Complex Analysis I: Problem Set IV

Youngduck Choi CILVR Lab New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the problem set IV of Complex Analysis I 2015 at Courant Institute of Mathematical Sciences.

Question 1. Brown p.147-2.

Solution. (b) We first have that $\cos(z/2)$ is continous everywhere on the complex plane. Therefore, any contour from 0 to $\pi + 2i$ will have the same value of $F(\pi + 2i) - F(0)$, where F denotes the antiderivative of $\cos(z/2)$. We can compute the exact value as follows:

$$\int_0^{\pi+2i} \cos(\frac{z}{2}) dz = \left[2\sin(\frac{z}{2}) \right]_0^{\pi+2i}$$

$$= 2\sin(\frac{\pi}{2} + i)$$

$$= 2\cos(i)$$

$$= e + \frac{1}{e},$$

as desired. \square

Question 5. Brown p.147-5.

Solution. Let C be a contour from -1 to 1 that lies above the x-axis. We wish to compute the following integral:

$$\int_C z^i dz$$
,

where z^i denotes the principal branch exp(iLog(z)) for $|z|>0, -\pi < Arg(z) < \pi$. Notice that under the principal branch, z=-1 is not defined. The following branch, however, agrees with the integrand along C and is has anti-derivative along C:

$$z^i=exp(ilog(z)) \text{ for } (|z|>0, -\frac{\pi}{2} < arg(z) < \frac{3\pi}{2}).$$

We then can compute the integral as follows:

$$\int_C z^i dz = \left[\frac{z^{i+1}}{i+1} \right]_{-1}^1 \\
= \frac{1}{i+1} (e^{(i+1)log1} - e^{(i+1)log(-1)}) \\
= \frac{1}{i+1} (e^{(i+1)(ln1)} - e^{(i+1)ln(1+i\pi)}) \\
= \frac{1}{i+1} (1 + e^{i\pi}) \\
= \frac{1 + e^{-\pi}}{2} (1 - i),$$

as desired.

Question 1. Brown p.159-2.

Solution. (b) Let C_1 denote the positively oriented boundary of the square whose sides lie along the line $x=\pm 1$, $y=\pm 1$ and let C_2 be the positively oriented circle |z|=4. Observe that C_1 is interior to C_2 and the given function $\frac{z+2}{\sin(\frac{z}{2})}$ is analytic in the closed region consisting of the C_1 and C_2 contours and all points between them. Hence, by the corollary, we have

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz,$$

for
$$f(z) = \frac{z+2}{\sin(\frac{z}{2})}$$
. \square

Question 2. Brown 159-4.

Solution. (a) Observe that along the lower horizontal leg, we have $z = x \ (-a \le x \le a)$. Hence, the integral along the lower horizontal leg from -a to a can be written as

$$2\int_0^a e^{-x^2} dx.$$

For the upper horizontal leg, we have $z=x+ib \ (-a \le x \le a)$. Hence, the integra along the upper horizontal from a to -a can be written as

$$\int_{a}^{-a} e^{-(x+ib)^2} dx,$$

wich can be simplified as follows:

$$\int_{a}^{-a} e^{-(x+ib)^{2}} dx = -e^{b^{2}} \int_{-a}^{a} e^{-x^{2}-2ibx} dx$$
$$= -2e^{b^{2}} \int_{0}^{a} e^{-x^{2}} \cos(2bx) dx.$$

Hence, we have

$$2\int_0^a e^{-x^2} dx + -2e^{b^2} \int_0^a e^{-x^2} \cos(2bx) dx,$$

for the sum of contour integrals along each horizontal leg. Now, observe that along the right vertical leg, we have $z = a + iy \ (0 \le y \le b)$. Hence,

Question 1. Brown p.170-1.

Solution. Let C denote the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$. We evaluate the following integrals.

(b) We are given the following integral:

$$\int_C \frac{\cos(z)}{z(z^2+8)} dz,$$

which can be written as

$$\int_C \frac{\frac{\cos(z)}{(z^2+8)}}{z} dz.$$

As $\frac{\cos(z)}{(z^2+8)}$ is analytic everywhere inside and on the given contour, which is simple and closed, taken in the positive sense, by the Cauchy Integral formula, we obtain

$$\frac{\cos(0)}{8} = \frac{1}{2\pi i} \int_C \frac{\frac{\cos(z)}{(z^2+8)}}{z} dz,$$

which simplifies to

$$\int_C \frac{\frac{\cos(z)}{(z^2+8)}}{z} dz = \frac{\pi i}{4}.$$

(d) We are given the following integral:

$$\int_C \frac{\cosh(z)}{z^4} dz.$$

As $\frac{\cosh(z)}{z^4}$ is analytic everywhere inside and on the given contour, which is simple and closed, taken in the positive sense, by the extended Cauchy Integral formula, we obtain

$$\cosh^{(3)}(z_0) = \frac{3!}{2\pi i} \int_C \frac{\cosh(z)}{(z-z_0)^4} dz,$$

for z_0 inside and on the given contour. Observe that $\cosh^{(3)} = \sinh$. Hence, taking $z_0 = 0$ yields

$$0 = \frac{3!}{2\pi i} \int_C \frac{\cosh(z)}{z^4} dz,$$

which simplifies to

$$\int_C \frac{\cosh(z)}{z^4} dz = 0.$$

(e) We are given the following integral:

$$\int_C \frac{\tan(\frac{z}{2})}{(z-x_0)^2} dz,$$

for $-2 < x_0 < 2$. Notice that x_0 is inside the given contour. As $\frac{\tan(\frac{z}{2})}{(z-x_0)^2}$ is analytic everywhere inside and on the given contour, which is simple and closed, taken in the positive sense, by the extended Cauchy Integral formula, we obtain

$$\frac{1}{2}\sec^2(\frac{x_0}{2}) = \frac{1!}{2\pi i} \int_C \frac{\tan(\frac{z}{2})}{(z-x_0)^2} dz,$$

which simplifies to

$$\int_C \frac{\tan(\frac{z}{2})}{(z-x_0)^2} dz = i\pi \sec^2(\frac{x_0}{2}),$$

for
$$-2 < x_0 < 2$$
.

Question 2. Brown 170.3.

Solution. Let C be the circle |z|=3, described in the positive sense. As $2s^2-s-2$ is analytic everywhere inside and on the given contour, which is simple and closed, taken in the positive sense, by the extended Cauchy Integral formula, we obtain

$$2z^2 - z - 2 = \frac{1}{2\pi i} \int_C \frac{2s^2 - s - 2}{s - z} ds,$$

for |z| < 3. As $g(z) = \int_C \frac{2s^2 - s - 2}{s - z} ds$, we have

$$g(z) = 2\pi i (2z^2 - z - 2),$$

for |z| < 3. Hence, it follows that $g(2) = 8\pi i$. For |z| > 3, we have that $\frac{2s^2 - s - 2}{s - z}$ is analytic at all points interior to and on C. Hence, by the Cauchy-Goursat theorem, we obtain

$$\int_C \frac{2s^2 - s - 2}{s - z} dz = 0,$$

for |z| > 3. Therefore, g(z) = 0 when |z| > 3, which completes the solution for the problem.

Question 3. Brown 170-4.

Solution. Let C be any simple closed contour, described in the positive sense in the z plane. As $s^3 + 2s$ is entire, by the extended Cauchy Integral formula, we obtain

$$6z = \frac{2!}{2\pi i} \int_C \frac{s^3 + 2s}{(s-z)^3 i} ds,$$

for z at the interior of C. As $g(z) = \int_C \frac{s^3 + 2s}{(s-z)^3} ds$, we have

$$g(z) = 6\pi i z$$

for z inside C. Now, if z is outside of C, then $\frac{s^3+2s}{s-z}$ is analytic at points interior to and on C. Hence, by the Cauchy-Goursat Theorem, we have that

$$\int_C \frac{s^3 + 2s}{(s-z)^3} ds = 0,$$

for z outside of C. Hence g(z) = 0 when z is outside. \square

Question 4. Brown 170-7.

Solution. Let C be the unit circle. As e^{az} is entire, by the Cauchy Integral formula, we obtain

$$e^{az_0} = \frac{1}{2\pi i} \int_C \frac{e^{az}}{z - z_0} dz,$$

for z_0 inside C. By taking $z_0 = 0$, we get

$$1 = \frac{1}{2\pi i} \int_C \frac{e^{az}}{z} dz,$$

which simplifies to

$$\int_C \frac{e^{az}}{z} dz = 2\pi i.$$

Question 5. Brown 170-8.

Solution. The Legendre polynomials are defined by

$$P_n(z) = \frac{1}{2^{n+1}\pi i} \int_C \frac{(s^2 - 1)^n}{(s - z)^{n+1}} ds,$$

for any simple closed contour surrounding z. For z = -1, and by having C to be any arbitrary simple closed contour that surrounds z = -1, it follows that

$$P_n(-1) = \frac{1}{2^{n+1}\pi i} \int_C \frac{(s^2 - 1)^n}{(s+1)^{n+1}} ds,$$

which, by using the suggestion, simplifies to

$$P_n(z) = \frac{1}{2^{n+1}\pi i} \int_C \frac{(s-1)^n}{s+1} ds.$$

Since $(s-1)^n$ is entire, $(s-1)^n$ is analytic inside and on C. Hence, by the Cauchy Integral formula, we have

$$(-2)^n 2\pi i = \int_C \frac{(s-1)^n}{s+1} ds.$$

Substituting the above equality into the simplified formula of Legendre polynomials yields

$$P_n(z) = \frac{(-2)^n 2\pi i}{2^{n+1}\pi i}$$

= $(-1)^n$,

as desired.

Question 10. Brown 177-1.

Solution. Assume that f(z) is entire, and that the harmonic function u(x,y) = Re[f(z)] has an upper bound u_0 . Observe that $g(z) = e^{f(z)}$ is entire, and

$$|e^{f(z)}| = |e^{u(x,y)+iv(x,y)}| = |e^{u(x,y)}| \le e^{u_0},$$

as u_0 is an upper bound for u(x,y). Therefore, by the Liouville's theorem, we have that g is constant. Then, $g^{'}(z)=0$ for all z. By the complex chain rule, we obtain

$$g'(z) = f'(z)e^{f(z)}.$$

Since $e^{f(z)} \neq 0$, we have f'(z) = 0, and f(z) is constant. \square