Segmentación de Imágenes

Profesora del curso: Diana Patricia Tobón Vallejo, PhD

> Tratamiento de Señales III Facultad de Ingeniería Universidad de Antioquia

Facultad de Ingeniería

2024-2

Material elaborado por: Hernán Felipe García Arias

Contenido

- Definiendo la segmentación
- Segmentación basada en información de vecindad
- Segmentación utilizando probabilidades
- Segmentación multi-clase

Segmentación

La segmentación es el proceso para convertir los pixeles de una imagen en un número limitado (pequeño) de clases según:

- El histograma de la imagen
- Conocimiento a priori de las estadísticas de la imagen
- Información del vecindario de la imagen

Palabras Claves

Clasificación

Identificar regiones basado en propiedades características

- Intensidad
- Color
- Textura

Métodos no-supervisados (Unsupervised)

El algoritmo puede encontrar regiones sin la interacción del humano

Etiquetado

Identificar ítems individuales, a menudo requiere una imagen clasificada como entrada

Métodos supervisados (Supervised)

El algoritmo necesita la intervención del humano, como punto de inicio en el procesamiento

Umbralizado (Thresholding)

Umbral de una imagen: compare el valor de pixel con un valor constante

$$g(x) = \begin{cases} 1 & f(x) \ge \gamma \\ 0 & \text{otherwise} \end{cases} \quad \forall x \in \Omega$$
 (1)

La pregunta ahora es: ¿Cual valor de umbral elegir? ... Sezgin and Sankur (2004) [1].

Problemas en la segmentación

Problemas en la segmentación

Segmentación basada en histograma

 Utiliza la información proporcionada por el histograma para encontrar un valor de umbral

Umbral de Otsu

Otsu introdujo un algoritmo clásico para encontrar un umbral.

Algoritmo de umbralización de Otsu

Algoritmo

Encontrar el valor de t que minimiza la varianza intra-clase

$$\sigma_w^2(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$
 (2)

o maximizar la varianza entre-clases

$$\sigma_b^2(t) = q_1(t) \left(1 - q_2(t)\right) \left(\mu_1(t) - \mu_2(t)\right)^2 \tag{3}$$

^aCumulative Density Function

Método de Rosin

En los casos en que el número de pixeles en las clases esté muy desequilibrado (1: 100 o incluso más)

Algoritmo

- Dibuja una línea desde el histograma máximo hasta el final de la cola.
- Calcule la distancia de la línea a la curva del histograma.
- Seleccione el umbral a la distancia máxima.

Ejemplo

Contenido

- Definiendo la segmentación
- Segmentación basada en información de vecindad
- Segmentación utilizando probabilidades
- Segmentación multi-clase

Motivación

Un problema con los datos SNR bajos es la cantidad de pixeles clasificados incorrectamente

- Las distribuciones de intensidad se superponen.
- Es difícil encontrar un solo umbral.

Solución

Introducir crecimiento de regiones (region growing) en el proceso de umbralizado.

Region growing

- Principio: El crecimiento de la región comienza a partir de un pixel o región determinados. La región crece hasta:
 - Se alcanza una intensidad umbral absoluta.
 - La diferencia de intensidad alcanza un valor umbral.
 - Se supera una distancia, normalmente combinada con umbrales de intensidad.
- Esto se hace mediante:
 - Teniendo en cuenta el vecindario de pixeles.
 - Tanto sin supervisión como supervisada.
 - No debe basarse necesariamente en un histograma.

Variaciones del region growing

Umbralizado con histéresis

- Es difícil clasificar datos con distribuciones de clases superpuestas
- Un solo umbral de datos por debajo o por encima de los segmentos
- Combine dos umbrales con region growing
 - Establecer umbral alto como semilla
 - Realice el crecimiento de la región hasta el umbral más bajo.

Ejemplo

Umbral basado en histéresis: Método de Vogel

Algoritmo

Calcular $\hat{x} = \{x \mid h(x) = H(min)\}$, donde h(x) es una Gaussiana ajustada a la parte superior del histograma H(x)

Encontrar los umbrales: $t_{min} = 0.5(max_1 + min)$ y $t_{max} = 0.5(min + x^2)$

Umbral en dos pasos

Contenido

- 1 Definiendo la segmentación
- 2 Segmentación basada en información de vecindad
- 3 Segmentación utilizando probabilidades
- 4 Segmentación multi-clase

El umbral Neyman-Pearson

El umbral η es determinado a partir de la elección de valores para:

- □ Probabilidad de falsa alarma: $P_F = P\{t(x) \ge \gamma | H_0\}$
- Probabilidad de detección: $P_D = P\{t(x) \ge \gamma | H_1\}$

Contenido

- Definiendo la segmentación
- Segmentación basada en información de vecindad
- Segmentación utilizando probabilidades
- Segmentación multi-clase

Segmentación multi-clase

Extendiendo los métodos conocidos para multi-clase

- La segmentación multi-clase requiere más umbrales
- Mayor número de comparaciones
- Pueden ocurrir asignaciones ambiguas

Otsu thresholding

Otsu previó la segmentación de múltiples clases (**Consultar Otsu method for multi-class segmentation**).

Clasificación no supervisada: Fuzzy C Means

Algunas características

- Datos multi-clase
- Métodos iterativos
- Operaciones basadas en pixel
- Optimización global
- No supervisada

Algoritmo

Problemas con la segmentación multi-fase

Miremos más de cerca un borde

Quad trees

Proceso iterativo para dividir en regiones cuando ellas no cumplen alguna dirección.

Descomposición Quad tree

Diferentes escalas

Trabaja con múltiples resoluciones

Propósito¹:

- Menos sensible al ruido
- Mas rápido el procesamiento

¹Burt's segmentation [1]

Métodos basados en clasificación

Data

☐ Imágenes de *M* modalidades

Clases

Las *N* clases se describen mediante

- □ $H_1 : p(\mu_1, \sigma_1)$
- $H_2 : p(\mu_2, \sigma_2)$
- \Box $H_N: p(\mu_N, \sigma_N)$

Opciones

- Distancia Euclídea más pequeña (distancia de clase media muestral)
- Distancias de clase multivariadas (Media y Covarianza)
- Machine Learning

ML image segmentation

Bibliography

Rafael C. Gonzalez and Richard E. Woods.

Digital image processing.

Prentice Hall, Upper Saddle River, N.J., 2008.