

Agenda

- Introduction
- Swarm simulator
- Results
 - Routing strategy
 - Impact of topology
- Conclusion

Introduction

Context

- Rise of nanosatellite Swarms
 - Economically viable, but not mature enough
- Advantages
 - Allow to divide instruments of several satellites, and lower their dimensions
 - Reduced cost compared to a constellation
- New challenges
 - Autonomy
 - Synchronisation
 - Communications

Context

- Case of routing
 - Dynamic topology
 - 3 to 50 satellites moving, with unpredictable movement
 - ► ISL links created and lost over time
 - Need frequent communications between satellites
 - Navigation
 - Instruments
 - ► TM/TC
 - etc.
- Need to optimize routing to avoid useless overconsumption

Examples of missions:

- NOIRE (Nanosatellites pour un Observatoire Interférométrie Radio dans l'Espace)
- The Soil Moisture and Ocean Salinity (SMOS)
- Apophis asteroid

Routing strategies

- Re-use of TCP-IP stack
- Several routing protocols identified
 - OSPF
 - Computes dynamically shortest route
 - PIM-SSM
 - Multicast routing protocol
 - Creates multicast routes from sender to all subscribed receivers
 - Need exchange of control messages

VIC-Spring 2025 (Oslo Norway)

On Selecting a Routing Protocol for Nanosatellite Swarm Networks

Riadh DHAOU*, Emmanuel LOCHIN†, Louis BASSET*, Bastien TAURAN‡, David PRADAS‡, Bernard PONTET§

Swarm simulator

Swarm simulator

- Development of a simple discrete event network simulator
 - Packet generation
 - Payload + headers IP and UDP
 - Periodic handling of packets in the routers
 - Fixed maximum number of packets handled per second
 - Perform unicast and multicast/broadcast routing
 - Pre-computed routes
 - No control messages exchanged
 - Use several input parameters
 - Produce several detailed statistics

Goal: compare routing strategies

- Communication between satellites
 - Unicast
 - Via OSPF
 - Multicast/Broadcast
 - ► Via OSPF + router optimization
 - Filtering of duplicated packets
 - Anti-return filter
 - ► Initial TTL of packets
 - Via PIM-SSM

Scenarios tested

Traffic profile

- Multicast: one node sends to 5 other (1 to 5)
- ► Broadcast: one node sends to all other (1 to all)
- ► Broadcast: all nodes sends to all other (all to all)
- Broadcast: use of clusters (5 nodes per cluster)
 - Each node sends to all other in the cluster
 - A representative of each cluster sends to all other representatives

Results Routing strategy

Results with unicast routing

- Need to use optimization parameters in routers
 - Filtering of duplicated packets
 - Anti-return filter
 - No impact of initial TTL
- Comparison of performance with several scenarios, for 20 satellites

Scenario	Maximum proportion of received packets	Median load in routers
1 to 5	100%	30 pkts/s
1 to all	100%	50 pkts/s
All to all	18%	100 pkts/s
All to all + clusters	70%	100 pkts/s

Impact of PIM

- PIM highly increase performance
 - Clustering is necessary to ensure 100% of packets received.
 - Some nodes have to handle more load than others.
 - This is made at the cost of more control messages exchanged.
- Comparison of performance with scenarios all to all, for 20 satellites

Scenario	Routing strategy	Maximum proportion of received packets	Median load in routers
All to all	Unicast via OSPF	18%	100 pkts/s
All to all	PIM	55%	100 pkts/s
All to all + clusters	Unicast via OSPF	70%	100 pkts/s
All to all + clusters	PIM	100%	50 pkts/s

Results Impact of topology

Impact of Swarm topology

- Several topologies tested
 - Line
 - Ring
 - Star
 - With bottleneck
 - Without clusters
 - With clusters
 - Meshed network
 - Average of 3 neighbours
 - Average of 5 neighbours
 - Average of 9 neighbours

Impact of Swarm topology

- Conclusions on impact of topology
 - Meshed networks are more efficient when satellites have many neighbours
 - We need to avoid having a central node
 - Star topology
 - Bottleneck topology without clusters
 - If bottleneck, use clusters on each side and interconnexion on bottleneck
 - Line and ring networks have good performance, but do not scale

Proportion of unique packets received at destination

Impact of cluster size on mesh networks

- Impact of cluster size on performance
 - In a swarm of 20 satellites, optimal cluster size is around 4 or 5
 - Cluster must be chosen carefully
 - The number of packets to handle increases with cluster size
 - Whatever the configuration, some nodes are saturated
 - These conclusions may not apply to other swarm sizes or shapes

Proportion of unique packets received at destination

Conclusion

Conclusion

► Test of impact of routing strategies

Routing strategy	Global network performance
Using OSPF unicast tables	Not working
Using OSPF unicast tables with optimizations	Bad
Using OSPF unicast tables with optimizations and clusters	Good
Using PIM	Good
Using PIM and clusters	Best

Assessment of the impact of topology and cluster size on performance

Next steps...

► Thesis: Protocols and Reinforcement Learning Optimization for Nanosatellite Swarm Networks

Start: October 2025

Innover. Simplifier. Partager.

Choice of routing strategy

► **Task 1:** identify protocol stacks and routing algorithms allowing for a swarm constellation

DTN (Delay-tolerant networking)

MANET (Mobile Ad-hoc Network)

DSN (Deep Space Network)

♦ IEEE VTC-Spring 2025 (Oslo Norvège)

On Selecting a Routing Protocol for Nanosatellite Swarm Networks

Riadh DHAOU*, Emmanuel LOCHIN†, Louis BASSET*, Bastien TAURAN‡, David PRADAS‡, Bernard PONTET§

