Гл. 1. Первая вариация

§ 1.1. Критические точки функционалов

Пусть $\Phi: (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}$, $\varepsilon_0 > 0$, имеет локальный экстремум (т. е. максимум или минимум) в точке $\varepsilon = 0$.

Если существует производная $\Phi'(0)$, то

$$\Phi'(0)=0.$$

Если дополнительно $\Phi \in C^2(-\varepsilon_0, \varepsilon_0)$, то по формуле Тейлора

$$\Phi(\varepsilon) - \Phi(0) = \frac{1}{2}\Phi''(\delta\varepsilon)\varepsilon^2$$

для некоторого $\delta \in (0,1)$. При этом

$$\Phi''(0) \geq 0.$$

в случае, когда $\varepsilon = 0$ — точка локального минимума, и

$$\Phi''(0) \leq 0.$$

в случае, когда $\varepsilon=0$ — точка локального максимума.

Таким образм, условия

$$\Phi'(0)=0$$
 и $\Phi''(0)\geq 0$

являются необходимыми условиями для локального минимума у C^2 -гладкой функции Φ в точке $\varepsilon=0$. Но эти условия не являются достаточными, как показывает пример функции $\Phi(\varepsilon)=\varepsilon^3$.

С другой стороны, условия

$$\Phi'(0) = 0, \quad \Phi''(0) > 0 \quad ($$
или $\Phi''(0) < 0)$

являются достаточными условиями для строгого локального минимума (или максимума) у C^2 -гладкой функции Φ в точке $\varepsilon=0$. Но в свою очередь эти условия не являются необходимыми, как показывает пример функции $\Phi(\varepsilon)=\varepsilon^4$.

Функция $\Phi(\varepsilon)=\varepsilon^2$, $\varepsilon=0$ является точкой строгого минимума $(\Phi'(0)=0$ и $\Phi''(0)>0)$.

Функция $\Phi(\varepsilon) = -\varepsilon^2$, $\varepsilon = 0$ является точкой строгого максимума $(\Phi'(0) = 0 \text{ и } \Phi''(0) < 0)$.

Функция $\Phi(\varepsilon)=\varepsilon^3$, $\varepsilon=0$ не является точкой ни максимума, ни минимума, но является стационарной $(\Phi'(0)=0)$ и $\Phi''(0)=0$.

Функция $\Phi(\varepsilon) = \varepsilon^4$, $\varepsilon = 0$ является точкой строгого минимума $(\Phi'(0) = 0)$, но при этом $\Phi''(0) = 0$.

Функция $\Phi(\varepsilon) = -\varepsilon^4$, $\varepsilon = 0$ является точкой строгого максимума $(\Phi'(0) = 0)$, но при этом $\Phi''(0) = 0$.

Другими словами существует небольшой разрыв между необходимыми и достаточными условиями для (строгого) локального экстремума. Такой же разрыв наблюдается и в вариационном исчислении, при этом описание самих условий становится более сложным.

При этом проверка только части условий для поиска экстремумов в вариационных задачах, аналогичных поиску стационарных точек $(\Phi'(\varepsilon)=0)$ для функций Φ одного вещественного аргумента, является содержательной и трудной задачей.

Пусть $\Omega\subset\mathbb{R}^n$ — открытое множество, $\mathcal{F}:\Omega\to\mathbb{R}$ — C^1 -гладкая функция. Тогда для некоторых $u_0\in\Omega$ и $\zeta\in\mathbb{R}^n$ и для достаточно малого $\varepsilon_0>$ функция

$$\Phi(\varepsilon) = \mathcal{F}(u_0 + \varepsilon\zeta), \quad -\varepsilon_0 < \varepsilon < \varepsilon_0,$$

также является C^1 -гладкой. Мы назовем её производную $\Phi'(0)$ при $\varepsilon=0$ первой вариацией функции $\mathcal F$ в точке u_0 по направлению ζ и будем записывать

$$\delta \mathcal{F}(u_0,\zeta) := \Phi'(0). \tag{1}$$

Первая вариация есть ничто иное как производная $\frac{\partial \mathcal{F}}{\partial \zeta}(u_0)$ функции \mathcal{F} в точке u_0 по направлению вектора ζ .

Для $\mathcal{F} \in C^2(\Omega)$ формула

$$\delta^2 \mathcal{F}(u_0, \zeta) := \Phi''(0) \tag{2}$$

задаёт вторую вариацию функции \mathcal{F} в точке u_0 по направлению ζ . В общем, если $\mathcal{F}\in C^\infty(\Omega)$, то m-ая вариация функции \mathcal{F} определяется правилом

$$\delta^m \mathcal{F}(u_0,\zeta) := \Phi^{(m)}(0).$$

Если $\zeta = (\zeta^1, \dots, \zeta^n)$, то мы можем вычислить

$$\delta \mathcal{F}(u_0,\zeta) = \mathcal{F}_u(u_0) \cdot \zeta = \sum_{i=1}^n \mathcal{F}_{u_i}(u_0) \zeta^i$$

И

$$\delta^2 \mathcal{F}(u_0,\zeta) = \mathcal{F}_{uu}(u_0)\zeta \cdot \zeta = \sum_{i,k=1}^n \mathcal{F}_{u_i u_k}(u_0)\zeta^i \zeta^k.$$

Тем самым, первая вариация $\delta \mathcal{F}$ есть линейная форма, а вторая вариация $\delta^2 \mathcal{F}$ есть квадратичная форма относительно ζ .

Как необходимое условие для локального экстремума функции ${\mathcal F}$ в точке u_0 является соотношение

$$\delta \mathcal{F}(u_0,\zeta) = 0$$
 для всех $\zeta \in \mathbb{R}^n$, (3)

которое эквивалентно условию

$$D\mathcal{F}(u_0)=0,$$

где $D\mathcal{F}(u_0) = \mathcal{F}_u(u_0)$ обозначает градиент функции \mathcal{F} в точке u_0 .

Точка u_0 , удовлетворяющая (3), называется критической (или стационарной) точкой функции \mathcal{F} , а о числе $\mathcal{F}(u_0)$ говорят как о критическом значении \mathcal{F} .

Пусть $\mathcal{F} \in C^2(\Omega)$. Если u_0 — точка локального минимума функции \mathcal{F} , то вторая вариация $\delta^2 \mathcal{F}(u_0,\zeta)$ является положительно полуопределённой (неотрицательно определенной) квадратичной формой относительно ζ (т. е. $\delta^2 \mathcal{F}(u_0,\zeta) \geq 0$ для всех $\zeta \in \mathbb{R}^n$) и, эквивалентно, собственные числа матрицы Гесса $D^2 \mathcal{F}(u_0) = \mathcal{F}_{uu}(u_0) = (\mathcal{F}_{u^i u^k}(u_0))$ неотрицательны.

С другой стороны, если все собственные числа матрицы Гесса $D^2\mathcal{F}(u_0)$ положительны, то критическая точка $u_0\in\Omega$ доставляет строгий локальный минимум функции \mathcal{F} . В действительности, строгая выпуклость функции \mathcal{F} в некоторой окрестности точки u_0 уже обеспечивает достижения строгого локального минимума в точке u_0 , но является немного более слабым условием, как можно это видеть из примера функции $\mathcal{F}(u) = |u|^4$. Другими словами, предположение

$$\delta^2 \mathcal{F}(u_0,\zeta) > 0 \quad \text{(или} < 0)$$
 (4)

для всех $\zeta \in \mathbb{R}^n$ с $\zeta \neq 0$ влечёт, что критическая точка $u_0 \in \Omega$ является точкой строгого локального минимума (или максимума) для функции \mathcal{F} .

Если в критической точке $u_0 \in \Omega$ матрица Гесса $D^2\mathcal{F}(u_0)$ имеет как положительные, так и отрицательные собственные числа, то из формулы Тейлора

$$\mathcal{F}(u_0+\zeta)-\mathcal{F}(u_0)=rac{1}{2}\delta^2\mathcal{F}(u_0,\zeta)=o(|\zeta|^2)$$
 (при $\zeta o 0$) (5)

получаем, что точка u_0 не является ни точкой локального максимума, ни точкой локального минимума; в этом случае, u_0 называется седловой точкой функции \mathcal{F} .

Критическая точка $u_0 \in \Omega$ для функции $\mathcal{F} \in C^2(\Omega)$ называется невырожденной, если матрица Гесса $D^2\mathcal{F}(u_0)$ является несингулярной, т. е. если ноль не является собственным числом матрицы Гесса $D^2\mathcal{F}(u_0)$.

Формула Тейлора (5) влечёт, что невырожденные критические точки являются изолированными критическими точками, а график функции $\mathcal F$ в достаточно маленькой окрестности невырожденной критической точки выглядит примерно так же, как у ныворожденной квадратичной формы

$$\mathcal{L}(\zeta) = \frac{1}{2}\delta^2 \mathcal{F}(u_0, \zeta).$$

Действительно, мы можем записать

$$\mathcal{F}(u_0+\zeta)-\mathcal{F}(u_0)=\sum_{i,k=1}^n a_{ik}(\zeta)\zeta^i\zeta^k,$$

$$a_{ik}(\zeta) := \int\limits_0^1 (1-t) \mathcal{F}_{u_i u_k}(u_0+t\zeta) dt,$$

и можно доказать, что существует диффеоморфизм $u=\varphi(v)$ с $u_0=\varphi(0)$, который отображает некоторый шар $\mathcal{B}=\{v\in\mathbb{R}^n:\ |v|<\rho\}$ на окрестность $\mathcal U$ точки u_0 так, что

$$\mathcal{F}(\varphi(v)) = \mathcal{F}(u_0) - \sum_{i=1}^{q} |v^i|^2 + \sum_{j=q+1}^{n} |v^j|^2 = \mathcal{F}(u_0) + \mathcal{K}(v). \quad (6)$$

То есть, с точностью до композиции с диффеоморфизмом $\mathcal{F}(u) - \mathcal{F}(u_0)$ является квадратичной формой. Этот результат известен как лемма Морса.

Гл. 1. Первая вариация

Функция $\mathcal{F}(u,v)=u^2+v^2$, (0,0) является невырожденной критической точкой строгого минимума; эллиптический

Гл. 1. Первая вариация

Функция $\mathcal{F}(u,v) = -(u^2+v^2)$, (0,0) является невырожденной критической точкой строгого максимума; эллиптический парабалоид.

Функция $\mathcal{F}(u,v) = u^2 - v^2$, (0,0) является невырожденной критической седловой точкой; гиперболический парабалоид.

Функция $\mathcal{F}(u,v) = (u-100v)^2$, (0,0) является вырожденной критической точкой нестрогого минимума; парабалический цилиндр.

Функция $\mathcal{F}(u,v) = -(u-100v)^2$, (0,0) является вырожденной критической точкой нестрогого максимума; парабалический цилиндр.

Функция $\mathcal{F}(u,v) = u^3 - 3uv^2 = \text{Re}(w^3)$, w = u + iv, (0,0) является вырожденной критической точкой, не является ни точкой максимума, ни точкой минимума; обезьянье седло.

Функция $\mathcal{F}(u,v) = u^2 v^2$, (0,0) является вырожденной критической точкой нестрогого максимума.

Гл. 1. Первая вариация

Понятия первой и второй вариации переносятся на функционалы

$$\mathcal{F}: V \to \mathbb{R},$$

определеные на некотором подмножестве V произвольного вещественного линейного пространства X. Чтобы это сделать, выберем некоторую точку $u_0 \in V$ и некоторый вектор $\zeta \in X$ и предположим, что интервал $\{u \in X: u = u_0 + \varepsilon \zeta, |\varepsilon| < \varepsilon_0\}$ содержится в V для некоторого $\varepsilon_0 > 0$. Тогда определим функцию $\Phi: (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}$ правилом $\Phi(\varepsilon) := \mathcal{F}(u_0 + \varepsilon \zeta)$ и, если существует производная $\Phi'(0)$, то вводим первую вариацию $\delta \mathcal{F}(u_0, \zeta)$ функционала \mathcal{F} в точке u_0 по направлению ζ правилом

$$\delta \mathcal{F}(u_0,\zeta) := \Phi'(0).$$

Кроме того, если производная $\Phi'(\varepsilon)$ существует для всех $|\varepsilon|<\varepsilon_0$, а также существует вторая производная $\Phi''(\varepsilon)$, то определим вторую вариацию $\delta^2\mathcal{F}(u_0,\zeta)$ функционала \mathcal{F} в точке u_0 по направлению ζ правилом

$$\delta^2 \mathcal{F}(u_0,\zeta) := \Phi''(0).$$

Предположим теперь, что только что определенные первые и вторые вариации $\delta \mathcal{F}(u_0,\zeta)$ и $\delta^2 \mathcal{F}(u_0,\zeta)$ существуют в некоторой точке $u_0 \in V$ для всех направлений ζ , содержащихся в некотором подпространстве Z пространства X. Кроме того, предположим, что функционал $\mathcal{F}:V\to\mathbb{R}$ имеет минимум в точке u_0 . Тогда снова получаем, что

$$\delta \mathcal{F}(u_0,\zeta) = 0, \quad \delta^2 \mathcal{F}(u_0,\zeta) \ge 0$$
 для всех $\zeta \in Z$. (7)

В следующем параграфе мы будем применять приведенные рассмотрения к функционалам $\mathcal{F}: V \to \mathbb{R}$, задающимся многомерными интегралами

$$\mathcal{F}(u) = \int\limits_{\Omega} F(x, u(x), Du(x)) dx, \quad \Omega \subset \mathbb{R}^n,$$
 (8)

и определёнными для функций $u:\Omega\to\mathbb{R}^n$, содержащихся в некотором подмножестве V подходящего функционального пространства X, скажем $X\subset C^1(\Omega,\mathbb{R}^N)$.

Замечание 1.1

Почему первая вариация $\delta \mathcal{F}$ используется как основное понятие производной для функционалов. Во-первых, это наиболее старая, заслуженная, прошедшая проверку временем концепция для производной функционала, введенная Лагранжем и Эйлером (поэтому для обозначения используется символ Лагранжа δ). Во-вторых, и это самое важное, это понятие предпочтетельнее в качестве основного, потому что оно достаточно «слабое». Может, например, случиться так, что первая вариация $\delta \mathcal{F}(u_0,\zeta)$ существует для вариаций ζ , содержащихся в некотором классе Z, который достаточно мал по сравнению с пространством, но еще «достаточно большой», чтобы можно было вывести значимые заключения для u_0 , хотя другие типы производных могут уже не существовать. Кроме того, нет необходимости вводить норму в линейном пространстве, чтобы определить первую и вторую вариацию $\delta \mathcal{F}$ и $\delta^2 \mathcal{F}$.

Другими примерами понятий производной служат производная по Фреше и производная по Гато. Для интегральных функционалов (8) первая вариация и производные по Фреше и Гато, рассматриваемые для $\zeta \in C^1(\overline{\Omega}; \mathbb{R}^N)$, совпадают в случае, когда интегранд F является функцией класса C^1 . В некоторых руководствах введенную нами первую вариацию именуют «дифференциалом Гато».

§ 1.2. Зануление первой вариации и необходимые условия.

1.2.1. Первая вариация интегральных функционалов.

В этом параграфе мы будем рассматривать функционалы ${\mathcal F}$ следующего типа

$$\mathcal{F}(u) = \int\limits_{\Omega} F(x, u(x), Du(x)) dx, \quad \Omega \subset \mathbb{R}^n,$$
 (9)

которые будем называть вариционными интегралами. Будем записывать $\mathcal{F}_{\Omega}(u)$ или $\mathcal{F}(u,\Omega)$, если хотим указать область интегрирования Ω . Функцию F(x,u,p), участвующую в построении интеграла $\mathcal{F}(u)$, будем называть или лагарнжианом, или вариационным интеграндом, или функцией Лагарнжа. Для вариационных интегралов, которые определяются лагранжианами F,G,\ldots , будут обозначаться теми же буквами, но в рукописном написании $\mathcal{F},\mathcal{G},\ldots$

Далее, в общей ситуации, считаем, что Ω — ограниченное открытое множество в \mathbb{R}^n , а $u:\overline{\Omega}\to\mathbb{R}^N$ — отображение класса C^1 . Кроме того, считаем, что F(x, u, p) вещественно-значная C^1 -гладкая функция, определенная на некотором открытом множестве $\mathcal{U} \subset \mathbb{R}^n \times \mathbb{R}^N \times \mathbb{R}^{NN}$. содержащем 1-график $\{(x, u(x), Du(x)): x \in \overline{\Omega}\}$ отображения u. Тогда существует число $\delta > 0$ такое, что сложная функция F(x, v(x), Dv(x)) определена для всех точек $x \in \overline{\Omega}$ и для всех отображений $v \in C^1(\overline{\Omega}, \mathbb{R}^N)$, удовлетворяющих неравенству $\|v-u\|_{C^1(\overline{\Omega})}<\delta$. Здесь $||v||_{C^1(\overline{\Omega})} := ||v||_{C(\overline{\Omega})} + ||Dv||_{C(\overline{\Omega})}, ||v||_{C(\overline{\Omega})} := \sup |v(x)|.$

Таким образом, интеграл

$$\mathcal{F}(v) = \int_{\Omega} F(x, v(x), Dv(x)) dx$$

можно записать для любого отображения $v\in C^1(\overline{\Omega},\mathbb{R}^N)$ с $\|v-u\|_{C^1(\overline{\Omega})}<\delta.$ Следовательно, функция

$$\Phi(\varepsilon) := \mathcal{F}(u + \varepsilon \varphi)$$

определена для любого отображения $\varphi\in C^1(\overline{\Omega},\mathbb{R}^N)$ и для $|\varepsilon|<\varepsilon_0$, где ε_0 — некоторое положительное число, меньшее чем $\delta/\|\varphi\|_{C^1(\overline{\Omega})}$. Кроме того, $\Phi-C^1$ -гладкая функция на $(-\varepsilon_0,\varepsilon_0)$, поэтому первая вариация $\delta\mathcal{F}(u,\varphi)$ функционала \mathcal{F} в (точке) u в направлении (вектора) φ корректно определена правилом

$$\delta \mathcal{F}(u,\varphi) := \Phi'(0)$$

а прямые вычисления дают

$$\delta \mathcal{F}(u,\varphi) = \int_{\Omega} \left\{ F_{u^i}(x,u,Du) \varphi^i + F_{p^i_{\alpha}}(x,u,Du) \varphi^i_{x^{\alpha}} \right\} dx, \quad (10)$$

Здесь используется правило суммирования Эйнштейна: берется сумма по дважды появляющимся греческим индексам от 1 до n и по дважды появляющимся латинским индексам от 1 до n Вводя обозначения $x=(x^{\alpha}),\ u=(u^{i}),\ p=(p_{\alpha}^{i})$ и $p=(p_{1},\ldots,p_{n}^{N})$, где $p_{\alpha}=(p_{\alpha}^{1},\ldots,p_{\alpha}^{N}),\ F_{p_{\alpha}}=(F_{p_{\alpha}^{1}},\ldots,F_{p_{\alpha}^{N}})$, формулу (10) можно записать в виде

$$\delta \mathcal{F}(u,\varphi) = \int_{\Omega} \{F_u(x,u,Du) \cdot \varphi + F_p(x,u,Du) \cdot D\varphi\} dx.$$

Заметим, что при сделанных предположениях на F и u первая вариация $\delta \mathcal{F}(u,\varphi)$ является линейным функционалом относительно $\varphi \in C^1(\overline{\Omega},\mathbb{R}^N)$.

Формула (10) предлагает ввести в рассмотрение выражение $\delta F(u,\varphi)(x)$, определяемое правилом

$$\delta F(u,\varphi)(x) := F_u(x,u(x),Du(x)) \cdot \varphi(x) + F_p(x,u(x),Du(x)) \cdot D\varphi(x). \tag{11}$$

для $x \in \overline{\Omega}$. Назовем выражение (11) первой вариацией лагранжиана F в u в направлении φ . Тогда будем записывать

$$\delta \mathcal{F}(u,\varphi) = \int_{\Omega} \delta F(u,\varphi)(x) \, dx, \tag{12}$$

Рассмотрим соотношение

$$\delta \mathcal{F}(u,\varphi) = 0$$
 для всех $\varphi \in C_c^{\infty}(\Omega, \mathbb{R}^N),$ (13)

которое с учетом (10) эквивалентно

$$\int\limits_{\Omega}\left\{F_{u^{i}}(x,u,Du)\varphi^{i}+F_{\rho_{\alpha}^{i}}(x,u,Du)\varphi_{x^{\alpha}}^{i}\right\}dx=0,\text{ для всех }\varphi\in C_{c}^{\infty}(\Omega,\mathbb{R}^{N}),$$
(14)

Здесь $C_c^\infty(\Omega,\mathbb{R}^N)$ — пространство C^∞ -гладких отображений $\varphi:\Omega\to\mathbb{R}^N$, имеющих компактный носитель $\operatorname{supp}\varphi\subset\Omega$.

Отображение $u \in C^1(\Omega, \mathbb{R}^N)$, удовлетворяющее соотношению (14) для всех $\varphi \in C_c^\infty(\Omega, \mathbb{R}^N)$, называется слабой экстремалью функционала \mathcal{F} , а уравнение (14) называют слабым уравнением Эйлера (или, более точно, уравнением Эйлера для u в слабой форме).

Заметим, что соотношение (14) следует из достаточно слабого свойства минимальности для отображения u. Достаточно предположить, что для некоторого $\delta_0 \in (0,\delta)$ выполняется неравенство

$$\mathcal{F}(u) \le \mathcal{F}(u + \varphi) \tag{15}$$

для всех $\varphi\in C_c^\infty(\Omega,\mathbb{R}^N)$ с $\|\varphi\|_{C^1(\overline{\Omega})}<\delta_0$ Дадим следующее

Определение 1.2

Пусть \mathcal{C} — некоторое подмножество $C^1(\overline{\Omega},\mathbb{R}^N)$. Тогда $u\in\mathcal{C}$ называется слабым минимизуриющим отображением для функционала \mathcal{F} в (относительно) \mathcal{C} , если существует $\delta_0>0$ такое, что $\mathcal{F}(u)\leq \mathcal{F}(v)$ для всех $v\in\mathcal{C}$, удовлетворяющих $\|v-u\|_{C^1(\overline{\Omega})}<\delta_0$.

Заметим, что соотношение (14) следует из следующего более ослабленного свойства минимальности.

Предложение 1.3

Предположим, что для каждой точки $x_0 \in \Omega$ существует r>0 со следующими свойствами

- (i) $B_r(x_0) \subset\subset \Omega$,
- (ii) для каждого $\varphi \in C_c^\infty(B_r(x_0),\mathbb{R}^N)$ найдется число $\varepsilon_0>0$ такое, что неравенства $\|\varepsilon\varphi\|_{C^1(\overline\Omega)}<\delta$ и $\mathcal F(u)\leq \mathcal F(u+\varepsilon\varphi)$ выполняются для всех ε с $|\varepsilon|<\varepsilon_0$.

Тогда выполнено соотношение (14).

Другими словами, слабое уравнение Эйлера (14) уже выполняется, если значения функционала $\mathcal F$ не уменьшаются, когда мы добавляем только маленькие локальные изменения для u.

1.2.2. Фундаментальная лемма вариационного исчисления, уравнение Эйлера и оператор Эйлера L_F

Теорема 1.4

Предположим, что $F \in C^2(\mathcal{U})$ и и — слабая экстремаль функционала \mathcal{F} , т.е.

$$\int\limits_{\Omega}\left\{F_{u^{i}}(x,u,Du)\varphi^{i}+F_{p_{\alpha}^{i}}(x,u,Du)\varphi_{x^{\alpha}}^{i}\right\}dx{=}0,\ \text{для всех }\varphi{\in}C_{c}^{\infty}(\Omega,\mathbb{R}^{N}).$$

Кроме того, пусть отображение u класса $C^2(\Omega, \mathbb{R}^N)$. Тогда отображение u удовлетворяет

$$D_{\alpha}F_{p_{\alpha}^{i}}(x, u(x), Du(x)) - F_{u^{i}}(x, u(x), Du(x)) = 0, \quad 1 \le i \le N,$$
(16)

для всех $x \in \Omega$.

Утверждение остается справедливым, если вместо условия $F\in C^2(\mathcal{U})$ только предположить, что $F_u\in C^0(\mathcal{U})$ и $F_p\in C^1(\mathcal{U})$.

Лемма 1.5 (фундаментальная)

Пусть f(x) — непрерывная вещественно-значная функция на некотором открытом множестве $\Omega \subset \mathbb{R}^n$ и предположим, что

$$\int\limits_{\Omega}f(x)\eta(x)\,dx\geq 0\,\,\text{для всех }\eta\!\in\!C_c^\infty(\Omega,\mathbb{R}^N)\,\,c\,\,\eta\geq 0 \qquad \ \, (17)$$

или

$$\int\limits_{\Omega} f(x)\eta(x) \, dx = 0 \, \text{для всех } \eta \in C_c^{\infty}(\Omega, \mathbb{R}^N). \tag{18}$$

Тогда

$$f(x) \ge 0$$
 или, соответственно, $f(x) = 0$

для всех $x \in \Omega$.

Определение 1.6

Уравнения (16) называются уравнениями Эйлера интегрального функционала $\mathcal{F}(u) = \int\limits_{\Omega} F(x,u,Du) \, dx$, а их

 C^2 -гладкие решения u(x) называют экстремалями функционала $\mathcal F$ или F-экстремалями. Мы используем символ L_F (или просто L) для оператора Эйлера

$$L_F(u) := F_u(\cdot, u(\cdot), Du(\cdot)) - D_\alpha F_{\rho_\alpha}(\cdot, u(\cdot), Du(\cdot)). \tag{19}$$

Пример 1.7

1. Интеграл Дирихле

$$\mathcal{D}(u) = \frac{1}{2} \int_{\Omega} |Du|^2 dx, \quad N = 1.$$

Уравнение Эйлера — уравнение Лапласа

$$\Delta u = 0$$
 в Ω .

2. Интеграл

$$\mathcal{F}(u) = \int_{\Omega} (\frac{1}{2}|Du|^2 + f(x)u) dx, \quad N = 1.$$

Уравнение Эйлера — уравнение Пуассона

$$\Delta u = f(x)$$
 в Ω .

3. Нелинейное уравнение Пуассона

$$\Delta u = f(u)$$
 в Ω

есть уравнение Эйлера для интеграла

$$\int\limits_{\Omega} \left(\frac{1}{2}|Du|^2 + g(u)\right) dx, \quad N = 1,$$

где
$$g'(z) = f(z)$$
.

Аналогично, интеграл

$$\int\limits_{\Omega} (\frac{1}{2} |Du|^2 - \frac{1}{p+1} |u|^{p+1} - g(u)) \, dx, \quad p \ge 1,$$

имеет уравнение Эйлера

$$-\Delta u = u|u|^{p-1} + f(u),$$

которое является важным модельным уравнением в физике, где предполагается, что

$$f(0)=0, \quad \lim_{z\to\infty}\frac{f(z)}{|z|^p}=0.$$

В частности, если n = 4 и p = 3, то интеграл

$$\int_{\Omega} \left(\frac{1}{2} |Du|^2 - \frac{1}{4} |u|^4 + \frac{1}{2} \lambda |u|^2 \right) dx$$

имеет уравнение Эйлера

$$-\Delta u = u^3 - \lambda u$$
.

Эта очень простая модель появляется в физике в связи с упрощенной версией уравнений Янга-Милса.

Минимальная поверхность (H=0). Катеноид: $x=\operatorname{ch} u \cos v, \ y=\operatorname{ch} u \sin v, \ z=u \ (u\in\mathbb{R}, \ v\in[0,2\pi)$).

Мыльная пленка в виде катеноида.

Минимальная поверхность (H = 0). Геликоид: $x = u \cos v$, $y = u \sin v$, z = hv.

Минимальная поверхность (H=0). Поверхность Эннепера: $x=u(1-u^2/3+v^2)/3,\ y=-v(1-v^2/3+u^2)/3,\ z=(u^2-v^2)/3.$

Минимальная поверхность (H = 0). Поверхность Шерка:

$$z = \ln \frac{\cos(x)}{\cos(y)}.$$

Минимальная поверхность (H=0). Поверхность Каталана: $\vec{r}=\vec{\rho}(u)+v\vec{l}(u),\;(\vec{l}''\neq 0,\;(\vec{l},\vec{l}',\vec{l}'')=0).$

Поверхность постоянной кривизны $(H \neq 0)$. Сфера.

Поверхность постоянной кривизны $(H \neq 0)$. Цилиндр.

Поверхность постоянной кривизны $(H \neq 0)$. Цилиндр.

Поверхность постоянной кривизны ($H \neq 0$). Ундулоид (unduloid или onduloid).

Поверхность постоянной кривизны ($H \neq 0$). Нодоид (nodoid).

Поверхность постоянной кривизны ($H \neq 0$). Тор Вента (Wenta torus).

1.2.3. Усреднения. Варианты фундаментальной леммы

1.2.4. Естественные граничные условия

В дополнение к предположениям п. 1.2.2 далее также будем предполагать, что $\partial\Omega$ — многообразие класса C^1 , $u\in C^1(\overline{\Omega},\mathbb{R}^N)$, и вместо условия (14) отображение u даже удовлетворяет более сильному соотношению

$$\delta \mathcal{F}(u,\varphi) = 0$$
 для всех $\varphi \in C^1(\overline{\Omega},\mathbb{R}^N)$. (20)

Последнее уравнение является, например, следствием следующего свойства локальной минимальности

$$\mathcal{F}(u) \leq \mathcal{F}(u+arphi)$$
 для всех $arphi \in C^1(\overline{\Omega},\mathbb{R}^N)$ с $\|arphi\|_{C^1(\overline{\Omega})} \leq \delta_0.$ (21)

Предложение 1.8

Если $\partial\Omega$ — многообразие класса C^1 , $F\in C^2(\mathcal{U})$, $u\in C^1(\overline{\Omega},\mathbb{R}^N)\cap C^2(\Omega,\mathbb{R}^N)$ и $\delta\mathcal{F}(u,\varphi)=0$ для всех $\varphi\in C^1(\overline{\Omega},\mathbb{R}^N)$, то u есть экстремаль функционала \mathcal{F} , которая на границе $\partial\Omega$ удовлетворяет «естественным граничным условиям»

$$\nu_{\alpha}F_{p_{\alpha}^{i}}(x,u,Du)=0, \quad i=1,\ldots,N.$$
 (22)

Здесь $\nu(x) = (\nu_1(x), \dots, \nu_n(x))$ обозначает вектор единичной внешней нормали к $\partial \Omega$ в точке $x \in \partial \Omega$.

Замечание 1.9

Из доказательства будет ясно, что вместо предположения $F \in C^2(\mathcal{U})$ достаточно предполагать, что производные F_u и F_p существуют и $F_u \in C^0(\mathcal{U})$, $F_p \in C^1(\mathcal{U})$.

Из условия минимальности (21) видно, что свободные (или естественные) граничные условия появляются всякий раз, когда мы имеем минимум в классе отображений, граничные условия которых не фиксированы. Для векторно-значных экстремалей мы часто встречаем проблемы, где некоторые компоненты фиксированы, в то время как другим позволено двигаться свободно. Тогда только последнии компоненты будут удовлетворять естественным граничным условиям. Позже мы обсудим соответстующие результаты для важных специальных задач.

Рассмотрим некоторые примеры:

Пример 1.10

1. Естественные граничные условия, ассоциированные с интегралом Дирихле

$$\mathcal{D}(u) = \frac{1}{2} \int_{\Omega} |Du|^2 dx,$$

есть, так называемые, граничные условия Неймана

$$\frac{\partial u}{\partial \nu} = 0$$
 на $\partial \Omega$,

где ν обозначает вектор единичной внешней нормали к $\partial\Omega$. Ясно, что это условие является естественным граничным условием для каждого вариционного интеграла вида

$$\int\limits_{\Omega} \left(\frac{1}{2}|Du|^2 + g(x,u)\right) dx.$$

2. Естественные граничные условия для функционала площади

$$\mathcal{A}(u) = \int\limits_{\Omega} \sqrt{1 + |Du|^2} \, dx,$$

также как и для функционалов типа

$$\int\limits_{\Omega} \left(\sqrt{1+|Du|^2}+g(x,u)\right)dx,$$

дается соотношением

$$u \cdot Tu = 0$$
 на $\partial \Omega,$ $Tu := rac{Du}{\sqrt{1 + |Du|^2}},$

которое имеет следующую геометрическую интерпретацию.

Пусть α — угол между вектором единичной нормали

$$\mathbf{n}:=\frac{1}{\sqrt{1+|Du|^2}}(Du,-1),$$

гиперповерхности (x,u(x)), $x\in\overline{\Omega}$, и вектором единичной нормали $\boldsymbol{\nu}=(\nu,0)$ к цилиндру $\partial\Omega\times\mathbb{R}$ в пространстве \mathbb{R}^{n+1} . Тогда

$$\alpha = \boldsymbol{\nu} \cdot \mathbf{n} = \boldsymbol{\nu} \cdot Tu$$

и свободное граничное условие $\nu \cdot Tu$ говорит, что минимальная поверхность (x,u(x)), которая удовлетворяет $u \in C^1(\overline{\Omega}) \cap C^2(\Omega)$,

$$\delta \mathcal{A}(u,\varphi) = 0$$
 для всех $\varphi \in C^1(\overline{\Omega}),$

пересекает цилиндр $\partial\Omega imes\mathbb{R}$ перпендикулярно.

- § 1.3. Замечания о существовании и регулярности минимизирующих функций
- 1.3.1. Слабые экстремали, которые не удовлетворяют уравнению Эйлера. Теорема о регулярности решений одномерных вариционных задач

Следующие примеры показывают, что существуют слабые экстремали и даже слабые минимизирующие функции, которые не являются решениями уравнений Эйлера.

Пример 1.11

1. Очень тривиальный пример дается функционалом

$$\mathcal{F}(v) = \int_{-1}^{1} (|Dv(x) - 2|x|)^2 dx, \quad n = N = 1,$$

который минимизируется функциями u(x) = x|x| + const, которые класса C^1 на [-1,1], но не класса C^2 на (-1,1). Таким образом u(x) удовлетворяют (14), но не удовлетворяют (9).

Однако этот пример не достаточно удовлетворительный, так как $F_p \not\in C^1$. Поэтому представим два более усовершенствованных примера лагранжианов, которые вещественно аналитические (они даже многочлены), но для которых существуют решения $u \in C^1(\overline{\Omega}, \mathbb{R}^N)$ уравнения (14), которые не лежат в классе $C^2(\Omega, \mathbb{R}^N)$. Таким образом, для прекрасных лагранжианов, слабые экстремали не обязательно «классические» экстремали.