

Smart Analytics for Big Time-series Data

Yasushi Sakurai (Kumamoto University)
Yasuko Matsubara (Kumamoto University)
Christos Faloutsos (Carnegie Mellon University)

Roadmap

CAU CS

- Motivation
- Similarity search,
 pattern discovery
 and summarization
- Non-linear modeling and forecasting
- Extension of timeseries data: tensor analysis

Part 1

Part 2

Part 3

Big time-series data

Big time-series data

Big time-series data

IoT data streams

- Vibration sensors, acceleration, temperature, etc.

Application

- Self-driving car
- Structural health monitoring
 - Manufacturing

IoT devices

Motivation

• Given: Big time-series data

• Goal:

Find important patterns Forecast future social activities

At-work:

- -Online marketing
- -Sensor monitoring, anomaly detection
- -Forecasting future events

Motivation

- Time-series analysis for big data
 - Web and social networks
 - IoT data streams
 - Medical and healthcare records
- Digital universe growth
 - -4.4 zettabytes(4.4 trillion gigabytes)
 - -44 zettabytes in 2020

The DIGITAL UNIVERSE of OPPORTUNITIES (IDC 2014)

Big Time-series analysis

- Volume and Velocity
 - High-speed processing for large-scale data
 - Low memory consumption
 - Online processing for real-time data management
- Variety of data types
 - Multi-dimensional time-series data (e.g., IoT device data)
 - Complex time-stamped events (e.g., web-click logs)
 - Time-evolving graph (e.g., social networks)
- Advanced techniques for big data
 - Model estimation, summarization
 - Anomaly detection, forecasting

Big Time-series analysis

• Time-series data mining

Indexing, similarity search

Feature extraction

Linear modeling

Stream mining

ED, DTW Correlation

DFT, DWT, SVD, ICA

AR, ARIMA, LDS

StatStream etc...

New research directions

- R1. Automatic mining (no magic numbers!)
- R2. Non-linear (gray-box) modeling

R3. Tensor analysis

(R1) Automatic mining

No magic numbers! ... because,

Manual

- sensitive to the parameter tuning
- long tuning steps (hours, days, ...)

Automatic (no magic numbers)

- no expert tuning required

Big data mining:

-> we cannot afford human intervention!!

(R2) Non-linear (gray-box) modeling

- Gray-box mining
 - If we know the equations

- Non-linear (differential) equations
 - -Epidemic
 - -Biology
 - -Physics, Economics, etc.,

- Modeling non-linear phenomena
 - Non-linear analysis for big time-series data

(R3) Large-scale tensor analysis

CMU CS

Time-stamped events

−e.g., web clicks

Time	URL	User
08-01-12:00	CNN.com	Smith
08-02-15:00	YouTube.com	Brown
08-02-19:00	CNET.com	Smith
08-03-11:00	CNN.com	Johnson
111		

Represent as Mth order tensor (M=3)

$$\mathcal{X} \in \mathbb{N}^{u \times v \times n}$$

Element x: # of events

e.g., 'Smith', 'CNN.com', 'Aug 1, 10pm'; 21 times

New research directions

- Time-series data analysis
 - -Indexing and fast searching
 - -Sequence matching
 - -Clustering
 - -etc.
- New research directions
 - R1. Automatic mining
 - R2. Non-linear modeling
 - R3. Large-scale tensor analysis

New research directions

- Time-series data analysis
 - -Indexing and fast searching
 - -Sequence matching
 - -Clustering
 - -etc.
- New research directions
 - R1. Automatic mining
 - R2. Non-linear modeling
 - R3. Large-scale tensor analysis

