Analyse

Séries Numériques

Question 1/13

Théorème spécial de convergence des séries alternées

Réponse 1/13

Une série alternée est convergente Les sommes partielles sont du signe du premier terme

Les restes sont du signe de leur premier terme et de valeur absolue plus petite que celle de ce dernier

Question 2/13

$$\sum u_n$$
 diverge grossièrement

Réponse 2/13

 (u_n) ne tend pas vers 0

Question 3/13

Encadrement des sommes par les intégrales f est continue et décroissante sur $[n_0, +\infty[$ avec $n_0 \in \mathbb{Z}$

Réponse 3/13

$$\int_{n_0+1}^{n+1} (f(t)) dt$$

$$\leq \sum_{k=n_0+1}^{n} (f(k)) \leq \sum_{k=n_0+1}^{n} (f(t)) dt$$

Question 4/13

Convergence absolue

Réponse 4/13

$$\sum u_n$$
 converge absolument si $\sum |u_n|$ converge Si $\sum |u_n|$ converge alors $\sum u_n$ converge

Question 5/13

Série de Riemann

Réponse 5/13

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha}}\right)$$

Une série de Riemann converge si et seulement si $\alpha > 1$

Question 6/13

Série de Bertrand

Réponse 6/13

$$\sum_{n=2}^{+\infty} \left(\frac{1}{n^{\alpha} \ln^{\beta}(n)} \right)$$

Une série de Bertrand converge si et seulement si $(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique

Question 7/13

Règle de Riemann

Réponse 7/13

S'il existe $\alpha > 1$ tel que $(n^{\alpha}u_n)$ est bornée, alors $\sum u_n$ converge Si (nu_n) est minorée par m > 0 à partir de

 $n \in \mathbb{N}$, alors $\sum u_n$ diverge

Question 8/13

Règle de d'Alembert

Réponse 8/13

Si
$$\left| \frac{u_{n+1}}{u_n} \right| \to \ell$$
 où $0 \le \ell < 1$, alors $\sum u_n$ converge absolument

Si $\left| \frac{u_{n+1}}{u_n} \right| \to \ell$ où $\ell > 1$, alors $\sum u_n$ diverge grossièrement

Question 9/13

Comparaison par dominance

Réponse 9/13

$$u_n = O(v_n)$$

Si $\sum v_n$ converge alors $\sum u_n$ converge Si $\sum u_n$ ou $\sum |u_n|$ diverge alors $\sum v_n$ diverge

Question 10/13

Critère d'Abel

Réponse 10/13

Si (a_n) est une suite réelle positive décroissante de limite nulle, et la somme partielle de $\sum b_n$ est bornée, alors $\sum a_n b_n$ converge Les suites $e^{in\alpha}$, $\cos(n\alpha)$ et $\sin(n\alpha)$ vérifient les conditions pour (b_n) lorsque $\alpha \not\equiv 0$ $[2\pi]$

Question 11/13

Semi-convergence

Réponse 11/13

Convergence sans convergence absolue

Question 12/13

Théorème de comparaison des séries à termes positifs

Réponse 12/13

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ 0 \leqslant u_n \leqslant v_n$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ diverge alors $\sum v_n$ diverge

Question 13/13

Série alternée

Réponse 13/13

$$\sum u_n$$
 est alternée s'il existe une suite (a_n) positive décroissante de limite nulle telle que $u_n = (-1)^n a_n$