

PVsyst - Simulation report

Grid-Connected System

Project: MPSRSolar_ENEL562FinalProject

Variant: New simulation variant

Building system

System power: 5.61 kWp

Beijing/Peking - China

PVsyst TRIAL

PVsyst TRIAL

PVsyst TRIAL

Variant: New simulation variant

PVsyst V7.1.0 Simulation date:

01/12/20 14:16 with v7.1.0

China

Project summary

Geographical Site Situation

Latitude Beijing/Peking

> Longitude Altitude

39.93 °N 116.28 °E 55 m

Time zone UTC+8 **Project settings**

0.20 Albedo

Meteo data

Beijing/Peking

MeteoNorm 7.2 station - Synthetic

System summary

Grid-Connected System

PV Field Orientation

Fixed plane

Tilt/Azimuth

40 / 20 °

System information

PV Array

Nb. of modules Pnom total

Building system

19 units

5.61 kWp

Near Shadings

No Shadings

Inverters Nb. of units

Pnom total Pnom ratio User's needs Unlimited load (grid)

19 units

5.51 kWac 1.017

Results summary

Produced Energy 7.74 MWh/year Specific production

1382 kWh/kWp/year Perf. Ratio PR

87.41 %

Project and results summary					
General parameters, PV Array Characteristics, System losses					
Main results					
Loss diagram					
Special graphs					

Variant: New simulation variant

PVsyst V7.1.0 Simulation date: 01/12/20 14:16

with v7.1.0

General parameters

Grid-Connected System Building system

PV Field Orientation Horizon Free Horizon Orientation Models used

Fixed plane Transposition Tilt/Azimuth 40 / 20° Diffuse Perez, Meteonorm

Circumsolar separate

Near Shadings User's needs No Shadings Unlimited load (grid)

PV Array Characteristics

PV module Inverter Manufacturer Manufacturer Generic Generic CS6K - 295MS-AG 1500V IQ7PLUS-72-x-INT Model Model

(Original PVsyst database) (Original PVsyst database)

175 A

Unit Nom. Power 295 Wp Unit Nom. Power 0.290 kWac Number of PV modules Number of inverters 19 units 19 units Nominal (STC) 5.61 kWp Total power 5.5 kWac Modules 19 Strings x 1 In series Operating voltage 16-48 V Max. power (=>60°C) 0.300 kWac

At operating cond. (50°C)

1.02 Pmpp 5.06 kWp Pnom ratio (DC:AC) U mpp 29 V

Total PV power

I mpp

Total inverter power 5.5 kWac Nominal (STC) 6 kWp Total power 19 modules Nb. of inverters 19 units Module area 31.2 m² Pnom ratio 1.02

Cell area 27.9 m²

Array losses

Thermal Loss factor DC wiring losses **Module Quality Loss**

Module temperature according to irradiance Global array res. 2.8 mΩ Loss Fraction -0.4 % 20.0 W/m²K Loss Fraction 1.5 % at STC Uc (const)

Uv (wind) 0.0 W/m2K/m/s

Module mismatch losses Strings Mismatch loss

Loss Fraction Loss Fraction 0.1 % 2.0 % at MPP

IAM loss factor

Incidence effect (IAM): User defined profile

10°	20°	30°	40°	50°	60°	70°	80°	90°
0.998	0.998	0.995	0.992	0.986	0.970	0.917	0.763	0.000

Variant: New simulation variant

PVsyst V7.1.0

Simulation date: 01/12/20 14:16 with v7.1.0

Main results

System Production

Produced Energy

7.74 MWh/year

Specific production Performance Ratio PR 1382 kWh/kWp/year

87.41 %

Normalized productions (per installed kWp)

Jun

Aug

Apr May

Performance Ratio PR

Balances and main results

0.3 0.2 0.1 0.0

Feb

Jan

Mar

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	69.2	31.20	-3.20	119.9	118.3	0.658	0.637	0.948
February	86.4	37.90	0.70	127.7	126.0	0.683	0.661	0.924
March	123.5	59.70	7.50	152.9	150.5	0.792	0.767	0.895
April	144.8	86.30	15.20	150.7	148.0	0.753	0.728	0.861
May	168.2	98.10	21.20	159.4	156.0	0.777	0.750	0.840
June	157.3	99.20	25.10	143.6	140.4	0.691	0.667	0.828
July	144.3	96.00	26.70	133.8	130.9	0.641	0.617	0.823
August	135.7	88.80	25.30	132.8	130.1	0.641	0.618	0.830
September	117.6	65.60	20.20	134.1	131.7	0.659	0.637	0.847
October	94.3	51.70	13.10	125.0	123.1	0.639	0.617	0.881
November	66.4	32.70	4.20	105.6	104.1	0.561	0.543	0.917
December	54.8	27.60	-1.80	94.8	93.5	0.519	0.501	0.943
Year	1362.5	774.80	12.91	1580.5	1552.6	8.013	7.744	0.874

Legends

GlobHor Global horizontal irradiation EArray Effective energy at the output of the array

DiffHor Horizontal diffuse irradiation E_Grid Energy injected into grid

T_Amb Ambient Temperature PR Performance Ratio

GlobInc Global incident in coll. plane
GlobEff Effective Global, corr. for IAM and shadings

Variant: New simulation variant

PVsyst V7.1.0 Simulation date: 01/12/20 14:16 with v7.1.0

Simulation date: 01/12/20 14:16 with v7.1.0

Project: MPSRSolar_ENEL562FinalProject

Variant: New simulation variant

variant. New Simulation vari

Special graphs **Daily Input/Output diagram** 35 Values from 01/01 to 31/12 30 25 Energy injected into grid [kWh/day] 20 15 10 ೲೲ 80 0 2 3 5 6 0 Global incident in coll. plane [kWh/m²/day] **System Output Power Distribution** 200 Values from 01/01 to 31/12 180 160 Energy injected into grid [kWh / Bin] 140 120 100 80 60 40 20 2 4 Power injected into grid [kW]