Cristo Daniel Alvarado F risto Daniel Alvarado ESFM Cristo Daniel Alve Título o Nombre de las notas

Cristo Daniel Alvarado

23 de oc⁺
-¹

. 202 23 de octubre de 2025

Alvarado ESFM Índice general

Alvarado ESEM		Alvarado ESFM
	() × 1	
Índice gener	al	
1. Conjuntos Convexos		Marado F
		0
	do ESE M	
1.1. Propiedades Básicas		

Lista de Códigos

Capítulo 1

Conjuntos Convexos

1.1. Propiedades Básicas

Definición 1.1.1 (Conjunto Convexo)

Sea $C \subseteq \mathbb{R}^n$ un conjunto no vacío. Decimos que C es un conjunto convexo si $[a,b] \subseteq C$, donde:

$$[a,b] = \left\{ ta + (1-t)b \middle| t \in [0,1] \right\}$$

Ejemplo 1.1.1

El conjunto \mathbb{R}^n es convexo. También lo son $[a,b]\subseteq\mathbb{R}^n$ y $\{a\}$, para todo $a,b\in\mathbb{R}^n$.

Los conjuntos convexos resultan relevantes pues justamente en vecindades convexas podemos definir conceptos como derivadas direccionales, gradientes, etc...

Una propiedad que podemos definir en un conjunto convexo es el siguiente:

Definición 1.1.2 (Punto Extremo)

Sea $C \subseteq \mathbb{R}^n$ un conjunto convexo. Decimos que un punto $x \in C$ es **punto extremo de** C si no existen $y, z \in C$ tales que $x \in (y, z)$, donde:

$$(y,z) = \{ty + (1-t)z | t \in (0,1)\}$$

Ejemplo 1.1.2

El conjunto $(-\infty, a] \subseteq \mathbb{R}^n$ dado por:

$$(-\infty, a] = \left\{ ta \in \mathbb{R}^n \middle| t \le 1 \right\}$$

es convexo y tiene como único punto extremo a a. También, [a,b] tiene como puntos extremos a a y b.

En cambio, el conjunto (a, b) es convexo pero no tiene puntos extremos.

Lema 1.1.1

Sea $C \subseteq \mathbb{R}^n$ subconjunto convexo y sea $x \in C$ tal que x no es extremo. Entonces, existen $y, z \in C$ tales que:

$$x = \frac{y+z}{2}$$

Demostración:

Como $x \in C$ no es extremo, existen $y_0, z_0 \in C$ y $t \in (0, 1)$ tales que:

$$x = ty_0 + (1 - t)z_0$$

Si $t = \frac{1}{2}$ hemos terminado. En caso contrario, sea $s = \max\{t, 1 - t\}$. Se tienen dos casos:

• s = t, tomemos $y = y_0$ y $z = \frac{1-t}{t}z_0 + \left(1 - \frac{1-t}{t}\right)x$ (se verifica rápidamente que ambos están en C, pues están en $[y_0, z_0]$), entonces:

$$\frac{y+z}{2} = \frac{y_0 + \frac{1-t}{t}z_0 + \left(1 - \frac{1-t}{t}\right)x}{2}$$

$$= \frac{y_0 + \frac{1-t}{t}z_0 + \left(1 - \frac{1-t}{t}\right)(ty_0 + (1-t)z_0)}{2}$$

$$= \frac{y_0 + \frac{1-t}{t}z_0 + \left(t - \frac{1-t}{t}t\right)y_0 + \left(1 - t - \frac{1-t}{t}(1-t)\right)z_0}{2}$$

$$= \frac{2ty_0 + 2(1-t)z_0}{2}$$

$$= ty_0 + (1-t)z_0$$

$$= x$$

• s = 1 - t, tomemos $z = z_0$ y $y = \frac{t}{1 - t}y_0 + \left(1 - \frac{t}{1 - t}\right)x$ (se verifica rápidamente que ambos están en C, pues están en $[y_0, z_0]$), haciendo el procedimiento análogo al caso anterior, se llega a que $\frac{y + z}{2} = x$.

Por ambos incisos se sigue el resultado.

Teorema 1.1.1 (Propiedades Básicas de los Puntos Extremos)

Si $C \subseteq \mathbb{R}^n$ es acotado, convexo y cerrado, entonces C tiene al menos un punto extremo. Más aún, si C tiene más de un punto, entonces debe tener al menos dos puntos extremos.

Demostración:

Sea $C \subseteq \mathbb{R}^n$ un conjunto acotado, cerrado y convexo. Consideremos la función $f: C \times C \to \mathbb{R}$ dada por:

$$f(x,y) = ||x - y||$$

f es una función continua en un conjunto compacto, por lo que alcanza su máximo en algún punto $(x_0, y_0) \in C \times C$. Tenemos dos casos:

- $f(x_0, y_0) = 0$: Se sigue que $x_0 = y_0$, luego C tiene un punto. Se sigue así que C tiene al menos un punto extremo.
- $f(x_0, y_0) > 0$: Afirmamos que x_0 y y_0 son puntos extremos de C. Supongamos que alguno de ellos no es un punto extremo, digamos x_0 , entonces por el lema anterior existen $x_1, x_2 \in C$ tales que:

$$x_0 = \frac{x_1 + x_2}{2}$$

Si alguno de estos dos puntos es extremo, hemos terminado, por lo que supongamos que ninguno de estos dos es extremo. Por la identidad del paralelogramo y ya que f alcanza su máximo en (x_0, y_0) , se tiene que:

$$2||x_0 - y_0||^2 \ge ||x_1 - y_0||^2 + ||x_2 - y_0||^2$$

$$= \frac{1}{2}||x_1 + x_2 - 2y_0||^2 + \frac{1}{2}||x_1 - x_2||^2$$

$$= 2||x_0 - y_0||^2 + \frac{1}{2}||x_1 - x_2||^2$$

Por tanto, $||x_1 - x_2||^2 = 0$, lo cual implica que $x_1 = x - 2$, lo cual es una contradicción. Por tanto, x_0 es un punto extremo de C. Análogamente, se prueba que y_0 es un punto extremo de C.

Por los dos incisos se sigue el resultado.

Uno de los resultados más fundamentales en la teoría es el siguiente:

Teorema 1.1.2

Sea $C \subseteq \mathbb{R}^n$ un subconjunto convexo, cerrado y acotado. Entonces, si C tiene m puntos extremos, digamos x_1, \ldots, x_m , cualquier punto $x \in C$ como:

$$x = \sum_{i=1}^{m} \alpha_i x_i$$
, con $\sum_{i=1}^{m} \alpha_i = 1$, $\alpha_i \ge 0$ $\forall i = 1, \dots, m$

La prueba requiere elementos de análisis funcional y demás herramientas avanzadas, por lo que no se presenta aquí. Sin embargo, este resultado puede consultarse en la siguiente monografía: Teorema de Krein-Milman. En esta monografía se presenta una versión más general del teorema (en espacios topológicos localmente convexos).