Folded Cascode CMOS con ingresso n

Report Preliminare

Si riporta il circuito da progettare

Di seguito si riporta lo schematico su LTSpice

Le condizioni per il progetto sono:

Vdd=2.5 V

 $I_b\!=\!11~\mu A$, $I_0\!=\!22~\mu A,\, I_1\!=\!22~\mu A,\, I_{D12}\!=\!I_b,\, I_{D13}\!=\!3~I_b$

Si effettua una preliminare analisi del punto di riposo (.op) e si verifica che i transistori siano in saturazione e che le VGS-Vt siano vicine a quelle richieste.

Tramite lo "Spice Error Log" si ottiene

Name:	m:x1:5	m:x1:8	m:x1:9	m:x1:10	m:x1:11	Name:	m:x1:14	m:x1:13	m:x1:12	m:x1:1	m:x1:2
Model:	x1:n psm025	Model:	x1:n_psm025	x1:n_psm025	x1:n_psm025	x1:n_psm025	x1:n_psm025				
Id:	2.12e-05	1.27e-05	1.27e-05	1.27e-05	1.27e-05	Id:	1.10e-05	3.43e-05	1.21e-05	1.06e-05	1.06e-05
Vgs:	6.51e-01	7.92e-01	7.92e-01	6.69e-01	6.69e-01	Vgs:	6.51e-01	6.51e-01	6.51e-01	7.34e-01	7.34e-01
Vds:	5.16e-01	7.92e-01	7.92e-01	6.69e-01	6.69e-01	Vds:	6.51e-01	1.42e+00	1.75e+00	1.74e+00	1.74e+00
Vbs:	0.00e+00	-6.69e-01	-6.69e-01	0.00e+00	0.00e+00	Vbs:	0.00e+00	0.00e+00	0.00e+00	-5.16e-01	-5.16e-01
Vth:	4.24e-01	5.58e-01	5.58e-01	4.20e-01	4.20e-01	Vth:	4.21e-01	4.18e-01	4.12e-01	5.23e-01	5.23e-01
Vdsat:	1.89e-01	2.11e-01	2.11e-01	2.04e-01	2.04e-01	Vdsat:	1.92e-01	1.93e-01	1.97e-01	1.91e-01	1.91e-01
Gm:	1.78e-04	1.00e-04	1.00e-04	9.82e-05	9.82e-05	Gm:	9.15e-05	2.81e-04	9.69e-05	9.20e-05	9.20e-05
Gds:	2.81e-06	1.20e-06	1.20e-06	1.33e-06	1.33e-06	Gds:	1.21e-06	2.85e-06	9.61e-07	8.91e-07	8.91e-07
Gmb	3.79e-05	1.67e-05	1.67e-05	2.06e-05	2.06e-05	Gmb	1.92e-05	6.01e-05	2.04e-05	1.61e-05	1.61e-05
Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cqsov:	2.46e-15	1.23e-15	1.23e-15	1.23e-15	1.23e-15	Cgsov:	1.23e-15	3.70e-15	1.23e-15	1.23e-15	1.23e-15
Cgdov:	2.46e-15	1.23e-15	1.23e-15	1.23e-15	1.23e-15	Cgdov:	1.23e-15	3.70e-15	1.23e-15	1.23e-15	1.23e-15
Cgbov:	1.00e-18	1.00e-18	1.00e-18	1.00e-18	1.00e-18	Cgbov:	1.00e-18	1.00e-18	1.00e-18	1.00e-18	1.00e-18
dQgdVgb:	2.65e-14	1.30e-14	1.30e-14	1.32e-14	1.32e-14	dQgdVgb:	1.32e-14	3.97e-14	1.32e-14	1.30e-14	1.30e-14
dQqdVdb:	-2.37e-15	-1.18e-15	-1.18e-15	-1.18e-15	-1.18e-15	dQgdVdb:	-1.18e-15	-3.52e-15	-1.17e-15	-1.17e-15	-1.17e-15
dQgdVsb:	-2.30e-14	-1.13e-14	-1.13e-14	-1.15e-14	-1.15e-14	dQgdVsb:	-1.15e-14	-3.45e-14	-1.15e-14	-1.13e-14	-1.13e-14
dQddVgb:		-5.65e-15	-5.65e-15	-5.65e-15	-5.65e-15	dQddVgb:	-5.65e-15	-1.69e-14	-5.64e-15	-5.64e-15	-5.64e-15
dQddVdb:	2.42e-15	1.20e-15	1.20e-15	1.20e-15	1.20e-15	dQddVdb:	1.20e-15	3.60e-15	1.20e-15	1.20e-15	1.20e-15
dQddVsb:	1.11e-14	5.24e-15	5.24e-15	5.52e-15	5.52e-15	dQddVsb:	5.51e-15	1.66e-14	5.51e-15	5.28e-15	5.28e-15
dQbdVgb:	-3.87e-15	-1.68e-15	-1.68e-15	-1.94e-15	-1.94e-15	dQbdVgb:	-1.94e-15	-5.85e-15	-1.95e-15	-1.73e-15	-1.73e-15
dQbdVdb:	-7.29e-18	7.45e-19	7.45e-19	1.10e-18	1.10e-18	dQbdVdb:	1.23e-18	1.48e-17	5.12e-18	2.99e-18	2.99e-18
dQbdVsb:	-1.57e-15	-4.04e-16	-4.04e-16	-7.76e-16	-7.76e-16	dQbdVsb:	-7.84e-16	-2.34e-15	-7.86e-16	-4.73e-16	-4.73e-16

Name:	m:x1:15	m:x1:16	m:x1:3	m:x1:4	m:x1:6	m:x1:7
Model:	x1:p psm025	x1:p_psm025				
Id:	-3.43e-05	-1.21e-05	-2.33e-05	-2.33e-05	-1.27e-05	-1.27e-05
Vgs:	-1.08e+00	-7.54e-01	-7.54e-01	-7.54e-01	-8.35e-01	-8.35e-01
Vds:	-1.08e+00	-7.54e-01	-2.46e-01	-2.46e-01	-7.93e-01	-7.93e-01
Vbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	2.46e-01	2.46e-01
Vth:	-5.67e-01	-5.67e-01	-5.67e-01	-5.67e-01	-6.41e-01	-6.41e-01
Vdsat:	-4.34e-01	-1.89e-01	-1.90e-01	-1.90e-01	-1.98e-01	-1.98e-01
Gm:	1.19e-04	1.06e-04	2.00e-04	2.00e-04	1.09e-04	1.09e-04
Gds:	1.12e-06	6.03e-07	7.90e-06	7.90e-06	6.07e-07	6.07e-07
Gmb	3.85e-05	3.43e-05	6.54e-05	6.54e-05	3.14e-05	3.14e-05
Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cgsov:	3.64e-15	7.57e-15	1.51e-14	1.51e-14	7.57e-15	7.57e-15
Cgdov:	3.64e-15	7.57e-15	1.51e-14	1.51e-14	7.57e-15	7.57e-15
Cgbov:	9.36e-19	9.36e-19	9.36e-19	9.36e-19	9.36e-19	9.36e-19
dQgdVgb:	3.26e-14	6.76e-14	1.36e-13	1.36e-13	6.72e-14	6.72e-14
dQgdVdb:	-3.65e-15	-7.58e-15	-1.66e-14	-1.66e-14	-7.58e-15	-7.58e-15
dQgdVsb:	-2.72e-14	-5.57e-14	-1.12e-13	-1.12e-13	-5.57e-14	-5.57e-14
dQddVgb:	-1.42e-14	-2.95e-14	-6.02e-14	-6.02e-14	-2.95e-14	-2.95e-14
dQddVdb:	3.64e-15	7.58e-15	1.63e-14	1.63e-14	7.58e-15	7.58e-15
dQddVsb:	1.39e-14	2.89e-14	5.84e-14	5.84e-14	2.82e-14	2.82e-14
dQbdVgb:	-4.14e-15	-8.56e-15	-1.60e-14	-1.60e-14	-8.12e-15	-8.12e-15
dQbdVdb:	-6.40e-18	-8.12e-18	-8.66e-16	-8.66e-16	-7.02e-18	-7.02e-18
dQbdVsb:	-4.31e-15	-9.74e-15	-2.02e-14	-2.02e-14	-8.18e-15	-8.18e-15

Si può notare che le VGS-Vt dei transistor rientrano nel range richiesto $200mV \pm 20mV$, mentre per quanto riguarda il transistor M15, che dovrebbe <u>avere VGS-Vt = 500mV</u>, si ottiene un valore di 434mV.

La seconda simulazione da effettuare è stata realizzata con la stessa test-bench, ma realizzando un de sweep della tensione Vd tra -10mV e +10mV con un passo di 10 μ V mantenendo VC a 1.25 V (.de Vd -10m 10m 10u)

Di seguito riporta il grafico della corrispondente tensione di uscita

Per una stima dell'amplificazione si riporta il grafico di d(V(out))/d(Vd)

Cursor 1	d(V	/(out))	
Horz:	0V	Vert	-1.7687201K
Cursor 2			
	11/4		11/4
Horz:	N/A	Vert:	N/A
Diff (Cursor	2 - Cursor I)		
Horz:	N/A	Vert:	N/A
		Slope:	N/A

Grazie al cursore si ha un guadagno Ad \approx 1768, valore che rientra nelle specifiche (>1000).

La seconda stima da effettuare è quella relativa alla tensione di offset sistematica dello stadio, un secondo cursore fornisce

Cursor 1			
0	V(out)	
Horz:	120μV	Vert:	1.2464658V
Cursor 2			
Horz:	N/A	Vert:	N/A
Diff (Curso	r2 - Cursor1)		
Horz:	N/A	Vert:	N/A
		Slope:	N/A

Si ha un offset sistematico pari a 120 μ V, valore che non rientra nelle specifiche richieste (<100 μ V). Tale risultato è frutto di alcuni tentativi di dimensionamento per cercare di avvicinarsi alle specifiche richieste e rappresenta il miglior risultato che si è riusciti ad ottenere.

Come simulazione finale si chiede si collegare l'amplificatore operazionale a formare un buffer ed effettuare un de sweep della tensione da 0 a Vdd con step 0.01V (.dc V2 0 2.5 0.01). Si riporta la test-bench utilizzata

Il risultato della simulazione è il seguente

Cursor 1	V(out)	
Horz:	2.29V	Vert:	2.2692878V
Cursor 2			
	V(out)	
Horz:	600mV	Vert	609.31259mV
,	600mV 2 - Cursor1)	Vert:	609.31259mV
,		Vert.	609.31259mV -1.6599752V

Il range di linearità misurato risulta pari a: