Calculabilité, Complexité,

2 – Machines de Turing vers le théorème de la Halte

P. Berthomé

INSA Centre Val de Loire Département STI

27 septembre 2020

P. Berthomé

Calculabilité - 2

1/24

Mimes des Machines de Turing Enumération et théorèmes

Mimes de machines de Turing

Objectif

- Différents modèles de Machines de Turing
- Puissance de calcul et reconnaissance de langage
- Tous ces modèles sont équivalents
- Moyennant un surcoût.

Dans quel but?

- Utiliser la Machine de Turing la mieux adaptée
- Être capable de numéroter les MT
- Pour avoir des théorèmes généraux

P. Berthomé Calculabilité – 2 2/24

Quelques variantes de Machines de Turing

Ruban bi-infini de manière plus formelle

- Application $\rho: \mathbb{Z} \longrightarrow \Sigma$
- Convention : $\{z \mid \rho(z) \neq B\}$ est fini.
- On peut ajouter pour le départ :
 - Le mot d'entrée est sur la partie positive
 - La première lettre du mot d'entrée est sur la case 1
 - la RWH est sur la case 0

Ruban semi-infini

- Même chose si ce n'est que l'on remplace $\mathbb Z$ par $\mathbb N$.
- Attention à ne pas faire sortir la RWH du ruban

P. Berthomé

Calculabilité - 2

3/24

Mimes des Machines de Turing Enumération et théorèmes

Pistes sur les rubans

Pistes

- Mettre plusieurs informations dans une seule case
- Souder plusieurs rubans
- Idée : Augmenter l'alphabet utilisé : Σ^k où k est le nombre de pistes.
- Contrainte : la RWH suit les trois pistes en même temps.
- Idée complémentaire : ne pas utiliser le même alphabet sur chacune des pistes.

P. Berthomé Calculabilité – 2 4/24

Première équivalence

Theorem

Toute fonction calculée par une machine de Turing T à 1 ruban et une RWH sur un ruban bi-infini l'est aussi par une MT T' à un seul ruban semi-infini et 1 RWH. La réciproque est vraie.

Réciproque

Preuve directe puisque $\mathbb{N} \subset \mathbb{Z}$

Idée de la preuve

- Replier le ruban à l'origine
- Rajouter des marqueurs de début
- Dupliquer les états

P. Berthomé

Calculabilité - 2

5/24

Mimes des Machines de Turing Enumération et théorèmes

Définition de T'

$\overline{T'} = (\Sigma', B', Q', q'_0, Q'_f, 1/2, \underline{\delta'})$

•
$$\Sigma' = \Sigma \times (\Sigma \cup \{*\})$$

$$\bullet \ B' = \left(\begin{array}{c} B \\ B \end{array}\right)$$

•
$$Q' = Q \times \{+, -\}$$

$$Q'_f = Q_f \times \{+, -\}$$

•
$$q_0' = q_0^+$$

• La configuration initiale place le mot d'entrée sur les cases a_1, a_2, \ldots et la RWH sur la première case $(a_0 = B, *)$.

P. Berthomé

Calculabilité - 2

Fonction de transition

Principe

- On travaille sur la piste qui correspond à l'endroit que l'on considère dans le ruban initial
- Si on est sur la partie haute de la piste (q^+) , on fonctionne normalement en laissant la partie basse intacte
- si on est sur la partie basse (q^-) , on inverse les directions
- on gère finement le changement de sens

Si $\delta(q,x)=(q',x',m)$ et $y\neq *$

P. Berthomé

Calculabilité - 2

7/24

Mimes des Machines de Turing Enumération et théorèmes

Surcoût de la simulation

Combien de ressources supplémentaires utilise cette simulation?

- |Q'| = 2|Q|
- Temps de calcul : entre 1 et 2 fois plus longtemps.
- Facteur polynomial

P. Berthomé Calculabilité – 2 8/2

Autres mimes

Plusieurs rubans semi-infinis sur un seul

- Faire *n* pistes sur le même ruban
- Comment repérer les RWH?
- Pour chaque ruban initial, on ajoute une piste sur l'alphabet $\Sigma_p = \{B, *\}$. Cette piste ne contiendra qu'un seul caractère * qui marquera l'emplacement de la RWH sur le ruban simulé.
- On ajoute une piste pour signaler le début du ruban semi-infini

P. Berthomé

Calculabilité - 2

9/24

Mimes des Machines de Turing Enumération et théorèmes

Autres mimes

Plusieurs rubans semi-infinis sur un seul (suite)

- Simulation:
 - Faire des parcours entre le début et chacune marque de RWH (ruban par ruban) pour récupérer l'état des RWH
 - Faire la transition
 - Refaire des parcours pour faire les écritures et les déplacements ruban par ruban.
- Surcoût en temps : quadratique
- Surcoût total : polynomial

P. Berthomé Calculabilité – 2

Autres mimes

Mimes polynômiaux

On peut effectuer les mimes suivants en surcoût polynomial :

- 1 ruban semi-infini/n RWH par 1 ruban semi-infini/1 RWH
- 1 ruban semi-infini/1 RWH/Alphabet à n lettres par 1 ruban semi-infini/1 RWH/Alphabet à 2 lettres
- On peut réduire le nombre de mouvements à 2 : {D, G}

Theorem

Toute machine de Turing peut être mimée avec un surcoût polynomial par une machine de Turing possédant :

- 1 ruban semi-infini avec 1 RWH
- Alphabet à deux lettres
- sans état stationnaire

P. Berthomé

Calculabilité - 2

11/24

Mimes des Machines de Turing Enumération et théorèmes

Énumération de Kleene

But

- Trouver toutes les MT avec un seul ruban, une seule RWH
- Donc, parcourir toutes les MT
- Les numéroter . . .
- ... en utilisant une MT
- ... qui aura son propre numéro

Codage

- D'une machine de Turing (programme)
- et d'une description instantanée (état de la mémoire)

P. Berthomé Calculabilité – 2

Codage d'une MT

Alphabet de codage

- Alphabet propre
- $Z = \{0, 1, F, *, T, |, \$, E\}$

Codage d'un état

- Codage binaire du numéro d'état
- $q_0 \longrightarrow 0$; $q_1 \longrightarrow 1$; $q_2 \longrightarrow 10$
-
- Si q_i est final : $q_i \longrightarrow Fi_2$

P. Berthomé

Calculabilité - 2

13/24

14/24

Mimes des Machines de Turing Enumération et théorèmes

Codage d'une MT (suite)

Codage de la transition $\delta(a_i, q_j) = (a_l, q_k, \overline{mvt})$

•

$$i_2 * j_2 * l_2 * k_2 * mvt$$

- Si q_k est final, on remplace k₂ par Fk₂
- mvt peut être codé sur 2 caractères (e.g., 00, 10, 01)

Codage de la MT

- On code toutes les transitions les unes après les autres séparées par des caractères T
- On les range dans l'ordre lexicographique
- $T \delta(a_0, q_0) T \delta(a_1, q_0) T \dots$

P. Berthomé Calculabilité – 2

Reconnaissance d'une MT

Theorem

Soit x un mot de Z^* . Il existe une MT T_1 qui accepte x si et seulement si x code une Machine de Turing

Idée de preuve

- Il suffit de vérifier que le mot d'entrée possède la bonne syntaxe
- La MT T₁ peut être décrite avec toutes les possibilités en nombre de rubans, de RWH, . . .
- La MT s'arrête toujours soit sur un état d'acceptation, soit sur un état de refus

P. Berthomé

Calculabilité - 2

15/24

Mimes des Machines de Turing Enumération et théorèmes

Représentation d'un ruban

Codage d'une case

- Un ruban ne contient que des mots de taille finie
- Description de chaque case contenant la lettre a_i : i₂
- Si la RWH est sur la case codée et la MT est dans l'état
 q_j: i₂\$j₂

Codage d'un ruban semi-infini

- On code l'ensemble des cases $y_1, y_2, ..., y_n$ non vides $(y_i \in \Sigma)$
- $|y_1|y_2|\dots|y_n|$
- Reconnaissable par une MT T₂

P. Berthomé Calculabilité – 2 16/24

Vérification initiale d'une machine de Turing

Il existe une MT T_3 qui étant donné un mot $z \in Z^*$, vérifie que ce mot est de la forme z = xEy où x représente une MT et y une description instantanée qui est l'état initial du ruban de la machine x.

Étape de calcul

Il existe une MT T_4 qui à partir d'un mot $z \in Z^*$ représentant une machine de Turing T et une description instantanée DI, effectue une transition T sur le ruban. I.e., z = xEy est transformé par T_4 en z' = xEy', où y' code la description instantanée après une étape de calcul.

P. Berthomé

Calculabilité - 2

17/24

Mimes des Machines de Turing Enumération et théorèmes

Machine universelle

Théorème

Il existe une machine de Turing T_u avec un état d'acceptation qui lancée sur une entrée $z \in Z^*$:

- Elle entre dans un état d'acceptation ssi :
 - z code une MT T_x et une description instantanée dans laquelle le mot a est sur le ruban
 - T_x lancée sur le mot a s'arrête
 - Le ruban de T_u à la fin contient $xE\tilde{y}$ où \tilde{y} est le code de la DI de T_x à la fin de son calcul
- Elle s'arrête dans un état de refus si z ne code pas de MT où que la machine codée bloque.
- 3 Si T_x lancée sur a ne s'arrête pas, alors T_u lancée sur a ne s'arrête pas.

Énumération

Théorème

Il existe une fonction $f: \mathbb{N} \longrightarrow \mathbb{Z}^*$ telle que :

- 2 La suite $(f(n))_{n\in\mathbb{N}}$ est triée dans l'ordre lexicographique
- 3 Si f(n) < x < f(n+1), alors x ne code pas de MT
- f est calculable par une MT
- **5** f est une bijection de \mathbb{N} dans $\{x \in \mathbb{Z}^* | x \text{ code une MT}\}$

Énumération des rubans initiaux

De même, on peut énumérer les rubans initiaux par une fonction g:g(i) est le i-ème ruban semi-infini où la RWH est positionné sur la première case.

P. Berthomé

Calculabilité - 2

19/24

Mimes des Machines de Turing Enumération et théorèmes

D'autres machines assez universelles

Où on utilise une machine et un ruban

On note \widetilde{T}_u la MT qui :

- prend deux entiers en paramètres $(i, j) \in \mathbb{N}^2$
- calcule x = f(i) le codage de la i-ème MT
- calcule y = g(j) le codage du j-ème ruban
- lance T_u sur l'entrée xEy

Aparté : Énumération de \mathbb{N}^2

- On rappelle que N² est dénombrable
- Il existe donc une bijection entre \mathbb{N}^2 et \mathbb{N}
- Soit χ une énumération de \mathbb{N}^2 ; π_1 et π_2 les fonctions inverses (Si $\chi(i,j)=k$ alors $\pi_1(k)=i$ et $\pi_2(k)=j$)

D'autres machines tordues

φ_{u}

On note φ_u la machine de Turing qui prend un entier binaire en entrée et telle que

$$\varphi_{u}(i) = \widetilde{T}_{u}(\pi_{1}(i), \pi_{2}(i))$$

Pour en finir avec les définitions

- Soit φ_i la MT de code de Kleene f(i)
- $\varphi_i(j)$ est donc la machine $\varphi_u(\chi(i,j))$
- en d'autres termes $\widetilde{T}_u(i,j)$

P. Berthomé

Calculabilité - 2

21/24

Mimes des Machines de Turing Enumération et théorèmes

Théorème de la Halte

Théorème de la Halte

Il n'existe pas de MT T prenant deux entiers (x, y) en entrée telle que :

- T s'arrête sur toute entrée
- Elle s'arrête avec le résultat 1 si $\varphi_x(y)$ s'arrête
- Elle s'arrête avec le résultat 0 si $\varphi_X(y)$ ne s'arrête pas

Preuve par l'absurde

- On suppose que T existe
- On construit \widetilde{T} la MT qui :
 - prend en entrée deux entiers (x, y)
 - s'arrête si T(x, y) s'arrête avec le résultat 0
 - sinon ne s'arrête pas

Preuve Théorème de la Halte

Suite de la preuve

- \bullet \widetilde{T} existe, une fois que l'on a T, c'est facile
- $\widetilde{T}(x,x)$ est une MT dépendant de x : $\widetilde{\widetilde{T}}$
- Cette dernière machine possède un numéro : a
- $\bullet \ \forall x \ \widetilde{\widetilde{T}}(x) = \varphi_{a}(x)$
- Que fait $\varphi_a(a)$?

P. Berthomé

Calculabilité - 2

23/24

Mimes des Machines de Turing Enumération et théorèmes

preuve Théorème de la Halte (fin)

Suite d'implications contradictoires

Chaque assertion est la conséquence directe de la précédente

- Supposons que T(a, a) = 1
- $\varphi_a(a)$ s'arrête
- $\mathfrak{T}(a,a)$ s'arrête
- 0 T(a, a) = 0

De même :

- Supposons que T(a, a) = 0
- $\varphi_a(a)$ ne s'arrête pas
- $\mathfrak{T}(a,a)$ ne s'arrête pas
- **4** T(a, a) = 1

P. Berthomé

Calculabilité - 2