CS244: THEORY OF COMPUTATION

Fu Song ShanghaiTech University

Fall 2020

Outline

Motivation

Büchi automata

Closure properties

Equivalence with MSO

Decision problem

Muller, Rabin, Streett, and Parity automata

Determinization

Equivalence with WMSC

Why infinite words?

Reactive systems: reacting continuously with the environment

- Operating systems,
- Communicating protocols,
- Control programs,
- Vending machines,
- ▶ ...

Salient feature of reactive systems:

Nonterminating

The behavior of reactive systems:

A set of infinite words.

Outline

Motivation

Büchi automata

Closure properties

Equivalence with MSC

Decision problem

Muller, Rabin, Streett, and Parity automata

Determinization

Equivalence with WMSC

Büchi automata (BA)

A Büchi automata \mathcal{B} is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- ightharpoonup Q: finite set of states, Σ : finite alphabet,
- ▶ q_0 : initial state, $F \subseteq Q$: set of final states,
- $\blacktriangleright \ \delta \subseteq Q \times \Sigma \times Q.$

A run ρ of a Büchi automata $\mathcal B$ over an ω -word $w=a_1a_2\cdots\in \Sigma^\omega$ is an infinite state sequence $q_0q_1\ldots$ such that $\forall i\geq 0.(q_i,a_{i+1},q_{i+1})\in \delta$. Inf (ρ) : the set of states occurring infinitely often in ρ .

A run is accepting iff $Inf(\rho) \cap F \neq \emptyset$.

An ω -word w is accepted by $\mathcal B$ if there is an accepting run of $\mathcal B$ over w.

Let $\mathcal{L}(\mathcal{B})$ denote the set of ω -words accepted by \mathcal{B} .

A deterministic Büchi automaton (DBA) \mathcal{B} is a BA $(Q, \Sigma, \delta, q_0, F)$ s.t. $\forall q \in Q, a \in \Sigma, \exists \text{ at most one } q' \in Q \text{ such that } (q, a, q') \in \delta.$

Then δ in a DBA can be seen as a partial function $\delta: Q \times \Sigma \to Q$.

Büchi automata: Example

"The letter a occurs only finitely often"

"The letter a occurs infinitely often"

Büchi automata: Several notations

Let $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$ be a BA, $q, q' \in Q$, and $w = a_1 \dots a_n \in \Sigma^*$.

A partial run of $\mathcal B$ over w from q to q' is a finite state sequence $q_1q_2\dots q_{n+1}$ such that

- $ightharpoonup \forall i \leq n.(q_i, a_i, q_{i+1}) \in \delta$,
- $ightharpoonup q_1 = q, \ q_{n+1} = q'.$
 - $q \xrightarrow{w} q'$: there is a partial run of \mathcal{B} over w from q to q'.
 - $q \xrightarrow{w} q'$: there is a partial run of \mathcal{B} over w from q to q' which contains an accepting state.

ω -regular languages

```
Theorem. Let L \subseteq \Sigma^{\omega}. Then
    L can be defined by a BA iff L=\bigcup U_iV_i^\omega,
      where \forall i : 1 \leq i \leq n. U_i, V_i \subseteq \Sigma^* are regular and \varepsilon \notin V_i.
Proof.
Only if direction:
Suppose that L is defined by a BA \mathcal{B} = (Q, \Sigma, \delta, q_0, F).
Let the NFA L_{qq'}=\{w\in \Sigma^*\mid q\xrightarrow{w}q'\}. Then L=\bigcup\limits_{q\in F}L_{q_0q}(L_{qq}\setminus\{\varepsilon\})^\omega.
If direction: Suppose L = \bigcup_{1 \le i \le n} U_i V_i^{\omega}.
Since Büchi automata are closed under union (which will be shown later),
    it is sufficient to prove that U_i V_i^{\omega} can be defined by a BA.
Let A_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1) (resp. A_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)) define U_i (resp.
V_i).
W.l.o.g. assume that there are no transitions (q, a, q_0^2) with q \in Q_2.
Then \mathcal{B} = (Q_1 \cup Q_2, \Sigma, \delta, q_0^1, \{q_0^2\}) defines L, where
          \delta = \begin{array}{cc} \delta_1 \cup \delta_2 & \cup \{(q, a, q') \mid q \in F_1, (q_0^2, a, q') \in \delta_2\} \\ & \cup \{(a, a, a_0^2) \mid \exists q' \in F_2, (q, a, q') \in \delta_2\} \end{array}.
```

Expressibility of DBA

Let $L \subseteq \Sigma^*$. Define $\overrightarrow{L} = \{ w \in \Sigma^{\omega} \mid \exists^{\omega} n. \ w_1 \dots w_n \in L \}$.

Proposition. Let $L \subseteq \Sigma^{\omega}$. Then

L can be defined by a DBA iff $L = \overrightarrow{L'}$ for some regular language $L' \subseteq \Sigma^*$.

Proof.

Only if direction:

Suppose *L* is defined by the DBA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$.

Let L' be defined by the DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, then $L = \overrightarrow{L'}$.

It is trivial that $L \subseteq \overrightarrow{L'}$. $L \supseteq \overrightarrow{L'}$. Suppose $w \in \overrightarrow{L'}$. Then there exist infinitely many $n \in \mathbb{N}$ s.t. $w_1 \ldots w_n \in L'$.

For each such n, let $q_0 \dots q_n$ be the accepting run of A over $w_1 \dots w_n$. Then $q_0 \dots q_n \dots$ is an accepting run of \mathcal{B} over w. Therefore, $w \in \mathcal{L}$.

If direction:

Let L = L' and $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA defining L'. Then the DBA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$ defines L.

Expressibility of DBA

Let $L \subseteq \Sigma^*$. Define $\overrightarrow{L} = \{ w \in \Sigma^{\omega} \mid \exists^{\omega} n. \ w_1 \dots w_n \in L \}$.

Proposition. Let $L \subseteq \Sigma^{\omega}$. Then

L can be defined by a DBA iff $L = \overrightarrow{L'}$ for some regular language $L' \subseteq \Sigma^*$.

Proposition. BA is strictly more expressive than DBA.

Proof.

The language L "The letter a occurs only finitely often" is not expressible in DBA.

For contradiction, assume that L is defined by a DBA \mathcal{B} .

Consider ab^{ω} . The run of \mathcal{B} over ab^{ω} is accepting. Let $n_1 \in \mathbb{N}$ s.t. $q_0 \xrightarrow{ab^{n_1}} q_1$.

Consider $ab^{n_1}ab^{\omega}$. Let $n_2 \in \mathbb{N}$ s.t. $q_0 \xrightarrow[F]{ab^{n_1}} q_1 \xrightarrow[F]{ab^{n_2}} q_2$.

Continue like this, we can get an ω -word $ab^{n_1}ab^{n_2}\dots$ which is accepted by \mathcal{B} ,

$$q_0 \xrightarrow{ab^{n_1}} q_1 \xrightarrow{ab^{n_2}} q_2 \xrightarrow{ab^{n_3}} q_3 \xrightarrow{ab^{n_4}} q_4 \cdots$$

while on the other hand contains infinitely many a's, a contradiction.

Recap

Closure Properties

	Union	Intersection	Complement	Concatenation	Kleene-*
Regular	YES	YES	YES	YES	YES
CFL	YES	NO	NO	YES	YES
DCFL	NO	NO	YES	NO	NO
VPL	YES	YES	YES	YES	YES

Decision problems

	Emptiness	Universality/Equivalence	Inclusion
NFA	NL	PSPACE	PSPACE
PDA	P	Undecidable	Undecidable
DPDA	Р	Decidable	Undecidable
VPA	P	EXPTIME	EXPTIME

- ► NFA=MSO
- VPA=MSO_μ
- lacktriangledown ω -regular language L: L can be defined by a BA iff $L=\bigcup\limits_{1\leq i\leq n}U_iV_i^\omega$
- ▶ DBA⊆NBA

Outline

Motivation

Büchi automata

Closure properties

Equivalence with MSC

Decision problem

Muller, Rabin, Streett, and Parity automata

Determinization

Equivalence with WMSC

Union and intersection

Proposition. The class of ω -regular languages is closed under union and intersection.

Proof.

Let
$$\mathcal{A}_1=(Q_1,\Sigma,\delta_1,q_0^1,\mathcal{F}_1), \mathcal{A}_2=(Q_2,\Sigma,\delta_2,q_0^2,\mathcal{F}_2)$$
 define resp. L_1,L_2 .

Union:

The BA
$$\mathcal{A} = (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma, \delta, q_0, F_1 \cup F_2)$$
 defines $L_1 \cup L_2$, where $\delta = \delta_1 \cup \delta_2 \cup \{(q_0, a, q) \mid (q_0^1, a, q) \in \delta_1\} \cup \{(q_0, a, q) \mid (q_0^2, a, q) \in \delta_2\}.$

Intersection:

The BA $\mathcal{A}=(Q_1\times Q_2\times\{0,1,2\},\Sigma,\delta,(q_0^1,q_0^2,0),Q_1\times Q_2\times\{2\})$ defines $L_1\cap L_2$, where δ is defined as follows,

Suppose $(q_1, a, q_1') \in \delta_1$ and $(q_2, a, q_2') \in \delta_2$.

- ▶ If $q_1' \not\in F_1$, then $((q_1, q_2, 0), a, (q_1', q_2', 0)) \in \delta$, otherwise, $((q_1, q_2, 0), a, (q_1', q_2', 1)) \in \delta$.
- ▶ If $q_2' \notin F_2$, then $((q_1, q_2, 1), a, (q_1', q_2', 1)) \in \delta$, otherwise, $((q_1, q_2, 1), a, (q_1', q_2', 2)) \in \delta$.
- $((q_1, q_2, 2), a, (q'_1, q'_2, 0)) \in \delta.$

Theorem. The class of ω -regular languages is closed under complementation.

Let $L \subseteq \Sigma^{\omega}$ defined by a BA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$. Define a congruence $\sim_{\mathcal{B}}$ over Σ^* as follows:

$$u\sim_{\mathcal{B}} v \text{ iff } \forall q,q'\in \textit{Q.}(q\xrightarrow{u} q'\Leftrightarrow q\xrightarrow{v} q') \text{ and } (q\xrightarrow{u}_{F} q'\Leftrightarrow q\xrightarrow{v}_{F} q').$$

Let [u] denote the equivalence class of u under $\sim_{\mathcal{B}}$.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

- ightharpoonup Repeatedly partition sets of words for each pair of states q, q'.
- ▶ The number of pairs of states is finite.

Theorem. The class of ω -regular languages is closed under complementation.

Let $L \subseteq \Sigma^{\omega}$ defined by a BA $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$.

Define a congruence $\sim_{\mathcal{B}}$ over Σ^* as follows:

$$u\sim_{\mathcal{B}} v \text{ iff } \forall q,q'\in \textit{Q.}(q\xrightarrow{u} q'\Leftrightarrow q\xrightarrow{v} q') \text{ and } (q\xrightarrow{u} q'\Leftrightarrow q\xrightarrow{v} q').$$

Let [u] denote the equivalence class of u under $\sim_{\mathcal{B}}$.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u,v\in \Sigma^*$, $[u][v]^\omega\cap L\neq\emptyset$ implies that $[u][v]^\omega\subseteq L$.

Proof

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u, v \in \Sigma^*$, $[u][v]^{\omega} \cap L \neq \emptyset$ implies that $[u][v]^{\omega} \subseteq L$.

Proof.

Suppose $u_1v_1v_2\cdots \in L$ s.t. $u_1\in [u]$ and $v_1,v_2,\cdots \in [v]$.

We prove that $u_1'v_1'v_2'\cdots \in L$ for every $u_1'\in [u]$ and $v_1',v_2',\cdots \in [v]$.

There exists an accepting run ρ of \mathcal{B} over $u_1v_1v_2...$

Let q_1, q_2, \ldots be the states in ρ such that $q_0 \xrightarrow{u_1} q_1$, $\forall i \geq 1. q_i \xrightarrow{v_i} q_{i+1}$.

Then there are $i_1 < i_2 < \dots$ s.t.

$$q_1 \xrightarrow[F]{v_{i_1 \dots v_{i_1}}} q_{i_1+1}, \ orall j \geq 1. q_{i_j+1} \xrightarrow[F]{v_{i_j+1} \dots v_{i_{j+1}}} q_{i_{j+1}+1}.$$

 $\text{By def. of} \sim_{\mathcal{B}}, \ q_0 \xrightarrow{u_1'} q_1, \ q_1 \xrightarrow{v_1' \dots v_{i_1}'} q_{i_1+1}, \ \text{and} \ \forall j \geq 1. \\ q_{i_j+1} \xrightarrow{v_{i_j+1}' \dots v_{i_j+1}'} q_{i_{j+1}+1}.$

Therefore, $u'_1 v'_1 v'_2 \dots$ is accepted by \mathcal{B} , thus in L.

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every
$$u,v\in \Sigma^*$$
, $[u][v]^\omega\cap L\neq\emptyset$ implies that $[u][v]^\omega\subseteq L$.

Lemma. $\forall w \in \Sigma^{\omega}$, $\exists u, v \in \Sigma^*$ s.t. $w \in [u][v]^{\omega}$.

Proof.

For a pair (i,j) such that i < j, assign a color $[w_i \dots w_{j-1}]$, i.e., the equivalence class of $w_i \dots w_{j-1}$.

From Ramsey theorem,

 \exists a color [v] and an infinite sequence $1 \le i_1 < i_2 < \dots$ s.t. $\forall j < k$, the pair (i_j, i_k) is assigned the color [v].

Let
$$u = w_1 \dots w_{i_1-1}$$
. Then $w = (w_1 \dots w_{i_1-1})(w_{i_1} \dots w_{i_2-1})(w_{i_2} \dots w_{i_3-1}) \dots \in [u][v]^{\omega}$.

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely, for every $u, v \in \Sigma^*$, $[u][v]^{\omega} \cap L \neq \emptyset$ implies that $[u][v]^{\omega} \subseteq L$.

Lemma. $\forall w \in \Sigma^{\omega}$, $\exists u, v \in \Sigma^*$ s.t. $w \in [u][v]^{\omega}$.

Lemma. $\forall u \in \Sigma^*$ s.t. [u] is regular.

Proof.

It is sufficient to prove that $L_{qq'} = \left\{ w \mid q \xrightarrow{w} q' \right\}$ and $L_{qq'}^F = \left\{ w \mid q \xrightarrow{w} q' \right\}$ are regular for all q, q'.

Legal is regular: Obvious, the NFA $(Q, \Sigma, \delta, q, q')$ $L_{qq'}^F$ is regular: Defined by the NFA $(Q \times \{0,1\}, \Sigma, \delta', (q,0), (q',1))$, where $\forall p, p' \in Q$, if $(p, a, p') \in \delta$, then $((p,1), a, (p',1)) \in \delta'$, and if $p' \not\in F$, then $((p,0), a, (p',0)) \in \delta'$, otherwise, $((p,0), a, (p',1)) \in \delta'$

L

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u,v\in \Sigma^*$, $[u][v]^\omega\cap L\neq\emptyset$ implies that $[u][v]^\omega\subseteq L$.

Lemma. $\forall w \in \Sigma^{\omega}$, $\exists u, v \in \Sigma^*$ s.t. $w \in [u][v]^{\omega}$.

Lemma. $\forall u \in \Sigma^*$ s.t. [u] is regular.

Proof of the theorem.

Let $S = \{([u], [v]) \mid [u][v]^{\omega} \cap L \neq \emptyset\}$. Then $\overline{L} = \bigcup_{([u], [v]) \not\in S} [u][v]^{\omega}$.

- $\bigcup_{([u],[v])\not\in S} [u][v]^{\omega} \subseteq \overline{L}: \text{ If } ([u],[v])\not\in S, \text{ then } [u][v]^{\omega}\cap L=\emptyset, \text{ so } [u][v]^{\omega}\subseteq \overline{L}.$
- ▶ $\overline{L} \subseteq \bigcup_{([u],[v]) \notin S} [u][v]^{\omega}$: For every $w \in \overline{L}$, there are [u],[v] such that $w \in [u][v]^{\omega}$. If $([u],[v]) \in S$, then $w \in [u][v]^{\omega} \subseteq L$, it follows $([u],[v]) \notin S$.

Theorem. The class of ω -regular languages is closed under complementation.

Lemma. $\sim_{\mathcal{B}}$ is of finite index.

Lemma. $\sim_{\mathcal{B}}$ saturates L, namely,

for every $u,v\in \Sigma^*$, $[u][v]^\omega\cap L\neq\emptyset$ implies that $[u][v]^\omega\subseteq L$.

Lemma. $\forall w \in \Sigma^{\omega}$, $\exists u, v \in \Sigma^*$ s.t. $w \in [u][v]^{\omega}$.

Lemma. $\forall u \in \Sigma^*$ s.t. [u] is regular.

Complexity analysis

The automaton \mathcal{B}' defining \overline{L} :

The union of the BAs for the languages $[u][v]^{\omega}$ with $([u],[v]) \notin S$.

The BA for $[u][v]^{\omega}$ can be easily obtained from the NFAs for resp. [u] and [v].

[u] is determined by
$$(\{(q,q')\mid q\xrightarrow{u}q'\},\{(q,q')\mid q\xrightarrow{u}q'\})\Rightarrow$$

 $2^{2|Q|^2}$ equivalence classes $\Rightarrow 2^{2|Q|^2}$ states in the NFA for [u] and [v].

Conclusion: There are $2^{O(|Q|^2)}$ states in \mathcal{B}' .

Outline

Motivation

Büchi automata

Closure properties

Equivalence with MSO

Decision problem

Muller, Rabin, Streett, and Parity automata

Determinization

Equivalence with WMSC

MSO over infinite words

Syntax.

$$\varphi := P_{\sigma}(x) \mid x = y \mid \operatorname{suc}(x, y) \mid X(x) \mid \varphi_1 \vee \varphi_2 \mid \neg \varphi_1 \mid \exists x \varphi_1 \mid \exists X \varphi_1,$$
 where $\sigma \in \Sigma$.

A MSO formula φ is satisfied over an ω -word $w = a_1 \dots a_n \dots$, with a valuation \mathcal{I} of $\operatorname{Free}(\varphi)$ over \mathcal{S}_w , denoted by $(w, \mathcal{I}) \models \varphi$, is defined as follows,

- $(w, \mathcal{I}) \models P_{\sigma}(x) \text{ iff } a_{\mathcal{I}(x)} = \sigma,$
- $(w, \mathcal{I}) \models x = y \text{ iff } \mathcal{I}(x) = \mathcal{I}(y),$
- $(w, \mathcal{I}) \models \mathsf{suc}(x, y) \text{ iff } \mathcal{I}(x) + 1 = \mathcal{I}(y),$
- \blacktriangleright $(w, \mathcal{I}) \models X(x) \text{ iff } \mathcal{I}(x) \in \mathcal{I}(X),$
- $(w, \mathcal{I}) \models \varphi_1 \vee \varphi_2 \text{ iff } (w, \mathcal{I}) \models \varphi_1 \text{ or } (w, \mathcal{I}) \models \varphi_2,$
- \blacktriangleright $(w, \mathcal{I}) \models \neg \varphi_1$ iff not $(w, \mathcal{I}) \models \varphi_1$,
- \blacktriangleright $(w,\mathcal{I}) \models \exists x \varphi_1$ iff there is $j \in S_w$ such that $(w,\mathcal{I}[x \to j]) \models \varphi_1$,
- ▶ $(w, \mathcal{I}) \models \exists X \varphi_1$ iff there is $J \subseteq S_w$ such that $(w, \mathcal{I}[X \to J]) \models \varphi_1$.

$BA \equiv MSO$

From BA to MSO

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a BA. Let $Q = \{q_0, q_1, \dots, q_n\}$. Construct the MSO formula φ as follows,

$$\exists X_{q_0} \dots X_{q_n} (\varphi_{unique} \land \varphi_{init} \land \varphi_{trans} \land \varphi_{final}),$$

where

- \triangleright X_q stands for the positions where the run is in state q,
- $\varphi_{unique} = \bigwedge_{q \neq q'} \forall x \neg (X_q(x) \land X_{q'}(x))$
- $\qquad \varphi_{init} = \exists x (\mathrm{First}(x) \land \bigvee_{(q_0, a, q) \in \delta} (P_{a}(x) \land X_{q}(x))),$
- $\qquad \qquad \varphi_{\textit{trans}} = \forall x \forall y (\mathsf{suc}(x,y) \to \bigvee_{(q,a,q') \in \delta} X_q(x) \land P_a(y) \land X_{q'}(y)),$

Then $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A})$.

From MSO to BA

Similar to the construction of an NFA from a MSO formula.

Outline

Motivation

Büchi automata

Closure properties

Equivalence with MSC

Decision problem

Muller, Rabin, Streett, and Parity automata

Determinization

Equivalence with WMSC

Nonemptiness

Input: Büchi automaton $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$.

Question: Is $\mathcal{L}(\mathcal{B}) \neq \emptyset$?

Find a SCC (strongly-connected-component) ${\it C}$ satisfying the following conditions.

- C contains an accepting state,
- ightharpoonup C is reachable from q_0 .

Proposition. Nonemptiness of Büchi automata can be decided in linear time.

SCCs of a directed graph can be found in linear time by a DFS search.

Language inclusion

Input: Büchi automata \mathcal{B}_1 and \mathcal{B}_2 .

Question: Is $\mathcal{L}(\mathcal{B}_1) \subseteq \mathcal{L}(\mathcal{B}_2)$?

Theorem. Language inclusion of Büchi automata is PSPACE-complete.

Upper bound.

Construct \mathcal{B}_2' defining $\overline{\mathcal{L}(\mathcal{B}_2)}$ and test the emptiness of $\mathcal{L}(\mathcal{B}_1 \cap \mathcal{B}_2')$.

There are $|Q_1|2^{O(|Q_2|^2)}$ states in $\mathcal{B}_1 \cap \mathcal{B}_2' \Rightarrow$ The nonemptiness of $\mathcal{B}_1 \cap \mathcal{B}_2'$ can be decided in PSPACE

- Nondeterministically guess on the fly a path from the initial state to a cycle containing an accepting state.
- NPSPACE ≡ PSPACE.

Language inclusion

Input: Büchi automata \mathcal{B}_1 and \mathcal{B}_2 .

Question: Is $\mathcal{L}(\mathcal{B}_1) \subseteq \mathcal{L}(\mathcal{B}_2)$?

Theorem. Language inclusion of Büchi automata is PSPACE-complete.

Lower bound.

Universality of Büchi automata $(\mathcal{L}(\mathcal{B}) = \Sigma^{\omega})$ is PSPACE-hard.

Reduction from the membership problem of PSPACE TMs. Use BA to describe the unsuccessful computations of PSPACE TMs.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ be a linear space (say cn) TM. In addition, let $\widehat{\Gamma} = \Gamma \cup Q \cup \{\$\}$.

A successful computation of M over $w: C_1 C_2 \ldots C_m (\widehat{\Gamma} \setminus \{\})^w$ s.t.

- ▶ $\forall i, C_i \in \Gamma^j Q \Gamma^{cn-j}$ for some j,
- $ightharpoonup \forall i < m, \ C_i \vdash_M C_{i+1},$

Indeed, Universality problem of NFA is PSPACE-complete.

Outline

Motivation

Büchi automata

Closure properties

Equivalence with MSC

Decision problem

Muller, Rabin, Streett, and Parity automata

Determinization

Equivalence with WMSC

Various acceptance conditions

Acceptance conditions of ω -automata

- ▶ Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$, $A \ run \ \rho \ is accepting iff <math>Inf(\rho) \in \mathcal{F}$.
- ▶ Rabin condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. U_i, V_i \subseteq Q$, $A \text{ run } \rho \text{ is accepting iff } \exists i. \operatorname{Inf}(\rho) \cap U_i = \emptyset \wedge \operatorname{Inf}(\rho) \cap V_i \neq \emptyset$.
- Streett condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. \ U_i, V_i \subseteq Q$, A run ρ is accepting iff $\forall i. \ \operatorname{Inf}(\rho) \cap V_i \neq \emptyset \to \operatorname{Inf}(\rho) \cap U_i \neq \emptyset$.
- Parity condition: $(Q, \Sigma, \delta, q_0, c)$, where $c : Q \to \{1, ..., k\}$,

 A run ρ is accepting iff $\min(\{c(q) \mid q \in \operatorname{Inf}(\rho)\})$ is even.
- ▶ Rabin chain condition: A Rabin condition $(U_i, V_i)_{1 \le i \le k}$ s.t. $U_1 \subseteq V_1 \subseteq U_2 \subseteq V_2 \subseteq \cdots \subseteq U_k \subseteq V_k$.

Observation. Parity \equiv Rabin chain.

 $\mathsf{Parity} \Rightarrow \mathsf{Rabin} \; \mathsf{chain} \colon \, c : \mathit{Q} \rightarrow \{1, \dots, 2k+1\}$

$$\forall i: 1 \leq i \leq k. \ U_i = \{q \mid c(q) \leq 2i - 1\}, \ V_i = \{q \mid c(q) \leq 2i\}.$$

Rabin chain \Rightarrow Parity: $\forall i : 1 \le i \le k$. $c(U_i \setminus V_{i-1}) = 2i - 1$, $c(V_i \setminus U_i) = 2i$.

- ▶ Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$, $A \ run \ \rho \ is accepting iff <math>\operatorname{Inf}(\rho) \in \mathcal{F}$.
- Rabin condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. U_i, V_i \subseteq Q$, A run ρ is accepting iff $\exists i. \operatorname{Inf}(\rho) \cap U_i = \emptyset \wedge \operatorname{Inf}(\rho) \cap V_i \neq \emptyset$.
- Streett condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. \ U_i, V_i \subseteq Q$, A run ρ is accepting iff $\forall i. \ \operatorname{Inf}(\rho) \cap V_i \ne \emptyset \to \operatorname{Inf}(\rho) \cap U_i \ne \emptyset$.
- Parity condition: $(Q, \Sigma, \delta, q_0, c)$, where $c: Q \to \{1, \dots, k\}$, $A \ run \ \rho \ is \ accepting \ iff \ \min(\{c(q) \mid q \in \operatorname{Inf}(\rho)\}) \ is \ even.$

From Büchi to the other conditions:

Let $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$ be a BA.

- ▶ Muller: $(Q, \Sigma, \delta, q_0, \mathcal{F})$ with $\mathcal{F} = \{P \mid P \cap F \neq \emptyset\}$,
- ► Rabin: $(Q, \Sigma, \delta, q_0, (\emptyset, F))$,
- ▶ Streett: $(Q, \Sigma, \delta, q_0, (F, Q))$,
- Parity: $(Q, \Sigma, \delta, q_0, c)$ with c(F) = 2 and $c(Q \setminus F) = 3$.

- Streett condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. \ U_i, V_i \subseteq Q$, A run ρ is accepting iff $\forall i. \ \operatorname{Inf}(\rho) \cap V_i \neq \emptyset \to \operatorname{Inf}(\rho) \cap U_i \neq \emptyset$.
- Parity condition: $(Q, \Sigma, \delta, q_0, c)$, where $c : Q \to \{1, \dots, k\}$, $A \ run \ \rho \ is accepting iff <math>\min(\{c(q) \mid q \in \operatorname{Inf}(\rho)\})$ is even.

From Parity to Streett:

Let $\mathcal{A}=(Q,\Sigma,\delta,q_0,c)$ be a Parity automaton and $c:Q \to \{1,\dots,2k+1\}$. Then \mathcal{A} is equivalent to the Streett automaton $(Q,\Sigma,\delta,q_0,(U_i,V_i)_{0\leq i\leq k})$, where $U_i=\{q\mid c(q)\leq 2i\},\ V_i=\{q\mid c(q)\leq 2i+1\}$.

- ▶ Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$, A run ρ is accepting iff $Inf(\rho) \in \mathcal{F}$.
- Rabin condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. \ U_i, V_i \subseteq Q$, A run ρ is accepting iff $\exists i. \ \operatorname{Inf}(\rho) \cap U_i = \emptyset \wedge \operatorname{Inf}(\rho) \cap V_i \ne \emptyset$.
- Streett condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. \ U_i, V_i \subseteq Q$, A run ρ is accepting iff $\forall i. \ \operatorname{Inf}(\rho) \cap V_i \ne \emptyset \to \operatorname{Inf}(\rho) \cap U_i \ne \emptyset$.

From Rabin and Streett to Muller:

Let $\mathcal{A}=(Q,\Sigma,\delta,q_0,(U_i,V_i)_{1\leq i\leq k})$ be a Rabin (resp. Streett) automaton. Then \mathcal{A} is equivalent to the Muller automaton $(Q,\Sigma,\delta,q_0,\mathcal{F})$, where $\mathcal{F}=\{F\mid \exists i.F\cap U_i=\emptyset \land F\cap V_i\neq\emptyset\}$ (resp. $\mathcal{F}=\{F\mid \forall i.F\cap V_i\neq\emptyset \rightarrow F\cap U_i\neq\emptyset\}$).

Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$,

A run ρ is accepting iff $Inf(\rho) \in \mathcal{F}$.

From Muller to Büchi

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a Muller automaton s.t.

$$\mathcal{F} = \{F_1, \dots, F_k\} \text{ and } \forall i : 1 \leq i \leq k. \ F_i = \{q_i^1, \dots, q_i^{l_i}\}.$$

Construct a Büchi automaton $\mathcal{B} = (Q', \Sigma, \delta', q'_0, F')$ as follows.

- $ightharpoonup q'_0 = q_0,$
- ► $F' = \{(q, i, |F_i|) | q \in Q, 1 \le i \le k\},$
- \triangleright δ' is defined as follows,
 - \triangleright δ' contains all the transitions in δ ,
 - ▶ for every transition $(q, a, q') \in \delta$ and every $i : 1 \le i \le k$ such that $q' \in F_i$, $(q, a, (q', i, 0)) \in \delta'$, guess F_i
 - for every transition $(q, a, q') \in \delta$,
 - if $q, q' \in F_i$ and $q' = q_i^{i+1}$, then $((q, i, j), a, (q', i, j+1)) \in \delta'$, increase the counter.
 - if $q, q' \in F_i$ and $q' \neq q_i^{j+1}$, then $((q, i, j), (q', i, j)) \in \delta'$,
 - ▶ for every transition $(q, a, q') \in \delta$, if $q, q' \in F_i$, then $((q, i, l_i), a, (q', i, 0)) \in \delta'$, reset the counter,

Theorem. Deterministic Muller, Rabin, Streett and Parity automata are expressively equivalent.

From Parity to Rabin and Streett, from Rabin and Streett to Muller: Same as the nondeterministic automata.

- Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$,

 A run ρ is accepting iff $\operatorname{Inf}(\rho) \in \mathcal{F}$.
- Rabin condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. \ U_i, V_i \subseteq Q$, A run ρ is accepting iff $\exists i. \ \operatorname{Inf}(\rho) \cap U_i = \emptyset \wedge \operatorname{Inf}(\rho) \cap V_i \neq \emptyset$.
- ▶ Rabin chain condition: A Rabin condition $(U_i, V_i)_{1 \le i \le k}$ s.t. $U_1 \subseteq V_1 \subseteq U_2 \subseteq V_2 \subseteq \cdots \subseteq U_k \subseteq V_k$.

From deterministic Muller to deterministic Parity (Rabin chain): Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a deterministic Muller automaton. Suppose $Q = \{q_0, \dots, q_n\}$.

The main idea.

Latest appearance record (LAR)

$$q_{i_0}q_{i_1}\dots q_{i_r}\sharp q_{i_{r+1}}\dots q_{i_n}$$

$$\delta(q_{i_n},a)=q_{i_s}$$

$$q_{i_0}q_{i_1}\dots q_{i_{s-1}}\sharp q_{i_{s+1}}\dots q_{i_n}q_{i_s}$$

- ▶ Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$, $A \ run \ \rho \ is accepting iff <math>\operatorname{Inf}(\rho) \in \mathcal{F}$.
- ▶ Rabin condition: $(Q, \Sigma, \delta, q_0, (U_i, V_i)_{1 \le i \le k})$, where $\forall i. U_i, V_i \subseteq Q$,

 A run ρ is accepting iff $\exists i. \operatorname{Inf}(\rho) \cap U_i = \emptyset \wedge \operatorname{Inf}(\rho) \cap V_i \ne \emptyset$.
- ▶ Rabin chain condition: A Rabin condition $(U_i, V_i)_{1 \le i \le k}$ s.t. $U_1 \subseteq V_1 \subseteq U_2 \subseteq V_2 \subseteq \cdots \subseteq U_k \subseteq V_k$.

From deterministic Muller to deterministic Parity (Rabin chain):

Let $A = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be a deterministic Muller automaton. Suppose $Q = \{q_0, \dots, q_n\}$.

Construct a Parity automaton $\mathcal{A}' = (Q', \Sigma, \delta', q'_0, (U_i, V_i)_{0 \le i \le n})$ as follows.

- \triangleright Q' is the set of sequences $u \sharp v$ s.t. uv is a permutation of $q_0 \dots q_n$.
- $if \ \delta(q_{i_n},a)=q_{i_s}, \ then$ $\delta'(q_{i_0}\ldots q_{i_r}\sharp q_{i_{r+1}}\ldots q_{i_n},a)=q_{i_0}\ldots q_{i_{r-1}}\sharp q_{i_{r+1}}\ldots q_{i_n}q_{i_s}.$

In particular, if $\delta(q_{i_n}, a) = q_{i_n}$, then

$$\delta'(q_{i_0} \dots q_{i_n} \sharp q_{i_{n+1}} \dots q_{i_n}, a) = q_{i_0} \dots \sharp q_{i_n}.$$

$$U_i = \{ u \sharp v \mid |u| < i \}, \ V_i = U_i \cup \{ u \sharp v \mid |u| = i, \exists F \in \mathcal{F}. \ F = v \}.$$

$$U_1 \subseteq V_1 \subseteq \cdots \subseteq U_n \subseteq V_n.$$

Construct a Parity automaton $\mathcal{A}' = (Q', \Sigma, \delta', q'_0, (U_i, V_i)_{0 \le i \le n})$ as follows.

- \triangleright Q' is the set of sequences $u \sharp v$ s.t. uv is a permutation of $q_0 \dots q_n$.
- $ightharpoonup q'_0 = \sharp q_n q_{n-1} \dots q_0.$
- ightharpoonup if $\delta(q_{i_n},a)=q_{i_s}$, then

$$\delta'(q_{i_0}\dots q_{i_r}\sharp q_{i_{r+1}}\dots q_{i_n},a)=q_{i_0}\dots q_{i_{s-1}}\sharp q_{i_{s+1}}\dots q_{i_n}q_{i_s}.$$

In particular, if $\delta(q_{i_n}, a) = q_{i_n}$, then $\delta'(q_{i_0} \dots q_{i_n} \sharp q_{i_{n-1}} \dots q_{i_n}, a) = q_{i_0} \dots \sharp q_{i_n}$

$$U_i = \{u \sharp v \mid |u| < i\}, \ V_i = U_i \cup \{u \sharp v \mid |u| = i, \exists F \in \mathcal{F}. \ F = v\}.$$

$$U_1 \subseteq V_1 \subseteq \cdots \subseteq U_n \subseteq V_n.$$

Correctness of the construction.

$$(\Rightarrow)$$
 Let $w \in \Sigma^{\omega}$ and ρ be the accepting run of \mathcal{A} over w . Then $\operatorname{Inf}(\rho) = F \in \mathcal{F}$.

Consider the run ρ' of \mathcal{A}' corresponding to ρ .

$$\exists j \ s.t.$$
 after the position j in ρ , only the states in $\mathrm{Inf}(\rho)$ appear $\Longrightarrow \exists j' \geq j \ s.t.$ after the position j' in ρ' , all the states in $\mathrm{Inf}(\rho)$ are on the right side of \sharp in LARs $\Longrightarrow \exists i \ s.t.$ after the position j' in ρ' , all the LARs $u\sharp v$ satisfy $|u| \geq i$, and $\exists^\omega u\sharp v \ s.t.$ $|u| = i \ and \ v = \mathrm{Inf}(\rho) = F \Longrightarrow \mathrm{Inf}(\rho') \cap U_i = \emptyset$ and $\mathrm{Inf}(\rho') \cap V_i \neq \emptyset$, ρ' is an accepting run of \mathcal{A}'

Construct a Parity automaton $\mathcal{A}' = (Q', \Sigma, \delta', q'_0, (U_i, V_i)_{0 < i < n})$ as follows.

- \triangleright Q' is the set of sequences $u \sharp v$ s.t. uv is a permutation of $q_0 \dots q_n$.
- $ightharpoonup q'_0 = \sharp q_n q_{n-1} \dots q_0.$
- ightharpoonup if $\delta(q_{i_0}, a) = q_{i_0}$, then $\delta'(q_{i_0} \dots q_{i_r} \sharp q_{i_{r+1}} \dots q_{i_n}, a) = q_{i_0} \dots q_{i_{s-1}} \sharp q_{i_{s+1}} \dots q_{i_n} q_{i_s}$

In particular, if
$$\delta(q_{in}, a) = q_{in}$$
, then

$$\delta'(q_{i_0}\ldots q_{i_r}\sharp q_{i_{r+1}}\ldots q_{i_n}, \mathsf{a}) = q_{i_0}\ldots \sharp q_{i_n}.$$

$$V_i = \{u \sharp v \mid |u| < i\}, \ V_i = U_i \cup \{u \sharp v \mid |u| = i, \exists F \in \mathcal{F}. \ F = v\}.$$

$$U_0 \subseteq V_0 \subseteq U_1 \subseteq V_1 \subseteq \cdots \subseteq U_n \subseteq V_n$$

Correctness of the construction.

$$(\Leftarrow)$$
 Let $w \in \Sigma^{\omega}$ and ρ' be the accepting run of A' over w

$$(\Leftarrow)$$
 Let $w \in \Sigma^{\omega}$ and ρ' be the accepting run of \mathcal{A}' over w .

$$\exists i \ s.t. \ \operatorname{Inf}(\rho') \cap U_i = \emptyset \ and \ \operatorname{Inf}(\rho') \cap V_i \neq \emptyset \Longrightarrow$$

$$\exists F \in \mathcal{F} \text{ and } j' \text{ s.t. } u \sharp v \text{ in the position } j' \text{ of } \rho' \text{ satisfies } |u| = i, v = F,$$
 and after the position $j' \text{ in } \rho'$,

all
$$u'\sharp v'$$
 satisfy $|u'| \geq i$, and $\exists^\omega u'\sharp v'$, $|u'| = i, v' = F \Longrightarrow$
Consider the run ρ of $\mathcal A$ over w : After the position j' in ρ ,
only states in F occur (o.w. $u'\sharp v'$ s.t. $|u'| < i$ occurs after j' in ρ'),
and every state in F occur infinitely often (o.w. $\exists j'' > j'$, all $u'\sharp v'$
after j'' satisfy $|u'| > i$, thus $\operatorname{Inf}(\rho') \cap V_i = \emptyset$).

Therefore, ρ is accepting.

Outline

Motivation

Büchi automata

Closure properties

Equivalence with MSC

Decision problem

Muller, Rabin, Streett, and Parity automata

Determinization

Equivalence with WMSC

Deterministic Muller automata (DMA)

Muller condition: $(Q, \Sigma, \delta, q_0, \mathcal{F})$, where $\mathcal{F} \subseteq 2^Q$,

A run ρ is accepting iff $Inf(\rho) \in \mathcal{F}$.

Proposition. The class of languages recognized by DMA is closed under all Boolean operations.

- ▶ Union: $A_1 = (Q_1, \Sigma, \delta_1, q_0^1, \mathcal{F}_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_0^2, \mathcal{F}_2)$.
 - $\mathcal{A} = (Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), \mathcal{F})$, where
 - $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)),$
 - $\nearrow F = \{S \subseteq Q_1 \times Q_2 \mid \operatorname{proj}_2(S) \in \mathcal{F}_2\} \cup \{S \subseteq Q_1 \times Q_2 \mid \operatorname{proj}_1(S) \in \mathcal{F}_1\}.$
- ▶ Intersection: $A_1 = (Q_1, \Sigma, \delta_1, q_0^1, \mathcal{F}_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_0^2, \mathcal{F}_2)$.
 - $\mathcal{A} = (Q_1 \times Q_2, \Sigma, \delta, (q_0^1, q_0^2), \mathcal{F})$, where

 - $\blacktriangleright \ \mathcal{F} = \{S \subseteq Q_1 \times Q_2 \mid \mathrm{proj}_1(S) \in \mathcal{F}_1, \mathrm{proj}_2(S) \in \mathcal{F}_2\}.$
- ▶ Complementation: $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F}) \Rightarrow \mathcal{B} = (Q, \Sigma, \delta, q_0, 2^Q \setminus \mathcal{F}).$

Expressibility of DMA

Recall $\overrightarrow{W} = \{ w \in \Sigma^{\omega} \mid \exists^{\omega} n. \ w_1 \dots w_n \in W \}.$

Proposition. L can be defined by a DBA iff $L = \overrightarrow{L'}$ for some regular language $L' \subseteq \Sigma^*$.

Theorem. An ω -language L is definable by a DMA iff L is a Boolean combination of sets \overrightarrow{W} for regular $W \subseteq \Sigma^*$.

Proof.

"If" direction:

- $ightharpoonup \overrightarrow{W}$ is recognized by a deterministic Büchi automaton,
- ► The class of languages recognized by DMAs is closed under all Boolean combinations.

"Only if" direction:

Suppose L is defined by a DMA $A = (Q, \Sigma, \delta, q_0, F)$.

For every $q \in Q$, let W_q denote the language defined by DFA $(Q, \Sigma, \delta, q_0, \{q\})$.

Then

$$L = \bigcup_{F \in \mathcal{F}} \left(\bigcap_{q \in F} \overrightarrow{W_q} \cap \bigcap_{q \notin F} \overrightarrow{\overline{W_q}} \right).$$

Mcnaughton's theorem: $NBA \equiv DMA$

Theorem. From every nondeterministic Büchi automaton, an equivalent DMA can be constructed.

NBA ⇒ Semi-deterministic Büchi automata (SDBA) ⇒ DMA

Using the slides and lecture notes by Bernd Finkbeiner.

$NBA \Rightarrow SDBA$:

- Slides: http://www.react.uni-saarland.de/teaching/ automata-games-verification-12/downloads/intro6.pdf
- Lecture notes: http://www.react.uni-saarland.de/teaching/ automata-games-verification-12/downloads/notes5.pdf

SDBA ⇒ DMA:

- Slides: http://www.react.uni-saarland.de/teaching/ automata-games-verification-12/downloads/intro7.pdf
- Lecture notes: http://www.react.uni-saarland.de/teaching/ automata-games-verification-12/downloads/notes6.pdf

Outline

Motivation

Büchi automata

Closure properties

Equivalence with MSC

Decision problem

Muller, Rabin, Streett, and Parity automata

Determinization

Equivalence with WMSO

ω -regular \equiv WMSO

WMSO:

The same syntax as MSO, with the interpretations of set variables restricted to finite sets.

WMSO to MSO=NBA=DMA: WMSO $\varphi \Rightarrow$ MSO $\overline{\varphi}$

$$\overline{\exists X\eta} = \exists X (\exists y \forall x (X(x) \to x \leq y) \land \overline{\eta}).$$

From DMA to WMSO:

It is sufficient to show that \overrightarrow{W} with W regular can be defined by a WMSO sentence φ .

W is regular $\Rightarrow \exists$ a MSO sentence ψ on finite words equivalent to W.

Then \overrightarrow{W} is defined by $\forall x \exists y (x < y \land \psi_{\leq y})$, where $\psi_{\leq y}$ is obtained from ψ as follows:

- ▶ Replace every subformula $\exists X \eta$ with $\exists X (\forall x'(X(x') \to x' \leq y) \land \eta_{\leq y})$.
- ▶ Replace every subformula $\exists x' \eta$ with $\exists x' (x' \leq y \land \eta_{\leq y})$.