CatchSync: Catching Synchronized Behavior

in Large Directed Graphs

Meng Jiang¹, Peng Cui¹, Alex Beutel², Christos Faloutsos², Shiqiang Yang¹

¹Department of Computer Science and Technology, Tsinghua University, Beijing, China

²Computer Science Department, SCS, Carnegie Mellon University, PA, USA

Zombie Followers in "Who-Follows-Whom" Networks

Who are they? What do they do?

- Fraudsters are paid to make certain accounts seem more legitimate or famous through giving them many additional followers.
- They are often required to perform some tasks (e.g., follow the same group of users) together.

Deviations on out-degree distribution

- 3 million Twitter zombie followers create a spike at degree 20.
- CatchSync restores normal (power-law-like and smooth) patterns.

Suspicious Following Behavior Patterns

Synchronized: they have extremely similar behavior pattern. **Abnormal:** their behavior patterns are different from the majority. *Feature space* [HITS, Kleinberg et al., 1999]

Followee In-degree Authority: high-quality celebrities/idols

Follower Out-degree Hub: containing links to famous idols

Example:

User X: a zombie follower

User Y: an honest account

- (1) Out-degree values are the same: 20.
- (2) X's hub $(4.7 \times 10^{-7}) <<$ Y's hub (1.6×10^{-4})
- (3) X's and Y's targets (followees):
- I- X's targets are too similar and very strange.

Synchronicity and Normality

Synchronicity: similarity between X's targets.

$$sync(u) = \frac{\sum_{(v,v')\in\mathcal{F}(u)\times\mathcal{F}(u)} \mathbf{p}(v) \cdot \mathbf{p}(v')}{d(u)\times d(u)}$$

Normality: similarity between X's targets and other nodes.

$$norm(u) = \frac{\sum_{(v,v')\in\mathcal{F}(u)\times\mathcal{U}} \mathbf{p}(v) \cdot \mathbf{p}(v')}{d(u) \times N}$$

* Features in vector **p**: (1) each source/target node; (2) structural features like centrality, eigenvectors; (3) side information like dates of birth, names. **Theorem** *For any distribution, there is a parabolic lower limit in the synchronicity-normality plot.*

$$s_{min} = (-Mn^2 + 2n - s_b)/(1 - Ms_b)$$

Proof. It is based on Lagrange multipliers.

- X has much bigger synchronicity and smaller normality than Y (from majority).

CatchSync Algorithm: (1) feature space; (2) sync and norm; (3) outlier detection.
Complexity analysis: O(E) – scalable.

Experimental Results on Synthetic Data

Injection on random power law graph

- $3M^2 + 5$ groups (16K sources× 1.6K targets, $8K \times 800$, ..., $1K \times 100$).
- Camouflage: 10% more RANDom users; 50% top POPular idols.

 Synchronicity-normality plots

Accuracy on 3M, 3M-RAND and 3M-POP Taph Synth-3M Synth-3M-Rand Synth-3

Synthetic graph	SYNTH-3M	SYNTH	1-3M-Rand	SYNTH	I-3M-Pop
Camouflage (d_{camou})	None (0)	10%	50%	10%	50%
CATCHSYNC	0.956	0.910	0.764	0.885	0.792
OddBall	0.755	0.702	0.525	0.657	0.433
OUTRANK	0.725	0.678	0.516	0.694	0.392
SPOKEN	0.677	0.586	0.470	0.553	0.351

Precision-recall on 3M-RAND and 3M-POP

Experimental Results on Twitter and Tencent Weibo Data

Restore normal patterns in feature space/distributions

Accuracy, precision and recall on fraudsters

SPOT: content-based		TWITTERSG	WEIBOSG
CatchSync: graph-based	CATCHSYNC	0.751	0.694
CatchSync OR(+) SPOT	OUTRANK	0.412	0.377
	SPOT	0.597	0.653
	CATCHSYNC+SPOT	0.813	0.785

Acknowledgement

