

Orientation et Formation Professionnelle Tertiaire et Développement Informatique

ABCDEV Algèbre de Boole

Sommaire

- 1. Introduction à la logique
 - 1. Variable logique
 - 2. Fonction logique
 - 1. La fonction « OU »
 - 2. La fonction « ET »
 - 3. La fonction « NON »
 - 4. « OU » exclusif && « NON OU »
- 2. Fonction complexes
- 3. L'algèbre de boole
- 4. Expression algébrique
- 5. Table de vérité
- 6. Les lois de composition
- 7. Utilisation de l'algèbre binaire
- 8. Circuits logiques

Introduction à la logique

1. Variable logique

1. Variable logique

- Un ordinateur ne manipule que des données binaires
- Une donnée binaire est appelée variable logique
- 2 états possible 0 ou 1
- Proposition VRAIE ou FAUSSE
- Soit simple « il fait plus de 25°C »
- Soit complexe « il fait plus de 25°C ET il ne pleut pas »

Fonction logique

- Plusieurs valeurs logiques en entrée
- Sortie ayant 2 états possible 0 ou 1
- Les fonctions logiques de bases sont appelées portes logiques

La fonction « OU »

- Positionne sa sortie si l'une ou l'autre de ses entrées est à 1
- Exemple :
 - Un four doit s'arrêter si la température voulue est atteinte ou si le temps prévu est écoulé
 - (1) P1 : « La température est supérieure à T0 »
 - (2) P2 : « Le temps est supérieur à t0 »
 - 3 P3 : « Le four doit s'arrêter »

- P3 est vraie si :
 - P1 est vraie
 - OU
 - P2 est vraie
- P3 = P1 OU P2
- Cette fonction
 s'appelle somme
 logique ou fonction
 OU
- Si P1 et P2 vraie P3 vraie => OU inclusif

La fonction « ET »

- Positionne sa sortie à 1 si ses deux entrées sont à 1
- Exemple :
 - J'irais me promener s'il fait plus de 25°C et s'il ne pleut pas
 - 1 P1 : « J'irais me promener»
 - 2 P2 : « il fait plus de 25°C»
 - 3 P3 : « il ne pleut pas»

- P1 est vraie si :
 - P2 est vraie
 - ET
 - P3 est vraie
- P1 = P2 ET P3
- Cette fonction
 s'appelle produit
 logique ou fonction
 ET

La fonction « NON »

 Positionne sa sortie à 1 si son entrée est à 0 et vice-versa

1 P1 : « J'irais me promener»

(2) P2 : «il pleut»

- « J'irais me promener s'il ne pleut pas »
- P1 = NON P2
- Cette fonction s'appelle négation ou fonction NON

« OU » exclusif && « NON OU »

- OU EXCLUSIF:
- Sortie à 1 si l'une ou l'autre de ses entrées est à 1
- Mais pas les deux simultanément

- NON OU et NON ET :
- Composition respective d'un NON avec un OU et un ET

Fonction complexes

« J'irais me promener s'il fait plus de 25°C et qu'il ne pleut pas, ou si ma copine le veut »

P1 : « J'irais me promener»

P2: « Il fait plus de 25°C»

P3: « Il pleut»

P4: « ma copine veut se promener»

• P1 est vraie si:

- P2 est vraie
- ET
- P3 est fausse
- OU
- P4 est vraie
- P1 = (P2 ET NON P3) OU P4

L'algèbre de Boole

Boole

- Mathématicien anglais du 19éme siècle
- Conçut un outil composé de symboles et de règles, applicable aux propositions logiques
- George Boole —
 Wikipédia (wikipedia.org)

Expression algèbrique

La fonction OU est représentée par un E)
 plus : +

Expression algébrique :

 La fonction ET est représentée par un point : .

$$S = \overline{A} \oplus (B.C)$$

- La fonction NON est représentée par une barre au-dessus de la variable : A
 parfois par un / devant la variable
- La fonction OU EXCLUSIF est représentée par un plus encerclé : (1)

Table de vérité

Table de vérité des fonctions logiques :

Nom de la porte	Entrée		Sortie
	Α	В	S
	0	0	0
OU	0	1	1
	1	0	1
	1	1	1
	0	0	0
ET	0	1	0
]	1	0	0
]	1	1	1
	0	0	1
NON OU	0	1	0
Nonco	1	0	0
	1	1	0
	0	0	1
NON ET	0	1	1
	1	0	1
	1	1	0
NON		0	1
NON	1		0

Ecrire l'expression algébrique à partir de la table de vérité

Entrée		Sortie
Α	В	S
0	0	0
0	1	0
1	0	1
1	1	0

La sortie vaut 1 lorsque
 A vaut 1 et B vaut 0

$$S = A.\overline{B}$$

• S = A ET NON B

Entrée Sortie		Sortie		
Α	В	С	S	La sortie vaut 1 lorsque
0	0	0	0	Avauco
0	0	1	0	* B vaut 1 * C vaut 0
0	1	0	1	C vade 0
0	1	1	0	ou lorsque * A vaut 1
1	0	0	0	* B vaut 1
1	0	1	0	* C vaut 0
1	1	0	1	C Vaul 0
1	1	1	0	

L'expression algébrique de cette fonction est donc :

$$S = \overline{A}.B.\overline{C} + A.B.\overline{C}$$

S = NON A ET B ET NON C OU A ET B ET NON C

Cas: « J'irai me promener s'il fait plus de 25°C et qu'il ne pleut pas, ou si ma copine le veut » avec les propositions :

• P1 : « j'irai me promener »

• P2 : « il fait plus de 25°C »

• P3: « il pleut »

P4 : « ma copine veut se promener »

$$P1 = P2.\overline{P3} + P4$$

Entrée		<u>:</u>	Sortie
P2	Р3	P4	P1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

P1 = P2 ET NON P3 OU P4

Priorité des opérateurs logiques :

- Par ordre de priorité décroissante:
 NON, ET, OU.
- Des parenthèses changent l'ordre des priorités (comme en mathématiques).

Les lois de composition

Associativité

- (A.B).C est équivalent à A.(B.C)
- (A+B)+C est équivalent à A+(B+C)

Absorption

- A.(A+B) est équivalent à A
- A+A.B est équivalent à A

Commutativité

- A.B est équivalent à B.A
- A+B est équivalent à B+A

Distributivité

- A+(B.C) est équivalent à (A+B).(A+C)
- A.(B+C) est équivalent à A.B+A.C

Idempotence

- A.A est équivalent à A
- A + A est équivalent à A

Identité

- 1.A est équivalent à A
- 0+A est équivalent à A

Inversion

- A./A est équivalent à 0
- A+/A est équivalent à 1

Nullité

- 0.A est équivalent à 0
- 1+A est équivalent à 1

Théorème de De Morgan

- $\overline{A.B}$ est équivalent à $\overline{A+B}$
- $\overline{A+B}$ est équivalent à $\overline{A}.\overline{B}$

Utilisation de l'algèbre binaire

Propositions logiques	Algèbre binaire
FAUX	0
VRAI	1
Proposition (P)	Variable (A)
Négation (NON P)	Complément (/A)
Somme (P1 OU P2)	Somme (A+B)
Produit (P1 ET P2)	Produit (A.B)

Circuits logiques

Représentation conventionnelle des portes logiques :

Réalisation de circuits logiques :

Exemple avec l'expression algébrique suivante :

$$(A+B).(A+/C)$$

