

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Confirmation No.: 1028

ZAUDERER et al.

Art Unit: 1639

Appl. No. 10/052,942

Examiner:

Epperson, J.D.

Filed: January 23, 2002

Atty. Docket: 1821.0090004/EJH/T-M

Methods of Producing or

Identifying Intrabodies in **Eukaryotic Cells**

Declaration Under 37 C.F.R. § 1.132

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Sir:

I, the undersigned, Dr. Maurice Zauderer, residing at 44 Woodland Road, Pittsford, New York 14534, declare and state as follows:

- 1. I am the co-founder of Vaccinex, Inc., and have held the positions of President and Chief Executive Officer since April 6, 2001. I am also a co-inventor of the captioned patent application.
 - 2. A current *curriculum vitae* is appended hereto as Exhibit 1.
- 3. I received my Ph.D. degree in cell biology from the Massachusetts Institute of Technology in 1972. From 1971 to 1975, I conducted postdoctoral research at various research institutions including the Albert Einstein College of Medicine in New York, and the National Institute for Medical Research in London. I was an Assistant Professor in the Department of Biological Sciences at Columbia University from 1976 to 1983, and from 1984 to 2000, I was an Associate Professor in the Cancer Center and Department of Microbiology and Immunology at the University of Rochester. As shown on my attached curriculum vitae, I have also held various other academic positions, participated in many

professional activities, and published numerous peer-reviewed articles in the field of immunology. Based on my education and experience, I am an expert in immunology and cell biology.

- 4. I have reviewed the above-captioned patent application ("patent application"), the final Office Action dated November 20, 2006 ("the Office Action"); U.S. Pat. No. 5,851,829 to Marasco and Haseltine ("Marasco"); Waterhouse *et al.*, *Nucleic Acids Res.* 21:2265-2266 (1993) ("Waterhouse"); PCT Publication No. WO 93/01296 to Zauderer ("Zauderer"); and PCT Publication No. WO 93/01296 to Rowlands *et al.* ("Rowlands") (collectively, "the cited references"). I have also reviewed the pending claims of the patent application.
- 5. The invention claimed in the patent application relates to the field of immunology. More particularly, the invention relates to the art or field of identifying, producing, and/or expressing intracellular immunoglobulins ("intrabodies") in eukaryotic cells. In my opinion, a person of ordinary skill in the art of immunology would have a Ph.D. degree in a field related to immunology or cell biology.
- 6. The claimed invention is directed to a screening method to select polynucleotides that encode an antigen-specific intracellular immunoglobulin molecule or fragment thereof by introducing separate libraries of immunoglobulin heavy and light chains or fragments thereof into eukaryotic host cells. Expression of the intracellular immunoglobulin induces a modified phenotype in a eukaryotic host cell by binding to an intracellular antigen.
- 7. It is my understanding, as explained to me by Vaccinex, Inc.'s patent attorneys, that a *prima facie* showing of obviousness of a patent claim requires that the prior

have been motivated to combine prior art references with a reasonable expectation of success. After reviewing Marasco and the other documents listed in paragraph 4, above, it is my opinion that the Examiner is relying on Marasco for features that it does not teach. The

reasons for my opinion are set forth below.

8. The Examiner states at page 3 of the Office Action that Marasco discloses "a method of selecting polynucleotides which encode an intracellular immunoglobulin molecule or fragment thereof," and refers to excerpts of Marasco that supposedly describe screening libraries of intracellular immunoglobulins or fragments. *See* Office Action at pages 3 and 6. However, it is my opinion that the Examiner has misunderstood the teachings of Marasco.

9. Marasco's method starts either with a known antibody (see, for example, col. 13, 1. 27 to col. 15, 1. 27) or by identifying an antibody using conventional screening methods (see, for example, col. 12, 1. 17 to col. 13, 1. 26). Then, once the antibody of interest is determined, the pre-selected antibody is modified to be expressed intracellularly as an antibody fragment (see, for example, col. 15, 1. 48 to col. 23, 1. 12). It is also evident from the Examples section in Marasco that the specific antibodies of interest were identified and/or constructed first (Examples A and B), then were expressed intracellularly to test for activity (Example C). Thus, the purpose in Marasco was to identify an antigen-specific antibody before expressing the pre-selected antibody intracellularly for therapeutic purposes. Marasco was not identifying an immunoglobulin by screening libraries of intracellular immunoglobulins. Indeed, the specific screening methods mentioned Marasco--phage display (col. 12, II. 3-5); passing cell culture supernatants over affinity columns, mini-gel

Attorney Docket No. 1821.0090004

- 4 -

ZAUDERER *et al.* Appl. No. 10/052,942

filtration, radioimmunoassay with magnetic beads, and biosensor-based analysis (e.g.,

BIAcore) (col. 13, II. 6-20); and ELISA (col. 15, II. 38-48)--are all extracellular

identification methods. None of these techniques is performed using libraries of intracellular

immunoglobulins that bind an intracellular antigen. Put simply, Marasco does not teach

screening libraries of intracellularly expressed immunoglobulins as the Examiner asserts.

Furthermore, Marasco does not even suggest that it is possible to screen libraries of

intracellularly expressed immunoglobulins, let alone provide any specific guidance to show

how it would be done. Therefore, it is my opinion that that the Examiner has

mischaracterized the teachings of Marasco.

11. I hereby declare that all statements made herein of my own knowledge are

true and that all statements made on information and belief are believed to be true; and

further that these statements were made with the knowledge that willful false statements and

the like so made are punishable by fine or imprisonment, or both, under Section 1001 of

Title 18 of the United States Code and that such willful false statements may jeopardize the

validity of the present patent application or any patent issued thereon.

Respectfully submitted,

Maurice Zauderer, Ph.D.

Date: February 8, 2007

Curriculum Vitae

Maurice Zauderer, Ph.D.

Education

Yeshiva University; NY, New York	B.S.	1966	Physics
Massachusetts Institute of Technology;	Ph.D.	1972	Cell Biology
Cambridge, Massachusetts			

Professional Positions:

1971-1975	Postdoctoral Fellow of the Helen Hay Whitney Foundation.
1972-1973	Postdoctoral Research with Dr. Matthew D. Scharff,
	Albert Einstein College of Medicine, NY.
1974-1975	Postdoctoral Research with Dr. Brigitte A. Askonas,
	National Institute for Medical Research, Mill Hill, London.
1975-1976	Visiting Scientist Laboratory of Cell Biology, Rome, Italy
1976-1983	Assistant Professor, Department of Biological Sciences,
	Columbia, University, NY, NY.
1984-2000	Associate Professor, Cancer Center
	and Department of Microbiology and Immunology,
	University of Rochester, Rochester, NY.
1984-1985	Visiting Scientist, Laboratory of Dr. Tak Mak,
	Ontario Cancer Institute, Toronto, Canada.
1990- 1997	Associate Professor, Strong Children's Research Center and
	Department of Pediatrics,
	University of Rochester, Rochester, New York.
1993-1994	Visiting Scientist, Laboratory of Dr. Alfred Singer,
	Experimental Immunology Branch,
	NCI, NIH, Bethesda, MD.
1997-2001	President and General Partner of Vaccinex, LP
2001-	President & CEO, Vaccinex, Inc., Rochester, N.Y.

Other Professional Activities:

1984	National Science Foundation, Cellular Physiology Study Section.
1987-1989	Associate Editor, Journal of Immunology.
1990	Allergy and Immunology Study Section,
	Division of Research Grants, N.I.H.
1990	National Cancer Institute Special Review Committee

1992-1997	Multiple Sclerosis Society, Basic Science Study Section.
1994-1999	Associate Editor, Journal of Immunology
2003 -	Board Member, New York Biotechnology Association
2003 -	Board Member, Rochester Economic Development Board

Key Scientific Publications (partial listing):

Faherty, D.A., Johnson, D.R., and **Zauderer, M**. 1986. Origin and specificity of autoreactive T cells in antigen-induced populations. *J. Exp. Med.* 161:1293-1301.

Zauderer, M., Iwamoto, A., and Mak, T. 1986. Gamma gene rearrangement and expression in autoreactive helper T cells. *J. Exp. Med.* 163:1314-1318.

Johnson, D.R., Faherty, D.A., and **Zauderer, M**. 1986. TTGG-A--L specific memory B cells induced in low responder strains. *J. Immunol.* 137:2791-2795.

Johnson, D.R., Faherty, D.A., and **Zauderer, M.** 1986. Different T cell requirements for specific memory induction in normal and <u>xid</u> B cells. *J. Immunol.* 137:2796-2801.

Moynihan, J., Burstyn, D., and **Zauderer, M.** 1989. Autoreactive T cell response to resting or activated B cells. *Immunol.* 68:199-203.

Burstyn, D., and **Zauderer, M.** 1989. Requirements for stimulation of autoreactive T cells by thymic stroma. *J. Immunol.* 143:1422-1425.

Zauderer, M. 1989. Origin and Significance of autoreactive T cells. *Advances in Immunol.* 45:417-437.

Zauderer, M., and Natarajan, K. 1990. Imprint of thymic selection on autoreactive repertoires. *Immunological Reviews*. 116:159-170.

Fisher, D.J., Gigliotti, F., **Zauderer, M.** and Harmsen, A.G. 1991. Specific T-cell response to a *pneumocystis carinii* surface glycoprotein (gp120) after immunization and natural infection. *Infection and Immunity*,59: 3372.

Natarajan, K., Burstyn, D. and **Zauderer, M.** 1992. Major Histocompatibility Complex Determinants Select T-cell Receptor a Chain Variable Region Dominance in a Peptide-specific Response. *PNAS*, 89: 8874-8878.

Sahasrabudhe, D.M., Burstyn, D., Dusel, J.C., Hibner, B.L., Collins, J.L., and **Zauderer, M.** 1993. Shared T Cell-defined Antigens on Independently Derived Tumors. *J. Immunol.* 151:6302-10

Westbay, T.D., Dascher, C., Bavoil, P., and Zauderer, M. 1994. Dissociation of

immune determinants of outer membrane proteins of *Chlamydia psittaci* strain guinea pig inclusion conjunctivitis. *Infection and Immunity* 62:5614-23.

Westbay, T.D., Dascher, C., **Zauderer, M.**, and Bavoil, P. 1995. Deviation of immune response to *Chlamydia psittaci* outer membrane protein in LPS hyporesponsive mice. *Infection and Immunity* 63:1391-3.

Zauderer, M. 1996. Special delivery for peptide-stimulated immunity. *Nature Biotechnology* 14:703-705.

Moore, J.C., **Zauderer, M**., Natarajan, K., and Jensen, P.E. 1997. Peptide binding to mixed isotype Ab^dEa^d class II histocompatibility molecules. *Mol. Immunol.* 34:145-155.

Zauderer, M., and Singer, A. 1997. Limiting dilution analysis of primary cytotoxic T cell precursors. *J. Immunol. Methods*, 208: 85-90.

Merchlinsky, M., Eckert, D., Smith, E., and **Zauderer,M.** 1997. Construction and characterization of Vaccinia direct ligation vectors. *Virology*, 238: 444-451.

Smith, E.S., Mandokhot, A., Evans, E.E., Mueller, L., Borrello, M.A., Sahasrabudhe, D.M., and **Zauderer, M.** 2001. Lethality-based selection of recombinant genes in mammalian cells: Application to identifying tumor antigens. *Nature Medicine*, 7:967-972.

Zauderer Patents and Patent Applications:

Application Title	Filing Date
T CELLS SPECIFIC FOR TARGET ANTIGENS AND	Sept. 22, 1997
VACCINES BASED THEREON	
METHODS FOR PRODUCING POLYNUCLEOTIDE	April 2, 2001
LIBRARIES IN VACCINIA VIRUS	
METHODS OF SELECTING POLYNUCLEOTIDES	Jan. 3, 2002
ENCODING ANTIGENS	
TARGETED VACCINE DELIVERY SYSTEMS	Apr. 12, 2001
GENE DIFFERENTIALLY EXPRESSED IN BREAST	Apr. 4, 2001
AND BLADDER, AND ENCODED POLYPEPTIDES	, , , , , , , , , , , , , , , , , , , ,
METHODS OF PRODUCING A LIBRARY AND	Mar. 28, 2001
METHODS OF SELECTING POLYNUCLEOTIDES OF	
INTEREST	
METHOD OF SCREENING FOR THERAPEUTICS	Oct. 1, 2001
FOR INFECTIOUS DISEASES	
IN VITRO METHODS OF PRODUCING AND	Nov. 14, 2001
IDENTIFYING IMMUNOGLOBULIN MOLECULES IN	
EUKARYOTIC CELLS	
METHODS OF IDENTIFYING REGULATOR	Feb. 4, 2002
MOLECULES	
METHODS OF PRODUCING OR IDENTIFYING	Jan. 23, 2002
INTRABODIES IN EUKARYOTIC CELLS	

Vaccinex Research Awards:

Date	Grant Institution	Research Area	Award Amount
06/04	NIH/ National Institute of Aging	Monoclonal Antibody Therapy to Combat Osteoporosis	\$217,632
05/04	National Institute Standards and Technology/ Advanced Technology Program	Development of Human Monoclonal Antibody Discovery Technology	\$1,993,619
05/04	NIH/ National Cancer Institute	New Target Antigens for Prostate Cancer Immunotherapy	\$599,735
04/04	NIH/National Institute Allergy and Infectious Diseases	Human Monoclonal Antibodies for Bioterrorism Defense	\$1,358,678
02/04	NIH/ National Cancer Institute	Functional Identification of Cancer Regulators	\$363,089
03/03	NIH/ National Cancer Institute	A Method to Identify Upstream Regulators of Oncogenes (CEA)	\$433,400
02/03	New York State Department of Labor	BUSINYS - Research Training	\$16,400
05/02	NIH/ National Institute of Aging	Genetic Selection System to Clone Osteogenic Regulators (Phase II)	\$434,074

09/01	NIH/ National Institute Arthritis and Musculoskeletal and Skin Diseases	Genetic Selection to Clone Chondrogenic Regulators (Phase I)	\$99,999
08/01	NIH/ National Cancer Institute	C35: A Target for Bladder and Breast Cancer Therapy	\$908,660
05/01	New York State Department of Labor	High Tech Worker Training Program	\$216,000
11/00	National Institute Standards and Technology/ Advanced Technology Program	Cancer Antigen Identification	\$2,000,000
02/00	NIH/ National Cancer Institute	New Target Antigens for Prostate Cancer Vaccines	\$477,824
07/99	US Army Breast Cancer Research Program	Target Antigens for Breast Cancer Vaccines	\$297,689
		Total	\$9,416,799.00799

Monoclonal antibody production

Fig. 27.18 Animals (usually mice or rats) are immunized with antigen. Once the animals are making a good antibody response their spleens are removed and a cell suspension is prepared (lymph node cells may also be used). These cells are fused with a myeloma cell line by the addition of polyethylene glycol (PEG) which promotes membrane fusion. Only a small proportion of the cells fuse successfully. The fusion mixture is then set up in culture with medium containing 'HAT'. HAT is a mixture of hypoxanthine, aminopterin and thymidine. Aminopterin is a powerful toxin which blocks a metabolic pathway. This pathway can be bypassed if the cell is provided with the intermediate metabolites hypoxanthine and thymidine. Thus spleen cells can grow in HAT medium, but the myeloma cells die in HAT medium because they have a metabolic defect and cannot use the bypass pathway. When the culture is set up in HAT medium it contains spleen cells, myeloma cells and fused cells. The spleen cells die in culture naturally after 1-2 weeks and the myeloma cells are killed by the HAT. Fused cells survive however, as they have the immortality of the myeloma and the metabolic bypass of the spleen cells. Some of them will also have the antibody producing capacity of the spleen cells. Any wells containing growing cells are tested for the production of the desired antibody (often by solid-phase immunoassay) and if positive the cultures are cloned by plating out so that there is only one cell in each well. This produces a clone of cells derived from a single progenitor, which is both immortal and a producer of monoclonal antibody.

monoclonal antibody production by infecting them with Epstein-Barr virus.

A new way of generating antibodies is by phage display. In this exciting technique it is possible to express antibody-

Production of Fv antibodies by phage display

Fig. 27.19 To produce Fv antibodies by phage display, antibody VH and VL genes are first amplified from B-cell mRNA by the polymerase chain reaction. The genes are joined together with a spacer to give a gene for an Fv fragment. Bacteria are then transfected with the gene in a phagemid vector containing a leader sequence, a fragment of the gene expressing phage coat protein 3 and an M13 origin of replication and then infected with M13 phage. The phages replicate and express the Fv on their tips. Phages displaying the right specificity are isolated by panning on antigen-coated plates and amplified. The antigen-specific phage can be used to infect strains of bacteria which allow the secretion of the Fv protein into the culture medium.

variable regions (VH and VL) as part-molecules (Fv) of defined antigen-binding specificity and affinity on the surface of M13 filamentous phage so that they can be selected by antigen. In addition, if the phages are used to infect certain bacteria, the Fv protein is secreted in large amounts into the culture medium. This approach does not necessarily require the deliberate immunization of animals or humans (Fig. 27.19).

Although a monoclonal antibody is a well-defined reagent it does not have a greater specificity than a polyclonal antiserum which recognizes the antigen by means of a number of different epitopes.

ASSAYS FOR COMPLEMENT

The simplest measurement of complement activity is determine the concentration of serum which will cause

SIXTH EDITION MINUTEDITION SIXTH EDITION

Ivan Roitt

MA DSc(Oxon)Hon FRCP(Lond) FRCPath FRS Emeritus Professor of Immunology Royal Free and University College Medical School University College London, UK

Jonathan Brostoff

MA DM(Oxon) DSc(Med) FRCP(Lond) FRCPath Senior Research Fellow Professor Emeritus of Allergy and Environmental Health Division of Life Sciences King's College London London, UK

David Male

MA PhD Professor of Biology, Department of Biological Sciences The Open University Milton Keynes, UK

EDINBURGH LONDON NEW YORK OXFORD PHILADELPHIA ST LOUIS SYDNEY TORONTO 2001

MOSBY
An imprint of Elsevier Limited

© Elsevier Limited 2001

The right of Ivan Roitt, Jonathan Brostoff and David Male to be identified as authors of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior permission of the publishers or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1T 4LP. Permissions may be sought directly from Elsevier's Health Sciences Rights Department in Philadelphia, USA: phone: (+1) 215 238 7869, fax: (+1) 215 238 2239, e-mail: healthpermissions@elsevier.com. You may also complete your request on-line via the Elsevier Science homepage (http://www.elsevier.com), by selecting 'Customer Support' and then 'Obtaining Permissions'.

First published by Gower Medical Publishing Ltd, 1985 ISBN 0-906923-35-2 Second edition published by Gower Medical Publishing Ltd, 1989 ISBN 0-3974-4573-3 Third edition published by Mosby-Year Book Europe Ltd, 1993 ISBN 0-397-44765-5 Fourth edition published by Mosby, an imprint of Times Mirror International Publishers Ltd, 1996 ISBN 0-7234-2178-1 Fifth edition published by Mosby, an imprint of Mosby International Ltd 1998 ISBN 0-7234-29189

Sixth edition 2001

ISBN 0 7234 31892 Reprinted 2002, 2004 International Student Edition ISBN 0 7234 32422 Reprinted 2002

British Library Cataloguing in Publication DataA catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress

Note

Medical knowledge is constantly changing. As new information becomes available, changes in treatment, procedures, equipment and the use of drugs become necessary. The authors, contributors and the publishers have taken care to ensure that the information given in this text is accurate and up to date. However, readers are strongly advised to confirm that the information, especially with regard to drug usage, complies with the latest legislation and standards of practice.

Commissioning Editor: Louise Crowe, Richard Furn Project Development Manager: Janice Urquhart Project Manager: Frances Affleck Design direction: Judith Wright Illustration Manager: Bruce Hogarth New illustrations by: Sandie Hill Illustrations by: Richie Prime, Lynda Rosemary Payne

The publisher's policy is to use paper manufactured from sustainable forests

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ MAGE CUT OFF AT TOP, BOTT	TOM OR SIDES
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEX	T OR DRAWING
☐ SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE	E PHOTOGRAPHS
GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINA	AL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S)	SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.