	Date 28 10 2020
Exp	No Adm No: U19CSO48 Page No.s: [64-172]
	Experiment: 11 DELTA MODULATION
	DELTA MODULATION
	Objective: To demonstrate the delta modulation (DM) and
	demodulation technique. Show the sampled Equantized/ encoded and decoded time domain signal. Show the input output waveforms Using Matlab code/Simulink in virtual mode.
_	encoded and decoded time domain signal. Show the
	input output Waveforms Using Matlab code/Simulink
	Ill Virtual Mode.
	Software: Matlab
	- Carias
	Theory:
	Theory: Delta modulation is a technique used to convert analog to dicital and dicital to analog
	to digital and digital to analog signal. In this modul-
	to digital and digital to analog signal. In this modul- -ation, signal is sent in differential form, the data is
	enceypted/frausmitted in 1 bit.
	Encupted/frausmitted in 1 bit. The analog signal is approximated in the series of segments and each segment is compared to original analog to
	and each signed is compared to Original analog to
	determine the drange in Selative amplitude: Hence only
	change in information is sent and if no change occurs it remains on the same state. This is surplified form of
	Differential Pulse Code Modulation and also called as 1 bit
_	(2 level) version of DPCM. It provides a staiscase approx.
_	-Imation of over sampled base band signal. Here the difference
_	between the present Lample and purious approximated
_	dample is quantized in two levels i.e. In (delta).
	this is used for voice transmission.
	Educen the present Lample and prinous approximated

Page No. 167

Operating Principles The operating principle of DM is such that a comparison between present and previously sampled value is performed, the difference of which decides the nicement be two sample Values are compared may positive polarity or negative polarity when + 1 is noticed is increase in step size then I is transmitted. However, in the case of - 1 i.e decrease step size, O is transmitted. Mottab Code= % Delta Modulation Clear all; predictor = [0 1]} Codebook = [-1* Step Step];

	Date
Expt. No	Page No. <u> 68</u>
% DM quantizes	
t=[0: pi/20:2*pi];	
t = [0: pi/20: 2*pi]; $x = 1.1* Sin(2*pi*0.1*t); % Analo$	g signal
	-3, •
/ Yuantize x(t) Using DPM.	
encoded x = decomenco (x, codebook, partition,	predictor);
% Try to recover n from the modulated si	ional
% Try to recover n from the modulated si dewded x = dpcmdeco (encode x, codebook, p	redictol)
figue	• •
Plot (t,n);	
rlabel ('time');	
title ('original signal');	
liquie	
stairs (t, 10* codebook (encoded x+1), g')	
rlabel ('time');	
title (DM output);	
lique	
plot (t, n);	
holdi	
Stairs (t, decoded x);	
grid;	
whole ('time');	
title (' received signal');	

DM Output

Scanned by CamScanner

	Date
Expt. No	Page No. 172
Advantages of Delta Modulation:	
1) Lu delta modulation, amplitude of speech maximum sumsoidal amplitude.	signal does not exceed
2) Due to transmission of 1 bit per sample bandwidth as well as signalling sate.	
3) P(M has Danyling rate higher than No Signal Contains redundant informatic. Di remove this redundancy	yquist rate. The encode
. Hole is not required. Thus permits general	ation and detection
Disadvantages of Delta Modelation: 1) Slope overload distortion (when s is large)	Small)
3) High bit rate	
Applications: It is widely used en radio Commun stolage and voice transmission.	ication devices voice
Conclusión :- Successfully demonstrated the Delta m	Odulation techique
and Thistrated Sampled, quantized to we form in time domain Using	Motlab software.