

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>
КАФЕДРА Компьютерные системы и сети
Лабораторная работа № <u>1</u>
«Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью»
Ститом
Студент Прянишников А. Н.
ГруппаИУ7-45Б
Преподаватель

Цель работы — изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Задание 1

Исследовать работу асинхронного RS-триггера с инверсными входами в статическом режиме. Для этого необходимо: - собрать схему RS-триггера на ЛЭ И-НЕ; - к выходам Q и поQ триггера подключить световые индикаторы; - задавая через переключатели необходимые сигналы на входах поS и поR триггера, составить таблицу переходов.

Схема:

Таблица работы:

Время t_n		Время t_{n+1}
\overline{S}_n	\bar{R}_n	Q_{n+1}
0	0	X
0	1	1
1	0	0
1	1	Q_n

- 2. Исследовать работу синхронного RS-триггера (см. рис. 4) в статическом режиме. Для этого необходимо:
- собрать схему RS-триггера на ЛЭ И-НЕ (рис. 4);
- к выходам Q и Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 переход в режим хранения.

Схема:

Таблица

Время t_n			Время t_{n+1}
С	$\bar{S_n}$	\bar{R}_n	Q_{n+1}
0	0	0	Q_n
0	0	1	Q_n
0	1	0	Q_n
0	1	1	Q_n
1	0	0	Q_n
1	0	1	0
1	1	0	1
1	1	1	X

Без синхросигнала (C=0) триггер находится в состоянии хранения, при наличии (C=1) – работает, как асинхронный RS-триггер.

- 3. Исследовать работу синхронного D-триггера (см. рис. 5) в статическом режиме. Для этого необходимо:
- собрать схему D-триггера на ЛЭ И-НЕ (рис. 5); в приложении Multisim можно использовать макросхему D-триггера;
 - к выходам Q и Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет

соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 происходит переход в режим хранения.

Схема:

Таблица:

Время t_n			Время t_{n+1}
C_n	D_n	Q_n	Q_{n+1}
0	0	0	0
0	1	0	0
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1
1	0	1	0
1	1	1	1

Сигнал D становится принимаем триггером в случае активности синхросигнала, иначе — хранит записанное значение.

Исследовать схему синхронного D-триггера с динамическим управлением записью (рис. 6) в статическом режиме. В приложениях Electronics Workbench и Multisim имеются макросхемы такого триггера.

Схема:

Временная диаграмма:

Как видно, триггер меняет своё значение только тогда, как сигнал С меняет своё положение с 0 до 1. Тогда в триггер записывается значение, которое находится в D в момент скачка.

Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме.

Временная диаграмма:

При V=1, триггер работает аналогично предыдущему триггеру. При V=0, триггер не меняет своё значение.

Задание 6

Исследовать работу DV-триггера, включенного по схеме TV-триггера.

Временная схема:

Триггер меняет своё значение на противоположный, если $T=1,\,V=1,\,$ иначе ничего не меняется.

Выводы по работе

Удалось построить в Multisim асинхронный RS-триггер, синхронный RS-триггер, синхронный D-тригер, синхронного D-триггера с динамическим

управлением записью в статическом режиме, синхронного DV-триггера с динамическим управлением записью в динамическом режиме, DV-триггера, включенного по схеме TV-триггера , а также построить таблицу по заданным сигналам и посмотреть на временные диаграммы. Значения в таблице совпали с теоретическим результатом.