5CCSACCA Cloud Computing for Artificial Intelligence

Coursework Overview

The coursework accounts for 50% of the final assessment and is an individual project divided into two equally important components: the code and the report. The primary objective is to evaluate your development and design decisions for a specific machine learning problem you aim to solve.

Phase 1 – Description of the Problem

You are to transform a specific AI system into a SaaS application. You may choose any AI system, provided it can perform inference on 4 CPUs with a maximum of 16GB of RAM ¹. You need to identify tools that facilitate the development and scalability of the system. Specific procedures must be followed: GitFlow for development, Docker (and optionally Kubernetes) for deployment, and MLFlow for versioning models². The SaaS should be a RESTful API using FastAPI, with comprehensive documentation for each service component. Begin by outlining the AI system you plan to use and detailing the entire development process.

Phase 2 – The implementation

You are required to use the GitHub Classroom repository provided via the link on KEATS for your implementation. This repository should include:

- All your code with at least Dockerfile for deploment.
- A README file with specific instructions for deploying the SaaS, including examples of expected input and output.
- A requirements.txt file listing the Python dependencies.
- Any MLProject files you implemented during the process.

Ensure the README instructions allow for setting up the SaaS on a fresh Linux machine to explore its capabilities, at least within the provided example. The final version of the code must be in the main branch, and the development process should adhere to the GitFlow approach.

Deployment must be performed in one command, if the architecture is complex, provide a script for deployment.

Phase 3 – The Report

You will submit a PDF report (maximum 3000 words) detailing your design. While you may include select screenshots and source code excerpts, be judicious about what you include, referencing the Git repository for extensive details. The report should include a title page with

¹ You can verify the specification by employing a virtual machine with the specific specifications.

² If you are employing a model, considering employing the versioning system for validating different parametrizations.

the project name, your name, and student ID. It must contain a detailed discussion covering the following points:

- 1) System Overview and design decisions: Begin by explaining the system and detailing the specific inputs and outputs. Describe how you envision the final SaaS application, including any necessary adaptations. If a database is used, explain its role in the system and specify the type of database.
- 2) Architecture: Describe the technologies and libraries used and how they fit into the system architecture. If technologies such as Kubernetes are used, explain the cluster setup and how the components communicate.
- 3) The Model: Detail the model, including its expected inputs and outputs, and describe its training process. If you are training the model, explain the training data selection. If you are fine-tuning the model, or selecting parameters, describe the process and how MLFlow is used to version and compare models during parameter tuning.
- 4) Development Process: Explain the development process, including the creation and purpose of different branches.
- 5) Continuous Integration/Continuous Deployment (CI/CD): Describe how you aim to automate the integration and deployment process.
- 6) Costs: Calculate the costs associated with system resources, considering scalability, and perform specific cost calculations.
- 7) Testing, Security, and Monitoring: Describe the testing procedures and how the system will be monitored. Outline any security measures implemented and their importance.
- 8) Limitations: Discuss the potential limitations of the system.
- 9) Sustainability: Address potential sustainability issues related to your system.
- 10) References: Provide references in Harvard style for any sources related to your decisions or discussions.

What and how to submit

- Overview Plan Submission: Submit an overview plan by the end of Week 5. This submission is ungraded and will provide formative feedback to support the development of the following phases. It should cover phase 1. The maximum length of the plan is 1 page.
- **Final Submission**: Submit a GitHub URL containing your implementation and the report by the coursework deadline.

The mark scheme

The table below provides guidance on the mark scheme for the different components:

Component	0-40	40-50	50-60	60-70	70+
GitHub	No use of GitHub or	Use of GitHub but	Use of GitHub but poor	Use of GitHub and	Use of GitHub and
(Implementation	GitFlow	incorrect use of	use of GitFlow	reasonable use of GitFlow	complete use of
and Report)		GitFlow			GitFlow
Code	The implementation	The implementation	The implementation	The implementation has no	The implementation
(Implementation)	does not work or	works and performs	works with minor bugs	bugs and is properly	has no bugs, is
	works poorly	the specific task but	and is properly	documented	properly documented,
		some parts do not	documented		and has been clearly
		work as expected			optimized
Containerization	No containerization or	Simple	Reasonable	Reasonable	Reasonable
(Implementation	trivial containerization	containerization for the	containerization that	containerization that fulfills	containerization that
and Report)	for running the model	model	fulfills the SaaS purpose	the SaaS purpose and is	fulfills the SaaS
				optimized for	purpose, is optimized
				microservices	for microservices, and
					scales using
					Kubernetes
SaaS	No SaaS creation and	Basic attempt to	Reasonable RESTful API	Good RESTful API that	Excellent RESTful API
(Implementation	no working RESTful	create a SaaS with a	that employs the model	employs the model and	that employs the
and Report)	APIs	simple RESTful API	and databases and	databases, handles user	model and databases,
		connecting to a simple	handles users	authentication, and	handles user
		database		employs microservices	authentication,
					employs microservices
					through Ingress
Model	Too simple model	Reasonable model or	Reasonable model	Reasonable model	Advanced model
(Implementation	(basic regression or	reasonable complexity	handling complex data	handling complex data	solving an interesting
and Report)	classification), basic	in training	types	types with basic versioning	problem, trained or
	training, no parameter			and parameterization	fine-tuned for a
	effort				specific case with
					deep versioning and
					parameterization

Testing and	No or very basic	Basic strategies for	Reasonable set of tests	Reasonable set of tests	Complete integration
Monitoring	testing and monitoring	testing and monitoring	covering most	covering most	with comprehensive
(Implementation			functionalities with some	functionalities with good	tests and outstanding
and Report)			monitoring strategies	monitoring strategies	monitoring strategies
Databases	No use of databases	Reasonable use of	Good use of databases	Good use of databases	Excellent use of
(Implementation	or basic use	CRUD strategies in a	with different tables or	with different tables or	databases with
and Report)		database	collections	collections and user	different tables or
				authentication	collections and
					protected user
					authentication
Design Decisions	Missing, unclear, or	Reasonable	Mature description of	Mature description of	Outstanding
and Architecture	extremely poor	description of design	design decisions with	design decisions with	description of design
Description	description	decisions and	proper discussion and	proper discussion,	decisions with proper
(Report)		architecture	clear architecture	comparison with	discussion,
			description	alternatives, and mature	comparison with
				architecture description	alternatives, and
					outstanding
					architecture
					description
Costs (Report)	No or poor calculation	Reasonable	Precise calculation of	Precise calculation of costs	Precise calculation of
	of costs	calculation of costs	costs for different	for different numbers of	costs for different
			numbers of users	users based on resource	numbers of users with
				consumption during testing	specific formulas for
					scalability based on
					resource consumption
					during testing and for a
					complex architecture
CI/CD and	No or poor	Very basic	Reasonable	Good CI/CD and security	Complete CI/CD
Security	consideration of	considerations of	considerations and	implementations with	implemented and
(Implementation	CI/CD or security	CI/CD and security	implementations of	specific problems handled	explained with strong
and Report)			CI/CD and security		security solutions

Limitations and Sustainability (Report)	No or poor description of limitations and sustainability	Basic description of limitations and sustainability	Reasonable description of limitations and sustainability	Good description of limitations and sustainability with solutions to some issues	Outstanding description of limitations and sustainability with solutions to main issues
References (Report)	None, wrongly formatted, or poor references	Basic set of references without many academic sources, correctly formatted	Reasonable set of references with good academic sources, correctly formatted	Good number of references including academic sources and books, correctly formatted	Outstanding selection of references with proper discussion about the state of the art relevant to the problem