

Guiling Wang y Songhua Xu

CONTENIDOS

CONTEXTO 01

OBJETIVO

- Identificar el modo de transporte en que se mueve un usuario.
- ¿Por qué?
 - Recolección de información de demanda más económica.
 - Planificación de sistemas de transporte.
 - Estudios en contaminación y salud.
 - Información para mejorar publicidades.

FORMAS ABORDADAS

- Históricamente se ha hecho con los GPS.
 - Mayor consumo energético.
 - No disponible en todos lados.

FORMAS ABORDADAS

- Históricamente se ha hecho con los GPS.
 - Mayor consumo energético.
 - No disponible en todos lados.
- Otros:
 - Uso combinado de accesorios del celular.
 - Uso únicamente acelerómetro (menor precisión).

ACELERÓMETRO

- Mide aceleración del dispositivo.
 Otorgando la magnitud y sentido en cada eje (x, y, z).
- Requiere un consumo de energía menor al de otras componentes del celular.

PROPUEST 02

PROPUESTA

- Transformar la información de los ejes (x, y, z) en un valor unidimensional de magnitud.
- No depende de orientación del dispositivo.

RECOLECCIÓN DE DATOS

- Creación de una App (en Android), que recolecta la información automáticamente desde el celular.
- Se recolecta en 7 contextos:
 - Caminata
 - Bicicleta
 - Bus/Micro
 - Auto particular
 - Metro
 - Tren
 - Estacionario/Quieto
- Etiquetas manuales por el usuario.

Utilizado por 4 usuarios, centrados en el New Jersey Institute of Technology (NJIT).

ESTRUCTURA

ESTRUCTURA

ESTRUCTURA

RESULTADOS Y CONCLUSIONES

Algorithm	Window size		
	128	256	512
Naive Bayes	58.34%	59.87%	60.79%
Bayes Network	62.47%	65.30%	68.77%
Decision Tree	67.34%	72.96%	81.96%
K Nearest Neighbor	66.48%	69.07%	76.03%
Random Forest	74.09%	79.68%	90.11%
Adaptive Boosting	65.63%	71.65%	80.73%
Neural Network	69.14%	70.43%	76.30%
Supporting Vector	73.26%	75.76%	84.80%
LSTM	66.36%	60.69%	58.81%
CNN	75.48%	82.42%	94.48%

Algorithm	Window size		
	128	256	512
Naive Bayes	58.34%	59.87%	60.79%
Bayes Network	62.47%	65.30%	68.77%
Decision Tree	67.34%	72.96%	81.96%
K Nearest Neighbor	66.48%	69.07%	76.03%
Random Forest	74.09%	79.68%	90.11%
Adaptive Boosting	65.63%	71.65%	80.73%
Neural Network	69.14%	70.43%	76.30%
Supporting Vector	73.26%	75.76%	84.80%
LSTM	66.36%	60.69%	58.81%
CNN	75.48%	82.42%	94.48%

Algorithm	Window size		
	128	256	512
Hemminki et al. [3]	65.57%	72.38%	82.26%
Manzoni et al. [6]	63.38%	65.07%	67.31%
Yang [29]	76.42%	81.02%	88.07%
This paper	75.48%	82.42%	94.48%

OBSERVACIONES/OPINIONES

- ¿Logra identificar un tren o identifica el tren de New Jersey a Washington D.C.?
- En términos de estructura vial, ¿identifica modos en una estructura vial específica o logra captarlos de forma general?

CONCLUSIONES

- Creación de la App para recolectar información de forma más fácil y amigable con el usuario.
- Predicción del modo mediante el uso de información de menor consumo energético.
- Mejora, en precisión, respecto al estado del arte en la predicción, casi en tiempo real.

