$$= \langle y_1 \circ_i y_2, x_1 \circ_i x_2 \rangle \qquad (\varphi 定义)$$

$$= \langle y_1, x_1 \rangle \overline{*}_i \langle y_2, x_2 \rangle \qquad (积代数定义)$$

$$=\varphi(\langle x_1, y_1 \rangle) \overline{*}_i \varphi(\langle x_2, y_2 \rangle) \tag{φ 定义}$$

这就证明了 φ 是 $V_1 \times V_2$ 到 $V_2 \times V_1$ 的同态映射,且为双射。

从而有: $V_1 \times V_2 \stackrel{\varphi}{\cong} V_2 \times V_1$ 。

15.20 先证一个引理。

引理 **15.1** 对任意全函数 $f, g: A \to B$,若 |B| = 2,则有: f = g 当且仅当 $\exists b_0 (b_0 \in B \land \forall x (x \in A \to (f(x) = b_0 \leftrightarrow g(x) = b_0)))$ 。

证明: 必要性显然。下面证充分性:

反设 $f \neq g$, 则存在 $x \in A$, 使 $f(x) \neq g(x)$ 。由 |B| = 2 和 $f(x) \neq g(x)$ 知, f(x) 和 g(x) 中有且仅有一个等于 b_0 ,这与条件 $\forall x (x \in A \to (f(x) = b_0 \leftrightarrow g(x) = b_0))$ 矛盾。

再证原题。

证明:由命题逻辑矛盾律和排中律知, φ 是全函数(即,对任何 $x \in \mathcal{P}(\{a,b\})$, $a \in x$ 和 $a \notin x$ 有且仅有一个成立)。

由 $\{a\} \in \mathcal{P}(\{a,b\}), \varphi(\{a\}) = 1$ 和 $\{b\} \in \mathcal{P}(\{a,b\}), \varphi(\{b\}) = 0$ 知, φ 是满射。下面验证 φ 是同态映射。

 $\forall x, y \in A$,

$$\varphi(x \cup y) = 1 \iff a \in x \cup y$$
 (φ 定义)
 $\iff a \in x \lor a \in y$ (集合并定义)
 $\iff \varphi(x) = 1 \lor \varphi(y) = 1$ (φ 定义)
 $\iff \varphi(x) + \varphi(y) = 1$ (布尔加定义)

注意到,可以将 $\varphi(x \cup y)$ 和 $\varphi(x) + \varphi(y)$ 看成两个从 $\mathcal{P}(a,b)$ 到 $\{0,1\}$ 的函数。再由 $|\{0,1\}| = 2,1 \in \{0,1\}$ 和引理 15.1 可知: $\forall x,y \in A, \varphi(x \cup y) = \varphi(x) + \varphi(y)$ 。

 $\forall x, y \in A$,

$$\varphi(x \cap y) = 1 \iff a \in x \cap y$$
 $\iff a \in x \land a \in y$
 $\iff \varphi(x) = 1 \land \varphi(y) = 1$
 $\iff \varphi(x) \cdot \varphi(y) = 1$
 $(\varphi 定义)$
 $\iff \varphi(x) \cdot \varphi(y) = 1$
 $(\pi \circ x \cdot x \circ x)$
 $(\pi \circ x \cdot x \circ x)$

从而有: $\forall x, y \in A, \varphi(x \cap y) = \varphi(x) \cdot \varphi(y)$ 。

 $\forall x \in A$,

$$\varphi(\sim x) = 1 \iff a \in \sim x$$
 $(\varphi 定义)$
 $\iff a \notin x$
 $(絶对补定义)$
 $\iff \varphi(x) = 0$
 $(\varphi 定义)$
 $\iff -\varphi(x) = 1$
 (πx)

从而有: $\forall x \in A, \varphi(\sim x) = -\varphi(x)$ 。

由于 $a \notin \emptyset, a \in \{a,b\}$,从而有 $\varphi(\emptyset) = 0, \varphi(\{a,b\}) = 1$ 。

这就证明了 φ 是 V_1 到 V_2 的同态映射。再由 φ 是满射知, φ 是 V_1 到 V_2 的满同态。

15.21

(1)