Tutorial 9

Statistical Computation and Analysis
Spring 2025

Tutorial Outline

- Model comparison
 - Widely applicable information criteria
 - Cross validation
- Model averaging

- How can we compare two or more models for the same data?
 - We have used posterior predictive checks to assess how well a model explains the data used to fit a model.
 - We have looked at Bayesian p values.
 - Now we'll learn additional methods for comparing between models.

- We aim for:
 - High goodness of fit
 - Model fits the data
 - Lower complexity
 - Fewer parameters (more parameters can lead to overfitting)
 - High generalizability
 - Model predicts future data well

- Within-sample accuracy:
 - The accuracy is measured with the same data used to fit the model.
- Out-of-sample accuracy:
 - The accuracy measured with data not used to fit the model.
- The within-sample accuracy will be higher and lead us to believe our model is better than it is.
- Leaving data out means less data to fit our model.

- To overcome this, we will use two methods:
 - Information criteria: Expressions that approximate out-of-sample accuracy as in-sample accuracy plus a term that penalizes model complexity.
 - Cross-validation: A method that involves dividing the available data into separate subsets that are alternatively used to fit and evaluate the models

Widely Applicable Information Criteria

$$WAIC = -2\sum_{i}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p(y_i \mid \theta^s) \right) + 2\sum_{i}^{n} \left(V_{s=1}^{S} \log p(y_i \mid \theta^s) \right)$$

A measure of how well the model fits the data

A measure of the effective number of parameters

- We will choose the model with the lower WAIC.
- The second term corrects for how much the likelihood would change if we had new data.
 - If two models fit the data equally well, we will choose the simpler one.

Cross Validation

- Divide our data into k parts.
- Use k-1 parts to fit the model and test it on the left-out portion.
- We get k models and k accuracy values.
- The accuracy of the model is the average of the k accuracy values.
- Fit the model on all the data one final time.
 - This is the final model for future use.

Cross Validation

- When K equals the number of data points, we get what is known as leave-one-out cross validation (LOOCV), meaning we fit the model to all but one data point each time.
- Practically, this is computationally expensive, and we are going to estimate it.

- Null model: coin is fair.
- Alternative model: coin is biased.

Graphical model

α , β beta \sim binomial N

PyMC (a PPL)

▶ observed data

```
coords = {"data": np.arange(len(data))}
with pm.Model(coords=coords) as model_1:
    thet = pm.Beta('thet', alpha=1., beta=1.)
    y = pm.Bernoulli('y', p=thet, observed=data, dims = 'data')
    idata1 = pm.sample(1000, chains = 4 idata_kwargs={"log_likelihood":True})
arviz.InferenceData

> posterior
    log_likelihood
> sample_stats
```

First, let's look at the WAIC and LOO of our model:


```
# Compare
      az.compare({"alternative": idata1, "null": idata null})
                   Higher =
      From best
      to worst
                    better
                  elpd_loo
                              p_loo elpd_diff
                                                 weight
                                                                       dse warning scale
           rank
                                                               se
alternative
                 -60.263062
                            0.963782
                                       0.000000
                                                         4.245280
                                                0.94854
                                                                   0.000000
                                                                               False
                                                                                        log
  null
                -65.995594
                            0.193007
                                       5.732533
                                                0.05146
                                                         0.800336
                                                                               False
                                                                   3.444944
                                                                                        log
                                        If the
                                                                   than the
                                      difference
                                                                   standard
                                       between
                                                                     error
                                       the elpd
                                       values is
                                        bigger
                                                           Then we say that there is a meaningful
                                                             difference between the two models
```

■ That was the LOO values, now we can do the same with the widely accepted information criteria.

- The WAIC and LOO values are generally almost exactly the same.
 - At this point, it is generally more accepted to use the LOO.

- We created the null model by using a very narrow posterior defined by the ROPE.
- We defined the ROPE as [0.45, 0.55].
- Another option for comparison is to check if the HDI and ROPE overlap.
- Based on our model comparison using LOO and WAIC, we concluded that there is a meaningful difference between the null and alternative models.

- We arrive at the same conclusion looking at the HDI and ROPE
 - There is no overlap between them
 - We reject the null model of a fair coin

■ In the lecture, you looked at bike rentals as a function of temperature using several models:

• In the lecture, you looked at bike rentals as a function of temperature using two models:

Linear Model

Negative Binomial Model

In the lecture, you looked at bike rentals as a function of temperature using two models:

Linear Model

Negative Binomial Model

```
with pm.Model() as model_neg:
    beta0 = pm.Normal("beta0", mu=mu_0, sigma=sigma_0)
    beta1 = pm.Normal("beta1", mu=mu_1, sigma=sigma_1)
    alpha = pm.HalfNormal("alpha", sigma=sigma_alpha)
    mu = pm.Deterministic("mu", pm.math.exp(beta0 + beta1 * bikes.temperature))
    y_pred = pm.NegativeBinomial("y_pred", mu=mu, alpha=alpha, observed=bikes.rented)
    idata_neg = pm.sample(1000, chains = 4, idata_kwargs={"log_likelihood":True})
```

■ In the lecture you compared the two using posterior predictive checks and saw that the negative binomial model was better:

Let's add the WAIC and LOO to the comparison:

	rank	elpd_loo	p_loo	elpd_diff	weight	se	dse	warning	scale
negative_binomial	0	-2153.169315	2.742507	0.000000	1.0	19.804978	0.000000	False	log
linear	1	-2300.275960	4.858970	147.106645	0.0	26.995013	21.713316	False	log
	rank	elpd_waic	p_waic	elpd_diff	weight	se	dse	warning	scale
negative_binomial	rank 0	elpd_waic -2153.163883	<pre>p_waic 2.737075</pre>	elpd_diff 0.000000	weight	se 19.804702	dse	warning False	scale log

- We also learned about multiple regression.
- Another use for model comparison can be to test the value of adding additional independent variables.
 - Adds information to the model.
 - Adds complexity.
- We can add another independent variable of the humidity of the day.

Create and sample:

Now let's compare all three:

az.compare({"linear": idata_lb, "negative_binomial": idata_neg, "negative_binomial"							le": idata_	mlb)	
	rank	elpd_loo	p_loo	elpd_diff	weight	se	dse	warning	scale
negative_binomial_multiple	0	-2141.148332	3.725948	0.000000	1.000000e+00	20.860020	0.000000	False	log
negative_binomial	1	-2153.169315	2.742507	12.020983	0.000000e+00	19.804978	3.837865	False	log
linear	2	-2300.275960	4.858970	159.127628	2.428169e-11	26.995013	22.536404	False	log

- We can see that the difference between the LOO values for the two negative binomial models is larger than the standard error.
 - We can conclude from this that it is worth adding the humidity despite it leading to a more complex model.

- Instead of choosing one model, we can also average the different models.
- We can compute a weighted average of the different models.
- The weights are computed in the compare function.
 - They are the relative weight of each model and, in large, represent the probability of each model given the data.

az.compare({ "linear": idata_lb, "negative_binomial": idata_neg, "negative_binomial_multiple": idata_mlb})									
	rank	elpd_loo	p_loo	elpd_diff	weight	se	dse	warning	scale
negative_binomial_multiple	0	-2141.148332	3.725948	0.000000	1.000000e+00	20.860020	0.000000	False	log
negative_binomial	1	-2153.169315	2.742507	12.020983	0.000000e+00	19.804978	3.837865	False	log
linear	2	-2300.275960	4.858970	159.127628	2.428169e-11	26.995013	22.536404	False	log

Let's create random data with two models that give not zero weights.

- We'll use a linear model
 - Simpler but fits data less well
- And a quadratic model
 - Fits better but more complex

■ The means of the two models:

Comparing between them yields:

```
cmp df = az.compare({"linear": idata linear, "quadratic": idata quad})
cmp df
          rank
                  elpd loo
                            p_loo elpd_diff
                                                 weight
                                                                       dse warning scale
                                                               se
             0 -212.428280 4.036177
                                      0.000000 0.945733 7.300654
quadratic
                                                                  0.000000
                                                                              False
                                                                                       log
             1 -236.306868 2.944081 23.878587 0.054267
                                                         6.160884
                                                                  6.660192
                                                                              False
  linear
                                                                                       log
```

We will use these weights to compute the weighted average model.

Comparing between them yields:

We will use these weights to compute the weighted average model.

```
avg_preds = az.weight_predictions([idata_quad, idata_linear], weights=cmp_df["weight"].values)
```

Plotting:

- We can also define the weights however we like.
 - Example: half to each of the two models.

