

Description

The VSM3401A uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.

General Features

• $V_{DS} = -30V, I_{D} = -4.4A$

 $R_{DS(ON)}$ < $85m\Omega$ @ V_{GS} =-2.5V

 $R_{DS(ON)}$ < 65m Ω @ V_{GS} =-4.5V

 $R_{DS(ON)}$ < $52m\Omega$ @ V_{GS} =-10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Application

- PWM applications
- Load switch
- Power management

SOT-23-3

Schematic Diagram

Package Marking And Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM3401A-S2	VSM3401A	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

7 moorate maximum reasons go (1 A = 0 o amooration motors)					
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V _{DS}	-30	V		
Gate-Source Voltage	Vgs	±12	V		
Drain Current-Continuous	I _D	-4.4	Α		
Drain Current-Pulsed (Note 1)	I _{DM}	-30	Α		
Maximum Power Dissipation	P _D	1.3	W		
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C		

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	95	°C/W
--	----------------	----	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-30	-33	-	V	

Shenzhen VSEEI Semiconductor Co., Ltd

Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V,V _{GS} =0V	-	-	-1	μA	
Gate-Body Leakage Current	I _{GSS}	SSS V _{GS} =±12V,V _{DS} =0V		-	±100	nA	
On Characteristics (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-0.6	-1	-1.3	V	
		V _{GS} =-10V, I _D =-4.4A	-	42	52	mΩ	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-4A	-	48	65	mΩ	
		V _{GS} =-2.5V, I _D =-2A		68	85	mΩ	
Forward Transconductance	g _{FS}	V _{DS} =-5V,I _D =-1A	-	10	-	S	
Dynamic Characteristics (Note4)							
Input Capacitance	C _{lss}	\/ - 15\/\/ -0\/	-	950	-	PF	
Output Capacitance	C _{oss}	V _{DS} =-15V,V _{GS} =0V, F=1.0MHz	-	115	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.0lVlHZ	-	75	-	PF	
Switching Characteristics (Note 4)							
Turn-on Delay Time	t _{d(on)}		-	7	-	nS	
Turn-on Rise Time	t _r	V _{DD} =-15V,I _D =-4A	-	3	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10V, R_{GEN} =6 Ω	-	30	-	nS	
Turn-Off Fall Time	t _f		-	12	-	nS	
Total Gate Charge	Qg		-	9.5	-	nC	
Gate-Source Charge	Q _{gs}	V _{DS} =-15V,I _D =-4A,V _{GS} =-4.5V	-	2	-	nC	
Gate-Drain Charge	Q_{gd}		-	3	-	nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-4.4A	-	-	-1.2	V	

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

 T_J -Junction Temperature($^{\circ}$ C)

Figure 3 Power Dissipation

I_D- Drain Current (A)

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)
Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

 T_J -Junction Temperature(${}^{\circ}\mathbb{C}$)
Figure 8 Drain-Source On-Resistance

Vds Drain-Source Voltage (V)

Figure 10 Capacitance vs Vds

Figure 12 Source- Drain Diode Forward

Is- Reverse Drain Current (A)

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance