My advanced calculus exercises

Evgeny Markin

2023

Contents

1	Star	ti	ng	3	p	oi	n	ts	,																		
	1.1																										
	1.2																										
	1.3																										
	1.4																										
	1.5																										
	1.6																										
	1.7																										
	1.8																										
	1.9																										
	1.10				_			_													_						

Chapter 1

Starting points

1.1

Evaluate

$$\int_0^\infty \frac{dx}{1+x^2}$$

and

$$\int_{-\infty}^{1} \frac{dx}{1+x^2}$$

$$\int_0^\infty \frac{dx}{1+x^2} = [\tan^{-1}]_0^\infty = \pi/2 - 0 = \pi/2$$

$$\int_{-\infty}^{1} \frac{dx}{1+x^2} = [\tan^{-1}]_{-\infty}^{1} = [\pi/4 + \pi/2] = \frac{3}{4}\pi$$

1.2

Determine

$$\int \frac{xdx}{1+x^2}$$

Which type of substitution did you use?

$$\int \frac{xdx}{1+x^2} = \frac{1}{2} \int \frac{2xdx}{1+x^2}$$

let $u(x) = 1 + x^2$. Then u'(x) = 2x and therefore

$$\frac{1}{2} \int \frac{2xdx}{1+x^2} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln(u) = \frac{1}{2} \ln(1+x^2)$$

I've used push-forward substitution here.

1.3

Carry out a change of variables to evaluate the integral and determite the type of substitution used.

$$\int_{-R}^{R} \sqrt{R^2 - x^2} dx$$

Let's try $x = R\sin(s)$ (the idea is to use the identity $\sin^2(x) + \cos^2(x) = 1$ here somewhere). It follows that $s = \arcsin(\frac{x}{R})$

$$\begin{split} \int_{-R}^{R} \sqrt{R^2 - x^2} dx &= \int_{-R}^{R} \sqrt{R^2 - R^2 \sin^2(s)} R \cos(x) ds = \int_{-R}^{R} R^2 \sqrt{1 - \sin^2(s)} \cos(s) ds = \\ &= R^2 \int_{-R}^{R} \cos^2(s) ds = \frac{R^2}{2} \int_{-R}^{R} 1 + \cos(2s) ds = \frac{R^2}{2} \left[s + \frac{1}{2} \sin(2s) \right]_{-R}^{R} = \\ &= \frac{R^2}{2} \left[\arcsin(\frac{x}{R}) + \frac{1}{2} \sin(2 \arcsin(\frac{x}{R})) \right]_{-R}^{R} = \\ &= \frac{R^2}{2} \left[\arcsin(1) + \frac{1}{2} \sin(2 \arcsin(1)) - \arcsin(-1) - \frac{1}{2} \sin(2 \arcsin(-1)) \right] = \\ &= \frac{R^2}{2} \left[\pi/2 + \frac{1}{2} \sin(\pi) + \pi/2 - \frac{1}{2} \sin(-\pi) \right] = \frac{R^2}{2} \pi = \frac{\pi R^2}{2} \end{split}$$

Which is goot enough for me. We used the pullback approach here

1.4

Determine

and show

$$\int \frac{\arctan(x)}{1+x^2} dx$$

$$\int_0^\infty \frac{\arctan(x)}{1+x^2} dx = \pi^2/8$$

$$\int \frac{\arctan(x)}{1+x^2} dx$$

let $u = \arctan(x)$. Then

$$\int \frac{\arctan(x)}{1+x^2} dx = \int u = u^2/2 = \arctan(x)^2/2$$

thus

$$\int_0^\infty \frac{\arctan(x)}{1+x^2} dx = \pi^2/8$$

as desired.

1.5

(a) Detrmine

$$\int \frac{1}{w(\ln(w))^p} dw$$

 $. \ \ Which \ type \ of \ substitution \ did \ you \ use?$

Let $u = \ln(w)$. It follows that $du = \frac{1}{w}dw$. Thus

$$\int \frac{1}{w(\ln(w))^p} dw = \int \frac{1}{w} (\ln(w))^{-p} dw = \int (u)^{-p} du = \frac{u^{-p-1}}{-p-1} = \frac{(\ln(w))^{-p-1}}{-p-1}$$

. Given that $p \neq -1$.

Othersise it is ln(ln(w)).

(b) Evaluate

$$I = \int_2^\infty \frac{1}{w(\ln(w))^p} dw$$

. for which values of p is I finite?

For p = 1 we've got that

$$\lim \ln(\ln(w)) = \infty$$

thus it diverges

For $p \neq -1$ we've got

$$I = \int_{2}^{\infty} \frac{1}{w(\ln(w))^{p}} dw = \lim_{w \to \infty} \left[\frac{(\ln(w))^{-p-1}}{-p-1} \right] - \frac{(\ln(2))^{-p-1}}{-p-1}$$

The only thing that bothers us is that whether

$$(\ln(w))^{-p-1} = (\frac{1}{(\ln(w))})^{p-1}$$

converges. This happens whenever p > 1 (in that case we got that $\ln(w) \to \infty$). Otherwise it diverges.

1.6

State a condition that guarantees a function $x = \phi(s)$ has an inverse. Then use your condition to decide whether each of the following functions is invertible. When possible, find a formula for the inverse of each function that is invertible.

Such a condition is bijectivity on a given domain and codomain.

(a)

$$x = 1/s$$

Is bijective on a domain $R \setminus \{0\}$. Inverse is s = 1/x.

(b)

$$x = s + s^3$$

This one is bijective (because it is strictly increasing and unbounded below and above).

$$x = s + s^3$$

$$s^3 + s - x = 0$$

Maxima gives some god-awful result for an inverse function, but it can be obtained by solving the cubic polinomial.

(c)

$$x = \frac{s}{1 + s^2}$$

It is not surjective on R, and in addition, it is not injective. Thus it cannot be used without some heavy restrictions on the domain and codomain.

(d)

$$x = \sinh s = \frac{e^s - e^{-s}}{2}$$

Looks solid to me.

$$s = asinh(s)$$

is a desired inverse function;

(e)

$$x = \frac{s}{\sqrt{1 - s^2}}$$

Is bijective on restricted domain. I'm not sure if we can have an analytical inverse of this function.

(f)

$$x = ms + b$$

Is a standart linear function. If $m \neq 0$, then we've got inverse on whole R.

(g)

$$x = cosh(s)$$

Is bijective on restricted domain. Reverse is $s = \operatorname{acosh}(x)$.

(h)

$$x = s - s^3$$

Is bijective on restricted domain. Inverse is terrible.

(i)

$$x = tanh(s)$$

Also bijective on restricted domain. Inverse is

$$s = \operatorname{atanh}(x)$$

$$(j)$$

$$x = \frac{1-s}{1+s}$$

Bljective on restricted domain.

1.7

(a) Obtain formulas for $f(s) = \cos(\arcsin(s))$ and $g(s) = \tan(\arcsin(s))$ directly as funtions of s that involve neither trigonometric nor inverse trigonometric functions. Your answer will involve the square root function and polynomical expressions in s.

$$f(s) = \cos(\arcsin(s))$$

$$\cos(\arcsin(s)) = \sin(\pi/2 - \arcsin(s)) = \sin(\pi/2)\cos(\arcsin(s)) - \sin(\arcsin(s))\cos(\pi/2) =$$

$$= \sin(\pi/2)\cos(\arcsin(s)) = \cos(\arcsin(s))$$

$$\cos(\arcsin(s)) = \sqrt{1 - \sin^2(\arcsin(s))} = \sqrt{1 - s^2}$$

$$g(s) = \tan(\arcsin(s))$$
$$\tan(\arcsin(s)) = \frac{\sin(\arcsin(s))}{\cos(\arcsin(s))} = \frac{s}{\sqrt{1 - s^2}}$$

(b) Compute teh derivative of $\cos(\arcsin(s))$ using the chain rule and the derivatives of $\cos u$ and $\arcsin s$. Then compute the derivative of f(s) using your expressions in part (a). Compare the two derivatives. Do the same for $\tan(\arcsin(s))$ and g(s)

$$f'(s) = -\sin(\arcsin(s))\frac{1}{\sqrt{1-s^2}} = -\frac{s}{\sqrt{1-s^2}}$$
$$f'(s) = -2s\frac{1}{2\sqrt{1-s^2}} = -\frac{s}{\sqrt{1-s^2}}$$

They are the same.

$$g'(s) = \sec^2(\arcsin(s)) \frac{1}{\sqrt{1 - s^2}} = \frac{1}{\cos^2(\arcsin(s))} \frac{1}{\sqrt{1 - s^2}} = \frac{1}{(1 - s^2)\sqrt{1 - s^2}}$$

$$g'(s) = \frac{\sqrt{1 - s^2} - s(-\frac{s}{\sqrt{1 - s^2}})}{1 - s^2} = \frac{\sqrt{1 - s^2} + \frac{s^2}{\sqrt{1 - s^2}}}{1 - s^2} = \frac{\frac{1 - s^2 + s^2}{\sqrt{1 - s^2}}}{1 - s^2} = \frac{\frac{1}{\sqrt{1 - s^2}}}{1 - s^2} = \frac{1}{(1 - s^2)\sqrt{1 - s^2}}$$

They are also the same.

1.8

Use $x = \arcsin s$ to show $\int \cos^3 x dx = \sin(x) - \frac{\sin^3 x}{3}$.

$$s = \sin(x)$$

$$dx = \frac{1}{\sqrt{1 - x^2}} ds$$

$$\int \cos^3(x) dx = \int \cos^3(\arcsin(s)) \frac{1}{\sqrt{1 - s^2}} ds = \int (\sqrt{1 - s^2})^3 \frac{1}{\sqrt{1 - s^2}} ds =$$

$$\int 1 - s^2 ds = s - \frac{s^3}{3} = \sin(x) - \frac{\sin^3(x)}{3}$$

as desired.

1.9

(a) Write the microscope equation (i.e. the linear approximation) for $\phi(s) = \sqrt{s}$ at s = 100.

$$\phi'(s) = \frac{1}{2\sqrt{s}}$$

$$\phi'(100) = \frac{1}{2\sqrt{100}} = 1/20 = 0.05$$

Thus

$$\Delta \phi = 0.05 \Delta s$$

(b) Use the microscope equation from part (a) to estimate $\sqrt{102}$ and $\sqrt{99.4}$ For the first one we've got that

$$\Delta s = |102 - 100| = 2$$

thus

$$\Delta \phi = 0.05 * 2 = 0.1$$

Therefore

$$\phi(102) \approx \phi(100) + 0.1 = 10 + 0.1 = 10.1$$

For the second one we've got

$$\Delta s = |100 - 99.4| = 0.06$$

thus

$$\Delta \phi = 0.06 * 0.05 = 0.03$$

and since 99.4 < 100 we follow that

$$\phi(99.4) \approx \phi(100) - \Delta\phi = 10 - 0.03 = 9.97$$

(c) How far are your estimate from those given by a calculator?

$$\sqrt{102} \approx 10.0995049$$
 $\sqrt{99.4} \approx 9.969955$

thus we've got error of approximately 10^{-3} in the first case and 10^{-4} in the second.

(d) Your estimates should be greater than the calculator values; use the graph of $x = \phi(s)$ to explain why this is so.

This is because derivative of this function is a decreasing function around 100.

1.10

(a) Write a microscope equation for $\phi(s) = 1/s$ as s = 2 and use it to estimate 1/2.03 and 1/98.

$$\phi'(s) = -\frac{1}{s^2}$$

thus

$$\phi'(2) = -\frac{1}{4} = -0.25$$

And

$$\Delta \phi = -0.25 \Delta s$$

We can get

$$\Delta s = |2 - 2.03| = 0.3$$

tehrefore