Complex Variables Qualifying Exam Spring 1996

- 1. Let $G = \{a + bi : a, b \in \mathbb{Z}\}$. Does $\sum_{\substack{z \in G \\ z \neq 0}} \frac{1}{|z|^2}$ converge or diverge?
- **2.** Suppose f is even and entire. Show $g(z) = f(\sqrt{z})$ is entire.
- **3.** Suppose f is entire and there exist $\eta_1, \eta_2 > 0$ such that $|z| > \eta_1$ implies $|f(z)| > \eta_2$. Show f is a polynomial.
- **4.** Evaluate $\int_0^\infty x(x^2+1)^{-2} \sin(x) dx$.
- **5.** Find a conformal mapping from $\{x+iy: |y|<\frac{\pi}{2}\}$ onto $\{u+iv: v< u^2\}$. (Hint: What is the action of $w=z^2$ on horizontal lines?)
- **6.** Write the function $\frac{1}{1-z} + \frac{3}{3-z}$ as a Laurent series centered at $z_0 = 0$ valid in some region which contains the point z = 2. What is the domain of convergence for this series?
- 7. Prove that the equation $e^z = 2z + 1$ has exactly one root in |z| < 1.
- **8.** It is desired to approximate $\frac{1}{z}$ on |z|=1 by a function f(z) which is analytic on $|z| \le 1$. Show that the maximum error is at least one, that is, show $\max_{|z|=1} |\frac{1}{z} f(z)| \ge 1$.
- **9.** Suppose $f: U \to S$ is conformal, onto, and one-to-one, where U is the unit disk and S is a square centered at 0. Suppose also f(0) = 0. Prove that f(iz) = if(z) and that if $f(z) = \sum_{n=0}^{\infty} c_n z^n$, then $c_n = 0$ unless n-1 is a multiple of 4. (Hint: Consider $f^{-1}(if(z))$.)
- **10.** Show that $f(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$ defines an analytic function in the domian Rez > 1.