

Motivación: Un nuevo método.

Motivación

- Ecuaciones diferenciales ordinarias.
- ¿Existe solución y es única?
- Métodos de discretización.
- Método de Euler.

Figura: Representación del campo vectorial asociado a la ecuación logística y'(t) = cy(t)(1 - y(t)).

Motivación: Método de Euler

$$\begin{cases} w_0 = y_0 \\ h_i = t_{i+1} - t_i \\ w_{i+1} = w_i + h_i f(t_i, w_i) \end{cases}$$
 (1)

Método de Euler

- Mejores resultados para puntos equidistantes.
- Es estable, consistente y convergente.
- El error global de aproximación es O(h).
- Puede parecer válido en cualquier aplicación.

Motivación: Ejemplo

Considérese el siguiente problema de valores iniciales:

$$\begin{cases} y'(t) = -4t^3y^2 \\ y(-10) = 1/10001 \\ t \in [-10, 0] \end{cases}$$

- La solución exacta es $y(t) = \frac{1}{1+t^4}$.
- Queremos calcular la aproximación de y en 0 con y(0) = 1.
- Se va a aproximar hasta llegar a los 10000 puntos.

Motivación: Ejemplo

N	h	Wn
100	0.1	0.00390138
1000	0.01	0.03085162
5000	0.002	0.13282140
7500	0.0013	0.18614311
10000	0.001	0.23325153

Tabla: Ejemplo de un mal comportamiento del método de Euler.

Motivación: Ejemplo

Figura: Aproximaciones obtenidas con diferentes valores de n.

Índice

- Motivación
- Definiciones y resultados previos
- Método del trapecio Introducción Método del trapecio explícito
- Conclusión

Definiciones Previas

Definición

Dada una función $f:\Omega\subseteq\mathbb{R}^2\to\mathbb{R}$ continua, una un problema de valores iniciales de primer orden consiste en encontrar aquellas funciones $y:[a,b]\to\mathbb{R}$ de clase 1 que verifiquen $G(y)\subset\Omega$, $y'(t) = f(t, y(t)) \ \forall t \in [a, b] \ y \ la \ condición inicial \ y(t_0) = y_0$ donde $t_0 \in [a, b]$.

Definición

Sea $\Omega \subset \mathbb{R}^2$ y sea $f: \Omega \to \mathbb{R}$. Se dice que f es lipschitziana respecto de la segunda variable, y, si existe una constante $L \in \mathbb{R}^+$, llamada constante de Lipschitz, de forma que $|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$ para cualquier par de puntos $(t, y_1), (t, y_2) \in \Omega.$

Funcionamiento de TPCx-HS

Funcionamiento de TPCx-HS

Dos ejecuciones de cinco fases cada una.

- Fase 1: Generación de los datos.
 3-ways replication
- Fase 2: Verificación de la validez de los datos.
- Fase 3: Ordenación de los datos.
 3-ways replication
- Fase 4: Verificación de la validez de los datos.
- Fase 5: Validación de la salida

Rendimiento

Medida del rendimiento.

$$HSph@SF = \frac{SF}{T/3600}$$

Medida del rendimiento-precio.

$$$/HSph@SF = \frac{P}{HSph@SF}$$

Parámetros:

- SF: factor de escala escogido.
- T: tiempo total de las dos ejecuciones.
- P: costo del sistema bajo estudio.

Método del trapecio

Introducción al método del trapecio

Proposición

Sea un PVI con y'(t) = f(t, y(t)) y $y(t_0) = y_0$. Son equivalentes:

- 1 y es una solución del PVI.
- 2 $y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds \ \forall t \in [a, b]$

Nuestra solución verifica:

$$y(t_1) = y_0 + \int_{t_0}^{t_1} f(s, y(s)) ds$$

Introducción al método del trapecio

Idea: Método del trapecio para integración numérica

$$y(t_1) = y_0 + \frac{h}{2} \left[f(t_0, y_0) + f(t_1, y(t_1)) \right] - \frac{h^3}{12} y^{3)}(\xi)$$
 (2)

Aproximación implicita

$$y(t_1) \approx w_1 = w_0 + \frac{h}{2} [f(t_0, w_0) + f(t_1, y(t_1))]$$
 (3)

¿Cómo cálcular la aproximación?

- Método del trapecio explícito
- Método del trapecio implícito

Método del trapecio explícito

Idea: Utilizar el método de Euler

$$y(t_{i+1}) \approx w'_{i+1} = w'_i + hf(t_i, w'_i))$$

$$+$$

$$y(t_{i+1}) \approx w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_{i+1}, y(t_{i+1}))]$$

Definición (Método del trapecio explícito)

$$y(t_{i+1}) \approx w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i))]$$
 (4)

Método del trapecio explícito

Idea: Utilizar el método de Euler

$$y(t_{i+1}) pprox w'_{i+1} = w'_i + hf(t_i, w'_i))$$

$$+$$

$$y(t_{i+1}) \approx w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_{i+1}, y(t_{i+1}))]$$

Definición (Método del trapecio explícito)

$$y(t_{i+1}) \approx w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i))]$$
 (5)

- Nuevas tecnologías: Spark, Flink...
- Desarrollo y diseño de algoritmos
- Benchmarks para las nuevas tecnologías

"Vivimos en la era de la información. El progreso y la innovación no se ve obstaculizado por la capacidad de recopilar datos sino por la capacidad de gestionar, analizar, sintetizar y descubrir el conocimiento subyacente en dichos datos. Este es el reto de las tecnologías de Big Data."

Francisco Herrera Triguero, Prof. Universidad de Granada

Ilustración de Lola Moral y Sergio García

A. Herrera, J. Poyatos, R. Raya Método del Trapecio