

Bayesian Inversion

Bangti Jin (UCL-CS, b.jin@ucl.ac.uk)

Course "Inverse Problems & Imaging"

Outline

1 Fundamentals of Bayesian inference

2 Monte Carlo methods

finite-dimensional inverse problem

$$F(X) = Y$$

- X, Y: the unknown coefficient and the noisy data
- $F : \mathbb{R}^m \mapsto \mathbb{R}^n$: forward map ... convolution, Radon transform ...
- efficient algorithms for finding a Tikhonov minimizer

$$\frac{1}{2}||F(x)-y||^2+\alpha\psi(x)$$

Question: How plausible is the Tikhonov minimizer?

Motivation

- \blacksquare \Rightarrow tools for assessing the reliability of the inverse solution
 - Bayesian inference is one principled framework
 - probabilistic numerics ?
- basic idea: regard the unknown X and the data Y as random variables, and encode the prior knowledge in a probability distribution + Bayes rule.

starting point: Bayes' formula, i.e., for two random variables X and Y the conditional probability of X given Y is given by

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)},$$

- x, y: realization of X, Y
- $p_{Y|X}(y|x)$: **likelihood function** building block I information in the data y (noise statistics of y)
- $p_X(x)$: **prior distribution** building block II a prior knowledge (before collecting the data)

the unnormalized posteriori p(x, y) defined by

$$p(x,y) = p_{Y|X}(y|x)p_X(x),$$

and shall often write

$$p_{X|Y}(x|y) \propto p(x,y)$$

the posteriori $p_{X|Y}(x|y)$ up to a multiplicative constant

 $p_{X|Y}(x|y)$ holds the full information about the inverse problem

⇒ calibrating the uncertainties of the inverse solutions.

likelihood function $p_{Y|X}(y|x) \Leftarrow$ the noise statistics

- all sources of errors are lumped into data noise
- a careful modeling of all errors in y is essential for extracting useful information

The most popular noise model is the additive Gaussian model

$$y = y^{\dagger} + \xi,$$

- $\xi \in \mathbb{R}^n$ is a realization of i.i.d. Gaussian r.v. $N(0, \sigma^2)$
- ξ is independent of the true data y^{\dagger} (and hence x) \Rightarrow

$$\rho_{Y|X}(y|x) = (2\pi\sigma^2)^{-\frac{n}{2}}e^{-\frac{1}{2\sigma^2}\|F(x)-y\|^2}.$$

other noise models are also possible: Laplace, Poisson, Gamma ...

Gaussian distribution vs. Laplace distribution

The prior $p_X(x)$: the prior knowledge about the solution x in a probabilistic manner.

- prior knowledge: expert opinion, historical investigations, statistical studies and anatomical knowledge etc.
- the prior plays the role of regularization in a stochastic setting prior modeling stays at the heart of Bayesian modeling

but it is an art ...

One very versatile prior model is Markov random field

$$p_X(x) \propto e^{-\lambda \psi(x)},$$

where $\psi(x)$ is a potential function – penalty term

lacksquare $\lambda > 0$ is a scale parameter – regularization parameter

Lapiace likelilioou

likelihood $p_{Y|X}(y|x)$ and the prior $p_X(x)$ may contain unknowns e.g.,

$$\rho_{Y|X}(y|x) = \rho_{Y|X,\Upsilon}(y|x,\tau)$$
 and $\rho_X(x) = \rho_{X|\Lambda}(x|\lambda)$

- \bullet τ,λ : precision (inverse variance) and the scale parameter
- commonly known as hyperparameters
- Hierarchical Bayesian provides one approach for their choices

hierarchical Bayesian modeling

- lacktriangle view λ and τ as random variables with their own priors
- determine them from the data y
- convenient choice: conjugate distribution

For both λ and τ , the conjugate distribution is a Gamma distribution:

$$p_{\Lambda}(\lambda) = G(\lambda; a_0, b_0) = \frac{b_0^{a_0}}{\Gamma(a_0)} \lambda^{a_0 - 1} e^{-b_0 \lambda},$$

 $p_{\Upsilon}(\tau) = G(\tau; a_1, b_1) = \frac{b_1^{a_1}}{\Gamma(a_1)} \tau^{a_1 - 1} e^{-b_1 \tau}.$

- (a_0, b_0) and (a_1, b_1) determine the range of λ and τ
- lacksquare noninformative prior is often adopted: $(a_0,b_0) \approx (1,0)$

posterior distribution $p_{X,\Lambda,\Upsilon|Y}(x,\lambda,\tau|y)$

$$p_{X,\Lambda,\Upsilon|Y}(x,\lambda,\tau|y) \propto p_{Y|X,\Upsilon}(y|x,\tau)p_{X|\Lambda}(x|\lambda)p_{\Lambda}(\lambda)p_{\Upsilon}(\tau)$$

Example: Gaussian noise model + Laplace prior

$$\begin{split} p_{Y|X,\Upsilon}(y|x,\tau) &\propto \tau^{-\frac{n}{2}} e^{-\frac{\tau}{2}\|F(x)-y\|^2}, \\ p_{X|\Lambda}(x|\lambda) &\propto \lambda^m e^{-\lambda\|x\|_1} \end{split}$$

fixed λ and τ + maximum a posteriori estimate $x_{\text{map}} \Rightarrow$

$$\begin{aligned} x_{\text{map}} &= \arg\max_{x} p_{X,\Lambda,\Upsilon|Y}(x,\lambda,\tau|y) \\ &= \arg\min_{x} \left\{ \frac{\tau}{2} \|F(x) - y\|^2 + \lambda \|x\|_1 \right\} \end{aligned}$$

the functional in the curly bracket is

$$\frac{1}{2}||F(x)-y||^2+\lambda\tau^{-1}||x||_1$$

Tikhonov regularization + sparsity constraint, with $\alpha = \lambda \tau^{-1}$

A Tikhonov minimizer is an MAP estimate of some Bayesian formulation.

unknown parameters λ and τ \Rightarrow hierarchical model conjugate prior on λ and τ \Rightarrow posterior distribution

$$\begin{split} p_{X,\Lambda,\Upsilon|Y}(x,\lambda,\tau|y) &\propto \tau^{\frac{n}{2}+a_1-1}e^{-\frac{\tau}{2}\|F(x)-y\|^2} \\ & \cdot \lambda^{m+a_0-1}e^{-\lambda\|x\|_1} \cdot e^{-b_1\tau} \cdot e^{b_0\lambda}. \end{split}$$

ways of exploring the posterior $p_{X,\Lambda,\Upsilon|Y}(x,\lambda,\tau|y)$

■ joint MAP estimate $(x, \lambda, \tau)_{map}$, i.e.,

$$(x, \lambda, \tau)_{\text{map}} = \arg\min_{x, \lambda, \tau} J(x, \lambda, \tau),$$

where

$$J(x, \lambda, \tau) = \frac{\tau}{2} \|F(x) - y\|^2 + \lambda \|x\|_1 - \tilde{a}_0 \ln \lambda + b_0 \lambda - \tilde{a}_1 \ln \tau + b_1 \tau.$$

augmented Tikhonov regularization for sparsity constraint

augmented Tikhonov regularization

$$J(x, \lambda, \tau) = \frac{\tau}{2} ||F(x) - y||^2 + \lambda ||x||_1 - \tilde{a}_0 \ln \lambda + b_0 \lambda - \tilde{a}_1 \ln \tau + b_1 \tau.$$

- the first two terms recover Tikhonov regularization
- the rest automatically determines the regularization parameter.
- It remains a point estimate and ignores the statistical fluctuations ⇒ full Bayesian treatment

distinct features

■ $p_{X,\Lambda,\Upsilon|Y}(x,\lambda,\tau|y)$ is a probability distribution, and is an ensemble of solutions consistent with y (to various extent)

$$\mu = \int x p_{X|Y}(x|y) dx,$$

$$C = \int (x - \mu)(x - \mu)^{t} p_{X|Y}(x|y) dx.$$

- the crucial role of proper statistical modeling in designing useful regularization formulations for practical problems.
- hierarchical modeling provides a flexible regularization, partially resolving the issue of choosing a regularization parameter.

posteriori p(x) lives in a high-dimensional space \Rightarrow noninformative \Rightarrow compute *summarizing* statistics, e.g., mean μ and covariance C

$$\mu = \int x p(x) dx$$
 and $C = \int (x - \mu)(x - \mu)^t p(x) dx$.

very high-dimensional integrals, and quadrature rules are inefficient Ex: m=100, 2 points/dir \Rightarrow 2¹⁰⁰ \approx 1.27 \times 10³⁰ points more efficient approach

■ Monte Carlo methods, especially Markov chain Monte Carlo

Monte Carlo simulation

- draw a large set of i.i.d. samples $\{x^{(i)}\}_{i=1}^N$ from the target distribution p(x)
- approximate the expectation $E_p[f]$ of any function $f: \mathbb{R}^m \to \mathbb{R}$ by the sample mean $E_N[f]$

$$E_N[f] \equiv \frac{1}{N} \sum_{i=1}^N f(x^{(i)}) \to E_p[f] = \int f(x) p(x) dx$$
 as $N \to \infty$.

■ the Monte Carlo integration error $e_N[f]$ by

$$e_N[f] = E_p[f] - E_N[f] \approx \text{Var}_p[f]^{\frac{1}{2}} N^{-1/2} \nu,$$

$$\nu \sim N(0,1)$$

- the error $e_N[f]$ is $O(N^{-1/2})$
- lacktriangle with a constant \sim the variance of the integrand f
- the estimate is independent of the dimensionality *m*

Generating a large set of i.i.d. samples from an implicit and high-dimensional joint distribution is highly nontrivial.

nonlinear inverse problems and nongaussian models

Markov chain Monte Carlo: general-purposed approach for exploring posteriori p(x)

- basic idea: given p(x), construct an aperiodic and irreducible Markov chain such that its stationary distribution is p(x).
- By running the chain for sufficiently long, simulated values from the chain are dependent samples from p(x), and used for computing summarizing statistics.
- Metropolis: simulating energy levels of atoms in a crystalline structure (1950s)
- Hastings: statistical problems (1970s)
- in inverse problems: 1990s ...

UCL

The Metropolis-Hastings algorithm

```
1: Initialize x^{(0)} and set N;

2: for i = 0 : N do

3: sample u \sim U(0, 1);

4: sample x^{(*)} \sim q(x^{(i)}, x^{(*)})

5: if u < \alpha(x^{(i)}, x^{(*)}) then

6: x^{(i+1)} = x^{(*)};

7: else

8: x^{(i+1)} = x^{(i)};

9: end if

10: end for
```

- the uniform distribution U(0,1)
- p(x): the target distribution
- = q(x, x') is an easy-to-sample proposal distribution

Having generated a new state x' from q(x, x'), accept it as the new state of the chain with probability $\alpha(x, x')$ given by

$$\alpha(x,x') = \min\left\{1, \frac{p(x')q(x',x)}{p(x)q(x,x')}\right\}.$$

However, if we reject x', then the chain remains in the current state x.

- p(x) enters only through α via the ratio p(x')/p(x)⇒ require p(x) only up to a multipl. constant
- if q is symmetric, i.e., q(x, x') = q(x', x), $\alpha(x, x')$ reduces to

$$\alpha(x,x') = \min\left\{1, \frac{p(x')}{p(x)}\right\}.$$

The Metropolis-Hastings algorithm guarantees that the Markov chain converges to p(x) for any reasonable q(x, x'). There are many possible choices for q(x, x'), the defining ingredient of the algorithm.

random walker sampler

- If q(x, x') = f(x' x) for p.d.f. f, then $x^{(*)} = x^{(i)} + \xi$, $\xi \sim f$
- Markov chain is driven by a random walk
- f: uniform, multivariate normal or *t*-distribution
- With i.i.d. Gaussian distribution $N(0, \sigma^2)$,

$$x_j^{(*)} = x_j^{(i)} + \xi$$
, with $\xi \sim N(\xi; 0, \sigma^2)$

 σ^2 controls the size of the random walks, and should be carefully tuned to improve the MCMC convergence.

Heuristically, the optimal acceptance ratio should be around 0.25 for some model problems.

- the first samples are poor approximations as samples from p(x)
- discards these initial samples (burning-in period)
- assess the convergence of the MCMC chains

- If the state space is high dim., it is difficult to update the entire vector x in one single step since $\alpha(x, x')$ is often very small.
- to update a part of the components of x each time and to implement an updating cycle inside each step
- The extreme case is the Gibbs sampler Geman-Geman, 1984

which updates a single component each time. to update x_i of x, proposal q(x, x'): the full conditional

$$q(x,x') = \begin{cases} p(x'_i|x_{-i}) & x'_{-i} = x_{-i}, \\ 0 & \text{otherwise,} \end{cases}$$

where x_{-i} denotes $(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_m)^t$ these proposals are automatically accepted

example: Gibbs sampler for Gaussian noise + smoothness prior $p(\lambda) \propto \lambda^{a_0-1} e^{-b_0\lambda}$ on the scale parameter λ , i.e., posteriori

$$\label{eq:posterior} p(x,\lambda) \propto e^{-\frac{\tau}{2}\|Ax-y\|^2} \cdot \lambda^{\frac{m}{2}} e^{-\frac{\lambda}{2} x^t W x} \lambda^{a_0-1} e^{-b_0 \lambda},$$

where the matrix W encodes the local interaction structure

full conditional $p(x_i|x_{-i},\lambda)$

$$p(x_i|x_{-i},\lambda) \sim N(\mu_i,\sigma_i^2), \quad \mu_i = \frac{b_i}{2a_i}, \quad \sigma_i = \frac{1}{\sqrt{a_i}},$$

with a_i and b_i given by

$$a_i = au \sum_{j=1}^n A_{jj}^2 + \lambda W_{ii}$$
 and $b_i = 2 au \sum_{j=1}^n \mu_j A_{ji} - \lambda \mu_p$,

and $\mu_j = y_j - \sum_{k \neq i} A_{jk} x_k$ and $\mu_p = \sum_{j \neq i} W_{ji} x_j + \sum_{k \neq i} W_{ik} x_k$. Lastly, we deduce the full conditional for λ :

$$p(\lambda|x) \sim G(\lambda; \frac{m}{2} + a_0, \frac{1}{2}x^tWx + \beta_0).$$

