

Mathématiques

Classe: BAC

Chapitre: Suites réelles

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Suites arithmétiques, suites géométriques

Suites arithmétiques

Soit (u_n) est une suite arithmétique de raison r

- Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = r$.
- Pour tous entiers naturels n et m on a : $u_n = u_m + (n m)r$.
- En particulier : $u_n = u_0 + nr = u_1 + (n-1)r$.
- $\bullet \sum_{k=p}^{n} u_k = (n-p+1) \frac{u_p + u_n}{2}.$

Suites géométriques

Soit (u_n) est une suite géométrique de raison q.

- Pour tout $n \in \mathbb{N}$ on a : $u_{n+1} = q.u_n$.
- Pour tous entiers naturels n et m on a : $u_n = q^{n-m}u_m$.
- En particulier : $u_n = q^n . u_0 = q^{n-1} . u_1$.
- Si $q \neq 1$, $\sum_{k=p}^{n} u_k = u_p \frac{1 q^{(n-p+1)}}{1 q}$.
- $\bullet \lim_{n \to +\infty} q^n = \begin{cases} +\infty & \text{si } q > 1 \\ 0 & \text{si } -1 < q < 1 \\ n' \text{ existe pas} & \text{si } q \le -1 \end{cases}$

Suite majorée - suite minorée - suite bornée

- Une suite u est dite majorée s'il existante M telle que : $\forall n \in \mathbb{N}, u_n \leq M$.
- Une suite u est dite minorée s'il existante m telle que : $\forall n \in \mathbb{N}, u_n \geq M$.
- Une suite u est dite bornée s'il existe deux constantes m et M telles que : $\forall n \in IN, m \le u_n \le M$.

Suite monotone

Définition

Soit u une suite réelle :

- u est croissante si et seulement si pour tout n, $u_{n+1} \ge u_n$.
- u est décroissante si et seulement si pour tout n, $u_{n+1} \le u_n$.
- u est constante si et seulement si pour tout n, $u_{n+1} = u_n$.

Suites

Soit $u_n = f(n)$ où f est une fonction définie sur $I = [0, +\infty[$. Si f est monotone sur I alors la suite u a le même sens de variation que f.

Suites récurrentes

Soit u une suite réelle définie par $u_{n+1} = f(u_n)$ où f est une fonction définie sur un intervalle I à valeurs dans I.

- Si $\forall x \in I$, $f(x) \ge x$ alors la suite u est croissante.
- Si $\forall x \in I, f(x) \le x$ alors la suite u est décroissante.

Suite convergente

Définition

Une suite réelle est dite convergente si elle admet une limite finie.

Théorème

Toute suite convergente est bornée.

Théorème

- Toute suite (u_n) croissante et majorée converge vers un réel a et $\forall n, u_n \leq a$.
- Toute suite (u_n) décroissante et minorée converge vers un réel b et $\forall n, u_n \ge b$.

Théorème

Soit u une suite réelle et ℓ un réel (ℓ peut être infinie). $\lim_{n \to +\infty} u_n = \ell \Leftrightarrow \lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} u_{2n+1} = \ell$

Théorème

Soit $u_n = f(n)$ où f est une fonction. Si $\lim_{x \to +\infty} f(x) = a$ (a fini ou infini) Alors $\lim_{n \to +\infty} u_n = a$.

Suite du type : $v_n = f(u_n)$

Théorème

Théorème

$$\begin{cases} f & \text{est d\'efinie sur un intervalle } I \\ u_n & \text{une suite d\'efement de } I \; (u_n \in I) \\ \lim_{n \to +\infty} u_n = \ell \; , \quad \ell \; \text{fini ou infini} \\ \lim_{x \to \ell} f(x) = b \\ \text{Alors } \lim_{n \to +\infty} f(u_n) = b \end{cases}$$

Limites et ordre

Théorème 1

Soit (u_n) une suite réelle qui converge vers a.

- Si $u_n \ge 0$ ou $u_n > 0$, a partir d'un certain rang alors $a \ge 0$.
- Si $u_n \le 0$ ou $u_n < 0$, a partir d'un certain rang alors $a \le 0$.
- Si $m \le u_n \le M$ ou $m < u_n < M$, à partir d'un certain rang alors $m \le a \le M$.

Théorème 2

On considère les suites (u_n) , (v_n) et (w_n) . Si $\begin{cases} w_n \leq u_n \leq v_n & \text{à partir d'un certain rang} \\ \lim_{n \to +\infty} w_n = \lim_{n \to +\infty} v_n = \ell, \quad \ell \in \mathbb{R} \end{cases}$ Alors $\lim_{n \to +\infty} u_n = \ell$.

Théorème 3

Soit deux suites
$$(u_n)$$
 et (v_n)
Si $\left\{ \begin{array}{l} u_n \leq v_n \text{ à partir d'un certain rang} \\ \lim\limits_{n \to +\infty} v_n = -\infty \end{array} \right.$ Alors $\lim\limits_{n \to +\infty} u_n = -\infty$.
Si $\left\{ \begin{array}{l} u_n \leq v_n \text{ à partir d'un certain rang} \\ \lim\limits_{n \to +\infty} u_n = +\infty \end{array} \right.$ Alors $\lim\limits_{n \to +\infty} v_n = +\infty$.

Théorème 4

Soit deux suites (u_n) et (v_n) Si $\left\{\begin{array}{l} |u_n| \leq v_n \text{ à partir d'un certain rang} \\ \lim\limits_{n \to +\infty} v_n = 0 \end{array}\right.$ Alors $\lim\limits_{n \to +\infty} u_n = 0.$

Suites récurrentes

Théorème

Soit (u_n) une suite réelle vérifiant $u_{n+1} = f(u_n)$ où f est une fonction. Si (u_n) est convergente vers un réel a et si f est continue en a alors f(a) = a.

Suites adjacentes

Définition

Deux suites réelles (u_n) et (v_n) sont dites adjacentes si l'une est croissante, l'autre décroissante et si leur différence converge vers 0.

Théorème

Si (u_n) et (v_n) sont deux suites adjacentes telles que (u_n) est croissante et (v_n) est décroissante alors ces deux suites sont convergentes et convergent vers la même limite a et pour tout n, $u_n \le a \le v_n$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000