CAR RESALE VALUE PREDICTION

Team Members:

Malepati Ashritha Abhinayaa K Ayyagari Mihika Aishwarya V

INDEX

1. INTRODUCTION

- 1. Project Overview
- 2. Purpose

2. **LITERATURE SURVEY**

- 1. Existing problem
- 2. References
- 3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 1. Empathy Map Canvas
- 2. Ideation & Brainstorming
- 3. Proposed Solution
- 4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- 1. Functional requirement
- 2. Non-Functional requirements

5. PROJECT DESIGN

- 1. Data Flow Diagrams
- 2. Solution & Technical Architecture
- 3. User Stories

6. PROJECT PLANNING & SCHEDULING

- 1. Sprint Planning & Estimation
- 2. Sprint Delivery Schedule
- 3. Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 1. Feature 1
- 2. Feature 2
- 3. Database Schema (if Applicable)

8. TESTING

- 1. Test Cases
- 2. User Acceptance Testing

9. **RESULTS**

- 1. Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. **CONCLUSION**
- 12. FUTURE SCOPE
- 13. **APPENDIX**

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1 PROJECT OVERVIEW

Over the past decade, the production of vehicles has been consistently expanding. As a result, the trade-in automobile market started growing, which is now a booming sector of the economy. The new method of utilising online platforms meets the need for both the customer and the merchant to be better informed about the trends and examples that determine the value of a used automobile. Car resale value prediction system is built with the objective of predicting the correct value of used cars that enables the users to sell the cars remotely with accurate valuation and without human intervention in the process to eliminate biased valuation. The price prediction is done based on various factors like year of manufacturing, model type, vehicle type, fuel type, horsepower of vehicle and number of kilometres travelled. In the used car market, this model can be advantageous to vendors, purchasers, and automobile manufacturers. Based on the data that users give, the system outputs a price that is relatively accurate. The model is developed using machine learning algorithms. The system works on Regression algorithm that predicts precise value of a used car. The dataset used was scraped from listings of used cars. The dataset was divided and modified to fit the regression, to ensure the performance of the regression.

1.2 PURPOSE

The goal of a car resale value prediction system is to forecast the accurate worth of used automobiles, allowing users to sell the vehicles remotely with accurate valuation and without the need for human participation to prevent biased pricing. This resale value prediction system is made for general purpose to predict the price that can be roughly acquired by the user. The most important factors for the forecast are brand and model, period of use of the vehicle, mileage of the vehicle, gear type, fuel type used in the vehicle, as well as fuel utilisation per mile, which significantly influences cost of a vehicle because of continuous changes in the cost of fuel. The prediction of the vehicle value has been done precisely considering various characteristics as well as with the assistance of reference data.

2. LITERATURE SURVEY

2.1 EXISTING SYSTEM

The existing system involves a procedure where a vendor chooses a price arbitrarily and the buyer is unaware of the car and its current market value. In actuality, the vendor is also ignorant of the car's current value or the appropriate selling price. And then the existing systems with the machine learning approaches are made where certain features are mapped together inorder to obtain a price for resale car but it's not always feasible as it is not a real time solution. Machine learning models are implemented with only few features which makes the accuracy to be inappropriate. So, the future work would include a website or web application with enhanced features that predicts the value of a car with high accuracy.

2.2 REFERENCES

- [1] Ganesh, Mukkesh & Venkatasubbu, Pattabiraman. (2019). Used Cars Price Prediction using Supervised Learning Techniques. International Journal of Engineering and Advanced Technology. 9. 216-223. 10.35940/ijeat.A1042.1291S319.
- [2] Shonda Kuiper. Introduction to Multiple Regression: How Much Is Your Car Worth? Journal of Statistics Education.
- [3] Ketan Agrahari, Ayush Chaubey, Mamoor Khan & Manas Srivastava. Car Price Prediction Using Machine Learning. International Journal of Innovative Research in Technology
- [4] Sameerchand Pudaruth. Predicting the Price of Used Cars using Machine Learning Techniques. International Journal of Information & Computation Technology.
- [5] Chen, Chuancan ,Hao, Lulu, Xu, Cong. Comparative analysis of used car price evaluation models. AIP Conference Proceedings, Volume 1839, Issue 1, id.020165
- [6] Jency M. Shah, Dr. Ronak Panchal. Novel approach of Machine learning algorithms in car dataset. International Research Journal of Modernizatio

2.3 PROBLEM STATEMENT DEFINITION

3. IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

To predict the price of used cars using machine learning models.

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

You can select a sticky note and hit the pencil [switch to sketch] icon to start drawing!

Malepati Ashritha		Abhinayaa.K		Ayyagari Mihika		Aishwarya									
	Brand of the car	Type of car(petrol, diesel)	Year of manufacturing		Name of the manufacturer	Insurance	AC or Non- AC		Battery system	Registration Certificate	Condition of the car		Reading of the car	Air bags	Engine location
	Budget	Type of transmission (automatic or manual)	Model of the car		Brake system	Body type	Engine		Comfort check	Maintaneance Record	Reading of the car		Performance of the car	Drive wheel	Ownership
	Mileage				Ownership cost				Gear type				Cylinder number		

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

1 20 minutes

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

Feasibility

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem	To predict the resale value of second
	to be solved)	hand cars and used cars. Value of a
		car depends on various factors such
		as usage, mileage, registration,
		model and several other factors. The
		problem to be solved here is to be
		able to predict the resale value of
		any used car by combining all the
		contributed factors.
2.	Idea / Solution description	To implement a UI design and apply
		Machine Learning algorithms for
		predicting the resale value of a car
		and to display it to the user.
3.	Novelty / Uniqueness	The dataset used should be clean
		inorder to carry out the analysis and
		the solution should give the highest
		possible accuracy.
4.	Social Impact / Customer	UI design is very much attractive
	Satisfaction	and user friendly. Any user can use
		this system irrespective of their
		device compatibility and the
		prediction of car's value will also
		depend on certain social factors
		providing the user best accurate
		value.

5.	Business Model (Revenue Model)	In terms of Business, since the solution is deployed in the cloud, it is accessible to everyone. Software is developed understanding the use case of Machine Learning in automotive industry to build a prediction model.
6.	Scalability of the Solution	In order to provide a scalable solution we will have a feature set with various factors contributing to the price of a car as attributes such that even with increase in the dataset the solution will be able to give an accurate prediction. And as the software is deployed in the cloud even the mobile user can access it.

3.4 PROBLEM FIT SOLUTION

1. CUSTOMER SEGMENT(S)

6. CUSTOMER CONSTRAINTS

5. AVAILABLE SOLUTIONS

Explore AS, differentiate

Lack of user-friendly, reliable People who are looking to and free technology, Lack of buy or sell used cars. efficient algorithms, Lack of availability of secure and easy

There are existing solutions that can predict the value for used cars but they are not very efficient and reliable. Also, with increase in dataset and factors algorithms might not perform well. So, the existing solutions lack the accuracy.

2. JOBS-TO-BE-DONE / PROBLEMS

To develop a feature set with the factors contributing to the change of price and to implement an algorithm to predict the resale value of a car.

9. PROBLEM ROOT CAUSE The need for secondhand

to sell their used cars.

cars and the people wishing

Customers have to do it in

order to get a satisfactory value for the used cars.

RC

7. BEHAVIOUR

BE

Customers feel uncertain about the price and use the available technologies to get the resale value of a

3. TRIGGERS

Coming across the need of knowing the price of a secondhand car

4. EMOTIONS: BEFORE / AFTER

Before: Uncertain, worried and confused.

After: Relieved, clear and happy.

10. YOUR SOLUTION

To build a reliable technology that can address all the customer needs to predict the resale value of a car with all the factors contributing to the change of value of a car ensuring efficient functioning and results.

8.CHANNELS of BEHAVIOUR

8.1 ONLINE

Can access the website and upload the details of their car and usage to get the resale value with the current condition.

8.2 OFFLINE

Customers can seek into the details and condition of a car to get an approximate value.

dentify strong TR &EN

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement (Epic)	
FR-1	User Registration	User can register through email with
		credentials such as Username, password,
		number.
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Availability of Car model	The user can search and select the car from
		variety of car models available and can
		compare with other cars as per their wish.
FR-4	Condition of the car	Condition of the car such as usage,
		mileage, model etc are examined to predict
		the value of the car.
FR-5	Predicting the price	After looking into all the feature sets of the
		car, its resale value is predicted.
FR-6	Invoice	Once the price is finalized, user can make a
		payment and can get the invoice along with
		the documents.

4.2 NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional	Description	
	Requirement		
NFR-1	Usability	User Interface of the application be	
		environment friendly providing user	
		good interaction.	
NFR-2	Security	User details, car registrations and the	
		site should be	
		securely managed, and the users should	
		be authenticated.	
NFR-3	Reliability	Application should be reliable in terms	
		of its information, operations.	
NFR-4	Performance	Application should be able to provide a	
		quick solution, based upon the condition	
		of the car app has to value the car and	
		generate a invoice to the customer based	
		on their interest in the car.	

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

5.2 SOLUTION & TECHNICAL ARCHITECTURE

Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	User interaction with application, Web UI	HTML, CSS, JavaScript
2.	Application Logic-1	Collection and pre-processing of data	Python
3.	Application Logic-2	Mapping the feature set and predicting the value	Python
4.	Application Logic-3	Sending invoice, updates and alerts to users	IBM Watson Assistant, STT Service
5.	Database	Data Type, Configurations provided by users	MySQL, NoSQL
6.	Cloud Database	Handles database services on Cloud	IBM DB2, IBM Cloudant
7.	File Storage	File storage requirements ensuring high performance even with large data	IBM Block Storage or Other Storage Service or Local Filesystem
8.	External API-1	API offers the interface for the users to connect	IBM Watson API, etc.
9.	External API-2	API provides the transparency and meets the requirements for the performance	IBM Watson
10.	External API-3	Communication with both user and the application is taken care by API's	IBM API Connect etc.
11.	Machine Learning Model	Implements a feature set and predicts the value	Regression Models, Feature Differentiation Model, Object Recognition Model, etc.
12.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Kubernetes, etc

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	A software for which the source code is made freely available and modified according to the requirement	Tensorflow, Jupiter Notebook
2.	Security Implementations	Secure monitoring of features provided by the users	IBM encryption services
3.	Scalable Architecture	Able to match the conditions provided by the user to the available feature map	Machine Learning models
4.	Availability	Usage of data and availability of information regarding cars and price can be tracked anytime	Tensorflow, API's
5. Performance		High performance for any large data and can quickly predict the values.	API and regression models

5.3 USER STORIES

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer 1	Index page	USN-1	As a user, I can enter and view the home page	I can access the home page	Low	Sprint-2
	Page redirection	USN-2	As a user, I can be redirected to the data entry page from home page	I can move to the data entry page	Medium	Sprint-2
	Data entry page	USN-3	As a user, I can enter details of car in the fields	I can submit the details	High	Sprint-1
	Resale value prediction	USN-4	As a user, I can expect the predicted price	I can view the predicted the price	High	Sprint-1
Customer 2	Index page	USN-7	As a user, I can enter and view the home page	I can access the home page	Low	Sprint-2
	Page redirection	USN-8	As a user, I can be redirected to the data entry page from home page	I can move to the data entry page	Medium	Sprint-2
	Data entry page	USN-9	As a user, I can enter details of car in the fields	I can submit the details	High	Sprint-1
	Resale value prediction	USN-10	As a user, I can expect the predicted price	I can view the predicted the price	High	Sprint-1

6. PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Pre-process data	USN-1	Collect Dataset	1	Low	Abhinayaa K
Sprint-1		USN-2	Import required libraries	1	Low	Ayyagari Mihika
Sprint-1		USN-3	Read and clean data sets	2	Low	Malepati Ashritha
Sprint-2	Model building	USN-1	Split data into independent and dependentvariables	3	Medium	Aishwarya V
Sprint-2		USN-2	Apply using regression model	3	Medium	Abhinayaa.K
Sprint-3	Application building	USN-1	Build python flask application and HTML page	5	High	Ayyagari Mihika & Malepati Ashritha
Sprint-3		USN-2	Execute and test	5	High	Aishwarya V
Sprint-4	Training the model	USN-1	Train machine learning model	5	High	Abhinayaa.K & Aishwarya V
Sprint-4		USN-2	Integrate flask	5	High	Malepati Ashritha

6.2 SPRINT DELIVERY & SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	07 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

TITLE	DESCRIPTION	DATE
Literature Survey & Information Gathering	Literature survey on the selected project & gathering information by referring the, technical papers, research publications etc.	15 SEPTEMBER 2022
Prepare Empathy Map	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem statements	16 SEPTEMBER2022
Ideation	List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	17 SEPTEMBER 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	23 SEPTEMBER 2022
Problem Solution Fit	Prepare problem - solution fit document.	28 SEPTEMBER 2022
Solution Architecture	Prepare solution architecture document.	30 SEPTEMBER 2022

Customer Journey	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	5 OCTOBER 2022
Functional Requirement	Prepare the functional requirement document.	10 OCTOBER 2022
Technology Architecture	Prepare the technology architecture diagram.	15 OCTOBER 2022
Data Flow Diagrams	Draw the data flow diagrams and submit for review.	11 OCTOBER 2022
Prepare Milestone & ActivityList	Prepare the milestones & activity list of the project.	21 OCTOBER 2022
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop & submit the developed code by testing it.	IN PROGRESS

6.3 REPORTS FROM JIRA

7. CODING & SOLUTIONING

7.1 FEATURE 1

7.2 FEATURE 2

7.3 FEATURE 3

```
LGBM Regressor
In [55]: def LGBM_regressor():
               config_defaults
                             'objective':'root_mean_squared_error',
                            'reg_sqrt': True,
'metric':'rmse',
                            'random_state':42
               wandb.init(config=config_defaults)
               config = wandb.config
               X = labeled.iloc[:,1:].values
               Y = labeled.iloc[:,0].values.reshape(-1,1)
               X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.4, random_state=42)
               model = LGBMRegressor(
                 learning_rate=config.learning_rate,
                 n_estimators = config.n_estimators,
random_state = config.random_state)
               model.fit(X_train, Y_train)
               Y_pred = model.predict(X_test)
               find_scores(Y_test, Y_pred, X_train)
In [56]: lgbm_configs = {
               "name": 'LGBMRegressor',
"method": "grid",
"metric": {
    "name": "adj_r2",
    "goal": "maximize"
                "parameters": {
```

7.4 FEATURE 4

```
🖈 File Edit Selection View Go Run Terminal Help
                                                                                          ◆ value.html # predict.css # style.css # value.css 1 • integrate_flask.py X
<sub>C</sub>
       ∨ CAR RESALE PRED - COPY
                                                   autos_preprocessed.csv
         ∨ Result

□ classesbrand.npy
                                                               gearbox = request.args.get('geartype')
dmange = request.args.get('dmange')
model = request.args.get('model')
brand = request.args.get('brand')
fuel_type = request.args.get('fuelType')
veh_type = request.args.get('vehicletype')

    □ classesvehicleType.npy

                                                               integrate_flask.pyPre-Process the Data.ipynb
                                                               F resale model1.say
                                                                    imper[i] = labelEncoder()
sapper[i] = labelEncoder()
sapper[i].classes = np.load('Result\\'+str('classes'*i+'.npy'), allow_pickle=True)
transform = sapper[i].fit_transform(new_df[i])
new_df.loc[:,i+'_labels'] = pd.series(transform, index-new_df.index)
       > TIMELINE
```

8. TESTING

8.1 TEST CASES

Ì	Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual	Status	Commnets	TC for Automation(Y/N)	BUG	Executed By
	IndexPage_TC_OO1	UI	Index page	User must enter the url to navigate		1.Enter URL and click go 2.Click on Check price		index page should be displayed along with the check price button	Working as expected	Pass	-	No		Abhinayaa K, Ayyagari Mihika, Malepati Ashritha, Aishwarya V
	InputPage_TC_OO2	UI	Input Page	Verify the UI elements in input page	Proper Internet connection/System downloaded browser	1.Redirected to input page 2. Verify below UI elements: a.registration month, year b.model and brand type c. gear and fuel type d.power and kilometers driven e. damaged/repaired	http://localhost:5000		Working as expected	Pass		No		Abhinayaa K, Ayyagari Mihika, Malepati Ashritha, Aishwarya V
	InputPage_TC_OO3	Ul/Functional	Input page	Verify user is able to get the value for the given instances	Proper Internet connection/System downloaded browser	Enter the details and ensure the following: 1. Choose appropriate value in the dropdowns 2. Enter numbers in the required fields 3. Choose proper option to radio buttons 4. Click on submit button to the characteristic or submit button submi	http://localhost:5000		Working as expected	Pass	-	No	-	Abhinayaa K, Ayyagari Mihika, Malepati Ashritha, Aishwarya V
	ResultPage_TC_OO4	Functional/Result	Final result page	Verify whether the user is able to get a predicted value for the input given	Proper Internet connection/System downloaded browser	Check the resale value of a car for given details	l '	The predict value of the car is displayed.	Working as expected	Pass	-	No	-	Abhinayaa K, Ayyagari Mihika, Malepati Ashritha, Aishwarya V

8.2 USER ACCEPTANCE TESTING

1.Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Car Resale Value Prediction project at the time of the release to User Acceptance Testing (UAT).

2.Defect Analysis

This reportshows the number of resolved or closed bugs at each severity level, and how they were resolved

Resoluti on	Severi ty 1	Severi ty 2	Severi ty 3	Severi ty 4	Subtot al
By Design	10	2	2	1	15
Duplicate	2	0	0	1	3
External	1	1	0	0	2
Fixed	15	2	4	5	26
Not Reproduced	0	1	0	0	1
Skipped	0	0	0	1	1
Won't Fix	1	0	2	1	4
Totals	29	6	8	9	5 2

3.Test Case Analysis

Thisreport shows the number of test casesthat have passed, failed, and untested

Section	Total Cases	Not Tested	Fa il	Pa ss
Print Engine	5	0	0	5
Client Application	12	0	0	12
Security	2	0	0	2
Outsource Shipping	1	0	0	1
Exception Reporting	4	0	0	4
Final ReportOutput	6	0	0	6
Version Control	2	0	0	2

9. RESULTS

9.1 PERFORMANCE METRICS

S.N	Paramet	Values	Screenshot
0.	er		
1.	Metrics	Regression Model: LGBM	
		Regressor	To [12] matel a (Millingressor(mosting_logor)glars_blanch_grateral.tfl_setrics'rous_s_estateses(Millinglictics'rous_rous_squared_server_ matel.tr((k_train_c_t_matel) 1 prod is matel_matel.(k_train) find sorrous_train_c_train_c_train_c find sorrous_train_c_train_c_train_c tilluseral.train_c_train_c_train_c_train_c tilluseral.train_c_train_c_train_c_train_c y on proced when a life error non-securities. Plance shows the stope of y to (n_complex_c_t), for sample using resultin_c y = union_c_tlain_c_trai
		MAE: 1327.56	Nov[13] (*Chewit 12023-040077942835, **** 1002500-02005000000000000000000000000000
		MSE: 9492244.25	*40** - B. BERGERSTEIN (1979) *#65 72 - MINER (1970) - B. BERGERSTEIN (1979)
		RMSE: 3080.93	
		RMSLE: 8.05	
		R2 Score: 0.8664	
		Adjusted R2 Score: 0.8666	
2.	Tune the	Hyperparameter Tuning	<pre>lgbm_configs = { "name":'LGBMRegressor', "method": "grid",</pre>
	Model	1. Learning Rate:	"metric": { "name": "adj_r2", "goal": "maximize"
		[0.01, 0.03, 0.05, 0.07]	}, "parameters": {
		2. Boosting	"learning_rate": {
		Type:	<pre>"objective": { "values": ['root_mean_squared_error'] },</pre>
		['gbdt','dart'	<pre>"boosting_type": { "values": ['gbdt','dart','goss','rf'] },</pre>
		,'goss','rf']	"reg_sqrt": {
		3. Number of	"metric": {
		Estimators:	"n_estimators": {
		[100,200,30	"random_state": {
		0]	}
		Validation Method: Grid Search Cross Validation	## 1000 0 1,000 1,000 0,
		Best Parameters:	
		Learning Rate –	

0.07 Boosting Type – 'gbdt' Number of Estimators - 300	

SCREENSHOTS

1. Metrics

2. Tune the model

```
lgbm_configs = {
     "name": 'LGBMRegressor',
     "method": "grid",
    "metric": {
    "name": "adj_r2",
    "goal": "maximize"
     "parameters": {
         "learning_rate": {
              "values": [0.01, 0.03, 0.05, 0.07]
        },
"objective": {
    "values": ['root_mean_squared_error']
         "boosting_type": {
              "values": ['gbdt','dart','goss','rf']
         "reg_sqrt": {
              "values": [True]
        },
"metric": {
    "slues'
              "values": ['rmse']
         "n_estimators": {
              "values": [100,200,300]
         "random_state": {
              "values": [42]
    }
}
```

Wandb Sweep:

10. ADVANTAGES & DISADVANTAGES

Advantages:

- Able to give accurate and acceptable price for both buyer and seller.
- Have range of option on buying on budget.
- Helps in saving money than giving to brokerage.
- This system helps to reduce installation cost.
- This system is useful to sell the car for reasonable price.

Disadvantages:

- Poor checking and invalid information affect the value of prediction.
- Cars are limited usage vehicles some people only could afford this basis on knowledge-based purchasing.
- Car Resale value cannot be used by the person who does not have access to the internet.
- Very hard to use for targeted range of people.

11. CONCLUSION

The increased prices of new cars and the financial incapability of the customers to buy them, Used Car sales are on a global increase. Therefore, there is an urgent need for a Used Car Price Prediction system which effectively determines the worthiness of the car using a variety of features. The proposed system will help to determine the accurate price of used car price prediction

12.FUTURE SCOPE

In future this machine learning model may bind with various websites which can provide real time data for price prediction. Also we may add large historical data of car price which can help to improve accuracy of the machine learning model. We can build an android app as a user interface for interacting with users. For better performance, we plan to judiciously design deep learning network structures, use adaptive learning rates and train on clusters of data rather than the whole dataset.

13. APPENDIX

Jupyter notebook: import pandas as pd

import numpy as np

import matplotlib as plt

from sklearn.preprocessing import LabelEncoder

import pickle

df=pd.read_csv("C:\\Users\\Ashritha\\Documents\\Nalaya thiran\\Data\\autos.csv", header=0, sep=',', encoding='Latin1',)

df.head()

```
df.shape
print(df.seller.value_counts())
df[df.seller != 'gewerblich']
df=df.drop('seller',axis=1)
print(df.offerType.value_counts())
df[df.offerType != 'Gesuch']
df=df.drop('offerType',axis=1)
print(df.shape)
df=df[(df.powerPS > 50) & (df.powerPS < 900)]
print(df.shape)
df = df[(df.yearOfRegistration >= 1950) & (df.yearOfRegistration < 2017)]
print(df.shape)
df.drop(['name', 'abtest', 'dateCrawled', 'nrOfPictures', 'lastSeen',
      'postalCode','dateCreated'], axis='columns',inplac
e=True)
new_df = df.copy()
new_df = new_df.drop_duplicates ([ 'price', 'vehicleType', 'yearOfRegistration'
                     ,'gearbox', 'powerPS', 'model', 'kilometer',
'monthOfRegistration', 'fuelType'
                     ,'notRepairedDamage'])
new_df.gearbox.replace(('manuell', 'automatik'), ('manual', 'automatic'),
inplace=True)
new_df.fuelType.replace(('benzin', 'andere', 'elektro'), ('petrol', 'others', 'electric'),
inplace=True)
new df.vehicleType.replace(('kleinwagen', 'cabrio', 'kombi', 'andere'),
```

```
('small car', 'convertible', 'combination', 'others'), inplace=True)
new df.notRepairedDamage.replace(('ja', 'nein'), ('Yes', 'No'),inplace=True)
new_df = new_df[(new_df.price \ge 100) & (new_df.price \le 150000)]
new df['notRepairedDamage'].fillna(value='not-declared', inplace=True)
new df[ 'fuelType'].fillna(value='not-declared', inplace=True)
new_df[ 'gearbox'].fillna(value='not-declared', inplace=True)
new_df[ 'vehicleType'].fillna (value='not-declared', inplace=True)
new_df['model'].fillna(value='not-declared',inplace=True)
new_df.to_csv("autos_preprocessed.csv")
labels = ['gearbox', 'notRepairedDamage', 'model', 'brand', 'fuelType', 'vehicleType']
mapper = \{\}
for i in labels:
  mapper[i]=LabelEncoder()
  mapper[i].fit(new_df[i])
  tr = mapper[i].transform(new_df[i])
  np.save(str('classes'+i+ '.npy'), mapper[i].classes_)
  print(i, ":",mapper[i])
  new df.loc[:, i + ' labels'] = pd.Series (tr, index=new df.index)
labeled=new df[['price'
          ,'yearOfRegistration'
          ,'powerPS'
          ,'kilometer'
          ,'monthOfRegistration'
         ]
```

```
+ [x+"_labels" for x in labels]]
print(labeled.columns)
Y = labeled.iloc[:,0].values
X = labeled.iloc[:,1:].values
Y=Y.reshape(-1,1)
from sklearn.model_selection import cross_val_score, train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3,
random state=3)
labels = ['gearbox', 'notRepairedDamage', 'model', 'brand', 'fuelType', 'vehicleType']
mapper = \{\}
for i in labels:
  mapper[i] = LabelEncoder()
  mapper[i].fit(data[i])
  tr = mapper[i].transform(data[i])
  np.save(str('classes'+i+'.npy'), mapper[i].classes_)
  data.loc[:, i+' labels'] = pd.Series(tr, index=data.index)
labeled = data[['price',
'yearOfRegistration','powerPS','kilometer','monthOfRegistration']
           +[x+" labels" for x in labels]]
print(labeled.columns)
def find_scores(Y_actual, Y_pred, X_train):
```

```
mse = mean_squared_error(Y_actual, Y_pred)
  rmse = np.sqrt(mse)
  rmsle = np.log(rmse)
  r2 = r2_score(Y_actual, Y_pred)
  n, k = X_{train.shape}
  adj_r2_score = 1 - ((1-r2)*(n-1)/(n-k-1))
  wandb.log({"mae": mae, "mse": mse, 'rmse':rmse, 'rmsle':rmsle, 'r2':r2,
'adj_r2':adj_r2_score})
def LGBM_regressor():
  config_defaults = {
         'objective': 'root_mean_squared_error',
         'reg_sqrt': True,
          'metric':'rmse',
          'random state':42
       }
  wandb.init(config=config_defaults)
  config = wandb.config
  X = labeled.iloc[:,1:].values
  Y = labeled.iloc[:,0].values.reshape(-1,1)
  X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.4,
```

mae = mean_absolute_error(Y_actual, Y_pred)

```
random_state=42)
  model = LGBMRegressor(
   learning_rate=config.learning_rate,
   n_estimators = config.n_estimators,
   random_state = config.random_state)
  model.fit(X_train, Y_train)
  Y_pred = model.predict(X_test)
  find_scores(Y_test, Y_pred, X_train)
lgbm_configs = {
  "name":'LGBMRegressor',
  "method": "grid",
  "metric": {
    "name": "adj_r2",
    "goal": "maximize"
  },
  "parameters": {
    "learning_rate": {
       "values": [0.01, 0.03, 0.05, 0.07]
    },
    "objective": {
```

```
"values": ['root_mean_squared_error']
     },
     "boosting_type": {
       "values": ['gbdt','dart','goss','rf']
     },
     "reg_sqrt": {
       "values": [True]
     },
     "metric": {
       "values": ['rmse']
     },
     "n_estimators": {
       "values": [100,200,300]
     },
     "random_state": {
       "values": [42]
     }
  }
}
sweep_id = wandb.sweep(sweep=lgbm_configs, project="car_resale_value")
wandb.agent(sweep_id=sweep_id, function=LGBM_regressor)
def find_scores(Y_actual, Y_pred, X_train):
  scores = dict()
```

```
mae = mean_absolute_error(Y_actual, Y_pred)
  mse = mean_squared_error(Y_actual, Y_pred)
  rmse = np.sqrt(mse)
  rmsle = np.log(rmse)
  r2 = r2_score(Y_actual, Y_pred)
  n, k = X_{train.shape}
  adj_r2_score = 1 - ((1-r2)*(n-1)/(n-k-1))
  scores['mae']=mae
  scores['mse']=mse
  scores['rmse']=rmse
  scores['rmsle']=rmsle
  scores['r2']=r2
  scores['adj_r2_score']=adj_r2_score
  return scores
X = labeled.iloc[:,1:].values
Y = labeled.iloc[:,0].values.reshape(-1,1)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.4,
random_state=42)
model =
LGBMRegressor(boosting_type="gbdt",learning_rate=0.07,metric="rmse",n_estim
ators=300,objective="root_mean_squared_error",random_state=42,reg_sqrt=True)
model.fit(X_train, Y_train)
```

```
Y_pred = model.predict(X_test)
find_scores(Y_test, Y_pred, X_train)
pickle.dump(model, open('resale_model1.sav', 'wb'))
INTEGRATE_FLASK:
# Import Libraries
import pickle
import numpy as np
import pandas as pd
import requests
from sklearn.preprocessing import LabelEncoder
from flask import Flask, Response, render_template, request
# NOTE: you must manually set API_KEY below using information retrieved
from your IBM Cloud account.
API_KEY = "MIfDRZYQhDHWH7dNHo2oQrSY2ajDfwJGV8PLQI9NIX36"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
data={"apikey":
API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
app = Flask(__name__)#initiate flask app
```

```
def load_model(file='C:\\Users\\Ashritha\\Documents\\Nalaya thiran\\Car resale
pred\\resale_model1.sav'):#load the saved model
      return pickle.load(open(file, 'rb'))
@app.route('/')
def index():#main page
      return render_template('car.html')
@app.route('/predict_page')
def predict_page():#predicting page
      return render_template('value.html')
@app.route('/predict', methods=['GET','POST'])
def predict():
      reg_year = int(request.args.get('regyear'))
      powerps = float(request.args.get('powerps'))
      kms= float(request.args.get('kms'))
      reg_month = int(request.args.get('regmonth'))
      gearbox = request.args.get('geartype')
      damage = request.args.get('damage')
      model = request.args.get('model')
      brand = request.args.get('brand')
      fuel_type = request.args.get('fuelType')
      veh type = request.args.get('vehicletype')
      new_row = {'yearOfReg':reg_year, 'powerPS':powerps, 'kilometer':kms,
                         'monthOfRegistration':reg month, 'gearbox':gearbox,
                         'notRepairedDamage':damage,
                         'model':model, 'brand':brand, 'fuelType':fuel_type,
                         'vehicletype':veh type}
```

```
print(new_row)
      new df = pd.DataFrame(columns=['vehicletype','yearOfReg','gearbox',
             'powerPS', 'model', 'kilometer', 'monthOfRegistration', 'fuelType',
             'brand','notRepairedDamage'])
      new df = new df.append(new row, ignore index=True)
      labels =
['gearbox','notRepairedDamage','model','brand','fuelType','vehicletype']
      mapper = \{\}
      for i in labels:
             mapper[i] = LabelEncoder()
            mapper[i].classes = np.load('Result\\'+str('classes'+i+'.npy'),
allow_pickle=True)
            transform = mapper[i].fit_transform(new_df[i])
            new_df.loc[:,i+'_labels'] = pd.Series(transform, index=new_df.index)
      labeled = new_df[['yearOfReg','powerPS','kilometer','monthOfRegistration']
+ [x+' labels' for x in labels]]
      X = labeled.values.tolist()
      print('\n\n', X)
      #predict = reg_model.predict(X)
      # NOTE: manually define and pass the array(s) of values to be scored in the
next line
      payload_scoring = {"input_data": [{"field": [['yearOfReg', 'powerPS',
'kilometer', 'monthOfRegistration', 'gearbox labels', 'notRepairedDamage labels',
'model_labels', 'brand_labels', 'fuelType_labels', 'vehicletype_labels']], "values":
X}]}
      #payload scoring = {"input data": [{"fields": [array of input fields],
"values": [array_of_values_to_be_scored,
```

```
another_array_of_values_to_be_scored]}]}
      response_scoring = requests.post('https://eu-
de.ml.cloud.ibm.com/ml/v4/deployments/99a4f93d-9a11-4878-95ed-
d5395db2f283/predictions?version=2022-11-16', json=payload_scoring,
headers={'Authorization': 'Bearer ' + mltoken})
      predictions = response_scoring.json()
      print(response_scoring.json())
      predict = predictions['predictions'][0]['values'][0][0]
      print("Final prediction :",predict)
      return render_template('predict.html',predict=predict)
if __name__=='__main__':
      reg_model = load_model()#load the saved model
      app.run(host='localhost', debug=True, threaded=False)
Github Repo:
https://github.com/IBM-EPBL/IBM-Project-39392-1660410627
Video link:
https://drive.google.com/file/d/14U2NEaGsgtFGJ2vpry_CwnGpoavxiLEL/view?u
sp=share link
```