PRINTABLE VERSION

Practice Test 1

Question 1

Compute $(f \circ g)(x)$, given that $f(x) = \frac{4x-3}{2x-1}$ and $g(x) = \frac{1}{2x}$.

a)
$$\frac{8x^2-4x-1}{2(2x-1)x}$$

b)
$$\frac{2x-1}{8x-6}$$

c)
$$\frac{3x+1}{x}$$

d)
$$\frac{3x-2}{x-1}$$

e)
$$\frac{2(4x-3)x}{2x-1}$$

Question 2

Find the coordinates of the *x*-intercept(s) for $f(x) = \frac{x^2 - x - 20}{x^2 - 8x + 15}$.

a)
$$(0,5)$$
 and $(0,4)$

b)
$$\circ$$
 (-3,0) and (-5,0)

c)
$$(-4,0)$$

e)
$$\circ$$
 (5,0) and (-4,0)

Question 3

The graph of the function $f(x) = \frac{3x^2 + 12x + 12}{2x^2 - 3x + 1}$ has a horizontal asymptote. If the graph crosses this asymptote, give the *x*-coordinate of the intersection. Otherwise, state that the graph does not cross the

asymptote.

a)
$$x = -\frac{6}{11}$$

b) •
$$x = -\frac{7}{11}$$

c) •
$$x = -\frac{10}{11}$$

d) •
$$x = -\frac{5}{11}$$

e) • The graph does not cross the asymptote.

Question 4

Find f(8), f(-2) and f(-5) given

$$f(x) = \begin{cases} 3x^2 + 6 & x \le -3 \\ 4 & -3 < x < 4 \\ -2x - 2 & x \ge 4 \end{cases}$$

a)
$$\circ$$
 $f(8) = 4$, $f(-2) = 18$ and $f(-5) = 81$

b) •
$$f(8) = -18$$
, $f(-2) = 4$ and $f(-5) = 81$

c)
$$f(8) = -18$$
, $f(-2) = 18$ and $f(-5) = 4$

d) •
$$f(8) = 4$$
, $f(-2) = 4$ and $f(-5) = 81$

e)
$$f(8) = 198$$
, $f(-2) = -2$ and $f(-5) = 4$

Question 5

Find the coordinates of the vertex for the following parabola.

$$y = -\frac{1}{4}x^2 + 4x + 6$$

a)
$$(8,0)$$

b)
$$(0,6)$$

- c) (8,6)
- **d)** (4, 18)
- e) (8,22)

Find the linear function f with $f^{-1}(-6) = 3$ and $f^{-1}(-2) = 4$.

a)
$$f(x) = -\frac{1}{4}x + 3$$

b)
$$\circ$$
 $f(x) = 4x + 18$

c)
$$\circ$$
 $f(x) = \frac{1}{4}x - 3$

d)
$$\circ$$
 $f(x) = \frac{1}{4}x + 18$

e)
$$f(x) = 4x - 18$$

Question 7

Put the equation in standard form for a hyperbola.

$$16x^2 - 9y^2 + 64x + 36y = 116$$

a)
$$\frac{(x-2)^2}{9} - \frac{(y-2)^2}{16} = 1$$

b)
$$\frac{(x+2)^2}{9} - \frac{(y-2)^2}{16} = 1$$

e)
$$\frac{(x+2)^2}{16} + \frac{(y-2)^2}{9} = 1$$

d)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

e)
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

Question 8

Find the x-coordinates of the points of intersection for the functions: $f(x) = x^2 - 6$ and g(x) = -x + 12.

a)
$$(-1/4 + 1/4 \sqrt{73}, 1/2 + 1/2 \sqrt{73})$$

b)
$$\circ \{-1 - \sqrt{73}, -1 + \sqrt{73}\}$$

e) •
$$\{1/2 - 1/2 \sqrt{73}, 1/2 + 1/2 \sqrt{73}\}$$

d) •
$$\{-1/2 - 1/2 \sqrt{73}, -1/2 + 1/2 \sqrt{73}\}$$

e)
$$\{-13/2 - 1/2\sqrt{73}, -13/2 + 1/2\sqrt{73}\}$$

Question 9

Find all roots of the polynomial $P(x) = \frac{3}{4}x^5 - 6x^2$.

a)
$$\{x = -2, x = -1\}$$

b)
$$(x = 0, x = 2)$$

c)
$$(x = 0, x = 2, x = 3)$$

d)
$$(x = -2, x = 0)$$

e)
$$\{x=0, x=3\}$$

Question 10

Which of the following are true statements?

I.
$$\sin^2 \theta + \cos^2 \theta = 1$$

II.
$$\tan^2 \theta + 1 = \sec^2 \theta$$

III.
$$1 + \cot^2 \theta = \csc^2 \theta$$

IV.
$$\frac{1}{\csc^2 \theta} + \frac{1}{\sec^2 \theta} = 1$$

a) I and III only.

b) II and III only.

 $\mathbf{c})$ I, II, and III only.

- **d)** None of these are true.
- e) All of these statements are true.

Simplify the expression: $\frac{7 \sec (A)}{\tan (A) + \cot (A)}$

- a) \circ 7 csc(A)
- **b)** \circ 7 $\sin(A)$
- c) \circ 7 $\operatorname{sec}(A)$
- d) \circ 7 cot(A)
- e) \circ 7 $\cos(A)$

Question 12

Which of the following functions matches the graph below?

5 of 11 1/21/2015 5:11 AM

a)
$$f(x) = (x+3)^2 - 1$$

b) •
$$f(x) = -(x+3)^{-2} + 1$$

e)
$$f(x) = (x-1)^2 + 3$$

Given $f(x) = \sqrt{3x-5}$ and $g(x) = x^2 - 4x - 12$, find the domain of $\frac{g}{f}$.

a)
$$[\frac{5}{3}, 6) \cup (6, \infty)$$

b)
$$\circ [\frac{5}{3}, \infty)$$

c)
$$\circ (-\infty, \frac{5}{3}) \cup (\frac{5}{3}, \infty)$$

d)
$$\circ$$
 $(-\infty, -2) \cup (6, \infty)$

e)
$$\circ (\frac{5}{3}, \infty)$$

Question 14

Perform the indicated operation and reduce completely.
$$\frac{x}{x^2 + 11x + 30} + \frac{3}{x^2 + 3x - 10} - \frac{x}{x^2 + 4x - 12}$$

a)
$$\frac{-20x^2 - 18x + 36}{(x+6)(x+5)(x-6)(x-2)}$$

b)
$$\circ \frac{-4x+18}{(x+6)(x+5)(x-2)}$$

c)
$$\frac{x^3 + 10x^2 + 35x + 18}{(x+6)(x+5)(x-2)}$$

d)
$$\frac{-x^3 - 12x^2 - 25x + 18}{(x+6)(x+5)(x-2)}$$

e)
$$\frac{-22x^2 - 18x + 108}{(x+6)(x+5)(x-6)(x-2)}$$

Simplify the following:

$$\frac{(\frac{x-5}{xy^3})}{(\frac{x^2-6x+5}{x^{11}y^{17}})}$$

a)
$$\frac{x+5}{x^{10}y^{20}}$$

b)
$$\circ \frac{x-1}{y^{14}x^{10}}$$

c)
$$\frac{x-5}{y^{14}x^{12}}$$

d)
$$\circ \frac{x^{10}y^{20}}{x+5}$$

e)
$$\frac{y^{14}x^{10}}{x-1}$$

Question 16

Simplify the following. No answer should contain negative exponents. $\frac{x^3y^{-2}z^2}{(3x^{-13}y^5)^{-1}}$

$$\frac{x^3y^{-2}z^2}{(3x^{-13}y^5)^{-1}}$$

a)
$$\circ \frac{3z^2}{x^{10}y^3}$$

b)
$$\circ \frac{-x^{16}z^2}{3v^7}$$

c)
$$\circ \frac{-y^3z^2}{3x^{10}}$$

d)
$$\circ$$
 $\frac{3y^3z^2}{x^{10}}$

e)
$$3x^{16}y^3z^2$$

Given $f(x) = \frac{x-1}{x+3}$, simplify $\frac{f(x+h)-f(x)}{h}$, $h \neq 0$ when x = -1.

a)
$$\frac{h-1}{h+3}$$

b)
$$\circ$$
 $\frac{2}{h-2}$

d)
$$\circ \frac{2}{h+2}$$

e)
$$0 h - 1$$

Question 18

Given that $f(x) = x^2 + 3x$ and g(x) = 5x - 2, find $(f \circ g)(2)$.

Question 19

Let $f(x) = \frac{5x^2 - 3}{4x^2 + 5}$. Find the y-intercept of $f(\sqrt{2x + 5})$.

- a) $(0, -\frac{3}{5})$
- **b)** \circ $(0, \frac{5}{4})$
- c) $(0, \frac{17}{21})$
- **d)** \circ $(0, \frac{22}{25})$
- e) $(0, \frac{122}{105})$

Suppose that $sec(B) = -\frac{11}{8}$ and that $180^{\circ} < B < 270^{\circ}$. Find sin(B).

a)
$$\circ$$
 $\sin(B) = \frac{\sqrt{57}}{19}$

b)
$$\circ$$
 $\sin(B) = -\frac{\sqrt{57}}{11}$

c)
$$\sin(B) = -\frac{\sqrt{57}}{19}$$

d)
$$\circ$$
 $\sin(B) = -\frac{\sqrt{3}}{11}$

e)
$$\circ$$
 $\sin(B) = \frac{\sqrt{57}}{11}$

Question 21

Suppose that θ is an acute angle of a right triangle and that $\sec(\theta) = \frac{8}{5}$. Find $\cos(\theta)$ and $\csc(\theta)$.

a)
$$\cos(\theta) = \frac{\sqrt{39}}{8}$$
 and $\csc(\theta) = \frac{5\sqrt{39}}{39}$

b)
$$\circ$$
 $\cos(\theta) = \frac{5}{8}$ and $\csc(\theta) = \frac{8\sqrt{39}}{39}$

c)
$$\cos(\theta) = \frac{8}{5}$$
 and $\csc(\theta) = \frac{8\sqrt{39}}{39}$

d)
$$\cos(\theta) = \frac{8\sqrt{39}}{39}$$
 and $\csc(\theta) = \frac{\sqrt{39}}{5}$

e)
$$\cos(\theta) = \frac{5}{8}$$
 and $\csc(\theta) = \frac{\sqrt{39}}{8}$

List all x-intercepts for $y = -3\sin(\frac{1}{2}x + \frac{\pi}{5})$, on the interval $[-\frac{2\pi}{5}, 4\pi]$.

a)
$$\{\frac{\pi}{5}, \frac{9\pi}{5}, \frac{18\pi}{5}\}$$

c)
$$\{-\frac{2\pi}{5}, \frac{9\pi}{5}, \frac{19\pi}{5}\}$$

d)
$$\{0, \frac{8\pi}{5}, \frac{18\pi}{5}\}$$

e)
$$\{-\frac{2\pi}{5}, \frac{8\pi}{5}, \frac{4\pi}{5}\}$$

Question 23

Solve $\sec^2(x) = 1$ over the interval $\left[-\frac{\pi}{2}, \frac{5\pi}{2}\right]$.

a)
$$\{-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}\}$$

b)
$$\circ$$
 $\{0, \pi, 2\pi\}$

c)
$$\{0, \frac{5\pi}{2}\}$$

d)
$$\{\frac{\pi}{2}, \frac{3\pi}{2}\}$$

e)
$$\{-\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}\}$$

Given $f(x) = \frac{3x^2 - 9x}{2x^2 - 18}$, identify any horizontal asymptotes.

a)
$$y = \frac{3}{2}$$

b)
$$\circ$$
 $y = -3$

c)
$$y = 3$$

e) • There are none.

Question 25

Find the exact value of the following expression. If undefined, state, undefined.

$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

a)
$$0 - \frac{\pi}{3}$$

b)
$$\circ \frac{5\pi}{6}$$

c)
$$\frac{\pi}{3}$$

d) undefined

e)
$$-\frac{5\pi}{6}$$