PRÁCTICA: LARSON - SECCIÓN 3.3 TRAZADO DE CURVAS

Dra. Penélope Cordero

Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

¿Qué ejercicios de práctica debo hacer?

- ✓ Ejercicios Propuestos:
 - Pág. 177: 3 al 14 /// 16 al 40.
 - **Pág. 185**: 9 al 15 /// 21 al 26 /// 28 al 36.

- ✓ EN ESTE VIDEO:
 - Ejercicio 10.
 - Ejercicio 16.
 - Ejercicio 40.

CRITERIO PARA FUNCIONES CRECIENTES Y DECRECIENTES

TEOREMA 3.5 (PAG. 170)

Sea f una función continua en el intervalo cerrado [a,b] y derivable en el intervalo abierto (a,b).

- Si f'(x) > 0 para toda x en $(a, b) \Rightarrow f$ es creciente en [a, b].
- **2** Si f'(x) < 0 para toda x en $(a,b) \Rightarrow f$ es decreciente en [a,b].
- \bullet Si f'(x) = 0 para toda x en $(a, b) \Rightarrow f$ es constante en [a, b].

Identifique los intervalos abiertos en los que la función es creciente o decreciente.

$$10. \ y = \frac{x^2}{x+1}$$

Solución:

 \square Veamos si y satisface las hipótesis del Teorema 3.5:

 $\checkmark y$ está definida en $\mathbb{R} - \{-1\}$ y es continua en $(-\infty, -1) \cup (-1, \infty)$.

$$\checkmark y$$
 es derivable en $(-\infty, -1) \cup (-1, \infty)$ \Rightarrow $y' = \frac{x^2 + 2x}{(x+1)^2}$.

 \square Determinamos los números críticos de y.

$$y' = \frac{x^2 + 2x}{(x+1)^2} = 0 \Leftrightarrow x^2 + 2x = 0$$
 Igualación a 0 de y'
 $x = 0, -2$ Números críticos

EJERCICIO 10 (Pag. 177)

Analizamos el signo de $y' = \frac{x^2 + 2x}{(x+1)^2}$ en los intervalos determinados por:

- los números críticos (x = -2 y x = 0),
- los valores para los cuales y no está definida (x = -1).

Intervalo	$(-\infty, -2)$	(-2, -1)	(-1,0)	$(0,\infty)$
Valor de prueba	x = -3	$x = -\frac{3}{2}$	$x = -\frac{1}{2}$	x = 1
Signo de y'	$f'(-3) = \frac{3}{4} > 0$	$f'(-\frac{3}{2}) = -3 < 0$	$f'(-\frac{1}{2}) = -3 < 0$	$f'(1) = \frac{3}{4} > 0$
Conclusión	Creciente	Decreciente	Decreciente	Creciente

EJERCICIO 10 (Pag. 177)

Comprobamos los resultados obtenidos ingresando la función en la calculadora gráfica de GeoGebra:

EJERCICIO 16 (Pag. 177)

Identifique los intervalos abiertos en los que la función es creciente o decreciente.

16.
$$f(x) = \cos^2 x - \cos x$$
, $0 < x < 2\pi$.

Solución:

 \square Veamos si f satisface las hipótesis del Teorema 3.5:

 $\checkmark f$ está definida en toda la recta real y es continua.

$$\checkmark f \text{ es derivable} \implies f'(x) = \sin x(1 - 2\cos x).$$

 \square Determinamos los números críticos de f:

$$f'(x) = \sin x (1 - 2\cos x) = 0 \quad \Leftrightarrow \quad \sin x = 0 \text{ o } \cos x = \frac{1}{2} \qquad \text{Igualación a 0 de } f'$$

$$\Leftrightarrow \quad x = 0, \pi, 2\pi \text{ o } x = \frac{\pi}{3}, \frac{5}{3}\pi \qquad 0 < x < 2\pi$$

$$x = \pi, \frac{\pi}{3}, \frac{5}{3}\pi \qquad \text{Números críticos}$$

EJERCICIO 16 (Pag. 177)

Analizamos el signo de $f'(x) = \sin x (1 - 2\cos x)$ en los intervalos determinados por los números críticos ($x = \frac{\pi}{3}, x = \pi$ y $x = \frac{5}{3}\pi$)

Intervalo	$\left(0,\frac{\pi}{3}\right)$	$\left(\frac{\pi}{3},\pi\right)$	$\left(\pi, \frac{5}{3}\pi\right)$	$\left(\frac{5}{3}\pi, 2\pi\right)$
Valor de prueba	$x = \frac{\pi}{4}$	$x = \frac{\pi}{2}$	$x = \frac{3}{2}\pi$	$x = \frac{7}{4}\pi$
Signo de $f'(x)$	$f'\left(\frac{\pi}{4}\right) = <0$	$f'\left(\frac{\pi}{2}\right) > 0$	$f'\left(\frac{3}{2}\pi\right) < 0$	$f'\left(\frac{7}{4}\pi\right) > 0$
Conclusión	Decreciente	Creciente	Decreciente	Creciente

EJERCICIO 16 (Pag. 177)

Comprobamos los resultados obtenidos ingresando la función en la calculadora gráfica de GeoGebra:

Criterio de la primera derivada

Teorema 3.6 (pag. 172)

Sea c un número crítico de la función f que es continua en un intervalo abierto I que contiene a c. Si f es derivable en este intervalo, salvo posiblemente en c, entonces f(c) puede ser clasificada como sigue:

- Si f'(x) cambia de negativa a positiva en c, entonces f tiene un mínimo relativo en (c, f(c)).
- \bullet Si f'(x) cambia de positiva a negativa en c, entonces f tiene un máximo relativo en (c, f(c)).
- \bullet Si f'(x) es positiva en ambos lados de c o negativa en ambos lados de c, entonces f(c) no es ni un mínimo ni un máximo relativo.

EJERCICIO 40 (Pag. 177)

Encuentre los intervalos abiertos en los que la función es creciente o decreciente y localice todos los extremos relativos.

40.
$$f(x) = (x-1)e^x$$

Solución:

- \square Determinamos los números críticos de f.

$$f(x) = (x-1)e^x$$

 $f'(x) = xe^x = 0$ Igualación a 0 de $f'(x)$.
 $x = 0$ Números críticos

EJERCICIO 40 (Pag. 177)

Analizamos el signo de f'(x) en los intervalos determinados por los números críticos (x=0), y aplicamos el criterio para funciones crecientes y decrecientes:

Intervalo	$(-\infty,0)$	$(0,\infty)$	
Valor de prueba	x = -1	x = 1	
Signo de $f'(x)$	$f'(-1) = -e^{-1} < 0$	f'(1) = e > 0	
Conclusión	Decreciente	Creciente	

Teniendo en cuenta el *criterio de la primera derivada*, como f'(x) cambia de negativa a positiva en c = 0, entonces f tiene un mínimo relativo en (0, -1).

EJERCICIO 40 (Pag. 177)

Use una aplicación gráfica para confirmar los resultados:

