Vorlesung im Sommersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 6. März 2017

Normalverteilung Prüfgrößen ML-Schätzung MAP-Schätzung

Graphische Modelle

Multivariate Normalverteilungsdichte

Teil VII

ML-Schätzung

Normalverteilungsklassifikatoren

Normalverteilung

Normalverteilung

Prüfgrößen

Prüfgrößen

ML-Schätzung

MAP-Schätzung

MAP-Schätzung

Graphische Modelle

Graphische Modelle

Univariate Normalverteilungsdichte

$$\mathcal{N}(x \mid \mu, \sigma^2) \stackrel{\text{def}}{=} \frac{1}{\sigma \sqrt{2\pi}} \cdot \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Definition

Eine stetige Zufallsvariable X heißt (univariat) normalverteilt mit Mittelwert $\mu \in \rm I\!R$ und Varianz $\sigma^2 \neq 0$, wenn gilt:

$$f_{\mathbb{X}}(x) = \mathcal{N}(x \mid \mu, \sigma^2)$$

Bemerkung

Unter der Annahme klassenweise statistisch unabhängiger und normalverteilter Merkmale läßt sich die (naive!) Bayesregel mit Hilfe von $K \cdot D$ univariaten NV-Dichten realisieren.

Bivariat unkorrelierte Normalverteilungsdichte

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \sigma_1^2, \sigma_2^2) \stackrel{\mathsf{def}}{=} \frac{1}{2\pi\sigma_1\sigma_2} \cdot \exp\left\{-\frac{1}{2} \cdot \left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)\right\}$$

Definition

Eine stetiger Zufallsvektor $\mathbb{X} = (\mathbb{X}_1, \mathbb{X}_2)$ heißt **bivariat** unkorreliert normalverteilt mit Mittelwertvektor $\mu \in {\rm I\!R}^2$ und Varianzen $\sigma_1^2, \sigma_2^2 > 0$, wenn gilt:

$$f_{\mathbb{X}}(x_1, x_2) = \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \sigma_1^2, \sigma_2^2)$$

Bemerkung

Für Normalverteilungen sind Unkorreliertheit und Unabhängigkeit äquivalent. Obige Dichte entspricht also dem Produkt $\mathcal{N}(x_1 \mid \mu_1, \sigma_1^2) \cdot \mathcal{N}(x_2 \mid \mu_2, \sigma_2^2)$ der univariaten NV-Dichten (Randverteilungen).

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Normalverteilung

Parameterreduzierte Normalverteilungsdichten

Symmetrisch positiv-definit

Diagonalmatrix

Einheitsmatrix skaliert

allgemeines Hyperellipsoid Trägheitsachsen parallel zu Koordinatenachsen

skalierte Hypersphäre

 $+1) \cdot \frac{D}{2}$ Parameter **D** Parameter

1 Parameter

Multivariate Normalverteilungsdichte

Definition

Ein Zufallsvektor $\mathbb{X} = (\mathbb{X}_1, \dots, \mathbb{X}_D)^{\top}$ heißt **multivariat** normalverteilt, falls er der D-dimensionalen Verteilungsdichtefunktion

$$\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{S}) \stackrel{\text{def}}{=} \frac{1}{\sqrt{\det(2\pi \boldsymbol{S})}} \cdot \exp\left\{-\frac{1}{2} \cdot (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{S}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right\}$$

gehorcht. Es ist $oldsymbol{\mu} \in \mathbb{R}^D$ der **Erwartungswertvektor** der Verteilung; die positiv-definite, symmetrische Matrix $m{S} \in {
m I\!R}^{D imes D}$ heißt Kovarianzmatrix der Normalverteilung.

Bemerkungen

- 1. Die Isolinien (Hyperebenen gleicher Dichtewerte) der multivariaten NV-Dichte besitzen die Form von Hyperellipsoiden.
- 2. Die Richtungen und Radien ihrer Achsen entnehmen wir den Eigenvektoren und Eigenwerten der Diagonalisierung $S = UDU^{\top}$.

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Ist $\mathcal{N}(\mu, \mathbf{S})$ ein gutes Verteilungsmodell?

Das kommt ganz auf die Anwendung & den Lerndatenvorrat an

Das NV-Modell ist zu simpel für unsere Daten

Unimodale Dichtelandschaft

? Löwe/Löwin

Elliptische Symmetrie

? nichtnegative Merkmale

Exponentielles Abklingverhalten

? Ausreißer

Das NV-Modell ist zu komplex für unseren Klassifikator

• Speicheraufwand $O(D^2 \cdot K)$

? Bilder, Microarrays

• Rechenaufwand $O(D^2 \cdot K)$

? Echtzeitanwendungen

• Robustheit der Schätzung $\hat{\mathbf{S}} = \mathbf{S}(\omega)$

? Rang und Inversenbildung

Multivariate Normalverteilungsdichte

Normalverteilungsklassifikatoren

Prüfgrößen

Maximum-Likelihood Parameterschätzung

Maximum-a posteriori- und Bayesschätzung

Graphische Gaußsche Modelle

Mathematische Hilfsmittel

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Graphische Modelle

F

Prüfgrößen der NV-Bayesregel

Normalverteilungsklassifikator mit uneingeschränkten Kovarianzmatrizen ${\pmb S}_{\kappa}$

$$u_{\kappa}(x) = \underbrace{-2\log p_{\kappa} + \log|2\pi S_{\kappa}|}_{\gamma_{\kappa}} + \underbrace{(x - \mu_{\kappa})^{\top} \cdot S_{\kappa}^{-1} \cdot (x - \mu_{\kappa})}_{\text{Mahalanobisabstand } \|x - \mu_{\kappa}\|_{S_{\kappa}}^{2}}$$

Bemerkungen

1. Je Klasse
$$1 + D + \binom{D+1}{2}$$
 Parameter

ightharpoonup $O(D^2K)$

2. Je Muster und Klasse $3D^2$ Addit./Multiplik.

 \Rightarrow O(D^2K)

$$\tilde{m{x}}^{ op} m{S}_{\kappa}^{-1} \tilde{m{x}} \ = \ \sum_{i=1}^{D} \sum_{j=1}^{D} ilde{x}_{i} c_{\kappa i j} ilde{x}_{j} \ , \quad m{C}_{\kappa} = m{S}_{\kappa}^{-1}$$

3. Für den Abstandsausdruck lohnt sich die folgende Betrachtung:

$$(x - \mu_{\kappa})^{\top} \mathbf{S}_{\kappa}^{-1} (x - \mu_{\kappa}) = \underbrace{\mathbf{x}^{\top} \mathbf{S}_{\kappa}^{-1} \mathbf{x}}_{\operatorname{spur} \left(\mathbf{S}_{\kappa}^{-1} \cdot \mathbf{x} \mathbf{x}^{\top}\right)} - \underbrace{2 \mu_{\kappa}^{\top} \mathbf{S}_{\kappa}^{-1}}_{\mathbf{a}_{\kappa}^{\top}} \mathbf{x} + \underbrace{\mu_{\kappa}^{\top} \mathbf{S}_{\kappa}^{-1} \mu_{\kappa}}_{\mathbf{c}_{\kappa}}$$

Normalverteilungsklassifikator

Definition

Einen Klassifikator mit den Prüfgrößen

$$u_{\kappa}(\mathbf{x}) = P(\mathbf{x}, \Omega_{\kappa}) = p_{\kappa} \cdot \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{\kappa}, \boldsymbol{S}_{\kappa}), \quad \mathbf{x} \in \mathbb{R}^{D}$$

für $\kappa=1,\ldots,K$ bezeichnet man als D-dimensionalen **Normalverteilungsklassifikator** mit den Verteilungsparametern $[p_{\kappa}, \pmb{\mu}_{\kappa}, \pmb{S}_{\kappa}]_{\kappa=1..K}$.

Bemerkung

In der Praxis verwendet man einfachheitshalber die dazu antitonen Prüfgrößen

$$u_{\kappa}(\mathbf{x}) = -2 \cdot \log (P(\mathbf{x}, \Omega_{\kappa}))$$

die quadratische Funktionen der Mustermerkmale sind.

Entscheidungsregel: Prüfgröße minimieren (Minuszeichen)

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Graphische Modelle

Prüfgrößen der naiven NV-Bayesregel

Normalverteilungsklassifikator mit diagonalen Kovarianzmatrizen \boldsymbol{S}_{κ}

$$u_{\kappa}(\mathbf{x}) = \gamma_{\kappa} + \sum_{d=1}^{D} \left(\frac{\mathbf{x}_{d} - \mu_{\kappa,d}}{\sigma_{\kappa,d}}\right)^{2}$$

mit der Konstanten

$$\gamma_{\kappa} = -2 \log p_{\kappa} + D \cdot \log(2\pi) + \sum_{d} \log \sigma_{\kappa,d}^{2}$$

Bemerkungen

1. Je Klasse 1 + D + D Parameter

- \Rightarrow O(DK)
- 2. Je Muster und Klasse 4D Addit./Multipl./Divis.
- \Rightarrow O(DK)
- 3. Keine Merkmalkorrelationen keine "schrägen" Klassengebiete!

Prüfgrößen der sphärischen NV-Bayesregel

Normalverteilungsklassifikator mit skalierter Einheitskovarianz ${m S}_{\kappa}=\sigma_{\kappa}^2{m E}$

$$u_{\kappa}(\mathbf{x}) = \gamma_{\kappa} + \|\mathbf{x} - \boldsymbol{\mu}_{\kappa}\|^{2} / \sigma_{\kappa}^{2}$$

mit der Konstanten

$$\gamma_{\kappa} = -2 \log p_{\kappa} + D \cdot \log(2\pi) + 2D \cdot \log \sigma_{\kappa}$$

Bemerkungen

1. Je Klasse 1 + D + 1 Parameter

- \Rightarrow O(DK) \Rightarrow O(DK)
- 2. Je Muster und Klasse 3D Addit./Multipl./Divis.

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Prüfgrößen des Mahalanobis-Klassifikators

Normalverteilungsklassifikator mit klassenunabhängiger Kovarianz $m{S}_{\kappa} = m{S}_{0}$

$$u_{\kappa}(\mathbf{x}) = \gamma_{\kappa} + \underbrace{(\mathbf{x} - \boldsymbol{\mu}_{\kappa})^{\top} \cdot \boldsymbol{S}_{0}^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}_{\kappa})}_{Mahalanobisabstand \|\mathbf{x} - \boldsymbol{\mu}_{\kappa}\|_{\mathbf{S}_{0}}^{2}}$$

mit der Konstanten

$$\gamma_{\kappa} = -2\log p_{\kappa} + D \cdot \log(2\pi) + \log |\mathbf{S}_0|$$

Bemerkungen

1. Je Klasse 1 + D Parameter zzgl. \boldsymbol{S}_0

- \bigcirc O(DK + D²)
- 2. Je Klasse 2D Addit./Multiplik. zzgl. quadr. Form \Rightarrow O(DK + D²)
- 3. Für den Abstandsausdruck lohnt sich die folgende Betrachtung:

$$(x - \mu_{\kappa})^{\top} S_0^{-1} (x - \mu_{\kappa}) = \underbrace{x^{\top} S_0^{-1} x}_{\operatorname{spur} (S_0^{-1} \cdot x x^{\top})} - \underbrace{2 \mu_{\kappa}^{\top} S_0^{-1}}_{\mathbf{a}_{\kappa}^{\top}} x + \underbrace{\mu_{\kappa}^{\top} S_0^{-1} \mu_{\kappa}}_{\mathbf{c}_{\kappa}}$$

Prüfgrößen des Minimum-Abstand-Klassifikators

Normalverteilungsklassifikator mit Einheitskovarianz $\boldsymbol{S}_{\kappa} = \boldsymbol{E}$

$$u_{\kappa}(\mathbf{x}) = \gamma_{\kappa} + \|\mathbf{x} - \boldsymbol{\mu}_{\kappa}\|^{2}$$

mit der Konstanten

$$\gamma_{\kappa} = -2\log p_{\kappa} + D \cdot \log(2\pi)$$

Bemerkungen

1. Je Klasse 1 + D + 0 Parameter

- \Rightarrow O(DK)
- 2. Je Muster und Klasse 2D Addit./Multipl./Divis.
- \Rightarrow O(DK)
- 4. Modifizierter MAK incl. Klassengewicht γ_{κ}
- 5. Gewöhnlicher MAK excl. Klassengewicht γ_{κ}

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Prüfgrößen des Richter-Klassifikators

Normalverteilungsklassifikator mit isotrop skalierter Kovarianz ${\bf S}_{\kappa}=\alpha_{\kappa}{\bf S}_{\bf 0}$

$$u_{\kappa}(\mathbf{x}) = \gamma_{\kappa} + \underbrace{\alpha_{\kappa}^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}_{\kappa})^{\top} \cdot \boldsymbol{S}_{0}^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}_{\kappa})}_{\alpha_{\kappa}^{-1} \cdot \|\mathbf{x} - \boldsymbol{\mu}_{\kappa}\|_{\boldsymbol{S}_{0}}^{2}}$$

mit der Konstanten

$$\gamma_{\kappa} = -2 \log p_{\kappa} + D \cdot \log(2\pi) + D \cdot \log \alpha_{\kappa} + \log |S_0|$$

Bemerkungen

- 1. Je Klasse 1 + D + 1 Parameter zzgl. S_0
- \Rightarrow O(DK + D²)
- 2. Je Klasse 2D Addit./Multiplik. zzgl. quadr. Form
- \rightarrow O(DK + D²)
- 3. Für den Abstandsausdruck lohnt sich die folgende Betrachtung:

$$\mathbf{x}^{\top} \mathbf{S}_{\kappa}^{-1} \mathbf{x} = \alpha_{\kappa}^{-1} \cdot \underbrace{\operatorname{spur} \left(\mathbf{S}_{0}^{-1} \cdot \mathbf{x} \mathbf{x}^{\top} \right)}_{\epsilon}$$

Prüfgrößen des Eigenraumklassifikators

Normalverteilungsklassifikator mit achsenparallelen Kovarianzen $\boldsymbol{S}_{\kappa} = \boldsymbol{U} \boldsymbol{D}_{\kappa} \boldsymbol{U}^{\top}$

$$u_{\kappa}(\mathbf{x}) = \gamma_{\kappa} + \underbrace{(\mathbf{U}^{\top}(\mathbf{x} - \boldsymbol{\mu}_{\kappa}))^{\top} \cdot \mathbf{D}_{\kappa}^{-1} \cdot (\mathbf{U}^{\top}(\mathbf{x} - \boldsymbol{\mu}_{\kappa}))}_{\|\mathbf{U}^{\top}(\mathbf{x} - \boldsymbol{\mu}_{\kappa})\|_{\mathbf{D}_{\kappa}}^{2}}$$

mit der Konstanten

$$\gamma_{\kappa} = -2 \log p_{\kappa} + D \cdot \log(2\pi) + \sum_{d} \log \lambda_{\kappa d}$$

Bemerkungen

1. Je Klasse 1 + D + D Parameter zzgl. \boldsymbol{U}

- \triangleright O(DK + D²)
- 2. Je Klasse 4D Operationen für $\|\cdot\|_{D_n}^2$ zzgl. D^2 für $U^\top x$ $\Leftrightarrow O(DK + D^2)$
- 3. Für den Abstandsausdruck lohnt sich die folgende Betrachtung:

$$x^{\top} S_{\kappa}^{-1} x = x^{\top} U D_{\kappa}^{-1} U^{\top} x = (U^{\top} x)^{\top} D_{\kappa}^{-1} (U^{\top} x) = \sum_{d=1}^{D} (u_{d}^{\top} x)^{2} / \lambda_{\kappa d}$$

4. Es kommt auch eine unvollständige Entwicklung in Betracht, bei der Trägheitsachsen mit kleinen Eigenwerten ignoriert werden ...

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Parameterschätzung für Wahrscheinlichkeitsmodelle

Parametrische Verteilungsdichtefamilie

Die Wertetupel $\mathbf{x} \in \mathbb{R}^D$ eines Zufallsvektors \mathbb{X} seien gemäß

$$\{f(x|\boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \mathcal{M}\}$$

verteilt; jede Verteilungsdichte der Familie ist durch ein Feld heta von Parametern aus einer Mannigfaltigkeit \mathcal{M} charakterisiert.

Repräsentative Lernstichprobe

Die unbekannte Verteilung von $\mathbb X$ ist durch eine Stichprobe ω repräsentiert, deren Elemente $\{x_1, \dots, x_T\}$ unabhängig und identisch gemäß $f(\cdot|\theta)$ verteilt gezogen wurden.

Problem

Wie lautet der beste Schätzwert $\hat{\theta}$ für die unbekannten Parameter θ^* ?

Maximum-Likelihood Parameterschätzung

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Graphische Modelle

Maximum-Likelihood Schätzung

Lemma

Die (logarithmierte) Ziehungswahrscheinlichkeit für den unabhängig und identisch mittels $f(\cdot|\boldsymbol{\theta})$ gezogenen Datensatz ω beträgt

$$\ell_{\boldsymbol{\theta}}(\omega) = \log \prod_{\mathbf{x} \in \omega} f(\mathbf{x}|\boldsymbol{\theta}) = \sum_{\mathbf{x} \in \omega} \log f(\mathbf{x}|\boldsymbol{\theta}).$$

Die Größe $\ell_{\theta}(\omega)$ heißt **Likelihoodfunktion** von θ .

Definition

Die Maximum-Likelihood-Schätzung (MLS) der Parameter einer Dichtefamilie $[f(x|\theta)]$ maximiert die parameterbedingte Stichprobenwahrscheinlichkeit, d.h. es gilt

$$\hat{\boldsymbol{\theta}}_{\mathsf{ML}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{x \in \omega} f(x|\boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{x \in \omega} \log f(x|\boldsymbol{\theta}) \; .$$

Der ML-Schätzwert $\hat{ heta}_{\mathsf{ML}}$ ist von allen Parameterwerten derjenige, zu dem die vorliegenden Daten ω am besten passen.

Maximum-Likelihood Schätzung

Satz

Der ML-Schätzer ist **erwartungstreu**, d.h.: ist eine Zufallsvariable \mathbb{X} gemäß $f(x|\theta^*)$ verteilt, so ist der Erwartungswert des ML-Schätzers für eine Stichprobe unabhängiger Realisierungen von \mathbb{X} gleich θ^* .

Bemerkungen

- 1. Für eine repräsentative Lernstichprobe zunehmenden Umfangs strebt der ML-Schätzwert gegen den *wahren* Parametervektor.
- Über das Verhalten des ML-Schätzwertes bei Verwendung einer individuellen, endlichen Probe trifft der Satz keinerlei verbindliche Aussage.
- 3. Gehorcht der Datenerzeugungsprozeß nicht tatsächlich für irgendeinen festen Parameterwert $\theta \in \mathcal{M}$ dem postulierten Verteilungsgesetz $f(x|\theta)$, so besitzen selbst die asymptotischen ML-Parameter $\hat{\theta}_{\text{ML}}$ keine Aussagekraft.

Normalverteilung

Prüfgrößen

 $\mathsf{ML}\text{-}\mathsf{Sch\"{a}tzung}$

MAP-Schätzung

Graphische Modelle

ML-Schätzung für den NV-Klassifikator

mit vollbesetzten klassenabhängigen Kovarianzmatrizen

Satz

Die Maximum-Likelihood-Parameter eines Normalverteilungsklassifikators bezüglich einer etikettierten Stichprobe $[\omega_{\kappa}]$ lauten

$$\hat{
ho}_{\kappa} = T_{\kappa} / \sum_{\lambda=1}^{K} T_{\lambda}$$

$$\hat{\mu}_{\kappa} = \frac{1}{T_{\kappa}} \sum_{\mathbf{x} \in \omega_{\kappa}} \mathbf{x}$$

$$\hat{\mathbf{S}}_{\kappa} = \frac{1}{T_{\kappa}} \sum_{\mathbf{x} \in \omega_{\kappa}} (\mathbf{x} - \hat{\mu}_{\kappa}) (\mathbf{x} - \hat{\mu}_{\kappa})^{\top}$$

$$= \frac{1}{T_{\kappa}} \sum_{\mathbf{x} \in \omega_{\kappa}} \mathbf{x} \mathbf{x}^{\top} - \hat{\mu}_{\kappa} \hat{\mu}_{\kappa}^{\top}$$

ML-Schätzung für den NV-Klassifikator

Erzeugungswahrscheinlichkeit

einer unabhängig und identisch verteilten, etikettierten Stichprobe

$$P(\bigcup_{\kappa} \omega_{\kappa}) = \prod_{\kappa=1}^{K} P(\omega_{\kappa}) = \prod_{\kappa=1}^{K} \prod_{\mathbf{x} \in \omega_{\kappa}} P(\Omega_{\kappa}) \cdot P(\mathbf{x} | \Omega_{\kappa})$$

Logarithmierte ML-Zielgröße

Parametrisiert durch $(p_{\kappa}, \theta_{\kappa})$, $\kappa = 1, \dots, K$

$$\log \prod_{\kappa=1}^{K} \prod_{\mathbf{x} \in \omega_{\kappa}} p_{\kappa} \cdot f(\mathbf{x}|\boldsymbol{\theta}_{\kappa}) = \sum_{\kappa=1}^{K} T_{\kappa} \log p_{\kappa} + \sum_{\kappa=1}^{K} \left(\sum_{\mathbf{x} \in \omega_{\kappa}} \log f(\mathbf{x}|\boldsymbol{\theta}_{\kappa}) \right)$$

zerfällt in (K+1) voneinander unabhängige Optimierungsprobleme

Beweis.

[Diskrete Verteilung (p_1, \ldots, p_K) der Musterklassen]

Die ML-Zielfunktion lautet zunächst

$$\ell_{m{p}}'(\omega) = \log \prod_{\kappa=1}^{m{K}} p_{\kappa}^{m{T}_{\kappa}} = \sum_{\kappa=1}^{m{K}} m{T}_{\kappa} \log p_{\kappa}$$

und ist aber unter Berücksichtung der Normierungsbedingung $\sum_{\kappa} p_{\kappa} = 1$ zu maximieren; die Bedingung wird mit einem Lagrange-Multiplikator inkorporiert:

$$\ell_{\boldsymbol{p}}(\omega) = \sum_{\kappa=1}^{\boldsymbol{K}} T_{\kappa} \log p_{\kappa} - \lambda \cdot (\sum_{\kappa} p_{\kappa} - 1)$$

Wir bilden nun die partiellen Ableitungen

$$rac{\partial \ell_{m{p}}(\omega)}{\partial p_{\kappa}} \ = \ T_{\kappa} \, rac{1}{p_{\kappa}} \, - \lambda \qquad ext{und} \qquad rac{\partial \ell_{m{p}}(\omega)}{\partial \lambda} \ = \ 1 - \sum p_{\kappa}$$

Nullsetzen der Ableitungen ergibt

$$\frac{T_{\kappa}}{p_{\kappa}} = \lambda \Rightarrow p_{\kappa} = \frac{T_{\kappa}}{\lambda}$$

und wegen

$$1 = \sum_{\kappa} p_{\kappa} = \sum_{\kappa} \frac{T_{\kappa}}{\lambda} = \frac{1}{\lambda} \sum_{\kappa} T_{\kappa} = \frac{1}{\lambda} \cdot T$$

folgt $\lambda = T$ und daher $p_{\kappa} = {}^{T_{\kappa}}/_{T}$ für alle $\kappa = 1, \ldots, K$.

Beweis.

[Parameter μ einer univariaten Gaußdichte]

$$f_{\mathbb{X}}(x) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Die ML-Zielfunktion $\ell_{\mu,\sigma^2}(\omega) = -2 \cdot \log \prod_{\mathbf{x} \in \omega} \mathcal{N}(\mathbf{x} \mid \mu, \sigma^2)$ lautet

$$\ell_{\mu,\sigma^{2}}(\omega) = -2 \cdot \sum_{\mathbf{x} \in \omega} \left(-\frac{1}{2} \log(2\pi\sigma^{2}) - \frac{1}{2} \frac{(\mathbf{x} - \mu)^{2}}{\sigma^{2}} \right) = T \cdot \log(2\pi\sigma^{2}) + \frac{1}{\sigma^{2}} \sum_{\mathbf{x} \in \omega} (\mathbf{x} - \mu)^{2}$$

Partielle Ableitung nach μ :

$$\frac{\partial \ell(\omega)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{\mathbf{x} \in \omega} 2 \cdot (\mathbf{x} - \mu) \cdot (-1) = -\frac{2}{\sigma^2} \left(\sum_{\mathbf{x} \in \omega} \mathbf{x} - \sum_{\mathbf{x} \in \omega} \mu \right)$$

Nullsetzen ergibt

$$\sum_{\mathbf{x} \in \omega} \mathbf{x} = \sum_{\mathbf{x} \in \omega} \mu = \mathbf{T} \cdot \mu \quad \Rightarrow \quad \hat{\mu} = \frac{1}{\mathbf{T}} \sum_{\mathbf{x} \in \omega} \mathbf{x}$$

Beweis.

[Parameter μ einer multivariaten Gaußdichte]

$$\mathcal{N}(x \mid \mu, S) = |2\pi S|^{-1/2} \cdot \exp\left(-\frac{1}{2}(x-\mu)^{\top} S^{-1}(x-\mu)\right)$$

Die ML-Zielfunktion lautet

$$\begin{split} \ell_{\boldsymbol{\mu},\boldsymbol{S}}(\omega) \; &= \; -2 \cdot \log \prod_{\mathbf{x} \in \omega} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{S}) &= \; -2 \sum_{\mathbf{x} \in \omega} \left(-\frac{1}{2} \log |2\pi \boldsymbol{S}| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{S}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right) \\ &= \; T \log |2\pi \boldsymbol{S}| + \sum_{\mathbf{x} \in \omega} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{S}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \\ &= \; T \log |2\pi \boldsymbol{S}| + \sum_{\mathbf{x} \in \omega} \left(\mathbf{x}^{\top} \boldsymbol{S}^{-1} \mathbf{x} - 2\mathbf{x}^{\top} \boldsymbol{S}^{-1} \boldsymbol{\mu} + \boldsymbol{\mu}^{\top} \boldsymbol{S}^{-1} \boldsymbol{\mu} \right) \end{split}$$

Partielle Ableitung nach μ (Gradientenvektor):

$$\nabla_{\mu}\ell_{\mu,S}(\omega) = 0 - 0 + \sum_{\mathbf{x} \in \omega} \nabla_{\mu} \left(\mathbf{x}^{\top} \mathbf{S}^{-1} \mathbf{x} - 2\mathbf{x}^{\top} \mathbf{S}^{-1} \mu + \mu^{\top} \mathbf{S}^{-1} \mu \right)$$

$$= \sum_{\mathbf{x} \in \omega} \left(0 - 2 \cdot \mathbf{S}^{-1} \mathbf{x} + 2 \cdot \mathbf{S}^{-1} \mu \right) = 2 \cdot \mathbf{S}^{-1} \sum_{\mathbf{x} \in \omega} (\mu - \mathbf{x}) = 2 \cdot \mathbf{S}^{-1} \left(T\mu - \sum_{\mathbf{x} \in \omega} \mathbf{x} \right)$$

Nullsetzen und Multiplikation mit $\frac{1}{2}$ · S ergibt

$$T\mu = \sum_{\mathbf{x} \in \omega} \mathbf{x} \quad \Rightarrow \quad \mu = \frac{1}{7} \sum_{\mathbf{x} \in \omega} \mathbf{x}$$

Beweis.

[Parameter σ^2 einer univariaten Gaußdichte bei bekanntem Wert μ]

$$f_{\mathbb{X}}(x) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \cdot \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

Die ML-Zielfunktion $\ell_{\mu,\sigma^2}(\omega) = -2 \cdot \log \prod_{\mathbf{x} \in \omega} \mathcal{N}(\mathbf{x} \mid \mu, \sigma^2)$ lautet

$$\ell_{\mu,\sigma^{2}}(\omega) = -2 \cdot \sum_{\mathbf{x} \in \omega} \left(-\frac{1}{2} \log(2\pi\sigma^{2}) - \frac{1}{2} \frac{(\mathbf{x} - \mu)^{2}}{\sigma^{2}} \right) = \mathbf{T} \cdot \log(2\pi\sigma^{2}) + \frac{1}{\sigma^{2}} \sum_{\mathbf{x} \in \omega} (\mathbf{x} - \mu)^{2}$$

Partielle Ableitung nach σ^2 :

$$\frac{\partial \ell(\omega)}{\partial \sigma^2} = T \cdot \frac{1}{2\pi\sigma^2} \cdot 2\pi - \frac{1}{\sigma^4} \sum_{\mathbf{x} \in \omega} (\mathbf{x} - \mu)^2 = \frac{1}{\sigma^2} \left(T - \frac{1}{\sigma^2} \sum_{\mathbf{x} \in \omega} (\mathbf{x} - \mu)^2 \right)$$

Nullsetzen ergibt

$$T = \frac{1}{\sigma^2} \sum_{\mathbf{x} \in \omega} (\mathbf{x} - \mu)^2 \Rightarrow \hat{\sigma}^2 = \frac{1}{T} \sum_{\mathbf{x} \in \omega} (\mathbf{x} - \mu)^2$$

Bemerkun

In der Praxis ist mit σ^2 natürlich auch μ unbekannt und es muß unter Zuhilfenahme des ML-Schätzwertes $\hat{\mu}$ optimiert werden. Eine Rechnung ähnlich der obigen ergibt die Varianzschätzformel

$$\hat{\sigma}^2 = \frac{1}{T-1} \sum_{\mathbf{x} \in \omega} (\mathbf{x} - \hat{\mu})^2.$$

Beweis.

[Parameter S einer multivariaten Gaußdichte]

Die ML-Zielfunktion lautet

$$\ell_{\boldsymbol{\mu},\boldsymbol{S}}(\omega) = T \log |2\pi\boldsymbol{S}| + \sum_{\boldsymbol{x} \in \omega} (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{S}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$$

$$= TD \log(2\pi) - T \log |\boldsymbol{S}^{-1}| + \sum_{\boldsymbol{x} \in \omega} \operatorname{spur} \left(\boldsymbol{S}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \right)$$

$$= TD \log(2\pi) - T \log |\boldsymbol{S}^{-1}| + \operatorname{spur} \left(\boldsymbol{S}^{-1} \cdot \sum_{\boldsymbol{x} \in \omega} (\boldsymbol{x} - \boldsymbol{\mu}) (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \right)$$

$$T \cdot \operatorname{spur} \left(\boldsymbol{S}^{-1} \cdot \hat{\boldsymbol{S}} \right)$$

Wir reformulieren die Zielgröße unter Verwendung der inversen Kovarianzmatrix $Q = S^{-1}$:

$$\ell_{\mu,Q}(\omega) = TD \log(2\pi) - T \log |Q| + T \cdot \operatorname{spur}(Q \cdot \hat{S})$$

Und nun leiten wir partiell nach der inversen Kovarianzmatrix ab:

$$\nabla_{\mathbf{Q}}\ell_{\mu,\mathbf{Q}}(\omega) = \mathbf{0} - \mathbf{T} \cdot \mathbf{Q}^{-1} + \mathbf{T} \cdot \hat{\mathbf{S}} = \mathbf{T} \cdot (\hat{\mathbf{S}} - \mathbf{Q}^{-1}) = \mathbf{T} \cdot (\hat{\mathbf{S}} - \mathbf{S})$$

Nach dem Nullsetzen ergibt sich folglich

$$S = \hat{S} = \frac{1}{T} \sum_{x \in \omega} (x - \mu)(x - \mu)^{\top}$$

ML-Schätzung für den NV-Klassifikator

Diagonale Kovarianzmatrizen & Mahalanobis-Klassifikator

Diagonale Kovarianzen

Die ML-Zielgröße zerfällt auf Grund der Unabhängigkeitsannahme in $(1 + K \cdot D)$ unabhängige Optimierungsterme.

$$\hat{\sigma}_{\kappa,d}^2 = \frac{1}{T_{\kappa}} \sum_{\mathbf{x} \in \omega_{\kappa}} (\mathbf{x}_d - \mu_{\kappa,d})^2$$

Mahalanobis-Klassifikator

Bei klassenübergreifenden Kovarianzstatistiken zerfällt $\ell_{\theta}(\cdot)$ nicht mehr vollständig in klassenspezifische Optimierungsausdrücke!

$$\hat{\boldsymbol{S}}_0 = \boldsymbol{S}_W([\omega_\kappa]) = \frac{1}{T} \sum_{\kappa=1}^K \sum_{\boldsymbol{x} \in \omega_\kappa} (\boldsymbol{x} - \boldsymbol{\mu}_\kappa) (\boldsymbol{x} - \boldsymbol{\mu}_\kappa)^\top$$

Einphasige Berechnung von $\hat{\boldsymbol{S}}_0$ ist möglich: $\boldsymbol{S}_W = \boldsymbol{S} - \boldsymbol{S}_B$

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Normalverteilung

Prüfgrößen

MAP-Schätzung

ML-Schätzung und Lernstichprobenumfang

Problem

In der NVK-Prüfgröße treten die Inversen und die reziproken **Determinanten** aller $\hat{\mathbf{S}}_{\kappa}$ auf!

- 1. Der Varianz-MLS $\hat{\sigma}_{\kappa,d}$ wird Null, sobald $|\omega_{\kappa}| \leq 1$ ist.
- 2. Der Kovarianz-MLS $\hat{\mathbf{S}}_{\kappa}$ wird singulär, sobald $|\omega_{\kappa}| < D$ ist.
- 3. Selbst für Klassen mit $|\omega_{\kappa}| > D$ besitzt $\hat{\mathbf{S}}_{\kappa}$ häufig schlechte Kondition.
- Schwierigkeiten für kleine T, große D, große K.

Lösung

Verringerung der **Modellkapazität** (Anzahl freier Parameter)

- 1. Fixierung und/oder Verklebung von Parametern
- 2. Strukturierung von Variablenabhängigkeiten
- 3. Wissensbasierte Engführung des Parameterraums

ML-Schätzung für den NV-Klassifikator

Richter-Modell: ähnliche Klassenkovarianzen $\boldsymbol{S}_{\kappa} = \alpha_{\kappa} \boldsymbol{S}_{0}$

Iterationsanfang

Berechne Probenstatistiken und initiale Skalierungsfaktoren:

$$\hat{\rho}_{\kappa} = \frac{T_{\kappa}}{T} \qquad \qquad \hat{\mu}_{\kappa} = \frac{1}{T_{\kappa}} \sum_{\mathbf{x} \in \omega_{\kappa}} \mathbf{x}$$

$$\alpha_{\kappa}^{(0)} = 1 \qquad \qquad \hat{\mathbf{S}}_{\kappa} = \frac{1}{T_{\kappa}} \sum_{\mathbf{x} \in \omega_{\kappa}} \mathbf{x} \mathbf{x}^{\top} - \hat{\mu}_{\kappa} \hat{\mu}_{\kappa}^{\top}$$

Iterationsschritt

Berechne Kovarianzprototyp und Skalierungsfaktoren für i = 1, 2, ...

$$\mathbf{S}_{0}^{(i)} = \sum_{\kappa=1}^{K} \hat{p}_{\kappa} \cdot (\alpha_{\kappa}^{(i-1)})^{-1} \cdot \hat{\mathbf{S}}_{\kappa}$$
$$\alpha_{\kappa}^{(i)} = \frac{1}{D} \cdot \operatorname{spur} \left(\hat{\mathbf{S}}_{\kappa} \cdot (\mathbf{S}_{0}^{(i)})^{-1} \right)$$

ML-Schätzung

Maximum-a posteriori- und Bayesschätzung

Maximum-a posteriori Schätzung

Verteilungsparameter θ als Werte einer Zufallsvariablen Θ

Bayesscher Denkansatz

Die wahren Verteilungsparameter θ^* des Prozesses sind nicht nur unbekannt, sie sind sogar stochastisch.

Ihre Verteilungsdichte $f_{\Theta}(\cdot)$ repräsentiert unser **Vorwissen** über ihre möglichen Werte(kombinationen).

Lemma

Sind die Parameter der Verteilungsfamilie $\{f_{\mathbb{X}}(\cdot|\boldsymbol{\theta})\}_{\boldsymbol{\theta}\in\mathcal{M}}$ selbst gemäß **a priori Dichte** $f_{\Theta}(\theta)$ verteilt, so lautet — für den unabhängig und identisch gezogenen Datensatz ω — die datenbedingte **a posteriori Dichte** der Parameter

$$P(\boldsymbol{\theta}|\omega) = \frac{P(\boldsymbol{\theta}) \cdot P(\omega|\boldsymbol{\theta})}{P(\omega)} = \frac{f_{\Theta}(\boldsymbol{\theta}) \cdot \prod_{\boldsymbol{x} \in \omega} f_{\mathbb{X}}(\boldsymbol{x}|\boldsymbol{\theta})}{P(\omega)}.$$

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Prüfgrößen

Wissenswertes über die Maximum-a posteriori Schätzung

Spezialfall Maximum-Likelihood

Unter Gleichverteilungsannahme für $f_{\Theta}(\cdot)$ mutiert die MAP-Schätzung in eine ML-Schätzung.

Asymptotisches Schätzverhalten

Für große Stichproben ($|\omega| \to \infty$) strebt $\hat{\theta}_{\mathsf{MAP}}$ gegen $\hat{\theta}_{\mathsf{ML}}$.

Methode der konjugierten Dichtefamilien

Die analytische Optimierung der MAP-Zielfunktion erfordert eine geeignete Form der a priori-Dichte:

$$f_{\Theta}(oldsymbol{ heta}) \mathrel{\hat{=}} \mathcal{C} \cdot \prod_{oldsymbol{z} \in \omega_{ ext{nrior}}} f_{\mathbb{X}}(oldsymbol{z} | oldsymbol{ heta})$$

Mit dieser Wahl gilt nämlich

$$\hat{\boldsymbol{\theta}}_{\mathsf{MAP}}(\omega) = \hat{\boldsymbol{\theta}}_{\mathsf{ML}}(\omega \cup \omega_{\mathsf{prior}})$$

und das Problem der $f_{\Theta}(\cdot)$ -Findung ist auf elegante Art gelöst!

Maximum-a posteriori Schätzung

Die im Lichte der Datenprobe wahrscheinlichsten Verteilungsparameter

Definition

Die Maximum-a posteriori-Schätzung (MAP) der Parameter einer Dichtefamilie $[f(x|\theta)]$ unter Annahme der a priori-Verteilungsdichte $f_{\Theta}(\theta)$ für θ maximiert die stichprobenbedingte Wahrscheinlichkeit des gesuchten Parameterfeldes, d.h. es gilt:

$$\hat{m{ heta}}_{\mathsf{MAP}} = \operatorname*{argmax}_{m{ heta}} \left(f_{\Theta}(m{ heta}) \cdot \prod_{m{x} \in \omega} f_{\mathbb{X}}(m{x} | m{ heta})
ight)$$

Bemerkungen

- 1. Der MAP-Schätzwert $\hat{ heta}_{\mathsf{MAP}}$ ist von allen Parameterwerten derjenige, der zu den vorliegenden Daten ω am besten paßt.
- 2. Hand aufs Herz niemand (außer dem Capo di tutti capi) kennt diese mysteriöse Dichte $f_{\Theta}(\cdot)$.

Normalverteilung

ML-Schätzung

MAP-Schätzung

MAP-Schätzung für diskrete Verteilungen

Wahrscheinlichkeitsparameter $p_1 + p_2 + ... + p_K = 1$ für K Ereignisse

Definition

Der Zufallsvektor $\Theta = (\Theta_1, \dots, \Theta_K)^\top \in [0, 1]^K$ mit $\sum_{\ell} \Theta_{\ell} = 1$ heißt **Dirichlet-verteilt** mit den **Hyperparametern** $r_1, \ldots, r_K > -1$ genau dann, wenn gilt:

$$f_{\Theta}(oldsymbol{
ho}) \ = \ \mathcal{D}(oldsymbol{
ho}|oldsymbol{r}) \ = \ C \cdot \prod_{\ell=1}^K
ho_\ell^{r_\ell}$$

Bemerkungen

- 1. Für r = 0 ist $\mathcal{D}(p|r)$ eine Gleichverteilung.
- 2. Für r = 1 nimmt $\mathcal{D}(p|r)$ ihr Dichtemaximum bei der Gleichverteilung $p_{\ell} \equiv {}^{1}\!/_{\!K}$ an.
- 3. Allgemein nimmt $\mathcal{D}(\mathbf{p}|\mathbf{r})$ ihr Dichtemaximum bei der Verteilung $\mathbf{p} \propto \mathbf{r}$ an, also für die Wahrscheinlichkeiten $p_{\ell} = r_{\ell}/R$, $R = \sum_{i} r_{i}$.
- 4. Der Dichtegipfel ist umso steiler, je größer der Skalenfaktor R ist.

MAP-Schätzung

MAP-Schätzung für diskrete Verteilungen

Satz

Gehorchen die kanonischen Parameter p_1, \ldots, p_K einer diskreten Wahrscheinlichkeitsverteilung der Dirichletverteilung mit Hyperparametern $\mathbf{r} \in \mathbb{R}^K$, so lautet der MAP-Schätzwert für eine Stichprobe mit den absoluten Ereignishäufigkeiten

$$T_1 + T_2 + \ldots + T_K = T$$

$$\hat{p}_{\ell} = \frac{T_{\ell} + r_{\ell}}{T + R}$$
, $R = \sum_{\ell=1}^{K} r_{\ell}$.

Bemerkungen

- 1. Eine MAP-Schätzung mit Vorwissen $\mathcal{D}(\cdot|\mathbf{r})$ bewirkt die Aufstockung der Lerndaten ω um eine **virtuelle Datenprobe** ω_{prior} mit den Ereignishäufigkeiten r_{ℓ} ; diese Werte müssen allerdings nicht unbedingt ganzzahlig sein.
- 2. Der Spezialfall einer gleichverteilten oder uninformativen Dirichletdichte $(r_{\ell} \equiv r_0)$ ergibt die MAP-Schätzwerte (**Laplaceschätzformel** im Fall $r_0 = 1$)

$$\hat{p}_{\ell} = (T_{\ell} + r_{0})_{(T + K \cdot r_{0})}, \qquad \ell = 1, 2, \dots, K.$$

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

 $P(\omega|\boldsymbol{p}) = \prod_{\kappa} \boldsymbol{p}_{\kappa}^{\boldsymbol{T}_{\kappa}}$

und die a posteriori Parameterwahrscheinlichkeit (bei festen Hyperparametern)

$$P(\boldsymbol{p}|\omega) \propto P(\omega|\boldsymbol{p}) \cdot f_{\Theta}(\boldsymbol{p}) \propto \prod_{\kappa=1}^{K} \boldsymbol{p}_{\kappa}^{\boldsymbol{T}_{\kappa}} \cdot \prod_{\kappa=1}^{K} \boldsymbol{p}_{\kappa}^{\boldsymbol{r}_{\kappa}} \propto \prod_{\kappa=1}^{K} \boldsymbol{p}_{\kappa}^{(\boldsymbol{T}_{\kappa}+\boldsymbol{r}_{\kappa})}$$

Das Maximum nimmt $P(p|\omega)$ bekanntlich für diejenige Verteilung an, die proportional zu den

$$\hat{p}_{\kappa} = \frac{T_{\kappa} + r_{\kappa}}{T + R}$$
, $R = \sum_{\kappa} r_{\kappa}$

Der MAP-Schätzwert ist ein gewichtetes Mittel ("Konvexkombination") aus ML-Schätzwert und dem

$$\rho_{\kappa} = r_{\kappa}/R, \quad \kappa = 1, \ldots, K$$

der a priori-Dichte:

Beweis.

Es beträgt die Stichprobenwahrscheinlichkeit

$$\hat{p}_{\kappa} = \frac{T_{\kappa} + r_{\kappa}}{T + R} = \frac{T_{\kappa}}{T + R} + \frac{r_{\kappa}}{T + R} = \underbrace{\frac{T_{\kappa}}{T}}_{\hat{p}ML} \cdot \underbrace{\frac{T}{T + R}}_{\lambda} + \underbrace{\frac{r_{\kappa}}{R}}_{\rho_{\kappa}} \cdot \underbrace{\frac{R}{T + R}}_{(1 - \lambda)}$$

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

MAP-Schätzung für die multivariate NV-Dichte

Definition

Eine Zufallsmatrix S über der Mannigfaltigkeit aller symmetrischen, positiv-definiten $(D \times D)$ -Matrizen heißt **Wishart-verteilt** genau denn, wenn

$$f_{\mathbb{S}}(\boldsymbol{S}) = \mathcal{W}(\boldsymbol{S} \mid \alpha, \boldsymbol{V}) = \frac{1}{2^{\frac{\alpha D}{2}} |\boldsymbol{V}|^{\frac{\alpha}{2}} \Gamma_D(\frac{\alpha}{2})} \cdot |\boldsymbol{S}|^{\frac{\alpha - D - 1}{2}} \cdot \exp\left(-\frac{1}{2} \cdot \operatorname{spur}\left(\boldsymbol{V}^{-1}\boldsymbol{S}\right)\right)$$

gilt mit den Hyperparametern $\alpha > D-1$ und $\mathbf{V} \in \mathbb{R}^{D \times D}$ positiv-definit.

Lemma

Für die multivariate NV-Dichte $\mathcal{N}(\mu, \mathbf{S})$ bildet das Produkt

$$f_{\Theta}(\mu, S) = \mathcal{N}(\mu \mid m, \tau^{-1}S) \cdot \mathcal{W}(S^{-1} \mid \alpha, V)$$

eine konjugierte Dichtefamilie mit den Hyperparametern $\mathbf{m} \in \mathbb{R}^D$, $\tau > 0$, $\alpha > D-1$ und positiv-definiter Matrix $\mathbf{V} \in \mathbb{R}^{D \times D}$.

MAP-Schätzung für den NV-Klassifikator

Satz

Die Lerndaten $\omega_1, \ldots, \omega_K \subset \mathbb{R}^D$ eines numerischen Klassifikationsproblems seien klassenweise normalverteilt mit den unbekannten Parametern $(p_{\kappa}, \boldsymbol{\mu}_{\kappa}, \boldsymbol{S}_{\kappa}), \ \kappa = 1, \ldots, K.$ Die a priori Verteilung der Parameter sei definiert durch

$$f_{\Theta}(\boldsymbol{\theta}) = \mathcal{D}(\boldsymbol{p}|\boldsymbol{r}) \cdot \prod_{\kappa=1}^{K} \mathcal{N}(\boldsymbol{\mu}_{\kappa} \mid \boldsymbol{m}_{\kappa}, \tau_{\kappa}^{-1} \boldsymbol{S}_{\kappa}) \cdot \prod_{\kappa=1}^{K} \mathcal{W}(\boldsymbol{S}_{\kappa}^{-1} \mid \alpha_{\kappa}, \boldsymbol{V}_{\kappa}) .$$

Dann lauten die Maximum-a posteriori-Parameter:

$$\hat{p}_{\kappa} = \frac{r_{\kappa} + T_{\kappa}}{R + T}, \qquad R = \sum_{\kappa} r_{\kappa}$$

$$\hat{\boldsymbol{\mu}}_{\kappa} = \frac{1}{ au_{\kappa} + T_{\kappa}} \left(au_{\kappa} \boldsymbol{m}_{\kappa} + \sum_{\mathbf{x} \in \omega_{\kappa}} \mathbf{x} \right)$$

$$\hat{\boldsymbol{S}}_{\kappa} = \frac{\boldsymbol{V}_{\kappa} + \tau_{\kappa} (\hat{\boldsymbol{\mu}}_{\kappa} - \boldsymbol{m}_{\kappa}) (\hat{\boldsymbol{\mu}}_{\kappa} - \boldsymbol{m}_{\kappa})^{\top} + \sum_{\mathbf{x} \in \omega_{\kappa}} \mathbf{x} \mathbf{x}^{\top} - T_{\kappa} \hat{\boldsymbol{\mu}}_{\kappa} \hat{\boldsymbol{\mu}}_{\kappa}^{\top}}{(\alpha_{\kappa} - D) + T_{\kappa}}$$

 $P(\theta|\omega)$

"Plug-in"-Schätzverfahren

Analyse der a posteriori Parameterdichte

"Plug-in"-Schätzverfahren

Die Suche nach den unbekannten, aber wahren Parametern

Traditionelles Induktionsparadigma

Die Verteilungsannahme $\omega \sim f_{\mathbb{X}}(\cdot|\theta)$ ist korrekt.

Es existiert eine wahre Parameterkonfiguration θ^* — wir müssen sie nur finden!

ML-Schätzung

$$\hat{ heta}_{\mathsf{ML}} = \operatorname*{argmax}_{ heta} \mathrm{P}(\omega | heta)$$

$$\hat{\theta}_{\mathsf{ML}} \ = \ \operatorname{argmax}_{\theta} \mathrm{P}(\omega|\theta) \qquad \qquad \hat{\theta}_{\mathsf{PM}} \ = \ \mathcal{E}[\Theta|\omega] \ = \ \int \theta \cdot \mathrm{P}(\theta|\omega) \, d\theta$$

MAP-Schätzung

$$\hat{\theta}_{\mathsf{MAP}} = \underset{\theta}{\mathsf{argmax}} \, \mathrm{P}(\theta|\omega)$$

$$\hat{ heta}_{\mathsf{BP}}^{(
ho)} = \mathop{\mathsf{argmax}}_{ heta} \int_{\mathcal{U}_{
ho}(heta)} \mathrm{P}(artheta | \omega) \, dartheta$$

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP

MAP-Schätzung

PM BP

Baves-Schätzung

Der Abschied von der Idee "wahrer" Verteilungsparameter

Bayessches Induktionsparadigma

Die Verteilungsannahme $\omega \sim f_{\mathbb{X}}(\cdot|\theta)$ ist korrekt.

Aber jedes $x \in \omega$ wird unter Verwendung eines eigenen, zufällig ausgewürfelten Modellparameters θ gezogen!

$$P(\mathbf{x}|\omega) = \int_{\mathcal{M}} P(\mathbf{x}, \boldsymbol{\theta} \mid \omega) d\boldsymbol{\theta}$$

$$= \int_{\mathcal{M}} P(\mathbf{x} \mid \boldsymbol{\theta}, \omega) \cdot P(\boldsymbol{\theta} \mid \omega) d\boldsymbol{\theta}$$

$$= \int_{\mathcal{M}} \underbrace{f_{\mathbb{X}}(\mathbf{x}|\boldsymbol{\theta})}_{\text{Modelldichte}} \cdot \underbrace{\frac{f_{\mathbb{X}}(\omega|\boldsymbol{\theta}) \cdot f_{\Theta}(\boldsymbol{\theta})}{f_{\mathbb{X}}(\omega)}}_{\text{a posteriori}} d\boldsymbol{\theta}$$

Analytisch extrem schwer lösbar — bestenfalls wenn $f_{\Theta}(\cdot) \equiv c$

Bayesapproximation

MAP Wo liegt der Gipfel der Posteriordichte?

PM Wo liegt der Durchschnitt der Posteriordichte?

Asymptotisch korrekte Näherung unter Gleichverteilungsannahme für $f_{\Theta}(\cdot)$

BP Wo liegt das **kleinste Intervall** mit Wahrscheinlichkeitsmasse $\rho > 0$?

Praktikable Näherungslösung für den Bayesschätzer Unwissen um $f_{\Theta}(\cdot) \rightsquigarrow \mathsf{Gleichverteilung} \rightsquigarrow \mathsf{Herausk\"{u}rzen}$ Simultan in Zähler und Nenner: Integralbildung → Maximumbildung

$$P(\mathbf{x}|\omega) = \frac{P(\mathbf{x},\omega)}{P(\omega)} = \frac{\int f_{\mathbb{X}}(\omega,\mathbf{x}|\boldsymbol{\theta}) \cdot f_{\Theta}(\boldsymbol{\theta}) d\boldsymbol{\theta}}{\int f_{\mathbb{X}}(\omega|\boldsymbol{\theta}) \cdot f_{\Theta}(\boldsymbol{\theta}) d\boldsymbol{\theta}}$$

$$\approx \frac{\max_{\boldsymbol{\theta}} f_{\mathbb{X}}(\omega,\mathbf{x}|\boldsymbol{\theta})}{\max_{\boldsymbol{\theta}} f_{\mathbb{X}}(\omega|\boldsymbol{\theta})} = \frac{\prod_{\mathbf{z}\in\omega,\mathbf{x}} f_{\mathbb{X}}(\mathbf{z}\mid\hat{\boldsymbol{\theta}}_{\mathsf{ML}}(\omega,\mathbf{x}))}{\prod_{\mathbf{z}\in\omega} f_{\mathbb{X}}(\mathbf{z}\mid\hat{\boldsymbol{\theta}}_{\mathsf{ML}}(\omega))}$$

Achtung

Die Bayesapproximation $\hat{P}_{BA}(x|\omega)$ ist i.a. **keine** Dichtefunktion (Normierungseigenschaft)!

Graphische Gaußsche Modelle

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Graphische Modelle

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Graphische Modelle

Gaußsche Bayesnetze

Kettenregel der Wahrscheinlichkeitstheorie

$$P(x_1,...,x_D) = P(x_1) \cdot P(x_2|x_1) \cdot \prod_{d=3}^{D} P(x_d | x_1,...,x_{d-1})$$

Das d-te Merkmal ist explizit von (d-1) anderen abhängig.

baumförmige Bayesnetze Beispiel:

$$P(x_1,\ldots,x_D) \approx \prod_{d=1}^D P(x_d \mid x_{\pi(d)})$$

Jedes Merkmal x_d ist explizit nur von **genau einem** anderen abhängig.

Problem

Finde diejenige Abhängigkeitsstruktur, welche die exakteste Näherung der Datenverteilung gewährleistet!

Graphische Gaußsche Modelle

Die Bias-Varianz-Problematik

Dichtemodell mit vielen Parametern

NV-Dichten mit voll besetzter Kovarianzmatrix Alle paarweisen Merkmalabhängigkeiten $\rightsquigarrow O(KD^2)$ Kleiner Bias — große Varianz

Dichtemodell mit wenigen Parametern

NV-Dichten mit diagonal besetzter Kovarianzmatrix Alle Merkmale paarweise unabhängig $\rightsquigarrow O(KD)$ Großer Bias — kleine Varianz

Lösungsidee

Nicht alle, sondern nur die wichtigen Merkmalabhängigkeiten werden explizit modelliert.

Gaußsche Bayesnetze

Datensatz letter.lern (16 Merkmale, Klassen 'A', 'B', 'C', 'D')

Gaußsche Markovnetze

Parametrische Struktur der multivariaten NV-Dichte

$$-2 \cdot \log \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{S}) = |2\pi \boldsymbol{S}| + \sum_{i=1}^{D} \sum_{j=1}^{D} (x_i - \mu_i) \cdot C_{ij} \cdot (x_j - \mu_j), \quad \boldsymbol{C} := \boldsymbol{S}^{-1}$$

Modellkomplexität $\hat{=}$ Anzahl nicht verschwindender Einträge von \boldsymbol{S}^{-1}

Aufgabenstellung der Kovarianzselektion

Suche eine Näherungsmatrix $\tilde{\boldsymbol{S}} \approx \hat{\boldsymbol{S}}$, deren Inverse möglich **viele** Nulleinträge aufweist!

Bedingte statistische Unabhängigkeit

Über normalverteilte Daten wissen wir, daß $C_{ij}=0$ genau dann gilt, wenn die beiden Merkmale x_i und x_j statistisch unabhängig sind, sofern wir die Kenntnis der restlichen Merkmale $\{x_1, \dots, x_D\} \setminus \{x_i, x_i\}$ voraussetzen.

Normalverteilung Prüfgrößen MAP-Schätzung Graphische Modelle Gaußsche Markovnetze Lasso (regularisierte $\|\cdot\|_1$ -Norm Matrixinvertierung)

$= \frac{1}{20} \cdot n^2$ = 1, 2, ..., 12

Konzentrationsmatrizen für unterschiedliche Regularisierungsparameter

Beispiel Datensatz letter 16 Merkmale

Gaußsche Markovnetze

Dempsters Kovarianzselektion Co

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Graphische Modelle

Mathematische Hilfsmittel

Gradientenvektor und Gradientenmatrix

Extremalwertaufgabe 🖈 "Ableiten & Nullsetzen"

Definition

Es sei

$$f: \mathbb{R}^n \to \mathbb{R}$$
 bzw. $g: \mathbb{R}^{n \times m} \to \mathbb{R}$

ein Vektor- bzw. ein Matrixfunktional. Dann heißen die Felder

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}} \end{pmatrix} \quad \text{bzw.} \quad \nabla_{\mathbf{Y}} f(\mathbf{Y}) = \begin{pmatrix} \frac{\partial g}{\partial y_{11}} & \frac{\partial g}{\partial y_{12}} & \cdots & \frac{\partial g}{\partial y_{1m}} \\ \frac{\partial g}{\partial y_{21}} & \frac{\partial g}{\partial y_{22}} & \cdots & \frac{\partial g}{\partial y_{2m}} \\ \vdots & & \ddots & \vdots \\ \frac{\partial g}{\partial y_{n1}} & \frac{\partial g}{\partial y_{n2}} & \cdots & \frac{\partial g}{\partial y_{nm}} \end{pmatrix}$$

von partiellen Ableitungen nach allen Eingangsvariablen der **Gradientenvektor** von f an der Stelle x bzw. die **Gradientenmatrix** von g an der Stelle Y.

Bemerkung

Eine notwendige Bedingung für das Vorliegen eines relativen Maximums von f an der Stelle $x \in \mathbb{R}^n$ ist das Verschwinden $(\nabla_x f = \mathbf{0})$ des Gradientenvektors in diesem Punkt.

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Normalverteilung

Gradientenvektorberechnung

Beispiel: Quadratische Form

Beispielfunktional

$$f(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i A_{ij} x_j = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$

Berechnung partieller Ableitungen

$$\frac{\partial f(\mathbf{x})}{\partial x_k} = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial}{\partial x_k} \left(x_i A_{ij} x_j \right) = \sum_{i \neq k} x_i A_{ik} + \sum_{j \neq k} A_{kj} x_j + 2x_k \cdot A_{kk} = 2 \cdot \sum_{i=1}^n x_i A_{ik} = 2 \cdot \mathbf{a}_k^\top \mathbf{x}$$

Gradientenvektor

$$\nabla_{\mathbf{x}} \left(\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \right) = 2 \cdot \mathbf{A} \mathbf{x}$$

Gradientenvektorberechnung

Beispiel: Linearkombination

Beispielfunktional

$$f(x) = \sum_{i=1}^n a_i x_i = a^{\top} x$$

Berechnung partieller Ableitungen

$$\frac{\partial f(\mathbf{x})}{\partial x_k} = \frac{1}{\partial x_k} \left(\sum_{i=1}^n a_i x_i \right) = \sum_{i=1}^n \frac{\partial}{\partial x_k} (a_i x_i) = \sum_{i=1}^n a_i \cdot \frac{\partial}{\partial x_k} (x_i) = a_k$$

Gradientenvektor

$$\nabla_{\mathbf{x}} \left(\mathbf{a}^{\top} \mathbf{x} \right) = \mathbf{a}$$

Prüfgrößen

ML-Schätzung

Gradientenmatrixberechnung

Beispiel: Frobeniusnorm

Beispielfunktional

$$f(\boldsymbol{X}) = \sum_{i=1}^{n} \sum_{j=1}^{m} X_{ij}^{2} = \operatorname{spur}(\boldsymbol{X}^{\top} \boldsymbol{X}) = \|\boldsymbol{X}\|_{\operatorname{\mathsf{Frob}}}^{2}$$

Berechnung partieller Ableitungen

$$\frac{\partial f(\mathbf{X})}{\partial X_{k\ell}} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\partial}{\partial X_{k\ell}} (X_{ij}^2) = 2 \cdot X_{k\ell}$$

Gradientenmatrix

$$\nabla_{\boldsymbol{X}} \left(\|\boldsymbol{X}\|_{\mathsf{Frob}}^2 \right) = 2 \cdot \boldsymbol{X}$$

Gradientenmatrixberechnung

Beispiel: Determinante

Beispielfunktional

$$f(X) = \det(X)$$

Berechnung partieller Ableitungen

$$\frac{\partial f(\boldsymbol{X})}{\partial X_{k\ell}} = \frac{\partial \det(\boldsymbol{X})}{\partial X_{k\ell}} = \det(\boldsymbol{X}) \cdot (\boldsymbol{X}^{-1})_{k\ell}$$

Gradientenmatrix

$$\nabla_{\boldsymbol{X}} (\det(\boldsymbol{X})) = \det(\boldsymbol{X}) \cdot \boldsymbol{X}^{-1}$$

Normalverteilung

Prüfgrößen

ML-Schätzung

MAP-Schätzung

Graphische Modelle

Zusammenfassung (7)

- 1. Die multivariate Normalverteilung beschreibt eine unimodale (Zentrum μ), exponentiell abklingende Dichte mit elliptisch-symmetrischen (Trägheitsachsen von **S**) Isolinien.
- 2. Die Prüfgrößen der NV-Bayesregel sind quadratische Polynome in den Merkmalen x_1, \ldots, x_D .
- 3. Die Maximum-Likelihood-Schätzung sucht die Modellparameter mit der größten Datenerzeugungswahrscheinlichkeit.
- 4. Die ML-Zielgröße ist nach allen Parametern partiell abzuleiten; nach Nullsetzen der Gradienten ergibt sich günstigenfalls eine geschlossene Lösung (LGS) oder wenigstens eine rasch konvergierende Iterationsformel.
- 5. Die Maximum-a posteriori-Schätzung verwendet a priori-Wissen über die Dichteparameter und ist robuster bei (zu) kleinen Lernenstichproben.
- 6. Praktikable MAP-Schätzer bedienen sich der Methode der konjugierten Parameterdichtefamilien.
- 7. Verteilungsmodelle werden robuster, wenn die Abhängigkeitsstruktur der Merkmale sachgemäß ausgedünnt wird.

Gradientenmatrixberechnung

MAP-Schätzung

Beispiel: Logarithmierte Determinante

Beispielfunktional

$$f(X) = \log \det(X)$$

Berechnung partieller Ableitungen

$$\frac{\partial f(\boldsymbol{X})}{\partial X_{k\ell}} = \frac{\partial \log \det(\boldsymbol{X})}{\partial \det(\boldsymbol{X})} \cdot \frac{\partial \det(\boldsymbol{X})}{\partial X_{k\ell}} = \frac{1}{\det(\boldsymbol{X})} \cdot \det(\boldsymbol{X}) \cdot (\boldsymbol{X}^{-1})_{k\ell} = (\boldsymbol{X}^{-1})_{k\ell}$$

Gradientenmatrix

$$\nabla_{\boldsymbol{X}} (\log \det(\boldsymbol{X})) = \boldsymbol{X}^{-1}$$