9 The diagram shows two parachutists, X and Y, moving vertically downwards.

The total mass of parachutist Y and his parachute is twice the total mass of parachutist X and his parachute. At this moment, the air resistance on parachute Y is twice the air resistance on parachute X. Neither parachutist has reached his constant (terminal) velocity.

Which statement describes the acceleration of Y compared with the acceleration of X?

- A The acceleration of Y is half the acceleration of X.
- **B** The acceleration of Y is the same as the acceleration of X.
- **C** The acceleration of Y is more than the acceleration of X, but less than twice the value.
- **D** The acceleration of Y is twice the acceleration of X.
- 10 The table shows four different collisions between two blocks, each of mass 0.50 kg.

Which collision is perfectly elastic?

	before collision		after collision	
A	4.0 m s ⁻¹ → 0.50 kg	$0.0 \mathrm{m s^{-1}}$ $0.50 \mathrm{kg}$	2.0 m s 0.50 kg 0.	
В	2.0 m s ⁻¹ → ◀ 0.50 kg	$-2.0 \mathrm{ms^{-1}}$ 0.50 kg	0.0 m s ⁻¹ 0.50 kg 0.50 kg	
С	2.0 m s ⁻¹ → ◀ 0.50 kg	— 1.0 m s ⁻¹	2.0 m s ⁻¹	$3.0\mathrm{ms^{-1}} \longrightarrow 0.50\mathrm{kg}$
D	4.0 m s ⁻¹ → 0.50 kg	$1.0 \mathrm{m s^{-1}} \longrightarrow 0.50 \mathrm{kg}$	1.0 m s ⁻¹ → 0.50 kg	$4.0 \mathrm{m s^{-1}} \longrightarrow 0.50 \mathrm{kg}$