MLOps webinar

Nicholas Vachon

April 6, 2022

kapacity

Agenda

- \rightarrow What is MLOps and why? (5 minutes)
- → MLOps Components (25 30 minutes)
 - → Reproducibility
 - \rightarrow Tracking
 - → Environments
 - \rightarrow Data Versioning
 - → Deployment / Release / Re-training
 - \rightarrow CI / CD Best practices for software parts
 - → Continuous Training options
 - ightarrow Automated Model promotion
 - → Monitoring
 - \rightarrow Feature Drift detection
 - ightarrow Model Performance when/if ground truth available
 - → Pipelining
 - \rightarrow Use command line scripts for your pipeline steps
 - ightarrow Develop outside Azure ML pipelines for a good developer experience
 - → Deployment with Azure ML pipelines: Get all the goodies
- → Technical demonstration (10 15 minutes)
 - $\rightarrow \;\;$ Batch prediction with passive retraining and automated model promotion
 - ightarrow Drift detection
- \rightarrow Questions (10 15 minutes)

What is MLOps and why?

Traditional DevOps VS MLOps

Traditional DevOps

- \rightarrow Version control
- \rightarrow Testing your code
- → Continuous integration and delivery (CI/CD)
- → Monitoring your application

MLOPs

- → Apart from code, we also need to version and track model artifacts and data
- \rightarrow ML is less linear and more experimental
- → It's harder to test an ML model, because of the statistical nature of ML
- → Even without code changes, systems need to be periodically trained and tested with new data

MLOps tooling landscape... HELP!

Batch inference ML system

ML specific services ML pipelines Data Historical data Experiment tracking Training pipeline New data Data lineage Batch prediction pipeline **Predictions** Drift detection pipeline Model registry

Batch inference ML system

Data

Historical data

New data

Predictions

ML pipelines

- Azure ML pipelines
- Azure ML compute
- Azure ML environments

Training pipeline

Batch prediction pipeline

Drift detection pipeline

ML specific services

Azure ML **Experiments**

Azure ML Datasets

Azure ML Models

MLOps Components

Reproducibility

Tracking

Environments

Data Versioning

Tracking

Why do we track experiences?

- Trust in technology comes from stability, ability to reproduce great results (luck)
- Reproducibility is more complicated than in traditional software development
- Experiments are a central part of data science
- → Logging experiments forces one to build a working pipeline as early as possible.

Tracking

Training pipeline

1 Experiment – 3 Runs

Environments

AzureML **Environments** class:

- \rightarrow Automatic tracking with each run
- \rightarrow Docker
 - → Abstracted
 - ightarrow Fully controlled
 - \rightarrow Personal images
 - \rightarrow Dockerfiles
- ightarrow Reusable, hence faster

Data Versioning

Tracking data is important:

- ightarrow Debugging models
- \rightarrow Insights into models
- \rightarrow Comparability

AzureML **Datasets:**

- \rightarrow Packaged data objects
- \rightarrow Linked to runs
- → Versioned
- Easily consumed in experiments and pipelines

Tracking

Training pipeline

Deployment / Re-training

CI / CD Best practices for software parts
Continuous Training options
Automated Model promotion

CI / CD

- → ML applications are software and need to be tested
- Use of feature branches, pull requests and code reviews
- → Application is built and deployed to multiple environments

Continous Training

Maturity

Passive retraining Human in the loop

Passive retraining Automated testing of model

Active retraining Triggered by event

Passive retraining – human in the loop

- \rightarrow Training pipeline runs on a schedule
- Email sent to data scientist when model is trained and registered in the model registry
- → Data scientist manually decides to promote the model.

Passive retraining – Automated

- \rightarrow Training pipeline runs on a schedule
- Automated model tests and model promotion
 - \rightarrow Test of performance metric
 - \rightarrow Tests of edge cases
 - \rightarrow Fairness tests
 - \rightarrow Compare to current production model
- → Email is sent to data scientist if new model fails tests

Active retraining

→ Training pipeline is triggered by model performance degradation or data drift

Traditional monitoring

Data quality

Feature Drift detection

Model Performance when/if ground truth available

- \rightarrow Traditional monitoring:
 - \rightarrow Did the pipeline run fail?
 - \rightarrow What where in the logs?

Subscribe to Azure ML system topic event Send email relevant Data Scientist with Logic App

Data Scientist debugs the problem in Azure ML workspace portal

[stderr] main()

Investigating

■ std_logst IMFO 2022-83-28 20:48:37,623 [prepare_data_pipeline.py:sain:18] Get raw data. IMFO 2022-83-28 20:48:37,624 [_california_housing.py:fetch_california_housing:131] Download istoerr/Traceback (most recent call last): [stderr/Traceback -most arcent call last): [stderr/Traceback -most -mos

[stderr] File "/azureml-emvs/azureml_f3239ef3194869e846bf12823659b674/lib/python3.8/runpy.
[stderr] File "/azureml-emvs/azureml_f3239ef3194869e846bf12823659b674/lib/python3.8/runpy.
[stderr] File "/azureml-emvs/azureml_f3239ef3194869e846bf12823659b674/lib/python3.8/runpy.

13 [stderr] df["Medinc"] = df["Medinc"] * (1 + med_inc_mean_dfitt_perv 14 [stderr]TypeError: unsupported operand type(s) for +: 'int' and 'str'

- \rightarrow Traditional monitoring:
 - \rightarrow Did the pipeline run fail?
 - \rightarrow What where the logs?
- ightarrow Data monitoring
 - \rightarrow Runtime validation
 - \rightarrow Was the schema as expected?
 - → Other expectations of the data: No missing values, over zero, etc.

Batch prediction pipeline

Get data Validate data

Other step

- \rightarrow Traditional monitoring:
 - \rightarrow Did the pipeline run fail?
 - \rightarrow What where the logs?
- ightarrow Data monitoring
 - \rightarrow Runtime validation
 - \rightarrow Was the schema as expected?
 - → Other expectations of the data: No missing values, over zero, etc.

Batch prediction pipeline

- \rightarrow Traditional monitoring:
 - \rightarrow Did the pipeline run fail?
 - \rightarrow What where the logs?
- ightarrow Data monitoring
 - \rightarrow Was the schema as expected?
 - → Other expectations of the data: No missing values, over zero, etc.
- \rightarrow ML specific monitoring
 - → Did the performance of the model degrade?
 - → Did the statistical distribution of the data change / drift?

ML pipelines

Use command line scripts for your pipeline steps

Develop outside Azure ML pipelines for a good developer experience

Deployment with Azure ML pipelines: Get all the goodies

Why use a pipeline?

- \rightarrow Modular design / separation of concerns
- \rightarrow Inspect intermediate results
- \rightarrow Rerun only part of pipeline
- \rightarrow Run independent steps in parallel

Why use command line scripts?

- → Universal interface
- → Can be orchestrated by a wide variety of tools
- → Easy to orchestrate locally, using something like Make when developing

Why run / orchestrate with AML pipelines?

- \rightarrow Highly scalable compute
 - \rightarrow Possibility of spark cluster
- ightarrow Data lineage / versioning
- \rightarrow Versioning of pipelines
- → Versioning of environments
 - \rightarrow Each step can have it's own environment
- → Monitoring / great debugging
- \rightarrow Parallelize steps
- Multiple ways of triggering the prediction and training pipelines
 - ightarrow API
 - ightarrow Data Factory
 - \rightarrow Blob event / aka new data

Defining AML pipeline steps

- Pipelines are defined and published using python
- → You wrap each step in the pipeline in code that define the data dependencies

```
# Clean and validate step
clean_training_data = OutputFileDatasetConfig(name='clean_data_training')
clean_training_data = clean_training_data.register_on_complete(name='clean_data_training'
raw_data_as_input = raw_training_data.as_input(name="raw_data_training")
clean_and_validate_step = PythonScriptStep(
   name="clean_and_validate",
   script_name="src/data/clean_and_validate.py",
   source_directory=".",
   arguments=[
      f"data.raw_data.folder={raw_data_as_input.arg_val}",
       f"data.clean_data.folder={clean_training_data.arg_val}",
   inputs=[raw_data_as_input],
   outputs=[clean_training_data],
   compute_target=compute_target,
   runconfig=aml_run_config,
   allow reuse=True
```


Demo

