Serial No.: 10/808,606

Amendments to the Claims:

This listing of all pending claims (including withdrawn claims) will replace all prior versions, and listings, of claims in the application. Cancelled and not entered claims are indicated with claim number and status only. The claims show added text with underlining and deleted text with strikethrough. The status of each claim is indicated with one of (original), (currently amended), (cancelled), (withdrawn), (new), (previously presented), or (not entered).

Listing of Claims:

 (Currently Amended) An optical transmission system for performing WDM optical transmission, comprising an optical transmission device and an optical reception device; wherein said optical transmission device includes,

an optical-supervisory-signal generation unit which generates a first optical supervisory signal being arranged on a shorter-wavelength side of main signals and containing information for use in determination of continuity of an optical transmission line and a second optical supervisory signal arranged on a longer-wavelength side of the main signals and used for supervisory control of optical communication, and

an optical multiplexing unit which generates a wavelength-multiplexed signal by optically multiplexing together simultaneously the main signals and the first and second optical supervisory signals, and transmits the wavelength-multiplexed signal onto said optical transmission line; and

said optical reception device includes,

an optical demultiplexing unit which receives said wavelength-multiplexed signal, and optically demultiplexes the wavelength-multiplexed signal into said main signals, said first optical supervisory signal, and said second optical supervisory signal, and

an optical-supervisory-signal reception unit which determines whether or not said optical transmission line is optically continuous, based on the first optical supervisory signal, and performs supervisory control of optical communication based on the second optical supervisory signal,

wherein said first optical supervisory signal generated by said opticalsupervisory-signal generation unit contains clock information as said information for use in determination of continuity of said optical transmission line, and said optical-supervisory-signal

Serial No.: 10/808,606

reception unit activates an APSD (Auto Power Shut Down) function based on the clock information,

wherein, even when the level of the second optical-supervisory-signal varies and an error occurs in the second optical-supervisory-signal, the APSD function is not activated as long as the clock information can be extracted from the first optical-supervisory-signal, and wherein, only when said optical-supervisory-signal reception unit cannot extract the clock information from the first optical-supervisory-signal, said optical-supervisory-signal

reception unit determines that a fiber failure has occurred, and activates the APSD function.

2. (Canceled)

3. (Currently Amended) An optical transmission device for performing WDM optical transmission, comprising:

an optical-supervisory-signal generation unit which generates a first optical supervisory signal being arranged on a shorter-wavelength side of first main signals and containing information for use in determination of continuity of a first optical transmission line and a second optical supervisory signal arranged on a longer-wavelength side of the first main signals and used for supervisory control of optical communication;

an optical multiplexing unit which generates a first wavelength-multiplexed signal by optically multiplexing together simultaneously the first main signals and the first and second optical supervisory signals, and transmits the first wavelength-multiplexed signal onto said first optical transmission line;

an optical demultiplexing unit which receives a second wavelength-multiplexed signal through a second optical transmission line, and optically demultiplexes the second wavelength-multiplexed signal into second main signals, a third optical supervisory signal, and a fourth optical supervisory signal, where the third optical supervisory signal is arranged on a shorter-wavelength side of the second main signals, and the fourth optical supervisory signal is arranged on a longer-wavelength side of the second main signals; and

an optical-supervisory-signal reception unit which determines whether or not said second optical transmission line is optically continuous, based on the third optical supervisory signal, and performs supervisory control of optical communication based on the fourth optical supervisory signal,

Serial No.: 10/808,606

wherein said first optical supervisory signal generated by said opticalsupervisory-signal generation unit contains clock information as said information for use in
determination of continuity of said first optical transmission line, and said optical-supervisorysignal reception unit activates an APSD (Auto Power Shut Down) function based on the clock
information,

wherein, even when the level of the second optical-supervisory-signal varies and an error occurs in the second optical-supervisory-signal, the APSD function is not activated as long as the clock information can be extracted from the first optical-supervisory-signal, and wherein, only when said optical-supervisory-signal reception unit cannot extract the clock information from the first optical-supervisory-signal, said optical-supervisory-signal reception unit determines that a fiber failure has occurred, and activates the APSD function.

4. (Canceled)