Física Experimental de Partículas, Análisis Open Data CMS

Juan A. Carpintero, José A. Vallejo

Benemérita Universidad Autónoma de Puebla

Datos del sample

Se realiza un análisis usando datos abiertos del CMS de la primera corrida del 2011 a $7\,TeV$.

Se seleccionaron los eventos como sigue:

- ▶ Dos muones ambos con $|\eta|$ < 2.4.
- Por lo menos un muon era un muon global.
- La masa invariante de ambos muones está entre 0.3 GeV y 300 GeV.
- Ambos tienen cargas de signo opuesto.

	Run	Event	type1	Q1	pt1	eta1	phi1	E1	px1	py1	pz1	type2	Q2	pt2	eta2	phi2	E2	px2	py2	pz2	н
0	166699	835716681	G	- 1	4.2116	2.2366	-0.4849	19.9382	3.7261	-1.9631	19.4881	T	-1	1.2556	2.2683	-1.4488	6.1319	0.1528	-1.2463	6.0011	2.1330
1	166699	836133459	G	-1	2.1479	-2.0159	-2.7753	8.2066	-2.0055	-0.7692	-7.9199	G	-1	19.5453	-1.0826	-0.3408	32.1613	18.4210	-6.5332	-25.5406	13.6786
2	166699	836165498	G	- 1	21.0732	1.5948	-1.1137	54.0560	9.2997	-18.9102	49.7791	T	-1	2.3864	1.5352	-1.7388	5.7968	-0.3991	-2.3528	5.2818	4.3813
3	166699	836249706	G	-1	18.5889	1.6422	1.1923	49.8180	6.8688	17.2734	46.2199	G	-1	1.8721	1.9704	1.6393	6.8459	-0.1281	1.8678	6.5841	3.2587
4	166699	835608783	G	-1	11 8194	0.8711	-1.5811	16 5947	-0 1214	-11 8187	11 6479	Т	1	0.9408	2 0107	-1 6559	3 5779	-0 0799	-0 9374	3 4504	4 0171

Figure 1: Contenido del sample

Masa invariante M

Dado que el sample utilizado cuenta con la masa invariante se gráfica directamente. Aun así los valores se verificaron usando la definición.

$$M = \sqrt{(E_1 + E_2)^2 - [(\rho x_1 + \rho x_2)^2 + (\rho y_1 + \rho y_2)^2 + (\rho z_1 + \rho z_2)^2]}$$

Figure 2: Distribución de masa invariante sin selección

Muones Globales y Tracker

Los muones "Tracker" se reconstruyen usando el detector interno de trazas. Los muones "StandAlone" se reconstruyen por medio del arreglo de detectores de muones. Los muones "Globales" Combinan la información de ambos detectores.

Figure 3: Sección transversal del detector CMS [1].

Tratamiento de los datos

Se identificó que una considerable cantidad de muones en la muestra corresponden a muones del tracker, los cuales afectan a nuestros datos, por lo que se decidió omitirlos para la realización del análisis.

	Antes de la selección	Despues de la selección
N. de eventos	83761	34742

Table 1: Número de eventos antes y despues de la selección de muones globales.

	Muones G	Muones T
Porcentaje	41.47%	58.52%

Table 2: Porcentaje de eventos con muones globales y tracker.

Masa invariante con selección

Partículas identificadas

- ▶ Φ Vector meson (0.95-1.05GeV)
- ► J/Ψ (3.05-3.15GeV)
- ► ↑ Upsilon meson (9.55-9.65GeV)
- ► Boson Z (90.95-91.05GeV)

Figure 4: Comparación de distribución de masa invariante sin selección y con selección

	Φ Phi meson	J/Ψ	↑ Upsilon meson	Boson Z	
Masa	1019.445 ±0.02MeV	3096.90 ±0.025 <i>MeV</i>	9460.30 ±0.26 <i>MeV</i>	9460.30 ±2.1 <i>MeV</i>	
Descubrimiento	Descubierto en 1960 porNicholas Samios	Descubierto en 1974 por dos grupos de investigación.	Descubierto en 1977 por elE288 Collaboration	Descubierto en 1983 por el CERN	
Descripción	Formado por Strange quarky un anti Strange quark	Formado por Charm quark y un anti Charm quark	Formado por un Botton quarky un anti Botton quark	una de las particulas mediadoras de la interacción nuclear debil	

Table 3: Información de las partículas identificadas

Figure 5: Espectro que muestra las masas de pares de dimuones registradas por el detector CMS en datos recopilados en 2015 a 13 TeV

Momento transversal

El momento transverso se gráfico directamente de la muestra ya seleccionada, fue obtenido con 34200 colisiones protón-protón a 7 TeV.

Figure 6: Comparación momento transverso P_{T1} con y sin selección

Figure 7: Comparación momento transverso P_{T2} con y sin selección

Ángulo azimutal ϕ

Se observa una distribución homogénea en ambas distribuciones. La uniformidad de la detección corresponde a un correcto funcionamiento del detector.

Figure 8: Comparación ángulo ϕ_1 con y sin selección

Figure 9: Comparación ángulo ϕ_2 con y sin selección

Ángulo entre los dos muones $\Delta \phi$

Se observa que los muones del tracker contribuían considerablemente al ruido de esta distribución.

Figure 10: Comparación diferencia entre ϕ_2 y ϕ_1 , con y sin selección.

Se observa un extraño pico alrededor de 0 en la distribución de $\Delta \phi$.

Figure 11: Distribución de $\Delta \phi$ con selección.

Buscando en la literatura se encontró información sobre algunos comportamientos similares que relacionan $\Delta\phi$ con la presencia de jets.

Figure 12: Distribución del ángulo azimutal de candidato a meson D* con respecto a el eje reconstruido de un jet[3].

Producción de mesones J/ψ dentro de jets en colisiones protón-protón a $\sqrt{s}=8\, TeV$.

Figure 13: Distribución $\Delta R(\text{jet}, J/\psi)$ para eventos de un jet[4].

Pseudo rapidez η

$$\eta \equiv -\ln\!\left[\tan\!\left(\frac{\theta}{2}\right)\right]$$

Figure 14: Vista longitudinal de un cuadrante del detector CMS [5]

Se observa una distribución no homogénea, que es mas notoria en la distribución de η_2

Figure 15: Comparación ángulo η_1 con y sin selección

Se observa una distribución centrada en los valores de -1 y 1

Figure 16: Comparación η_1 con y sin selección

Ángulo θ

Se observa una distribución concentrada en los extremos, lo que hace sentido que la distribución de η_1 no este centrada en entre -1 y 1.

Figure 17: Comparación θ_1 con y sin selección

Se observa una distribución homogénea con preferencia a estar concentrada entre valores de 0.5 y 2.5

Figure 18: Comparación ángulo θ_2 con y sin selección

Gráfica de $\theta vs\eta$

Figure 19: Comparación de θ_1 vs η_1

Figure 20: Comparación de θ_2 vs η_2

Conclusiones

- Se observaron de forma clara las partículas: Φ , J/Ψ , Υ y Z en concordancia con el espectro de masas en colisiones protón-protón.
- ▶ En el caso de la distribución de $\Delta \phi$ se observa la importancia de contar con una variedad de técnicas para poder analizar comportamientos extraños que puedan surgir en el tratamiento de los datos experimentales.
- Es importante plantear desde el principio sobre que objetos se busca trabajar, de esta manera se puede observar y analizar mejor la información, por ejemplo los muones del tracker contribuían con demasiado ruido a nuestro análisis.
- Las distribuciones de los momentos transversos, de los ángulos θ , ϕ y las distribuciones de la pseudo rapidez η son acordes a los resultados esperados en este tipo de colisiones protón-protón.

Referencias

- 1 https://cms-opendata-workshop.github.io/
 workshop-lesson-tagandprobe/aio/index.html
- 2 https://cms.cern/news/
 cms-presents-new-13tev-results-end-year-jamboree
- 3 B. I. Abelev, et al. Measurement of D* mesons in jets from p+p collision at $\sqrt{s} = 200 \, Gev$, Physical Review D 79, 112006 (2009)
- 4 The CMS Collaboration, Study of J/ ψ meson production inside jets in pp collisiones at $\sqrt{s}=6\,\text{TeV}$, Physics Letters B, http://dx.doi.org/10.1016/j.physletb.2020.135409,
- 5 https://www.researchgate.net/figure/ Longitudinal-view-of-one-quadrant-of-the-CMS-detectorfig1_324549347