

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Лабораторная работа №4

Вариант №14

Дисциплина	Моделирование
Тема	Обслуживающий аппарат
Студент	Набиев Ф.М.
Группа	ИУ7-73Б
Оценка (баллы)	
Преподаватель	Рудаков И.В.

УСЛОВИЕ

Необходимо промоделировать систему, состоящую из генератора памяти и обслуживающего аппарата. Генератор подаёт сообщения, распределённые по нормальному закону, они проходят в память и выбираются на обработку по закону из лабораторной работы №2. Количество заявок конечно и задано. Предусмотреть случай, когда обработанная заявка возвращается обратно в очередь. Необходимо определить оптимальную длину очереди, при которой не будет потерянных сообщений. Реализовать, используя пошаговый и событийные подходы.

1 Теоретическая часть

1.1 Равномерное распределение

Непрерывное равномерное распределение — распределение случайной вещественной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке почти всюду постоянна.

Плотность распределения представлена в формуле 1.1.

$$f_X(x) = \begin{cases} \frac{1}{b-a}, x \in [a, b] \\ 0, x \notin [a, b] \end{cases}$$
 (1.1)

Функция распределения представлена в формуле 1.2.

$$F_X(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, x \ge b \end{cases}$$
 (1.2)

1.2 Нормальное распределение

Нормальное распределение — распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса.

Плотность распределения представлена в формуле 1.3.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (1.3)

Функция распределения представлена в формуле 1.4.

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$
 (1.4)

1.3 Пошаговый подход

Пошаговый подход заключается в последовательном анализе состояний всех блоков в момент $t+\Delta t$ по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные события должны имитироваться программной моделью на данный момент времени.

Основной недостаток этого подхода: значительные затраты машинного времени на реализацию моделирования системы. А при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

Достоинство: равномерная протяжка времени.

1.4 Событийный подход

Характерное свойство моделируемых систем — состояние отдельных устройств изменяется в дискретные моменты времени, которые совпадают с моментами поступления сообщений в систему, моментами окончания решения задач, моментами возникающих аварийных сигналов и т.д. Поэтому, моделирование и продвижение текущего времени в системе удобно проводить использую событийный принцип, при котором состояние всех блоков системы анализируется лишь в момент наступления какого-либо события. Момент наступления следующего события определяется минимальным значением из списка будущих событий, представляющих собой совокупность моментов ближайшего изменения состояний каждого из блоков системы.

2 Примеры работы

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0
Метод моделирования	Событийный 🗸
Δt	
Вычислить	
Количество обработанных заявок	1000
Количество повторно обработанных заявок	0
Максимальная длина очереди	3
Время работы	5429.468

Рис. 2.1 – Событийный подход, вероятность возврата заявки в очередь равна 0

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0
Метод моделирования	Δt
Δt	0.1
Вычислить	
Количество обработанных заявок	1000
Количество повторно обработанных заявок	0
Максимальная длина очереди	3
Время работы	5464.4

Рис. 2.2 – Пошаговый подход, вероятность возврата заявки в очередь равна 0

Рис. 2.3 – Событийный подход, вероятность возврата заявки в очередь равна 0.2

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0.2
Метод моделирования	Δt 🕶
Δt	0.1
Вычислить	
Вычислить Количество обработанных заявок	1261
Количество обработанных заявок	
Количество обработанных заявок Количество повторно обработанных заявок	261

Рис. 2.4 – Пошаговый подход, вероятность возврата заявки в очередь равна 0.2

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0.5
Метод моделирования	Событийный 🗸
Δt	0.1
Вычислить	
Количество обработанных заявок	1974
Количество повторно обработанных заявок	974
Максимальная длина очереди	6
Время работы	5614.507

Рис. 2.5 — Событийный подход, вероятность возврата заявки в очередь равна 0.5

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0.5
Метод моделирования	Δt
Δt	0.1
Вычислить	
Количество обработанных заявок	1965
Количество повторно обработанных заявок	965
Максимальная длина очереди	8
Время работы	5440.6

Рис. 2.6 – Пошаговый подход, вероятность возврата заявки в очередь равна 0.5

а 1 b 10 µ 1 σ 2 Количество заявок 1000 Вероятность повторной обработки заявки 0.8 Метод моделирования Событийный ✓ Δt 0.1 Вычислить Количество обработанных заявок 5024 Количество повторно обработанных заявок 4024 Максимальная длина очереди 24 Время работы 5423.675		
µ 1 σ 2 Количество заявок 1000 Вероятность повторной обработки заявки 0.8 Метод моделирования Событийный ▼ Δt 0.1 Вычислить Количество обработанных заявок 5024 Количество повторно обработанных заявок 4024 Максимальная длина очереди 24	a	1
о 2 Количество заявок 1000 Вероятность повторной обработки заявки 0.8 Метод моделирования Событийный ∨ 0.1 Вычислить Количество обработанных заявок 5024 Количество повторно обработанных заявок 4024 Максимальная длина очереди 24	b	10
Количество заявок Вероятность повторной обработки заявки Метод моделирования ∆t Событийный ▼ 0.1 Вычислить Количество обработанных заявок Количество повторно обработанных заявок Максимальная длина очереди 24	μ	1
Вероятность повторной обработки заявки Метод моделирования ∆t О.1 Вычислить Количество обработанных заявок 5024 Количество повторно обработанных заявок 4024 Максимальная длина очереди 24	σ	2
Метод моделирования	Количество заявок	1000
Δt 0.1 Вычислить Количество обработанных заявок 5024 Количество повторно обработанных заявок 4024 Максимальная длина очереди 24	Вероятность повторной обработки заявки	0.8
Количество обработанных заявок 5024 Количество повторно обработанных заявок 4024 Максимальная длина очереди 24	Метод моделирования	Событийный 🗸
Количество обработанных заявок 5024 Количество повторно обработанных заявок 4024 Максимальная длина очереди 24	Δt	0.1
Количество повторно обработанных заявок 4024 Максимальная длина очереди 24	Вычислить	
Максимальная длина очереди 24	Количество обработанных заявок	5024
	Количество повторно обработанных заявок	4024
Время работы 5423.675	Максимальная длина очереди	24
	Время работы	5423.675

Рис. 2.7 — Событийный подход, вероятность возврата заявки в очередь равна 0.8

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0.8
Метод моделирования	Δt 🕶
Δt	0.1
Вычислить	
Количество обработанных заявок	5116
Количество повторно обработанных заявок	4116
Максимальная длина очереди	25
Время работы	5537.0

Рис. 2.8 – Пошаговый подход, вероятность возврата заявки в очередь равна 0.8

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0.99
Метод моделирования	Событийный 🗸
Δt	0.1
Вычислить	
Количество обработанных заявок	99431
Количество повторно обработанных заявок	98431
Максимальная длина очереди	16934
Время работы	98669.669

Рис. 2.9 – Событийный подход, вероятность возврата заявки в очередь равна 0.99

a	1
b	10
μ	1
σ	2
Количество заявок	1000
Вероятность повторной обработки заявки	0.99
Метод моделирования	Δt 🕶
метод моделирования	Δι
Δt	0.1
Δt	
Δt	97914
Δt Вычислить Количество обработанных заявок	97914

Рис. 2.10 – Пошаговый подход, вероятность возврата заявки в очередь равна 0.99