

COMP90050 Advanced Database Systems

Winter Semester, 2023

Lecturer: Farhana Choudhury (PhD)

Week 1 part 1

Subject introduction

All successful companies and organizations rely on usage of data

Database: a large, integrated, structured collection of data

Subject introduction

A **Database Management System (DBMS)** is a software system designed to store, manage, and facilitate access to databases.

A database system should provide

- Ability to retrieve and process the data <u>effectively and</u>
 <u>efficiently</u>
- Secure and reliable storage of data

Database performance metrics

Subject introduction

This is more complex due to:

- More data
- More aspects of businesses
- Stored in various sites and accessed by many users
- More complex data types such as images, social network, videos, etc.

We will cover

Essentials to achieve correct behaviour and the best possible performance

Knowledge of how DB systems work

 Mechanisms used by current systems to provide useful features

Advanced topics

Core Concepts of Database management system

One piece of this became the dominant factor: Access to stored data in an efficient manner

You will find this picture even on the cover of DB books!

Basic Hardware of a classical disk

and writes data to the platter surfaces

https://www.youtube.com/watch?v=wteUW2sL7bc

THE UNIVERSITY OF MELBOURNE Disk access

Disk access time = seek time +
$$rotational time + \frac{transferlength}{bandwidth}$$

What is the Disk access time for a transfer size of 4KB, when average seek time is 12 ms, rotation delay 4 ms, transfer rate 4MB/sec?

SSD (Solid-State Drive/Solid-State Disk)

- No moving parts like Hard Disk Drive (HDD)
- Silicon rather than magnetic materials
- No seek/rotational latency
- No start-up times like HDD
- Runs silently
- Random access of typically under 100 micro-seconds compared 2000 - 3000 micro-seconds for HDD
- Relatively very expensive, thus did not dominate at all fronts yet
- Certain read/write limitations plagued it for years

Disk access time =
$$\frac{transferlength}{bandwidth}$$

Samsung 860 PRO SATA III 2.5-inch

Capacity: 4TB SSD

Price: Many hundreds of dollars

Weight: < 62 grams

Bandwidth Performance (SATA Standard Serial)

- Sustained Sequential Read: up to 560 MB/s
- Sustained Sequential Write: up to 530MB/s

Read and Write IOPS (Input/Output Per Second) – QD32

- Random 4 KB Reads: Up to 100,000 IOPS
- Random 4 KB Writes: Up to 90,000 IOPS

Other Hardware Considerations

Observations on historical trends on chips

Basically: are we going into the age of CPUs?

Moore's law: memory chip capacity doubles every 18 months since 1970

$$=2^{\frac{(year-1970)*2}{3}}Kb/chip$$

 Joy's law for processors: processor performance doubles every two years since 1984

$$=2^{(year-1984)/2} mips$$

How's recent hardwares are doing...

- Blue Gene/P performs 1 Petaflops (2⁵⁰)/s using ~300,000 CPUs, a decade ago...
- IBM Summit (2019) performs 200 Petaflops (200,000 trillion calculations/second). Summit more than doubles the top speeds of TaihuLight Supercomputer (2018) which was 1 year older
- Very soon we will be measuring the performance by number of cores as individual CPU is reaching its maximum clock speeds
- Intel's Xeon Cascade Lake series can have up to 48 cores

Some numbers to recall before looking at storage

Metric	Value			Bytes
Byte (B)	1	20	10 ⁰	1
Kilobyte (KB)	1,024	2 ¹⁰	10 ³	1,024
Megabyte (MB)	1,024 ²	2 ²⁰	10 ⁶	1,048,576
Gigabyte (GB)	1,024 ³	2 ³⁰	109	1,073,741,824
Terabyte (TB)	1,024	2 ⁴⁰	10 ¹²	1,099,511,627,776
Petabyte (PB)	1,024 ⁵	2 ⁵⁰	10 ¹⁸	1,125,899,906,842,624
Exabyte (EB)	1,024 ⁶	2 ⁶⁰	10 ²¹	1,152,921,504,606,846,976
Zettabyte (ZB)	1,024	2 ⁷⁰	10 ²⁴	1,180,591,620,717,411,303,424
Yottabyte (YB)	1,0248	2 ⁸⁰	10 ²⁷	1,208,925,819,614,629,174,706,176

So where do we store data: The Memory Hierarchy

Multi-Core System

Increasingly L1, L2 and L3 caches are on the chip now!

Memory hierarchy

$$Hit\ ratio = \frac{references\ satisfied\ by\ cache}{total\ references}$$

Effective memory access time,

$$EA = H*C+(1-H)*M$$

where H = hit ratio,

C = cache access time;

M = memory access time

Hit ratio	Effective access time as multiple of C, M = 100 C
50.00%	50.5
90.00%	10.9
99.90%	1.1

If data needs to be transferred from HDD

Disk access time = seek time +
$$rotational time + \frac{transferlength}{bandwidth}$$

Caching provided with HDD for access

Effective disk buffer access time,

EA = HB*BC+(1-HB)*D where

HB = hit ratio of the disk buffer, BC = buffer access time; D =

disk access time

Hit ratio	Effective access time as multiple of BC, D = 1000 C
50.00%	500.5
99.00%	100.9
99.90%	1.999
99.99%	1.099

Memory hierarchy example

