

- 54) DEVICE FOR IRRADIATING A LASER BEAM
(11) Kokai No. 52-39893 (43) 3.28.1977 (21) Appl. No. 50-115126
(22) 9.23.1975
(71) NIPPON DENKI K.K. (72) ETSUTOSHI HOSOKAWA (3)
(52) JPC: 74N7;12B11
(51) Int. Cl². B26F1/30,B26F3/14,B23K26/00

PURPOSE: To provide a laser beam-irradiating device used in working a material by irradiating a ^{material} beam.

CONSTITUTION: A laser beam-irradiating device has a plurality of reflection mirrors 21, 31 for bending horizontal laser beams 11, 20, 30 emitted by a laser oscillator 10 toward a direction of a material 23, 33 to be worked, and has a plurality of focusing lenses 22, 32 for focusing the laser beams 11, 20, 30 reflected from the reflection mirror 21, 31, on the material 23, 33 to be worked. One 21, 31 on the material 23, 33 to be worked. One laser beam 11 emitted by the oscillator 10 is divided by a combination of a half mirror 12 and a whole reflection mirror 13 into the plurality of laser beams 11, 20, 30, and is led to each corresponding focusing lens 22, 23 through the corresponding reflection mirror. The beam is focused on the material 23, 33 to be worked by each focusing lens, whereby the plurality of materials 23, 33 to be worked can be worked simultaneously.

219/121.17

特開昭52-39893(3)

ようにY方向に移動させるモータ1_5の軸に取りつけられる。一方反射鏡2_1、3_1と集光レンズ2_2、3_2は遮蔽板1_6を経て図の矢印に示すようにX方向に移動させるモータ1_7の軸に取りつけられる。

かくして2台のモータ1_5、1_7を駆かすことによりレーザ発振装置1_0から発射されたレーザビーム2_0、3_0を被加工物2_3、3_3上でX-Y方向に走査することができ、被加工物

を、また第2図(b)は被加工物を載せるテーブルを上部にした所を示す。レーザ発振装置1_0より発射されたレーザビーム1_1はハーフミラー1_2により反射率を有する2本のレーザビーム2_0、3_0に分割され1本のレーザビーム2_0はハーフミラー1_2を通過して反射鏡2_1にあたり、下に直角に折り曲げられ集光レンズ2_2により、被加工物2_3上に集光される。さらに、他の1本のレーザビーム3_0はハーフミラー1_2によって反射され、さらに全反射ミラー1_3によって再び曲げられ反射鏡3_1により下に直角にまげられ、集光レンズ3_2により被加工物3_3上に集光される。被加工物2_3、3_3は第2図(a)の場合にはテーブル2_4、3_4上に固定されており、該テーブル2_4、3_4は遮蔽板1_4を経て図の矢印に示すようにY方向に移動させるモータ1_5の軸に取りつけられる。第2図(b)の場合には被加工物2_3、3_3はテーブル4_0に固定されており、該テーブル4_0は、図の矢印に示す

1 2 3、3 3に所定の加工を行うことができる。 10

第3図は本発明による第3の実施例を示したものである。本実施例では第1、第2の実施例のようにハーフミラー、全反射ミラーを使用してレーザビームを2本に分割せずに2台のレーザ発振装置を使用した例であり、例えば第2図(b)におけるハーフミラー1_2、全反射ミラー1_3を使用せずレーザ発振装置5_0をもう一台加えレーザビーム5_1を発射するようにしたものであって、動作に関しては前記説明した通りであるので省略する。 20

第1図は従来のレーザ照射装置を示すが如く、第2図(a)、(b)は本発明による一実施例を示す斜視図、第3図は本発明による他の実施例を示す斜視図である。

2.1 0.5 0 …… レーザ発振装置
3.1 1.2 0.3 0.5 1. …… レーザビーム
1.2 …… ハーフミラー
1.3 …… 全反射ミラー
1.4 1.6 …… 遮蔽板
1.6 1.5 1.7 …… モータ
4.2 1.3 1 …… 反射鏡
5.2 2.3 2 …… 集光レンズ
7.2 3.3 3 …… 被加工物
8.2 4.3 4.4 0 …… テーブル

5

10

15

20

代筆、弁護士 内原晋

第2図(a)、(b)とは3図の実施例は本発明を実現する方法の一実施例たゞハーフミラーと全反射ミラーを組合せて1本のレーザビームを複数本に分割してそれぞれのレーザビームを対応する反射鏡、集光レンズを通して複数個の被加工物を1台のレーザ照射装置で同時に加工できることは言うまでもない。

あるいはハーフミラーや全反射ミラーを用いないで複数台のレーザ発振装置を用いてそれぞれのレーザビームを対応する反射鏡、集光レンズを通して複数個の被加工物を1台のレーザ照射装置で同時に加工できることも言うまでもない。

本発明は以上説明したように1台のレーザ照射装置で複数個の被加工物を加工できるように構成することにより、従来のレーザ照射装置にくらべて、はるかに高精度に加工し、効率よく被加工物の加工が行える効果がある。

図面の簡単な説明