

Course Syllabus Part I DSC 510 Introduction to Programming

3 Credit Hours

Course Description

This course introduces the Python programming language as a tool to clean, slice, and build tools to analyze an existing dataset. Basic principles of programming are explored as well as techniques for configuring a computer for data science work.

Course Prerequisites:

Recommend DSC 500

Course Objectives

Students who successful complete this course should be able to:

- 1. Demonstrate fundamental principles of programming, including data types, variables, loops, conditional statements, functions, and objects.
- 2. Compose Python data wrangling and analysis programs by combining custom developed code with modules from Python's built-in libraries and from modules maintained by third parties.
- 3. Create a user-defined, reusable Python module using classes, functions, and professional programming practices.
- 4. Demonstrate basic Python and programming literacy by interpreting and commenting on Python code written by others.
- 5. Make use of Python community programming best practices by following recommended naming conventions and style considerations.

Grading Scale

93 – 100% = A	87 - 89% = B+	77 – 79% = C+	67 – 69% = D+
90 - 92% = A-	83 - 86% = B	73 - 76% = C	63 - 66% = D
	80 - 82% = B-	70 – 72% = C-	60 - 62% = D-
			0 - 59% = F

Topic Outline

- I. Programming Fundamentals
 - A. Algorithmic Design and Complexity
 - B. Dynamic vs. Static Typing
 - C. Weak vs. Strong Typing
- II. Data Types
 - A. Numeric types
 - B. String types
 - C. Dictionaries, lists, tuples, and other collection types
- III. Statements and Syntax
 - A. For and while loops
 - B. If statements
 - C. Iterations and comprehensions
- IV. Functions
 - A. Variable scope
 - B. Passing arguments and options
- V. Modules
 - A. Importing and using external modules
 - B. Creating user-defined modules
 - C. Documenting and testing modules
- VI. Classes
 - A. Creating and using custom classes
 - B. Basics of object oriented design
- VII. Professional Programming
 - A. Use of Version Control
 - B. Code and project documentation
 - C. Checking code for style and other issues
 - D. Incorporating unit tests