Elettronica 20 gennaio 2021

Del circuito seguente calcolare il guadagno di tensione per piccolo segnali $A_v = v_{out}/v_{in}$.

OA ideale con
$$L^{+} = -L^{-} = 12$$
V $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 2 \text{ V}; \lambda = 0)$ $V_{DD} = 10$ V $R_{G} = 5 \text{ k}\Omega$ $R_{D} = 5 \text{ k}\Omega$ $R_{SI} = 1 \text{ k}\Omega$ $R_{S2} = 2 \text{ k}\Omega$ $R_{I} = 1 \text{ k}\Omega$ $R_{2} = 2 \text{ k}\Omega$; $C = \infty$

Elettronica 11 febbraio 2021

Del circuito seguente calcolare il guadagno di tensione per piccoli segnali $A_v = v_{out}/v_{in}$.

OA ideale con
$$L^{+} = -L^{-} = 12$$
V $M_{I} = (K = 0.33 \text{ mA/V}^{2}; V_{T} = 2 \text{ V}; \lambda = 0)$ $V_{DD} = 15$ V $R_{A} = 6 \text{ k}\Omega$ $R_{B} = 3 \text{ k}\Omega$ $R_{D} = 3 \text{ k}\Omega$ $R_{I} = 6 \text{ k}\Omega$ $R_{2} = 12 \text{ k}\Omega$; $C = \infty$

Elettronica 14 aprile 2021

Del circuito seguente, con V_1 un generatore di tensione costante e i_{in} un generatore di corrente di piccolo segnale,

- 1) Calcolare il punto di lavoro in continua del transistor M_1 ;
- 2) Calcolare il guadagno di transimpedenza $R_m = v_{out}/i_{in}$.

OA ideale con
$$L^{+} = -L^{-} = 12$$
V $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$
 $V_{1} = 3$ V $V_{DD} = 12$ V $R_{I} = 2 \text{ k}\Omega$ $R_{D} = 4 \text{ k}\Omega$ $C = \infty$

Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare l'andamento nel tempo della tensione di uscita $V_{\rm O}$.

OA ideale con $L^+ = -L^- = 12V$

$$R_1 = 3 \text{ k}\Omega$$
; $R_2 = 6 \text{ k}\Omega$; $C = 50 \text{ nF}$;

Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, calcolare e graficare l'andamento nel tempo della tensione di uscita $V_{AB} = V_A - V_B$.

$$M_I = (K = 0.5 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$$

 $R_D = 2 \text{ k}\Omega; R_S = 1 \text{ k}\Omega; C = 50 \text{ nF}$
 $V_{DD} = 12 \text{ V}$

Elettronica - 2 luglio 2021 TURNO 1

Del circuito seguente, con V_1 un generatore di tensione costante e v_{in} un generatore di tensione di piccolo segnale,

- 1) Calcolare il valore della tensione di uscita in continua V_{out} ;
- 2) Calcolare il guadagno di tensione per piccoli segnali $A_v = v_{out}/v_{in}$.

OA ideale con
$$L^+ = -L^- = 12$$
V $M_I = (K = 1 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$

$$V_1 = 2V \qquad V_{DD} = 10 \text{ V} \qquad C = \infty$$

$$R_I = R_2 = R_D = R_S = R_L = 2 \text{ k}\Omega$$

Elettronica - 2 luglio 2021

TURNO 2

Del circuito seguente, con I_1 un generatore di corrente costante e v_{in} un generatore di tensione di piccolo segnale,

- 1) Calcolare il valore della tensione di uscita in continua V_{OUT} ;
- Calcolare il guadagno di tensione per piccoli segnali $A_v = v_{out}/v_{in}$.

OA ideale con
$$L^{+} = -L^{-} = 12V$$

$$M_I = (K = 0.5 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$$

$$I_1 = 2\text{mA}$$
 $V_{DD} = 5\text{V}$ $C = \infty$ $R_D = 1 \text{ k}\Omega$ $R_D = 4 \text{ k}\Omega$

$$R_1 = 2 \text{ k}\Omega$$

$$R_2 = 4 \text{ kg}$$

Elettronica 9 settembre 2021

Del circuito seguente, con i_{in} un generatore di corrente di piccolo segnale,

- 1) Calcolare il punto di lavoro in continua del transistor M_1 ;
- 2) Calcolare il guadagno di corrente $A_i = i_{out}/i_{in}$.

OA ideale con
$$L^+ = -L^- = 5$$
V $M_I = (K = 0.5 \text{ mA/V}^2; V_T = 1 \text{ V}; \lambda = 0)$
 $R_I = 20 \text{ k}\Omega; \quad R_2 = 10 \text{ k}\Omega; \quad R_S = 1 \text{ k}\Omega; \quad R_D = 2 \text{ k}\Omega; \quad R_L = 3 \text{ k}\Omega$
 $V_{DD} = 5$ V $C = \infty$

Elettronica - 22 ottobre 2021

Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{out} .

$$M_{I} = (K = 1 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$$

 $V_{DD} = 6 \text{V}$ $C_{L} = 1 \text{ }\mu\text{F}$
 $R_{I} = 3 \text{ }k\Omega$ $R_{2} = R_{G} = 6 \text{ }k\Omega$ $R_{S} = R_{D} = 1 \text{ }k\Omega$