<u> Potential</u> <u>Outromes</u> <u>Causal</u> <u>Model</u>

John Ltuart Mill (A Lystem of Logic, Rosocincetive and Inductive)

-> 5 methods for inferring causation. (anons of Empirical

1. Method of agreement -> Factor necessary for effect

3. Joint Method. -> agreement difference.

4. Method of concomitant variation (variation in one causes variation in the strength process of elimination) other)

Correlation + Causation Regression alone is insufficient.

KANDOMIZATION

Splana - Neyman

Potential outcomes notation.

Roland A. Fisher

Randomization for causal inference

(social sciences

D. Rubin

Comparison of 2 states of the world

Actual

aspinn

Counterfactual.

Universe

Universe 2 doesn't take aspirin.

Effect = Difference in resported of aspirin outcomes of Universe 1&2.

Counterfactual data -> missing data

"Potential outcomes exist ex-ante as a set of possibilities, but once a decision is made, all bet one outcome disappears"

Di= { 1, unit i receives treatment } 0, unit i doesn't receive treatment

Potential => 4i -> receives treatment

Outcomes 4i -> doesn't

Excontrol state

4i Jackwell outcome.

 $Y_i = DiY_i' + (1-Di)Y_i''$ causal effect $S_i = Y_i' - Y_i''$

Average Treatment Effect

ATE =
$$E[Si]$$

= $E[Yi'] - Yi']$
= $E[Yi'] - E[Yi']$

ATE is innevently unknowable. It cannot be calculated, only estimated.

Only I potential outcome can be known, the other is imagined and hence missing.

Average Treatment Effect for Treated Group

Population mean treatment effect for group of units that nach been assigned to beatment.

ATT is unknowable. (but estimable)

$$ATT = E[Si|Di=]$$

$$= E[Yi'-Yi']Di=]$$

$$= E[Yi'|Di=] - E[Yi']Di=[]$$

Average treatment for untreated group.

$$ATV = E[Si|Di=0]$$

$$= E[Yi'-Yi']Di=0]$$

$$= E[Yi']Di=6] - E[Yi']Di=0]$$

In observational settings, given heterogenous treatment effects, heterogenous treatment effects,

ATT # ATU (Probably)

Heterogenous breatment effect

- Non random variability in the direction

or magnitude of treatment effect

-

Concrete Example — 4.1.3. Scott Cunningham's Book.

Simple difference = ATE + belectionbias

+ heterogeneous

treatment effect

bias

If we assume no heterogeneity,

then ATV = ATT $\Rightarrow SDO = ATE + Selection bias$

Independence Assumption

(Y', y°)_LD

treatment assignment how nothing to do with gains of treatment

selection bias

Reterogenous

Prearment effect)

eliminated by

randomization of

treatment assignment.

If treatment is independent of potential outcomes, SDO = ATE

But, this is not realistic.— People make choices

based on perceived

increase in gain.

Selection bias cannot

be eliminated.

SUTVA - Stable Unit Treatment Value Assumption.