Package 'latrend'

April 14, 2021

Type Package Version 1.1.2 Date 2021-04-14

Title A Framework for Clustering Longitudinal Data

Description A framework for clustering longitudinal datasets in a standardized way. Provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease.

Maintainer Niek Den Teuling <niek.den.teuling@philips.com>

URL https://github.com/philips-software/latrend

BugReports https://github.com/philips-software/latrend/issues

License GPL (>= 2) Encoding UTF-8 LazyData true

Depends R (>= 3.6.0)

Imports stats, methods, Rdpack, R.utils, assertthat (>= 0.2.1), foreach, data.table (>= 1.12.0), longitudinalData, magrittr, plyr, ggplot2, matrixStats, stackoverflow (>= 0.3.0), clusterCrit, mclustcomp, scales, caret, lme4, mclust

Suggests testthat (>= 3.0.0), roxygen2 (>= 7.1.0), knitr (>= 1.24), rmarkdown (>= 1.18), kml, lcmm, longclust, mixtools, flexmix, fda, funFEM, igraph, crimCV, akmedoids (>= 1.3.0), dtwclust, mixAK, psych, qqplotr, doParallel

RoxygenNote 7.1.1 RdMacros Rdpack VignetteBuilder knitr

Collate 'assert.R' 'compute.R' 'data.R' 'formula.R' 'generics.R'
'latrend.R' 'make.R' 'matrix.R' 'method.R' 'methodMatrix.R'
'methodAKMedoids.R' 'methodCrimCV.R' 'methodCustom.R'
'methodDtwclust.R' 'plot.R' 'model.R' 'modelCustom.R'
'methodFeature.R' 'methodFlexmix.R' 'methodFlexmixGBTM.R'
'methodFunFEM.R' 'methodGCKM.R' 'methodKML.R' 'methodLMKM.R'
'methodLcmmGMM.R' 'methodLcmmGBTM.R' 'methodLongclust.R'
'methodMclustLLPA.R' 'methodMixAK_GLMM.R' 'methodMixTVEM.R'
$'method Mixtools GMM.R'\ 'method Mixtools NPRM.R'\ 'method Random.R'$
'methodStratify.R' 'methods.R' 'metrics.R' 'model-summary.R'
'model-transform.R' 'modelApprox.R' 'modelCrimCV.R'
'modelDtwclust.R' 'modelFeature.R' 'modelFlexmix.R'
'modelFunFEM.R' 'modelKML.R' 'modelLMKM.R' 'modelLcmmGMM.R'
'modelLcmmGBTM.R' 'modelLongclust.R' 'modelMclustLLPA.R'
$'modelMixAK_GLMM.R'\ 'modelMixAK_GLMMlist.R'\ 'modelMixTVEM.R'$
'modelMixtoolsGMM.R' 'modelMixtoolsRM.R' 'modelPartition.R'
'modelStratify.R' 'modelWeightedPartition.R' 'models.R'
'random.R' 'verbose.R' 'zzz.R'

NeedsCompilation no

Author Niek Den Teuling [aut, cre] (https://orcid.org/0000-0003-1026-5080), Steffen Pauws [ctb], Edwin van den Heuvel [ctb], Copyright © 2021 Koninklijke Philips N.V. [cph]

Repository CRAN

Date/Publication 2021-04-14 13:50:10 UTC

R topics documented:

latrend-package	5
as.data.frame.lcMethod	6
as.data.frame.lcMethods	6
as.data.frame.lcModels	7
as.lcMethods	8
as.lcModels	8
as.list.lcMethod	9
clusterNames	10
clusterNames<	0
clusterProportions	1
clusterSizes	1
clusterTrajectories	12
coef.lcModel	13
confusionMatrix	13
converged	14
createTestDataFold	15
createTestDataFolds	15
createTrainDataFolds	16

dcastRepeatedMeasures	17
defineExternalMetric	
defineInternalMetric	18
deviance.lcModel	19
df.residual.lcModel	19
estimationTime	20
evaluate.lcMethod	20
externalMetric,lcModel,lcModel-method	21
fitted.lcModel	23
formula.lcMethod	23
formula.lcModel	24
generateLongData	25
getExternalMetricDefinition	26
getExternalMetricNames	26
getInternalMetricDefinition	27
getInternalMetricNames	27
getLcMethod	
ids	
idVariable	
latrend	
latrend-parallel	
latrendBatch	
latrendBoot	
latrendCV	
latrendData	
latrendRep	
cApproxModel-class	
lcMethod	
lcMethod-class	
cMethod.call	
lcMethodAkmedoids	
lcMethodCrimCV	
lcMethodCustom	
lcMethodDtwclust	
lcMethodFeature	
lcMethodFlexmix	
lcMethodFlexmixGBTM	
lcMethodFunFEM	49
cMethodGCKM	50
cMethodKML	
lcMethodLcmmGBTM	
cMethodLcmmGMM	
cMethodLMKM	55
cMethodLongclust	56
lcMethodMclustLLPA	
cMethodMixAK_GLMM	
cMethodMixtoolsGMM	
aMathadMixtoolsOlvIIVI	60

cMethodMixTVEM	61
cMethodRandom	62
cMethods	63
cMethodStratify	64
cModel-class	66
cModelCustom	
cModelPartition	
cModels	
cModelWeightedPartition	
ogLik.lcModel	
nax.lcModels	
meltRepeatedMeasures	
metric	
min.lcModels	
model.data.lcModel	
model.frame.lcModel	
nClusters	
nIds	
nobs.lcModel	
blot,lcModel,ANY-method	
blotClusterTrajectories	
plotMetric	
plotTrajectories	
postprob	
postprobFromAssignments	
predict.lcModel	
predictAssignments	
oredictForCluster	
predictPostprob	
print.lcMethod	
print.lcModels	
qqPlot	
esiduals.lcModel	
responseVariable	
sigma.lcModel	
strip	
subset.lcModels	
summary.lcModel	
ime.lcModel	92 92
	–
imeVariable	
rajectories	
rajectoryAssignments	
ransformFitted	
ransformLatrendData	
ransformPredict	
update.lcMethod	
update.lcModel	
which.weight	99

lotrand nackaga	5
latrend-package	J

		l	
Index			102
latr	end-package	latrend: A Framework for Clustering Longitudinal Data	

Description

A framework for clustering longitudinal datasets in a standardized way. Provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease.

Getting started

- See vignette("demo", package = "latrend") for an introduction to conducting a longitudinal cluster analysis on a example case study.
- See vignette("custom",package = "latrend") for examples on constructing your own cluster models.
- See vignette("validation", package = "latrend") for examples on applying internal cluster validation.

Author(s)

Maintainer: Niek Den Teuling <niek.den.teuling@philips.com> (ORCID)
Other contributors:

- Steffen Pauws <s.c.pauws@tilburguniversity.edu> [contributor]
- Edwin van den Heuvel <e.r.v.d.heuvel@tue.nl> [contributor]
- Copyright © 2021 Koninklijke Philips N.V. [copyright holder]

See Also

Useful links:

- https://github.com/philips-software/latrend
- Report bugs at https://github.com/philips-software/latrend/issues

6 as.data.frame.lcMethods

```
as.data.frame.lcMethod
```

Convert lcMethod arguments to a list of atomic types

Description

Converts the arguments of a 1cMethod to a named list of atomic types.

Usage

```
## S3 method for class 'lcMethod'
as.data.frame(x, ..., eval = FALSE, nullValue = NA, envir = NULL)
```

Arguments

x lcMethod to be coerced to a character vector.

... Additional arguments.

eval Whether to evaluate the arguments in order to replace expression if the resulting

value is of a class specified in evalClasses.

nullValue Value to use to represent the NULL type. Must be of length 1.

envir The environment in which to evaluate the arguments. If NULL, the environment

associated with the object is used. If not available, the parent.frame() is used.

Value

A single-row data. frame where each columns represents an argument call or evaluation.

See Also

```
Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethods(), as.lcMethods(), as.lcMethods(), as.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()
```

```
as.data.frame.lcMethods
```

Convert a list of lcMethod objects to a data.frame

Description

Converts a list of 1cMethod objects to a data. frame.

Usage

```
## S3 method for class 'lcMethods'
as.data.frame(x, ..., eval = FALSE, nullValue = NA, envir = NULL)
```

as.data.frame.lcModels 7

Arguments

x the lcMethods or list to be coerced to a data.frame.

... Additional arguments.

eval Whether to evaluate the arguments in order to replace expression if the resulting

value is of a class specified in evalClasses.

nullValue Value to use to represent the NULL type. Must be of length 1.

envir The environment in which to evaluate the arguments. If NULL, the environment

associated with the object is used. If not available, the parent.frame() is used.

Value

A data. frame with each row containing the argument values of a method object.

See Also

```
Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()
```

```
as.data.frame.lcModels
```

Generate a data.frame containing the argument values per method per row

Description

Generate a data.frame containing the argument values per method per row

Usage

```
## S3 method for class 'lcModels'
as.data.frame(x, ..., excludeShared = FALSE, eval = TRUE)
```

Arguments

x lcModels or a list of lcModel

... Arguments passed to as.data.frame.lcMethod.

excludeShared Whether to exclude columns which have the same value across all methods.

eval Whether to evaluate the arguments in order to replace expression if the resulting

value is of a class specified in evalClasses.

Value

A data.frame.

8 as.lcModels

as.lcMethods

Convert a list of lcMethod objects to a lcMethods list

Description

Convert a list of lcMethod objects to a lcMethods list

Usage

```
as.lcMethods(x)
```

Arguments

Х

A list of lcMethod objects.

Value

A 1cMethods object.

See Also

Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()

as.lcModels

Convert a list of lcModels to a lcModels list

Description

Convert a list of lcModels to a lcModels list

Usage

```
as.lcModels(x)
```

Arguments

Χ

An R object.

Value

A lcModels object.

See Also

Other lcModel list functions: lcModels, print.lcModels(), subset.lcModels()

as.list.lcMethod 9

	as.list.lcMethod	Extract the method arguments as a list	
--	------------------	--	--

Description

Extract the method arguments as a list

Usage

```
## S3 method for class 'lcMethod'
as.list(x, ..., args = names(x), eval = TRUE, expand = FALSE, envir = NULL)
```

Arguments

x	The 1cMethod object.
	Additional arguments.
args	A character vector of argument names to select. Only available arguments are returned. Alternatively, a function or list of functions, whose formal arguments will be selected from the method.
eval	Whether to evaluate the arguments.
expand	Whether to return all method arguments when "" is present among the requested argument names.
envir	The environment in which to evaluate the arguments. If NULL, the environment associated with the object is used. If not available, the parent.frame() is used.

Value

A list with the argument calls or evaluated results depending on the value for eval.

See Also

```
Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()
```

Examples

```
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
as.list(method)

as.list(method, args = c('id', 'time'))

# select arguments used by kml()
as.list(method, args = kml::kml)

# select arguments used by either kml() or parALGO()
as.list(method, args = c(kml::kml, kml::parALGO))</pre>
```

10 clusterNames<-

clusterNames

Get the cluster names

Description

Get the cluster names

Usage

```
clusterNames(object, factor = FALSE)
```

Arguments

object The lcModel object.

factor Whether to return the cluster names as a factor.

Value

A character of the cluster names.

Examples

```
data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
clusterNames(model) # A, B</pre>
```

clusterNames<-

Update the cluster names

Description

Update the cluster names

Usage

```
clusterNames(object) <- value</pre>
```

Arguments

object The lcModel object to update.

value The character with the new names.

Value

The updated 1cModel object.

clusterProportions 11

Examples

```
data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
clusterNames(model) <- c("Group 1", "Group 2")</pre>
```

clusterProportions

Proportional size of each cluster

Description

Proportional size of each cluster

Usage

```
## S4 method for signature 'lcModel'
clusterProportions(object, ...)
```

Arguments

object The lcModel to obtain the proportions from.
... Not used.

Examples

```
data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
clusterProportions(model)</pre>
```

clusterSizes

Number of strata per cluster

Description

Number of strata per cluster

Usage

```
clusterSizes(object)
```

Arguments

object

The 1cModel object.

Examples

```
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
clusterSizes(model)</pre>
```

12 clusterTrajectories

clusterTrajectories Extract the cluster trajectories

Description

Extracts a data frame of all cluster trajectories.

Usage

```
## S4 method for signature 'lcModel'
clusterTrajectories(object, at = time(object), what = "mu", ...)
```

Arguments

object	The lcModel object.
at	An optional vector, list or data frame of covariates at which to compute the cluster trajectory predictions. If a vector is specified, this is assumed to be the time covariate. Otherwise, a named list or data frame must be provided.
what	The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.
	Additional arguments.

Value

A data.frame of the estimated values at the given times. The first column should be named "Cluster". The second column should be time, with the name matching the timeVariable(object). The third column should be the expected value of the observations, named after the responseVariable(object).

See Also

```
Other model-specific methods: coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

Examples

```
model <- latrend(method = lcMethodLcmmGMM(fixed = Y ~ Time, mixture = fixed),
  id = "Id", time = "Time", data = latrendData)
clusterTrajectories(model)

clusterTrajectories(model, at = c(0, .5, 1))</pre>
```

coef.lcModel 13

coef.lcModel

Coefficients of a lcModel

Description

Coefficients of a lcModel

Usage

```
## S3 method for class 'lcModel'
coef(object, ...)
```

Arguments

```
object The 1cModel object.
... Additional arguments.
```

Value

A named numeric vector with all coefficients, or a matrix with each column containing the cluster-specific coefficients.

See Also

```
Other model-specific methods: clusterTrajectories(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

confusionMatrix

Compute the posterior confusion matrix

Description

Compute a nClusters x nClusters posterior confusion matrix (PCM). The entry (i,j) represents the probability of a trajectory belonging to class i is assigned to class j under a given assignment strategy.

Usage

```
confusionMatrix(object, strategy = which.max, scale = TRUE)
```

14 converged

Arguments

object The object.

strategy The trajectory Assignments strategy to compute the PCM under. If strategy =

NULL, weighted random assignment is assumed (analogous to a repeated [which.weight]

strategy evaluation).

scale Whether to express the confusion in probabilities (scale = TRUE), or in the num-

ber of trajectories.

Examples

```
data(latrendData)
model = latrend(lcMethodLcmmGMM(
  fixed = Y ~ Time, mixture = ~ Time, random = ~ 1,
  id = "Id", time = "Time"),
  data=latrendData)
confusionMatrix(model)
```

converged

Check model convergence

Description

Check convergence of the fitted model.

Usage

```
## S4 method for signature 'lcModel'
converged(object, ...)
```

Arguments

object The lcModel to check for convergence.

... Additional arguments.

Value

Either logical indicating convergence, or a numeric status code.

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

createTestDataFold 15

createTestDataFold

Create the test fold data for validation

Description

Create the test fold data for validation

Usage

```
createTestDataFold(data, trainData, id = getOption("latrend.id"))
```

Arguments

data A data. frame representing the complete dataset.

trainData A data. frame representing the training data, which should be a subset of data.

id The trajectory identifier variable.

See Also

```
createTrainDataFolds
```

```
Other validation methods: createTestDataFolds(), createTrainDataFolds(), latrendBoot(), latrendCV(), lcModel-data-filters
```

Examples

```
data(latrendData)
trainDataList <- createTrainDataFolds(latrendData, id = "Id", folds = 10)
testData1 <- createTestDataFold(latrendData, trainDataList[[1]], id = "Id")</pre>
```

createTestDataFolds

Create all k test folds from the training data

Description

Create all k test folds from the training data

Usage

```
createTestDataFolds(data, trainDataList, ...)
```

Arguments

data A data. frame representing the complete dataset.

trainDataList A list of data.frame representing each of the data training folds. These

should be derived from data.

. . . Arguments passed to createTestDataFold.

16 createTrainDataFolds

See Also

```
Other validation methods: createTestDataFold(), createTrainDataFolds(), latrendBoot(), latrendCV(), lcModel-data-filters
```

Examples

```
data(latrendData)
trainDataList <- createTrainDataFolds(latrendData, folds = 10, id = "Id")
testDataList <- createTestDataFolds(latrendData, trainDataList)</pre>
```

createTrainDataFolds Create the training data for each of the k models in k-fold cross validation evaluation

Description

Create the training data for each of the k models in k-fold cross validation evaluation

Usage

```
createTrainDataFolds(
  data,
  folds = 10,
  id = getOption("latrend.id"),
  seed = NULL
)
```

Arguments

data A data. frame representing the complete dataset.

folds The number of folds. By default, a 10-fold scheme is used.

id The trajectory identifier variable.

seed The seed to use, in order to ensure reproducible fold generation at a later mo-

ment.

Value

A list of data. frame of the folds training datasets.

See Also

```
Other validation methods: createTestDataFolds(), createTestDataFold(), latrendBoot(), latrendCV(), lcModel-data-filters
```

dcastRepeatedMeasures 17

Examples

```
data(latrendData)
trainFolds <- createTrainDataFolds(latrendData, folds = 10, id = "Id")
trainFolds <- createTrainDataFolds(latrendData, folds = 10, id = "Id", seed = 1)</pre>
```

dcastRepeatedMeasures Cast a longitudinal data.frame to a matrix

Description

Converts a longitudinal data. frame comprising trajectories with an equal number of observations, measured at identical moments in time, to a matrix. Each row of the matrix represents a trajectory.

Usage

```
dcastRepeatedMeasures(
  data,
  response,
  id = getOption("latrend.id"),
  time = getOption("latrend.time")
)
```

Arguments

data The matrix containing a trajectory on each row.

response The response column name.

id The id column name.time The time column name.

Value

A matrix with a trajectory per row.

defineExternalMetric Define an external metric for lcModels

Description

Define an external metric for lcModels

Usage

```
defineExternalMetric(name, fun, warnIfExists = TRUE)
```

18 defineInternalMetric

Arguments

name The name of the metric.

fun The function to compute the metric, accepting a lcModel object as input.

warnIfExists Whether to output a warning when the new metric is already defined.

See Also

Other metric functions: defineInternalMetric(), externalMetric,lcModel,lcModel-method, getExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricDefinition(), getInternalMetricNames(), metric()

defineInternalMetric Define an internal metric for lcModels

Description

Define an internal metric for lcModels

Usage

```
defineInternalMetric(name, fun, warnIfExists = TRUE)
```

Arguments

name The name of the metric.

fun The function to compute the metric, accepting a lcModel object as input.

warnIfExists Whether to output a warning when the new metric is already defined.

See Also

Other metric functions: defineExternalMetric(), externalMetric,lcModel,lcModel-method, getExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricDefinition(), getInternalMetricNames(), metric()

deviance.lcModel 19

deviance.lcModel lcModel deviance

Description

lcModel deviance

Usage

```
## S3 method for class 'lcModel'
deviance(object, ...)
```

Arguments

object The lcModel object.
... Additional arguments.

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()

df.residual.lcModel

Extract the residual degrees of freedom from a lcModel

Description

Extract the residual degrees of freedom from a lcModel

Usage

```
## S3 method for class 'lcModel'
df.residual(object, ...)
```

Arguments

```
object The 1cModel object.
... Additional arguments.
```

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

20 evaluate.lcMethod

estimationTime

Get the model estimation time

Description

Get the model estimation time

Usage

```
estimationTime(object)
```

Arguments

object

The lcModel object.

Value

The model estimation time in seconds.

evaluate.lcMethod

Substitute the call arguments for their evaluated values

Description

Substitutes the call arguments if they can be evaluated without error.

Usage

```
## S3 method for class 'lcMethod'
evaluate(
  object,
  classes = "ANY",
  try = TRUE,
  exclude = character(),
  envir = NULL
)
```

Arguments

object	The lcMethod object.
classes	Substitute only arguments with specific class types. By default, all types are substituted.
try	Whether to try to evaluate arguments and ignore errors (the default), or to fail on any argument evaluation error.
exclude	Arguments to exclude from evaluation.
envir	The environment in which to evaluate the arguments. If NULL, the environment associated with the object is used. If not available, the parent.frame() is used.

Value

A new 1cMethod object with the substituted arguments.

See Also

Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()

```
external \texttt{Metric,lcModel,lcModel-method} \\ Compute\ external\ model\ metric(s)
```

Description

Compute external model metric(s)

Usage

```
## S4 method for signature 'lcModel,lcModel'
externalMetric(object, object2, name, ...)

## S4 method for signature 'lcModels,missing'
externalMetric(object, object2, name = "adjustedRand")

## S4 method for signature 'lcModels,character'
externalMetric(object, object2 = "adjustedRand")

## S4 method for signature 'lcModels,lcModel'
externalMetric(object, object2, name, drop = TRUE)

## S4 method for signature 'list,lcModel'
externalMetric(object, object2, name, drop = TRUE)
```

Arguments

object	The lcModel, lcModels, or list of lcModel objects to compute the metrics for.
object2	The other lcModel to compare with.
name	The name(s) of the metric(s) to compute.
	Additional arguments.
drop	Whether to return a numeric vector instead of a data. frame in case of a single metric

Value

For externalMetric(lcModel, lcModel): A numeric vector of the computed metrics.

A named numeric vector containing the computed model metrics.

For externalMetric(lcModels): A distance matrix of class dist representing the pairwise comparisons.

For externalMetric(lcModels, name): A distance matrix of class dist representing the pairwise comparisons.

For externalMetric(lcModels,lcModel): A named numeric vector or data.frame containing the computed model metrics.

For externalMetric(list,lcModel): A named numeric vector or data.frame containing the computed model metrics.

References

Desgraupes B (2018). *clusterCrit: Clustering Indices*. R package version 1.2.8, https://CRAN. R-project.org/package=clusterCrit.

You K (2018). *mclustcomp: Measures for Comparing Clusters*. R package version 0.3.1, https://CRAN.R-project.org/package=mclustcomp.

Csardi G, Nepusz T (2006). "The igraph software package for complex network research." *Inter-Journal*, **Complex Systems**. https://igraph.org.

Hubert L, Arabie P (1985). "Comparing Partitions." *Journal of Classification*, **2**, 193–218. doi: 10.1007/BF01908075.

Revelle W (2019). *psych: Procedures for Psychological, Psychometric, and Personality Research*. R package version 1.9.12, https://CRAN.R-project.org/package=psych.

Scrucca L, Fop M, Murphy TB, Raftery AE (2016). "mclust 5: clustering, classification and density estimation using Gaussian finite mixture models." *The R Journal*, **8**, 205–233. https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf.

See Also

metric

Other metric functions: defineExternalMetric(), defineInternalMetric(), getExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricDefinition(), getInternalMetricNames(), metric()

Examples

```
data(latrendData)
model1 <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
model2 <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time,
    id = "Id", time = "Time"), latrendData)
ari <- externalMetric(model1, model2, 'adjustedRand')</pre>
```

fitted.lcModel 23

fitted.lcModel	Extract lcModel fitted values	

Description

Extract lcModel fitted values

Usage

```
## S3 method for class 'lcModel'
fitted(object, ..., clusters = trajectoryAssignments(object))
```

Arguments

object The 1cModel object.
... Additional arguments.

clusters Optional cluster assignments per id. If unspecified, a matrix is returned con-

taining the cluster-specific predictions per column.

Value

A numeric vector of the fitted values for the respective class, or a matrix of fitted values for each cluster.

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()

formula.lcMethod Extract formula

Description

Extracts the associated formula for the given distributional parameter.

Usage

```
## S3 method for class 'lcMethod'
formula(x, what = "mu", envir = NULL, ...)
```

24 formula.lcModel

Arguments

X	The lcMethod object.
what	The distributional parameter to which this formula applies. By default, the formula specifies "mu".
envir	The environment in which to evaluate the arguments. If NULL, the environment associated with the object is used. If not available, the parent.frame() is used.
	Additional arguments.

Value

The formula for the given distributional parameter.

See Also

```
Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), lcMethod-class, update.lcMethod()
```

Examples

```
m <- lcMethodMixtoolsGMM(formula = Y \sim Time + (1 | Id)) formula(m) # Y \sim Time + (1 | Id)
```

formula.lcModel Extract the formula of a lcModel

Description

Extract the formula of a lcModel

Usage

```
## S3 method for class 'lcModel'
formula(x, what = "mu", ...)
```

Arguments

x The lcModel object.what The distributional parameter... Additional arguments.

Value

Returns the associated formula, or ~0 if not specified.

generateLongData 25

generateLongData

Generate longitudinal test data

Description

Generate longitudinal test data

Usage

```
generateLongData(
  sizes = c(40, 60),
  fixed = Value ~ 1 + Time,
  cluster = \sim 1 + Time,
  random = ~1,
  id = getOption("latrend.id"),
  data = data.frame(Time = seq(0, 1, by = 0.1)),
  fixedCoefs = c(0, 0),
  clusterCoefs = cbind(c(-2, 1), c(2, -1)),
  randomScales = cbind(0.1, 0.1),
  rrandom = rnorm,
  noiseScales = c(0.1, 0.1),
  rnoise = rnorm,
  clusterNames = LETTERS[seq_along(sizes)],
  shuffle = FALSE
)
```

Arguments

sizes	Number of strata per cluster.
fixed	Fixed effects formula.
cluster	Cluster effects formula.
random	Random effects formula.
id	Name of the strata.
data	Data with covariates to use for generation. Stratified data may be specified by adding a grouping column.
fixedCoefs	Coefficients matrix for the fixed effects.
clusterCoefs	Coefficients matrix for the cluster effects.
randomScales	Standard deviations matrix for the size of the variance components (random effects).
rrandom	Random sampler for generating the variance components at location 0.
noiseScales	Scale of the random noise passed to rnoise. Either scalar or defined per cluster.
rnoise	Random sampler for generating noise at location 0 with the respective scale.
clusterNames	A character vector denoting the names of the generated clusters.
shuffle	Whether to randomly reorder the strata in which they appear in the data.frame.

Examples

```
longdata <- generateLongData(sizes = c(40, 70), id = "Id", cluster = \simpoly(Time, 2, raw = TRUE), clusterCoefs = cbind(c(1, 2, 5), c(-3, 4, .2))) plotTrajectories(longdata, response = "Value", id = "Id", time = "Time")
```

getExternalMetricDefinition

Get the external metric definition

Description

Get the external metric definition

Usage

```
getExternalMetricDefinition(name)
```

Arguments

name

The name of the metric.

Value

The metric function, or NULL if not defined.

See Also

```
Other metric functions: defineExternalMetric(), defineInternalMetric(), externalMetric,lcModel,lcModel-metlgetExternalMetricNames(), getInternalMetricDefinition(), getInternalMetricNames(), metric()
```

```
getExternalMetricNames
```

Get the names of the available external metrics

Description

Get the names of the available external metrics

Usage

```
getExternalMetricNames()
```

See Also

Other metric functions: defineExternalMetric(), defineInternalMetric(), externalMetric,lcModel,lcModel-metlgetExternalMetricDefinition(), getInternalMetricDefinition(), getInternalMetricNames(), metric()

getInternalMetricDefinition

Get the internal metric definition

Description

Get the internal metric definition

Usage

getInternalMetricDefinition(name)

Arguments

name

The name of the metric.

Value

The metric function, or NULL if not defined.

See Also

Other metric functions: defineExternalMetric(), defineInternalMetric(), externalMetric,lcModel,lcModel-metlgetExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricNames(), metric()

getInternalMetricNames

Get the names of the available internal metrics

Description

Get the names of the available internal metrics

Usage

getInternalMetricNames()

See Also

Other metric functions: defineExternalMetric(), defineInternalMetric(), externalMetric,lcModel,lcModel-metric getExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricDefinition(), metric()

28 ids

getLcMethod

Get the method specification of a lcModel

Description

Get the method specification of a lcModel

Usage

```
getLcMethod(object)
```

Arguments

object

The lcModel object.

Examples

```
model = latrend(method=lcMethodKML("Y", id = "Id", time = "Time"), data=latrendData)
getLcMethod(model)
```

ids

Get the unique ids included in this model

Description

Get the unique ids included in this model

Usage

```
ids(object)
```

Arguments

object

The 1cModel object.

Details

The order returned by ids(lcModel) determines the id order for any output involving id-specific values, such as in trajectoryAssignments() or postprob()

Examples

```
model = latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
ids(model) # S1, S2, ..., S500
```

idVariable 29

idVariable

Extract the trajectory identifier variable

Description

Extracts the trajectory identifier variable (i.e., column name) from the given object.

Usage

```
## S4 method for signature 'lcMethod'
idVariable(object, ...)
## S4 method for signature 'lcModel'
idVariable(object)
```

Arguments

object The object to extract the variable from.
... Not used.

Value

The trajectory identifier name, as character.

See Also

```
Other lcModel variables: responseVariable(), timeVariable()
```

Examples

```
method <- lcMethodKML(id = "Traj")
idVariable(method) # "Traj"

model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
idVariable(model) # "Id"</pre>
```

latrend

Cluster longitudinal data

Description

Cluster longitudinal data

30 latrend

Usage

```
latrend(
  method,
  data,
  ...,
  envir = NULL,
  verbose = getOption("latrend.verbose")
)
```

Arguments

method	The 1cMethod object specifying the longitudinal cluster method to apply.
data	The data.frame or matrix to which to apply the method.
	Any other arguments to update the 1cMethod definition with.
envir	The environment in which to evaluate the method arguments. Note that this only applies to data when data is a call.
verbose	The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info', 'fine', 'finest').

Details

If a seed value is specified in the lcMethod object or arguments to latrend, this seed is set using set.seed prior to the cluster preparation step.

Value

A 1cModel object representing the fitted model.

See Also

Other longitudinal cluster fit functions: latrendBatch(), latrendBoot(), latrendCV(), latrendRep()

Examples

```
data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), data = latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
model <- latrend(method, data = latrendData, nClusters = 3)
model <- latrend(method, data = latrendData, nClusters = 3, seed = 1)</pre>
```

latrend-parallel 31

latrend-parallel

Parallel computing using latrend

Description

The model estimation functions support parallel computation through the use of the foreach mechanism. In order to make use of parallel execution, a parallel back-end must be registered.

Windows

On Windows, the parallel-package can be used to define parallel socket workers.

```
nCores = parallel::detectCores(logical = FALSE)
cl = parallel::makeCluster(nCores - 1)
parallel::clusterEvalQ(cl, expr=library(latrend))
```

Then, register the cluster as the parallel back-end using the doParallel package:

```
doParallel::registerDoParallel(cl)
```

If you defined your own lcMethod or lcModel extension classes, make sure to load them on the workers as well. This can be done, for example, using:

```
parallel::clusterEvalQ(cl,
  expr = setClass('lcMethodMyImpl', contains = "lcMethod"))
```

Unix

On Unix systems, it is easier to setup parallelization as the R process is forked. In this example we use the doMC package:

```
nCores = parallel::detectCores(logical = FALSE)
doMC::registerDoMC(nCores - 1)
```

See Also

latrendRep, latrendBatch, latrendBoot, latrendCV

32 latrendBatch

latrendBatch

Cluster longitudinal data for a list of model specifications

Description

Fit a list of longitudinal cluster methods.

Usage

```
latrendBatch(
  methods,
  data,
  cartesian = TRUE,
  parallel = FALSE,
  errorHandling = "stop",
  envir = NULL,
  verbose = getOption("latrend.verbose")
)
```

Arguments

methods A list of lcMethod objects.

data A data.frame, matrix, or a list thereof to which to apply to the respective

1cMethod. Multiple datasets can be supplied by encapsulating the datasets using

data=.(df1,df2,...,dfN).

cartesian Whether to fit the provided methods on each of the datasets. If cartesian=FALSE,

only a single dataset may be provided or a list of data matching the length of

methods.

parallel Whether to enable parallel evaluation. See latrend-parallel.

errorHandling Whether to "stop" on an error, or to "remove' evaluations that raised an error.

envir The environment in which to evaluate the lcMethod arguments.

verbose The level of verbosity. Either an object of class Verbose (see R.utils::Verbose

for details), a logical indicating whether to show basic computation informa-

tion, a numeric indicating the verbosity level (see Verbose), or one of c('info', 'fine', 'finest').

Value

A 1cModels object.

See Also

lcMethods

Other longitudinal cluster fit functions: latrendBoot(), latrendCV(), latrendRep(), latrend()

latrendBoot 33

Examples

latrendBoot

Cluster longitudinal data using bootstrapping

Description

Performs bootstrapping, generating samples from the given data at the id level, fitting a lcModel to each sample.

Usage

```
latrendBoot(
  method,
  data,
  samples = 50,
  seed = NULL,
  parallel = FALSE,
  errorHandling = "stop",
  envir = NULL,
  verbose = getOption("latrend.verbose")
)
```

Arguments

method The 1cMethod object specifying the longitudinal cluster method to apply.

data A data.frame.

samples The number of bootstrap samples to evaluate.

seed The seed to use. Optional.

parallel Whether to enable parallel evaluation. See latrend-parallel.

errorHandling Whether to "stop" on an error, or to "remove' evaluations that raised an error.

envir The environment in which to evaluate the method arguments. Note that this

only applies to data when data is a call.

verbose The level of verbosity. Either an object of class Verbose (see R.utils::Verbose

for details), a logical indicating whether to show basic computation informa-

tion, a numeric indicating the verbosity level (see Verbose), or one of c('info', 'fine', 'finest').

34 latrendCV

Value

A 1cModels object of length samples.

See Also

```
Other longitudinal cluster fit functions: latrendBatch(), latrendCV(), latrendRep(), latrend()
Other validation methods: createTestDataFolds(), createTestDataFold(), createTrainDataFolds(), latrendCV(), lcModel-data-filters
```

Examples

```
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
model <- latrendBoot(method, latrendData, samples = 10)</pre>
```

latrendCV

Cluster longitudinal data over k folds

Description

Apply k-fold cross validation for internal cluster validation. Creates k random subsets ("folds") from the data, estimating a model for each of the k-1 combined folds.

Usage

```
latrendCV(
  method,
  data,
  folds = 10,
  seed = NULL,
  parallel = FALSE,
  errorHandling = "stop",
  envir = NULL,
  verbose = getOption("latrend.verbose")
)
```

Arguments

method The 1cMethod object specifying the longitudinal cluster method to apply.

data A data.frame.

folds The number of folds. Ten folds by default.

seed The seed to use. Optional.

parallel Whether to enable parallel evaluation. See latrend-parallel.

errorHandling Whether to "stop" on an error, or to "remove' evaluations that raised an error.

latrendData 35

envir The environment in which to evaluate the method arguments. Note that this

only applies to data when data is a call.

verbose The level of verbosity. Either an object of class Verbose (see R.utils::Verbose

for details), a logical indicating whether to show basic computation informa-

tion, a numeric indicating the verbosity level (see Verbose), or one of c('info', 'fine', 'finest').

Value

A 1cModels object of containing the folds training models.

See Also

```
Other longitudinal cluster fit functions: latrendBatch(), latrendBoot(), latrendRep(), latrend()
Other validation methods: createTestDataFolds(), createTestDataFold(), createTrainDataFolds(), latrendBoot(), lcModel-data-filters
```

Examples

```
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
model <- latrendCV(method, latrendData, folds = 5)
model <- latrendCV(method, subset(latrendData, Time < .5), folds = 5, seed = 1)</pre>
```

latrendData

Synthetic longitudinal dataset comprising three classes

Description

Synthetic longitudinal dataset comprising three classes

Usage

latrendData

Format

A data frame describing 200 trajectories originating from one of three classes, each with a different cluster trajectory. Trajectories randomly deviate in intercept and slope from the reference cluster.

Id trajectory identifier, integer.

Time measurement time, numeric between 0 and 2.

Y observed variable, numeric.

Class the reference class, factor.

36 latrendRep

Source

This dataset was generated using generateLongData.

See Also

generateLongData

latrendRep

Cluster longitudinal data repeatedly

Description

Performs a repeated fit of the specified latrend model on the given data.

Usage

```
latrendRep(
  method,
  data,
    .rep = 10,
    ...,
    .errorHandling = "stop",
    .seed = NULL,
    .parallel = FALSE,
  envir = NULL,
  verbose = getOption("latrend.verbose")
)
```

Arguments

method	The 1cMethod object specifying the longitudinal cluster method to apply.
data	The data.frame or matrix to which to apply the method.
.rep	The number of repeated fits.
	Any other arguments to update the 1cMethod definition with.
.errorHandling	Whether to "stop" on an error, or to "remove' evaluations that raised an error.
.seed	Set the seed for generating the respective seed for each of the repeated fits.
.parallel	Whether to use parallel evaluation. See latrend-parallel.
envir	The environment in which to evaluate the method arguments. Note that this only applies to data when data is a call.
verbose	The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info', 'fine', 'finest').

lcApproxModel-class 37

Details

This method is faster than repeatedly calling latrend as it only prepares the data via prepareData() once

Value

A 1cModels object containing the resulting models.

See Also

 $Other\ longitudinal\ cluster\ fit\ functions:\ latrendBatch(), latrendBoot(), latrendCV(), latrend()$

Examples

```
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time")
models <- latrendRep(method, data = latrendData, .rep = 5) # 5 repeated runs
models <- latrendRep(method, data = latrendData, .seed = 1, .rep = 3)</pre>
```

lcApproxModel-class

lcApproxModel class

Description

approx models have defined cluster trajectories at fixed moments in time, which should be interpolated For a correct implementation, lcApproxModel requires the extending class to implement clusterTrajectories(at=NULL) to return the fixed cluster trajectories

```
## S3 method for class 'lcApproxModel'
fitted(object, ..., clusters = trajectoryAssignments(object))
## S4 method for signature 'lcApproxModel'
predictForCluster(
  object,
  newdata,
  cluster,
  what = "mu",
  approxFun = approx,
  ...
)
```

38 lcMethod

Arguments

object	The lcModel object.
	Additional arguments.
clusters	Optional cluster assignments per id. If unspecified, a matrix is returned containing the cluster-specific predictions per column.
newdata	Optional data.frame for which to compute the model predictions. If omitted, the model training data is used. Cluster trajectory predictions are made when ids are not specified.
cluster	The cluster name (as character) to predict for.
what	The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.
approxFun	Function to interpolate between measurement moments, approx() by default.

1cMethod Create a lcMethod object of the specified type and arguments	
1cMethod Create a lcMethod object of the specified type and arguments	

Description

Provides a mechanism for creating 1cMethod objects for an arbitrary class. Note that it is advisable to use the class-specific constructors instead.

Usage

```
lcMethod(.class, ..., .defaults = list(), .excludeArgs = c())
```

Arguments

.class The type of lcMethod-class class

... Any arguments to assign to the method object.

.defaults See defaults of lcMethod.call.
.excludeArgs See excludeArgs of lcMethod.call.

See Also

lcMethod.call

IcMethod-class 39

lcMethod-class

lcMethod class

Description

Base class used to define a longitudinal cluster method. It is implemented as a wrapper around a call.

Model estimation is handled through a series of calls implement by the lcMethod object. The calls are made by latrend, in the following order:

- compose
- validate
- prepareData
- preFit
- fit
- postFit

Extracts the assigned label.

Extracts the name of the given object.

```
## S4 method for signature 'lcMethod'
compose(method, envir = NULL)
## S4 method for signature 'lcMethod'
fit(method, data, envir, verbose)
## S4 method for signature 'lcMethod'
getLabel(object, ...)
## S4 method for signature 'lcMethod'
getName(object)
## S4 method for signature 'lcMethod'
getShortName(object, ...)
## S4 method for signature 'lcMethod'
length(x)
## S4 method for signature 'lcMethod'
names(x)
## S4 method for signature 'lcMethod'
preFit(method, data, envir, verbose)
```

40 lcMethod-class

```
## S4 method for signature 'lcMethod'
prepareData(method, data, verbose)

## S4 method for signature 'lcMethod'
postFit(method, data, model, envir, verbose)

## S4 method for signature 'lcMethod'
validate(method, data, envir = NULL, ...)
```

Arguments

method The lcMethod object.

envir The environment in which the 1cMethod should be evaluated data The data, as a data.frame, on which the model will be trained. verbose A R.utils::Verbose object indicating the level of verbosity.

object The object to extract the label from.

... Additional arguments.
x The lcMethod object.

model The lcModel object returned by fit().

Details

Because the lcMethod arguments may be unevaluated, evaluation functions such as [[accept an envir argument. A default environment can be assigned or obtained from a lcMethod object using the environment() function.

Value

The updated 1cMethod object.

An 1cModel object.

The extracted label, as character.

A character vector of argument names.

An environment that will be passed to fit().

A data. frame with the post-processed data.

The updated 1cModel object.

Either TRUE if all validation checks passed, or a character containing a description of the failed validation checks.

Slots

arguments A list representing the arguments of the lcMethod object. Arguments are not evaluated upon creation of the method object. Instead, arguments are stored similar to a call object. Do not modify or access.

sourceCalls A list of calls for tracking the original call after substitution. Used for printing objects which require too many characters (e.g., function definitions, matrices).

IcMethod.call 41

See Also

environment

Other lcMethod implementations: lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), update.lcMethod()

Examples

```
getName(lcMethodKML("Y")) # "longitudinal k-means"
getShortName(lcMethodKML("Y")) # "KML"
m = lcMethodKML("Y")
names(m)
```

1cMethod.call

Create a lcMethod object from a call

Description

Creates a lcMethod class of the specified type Class for the given arguments given in a call, along with any default arguments from reference functions. This function is intended to be used by classes extending lcMethod to provide an easy way to construct the appropriate call object.

Usage

```
lcMethod.call(Class, call, defaults = list(), excludeArgs = c())
```

Arguments

Class The type of lcMethod class

call The arguments to create the lcMethod from.

defaults List of function to obtain defaults from for arguments not defined in call.

excludeArgs The names of the arguments to exclude from the defaults, provided as a charac-

ter vector.

Value

An object of class Class that extends 1cMethod.

See Also

lcMethod

42 IcMethodAkmedoids

Examples

```
data(latrendData)
lcMethodKML2 <- function(response = "Y", id = "Id", time = "Time", nClusters = 2, ...) {
  lcMethod.call("lcMethodKML", call = stackoverflow::match.call.defaults(),
        defaults = c(kml::kml, kml::parALGO),
        excludeArgs = c("object", "nbClusters", "parAlgo", "toPlot", "saveFreq"))
}
method <- lcMethodKML2(nClusters = 3)
latrend(method, data = latrendData)</pre>
```

lcMethodAkmedoids

Specify AKMedoids method

Description

Specify AKMedoids method

Usage

```
lcMethodAkmedoids(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 3,
  clusterCenter = median,
  crit = "Calinski_Harabasz",
  ...
)
```

Arguments

response The name of the response variable.

time The name of the time variable.

id The name of the trajectory identification variable.

nClusters The number of clusters to estimate.

clusterCenter A function for computing the cluster center representation.

crit Criterion to apply for internal model selection. Not applicable.

Arguments passed to akmedoids::akclustr. The following external arguments

are ignored: traj, id_field, k

References

Adepeju M, Langton S, Bannister J (2020). *akmedoids: Anchored Kmedoids for Longitudinal Data Clustering*. R package version 0.1.5, https://CRAN.R-project.org/package=akmedoids.

IcMethodCrimCV 43

See Also

 $\label{lem:control} Other\ lcMethod\ implementations: \ lcMethod-class, \ lcMethod\ CrimCV, \ lcMethod\ Custom, \ lcMethod\ Dtwclust, \ lcMethod\ Feature, \ lcMethod\ Fem, \ lcMethod\ KML, \ lcMethod\ LMKM, \ lcMethod\ LcmmGBTM, \ lcMethod\ LcmmGMM, \ lcMethod\ Long\ clust, \ lcMethod\ MixAK_GLMM, \ lcMethod\ Mixtools\ GMM, \ lcMethod\ Mixtools\ NPRM, \ lcMethod\ Random, \ lcMethod\ Stratify$

Examples

```
library(akmedoids)
data(latrendData)
method <- lcMethodAkmedoids(response = "Y", time = "Time", id = "Id", nClusters = 3)
model <- latrend(method, data = latrendData)</pre>
```

lcMethodCrimCV

Specify a zero-inflated repeated-measures GBTM method

Description

Specify a zero-inflated repeated-measures GBTM method

Usage

```
lcMethodCrimCV(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

response The name of the response variable.

time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

... Arguments passed to crimCV::crimCV. The following external arguments are ignored: Dat, ng.

References

Nielsen JD (2018). *crimCV: Group-Based Modelling of Longitudinal Data*. R package version 0.9.6, https://CRAN.R-project.org/package=crimCV.

44 IcMethodCustom

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

Examples

1cMethodCustom

Specify a custom method based on a model function

Description

Specify a custom method based on a model function

Usage

```
lcMethodCustom(
  response,
  fun,
  center = meanNA,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  name = "custom"
)
```

Arguments

response The name of the response variable.

fun The cluster function with signature (method, data).

center Optional function for computing the longitudinal cluster centers, with signa-

ture (x).

time The name of the time variable.

id The name of the trajectory identification variable.

name The name of the method.

IcMethodDtwclust 45

See Also

 $\label{lem:control_of_control_o$

Examples

```
data(latrendData)
# Stratification based on the mean response level
clusfun <- function(data, response, id, time, ...) {
    clusters <- data.table::as.data.table(data)[, mean(Y) > 0, by = Id]$V1
    lcModelCustom(data = data,
        trajectoryAssignments = factor(clusters, levels = c(FALSE, TRUE), labels = c("Low", "High")),
    response = response,
    time = time,
    id = id)
}
method <- lcMethodCustom(response = "Y", fun = clusfun, id = "Id", time = "Time")
model <- latrend(method, data = latrendData)</pre>
```

lcMethodDtwclust

Specify time series clustering via dtwclust

Description

Specify time series clustering via dtwclust

Usage

```
lcMethodDtwclust(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

response The name of the response variable.

time The name of the time variable.

id The name of the trajectory identifier variable.

Number of clusters.

Arguments passed to dtwclust::tsclust. The following arguments are ignored: series, k, trace.

46 IcMethodFeature

References

SardÃ_i-Espinosa A (2019). "Time-Series Clustering in R Using the dtwclust Package." *The R Journal*. doi: 10.32614/RJ2019023.

See Also

 $\label{lem:control} Other\ lcMethod\ implementations: 1cMethod-class, 1cMethodAkmedoids, 1cMethodCrimCV, 1cMethodCustom, 1cMethodFeature, 1cMethodFunFEM, 1cMethodGCKM, 1cMethodKML, 1cMethodLMKM, 1cMethodLcmmGBTM, 1cMethodLcmmGMM, 1cMethodLongclust, 1cMethodMclustLLPA, 1cMethodMixAK_GLMM, 1cMethodMixtoolsGMM, 1cMethodMixtoolsNPRM, 1cMethodRandom, 1cMethodStratify$

Examples

```
library(dtwclust)
data(latrendData)
method <- lcMethodDtwclust("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

lcMethodFeature

Feature-based clustering

Description

Feature-based clustering.

Usage

```
lcMethodFeature(
  response,
  representationStep,
  clusterStep,
  standardize = scale,
  center = meanNA,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  ...
)
```

Arguments

response

The name of the response variable.

representationStep

A function with signature function(method, data) that computes the representation per strata, returned as a matrix. Alternatively, representationStep is a pre-computed representation matrix.

clusterStep

A function with signature function(repdata) that outputs a lcModel.

lcMethodFlexmix 47

A function to standardize the output matrix of the representation step. By default, the output is shifted and rescaled to ensure zero mean and unit variance.

Center Optional function for computing the longitudinal cluster centers, with signature (x).

time The name of the time variable.

id The name of the trajectory identification variable.

... Additional arguments.

See Also

 $\label{lem:control} Other \ lcMethod\ implementations: \ lcMethod-class, \ lcMethodAkmedoids, \ lcMethodCrimCV, \ lcMethodCustom, \ lcMethodDtwclust, \ lcMethodFunFEM, \ lcMethodGCKM, \ lcMethodKML, \ lcMethodLmKM, \ lcMethodLcmmGBTM, \ lcMethodLcmmGMM, \ lcMethodLongclust, \ lcMethodMclustLLPA, \ lcMethodMixAK_GLMM, \ lcMethodMixtoolsGMM, \ lcMethodMixtoolsNPRM, \ lcMethodRandom, \ lcMethodStratify$

Description

Wrapper to the flexmix() method from the flexmix package.

Usage

```
lcMethodFlexmix(
  formula,
  formula.mb = ~1,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

formula A formula specifying the model.

formula.mb A formula specifying the class membership model. By default, an intercept-

only model is used.

time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

... Arguments passed to flexmix::flexmix. The following arguments are ignored:

data, concomitant, k.

48 lcMethodFlexmixGBTM

References

Grün B, Leisch F (2008). "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters." *Journal of Statistical Software*, **28**, 1–35. doi: 10.18637/jss.v028.i04, https://www.jstatsoft.org/v28/i04/.

See Also

Other lcMethod package interfaces: lcMethodFlexmixGBTM

Examples

```
library(flexmix)
data(latrendData)
method <- lcMethodFlexmix(Y ~ Time, id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

lcMethodFlexmixGBTM

Group-based trajectory modeling using flexmix

Description

Fits a GBTM based on the flexmix::FLXMRglm driver.

Usage

```
lcMethodFlexmixGBTM(
  formula,
  formula.mb = ~1,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

formula A formula specifying the model.

formula.mb A formula specifying the class membership model. By default, an intercept-

only model is used.

time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

... Arguments passed to flexmix::flexmix or flexmix::FLXMRglm. The following

arguments are ignored: data, k, trace.

IcMethodFunFEM 49

References

Grün B, Leisch F (2008). "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters." *Journal of Statistical Software*, **28**, 1–35. doi: 10.18637/jss.v028.i04, https://www.jstatsoft.org/v28/i04/.

See Also

Other lcMethod package interfaces: lcMethodFlexmix

Examples

```
library(flexmix)
data(latrendData)
method <- lcMethodFlexmixGBTM(Y ~ Time, id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

1cMethodFunFEM

Specify a FunFEM method

Description

Specify a FunFEM method

Usage

```
lcMethodFunFEM(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  basis = function(time) fda::create.bspline.basis(time, nbasis = 10, norder = 4),
  ...
)
```

Arguments

response The name of the response variable.

time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

basis The basis function. By default, a 3rd-order B-spline with 10 breaks is used.

... Arguments passed to funFEM::funFEM. The following external arguments are ignored: fd, K, disp, graph.

50 lcMethodGCKM

References

Bouveyron C (2015). *funFEM: Clustering in the Discriminative Functional Subspace*. R package version 1.1, https://CRAN.R-project.org/package=funFEM.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

Examples

```
library(funFEM)
library(fda)
data(latrendData)
method <- lcMethodFunFEM("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)

method <- lcMethodFunFEM("Y",
   basis = function(time) {
      create.bspline.basis(time,
      nbasis = 10, norder = 4)
})</pre>
```

1cMethodGCKM

Two-step clustering through linear mixed modeling and k-means

Description

Two-step clustering through linear mixed modeling and k-means.

Usage

```
lcMethodGCKM(
  formula,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  center = meanNA,
  ...
)
```

Arguments

formula Formula, including a random effects component for the trajectory. See lme4::lmer

formula syntax.

time The name of the time variable..

IcMethodKML 51

id The name of the trajectory identifier variable.

nClusters The number of clusters.

center Optional function for computing the longitudinal cluster centers, with signa-

ture (x).

... Arguments passed to lme4::lmer. The following external arguments are ignored:

data, centers, trace.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

Examples

```
library(lme4)
data(latrendData)
method <- lcMethodGCKM(Y ~ (Time | Id), id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

1cMethodKML

Specify a longitudinal k-means (KML) method

Description

Specify a longitudinal k-means (KML) method

Usage

```
lcMethodKML(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

response The name of the response variable. time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

... Arguments passed to kml::parALGO and kml::kml. The following external ar-

guments are ignored: object, nbClusters, parAlgo, toPlot, saveFreq

52 IcMethodLcmmGBTM

References

Genolini C, Alacoque X, Sentenac M, Arnaud C (2015). "kml and kml3d: R Packages to Cluster Longitudinal Data." *Journal of Statistical Software*, **65**, 1–34. https://www.jstatsoft.org/v65/i04/.

See Also

 $\label{lem:control_of_control_o$

Examples

```
library(kml)
data(latrendData)
method <- lcMethodKML("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

1cMethodLcmmGBTM

Specify GBTM method

Description

Group-based trajectory modeling through fixed-effects modeling.

Usage

```
lcMethodLcmmGBTM(
   fixed,
   mixture = ~1,
   classmb = ~1,
   time = getOption("latrend.time"),
   id = getOption("latrend.id"),
   nClusters = 2,
   ...
)
```

Arguments

fixed The fixed effects formula.

mixture The mixture-specific effects formula. See lcmm::hlme for details.

classmb The cluster membership formula for the multinomial logistic model. See lcmm::hlme

for details.

time The name of the time variable.

lcMethodLcmmGMM 53

id	The name of the trajectory identifier variable. This replaces the subject argument of lcmm::hlme.
nClusters	The number of clusters to fit. This replaces the ng argument of lcmm::hlme.
•••	Arguments passed to lcmm::hlme. The following arguments are ignored: data, fixed, random, mixture, subject, classmb, returndata, ng, verbose, subset.

References

Proust-Lima C, Philipps V, Liquet B (2017). "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm." *Journal of Statistical Software*, **78**, 1–56. doi: 10.18637/jss.v078.i02.

Proust-Lima C, Philipps V, Diakite A, Liquet B (2019). *lcmm: Extended Mixed Models Using Latent Classes and Latent Processes*. R package version: 1.8.1, https://cran.r-project.org/package=lcmm.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

Examples

```
data(latrendData)
method <- lcMethodLcmmGBTM(fixed = Y ~ Time, mixture = ~ 1,
    id = "Id", time = "Time", nClusters = 3)
gbtm <- latrend(method, data = latrendData)
summary(gbtm)
method <- lcMethodLcmmGBTM(fixed = Y ~ Time, mixture = ~ Time,
    id = "Id", time = "Time", nClusters = 3)</pre>
```

1cMethodLcmmGMM

Specify GMM method using lcmm

Description

Growth mixture modeling through latent-class linear mixed modeling.

```
lcMethodLcmmGMM(
  fixed,
  mixture = ~1,
  random = ~1,
  classmb = ~1,
```

54 IcMethodLcmmGMM

```
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
...
)
```

Arguments

fixed The fixed effects formula.

mixture The mixture-specific effects formula. See lcmm::hlme for details.

random The random effects formula. See lcmm::hlme for details.

classmb The cluster membership formula for the multinomial logistic model. See lcmm::hlme

for details.

time The name of the time variable.

id The name of the trajectory identifier variable. This replaces the subject argu-

ment of lcmm::hlme.

nClusters The number of clusters to fit. This replaces the ng argument of lcmm::hlme.

... Arguments passed to lcmm::hlme. The following arguments are ignored: data,

fixed, random, mixture, subject, classmb, returndata, ng, verbose, subset.

References

Proust-Lima C, Philipps V, Liquet B (2017). "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm." *Journal of Statistical Software*, **78**, 1–56. doi: 10.18637/jss.v078.i02.

Proust-Lima C, Philipps V, Diakite A, Liquet B (2019). *lcmm: Extended Mixed Models Using Latent Classes and Latent Processes*. R package version: 1.8.1, https://cran.r-project.org/package=lcmm.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

```
data(latrendData)
method <- lcMethodLcmmGMM(fixed = Y ~ Time,
    mixture = ~ Time, random = ~ 1,
    id = "Id", time = "Time", , nClusters = 3)
gmm <- latrend(method, data = latrendData)
summary(gmm)

method <- lcMethodLcmmGMM(fixed = Y ~ Time,
    mixture = ~ Time, random = ~ Time,
    id = "Id", time = "Time", nClusters = 3)</pre>
```

IcMethodLMKM 55

lcMethodLMKM	Two-step clustering through linear regression modeling and k-means

Description

Two-step clustering through linear regression modeling and k-means

Usage

```
lcMethodLMKM(
  formula,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  standardize = scale,
  ...
)
```

Arguments

formula A formula specifying the linear trajectory model.

time The name of the time variable.

id The name of the trajectory identification variable.

nClusters The number of clusters to estimate.

standardize A function to standardize the output matrix of the representation step. By

default, the output is shifted and rescaled to ensure zero mean and unit variance.

... Arguments passed to stats::lm. The following external arguments are ignored:

x, data, control, centers, trace.

See Also

 $\label{lem:control_of_control_o$

```
data(latrendData)
method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

56 IcMethodLongclust

lcMethodLongclust

Specify Longclust method

Description

Specify Longclust method

Usage

```
lcMethodLongclust(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

response The name of the response variable. time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

... Arguments passed to longclust::longclustEM. The following external arguments

are ignored: data, x, Gmin, Gmax, userseed.

References

McNicholas PD, Jampani KR, Subedi S (2019). *longclust: Model-Based Clustering and Classification for Longitudinal Data*. R package version 1.2.3, https://CRAN.R-project.org/package=longclust.

See Also

 $\label{lem:control_of_control_o$

```
library(longclust)
data(latrendData)
method <- lcMethodLongclust("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

IcMethodMclustLLPA 57

lcMethodMclustLLPA Longitudinal latent profile analysis

Description

Latent profile analysis or finite Gaussian mixture modeling.

Usage

```
lcMethodMclustLLPA(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

response The name of the response variable.

time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

... Arguments passed to mclust::Mclust. The following external arguments are ig-

nored: data, G, verbose.

References

Scrucca L, Fop M, Murphy TB, Raftery AE (2016). "mclust 5: clustering, classification and density estimation using Gaussian finite mixture models." *The R Journal*, **8**, 205–233. https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf.

See Also

 $Other\ lc Method\ implementations: \ lc Method\ -class, \ lc Method\ Akmedoids, \ lc Method\ Crim CV, \ lc Method\ Custom, \ lc Method\ Dtwclust, \ lc Method\ Feature, \ lc Method\ Fun FEM, \ lc Method\ GCKM, \ lc MethodKML, \ lc Method\ LMKM, \ lc Method\ Lomg GBTM, \ lc Method\ Lomg GBTM, \ lc Method\ Mix AK_GLMM, \ lc Method\ Mix tools GMM, \ lc Method\ Mix tools NPRM, \ lc Method\ Random, \ lc Method\ Stratify$

```
library(mclust)
data(latrendData)
method <- lcMethodMclustLLPA("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

lcMethodMixAK_GLMM

Specify a GLMM iwht a normal mixture in the random effects

Description

Specify a GLMM iwht a normal mixture in the random effects

Usage

```
lcMethodMixAK_GLMM(
   fixed,
   random,
   time = getOption("latrend.time"),
   id = getOption("latrend.id"),
   nClusters = 2,
   ...
)
```

Arguments

fixed	A formula specifying the fixed effects of the model, including the response. Creates the y and x arguments for the call to mixAK::GLMM_MCMC.
random	A formula specifying the random effects of the model, including the random intercept. Creates the z and random.intercept arguments for the call to mixAK::GLMM_MCMC.
time	The name of the time variable.
id	The name of the trajectory identifier variable. This is used to generate the id vector argument for the call to mixAK::GLMM_MCMC.
nClusters	The number of clusters.
	Arguments passed to mixAK::GLMM_MCMC. The following external arguments are ignored: y, x, z, random.intercept, silent.

References

Komárek A (2009). "A New R Package for Bayesian Estimation of Multivariate Normal Mixtures Allowing for Selection of the Number of Components and Interval-Censored Data." *Computational Statistics* \& *Data Analysis*, **53**, 3932–3947. doi: 10.1016/j.csda.2009.05.006.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

lcMethodMixtoolsGMM 59

Examples

```
data(latrendData)
# this example only runs when the mixAK package is installed
try({
  method <- lcMethodMixAK_GLMM(fixed = Y ~ 1, random = ~ Time,
  id = "Id", time = "Time", nClusters = 3)
  model <- latrend(method, latrendData)
  summary(model)
})</pre>
```

lcMethodMixtoolsGMM

Specify mixed mixture regression model using mixtools

Description

Specify mixed mixture regression model using mixtools

Usage

```
lcMethodMixtoolsGMM(
  formula,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

Formula, including a random effects component for the trajectory. See lme4::lme7
time
The name of the time variable..

id
The name of the trajectory identifier variable.

nClusters
The number of clusters.

Arguments passed to mixtools::regmixEM.mixed. The following arguments are ignored: data, y, x, w, k, addintercept.fixed, verb.

References

Benaglia T, Chauveau D, Hunter DR, Young D (2009). "mixtools: An R Package for Analyzing Finite Mixture Models." *Journal of Statistical Software*, **32**, 1–29. https://www.jstatsoft.org/v32/i06/.

lcMethodMixtoolsNPRM

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsNPRM, lcMethodRandom, lcMethodStratify

Examples

```
library(mixtools)
data(latrendData)
method <- lcMethodMixtoolsGMM(
   formula = Y ~ Time + (1 | Id),
   id = "Id", time = "Time",
   nClusters = 3,
   arb.R = FALSE)</pre>
```

lcMethodMixtoolsNPRM Specify non-parametric estimation for independent repeated measures

Description

Specify non-parametric estimation for independent repeated measures

Usage

```
lcMethodMixtoolsNPRM(
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  blockid = NULL,
  bw = NULL,
  h = NULL,
  ...
)
```

Arguments

response The name of the response variable.

time The name of the time variable.

id The name of the trajectory identifier variable.

nClusters The number of clusters to estimate.

blockid See mixtools::npEM.

bw See mixtools::npEM.

IcMethodMixTVEM 61

```
h See mixtools::npEM.... Arguments passed to mixtools::npEM. The following optional arguments are
```

ignored: data, x, mu0, verb.

References

Benaglia T, Chauveau D, Hunter DR, Young D (2009). "mixtools: An R Package for Analyzing Finite Mixture Models." *Journal of Statistical Software*, **32**, 1–29. https://www.jstatsoft.org/v32/i06/.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodRandom, lcMethodStratify

Examples

```
library(mixtools)
data(latrendData)
method <- lcMethodMixtoolsNPRM("Y", id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)</pre>
```

lcMethodMixTVEM

Specify a MixTVEM

Description

Specify a MixTVEM

Usage

```
lcMethodMixTVEM(
  formula,
  formula.mb = ~1,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  ...
)
```

Arguments

formula A formula excluding the time component. Time-invariant covariates are de-

tected automatically as these are a special case in MixTVEM.

formula.mb A formula for cluster-membership prediction. Covariates must be time-invariant.

Furthermore, the formula must contain an intercept.

62 lcMethodRandom

time	The name of the time variable.
id	The name of the trajectory identifier variable.
nClusters	The number of clusters. This replaces the numClasses argument of the TVEMMixNormal function call.
• • •	Arguments passed to the TVEMMixNormal() function. The following optional arguments are ignored: doPlot, getSEs, numClasses.

Note

In order to use this method, you must download and source MixTVEM.R. See the reference below.

References

```
https://github.com/dziakj1/MixTVEM
```

Dziak JJ, Li R, Tan X, Shiffman S, Shiyko MP (2015). "Modeling intensive longitudinal data with mixtures of nonparametric trajectories and time-varying effects." *Psychological Methods*, **20**, 444–469. doi: 10.1037/met0000048.

Examples

1cMethodRandom

Specify a random-partitioning method

Description

Creates a model with random cluster assignments according to the random cluster proportions drawn from a Dirichlet distribution.

```
lcMethodRandom(
  response,
  alpha = 10,
  center = meanNA,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  nClusters = 2,
  name = "random"
)
```

IcMethods 63

Arguments

response The name of the response variable.

alpha The Dirichlet parameters. Either scalar or of length nClusters. The higher

alpha, the more uniform the clusters will be.

center Optional function for computing the longitudinal cluster centers, with signa-

ture (x).

time The name of the time variable.

id The name of the trajectory identification variable.

nClusters The number of clusters.

The name of the method.

References

Frigyik BA, Kapila A, Gupta MR (2010). "Introduction to the Dirichlet distribution and related processes." Technical Report UWEETR-2010-0006, Department of Electrical Engineering, University of Washington.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodStratify

Examples

```
data(latrendData)
method <- lcMethodRandom(response = "Y", id = "Id", time = "Time")
model <- latrend(method, latrendData)

# uniform clusters
method <- lcMethodRandom(alpha = 1e3, nClusters = 3, response = "Y", id = "Id", time = "Time")

# single large cluster
method <- lcMethodRandom(alpha = c(100, 1, 1, 1), nClusters = 4,
    response = "Y", id = "Id", time = "Time")</pre>
```

1cMethods

Generate a list of lcMethod objects

Description

 $Generates\ a\ list\ of\ 1cMethod\ objects\ for\ all\ combinations\ of\ the\ provided\ argument\ values.$

```
lcMethods(method, ..., envir = NULL)
```

64 IcMethodStratify

Arguments

method

The lcMethod to use as the template, which will be updated for each of the other arguments.

. . .

Any other arguments to update the lcMethod definition with. Values must be scalar, vector, list, or encapsulated in a . () call. Arguments wrapped in . () are passed as-is to the model call, ensuring a readable method. Arguments comprising a single symbol (e.g. a variable name) are interpreted as a constant. To force evaluation, specify arg=(var) or arg=force(var). Arguments of type vector or list are split across a series of method fit calls. Arguments of type scalar are constant across the method fits. If a list is intended to be passed as a constant argument, then specifying arg=.(listObject) results in it being treated as such.

envir

The environment in which to evaluate the method arguments.

Value

A list of lcMethod objects.

Examples

```
data(latrendData)
baseMethod <- lcMethodKML("Y", id = "Id", time = "Time")
methods <- lcMethods(baseMethod, nClusters = 1:6)

nclus <- 1:6
methods <- lcMethods(baseMethod, nClusters = nclus)

methods <- lcMethods(baseMethod, nClusters = 3, center = .(mean, mean, median))
length(methods) # 3

methods <- lcMethods(baseMethod, nClusters = 1:3, center = .(mean, mean, median))
length(methods) # 9</pre>
```

lcMethodStratify

Specify a stratification method

Description

Specify a stratification method

```
lcMethodStratify(
  response,
  stratify,
  center = meanNA,
  nClusters = NaN,
```

IcMethodStratify 65

```
clusterNames = NULL,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  name = "stratify"
)
```

Arguments

response The name of the response variable.

stratify An expression returning a number or factor value per trajectory, representing

the cluster assignment. Alternatively, a function can be provided that takes

separate trajectory data. frame as input.

center The function for computing the longitudinal cluster centers, used for repre-

senting the cluster trajectories.

nClusters The number of clusters. This is optional, as this can be derived from the largest

assignment number by default, or the number of factor levels.

clusterNames The names of the clusters. If a factor assignment is returned, the levels are

used as the cluster names.

time The name of the time variable.

id The name of the trajectory identification variable.

name The name of the method.

See Also

Other lcMethod implementations: lcMethod-class, lcMethodAkmedoids, lcMethodCrimCV, lcMethodCustom, lcMethodDtwclust, lcMethodFeature, lcMethodFunFEM, lcMethodGCKM, lcMethodKML, lcMethodLMKM, lcMethodLcmmGBTM, lcMethodLcmmGMM, lcMethodLongclust, lcMethodMclustLLPA, lcMethodMixAK_GLMM, lcMethodMixtoolsGMM, lcMethodMixtoolsNPRM, lcMethodRandom

```
data(latrendData)
# Stratification based on the mean response level
method <- lcMethodStratify("Y", mean(Y) > 0,
    clusterNames = c("Low", "High"), id = "Id", time = "Time")
model <- latrend(method, latrendData)
summary(model)

# Stratification function
stratfun <- function(trajdata) {
    trajmean <- mean(trajdata$Y)
    factor(trajmean > 1.7,
        levels = c(FALSE, TRUE),
        labels = c("Low", "High"))
}
method <- lcMethodStratify("Y", stratfun, id = "Id", time = "Time")

# Multiple clusters
stratfun3 <- function(trajdata) {</pre>
```

66 lcModel-class

```
trajmean <- mean(trajdata$Y)
  cut(trajmean,
      c(-Inf, .5, 2, Inf),
      labels = c("Low", "Medium", "High"))
}
method <- lcMethodStratify("Y", stratfun3, id = "Id", time = "Time")</pre>
```

lcModel-class

lcModel class

Description

Abstract class for defining estimated longitudinal cluster models.

Extracts the name of the lcModel object. The name is comprised of the underlying lcMethod name, and the assigned label (if any).

Usage

```
## S4 method for signature 'lcModel'
getLabel(object, ...)

## S4 method for signature 'lcModel'
getName(object)

## S4 method for signature 'lcModel'
getShortName(object)
```

Arguments

```
object The lcModel object.
... Any additional arguments.
```

Details

An extending class must implement the following methods to ensure basic functionality:

- predict.lcModelExt: Used to obtain the fitted cluster trajectories and trajectories.
- postprob(lcModelExt): The posterior probability matrix is used to determine the cluster assignments of the trajectories.

For predicting the posterior probability for unseen data, the predictPostprob() should be implemented.

lcModelCustom 67

Slots

```
method The lcMethod-class object specifying the arguments under which the model was fitted.

call The call that was used to create this lcModel object. Typically, this is the call to latrend() or any of the other fitting functions.

model An arbitrary underlying model representation.

data A data. frame object, or an expression to resolves to the data. frame object.

date The date-time when the model estimation was initiated.

id The name of the trajectory identifier column.

time The name of the time variable.

response The name of the response variable.

label The label assigned to this model.

ids The possible trajectory identifier values the model was fitted on.

clusterNames The names of the clusters.

estimationTime The time, in seconds, that it took to fit the model.

tag An arbitrary user-specified data structure. This slot may be accessed and updated directly.
```

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

1cModelCustom

Specify a model based on a pre-computed result.

Description

Specify a model based on a pre-computed result.

```
lcModelCustom(
  data,
  response,
  trajectoryAssignments = NULL,
  clusterTrajectories = mean,
  trajectories = data,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  clusterNames = NULL,
  converged = TRUE,
  postprob = NULL,
```

68 IcModelPartition

```
model = NULL,
name = "custom",
predict = NULL,
predictPostprob = NULL,
method = new("lcMethod")
)
```

Arguments

data The data on which the cluster result is based, a data.frame.

response The response variable.

trajectoryAssignments

A vector indicating cluster membership per strata. Either a numeric vector with

range 1: numClus, or a factor.

clusterTrajectories

The cluster trajectories as a data.frame, or a function computing the center tra-

jectory based on the strata of the respective cluster.

trajectories The fitted trajectories.

time The time variable.

id The id variable.

clusterNames The names of the clusters. Optional.

converged Convergence state of the model. TRUE by default.

postprob Optional posterior probability matrix.

model An optional object representing the internal model.

name The name of the model.

predict Predict function for the response.

predictPostprob

Predict function for the posterior probability.

method The method used to create this lcModelCustom instance. Optional.

lcModelPartition Create a lcModel v

Create a lcModel with pre-defined partitioning

Description

Represents an arbitrary partitioning of a set of trajectories. As such, this model has no predictive capabilities. The cluster trajectories are represented by the specified center function (mean by default).

IcModels 69

Usage

```
lcModelPartition(
   data,
   response,
   trajectoryAssignments,
   nClusters = NA,
   center = meanNA,
   clusterNames = NULL,
   time = getOption("latrend.time"),
   id = getOption("latrend.id"),
   name = "part",
   envir = parent.frame()
)
```

Arguments

data A data. frame representing the trajectory data.

response The name of the response variable.

trajectoryAssignments

A vector of cluster membership per trajectory, either factor, or integer (1 to

nClusters).

nClusters The number of clusters. Optional for factor assignments.

center The function for computing the longitudinal cluster centers, used for repre-

senting the cluster trajectories.

clusterNames The names of the clusters, or a function with input n outputting a character vector

of names.

time The name of the time variable.

id The name of the trajectory identification variable.

name The name of the method.

envir The environment associated with the model. Used for evaluating the assigned

data object by model.data.lcModel.

1cModels

Construct a flat (named) list of lcModel objects

Description

Takes the inputs and generates a named lcModels object containing a list of the input models. Duplicates are preserved.

```
lcModels(...)
```

Arguments

... lcModel, lcModels, or a recursive list of lcModel objects. Arguments may be named.

Value

A 1cModels object containing all specified 1cModel objects.

See Also

```
Other lcModel list functions: as.lcModels(), print.lcModels(), subset.lcModels()
```

Examples

```
data(latrendData)
kml <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
gmm <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time,
    id = "Id", time = "Time"), latrendData)
lcModels(kml, gmm)
lcModels(defaults = c(kml, gmm))</pre>
```

lcModelWeightedPartition

Create a lcModel with pre-defined weighted partitioning

Description

Create a lcModel with pre-defined weighted partitioning

```
lcModelWeightedPartition(
  data,
  response,
  weights,
  center = weighted.meanNA,
  clusterNames = colnames(weights),
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  name = "wpart"
)
```

logLik.lcModel 71

Arguments

data The data on which the cluster result is based, a data.frame.

response The name of the response variable.

weights A numIds x numClusters matrix of partition probabilities.

center The function for computing the longitudinal cluster centers, used for repre-

senting the cluster trajectories.

clusterNames The names of the clusters, or a function with input n outputting a character vector

of names.

time The name of the time variable.

id The name of the trajectory identification variable.

name The name of the method.

logLik.lcModel Extract the log-likelihood of a lcModel

Description

Extract the log-likelihood of a lcModel

Usage

```
## S3 method for class 'lcModel'
logLik(object, ...)
```

Arguments

object The lcModel object.
... Additional arguments.

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

max.lcModels

Select the lcModel with the highest metric value

Description

Select the lcModel with the highest metric value

Usage

```
## S3 method for class 'lcModels'
max(x, name, ...)
```

Arguments

```
x The lcModels object.name The name of the internal metric.... Additional arguments.
```

Value

The lcModel with the highest metric value

See Also

min.lcModels externalMetric

Examples

```
data(latrendData)
baseMethod <- lcMethodKML(response = "Y", id = "Id", time = "Time")
kml1 <- latrend(baseMethod, nClusters = 1, latrendData)
kml2 <- latrend(baseMethod, nClusters = 2, latrendData)
kml3 <- latrend(baseMethod, nClusters = 3, latrendData)
models <- lcModels(kml1, kml2, kml3)
max(models, 'WRSS')</pre>
```

meltRepeatedMeasures Co

Convert a repeated measures data matrix to a data.frame

Description

Convert a repeated measures data matrix to a data.frame

metric 73

Usage

```
meltRepeatedMeasures(
   data,
   response,
   id = getOption("latrend.id"),
   time = getOption("latrend.time"),
   ids = rownames(data),
   times = colnames(data),
   as.data.table = FALSE
)
```

Arguments

data The matrix containing a trajectory on each row.

response The response column name.

id The id column name.time The time column name.

ids A vector specifying the id names. Should match the number of rows of data.

times A numeric vector specifying the times of the measurements. Should match the

number of columns of data.

as.data.table Whether to return the result as a data.table, or a data.frame otherwise.

Value

A data. table or data. frame containing the repeated measures.

metric

Compute internal model metric(s)

Description

Compute internal model metric(s)

Usage

```
## S4 method for signature 'lcModel'
metric(object, name = c("AIC", "BIC", "WRSS", "APPA"), ...)
## S4 method for signature 'list'
metric(object, name, drop = TRUE)
## S4 method for signature 'lcModels'
metric(object, name, drop = TRUE)
```

74 min.lcModels

Arguments

object The lcModel, lcModels, or list of lcModel objects to compute the metrics

for.

name The name(s) of the metric(s) to compute.

... Additional arguments.

drop Whether to return a numeric vector instead of a data. frame in case of a single

metric.

Value

For metric(lcModel): A named numeric vector with the computed model metrics.

For metric(list): A data. frame with a metric per column.

For metric(lcModels): A data.frame with a metric per column.

See Also

externalMetric min.lcModels max.lcModels

```
Other metric functions: defineExternalMetric(), defineInternalMetric(), externalMetric,lcModel,lcModel-met getExternalMetricDefinition(), getExternalMetricNames(), getInternalMetricDefinition(), getInternalMetricNames()
```

Examples

```
data(latrendData)
model <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time,
    id = "Id", time = "Time"), latrendData)
bic <- metric(model, "BIC")

ic <- metric(model, c("AIC", "BIC"))</pre>
```

min.lcModels

Select the lcModel with the lowest metric value

Description

Select the lcModel with the lowest metric value

Usage

```
## S3 method for class 'lcModels'
min(x, name, ...)
```

Arguments

x The lcModels object

name The name of the internal metric.

.. Additional arguments.

model.data.lcModel 75

Value

The lcModel with the lowest metric value

See Also

max.lcModels externalMetric

Examples

```
data(latrendData)
baseMethod <- lcMethodKML(response = "Y", id = "Id", time = "Time")
kml1 <- latrend(baseMethod, nClusters = 1, latrendData)
kml2 <- latrend(baseMethod, nClusters = 2, latrendData)
kml3 <- latrend(baseMethod, nClusters = 3, latrendData)
models <- lcModels(kml1, kml2, kml3)
min(models, 'WRSS')</pre>
```

model.data.lcModel

Extract the model data that was used for fitting

Description

Evaluates the data call in the environment that the model was trained in.

Usage

```
## S3 method for class 'lcModel'
model.data(object, ...)
```

Arguments

```
object The 1cModel object.
... Additional arguments.
```

Value

The data.frame that was used for fitting the lcModel.

76 nClusters

model.frame.lcModel

Extract model training data

Description

Extract model training data

Usage

```
## S3 method for class 'lcModel'
model.frame(formula, ...)
```

Arguments

```
formula The lcModel object.
... Additional arguments.
```

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

nClusters

Number of clusters

Description

Number of clusters

Usage

```
nClusters(object)
```

Arguments

object

The lcModel object.

nIds 77

nIds

Number of strata

Description

Number of strata

Usage

```
nIds(object)
```

Arguments

object

The 1cModel object.

nobs.lcModel

Extract the number of observations from a lcModel

Description

Extract the number of observations from a lcModel

Usage

```
## S3 method for class 'lcModel'
nobs(object, ...)
```

Arguments

```
object The lcModel object.
... Additional arguments.
```

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

```
plot, lcModel, ANY-method
```

Plot a lcModel

Description

Plot a lcModel. By default, this plots the cluster trajectories of the model, along with the training data.

Usage

```
## S4 method for signature 'lcModel,ANY'
plot(x, y, ...)
```

Arguments

x The lcModel object.

y Not used.

... Arguments passed to plotClusterTrajectories.

Value

A ggplot object.

```
plotClusterTrajectories
```

Plot cluster trajectories

Description

Plot cluster trajectories

Plot the cluster trajectories of a lcModel

Usage

```
## S4 method for signature 'data.frame'
plotClusterTrajectories(
  object,
  response,
  cluster = "Cluster",
  time = getOption("latrend.time"),
  center = meanNA,
  trajectories = FALSE,
  facet = isTRUE(trajectories),
  id = getOption("latrend.id"),
```

plotClusterTrajectories 79

```
## S4 method for signature 'lcModel'
plotClusterTrajectories(
  object,
  what = "mu",
  at = time(object),
  clusterLabels = sprintf("%s (%s)", clusterNames(object),
    percent(clusterProportions(object))),
  trajectories = FALSE,
  facet = isTRUE(trajectories),
  trajAssignments = trajectoryAssignments(object),
  ...
)
```

Arguments

object The (cluster) trajectory data.

response The name of the response variable.

cluster The cluster assignment column

time The name of the time variable.

center A function for aggregating multiple points at the same point in time

trajectories Whether to plot the original data in addition to the cluster (i.e., center) trajecto-

ries

facet Whether to facet by cluster. This is done by default when trajectories is

enabled.

id Id column. Only needed when trajectories = TRUE.

... Arguments passed to clusterTrajectories, or ggplot2::geom_line for plotting the

cluster trajectory lines.

what The distributional parameter to predict. By default, the mean response 'mu' is

predicted. The cluster membership predictions can be obtained by specifying

what = 'mb'.

at An optional vector, list or data frame of covariates at which to compute the

cluster trajectory predictions. If a vector is specified, this is assumed to be the

time covariate. Otherwise, a named list or data frame must be provided.

clusterLabels Cluster display names. By default it's the cluster name with its proportion en-

closed in parentheses.

trajAssignments

The cluster assignments for the fitted trajectories. Only used when trajectories = TRUE and facet = TRUE. See trajectory Assignments.

Details

Instead of passing the plotting arguments through ..., consider modifying the ggplot2 defaults. For example, changing the default line size: update_geom_defaults("line",list(size = 1.5))

80 plotMetric

Value

A ggplot object.

plotMetric

Plot one or more internal metrics for all lcModels

Description

Plot one or more internal metrics for all lcModels

Usage

```
plotMetric(models, name, by = "nClusters", subset, group = character())
```

Arguments

models A lcModels or list of lcModel objects to compute and plot the metrics of.

name The name(s) of the metric(s) to compute.

by The argument name along which methods are plotted.

subset Logical expression based on the lcModel method arguments, indicating which

1cModel objects to keep.

group The argument names to use for determining groups of different models. By

default, all arguments are included. Specifying group = character() disables grouping. Specifying a single argument for grouping uses that specific column as the grouping column. In all other cases, groupings are represented by a num-

ber.

Value

ggplot2 object.

```
data(latrendData)
baseMethod <- lcMethodKML(response = "Y", id = "Id", time = "Time")
kml1 <- latrend(baseMethod, nClusters = 1, latrendData)
kml2 <- latrend(baseMethod, nClusters = 2, latrendData)
kml3 <- latrend(baseMethod, nClusters = 3, latrendData)
models <- lcModels(kml1, kml2, kml3)
plotMetric(models, "BIC", by = "nClusters", group = ".name")</pre>
```

plotTrajectories 81

plotTrajectories

Plot trajectories

Description

Plot trajectories

Plot fitted trajectories of a lcModel

Usage

```
## S4 method for signature 'data.frame'
plotTrajectories(
  object,
  response,
  time = getOption("latrend.time"),
  id = getOption("latrend.id"),
  cluster = NULL,
  facet = TRUE,
  ...
)

## S4 method for signature 'lcModel'
plotTrajectories(object, ...)
```

Arguments

object The model.

response Response variable character name or a call.

time The name of the time variable.

id The name of the trajectory identifier variable.

cluster Cluster variable name. If unspecified, trajectories are not grouped. Alternatively,

cluster is a vector indicating cluster membership per id.

facet Whether to facet by cluster.

... Arguments passed on to trajectories

at The time points at which to compute the id-specific trajectories. what The distributional parameter to compute the response for.

clusters The cluster assignments for the strata to base the trajectories on.

```
data(latrendData)
plotTrajectories(latrendData, response = "Y", id = "Id", time = "Time")
plotTrajectories(latrendData, response = quote(exp(Y)), id = "Id", time = "Time")
```

postprob

Posterior probability per fitted id

Description

Posterior probability per fitted id

Usage

```
## S4 method for signature 'lcModel'
postprob(object, ...)
```

Arguments

object The lcModel.

... Additional arguments.

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

Examples

```
data(latrendData)
model <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time,
    id = "Id", time = "Time"), data = latrendData)
postprob(model)</pre>
```

postprobFromAssignments

Create a posterior probability matrix from a vector of cluster assignments.

Description

For each trajectory, the probability of the assigned cluster is 1.

Usage

```
postprobFromAssignments(assignments, k)
```

Arguments

assignments Integer vector indicating cluster assignment per trajectory k

The number of clusters.

predict.lcModel 83

ons	
-----	--

Description

Predicts the expected trajectory observations at the given time for each cluster.

Usage

```
## S3 method for class 'lcModel'
predict(object, newdata = NULL, what = "mu", ...)
```

Arguments

object	The lcModel object.
newdata	Optional data.frame for which to compute the model predictions. If omitted, the model training data is used. Cluster trajectory predictions are made when ids are not specified.
what	The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.
	Additional arguments.

Details

Subclasses of lcModel should preferably implement predictForCluster instead of overriding predict.lcModel in order to benefit from standardized error checking and output handling.

Value

If newdata specifies the cluster membership; a data.frame of cluster-specific predictions. Otherwise, a list of data.frame of cluster-specific predictions is returned.

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

```
data(latrendData)
model <- latrend(lcMethodLcmmGMM(
    fixed = Y ~ Time, mixture = ~ Time,
    id = "Id", time = "Time"), latrendData)
predFitted <- predict(model) # same result as fitted(model)</pre>
```

84 predictAssignments

```
# Cluster trajectory of cluster A
predCluster <- predict(model, newdata = data.frame(Cluster = "A", Time = time(model)))
# Prediction for id S1 given cluster A membership
predId <- predict(model, newdata = data.frame(Cluster = "A", Id = "S1", Time = time(model)))
# Prediction matrix for id S1 for all clusters
predIdAll <- predict(model, newdata = data.frame(Id = "S1", Time = time(model)))</pre>
```

predictAssignments

Predict the cluster assignments for new trajectories

Description

Computes the posterior probability based on the provided (observed) data.

Usage

```
## S4 method for signature 'lcModel'
predictAssignments(object, newdata = NULL, strategy = which.max, ...)
```

Arguments

object The lcModel object.

newdata Optional data. frame for which to compute the model predictions. If omitted,

the model training data is used. Cluster trajectory predictions are made when

ids are not specified.

strategy A function returning the cluster index based on the given vector of member-

ship probabilities. By default, ids are assigned to the cluster with the highest

probability.

... Additional arguments.

Details

The default implementation uses predictPostprob to determine the cluster membership.

Value

A factor with length nrow(newdata) that indicates the posterior probability per trajectory per observation.

See Also

predictPostprob

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

predictForCluster 85

predictForCluster	lcModel prediction for a specific cluster

Description

Predicts the expected trajectory observations at the given time under the assumption that the trajectory belongs to the specified cluster.

Usage

```
## S4 method for signature 'lcModel'
predictForCluster(object, newdata = NULL, cluster, ..., what = "mu")
```

Arguments

object	The lcModel object.
newdata	Optional data.frame for which to compute the model predictions. If omitted, the model training data is used. Cluster trajectory predictions are made when ids are not specified.
cluster	The cluster name (as character) to predict for.
	Additional arguments.
what	The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying what = 'mb'.

Value

A vector with the predictions per newdata observation, or a data. frame with the predictions and newdata alongside.

See Also

```
predict.lcModel
```

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

86 print.lcMethod

pred	ic	t Po	stn	roh
DI CU	10	u	ろし り	ı uu

lcModel posterior probability prediction

Description

lcModel posterior probability prediction

Usage

```
## S4 method for signature 'lcModel'
predictPostprob(object, newdata = NULL, ...)
```

Arguments

object The lcModel to predict the posterior probabilities with.

newdata Optional data frame for which to compute the posterior probability. If omitted,

the model training data is used.

... Additional arguments.

Details

The default implementation returns a uniform probability matrix.

Value

A matrix indicating the posterior probability per trajectory per measurement on each row, for each cluster (the columns).

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), residuals.lcModel(), sigma.lcModel(), time.lcModel(), trajectories()
```

print.lcMethod

Print the arguments of an lcMethod object

Description

Print the arguments of an lcMethod object

Usage

```
## S3 method for class 'lcMethod'
print(x, ..., eval = FALSE, width = 40, envir = NULL)
```

print.lcModels 87

Arguments

X	The lcMethod object.
	Not used.
eval	Whether to print the evaluated argument values.
width	Maximum number of characters per argument.
envir	The environment in which to evaluate the arguments when eval = TRUE.

print.lcModels

Print lcModels list concisely

Description

Print lcModels list concisely

Usage

```
## S3 method for class 'lcModels'
print(
 х,
  summary = FALSE,
  excludeShared = !getOption("latrend.printSharedModelArgs")
)
```

Arguments

The lcModels object. Х

Not used.

summary Whether to print the complete summary per model. This may be slow for long

lists!

excludeShared Whether to exclude model arguments which are identical across all models.

See Also

Other lcModel list functions: as.lcModels(), lcModels, subset.lcModels()

88 residuals.lcModel

qqPlot

Quantile-quantile plot

Description

Quantile-quantile plot

Usage

```
## S4 method for signature 'lcModel'
qqPlot(object, byCluster = FALSE, ...)
```

Arguments

object

The model.

byCluster

Whether to plot the Q-Q line per cluster

. . .

Other arguments passed to qqplotr::geom_qq_band, qqplotr::stat_qq_line, and

qqplotr::stat_qq_point.

See Also

residuals.lcModel metric plotClusterTrajectories

residuals.lcModel

Extract lcModel residuals

Description

Extract lcModel residuals

Usage

```
## S3 method for class 'lcModel'
residuals(object, ..., clusters = trajectoryAssignments(object))
```

Arguments

object The lcModel object.
... Additional arguments.

clusters Optional cluster assignments per id. If unspecified, a matrix is returned con-

taining the cluster-specific predictions per column.

Value

A vector of residuals for the cluster assignments specified by clusters. If clusters is unspecified, a matrix of cluster-specific residuals per observations is returned.

responseVariable 89

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), sigma.lcModel(), time.lcModel(), trajectories()

responseVariable

Extract the response variable

Description

Extracts the response variable from the given object.

Usage

```
## S4 method for signature 'lcMethod'
responseVariable(object, ...)
## S4 method for signature 'lcModel'
responseVariable(object, ...)
```

Arguments

object The object to extract the response variable from.
... Additional arguments.

Details

If the lcMethod object specifies a formula argument, then the response is extracted from the response term of the formula.

Value

The response variable name as a character.

See Also

```
Other lcModel variables: idVariable(), timeVariable()
```

```
method <- lcMethodKML("Value")
responseVariable(method) # "Value"

method <- lcMethodLcmmGBTM(fixed = Value ~ Time, mixture = ~ Time)
responseVariable(method) # "Value"

data(latrendData)</pre>
```

90 strip

```
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
responseVariable(model) # "Value"</pre>
```

sigma.lcModel

Extract residual standard deviation from a lcModel

Description

Extract residual standard deviation from a lcModel

Usage

```
## S3 method for class 'lcModel'
sigma(object, ...)
```

Arguments

```
object The 1cModel object.
... Additional arguments.
```

See Also

Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), time.lcModel(), trajectories()

strip

Strip a lcModel for serialization

Description

Removes associated environments from any of the arguments. This is typically the case for arguments of type formula.

Strip a lcModel of non-essential variables and environments in order to reduce the model size for serialization.

Usage

```
## S4 method for signature 'lcMethod'
strip(object, ...)
## S4 method for signature 'lcModel'
strip(object, ...)
```

subset.lcModels 91

Arguments

object The lcModel.

... Additional arguments.

subset.lcModels

Subsetting a lcModels list based on method arguments

Description

Subsetting a lcModels list based on method arguments

Usage

```
## S3 method for class 'lcModels'
subset(x, subset, drop = FALSE, ...)
```

Arguments

The lcModels or list of lcModel to be subsetted.

subset Logical expression based on the 1cModel method arguments, indicating which

1cModel objects to keep.

drop Whether to return a 1cModel object if the result is length 1.

... Not used.

Value

A 1cModels list with the subset of 1cModel objects.

See Also

```
Other lcModel list functions: as.lcModels(), lcModels, print.lcModels()
```

```
data(latrendData)
mKML <- lcMethodKML(response = "Y", id = "Id", time = "Time")
kml1 <- latrend(mKML, nClusters = 1, latrendData)
kml2 <- latrend(mKML, nClusters = 2, latrendData)
kml3 <- latrend(mKML, nClusters = 3, latrendData)
gmm <- latrend(lcMethodLcmmGMM(fixed = Y ~ Time, mixture = ~ Time,
   id = "Id", time = "Time"), latrendData)
models <- lcModels(kml1, kml2, kml3, gmm)
subset(models, nClusters > 1 & .method == 'kml')
```

92 time.lcModel

summary.lcModel

Summarize a lcModel

Description

Extracts all relevant information from the underlying model into a list

Usage

```
## S3 method for class 'lcModel'
summary(object, ...)
```

Arguments

object The lcModel object.
... Additional arguments.

time.lcModel

Sampling times of a lcModel

Description

Sampling times of a lcModel

Usage

```
## S3 method for class 'lcModel'
time(x, ...)
```

Arguments

x The lcModel object.... Not used.

Value

The unique times at which observations occur.

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), trajectories()
```

time Variable 93

timeVariable

Extract the time variable

Description

Extracts the time variable (i.e., column name) from the given object.

Usage

```
## S4 method for signature 'lcMethod'
timeVariable(object, ...)
## S4 method for signature 'lcModel'
timeVariable(object)
```

Arguments

object The object to extract the variable from.

... Additional arguments.

Value

The time variable name, as character.

See Also

```
Other lcModel variables: idVariable(), responseVariable()
```

Examples

```
method <- lcMethodKML(time = "Assessment")
timeVariable(method) # "Assessment"

data(latrendData)
model <- latrend(lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
idVariable(model) # "Id"</pre>
```

trajectories

Extract the fitted trajectories for all strata

Description

Extract the fitted trajectories for all strata

94 trajectories

Usage

```
trajectories(
  object,
  at = time(object),
  what = "mu",
  clusters = trajectoryAssignments(object),
  ...
)

## S4 method for signature 'lcModel'
trajectories(
  object,
  at = time(object),
  what = "mu",
  clusters = trajectoryAssignments(object),
  ...
)
```

Arguments

object The model.

at The time points at which to compute the id-specific trajectories.

what The distributional parameter to compute the response for.

clusters The cluster assignments for the strata to base the trajectories on.

Additional arguments.

See Also

```
Other model-specific methods: clusterTrajectories(), coef.lcModel(), converged(), deviance.lcModel(), df.residual.lcModel(), fitted.lcModel(), lcModel-class, logLik.lcModel(), model.frame.lcModel(), nobs.lcModel(), postprob(), predict.lcModel(), predictAssignments(), predictForCluster(), predictPostprob(), residuals.lcModel(), sigma.lcModel(), time.lcModel()
```

```
data(latrendData) model <- latrend(method = lcMethodKML("Y", id = "Id", time = "Time"), data = latrendData) trajectories(model) trajectories(model, at = c(0, .5, 1))
```

trajectoryAssignments 95

trajectoryAssignments Get the cluster membership of each trajectory

Description

Get the cluster membership of each trajectory

Usage

```
## S4 method for signature 'lcModel'
trajectoryAssignments(object, strategy = which.max, ...)
```

Arguments

object The lcModel to obtain the cluster assignments from.

strategy A function returning the cluster index based on the given vector of member-

ship probabilities. By default, ids are assigned to the cluster with the highest

probability.

... Any additional arguments passed to the strategy function.

Details

While the default strategy is which.max, it is recommended to use which.is.max instead, as this function breaks ties randomly. Another strategy to consider is the function which.weight, which enables weighted sampling of cluster assignments.

Examples

```
data(latrendData)
model <- latrend(method = lcMethodKML("Y", id = "Id", time = "Time"), latrendData)
trajectoryAssignments(model)

# assign ids at random using weighted sampling
trajectoryAssignments(model, strategy = which.weight)</pre>
```

transformFitted

Helper function for ensuring the right fitted() output

Description

This function is also responsible for checking whether the input data is valid, such that the fitting process can fail early.

96 transformLatrendData

Usage

```
transformFitted(pred, model, clusters)

## S4 method for signature '`NULL`,lcModel'
transformFitted(pred, model, clusters)

## S4 method for signature 'matrix,lcModel'
transformFitted(pred, model, clusters)

## S4 method for signature 'list,lcModel'
transformFitted(pred, model, clusters)

## S4 method for signature 'data.frame,lcModel'
transformFitted(pred, model, clusters)
```

Arguments

pred Prediction object

model The model from which the prediction is made.

clusters Optional argument for specifying the trajectory cluster assignments.

Value

A vector if the clusters argument is specified, else a matrix with the fitted values per cluster per column.

 $transform \ Latrend \ Data \quad \textit{Transform lattend input data into the right format}$

Description

This function is also responsible for checking whether the input data is valid, such that the fitting process can fail early.

Usage

```
transformLatrendData(object, id, time, response, envir)
## S4 method for signature 'data.frame'
transformLatrendData(object, id, time, response, envir)
## S4 method for signature 'matrix'
transformLatrendData(object, id, time, response, envir)
## S4 method for signature 'call'
transformLatrendData(object, id, time, response, envir)
```

transformPredict 97

Arguments

object The data object to transform.

id The name of the trajectory identifier variable.

time The name of the time variable.
response The name of the response variable.

envir The environment used to evaluate the data object in (e.g., in case object is of

type call).

Value

A data. frame with an id, time, and measurement columns.

transformPredict

Helper function that matches the output to the specified newdata

Description

If Cluster is not provided, the prediction is outputted in long format per cluster, resulting in a longer data.frame than the newdata input

Usage

```
## S4 method for signature '`NULL`,lcModel'
transformPredict(pred, model, newdata)

## S4 method for signature 'vector,lcModel'
transformPredict(pred, model, newdata)

## S4 method for signature 'matrix,lcModel'
transformPredict(pred, model, newdata)

## S4 method for signature 'data.frame,lcModel'
transformPredict(pred, model, newdata)
```

Arguments

pred The prediction object

model The model for which the prediction is made.

newdata A data. frame containing the input data to predict for.

Value

A data.frame with the predictions, or a list of cluster-specific prediction frames

98 update.lcMethod

	7 - 14 - 41
ubuate.	lcMethod

Update a method specification

Description

Update a method specification

Usage

```
## S3 method for class 'lcMethod'
update(object, ..., .eval = FALSE, .remove = character(), envir = NULL)
```

Arguments

object	The lcMethod object.
	The new or updated method argument values.
.eval	Whether to assign the evaluated argument values to the method. By default (FALSE), the argument expression is preserved.
.remove	Names of arguments that should be removed.
envir	The environment in which to evaluate the arguments. If NULL, the environment associated with the object is used. If not available, the parent.frame() is used.

Details

Updates or adds arguments to a 1cMethod object. The inputs are evaluated in order to determine the presence of formula objects, which are updated accordingly.

Value

The new lcMethod object with the additional or updated arguments.

See Also

```
Other lcMethod functions: [[,lcMethod-method, as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class
```

```
m <- lcMethodMixtoolsGMM(Value ~ 1)
m2 <- update(m, formula = ~ . + Time)
m3 <- update(m2, nClusters = 3)
k <- 2
m4 <- update(m, nClusters = k) # nClusters: k
m5 <- update(m, nClusters = k, .eval = TRUE) # nClusters: 2</pre>
```

update.lcModel 99

update.lcModel

Update a lcModel

Description

Fit a new model with modified arguments from the current model.

Usage

```
## S3 method for class 'lcModel'
update(object, ...)
```

Arguments

object

The 1cModel object.

. . .

Arguments passed on to latrend

method The 1cMethod object specifying the longitudinal cluster method to apply.

data The data. frame or matrix to which to apply the method.

envir The environment in which to evaluate the method arguments. Note that this only applies to data when data is a call.

verbose The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details), a logical indicating whether to show basic computation information, a numeric indicating the verbosity level (see Verbose), or one of c('info','fine','finest').

which.weight

Sample an index of a vector weighted by the elements

Description

Returns a random index, weighted by the element magnitudes. This function is intended to be used as an optional strategy for trajectoryAssignments, resulting in randomly sampled cluster membership.

Usage

```
which.weight(x)
```

Arguments

Χ

A positive numeric vector.

100 [[,lcMethod-method

Value

An integer giving the index of the sampled element.

Examples

```
x = c(.01, .69, .3)
which.weight(x) #1, 2, or 3
```

[[,lcMethod-method

Retrieve and evaluate a lcMethod argument by name

Description

Retrieve and evaluate a lcMethod argument by name

Usage

```
## S4 method for signature 'lcMethod'
x[[i, eval = TRUE, envir = NULL]]
```

Arguments

x The lcMethod object.

i Name or index of the argument to retrieve.

eval Whether to evaluate the call argument (enabled by default).

envir The environment in which to evaluate the argument. This argument is only

applicable when eval = TRUE.

Value

The argument call or evaluation result.

See Also

```
Other lcMethod functions: as.data.frame.lcMethods(), as.data.frame.lcMethod(), as.lcMethods(), as.list.lcMethod(), evaluate.lcMethod(), formula.lcMethod(), lcMethod-class, update.lcMethod()
```

```
m = lcMethodKML(nClusters = 5)
m[["nClusters"]] # 5
k = 2
m = lcMethodKML(nClusters = k)
m[["nClusters", eval=FALSE]] # k
```

\$,lcMethod-method

\$,lcMethod-method	Retrieve and evaluate a lcMethod argument by name	

Description

Retrieve and evaluate a lcMethod argument by name

Usage

```
## S4 method for signature 'lcMethod' x$name
```

Arguments

x The lcMethod object.

name Name of the argument to retrieve.

Value

The argument evaluation result.

```
m <- lcMethodKML(nClusters = 3)
m$nClusters # 3</pre>
```

Index

* datasets	subset.lcModels, 91
latrendData, 35	* lcModel variables
* lcMethod functions	idVariable, 29
[[,lcMethod-method, 100	responseVariable, 89
as.data.frame.lcMethod,6	timeVariable, 93
as.data.frame.lcMethods,6	* longitudinal cluster fit functions
as.lcMethods, 8	latrend, 29
as.list.lcMethod, 9	latrendBatch, 32
evaluate.lcMethod, 20	latrendBoot, 33
formula.lcMethod, 23	latrendCV, 34
lcMethod-class, 39	latrendRep, 36
update.lcMethod, 98	* metric functions
* lcMethod implementations	defineExternalMetric, 17
lcMethod-class, 39	defineInternalMetric, 18
1cMethodAkmedoids, 42	<pre>externalMetric,lcModel,lcModel-method,</pre>
<pre>lcMethodCrimCV, 43</pre>	21
1cMethodCustom, 44	getExternalMetricDefinition, 26
lcMethodDtwclust, 45	<pre>getExternalMetricNames, 26</pre>
1cMethodFeature, 46	${\tt getInternalMetricDefinition}, 27$
1cMethodFunFEM, 49	getInternalMetricNames, 27
1cMethodGCKM, 50	metric, 73
1cMethodKML, 51	* model-specific methods
1cMethodLcmmGBTM, 52	clusterTrajectories, 12
1cMethodLcmmGMM, 53	coef.lcModel, 13
1cMethodLMKM, 55	converged, 14
lcMethodLongclust, 56	deviance.lcModel, 19
lcMethodMclustLLPA, 57	df.residual.lcModel,19
<pre>lcMethodMixAK_GLMM, 58</pre>	fitted.lcModel, 23
lcMethodMixtoolsGMM, 59	lcModel-class, 66
lcMethodMixtoolsNPRM, 60	logLik.lcModel, 71
1cMethodRandom, 62	model.frame.lcModel, 76
lcMethodStratify, 64	nobs.lcModel,77
* lcMethod package interfaces	postprob, 82
lcMethodFlexmix, 47	predict.lcModel, 83
lcMethodFlexmixGBTM, 48	predictAssignments, 84
* lcModel list functions	predictForCluster,85
as.lcModels, 8	predictPostprob, 86
lcModels, 69	residuals.lcModel,88
print.lcModels,87	sigma.lcModel, 90

time.lcModel, 92	defineExternalMetric, 17, 18, 22, 26, 27, 74
trajectories, 93	defineInternalMetric, 18, 18, 22, 26, 27, 74
* validation methods	deviance.lcModel, 12-14, 19, 19, 23, 67, 71,
createTestDataFold, 15	76, 77, 82–86, 89, 90, 92, 94
createTestDataFolds, 15	df.residual.lcModel, 12-14, 19, 19, 23, 67,
createTrainDataFolds, 16	71, 76, 77, 82–86, 89, 90, 92, 94
latrendBoot, 33	dist, 22
latrendCV, 34	dtwclust::tsclust,45
[[,lcMethod-method, 100	
\$,lcMethod-method,101	environment, 41
_PACKAGE(latrend-package),5	estimationTime, 20
	evaluate.lcMethod, 6-9, 20, 24, 41, 98, 100
akmedoids::akclustr, <i>4</i> 2	externalMetric, 72, 74, 75
approx, <i>38</i>	externalMetric
as.data.frame.lcMethod, 6, 7-9, 21, 24, 41,	<pre>(externalMetric,lcModel,lcModel-method),</pre>
98, 100	21
as.data.frame.lcMethods, 6, 6, 8, 9, 21, 24,	externalMetric,lcModel,lcModel-method,
41, 98, 100	21
as.data.frame.lcModels,7	externalMetric,lcModels,character-method
as.lcMethods, 6, 7, 8, 9, 21, 24, 41, 98, 100	(externalMetric,lcModel,lcModel-method),
as.lcModels, 8, 70, 87, 91	21
as.list.lcMethod, 6-8, 9, 21, 24, 41, 98, 100	externalMetric,lcModels,lcModel-method
atomic, 6	(externalMetric,lcModel,lcModel-method),
	21
clusterNames, 10	externalMetric,lcModels,lcModels-method
clusterNames<-, 10	(externalMetric,lcModel,lcModel-method),
clusterProportions, 11	21
clusterProportions,lcModel-method	externalMetric,lcModels,missing-method
(clusterProportions), 11	(externalMetric,lcModel,lcModel-method),
clusterSizes, 11	21
clusterTrajectories, 12, <i>13</i> , <i>14</i> , <i>19</i> , <i>23</i> , <i>67</i> ,	externalMetric,list,lcModel-method
71, 76, 77, 79, 82–86, 89, 90, 92, 94	(externalMetric,lcModel,lcModel-method),
clusterTrajectories,lcModel-method	21
(clusterTrajectories), 12	21
coef.lcModel, 12, 13, 14, 19, 23, 67, 71, 76,	Sit (lawathad alasa) 20
77, 82–86, 89, 90, 92, 94	fit (lcMethod-class), 39
compose (1cMethod-class), 39	fit,lcMethod-method(lcMethod-class), 39
compose,lcMethod-method	fitted.lcApproxModel
(lcMethod-class), 39	(lcApproxModel-class), 37
confusionMatrix, 13	fitted.lcModel, 12–14, 19, 23, 67, 71, 76,
converged, 12, 13, 14, 19, 23, 67, 71, 76, 77,	77, 82–86, 89, 90, 92, 94
82–86, 89, 90, 92, 94	flexmix::flexmix, 47, 48
converged,lcModel-method(converged),14	flexmix::FLXMRglm, 48
createTestDataFold, <i>15</i> , 15, <i>16</i> , <i>34</i> , <i>35</i>	foreach, 31
createTestDataFolds, <i>15</i> , <i>15</i> , <i>16</i> , <i>34</i> , <i>35</i>	formula.lcMethod, 6–9, 21, 23, 41, 98, 100
createTrainDataFolds, <i>15</i> , <i>16</i> , 16, <i>34</i> , <i>35</i>	formula.lcModel, 24
crimCV::crimCV,43	funFEM::funFEM, 49
dcastRepeatedMeasures, 17	generateLongData, 25, 36

getExternalMetricDefinition, 18, 22, 26,	lcMethodAkmedoids, 41, 42, 44–47, 50–58,
27, 74	60, 61, 63, 65
getExternalMetricNames, 18, 22, 26, 26, 27, 74	lcMethodCrimCV, 41, 43, 43, 45–47, 50–58, 60, 61, 63, 65
getInternalMetricDefinition, 18, 22, 26,	lcMethodCustom, 41, 43, 44, 44, 46, 47,
27, 27, 74	50–58, 60, 61, 63, 65
getInternalMetricNames, 18, 22, 26, 27, 27,	lcMethodDtwclust, 41, 43-45, 45, 47, 50-58,
74	60, 61, 63, 65
<pre>getLabel (lcMethod-class), 39</pre>	lcMethodFeature, 41, 43-46, 46, 50-58, 60,
<pre>getLabel,lcMethod-method</pre>	61, 63, 65
(lcMethod-class), 39	lcMethodFlexmix, 47, 49
<pre>getLabel,lcModel-method</pre>	lcMethodFlexmixGBTM, 48, 48
(lcModel-class), 66	lcMethodFunFEM, 41, 43-47, 49, 51-58, 60,
getLcMethod, 28	61, 63, 65
getName (lcMethod-class), 39	lcMethodGCKM, 41, 43-47, 50, 50, 52-58, 60,
getName,lcMethod-method	61, 63, 65
(lcMethod-class), 39	lcMethodKML, 41, 43-47, 50, 51, 51, 53-58,
<pre>getName,lcModel-method(lcModel-class),</pre>	60, 61, 63, 65
66	lcMethodLcmmGBTM, 41, 43-47, 50-52, 52,
getShortName (lcMethod-class), 39	54–58, 60, 61, 63, 65
getShortName, lcMethod-method	lcMethodLcmmGMM, 41, 43-47, 50-53, 53,
(lcMethod-class), 39	55–58, 60, 61, 63, 65
getShortName,lcModel-method	lcMethodLMKM, 41, 43-47, 50-54, 55, 56-58,
(lcModel-class), 66	60, 61, 63, 65
ggplot2::geom_line, 79	lcMethodLongclust, 41, 43–47, 50–55, 56, 57, 58, 60, 61, 63, 65
ids, 28	lcMethodMclustLLPA, 41, 43-47, 50-56, 57,
idVariable, 29, 89, 93	58, 60, 61, 63, 65
idVariable, lcMethod-method	lcMethodMixAK_GLMM, 41, 43-47, 50-57, 58,
(idVariable), 29	60, 61, 63, 65
idVariable, lcModel-method(idVariable),	lcMethodMixtoolsGMM, 41, 43-47, 50-58, 59,
29	61, 63, 65
kml::kml, <i>51</i>	lcMethodMixtoolsNPRM, 41, 43-47, 50-58,
kml::parALGO, <i>51</i>	60, 60, 63, 65
Kiii1pai ALOO, 31	lcMethodMixTVEM, 61
latrend, 29, 32, 34, 35, 37, 39, 99	lcMethodRandom, 41, 43-47, 50-58, 60, 61,
latrend-package, 5	62, 65
latrend-parallel, 31, 32–34, 36	lcMethods, 63
latrendBatch, 30, 31, 32, 34, 35, 37	lcMethodStratify, 41, 43-47, 50-58, 60, 61,
latrendBoot, 15, 16, 30–32, 33, 35, 37	<i>63</i> , 64
latrendCV, 15, 16, 30-32, 34, 34, 37	lcmm::hlme, 52-54
latrendData, 35	lcModel-class, 66
latrendRep, 30-32, 34, 35, 36	<pre>lcModelCustom, 67</pre>
<pre>lcApproxModel (lcApproxModel-class), 37</pre>	lcModelPartition, 68
<pre>lcApproxModel-class, 37</pre>	lcModels, 8, 69, 87, 91
lcMethod, 38, 41	${\tt lcModelWeightedPartition}, 70$
lcMethod-class, 38, 39, 67	length,lcMethod-method
lcMethod.call. 38, 41	(lcMethod-class), 39

lme4::lmer, 50, 51, 59	predictAssignments, 12–14, 19, 23, 67, 71,
logLik.lcModel, 12-14, 19, 23, 67, 71, 76,	76, 77, 82, 83, 84, 85, 86, 89, 90, 92,
77, 82–86, 89, 90, 92, 94	94
longclust::longclustEM, 56	<pre>predictAssignments,lcModel-method (predictAssignments), 84</pre>
max.lcModels, 72, 74, 75	predictForCluster, 12–14, 19, 23, 67, 71,
mclust::Mclust, 57	76, 77, 82–84, 85, 86, 89, 90, 92, 94
meltRepeatedMeasures, 72	<pre>predictForCluster,lcApproxModel-method</pre>
metric, 18, 22, 26, 27, 73, 88	(lcApproxModel-class), 37
metric, lcModel-method (metric), 73	<pre>predictForCluster,lcModel-method</pre>
metric, lcModels-method (metric), 73	(predictForCluster), 85
metric, list-method (metric), 73	predictPostprob, 12–14, 19, 23, 67, 71, 76,
min.lcModels, 72, 74, 74	77, 82–85, 86, 89, 90, 92, 94
mixAK::GLMM_MCMC, 58	<pre>predictPostprob,lcModel-method</pre>
mixtools::npEM, 60, 61	(predictPostprob), 86
mixtools::regmixEM.mixed, 59	<pre>preFit (lcMethod-class), 39</pre>
model.data.lcModel, 69, 75	preFit,lcMethod-method
model.frame.lcModel, 12-14, 19, 23, 67, 71,	(lcMethod-class), 39
76, 77, 82–86, 89, 90, 92, 94	prepareData(lcMethod-class), 39
	prepareData,lcMethod-method
names,lcMethod-method(lcMethod-class),	(lcMethod-class), 39
39	print.lcMethod,86
nClusters, 76	print.lcModels, 8, 70, 87, 91
nIds, 77	-1 00
nobs.lcModel, 12–14, 19, 23, 67, 71, 76, 77,	qqPlot, 88
82–86, 89, 90, 92, 94	qqPlot,1cModel-method(qqPlot),88
	R.utils::Verbose, 30, 32, 33, 35, 36, 40, 99
parallel-package, 31	residuals.lcModel, <i>12-14</i> , <i>19</i> , <i>23</i> , <i>67</i> , <i>71</i> ,
plot,lcModel,ANY-method,78	76, 77, 82–86, 88, 88, 90, 92, 94
plotClusterTrajectories, 78, 78, 88	responseVariable, 29, 89, 93
plotClusterTrajectories, data.frame-method	responseVariable,lcMethod-method
(plotClusterTrajectories), 78	(responseVariable), 89
plotClusterTrajectories,lcModel-method	responseVariable,lcModel-method
(plotClusterTrajectories), 78	(responseVariable), 89
plotMetric, 80	
plotTrajectories, 81	sigma.lcModel, <i>12–14</i> , <i>19</i> , <i>23</i> , <i>67</i> , <i>71</i> , <i>76</i> , <i>77</i> ,
plotTrajectories,data.frame-method	82–86, 89, 90, 92, 94
(plotTrajectories), 81	stats::1m, 55
<pre>plotTrajectories,lcModel-method (plotTrajectories),81</pre>	strip, 90
postFit (lcMethod-class), 39	strip,lcMethod-method(strip),90
postFit,lcMethod-method	strip, lcModel-method(strip), 90
(lcMethod-class), 39	subset.1cModels, <i>8</i> , <i>70</i> , <i>87</i> , 91
postprob, 12–14, 19, 23, 67, 71, 76, 77, 82,	summary.lcModel,92
83–86, 89, 90, 92, 94	time leMedel 12 14 10 22 67 71 76 77
postprob, lcModel-method (postprob), 82	time.lcModel, 12-14, 19, 23, 67, 71, 76, 77, 82-86, 89, 90, 92, 94
postprob, icmodel-method (postprob), 82 postprobFromAssignments, 82	62-80, 89, 90, 92, 94 timeVariable, 29, 89, 93
predict.lcModel, <i>12–14</i> , <i>19</i> , <i>23</i> , <i>67</i> , <i>71</i> , <i>76</i> ,	timeVariable, 29, 89, 93 timeVariable, lcMethod-method
77. 82. 83. 84–86. 89. 90. 92. 94	(timeVariable). 93
7 7 , 02 , 03 , 07 , 00 , 07 , 70 , 72 , 7 7	LINCAUL TUNICA

```
timeVariable, lcModel-method
        (timeVariable), 93
trajectories, 12–14, 19, 23, 67, 71, 76, 77,
        81–86, 89, 90, 92, 93
trajectories,lcModel-method
        (trajectories), 93
trajectoryAssignments, 14, 79, 95, 99
trajectoryAssignments,lcModel-method
        (trajectoryAssignments), 95
transformFitted, 95
transformFitted,data.frame,lcModel-method
        (transformFitted), 95
transformFitted,list,lcModel-method
        (transformFitted), 95
transform Fitted, matrix, lc Model-method\\
        (transformFitted), 95
transformFitted,NULL,lcModel-method
        (transformFitted), 95
transformLatrendData, 96
transformLatrendData, call-method
        (transformLatrendData), 96
transformLatrendData, data.frame-method
        (transformLatrendData), 96
transformLatrendData, matrix-method
        (transformLatrendData), 96
transformPredict. 97
transformPredict, data.frame, lcModel-method
        (transformPredict), 97
transformPredict,matrix,lcModel-method
        (transformPredict), 97
transformPredict, NULL, lcModel-method
        (transformPredict), 97
transformPredict, vector, lcModel-method
        (transformPredict), 97
update.lcMethod, 6-9, 21, 24, 41, 98, 100
update.lcModel, 99
validate (lcMethod-class), 39
validate, lcMethod-method
        (1cMethod-class), 39
Verbose, 30, 32, 33, 35, 36, 99
which.is.max.95
which.max, 95
which.weight, 14, 95, 99
```