Faculty of Information and Communication Technology ICT First Years and Foundation Unit

Sick Test MEMO Computational Mathematics and Discrete Mathematics (Extended) (Year 1)

COHF05D & DSMF06D

I declare that I am familiar with, and will abide to the Examination rules of Tshwane University of Technology

26 October 2022

Duration: 120 mi

26 October 2022				Examiner: N/S Sediela					
	-				Moderator: C Coetzee				
Dura	tion:	120 m	nin						
Total	l: 100)		Nur	nber o	n Clas	S		
Full Marks: 95				List					
Number of Pages: 22			GROUP						
0, 1	(N)								
Stud	ent N	umbei	ſ	1	ı	1			
	I	I	l	I		I			
Surname						Initia	als		

Signature

Instructions:

All questions must be answers on the question paper.

Only blue and black pens are allowed. Answers in pencil will not be marked.

Scientific, non-programmable calculators are allowed.

Cellular Phones are not allowed.

No sharing of calculators and/or stationery.

Round decimal answers to 2 decimal places.

Simplify fraction answers.

Show all calculations when requested.

[14]

1.1 A factory produces soccer balls. The balls are packed in containers of 15 balls each. If they manufacture 2300 balls per day (Make use of floor, ceiling or mod):

(2)

1.1.1 How many full container can they dispatch at the end of the day?

(1)

Solution:

 $2300 \setminus 15 = 153$ full containers

1.1.2 How many balls will be left after the full containers are (1) dispatched?

Solution:

2300 $mod 15 = 5 balls \checkmark$

1.2 Two wires are 12 m and 15 m long. The wires are to be cut of pieces of equal length. What is the maximum length that the wires can be cut?

(2)

Solution:

2	12
2	6
3	3
	1

3	15
5	5
	1

1/2

1/2

HCF = 3 cm

During the Easter holiday, Tumelo and James collected information about the number of cars that passed through Pumulani Toll Plaza heading to Limpopo from 13:00 to 14:00. They have observed that the type of cars that passed through were SUVs, Sedans, and Vans. They have recorded that a total of 2500 cars passed though during their observation. One-fourth $(\frac{1}{4})$ of the total number of cars were SUVs, and three-fifths $(\frac{3}{5})$ of the remaining number of cars were Sedans, and the rest were Vans. **Answer the following questions:**

1.3.1	What fraction of the cars were Sedans?	(4)
	Solution:	

$$1 - \frac{1}{4} \checkmark$$

$$\frac{3}{4} remaining \checkmark$$
Sedans fraction: $\frac{3}{4} \times \frac{3}{5}$

$$\checkmark$$
Sedans fraction: $\frac{9}{20}$

1.3.2 What fraction of the cars were Vans? (2)

Vans fraction:
$$\frac{3}{4} - \frac{9}{20}$$
Vans fraction: $\frac{15}{20} - \frac{9}{20}$
Vans fraction: $\frac{6}{20}$
Vans fraction: $\frac{3}{10}$
Vans fraction: $\frac{3}{10}$

1.4 A bag of oranges used to cost R30.00. The price was increased to R45.00. What is the percentage with which the price of the oranges has been increased?

(2)

(2)

Solution:

Percentage Increase =
$$\frac{45-30}{30} \times 100$$

Percentage Increase = 50% ✓

1.5 At the TUT mail department, one employee can put 200 certificates into envelopes in three hours. How long would it take if the department employs 6 employees to put 200 certificates into envelopes, working at the same pace?

Solution:

$$employees: hours\\$$

$$1:3$$
 $6:x$

$$\frac{1}{6} = \frac{x}{3}$$

$$6x = 3$$

 $x = \frac{1}{2}$ hours or 0.5 hours

√

Space for rough work:

(2)

(4)

2.1 Solve for x:

$$4x^3 + 16x^2 - 48x = 0$$

Solution:

$$4x(x^{2} + 4x - 12) = 0$$
 \(\frac{1}{2}\)
$$(x+6)(x-2) = 0$$
 \(\frac{1}{2}\)
$$(x+6) = 0 \text{ or } (x-2) = 0$$
 \(\frac{1}{2}\)
$$x = -6 \text{ or } x = 2$$
 \(\frac{1}{2}\)

2.2 Simplify the following expression:

$$\frac{3x^4-3}{x^2-6x+5} \times \frac{x^2-3x-10}{x^2+3x+2} \div \frac{6x^2+6}{12x}$$

Solution:

$$\frac{3(x^4-1)}{(x-1)(x-5)} \times \frac{(x-5)(x+2)}{(x+1)(x+2)} \times \frac{12x}{6(x^2+1)}$$

$$\frac{3(x-1)(x+1)(x^2+1)}{(x-1)(x-5)} \times \frac{(x-5)(x+2)}{(x+1)(x+2)} \times \frac{12x}{6(x^2+1)}$$

6x

2.3 Three years ago James was eleven times older than Patrick. Find (4) James and Patrick current age if their combined age is now 30 years.

Let x be Patrick's age 3 years ago.

Fill in the below table:

	3 years ago	Now
James	11 <i>x</i>	11x + 3 ½
Patrick	x	x + 3 ½

Find their ages.

$$11x + 3 + x + 3 = 30$$
 $12x + 6 = 30$
 $12x = 24$
 $x = 2$

James =
$$11(2) + 3 = 25$$
 years old %
Patrick = $2 + 3 = 5$ years old %

Determine the equation of a straight-line graph represented in the 3.1 given cartesian plane:

(3)

$$m = \frac{0-(-4)}{5-0} \qquad \checkmark$$

$$m=rac{4}{5}$$

$$c = -4$$

$$c = -4$$

$$y = \frac{4}{5}x - 4$$

(1)

$$y = 4x - 2$$
 and $y = -\frac{1}{4}x + 5$

Without drawing these graphs, what is the significance about these graphs?

Answer:

The two line are perpendicular to each other.

Solve the following lines simultaneously by drawing the straight-line 3.3 graphs:

(4)

Line 1:
$$y = 2x + 2$$
 and,

Line 2: y = 4

$$X = \underline{1} \quad \checkmark$$

$$Y = \underline{4} \quad \checkmark$$

4.1 Given the following diagram:

(6)

4.1.1 Calculate the length of EF.

(3)

Solution:

$$FG^{2} = EG^{2} + EF^{2}$$

$$5^{2} = 4^{2} + EF^{2}$$

$$25 = 16 + EF^{2}$$

$$EF^{2} = 9$$

EG = 1 + 3 = 4 cm

EF = 3 cm

4	1.1.2	Calculate the Area of the shape.	(3)	
		Solution:		
		Area = $(1 \times 2) + (4 \times 2) + \frac{1}{2}(4 \times 3)$		
		Area = 2 + 8 + 6		
		$Area = 16 cm^2$		

Space for rough work:		

4.2 Lethabo wants to replace the paving bricks on her driveway. The size of the driveway is 7 meters by 10 meters. The new bricks are 10 cm by 20 cm.

(5)

Answer the following:

How many brick does she need to cover the driveway? 4.2.1 (3)

Solution:

Area of driveway =
$$7 \times 10 = 70 \, m^2$$

$$1 brick = 10 cm \times 20 cm$$
$$1 brick = 0.1 \times 0.2$$

1
$$brick = 0.02 m^2$$

$$no. of \ bricks = 70 \div 0.02 = 3500 \ bricks$$

(2)

4.2.2 The bricks are sold in batches of 1000. You are not allowed to buy parts of batches. How many batches must she buy to pave the driveway?

$$3500 \div 1000 = 3.5 \approx 4 \ batches$$

	Question	True	False
5.1.1	The entire group of interest for a statistical conclusion, is called a population	X 1/2	
5.1.2	When using probability sampling, the sample is selected based on the subjective judgement of the researcher.		X ½
5.1.3	Interviewing is a data collection method.	X 1/2	
5.1.4	When using non-probabilistic sampling, everyone in the population has an equal chance of getting selected.		X 1/2
	ince for the past 10 days. Below is the data th		
about t	ne number of leaners who attended the Studyth		
about t	ne number of leaners who attended the Studyth	, 176	? (1)
	ne number of leaners who attended the Studythone 123, 150, 150, 153, 155, 161, 164, 166, 176,	, 176	? (1)

5.2.3	Calculate the average number of learners who attended the Studython. Solution: $average = \frac{123+\cdots+176}{10} \qquad \frac{1}{2}$ $average = \frac{1574}{10}$ $average = 157.4 \qquad \frac{1}{2}$ $average \approx 158$	(1)
5.2.4	If the standard deviation is 14.60, between which number of leaners do 95% of the data set occur? Solution: $158 + (2 \times 14.6) = 187.2 \approx 188$ $158 - (2 \times 14.6) = 128.8 \approx 129$	(2)

	5.2.5	What type of grap	h is the most suita	able to represent t	he (1)			
5.3	Given the following graph:					(4)		
		N	lumber of frui	ts				
	Lemons 80 Grapes 40 Oranges 60 5.3.1 What kind of graph is this? (1)							
	5.3.2	Calculate and fi	-	age and angle of	(2)			
		Level	Percentage	Angle				
		Lemons	$\frac{80}{230} \times 100$	$\frac{80}{230} \times 360$				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
			17.39% ½	62.61 ½				
	5.3.3 What other chart can be used to represent the data?				(1)			
	Bar Graph ✓							

6.1 Consider the following sets: (3)

$$A = \{5, 6, 7\},$$

$$A = \{5, 6, 7\}, \quad B = \{1, 3, 6, 9\} \ and \ C = \{2, 9\}.$$

List the following sets:

A - B	{5,7} ✓		(1)
$C \times A$	$\{2,5\},\{2,6\},\{2,7\},\{9,5\},\{9,6\},\{9,7\}$	✓	(1)
ΑΔΒ	{5,7,1,3,9} ✓		(1)

6.2 Given the following Venn diagram:

(5)

List elements of the following sets:

	Question	Answer	
6.2.1	$A \cap B$	{0, 2, 8}	(1)
6.2.2	$(A \cap B) \cap C$	{8 }	(1)
6.2.3	$(A \cup B) \cap C$	{4, 7, 8}	(1)
6.2.4	$C-(A\cup B)$	{10, 11}	(1)
6.2.5	$\overline{B} \cap A$	{1,3,4}	(1)

6.3 Given the following set:

(6)

 $M = \{apple, orange, tomato\}$

Answer the following questions:

	Question	Answer	
6.3.1	n(<i>M</i>)	3	(1)
6.3.2	n(P(M))=	8	(1)

Use a binary table to determine all possible subsets of set M. (4)

Decimal	Bii	nary Num		
Numbers	Apple	Orange	Tomato	Subsets
0	0	0	0	{}
1	0	0	1	{Tomato}
2	0	1	0	(Orange)
3	0	1	1	(Orange, Tomato)
4	1	0	0	{Apple}
5	1	0	1	{Apple, Tomato}
6	1	1	0	{Apple, Orange}
7	1	1	1	{Apple, Orange, Tomato}
	•	½ per o	correct rov	N

Space for rough work:	

7.1	Given t	the following argument:		(2)						
	Jan a	nd Mary are both gone to the meeting, so you	u are							
		going to give the class.								
	Identify the premise and the conclusion:									
	Premise:									
	Jan and Mary are both gone to the meeting 🗸									
	Concluyou a	usion: re going to give the class.								
7.2	Let th	e propositions J and M be defined as:		(5)						
	_	J: Jan work at night. M: Mary work at night.								
	7.2.1	Translate the symbolic form ~J ∨ M in words:	(2)							
		Solution:								
		Jan did not work at night or Mary work at night								
	7.2.2	Translate the following sentence in a well-formed symbolic form:	(2)							
		Both Jan and Mary do not work at night.								
		Solution:								
		~J ∧~ M ✓ ✓								

	7.2.3	Gi ³	ven th	e follo	wing cond	ditional statem	nent:	(1)	
					i	$M \longrightarrow J$			
	1/2								
			Co	ntrapo	ositive	$\sim J \longrightarrow \sim M$	1/2		
7.3	Identi	fy the	main	opera	ator in the	following:			(2)
						Main Ope	erator		
		~($(A \longleftrightarrow$	~(B	∨ C))	~ ✓			
			$A \wedge$	B ∨ ~	~ <i>C</i>	V •			
	L								
7.4	_				diction or	o determine if contingency. $\leftrightarrow \sim R \longrightarrow \sim$	the following stat	ement	(6)
	P	R	~ P	~ R	$P \longrightarrow R$	$\sim R \longrightarrow \sim P$	$P \longrightarrow R \longleftrightarrow \sim R$	→ ~ P	
	Т	Т	F	F	Т	Т	Т		
	Т	F	F	Т	F	F	Т		
	F	Т	Т	F	Т	Т	Т		
	F	F	Т	Т	Т	Т	Т		
	Mai	rks:	(1)	(1)	(1)	(1)	(1)		
			<u> </u>		1				
	The s	taten	nent is	a <u>Ta</u>	utology (1)			

	_	
8.1	Given the number $7EB_{16}$	•
0.1	Civeri the number 1 L D 16	•

(4)

(2)

(2)

0

_			ĺ								
7			E				В				
	1	1	1	1	1	1	0	1	0	1	1

$$7EB_{16} = 11111101011_2 \quad \checkmark \checkmark$$

8.1.2 Convert to Octal

onز	onvert to Octal:										
0	1	1	1	1	1	1	0	1	0	1	1
3 7		5			3						

$$7EB_{16} = 3753_8 \quad \checkmark \checkmark$$

8.2	Find +25 ₁₀ and -25 ₁₀ in sign and	d size d	ode re	presentation using 6 bits.	(3)
	Solution:				
			Rem		
	2 2	_	1		
	2	_	0		
	2	-	1		
	2		1		
		0			
		\checkmark			
	+25 ₁₀ =	= 0110	012		
	$+25_{10} =$ $-25_{10} =$	= 1110	012	✓	
8.3	Find the product of 10012 and 1	1002			(3)
	Solution:				
	1001				
	<u>x 100</u>				
	0000				
	<u>+0000</u>				
	00000				
	<u>+1001</u>				
	<u>100100₂</u> ✓				

8.4	Calculate the following by making use of the 2's complement:									
	$01000010_2 - \ 00010001_2$									
	Solution:									
	$01000010_2 + K_2(\ 00010001_2) $									
	K_2 (00010001 ₂) Compliment: 11101110 ₂ \checkmark Add 1: 00000001 ₂ \checkmark 11101111 ₂ \checkmark									
	$01000010_2 \\ +11101111_2$									
	$100110001_2 (discard\ 9th\ bit)$									
	$01000010_2 - 00010001_2 = 00110001_2$									

Space for rou	gh work:		

