Effect sizes for paired data should use the change score variability rather than the pre-test variability.

Alex Gould

2024-10-02

Full Citation

Dankel, SJ and Loenneke, JP. Effect sizes for paired data should use the change score variability rather than the pre-test variability. J Strength Cond Res 35(6): 1773–1778, 2021—}

What is effect size

- ➤ Variable that provides an overall measure for magnitude of change (Dankel and Loenneke (2021))
- ▶ Differs from a T-statistic because sample size is not included
- Used in various baseline-post-treatment comparison
 - Specifically, they are looking at this comparison from the lens of meta-analyses for exercise science and sports medicine

Authors' Aims

- ➤ To convince the audience through analysis that baseline and post-test standard deviations (study sample measures of variability) don't tell the full story on the overall variability of the intervention.
- ➤ To convince the readers that the heterogeneity of the study sample can play a part in unintentionally influencing effect size measurements.

How would one describe the two types of aforementioned variability?

Variability of the Study Sample

- ► Any measure of difference between subjects in a given treatment group
- Represented by the Baseline and Post-treatment Standard Deviation.
- ▶ Dankel(Dankel and Loenneke (2021)) and his team claim that the use of this type of variability in paired-sample studies is useless as it has nothing to do with the treatment itself

Variability of the Intervention

- ► Any measure of difference between baseline and post-treatment measure
- Represented in this case by the Standard Deviation of Change Scores (I will elaborate on this later)
- ▶ Dankel and his team prefer this method of assessing variability

Dr. Scott Dankel

- Professor at Rowan University, a public research university in New Jersey
- Attended the University of Mississippi to pursue a Masters and PhD in Exercise Science
- Research Interests include acute and chronic adaptations to blood flow restricted exercise (2024a)

Jeremy Paul Loenneke

- Professor at The University of Mississippi
- Attended Southeast Missouri State for his Bachelors and Masters in Nutrition and Exercise Science
- Eventually got his PhD in Exercise Physiology at the University of Oklahoma
- ▶ Research Discipline is in Skeletal Muscle Plasticity (2024b)

General Comments

- Regarding the disciplines of the authors, this paper was published in The Journal of Strength and Conditioning Research
- ▶ Good example of the use of statistics as an interdisciplinary tool

Introduction

Specific Effect Size Measures

The author's claim that the common effect size measures listed below are used exhaustively in meta-analyses in the exercise science discipline.

- Cohen's d (Cite)
- ► Hedge's g (Cite)
- Glass delta (Cite)
- ► Each use some combination of baseline standard deviation and post-treatment standard deviation.
- ► Measures of variability of the study sample

Paired Data vs. Independent Data

Independent Data

- ▶ Data collected through an Independent design
 - Each subject is only measured once
 - Subjects are allocated into a baseline group and a post-treatment group
 - Study sample variability is more important
 - The pooled standard error is the way to assess this variability

Paired Data

- ▶ Data that is collected through a Paired Sample design
 - Same subject is assessed at both time points.
 - ► Since its based on the same subject, this data is not independent
 - In this type of Design, study sample variability is irrelevant
 - Variability of assessed by standard error of the change scores

Since most meta-analysis data is paired, Dankel's analysis focuses on primarily paired-sample designs. Therefore, the authors believe that intervention variability is the best measure for this specific analysis.

Methods

Preliminary measures

 $M_{change} = {\sf Difference}$ between means of Posttreatment group and baseline group in $SD_{bsl} = {\sf Standard}$ Deviation of the baseline group in an independent design $SD_{post} = {\sf Standard}$ Deviation of the posttreatment group in an independent design $n_{bsl} = {\sf The}$ sample size of the baseline group $n_{post} = {\sf The}$ sample size of the posttreatment group

$$SD_{ ext{pooled}} = \sqrt{rac{(n_{ ext{bsl}} - 1)SD_{ ext{bsl}}^2 + (n_{ ext{post}} - 1)SD_{ ext{post}}^2}{n_{ ext{bsl}} + n_{ ext{post}} - 2}}$$

Calculations of Common Effect Size measures

Cohen's
$$d = \frac{M_{\text{change}}}{SD_{\text{pooled}}}$$

Glass's
$$\delta = \frac{M_{\text{change}}}{SD_{\text{bsl}}}$$

Hedge's
$$g = C * \frac{M_{\text{change}}}{SD_{\text{pooled}}}$$

Where C is a constant multiplied to account for small sample sizes

Based off these measures, we can calculate an Independent t test statistic:

$$T_{\text{indep}} = \frac{es^*}{\sqrt{n^*}}$$

Where es^* is whatever effect size above is being used and n* is the total sample size of the group we are trying to prove the significance of. From this it is apparent how using the incorrect effect size can be detrimental to a given analysis.

Analysis and Procedure

Figure 1

Figure 2

Results

Discussion

References

- 2024b. https://hesrm.olemiss.edu/people/jeremy-paul-loenneke/.

 ——. 2024a. https://research.rowan.edu/researchareas/hes/dankel/about.html.

 Dankel Scott L and Jeremy P Loonneke 2021 "EFFECT SIZES
- Dankel, Scott J., and Jeremy P. Loenneke. 2021. "EFFECT SIZES FOR PAIRED DATA SHOULD USE THE CHANGE SCORE VARIABILITY RATHER THAN THE PRE- TEST VARIABILITY." *Journal of Strength and Conditioning Research* 6 (35): 1773–78.