• Za ravan $\alpha: x=0$ napisati jedan njen vektor normale $\vec{n}_{\alpha}=(\ ,\ ,\)$ i koordinate jedne njene tačke $A(\ ,\ ,\)$
• Neka je p prava čija je jednačina $p: x=3 \land y=3$. Napisati jedinični vektor prave $p: \vec{p}=(\ ,\ ,\)$ i koordinate tačke A prave p koja je najbliža koordinatnom početku $O(0,0,0): A(\ ,\ ,\)$.
• Za ravan α : $z=1$ napisati jedan njen vektor normale $\vec{n}_{\alpha}=($, ,) i koordinate jedne njene tačke $A($, ,)
• Vektor normale ravni α : $z = x$ je: 1) $(1,0,1)$ 2) $(1,0,-1)$ 3) $(0,1,0)$ 4) $(-1,0,1)$ 5) $(1,1,1)$ Koordinate jedne njene tačke su: 6) $(0,0,0)$ 7) $(1,0,0)$ 8) $(0,1,0)$ 9) $(0,0,1)$ 10) $(1,1,1)$
• Neka je α ravan čija je jednačina $x+y=1$. Napisati jedan vektor normale ravni α : $n_{\alpha}=(,,)$ i koordinate jedne tačke ravni α : $(,,)$.
• Neka je α ravan čija je jednačina $z=3$. Napisati jedan vektor normale ravni α :
$\vec{n}_{\alpha}=(,,),$ i koordinate jedne tačke ravni α : ($,,$).
• Neka je $\vec{r_A}$ vektor položaja tačke A , $ \overrightarrow{AB} = d$. Odrediti $\vec{r_B}$ u zavisnosti od $\vec{r_A}$, \vec{a} i d , ako je vektor \vec{a} istog pravca kao i vektor \overrightarrow{AB} , a suprotnog smera od vektora \overrightarrow{AB} . $\vec{r_B} =$
\bullet Koja od sledećih tvrdnji je tačna za svaka dva slobodna vektora \vec{x} i \vec{a} :
1) $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \perp \vec{x}$ 2) $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \perp \vec{a}$ 3) $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \parallel \vec{x}$ 4) $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \parallel \vec{a}$ 5) ništa od prethodnog
• Koja od sledećih tvrdnji je tačna za svaka dva slobodna vektora \vec{x} i \vec{a} : 1) $(\vec{x} - \frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a}) \perp \vec{x}$ 2) $(\vec{x} - \frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a}) \perp \vec{a}$ 3) $(\vec{x} - \frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a}) \parallel \vec{x}$ 4) $(\vec{x} - \frac{\vec{a}\vec{x}}{\vec{a}\vec{a}}\vec{a}) \parallel \vec{a}$ 5) ništa od prethodnog

• Neka je tačka P presk ravni $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ i prave $a: \vec{r} = \vec{r}_A + t\vec{a}$ i $\vec{n}\vec{a} \neq 0$. Tada je: 1) $\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}\vec{a}$.

2) $\vec{r}_P = \vec{r}_Q + \frac{(\vec{r}_A - \vec{r}_Q)\vec{n}}{\vec{a}\vec{n}}\vec{a}$.

3) $\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{n}\vec{a}}\vec{n}$.

4) $\vec{r}_P = \vec{r}_A - \frac{(\vec{r}_A - \vec{r}_Q)\vec{n}}{\vec{a}\vec{n}}\vec{a}$.

5) $\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\vec{a}\vec{n}}\vec{n}$.

• Trojka slobodnih vektora $(\vec{a}, \vec{b}, \vec{c})$ je komplanarna ako je ona trojka: (nije ekvivalencija!) 1) nenula vektora 2) različitih

• Neka su $\vec{x}, \vec{i}, \vec{j}, \vec{k}$ slobodni vektori i $\vec{i}, \vec{j}, \vec{k}$ jedinični međusobno normalni. Tada je: 1) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}$ 2) $(\vec{x}\vec{i}, \vec{x}\vec{j}, \vec{x}\vec{k}) \in \mathbb{R}^3$ 3) $(\vec{x}\vec{i})^2 + (\vec{x}\vec{j})^2 + (\vec{x}\vec{k})^2 = \vec{x}\vec{x}$ 4) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} \in \mathbb{R}^3$ 5) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}\vec{x}$

3) paralelnih vektora 4) vektora istoga pravca 5) za koju je $\vec{a}(\vec{b} \times \vec{c}) = 0$ 6) za koju je $\vec{a} \times \vec{b} = 0$

• $\vec{a} \perp \vec{b}$ ako i samo ako: 1) $\vec{a} \times \vec{b} = 0$ 2) $\vec{a}\vec{b} = 0$ 3) $\vec{a} \times \vec{b} \neq 0$ 4) $\vec{a}(\vec{b} \times \vec{c}) = 0$ 5) $\vec{a} = 0$ 6) $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|$

• $\vec{a} \parallel \vec{b}$ ako i samo ako: 1) $\vec{a} \times \vec{b} = 0$ 2) $\vec{a}\vec{b} = 0$ 3) $\vec{a} \times \vec{b} \neq 0$ 4) $\vec{a}(\vec{b} \times \vec{c}) = 0$ 5) $\vec{a} = 0$ 6) $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|$

• Za koje $\alpha \in \mathbb{R}$ su $\vec{a} = (1, \alpha, -\alpha)$ i $\vec{b} = (1, \alpha, \alpha)$: 1) kolinearni _______2) ortogonalni ______

• Ako su \vec{a} i \vec{b} različiti nekolinearni vektori, tada je neorijentisani, konveksni ugao između vektora

• Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ i $n: \frac{x-5}{-6} = \frac{y+1}{4} = \frac{z-5}{-10}$ važi: 1) mimoilazne su $(m \cap n = \emptyset \land m \not\parallel n)$ 2) paralelne su i različite $(m \parallel n \land m \neq n)$ 3) poklapaju se (m = n) 4) seku se $(m \cap n = \{M\})$

zavisnih vektora 8) vektora čiji pravci su paralelni istoj ravni

 $\vec{m} = a\vec{b} - b\vec{a}$ i $\vec{n} = \frac{\vec{a}}{a} + \frac{\vec{b}}{b}$: 1) 0 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{3}$ 5) $\frac{\pi}{2}$