

RdF – Reconnaissance des Formes Semaine 1 : attributs de forme

Master ASE: http://master-ase.univ-lille1.fr/

Master Informatique: http://www.fil.univ-lille1.fr/

Spécialité IVI: http://master-ivi.univ-lille1.fr/

Exemple de reconnaissance des Formes

Plan du cours

1 – Indices de forme

définition, principes de construction et propriétés moments cartésiens d'une forme moments centrés : invariance en translation moments normalisés : invariance au changement d'échelle moments invariants de Hu

2 - Attributs déduits du contour

signature d'une forme à partir de son contour signature en fonction de l'abscisse curviligne descripteurs de Fourier

Indices de formes (1/2)

Définition

fonction I(F) à valeur réelle (sans dimension) définie sur l'espace des formes connexes (homéomorphes à un disque) et invariante par translation, changement d'échelle et rotation $^{(1)}$.

Propriétés

deux formes F_1 et F_2 peuvent avoir des indices de forme égaux sans pour autant être identiques.

s'il existe un indice de forme I(.) tel que: $I(F_1) \neq I(F_2)$, alors les formes F_1 et F_2 sont différentes.

Origine et calcul

souvent déterminés à partir d'inégalités reliant plusieurs paramètres géométriques pouvant être calculés sur la forme.

(1) L. Santalo, « Integral Geometry and Geometric Probability », Addison Wesley, 1976.

Indices de formes (2/2)

Exemple

on part de l'inégalité:

$$P^2 - 4\pi S \ge \pi^2 (\rho_e - \rho_i)^2$$
 ,

dont on peut déduire l'indice appelé déficit isopérimétrique:

$$I(F) = \frac{4\pi S}{P^2} \in \left]0,1\right].$$

intres exemples $\frac{\rho_i^2}{S} \in [0,1]$

déficit
$$1 - \pi \frac{(\rho_e - \rho_i)^2}{P^2} \in [1 - \pi^2/16, 1]$$

allongement des rayons $\rho_i/\rho_o \in [0,1]$

Moments d'une forme

Moment d'ordre 0

$$M_{00} = \sum_{x} \sum_{y} I(x, y)$$
 ,

dans laquelle I(x,y) désigne le niveau de gris de l'image. si l'image est binaire, le moment d'ordre 0 d'une forme est sa surface (unité: nombre de pixels).

Moments d'ordre supérieur

$$M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y)$$
,

dans laquelle i et j sont des entiers positifs.

certaines combinaisons particulières de moments constituent de bons attributs pour la reconnaissance de formes.

exemple, barycentre: $(\overline{x}, \overline{y}) = (M_{10}/M_{00}, M_{01}/M_{00})$

Moments centrés et normalisés

Moments centrés

objectif: rendre les moments indépendants de la position de la forme dans l'image: attributs invariants en translation.

$$\mu_{ij} = \sum_{x} \sum_{y} (x - \overline{x})^{i} (y - \overline{y})^{j} I(x, y) .$$

les moments centrés d'ordre supérieur à 0 portent une unité, ils dépendent donc des dimensions de l'image.

Moments centrés normalisés

pour rendre les moments centrés indépendants de l'échelle de l'image, on définit les moments normalisés:

$$\eta_{ij} = \frac{\mu_{ij}}{\mu_{00}^{1+(i+j)/2}}$$

les moments normalisés sont des attributs de forme invariants à un changement d'échelle (homothétie)

Invariance à une rotation (1/2)

Moments d'ordre 2, inertie

analogie avec la physique: un objet est caractérisé par son tenseur d'inertie (ci-dessous en deux dimensions):

$$I = \begin{bmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{bmatrix} ,$$

 $I = \begin{vmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{vmatrix}$, défini par rapport à son barycentre, ou centre d'inertie.

le tenseur d'inertie indique comment la masse de l'objet est répartie dans l'espace par rapport aux axes de rotation.

Invariance à une rotation (1/2)

Changement de repère

le tenseur d'inertie est une matrice symétrique, donc on peut déterminer un repère dans laquelle elle devient diagonale.

$$I' = \begin{bmatrix} I_1 & 0 \\ 0 & I_2 \end{bmatrix} = P^{-1} \cdot I \cdot P$$
, où P est la matrice de changement de repère.

 I_1 et I_2 sont les moments principaux d'inertie.

les moments principaux d'inertie sont des attributs de forme invariants en rotation.

Diagonalisation de I

calcul des valeurs propres et vecteurs propres de la matrice I. les valeurs propres sont les moments principaux d'inertie. les vecteurs propres définissent les axes principaux d'inertie.

Exemple de diagonalisation

matrice d'inertie : $I = \begin{bmatrix} 77 & 70 \\ 70 & 77 \end{bmatrix}$,

valeurs propres : $I_1 = 147, \ I_2 = 7$, et vecteurs propres associés:

$$\vec{v}_1 = (\sqrt{2}/2, \sqrt{2}/2)^T, \ \vec{v}_2 = (-\sqrt{2}/2, \sqrt{2}/2)^T$$
.

la matrice de changement de repère est formée par les vecteurs propres:

$$P = egin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$
 ,

et la matrice d'inertie modifiée est:

$$egin{bmatrix} 147 & 0 \ 0 & 7 \end{bmatrix} = P^{-1} \cdot egin{bmatrix} 77 & 70 \ 70 & 77 \end{bmatrix} \cdot P \;\; .$$

Moments invariants

attributs d'une forme qui sont invariants aux translations, aux changements d'échelle et aux rotations.

moments invariants proposés par Hu en 1962 (1):

$$\begin{split} &\Phi_1 = \ \eta_{20} + \eta_{02} \\ &\Phi_2 = \ (\eta_{20} - \eta_{02})^2 + (2\eta_{11})^2 \\ &\Phi_3 = \ (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ &\Phi_4 = \ (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ &\Phi_5 = \ (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03}) \\ &\quad (\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \ \dots \end{split}$$

il existe également des moments de Hu qui sont invariants à une déformation de l'objet de type inclinaison.

(1) M. K. Hu, « Visual Pattern Recognition by Moment Invariants », IRE Trans. Info. Theory, vol. IT-8, pp.179–187, 1962

Moments non cartésiens

Moments cartésiens

les moments définis précédemment sont une décomposition de l'image (fonction de x et y) sur la base des polynômes:

$$b_{i}(x)=x^{i}, b_{j}(y)=y^{j},$$

ces polynômes ne sont pas orthogonaux, donc la décomposition obtenue n'est pas une représentation compacte de l'image.

Moments othogonaux

définis par une expression similaire:

$$M_{ij} = \sum_{x} \sum_{y} b_i(x) b_j(y) I(x, y)$$
,

dans laquelle les fonctions de base sont orthogonales.

les plus utilisés: moments de Legendre (polynômes de Legendre) et moments de Zernicke (polynômes d'une variable complexe).

Signature d'un contour (1/2)

Principe

coder le contour (courbe délimitant l'objet) en utilisant les localisations de ses points par leurs coordonnées polaires.

Définition

origine du repère pour les coordonnés polaires = barycentre de la forme. distance entre un point du contour et le centre en fonction de l'angle.

fonction périodique.

invariance en translation.

rotation de la forme = déphasage de sa signature.

dilatation = multiplication de la signature par le coefficient.

 $\rho(\theta)$

θ

Signature d'un contour (2/2)

Inconvénient

nécessite que la forme soit convexe, sinon il peut y avoir

plusieurs rayons pour un même angle.

Solution

on utilise l'abscisse curviligne comme argument plutôt que l'angle.

Nouvelle définition

l'abscisse curviligne s varie entre 0 et le périmètre P de la forme.

on ne mesure plus le rayon, mais l'angle

entre la tangente en s et la droite issue du point origine A.

$$\Phi(\theta) = \Phi\left(\frac{P\theta}{2\pi}\right) - \theta$$
, avec $\theta \in \left[0, 2\pi\right]$ et $s = \frac{P\theta}{2\pi}$

 $\Phi(I)$

Descripteurs de Fourier (1/3)

Objectif

permettent de coder la signature de façon plus compacte que par la fonction originale.

la signature est une fonction périodique, donc on peut calculer sa décomposition en série de Fourier:

$$\Phi(\theta) = \sum_{k=0}^{\infty} a_k \cdot \exp(-ik\theta) .$$

les descripteurs de Fourier d'une forme décrite par une fonction continue sont les coefficients a_k .

Propriétés

invariants par translation, rotation et changement d'origine. pour comparer deux formes, on compare leurs descripteurs de Fourier jusqu'à une valeur fixant le niveau de détails.

Descripteurs de Fourier (2/3)

Version avec nombres complexes

un point de l'image est codé par un nombre complexe. le contour de la forme est défini par une série de points:

$$z_j = x_j + i \cdot y_j, \quad j \in 0 \rightarrow N-1$$
.

les descripteurs de Fourier sont les *N* coefficients de la transformée de Fourier discrète de la série de points:

$$Z_k = \frac{1}{N} \sum_{j=0}^{N-1} z_j \cdot \exp(-2\pi i \frac{jk}{N})$$
.

Propriétés

 Z_0 est le barycentre de la forme (en coordonnées complexes). si tous les coefficients sont nuls sauf Z_1 , la forme est un cercle. les descripteurs d'ordre élevé définissent les détails.

Descripteurs de Fourier (3/3)

Reconstruction avec des nombres variables de descripteurs

Pour approfondir

Duda, Hart, Stork, « Pattern Classification », 2ème édition, Wiley-Interscience, 2001.

http://www.amazon.com/Pattern-Classification-2nd-Richard-Duda/dp/0471056693

Statistical moments, Jamie Shutler (CVonline: Robert B. Fisher)

 $http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/CVonline_moments.html$

cours de master de Florence Tupin (ENST)

http://www.tsi.enst.fr/~tupin/NEW_PAGE/cours.html