Garden Vision University

UJM 11(1) 2022

UNNES Journal of Mathematics

Penerapan Metode Fuzzy Mamdani dan Metode Fuzzy Sugeno dalam Penentuan Jumlah Produksi

Khaerunissa Muflihunna[™], Mashuri

Jurusan Matematika, FMIPA, Universitas Negeri Semarang, Indonesia Gedung D7 Lt.1, Kampus Sekaran Gunungpati, Semarang 50229

Info Artikel

Sejarah Artikel: Diterima September 2022 Disetujui Mei 2022 Dipublikasikan Mei 2022

Keywords: Fuzzy Mamdani, Fuzzy Sugeno, MAPE, Penentuan jumlah produksi.

Abstrak

Penelitian ini mengkaji tentang penerapan metode *fuzzy Mamdani* dan metode *fuzzy Sugeno* dalam penentuan jumlah produksi jenang, berdasarkan variabel permintaan, persediaan, bahan baku dan produksi. Tujuan penelitian ini adalah untuk menerapkan metode *fuzzy Mamdani* dan *fuzzy Sugeno*, serta mengetahui metode yang lebih akurat diantara kedua metode dalam penentuan jumlah produksi jenang berdasarkan nilai MAPE. Pengambilan data diperoleh di PJ Menara Kudus dengan produk jenang kombinasi dan jenang wijen pada bulan Januari 2020 sampai dengan Maret 2021. Hasil pengolahan data diperoleh nilai MAPE untuk produk jenang kombinasi menggunakan metode *fuzzy Mamdani* sebesar 7,5% sedangkan dengan metode *fuzzy Sugeno* sebesar 7,1%, serta nilai MAPE untuk produk jenang wijen menggunakan metode *fuzzy Mamdani* sebesar 21,7%, sedangkan dengan metode *fuzzy Sugeno* sebesar 8,2%. Berdasarkan hasil yang diperoleh, nilai MAPE metode *fuzzy Sugeno* kurang dari metode *fuzzy Mamdani*. Sehingga dapat disimpulkan bahwa metode *fuzzy Sugeno* lebih akurat dibanding dengan metode *fuzzy Mamdani* dalam menentukan jumlah produksi jenang di PJ Menara Kudus.

Abstract

This study examines the application of the Mamdani fuzzy method and Sugeno fuzzy method in determining the amount of jenang production, based on the variables of demand, supply, raw materials and production. The purpose of this study was to apply the Mamdani fuzzy and Sugeno fuzzy methods, and to find out which method is more accurate between the two methods in determining the amount of jenang production based on the MAPE value. Data collection was obtained at PJ Menara Kudus with Jenang Kombinasi and Jenang Wijen products in January 2020 to March 2021. The results of data processing obtained MAPE values for jenang kombinasi products using the Mamdani fuzzy method is 7,5% while the Sugeno fuzzy method is 7,1%, and the MAPE value for jenang wijen product using Mamdani fuzzy method is 21,7% while the Sugeno fuzzy method is 8,2%. Based on the result obtained, the MAPE value of Sugeno fuzzy method is less than Mamdani fuzzy method. So it can be concluded that Sugeno fuzzy method more accurate than Mamdani fuzzy method in determining the amount of jenang production at PJ Menara Kudus.

How to cite:

Muflihunna, K. & Mashuri. (2022). Penerapan Metode *Fuzzy Mamdani* dan Metode *Fuzzy Sugeno* Dalam Penentuan Jumlah Produksi (Studi Kasus :PJ Menara Kudus). *Unnes Journal of Mathematics*, 11(1), 27-37

© 2022 Universitas Negeri Semarang

PENDAHULUAN

Seiring dengan perkembangan zaman dan kecanggihan teknologi, banyak perusahaan industri baik barang maupun jasa yang semakin maju, sehingga tak heran jika perusahaan menerapkan strategi dalam bersaing dengan perusahaan lainnya. Salah satu strategi yang digunakan yaitu mengenai perencanaan jumlah produksi. Perencanaan jumlah produksi berpengaruh terhadap persediaan bahan baku yang dibutuhkan agar pembelian stok bahan baku sesuai kebutuhan.

Produksi adalah aktivitas manusia yang digunakan untuk menghasilkan barang dan jasa bagi konsumen. Secara teknis produksi adalah proses mengubah input menjadi output. Perencanaan jumlah produksi yang tepat berpengaruh terhadap persediaan bahan baku sesuai dengan kebutuhan. Menurut Purwandito et al (2019) dalam proses menentukan produksi barang terdapat beberapa kendala keputusan yaitu permintaan maksimum dan minimum pada periode tertentu, persediaan maksimum minimum pada dan periode tertentu, permintaan saat ini dan persediaan saat ini.

Pabrik Jenang Menara Kudus merupakan salah satu pabrik jenang yang berlokasi di desa Kaliputu, kecamatan Kudus, kabupaten Kudus. Jenang kudus merupakan salah satu makanan khas kabupaten Kudus yang termasuk dalam kategori makanan semi basah dengan rasa manis legit, empuk, dan lengket. Banyaknya pabrik jenang di Kudus menyebabkan persaingan dibidang produksi, salah satu permasalahan yang dihadapi yaitu menentukan jumlah produksi. Dalam proses produksi, Pabrik Jenang Menara Kudus menggunakan perhitungan manual dan catatan permintaan setiap bulannya.

Dalam matematika banyak metode maupun teknik yang digunakan untuk menentukan jumlah produksi, misalnya menggunakan metode simpleks, algoritma naive bayes, metode branch and bound, regresi linear berganda, logika fuzzy, dll. Salah satu dapat digunakan metode vang dalam menentukan jumlah produksi yaitu dengan menerapkan metode logika *fuzzy*.

Logika *fuzzy* merupakan cabang ilmu matematika yang baru ditemukan beberapa tahun lalu dan memiliki konsep sederhana (Astuti & Mashuri, 2020). Logika *fuzzy* mudah dipelajari karena menggunakan dasar teori himpunan, sehingga konsep matematika yang mendasari penalaran *fuzzy* mudah dipelajari (Kusumadewi & Purnomo, 2010). Menurut

Maibang & Husein (2019), ada beberapa metode dalam perhitungan logika *fuzzy*, yaitu metode Tsukamoto, metode *Mamdani*, dan metode *Sugeno*. Masing-masing metode memiliki cara dan hasil perhitungan yang berbeda.

Metode *Mamdani* diperkenalkan oleh Ebrahim *Mamdani* pada tahun 1975. Menurut Sukandy et al. (2008), metode *Mamdani* paling sering digunakan dalam aplikasi karena strukturnya yang sederhana dan menggunakan operasi MIN-MAX atau MAX-PRODUCT. Metode *fuzzy Mamdani* lebih relevan dan tidak terlalu rumit untuk diterapkan pada permasalahan optimasi barang (Priyo, 2017).

Metode Sugeno diperkenalkan pada tahun 1985 oleh Takagi-Sugeno Kang. Metode fuzzy Sugeno hampir sama dengan fuzzy Mamdani, yang membedakan yaitu output berupa konstanta atau persamaan linear, sedangkan output pada metode fuzzy Mamdani berupa himpunan fuzzy. Menurut Saleh et al. (2017) metode Sugeno memiliki karakteristik yaitu konsekuennya bukan himpunan fuzzy tetapi persamaan linear dengan variabel sesuai variabel input.

Penelitian yang relevan berkaitan dengan penentuan jumlah produksi telah dilakukan oleh Fajar Solikin pada tahun 2011 yang berjudul "Aplikasi Logika Fuzzy Dalam Optimasi Produksi Barang Menggunakan Metode Mamdani dan Metode Sugeno". Kemudian pada tahun 2017, Sri Widaningsih menulis jurnal yang berjudul "Analisis Perbandingan Metode Fuzzy Tsukamoto, Mamdani, dan Sugeno dalam Pengambilan Keputusan Penentuan Jumlah Ditribusi Raskin di Bulog Sub. Divisi Regional (Divre) Cianjur"

Berdasarkan uraian diatas, maka penelitian ini akan dibahas mengenai perbandingan antara metode fuzzy Mamdani dan metode fuzzy Sugeno dalam menentukan jumlah produksi dengan judul "Penerapan Metode Fuzzy Mamdani dan Metode Fuzzy Sugeno dalam Penentuan Jumlah Produksi (Studi Kasus: PJ Menara Kudus)". Rumusan masalah pada penelitian ini adalah (1) Bagaimana hasil penerapan metode fuzzy Mamdani dalam menentukan jumlah produksi jenang di Pabrik Jenang Menara Kudus? (2) Bagaimana hasil penerapan metode fuzzy Sugeno dalam menentukan jumlah produksi jenang di Pabrik Jenang Menara Kudus? (3) Bagaimana perbandingan hasil penerapan metode fuzzy Mamdani dan metode fuzzy Sugeno dalam menentukan jumlah produksi jenang di Pabrik Jenang Menara Kudus dilihat dari nilai MAPE terkecil?. Tujuan penelitian ini adalah untuk

menerapkan metode *fuzzy Mamdani* dan *fuzzy Sugeno*, serta mengetahui metode yang lebih akurat diantara kedua metode dalam penentuan jumlah produksi jenang berdasarkan nilai MAPE.

METODE

Metode penelitian dilakukan dengan metode studi pustaka, pengumpulan data, pengolahan data serta penarikan kesimpulan. Pengumpulan data dilakukan dengan observasi dan wawancara kepada pihak yang bersangkutan. Pengambilan data dilakukan di Pabrik Jenang Menara Kudus yang berlokasi di Jl. Sosrokartono desa Kaliputu, kecamatan Kudus, kabupaten Kudus. Data yang digunakan berupa data jumlah permintaan, jumlah persediaan, jumlah bahan baku, dan jumlah produksi dalam periode bulan Januari 2020 sampai bulan Maret 2021.

Pada penelitian ini terdapat dua variabel yaitu variabel *input* dan *output*. Variabel *input* yang digunakan yaitu variabel permintaan, persediaan, dan bahan baku, sedangkan untuk variabel *output* yaitu jumlah produksi. Data produk jenang yang diambil yaitu jenis jenang kombinasi dan jenang wijen. Metode yang digunakan dalam penentuan jumlah produksi yaitu metode *fuzzy Mamdani* dan metode *fuzzy Sugeno* dengan bantuan software Matlab R2018b.

- 1. Metode fuzzy Mamdani
 - Untuk mendapatkan *output*, diperlukan 4 langkah yaitu (Kusumadewi & Purnomo, 2010):
 - a.Fuzzyfikasi, yaitu menentukan himpunan fuzzy dari setiap variabel input dan output menggunakan fungsi keanggotaan.
 - b.Pembentukan aturan dasar *fuzzy*. Pada metode *fuzzy Mamdani* fungsi implikasi yang digunakan adalah min. Aturan dasar *fuzzy* terbentuk 27 aturan berdasarkan masing-masing variabel *input*.
 - c.Komposisi aturan, pada metode *fuzzy Mamdani* yang digunakan dalam inferensi yaitu metode *max*.
 - d.Deffuzifikasi, pada metode *fuzzy Mamdani* deffuzifikasi yang digunakan adalah metode *centroid*.
- 2. Metode fuzzy Sugeno

Pada penelitian ini metode *fuzzy Sugeno* ber orde-satu dibagi menjadi beberapa tahapan sebagai berikut dengan bantuan *software* Matlab R2018b.

 a. Fuzzyfikasi, himpunan fuzzy pada metode fuzzy Sugeno sama seperti metode fuzzy Mamdani, yang membedakan adalah

- output. Pada metode fuzzy Sugeno output berbentuk persamaan linear.
- b. Pembentukan aturan dasar *fuzzy*. Aturan *fuzzy* pada metode *fuzzy Sugeno* sama seperti metode *fuzzy Mamdani* terbentuk 27 aturan.
- c. Komposisi aturan, pada metode *fuzzy Sugeno* yang digunakan dalam inferensi yaitu metode *max*.
- d. Deffuzifikasi, pada metode *fuzzy Sugeno* deffuzifikasi yang digunakan adalah metode rata-rata terbobot *(average)*.

Setelah dilakukan perhitungan menggunakan metode fuzzy Mamdani dan metode fuzzy Sugeno dengan software Matlab, kemudian akan dihitung nilai The Mean Absolute Percentage (MAPE) untuk melihat keakuratan dari masing-masing metode. MAPE adalah salah satu ukuran yang paling populer dari akurasi prediksi (Kim & Kim, 2016). MAPE menunjukkan akurasi prediksi dalam persentase. MAPE dirumuskan sebagai berikut:

$$MAPE = \frac{\sum_{i=1}^{n} \frac{|X_i - F_i|}{X_i} \times 100\%}{n}$$

dengan:

 X_i = Nilai aktual periode i

 F_i = Nilai ramalan periode i

n = Banyaknya periode.

Semakin rendah nilai MAPE, maka model dapat dikatakan mempunyai kemampuan peramalan yang baik. Kemampuan peramalan sangat baik jika nilai MAPE < 10%, peramalan baik jikan nilai MAPE 10-20%, peramalan layak/memadai jika nilai MAPE 20-50% dan peramalan buruk jika nilai MAPE > 50% (Hutasuhut, et al., 2014).

Selanjutnya langkah terakhir dalam penelitian ini adalah penarikan kesimpulan. Berdasarkan nilai MAPE yang telah dihitung, maka akan diperoleh metode yang lebih akurat dalam perhitungan dengan memperhatikan nilai persentase MAPE yang lebih kecil.

HASIL DAN PEMBAHASAN

Dalam penelitian ini data yang diambil adalah data jenang kombinasi dan jenang wijen, karena kedua jenis jenang tersebut paling banyak diminati konsumen pada PJ Menara Kudus. Data yang diambil meliputi data jumlah permintaan, jumlah persediaan, jumlah bahan baku, dan jumlah produksi pada bulan Januari 2020 sampai dengan Maret 2021. Terdapat dua variabel penelitian yaitu variabel *input* dan

output. Data tersebut disajikan dalam Tabel 1 dan Tabel 2

Tabel 1. Hasil Pengambilan Data Jenang Kombinasi di PJ Menara Kudus

Bulan	Permintaan (kg)	Persediaan (kg)	Bahan Baku (kg)	Produksi (kg)
Jan-20	410	18	99	435
Feb-20	390	7	93	410
Mar-20	320	13	79	350
Apr-20	356	19	84	370
Mei-20	590	23	135	600
Jun-20	305	24	75	330
Ju1-20	349	9	81	360
Agu-20	376	16	86	380
Sep-20	420	22	85	375
Okt-20	394	15	83	400
Nov-20	433	11	102	450
Des-20	508	12	132	520
Jan-21	476	4	110	490
Feb-21	415	10	95	420
Mar-21	365	18	81	355

Tabel 2. Hasil Pengambilan Data Jenang Wijen di PJ Menara Kudus

Bulan	Permintaan (kg)	Persediaan (kg)	Bahan Baku (kg)	Produksi (kg)
Jan-20	256	13	66	290
Feb-20	224	16	56	245
Mar-20	110	12	27	120
Apr-20	238	11	49	260
Mei-20	328	6	78	340
Jun-20	190	14	48	230
Ju1-20	282	0	70	315
Agu-20	275	8	66	305
Sep-20	245	5	75	330
Okt-20	255	9	69	310
Nov-20	234	14	61	270
Des-20	295	7	74	325
Jan-21	278	7	67	295
Feb-21	265	17	61	275
Mar-21	270	11	65	285

Mendefinisikan variabel fuzzy

Masing-masing variabel *input* dan *output* akan ditentukan himpunan *fuzzy* serta domain yang disajikan pada Tabel 3.

Fungsi	Variabel	Himpunan Fuzzy	Semesta Pembicaraan	Domain
	Permintaan	Rendah Sedang Tinggi	[110,590]	[110, 350] [110, 590] [350,590]
Input	Persediaan	Sedikit Sedang Banyak	[0, 24]	[0, 12] [0, 24] [12, 24]
_	Bahan baku	Sedikit Sedang Banyak	[27, 135]	[27,81] [27,135] [81,135]
Output	Produksi	Berkurang Normal Bertambah	[120,600]	[120, 360] [120, 600] [360, 600]

Tabel 3. Himpunan fuzzy

Penyelesaian dengan metode *fuzzy Mamdani*1) *Fuzzy* fikasi

a. Variabel Permintaan

Variabel Permintaan dengan range [110 590] dibagi menjadi tiga himpunan fuzzy yaitu rendah, sedang, dan tinggi. Fungsi keanggotaan menggunakan representasi segitiga yang ditampilkan pada Gambar 1.

Gambar 1 Himpunan Fuzzy Permintaan

Fungsi keanggotaan untuk variabel permintaan dirumuskan sebagai berikut

$$\mu_{PmtRENDAH}(a) = \begin{cases} 1 & , a \leq 110 \\ \frac{350-a}{350-110} & , 110 \leq a \leq 350 \\ 0 & , a \geq 350 \\ 0 & , a \leq 110 \text{ atau a} \geq 350 \end{cases}$$

$$\mu_{PmtSEDANG}(a) = \begin{cases} \frac{a-110}{350-110} & , 110 \leq a \leq 350 \\ \frac{a-10}{350-110} & , 110 \leq a \leq 350 \\ \frac{590-a}{590-350} & , 350 \leq a \leq 590 \end{cases}$$

$$\mu_{PmtTINGGI}(a) = \begin{cases} 0 & , a \le 350\\ \frac{a-350}{590-350} & , 350 \le a \le 590\\ 1 & , a \ge 590 \end{cases}$$

b. Variabel Persediaan

Variabel Persediaan dengan range [0 24] dibagi menjadi tiga himpunan *fuzzy* yaitu sedikit, sedang, dan banyak. Fungsi keanggotaan menggunakan representasi

segitiga yang ditampilkan pada Gambar 2.

Gambar 2 Himpunan Fuzzy Persediaan

Fungsi keanggotaan variabel persediaan dirumuskan sebagai berikut.

$$\mu_{PsdSEDIKIT}(b) = \begin{cases} 1 & , b \leq 0 \\ \frac{12 - b}{12} & , 0 \leq b \leq 12 \\ 0 & , b \geq 12 \end{cases}$$

$$\mu_{PsdSEDANG}(b) = \begin{cases} 0 & , b \leq 0 \text{ atau } b \geq 24 \\ \frac{b - 0}{12} & , 0 \leq b \leq 12 \\ \frac{24 - b}{24 - 12} & , 12 \leq b \leq 24 \\ 0 & , b \leq 12 \end{cases}$$

$$\mu_{PsdBANYAK}(b) = \begin{cases} \frac{b - 12}{24 - 12} & , 12 \leq b \leq 24 \\ 1 & , b \geq 24 \end{cases}$$

c. Variabel Bahan Baku

Variabel Bahan Baku dengan range [27 135] dibagi menjadi tiga himpunan fuzzy yaitu sedikit, sedang, dan banyak. Fungsi keanggotaan pada variabel input Bahan Baku menggunakan representasi segitiga yang ditampilkan pada Gambar 3.

Gambar 3 Himpunan Fuzzy Bahan Baku

Fungsi keanggotaan untuk variabel bahan baku dirumuskan sebagai berikut.

$$\mu_{BhnBakuSEDIKIT}(c) = \begin{cases} 1 & \text{, } c \leq 27 \\ 81-c \\ 81-c7 & \text{, } 27 \leq c \leq 81 \\ 0 & \text{, } b \geq 81 \end{cases}$$

$$\mu_{BhnBakuSEDANG}(c) = \begin{cases} 0 & \text{, } c \leq 27 \text{ atau } c \geq 135 \\ \frac{c-27}{81-27} & \text{, } 27 \leq c \leq 81 \\ \frac{135-c}{135-81} & \text{, } 81 \leq c \leq 135 \\ 0 & \text{, } c \leq 27 \text{ atau } c \geq 135 \end{cases}$$

$$\mu_{BhnBakuSEDANG}(c) = \begin{cases} \frac{c-27}{81-27} & \text{, } 27 \leq c \leq 81 \\ \frac{c-81}{135-81} & \text{, } 81 \leq c \leq 135 \end{cases}$$

d. Variabel Produksi

Pada variabel Produksi terdiri dari tiga himpunan fuzzy yaitu berkurang, normal, dan bertambah. Fungsi keanggotaan variabel Produksi menggunakan representasi segitiga yang ditampilkan pada gambar dibawah ini.

Gambar 4 Himpunan Fuzzy Produksi

Fungsi keanggotaan variabel produksi dirumuskan sebagai berikut.

$$\mu_{PrdBERKURANG}(d) = \begin{cases} 1 & \text{, } d \leq 120 \\ \frac{360-d}{360-120} & \text{, } 120 \leq d \leq 360 \\ 0 & \text{, } d \geq 360 \end{cases}$$

$$\mu_{PrdNORMAL}(d) = \begin{cases} 0 & \text{, } d \leq 120 \text{ atau } d \geq 600 \\ \frac{d-120}{360-120} & \text{, } 120 \leq d \leq 360 \\ \frac{600-d}{600-d} & \text{, } 360 \leq d \leq 600 \end{cases}$$

$$\mu_{\text{PrdBERTAMBAH}}(d) = \begin{cases} 0 & \text{, } d \leq 360 \\ \frac{d - 360}{600 - 360} & \text{, } 360 \leq d \leq 600 \\ 1 & \text{, } d \geq 600 \end{cases}$$

2) Pembentukan aturan dasar fuzzy

Tahap kedua yaitu pembentukan aturan dasar fuzzyy. Pada metode fuzzy Mamdani, fungsi implikasi yang digunakan adalah min. Terdapat 27 aturan fuzzy yang terbentuk berdasarkan jumlah himpunan fuzzy dari masing-masing variabel input. Aturan fuzzy disajikan pada Tabel 4.

Tabel 4 Aturan Dasar Fuzzy Metode Mamdani

Aturan Fuzzy	Permintaan	Persediaan	Bahan baku	Produksi
	D 11	0.111		D 1
[R1]	Rendah	Sedikit	Sedikit	Berkurang
[R2]	Rendah	Sedikit	Sedang	Normal
[R3]	Rendah	Sedikit	Banyak	Bertambah
[R4]	Rendah	Sedang	Sedikit	Berkurang
[R5]	Rendah	Sedang	Sedang	Berkurang
[R6]	Rendah	Sedang	Banyak	Normal
[R7]	Rendah	Banyak	Sedikit	Berkurang
[R8]	Rendah	Banyak	Sedang	Berkurang
[R9]	Rendah	Banyak	Banyak	Normal
[R10]	Sedang	Sedikit	Sedikit	Normal
[R11]	Sedang	Sedikit	Sedang	Normal
[R12]	Sedang	Sedikit	Banyak	Bertambah
[R13]	Sedang	Sedang	Sedikit	Berkurang
[R14]	Sedang	Sedang	Sedang	Normal
[R15]	Sedang	Sedang	Banyak	Bertambah
[R16]	Sedang	Banyak	Sedikit	Berkurang
[R17]	Sedang	Banyak	Sedang	Normal
[R18]	Sedang	Banyak	Banyak	Bertambah
[R19]	Tinggi	Sedikit	Sedikit	Normal
[R20]	Tinggi	Sedikit	Sedang	Normal
[R21]	Tinggi	Sedikit	Banyak	Bertambah
[R22]	Tinggi	Sedang	Sedikit	Normal
[R23]	Tinggi	Sedang	Sedang	Normal
[R24]	Tinggi	Sedang	Banyak	Bertambah
[R25]	Tinggi	Banyak	Sedikit	Berkurang
[R26]	Tinggi	Banyak	Sedang	Bertambah
[R27]	Tinggi	Banyak	Banyak	Bertambah

3) Komposisi aturan

Pada metode *Mamdani* dalam melakukan inferensi *fuzzy* menggunakan metode *max* (maksimum). Setelah komposisi aturan dilakukan, akan diperoleh *output* berupa himpunan *fuzzy*.

4) Deffuzifikasi (penegasan)

Pada tahap terakhir ini akan dihasilkan output. Metode deffuzifikasi yang digunakan adalah metode centroid. Dengan bantuan software Matlab R2018b diperoleh hasil deffuzifikasi dari masing-masing data. Sebagai contoh data jenang kombinasi pada bulan maret 2020, dengan permintaan 320 kg, persediaan 13 kg, dan bahan baku 79 kg, kemudian pada kolom input ditulis [320; 13; 79] diperoleh output 358 kg, yang artinya pada bulan Maret jumlah produksi jenang kombinasi dengan menggunakan metode Mamdani yaitu 358 kg. Gambar 5 adalah hasil deffuzifikasi metode fuzzy Mamdani menggunakan software Matlab R2018b.

Gambar 5 Deffuzifikasi Metode Mamdani

Penyelesaian Dengan Metode Fuzzy Sugeno

Pada penelitian ini untuk pengolahan data digunakan metode *fuzzy Sugeno* ber orde-satu dengan *output* berbentuk persamaan linear.

1) Fuzzyfikasi

Tahap fuzzyfikasi pada metode *Sugeno* sama seperti fuzzyfikasi pada metode *Mamdani*, perbedaannya hanya pada *output*. Fungsi keanggotaan variabel *output* produksi berbentuk persamaan linear. Aturan fuzzy pada metode *Sugeno* akan dimodifikasi, dengan asumsi bahwa jumlah permintaan lebih tinggi daripada persediaan.

a. Berkurang

Bentuk persamaan linear kategori "berkurang" yaitu **produksi** = **permintaan**, sehingga isikan pada kolom "Params" sebagai parameter yaitu [1000] seperti pada Gambar 6.

Gambar 6 Output Produksi Berkurang

b. Normal

Bentuk persamaan linear kategori "normal" yaitu **produksi** = **permintaan** + **persediaan**, sehingga isikan pada kolom "Params" sebagai parameter yaitu [1 1 0 0] seperti pada Gambar 7.

Gambar 7 Output Produksi Normal

c. Bertambah

Bentuk persamaan linear kategori "Bertambah" yaitu produksi = 1.3 permintaan - persediaan, sehingga isikan pada kolom "Params" sebagai parameter yaitu [1.3-100] seperti pada Gambar 8.

Gambar 8 Output Produksi Bertambah

2) Pembentukan aturan dasar fuzzy

Aturan *fuzzy* pada metode *Sugeno* sama seperti aturan *fuzzy* pada metode *Mamdani* yang disajikan pada tabel 4, terbentuk 27 aturan namun *output* pada metode *Sugeno* berbentuk persamaan linear yang sudah dibentuk sebelumnya.

3) Komposisi aturan

Pada software Matlab, kotak *Rule Editor* isi dengan 27 aturan yang telah dibuat. Lalu, pada *connection* pilih "AND" yaitu yang menghubungjan antar variabel *input* (anteseden) aturan menggunakan operator AND, sehingga akan dihasilkan Gambar 9 dan 10.

1. If (Permintaan is Rendah) and (Persediaan is Sedikit) and (Bahan, Baku is Sedikit) then (Produksi is Berkurang 2. If (Permintaan is Rendah) and (Persediaan is Sedikit) and (Bahan, Baku is Sedang) then (Produksi is Normal) (3. If (Permintaan is Rendah) and (Persediaan is Sedikit) and (Bahan, Baku is Sedikit) then (Produksi is Normal) (4. If (Permintaan is Rendah) and (Persediaan is Sedang) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 5. If (Permintaan is Rendah) and (Persediaan is Sedang) and (Bahan, Baku is Sedikit) then (Produksi is Normal) (7. If (Permintaan is Rendah) and (Persediaan is Banyak) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 8. If (Permintaan is Rendah) and (Persediaan is Banyak) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 9. If (Permintaan is Rendah) and (Persediaan is Banyak) and (Bahan, Baku is Sedikit) then (Produksi is Normal) (7. If (Permintaan is Sedang) and (Persediaan is Sedikit) and (Bahan, Baku is Sedikit) then (Produksi is Normal) (7. If (Permintaan is Sedang) and (Persediaan is Sedikit) and (Bahan, Baku is Sedikit) then (Produksi is Normal) (7. If (Permintaan is Sedang) and (Persediaan is Sedikit) and (Bahan, Baku is Sedikit) then (Produksi is Normal) (7. If (Permintaan is Sedang) and (Persediaan is Sedikit) and (Bahan, Baku is Sedikit) then (Produksi is Normal) (7. If (Permintaan is Sedang) and (Persediaan is Sedikit) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 1. If (Permintaan is Sedang) and (Persediaan is Sedang) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 1. If (Permintaan is Sedang) and (Persediaan is Sedang) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 1. If (Permintaan is Sedang) and (Persediaan is Sedang) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 1. If (Permintaan is Sedang) and (Persediaan is Sedang) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 1. If (Permintaan is Sedang) and (Persediaan is Sedang) and (Bahan, Baku is Sedikit) then (Produksi is Berkuran 1. If Permintaan is S

Gambar 9 Komposisi Aturan Metode *Sugeno*

15. If (Permintaan is Sedang) and (Persediaan is Sedang) and (Bahan, Baku is Banyak) then (Produksi is Bertam 16. If (Permintaan is Sedang) and (Persediaan is Banyak) and (Bahan, Baku is Sediki) then (Produksi is Bertura 17. If (Permintaan is Sedang) and (Persediaan is Banyak) and (Bahan, Baku is Sedang) then (Produksi is Bertura 18. If (Permintaan is Sedang) and (Persediaan is Sedakit) and (Bahan, Baku is Sedikit) then (Produksi is Berturang) 0. If (Permintaan is Tinggi) and (Persediaan is Sedikit) and (Bahan, Baku is Sedang) then (Produksi is Berturang) 2. If (Permintaan is Tinggi) and (Persediaan is Sedikit) and (Bahan, Baku is Sedang) then (Produksi is Berturang) 2.2. If (Permintaan is Tinggi) and (Persediaan is Sedikit) and (Bahan, Baku is Sedakit) then (Produksi is Berturang) 2.3. If (Permintaan is Tinggi) and (Persediaan is Sedang) and (Bahan, Baku is Sedang) then (Produksi is Berturang) 2.4. If (Permintaan is Tinggi) and (Persediaan is Sedang) and (Bahan, Baku is Sedang) then (Produksi is Berturang) 6. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Sedang) then (Produksi is Berturang) 6. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Sedang) then (Produksi is Berturang) 6. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Sedang) then (Produksi is Normal) (27. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Banyak) then (Produksi is Normal) (27. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Banyak) then (Produksi is Normal) (27. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Banyak) then (Produksi is Normal) (28. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Banyak) then (Produksi is Normal) (29. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Banyak) then (Produksi is Normal) (29. If (Permintaan is Tinggi) and (Persediaan is Banyak) and (Bahan, Baku is Banyak) then (Produksi is Normal) (29. If (Permin

Gambar 10 Lanjutan Komposisi Aturan Metode *Sugeno*

4) Deffuzifikasi

Tahap terakhir akan dihasilkan *output*. Metode deffuzifikasi yang digunakan pada metode *fuzzy Sugeno* adalah metode rata-rata terbobot *(average)*. Dengan bantuan software Matlab R2018b, diperoleh hasil deffuzifikasi dari masing-masing data. Sebagai contoh sama seperti metode *fuzzy Mamdani*, yaitu data jenang kombinasi pada bulan Maret 2020 dengan permintaan 320 kg, persediaan 13 kg, dan bahan baku 79 kg, kemudian pada kolom *input* isikan [320; 13; 79] diperoleh *output* 330 kg,yang artinya jumlah produksi jenang kombinasi pada bulan Maret 2020 menggunakan metode *Sugeno* adalah 330 kg, yang ditampilkan pada Gambar 11.

Gambar 11 Deffuzifikasi Metode Sugeno

Perbandingan Nilai MAPE

- 1. Perhitungan MAPE Metode Fuzzy Mamdani
 - a) Hasil MAPE Metode Fuzzy Mamdani Untuk Jenis Jenang Kombinasi

$$MAPE = \frac{\sum_{i=1}^{15} \frac{|X_i - F_i|}{X_i} \times 100\%}{15}$$
$$= \frac{1,12489}{15} \times 100\%$$
$$= 0,07499 \times 100\%$$
$$= 7,499 \%$$
$$= 7,5 \%$$

- = 0,07499 × 100% = 7,499 %
- 2. Perhitungan MAPE Metode Fuzzy Sugeno
 a) Hasil MAPE Metode Fuzzy Sugeno Untuk
 Jenis Jenang Kombinasi.

$$MAPE = \frac{\sum_{i=1}^{15} \frac{|X_i - F_i|}{X_i} \times 100\%}{15}$$
$$= \frac{1,06941}{15} \times 100\%$$
$$= 0,07129 \times 100\%$$
$$= 7,129\%$$
$$= 7,1 \%$$

b) Hasil MAPE Metode Fuzzy Mamdani Untuk Jenis Jenang Wijen.

$$MAPE = \frac{\sum_{i=1}^{15} \frac{|X_i - F_i|}{X_i} \times 100\%}{15}$$
$$= \frac{3,25759}{15} \times 100\%$$
$$= 0,21717 \times 100\%$$
$$= 21,71\%$$
$$= 21,7 \%$$

b) Hasil MAPE Metode Fuzzy Sugeno Untuk Jenis Jenang Wijen.

$$MAPE = \frac{\sum_{i=1}^{15} \frac{|X_i - F_i|}{X_i} \times 100\%}{15}$$

$$= \frac{1,22862}{15} \times 100\%$$

$$= 0,08191 \times 100\%$$

$$= 8,19\%$$

$$= 8,2\%$$

Perbandingan Hasil

Tabel 5. Hasil Perhitungan Produksi Jenang Kombinasi Dengan Metode Fuzzy Mamdani Dan Fuzzy Sugeno

No	Bulan	Permintaan (kg)	Persediaan (kg)	Bahan Baku (kg)	Produksi Jenang Pabrik (kg)	Produksi Metode <i>Mamdani</i> (kg)	Produki Metode Sugeno (kg)
1	Jan-20	410	18	99	435	376	438
2	Feb-20	390	7	93	410	367	425
3	Mar-20	320	13	79	350	358	330
4	Apr-20	356	19	84	370	361	366
5	Mei-20	590	23	135	600	521	624
6	Jun-20	305	24	75	330	356	305
7	Ju1-20	349	9	81	360	360	358
8	Agu-20	376	16	86	380	362	393
9	Sep-20	420	22	85	375	370	431
10	Okt-20	394	15	83	400	364	409
11	Nov-20	433	11	102	450	378	488
12	Des-20	508	12	132	520	504	641
13	Jan-21	476	4	110	490	411	574
14	Feb-21	415	10	95	420	375	456
15	Mar-21	365	18	81	355	361	375

Tabel 6. Hasil Perhitungan Produksi Jenang Wijen Dengan Metode Fuzzy Mamdani Dan Fuzzy Sugeno

No	Bulan	Permintaan (kg)	Persediaan (kg)	Bahan Baku (kg)	Produksi Jenang Pabrik (kg)	Produksi Metode <i>Mamdani</i> (kg)	Produksi Metode Sugeno (kg)
1	Jan-20	256	13	66	290	342	261
2	Feb-20	224	16	56	245	327	227
3	Mar-20	110	12	27	120	198	110
4	Apr-20	238	11	49	240	322	242
5	Mei-20	328	6	78	340	358	336
6	Jun-20	190	14	48	230	309	192
7	Ju1-20	282	0	70	315	355	294
8	Agu-20	275	8	66	305	348	284
9	Sep-20	245	5	75	330	339	251
10	Okt-20	255	9	69	310	341	262
11	Nov-20	234	14	61	270	332	238
12	Des-20	295	7	74	325	353	304
13	Jan-21	278	7	67	295	348	288
14	Feb-21	265	17	61	275	343	269
15	Mar-21	270	11	65	285	347	277

PENUTUP

Berdasarkan hasil penelitian pembahasan diatas maka dapat disimpulkan sebagai berikut. Hasil Mean Absolute Percentage Error (MAPE) sebagai ukuran keakuratan diperoleh nilai MAPE untuk masing-masing metode. Jenis jenang kombinasi dengan metode fuzzy Mamdani diperoleh nilai MAPE sebesar 7,5%, sedangkan nilai MAPE dengan metode fuzzy Sugeno sebesar 7,1%. Jenis jenang wijen dengan metode fuzzy Mamdani diperoleh nilai MAPE sebesar 21,7%, sedangkan nilai MAPE dengan metode fuzzy Sugeno sebesar 8,2%. Nilai MAPE pada metode Sugeno kurang dari metode Mamdani, sehingga pada penelitian ini perhitungan dengan metode fuzzy Sugeno lebih akurat dibandingkan dengan metode fuzzy Mamdani dalam penentuan jumlah produksi jenang di PJ Menara Kudus. Untuk penelitian selanjutnya, dapat dipelajari kembali dengan menambah variabel input 1ain yang mempengaruhi jumlah produksi jenang.

UCAPAN TERIMAKASIH

Peneliti mengucapkan terima kasih kepada Penanggung Jawab PJ Menara Kudus yang telah mendukung dan membantu dalam memberikan data maupun informasi untuk tujuan penelitian ini.

DAFTAR PUSTAKA

Astuti, D. P. P., & Mashuri. (2020). Penerapan Metode Fuzzy Tsukamoto Dan Fuzzy Sugeno Dalam Penentuan Harga Jual Sepeda Motor. *UNNES Journal of Mathematics*, 9(2), 74–75.

Hutasuhut, A. H., Anggraeni, W., & Tyasnurita, R. (2014). Pembuatan Aplikasi Pendukung Keputusan untuk Peramalan Persediaan Bahan Baku Produksi Plastik Blowing dan Inject Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average) di CV. Asia. *Jurnal Teknik Pomits*, 3(2), A-169-A-174.

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. *International Journal of Forecasting*, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015. 12.003

Kusumadewi, S., & Purnomo, H. (2010). *Aplikasi* Logika Fuzzy untuk Pendukung Keputusan (2nd ed.). Yogyakarta: Graha Ilmu.

Maibang, C. P. P., & Husein, A. M. (2019). Prediksi Jumlah Produksi Palm Oil

- Menggunakan Fuzzy Inference System Mamdani. *Jurnal Teknologi Dan Ilmu Komputer Prima (JUTIKOMP)*, 3(1), 19–26. https://doi.org/10.34012/jutikomp.v2i2.5 28
- Priyo, W. T. (2017). Penerapan Logika Fuzzy Dalam Optimasi Produksi Barang Menggunakan Metode Mamdani. SoulMath, 5(1), 14–21.
- Purwandito, R., Suyitno, H., & Alamsyah. (2019). Penerapan Sistem Inferensi Fuzzy Metode Mamdani Untuk Penentuan Jumlah Produksi Eggroll. *UNNES Journal of Mathematics*, 8(1), 107–116.
- Saleh, A., Fujiati, Rosnelly, R., Puspita, K., & Sanjaya, A. (2017). A comparison of Mamdani and Sugeno method for Optimization Prediction of Traffic Noise Levels. 2017 5th International Conference on Cyber and IT Service Management, CITSM 2017, 5–8. https://doi.org/10.1109/CITSM.2017.80 89310
- Salman, A. G. (2010). Pemodelan Sistem Fuzzy
 Dengan Menggunakan Matlab. ComTech:
 Computer, Mathematics and Engineering
 Applications, 1(2), 276–288.
 https://doi.org/10.21512/comtech.v1i2.2
 349
- Sukandy, D. M., Basuki, A. T., & Puspasari, S. (2008). Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Minyak Sawit Berdasarkan Data Persediaan Dan Jumlah Permintaan (Studi Kasus PT Perkebunan Mitra Ogan Baturaja). 1–9.