

Here you'll get 🔰

- PPT
- NOTES
- VIDEO LECTURE
- E-BOOK
- PYQ
- EXPERIMENT
- ASSIGNMENT
- TUTORIAL

[Total No. of Printed Pages—4

Seat	2
No.	

[5667]-1007

F.E. (All Branches) (I Sem.) EXAMINATION, 2019 BASIC ELECTRICAL ENGINEERING (2019 **PATTERN**)

Time: 2½ Hours

Maximum Marks: 70

- Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - Neat diagram must be drawn wherever necessary.
 - Figures to the right indicate full marks.
 - (iv)Use of Non-Programmable Scientific Calculators is allowed.
 - Assume suitable data, if necessary. (v)
- Define active, reactive and apparent power. State their units. 1. (a) Also draw the power triangle for R-L circuit.
 - (*b*) What is series resonance? Derive the expression for resonant frequency. [6]
 - 150 V.
 e : 150 V. The R-L circuit when supplied by 180V, 50 Hz ac voltage, (c) the voltage drop across the inductance is 150 V. The current drawn by the circuit is 5 A. Calculate [8]
 - (i)inductive reactance
 - (ii)inductance
 - (iii)resistance
 - V_{R} (iv)
 - P.F. (v)
 - (vi)Phasor diagram.

P.T.O.

- 2. (a) Obtain the expression for current, when voltage $v = V_m$, sin ωt is applied across purely inductive circuit. [4]
 (b) Derive the expression for power, when voltage $v = V_m$, sin ωt is applied across R-L series circuit. Draw the phasor
 - (c) The ac voltage given by $v=141.4 \sin{(100 \pi t + \pi/3)}$ Volt, when applied to certain circuit, resultant current is $i=7.07 \sin{(100 \pi t + \pi/6)}$ Amp. Draw the phasor diagram and Find: [8]
 - $\vec{l}(i)$ impedance

diagram.

- (ii) circuit elements
- (iii) active, reactive and apparent power.
- $\mathbf{3.}$ (a) Define:

[3]

[6]

- (i) phase sequence
- (ii) balanced and unbalanced load.
- (b) Derive the emf equation of 1-phase transformer.
- (c) Three identical impedances each of 8 + j6 Ω are connected in star across 3-ph, 415 V, 50 Hz ac supply. Calculate :
 - (i) line voltage, phase voltage
 - (ii) phase current, line current
 - (iii) active power
 - (iv) When same impedances are connected in delta across the same supply voltage, find active power. [8]

- 4. (a) Why are steel laminations used for construction of transformer core? Sketch different types of laminations used for core. [3]
 - (b) What are losses taking place in the transformer? State the parts in which they takes place. How to minimize these losses?
 - (c) Obtain the relation between phase values and line values of voltage and current in case of balanced star connected 3-ph inductive load. Assume phase sequence RYB. Draw the necessary phasor diagram.
- 5. (a) Define the ideal and practical voltage sources. Draw their V-I characteristics. [4]
 - (b) Find current flowing through AB using Kirchhoff's loop analysis for the circuit shown in Fig. 5(b). All resistances are in Ω . [6]

Fig. 5(b)

(c) Derive the equations to convert Delta connected resistive circuit into equivalent star circuit. [8]

[5667]-1007 3 P.T.O.

6.	(a)	State and explain KCL & KVL. [4	4]
	(<i>b</i>)	Define:	
		(i) active & passive network	
		(ii) linear & nonlinear network.	
		(iii) unilateral & bilateral network.	3]
	(<i>c</i>)	Find current flowing through 3 Ω using Superposition theorem	n
		for the circuit shown in Q $5(b)$ Fig. $5(b)$.	8]
	(
7.	(<i>a</i>)	Define temperature coefficient of resistance. State the factor	'S
		on which it depends.	3]
	(b)	Compare lead acid battery and lithium ion battery. (6 point	S
	8.	only).	3]
	(c)	The electrical load of a bungalow is as follows. Find:	
		(i) daily energy consumption in kWh.	
		(ii) monthly electricity bill for the month of 30 days at the	e
		rate of Rs 6/unit.	
		(I) Tubes 40 W 06 nos 6 hrs/day	. B
		(II) Fans 60 W 04 nos 10 hrs/day	P
		(III) Washing machine 2 kW 01 no 01 hr/day	
		(IV) Geyser 2 kW 01 no 02 hrs/day	<i>T</i>
		(V) TV 100 W 01 no 06 hrs/day [8	3]
		Or Or	
8.	(<i>a</i>)	State the applications of lead acid battery.	3]
	<i>(b)</i>	Prove that $\alpha_2 = \alpha_1/1 + \alpha_1 (t_2 - t_1)$, all the symbols have	'e
		their appropriate meaning.	3]
	(c)	Explain the operation of Lithium ion battery with construction	n
		& chemical reactions during charging and discharging. Also stat	e:e
		its applications.	3]