Université Cadi Ayyad Faculté des Sciences Semlalia Département de Physique Année universitaire 2020/2021

Filière : SMA /S3 Filière : SMI /S3

TD n°2: électricité II

Exercice 1

On considère deux bobines plates circulaires (C_1) et (C_2) , de centres respectifs O_1 et O_2 , de rayons respectifs R_1 et R_2 , et comportant respectivement N_1 et N_2 spires. On suppose que $R_2 << R_1$ et que $N_2 < N_1$ Les bobines plates (C_1) et (C_2) sont parcourues par les courants d'intensités respectives I_1 et I_2 .

- 1) Calculer les inductances propres L_1 et L_2 respectivement de (C_1) et (C_2)
- 2) Calculer leur inductance mutuelle M dans les cas suivants et discuter son signe selon le sens des courants dans les cas suivants :
- a) (C_2) est dans le plan de (C_1) tel que son centre O_2 est confondu avec O_1 .
- b) (C_2) est parallèle à (C_1) . Les deux bobines (C_1) et (C_2) ont même axe qui passe par O_1 et O_2 . On pose $O_1O_2 = d$ avec $d >> R_1$

Exercice 2

Un circuit est constitué de deux rails métalliques, parallèles, horizontaux, de résistances négligeables, et dont l'écartement est ℓ , et de deux barres métalliques de résistance R : la barre AC est fixe en x=0 et la barre DE peut glisser sans frottement sur les rails. Le circuit est plongé dans un champ d'induction magnétique vertical et uniforme $\vec{B} = B_0 \ \vec{e}_z$, où B_0 est un constante positive.

A t=0, la barre DE est en x=d. Les deux barres restent perpendiculaires aux rails. La barre DE se déplace à une vitesse imposée par l'opérateur $\vec{v}=v(t)$ \vec{e}_x , avec v(t)=at, où a est une constante positive.

- 1) Calculer le courant induit dans le circuit. Donner le schéma électrique équivalent et indiquer le sens réel de ce courant.
- 2) Calculer les forces magnétiques de Laplace sur les barres AC et DE.

Exercice 3

Soit une spire circulaire conductrice de centre O, de rayon $\bf a$ et de résistance $\bf R$, placée dans le plan xOy (figure 2) où règne un champ d'induction magnétique $\vec B$ de la forme : $\vec B = B_0 \cos(\omega t) \ \vec e_z$ où B_0 et ω sont des constantes positives.

- 1) Déterminer le flux magnétique $\phi(t)$ du champ \vec{B} à travers la spire.
- 2) Déterminer l'expression de la force électromotrice induite, e(t), dans la spire.
- 3) Déterminer le courant induit, i(t), dans la spire.
- 4) Calculer le courant induit i(t) pour a = 0.1 m; $R = 3.14 \Omega$; $B_0 = 1 \text{ T}$; $\omega = 10^3 \text{ rad/s}$

Figure 2

Exercice 4 (devoir)

On considère un solénoïde de longueur ℓ et de rayon R comportant n spires par unité de longueur $(n = \frac{N}{\ell})$. Les spires sont parcourues par un courant d'intensité I .

On désigne par μ_0 la perméabilté magnétique du vide. Les dimensions($\ell >> R$) sont telles que l'on pourra supposer que le solénoïde est infini.

- 1) Donner l'expression du champ l'induction magnétique \vec{B} à l'intérieur et à l'extérieur du solénoïde.
- 2) Déterminer l'inductance propre L du solénoïde
- 3) Déterminer, en fonction de N, I, ℓ et μ_0 , la densité volumique de l'énergie magnétique $\frac{dW_m}{dv}$
- 4) En déduire l'expression de l'énergie magnétique dans le solénoïde.
- 5) On place maintenant autour du solénoïde une bobine plate composée de N' spires de rayon supérieur à R (figure 3). Le solénoïde et la bobine possèdent le même axe (Δ) de vecteur unitaire \vec{e}_z . Déterminer le coéfficient d'induction mutuelle M des deux circuits

