FORMULARIUM: ELEMENTAIRE STATISTIEK

HULPFORMULES

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \text{ als } |x| < 1.$$

$$\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$

$$\left(1 + \frac{a}{n}\right)^n \xrightarrow{n \to \infty} e^a$$

$$\Gamma(t) \sim \left(\frac{t-1}{e}\right)^{t-1} \sqrt{2\pi(t-1)}$$

DISCRETE KANSMODELLEN

naam	f(k) = P(X = k)	Ω	E[X]	$ \operatorname{Var}[X] $	$M_X(t)$
discreet uniform	$\frac{1}{n}$	$k = 1, 2, \dots, n$ $k = 0, 1$	$\frac{n+1}{2}$	$\frac{(n+1)(n-1)}{12}$	$\frac{e^t(e^{tn}-1)}{n(e^t-1)}$
Bernoulli	$p^k(1-p)^{1-k}$	k = 0, 1	p	p(1-p) = pq	$q + pe^t$
binomiaal	$\begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}$ $e^{-\alpha} \frac{\alpha^k}{k!}$	$k=0,\ldots,n$		np(1-p) = npq	$(q+pe^t)^n$
Poisson	$e^{-\alpha} \frac{\alpha^k}{k!}$	$k=0,1,2,\dots$		α	$e^{\alpha(e^t-1)}$
geometrisch	$(1-p)^k p$	$k=0,1,2\dots$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\begin{cases} \frac{p}{1-(1-p)e^t} & t < -\ln(1-p) \\ \infty & t \ge -\ln(1-p) \\ \left\{ \left(\frac{p}{1-(1-p)e^t} \right)^r & t < -\ln(1-p) \\ \infty & t \ge -\ln(1-p) \end{cases}$
negatief binomiaal	$\left[\left(\begin{array}{c} k+r-1\\ k \end{array} \right) p^r (1-p)^k \right]$	$k=0,1,2\dots$	$\frac{r(1-p)}{p}$	$ \frac{r(1-p)}{p^2} $	$\begin{cases} \left(\frac{p}{1-(1-p)e^t}\right)^r & t < -\ln(1-p) \\ \infty & t \ge -\ln(1-p) \end{cases}$
hypergeometrisch	$\left \begin{array}{c} \binom{r}{k} \binom{N-r}{n-k} \\ \binom{N}{n} \end{array} \right $	$k = 0, \dots, n$	$\frac{rn}{N}$	$\frac{rn(N-r)(N-n)}{N^2(N-1)}$	

Opmerkingen:

Soms gebruikt men ook de notaties $Geom(\theta)$ en $NB(r,\theta)$ waarbij $\theta=1-p$ de kans op mislukking.

CONTINUE KANSMODELLEN

naam	dichtheid $f(x)$	Ω	E[X]	Var[X]	$M_X(t)$
continu uniform	$\frac{1}{b-a}$	$x \in [a,b] \frac{a+b}{2}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{b-a}\frac{1}{t}\left(e^{tb}-e^{ta}\right)$
$\mathcal{N}(\mu,\sigma^2)$	$\frac{1}{\sqrt{\delta_{n-\sigma}}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \ \mu \in \mathbb{R}, \sigma > 0$	$x \in \mathbb{R}$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
$\operatorname{Expo}(\alpha)$	$\alpha e^{-\alpha x}, \alpha > 0$	x > 0	$\frac{1}{\alpha}$	$\frac{1}{\alpha^2}$	$\frac{\alpha}{\alpha - t}$, $t < \alpha$
χ^2_n	$\frac{2^{-n/2}}{\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-x/2}, n > 0$	x > 0	u	2n	$\begin{cases} \frac{1}{(1-2t)^{\frac{n}{2}}} & t < \frac{1}{2} \\ \infty & t \geqslant \frac{1}{2} \end{cases}$
$\mathrm{Gamma}(\gamma,\beta)$	$rac{x^{\gamma-1}e^{rac{-x}{eta}}}{eta^{\gamma}\Gamma(\gamma)},\ \gamma,eta>0$	x > 0	$\gamma \beta$	γeta^2	$\begin{cases} (1-\beta t)^{-\gamma} & t < \frac{1}{\beta} \\ \infty & t \ge \frac{1}{\beta} \end{cases}$
t_n	$\frac{\Gamma((n+1)/2)}{\Gamma(n/2)\sqrt{\pi n}} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}, n > 0$	$x\in\mathbb{R}$	$0 \ (n > 1)$	$\frac{n}{n-2} \ (n>2)$	
Cauchy	$\frac{1}{\pi} \frac{1}{1+x^2}$	$x\in \mathbb{R}$	/	/	/
$F_{m,n}$	$\frac{m^{\frac{m}{2}} n^{\frac{n}{2}} \Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2}) \Gamma(\frac{n}{2})} \frac{x^{\frac{m}{2}-1}}{(n+mx)^{\frac{n+m}{2}}}, m, n > 0$	x > 0	$\frac{n}{n-2}$	$\frac{2n^2(m+n-2)}{m(n-4)(n-2)^2}$	
lognormale	$\frac{1}{\sqrt{2\pi}\sigma x}e^{-\frac{1}{2}\left(\frac{\ln(x)-\mu}{\sigma}\right)^2}, \ \mu \in \mathbb{R}, \sigma > 0$	$x \in \mathbb{R}$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
bivariaat normaal	$f(x,y) = \frac{1}{2\pi\sqrt{\det(\Sigma)}} e^{-\frac{1}{2}z^t \Sigma^{-1} z}$	$x,y \in \mathbb{R}$	$E[X] = \mu_X,$	$E[X] = \mu_X, \operatorname{Var}[X] = \sigma_X^2,$	
	$\mu^t = (\mu_X \ \mu_X), z^t = (x \ y) - \mu^t \text{ en}$		$E[Y] = \mu_Y$	$\operatorname{Var}[Y] = \sigma_Y^2$	$M_X(s) = e^{s^t \mu + \frac{1}{2} s^t \Sigma s}$
	$\Sigma = \left(egin{array}{cc} \sigma_X^2 & ho\sigma_X\sigma_Y \ ho\sigma_X\sigma_Y & \sigma_Y^2 \end{array} ight)$			$Cov(X,Y) = \rho\sigma_X\sigma_Y$	

$$\begin{split} \Gamma(t) &= \int_0^\infty x^{t-1} e^{-x} dx, \quad t > 0 \\ \mathcal{B}(s,t) &= \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}, \quad s,t > 0 \\ \operatorname{Als} X \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right) \text{ en } Y \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right) \text{ dan } X \mid Y = y \sim \mathcal{N}\left(\mu_X + \rho \frac{\sigma_X}{\sigma_Y}(y - \mu_Y), \sigma_X^2(1 - \rho^2)\right) \end{split}$$
Opmerkingen:

HYPOTHESETOETSEN

Tabel	1.	norma	liteitstest

n	$\alpha = 0.01$	$\alpha = 0.05$
10	.880	.918
15	.911	.938
20	.929	.950
25	.941	.958
30	.949	.964
40	.960	.972
50	.966	.976
60	.971	.980
75	.976	.984
100	.981	.986
150	.987	.991
200	.990	.993

•
$$r = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$
 (Fisher-Behrens)

• Kolmogorov-Smirnov geeft verdeling van D_n onder H_0

$$\lim_{n \to \infty} P(\sqrt{n}D_n \le d) = 1 - 2\sum_{k=1}^{\infty} (-1)^{k-1} \exp(-2k^2 d^2) := H(d), \ \forall d > 0.$$

Voor $n \gg$: verwerp H_0 als $\sqrt{n}D_n \ge H^{-1}(1-\alpha)$

d	H(d)	d	H(d)	d	H(d)	d	H(d)
0.30	0.0000	0.75	0.3728	1.20	0.8878	1.80	0.9969
0.35	0.0003	0.80	0.4559	1.25	0.9121	1.90	0.9985
0.40	0.0028	0.85	0.5347	1.30	0.9319	2.00	0.9993
0.45	0.0126	0.90	0.6073	1.35	0.9478	2.10	0.9997
0.50	0.0361	0.95	0.6725	1.40	0.9603	2.20	0.9999
0.55	0.0772	1.00	0.7300	1.45	0.9702	2.30	0.9999
0.60	0.1357	1.05	0.7798	1.50	0.9778	2.40	1.0000
0.65	0.2080	1.10	0.8223	1.60	0.9880	2.50	1.0000
0.70	0.2888	1.15	0.8580	1.70	0.9938		

•
$$\frac{R_{XY}}{\sqrt{\frac{(1-R_{XY}^2)}{n-2}}} \sim t_{n-2}$$
 $|H_0|$

 $\bullet\,$ Als α en β de werkelijke parameters zijn dan geldt

$$\frac{(\widehat{\beta} - \beta)\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}_n)^2}}{s_{\epsilon}} \sim t_{n-2}$$

$$\frac{(\widehat{\alpha} - \alpha)\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}_n)^2}}{s_{\epsilon}\sqrt{\overline{x}_n^2 + \frac{1}{n}\sum_{i=1}^{n} (x_i - \overline{x}_n)^2}} \sim t_{n-2}$$