

ρx

 $(\mathcal{G}) \cdot \bigwedge (\mathcal{G}) = \bigwedge (\mathcal{G}).$

 $\left(1\varnothing - 2\int_{\bullet}^{\circlearrowleft}\right)^2 = \varnothing - 4\int_{\bullet}^{\circlearrowleft} + 4\int_{\bullet}^{\circlearrowleft} \ge 0.$

$$\left[\left(1\varnothing - 2\right)^{2}\right] = \left[\varnothing - 4\right] + 4 \left[\varnothing - 4$$

$$\frac{1}{2} - \left[\frac{1}{2} \left(1 \otimes -2 \right)^{2} \right] + \left[\left(\frac{1}{2} - \frac{1}{2} - \frac{1}{3} - \frac{1}{2} \right)^{2} \right] - \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{3} - \frac{1}{2} \right] - \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{2} + \frac{1}{2$$

 $\llbracket f^2 \rrbracket = \langle cc^{\top}, \llbracket f^2 \rrbracket$

$$\langle M, \llbracket \mathcal{F} \mathcal{F}^{ op}
rbracket
ceil
angle
angle$$

|E(H)|

 $\nabla_{\mathbf{v}} f(x) = \lim_{h \to 0} \frac{f(x+h\mathbf{v}) - f(x)}{h}$

(*H* density in $(G_i - v)$)—(*H* density in G_i)

 $\partial_{\mathbf{v}}H := \lim_{i \to \infty}$

$$\partial_1 = 2 - 2$$

$$\partial_1 - 2$$

$$\partial_1 - 2$$

(*H* density in $(G_i - e)$)—(*H* density in G_i)

 $\partial_{e} H := \lim_{i \to \infty}$

$$\partial_{e} = -2$$

$$\partial_{e} = -2$$

$$\partial_{e} = -2$$

$$\partial_{e} = -6$$

$$\partial_{e} = -6$$

$$\frac{1}{4} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \partial_{\text{swap}} (P_3 - e^3) = - + - 2 + - 2 + \ge 0$$

But
$$=$$
 SOS ≥ 0 and $-$ SOS ≥ 0 .

This proves by induction. $\bigcap_{i\to\infty}^{\mathbb{D}} (\mathcal{G}) \coloneqq \lim_{i\to\infty} \mathbb{P} \left[\sigma_i \left(\bigcap_{i=1}^{\mathbb{D}} \right) \text{ is a subgraph of } G_i \mid \sigma_i(1) = 1 \right]$