TRIGONOMETRY

The Pythagorean Theorem

Extra—Pythagorean Triples

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$
$$3^2 + 4^2 = c^2$$

$$a^{2} + b^{2} = c^{2}$$

 $3^{2} + 4^{2} = c^{2}$
 $9 + 16 = c^{2}$

$$a^{2} + b^{2} = c^{2}$$
 $3^{2} + 4^{2} = c^{2}$
 $9 + 16 = c^{2}$
 $25 = c^{2}$

$$a^{2} + b^{2} = c^{2}$$

$$3^{2} + 4^{2} = c^{2}$$

$$9 + 16 = c^{2}$$

$$25 = c^{2}$$

$$\sqrt{25} = c^{2}$$

$$a^{2} + b^{2} = c^{2}$$

$$3^{2} + 4^{2} = c^{2}$$

$$9 + 16 = c^{2}$$

$$25 = c^{2}$$

$$\sqrt{25} = c^{2}$$

$$5 = c$$

Solve for the unknown side in this right triangle:

What a "clean", round answer!

$$a^{2} + b^{2} = c^{2}$$

$$3^{2} + 4^{2} = c^{2}$$

$$9 + 16 = c^{2}$$

$$25 = c^{2}$$

$$\sqrt{25} = c^{2}$$

$$5 = c$$

Solve for the unknown side in this right triangle:

$$a^{2} + b^{2} = c^{2}$$

$$3^{2} + 4^{2} = c^{2}$$

$$9 + 16 = c^{2}$$

$$25 = c^{2}$$

$$\sqrt{25} = c^{2}$$

$$5 = c$$

What a "clean", round answer! In fact, all the sides are "nice"!

PYTHAGOREAN TRIPLE

Definition (Pythagorean Triple)

A Pythagorean triple is a set of three whole numbers a, b, and c such that

$$a^2+b^2=c^2.$$

PYTHAGOREAN TRIPLE

Definition (Pythagorean Triple)

A *Pythagorean triple* is a set of three whole numbers *a*, *b*, and *c* such that

$$a^2+b^2=c^2.$$

Most well-known example:

$$(3,4,5) \iff 3^2+4^2=5^2$$

PYTHAGOREAN TRIPLE

Definition (Pythagorean Triple)

A Pythagorean triple is a set of three whole numbers a, b, and c such that $a^2 + b^2 = c^2$

$$u + v = c$$

Most well-known example:

$$(3,4,5) \iff 3^2+4^2=5^2$$

There are infinitely many Pythagorean triples out there.

SOME SMALL PYTHAGOREAN TRIPLES

- (3, 4, 5)
- (6, 8, 10)
- (5, 12, 13)
- (9, 12, 15)
- (8, 15, 17)

SOME SMALL PYTHAGOREAN TRIPLES

- (3, 4, 5)
- (6, 8, 10)
- (5, 12, 13)
- (9, 12, 15)
- (8, 15, 17)

SOME SMALL PYTHAGOREAN TRIPLES

$$(3, 4, 5)$$

 $(6, 8, 10) \iff 2 \cdot (3, 4, 5)$
 $(5, 12, 13)$
 $(9, 12, 15) \iff 3 \cdot (3, 4, 5)$
 $(8, 15, 17)$

Tests.

Tests.

Math teachers love "clean" answers.

Tests.

Math teachers love "clean" answers.

 \implies Pythagorean triples give those.

Tests.

Math teachers love "clean" answers.

 \implies Pythagorean triples give those.

 \Longrightarrow They show up often on tests.

Tests.

Math teachers love "clean" answers.

 \Longrightarrow Pythagorean triples give those.

 \Longrightarrow They show up often on tests.

Knowing the first few triples can give you an edge on tests.

Without triples:

$$x^2 + 6^2 = 10^2$$

Without triples:

$$x^2 + 6^2 = 10^2$$

(3, 4, 5)

Without triples:

$$x^2 + 6^2 = 10^2$$

With triples:

$$(3,4,5) \stackrel{\times 2}{\Longrightarrow} (6,8,10)$$

Without triples:

$$x^2 + 6^2 = 10^2$$

With triples:

$$(3,4,5) \stackrel{\times 2}{\Longrightarrow} (6,\frac{8}{8},10)$$

$$(x-3)^2 + 12^2 = (x+5)^2$$

$$(x-3)^2 + 12^2 = (x+5)^2$$

With triples:

What triples involve a side of 12?

Without triples:

$$(x-3)^2 + 12^2 = (x+5)^2$$

With triples:

What triples involve a side of 12?

$$(5, 12, 13)$$
 $(9, 12, 15)$

Without triples:

$$(x-3)^2 + 12^2 = (x+5)^2$$

With triples:

What triples involve a side of 12?

$$(5, 12, 13)$$
 $(9, 12, 15)$

$$x - 3 = 5$$

$$(x-3)^2 + 12^2 = (x+5)^2$$

With triples:

What triples involve a side of 12?

$$(5, 12, 13)$$
 $(9, 12, 15)$

$$x-3=5 \implies x=8$$

$$(x-3)^2+12^2=(x+5)^2$$

With triples:

What triples involve a side of 12?

$$(5, 12, 13)$$
 $(9, 12, 15)$

$$x-3=5 \implies \boxed{x=8}$$

Check: $x+5 \implies 8+5$

SPEEDING UP WITH TRIPLES, CONT.

SPEEDING UP WITH TRIPLES, CONT.

$$(x-3)^2+12^2=(x+5)^2$$

With triples:

What triples involve a side of 12?

$$(5, 12, 13)$$
 $(9, 12, 15)$

Try one out and see what happens:

$$x-3=5 \implies x=8$$

Check:
$$x + 5 \implies 8 + 5 \implies 13$$

SCALING A PYTHAGOREAN TRIPLE

Any **multiple** of a Pythagorean triple is also a triple.

SCALING A PYTHAGOREAN TRIPLE

Any **multiple** of a Pythagorean triple is also a triple.

(This is connected to the concept of *similarity*, which we talk about in a different lesson.)

SCALING A PYTHAGOREAN TRIPLE

Any **multiple** of a Pythagorean triple is also a triple.

(This is connected to the concept of **similarity**, which we talk about in a different lesson.)

Let's prove it! Let's show that a multiple always works!

Given:

(a, b, c) is a triple.

<u>Given:</u>

(a, b, c) is a triple.

<u>Claim:</u>

 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$ is also a triple.

<u>Given:</u>

$$(a,b,c)$$
 is a triple.

$$\implies a^2 + b^2 = c^2$$

Claim:

```
k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc) is also a triple.
```

Given:

$$(a, b, c)$$
 is a triple.
 $\Rightarrow a^2 + b^2 = c^2$

$$k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$$
 is also a triple.

Want to show:

$$(ka)^2 + (kb)^2 = (kc)^2$$

Given:

$$(a, b, c)$$
 is a triple.

$$\implies a^2 + b^2 = c^2$$

Claim:

$$k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$$
 is also a triple.

Want to show:

$$(ka)^2 + (kb)^2 = (kc)^2$$

Proof:

<u>Given:</u>

$$(a,b,c)$$
 is a triple.

$$\implies a^2 + b^2 = c^2$$

Claim:

 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$ is also a triple.

Want to show:

$$\frac{(ka)^2 + (kb)^2}{(kc)^2} = (kc)^2$$

Proof:

$$(ka)^2 + (kb)^2$$

Given:

$$(a,b,c)$$
 is a triple.

$$\implies a^2 + b^2 = c^2$$

Claim:

 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$ is also a triple.

Want to show:

 $(ka)^2 + (kb)^2 = (kc)^2$

Proof:

$$(ka)^2 + (kb)^2$$

 $k^2a^2 + k^2b^2$

Given:

$$(a, b, c)$$
 is a triple.

$$\implies a^2 + b^2 = c^2$$

Claim:

 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$ is also a triple.

Want to show:

$$\frac{(ka)^2 + (kb)^2 = (kc)^2}{(ka)^2 + (kb)^2}$$

Proof:

$$(ka)^2 + (kb)^2$$

 $k^2a^2 + k^2b^2$

$$k^2\cdot(a^2+b^2)$$

Given:

$$(a, b, c)$$
 is a triple.

$$\implies a^2 + b^2 = c^2$$

Claim:

 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$ is also a triple.

Want to show:

$$\frac{(ka)^2 + (kb)^2 = (kc)^2}{(ka)^2 + (kb)^2}$$

Proof:

$$(ka)^{2} + (kb)^{2}$$

 $k^{2}a^{2} + k^{2}b^{2}$
 $k^{2} \cdot (a^{2} + b^{2})$

Given:

$$(a, b, c)$$
 is a triple.

$$\implies a^2 + b^2 = c^2$$

Claim:

 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$ is also a triple.

Want to show:

$$\frac{(ka)^2 + (kb)^2 = (kc)^2}{(ka)^2 + (kb)^2}$$

Proof:

Consider this expression:

$$(ka)^{2} + (kb)^{2}$$

 $k^{2}a^{2} + k^{2}b^{2}$
 $k^{2} \cdot (a^{2} + b^{2})$

 $k^2 \cdot (c^2)$

Given:

$$(a, b, c)$$
 is a triple.

$$\implies a^2 + b^2 = c^2$$

Claim:

 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$ is also a triple.

Want to show:

$$\frac{(ka)^2 + (kb)^2 = (kc)^2}{(ka)^2 + (kb)^2}$$

Proof:

Consider this expression:

$$(ka)^{2} + (kb)^{2}$$

 $k^{2}a^{2} + k^{2}b^{2}$
 $k^{2} \cdot (a^{2} + b^{2})$
 $k^{2} \cdot (c^{2})$

 b^2c^2

Given:

(a,b,c) is a triple.

$$\implies a^2 + b^2 = c^2$$

<u>Claim:</u>

 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$ is also a triple.

Want to show:

 $\frac{(ka)^2 + (kb)^2 = (kc)^2}{(ka)^2 + (kb)^2}$

Proof:

$$(ka)^2 + (kb)^2$$

 $k^2a^2 + k^2b^2$

$$k^2 \cdot (a^2 + b^2)$$

$$k^2 \cdot (c^2)$$

$$k^2c^2$$

$$(kc)^2$$

Given: (a,b,c) is a triple. $\implies a^2 + b^2 = c^2$ Claim: $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$

$$k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$$
is also a triple.

Want to show:
$$(ka)^2 + (kb)^2 = (kc)^2$$

Consider this expression: $(ka)^2 + (kb)^2$

Proof:

$$k^{2}a^{2} + k^{2}b^{2}$$

 $k^{2} \cdot (a^{2} + b^{2})$
 $k^{2} \cdot (c^{2})$

$$k^{2}c^{2}$$
 $(kc)^{2}$

$$(kc)^2$$

$$(RC)^{2}$$

$$\therefore (ka)^{2} + (kb)^{2} = (kc)^{2}$$

Given:

$$(a, b, c)$$
 is a triple.
 $\Rightarrow a^2 + b^2 = c^2$
Claim:
 $k \cdot (a, b, c) \Leftrightarrow (ka, kb, kc)$
is also a triple.
Want to show:
 $(ka)^2 + (kb)^2 = (kc)^2$

Proof: Consider this expression: $(ka)^2 + (kb)^2$ $k^2 a^2 + k^2 b^2$ $k^2 \cdot (a^2 + b^2)$ $k^2 \cdot (c^2)$ b^2c^2 $(kc)^2$ $(ka)^2 + (kb)^2 = (kc)^2$

Scale by any whole number for another Pythagorean triple!

Scale by any whole number for another Pythagorean triple!

 $\frac{\text{Known triple:}}{(3,4,5)}$

Scale by any whole number for another Pythagorean triple!

$$\frac{\text{Known triple:}}{(3,4,5)} \xrightarrow{\times 100}$$

Scale by any whole number for another Pythagorean triple!

Known triple:
$$(3,4,5) \xrightarrow{\times 100} \frac{\text{Another triple:}}{(300,400,500)}$$

Scale by any whole number for another Pythagorean triple!

Known triple: Another triple:
$$(3,4,5)$$
 $\stackrel{\times 100}{\Longrightarrow}$ $(300,400,500)$

Can even scale by **non**-whole numbers.

Scale by any whole number for another Pythagorean triple!

$$\frac{\text{Known triple:}}{(3,4,5)} \stackrel{\times 100}{\Longrightarrow} \frac{\text{Another triple:}}{(300,400,500)}$$

Can even scale by **non**-whole numbers.

Scale by any whole number for another Pythagorean triple!

$$\frac{\text{Known triple:}}{(3,4,5)} \stackrel{\times 100}{\Longrightarrow} \frac{\text{Another triple:}}{(300,400,500)}$$

Can even scale by **non**-whole numbers.

Known triple:		Right triangle:
(3, 4, 5)	$\xrightarrow{\times 0.9}$	

Scale by any whole number for another Pythagorean triple!

$$\frac{\text{Known triple:}}{(3,4,5)} \stackrel{\times 100}{\Longrightarrow} \frac{\text{Another triple:}}{(300,400,500)}$$

Can even scale by **non**-whole numbers.

Known triple:		Right triangle:
(3,4,5)	$\xrightarrow{\times 0.9}$	(2.7, 3.6, 4.5)

Scale by any whole number for another Pythagorean triple!

Known triple: Another triple:
$$(3,4,5)$$
 $\stackrel{\times 100}{\Longrightarrow}$ $(300,400,500)$

Can even scale by **non**-whole numbers.

Known triple:		Right triangle:
(3, 4, 5)	$\xrightarrow{\times 0.9}$	(2.7, 3.6, 4.5)
(3, 4, 5)	$\xrightarrow{\times\sqrt{7}}$	$(3\sqrt{7},4\sqrt{7},5\sqrt{7})$

Scale by any whole number for another Pythagorean triple!

Known triple:		Another triple:
(3,4,5)	×100	$\overline{(300,400,500)}$

Can even scale by **non**-whole numbers.

Known triple:		Right triangle:
(3, 4, 5)	$\xrightarrow{\times 0.9}$	(2.7, 3.6, 4.5)
(3, 4, 5)	$\xrightarrow{\times\sqrt{7}}$	$(3\sqrt{7}, 4\sqrt{7}, 5\sqrt{7})$
(3, 4, 5)	$\xrightarrow{\times\pi}$	$(3\pi,4\pi,5\pi)$

MEMORIZING PYTHAGOREAN TRIPLES

Primitive Pythagorean triples where the hypotenuse < 100:

MEMORIZING PYTHAGOREAN TRIPLES

The triples you actually should memorize:

$$(3,4,5)$$
 $(5,12,13)$ $(8,15,17)$ $(9,40,41)$

MEMORIZING PYTHAGOREAN TRIPLES

```
(3,4,5) (5,12,13) (8,15,17) (9,40,41)
(6,8,10) (10,24,36) (16,30,34)
(9,12,15)
(12,16,20)
```

And it helps to familiarize yourself with their multiples.

Pythagorean triples can help you, but here are some things to keep in mind...

· Not every problem uses a Pythagorean triple.

- · Not every problem uses a Pythagorean triple.
 - · Shows up a lot on tests, but not guaranteed.

- · Not every problem uses a Pythagorean triple.
 - · Shows up a lot on tests, but not guaranteed.
 - · Don't assume triangle sides are always whole numbers.

- · Not every problem uses a Pythagorean triple.
 - · Shows up a lot on tests, but not guaranteed.
 - · Don't assume triangle sides are always whole numbers.
- · Don't stress over memorizing lots of triples.

- · Not every problem uses a Pythagorean triple.
 - · Shows up a lot on tests, but not guaranteed.
 - · Don't assume triangle sides are always whole numbers.
- · Don't stress over memorizing lots of triples.
 - · Knowing them gives you a bit of an edge, but they're **never necessary**.

- · Not every problem uses a Pythagorean triple.
 - · Shows up a lot on tests, but not guaranteed.
 - · Don't assume triangle sides are always whole numbers.
- · Don't stress over memorizing lots of triples.
 - · Knowing them gives you a bit of an edge, but they're **never necessary**.
- · Most important—know the Pythagorean theorem:

Right triangle
$$\iff a^2 + b^2 = c^2$$

THANKS FOR WATCHING!

Watch the rest of the videos on this topic!

www.chipmunkmath.com

Creative Commons: © (1) (5) (2)
Open source, available on GitHub (7)
Details at chipmunkmath.com