

School of Computer Science and Engineering

Winter Semester 2023-24

Continuous Assessment Test – I

SLOT E1+TE1

Programme Name & Branch: B.Tech & Computer Science and Engineering

Course Name & Code: Cryptography and Network Security & BCSE309L

Class Number (s): Applicable to all

Faculty Name (s): Applicable to all

Exam Duration: 90 Min. Maximum Marks: 50

General instruction(s):

Q. No.	Question											Max Marks
•	Algorithm	n. 291, 41	•	·	construct a	a table fo	r the foll	owing in	outs using	Extended	d Euclidean	5
	. We us	r ₁		r r	s ₁	52	5	<i>t</i> ₁	<i>t</i> ₂	t	I	
	<i>q 6</i>	291	42	39	1	0	1	0	1	-6		
	1	42	39	3	0	1	-1	1	-6	7		
	13	39	3	0	1	-1	14	-6	7	-97		
		3	0		-1	14		7	-97			
		1			1			1				
		gcd			5			t				
	b) Find th			$42) = 3$ $+ 3^{30} + 4^4$)(-1) +			n.		5
		$0 + 3^{30}$			'	nod 7]						

A hoard of gold pieces comes into the possession of a band of 15 pirates. When they come to divide up the coins, they find that 3 are left over. Their discussion of what to do with these extra coins becomes animated, and by the time some semblance of order returns there remain only 7 pirates capable of making an effective claim on the hoard. When, however, the hoard is divided between these seven it is found that 2 pieces are left over. There ensues an unfortunate repetition of the earlier disagreement, but this does at least have the consequence that the 4 pirates who remain are able to divide up the hoard evenly between them. What is the minimum number of gold pieces which could have been in the hoard?

3. Draw an architecture of RC4 algorithm and discuss the process of initialization, initial state permutation, key stream generation and encryption in detail.

State and key initialization (done only once)

New York State and key initialization (done only once)

Initial state permutation (done only once)

Mix with key bytes and permute

K[0] K[1] K[2] K[255]

Architecture – 2

Initialization process - 2

Initial state permutation - 2

Key stream generation - 2

Encryption - 2

4. a) Explain the DES feistel structure in detail with neat diagram.

5

10

Fig. 6.4 A round in DES (encryption site)

- b) Answer the following questions about S-boxes in DES:
- i) Show the result of passing the input 111111 through S-box 2.
- ii) Show the result of passing the input 000000 through S-box 7.

S-box 2 Table

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	15	01	08	14	06	11	03	04	09	07	02	13	12	00	05	10
1	03	13	04	07	15	02	08	14	12	00	01	10	06	09	11	05
2	00	14	07	11	10	04	13	01	05	08	12	06	09	03	02	15
3	13	08	10	01	03	15	04	02	11	06	07	12	00	05	14	09

C	hov	7	Tal	J۸

							ອ-ນເ)X / I	able							
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	4	11	2	14	15	00	08	13	03	12	09	07	05	10	06	01
1	13	00	11	07	04	09	01	10	14	03	05	12	02	15	08	06
2	01	04	11	13	12	03	07	14	10	15	06	08	00	05	09	02
3	06	11	13	08	01	04	10	07	09	05	00	15	14	02	03	12

i) 3, 15 Output: 09 (1001) Input: 1 1111 1 ii) Input: 0 0000 0 Output: 04 (0100) 0, 0Find the third round key of AES 128 using the following second round key which is given in hexadecimal, S-10 5. Box table and round constant 04. **Second Round Key** 56 76 A0 08 43 1A 3A 20 **B**1 55 F7 07 8F 69 FA **S-Box Table** Y 1 2 7 8 C E F 0 3 4 5 6 9 A В D 63 7C 77 **7B** F2 6B 6F C₅ 30 01 67 2B FE D7 AB 76 0 C9 1 CA 82 7D FA 47 F₀ AD D4 A2 AF 9C A4 72 CO 59 2 **B7** FD 93 26 36 3F F7 CC 34 A₅ **E**5 F1 71 D8 31 15 C7 23 C3 E2 27 3 04 18 96 05 9A 07 12 80 EB B2 75 D₆ 09 83 2C 1A **1B** A0 52 **3B B3** 29 **E3** 2F 84 4 6E 5A 5 53 00 ED 20 CB 4C CF D1 FC **B1** 5B 6A BE 39 4A 58 F9 9F 6 D₀ EF AA FB 43 33 85 45 02 7F 50 3C A8 4D 7 51 **A3** 40 8F 92 9D 38 F5 BC **B6** DA 21 10 FF F3 D₂ X 8 CD 0C 13 EC 5F 44 C4 A7 7E 3D 64 5D 19 73 97 17 4F 60 81 DC 22 2A 90 88 46 EE **B8** 14 DE 5E 0B DB E0 32 **3A** 0A 49 06 24 5C C2 D3 62 95 E4 A AC 91 79 C8 37 6D 8D 6C 56 F4 AE 08 B E7 D₅ 4E A9 EA 65 7A C BA 78 25 2E 1C A6 B4 C6 **E8** DD 74 1F 4D BD 8B 8A 3E 48 57 **B9** 86 C1 1D 9E D 70 **B5** 66 03 F6 0E 61 35 E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF Е 8C A1 89 0D BF E6 99 42 68 41 2D 0F B₀ 54 BB 16

se cond Round Key = 56 C7 76 AO
08 1A 43 3A
20 BI 55 FT
07 8F 69 FA
07 8F 69 FA W4 W5 W6 W7
Find
g(W7) = g(AO 3A FT FA)
1) Rotword one byte circular shift
= 3A FT FA AO
2) SWb word = 80 68 2D EO
3) Ex or with RC
= 80 68 2D EO XOR
04 00 00 00
(g(w7) = 84 68 2D EO 1
100 70 00

Round 3 key:

D2 60 0D E7 15 7A BC 68 63 39 E9 01 C3 03 1E FB