

CALIFORNIA NEVADA RIVER FORECAST CENTER

CLIMATE STATION	SINCE MIDNITE TOTAL	APR 30 2023	PON			OCT 01- APR 30 NORMAL	OCT 01- SEP 30 NORMAL
NORTHERN CALIFORNIA							
MEDFORD OR	0.00	10.81		12.33	80	15.36	18.43
KLAMATH FALLS OR	T	6.88	80	5.26	61	8.64	11.14
CRESCENT CITY	0.06	49.36	94	36.86	70	52.30	57.98
EUREKA	0.05	39.58	107	22.59	61	37.00	40.40
UKIAH	0.00	37.82	114	18.70	57	33.08	34.84
MONTAGUE / SISKIYOU	0.00	6.35	66	3.62	38	9.61	11.99
ALTURAS MOUNT SHASTA CITY	0.00	10.52	119 122	6.11	69	8.81	11.68 42.63
	0.00	40.90	120	17.77 17.88	53 59	33.41 30.31	33.52
REDDING RED BLUFF	0.00	25.88	122	11.92	56	21.13	23.12
SACRAMENTO EXEC AIRPORT	0.00	21.67	127	16.44	97	17.03	18.14
SACRAMENTO - CSUS	0.00	25.84	144	16.39	91	17.96	19.20
BLUE CANYON AIRPORT*	0.00	83.63	148	57.43	102	56.36	62.44
SOUTH LAKE TAHOE	0.00	34.09	194	18.00	103	17.56	20.46
SANTA ROSA	0.00	40.97	128	25.42	79	32.01	33.78
SAN FRANCISCO	0.00	32.54	149	18.44	85	21.82	22.89
SFO INT'L AIRPORT	0.00	30.66	162	18.12	96	18.91	19.64
OAKLAND AIRPORT	0.00	29.77	168	16.87	95	17.73	18.68
LIVERMORE	0.00	20.79	145	12.34	86	14.31	15.18
SAN JOSE INT'L AIRPORT	0.00	14.78	116	7.29	57	12.79	13.48
CENTRAL CALIFORNIA							
STOCKTON	0.00	22.87	180	9.75	77	12.69	13.45
MODESTO	0.00	19.31	169	8.99	79	11.40	12.27
MERCED	0.00	20.07	181	7.44	67	11.08	11.80
MADERA	0.00	10.83	107	2.10	21	10.12	10.79
FRESNO	0.00	17.48	171	6.29	61	10.25	10.99
HANFORD	0.00	14.48	189	6.34	83	7.65	8.13
BAKERSFIELD	0.00	9.74	162	5.40	90	6.01	6.36
BISHOP	0.00	13.66	332	4.75	115	4.12	4.84
DEATH VALLEY NP	0.00	1.06	62	M	M	1.72	2.20
SALINAS	0.00	13.73	114	7.31	61	12.04	12.58
PASO ROBLES	0.00	20.51	176	8.70	75	11.65	12.15
SANTA MARIA	0.00	23.18	181	7.79	61	12.79	13.32

Research Question:

Is there a (linear) relationship between stream runoff and precipitation?

If so, can we use multiple linear regression to explain the relationship?

stream runoff (response Y)

precipitation (predictor X)

Variables

Response

43 observations at 1 site near Bishop, CA Runoff volume (acre-feet) from 1948-1990

BSAAM

Predictors

43 observations at 6 precipitation stations Snow (inches) from 1948-1990 at

- Lake Mammoth (APMAM)
- Lake Sabrina (APSAB)
- South Lake (APSLAKE)
- Big Pine Creek (OPBPC)
- Rock Creek (OPRC)
- Rock Creek Lake (OPSLAKE)

Data Source

- > library(alr4)
- > data(water)

Applied Linear Regression (4th ed.)

Sandy Weisberg

R: California water . Find in Topic

water {alr4}

California water

Description

Can Southern California's water supply in future years be predicted from past data? One factor affecting water availability is stream runoff. If runoff could be predicted, engineers, planners and policy makers could do their jobs more efficiently. Multiple linear regression models have been used in this regard. This dataset contains 43 years worth of precipitation measurements taken at six sites in the Owens Valley (labeled APMAM, APSAB, APSLAKE, OPBPC, OPRC, and OPSLAKE), and stream runoff volume at a site near Bishop, California.

Format

This data frame contains the following columns

Year

collection year

APMAM

Snowfall in inches measurement site

APSAB

Snowfall in inches measurement site

APSLAKE

Snowfall in inches measurement site

OPBPC

Snowfall in inches measurement site

OPRC

Snowfall in inches measurement site

OPSLAKE

Snowfall in inches measurement site

BSAAM

Stream runoff near Bishop, CA, in acre-feet

Source

Source: http://www.stat.ucla.edu

References

Weisberg, S. (2014). Applied Linear Regression, 4th edition. Hoboken NJ: Wiley

Model 1: Full Model all 6 Stations

```
call:
lm(formula = BSAAM ~ APMAM + APSAB + APSLAKE + OPBPC + OPRC +
   OPSLAKE, data = df)
Residuals:
  Min 10 Median 30
                           Max
-12690 -4936 -1424 4173 18542
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 15944.67 4099.80 3.889 0.000416 ***
APMAM -12.77 708.89 -0.018 0.985725
APSAB -664.41 1522.89 -0.436 0.665237
APSLAKE 2270.68 1341.29 1.693 0.099112 .
OPBPC
          69.70 461.69 0.151 0.880839
    1916.45 641.36 2.988 0.005031 **
OPRC
OPSLAKE 2211.58 752.69
                             2.938 0.005729 **
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 7557 on 36 degrees of freedom
Multiple R-squared: 0.9248, Adjusted R-squared: 0.9123
F-statistic: 73.82 on 6 and 36 DF, p-value: < 2.2e-16
```

Model 1: Diagnostics Satisfied (!?)

Shapiro-Wilk normality test

data: resid(lm1) W = 0.97408, p-value = 0.4327

studentized Breusch-Pagan test

data: lm1 BP = 1.6605, df = 6, p-value = 0.9481

Multicollinearity

Only 2 of the 6 stations were significant in the initial model despite a very high R²

The signs of estimates at stations APMAM and APSAB were negative

MLR assumptions well-satisfied despite these issues

Multicollinearity

Station	VIF
APMAM	3.55
APSAB	7.18
APSLAKE	6.75
OPBPC	9.27
OPRC	7.65
OPSLAKE	16.97

LET'S EXPLORE A NEW TOPIC

..BRIEFLY

Time Series

Concerned with analyzing observations that are collected over intervals of time (regular or irregular intervals)

Useful for **forecasting:** predicting future values from previous data and their trends

Regression is used in Time Series: Y is the forecast variable and X is the predictor

Autocorrelation

"Just as correlation measures the extent of a linear relationship between two variables, autocorrelation measures the linear relationship between *lagged values* of a time series."

```
#Durbin-Watson Test for Autocorrelated Residuals
dwtest(lm1)

Durbin-Watson test

data: lm1
DW = 1.4362, p-value = 0.02554
alternative hypothesis: true autocorrelation is greater than 0
```

Create a Reduced Model

step-wise variable selection

ANOVA for subset of stations

create a reduced model 2

StreamRunoff = 15424.6+1712.5APSLAKE+1797.5OPRC+2389.8OPSLAKE

```
Im(formula = BSAAM ~ APSLAKE + OPRC + OPSLAKE, data = df)
Residuals:
        10 Median
  Min
                    3Q Max
-12964 -5140 -1252 4446 18649
coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 15424.6 3638.4 4.239 0.000133 ***
            1712.5 500.5 3.421 0.001475 **
APSLAKE
            1797.5 567.8 3.166 0.002998 **
OPRC
                       447.1 5.346 4.19e-06 ***
OPSLAKE 2389.8
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7284 on 39 degrees of freedom
Multiple R-squared: 0.9244, Adjusted R-squared: 0.9185
F-statistic: 158.9 on 3 and 39 DF, p-value: < 2.2e-16
```

Tests for MLR

Final Model

Shapiro-Wilk normality test

data: resid(lm2) W = 0.97377, p-value = 0.4227

studentized Breusch-Pagan test

data: lm2 BP = 1.2524, df = 3, p-value = 0.7405

Limitations and Further Research

- ☐ Cookbook/Data background very limited
 - BSAAM response not well defined geographically or in terms of hydrology
- ☐ Reproducibility for Future Studies
 - Station names were not given full names for the dataset, which makes it hard to
 - update the dataset and continue with forecasting.
 - □ validate the model against "real-life" data
- → Textbook Example
 - ☐ Meant to be open to interpretation, more than ONE right answer (log transformation could work too)
 - ☐ Simplified without too many observations (more stations could be added)

In the future I look forward to doing a similar analysis of time series data to forecast hydrologic phenomenon in CA