Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION

using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Wed Jun 2 17:54:48 2021 Program finished at Wed Jun 2 23:19:32 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2052997295

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * *	* * * * * *
	* *	* * *	* * * * * *
12 LaJolla	^ *	^	
Order of param		0	
1	$\Theta_1 =$	Θ_1 [m]	
2	Θ_2 =	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1 [m]	
4	$\Theta_4 =$	Θ_1 [m]	
5	$\Theta_5^{T} =$	Θ_1 [m]	
6	Θ_6 =	Θ_1 [m]	
7	$\Theta_7 =$	Θ_1 [m]	
8	$\Theta_8 =$	Θ_1 [m]	
9	$\Theta_{0} =$	Θ_1 [m]	
10	Θ_{10} =	Θ_1 [m]	
11	Θ_{11}		<displayed></displayed>
12	Θ_{12}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1} =$	$M_{2->1}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1}^{7-1} =$	M $_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5->1} =$	$M_{2->1}^{2->1}$ [m]	
18	$M_{7->1} =$	$M_{2->1}$ [m]	
19	$M_{8->1}^{7->1} =$	$M_{2->1}$ [m]	
20	$M_{9->1}^{6->1} =$	M $_{2->1}^{2->1}$ [m]	
21	M	$M_{2->1}$ [m]	
22	10->1	M $_{2->1}^{2->1}$ [m]	
23	M	M $_{2->1}^{2->1}$ [m]	
24	12->1	$M_{2->1}$ [m]	
25	$M_{1->2} = M_{3->2} = M_{1->2}$	$M_{2->1}$ [m]	
26	$M_{4->2} = M_{4->2}$	$M_{2->1}$ [m]	
27	$M_{5->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
28	$M_{5->2} = M_{6->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
29	$M_{6\rightarrow 2} = M_{7\rightarrow 2} =$	M [m]	
30	1-22	$ \begin{array}{ccc} M & [m] \\ M & [m] \end{array} $	
31	M _{8->2} =	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
32	M _{9->2} =	$M_{2\rightarrow 1} [m]$	
33	$M_{10->2} = M_{10->2}$	M = [m] $M = [m]$	
34	$M_{11->2} = M_{11->2}$	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
35	$M_{12->2} =$	M = [m]	
	$M_{1->3} = M_{1->3}$	$M_{2\rightarrow 1} [m]$	
36	$M_{2->3} =$	$M_{2\rightarrow 1} [m]$	
37	$M_{4->3} =$	$M_{2->1}$ [m]	
38	$M_{5->3} =$	$M_{2->1}$ [m]	
39	IVI _{6->3} =	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	

```
\overline{\mathsf{M}}_{8->3} =
41
                                  M _{2->1} [m]
                 M _{9->3} =
42
                                  M_{2->1} [m]
                 M _{10->3} =
43
                                  M_{2->1} [m]
                 M _{11->3} =
44
                                  M_{2->1} [m]
                 M _{12->3} =
                                  M _{2->1} [m]
45
                 M_{1->4} =
46
                                  M_{2->1} [m]
                 M _{2\rightarrow 4} =
47
                                  M_{2->1} [m]
                 M_{3->4} =
48
                                  M_{2->1} [m]
49
                 M_{5->4} =
                                  M _{2->1} [m]
                 M _{6->4} =
50
                                  M_{2->1} [m]
                 M _{7->4} =
51
                                  M_{2->1} [m]
52
                 M_{8->4} =
                                  M_{2->1} [m]
53
                 M_{9->4} =
                                  M _{2->1} [m]
                 M _{10->4} =
54
                                  M_{2->1} [m]
55
                 M_{11->4} =
                                  M _{2->1} [m]
56
                 M _{12->4} =
                                  M _{2->1} [m]
                 \mathsf{M}_{1->5} \;\; = \;\;
                                  M _{2->1} [m]
57
                 M_{2->5} =
58
                                  M_{2->1} [m]
                 M_{3->5} =
                                  M_{2->1} [m]
59
                 M_{4->5} =
                                  M _{2->1} [m]
60
                 M _{6->5} =
61
                                  M_{2->1} [m]
                 M _{7->5} =
62
                                  M _{2->1} [m]
                 M_{8->5} =
                                  M _{2->1} [m]
63
                 M_{9->5} =
                                  M_{2->1} [m]
64
                 M _{10->5} =
65
                                  M_{2->1} [m]
                 M_{11->5} =
66
                                  M_{2->1} [m]
                 M _{12->5} =
                                  M _{2->1} [m]
67
                 M_{1->6} =
                                  M _{2->1} [m]
68
                 M_{2->6} =
69
                                  M_{2->1} [m]
                 M _{3->6} =
70
                                  M _{2->1} [m]
71
                 M_{4->6} =
                                  M_{2->1} [m]
                 M _{5->6} =
72
                                  M_{2->1} [m]
                 M_{7->6} =
73
                                  M _{2->1} [m]
74
                 M_{8->6} =
                                  M _{2->1} [m]
                 M _{9->6} =
75
                                  M _{2->1} [m]
                 M _{10->6} =
                                  M _{2->1} [m]
76
77
                 M_{11->6} =
                                  M_{2->1} [m]
78
                 M_{12->6} =
                                  M_{2->1} [m]
                 M_{1->7} =
79
                                  M_{2->1} [m]
                 M_{2->7} =
80
                                  M_{2->1} [m]
                 M_{3->7} =
81
                                  M _{2->1} [m]
                 M_{4->7} =
82
                                  M _{2->1} [m]
                 M _{5->7} =
83
                                  M_{2->1} [m]
                 M _{6\rightarrow7}
                                  M _{2->1} [m]
84
                 M _{8->7}
                                  M _{2->1} [m]
85
```

```
\overline{\mathsf{M}}_{9->7} =
                                     _{2\rightarrow 1} [m]
86
                 M _{10->7} =
87
                                  M_{2->1} [m]
                                  M _{2->1} [m]
88
                     11->7 =
                                  M _{2->1} [m]
89
                 M
                     12->7 =
                                  M_{2->1} [m]
90
                 M
                     1->8 =
91
                 M
                                  M_{2->1} [m]
                     2->8 =
92
                 M
                                  M_{2->1} [m]
                     3->8 =
                                  M _{2->1} [m]
93
                     4->8 =
94
                 M
                                  M_{2->1} [m]
                     5->8 =
95
                 Μ
                                  M_{2->1} [m]
                     6->8 =
                 M _{7->8} =
96
                                  M_{2->1} [m]
97
                 M_{9->8} =
                                  M_{2->1} [m]
                 M _{10->8} =
98
                                  M _{2->1} [m]
                 M _{11->8} =
99
                                  M_{2->1} [m]
100
                                  M_{2->1} [m]
                     12->8 =
                 M_{1->9} =
101
                                  M_{2->1} [m]
102
                 M
                                  M_{2->1} [m]
                     2->9 =
103
                 M
                     3->9 =
                                  M_{2->1} [m]
104
                                  M_{2->1} [m]
                 Μ
                     4->9 =
105
                 M
                                  M _{2->1} [m]
                     5->9 =
106
                 Μ
                                  M_{2->1} [m]
                     6->9 =
107
                                  M_{2->1} [m]
                     7->9 =
108
                                  M _{2->1} [m]
                 Μ
                     8->9 =
109
                 M
                                  M_{2->1} [m]
                     _{10->9} =
110
                 M
                     <sub>11->9</sub> =
                                  M_{2->1} [m]
111
                 M
                                  M_{2->1} [m]
                     12->9 =
                                  M _{2->1} [m]
112
                     1->10
                 M _{2->10} =
113
                                  M_{2->1} [m]
114
                 M
                                  M _{2->1} [m]
                     _{3->10} =
                                  M _{2->1} [m]
115
                 M
                     4->10
116
                                  M _{2->1} [m]
                     5->10 =
117
                 M
                     6->10
                                  M_{2->1} [m]
                                  M _{2->1} [m]
118
                     7->10
                 M _{8->10} =
                                  M _{2->1} [m]
119
                 M _{9->10} =
120
                                  M _{2->1} [m]
                                  M _{2->1} [m]
121
                 M
                     11->10
122
                 M
                     12->10
                                  M _{2->1} [m]
                 M _{1->11}
123
                                                    <displayed>
                 M _{2\rightarrow11}
124
                                                    <displayed>
                 M _{3->11}
125
                                                    <displayed>
                 M _{4->11}
126
                                                    <displayed>
                 M _{5->11}
127
                                                    <displayed>
128
                 Μ
                                                    <displayed>
                     6->11
129
                 M
                                                    <displayed>
                     7->11
130
                 M
                                                    <displayed>
                     8->11
```

		FIGIII	illiary migrate and	ilysis of M. Calliott	lianus COT hapit	otypes for Evolution 2 5
131	M ₉₋	->11	<(displayed>		
132	N A)->11	<	displayed>		
133	N/I	2->11	<	displayed>		
134	R A	->12	<	displayed>		
135	N A	->12	<	displayed>		
136	Ν./	->12	<	displayed>		
137	N/I	->12	<	displayed>		
138	R A	->12	<	displayed>		
139	N/I	->12	<	displayed>		
140	R A	->12	<(displayed>		
141	N A	->12	<(displayed>		
142	R A	->12	<(displayed>		
143	N/I)->12	<(displayed>		
144	N/I	l->12	<	displayed>		
		. , .=				
Mutation	rate among loc	i:			M	flutation rate is constant
Analysis	strategy:					Bayesian inference
Proposal	distributions fo	r parameter				
Paramete	er		Proposal			
Theta		Me	tropolis sampling			
М			Slice sampling			
Prior dist	ribution for para	meter				
Paramete	er Prior	Minimum	Mean*	Maximum	Delta	a Bins
Theta	Exp window	0.000010	0.010000	10.000000	1.000000	500
М	Exp window	0.000100	100000.000000	1000000.000000	100000.000000	500
Markov c	hain settings:					Long chain
Number of	of chains					1
Record	led steps [a]					1000
Increm	ent (record eve	ry x step [b]				100
Numbe	er of concurrent	chains (repli	cates) [c]			3
	(sampled) para	, ,	,			300000
	er of discard tree					1000
		·	,			
Multiple N	Markov chains:					
	neating scheme	!			4 ch	nains with temperatures
	<u> </u>			1000	00.00 3.00	•
						Swapping interval is 1
I						-11 3

Print options:

Data file:	//mcalifornianus_210528.mig
Output file:	outfile.txt
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies	
1 ElfinCo	1	19	
2 Bamfiel	1	23	
3 PortRen	1	15	
4 WalkOnB	1	16	
5 BodegaH	1	7	
6 Davenpo	1	17	
7 VistaDe	1	19	
8 HazardR	1	23	
9 Refugio	1	16	
10 Carpint	1	19	
11 WhitePo	1	11	
12 LaJolla	1	8	
Total of all populations	1	193	
1			

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00062
1	Θ_{11}^{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01249
1	Θ_{12}^{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01113
1	M _{2->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{3->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{4->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{5->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{6->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{7->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{8->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{9->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{10->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{11->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{12->1}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{1->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{3->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{4->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{5->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{6->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{7->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{8->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{9->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{10->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{11->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{12->2}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{1->3}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{2->3}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{4->3}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	$M_{5->3}$	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	$M_{6->3}$	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{7->3}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{8->3}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	$M_{9->3}$	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{10->3}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{11->3}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{12->3}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{1->4}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{2->4}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{3->4}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{5->4}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{6->4}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{7->4}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{8->4}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{9->4}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{10->4}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{11->4}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{12->4}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{1->5}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{2->5}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{3->5}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{4->5}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{6->5}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{7->5}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{8->5}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	8->5 M _{9->5}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	9->5 M _{10->5}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	10->5 M _{11->5}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	11->5 M _{12->5}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{1->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	1->6 M _{2->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	2->6 M _{3->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{4->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{5->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	5->6 M _{7->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{8->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{9->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1		30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{10->6} M _{11->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{1->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	$M_{2->7}$	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	$M_{3->7}$	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{4->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{5->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{6->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{8->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{9->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{10->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{11->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{12->7}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{1->8}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{2->8}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{3->8}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{4->8}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{5->8}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{6->8}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{7->8}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{9->8}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{10->8}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{11->8}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{12->8}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{1->9}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{2->9}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{3->9}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{4->9}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{5->9}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{6->9}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{7->9}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{8->9}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{10->9}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{11->9}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{12->9}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	12->9 M _{1->10}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{2->10}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	2->10 M _{3->10}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{4->10}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{5->10}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{6->10}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{7->10}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	30000.0	40000.0	49000.0	64000.0	88000.0	59000.0	57735.8
1	M _{9->10}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{11->10}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{12->10}	30000.0	40000.0	49000.0	64000.0	0.00088	59000.0	57735.8
1	M _{1->11}	82000.0	118000.0	149000.0	174000.0	258000.0	155000.0	159079.2
1	M _{2->11}	0.0	10000.0	27000.0	50000.0	122000.0	55000.0	57703.3
1	M _{3->11}	0.0	40000.0	59000.0	74000.0	98000.0	67000.0	137415.3
1	M _{4->11}	52000.0	76000.0	95000.0	112000.0	150000.0	101000.0	99875.4
1	M _{5->11}	14000.0	86000.0	105000.0	122000.0	142000.0	91000.0	82188.4
1	M _{6->11}	84000.0	102000.0	123000.0	148000.0	206000.0	137000.0	140493.7
1	M _{7->11}	26000.0	94000.0	111000.0	132000.0	156000.0	103000.0	94512.8
1	M _{8->11}	20000.0	32000.0	55000.0	78000.0	156000.0	73000.0	82100.1
1	M _{9->11}	14000.0	84000.0	109000.0	140000.0	160000.0	97000.0	91612.5
1	M _{10->11}	14000.0	26000.0	41000.0	54000.0	204000.0	101000.0	99579.2
1	M _{12->11}	18000.0	80000.0	101000.0	122000.0	142000.0	97000.0	88161.4
1	M _{1->12}	96000.0	124000.0	149000.0	170000.0	194000.0	131000.0	118248.1
1	M _{2->12}	22000.0	36000.0	53000.0	70000.0	240000.0	121000.0	124658.7
1	M _{3->12}	56000.0	76000.0	115000.0	136000.0	226000.0	123000.0	130625.7
1	M _{4->12}	28000.0	50000.0	67000.0	0.00088	126000.0	75000.0	75697.3
1	M _{5->12}	20000.0	84000.0	103000.0	130000.0	204000.0	107000.0	108822.7
1	M _{6->12}	22000.0	38000.0	69000.0	96000.0	178000.0	87000.0	94239.3
1	M _{7->12}	0.0	0.0	1000.0	22000.0	136000.0	89000.0	218550.1
1	M _{8->12}	28000.0	120000.0	145000.0	168000.0	190000.0	131000.0	116794.0
1	M _{9->12}	40000.0	56000.0	85000.0	116000.0	146000.0	107000.0	144440.0
1	M _{10->12}	78000.0	96000.0	129000.0	168000.0	258000.0	155000.0	161814.4
1	M _{11->12}	46000.0	64000.0	93000.0	116000.0	138000.0	107000.0	127766.7

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

200000 400000 600000 800000

M _{2->11}

Bayesian Analysis: Posterior distribution over all loci Freq Freq 600.00 600.00 400.00 -400.00 200.00 -200.00 0.00 -0.00 - Θ_1 8 2 2 8 6 6 Θ_{11} Freq Freq 600.00 100.0 400.00 50.0 200.00 0.00 -0.0 Φ₁₂ 8 200000 400000 600000 800000 M _{2->1} Freq Freq 80.0 60.0 60.0 40.0 40.0 -20.0 20.0-0.0

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 17:54:48]

200000 400000 600000 800000

M _{1->11}

0.0-

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2374.327627	(1a)
	-2265.692048	(1b)
Harmonic mean	-2011.901580	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	11/967	0.01138
$\Theta_2^{'}$	11/967	0.01138
Θ_3^2	11/967	0.01138
Θ_4°	11/967	0.01138
Θ_5^{T}	11/967	0.01138
Θ_6°	11/967	0.01138
Θ_7°	11/967	0.01138
$\Theta_8^{'}$	11/967	0.01138
Θ_9°	11/967	0.01138
Θ_{10}	11/967	0.01138
Θ_{11}^{10}	721/1042	0.69194
Θ_{12}^{11}	764/1033	0.73959
M ¹² _{2->1}	1068/1068	1.00000
$M_{3->1}^{2->1}$	1068/1068	1.00000
M _{4->1}	1068/1068	1.00000
M _{5->1}	1068/1068	1.00000
$M_{6\rightarrow 1}^{5\rightarrow 1}$	1068/1068	1.00000
M 7->1	1068/1068	1.00000
$M_{8->1}$	1068/1068	1.00000
$M_{9->1}^{8->1}$	1068/1068	1.00000
$M_{10->1}^{9->1}$	1068/1068	1.00000
M 11->1	1068/1068	1.00000
$\sqrt{12->1}$	1068/1068	1.00000
$M_{1->2}^{12->1}$	1068/1068	1.00000
\int_{3-2}^{1-22}	1068/1068	1.00000
\int_{4-2}^{3-2}	1068/1068	1.00000
$M_{5->2}^{4->2}$	1068/1068	1.00000
$M_{6\rightarrow 2}^{5\rightarrow 2}$	1068/1068	1.00000
$M_{7\rightarrow 2}^{0\rightarrow 2}$	1068/1068	1.00000
$M_{8\rightarrow 2}^{7\rightarrow 2}$	1068/1068	1.00000
$M_{9->2}^{8->2}$	1068/1068	1.00000
$ \sqrt{10-2} $	1068/1068	1.00000
10->2 M	1068/1068	1.00000
11->2	1068/1068	1.00000
12->2 M	1068/1068	1.00000
1->3	1068/1068	1.00000
VI 2->3 VI 4 2	1068/1068	1.00000

M 5-33 1088/1068 1.00000 M 10-33 1088/1068 1.00000 M 7-33 1088/1068 1.00000 M 7-33 1088/1068 1.00000 M 10-33 1088/1068 1.00000 M 10-33 1088/1068 1.00000 M 11-33 1088/1068 1.00000 M 12-34 1088/1068 1.00000 M 1-34 1088/1068 1.00000 M 2-34 1088/1068 1.00000 M 3-34 1068/1068 1.00000 M 3-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000			
M 7-3 1068/1068 1.00000 M 8-3 1068/1068 1.00000 M 9-3 1068/1068 1.00000 M 10-3 1068/1068 1.00000 M 12-3 1068/1068 1.00000 M 2-3 1068/1068 1.00000 M 2-4 1068/1068 1.00000 M 3-4 1068/1068 1.00000 M 3-3 1068/1068 1.00000 M 3-4 1068/1068 1.00000 M 12-4 1068/1068 1.00000 M 12	3->3	1068/1068	1.00000
M 8-33 1068/1068 1.00000 M 9-33 1068/1068 1.00000 M 10-33 1068/1068 1.00000 M 11-33 1068/1068 1.00000 M 12-33 1068/1068 1.00000 M 1-34 1068/1068 1.00000 M 2-34 1068/1068 1.00000 M 3-34 1068/1068 1.00000 M 5-34 1068/1068 1.00000 M 5-34 1068/1068 1.00000 M 6-24 1068/1068 1.00000 M 7-24 1068/1068 1.00000 M 8-34 1068/1068 1.00000 M 9-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000 M 12-34 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 12-35 1068/1068 1.00000 <td< th=""><th>M _{6->3}</th><th>1068/1068</th><th>1.00000</th></td<>	M _{6->3}	1068/1068	1.00000
M → 3 1088/1068 1,00000 M → 3 1068/1068 1,00000 M 10→3 1068/1068 1,00000 M 11→3 1068/1068 1,00000 M 12→3 1068/1068 1,00000 M 10-4 1068/1068 1,00000 M 2→4 1068/1068 1,00000 M 3→4 1068/1068 1,00000 M 5→4 1068/1068 1,00000 M 7→4 1068/1068 1,00000 M 8→4 1068/1068 1,00000 M 9-24 1068/1068 1,00000 M 9-24 1068/1068 1,00000 M 10-3 1068/1068 1,00000 M 9-24 1068/1068 1,00000 M 10-3 1068/1068 1,00000 M 10-4 1068/1068 1,00000 M 11-3 1068/1068 1,00000 M 12-3 1068/1068 1,00000 M 12-3 1068/1068 1,00000 M 2-5 1068/1068 1,00000 M 3-5 1068/1068 1,00000 M 3-5 1068/1068 1,00000 </th <th>/->3</th> <th>1068/1068</th> <th>1.00000</th>	/->3	1068/1068	1.00000
M 10→3 1068/1068 1.00000 M 11→3 1068/1068 1.00000 M 12→3 1068/1068 1.00000 M 2→4 1068/1068 1.00000 M 2→4 1068/1068 1.00000 M 3→4 1068/1068 1.00000 M 5→4 1068/1068 1.0000 M 5-4 1068/1068 1.00000 M 10-4 1068/1068 1.00000 M 10-5 1068/1068 1.00000 M 1-5 1068/1068 1.00000 M 2-5 1068/1068 1.00000 M 3	8->3	1068/1068	1.00000
M 10-3 1068/1068 1,00000 M 11-3 1068/1068 1,00000 M 12-33 1068/1068 1,00000 M 12-34 1068/1068 1,00000 M 2-34 1068/1068 1,00000 M 3-34 1068/1068 1,00000 M 5-34 1068/1068 1,00000 M 6-34 1068/1068 1,00000 M 7-34 1068/1068 1,00000 M 8-34 1068/1068 1,00000 M 9-34 1068/1068 1,00000 M 10-34 1068/1068 1,00000 M 10-34 1068/1068 1,00000 M 11-34 1068/1068 1,00000 M 12-34 1068/1068 1,00000 M 12-35 1068/1068 1,00000 M 2-25 1068/1068 1,00000 M 2-25 1068/1068 1,00000 M 3-35 1068/1068 1,00000 M 3-25 1068/1068 1,00000 M 3-25 1068/1068 1,00000 M 3-25 1068/1068 1,00000 M 3-25 1068/1068 1,	M _{9->3}	1068/1068	1.00000
M 11→3 1068/1068 1,00000 M 12→3 1068/1068 1,00000 M 1⇒4 1068/1068 1,00000 M 2⇒4 1068/1068 1,00000 M 3⇒4 1068/1068 1,00000 M 5⇒4 1068/1068 1,00000 M 5⇒4 1068/1068 1,00000 M 7⇒4 1068/1068 1,00000 M 9⇒4 1068/1068 1,00000 M 10⇒4 1068/1068 1,00000 M 10⇒4 1068/1068 1,00000 M 12⇒4 1068/1068 1,00000 M 12⇒5 1068/1068 1,00000 M 12⇒5 1068/1068 1,00000 M 2⇒5 1068/1068 1,00000 M 4⇒5 1068/1068 1,00000 M 4⇒5 1068/1068 1,00000 M 5⇒5 1068/1068 1,00000 M <t< th=""><th>I NA</th><th>1068/1068</th><th>1.00000</th></t<>	I NA	1068/1068	1.00000
M 12→3 1068/1068 1,00000 M 1→4 1068/1068 1,00000 M 2→4 1068/1068 1,00000 M 3→4 1068/1068 1,00000 M 5→4 1068/1068 1,00000 M 6→4 1068/1068 1,00000 M 7→4 1068/1068 1,00000 M 8→4 1068/1068 1,00000 M 9→4 1068/1068 1,00000 M 10→4 1068/1068 1,00000 M 11→4 1068/1068 1,00000 M 12→4 1068/1068 1,00000 M 12→5 1068/1068 1,00000 M 2-55 1068/1068 1,00000 M 2-55 1068/1068 1,00000 M 4-5 1068/1068 1,00000 M 4-5 1068/1068 1,00000 M 8-5 1068/1068 1,00000 M 9-5 1068/1068 1,00000 M 10-5 1068/1068 <th>I M</th> <th>1068/1068</th> <th>1.00000</th>	I M	1068/1068	1.00000
M 2-34 1068/1068 1.00000 M 3-34 1068/1068 1.00000 M 5-34 1068/1068 1.00000 M 6-34 1068/1068 1.00000 M 7-34 1068/1068 1.00000 M 8-34 1068/1068 1.00000 M 9-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000 M 12-34 1068/1068 1.00000 M 12-34 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 2-55 1068/1068 1.00000 M 3-35 1068/1068 1.00000 M 4-35 1068/1068 1.00000 M 7-35 1068/1068 1.00000 M 8-35 1068/1068 1.00000 M 8-35 1068/1068 1.00000 M 10-35 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 12-36	I M	1068/1068	1.00000
M 3-34 1068/1068 1.00000 M 5-34 1068/1068 1.00000 M 6-34 1068/1068 1.00000 M 7-34 1068/1068 1.00000 M 8-34 1068/1068 1.00000 M 9-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000 M 11-34 1068/1068 1.0000 M 12-34 1068/1068 1.00000 M 1-25 1068/1068 1.00000 M 2-5 1068/1068 1.00000 M 3-55 1068/1068 1.00000 M 4-55 1068/1068 1.00000 M 6-5 1068/1068 1.00000 M 8-5 1068/1068 1.00000 M 8-5 1068/1068 1.00000 M 12-5 1068/1068 1.00000 M 12-5 1068/1068 1.00000 M 12-5 1068/1068 1.00000 M 1-6 1068	M _{1->4}	1068/1068	1.00000
M 5-54 1068/1068 1.00000 M 6-34 1068/1068 1.00000 M 7-54 1068/1068 1.00000 M 8-34 1068/1068 1.00000 M 9-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000 M 11-34 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 1-25 1068/1068 1.00000 M 2-25 1068/1068 1.00000 M 3-25 1068/1068 1.00000 M 4-25 1068/1068 1.00000 M 6-25 1068/1068 1.00000 M 8-25 1068/1068 1.00000 M 8-25 1068/1068 1.00000 M 12-25 1068/1068 1.00000 M 12-25 1068/1068 1.00000 M 12-25 1068/1068 1.00000 M 12-25 1068/1068 1.00000 M 12-26	M _{2->4}	1068/1068	1.00000
M 5-34 1068/1068 1.00000 M 6-34 1068/1068 1.00000 M 7-34 1068/1068 1.00000 M 8-34 1068/1068 1.00000 M 9-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000 M 11-34 1068/1068 1.00000 M 12-34 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 2-35 1068/1068 1.00000 M 3-35 1068/1068 1.00000 M 4-35 1068/1068 1.00000 M 6-35 1068/1068 1.00000 M 8-35 1068/1068 1.00000 M 8-35 1068/1068 1.00000 M 10-35 1068/1068 1.00000 M 11-35 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 1-36	M _{3->4}	1068/1068	1.00000
M 6-34 1068/1068 1.00000 M 7-34 1068/1068 1.00000 M 8-34 1068/1068 1.00000 M 9-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000 M 11-34 1068/1068 1.00000 M 12-34 1068/1068 1.00000 M 2-55 1068/1068 1.00000 M 3-55 1068/1068 1.00000 M 3-55 1068/1068 1.00000 M 4-55 1068/1068 1.00000 M 6-55 1068/1068 1.00000 M 7-55 1068/1068 1.00000 M 8-5 1068/1068 1.00000 M 9-5 1068/1068 1.00000 M 10-55 1068/1068 1.00000 M 11-55 1068/1068 1.00000 M 12-56 1068/1068 1.00000 M 12-56 1068/1068 1.00000 M 2-6 1068/1068 1.00000 M 3-6 1068/1068 1.00000 M 3-6 1068/1068 1.00000 M 5-6 1068/1068 1.00000<	I NA	1068/1068	1.00000
M 8-34 1068/1068 1.00000 M 9-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000 M 11-34 1068/1068 1.00000 M 12-34 1068/1068 1.00000 M 1-35 1068/1068 1.00000 M 2-35 1068/1068 1.00000 M 3-35 1068/1068 1.00000 M 4-35 1068/1068 1.00000 M 6-35 1068/1068 1.00000 M 7-35 1068/1068 1.00000 M 8-35 1068/1068 1.00000 M 9-35 1068/1068 1.00000 M 10-35 1068/1068 1.00000 M 11-35 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 12-36 1068/1068 1.00000 M 2-36 1068/1068 1.00000 M 3-36	M _{6->4}	1068/1068	1.00000
M 9-34 1068/1068 1.00000 M 10-34 1068/1068 1.00000 M 11-34 1068/1068 1.00000 M 12-34 1068/1068 1.00000 M 1-35 1068/1068 1.00000 M 2-35 1068/1068 1.00000 M 3-35 1068/1068 1.00000 M 4-35 1068/1068 1.00000 M 6-35 1068/1068 1.00000 M 6-35 1068/1068 1.00000 M 8-35 1068/1068 1.00000 M 9-35 1068/1068 1.00000 M 9-35 1068/1068 1.00000 M 10-25 1068/1068 1.00000 M 11-25 1068/1068 1.00000 M 12-35 1068/1068 1.00000 M 1-36 1068/1068 1.00000 M 2-36 1068/1068 1.00000 M 4-36 1068/1068 1.00000 M 4-36	M _{7->4}	1068/1068	1.00000
M 9->4 1068/1068 1.00000 M 10->4 1068/1068 1.00000 M 11->4 1068/1068 1.00000 M 12->4 1068/1068 1.00000 M 12->5 1068/1068 1.00000 M 2->5 1068/1068 1.00000 M 3->5 1068/1068 1.00000 M 4->5 1068/1068 1.00000 M 6->5 1068/1068 1.00000 M 8->5 1068/1068 1.00000 M 9->5 1068/1068 1.00000 M 11->5 1068/1068 1.00000 M 12->5 1068/1068 1.00000 M 12->5 1068/1068 1.00000 M 12->6 1068/1068 1.00000 M 3->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 10->6	M _{8->4}	1068/1068	1.00000
M 10⇒4 1068/1068 1,00000 M 11⇒4 1068/1068 1,00000 M 12⇒4 1068/1068 1,00000 M 1⇒5 1068/1068 1,00000 M 2⇒5 1068/1068 1,00000 M 3⇒5 1068/1068 1,00000 M 4⇒5 1068/1068 1,00000 M 6⇒5 1068/1068 1,00000 M 7⇒5 1068/1068 1,00000 M 8⇒5 1068/1068 1,00000 M 10⇒5 1068/1068 1,00000 M 10⇒5 1068/1068 1,00000 M 12⇒5 1068/1068 1,00000 M 12⇒5 1068/1068 1,00000 M 1⇒6 1068/1068 1,00000 M 2⇒6 1068/1068 1,00000 M 4⇒6 1068/1068 1,00000 M 5⇒6 1068/1068 1,00000 M 8⇒6 1068/1068 1,00000 M 1⇒6 1068/1068	M _{9->4}	1068/1068	1.00000
M 11−34 1068/1068 1.00000 M 12−34 1068/1068 1.00000 M 1−35 1068/1068 1.00000 M 2−35 1068/1068 1.00000 M 3−35 1068/1068 1.00000 M 4−35 1068/1068 1.00000 M 6−35 1068/1068 1.00000 M 8−35 1068/1068 1.00000 M 8−35 1068/1068 1.00000 M 10−35 1068/1068 1.00000 M 11−35 1068/1068 1.00000 M 11−36 1068/1068 1.00000 M 1−36 1068/1068 1.00000 M 2−36 1068/1068 1.00000 M 3−36 1068/1068 1.00000 M 3−36 1068/1068 1.00000 M 5−36 1068/1068 1.00000 M 5−36 1068/1068 1.00000 M 5−36 1068/1068 1.00000 M 9−36	1 NA	1068/1068	1.00000
M 12>4 1068/1068 1.00000 M 1>5 1068/1068 1.00000 M 2>5 1068/1068 1.00000 M 3>5 1068/1068 1.00000 M 4>5 1068/1068 1.00000 M 6>5 1068/1068 1.00000 M 7>5 1068/1068 1.00000 M 8>5 1068/1068 1.00000 M 10>5 1068/1068 1.00000 M 11>5 1068/1068 1.00000 M 12>5 1068/1068 1.00000 M 12>6 1068/1068 1.00000 M 2>6 1068/1068 1.00000 M 3>6 1068/1068 1.00000 M 4>6 1068/1068 1.00000 M 5>6 1068/1068 1.00000 M 5>6 1068/1068 1.00000 M 5>6 1068/1068 1.00000 M 7>6 1068/1068 1.00000 M 7>6 1068/1068 1.00000 M 10>6 1068/1068 1.00000 M 10>6 1068/1068 1.00000 M 10>6 1068/1068 1.00000	I M	1068/1068	1.00000
M 2->5 1068/1068 1.00000 M 3->5 1068/1068 1.00000 M 4->5 1068/1068 1.00000 M 6->5 1068/1068 1.00000 M 7->5 1068/1068 1.00000 M 8->5 1068/1068 1.00000 M 9->5 1068/1068 1.00000 M 10->5 1068/1068 1.00000 M 12->5 1068/1068 1.00000 M 12->5 1068/1068 1.00000 M 2->6 1068/1068 1.00000 M 3->6 1068/1068 1.00000 M 4->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 7->6 1068/1068 1.00000 M 9->6 1068/1068 1.00000 M 10->6 1068/1068 1.00000 M 10->6 1068/1068 1.00000 M 10->6 1068/1068 1.00000 M 10->6	I M	1068/1068	1.00000
M 3→5 1068/1068 1.00000 M 4→5 1068/1068 1.00000 M 6→5 1068/1068 1.00000 M 7→5 1068/1068 1.00000 M 8→5 1068/1068 1.00000 M 9→5 1068/1068 1.00000 M 10→5 1068/1068 1.00000 M 11→5 1068/1068 1.00000 M 12→5 1068/1068 1.00000 M 1→6 1068/1068 1.00000 M 2→6 1068/1068 1.00000 M 4→6 1068/1068 1.00000 M 5→6 1068/1068 1.00000 M 5→6 1068/1068 1.00000 M 8→6 1068/1068 1.00000 M 10→6 1068/1068 1.00000 M 10→6 1068/1068 1.00000 M 12→6 1068/1068 1.00000 M 12→6 1068/1068 1.00000 M 1->7 1068/1068 <th>M _{1->5}</th> <th>1068/1068</th> <th>1.00000</th>	M _{1->5}	1068/1068	1.00000
M 4→5 1068/1068 1.00000 M 6→5 1068/1068 1.00000 M 7→5 1068/1068 1.00000 M 8→5 1068/1068 1.00000 M 10→5 1068/1068 1.00000 M 11→5 1068/1068 1.00000 M 12→5 1068/1068 1.00000 M 1-2-6 1068/1068 1.00000 M 2-36 1068/1068 1.00000 M 3-36 1068/1068 1.00000 M 4-36 1068/1068 1.00000 M 5-36 1068/1068 1.00000 M 7-36 1068/1068 1.00000 M 8-36 1068/1068 1.00000 M 9-36 1068/1068 1.00000 M 10-36 1068/1068 1.00000 M 11-36 1068/1068 1.00000 M 12-36 1068/1068 1.00000 M 1-37 1068/1068 1.00000 M 1-37 1	2->3	1068/1068	1.00000
M 6-55 1068/1068 1.00000 M 7-55 1068/1068 1.00000 M 8-55 1068/1068 1.00000 M 9-55 1068/1068 1.00000 M 10-55 1068/1068 1.00000 M 11-55 1068/1068 1.00000 M 12-55 1068/1068 1.00000 M 2-56 1068/1068 1.00000 M 3-56 1068/1068 1.00000 M 4-56 1068/1068 1.00000 M 7-56 1068/1068 1.00000 M 7-56 1068/1068 1.00000 M 8-56 1068/1068 1.00000 M 9-56 1068/1068 1.00000 M 10-56 1068/1068 1.00000 M 10-56 1068/1068 1.00000 M 12-56 1068/1068 1.00000 M 12-56 1068/1068 1.00000 M 12-56 1068/1068 1.00000 M 12-57 1068/1068 1.00000 M 2-57 1068/1068 1.00000 M 3-57 1068/1068 1.00000	3->3	1068/1068	1.00000
M 7->5 1068/1068 1.00000 M 8->5 1068/1068 1.00000 M 9->5 1068/1068 1.00000 M 10->5 1068/1068 1.00000 M 11->5 1068/1068 1.00000 M 12->5 1068/1068 1.00000 M 2->6 1068/1068 1.00000 M 3->6 1068/1068 1.00000 M 4->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 7->6 1068/1068 1.00000 M 8->6 1068/1068 1.00000 M 9->6 1068/1068 1.00000 M 10->6 1068/1068 1.00000 M 11->6 1068/1068 1.00000 M 1->7 1068/1068 1.00000 M 2->7 1068/1068 1.00000 M 3->7 1068/1068 1.00000	4->3	1068/1068	1.00000
M 8→5 1068/1068 1.00000 M 9→5 1068/1068 1.00000 M 10→5 1068/1068 1.00000 M 11→5 1068/1068 1.00000 M 12→5 1068/1068 1.00000 M 2→6 1068/1068 1.00000 M 3→6 1068/1068 1.00000 M 4→6 1068/1068 1.00000 M 5→6 1068/1068 1.00000 M 7→6 1068/1068 1.00000 M 8→6 1068/1068 1.00000 M 8→6 1068/1068 1.00000 M 10→6 1068/1068 1.00000 M 11→6 1068/1068 1.00000 M 12→6 1068/1068 1.00000 M 1→7 1068/1068 1.00000 M 2→7 1068/1068 1.00000 M 3→7 1068/1068 1.00000	0->3	1068/1068	
M 9->5 1068/1068 1.00000 M 10->5 1068/1068 1.00000 M 11->5 1068/1068 1.00000 M 12->5 1068/1068 1.00000 M 1->6 1068/1068 1.00000 M 2->6 1068/1068 1.00000 M 3->6 1068/1068 1.00000 M 4->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 7->6 1068/1068 1.00000 M 9->6 1068/1068 1.00000 M 10->6 1068/1068 1.00000 M 11->6 1068/1068 1.00000 M 12->6 1068/1068 1.00000 M 1->7 1068/1068 1.00000 M 2->7 1068/1068 1.00000 M 3->7 1068/1068 1.00000	/->3	1068/1068	1.00000
M 10~5 1068/1068 1.00000 M 11~5 1068/1068 1.00000 M 12~5 1068/1068 1.00000 M 2~6 1068/1068 1.00000 M 3~6 1068/1068 1.00000 M 4~6 1068/1068 1.00000 M 5~6 1068/1068 1.00000 M 7~6 1068/1068 1.00000 M 8~6 1068/1068 1.00000 M 9~6 1068/1068 1.00000 M 11~6 1068/1068 1.00000 M 12~6 1068/1068 1.00000 M 1~7 1068/1068 1.00000 M 2~7 1068/1068 1.00000 M 3~7 1068/1068 1.00000 M 3~7 1068/1068 1.00000	8->3	1068/1068	
M 11−>5 1068/1068 1.00000 M 12−>5 1068/1068 1.00000 M 1−>6 1068/1068 1.00000 M 2−>6 1068/1068 1.00000 M 3−>6 1068/1068 1.00000 M 4−>6 1068/1068 1.00000 M 7−>6 1068/1068 1.00000 M 8−>6 1068/1068 1.00000 M 9−>6 1068/1068 1.00000 M 10−>6 1068/1068 1.00000 M 11−>6 1068/1068 1.00000 M 12−>6 1068/1068 1.00000 M 2−>7 1068/1068 1.00000 M 2−>7 1068/1068 1.00000 M 3−>7 1068/1068 1.00000	9->3	1068/1068	1.00000
M 12→5 1068/1068 1.00000 M 1→6 1068/1068 1.00000 M 2→6 1068/1068 1.00000 M 3→6 1068/1068 1.00000 M 4→6 1068/1068 1.00000 M 5→6 1068/1068 1.00000 M 7→6 1068/1068 1.00000 M 8→6 1068/1068 1.00000 M 9→6 1068/1068 1.00000 M 10→6 1068/1068 1.00000 M 12→6 1068/1068 1.00000 M 1→7 1068/1068 1.00000 M 2→7 1068/1068 1.00000 M 3→7 1068/1068 1.00000	10->3	1068/1068	
M 1->6 1068/1068 1.00000 M 2->6 1068/1068 1.00000 M 3->6 1068/1068 1.00000 M 4->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 8->6 1068/1068 1.00000 M 9->6 1068/1068 1.00000 M 10->6 1068/1068 1.00000 M 12->6 1068/1068 1.00000 M 1->7 1068/1068 1.00000 M 2->7 1068/1068 1.00000 M 3->7 1068/1068 1.00000 M 3->7 1068/1068 1.00000	11->3		
M 2->6 1068/1068 1.00000 M 3->6 1068/1068 1.00000 M 4->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 7->6 1068/1068 1.00000 M 8->6 1068/1068 1.00000 M 9->6 1068/1068 1.00000 M 10->6 1068/1068 1.00000 M 11->6 1068/1068 1.00000 M 12->6 1068/1068 1.00000 M 2->7 1068/1068 1.00000 M 2->7 1068/1068 1.00000 M 3->7 1068/1068 1.00000	12->3		
M 3→6 1068/1068 1.00000 M 4→6 1068/1068 1.00000 M 5→6 1068/1068 1.00000 M 7→6 1068/1068 1.00000 M 8→6 1068/1068 1.00000 M 10→6 1068/1068 1.00000 M 11→6 1068/1068 1.00000 M 12→6 1068/1068 1.00000 M 1→7 1068/1068 1.00000 M 2→7 1068/1068 1.00000 M 3→7 1068/1068 1.00000 M 3→7 1068/1068 1.00000	1->0		
M 4->6 1068/1068 1.00000 M 5->6 1068/1068 1.00000 M 7->6 1068/1068 1.00000 M 8->6 1068/1068 1.00000 M 10->6 1068/1068 1.00000 M 11->6 1068/1068 1.00000 M 12->6 1068/1068 1.00000 M 1->7 1068/1068 1.00000 M 2->7 1068/1068 1.00000 M 3->7 1068/1068 1.00000 M 3->7 1068/1068 1.00000	2->0		
M 5->6 M 7->6 M 7->6 M 1068/1068 M 1.00000 M 8->6 M 9->6 M 1068/1068 M 1.00000 M 10->6 M 10->6 M 11->6 M 11->6 M 1068/1068 M 12->6 M 1068/1068 M 1->7 M 1068/1068 M 1->7 M 1068/1068 M 1->7 M 1068/1068 M 1->7 M 1068/1068 M 1.00000	3->0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4->6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3->0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/->0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8->0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9->0		
M 11->6	10->0		
M 1->7 1068/1068 1.00000 M 2->7 1068/1068 1.00000 M 3->7 1068/1068 1.00000	11->0		
M _{2->7} 1068/1068 1.00000 M _{3->7} 1068/1068 1.00000	12->0		
M 3->7 1068/1068 1.00000	1->/		
3->/ M 1069/4069 1,00000	2->/		
1.00000	N/ 3->/		
	1VI 4->7	1000/1000	1.00000

		1 71
M _{5->7}	1068/1068	1.00000
M _{6->7}	1068/1068	1.00000
M _{8->7}	1068/1068	1.00000
M _{9->7}	1068/1068	1.00000
M 10->7	1068/1068	1.00000
M 11->7	1068/1068	1.00000
M _{12->7}	1068/1068	1.00000
M _{1->8}	1068/1068	1.00000
$M_{2->8}$	1068/1068	1.00000
$M_{3->8}$	1068/1068	1.00000
M _{4->8}	1068/1068	1.00000
M _{5->8}	1068/1068	1.00000
M _{6->8}	1068/1068	1.00000
M 7->8	1068/1068	1.00000
M _{9->8}	1068/1068	1.00000
M 10->8	1068/1068	1.00000
M 11->8	1068/1068	1.00000
M 12->8	1068/1068	1.00000
M 1->9	1068/1068	1.00000
M _{2->9}	1068/1068	1.00000
M _{3->9}	1068/1068	1.00000
M _{4->9}	1068/1068	1.00000
M _{5->9}	1068/1068	1.00000
M _{6->9}	1068/1068	1.00000
M _{7->9}	1068/1068	1.00000
M _{8->9}	1068/1068	1.00000
M _{10->9}	1068/1068	1.00000
M _{11->9}	1068/1068	1.00000
M _{12->9}	1068/1068	1.00000
M _{1->10}	1068/1068	1.00000
M _{2->10}	1068/1068	1.00000
M 3->10	1068/1068	1.00000
M 4->10	1068/1068	1.00000
M 5->10	1068/1068	1.00000
M 6->10	1068/1068	1.00000
M 7->10	1068/1068	1.00000
M 8->10	1068/1068	1.00000
M 9->10	1068/1068	1.00000
M 11->10	1068/1068	1.00000
M 12->10	1068/1068	1.00000
M 1->11	995/995	1.00000
M 2->11	1014/1014	1.00000
M 3->11	1063/1063	1.00000
M 4->11	1044/1044	1.00000
M _{5->11}	1057/1057	1.00000

M _{6->11}	1027/1027	1.00000
M _{7->11}	1048/1048	1.00000
M _{8->11}	1041/1041	1.00000
M _{9->11}	1063/1063	1.00000
M 10->11	1025/1025	1.00000
M _{12->11}	1051/1051	1.00000
$M_{1->12}$	1016/1016	1.00000
$M_{2->12}$	996/996	1.00000
$M_{3->12}$	1001/1001	1.00000
$M_{4->12}$	1036/1036	1.00000
$M_{5->12}$	1064/1064	1.00000
M _{6->12}	994/994	1.00000
M _{7->12}	1052/1052	1.00000
M _{8->12}	1071/1071	1.00000
$M_{9->12}$	987/987	1.00000
M 10->12	1040/1040	1.00000
M 11->12	1040/1040	1.00000
Genealogies	23712/150120	0.15795

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.99278	10.85
$\Theta_2^{^1}$	0.99278	10.85
Θ_3^2	0.99278	10.85
Θ_4°	0.99278	10.85
Θ_5^{τ}	0.99278	10.85
Θ_6°	0.99278	10.85
$\mathbf{\hat{P}}_{7}^{\circ}$	0.99278	10.85
$\Theta_8^{'}$	0.99278	10.85
Θ_{α}	0.99278	10.85
) ₁₀	0.99278	10.85
9 ₁₁	0.82923	280.17
12	0.80700	320.95
1 2->1	0.98988	15.24
$M_{3->1}^{2}$	0.98988	15.24
1 _{4->1}	0.98988	15.24
1 5->1	0.98988	15.24
1 6->1	0.98988	15.24
7->1	0.98988	15.24
1 8->1	0.98988	15.24
1 9->1	0.98988	15.24
1 10->1	0.98988	15.24
1 11->1	0.98988	15.24
11 >1 12->1	0.98988	15.24
1 1->2	0.98988	15.24
$1 \frac{1-2}{3-2}$	0.98988	15.24
1 _{4->2}	0.98988	15.24
1 5->2	0.98988	15.24
A 6->2	0.98988	15.24
1 _{7->2}	0.98988	15.24
1 _{8->2}	0.98988	15.24
1 9->2	0.98988	15.24
1 10->2	0.98988	15.24
11->2	0.98988	15.24
1 11->2 12->2	0.98988	15.24
1 1->3	0.98988	15.24
$A = \begin{cases} 1->3 \\ 2->3 \end{cases}$	0.98988	15.24
1 4->3	0.98988	15.24

M _{5->3}	0.98988	15.24
M _{6->3}	0.98988	15.24
M 7->3	0.98988	15.24
$M_{8->3}$	0.98988	15.24
$M_{9->3}^{8->3}$	0.98988	15.24
$M_{10->3}^{9->3}$	0.98988	15.24
$M_{11->3}^{10->3}$	0.98988	15.24
$M_{12->3}^{11->3}$	0.98988	15.24
I NA	0.98988	15.24
M 1->4 M 2->4	0.98988	15.24
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98988	15.24
M 3->4 M 5->4	0.98988	15.24
) 3->4	0.98988	15.24
NA 0->4	0.98988	15.24
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98988	15.24
NA 0->4	0.98988	15.24
NA 9->4	0.98988	15.24
10->4	0.98988	15.24
M 11->4 M 12->4	0.98988	15.24
12->4 NA	0.98988	15.24
M 1->5 M 2->5	0.98988	15.24
$M_{3->5}^{2->3}$	0.98988	15.24
$M_{4->5}^{5->3}$	0.98988	15.24
$M_{6->5}^{4->5}$	0.98988	15.24
M 7->5	0.98988	15.24
$M_{8->5}$	0.98988	15.24
$M_{9->5}^{6->3}$	0.98988	15.24
$M_{10->5}$	0.98988	15.24
$M_{11->5}^{10->3}$	0.98988	15.24
$M_{12->5}^{11->3}$	0.98988	15.24
M 1->6	0.98988	15.24
M 2->6	0.98988	15.24
$M_{3->6}$	0.98988	15.24
M 4->6	0.98988	15.24
M 5->6	0.98988	15.24
M 7->6	0.98988	15.24
M _{8->6}	0.98988	15.24
M _{9->6}	0.98988	15.24
M _{10->6}	0.98988	15.24
M _{11->6}	0.98988	15.24
M _{12->6}	0.98988	15.24
M _{1->7}	0.98988	15.24
M _{2->7}	0.98988	15.24
M _{3->7}	0.98988	15.24
M _{4->7}	0.98988	15.24

		1 71
M _{5->7}	0.98988	15.24
M _{6->7}	0.98988	15.24
M _{8->7}	0.98988	15.24
$M_{9->7}$	0.98988	15.24
M 10->7	0.98988	15.24
M 11->7	0.98988	15.24
M 12->7	0.98988	15.24
M 1->8	0.98988	15.24
$M_{2->8}$	0.98988	15.24
$M_{3->8}^{2->6}$	0.98988	15.24
$M_{4->8}$	0.98988	15.24
M 5->8	0.98988	15.24
M 6->8	0.98988	15.24
M 7->8	0.98988	15.24
$M_{9->8}$	0.98988	15.24
M 10->8	0.98988	15.24
M 11->8	0.98988	15.24
$M_{12->8}^{11->6}$	0.98988	15.24
M 1->9	0.98988	15.24
M 2->9	0.98988	15.24
M _{3->9}	0.98988	15.24
M _{4->9}	0.98988	15.24
M _{5->9}	0.98988	15.24
M _{6->9}	0.98988	15.24
M 7->9	0.98988	15.24
M _{8->9}	0.98988	15.24
M 10->9	0.98988	15.24
M _{11->9}	0.98988	15.24
M _{12->9}	0.98988	15.24
M _{1->10}	0.98988	15.24
M _{2->10}	0.98988	15.24
M _{3->10}	0.98988	15.24
M _{4->10}	0.98988	15.24
M 5->10	0.98988	15.24
M _{6->10}	0.98988	15.24
M _{7->10}	0.98988	15.24
M _{8->10}	0.98988	15.24
M _{9->10}	0.98988	15.24
M 11->10	0.98988	15.24
M 12->10	0.98988	15.24
M _{1->11}	0.92257	121.49
M 2->11	0.90351	152.60
M 3->11	0.88509	184.77
M 4->11	0.88099	190.21
M _{5->11}	0.89976	158.60

6->11	0.92084	124.45
7->11	0.86350	219.85
8->11	0.91245	138.05
9–>11	0.93375	102.82
10->11	0.90631	148.38
12->11	0.89228	171.48
1->12	0.85754	229.93
2->12	0.85366	240.96
3->12	0.93474	101.13
4->12	0.91160	138.65
5->12	0.94800	80.19
6->12	0.90825	144.21
7->12	0.94597	83.57
8_>12	0.87738	196.92
9->12	0.92758	112.94
10->12	0.90965	142.40
11->12	0.87690	197.41
Prob(D G)]	0.98439	23.58

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short!
Param 13: Effective sample size of run seems too short!
Param 13: Effective sample size of run seems too short!