Devoir surveillé n°6

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 -

On note $E = \mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles. Un élément de E sera noté u plutôt que (u_n) bien qu'il s'agisse d'une suite.

Pour $(u, v) \in E^2$, on définit la suite u + v en posant $(u + v)_n = u_n + v_n$ pour tout $n \in \mathbb{N}$.

On définit également la suite $u\star v$ en posant $(u\star v)_n=\sum_{k=0}^n u_k v_{n-k}$ pour tout $n\in\mathbb{N}.$

On rappelle que pour montrer que deux suites $\mathfrak u$ et $\mathfrak v$ de E sont égales, il suffit de montrer que $\mathfrak u_\mathfrak n=\mathfrak v_\mathfrak n$ pour tout $\mathfrak n\in\mathbb N$.

Partie I – Structure d'anneau de $(E, +, \star)$

- **1.** On admet que (E, +) est un groupe. Préciser son élément neutre.
- **2.** Montrer que la loi \star est commutative.
- **3.** Montrer que la loi \star est associative.
- **4.** On définit la suite ϵ en posant $\epsilon_0=1$ et $\epsilon_n=0$ pour $n\in\mathbb{N}^*$. Vérifier que ϵ est neutre pour la loi \star .
- **5.** Montrer que la loi \star est distributive sur la loi +.

Les questions précédentes permettent alors d'affirmer que $(E, +, \star)$ est un anneau commutatif.

- 6. On dit qu'une suite $u \in E$ est nulle à partir du rang $N \in \mathbb{N}$ si $u_n = 0$ pour tout entier $n \geqslant N$. Montrer que si $u \in E$ est nulle à partir du rang N_1 et $v \in E$ est nulle à partir du rang N_2 , alors $u \star v$ est nulle à partir du rang $N_1 + N_2$.
- 7. On note F l'ensemble des suites de E nulles à partir d'un certain rang. Montrer que F est un sous-anneau de $(E, +, \star)$.

Partie II - Suites géométriques et calculs de puissances

Pour $q \in \mathbb{R}$, on note [q] la suite géométrique définie par $[q]_n = q^n$ pour tout $n \in \mathbb{N}$. Pour $u \in E$, on pose $u^0 = \varepsilon$ et $u^p = \underbrace{u \star u \star \cdots \star u}_{p \text{ fois}}$ pour $p \in \mathbb{N}^*$. **8.** On se donne deux réels q et r *distincts*. Montrer que pour tout $n \in \mathbb{N}$,

$$([q] \star [r])_n = \frac{q^{n+1} - r^{n+1}}{q - r}$$

- **9.** On se donne $q \in \mathbb{R}$. Déterminer le terme général de la suite $[q]^2 = [q] \star [q]$.
- **10.** On note α la suite constante égale à 1, autrement dit $\alpha = [1]$. Déterminer le terme général des suites $\alpha^2 = \alpha \star \alpha$ et $\alpha^3 = \alpha \star \alpha \star \alpha$ sous forme factorisée.
- 11. Montrer que de manière générale, pour tout entier $p \in \mathbb{N}^*$,

$$\forall n \in \mathbb{N}, \ (a^p)_n = \binom{n+p-1}{p-1}$$

12. On fixe $p \in \mathbb{N}^*$. Montrer que

$$(a^p)_n \underset{n \to +\infty}{\sim} \frac{n^{p-1}}{(p-1)!}$$

Partie III – Inversibles de l'anneau $(E, +, \star)$

On rappelle qu'un élément de l'anneau $(E,+,\star)$ est dit inversible s'il est inversible pour la loi \star . Si $u\in E$ est inversible, on notera u^{-1} son inverse.

- **13.** Montrer que $u \in E$ est inversible *si et seulement si* $u_0 \neq 0$.
- **14.** On se donne $q \in \mathbb{R}$ et on rappelle que [q] est la suite géométrique définie dans la partie II. Justifier que [q] est inversible. On note y l'inverse de [q]. Calculer les termes y_0, y_1, y_2 et y_3 .
- **15.** Déterminer y_n pour tout $n \in \mathbb{N}$.

Partie IV – Intégrité de l'anneau $(E, +, \star)$

- **16.** On se donne u et v deux suites non constamment nulles. Justifier que les ensembles $\{n \in \mathbb{N}, \ u_n \neq 0\}$ et $\{n \in \mathbb{N}, \ v_n \neq 0\}$ admettent tous deux un minimum que l'on note respectivement p et q.
- **17.** Montrer que $(u \star v)_{p+q} \neq 0$.
- **18.** En déduire que l'anneau $(E, +, \star)$ est intègre.

Partie V - Résolution d'une équation dans E

On note u la suite de E telle que $u_0=1$, $u_1=-5$, $u_2=6$ et $u_n=0$ pour tout entier $n\geqslant 3$. On note également ν la suite de E telle que $\nu_0=\nu_1=1$ et $\nu_n=0$ pour tout entier $n\geqslant 2$.

- **19.** Justifier qu'il existe une unique suite $x \in E$ telle que $u \star x = v$.
- **20.** Déterminer x_0 et x_1 .
- 21. Montrer que la suite x vérifie une relation de récurrence homogène d'ordre 2 à coefficients constants.
- **22.** En déduire le terme général de la suite x.

- 23. Pour $a \in \mathbb{R}$, on note $\{a\}$ la suite de E telle que $\{a\}_0 = 1$, $\{a\}_1 = -a$ et $\{a\}_n = 0$ pour tout entier $n \ge 2$. Justifier que $\{a\}$ est inversible et donner son inverse en utilisant la partie III
- **24.** Déterminer des réels a et b tels que $u = \{a\} \star \{b\}$.
- **25.** Retrouver alors le terme général de la suite x à l'aide de la question **II.8**.

Partie VI - Un peu de Python

- 26. Écrire une fonction Python nommée convol
 - prenant en arguments deux listes U et V de même taille contenant respectivement les N+1 premiers termes de deux suites u et v, c'est-à-dire

$$U = [u_0, u_1, \dots, u_N]$$
 et $V = [v_0, v_1, \dots, v_N]$

• et renvoyant la liste des N+1 premiers termes de la suite $u \star v$, c'est-à-dire la liste

$$[(\mathbf{u} \star \mathbf{v})_0, (\mathbf{u} \star \mathbf{v})_1, \dots, (\mathbf{u} \star \mathbf{v})_N]$$