Computer Vision – TP5 Single Pixel Manipulation

Miguel Coimbra, Hélder Oliveira

Outline

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction

Topic: Dynamic Range Manipulation

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction

Manipulation

What I see

What I want to see

Digital Images

What we see

What a computer sees

Pixel Manipulation

- Let's start simple
- I want to change a single Pixel.

$$f(X,Y) = MyNewValue$$

 Or, I can apply a transformation T to all pixels individually.

$$g(x, y) = T[f(x, y)]$$

Image Domain

 I am directly changing values of the image matrix.

$$g = T(f)$$

- Image Domain
- So, what is the other possible 'domain'?

Image Negative

What I want to see

Image Negative

- Consider the maximum value allowed by quantization (max)
- For 8 bits: 255
- Then:

$$g(x, y) = \max - f(x, y)$$

$$g(x, y) = 255 - f(x, y)$$

What I want to see

Dynamic Range Manipulation

- What am I really doing?
 - Changing the response of my image to the received brightness
- Dynamic Range Manipulation
 - Represented by a 2DPlot

Example - Contrast Stretching

Example - Contrast Stretching

Example - Hist. Equalization

Other DRM functions

- By manipulating our function we can:
 - Enhance generic image visibility
 - Enhance specific visual features
 - Use quantization space a lot better

Contrast Stretching

- 'Stretches' the dynamic range of an image
- Corrects some image capture problems
 - Poor illumination, aperture, poor sensor performance, etc.

$$g = 255 \frac{f - \min}{\max - \min}$$

Histogram Processing

 Histograms give us an idea of how we are using our dynamic range

Types of Image Histograms

- Images can be classified into types according to their histogram
 - Dark
 - Bright
 - Low-contrast
 - High-contrast

Types of Image Histograms

Histogram Equalization

$$S_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{n} = \sum_{j=0}^k p_r(r_j)$$

- Objective:
 - Obtain a 'flat' histogram
 - Enhance visual contrast
- Digital histogram
 - Result is a 'flat-ish' histogram
 - Why?

Histogram Equalization

Sample Question

1. **Digital Image.** Consider an image where the only component of the color present is the *intensity* of each pixel, represented in Figure 1. The image is in digital format, has a 5x5 dimension and an 8-bit quantization.

100	100	100	100	100
150	150	150	150	150
150	150	150	150	150
150	150	200	200	200
200	200	200	200	200

Component I Figure 1

a) Apply a *contrast stretching operation to* the image represented in Figure 1. Present the calculations performed and the final result in matrix form (2 points).

Sample Question

 Digital Image. Consider a RGB image, where the color components of each pixel are represented in the matrices in Figure 1. The image is in digital format, has a 3x3 resolution and has a 4-bit quantization.

0	0	0
10	10	12
10	10	12

R Component

3	3	3
4	4	4
4	4	4

G Component

6	6	6
10	10	8
10	10	8

B Component

- a) Calculate the *intensity* I (HSI color space) of the color of each pixel. Present the calculations made, and the final result in matrix form. (2 points)
- b) Apply a *histogram equalization* operation to the B component of the image represented in Figure 1. Present the calculations made and the final result in matrix form. (2 points)
- c) What is the usefulness of a *histogram equalization* operation? Compare the characteristics of this algorithm with those of a *contrast stretching* algorithm and explain situations in which it should and should not be applied. (2 points)

Topic: Neighborhoods and Connectivity

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction

4-Neighbors

- A pixel p at (x,y) has 2 horizontal and 2 vertical neighbors:
 - -(x+1,y), (x-1,y), (x,y+1), (x,y-1)
 - N₄(p): Set of the 4neighbors of p.
- Limitations?

8-Neighbors

- A pixel has 4 diagonal neighbors
 - (x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)
 - N_D(p): Diagonal set of neighbors
- $N_8(p) = N_4(p) + N_D(p)$
- Limitations?

Connectivity

Two pixels are connected if:

- They are neighbors
 (i.e. adjacent in some sense -- e.g. N₄(p),
 N₈(p), ...)
- Their gray levels
 satisfy a specified
 criterion of similarity
 (e.g. equality, ...)

(x-1, y-1)	(x,y-1)	(x+1, y-1)
(x-1,y)	(x,y-1)	(x+1,y)
(x-1, y+1)	(x,y+1)	(x+1, y+1)

4 and 8-Connectivity

Distances

D4 Distance

D₄ distance (city-block distance):

$$-D_4(p,q) = |x-s| + |y-t|$$

- forms a diamond centered at (x,y)
- e.g. pixels with D₄≤2 from p

D8 Distance

D₈ distance (chessboard distance):

```
-D_8(p,q) = \max(|x-s|,|y-t|)
```

- Forms a square centered at p
- e.g. pixels with D₈≤2 from p

Euclidean Distance

Euclidean distance:

$$- D_{e}(p,q) = [(x-s)^{2} + (y-t)^{2}]^{1/2}$$

 Points (pixels) having a distance less than or equal to r from (x,y) are contained in a disk of radius r centered at (x,y)

Topic: Image Arithmetic

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction

Arithmetic operations between images

Arithmetic operations between images

Arithmetic operations between images

Image Arithmetic

- Image 1: a(x,y)
- Image 2: b(x,y)
- Result: c(x,y) = a(x,y) OPERATION b(x,y)
- Possibilities:
 - Addition
 - Subtraction
 - Multiplication
 - Division
 - Etc..

Logic Operations

- Binary Images
- We can use Boolean Logic
- Operations:
 - AND
 - -OR
 - NOT

More on this when we study mathematical morphology

Topic: Example: Background Subtraction

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction

Example: Background Subtraction

Image arithmetic is simple and powerful

Is there a person here? Where?

Remember: We can only see numbers!

Is there a person here? Where?

What if I know this?

Subtract!

Objective:

Separate the foreground objects from a static background

Large variety of methods:

- Mean & Threshold [CD04]
- Normalized Block Correlation [Mats00]
- Temporal Derivative [Hari98]
- Single Gaussian [Wren97]
- Mixture of Gaussians [Grim98]

Segmentation!!
More on this
later.

Resources

- Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011
 - Chapter 3 "Image Processing"