

DATA PREPROCESSING

Pengajar:

Dian Ade Kurnia, M.Kom Rusnanda Farhan Rusnandi Fikri Rika Sahriana

Capaian Pembelajaran

- 1. Mahasiswa mampu melakukan pemilihan dan pemilahan data sesuai kebutuhan dan sumberdaya yang dimiliki
- 2. Mahasiswa mampu melakukan pembersihan data
- 3. Mahasiswa mampu melakukan pemeriksaan kualitas dan kecukupan data

Pengenalan Data Preprocessing

Terminologi dan Definisi

Pre-Processing

Data Manipulation

Data Cleansing

Normalization

What is Data Preprocessing?

Data preprocessing adalah tahap menyiapkan/membersihkan data yang kotor untuk selanjutnya akan diproses menggunakan model machine learning. Dengan dilakukkannya data preprocessing maka dapat meningkatkan efisiensi model dan meningkatkan performa model.

Langkan Pemrosesan Data

Data Preprocessing = Feature Engineering

What is Feature?

Feature adalah data dependen atau predictor yang digunakan untuk analysis.

	A	В	С	D	E	F	G	Н	1	J	K	L
1	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	C)	Braund, Mr.	male	22	1		0 A/5 21171	7.25		S
3	2	1		Cumings, Mr	female	38	1		0 PC 17599	71.2833	C85	С
4	3	1		Heikkinen, N	female	26	0		0 STON/02. 31	7.925		S
5	4	1		1 Futrelle, Mrs	female	35	1		0 113803	53.1	C123	S
6	5	C) :	Allen, Mr. W	male	35	0		0 373450	8.05		S
7	6	C) :	Moran, Mr. J	male		0		0 330877	8.4583		Q

location	date_of_sale	property_size_sq_m	number of bedrooms	price	type
Claphan	12/4/1999	50		1 729000	apartment/1930s
Ashford	5/8/2017	119		3 699000	semi-detached,1970s
Stratford-on-Avon	29/3/2012	212		3 540000	detached,17th century
Canterbury	1/7/2009	95		2 529000	teraced,1960s
Camden	16/12/2001	54		1 616000	apartment,2000s
Rugby	1/3/2003	413		7 247000	detached, 19th century
Hampstead	5/3/2016	67		2 890000	terraced, 19th century

Feature and Target

Seperti yang dijelaskan sebelumnya Feature adalah data dependen atau predictor yang digunakan untuk analysis. Lalu Target adalah dependen variable atau label, ini adalah data yang akan diprediksi.

BRAND	TYPE	CYLINDER	ENG-SIZE	STROKE		PRICE	RISK
Brand-A	sedan	four	109	3.4		13950	POS
Brand-A	sedan	five	136	3.4		17450	POS
Brand-B	sedan	four	108	2.8	- (義)	16430	POS
Brand-B	sedan	four	108	2.8	SIE	16925	POS
Brand-C	hatchback	three	61	3.03		5151	NEG
Brand-C	hatchback	four	90	3.11		6295	NEG
Brand-D	hatchback	four	90	3.23	f(x)	5572	NEG
Brand-D	hatchback	four	90	3.23	150 100	6377	NEG
	T	nput				Lal	nel

DATA CLEANSING Missing Value, adalah data yang tidak lengkap diperlihatkan dengan Na di

dataframe. Untuk mengetahui apakah ada missing value dalam dataset dapat

menggunakan: Dataframe.isnull().sum()

Checking missing value for each feature
print('Checking missingg value for each feature:')
print(dataset.isnull().any(),'\n')
print(dataset.isnull().sum(),'\n')

Counting total missing value
print('\nCounting total missing value:')
print(dataset.isnull().sum().sum())
executed in 29ms finished 11:15:27 2021-10-30

Checking missingg value	for each	feature:
Administrative	True	
Administrative_Duration	True	
Informational	True	
Informational_Duration	True	
ProductRelated	True	
ProductRelated_Duration	True	
BounceRates	True	
ExitRates	True	
PageValues	False	
SpecialDay	False	
Month	False	
OperatingSystems	False	
Browser	False	
Region	False	
TrafficType	False	
VisitorType	False	
Weekend	False	
Revenue	False	
dtype: bool		

Administrative	14
Administrative_Duration	14
Informational	14
Informational Duration	14
ProductRelated	14
ProductRelated Duration	14
BounceRates	14
ExitRates	14
PageValues	0
SpecialDay	0
Month	0
OperatingSystems	0
Browser	0
Region	0
TrafficType	0
VisitorType	0
Weekend	0
Revenue	0
dtype: int64	
Counting total missing v	alue:

Data Encoding

Dalam data kategorikal yang bertipe object tidak dapat diproses ke dalam model. Maka perlu dilakukan Encoding untuk merubah nilainya menjadi numeric.

id	color		id	color_red	color_blue	color_green
1	red		1	1	Θ	Θ
2	blue	One Hot Encoding	2	0	1	Θ
3	green	,	3	0	Θ	1
4	blue		4	0	1	Θ

Fakta Terkait Data Preparation

Porsi kegiatan data scientis

Data Preparation

How Important is Data Preprocessing

Data dunia nyata cenderung incomplete, noisy, dan inconsistent. Hal ini dapat menyebabkan rendahnya kualitas data yang dikumpulkan dan selanjutnya rendahnya kualitas model yang dibangun di atas data. Untuk mengatasi masalah ini, Data Preprocessing menyediakan operasi yang dapat mengatur data ke dalam bentuk yang tepat untuk pemahaman yang lebih baik. Kita tidak dapat memahami perilaku atau tren data. Oleh karena itu, kita perlu mengubah atau mengaturnya agar menjadi format tepat dengan menggunakan Data Preprocessing. Dengan dilakukkannya data preprocessing maka dapat meningkatkan efisiensi model dan meningkatkan performa model.

Pentingnya Data Preparation

Manfaat Data Preparation

Kompilasi data menjadi efesien dan efektif Identifikasi dan Memperbaiki Eror Mudah perubahan secara global Menghasilkan informasi yang akurat untuk pengambilan keputusan Nilai bisnis dan ROI (Return of Investment) akan meningkat

Perkembangan Data Preparation

Tantangan Data Preparation

Tahapan Data Preparation

Roles

Data Preparation dalam CRISP-DM

Tahapan Data Preparation versi simpel

Sampling Data

Pengertian Sampling

Sebelum melakukan tahapan dalam data preparation, terlebih dahulu adalah pemilihan/penentuan objek yang dapat dilakukan dengan menggunakan penentuan POPULASI dan SAMPEL

Metode Sampling

Tahapan Sampling

- 1. Identifikasi dan mendefinisikan target dari populasi yang akan digunakan
- 2. Memilih sampel frame dari populasi yang digunakan
- 3. Memilih metode sampling mana yang akan digunakan
- 4. Menentukan ukuran sample
- 5. Mengumpulkan Data yang dibutuhkan

Imbalance Dataset

Imbalance Dataset merupakan data yang biasanya diolah secara klasifikasi dengan salah satu kelas/label pada datanya mempunyai nilai yang sangat jauh berbeda jumlahnya dari kelas lainnya.

Pada Imbalance dataset, biasanya memiliki data dengan kelas yang sedikit (rare class) dan data dengan kelas yang banyak (abundant class)
Salah satu untuk mengatasi imbalance dataset adalah RESAMPLING

Imbalanced

Data yang memiliki rasio yang tidak berimbang antara data satu dengan data lainnya dapat dikatakan sebagai imbalanced. Dengan begitu dataset harus dibuat balance dengan hanya menggunakan **Training Dataset**.

RESAMPLING

Gunakan pengukuran (metrik) yang tepat, misalnya dengan menggunakan:

Precission/Spesikasi: berapa banyak instance yang relevan

Recall / Sensitifitas: berapa banyak instance yang dipilih

F1-Score: harmonisasi mean dari precission dan recall

MCC: koefisien korelasi antara klasifikasi biner antara observasi dan prediksi

AUC: relasi antar tingkat true-positive vs false-positive

Resampling Data Training, dengan dua metode

Undersampling

Oversampling

Melakukan Resampling

1. Over-Sampling

Melakukan generate pada rare class sehingga jumlah dari rare class sama dengan jumlah abundant class.

2. Under-Sampling

Melakukan seleksi pada abundant class secara acak/ random sehingga abundant class nilainya berkurang sampai dengan jumlahnya sama dengan rare class.

TEKNIK RESAMPLING

Resampling method	Description	Target class distribution after resampling
Oversampling (SMOTE)	Generate new synthetic fraudulent transactions until the number of fraudulent transactions is calequal to the number of legitimale transactions. 1. Select one of the fraudulent transactions in the training data randomly. 2. Select one of its n nearest neighbors in the same fraudulent class randomly. 3. Select a random point between the existing fraudulent transaction and its nearest neighbor. 1. Randomly selected data point. 2. Randomly selected nearest neighbor in the selected nearest neighbor. 2. Randomly selected nearest neighbor.	Original data in yellow New synthetic data in light patterned yellow Count 200 000 Ingitmate Itrautulent Itrautulent
Oversampling (Bootstrap)	Randomly draw with replacement a sample of fraudulent transactions until the number of fraudulent transactions is calequal to the number of legitimate transactions	Count 2000000
Undersampling (Bootstrap)	Randomly draw with replacement as many legitimate transactions as there are fraudulent transactions	Count 200 and
		ligitimate trauditions

Resampling method	Description	Target class distribution after resampling
Oversampling (SMOTE)	Generate new synthetic fraudulent transactions until the number of fraudulent transactions is calequal to the number of legitimate transactions. 1. Select one of the fraudulent transactions. 1. Select one of the training data rendomly. 2. Select one of its n nearest neighbors in the same fraudulent class randomly. 3. Select area and one point between the existing fraudulent transaction and its nearest neighbor. 1. Randomly selected data point. 2. Randomly selected nearest neighbor in the selected nearest neighbor. 2. Randomly selected nearest neighbor in the selected nearest neighbor.	Original data in yellow New synthetic data in light patterned yellow Court 200 000 Ingernalia Itsuchere Itsuchere
Oversampling (Bootstrap)	Randomly draw with replacement a sample of fraudulent transactions until the number of fraudulent transactions is calequal to the number of legitimate transactions	Count 2000000 Inglimete traubleed
Undersampling (Bootstrap)	Randomly draw with replacement as many legitimate transactions as there are fraudulent transactions	Count 200 and
		0 kgittmake fraudulent

PEMILIHAN (SELEKSI FITUR) DATA

Manfaat seleksi fitur Data

Reduksi Overfitting

Meningkatkan Akurasi

Reduksi Waktu Training

Membedakan Jenis Data

Data Type

Tipe data adalah konsep yang sangat penting dalam machine learning. Dengan mengetahui tipe data akan memudahkan dalam proses data preprocessing.

Kenapa tipe data penting:

- Untuk mengaplikasikan pengukuran statistic ke data dengan benar
- Menyimpulkan dengan benar asumsi tertentu dari dataset

Validasi Data

Harus dapat membedakan antara VERIFIKASI vs VALIDASI

VERIFIKASI bertujuan untuk membuktikan bahwa sesuatu ada atau benar, atau untuk memastikan bahwa sesuatu adalah benar atau salah.

VALIDASI bertujuan untuk membuat sesuatu yang resmi diterima atau disetujui, terutama setelah memeriksanya apakah Kuat atau Lemah

VALIDASI atau VALIDITAS adalah mengukur sejauh mana perbedaan skor yang mencerminkan perbedaan sebenarnya baik itu antar individu, kelompok atau juga situasi yang mengenai karakteristik yang akan diukur atau juga kesalahan sebenarnya pada individu ataupun juga kelompok yang sama dari satu situasi ke situasi yang lain .

Apa yang di Validasi?

Tipe Data
Range Data
Uniqueness
Consisten Expression

Format Data
Nilai Null/Missing Values
Misspelling/Type
Invalid Data

Teknik Validasi

Akurasi atau ketepatan data yang ada Kelengkapan data Konsistensi data Ketepatan waktu validasi data Kepercayaan Nilai Tambah Penafsiran data Kemudahan Akses

Train Test Split

Train/test split adalah salah satu metode yang dapat digunakan untuk mengevaluasi performa model machine learning. Metode evaluasi model ini membagi dataset menjadi dua bagian yakni bagian yang digunakan untuk training data dan untuk testing data dengan proporsi tertentu.

Feature Scaling

Kenapa harus melakukan feature scaling:

- Data dengan skala yang sama akan menjamin algoritma pembelajaran memperlakukan semua feature dengan adil
- Data dengan skala yang sama dan centered akan mempercepat algoritma pembelajaran
- Data dengan skala yang sama akan mempermudah interpretasi beberapa model ML

Kapan menggunakan feature scaling:

- Gunakan feature scaling jika model ML yang digunakan terpengaruhi oleh skala data (KNN, Logistic Regression, SVM)
- Gunakan Standardization bila tahu bahwa data memiliki sebaran normal/Gaussian
- Gunakan Standardization bila model yang kita pakai punya asumsi tentang normalitas (e.g. regresi linear)
- Gunakan normalization apabila tidak memenuhi 2 kriteria di atas.

Data Preprocessing Berdasarkan Tipe Data

Preprocessing Data pada Data Teks

- Case Folding
 Proses mengkonversi tulisan menjadi "uppercase" dan "lowercase".
- Stopword Removal
 Menghilangkan kata-kata yang dianggap tidak berpengaruh secara signifikan di dalam data teks.
- Stemming/ Lemmatization
 Proses merubah kata menjadi bentuk akar kata.
 Contoh: membuat -> buat, menulis -> tulis, dsb
- Slangword Handling
 Mengatasi kata-kata non-formal, kata-kata sehari-hari, singkatan ataupun kata gaul yang
 ada di dalam teks dengan merubahnya ke bentuk kata formal.
 Contoh: Yg -> yang, krn -> karena, dll.
- Feature Extraction
 Proses merubah kata dan kalimat ke dalam bentuk vektor representatif. Beberapa metode yang cukup sering digunakan diantaranya TF-IDF, word embedding, skip gram, dll.

Preprocessing Data pada Data Gambar

- Changing Color-space
 Biasanya digunakan untuk merubah jenis channel seperti BGR ↔ Gray, BGR ↔ HSV, dll.
- Geometric Transformations
 Beberapa transformasi yang dapat dilakukan seperti : translation, rotation, affine transformation, dll
- Morphological Transformations
 Melakukan berbagai operasi pada gambar seperti Erosion, Dilation, Opening, Closing, dll untuk berbagai kebutuhan tertentu.
- Image cropping
- Resize image
- dll

Python image processing : https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html

Rotation

Opening

Original Image

Erosion

Dilation

Closing

Preprocessing Data pada Data Audio

Spectral features

Dalam data audio, spectral features merepresentasikan energi frekuensi yang berubah-ubah nilainya pada setiap satuan waktu.

Rhythm features

Preprocessing yang dilakukan untuk mengekstrak informasi terkait ritme dan juga tempo audio.

Audio cropping

Python audio processing: https://librosa.org/doc/latest/index.html

Chromagram

MFCC

Spectogram

Ringkasan

Data preparation memiliki sebutan lain, diantaranya pre-processing, data cleaning, data manipulation

Dara preparation mengambil porsi kerja terbanyak dalam sata science sebesar 60%-80%. Data preparation membutuhkan ketelitian dan kesabaran/kerjaninan dari peneliti Data Science, terutama pemula.

Data Validation merupakan tahapan kritikal dari Data Science namun sering diabaikan para peneliti

Seleksi Fitur harus dilakukan di awal tahapan data preparation setelah melakukan penentuan metode/Teknik sampling.

Data cleaning merupakan pekerjaan yang sangat memerlukan keahlian Teknik Data Science terkait penggunaan tools dan coding.

Kebersihan Data merupakan syarat mutlak untuk model prediksi yang baik