Tutorial exercises

These exercises are to be done in class. By no means are you expected to solve all of them during class.

Problem 1 (The Proj construction). Let A be a finitely generated \mathbb{N} -graded \mathbb{C} -algebra such that $A_0 = \mathbb{C}$. Define Proj A as the topological space on the set of homogeneous prime ideals of A not containing the irrelevant ideal $A_+ := \bigoplus_{i \geq 1} A_i$, with the Zariski topology defined by the closed subsets of the form V(I) where I is a homogeneous ideal and V(I) is the set of homogeneous prime ideals containing I.

Show that the distinguished open sets $D(f) := \operatorname{Proj} A \setminus V(f)$ for $f \in A_+$ form a basis for the topology, and that $D(f) \cap D(g) = D(f \cap g)$.

In this way A is the homogeneous coordinate ring for the projective variety $\operatorname{Proj} A$. We will see that if we write A as the quotient of a polynomial ring $\mathbb{C}[x_0,\ldots,x_n]$, so that in particular it is generated by the (classes of) the elements x_0,\ldots,x_n of degree 1, we have realised $\operatorname{Proj} A$ as a closed subvariety of $\mathbb{P}^n_{\mathbb{C}}$.

We say that f vanishes on a point $\mathfrak{p} \in \operatorname{Proj} A$ if f is zero in A/\mathfrak{p} .

Problem 2. Let A be as before.

- 1. Let I be a homogeneous ideal, and f a homogeneous element of A. Show that f = 0 on V(I) if and only if $f^n \in I$ for some n
- 2. Let Z be a subset of Proj A. Show that $V(I(Z)) = \operatorname{cl} Z$, where I(Z) is the homogeneous ideal of A generated by the homogeneous polynomials that vanish on Z.

Problem 3. Let A be as before. Show that the following are equivalent for a homogeneous ideal I:

- 1. $V(I) = \emptyset$.
- 2. For every set of homogeneous generators $\{f_1, \ldots, f_n\}$ of I we have that $\bigcup_{i=1}^n D(f_i) = \text{Proj } A$.
- 3. $A_+ \subseteq \operatorname{rad} I$,

This explains why A_+ is called irrelevant.

Problem 4. Let $X = \bigcup_{i \in I} U_i$ be an open cover of a topological space X, such that $U_i \cap U_j \neq \emptyset$ for all $i, j \in I$. Show that

- 1. if U_i is connected for all $i \in I$, then so is X;
- 2. if U_i is irreducible for all $i \in I$, then so is X.

Conclude that the Grassmannian Gr(d, n) is connected, irreducible and of dimension d(n-d).

Problem 5 (Veronese embedding). Let A be a finitely graded \mathbb{N} -graded \mathbb{C} -algebra. Let $d \geq 1$. The dth Veronese subalgebra of A is the algebra $A^{(d)} := \bigoplus A_{n \geq 0} A_{dn}$. If so desired, we can rescale the degree so that the part in degree d sits in degree 1, etc.

- 1. Show that $\operatorname{Proj} A \cong \operatorname{Proj} A^{(d)}$.
- 2. Assume that A is generated by homogeneous elements f_1, \ldots, f_n . Show that we can find a d such that $A^{(d)}$ is generated in degree 1. This way we can realise Proj A inside $\mathbb{P}_{\mathbb{C}}^m$, for some m.
- 3. Explain how we can embed $\mathbb{P}^n_{\mathbb{C}} = \operatorname{Proj} \mathbb{C}[x_0, \dots, x_n]$ as a closed subvariety of $\mathbb{P}^N_{\mathbb{C}}$. Determine N in terms of n and d.
- 4. Determine the ideal for the dth Veronese embedding of $\mathbb{P}^1_{\mathbb{C}}$ for d=2 and d=3.

Problem 6. Let $v \in \bigwedge^2 V$ be a non-zero element. Then v is a pure wedge (i.e. $v = x \wedge y$ for some $x, y \in V$) if and only if $v \wedge v = 0$ in $\bigwedge^4 V$.

Hint One possibility is to do an induction on the dimension.