Encoding High-Level Constraints into SAT and MIP

Neng-Fa Zhou

Brooklyn College & Graduate Center The City University of New York

PicatSAT's Performance at 2022 FLOC Olympic Games

PicatSAT's Performance in 2024

XCSP Competition

Rank	Main CSP	Main COP	Fast COP
1st	Picat	CPMpy_ortools	Picat
2nd	CPMpy- ortools	Picat	CoSoCo
3rd	Fun-sCOP	CoSoCo	Choco

MiniZinc Challenge

Category	Gold	Silver	Bronze
Fixed	OR-Tools CP-SAT	Choco-solver CP-SAT	SICStus Prolog
Free	OR-Tools CP-SAT	PicatSAT	iZplus
Parallel	OR-Tools CP-SAT	PicatSAT	Choco-solver CP
Open	OR-Tools CP-SAT	PicatSAT	Choco-solver CP
Local Search	OR-Tools CP-SAT LS	Yuck	

Constraint Programming in Picat

```
import sat. 🗻
                              Ср
                              mip
                              smt
sudoku(Board) =>
   N = Board.len,
   Vars = Board.vars(),
                                                            6
   Vars :: 1..N,
                                                        2
                                                                6
                                                       9 6 4 1
   foreach (Row in Board)
      all different (Row)
                                                               8 2
   end,
   foreach (J in 1..N)
      all different([Board[I,J] : I in 1..N])
   end,
   M = round(sqrt(N)),
   foreach (I in 1..M..N-M, J in 1..M..N-M)
      all different([Board[I+K,J+L] : K in 0..M-1, L in 0..M-1])
   end,
   solve (Vars).
```

Outline

- Encoding CSP into SAT
 - Encodings and Optimizations
- Encoding CSP into MIP
- Summary

The Satisfiability Problem (SAT)

Given a Boolean formula, the SAT problem is to determine if the formula is satisfiable. If yes, it finds an assignment for the variables that makes the formula satisfiable.

SAT Solving (CDCL)

- 1. Choice: Assign a value to a selected variable.
- 2. Unit propagation: Use this assignment to determine values for the other variables.
- 3. **Backjump**: If a conflict is found, add the negation of the conflict-causing clause as a new clause and backtrack to the choice that made the conflict occur.
- 4. Continue from step 1.
- Martin Davis, Hilary Putnam: A Computing Procedure for Quantification Theory, 1960.
- Martin Davis, George Logemann, Donald Loveland: A Machine Program for Theorem Proving, 1962.
- Joao Margues-Silva, Ines Lynce and Sharad Malik: Conflict-Driven Clause Learning SAT Solvers, 2009.
- J. K. Fichte, D. Le Berre, M. Hecher, S. Szeider: The Silent (R)evolution of SAT, 2023.

SAT Encodings

$$X::\{a_1,a_2,\ldots,a_n\}$$

Direct encoding

$$B_i \leftrightarrow X = a_i$$

 $B_1 \lor B_2 \lor \ldots \lor B_n$
at_most_one([B_1, B_2, \ldots, B_n])

Order encoding

$$B_i \leftrightarrow X \le a_i$$

Log encoding (sign-and-magnitude)

$$X.m = \langle B_{k-1} \dots B_1 B_0 \rangle$$

 $X.s = 0 \text{ or } 1$

- Johan de Kleer: A Comparison of ATMS and CSP Techniques, 1989.
- James M. Crawford, Andrew B. Baker: Experimental Results on the Application of Satisfiability Algorithms to Scheduling Problems, 1994.
- Kazuo Iwama, Shuichi Miyazaki: SAT Variable Complexity of Hard Combinatorial Problems, 1994.

CSP Solvers based on SAT

- BEE (order encoding)
- FznTini (log encoding)
- meSAT (order and direct encodings)
- PicatSAT (log and direct encodings)
- Savile Row (order and direct encodings)
- Sugar (order encoding) and its successors
- Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, Mutsunori Banbara: Compiling finite linear CSP into SAT, 2009.
- Jinbo Huang: Universal Booleanization of Constraint Models, 2008.
- Amit Metodi, Michael Codish: Compiling finite domain constraints to SAT with BEE, 2012.
- Mirko Stojadinovic, Filip Maric: meSAT multiple encodings of CSP to SAT, 2014.
- Neng-Fa Zhou and Hakan Kjellerstrand: Optimizing SAT Encodings for Arithmetic Constraints, 2017.

The PicatSAT Compiler

Primitive Constraints

- Small Pseudo-Boolean (PB) constraint: $\Sigma_1^n(a_i \times B_i) \odot b$, n = < 10- Boolean cardinality constraint: $\Sigma_i^n B_i \odot b$ (b is 1 or 2) - X :: D- $X \odot Y$ - X + Y = Z- $X \times Y = Z$ - Y = -X- $X \odot Y = -X$ - $X \odot Y = -X$ - $X \odot Y = Z$ - $X \odot Y = Z$
- Constraints are made to be arc-consistent or interval consistent
- No primitive constraints are duplicated
- Avoid creating large-domain variables
- Avoid creating domains with negative values

Encoding Small PB Constraints

Espresso

Encoding the at-most-one Constraint

Chen's two-product encoding

Jingchao Chen: A New SAT Encoding of the At-Most-One Constraint, 2010.

Sign-and-Magnitude Log Encoding

- Each domain variable is encoded as a vector of Boolean variables
 - $-X.m = \langle B_{n-1},...,B_1,B_0 \rangle$
 - X.s is the sign bit
- No negative zero is allowed

$$- X.m = <0,...,0,0> \Rightarrow X.s = 0$$

Sign-and-Magnitude Log Encoding (Example)

$$X :: [-2,-1,1,2]$$
 $X.m = \langle X1,X0 \rangle$
 $X.s = S$

Naïve Encoding

$$\neg S \lor \neg X_1 \lor \neg X_0 \qquad (X \neq -3)
\neg S \lor X_1 \lor X_0 \qquad (X \neq -0)
S \lor X_1 \lor X_0 \qquad (X \neq 0)
S \lor \neg X_1 \lor \neg X_0 \qquad (X \neq 3)$$

Optimized Encoding (Using Espresso)

$$X_0 \lor X_1$$

 $\neg X_0 \lor \neg X_1$

The Comparison Constraint: X ≥ Y

Signed comparison

$$X.s = 0 \land Y.s = 1 \lor$$

 $X.s = 1 \land Y.s = 1 \Rightarrow X.m \le Y.m \lor$
 $X.s = 0 \land Y.s = 0 \Rightarrow X.m \ge Y.m$

Unsigned comparison

$$X.\mathbf{m} = \langle X_{n-1}X_{n-2} \dots X_1X_0 \rangle, \ Y.\mathbf{m} = \langle Y_{n-1}Y_{n-2} \dots Y_1Y_0 \rangle$$

$$T_0 \Leftrightarrow (X_0 \geq Y_0)$$

$$T_1 \Leftrightarrow (X_1 > Y_1) \vee (X_1 = Y_1 \wedge T_0)$$

$$\vdots$$

$$T_{n-1} \Leftrightarrow (X_{n-1} > Y_{n-1}) \vee (X_{n-1} = Y_{n-1} \wedge T_{n-2})$$

The Addition Constraint: X+Y = Z

Unsigned addition (ripple-carry adders)

$$X_{n-1} \ldots X_1 X_0 + Y_{n-1} \ldots Y_1 Y_0 \over Z_n Z_{n-1} \ldots Z_1 Z_0$$
 Carriers are used

Signed addition

$$\begin{array}{l} X.\, {\rm s} = 0 \, \wedge \, Y.\, {\rm s} = 0 \Rightarrow Z.\, {\rm s} = 0 \, \wedge \, X.\, {\rm m} + Y.\, {\rm m} = Z.\, {\rm m} \\ X.\, {\rm s} = 1 \, \wedge \, Y.\, {\rm s} = 1 \Rightarrow Z.\, {\rm s} = 1 \, \wedge \, X.\, {\rm m} + Y.\, {\rm m} = Z.\, {\rm m} \\ X.\, {\rm s} = 0 \, \wedge \, Y.\, {\rm s} = 1 \, \wedge \, Z.\, {\rm s} = 1 \Rightarrow X.\, {\rm m} + Z.\, {\rm m} = Y.\, {\rm m} \\ X.\, {\rm s} = 0 \, \wedge \, Y.\, {\rm s} = 1 \, \wedge \, Z.\, {\rm s} = 0 \Rightarrow Y.\, {\rm m} + Z.\, {\rm m} = X.\, {\rm m} \\ X.\, {\rm s} = 1 \, \wedge \, Y.\, {\rm s} = 0 \, \wedge \, Z.\, {\rm s} = 0 \Rightarrow X.\, {\rm m} + Z.\, {\rm m} = Y.\, {\rm m} \\ X.\, {\rm s} = 1 \, \wedge \, Y.\, {\rm s} = 0 \, \wedge \, Z.\, {\rm s} = 1 \Rightarrow Y.\, {\rm m} + Z.\, {\rm m} = X.\, {\rm m} \end{array}$$

The Full Adder

$$X_i + Y_i + C_{in} = C_{out}Z_i$$

$$X_{i} \vee \neg Y_{i} \vee C_{in} \vee Z_{i}$$

$$X_{i} \vee Y_{i} \vee \neg C_{in} \vee Z_{i}$$

$$\neg X_{i} \vee \neg Y_{i} \vee C_{in} \vee \neg Z_{i}$$

$$\neg X_{i} \vee Y_{i} \vee \neg C_{in} \vee \neg Z_{i}$$

$$\neg X_{i} \vee C_{out} \vee Z_{i}$$

$$X_{i} \vee \neg C_{out} \vee \neg Z_{i}$$

$$\neg Y_{i} \vee \neg C_{in} \vee C_{out}$$

$$Y_{i} \vee \neg C_{in} \vee C_{out}$$

$$Y_{i} \vee \neg C_{in} \vee \neg C_{out}$$

$$X_{i} \vee \neg Y_{i} \vee \neg C_{in} \vee Z_{i}$$

An Optimized Carrier-free Encoding for Y = X+1

Consider two bits a time

$$\neg Y_{i-1} \wedge X_{i-1} \Rightarrow Y_i = \neg X_i \Rightarrow \text{11 clauses}$$

$$\neg Y_{i-1} \wedge X_{i-1} \wedge X_i \Rightarrow Y_{i+1} = \neg X_{i+1}$$
otherwise $\Rightarrow Y_i = X_i \wedge Y_{i+1} = X_{i+1}$

Top-most 4 bits → 21 clauses

The Multiplication Constraint: X*Y = Z

The Shift-and-Add Algorithm

$$X.m*Y.m = Z.m$$
 $X.m =$ $X_0 = 0 \Rightarrow S_0 = 0$ $X_0 = 1 \Rightarrow S_0 = Y$ $X_1 = 0 \Rightarrow S_1 = S_0$ $X_1 = 1 \Rightarrow S_1 = (Y << 1) + S_0$ \vdots $X_i = 0 \Rightarrow S_i = S_{i-1}$ $X_i = 1 \Rightarrow S_i = (Y << i) + S_{i-1}$ \vdots $X_{n-1} = 0 \Rightarrow S_{n-1} = S_{n-2}$ $X_{n-1} = 1 \Rightarrow S_{n-1} = (Y << (n-1)) + S_{n-2}$ $Z = S_{n-1}$

• H. Bierlee, etc.: Single Constant Multiplication for SAT. CPAIOR'24.

Equivalence Reasoning

 Equivalence reasoning is an optimization that reasons about a possible value for a Boolean variable or the relationship between two Boolean variables at compile time.

$$X = \operatorname{abs}(Y)$$
 $\Rightarrow X.m = Y.m, X.s = 0$
 $X = -Y$ $\Rightarrow X.m = Y.m, X.s = Y.s = 0 \to X.m = 0$
 $X = Y \mod 2^K \Rightarrow X_0 = Y_0, X_1 = Y_1, \dots, X_{k-1} = Y_{k-1}$
 $X = Y \operatorname{div} 2^K \Rightarrow X_0 = Y_K, X_1 = Y_{K+1}, \dots$

No clauses are needed to encode X = abs(Y).

Constant Propagation on X+Y = Z

$$X_i + Y_i = C_{out} Z_i,$$

Rule-1:
$$X_i = 0 \Rightarrow C_{out} = 0 \land Z_i = Y_i$$
.

Rule-2:
$$X_i = 1 \Rightarrow C_{out} = Y_i \land Z_i = \neg Y_i$$
.

Rule-3:
$$Z_i = 0 \Rightarrow C_{out} = X_i \land X_i = Y_i$$

Rule-4:
$$Z_i = 1 \Rightarrow C_{out} = 0 \land X_i = \neg Y_i$$
.

Example-1

$$X_0 = Z_0$$

$$X_1 = Z_1$$

$$\neg X_2 = Z_2$$

$$X_2 = Z_3$$

Example-2

$$\begin{array}{c|cccc} X_2 & X_1 & X_0 \\ + & Y_2 & Y_1 & Y_0 \\ \hline 1 & 0 & 1 & 1 \end{array}$$

$$\neg X_0 = Y_0$$

$$\neg X_1 = Y_1$$

$$X_2 = Y_2$$

$$X_2 = 1$$

$$Y_2 = 1$$

Constant Propagation on X*Y = Z

$$X_0 = 0 \Rightarrow S_0 = 0$$

 $X_0 = 1 \Rightarrow S_0 = Y$
 $X_1 = 0 \Rightarrow S_1 = S_0$
 $X_1 = 1 \Rightarrow S_1 = (Y << 1) + S_0$
 \vdots
 $X_i = 0 \Rightarrow S_i = S_{i-1}$
 $X_i = 1 \Rightarrow S_i = (Y << i) + S_{i-1}$
 \vdots
 $X_{n-1} = 0 \Rightarrow S_{n-1} = S_{n-2}$
 $X_{n-1} = 1 \Rightarrow S_{n-1} = (Y << (n-1)) + S_{n-2}$
 $Z = S_{n-1}$

Rule 5: $X_i = 0 \Rightarrow \text{copy all of the bits of } S_{i-1} \text{ into } S_i$.

Rule 6: $X_i = 1 \Rightarrow \text{copy the lowest } i \text{ bits of } S_{i-1} \text{ into } S_i$.

Rule 7:
$$X.m = \langle X_{n-1} ... X_i 0 ... 0 \rangle \land X_i = 1 \implies Z_i = Y_0 \land Z_k = 0 \text{ for } k \in 0..(i-1).$$

all_different(L)

$$all_different([V_1, V_2, \dots, V_n])$$

Standard

$$V_i \neq V_j$$
 for $i, j = 1, \dots, n, i < j$.

- Use at most one
 - Let $D = D_1 \cup D_2 \cup \ldots \cup D_n$
 - If |D| > n: $\forall_a \in D$: at_most_one($[V_1 = a, V_2 = a, \dots, V_n = a]$)
 - If |D| = n: $\forall_a \in D$: exactly_one($[V_1 = a, V_2 = a, \dots, V_n = a]$)
- A hybrid of log and direct encodings

The cumulative Constraint

cumulative(
$$[S_1, S_2, \ldots, S_n]$$
, $[D_1, D_2, \ldots, D_n]$, $[R_1, R_2, \ldots, R_n]$, $Limit$)

Occupation constraints

for each time
$$t_i$$
 and each task j :
 $O_{ij} \leftrightarrow S_j \leq t_i < S_j + D_j$

Resource constraints

for each time
$$t_i$$
:
$$\sum_{j=1}^n O_{ij} * R_j \leq Limit$$

- Time points
 - Time decomposition: all the time points in the make span
 - Task decomposition: only the start or end points
 - Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G.Wallace. Explaining the cumulative propagator, 2011.

The acyclic_d(V, E) Constraint

- Leaf-elimination encoding (LEE)
 - A graph is acyclic if the graph can be reduced to empty after leaves are repeatedly eliminated.

$$G_0 = G \longrightarrow G_1 \cdots \longrightarrow G_t$$

- Use a time variable for each vertex
- Vertex-elimination encoding (VEE)

- If G' is cyclic, then G is cyclic
- Hybrid encoding (HYB)
 - Combines LEE and VEE
 - M. F. Rankooh and J. Rintanen: Propositional Encodings of Acyclicity and Reachability by Using Vertex Elimination, AAAI'22.
 - N.F. Zhou, R. Want, and R. Yap: A Comparison of SAT Encodings for Acyclicity of Directed Graphs, SAT'23.

The hcp(V,E) Constraint

- Distance encoding (DIST)
 - Use a distance variable for each vertex
 - If an arc (u,v) is in the cycle and v is not the starting vertex, then Dv = Du+1
- Vertex elimination encoding (VEE)
 - Ensure the mapping between H_G and H_G'

- Hybrid encoding combing DIST and VEE
 - N.F. Zhou: In Pursuit of an Efficient SAT Encoding for the Hamiltonian Cycle Problem, CP 2020.
 - N.F. Zhou: Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination, CP 2024.

Further Readings

- N.F. Zhou, H. Kjellerstrand: The Picat-SAT Compiler, PADL 2016.
- N.F. Zhou, H. Kjellerstrand: Optimizing SAT Encodings for Arithmetic Constraints, CP 2017.
- R. Bartak, N.F. Zhou, R. Stern, E. Boyarski, and P. Surynek: Modeling and Solving the Multi-Agent Pathfinding Problem in Picat, ICTAI'17.
- N.F. Zhou: In Pursuit of an Efficient SAT Encoding for the Hamiltonian Cycle Problem, CP 2020.
- N.F. Zhou: Modeling and Solving Graph Synthesis Problems Using SAT-Encoded Reachability Constraints in Picat, ICLP 2021.
- N.F. Zhou, R. Want, and R. Yap: A Comparison of SAT Encodings for Acyclicity of Directed Graphs, SAT 2023.
- N.F. Zhou: Encoding the Hamiltonian Cycle Problem into SAT Based on Vertex Elimination, CP 2024.

Encoding CSP into MIP

- MIP for combinatorial search
 - Symplex method
 - LP relaxation
 - Branch-and-bound
 - Cutting planes method
- MIP solvers support nonlinear constraints
- Encoding nonlinear constraints into linear ones is still important

CSP to MIP

- X :: D
- Linear constraints
- $\bullet X \neq Y$
- abs(X) = Y
- $\bullet X \times Y = Z$
- X div Y = Z
- $X \mod Y = Z$
- max(X, Y) = Z
- min(X, Y) = Z
- $B \leftrightarrow C$
- \bullet $B \rightarrow C$
- table_in($\{X_1, X_2, \dots, X_n\}, T$)
- Constraints are made to be arc-consistent or interval consistent
- No primitive constraints are duplicated

X :: D

- Let $D = L_1..U_1 \cup L_2..U_2 \cup ... \cup L_m..U_m$
- Introduce a binary variable B_i for each interval $L_i...U_i$
 - $B_i \rightarrow X \geq L_i$
 - $B_i \rightarrow X \leq U_i$
- Translate $X :: D \text{ to } B_1 + B_2 + \ldots + B_m = 1$

$X \neq Y$ and abs(X) = Y

- X≠Y
 - $B \rightarrow X > Y$
 - ${}^{\sim}B \rightarrow X < Y$
- abs(X) = Y
 - T = -X
 - Y = max(X, T)

$X \times Y = Z$, X div Y = Z, X mod Y = Z

- Let X's binary representation be $\langle X_{n-1}, \dots, X_1, X_0 \rangle$
- Translate $X \times Y = Z$ to:

•
$$Z = 2^{n-1} T_{n-1} + ... + 2T_1 + T_0$$
 Binary expansion

•
$$X_i \rightarrow T_i = Y$$

$$\bullet$$
 $\neg X_i \rightarrow T_i = 0$

• Convert X div Y = Z ($X \ge 0, Y > 0$) to

$$\bullet X = Y \times Z + R$$

•
$$0 \le R < Y$$

• Convert $X \mod Y = Z \ (X \ge 0, Y > 0)$ to

•
$$X = Y \times Q + Z$$

•
$$0 < Z < Y$$

min(X,Y) = Z

- min(X,Y) = Z
 - Z ≤ X
 - $Z \leq Y$
 - B1 \rightarrow X \leq Z
 - B2 \rightarrow Y \leq Z
 - B1+B2 ≥ *Z*

$B \rightarrow X \leq Y$, $B \leftrightarrow X \leq Y$

- $B \rightarrow X \leq Y$
 - $X (1-B)M \leq Y$

The big-M method

- $B \leftrightarrow X \leq Y$
 - $B \rightarrow X \leq Y$
 - ${}^{\sim}B \rightarrow X > Y$

table_in({X1,X2,...,Xn}, T)

$$T = [\{t_{11}, t_{12}, ..., t_{1n}\}, \\ \{t_{21}, t_{22}, ..., t_{2n}\}, \\ ... \\ \{t_{m1}, t_{m2}, ..., t_{mn}\}]$$

Introduce a binary variable B_i for each row

• for
$$j \in 1..n : X_j = \sum_{i=1}^m B_i \times t_{ij}$$

•
$$\sum_{i=1}^{m} B_i = 1$$

https://www.minizinc.org/

Summary

- As demonstrated by Picat, encoding CSP into SAT and MIP are viable and economical ways to having efficient CSP solvers
- The sat encoder incorporates cutting-edge encodings and optimizations for constraints
- The mip encoder implements some of the standard linearization algorithms
- A logic language, like Picat, is ideal for implementing these encoders

THANK YOU!

picat-lang.org