SAMSUNG Al Center

- Cambridge

Object landmark discovery through unsupervised adaptation

Enrique Sanchez and Georgios Tzimiropoulos

Samsung Al Centre Cambridge – University of Nottingham

https://github.com/ESanchezLozano/SAIC-Unsupervised-landmark-detection-NeurIPS2019

Summary

Goal is to learn an object detector w/o supervision through conditional image generation

The University of

Nottingham

- 2. We propose an incremental learning approach to unsupervised learning of object landmark detectors
- Much constrained learning with ~10% parameters
- Novel evaluation that includes measuring the **consistency of** the discovered landmarks
- 5. We compare **three approaches** to unsupervised learning
 - End-to-end training (scratch)
 - Fine-tuning from a pre-trained network
 - iii. Incremental learning

Method Learnable **Projection Human Pose Estimation Network (Supervised) Detected landmarks** Transposed Conv Differentiable Produced **Heatmaps** Heatmaps $x_1 y_1$ x_2 y_2 $x_n y_n$ Input Image (y) **Object Landmark Detection Bottleneck** (Unsupervised) **Deformed** Generated Image-to-image Image (y') Image (y*) translation network

Evaluation

Forward

Consistency

$$e_i = \|\Psi_{\theta_{\mathcal{Y}}}^i(A(\mathbf{y})) - A(\Psi_{\theta_{\mathcal{Y}}}^i(\mathbf{y}))\|$$

Backward

Forward: Comparison s.o.a.

Method	MAFL	AFLW								
Supervised										
TCDCN [45]	7.95	7.65								
MTCNN [44]	5.39	6.90								
Unsupervised										
Thewlis $[35](K = 30)$	7.15	-								
Jakab [13]†	3.32	6.99								
Jakab [13]††	3.19	6.86								
Zhang $[43](K = 10)$	3.46	7.01								
Shu [31]	5.45	-								
Sahasrabudhe [30]	6.01	-								
Ours										
Baseline	5.00	7.65								
Finetune	3.91	6.79								
Proposed	3.99	6.69								

Consistency: Scratch/Finetune/Proposed

		1	2	3	4	5	6	7	8	9	10	Avg.
MAFL	Scratch	1.08	1.20	1.34	1.36	1.38	1.76	3.98	16.51	27.44	35.03	9.11
	Finetune	1.11	1.36	1.39	1.39	1.68	1.83	2.79	3.58	5.59	7.51	2.82
	Proposed	0.96	1.09	1.19	1.34	1.45	1.58	1.80	1.92	3.65	4.09	1.91
AFLW	Scratch	1.45	1.78	1.83	1.85	1.95	2.54	8.46	21.62	31.30	39.37	11.20
	Finetune	1.86	1.93	1.95	2.16	2.18	2.53	5.34	7.30	8.30	9.66	4.32
	Proposed	1.46	1.47	1.47	1.54	1.65	1.66	1.92	2.07	4.97	6.99	2.52
LS3D	Scratch	3.40	4.11	4.48	4.54	5.18	5.71	6.70	19.72	32.04	38.36	12.42
	Finetune	2.93	3.19	3.26	3.59	3.71	4.38	5.14	5.56	7.29	9.49	4.85
	Proposed	2.36	2.48	3.01	3.02	3.55	3.59	3.71	4.83	6.97	7.08	4.06
Shoes	Scratch	1.57	1.65	2.19	2.56	2.79	2.92	3.03	3.05	3.28	4.92	2.80
	Finetune	1.22	1.35	1.42	1.47	1.82	2.03	2.38	2.51	4.21	4.30	2.27
	Proposed	1.07	1.48	1.74	1.80	1.94	2.28	2.30	2.41	2.91	3.49	2.14
Cats	Scratch	1.27	1.44	1.61	1.82	2.30	3.37	3.46	4.44	27.13	28.11	7.50
	Finetune	1.27	1.48	1.81	1.82	1.82	1.84	1.89	5.48	5.93	7.14	3.05
	Proposed	1.00	1.01	1.25	1.60	1.65	1.79	3.57	3.60	3.64	5.29	2.44

Body -> Face

Body -> Cats

Body -> Shoes

Face -> Body

References

Thewlins et al. Unsupervised learning of object landmarks by factorized spatial embeddings. ICCV '17 Jakab et al. Unsupervised learning of object landmarks through conditional image generation. NeurIPS'18 Zhang et al. Unsupervised discovery of object landmarks as structural representations. CVPR'18