline

- Motivation
- RDF, Semantic Networks and OWL
- From Semantic Networks to OWL Ontologies
- Practical

RDF Schema Entailment Rules (1)

- [rdfs2]
 - [p rdfs:domain C .] [a p b .] => [a rdf:type C .]
- [rdfs3]
 - [p rdfs:range D .] [a p b .] => [b rdf:type D .]
- [rdfs5]
 - [p1 rdfs:subPropertyOf p2 .] [p2 rdfs:subPropertyOf p3 .]
 - [p1 rdfs:subPropertyOf p3 .]

RDF Schema Entailment Rules (2)

- [rdfs7]
 - [p1 rdfs:subPropertyOf p2 .] [a p1 b .] => [a p2 b .]
- [rdfs9]
 - [C rdfs:subClassOf D .] [b rdf:type C .] => [b rdf:type D .]
- [rdfs11]
 - [C1 rdfs:subClassOf C2 .] [C2 rdfs:subClassOf C3 .] => [C1 rdfs:subClassOf C3 .]

Example: RDF Schema Entailment Rules

Example entailment rule [rdfs9]:

```
[b rdf:type C .], [C rdfs:subClassOf D .] => [b rdf:type D .]
```

Since we have

```
[my-chair rdf:type chair .]
```

[chair rdfs:subClassOf furniture .]

by applying the above rule, we have

[my-chair rdf:type furniture .]

Architecture of Knowledge Based **Systems**

Application API

Knowledge Acquisition / Integration

Knowledge Consumption / Reasoning

Schema Repository

Data Repository

Knowledge Representation in RDF

- Start from a semantic network
- Transformed from a relational database

- From natural language sentences
- Question: can you translate the following statement into RDF?
 - Student is a person
 - Student attends a course
 - Professor teaches a course

- [Student rdfs:subClassOf Person .]
- [attend rdfs:domain Student .] [attend rdfs:range Course .]
- [teach rdfs:domain Professor.]
- [teach rdfs:range Course .]
- Person has first name, last name and email address

Key Modelling Elements in RDF/

- Key elements: object, class (concept), property (relation)
 - in RDF, everything is a resource, including classes and properties
- A class is a set of objects
 - Employee: {E1, E2, E3, E4}
 - Project: {P1, P2}
- A property is a set to pairs (tuples) of objects
 - Works-for: {<E1,P1>, <E2,P1>, <E2,P2>, <E3,P1>, <E3,P2>, <E4,P2>}

Database and RDF

 An RDF statement is a data unit with global and linkable ids for data and schema

Student ID	Name	take-course
p001	John	cs3019
p002	Tom	cs3023

- [csd:p001 rdf:type csd:Student .]
- [csd:p002 rdf:type csd:Student .]
- [csd:p001 csd:name "John" .]
- [csd:p002 csd:name "Tom" .]
- [csd:p001 csd:take-course csd:cs3019 .]
- [csd:p002 csd:take-course csd:cs3023 .]

Two Types of Properties in OWL

- In OWL there are two kinds of properties
 - Object properties, which relate objects to other objects
 - E.g. take-course, supervises
 - Datatype properties, which relate objects to datatype values
 - E.g. Name, title, age, etc.

Student ID	Name	take-course
p001	John	cs3019
p002	Tom	cs3023

Database and RDF

- Question: How about the foreign key to the Course table?
 - Answer??: [csd:take-course rdfs:range csd:Course .]

(very close, but not quite, due to the difference between open world and closed world assumptions)

How about Primary Key

- RDF is NOT expressive enough to represent primary key
- We need OWL (Web Ontology Language) for that

- Example with Friend Of a Friend (FoaF) ontology
 - foaf:OnlineAccount owl:hasKey

(foaf:accountName

foaf:accountServiceHomepage)

Lecture Outline

- Motivation
- RDF, Semantic Networkds and OWL
- From Semantic Networks to OWL Ontologies
- Practical

Semantic Network

Separating Concepts and Individuals

- In semantic networks, boxes can be concepts and individuals
- In ontologies, concepts and individuals are quite different things
 - An individual is interpreted as a domain element
 - E.g. "Iker Cassilas" is an individual person in the domain
 - A concept is interpreted as a set of domain elements
 - E.g. "Keeper" is the set of all keepers in the domain, including "Iker Cassilas"
 - Of course, whether a box is a concept or individual depends on the granularity of the domain
 - E.g. "cat" can be an individual if the ontology is about different species of "animal"
 - "cat" can be a concept if the ontology is about many individual cats, your cats, my cats, etc.

Semantic Network

Separating Concepts and Individuals

Identifying Concept/Property Subsumption and Individual Classifications

- In Semantic Networks, edges can be domain properties or predifined properties in RDF/OWL, such as
 - subClassOf, subPropertyOf and type
- An individual x is an instance of a concept C if x is interpreted as an element of the set that C is represents
- A concept A is a sub-concept of a concept B if every instance of A is an instance of B
 - E.g. every keeper is also a player, "Iker Casillas" is a "Keeper",
 - "Keeper" is a sub-concept of "Player" implying that "Iker Casillas" is a "Player"
- A property R is a sub-property of a property S if every instance of R is an instance of S

Semantic Network

Identifying Concept/Property Subsumption and Individual Classifications

Identifying Object Properties and Datatype Properties

- Object properties represent relations between two individuals
 - E.g. "Iker Casillas" and "Spain" are both individuals, hence Iker Casillas "represents" Spain is an object property.
- Datatype properties represent relations between an individual and a datatyped value
 - Data value includes numbers, dates, strings, etc.
 - E.g. "Iker's record" is an individual, "9" is an integter, hence Iker's record "has number" 9 is a datatype proeprty.

Semantic Network

Identifying Object Properties and Datatype Properties

Constructing the Ontology

- 1. Adding concepts
 - E.g. Country, Keeper, Player, Record, Performance
- 2. Adding Object and datatype properties
 - E.g. represents, make, equal, etc., has number, etc.
 - Domain and range
 - Domain of a property is a concept
 - E.g. Domain(represents) = Player
 - Range of an object property is a concept
 - E.g Range(represents) = Country
 - Range of a datatype property is a datatype
 - E.g. Range(has number) = Integer
 - Based on the types of subjects and objects of relations
- 3. Adding individuals
 - E.g. spain, Iker_Casillas, Iker's_record, etc.
- 4. Adding individual relations and datatype property values
 - E.g. represents(Iker_Casillas, spain), make(Iker_Casillas, Iker's_record),
 has_number(Iker's_record, 9)

Knowledge-Based Systems Jeff Z. Pan

A Process of Refinement

- The procedure of constructing an ontology is also a procedure in which you examine and refine your semantic networks!
- A typical example: multi-entity relationships
 - E.g. "Six players from Barcelona were in the Spanish starting line-up"
 - This is a complex relationship involving a "Country's team", a "club team", and "6" players
 - In semantic networks, one may draw a figure like this or similar:

- This is not semantically precise:
 - Barcelona has 6 players?
 - No, it has 6 players in the Spanish start line-up
 - Barcelona represents Spain?
 - No, its 6 players represent Spain in the start line-up
- This relationship makes sense only when you take all these entities into account!

A Process of Refinement

- An alternative representation
 - there could be others
- Constructing ontology helps you re-evaluate and refine your semantic network.

Practical

- Revisit your semantic networks and see
 - how to construct OWL ontologies accordingly
- How to construct OWL ontologies
 - ontology editors <-> OWL abstract syntax
 - using OWL API

Summary

- Modern version of semantic network, with formal syntax and semantics
- Can represent data and foreign keys in relational data model
 - but not primary key
- OWL provides much expressiveness that RDF does not have
- Unerstand how to build OWL ontologies from semantic networks

