MAT 167 Midterm

Hardy Jones 999397426 Professor Cheer Spring 2015

1. (1) True.

Proof. Assume $A = L_1U_1 = L_2U_2$ with L_1, L_2 lower triangular and unit diagonal, U_1, U_2 upper triangular with nonzero diagonal.

So we have inverses for L_1 , L_2 since the diagonal is all 1 with 0's above the diagonal, and we have inverses for U_1 , U_2 since the diagonal is non-zero with 0's below the diagonal.

Then we have:

$$L_{1}U_{1} = L_{2}U_{2}$$

$$L_{2}^{-1} (L_{1}U_{1}) = L_{2}^{-1} (L_{2}U_{2})$$

$$L_{2}^{-1} (L_{1}U_{1}) = (L_{2}^{-1}L_{2}) U_{2}$$

$$L_{2}^{-1} (L_{1}U_{1}) = IU_{2}$$

$$L_{2}^{-1} (L_{1}U_{1}) = U_{2}$$

$$L_{2}^{-1} (L_{1}U_{1}) U_{1}^{-1} = U_{2}U_{1}^{-1}$$

$$L_{2}^{-1}L_{1} (U_{1}U_{1}^{-1}) = U_{2}U_{1}^{-1}$$

$$L_{2}^{-1}L_{1}I = U_{2}U_{1}^{-1}$$

$$L_{2}^{-1}L_{1} = U_{2}U_{1}^{-1}$$

Now, $L_2^{-1}L_1$ is a lower triangular matrix and $U_2U_1^{-1}$ is an upper triangular matrix. In order for these two to be equal they have to both be lower triangular and upper triangular at the same time. The only matrices with this property are diagonal matrices.

So, $L_2^{-1}L_1$, $U_2U_1^{-1}$ are diagonal matrices. And since $L_2^{-1}L_1 = U_2U_1^{-1}$ we must have the same entries on the diagonal. And since L_1 , L_2 have all 1 on the diagonal, $L_2^{-1}L_1$ has all 1 on the diagonal.

So
$$L_2^{-1}L_1 = I$$
.

Then,

$$L_{2}^{-1}L_{1} = I$$

$$L_{2}(L_{2}^{-1}L_{1}) = L_{2}I$$

$$(L_{2}L_{2}^{-1})L_{1} = L_{2}$$

$$IL_{1} = L_{2}$$

$$L_{1} = L_{2}$$

And since $L_2^{-1}L_1 = I = U_2U_1^{-1}$, we have

$$I = U_{2}U_{1}^{-1}$$

$$IU_{1} = (U_{2}U_{1}^{-1}) U_{1}$$

$$U_{1} = U_{2} (U_{1}^{-1}U_{1})$$

$$U_{1} = U_{2}I$$

$$U_{1} = U_{2}$$

So we have shown,

if $A = L_1U_1 = L_2U_2$ with L_1, L_2 lower triangular and unit diagonal, U_1, U_2 upper triangular with nonzero diagonal,

then
$$L_1 = L_2, U_1 = U_2$$
.

(2) True.

Proof. Assume $A^2 + A = I$

$$A(A + I) = A^{2} + A = I = A^{2} + A = (A + I) A$$

So A + I is a left and right inverse of A, then $A^{-1} = A + I$.

(3) False.

Let
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
.

Then all the diagonal entries of A are zero, but $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1$, so A is non-singular.

- 2. (1)
 - (2)
 - (3)
- 3. (1)
 - (2)
 - (3)
 - (4)
 - (5)
 - (6)
- 4. (1)
 - (2)

- (3)
- 5. (1)
 - (2)
 - (3)