STAT 4100 Lecture Note

Week One (Sep 7 & 9, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Sep/10 22:36:43

IN THE CASE OF A FIRE ALARM:

- Remain calm
 - · if it is safe, evacuate the classroom or lab
 - · go to the closest fire exit
 - · do not use the elevators
- If you need assistance to evacuate the building, inform your professor or instructor immediately.
- If you need to report an incident or a person left behind during a building evacuation, report it to a fire warden or call security services 204-474-9341.
 - Do not reenter the building until the "all clear" is declared by a fire warden, security services or the fire department.
- Important: only those trained in the use of a fire extinguisher should attempt to operate one!

Syllabus

Contact

- Zhiyang (Gee) Zhou
 - Email: zhiyang.zhou@umanitoba.ca
 - Homepage: zhiyanggeezhou.github.io
 - Office: 330 Machray Hall
- Ke (Kelly) Wang
 - Email: wangk9@myumanitoba.ca
 - Office: 355 Machray Hall

Timeline

- Lectures
 - Mon/Wed/Fri 13:30–14:20 at St. Paul's College 258
- Labs
 - Tue 16:30–18:00 at Buller 315
- Office Hours
 - (instructor) Mon 14:30–15:30 (or by appointment) at 330 Macray Hall
 - (TA) by appointment

Grading

- Assignment 20%
 - Submitted via Crowdmark
 - Attaching source codes if R is used in computation
 - Always including necessary interpretation
- Midterm 30%
 - In the week of Oct 17
 - Open-book, 3-hour, and online
- Final 50%
 - Open-book and in-person (?)

Materials

- References (recommended but NOT required)
 - (CB) Casella & Berger. 2002. Statistical Inference, 2nd Ed.
 - * 2 hardcopies reserved at the Jim Peebles Science and Technology Library
 - (HMC) Hogg, Mckean & Craig. 2018. Introduction to Mathematical Statistics, 8th Ed.
 - * Hardcopy of 6th Ed. available at the Jim Peebles Science and Technology Library
 - Salsburg. 2001. The lady tasting tea: how statistics revolutionized science in the twentieth century.
 New York: WH Freeman.
- Lecture notes
 - zhiyanggeezhou.github.io
 - UM Learn
 - Subject to change without prior notice
- Fall 2022 Syllabi Appendix

Outline

"All models are wrong, but some are useful."

- George Box, Journal of American Statistical Association 1976
- What are statistical models?
 - Distributions of random variables (r.v.s) of interest
- Statistical inference
 - To answer questions on the underlying statistical models, e.g.,
 - * What is the model?
 - * Is the r.v. distributed as $\mathcal{N}(0,1)$?
- Topics to be covered
 - Prerequisite
 - Estimation (finite/large sample, optimality)
 - Confidence interval (finite/large sample, interpretation)
 - Hypothesis testing (finite/large sample, optimality, interpretation)

Basics on random variables (CB/HMC Chp. 1)

Definitions

• Definition of r.v.: a real-valued function defined on a sample space Ω , i.e.,

$$X = X(\omega), \quad \omega \in \Omega$$

• Cumulative distribution function (cdf) of r.v. X

$$F_X(x) = \Pr(X \le x)$$

- Right continuous
 - * Roughly speaking, a function is right-continuous if no jump occurs when the limit point is approached from the right
- Non-decreasing
- $-F_X(-\infty) = 0$ and $F_X(\infty) = 1$

Example Lec1.1

• Given $p \in (0,1)$, suppose

$$F(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of x. Show that F is a cdf.

 $\bullet\,$ Hint: Check the right-continuity of F at positive integers.

Types of random variables

- X is a discrete r.v.
 - $-\ X$ takes countably many values
 - probability mass function (pmf): $p_X(x) = Pr(X = x)$
- X is a continuous r.v.
 - cdf F_X is absolutely continuous, i.e., $\exists f_X$, s.t.

$$F_X(x) = \int_{-\infty}^x f_X(z) dz, \quad \forall x \in \mathbb{R}.$$

- f_X is the probability density function (pdf) of X
 - * $f_X(x) = (d/dx)F_X(x)$ if f_X is continuous at $x \in \mathbb{R}$
- Neither discrete nor continuous
 - -X is a mixed r.v., e.g.,

$$F_X(x) = \begin{cases} 1, & x \ge 1/2; \\ x^2, & 0 \le x < 1/2; \\ 0, & \text{otherwise.} \end{cases}$$

- Neither discrete nor continuous (con'd)
 - -X is following the Cantor distribution

Univariate transformation (CB Sec. 2.1 & 2.4)

Support (CB pp. 50 & HMC pp. 46)

- In general, for real-valued function g $-\sup(g) = \{x \in \text{domain}(g) : g(x) \neq 0\} \subset \text{domain}(g)$
- For discrete r.v. X
 - pmf $p_X(\cdot)$
 - $-\operatorname{supp}(X) = \operatorname{supp}(p_X) = \{x \in \mathbb{R} : p_X(x) > 0\}$
 - e.g., support of Binom(n, p) is $\{0, \ldots, n\}$
- For continuous r.v. X
 - $-\operatorname{pdf} f_X(\cdot)$
 - $-\operatorname{supp}(X) = \operatorname{supp}(f_X) = \{x \in \mathbb{R} : f_X(x) > 0\}$
 - e.g., support of $\mathcal{N}(0,1)$ is \mathbb{R}

Indicator function

Given a set A, $\mathbf{1}_A(x) = 1$ if $x \in A$ and zero otherwise, i.e.,

$$\mathbf{1}_{A}(x) = \begin{cases} 1, & x \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Find pmf of Y = g(X) given the pmf of X

- 1. Figure out supp $(Y) = \{y : y = g(x), x \in \text{supp}(X)\}$
- 2. Calculate $p_Y(y) = \Pr(Y = y) = \Pr(X \in \{x \in \operatorname{supp}(X) : g(x) = y\})$

Example Lec2.1

Let X have the pmf $p_X(x) = 2^x \mathbf{1}_{\{-1,-2,...\}}(x)$. Find the pmf of $Y = X^4$.

Find cdf of Y = g(X) given the distribution of X

• Calculate $F_Y(y) = \Pr\{g(X) \le y\} = \Pr[X \in \{x : g(x) \le y\}]$

Example Lec2.2

Let X have the uniform pdf $f_X(x) = \pi^{-1} \mathbf{1}_{(-\pi/2,\pi/2)}(x)$. Find the cdf of $Y = \tan X$.

cdf of $Y = F_X(X)$ (probability integral transformation, CB Thm. 2.1.10)

- If
 - $-X \sim F_X$ (not necessarily continuous) $-Y = F_X(X)$
- Then $Y \sim \text{unif}(\text{image}(F_X))$
 - Specifically $Y \sim \text{unif}([0,1])$ if X is continuous
- Application: inverse transform sampling
 - Goal: generate independent and identically distributed (iid) random samples following F_X
 - Implementation
 - 1. Sample iid $U_1, \ldots, U_n \sim \text{unif}(\text{image}(F_X))$ 2. Then iid $F_X^{-1}(U_1), \ldots, F_X^{-1}(U_n) \sim F_X$ * $F_X^{-1}(y) = \inf\{x : F_X(x) \ge y\}$ Pros & cons
 - - * (Theoretically) applicable to arbitrary F_X * The closed form of F_X^{-1} NOT always reachable