- 1. (6 \times 5 = 30 points) Write down or complete the precise definitions of the following concepts.
 - (a) Given a group G, define the **order** of $g \in G$.

If <g> is a finite group, we define the order of g to be the order of <g>, and in this case we write ord (g) := 1<9>1 If <g> is not a finite group, we say g is of infinite order.

(b) A group P is abelian if

A group P is abelian if \ X, y \ & P we have \ Xy = yx.

(c) A group Q is **cyclic** if

A group Q is cyclic if there exists $x \in Q$ such that $Q = \langle x \rangle$.

(d) Define an **automorphism** of a group G.

A map $\phi: G \rightarrow G$ is an automorphism of a group G if ϕ is an isomorphism, ix. $T \phi$ is bijective, and ϕ is a homomorphism, i.e. $\forall x,y \in G \phi(xy) = \phi(x) \phi(y)$.

(e) Given $r, s \in \mathbb{Z}^+$, define the **greatest common divisor** of r and s.

The positive penerator $d \in \mathbb{Z}^+$ of the cyclic proup $r\mathbb{Z} + s\mathbb{Z}$ (i.e. $\langle d \rangle = r\mathbb{Z} + s\mathbb{Z}$) is defined to be the greatest common divisor of r and s, and is denoted by d = gcd (x, s).

(f) Define the Klein 4-group.

The Klein 4-group, denoted by V, is defined as follows:

- #6.32(6)
- 2. $(6 \times 5 = 30 \text{ points})$ Indicate whether the statement is true or false. Provide brief justifications for your answers. If the statement is false, it may be most efficient to give a counterexample.
 - (a) Every abelian group is cyclic.

□ True

X False

The Klein 4-group V is abelian but not cyclic. (a) (co)

(b) If a is an element of a group G with $a^n = e$ for some $n \in \mathbb{Z}^+$, then $\operatorname{ord}(a) = n$.

☐ True

Consider V again.

⋈ False

- Then $a^4 = (a^2)^2 = e^2 = e$, but ord $(a) = |\langle a \rangle| = |\{e, a\}| = 2$.
- (c) $\langle 78 \rangle = \langle 42 \rangle$ in \mathbb{Z}_{108} .

X True

- □ False
- (d) There exists a finite cyclic group with exactly 12 generators.

X True

For p prime, \mathbb{Z}_p has p-1 generators. .: \mathbb{Z}_{13} has 12 penerators.

☐ False

[can weate other examples, e.f. Zz1, Zz6, Zz8, etc.

(e) The set $M_n(\mathbb{R})$ of all $n \times n$ matrices with real entries under matrix multiplication is a group.

□ True

The nxn zero matrix O & Mn (IR) does not have a multiplicative inverse,

☒ False

- i.o. Y A & M. (IR) AO = OA = O = In
- (f) \mathbb{Q}^+ with the binary operation $a \star b := ab/3$ is a group.

X True

closme: For a, b ∈ Q^+ $a * b = \frac{ab}{2} ∈ Q^+$

(4) and: For $a,b,c \in \mathbb{Q}^+$, (a * b) * c = abc/q a * (b * c) = abc/q

□ False

- (by) identity: $3 \in \mathbb{Q}^+$ is an id. elt, since if $a \in \mathbb{Q}^+$ $a \star 3 = 3 \star a = a$
- (g_3) inverses: For $a \in Q^+$, $\frac{q}{a} \in Q^+$ is the inverse elt. for a,

Since $a * \frac{9}{a} = \frac{9}{a} * a = 3$

Thus <Q+, +> is a group!

- 3. (30 points) Consider the group \mathbb{Z}_{36} .
 - i) What is the order of its subgroup $\langle 24 \rangle$?
 - ii) List the elements of $\langle 24 \rangle$.
 - iii) Draw the subgroup diagram/lattice of \mathbb{Z}_{36} . No justifications required.
 - iv) Generalize previous question to $\mathbb{Z}_{p^2q^2}$ for distinct primes p and q. No justifications required.

Note that
$$\int_{-24}^{36} = 2^2 \cdot 3^2$$
 $\int_{-24}^{36} = 2^3 \cdot 3^2$ $\int_{-24}^{36} = 2^3 \cdot 3^2$ $\int_{-24}^{36} = 2^3 \cdot 3^2$

Therefore by Theorem 6.14 we have
$$\frac{1}{247} = \frac{36}{9000} = \frac{36}{12} = \frac{36}{12} = \frac{3}{12} = \frac{$$

iii) The positive divisor of 36 are: 1,2,3,4,6,9,12,18,36

Thur the subgroup diagram for Z/36 is:

iv) Similarly, the positive divisors of p^2q^2 are: 1, p, q, p^2 , pq, q^2 , p^2q , pq^2 , pq^2 , pq^2 . Thus the subgroup diagram for $\mathbb{Z}_{p^2q^2}$ is:

- 4. $(2 \times 15 = 30 \text{ points})$ Prove <u>two</u> of the following results. Make your proof as precise as possible.
- (a) Let G be a group. Fix two elements a and b in G. Prove that $(ab)^2 = a^2b^2$ if and only if ab = ba.
- (b) Let G be a group, and $Z(G) := \{x \in G \mid xa = ax \text{ for every } a \in G\} \subseteq G$. Prove that $Z(G) \leq G$.
 - (c) Answer the following pair of questions:
 - (i) Let G be a group with the property that every element in G is equal to its own inverse. Prove G is abelian.
 - (ii) Prove or disprove the converse: If a group is abelian, then every element is its own inverse.
 - (d) Recall that $GL(2,\mathbb{R})$ is the group of 2×2 matrices with real entries that have non-zero determinant, with the operation of matrix multiplication. Define $SL(2,\mathbb{R})$ to be the set of 2×2 matrices with real entries whose determinant is one. Show $SL(2,\mathbb{R}) \leq GL(2,\mathbb{R})$.

example 5.16 on p.53

4.(d) alternate proof using homomorphisms

Lemma [Given a homomorphism bt. proups $\phi: G \to G'$, then $\ker(\phi) \leq G$.]... o $\text{pf}: \text{ left to you! } \ker(\phi) := \{ \times \in G \mid \phi(\times) = e' \}$

Check that the map $[det: GL(n, 1R) \rightarrow 1R^* \text{ is a homomorphism}]... \bigcirc$

Now use @ and D to conclude that SL(n,1R) & GL(n,1R).

we will soon learn that

kernels of homomorphisms

are a special kind of subgroups:

called NORMAL subgroups!

we denote this as SL(n,1R) & GL(n,1R)

- 5. (30 points) Prove one of the following results. Make your proof as precise as possible.
- (a) Prove that every subgroup of a cyclic group is cyclic.

 (b) Prove that the
 - (b) Prove that the groups \mathbb{C}^* and \mathbb{R}^* (of all non-zero complex numbers and all non-zero real numbers, respectively, both under the operation of standard multiplication) are not isomorphic.
 - (c) Let G be a finite cyclic group of order n generated by $a \in G$, i.e. $G = \langle a \rangle$ and |G| = n. For any $s \in \mathbb{Z}^+$, prove that $\langle a^s \rangle = \langle a^{\gcd(n,s)} \rangle$.
 - (d) Let \mathbb{R}^* be the group of non-zero real numbers under the operation of standard multiplication. For any subgroup $D \leq \mathbb{R}^*$, define $M(D) := \{A \in \mathrm{GL}(2,\mathbb{R}) \mid \det(A) \in D\}$. Prove that $M(D) \leq \mathrm{GL}(2,\mathbb{R})$.
 - 5. (b) Study [example 3.16 on p. 33] and [#3.31 on p. 36]
 - 5.(c) Theorem 6.14 in Fraleyh or, my Theorem 6.14 (a) Redux in handout
 - 5.(d) Let $D \subseteq \mathbb{R}^*$. Recall $M(D) := \{A \in GL(2,\mathbb{R}) \mid \det(A) \in D\} \subseteq GL(2,\mathbb{R})$.

 Closure Let $A, B \in M(D)$, and let $a := \det(A)$ and $b := \det(B)$.

 Then $a, b \in D$ by def. of M(D) and since $D \subseteq \mathbb{R}^*$ we have $ab \in D$.

 Therefore $\det(AB) = \det(A) \det(B) = ab \in D$ and so $AB \in M(D)$.

Identity $I_2 \in GL(2,\mathbb{R})$ and $\det(I_2) = I \in D$ since $D \leq \mathbb{R}^*$ and must contain the id. elt of \mathbb{R}^* (which is 1). Thus $I_2 \in M(D)$.

Closed under inverse: Let $A \in M(D)$ as let $a := \det(A) \in D$.

Note that $a^{-1} = \frac{1}{a} \in D$ since $D \leq IR^{+}$ and closed under inverses.

Also notice that $\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{a} \in D$ and so $A^{-1} \in M(D)$.

Since we have checked that the criteria/hypotheses of Theorem 5.14 are satisfied, it follows that $M(D) \leq GL(n, IR)$.