

gPROMS ProcessBuilder 1.2

New capabilities for modelling of catalytic reactors

Vasco Manaças – Consultant Engineer

Multitubular reactors

Why are they important?

- Often at the heart of the process
- Complex multitubular reactor (MTR)
 - 10,000-20,000 catalyst-filled tubes
 - Many internal design decisions

The multi-scale challenge

Reactor units

10s of m

Radial heat transport within a tube

Reaction and mass transport within a catalyst pellet

What happens at micron-scale affects plant-scale!

Catalytic reactors and PSE

Reactions / products

Acrylic Acid/Acrolein

Propane Dehydrogenation

Reforming

Dimethyl sulphide

Methanol

Propylene Oxide

Hydrocracking

vinyl Acetate Monomer

p-diiodobenzene

Fluid Catalytic Cracking

Styrene monomer

, N /

Maleic anhydride

Fischer-Tropsch

Phthalic anhydride

Terephthaldehyde

Customers

Arkema (FR)

SK Chemicals (KR)

REPSOL YPF (ES)

LG Chem (KR)

Clariant (Süd-Chemie) (DE)

Samsung-BP Chemicals (KR)

Shell (NL)

BP Chemicals (US)

IDESA (MX)

BP (UK) SABIC (SA)

SCG Chemicals (T)

Hunt Refining (US)

The solution in gPROMS ProcessBuilder 1.2.0

Detailed reactors in a ProcessBuilder flowsheet

gPROMS ProcessBuilder 1.2.0

Product formulation

Key features

- Comprehensive set of model libraries
 - gML Process
 - gML Olefins (NEW in gPROMS ProcessBuilder 1.2.0)
 - gML Water (NEW in gPROMS ProcessBuilder 1.2.0)
 - gML Utilities (NEW in gPROMS ProcessBuilder 1.2.0)
 - AML:FBCR (UPGRADED in gPROMS ProcessBuilder 1.2.0)
 - AML:TBR (NEW in gPROMS ProcessBuilder 1.2.0)
 - AML:GLC (NEW in gPROMS ProcessBuilder 1.2.0)
 - gML Oilfield (Upcoming in ProcessBuilder 1.3.0)
 - gML Power (Upcoming in ProcessBuilder 1.3.0)
- Built on gPROMS platform 5.0.0
- Materials modelling
 - Multiflash + DIPPR
 - gSAFT
- online help, reference examples,
 workflow guides, training videos, training
 courses

AML:FBCR – an overview

High fidelity models for

- Fixed bed catalytic reactors
- Single phase systems

Applications

- Gas or liquid phase reactions
 - Styrene, Methanol, Reforming, ...

Key improvements

- Liquid phase (NEW in gPROMS ProcessBuilder 1.2.0)
- Modular library
 - Configure model with preferred complexity and detail
 - Multiple configurations available

The Advanced Model Library approach

Reactor unit Design variables reactor diameter tube length baffle window size baffle span outer tube limit inner tube limit tube size -arrangement, pitch coolant flowrate coolant temp 10s of m

Contents: Axial flow

Detail in packed bed

1D: Axial

2D: Axial and radial

- Detail in pellet
 - Lumped (effectiveness factor)
 - Distributed (intra-particle)

Contents: Axial flow – Gas cooled bed

- Detail in packed bed
 - 1D: Axial
- Detail in pellet
 - Lumped (effectiveness factor)
 - Distributed (intra-particle)
- Different configuration
 - Catalyst on shell side
 - Coolant on tube side

Axial flow example: Methanol production

Lurgi MegaMethanol®

Contents: Axial annular flow

- Detail in packed bed
 - 2D: Axial and radial
 - Different flow directions
- Detail in pellet
 - Lumped (effectiveness factor)
 - Distributed (intra-particle)

Radial flow example: Methanol SuperConverter

Contents: Radial flow reactor

- Detail in packed bed
 - 2D: Radial and axial
 - Different flow directions
- Detail in pellet
 - Lumped (effectiveness factor)
 - Distributed (intra-particle)

Radial flow example: Propane Dehydrogenation

Contents: Cooling system

Detail in shell side

- Simple fixed coolant
- Cooling jacket
- Fired heater
- Boiling water
- Multitubular cooling compartment

Contents: Cooling system

gPROMS ProcessBuilder 1.2.0

Product formulation

Key features

- Comprehensive set of model libraries
 - gML Process
 - gML Olefins (NEW in gPROMS ProcessBuilder 1.2.0)
 - gML Water (NEW in gPROMS ProcessBuilder 1.2.0)
 - gML Utilities (NEW in gPROMS ProcessBuilder 1.2.0)
 - AML:FBCR (UPGRADED in gPROMS ProcessBuilder 1.2.0)
 - AML:TBR (NEW in gPROMS ProcessBuilder 1.2.0)
 - AML:GLC (NEW in gPROMS ProcessBuilder 1.2.0)
 - gML Oilfield (Upcoming in ProcessBuilder 1.3.0)
 - gML Power (Upcoming in ProcessBuilder 1.3.0)
- Built on gPROMS platform 5.0.0
- Materials modelling
 - Multiflash + DIPPR
 - gSAFT
- online help, reference examples, workflow guides, training videos, training courses

Trickle Bed Reactors

- Gas Liquid Solid contactors
 - Fixed bed of catalyst pellets
 - Gas-Liquid flow

Challenges

- Vapour liquid equilibrium
- Hydrodynamics
- Liquid holdup
- Pressure drop
- Mass and heat transfer
- Catalyst exposed to gas and liquid

gPROMS ProcessBuilder 1.2.0

AML:TBR (NEW in ProcessBuilder 1.2.0)

High fidelity models for

Trickle bed catalytic reactors

Applications

- Refining
- Petrochemicals
- Fine chemicals
- Biochemicals

Processes

- Hydrogenation
- Oxidation
- Fischer-Tropsch synthesis

Modular library

- Different reactor configurations
- Different level of detail

Jacketed TBR (adapted from Ranade et al., Elsevier 2011)

The Advanced Model Library approach

AML:TBR – Transport phenomena between phases

AML:TBR – Transport phenomena between phases

Contents: Axial flow

- Detail in pellet
 - Lumped (effectiveness factor)
 - Distributed (intra-particle)
- Detail in packed bed

1D: Axial

2D: Axial and radial

Contents: Axial annular flow

Detail in pellet

- Lumped (effectiveness factor)
- Distributed (intra-particle)
- Detail in packed bed

1D: Axial

2D: Axial and radial

Different flow directions

Contents: Heat Exchange

Detail in shell side

- Simple fixed coolant
- Cooling jacket
- Multitubular cooling compartment

AML:TBR Example: Hydrotreating of oil fractions

- Hydrodesulfurization (HDS)
- Hydrodenitrification (HDN)
- Hydrodemetallization (HDM)

HDS: $R - S + H_2 \rightarrow R + H_2 S$

HDN: $R - NH_2 + H_2 \rightarrow RH + NH_3$

HDM: $R - M + H_2 \rightarrow RH + M$

TBR with multicatalytic bed and quench technology (A.T.Jarullah, PhD thesis, University of Bradford, 2011)

AML:TBR Example: Benzene hydrogenation

J. Roininen et al., Ind. Eng. Chem. Res., 2009

Example: Fischer Tropsch

Multitubular gPROMS/CFD interface

→ Highest-accuracy predictive model on both tube-and shell sides

Available for both AML:FBCR and AML:TBR

AML:FBCR and AML:TBR – One final example

PSE reactor libraries not yet in gPROMS ProcessBuilder...

Slurry Reactors

Bubble Column Reactors

Fluidised Bed Reactors

Reactor AMLs in gPROMS ProcessBuilder Key advantages

Combine

- high fidelity multi-scale reactor model
- detailed separation section
- Take into account all key interactions
 - reactor/separation trade-offs
 - recycles
 - heat integration
- → Optimal process design
- Optimal plant operation

Take-away message

Reactor modelling is a core focus for PSE

- High-fidelity predictive reactor models now in ProcessBuilder
 - AML:FBCR
 - AML:TBR

g PROCESS

Thank you

Why modelling distributed pellet is important?

