Pattern Matching

Definitionen:

- 1. Alphabet: endliche Menge von Zeichen, die Buchstaben genannt werden.
- 2. Wörter: Sei Σ Alphabet. Ein Σ -Wort ist endliche Folge von Buchstaben aus Σ :

$$w = b_1 b_2 \cdots b_n$$
 mit $b_i \in \Sigma$

ist Σ -Wort der Länge n

 Σ^* : Menge der Σ -Wörter

- 3. Das *leere Wort* bezeichen wir mit ε .
- 4. Konkatenation von Wörtern:

Seien $v = b_1 b_2 \cdots b_m \in \Sigma^*$ und $w = c_1 c_2 \cdots c_n \in \Sigma^*$.

Wir definieren die Konkatenation vw von v und w als $vw := b_1b_2\cdots b_mc_1c_2\cdots c_n$

5. Sprache:

Eine beliebige Teilmenge $\mathcal{L} \subseteq \Sigma^*$ heißt Σ -Sprache.

Beispiel: Sei $\Sigma = \{a, b\}$. Dann gilt

- 1. $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, \cdots\}$
- 2. $\mathcal{L}_Q := \{ w \in \Sigma^* \mid \exists v \in \Sigma^* : w = vv \}$ ist eine Σ -Sprache

Syntax—Analyse (Chomsky—Hierarchie)

Aufgaben der Syntax-Analyse in der Informatik

- 1. Beschreibung von Σ -Sprachen
- 2. Bereitstellung von Algorithmen zum Erkennen von Σ -Wörtern

Mögliche Ansätze

- 1. Beschreibung durch *reguläre Ausdrücke* Erkennung über *endliche Automaten*
- 2. Beschreibung durch *kontext–freie* Grammatik Erkennung durch *Keller–Automaten*
- 3. Beschreibung durch *kontext–sensitive* Grammatik algorithmisch entscheidbar, exponentieller Aufwand
- 4. Beschreibung durch beliebige Grammatik unentscheidbar

Praktische Bedeutung in Informatik:

- 1. Reguläre Ausdrücke
 - (a) Scanner: Aufteilung eines Programms in *Identi- fier*, *Schlüsselwörter*, *Literale*, *Kommentare*, etc.
 - (b) Skript-Sprachen: Tcl, Perl, Phyton, · · ·
- 2. Kontext-freie Grammatik

Parser: Strukturierung eines Programms in *Ausdrücke*, *Statements*, *Funktionen*, ···

Reguläre Ausdrücke

Gegeben: Alphabet Σ

Induktive Definition der

- (a) Menge RegExp der regulären Ausdrücke und der
- (b) Sprache $\mathcal{L}(r)$ für $r \in \text{RegExp}$
 - 1. $\emptyset \in \text{RegExp}$:

$$\mathcal{L}(\emptyset) = \{\}$$

2. $\varepsilon \in \text{RegExp}$:

$$\mathcal{L}(\varepsilon) = \{\varepsilon\}$$

- 3. $b \in \text{RegExp}$ für alle $b \in \Sigma$ $\mathcal{L}(b) = \{b\}$
- 4. Konkatenation: $r_1, r_2 \in \text{RegExp} \Rightarrow r_1 r_2 \in \text{RegExp}$ $\mathcal{L}(r_1 r_2) = \{ vw \in \Sigma^* \mid v \in \mathcal{L}(r_1) \land w \in \mathcal{L}(r_2) \}$
- 5. Alternative: $r_1, r_2 \in \text{RegExp} \Rightarrow (r_1|r_2) \in \text{RegExp}$ $\mathcal{L}\big((r_1|r_2)\big) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$
- 6. Abschluß: $r \in \text{RegExp} \Rightarrow (r)^* \in \text{RegExp}$ $\mathcal{L}\big((r)^*\big) = \big\{\varepsilon\big\} \cup \big\{w_1 \cdots w_n \mid w_i \in \mathcal{L}(r)\big\}$

Vereinfachung von regulären Ausdrücken

Bindungs-Regeln

- 1. Abschluß bindet stärker als Konkatenation
- 2. Konkatenation bindet stärker als Alternative

Dann können Klammer weggelassen werden:

- 1. ab^* steht für $a(b)^*$
- 2. a|b|c steht für ((a|b)|c)

Alternative Schreibweise:

$$r_1 + r_2$$
 statt $r_1 | r_2$

Definition: $r \simeq s \Leftrightarrow \mathcal{L}(r) = \mathcal{L}(s)$

Eigenschaften regulärer Ausdrücke

1.
$$\emptyset + r \simeq r$$
, $\varepsilon r \simeq r \varepsilon = r$, $\emptyset^* = \varepsilon$, $\emptyset r = r \emptyset = \emptyset$

2.
$$r + s \simeq s + r$$
, $\varepsilon * = \varepsilon$

3.
$$r + r \simeq r$$
, $(r^*)^* \simeq r^*$

4.
$$(r+s) + t \simeq r + (s+t)$$
, $(rs)t \simeq r(st)$

5.
$$(r+s)t \simeq rt + st$$
, $t(r+s) \simeq tr + ts$

6.
$$(\varepsilon + r)^* \simeq r^*$$
, $rr^* = r^*r$

7.
$$(r+s)^* \simeq (r^*s^*)^*$$

8.
$$(rs)^* \simeq \varepsilon + rs(rs)^*$$
, $(rs)^*r \simeq r(sr)^*$

Reguläre Ausdrücke: Erweiterungen & Beispiele

Abkürzungen: Sei
$$\Sigma = \{a,b,c,\cdots,x,y,z,\ 0,\cdots,9\}$$
 [abc] $\hat{=}$ $a|b|c$ [0-9] $\hat{=}$ $0|1|2|3|4|5|6|7|8|9$ [^0-9] $\hat{=}$ $a|b|c|\cdots|x|y|z$. $\hat{=}$ $a|b|c|\cdots|x|y|z|0|\cdots|9$ $r+$ $\hat{=}$ $rr*$ $r?$ $\hat{=}$ $\varepsilon|r$

Beispiele

- 1. [0-9]+
 nicht-leere Folge von Ziffern, z. B. "01"
- 2. 0|[1-9][0-9]*Zahl im Dezimal-System
- 3. http://[^/]+/[^_□]+
 - (a) Wörtlich: "http://"
 - (b) nicht-leere Folge von Buchstaben, die keinen Slash "/" enthält
 - (c) Wörtlich: Slash "/"
 - (d) nicht-leere Folge von Buchstaben, die kein Blank "" enthält

Endliche Automaten (Finite State Machines)

Definition: Das 5-Tupel

$$\langle \Sigma, Z, A, s_0, \text{next} \rangle$$

ist ein deterministischer endlicher Automat falls

- 1. Σ : Eingabe-Alphabet, endliche Menge
- 2. Z: Menge der Zustände, endlich
- 3. A: Menge der akzeptierenden Zustände, $A \subseteq Z$
- 4. s_0 : Start-Zustand, $s_0 \in Z$
- 5. $\operatorname{next}: Z \times \Sigma \to Z$ heißt $\operatorname{\it Zustands-Übergangs-Funktion}$

Graphische Darstellung:

- 1. Zustände: Kreis um Namen des Zustands
- 2. Akzeptierende Zustände: doppelte Kreise
- 3. Zustands-Übergangs-Funktion: Gilt $s_2 = \text{next}(s_1, a)$, so verbinden wir s_1 und s_2 durch Pfeil, der mit a beschriftet ist.
- 4. Start–Zustand: steht in Diagramm entweder ganz links oder ganz oben, Pfeil zeigt auf Start–Zustand

Ein Beispiel

Sei $F_{ug} := \langle \Sigma, Z, A, s_0, \mathtt{next} \rangle$ mit

- 1. $\Sigma = \{a, b\}$.
- 2. $Z = \{q_0, q_1, q_2, q_3\}.$
- 3. $A = \{q_3\}.$
- 4. $s_0 = q_0$.
- 5. $next(q_0, a) = q_1, next(q_0, b) = q_2.$
- 6. $next(q_1, a) = q_0$, $next(q_1, b) = q_3$.
- 7. $next(q_2, a) = q_3$, $next(q_2, b) = q_0$.
- 8. $next(q_3, a) = q_2$, $next(q_3, b) = q_1$.

Berechnung eines endl. Automaten

Gegeben: Endlicher Automat

$$F = \langle \Sigma, Z, A, s_0, \text{next} \rangle$$

Induktive Definition der Berechnung eines endlichen Automaten:

- 1. $q_1 \stackrel{c}{\rightarrow} q_2$ Berechnung mit Label $c \in \Sigma$ falls $q_2 = \operatorname{next}(q_1, c)$
- $2. \quad q_0 \xrightarrow{x_1} \cdots \xrightarrow{x_n} q_n \xrightarrow{x_{n+1}} \cdots \xrightarrow{x_m} q_m$

Berechnung mit Label vw falls

- (a) $q_0 \stackrel{x_1}{\rightarrow} \cdots \stackrel{x_n}{\rightarrow} q_n$ Berechnung mit Label v
- (b) $q_n \stackrel{x_{n+1}}{\to} \cdots \stackrel{x_m}{\to} q_m$ Berechnung mit Label w ist.

Definition der akzeptierten Sprache:

Ein Wort $w \in \Sigma^*$ ist genau dann in der akzeptierten Sprache $\mathcal{L}(F)$, wenn es eine Berechnung

$$s_0 \stackrel{x_0}{\rightarrow} \cdots \stackrel{x_n}{\rightarrow} q$$

mit Label w gibt und $q \in A$ liegt.

Beachte, dass Berechnung im Start–Zustand s_0 startet!

Beispiel: Betrachte letzten Automaten:

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_2 \xrightarrow{a} q_3$$

Berechnung mit Label aaba, also $aaba \in \mathcal{L}(F)$.

Arbeitsweise eines endlichen Automaten

Gegeben:

- 1. Endlicher Automat $F = \langle \Sigma, Z, A, s_0, \text{next} \rangle$
- 2. Wort $w \in \Sigma^*$

Frage: Wird $w = w[1] \cdots w[n]$ von F akzeptiert?

1. Beginne im Start-Zustand s_0 :

$$q = s0$$

q is aktueller Zustand

- 2. Setze idx = 1
- 3. Berechne Folge-Zustand

$$q = next(q, w[idx])$$

- 4. Inkrementiere idx.
- 5. Falls $idx \le n$: Gehe zu 3.
- 6. Ist $q \in A$:
 - (a) Ja: F hat w akzeptiert
 - (b) Nein: F hat w nicht akzeptiert

C-Implementierung einer FSM

```
typedef enum { Q0, Q1, Q2, Q3 } State;
bool accept(const char* w)
{
    State q = Q0;
    while (*w != 0) {
        switch (q) {
        case Q0: {
            switch (*w) {
                case 'a': {
                     q = Q1;
                     break;
                }
                case 'b': {
                     q = Q2;
                     break;
                }
            break;
        }
        case Q1: { ... }
        case Q2: { ... }
        case Q3: { ... }
        ++w;
    }
    if (q == Q3)
        return true;
    return false;
}
```

Erweiterung der Zustands-Übergangs-Funktion

Wir erweitern die Zustands-Übergangs-Funktion

$$\mathtt{next}: Z \times \mathbf{\Sigma} \to Z$$

zu einer Funktion

$$\mathtt{next}^*: Z imes \mathbf{\Sigma}^* o Z$$

Definition von $next^*(w)$ induktiv über Länge von w

- 1. $\operatorname{next}^*(q,\varepsilon) = q$
- 2. $next^*(q, bw) = next^*(next(q, b), w)$

Bemerkung: Endlicher Automat

$$F = \langle \Sigma, Z, A, s_0, \text{next} \rangle$$

akzeptiert $w \in \Sigma^*$ g.d.w.

$$next^*(s_0, w) \in A$$

Bemerkung: akzeptierte Sprache

$$\mathcal{L}(F) = \{ w \in \Sigma^* \mid \text{next}^*(s_o, w) \in A \}$$

Beispiel von Folie 6:

Bezeichne $\operatorname{nr}(x,w)$ Anzahl der Buchstaben x, die in w auftreten. Dann gilt:

$$\mathcal{L}(F_{ug}) = \{ w \mid \text{nr}(a, w) \% 2 = 1 \land \text{nr}(b, w) \% 2 = 1 \}$$

Nicht-deterministische Endliche Automaten

Definition: Das 6-Tupel

$$\langle \Sigma, Z, A, s_0, \text{next}, \text{eps} \rangle$$

ist nicht-deterministischer endl. Automat mit ε Übergängen falls

- 1. Σ: Eingabe-Alphabet, endliche Menge
- 2. Z: Menge der Zustände, endlich
- 3. A: Menge der akzeptierenden Zustände, $A \subseteq Z$
- 4. s_0 : Start-Zustand, $s_0 \in Z$
- 5. $\text{next}: Z \times \Sigma \to 2^Z$ heißt nicht-determ. Zustands-Übergangs-Funktion
- 6. eps : $Z \rightarrow 2^Z$ heißt Epsilon-Übergangs-Funktion

Akzeptierte Sprache

Gegeben: Nicht-deterministischer endl. Automat

$$F = \langle \Sigma, Z, A, s_0, \text{next}, \text{eps} \rangle$$

Induktive Definition der Berechnung eines endlichen Automaten:

- 1. $q_1 \stackrel{\varepsilon}{\to} q_2$ Berechnung mit Label ε falls $q_2 \in \operatorname{eps}(q_1)$
- 2. $q_1 \stackrel{c}{\rightarrow} q_2$ Berechnung mit Label $c \in \Sigma$ falls $q_2 \in \operatorname{next}(q_1, c)$
- 3. $q_0 \xrightarrow{x_1} \cdots \xrightarrow{x_n} q_n \xrightarrow{x_{n+1}} \cdots \xrightarrow{x_m} q_m$

Berechnung mit Label vw falls

- (a) $q_0 \stackrel{x_1}{\rightarrow} \cdots \stackrel{x_n}{\rightarrow} q_n$ Berechnung mit Label v
- (b) $q_n \stackrel{x_{n+1}}{\to} \cdots \stackrel{x_m}{\to} q_m$ Berechnung mit Label w ist.

Definition der akzeptierten Sprache:

Ein Wort $w \in \Sigma^*$ ist genau dann in der akzeptierten Sprache $\mathcal{L}(F)$, wenn es eine Berechnung

$$s_0 \stackrel{x_0}{\rightarrow} \cdots \stackrel{x_n}{\rightarrow} q$$

mit Label w gibt, so dass $q \in F$ ist.

Beachte, dass Berechnung im Start–Zustand s_0 startet!

Beispiel: Betrachte letzten Automaten:

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2 \xrightarrow{\varepsilon} q_4 \xrightarrow{a} q_4$$

Berechnung mit Label abba, also $abba \in \mathcal{L}(F)$.

Berechnung der akzeptierten Sprache

Wir erweitern die Funktion next und eps zu Funktionen

Next:
$$2^Z imes \Sigma o 2^Z$$
 und Eps: $2^Z o 2^Z$
Next (Q,b) := $\left\{z \in Z \mid \exists q \in Q : z \in \operatorname{next}(q,b) \right\}$

$$\mathsf{Eps}(Q) := Q \cup \{z \in Z \mid \exists q \in Q : z \in \mathsf{eps}(q)\}$$

Beispiel:

- 1. $Next(\{q_0\}, a) = \{q_0, q_3\}$
- 2. $Next(\{q_0, q_3\}, a) = \{q_0, q_3, q_4\}$
- 3. $Eps({q_0}) = {q_0}$
- 4. $Eps({q_2}) = {q_2, q_4}$

Wir erweitern die Funktion ${\tt Next}$ induktiv auf Worte w zu einer Funktion

$$\mathtt{Next}^*: 2^Z \times \Sigma^* \to 2^Z$$

- 1. Next* (Q, ε) := Eps(Q)
- 2. $\operatorname{Next}^*(Q, bw) := \operatorname{Next}^*(\operatorname{Next}(\operatorname{Eps}(Q), b), w)$

Beispiel:

- 1. $Next^*(\{q_0\}, aa) = \{q_0, q_3, q_4\}$
- 2. Next* $({q_0}, abba) = {q_0, q_2, q_3, q_4}$

Satz: Ist F nicht-determ. Automat, so gilt:

$$\mathcal{L}(F) = \{ w \in \Sigma^* \mid \text{Next}^*(\{s_0\}, w) \cap F \neq \emptyset \}$$

Potenz-Mengen-Konstruktion

Gegeben: Nicht-deterministische FSM

$$F_{nd} = \langle \Sigma, Z, A, s_0, \text{next}, \text{eps} \rangle$$

Gesucht: Deterministische FSM

$$F_{det} = \langle \Sigma, \mathcal{Z}, \mathcal{A}, S_0, \mathcal{NS} \rangle$$

$$mit \ \mathcal{L}(F_{det}) = \mathcal{L}(F_{nd})$$

Definition:

1. $\mathcal{Z} := 2^Z$

$$2. \ \mathcal{A} := \{ M \in 2^Z \mid M \cap F \neq \emptyset \}$$

3. $S_0 := \{s_0\}$

4.
$$\mathcal{NS}(Q) := \operatorname{Eps} \Big(\operatorname{Next} \big(\operatorname{Eps}(Q), b \big) \Big)$$

Zahl der Zustände: $|\mathcal{Z}| = 2^{|Z|}$: sehr groß!

Satz: $\mathcal{L}(F_{det}) = \mathcal{L}(F_{nd})$

Beobachtung: Nicht-deterministische Automaten sind nicht mächtiger als deterministische Automaten.

Übersetzung von regulären Ausdrücken in nicht-deterministische FSMs

Wir definieren für jeden regulären Ausdruck r eine nichtdeterministische FSM durch Induktion über r

Konstruktions-Invarianten:

- 1. Menge der akzeptierenden Zustände ein-elementig
- 2. $|eps(q)| \le 2$
- 3. $|\bigcup_{b \in \Sigma} \operatorname{next}(q, b)| \leq 1$
- 4. $eps(q) = \emptyset \lor \forall b \in \Sigma : next(q, b) = \emptyset$

Induktive Definition:

1. $r = \emptyset$:

Start
$$q0$$
 $q1$

2. $r = \varepsilon$:

3. $r = b \text{ mit } b \in \Sigma$:

$RegExp \mapsto FSM (Fortsetzung)$

Nach IV seien FSMs für r_1 und r_2 wie folgt gegeben:

1. r_1 :

2. r_2 :

Fortsetzung der induktiven Definition:

4.
$$r = r_1 r_2$$

5.
$$r = r_1 + r_2$$

Konstruktion der FSM für r_1^st

Nach IV sei FSM für r_1 gegeben durch

Fortsetzung der induktiven Definition

Beispiel: $(a|b)^*abb$

Simulation nicht-deterministischer FSMs

Problem: Größe Potenz-Mengen-Konstruktion: $2^{|Z|}$ **Lösung**: Simulation der Potenz-Mengen-Konstruktion Repräsentation einer FSM

- 1. Anzahl der Zustände: numberStates
- 2. Codierung der Zustände als Zahlen:

```
0, \dots, numberStates - 1
```

- 3. Feld von Symbolen: symbol[numberStates]
- 4. Feld von Folge-Zuständen: next1[numberStates]
- 5. Feld von Folge-Zuständen: next2[numberStates]

Bedeutung dieser Felder:

- 1. $j \in \text{next}(i, c) \rightarrow \text{symbol}[i] = c$
- 2. $(\forall c \in \Sigma : \mathtt{next}(i, c) = \emptyset) \rightarrow \mathtt{symbol}[i] = 0$
- 3. $j \in \text{next}(i, c) \rightarrow \text{next1}[i] = j$
- 4. $j \in eps(i) \rightarrow next1[i] = j \lor next2[i] = j$

C-Daten-Struktur

```
typedef struct {
    unsigned numberStates; // number of states
    char* symbol; // array of characters
    unsigned* next1; // possible next state
    unsigned* next2; // possible next state
} FSM;
```

Respresentation der Beispiel-FSM

fsm->numberStates = 11;

// Numerierung der Zustaende
// 0 1 2 3 4 5 6 7 8 9 10

fsm->symbol =
 { 0, 0, 'a', 0, 'b', 0, 0, 'a', 'b', 'b', 0 };

fsm->next1 =
 { 1, 2, 3, 6, 5, 6, 7, 8, 9, 10, 10 };

fsm->next2 =
 { 7, 4, 3, 6, 5, 6, 1, 8, 9, 10, 10 };

Berechnung des Epsilon-Abschluß

$$\mathtt{epsClose} : 2^Z \to 2^Z$$

 $\operatorname{epsClose}(Q)$: Menge der Zustände, die von Zuständen in Q durch Epsilon-Übergange erreicht werden können.

Definition von epsClose(Q) iterativ:

- 1. Für alle $Q \subseteq Z$ gilt: $Q \subseteq \operatorname{epsClose}(Q)$
- 2. Für alle $Q \subseteq Z$ und alle $q \in Z$ gilt: $q \in \operatorname{epsClose}(Q) \Rightarrow \operatorname{eps}(q) \subseteq \operatorname{epsClose}(Q)$

Berechnung von epsClose(Q)

Repräsentation von Zustands-Mengen $Q\subseteq Z$ durch Felder:

1. Für die Menge der Zustände gilt:

```
Z = \{q_0, q_1, \cdots, q_n\} mit n + 1 = \text{numberStates}.
```

2. $Q \subseteq Z$ wird dargestellt durch bool state[numberStates]

```
Dabei gilt
```

```
state[i] = true \leftrightarrow q_i \in Q
```

```
void epsClose(FSM* fsm, bool states[]) {
    bool change = true;
    while (change) {
       change = false;
       for (unsigned i = 0; i < fsm->numberStates; ++i)
       ₹
           if (states[i] && fsm->symbol[i] == 0) {
               if (!states[fsm->next1[i]]) {
                   change = true;
                   states[fsm->next1[i]] = true;
               }
               if (!states[fsm->next2[i]]) {
                   change = true;
                   states[fsm->next2[i]] = true;
               }
           }
      }
   }
```

Simulation der Potenz-Mengen-Konstruktion

```
bool simulate(FSM* fsm, char* word) {
    bool currentStates[fsm->numberStates];
    bool nextStates[fsm->numberStates];
    currentStates[0] = true;
    for (unsigned i = 1; i < fsm->numberStates; ++i) {
        currentStates[i] = false;
    }
    epsClose(fsm, currentStates);
    while (*word != 0) {
        for (unsigned i = 0; i < fsm->numberStates; ++i)
            nextStates[i] = false;
        for (unsigned i = 0; i < fsm->numberStates; ++i) {
            if ( currentStates[i]
                    fsm->symbol[i] == *word)
            {
                nextStates[fsm->next1[i]] = true;
            }
        }
        for (unsigned i = 0; i < fsm->numberStates; ++i)
            currentStates[i] = nextStates[i];
        epsClose(fsm, currentStates);
        ++word;
    return currentStates[fsm->numberStates - 1];
}
Zahl der Zustände: n, Länge des Wortes: m
 1. Komplexität epsClose: \mathcal{O}(n^2)
 2. Komplexität simulate: \mathcal{O}(m*n^2)
```

Konstruktion RegExp → FSM: Implementierung

1. Speicherplatz reservieren

```
FSM* allocateFSM(unsigned n) {
        FSM* fsm = malloc( sizeof(FSM) );
        fsm->numberStates = n:
                            = malloc( n * sizeof(int) );
        fsm->symbol
                             = malloc( n * sizeof(int) );
        fsm->next1
        fsm->next2
                             = malloc( n * sizeof(int) );
        return fsm;
   }
2. Fsm f2 an Stelle o in f1 kopieren
   void move(FSM* f1, FSM* f2, unsigned o) {
        for (unsigned i = 0; i < f2->numberStates; ++i)
            f1->symbol[i + o] = f2->symbol[i];
             f1 -> next1[i + o] = f2 -> next1[i] + o;
             f1 -> next2[i + o] = f2 -> next2[i] + o;
        }
   }
3. i \xrightarrow{\varepsilon} j, i \xrightarrow{\varepsilon} k
   void epsTransition(FSM* fsm, unsigned i,
                         unsigned j, unsigned k) {
        fsm->symbol[i] = 0;
        fsm \rightarrow next1[i] = j; fsm \rightarrow next2[i] = k;
4. i \stackrel{c}{\rightarrow} j
   void charTransition(FSM* fsm, unsigned i,
                           unsigned j, char c) {
        fsm->symbol[i] = c;
        fsm \rightarrow next1[i] = j; fsm \rightarrow next2[i] = j;
   }
```

FSM zur Erkennung von Buchstaben

Akzeptieren des Buchstaben b

- 1. 2 Zustände
- 2. $0 \xrightarrow{b} 1$
- 3. $1 \xrightarrow{\varepsilon} 1$

Implementierung:

```
FSM* createCharacter(char c) {
    FSM* fsm = allocateFSM(2);
    charTransition(fsm, 0, 1, c);
    epsTransition (fsm, 1, 1, 1);
    return fsm;
}
```

Implementierung der Konkatenation

Implementierung

- 1. Größe Fsm f1: n1.
- 2. Größe Fsm f2: n2.
- 3. Größe neue Fsm: n1 + n2 1
- 4. Kopiere f1 an Offsett 0 in neuer Fsm.
- 5. Kopiere f2 an Offsett n1-1 in neuer Fsm.

```
FSM* concat(FSM* f1, FSM* f2) {
   unsigned n1 = f1 ->numberStates;
   unsigned n2 = f2 ->numberStates;
   unsigned n = n1 + n2 - 1;
   FSM* fsm = allocateFSM(n);
   move(fsm, f1, 0);
   move(fsm, f2, n1 - 1);
   freeFsm(f1);
   freeFsm(f2);
   return fsm;
}
```

Implementierung der Alternative

Implementierung

- 1. Größe Fsm f1: n1.
- 2. Größe Fsm f2: n2.
- 3. Größe neue Fsm: n1 + n2 + 2
- 4. Kopiere f1 an Offsett 1 in neuer Fsm.
- 5. Kopiere f2 an Offsett n1+1 in neuer Fsm.

```
FSM* alternative(FSM* f1, FSM* f2) {
    unsigned n1 = f1 ->numberStates;
    unsigned n2 = f2 ->numberStates;
    unsigned n = n1 + n2 + 2;
    FSM* fsm = allocateFSM(n);
    epsTransition(fsm, 0, 1, n1 + 1);
    move(fsm, f1, 1);
    move(fsm, f2, n1 + 1);
    epsTransition(fsm, n1, n - 1, n - 1);
    epsTransition(fsm, n - 2, n - 1, n - 1);
    epsTransition(fsm, n - 1, n - 1, n - 1);
    freeFsm(f1);    freeFsm(f2);
    return fsm;
}
```

Implementierung des Abschlusses

- 1. Größe Fsm f: n.
- 2. Größe neue Fsm: n + 2
- 3. Kopiere f an Offsett 1 in neuer Fsm.

Implementierung

```
FSM* closure(FSM* f) {
   unsigned n = f->numberStates;
   FSM* fsm = allocateFSM(n+2);
   epsTransition(fsm, 0, 1, n + 1);
   move(fsm, f, 1);
   epsTransition(fsm, n, n + 1, 1);
   epsTransition(fsm, n + 1, n + 1, n + 1);
   freeFsm(f);
   return fsm;
}
```

Konstruktion einer RegExp aus einer FSM

Definitionen: Sei Σ ein endliches Alphabet.

1. Es seien $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$. Wir definieren die Konkatenation von \mathcal{L}_1 und \mathcal{L}_2 als:

$$\mathcal{L}_1\mathcal{L}_2 := \{ vw \mid v \in \mathcal{L}_1 \land w \in \mathcal{L}_2 \}$$

2. Sei $\mathcal{L} \subseteq \Sigma^*$. Für $n \in \mathbb{N}$ definieren wir die *Potenz* \mathcal{L}^n durch Induktion über n:

I.A.
$$n \mapsto 0$$
: $\mathcal{L}^0 := \{\varepsilon\}$

I.S.
$$n \mapsto n+1$$
: $\mathcal{L}^{n+1} := \mathcal{L}^n \mathcal{L}$

3. Sei $\mathcal{L}\subseteq \Sigma^*$. Wir definieren den *Abschluß* von \mathcal{L} als

$$\mathcal{L}^* = \bigcup_{n=0}^{\infty} \mathcal{L}^n$$

4. Seien $u,w\in \Sigma^*$. u ist $Pr\ddot{a}fix$ von w, g.d.w. es gibt $v\in \Sigma^*$ mit $v\neq \varepsilon$ und uv=w. Schreibweise: $u\prec w$

$$u \prec w \iff \exists v \in \Sigma^* : v \neq \varepsilon \land uv = w.$$

Beispiele: Sei $\Sigma = \{a, b\}$, $\mathcal{L}_1 = \{ba, b\}$ und $\mathcal{L}_2 = \{abb, bb\}$.

- 1. $\mathcal{L}_1\mathcal{L}_2 = \{baabb, babb, babb, bbb\}$
- 2. $\mathcal{L}_1^3 = \{bbb, bbba, bbab, babb, babba, babba, babba, babba, babba\}$
- 3. $abbabb \prec abbabbabb$

Weitere Definitionen

Definition: Gegeben sei eine FSM

$$F = \langle \Sigma, \{q_1, \cdots, q_n\}, A, q_1, \text{next} \rangle$$

Wir definieren eine partielle Funktion

$$\mathtt{next}^{(k)}: Z \times \mathbf{\Sigma}^* \to Z$$

- 1. Fall: $\forall v \in \Sigma^* \setminus \{\varepsilon\} : v \prec w \to \operatorname{next}(q, v) \in \{q_1, \dots, q_k\}$ Dann setzen wir $\operatorname{next}^{(k)}(q, w) = \operatorname{next}^*(q, w).$
- 2. Fall: $\exists v \in \Sigma^* \setminus \{\varepsilon\} : v \prec w \land \operatorname{next}(q, v) \not\in \{q_1, \dots, q_k\}$ Dann sei $\operatorname{next}^{(k)}(q, w)$ undefiniert, wir setzen $\operatorname{next}^{(k)}(q, w) = \uparrow$.

Falls $\operatorname{next}^{(k)}(q,w) = p$ ist, so sagen wir, dass die Berechnung von w im Zustand q, die Zustände aus $\{q_{k+1}, \dots, q_n\}$ vermeidet.

Für $k \in \{0,1,\cdots,n\}$ und $i,j \in \{1,\cdots,n\}$ definieren wir Sprachen $\mathcal{R}_{i,j}^{(k)}$

$$\mathcal{R}_{i,j}^{(k)} := \left\{ w \in \Sigma^* \mid \operatorname{next}^{(k)}(q_i, w) = q_j \right\}$$

Bemerkung: Es gilt

$$\mathcal{R}_{i,j}^{(n)} := \left\{ w \in \Sigma^* \mid \operatorname{next}^*(q_i, w) = q_j \right\}$$

Konstruktion einer RegExp aus einer FSM

Gegeben: FSM $F = \langle \Sigma, \{q_1, \dots, q_n\}, A, q_1, \text{next} \rangle$

Gesucht: $r \in \text{RegExp mit } \mathcal{L}(r) = \mathcal{L}(F)$

Wir geben induktive Konstruktionen der Sprachen $\mathcal{R}_{i,j}^{(k)}$:

- 1. Induktions–Anfang: k = 0
 - (a) $\exists a \in \Sigma : \operatorname{next}(q_i, a) = q_j \text{ und } i \neq j$ $\mathcal{R}_{i,j}^{(0)} := \{a\}$
 - (b) $\exists a \in \Sigma : \operatorname{next}(q_i, a) = q_i$ $\mathcal{R}_{i,i}^{(0)} := \{a, \varepsilon\}$
 - (c) $\forall a \in \Sigma : \operatorname{next}(q_i, a) \neq q_j \text{ und } i \neq j$ $\mathcal{R}_{i,j}^{(0)} := \{\}$
 - (d) $\forall a \in \Sigma : \operatorname{next}(q_i, a) \neq q_i \text{ und } i = j$ $\mathcal{R}_{i,i}^{(0)} := \{\varepsilon\}$
- 2. Induktions—Schritt: $k \mapsto k+1$

$$\mathcal{R}_{i,j}^{(k+1)} := \mathcal{R}_{i,j}^{(k)} \cup \mathcal{R}_{i,k+1}^{(k)} \left(\mathcal{R}_{k+1,k+1}^{(k)} \right)^* \mathcal{R}_{k+1,j}^{(k)}$$

Begründung: Es ist $w \in \mathcal{R}_{i,j}^{(k+1)}$ g.d.w.

- (a) $w \in \mathcal{R}_{i,j}^{(k)}$ oder
- (b) $w = xv_1v_2\cdots v_ny$ mit $n \ge 0$ und

•
$$x \in \mathcal{R}_{i,k+1}^{(k)}$$
, $y \in \mathcal{R}_{k+1,j}^{(k)}$

•
$$v_i \in \mathcal{R}_{k+1,k+1}^{(k)}$$
 für alle $i=1,\cdots,n$

Abschluß der Konstruktion

Wir definieren reguläre Ausdrücke $r_{i,j}^{(k)}$ mit

$$\mathcal{L}(r_{i,j}^{(k)}) = \mathcal{R}_{i,j}^{(k)}$$

- 1. Induktions–Anfang: k = 0
 - (a) $\exists a \in \Sigma : \operatorname{next}(q_i, a) = q_j \text{ und } i \neq j$ $r_{i,j}^{(0)} := a$
 - (b) $\exists a \in \Sigma : \operatorname{next}(q_i, a) = q_i$ $r_{i,i}^{(0)} := a + \varepsilon$
 - (c) $\forall a \in \Sigma : \operatorname{next}(q_i, a) \neq q_j \text{ und } i \neq j$ $r_{i,j}^{(0)} := \emptyset$
 - (d) $\forall a \in \Sigma : \operatorname{next}(q_i, a) \neq q_i$ $r_{i,i}^{(0)} := \varepsilon$
- 2. Induktions—Schritt: $k \mapsto k+1$

$$r_{i,j}^{(k+1)} := r_{i,j}^{(k)} + r_{i,k+1}^{(k)} \left(r_{k+1,k+1}^{(k)}\right)^* r_{k+1,j}^{(k)}$$

Setze $r_{i,j} := r_{i,j}^{(n)}$.

Sei $A = \{q_l, \cdots, q_n\}$ Menge der akzeptierenden Zustände.

$$r_F := r_{1,l} + r_{1,l+1} + \cdots + r_{1,n}.$$

Dann gilt

$$\mathcal{L}(F) = \mathcal{L}(r_F)$$

Ein Beispiel

Definition: Eine deterministische FSM

$$F = \langle \Sigma, Z, A, s_0, \text{next} \rangle$$

ist eine *partielle* FSM, wenn die Funktion next teilweise undefiniert ist.

Bemerkung: Die Konstruktion eines regulären Ausdrucks r mit

$$\mathcal{L}(r) = \mathcal{L}(F)$$

funktioniert auch für partielle FSMs.

Aufgabe: Berechnen Sie für folgende FSM einen äquivalenten regulären Ausdruck.

Nützliche Vereinfachungs-Regeln

1.
$$(\varepsilon + r)^* \simeq r^*$$

2.
$$(\varepsilon + r)(\varepsilon + r)^* \simeq r^*$$

3.
$$r_1 + r_1 r_2^* \simeq r_1 r_2^*$$

4.
$$r_1 + r_1 r_2 r_2^* \simeq r_1 r_2^*$$

5.
$$r_1(r_2r_1)^*r_2 = r_1r_2(r_1r_2)^*$$

Berechnung des regulären Ausdrucks

	k = 0	k = 1	k = 2	k = 3
$r_{1,1}^{(k)}$	ε	ε	ε	$(aba)^*$
$r_{1,2}^{(k)}$	a	a	a	$a(baa)^*$
$r_{1,3}^{(k)}$	Ø	Ø	ab	$ab(aab)^*$
$r_{2,1}^{(k)}$	Ø	Ø	Ø	$ba(aba)^*$
$r_{2,2}^{(k)}$	arepsilon	arepsilon	arepsilon	$(baa)^*$
$r_{2,3}^{(k)}$	b	b	b	$b(baa)^*$
$r_{3,1}^{(k)}$	a	a	a	$a(aba)^*$
$r_{3,2}^{(k)}$	Ø	aa	aa	$aa(baa)^*$
$r_{3,3}^{(k)}$	ε	ε	$\varepsilon + aab$	$(aab)^*$

- 1. Spalte: folgt unmittelbar aus Diagramm
- 2. Spalte: einzige Änderung dort, wo Pfade der Länge 2 sind, deren mittlerer Knoten 1 ist:

$$3 \stackrel{a}{\rightarrow} 1 \stackrel{a}{\rightarrow} 2$$
, also $r_{3,2}^{(1)} = aa$

3. Spalte: einzige Änderung dort, wo Pfade mit Knoten 2 hinzukommen:

$$3\stackrel{a}{\to}1\stackrel{a}{\to}2\stackrel{b}{\to}3$$
, also $r_{3,3}^{(2)}=\varepsilon+aab$ $1\stackrel{a}{\to}2\stackrel{b}{\to}3$, also $r_{1,3}^{(2)}=ab$

4. Spalte: Sei $i \stackrel{u}{\to} j$ und $j \stackrel{v}{\to} j$ $r_{i,j}^{(3)} = uv^*$

Also:
$$\mathcal{L}(F) = \mathcal{L}(ab(aab)^*)$$

Pumping Lemma

Definition: Für ein Wort $w \in \Sigma^*$ bezeichnet

|w|

die Länge (Zahl der Buchstaben) von w.

Für $n \in \mathbb{N}$ definieren wir w^n induktiv:

I.A.
$$n \mapsto 0$$
: $w^0 := \varepsilon$

I.S.
$$n \mapsto n + 1$$
: $w^{n+1} := ww^n$

Definition: Sei Σ Alphabet. Eine Sprache $\mathcal{L} \subseteq \Sigma^*$ ist *regulär der Ordnung* n g.d.w. es einen endl. Automaten

$$F = \langle \Sigma, Z, A, s_0, \text{next} \rangle$$

gibt, so daß gilt:
$$\mathcal{L} = \mathcal{L}(F)$$
 und $\operatorname{card}(Z) = n$.

Hier bezeichnet card(Z) die Zahl der Zustände.

Satz (Pumping Lemma)

Vor.: \mathcal{L} ist reguläre Sprache der Ordnung n.

Beh.: Für alle $w \in \mathcal{L}$ mit $|w| \geq n$ gibt es $x, y, z \in \Sigma^*$ mit

1.
$$w = xyz$$

$$2. |xy| \le n$$

3.
$$|y| \ge 1$$

4.
$$\forall k \in \mathbb{N} : xy^k z \in \Sigma^*$$

Beweis des Pumping Lemma

Sei $\mathcal{L} = \mathcal{L}(F)$ mit $F = \langle \Sigma, Z, q_0, \text{next} \rangle$ und n = card(Z).

Sei $w = a_1 a_2 \cdots a_m \in \mathcal{L}(F)$ mit $m \geq n$. Dann gibt es Berechnung der FSM F mit Label w:

$$q_0 \stackrel{a_1}{ o} q_1 \stackrel{a_2}{ o} q_2 \stackrel{a_3}{ o} \cdots \stackrel{a_m}{ o} q_m \quad \text{ und } q_m \in A$$

Es können nicht alle Zustände in der Menge

$$\{q_0,q_1,q_2,\cdots,q_n\}$$

verschieden sein, es gibt also $i, j \in \{0, \dots, n\}$ mit

$$i < j$$
 und $q_i = q_j$.

Wir definieren

$$x := a_1 \cdots a_i, \quad y := a_{i+1} \cdots a_j, \quad z := a_{j+1} \cdots a_m$$

Dann haben wir die folgenden Berechnungen der FSM ${\cal F}$

1.
$$q_0 \xrightarrow{a_1} \cdots \xrightarrow{a_i} q_i$$
, also $q_0 \xrightarrow{x} q_i$

2.
$$q_i \stackrel{a_{i+1}}{\to} \cdots \stackrel{a_j}{\to} q_i$$
, also $q_i \stackrel{y}{\to} q_i$

3.
$$q_i \stackrel{a_{j+1}}{\to} \cdots \stackrel{a_m}{\to} q_m$$
, also $q_i \stackrel{z}{\to} q_m$

Damit gilt auch

$$q_0 \xrightarrow{x} \underbrace{q_i \xrightarrow{y} q_i \xrightarrow{y} \cdots \xrightarrow{y} q_i}_{k} \xrightarrow{z} q_m$$

und das zeigt, dass

$$xy^kz\in\mathcal{L}$$
 für alle $k\in\mathbb{N}$

Aus i < j und |y| = j - i folgt $|y| \ge 1$.

Wegen |xy| = j und $j \in \{0, \dots, n\}$ folgt auch

$$|xy| \leq n$$
.

Anwendung des Pumping Lemma

Aufgabe: Sei $\Sigma = \{a, b\}$. Zeigen Sie, dass die Sprache

$$\mathcal{L} := \{ w \in \Sigma^* \mid \operatorname{nr}(w, \mathbf{a}) = \operatorname{nr}(w, \mathbf{b}) \}$$

nicht regulär ist.

Ein Wort in \mathcal{L} enthält genauso viele Buchstaben a wie b.

Beweis indirekt.

Annahme: Sei \mathcal{L} reguläre Sprache der Ordnung n.

Betrachte das Wort $w := a^n b^n$. Es gilt

$$a^nb^n\in\mathcal{L}$$
 und $|a^nb^n|=2*n.$

Also gibt es Worte x, y und z mit:

$$1. \ w = a^n b^n = xyz$$

2.
$$|xy| \le n$$

3.
$$|y| \ge 1$$

4.
$$xy^kz \in \mathcal{L}$$

Aus $|xy| \le n$ und $xyz = a^nb^n$ folgt

 $xy \prec a^n$

und daraus folgt

$$nr(x,b) = 0$$
 und $nr(y,b) = 0$.

Fortsetzung der Aufgabe

Aus $xyz \in \mathcal{L}$ folgt wegen

$$nr(xyz, a) = nr(x, a) + nr(y, a) + nr(z, a)$$
 und
 $nr(xyz, b) = nr(x, b) + nr(y, b) + nr(z, b) = nr(z, b)$

die Gleichung

$$nr(x,a) + nr(y,a) + nr(z,a) = nr(z,b)$$
(A)

Ebenso folgt aus $xy^2z\in\mathcal{L}$ und

$$nr(xy^2z, a) = nr(x, a) + 2 * nr(y, a) + nr(z, a)$$
 und
 $nr(xy^2z, b) = nr(x, b) + 2 * nr(y, b) + nr(z, b) = nr(z, b)$

die Gleichung

$$nr(x, a) + 2 * nr(y, a) + nr(z, a) = nr(z, b)$$
 (B)

Ziehen wir (A) von (B) ab, so erhalten wir

$$nr(y,a) = 0$$

Weil auch

$$nr(y,b) = 0$$

gilt, folgt

$$y = \varepsilon$$

Das steht im Widerspruch zu

$$|y|>1$$
 .

Erkenntnis: Endliche Automaten können nicht zählen!

Reguläre Ausdrücke in der Praxis: sed

Zeichen mit Sonderbedeutung bei sed:

- 1. ".": paßt auf jeden Buchstaben außer Zeilenumbruch.
 "a.c" paßt auf "abc", "azc", "a1c", ...
- 2. "*": Quantorbeliebig viele Wiederholungen."fo*" paßt auf "f", "fo", "foo", "fooo", etc.
- 3. "\+": Quantor mindestens eine Wiederholung."fo\+" paßt auf "fo", "foo", "fooo", ...
- 4. "\?": Quantorkeine oder eine Wiederholung."fo\?" paßt auf "f" und "fo".
- 5. "\|: Auswahl von zwei Möglichkeiten "eins\|zwei" paßt sowohl auf "eins" als auch auf "zwei"
- 6. "^" paßt auf leeren String am Zeilen-Anfang "^int" paßt auf "int" am Zeilen-Anfang.
- 7. "\$" paßt auf leeren String am Zeilen-Ende. "^\$" paßt auf Leerzeile.

Reguläre Ausdrücke

8. "[" und "]" begrenzen Zeichen-Mengen "[ad]" paßt auf "a" und "d".

Spezifikation von Intervallen durch "-"

- (a) "[a-z]" paßt auf jeden Klein-Buchstaben.
- (b) "[a-z*.]" paßt auf jeden Klein-Buchstaben und auf "*" und "."

Merke: "*", "+", "?", "." verlieren Sonderbedeutung in Zeichen-Mengen.

- (c) "^": Komplement einer Zeichen-Mengen.
 "[^0-9]" paßt auf alle Zeichen, die keine Ziffern sind.
- 9. "\(" und "\)": Gruppierung
 "\(ja\)\+" paßt auf
 "ja", "jaja", "jajaja", ...
 "\(J\|j\)a" paßt auf
 "Ja" und "ja"

Anwendung: sed

sed s/regexp/replacement/g

replacement kann "\1", "\2", "\3" ··· "\3" enthalten.

" \n " steht für n-te Klammer

sed $s/\emph{([^}]*)}/em>\1<\em>/g'$

ersetzt "\emph{string}" durch "string".

Ein komplexeres Beipspiel sed

Gegeben: Datei der Form

8 5

9 3

10 3

11 9

12 3

. . .

Idee: Datei spezifiziert Primzahlen

$$n - m$$
 spezifiziert $2^n - m$

Automatisches Ausrechnen mit sed und bc

Andere Kommandos, die mit regulären Ausdrücken arbeiten

- 1. grep $regexp file_1 \cdots file_n$
- 2. XEmacs:
 - (a) isearch-forward-regexp
 - (b) query-replace-regexp
- 3. find [directory] -regexp regexp-pattern [action]
- 4. Grundlage von Perl, Tcl, Python