Exploratory Analysis and mlib

This Lecture

Exploratory Data Analysis

Some Important Distributions

Spark mllib Machine Learning Library

Descriptive vs. Inferential Statistics

• Descriptive:

- » E.g., Median describes data but can't be generalized beyond that
- » We will talk about Exploratory Data Analysis in this lecture

• Inferential:

- » E.g., t-test enables inferences about population beyond our data
- » Techniques leveraged for Machine Learning and Prediction

Examples of Business Questions

- Simple (descriptive) Stats
 - » "Who are the most profitable customers?"
- Hypothesis Testing
 - » "Is there a difference in value to the company of these customers?"
- Segmentation/Classification
 - » What are the common characteristics of these customers?
- Prediction
 - » Will this new customer become a profitable customer?
 - » If so, how profitable?

adapted from Provost and Fawcett, "Data Science for Business"

Applying Techniques

- Most business questions are causal
 - » What would happen if I show this ad?
- Easier to ask correlational questions
 - » What happened in this past when I showed this ad?
- Supervised Learning: Classification and Regression
- Unsupervised Learning: Clustering and Dimension reduction
- Note: UL often used inside a larger SL problem
 E.g., auto-encoders for image recognition neural nets

Learning Techniques

- Supervised Learning:
 - » kNN (k Nearest Neighbors)
 - » Naive Bayes
 - » Logistic Regression
 - » Support Vector Machines
 - » Random Forests
- Unsupervised Learning:
 - » Clustering
 - » Factor Analysis
 - » Latent Dirichlet Allocation

Exploratory Data Analysis (1977)

- Based on insights developed at Bell Labs in 1960's
- Techniques for visualizing and summarizing data
- What can the data tell us? (vs "confirmatory" data analysis)
- Introduced many basic techniques:
 - » 5-number summary, box plots, stem and leaf diagrams,...
- 5-Number summary:
 - » Extremes (min and max)
 - » Median & Quartiles q1, q3
 - » More robust to skewed and long-tailed distributions

The Trouble with Summary Stats

Set A		Se	Set B		Set C		Set D	
X	Υ	X	Υ	X	Υ	X	<u>Y</u>	
10	8.04	10	9.14	10	7.46	8	6.58	
8	6.95	8	8.14	8	6.77	8	5.76	
13	7.58	13	8.74	13	12.74	8	7.71	
9	8.81	9	8.77	9	7.11	8	8.84	
11	8.33	11	9.26	11	7.81	8	8.47	
14	9.96	14	8.1	14	8.84	8	7.04	
6	7.24	6	6.13	6	6.08	8	5.25	
4	4.26	4	3.1	4	5.39	19	12.5	
12	10.84	12	9.11	12	8.15	8	5.56	
7	4.82	7	7.26	7	6.42	8	7.91	
5	5.68	5	4.74	5	5.73	8	6.89	

Property in each set	Value			
Mean of x	9			
Sample variance of x	11			
Mean of y	7.50			
Sample variance of y	4.122			
Linear Regression	y = 3 + 0.5x			

Anscombe's Quartet 1973

Looking at The Data

Looking at The Data

Takeaways:

- Important to look at data graphically before analyzing it
- Basic statistics properties often fail to capture real-world complexities

Data Presentation

Data Art – Visualizing Friendships

https://www.facebook.com/note.php?note_id=469716398919

The "R" Language

- Evolution of the "S" language developed at Bell labs for EDA
- Idea: allow interactive exploration and visualization of data
- Preferred language for statisticians, used by many data scientists
- Features:
 - » The most comprehensive collection of statistical models and distributions
 - » CRAN: large resource of open source statistical models

Jeff Hammerbacher 2012 course at UC Berkeley

Normal Distributions, Mean, Variance

- •The mean of a set of values is the average of the values
- Variance is a measure of the width of a distribution
- The standard deviation is the square root of variance
- A normal distribution is characterized by mean and variance

Central Limit Theorem

- The distribution of sum (or mean) of n identically-distributed random variables X i approaches a normal distribution as $n \to \infty$
- Permite averiguar la probabilidad de que la media de una muestra concreta esté en un cierto intervalo.
- Permite calcular la probabilidad de que la suma de los elementos de una muestra esté, a priori, en un cierto intervalo.
- Inferir la media de la población a partir de una muestra.

Correcting Distributions

- Many statistical tools (mean, variance, t-test, ANOVA) assume data are normally distributed
- Very often this is not true examine the histogram

Other Important Distributions

- Poisson: distribution of counts that occur at a certain "rate"
 - » Observed frequency of a given term in a corpus
 - » Number of visits to web site in a fixed time interval
 - » Number of web site clicks in an hour
- Exponential: interval between two such events

Other Important Distributions

- Zipf/Pareto/Yule distributions:
 - » Govern frequencies of different terms in a document, or web site visits

- Binomial/Multinomial:
 - » Number of counts of events
 - » Example: 6 die tosses out of n trials

Understand your data's distribution before applying any model

Rhine Paradox*

- Joseph Rhine was a parapsychologist in the 1950's
- » Experiment: subjects guess whether 10 hidden cards were red or blue
- He found that about 1 person in 1,000 had Perception Extra Sensory!
- » They could correctly guess the color of all 10 cards

^{*}Example from Jeff Ullman/Anand Rajaraman

Rhine Paradox

- Called back "psychic" subjects and had them rep
- » They all failed
- Concluded that act of telling psychics that they has psychic abilities causes them to lose it...(!)
- Q: What's wrong with his conclusion?

Rhine's Error

- What's wrong with his conclusion?
- $2^{10} = 1,024$ combinations of red and blue of length 10
- 0.98 probability at least 1subject in 1,000 will guess correctly

Spark's Machine Learning Toolkit

- mllib: scalable, distributed machine learning library
 » Scikit-learn like ML toolkit, Interoperates with NumPy
- Classification:
 - » SVM, Logistic Regression, Decision Trees, Naive Bayes, ...
- Regression: Linear, Lasso, Ridge, ...
- Miscellaneous:
 - » Alternating Least Squares, K-Means, SVD
 - » Optimization primitives (SGD, L-BGFS)
 - **»** ...

Lab: Collaborative Filtering

Goal: predict users' movie ratings based on past ratings of other movies

$$Ratings = \begin{bmatrix} 1 & ? & ? & 4 & 5 & ? & 3 \\ ? & ? & 3 & 5 & ? & ? & 3 \\ 5 & ? & 5 & ? & ? & ? & 1 \\ 4 & ? & ? & ? & 2 & ? \end{bmatrix}$$
Users

Model and Algorithm

Model Ratings as product of User (A) and Movie Feature (B)
matrices of size U×K and M×K

- Learn K factors for each user
- Learn K factors for each movie

Model and Algorithm

Model Ratings as product of User (A) and Movie Feature (B)
matrices of size U×K and M×K

- Alternating Least Squares (ALS)
 - » Start with random A and B vectors
 - » Optimize user vectors (A) based on movies
 - » Optimize movie vectors (B) based on users
 - » Repeat until converged