Chapter 4 part 3

If asked to design a circuit

- Where to start
 - Truth table based on requirements/specs
 - Required outputs based on a timeline
- Build circuit
- Test circuit
- Does the output match the specifications?
 - Yes done
 - No redesign

Review

Decoder

- n to m
- m a max of 2ⁿ
- Only one output active at any given time
- Can have an Enable input

Encoder

- Maximum of 2ⁿ inputs and n outputs.
- Output tells you which input line is active

Priority Encoder

- Still Encodes
- If two or more inputs are active at any given time, the highest priority one gets attention.

Table 4.8 *Truth Table of a Priority Encoder*

	Inp	uts			Outp	uts
D_0	D ₁	D ₂	D_3	χ	x y	V
0	0	0	0	X	X	0
1	0	0	0	(0	1
\mathbf{X}	1	0	0	(1	1
X	\mathbf{X}	1	0	1	0	1
X	X	X	1	1	. 1	1

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Maps for Priority Encoder

Multiplexer

- Selects an input and directs it to the output.
- The selection is made via « selection lines »
 - 2ⁿ input lines (normally)
 - n selection lines
 - 1 output

Basic Circuit and Logic Symbol

_	S_1	S_0	Y
	0	0	I_0
	0	1	I_1
	1	0	I_2 I_3
	1	1	I_3

Synthesis of a Logic Function

W_2	f
0	0
1	1
0	1
1	0
	0

Synthesis of a Logic Function

X	y	Z	F
0	0	0 1	
0	1 1	0 1	
1 1	0	0 1	
1 1	1 1	0 1	

х	y	Z	F	
0	0	0 1	0 1	F = z
0	1 1	0 1	1 0	F = z'
1 1	0	0 1	0	F = 0
1 1	1 1	0 1	1 1	F = 1

