Lecture 08

동기순서논리회로

개요

- 조합논리회로(combinational logic circuit)
 - 임의의 시점에서 이전 입력값에 관계없이 현재 입력값에 따라 출력이 결정되는 논리회로임
- 순서논리회로(sequential logic circuit)
 - 현재 입력값과 이전 출력 상태에 따라 출력값이 결정되는 논리회로임
 - 신호의 타이밍(timing)에 따라 다음과 같이 나눌 수 있음
 - 동기(synchronous) : 클록 펄스 입력을 통해서 동작함
 - 비동기(asynchronous): 입력이 변하는 순간에 따라 동작함

- 순서논리회로 해석 과정
 - ① 회로 입력과 출력에 대한 변수 명칭 부여
 - ② 조합논리회로가 있으면 조합논리회로의 불 대수식 유도
 - ③ 회로의 상태표 작성
 - ④ 상태표를 이용해 상태도 작성
 - ⑤ 상태 방정식 유도
 - ⑥ 상태표와 상태도를 분석하여 회로의 동작 설명
- 순서논리회로 형태
 - 무어 머신(Moore machine): 출력이 플립플롭의 현재 상태에만 의존함
 - 밀리 머신(Mealy machine) : 출력이 플립플롭의 현재 상태와 입력들에 모두 의존함

- 예, JK 플립플롭을 사용한 밀리 머신
 - ① 변수 명칭 부여
 - 입력 : *x*
 - 출력 : *y*
 - 플립플롭 출력 : *A*, *B*
 - ② 불 대수식 유도
 - 플립플롭 A의 입력 $J_A = x, K_A = x\bar{B}$
 - 플립플롭 B의 입력 $J_B = K_B = x + \bar{A}$
 - 시스템 출력 $y = AB\bar{x}$

■ 예, JK 플립플롭을 사용한 밀리 머신

③ 상태표 작성

현재	상태	입력	다음 상태		출력
A	В	x	A	В	y
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	1	0	0

■ 예, JK 플립플롭을 사용한 밀리 머신

- 예, JK 플립플롭을 사용한 밀리 머신
 - ⑤ 상태 방정식 유도

- 예, JK 플립플롭을 사용한 밀리 머신
 - ⑥ 회로의 동작 설명
 - 두 플립플롭의 현재 상태가 00이면, 입력 x = 0일 때 클록 펄스가 입력되면 01로 전이하며, 출력이 y = 0이 됨. 입력 x = 1일 때 클록 펄스가 입력되면 11로 전이하며, 출력이 y = 0이 됨.
 - 두 플립플롭의 현재 상태가 11이면, 입력 x = 0일 때 클록 펄스가 입력되면 11을 유지하며, 출력이 y = 1이 됨. 입력 x = 1일 때 클록 펄스가 입력되면 10로 전이하며, 출력이 y = 0이 됨.

- 특성표
 - 현재 상태와 입력값이 주어졌을 때, 다음 상태가 어떻게 변하는가를 나타 내는 표임
- 여기표(excitation table)
 - 현재 상태에서 다음 상태로 변했을 때 플립플롭의 입력 조건 상태를 나타 내는 표임
 - 순서논리회로를 설계할 때 많이 사용함

■ SR 플립플롭

<mark>특성표</mark>

입력		현재 상태	다음 상태
S	R	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	?
1	1	1	?

여기표

현재 상태	다음 상태	요구	입력
Q(t)	Q(t+1)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Х	0

SR 플립플<mark>롭의</mark> 진리표

S	R	Q(t+1)
0	0	부변
0	1	0
1	0	1
1	1	부정

2024, 03, 04.

■ JK 플립플롭

<mark>특성표</mark>

입력		현재 상태	다음 상태
J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

여기표

현재 상태	다음 상태	요구	입력
Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	Х
1	0	Х	1
1	1	Х	0

JK 플립플<mark>롭의</mark> 진리표

J	K	Q(t+1)
0	0	부변
0	1	0
1	0	1
1	1	토글

■ D 플립플롭

<mark>특성표</mark>

입력	현재 상태	다음 상태
D	Q(t)	Q(t+1)
0	0	0
0	1	0
1	0	1
1	1	1

여기표

현재 상태	다음 상태	요구 입력
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

D 플립플롭의 진리표

D	Q(t+1)
0	0
1	1

■ T 플립플롭

<mark>특성표</mark>

입력	현재 상태	다음 상태
T	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

여기표

현재 상태	다음 상태	요구 입력
Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

T 플립플롭의 진리표

T	Q(t+1)
0	부변
1	토글

- 동기 순서논리회로 = 조합논리회로 + 기억 소자
 - 조합논리회로 : AND나 OR 같은 <mark>기본 논리 게이트들</mark>의 결합으로 구성됨
 - 기억 소자 : <mark>플립플롭</mark> 1개 이상이 병렬 또는 직렬로 결합되어 구성됨
- 동기 순서논리회로 설계 과정
 - ① 회로 동작 기술(상태도 작성)
 - ② 정의된 회로의 상태표 작성
 - ③ 필요한 경우 상태 축소 및 사태 할당
 - ④ 플립플롭의 수와 종류 결정
 - ⑤ 플립플롭의 입력, 출력 및 각각의 상태에 문자기호 부여
 - ⑥ 상태표를 이용해 회로의 상태 여기표 작성
 - ⑦ 간소화 방법을 이용해 출력 함수 및 플립플롭의 입력 함수 유도

⑧ 순서논리회로도 작성

- JK 플립플롭을 이용한 순서논리회로 설계
 - ① 회로 동작 기술
 - 조합논리회로 설계와 달리 현재 상태가 다음 상태에 영향을 미침
 - 모든 상태와 이들 상태에 대한 전이 관계를 명확히 정의해 야 함
 - 플립플롭의 상태도나 다른 정보를 포함할 수 있음
 - 예, 다음과 같은 출력이 없는 상태도를 고려함

- JK 플립플롭을 이용한 순서논리회로 설계
 - ② 상태표 작성

현재	현재 상태		다음	상태
A	В	x	A	В
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

- JK 플립플롭을 이용한 순서논리회로 설계
 - ③ 플립플롭의 수와 형태 결정
 - 플립플롭의 수는 상태 수에 따라 결정됨
 - 상태 수는 N이면 플립플롭의 수는 [log₂ N]이 됨
 - 예, *N* = 4이면 플립플롭의 수는 [log₂ *N*] = 2가 됨
 - 설계할 회로 특성에 알맞으면서도 구현이 용이한 플립플롭을 선택함
 - 고려하는 예시에서 JK 플립플롭을 ¹/ 이용함

- JK 플립플롭을 이용한 순서논리회로 설계
 - ④ 상태 여기표 유도

현재	상태	입력	다음 상태		플립플롭 입력			력
A	В	x	A	В	J_A	K_A	J_B	K_B
0	0	0	0	0	0	Х	0	х
0	0	1	0	1	0	Х	1	х
0	1	0	1	0	1	х	х	1
0	1	1	0	1	0	Х	Х	0
1	0	0	1	0	х	0	0	х
1	0	1	1	1	х	0	1	х
1	1	0	1	1	х	0	Х	0
1	1	1	0	0	х	1	х	1

Q(t)	Q(t+1)	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

JK 플립플롭의 여기표

- JK 플립플롭을 이용한 순서논리회로 설계
 - ⑤ 플립플롭의 입력 함수 및 회로의 출력 함수 유도

현재	상태	입력	다음 상태		플립플롭 입력			력
A	В	x	A	В	J_A	K_A	J_B	K_B
0	0	0	0	0	0	Х	0	х
0	0	1	0	1	0	Х	1	х
0	1	0	1	0	1	Х	х	1
0	1	1	0	1	0	Х	Х	0
1	0	0	1	0	х	0	0	х
1	0	1	1	1	х	0	1	х
1	1	0	1	1	х	0	Х	0
1	1	1	0	0	х	1	Х	1

$$K_B = Ax + \bar{A}\bar{x} = A \odot x$$

- JK 플립플롭을 이용한 순서논리회로 설계
 - ⑥ 논리회로의 구현

- D 플립플롭을 이용한 순서논리회로 설계
 - ① 회로 동작 기술
 - 입력 변수와 출력 변수가 모두 있는 상태표를 고려함

- D 플립플롭을 이용한 순서논리회로 설계
 - ② 상태표 작성

현재	상태	입력	다음	다음 상태	
A	В	x	A	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

- D 플립플롭을 이용한 순서논리회로 설계
 - ③ 플립플롭의 수와 형태 결정 : D 플립플롭 2개가 필요함
 - ④ 상태 여기표 유도

현재	상태	입력	다음	다음 상태		롭 입력	출력
A	В	x	A	В	D_A	D_B	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	0

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

D 플립플롭의 여기표

- D 플립플롭을 이용한 순서논리회로 설계
 - ⑤ 플립플롭의 입력 함수 및 회로의 출력 함수 유도

현재	상태	입력	다음	상태	플립플	롭 입력	출력
A	В	x	A	В	D_A	D_B	у
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	0

- D 플립플롭을 이용한 순서논리회로 설계
 - ⑥ 논리회로의 구현

■ 상태 축소

현재	다음	상태	출력(<i>y</i>)	
상태	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	С	d	0	0
С	а	d	0	0
d	е	f	0	1
е	а	f	0	1
f	g	f	0	1
g	а	f	0	1

■ 상태 축소

현재	다음	상태	출력(y)		
상태	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	g	f	0	1	
g	а	f	0	1	

현재	다음	상태	출력(<i>y</i>)	
상태	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	С	d	0	0
С	а	d	0	0
d	е	f	0	1
е	а	f	0	1
f	$g \rightarrow e$	f	0	1

e와 g는 서로 등가이므로 이 중에서 한 가지 상태를 제거하면 됨

■ 상태 축소

현재	다음 상태		출력(y)		
상태	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	g → e	f	0	1	

현재	다음	상태	출력(y)		
상태	x = 0	x = 0 $x = 1$		x = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	$f \rightarrow d$	0	1	
е	а	$f \rightarrow d$	0	1	

f와 d는 서로 등가이므로 이 중에서 한 가지 상태를 제거하면 됨

■ 상태 축소

현재	다음	상태	출력(<i>y</i>)		
상태	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

<mark>최종 상태표</mark>

■ 상태 할당

■ 각 상태에 대해서 2진수(2진 코드)의 값을 할당함

■ 각 상태에 고유번호를 할당하면 됨

현재	다음	상태	출력(<i>y</i>)		
상태	x = 0	x = 1	x = 0	x = 1	
a (000)	a (000)	b (001)	0	0	
b (001)	c (010)	d (011)	0	0	
c (010)	a (000)	d (011)	0	0	
d (011)	e (100)	d (011)	0	1	
e (100)	a (000)	d (011)	0	1	

■ 플립플롭의 수와 형태 결정

■ 상태의 수가 5가지이므로 3개의 SR 플립플롭을 사용함

현재	다음	상태	출력(<i>y</i>)		
상태	x = 0	x = 1	x = 0	x = 1	
a (000)	a (000)	b (001)	0	0	
b (001)	c (010)	d (011)	0	0	
c (010)	a (000)	d (011)	0	0	
d (011)	e (100)	d (011)	0	1	
e (100)	a (000)	d (011)	0	1	

- 플립플롭의 수와 형태 결정
 - 상태의 수가 5가지이므로 3개의 SR 플립플롭을 사용함

	현	재 상	태	외부 입력	다	음 상	·태	플립플롭 입력				출력		
	A	В	С	x	A	В	С	S_A	R_A	S_B	R_B	Sc	R_{C}	y
	0	0	0	0	0	0	0	0	Х	0	Х	0	Х	0
а	0	0	0	1	0	0	1	0	Х	0	Х	1	0	0
b	0	0	1	0	0	1	0	0	Х	1	0	0	1	0
	0	0	1	1	0	1	1	0	Χ	1	0	Х	0	0
	0	1	0	0	0	0	0	0	Х	0	1	0	Х	0
С	0	1	0	1	0	1	1	0	Х	Х	0	1	0	0
d	0	1	1	0	1	0	0	1	0	0	1	0	1	0
L	0	1	1	1	0	1	1	0	Х	Х	0	Х	0	1
	1	0	0	0	0	0	0	0	1	0	Х	0	Х	0
е	1	0	0	1	0	1	1	0	1	1	0	1	0	1
	1	0	1	0	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х
	1	0	1	1	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х
ㅜ 과	1	1	0	0	Х	Х	Χ	Х	Χ	Х	Х	Х	Χ	Х
무 관 항	1	1	0	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
°	1	1	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	1	1	1	1	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х

■ 플립플롭의 입력 함수 및 회로의 출력 함수 유도

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
AB	00	01	11	10
00	Х	Х		
01	1			1
11	Х	х	Х	Х
10	Х		Х	Х
		D	D.=	
		$R_B =$	= BX	

AB	00	01	11	10				
00								
01			1					
11	Х	Х	X	Х				
10		1	х	Х				
	y = Ax + BCx							

■ 논리회로의 구현

미사용 상태의 설계

- 순서논리회로
 - m개의 플립플롭을 가지면 최대 2^m 가지 현재 상태와 다음 상태를 가짐
 - 모두 상태를 사용하지 않을 수 있지만, 미사용 상태가 순서논리회로의 초기 상태가 되면 대응이 필요함
 - 예, 출력이 없고 2가지 상태(000, 001)는 사용되지 않은 상태도를 고려함

미사용 상태의 설계

■ 여기표

ė	현재 상태			다음 상태			플립플롭 입력					
A	В	С	x	A	В	С	J_A	K_A	J_B	K_B	Jc	Kc
0	1	0	0	0	1	1	0	Х	Х	0	1	Х
0	1	0	1	0	1	0	0	Х	х	0	0	Х
0	1	1	0	0	1	1	0	Х	х	0	х	0
0	1	1	1	1	1	1	1	Х	х	0	х	0
1	0	0	0	1	0	0	х	0	0	Х	0	Х
1	0	0	1	1	1	0	х	0	1	Х	0	Х
1	0	1	0	1	0	1	х	0	0	Х	х	0
1	0	1	1	1	0	0	х	0	0	Х	х	1
1	1	0	0	1	1	0	х	0	х	0	0	Х
1	1	0	1	0	1	0	х	1	х	0	0	Х
1	1	1	0	1	0	1	Х	0	Х	1	Х	0
1	1	1	1	1	1	1	Х	0	Х	0	Х	0

Q(t)	Q(t+1)	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

미사용 상태의 설계

■ 플립플롭의 입력 함수 유도

AB	00	01	11	10
00	Χ	X	Х	Х
01	Χ	Х	Х	Х
11	Χ	Х	х	Х
10		٦		
		$J_B =$	$= \bar{C}x$	

AB	00	01	11	10
00	Х	Х	х	Х
01	Х	Х		
11	Х	Х		
10	Х	Х	1	
		$K_C =$	$= \bar{B}x$	

미사용 상태의 설계

■ 논리회로의 구현

미사용 상태는 논리회로에 대입하여 다음 상태가 어떤지 구할 수 있음

현재 상태		입력	С	ㅏ음 상	태	
A	В	С	x	A	В	C
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	0	1
0	0	1	1	1	0	0

미사용 상태의 설계

■ 미사용 상태를 포함하는 상태도

■ 카운터

 플립플롭을 사용한 순서논리회로로, 클록 펄스가 입력될 때마다 미리 정 해진 일련의 순서에 따라 상태가 변하게 됨

■ 2잔 카운터

- 설계가 가장 간단한 카운터
- n비트 2진 카운터는 플립플롭 n개로 구성되며 0에서 $2^n 1$ 까지 순서를 가질 수 있음
- 예, 2비트 2진 카운터 : 0(00) → 1(01) → 2(10) → 3(11) → 0(00) → ...

■ 카운터 설계

여기 가지 플립플롭을 사용할 수 있으나, 주로 토글 상태가 있는 T 플립플롭이나 JK 플립플롭을 사용하면 쉽게 설계할 수 있음

■ 예, JK 플립플롭을 사용하는 3비트 2진 카운터

현재 상태				나음 상태	태
A	В	C	A	В	C
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

■ 예, JK 플립플롭을 사용하는 3비트 2진 카운터

ģ	현재 상태	EH	С	나음 상	EH	플립플롭 입력					
A	В	С	A	В	С	J_A	K_A	J_B	K_B	Jc	Kc
0	0	0	0	0	1	0	Х	0	Х	1	Х
0	0	1	0	1	0	0	Х	1	Х	х	1
0	1	0	0	1	1	0	Х	х	0	1	Х
0	1	1	1	0	0	1	Х	х	1	х	1
1	0	0	1	0	1	х	0	0	Х	1	Х
1	0	1	1	1	0	х	0	1	Х	х	1
1	1	0	1	1	1	х	0	х	0	1	Х
1	1	1	0	0	0	х	1	х	1	х	1

Q(t)	Q(t+1)	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

43

■ 예, JK 플립플롭을 사용하는 3비트 2진 카운터

■ 예, JK 플립플롭을 사용하는 3비트 2진 카운터

- 상태 방정식
 - 현재 상태와 입력 변수의 함수로 플립플롭의 상태 변화에 관한 조건을 명시하는 불 대수식으로 다음 상태에 관한 조건이 주어지는 식임
 - 여기표보다 상태표에서 더 쉽게 유도할 수 있음
 - 상태표에 표시된 정보와 똑같은 내용을 대수적으로 표시하고 있으며, 플 립플롭의 특성 방정식과 형태가 유사함
- 여기표를 사용하지 않고 상태 방정식을 이용해 순서논리회 로를 설계할 수 있음
- 상태 방정식을 이용하는 경우 D 플립플롭이나 JK 플립플롭을 사용하여 순서논리회로를 설계하는 것이 더욱 편리함

■ JK 플립플롭을 사용한 상태 방정식

현재	현재 상태		다음	상태	출력
A	В	x	A	В	y
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	1	0

■ JK 플립플롭을 사용한 상태 방정식

현재	현재 상태		다음	상태	출력
A	В	x	A	В	y
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	1	0

$$A(t+1) = \bar{A}B\bar{x} + A\bar{B}\bar{x} + A\bar{B}x + ABx$$

$$B(t+1) = \bar{A}\bar{B}\bar{x} + A\bar{B}\bar{x} + \bar{A}Bx + ABx$$

JK 플립플롭의 특성 방정식 $Q(t+1) = J\bar{Q} + \bar{K}Q$

$$A(t+1) = \bar{A}(B\bar{x}) + A\left(\overline{\bar{B}\bar{x} + \bar{B}x + Bx}\right)$$

$$B(t+1) = \bar{B}(\bar{A}\bar{x} + A\bar{x}) + B\left(\overline{\bar{A}x + Ax}\right)$$

■ JK 플립플롭을 사용한 상태 방정식

현재	현재 상태		다음	상태	출력
A	В	x	A	В	y
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	1	0

$$A(t+1) = \bar{A}(B\bar{x}) + A\left(\overline{\bar{B}\bar{x} + \bar{B}x + Bx}\right)$$

$$B(t+1) = \bar{B}(\bar{A}\bar{x} + A\bar{x}) + B\left(\overline{\bar{A}x + Ax}\right)$$

$$J_A = B\bar{x}$$
 $K_A = \overline{B}\bar{x} + \overline{B}x + Bx$ $J_B = A\bar{x} + A\bar{x} = \bar{x}$ $K_B = A\bar{x} + A\bar{x} = \bar{x}$

$$y = \bar{A}Bx + A\bar{B}x = x(\bar{A}B + A\bar{B}) = x(A \oplus B)$$

■ JK 플립플롭을 사용한 상태 방정식

■ D 플립플롭을 사용한 상태 방정식

현재 상태		입력	다음	상태
A	В	x	A	В
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

■ D 플립플롭을 사용한 상태 방정식

현재 상태		입력	다음	상태
A	В	x	A	В
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

$$A(t+1) = \bar{A}\bar{B}\bar{x} + A\bar{B}\bar{x} + A\bar{B}x + ABx$$

$$B(t+1) = \bar{A}B\bar{x} + AB\bar{x} + A\bar{B}x + ABx$$

$$A(t+1) = \bar{B}\bar{x} + Ax$$
$$B(t+1) = B\bar{x} + Ax$$

$$D_A = \bar{B}\bar{x} + Ax$$

$$D_B = B\bar{x} + Ax$$

51

■ D 플립플롭을 사용한 상태 방정식

- 디코더(decoder)
 - 입력 변수 n개에 대한 최소항(minterm) 2^n 개를 출력하는 기능을 수행함
 - 임의의 불 함수는 곱의 합(sum of product)형으로 표현할 수 있음
- 디코더와 플립프롭을 사용하면 순서논리회로를 설계할 수 있음

성제	현재 상태		다음 상태		
면제	언제 정대		x = 0		= 1
A	В	A	В	A	В
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	1	0	1
1	1	0	0	1	0

2024. 03. 04.

01

■ 여기표

현재 상태		입력	다음 상태		플립플롭 입력				
A	В	x	A	В	S_A	R_A	S_B	R_B	
0	0	0	1	0	1	0	0	х	
0	0	1	0	0	0	х	0	х	
0	1	0	1	1	1	0	Х	0	
0	1	1	1	1	1	0	Х	0	
1	0	0	0	1	0	1	1	0	
1	0	1	0	1	0	1	1	0	
1	1	0	0	0	0	1	0	1	
1	1	1	1	0	Х	0	0	1	

Q(t)	Q(t+1)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Х	0

■ 여기표

현재 상태		입력	다음 상태		플립플롭 입력			
A	В	x	A	В	S_A	R_A	S_B	R_B
0	0	0	1	0	1	0	0	х
0	0	1	0	0	0	х	0	х
0	1	0	1	1	1	0	Х	0
0	1	1	1	1	1	0	Х	0
1	0	0	0	1	0	1	1	0
1	0	1	0	1	0	1	1	0
1	1	0	0	0	0	1	0	1
1	1	1	1	0	Х	0	0	1

$$S_A(A, B, x) = \sum m(0,2,3)$$

$$R_A(A, B, x) = \sum m(4,5,6)$$

$$S_B(A,B,x) = \sum m(4,5)$$

$$R_B(A,B,x) = \sum m(6,7)$$

■ 논리회로의 구현

