武汉大学 2006—2007 学年第二学期《高等数学》(总学时 180) 考试 A 试题参考解答

令
$$f(x) = \sum_{n=0}^{\infty} \frac{n+1}{n!} x^n$$
 两边积分,有: $\int_0^x f(x) dx = \sum_{n=0}^{\infty} \int_0^x \frac{n+1}{n!} x^n dx = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1} = x \sum_{n=0}^{\infty} \frac{1}{n!} x^n = xe^x$. 故 $f(x) = (1+x)e^x$

2.
$$a_0 = \frac{1}{2} \int_{-2}^{2} (1+x) dx = \int_{0}^{2} dx = 2$$

$$a_n = \frac{1}{2} \int_{-2}^{2} (1+x) \cos \frac{n\pi x}{2} dx = \frac{1}{2} \int_{-2}^{2} \cos \frac{n\pi x}{2} dx = \int_{0}^{2} \cos \frac{n\pi x}{2} dx = 0$$

$$b_n = \frac{1}{2} \int_{-2}^{2} (1+x) \sin \frac{n\pi x}{2} dx = \frac{1}{2} \int_{-2}^{2} x \sin \frac{n\pi x}{2} dx = \int_{0}^{2} x \sin \frac{n\pi x}{2} dx = \frac{4(-1)^{n+1}}{n\pi}$$
 (1,2...),

二、解: 1) 由偏导数定义知
$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$

同理 $f_{y}(0,0) = 0$. 所以, f(x,y) 在点 (0,0) 的偏导数符

2)
$$\frac{\partial f}{\partial l}|_{(0,0)} = \lim_{t \to 0} \frac{f(0 + t\cos\theta, 0 + t\sin\theta)}{t} = \lim_{t \to 0} \frac{t^3\cos^2\theta\sin\theta/t^2}{t} = \cos^2\theta\sin\theta$$

$$\text{if } f(x, y) \text{ Affine Define } \frac{1}{t} = \cos^2\theta\sin\theta$$

3)
$$\pm \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(0 + \Delta x, 0 + \Delta y) - f(0, 0)}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta x^2 \Delta y}{\sqrt{(\Delta x^2 + \Delta y^2)^3}}$$

$$= \lim_{\substack{\Delta x \to 0 \\ \Delta y = \Delta x \to 0}} \frac{\Delta x^3}{\sqrt{(2\Delta x^2)^3}} = \frac{\sqrt{2}}{2} \neq 0$$

将
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, $x = e^t$ 代入原方程得 $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = te^t$ 由 $r^2 - 3r + 2 = 0$ 得方程 $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 0$ 的一般

解:
$$y = c_1 e' + c_2 e^{2t}$$
 设 $\frac{d^2 y}{dt^2} - 3 \frac{dy}{dt} + 2y = te'$ 的特解为 $y' = (At^2 + Bt)e'$ 由待定系数法得: $A = -\frac{1}{2}$, $B = -1$ 故

得方程
$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = te^t$$
 的一般解: $y = c_1e^t + c_2e^{2t} + (-\frac{1}{2}t^2 - t)e^t$

四、解: 1、
$$\frac{\partial f}{\partial y} = -2yze^{-(x^2+y^2+z^2)}$$
 $\frac{\partial^2 f}{\partial y \partial z} = 2y(2z^2-1)e^{-(x^2+y^2+z^2)}$ $\frac{\partial^3 f}{\partial y \partial z \partial x} = 4xy(1-2z^2)e^{-(x^2+y^2+z^2)}$

2、利用积分域的对称性、被积函数的奇偶性和球坐标, $\iiint f(x,y,z) \mathrm{d} v = 2 \int\limits_{0}^{\infty} d\varphi \int\limits_{0}^{\infty} d\theta \int\limits_{0}^{\infty} r^{3} \cos \varphi \sin \varphi e^{-r^{2}} dr$

渍小铺QQ: 1433397577,搜集整理不易,资料自用就好,谢谢!
$$\int_{r}^{r^{2}e^{-r^{2}}} dr = \frac{1}{2} \int_{1}^{r^{2}e^{-r^{2}}} dr^{2} = \frac{1}{2} \int_{1}^{r^{2}} ue^{-u} du = \frac{1}{2e^{4}} (2e^{3} - 5)$$

$$\int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{\frac{\pi}{2}} \cos\varphi \sin\varphi d\theta = \int_{0}^{\frac{\pi}{2}} \frac{\pi}{2} \cos\varphi \sin\varphi d\varphi = \frac{\pi}{4} \quad \text{id} \quad \iint_{\Omega} f(x, y, z) dv = \frac{\pi}{4e^4} (2e^3 - 5)$$

1、旋转抛物面位于第一卦限部分上任意一点(x, y, z)处的平面方程为:

$$2xX + 2yY + Z = 4 - z \quad \text{ID} \frac{X}{\frac{4-z}{2x}} + \frac{Y}{\frac{4-z}{2y}} + \frac{Z}{4-z} = 1$$

所以四面体的体积为:
$$V = \frac{(4-z)^3}{24xy}$$

故令: $F(x, y, z, \lambda) = 3\ln(4-z) - \ln x - \ln y + \lambda(x^2 + y^2 + z - 2)$ 由 $\begin{cases} F_x = -\frac{1}{x} + 2\lambda x = 0; F_z = -\frac{3}{4-z} + \lambda = 0 \\ F_y = -\frac{1}{y} + 2\lambda y = 0; F_\lambda = x^2 + y^2 + z - 2 = 0 \end{cases} \Rightarrow x = y = \frac{\sqrt{2}}{2}, z = 1$ 因为只有一个胜点,所以 $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1)$ 为所求; 2、 $\frac{\partial V}{\partial z} = \frac{-3}{4-z} - \frac{24}{x} \frac{\partial x}{\partial z}$ $\frac{\partial x}{\partial z} = \frac{-1}{2x} \frac{\partial V}{\partial z}|_{(1,1,3)} = -3 + 12 = 9$ 六、解: 1、 $z = \frac{1}{2}(x^2 + y^2)$ 2. $S = \iint_{L} z ds = \iint_{x^2 + (y-1)^2 = 1} \frac{1}{2} (x^2 + y^2) ds = \int_{0}^{2\pi} \frac{1}{2} [\cos^2 t + (\sin t + 1)^2] dt = 2\pi$ 3、由高斯公式,补充有向平面 Σ_1 : z=2 方向向上, Ω 由 z=2, $z=\frac{1}{2}(x^2+y^2)$ 所围成的闭区域, $I = \iint xzdydz + 2zydxdz + 3xydxdy = \iiint (z + 2z + 0)dv - \iint xzdydz + 2zydxdz + 3xydxdy$ $=3\iiint_{\Omega}zdv-3\iint_{x^2+y^1\leq 2}xydxdy=3\int_{0}^{2\pi}dt\int_{0}^{2\pi}rdr\int_{\frac{1}{2}r^2}^{2\pi}zdz+0=16\pi$ 或3 $\iint_{\Omega} z dv - 3 \iint_{x^2 + v^2 \le 2} xy dx dy = 3 \int_{0}^{z} (z \iint_{D} d\sigma) dz = 6\pi \int_{0}^{z} z^2 dz = 2\pi z^3 \Big|_{0}^{2} = 16\pi$ 七、解: 设 $Q = 7g^{\bullet\prime\prime}(x)$ $P = (g^{\prime\prime\prime}(x) + 9g(x) + 2x^2 - 5x + 1)y^2$ 由 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 得 $2y(\bar{g}''(x)+9g(x)+2x^2-5x+1)=7g''(x)$ 由此得 $\begin{cases} g'''(x)=0 \\ g'(x) \neq g(x)+2x^2-5x+1=0 \end{cases}$ (1) 曲(1) 得: $g(x) = ax^2 + bx + c 代 \lambda$ (2) 得: $a = \frac{2}{9}$, $b = \frac{2}{9}$, $b = \frac{2}{9}$, $c = \frac{2}{9}$ $g(x) = -\frac{2}{9}X^{2} + \int_{0}^{4} X - \frac{1}{81}$ $\&I = \iint_D e^y f(y) d\sigma + \iint_D (y-x) d\sigma - (e-1) \iint_D f(y) dy = \iint_D (e^y f(y) d\sigma + \iint_D (y-x) d\sigma - (e-1) \iint_D f(x) dx$ 14333 所成 f(x) 被集動理不易do资料信用就好 = 削削f(y) - f(x)] $d\sigma + \iint (y-x) d\sigma$ 因为 D 关于 y = x 为称: 故 $\iint y d\sigma = \iint x d\sigma$. $\iint e^{y} [f(y) - f(x)] d\sigma = \iint e^{x} [f(x) - f(y)] d\sigma$ 所以 $\iint_{D} (y-x)d\sigma = 0 \text{ th } 2I = \iint_{D} e^{y} [f(y) - f(x)]d\sigma + \iint_{D} e^{x} [f(x) - f(y)]d\sigma = \iint_{D} (e^{y} - e^{x}) [f(y) - f(x)]d\sigma$ 由函数 e^x , f(x) 在 [0,1] 上连续单调增加,故 $2I \ge 0$ 所以 $I \ge 0$ 即 $\iint (e^y f(y) + y - x) d\sigma \ge (e-1) \iint f(y) dy$ 几 可则 有为 $I = \iint e^y f(y) dx dy = (e-1) \iint f(y) dy$ 几 $I = \iint e^y f(y) dx dy dx dy = \iint e^y f(y) dx dy dx dx dy dx dx$ 积分数数和标卷数 $L = SSfxx(e^x-e^z)dxdy$ Mip $2I = \iint f(y) (e^{y} - e^{y}) d\sigma + \iint f(x) (e^{y} - e^{y}) d\sigma = \iint (f(y) - f(y)) (e^{y} - e^{y}) dx dy$ 由 e^{x} , f(x) 在 [0,1] 大規模を調整が多。 (f(y) - f(w)) (e^{y} - e^{x}) [0,1] 之初

武汉大学 2007—2008 学年第二学期《高等数学 B2》(180 学时 A 卷)考试试题参考 解: 1、通过直线 $\left\{ \frac{2x+y-3}{4x+2y+3z=6} \right\}$ 的平面東方程为: $4x+2y+3z-6+\lambda(2x+y)=0$ 欲使平面 (1) 平行于直线 $\frac{x}{1} = \frac{y}{2} = \frac{z}{4}$, 则 $4+2\lambda+2(2+\lambda)+12=0$ $\Rightarrow \lambda=-5$ 代入(1)得所求平面方程为: 2x+y-z+2=0

2、 $\triangle ABC$ 的面积为: $S = \frac{1}{2} | \overline{AB} \times \overline{BC} | = \frac{1}{2} \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & 4 & -3 \\ 4 & -5 & 0 \end{vmatrix} = \frac{25}{2}$,

又 $S = \frac{h}{2} |\overline{AB}|, |\overline{AB}| = \sqrt{0 + 16 + 9} = 5$,故h = 5

3. $\Re F = x^2 + y^2 + z^2 - 6$, $F_x = 2x$, $F_y = 2y$, $F_z = 2z$ 故得曲面在点 (1,-2,1) 处的法向量为: $\{2,-4,2\} = 2\{1,-2,1\}$ 。 故切平面方程为: (x-1)-2(y+2)+(z-1)=0即 x-2y+z=6法线方程为: $\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-1}{1}$

 $4. \quad z_x = ye^{xy} + \frac{y^2}{x} \quad \text{,} \quad z_{xy} = e^{xy} + yxe^{xy} + \frac{2y}{x} = \frac{xe^{xy}\left(1 + xy\right) + 2y}{x}$

5. $\iiint xydxdy = \int_{0}^{2} \cos\theta \sin\theta d\theta \int_{0}^{a} r^{3}dr = \frac{a^{3}}{8}$

6、由己知得: $0 \le y \le 1, -\sqrt{1-y^2} \le x \le y-1$, 所以有: 原式= $\int_0^1 dy \int_{\sqrt{1-y^2}}^{y-1} f(x,y) dy$

二、解: $\begin{cases}
\frac{\partial z}{\partial x} = 1 - \frac{1}{x^2 y} = 0 \\
\frac{\partial z}{\partial y} = 1 - \frac{1}{xy^2} = 0
\end{cases}
\Rightarrow \begin{cases}
x = 1 \\
y = 1
\end{cases}$ 又求二阶 导数: $A = z_{xx} = 2x^{-3}y^{-1}, B = z_{xy} = x^{-2}y^{-1}, C = z_{yy} = 2y^{-3}x^{-1}$

在点(1,1)处, $B^2 - AC = -3 < 0, A = 2 > 0$,故z(1,1) = 3为所求极小值。

三、解: 1、由 Q = -g(x) $P = [e^x + g(x)]y$ 且 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 得

 $g'(x) + g(x) = -e^{x}$ 解得: $g(x) = e^{-\int dx} [\int (-e^{x}e^{\int dx} dx + c] = e^{-x}[-\frac{1}{2}e^{2x} + c]$

由 $g(0) = -\frac{1}{2}$, 得: c = 0 所以 $g(x) = -\frac{1}{2}e^x$

2. $\int_{0}^{(1,1)} \frac{1}{2} e^{x} y dx + \frac{1}{2} e^{x} dy = \int_{0}^{1} \frac{1}{2} e dy = \frac{1}{2} e$

四、解: 级数可写为 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$, 由 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{2(n+1)-1}{2^{n+1}} / \frac{2n-1}{2^n} = \frac{1}{2}$

簽数數數數 $\frac{1}{n}$ $\frac{1}{2^n}$ $\frac{1}{2^n}$ $\frac{1}{2^{n-1}}$ $\frac{1}{2^n}$ $\frac{1}{2^n}$ $\frac{1}{2^{n-1}}$ $\frac{1}{2^n}$ $\frac{1}{2^{n-1}}$ $\frac{1}{2^n}$ 绩小铺QQ: 1433397577, 搜集整理不易,

作函数级数 $s(x) = \sum_{n=1}^{\infty} nx^{n-1}$ 此级数的收敛区间为 |x| < 1,两边积分,有:

$$\int_{0}^{x} s(x)dx = \sum_{n=1}^{\infty} \int_{0}^{x} nx^{n-1}dx = \sum_{n=1}^{\infty} x^{n} = \frac{x}{1-x}$$

 $\int_{0}^{x} s(x)dx = \sum_{n=1}^{\infty} \int_{0}^{x} nx^{n-1} dx = \sum_{n=1}^{\infty} x^{n} = \frac{x}{1-x}$ 将上式两边微分得: $s(x) = \frac{1}{(1-x)^{2}}$ | x < 1

故 $\sum_{n=0}^{\infty} \frac{2n-1}{2^n} = s(\frac{1}{2}) - 1 = 4 - 1 = 3$

五、解: 1、
$$f_{z}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0$$

$$\stackrel{\text{H}}{=} x^{2} + y^{2} \neq 0 \text{ H}, \quad f_{z}(x,y) = \frac{2xy(x^{2} + y^{2}) - 2x^{3}y}{(x^{2} + y^{2})^{2}} = \frac{2xy^{3}}{(x^{2} + y^{2})^{2}}$$

$$\text{所以 } f_{zy}(0,0) = \lim_{y \to 0} \frac{f_{z}(0,y) - f_{z}(0,0)}{y} = \lim_{y \to 0} \frac{0 - 0}{y} = 0$$

2、此方程的特征方程为: $r^3-r^2-2r=0$,解得: $r_1=0, r_2=2, r_3=-1$,即微分方程的通解为: $y=c_1+c_2e^{2z}+c_3e^{-z}$,由积分曲线通过点 (0,-3).故得 $c_1+c_2+c_3=-3$,(1) 又在这点处有倾角为 $\arctan 6$ 的切线,故有 $y'|_{z=0}=(2c_2e^{2z}-c_3e^{-z})|_{z=0}=\tan(\arctan 6)$,即 $2c_2-c_3=6$,(2) 由题设知 $y''|_{z=0}=(4c_2e^{2z}+c_3e^{-z})|_{z=0}=0$,即 $4c_2+c_3=0$ (3)

联立 (1)、(2)、(3)解得: $q=0,c_1=1,c_3=-4$ 则所求积分曲线为: $y=e^{2x}-4e^{-x}$ 六、解: 补充有向平面 $\Sigma_1:z=1,\Sigma_1:z=2$ 方向分别向下和上,记 Σ 为圆台外侧,法向向外, Ω 是由

 $z=1,z=2,z=\sqrt{x^2+y^2}$ 所围成的闭区域, Σ' 为 Ω 的边界曲面的外侧,则所求流量为:

$$\begin{split} \Phi &= \iint_{\Sigma} \vec{F} d\vec{s} = (\bigoplus_{\Sigma'} - \iint_{\Sigma_{\tau}} - \iint_{\Sigma_{\tau}}) dy dz + z dx dz + \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy \\ \bigoplus_{\Sigma'} dy dz + z dx dz + \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = \iiint_{\Omega} \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = \int_{0}^{2\pi} e^{z} dz \int_{0}^{2\pi} d\theta \int_{0}^{z} d\tau = 2\pi e^{z} \\ \iint_{\Sigma_{\tau}} dy dz + z dx dz + \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = -\iint_{x+y} \frac{e}{z^{2}} dx dy = -2\pi e \\ \iint_{\Sigma_{\tau}} dy dz + z dx dz + \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = \iint_{x+y} \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = 4\pi e^{z} \\ \iint_{\Sigma_{\tau}} \Box \Phi &= 2\pi e (1 - e) \end{split}$$

绩小铺QQ: 1433397577, 搜集整理不易,资料自用就好,谢谢!

武汉大学 2006—2007 学年第二学期《高等数学 B2》 试题 A 参考解答

- 一、(30分)试解下列各题:
- 1、(6分) 求解微分方程 $\frac{dx}{y} + \frac{dy}{e'} = 0$ 满足 $y|_{-\infty} = 2$ 的特解。
- 解: 由 $\frac{dx}{y} + \frac{dy}{e^2} = 0$, 得 $e^*dx + ydy = 0$, 即 $d(e^* + \frac{y^2}{2}) = 0 \Rightarrow e^* + \frac{y^2}{2} = c$, $\Rightarrow 2e^* + y^2 = c$ 而 $y_{--}^2 = 2 \Rightarrow 2 + 4 = c \Rightarrow c = 6$, 故 $2e^* + y^2 = 6$
- 2、(6分) 求曲面 $x^2 + 2y^2 + 3z^2 = 12$ 在点(1,-2,1) 处的切平面方程。
- 解 设 F(x,y,z) = x' + 2y' + 3z' 12 F(1,-2,1) = 2, F(1,-2,1) = -8, F(1,-2,1) = 6 故曲面在点 (1,-2,1) 处的切平面的法向量为: n = (2,-8,6) 所以切平面方程为: x 4y + 3z 12 = 0
- 3、(6分) 已知级数 $\sum_{s=0}^{\infty} a_s(s-1)^s$ 在 s=-1 处收敛,试讨论此级数在 s=2 处的敛散性。
- 解 由阿贝尔定理知,此级数在 $|x-1|\sqrt{-1-1}|=2$ 即 -1<x<3时绝对收敛,故此级数在x=2处绝对收敛。
- 4、(6分) 计算 $\iint x' dx dy$, 其中 D 由 y = 2-x', y = x' 所围成的区域。
- 解: 由对称性, $\iint x' dx dy = 2 \iint x' dx dy = 2 \iint dx \int_{0}^{x-x'} x' dy = 4 \iint (x'-x') dx = \frac{8}{15}$.
- 解: $\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \frac{\frac{(n+1)^4}{2^{n+1}}}{\frac{n^4}{2^n}} = \frac{1}{2} < 1$,由比值判别法知原级数的绝对值级数收敛,故原级数绝对收敛.
- 二、(10 分) 函数 z=z(x,y) 由方程 $x-az=\sin(y-bz)$ 所确定, a,b 是不全为零的常数,"证明: $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=1$ 证明:方程 $x-az=\sin(y-bz)$ 两边同时对 x,y 求偏导得
- $1 a\frac{\partial z}{\partial x} = \cos(y bz) \cdot (-b\frac{\partial z}{\partial x}) \Rightarrow \frac{\partial z}{\partial x} = \frac{1}{a b\cos(y bz)} \qquad -a\frac{\partial z}{\partial y} = \cos(y bz) \cdot (1 b\frac{\partial z}{\partial y}) \Rightarrow \frac{\partial z}{\partial y} = \frac{-\cos(y bz)}{a b\cos(y bz)}$
- 故 $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1$
- 三、(12 分) 设 $z=x^2 f(u)$, 而 $u=\frac{y}{x}$, 其中 f(u) 二阶可导, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 解 因为 $\frac{\partial z}{\partial x} = 2xf + x^2(\frac{y}{-x^2})f' = 2xf yf'$ 所以 $\frac{\partial^2 z}{\partial x \partial y} = 2x \times \frac{1}{x}f' f' yf'' \times \frac{1}{x} = f' \frac{y}{x}f''$
- 四、(10分)试将函数 $f(x) = x \arctan x$ 展成x 的幂级数.
 - 解 因为 $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ $(-1 \le x \le 1)$, 则得 $f(x) = 2\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ $(-1 \le x \le 1)$

(也可利用 $(\arctan x)' = \frac{1}{1+x^2} = \sum_{n=1}^{\infty} (-1)^n x^{n}$ 求解)

五、(10分) 设 $f(x,y,z) = x^3 - xy^2 - z$

97577,搜集整理外壳,没好自用品好。 谢娜木值

- $(1) \quad \text{if } f_r(1,1,0) = (3x^2 y^2)_{(1,1,0)} = 2 \qquad f_r(1,1,0) = (-2xy)_{(1,1,0)} = -2 \ f_r(1,1,0) = (-1)_{(1,1,0)} = -1$
 - 故 $\nabla f|_{x,y,z} = 2i 2j k$ 所以 f(x,y,z) 在点 $P_{x}(1,1,0)$ 处方向导数的最大值为: $|\nabla f|_{x,y,z} = \sqrt{2^2 + (-2)^2 + (-1)^2} = 3$
 - (2) 由 $\nabla f = (3x^2 y^2)i 2xyj k$,而 $\nabla f \perp x$ 轴,即 $\nabla f \cdot (1,0,0) = 0$,由此得: $y = \pm \sqrt{3}x$

所以平面 $y = \pm \sqrt{3}x$ 上的点处的梯度垂直于x 轴。

- 六、(10分)计算曲面积分 $I = \iint 2\pi z^2 dy dz + y(z^2+1) dz dx + (9-z^2) dx dy$,其中 Σ 为曲面 $z = x^2 + y^2 + 1$ $(1 \le z \le 2)$,
- 解:取平面 Σ_i : $\lambda=2$,取上侧.则 Σ 与 Σ_i 构成封闭曲面,取外侧.令 Σ 与 Σ_i 所围空间区域为 Ω ,由 Gauss 公式,得

$$I = \bigoplus_{z \in \mathcal{Z}} - \iint_{\mathbb{R}} = \iiint_{z} dx dy dz - \iint_{z^2 = 0} (9 - 2^2) dx dy = \int_{z}^{3} d\theta \int_{0}^{1} r dr \int_{0}^{2} dz - \iint_{z^2 = 0} dx dy = -\frac{\pi}{2}$$

2

七、(10 分) か 点数 $\varphi(x)$ 具有连续的二阶 导数,并使 曲线积分 $\int_L [3\varphi'(x) - 2\varphi(x) + xe^{2x}]ydx + \varphi'(x)dy$ 与路径无关,求函数 $\varphi(x)$ 。 解 f' 点得: $3\varphi'(x) - 2\varphi(x) + xe^{2x} = \varphi''(x)$ 即 $\varphi'(x) - 3\varphi'(x) + 2\varphi(x) = xe^{2x}$

特征方程 $r^2 - 3r + 2 = 0$, 特征根 r = 1, r = 2 对应齐次方程的通解为: $y = c_1e^r + c_2e^2$

又因为 $\lambda=2$ 是特征根。故其特解可设为: $y^*=x(Ax+B)e^{2x}$ 代入方程并整理得: $A=\frac{1}{2}$,B=-1 即 $y^*=\frac{1}{2}x(x-2)e^{2x}$...

故所求函数为: $\varphi(x) = c_1e^x + c_2e^{2x} + \frac{1}{2}x(x-2)e^{2x}$

八、(8分) 将正数 a 分为正数 x,y,z 之和, 使得 $u=x^*y^*z^*$ 最大。(其中 m,n,p 为已知正数) 解法一 化为无条件极值求解, 即求 $u=x^*y^*(a-x-y)^*$ 的极值。

$$\begin{cases} u'_i = mx^{n-1}y^*(a-x-y)' - px^ny^*(a-x-y)^{n-1} = 0 \\ u'_i = nx^ny^{n-1}(a-x-y)' - px^ny^*(a-x-y)^{n-1} = 0 \end{cases} \quad \begin{cases} m(a-x-y) - px = 0 \\ n(a-x-y) - py = 0 \end{cases}$$

解之得 $x = \frac{ma}{m+n+p}$, $y = \frac{na}{m+n+p}$ 再由 x+y+z=a 求得 $z = \frac{pa}{m+n+p}$.

当x=0(x=a), 或y=0(y=a) 或z=0(z=a) 时, u 均为 0, 不可能为最大, 故将 a 分成的三个正数为 $x=\frac{ma}{m+n+p}$

$$y = \frac{na}{m \div n \div p}$$
, $z = \frac{pa}{m + n + p}$

解法二 利用拉格朗日乘数法求解. 作函数 $F(x,y,z) = x^{*}y^{*}z^{*} + \lambda(x+y+z-a)$

$$\begin{cases} F''_{*}(x,y,z) = mx^{-1}y^{*}z' + \lambda = 0 & (1) \\ F''_{*}(x,y,z) = nx^{*}y^{-1}z' + \lambda = 0 & (2) & \mathcal{R} & x+y+z-a = 0 \\ F''_{*}(x,y,z) = px^{*}y^{*}z^{-1} + \lambda = 0 & (3) \end{cases}$$

将(1), (2), (3)中之 1 移至等式右端, 记为(1'),(2'),(3'), 然后由(1')+(2')得

$$x = \frac{m}{n}y(3') + (2')$$
, 得 $y = \frac{p}{n}y$ 并将其代入(4), 从而得到所求三个正数为

$$z = \frac{ma}{m+n+p}, \quad y = \frac{na}{m+n+p}, \quad z = \frac{pa}{m+n+p}$$

解法三 因为 $u=x^*y^*z^*>0$,故当u最大时 $\ln u=m\ln x+n\ln y+p\ln z$ 也最大。利用拉格朗日乘数法,作函数 $\Phi(x,y,z)=m\ln x+n\ln y+p\ln z+\lambda(x+y+z-a)$

$$\Phi'_{\star}(x,y,z) = \frac{m}{x} + \lambda = 0$$

$$\Phi'_{\star}(x,y,z) = \frac{n}{y} + \lambda = 0$$

$$\Phi'_{\star}(x,y,z) = \frac{p}{y} + \lambda = 0$$
(1)
$$\Phi'_{\star}(x,y,z) = \frac{p}{z} + \lambda = 0$$
(3)

由(1), (2) 得
$$x = \frac{m}{n}y$$
, 由 (2), (3) 得 $z = \frac{p}{n}y$ 并代入(4), 从而得 $x = \frac{ma}{m+n+p}$, $y = \frac{na}{m+n+p}$, $z = \frac{pa}{m+n+p}$

绩小铺QQ: 1433397577, 搜集整理不易, 资料自用就好, 谢谢!

18.

武汉大学 2009-2010 学年第二学期《高等数学 B2》试题答案

一、1、解: 由
$$(\bar{a}+3\bar{b})$$
 \perp $(7\bar{a}-5\bar{b})$, $(\bar{a}-4\bar{b})$ \perp $(7\bar{a}+2\bar{b})$, 得 $(\bar{a}+3\bar{b})$ \cdot $(7\bar{a}-5\bar{b})$

$$=7|\bar{a}|^2+16\bar{a}\cdot\bar{b}-15|\bar{b}|^2=0, \quad (\bar{a}-4\bar{b})\cdot(7\bar{a}+2\bar{b})=7|\bar{a}|^2-30\bar{a}\cdot\bar{b}+8|\bar{b}|^2=0,$$

、两式相减得,
$$46\bar{a}\cdot\bar{b}=23|\bar{b}|^2\Rightarrow 2\bar{a}\cdot\bar{b}=|\bar{b}|^2\Rightarrow \Rightarrow \cos(\bar{a},\bar{b})=\frac{|\bar{b}|}{2|\bar{a}|}2|\bar{a}||\bar{b}|\cos(\bar{a},\bar{b})$$

$$=|\bar{b}|^2, 两式相加得, 322\bar{a}\cdot\bar{b}=161|\bar{a}|^2 \Rightarrow 2\bar{a}\cdot\bar{b}=|\bar{a}|^2 \Rightarrow \Rightarrow \cos(\bar{a},\bar{b})=\frac{|\bar{a}|}{2|\bar{b}|}, 由此推得 \frac{|\bar{a}|}{2|\bar{b}|}=\frac{|\bar{b}|}{2|\bar{a}|},$$

即
$$|\bar{a}|$$
 | $|\bar{b}|$, 所以 $\cos(\bar{a},\bar{b}) = \frac{1}{2}$, $(\bar{a},\bar{b}) = \frac{\pi}{3}$ 。

2、解:设切点为 (x_0,y_0,z_0) ,于是曲面在该点的法向量为 $(x_0,2y_0,-1)$,所给平面的法向量为

$$(2,2,-1)$$
, 由条件知 $\frac{x_0}{2} = \frac{2y_0}{2} = \frac{-1}{-1}$, 所以切点坐标为 $x_0 = 2, y_0 = 1$,

$$z_0 = \frac{{x_0}^2}{2} + {y_0}^2 = 3$$
, 所以所求切平面方程为 $2x + 2y - z - 3 = 0$.

3、解:利用极坐标,则
$$\iint_{D} \sqrt{x^2 + y^2} d\sigma = \int_{0}^{\pi/4} d\theta \int_{0}^{2\cos\theta} r^2 dr = \frac{10\sqrt{2}}{9}$$

4、方程两端对
$$x$$
求偏导, $z_x + e^{z-y-x} + xe^{z-y-x}(z_x - 1) = 0 \Rightarrow z_x = \frac{(x-1)e^{z-y-x}}{1+xe^{z-y-x}}$,

方程两端对y求偏导, $z_y - 1 + xe^{z-y-x}(z_y - 1) = 0 \Rightarrow z_y = 1$,从而

$$dz = \frac{(x-1)e^{z-y-x}}{1+xe^{z-y-x}}dx + dy$$

5、解:
$$f(x) = \frac{1}{3-x} = \frac{1}{3} \frac{1}{x} = \frac{1}{3} \sum_{x=1}^{\infty} (\frac{x}{3})^{x} = \sum_{x=1}^{\infty} \frac{x}{3^{x+1}}$$
 绩小铺QQ: 1433397577,搜集整理不易,"资料自用就好,谢谢!

6. #:
$$\iiint_{\Omega} x^2 dx dy dz = \int_{\Omega} x^2 dx \int_{\Omega} dx \int_{\Omega} dx \int_{\Omega} dx = \frac{1}{60}.$$

二、解: 做辅助线 CA, 由格林公式得
$$\int_{L+CA} (x+e^{\sin y}) dy - (y-\frac{1}{2}) dx = 2 \iint_D dx dy = \frac{\pi}{2} + 1$$
.

而
$$\int_{A} (x + e^{\sin y}) dy - (y - \frac{1}{2}) dx = \int_{1}^{1} \frac{1}{2} dx = 1$$
, 所以原式 = $\frac{\pi}{2} + 1 - 1 = \frac{\pi}{2}$.

三、记Σ, 为曲面
$$z = 1(x^2 + y^2 \le 1)$$
,取下侧,则 $\iint_{\Sigma} (2x + z) dy dz + z dx dy$

=- $\iint_{x^2+p^2\le 1} dxdy = -\pi$, 用 Ω 表 示 Σ 和 Σ_1 所 围 成 的 空 间 区 域 , 则 由 高 斯 公 式 知

$$\iint_{\Sigma + \Sigma_{\mathbf{i}}} (2x + z) dy dz + z dx dy = -\iiint_{\Omega} (2 + 1) dV = -3 \int_{0}^{2\pi} d\theta \int_{0}^{\mathbf{i}} r dr \int_{r^{2}}^{\mathbf{i}} dz = -6\pi \int_{0}^{\mathbf{i}} (r - r^{3}) dr = -\frac{3}{2}\pi$$

因此原式= $-\frac{\pi}{2}$ 。

四、先考虑级数 $\sum_{n=2}^{\infty} \left| (-1)^n \frac{\ln n}{n} \right| = \sum_{n=2}^{\infty} \frac{\ln n}{n}$,由于 $\lim_{n \to \infty} \frac{\frac{\ln n}{n}}{\frac{1}{n}} = \infty$,而级数 $\sum_{n=2}^{\infty} \frac{1}{n}$ 发散,由比较审敛法的

极限形式知 $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ 发散。再考虑级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$,显然 $\lim_{n\to\infty} u_n = 0$,

再由 $f(x) = \frac{\ln x}{x} (x \ge 2), f'(x) = \frac{1 - \ln x}{x^2},$ 当 $x \ge e$ 时, f'(x) < 0, f(x) 单调减少, 故当 $n \ge 3$ 时,

 $u_n > u_{n+1}$,由 Leibniz 定理知 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$ 收敛,故为条件收敛。

五、因为 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$, 且在 $x=\pm 1$ 处级数均发散,所以收敛域为 (-1,1). 设

$$S(x) = \sum_{n=1}^{\infty} nx^{n-1}, x \in (-1,1). \text{ If } \int_{0}^{x} S(t) dt = \int_{0}^{x} \sum_{n=1}^{\infty} nt^{n-1} dt = \sum_{n=1}^{\infty} \int_{0}^{x} nt^{n-1} dt = \sum_{n=1}^{\infty} x^{n} = \frac{x}{1-x},$$

然后两边对x求导,得 $S(x) = \frac{1}{(1-x)^2}$ 。

六、解: 先求 f(x,y) 在 D 内可能取极值的点,令 $f_x = 2x = 0$, $f_y = -2y = 0$, 得唯一驻点(0,0),

f(x,y)在 D 内没有偏导数不存在的点. 再求 f(x,y)在 D 的边界 $x^2 + \frac{y^2}{4} = 1$ 上可能取极值的点, 绩小铺QQ: 1433397577,搜集整理不易,资料自用就好,谢谢!

用拉格朗日乘数法,令 $F(x,y)=x^2-y^2+3+\lambda(x^2+y^2)$

$$\frac{y^2}{4}$$
-1),则 $F_x = 2x + 2\lambda x = 0$, $F_y = -2y + \frac{\lambda}{2}y = 0$, $x^2 + \frac{y^2}{4} = 1$, $\Rightarrow x = 0$, $y = \pm 2$,或 $x = \pm 1$, $y = 0$,所以边

界上有四个驻点,最后算 f(0,0)=3, $f(0,\pm 2)=-1$, $f(\pm 1,0)=4$, 所以 f(x,y) 在 D 上最大值和最小值分别为 $f_{max}=4$, $f_{min}=-1$ 。

11

武汉大学试卷纸

科目 2010 - 2011 (
一. (每題7分、茶63分)												
1. 冷湖市3110万 分义+189+63=0												
663361 $6A-39+2C=0$ $62-36$ $A=B$												
$4A - B + 2C = 0$ $C = \frac{1}{2}$												
tallfi3的3 13x+13y-33=0.Bolf.2x+2y-33=0												
$\frac{2. 3^{3}}{\partial x} = f'(xy, yy\omega) \cdot y + f'(xy, yy\omega) \cdot yy'(x)$												
$\frac{\partial^2 3}{\partial x \partial y} = \left[\int_{11}^{\infty} (xy, y g w) \cdot x + \int_{12}^{\infty} (xy, y g w) \cdot g(xy) \right] y + \int_{12}^{\infty} (xy, y g w) \cdot y + \int_{12}^{\infty} $												
$+ \left[f_{12}(x9, 49w) \cdot X + f_{22}(x9, 59w) \cdot g(x) \right] y f(x) + f_{2}(x9, 49w)$												
数 又 9(2) = 0												
$ \frac{1}{12} $												
200 A = 1												
$= \frac{1}{2} \int_{1}^{1} (2,1) + \int_{12}^{2} (2,1) + \int_$												
3 17 x2-6xy+10y2-243-32+18=0 2 版表的产品的制度主义的品												
7,搜集整理不易,资料百用就好,谢谢! 次-35												
$\frac{-6\times +204 -28 -24 \frac{33}{54} -28 \frac{33}{54} = 0}{-6\times +204 -28 -24 \frac{33}{54} = 0}$												
$\frac{3}{3} = -3 \times +10 \frac{4}{3} - \frac{3}{3}$												
9 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
1 2 10 20 20 20 20 20 42 X=34 42 2x 12 x 12 x 12 x 12 x 12 x 12 x 12												
278 (933) for (-9, -3.3)												
13												

武汉大学试卷纸

	辛亚		年级	号_			始	名-	•				
8/2	科目	成绩	总分,	1	2	3	4	5	6	7	8	9	10
	11 H												
XX	7. $a_0 = \frac{2}{\rho} \int_0^{\rho} f(x) \cos^2 \theta dx = 2 \int_0^{\rho} (2+x) dx = 5$												
-171-7													
11	$a_n = \frac{2}{p} \int_0^\infty f(x) \cos \frac{\pi i x}{\ell} dx = 2 \int_0^\infty (2+x) \cos n \pi x dx$												
1	= \$\int \corn\tixdx + 2\int \corn\tixdx												
	= 4 (csnaxdnax + 2 (x d singax												
副	· · · · · · · · · · · · · · · · · · ·	47, Ja) 1/ 2		h.	-1	D 		<u> </u>	;	<u>.</u> الطوات		2.(4)
郊		nii L	Xsinn	$\frac{\pi \times 1}{2}$)), =	144	77 X 0			MI		<u>hH</u>
. A state of the s		$\frac{2}{-\widehat{h^2 II}^2}$	- 5 m	nux	d ntix	(=	h ²	2 Ti ²	w	न भी।	$\times \frac{1}{n}$	= = =	N2112
区		<u> </u>		. 26		·	'1	11					
		1-4-	<u> </u>	-26					•				
· · · · · · · · · · · · · · · · · · ·		(kti) T	1 H	=2Kt	•	1			<u>.</u> .				
	: . bn=	- D	_ (, q , _ ,)		1	بر ا			45	C67	(2K+1	1) T,X	
XX.(1))	$f(x) = \frac{5}{2}$	+2 -	2(43n11-1) n-1-2	つろり	īχ	$=\frac{5}{2}$		772	<u> </u>		2 <i>k</i> +1		-XE[7.
3(44)					<i>)</i>	7		. 1				<i>'</i>	· ·
4/	8. I	<u> </u>	1 + X2+52	Xau	<i>y</i> =	7	<u> </u>	lo	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1+r	zdr	`= 7	1.2 h
1-	XXX	$= \pi \rho$					2		· b				·
绩小铺QQ: 1433397577,	搜集整理不易,	ニュルの資料自用	*****	射!						•			
	$\frac{q}{\sqrt{2}}$	h = 2x		1 (-	- <u>X</u> 4*) :							
	<u>σ</u>		- .	·		X		.		- 4	×		
-//-		$)=\int_{c_{1},c_{2}}^{c_{2}}$	Ddx+1	dy	= }	1		• .	<u>c+</u>) 1	र्छ (।	一分)dy
7		<u></u>	tex-e		, by	× old	<u> </u>	(6	2 7	× 21)	 		
		- V-1	40×-0			X		7 /		X.			
			tex-e	7 () [Q	χ Σ	k t	Jix	1 d E	2)\$	× .		V 1 L
LIKE T		一人一	170 - Q	<i>-</i> +	s;e	· oly	ナル	105	1- 5	1, e	, d4	, =	ハーハー

武汉大学 2011-2012 学年第二学期

《高等数学 B2》(A 卷)标准答案

一、(8分)(每个划线部分 2分)解:设 $\vec{m}=(x,y,z)$,则 $\vec{m}\perp\vec{c}$ 意味着2x-2y+z=0, \vec{m} 与 \vec{a} , \vec{b} 共面意味着

$$\begin{vmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & -2 \end{vmatrix}$$
 = 0 得 $z = -2y$, 单位向量 \vec{m} 意味着 $\underline{x^2 + y^2 + z^2} = 1$, 解上述三个方程得 $\vec{m} = \pm (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$.

二、(11 分)解: $\lim_{x\to 0} f(x,y) = f(0,0) = 0$, 所以 f(x,y) 在(0,0) 点连续,4 分

$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 0 = f_y(0,0)$$
, 所以偏导数存在,4 分

$$\lim_{\rho \to 0} \frac{\Delta z - f_x(0,0) \Delta x - f_y(0,0) \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\rho \to 0} \frac{(\Delta x)^{\frac{2}{3}} (\Delta y)^{\frac{1}{3}}}{\sqrt{\Delta x^2 + \Delta y^2}}, \quad \text{\mathbb{R} $\Delta y = k \Delta x$ \vec{x} $\vec{x}$$

所以不可微。.....3分

三、(8分) 解:
$$\frac{\partial z}{\partial x} = \frac{\partial u}{\partial x} e^{ax+by} + aue^{ax+by}, \frac{\partial z}{\partial y} = \frac{\partial u}{\partial y} e^{ax+by} + bue^{ax+by}, \dots 4$$
分

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 u}{\partial x \partial y} e^{ax+by} + b \frac{\partial u}{\partial x} e^{ax+by} + a \frac{\partial u}{\partial y} e^{ax+by} + abu e^{ax+by} = b \frac{\partial u}{\partial x} e^{ax+by} + a \frac{\partial u}{\partial y} e^{ax+by} + abu e^{ax+by} + ab$$

$$\overline{m} \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = (b-1)\frac{\partial u}{\partial x} + (a-1)\frac{\partial u}{\partial y} + (ab-a-b+1)u = 0, \quad \pm 1$$

$$u = F(x) + G(y)(F, G$$
 任意) 可知只有系数 $a = 1, b = 1$2 分

四、(8分) 在
$$y = f(x, F(x, y(x)))$$
 两边同时关于 x 求导,可得 $\frac{dy}{dx} = f_x + f_t(\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{dy}{dx})$,……5 分

绩小铺QQ: $\frac{dy}{1433} = \frac{f_x + f_x F_x}{307571 + f_y F_x}$ 集整理不易,资料自用就好,谢谢!

五、(10分)解:做 Lagrange 函数 $F(x, y, z, \lambda) = x^2 + y^2 + z^2 - \lambda(a_1x + a_2y + a_3z - 1)$,求导得

$$\begin{cases} F_x(x, y, z, \lambda) = 2x - a_1 \lambda = 0 \\ F_y(x, y, z, \lambda) = 2y - a_2 \lambda = 0 \\ F_z(x, y, z, \lambda) = 2z - a_3 \lambda = 0 \\ a_1 x + a_2 y + a_3 z = 1 \end{cases}$$
5 %

$$\lambda = \frac{2}{a_1^2 + a_2^2 + a_3^2}, \ x = \frac{a_1}{a_1^2 + a_2^2 + a_3^2}, \ y = \frac{a_2}{a_1^2 + a_2^2 + a_3^2}, \ z = \frac{a_3}{a_1^2 + a_2^2 + a_3^2}, \dots 4$$

$$F_{\min} = \frac{1}{a_1^2 + a_2^2 + a_3^2}$$
 1分

六、(8分) 解: 原式=
$$\int_0^1 dx \int_0^x dy \int_0^{xy} x^3 y^2 z dz$$
.......4分 = $\frac{1}{110}$4分

七、(8 分)解:
$$\sum_{n=1}^{\infty} \frac{1}{2^n} (x+1)^n$$
 的收敛半径为 $R_1 = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = 2$, $\sum_{n=1}^{\infty} (-2)^n (x+1)^n$ 的收敛半径为

$$R_2 = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{2} \cdot \dots 4^r$$

故原级数的的收敛半径为
$$R = \min\{R_1, R_2\} = \frac{1}{2}$$
,收敛区间则为 $\left(-\frac{3}{2}, -\frac{1}{2}\right)$,……2′

当
$$x = -\frac{3}{2}$$
时,级数发散,当 $x = -\frac{1}{2}$ 时,级数发散,所以收敛域为 $\left(-\frac{3}{2}, -\frac{1}{2}\right)$ 。.....2'

八、(8分) 解:
$$I = \iint_D |x^2 + y^2 - 4| dxdy = \int_0^{2\pi} d\theta \int_0^2 (4 - r^2) r dr + \int_0^{2\pi} d\theta \int_2^4 (4 - r^2) r dr \dots 6分 = 80\pi \dots 2分$$

九、(10分)解一:补充平面 $S_1:z=1$,法向量向下,形成封闭区域 Ω ,由 Gauss 公式得

$$\iint_{\Omega} (2x+z) dy dz + z dx dy = -3 \iiint_{\Omega} dx dy dz = -3 \int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{r^{2}}^{1} dz = -\frac{3}{2} \dot{\pi}, \dots 5'$$

再计算平面
$$z=1$$
上的曲面积分 $\iint_{S_1} (2x+z) dy dz + z dx dy = \iint_{\{x^2+y^2 \le 1\}} dx dy = \pi$,4'

综合得
$$I = -\frac{\pi}{2}$$
 。.....1'

解二:用投影法求解,这里 $z_x'=2x, z_y'=2y$ 。.....2'

原式 =
$$\iint_{S} [(2x+z)(-2x)+z] dxdy = -\iint_{S} (z-2xz-4x^{2}) dxdy = \iint_{D} (x^{2}+y^{2}-2x(x^{2}+y^{2})-4x^{2}) dxdy \dots 3'$$

$$= \int_0^{2\pi} d\theta \int_0^1 (r^2 - 2r^3 \cos \theta - 4r^2 \cos^2 \theta) r dr = -\frac{\pi}{2} \dots 5'$$

②曲线L不封闭,添加辅助线 L_1 :沿y轴由点B(0,2)到点O(0,0),

$$\int_{L_1} 3x^2 y dx + (x^3 + x - 2y) dy = \int_{L_1} Q(0, y) dy = \int_2^0 -2y dy = 4, \dots 3'$$

③在封闭区域上运用 Green 公式,可得

$$\int_{L \cup L_1} 3x^2 y dx + (x^3 + x - 2y) dy = \iint_D 1 dx dy = \frac{1}{4} \pi \cdot 2^2 - \frac{1}{2} \pi \cdot 1^2 = \frac{\pi}{2}, \dots 4^3$$

因此
$$I = \int_{L} 3x^{2}ydx + (x^{3} + x - 2y)dy = \frac{\pi}{2} - 4 \dots 2'$$

$$+ -\cdot (10') \ a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \left(\int_0^{\pi} \cos nx dx - \int_0^{\pi} x^2 \cos nx dx \right) = \frac{2}{\pi} \left(-\int_0^{\pi} x^2 \cos nx dx \right)$$

$$= \frac{2}{\pi} \cdot \frac{2\pi (-1)^{n-1}}{n^2} = \frac{4(-1)^{n-1}}{n^2}, \quad \dots \dots A' \qquad a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = 2(1 - \frac{\pi^2}{3}), \quad \dots \dots 2'$$

$$= \frac{2}{\pi} \cdot \frac{2\pi (-1)^{n-1}}{n^2} = \frac{4(-1)^{n-1}}{n^2} \cdot \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^2} \cos nx, \dots \dots 2'$$

取
$$x = 0$$
, 得 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12} \dots 2^n$

绩小铺QQ: 1433397577, 搜集整理不易,资料自用就好,谢谢!

武汉大学数学与统计学院

2012-2013 学年二学期《高等数学 B2》期末试卷(A卷)参考解答

一、(9分) 解: 首先 $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\bar{a}, \bar{b}) = \sqrt{3}$,而 $\vec{a} \perp \vec{c}$, $\vec{b} \perp \vec{c}$ 可知 $\vec{c} \parallel \vec{a} \times \vec{b}$,所以 $\vec{c} = |\vec{a} \times \vec{b}| |\vec{c}| \cos(\bar{a} \times \bar{b}, \bar{c}) = \sqrt{3} \times 3 \times (\pm 1) = \pm 3\sqrt{3}$

二、(9分)解 π 法向量为 $\vec{n} = \{A, B, 6\}$,l 方向向量为 $\vec{S} = \{2, -4, 3\}$,l 与 π 垂直, $\vec{n} / | \vec{S}$,故 $\frac{A}{2} = \frac{B}{-4} = \frac{6}{3}$,解得: A = 4, B = -8

三、(9分)解(1) $xdx - ydy = dz - \varphi'(x + y - z) \cdot (dx + dy - dz)$, $dz = \frac{(x + \varphi')dx + (\varphi' - y)dy}{\varphi' + 1}$,

$$(2) \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = \frac{x + y}{1 + \varphi'(x + y - z)}, \quad u(x, y) = \frac{1}{x + y} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right) = \frac{1}{1 + \varphi'(x + y - z)}$$

$$\frac{\partial u}{\partial x} = \frac{-\varphi''(1 \overline{\bullet} \frac{\partial z}{\partial x})}{(1 + \varphi')^2} = \frac{-\varphi''(1 \overline{\bullet} \frac{x + \varphi'}{1 + \varphi'})}{(1 + \varphi')^2} = \frac{-\varphi''(1 \overline{\bullet} x) \cdot 2\varphi}{(1 + \varphi')^3}$$

四、(9分)解:因为 $\max\{x^2, y^2\} = \begin{cases} x^2, x \ge y \\ y^2, x \le y \end{cases}$, $(x, y) \in D$, 于是用 y = x 将区域分成两块:

$$I = \iint_{D_1} e^{x^2} dx dy + \iint_{D_2} e^{y^2} dx dy = 2 \iint_{D_1} e^{x^2} dx dy = 2 \int_0^1 dx \int_0^x e^{x^2} dy = 2 \int_0^1 x e^{x^2} dx = e - 1$$

$$\overline{\pm}$$
. (9 π)
$$\iiint_{0} z dv = \int_{0}^{2} dx \int_{0}^{2-x} dy \int_{0}^{2-x-y} z dz = \frac{2}{3}$$

六、(9分) 解 由
$$\frac{\partial p}{\partial y} = \frac{\partial Q}{\partial x}$$
, 得 $\varphi'(x)y = 2xy[\varphi(x)+1]$, $\ln[\varphi(x)+1] = x^2 + C_1$,

即
$$\varphi(x) = e^{x^2 + C_1} - 1 = Ce^{x^2} - 1$$
 , 所以有 $\int_{(0,0)}^{(1,1)} (Ce^{x^2} - 1)y dy + Cxy^2 e^{x^2} dx = \frac{1}{2}$

$$\int_{(0,0)}^{(1,1)} (Ce^{x^2} - 1) y dy + Cxy^2 e^{x^2} dx = \int_0^1 (Ce - 1) y dy = \frac{1}{2} (Ce - 1). \quad \text{idf} (Ce - 1) = 1, \quad \text{iff} (Ce - 1) = 1$$

所以有 $\varphi(x) = 2e^{x^2-1}-1$

七、(9 分) 解: $dS = \sqrt{1 + \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2}} dx dy = \sqrt{2} dx dy$, 因为积分区域关于 xoz 平面对称, xy 关

渍小铺QQ: 1433397579,数搜集整理不易,资料自用就好,谢谢!

$$I = \iint_{\Sigma} (xy' + z) dS = \iint_{\Sigma} z dS = \iint_{D_{xy}} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} r^2 dr$$
$$= 2\sqrt{2} \int_{0}^{\frac{\pi}{2}} \frac{8}{3} \cos^3\theta d\theta = \frac{32\sqrt{2}}{9}$$

八、(7分) 解
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{n\cdot 4^n}{(n+1)\cdot 4^{n+1}} = \frac{1}{4}$$
, :收敛半径为 $R = 4$, 当 $x = -4$ 时, $\sum_{n=1}^{\infty} \frac{4}{n}$ 发散;

当
$$x = 4$$
 时, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot 4}{n}$ 收敛, 收敛域为 $(-4,4]$,设 $S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 4^n} x^{n+1} = x \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n \cdot 4^n}$

$$=x\int_{0}^{\pi}(\sum_{n=1}^{\infty}(-1)^{n-1}\frac{t^{n}}{n\cdot 4^{n}}]'dt=\frac{x}{4}\int_{0}^{\pi}(\sum_{n=1}^{\infty}(-1)^{n-1}(\frac{t}{4})^{n-1}]dt=\frac{x}{4}\int_{0}^{\pi}\frac{1}{1+\frac{t}{4}}dt=x\ln(1+\frac{x}{4}),x\in(-4,4]$$
九、(9分)解: 设切点 $P(x_{0},y_{0},z_{0})$,由已知条件得: $\frac{2x_{0}}{1}=\frac{4y_{0}}{4}=\frac{6z_{0}}{6}:=\lambda$,得到
$$x_{0}=\frac{1}{2}\lambda_{1}y_{0}=\lambda_{1}z_{0}=\lambda_{1}$$
 代入 曲面方程解得 $\lambda=\pm 2$. $x_{0}=\pm 1,y_{0}=\pm 2,z_{0}=\pm 2$. 切平面方程为 $(x\pm 1)+4(y\pm 2)+6(z\pm 2)=0$,即 $x+4y+6z=\pm 21$ 十、(7分)解: $\iint_{0}^{\infty}(2x^{3}dydz+2y^{3}dzdx+3(z^{2}-1)dxdy,S:z=1-x^{2}-y^{2}$ $(z\geq0)$ 不封闭补充 $S_{1}:z=0$ $(x^{2}+y^{2}\leq1)$ 下侧,则 $S+S$ 封闭,取外侧.
$$I=\iint_{0}^{\infty}(2x^{3}dydz+2y^{3}dzdx+3(z^{2}-1)dxdy=(\iint_{0}^{\infty}-\iint_{0}^{\infty})[2x^{3}dydz+2y^{3}dzdx+3(z^{2}-1)dxdy]$$
 由高斯公式,得 $\iint_{0}^{\infty}(2x^{2}+y^{2}+z)^{3}dzdx+3(z^{2}-1)dxdy=(\iint_{0}^{\infty}-\int_{0}^{\infty})[2x^{3}dydz+2y^{3}dzdx+3(z^{2}-1)dxdy=-\iint_{0}^{\infty}(-3)dxdy=3\pi$ 因此 $I=2\pi-3\pi=-\pi$ 十一、 $(8 \oplus)$)解: 由曲面 S 的方程为 $2x^{2}+y^{2}+z^{2}=1$,给定的方向 $I^{n}=(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0)$ 方向导数函数 $\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x}\cos\alpha+\frac{\partial f}{\partial y}\cos\beta+\frac{\partial f}{\partial z}\cos\gamma=\sqrt{2}(x-y)$
$$\frac{\partial L}{\partial y}=-\sqrt{2}+2\lambda y=0$$
 ,解之得 $\frac{\partial f}{\partial z}=-\sqrt{2}+2\lambda y=0$,解之得 $\frac{\partial f}{\partial z}=-\sqrt{2}+2\lambda y=0$,如 $\frac{\partial f}{\partial z}=-\sqrt$

数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛,与假设矛盾,所以 a > 0. 因此由根值判别法, $\lim_{n \to \infty} \sqrt{\left(\frac{1}{a_n + 1}\right)^n} = \frac{1}{a + 1} < 1$,所以原级

数收敛。

武汉大学 2013-2014 学年第二学期期末考试 高等数学 B2 试题解答

一、(8分) 利用二重积分的性质,比较积分 $I_1 = \iint_D \ln(x^2 + y^2) d\sigma = I_2 = \iint_D \left[\ln(x^2 + y^2)\right]^2 d\sigma$ 的大小,

其中 $D: e \le x^2 + y^2 \le 2e$.

.....4

$$\ln(x^2 + y^2) \le \left[\ln(x^2 + y^2)\right]^2, \therefore I_1 < I_2$$

.....4分

.....4分

二、(8分) 设
$$z = f(xy, \frac{x}{y}) + \sin y$$
, 其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

$$\Re \frac{\partial z}{\partial x} = (f_1' \cdot y + f_2' \cdot \frac{1}{y}) + 0 = yf_1' + \frac{1}{y}f_2',$$

$$\frac{\partial^2 z}{\partial x \partial y} = f_1' + y [f_{11}'' \cdot x + f_{12}'' \cdot (-\frac{x}{y^2})] - \frac{1}{y^2} f_2' + \frac{1}{y} [f_{21}'' \cdot x + f_{22}'' \cdot (-\frac{x}{y^2})]$$

$$= f_1' + xy f_{11}'' - \frac{1}{y^2} f_2' - \frac{x}{y^3} f_{22}''. \qquad \dots \dots 4 \frac{2}{y^3}$$

三、(8分) 求过点 M(1,-2,3) 的平面,使它与平面 $\pi: x+y-z-3=0$ 垂直,且与直线 L: x=y=z 平 行.

解 因为已知直线与已知平面不平行,故所求平面得法向量为

$$\vec{n} = (1,1,-1) \times (1,1,1) = (2,-2,0)$$

-----4 分

故平面方程为 (x-1)-(y+2)=0, 即 x-y-3=0。

·····4 分

四、 (8 分)设函数 z = z(x,y) 是由方程 $xyz = \arctan(x+y+z)$ 所确定的隐函数,求全微分 dz 在点 (0,1,-1) 处的值..

$$dz = \frac{yz[1 + (x + y + z)^2] - 1}{1 - xy[1 + (x + y + z)^2]} dx + \frac{xz[1 + (x + y + z)^2] - 1}{1 - xy[1 + (x + y + z)^2]} dy, \text{ if } dz\Big|_{(0,1,-1)} = -2dx - dy \cdots 4$$

五、(10 分) 计算曲线积分 $\int_L (2a-y) dx + x dy$,式中 L 是从原点 O(0,0) 沿曲线 $\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$ (a>0) 到点 $A(2\pi a,0)$ 的弧段.

解 O(0,0)对应t=0, $A(2\pi a,0)$ 对应 $t=2\pi$ 。

原式 =
$$\int_0^{2\pi} a (1 + \cos t) \cdot a(1 - \cos t) dt + a(t - \sin t) a \sin t dt$$
 ······6 分

$$= \int_0^{2\pi} a^2 (1 - \cos^2 t - \sin^2 t + t \sin t) dt = a^2 \int_0^{2\pi} t \sin t dt = -2\pi a^2 \qquad \cdots 4$$
 分 六、(10 分) 设 Ω 是由曲面 $z^2 = x^2 + y^2, z = 2$ 所围的闭区域,试计算 $\iint_{\Omega} z^2 dV$.

解
$$\iiint_{\Omega} z^2 dV = \int_0^2 z^2 dz \iint_{x^2 + y^2 \le z^2} dx dy \qquad \cdots 6 分$$

$$= \int_0^2 \pi z^4 dz = \frac{32}{5} \pi$$
4 \(\frac{1}{2}\)

七、(10分) 计算曲面积分 $\iint_S (x^3+z^2) dy dz + (y^3+x^2) dz dx + (z^3+y^2) dx dy$, 其中 S 是上半球面 $z = \sqrt{1-x^2-y^2}$ 的上侧.

解 添加平面 $S_1: x^2+y^2 \le 1(z=0)$ 的下侧,记 $S+S_1$ 所围的区域为 V ,则利用高斯公式得,

原式 =
$$3 \iiint_{V} (x^2 + y^2 + z^2) dV - \iint_{S_1} y^2 dx dy - 0 \cdots 6$$
 分

$$=3\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r^4 \sin\varphi dr + \int_0^{2\pi} d\theta \int_0^1 \rho^3 \sin^2\theta d\rho = \frac{29}{20}\pi \quad \dots \dots 4 \, \mathcal{H}$$

八、(8分) 求曲线 $x = \sin^2 t$, $y = \sin t \cos t$, $z = \cos^2 t$ 在对应于 $t = \frac{\pi}{4}$ 的点处的切线和法平面方程.

解 点
$$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$
, 当 $t = \frac{\pi}{4}$ 时, $\vec{\tau} = (x', y', z')|_{t=\frac{\pi}{4}} = (1, 0, -1)$ 。 ……4 分

切线
$$\frac{x-\frac{1}{2}}{1} = \frac{y-\frac{1}{2}}{0} = \frac{z-\frac{1}{2}}{-1}$$
, 法平面, $x-z=0$ ······4 分

九、(8分)设 f(x) 是周期为 2π 的周期函数,它在 $[-\pi,\pi)$ 上的表达式为 $f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi, \end{cases}$

将它展开成 Fourier 级数,并求数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ 的和。

解 所给函数在点 $x = k\pi(k = 0, \pm 1, \pm 2,...)$ 处不连续,在其他点处连续,所以由收敛定理可知 f(x) 的 1433397577,搜集整理不易,资料自用就好级谢说 $\pm \frac{-1+1}{2} = 0$,当 $x \neq k\pi(k = 0, \pm 1, \pm 2,...)$ 时 Fourier 级数收敛,在 $x = k\pi(k = 0, \pm 1, \pm 2,...)$ 处级数收敛于 $\frac{-1+1}{2} = 0$,当 $x \neq k\pi(k = 0, \pm 1, \pm 2,...)$ 时

收敛于 f(x).

计算 Fourier 系数如下:

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{0} (-1) \cdot \cos nx dx + \frac{1}{\pi} \int_{0}^{\pi} 1 \cdot \cos nx dx = 0,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{0} (-1) \cdot \sin nx dx + \frac{1}{\pi} \int_{0}^{\pi} 1 \cdot \sin nx dx = \frac{2}{n\pi} [1 - (-1)^{n}] , \dots 5$$
因此 $f(x)$ 的 Fourier 展开式为

$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)x (x \neq k\pi, k = 0, \pm 1, \pm 2, ...) , \quad \mathbb{R} x = \frac{\pi}{2} \, \overline{\Box} \, \partial_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} = \frac{\pi}{4} \, \cdot \, \cdots 3 \, \partial_{n=1}^{\infty} \partial_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)x (x \neq k\pi, k = 0, \pm 1, \pm 2, ...)$$

十、(9 分) 设 $f(x) = \begin{cases} \frac{\ln(1-x)}{x} & x \neq 0 \\ -1 & x = 0 \end{cases}$,试将 f(x) 展开成 x 的幂级数并利用其求 $\int_0^x f(t) dt$ 。

解 由 $\ln(1-x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(-x)^n}{n} = -\sum_{n=1}^{\infty} \frac{x^n}{n}, x \in [-1,1)$ 因此当 $x \neq 0$ 时,有

 $\frac{\ln(1-x)}{x} = -\sum_{n=1}^{\infty} \frac{x^{n-1}}{n},$ 5 \(\frac{1}{2}\)

当 x = 0 时, $-\sum_{n=1}^{\infty} \frac{x^{n-1}}{n} = -1 = f(0)$,所以 $f(x) = -\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}$, $x \in [-1,1]$

 $\int_0^x f(t)dt = -\sum_{n=1}^\infty \frac{x^n}{n^2} \quad x \in [-1,1]$ 4 \(\frac{1}{2}\)

十一、(6分)设 $a_n \ge 0$ (n=1,2,...),且数列 $\{na_n\}$ 有界,证明: $\sum_{n=1}^{\infty} a_n^2$ 收敛。

证明: 因为数列 $\{na_n\}$ 有界,则 $\exists M>0$,使得 $0\leq na_n\leq M$,因此 $0\leq a_n\leq \frac{M}{n}$, ……3分

于是 $0 \le a_n^2 \le \frac{M^2}{n^2}$,由比较判别法可知 $\sum_{n=1}^{\infty} a_n^2$ 收敛。3分

十二、(7分) 求二元函数 $f(x,y) = \cos^2 x + \cos^2 y$ 在限制条件 $x-y = \frac{\pi}{4}$ 下的极值.

解 设 $F(x,y,\lambda) = \cos^2 x + \cos^2 y + \lambda(x-y-\frac{\pi}{4})$, 求驻点。由 $F_x = -2\sin x \cos x + \lambda = 0$,

 $F_y = -2\sin y\cos y - \lambda = 0, \ x - y = \frac{\pi}{4}$ 可得驻点为 $(\frac{\pi}{8} + \frac{k\pi}{2}, -\frac{\pi}{8} + \frac{k\pi}{2})$ 。4 分

武汉大学 2014-2015 学年第二学期期末考试高等数学 B2 答案

一、(8分)设 $\bar{p}=2\bar{a}+\bar{b},\bar{q}=k\bar{a}+\bar{b}$,其中 $|\bar{a}|=1,|\bar{b}|=2$,且 $\bar{a}\perp\bar{b}$,问:

(1) k 为何值时, $\bar{p}\perp\bar{q}$? (2) k 为何值时,以 \bar{p},\bar{q} 为边的平行四边形面积为 6?

解 (1) 因
$$\bar{p}\perp\bar{q}$$
, 故 $\bar{p}\cdot\bar{q}=0$, 即 $(2\bar{a}+\bar{b})\cdot(k\bar{a}+\bar{b})=0$

$$2k|\bar{a}|^2 + (2+k)\bar{a}\cdot\bar{b} + |\bar{b}|^2 = 0$$

按 $|\bar{a}|^2 = 1$, $\bar{a} \cdot \bar{b} = 0$, $|\bar{b}|^2 = 4$, 有 2k + 4 = 0, 得 k = -2 4 分

(2)
$$|\bar{p} \times \bar{q}| = 6$$
, 而 $|\bar{p} \times \bar{q}| = |(2\bar{a} + \bar{b}) \times (k\bar{a} + \bar{b})| = |(2 - k)\bar{a} \times \bar{b}| = 2|2 - k|$ 故 $|2 - k| = 3$, 得 $k = 5$ 或 $k = -1$.

二.(8 分) 求函数
$$u = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
 沿曲线 $x = t, y = 2t^2, z = -2t^4$ 在点 $M(1, 2, -2)$ 的切

线方向上的方向导数

解: 曲线在点M处对应t=1, 在M点的切线方向为(1,4t,-8t)=(1,4,-8),方向余弦为

$$\vec{l} = (\frac{1}{9}, \frac{4}{9}, -\frac{8}{9})$$
 , 4%

$$gradu\Big|_{M} = \left(\frac{y^{2} + z^{2}}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}, -\frac{xy}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}, -\frac{xz}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}\right)\Big|_{M} = \left(\frac{8}{27}, -\frac{2}{27}, \frac{2}{27}\right)$$

故方向导数为
$$\frac{\partial u}{\partial \overline{l}} = -\frac{16}{243}$$
, 4分

三、 $(6 \, \mathcal{G})$ 函数 z = z(x,y) 由方程 z = f(x+y+z) 所确定,其中 f 二阶可导,且 $f'(u) \neq 1$,

求
$$\frac{\partial^2 z}{\partial x^2}$$
。

解
$$z_x = (1+z_x)f'$$
, $z_x = \frac{f'}{1-f'} = -1 + \frac{1}{1-f'}$ (4分)

$$\frac{\partial^2 z}{\partial x^2} = \frac{(1+z_x)f''}{(1-f')^2} = \frac{f''}{(1-f')^3}$$
 (2 \(\frac{\psi}{2}\))

四、(8分)设u = f(x + y + z, xyz)具有一阶连续偏导数,其中z = z(x, y)由方程

$$2x dx + 2e^{y^2} dz + 4yze^{y^2} dy = \cos z dz$$
 4 \(\frac{1}{2}\)

消去 d z 得: d u =
$$\left[f_1 + yzf_2 + (f_1 + xyf_2) \frac{2x}{\cos z - 2e^{y^2}} \right] dx$$

+ $\left[f_1 + xzf_2 + (f_1 + xyf_2) \frac{4yze^{y^2}}{\cos z - 2e^{y^2}} \right] dy$ 4分

五、(8分) 求曲面 $z-e^z+2xy=3$ 在点 M(1,2,0) 处的切平面和法线方程。

解: 设
$$F(x, y, z) = z - e^z + 2xy - 3$$
,则 $F_x = 2y$, $F_y = 2x$, $F_z = 1 - e^z$, 4分

故法向量 $\bar{n}|_{M} = \{F_{\nu}, F_{\nu}, F_{\nu}\}|_{M} = \{4, 2, 0\}$, 所以切平面方程为

$$4(x-1)+2(y-2)+0\cdot(z-0)=0$$
 即 $2x+y=4$,

法线方程为
$$\frac{x-1}{4} = \frac{y-2}{2} = \frac{z}{0}$$
 或者
$$\begin{cases} \frac{x-1}{4} = \frac{y-2}{2} \\ z = 0 \end{cases}$$
 4分

六、(10 分)设 $z = x^3 + \alpha x^2 + 2\gamma xy + \beta y^2 + \alpha \beta^{-1}(\gamma x + \beta y)$,试证: 当 $\alpha \beta \neq \gamma^2$ 时,函数 z 有一个且仅有一个极值,又若 $\beta < 0$,则该极值必为极大值。

证明 由
$$\begin{cases} z_x = 3x^2 + 2\alpha x + 2\gamma y + \alpha \gamma \beta^{-1} = 0 \\ z_y = 2\gamma x + 2\beta y + \alpha = 0 \end{cases}, \quad \text{解得 } x = 0 \text{ 或 } x = \frac{-2}{3\beta}(\alpha\beta - \gamma^2) = \mu \text{ 5 } \end{cases}$$

$$D = \begin{pmatrix} z_{xx} & z_{xy} \\ z_{yx} & z_{yy} \end{pmatrix} = \begin{pmatrix} 6x + 2\alpha & 2\gamma \\ 2\gamma & 2\beta \end{pmatrix}, D|_{x=0} = 4(\alpha\beta - \gamma^2), D|_{x=\mu} = 4(\gamma^2 - \alpha\beta)$$

在 $\alpha\beta\neq\gamma^2$ 的条件下,以上二式中必有且仅有一式大于零,这说明函数 z 有且仅有一个极值。 因为 $z_{yy}=2\beta$,所以当 $\beta<0$ 时,必为极大值。 5 分

七、(8 分)设 f(x,y) 连续,且满足 $f(x,y) = x\sqrt{y} + \iint\limits_D f(u,v) du dv$,其中 D 为曲线

 $y = x^2, x = y^2$ 所围成的区域, 求 f(x, y).

解: 设
$$A = \iint_D f(u,v) du dv$$
, 则 $A = \iint_D (x\sqrt{y} + A) dx dy$, 而

$$\iint_{D} x \sqrt{y} dx dy = \int_{0}^{1} dx \int_{x^{2}}^{\sqrt{x}} x \sqrt{y} dy = \frac{6}{55}$$

$$4 \, \text{f}$$

而
$$\iint_D A dx dy = A \int_0^1 dx \int_{x^2}^{\sqrt{x}} dy = \frac{1}{3}A$$
,所以 $A = \frac{6}{55} + \frac{A}{3} \Rightarrow A = \frac{9}{55}$,

故
$$f(x,y) = x\sqrt{y} + \frac{9}{55}$$

八、(8 分) 设 Ω 是由锥面 $z = \sqrt{x^2 + y^2}$ 与半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 围成的空间区域, S 是 Ω 的整个边界的外侧, 求曲面积分 $\iint_S x dy dz + y dz dx + z dx dy$.

解:由 Gauss 公式可知

$$\iint_{S} x dy dz + y dz dx + z dx dy = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = 3 \iiint_{\Omega} dx dy dz$$
 4 \(\frac{\partial}{2}{2} \)

用球坐标 $x = r \cos \theta \sin \varphi, y = r \sin \theta \sin \varphi, z = r \cos \varphi$, 可得

小铺QQ: 1433397577,搜集整理不易,资料自用就好
$$2_-$$
谢谢!
$$\iiint dx dy dz = \int_0^a d\theta \int_0^4 d\varphi \int_0^r r^2 \sin \varphi dr = \frac{1}{3} \pi R^3,$$

所以
$$\iint_{S} x dy dz + y dz dx + z dx dy = 3 \cdot \frac{2 - \sqrt{2}}{3} \pi R^3 = (2 - \sqrt{2})\pi R^3$$
 4分

九、(10分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域与和函数.

解:令
$$t=x^2$$
,级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} t^n$ 的收敛半径为 $R=\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = 1$,当 $t=\pm 1$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ 收敛,所以原级数的收敛域为[-1,1]。

十、(10 分) 确定常数 λ ,使得在右半平面 x>0 的单连通区域内,曲线积分 $\int_{L}2xy(x^4+y^2)^{\lambda}\mathrm{d}x-x^2(x^4+y^2)^{\lambda}\mathrm{d}y=\int_{L}P\mathrm{d}x+Q\mathrm{d}y$

与路径无关,并在上述条件下,求积分 $\int_{(1,0)}^{(3,3)} P dx + Q dy$ 之值。

解 记
$$t = x^4 + y^2$$
, $P = 2xyt^{\lambda}$, $Q = -x^2t^{\lambda}$,

$$\frac{\partial P}{\partial y} = 2xt^{\lambda} + 2xy\lambda t^{\lambda-1} \cdot 2y, \quad \frac{\partial Q}{\partial x} = -2xt^{\lambda} - x^2\lambda t^{\lambda-1} \cdot 4x^3,$$

由
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, 得 $2xt^{\lambda} + 2xy\lambda t^{\lambda-1} \cdot 2y = -2xt^{\lambda} - x^2\lambda t^{\lambda-1} \cdot 4x^3$, 即 $\lambda = -1$,

故当
$$\lambda = -1$$
 时,积分 $\int_{L} \frac{2xy dx - x^2 dy}{x^4 + y^2}$ 与路径无关。 6 分

取 L_1 : y = 0, x 从 1 到 3, L_2 : x = 3, y 从 0 到 3, 则

$$\int_{L} \frac{2xy dx - x^{2} dy}{x^{4} + y^{2}} = \int_{L_{1}} \frac{2xy dx - x^{2} dy}{x^{4} + y^{2}} + \int_{L_{2}} \frac{2xy dx - x^{2} dy}{x^{4} + y^{2}}$$

$$= 0 + \int_{0}^{3} \frac{-9}{81 + y^{2}} dy = -\arctan \frac{y}{9} \Big|_{0}^{3} = -\arctan \frac{1}{3}$$

$$\Rightarrow 2xy dx - x^{2} dy$$

$$= 0 + \int_{0}^{3} \frac{-9}{81 + y^{2}} dy = -\arctan \frac{y}{9} \Big|_{0}^{3} = -\arctan \frac{1}{3}$$

十一、(10 分) 计算三重积分 $\iint_{\Omega} (x^2 + y^2 + z) dV$, 其中 Ω 是由曲线 $\begin{cases} y^2 = 4z \\ x = 0 \end{cases}$ 绕 z 轴旋转

一周而成的曲面与平面 z=4 围成的立体.

解一: 旋转曲面方程为 $z = \frac{x^2 + y^2}{4}$,用柱坐标 $x = r\cos\theta$, $y = r\sin\theta$,z = z 将三重积分化为

$$\iiint_{\Omega} (x^2 + y^2 + z) dV = \int_0^4 dz \int_0^{2\pi} d\theta \int_0^{2\sqrt{z}} (r^2 + z) r dr$$
 5 \(\forall \)

绩小铺QQ: 1433397577,搜集整理不易,资料自用就好 $\sqrt{2}$ 谢谢! $= 2\pi \int_0^4 \left(\frac{r}{4} + \frac{r}{2}z\right)_0^4 dz = 2\pi \int_0^4 6z^2 dz = 256\pi \qquad 5 \text{ }$

或者解二: 旋转曲面方程为 $z=\frac{x^2+y^2}{4}$,用柱坐标 $x=r\cos\theta$, $y=r\sin\theta$,z=z 将三重积分化为

$$\iiint_{\Omega} (x^2 + y^2 + z) dV = \int_0^{2\pi} d\theta \int_0^4 r dr \int_{\frac{r^2}{4}}^4 (r^2 + z) dz$$

$$= 2\pi \int_0^4 (4r^3 + 8r - \frac{9}{22}r^5) dr = 256\pi$$
5 \(\frac{\partial}{2}{2}\)

十二、(6分)设级数 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 在[0,1]上收敛,证明: 当 $a_0 = a_1 = 0$ 时,级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 收敛。

证明 因为
$$\sum_{n=0}^{\infty} a_n x^n$$
 在 $x=1$ 点收敛,所以 $\sum_{n=0}^{\infty} a_n$ 收敛。 那么,存在 $M>0$,使得 $\left|a_n\right| \leq M$ 3分 而 $f\left(\frac{1}{n}\right) = a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots \\ = a_0 = a_1 = 0$ 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_1}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_1}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_1}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_1}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_1}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_1}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \\ = a_1 = 0$$
 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_1}{n^2} + \dots + \frac{a_k}{n^k} + \dots + \frac{a$$

绩小铺QQ: 1433397577, 搜集整理不易,资料自用就好,谢谢!