

9635 – STELLA MARY'S COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

II Year / IV Semester CS3452-Theory of Computation

Name: Roll No Section:

SI.No	Topics (Prepare the problems relevant)	Marks	Signature		
	Unit -I				
1	Inductive Proof				
2	NFA to DFA				
2 3	NFA with ϵ and without ϵ moves				
4	Minimization of DFA				
5	Design a NFA and DFA				
	Unit -II				
1	RE to NFA				
2	DFA to RE				
2 3	Closure properties of RL				
4	Pumping Lemma				
Unit -III					
1	Derivation, Derivation tree, ambiguity				
2	CFG to PDA				
3	PDA to CFG				
4	Deterministic PDA				
5	CFL to PDA				
	Unit -IV	<u> </u>			
1	Chomsky Normal Form				
2	Greibach Normal Form				
3	Closure properties of CFL				
5	Programming techniques for turing machine				
5	Proper Subtraction				
Unit -V					
1	Recursive and Recursively enumerable language				
2	Post correspondence problem				
3	Tractable and Intractable problems				
4	P and NP completeness				
5	Kruskal's algorithm, Travelling Salesman Problem, 3-CNF SAT problems.				
	To be Submitted	Verified	Signature		
1	Study Materials (Unit 1 to 5)				
2	Two marks with answers				
3	Assignment 1				
4	Assignment 2				
5	Assignment 3				
6	Assignment 4				
7	Assignment 5				
8	Project				
9	Univ. Q1				
10	Univ. Q2				

SI.No	Topics	Marks	Signature
	Unit -I	·	
1	Define Automata with two examples		
2	Difference between NFA and DFA		
3	What is Principle of mathematical induction		
4	What is the language described by NFA and DFA		
5	Extended transition function for NFA, DFA and ϵ NFA		
6	DFA for a language		
7	Define ϵ closure		
	Unit -II		
1	Mention closure properties of regular language		
2	Verify a language is regular		
3	DFA for RE		
4	State pumping lemma and its advantage		
5	Show that complement of a RL is regular		
6	Regular expression foe a string		
7	NFA for Regular expression		
	Unit -III	·	•
1	Define the language generated by PDA		
2	Define left most and right most derivation with examples		
3	Define ambiguous		
4	Check whether a language is CFL or not		
5	Define deterministic PDA		
6	Define instantaneous description of PDA		
7	Define CFG, PDA		
	Unit -IV		
1	Define turning machine		
2	State pumping lemma for CFL		
3	Difference between multi-tape and multi-track TM		
4	Define Chomsky normal form		
5	Define Greibach Normal form		
6	What is useless symbols		
7	Define instantaneous description of TM		
	Unit -V		
1	Define Lu and Ld		
2	Difference between recursive and recursively enumerable language		
3	What is halting problem		
4	Define PCP		
5	Define P and NP		
6	Difference between decidable and undecidable problems		
7	What is a RE language		