General Theory

Table1.1Minimum Grade of Concrete for different exposure conditions:

Exposure	Minimum Grade of Concrete for RCC
Mild	M20
Moderate	M25
Severe	M30
Very Severe	M35
Extreme	M40

Tensile Strength:

The tensile strength of concrete is very low and hence it is not taken in to account in the design of reinforced concrete.

But it is an important property which affects the extent and width of cracks in the structure. According to IS 456-2000,

the tensile strength of concrete can be calculated from the compressive strength using the following relation

$$f_{cr} = 0.7\sqrt{f_{ck}}N/mm^2$$

Where f_{ck} is the characteristic cube compressive strength of concrete

Modulus of Elasticity:

Modulus of elasticity of concrete is an important property required for computation of deflections of structural concrete members. In the absence of test data the modulus of elasticity fck concrete is related to compressive strength by the following relation as per IS 456-2000

$$E_c = 5000 \sqrt{f_{ck}} N/mm^2$$

Where Ec is the short term static modules of elasticity in N/mm²

Unit weight: The unit weight of concrete depends up on the type of aggregates and amount of voids. The unit weight as specified by the IS 456-2000 for plain concrete and reinforced concrete are 24 KN/m^3 and 25 KN/m^3 respectively.

Design of multi storied residential building

A structure can be defined as a body which can resist the applied loads without appreciable deformations. Civil engineering structures are created to serve some specific functions like human

habitation, transportation, bridges, storage etc. in a safe and economical way. A structure is an assemblage of individual elements like pinned elements (truss elements), beam element, column, shear wall slab cable or arch. Structural engineering is concerned with the planning, designing and the construction of structures. Structure analysis involves the determination of the forces and displacements of the structures or components of a structure. Design process involves the selection and detailing of the components that make up the structural system. The main object of reinforced concrete design is to achieve a structure that will result in a safe economical solution. The Design of each part may be designed separately as follows

- 1. Slab design
- 2. Beam design
- 3. Column design
- 4. Foundation design

These all are designed under limit state method Limit statemethod

The object of design based on the limit state concept is to achieve an acceptability that a structure will not become unserviceable in its life time for the use for which it is intended. I.e. it will not reach a limit state. In this limit state method, all relevant states must be considered in design to ensure a degree of safety and serviceability.

Limit state: The acceptable limit for the safety and serviceability requirements before failure occurs is called a limit state.

Limit state of collapse:

This is corresponding to the maximum load carrying capacity. Violation of collapse limit state implies failures in the

source that a clearly defined limit state of structural usefulness has been exceeded. However, it does not mean complete collapse.

This limit state corresponds to:

- a) Flexural
- b) Shear
- c) Compression
- d) Torsion
- e) Limit state of serviceability

DESIGN OF SLABS

Slabs are plane structural members whose thickness is small as compared to its length and breadth. Slabs are most frequently used as roof coverings and floors in various shapes such as square, rectangular, circular, triangular etc., in building. Slabs supports mainly transverse loads and transfers them to the supports by bending action in one or more directions. Beams or walls are the common supports for the slabs.

Types of Slabs: Depending up on the ratio of longer span to short span(l_V/l_X) the slabs are classified in to:

- a. One-way slab
- b. Two-way slab

One-way slab

Slabs which are supported on all four edges and the ration of longer span to the shorter span (ly/lx) are

greater than 2 are called as one way slabs. One way slabs bends in one direction i.e. along the shorter span and hence span and hence it needs main reinforcement in one direction only (along the shorter span) to resist one way bending However minimum reinforcement known as distribution steel is provided along the longer span above the main reinforcement to distribute the load uniformly and to resist temperature and shrinkage stresses.

Two-way slab

When the slabs are supported on all the four edges and the ratio of longer span to the shorter span (ly/l_X) is less than or equal to 2, the slabs are likely to bend along the two spans and such slabs are called as two-way slabs. The load is transferred in both the direction to the four supporting edges and hence main reinforcement has to be designed in both directions to resist two way bending.

General Design Requirements for slabs as per IS 456:2000

Effective Span:

The effective span of a simply supported slab shall be taken as clear pan plus effective depth of the slab or center to center distance between the supports whichever is less.

The effective span of a cantilever slab shall be taken as its length to the face of the support plus half the effective depth except where it forms the end of a continuous slab where the length to the center of support shall be taken.

Limiting Stiffness: The stiffness of slabs is governed by the span to depth ratio. As per Clause 23.2 of IS 456 for spans not exceeding 10m, the span to depth ration (Basic values) should not exceed the limits given below

Cantilever – 7 Simply supported – 20 Continuous – 26

Depending upon the type of steel and percentage of steel, the above values have to be modified as per Fig .4 of IS-456

For two way slabs, the shorter span be used for calculating the span to effective depth ration

Minimum Reinforcement: The reinforcement in either direction of span shall not be less than 0.15% of gross cross-sectional area if mild steel is use. However, this value is reduced to 0.12% where high strength deformed bars or welded wire fabrics are used. (Clause 26.5.2.2 of IS -456)

Maximum Reinforcement: The diameter of the bars shall not exceed one eighth of the total thickness of slab (clause 26.5.2.2 of IS-456)

Spacing of Main Reinforcement: The spacing of main reinforcement in slabs shall not be more than three times the effective depth of solid slab or 300 mm whichever is less (Clause 26.3.3 of IS-456).

GROUND FLOOR PLAN

Design of Slab:

Given Data -						
	(i) Leng	th of an indiv	a) =	4	m	
	(ii) Bread	dth of an indiv	vidual slab	(b) =	3.25	m
	(iii) Live I		300	Kg/sqm		
	(iv) Bean	n Dimension	- 250 * 400	mm		
	(v) Column D	imension - 40	00 * 400			
	(vi) Ceiling	Plaster -	6	mm		
	(vii) Reinfor	cement -	8	mm		
	(viii) Spac	cing -	200	mm		
	(ix) Grade of	concrete -				
	M35	5	M25	so, fck	25 N/mm ²	
Considerations - (i) One staircase is	s provided in	_			
	(ii) Grade or	f Steel -	Fe 500	so, fy	500 N/mm ²	

(iii) Suppor	t Width =		125 mm						
(iv)	(iv)Density of reinforced concrete(KN/m³) - 25								
(v) D	(v) Density of plain cement concrete(KN/m³) - 24								

So, slab(c/c) (Ly)			bearing		
= '	4	m	=	125	mm
Slab(c/c) (Lx) =	3.25	m			
Size of column =400 X 400)	length			
mm²		=	0.4	m	
		so,			
Grade of Concrete = M25		fck	25	N/mm^2	
Grade of Steel =					
Fe500		so, fy	500	N/mm2	

clear span(Ly)=	3.75					
clear span(Lx)=	3					_
Now, $K = (Ly/Lx) =$	1.23077		< 2			
So, We design as	per two wa	y s	lab			
Now, depth of slab re-	qd. (d) =	C	0.08125	m		
clear cover to be pro	vided =		0.02	m		
So, total depth of sla	b (D) =	C	0.10125	m		
So, eff. Length of sl	ab (Ly) =			3.83125		m
So, eff. Length of sl	ab(Lx) =			3		m
	·					
	Now, $K = 0$	Ly	/Lx) =	1.27708	<	2

Step 1: Load analysis:

Load analysis								
				[V	Vd =			
				D	ead			
	Tot	tal load (W)	= Wd	Lo	ad of			
		+ Wd' + 1	LL	sla	ab =		2.53125	KN/m²
				W	'd' =			
				F	loor			
				fi	nish			
	=	6.53125	KN/m²	lo	ad =		1	KN/m²

			LL =			
			Live			
			Load =		3	KN/m²
			for unit			
	Factored loa	d = 1.5 X	width,			
	W		(b) =		1000	mm
=	9.796875	KN/m²				

Step 2: Area of steel required:

$$M_{U} = 0.87 f_{y} A_{st} d [1 - \frac{(f_{y}) A_{st}}{(bd) f_{ck}}]$$

Moment Calculation:						
				[As per	IS 456:2000	; page 91;
		$Mx = \alpha x$	xWLx2		Clause D-1.	1]
				[So,		
				WLx^2		
		$My = \alpha y$	yWLx2	Ш	88.171875	
				·		

Step 3: Spacing of reinforcement:

$$S = [a_s * b]/A_{st}$$
 (Done along with moment calculation)

Step 4: Check for Shear force:

Chec								
k for								
Shear								
force:			Vu =	(W*Lx)/2				
			So, Vu					
			=	14.695313	KN/m			
			Now,					
		(computed					
		sl	near stress	$\tau v = Vu/bd$				
			=	=	0.180865385			
				Now, τc =	0.2942			
			As per IS	456:2000 , T	able 19, if min	nimum		
					el is provided]			
				-				[
			Now,	Modification	value (k) =		1.3	Clause

							40.2.1.1
]
			Now, $\tau c =$	$k * \tau c =$		0.38246	N/mm²
							hence
							safe
			Now				from
			$,\tau c,\max =$	3.1	N/mm²		shear
		[As per I	S 456:2000, T	able 20, if min	imum		
		per	centage of stee	el is provided]			
		Now,					
		as	$\tau v < \tau c$	< τc,max			
		So, ef	fective Depth of	of slab $(d) =$		81.25	mm
		And,	provided total	depth (D) =		101.25	mm
			Hence OK				

Step 5: Moment calculation:

Moment								
Calculation:								
	Miı	nimum Ast t	to be	(0.12)	*bd)/100			
		provided =	:		=		97.5	mm²
	Dia	of reinforce	ement b	ar to				
		be provid	ded =		8	mm		
	So,							
	as							
	=	50.28571	mm²					
	Ma	aximum spa	cing pr	ovided	can be			
		min of	f 3d and	d 300				

(i)Slabs marked : S1		[Interior	Donalal				
marked: S1		_	raneisj				
		Directio					Optimum
	Span	n	α	M (KNm)	Ast (mm²)	Spacing	Spacing
					89.8441144		
	Mid -	X	0.0352	3.10365	4	559.699593	200
	Span(+				60.8129450		
)	y	0.024	2.116125	6	826.891614	200
				4.073540	118.785780	423.331092	
		X	0.0462	6	6	7	200
	Cont.				81.5053853		
	Span(-)	y	0.032	2.8215	1	616.961862	200
	Now,						
			34.922				
	So, d(re	quired) =	3	mm			
	Now, d provided =		81.25	mm			
	Hence, we retain D						
		=	101.25	mm	d + 20mm(Cover) = D	

(ii)Slabs marked : S2		[one short edge discontinuou s]	edge co	ontinuous]			
							Optimu
				M			m
	Span	Direction	α	(KNm)	A_{st} (mm ²)	Spacing	Spacing
					98.2188149	511.976389	
	Mid -	X	0.0384	3.3858	2	9	200
	Span(+			2.468812	71.1318594		
)	y	0.028	5	3	706.936592	200
				4.443862	129.952449		
		X	0.0504	5	6	386.954724	200
	Cont.			3.262359	94.5504274	531.840158	
	Span(-)	y	0.037	4	3	2	200
	Now,						
			36.475				
	So, o	d(required) =	2	mm			
	Now,	, d provided =	81.25	mm			
	Hence	, we retain D =	101.25	mm			

(iii)Slabs		[0]	ne long e	dge			
marked: S3		dis	scontinuo	ous]			
		Directio					Optimum
	Span	n	α	M (KNm)	A_{st} (mm ²)	Spacing	Spacing
				3.791390	110.321411		
	Mid -	X	0.043	6	9	455.811011	200
	Span(+			2.468812	71.1318594		
)	y	0.028	5	3	706.936592	200
					144.944169	346.931612	
		X	0.056	4.937625	1	2	200
	Cont.			3.262359	94.5504274	531.840158	
	Span(-)	y	0.037	4	3	2	200
	Now,						
			38.448				
	So, d(re	quired) =	2	mm			
	Now, d p	provided =	81.25	mm			

(iv)Slabs marked : S4		[Two A	Adjacent 1	Edge Disco	ntinuous]		
		Directio					Optimum
	Span	n	α	M (KNm)	A_{st} (mm ²)	Spacing	Spacing
				4.161712	121.438589	414.083485	
		X	0.0472	5	2	6	200

Mid -						
Span(+			3.086015	89.3218948	562.971871	
)	y	0.035	6	4	3	200
				166.569983	301.889410	
	X	0.064	5.643	9	8	200
Cont.			4.144078	120.907732	415.901556	
Span(-)	y	0.047	1	7	9	200
Now,						
		41.102				
So, d(required) =		8	mm			
Now, d provided =		81.25	mm			
Hence, we retain D						
=		101.25	mm			

BOTTOM REINFORCEMENT

TOP REINFORCEMENT

Typical reinforcement arrangement of slab scale- 1:25

Design of Beam:

Loads on a two-way slab are transferred to all beams on all the sides. So, each beam supports an amount of the load from the slab. The slab is commonly divided into trapezoidal and triangular areas by drawing lines from each corner of the rectangle at 45 degrees.

SLAB REINFORCEMENT

Given data						
			Live Load			
Shorter Span	3250	mm	of Slab	3	kN/m	
			Dead Load			including
			of Slab	3.53	kN/m	Floor finish
			Total load			
Longer Span	4000	mm	of Slab	6.53	kN/m	
			Grade Of			
Support Width	250	mm	Concrete	25	M	

			Grade Of			
Aspect Ratio	1.230769231		Steel	500	Fe	
			Diameter			
Floor height	2.6	m	of Bar	8	mm	
			Dead Load			
wall thickness	200	mm	of Beam	1.5625	kN/m	
			Dead Load			
			of walls	9.88	kN/m	

Step 1:Load Calculation:

Load Calculatio						BEA	To	otal
ns			SLA	ABS		M	Lo	ads
						DEAD		
						LOAD		
	LOAD	Triangul	Trapezoidal(D	Triangul	Trapezoidal(L	FROM		
	S	ar (DL)	L)	ar (LL)	L)	BEAMS	S DL	LL
							19.0	6.5
Spans	3.25	3.82		3.25		11.44	9	0
							19.0	6.5
	3.25	3.82		3.25		11.44	9	0
							19.0	6.5
	3.25	3.82		3.25		11.44	9	0
							20.3	7.6
	4.00		4.47		3.80	11.44	9	0
							20.3	7.6
	4.00		4.47		3.80	11.44	9	0
							20.3	7.6
	4.00		4.47		3.80	11.44	9	0
							20.3	7.6
	4.00		4.47		3.80	11.44	9	0

Step 2: Bending Moment Calculation:

STEP 2		nding ment									Final d Mom	_
	For DL	Load	Co efficient of next to end support	Co efficien t of interior support	Co efficien t of span	Support momen t	Interior Suppor t	Span	Spa n	Support Momen t	Interior Suppor t	Span
Shorte	3.2	19.0						16.8				35.5
r Span	5	9	0.10		0.08	20.16	0.00	0	3.25	41.69	0.00	0

	3.2	19.0						12.6				27.4
	5	9	0.10		0.06	20.16	0.00	0	3.25	41.69	0.00	9
	3.2	19.0						16.8				35.5
	5	9	0.10		0.08	20.16	0.00	0	3.25	41.69	0.00	0
	4.0	20.3						27.1				59.0
	0	9	0.10		0.08	32.62	0.00	9	4.00	69.22	0.00	3
	4.0	20.3						20.3				45.7
	0	9	0.10	0.08	0.06	32.62	27.19	9	4.00	69.22	61.06	9
	4.0	20.3						20.3				45.7
	0	9	0.10	0.08	0.06	32.62	27.19	9	4.00	69.22	61.06	9
Longer	4.0	20.3						27.1	_			59.0
Span	0	9	0.10		0.08	32.62	0.00	9	4.00	69.22	0.00	3

			Co	Co				
			efficient	efficient				
			of next to	of	Co			
	For		end	interior	efficient	Support	Interior	
	LL	Load	support	support	of span	moment	Support	Span
	3.25	6.50	0.11		0.10	7.63	0.00	6.87
	3.25	6.50	0.11		0.08	7.63	0.00	5.72
Shorter Span	3.25	6.50	0.11		0.10	7.63	0.00	6.87
	4.00	7.60	0.11		0.10	13.52	0.00	12.17
	4.00	7.60	0.11	0.11	0.08	13.52	13.52	10.14
	4.00	7.60	0.11	0.11	0.08	13.52	13.52	10.14
Longer Span	4.00	7.60	0.11		0.10	13.52	0.00	12.17

Step 3: Shear Force Calculation:

	Shear										_			
STEP 3	Force										ŀ	inal design	Shear	
				Co-	Co									
			Co-	efficient	efficie	nt								
			efficient	of	next t	o								
	For		of end	interior	end		End	Interior	Next			End	Interior	Next to
	DL	Load	support	support	suppo	rt	support	Support	to end			support	Support	end
	3.25	19.09	0.40		0.60		24.82	0.00	37.23	Span	3.25	51.49	0.00	74.85
Shorter	3.25	19.09			0.55		0.00	0.00	34.12		3.25	0.00	0.00	70.20
Span	3.25	19.09	0.40		0.60		24.82	0.00	37.23		3.25	51.49	0.00	74.85
	4.00	20.39	0.40		0.60		32.62	0.00	48.94		4.00	69.47	0.00	100.78
	4.00	20.39		0.50	0.55		0.00	40.78	44.86		4.00	0.00	88.55	94.66
Longer	4.00	20.39		0.50	0.55		0.00	40.78	44.86		4.00	0.00	88.55	94.66
Span	4.00	20.39	0.40		0.60		32.62	0.00	48.94		4.00	69.47	0.00	100.78

				Co eff				
			Co eff	of				
	For		of end	interior	Co eff next to end	End	Interior	Next
	LL	Load	support	support	support	support	Support	to end
	3.25	6.50	0.45		0.60	9.51	0.00	12.68
Shorter	3.25	6.50			0.60	0.00	0.00	12.68
Span	3.25	6.50	0.45		0.60	9.51	0.00	12.68
Longer	4.00	7.60	0.45		0.60	13.69	0.00	18.25
Span	4.00	7.60		0.60	0.60	0.00	18.25	18.25

Step 4: Depth Check:

STEP 4	Depth (Check		
Max Moment	69.22	kN-m	0.5*fck*deff*b/fy	6250.00
Depth Req.	141.64	mm	fck*b*d*d	1562500000.00
Depth taken	250.00	deff		
Clear cover	25.00	mm		
Overall Depth	275.00	mm		

Step 5: Area of steel calculations:

STEP 5	Area o									
SPAN	Effective length	Support moment KN-M	Span moment KN-M	Area of steel required mm2 As per IS 456:2000,Pg:96,G-1.1.b Mu=0.87Fy*Ast*deff(1- Ast*Fy/b*deff*Fck)		Top reinforcement	Bottom reinforcement	Percentage of steel (Pt) at top	Percentag of steel (Pt) at bottom	Ĭ
	3.25	41.69	35.50	396.10	396.10 335.65		4-12Ф	0.72	0.72	
SHORTER	3.25	41.69	27.49	396.10 258.21		4-12Ф	3-12Ф	0.72	0.54	
SPAN	3.25	41.69	35.50	396.10	335.65	4-12Ф	4-12Ф	0.72	0.72	

			Interio									
			r									
		Suppo	suppor		Area o	of steel re	quired					
		rt	t	Span	mn	n2 As per	· IS			Percenta	Percer	ıtage
	EFFECTI	mome	mome	mome	456:200	00,Pg:96,	G-1.1.b	Top	Bottom	ge of	of st	eel
	VE	nt	nt	nt	Mu=0.8	37Fy*Ast	*deff(1	Reinforcem	reinforceme	steel (Pt)	(Pt)	at
SPAN	LENGTH	KN-M	KN-M	KN-M	-Ast*	Fy/b*deff	*Fck)	ent	nt	at top	bott	om
					673.0		568.9					
	4.00	69.22		59.03	2	0.00	9	4-16Ф	3-16Ф	1.29	0.96	
					673.0	589.5	436.5					
	4.00	69.22	61.06	45.79	2	5	6	4-16Ф	3-16Ф	1.29	0.96	
					673.0	589.5	436.5					
	4.00	69.22	61.06	45.79	2	5	6	4-16Ф	3-16Ф	1.29	0.96]
LONGE					673.0		568.9					
R SPAN	4.00	69.22		59.03	2	0.00	9	4-16Ф	3-16Ф	1.29	0.96	

Step 6: Shear Reinforcement:

	Shear reinfor	cement		ED STIRRUP Φ8MM			
		Chaon	Shear				
		Shear force	force next to			τc in	τc in
		at end	end	τv in	τv in	N/mm2 is	N/mm2 is
	EFFECTIVE	support	support	N/mm2	N/mm2	obtained by	obtained by
SPAN	LENGTH	KN	KN	(V*1000/bd)	(V*1000/bd)	interpolation	interpolation
	3.25	51.49	74.85	0.82	1.20	0.35	0.35
SHORTER	3.25	0.00	70.20	0.00	1.12		0.32
SPAN	3.25	51.49	74.85	0.82	1.20	0.35	0.35

Design	Design			
shear	shear			
force	force			Spacing
(Vd) V-	(Vd) V-	Sv in mm from C/C	Sv in mm from C/C	provided
τcbd	τcbd	(0.87*fy*Asv*d)/Vd*103	(0.87*fy*Asv*d)/Vd*103	C/C
29.36	52.73	370.38	206.25	250.00
0.00	50.32		216.10	250.00
29.36	52.73	370.38	206.25	250.00

142.75

260.28

					1							
				Shear								
			Shear	force	S	Shear						
			force at	next to	fo	rce at			τν	in in	τv	in
	EF	FECTIV	end	end	in	terior	rior		N/r	nm2	N/m	m2
		E	support			pport	τv in N	J/mm2	(V*10	000/bd	(V*100)	00/bd
SPAN	Ll	ENGTH	KN			KN	(V*10	00/bd)))	
		4.00	69.47	100.78	(0.00	1.	11	1.	.61	0.0	0
		4.00	0.00	94.66	8	88.55	0.0	00	1.	.51	1.4	-2
LONGE		4.00	0.00	94.66	8	88.55	0.0	00	1.	.51	1.4	-2
R SPAN		4.00	69.47	100.78	(0.00	1.	11	1.	.61	0.0	0
										Design	1	
τc in N/mr	n2			τc in N/mm	12				shear			
is obtaine	d	τc in N/r	nm2 is	is obtained	1	Design she		Desi	ign	force		
by		obtaine	ed by	by		force (Vd) V		shear	force	(Vd)		
interpolation	on	interpo	lation	interpolation	n	τcbd		(Vd) V	-τcbd	V-τcbc	1	
0.44		0.3	9			41.78		78 76.1		0.00		
		0.3	9	0.44		0.0	00	70.0	06	60.86		
		0.3	9	0.44		0.0	00	70.0	06	60.86		
0.44		0.3	9			41.	78	76.	18	0.00		
Sv in mn	n fro	om C/C	Sv in	mm from C	/C	Sv	in mm f	rom C/C				
(0.87*fy*A	4sv*	'd)/Vd*1	(0.87*f	y*Asv*d)/V	d*1	(0.87	'*fy*Asv	/*d)/Vd*	[*] 1	SPA	CING	
	03			03			03		I	PROVID	ED C/	C
26	0.28	3		142.75						250.0	00	
0	00.			0.00			178.6	59	250.00		00	
0	.00			155.21			178.6	<u></u>		250.00		

250.00

BEAM ON X-X DIRECTION

BEAM ON Y-Y DIRECTION

-

Design of column:

Considering Exterior column:

Step 1: Load Calculations:

			1	Unit							
			W	eight		Height	Width	L	ength	l	Load
Level	Load	Гуре	K	N/M3		metre	metre	r	netre		KN
	Parape	t wall		20		1	0.2	0.2			6.5
ROOF	Parape	t wall				1	0.2		2		8
			20			TOTAL	LOAD				14.5
		Load	Load Shorter		r	Longer					
	Load	per m2				span					
Level	Type	ŘN/M				metre	Load	K	N		
	D.L on										
	slab	3.53		3.25	4		11.4725	5			
3RD	L.L on										
FLOOR	slab	3		3.25		4	9.75				
	D.L on										
	slab	3.53		3.25		4	11.4725	5			
2ND	L.L on										
FLOOR	slab	3	3 3.25			4	9.75				
			3 3.23								
	D.L on										
	slab	3.53		3.25		4	11.4725				
1ST	L.L on										
FLOOR	slab	3		3.25		4	9.75				

		Load	Shorter	Longer		
		per m	span	span		
Level	Load Type	KN/M	metre	metre	Load KN	
	D.L on		3.25		18.59	
	beam	11.44		4	22.88	
3RD	L.L on		3.25		4.875	
FLOOR	Beam	3		4	6	
	D.L on		3.25		18.59	
	beam	11.44		4	22.88	
2nd	L.L on		3.25		4.875	
FLOOR	Beam	3		4	6	
	D.L on		3.25		18.59	
	beam	11.44		4	22.88	
1ST	L.L on		3.25		4.875	
FLOOR	Beam	3		4	6	

Y 1	I 177	Unit weight	Height	Width	Depth	Y 1	IZNI
Level	Load Type	KN/M3	metre	metre	metre	Load	KN
3RD FLOOR		25	3	0.4	0.4	12	
2ND							
FLOOR		25	3	0.4	0.4	12	
1ST	Self-weight of						
FLOOR	column	25	3	0.4	0.4	12	
		TOT	AL LOAD	ON			
		(COLUMN			271.202	5
		FAC	TORED LC	OAD		406.803	8

Step 2: DETERMINATION OF GROSS AREA OF COLUMN

			as pe	er IS 456: 2000 Pg	g:71, C 1:39.3			
		Co	nsidering.	8% area of steel (A	SC)			
Axial load	Fck	Breadth mm	NOTE					
		-						
406.80375	25	500	179.1154					
		umn s	m size of where db is	cross s	300 is			
REMARK		dia	meter of the	ne largest longitudii	nal reinforce	ment	prov	rided

Step 3: Eccentricity Check:

	C	heck for e	ccentricity						
				Minimum					
				Eccentricity(As					
Unsupported				per IS					
column	Width	Breadth		456:2000 Pg:					
length	mm	mm	Eccentricity	42 C1:25.4)					
						so size of th	ne co	lumn	
						assuming 4	150m	m X	
3	300	300	16	20		450r	nm		
		•						>	
	DEM	ADVC	ma dasian			eccentricity	21	20	
	KEW	IARKS	re design			·			

Step 4: Area of steel Calculation:

	DETERMINATION OF AREA OF CONCRETE Acc & AREA OF STEEL Ast											
					Gross area		Are		•	ovide m bars		
			Widt	Breadt	of	Area of	a of					
Axial	Fc		h	h	colum	Concre	stee	Reinforceme	area o	f 20mm b	oar	S
load	k	Fy	mm	mm	n Ag	te	1	nt	= 31	14.16 mm	2	
									actu			
406.803		50			20250		162		al	2513.2		
75	25	0	450	450	0	200880	0	8-20Ф	Ast	8		

Step 5: Lateral tie Calculation

						Diameter ties $> (1/4)$				
C	ALCU	JLAT		= 5			ı			
Die of	Dia of Spacing of							usi	ing nm	
Dia of					а.					
lateral	la	teral ti	es		Spacing			ba	ırs	
Ties	1	2	3	REMARK	provided					
6	450	320	300	Minimum of	provide					
				3s is taken = 300	Ф6mm @ 300 C/C					

Considering the interior column:

Step 1: Load Calculation:

	Load calc	ulation			
Level	Load Type	Load per m2 KN/M2	Shorter span metre	Longer span metre	Load KN
3RD FLOOR	D.L on slab	3.53	3.25	4	45.89
	L.L on slab	3	3.25	4	39
	D.L on slab	3.53	3.25	4	45.89
2ND FLOOR	L.L on slab	3	3.25	4	39
	D.L on slab	3.53	3.25	4	45.89
1st FLOOR	L.L on slab	3	3.25	4	39

		Load	Shorter	Longer	
		per m	span	span	Load
Level	Load Type	KN/M	metre	metre	KN
	D.L on		3.25	0	37.18
	beam	11.44		4	45.76
3RD	L.L on		3.25		9.75
FLOOR	Beam	3		4	12
	D.L on		3.25	0	37.18
	beam	11.44		4	45.76
	L.L on		3.25		9.75
2nd FLOOR	Beam	3		4	12
	D.L on		3.25	0	37.18
	beam	11.44		4	45.76
	L.L on		3.25		9.75
1st FLOOR	Beam	3		4	12

		Unit						
		weight	Height	Width				
Level	Load Type	KN/M3	metre	metre	Dep	oth metre		
3RD								
FLOOR		25	3	0.4	0.4	12		
2ND								
FLOOR		25	3	0.4	0.4	12		
1ST	Self-weight							
FLOOR	of column	25	3	0.4	0.4	12		
		TOTAL LOAD ON						
		COLUMN 604.74						
		FACTORED LOAD 907.11						

Step 2: DETERMINATION OF AREA OF CONCRETE FOR COLUMN

Con	siderii	ng 1%	area of st								
			Area	Gross area of	WIDTH	Breadth					
Axial load	Fck	Fy	of steel	NOTE							
907.11	25	500	0.01	67948.31461	260.669	260.669	A column o	f			
	As	per IS	13920: 20	016 Pg:7, Cl:7.1.1 t	he minimu	m size of	cross section	n			
	colu	300×300 is									
REMARK	K is diameter of the largest longitudinal reinforcement provided										

Step 3: Eccentricity check:

Check for eccentricity							

Unsupported column length	Width mm	Breadth mm	Eccentricity	Minimum Eccentricity(As per IS 456:2000 Pg: 42 Cl:25.4)		so size of t assuming 450	450n		
3	300	300	16	20		eccentricity	21	> 20	
	REM	IARKS	re design						

Step 4: determination of gross area of Column

DETER	RMINA			REA OF C		ГЕ Асс &					
					Gross					le 20mm pars	
			Widt	Breadt	area of	Area of	Are		area	of 20mm	
Axial	Fc		h	h	colum	Concret	a of	Reinforceme	bars	= 314.16	
load	k	Fy	mm	mm	n Ag	e	steel	nt	1	mm2	
907.1		50			20250		202		actua	2513.2	Ħ
1	25	0	450	450	0	200475	5	8-20Ф	1 Ast	8	

Step 5: Calculation for Lateral Ties:

								Dian	neter of	ties sh	ould
	CALO	CULA	TION	FOR LATERAL 7	ΓIES	be $> (1/4)*20 =$				620 = 5	mm
Diamete	Sp	acing	of				using 8mm				
r of	la	teral ti	es					ba	ırs		
lateral					Spacing						
Ties	1	2	3	REMARK	provided						
	45	32	30								
6	0	0	0		provide						
				Minimum of 3s	Ф6тт @						
				is taken $= 300$	300 C/C						

Design Of footing:

Step 1: Determination of size of the footing

Determination of Si	ze of footing								
load	605								
			ıming						
Self-weight	60.5	1	0% of	superi	mpose	d Load	l]		
Total load	665.5								
		[red	quired	area of	footin	g = (text)	otal		
Design load	665.5	10	oad/ sa	fe bear	ring ca	pacity)]		
		[As v	we are	using s	square	footing	g, size	of footi	ing =
footing area	3.697222		sq	uare ro	ot of(a	rea of	footing	g)]	
size of footing	1.922816								

We provide isolated footing of size 2m×2m

Net upward ultimate soil pressure(p0) [p0 = net upward pressure = (total ultimate load / area provided)]

Step 2: Determination of depth of footing based on BM about critical section

Determinat	ion of depth					
of footing or	n the basis o	of				
bending	moment					
				[Bending Moment = M		
				$= p0*(B/8)*(B-b)^2$		
				where $B = width of footing$		
Bending				provided and $b = width of$		
Moment	149.8935			column provided]		
		As per IS		Depth required =		
		456:2000		sqrt(Mu/(.138*Fck*B))		
Depth		Pg:96,				
required	197.3896	Cl:G 1.1.c				
				[Due to shear consideration		
Depth		adopting higher effective				
provided	500	depth]				

Step 3: Area Of steel:

		Area of		
Area of steel required		one	113.1429	

			12r	nm				
			ba	ar				
As per IS 456:2000 Pg:96, Cl:1.1.b								
Ast required	585			(Ast/Bd)*100]				0.0792
				but minimum % of			of	
				reinforcement = 0.12%				
				Hence, % of				
No of bars of Φ12mm	6.170455			reinforcement 0.0012				
Ast provided	792							

Step 4: Spacing of Reinforcement:

Spacing of Reinf	Spacing of Reinforcement								
						•	g = w		
					f	ooting	g / No	of bar	S
Spacing required	285.7143			provided					
Spacing provided	250								

CHECK FOR ONE WA	AY SHEAR								
					She	ear for	ce =	V =	
					p0*	B*(0.	5(B-b))-d)	
					Ulti	mate s	hear f	orce	
Ultimate shear force	205.8891				=	= Vu =	: 1.5*V	V	
				Nominal shear stress					
				= Tv = (Vu/Bd)					
Nominal shear stress	0.205889								
	0.0012								
Damagntaga of staal	0.0012								
Percentage of steel									
					Da	cian el	haar et	rangth	of
				Design shear strength of concrete = T' = Tc*k					
Decience to a media of							ecause	•	
Design shear strength of	0.24	300mm page 72 I					2 15: 4:	30 -	
concrete	0.24						2000	1	1
	Cofo from			ΓΛα		a1 alaa			
	Safe from			[As nominal shear stress < design shear strength of concrete]					
	one way			S	hear s	trengtl	n of co	ncrete	
Remark	shear								

d = Vu/(B*T')			
428.9355			
d provided = 500m	m :	> 448mm he	nce safe

CHECK FOR TWO WAY SHEAR				

									acting on perimeter B^2 - b0^2)				
	 			b0 =	(b+								
ultimate shear force	796.1044			d	l)								
Danimatan of Cuitical				ultin	nate sh	ear for	rce =						
Perimeter of Critical Section	3.6			1.5	*net s	hear fo	rce						
				Nominal shear stress =									
						*b0*d							
Nominal shear stress	0.44228				u / (1	1	, 						
				Ks = 0.5 + 1 as this is a									
				square footing clause									
Ks calculated	1.5				•	31.6.3.	-						
				as K	s cann	ot be							
1, 456 2000				grea	ater tha	an 1							
Ks as per Is 456: 2000	1												
Shear strength of concrete	1.25												
REMARK	Safe from two	Ks*shear strength of											

FOOTING