信息与电子工程导论

Introduction to Information Science and Electronic Engineering

4.2 时序逻辑和有限状态机

主讲:周成伟

《信息与电子工程导论》课程组 2022年3月25日星期五

知识图谱

内容提要

* 时序逻辑电路

- SR锁存器
- D锁存器 时序
- D触发器 时钟
- 寄存器
- *有限状态机
 - 状态图
 - 有限状态机分析
 - 有限状态机综合

数字逻辑电路

- ❖ 所有数字逻辑电路都可以被分成两类:
 - 组合逻辑电路:输出只和当前的输入有关,即没有记忆功能。
 - 一 时序逻辑电路:输出不仅和当前的输入有关,还和以前的输入有关,即具有记忆功能。
- ❖ 无论是组合逻辑电路,还是时序逻辑电路,都可以由最基本的与门,或门和非门组成。
- ❖ 所不同的是连接方式不一样,时序逻辑电路的基本门电路连接中,带有反馈回路。

SR锁存器

S'	R'	Q	$Q_{ m next}$	功能
0	0	0	×	不定
0	0	1	×	个是
0	1	0	1	O _ 1 罢1
0	1	1	1	$Q_{next} = 1$ 置1
1	0	0	0	O - 0 睪0
1	0	1	0	$Q_{next} = 0$ 置 0
1	1	0	0	0 - 0 伊特
1	1	1	1	$Q_{next} = Q$ 保持

❖ 现态 Q

锁存器接收输入信号之前的状态。

❖次态 Q_{next}

锁存器接收输入信号之后的状态。

时序

- ❖ 时序,简单说就是时间顺序。
- ❖ 数字系统中每种数字设备具有特定的逻辑功能,要求各个部分按照预先规定的逻辑程序进行工作,因此,数字系统中的信号是有序的信息流,各信号之间有严格的时序关系。

SR锁存器时序图

D 锁存器

❖ SR锁存器存在的问题:

- 输入均为o,则系统状态可能会进入不稳定或不确定,应予以避免。

D锁存器真值表

D	Q	$Q_{ m next}$	$Q'_{ m next}$
0	×	0	1
1	×	1	0

❖ 如何避免?

- 仅使用一个输入,分别将该信号和它的取反信号接入到SR的输入端
- 虽然避免了同时取o的情况,但也无法同时取1了,即失去了保持状态的功能。

D 锁存器的时序图

D	Q	$Q_{ m next}$	$Q'_{ m next}$
0	×	0	1
1	×	1	0

带有使能的 D 锁存器

❖ 加入输入使能信号,即带有使能的D锁存器。

E	D	Q	Q'	$Q_{ m next}$	$Q'_{ m next}$
0	×	0	1	0	1
0	×	1	0	1	0
1	0	×	×	0	1
1	1	×	×	1	0

带有使能的 D 锁存器时序图

E	D	Q	Q'	$Q_{ m next}$	$Q'_{ m next}$
0	×	0	1	0	1
0	×	1	0	1	0
1	0	×	×	0	1
1	1	×	×	1	0

时钟与时序电路的同步工作

- ❖ 类似于很多人进行起步走一样,需要有一个1-2-1的同步指令,一个复杂的数字系统要正确工作,也需要有一个用于同步的时钟信号。
- ❖ 时钟信号具有上升沿和下降沿,如果可以使用上升沿 (或下降沿)进行触发,则可以实现电路同步工作。
- ❖ 如何在锁存器中使用时钟的上升沿或下降沿进行触发?
 无法做到。
- ❖ 需要一种可以用时钟边沿进行触发的时序电路。

D触发器

- ❖ 将两个带使能的 D 锁存器进行级联
- ❖ 锁存器是电平触发
 - 对于前一锁存器,只有Clk低电平时的信号能够通过
 - 对于后一锁存器, Clk 为高时候的输出, 是 Clk 为低时候最后时刻的输入
- ❖ D 触发器的输出,为 Clk 上升沿时候的信号

D 触发器时序图

Clk	D	Q	Q'	$Q_{ m next}$	$Q'_{ m next}$
0	×	0	1	0	1
0	×	1	0	1	0
1	×	0	1	0	1
1	×	1	0	1	0
\uparrow	0	×	×	0	1
\uparrow	1	×	×	1	0

D锁存器与D触发器功能比较

- ❖ 第一个是D锁存器,只要时钟为高电平,输出即等于输入。
- ❖ 第二个是上升沿触发,只有在时钟上升沿出现的信号才会被采样输出。
- ❖ 第三个是下降沿触发,只有在时钟下降沿出现的信号才会被采样输出。

寄存器

- ❖ 将n个D触发器并行连接,即可构成一个n位的寄存器
- ❖ 在同一个时刻 (时钟上升沿),输出信号的每一位被更新为对应的输入信号,输出是同步的。
- ❖ 两个控制信号Clear和Load
 - Clear=1 (有效) 时, 寄存器所有输出位均为o
 - Load=1 (有效) 时,寄存器才会在 Clk 上升沿进行更新,否则不变。

寄存器

寄存器符号

控制信号功能说明

Clear	Load	Operation
1	×	Reset register to zero asynchronously
0	0	No change
0	1	Load in D value at rise clock edge

内容提要

❖ 时序逻辑电路

- SR锁存器
- D锁存器 时序
- D触发器 时钟
- 寄存器

*有限状态机

- 状态图
- 有限状态机分析
- 有限状态机综合

有限状态机 (Finite-State Machine, FSM) 概念

❖ 有限状态机又称有限状态自动机,简称状态机,是表示有限个状态以及在这些状态之间的转移和 动作等行为的数学模型。

❖ 是一种用来进行对象行为建模的工具,其作用主要是描述对象在它的生命周期内所经历的状态序

列,以及如何响应来自外界的各种事件。

❖ 特征

- 状态总数 (state) 是有限的。
- 任一时刻,只处在一种状态之中。
- 某种条件下,会从一种状态转变 (transition) 到另一种状态。

有限状态机电路

- ❖ 有限状态机是一种实现多个状态任务的 时序电路的有效抽象。
- ❖ 要完成一个任务,需要分很多步骤,每 个步骤看成一个状态。
- ❖ 有限状态机由组合逻辑和时序逻辑(寄存器)两部分组成。
- ❖ 有限状态机的"有限"是指状态机的状态数目是有限的。

有限状态机

- **❖每个时钟周期可以看成一个状态**
- ❖ 在每一个时钟边沿,组合电路根据当前输入 和当前状态计算输出和下一状态。
- ❖ 虽然状态的数量有限,但是,有限状态机可以不止一次地进入这些状态,所以该有限状态机经过的状态序列可以无限长。
- 输入 + 现态 Q 存储器 时钟

- ❖ 有限状态机是所有微处理器的控制电路。
- ❖ 有限状态机的状态是决定性的,不是随机的。在当前状态下,只要输入信号确定了,组合电路输出的下一状态就是确定的。

状态机的描述: 状态图

- ❖ 状态图是用于精准描述有限状态机的工作的。
- ❖ 状态图是由多个节点以及节点间连接的有向边构成的确定性图。
- ❖ 有向边表示的是状态之间的跳转,可以是条件性跳转,也可以是无条件跳转。
- ❖ 图中,圆圈表示状态节点,或简称状态,圆圈中的 二进制表示状态编码,圆圈中的表达式表示该状态 下的输出。
- ❖ 图中,有向边上的表达式表示跳转条件。若无,则是无条件跳转。

状态图示例

- ❖ 圆圈表示状态节点,其中的字符表示 状态名称。
- ❖ A和B是状态机的输入信号,在每个状态下,AB的值决定了状态机的跳转。
- ❖×表示无关项,即取o或1皆可。
- ❖ 无条件跳转时,有向边上不标注跳转条件。

状态图设计

- ❖ 根据跟定的任务写出任务的伪代码
- ❖ 把对于数据的运算和操作对应到状态图的状态节点。
- ❖ 任务所需操作的流程以及条件测试对应到状态图的有向边。
- ❖ 右边例子中,3个操作外加最终的1个停止状态,一共4个状态。
- ❖ 根据伪代码中的执行流程图,可以写出每个 状态到下一状态的跳转条件。

```
x = 5
WHILE (x \neq 0) {
OUTPUT x
x = x - 1
}
```


FSM模型

- ❖ 次态逻辑 (next-state logic circuit)
 - 组合电路;输出依赖于当前状态和当前输入;输出决定了状态机的下一个状态
- ❖ 状态寄存器 (state memory register)
 - 时序电路;由多个D触发器构成;触发器的数据 n 决定了最大状态数 2^n
- ❖输出逻辑 (output logic circuit)
 - 组合逻辑;输出依赖于当前状态 (Moore)或同时依赖于当前状态和当前输入 (mealy);输出控制信号
- ❖ 时钟:每次时钟上升沿状态寄存器内容发生变化,即发生状态跳转。

两种状态机

Moore状态机

Mealy状态机

Moore状态机

- ❖ 状态图中, 输出信号标于状态中, 表示输出仅与当前状态有关
- ❖ 电路图中,输出仅决定于寄存器的输出,与输入信号无关

Mealy状态机

- ❖ 状态图中,输出信号标于有向边上,表示输出与当前状态和当前输入都有关
- ❖ 电路图中,输出决定于寄存器的输出以及输入信号

❖ 有限状态机的分析是指,给定一个状态机电路,分析出该电路的状态图。

※三个步骤:

- 依据次态电路,写出次态电路方程和真值表
- 依据输出电路,写出输出方程和真值表
- 依据第一步和第二步,画出 状态图

次态电路方程

$$Q_{1\text{next}} = D_1 = Q_1'Q_0$$

 $Q_{0\text{next}} = D_0 = Q_1'Q_0' + CQ_1'$

- ❖ 有限状态机的分析是指,给定一个状态机电路,分析出该电路的状态图
- ※三个步骤:
 - 依据次态电路,写出次态电路方程和真值表
 - 依据输出电路,写出输出方程和真值表
 - 依据第一步和第二步,画出状态图

$$Q_{1\text{next}} = D_1 = Q_1'Q_0$$

 $Q_{0\text{next}} = D_0 = Q_1'Q_0' + CQ_1'$

❖ 真值表如右图所示,左边一列表示输入信号的所有可能取值,右边一列表述两个状态寄存器随输入信号变化的输出

CQ_1Q_0	$Q_{ m 1next}Q_{ m 0next}$
000	01
001	10
010	00
011	00
100	01
101	11
110	00
111	00

❖ 真值表形式稍作调整

CQ_1Q_0	$Q_{1\mathrm{next}}Q_{0\mathrm{next}}$
000	01
001	10
010	00
011	00
100	01
101	11
110	00
111	00

当前状态	次态 $Q_{ m lnext}Q_{ m 0next}$		
Q_1Q_0	C = 0	<i>C</i> = 1	
00	01	01	
01	10	11	
10	00	00	
11	00	00	

- ❖ 有限状态机的分析是指,给定一个状态机电路,分析该电路的状态图
- ※三个步骤:
 - 依据次态电路,写出次态电路方程和真值表
 - 依据输出电路,写出输出方程和真值表
 - 依据第一步和第二步,画出状态图

当前状态	次态 $Q_{ m 1next}Q_{ m 0next}$		
Q_1Q_0	C = 0	<i>C</i> = 1	
00	01	01	
01	10	11	
10	00	00	
11	00	00	

❖ 有限状态机的分析是指,给定一个状态机电路,分析出该电路的状态图。

※三个步骤:

- 依据次态电路,写出次态电路方程和真值表
- 依据输出电路,写出输出方程和真值表
- 依据第一步和第二步,画出状态图

真值表

Q_1Q_0	Y
00	0
01	0
10	0
11	1

输出方程

$$Y = Q_1 Q_0$$

❖ 有限状态机的分析: 给定一个状态机电路, 分析出该电路的状态图。

※三个步骤:

- 依据次态电路,写出次态电路方程和真值表
- 依据输出电路,写出输出方程和真值表
- 依据第一步和第二步,画出状态图

Q_1Q_0	Y
00	0
01	0
10	0
11	1

FSM的综合

❖ 有限状态机的综合是指,给定一个状态图,综合出该 状态图的电路

※三个步骤:

- 依据状态图,做出次态电路真值表,写出次态电路逻辑 表达式
- 依据状态图,做出输出电路真值表,写出输出电路逻辑表达式
- 依据第一步和第二步,画出电路图

$$Q_{1next} = D_1 = BQ_1'Q_0' + Q_1'Q_0 + Q_1Q_0'$$

$$Q_{0next} = D_0 = B'Q_1'Q_0' + Q_1'Q_0 + Q_1Q_0'$$

当前状态	次态 D_1D_0			
Q_1Q_0	B = 0	B=1		
$s_0^{} 00$	$s_1 01$	s ₂ 10		
$_{S1}$ 01	s ₃ 11	s ₃ 11		
$s_2 10$	s ₃ 11	s ₃ 11		
s ₃ 11	$s_0^{} 00$	$s_0 00$		

FSM的综合

❖ 有限状态机的综合是指,给定一个状态图,综合出该 状态图的电路

※三个步骤:

- 依据状态图,做出次态电路真值表,写出次态电路逻辑表达式
- 依据状态图,做出输出电路真值表,写出输出电路逻辑表达式
- 依据第一步和第二步,画出电路图

当前状态 Q_1Q_0	输出Y
s ₀ 00	0
_{S1} 01	0
s ₂ 10	1
s ₃ 11	1

FSM的综合

❖ 有限状态机的综合是指,给定一个状态图,综合出该状态图的电路

※三个步骤:

- 依据状态图, 做出次态电路真值表, 写出次态电路逻辑表达式
- 依据状态图,做出输出电路真值表,写出输出电路逻辑表达式
- 依据第一步和第二步,画出电路图

次态电路逻辑
$$\begin{aligned} &Q_{1next} = D_1 = BQ_1'Q_0' + Q_1'Q_0 + Q_1Q_0' \\ &Q_{0next} = D_0 = B'Q_1'Q_0' + Q_1'Q_0 + Q_1Q_0' \end{aligned}$$

输出电路逻辑 $Y = Q_1$

汽车警报器V1和V2版本回顾

❖ V1版: 组合逻辑电路

❖ V2版:在v1版的基础上,加入SR锁存器

汽车警报器v3版本: 使用状态机

❖ 首先需要画出状态图

- 确定系统状态: 汽车警报器的两个状态,一个是警报响,一个是警报不响。只在这两个状态机跳转,不需要额外状态。
- 确定有向边:两个状态之间都是可以互相跳转的,每个状态也是可以继续留在原先状态的,所以有4条有向边。
- 确定跳转条件:根据输入所有可能的组合引起的状态变化,在有向边上标注跳转条件。

$$(MDV = 0 \times \times \text{ or } 100)$$

$$(MDV = 1 \times \times)$$

$$(MDV = 101 \text{ or } 110 \text{ or } 111)$$

$$Siren=1$$

$$(MDV = 0 \times \times)$$

汽车警报器v3版本:次态电路真值表和表达式

717 <u>-</u>				次态	$Q_{0 m next}$			
现态 Q_0	M,D,V							
\mathcal{Q}_0	000	001	010	011	100	101	110	111
0	0	0	0	0	0	1	1	1
1	0	0	0	0	1	1	1	1

$$Q_{0\text{next}} = Q_0' M (D + V) + Q_0 M$$

$$Q_{0next} = M(Q_0 + V + D)$$

$Q_{0\mathrm{next}}$

$$= Q_0' M (D + V) + Q_0 M$$

$$= (Q_0M) + (Q'_0M)(D+V)$$

应用
$$x + yz = (x + y)(x + z)$$

$Q_{0\text{next}}$

$$= (Q_0M + Q_0'M)(Q_0M + D + V)$$

$$= M(Q_0M + D + V)$$

应用 $x \cdot x = 1$

$$Q_{\text{0next}} = M(Q_0 + D + V)$$

汽车警报器v3版本电路图

- ❖ 版本2不需要时钟, 版本3需要时钟。版本3提供了外部可控性。
- ❖ 版本2设计需要对系统的较为深入的理解和一些技巧,相比而言,版本3只要按照状态机的设计流程就可以完成,设计方法具有一般性。
- ❖ 考虑设计方法的一般性,以及随着复杂度增加后的设计难度,推荐使用版本3的设计方法。

The End.

周减停 zhouchw@zju.edu.cn