Package 'tsLSTMx'

January 12, 2024

Type Package
Title Predict Time Series Using LSTM Model Including Exogenous Variable to Denote Zero Values
Version 0.1.0
Author Sandip Garai [aut, cre], Krishna Pada Sarkar [aut]
Maintainer Sandip Garai <sandipnicksandy@gmail.com></sandipnicksandy@gmail.com>
Description It is a versatile tool for predicting time series data using Long Short-Term Memory (LSTM) models. It is specifically designed to handle time series with an exogenous variable, allowing users to denote whether data was available for a particular period or not. The package encompasses various functionalities, including hyperparameter tuning, custom loss function support, model evaluation, and one-step-ahead forecasting. With an emphasis on ease of use and flexibility, it empowers users to explore, evaluate, and deploy LSTM models for accurate time series predictions and forecasting in diverse applications. More details can be found in Garai and Paul (2023) <doi:10.1016 j.iswa.2023.200202="">.</doi:10.1016>
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
Imports tensorflow, AllMetrics, keras, reticulate
NeedsCompilation no
Repository CRAN
Date/Publication 2024-01-12 09:30:02 UTC
R topics documented:
best_model_on_validation 2 check_and_format_data

28

```
      forecast_best_model
      14

      initialize_tensorflow
      18

      predict_y_values
      18

      reshape_for_lstm
      21

      split_data
      22

      ts_lstm_x_tuning
      23
```

best_model_on_validation

Evaluate the best LSTM model on the validation set

Description

This function evaluates the performance of the best LSTM model on the provided validation set.

Usage

Index

```
best_model_on_validation(best_model, X_val, y_val)
```

Arguments

best_model The best LSTM model obtained from hyperparameter tuning.

X_val The validation set input data.

y_val The validation set target data.

Value

The validation loss of the best model on the provided validation set.

```
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                      validation_data = validation_data,
                                                      embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- numeric_matrices$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
X_train <- numeric_matrices$X_train</pre>
X_val <- numeric_matrices$X_val</pre>
reshaped_data <- reshape_for_lstm(X_train = X_train, X_val = X_val)</pre>
X_train <- reshaped_data$X_train</pre>
X_val <- reshaped_data$X_val</pre>
X_train <- reshaped_data$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- reshaped_data$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
tf <- reticulate::import("tensorflow")</pre>
tensors <- convert_to_tensors(X_train = X_train, y_train = y_train, X_val = X_val, y_val = y_val)</pre>
X_train <- tensors$X_train</pre>
y_train <- tensors$y_train</pre>
X_val <- tensors$X_val</pre>
y_val <- tensors$y_val</pre>
n_patience <- 50
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
X_train <- tensors$X_train</pre>
X_val <- tensors$X_val</pre>
y_train <- tensors$y_train</pre>
y_val <- tensors$y_val</pre>
embedded_colnames <- result_embed$column_names</pre>
# Define your custom loss function
custom_loss <- function(y_true, y_pred) {</pre>
  condition <- tf$math$equal(y_true, 0)</pre>
  loss <- tf$math$reduce_mean(tf$math$square(y_true - y_pred)) # Remove 'axis'</pre>
  loss <- tf$where(condition, tf$constant(0), loss)</pre>
  return(loss)
}
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
```

```
grid_search_results <- ts_lstm_x_tuning(</pre>
 X_train, y_train, X_val, y_val,
 embedded_colnames, custom_loss, early_stopping,
 n_lag = 2, # desired lag value
 lstm\_units\_list = c(32),
 learning_rate_list = c(0.001, 0.01),
 batch\_size\_list = c(32),
 dropout_list = c(0.2),
 l1_{reg_list} = c(0.001),
 12_{reg_list} = c(0.001),
 n_{iter} = 10,
 n_{verbose} = 0 # or 1
results_df <- grid_search_results$results_df
all_histories <- grid_search_results$all_histories</pre>
lstm_models <- grid_search_results$lstm_models</pre>
# Find the row with the minimum val_loss_mae in results_df
min_val_loss_row <- results_df[which.min(results_df$val_loss_mae), ]</pre>
# Extract hyperparameters from the row
best_lstm_units <- min_val_loss_row$lstm_units</pre>
best_learning_rate <- min_val_loss_row$learning_rate</pre>
best_batch_size <- min_val_loss_row$batch_size</pre>
best_n_lag <- min_val_loss_row$n_lag</pre>
best_dropout <- min_val_loss_row$dropout</pre>
best_l1_reg <- min_val_loss_row$l1_reg</pre>
best_l2_reg <- min_val_loss_row$12_reg</pre>
# Generate the lstm_model_name for the best model
best_model_name <- paste0("lstm_model_lu_", best_lstm_units, "_lr_", best_learning_rate,</pre>
                            "_bs_", best_batch_size, "_lag_", best_n_lag,
                           "_do_", best_dropout, "_l1_", best_l1_reg, "_l2_", best_l2_reg)
# Generate the history_name for the best model
best_history_name <- paste0("history_lu_", best_lstm_units, "_lr_", best_learning_rate,
                              "\_bs\_", \ best\_batch\_size, \ "\_lag\_", \ best\_n\_lag,
                           "_do_", best_dropout, "_l1_", best_l1_reg, "_l2_", best_l2_reg)
# Access the best model from lstm_models
best_model <- lstm_models[[best_model_name]]</pre>
best_model_details <- data.frame(min_val_loss_row)</pre>
colnames(best_model_details) <- colnames(results_df)</pre>
# Access the best model from lstm_models
best_history <- all_histories[[best_history_name]]</pre>
validation_loss_best <- best_model_on_validation(best_model, X_val, y_val)</pre>
```

check_and_format_data

check_and_format_data Check and Format Data

Description

This function checks the compatibility of a given data frame and performs necessary formatting.

Usage

```
check_and_format_data(data, n.head = 6)
```

Arguments

A data frame containing a 'Date' column and a numeric column 'A'.

n.head Number of rows to display from the formatted data frame (default is 6).

Details

This function checks the format of the 'Date' column and ensures it is in the format 'dd-mm-yy'. It also checks the presence of the 'A' column and ensures it contains numeric values.

Value

A formatted data frame with the specified number of rows displayed.

```
 \begin{array}{l} \mbox{data} <- \mbox{ data.frame(} \\ \mbox{Date = as.Date(c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18", \\ \mbox{ $"06-04-18", "07-04-18", "08-04-18", "09-04-18", "10-04-18", \\ \mbox{ $"11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18", \\ \mbox{ $"16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"), \\ \mbox{ format = "%d-%m-%y"), } \\ \mbox{ $A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)) \\ \mbox{ check\_and\_format\_data(data)} \\ \mbox{ $\#$ Add a new column 'X' based on the values in the second column } \\ \mbox{ data$X <- ifelse(data$A != 0, 1, 0)} \\ \end{array}
```

```
compare_predicted_vs_actual
```

Compare predicted and actual values for training and validation sets

Description

This function compares the predicted and actual values for the training and validation sets and computes metrics.

Usage

```
compare_predicted_vs_actual(
  train_data,
  validation_data,
  y_train_pred,
  y_val_pred
)
```

Arguments

```
train_data The training set data, including actual y values.

validation_data

The validation set data, including actual y values.

y_train_pred Predicted y values for the training set.

y_val_pred Predicted y values for the validation set.
```

Value

A list containing data frames with the comparison of actual vs. predicted values for training and validation sets, as well as metrics for the training and validation sets.

```
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                       validation_data = validation_data,
                                                       embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- numeric_matrices$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
X_train <- numeric_matrices$X_train</pre>
X_val <- numeric_matrices$X_val</pre>
reshaped_data <- reshape_for_lstm(X_train = X_train, X_val = X_val)</pre>
X_train <- reshaped_data$X_train</pre>
X_val <- reshaped_data$X_val</pre>
X_train <- reshaped_data$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- reshaped_data$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
tf <- reticulate::import("tensorflow")</pre>
tensors <- convert_to_tensors(X_train = X_train, y_train = y_train, X_val = X_val, y_val = y_val)</pre>
X_{train} \leftarrow tensors X_{train}
y_train <- tensors$y_train</pre>
X_val <- tensors$X_val</pre>
y_val <- tensors$y_val</pre>
n_patience <- 50
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
X_train <- tensors$X_train</pre>
X_val <- tensors$X_val</pre>
y_train <- tensors$y_train</pre>
y_val <- tensors$y_val</pre>
embedded_colnames <- result_embed$column_names</pre>
# Define your custom loss function
custom_loss <- function(y_true, y_pred) {</pre>
  condition <- tf$math$equal(y_true, 0)</pre>
  loss <- tf$math$reduce_mean(tf$math$square(y_true - y_pred)) # Remove 'axis'</pre>
  loss <- tf$where(condition, tf$constant(0), loss)</pre>
  return(loss)
}
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
```

```
grid_search_results <- ts_lstm_x_tuning(</pre>
 X_train, y_train, X_val, y_val,
 embedded_colnames, custom_loss, early_stopping,
 n_lag = 2, # desired lag value
 lstm\_units\_list = c(32),
 learning_rate_list = c(0.001, 0.01),
 batch\_size\_list = c(32),
 dropout_list = c(0.2),
 l1_{reg_list} = c(0.001),
 12_{reg_list} = c(0.001),
 n_{iter} = 10,
 n_{verbose} = 0 # or 1
results_df <- grid_search_results_df</pre>
all_histories <- grid_search_results$all_histories</pre>
lstm_models <- grid_search_results$lstm_models</pre>
# Find the row with the minimum val_loss_mae in results_df
min_val_loss_row <- results_df[which.min(results_df$val_loss_mae), ]</pre>
# Extract hyperparameters from the row
best_lstm_units <- min_val_loss_row$lstm_units</pre>
best_learning_rate <- min_val_loss_row$learning_rate</pre>
best_batch_size <- min_val_loss_row$batch_size</pre>
best_n_lag <- min_val_loss_row$n_lag</pre>
best_dropout <- min_val_loss_row$dropout</pre>
best_l1_reg <- min_val_loss_row$l1_reg</pre>
best_12_reg <- min_val_loss_row$12_reg</pre>
# Generate the lstm_model_name for the best model
best_model_name <- paste0("lstm_model_lu_", best_lstm_units, "_lr_", best_learning_rate,
                            "_bs_", best_batch_size, "_lag_", best_n_lag,
                           "_do_", best_dropout, "_l1_", best_l1_reg, "_l2_", best_l2_reg)
# Generate the history_name for the best model
best_history_name <- paste0("history_lu_", best_lstm_units, "_lr_", best_learning_rate,</pre>
                              "\_bs\_", \ best\_batch\_size, \ "\_lag\_", \ best\_n\_lag,
                           "_do_", best_dropout, "_l1_", best_l1_reg, "_l2_", best_l2_reg)
# Access the best model from lstm_models
best_model <- lstm_models[[best_model_name]]</pre>
best_model_details <- data.frame(min_val_loss_row)</pre>
colnames(best_model_details) <- colnames(results_df)</pre>
# Access the best model from lstm_models
best_history <- all_histories[[best_history_name]]</pre>
validation_loss_best <- best_model_on_validation(best_model, X_val, y_val)</pre>
predicted_values <- predict_y_values(best_model, X_train, X_val, train_data, validation_data)</pre>
```

```
y_train_pred <- predicted_values$y_train_pred
y_val_pred <- predicted_values$y_val_pred
comparison <- compare_predicted_vs_actual(train_data, validation_data, y_train_pred, y_val_pred)
compare_train <- comparison$compare_train
compare_val <- comparison$compare_val
metrics_train <- comparison$metrics_train
metrics_val <- comparison$metrics_val</pre>
```

```
convert_to_numeric_matrices
```

Function to convert columns to numeric matrices

Description

This function converts specific columns in the data frames to numeric matrices.

Usage

```
convert_to_numeric_matrices(train_data, validation_data, embedded_colnames)
```

Arguments

```
train_data Training data frame.

validation_data

Validation data frame.

embedded_colnames

Names of the embedded columns.
```

Value

A list containing numeric matrices for training and validation sets.

```
 \begin{array}{l} \mbox{data} <- \mbox{ data.frame(} \\ \mbox{ Date = as.Date(c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18", \\ \mbox{ "06-04-18", "07-04-18", "08-04-18", "09-04-18", "10-04-18", \\ \mbox{ "11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18", \\ \mbox{ "16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"), \\ \mbox{ format = "%d-\mbox{mm-\mbox{\mbox{\mbox{wm}-\mbox{\mbox{\mbox{wm}}}}}, \\ \mbox{ A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)} ) \\ \mbox{ check\_and\_format\_data(data)} \\ \mbox{ # Add a new column 'X' based on the values in the second column } \\ \mbox{ data$X <- ifelse(data$A != 0, 1, 0)} \\ \end{array}
```

10 convert_to_tensors

```
result_embed <- embed_columns(data = data, n_lag = 2)</pre>
new_data <- result_embed$data_frame</pre>
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                      validation_data = validation_data,
                                                      embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- numeric_matrices$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
```

convert_to_tensors

Function to convert data to TensorFlow tensors

Description

This function converts input data to TensorFlow tensors for compatibility with TensorFlow and keras models.

Usage

```
convert_to_tensors(X_train, y_train, X_val, y_val)
```

Arguments

X_train	Numeric matrix representing the training input data.
y_train	Numeric vector representing the training output data.
X_val	Numeric matrix representing the validation input data.
y_val	Numeric vector representing the validation output data.

Value

A list containing TensorFlow tensors for training and validation data.

convert_to_tensors 11

```
data <- data.frame(</pre>
  Date = as.Date(c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18",
                     "06-04-18", "07-04-18", "08-04-18", "09-04-18", "10-04-18",
                     "11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18",
                     "16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"),
                   format = \%d-\%m-\%y),
 A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)
check_and_format_data(data)
# Add a new column 'X' based on the values in the second column
dataX \leftarrow ifelse(dataA != 0, 1, 0)
result_embed <- embed_columns(data = data, n_lag = 2)</pre>
new_data <- result_embed$data_frame</pre>
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                     validation_data = validation_data,
                                                     embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- numeric_matrices$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
X_train <- numeric_matrices$X_train</pre>
X_val <- numeric_matrices$X_val</pre>
reshaped_data <- reshape_for_lstm(X_train = X_train, X_val = X_val)</pre>
X_train <- reshaped_data$X_train</pre>
X_val <- reshaped_data$X_val</pre>
X_train <- reshaped_data$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- reshaped_data$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
tf <- reticulate::import("tensorflow")</pre>
tensors <- convert_to_tensors(X_train = X_train, y_train = y_train, X_val = X_val, y_val = y_val)</pre>
X_train <- tensors$X_train</pre>
y_train <- tensors$y_train</pre>
X_val <- tensors$X_val
y_val <- tensors$y_val</pre>
```

define_early_stopping Function to define early stopping callback

Description

This function defines an early stopping callback for keras models.

Usage

```
define_early_stopping(n_patience)
```

Arguments

n_patience

Integer specifying the number of epochs with no improvement after which training will be stopped.

Value

A keras early stopping callback.

```
data <- data.frame(</pre>
  Date = as.Date(c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18",
                    "06-04-18", "07-04-18", "08-04-18", "09-04-18", "10-04-18",
                    "11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18",
                    "16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"),
                  format = \%d-\%m-\%y),
  A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)
check_and_format_data(data)
# Add a new column 'X' based on the values in the second column
data$X <- ifelse(data$A != 0, 1, 0)</pre>
result_embed <- embed_columns(data = data, n_lag = 2)</pre>
new_data <- result_embed$data_frame</pre>
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                    validation_data = validation_data,
                                                    embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
```

embed_columns 13

```
X_val <- numeric_matrices$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
X_train <- numeric_matrices$X_train</pre>
X_val <- numeric_matrices$X_val</pre>
reshaped_data <- reshape_for_lstm(X_train = X_train, X_val = X_val)</pre>
X_train <- reshaped_data$X_train</pre>
X_val <- reshaped_data$X_val</pre>
X_train <- reshaped_data$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- reshaped_data$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
tf <- reticulate::import("tensorflow")</pre>
tensors <- convert_to_tensors(X_train = X_train, y_train = y_train, X_val = X_val, y_val = y_val)</pre>
X_train <- tensors$X_train</pre>
y_train <- tensors$y_train</pre>
X_val <- tensors$X_val
y_val <- tensors$y_val
n_patience <- 50
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
```

embed_columns

Embed columns and create a new data frame

Description

This function takes a data frame and embeds specified columns to create a new data frame.

Usage

```
embed_columns(data, n_lag = 2)
```

Arguments

data A data frame containing the original columns.

n_lag Number of lags for embedding.

Value

A list containing the new data frame and column names of the embedded columns.

Examples

forecast_best_model

Perform forecasting using the best model

Description

This function performs forecasting using the best-trained model.

Usage

```
forecast_best_model(
  best_model,
  best_learning_rate,
  custom_loss,
  n_lag = 2,
  new_data,
  test,
  forecast_steps
)
```

Arguments

```
best_model The best-trained LSTM model.
best_learning_rate The best learning rate used during training.

custom_loss The custom loss function used during training.

n_lag The lag value used during training.

new_data The input data for forecasting.

test The test data frame containing the input data for forecasting.

forecast_steps The number of steps to forecast.
```

forecast_best_model 15

Value

A list containing the forecasted values, actual vs. forecasted data frame, and metrics for forecasting.

Examples

X_val <- tensors\$X_val</pre>

```
data <- data.frame(</pre>
  Date = as.Date(c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18",
                     "06-04-18", "07-04-18", "08-04-18", "09-04-18", "10-04-18",
                     "11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18",
                     "16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"),
                   format = \%d-\%m-\%y),
  A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)
)
check_and_format_data(data)
# Add a new column 'X' based on the values in the second column
dataX \leftarrow ifelse(dataA != 0, 1, 0)
result_embed <- embed_columns(data = data, n_lag = 2)</pre>
new_data <- result_embed$data_frame
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                     validation_data = validation_data,
                                                     embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- numeric_matrices$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
X_train <- numeric_matrices$X_train</pre>
X_val <- numeric_matrices$X_val</pre>
reshaped_data <- reshape_for_lstm(X_train = X_train, X_val = X_val)</pre>
X_train <- reshaped_data$X_train</pre>
X_val <- reshaped_data$X_val</pre>
X_train <- reshaped_data$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- reshaped_data$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
tf <- reticulate::import("tensorflow")</pre>
tensors <- convert_to_tensors(X_train = X_train, y_train = y_train, X_val = X_val, y_val = y_val)
X_train <- tensors$X_train</pre>
y_train <- tensors$y_train</pre>
```

```
y_val <- tensors$y_val</pre>
n_patience <- 50
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
X_train <- tensors$X_train</pre>
X_val <- tensors$X_val</pre>
y_train <- tensors$y_train</pre>
y_val <- tensors$y_val</pre>
embedded_colnames <- result_embed$column_names</pre>
# Define your custom loss function
custom_loss <- function(y_true, y_pred) {</pre>
  condition <- tf$math$equal(y_true, 0)</pre>
  loss <- tf$math$reduce_mean(tf$math$square(y_true - y_pred)) # Remove 'axis'</pre>
  loss <- tf$where(condition, tf$constant(0), loss)</pre>
  return(loss)
}
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
grid_search_results <- ts_lstm_x_tuning(</pre>
  X_train, y_train, X_val, y_val,
  embedded_colnames, custom_loss, early_stopping,
  n_lag = 2, # desired lag value
  lstm\_units\_list = c(32),
  learning_rate_list = c(0.001, 0.01),
  batch\_size\_list = c(32),
  dropout_list = c(0.2),
  l1_{reg_list} = c(0.001),
  12_{reg_list} = c(0.001),
  n_{iter} = 10,
  n_{verbose} = 0 # or 1
results_df <- grid_search_results$results_df</pre>
all_histories <- grid_search_results$all_histories
lstm_models <- grid_search_results$lstm_models</pre>
# Find the row with the minimum val_loss_mae in results_df
min_val_loss_row <- results_df[which.min(results_df$val_loss_mae), ]</pre>
# Extract hyperparameters from the row
best_lstm_units <- min_val_loss_row$lstm_units</pre>
best_learning_rate <- min_val_loss_row$learning_rate</pre>
best_batch_size <- min_val_loss_row$batch_size</pre>
best_n_lag <- min_val_loss_row$n_lag</pre>
best_dropout <- min_val_loss_row$dropout</pre>
best_l1_reg <- min_val_loss_row$11_reg</pre>
best_12_reg <- min_val_loss_row$12_reg</pre>
# Generate the lstm_model_name for the best model
```

forecast_best_model 17

```
best_model_name <- paste0("lstm_model_lu_", best_lstm_units, "_lr_", best_learning_rate,
                            '_bs_", best_batch_size, "_lag_", best_n_lag,
                           "_do_", best_dropout, "_l1_", best_l1_reg, "_l2_", best_l2_reg)
# Generate the history_name for the best model
best_history_name <- paste0("history_lu_", best_lstm_units, "_lr_", best_learning_rate,</pre>
                              "_bs_", best_batch_size, "_lag_", best_n_lag,
                           "_do_", best_dropout, "_l1_", best_l1_reg, "_l2_", best_l2_reg)
# Access the best model from lstm_models
best_model <- lstm_models[[best_model_name]]</pre>
best_model_details <- data.frame(min_val_loss_row)</pre>
colnames(best_model_details) <- colnames(results_df)</pre>
# Access the best model from 1stm models
best_history <- all_histories[[best_history_name]]</pre>
validation_loss_best <- best_model_on_validation(best_model, X_val, y_val)</pre>
predicted_values <- predict_y_values(best_model, X_train, X_val, train_data, validation_data)</pre>
y_train_pred <- predicted_values$y_train_pred</pre>
y_val_pred <- predicted_values$y_val_pred</pre>
comparison <- compare_predicted_vs_actual(train_data, validation_data, y_train_pred, y_val_pred)</pre>
compare_train <- comparison$compare_train</pre>
compare_val <- comparison$compare_val</pre>
metrics_train <- comparison$metrics_train</pre>
metrics_val <- comparison$metrics_val</pre>
test <- data.frame(</pre>
  Date = as.Date(c("01-04-23", "02-04-23", "03-04-23", "04-04-23", "05-04-23",
                    "06-04-23", "07-04-23", "08-04-23", "09-04-23", "10-04-23",
                    "11-04-23", "12-04-23", "13-04-23", "14-04-23", "15-04-23",
                    "16-04-23", "17-04-23", "18-04-23", "19-04-23", "20-04-23"),
                  format = \%d-\%m-\%y,
  A = c(0, 0, 15, 4, -31, 24, 14, 0, 0, 33, 38, 33, 29, 29, 25, 0, 44, 67, 162, 278)
test$X <- ifelse(test$A != 0, 1, 0)
n_forecast <- nrow(test)</pre>
# Perform one-step-ahead forecasting
forecast_steps <- n_forecast</pre>
current_row <- nrow(new_data)</pre>
forecast_results <- forecast_best_model(best_model, best_learning_rate,</pre>
                                          custom_loss, n_lag = 2,
                                           new_data, test,
                                           forecast_steps)
# Access the results
forecast_values <- forecast_results$forecast_values</pre>
actual_vs_forecast <- forecast_results$actual_vs_forecast</pre>
```

18 predict_y_values

```
metrics_forecast <- forecast_results$metrics_forecast</pre>
```

initialize_tensorflow Function to initialize TensorFlow and enable eager execution

Description

This function initializes TensorFlow and enables eager execution.

Usage

```
initialize_tensorflow()
```

Value

No return value, called for smooth running

Examples

```
initialize_tensorflow()
```

<pre>predict_y_values</pre>	Predict y values for the training and validation sets using the best
	LSTM model

Description

This function predicts y values for the training and validation sets using the provided LSTM model.

Usage

```
predict_y_values(best_model, X_train, X_val, train_data, validation_data)
```

Arguments

best_model The best LSTM model obtained from hyperparameter tuning.

X_train The training set input data.X_val The validation set input data.

train_data The training set data, including x values.

validation_data

The validation set data, including x values.

predict_y_values 19

Value

A list containing the predicted y values for the training and validation sets.

Examples

X_val <- tensors\$X_val</pre>

```
data <- data.frame(</pre>
  Date = as.Date(c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18",
                     "06-04-18", "07-04-18", "08-04-18", "09-04-18", "10-04-18",
                     "11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18",
                     "16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"),
                   format = \%d-\%m-\%y),
  A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)
)
check_and_format_data(data)
# Add a new column 'X' based on the values in the second column
dataX \leftarrow ifelse(dataA != 0, 1, 0)
result_embed <- embed_columns(data = data, n_lag = 2)</pre>
new_data <- result_embed$data_frame
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                     validation_data = validation_data,
                                                     embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- numeric_matrices$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
X_train <- numeric_matrices$X_train</pre>
X_val <- numeric_matrices$X_val</pre>
reshaped_data <- reshape_for_lstm(X_train = X_train, X_val = X_val)</pre>
X_train <- reshaped_data$X_train</pre>
X_val <- reshaped_data$X_val</pre>
X_train <- reshaped_data$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- reshaped_data$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
tf <- reticulate::import("tensorflow")</pre>
tensors <- convert_to_tensors(X_train = X_train, y_train = y_train, X_val = X_val, y_val = y_val)
X_train <- tensors$X_train</pre>
y_train <- tensors$y_train</pre>
```

20 predict_y_values

```
y_val <- tensors$y_val</pre>
n_patience <- 50
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
X_train <- tensors$X_train</pre>
X_val <- tensors$X_val</pre>
y_train <- tensors$y_train</pre>
y_val <- tensors$y_val</pre>
embedded_colnames <- result_embed$column_names</pre>
# Define your custom loss function
custom_loss <- function(y_true, y_pred) {</pre>
  condition <- tf$math$equal(y_true, 0)</pre>
  loss <- tf$math$reduce_mean(tf$math$square(y_true - y_pred)) # Remove 'axis'</pre>
  loss <- tf$where(condition, tf$constant(0), loss)</pre>
  return(loss)
}
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
grid_search_results <- ts_lstm_x_tuning(</pre>
  X_train, y_train, X_val, y_val,
  embedded_colnames, custom_loss, early_stopping,
  n_lag = 2, # desired lag value
  lstm\_units\_list = c(32),
  learning_rate_list = c(0.001, 0.01),
  batch\_size\_list = c(32),
  dropout_list = c(0.2),
  l1_{reg_list} = c(0.001),
  12_{reg_list} = c(0.001),
  n_{iter} = 10,
  n_{verbose} = 0 # or 1
results_df <- grid_search_results$results_df</pre>
all_histories <- grid_search_results$all_histories
lstm_models <- grid_search_results$lstm_models</pre>
# Find the row with the minimum val_loss_mae in results_df
min_val_loss_row <- results_df[which.min(results_df$val_loss_mae), ]</pre>
# Extract hyperparameters from the row
best_lstm_units <- min_val_loss_row$lstm_units</pre>
best_learning_rate <- min_val_loss_row$learning_rate</pre>
best_batch_size <- min_val_loss_row$batch_size</pre>
best_n_lag <- min_val_loss_row$n_lag</pre>
best_dropout <- min_val_loss_row$dropout</pre>
best_l1_reg <- min_val_loss_row$11_reg</pre>
best_12_reg <- min_val_loss_row$12_reg</pre>
# Generate the lstm_model_name for the best model
```

reshape_for_lstm 21

```
best_model_name <- paste0("lstm_model_lu_", best_lstm_units, "_lr_", best_learning_rate,
                            '_bs_", best_batch_size, "_lag_", best_n_lag,
                           "_do_", best_dropout, "_l1_", best_l1_reg, "_l2_", best_l2_reg)
# Generate the history_name for the best model
best_history_name <- paste0("history_lu_", best_lstm_units, "_lr_", best_learning_rate,</pre>
                              "_bs_", best_batch_size, "_lag_", best_n_lag,
                           "_do_", best_dropout, "_l1_", best_l1_reg, "_l2_", best_l2_reg)
# Access the best model from lstm_models
best_model <- lstm_models[[best_model_name]]</pre>
best_model_details <- data.frame(min_val_loss_row)</pre>
colnames(best_model_details) <- colnames(results_df)</pre>
# Access the best model from lstm_models
best_history <- all_histories[[best_history_name]]</pre>
validation_loss_best <- best_model_on_validation(best_model, X_val, y_val)</pre>
predicted_values <- predict_y_values(best_model, X_train, X_val, train_data, validation_data)</pre>
y_train_pred <- predicted_values$y_train_pred</pre>
y_val_pred <- predicted_values$y_val_pred</pre>
```

reshape_for_lstm

Function to reshape input data for LSTM

Description

This function reshapes input data to be compatible with LSTM models.

Usage

```
reshape_for_lstm(X_train, X_val)
```

Arguments

X_trainNumeric matrix representing the training input data.X_valNumeric matrix representing the validation input data.

Value

A list containing reshaped training and validation input data.

22 split_data

Examples

```
data <- data.frame(</pre>
  Date = as.Date(c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18",
                     "06-04-18", "07-04-18", "08-04-18", "09-04-18", "10-04-18",
                     "11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18",
                     "16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"),
                  format = "%d-%m-%v"),
  A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)
check_and_format_data(data)
# Add a new column 'X' based on the values in the second column
data$X \leftarrow ifelse(data$A != 0, 1, 0)
result_embed <- embed_columns(data = data, n_lag = 2)</pre>
new_data <- result_embed$data_frame
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                    validation_data = validation_data,
                                                    embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- numeric_matrices$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
X_train <- numeric_matrices$X_train</pre>
X_val <- numeric_matrices$X_val</pre>
reshaped_data <- reshape_for_lstm(X_train = X_train, X_val = X_val)</pre>
X_train <- reshaped_data$X_train</pre>
X_val <- reshaped_data$X_val</pre>
```

split_data

Split data into training and validation sets

Description

This function takes a data frame and splits it into training and validation sets.

Usage

```
split_data(new_data, val_ratio = 0.1)
```

Arguments

val_ratio The ratio of the data to be used for validation (default is 0.1).

Value

A list containing the training and validation data frames.

Examples

```
data <- data.frame(</pre>
        \mbox{Date = as.Date} (\mbox{c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-04-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-18", "05-05-1
                                                                        "06-04-18", "07-04-18", "08-04-18", "09-04-18", "10-04-18", "11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18",
                                                                         "16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"),
                                                                 format = "%d-%m-%y"),
       A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)
)
check_and_format_data(data)
# Add a new column 'X' based on the values in the second column
dataX \leftarrow ifelse(dataA != 0, 1, 0)
result_embed <- embed_columns(data = data, n_lag = 2)</pre>
new_data <- result_embed$data_frame</pre>
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data
```

ts_lstm_x_tuning

Time Series LSTM Hyperparameter Tuning

Description

This function performs hyperparameter tuning for a Time Series LSTM model using a grid search approach.

Usage

```
ts_lstm_x_tuning(
 X_train,
 y_train,
  X_val,
  y_val,
  embedded_colnames,
  custom_loss,
  early_stopping,
  n_{lag} = 2,
  lstm\_units\_list = c(32),
  learning_rate_list = c(0.001, 0.01),
  batch\_size\_list = c(32),
  dropout_list = c(0.2),
  l1_{reg_list} = c(0.001),
  12_{reg_list} = c(0.001),
  n_{iter} = 10,
  n_verbose = 0
)
```

Arguments

X_train Numeric matrix, the training input data. y_train Numeric vector, the training target data. X_val Numeric matrix, the validation input data. Numeric vector, the validation target data. y_val embedded_colnames

Character vector, column names of the embedded features.

custom_loss Function, custom loss function for the LSTM model.

early_stopping keras early stopping callback.

n_lag Integer, desired lag value.

lstm_units_list

Numeric vector, list of LSTM units to search over.

learning_rate_list

Numeric vector, list of learning rates to search over.

batch_size_list

Numeric vector, list of batch sizes to search over.

dropout_list Numeric vector, list of dropout rates to search over.

l1_reg_list Numeric vector, list of L1 regularization values to search over. 12_reg_list Numeric vector, list of L2 regularization values to search over.

n_iter Integer, number of epochs for each model training. Integer, level of verbosity during training (0 or 1). n_verbose

Value

A list containing the results data frame, all histories, and LSTM models.

References

Garai, S., & Paul, R. K. (2023). Development of MCS based-ensemble models using CEEMDAN decomposition and machine intelligence. Intelligent Systems with Applications, 18, 200202.

```
data <- data.frame(</pre>
  Date = as.Date(c("01-04-18", "02-04-18", "03-04-18", "04-04-18", "05-04-18",
                     "06-04-18",\ "07-04-18",\ "08-04-18",\ "09-04-18",\ "10-04-18",
                     "11-04-18", "12-04-18", "13-04-18", "14-04-18", "15-04-18",
                     "16-04-18", "17-04-18", "18-04-18", "19-04-18", "20-04-18"),
                  format = \%d-\%m-\%y),
  A = c(0, 0, 4, 12, 20, 16, 16, 0, 12, 18, 12, 18, 18, 0, 0, 33, 31, 38, 76, 198)
check_and_format_data(data)
# Add a new column 'X' based on the values in the second column
data$X <- ifelse(data$A != 0, 1, 0)</pre>
result_embed <- embed_columns(data = data, n_lag = 2)</pre>
new_data <- result_embed$data_frame</pre>
embedded_colnames <- result_embed$column_names</pre>
result_split <- split_data(new_data = new_data, val_ratio = 0.1)</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data</pre>
train_data <- result_split$train_data</pre>
validation_data <- result_split$validation_data
embedded_colnames <- result_embed$column_names</pre>
numeric_matrices <- convert_to_numeric_matrices(train_data = train_data,</pre>
                                                    validation_data = validation_data,
                                                    embedded_colnames = embedded_colnames)
X_train <- numeric_matrices$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- numeric_matrices$X_val
y_val <- numeric_matrices$y_val</pre>
#' initialize_tensorflow()
X_train <- numeric_matrices$X_train</pre>
X_val <- numeric_matrices$X_val</pre>
reshaped_data <- reshape_for_lstm(X_train = X_train, X_val = X_val)</pre>
X_train <- reshaped_data$X_train</pre>
X_val <- reshaped_data$X_val
X_train <- reshaped_data$X_train</pre>
y_train <- numeric_matrices$y_train</pre>
X_val <- reshaped_data$X_val</pre>
y_val <- numeric_matrices$y_val</pre>
```

```
tf <- reticulate::import("tensorflow")</pre>
tensors <- convert_to_tensors(X_train = X_train, y_train = y_train, X_val = X_val, y_val = y_val)</pre>
X_train <- tensors$X_train</pre>
y_train <- tensors$y_train</pre>
X_val <- tensors$X_val</pre>
y_val <- tensors$y_val</pre>
n_patience <- 50
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
X_train <- tensors$X_train</pre>
X_val <- tensors$X_val</pre>
y_train <- tensors$y_train</pre>
y_val <- tensors$y_val</pre>
embedded_colnames <- result_embed$column_names</pre>
# Define your custom loss function
custom_loss <- function(y_true, y_pred) {</pre>
  condition <- tf$math$equal(y_true, 0)</pre>
  loss <- tf$math$reduce_mean(tf$math$square(y_true - y_pred)) # Remove 'axis'</pre>
  loss <- tf$where(condition, tf$constant(0), loss)</pre>
  return(loss)
}
early_stopping <- define_early_stopping(n_patience = n_patience)</pre>
grid_search_results <- ts_lstm_x_tuning(</pre>
  X_train, y_train, X_val, y_val,
  embedded_colnames, custom_loss, early_stopping,
  n_lag = 2, # desired lag value
  lstm\_units\_list = c(32),
  learning_rate_list = c(0.001, 0.01),
  batch\_size\_list = c(32),
  dropout_list = c(0.2),
  l1_{reg_list} = c(0.001),
  12_{reg_list} = c(0.001),
  n_{iter} = 10,
  n_verbose = 0 # or 1
results_df <- grid_search_results_df</pre>
all_histories <- grid_search_results$all_histories
lstm_models <- grid_search_results$lstm_models</pre>
# Find the row with the minimum val_loss_mae in results_df
min_val_loss_row <- results_df[which.min(results_df$val_loss_mae), ]</pre>
# Extract hyperparameters from the row
best_lstm_units <- min_val_loss_row$lstm_units</pre>
best_learning_rate <- min_val_loss_row$learning_rate</pre>
best_batch_size <- min_val_loss_row$batch_size</pre>
best_n_lag <- min_val_loss_row$n_lag</pre>
```

Index

```
best_model_on_validation, 2

check_and_format_data, 5

compare_predicted_vs_actual, 6

convert_to_numeric_matrices, 9

convert_to_tensors, 10

define_early_stopping, 12

embed_columns, 13

forecast_best_model, 14

initialize_tensorflow, 18

predict_y_values, 18

reshape_for_lstm, 21

split_data, 22

ts_lstm_x_tuning, 23
```