Digging into the Dirichlet

Max Sklar @maxsklar

New York Machine Learning Meetup December 19th, 2013

Dedication

Meyer Marks 1925 - 2013

$$P(p|\alpha) = \frac{\Gamma\left(\sum_{k=0}^{K-1} \alpha_k\right)}{\prod_{k=0}^{K-1} \Gamma\left(\alpha_k\right)} \prod_{k=0}^{K-1} p_k^{\alpha_k - 1}$$

A Pie Chart!

AKA
Discrete Distribution
Multinomial Distribution

A Pie Chart!

K = The number of categories.

$$K = 5$$

Museum of Modern Art Weekhour Plot

MoMa SCARY Pie Chart

What does the raw data look like?

What does the raw data look like?

Counts!

id	# likes	# dislikes
1	231	23
2	81	40
3	67	9
4	121	14
5	9	31
6	18	0
7	1	1

What does the raw data look like?

More specifically:

- K columns of counts
- N rows of data

id	# likes	# dislikes
1	231	23
2	81	40
3	67	9
4	121	14
5	9	31
6	18	0
7	1	1

Counts != Multinomial Distribution

We can estimate the multinomial distribution with the counts, using the maximum likelihood estimate

366	181	203

We can estimate the multinomial distribution with the counts, using the maximum likelihood estimate

366	181	203

We can estimate the multinomial distribution with the counts, using the maximum likelihood estimate

366 / 750 181 / 750 203 / 750

366	181	203

We can estimate the multinomial distribution with the counts, using the maximum likelihood estimate

48.8% 24.1% 27.1%

366	181	203

Uh Oh

366	181	203
1	2	1

This column will be all Yellow right?

366	181	203
1	2	1
0	1	0

Panic!!!!

366	181	203
1	2	1
0	1	0
0	0	0

Bayesian Statistics to the Rescue

Bayesian Statistics to the Rescue

Still assume each row was generated by a multinomial distribution

Bayesian Statistics to the Rescue

Still assume each row was generated by a multinomial distribution

We just don't know which one!

Is a probability distribution over all possible multinomial distributions, p.

?

Represents our uncertainty over the actual distribution that created the row.

$$P(p|\alpha) = \frac{\Gamma\left(\sum_{k=0}^{K-1} \alpha_k\right)}{\prod_{k=0}^{K-1} \Gamma\left(\alpha_k\right)} \prod_{k=0}^{K-1} p_k^{\alpha_k - 1}$$

p: represents a multinomial distribution alpha: the parameters of the dirichlet K: the number of categories

$$P(p|data) = \frac{P(data|p) * P(p|\alpha)}{P(p)}$$

$$P(p|data) = \frac{P(data|p) * P(p|\alpha)}{P(p)}$$

Also a Dirichlet!

$$P(p|data) = \frac{P(data|p) * P(p|\alpha)}{P(p)}$$

Also a Dirichlet! (Conjugate Prior)

Why Does this Work?

Let's look at it again.

Entropy

Entropy Information Content

Entropy Information Content Energy

Entropy Information Content Energy Log Likelihood

Entropy Information Content Energy Log Likelihood

-ln(p)

Entropy of Different Events

$$P(p|\alpha) = \frac{\Gamma\left(\sum_{k=0}^{K-1} \alpha_k\right)}{\prod_{k=0}^{K-1} \Gamma\left(\alpha_k\right)} \prod_{k=0}^{K-1} p_k^{\alpha_k - 1}$$

$$P(p|\alpha) = \frac{\Gamma\left(\sum_{k=0}^{K-1} \alpha_k\right)}{\prod_{k=0}^{K-1} \Gamma\left(\alpha_k\right)} \prod_{k=0}^{K-1} p_k^{\alpha_k - 1}$$

Normalizing Constant

$$P(p|\alpha) = \begin{bmatrix} K-1 \\ \prod_{k=0}^{K-1} p_k^{\alpha_k - 1} \end{bmatrix}$$

Normalizing Constant

$$E(p|\alpha) = -\ln\left(\prod_{k_0}^{K-1} p_k^{\alpha_k - 1}\right)$$

$$E(p|\alpha) = \sum_{k_0} (\alpha_k - 1) \left(-ln(p_k)\right)$$

K-1

$$E(p|\alpha) = \sum_{k_0}^{K-1} (\alpha_k - 1) e_k$$

$$e_k = -ln(p_k)$$

$$E(p|\alpha) = \sum_{k_0}^{K-1} (\alpha_k - 1) \, e_k$$

$$e_k = -ln(p_k)$$

Prior

1.2

3.0

Prior

1.2

3.0

Update

2.2

3.0

Prior

2.2

3.0

Update

2.2

3.0

Prior

2.2

3.0

Update

2.2

3.0

What does this alpha vector really mean?

ANALOGY: Normal Distribution

Precision = 1 / variance

ANALOGY: Normal Distribution

High precision: data is close to the mean

Low precision: far away from the mean

High Weight Dirichlet

Low Weight Dirichlet

Rich get richer...

Rich get richer...

Finally yellow catches a break

Finally yellow catches a break

But it's too late...

As the urn gets more populated, the distribution gets "stuck" in place.

Once lots of data has been collected, or the dirichlet has high precision, it's hard to overturn that with new data

The expected infinite distribution (mean) is exponential.

of white balls controls the exponent

What Dirichlet parameters explain the data?

20	0	0
2	1	17
14	6	0
15	5	0
0	20	0
0	14	6

Newton's Method: Requires Gradient + Hessian

20	0	0
2	1	17
14	6	0
15	5	0
0	20	0
0	14	6

Reads all of the data...

20	0	0
2	1	17
14	6	0
15	5	0
0	20	0
0	14	6

https://github. com/maxsklar/Baye sPy/tree/master/Con jugatePriorTools

20	0	0
2	1	17
14	6	0
15	5	0
0	20	0
0	14	6

Compress the data into a Matrix and a Vector:

Works for lots of sparsely populated rows

20	0	0
2	1	17
14	6	0
15	5	0
0	20	0
0	14	6

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

K = 3
(the 4th row is a special, total row)

M = 6 The maximum # samples per input

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

K = 3
(the 4th row is a special, total row)

M = 6
The maximum # samples per input

1	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	0	0	0	0	0

K = 3 (the 4th row is a special, total row)

M = 6 The maximum # samples per input

2	0	0	0	0	0
1	1	1	0	0	0
1	1	0	0	0	0
2	1	1	1	1	1

K = 3 (the 4th row is a special, total row)

M = 6
The maximum # samples per input

2	0	0	0	0	0
2	2	2	1	1	1
1	1	0	0	0	0
3	2	2	2	2	2

K = 3 (the 4th row is a special, total row)

M = 6 The maximum # samples per input

3	1	0	0	0	0
3	2	2	1	1	1
2	1	0	0	0	0
4	3	3	3	2	2

DEMO

Our Popularity Prior

Anything you can go with a Gaussian, you can also do with a Dirichlet

Example:

Mixture of
Gaussians using
ExpectationMaximization

Assume each row is a mixture of multinomials.

And the parameters of that mixture are pulled from a Dirichlet.

Latent Dirichlet Allocation

Topic Model

Questions