Let
$$x$$
 be amount bidded, w pwote $f_x(x) = \begin{cases} \frac{1}{70} & ,70 < x < 140 \\ 0 & 0/w \end{cases}$ Want: lowest x that wins $E(x) = 105$ var $(x) = \frac{4900}{12}$ For a fired x , let profpe be p $\begin{cases} x - 100 & \text{if you wan} \\ 0 & \text{ow} \end{cases}$
$$P\left(w_{1n}b_{1d}\right) = P\left(x < \min b_{1d}\right) \\ = 1 - P\left(\text{ mab bid } < x\right)E(P) = 5$$

$$E(w) = (x - 100)P(x < \min \text{ bid }) + \frac{x}{x}\frac{1}{70}dx \\ = (x - 100)\left(2 - \frac{x}{100}\right) \\ = 2x - \frac{x^2}{70} - 200 + \frac{100}{70}x \\ = \frac{24}{7}x - \frac{x^2}{70} - 200$$

$$\max x = -\frac{x}{35} + \frac{24}{7} = 0$$

$$\max x = -\frac{x}{35} + \frac{24}{7} \frac{d^2}{dx^2} = -\frac{1}{35} \text{ (max point)}$$
 $x = \$120000$