Seminar 6

1. (a) Prove that

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

and

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

(b) Based on Taylor series, prove that $(\sin x)' = \cos x$ and $(\cos x)' = -\sin x$.

(c) Prove that
$$x - \frac{x^3}{6} < \sin x < x$$
, $\forall x > 0$ and $1 - \frac{x^2}{2} < \cos x < 1 - \frac{x^2}{2} + \frac{x^4}{24}$, $\forall x \in \mathbb{R}$.

2. Prove, by computing higher order derivatives or by integrating the geometric series, that

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots$$

for |x| < 1, and

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

What are the convergence sets for each of these power series?

3. (a) \bigstar Find the coefficients a_n in the Taylor series

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} a_n x^n.$$

(b) \bigstar Prove that for |x| < 1,

$$\arctan x = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$

and show that the convergence set of this power series is [-1, 1].

4. Prove that the function $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} e^{-1/x}, & \text{if } x > 0\\ 0, & \text{if } x \le 0 \end{cases}$$

is infinitely differentiable at 0, but f is not expandable in a Taylor series around 0.

5. (a) For $\alpha \in \mathbb{R}$ and |x| < 1, prove the generalized binomial expansion (binomial series)

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose k} x^k, \quad {\alpha \choose k} := \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}.$$

- (b) Find the first four terms in the binomial series of $\sqrt{1+x}$ and $1/\sqrt{1+x}$.
- 6. For each function $f: \mathbb{R} \to \mathbb{R}$ given below check that f'(0) = 0 and find the first $n \in \mathbb{N}$ such that $f^{(n)}(0) \neq 0$. Then, deduce whether 0 is a local extremum point of f or not; in the affirmative, specify if 0 is a global extremum point or just a local one.
 - (a) $f(x) = e^x + e^{-x} x^2$
 - (b) $\star f(x) = \cos(x^2)$
 - (c) $\star f(x) = 6\sin x 6x + x^3$.
- 7. \bigstar Using Taylor series, prove that the forward difference (f(x+h)-f(x))/h approximates the derivative f'(x) with an error of order h (first order approximation), i.e.

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h),$$

and that the centered difference (f(x+h)-f(x-h))/2h approximates the derivative f'(x) with an error of order h^2 (second order approximation), i.e.

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2).$$

[Python] Choose a function f, a point x and compute f'(x). By taking a range of small values h, show that the errors when approximating f'(x) with the finite differences above are proportional to h and h^2 , respectively.

- 8. * Let C_n be the number of full binary trees with n+1 leaves (known as the Catalan number).
 - (a) Find a recurrence relation for C_n .
 - (b) Considering the generating function $f(x) = \sum_{n=0}^{\infty} C_n x^n$, prove that $C_n = \frac{1}{n+1} {2n \choose n}$.

Homework questions are marked with \bigstar . Bonus questions are marked with *. Solutions should be handed in at the beginning of next week's lecture.