به نام خدا

دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)

درس <mark>شناسایی</mark> آماری الگو استاد رحمتی

تمرین دوم

علیرضا مازوچی ۴۰۰۱۳۱۰۷۵

سوال ۱

(a

(b

$$p_{parzen-1}(x) = \frac{k}{15}$$

$$p_{parzen-2}(x) = \frac{k}{30}$$

$$p_{parzen-4}(x) = \frac{k}{60}$$

$$p_{3NN}(x) = \frac{1}{5n}$$

توجه کنید که برای این قسمت از کرنل زیر استفاده کردهام که در اسلایدها آماده است و برخلاف کرنلی که در قسمت ه آمده است، حالت تساوی هم وجود دارد:

$$K(u) = \begin{cases} 1 & |u| \le \frac{1}{2} \\ 0 & otherwise \end{cases}$$

(c

$$P(-2) = \frac{1}{30}$$

$$P(-1) = \frac{1}{20}$$

$$P(o) = \frac{1}{10}$$

$$P(3/2) = \frac{1}{5}$$
 $P(2) = \frac{1}{10}$ $P(\frac{5}{2}) = \frac{1}{5}$ $P(\frac{7}{2}) = \frac{1}{5}$

$$P(2) = \frac{1}{10}$$

$$P(4) = \frac{1}{10}$$
 $P(\frac{\%}{2}) = \frac{1}{5}$ $P(\frac{1}{7}) = \frac{1}{5}$ $P(6) = \frac{1}{10}$

$$P(\frac{9}{2}) = \frac{1}{5}$$

$$P(7) = \frac{1}{20}$$

$$P(7) = \frac{1}{20}$$
 $P(1) = P(3) = P(5) = +\infty$

(d

$$p(0) = \frac{1}{15 * 2} \left(1 + 5 * \frac{1}{2} \right) = \frac{7}{60}$$
$$p(1) = \frac{1}{15 * 2} \left(1 * \frac{1}{2} + 5 + 2 * \frac{1}{2} \right) = \frac{13}{60}$$

$$p(2) = \frac{1}{15 * 2} \left(5 * \frac{1}{2} + 2 + 3 * \frac{1}{2}\right) = \frac{12}{60}$$

$$p(3) = \frac{1}{15 * 2} \left(2 * \frac{1}{2} + 3 + 1 * \frac{1}{2}\right) = \frac{9}{60}$$

$$p(4) = \frac{1}{15 * 2} \left(3 * \frac{1}{2} + 1 + 3 * \frac{1}{2}\right) = \frac{8}{60}$$

$$p(5) = \frac{1}{15 * 2} \left(1 * \frac{1}{2} + 3\right) = \frac{7}{60}$$

$$(e$$

$$p(4) = \frac{1}{15 * 4} (1 + 1 + 3) = \frac{5}{60}$$

$$p(10) = \frac{1}{15 * 4} (1) = \frac{1}{60}$$

$$p(16) = \frac{1}{15 * 4} (3 + 2) = \frac{5}{60}$$

$$(f$$

$$p(4) = \frac{1}{15 * 4} \left(g\left(-\frac{1}{4}\right) + g(0) + 3 * g\left(\frac{1}{4}\right) + 2 * g\left(\frac{2}{4}\right) + g\left(\frac{5}{4}\right) + g\left(\frac{9}{4}\right) + g\left(\frac{9}{4}\right) + g\left(\frac{10}{4}\right) + 3 * g\left(\frac{11}{4}\right) + 2 * g\left(\frac{13}{4}\right)\right) \approx 0.0485$$

$$p(10) = \frac{1}{15 * 4} \left(g\left(-\frac{7}{4}\right) + g\left(-\frac{6}{4}\right) + 3 * g\left(-\frac{5}{4}\right) + 2 * g\left(-\frac{4}{4}\right) + g\left(-\frac{1}{4}\right) + g\left(\frac{3}{4}\right) + g\left(\frac{4}{4}\right) + 3 * g\left(\frac{5}{4}\right) + 2 * g\left(\frac{7}{4}\right)\right) \approx 0.0482$$

$$p(16) = \frac{1}{15 * 4} \left(g\left(-\frac{13}{4}\right) + g\left(-\frac{12}{4}\right) + 3 * g\left(-\frac{11}{4}\right) + 2 * g\left(-\frac{10}{4}\right) + g\left(-\frac{7}{4}\right) + g\left(-\frac{3}{4}\right) + g\left(-\frac{12}{4}\right) + 3 * g\left(-\frac{11}{4}\right) + 2 * g\left(-\frac{10}{4}\right) + g\left(-\frac{7}{4}\right) + g\left(-\frac{7}{4}\right) + g\left(-\frac{3}{4}\right) + g\left(-\frac{2}{4}\right) + 3 * g\left(-\frac{1}{4}\right) + 2 * g\left(\frac{1}{4}\right)$$

 ≈ 0.0456

سوال ۲

(a

$$\bar{X} = \begin{bmatrix} 6.4\\4.6\\5.7 \end{bmatrix}$$

(b

$$Z = \begin{bmatrix} -5.4 & -3.4 & -2.4 & -0.4 & 0.6 & 1.6 & 1.6 & 1.6 & 2.6 & 3.6 \\ -4.6 & -0.6 & -1.6 & 2.4 & -3.6 & 3.4 & -2.6 & 5.4 & 0.4 & 1.4 \\ -2.7 & 0.3 & 1.3 & -2.7 & -0.7 & 4.3 & -1.7 & -3.7 & 2.3 & 3.3 \end{bmatrix}$$

(c

$$\sigma_1^2 = \frac{1}{9}(5.4^2 + 3.4^2 + 2.4^2 + 0.4^2 + 0.6^2 + 1.6^2 + 1.6^2 + 1.6^2 + 2.6^2 + 3.6^2) = 8.26$$

$$\sigma_2^2 = \frac{1}{9}(4.6^2 + 0.6^2 + 1.6^2 + 2.4^2 + 3.6^2 + 3.4^2 + 2.6^2 + 5.4^2 + 0.4^2 + 1.4^2) = 10.26$$

$$\sigma_3^2 = \frac{1}{9}(2.7^2 + 0.3^2 + 1.3^2 + 2.7^2 + 0.7^2 + 4.3^2 + 1.7^2 + 3.7^2 + 2.3^2 + 3.3^2) = 7.56$$

$$c_{12} = c_{21} = \frac{1}{9} (5.4 * 4.6 + 3.4 * 0.6 + 2.4 * 1.6 - 0.4 * 2.4 - 0.6 * 3.6 + 1.6 * 3.4 - 1.6 * 2.6 + 1.6 * 5.4 + 2.6 * 0.4 + 3.6 * 1.4) = 4.84$$

$$c_{13} = c_{31} = \frac{1}{9} (5.4 * 2.7 - 3.4 * 0.3 - 2.4 * 1.3 + 0.4 * 2.7 - 0.6 * 0.7 + 1.6 * 4.3 - 1.6 * 1.7 - 1.6 * 3.7 + 2.6 * 2.3 + 3.6 * 3.3) = 3.02$$

$$c_{23} = c_{32} = \frac{1}{9} (4.6 * 2.7 - 0.6 * 0.3 - 1.6 * 1.3 - 2.4 * 2.7 + 3.6 * 0.7 + 3.4 * 4.3 + 2.6 * 1.7 - 5.4 * 3.7 + 0.4 * 2.3 + 1.4 * 3.3) = 1.20$$

$$\Sigma = \begin{bmatrix} 8.26 & 4.84 & 3.02 \\ 4.84 & 10.26 & 1.20 \\ 3.02 & 1.20 & 7.56 \end{bmatrix}$$

باتوجه به ماتریس کواریانس میتوان گفت که پراکندگی ویژگی دوم دادهها نسبت به دو ویژگی دیگر بیشتر است. همچنین همبستگی بیشتری بین دو ویژگی اول و دوم دیده میشود درحالی که همبستگی بین ویژگی دوم و سوم نسبتا کم است و نهایتا میتوان دید که هر سه ویژگی با یکدیگر همبستگی دارند و در یک راستا هستند ولی چون تمامی مقادیر کواریانس از مقادیر واریانس کمتر است این همبستگی در کل زیاد نیست.

(d

$$\begin{split} \mathcal{E}v &= \lambda v \to (\Sigma - \lambda I)v = 0 \to \begin{bmatrix} 8.26 - \lambda & 4.84 & 3.02 \\ 4.84 & 10.26 - \lambda & 1.20 \\ 3.02 & 1.20 & 7.56 - \lambda \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0 \\ \begin{vmatrix} 8.26 - \lambda & 4.84 & 3.02 \\ 4.84 & 10.26 - \lambda & 1.20 \\ 3.02 & 1.20 & 7.56 - \lambda \end{bmatrix} = 0 \\ &\to (8.26 - \lambda) \begin{vmatrix} 10.26 - \lambda & 1.2 \\ 1.2 & 7.56 - \lambda \end{vmatrix} - 4.84 \begin{vmatrix} 4.84 & 3.02 \\ 1.20 & 7.56 - \lambda \end{vmatrix} \\ &+ 3.02 \begin{vmatrix} 4.84 & 3.02 \\ 10.26 - \lambda & 1.2 \end{vmatrix} \\ &= (8.26 - \lambda)(\lambda^2 - 17.82\lambda + 76.1256) - 4.84(32.9664 - 4.84\lambda) \\ &+ 3.02(-25.1772 + 3.02\lambda) \\ &\approx -\lambda^3 + (8.26 + 17.82)\lambda^2 + (-147.19 - 76.12 + 23.46 + 9.12)\lambda + 628.79 \\ &- 159.55 - 76.03 \approx -\lambda^3 + 26.08\lambda^2 - 190.73\lambda + 393.21 \\ &\to \lambda_1 \approx 15.28 \to \begin{bmatrix} -7.02 & 4.84 & 3.02 \\ 4.84 & -5.02 & 1.2 \\ 3.02 & 1.2 & -7.72 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0 \to \begin{cases} -7.02a + 4.84b + 3.02c = 0 \\ 4.84a - 5.02b + 1.2c = 0 \\ 3.02a + 1.2b - 7.72c = 0 \end{cases} \\ &\to a = 1, b = 1.09, c = 0.56 \to v_1 = \begin{bmatrix} 1 \\ 1.09 \\ 0.56 \end{bmatrix} \\ \lambda_2 = 7.24 \to \begin{bmatrix} 1.02 & 4.84 & 3.02 \\ 4.84 & 3.02 & 1.2 \\ 3.02 & 1.2 & 0.32 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0 \to \begin{cases} 1.02a + 4.84b + 3.02c = 0 \\ 4.84a + 3.02b + 1.2c = 0 \\ 3.02a + 1.2b + 0.32c = 0 \end{cases} \\ &\to a = 1, b = -4.04, c = 6.14 \to v_2 = \begin{bmatrix} 1 \\ -4.04 \\ 6.14 \end{bmatrix} \\ \lambda_3 = 3.55 \to \begin{bmatrix} 4.71 & 4.84 & 3.02 \\ 4.84 & 6.71 & 1.2 \\ 3.02 & 1.2 & 4.01 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0 \to \begin{cases} 4.71a + 4.84b + 3.02c = 0 \\ 4.84a + 6.71b + 1.2c = 0 \\ 3.02a + 1.2b + 4.01c = 0 \end{cases} \\ &\to a = 1, b = -0.62, c = -0.56 \to v_3 = \begin{bmatrix} 1 \\ -0.62 \\ 0.56 \end{bmatrix} \end{split}$$

سه بردار ویژهای که در قسمت قبل پیدا شده است یعنی v_1 و v_2 میتوانند به عنوان پایه (e جدید مورد استفاده قرار بگیرند. فقط پیش از آن باید نرمالسازی شوند:

$$v_1' = \begin{bmatrix} 0.63 \\ 0.68 \\ 0.35 \end{bmatrix}, v_2' = \begin{bmatrix} 0.13 \\ -0.54 \\ 0.82 \end{bmatrix}, v_3' = \begin{bmatrix} 0.76 \\ -0.47 \\ -0.42 \end{bmatrix}$$

f) ماتریس حاصل از سه بردار ویژه برای تصویرکردن دادهها میتواند استفاده شود. چنانچه قصد داشته باشیم ابعاد را هم کاهش دهیم میتوان سطر سوم ماتریس (کاهش یک بعد) یا دو سطر دوم (کاهش دو بعد) را حذف کرد.

$$\begin{bmatrix} 0.63 & 0.68 & 0.35 \\ 0.13 & -0.54 & 0.82 \\ 0.76 & -0.47 & -0.42 \end{bmatrix} \begin{bmatrix} -5.4 & -3.4 & -2.4 & -0.4 & 0.6 & 1.6 & 1.6 & 1.6 & 2.6 & 3.6 \\ -4.6 & -0.6 & -1.6 & 2.4 & -3.6 & 3.4 & -2.6 & 5.4 & 0.4 & 1.4 \\ -2.7 & 0.3 & 1.3 & -2.7 & -0.7 & 4.3 & -1.7 & -3.7 & 2.3 & 3.3 \end{bmatrix} = \begin{bmatrix} -7.475 & -2.445 & -2.145 & 0.435 & -2.315 & 4.825 & -1.355 & 3.385 & 2.715 & 4.375 \\ -0.432 & 0.128 & 1.618 & -3.562 & 1.448 & 1.898 & 0.218 & -5.742 & 2.008 & 2.418 \\ -0.808 & -2.428 & -1.618 & -0.298 & 2.442 & -2.188 & 3.152 & 0.232 & 0.822 & 0.692 \end{bmatrix}$$

(g

$$\overline{X_1} = \begin{bmatrix} 4.9 \\ 3.2 \\ 5 \end{bmatrix}, \overline{X_2} = \begin{bmatrix} 6 \\ 8.1 \\ 4.8 \end{bmatrix}$$

h) مشابه قسمت ج کواریانس را میتوان حساب کرد:

$$\begin{split} \Sigma_1 &= \begin{bmatrix} 10.32 & 3.35 & -4.33 \\ 3.35 & 3.06 & -2.77 \\ -4.33 & -2.77 & 8.66 \end{bmatrix} \\ \Sigma_2 &= \begin{bmatrix} 7.11 & 1.66 & 1.88 \\ 1.66 & 1.87 & 1.24 \\ 1.88 & 1.24 & 12.84 \end{bmatrix} \end{split}$$

(i

$$S_1 = 9\Sigma_1 = \begin{bmatrix} 92.88 & 30.15 & -38.97 \\ 30.15 & 27.54 & -24.93 \\ -38.97 & -24.93 & 77.94 \end{bmatrix}$$

$$S_2 = 9\Sigma_2 = \begin{bmatrix} 63.99 & 14.94 & 16.92 \\ 14.94 & 16.83 & 11.16 \\ 16.92 & 11.16 & 115.56 \end{bmatrix}$$

$$S_W = S_1 + S_2 = \begin{bmatrix} 156.87 & 45.09 & -22.05 \\ 45.09 & 44.37 & -13.77 \\ -22.05 & -13.77 & 193.5 \end{bmatrix}$$

$$S_B = (\overline{X_1} - \overline{X_2})(\overline{X_1} - \overline{X_2})^T = \begin{bmatrix} -1.1 \\ -4.9 \\ 0.2 \end{bmatrix} \begin{bmatrix} -1.1 & -4.9 & 0.2 \end{bmatrix} = \begin{bmatrix} 1.21 & 5.39 & -0.22 \\ 5.39 & 24.01 & -0.98 \\ -0.22 & -0.98 & 0.04 \end{bmatrix}$$

(k

$$S_W^{-1}S_B \approx \begin{bmatrix} -0.038 & -0.169 & 0.007 \\ 0.162 & 0.721 & -0.029 \\ 0.006 & 0.027 & -0.001 \end{bmatrix}$$

مقادیر ویژه و بردارهای ویژه ماتریس فوق را مییابیم:

$$\lambda_{1} \approx 0.68 \rightarrow v_{1} \approx \begin{bmatrix} 0.228 \\ -0.973 \\ -0.036 \end{bmatrix}$$

$$\lambda_{2} \approx -1.38 * 10^{-19} \rightarrow v_{2} = \begin{bmatrix} 0.168 \\ 0.002 \\ 0.985 \end{bmatrix}$$

$$\lambda_{3} \approx -3.32 * 10^{-17} \rightarrow v_{3} = \begin{bmatrix} -0.974 \\ 0.220 \\ 0.031 \end{bmatrix}$$

$$W = \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \\ v_{2}^{T} \end{bmatrix} = \begin{bmatrix} 0.228 & -0.973 & -0.036 \\ 0.168 & 0.002 & 0.985 \\ -0.974 & 0.220 & 0.031 \end{bmatrix}$$

با ضرب کردن W در هر دادهای (Wx) تصویرشده داده جدید حاصل میشود. برای کاهش ابعاد میتوان سطر سوم (کاهش یک بعد) یا سطر دوم و سوم (کاهش دو بعد) را از W حذف کرد.

(1

$$WX_1 = \begin{bmatrix} 0.228 & -0.973 & -0.036 \\ 0.168 & 0.002 & 0.985 \\ -0.974 & 0.220 & 0.031 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 3 & 4 & 5 & 7 & 8 & 9 & 9 \\ 3 & 1 & 2 & 1 & 4 & 5 & 2 & 3 & 5 & 6 \\ 7 & 6 & 10 & 8 & 2 & 0 & 4 & 3 & 5 & 5 \end{bmatrix} \\ = \begin{bmatrix} -3.171 & -0.733 & -1.85 & -0.577 & -3.052 & -3.725 & -0.494 & -1.203 & -2.993 & -3.966 \\ 6.901 & 6.248 & 10.19 & 8.386 & 2.65 & 0.85 & 5.12 & 4.305 & 6.447 & 6.449 \\ 0.877 & -1.542 & -1.198 & -2.454 & -2.954 & -3.77 & -6.254 & -7.039 & -7.511 & -7.291 \end{bmatrix}$$

$$\begin{split} WX_2 &= \begin{bmatrix} 0.228 & -0.973 & -0.036 \\ 0.168 & 0.002 & 0.985 \\ -0.974 & 0.220 & 0.031 \end{bmatrix} \begin{bmatrix} 2 & 3 & 5 & 5 & 5 & 6 & 6 & 8 & 10 & 10 \\ 7 & 8 & 6 & 9 & 10 & 7 & 7 & 8 & 10 & 9 \\ 1 & 9 & 0 & 3 & 5 & 2 & 9 & 10 & 6 & 3 \end{bmatrix} \\ &= \begin{bmatrix} -6.391 & -7.424 & -4.698 & -7.725 & -8.77 & -5.515 & -5.767 & -6.32 & -7.666 & -6.585 \\ 1.335 & 9.385 & 0.852 & 3.813 & 5.785 & 2.992 & 9.887 & 11.21 & 7.61 & 4.653 \\ -0.377 & -0.883 & -3.55 & -2.797 & -2.515 & -4.242 & -4.025 & -5.722 & -7.354 & -7.667 \end{bmatrix} \end{split}$$

(m

(n

(p

(q

(r

