© Министерство образования Республики Беларусь Учреждение образования «Республиканский институт контроля знаний»

РТ-2021/2022 гг. Этап III

Тематическое консультирование по математике

Вариант 1

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментар <mark>ий и ре</mark> шение <mark>задания*</mark>	Учебное издание**
Числа и вычисления. Стандартный вид числа	А1. Среди чисел 1,5·10²; 150·10 ⁻¹ ; 15·10²; 15·10 ⁻² ; 0,15·10¹ укажите то, которое записано в стандартном виде. 1) 1,5·10²; 2) 150·10 ⁻¹ ; 3) 15·10²; 4) 15·10²; 5) 0,15·10¹	Задание на проверку знания записи стандартного вида числа. Решение:	Арефьева, И. Г. Алгебра : учеб. пособие для 7-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2017. — 313 с. : ил. (Гл. 1, § 3, с. 34–43)
Выражения и их преобразования. Степень с целым показателем и ее свойства	А2. Представьте выражение $a^{-7} \cdot (a^2)^{-3}$ в виде степени с основанием a . 1) a^{-8} ; 2) a^{-1} ; 3) a^{-26} ;	Задание на проверку умения применять свойства степени с целым показателем для преобразования выражений. Решение: $a^{-7} \cdot \left(a^2\right)^{-3} = a^{-7} \cdot a^{-3 \cdot 2} = a^{-7 \cdot (-6)} = a^{-13}.$ Ответ: 5	Арефьева, И. Г. Алгебра : учеб. пособие для 7-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2017. — 313 с. : ил. (Гл. 1, § 2, с. 22—34)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Координаты и функции. Возрастание и убывание функции	4) a^{42} ; 5) a^{-13} АЗ. Функция $y = f(x)$ задана на промежутке $[-7; -3]$ и является убывающей на области определения. Расположите значения функции $f(-5)$, $f(-4)$, $f(-6)$ в порядке возрастания. 1) $f(-4)$, $f(-6)$, $f(-5)$; 2) $f(-6)$, $f(-4)$, $f(-5)$; 3) $f(-6)$, $f(-5)$, $f(-4)$; 4) $f(-4)$, $f(-5)$, $f(-6)$; 5) $f(-5)$, $f(-6)$, $f(-6)$, $f(-6)$	Задание на проверку знания свойств функции. Решение: Φ ункция убывает на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции. Числа -4 , -5 , -6 принадлежат промежутку $[-7;-3]$. По условию функция $y = f(x)$ убывает на промежутке $[-7;-3]$, значит, из того, что $-4 > -5 > -6$, следует, что $f(-4) < f(-5) < f(-6)$. Ответ: 4	Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 2, § 7, с. 90—103)
Геометрические фигуры и их свойства. Трапеция	А4. Дана равнобедренная трапеция <i>АВСD</i> (<i>АD</i> <i>BC</i>). Используя данные рисунка, найдите градусную меру угла 1. 1) 57°; 2) 89°; 3) 59°; 4) 33°; 5) 58°	Задание на проверку умения применять свойства равнобедренной трапеции для вычислений. Решение: Следствие: в равнобедренной трапеции $ABCD$ ($AB = DC$) $\angle ADB = \angle DAC$, $AO = DO$ и $BO = CO$ (см. puc. 1).	Казаков, В. В. Геометрия : учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск : Народная асвета, 2018. — 199 с. : ил. (Гл. 1, § 11, с. 60–64)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		A D D P D	
		Рассмотрим ри <mark>сунок 2. Обозначим точку пересечения диагоналей <i>AC</i> и <i>BD</i></mark>	
		трапеции $ABCD$ точкой O .	
		$ \begin{array}{c} B \\ C \\ 1 \\ 57^{\circ} \end{array} $ $ D $	
		Рисунок 2	
		По следствию, сформулированному выше, $\angle OAD = \angle ODA = 32^{\circ}$. Внешний угол	
		COD треугольника AOD равен сумме	
		углов OAD и ODA . Значит $\angle COD = 64^{\circ}$.	
		Так как сумма градусных мер углов треугольника <i>COD</i> равна 180°, то	
		преугольника COD равна 180, 10 $\angle 1 = 180^{\circ} - \angle COD - \angle CDO$,	
		$\angle 1 = 180^{\circ} - 260^{\circ} - 260^{\circ},$ $\angle 1 = 180^{\circ} - 64^{\circ} - 57^{\circ}, \ \angle 1 = 59^{\circ}.$	
		Ответ: 3	
Координаты и функции. Функция $y = \cos x$	А5. Среди значений переменной x , равных $\frac{7\pi}{6}$;	Задание на проверку умения находить значение функции, используя формулы приведения. Решение:	Арефьева, И. Г. Алгебра: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 285 с.: ил. (Гл. 1, § 5, с. 53–75; § 9,

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	$\frac{7\pi}{3}$; $\frac{9\pi}{4}$; 4π ; $\frac{3\pi}{2}$, укажите то, при котором значение функции $y = \cos x$ отрицательное. 1) $\frac{7\pi}{6}$; 2) $\frac{7\pi}{3}$; 3) $\frac{9\pi}{4}$; 4) 4π ; 5) $\frac{3\pi}{2}$	$\cos\frac{7\pi}{6} = \cos\left(\pi + \frac{\pi}{6}\right) = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2} < 0.$ $\cos\frac{7\pi}{3} = \cos\left(2\pi + \frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{1}{2} > 0.$ $\cos\frac{9\pi}{4} = \cos\left(2\pi + \frac{\pi}{4}\right) = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2} > 0.$ $\cos 4\pi = 1.$ $\cos\frac{3\pi}{2} = 0.$ Ответ: 1. Примечание. Функция $y = \cos x$ принимает отрицательные значения на промежутках $\left(\frac{\pi}{2} + 2\pi n; \frac{3\pi}{2} + 2\pi n\right), n \in \mathbb{Z}$	c. 115–128)
Геометрические фигуры и их свойства. Свойство медиан треугольника	A6. В равнобедренном треугольнике ABC медианы CM и BK, проведенные к его боковым сторонам AB и AC соответственно, пересекаются в точке O. Найдите длину отрезка OM, если BO = 18. 1) 6; 2) 9; 3) 27; 4) 12; 5) 15	Задание на проверку умения применять свойство медиан треугольника. Решение: Теорема (свойство медиан треугольника). Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2: 1, считая от вершины. Рассмотрим рисунок.	Казаков, В. В. Геометрия : учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск : Народная асвета, 2018. — 199 с. : ил. (Гл. 1, § 9, с. 52—55)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		M M K M	
		$\angle KCB = \angle MBC$) следует, что $BK = CM$. По свойству медиан получим, что $BO = 2OK$, $OK = 9$. Значит и $OM = 9$. Ответ: 2	
Числа и вычисления. Понятие процента	А7. За неделю было продано 52 % яблок, поставленных в магазин. После чего осталось 300 кг яблок. Сколько килограммов яблок было получено магазином? 1) 652 кг; 2) 612 кг; 3) 632 кг; 4) 608 кг; 5) 625 кг	Задание на проверку умения решать задачи на проценты. Решение: Оставшиеся в магазине после продажи яблоки составляют 48%. Найдем количество всех яблок (в килограммах), которые были поставлены в магазин: $\frac{300}{48} \cdot 100 = 625 (\text{кг}).$ Ответ: 5	Герасимов, В. Д. Математика: учеб. пособие для 6-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. Д. Герасимов, О. Н. Пирютко. — Минск: Адукацыя і выхаванне, 2018. — 320 с.: ил. (Гл. 2, § 2, с. 91–105)
Координаты и функции. График функции	А8. На рисунке дан график функции $y = f(x)$, определенной на промежутке $[-6; 6]$. Среди точек A, B, C, D, E , которые находятся в узлах сетки и не принадлежат графику функции $y = f(x)$, укажите ту, которая принадлежит графику функции	Задание на проверку умения строить графики функций $y = f(x) \pm b$, $b \in R$ с помощью преобразования графика функции $y = f(x)$. Решение:	Арефьева, И. Г. Алгебра: учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 329 с.: ил. (Гл. 2, § 9, с. 118–134)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Содержания	y = f(x) + 3. 1) A; 2) B; 3) C; 4) D; 5) E	График функции $y = f(x) + b$ можно получить сдвигом графика функции $y = f(x)$ вдоль оси ординат на b единиц вверх, если $b > 0$ (рис. 48, a). а) $y = f(x) + b$ у a доль оси ординат на b единиц выполним сдвиг графика функции b единицы b вдоль оси ординат на b единицы b един	
		Ответ: 2	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Выражения и их преобразования. Действия над рациональными дробями	А9. Значение выражения $\frac{4b+4}{b^2-4}-\frac{3}{b-2}$ при $b=2\frac{2}{3}$ равно: 1) $1\frac{1}{2}$; 2) $\frac{3}{8}$; 3) $\frac{3}{20}$; 4) $\frac{3}{14}$; 5) $1\frac{1}{3}$	Задание на проверку умений приводить дроби к общему знаменателю и находить значение выражения. Решение: Выполним преобразования: $\frac{4b+4}{b^2-4}-\frac{3}{b-2}=\frac{4b+4-3(b+2)}{(b-2)(b+2)}=$ $=\frac{b-2}{(b-2)(b+2)}=\frac{1}{b+2}.$ Найдем значение выражения $\frac{1}{b+2}$ при $b=2\frac{2}{3}: \frac{1}{2\frac{2}{3}+2}=\frac{1}{4\frac{2}{3}}=\frac{1}{14}=\frac{3}{14}.$ Ответ: 4	Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 1, § 3, с. 32—47)
Уравнения и неравенства. Системы и совокупности неравенств	А10. Найдите решение совокупности неравенств $\begin{bmatrix} x^2 + 4x \ge 0, \\ 1 - 2x < 0. \end{bmatrix}$ 1) $(-\infty; -4] \cup \left(\frac{1}{2}; +\infty\right);$ 2) $\left(\frac{1}{2}; +\infty\right);$ 3) $(-\infty; -4] \cup \left[0; +\infty\right);$ 4) $(-\infty; -4] \cup \left[0; \frac{1}{2}\right);$ 5) $(-\infty; +\infty)$	Задание на проверку умения решать совокупности неравенств. Решение: Решим каждое неравенство совокупности: 1) $x^2 + 4x \ge 0$. Нули функции $y = x^2 + 4x$: $x_1 = 0$; $x_2 = -4$. Решением неравенства $x^2 + 4x \ge 0$ является множество $(-\infty; -4] \cup [0; +\infty)$. 2) $1-2x < 0$, $-2x < -1$, $x > \frac{1}{2}$. Решением неравенства $1-2x < 0$ является открытый луч $\left(\frac{1}{2}; +\infty\right)$. Объединением множеств решений первого и второго неравенств является	Арефьева, И. Г. Алгебра : учеб. пособие для 8-то кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2018. — 269 с. : ил. (Гл. 3, § 16, с. 191—203)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		множество $(-\infty; -4] \cup [0; +\infty)$. Ответ: 3	
	А11. Составьте выражение, которое определяет, на сколько центнеров величина 5 т 8 ц больше величины a т.	Задание на проверку умений составлять выражение по условию задачи и выражать одни единицы измерения через другие. Решение:	Арефьева, И.Г. Алгебра: учеб. пособие для 7-го кл. учреждений общ. сред. образования с рус. яз. обучения / И.Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2017. — 313 с.: ил. (Гл. 2, § 4, с. 44—53)
Выражения и их преобразования. Выражения	1) 508 – 100 <i>a</i> ; 2) 58 – 10 <i>a</i> ;	Выразим 5 т 8 ц в центнерах. Так как $1 \text{ т} = 10 \text{ ц}$, то $5 \text{ т 8 ц} = 58 \text{ ц}$. Выразим $a \text{ т в}$	
с переменными	3) 58-a; 4) 508-10a; 5) 58-100a	центнерах: $a = 10 \cdot a$ ц. Выражение, определяющее, на сколько центнеров величина 5 ± 8 ц больше величины a т, имеет вид: $58-10a$. Ответ: 2	
Числа и вычисления. Признаки делимости. НОД и НОК	А12. Среди данных утверждений укажите номера верных. 1) Сумма 25·7+13·7 делится на 7 без остатка; 2) произведение 16·23·75 делится на 9 без остатка; 3) НОК(13; 26) = 13; 4) число 501 является простым; 5) НОД(9; 18; 27) = 9. 1) 1; 2) 2; 3) 3; 4) 4; 5) 5	Задание на проверку умения применять признаки делимости и находить НОД и НОК чисел. Решение: 1) Если каждое слагаемое суммы делится на некоторое число, то их сумма тоже делится на это число. Сумма 25·7+13·7 делится на 7 без остатка, так как каждое слагаемое делится на 7. Утверждение 1 — верное. 2) Если один из множителей произведения делится на некоторое число, то и произведение делится на это число. Произведение 16·23·75 не делится на 9 без остатка, так как ни один из множителей не делится на 9. Утверждение 2 — неверное. 3) Если одно из чисел делится на другое, то их наименьшее общее кратное равно большему из чисел. НОК(13; 26) = 26.	Герасимов, В. Д. Математика: учеб. пособие для 5-го кл. учреждений общ. сред. образования с рус. яз. обучения: в 2 ч. / В. Д. Герасимов, О. Н. Пирютко, А. П. Лобанов. — 2-е изд., испр. и доп. — Минск: Адукацыя і выхаванне, 2020. — Ч. 1. — 176 с.: ил. (Гл. 1, § 13—14, с. 100—115)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		Утверждение 3 — неверное. 4) Простым числом называется число, которое имеет только два различных делителя. Утверждение 4 — неверное, так как число 501 имеет больше двух делителей. Заметим, что сумма цифр числа 501 равна 6, а число 6 делится на 3, значит и число 501 делится на 3. 5) $9 = 3 \cdot 3$; $18 = 2 \cdot 3 \cdot 3$; $27 = 3 \cdot 3 \cdot 3$. НОД $(9; 18; 27) = 3 \cdot 3 = 9$. Утверждение 5 — верное.	
Числа и вычисления. Арксинус, арккосинус, арктангенс, арккотангенс числа	А13. Найдите значение выражения $24\text{ctg}\left(17\arccos\left(-\frac{1}{2}\right)\right)$. 1) $-8\sqrt{3}$; 2) $24\sqrt{3}$; 3) $-24\sqrt{3}$; 4) $12\sqrt{3}$; 5) $8\sqrt{3}$	Ответ: 1, 5 Задание на проверку умения находить арксинус, арккосинус, арккосинус, арктангенс, арккотангенс числа. Решение: $\arccos\left(-\frac{1}{2}\right) = \pi - \arccos\frac{1}{2} = \pi - \frac{\pi}{3} = \frac{2\pi}{3}, \text{ тогда}$ $17\arccos\left(-\frac{1}{2}\right) = 17 \cdot \frac{2\pi}{3} = \frac{34\pi}{3}.$ $24\operatorname{ctg}\frac{34\pi}{3} = 24\operatorname{ctg}\left(11\pi + \frac{\pi}{3}\right) = 24\operatorname{ctg}\frac{\pi}{3} = 24 \cdot \frac{\sqrt{3}}{3} = 8\sqrt{3}.$ Ответ: 5	Арефьева, И. Г. Алгебра : учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 285 с. : ил. (Гл. 1, § 7, с. 87–99)
Координаты и функции. Экстремумы функции	А14. Найдите сумму экстремумов функции $f(x) = x^3 + 6x^2 + 9x + 5$. 1) 6; 2) -6; 3) -4;	Задание на проверку умения находить экстремумы функции. Решение: 1) $D(f) = R$. 2) $f'(x) = (x^3 + 6x^2 + 9x + 5)' = 3x^2 + 12x + 9$.	Арефьева, И. Г. Алгебра: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 285 с.: ил. (Гл. 3, § 20, с. 239—256)

[▼]Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	4) 4; 5) 3	3) $f'(x) = 0$, $3x^2 + 12x + 9 = 0$, $x^2 + 4x + 3 = 0$, $D = 4$, $x_1 = -1$, $x_2 = -3$. $f'(x) + - + f(x) -3 -1 x$ Точки экстремума функции: $x_{max} = -3$;	
		$x_{\min} = -1$. Экстремумы функции: $f_{\max} = f(-3) = (-3)^3 + 6 \cdot (-3)^2 + 9 \cdot (-3) + 5 = -27 + 54 - 27 + 5 = 5$. $f_{\min} = f(-1) = (-1)^3 + 6 \cdot (-1)^2 + 9 \cdot (-1) + 5 = -1 + 6 - 9 + 5 = 1$. Сумма экстремумов функции $f(x) = x^3 + 6x^2 + 9x + 5$ равна 6. Ответ: 1	
Геометрические фигуры и их свойства. Площадь четырехугольника	А15. Через сторону AB ромба $ABCD$ с острым углом A , равным 30° , и длиной стороны, равной 16 , проведена плоскость α , образующая с плоскостью ромба угол, косинус которого равен $\frac{\sqrt{3}}{8}$. Из вершин C и D проведены перпендикуляры CM и DK к плоскости α . Найдите площадь четырехугольника $ABMK$. 1) $2\sqrt{3}$; 2) $8\sqrt{61}$; 3) $16\sqrt{3}$;	Задание на проверку умений определять угол между плоскостями, находить площадь параллелограмма. Решение: Рассмотрим рисунок.	Казаков, В. В. Геометрия: учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск: Народная асвета, 2018. — 199 с.: ил. (Гл. 1, § 3, с. 22—28; гл. 2, § 14, с. 81—84); Латотин, Л. А. Геометрия: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова; пер. с белорус. яз. Л. А. Романович. — Минск: Адукацыя і выхаванне, 2020. — 199 с.: ил. (Р. 3, § 8—10, с. 97—134)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	4) $8\sqrt{3}$;	Перпендикуляры <i>DK</i> и <i>CM</i> равны, так как проведены из точек, которые	
	$5)\ 16\sqrt{61}$	принадлежат прямой <i>DC</i> , параллельной	
		плоскости α (по признаку параллельности	
		прямой и плоскости). Через параллельные	
		прямые <i>DK</i> и <i>CM</i> проходит плоскость, перпендикулярная плоскости α и	
		пересекающая ее по прямой КМ.	
		Четырехугольн <mark>ик КДСМ – </mark>	
		прямоугольник, так как он параллелограмм	
		(по признаку пар <mark>алл</mark> елограмма: $DK = CM$	
		и $DK \parallel CM$), у которого все углы прямые. Значит, $DC = KM$ и $DC \parallel KM$. Поскольку	
		$DC \parallel AB$ и $DC \parallel KM$, то четырехугольник	
		<i>АВМК</i> – параллелограмм по признаку	
		парал <mark>лел</mark> ограмма $(AB = KM, AB \parallel KM)$.	
		Углом между плоскостью ромба <i>АВСО</i> и	
		плоскостью а является угол DPK: так	
		OP + AP = 0 высота ромба $ABCD$, то	
		$DP \perp AB$, и поскольку прямая AB перпендикулярна пересекающимся	
		прямым DP и DK плоскости DPK , то по	
		теореме о трех перпендикулярах $KP \perp AB$.	
		По условию $\cos \angle DPK = \frac{\sqrt{3}}{8}$.	
		В прямоугольном треугольнике АРД:	
		$\angle DAP = 30^{\circ}, AD = 16, \text{тогда} DP = 8$	
		(по свойству катета, лежащего против угла в 30°).	
		Из прямоугольного треугольника <i>DKP</i>	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Содержания	А16. Среди чисел $-\sqrt{26}$; $-\sqrt{17}$; $-\sqrt{13}$; $-\sqrt{21}$; $-\sqrt{15}$ выберите те, которые НЕ принадлежат области определения функции $y = \sqrt{\log_{0.7}{(x+5)}}$.	найдем KP : $\frac{KP}{DP} = \cos \angle DPK$, $\frac{KP}{8} = \frac{\sqrt{3}}{8}$, $KP = \sqrt{3}$. Площадь параллелограмма $ABMK$ найдем по формуле $S_{ABMK} = AB \cdot KP$, $S_{ABMK} = 16\sqrt{3}$. Ответ: 3 Задание на проверку умения находить область определения функции. Решение: Областью определения данной функции является множество значений переменной,	Арефьева, И. Г. Алгебра: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2020. — 270 с.: ил. (Гл. 3, § 8, с. 115—130)
Координаты и функции. Логарифмическая функция	1) $-\sqrt{26}$; 2) $-\sqrt{17}$; 3) $-\sqrt{13}$; 4) $-\sqrt{21}$; 5) $-\sqrt{15}$	при которых выполняется условие $\begin{cases} \log_{0.7}(x+5) \geq 0, \\ x+5 > 0. \end{cases}$ Решим эту систему: $\begin{cases} \log_{0.7}(x+5) \geq \log_{0.7}1, \\ x > -5; \end{cases}$ $\begin{cases} x+5 \leq 1, & x \leq -4, \\ x > -5; & x < -5; \end{cases}$ $x \in (-5; -4].$ $D(y) = (-5; -4].$ Числа $-\sqrt{26}; & -\sqrt{15}; & -\sqrt{13}$ не принадлежат промежутку $(-5; -4].$ Ответ: $1, 3, 5$	
Уравнения и неравенства. Решение логарифмических уравнений	A17. Пусть x_0 – корень уравнения $\log_{0,6}\left(x^2+x-10\right)-\log_{0,6}\left(x-1\right)=0$, тогда значение выражения 4^{x_0} равно:	Задание на проверку умения решать логарифмические уравнения. Решение: Уравнение $\log_{0,6}\left(x^2+x-10\right)-\log_{0,6}\left(x-1\right)=0$	Арефьева, И. Г. Алгебра: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2020. — 270 с.: ил. (Гл. 3, § 9, с. 130—147)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	2) 40; 3) 12; 4) 64; 5) 72	равносильно уравнению $\log_{0,6}\left(x^2+x-10\right)=\log_{0,6}\left(x-1\right),$ которое равносильно системе: $\begin{cases} x^2+x-10=x-1,\\ x-1>0; \end{cases}$ $\begin{cases} x^2-9=0,\\ x>-1; \end{cases}$ $\begin{cases} (x-3)(x+3)=0,\\ x>-1; \end{cases}$ $\begin{cases} x=-3,\\ x=3,\\ x>-1; \end{cases}$ $x=3.$ Значит $x_0=3,$ тогда значение выражения 4^{x_0} равно $64.$ Ответ: 4	
Геометрические фигуры и их свойства. Объем пирамиды	А18. Квадрат $ABCD$, длина стороны которого равна $3\sqrt{3}$, является основанием пирамиды $SABCD$. Ее ребро SA перпендикулярно плоскости основания. Площадь сечения, проходящего через диагональ AC основания и ребро SA , равна $27\sqrt{2}$. Найдите объем пирамиды $SABCD$. 1) $27\sqrt{3}$; 2) $54\sqrt{3}$; 3) $162\sqrt{3}$; 4) $81\sqrt{6}$; 5) $66\sqrt{2}$	Задание на проверку умения находить объем пирамиды. Решение: Рассмотрим рисунок. $S = \frac{1}{3} S_{ABCD} \cdot SA, где = S_{ABCD} - площадь$	Латотин, Л. А. Геометрия : учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова, О. Е. Цыбулько. — Минск : Белорусская Энциклопедия имени Петруся Бровки, 2020. — 232 с. : ил. (Р. 2, § 3, с. 38—56)

[▼]Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
СОДСРАВИТА		основания пирамиды, SA — высота пирамиды. Треугольник SAC является сечением пирамиды плоскостью, проходящей через диагональ AC и ребро SA . По условию длина стороны основания пирамиды равна $3\sqrt{3}$, тогда $AC = 3\sqrt{6}$. По формуле площади прямоугольного треугольника SAC найдем высоту SA пирамиды: $S_{SAC} = \frac{1}{2}SA \cdot AC$, $27\sqrt{2} = \frac{1}{2}SA \cdot 3\sqrt{6}$, $SA = 6\sqrt{3}$. Площадь основания пирамиды найдем по формуле: $S_{ABCD} = AB^2$, $S_{ABCD} = 27$. $V_{SABCD} = \frac{1}{3} \cdot S_{ABCD} \cdot SA$, $V_{SABCD} = \frac{1}{3} \cdot 27 \cdot 6\sqrt{3}$,	
		$V_{SABCD} = 54\sqrt{3}$. Other: 2	
	В1. Для начала каждого из предложений А-В подберите его окончание 1-6 так, чтобы получилось верное утверждение.	Задание на проверку умения применять теорему Виета для решения задач. Решение: $Teopema$ Виета: $ecnu$ x_1 , x_2 — $kophu$	Арефьева, И. Г. Алгебра: учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2018. — 269 с.: ил. (Гл. 2, § 9, с. 104—113)
Уравнения и неравенства. Квадратные уравнения.		приведенного квадратного уравнения $x^2 + px + q = 0$, то $x_1 + x_2 = -p$, $x_1 \cdot x_2 = q$.	
Теорема Виета		А) Приведенное квадратное уравнение $x^2 - 201x + 6 = 0$ имеет корни, так как $D = (-201)^2 - 4 \cdot 6 > 0$. По теореме Виета находим: $x_1 + x_2 = 201$. Б) Приведенное квадратное уравнение $x^2 - 17x - 215 = 0$ имеет корни, так как	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задани	ısı	Комментарий и решение задания*	Учебное издание**
	Начало предложения А) Сумма корней уравнения $x^2 - 201x + 6 = 0$ равна Б) Произведение корней уравнения $x^2 - 17x - 215 = 0$ равно В) Сумма квадратов корней уравнения $2x^2 - 34x + 15 = 0$ равна Ответ запишите в виде сочетания букалфавитную последовательность бук Помните, что некоторые данные прависпользоваться несколько раз или в вообще. Например: А1Б1В4	в левого столбца. ого столбца могу <mark>т</mark>	$D = (-17)^2 - 4 \cdot (-215) > 0$. По теореме Виета находим: $x_1 \cdot x_2 = -215$. В) Уравнение $2x^2 - 34x + 15 = 0$ имеет корни, так как $D = (-34)^2 - 4 \cdot 2 \cdot 15 > 0$, и равносильно приведенному квадратному уравнению $x^2 - 17x + 7, 5 = 0$. По теореме Виета находим: $x_1 + x_2 = 17$, $x_1 \cdot x_2 = 7, 5$. $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1 \cdot x_2 = 17^2 - 2 \cdot 7, 5 = 289 - 15 = 274$. Ответ: А6Б4В2	
Геометрические фигуры и их свойства. Соотношения между сторонами и углами треугольника	В2. Длины всех сторон треугол	дной стороны - 3. Для начала подберите его	Задание на проверку умений применять неравенство треугольника и находить площадь треугольника. Решение: Пусть x — длина третьей стороны треугольника. Тогда $3-1 < x < 1+3$, то есть $2 < x < 4$. Единственное целое значение x , удовлетворяющее условию, — это $x = 3$. Таким образом, дан равнобедренный треугольник с длинами сторон, равными 3 , 3 и 1 (см. рис.).	Казаков, В. В. Геометрия : учеб. пособие для 7-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск : Народная асвета, 2017. — 178 с. : ил. (Гл. 4, § 21—22, с. 120—128); Казаков, В. В. Геометрия : учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск : Народная асвета, 2018. — 199 с. : ил. (Гл. 2, § 15, с. 85—91); Казаков, В. В. Геометрия : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск : Народная асвета, 2019. — 191 с. : ил. (Гл. 1, § 1, с. 11—19)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задан	ия	Комментарий и решение задания*	Учебное издание**
	Начало предложения	Окончание предложения	A A	
	А) Периметр треугольника равен Б) Площадь треугольника равна В) Косинус большего угла треугольника равен	1) 6. 2) $\frac{\sqrt{35}}{8}$. 3) 7. 4) $\frac{17}{18}$. 5) $\frac{1}{6}$. 6) $\frac{\sqrt{35}}{4}$.	$B = \frac{1}{2} \times \frac{1}{2} C$	
	Ответ запишите в виде сочетания бу алфавитную последовательность бу Помните, что некоторые данные пра использоваться несколько раз или вообще. Например: A1Б1B4	укв левого ст <mark>олбц</mark> а. Ввого столб <mark>ца мо</mark> гут	А) Периметр треугольника равен 7 (1+3+3=7). Б) Площадь треугольника найдем по	
			формуле $S_{ABC} = \frac{1}{2} \cdot BC \cdot AK$ (1). Из прямоугольного треугольника AKC по теореме Пифагора найдем AK : $AC^2 = AK^2 + KC^2, \qquad AK^2 = AC^2 - KC^2,$ $AK^2 = 3^2 - \left(\frac{1}{2}\right)^2, AK^2 = \frac{35}{4}, AK = \frac{\sqrt{35}}{2}.$	
			Тогда площадь треугольника по формуле (1) равна $\frac{\sqrt{35}}{4}$. В) Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		В треугольнике против большей стороны лежит больший угол. В нашем случае большим углом является угол при основании. Тогда $\cos \angle ACB = \cos \angle ACK = \frac{KC}{AC},$ $\cos \angle ACB = \frac{1}{6}.$ Ответ: A3Б6B5	
Геометрические фигуры и их свойства. Фигуры, симметричные относительно прямой	В3. Выберите три верных утверждения.	Задание на проверку знания определения фигуры, симметричной относительно прямой. Решение: Если для каждой точки фигуры симметричная ей точка относительно прямой также принадлежит этой фигуре, то фигура имеет ось симметрии. 1) Утверждение 1 — верное, так как точки, симметричные точкам равнобедренного треугольника относительно прямой, проходящей через его биссектрису АК, проведенную к его основанию ВС, принадлежат этому равнобедренному треугольнику (см. рис. 1).	Герасимов, В. Д. Математика: учеб. пособие для 6-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. Д. Герасимов, О. Н. Пирютко. — Минск: Адукацыя і выхаванне, 2018. — 320 с.: ил. (Гл. 6, § 5, с. 297—301)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	1 прямая, проходящая через биссектрису равнобедренного треугольника, проведенную к его основанию, является его осью симметрии прямая, проходящая через высоту		
	2 равнобедренного треугольника, проведенную к одной из его боковых сторон, является его осью симметрии	M	
	з прямая, проходящая через одну из диагоналей прямоугольника, в который нельзя вписать окружность, является его осью симметрии	$B \xrightarrow{\parallel} K$	
	прямая, проходящая через одну из диагоналей ромба, является его осью симметрии	Рисунок 1 2) Утверждение 2 – неверное, так как,	
	прямая, проходящая через одну из диагоналей параллелограмма, в который нельзя вписать окружность и около которого нельзя описать окружность, является его осью симметрии	например, точка A_1 , симметричная точке A относительно прямой, через высоту BK равнобедренного треугольника ABC $(AB = AC)$, не	
	6 прямая, проходящая через медиану прямоугольного равнобедренного треугольника, проведенную к его гипотенузе, является его осью симметрии	принадлежит данному равнобедренному треугольнику (см. рис. 2).	
	Ответ запишите цифрами (порядок записи цин не имеет значения). Например: 123	B C A_1 P B C A_2 A_3 A_4 A	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		3) Из условия следует, что данный прямоугольник не является квадратом. Утверждение 3 — неверное, так как, например, точка A_1 , симметричная точке A относительно прямой, которая проходит через диагональ BD прямоугольника $ABCD$, не принадлежит данному прямоугольнику (см. рис. 3). $A = \frac{A_1}{D}$ $Pucyнок 3$ 4) Утверждение 4 — верное, так как точки, симметричные точкам ромба относительно прямой, проходящей через одну из его диагоналей, например AC , принадлежат этому ромбу (см. рис. 4).	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		Рисунок 4 5) Из условия следует, что данный параллелограмм не является квадратом. Утверждение 5 — неверное, так как, например, точка A_1 , симметричная точке A относительно прямой, которая проходит через диагональ BD параллелограмма $ABCD$, не принадлежит данному параллелограмму (см. рис. 5).	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		симметричные точкам прямоугольного равнобедренного треугольника относительно прямой, проходящей через его медиану AK , проведенную к его гипотенузе BC , принадлежат этому прямоугольному равнобедренному треугольнику (см. рис. 6). B M M_1 C $Pucyнок 6$ Ответ: 146	
Уравнения и неравенства. Решение текстовых задач	В4. Ежемесячно фирма выпускала 12 000 единиц изделий. Затем в течение двух месяцев выпуск единиц изделий увеличивался на 5 % по сравнению с предыдущим месяцем. Сколько единиц изделий было выпущено за эти два месяца?	Задание на проверку умения решать текстовые задачи. Решение: Найдем, сколько изделий было выпущено в каждом из двух месяцев, когда выпуск единиц изделий увеличивался на 5 % по сравнению с предыдущим месяцем: 12 000 · 1,05 = 12 600. 12 600 · 1,05 = 13 230. За два месяца выпустили 25 830 единиц изделий. Ответ: 25 830	Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 4, § 17—18 с. 234—254)
Выражения и их преобразования. Корень <i>n</i> -й степени	В5. Найдите значение выражения $\frac{15 \cdot \sqrt[3]{11} \cdot \sqrt{11\sqrt[3]{11}}}{20^{-1} \cdot \left(\sqrt[4]{121} - 1\right) \left(\sqrt[4]{121} + 1\right)}$	Задание на проверку умения применять свойства корня <i>n</i> -й степени для преобразования выражений. Решение:	Арефьева, И. Г. Алгебра: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 285 с.: ил. (Гл. 2, § 13—15, с. 160—192)

[▼] Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		$\frac{15 \cdot \sqrt[3]{11} \cdot \sqrt{11\sqrt[3]{11}}}{20^{-1} \cdot (\sqrt[4]{121} - 1)(\sqrt[4]{121} + 1)} =$ $= \frac{20 \cdot 15 \cdot \sqrt[3]{11} \cdot \sqrt{\sqrt[3]{11^4}}}{(\sqrt[4]{121})^2 - 1^2} = \frac{300 \cdot \sqrt[3]{11} \cdot \sqrt[3]{11^2}}{11 - 1} =$ $= \frac{300 \cdot 11}{10} = 330.$ Other: 330	
Геометрические фигуры и их свойства. Объем конуса	В6. Радиус основания конуса равен $3\sqrt{5}$, площадь его осевого сечения равна $9\sqrt{5}$. Найдите значение выражения $\frac{V}{\pi}$, где V – объем конуса	Задание на проверку умения находить объем конуса. Решение: Осевое сечение конуса, то есть сечение плоскостью, проходящей через ось конуса, является равнобедренным треугольником, у которого основание равно диаметру основания конуса. Объем конуса находится по формуле $V = \frac{1}{3}\pi R^2 H$, где R – радиус основания конуса, H – высота конуса равна H . Она является и высотой равнобедренного треугольника в осевом сечении конуса. Длина основания этого равнобедренного треугольника равна диаметру основания конуса, то есть $6\sqrt{5}$. Площадь равнобедренного треугольника равна $9\sqrt{5}$, тогда $9\sqrt{5} = \frac{1}{2} \cdot 6\sqrt{5} \cdot H$, $H = 3$.	Латотин, Л. А. Геометрия : учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова, О. Е. Цыбулько. — Минск : Белорусская Энциклопедия имени Петруся Бровки, 2020. — 232 с. : ил. (Р. 2, § 4, с. 57—74)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Уравнения и неравенства. Решение тригонометрических уравнений	В7. Найдите (в градусах) сумму различных корней уравнения $\cos(3\pi+x)-3\sin\left(\frac{9\pi}{2}-x\right)=2\sqrt{2}$ на промежутке $[-520^\circ;-120^\circ]$	$V=\frac{1}{3}\pi R^2 H,\ V=\frac{1}{3}\cdot\pi\cdot\left(3\sqrt{5}\right)^2\cdot 3,\ V=45\pi.$ Значение выражения $\frac{V}{\pi}$ равно 45. Ответ: 45 Задание на проверку умения решать тригонометрические уравнения. Решение: Преобразуем левую часть данного уравнения по формулам приведения и получим: $-\cos x-3\cos x=2\sqrt{2},$ $\cos x=-\frac{\sqrt{2}}{2},$ $x=\pm\left(\pi-\arccos\frac{\sqrt{2}}{2}\right)+2\pi n,n\in Z,$ $x=\pm135^\circ+360^\circ n,n\in Z.$ Таким образом, решениями уравнения являются две группы чисел: $x=135^\circ+360^\circ n,n\in Z$ или $x=-135^\circ+360^\circ k,k\in Z.$	Арефьева, И. Г. Алгебра: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 285 с.: ил. (Гл. 1, § 8, с. 99—115)
		Очевидно, что промежутку $[-520^{\circ}; -120^{\circ}]$ принадлежат корни -225° $(n = -1), -135^{\circ}$	
		$(k=0), -495^{\circ} (k=-1).$	
		Их сумма (в градусах) равна —855. Ответ: — 855	
Уравнения и неравенства.	В8. Найд <mark>ите</mark> пр <mark>оизв</mark> едение наимен <mark>ьше</mark> го целого	Задание на проверку умения решать	Арефьева, И.Г. Алгебра : учеб. пособие для 9-го кл.
Решение показательных неравенств	решения на количество всех целых отрицательных	показательные неравенства и дробнорациональные неравенства методом	учреждений общ. сред. образования с рус. яз. обучения / И.Г. Арефьева, О.Н.Пирютко. – Минск : Народная

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	$(x+18)^2(x-3)$	интервалов.	асв <mark>ета</mark> , 2019. – 329 с. : ил. (Гл. 3, § 13, с. 182–203);
	решений неравенства $(\sqrt{3}-1)^{\frac{1}{x^2+5x}} \le 1$	Решение:	A 1 HF A 5 5 11
		Представим число 1 в виде степени с	Арефьева, И.Г. Алгебра: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения /
		основанием $(\sqrt{3}-1)$, тогда неравенство	И.Г. Арефьева, О.Н. Пирютко. – Минск : Народная
		примет вид	асвета, 2020. – 270 с. : ил. (Гл. 2, § 6, с. 80–99)
		$\left(\sqrt{3}-1\right)^{\frac{(x+18)^2(x-3)}{x^2+5x}} \le \left(\sqrt{3}-1\right)^0$ (1). Tak kak	
		$\sqrt{3}-1<1,$ то функция $y=(\sqrt{3}-1)^x$	
		является у <mark>бы</mark> вающей, значит,	
		$(1) \Leftrightarrow \frac{\left(x+18\right)^2 \left(x-3\right)}{x^2+5x} \ge 0,$	
		$\frac{(x+18)^2(x-3)}{x(x+5)} \ge 0 (2).$	
		Решим неравенство (2) методом	
		интервалов. Нулями функции	
		$f(x) = \frac{(x+18)^2 (x-3)}{x(x+5)}$ являются	
		числа -18 и 3, а при x , равных -5 и 0,	
		значения функции не существуют. Построим схему графика функции.	
		-18 -5 0 3	
		При переходе через точки -5, 0 и 3	
		положение графика относительно оси	
		меняется, а при переходе через	
		точку –18 – не меняется. Решением	
		неравенства (2) и исходного	

[▼]Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		неравенства (1) является множество $\{-18\} \cup (-5;0) \cup [3;+\infty)$. Наименьшее целое решение неравенства равно -18 . Количество целых отрицательных решений неравенства равно 5 . Произведение наименьшего целого решения неравенства на количество целых отрицательных решений неравенства равно -90 . Ответ: -90	
Уравнения и неравенства. Решение иррациональных уравнений	В9. Найдите произведение наибольшего корня на количество всех корней уравнения $\sqrt{x^2-8x+26}-\sqrt{10 x-4 -14}=0$	Задание на проверку умения решать иррациональные уравнения и уравнения, сводящиеся к ним. Решение: При решении иррационального уравнения его заменяют равносильным уравнением (системой или совокупностью уравнений и неравенств) либо его следствием (в этом случае проверка полученных решений обязательна). Уравнение $\sqrt{x^2-8x+26}-\sqrt{10 x-4 -14}=0$ равносильно уравнению $\sqrt{x^2-8x+26}=\sqrt{10 x-4 -14}.$ Обе части этого уравнения возведем в квадрат и, выполнив равносильные преобразования, получим равносильное уравнение $(x-4)^2-10 x-4 +24=0.$ Обозначим $ x-4 =y,$ тогда уравнение примет вид: $y^2-10y+24=0,$ его корни — числа 4 и 6. Возвращаясь к замене, получим два	Арефьева, И. Г. Алгебра : учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2018. — 269 с. : ил. (Гл. 2, § 12, с. 129—139); Арефьева, И. Г. Алгебра : учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 285 с. : ил. (Гл. 2, § 17, с. 204—217)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Геометрические фигуры и их свойства. Угол между прямыми в пространстве	В10. $ABCDA_1B_1C_1D_1$ — куб, точка M — середина ребра AD , точка N лежит на ребре DC так, что $DN:NC=1:2$. Найдите значение выражения $75\cdot\cos^2\varphi$, где φ — угол между прямыми A_1M и D_1N	уравнения: $ x-4 =4$; $ x-4 =6$. Корнями первого уравнения являются числа 0 и 8. Корнями второго уравнения являются числа -2 и 10 . Уравнение $(x-4)^2-10 x-4 +24=0$ имеет четыре корня: -2 , 0, 8 и 10 . Проверкой убеждаемся, что эти числа являются корнями исходного уравнения. Наибольший корень уравнения равен 10 . Произведение наибольшего корня на количество корней уравнения $\sqrt{x^2-8x+26}-\sqrt{10 x-4 -14}=0$ равно 40 . Ответ: 40 Задание на проверку умения находить угол между скрещивающимися прямыми. Решение: Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, которые параллельны данным скрещивающимся прямым. Рассмотрим рисунок.	Латотин, Л. А. Геометрия : учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова ; пер. с белорус. яз. Л. А. Романович. — Минск : Адукацыя і выхаванне, 2020. — 199 с. : ил. (Р. 2, § 4, с. 50–61)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		Пусть длина ребра куба $ABCDA_1 \frac{B_1C}{D_1}D_1$	
		равна a . Тогда $AM = MD = \frac{a}{2}$, $DN = \frac{a}{3}$.	
		Прямые A_1M и D_1N являются	
		скрещивающимися по признаку	
		скрещивающихся прямых (A_1M) лежит в	
		плоскости грани $AA_{\rm l}D_{\rm l}D$, а прямая $D_{\rm l}N$	
		пересекает плоскость этой грани в точке D_1 ,	
		не лежащей на прямой $A_{_{\! 1}}\!M$). Для	
		построения угла между прямыми $A_1 M$ и	
		$D_1 N$ проведем прямую $A_1 P$, $A_1 P \parallel D_1 N$.	
		Угол между скрещивающимися прямыми	
		$A_1 M$ и $D_1 N$ равен углу между	
		пересе <mark>каю</mark> щимися прямыми $A_{\rm l}P$ и $A_{\rm l}M$,	
		тогда $\angle PA_1M = \varphi$.	
		Из прямоугольного треугольника A_1AM по	
		теореме Пифагора найдем $A_1 M$:	
		$A_1 M^2 = A A_1^2 + A M^2,$ $A_1 M^2 = a^2 + \left(\frac{a}{2}\right)^2,$ $A_1 M^2 = \frac{5a^2}{4},$ $A_1 M = \frac{a\sqrt{5}}{2}.$	
		$A_1 M^2 = \frac{5a^2}{4}, A_1 M = \frac{a\sqrt{5}}{2}.$	
		Из прямоугольного треугольника A_1AP по	
		теореме Пифагора найдем $A_{\mathrm{l}}P$:	
		$A_1 P^2 = A A_1^2 + A P^2,$ $A_1 P^2 = a^2 + \left(\frac{a}{3}\right)^2,$ $A_1 P^2 = \frac{10a^2}{9},$ $A_1 P = \frac{a\sqrt{10}}{3}.$	
		$A_1 P^2 = \frac{10a^2}{9}, A_1 P = \frac{a\sqrt{10}}{3}.$	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		Из прямоугольного треугольника MAP по теореме Пифагора найдем MP : $MP^2 = AP^2 + AM^2, \qquad MP^2 = \left(\frac{a}{3}\right)^2 + \left(\frac{a}{2}\right)^2,$ $MP^2 = \frac{13a^2}{36}, MP = \frac{a\sqrt{13}}{6}.$ В треугольнике A_1PM по теореме косинусов: $MP^2 = A_1P^2 + A_1M^2 - 2 \cdot A_1P \cdot A_1M \cdot \cos\varphi,$ $\frac{13a^2}{36} = \frac{10a^2}{9} + \frac{5a^2}{4} - \frac{5a^2\sqrt{2}}{3} \cdot \cos\varphi,$ $\cos\varphi = \frac{6}{5\sqrt{2}}.$ Значение выражения $75 \cdot \cos^2\varphi$ равно 54 .	
Уравнения и неравенства. Решение логарифмических неравенств	В11. Найдите произведение наименьшего целого решения на количество всех целых решений неравенства $15 + \log_2\left(\frac{x^2}{\sqrt[3]{2^{39}}}\right) \cdot \log_2 x \le 0$	Ответ: 54 Задание на проверку умения решать логарифмические неравенства методом замены переменной. Решение: Областью определения неравенства $15 + \log_2\left(\frac{x^2}{\sqrt[3]{2^{39}}}\right) \cdot \log_2 x \le 0$ является промежуток $(0; +\infty)$. С учетом области определения преобразуем его к виду $2\log_2^2 x - 13\log_2 x + 15 \le 0$ (1). Выполним замену переменной: $t = \log_2 x$, тогда неравенство (1) можно записать в виде $2t^2 - 13t + 15 \le 0$. Решим полученное квадратное неравенство. Нулями	Арефьева, И. Г. Алгебра: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2020. — 270 с.: ил. (Гл. 3, § 10, с. 147—164)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		квадратичной функции $y = 2t^2 - 13t + 15$ являются числа $\frac{3}{2}$ и 5. Решением неравенства $2t^2 - 13t + 15 \le 0$ является промежуток $\left[\frac{3}{2};5\right]$. То есть $\frac{3}{2} \le t \le 5$. Подставим $t = \log_2 x$ в двойное неравенство $\frac{3}{2} \le t \le 5$ и получим $\frac{3}{2} \le \log_2 x \le 5$. Это двойное неравенство равносильно системе $\begin{cases} \log_2 x \ge \frac{3}{2}, \\ \log_2 x \le 5. \end{cases}$ Решим $\log_2 x \le 5$. Эту систему: $\begin{cases} \log_2 x \ge \frac{3}{2}, \\ \log_2 x \le 5, \end{cases}$ $\begin{cases} \log_2 x \ge \log_2 2^{\frac{3}{2}}, \\ \log_2 x \le \log_2 2^{\frac{3}{2}}, \end{cases}$ $\begin{cases} x \ge 2\sqrt{2}, \\ x \le 32, \end{cases}$ $\begin{cases} x \ge 2\sqrt{2}, \\ x \le 32, \end{cases}$ Таким образом, решением исходного неравенства является промежуток $\left[2\sqrt{2}; 32\right]$. Наименьшее целое решение неравенства равно 3. Количество целых решений неравенства равно 30. Произведение наименьшего целого решения на количество всех целых решений исходного неравенства равно 90. Ответ: 90	

[▼] Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Уравнения и неравенства. Решение дробно- рациональных уравнений	В12. Найдите сумму квадратов корней уравнения $x^2 - 9x + 18 = \frac{10}{x^2 - 7x + 10}$	Задание на проверку умения решать дробно-рациональные уравнения. Решение: Разложим на линейные множители квадратные трехчлены, стоящие в левой части и в знаменателе правой части уравнения, тогда уравнение примет вид: $(x-3)(x-6) = \frac{10}{(x-2)(x-5)}.$ После приведения к общему знаменателю получим: $\frac{(x-3)(x-6)(x-2)(x-5)-10}{(x-2)(x-5)} = 0.$ Сгруппируем множители в числителе и применим условие равенства дроби нулю, $\begin{cases} (x^2-8x+15)(x^2-8x+12)-10=0,\\ (x-2)(x-5)\neq 0. \end{cases}$ Решим уравнение системы введением новой переменной. Пусть $t=x^2-8x+12,$ тогда $(t+3)t-10=0,$ $t^2+3t-10=0.$ Корнями этого уравнения являются числа -5 и $2.$ Подставим найденные значения t в равенство $t=x^2-8x+12$ и получим: $\begin{bmatrix} x^2-8x+12=-5, & x^2-8x+17=0,\\ x^2-8x+12=2; & x^2-8x+10=0. \end{bmatrix}$ Первое уравнение совокупности корней не имеет. Второе уравнение совокупности является приведенным квадратным уравнением и имеет корни, так как $D>0.$	Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 3, § 10, с. 136—154)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	$B13. \ Из \ города \ A \ $ в $ город \ B , \ $ расстояние между	Очевидно, что эти корни не равны $\frac{2}{1}$ и 5. По теореме Виета: $x_1 + x_2 = 8$, $x_1 \cdot x_2 = 10$. $x_1^2 + x_2^2 = \left(x_1 + x_2\right)^2 - 2x_1 \cdot x_2 = 8^2 - 2 \cdot 10 = 64 - 20 = 44.$ Ответ: $\frac{44}{3}$ Задание на проверку умения решать	Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл.
Уравнения и неравенства. Решение текстовых задач составлением неравенства	которыми 231 км, одновременно выезжают два автомобиля. Скорость первого автомобиля на 15 км/ч больше скорости второго, но он делает в пути остановку на 28 минут. Найдите наибольшее возможное целое значение скорости (в км/ч) первого автомобиля, при движении с которой он прибудет в город В не позже второго	текстовые задачи на движение составлением неравенства. Решение: Пусть скорость первого автомобиля равна x км/ч, тогда скорость второго – $(x-15)$ км/ч. Время, за которое проедет расстояние AB первый автомобиль, равно $\frac{231}{x}$ ч, а второй – $\frac{231}{x-15}$ ч. Зная, что первый автомобиль делает в пути остановку на 28 минут, но должен прибыть в город B не позже второго, составим и решим неравенство: $\frac{231}{x} + \frac{7}{15} \le \frac{231}{x-15}$, $\frac{x^2-15x-7}{x(x-15)} \le 0$ (1). Так как из условия задачи ясно, что $x > 15$, то неравенство (1) равносильно неравенству $x^2-15x-7$ 425 ≤ 0 (2). Решением этого квадратного неравенства с учетом того, что $x > 15$, является промежуток $\left(15; \frac{15+15\sqrt{133}}{2}\right]$.	учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 3, § 13, с. 182—203)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		Наибольшее целое значение из этого промежутка равно 93. Значит, наибольшее целое значение скорости первого автомобиля равно 93 км/ч. Ответ: 93	
Геометрические фигуры и их свойства. Площадь поверхности конуса	В14. Длины двух сторон треугольника равны 10 и 9, а угол между ними равен α , $\cos \alpha = -\frac{3}{5}$. Найдите площадь S поверхности тела, полученного в результате вращения треугольника вокруг стороны, равной 10. В ответ запишите значение выражения $\frac{5 \cdot S}{\pi}$	Задание на проверку умения находить площадь поверхности тел вращения. Решение: В результате вращения треугольника со сторонами 10 и 9 и углом с между ними вокруг стороны длиной 10 получится тело, изображенное на рисунке 1. В результате вращения треугольника со сторонами 10 и 9 и углом с между ними вокруг стороны длиной 10 получится тело, изображенное на рисунке 1. В результате вращения треугольника со сторонами 10 и 9 и углом с между ними вокруг стороны длиной 10 получится тело, изображенное на рисунке 1. В результате вращения треугольника со сторонами ними вокруг стороны длиной 10 получится тело, изображенное на рисунок 1.	Латотин, Л. А. Геометрия: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова, О. Е. Цыбулько. — Минск: Белорусская Энциклопедия имени Петруся Бровки, 2020. — 232 с.: ил. (Р. 2, § 4, с. 57—74)

 [▼] Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		B O X C P C P C	
		длину стороны BC : $BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos \alpha$,	
		$BC^{2} = 10^{2} + 9^{2} - 2 \cdot 10 \cdot 9 \cdot \left(-\frac{3}{5}\right),$ $BC^{2} = 289,$	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы вступительных испытаний. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		$BC=17$. Площадь боковой поверхности конуса находится по формуле: $S_{60\kappa}=\pi r l$, где $r-p$ ддиус основания конуса, $l-o$ бразующая конуса. Подставим в формулу вместо r значение 7,2, вместо $l-$ значение 17 и получим: $S_1=\pi\cdot 7,2\cdot 17,\ S_1=122,4\pi$. Подставим в формулу вместо r значение 7,2, вместо $l-$ значение 9, получим: $S_2=\pi\cdot 7,2\cdot 9,\ S_2=64,8\pi$. Площадь поверхности полученного тела равна: $S=S_1+S_2,\ S=187,2\pi$. Значение выражения $\frac{5\cdot S}{\pi}$ равно 936. Ответ: 936	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронные версии учебников» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).