Definition 1. A category consists of objects obj(C) and arrows hom(C)

Categories focus on the relation between themselves, the arrows are the important parts. Here is an example category showing function composition with a communative diagram.

And a quick check of why these are called communative diagrams

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Remark. For any category C there is always an identity arrow 1_C though it would clutter diagrams if it were written every time. $C > id_C$

There is always one unique identity homomorphism. $\exists ! 1_A : A \to A$

Proof. Assume there are two unique identity morphisms from category A, 1 and 1' as shown in the diagram below.

$$A \xrightarrow{1 \atop 1'} A$$

Then composing these two homomorphisms makes a contradiction.

$$1 = 1 \circ 1' = 1'$$

Remark. A homomorphism moving between a category and itself is also know as an endomorphism.

Definition 2. Small and Locally small categories Let C be a category

- if all hom(C)'s together form a set, the category is small
- if hom are all sets, the category is locall small

Some examples of categories:

 SET - The category of all sets with mappings between them is locally small but not small

$$\mathcal{P}(\mathbb{X}) = \{ A \subseteq \mathbb{X} \} = 2^{\mathbb{X}}$$

 $B^A :: All functions from <math>A \to B$

• Grp - An object is a group and a map $G \to H$ is a group homomorphism

• Vect - An object is a vector space and a map $V \to W$ is a linear map

Definition 3. Let A and B be objects in a category. Them a map $f: A \to B$ is an isomorphism is the is a map $f^{-1}: B \to A$ (the inverse of f) such that $f^{-1} \circ f = Id_A$ and $f \circ f^{-1} = Id_B$.

If there exists an isomorphism between A and B, we say that A and B are

isomorphic and write $A \cong B$.

Proposition 1. In Set, a map is an isomorphism iff it is a bijection. Two sets are isomorphic off they have the same cardinality.

Definition 4. An object 0 is an initial object if for every object A, there is a unique map $0 \to A$

Definition 5. The disjoint union of two sets A and B is the set $A \sqcup B = (0, a) : a \in A \cup (1, b) : b \in B$.

Definition 6 (Coproduct). Let A and B be objects in a category. Then a sum (or coproduct) of A and B is an object A+B together with maps $i_0:A\to A+B$ and $i_1:B\to A+B$ such that whenever we have an object C and maps $f_0:A\to C$ and $f_1:B\to C$, there is a unique map $f:A+B\to C$ such that $f_0=fi_0$ and $f_1=fi_1$

Theorem 0.1. Let A and B be objects and lot $A \to ["i_0"]P \leftarrow ["i_1"]B$ and $A \to ["j_0"]Q \leftarrow ["j_1"]B$ be two sums of A and B. Then there exists a unique isomorphism $f: P \to Q$ such that the following diagram commutes:

