Price Elasticity of Demand

State and Sector Comparison

David Scolari Dec. 6th, 2021

Background

- Electricity demand estimates by end-use customer class (residential, commercial, industrial) help inform energy policy making, resource planning, and electricity pricing.
- Elasticity is often used in IO literature to infer marginal costs, given certain assumptions on how firms set their prices.
- We estimated price elasticity of demand for a single state's residential use

How price elasticity of demand for electricity vary by state and end use (residential, commercial, industrial)?

- What state/end use characteristics explain these differences?
- Can these price elasticities help us infer marginal cost of generation? output?

Data

- 3 state-month panels (residential, commercial, industrial) 2010-2021
 - State electricity sales
 - State electricity prices
 - State personal income per capita
 - Region Heating/Cooling degree days (H/CDD)
 - US natural gas prices

Model: 3 models, one for each end use

$$ln(sales)_{it} = \beta_0 + \beta_1 ln(price)_{it} + \beta_2 ln(inc)_{it} + \beta_3 HDD_{it} + \beta_4 CDD_{it} + \beta_5 ln(price)_{it-1}$$
$$+ \sum_{k=2}^{51} \left[\gamma_k state_{ki} \right] + \sum_{k=2}^{51} \left[\delta_k state_{ki} \times ln(price)_{it} \right]$$

- Extend HW1's log-log regression to include 50 state indicators and 50 stateXIn(price) interactions.
- Our elasticity estimate is given by the sum of the ln(price) and interaction coefficients.

Price Elasticity of Demand for $state_k = \beta_1 + \delta_k$

Price Elasticities

Price Elasticities

- Pairwise Wald Testing
 - \circ H^0 : $\delta_i = \delta_j$ for each state i, j Reject if p < .05
 - Rejection implies the states' elasticities are significantly different
 - The result is a 51 x 51 matrix of p-values that reject/fail to reject for each pair of states
- Ask: do states differ by:
 - Market (ERCOT, PJM, MISO, etc.)
 - Interconnection group
 - Major industries
- Pick a few interesting cases and discuss

Marginal Cost Estimation

Lerner Index

$$\frac{p - mc}{p} = \frac{1}{|\varepsilon|}$$

Solve for MC

$$mc = p\left[1 + \frac{1}{|\varepsilon|}\right]$$

Natural Gas as a Proxy for Generator MC

- Natural gas is the leading energy source for generation in the US and for many states it makes up more than half of total generation by kwh
- Using 0.13 kwh per cubic ft, I converted natural gas prices into prices per kwh of generation

Marginal Cost Estimation

Lerner Index

$$\frac{p - mc}{p} = \frac{1}{|\varepsilon|}$$

Solve for MC

$$mc = p\left[1 + \frac{1}{|\varepsilon|}\right]$$

Natural Gas Proxy

$$mc_{proxy} = \frac{ng}{0.13} \left[\frac{\$}{ft^3} \frac{ft^3}{kwh} \right]$$

Check

$$mc_{proxy} - mc$$

Marginal Cost Estimation

	Est. MC	Natural Gas
com	2.010	0.030
ind	0.573	0.030
res	2.948	0.030
Total	1.836	0.030

Marginal Cost Estimation: Significant Industrial Estimates

	E MC N C
	Est. MC - Nat. Gas
ca	2632268
ct	505502
de	2512463
fl	-1.241958
id	066249
in	5153802
ks	7104632
ky	2462336
ma	1736322
md	2162889
nd	1142424
ne	1656643
$_{ m nj}$	8732309
nv	3754437
oh	973889
sd	1423719
tn	1527383
Total	4110447

- Pretty close results to start
- Could improve by more accurate market structure/ price setting assumptions than monopoly
- Could also use % natural gas generation for each state to scale my mc estimate and then compare to natural gas price

That's All