

计分项目	报告分数	课堂表现	总分
分值	70	30	100
得分			

姓名: 应逸雯 陈薇羽___ 学号:__12210159 12210460___ 实验班级: __01__

时序逻辑电路

1. 实验目的

- ▶ 掌握常用时序电路分析、设计及测试方法;
- > 学会运用各类触发器设计各种常用的时序逻辑电路。

2. 实验器材

序号	名 称	型号与规格	数 量	备 注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4	模电数电综合实验箱	TPE-ADII	1	
5	元器件	74LS73 双J-K触发器 2片, 74LS175 四D触发器 1片, 74LS10 三输入端三与非门 1片, 74LS00 二输入端四与非门 1片	5	

3. 实验内容

由CP端输入单脉冲,测试并记录Q1~Q4端状态及波形。

<u> </u>	H 7 1 1 1 1 1	• • • • •		が 技 グック	IVERSITY OF SCIENCE AND TECHNOLOGY
CP 个数	Q4	Q3	Q2	Q1	十进制计数 N
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1	0	0	0	8
10	1	0	0	1	9
11	1	0	1	0	10
12	1	0	1	1	11
13	1	1	0	0	12
14	1	1	0	1	13
15	1	1	1	0	14
16	1	1	1	1	15
17	0	0	0	0	16

在下方画出波形图,注意1)采用波形图软件画图,2)至少要画完一个周期。

3.2 异步二-十进制加法计数器

1) 按如图示接线

- Q_4 、 Q_6 、 Q_6 4个输出端分别接LED显示,CP端接连续脉冲或单脉冲。
 - 2) 在CP端接连续脉冲,观察CP、 Q_4 、 Q_5 、 Q_5 、 Q_6 的波形。并在下方记录波形图。

3.3 自循环移位寄存器——环形计数器

1) 按图示接线,将 A、B、C、D 置为 1000,用单脉冲计数,记录各触发器的状态

CP 个数	A	В	С	D
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	0	0	0
5	0	1	0	0
6	0	0	1	0
7	0	0	0	1
8	1	0	0	0
9	0	1	0	0

无自启动环形计数器

使用方法: 1. 置位,断开 Key=A 的开关和时钟的开关,将连接 D 的四个开关闭合 (拨到上方),开始仿真后上下拨动一次 clk 开关

2. 断开连接 D 的四个开关(拨到下方),闭合 Key=A 的开关,左边连接 clk 的开关就可以作为单脉冲使用进行循环计数。

改为连续脉冲计数,并将其中一个状态为"0"的触发器置为"1"(模拟干扰信号作用的结果)。观察计数器能否正常工作,分析原因

变为 1100→0110→0011→1001→1100/1010→0101→1010, 干扰信号被不断传递, 出现两个 1, 处于无效循环中, 也无法自启动至有效循环中, 不能正常工作。 D 触发器特性公式为 Q*=D, 而环形计数器中接成了 D2=Q1, 即 Q2*=Q1, 且构成循环传递回来, 因此, 干扰信号将一直存续于电路中。

2)按如下图接线,重复上述实验,对比实验结果,总结关于自启动的体会。

该电路具备自启动功能。(ABC 全 0,A 出 1)无需通过接线预置数。 能够实现环形计数器功能($1000 \rightarrow 0100 \rightarrow 0010 \rightarrow 0001$)

附录: IC 引脚图

设计1

设计一个串行数据检测器,对它的要求是:连续输入3个或3个以上的1时输出为1,其他输入情况下输出为0。

 $Q_1^* = X(Q_0 + Q_1)$ X为输入按键, LED1为输出显示Y。

 $Q_0^* = X(Q_0' + Q_1)$ 逻辑分析仪中,第一行为输入X,第二行为输出Y,第三行为CLK,

 $J_1 = XQ_0$

第四行为Q1,第五行为Q0.

 $K_1 = X'$

 $J_0 = X$

 $K_0 = (XQ_1)'$

 $Y = XQ_1Q_0$

设计2

电子骰子

- 1. 利用74LS90的异步清零功能,当输出为0110时复位,实现六进制计数
- 2. 利用3-8译码器将 二进制数转换为不 同的输出

- 3. 按六个灯泡的亮灭情况,把同时亮灭的灯泡分为一组
- 4. 利用与非门和译码器的低电平输出组成或门,让灯泡在对应情况下点亮(如中间灯泡在骰子数值为1,3,5也对应三八译码器输出为0或2或4时点亮)

补充3 CD4017

Reset=1, 计数复位, carry-out置位

Enable=1, Q*=Q

Reset=0, Enable=0, 计数

Carry-out: 计到9后的一个clk, 置1, 计到4后的一个clk, 置0

Reset	Enable	Q*	Carry-out
1	×	0000000001	1
×	1	Q	0

以下每行是上一行的结果后一次clk

Reset	Enable	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Carry-out
0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0

	0	0	0	1	0	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0	0	0	0	0