Corrections

Excess Enthalpies of Binary and Ternary Mixtures Containing Dibutyl Ether, Cyclohexane and 1-Butanol at 298.15 K. Fernando Aguilar, Fatima E. M. Alaoui, Cristina Alonso-Tristán, José J. Segovia, Miguel A. Villamañán, and Eduardo A. Montero,* *J. Chem. Eng. Data* 2009, 54, 1672–1679.

In the above publication, we reported data of experimental excess molar enthalpies of the ternary system dibutyl ether (DBE) (1) + 1-butanol (2) + cyclohexane (3) at a temperature of 298.15 K. Regrettably, there was an error in the calculation

Table 5. Experimental Excess Molar Enthalpies $H^{\rm E}_{2+13}$ at 298.15 K for the Addition of Cyclohexane to (DBE (1) + 1-Butanol (3)) to Form x_1 DBE + x_2 Cyclohexane + $(1-x_1-x_2)$ 1-Butanol, and Values of $H^{\rm E}_{123}$ Calculated from Equation 5, Using the Smooth Representation of $H^{\rm E}_{13}$ by Redlich—Kister Equation with Parameters Given in Table 4

	H^{E}_{2+13}	$H^{\rm E}_{123}$		H^{E}_{2+13}	$H^{\rm E}_{123}$		
x_2	$\overline{J \cdot mol^{-1}}$	$\overline{J \cdot mol^{-1}}$	x_2	$\overline{J \cdot mol^{-1}}$	$\overline{J \cdot mol^{-1}}$		
$x_1/x_3 = 0.2498, H_{13}^{E}/J \cdot \text{mol}^{-1} = 443.8$							
0.9000	394.4	438.8	0.4004	475.1	741.2		
0.8002	504.4	593.1	0.2998	387.6	698.4		
0.6996	557.4	690.7	0.2003	277.7	632.7		
0.6003	565.3	742.7	0.1001	144.2	543.7		
0.5002	536.1	758.0					
$x_1/x_3 = 0.6669, H_{13}^{E}/J \cdot \text{mol}^{-1} = 764.2$							
0.8999	350.8	427.3	0.4006	422.9	881.0		
0.7997	446.5	599.6	0.3007	348.0	882.4		
0.6998	491.2	720.6	0.2003	250.1	861.2		
0.6002	498.3	803.8	0.0997	130.0	818.0		
0.5002	473.6	855.6					
$x_1/x_3 = 1.4988, H_{13}^{E}/J \cdot \text{mol}^{-1} = 890.0$							
0.9002	309.0	397.8	0.4001	369.5	903.4		
0.8000	395.9	573.9	0.2998	303.5	926.6		
0.6997	433.8	701.1	0.2005	216.8	928.4		
0.5998	438.3	794.4	0.1001	112.8	913.7		
0.4998	415.3	860.4					
$x_1/x_3 = 4.0531$, $H^{E}_{13}/J \cdot \text{mol}^{-1} = 773.3$							
0.8998	256.9	334.4	0.4005	322.0	785.6		
0.8006	342.6	496.8	0.2999	263.1	804.5		
0.7002	380.0	611.8	0.1997	186.6	805.4		
0.6003	383.8	692.8	0.0995	97.1	793.4		
0.5009	363.7	749.7					

Figure 5. Contours for constant values of $H^{\rm E}_{123}$ for DBE (1) + cyclohexane (2) + 1-butanol (3) at 298.15 K.

of the experimental excess molar enthalpy of the ternary system $H^{\rm E}_{123}$ of Table 5 and, subsequently, in the fitted parameters shown in Table 6 and in the graphical representation of Figure 5. Corrected values are given in the revised tables and figure. The new best fit of experimental data for the ternary system is obtained with eqs 6 and 7. The new root-mean-square deviation, rms ΔH^{E} , is 12.4 J·mol⁻¹, and the maximum value of the absolute deviation, $\max |\Delta H^{E}|$, is 25.6 J·mol⁻¹. The maximum experimental value of H^{E} is 928 J·mol⁻¹. These corrections do not affect the conclusions presented in the manuscript.

Table 6. Summary of the Data Reduction and Prediction Results Obtained for the Ternary System DBE (1) + Cyclohexane (2) +1-Butanol (3) at 298.15 K

	$\Delta H^{\rm E}_{123}$	$\Delta H^{\rm E}_{123}$		
correlation ^a	(eq 7)	(eq 8)	NRTL	UNIQUAC
B_0	12036.1		-0.0721	-500.1
B_1	-32231.1	11944.0	0.8253	1204.5
B_2	-21829.8	13543.5	2.0214	2177.8
B_3	22371.7	-2370.0	0.6434	-628.3
B_4	-5113.5		2.7698	1815.1
B_5	81005.3		0.0487	-542.8
B_6	15579.8			
B_7	39001.6			
α_{12}			0.30	
α_{13}			0.30	
α_{23}			0.30	
rms $\Delta H^{\rm E}/{\rm J} \cdot {\rm mol}^{-1}$	12.4	24.5	32.4	29.2
max $ \Delta H^{E} /J \cdot \text{mol}^{-1}$	25.6	53.8	81.2	73.7
$\max~(\Delta H^{\rm E} /H^{\rm E})$	5.9 %	7.0 %	16.9 %	16.8%

prediction ^a	NRTL	UNIQUAC
B_0	-0.2065	-210.2
B_1	0.8622	467.4
B_2	2.3362	2160.1
B_3	0.6954	-629.7
B_4	1.9691	1960.8
B_5	0.0910	-588.4
α_{12}	0.30	
α_{13}	0.30	
α_{23}	0.30	
rms $\Delta H^{\rm E}/\rm J \cdot mol^{-1}$	59.1	76.3
$\max \Delta H^{E} /J \cdot \text{mol}^{-1}$	131.2	144.1
$\max (\Delta H^{\rm E} /H^{\rm E})$	38.9 %	39.8 %

^a Equivalence between parameters: NRTL $B_0 = \tau_{12}$; $B_1 = \tau_{21}$; $B_2 =$ τ_{13} ; $B_3 = \tau_{31}$; $B_4 = \tau_{23}$; $B_5 = \tau_{32}$; UNIQUAC $B_0 = \Delta u_{12}$; $B_1 = \Delta u_{21}$; B_2 $= \Delta u_{13}$; $B_3 = \Delta u_{31}$; $B_4 = \Delta u_{23}$; $B_5 = \Delta u_{32}$.

JE900560J

10.1021/je900560j Published on Web 07/20/2009