LATCHES e FLIP-FLOPs

Como implementar uma célula de memória?

- Para que a variável de estado mude é preciso que ocorram determinadas combinações nas variáveis de entrada.
- Uma vez alterada, a variável de estado permanecerá num estado fixo até que volte a ocorrer certas combinações de entrada.

Latches e Flip-Flops são componentes primitivos de memória

Latches

- São componentes cuja saída responde apenas à mudança da entrada.
 - Latch sem controle de relógio Neste caso a saída é função direta da entrada.
 - Latch sensível a nível (clocked) (Sensível a nível) A saída é modificada apenas quando o circuito é habilitado através de um sinal enable ou clock.

Diagrama de tempo do latch RS

Chaveamento de sinais eletrônicos usando Latchs RS

- Sinais digitais podem ser introduzidos em um sistema através de chaves mecânicas.
- Quando aberta Vout = o V
- Quando fechada Vout = Vh

Problema

- Quando a chave aberta é fechada, seus contatos mecânicos vibram ou "bounce" por um curto período de tempo até estabilizar e fechar completamente.
- Esta vibração causa transientes indesejáveis na tensão de saída, que provocam um comportamento irregular do circuito digital (circuito lógico)

Chaveamento de sinais eletrônicos usando Latch RS

Solução

 Retirar o "bounce" usando um Latch tipo RS, ou seja, o circuito pode ser "debounced".

- O Latch RS responde quase que instantaneamente a primeira subida do sinal de entrada na linha R ou S. Assim quando a chave é ligada (on) (S=1, R=0), a posição do Latch irá para o estado Q='1' na primeira parte do "bounce".
- Mesmo que a chave vibre o sinal permanecerá estável, desde que (S=0,R=0) mantém o estado do Latch.
- Assim Q=1 até que o operador desligue a chave (off).
- Colocando a chave em off, o Latch vai para um novo estado (S=0,R=1) com Q=0. O comportamento será similar ao caso anterior.

- Funcionamento do Latch RS
 - S=0, R=0
 - O próximo estado tem valores iguais aos valores anteriores (estado estável)
 - S=0, R=1
 - Esta condição de entrada provoca um reset no latch, forçando Q_{n+1} para zero ('0'), $\overline{Q_{n+1}}$ para '1'.
 - S=1, R=0
 - Nestas condições o latch é "setado", ou seja Q_{n+1} vai para o nível lógico '1', $\overline{Q_{n+1}} =$ '0'.
 - S=1, R=1 Não usado. Por que?
 - Neste caso em particular as duas saídas seriam '0', o que implicaria de imediato na inconsistência com a teoria das saídas Q e Q.
 - Um outro ponto crítico ocorre quando passamos deste estado para S=0 e R=0. Neste caso, seguindo a tabela verdade e o comportamento do Latch, a saída deveria permanecer inalterada, o que não ocorre, gerando um estado indefinido para Q_{n+1 e} Q_{n+1}. Devido a esta ambigüidade a condição S=1 e R=1 não é usad<u>a p</u>ara Latch RS.

☑ Tabela verdade do latch RS **Próximo estado = F(S, R, Current State)**

=	S(t	R(t)	Q(t)	Q(t+A)	
	0	0	0	0	Mantém
	0	0	1	1	
,	0	1	0	0	Reset
	0	1	1	0	116361
ľ	1	0	0	1	0 - 1
	1	0	1	1	Set
	1	1	0	Х	
	1	1	1	Х	Indefinido
			[

Mapa de Karnaugh

R-S Q+ Latch

Equação de próximo estado:

$$Q+=S+\overline{R}Q(t)$$

Enable

☑ Latch RS - sensível a nível

✓ Latches sensíveis a nível mostram continuamente suas entradas enquanto são habilitados (enb = 0)

Diagrama de tempo

- Para que um Latch funcione corretamente as entradas S (ou R) só podem ser alteradas quando o circuito alcançar um estado estável
- Como conseguir isto? Introduzir um relógio (clock)

- A largura do pulso de clock deve ser suficiente para que o circuito alcance o próximo estado.
- O tempo entre dois pulsos deve ser suficiente para que o flip-flop alcance o estado permanente.
 - A saída começa a mudar ∆t após o pulso de clock ser aplicado e uma nova saída em estado permanente aparece 2 ∆t.
 - Se a entrada muda enquanto o pulso de clock estiver ativo (alto), o funcionamento do circuito pode não ser o esperado.

Clear e Preset

Clear	Preset	Q	Q'
(Reset)	(Set)		
0	0	normal	normal
1	0	0	1
0	1	1	0
1	1	Não usado	Não usado

*com clock = '0'

*com clock = '0'

☑ Latch JK

Como eliminar o estado proibido dos Latches tipo RS?

Usar uma re-alimentação para garantir que R e S nunca são "1".

Est. Pres. Pró. Estado

//T\	K/4\	0/4)	0/4	<i>A</i> 1
J(T)	K(t)	Q(t)	Q (t+ ₂	رد)
0	0	0	0	HOLD
0	0	1	1	
0	1	0	0	RESET
0	1	1	0	
1	0	0	1	SET
1	0	1	1	
1	1	0	1	TOGGLE
1	1	1	0	

Equação de próximo estado

$$Q+=Q\overline{K}+\overline{Q}J$$

Quando J e K são iguais a "1" a saída é invertida (Toggle)

☑ Latch J-K (Condição de concorrência - Racing)

Nesta estrutura o latch começa a oscilar (Toggle)

☑ O Latch deveria mudar de estado a cada evento de relógio. Para solucionar esta problema devemos usar a estrutura Master/Slave (Mestre/Escravo).

Flip-Flop

- São componentes de memória, que diferentemente dos latches, permitem que suas saídas mudem apenas na transição do relógio ou clock.
 - Flip-Flop que dispara na subida do relógio (positive edgetriggered). Mostra suas entradas na saída quando o clock vai de do nível lógico'0' para o nível lógico '1'.
 - Flip-Flop que dispara na descida do relógio (negative edge-triggered). Mostra suas entradas na saída quando o clock vai de do nível lógico'1' para o nível lógico '0'.
 - Flip-Flop Mestre-Escravo

Flip-Flop mestre-Escravo

Estágio Escravo

- ☑ Entrada disponível no latch Mestre enquanto o relógio está alto.
- **☑** Observe que o estágio Escravo está bloqueado (relógio está 🗹 Observe que o estágio Mestre baixo).
- ☑ Saída disponível do latch Escravo quando o relógio for para nível lógico baixo.Relógio liberado para o estágio escravo.
 - está bloqueado (relógio está baixo).

Flip-Flop tipo D

Características

- Flip-Flop tipo D construído a partir de um Flip-Flop tipo RS
- A saída recebe a entrada
- Equação de próximo estado:

Próximo estado

Estado presente

Equação de próximo estado Q+ = D(t)

Flip-Flop D implementado a partir de Flip-Flop tipo RS

Flip-Flop tipo D a partir de FF JK

Características

- Flip-Flop tipo D construído a partir de um Flip-Flop tipo JK
- Equação de próximo estado:

$$Q(t+\delta) = D(t)$$

Flip-Flop D implementado a partir de Flip-Flop tipo JK

Flip-Flop tipo T

Características

- Flip-Flop tipo T construído a partir de um Flip-Flop tipo JK
- A saída Q é invertida sempre que T = ´1´.
- Equação de próximo estado: $Q(t+\delta) = T(t)\overline{Q}(t) + \overline{T}(t)Q(t)$

T	Q	Q+	J	K	
0	0	0	0	X	
1	0	1	1	X	
1	1	0	Χ	1	
0	1	1	X	0	

Flip-Flop T implementado a partir de Flip-Flop tipo JK

Flip-Flops

☑ Tabela verdade dos Flip-Flops

Q+	R	S	J	K	Т	D
0	Χ	0	0	Χ	0	0
1	0	1	1	Χ	1	1
0	1	0	Χ	1	1	0
1	0	X	Χ	0	0	1
	0	Q+ R 0 X 1 0 0 1 1 0	Q+ R S 0 X 0 1 0 1 0 1 0 1 0 X	Q+ R S J 0 X 0 0 1 0 1 1 0 1 0 X 1 0 X X	Q+ R S J K 0 X 0 0 X 1 0 1 1 X 0 1 0 X 1 1 0 X X 0	

☑ Equações de próximo estado dos Flip-Flops

R-S:
$$Q+=S+\overline{R}Q$$

D:
$$Q+=D$$

J-K:
$$Q+=J\overline{Q}+\overline{K}Q$$

T:
$$Q+=T\overline{Q}+\overline{T}Q$$

Flip-Flops

Características

- ☑ R-S Clocked Latch: Usado como elemento de memória. Fundamental na construção de outros tipos de Flip-Flops.
- ☑ Flip-Flop J-K
 Construção versátil
 Pode ser usado na construção de Flip-Flops D e T
 Usualmente requer menos lógica para implementar controles sequênciais
- ☑ Flip-FlopD

 Reduz conexões, preferível em projetos VLSI

 Técnica simples em projetos

 Melhor escolha para registradores
- ✓ Flip-Flop T Não existe na realidade. São construídos a partir de Flip-Flops JK. Usualmente é uma boa escolha em projetos de contadores.

Flip-Flop - trigado na subida do relógio

☑ Dispositivo que dispara, ou seja, carrega o dado de entrada na descida do relógio (Negative Edge Triggered).

Latch - sensível a nível

☑ Dispositivo no qual a informação de entrada fica disponível na saída enquanto o relógio estiver ativado (enable).

*Obs: Tipo D a partir do JK

Exemplo circuito sequencial – utilizando latch tipo D

Exemplo circuito sequencial – utilizando Flip-flop tipo D

Exercício

• Implementar o diagrama de tempo do circuito abaixo e identificar sua funcionalidade (considere Flip-flops JK)

Exercício

- Flip-Flop trigado na borda Entender seu funcionamento
 - Além do FF tipo Master-Slave existem dois outros modelos largamente utilizados:
 - Positive edge-triggered (Trigado na borda positiva 0 \rightarrow 1), ou seja na subida do relógio.
 - Negative edge-triggered (Trigado na borda negativa $1 \rightarrow 0$), ou seja na descida do relógio.
- Exemplo (FF-D trigado na descida)

