Training/Testing and Regularization

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Understand the concept of bias and variance
 - Know the concept of over-fitting and under-fitting
 - Able to segment two sources, bias and variance, of error
- Understand the bias and variance trade-off
 - Understand the concept of Occam's razor
 - Able to perform cross-validation
 - Know various performance metrics for supervised machine learning
- Understand the concept of regularization
 - Know how to apply regularization to
 - Linear regression
 - Logistic regression
 - Support vector machine

PERFORMANCE MEASUREMENT

Empirical Bias and Variance Trade-off

- Consider
 - $f(x)=\sin(2*pi*x)$
 - D={two points|point=(x,sin(2*pi*x)), 0<=x<=1)
 - Two g(x)
 - Zero degree: dark grey line
 - One degree: light grey line
 - Two $\bar{g}(x)$
 - Zero degree: red line
 - One degree: green line
- Which has a greater bias and a greater variance between one degree and zero degree?

Bias and Variance of Two Hypotheses

- A complex model has a higher variance and a lower bias.
- A simple model has a lower variance and a higher bias.
- Need a balance in the complexity of a ML algorithm

Occam's Razor

- Occam's Razor
 - Among competing hypotheses, the one which makes the fewest assumption should be selected
- Competing?
 - Relevantly similar error in the prediction
- Fewest assumption
 - Less complex model
- Given the approximately same error, a simple model should be selected
- Reflection of Bias and Variance tradeoff!
 - By the way, is it possible to calculate the bias and the variance in the real world setting?

