

Notation: if 
$$f \subseteq A \times B$$

we write  $f: A \Rightarrow B$ 

domain

instead  $(a_1b) \in f$  or  $af B$ 

write  $f(a) = b$ 

Example Ron people a) xky iff x is a parent of y Is 44 a function? 1) not true becouse there are people who have no children. one person Can 2) not true have several children a function R is not

2) Son R xSy iff  $x^2+y^2=1$ 1) for any  $x \in \mathbb{R}$  you can find  $y \in \mathbb{R}$ , sit. xSy.

if x=2 x=2 xSy  $x \in \mathbb{R}$   $x \in \mathbb{R}$ 



2) for any x & E1, 1] there is

Codomain

Codomain

Codomain

Codomain

Frample

$$f: A > B$$

Codomain

 $f(x)$ 

Frample

 $f(x)$ 

Four( $f$ ) =  $f(x)$ 

Jes Let  $f:A \rightarrow B$  be a function

fix surjective (onto) for  $A \rightarrow B$  A = A,  $S:A \rightarrow G(a) = D$ The same as codomain = range

the same (one-to-one) if

for any  $a,c \leftrightarrow A$   $A \neq G(a) \Rightarrow G($ 

f is dijective if f is surjective at the same time and injective Examples dom codom  $4) \quad f: \mathbb{R} \to \mathbb{R} \quad : \quad x \to 5x^4$ surjection. for any yell there is  $x \in \mathbb{R}$ , sit.  $y = 5x^4$ e.g., b = -10 then so x, s.t. 3 -10=5x4 not a surjection 2) Thjection: for any  $x_1, x_2 \in \mathbb{R}$ f(x1) + f(x2)  $x_1 = 1$ ,  $x_2 = -1$  and nope f(x2) = f(x2) bijetion.

Example a) 
$$f: \mathcal{L} \to \mathcal{L}: x \to 3x$$
 $f(x) = 3x$ 

A surjection.

for any  $y \in \mathbb{Z}$ ,  $\exists x \in \mathbb{Z}$ 

s.t.  $y = 3x$ 

No, if  $y \in \mathbb{Q}$  then  $x = \frac{2}{3}$ 
 $2 = 3x$ 
 $2 = 3x$ 
 $3x + 2 \in \mathbb{Z}$ 

if  $x_1 \neq x_2$  then  $3x_1 \neq 3x_2$ 

if  $x_1 \neq x_2$  then  $3x_1 \neq 3x_2$ 

2)  $f: \mathbb{R} \to \mathbb{R}: x \to 4x - 10$ 

Surjection: For any  $y \in \mathbb{R}$ 

you should be able to find  $x \in \mathbb{R}$ 
 $x = \frac{y + 10}{y} + \frac{1}{2}$ 

Virjection:  $x = \frac{y + 10}{y} + \frac{1}{2}$ 

You should have  $x = \frac{1}{2}$ 

if  $x_1 \pm x_2$  then  $4x_1-10 \neq 4x_2-10$  $f(x_2)$   $f(x_2)$ 

In verse

5'= Inverse relation. L'it should be a function

Sometimes f is not a function

Theorem: f'is a function iff fis a bijection

Examples 3)  $f: \mathcal{L} \to \mathcal{H}: x \to 3x$ for is not a function

2) file 32

 $f: \mathbb{R} \to \mathbb{R}: x \to 4x - 10$ If is a function