Függvényvizsgálat

Feladatok

Végezzük el az alábbi függvények teljes függvényvizsgálatát:

$$1. f(x) = x^4 - 4x^3$$

$$2. f(x) = -x^4 + 18x^4$$

$$3. f(x) = x^5 + 5x^4$$

1.
$$f(x) = x^4 - 4x^3$$
 2. $f(x) = -x^4 + 18x^2$ 3. $f(x) = x^5 + 5x^4$ 4. $f(x) = \frac{1}{1 + x^2}$

$$5. f(x) = \frac{1}{1 - x^2}$$

6.
$$f(x) = \frac{x}{1 + x^2}$$

$$7. f(x) = \frac{x}{1 - x^2}$$

$$5. f(x) = \frac{1}{1 - x^2} \qquad 6. f(x) = \frac{x}{1 + x^2} \qquad 7. f(x) = \frac{x}{1 - x^2} \qquad 8. f(x) = \frac{x}{(1 - 2x)^2}$$

$$9. f(x) = \frac{x^2}{x + 1} \qquad 10. f(x) = \frac{x^3}{x^2 - 3} \qquad 11. f(x) = x e^{-x} \qquad 12. f(x) = (x + 2)^2 e^{-x}$$

$$13. f(x) = e^{-x^2} \qquad 14. f(x) = x e^{-x^2} \qquad 15. f(x) = x^2 \ln x \qquad 16. f(x) = \arctan(x^2)$$

9.
$$f(x) = \frac{x^2}{x+1}$$

10.
$$f(x) = \frac{x^3}{x^2 - 3}$$

11.
$$f(x) = x e^{-x}$$

12.
$$f(x) = (x + 2)^2 e^{-x}$$

13.
$$f(x) = e^{-x}$$

14.
$$f(x) = x e^{-x^2}$$

15.
$$f(x) = x^2 \ln x$$

16.
$$f(x) = \arctan(x^2)$$

Emlékeztető

A függvényvizsgálat lépései:

- 1. D_f ; zérushelyek (ha megállapítható); paritás; periodicitás; határértékek + ∞ -ben, - ∞ -ben (ha van értelme), szakadási pontokban, határpontokban
- 2. f' vizsgálata ⇒ monotonitás, lokális szélsőértékek
- 3. f" vizsgálata ⇒ konvexitás, konkávitás, inflexiós pontok
- 4. lineáris aszimptoták
- 5. f ábrázolása, R_f meghatározása

Tétel: Ha az f függvény deriválható az értelmezési tartományának egy x_0 belső pontjában, akkor az x₀-beli **lokális szélsőérték** létezésének

1. szükséges feltétele: $f'(x_0) = 0$

2. elégséges feltétele: a) $f'(x_0) = 0$ és f' előjelet vált x_0 -ban

b) Ha f kétszer deriválható x_0 -ban: $f'(x_0) = 0$ és $f''(x_0) \neq 0$

 $(f''(x_0) > 0 : lok.min., f''(x_0) < 0 : lok.max.)$

Tétel: Ha az f függvény kétszer deriválható az értelmezési tartományának egy x₀ belső pontjában, akkor az x₀-beli **inflexiós pont** létezésének

1. szükséges feltétele: $f''(x_0) = 0$

2. elégséges feltétele: a) $f''(x_0) = 0$ és f'' előjelet vált x_0 -ban

b) Ha f háromszor deriválható x_0 -ban: $f''(x_0) = 0$ és $f'''(x_0) \neq 0$

Aszimptoták:

- 1) Az x = a egyenes az f függvény **függőleges aszimptotája**, ha $\lim_{x \to a^+} f(x) = \pm \infty$ vagy $\lim_{x \to a^-} f(x) = \pm \infty$.
- 2) Az y = b egyenes az f függvény **vízszintes aszimptotája**, ha $\lim f(x) = b$ vagy $\lim f(x) = b$.
- 3) A g(x) = Ax + B egyenes **ferde aszimptotája** az f függvénynek ∞-ben vagy $-\infty$ -ben, ha

$$\lim_{x\to\infty} (f(x)-g(x))=0 \text{ vagy } \lim_{x\to-\infty} (f(x)-g(x))=0. \text{ Ekkor } A=\lim_{x\to\pm\infty} \frac{f(x)}{x} \text{ és } B=\lim_{x\to\pm\infty} (f(x)-Ax).$$

Minden olyan racionális törtfüggvénynek van ferde aszimptotája, ahol a számláló fokszáma eggyel nagyobb, mint a nevezőé (ld. 9. és 10. példa).

Megoldások

1. $f(x) = x^4 - 4x^3$

 $D_f = \mathbb{R}$; zérushely: $f(x) = 0 \iff x = 0$ vagy x = 4

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3) = 0 \iff x = 0 \text{ vagy } x = 3$$

$$f''(x) = 12x^2 - 24x = 12x(x-2) = 0 \iff x = 0 \text{ vagy } x = 2$$

$$\lim_{x\to -\infty} f(x) = \lim_{x\to +\infty} f(x) = +\infty$$

$$R_f = [-27, \infty)$$

x	x<0	x=0	0 <x<3< th=""><th>x=3</th><th>x>3</th></x<3<>	x=3	x>3
f'	=	0	=	0	+
f	Ā		Ą	min:-27	7

x	x<0	x=0	0 <x<2< th=""><th>x=2</th><th>x>2</th></x<2<>	x=2	x>2
f''	+	0	=	0	+
f	U	infl:0	\cap	infl:-16	\cup

2.
$$f(x) = -x^4 + 18x^2$$

$$D_f = \mathbb{R}$$
; zérushely: $f(x) = 0 \iff x = 0$ vagy $x = \pm 3\sqrt{2}$; f páros;

$$f'(x) = -4x^3 + 36x = 4x(-x^2 + 9) = 0 \iff x = 0 \text{ vagy } x = \pm 3$$

$$f''(x) = -12x^2 + 36 = 0 \iff x = \pm \sqrt{3}$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = -\infty$$

$$R_f = (-\infty, 81]$$

х	x<-3	x=-3	-3 <x<0< th=""><th>x=0</th><th>0<x<3< th=""><th>x=3</th><th>x>3</th></x<3<></th></x<0<>	x=0	0 <x<3< th=""><th>x=3</th><th>x>3</th></x<3<>	x=3	x>3
f'	+	0	-	0	+	0	=
f	7	max:81	Я	min:0	7	max:81	K

х	x<- \sqrt{3}	$x=-\sqrt{3}$	$-\sqrt{3} < x < \sqrt{3}$	$x = \sqrt{3}$	$x > \sqrt{3}$
f''	-	0	+	0	=
f	\cap	infl:45	U	infl:45	\cap

3. $f(x) = x^5 + 5x^4$

$$D_f = \mathbb{R}$$
; zérushely: $f(x) = 0 \iff x = 0 \text{ vagy } x = -5$

$$f'(x) = 5x^4 + 20x^3 = 5x^3(x+4) = 0 \iff x = -4 \text{ vagy } x = 0$$

$$f''(x) = 20x^3 + 60x^2 = 20x^2(x+3) = 0 \iff x = -3 \text{ vagy } x = 0$$

$$\lim_{x\to-\infty}f(x)=-\infty,\ \lim_{x\to+\infty}f(x)=+\infty$$

 $R_f = \mathbb{R}$

х	x<-4	x = -4	-4 <x<0< th=""><th>x=0</th><th>x>0</th></x<0<>	x=0	x>0
f'	+	0	-	0	+
f	7	max:256	Ä	min:0	7

Х	x<-3	x=-3	-3 <x<0< th=""><th>x=0</th><th>x>0</th></x<0<>	x=0	x>0
f''	-	0	+	0	+
f	\cap	infl:162	U		\cup

4.
$$f(x) = \frac{1}{1+x^2}$$

$$D_f = \mathbb{R}; f(x) \neq 0; f \text{ páros}$$

$$\lim_{x\to -\infty} f(x) = 0, \quad \lim_{x\to +\infty} f(x) = 0$$

$$f'(x) = -\frac{2x}{(1+x^2)^2} = 0 \iff x = 0$$

vízszintes aszimptota: y = 0

$$f''(x) = \frac{2 \cdot (-1 + 3x^2)}{(1 + x^2)^3} = 0 \iff x = \pm \frac{1}{\sqrt{3}}$$

$$R_f = (0, 1]$$

х	x<0	x=0	x>0
f'	+	0	-
f	7	max:1	Ŋ

х	$X < -\frac{1}{\sqrt{3}}$	$X = -\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}} < X < \frac{1}{\sqrt{3}}$	$X = \frac{1}{\sqrt{3}}$	$X>\frac{1}{\sqrt{3}}$
f''	+	0	0 -		+
f	U	infl: $\frac{3}{4}$	\cap	infl: $\frac{3}{4}$	U

5. $f(x) = \frac{1}{1-x^2}$

$$D_f = \mathbb{R} \setminus \{-1, 1\}; f(x) \neq 0; f \text{ páros}$$

$$f'(x) = \frac{2x}{(1-x^2)^2} = 0 \iff x = 0$$

$$f''(x) = \frac{2 \cdot (1 + 3x^2)}{(1 - x^2)^3} \neq 0$$

$$\lim_{x\to\pm\infty}f(x)=0,\ \lim_{x\to-1\pm0}f(x)=\pm\infty,\ \lim_{x\to1\pm0}f(x)=\mp\infty$$

vízszintes aszimptota: y = 0

függőleges aszimptoták: x = 1, x = -1

$$R_f = (-\infty, 0) \cup [1, +\infty)$$

х	x<-1	-1 <x<0< th=""><th>x=0</th><th>0<x<1< th=""><th>1<x< th=""></x<></th></x<1<></th></x<0<>	x=0	0 <x<1< th=""><th>1<x< th=""></x<></th></x<1<>	1 <x< th=""></x<>
f'	-	-	0	+	+
f	K	Ā	min:1	7	7

х	x<-1	-1 <x<1< th=""><th>x>1</th></x<1<>	x>1
f''	-	+	
f	\cap	U	\cap

6.
$$f(x) = \frac{x}{1+x^2}$$

$$D_f = \mathbb{R}$$
; $f(x) = 0 \iff x = 0$; f páratlan

$$f'(x) = \frac{1 - x^2}{(1 + x^2)^2} = 0 \iff x = \pm 1$$

$$f''(x) = \frac{2x(-3+x^2)}{(1+x^2)^3} = 0 \iff x = 0 \text{ vagy } x = \pm \sqrt{3}$$
 $R_f = \left[-\frac{1}{2}, \frac{1}{2}\right]$

$\lim f(x) = 0,$	$\lim f(x) = 0$
$X \rightarrow -\infty$	$X \rightarrow +\infty$

vízszintes aszimptota : y = 0

$$R_f = \left[-\frac{1}{2}, \frac{1}{2} \right]$$

х	x<- √3	$x=-\sqrt{3}$	$-\sqrt{3} < x < 0$	x=0	0 <x<√3< th=""><th>$x = \sqrt{3}$</th><th>x>√3</th></x<√3<>	$x = \sqrt{3}$	x>√3
f''	-	0	+	0	-	0	+
f	\cap	infl: $-\frac{\sqrt{3}}{4}$	U	infl:0	\cap	$infl: \frac{\sqrt{3}}{4}$	U

7.
$$f(x) = \frac{x}{1-x^2}$$

$$D_f = \mathbb{R} \setminus \{-1, 1\}$$

 $f(x) = 0 \iff x = 0$; f páratlan

$$f'(x) = \frac{1+x^2}{(1-x^2)^2} \neq 0$$

$$f''(x) = \frac{2x(3+x^2)}{(1-x^2)^3} = 0 \iff x = 0$$

$$\lim_{x\to\pm\infty}f(x)=0,\ \lim_{x\to-1\pm0}f(x)=\mp\infty,\ \lim_{x\to1\pm0}f(x)=\mp\infty$$

vízszintes aszimptota : y = 0

függőleges aszimptoták: x = 1, x = -1

$$R_f = \mathbb{R}$$

		2	
-4	-2	-1	2 4
		-2 -3	

х	x<-1	-1 <x<0< th=""><th>x=0</th><th>0<x<1< th=""><th>1<x< th=""></x<></th></x<1<></th></x<0<>	x=0	0 <x<1< th=""><th>1<x< th=""></x<></th></x<1<>	1 <x< th=""></x<>
f''	+	-	0	+	=
f	U	\cap	infl:0	U	l n

8.
$$f(x) = \frac{x}{(1-2x)^2}$$

$$D_f = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$

$$f(x) = 0 \iff x = 0$$

$$f'(x) = \frac{1+2x}{(1-2x)^3} = 0 \iff x = -\frac{1}{2}$$
 függőleges aszimptota: $x = \frac{1}{2}$

$$f''(x) = \frac{8 \cdot (1+x)}{(1-2x)^4} = 0 \iff x = -1$$
 $R_f = \left[-\frac{1}{8}, +\infty\right]$

$\lim f(x) = 0,$	lim	$f(x) = +\infty$
X→±∞	$X \rightarrow -\frac{1}{2} \pm 0$)

vízszintes aszimptota : y = 0

$$R_f = \left[-\frac{1}{\circ}, +\infty \right]$$

9. $f(x) = \frac{x^2}{x+1}$

$$D_f = \mathbb{R} \setminus \{-1\};$$

$$\lim_{x\to\pm\infty}f(x)=\pm\infty,\ \lim_{x\to-1\pm0}f(x)=\pm\infty$$

$$f(x) = 0 \iff x = 0$$

függőleges aszimptota : x = -1

$$f'(x) = \frac{x(2+x)}{(1+x)^2} = 0 \iff x = -2 \text{ vagy } x = 0$$

lineáris aszimptota: y = x - 1

$$f''(x) = \frac{2}{(1+x)^3} \neq 0$$

$$R_f = \mathbb{R}$$

х	x<-2	x=-2	-2 <x<-1< th=""><th>-1<x<0< th=""><th>x=0</th><th>x>0</th></x<0<></th></x<-1<>	-1 <x<0< th=""><th>x=0</th><th>x>0</th></x<0<>	x=0	x>0
f'	+	0	=	=	0	+
f	7	max:-4	Ŋ	Ą	min:0	7

Х	x<-1	x>-1
f''	-	+
f	\cap	U

10.
$$f(x) = \frac{x^3}{x^2 - 3}$$

$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3} , \sqrt{3} \right\};$$

$$\lim_{x\to\pm\infty}f(x)=\pm\infty,\quad \lim_{x\to-\sqrt{3}\pm0}f(x)=\pm\infty,\quad \lim_{x\to\sqrt{3}\pm0}f(x)=\pm\infty$$

$$f(x) = 0 \iff x = 0$$
; f páratlan

függőleges aszimptoták:
$$x = -\sqrt{3}$$
, $x = \sqrt{3}$

$$f'(x) = \frac{x^2(x^2 - 9)}{(x^2 - 3)^2} = 0 \iff x = 0 \text{ vagy } x = \pm 3$$

lineáris aszimptota:
$$y = x$$

$$f''(x) = \frac{6x(9+x^2)}{(x^2-3)^3} = 0 \iff x = 0$$

$$R_f = \mathbb{R}$$

х	x<-3	x=-3	$-3 < x < -\sqrt{3}$	$-\sqrt{3} < x < 0$	x=0	0 <x<√3< th=""><th>$\sqrt{3} < x < 3$</th><th>x=3</th><th>x>3</th></x<√3<>	$\sqrt{3} < x < 3$	x=3	x>3
f'	+	0	-	-	0	-	-	0	+
f	7	$\max: -\frac{9}{2}$	٧	¥		K	٧	$\min: \frac{9}{2}$	7

х	x<- \sqrt{3}	$-\sqrt{3} < x < 0$	x=0	0 <x< th="" √3<=""><th>$x > \sqrt{3}$</th></x<>	$x > \sqrt{3}$
f''	=	+	0	-	+
f	Λ	U	infl:0	\cap	U

11. $f(x) = x e^{-x}$

$$D_{f} = \mathbb{R}; \ f(x) = 0 \iff x = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{e^{x}} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$f'(x) = e^{-x}(1 - x) = 0 \iff x = 1$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$f''(x) = e^{-x}(x - 2) = 0 \iff x = 2$$

$$R_{f} = \left(-\infty, \frac{1}{e^{x}}\right]$$

х	x<1	x=1	x>1
f'	+	0	=
f	7	$\max: \frac{1}{e} \approx 0.37$	K

х	x<2	x=2	x>2
f''	=	0	+
f	\cap	infl: $\frac{2}{e^2} \approx 0.27$	\cup

12. $f(x) = (x+2)^2 e^{-x}$

$$D_{f} = \mathbb{R}; \ f(x) = 0 \iff x = -2$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(x+2)^{2}}{e^{x}} \stackrel{L'H}{=} \lim_{x \to +\infty} \frac{2(x+2)}{e^{x}} \stackrel{L'H}{=} \lim_{x \to +\infty} \frac{2}{e^{x}} = 0$$

$$f'(x) = -e^{-x}x(2+x) = 0 \iff x = 0 \text{ vagy } x = -2$$

$$\lim_{x \to -\infty} f(x) = +\infty$$

$$f''(x) = e^{-x}(x^{2} - 2) = 0 \iff x = \pm \sqrt{2}$$

$$R_{f} = [0, +\infty)$$

х	x<-2	x=-2	-2 <x<0< th=""><th>x=0</th><th>x>0</th></x<0<>	x=0	x>0
f'	=	0	+	0	=
f	Ŕ	min:0	7	max:4	Ā

х	x<− √2	x=− √2	$-\sqrt{2} < x < \sqrt{2}$	$x = \sqrt{2}$	$x>\sqrt{2}$
f''	+	0	=	0	+
f	U	infl:≈1.41	Λ	infl:≈2.83	U

13. $f(x) = e^{-x^2}$

$$D_f = \mathbb{R}$$
; $f(x) \neq 0$; f páros

$$f''(x) = 2e^{-x^2}(-1+2x^2) = 0 \iff x = \pm \frac{1}{\sqrt{2}}$$

$$f'(x) = e^{-x^2}(-2x) = 0 \iff x = 0$$

$$\lim_{x \to \pm \infty} f(x) = 0; \ R_f = (0, 1]$$

х	x<0	x=0	x>0
f'	+	0	-
f	7	max:1	Ŕ

х	$X < -\frac{1}{\sqrt{2}}$	$X = -\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}} < X < \frac{1}{\sqrt{2}}$	$X = \frac{1}{\sqrt{2}}$	$X>\frac{1}{\sqrt{2}}$
f''	+	0	-	0	+
f	U	infl: $\frac{1}{\sqrt{e}} \approx 0.61$	\cap	infl: $\approx \frac{1}{\sqrt{e}} \approx 0.61$	U

14. $f(x) = x e^{-x^2}$

$$D_f = \mathbb{R}$$
; $f(x) = 0 \iff x = 0$; f páratlan

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x}{e^{x^2}} = \lim_{x \to \pm \infty} \frac{1}{e^{x^2} \cdot 2x} = 0$$

$$f'(x) = -e^{-x^2}(-1 + 2x^2) = 0 \iff x = \pm \frac{1}{\sqrt{2}}$$
 $R_f = \left[-\frac{1}{\sqrt{2e}}, \frac{1}{\sqrt{2e}} \right]$

$$R_f = \left[-\frac{1}{\sqrt{2e}}, \frac{1}{\sqrt{2e}} \right]$$

$$f''(x) = 2e^{-x^2}x(-3+2x^2) = 0 \iff x = 0 \text{ vagy } x = \pm \sqrt{\frac{3}{2}}$$

х	$X < -\frac{1}{\sqrt{2}}$	$X = -\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}} < X < \frac{1}{\sqrt{2}}$	$X = \frac{1}{\sqrt{2}}$	$X>\frac{1}{\sqrt{2}}$
f'	-	0	+	0	-
f	У	$\min: -\frac{1}{\sqrt{2}e} \approx -0.43$	7	$\max: \frac{1}{\sqrt{2 e}} \approx 0.43$	Ä

x	$X < -\sqrt{\frac{3}{2}}$	$X = -\sqrt{\frac{3}{2}}$	$-\sqrt{\frac{3}{2}} < x < 0$	x=0	$0 < x < \sqrt{\frac{3}{2}}$	$X = \sqrt{\frac{3}{2}}$	$X > \sqrt{\frac{3}{2}}$
f''	-	0	+	0	-	0	+
f	\cap	infl:≈-0.27	U	infl:0	Λ	infl:≈0.27	U

15. $f(x) = x^2 \ln x$

$$D_f = \mathbb{R}^+$$
; $f(x) = 0 \iff x = 1$

$$\lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} \frac{\ln x}{\frac{1}{x^2}} = \lim_{x \to 0+0} \frac{\frac{1}{x}}{-\frac{2}{x^3}} = \lim_{x \to 0+0} \frac{-x^2}{2} = 0$$

$$f'(x) = x(1 + 2 \ln x) = 0 \iff x = \frac{1}{\sqrt{e}} \approx 0.61$$

$$\lim_{x\to +\infty} f(x) = +\infty$$

$$f''(x) = 3 + 2 \ln x = 0 \iff x = \frac{1}{e^{3/2}} \approx 0.22$$

$$R_f = \left[-\frac{1}{2e}, +\infty \right]$$

х	$0 < x < \frac{1}{\sqrt{e}}$	$X = \frac{1}{\sqrt{e}}$	$X > \frac{1}{\sqrt{e}}$
f'	-	0	+
f	7	$\min: -\frac{1}{2e} \approx -0.18$	Ŕ

х	$0 < x < \frac{1}{e^{3/2}}$	$X = \frac{1}{e^{3/2}}$	$X>\frac{1}{e^{3/2}}$
f''	-	0	+
f	\cap	infl: $-\frac{3}{2 e^3} \approx -0.07$	U

16. $f(x) = \arctan(x^2)$

$$D_f = \mathbb{R}; \ f(x) = 0 \iff x = 0; \ f \text{ páros}$$

$$f''(x) = \frac{2 \cdot (1 - 3x^4)}{(1 + x^4)^2} = 0 \iff x = \pm \frac{1}{\sqrt[4]{3}}$$

$$f'(x) = \frac{2x}{1+x^4} = 0 \iff x = 0$$

$$\lim_{x\to\pm\infty}f(x)=\frac{\pi}{2};\quad R_f=\left[0,\,\frac{\pi}{2}\right)$$

х	$X < -\frac{1}{\sqrt[4]{3}}$	$X = -\frac{1}{\sqrt[4]{3}}$	$-\frac{1}{\sqrt[4]{3}} < X < \frac{1}{\sqrt[4]{3}}$	$X = \frac{1}{\sqrt[4]{3}}$	$X > \frac{1}{\sqrt[4]{3}}$
f''	=	0	+	0	-
f	\cap	$infl: \frac{\pi}{6}$	U	$infl: \frac{\pi}{6}$	\cap