

经创建制品代制自然

刘赪

数学学院

2019年

First Prev

Next

Last

Go Back

Full Screen

Close

Quit

一区间估计的基本概念

- 一区间估计的基本概念
- 1. 两个要求:

- 一区间估计的基本概念
- 1. 两个要求:
 - (1) $P\{\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2\}$ 尽可能大

- 一区间估计的基本概念
- 1. 两个要求:
 - (1) $P\{\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2\}$ 尽可能大
 - (2) 估计的精度尽可能高,如区间长度 $\hat{\theta}_2 \hat{\theta}_1$ 尽可能小

- 一区间估计的基本概念
- 1. 两个要求:
 - (1) $P\{\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2\}$ 尽可能大
 - (2) 估计的精度尽可能高,如区间长度 $\hat{\theta}_2 \hat{\theta}_1$ 尽可能小
- 2. Neyman原则

- 一区间估计的基本概念
- 1. 两个要求:
 - (1) $P\{\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2\}$ 尽可能大
 - (2) 估计的精度尽可能高,如区间长度 $\hat{\theta}_2 \hat{\theta}_1$ 尽可能小
- 2. Neyman原则

Def. 给定一个很小的数 α (0 < α < 1) , 如果 $\forall \theta \in \Theta$, 都有

- 一区间估计的基本概念
- 1. 两个要求:
 - (1) $P\{\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2\}$ 尽可能大
 - (2) 估计的精度尽可能高,如区间长度 $\hat{\theta}_2 \hat{\theta}_1$ 尽可能小
- 2. Neyman原则

Def. 给定一个很小的数 α (0 < α < 1) , 如果 $\forall \theta \in \Theta$, 都有

$$P\left\{\hat{\theta}_L \le \theta \le \hat{\theta}_U\right\} \ge 1 - \alpha$$

- 一区间估计的基本概念
- 1. 两个要求:
 - (1) $P\{\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2\}$ 尽可能大
 - (2) 估计的精度尽可能高,如区间长度 $\hat{\theta}_2 \hat{\theta}_1$ 尽可能小
- 2. Neyman原则

Def. 给定一个很小的数 α (0 < α < 1) , 如果 $\forall \theta \in \Theta$, 都有

$$P\left\{\hat{\theta}_L \le \theta \le \hat{\theta}_U\right\} \ge 1 - \alpha$$

则称随机区间 $[\hat{\theta}_L, \hat{\theta}_U]$ 是 θ 的置信水平为 $1-\alpha$ 的置信区间, $\hat{\theta}_L$ 和 $\hat{\theta}_U$ 分别称为 θ 的(双侧)置信区间的置信下限和置信上限。

【枢轴量法】

(1) 找一个与待估参数 θ 有关的统计量 $T = T(X_1, X_2, \dots, X_n)$,一般是 θ 的点估计。(如上例中的 \overline{X})

- (1) 找一个与待估参数 θ 有关的统计量 $T = T(X_1, X_2, \dots, X_n)$,一般是 θ 的点估计。(如上例中的 \overline{X})
- (2) 构造枢轴量 $S(T,\theta)$, 即T和 θ 的函数,要求 $S(T,\theta)$ 的分布F已知,且F与 θ 无关。

- (1) 找一个与待估参数 θ 有关的统计量 $T = T(X_1, X_2, \dots, X_n)$,一般是 θ 的点估计。(如上例中的 \overline{X})
- (2) 构造枢轴量 $S(T,\theta)$, 即T和 θ 的函数, 要求 $S(T,\theta)$ 的分布F已知, 且F与 θ 无关。
 - (3) 取F的分位点 $\omega_{1-\alpha/2}$ 、 $\omega_{\alpha/2}$,有

$$P\left\{\omega_{1-\alpha/2} \le S\left(T,\theta\right) \le \omega_{\alpha/2}\right\} = 1 - \alpha$$

- (1) 找一个与待估参数 θ 有关的统计量 $T = T(X_1, X_2, \dots, X_n)$,一般是 θ 的点估计。(如上例中的 \overline{X})
- (2) 构造枢轴量 $S(T,\theta)$, 即T和 θ 的函数, 要求 $S(T,\theta)$ 的分布F已知, 且F与 θ 无关。
 - (3) 取F的分位点 $\omega_{1-\alpha/2}$ 、 $\omega_{\alpha/2}$,有

$$P\left\{\omega_{1-\alpha/2} \le S\left(T,\theta\right) \le \omega_{\alpha/2}\right\} = 1 - \alpha$$

(4) 解不等式
$$\omega_{1-\alpha/2} \leq S(T,\theta) \leq \omega_{\alpha/2}$$
,得到
$$\hat{\theta}_L \leq \theta \leq \hat{\theta}_U$$

【枢轴量法】

- (1) 找一个与待估参数 θ 有关的统计量 $T = T(X_1, X_2, \dots, X_n)$,一般是 θ 的点估计。(如上例中的 \overline{X})
- (2) 构造枢轴量 $S(T,\theta)$, 即T和 θ 的函数, 要求 $S(T,\theta)$ 的分布F已知, 且F与 θ 无关。
 - (3) 取F的分位点 $\omega_{1-\alpha/2}$ 、 $\omega_{\alpha/2}$,有 $P\left\{\omega_{1-\alpha/2} \leq S\left(T,\theta\right) \leq \omega_{\alpha/2}\right\} = 1 \alpha$
 - (4) 解不等式 $\omega_{1-\alpha/2} \leq S\left(T,\theta\right) \leq \omega_{\alpha/2}$,得到 $\hat{\theta}_L \leq \theta \leq \hat{\theta}_U$

其中 $\hat{\theta}_L$ 和 $\hat{\theta}_U$ 只与 $\omega_{1-\alpha/2}$ 、 $\omega_{\alpha/2}$ 和T有关,与待估参数 θ 无关。

Remark. 置信水平; 单侧置信区间二. 单个正态总体参数的区间估计

- 二. 单个正态总体参数的区间估计
- 1. 标准差σ已知时μ的置信区间

- 二. 单个正态总体参数的区间估计
- 1. 标准差σ已知时μ的置信区间

$$\left[\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right]$$

- 二. 单个正态总体参数的区间估计
- 1. 标准差σ已知时μ的置信区间

$$\left[\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

例2. 一流水线加工生产零件,其长度X服从正态分布 $N(\mu,0.5^2)$ 。任意抽取8个零件,测得其长度(单位: mm)如下:

15.1 14.8 14.9 15.3 14.8 15.2 14.7 15

试确定总体均值μ的置信水平为90%的置信区间。

- 二. 单个正态总体参数的区间估计
- 1. 标准差σ已知时μ的置信区间

$$\left[\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

例2. 一流水线加工生产零件,其长度X服从正态分布 $N(\mu,0.5^2)$ 。 任意抽取8个零件,测得其长度(单位:mm)如下:

15.1 14.8 14.9 15.3 14.8 15.2 14.7 15

试确定总体均值μ的置信水平为90%的置信区间。

解:已知 $X \sim N(\mu, 0.5^2)$,且 $\sigma = 0.5$,故 μ 的置信水平为 $1 - \alpha$ 的置信区间为

$$\left[\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

- 二. 单个正态总体参数的区间估计
- 1. 标准差σ已知时μ的置信区间

$$\left[\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

例2. 一流水线加工生产零件,其长度X服从正态分布 $N(\mu,0.5^2)$ 。 任意抽取8个零件,测得其长度(单位:mm)如下:

15.1 14.8 14.9 15.3 14.8 15.2 14.7 15

试确定总体均值μ的置信水平为90%的置信区间。

解:已知 $X \sim N(\mu, 0.5^2)$,且 $\sigma = 0.5$,故 μ 的置信水平为 $1 - \alpha$ 的置信区间为

$$\left[\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

$$\left[14.975 - 1.645 \times \frac{0.5}{\sqrt{8}}, 14.975 + 1.645 \times \frac{0.5}{\sqrt{8}}\right] = [14.684, 15.266]$$

$$\left[14.975 - 1.645 \times \frac{0.5}{\sqrt{8}}, 14.975 + 1.645 \times \frac{0.5}{\sqrt{8}}\right] = [14.684, 15.266]$$

2.标准差 σ 未知时 μ 的置信区间

$$\left[14.975 - 1.645 \times \frac{0.5}{\sqrt{8}}, 14.975 + 1.645 \times \frac{0.5}{\sqrt{8}}\right] = [14.684, 15.266]$$

- 2.标准差σ未知时μ的置信区间
 - (1) 选取参数 μ 的点估计量—— \overline{X}

$$\left[14.975 - 1.645 \times \frac{0.5}{\sqrt{8}}, 14.975 + 1.645 \times \frac{0.5}{\sqrt{8}}\right] = [14.684, 15.266]$$

- 2.标准差σ未知时μ的置信区间
 - (1) 选取参数 μ 的点估计量—— \overline{X}
 - (2) 构造枢轴量

$$\frac{\overline{X} - \mu}{S} \sqrt{n} \sim t (n - 1)$$

$$\left[14.975 - 1.645 \times \frac{0.5}{\sqrt{8}}, 14.975 + 1.645 \times \frac{0.5}{\sqrt{8}}\right] = [14.684, 15.266]$$

- 2.标准差σ未知时μ的置信区间
 - (1) 选取参数 μ 的点估计量—— \overline{X}
 - (2) 构造枢轴量

$$\frac{\overline{X} - \mu}{S} \sqrt{n} \sim t (n - 1)$$

(3) 由于t分布具有对称性,取其 $\alpha/2$ 分位点 $t_{\alpha/2}(n-1)$,有

$$\left[14.975 - 1.645 \times \frac{0.5}{\sqrt{8}}, 14.975 + 1.645 \times \frac{0.5}{\sqrt{8}}\right] = [14.684, 15.266]$$

- 2.标准差σ未知时μ的置信区间
 - (1) 选取参数 μ 的点估计量—— \overline{X}
 - (2) 构造枢轴量

$$\frac{\overline{X} - \mu}{S} \sqrt{n} \sim t (n - 1)$$

(3) 由于t分布具有对称性,取其 $\alpha/2$ 分位点 $t_{\alpha/2}(n-1)$,有

$$P\left\{-t_{\alpha/2}\left(n-1\right) \le \frac{\overline{X} - \mu}{S}\sqrt{n} \le t_{\alpha/2}\left(n-1\right)\right\} = 1 - \alpha$$

$$P\left\{-t_{\alpha/2}\left(n-1\right) \leq \frac{\overline{X} - \mu}{S}\sqrt{n} \leq t_{\alpha/2}\left(n-1\right)\right\} = 1 - \alpha$$

(4) 由
$$-t_{\alpha/2}(n-1) \leq \frac{\overline{X}-\mu}{S}\sqrt{n} \leq t_{\alpha/2}(n-1)$$
,即得
$$\overline{X} - t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}} \leq \mu \leq \overline{X} + t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}}$$

$$\left[\overline{X} - t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}, \ \overline{X} + t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}\right]$$

$$P\left\{-t_{\alpha/2}\left(n-1\right) \leq \frac{\overline{X} - \mu}{S}\sqrt{n} \leq t_{\alpha/2}\left(n-1\right)\right\} = 1 - \alpha$$

(4) 由
$$-t_{\alpha/2}(n-1) \leq \frac{\overline{X}-\mu}{S}\sqrt{n} \leq t_{\alpha/2}(n-1)$$
,即得
$$\overline{X} - t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}} \leq \mu \leq \overline{X} + t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}}$$

$$\left[\overline{X} - t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}, \ \overline{X} + t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}\right]$$

 $3.\sigma^2$ 的置信区间

$$P\left\{-t_{\alpha/2}\left(n-1\right) \le \frac{\overline{X} - \mu}{S}\sqrt{n} \le t_{\alpha/2}\left(n-1\right)\right\} = 1 - \alpha$$

(4) 由
$$-t_{\alpha/2}(n-1) \leq \frac{\overline{X}-\mu}{S}\sqrt{n} \leq t_{\alpha/2}(n-1)$$
,即得
$$\overline{X} - t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}} \leq \mu \leq \overline{X} + t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}}$$

$$\left[\overline{X} - t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}, \ \overline{X} + t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}\right]$$

 $3.\sigma^2$ 的置信区间

(1) 选取
$$\sigma^2$$
的无偏估计量—样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

$$P\left\{-t_{\alpha/2}\left(n-1\right) \le \frac{\overline{X} - \mu}{S}\sqrt{n} \le t_{\alpha/2}\left(n-1\right)\right\} = 1 - \alpha$$

(4) 由
$$-t_{\alpha/2}(n-1) \leq \frac{\overline{X}-\mu}{S}\sqrt{n} \leq t_{\alpha/2}(n-1)$$
,即得
$$\overline{X} - t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}} \leq \mu \leq \overline{X} + t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}}$$

$$\left[\overline{X} - t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}, \ \overline{X} + t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}\right]$$

 $3.\sigma^2$ 的置信区间

(1) 选取
$$\sigma^2$$
的无偏估计量—样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

(2) 构造枢轴量

$$\frac{(n-1) S^2}{\sigma^2} \sim \chi^2 (n-1)$$

(2) 构造枢轴量

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(3) 取
$$\chi^2$$
分布的分位点 $\chi^2_{1-\alpha/2}(n-1)$ 、 $\chi^2_{\alpha/2}(n-1)$,有

(2) 构造枢轴量

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$$

(3) 取 χ^2 分布的分位点 $\chi^2_{1-\alpha/2}(n-1)$ 、 $\chi^2_{\alpha/2}(n-1)$, 有

$$P\left\{\chi_{1-\alpha/2}^{2}(n-1) \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi_{\alpha/2}^{2}(n-1)\right\} = 1 - \alpha$$

(2) 构造枢轴量

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$$

(3) 取 χ^2 分布的分位点 $\chi^2_{1-\alpha/2}(n-1)$ 、 $\chi^2_{\alpha/2}(n-1)$, 有

$$P\left\{\chi_{1-\alpha/2}^{2}(n-1) \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi_{\alpha/2}^{2}(n-1)\right\} = 1 - \alpha$$

(4) 解不等式,即得

$$\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}$$

(2) 构造枢轴量

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$$

(3) 取 χ^2 分布的分位点 $\chi^2_{1-\alpha/2}(n-1)$ 、 $\chi^2_{\alpha/2}(n-1)$, 有

$$P\left\{\chi_{1-\alpha/2}^{2}(n-1) \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi_{\alpha/2}^{2}(n-1)\right\} = 1 - \alpha$$

(4) 解不等式,即得

$$\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}$$

故 σ^2 的1 – α 置信区间为

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right]$$

故 σ^2 的1 – α 置信区间为

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right]$$

进一步,还可以得到 σ 的 $1-\alpha$ 置信区间为

$$\left[\frac{\sqrt{n-1}S}{\sqrt{\chi_{\alpha/2}^{2}(n-1)}}, \frac{\sqrt{n-1}S}{\sqrt{\chi_{1-\alpha/2}^{2}(n-1)}} \right]$$

故 σ^2 的1 – α 置信区间为

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right]$$

进一步,还可以得到 σ 的 $1-\alpha$ 置信区间为

$$\left[\frac{\sqrt{n-1}S}{\sqrt{\chi_{\alpha/2}^{2}(n-1)}}, \frac{\sqrt{n-1}S}{\sqrt{\chi_{1-\alpha/2}^{2}(n-1)}} \right]$$

Table 1: 单个正态总体参数的置信区间

Table 1. 平于亚芯心体多数的重估区内			
待估参数	其它参数	枢轴量及其分布	置信区间
μ	σ已知	$\frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$	$\left[\overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$
μ	σ未知	$\frac{\overline{X} - \mu}{S} \sqrt{n} \sim t (n - 1)$	$\overline{X} \pm t_{\alpha/2} (n-1) \cdot \frac{S}{\sqrt{n}}$
σ^2		$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 \left(n - 1 \right)$	$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)} \right]$

First Prev

Next

Last

Go Back

Full Screen

Close

Quit

一.假设检验的基本概念

一.假设检验的基本概念

例1. 某自动流水线灌装饮料,每一瓶的标准容量是350ml。当流水线工作时,每一瓶的灌装容量X服从正态分布 $N(\mu, \sigma^2)$,标准 $\dot{E}\sigma=1.5$ ml。 为了检验流水线是否正常工作,随机抽取了已经灌装的8瓶饮料,测得其容量分别为(单位:ml):

349 352 346 347 351 348 353 348

试推断该流水线是否正常工作?

一.假设检验的基本概念

例1. 某自动流水线灌装饮料,每一瓶的标准容量是350ml。当流水线工作时,每一瓶的灌装容量X 服从正态分布 $N(\mu,\sigma^2)$,标准 $\mathcal{E}\sigma=1.5$ ml。为了检验流水线是否正常工作,随机抽取了已经灌装的8瓶饮料,测得其容量分别为(单位:ml):

349 352 346 347 351 348 353 348

试推断该流水线是否正常工作?

【问题分析】

一.假设检验的基本概念

例1. 某自动流水线灌装饮料,每一瓶的标准容量是350ml。当流水线工作时,每一瓶的灌装容量X 服从正态分布 $N\left(\mu,\sigma^2\right)$,标准 $\delta = 1.5$ ml。为了检验流水线是否正常工作,随机抽取了已经灌装的8瓶饮料,测得其容量分别为(单位:ml):

349 352 346 347 351 348 353 348

试推断该流水线是否正常工作?

【问题分析】

1. 明确问题

一.假设检验的基本概念

例1. 某自动流水线灌装饮料,每一瓶的标准容量是350ml。当流水线工作时,每一瓶的灌装容量X服从正态分布 $N\left(\mu,\sigma^2\right)$,标准 $\mathcal{E}\sigma=1.5$ ml。 为了检验流水线是否正常工作,随机抽取了已经灌装的8瓶饮料,测得其容量分别为(单位:ml):

349 352 346 347 351 348 353 348

试推断该流水线是否正常工作?

【问题分析】

1. 明确问题

$$H_0: \mu = 350 \ vs. \ H_1: \mu \neq 350$$

一.假设检验的基本概念

例1. 某自动流水线灌装饮料,每一瓶的标准容量是350ml。当流水线工作时,每一瓶的灌装容量X 服从正态分布 $N\left(\mu,\sigma^2\right)$,标准 $\delta = 1.5$ ml。为了检验流水线是否正常工作,随机抽取了已经灌装的8瓶饮料,测得其容量分别为(单位:ml):

349 352 346 347 351 348 353 348

试推断该流水线是否正常工作?

【问题分析】

1. 明确问题

$$H_0: \mu = 350 \ vs. \ H_1: \mu \neq 350$$

其中称 H_0 为原假设、 H_1 为备择假设。

 $|\overline{x}| = 350 \ge c$,就拒绝原假设 H_0 。

 $|\overline{x}| = 350$ $| \geq c$,就拒绝原假设 H_0 。

2. 两类错误

 $|\overline{x}| = 350$ $| \geq c$, 就拒绝原假设 H_0 。

- 2. 两类错误
 - (1) 第一类错误

$$\ddot{x} = 350 | < c$$
, 就接受原假设 H_0 ;

$$|\overline{x}| = 350 \ge c$$
,就拒绝原假设 H_0 。

- 2. 两类错误
 - (1) 第一类错误

$$P\left(拒绝H_0|H_0为真\right) = P_{H_0}\left(拒绝H_0\right)$$

$$\ddot{x} = 350 | < c$$
, 就接受原假设 H_0 ;

$$|\overline{x}| = 350 \ge c$$
,就拒绝原假设 H_0 。

- 2. 两类错误
 - (1) 第一类错误

$$P\left(拒绝H_0|H_0为真\right) = P_{H_0}\left(拒绝H_0\right)$$

$$\ddot{x} = 350 | < c$$
, 就接受原假设 H_0 ;

$$|\overline{x}| = 350 \ge c$$
,就拒绝原假设 H_0 。

- 2. 两类错误
 - (1) 第一类错误

$$P\left(拒绝H_0|H_0为真\right) = P_{H_0}\left(拒绝H_0\right)$$

$$P($$
接受 $H_0|H_0$ 为假 $)=P_{H_1}($ 接受 $H_0)$

$$\ddot{x} = 350 | < c$$
, 就接受原假设 H_0 ;

$$|\overline{x}| = 350 \ge c$$
,就拒绝原假设 H_0 。

- 2. 两类错误
 - (1) 第一类错误

$$P\left(拒绝H_0|H_0为真\right) = P_{H_0}\left(拒绝H_0\right)$$

$$P($$
接受 $H_0|H_0$ 为假 $)=P_{H_1}($ 接受 $H_0)$

3. 解决方法——显著性检验

$$|\overline{x}| = 350 < c$$
, 就接受原假设 H_0 ;

$$|\overline{x}| = 350 \ge c$$
, 就拒绝原假设 H_0 。

- 2. 两类错误
 - (1) 第一类错误

$$P\left(拒绝H_0|H_0为真\right) = P_{H_0}\left(拒绝H_0\right)$$

$$P(接受H_0|H_0为假) = P_{H_1}(接受H_0)$$

3. 解决方法——显著性检验

$$P\left($$
拒绝 $H_0|H_0$ 为真 $\right) = P_{H_0}\left($ 拒绝 $H_0\right) \le \alpha$

$$\ddot{x} = 350 | < c$$
, 就接受原假设 H_0 ;

$$|\overline{x}| = 350 \ge c$$
,就拒绝原假设 H_0 。

- 2. 两类错误
 - (1) 第一类错误

$$P\left(拒绝H_0|H_0为真\right) = P_{H_0}\left(拒绝H_0\right)$$

$$P(接受H_0|H_0为假) = P_{H_1}(接受H_0)$$

3. 解决方法——显著性检验

$$P\left($$
拒绝 $H_0|H_0$ 为真 $\right) = P_{H_0}\left($ 拒绝 $H_0\right) \le \alpha$

这里α称为显著性水平, 相应的假设检验也称为显著性检验。

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{\overline{X} - 350}{1.5 / \sqrt{8}} \sim N(0, 1)$$

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{\overline{X} - 350}{1.5 / \sqrt{8}} \sim N(0, 1)$$

$$P_{H_0} \left\{ \frac{\left| \overline{X} - 350 \right|}{1.5/\sqrt{8}} \ge \frac{c}{1.5/\sqrt{8}} = c_0 \right\} = \alpha$$

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{\overline{X} - 350}{1.5 / \sqrt{8}} \sim N(0, 1)$$

$$P_{H_0} \left\{ \frac{\left| \overline{X} - 350 \right|}{1.5/\sqrt{8}} \ge \frac{c}{1.5/\sqrt{8}} = c_0 \right\} = \alpha$$

本例中,显著性水平 $\alpha = 0.05$, $z_{0.025} = 1.96$, $\overline{x} = 349.25$,即

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{\overline{X} - 350}{1.5 / \sqrt{8}} \sim N(0, 1)$$

$$P_{H_0} \left\{ \frac{\left| \overline{X} - 350 \right|}{1.5/\sqrt{8}} \ge \frac{c}{1.5/\sqrt{8}} = c_0 \right\} = \alpha$$

本例中,显著性水平 $\alpha = 0.05$, $z_{0.025} = 1.96$, $\overline{x} = 349.25$,即

$$\frac{|\overline{x} - 350|}{1.5/\sqrt{8}} \approx 1.41 < 1.96$$

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{\overline{X} - 350}{1.5 / \sqrt{8}} \sim N(0, 1)$$

$$P_{H_0} \left\{ \frac{\left| \overline{X} - 350 \right|}{1.5/\sqrt{8}} \ge \frac{c}{1.5/\sqrt{8}} = c_0 \right\} = \alpha$$

本例中,显著性水平 $\alpha = 0.05$, $z_{0.025} = 1.96$, $\overline{x} = 349.25$,即

$$\frac{|\overline{x} - 350|}{1.5/\sqrt{8}} \approx 1.41 < 1.96$$

故接受原假设 H_0 ,认为流水线工作正常。

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

$$H_0: \mu \ge \mu_0 \longleftrightarrow H_1: \mu < \mu_0$$

1. 提出原假设与备择假设

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

$$H_0: \mu \ge \mu_0 \longleftrightarrow H_1: \mu < \mu_0$$

2. 构造检验统计量,明确其分布

【假设检验的基本步骤】

1. 提出原假设与备择假设

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

$$H_0: \mu \ge \mu_0 \longleftrightarrow H_1: \mu < \mu_0$$

- 2. 构造检验统计量,明确其分布
- 3. 确定临界值,即拒绝域 (Critical region)

【假设检验的基本步骤】

1. 提出原假设与备择假设

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

$$H_0: \mu \ge \mu_0 \longleftrightarrow H_1: \mu < \mu_0$$

- 2. 构造检验统计量,明确其分布
- 3. 确定临界值,即拒绝域 (Critical region)
- 4. 做出决策——接受原假设或拒绝原假设

二.单个正态总体参数的假设检验

- 二.单个正态总体参数的假设检验
- 1.标准差σ已知时μ的检验

- 二.单个正态总体参数的假设检验
- 1.标准差σ已知时μ的检验
 - (1) 提出原假设与备择假设

- 二.单个正态总体参数的假设检验
- 1.标准差σ已知时μ的检验
 - (1) 提出原假设与备择假设

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

- 二.单个正态总体参数的假设检验
- 1.标准差σ已知时μ的检验
 - (1) 提出原假设与备择假设

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

- 二.单个正态总体参数的假设检验
- 1.标准差σ已知时μ的检验
 - (1) 提出原假设与备择假设

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

- 二.单个正态总体参数的假设检验
- 1.标准差σ已知时μ的检验
 - (1) 提出原假设与备择假设

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

(3) 确定临界值

- 二.单个正态总体参数的假设检验
- 1.标准差σ已知时μ的检验
 - (1) 提出原假设与备择假设

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

(3) 确定临界值 给定显著性水平α, 由

$$P_{H_0}$$
 (拒绝 H_0) = P_{H_0} { $|Z| \ge z_{\alpha/2}$ } = α

可确定临界值为 $z_{\alpha/2}$ 。

计算检验统计量Z的样本观测值z,与临界值 $z_{\alpha/2}$ 比较,做出如下决策:

计算检验统计量Z的样本观测值z,与临界值 $z_{\alpha/2}$ 比较,做出如下决策:

①若 $|z| < z_{\alpha/2}$,则接受原假设 H_0 ;

计算检验统计量Z的样本观测值z,与临界值 $z_{\alpha/2}$ 比较,做出如下决策:

- ①若 $|z| < z_{\alpha/2}$,则接受原假设 H_0 ;
- ②若 $|z| \geq z_{\alpha/2}$,则拒绝原假设 H_0 。

计算检验统计量Z的样本观测值z,与临界值 $z_{\alpha/2}$ 比较,做出如下决策:

- ①若 $|z| < z_{\alpha/2}$,则接受原假设 H_0 ;
- ②若 $|z| \geq z_{\alpha/2}$,则拒绝原假设 H_0 。

注:考虑单边假设

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

计算检验统计量Z的样本观测值z,与临界值 $z_{\alpha/2}$ 比较,做出如下决策:

- ①若 $|z| < z_{\alpha/2}$,则接受原假设 H_0 ;
- ②若 $|z| \geq z_{\alpha/2}$,则拒绝原假设 H_0 。

注:考虑单边假设

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

拒绝域W为

$$W = \{(x_1, x_2, \cdots, x_n) \mid \overline{x} \ge c\}$$

计算检验统计量Z的样本观测值z,与临界值 $z_{\alpha/2}$ 比较,做出如 下决策:

- ①若 $|z| < z_{\alpha/2}$, 则接受原假设 H_0 ;
- ②若 $|z| \geq z_{\alpha/2}$,则拒绝原假设 H_0 。

注:考虑单边假设

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

拒绝域W为

$$W = \{(x_1, x_2, \cdots, x_n) \mid \overline{x} \ge c\}$$

$$= \left\{ (x_1, x_2, \cdots, x_n) \mid \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha \right\}$$

计算检验统计量Z的样本观测值z,与临界值 $z_{\alpha/2}$ 比较,做出如 下决策:

- ①若 $|z| < z_{\alpha/2}$, 则接受原假设 H_0 ;
- ②若 $|z| \geq z_{\alpha/2}$,则拒绝原假设 H_0 。

注:考虑单边假设

$$H_0: \mu \leq \mu_0 \longleftrightarrow H_1: \mu > \mu_0$$

拒绝域W为

$$W = \{(x_1, x_2, \cdots, x_n) \mid \overline{x} \ge c\}$$

$$= \left\{ (x_1, x_2, \cdots, x_n) \mid \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha \right\}$$

Table 2. 标准美可已知时以的假设检验

Table 2. 标准左UC知识的模块型					
原假设	备择假设	检验统计量	拒绝域		
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$Z \ge z_{\alpha/2}$ 或 $Z \le -z_{\alpha/2}$		
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$		$Z \ge z_{\alpha}$		
$H_0: \mu \geq \mu_0$	$H_1: \mu < \mu_0$		$Z \le -z_{\alpha}$		

Table 2. 标准美可已知时以的假设检验

Table 2. 标准是OU和明度以检验					
原假设	备择假设	检验统计量	拒绝域		
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$Z \ge z_{\alpha/2}$ 或 $Z \le -z_{\alpha/2}$		
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$		$Z \ge z_{\alpha}$		
$H_0: \mu \geq \mu_0$	$H_1: \mu < \mu_0$		$Z \le -z_{\alpha}$		

Table 2:	标准	差σF	知时	-11的	假设	检验
Table 2.	1111	エいし	J / P H J	μ_{HJ}	IIX IX	12 72

Table 2. 标准差0 C外内的风险规					
原假设	备择假设	检验统计量	拒绝域		
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$Z \ge z_{\alpha/2}$ $\not \equiv Z \le -z_{\alpha/2}$		
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$		$Z \ge z_{\alpha}$		
$H_0: \mu \geq \mu_0$	$H_1: \mu < \mu_0$		$Z \le -z_{\alpha}$		

检验统计量

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n} \sim t (n - 1)$$

Table 2:	标准	差σi	二和	时山	的假	设检验

Table 2. 标准是OUTHIATIRX通過					
原假设	备择假设	检验统计量	拒绝域		
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$Z \ge z_{\alpha/2}$ 或 $Z \le -z_{\alpha/2}$		
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$		$Z \ge z_{\alpha}$		
$H_0: \mu \geq \mu_0$	$H_1: \mu < \mu_0$		$Z \le -z_{\alpha}$		

检验统计量

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n} \sim t (n - 1)$$

Table 3: 标准差σ未知时μ的假设检验

	Table 3. MILE DE OFFICE TO THE TOTAL THE TOTAL THE TENTE OF THE TENTE					
原假设	备择假设	检验统计量	拒绝域			
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	$T \ge t_{\alpha/2} \left(n - 1 \right)$			
			或 $T \le -t_{\alpha/2} (n-1)$			
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$		$T \ge t_{\alpha} \left(n - 1 \right)$			
$H_0: \mu \geq \mu_0$	$H_1: \mu < \mu_0$		$T \le -t_{\alpha} (n-1)$			

Table 2:	标准	差σi	二和	时山	的假	设检验

Table 2. 标准是OUTHIATIRX通過					
原假设	备择假设	检验统计量	拒绝域		
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$Z \ge z_{\alpha/2}$ 或 $Z \le -z_{\alpha/2}$		
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$		$Z \ge z_{\alpha}$		
$H_0: \mu \geq \mu_0$	$H_1: \mu < \mu_0$		$Z \le -z_{\alpha}$		

检验统计量

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n} \sim t (n - 1)$$

Table 3: 标准差σ未知时μ的假设检验

	Table 3. MILE DE OFFICE TO THE TOTAL THE TOTAL THE TENTE OF THE TENTE					
原假设	备择假设	检验统计量	拒绝域			
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	$T \ge t_{\alpha/2} \left(n - 1 \right)$			
			或 $T \le -t_{\alpha/2} (n-1)$			
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$		$T \ge t_{\alpha} \left(n - 1 \right)$			
$H_0: \mu \geq \mu_0$	$H_1: \mu < \mu_0$		$T \le -t_{\alpha} (n-1)$			

48.5 49.0 53.5 49.5 56.0 52.5

试问能否认为这批钢材的平均强度为52kg/cm? ($\alpha = 0.05$)

 $48.5 \quad 49.0 \quad 53.5 \quad 49.5 \quad 56.0 \quad 52.5$

试问能否认为这批钢材的平均强度为52kg/cm? ($\alpha = 0.05$)

解: (1) 建立原假设和备择假设

 $48.5 \quad 49.0 \quad 53.5 \quad 49.5 \quad 56.0 \quad 52.5$

试问能否认为这批钢材的平均强度为52kg/cm? ($\alpha = 0.05$)

解: (1) 建立原假设和备择假设

 $H_0: \mu = 52 \longleftrightarrow H_1: \mu \neq 52$

 $48.5 \quad 49.0 \quad 53.5 \quad 49.5 \quad 56.0 \quad 52.5$

试问能否认为这批钢材的平均强度为52kg/cm? ($\alpha = 0.05$)

解: (1) 建立原假设和备择假设

$$H_0: \mu = 52 \longleftrightarrow H_1: \mu \neq 52$$

(2) 选择检验统计量。当原假设 H_0 为真时,检验统计量

 $48.5 \quad 49.0 \quad 53.5 \quad 49.5 \quad 56.0 \quad 52.5$

试问能否认为这批钢材的平均强度为52kg/cm? ($\alpha = 0.05$)

解: (1) 建立原假设和备择假设

$$H_0: \mu = 52 \longleftrightarrow H_1: \mu \neq 52$$

(2) 选择检验统计量。当原假设 H_0 为真时,检验统计量

$$T = \frac{\overline{X} - 52}{S/\sqrt{n}} \sim t (n - 1) = t (5)$$

 $48.5 \quad 49.0 \quad 53.5 \quad 49.5 \quad 56.0 \quad 52.5$

试问能否认为这批钢材的平均强度为52kg/cm? ($\alpha = 0.05$)

解: (1) 建立原假设和备择假设

$$H_0: \mu = 52 \longleftrightarrow H_1: \mu \neq 52$$

(2) 选择检验统计量。当原假设 H_0 为真时,检验统计量

$$T = \frac{\overline{X} - 52}{S/\sqrt{n}} \sim t (n - 1) = t (5)$$

(3) 确定临界值。 $t_{\alpha/2}(5) = t_{0.025}(5) = 2.5706$

 $48.5 \quad 49.0 \quad 53.5 \quad 49.5 \quad 56.0 \quad 52.5$

试问能否认为这批钢材的平均强度为52kg/cm? ($\alpha = 0.05$)

解: (1) 建立原假设和备择假设

$$H_0: \mu = 52 \longleftrightarrow H_1: \mu \neq 52$$

(2) 选择检验统计量。当原假设 H_0 为真时,检验统计量

$$T = \frac{\overline{X} - 52}{S/\sqrt{n}} \sim t (n - 1) = t (5)$$

- (3) 确定临界值。 $t_{\alpha/2}(5) = t_{0.025}(5) = 2.5706$
- (4) 根据样本数据有n=6, $\overline{x}=51.5$, $s^2=8.9$, 代入可得检验统计量的观测值

 $48.5 \quad 49.0 \quad 53.5 \quad 49.5 \quad 56.0 \quad 52.5$

试问能否认为这批钢材的平均强度为52kg/cm? ($\alpha = 0.05$)

解: (1) 建立原假设和备择假设

$$H_0: \mu = 52 \longleftrightarrow H_1: \mu \neq 52$$

(2) 选择检验统计量。当原假设 H_0 为真时,检验统计量

$$T = \frac{\overline{X} - 52}{S/\sqrt{n}} \sim t (n - 1) = t (5)$$

- (3) 确定临界值。 $t_{\alpha/2}(5) = t_{0.025}(5) = 2.5706$
- (4) 根据样本数据有n=6, $\overline{x}=51.5$, $s^2=8.9$, 代入可得检验统计量的观测值

$$t = \frac{\overline{x} - 52}{s/\sqrt{n}} = \frac{51.5 - 52}{\sqrt{8.9/6}} = -0.4105$$

$$t = \frac{\overline{x} - 52}{s/\sqrt{n}} = \frac{51.5 - 52}{\sqrt{8.9/6}} = -0.4105$$

由于 $|t|=0.4105<2.5706=t_{0.025}(5)$,故接受原假设 H_0 ,可以认为这批钢材的平均强度为52kg/cm。

$$t = \frac{\overline{x} - 52}{s/\sqrt{n}} = \frac{51.5 - 52}{\sqrt{8.9/6}} = -0.4105$$

由于 $|t|=0.4105<2.5706=t_{0.025}(5)$,故接受原假设 H_0 ,可以认为这批钢材的平均强度为52kg/cm。

3.总体方差 σ^2 的检验

$$t = \frac{\overline{x} - 52}{s/\sqrt{n}} = \frac{51.5 - 52}{\sqrt{8.9/6}} = -0.4105$$

由于 $|t|=0.4105<2.5706=t_{0.025}(5)$,故接受原假设 H_0 ,可以认为这批钢材的平均强度为52kg/cm。

3.总体方差 σ^2 的检验

Table 4: 总体方差 σ^2 的假设检验

	THIS IS IN THE STATE OF THE PARTY OF THE PAR						
原假设	备择假设	检验统计量	拒绝域				
$H_0: \sigma^2 = \sigma_0^2$	$H_1: \sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2 \ge \chi^2_{\alpha/2} \left(n - 1 \right)$				
			$\vec{\chi}^2 \le \chi^2_{1-\alpha/2} (n-1)$				
$H_0: \sigma^2 \leq \sigma_0^2$	$H_1: \sigma^2 > \sigma_0^2$		$\chi^2 \ge \chi_\alpha^2 \left(n - 1 \right)$				
$H_0: \sigma^2 \ge \sigma_0^2$	$H_1: \sigma^2 < \sigma_0^2$		$\chi^2 \le \chi^2_{1-\alpha} \left(n - 1 \right)$				

三.两个正态总体参数的假设检验

三.两个正态总体参数的假设检验

Table 5: 标准差 σ_1 和 σ_2 已知时 $\mu_1 - \mu_2$ 的假设检验

检验统计量: $Z = \frac{\overline{X - Y - \Delta_0}}{\sqrt{\frac{\sigma_1^2}{2} + \frac{\sigma_2^2}{2}}}$

原假设	备择假设	拒绝域
$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_1: \mu_1 - \mu_2 \neq \Delta_0$	$Z \ge z_{\alpha/2}$
		或 $Z \leq -z_{\alpha/2}$
$H_0: \mu_1 - \mu_2 \le \Delta_0$	$H_1: \mu_1 - \mu_2 > \Delta_0$	$Z \ge z_{\alpha}$
$H_0: \mu_1 - \mu_2 \ge \Delta_0$	$H_1: \mu_1 - \mu_2 < \Delta_0$	$Z \le -z_{\alpha}$

三.两个正态总体参数的假设检验

Table 5: 标准差 σ_1 和 σ_2 已知时 $\mu_1 - \mu_2$ 的假设检验

检验统计量: $Z = rac{\overline{X-Y}-\Delta_0}{\sqrt{rac{\sigma_1^2}{m}+rac{\sigma_2^2}{n}}}$			
原假设	备择假设	拒绝域	
$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_1: \mu_1 - \mu_2 \neq \Delta_0$	$Z \ge z_{\alpha/2}$	
		或 $Z \leq -z_{\alpha/2}$	
$H_0: \mu_1 - \mu_2 \le \Delta_0$	$H_1: \mu_1 - \mu_2 > \Delta_0$	$Z \ge z_{\alpha}$	
$H_0: \mu_1 - \mu_2 \ge \Delta_0$	$H_1: \mu_1 - \mu_2 < \Delta_0$	$Z \leq -z_{\alpha}$	

Table 6: 标准差 $\sigma_1 = \sigma_2 = \sigma$ 未知时 $\mu_1 - \mu_2$ 的假设检验

11 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
检验统计量: $T = rac{\overline{X} - \overline{Y} - \Delta_0}{s_W \sqrt{rac{1}{m} + rac{1}{n}}}$			
原假设	备择假设	拒绝域	
$H_0: \mu_1 - \mu_2 = \Delta_0$	$H_1: \mu_1 - \mu_2 \neq \Delta_0$	$t \ge t_{\alpha/2} \left(m + n - 2 \right)$	
		或 $t \le -t_{\alpha/2} (m+n-2)$	
$H_0: \mu_1 - \mu_2 \le \Delta_0$	$H_1: \mu_1 - \mu_2 > \Delta_0$	$t \ge t_{\alpha} \left(m + n - 2 \right)$	
$H_0: \mu_1 - \mu_2 \ge \Delta_0$	$H_1: \mu_1 - \mu_2 < \Delta_0$	$t \le -t_{\alpha} \left(m + n - 2 \right)$	

Table 7: 两正态总体方差的假设检验

		- /	
检验	统计量:	F =	$=\frac{S_1^2}{S_2^2}$

$12.9071 \pm \cdot 1 - S_2^2$		
原假设	备择假设	拒绝域
$H_0: \sigma_1^2 = \sigma_2^2$	$H_1: \sigma_1^2 \neq \sigma_2^2$	$f \ge F_{\alpha/2} \left(m - 1, n - 1 \right)$
		$ \text{if } f \leq F_{1-\alpha/2} \left(m - 1, n - 1 \right) $
$H_0: \sigma_1^2 \le \sigma_2^2$	$H_1: \sigma_1^2 > \sigma_2^2$	$f \ge F_{\alpha} \left(m - 1, n - 1 \right)$
$H_0: \sigma_1^2 \ge \sigma_2^2$	$H_1: \sigma_1^2 < \sigma_2^2$	$f \le F_{1-\alpha} \left(m - 1, n - 1 \right)$

Table 7: 两正态总体方差的假设检验

检验统计量: $F=rac{S_1^2}{S_2^2}$		
备择假设	拒绝域	
$H_1: \sigma_1^2 \neq \sigma_2^2$	$f \ge F_{\alpha/2} \left(m - 1, n - 1 \right)$	

原假设	备择假设	拒绝域
$H_0: \sigma_1^2 = \sigma_2^2$	$H_1: \sigma_1^2 \neq \sigma_2^2$	$f \ge F_{\alpha/2} \left(m - 1, n - 1 \right)$
		$\delta f \leq F_{1-\alpha/2} \left(m - 1, n - 1 \right)$
$H_0: \sigma_1^2 \le \sigma_2^2$	$H_1: \sigma_1^2 > \sigma_2^2$	$f \ge F_{\alpha} \left(m - 1, n - 1 \right)$
$H_0: \sigma_1^2 \ge \sigma_2^2$	$H_1: \sigma_1^2 < \sigma_2^2$	$f \le F_{1-\alpha} \left(m - 1, n - 1 \right)$

Table 8: 基于成对数据的t检验

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
检验统计量: $T = \frac{\overline{D} - \Delta_0}{S_D/\sqrt{n}}$		
备择假设	拒绝域	
$H_1: \mu_D \neq \Delta_0$	$t \ge t_{\alpha/2} \left(n - 1 \right)$	
	或 $t \leq -t_{\alpha/2} (n-1)$	
$H_1: \mu_D > \Delta_0$	$t \ge t_{\alpha} \left(n - 1 \right)$	
$H_1: \mu_D < \Delta_0$	$t \le -t_{\alpha} \left(n - 1 \right)$	
	Δ 验统计量: $T=$ 备择假设 $H_1:\mu_D eq \Delta_0$	

对于给定的显著性水平 α ,可以根据p-值按照以下原则进行判断:

对于给定的显著性水平 α ,可以根据p-值按照以下原则进行判断:

(1) p-值 $\leq \alpha$ —— 拒绝原假设 H_0 ;

对于给定的显著性水平 α ,可以根据p-值按照以下原则进行判断:

- (1) p-值 $\leq \alpha$ —— 拒绝原假设 H_0 ;
- (2) p-值> α 接受原假设 H_0 。

对于给定的显著性水平 α ,可以根据p-值按照以下原则进行判断:

- (1) p-值 $\leq \alpha$ —— 拒绝原假设 H_0 ;
- (2) p-值> α 接受原假设 H_0 。