FastXML: A Fast, Accurate and Stable Tree-classifier for eXtreme Multi-label Learning

Yashoteja Prabhu (IIT Delhi) Manik Varma (Microsoft Research)

Extreme Multi-Label Learning

- Learning with millions of labels
- New paradigm for ranking and recommendation

Our Contributions

- We formulate a novel node partitioning objective which directly optimizes an nDCG based ranking loss.
- We propose an efficient optimization algorithm for the novel formulation.
- We train on 4 M points, 1 M categories and 160 K features data set in 8 hours on a single core desktop.
- We improve prediction accuracy significantly over the state of the art Extreme Multi-Label learning algorithms.

Prediction in Logarithmic Time

FastXML Overview

Formulation

Alternating Minimization

- Initialize **w to 0** and δ_i to +1 or 1 at random
- Repeat until convergence

•
$$\mathbf{r}^{\pm} = \operatorname{rank}(\sum_{i: \delta_i = \pm 1} N_{\mathbf{y}_i} \mathbf{y}_i)$$

•
$$\delta_i = \text{sign}(v_i^- - v_i^+)$$

$$v_i^{\pm} = C_{\delta}(\pm 1) \log(1 + e^{\mp \mathbf{w}^{\mathsf{t}} \mathbf{x}_i}) - C_r \sum_{j} \left(\frac{N_{y_i} y_{ij}}{\log(1 + r_i^{\pm})} \right)$$

 $r^{-}(\mathbf{w})$

• $\mathbf{w} = \text{Solve } \ell_1 \text{ Logistic Regression}(\{\mathbf{x}_i, \delta_i\})\mathbf{z}$

Results – Small Data Sets

Results – Large Data Sets

Data Set Statistics

Data Set	# of Training Points (M)	# of Test Points (M)	# of Dimensions (M)	# of Labels (M)
Wikipedia	1.89	0.47	1.62	0.33
Ads-430K	1.12	0.50	0.088	0.43
Ads-1M	3.92	1.56	0.16	1.08

0.5

0.3

0.2

0.1

16

S 0.4

2

4

8

16

P3

P1

P5