Elementary Differential Equations (MATH200) 3rd Week Homework

Problem 1(3.1-3). Find the general solution of the given differential equation.

$$12y'' - y' - y = 0$$

Problem 2(3.1-4). Find the general solution of the given differential equation.

$$y'' + 6y' = 0$$

Problem 3(3.1-9). Find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior as t increases.

$$y'' + 3y' = 0$$
, $y(0) = 0$, $y'(0) = 3$

Problem 4(3.2-7). Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution. Do not attempt to find the solution.

$$t(t-4)y'' + 3ty' + 5y = 2, \ y(3) = 0, \ y'(3) = -1$$

Problem 5(3.2-18). Consider the equation y'' - y' - 2y = 0.

- **a.** Show that $y_1(t) = e^{-t}$ and $y_2(t) = e^{2t}$ form a fundamental set of solutions.
- **b.** Let $y_3(t) = -2e^{2t}$, $y_4(t) = y_1(t) + y_2(t)$, and $y_5(t) = 2y_1(t) 2y_3(t)$. Are $y_3(t)$, $y_4(t)$, and $y_5(t)$ also solutions of the given differential equation?
- **c.** Determine whether each of the following pairs form a fundamental sef of solutions: $\{y_1(t), y_3(t)\}; \{y_2(t), y_3(t)\}.$

Problem 6(3.2-20). Find the fundamental set of equations specified by Theorem 3.2.5 for the given differential equation and initial point.

$$y'' + 5y' + 4y = 0, \ t_0 = 1$$

Problem 7(3.3-6). Find the general solution of the given differential equation.

$$y'' - 2y' + 8y = 0$$

Problem 8(3.3-13). Find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior for increasing t.

$$y'' - 2y' + 5y = 0$$
, $y(\pi/2) = 0$, $y'(\pi/2) = 4$

Problem 9(3.4-4). Find the general solution of the given differential equation.

$$4y'' - 12y' + 9y = 0$$

Problem 10(3.4-19). Use method of reduction of order to find a second solution of the given differential equation.

$$t^2y'' + ty' - 4y = 0, \ t > 0; \ y_1(t) = t^2$$