Applications linéaires

DÉFINITION

Exercice 1 Les applications suivantes, entre espaces vectoriels réels, sont-elles linéaires? Lorsque c'est le cas, on donnera l'image, le noyau et le rang, et on en déduira si elles sont injectives, surjectives, bijectives.

C désigne l'ensemble des applications continues de [0,1] dans \mathbb{R} , et C_d celui des applications continues de [0,1] dans \mathbb{R} ayant une dérivée d-ième continue sur cet intervalle.

- 1. $\mathbb{R} \to \mathbb{R} : x \mapsto x^2$
- 2. $\mathbb{R} \to \mathbb{R} : x \mapsto 4x 5$
- 3. $\mathbb{R} \to \mathbb{R} : x \mapsto \sqrt{x^2}$
- 4. $\mathbb{R} \to \mathbb{R} : x \mapsto \ln(3^{x\sqrt{2}})$
- 5. $\mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto (y, x)$
- 6. $\mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto 3x + 4y$
- 7. $\mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto \sin(3x+4y)$
- 8. $\mathbb{R}^3 \to \mathbb{R}^2 : (x, y, z) \mapsto (2x 3y + z, y z)$
- 9. $\mathcal{C} \to \mathbb{R} : f \mapsto f(\frac{1}{2})$
- 10. $C \to \mathbb{R} : f \mapsto \max_{t \in [0,1]} f(t)$
- 11. $C \to \mathbb{R} : f \mapsto \max_{t \in [0,1]} f(t) \min_{t \in [0,1]} f(t)$
- 12. $C_1 \to \mathbb{R} : f \mapsto f'(\frac{3}{4})$
- 13. $C_2 \to C: f \mapsto f'$
- 14. $\mathcal{C} \times \mathcal{C} \to \mathcal{C} : f \mapsto f.g$
- 15. $\mathbb{R}_2[X] \to \mathbb{R}_3[X] : P(X) \mapsto XP(X)$
- 16. $\mathbb{R}_2[X] \to \mathbb{R}_3[X] : P(X) \mapsto P(X+1)$
- 17. $\mathbb{R}_2[X] \to \mathbb{R}^3 : P(X) \mapsto (P(1), P(2), P(3))$
- 18. $\mathbb{R}_2[X] \to \mathbb{R}^3 : P(X) \mapsto (P(1), P(0), P(1))$

Exercice 2 Soient f et g deux applications de \mathbb{C} dans \mathbb{C} , définies par : $f(z) = \overline{z}$ et $g(z) = \mathcal{R}e(z)$. Montrer que f et g sont linéaires sur \mathbb{C} en tant que \mathbb{R} -ev mais non linéaires sur \mathbb{C} en tant que \mathbb{C} -ev.

IMAGE ET NOYAU

Exercice 3 Soit E un espace vectoriel, f un endomorphisme de E.

- 1. Montrer que les assertions suivantes sont équivalentes :
 - (a) $E = Imf \oplus Kerf$.
 - (b) $Im f = Im f^2$.

- (c) $Kerf = Kerf^2$.
- 2. Si E est de dimension finie n, montrer que $Kerf = Imf \Leftrightarrow (f^2 = 0$ et n = 2rg(f))

Exercice 4 Soient E un espace vectoriel et u un endomorphisme de E. Dire en justifiant lesquelles des propositions suivantes sont vraies :

- 1. Si (e_1, \ldots, e_n) est libre, alors $(u(e_1), \ldots, u(e_n))$ est libre.
- 2. Si $(u(e_1), \ldots, u(e_n))$ est libre, alors (e_1, \ldots, e_n) est libre.
- 3. Si (e_1, \ldots, e_n) est génératrice, alors $(u(e_1), \ldots, u(e_n))$ est génératrice.
- 4. Si $(u(e_1), \ldots, u(e_n))$ est génératrice, alors (e_1, \ldots, e_n) est génératrice.

Exercice 5 Soient E et F deux espaces vectoriels de dimension finie et φ une application linéaire de E dans F. Montrer que φ est un isomorphisme si et seulement si l'image par φ de toute base de E est une base de F.

Exercice 6 Soit E un ev de dimension finie. Trouver $f \in \mathcal{L}(E)$ vérifiant :

- 1. $Kerf \cap Imf \neq \{0\}$
- 2. Kerf = Imf.
- 3. Kerf inclus strictement dans Imf.
- 4. Imf inclus strictement dans Kerf.
- 5. $Kerf + Imf \neq E$.

Exercice 7 Soient E et F deux espaces vectoriels, et soit $u \in \mathcal{L}(E, F)$. Montrer que :

- 1. Si $A \subset E$, alors u(Vect(A)) = Vect(u(A)).
- 2. Si $B \subset F$, alors $Vect(u^{-1}(B)) \subset u^{-1}(Vect(B))$. A-t-on l'égalité en général?

MATRICE ASSOCIÉE À UNE APPLICATION LINÉAIRE

Exercice 8 Déterminer les matrices associées aux homomorphismes suivants :

$$\begin{split} u: \mathbb{R}^3 &\to \mathbb{R}^3, u(x,y,z) = (3x-z, x-y+2z, y) \\ v: \mathbb{R}^4 &\to \mathbb{R}^2, v(x,y,z,t) = (2x+4t, x-y+z-t) \\ w: \mathbb{R}^2 &\to \mathbb{R}^3, w(x,y) = (-x+y, 3x-2y, -y) \end{split}$$

Exercice 9 Inverser la matrice $A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 2 & 7 & -1 \end{pmatrix}$. En déduire la matrice de l'application u

définie dans la base canonique par :

$$u(e_1) = e_1 + e_2$$

 $u(e_2) = 4e_1 + 2e_3$
 $u(e_3) = 2e_1 - 3e_2 + e_3$

dans la base formée des vecteurs $f_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $f_2 = \begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix}$, $f_3 = \begin{pmatrix} -1 \\ -3 \\ -1 \end{pmatrix}$.

Exercice 10 On considère l'application linéaire $u: \mathbb{R}^3 \to \mathbb{R}^2$ définie dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 par la matrice $M = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & -1 \end{pmatrix}$.

2

1. Soit $\varepsilon_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\varepsilon_2 = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$. Montrer que $\varepsilon = (\varepsilon_1, \varepsilon_2)$ est une base de \mathbb{R}^2 .

2. Soit
$$\varepsilon_1' = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\varepsilon_2' = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\varepsilon_3' = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$. Montrer que $\varepsilon' = (\varepsilon_1', \varepsilon_2', \varepsilon_3')$ est une base de \mathbb{R}^2 .

3. Déterminer la matrice $Mat(u, \varepsilon, \varepsilon')$ de u relativement aux bases ε et ε' .

Projecteurs et symétries

Exercice 11 Soit E un espace vectoriel; on note i_E l'identité sur E. Un endomorphisme u de E est un projecteur si $u \circ u = u$.

1. Montrer que si u est un projecteur alors $i_E - u$ est un projecteur. Vérifier aussi que $\text{Im} u = \{x \in E; \ u(x) = x\}$ et que $E = \text{Ker} u \oplus \text{Im} u$.

Un endomorphisme u de E est appelé involutif si $u \circ u = i_E$.

2. Montrer que si u est involutif alors u est bijectif et $E = \text{Im}(i_E + u) \oplus \text{Im}(i_E - u)$.

Soit $E = F \oplus G$ et soit $x \in E$ qui s'écrit donc de façon unique x = f + g, $f \in F$, $g \in G$. Soit $u : E \ni x \mapsto f - g \in E$.

- 3. Montrer que u est involutif, $F = \{x \in E; u(x) = x\}$ et $G = \{x \in E; u(x) = -x\}$.
- 4. Montrer que si u est un projecteur, $2u i_E$ est involutif et que tout endomorphisme involutif peut se mettre sous cette forme.

Exercice 12 Soient $P = \{(x, y, z) \in \mathbb{R}^3; 2x + y - z = 0\}$ et $D = \{(x, y, z) \in \mathbb{R}^3; 2x - 2y + z = 0, x - y - z = 0\}$. On désigne par ε la base canonique de \mathbb{R}^3 .

- 1. Donner une base $\{e_1, e_2\}$ de P et $\{e_3\}$ une base de D. Montrer que $\mathbb{R}^3 = P \oplus D$ et que $\varepsilon' = \{e_1, e_2, e_3\}$ est une base de \mathbb{R}^3 .
- 2. Soit p la projection de \mathbb{R}^3 sur P parallélement à D. Déterminer $\mathrm{Mat}(p,\varepsilon',\varepsilon')$ puis $A=\mathrm{Mat}(p,\varepsilon,\varepsilon)$. Vérifier que $A^2=A$.
- 3. Soit s la symétrie de \mathbb{R}^3 par rapport à P parallélement à D. Déterminer $\mathrm{Mat}(s,\varepsilon',\varepsilon')$ puis $B=\mathrm{Mat}(s,\varepsilon,\varepsilon)$. Vérifier que $B^2=I,\ AB=A$ et BA=A.

Exercice 13 Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes, et $f: E \to E$ définie par :

$$\forall P \in E, f(P)(X) = \frac{P(-X) - P(X)}{2}.$$

Montrer que $f \in \mathcal{L}(E)$, que $\stackrel{\sim}{E} = \operatorname{Im} f \bigoplus \operatorname{Ker}(f)$ et que $f^2 = -f$.

On sait que si f est un projecteur, alors $E=Kerf\oplus Imf$. Déduire de ce qui précède que la réciproque de cette proposition est fausse.

Exercice 14 Soient p et q deux projecteurs de E, espace vectoriel, tels que pq = qp (p et q commutent). Montrer que pq et (p+q-pq) sont deux projecteurs de E, et que :

$$\operatorname{Im}(pq) = \operatorname{Im} p \cap \operatorname{Im} q,$$

$$\operatorname{Im}(p+q-pq) = \operatorname{Im} p + \operatorname{Im} q.$$

HYPERPLANS ET FORMES LINÉAIRES

Exercice 15 Soit E un espace vectoriel de dimension n. Un hyperplan de E est un sous-espace vectoriel de dimension n-1.

1. Montrer que l'intersection de deux hyperplans de E a une dimension supérieure ou égale à n-2.

- 2. Montrer par récurrence que, pour tout $p \leq n$, l'intersection de p hyperplans a une dimension supérieure ou égale à n-p.
- 3. Montrer que, pour tout $n \in \mathbb{N}$ et pour tout $y \in \mathbb{R}$, l'application e_y de $\mathbb{R}_n[X]$ à valeurs dans \mathbb{R} définie en posant $e_y(P(X)) = P(y)$ (i.e. l'application e_y est l'évaluation en y) est linéaire. Calculer la dimension de son noyau.
- 4. Même question avec l'application e'_y de $\mathbb{R}_n[X]$ à valeurs dans \mathbb{R} définie en posant $e'_y(P(X)) = P'(y)$ (en désignant par P' le polynôme dérivé de P).
- 5. Démontrer, à l'aide de ces deux résultats, qu'il existe dans $\mathbb{R}_6[X]$ un polynôme P non nul et ayant les propriétés suivantes : P(0) = P(1) = P(2) = 0 et P'(4) = P'(5) = P'(6) = 0.

Exercice 16 Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$. On appelle trace de A et on note tr(A) le scalaire $\sum_{i=1}^n a_{ii}$.

- 1. Montrer que l'application $tr: \mathcal{M}_n(K) \to K$ est une forme linéaire.
- 2. Soit f une forme linéaire sur $\mathcal{M}_n(K)$. Montrer que les propositions suivantes sont équivalentes :
 - (a) $\forall A, B \in \mathcal{M}_n(K), f(AB) = f(BA);$
 - (b) $\exists \lambda \in K \text{ t.q. } f = \lambda tr.$

ESPACE DUAL

Exercice 17 Soit $e_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Montrer que $e = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 et trouver la base duale de e.

Exercice 18 Soient $E = \mathbb{R}_3[X]$, et $\phi_1, \phi_2, \phi_3, \phi_4$ les éléments de E^* définis par $\phi_1(P) = P(0), \phi_2(P) = P(1), \phi_3(P) = P'(0), \phi_4(P) = P'(1)$. Montrer que $\phi = (\phi_1, \phi_2, \phi_3, \phi_4)$ est une base de E^* . Déterminer une base de E dont ϕ est la base duale.