ЛАБОРАТОРНАЯ РАБОТА № 2 Моделирование ветвящихся процессов

Цель: исследование характеристик ветвящихся процессов для различных коэффициентов производящей функции.

1. Порядок выполнения

- 1) Для ветвящегося процесса, заданного производящей функцией, все коэффициенты которой числа строго больше нуля и меньше единицы, выбрать распределения вероятностей, при которых процесс является докритическим, критическим и надкритическим.
- 2) Для каждого распределения вычислить математическое ожидание и дисперсию для величины X_1 , вероятность вырождения процесса.
- 3) Для каждого распределения осуществить моделирование процесса и экспериментально определить вероятности $P(X_n = k)$, k = 0,1,...,8 при $n \to \infty$, для каждого значения рассчитать доверительный интервал на уровне значимости 5%.

2. Содержание отчета

- 1) Закон распределения дискретной случайной величины для докритического ветвящегося процесса, значения математического ожидания, дисперсии и вероятность вырождения процесса, вероятности $P(X_n = k)$ и доверительные интервалы.
- 2) Закон распределения дискретной случайной величины для критического ветвящегося процесса, значения математического ожидания, дисперсии и вероятность вырождения процесса, вероятности $P(X_n = k)$ и доверительные интервалы.
- 3) Закон распределения дискретной случайной величины для надкритического ветвящегося процесса, значения математического ожидания, дисперсии и вероятность вырождения процесса, вероятности $P(X_n = k)$ и доверительные интервалы.
- 4) Программа экспериментов.

3. Варианты заданий

Вариант	Производящая функция
1	$\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_3 s^3 + p_4 s^4 + p_5 s^5$
2	$\varphi(s) = p_0 + p_2 s^2 + p_3 s^3 + p_4 s^4 + p_5 s^5 + p_6 s^6$
3	$\varphi(s) = p_0 + p_1 s + p_3 s^3 + p_4 s^4 + p_5 s^5 + p_6 s^6$
4	$\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_4 s^4 + p_5 s^5 + p_6 s^6$
5	$\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_3 s^3 + p_5 s^5 + p_6 s^6$
6	$\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_3 s^3 + p_4 s^4 + p_6 s^6$
7	$\varphi(s) = p_0 + p_3 s^3 + p_4 s^4 + p_5 s^5 + p_6 s^6 + p_7 s^7$
8	$\varphi(s) = p_0 + p_1 s + p_4 s^4 + p_5 s^5 + p_6 s^6 + p_7 s^7$
9	$\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_5 s^5 + p_6 s^6 + p_7 s^7$
10	$\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_3 s^3 + p_6 s^6 + p_7 s^7$

11 $\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_3 s^3 + p_5 s^5 + p_7 s^7$	
1 1 1 1 2 1 3 1 7	
12 $\phi(s) = p_0 + p_1 s + p_2 s^2 + p_4 s^4 + p_6 s^6 + p_7 s^7$	
13 $\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_4 s^4 + p_5 s^5 + p_7 s^7$	
14 $\varphi(s) = p_0 + p_1 s + p_3 s^3 + p_4 s^4 + p_6 s^6 + p_7 s^7$	
15 $\varphi(s) = p_0 + p_2 s^2 + p_3 s^3 + p_4 s^4 + p_6 s^6 + p_7 s^7$	
16 $\varphi(s) = p_0 + p_2 s^2 + p_3 s^3 + p_4 s^4 + p_5 s^5 + p_7 s^7$	
17 $\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_6 s^6 + p_7 s^7 + p_8 s^8$	
18 $\varphi(s) = p_0 + p_1 s + p_5 s^5 + p_6 s^6 + p_7 s^7 + p_8 s^8$	
19 $\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_4 s^4 + p_7 s^7 + p_8 s^8$	
$20 \varphi(s) = p_0 + p_4 s^4 + p_5 s^5 + p_6 s^6 + p_7 s^7 + p_8 s^8$	
21 $\varphi(s) = p_0 + p_3 s^3 + p_5 s^5 + p_6 s^6 + p_7 s^7 + p_8 s^8$	
$22 \varphi(s) = p_0 + p_3 s^3 + p_4 s^4 + p_6 s^6 + p_7 s^7 + p_8 s^8$	
$\varphi(s) = p_0 + p_2 s^2 + p_4 s^4 + p_6 s^6 + p_7 s^7 + p_8 s^8$	
$24 \varphi(s) = p_0 + p_1 s + p_2 s^2 + p_4 s^4 + p_6 s^6 + p_8 s^8$	
25 $\varphi(s) = p_0 + p_2 s^2 + p_4 s^4 + p_5 s^5 + p_7 s^7 + p_8 s^8$	
26 $\varphi(s) = p_0 + p_1 s + p_2 s^2 + p_4 s^4 + p_7 s^7 + p_8 s^8$	
$\varphi(s) = p_0 + p_1 s + p_4 s^4 + p_6 s^6 + p_7 s^7 + p_8 s^8$	
$\phi(s) = p_0 + p_1 s + p_3 s^3 + p_5 s^5 + p_7 s^7 + p_8 s^8$	
$\varphi(s) = p_0 + p_3 s^3 + p_4 s^4 + p_5 s^5 + p_6 s^6 + p_8 s^8$	
$90 \varphi(s) = p_0 + p_1 s + p_3 s^3 + p_5 s^5 + p_7 s^7 + p_8 s^8$	