- $1. \int_{\pi/4}^{\pi/2} \sin^3 \alpha \cos \alpha \ d\alpha =$
 - A) $\frac{3}{16}$
 - B) $\frac{1}{8}$
 - C) $-\frac{1}{8}$
 - D) $-\frac{3}{16}$
 - E) $\frac{3}{4}$

2. If the distance of a particle from the origin on a line is given by $x(t) = 3 + (t-2)^4$, then the number of times the particle reverses direction is

- **A)** 0
- **B**) 1
- **C)** 2
- **D)** 3
- E) None of these

3.
$$\int \tan x \ dx =$$

- A) $-\ln|\sec x| + C$
- B) $\sec^2 x + C$
- C) $\ln|\sin x| + C$
- D) $\sec x + C$
- $\mathsf{E)} \, \ln|\cos x| + C$

- **4.** Solve the differential equation $\frac{dy}{dx} = y$ with the initial condition that y(0) = 1. From your solution, find the value of y(e).
 - A) e^e
 - **B**) *e*
 - C) e 1
 - D) $e^e e$
 - E) e^2
- **5.** The average value of $p(x) = \frac{1}{x}$ from x = 1 to x = e is
 - A) $\frac{1}{e+1}$
 - $B) \ \frac{1}{1-e}$
 - C) e 1
 - D) $1 \frac{1}{e}$
 - E) $\frac{1}{e-1}$
- **6.** The volume of a solid generated by revolving the region enclosed by the curve $y = 3x^2$ and the line y = 6x about the x-axis is represented by
 - A) $\pi \int_0^3 (6x-3x^2)^2 dx$
 - B) $\pi \int_0^2 (6x 3x^2)^2 dx$
 - C) $\pi \int_0^2 (9x^4 36x^2) dx$
 - D) $\pi \int_0^2 (36x^2 9x^4) \ dx$
 - E) $\pi \int_{0}^{2} (6x 3x^{2}) dx$

7. A region in the plane is bounded by $y=\frac{1}{\sqrt{x}}$, the x-axis, the line x=m, and the line x=2m, where m>0. A solid is formed by revolving the region about the x-axis. The volume of this solid

- A) is independent of m.
- B) increases as m increases.
- C) decreases as m decreases.
- D) increases until $m = \frac{1}{2}$, then decreases.
- E) cannot be found with the information given.

8. If the graph of y = f(x) contains the point (0,1), and if $\frac{dy}{dx} = \frac{x\sin(x^2)}{y}$, then $f(x) = \frac{x\sin(x^2)}{y}$

- A) $\sqrt{2 \cos(x^2)}$
- B) $\sqrt{2} \cos(x^2)$
- C) $2 \cos(x^2)$
- D) $\cos(x^2)$
- E) $\sqrt{2-\cos x}$

 $9. \lim_{h\to 0} \left(\frac{\tan(x+h) - \tan x}{h} \right) =$

- **A)** sec *x*
- B) $-\sec x$
- C) $\sec^2 x$
- $\mathsf{D)} \sec^2 x$
- E) does not exist

10. Given the differential equation $\frac{dy}{dx} = x + y$ with initial condition y(0) = 2, approximate y(1) using Euler's method with a step size of 0.5.

- **A)** 3
- B) $\frac{7}{2}$
- C) $\frac{15}{4}$
- D) $\frac{19}{4}$
- E) $\frac{21}{4}$

11. The base of a solid is a right triangle whose perpendicular sides have lengths 6 and 4. Each plane section of the solid perpendicular to the side of length 6 is a semicircle whose diameter lies in the plane of the triangle. The volume of the solid is

- A) 2π units³.
- B) $4\pi \text{ units}^3$.
- C) $8\pi \text{ units}^3$.
- D) $16\pi \text{ units}^3$.
- E) 24π units³.

12. Which of the following expressions represents the length of the curve $y = e^{-x^2}$ for x from 0 to 2?

A)
$$\int_0^2 \sqrt{1 + e^{-2x^2}} \ dx$$

B)
$$\int_0^2 \sqrt{1+4x^2e^{-2x^2}} dx$$

C)
$$\int_0^2 \sqrt{1 - e^{-2x^2}} \ dx$$

D)
$$\int_0^2 \sqrt{1 + 2xe^{-2x^2}} \ dx$$

E)
$$\pi \int_0^2 e^{-2x^2} dx$$

13. If $f(x) = \int_2^{\sin x} \sqrt{1+t^2} dt$, then f'(x) =

A)
$$(1+x^2)^{3/2}$$

B)
$$(\cos x)\sqrt{1+\sin x}$$

C)
$$\sqrt{1 + \sin^2 x}$$

$$\mathsf{D)} \ (\cos x) \sqrt{1 + \sin^2 x}$$

E)
$$(\cos x)(1 + \sin^2 x)^{3/2}$$

14. For what value of x is the line tangent to $y=x^2$ parallel to the line tangent to $y=\sqrt{x}$?

- **A)** 0
- B) $\frac{1}{4\sqrt[3]{4}}$
- C) $\frac{1}{2}$
- D) $\frac{1}{2\sqrt[3]{2}}$
- **E)** 1

15. An antiderivative of $(x^2 + 1)^2$ is

A)
$$\frac{1}{3}(x^2+1)^3+C$$

B)
$$\frac{1}{5}x^5 + x + C$$

C)
$$\frac{1}{5}x^5 + \frac{2}{3}x^3 + x + C$$

D)
$$\frac{1}{6x}(x^2+1)+C$$

E)
$$4x(x^2+1)+C$$