Аппроксимация данных. Наилучшее квадратичное приближение.

Постановка задачи. Пусть задана дискретная функция $y(x_i)=y_i,\ i=0,1,2,\dots N$ и некоторая система $\{\phi^{(k)}(x)\}_1^n$ базиснных функций. Требуется найти коэффициенты c_i для $F(x)=\sum\limits_{i=0}^n c_i\phi^{(i)}(x),$ являющейся решением следующей задачи

$$\rho = \inf_{c_i} \sum_{i=0}^{N} (y_i - F(x_i))^2.$$

Функция F(x) называется наилучшим квадратичным приближением для задачи аппроксимации данных методом наименьших квадратов. В матричном виде нахождение коэффициентов c_i искомого представления сводится к минимизации квадратичного функцилнала:

$$\inf_{c} \sum_{i=0}^{N} (y_i - \sum_{i=0}^{n} c_j \phi^{(j)}(x_i))^2 = \inf_{c} \sum_{i=0}^{N} ([b - Ac]_i)^2,$$

где
$$c = (c_0, \dots, c_n)^T$$
, $(A)_{ij} = \phi^{(j)}(x_i)$, $b = (y_0, \dots, y_N)^T$.

В общем случае не все точки x_i могут иметь одинаковую значимость, возможно, некоторые значения известны с погрешностью. Эта информация может быть учтена за счет добавления в минимизационную задачу весовых множителей:

$$\rho = \inf_{c_i} \sum_{i=0}^{N} \alpha_i (y_i - F(x_i))^2$$

В качестве α_i можно взять, например, длину отрезка x_i-x_{i-1} , либо $1/\varepsilon_i$, где ε_i – погрешность значения y_i .

Утверждение. Вектор с минимизирующий $\|Ac - b\|_2^2$ является решением системы уравнений $A^TAx = A^Tb$.

Данный метод может эффективно применяться, если размерность задачи и число обусловленности A^TA не слишком велики. Для систем большой размерности, а также если матрица A^TA близка к вырожденной (например, система базисных функций почти линейно зависима), тогда рекомендуется применять метод QR-разложения. Предположим, что известна матрица отражений Q такая, что $Q^TQ=I$ и QA равно верхнетреугольной R. Так как искомое решение имеет вид $c=(A^TA)^{-1}A^Tb$, следовательно $Rc=Q^Tb$ и вектор c находится обратным ходом метода Гаусса. При этом

$$\inf_{c} \|Ac - b\|_{2}^{2} = \inf_{c} \|Q^{T}Ac - Q^{T}b\|_{2}^{2}.$$

Для повышения устойчивости данного алгоритма, преобразуем исходную задачу так, чтобы первые r столбцов матрицы были линейно независимы. Для этого рассмотрим $\tilde{A}=AP$, где P- некоторая матрица перестановок.

То есть переставим столбцы в матрице A (как именно определим в процессе вычислений) и решим задачу наименьших квадратов для полученной эквивалентной системы с матрицей A, т.е. построим разложение A=QR. Наша задача – получение в матрице $R=\begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix}$ как можно лучше обусловленный блок R_{11} и как можно меньшие элементы в R_{22} . Отметим, что в приближенных вычислениях блок R_{22} всегда отличен от нуля, хотя исходная задача могла быть неполного ранга.

Численное решение задачи наименьших квадратов методом QRразложения с выбором главного столбца. На k-ом шаге $(1 \le k \le n)$ нормой $\max_{k\leq j\leq n}\left(\sum_{i=k}^m a_{ij}^2\right)^{1/2}$ в неприведенной части A (подматрицы $A^{(k)}$ с в матрице A выбирается столбец с номером $j_k,\,k\leq j_k\leq n,$ с наибольшей

элементами a_{ij} и $k \leq i \leq m, k \leq j \leq n$). В матрице A столбец j_k переставляется с k-м столбцом. Далее применяется обычное отражение — очередной

Задание Наилучшее среднеквадратичное приближение.

шаг QR-разложения.

Дано: Файл с парами чисел $x_i, y_i, i = 0, \dots, N$ и система аналитических функций $\phi^{(j)}(x), j = 0, \dots, n.$

Найти: Коэффициенты c_i в разложении функции $F(x) = \sum_{i=0}^n c_j \phi^{(j)}(x)$, являющийся решением задачи

$$\rho = \inf_{c} \sum_{i=0}^{N} \alpha_{i} (y_{i} - F(x_{i}))^{2}.$$

Функция F(x) называется наилучшим квадратичным приближением.

Тест: Для матрицы A матрица R из QR-разложения с выбором главного столбца с точностью до знаков имеет вид

$$A = \begin{pmatrix} 1 & -1 & -1 & -1 & -1 \\ 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 2.23 & 0.89 & 0.44 & 0.00 & -0.44 \\ 0.00 & 1.78 & 0.33 & 0.00 & -0.33 \\ 0.00 & 0.00 & -1.63 & 0.00 & 0.41 \\ 0.00 & 0.00 & 0.00 & -1.41 & 0.70 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.10 \end{pmatrix}$$