Física Nuclear y de Partículas Grado en Física UNED

# Tema 1. Principales características del núcleo atómico

César Fernández Ramírez Departamento de Física Interdisciplinar Universidad Nacional de Educación a Distancia (UNED)



## Contextualización dentro de la asignatura

- Bloque I. Estructura nuclear
  - Tema 1: Principales características del núcleo atómico
  - Tema 2: La interacción nuclear. El deuterón y la interacción nucleón-nucleón
  - Tema 3: Modelos nucleares
- Bloque II. Radioactividad y desintegraciones nucleares
  - Tema 4: Desintegración nuclear
  - Tema 5: Procesos  $\alpha$ ,  $\beta$  y  $\gamma$
- · Bloque III. Reacciones nucleares e interacción radiación-materia
  - Tema 6: Reacciones nucleares
  - Tema 7: Interacción radiación-materia
- Bloque IV. Física subnuclear
  - Tema 8: El Modelo Estándar de partículas elementales
  - Tema 9: Quarks y hadrones

# Cronograma

|           | L  | М  | Х  | J  | V  | S  | D  |
|-----------|----|----|----|----|----|----|----|
| Octubre   |    | 1  | 2  | 3  | 4  | 5  | 6  |
|           | 7  | 8  | 9  | 10 | 11 | 12 | 13 |
|           | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|           | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|           | 28 | 29 | 30 | 31 |    |    |    |
| Noviembre |    |    |    |    | 1  | 2  | 3  |
|           | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|           | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|           | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|           | 25 | 26 | 27 | 28 | 29 | 30 |    |
| Diciembre |    |    |    |    |    |    | 1  |
|           | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|           | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|           | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|           | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
|           | 30 | 31 |    |    |    |    |    |
| Enero     |    |    | 1  | 2  | 3  | 4  | 5  |
|           | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|           | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|           | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
|           | 27 | 28 | 29 | 30 | 31 |    |    |

| Bloque I   |        |
|------------|--------|
|            | Tema 1 |
|            | Tema 2 |
|            | Tema 3 |
| Bloque II  |        |
|            | Tema 4 |
|            | Tema 5 |
| Bloque III |        |
|            | Tema 6 |
|            | Tema 7 |
| Bloque IV  |        |
|            | Tema 8 |
|            | Tema 9 |
|            | •      |

| Apertura foros     |  |  |  |  |
|--------------------|--|--|--|--|
| Apertura TE        |  |  |  |  |
| PEC                |  |  |  |  |
| Periodo vacacional |  |  |  |  |
| Cierre foros       |  |  |  |  |
| Exámenes           |  |  |  |  |
| Cierre TE          |  |  |  |  |

#### Esquema

- Introducción
- Tamaño y distribución de la carga nuclear. Medida del radio de los núcleos
- Masa y abundancia de los núcleos
- Estabilidad nuclear. Parábola de masas
- Espín, paridad y momentos magnéticos nucleares
- Estructura de los niveles energéticos nucleares

# El núcleo





## El núcleo





#### Introducción. Nomenclatura.

- Nucleones: protones y neutrones
- Núcleos = A nucleones, Z protones y N=A-Z neutrones
- A = de 1 a  $\approx$  260
- Notación  ${}_Z^AX$ . Ejemplos:

$$Z = 1 \ N = 0 \ H, \quad Z = 1 \ H, \quad Z = 1 \ H, \quad N = 1 \ H, \quad N = 1 \ H.$$

$$Z = 92 \ N = 143 \ H, \quad Z = 92 \ M = 146 \ H = 143 \ H.$$

- ≈350 núcleos estables, ≈2000 núcleos inestables
- Núcleos pares e impares
- Isótopos (mismo Z), Isótonos (mismo N), isóbaros (mismo A)

## Introducción. Propiedades de los nucleones

|         | Masa                                                       | Vida media                                  | Carga | μ                    | Espín |
|---------|------------------------------------------------------------|---------------------------------------------|-------|----------------------|-------|
| Protón  | 1,67262×10 <sup>-27</sup> kg<br>938,272 MeV/c <sup>2</sup> | τ <sub>p</sub> > 0,96×10 <sup>30</sup> años | +e    | 2,7928μΝ             | 1/2   |
| Neutrón | 1,67492×10 <sup>-27</sup> kg<br>939,566 MeV/c <sup>2</sup> | $\tau_{\rm n} = 878,4 \pm 0,5$ s            | 0     | 1,9130μ <sub>N</sub> | 1/2   |

$$m_e = 0.511 \, {\rm MeV}/c^2$$
  $\mu_N = \frac{e\hbar}{2m_p} = 3.152 \times 10^{-14} \, {\rm MeV/T}$ 

#### Introducción. Interacción nuclear

- Existencia y estabilidad de los núcleos ⇒Interacción fuerte atractiva
- Corto alcance (≈1fm)
- Independencia de la carga
- · Ha de compensar la repulsión Coulombiana entre protones
- La interacción no distingue entre protones y neutrones ⇒ simetría de isospín

#### Introducción. Isospín

• El protón y el neutrón pueden ser descritos simultáneamente mediante una partícula de isospín T=1/2: el nucleón

$$|p\rangle = |T = \frac{1}{2}, T_3 = +\frac{1}{2}\rangle$$

$$|n\rangle = |T = \frac{1}{2}T_3 = -\frac{1}{2}\rangle$$

$$|0,0\rangle = \frac{1}{\sqrt{2}} \left[ |p\rangle \otimes |n\rangle - |n\rangle \otimes |p\rangle \right]$$

$$|1,1\rangle = |p\rangle \otimes |p\rangle$$

$$|1,0\rangle = \frac{1}{\sqrt{2}} \left[ |p\rangle \otimes |n\rangle + |n\rangle \otimes |p\rangle \right]$$

$$|1,-1\rangle = |n\rangle \otimes |n\rangle$$

## Introducción. Propiedades estáticas

- Los núcleos se consideran sistemas cuánticos con propiedades estáticas bien definidas
  - Masa M
  - Radio R
  - Número atómico Z
  - Carga eléctrica q=Ze
  - Espín J
  - Paridad P
  - Isospín T
  - Momentos multipolares electromagnéticos (E, M)
  - Momento cuadrupolar eléctrico Q
  - Momento dipolar magnético μ

## Introducción. Niveles excitados, sección eficaz y vida media

- Niveles excitados
  - Los núcleos son sistemas compuestos.
  - En condiciones normales el núcleo suele estar en el nivel fundamental
  - Los niveles excitados son accesibles mediante reacciones nucleares
- Sección eficaz
  - Caracteriza las reacciones nucleares (Tema 6. Reacciones Nucleares)
  - · Representa la probabilidad de reacción
- Vida media y semivida
  - Caracterizan las desintegraciones nucleares (Tema 4. Desintegración nuclear)
  - Probabilidad de desintegración por unidad de tiempo ( $\lambda$ ).
  - Vida media:  $\tau = 1/\lambda$ , semivida:  $t_{1/2} = \ln 2/\lambda = \tau \ln 2$



## Introducción. Experimentos históricos

- Exp. de Rutherford, Geiger y Marsden (1909-1911):  $\alpha + ^{197}_{79}$  Au  $ightarrow ^{197}_{79}$  Au +  $\alpha$ 
  - <sup>4</sup>He (α) provienen de una fuente radiactiva de Radio
  - El núcleo se puede considerar puntual con toda la carga Ze concentrada en un punto (núcleo)



• Exp. de Chadwick y Feather (1932):  $\alpha +_4^9$  Be  $\rightarrow_6^{12}$  C +  $\overline{n}$ 



## Tamaño y distribución de la carga nuclear

- En primera aproximación: esférico
- · Distribución de carga o materia caracterizado por
  - Radio R
  - Espesor de la corteza a
- Distribución de Fermi o Woods-Saxon

$$\rho(r) = \frac{\rho_0}{1 + e^{(r-R)/a}}$$

- $\cdot R = r_0 A^{1/3}$
- $r_0 \simeq 1.2$  fm,  $a \simeq 0.55$  fm



## Medida del radio de carga

Dispersión electrón-núcleo A(e,e')A

$$\frac{d\sigma}{d\Omega} = |F(q^2)|^2 \frac{d\sigma}{d\Omega} \bigg|_{\text{Mott}}$$

$$\frac{d\sigma}{d\Omega} = |F(q^2)|^2 \frac{d\sigma}{d\Omega} \bigg|_{\text{Mott}} \qquad F(q^2) = \frac{4\pi\hbar}{Zeq} \int \rho(r) \sin\left(\frac{qr}{\hbar}\right) r dr$$



- Rayos X de isótopos →átomos muónicos
  - Se mide la diferencia entre la energía de transición de dos núcleos isótopos
- Diferencia de energía entre núcleos espejo
  - $A = Z_1 + N_1 = Z_2 + N_2$ , con  $Z_1 = N_2$  y  $Z_2 = N_1$
  - Ej. <sup>3</sup>H y <sup>3</sup>He o <sup>14</sup>C y <sup>14</sup>O. Excepción (2020): <sup>73</sup>Sr <sup>73</sup> Br
  - · Se toman núcleos impares y se ve la diferencia de masas, debida a la interacción Coulombiana

#### Masa de los núcleos

- Difíciles de medir. Es habitual encontrar masas atómicas tabuladas
- Unidad de masa atómica (u.m.a.):

$$u \equiv \frac{\mathcal{M}(^{12}\text{C})}{12} = 1.6 \times 10^{-27} \,\text{kg} = 931.49 \,\text{MeV}/c^2$$

Relación entre masa atómica  $\mathcal{M}_a$  y nuclear  $M_a$ 

$$M_n({}_Z^A X) = \mathcal{M}_a({}_Z^A X) - Zm_e + \sum_{i=1}^{Z} B_i/c^2$$

- · La energía de ligadura de los electrones es despreciable
- Defecto de masa:

$$\Delta = \mathcal{M}_a(Z,N) - Au$$
 en u.m.a.,  $\Delta = \left(\mathcal{M}_a(Z,N) - A\right)c^2$  en MeV

## Espectroscopía de masas

$$\begin{cases} F_e = q\mathscr{E} \\ F_m = qv\mathscr{B} \end{cases} \Rightarrow v = \frac{\mathscr{E}}{\mathscr{B}}$$



#### Medida a través de reacciones nucleares

$$a + A \rightarrow b + B$$

$$Q = M_{\text{inicial}} - M_{\text{final}}$$

$$Q = [M_a + M_A - M_b - M_B] c^2 = T_b + T_B - T_a - T_A$$



$$Q = T_b \left( 1 + \frac{M_b}{M_B} \right) - T_a \left( 1 - \frac{M_a}{M_B} \right) - \frac{2}{M_B} \sqrt{T_a T_b M_a M_b} \cos \theta$$

#### Abundacia de núcleos

- La abundancia de cada isótopo en la Tierra está directamente ligada a:
  - La nucleosíntesis, es decir, la frecuencia con la que cada núcleo fue originalmente producido
  - La estabilidad nuclear. Probabilidad de desintegración de cada núcleo
- Los elementos aparecen con abundancia isotópica variable
- · Ejemplo. La determinación de los isótopos estables del Kripton proporciona

| A= | 78    | 80   | 82   | 83   | 84   | 86   |
|----|-------|------|------|------|------|------|
| %  | 0,356 | 2,27 | 11,6 | 11,5 | 57,0 | 17,3 |

• La masa tabulada del Kripton es  $\mathcal{M}(\mathrm{Kr}) = 83$  u.m.a que es la media ponderada de las masas de los isótopos estables

## Energía de ligadura (o enlace) nuclear

$$E_B(Z, N) = \left[ Z \mathcal{M}(^1 H) + N m_n - \mathcal{M}(Z, N) \right] c^2$$

$$E_B(Z, N) = \left[ Z\Delta_{H} + N\Delta_n - \Delta(Z, N) \right] c^2$$

$$\Delta_{H} = 7,2890 \, \text{MeV}$$

$$\Delta_n = 8,0714 \, \text{MeV}$$

#### Table of Nuclides, IAEA



## Energía de ligadura (o enlace) nuclear

$$E_B(Z, N) = \left[ Z \mathcal{M}(^1 H) + N m_n - \mathcal{M}(Z, N) \right] c^2$$

#### Table of Nuclides, IAEA



$$\Delta_{\text{H}} = 7,2890 \, \text{MeV}$$

$$\Delta_n = 8,0714 \, \text{MeV}$$



#### Energía de ligadura

- Hay saturación ya que la energía tiende a una constante
- El valor medio de la energía de ligadura por nucleón es 8 MeV
- · El máximo de la curva clasifica los núcleos en dos regiones
  - A<60 ⇒ Fusión</li>
  - A>60 ⇒ Fisión
- Existencia de deuterón y Helio ⇒ dependencia del espín
- La diferencia de energía entre núcleos espejo es prácticamente la Coulombiana ⇒ introducción del número cuántico de isospín

#### El valle de estabilidad

- Z/N≈1 para A<40</li>
  - · Ppio. exclusión
- Z/A≈1/2,5 para A>40
- Núcleos estables en Z o N=2,8,20,28,50,82,126 (números mágicos)
- Más allá del Pb (Z=82) la repulsión Coulombiana rompe la estabilidad nuclear (desintegración α, Tema 5)



#### Valle de estabilidad

| Par-Par     | 140 |
|-------------|-----|
| Par-Impar   | 50  |
| Impar-Par   | 48  |
| Impar-Impar | 4   |

- Hay muchos más núcleos estables de tipo par-par
- Implica que debe haber fuerzas de apareamiento
- En particular, los núcleos con clusters de partículas α (<sup>4</sup>He, <sup>8</sup>Be, <sup>12</sup>C, <sup>16</sup>O)
   tienen valores grandes de la energía de ligadura por nucleón
- Sólo 4 impar-impar son estables:  ${}^2_1$ H,  ${}^6_3$ Li,  ${}^1_5$ B,  ${}^1_4$ N

#### Energía de separación nucleónica

 Energía de separación neutrónica: Energía necesaria para arrancar un neutrón de un núcleo

$${}_{Z}^{A}X \rightarrow {}^{A-1}_{Z}X + n$$

$${}_{Z}^{A}X \rightarrow {}_{Z}^{A-1}X + n$$

$${}_{Z}^{A-1}X$$

$$S_{n} > 0$$

$${}_{A-1}X$$

$$S_{n} > 0$$

$$S_p(Z, N) = -\left[\mathcal{M}(Z, N) - \mathcal{M}(Z - 1, N) - \mathcal{M}(^1 H)\right]c^2 = E_B(Z, N) - E_B(Z - 1, N)$$

$${}_{Z}^{A}X \to {}_{Z-1}^{A-1}X + p$$

$${}_{Z}^{A}X \to {}_{Z-1}^{A-1}X$$

$$S_{p} < 0$$

$${}_{Z}^{A-1}X$$

$$S_{p} > 0$$

$$S_n(Z, N) = -\left[\mathcal{M}(Z, N) - \mathcal{M}(Z, N-1) - m_n\right]c^2 = E_B(Z, N) - E_B(Z, N-1)$$

## Energía de separación nucleónica



## Energía de separación nucleónica (proton drip line)



## Energía de separación nucleónica (neutron drip line)



## Tipos de núcleos

- Estables (no decaen)
- Ligados pero inestables (decaen mediante radiactividad, Temas 4 y 5)
- No ligados (energía de separación negativa). El núcleo decae por emisión de protón o neutrón.
   Determinan la posición de la drip line en la carta nuclear



## Tipos de núcleos

- Estables (no decaen)
- Ligados pero inestables (decaen mediante radiactividad, Temas 4 y 5)
- No ligados (energía de separación negativa). El núcleo decae por emisión de protón o neutrón.
   Determinan la posición de la drip line en la carta nuclear



## Tipos de núcleos

- Estables (no decaen)
- Ligados pero inestables (decaen mediante radiactividad, Temas 4 y 5)
- No ligados (energía de separación negativa). El núcleo decae por emisión de protón o neutrón.
   Determinan la posición de la drip line en la carta nuclear



# Núcleos borromeos (núcleos con halo)





## Estabilidad nuclear. Parábola de masas

# Espín y paridad nucleares

# Espín isotópico del núcleo

# Momentos electromagnéticos nucleares

# Momento dipolar magnético

# Momento cuadrupolar eléctrico

# Estructura de los niveles energéticos nucleares

#### Material disponible

- · Material disponible en el repositorio Github de la asignatura
  - https://github.com/cefera/FNyP
  - Esta presentación:
    - ./Presentaciones/Tema1.pdf
  - Código en Python para generar las figuras de esta presentación, acceder y tratar la base de datos de núcleos de la Agencia Internacional de la Energía Atómica:
    - ./Notebooks/Tema1.ipynb