Introduction to Data, Pandas and SQL

Part A - Data and Databases

Pavlos Protopapas

Lecture Outline

Part A: Data and Databases

What is data and how can we store it?

Part B: Pandas and SQL

Tools to inspect data

Lecture Outline

Part A: Data and Databases

What is data and how can we store it?

Part B: Pandas and SQL

Tools to inspect data

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

What is the scientific goal?

What would you do if you had all of the data?

What do you want to predict or estimate?

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

How were the data sampled?

Which data are relevant?

Are there privacy issues?

Ask an interesting question

Model the Data

Communicate/Visualize the Results

Plot the data.

Are there anomalies or egregious issues?

Are there patterns?

Ask an interesting question How were the data sampled? **Get the Data** Which data are relevant? Are there privacy issues? Explore the Data Model the Data Communicate/Visualize the Results

6

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

Plot the data.

Are there anomalies or egregious issues?

Are there patterns?

PROTOPAPAS Credit: CS109A

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

What is the scientific goal?

What would you do if you had all of the

data?

What do you want to predict or estimate?

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

How were the data sampled?

Which data are relevant?

Are there privacy issues?

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

Plot the data.

Are there anomalies or egregious issues?

Are there patterns?

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

Build a model.

Fit the model.

Validate the model.

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

What did we learn?

Do the results make sense?

Can we effectively tell a story?

12

What is data?

Datum A single piece of information, which can be treated as an observation

Data The plural of datum; multiple observations

Dataset A homogenous collection of data (each datum must have the same focus)

What is data?

Everything can be data! Just requires making observations.

What is data?

Everything can be data! Just requires making observations.

Obtaining Data

You can obtain data if

- You curate it.
- Someone else provides it- all pre-packaged for you in files.
- Someone else provides an API.
- Someone else has available content, and you try to take it (web scraping).

Types of Data

Eg: Age, Temperature (Kelvin)

quality	type	price	quantity	total
High	Тоу	20	5	100
Low	Book	5	3	15
Medium	Craft	12	4	48
Medium	Book	10	10	100

Guess the type of data in each column!

Guess the type of data in each column!

Often you must encode the data in some form to be useful. For example, you might use integers to encode the ordinal column "quality" here.

Encoding types

Pandas dtype	Python type	NumPy type	Usage	
object	str	string_, unicode_	Text	
int64	int	int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64	Integer numbers	
float64	float	float_, float16, float32, float64	Floating point numbers	
bool	bool	bool_	True/False values	
datetime64	NA	datetime64[ns]	Date and time values	
timedelta[ns]	NA	NA	Differences between two datetimes	
category	NA	NA	Finite list of text values	

Now guess the type of data in each column and mention the data type you would encode it with.

How do we store data?

A database is an organized collection of structured information, or data, typically stored electronically in a computer system.

Databases

Types of databases

Relational Database

Relational databases organize data in multiple, related tables

Example: Pandas,

SQL: Postgres, SQLite,

Hbase, VoltDB

Document Database

Document Databases use JSON/xml like documents to organize data instead of rows and columns

Example: MongoDB, CouchDB, Amazon DocumentDB

```
"user_id":
               251
"first_name":
               "Bill",
"last_name":
               "Gates",
"summary":
               "Co-chair of the Bill & Melinda Gates... Active blogger.",
              "us:91",
"region_id":
"industry_id": 131,
"photo_url":
              "/p/7/000/253/05b/308dd6e.jpg",
"positions": [
 {"job_title": "Co-chair", "organization": "Bill & Melinda Gates Foundation"},
  {"job_title": "Co-founder, Chairman", "organization": "Microsoft"}
"education": [
 {"school_name": "Harvard University",
                                           "start": 1973, "end": 1975},
  {"school_name": "Lakeside School, Seattle", "start": null, "end": null}
```

Graph Database

Graph Databases establish connections between data using nodes, edges and properties

Example: Neo4J

OLTP and OLAP

OLTP: Online Transaction processing: look up a few records by some key, using an index. Insertion or updating based on users clicks, input. Ecommerce!

OLAP: Queries for business intelligence. Join lots of tables, get information about an entity of interest, such as a user, or a product. Typically, ETL (Extract-Transform-Load) scripts sit on OLTP databases to produce OLAP ones.

