Heat Pump Application in Metal Hydride Compression for Hydrogen Storage

Authors: Arjun J, Tony K P

HEAT DEMAND

- Thermal sorption compression using metal hydrides (MH) is an effective and dependable technique that facilitates the conversion of heat energy into compressed hydrogen gas.
- For a compressor utilizing metal hydride (MH) materials, cyclic heating of the reservoir, from which hydrogen will be desorbed and absorbed, is necessary.
- Amount of power consumed by the compressor to compress the hydrogen, filling a 3L cylinder is approximately 1 KW.

Fig.1. Schema of a single-stage metal hydride hydrogen compressor. [1]

Fig.2. T-S diagram of the operation of an idealized MH compressor. [2]

PARAMETERS INITIALLY ASSUMED CONSTANT	Unit
HEAT DELIVERED	1 KW
COMPRESSOR EFFICIENCY	80%
EVAPORATION TEMPERATURE	2 °C
CONDENSATION TEMPERATURE	50 °C
SATURATED GAS STREAM	100%
SATURATED LIQUID STREAM	0%
PRESSURE RATIO	100%

Condensation temperature in °C

Conclusion

- The efficiency obtained is around 70%.
- Even though the selected heat pump belongs to domestic range, it provides satisfactory results for metal hydride hydrogen compression.

Reference

[1] G. Sdanghi et. al., Review of the current technologies and performances of hydrogen compression for stationary and automotive applications; Renewable and Sustainable Energy Reviews Volume 102, March 2019, Pages 150-170.