Clasificacion de Generos de Musica

TP1 - Analisis Predictivo Avanzado

Indice

Introducción	01
Caso de negocio	02
EDA	03
Preprocesamiento	04
Modelos de ML y Ajustes	05
Conclusiones y acciones de acciones de negocio	06

Introducción

En la siguiente exposición se buscara desarrollar un modelo de clasificación automática de género musical basado en las características de audio de las samples de canciones de 10 generos distintos.

Caso de negocio

El propósito del algoritmo es optimizar las recomendaciones de música nueva en nuestra plataforma, similar a Spotify, mejorando así la experiencia de usuario en la selección de canciones recién añadidas.

Géneros musicales:

Disco Rock Jazz Pop Hiphop Classical Country Blues Metal Reggae

CONVERSION DE AUDIO A FEATURES

EDA

filenar	ne length	chroma_stft_mean	chroma_stft_var	rms_mean	rms_var	spectral_centroid_mean	spectral_centroid_var
blues.00000.wa	ov 661794	0.350088	0.088757	0.130228	0.002827	1784.165850	129774.064525
blues.00001.wa	ov 661794	0.340914	0.094980	0.095948	0.002373	1530.176679	375850.073649
blues.00002.wa	ov 661794	0.363637	0.085275	0.175570	0.002746	1552.811865	156467.643368
blues.00003.wa	ov 661794	0.404785	0.093999	0.141093	0.006346	1070.106615	184355.942417
blues.00004.wa	ov 661794	0.308526	0.087841	0.091529	0.002303	1835.004266	343399.939274

59 Features

950 Observaciones

Variable objetivo: label

Características del dataset

O1 Contamos con 10 categorías de géneros musicales

Los datos se encuentran desbalanceados

La longitud de los samples es de 30 segundos

DIUE2	TOO
country	100
hiphop	100
jazz	100
metal	100
рор	100
reggae	100
rock	100
classical	80
disco	70

04

03

El dataset cuenta con los siguientes features: 'filename', 'length', 'chroma_stft_mean', 'rms_mean', 'spectral_centroid_mean', 'spectral_bandwidth_mean', 'rolloff_mean', 'zero_crossing_rate_mean', 'harmony_mean', 'perceptr_mean', 'tempo', 'mfcc1_mean', 'label'

Amplitud de algunos géneros musicales

Root Mean Square (RMS)

Conceptos Básicos: RMS es una medida de la magnitud de la señal de audio. rms_mean es el promedio de la energía RMS, mientras que rms_var es la variabilidad de la energía RMS.

Relación con Música: rms_mean puede indicar la intensidad o volumen percibido de la música. Géneros más fuertes y energéticos tendrán un rms_mean más alto.

Zero Crossing Rate

Conceptos Básicos: Es la tasa a la que la señal cambia de positivo a negativo o viceversa.

Relacion con la musica: Géneros con más elementos percusivos o ruidosos, como el rock o el pop, podrían tener un ZCR más alto en comparación con géneros más melódicos y armónicos.

Tempo

Conceptos Básicos: El tempo se refiere a la velocidad o el ritmo de una pieza musical.

Relación con Música: El tempo es fundamental para el carácter y el estilo de una pieza musical. Géneros como el metal y el regge tienen tempos más rápidos, mientras que generos como el country y el hip hop presentan tempos más lentos.

Corr Matrix

Analisis descriptivo Clusters

Modelado de la solución: Pipeline

Metrica elegida: Average weighted F1-Score Optimizadores Utilizados: Bayes Search, Random Search

Preproscecamiento: Balanceo:

StandardScale()

SMOTE()

RandomUnderSampler()

Modelos:

RandomForestClassifier()

XGBClassifier()

ExtraTreesClassifier()

```
# Preprocesamiento de datos
X = music_data.drop(columns=['filename', 'label'])
y = music data['label']
label encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Definir una métrica personalizada para F1-score con average='weighted'
f1_scorer = make_scorer(f1_score, average='weighted')
# Definir modelos, transformers y técnicas de balanceo
models = [RandomForestClassifier(), XGBClassifier(), ExtraTreesClassifier()]
samplers = [SMOTE(), RandomUnderSampler()]
scalers = [StandardScaler()]
best_f1 = 0
best pipe = None
# Bucle a través de todas las combinaciones
for model in models:
   for sampler in samplers:
       for scaler in scalers:
            # Mensaje para mostrar la combinación actual
            print(f"Probando: Modelo - {model.__class__.__name__}, Sampler - {sampler.__class__.__name__}, Scaler - {scaler.__class__.__name__}")
            pipeline = Pipeline([
                ('scaler', scaler),
                ('sampler', sampler),
                ('model', model)
```

```
# Definir rangos de hiperparámetros para la búsqueda bayesiana
            param_space = {
                'model n estimators': (100, 2000),
                'model__max_depth': (5, 50),
                'model min samples split': (2, 20),
                'model min samples leaf': (1, 20),
           # Realizar la búsqueda de hiperparámetros utilizando el método bayesiano
           bayes search = BayesSearchCV(
               pipeline,
               param_space,
               scoring=f1_scorer,
               cv=5,
               n iter=60, # Número de iteraciones de optimización
               random_state=42,
               n jobs=-1 # Utiliza todos los núcleos disponibles
            bayes search.fit(X train, y train)
           # Mejor modelo seleccionado
           best_model = bayes_search.best_estimator_
           # Evaluar el modelo en el conjunto de prueba
           y pred = best model.predict(X test)
           f1 = f1_score(y_test, y_pred, average='weighted')
           # Actualizar el mejor modelo si es necesario
           if f1 > best f1:
               best f1 = f1
               best pipe = best model
           print(f"Resultado F1 Score: {f1}")
print(f"Mejor F1 Score: {best_f1}")
print(f"Mejor pipeline: {best pipe}")
print(f"Mejores Hiperparámetros: {bayes_search.best_params_}")
```

Pipeline final

Resultados Modelo

Average F1-Score

0.792

Mejores hiperparámetros

- model_max_depth: 39,
- modelmin_samples_leaf: 1,
- modelmin_samples_split: 2,
- model_n_estimators: 834

Matriz de confusión del modelo

Analisis de f1-Score

Feature Importance: Shap values

