CS4680 Assignment 1:

Determining whether a video is considered "Trending" on YouTube:

Target Variable: Views

Features: 'category_id', 'publish_hour', 'publish_weekday', 'num_tags', 'likes', 'dislikes', 'comment_count', 'description_len'

Dataset:

https://www.kaggle.com/datasets/datasnaek/youtube-new/data

Data used: CAvideos.csv Size: 45803 entries

- Model Used:
 - o Linear Regression:
 - Assumes relationship between features and target are linear
 - Easy to interpret
 - Trains quickly
 - Sensitive to outliers

	actual_views	predicted_views	trending
9	17340	1.691190e+05	False
1	299283	3.279176e+05	False
2	253117	5.174189e+05	False
3	426653	3.005684e+05	True
4	173360	2.267277e+05	False
5	74080	1.549839e+05	False
6	88251	2.744311e+05	False
7	9508610	3.707432e+06	True
8	326798	6.771954e+05	False
9	56927	2.097612e+05	False
10	478905	3.577999e+05	True
11	1452518	3.973976e+05	True
12	25757	2.771546e+05	False
13	1810163	6.605455e+05	True
14	3675189	6.119957e+06	False
15	57297	2.946583e+05	False
16	83274	3.051040e+05	False
17	534122	-7.553046e+04	True
18	9583159	6.265465e+06	True
19	818251	5.291155e+05	True
20	292525	4.205042e+05	False
21	609469	2.364763e+05	True
22	130404	2.240869e+05	False
23	336759	5.129922e+04	True
24	26819	1.788401e+05	False
25	846346	3.410831e+05	True
26	435390	2.289416e+05	True
27	191953	3.104344e+05	False
28	504429	6.740570e+05	False
29	3607	1.190841e+05	False
Lin	ear Regression	:	
М	ΔE = 547.784		

MAE = 547,784 R² = 0.6293

o Random Forest Regression:

- Can handle non-linear and more complex interactions
- Handles outliers well
- More difficult to interpret than linear

	actual_views	predicted_views	trending		
0	17340	5.096146e+04	False		
1	299283	3.241330e+05	False		
2	253117	3.115188e+05	False		
3	426653	2.880718e+05	True		
4	173360	2.706227e+05	False		
5	74080	6.106000e+04	True		
6	88251	1.446200e+05	False		
7	9508610	7.067027e+06	True		
8	326798	6.345000e+05	False		
9	56927	7.006602e+04	False		
10	478905	4.453045e+05	True		
11	1452518	1.089052e+06	True		
12	25757	3.575892e+04	False		
13	1810163	2.089668e+06	False		
14	3675189	7.774356e+06	False		
15	57297	7.116014e+04	False		
16	83274	2.068534e+05	False		
17	534122	4.905079e+05	True		
18	9583159	8.958057e+06	True		
19	818251	7.423886e+05	True		
20	292525	5.802868e+05	False		
21	609469	4.563271e+05	True		
22	130404	1.570296e+05	False		
23	336759	3.667550e+05	False		
24	26819	4.641299e+04	False		
25	846346	6.904216e+05	True		
26	435390	3.221976e+05	True		
27	191953	5.161466e+05	False		
28	504429	6.016037e+05	False		
29	3607	9.032580e+03	False		
Random Forest Regression:					

MAE = 315,944

 $R^2 = 0.8847$

Analysis:

The Linear Regression model was simpler, but seems to have less accurate assumptions. Most notably, it did not handle outliers well. For example, one video had 17,340 views, but the linear regression model predicted over 169 thousand. The random forest regression model, on the other hand, predicted only 50 thousand views, which is much closer to the actual number. This remained true for most entries.

The Mean Absolute Error was significantly lower for the Random Forest Regression model, and the Coefficient of Determination(R^2) was closer to 1. This means that the Random Forest Regression model was a better choice for predictions with this dataset. The predictions were much closer to the real values.

Both models were suitable for the task, but the RFR model proved to be superior by a surprising margin.