SMACOF Algorithm

- a) Basic notations: Stress function $\sigma(X) = \sum_{r < s} (d_{rs} \delta_{rs})^2$
 - $\Delta = (\delta_{r,s})$ is dissimilarity matrix of original data set Y

X is a configuration in lower dimension R^d and $d_{rs}(X)$ = Minkowski distance between observations r, s of X ϵ is the tolerence, and k = max number of iterations

b) Guttman transformation $X = \frac{1}{n} B(Z) Z$, where the matrix B(Z) is defined as (for $r \neq s$):

$$b_{rs} = 0$$
, if $d_{rs}(Z) = 0$; $b_{rs} = -\frac{\delta_{rs}}{d_{rs}(Z)}$, if $d_{rs}(Z) \neq 0$;

(for r = s):
$$b_{rr} = \sum_{s=1, s \neq r}^{n} b_{rs} = -\sum_{s=1, s \neq r}^{n} \frac{\delta_{rs}}{d_{rs}(Z)}$$
.

- c) Stop criterion: either $| \text{diff} | < \varepsilon$, or max number of iterations k has been reached.
- d) SMACOF Algorithm (see the chart of flow on the right)
 - i) Find an initial configuration of points in \mathbb{R}^d . Call this X^0 .
 - ii) Compute the raw stress $\sigma(X^0)$
 - iii) Set $Z = X^0$ then Using Guttman transformation to find X^1 .
 - iv) Compute the stress for X^1 , $\sigma(X^1)$
 - v) Compute the diff of stress values diff = $\sigma(X^1) \sigma(X^0)$
 - vi) If stop criterion is satisfied, then stop and set $X = X^{1}$.
 - vii) Otherwise go to step iii) and set $Z = X^1$ and find X^2
 - viii) Go to steps iv), v) and iterate until stop criterion is satisfied, set $X = X^k$

