

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node annotated by i:j indicates a comparison between a_i and a_j . A leaf annotated by the permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$ indicates the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$. The shaded path indicates the decisions made when sorting the input sequence $\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$; the permutation $\langle 3, 1, 2 \rangle$ at the leaf indicates that the sorted ordering is $a_3 = 5 \leq a_1 = 6 \leq a_2 = 8$. There are 3! = 6 possible permutations of the input elements, and so the decision tree must have at least 6 leaves.

they yield identical information about the relative order of a_i and a_j . We therefore assume that all comparisons have the form $a_i \le a_j$.

The decision-tree model

We can view comparison sorts abstractly in terms of decision trees. A *decision tree* is a full binary tree that represents the comparisons between elements that are performed by a particular sorting algorithm operating on an input of a given size. Control, data movement, and all other aspects of the algorithm are ignored. Figure 8.1 shows the decision tree corresponding to the insertion sort algorithm from Section 2.1 operating on an input sequence of three elements.

In a decision tree, we annotate each internal node by i:j for some i and j in the range $1 \le i, j \le n$, where n is the number of elements in the input sequence. We also annotate each leaf by a permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$. (See Section C.1 for background on permutations.) The execution of the sorting algorithm corresponds to tracing a simple path from the root of the decision tree down to a leaf. Each internal node indicates a comparison $a_i \le a_j$. The left subtree then dictates subsequent comparisons once we know that $a_i \le a_j$, and the right subtree dictates subsequent comparisons knowing that $a_i > a_j$. When we come to a leaf, the sorting algorithm has established the ordering $a_{\pi(1)} \le a_{\pi(2)} \le \cdots \le a_{\pi(n)}$. Because any correct sorting algorithm must be able to produce each permutation of its input, each of the n! permutations on n elements must appear as one of the leaves of the decision tree for a comparison sort to be correct. Furthermore, each of these leaves must be reachable from the root by a downward path corresponding to an actual

execution of the comparison sort. (We shall refer to such leaves as "reachable.") Thus, we shall consider only decision trees in which each permutation appears as a reachable leaf.

A lower bound for the worst case

The length of the longest simple path from the root of a decision tree to any of its reachable leaves represents the worst-case number of comparisons that the corresponding sorting algorithm performs. Consequently, the worst-case number of comparisons for a given comparison sort algorithm equals the height of its decision tree. A lower bound on the heights of all decision trees in which each permutation appears as a reachable leaf is therefore a lower bound on the running time of any comparison sort algorithm. The following theorem establishes such a lower bound.

Theorem 8.1

Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof From the preceding discussion, it suffices to determine the height of a decision tree in which each permutation appears as a reachable leaf. Consider a decision tree of height h with l reachable leaves corresponding to a comparison sort on n elements. Because each of the n! permutations of the input appears as some leaf, we have $n! \leq l$. Since a binary tree of height h has no more than 2^h leaves, we have

$$n! \leq l \leq 2^h$$
,

which, by taking logarithms, implies

```
h \ge \lg(n!) (since the lg function is monotonically increasing)
= \Omega(n \lg n) (by equation (3.19)).
```

Corollary 8.2

Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof The $O(n \lg n)$ upper bounds on the running times for heapsort and merge sort match the $\Omega(n \lg n)$ worst-case lower bound from Theorem 8.1.

Exercises

8.1-1

What is the smallest possible depth of a leaf in a decision tree for a comparison sort?

8.1-2

Obtain asymptotically tight bounds on $\lg(n!)$ without using Stirling's approximation. Instead, evaluate the summation $\sum_{k=1}^{n} \lg k$ using techniques from Section A.2.

8.1-3

Show that there is no comparison sort whose running time is linear for at least half of the n! inputs of length n. What about a fraction of 1/n of the inputs of length n? What about a fraction $1/2^n$?

8.1-4

Suppose that you are given a sequence of n elements to sort. The input sequence consists of n/k subsequences, each containing k elements. The elements in a given subsequence are all smaller than the elements in the succeeding subsequence and larger than the elements in the preceding subsequence. Thus, all that is needed to sort the whole sequence of length n is to sort the k elements in each of the n/k subsequences. Show an $\Omega(n \lg k)$ lower bound on the number of comparisons needed to solve this variant of the sorting problem. (*Hint:* It is not rigorous to simply combine the lower bounds for the individual subsequences.)

8.2 Counting sort

Counting sort assumes that each of the *n* input elements is an integer in the range 0 to *k*, for some integer *k*. When k = O(n), the sort runs in $\Theta(n)$ time.

Counting sort determines, for each input element x, the number of elements less than x. It uses this information to place element x directly into its position in the output array. For example, if 17 elements are less than x, then x belongs in output position 18. We must modify this scheme slightly to handle the situation in which several elements have the same value, since we do not want to put them all in the same position.

In the code for counting sort, we assume that the input is an array A[1..n], and thus A.length = n. We require two other arrays: the array B[1..n] holds the sorted output, and the array C[0..k] provides temporary working storage.

8.2 Counting sort 195

Figure 8.2 The operation of COUNTING-SORT on an input array A[1..8], where each element of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after line 5. (b) The array C after line 8. (c)—(e) The output array C and the auxiliary array C after one, two, and three iterations of the loop in lines 10-12, respectively. Only the lightly shaded elements of array C have been filled in. (f) The final sorted output array C array C are C and C array C are C array C and C array C are C array C are C array C are C array C array C are C array C

```
COUNTING-SORT(A, B, k)
    let C[0..k] be a new array
 2
    for i = 0 to k
 3
        C[i] = 0
 4
    for j = 1 to A.length
 5
        C[A[j]] = C[A[j]] + 1
 6
    // C[i] now contains the number of elements equal to i.
 7
    for i = 1 to k
        C[i] = C[i] + C[i-1]
 8
    // C[i] now contains the number of elements less than or equal to i.
    for j = A.length downto 1
10
        B[C[A[j]]] = A[j]
11
        C[A[i]] = C[A[i]] - 1
12
```

Figure 8.2 illustrates counting sort. After the **for** loop of lines 2–3 initializes the array C to all zeros, the **for** loop of lines 4–5 inspects each input element. If the value of an input element is i, we increment C[i]. Thus, after line 5, C[i] holds the number of input elements equal to i for each integer $i = 0, 1, \ldots, k$. Lines 7–8 determine for each $i = 0, 1, \ldots, k$ how many input elements are less than or equal to i by keeping a running sum of the array C.

Finally, the **for** loop of lines 10–12 places each element A[j] into its correct sorted position in the output array B. If all n elements are distinct, then when we first enter line 10, for each A[j], the value C[A[j]] is the correct final position of A[j] in the output array, since there are C[A[j]] elements less than or equal to A[j]. Because the elements might not be distinct, we decrement C[A[j]] each time we place a value A[j] into the B array. Decrementing C[A[j]] causes the next input element with a value equal to A[j], if one exists, to go to the position immediately before A[j] in the output array.

How much time does counting sort require? The **for** loop of lines 2–3 takes time $\Theta(k)$, the **for** loop of lines 4–5 takes time $\Theta(n)$, the **for** loop of lines 7–8 takes time $\Theta(k)$, and the **for** loop of lines 10–12 takes time $\Theta(n)$. Thus, the overall time is $\Theta(k+n)$. In practice, we usually use counting sort when we have k=O(n), in which case the running time is $\Theta(n)$.

Counting sort beats the lower bound of $\Omega(n \lg n)$ proved in Section 8.1 because it is not a comparison sort. In fact, no comparisons between input elements occur anywhere in the code. Instead, counting sort uses the actual values of the elements to index into an array. The $\Omega(n \lg n)$ lower bound for sorting does not apply when we depart from the comparison sort model.

An important property of counting sort is that it is *stable*: numbers with the same value appear in the output array in the same order as they do in the input array. That is, it breaks ties between two numbers by the rule that whichever number appears first in the input array appears first in the output array. Normally, the property of stability is important only when satellite data are carried around with the element being sorted. Counting sort's stability is important for another reason: counting sort is often used as a subroutine in radix sort. As we shall see in the next section, in order for radix sort to work correctly, counting sort must be stable.

Exercises

8.2-1

Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the array A = (6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2).

8.2-2

Prove that COUNTING-SORT is stable.

8.2-3

Suppose that we were to rewrite the **for** loop header in line 10 of the COUNTING-SORT as

10 **for**
$$j = 1$$
 to $A.length$

Show that the algorithm still works properly. Is the modified algorithm stable?

8.3 Radix sort 197

8.2-4

Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then answers any query about how many of the n integers fall into a range [a ... b] in O(1) time. Your algorithm should use $\Theta(n + k)$ preprocessing time.

8.3 Radix sort

Radix sort is the algorithm used by the card-sorting machines you now find only in computer museums. The cards have 80 columns, and in each column a machine can punch a hole in one of 12 places. The sorter can be mechanically "programmed" to examine a given column of each card in a deck and distribute the card into one of 12 bins depending on which place has been punched. An operator can then gather the cards bin by bin, so that cards with the first place punched are on top of cards with the second place punched, and so on.

For decimal digits, each column uses only 10 places. (The other two places are reserved for encoding nonnumeric characters.) A d-digit number would then occupy a field of d columns. Since the card sorter can look at only one column at a time, the problem of sorting n cards on a d-digit number requires a sorting algorithm.

Intuitively, you might sort numbers on their *most significant* digit, sort each of the resulting bins recursively, and then combine the decks in order. Unfortunately, since the cards in 9 of the 10 bins must be put aside to sort each of the bins, this procedure generates many intermediate piles of cards that you would have to keep track of. (See Exercise 8.3-5.)

Radix sort solves the problem of card sorting—counterintuitively—by sorting on the *least significant* digit first. The algorithm then combines the cards into a single deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the cards in the 2 bin, and so on. Then it sorts the entire deck again on the second-least significant digit and recombines the deck in a like manner. The process continues until the cards have been sorted on all d digits. Remarkably, at that point the cards are fully sorted on the d-digit number. Thus, only d passes through the deck are required to sort. Figure 8.3 shows how radix sort operates on a "deck" of seven 3-digit numbers.

In order for radix sort to work correctly, the digit sorts must be stable. The sort performed by a card sorter is stable, but the operator has to be wary about not changing the order of the cards as they come out of a bin, even though all the cards in a bin have the same digit in the chosen column.

329		720		720		329
457		355		329		355
657		436		436		436
839	ուսվիթ	457	ասայիթ	839	antijbe	457
436		657		355		657
720		329		457		720
355		839		657		839

Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is the input. The remaining columns show the list after successive sorts on increasingly significant digit positions. Shading indicates the digit position sorted on to produce each list from the previous one.

In a typical computer, which is a sequential random-access machine, we sometimes use radix sort to sort records of information that are keyed by multiple fields. For example, we might wish to sort dates by three keys: year, month, and day. We could run a sorting algorithm with a comparison function that, given two dates, compares years, and if there is a tie, compares months, and if another tie occurs, compares days. Alternatively, we could sort the information three times with a stable sort: first on day, next on month, and finally on year.

The code for radix sort is straightforward. The following procedure assumes that each element in the n-element array A has d digits, where digit 1 is the lowest-order digit and digit d is the highest-order digit.

```
RADIX-SORT(A, d)

1 for i = 1 to d

2 use a stable sort to sort array A on digit i
```

Lemma 8.3

Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these numbers in $\Theta(d(n+k))$ time if the stable sort it uses takes $\Theta(n+k)$ time.

Proof The correctness of radix sort follows by induction on the column being sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable sort used as the intermediate sorting algorithm. When each digit is in the range 0 to k-1 (so that it can take on k possible values), and k is not too large, counting sort is the obvious choice. Each pass over n d-digit numbers then takes time $\Theta(n+k)$.

When d is constant and k = O(n), we can make radix sort run in linear time. More generally, we have some flexibility in how to break each key into digits. 8.3 Radix sort 199

Lemma 8.4

Given n b-bit numbers and any positive integer $r \le b$, RADIX-SORT correctly sorts these numbers in $\Theta((b/r)(n+2^r))$ time if the stable sort it uses takes $\Theta(n+k)$ time for inputs in the range 0 to k.

Proof For a value $r \le b$, we view each key as having $d = \lceil b/r \rceil$ digits of r bits each. Each digit is an integer in the range 0 to $2^r - 1$, so that we can use counting sort with $k = 2^r - 1$. (For example, we can view a 32-bit word as having four 8-bit digits, so that b = 32, r = 8, $k = 2^r - 1 = 255$, and d = b/r = 4.) Each pass of counting sort takes time $\Theta(n + k) = \Theta(n + 2^r)$ and there are d passes, for a total running time of $\Theta(d(n + 2^r)) = \Theta((b/r)(n + 2^r))$.

For given values of n and b, we wish to choose the value of r, with $r \leq b$, that minimizes the expression $(b/r)(n+2^r)$. If $b < \lfloor \lg n \rfloor$, then for any value of $r \leq b$, we have that $(n+2^r) = \Theta(n)$. Thus, choosing r = b yields a running time of $(b/b)(n+2^b) = \Theta(n)$, which is asymptotically optimal. If $b \geq \lfloor \lg n \rfloor$, then choosing $r = \lfloor \lg n \rfloor$ gives the best time to within a constant factor, which we can see as follows. Choosing $r = \lfloor \lg n \rfloor$ yields a running time of $\Theta(bn/\lg n)$. As we increase r above $\lfloor \lg n \rfloor$, the 2^r term in the numerator increases faster than the r term in the denominator, and so increasing r above $\lfloor \lg n \rfloor$ yields a running time of $\Omega(bn/\lg n)$. If instead we were to decrease r below $\lfloor \lg n \rfloor$, then the b/r term increases and the $n+2^r$ term remains at $\Theta(n)$.

Is radix sort preferable to a comparison-based sorting algorithm, such as quick-sort? If $b = O(\lg n)$, as is often the case, and we choose $r \approx \lg n$, then radix sort's running time is $\Theta(n)$, which appears to be better than quicksort's expected running time of $\Theta(n \lg n)$. The constant factors hidden in the Θ -notation differ, however. Although radix sort may make fewer passes than quicksort over the n keys, each pass of radix sort may take significantly longer. Which sorting algorithm we prefer depends on the characteristics of the implementations, of the underlying machine (e.g., quicksort often uses hardware caches more effectively than radix sort), and of the input data. Moreover, the version of radix sort that uses counting sort as the intermediate stable sort does not sort in place, which many of the $\Theta(n \lg n)$ -time comparison sorts do. Thus, when primary memory storage is at a premium, we might prefer an in-place algorithm such as quicksort.

Exercises

8.3-1

Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the following list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

8.3-2

Which of the following sorting algorithms are stable: insertion sort, merge sort, heapsort, and quicksort? Give a simple scheme that makes any sorting algorithm stable. How much additional time and space does your scheme entail?

8.3-3

Use induction to prove that radix sort works. Where does your proof need the assumption that the intermediate sort is stable?

8.3-4

Show how to sort n integers in the range 0 to $n^3 - 1$ in O(n) time.

8.3-5 *

In the first card-sorting algorithm in this section, exactly how many sorting passes are needed to sort d-digit decimal numbers in the worst case? How many piles of cards would an operator need to keep track of in the worst case?

8.4 Bucket sort

Bucket sort assumes that the input is drawn from a uniform distribution and has an average-case running time of O(n). Like counting sort, bucket sort is fast because it assumes something about the input. Whereas counting sort assumes that the input consists of integers in a small range, bucket sort assumes that the input is generated by a random process that distributes elements uniformly and independently over the interval [0, 1). (See Section C.2 for a definition of uniform distribution.)

Bucket sort divides the interval [0, 1) into n equal-sized subintervals, or **buckets**, and then distributes the n input numbers into the buckets. Since the inputs are uniformly and independently distributed over [0, 1), we do not expect many numbers to fall into each bucket. To produce the output, we simply sort the numbers in each bucket and then go through the buckets in order, listing the elements in each.

Our code for bucket sort assumes that the input is an n-element array A and that each element A[i] in the array satisfies $0 \le A[i] < 1$. The code requires an auxiliary array B[0..n-1] of linked lists (buckets) and assumes that there is a mechanism for maintaining such lists. (Section 10.2 describes how to implement basic operations on linked lists.)

8.4 Bucket sort 201

Figure 8.4 The operation of BUCKET-SORT for n = 10. (a) The input array A[1..10]. (b) The array B[0..9] of sorted lists (buckets) after line 8 of the algorithm. Bucket i holds values in the half-open interval [i/10, (i+1)/10). The sorted output consists of a concatenation in order of the lists $B[0], B[1], \ldots, B[9]$.

```
BUCKET-SORT(A)
   let B[0..n-1] be a new array
2
   n = A.length
   for i = 0 to n - 1
3
4
        make B[i] an empty list
5
   for i = 1 to n
        insert A[i] into list B[\lfloor nA[i] \rfloor]
6
7
   for i = 0 to n - 1
8
        sort list B[i] with insertion sort
   concatenate the lists B[0], B[1], \ldots, B[n-1] together in order
```

Figure 8.4 shows the operation of bucket sort on an input array of 10 numbers.

To see that this algorithm works, consider two elements A[i] and A[j]. Assume without loss of generality that $A[i] \leq A[j]$. Since $\lfloor nA[i] \rfloor \leq \lfloor nA[j] \rfloor$, either element A[i] goes into the same bucket as A[j] or it goes into a bucket with a lower index. If A[i] and A[j] go into the same bucket, then the **for** loop of lines 7–8 puts them into the proper order. If A[i] and A[j] go into different buckets, then line 9 puts them into the proper order. Therefore, bucket sort works correctly.

To analyze the running time, observe that all lines except line 8 take O(n) time in the worst case. We need to analyze the total time taken by the n calls to insertion sort in line 8.