

MEDIÇÃO DA INTENSIDADE DE ILUMINAÇÃO DO IFC - CAMPUS CAMBORIÚ

Análise do lux das salas e laboratórios do Instituto Federal de Educação, Ciência e Tecnologia Catarinense Campus Camboriú

Mateus Testoni Carvalho¹; Michele Lottermann²; Polyana Mayara Fonseca da Cruz³;
Maria Amélia Pellizzetti⁴

RESUMO

A presente proposta apresenta um diagnóstico qualitativo da iluminação de variados espaços de atividades e convivência de profissionais e alunos do IFC - Campus Camboriú, buscando a sustentabilidade e a qualidade de vida no ambiente escolar. Obtiveram-se os dados através de medições com o aparelho luxímetro, determinando a quantidade de intensidade de iluminação (lux) nos diversos locais de trabalho e respectivos entornos, sendo tabulados, representados em desenhos e, por fim, realizando uma análise comparativa com a norma regulamentadora da Associação Brasileira de Normas Técnicas referente à iluminação de interiores (ABNT NBR 5413:1992 – Iluminância de interiores). Através de análise parcial, observa-se que a iluminação difere consideravelmente entre si e dos valores normatizados, podendo causar prejuízos nas atividades desenvolvidas pela comunidade interna do campus.

Palavras-chave: Iluminação. Qualidade. Ergonomia.

INTRODUÇÃO

De um processo proveniente de uma longa cadeia de transformações históricas e geográficas, a globalização vem se expandindo continuamente, atingindo cada vez mais a sociedade, a política e a economia, ou seja, as relações intra e interpessoais no ambiente. Como consequência da amplificação dessas interdependências globais, tem-se a Terceira Revolução Industrial, permitindo a inclusão ativa de outros Estados na produção mundial, envolvendo não somente as potências, mas também as novas economias emergentes. O modelo de produção que ascende neste período é o Toyotismo, que se caracteriza pela tecnologia, a informação, a pesquisa e, consequentemente, a mão de obra qualificada (MARTINI; GAUDIO, 2013).

No que se refere a este cenário, tornou-se necessária à criação de universidades, instituições de ensino e pesquisa, centros tecnológicos em todas as partes. No Brasil, tem-se como exemplo as universidades e instituições federais, que ambicionam a qualificação de jovens e adultos. A fim de alcançar uma qualidade de vida no ambiente de trabalho escolar, as organizações devem prezar pelos aspectos físicos, espirituais, sociais, profissionais, intelectuais e emocionais, influindo nas condições de saúde, bem-estar e de aprendizado (DANTAS, 2007).

- 1 Estudante do curso técnico integrado ao médio em Controle Ambiental, Instituto Federal Catarinense Campus Camboriú. E-mail: testoni.carvalho@outlook.com
- 2 Estudante do curso técnico integrado ao médio em Controle Ambiental, Instituto Federal Catarinense Campus Camboriú. E-mail: michele.lottermann@gmail.com
- 3 Estudante do curso técnico integrado ao médio em Controle Ambiental, Instituto Federal Catarinense Campus Camboriú. E-mail: polyana.mayarafonseca@gmail.com
- 4 Mestre em Engenharia Ambiental, FURB; professora do Instituto Federal Catarinense Campus Camboriú. E-mail: map@ifc-camboriu.edu.br

Dessa maneira, um dos principais fatores que se faz imprescindível no que tange à excelência do ensino é a estrutura, que se subentende como o espaço físico e os instrumentos que o compõe. Assim, partindo dessa perspectiva, o Instituto Federal Catarinense de Educação, Ciência e Tecnologia Campus Camboriú, fora analisado no quesito iluminação, aspecto estrutural fundamental para que alunos e servidores possam exercer de formas mais produtiva suas atividades.

A norma utilizada para a análise comparativa dos valores de iluminação obtidos fora a NBR 5413:1992 - Iluminância de interiores, da Associação Brasileira de Normas Técnicas (ABNT), que dispõe valores de iluminâncias médias, mínimas e máximas para ambientes de trabalho, assim como a metodologia para a realização da medição. Recentemente ocorreu o cancelamento e a substituição da presente diretriz pela NBR ISO CIE 8995:2012 - Iluminação de ambientes de trabalho - Parte 1: Interior, todavia, a Nota Técnica nº 224/2014 do Ministério de Trabalho e Emprego cancela a nova norma devido às complicações em sua utilização, retornando à NBR 5413 até a elaboração de uma Norma de Higiene Ocupacional (NHO) relacionada ao tema (BRASIL, 2014).

A NBR 5413 utiliza o termo iluminância, que demonstra a quantidade de luz que incide sobre uma superfície, provindo tanto de fontes naturais, como artificiais, tendo como unidade de medida o lux (lx), que corresponde a 1 lúmen por metro quadrado (lm/m²), sendo lúmen unidade de fluxo luminoso e metro quadrado unidade de área (KROEMER; GRANDJEAN, 2005).

O Ministério do Trabalho e Emprego possui uma norma técnica relacionada à ergonomia: a NR17 (Norma Regulamentadora nº 17). Esta dispõe que a iluminação deve ser adequada, ajustando-se a atividade desenvolvida; homogeneidade em todo o ambiente, com a fonte de luz bem distribuída; um projeto adequado, afim de evitar reflexos, incômodos, sombras e contrastes excessivos (ABRAHÃO et al, 2009).

Para atingir os objetivos da NR17, vários pormenores devem ser considerados, tais como: a quantidade e distribuição uniforme da iluminância; o tipo das lâmpadas; a estrutura, compreendendo as luminárias, paredes e pisos; a área de trabalho e distribuição do maquinário; as janelas, venezianas e cortinas; a manutenção e limpeza dos ambientes; a necessidade de luz requisitada em cada horário, ademais, as condições climáticas (ABRAHÃO et al, 2009); (BARBOSA FILHO, 2001); (KROEMER; GRANDJEAN, 2005).

Todos os fatores interferem diretamente no conforto visual e na visão de quem utiliza os ambientes, sendo necessária a adequação dessas particularidades à norma. Além disso, deve-se considerar a tarefa a ser feita, o tempo de trabalho e quem opera o serviço, considerando, principalmente, a idade da pessoa. A atividade laboral requer iluminâncias diferenciadas para cada tipo de encargo, de maneira que, atividades mais minuciosas carecem de um lux mais elevado, como o uso de computadores que devem buscar a não formação de sombras que podem resultar

numa mais difícil distinção dos caracteres (ABRAHÃO et al, 2009); (BARBOSA FILHO, 2001); (KROEMER; GRANDJEAN, 2005).

Uma iluminação inadequada poderá causar efeitos adversos ao indivíduo e ao procedimento realizado, resultando em possíveis erros ou acidentes, e diminuição da produtividade. Para os usuários, sobretudo aos discentes e docentes de instituições de ensino, o produto de uma má iluminação afeta fisicamente, gerando esforço físico do olho e, consequentemente, fadiga ocular e irritabilidade visual, da mesma forma que psicologicamente, provocando alterações de humor, dificuldade de concentração e sono, com a liberação do hormônio melatonina. (ABRAHÃO et al, 2009); (BARBOSA FILHO, 2001); (LIMA et al, 2009).

De forma geral, uma iluminação inadequada acaba impedindo a totalidade da aula e o desgaste do rendimento escolar, paralelamente a possíveis impactos para a visão do indivíduo. Entretanto, o excesso de iluminância também causa adversidades, como o reflexo demasiado e desconforto visual, além de possíveis dores de cabeça. Portanto, convém evitar excessos e a insuficiência de luz (ABRAHÃO et al, 2009); (BARBOSA FILHO, 2001); (LIMA et al, 2009).

Assim, faz-se necessária a medição da iluminância e a comparação desta com a norma, tendo em vista uma possível constatação dos locais que mais carecem de iluminação, dos que excedem o necessário, assim como daqueles que se adequam à NBR 5413, sendo plausível a verificação dos porquês da luminosidade atual, e a elaboração de medidas corretivas para ambientes que apresentam irregularidades.

PROCEDIMENTOS METODOLÓGICOS

Os aparelhos utilizados durante os dias de medição são chamados de luxímetros, que são dispositivos que possuem uma fotocélula que capta a intensidade de iluminação e, que a reproduz em uma tela de LCD (tela de cristal líquido) através da unidade de medida lux (ABRAHÃO et al, 2009).

Para que a análise fosse mais eficiente, a mensuração fora realizada nos períodos vespertino e noturno, sendo destacadas as situações climáticas e estruturais, como a incidência solar e as lâmpadas queimadas, respectivamente. Tal como, as lâmpadas foram quantificadas com a pretensão de fazer uma relação entre a quantidade e a qualidade da iluminação, facilitando, também, a elaboração de medidas corretivas para as irregularidades.

Outrossim, a obtenção dos dados ocorrera em todos os blocos de A a F, compreendendo todas as salas, laboratórios, banheiros, corredores e demais ambientes que abrigam o maior fluxo de pessoas do campus. A medição fora feita com base na norma ABNT NBR 5413:1992 - Iluminância de interiores adequou-se a utilização dos luxímetros, sendo este utilizado nas mesas de trabalho ou, quando

não houvesse estas, a 75 cm do piso, seja para o entorno ou para o trânsito de pessoas.

Os resultados foram tabulados em planilhas digitais e calculou-se a média, o desvio padrão e o coeficiente de variação, uma vez que a primeira é utilizada para uma análise mais espacial do diagnóstico, enquanto o segundo e o terceiro são para determinar a variância, que não deve exceder 10% dos valores da NBR e entre os resultados da medição. Tais procedimentos são de extrema valia para a descrição dos resultados.

Simultaneamente à tabulação e aos cálculos, foram produzidas ilustrações do layout dos ambientes verificados em plataformas digitais de desenho e, posteriormente, as tabelas, a quantidade de lâmpadas e as imagens foram inseridas em um documento, juntamente aos valores descritos na norma, permitindo a realização de um comparativo com os resultados obtidos até o presente momento.

A fim de concatenar os resultados obtidos através da medição e a norma ABNT NBR 5413:1992, utilizaram-se na análise os valores padronizados como mínimo, médio e máximo, respectivamente: 200, 300 e 500 lux para salas de aula; 300, 500 e 750 lux para laboratórios e quadros.

RESULTADOS E DISCUSSÃO

Para fins de análise, foram empregados os valores obtidos nos blocos B e F no período noturno, que compreendem a utilização mais frequente por parte de professores e alunos nas horas em que a iluminação artificial se faz mais necessária. Considerando os parâmetros da norma, é possível verificar nas tabelas 1 e 2, quais laboratórios e salas de aula, respectivamente, encontram-se dentro ou fora da norma, assim como se o coeficiente de variação entre os pontos das salas excede os 10% normatizados. Adota-se que, quando não são apresentados valores, a medição não ocorreu ou não há quadro no local; os locais destacados em vermelho representam que, para determinado ambiente ou atividade, o lux está abaixo do recomendado, e os em verde, que estão dentro da diretriz.

Tabela 1 – Médias e variação dos valores obtidos no bloco B durante o período noturno

SALA	AMBIENTE/ATIVIDADE		MÉDIA (lux)		CV (%)
			LAB.	QUADRO	LAB.
B001	LABORATÓRIO		124	-	30
B006	LABORATÓRIO		292	-	22
B101	LAB.	QUADRO	118	138	14
B102	LAB.	QUADRO	333	272	34
B103	LAB.	QUADRO	116	112	17
B104	LAB.	QUADRO	50	49	34
B106	LAB.	QUADRO	160	137	19

D407	LABORATÓRIO	405		20
B107	LABORATORIO	105	-	20

Fonte: Os autores

Tabela 2 – Médias e variação dos valores obtidos no bloco F durante o período noturno

SALA	AMBIENTE/ATIVIDADE		MÉDIA (lux)		CV (%)
			SALA	QUADRO	SALA
F001	SALA	QUADRO	434	390	17
F002	SALA	QUADRO	411	468	17
F003	SALA	QUADRO	411	385	17
F004	SALA	QUADRO	341	388	18
F005	SALA	QUADRO	433	365	15
F006	SALA	QUADRO	400	352	17
F007	SALA	QUADRO	372	361	21
F008	SALA	QUADRO	378	260	21
F101	SALA	QUADRO	430	488	15
F102	SALA	QUADRO	381	403	20
F103	SALA	QUADRO	431	495	26
F104	SALA	QUADRO	410	308	23
F105	SALA	QUADRO	468	457	22
F106	SALA	QUADRO	393	330	22
F107	SALA	QUADRO	325	444	11
F108	SALA	QUADRO	402	352	29

Fonte: Os autores

O bloco B apresenta todos os valores abaixo do normatizado - exceto pela sala B102 - e a variância ultrapassa o recomendado. Contrariamente, o bloco F conta com todos os valores dentro da norma, tendo uma iluminação adequada para as atividades curriculares, entretanto, a variação entre os pontos supera 10%, tendo salas com a propagação da luz bastante heterogênea, por conta das mesas rentes às paredes, do condicionador de ar e das lâmpadas que não apresentam a mesma intensidade.

A grande diferença em termos de luz do bloco B para o F deve-se à diferença de idade de cada um dos prédios: o primeiro sendo o mais antigo, já sofrera algumas mudanças nos usos das salas que não coincidiram com a sua reestruturação, resultando numa precariedade luminosa; por sua vez, o bloco F apresenta um planejamento mais específico, com uma estrutura mais adequada para as salas.

CONSIDERAÇÕES FINAIS

A iluminação do IFC – Campus Camboriú é bastante discordante entre as salas e blocos, devendo-se, principalmente, às variações de idade dos prédios, com usos próximos ou distantes do planejado.

Desta forma, para evitar problemas que podem ser gerados pela inadequação da luz, é necessário que haja a criação de prédios novos, ou a verticalização dos já existentes, de modo que seus usos já fossem mais específicos e o seu planejamento de uso para um tempo mais amplo. Nos blocos atuais, a reestruturação ou readequação dos usos dos ambientes é fundamental, contudo, é uma medida inviável pela verba limitada, sendo mais simples a troca das lâmpadas e das luminárias ineficientes.

Portanto, faz-se necessário ressaltar que a análise da iluminação é uma atividade que deve acontecer de forma recorrente, sobretudo se houverem mudanças nos espaços do campus, podendo fazer um acompanhamento das medidas corretivas no ambiente e, consequentemente, melhorando a qualidade de vida da população envolvida nas atividades institucionais.

REFERÊNCIAS

ABRAHÃO, Júlia et al. **Introdução à ergonomia:** da prática à teoria. São Paulo: Blücher, 2009. 240 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. **NBR 5413 - Iluminância de interiores.** Rio de Janeiro: ABNT, 1992. 13 p.

BARBOSA FILHO, Antonio Nunes. **Segurança do trabalho & gestão ambiental.** São Paulo: Atlas, 2001. 158 p.

BRASIL. Ministério do Trabalho e Emprego. Secretaria de Inspeção do Trabalho. Departamento de Segurança e Saúde no Trabalho. Coordenação-Geral de Normatização e Programas. **Nota Técnica Nº 224.** Brasília, DF, 2014. Disponível em: http://www.acm.org.br/acamt/documentos/emfoco/nr17-iluminancia-nota-224-dsst-sit.pdf>. Acesso em: 2 jul. 2015.

DANTAS, Julizar. **Trabalho e coração saudáveis:** aspectos psicossociais: impactos na promoção da saúde. Belo Horizonte: Ergo, 2007. 208 p.

KROEMER, K. H. E; GRANDJEAN, E. **Manual de ergonomia:** adaptando o trabalho ao homem. 5 ed. Porto Alegre: Bookman, 2005. 327 p.

LIMA, Carlos Augusto Ferreira et al. **Luminotécnica**: matemática e iluminação, fatores de excelência na aprendizagem. Monografia em Matemática - UEMA. Imperatriz, 2009. 120 p.

MARTINI, Alice de; GAUDIO, Rogata Soares Del. **Geografia, 3º ano: ensino médio**. 3. ed. São Paulo: IBEP, 2013. 224 p.