

RISC-V Market Research by SHD Group

- Total RISC-V SoC Market
 - \$6.1B in 2023: 276.8% growth over 2022
 - \$92.7B by 2030: a CAGR of 47.4%

- Andes has >30% of RISC-V IP Market
 - Applications: Endpoint, Edge, Cloud

N25F, N45 D25F, D45, AX25MP, AX45MP

D23, N25F, N45, AX45MP

N25F, A25, A45MP, AX45MP

N25F-SE, AX45MPV

NX27V, AX25, AX45MPV, AX65

MTIA: Meta Training/Inference Accelerator

- ISCA 2023 paper, "MTIA: First Generation Silicon Targeting Meta's Recommendation Systems"
- Proc-A/B: AX25-V100, an early version of the popular NX27V vector processor
- Custom extensions (ACE): create new interfaces/instructions/registers
- Next generation MTIA (Meta blog): Serving models in production

All photos: courtesy of ACM

RISC-V Enables Innovations for Large-Scale AI/ML

Based on NX27V/AX45MPV (RVV), AX65 (OOO), and AX25

With Andes **Automated Custom Extensions**™ (ACE)

■ Al Accelerators Using SRAM-based Compute-In-Memory:

■ Al Accelerator Using Photonics

■ Al Accelerator for Cloud Service

■ Al Accelerator for ADAS

Intelligent Edge Application Processing (IEAP)

- Market projection: Edge AI will be bigger than Cloud AI
- **■** Definition of IEAP:
 - Not Cloud AI/ML, Not AI PC
 - Including application handling and AI/ML accelerations
- AI/ML for Edge Applications: On-device Intelligence
 - Intelligent Edge Servers with domain knowledge (e.g. legal, medical, or enterprise)
 - Smart Factory/Healthcare/Transportation: monitoring and predictive maintenance
 - Network Systems: performance optimization, security enhancement, traffic management
 - Automotive: ADAS, Self Driving Vehicles
 - Robots, Surveillance, and more

Required Architecture Support

- Matrix Multiplication:
 - Hardwired solution (APU/NPU/TPU): most efficient and powerful
 - Matrix Instructions: most flexible
 - IME (Integrated Matrix Extension) Task Group: leveraging VRF/MAC's in VPU
- Non-linear functions: softmax, sigmoid, sin/cos, GeLu/SiLu
- General compute instruction extensions: Vector Extension (RVV), SIMD/DSP (RVP)

■ Rich application enablement:

• Profiles: RVA20/22/23

AndesAIRE™ End-to-End AI/ML Solutions

Andes Al Runs Everywhere

AndeSight™ IDE

- GCC/LLVM Toolchains
- Vector/DSP Library
- Build, debug, deploy, profile
- · Analysis and tuning
- RTOS & Linux
- Device drivers
- · Sample codes
- Simulator
- Documentation

<u>AndesClarity</u>[™]

Pipeline Optimizer

ACE/COPILOT

Linux/RTOS Host
AX45MP, AX65

Compute Acceleration

Vector: 27V, 45V DSP/SIMD: D23, D25F, D45 Domain Extensions ACE

Accelerator AnDLA™ I350

Andes Vector Processor Families

AX45MPV and ACE: RAIN Al's Adoption*

Andes Application Processor Families

AX67*

Most performant

>11 specint2k6/GHz

RVA24

further perf boost

V/VK (VLEN up to 512)

AX66 VPU:

- has 2 pipes shared by FP
- execute 2 ALU/load/store

Android Base

AX65

Best-Balanced

8.25 specint2k6/GHz

RVA22+

AX66* **Advanced**

>10 specint2k6/GHz

RVA23

V/VK (VLEN=128)

Hypervisor + AIA + (IOMMU + IOPMP)

Private L1/L2 Caches, CHI Multi-Cluster Coherency

13-Stage, Out-of-Order Execution, Multicore Coherency, Linux-Capable, Up to 8 Cores/Cluster

Roadmap for AX60 Series

^{*} Roadmap/features: subject to change. Future performance: estimated.

AX63 customer-driven

Power-optimized

>7.0 specint2k6/GHz

Andes Application Processor Families

		AX66 Advanced	AX67 Most performant >11 specint2k6/GHz	CUZCO Scalable performance 15~20 specint2k6/GHz
		>10 specint2k6/GHz	RVA24	RVA24
		RVA23	further perf boost	Private L1/L2, Shared L3
	AX65 Best-Balanced	V/VK (VLEN=128)	V/VK (VLEN up to 512)	Vector/Vector Crypto
AX63 customer-driven	8.25 specint2k6/GHz	Hypervisor + AIA + (IOMMU + IOPMP)		8-Core Cluster with CHI
Power-optimized >7.0 specint2k6/GHz	RVA22+	Private L1/L2, CHI Multi-Cluster Coherency		14-stage 8-way/6-way OOO
13-Stage, Out-of-Order Execution, Multicore Coherency, Linux-Capable, Up to 8 Cores/Cluster				with Patented Time-Based Scheduling
Roadmap for AX60 Series				Cuzco Series

Roadmap/features: subject to change. Future performance: estimated.

Choices of SoC Architecture

■ Comparison: performance, area efficiency (AE), ease of programming/optimization

(perf, AE, programming)= (high, low, mid)

Choices of SoC Architecture

■ Comparison: performance, area efficiency (AE), ease of programming/optimization

(perf, AE, programming)= (low, mid, high)

Concluding Remarks

Onisc V

■ Intelligent Edge Applications

■ RISC-V Architecture Advantages

- Vector/Matrix processing: RVV, IME
- Custom Extensions
- ●RVA20/22/23: Linux/Android
- Capacity/Bandwidth Management

■ Andes Offerings

- Vector cores: 40-Series
- •Linux cores: 60-Series, and Cuzco
- AnDLA 1350: hardwired engine

Roadmap/features: subject to change. Future performance: estimated.

Thank You!!

