Esercizio 1

Verificare se le seguenti applicazioni sono lineari:

a.
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 tale che $T \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 3x_1 + x_3 \\ 1 \\ x_1 + x_2 \end{vmatrix}$

b.
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 tale che $T \left| \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right| = \left| \begin{array}{c} x_2 \\ x_1^2 \end{array} \right|$

c.
$$T: \mathbb{R}^4 \to \mathbb{R}^4$$
 tale che $T \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{vmatrix} x_1 + x_3 \\ x_2 - x_1 \\ x_4 \\ x_3 \end{vmatrix}$

d.
$$T: P_1[t] \to P_2[t]$$
 tale che $p(t) \mapsto tp(t)$

e.
$$T: P_2[t] \to P_1[t]$$
 tale che $p(t) \mapsto p'(t)$

b.
$$T: \mathbb{R}^3 \to M_{2,2}(\mathbb{R})$$
 tale che $T \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 2x_2 - x_1 & x_3 \\ x_3 - x_1 & x_1 \end{vmatrix}$

Esercizio 2

Trovare un'applicazione lineare $T:\mathbb{R}^3 \to \mathbb{R}^4$ tale che

$$T(e_1) = \begin{vmatrix} 1\\3\\1\\0 \end{vmatrix}$$
 $T(e_2) = \begin{vmatrix} 0\\1\\-4\\1 \end{vmatrix}$ $T(e_3) = \begin{vmatrix} -2\\-3\\0\\-1 \end{vmatrix}$.

Questa applicazione è univocamente determinata? Calcolare $T \begin{bmatrix} -1 \\ 0 \\ -1 \\ 3 \end{bmatrix}$.

Esercizio 3

Data l'applicazione $T: \mathbb{R}_3[t] \to \mathbb{R}_4[t]$ tale che

$$T(1) = 1$$
, $T(t) = t$, $T(t^2) = t^3 + t^2$, $T(t^3) = t^4$.

Verificare che T è lineare e calcolare $T(t^3 - 6t^2 + 2t + 4)$.

Esercizio 4

Determinare un' applicazione lineare $T: \mathbb{R}^3 \to \mathbb{R}^3$ tale che ker $T = \mathbb{R} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$. Tale applicazione è unica?

Esercizio 5

Sia
$$T: \mathbb{R}_3[t] \to \mathbb{R}_4$$
 l'applicazione $T(p) = \left| \begin{array}{c} p(-1) \\ p(2) \\ p(1) \end{array} \right|$. T è lineare? Dimostrare che T è surgettiva. Calcolare $T^{-1} \left| \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right|$.

Esercizio 6

Data la seguente applicazione lineare
$$T \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{vmatrix} x_1 + x_3 + 2x_4 \\ -x_2 + x_3 + x_4 \\ x_1 + 2x_2 + x_4 \\ 2x_1 + x_2 + 2x_3 + x_4 \end{vmatrix}$$
, verificare se T è surgettiva.

Esercizio 7

Determinare la matrice A tale che $L_A: \mathbb{R}^4 \to \mathbb{R}^3$ è così definita:

$$L_A(e_1) = \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix}$$
 $L_A(e_2) = \begin{vmatrix} 1 \\ -1 \\ 1 \end{vmatrix}$ $L_A(e_3) = \begin{vmatrix} 2 \\ 3 \\ 0 \end{vmatrix}$ $L_A(e_4) = \begin{vmatrix} 4 \\ -2 \\ 3 \end{vmatrix}$

Esercizio 8

Siano dati in \mathbb{R}^4 i seguenti vettori

$$u_1 = \begin{vmatrix} 1 \\ 0 \\ -1 \\ 3 \end{vmatrix} \quad u_2 = \begin{vmatrix} 0 \\ -1 \\ 3 \\ 1 \end{vmatrix} \quad u_3 = \begin{vmatrix} 1 \\ -1 \\ 2 \\ 4 \end{vmatrix} \quad u_4 = \begin{vmatrix} 1 \\ -2 \\ 5 \\ 5 \end{vmatrix}.$$

i) Trovare una base \mathcal{B} di $Span(u_1, u_2, u_3, u_4)$.

ii) Determinare l'applicazione lineare $T: \mathbb{R}_4 \to \mathbb{R}_4$ così definita:

$$T(e_1) = u_1$$
, $T(e_2) = u_3$, $T(u_2) = u_1 + u_2$, $T(e_4) = u_2$.

- iii) Estendere \mathcal{B} ad una base di \mathbb{R}^4 .
- $iv) \ \mathrm{Sia} \ W = Span \left(\left| \begin{array}{c|c} 1 \\ 1 \\ 0 \\ 2 \end{array} \right|, \left| \begin{array}{c} 2 \\ 1 \\ 1 \\ 0 \end{array} \right|, \left| \begin{array}{c} 0 \\ 1 \\ -1 \\ 4 \end{array} \right| \right). \ \mathrm{Trovare \ equazioni \ parametri-}$ che per Ue per W.
 - v) Trovare base e dimensione di U + W e di $U \cap W$.

Esercizio 9

Consideriamo l'applicazione lineare $T: \mathbb{R}^3 \to \mathbb{R}^3$ così definita:

$$T(e_1 + e_2) = \begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix}$$
 $T(e_1 + e_3) = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$ $T(e_1 + e_2 + 2e_3) = \begin{vmatrix} 3 \\ -1 \\ 2 \end{vmatrix}$.

Verificare se T è surgettiva. Determinare per quali valori di $k\in\mathbb{R}$ il vettore $v=\left|\begin{array}{c|c}2k\\k-1\\1\end{array}\right|$ appartiene a Im T.

Esercizio 10

Sia $T: \mathbb{R}^4 \to \mathbb{R}^4$ un'applicazione lineare tale che

$$T(e_1) = \begin{vmatrix} 1\\0\\1\\2 \end{vmatrix} \quad T(e_2) = \begin{vmatrix} 2\\3\\2\\1 \end{vmatrix} \quad T(e_3) = \begin{vmatrix} 1\\3\\1\\-1 \end{vmatrix} \quad T(e_4) = \begin{vmatrix} 1\\-3\\1\\5 \end{vmatrix}.$$

Determinare, se possibile, un'applicazione lineare g tale che $f \circ g = 0$ e dim ker g = 2.