Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

	1	2	3	4	Запас
					Ы
1	6	2	5	3	16
2	5	2	2	5	12
3	6	5	3	4	11
Потре	7	14	10	8	
бност					
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum a = 16 + 12 + 11 = 39$$

$$\sum b = 7 + 14 + 10 + 8 = 39$$

Занесем исходные данные в распределительную таблицу.

	1	2	3	4	Запас
					Ы
1	6	2	5	3	16
2	5	2	2	5	12
3	6	5	3	4	11
Потре	7	14	10	8	
бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	6	2[14]	5	3[2]	16
2	5[2]	2	2[10]	5	12
3	6[5]	5	3	4[6]	11
Потре	7	14	10	8	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 2*14 + 3*2 + 5*2 + 2*10 + 6*5 + 4*6 = 118$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1=5$	$v_2 = 2$	$v_3 = 2$	$v_4 = 3$
$u_1 = 0$	6	2[14]	5	3[2]

$u_2 = 0$	5[2]	2	2[10]	5
$u_3=1$	6[5]	5	3	4[6]

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_i <= c_{ij}$.

Минимальные затраты составят:

$$F(x) = 2*14 + 3*2 + 5*2 + 2*10 + 6*5 + 4*6 = 118$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.