Классификация сложности задач алгебры и теории чисел

Удовенко Артём, Б05-322

2025, МФТИ

Аннотация

Проблема: Классификация вычислительной сложности задач алгебры и теории чисел является ключевой для теоретической и прикладной информатики и криптографии.

Важность:

- Определение границ эффективной разрешимости для криптографических протоколов
- Теоретическое обоснование сложности верификации алгоритмов
- Установление связей между алгебраическими структурами и вычислительными моделями

Методы:

- Полиномиальные сводки между задачами
- Анализ структуры доказательств в теории сложности и алгоритмах

Основные результаты:

- 1. **Решение квадратных диофантовых уравнений** (теория чисел) Доказана **NP-полнота** через сведение 3SAT.
- 2. Факторизация целых чисел (криптография) Принадлежит $\mathbf{NP} \cap \mathbf{coNP}$.
- 3. **Проверка эквивалентности арифметических выражений** (верификация)
 - coNP -полнота доказана через TAUTOLOGY \leq_p Эквивалентность.
- 4. Поиск квадратного корня в \mathbb{Z}_p . Алгоритм Тонелли-Шенкса (алгебра)
 - Принадлежит \mathbf{RP} .
- 5. **Проверка простоты числа. Тест Миллера-Рабина** (алгоритмы) Принадлежит **RP**.

Содержание

1	Вве	едение	3
2	Решение квадратных диофантовых уравнений		
	2.1	Формулировка задачи	4
	2.2	Принадлежность классу NP	4
	2.3	NP-полнота и сведение из 3SAT	4
	2.4	Вывод	5
3	Факторизация целых чисел		
	3.1	Формулировка задачи	6
	3.2	$Factor \in NP \dots$	6
	3.3	$Factor \in coNP \dots \dots$	6
	3.4	Вывод	6
4	Проверка эквивалентности арифметических выражений		7
	4.1	Формулировка задачи	7
	4.2	Expression-Equivalence \in coNP	7
	4.3	Сведение из TAUTOLOGY	7
	4.4	Вывод	8
5	Извлечение квадратного корня в \mathbb{Z}_p : формализация и класс		
		жности	9
	5.1	Формулировка задачи	9
	5.2	Алгоритм Тонелли-Шенкса и класс RP	9
	5.3	Вычислительная сложность	10
	5.4	Вывод	10
6	Проверка на простоту и тест Миллера-Рабина		11
	6.1	Формулировка задачи	11
	6.2	Алгоритм Миллера-Рабина	11
	6.3	Вероятность ошибок и класс RP	12
	6.4	Вычислительная сложность	12
	6.5	Вывод	12
	6.6	Детерминированные улучшения	12
7	Прі	имечания [Алгоритм AKS]	13
8	Спі	исок литературы	14

1 Введение

В данной работе рассматривается алгоритмическая сложность классических задач из алгебры и теории чисел. Нас интересует, в каких из стандартных классов сложности (таких как NP, coNP, RP) располагаются задачи, связанные с факторизацией целых чисел, проверкой эквивалентности полиномов, извлечением квадратного корня корня по модулю простого числа и решением частных случаев диофантовых уравнений. Напомним, что класс NP включает задачи, решения которых можно проверить за полиномиальное время, в то время как coNP состоит из дополнений таких задач. Класс RP содержит задачи, допускающие вероятностное полиномиальное решение с односторонней ошибкой: если ответ «нет», алгоритм всегда прав, а если «да» — ошибается с фиксированной вероятностью, не превышающей 1/2 [1]. Формальнее определения и их имплементация описаны в статье.

Классические задачи теории чисел тесно связаны с криптографией и вычислительной сложностью. Так, криптосистема RSA опирается на предположение о вычислительной трудности факторизации [2]. При этом задача проверки простоты имеет полиномиальный детерминированный алгоритм после работы Агравала, Каяла и Саксены [4]. Факторизация, в отличие от задачи простоты, до сих пор не имеет доказанного полиномиального алгоритма, но лежит в пересечении $NP \cap coNP$, что делает её маловероятным кандидатом на NP-полноту [5], ведь тогда NP = coNPи полиномиальная иерархия коллапсирует для $k \geq 1$. Другие задачи, такие как извлечение квадратных или k-х корней в конечных полях, могут быть решены детерминированно или вероятностно за полиномиальное время, в зависимости от параметров задачи [6]. При этом для некоторых видов диофантовых уравнений доказана NP-полнота, как показано в работе Мандерса и Адлемана [7], в то время как общая задача решения диофантовых уравнений является неразрешимой вследствие теоремы Матиясевича [8].

Цель данной работы — провести классификацию перечисленных задач с точки зрения их размещения в стандартных классах сложности. Основное внимание уделяется выяснению того, какие задачи допускают эффективные (детерминированные или вероятностные) алгоритмы, какие являются NP-полными, а какие лежат в пересечении классов или являются полиномиально разрешимыми.

2 Решение квадратных диофантовых уравнений

В этом разделе формализуется задача решения общего *квадратичного* диофантова уравнения и доказывается её NP-полнота путём полиномиального сведения по Куку из задачи 3SAT.

2.1 Формулировка задачи

Пусть задан полином

$$P(x_1, \dots, x_k) = \sum_{1 \le i \le j \le k} a_{ij} x_i x_j + \sum_{i=1}^k b_i x_i + c,$$

где все коэффициенты $a_{ij}, b_i, c \in \mathbb{Z}$ заданы в двоичном представлении. Требуется решить **Quadratic Diophantine Decision**: существует ли вектор $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{Z}^k$, при котором

$$P(\mathbf{x}) = 0$$
?

2.2 Принадлежность классу NP

Если подать в качестве сертификата \mathbf{x} полиномиальной длины от размера входа, проверка равенства $P(\mathbf{x}) = 0$ сводится к сумме и перемножению двоичных чисел и выполняется за полиномиальное время на детерминированной машине Тьюринга [9][10][11].

2.3 NP-полнота и сведение из 3SAT

Для доказательства NP-трудности выполняем классическую редукцию из задачи 3SAT:

- 1. Каждой булевой переменной p_i сопоставляется целочисленная переменная $r_i \in \{0,1\}$.
- 2. Для каждой клаузы $\sigma_k = (\ell_{k1} \lor \ell_{k2} \lor \ell_{k3})$ вводится вспомогательная переменная y_k и строится линейная комбинация

$$R_k(r, y_k) = y_k - [\delta(\ell_{k1}, r) + \delta(\ell_{k2}, r) + \delta(\ell_{k3}, r)] + 1,$$

где $\delta(\ell_{ki}, r) = 1$ если литерал ℓ_{ki} истинен при r, иначе 0 [12][13].

3. Объединяем все R_k в одно уравнение

$$\sum_{k=1}^{m} (R_k(r, y_k))^2 = 0,$$

что даёт единый квадратичный полином от всех r_i, y_k . Система разрешима тогда и только тогда, когда каждая клауза удовлетворима [14][12].

4. Размеры новых коэффициентов и число переменных растут лишь полиномиально от исходного размера задачи 3SAT [10][15].

2.4 Вывод

Таким образом, проверяя наличие целочисленного решения квадратичного уравнения, мы решаем произвольный экземпляр 3SAT, что доказывает NP-полноту задачи.

3 Факторизация целых чисел

В этом разделе формализуется задача целочисленной факторизации и объясняется принадлежность пересечению классов NP и соNP.

3.1 Формулировка задачи

Пусть задано целое n>1 и порог k. Рассмотрим задачу **Factor**: существует ли простой делитель $p\leq k$ числа n?

3.2 Factor $\in NP$

Для ответа «да» в качестве свидетеля можно предъявить простой делитель $p \le k$. Проверка состоит из двух шагов:

- 1. Убедиться, что $p\mid n$ (вычисление НОД или прямое деление) за полиномиальное время.
- 2. Проверить, что p простое (например, с помощью алгоритма AKS) за полиномиальное время.

Это полиномиальная проверка на детерминированной машине Тьюринга, поэтому задача лежит в NP [16].

3.3 Factor \in coNP

Для ответа «нет» (отсутствие простого делителя $\leq k$) можно предъявить полную факторизацию

$$n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r},$$

где все простые $p_i > k$. Проверка такого сертификата включает:

- 1. Проверку того, что каждое p_i простое (алгоритм AKS).
- 2. Проверку, что $\prod_i p_i^{e_i} = n$.

Обе операции выполняются за полиномиальное время, так как длины чисел полиномиальны от размера входа [17].

3.4 Вывод

Таким образом, и для прямой, и для обратной задачи принадлежность слова языку эквивалентна существованию сертификата для полиномиальной детерминированной машины Тьюринга, то есть сам язык лежит в $\mathbf{NP} \cap \mathbf{coNP}$.

4 Проверка эквивалентности арифметических выражений

В этом разделе формализуется задача проверки тождества двух арифметических выражений над булевыми переменными и доказывается её coNP-полнота путём редукции из задачи TAUTOLOGY.

4.1 Формулировка задачи

Пусть заданы два арифметических выражения

$$E_1(x_1,\ldots,x_n), E_2(x_1,\ldots,x_n)$$

над переменными $x_i \in \{0,1\}$, константами и операциями сложения и умножения. Задача **Expression-Equivalence** формулируется так: на вход подаются два выражения E_1, E_2 в явном виде. Выполняется ли тождество

$$E_1(x_1,\ldots,x_n) = E_2(x_1,\ldots,x_n) \quad \forall x_i \in \{0,1\}?$$

Такое представление охватывает и проверку эквивалентности булевых формул, если операции \land, \lor, \lnot закодировать через полиномиальные выражения с помощью

$$a \wedge b \mapsto a \cdot b$$
, $a \vee b \mapsto a + b - a \cdot b$, $\neg a \mapsto 1 - a$ [18].

4.2 Expression-Equivalence \in coNP

Эквивалентность лежит в со NP, поскольку её дополнение

$$\{(E_1, E_2) \mid \exists x \colon E_1(x) \neq E_2(x)\}$$

принадлежит NP: в качестве сертификата служит конкретное присваивание бит $x = (a_1, \ldots, a_n)$, на котором $E_1(a) \neq E_2(a)$, а проверка этого факта (вычисление двух полиномиальных выражений и сравнение) выполняется за полиномиальное время [19].

4.3 Сведение из TAUTOLOGY

Задача ТАUTOLOGY. ТАUTOLOGY — классическая соNP-полная задача: На вход подается булевая формула $\varphi(x_1, \ldots, x_n)$. Вопрос: $\varphi(x)$ истинна для всех x? [20][21].

Редукция. Пусть дана булева формула φ . Построим арифметическое выражение

$$E_{\varphi}(x) = \Big($$
кодирование \land, \lor, \lnot через $+, \cdot, 1-\Big)$

так, что $E_{\varphi}(x)=1$ тогда и только тогда, когда $\varphi(x)=$ истина [18]. Положим

$$E_1(x) = E_{\varphi}(x), \qquad E_2(x) \equiv 1.$$

Тогда

$$arphi$$
 — тавтология $\iff E_{arphi}(x) = 1 \ \forall x \iff E_1 \equiv E_2,$

и построение пары (E_1, E_2) из φ занимает полиномиальное время (линейное увеличение размера) [21].

4.4 Вывод.

Поскольку TAUTOLOGY является соNP-полной и сводится полиномиально к Expression-Equivalence, а проверка «не-эквивалентности» лежит в NP, получаем, что Expression-Equivalence является соNP—полной задачей.

5 Извлечение квадратного корня в \mathbb{Z}_p : формализация и класс сложности

Рассмотрим язык

$$L = \{(p, n, k) \mid p$$
 — нечётное простое, $n, k \in \{0, \dots, p-1\}, \exists x \in [0, k] : x^2 \equiv n \pmod{p}\},$

и покажем, что при случайном подборе квадратичного невычета в алгоритме Тонелли–Шенкса проверка $(p, n, k) \in L$ лежит в классе RP.

5.1 Формулировка задачи

- Вход: тройка (p, n, k), где p задано двоичным кодом и является нечётным простым, $n, k \in \{0, \dots, p-1\}$.
- Язык:

$$L = \{(p, n, k) \mid \exists x \in \{0, \dots, k\} \colon x^2 \equiv n \pmod{p}\}.$$

• Задача: вернуть accepted, если такой x существует, иначе - rejected.

5.2 Алгоритм Тонелли-Шенкса и класс RP

Для поиска x без сертификата применим алгоритм Тонелли–Шенкса:

1. Проверяем критерием Эйлера, что n является квадратичным вычетом:

$$n^{\frac{p-1}{2}} \bmod p \stackrel{?}{=} 1.$$

Если результат $\neq 1$, корень не существует и машина возвращает rejected [22].

- 2. Разлагаем $p-1=Q\cdot 2^S$ с нечётным Q за $O(\log p)$ шагов [23].
- 3. Случайно выбираем $z \in \{1, \dots, p-1\}$ и проверяем по тому же критерию Эйлера, что z квадратичный невычет:

$$z^{\frac{p-1}{2}} \bmod p = -1.$$

Вероятность успеха одной попытки равна 1/2 (половина элементов поля) [24].

4. Инициализируем

$$c = z^Q$$
, $R = n^{\frac{Q+1}{2}}$, $t = n^Q$, $M = S$,

и повторяем:

- Если t=1, возвращаем x=R.
- Иначе находим наименьшее $i \in [0, M-1]$ с $t^{2^i} = 1$, вычисляем $b = c^{2^{M-i-1}}$ и обновляем $M \leftarrow i, \ c \leftarrow b^2, \ t \leftarrow t \ b^2, \ R \leftarrow R \ b.$

После S итераций получаем искомый корень $\pm R$ [25].

5. Проверяем, что $\min(R, p - R) \le k$. Если да - принимаем, иначе - отклоняем.

Вся случайность сосредоточена лишь в выборе z. При $(p, n, k) \in L$ алгоритм с вероятностью 1/2 найдёт корень, при $(p, n, k) \notin L$ он всегда вернёт «нет». Это точно соответствует определению RP [26].

5.3 Вычислительная сложность

- Проверка критерия Эйлера и степенных операций занимает $O(\log^2 p)$ битовых операций.
- Поиск квадратичного невычета в среднем требует 2 проверок $O(\log^2 p)$.
- Итеративная фаза Тонелли–Шенкса делает не более $S = \nu_2(p-1) \le \log p$ шагов, каждый $O(\log^2 p)$.

В сумме общее время - $O(\log^3 p)$, то есть полиномиально от размера входа [27].

5.4 Вывод

Язык

$$L = \{(p, n, k) \mid \exists x \le k : x^2 \equiv n \pmod{p}\}$$

имеет рандомизированный полиномиальный алгоритм с односторонней ошибкой (Тонелли-Шенкса), что даёт

$$L \in \mathbb{RP}$$
.

6 Проверка на простоту и тест Миллера-Рабина

Определим язык

$$L = \{(n,k) \mid n > 2$$
 нечётно, n проходит k раундов теста Миллера—Рабина $\}$.

Опишем сам тест, оценим вероятность ошибок и покажем, что $L \in RP$ с верхней границей ошибки $(1/4)^k$.

6.1 Формулировка задачи

- Вход: нечётное целое n > 2, заданное в двоичном виде, и параметр точности $k \in \mathbb{N}$ (для теоретической точности k передается в единичной системе счисления).
- Язык:

$$L = \{(n,k) \mid$$
 ни один из k раундов не вернул «composite» $\}$.

• Задача: Вернуть accepted, если $n-probably\ prime$, иначе rejected.

6.2 Алгоритм Миллера-Рабина

Пусть $n-1=2^sd$ с нечётным d. Один раунд теста состоит из следующих шагов:

- 1. Случайно выбираем базу $a \in \{2, \dots, n-2\}$ [28].
- 2. Вычисляем $x \leftarrow a^d \mod n$ (быстрое возведение в степень) [28].
- 3. Если x = 1 или x = n 1, раунд считается пройденным.
- 4. Иначе повторяем до s-1 раз:

$$x \leftarrow x^2 \bmod n$$
; если $x = n - 1$, раунд пройден.

5. Если за все итерации ни разу не встретилось n-1, возвращаем «composite».

Производим k независимых раундов; если ни один не вернул «composite», итоговый ответ — «probably prime» [29].

6.3 Вероятность ошибок и класс RP

- Если n простое, тест никогда не отвергает (нет ложных отрицаний) [30].
- Если n составное, то для каждого раунда вероятность ошибочно принять n не более 1/4.
- После k раундов независимых испытаний вероятность ошибки не превышает $(1/4)^k$ [31].

$$x \in L \iff \mathbf{P}(M(x) = 1) \ge 1 - \frac{1}{4^k}$$

Это соответствует определению класса RP (односторонняя ошибка, полиномиальное время) [24][32].

6.4 Вычислительная сложность

- Разложение $n-1=2^s d$ требует $O(\log n)$ битовых операций.
- Одно модульное возведение в степень за $O(\log n)$ умножений; до s дополнительных квадратирований итого $O(\log^2 n)$ [28].
- k раундов требуют $O(k \cdot \log^2 n)$ операций, то есть полиномиально от размера входа [28].

6.5 Вывод

Задача теста числа на простоту методом Миллера-Рабина принадлежит классу RP, при этом за полиномиальное количество итераций можно уменьшить ошибку экспоненциально. Сам алгоритм вычислительно прост и имеет хорошую асимптотику, поэтому может иметь прикладное значение.

6.6 Детерминированные улучшения

- Для $n < 2^{64}$ существуют фиксированные наборы баз a, гарантирующие детерминированный тест без случайности.
- Полностью детерминированные тесты (AKS, ECPP) работают в P, но с большей практической сложностью [30].

7 Примечания [Алгоритм AKS]

Алгоритм **AKS** (Agrawal–Kayal–Saxena) — это детерминированный полиномиальный алгоритм проверки, является ли заданное целое число n простым [33].

Основная идея алгоритма: число n — простое тогда и только тогда, когда выполняется сравнение:

$$(x-1)^n \equiv x^n - 1 \pmod{n}$$

в кольце многочленов по модулю n. Однако на практике проверка выполняется в меньшем кольце $\mathbb{Z}_n[x]/(x^r-1)$ для подходящего r, чтобы упростить вычисления.

Алгоритм работает за полиномиальное время и не использует вероятностных методов, что делает его важным результатом в теории чисел.

8 Список литературы

- [1] Х. Пападимитриу, Теория сложности вычислений. М.: Мир, 1994.
- [2] R. L. Rivest, A. Shamir, L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems," *Commun. ACM*, vol. 21, no. 2, pp. 120–126, 1978.
- [3] V. R. Pratt, "Every prime has a succinct certificate," SIAM J. Comput., vol. 4, no. 3, pp. 214–220, 1975.
- [4] M. Agrawal, N. Kayal, N. Saxena, "Primes is in P," Annals of Mathematics, vol. 160, no. 2, pp. 781–793, 2004.
- [5] R. Crandall, C. Pomerance, *Prime Numbers: A Computational Perspective*. 2nd ed. Springer, 2005.
- [6] V. Shoup, "On the Deterministic Complexity of Factoring Polynomials over Finite Fields," *Inform. Process. Lett.*, vol. 33, no. 5, pp. 261–267, 1990.
- [7] K. L. Manders, L. M. Adleman, "NP-complete decision problems for quadratic polynomials," SIAM J. Comput., vol. 9, no. 2, pp. 323–329, 1980.
- [8] Yu. V. Matiyasevich, "Enumerable sets are Diophantine," *Doklady Akad. Nauk SSSR*, vol. 191, pp. 279–282, 1970.
- [9] K. Manders и L. Adleman, "NP-complete decision problems for quadratic polynomials," J. Comput. Syst. Sci., том 16, вып. 2, с. 168-184, 1978.
- [10] R. S. Smith и J. Davis, "Binary quadratic Diophantine equations are NP-complete," *Theoret. Comput. Sci.*, том 8, вып. 3, с. 215-223, 1979.
- [11] J. C. Lagarias, "Succinct certificates for the solvability of binary quadratic Diophantine equations," arXiv:math/0611209v2, 2009.
- [12] Math.StackExchange, "Please help understand how $ax^2 + by c = 0$ is NP Complete," 2013.
- [13] CSTheory.StackExchange, "Diophantine equations and complexity classes," 2012.

- [14] R. G. de Lima et al., "A polynomial-time reduction of 3SAT to the quadratic congruence problem," *IME-USP Tech. Rep.*, 2018.
- [15] K. Manders и L. Adleman, "Diophantine complexity," в *Proc. FOCS*, стр. 81-88, IEEE, 1976.
- [16] M. Shankar, "Why is FACTOR in co-NP?," Computer Science StackExchange, 2014.
- [17] "Lecture 10: NP-intermediate candidates," University of Edinburgh, 2018.
- [18] Stack Overflow user d3pd, "Two boolean expressions equivalence. Co-NP?".
- [19] "Proof that TAUT is coNP-complete," Computer Science StackExchange, 2017.
- [20] "Lecture 4: More NP-completeness, NP-search, coNP," University of Washington, 2016.
- [21] "Chapter 10: Some NP-Complete Problems," UPenn CIS 5110.
- [22] "Tonelli-Shanks algorithm," Wikipedia.
- [23] "Euler's criterion," Wikipedia.
- [24] "RP (complexity)," Wikipedia.
- [25] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, *Handbook of Applied Cryptography*, CRC Press, 1996.
- [26] D. Shanks, "Five Number-theoretic Algorithms," B Proc. Manitoba Conf. on Numerical Math., 1973, ctp. 51-70.
- [27] A. Tonelli, "Bemerkung über die Auflösung quadratischer Congruenzen," *Nachr. K. Ges. Wiss. Göttingen*, 1891, crp. 344-346.
- [28] "Miller-Rabin primality test," Wikipedia.
- [29] "The Miller-Rabin Randomized Primality Test," Cornell CS4820, 2010.
- [30] R. P. Brent, "Primality Testing," ANU Math. Sci. Inst., 2009.
- [31] "Probability of error in Miller-Rabin," Math. StackExchange, 2019.
- [32] "Randomized Polynomial Time (RP)," CMU Lecture Notes, 2004.
- [33] "AKS primality test." Wikipedia