GLOSSARY: A DICTIONARY FOR LINEAR ALGEBRA

Adjacency matrix of a graph. Square matrix with $a_{ij} = 1$ when there is an edge from node i to node j; otherwise $a_{ij} = 0$. $A = A^{T}$ for an undirected graph.

Affine transformation $T(\mathbf{v}) = A\mathbf{v} + \mathbf{v}_0 = \text{linear transformation plus shift.}$

Associative Law (AB)C = A(BC). Parentheses can be removed to leave ABC.

Augmented matrix $[A \ b]$. Ax = b is solvable when b is in the column space of A; then $[A \ b]$ has the same rank as A. Elimination on $[A \ b]$ keeps equations correct.

Back substitution. Upper triangular systems are solved in reverse order x_n to x_1 .

Basis for V. Independent vectors v_1, \ldots, v_d whose linear combinations give every v in V. A vector space has many bases!

Big formula for n by n determinants. Det(A) is a sum of n! terms, one term for each permutation P of the columns. That term is the product $a_{1\alpha} \cdots a_{n\omega}$ down the diagonal of the reordered matrix, times $det(P) = \pm 1$.

Block matrix. A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. **Block multiplication** of AB is allowed if the block shapes permit (the columns of A and rows of B must be in matching blocks).

Cayley-Hamilton Theorem. $p(\lambda) = \det(A - \lambda I)$ has $p(A) = zero\ matrix$.

Change of basis matrix M. The old basis vectors \boldsymbol{v}_j are combinations $\sum m_{ij}\boldsymbol{w}_i$ of the new basis vectors. The coordinates of $c_1\boldsymbol{v}_1+\cdots+c_n\boldsymbol{v}_n=d_1\boldsymbol{w}_1+\cdots+d_n\boldsymbol{w}_n$ are related by $\boldsymbol{d}=M\boldsymbol{c}$. (For n=2 set $\boldsymbol{v}_1=m_{11}\boldsymbol{w}_1+m_{21}\boldsymbol{w}_2,\ \boldsymbol{v}_2=m_{12}\boldsymbol{w}_1+m_{22}\boldsymbol{w}_2$.)

Characteristic equation $det(A - \lambda I) = 0$. The *n* roots are the eigenvalues of *A*.

Cholesky factorization $A = CC^{\mathrm{T}} = (L\sqrt{D})(L\sqrt{D})^{\mathrm{T}}$ for positive definite A.

Circulant matrix C. Constant diagonals wrap around as in cyclic shift S. Every circulant is $c_0I + c_1S + \cdots + c_{n-1}S^{n-1}$. $C\mathbf{x} = \mathbf{convolution} \ \mathbf{c} * \mathbf{x}$. Eigenvectors in F.

Cofactor C_{ij} . Remove row i and column j; multiply the determinant by $(-1)^{i+j}$.

Column picture of Ax = b. The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C(A).

Column space C(A) = space of all combinations of the columns of A.

Commuting matrices AB = BA. If diagonalizable, they share n eigenvectors.

Companion matrix. Put c_1, \ldots, c_n in row n and put n-1 1's along diagonal 1. Then $\det(A - \lambda I) = \pm (c_1 + c_2\lambda + c_3\lambda^2 + \cdots)$.

Complete solution $x = x_p + x_n$ to Ax = b. (Particular x_p) + $(x_n$ in nullspace).

Complex conjugate $\overline{z} = a - ib$ for any complex number z = a + ib. Then $z\overline{z} = |z|^2$.

Condition number $cond(A) = \kappa(A) = ||A|| ||A^{-1}|| = \sigma_{\max}/\sigma_{\min}$. In $A\mathbf{x} = \mathbf{b}$, the relative change $||\delta \mathbf{x}||/||\mathbf{x}||$ is less than cond(A) times the relative change $||\delta \mathbf{b}||/||\mathbf{b}||$. Condition numbers measure the *sensitivity* of the output to change in the input.

- Conjugate Gradient Method. A sequence of steps (end of Chapter 9) to solve positive definite $A\mathbf{x} = \mathbf{b}$ by minimizing $\frac{1}{2}\mathbf{x}^{\mathrm{T}}A\mathbf{x} \mathbf{x}^{\mathrm{T}}\mathbf{b}$ over growing Krylov subspaces.
- Covariance matrix Σ . When random variables x_i have mean = average value = 0, their covariances Σ_{ij} are the averages of $x_i x_j$. With means \overline{x}_i , the matrix Σ = mean of $(\boldsymbol{x} \overline{\boldsymbol{x}})(\boldsymbol{x} \overline{\boldsymbol{x}})^{\mathrm{T}}$ is positive (semi)definite; it is diagonal if the x_i are independent.
- Cramer's Rule for Ax = b. B_j has b replacing column j of A, and $x_j = |B_j|/|A|$.
- Cross product $\mathbf{u} \times \mathbf{v}$ in \mathbf{R}^3 . Vector perpendicular to \mathbf{u} and \mathbf{v} , length $\|\mathbf{u}\| \|\mathbf{v}\| \|\sin \theta\| = \text{parallelogram area, computed as the "determinant" of <math>[\mathbf{i} \ \mathbf{j} \ \mathbf{k}; u_1 \ u_2 \ u_3; v_1 \ v_2 \ v_3]$.
- Cyclic shift S. Permutation with $s_{21} = 1, s_{32} = 1, \ldots$, finally $s_{1n} = 1$. Its eigenvalues are nth roots $e^{2\pi ik/n}$ of 1; eigenvectors are columns of the Fourier matrix F.
- **Determinant** $|A| = \det(A)$. Defined by $\det I = 1$, sign reversal for row exchange, and linearity in each row. Then |A| = 0 when A is singular. Also |AB| = |A||B| and $|A^{-1}| = 1/|A|$ and $|A^{T}| = |A|$. The big formula for $\det(A)$ has a sum of n! terms, the cofactor formula uses determinants of size n-1, volume of box $= |\det(A)|$.
- **Diagonal matrix** D. $d_{ij} = 0$ if $i \neq j$. **Block-diagonal**: zero outside square blocks D_{ii} .
- **Diagonalizable matrix** A. Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then $S^{-1}AS = \Lambda =$ eigenvalue matrix.
- **Diagonalization** $\Lambda = S^{-1}AS$. $\Lambda =$ eigenvalue matrix and S = eigenvector matrix. A must have n independent eigenvectors to make S invertible. All $A^k = S\Lambda^kS^{-1}$.
- **Dimension of vector space** $\dim(V) = \text{number of vectors in any basis for } V$.
- **Distributive Law** A(B+C)=AB+AC. Add then multiply, or multiply then add.
- **Dot product** $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y} = x_1y_1 + \cdots + x_ny_n$. Complex dot product is $\overline{\boldsymbol{x}}^{\mathrm{T}}\boldsymbol{y}$. Perpendicular vectors have zero dot product. $(AB)_{ij} = (\text{row } i \text{ of } A) \cdot (\text{column } j \text{ of } B)$.
- **Echelon matrix** U. The first nonzero entry (the pivot) in each row comes after the pivot in the previous row. All zero rows come last.
- Eigenvalue λ and eigenvector \boldsymbol{x} . $A\boldsymbol{x} = \lambda \boldsymbol{x}$ with $\boldsymbol{x} \neq \boldsymbol{0}$ so $\det(A \lambda I) = 0$.
- **Eigshow**. Graphical 2 by 2 eigenvalues and singular values (MATLAB or Java).
- **Elimination**. A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers ℓ_{ij} in L, or PA = LU with row exchanges in P, or EA = R with an invertible E.
- Elimination matrix = Elementary matrix E_{ij} . The identity matrix with an extra $-\ell_{ij}$ in the i, j entry $(i \neq j)$. Then $E_{ij}A$ subtracts ℓ_{ij} times row j of A from row i.
- Ellipse (or ellipsoid) $\boldsymbol{x}^{\mathrm{T}}A\boldsymbol{x}=1$. A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths $1/\sqrt{\lambda}$. (For $\|\boldsymbol{x}\|=1$ the vectors $\boldsymbol{y}=A\boldsymbol{x}$ lie on the ellipse $\|A^{-1}\boldsymbol{y}\|^2=\boldsymbol{y}^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}\boldsymbol{y}=1$ displayed by eigshow; axis lengths σ_i .)
- **Exponential** $e^{At} = I + At + (At)^2/2! + \cdots$ has derivative Ae^{At} ; $e^{At}\boldsymbol{u}(0)$ solves $\boldsymbol{u}' = A\boldsymbol{u}$.

Factorization A = LU. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers ℓ_{ij} (and $\ell_{ii} = 1$) brings U back to A.

- Fast Fourier Transform (FFT). A factorization of the Fourier matrix F_n into $\ell = \log_2 n$ matrices S_i times a permutation. Each S_i needs only n/2 multiplications, so $F_n \boldsymbol{x}$ and $F_n^{-1} \boldsymbol{c}$ can be computed with $n\ell/2$ multiplications. Revolutionary.
- **Fibonacci numbers** $0, 1, 1, 2, 3, 5, \ldots$ satisfy $F_n = F_{n-1} + F_{n-2} = (\lambda_1^n \lambda_2^n)/(\lambda_1 \lambda_2)$. Growth rate $\lambda_1 = (1 + \sqrt{5})/2$ is the largest eigenvalue of the Fibonacci matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.
- Four fundamental subspaces of $A = C(A), N(A), C(A^T), N(A^T)$.
- Fourier matrix F. Entries $F_{jk} = e^{2\pi i j k/n}$ give orthogonal columns $\overline{F}^T F = nI$. Then $\mathbf{y} = F \mathbf{c}$ is the (inverse) Discrete Fourier Transform $y_j = \sum c_k e^{2\pi i j k/n}$.
- Free columns of A. Columns without pivots; combinations of earlier columns.
- Free variable x_i . Column i has no pivot in elimination. We can give the n-r free variables any values, then Ax = b determines the r pivot variables (if solvable!).
- Full column rank r = n. Independent columns, $N(A) = \{0\}$, no free variables.
- Full row rank r = m. Independent rows, at least one solution to Ax = b, column space is all of \mathbb{R}^m . Full rank means full column rank or full row rank.
- **Fundamental Theorem**. The nullspace N(A) and row space $C(A^{T})$ are orthogonal complements (perpendicular subspaces of \mathbf{R}^{n} with dimensions r and n-r) from $A\mathbf{x} = \mathbf{0}$. Applied to A^{T} , the column space C(A) is the orthogonal complement of $N(A^{T})$.
- **Gauss-Jordan method**. Invert A by row operations on $[A \ I]$ to reach $[I \ A^{-1}]$.
- **Gram-Schmidt orthogonalization** A = QR. Independent columns in A, orthonormal columns in Q. Each column \mathbf{q}_j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: $\operatorname{diag}(R) > \mathbf{0}$.
- **Graph** G. Set of n nodes connected pairwise by m edges. A **complete graph** has all n(n-1)/2 edges between nodes. A **tree** has only n-1 edges and no closed loops. A **directed graph** has a direction arrow specified on each edge.
- **Hankel matrix** H. Constant along each antidiagonal; h_{ij} depends on i+j.
- **Hermitian matrix** $A^{H} = \overline{A}^{T} = A$. Complex analog of a symmetric matrix: $\overline{a_{ji}} = a_{ij}$.
- **Hessenberg matrix** H. Triangular matrix with one extra nonzero adjacent diagonal.
- **Hilbert matrix** hilb(n). Entries $H_{ij} = 1/(i+j-1) = \int_0^1 x^{i-1}x^{j-1}dx$. Positive definite but extremely small λ_{\min} and large condition number.
- **Hypercube matrix** P_L^2 . Row n+1 counts corners, edges, faces, . . . of a cube in \mathbf{R}^n .
- **Identity matrix** I (or I_n). Diagonal entries = 1, off-diagonal entries = 0.
- **Incidence matrix of a directed graph.** The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j.
- **Indefinite matrix**. A symmetric matrix with eigenvalues of both signs (+ and -).
- Independent vectors v_1, \ldots, v_k . No combination $c_1 v_1 + \cdots + c_k v_k = \text{zero vector unless all } c_i = 0$. If the v's are the columns of A, the only solution to Ax = 0 is x = 0.

Inverse matrix A^{-1} . Square matrix with $A^{-1}A = I$ and $AA^{-1} = I$. No inverse if det A = 0 and rank(A) < n and $A\mathbf{x} = \mathbf{0}$ for a nonzero vector \mathbf{x} . The inverses of AB and A^{T} are $B^{-1}A^{-1}$ and $(A^{-1})^{\mathrm{T}}$. Cofactor formula $(A^{-1})_{ij} = C_{ji}/\det A$.

- **Iterative method**. A sequence of steps intended to approach the desired solution.
- **Jordan form** $J = M^{-1}AM$. If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives $J = \text{diag}(J_1, \ldots, J_s)$. The block J_k is $\lambda_k I_k + N_k$ where N_k has 1's on diagonal 1. Each block has one eigenvalue λ_k and one eigenvector $(1, 0, \ldots, 0)$.
- **Kirchhoff's Laws**. Current law: net current (in minus out) is zero at each node. Voltage law: Potential differences (voltage drops) add to zero around any closed loop.
- **Kronecker product (tensor product)** $A \bigotimes B$. Blocks $a_{ij}B$, eigenvalues $\lambda_p(A)\lambda_q(B)$.
- **Krylov subspace** $K_j(A, \boldsymbol{b})$. The subspace spanned by $\boldsymbol{b}, A\boldsymbol{b}, \dots, A^{j-1}\boldsymbol{b}$. Numerical methods approximate $A^{-1}\boldsymbol{b}$ by \boldsymbol{x}_j with residual $\boldsymbol{b} A\boldsymbol{x}_j$ in this subspace. A good basis for K_j requires only multiplication by A at each step.
- **Least squares solution** \hat{x} . The vector \hat{x} that minimizes the error $\|e\|^2$ solves $A^T A \hat{x} = A^T b$. Then $e = b A \hat{x}$ is orthogonal to all columns of A.
- **Left inverse** A^+ . If A has full column rank n, then $A^+ = (A^T A)^{-1} A^T$ has $A^+ A = I_n$.
- **Left nullspace** $N(A^{T})$. Nullspace of A^{T} = "left nullspace" of A because $y^{T}A = 0^{T}$.
- **Length** $\|\boldsymbol{x}\|$. Square root of $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x}$ (Pythagoras in n dimensions).
- **Linear combination** $c\mathbf{v} + d\mathbf{w}$ or $\sum c_j \mathbf{v}_j$. Vector addition and scalar multiplication.
- **Linear transformation** T. Each vector \boldsymbol{v} in the input space transforms to $T(\boldsymbol{v})$ in the output space, and linearity requires $T(c\boldsymbol{v}+d\boldsymbol{w})=cT(\boldsymbol{v})+dT(\boldsymbol{w})$. Examples: Matrix multiplication $A\boldsymbol{v}$, differentiation in function space.
- **Linearly dependent** v_1, \ldots, v_n . A combination other than all $c_i = 0$ gives $\sum c_i v_i = 0$.
- **Lucas numbers** $L_n = 2, 1, 3, 4, \ldots$ satisfy $L_n = L_{n-1} + L_{n-2} = \lambda_1^n + \lambda_2^n$, with eigenvalues $\lambda_1, \lambda_2 = (1 \pm \sqrt{5})/2$ of the Fibonacci matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Compare $L_0 = 2$ with Fibonacci.
- **Markov matrix** M. All $m_{ij} \geq 0$ and each column sum is 1. Largest eigenvalue $\lambda = 1$. If $m_{ij} > 0$, the columns of M^k approach the steady state eigenvector $M\mathbf{s} = \mathbf{s} > \mathbf{0}$.
- **Matrix multiplication** AB. The i, j entry of AB is (row i of A)·(column j of B) = $\sum a_{ik}b_{kj}$. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that AB times \boldsymbol{x} equals A times $B\boldsymbol{x}$.
- **Minimal polynomial of** A. The lowest degree polynomial with m(A) = zero matrix. The roots of m are eigenvalues, and $m(\lambda)$ divides $\det(A \lambda I)$.
- **Multiplication** $Ax = x_1(\text{column } 1) + \cdots + x_n(\text{column } n) = \text{combination of columns}.$
- Multiplicities AM and GM. The algebraic multiplicity AM of an eigenvalue λ is the number of times λ appears as a root of $\det(A-\lambda I)=0$. The geometric multiplicity GM is the number of independent eigenvectors (= dimension of the eigenspace for λ).

Multiplier ℓ_{ij} . The pivot row j is multiplied by ℓ_{ij} and subtracted from row i to eliminate the i, j entry: $\ell_{ij} = (\text{entry to eliminate})/(j\text{th pivot})$.

- **Network.** A directed graph that has constants c_1, \ldots, c_m associated with the edges.
- Nilpotent matrix N. Some power of N is the zero matrix, $N^k = 0$. The only eigenvalue is $\lambda = 0$ (repeated n times). Examples: triangular matrices with zero diagonal.
- Norm ||A|| of a matrix. The " ℓ^2 norm" is the maximum ratio $||A\boldsymbol{x}||/||\boldsymbol{x}|| = \sigma_{\max}$. Then $||A\boldsymbol{x}|| \le ||A|| ||\boldsymbol{x}||$ and $||AB|| \le ||A|| ||B||$ and $||A+B|| \le ||A|| + ||B||$. Frobenius norm $||A||_F^2 = \sum \sum a_{ij}^2$; ℓ^1 and ℓ^∞ norms are largest column and row sums of $|a_{ij}|$.
- Normal equation $A^{T}A\widehat{x} = A^{T}b$. Gives the least squares solution to Ax = b if A has full rank n. The equation says that (columns of A)· $(b A\widehat{x}) = 0$.
- **Normal matrix** N. $NN^{T} = N^{T}N$, leads to orthonormal (complex) eigenvectors.
- Nullspace N(A) = Solutions to Ax = 0. Dimension n r = (# columns) rank.
- Nullspace matrix N. The columns of N are the n-r special solutions to $A\mathbf{s}=\mathbf{0}$. Orthogonal matrix Q. Square matrix with orthonormal columns, so $Q^{\mathrm{T}}Q=I$ implies $Q^{\mathrm{T}}=Q^{-1}$. Preserves length and angles, $\|Q\mathbf{x}\|=\|\mathbf{x}\|$ and $(Q\mathbf{x})^{\mathrm{T}}(Q\mathbf{y})=\mathbf{x}^{\mathrm{T}}\mathbf{y}$. All $|\lambda|=1$, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.
- **Orthogonal subspaces**. Every v in V is orthogonal to every w in W.
- Orthonormal vectors q_1, \ldots, q_n . Dot products are $q_i^{\mathrm{T}} q_j = 0$ if $i \neq j$ and $q_i^{\mathrm{T}} q_i = 1$. The matrix Q with these orthonormal columns has $Q^{\mathrm{T}} Q = I$. If m = n then $Q^{\mathrm{T}} = Q^{-1}$ and q_1, \ldots, q_n is an orthonormal basis for \mathbf{R}^n : every $\mathbf{v} = \sum (\mathbf{v}^{\mathrm{T}} q_j) q_j$.
- Outer product $uv^{T} = \text{column times row} = \text{rank one matrix}$.
- **Partial pivoting.** In elimination, the jth pivot is chosen as the largest available entry (in absolute value) in column j. Then all multipliers have $|\ell_{ij}| \leq 1$. Roundoff error is controlled (depending on the *condition number* of A).
- **Particular solution** x_p . Any solution to Ax = b; often x_p has free variables = 0.
- **Pascal matrix** $P_S = \mathsf{pascal}(n)$. The symmetric matrix with binomial entries $\binom{i+j-2}{i-1}$. $P_S = P_L P_U$ all contain Pascal's triangle with $\det = 1$ (see index for more properties).
- **Permutation matrix** P. There are n! orders of $1, \ldots, n$; the n! P's have the rows of I in those orders. PA puts the rows of A in the same order. P is a product of row exchanges P_{ij} ; P is even or odd ($\det P = 1$ or -1) based on the number of exchanges.
- **Pivot columns of** A. Columns that contain pivots after row reduction; not combinations of earlier columns. The pivot columns are a basis for the column space.
- **Pivot** d. The diagonal entry (first nonzero) when a row is used in elimination.
- Plane (or hyperplane) in \mathbb{R}^n . Solutions to $\mathbf{a}^T \mathbf{x} = 0$ give the plane (dimension n-1) perpendicular to $\mathbf{a} \neq \mathbf{0}$.
- **Polar decomposition** A = QH. Orthogonal Q, positive (semi)definite H.
- Positive definite matrix A. Symmetric matrix with positive eigenvalues and positive pivots. Definition: $\mathbf{x}^{T}A\mathbf{x} > 0$ unless $\mathbf{x} = \mathbf{0}$.

- Projection $p = a(a^Tb/a^Ta)$ onto the line through a. $P = aa^T/a^Ta$ has rank 1.
- **Projection matrix** P **onto subspace** S. Projection p = Pb is the closest point to b in S, error e = b Pb is perpendicular to S. $P^2 = P = P^T$, eigenvalues are 1 or 0, eigenvectors are in S or S^{\perp} . If columns of A =basis for S then $P = A(A^TA)^{-1}A^T$.
- **Pseudoinverse** A^+ (Moore-Penrose inverse). The n by m matrix that "inverts" A from column space back to row space, with $N(A^+) = N(A^T)$. A^+A and AA^+ are the projection matrices onto the row space and column space. $\operatorname{Rank}(A^+) = \operatorname{rank}(A)$.
- **Random matrix** rand(n) or randn(n). MATLAB creates a matrix with random entries, uniformly distributed on $\begin{bmatrix} 0 & 1 \end{bmatrix}$ for rand and standard normal distribution for randn.
- **Rank one matrix** $A = uv^{T} \neq 0$. Column and row spaces = lines cu and cv.
- **Rank** r(A) = number of pivots = dimension of column space = dimension of row space.
- Rayleigh quotient $q(\boldsymbol{x}) = \boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x} / \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$ for symmetric A: $\lambda_{\min} \leq q(\boldsymbol{x}) \leq \lambda_{\max}$. Those extremes are reached at the eigenvectors \boldsymbol{x} for $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$.
- **Reduced row echelon form** R = rref(A). Pivots = 1; zeros above and below pivots; r nonzero rows of R give a basis for the row space of A.
- **Reflection matrix** $Q = I 2uu^{T}$. The unit vector u is reflected to Qu = -u. All vectors x in the plane mirror $u^{T}x = 0$ are unchanged because Qx = x. The "Householder matrix" has $Q^{T} = Q^{-1} = Q$.
- **Right inverse** A^+ . If A has full row rank m, then $A^+ = A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}$ has $AA^+ = I_m$.
- **Rotation matrix** $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ rotates the plane by θ and $R^{-1} = R^{T}$ rotates back by $-\theta$. Orthogonal matrix, eigenvalues $e^{i\theta}$ and $e^{-i\theta}$, eigenvectors $(1, \pm i)$.
- **Row picture of** Ax = b. Each equation gives a plane in \mathbb{R}^n ; planes intersect at x.
- Row space $C(A^T)$ = all combinations of rows of A. Column vectors by convention.
- **Saddle point of** $f(x_1, ..., x_n)$. A point where the first derivatives of f are zero and the second derivative matrix $(\partial^2 f/\partial x_i \partial x_j = \mathbf{Hessian \ matrix})$ is indefinite.
- Schur complement $S = D CA^{-1}B$. Appears in block elimination on $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$.
- Schwarz inequality $|\boldsymbol{v}\cdot\boldsymbol{w}| \leq \|\boldsymbol{v}\| \|\boldsymbol{w}\|$. Then $|\boldsymbol{v}^T\!A\boldsymbol{w}|^2 \leq (\boldsymbol{v}^T\!A\boldsymbol{v})(\boldsymbol{w}^T\!A\boldsymbol{w})$ if $A = C^TC$.
- Semidefinite matrix A. (Positive) semidefinite means symmetric with $\mathbf{x}^T A \mathbf{x} \geq 0$ for all vectors \mathbf{x} . Then all eigenvalues $\lambda \geq 0$; no negative pivots.
- Similar matrices A and B. Every $B = M^{-1}AM$ has the same eigenvalues as A.
- Simplex method for linear programming. The minimum cost vector \mathbf{x}^* is found by moving from corner to lower cost corner along the edges of the feasible set (where the constraints $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$ are satisfied). Minimum cost at a corner!
- Singular matrix A. A square matrix that has no inverse: det(A) = 0.
- Singular Value Decomposition (SVD) $A = U\Sigma V^{\mathrm{T}} = \text{(orthogonal } U \text{) times (diagonal } \Sigma \text{) times (orthogonal } V^{\mathrm{T}} \text{)}$. First r columns of U and V are orthonormal bases of C(A) and $C(A^{\mathrm{T}})$ with $Av_i = \sigma_i u_i$ and singular value $\sigma_i > 0$. Last columns of U and V are orthonormal bases of the nullspaces of A^{T} and A.

Skew-symmetric matrix K. The transpose is -K, since $K_{ij} = -K_{ji}$. Eigenvalues are pure imaginary, eigenvectors are orthogonal, e^{Kt} is an orthogonal matrix.

Solvable system Ax = b. The right side b is in the column space of A.

Spanning set v_1, \ldots, v_m for V. Every vector in V is a combination of v_1, \ldots, v_m .

Special solutions to As = 0. One free variable is $s_i = 1$, other free variables = 0.

Spectral theorem $A = Q\Lambda Q^{\mathrm{T}}$. Real symmetric A has real λ_i and orthonormal \boldsymbol{q}_i with $A\boldsymbol{q}_i = \lambda_i \boldsymbol{q}_i$. In mechanics the \boldsymbol{q}_i give the *principal axes*.

Spectrum of $A = \text{the set of eigenvalues } \{\lambda_1, \dots, \lambda_n\}$. **Spectral radius** $= |\lambda_{\max}|$.

Standard basis for \mathbb{R}^n . Columns of n by n identity matrix (written i, j, k in \mathbb{R}^3).

Stiffness matrix K. If \boldsymbol{x} gives the movements of the nodes in a discrete structure, $K\boldsymbol{x}$ gives the internal forces. Often $K = A^{\mathrm{T}}CA$ where C contains spring constants from Hooke's Law and $A\boldsymbol{x} = \text{stretching (strains)}$ from the movements \boldsymbol{x} .

Subspace S of V. Any vector space inside V, including V and $Z = \{\text{zero vector}\}$.

Sum V + W of subspaces. Space of all (v in V) + (w in W). Direct sum: $\dim(V + W) = \dim V + \dim W$ when V and W share only the zero vector.

Symmetric factorizations $A = LDL^{T}$ and $A = Q\Lambda Q^{T}$. The number of positive pivots in D and positive eigenvalues in Λ is the same.

Symmetric matrix A. The transpose is $A^{\mathrm{T}} = A$, and $a_{ij} = a_{ji}$. A^{-1} is also symmetric. All matrices of the form $R^{\mathrm{T}}R$ and LDL^{T} and $Q\Lambda Q^{\mathrm{T}}$ are symmetric. Symmetric matrices have real eigenvalues in Λ and orthonormal eigenvectors in Q.

Toeplitz matrix T. Constant-diagonal matrix, so t_{ij} depends only on j-i. Toeplitz matrices represent linear time-invariant filters in signal processing.

Trace of A = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

Transpose matrix A^{T} . Entries $A_{ij}^{\mathrm{T}} = A_{ji}$. A^{T} is n by m, $A^{\mathrm{T}}A$ is square, symmetric, positive semidefinite. The transposes of AB and A^{-1} are $B^{\mathrm{T}}A^{\mathrm{T}}$ and $(A^{\mathrm{T}})^{-1}$.

Triangle inequality $||u + v|| \le ||u|| + ||v||$. For matrix norms $||A + B|| \le ||A|| + ||B||$.

Tridiagonal matrix T: $t_{ij} = 0$ if |i - j| > 1. T^{-1} has rank 1 above and below diagonal.

Unitary matrix $U^{\mathrm{H}} = \overline{U}^{\mathrm{T}} = U^{-1}$. Orthonormal columns (complex analog of Q).

Vandermonde matrix V. V c = b gives the polynomial $p(x) = c_0 + \cdots + c_{n-1}x^{n-1}$ with $p(x_i) = b_i$ at n points. $V_{ij} = (x_i)^{j-1}$ and $\det V = \text{product of } (x_k - x_i)$ for k > i.

Vector v in \mathbb{R}^n . Sequence of n real numbers $v = (v_1, \dots, v_n) = \text{point in } \mathbb{R}^n$.

Vector addition. $v + w = (v_1 + w_1, \dots, v_n + w_n) = \text{diagonal of parallelogram}.$

Vector space V. Set of vectors such that all combinations cv + dw remain in V. Eight required rules are given in Section 3.1 for cv + dw.

Volume of box. The rows (or columns) of A generate a box with volume $|\det(A)|$.

Wavelets $w_{jk}(t)$ or vectors \boldsymbol{w}_{jk} . Stretch and shift the time axis to create $w_{jk}(t) = w_{00}(2^{j}t - k)$. Vectors from $\boldsymbol{w}_{00} = (1, 1, -1, -1)$ would be (1, -1, 0, 0) and (0, 0, 1, -1).