Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	26 -10-2023				
Team ID	PNT2022TMID592946				
Project Name	Project – Travel Insurance Predication using Machine Learning				
Maximum Marks	20 Marks				

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Project setup & Infrastructure	USN-1	Set up the development environment with the required tools and frameworks to start the garbage classification project.		High	Vrushika
Sprint-1	development environment	USN-2	Gather a diverse dataset for training the machine learning model.	5 High		Archana
Sprint-2	Data Pre-processing	USN-3	Preprocess the collected dataset by resizing images, normalizing pixel values, and splitting it into training and validation sets.	5	High	Pranav
Sprint-2	Model Selection	USN-4	Explore and evaluate different machine learning architectures (e.g., random-forest) to select the most suitable model for travel-insurance prediction classification.	4	High	Archana
Sprint-3	Model Development	USN-5	Train the selected machine-learning model using pre-processed dataset and monitor its performance	5	High	Vrushika
Sprint-3		USN-6	Improve the model accuracy and robustness	3	Medium	Archana

Sprint-4	model deployment & Integration	USN-7	Deploy the trained machine learning model as an API or web service to make it accessible for travel insurance classification. integrate the model's API into a user-friendly web interface for users to receive travel insurance classification results based on the user input.	1	Medium	Vrushika
Sprint-5	Testing & quality assurance	USN-8	Conduct thorough testing of the model and web interface to identify and report any issues or bugs. fine-tune the model hyperparameters and optimize its performance based on user feedback and testing results.	1	Medium	Pranav

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	5 Days	18 Oct 2023	23 Oct 2023	10	23 Oct 2023
Sprint-2	9	5 Days	23 Oct 2023	28 Oct 2023	7	28 Oct 2023
Sprint-3	8	4 Days	28 Oct 2023	1 Nov 2023	5	
Sprint-4	5	4 Days	1 Nov 2023	4 Nov 2023	3	
Sprint-5	5	6 Days	4 Nov 2023	9 Nov 2023	2	

Velocity:

Average Velocity = Total Story Points Completed / Total Duration of Sprints

Total Story Points Completed = 10 + 7 + 5 + 3 + 3 = 28

Total Duration of Sprints = 5 + 5 + 4 + 4 + 6 = 24Average Velocity = 28 / 24 = 1.16

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

