Universidad Nacional Autónoma de México Temas selectos de Ingeniería en Computación III

(Introducción a la Computación Cuántica)

Profesora: Lic. Naomi Itzel Reyes Granados Alumno: Sebastián González Juárez

Transformada cuántica de Fourier

1. Dibuja el circuito de 2 qubits. (define de forma explícita las compuertas $UROT_k$ que ocupes, es decir escribe la matriz de la compuerta.)

Con
$$U ROT_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix} \Rightarrow U ROT_2 = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/4} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{\pi i/2k} \end{pmatrix}$$

2. Aplica el circuito a los estados:

2.1. |00>

$$\begin{split} \psi_1 &= (H \otimes I) |00\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) |0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \\ \psi_2 &= CROT_2 \left[\frac{1}{\sqrt{2}} (|00\rangle + |10\rangle)\right] = \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \\ \psi_3 &= (I \otimes H) \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) = \frac{1}{\sqrt{2}} \left[|0\rangle \frac{|0\rangle + |1\rangle}{\sqrt{2}} + |1\rangle \frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) \\ \psi_4 &= SWAP \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{2} (|00\rangle + |10\rangle + |01\rangle + |11\rangle) \end{split}$$

2.2. |11>

$$\begin{split} \psi_1 &= (H \otimes I)|11\rangle = \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)|1\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |11\rangle) \\ \psi_2 &= CROT_2\left[\frac{1}{\sqrt{2}}(|01\rangle - |11\rangle)\right] = \frac{1}{\sqrt{2}}(|01\rangle - i|11\rangle) \\ \psi_3 &= (I \otimes H)\frac{1}{\sqrt{2}}(|01\rangle - i|11\rangle) = \frac{1}{\sqrt{2}}\left[|0\rangle\frac{|0\rangle - |1\rangle}{\sqrt{2}} - i|1\rangle\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] = \frac{1}{2}(|00\rangle - |01\rangle - i|10\rangle + i|11\rangle) \\ \psi_4 &= SWAP\frac{1}{2}(|00\rangle - |01\rangle - i|10\rangle + i|11\rangle) = \frac{1}{2}(|00\rangle - |10\rangle - i|01\rangle + i|11\rangle) \end{split}$$

2.3.
$$\frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

$$\begin{split} \psi_1 &= (H \otimes I) \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right)|0\rangle + \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)|1\rangle}{\sqrt{2}} = \frac{1}{2}[|00\rangle + |10\rangle + |01\rangle - |11\rangle] \\ \psi_2 &= CROT_2 \left[\frac{1}{2}[|00\rangle + |10\rangle + |01\rangle - |11\rangle]\right] = \frac{1}{2}[|00\rangle + |10\rangle + |01\rangle - i|11\rangle] \end{split}$$

Página 1 de 2

$$\begin{split} \psi_3 &= (I \otimes H) \frac{1}{2} [|00\rangle + |10\rangle + |01\rangle - i|11\rangle] = \frac{1}{2} \bigg[\frac{|00\rangle + |01\rangle}{\sqrt{2}} + \frac{|10\rangle + |11\rangle}{\sqrt{2}} + \frac{|00\rangle - |01\rangle}{\sqrt{2}} - i \frac{|10\rangle - |11\rangle}{\sqrt{2}} \bigg] \\ &= \frac{1}{2\sqrt{2}} [(1+1)|00\rangle + (1-1)|01\rangle + (1-i)|10\rangle + (1+i)|11\rangle] = \frac{1}{2\sqrt{2}} [2|00\rangle + (1-i)|10\rangle + (1+i)|11\rangle] \\ &= \frac{1}{\sqrt{2}} |00\rangle + \frac{1-i}{2\sqrt{2}} |10\rangle + \frac{1+i}{2\sqrt{2}} |11\rangle \\ \psi_4 &= SWAP \bigg[\frac{1}{\sqrt{2}} |00\rangle + \frac{1-i}{2\sqrt{2}} |10\rangle + \frac{1+i}{2\sqrt{2}} |11\rangle \bigg] = \frac{1}{\sqrt{2}} |00\rangle + \frac{1-i}{2\sqrt{2}} |11\rangle \\ \end{split}$$

3. Busca dos algoritmos cuánticos que utilicen la transformada cuántica de Fourier; explica que resuelven.

Presento el resultado en una tabla:

Algoritmo	Uso de la Transformada Cuántica de Fourier	Problema que resuelve
Cuántico	(QFT)	
Algoritmo de Shor	Utiliza la QFT para encontrar el período de una	Resuelve el problema de factorización de enteros en
(1994)	función modular, lo que permite descubrir el	tiempo polinomial, algo que los algoritmos clásicos no
	orden de un número módulo <i>N</i> . Este paso es	pueden hacer eficientemente. Tiene impacto directo
	esencial para factorizar números enteros	en la criptografía RSA, ya que rompería su seguridad.
	grandes.	
Algoritmo de	La QFT convierte fases cuánticas acumuladas en	Resuelve el problema de estimar autovalores de
Estimación de	amplitudes medibles. Permite extraer el valor	operadores unitarios. Es un bloque fundamental en
Fase Cuántica	de una fase ϕ asociada al autovalor $e^{2\pi i \phi}$ de un	muchos otros algoritmos cuánticos, como el de Simon,
(QPE)	operador unitario.	Shor, y la estimación de energía en química cuántica.

4. Dibuja el circuito de 3 qubits. (Define de forma explícita las compuertas $UROT_k$ que ocupes, es decir escribe la matriz de la compuerta.)

$$\operatorname{Con} U \, ROT_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix} \Rightarrow U \, ROT_2 = \begin{pmatrix} 1 & 0 \\ 0 & e^{\pi i/2k} \end{pmatrix}, \ U \, ROT_3 = \begin{pmatrix} 1 & 0 \\ 0 & e^{\pi i/4} \end{pmatrix}.$$