

Morfologi

PEMROSESAN CITRA SECARA MORFOLOGIS

- Perbedaan antara pemrosesan citra secara morfologis dengan pemrosesan biasa (yang telah dipelajari
 - Dulu sebuah citra dipandang sebagai suatu fungsi intensitas terhadap posisi (x,y)
 - Dengan pendekatan morfologi, suatu citra dipandang sebagai himpunan

PEMROSESAN CITRA SECARA MORFOLOGIS

Pemrosesan citra secara morfologi biasanya dilakukan terhadap citra biner

Tidak menutup kemungkinan dilakukan terhadap citra dengan skala keabuan 0-255

Yang akan dipelajari adalah pemrosesan morfologi terhadap citra biner

SET CITRA DAN OPERASINYA

TRANSLASI DAN REFLEKSI

TIPE OPERASI LOGIKA DASAR

р	q	p AND q	p OR q	NOT p
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

BEBERAPA CONTOH

Catatan:

1 → Hita m

0 → Putih

Contoh Citra Masukan

$$S = \{(0,0),(0,1),(1,0)\}$$

$$A = \{(0,0),(0,1),(0,2), (1,0),(1,1),(1,2), (2,0),(2,1),(2,2)\}$$

Objek Sdan A dapat direpresentasikan dalam bentuk himpunan dari posisi –posisi (x,y) yang bernilai 1(1 = berwama, 0 = putih)

OPERASI MORFOLOGI

Secara umum, pemrosesan citra secara morfologi dilakukan dengan cara mem-passing sebuah structuring element terhadap sebuah citra dengan cara yang hampir sama dengan konvolusi

Structuring element dapat diibaratkan dengan mask pada pemrosesan citra biasa (bukan secara morfologi)

STRUCTURING ELEMENT

Structuring element dapat berukuran sembarang

Structuring element juga memiliki titik poros (disebut juga titik origin/titik asal/titik acuan)

Contoh *structuring element* seperti objek S dengan titik poros di (0,0) yang berwarna merah

OPERASI MORFOLOGI

- **DILASI & EROSI**
- OPENING & CLOSING
- **THINNING & TICKENING**

DILASI

$$D(A,S) = A \oplus S$$

Dilasi merupakan proses penggabungan titik-titik latar (0) menjadi bagian dari objek (1), berdasarkan structuring element Syang digunakan

Cara: untuk setiap titik pada A

Letakkan titik poros S pada titik A tersebut

Beri angka 1 untuk semua titik (x,y) yang terkena/tertimpa oleh struktur S pada posisi tersebut

Contoh DILASI

$$S = \{(0,0),(0,1),(1,0)\}$$

$$A = \{(0,0),(0,1),(0,2), (1,0),(1,1),(1,2), (2,0),(2,1),(2,2)\}$$

Posisi poros ((x,y) € A)	S _{xy}
(0,0)	{(0,0),(0,1),(1,0)}
(0,1)	{(0,1),(0,2),(1,1)}
(0,2)	{(0,2),(0,3),(1,2)}
(2,2)	{(2,2),(2,3),(3,2)}

Contoh DILASI

EROSI

$$E(A,S) = A\Theta S$$

Erosi merupakan proses
penghapusan titik-titik objek (1)
menjadi bagian dari latar
belakang (0), berdasarkan
structuring element Syang
digunakan

Cara: untuk setiap titik pada A

Letakkan titik poros Spada titik A tersebut

> Jika ada bagian dari Syang berada di luar A, maka titik poros dihapus/dijadikan latar

Contoh EROSI

$$S = \{(0,0),(0,1),(1,0)\}$$

$$A = \{(0,0),(0,1),(0,2), \\ (1,0),(1,1),(1,2), \\ (2,0),(2,1),(2,2)\}$$

Posisi poros ((x,y) € A)	S _{xy}
(0,0)	{(0,0),(0,1),(1,0)}
(0,1)	{(0,1),(0,2),(1,1)}
(0,2)	{(0,2), <mark>(0,3)</mark> ,(1,2)}
(2,2)	{(2,2), <mark>(2,3),(3,2)</mark> }

CONTOH APLIKASI

(a) Citra dengan kotak putih yang berukuran 1, 3, 5, 7, 9, dan 15 piksel

(b) Erosi citra (a) dengan ukuran matriks structuring element 13 piksel dan semua elemennya bernilai 1

(c) Dilasi citra (b) dengan structuring element yang sama

OPENING

$$A \circ S = (A \Theta S) \oplus S$$

Opening adalah proses erosi yang diikuti dengan dilasi

Efek yang dihasilkan adalah menghilangnya objek-objek kecil dan kurus, dan memecah objek pada titik-titik yang kurus,

CONTOH OPENING

S

CONTOH LAIN

CLOSING

$$A \bullet S = (A \oplus S)\Theta S$$

Closing adalah proses dilasi yang diikuti dengan erosi

Efek yang dihasilkan adalah mengisi lubang-lubang kecil pada objek, dan menggabungkan objek-objek yang berdekatan

CONTOH CLOSING

CONTOH LAIN

CONTOH OPENING & CLOSING

Opening

CONTOH OPENING & CLOSING

Closing

N H A K A S

HIT-OR-MISTRANSFORM

$$A*S = (A\Theta S_1) \cap (A^c \Theta S_2)$$

Suatu structuring element Sdapat direpresentasikan dalam bentuk (S1,S2) dimana S1 adalah kumpulan titik-titik objek (hitam) dan S2 adalah kumpulan titik-titik latar (putih)

Hit-and-miss transform A*Sadalah kumpulan titik-titik dimana S1 menemukan match di A dan pada saat yang bersamaan S2 juga menemukan match di luar A

S1 / TIO9KK34 / semester 3 / 3 sks / sifat

Contoh HIT -OR- MIS TRANSFORM

- Yang match dipertahankan
- Yang tidak match dihapus

S1 / TIO9KK34 / semester 3 / 3 sks / sifat

ALGORITMA MORFOLOGI

- Thinning
 - Menguruskan objek dalam citra
- Thickening
 - Menebalkan objek pada citra

THINNING

Salah satu kegunaan thinning adalah pada proses pengenalan karakter/huruf

Ada banyak cara mengimplementasikan thinning, salah satu diantaranya adalah dengan hit-or-miss transform

$$A \otimes B = A - (A * B) = A \cap (A * B)^c$$

THINNING

Dapat didefinisikan sebagai :

- Thinning $(A,{B}) = A (A * {B}) = A ((...(A * B1) * B2)...Bn)$
- B1, B2, B3, ..., Bn adalah structuring element

INOTE:

- A (A *B) berarti kebalikan dari A *B
- Yang match dihapus
- Yang tidak match dipertahankan

Contoh THINNING

S1 / TI09KK34 / semester 3 / 3 sks / sifat

SOAL 1

- Tentukan citra output, jika dilakukan Operasi :
- 1. Opening
- 2. Thinning untuk citra dibawah ini:

www.bsi.ac.id

