中文长文本情感分类 实验报告

2018011365 张鹤潇

June 1, 2020

目录

1	研究	背景	1
2	模型	介绍	1
	2.1	Naive Bayes, SVM 和 random forest	1
	2.2	MLP	1
	2.3	fastText	1
	2.4	TextCNN	2
	2.5	Deep Pyramid CNN	2
	2.6	BiLSTM	3
	2.7	BiLSTM with Attention	4
	2.8	TextRCNN	4
	2.9	BERT	5
	2.10	TextGCN	5
3	成果	展示	5
4	实验	细节	6
5	思考	题	7
6	总结	反思	8

1 研究背景

情感分类是 NLP 领域的基本问题之一。本次分类实验使用的数据源于新浪中文新闻,根据网民对新闻的情感投票确定新闻标签。

具体而言,对每条新闻,取其获得票数最多的一类情感作为标签。如果某新闻得票最多的情感有多个,就将其舍弃。原始语料中包含链接、电话号等无关信息,我通过预处理将这些噪声筛去,并从测试集中划分出一半作为验证集。

衣 1: 数据尖剂分型									
类别	感动	同情	无聊	愤怒	搞笑	难过	新奇	温馨	总计
训练集	366	81	104	912	344	178	95	27	2107
验证集	146	29	30	499	176	83	27	7	997
测试集	149	28	41	472	154	90	39	4	997

表 1: 数据类别分布

该数据集具样本量小、类别分布极不均衡、样本标注不准确、测试集与训练 集不同分布等问题。在这种数据集上做情感分类的挑战非常大。

2 模型介绍

2.1 Naive Bayes, SVM 和 random forest

用 Naive Bayes, SVM 和 random forest 三种机器学习方法作对比实验, 其中 SVM 和 random forest 使用 tf-idf 特征。因 SVM 使用的 hinge loss 不支持输出概率,故无法计算相关系数。

2.2 MLP

由两层全连接层构成的模型,特点是参数量大,易过拟合。在全连接层间加入了 Batch Normalization 以提高性能。

2.3 fastText

fastText ¹ 是一种简洁有效的文本分类模型,其思路是将所有词向量的均值作为文本的特征表示。这里的词向量不仅来源于文本的 unigram,还可以来源于bigram,trigram 等。fastText 将 N-gram 融入特征中,并用哈希解决组合爆炸的问题。

fastText 也是训练词向量的方法之一。

¹[Bag of Tricks for Efficient Text Classification, 2016]

图 1: fastText 结构图

2.4 TextCNN

TextCNN² 通过对词向量序列的卷积操作提取文本的 N-gram 特征,沿着每个卷积核的输出做 max pooling,用 dropout 防止全连接层过拟合。

图 2: TextCNN 结构图

2.5 Deep Pyramid CNN

卷积层能有效提取局部的语义信息,但不擅长提取全局特征,为了解决这个问题,就要增加网络的深度。

Deep Pyramid CNN³ 在 TextCNN 的基础上加入了重复多次的池化-卷积-卷积操作,每经过一次池化,序列的长度就缩短一半,这样,越靠上的卷积层就越能提取出序列宏观层面的信息;且因为序列长度的减半,模型消耗的计算资源得到了有效的降低。此外,它还将卷积层的输入和输出加到一起 (skip connect from ResNet),使得深层网络的训练更有效。

图中的 Shallow CNN 即为上一节中的 TextCNN.

²[Convolutional Neural Networks for Sentence Classification, 2014]

³[Deep Pyramid Convolutional Neural Networks for Text Categorization, 2017]

Figure 1: (a) Our proposed model DPCNN. (b,c) Previous models for comparison. \oplus indicates addition. The dotted red shortcuts in (c) perform dimension matching. DPCNN is dimension-matching free.

图 3: DPCNN 结构图

2.6 BiLSTM

用双向 LSTM 进行文本分类,取其最后一个时间步上的隐状态过分类器。 在长文本分类情境下,这种做法会损失大量的中间信息,将极大影响模型的 性能。

图 4: BiLSTM 结构图

2.7 BiLSTM with Attention

在 BiLSTM 的基础上引入注意力机制:取双向 LSTM 所有时间步的隐状态输入 Attention 层,取 Attention 层的输出作为文本的特征表示。

Attention 机制大大增强了 RNN 提取全局信息的能力,但损失了语序关系。

图 5: BiLSTM with Attention 结构图

2.8 TextRCNN

TextRCNN 4 把 TextCNN 和 RNN 结合到了一起。它将双向 LSTM 的输入和输出拼接在一起,经过激活函数后做 max pooling,是基于 RNN 文本分类的 又一种策略。

图 6: TextRCNN 结构图

⁴[Recurrent Convolutional Neural Networks for Text Classification, 2015]

2.9 BERT

BERT 是基于 Transformer 的大型预训练网络,代表了 NLP 领域的 state-of-the-art,仍然是研究的热点。在本次实验中,我取哈工大发布的 RoBERTa-wwm-base 前三层,即 RBT3 ⁵ 作为特征提取器,在训练集上对其进行微调。

2.10 TextGCN

用图卷积网络做文本分类 6,构建基于文本和词的异构图。

图包含了 document 和 word 两类节点,document-word 和 word-word 两种 边。document-word 边的权重是 TF-IDF,word-word 边的权重是通过一种叫 PMI 的方法计算的。简单来说,就是统计两个词共现的频率,共现次数越多,权重越大。

$$w_{ij} = \begin{cases} \text{PMI}(i,j) & i, j \text{ are words} \\ \text{TF-IDF}(i,j), & i \text{ is document, } j \text{ is word} \\ 1, & i = j \\ 0, & \text{otherwise} \end{cases}$$

GCN 的原理就不详述了。

图 7: TextGCN 结构图

3 成果展示

运行和复现方法见 readme 文件。

以测试集为准确率为优化指标。测试结果如下。

考虑到对数据集预处理的不同,各项指标只表示模型性能的相对关系,不应 与其它同学的结果相比较。

⁵https://github.com/ymcui/Chinese-BERT-wwm

⁶[Graph Convolutional Networks for Text Classification, 2019]

表 2: 各模型测试结果

Model	Acc	macro F1	coef
Naive Bayes	61.89%	0.2852	0.5916
SVM	60.48%	0.2317	-
Random Forest	59.28%	0.1875	0.6093
MLP	59.68%	0.2466	0.6215
fastText(bow)	61.79%	0.3412	0.6309
fastText(bigram)	63.19%	0.3481	0.6422
TextCNN	64.69%	0.3362	0.6694
DPCNN	64.09%	0.3371	0.6274
BiLSTM	51.86%	0.1222	0.4492
BiLSTM with Attention	62.59%	0.3236	0.6329
TextRCNN	65.10%	0.3593	0.6498
RBT3	62.09%	0.3490	0.6350
TextGCN	64.69%	0.3647	-

4 实验细节

选择 Adam 作为优化器,使用预训练的 word2vec 词向量进行 word embedding,在本次实验的小样本背景下,固定词向量的效果是最好的。

受篇幅和时间所限,下文中只展示 TextCNN, DPCNN 和 TextRCNN 这三个模型的调参过程,详细超参数见 config 文件夹。

表 3: dropout 率对 TextCNN 的影响

dropout 率	0.1	0.3	0.5	0.7	0.9
Acc	62.26%	63.69%	64.49%	63.99%	62.99%

dropout 的引入使 TextCNN 的测试准确率提高了两个百分点,效果非常明显。当 dropout 率为 0.5 时模型表现最佳,恰与原论文中作者推荐的超参数相同。

表 4: 网络深度对 DPCNN 的影响

Layer	0	1	2	3	4	6
Acc	62.99%	64.09%	62.89%	63.19%	63.09%	61.79%

当 DPCNN 的池化-卷积-卷积层个数为 1 时其表现最佳,当网络过深时,模型的表现反而下降。

探究初始化方式及 LSTM/GRU 对 TextRCNN 测试集准确率的影响,对比实验如下。

表 5: 初始化方式和网络结构对 TextRCNN 的影响

类型	初始化	Acc
LSTM	默认	65.10%
GRU	默认	64.49%
LSTM	正交	63.11%

可见 LSTM 的效果略优于 GRU; 与默认(零均值均匀)初始化方式相比,正交初始化对于提高 TextRCNN 的性能并无帮助。

5 思考题

实验训练什么时候停止是最合适的?简要陈述你的实现方式,并试分析固定 迭代次数与通过验证集调整等方法的优缺点。

固定迭代次数的方法能充分挖掘模型的潜能,但会浪费计算资源,适合在模型较小或计算资源充足时使用。

通过验证集调整,即在验证集性能长期不提升时终止训练,能够节省计算资源,但可能错失最佳模型。

考虑到本次实验无论是数据量还是模型都比较小,我选用固定迭代次数的方式,选取在验证集上表现最好的模型进行最终测试。

实验参数的初始化是怎么做的?不同的方法适合哪些地方?(均匀分布初始化,高斯分布初始化,正交初始化等)

用 PyTorch 默认的初始化方式。

具体而言,全连接层、卷积层、LSTM 用零均值均匀分布初始化; Batch Normalization 初始化权重采样于 U(0,1), 偏置初始化为 0。

正交初始化是为了解决梯度消失和梯度爆炸的问题设计的,适用于 RNN,但在本次实验中并没有帮助。

我认为各种初始化方法的应用是 case by case 的,应当通过实验确定哪一种方法更好。

过拟合是深度学习常见的问题,有什么方法可以方式训练过程陷入过拟合?

• Early Stoping: 在模型过拟合之前及时停止训练;

- Dropout: 前向传播时,让神经元以一定的概率停止工作,使模型不会过度 依赖局部特征,从而增强其泛化能力;
- L2(L1)-penalty: 限制参数的范数以防止模型过于复杂;
- 数据增强或增加训练数据: 最有效的方法, 但不一定可行;
- 各种 normalization 往往也有一定的正则化效果。

试分析 CNN, RNN, MLP 三者的优缺点。

MLP: 作为词袋模型, MLP 不能有效利用上下文信息, 但它结构简单, 训练速度快。fastText 就是其中的佼佼者, 效果也算中规中矩。

CNN: 卷积层参数量小,不易过拟合,能够有效提取局部的语义信息。缺点是难以捕捉长距离依赖关系,但在本实验背景下,这个问题造成的影响不大。

RNN: 能更好的处理长距离依赖,配合 Attention 机制具备有限的可解释性,也容易处理变长序列。缺点是并行度低,训练耗时长,存在梯度消失和梯度爆炸的问题,也不擅长提取局部语义信息。

6 总结反思

在本次实验中,我用 sklearn 和 PyTorch 搭建了各种经典的情感分类模型,对它们的特点和优劣有了更深的认识,花费了相当大的精力,确实也有所收获。

神经网络的模型设计是非常自由的,比如 Attention 层不仅可以接在 LSTM 的后面,还可以用在卷积层之前,这也是提高卷积层提取全局特征能力的一个 idea。