EXAMPLE E.1A W-SHAPE COLUMN DESIGN WITH PINNED ENDS

Given:

Select a W-shape column to carry the loading as shown in Figure E.1A. The column is pinned top and bottom in both axes. Limit the column size to a nominal 14-in. shape. A column is selected for both ASTM A992 and ASTM A913 Grade 65 material.

Fig. E.1A. Column loading and bracing.

$1.2 \cdot 140 \ kip + 1.6 \cdot 420 \ kip = 840 \ kip$

W14x132

$$h := 14.7 \ in$$

 $b_f := 14.7 \ in$
 $t_f := 1.03 \ in$
 $t_w := 0.645 \ in$
 $k := 1.63 \ in$

$$A_g \coloneqq 2 \cdot t_f \cdot b_f + \left(h - 2 \cdot t_f\right) \cdot t_w = 38.435 \ \boldsymbol{in}^2$$

$$I_{x}\!\coloneqq\!\left(\!2\boldsymbol{\cdot}\!\left(\!b_{f}\boldsymbol{\cdot}\frac{t_{f}^{\;3}}{12}\!+\!b_{f}\boldsymbol{\cdot}t_{f}\boldsymbol{\cdot}\!\left(\!\frac{\left(\!h\!-\!2\boldsymbol{\cdot}t_{f}\!\right)}{2}\!+\!\frac{t_{f}}{2}\!\right)^{\!2}\right)\!+t_{w}\boldsymbol{\cdot}\frac{\left(\!h\!-\!2\boldsymbol{\cdot}t_{f}\!\right)^{\;3}}{12}\!\right)\!=\!\left(\!1.526\boldsymbol{\cdot}10^{3}\right)\,\boldsymbol{in}^{\,4}$$

$$S_x \coloneqq \frac{I_x}{\left(\frac{h}{2}\right)} = 207.608 \; in^3$$

$$Z_x \coloneqq b_f \cdot t_f \cdot \left(h - t_f \right) + \frac{1}{4} \cdot \left(h - 2 \ t_f \right)^2 \cdot t_w = 232.74 \ \textbf{in}^3$$

$$r_x := \sqrt{\frac{I_x}{A_a}} = 6.301 \ \emph{in}$$

$$I_y := 2 \cdot \left(t_f \cdot \frac{b_f^3}{12}\right) + \left(h - 2 \cdot t_f\right) \cdot \frac{t_w^3}{12} = 545.586 \ in^4$$

$$S_y \coloneqq \frac{I_y}{\frac{b_f}{2}} = 74.229 \; \emph{in}^3$$

$$egin{aligned} Z_y \coloneqq & rac{1}{2} \cdot b_f^{\ 2} \cdot t_f + rac{1}{4} \cdot ig(h - 2 \cdot t_f ig) \cdot t_w^{\ 2} = 112.601 \,\, m{i}m{n}^3 \ & r_y \coloneqq & \sqrt{rac{I_y}{A_g}} = 3.768 \,\, m{i}m{n} \end{aligned}$$

$$r_y = \sqrt{rac{I_y}{A_g}} = 3.768 \; in$$

$$c_w \! \coloneqq \! rac{\left(h \! - \! t_f
ight)^2 \cdot b_f^{3} \cdot t_f}{24} \! = \! \left(2.548 \cdot 10^4
ight) \, m{in}^6$$

$$J \coloneqq \frac{2 \cdot b_f \cdot {t_f}^3 + (h - t_f) \cdot {t_w}^3}{3} = 11.931 \; m{in}^4 \ r_{ts} \coloneqq \sqrt{\frac{\sqrt{I_y \cdot c_w}}{S_x}} = 4.238 \; m{in}$$

$$r_{ts}\!\coloneqq\!\sqrt{rac{\sqrt{I_y\!\cdot\! c_w}}{S_x}}\!=\!4.238$$
 in

Table 1-1 (continued) W-Shapes Properties W14-W12														
Nom-				Axis	х-х		Axis Y-Y			r _{ts}	ħ _e	Torsional Properties		
Wt.	br	h	1.	S	r	Z	1	S	r	Z			J	C _w
lb/ft	21,	t _w	ín.4	ìn.3	ín.	ín.³	in.4	in.3	in.	in,3	in.	in.	in.4	ìn. ⁶
132	7.15	17.7	1530	209	6.28	234	548	74.5	3.76	113	4.23	13,7	12.3	25500
120	7.80	19.3	1380	190	6.24	212	495	67.5	3.74	102	4.20	13.6	9.37	22700
109	8.49	21.7	1240	173	6.22	192	447	61.2	3.73	92.7	4.17	13.4	7.12	20200
	004	22 5	1110	157	6.17	173	402	55.2	3.71	83.6	4.14	13.4	5.37	18000
99	9.34	23.5	11110	13/	0.171	170								

$$E = 29000 \ ksi = (1.999 \cdot 10^5) \ MPa$$

$$F_y = 50 \ ksi = 344.738 \ MPa$$

$$\frac{b_f}{2 \cdot t_f} = 7.136$$

$$0.56 \cdot \sqrt{\frac{E}{F_y}} = 13.487$$

$$\frac{(h-2\cdot(k))}{t_w} = 17.736 \qquad 1.49 \cdot \sqrt{\frac{E}{F_y}} = 35.884$$

$$1.49 \cdot \sqrt{\frac{E}{F_y}} = 35.884$$

$$L_c = 30 \; ft = 360 \; in$$

$$4.71 \cdot \sqrt{\frac{E}{F_y}} = 113.432$$

$$\frac{L_c}{r_x} = 57.135$$

$$\frac{L_c}{r_u} = 95.551$$

Non-Slender Web Vel. Como Hopping Hit Hotel His Andrew Como Hopping His Andrew Como His Andrew

$$F_e \coloneqq \frac{oldsymbol{\pi}^2 \cdot E}{\left(rac{L_c}{r_x}
ight)^2} = 87.68 \,\, oldsymbol{ksi}$$

$$\mathbf{F_{cr}}\!\coloneqq\!\mathbf{if}\!\left(\!\frac{L_{e}}{r_{x}}\!\!>\!4.71\boldsymbol{\cdot}\sqrt{\frac{E}{F_{y}}}\,,0.877\boldsymbol{\cdot}F_{e}\,,0.658^{\frac{F_{y}}{F_{e}}}\boldsymbol{\cdot}F_{y}\!\right)\!\!=\!39.383~\textit{ksi}$$

$$F_e \coloneqq rac{oldsymbol{\pi}^2 \cdot E}{\left(rac{L_c}{r_y}
ight)^2} = 31.35 \; oldsymbol{ksi}$$

$$\mathbf{F_{cr}} \coloneqq \mathbf{if} \left(\frac{L_c}{r_y} \right)^2$$

$$\mathbf{F_{cr}} \coloneqq \mathbf{if} \left(\frac{L_c}{r_y} > 4.71 \cdot \sqrt{\frac{E}{F_y}}, 0.877 \cdot F_e, 0.658^{\frac{F_y}{F_e}} \cdot F_y \right) = 25.648 \text{ ksi}$$

$$F_e \coloneqq \frac{\pi^2 \cdot E}{\mathbf{F_{cr}}} = 31.35 \text{ ksi}$$

$$F_e \coloneqq \frac{oldsymbol{\pi}^2 oldsymbol{\cdot} E}{\left(\max \left(rac{L_c}{r_x}, rac{L_c}{r_y}
ight)
ight)^2} = 31.35 \; oldsymbol{ksi}$$

$$F_e \coloneqq \frac{\pi^2 \cdot E}{\left(\max\left(\frac{L_c}{r_x}, \frac{L_c}{r_y}\right)\right)^2} = 31.35 \text{ ksi}$$

$$\mathbf{F}_{cr} \coloneqq \mathbf{if} \left(\max\left(\frac{L_c}{r_x}, \frac{L_c}{r_y}\right) > 4.71 \cdot \sqrt{\frac{E}{F_y}}, 0.877 \cdot F_e, 0.658^{\frac{F_y}{F_e}} \cdot F_y\right) = 25.648 \text{ ksi}$$

$$\phi \coloneqq 0.9$$

$$\phi P_n \coloneqq \phi \cdot \mathbf{F}_{cr} \cdot A_g = 887.201 \text{ kip}$$

$$1.2 \cdot 140 \text{ kip} + 1.6 \cdot 420 \text{ kip} = 840 \text{ kip}$$

$$\phi := 0.9$$

$$\phi P_n := \phi \cdot \mathbf{F_{cr}} \cdot A_q = 887.201 \ kip$$

LRFD	ASD
$\phi_c P_n = 893 \text{ kips} > 840 \text{ kips}$ o.k.	$\frac{P_n}{\Omega_c} = 594 \text{ kips} > 560 \text{ kips} \textbf{o.k.}$

Given:

Verify a W14×90 is adequate to carry the loading as shown in Figure E.1B. The column is pinned top and bottom in both axes and braced at the midpoint about the y-y axis and torsionally. The column is verified for both ASTM A992 and ASTM A913 Grade 65 material.

Fig. E.1B. Column loading and bracing.

W14x132

$$h := 14.7 \ in$$

 $b_f := 14.7 \ in$
 $t_f := 1.03 \ in$
 $t_w := 0.645 \ in$
 $k := 1.63 \ in$

$$A_a := 2 \cdot t_f \cdot b_f + (h - 2 \cdot t_f) \cdot t_w = 38.435 \ in^{3}$$

$$\begin{split} A_g &\coloneqq 2 \cdot t_f \cdot b_f + \left(h - 2 \cdot t_f\right) \cdot t_w = 38.435 \ \textbf{in}^2 \\ I_x &\coloneqq \left(2 \cdot \left(b_f \cdot \frac{t_f^{\ 3}}{12} + b_f \cdot t_f \cdot \left(\frac{\left(h - 2 \cdot t_f\right)}{2} + \frac{t_f}{2}\right)^2\right) + t_w \cdot \frac{\left(h - 2 \cdot t_f\right)^3}{12}\right) = \left(1.526 \cdot 10^3\right) \ \textbf{in}^4 \end{split}$$

$$S_x \coloneqq \frac{I_x}{\left(\frac{h}{2}\right)} = 207.608 \ \emph{in}^3$$

$$Z_x\!:=\!b_f\!\cdot\!t_f\!\cdot\!\left(\!h\!-\!t_f\!\right)\!+\!\frac{1}{4}\!\cdot\!\left(\!h\!-\!2\ t_f\!\right)^2\cdot\!t_w\!=\!232.74\ \pmb{in}^3$$

$$r_x \! \coloneqq \! \sqrt{rac{I_x}{A_g}} \! = \! 6.301 \; m{in}$$

$$I_y := 2 \cdot \left(t_f \cdot \frac{{b_f}^3}{12} \right) + \left(h - 2 \cdot t_f \right) \cdot \frac{{t_w}^3}{12} = 545.586 \ \emph{in}^4$$

$$S_y \coloneqq \frac{I_y}{\frac{b_f}{2}} = 74.229 \ \emph{in}^3$$

$$Z_y \coloneqq \frac{1}{2} \cdot b_f^2 \cdot t_f + \frac{1}{4} \cdot (h - 2 \cdot t_f) \cdot t_w^2 = 112.601 \ \emph{in}^3$$

$$r_y \coloneqq \sqrt{rac{I_y}{A_g}} = 3.768 \; m{in}$$
 $c_w \coloneqq rac{\left(h - t_f
ight)^2 \cdot b_f^{\; 3} \cdot t_f}{24} = \left(2.548 \cdot 10^4
ight) \; m{in}^6$ $J \coloneqq rac{2 \cdot b_f \cdot t_f^{\; 3} + \left(h - t_f
ight) \cdot t_w^{\; 3}}{3} = 11.931 \; m{in}^4$ $r_{ts} \coloneqq \sqrt{rac{\sqrt{I_y \cdot c_w}}{S_x}} = 4.238 \; m{in}$

Table 1-1 (continued) W-Shapes Properties W14-W12												
Axis X-X				Axis Y-Y				Fis	h.	Torsional Properties		
	5	r	Z	1	S	1	Z			J	C _w	
	in.3	ín.	ín.³	in.4	in.3	in.	in,3	in.	in.	in.4	in.6	
	209	6.28	234	548	74.5	3.76	113	4.23	13.7	12.3	25500	
	190	6.24	212	495	67.5	3.74	102	4.20	13.6	9.37	22700	
ı	173	6.22	192	447	61.2	3.73	92.7	4.17	13.4	7.12	20200	
	157	6.17	173	402	55.2	3.71	83.6	4.14	13.4	5.37	18000	

$$E = 29000 \ ksi = (1.999 \cdot 10^5) \ MPa$$

$$F_y = 50 \ ksi = 344.738 \ MPa$$

$$\frac{b_f}{2 \cdot t_f} = 7.136$$

$$0.56 \cdot \sqrt{\frac{E}{F_y}} = 13.487$$

$$\frac{\left(h - 2 \cdot (k)\right)}{t_w} = 17.736 \qquad 1.49 \cdot \sqrt{\frac{E}{F_y}} = 35.884$$

$$1.49 \cdot \sqrt{\frac{E}{F_y}} = 35.884$$

$$L_{cx} = 30 \; ft = 360 \; in$$

$$L_{cy} = 15 \; ft = 180 \; in$$

$$4.71 \cdot \sqrt{\frac{E}{F_y}} = 113.432$$

$$\frac{L_{cx}}{r_x} = 57.135$$

$$\frac{L_{cy}}{r_y} = 47.775$$

$$F_e \coloneqq \frac{\boldsymbol{\pi}^2 \cdot E}{\left(\frac{L_{cx}}{r_x}\right)^2} = 87.68 \ \boldsymbol{ksi}$$

$$\begin{aligned} \mathbf{F_{cr}} &\coloneqq \mathbf{if} \left(\frac{L_{cx}}{r_x} > 4.71 \cdot \sqrt{\frac{E}{F_y}}, 0.877 \cdot F_e, 0.658^{\frac{F_y}{F_e}} \cdot F_y \right) = 39.383 \ \textit{ksi} \end{aligned}$$

$$F_e &\coloneqq \frac{\pi^2 \cdot E}{\left(\frac{L_{cy}}{r_y} \right)^2} = 125.398 \ \textit{ksi}$$

$$F_e \coloneqq rac{\pi^2 \cdot E}{\left(rac{L_{cy}}{r_y}
ight)^2} = 125.398 \,\, extbf{ksi}$$

$$\mathbf{F_{cr}} \coloneqq \mathbf{if} \left(\frac{L_{cy}}{r_y} > 4.71 \cdot \sqrt{\frac{E}{F_y}}, 0.877 \cdot F_e, 0.658^{\frac{F_y}{F_e}} \cdot F_y \right) = 42.315 \ \mathbf{\textit{ks}}$$

$$F_e \coloneqq \frac{oldsymbol{\pi}^2 oldsymbol{\cdot} E}{\left(\max \left(rac{L_{cx}}{r_x}, rac{L_{cy}}{r_y}
ight)
ight)^2} = 87.68 \,\, extbf{ extit{ksi}}$$

$$\begin{split} \mathbf{F}_{cr} &= \mathbf{H} \left(\frac{L_{cr}}{r_{x}} > 4.71 \cdot \sqrt{\frac{E}{F_{y}}}, 0.877 \cdot F_{e}, 0.658^{\frac{e}{I_{x}}} \cdot F_{g} \right) = 39.383 \text{ ksi} \\ F_{cr} &= \mathbf{H} \left(\frac{L_{cr}}{r_{y}} > 4.71 \cdot \sqrt{\frac{E}{F_{y}}}, 0.877 \cdot F_{e}, 0.658^{\frac{e}{I_{x}}} \cdot F_{g} \right) = 42.315 \text{ ksi} \\ F_{cr} &= \mathbf{H} \left(\max \left(\frac{L_{cr}}{r_{x}}, \frac{L_{cg}}{r_{y}} \right) > 4.71 \cdot \sqrt{\frac{E}{F_{y}}}, 0.877 \cdot F_{e}, 0.658^{\frac{F_{x}}{I_{x}}} \cdot F_{y} \right) = 39.383 \text{ ksi} \\ \phi &= 0.9 \\ \phi P_{u} &= \phi \cdot \mathbf{F}_{cr} \cdot A_{g} = \left(1.362 \cdot 10^{2} \right) \text{ kip} \\ 1.2 \cdot 140 \text{ kip} + 1.6 \cdot 420 \text{ kip} = 840 \text{ kip} \end{split}$$

$$\phi = 0.9$$

$$\phi P_n := \phi \cdot \mathbf{F_{cr}} \cdot A_q = (1.362 \cdot 10^3)$$
 kip

$$1.2.140 \, kin + 1.6.420 \, kin - 840 \, kin$$

$$h \coloneqq 14 \; in$$
 $b_f \coloneqq 14.5 \; in$
 $t_f \coloneqq 0.71 \; in$
 $t_w \coloneqq 0.44 \; in$
 $k \coloneqq 1.31 \; in$

$$A_g\!:=\!2 \cdot t_f \cdot b_f \!+\! \left(h\!-\!2 \cdot t_f\right) \cdot t_w \!=\! 26.125 \ \pmb{in}^2$$

$$I_{x} \coloneqq \left(2 \cdot \left(b_{f} \cdot \frac{t_{f}^{3}}{12} + b_{f} \cdot t_{f} \cdot \left(\frac{(h-2 \cdot t_{f})}{2} + \frac{t_{f}}{2}\right)^{2}\right) + t_{w} \cdot \frac{(h-2 \cdot t_{f})^{3}}{12}\right) = 983.036 \ in^{4}$$

$$S_{x} \coloneqq \frac{I_{x}}{\left(\frac{h}{2}\right)} = 140.434 \ in^{3}$$

$$Z_{x} \coloneqq b_{f} \cdot t_{f} \cdot (h-t_{f}) + \frac{1}{4} \cdot (h-2 \cdot t_{f})^{2} \cdot t_{w} = 154.229 \ in^{3}$$

$$r_{x} \coloneqq \sqrt{\frac{I_{x}}{A_{g}}} = 6.134 \ in$$

$$I_{y} \coloneqq 2 \cdot \left(t_{f} \cdot \frac{b_{f}^{3}}{12}\right) + (h-2 \cdot t_{f}) \cdot \frac{t_{w}^{3}}{12} = 360.843 \ in^{4}$$

$$S_{y} \coloneqq \frac{I_{y}}{b_{f}} = 49.771 \ in^{3}$$

$$S_x \coloneqq \frac{I_x}{\left(\frac{h}{2}\right)} = 140.434 \; \emph{in}^3$$

$$Z_x := b_f \cdot t_f \cdot (h - t_f) + \frac{1}{4} \cdot (h - 2 t_f)^2 \cdot t_w = 154.229 \ in^3$$

$$r_x \! \coloneqq \! \sqrt{rac{I_x}{A_g}} \! = \! 6.134 \; m{in}$$

$$I_y \coloneqq 2 \cdot \left(t_f \cdot \frac{b_f^3}{12} \right) + \left(h - 2 \cdot t_f \right) \cdot \frac{t_w^3}{12} = 360.843 \ in^4$$

$$S_y \coloneqq \frac{I_y}{b_f} = 49.771 \; in^3$$

$$Z_y := \frac{1}{2} \cdot b_f^2 \cdot t_f + \frac{1}{4} \cdot (h - 2 \cdot t_f) \cdot t_w^2 = 75.248 \ in^3$$

$$r_y\!:=\!\sqrt{rac{I_y}{A_g}}\!=\!3.716$$
 in

$$c_w \! \coloneqq \! rac{\left(h \! - \! t_f
ight)^2 \! \cdot \! b_f^{\; 3} \cdot \! t_f}{24} \! = \! \left(1.593 \! \cdot \! 10^4
ight) \, m{in}^6$$

$$J := \frac{2 \cdot b_f \cdot t_f^3 + (h - t_f) \cdot t_w^3}{3} = 3.837 \ in^4$$

$$r_{ts} \coloneqq \sqrt{rac{\sqrt{I_y \cdot c_w}}{S_x}} = 4.132$$
 in

Table 1-1 (continued) W-Shapes

Dimensions

	T				Web		Γ	Fla	nge				Distano	8	
Shape	Area,	Area, Depth, A d		Thickness,		<u>t.</u>	Width,		Thickness,		k		k1	7	Work-
onape	, "										Køes	<i>k</i> _{det}	"	'	Gage
	in.2	Ír	٦.	in	۱.	in.	i	n.	ir	l	ín.	in.	in.	in.	in.
W14×132	38.8	14.7	14 ⁵ /8	0.645	5/8	5/16	14.7	143/4	1.03	1	1.63	25/16	19/16	10	51/2
×120	35.3	14.5	141/2	0.590	9/16	5/16	14.7	14 ⁵ /8	0.940	15/16	1.54	21/4	11/2	1	
×109	32.0	14.3	143/8	0.525	1/2	1/4	14.6	145/8	0.860	7/8	1.46	23/16	11/2 .		
×991	29.1	14.2	141/8	0.485	1/2	1/4	14.6	145/8	0.780	3/4	1.38	21/16	17/16		
×90 ^r	26.5	14.0	14	0.440	7/16	1/4	14,5	141/2	0.710	11/16	1.31	2	17/16	Ý	*

Table 1-1 (continued) W-Shapes

Properties

Axis Y-Y

74.5 3.76 11.5 67.5 3.74 102 61.2 3.73 92.7 55.2 3.71 83.6 2.70 75.6

		W14	-W12	
ts	ft.	· Tors		
		J	C _w	
1.	in.	in.4	in.6	
23	13.7	12.3	25500	
20	13.6	9.37	22700	
17	13.4	7.12	20200	

18000

$$E := 29000 \ ksi = (1.999 \cdot 10^5) \ MPa$$

$$F_y = 50 \ ksi = 344.738 \ MPa$$

$$\frac{b_f}{2 \cdot t_f} = 10.211$$

$$\frac{\left(h-2\cdot(k)\right)}{t_{w}}=25.864$$

$$0.56 \cdot \sqrt{\frac{E}{F_y}} = 13.487$$

Compact Section Criteria

7.80 19.3 8.49 21.7

1530 1380 1240 209 190 173

$$1.49 \cdot \sqrt{\frac{E}{F_y}} = 35.884$$

6.28 234 6.24 212 6.22 192 6.17 173 6.14 157

$$L_{cx} = 30 \; ft = 360 \; in$$

$$L_{cy} = 15 \; ft = 180 \; in$$

$$4.71 \cdot \sqrt{\frac{E}{F_y}} = 113.432$$

$$\frac{L_{cx}}{r_x} = 58.688$$

$$\frac{L_{cy}}{r_{y}}$$
 = 48.433

$$F_e \coloneqq rac{oldsymbol{\pi}^2 oldsymbol{\cdot} E}{\left(rac{L_{cx}}{r_x}
ight)^2} = 83.1 \; oldsymbol{ksi}$$

$$E \coloneqq 29000 \; ksi = (1.999 \cdot 10^3) \; MPa$$

$$F_y \coloneqq 50 \; ksi = 344.738 \; MPa$$

$$\frac{b_f}{2 \cdot t_f} = 10.211 \qquad 0.56 \cdot \sqrt{\frac{E}{F_y}} = 13.487 \qquad \text{Non-Slender Flange}$$

$$\frac{(h-2 \cdot (k))}{t_w} = 25.864 \qquad 1.49 \cdot \sqrt{\frac{E}{F_y}} = 35.884 \qquad \text{Non-Slender Web}$$

$$L_{cx} \coloneqq 30 \; ft = 360 \; in$$

$$L_{cy} \coloneqq 15 \; ft = 180 \; in$$

$$4.71 \cdot \sqrt{\frac{E}{F_y}} = 113.432$$

$$\frac{L_{cx}}{r_x} = 58.688$$

$$\frac{L_{cy}}{r_y} = 48.433$$

$$F_e \coloneqq \frac{\pi^2 \cdot E}{\left(\frac{L_{cx}}{r_x}\right)^2} = 83.1 \; ksi$$

$$F_{ct} \coloneqq \text{If} \left(\frac{L_{cx}}{r_x}\right) \times 4.71 \cdot \sqrt{\frac{E}{F_y}}, 0.877 \cdot F_c, 0.658 \cdot \frac{r_s}{r_s} \cdot F_y \right) = 38.869 \; ksi$$

$$F_c \coloneqq \frac{\pi^2 \cdot E}{\left(\frac{L_{cy}}{r_y}\right)^2} = 122.015 \; ksi$$

$$F_e\!\coloneqq\!rac{oldsymbol{\pi}^2oldsymbol{\cdot} E}{\left(rac{L_{cy}}{r_y}
ight)^2}\!=\!122.015$$
 ksi

$$\begin{aligned} \mathbf{F_{cr}} &\coloneqq \mathbf{if} \left(\frac{L_{cy}}{r_y} > 4.71 \cdot \sqrt{\frac{E}{F_y}}, 0.877 \cdot F_e, 0.658^{\frac{F_y}{F_e}} \cdot F_y \right) = 42.119 \ \textit{ksi} \\ F_e &\coloneqq \frac{\pi^2 \cdot E}{\left(\max \left(\frac{L_{cx}}{r_x}, \frac{L_{cy}}{r_y} \right) \right)^2} = 83.1 \ \textit{ksi} \end{aligned}$$

$$F_e \coloneqq \frac{\pi^2 \cdot E}{\left(\max\left(\frac{L_{cx}}{r_x}, \frac{L_{cy}}{r_y}\right)\right)^2} = 83.1 \text{ ksi}$$

$$\mathbf{F_{cr}} \coloneqq \mathbf{if} \left(\max \left(\frac{L_{cx}}{r_x}, \frac{L_{cy}}{r_y} \right) > 4.71 \cdot \sqrt{\frac{E}{F_y}}, 0.877 \cdot F_e, 0.658^{\frac{F_y}{F_e}} \cdot F_y \right) = 38.869 \text{ ksi}$$

$$\phi = 0.9$$

$$\phi\!\coloneqq\!0.9$$

$$\phi P_n\!\coloneqq\!\phi\!\cdot\!\mathbf{F_{cr}}\!\cdot\!A_g\!=\!913.907\;\pmb{kip}$$

$$1.2 \cdot 140 \ kip + 1.6 \cdot 420 \ kip = 840 \ kip$$

LRFD	ASD
$\phi_c P_n = 903 \text{ kips} > 840 \text{ kips}$ o.k.	$\frac{P_n}{\Omega_c}$ = 601 kips > 560 kips o.k.

The state of the s