

Mathématiques et calculs : Contrôle continu n°1 18 Octobre 2010

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications

Nombre de pages de l'énoncé : 2. Durée 1h30.

Documents et calculatrices sont interdits.

L'usage des téléphones portables est interdit dans les salles d'examen

NB : Ce sujet contient 4 exercices. Chaque résultat doit être démontré clairement. La question marquée (*) est une question bonus.

Exercice 1

Soit x un réel. Pour un entier naturel n, on considère la somme $S_n(x) = 1 + 2\sum_{k=1}^n \cos(kx)$

- 1. Calculer la somme $T_n(x) = \sum_{k=0}^n e^{ikx}$ comme somme de termes consécutifs d'une suite géométrique.
- 2. Exprimer $S_n(x)$ à l'aide de $\Re(T_n(x))$
- 3. En déduire la valeur de $S_n(x)$

Exercice 2

On considère les polynômes $P(X) = X^2 - 2X + 2$ et $Q(X) = X^4 - 2X^2 + 2$

- 1. Calculer les racines de P
- 2. Montrer que ces racines s'écrivent :

$$\{\sqrt{2} e^{\frac{i\pi}{4}} ; \sqrt{2}e^{-\frac{i\pi}{4}}\}$$

3. En déduire que celles de Q s'écrivent :

$$\{2^{1/4}\ e^{\frac{i\pi}{8}}\ ;\ 2^{1/4}e^{-\frac{i\pi}{8}}\ ;\ -2^{1/4}\ e^{\frac{i\pi}{8}}\ ;\ -2^{1/4}e^{-\frac{i\pi}{8}}\}$$

- 4. Ecrire les racines carrées de (1+i) et de (1-i) sous forme algébrique.
- 5. En déduire la valeur de $\cos(\frac{\pi}{8})$
- 6. (*) Ecrire une factorisation de Q(X) en polynômes du second degré, à coefficients réels.

.../...

Exercice 3

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{n+1}{n^2+1}$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$
- 2. Montrer que la suite (u_n) est décroissante.
- 3. En déduire que la suite (u_n) converge vers une limite l
- 4. Quelle est la valeur de l?

Exercice 4

Soit $a \ge 0$ et (u_n) la suite récurrente définie par :

$$\begin{cases} u_0 = a \\ u_{n+1} = \frac{1}{4}u_n^2 + 1 \quad \forall n > 0 \end{cases}$$

- 1. Montrer que (u_n) est croissante.
- 2. Montrer que si (u_n) converge alors sa limite est 2.
- 3. On suppose $a \leq 2$. Montrer par récurrence que, pour tout $n \geq 0$, $u_n \leq 2$. En déduire que (u_n) est convergente.
- 4. On suppose a > 2. Montrer que (u_n) diverge.