Estimating number of Bugs by least squares.

N bugs, p probability of discovering a bug

N		Data	N*p	(Data-N*p)^2
115	0 - 10	4	5.40534	1.974981856
111	10-20	2	5.217329	10.35120354
109	20-30	8	5.123323	8.275272215
101	30-40	6	4.747299	1.569259727
95	40-50	4	4.465281	0.216486654
91	50-60	6	4.277269	2.967800649
85	60-70	6	3.995252	4.01901592
79	70-80	3	3.713234	0.508702586
76	80-90	3	3.572225	0.327441463
73	90-100	2	3.431216	2.048379607
				32.25854422
		n	р	·
		115	0.047003	

For each N compute "best" p – one that minimises sum of squares

"best" value of N at about 120 (in steps of 5) p=0.0447

So we get an estimate.