# What about Design 3?

Sit Stand Sit # people # measures #EU 3) Jill 
$$\begin{bmatrix} X \\ X \end{bmatrix}$$
 T1 Bob  $\begin{bmatrix} X \\ X \end{bmatrix}$  T2 Amy  $\begin{bmatrix} X \\ X \end{bmatrix}$  T2 40 80 40

$$\sigma_r(\hat{\delta}) = \sqrt{\sigma_r^2(\hat{\mu}_B) + \sigma_r^2(\hat{\mu}_A)}$$
 Indirect Standard Error

$$\sigma_r(\hat{\mu}_i) = \sqrt{ egin{array}{c} {
m Variance\ of\ population\ +\ Variance\ of\ measurements} } {
m Sample\ size}$$
 Direct Standard Error

population = TRUE **Standing pulse** 
$$\mu_{Aj}$$
 population variance =  $\sigma_{\mu_i}^2$  (same as Design 1)

measurements = Estimates of Standing pulse 
$$\hat{\mu}_{Aj} = \frac{y_{Aj_1} + y_{Aj_2}}{2}$$

measurement variance is 1/2 that of Design 1: 
$$\frac{\sigma_m^2}{2}$$

# samples / treatment level is 1/2 that of design 1

Final Standard Error:

$$\sigma_r(\hat{\delta}) = \sqrt{\frac{2\sigma_{\mu_i}^2 + 2/2\sigma_m^2}{20}}$$

# Efficiency of Experimental Designs

#### **Design 2**



Smaller population variance

**Design 1** 

$$\sigma_r(\hat{\delta}) = \sqrt{\frac{2\sigma_{\mu_i}^2 + 2\sigma_m^2}{40}}$$

**Design 3** 

 $\sigma_r(\hat{\delta}) = \sqrt{\frac{2\sigma_{\mu_i}^2 + 2/2\sigma_m^2}{20}}$ 

Smaller measurement error

Smaller sample size (#EU / level)

Repeated measures of the same sample are subsamples

Not declaring EU causes pseudoreplication



Subsamples (s)

More subsamples = less measurement error / EU

More subsamples = fewer EU

# Optimal number of subsamples

Tradeoff between EU and subsamples based on cost

Optimal number of subsamples  $\sqrt{\frac{k}{c}}$ 

$$k = \frac{\sigma_m^2}{\sigma_{\mu_i}^2} \qquad \frac{\hat{\mu}_{ij1} - \hat{\mu}_{ij2}}{2} \qquad \text{half the difference among replicate measures of the same individual}}{\frac{\mu_{i1} - \mu_{i2}}{2}} \qquad \text{half the difference among different individuals}}$$

k c Optimal number of subsamples

.5 1 .7 <del>−−−−−</del> 1

1 1 — 1

 $2 \qquad 1 \qquad \qquad 14 \longrightarrow 1$ 

4 1 2 ----- 2

.5 1/10 2.2 ----- 2

1 1/10 3.1 — 3

2 1/10 4.5 --- 4

# Estimated Standard Errors for each design

Design 2

"Direct"

$$\hat{\delta}_{B-A} = \frac{1}{n} \sum_{i} \hat{\delta}_{j}$$
 Direct estimate = average of *n* observations

TRUE Standard 
$$\sigma_r(\hat{\delta}) = \sqrt{\frac{\text{Variance of population + Variance of measurements}}{\text{Sample size}}}$$

**Estimated** Standard Error:

**Sample Variance** of  $\hat{\delta}_i pprox$  Variance of TRUE values + Variance of erro

$$s_{\hat{\delta}}^2 = \frac{\sum (\hat{\delta}_j - \hat{\delta})^2}{n - 1}$$

SED = 
$$\sqrt{\frac{s_{\hat{\delta}}^2}{n}}$$
 This is an estimate of  $\sigma_r(\hat{\delta})$ 

Degrees of Freedom

(n-1) from denominator of  $s_{\hat{s}}^2$ 

# Estimated Standard Errors for each design

Design 1

"Indirect"

$$\hat{\delta}_{B-A} = \hat{\mu}_B - \hat{\mu}_A$$

Indirect estimate of  $\delta$ 

$$\hat{\mu}_A = \frac{1}{n_A} \sum \hat{\mu}_{Aj}$$

direct estimates of  $\mu_B$  and  $\mu_A$ 

**TRUE** Standard Error:

$$\sigma_{\!r}(\hat{\mu}_i) = \sqrt{\begin{array}{c} \text{Variance of population + Variance of measurements} \\ \text{Sample size} \end{array}}$$

**Estimated** Standard Error:

**Sample Variance** of  $\hat{\mu}_{ij} pprox$  Variance of TRUE values + Variance of error

$$s_{\hat{\mu}_i}^2 = \frac{\sum (\hat{\mu}_{ij} - \hat{\mu}_i)^2}{n_i - 1}$$
 Observed variance of estimates around their mean

**TRUE** Standard Error:

$$\sigma_r(\hat{\delta}) = \sqrt{\sigma_r^2(\hat{\mu}_B) + \sigma_r^2(\hat{\mu}_A)}$$

**Estimated** Standard Error:

**SED** = 
$$\sqrt{\frac{s_{\hat{\mu}_B}^2}{n_B} + \frac{s_{\hat{\mu}_A}^2}{n_A}}$$

**Problem:** 

Degrees of Freedom

$$(n_B - 1)$$
 from  $s_{\hat{\mu}_R}^2$  or  $(n_A - 1)$  from  $s_{\hat{\mu}_A}^2$ ?

Can't use 2 degrees of freedom for the t-distribution Best Df is closer to the **smaller** of  $(n_B - 1)$  and  $(n_A - 1)$  Solution: **Pooled**  $s_{\hat{\mu}}^2$ 

Sample Variance of  $\hat{\mu}_{ij} \approx$  Variance of TRUE values + Variance of errors

if Variances of pulses are similar for both treatments

And measurement errors are similar

We can **pool** all deviations together into a **pooled**  $s_{\hat{\mu}}^2$ 

$$s_{\hat{\mu}}^2 = \frac{\sum (\hat{\mu}_{Bj} - \hat{\mu}_B)^2 + \sum (\hat{\mu}_{Aj} - \hat{\mu}_A)^2}{(n_B - 1) + (n_A - 1)} -$$

All deviations<sup>2</sup> from the sample means

# independent deviations per treatment

Estimated Standard Error:

$$\mathbf{SED} = \sqrt{\frac{s_{\hat{\mu}}^2}{n_B} + \frac{s_{\hat{\mu}}^2}{n_A}}$$

If variances are equal, this is a **better** (more accurate) estimate of  $\sigma_r(\hat{\delta})$ 

Here, we have a single df to use for confidence intervals:

Degrees of Freedom

$$(n_B - 1) + (n_A - 1)$$

#### **Key points:**

Follow the sample sizes for each treatment level

Each is used 2x

We will always use the **pooled**  $s_{\hat{\mu}}^2$  in this class because of limitations of the lm() and lmer() functions

### Estimated Standard Errors for each design

Which equation for  $s^2$  and SED?

Which components will tend to be different from Design 1 / 2 ?

\* our data will be different, so all estimates will be different \*

$$\hat{\delta}_{B-A} = \hat{\mu}_B - \hat{\mu}_A \qquad \qquad s_{\hat{\mu}}^2 = \frac{\sum (\hat{\mu}_{Bj} - \hat{\mu}_B)^2 + \sum (\hat{\mu}_{Aj} - \hat{\mu}_A)^2}{(n_B - 1) + (n_A - 1)}$$

$$\mathbf{SED} = \sqrt{\frac{s_{\hat{\mu}}^2}{n_B} + \frac{s_{\hat{\mu}}^2}{n_A}}$$

 $s_{\hat{u}}^2$  will **tend to be** smaller because of less measurement error

 $n_B$  and  $n_A$  will be smaller (or equal) because of costs

If so, SED might be larger and DF would be smaller

 $n_c = n_t = 32$ 



Which effect is largest?

Which effect is most important?

Which effect is most significant?

$$\hat{\delta}$$
 5 5 5 20  $s_{pooled}$  8 2 8 8 8 SED 2 0.5 2 2  $\frac{\hat{\delta}}{\hat{\mu}_c}$  5/10=0.5 0.5 5/50=0.1 2  $\frac{\hat{\delta}}{SED}$  5/2=2.5 5/0.5=10 2.5 10

Hypothesis tests deal with significance, not importance

# Hypothesis testing

Unlike confidence intervals, do not report effect sizes Instead, report **evidence** or a **decision** about whether an effect could be 0

#### T-test:

1) Calculate t-statistic: 
$$\frac{\hat{\delta}}{SED}$$

2) Calculate **p-value** from T-distribution with *df* 2\*pt(t,df,lower.tail=F)

Outcomes: Decision about plausibility of H<sub>0</sub>

1) Weigh evidence

Is p small?

The smaller  $\mathbf{p}$ , the stronger the evidence that  $\delta \neq 0$ 

Report: more/less significant

**p-value** is one piece of evidence weigh this with effect size, plausibility, other data

2) Decide Yes/No

Determine consequences of being wrong Choose a threshold  $\alpha$ 

If  $p < \alpha$ , declare **significant**, state  $\delta \neq 0$ 

If  $p > \alpha$ , declare **not significant**, state  $\delta$  **could be** 0

Don't report the p-value itself!

### Hypothesis testing

Determine consequences of being wrong

Table of outcomes

|       |                 | Fail to<br>Reject         | Reject                  |
|-------|-----------------|---------------------------|-------------------------|
|       |                 | Declare $\delta$ may be 0 | Declare $\delta \neq 0$ |
| TRUE  | $\delta = 0$    | <u> </u>                  | X - False<br>Positive   |
| FALSE | $\delta \neq 0$ | X - False<br>Negative     |                         |

 $\alpha$  = Probability of **False Positive** (Reject when  $\delta=0$ )

If  $\delta=0$ , and our  $p<\alpha$ , we'll make a False Positive mistake Probability of this is  $\alpha$ 

 $\beta$  = Probability of **False Negative** (Accept when  $\delta \neq 0$ )

Lost opportunities

If  $\delta \neq 0$ , and our  $p > \alpha$ , we'll make a False Negative mistake

 $1 - \beta =$  Power (Reject when  $\delta \neq 0$ )

**Power:** Change of declaring significant when  $\delta \neq 0$ 

Goal: Power > 80%

# What determines the Power of an experiment?

Declare significant if  $p < \alpha$ 

### What goes into p?

2\*pt(t,df,lower.tail=F)

$$t = \frac{\hat{\delta}}{SED} \quad \text{TRUE effect size } \delta$$
 
$$\sqrt{\frac{s_{pooled}^2}{n_B} + \frac{s_{pooled}^2}{n_A}} \quad \sigma_y^2 = \sigma_\mu^2 + \sigma_m^2$$
 Sample size

df Denominator of  $s_{pooled}^2$  (n<sub>A</sub> -1)+(n<sub>B</sub>-1)

### What controls $\alpha$ ?

You choose  $\alpha!$ 

Higher  $\alpha$  -> higher power

But also greater chance of a False Positive

# **Calculating Power**

n = # samples **per treatment** 

delta = **TRUE** effect size

sd = **TRUE** standard deviation of observations

 $sig.level = \alpha$ 

power =  $1 - \beta$ 

Choose 1 of these to set to NULL

R will calculate its value

Need to guess at delta and sd

#### Questions:

What happens to **Power** when you **increase** each of the other parameters?

List 4 ways in increase Power in an experiment

# **Calculating Power**

n = # samples **per treatment** 

delta = **TRUE** effect size

sd = **TRUE** standard deviation of observations

 $sig.level = \alpha$ 

power =  $1 - \beta$ 

### Other options:

type: two.sample = Replicate Level paired = Replicate Effect one.sample = Test if  $\mu_A = 0$ 

**alternative**: two.sided: test if  $\delta \neq 0$ 

one.sided: test if  $\delta > 0$ 

### Statistical Errors paper



### Key points

small p-value from a implausible treatment is not strong evidence

small p-value from an experiment with low power won't replicate

you can get a small p-value with a meaningless effect if your experiment is large

If your experiment is small and your p-value is small, your effect size is probably over-estimated

### Rules for making Design Table

Include all variable necessary to describe the experiment

Treatments: Variables we want to study

Response: One Variable, always numeric

Design

EU of the Treatment variable(s)

any Replicate and Replicate:Treatment

Variable with a unique level for each observation (Response)

Any other variable to describe the experiment

Check variable relationships: nested, aliased and crossed

EU Variable must be nested in the Treatment variable

If two variables are **aliased**, keep only 1 of them

If two variables are **crossed**, keep only both

# Relationships among variables

nested many:one Keep both, if 1 first is random, so is second



aliased one:one Keep one, particularly EU

Person:Trial Person:Posture

Jill:T1 ——Jill:Sit

Jill:T2 ——Jill:Stand

Experiment 2 Bob:T1——Bob:Stand is\_aliased(A~B)

Bob:T2——Bob:Sit

Amy:T1——Amy:Sit

Amy:T2——Amy:Stand

crossed many:many Keep both

Posture Trial
is\_crossed(A~B)
Experiment 2
Experiment 3
Stand T2

### Rules for making Design Table

Include all variable necessary to describe the experiment

Treatments: Variables we want to study

Response: One Variable, always numeric

Design

EU of the Treatment variable(s)

any Replicate and Replicate:Treatment

Variable with a unique level for each observation (Response)

Any other variable to describe the experiment

Check variable relationships: nested, aliased and crossed

EU Variable must be **nested** in the Treatment variable Label as EU:Treatment

If two variables are **aliased**, keep only 1 of them

If one is an EU, keep that one!

If two variables are **crossed**, keep both

Treatments are crossed with their Replication variable

Sit Stand Sit # people # measures #EU 3) Jill 
$$\begin{bmatrix} X & T1 \\ X & T2 \end{bmatrix}$$
 Bob  $\begin{bmatrix} X & T1 \\ X & T2 \end{bmatrix}$  Amy  $\begin{bmatrix} X & T1 \\ X & T2 \end{bmatrix}$  40 80 40

| Person | Posture | Pulse | Trial | Person:Trial |
|--------|---------|-------|-------|--------------|
| Jill   | Sit     | 60    | T1    | Jill:T1      |
| Jill   | Sit     | 64    | T2    | Jill:T2      |
| Bob    | Stand   | 72    | T1    | Bob:T1       |
| Bob    | Stand   | 68    | T2    | Bob:T2       |
| Amy    | Sit     | 106   | T1    | Amy:T1       |
| Amy    | Sit     | 112   | T2    | Amy:T2       |
| •<br>• |         |       |       |              |

| Structure | Variable     | Туре | #levels | Replicate | EU     |
|-----------|--------------|------|---------|-----------|--------|
| Treatment | Posture      | Cat  | 2       | None      | Person |
| Design    | Person       | Cat  | 40      |           |        |
|           | Trial        | Cat  | 2       |           |        |
|           | Person:Trial | Cat  | 80      |           |        |
| Response  | Pulse        | Num  | 80      |           |        |