Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)

**Computation Tree Logic** 

Equivalences and Abstraction

#### Linear vs branching time

 $\mathtt{CTLSS4.1-1}$ 





#### **Computation tree**

CTLSS4.1-1B

The computation tree of a transition system  $T = (S, Act, \rightarrow, s_0, AP, L)$  arises by:

- unfolding into a tree
- abstraction from the actions
- projection of the states s to their labels  $L(s) \subseteq AP$

The computation tree of state  $s_0$  in a transition system  $T = (S, Act, \rightarrow, S_0, AP, L)$  arises by:

- unfolding  $T_{s_0} = (S, Act, \rightarrow, s_0, AP, L)$  into a tree
- abstraction from the actions
- projection of the states s to their labels  $L(s) \subseteq AP$

mutual exclusion with semaphore and  $AP = \{crit_1, crit_2\}$ :



mutual exclusion with semaphore and  $AP = \{crit_1, crit_2\}$ :



mutual exclusion with semaphore and  $AP = \{crit_1, crit_2\}$ :



# Linear vs. branching time

 $\mathtt{CTLSS4.1-2}$ 

| linear time | branching time |  |
|-------------|----------------|--|
| path based  | state based    |  |
|             |                |  |
|             |                |  |
|             |                |  |
|             |                |  |
|             |                |  |

| ne | branching time               | linear time          |          |
|----|------------------------------|----------------------|----------|
|    | state based computation tree | path based<br>traces | behavior |
|    |                              |                      |          |
|    |                              |                      |          |
|    |                              |                      |          |
|    |                              |                      |          |
|    |                              |                      |          |

## Linear vs. branching time

 $\mathtt{CTLSS4.1-2}$ 

|                   | linear time          | branching time               |
|-------------------|----------------------|------------------------------|
| behavior          | path based<br>traces | state based computation tree |
| temporal<br>logic | LTL<br>path formulas | CTL<br>state formulas        |
|                   |                      |                              |
|                   |                      |                              |
|                   |                      |                              |

## Linear vs. branching time

 $\mathtt{CTLSS4.1-2}$ 

|                   | linear time                                                           | branching time                                           |
|-------------------|-----------------------------------------------------------------------|----------------------------------------------------------|
| behavior          | path based<br>traces                                                  | state based computation tree                             |
| temporal<br>logic | LTL<br>path formulas                                                  | CTL<br>state formulas                                    |
| model<br>checking | PSPACE-complete $\mathcal{O}(\mathit{size}(T) \cdot \exp( \varphi ))$ | PTIME $\mathcal{O}(\operatorname{size}(T) \cdot  \Phi )$ |
|                   |                                                                       |                                                          |
|                   |                                                                       |                                                          |

|                   | linear time                                                                 | branching time                                           |
|-------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|
| behavior          | path based<br>traces                                                        | state based computation tree                             |
| temporal<br>logic | LTL<br>path formulas                                                        | CTL<br>state formulas                                    |
| model<br>checking | PSPACE-complete $\mathcal{O}(\operatorname{size}(T) \cdot \exp( \varphi ))$ | PTIME $\mathcal{O}(\operatorname{size}(T) \cdot  \Phi )$ |
| impl.<br>relation | trace inclusion<br>trace equivalence<br>PSPACE-complete                     | simulation<br>bisimulation<br>PTIME                      |
|                   |                                                                             |                                                          |

|                   | linear time                                                           | branching time                                           |
|-------------------|-----------------------------------------------------------------------|----------------------------------------------------------|
| behavior          | path based<br>traces                                                  | state based computation tree                             |
| temporal<br>logic | LTL<br>path formulas                                                  | CTL<br>state formulas                                    |
| model<br>checking | PSPACE-complete $\mathcal{O}(\mathit{size}(T) \cdot \exp( \varphi ))$ | PTIME $\mathcal{O}(\operatorname{size}(T) \cdot  \Phi )$ |
| impl.<br>relation | trace inclusion<br>trace equivalence<br>PSPACE-complete               | simulation<br>bisimulation<br>PTIME                      |
| fairness          | can be<br>encoded                                                     | requires special<br>treatment                            |

Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) **Computation Tree Logic** syntax and semantics of CTL expressiveness of CTL and LTL CTL model checking fairness, counterexamples/witnesses CTI + and CTI \*

Equivalences and Abstraction

## Computation Tree Logic (CTL)

 $\mathtt{CTLSS4.1-4}$ 

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

eventually:

$$\exists \lozenge \Phi \stackrel{\mathsf{def}}{=} \exists (\mathit{true} \, \mathsf{U} \, \Phi)$$

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

eventually:

$$\exists \lozenge \Phi \stackrel{\text{def}}{=} \exists (true \cup \Phi)$$
$$\forall \lozenge \Phi \stackrel{\text{def}}{=} ?$$

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

eventually:

$$\exists \Diamond \Phi \stackrel{\mathsf{def}}{=} \exists (\mathit{true} \, \mathsf{U} \, \Phi)$$

$$\forall \Diamond \Phi \stackrel{\text{def}}{=} \forall (true \cup \Phi)$$

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

eventually: always:  $\exists \Diamond \Phi \stackrel{\text{def}}{=} \exists (true \cup \Phi) \quad \exists \Box \Phi \stackrel{\text{def}}{=} ?$  $\forall \lozenge \Phi \stackrel{\mathsf{def}}{=} \forall (\mathit{true} \, \mathsf{U} \, \Phi)$ 

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

eventually: always:  $\exists \Diamond \Phi \stackrel{\text{def}}{=} \exists (true \cup \Phi) \quad \exists \Box \Phi \stackrel{\text{def}}{=} ?$  $\forall \Diamond \Phi \stackrel{\text{def}}{=} \forall (true \cup \Phi)$ note:  $\exists \neg \Diamond \neg \Phi$  is no **CTL** formula

CTL (state) formulas: 
$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

eventually: always:  $\exists \Diamond \Phi \stackrel{\mathsf{def}}{=} \exists (\mathit{true} \, \mathsf{U} \, \Phi) \qquad \exists \Box \Phi \stackrel{\mathsf{def}}{=} \neg \forall \Diamond \neg \Phi$  $\forall \lozenge \Phi \stackrel{\text{def}}{=} \forall (true \cup \Phi)$ *note:*  $\exists \neg \Diamond \neg \Phi$  is no **CTL** formula

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

eventually: always: 
$$\exists \lozenge \Phi \stackrel{\text{def}}{=} \exists (\textit{true} \ U \ \Phi) \qquad \exists \Box \Phi \stackrel{\text{def}}{=} \neg \forall \lozenge \neg \Phi$$
 
$$\forall \lozenge \Phi \stackrel{\text{def}}{=} \forall (\textit{true} \ U \ \Phi) \qquad \forall \Box \Phi \stackrel{\text{def}}{=} \neg \exists \lozenge \neg \Phi$$
 
$$\textit{note:} \ \exists \neg \lozenge \neg \Phi \text{ is no } \textbf{CTL} \text{ formula}$$

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

CTL path formulas: 
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

**CTL** path formulas:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Diamond \Phi \mid \Box \Phi$$

$$\bigcirc$$
  $\widehat{=}$  next  $\Diamond$   $\widehat{=}$  eventually

CTL (state) formulas: 
$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

mutual exclusion (safety)  $\forall \Box (\neg crit_1 \lor \neg crit_2)$ 

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

mutual exclusion (safety)  $\forall \Box (\neg crit_1 \lor \neg crit_2)$ "every request will be answered eventually"

 $\forall \Box (request \rightarrow \forall \Diamond response)$ 

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

mutual exclusion (safety) 
$$\forall \Box (\neg crit_1 \lor \neg crit_2)$$

"every request will be answered eventually"

$$\forall \Box (request \rightarrow \forall \Diamond response)$$

traffic lights

$$\forall \Box ( yellow \rightarrow \forall \bigcirc red )$$

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

**CTL** path formulas:

$$\varphi$$
 ::=  $\bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Diamond \Phi \mid \Box \Phi$ 

mutual exclusion (safety) 
$$\forall \Box (\neg crit_1 \lor \neg crit_2)$$

"every request will be answered eventually"

$$\forall \Box (request \rightarrow \forall \Diamond response)$$

$$\forall \Box ( yellow \rightarrow \forall \bigcirc red )$$

$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

**CTL** path formulas:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Diamond \Phi \mid \Box \Phi$$

mutual exclusion (safety)  $\forall \Box (\neg crit_1 \lor \neg crit_2)$ 

"every request will be answered eventually"

$$\forall \Box (request \rightarrow \forall \Diamond response)$$

traffic lights 
$$\forall \Box (yellow \rightarrow \forall \bigcirc red)$$

unconditional process fairness  $\forall \Box \forall \Diamond crit_1 \land \forall \Box \forall \Diamond crit_2$ 

CTLSS4.1-5

| 6 | 8  | 2  | 12 |
|---|----|----|----|
| 4 | 1  | 13 | 5  |
|   | 9  | 10 | 14 |
| 7 | 11 | 15 | 3  |



| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 |    |

| CTLSS4 | .1-5 |
|--------|------|
|--------|------|

| 6 | 8  | 2  | 12 |
|---|----|----|----|
| 4 | 1  | 13 | 5  |
|   | 9  | 10 | 14 |
| 7 | 11 | 15 | 3  |



| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 |    |

transition system has  $16! \approx 2 \cdot 10^{13}$  states

| Example: 15-puzzle | Exam | ple: | 15- | puzz | le |
|--------------------|------|------|-----|------|----|
|--------------------|------|------|-----|------|----|

CTLSS4.1-5

| 6 | 8  | 2  | 12 |
|---|----|----|----|
| 4 | 1  | 13 | 5  |
|   | 9  | 10 | 14 |
| 7 | 11 | 15 | 3  |



| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 |    |

transition system has  $16! \approx 2 \cdot 10^{13}$  states

1

states: game configurations

transitions: legal moves

CTLSS4.1-5

| 6 | 8  | 2  | 12 |
|---|----|----|----|
| 4 | 1  | 13 | 5  |
|   | 9  | 10 | 14 |
| 7 | 11 | 15 | 3  |



| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 |    |

- transition system has  $16! \approx 2 \cdot 10^{13}$  states
- representation as parallel system:

$$\begin{array}{c|c} \textit{left} \parallel \textit{up} \parallel \textit{down} \parallel \textit{right} \\ \text{with shared variables } \textit{field[i]} \text{ for } \textit{i} = 1, \dots, 16 \\ \end{array}$$

| 6 | 8  | 2  | 12 |
|---|----|----|----|
| 4 | 1  | 13 | 5  |
|   | 9  | 10 | 14 |
| 7 | 11 | 15 | 3  |



| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 |    |

- transition system has  $16! \approx 2 \cdot 10^{13}$  states
- representation as parallel system:

$$\| up \| down \| right$$
 with shared variables  $field[i]$  for  $i = 1, \ldots, 16$ 

$$\exists \Diamond \bigwedge_{1 \le i \le 15}$$
 "piece i on field[i]"

| 6 | 8  | 2  | 12 |
|---|----|----|----|
| 4 | 1  | 13 | 5  |
|   | 9  | 10 | 14 |
| 7 | 11 | 15 | 3  |



| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 |    |

- transition system has  $16! \approx 2 \cdot 10^{13}$  states
- representation as parallel system:

$$\| up \| down \| right$$
 with shared variables  $field[i]$  for  $i = 1, \ldots, 16$ 

CTL specification: seeking for a witness for  $\exists \Diamond \bigwedge_{1 \leq i \leq 15}$  "piece i on field[i]"

## **Semantics of CTL**

CTLSS4.1-11

define a satisfaction relation  $\models$  for CTL formulas over AP and a given TS  $T = (S, Act, \rightarrow, S_0, AP, L)$ 

define a satisfaction relation  $\models$  for CTL formulas over AP and a given TS  $T = (S, Act, \rightarrow, S_0, AP, L)$  without terminal states

define a satisfaction relation  $\models$  for CTL formulas over AP and a given TS  $T = (S, Act, \rightarrow, S_0, AP, L)$  without terminal states

- interpretation of state formulas over the states
- interpretation of path formulas over the paths (infinite path fragments)

## Satisfaction relation for path formulas

CTLSS4.1-11A

$$\pi \models \bigcirc \Phi$$
 iff  $s_1 \models \Phi$ 

$$\pi \models \bigcirc \Phi$$
 iff  $s_1 \models \Phi$ 
 $\pi \models \Phi_1 \cup \Phi_2$  iff there exists  $j \geq 0$  such that
 $s_j \models \Phi_2$ 
 $s_k \models \Phi_1$  for  $0 \leq k < j$ 

$$\pi \models \bigcirc \Phi$$
 iff  $s_1 \models \Phi$ 
 $\pi \models \Phi_1 \cup \Phi_2$  iff there exists  $j \geq 0$  such that
 $s_j \models \Phi_2$ 
 $s_k \models \Phi_1$  for  $0 \leq k < j$ 

semantics of derived operators:

$$\pi \models \Diamond \Phi$$
 iff there exists  $j \geq 0$  with  $s_j \models \Phi$ 

$$\pi \models \bigcirc \Phi$$
 iff  $s_1 \models \Phi$ 
 $\pi \models \Phi_1 \cup \Phi_2$  iff there exists  $j \geq 0$  such that
 $s_j \models \Phi_2$ 
 $s_k \models \Phi_1$  for  $0 \leq k < j$ 

semantics of derived operators:

$$\pi \models \Diamond \Phi$$
 iff there exists  $j \geq 0$  with  $s_j \models \Phi$   
 $\pi \models \Box \Phi$  iff for all  $j \geq 0$  we have:  $s_j \models \Phi$ 

## Satisfaction relation for state formulas

 $\mathtt{CTLSS4.1-13}$ 



$$s \models true$$
  
 $s \models a$  iff  $a \in L(s)$ 

$$s \models true$$
  
 $s \models a$  iff  $a \in L(s)$   
 $s \models \Phi_1 \land \Phi_2$  iff  $s \models \Phi_1$  and  $s \models \Phi_2$ 

$$s \models true$$
 $s \models a$  iff  $a \in L(s)$ 
 $s \models \Phi_1 \land \Phi_2$  iff  $s \models \Phi_1$  and  $s \models \Phi_2$ 
 $s \models \neg \Phi$  iff  $s \not\models \Phi$ 

$$s \models true$$
 $s \models a$  iff  $a \in L(s)$ 
 $s \models \Phi_1 \land \Phi_2$  iff  $s \models \Phi_1$  and  $s \models \Phi_2$ 
 $s \models \neg \Phi$  iff  $s \not\models \Phi$ 
 $s \models \exists \varphi$  iff there is a path  $\pi \in Paths(s)$ 
 $s.t. \pi \models \varphi$ 

$$s \models true$$
 $s \models a$  iff  $a \in L(s)$ 
 $s \models \Phi_1 \land \Phi_2$  iff  $s \models \Phi_1$  and  $s \models \Phi_2$ 
 $s \models \neg \Phi$  iff  $s \not\models \Phi$ 
 $s \models \exists \varphi$  iff there is a path  $\pi \in Paths(s)$ 
 $s.t. \pi \models \varphi$ 
 $s \models \forall \varphi$  iff for each path  $\pi \in Paths(s)$ :
 $\pi \models \varphi$ 

$$s \models true$$
 $s \models a$  iff  $a \in L(s)$ 
 $s \models \Phi_1 \land \Phi_2$  iff  $s \models \Phi_1$  and  $s \models \Phi_2$ 
 $s \models \neg \Phi$  iff  $s \not\models \Phi$ 
 $s \models \exists \varphi$  iff there is a path  $\pi \in Paths(s)$ 
 $s.t. \pi \models \varphi$ 
 $s \models \forall \varphi$  iff for each path  $\pi \in Paths(s)$ :
 $\pi \models \varphi$ 

satisfaction set for state formula **Φ**:

$$Sat(\Phi) \stackrel{\mathsf{def}}{=} \{ s \in S : s \models \Phi \}$$

## **Semantics of the next operator**

 $\mathtt{CTLSS4.1-8}$ 

$$s \models \exists \bigcirc \Phi$$
 iff there exists  $\pi = s s_1 s_2 ... \in Paths(s)$   
s.t.  $\pi \models \bigcirc \Phi$ 

$$s \models \exists \bigcirc \Phi$$
 iff there exists  $\pi = s s_1 s_2 ... \in Paths(s)$   
s.t.  $\pi \models \bigcirc \Phi$ , i.e.,  $s_1 \models \Phi$ 



 $Post(s) \cap Sat(\Phi) \neq \emptyset$ 

$$s \models \exists \bigcirc \Phi$$
 iff there exists  $\pi = s s_1 s_2 ... \in Paths(s)$   
s.t.  $\pi \models \bigcirc \Phi$ , i.e.,  $s_1 \models \Phi$   
 $s \models \forall \bigcirc \Phi$  iff for all  $\pi = s s_1 s_2 ... \in Paths(s)$ :  
 $\pi \models \bigcirc \Phi$ 



 $Post(s) \cap Sat(\Phi) \neq \emptyset$ 

$$s \models \exists \bigcirc \Phi$$
 iff there exists  $\pi = s s_1 s_2 ... \in Paths(s)$   
s.t.  $\pi \models \bigcirc \Phi$ , i.e.,  $s_1 \models \Phi$   
 $s \models \forall \bigcirc \Phi$  iff for all  $\pi = s s_1 s_2 ... \in Paths(s)$ :  
 $\pi \models \bigcirc \Phi$ , i.e.,  $s_1 \models \Phi$ 



 $Post(s) \cap Sat(\Phi) \neq \emptyset$ 



 $Post(s) \subseteq Sat(\Phi)$ 



































CTL formula

$$\Phi = \forall \Box \, \forall \Diamond start$$



$$\Phi = \forall \Box \boxed{\forall \Diamond \textit{start}}$$

$$Sat(\forall \Diamond start) = ?$$



$$\Phi = \forall \Box \boxed{\forall \Diamond \textit{start}}$$

$$Sat(\forall \Diamond start) = \{start, delivered\}$$



$$\Phi = \forall \Box \forall \Diamond start \quad \widehat{=} \quad \forall \Box (start \lor delivered)$$

$$Sat(\forall \Diamond start) = \{start, delivered\}$$



$$\Phi = \forall \Box \forall \Diamond start \quad \widehat{=} \quad \forall \Box (start \lor delivered)$$

$$Sat(\forall \lozenge start) = \{start, delivered\}$$
  
 $Sat(\Phi) = \emptyset$ 



$$\mathcal{T} \not\models \forall \Box \forall \Diamond start$$

CTL formula

$$\Phi = \forall \Box \forall \Diamond start \quad \widehat{=} \quad \forall \Box (start \lor delivered)$$

$$Sat(\forall \lozenge start) = \{start, delivered\}$$
  
 $Sat(\Phi) = \emptyset$ 



$$\Phi = \forall \Box \forall \Diamond start \quad \widehat{=} \quad \forall \Box (start \lor delivered)$$

$$Sat(\forall \lozenge start) = \{start, delivered\}$$
  
 $Sat(\Phi) = \emptyset$ 



does 
$$T \models \exists \bigcirc \forall \Box \neg a \text{ hold } ?$$



does 
$$T \models \exists \bigcirc \forall \Box \neg a \text{ hold } ?$$



does 
$$T \models \exists \bigcirc \forall \Box \neg a \text{ hold } ?$$

$$Sat(\forall \Box \neg a) = \{s_2\}$$

CTLSS4.1-17

#### **Example: CTL semantics**



does 
$$T \models \exists \bigcirc \forall \Box \neg a \text{ hold } ?$$

$$Sat(\forall \Box \neg a) = \{s_2\}$$
  
 $Sat(\exists \bigcirc \forall \Box \neg a) = \{s_2, s_1\}$ 

CTLSS4.1-17

#### **Example: CTL semantics**



does 
$$T \models \exists \bigcirc \forall \Box \neg a \text{ hold } ?$$

does 
$$T \models \forall \Box \exists \bigcirc \neg a \text{ hold } ?$$



does  $T \models \exists \bigcirc \forall \Box \neg a \text{ hold } ?$ 

answer: no

does  $T \models \forall \Box \exists \bigcirc \neg a \text{ hold } ?$ 

answer: yes



does 
$$T \models \exists \bigcirc \forall \Box \neg a \text{ hold } ?$$

answer: no

does 
$$T \models \forall \Box \exists \bigcirc \neg a \text{ hold } ?$$

answer: yes

$$Sat(\exists \bigcirc \neg a) = \{s_0, s_1, s_2\}$$



does 
$$T \models \exists \bigcirc \forall \Box \neg a \text{ hold } ?$$

answer: no

does 
$$T \models \forall \Box \exists \bigcirc \neg a \text{ hold } ?$$

answer: yes

$$Sat(\exists \bigcirc \neg a) = \{s_0, s_1, s_2\}$$
  
 $Sat(\forall \Box \exists \bigcirc \neg a) = \{s_0, s_1, s_2\}$ 





$$\mathcal{T} \models \exists \Box \exists (a \cup b)$$



$$T \models \exists \Box \exists (a \cup b)$$

$$\bigcirc$$
  $\widehat{=}$   $\{a\}$ 

$$\checkmark$$
 as  $s \models \exists (a \cup b)$ 



$$T \models \exists \Box \exists (a \cup b)$$

$$\bigcirc$$
  $\widehat{=}$   $\{a\}$ 

$$\bigcirc$$
  $\hat{=}$   $\emptyset$ 

$$\sqrt{\text{as } s s s ...} \models \Box \exists (a \cup b)$$

CTLSS4.1-18



$$T \models \exists \Box \exists (a \cup b)$$

$$\mathcal{T} \models \exists ((\exists \bigcirc a) \cup b)$$

$$\bigcirc$$
  $\widehat{=}$   $\{a\}$ 

$$\sqrt{}$$
 as  $s s s \dots \models \Box \exists (a \cup b)$ 

?



$$T \models \exists \Box \exists (a \cup b)$$

$$\mathcal{T} \not\models \exists ((\exists \bigcirc a) \cup b)$$

$$\bigcirc \, \, \widehat{=} \, \{ \underline{\mathsf{a}} \}$$

$$\checkmark$$
 as  $sss... \models \Box \exists (a \cup b)$   
as  $t \not\models \exists \bigcirc a, u \not\models \exists \bigcirc a$ 

CTLSS4.1-18



$$T \models \exists \Box \exists (a \cup b)$$

$$\mathcal{T} \not\models \exists ((\exists \bigcirc a) \cup b)$$

$$\mathcal{T} \models \exists (a \cup \forall (\neg a \cup b)) ?$$

$$\bigcirc$$
  $\widehat{=}$   $\{a\}$ 

$$\bigcirc \widehat{=} \emptyset$$

$$'$$
 as  $sss... \models \Box \exists (a \cup b)$ 

as 
$$t \not\models \exists \bigcirc a$$
,  $u \not\models \exists \bigcirc a$ 

CTLSS4.1-18



$$\bigcirc \widehat{=} \{a\}$$

$$\bigcirc \widehat{=} \{b\}$$

 $\bigcirc \widehat{=} \emptyset$ 

$$T \models \exists \Box \exists (a \cup b)$$

$$\sqrt{}$$

as 
$$sss... \models \Box \exists (a \cup b)$$

$$\mathcal{T} \not\models \exists ((\exists \bigcirc a) \cup b)$$

as 
$$t \not\models \exists \bigcirc a$$
,  $u \not\models \exists \bigcirc a$ 

$$\mathcal{T} \models \exists (a \cup \forall (\neg a \cup b)) \quad \checkmark$$

CTLSS4.1-18

