# Attention Mechanism Part 2

**Zhengyang Wang** 

#### **Outlines**

Review the attention mechanism and self-attention

Transformer: attention is all you need

Non-local neural networks

#### **Outlines**

Review the attention mechanism and self-attention

• Transformer: attention is all you need

Non-local neural networks

- Three inputs:
  - Query vector(s)
  - Key vectors
  - Value vectors

Three input matrices:



- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

#### **Constraints:**

$$d_q = d_k$$

$$n_v = n_k$$

- Computation steps:
  - Compute attention scores:  $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
  - Normalize attention scores:  $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$
- Output:
  - Sum of value vectors weighted by normalized attention scores:

$$Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$$

Three inputs:

Query vector(s)

Key vectors

Value vectors

Three input matrices:

•  $Q \in \mathbb{R}^{d_q \times n_q}$ 

•  $K \in \mathbb{R}^{d_k \times n_k}$ 

 $V \in \mathbb{R}^{d_v \times n_v}$ 

**Constraints:** 

$$d_q = d_k$$

$$n_v = n_k$$

Caused by dot product.

"Soft" constraint:

Computation steps:

• Compute attention scores:  $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$ 

• Normalize attention scores:  $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$ 

 $-mn \times n$ 

Output:

Sum of value vectors weighted by normalized attention scores:

$$Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$$

Three inputs:

- Query vector(s)
- Key vectors
- Value vectors

Three input matrices:



- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

#### **Constraints:**

$$d_q = d_k$$

$$n_v = n_k$$

- Computation steps:
  - Compute attention scores:  $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
  - Normalize attention scores:  $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$
- Output:
  - Sum of value vectors weighted by normalized attention scores:

$$Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$$

"hard" constraint: Caused by weighted sum.

- Three inputs:
  - Query vector(s)
  - Key vectors
  - Value vectors

Three input matrices:



- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

#### **Constraints:**

$$d_q = d_k$$

$$n_v = n_k$$

- Computation steps:
  - Compute attention scores:  $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
  - Normalize attention scores:  $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$
- Output:
  - Sum of value vectors weighted by normalized attention scores:  $Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$
  - The shape of the output is determined by the number of query vectors and the dimension of value vectors.

## **Self-Attention**

- Use X (itself) to generate Q, K, V and perform attention.
  - Suppose  $X \in \mathbb{R}^{d_X \times n_X}$
  - Three independent linear transformations:
    - $Q = W_q X \in \mathbb{R}^{d_q \times n_\chi}$
    - $K = W_k X \in \mathbb{R}^{d_k \times n_\chi}$
    - $V = W_v X \in \mathbb{R}^{d_v \times n_\chi}$
  - $W_q \in \mathbb{R}^{d_q \times d_x}$ ,  $W_k \in \mathbb{R}^{d_k \times d_x}$ ,  $W_v \in \mathbb{R}^{d_v \times d_x}$  are trainable parameters.
  - $W_q$ ,  $W_k$  must satisfy the constraints  $d_q = d_k$  if using dot product to compute attention scores
- What is the shape of the output Y?

$$d_v \times n_x$$

• If we omit  $W_v$  and simply have V = X, each column in Y is a weighted sum of all column vectors in X.

#### **Self-Attention**

- If we omit  $W_v$  and simply have V = X, each column in Y is a weighted sum of all column vectors in X.
- Comparison with convolution and fully-connected layer
  - Convolution
    - Each column in Y is computed from column vectors within a local range in X.
  - Fully-connected layer
    - The weights in the weighted sum is not input-dependent.

#### **Multi-Head Self-Attention**

- Instead of having Q = K = V = X, use X to generate Q, K, V.
  - Suppose  $X \in \mathbb{R}^{d_X \times n_X}$
  - Three independent linear transformations:
    - $Q = W_q X \in \mathbb{R}^{d_q \times n_\chi}$
    - $K = W_k X \in \mathbb{R}^{d_k \times n_\chi}$
    - $V = W_{\nu}X \in \mathbb{R}^{d_{\nu} \times n_{\chi}}$
  - $W_q \in \mathbb{R}^{d_q \times d_x}$ ,  $W_k \in \mathbb{R}^{d_k \times d_x}$ ,  $W_v \in \mathbb{R}^{d_v \times d_x}$  are trainable parameters.
  - $W_q$ ,  $W_k$  must satisfy the constraints  $d_q = d_k$ .
- Do the above process for multiple times <u>independently</u>.
  - Use  $W_q^{(i)}$ ,  $W_k^{(i)}$ ,  $W_v^{(i)}$  to get  $Q_i$ ,  $K_i$ ,  $V_i$  and do attention independently.
  - Each group results in an output Y<sub>i</sub>.
  - Concatenate all the  $Y_i$  and go through a linear transformation to obtain the final output.

#### **Outlines**

Review the attention mechanism and self-attention

Transformer: attention is all you need

Non-local neural networks

# Sequence-to-sequence: the bottleneck problem



#### **Attention**

Attention provides a solution to the bottleneckproblem.

 Core idea: on each step of the decoder, focus on a particular part of the sourcesequence



# Decoder RNN

# Sequence-to-sequence with attention



Each decoder hidden state has access to all encoder states.

#### Problems with RNNs = Motivation for Transformers

Sequential computation prevents parallelization



- Despite GRUs and LSTMs, RNNs still need attention mechanism to deal with long range dependencies - path length for codependent computation between states grows with sequence
- But if attention gives us access to any state... maybe we don't need the RNN?

## **Transformer Overview**

- Sequence-to-sequence
- Encoder-Decoder
- Task: machine translation with parallel corpus
- Predict each translated word
- Final cost/error function is standard cross-entropy error ontop of a softmax classifier



## **Transformer Overview**

- Sequence-to-sequence
- Encoder-Decoder
- Task: machine translation with parallel corpus
- Predict each translated word
- Final cost/error function is standard cross-entropy error ontop of a softmax classifier



## **Transformer Basics**

- Let's define the basic building blocks of transformer networks first: new attention layers!
- Just the same attention, with different settings.

#### Ours:

- Three input matrices:
  - $Q \in \mathbb{R}^{d_q \times n_q}$
  - $K \in \mathbb{R}^{d_k \times n_k}$
  - $V \in \mathbb{R}^{d_v \times n_v}$

#### **Constraints:**

$$d_q = d_k$$

$$n_v = n_k$$

<u>Transformer:</u> • Three input matrices:

- $Q \in \mathbb{R}^{|Q| \times d_k}$
- $K \in \mathbb{R}^{|K| \times d_k}$
- $V \in \mathbb{R}^{|K| \times d_v}$

## Dot-Product Attention (Extending our previous def.)

- Inputs: a query q and a set of key-value (k-v) pairs to an output
- Query, keys, values, and output are all vectors
- Output is weighted sum of values, where
- Weight of each value is computed by an inner product of query and corresponding key
- Queries and keys have same dimensionality d<sub>k</sub> value have d<sub>v</sub>

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot \kappa_i}}{\sum_{j} e^{q \cdot k_j}} v_i$$

#### **Dot-Product Attention - Matrix notation**

When we have multiple queries q, we stack them in a matrix Q:

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{j} e^{q \cdot k_j}} v_i$$

• Becomes:  $A(Q, K, V) = softmax(QK^T)V$ 

$$[|Q| \times d_k] \times [d_k \times |K|] \times [|K| \times d_v]$$

softmax row-wise





$$= [|Q| xd_v]$$

#### **Scaled Dot-Product Attention**

- Problem: As d<sub>k</sub> gets large, the variance of q<sup>T</sup>k increases → some values inside the softmax get large → the softmax gets very peaked --> hence its gradient gets smaller.
- Solution: Scale by length of query/key vectors:

$$A(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V$$



#### Self-attention and Multi-head attention

- The input word vectors could be the queries, keys and values
- In other words: the word vectors themselves select each other
- Word vector stack = Q = K = V
- Problem: Only one way for words to interact with one-another
- Solution: Multi-head attention
- First map Q, K, V into h many lower dimensional spaces via W matrices
- Then apply attention, then concatenate outputs and pipe through linear layer

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$



# Complete transformer block

- Each block has two "sublayers"
- 1. Multihead attention
- 2. 2 layer feed-forward Nnet (with relu)



Each of these two steps also has:

Residual (short-circuit) connection and LayerNorm:

LayerNorm(x + Sublayer(x))

Layernorm changes input to have mean 0 and variance 1, per layer and per training point (and adds two more parameters)

$$\mu^l = rac{1}{H}\sum_{i=1}^{H}a_i^l \qquad \sigma^l = \sqrt{rac{1}{H}\sum_{i=1}^{H}\left(a_i^l - \mu^l
ight)^2} \qquad \qquad h_i = f(rac{g_i}{\sigma_i}\left(a_i - \mu_i
ight) + b_i)$$

Layer Normalization by Ba, Kiros and Hinton, <a href="https://arxiv.org/pdf/1607.06450.pdf">https://arxiv.org/pdf/1607.06450.pdf</a>

# **Complete Encoder**

 For encoder, at each block, we get the Q, K and V from the output of the previous layer.

Blocks are repeated 6 times.



## **Transformer Decoder**

- 2 sublayer changes in decoder
- Masked decoder self-attention on previously generated outputs:



 Encoder-Decoder Attention, where queries come from previous decoder layer and keys and values come from output of encoder



Repeat 6 times also



#### **Attention Visualizations**





#### **Outlines**

Review the attention mechanism and self-attention

• Transformer: attention is all you need

Non-local neural networks

#### Non-local Neural Networks

- High-dimensional case of using self-attention
  - Texts are 1-D data
  - Images are 2-D data
  - Videos are 3-D data
  - •
- Combined usage of self-attention and convolution
  - Convolution: extract local features
  - Self-attention: aggregate non-local information
- The paper discussed different ways of computing and normalizing attention scores.

## **Non-local Neural Networks**



## **Non-local Neural Networks**

|                         | layer                                                                                                             | output size | _                                            |
|-------------------------|-------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------|
| $conv_1$                | $7 \times 7$ , 64, stride 2, 2, 2                                                                                 | 16×112×112  | Insert the self-<br>attention block<br>here! |
| $pool_1$                | $3\times3\times3$ max, stride 2, 2, 2                                                                             | 8×56×56     |                                              |
| res <sub>2</sub>        | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$                      | 8×56×56     |                                              |
| $pool_2$                | $3\times1\times1$ max, stride 2, 1, 1                                                                             | 4×56×56     |                                              |
| res <sub>3</sub>        | $   \begin{bmatrix}     1 \times 1, 128 \\     3 \times 3, 128 \\     1 \times 1, 512   \end{bmatrix} \times 4 $  | 4×28×28     |                                              |
| res <sub>4</sub>        | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$                   | 4×14×14     |                                              |
| res <sub>5</sub>        | $   \begin{bmatrix}     1 \times 1, 512 \\     3 \times 3, 512 \\     1 \times 1, 2048   \end{bmatrix} \times 3 $ | 4×7×7       |                                              |
| global average pool, fc |                                                                                                                   | 1×1×1       | -                                            |

