PSC 585 Dynamic and Computational Modeling

Problem Set 3 April 26, 2011

1. Consider the following variant of the dynamic bargaining game we considered in class. There are five players in set

$$N = \{1, 2, 3, 4, 5\}.$$

In each period $t = 1, 2, \dots$ before an agreement has been reached, player i is recognized with probability p_i to offer a proposal $(C,x) \in \mathcal{D}_i \times \mathbb{R}^2$. Here \mathcal{D}_i is the set of coalitions that the proposer is allowed to build. Then all five players vote yes or no, and if all players in C approve the proposal, then the proposal is implemented in all subsequent periods and the game ends. Otherwise, the game moves to the next period, a proposer is drawn according to the same probabilities p_i , etc., until a proposal is approved and implemented. Let

$$\mathcal{D}_i = \{ \{j, h\} \mid j, h \neq i, j \neq h, j, h \in N \}.$$

Note that \mathcal{D}_i has six elements for each i, i.e., six potential coalitions for i to form. We will index these coalitions by $m_i = 1, ..., 6$ and denote a particular coalition by $C_{m_i} \in \mathcal{D}_i$. If proposal (C_{m_i}, x) passes, then each player j derives utility $u_j(C_{m_i}, x) = u_j(x) + c_{m_i}^j$, where

$$u_j(x) = -(x_1 - \hat{x}_{j,1})^2 - (x_2 - \hat{x}_{j,2})^2 + K,$$

 $c_{m_i}^j \in \mathbb{R}$ is a coalition/proposer specific shift in utility, and K=10. Each period an agreement is not reached, players receive utility $\bar{u}_j=u_j(0,0)$. Player j discounts the future by a factor $\delta_j=\delta=\frac{2}{3}$. Ideal points are given by $\hat{x}_1=(-\frac{1}{4},-\frac{1}{4}),\,\hat{x}_2=(-\frac{1}{4},\frac{3}{4}),\,\hat{x}_3=(\frac{7}{16},\frac{7}{16}),\,\hat{x}_4=(\frac{7}{16},-\frac{3}{16}),\,$ and $\hat{x}_5=(-\frac{1}{3},-\frac{1}{2}).$ A no-delay equilibrium is a collection of:

- voter continuation values v_i ;
- Optimal proposals $x_{m_i}^i \in \mathbb{R}^2$, for all i and all coalitions $C_m \in \mathcal{D}_i$, $m_i = 1, \ldots, 6$;
- Mixing probabilities $\sigma_{m_i}^i \in [0,1]$, for all i and all coalitions $C_m \in \mathcal{D}_i$, $m_i = 1, \ldots, 6$;
- Multipliers $\lambda_{m_i}^i \in \mathbb{R}$, for all i and all coalitions $C_m \in \mathcal{D}_i$, $m_i = 1, \dots, 6$;
- Multipliers $\mu_j^{i,m_i} \in \mathbb{R}$, for all i, all coalitions $C_{m_i} \in \mathcal{D}_i$, $m_i = 1, \ldots, 6$, and all $j \in C_{m_i}$;

such that:

$$v_i - \sum_{j=1}^5 p_j \sum_{m_j=1}^6 \sigma_{m_j}^j (u_i(x_{m_j}^j) + c_{m_j}^i) = 0, i = 1, \dots, 5$$
 (1)

$$\sum_{m'_{i}=1}^{6} \sigma_{m'_{i}}^{i}(u_{i}(x_{m'_{i}}^{i}) + c_{m'_{i}}^{i}) - u_{i}(x_{m_{i}}^{i}) - c_{m_{i}}^{i} - \max\{0, -\lambda_{m_{i}}^{i}\}^{2} = 0, i = 1, \dots, 5, m_{i} = 1, \dots, 6$$

$$(2)$$

$$\sum_{m_i=1}^{6} \sigma_{m_i}^i - 1 = 0, i = 1, \dots, 5$$
 (3)

$$\sigma_{m_i}^i - max\{0, \lambda_{m_i}^i\}^2 = 0, i = 1, \dots, 5, m_i = 1, \dots, 6$$
 (4)

$$\sigma_{m_i}^i - max\{0, \lambda_{m_i}^i\}^2 = 0, i = 1, \dots, 5, m_i = 1, \dots, 6$$

$$Du_i(x_{m_i}^i) + \sum_{j \in C_{m_i}} max\{0, \mu_j^{i, m_i}\}^2 Du_j(x_{m_i}^i) = 0, i = 1, \dots, 5, m_i = 1, \dots, 6$$

$$(5)$$

$$u_j(x_{m_i}^i) + c_{m_i}^j - (1-\delta)\bar{u}_i - \delta v_j - \max\{0, -\mu_j^{i, m_i}\}^2 \quad = \quad 0, i = 1, \dots, 5, m_i = 1, \dots, 6, j \in C_{\mathrm{MG}}(0)$$

After eliminating the mixing probabilities using equation (4) and eliminating (3) which are implied by (2) we get the system

$$v_i - \sum_{j=1}^{5} p_j \sum_{m_i=1}^{6} \max\{0, \lambda_{m_j}^j\}^2 (u_i(x_{m_j}^j) + c_{m_j}^i) = 0, i = 1, \dots, 5$$
(7)

$$\sum_{m'=1}^{6} \max\{0, \lambda_{m'_{i}}^{i}\}^{2} (u_{i}(x_{m'_{i}}^{i}) + c_{m'_{i}}^{i}) - u_{i}(x_{m_{i}}^{i}) - c_{m_{i}}^{i} - \max\{0, -\lambda_{m_{i}}^{i}\}^{2} = 0, i = 1, \dots, 5, m_{i} = 1, \dots, 6$$
(8)

$$Du_i(x_{m_i}^i) + \sum_{j \in C_{m_i}} \max\{0, \mu_j^{i, m_i}\}^2 Du_j(x_{m_i}^i) = 0, i = 1, \dots, 5, m_i = 1, \dots, 6$$
(9)

$$u_j(x_{m_i}^i) + c_{m_i}^j - (1-\delta)\bar{u}_i - \delta v_j - \max\{0, -\mu_i^{i,m_i}\}^2 \quad = \quad 0, i=1,\dots,5, m_i = 1,\dots,6, j \in \text{CFQ}\}$$

Verify that there are 5 unknown voter continuation values, $5 \times 6 = 30$ unknowns corresponding to multipliers λ , $5 \times 6 \times 2 = 60$ unknowns corresponding to optimal proposals, and $5 \times 6 \times 2 = 60$ unknown multipliers μ . Also, there are 5 equation in (7), 30 in (8), 30 × 2 in (9), and 60 in (10), that is the number of equations is equal to the number of unknowns equal to 155.

Stack the unknowns according to the order $y = (v, \lambda, x, \mu)$, where

$$v = (v_1, \dots, v_5)$$

$$\lambda = (\lambda_1^1, \dots, \lambda_6^1, \dots, \lambda_1^5, \dots, \lambda_6^5),$$

$$x = (x_{1,1}^1, x_{1,2}^1, \dots, x_{6,1}^1, x_{6,2}^1, \dots, x_{1,1}^5, x_{1,2}^5, \dots, x_{6,1}^5, x_{6,2}^5),$$

$$\mu = (\mu_{j_1}^{1,1}, \mu_{j_2}^{1,1}, \dots, \mu_{j_1}^{1,6}, \mu_{j_2}^{1,6}, \dots, \mu_{j_1}^{5,1}, \mu_{j_2}^{5,1}, \dots, \mu_{j_1}^{5,6}, \mu_{j_2}^{5,6}).$$

Also, enumerate the coalitions in lexicographic order so that, for each i and any $C_{m_i}, C_{m'_i} \in \mathcal{D}_i$, if $m_i < m'_i$ then

$$\min_{j} \{ j \in C_{m_i} \} < \min_{j} \{ j \in C_{m'_i} \},$$

or

$$\min_{j}\{j\in C_{m_i}\}=\min_{j}\{j\in C_{m_i'}\}, \max_{j}\{j\in C_{m_i}\}<\max_{j}\{j\in C_{m_i'}\}.$$

- (a) Let $y = (v, \lambda, x, \mu)$. For any vector \mathbf{c} containing coalition specific payoffs $c_{m_i}^j$, define the system of equations (7)-(11) (call the system $F(y; \mathbf{c}) = 0$) where the equations are stacked in the order they are listed (and according to the listing of the indices; e.g., in (8) list the equations in the order $i = 1, m_i = 1$, then $i = 1, m_i = 2, \ldots, i = 1, m_i = 6, i = 2, m_i = 1$, etc.). Derive the Jacobian of $F, DF(y; \mathbf{c})$, and write code that implements Newton's method to solve the system $F(y; \mathbf{c}) = 0$:
 - At y_t compute

$$dy_t = -[DF(y_t; \mathbf{c})]^{-1} F(y_t; \mathbf{c}).$$

- Set $y_t = y_t + dy_t$ and t = t + 1.
- Stop if t > T or $||dy_t|| < \epsilon$.
- (b) Let \mathbf{c}^0 be a vector containing distinct coalition specific payoffs $c^j_{m_i}$. Define \mathbf{c}^0 to be equal to $c^i_{m_i} = 0$ and $c^j_{m_i} = \frac{c}{1-p_j}$ for all i, all $j \neq i$ and all $m_i = i$, and $c^i_{m_i} = -c$ and $c^j_{m_i} = \frac{c}{1-p_j}$ for all i,

all $j \neq i$ and all $m_i \neq i$. Verify that $y^0 = (v^0, \lambda^0, x^0, \mu^0)$ with

$$\begin{aligned} v_i^0 &=& \sum_{j=1}^5 p_j u_i(\hat{x}_j) + c, i = 1, \dots, 5, \\ \lambda_{m_i}^{0,i} &=& 1, i = 1, \dots, 5, m_i = i, \\ \lambda_{m_i}^{0,i} &=& -\sqrt{c}, i = 1, \dots, 5, m_i \neq i, \\ x_{m_i}^{0,i} &=& \hat{x}_i, i = 1, \dots, 5, m_i = 1, \dots, 6, \\ \mu_j^{0,i,m_i} &=& -\sqrt{u_j(\hat{x}_i) + \frac{c}{1 - p_j} - (1 - \delta)\bar{u}_j - \delta v_j^0}, i = 1, \dots, 5, m_i = 1, \dots, 6, j \in C_{m_i}, \end{aligned}$$

satisfies

$$F(y^0; \mathbf{c}^0) = 0$$

for some large enough c > 0.

(c) Your goal is to solve for an equilibrium for some \mathbf{c}^1 containing distinct coalition specific payoffs $c_{m_i}^j$. For that purpose define for any $t \in [0,1]$ the function $H:[0,1] \times \mathbb{R}^{155} \to \mathbb{R}^{155}$ as

$$H(t,y) = F(y; (1-t)\mathbf{c}^{0} + t\mathbf{c}^{1}).$$

Let y(t) be defined implicitly as the solution to

$$H(t, y(t)) = 0$$

for all $t \in [0,1]$. Using the implicit function theorem, we compute

$$\frac{\partial y(t)}{\partial t} = -[D_y H(t, y)]^{-1} D_t H(t, y).$$

The above along with the initial conditions $y(0) = y^0$ define an ordinary differential equation. One approach to solving for an equilibrium is then to use one of the *ode* solvers of Matlab. You may try such a method (or mere Newton's method for t = 1) but you are required to code and implement the following predictor corrector method.

- Specify $\bar{\gamma}$ and γ (with $\bar{\gamma} > \gamma > 0$), T, and ϵ .
- Initialize the iterations by setting t=0 and $y=y^0$ and $\gamma=\bar{\gamma}$.
- At each iteration:
 - i. Let $t_{old} = t$ and $y_{old} = y$ and compute

$$t = \min\{1, t + \gamma\},\$$

and

$$y = y + \gamma \frac{\partial y(t)}{\partial t}.$$

- ii. Solve the equation $H(t, y^*) = 0$ for y^* using Newton's method (coded in (a)) with initial value y from step (i).
 - If Newton method fails to solve the equation, set $y = y_{old}$ and $t = t_{old}$ and $\gamma = \frac{\gamma}{2}$. If $\gamma < \gamma$ terminate without a solution.
 - If Newton method succeeds, set $y = y^*$ and $\gamma = \min{\{\bar{\gamma}, 2\gamma\}}$.

The value of \mathbf{c}^1 is given in the 30×5 matrix Cs in Cs.mat, where $c_{m_i}^j$ is given in the $(i-1) + m_i$ -th row, j-th column of Cs for all i, m_i, j .