UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA- FEELT

AMANDA CAETANO ALVARENGA - 11921EAU004 JOÃO PEDRO DIAS LIMA - 11921EAU003 KESLLEY BRITO RAMOS - 11921EAU002

> GRUPO 7- FLUIDSIM: Cartesian Gantry Robot com Ventosa

> > Uberlândia- MG Abril/2025

AMANDA CAETANO ALVARENGA JOÃO PEDRO DIAS LIMA KESLLEY BRITO RAMOS

GRUPO 7 - FLUIDSIM: Cartesian Gantry Robot com Ventosa

Trabalho de simulação no Fluidsim apresentado como requisito para conclusão das atividades de simulação da disciplina Sistemas de Controle Hidráulico e Pneumático pela Universidade Federal de Uberlândia.

Orientador: Prof. João Cicero da Silva

Uberlândia- MG 2025

SUMÁRIO

1 - INTRODUÇÃO	3
2 - DESENVOLVIMENTO	
3 - CONCLUSÃO	
4 - REFERÊNCIAS	
5 - APÊNDICES	

1 - INTRODUÇÃO

Este trabalho apresenta o desenvolvimento e a simulação de um sistema pneumático baseado em um manipulador cartesiano de dois eixos (também chamado de robô cartesiano ou *cartesian gantry robot*), operando nos eixos Y e Z como mostra a figura 1. O sistema tem como objetivo realizar movimentos de translação linear para manipulação de peças de forma automatizada. A simulação será realizada no software FluidSIM, utilizando componentes pneumáticos para controlar a movimentação.

Figura 1 - Manipulador Cartesiano de Dois Eixos

Fonte: atividade "G7 - FS"

este tipo de sistema é amplamente utilizado em aplicações industriais, como:

- Paletização
- Montagem automatizada
- Manuseio de peças
- Operações de pick and place

O dispositivo é composto por uma estrutura base que sustenta dois cilindros pneumáticos lineares: um para o deslocamento no eixo Y (horizontal) e outro para o eixo Z (vertical). A extremidade do cilindro Z é equipada com uma ventosa pneumática, responsável pela captura e movimentação dos objetos. O controle da sequência de movimentos poderia ser realizada de diversas forma como:

- Comando manual
- Método intuitivo (fim de curso acionando atuadores diretamente)[1]
- Método passo-a-passo^[1]
- Método cascata^[1]
- Grupos de comando (TAA-TAB, temporizador, ...)
- CLP e Válvulas pilotadas por solenóides[1][2]

Para este trabalho foi adotado o método passo-a-passo implementado com grupos de comando TAA-TAB para o controle sequencial pneumático devido à sua alta escalabilidade e facilidade para adaptações.

2 - DESENVOLVIMENTO

A tabela a seguir apresenta os principais componentes utilizados no sistema:

Tabela 1 - Tabela de Componentes Essenciais

Componente	Descrição	Função Principal		
Estrutura Base	Perfis de alumínio ou aço.	Suporte e estabilidade do robô.		
Cilindro Pneumático Eixo Y	Cilindro linear pneumático horizontal.	Movimento no eixo Y (frente ↔ trás).		
Cilindro Pneumático Eixo Z	Cilindro pneumático vertical (de dupla ação).	Movimento no eixo Z (subida/descida).		
Ventosa a vácuo	alimentada por ar comprimido.	Agarrar e mover objetos.		
Válvulas Solenoides	Válvulas elétricas que controlam o fluxo de ar.	Comando elétrico indireto		
Módulos Sequencial Passo-a-Passo (Stepper module TAA, TAB)	método adotado para o controle pneumático sequencial	Coordenação e automação dos movimentos.		
Sensores de Posição Pneumáticos	Sensores de fim de curso instalados nos cilindros.	Detectar posição final e inicial do cilindro		
Unidade de Ar (FRL)	Conjunto de filtro, regulador e lubrificador de ar comprimido.	Preparação adequada do ar para o sistema.		

Fonte: autores

A tabela a seguir indica a representação cronológica do funcionamento do sistema pneumático indicando as fases ou passos de 8 movimentos e suas representações algébricas, abordando o passo a passo típico do ciclo de operação.

Tabela 2 - Cronologia de Operação do Sistema Pneumático/ Tabela de fases ou passos para 8 movimentos

Passo	Descrição da Ação	Detalhes Técnicos
0	Ponto inicial (todos os cilindros recolhidos)	Sistema pronto para iniciar o ciclo.

1	Movimento no eixo Y (A+)	Cilindro A estende para alinhar sobre o objeto.				
2	Descida no eixo Z (B+)	Cilindro B estende, levando a ventosa até o objeto.				
3	Ativação da ventosa (C+)	Ventosa suga e segura o objeto.				
4	Subida no eixo Z (B-)	Cilindro B recolhe, levantando o objeto.				
5	Movimento reverso no eixo Y (A-)	Cilindro A recolhe, movimenta-se para o destino.				
6	Descida no eixo Z (B+)	Cilindro B estende novamente para descer o objeto.				
7	Desativação da ventosa (C-)	Solta o objeto no local correto.				
8	Subida final no eixo Z (B-)	Cilindro B recolhe, voltando à posição inicial.				
9	Ciclo reinicia	Pronto para pegar o próximo objeto, operação semi-automática (movimentação uma peça) ou automática (movimentação de várias peças) selecionada por comando elétrico				

Equação algébrica final: A+B+C+B-A-B+C-B-

Com base na Tabela de Fases e na equação algébrica dos movimentos (A+B+C+B-A-B+C-B-) são obtidos os seguinte diagramas:

Figura 2 - Diagrama Trajeto-Fase ou Trajeto-passo

A

B

C

Fonte: autores

Figura 3 - Diagrama Trajeto-Tempo (sem variações nos intervalos)

Figura 4 - Diagrama de Comando

A

B

C

to t1 t2 t3 t4 t5 6 7 8

tempo

Fonte: autores

Figura 5 - Layout Real do Circuito

Fonte: https://www.automatedwarehouseonline.com/festo-introduces-heavy-duty-gantry-system-palletizing/

O desenvolvimento da simulação sistema pneumático foi dividido em 6 folhas para melhor organização, na qual a FL. 1 se trata da fonte pneumática. A seguir estão algumas opções de fontes recomendadas para a implementação.

Figura 6 - Fonte Pneumática Completa (FL. 1-6)

Diagrama Fonte completa (básica) - Simulação FL 1/6

Fonte: autores

Figura 7 - Fonte Pneumática Alternativa

Figura 8 - Fonte Pneumática Utilizada (simplificada)

Tabela 3 - Data Sheet ou Folha de Dados

item	tag	descrição	função	configuração	Marca/fab.	obs

Fonte: autores

Figura 7 - Diagramas Gráficos de Movimento (Método passo-a-passo)

A seguir são apresentados os diagramas desenvolvidos para os seguintes acionamentos:

- Diagrama Pneumático Direto por Ação Mecanizada (FL. 2-6)
- Diagrama Pneumático Indireto por Ação Mecanizada (FL. 3-6)
- Diagrama Pneumático Indireto por Ação Automatizada ou Semi-Automática (FL. 4-6)
- Diagrama Pneumático Indireto por Ação Automática e Comando Elétrico Indireto (FL. 5-6)
- Diagrama Pneumático Indireto de Emergência e Comando Elétrico com Emergência Eletropneumática (FL. 6-6)

Para os diagramas com ação semi-automática em diante foi adotado o método passo-a-passo com o uso de TAA-TAB^{[3][5]} (fluidSIM: valve groups → stepper module) devido à sua alta escalabilidade e facilidade de adaptação.

G7 FS Circulto1 - Robô Cartesiano com Ventosa : A+B+C+B-A-B+C+B-operação direta mecanizada (Folha 2-6)

Fonte Pneumática

0.48

0.47

0.47

0.40

0.40

0.40

0.40

0.41

0.42

0.43

0.44

0.44

0.44

0.44

0.45

0.46

Figura 8 - Operação mecânica direta (FL. 2/6)

Tabela 4 - Planilha de Sequência ou Sequência de Comando com Ação Mecanizada Direta: A+B+C+B-A-B+C-B-

ITEM	PASSO OU FASE	ACIONAMENTO	EL. DE SINAL	EL. AUX. DE SINAL	EL. DE COMANDO E CONTROLE	EL. AUX DE CONTROLE	EL. DE TRABALHO(ATUADOR)	OBS
1	0-1	Manual	NA	NA	Z(14)-1.1	1.01(MI)	1.0(avanço moderado)	
2	1-2	Manual	NA	NA	Z(14)-2.1	2.01(MI)	2.0(avanço moderado)	
3	2-3	Manual	NA	NA	Z(14)-3.1	3.01(MI)	3.0(ON)	
4	3-4	Manual	NA	NA	Y(12)-2.1	2.02(MI)	2.0(retorno moderado)	
5	4-5	Manual	NA	NA	Y(12)-1.1	1.02(MI)	1.0(retorno moderado)	_

Γ	6	5-6	Manual	NA	NA	Z(14)-2.1	2.01(MI)	2.0(avanço
								moderado)
	7	6-7	Manual	NA	NA	Y(12)-3.1	NA	3.0(OFF)
	8	7-8	Manual	NA	NA	Y(12)-2.1	2.02(MI)	2.0(retorno moderado)

Figura 9 - Operação mecânica indireta (FL. 3/6)

Fonte: autores

Tabela 5 - Planilha de Sequência ou Sequência de Comando com Ação Mecanizada Indireta: A+B+C+B-A-B+C-B-

ITEM	PASSO OU FASE	ACIONAMENTO	EL. DE SINAL	EL. AUX. DE SINAL	EL. DE COMANDO E CONTROLE	EL. AUX DE CONTROLE	EL. DE TRABALHO(ATUADOR)	OBS
1	0-1	Manual	Z(14)-1.2	NA	Z(14)-1.1	1.01(MI)	1.0(avanço moderado)	
2	1-2	Manual	Z(14)-2.2	NA	Z(14)-2.1	2.01(MI)	2.0(avanço moderado)	
3	2-3	Manual	Z(14)-3.2	NA	Z(14)-3.1	3.01(MI)	3.0(ON)	
4	3-4	Manual	Y(12)-2.2	NA	Y(12)-2.1	2.02(MI)	2.0(retorno moderado)	
5	4-5	Manual	Y(12)-1.2	NA	Y(12)-1.1	1.02(MI)	1.0(retorno moderado)	
6	5-6	Manual	Z(14)-2.2	NA	Z(14)-2.1	2.01(MI)	2.0(avanço moderado)	
7	6-7	Manual	Y(12)-3.2	NA	Y(12)-3.1	NA	3.0(OFF)	
8	7-8	Manual	Y(12)-2.2	NA	Y(12)-2.1	2.02(MI)	2.0(retorno moderado)	

OF TO CONSIST AND CONSISTS AND

Figura 10 - Operação semi-automática com comando elétrico (FL. 4/6)

Tabela 6 - Planilha de Sequência ou Sequência de Comando com Ação Semi-Automático: A+B+C+B-A-B+C-B-

ITEM	PASSO OU FASE	ACIONAMENTO	EL. DE SINAL	EL. AUX. DE SINAL	EL. DE COMANDO E CONTROLE	EL. AUX DE CONTROLE	EL. DE TRABALHO(ATUADOR)	OBS
1	0-1	IHM	1.2	1.4,TAA1, TAB1	Z(14)-1.1	1.01(MI)	1.0(avanço moderado)	comando elétrico 1S2,1Y2
2	1-2	1.0	2.2	TAA2, 2.10	Z(14)-2.1	2.01(MI)	2.0(avanço moderado)	
3	2-3	2.0	3.2	TAA3	Z(14)-3.1	3.01(MI), 3.02, 3.03, 3.04, 3S1, 3Y1	3.0(ON)	necessário a ventosa pegar algo para seguir para o próximo comando
4	3-4	3.03	2.3	TAA4, 2.11	Y(12)-2.1	2.02(MI)	2.0(retorno moderado)	
5	4-5	2.0	1.3	TAA5	Y(12)-1.1	1.02(MI)	1.0(retorno moderado)	
6	5-6	1.0	2.4	TAA6, 2.10	Z(14)-2.1	2.01(MI)	2.0(avanço moderado)	
7	6-7	2.0	3.3	TAA7	Y(12)-3.1	3.02, 3.03, 3.04, 3S1, 3Y1	3.0(OFF)	
8	7-8	3.03	2.5	TAB1, 2.11	Y(12)-2.1	2.02(MI)	2.0(retorno moderado)	

Company - And Company - An

Figura 11 - Operação automática com comando elétrico (FL. 5-6)

Tabela 7 - Planilha de Sequência ou Sequência de Comando com Ação Automática: A+B+C+B-A-B+C-B-

ITEM	PASSO OU FASE	ACIONAMENTO	EL.DE SINAL	EL. AUX. DE SINAL	EL. DE COMANDO E CONTROLE	EL. AUX DE CONTROLE	EL. DE TRABALHO (ATUADOR)	OBS
1	0-1	IHM	1.2	1.4,TAA1, TAB1	Z(14)-1.1	1.01(MI)	1.0(avanço moderado)	comando elétrico 1S2,1Y2 (ciclo único)
2	1-2	1.0	2.2	TAA2, 2.10	Z(14)-2.1	2.01(MI)	2.0(avanço moderado)	ciclo único
3	2-3	2.0	3.2	TAA3	Z(14)-3.1	3.01(MI), 3.02, 3.03, 3.04, 3S1, 3Y1	3.0(ON)	necessário a ventosa pegar algo para seguir para o próximo comando (ciclo único)
4	3-4	3.03	2.3	TAA4, 2.11	Y(12)-2.1	2.02(MI)	2.0(retorno moderado)	ciclo único
5	4-5	2.0	1.3	TAA5	Y(12)-1.1	1.02(MI)	1.0(retorno moderado)	ciclo único
6	5-6	1.0	2.4	TAA6, 2.10	Z(14)-2.1	2.01(MI)	2.0(avanço moderado)	ciclo único
7	6-7	2.0	3.3	TAA7	Y(12)-3.1	3.02, 3.03, 3.04, 3S1, 3Y1	3.0(OFF)	ciclo único
8	7-8	3.03	2.5	TAB1, 2.11	Y(12)-2.1	2.02(MI)	2.0(retorno moderado)	ciclo único
9	8-0	2.0	1.8	1.2, 1.4, 1.6, 1.10	Idem aos itens 1 a 8	Idem aos itens 1 a 8	Idem aos itens 1 a 8	Seletora (1.4)

Figura 12 - Operação automática com comando elétrico e emergência eletropneumática (FL. 6/6)

Tabela 8 - Planilha de Sequência ou Sequência de Comando com Ação Automática e Emergência Elétrica e Pneumática: A+B+C+B-A-B+C-B-

ITEM	PASSO OU FASE	ACIONAMENTO	EL.DE SINAL	EL. AUX. DE SINAL	EL. DE COMANDO E CONTROLE	EL. AUX DE CONTROLE	EL. DE TRABALHO (ATUADOR)	OBS
1	0-1	IHM	1.2	1.4,TAA1,	Z(14)-1.1	1.01(MI)	1.0(avanço	comando elétrico
				TAB1			moderado)	1S2,1Y2 (ciclo único)
2	1-2	1.0	2.2	TAA2,	Z(14)-2.1	2.01(MI)	2.0(avanço	ciclo único
				2.10	7(14) 0.1	0.04/840	moderado)	,
3	2-3	2.0	3.2	TAA3	Z(14)-3.1	3.01(MI),	3.0(ON)	necessário a ventosa
						3.02, 3.03,		pegar algo para
						3.04, 3S1,		seguir para o próximo
<u> </u>	0.4	0.00	0.0	TA A 4	V(40) 0 4	3Y1	0.0/	comando (ciclo único)
4	3-4	3.03	2.3	TAA4,	Y(12)-2.1	2.02(MI)	2.0(retorno	ciclo único
 _	1.5		1.0	2.11	2((40) 4 4	4.00(8.41)	moderado)	
5	4-5	2.0	1.3	TAA5	Y(12)-1.1	1.02(MI)	1.0(retorno moderado)	ciclo único
6	5-6	1.0	2.4	TAA6,	Z(14)-2.1	2.01(MI)	2.0(avanço	ciclo único
		1.0	2.7	2.10	2(14) 2.1	2.01(1/11)	moderado)	Giolo unido
7	6-7	2.0	3.3	TAA7	Y(12)-3.1	3.02, 3.03,	3.0(OFF)	ciclo único
					, ,	3.04, 3S1,	, ,	
						3Y1		
8	7-8	3.03	2.5	TAB1,	Y(12)-2.1	2.02(MI)	2.0(retorno	ciclo único
				2.11			moderado)	
9	8-0	2.0	1.8	1.2, 1.4,	ldem aos	Idem aos	Idem aos	Seletora (1.4)
				1.6, 1.10	itens 1 a 8	itens 1 a 8	itens 1 a 8	
10	0-8	AUT	1.8	1.2, 1.4,				Ciclo Contínuo
				1.6, 1.10				
11		IHM, 1S0	1SS0		1YE0-0EG2		Bloqueio	Emergência Elétrica
							1.0, 2.0 e	
							3.0	

12	ІНМ	0RS1	0YR1-0EG2	0KR1	Desbloqueio 1.0, 2.0 e 3.0	Aplicar NR12 (recomendado retornar a seletora para semi-automática antes)
13	IHM	OES1	1E0-OEG1		Bloqueio 1.0, 2.0 e 3.0	Emergência Pneumática
14	ІНМ	ORS2	1R2-0EG1		Desbloqueio 1.0, 2.0 e 3.0	Aplicar NR12 (recomendado retornar a seletora para semi-automática antes)

3 - CONCLUSÃO

A realização deste trabalho permitiu consolidar os conhecimentos sobre sistemas pneumáticos de controle sequencial aplicados em manipuladores cartesianos. Através da simulação no software FluidSIM, foi possível projetar e implementar um sistema funcional utilizando o método passo-a-passo com módulos TAA-TAB, demonstrando a eficácia dessa abordagem para controle automatizado de movimentos lineares em ambientes industriais.

Foram explorados diferentes modos de operação (manual, semi-automático e automático), além de sistemas de segurança com atuação em emergências elétricas e pneumáticas, o que reforçou a importância de pensar a automação de forma completa e segura. O estudo detalhado dos diagramas de comando, sequências de acionamento e integração dos componentes mostrou a complexidade prática envolvida na automação de processos simples, como o pick and place.

Com isso, o projeto atendeu ao objetivo proposto, evidenciando a relevância do conhecimento de sistemas de Controle Hidráulico e Pneumático para aplicações industriais modernas e abrindo caminhos para melhorias futuras, como a ampliação da sequência de movimentos ou a adaptação para outros métodos de controle como cascata ou CLPs (controladores lógicos programáveis).

4 - REFERÊNCIAS

[1] CEARÁ. Secretaria da Educação. **Mecânica: acionamentos hidráulicos e pneumáticos**. Disponível em:

https://www.seduc.ce.gov.br/wp-content/uploads/sites/37/2011/10/mecanica_acionamentos_hidraulicos_e_pneumaticos.pdf. Acesso em: 28 abr. 2025.

[2] Automação industrial e manufatura. Disponível em:

https://pdfcoffee.com/automacao-industrial-e-manufatura-pdf-free.html. Acesso em: 28 abr. 2025.

YOUTUBE. Ventosa vácuo fluidSIM. Disponível em:

https://www.youtube.com/watch?v=0WMjvuW BNs. Acesso em: 28 abr. 2025.

[3] Métodos de resolução para circuitos sequenciais. Disponível em:

https://hidraulicaepneumatica.com/metodos-de-resolucao-para-circuitos-sequenciais /. Acesso em: 28 abr. 2025.

[4] UTFPR. Simbologia pneumática – ISO 1219-1. Disponível em:

http://paginapessoal.utfpr.edu.br/luizotavio/disciplinas/hidraulica-e-pneumatica-controle-e-automacao/material-de-aula/Simbologia%20pneumatica%20-%20ISO%201219-1.pdf/view. Acesso em: 28 abr. 2025.

[5] YOUTUBE. **Método Passo a Passo Industrial** . Disponível em:

https://www.youtube.com/watch?v=Dd_yXkBQfq4. Acesso em: 28 abr. 2025.

[6] YOUTUBE. Sequência de Movimentos - Curso de Pneumática Básica.

Disponível em: https://youtu.be/xEfEBR3oX20. Acesso em: 28 abr. 2025.

[7] FESTO. **Módulo sequencial passo a passo**. Disponível em:

https://www.festo.com/br/pt/p/modulo-sequencial-passo-a-passo-id_PROD_DID_152 885/. Acesso em: 28 abr. 2025.

[8] FESTO. Estágios do ciclo. Disponível em:

https://www.festo.com/br/pt/p/estagios-do-ciclo-id_M5_TAKT/. Acesso em: 28 abr. 2025.

[9] SENAI. Pneumática básica: manual. Disponível em:

https://www.studocu.com/pt-br/document/universidade-paulista/ferramentas-da-qualidade/pneumatica-basica-manual-senai/6287384. Acesso em: 28 abr. 2025.

[10] ABNT. Estrutura do trabalho. Disponível em:

https://normas-abnt.espm.br/index.php?title=Estrutura_do_trabalho. Acesso em: 28 abr. 2025.

[11] UNIVERSIDADE ESTADUAL PAULISTA. **Modelo de estrutura para TCC**. Disponível em:

https://www.ibilce.unesp.br/Home/Biblioteca753/normalizacao/modelo_estrutura_tcc.pdf. Acesso em: 28 abr. 2025.

5 - APÊNDICES

Arquivos das Simulações:

https://github.com/keslley11/Portifolio/tree/main/Sistemas_de_Controle_Hidraulico_e __Pneumatico/fluidsim_simulacoes