S23 CHEM 1032 - Bloom Quiz 4 - Week 14

Circle Day and Time:

М		Т		w		Tr		F	
8	9	10	11	12	1	2	3	4	5

Clearly write your letter answer on the line.

1. (Remember) What reaction occurs at the anode?

- A. Oxidation
- Red Cat
- B. Combustion
- Reduction at Cathode . Oxidation at anode

- C. Reduction D. Neutralization
- 2. (Remember) If a redox reaction is spontaneous what must be true?

X E°cell + and Δ G° +

△GO = spontaneous

- B E°cell and ∆G° + C. E°cell - and Δ G° -
- DG = -nFE'ell : E'ell = (spontaneous
- D. E°cell + and Δ G° -
- (Understand) What is the oxidation state of sulfur in sulfite, SO₃²⁻?
 - A. 2 B. + 1
 - C. + 4
 - D. + 6

- 4. (Understand) Balance the redox reaction below in acidic conditions. What is the coefficient for Fe³⁺?
 - A. 1

 $NO (g) + Fe^{3+} (aq) \rightarrow NO_3^{-} (s) + Fe^{2+} (aq)$

B. 3

3 (1e-+ Fe3+ -> Fe2+)
36-+ 3Fe3+ -> 3Fe2+

C. 4

2420 + NO - NO3-+44+ 36

D. 5

- 2+120+N0+3Fe3+ -> 3Fe2++N02-+4H+
- 5. (Apply) If 3.4 A of a necessary voltage are applied to an aqueous solution of NiCl₂ for 54 min, how much Ni (s) would be expected to plate out? Ni^{2t} 2CI
 - A. 0.0039 q
 - B. 1.67 g
 - C. 3.35 g
 - D. 6.70 q

- Ni2++ 2e - Nica
- 54 min 60 s 3.4 C | 1 mole | 1 mol Nico | 58,6939 = 3.35 g
- ← 6. (Apply) A galvanic cell which transfers 6 electrons per mole has an E^ocell of 0.043 V. What is the value of K?
 - A. 2.28 x 10⁴
 - B. 1.001
 - C. 28.36
 - D. 7.8×10^2
- E'cen = 0,0592V log K
- 0.043V = 0.0592V log K

(Analyze) Which of the diatomic halogens is the strongest reducing agent?

Half-Reaction	E° (V)			
$F_2(g) + 2 e^- \rightarrow 2 F^-(aq)$	+2.866			
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	+1.498			
$\operatorname{Cl}_2(g) + 2 e^- \longrightarrow 2 \operatorname{Cl}^-(aq)$	+1.35827			
$O_2(g) + 4 H^+(aq) + 4e^- \rightarrow 2 H_2O(l)$	+1.229			
$Pt^{2+}(aq) + 2 e^- \longrightarrow Pt(s)$	+1.20			
$\operatorname{Br}_2(aq) + 2e^- \longrightarrow 2 \operatorname{Br}^-(aq)$	+1.0873			
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.7996			
$Hg_2^{2^+}(aq) + 2 e^- \rightarrow 2 Hg(l)$	+0.7973			
$Fe^{3+}(aq) + e^- \longrightarrow Fe^{2+}(aq)$	+0.771			
$I_2(s) + 2 e^- \rightarrow 2 I^-(aq)$	+0.5355			
$\operatorname{Cu}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Cu}(s)$	+0.34			
$\operatorname{Sn}^{4+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.151			
$2 \operatorname{H}^{+}(aq) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{H}_{2}(g)$	0.00			
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.1262			
$\operatorname{Sn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.1375			
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.257			
$\operatorname{Co}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Co}(s)$	-0.28			
$\operatorname{Cd}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Cd}(s)$	-0.4030			
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.447			
$\operatorname{Cr}^{3+}(aq) + 3 e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.744			
$\operatorname{Mn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Mn}(s)$	-1.185			
$\operatorname{Zn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Zn}(s)$	-0.7618			
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.662			
$Mg^{2+}(aq) + 2 e^- \longrightarrow Mg(s)$	-2.372			
$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71			
$\operatorname{Ca}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Ca}(s)$	-2.868			
$Ba^{2+}(aq) + 2 e^{-} \longrightarrow Ba(s)$	-2.912			
$K^+(aq) + e^- \longrightarrow K(s)$	-2.931			
$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.04			

1 atm = 760 mmHg = 1 mmHg = 1 torr 0 °C = 273 K

R = 8.314 J/(mol K) = 0.08206 (L atm)/(mol K)

$$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$$

$$\Delta G^{\circ} = -nFE_{cell}^{o}$$

F = 96,485 C/mol e⁻

$$E_{cell}^{o} = \underline{0.0592 \text{ V}} \log K \text{ (at T = 25 °C)}$$

n

$$E_{cell} = E_{cell}^{o} - \underline{0.0592 \text{ V}} \log Q \text{ (at T = 25 °C)}$$

Lanthanide Series

Actinide Series

95 Am Americium 243.061

97

Bk

Berkelium
247,070

FamFermium 257.095