Computed the minimal triangular graph over Ω := (0,1) 2, i.e find a function $q:\Omega^-\to R$, which is piecewise linear and continuous on a given triangulation of Ω , and which satisfies the boundary condition $q|\partial \Omega=1$ 2 -|x2-1 2|, and whose graph has minimal surface area among all piecewise linear and continuous functions defined on the same triangulation and satisfying the same boundary conditions.

Figure 1: Boundary condition

Output: Surface area and a figure showing the triangulated graph.

Proceed as follows: Subdivide Ω into triangles (everything consists of triangles (Plato)) with corners $Q_1(x_1^1, x_2^1), \dots, Q_m(x_1^m, x_2^m)$. Consider functions q, which are continuous on $\bar{\Omega}$ and linear on each triangle. Construct a function $A: \mathbb{R}^n \to \mathbb{R}$ which defines the surface area of the graph of q (what is n?).

Solution algorithm: Steepest descent with Armijo step size rule:

a) Choose
$$x^0 \in \mathbb{R}^n$$
, and $\beta, \gamma \in (0, 1)$,

b) for
$$k = 0, 1, 2, ...$$
 do

(i)
$$\nabla f(x^k) = 0 \rightarrow \text{STOP with } x^* = x^k$$
.

(ii)
$$s^k := -\nabla f(x^k)$$
,

(iii)
$$\sigma_k := \max\{\sigma > 0; \sigma \in \{1, \beta, \beta^2, \dots\}\} : f(x^k) - f(x^k + \sigma s^k) \ge -\gamma \sigma \nabla f(x^k)^t s^k$$

(iv)
$$x^{k+1} = x^k + \sigma_k s^k$$

Choose $\beta = \frac{1}{2}$, $\gamma \in [10^{-3}, 10^{-2}]$ and stop if in b) (ii) $||s^k|| \le 10^{-8}$ is satisfied.