# **STATISTIKA**

# **TERAPAN**

Disampaikan oleh: Ade Satya Wahana



Pengolahan Data Menggunakan Python Juli 2023





 $\Diamond$ 



## **Outline**

01 Intro to Statistics

Descriptive Stats

03 Visualizing Data

Sampling and Probability

05 Inference Stats



 $\frac{\sqrt{2.8}}{3+2^{+}}$ 



# 01

# Intro to Stats





 $\frac{A}{3B}$ 



"There are three kinds of lies: lies, damned lies and statistics" (B. Disraeli / M. Twain)







# Terminologi







Statistika (Statistics)

Teknik mengumpulkan data, menganalisa, menyimpulkan dan menafsirkan data yang berbentuk angka (Hall, 1892)



Populasi

Keseluruhan objek penelitian yang menjadi sumber data



Sampel

Bagian dari populasi yang dipilih dengan menggunakan metode tertentu dan diharapkan dapat menggambarkan karakteristik populasi





Parameter Sama dengan statistik namun perbedaannya adalah sumber data berasal dari populasi



Statistik

Data hasil pengukuran dalam statistika yang dapat menggambarkan suatu keadaan atau masalah





0

# Karakteristik Tipe Data

Karakteristik **Nominal Ordinal** Interval Rasio Modus Median  $\Diamond$ Mean Penambahan dan Pengurangan 10+17 3.45 Perkalian dan Pembagian

 $\frac{\sqrt{2}}{\left(\frac{1}{2}\right)^2}$ 

 $\Diamond$ 





|           | _        | T      | T                              | 1 2 2  |     |       | 1 7.5 |                  | N 1000  | 10.   | 10 0.75  |
|-----------|----------|--------|--------------------------------|--------|-----|-------|-------|------------------|---------|-------|----------|
| Passenger | Survived | Pclass | Name                           | Sex    | Age | SibSp | Parch | Ticket           | Fare    | Cabin | Embarked |
| 1         | C        |        | Braund, Mr. Owen Harris        | male   | 22  | 1     | . 0   | A/5 21171        | 7.25    |       | S        |
| 2         | 1        |        | Cumings, Mrs. John Bradley     | female | 38  | 1     | . 0   | PC 17599         | 71.2833 | C85   | С        |
| 3         | 1        |        | B Heikkinen, Miss. Laina       | female | 26  | C     | 0     | STON/O2. 3101282 | 7.925   |       | S        |
| 4         | 1        |        | 1 Futrelle, Mrs. Jacques Heath | female | 35  | 1     | . 0   | 113803           | 53.1    | C123  | S        |
| 5         | C        | ) (    | Allen, Mr. William Henry       | male   | 35  | C     | 0     | 373450           | 8.05    |       | S        |
| 6         | C        | ) ;    | Moran, Mr. James               | male   |     | C     | 0     | 330877           | 8.4583  |       | Q        |
| 7         | C        |        | McCarthy, Mr. Timothy J        | male   | 54  | C     | 0     | 17463            | 51.8625 | E46   | S        |
| 8         | C        | ) 3    | Palsson, Master. Gosta Leor    | male   | 2   | 3     | 3 1   | 349909           | 21.075  |       | S        |
| 9         | 1        |        | Johnson, Mrs. Oscar W (Elis    | female | 27  | C     | ) 2   | 347742           | 11.1333 |       | S        |
| 10        | 1        |        | Nasser, Mrs. Nicholas (Adele   | female | 14  | 1     | . 0   | 237736           | 30.0708 |       | С        |
| 11        | 1        |        | Sandstrom, Miss. Marguerit     | female | 4   | 1     | . 1   | PP 9549          | 16.7    | G6    | S        |
| 12        | 1        |        | 1 Bonnell, Miss. Elizabeth     | female | 58  | C     | 0     | 113783           | 26.55   | C103  | S        |
| 13        | C        | ) (    | Saundercock, Mr. William H     | male   | 20  | C     | 0     | A/5. 2151        | 8.05    |       | S        |
| 14        | C        | ) :    | Andersson, Mr. Anders Joha     | male   | 39  | 1     | . 5   | 347082           | 31.275  |       | S        |
| 15        | C        | (      | Vestrom, Miss. Hulda Aman      | female | 14  | C     | 0     | 350406           | 7.8542  |       | S        |
| 16        | 1        |        | 2 Hewlett, Mrs. (Mary D Kingo  | female | 55  | C     | 0     | 248706           | 16      |       | S        |
| 17        | C        |        | Rice, Master. Eugene           | male   | 2   | 4     | 1     | 382652           | 29.125  |       | Q        |
| 18        | 1        |        | Williams, Mr. Charles Eugen    | male   |     | C     | 0     | 244373           | 13      |       | S        |
|           | 102      |        |                                |        |     |       | _     |                  |         |       | _        |

3.45

**Tentukan Tipe Data pada Dataset berikut** 



 $\Diamond$ 

# Type of Statistic

3.45



 $\frac{\sqrt{2.8}}{3+2^{+}}$ 



# **Statistika**Deskriptif



# Statdes Vocabulary

0



kdnuggets.com

 $\bigcirc$ 

0

# **Central Tendency**

### Mean

Average, the sum of the observed values divided by the number of observations.

### **Population Mean**

$$\mu = \frac{\sum_{i=1}^{N} x}{N}$$

### **Sample Mean**

$$x^{-} = \frac{\sum_{i=1}^{n} x}{n}$$

### Median

Middle value of data when sorted in order of magnitude, **50th percentile** 

### Sales Sorted Sales 9 6 6 9

### (20+1)50/100=10.5 16 + (.5)(0) = 16

### Mode

Most frequently- occurring value





- Menggambarkan pusat atau nilai tengah dari distribusi
- Mean terpengaruh oleh outlier
- Mode dan Median tidak terpengaruh oleh outlier
- Mean menggambarkan terjadinya redistribusi

# Measures of dispersion

|            | Sorted       |             |                  |
|------------|--------------|-------------|------------------|
| Sales<br>9 | <u>Sales</u> | <u>Rank</u> |                  |
| 9          | 6            | 1           | <b>←</b> Minimum |
| 6          | 9            | 2           |                  |
| 12         | 10           | 3           |                  |
| 10         | 12           | 4           |                  |
| 13         | 13           | 5           |                  |
| 15         | 14           | 6           | First Quartile   |
| 16         | 14           | 7           |                  |
| 14         | 15           | 8           |                  |
| 14         | 16           | 9           |                  |
| 16         | 16           | 10          |                  |
| 17         | 16           | 11          |                  |
| 16         | 17           | 12          |                  |
| 24         | 17           | 13          |                  |
| 21         | 18           | 14          |                  |
| 22         | 18           | 15          | Third Quartile   |
| 18         | 19           | 16          | ← Third Quartile |
| 19         | 20           | 17          |                  |
| 18         | 21           | 18          |                  |
| 20         | 22           | 19          |                  |
| 17         | 24           | 20          | <b>←</b> Maximum |
|            |              |             |                  |

0

Range Maximum - Minimum = 24 - 6 = 18

$$Q_1 = 13 + (.25)(1) = 13.25$$

$$Q_3 = 18 + (.75)(1) = 18.75$$

# Measures of dispersion

VARIABILITY DEMONSTRATION

Sd: 10

Sd: 5

Mean: 50

0

# Population Variance $\sigma^{2} = \frac{\sum_{i=1}^{N} (x - \mu)^{2}}{N}$ $= \frac{\sum_{i=1}^{N} x^{2} - \frac{\sum_{i=1}^{N} x}{N}}{N}$ $\sigma = \sqrt{\sigma^{2}}$



- Varians menggambarkan sebaran data
- Semakin besar nilai varians maka data semakin bervariasi
- Standar deviasi mengukur variasi antar data cluster di sekitar rata-rata

# Diskusi

| >           |          |
|-------------|----------|
| mean        | 79.6     |
| median      | 65       |
| std deviasi | 17.71534 |
| max         | 100      |
| min         | 60       |
| range       | 40       |
| q1          | 63       |
| q2          | 65       |
| q3          | 97       |
| count       | 25       |
|             |          |

0

Dari statistic atas nilai ujian matematika berikut

Kira-kira insight apa yang dapat diambil?

Kalau ditambahkan informasi, nilai batas lulus adalah 65, bagaimana?



### **Outliers**

0



- Data yang berkarakteristik unik terlihat sangat berbeda jauh dengan data lainnya
- Deteksi bisa menggunakan boxplot atau standardized residual

### Central Limit Theorem

0



CLT = semakin besar sample, semakin mean dari sample mendekkati mean dari populasi terlepas dari distribusi data yang sebenarnya

data outliers adalah data yang jarak nilainya dengan rata-rata lebih besar dari 3 kali (+-) nilai standar deviasi

# **Asymmetric Distribution**

### **Skewness**



$$\frac{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})^{3}}{\left(\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}\right)^{3/2}}$$

0

More than 1 highly skewed 0.5-1 moderate skewed 0-0.5 approximately symmetric

 $\bigcirc$ 

# Asymmetric Distribution

### **Kurtosis**



 $\Diamond$ 

0





Negative value

Around Zero

Positive Value

0

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^4}{\left(\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2\right)^2}-3$$

a measure of the combined weight of the tails relative to the rest of the distribution.





# **U3**Visualizing Data



### Data Visualization



### Referensi:

https://towardsdatascience.com/dat a-visualization-101-how-to-choosea-chart-type-9b8830e558d6



0

https://huynp.com/2018/07/19/How-to-choose-data-visualization-techniques.html 22



# **Numerical**

0

### Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

| Class               | Frequency | Percentage | Cumulative<br>Frequency | Cumulative<br>Percentage |
|---------------------|-----------|------------|-------------------------|--------------------------|
| 10 but less than 20 | 3         | 15         | 3                       | 15                       |
| 20 but less than 30 | 6         | 30         | 9                       | 45                       |
| 30 but less than 40 | 5         | 25         | 14                      | 70                       |
| 40 but less than 50 | 4         | 20         | 18                      | 90                       |
| 50 but less than 60 | 2         | 10         | 20                      | 100                      |
| Total               | 20        | 100        |                         |                          |





## Numerical





# **Numerical**





# Categorical

0

### Univariate

| Investment | Amount            | Percentage |
|------------|-------------------|------------|
| Туре       | (in thousands \$) | (%)        |
| Stocks     | 46.5              | 42.27      |
| Bonds      | 32.0              | 29.09      |
| CD         | 15.5              | 14.09      |
| Savings    | 16.0              | 14.55      |
| Total      | 110.0             | 100.0      |

**Summary Table** 



### **Bivariate**

|        | Dog | Cat | Total |
|--------|-----|-----|-------|
| Male   | 42  | 10  | 52    |
| Female | 9   | 39  | 48    |
| Total  | 51  | 49  | 100   |

Contingency Table / Crosstab









04

# Sampling and Probability

 $\Diamond$ 

# Population & Sample





 $\Diamond$ 

 $\Diamond$ 



**VS** 









# Sampling Method

 $\Diamond$ 



### **Probabilistic**

 $\frac{\sqrt{2}}{\left(\frac{1}{2}\right)^2}$ 

0

### **Simple Random Sampling**



 $\Diamond$ 

4+6+(2/3)

### **Systematic Sampling**





$$\frac{C^3 + 5CA}{2CA}$$

### **Probabilistic**



### **Stratified Sampling**

 $\Diamond$ 



### **Cluster Sampling**



### **Multistage Sampling**







$$\frac{C^3 + 5CA}{2CA}$$

## Non - Probabilistic





### **Convenience Sampling**



### **Purposive Sampling**



### **Snowball Sampling**







$$\frac{C^3 + 5CA}{2CA}$$

# Sampling Error



### **Reducing Sampling & Non Sampling Errors**



# Peluang

### **Event**

Hasil dari eksperimen

**Contoh:** Mendapatkan angka 6 dalam melempar satu buah dadu

### Sample Space

Kumpulan semua kemungkinan hasil eksperimen

**Contoh:** Kemungkinan angka dalam melempar satu dadu {1,2,3,4,5,6}

Kombinasi antar event

Gabungan

 $P(A \cup B)$ 



Irisan

 $P(A \cap B)$ 

Disjoint





https://www.analyticsvidhya.com/blog/2017/03/conditional-probability-bayes-theorem/

### Peluang Bersyarat

kemungkinan hasil yang terjadi, "bersyarat"/berdasarkan hasil sebelumnya yang terjadi

**Contoh:** Peluang alumni perguruan tinggi X Tahun 2021 yang bekerja  $P(B \cap A)$ 



0

Peluang Bersyarat merupakan dasar dari Teorema Bayes



seluruh Hijau



0

https://www.rumusstatistik.com/2012/07/rumus-peluang-kejadian-

### Bayesian Theorem



0

Teorema Bayes merupakan dasar dari Algoritma Naive Bayes pada Machine Learning The geometry of changing beliefs

Secara general menggambarkan bagaimana manusia belajar atau dasar penelitian ilmiah.

Observasi / evidence baru P(B), tidak serta merta menggantikan ilmu / hypothesis yang sudah dipelajari P(A), tetapi mengupdate ilmu /hypothesis tersebut.



## Pengaplikasian Teori Peluang

3.45

#### **Gaming Mathematics**

- Dice
- Cards

#### **Optimalization**

- Machine Learning
- Artificial Intelligent
- Operational Search

#### **Stochastic Process**

- Markov Chain
- Renewal Theory (Hypothesis Testing)

4+6+(2\sqrt{3})







## **Inference Statistic**

 $\Diamond$ 

0

3.45

## **Summary of Inference Stats**

| Level of<br>Measurement          | Sample Characteristics |                          |                                        |                               |                                                   |                |
|----------------------------------|------------------------|--------------------------|----------------------------------------|-------------------------------|---------------------------------------------------|----------------|
|                                  | 1 Sample               | 2 Sample                 |                                        | K Sample (i.e., >2)           |                                                   | Correlation    |
|                                  |                        | Independent              | Dependent                              | Independent                   | Dependent                                         |                |
| Categorical or<br>Nominal        | X2 or<br>binomial      | Х2                       | Macnarmar's X2                         | X2                            | Cochran's Q                                       |                |
| Rank or Ordinal                  |                        | Mann Whitney U           | Wilcoxin Matched<br>Pairs Signed Ranks | Kruskal Wallis H              | Friendman's<br>ANOVA                              | Spearman's rho |
| Parametric<br>(Interval & Ratio) | z test or t<br>test    | t test between<br>groups | t test within<br>groups                | 1 way ANOVA<br>between groups | 1 way ANOVA<br>(within or<br>repeated<br>measure) | Pearson's r    |
|                                  |                        |                          |                                        |                               |                                                   |                |

#### Korelasi

- Digunakan untuk menemukan hubungan antara dua variabel kuantitatif
- Kausalitas: variabel X menyebabkan perubahan pada variabel Y
- Memiliki rentang nilai antara -1 hingga 1

#### Note:

- Jika X dan Y berkorelasi, bisa jadi X dan Y memiliki hubungan sebab akibat bisa jadi tidak
- Jika X dan Y memiliki hubungan sebab akibat, X dan Y pasti berkorelasi





#### Korelasi



Berdasarkan perubahan proporsi





Berdasarkan derajat korelasi



- > dua variabel = multiple correlation (Koefisien Determinasi/ R-square)
- Korelasi hanya menggambarkan arah dan besaran relatif





#### Uji Korelasi

#### **Numerical Correlation:**

 $\Diamond$ 

It's a measure of the strength and the direction of a linearrelationship between two variables.



#### Relationship Test

#### Categorical Relationship:

 $\Diamond$ 

 $\Diamond$ 

Determine if there is an association between two or more categorical variables.



- Menguji apakah ada hubungan signifikan antar variable
- Menguji kekuatan hubungan antar variable kategorical
- Summary atas hubungan antar variables
- Menampilkan probabilitas antar variable



#### **Uji Hipotesis**

Bagian dari Statistika Inferensia yang digunakan untuk mengambil kesimpulan untuk populasi berdasarkan sampel yang representatif

**Tujuan:** memverifikasi apakah H<sub>0</sub> ditolak atau gagal tolak

- H<sub>0</sub> (Null Hypothesis) = tidak ada hal baru yang terjadi pada populasi
- $H_1$  (Alternative Hypothesis) = negasi dari  $H_0$



- Gagal tolak H<sub>0</sub> ≠ Terima H<sub>0</sub>
- Jika data yg dikumpulkan tidak mendukung hipotesis alternatif, bukan berarti hipotesis nol benar. Namun belum cukup bukti untuk menolak H<sub>0</sub>, maka dari itu istilahnya Gagal menolak bukan menerima





 $\Diamond$ 



### Uji t

- Termasuk uji parametrik (sampel mengikuti distribusi normal)
- Digunakan ketika sampel kecil dan tidak diketahui nilai varians dari populasi
- Data berdistribusi normal

Uji t Satu sampel

Uji t dua sampel Uji t berpasangan



 $\Diamond$ 



## Uji t Satu sampel

- Membandingkan ratarata sampel dengan suatu nilai yang spesifik
- Sampel independen
- Berdistribusi normal
- Sampel diambil secara random
- Contoh H<sub>0</sub>:

$$\mu = 0$$
,  $\mu > xx$ ,  $\mu <= xx$ 

## Uji t dua sampel

- Membandingkan ratarata dua independen sampel
- Sampel independen
- Berdistribusi normal
- Memiliki varians yang sama
- Contoh  $H_0$ :
- $\mu_1 = \mu_2, \mu_1 < \mu_2$

#### Uji t berpasangan

- Membandingkan dua ukuran entitas yang sama dari waktu ke o waktu
- Data berdistribusi normal



#### Uji t







 $\Diamond$ 

 $\Diamond$ 

Biru tua, significancy tercapai, H0 ditolak Biru muda, significancy tidak tercapai H0 gagal ditolak



#### **Tipe Error**

| Hypothesis Test | TRUE             | FALSE            |
|-----------------|------------------|------------------|
| REJECTED        | Type I Error     | Correct Decision |
| NOT REJECTED    | Correct Decision | Type II Error    |



H0 salah, gagal ditolak = Error Tipe II (Beta/False Negatif)



 $\Diamond$ 

Besarnya alpha (confident level) mempengaruhi jumlah error Alpha yang kecil berarti mencari kepercayaan lebih besar untuk mengurangi type I error, namun menambah type II error





# "Statistics is The Grammar of

Science"





0

$$\frac{\sqrt{2.8}}{3+2^{+}}$$

C



Karl Pearson







## Terima Kasih



MoF-DAC | Ministry of Finance- Data Analytics Community



mofdac.id

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**