DMS Assignment -3

A2305218526

ŀ	For ac	ddition in	Boolean F	Algebra un un OR		
	gate.		OR			
	A	В	A+B	Logic Gate		
	0	0	0			
	0	1	1	A (A+B)		
	1	0	J	B - (H.B)		
		1	1			
	Tu bea	الله مما	0. 0 0. + -	that is any and all the		
	The boolean addition suggests that if any one of the input from the logic circuit is true (1) then its boolean addition is (1).					
		11.1.0	(- 1			
	Boolean	addition	is (1).			
2 .	For mu	_		Algebra we use AND		
2 .		_				
2.	For mu	_	in Boolean			
2.	For mu	ltiplication	in Boolean	Algebra we use AND		
2.	For mu	ltiplication B	in Boolean	Algebra we use AND		
3 .	For mu gate.	ltiplication B O	in Boolean AND A.B O	Algebra we use AND Logic Gate		
2 .	For mu gate.	ltiplication B O	in Boolean AND A.B O	Algebra we use AND Logic Gate		

The boolean multiplication suggests that if any one of the input from the logic circuit is false (0) then its Boolean multiplication is (0).

Compliment of a Boolean number is the reverse of that number i.e. I'=0, o'=1.9f the Boolean Number is A then its compliment is denoted by A or A'. This is performed by NOT Gate.

	Page No. Date
	NOT Logic Crate
	NOT Logic Grate A A A
	$O \qquad i \qquad A \longrightarrow O \qquad A$
	1 0
4.	OR Boolean
	$A \rightarrow A+B \rightarrow AND \rightarrow Expression$ $(A+B). C$
	B [(A+B).c]
	C —
5.	Not
	A DO A.B NAND Expression
	$A \rightarrow A \rightarrow A \rightarrow B \rightarrow A \rightarrow B \rightarrow A \rightarrow B \rightarrow B \rightarrow B \rightarrow $
	(A.B).C)
6.	ABCD 00 01 11 10
	00 (1) (1)
	10 [1] X X
	A + CD' + B'C + BC'D + B'C'D'
7.	According to question, output is defined "it and only if the input is greater than 2 i.e. 0-2 will have don't care conditions. If input is according
	the input is greater than 2 is altined it and only it"
	care conditions. It input is a will have don't
	will be one (1) if it is not divisible.
	will be one (1) if it is not divisible by 3.

Fage No.	
Date	
Dett	

Repeat the process.

Binary x y 2 0,1 0 0 -2 1,3,5,7 - - 1 1,5,3,7 - - 1

As, further murging is not possible, to we will supporte the duplicate ons

Grp 1 0,1 0 0 -(mp 2 1,3,5,7

Thursfore, the prime implicants over x'y' + Z. The minimal equivalence is $(\overline{X}\overline{Y} + Z)$.