EMI Filter Optimization Report

Global Parameters

Number of stages considered: 1 Ambient temperature: 25°C

Converter switching frequency: 36 kHz

Resulting design frequency: 180 kHz

Desired DM attenuation: 78 dB CM attenuation: 88 dB

Mains voltage: 230.0 V (RMS) Mains frequency: 50 Hz

Scaled converter inductance: 152.5 uH

Parasitics and Additional Components

Lumped stray capacitance Ceq: 600 pF

Lumped stray capacitance Cg: 2000 pF

Total volume is increased by 10% to account for the PCB.

Total volume is increased by 0% and total losses are increased by 0% to account for additional components.

Additional components (max. 10 displayed per category):

Single DM Additional Components				
Name (Unit)	Min	Max	Increment	

Per-Stage DM Additional Components			
Name (Unit)	Min	Max	Increment

Single CM Additional Components				
Name (Unit)	Min	Max	Increment	

Per-Stage CM Additional Components				
Name (Unit)	Min	Max	Increment	

DM Filter Parameters

Maximum total DM capacitance per phase: 13 uF

DM attenuation is not equally distributed amongst the filter stages and per-stage attenuation is varied by 0.1 of the total.

All filter stages are set to have the same range of inductance values.

All filter stages are set to use the same inductor and capacitor design space.

DM Stage 1

CDM1 is not fixed to a constant value.

Attenuation of the first stage is not fixed to a separate constant value.

LDM range: 50 to 350 by 50 uH (applies to ALL filter stages)

Inductor design space single constraints			
Max. volume	1.0 L		
Max. temperature	150.0 C		
Core material	Micrometals -14		
Core type	R (toroidal)		
Wire material	Annealed Copper		
Wire type	Round litz wire		
Custom core	no		
Custom wire	yes		
Design approach	Parameter Variation		
Ignore high freq. effects	yes		
Ignore proximity effect	yes		
Ignore leakage inductance	N/A		

Stacked Inductor Co	res			
Cores (max. 40 shown)				
T106	T124	T131	T14	
T150	T16	T184	T20	
Tab	Tan	T20	TCO D	

Core Parameters

Name (Unit) Min

Wire Parameters				
Name (Unit)	Min	Max	Increment	
Inductor fill factor	0.5	0.5	0.1	
Strand diameter (bare) di (m)	0.0002	0.0002	1.0E-5	

Extra Wire Parameters		
Compact factor	1.3	

Thermal Properties		
Core orientation	VERTICAL	
Non-exposed sides	None	

Capacitor Series (max. 40 shown)				
X1 B32911-6	X2 B32921-8	X2 B81130		

CM Filter Parameters

Maximum leakage current to earth: 3.5 mA

Resulting maximum total CM capacitance: 35.228 nF

CM attenuation is not equally distributed amongst the filter stages and per-stage attenuation is varied by 0.1 of the total.

All filter stages are set to have the same range of inductance values.

All filter stages are set to use the same inductor and capacitor design space.

CM Stage 1

CCM1 is not fixed to a constant value.

CCM1 is in series with CDM1.

LCM range: 1000 to 2000 by 500 uH (applies to ALL filter stages)

Inductor design space single constraints				
Max. volume	1.0 L			
Max. temperature	150.0 C			
Core material	Vitroperm 500F-18k			
Core type	R (toroidal)			
Wire material	Annealed Copper			
Wire type	Round solid wire			
Custom core	no			
Custom wire	yes			
Design approach	Parameter Variation			
Ignore high freq. effects	yes			
Ignore proximity effect	yes			
Ignore leakage inductance	yes			

Core Parameters			
Name (Unit)	Min	Max	Increment
Number of Stacked Inductor Cores	1.0	3.0	1.0

Cores (ma	x. 40 show	n)	
T60006-	T60006-	T60006-	T60006-
L2020-W450+	L2025-W451-	- L2040-W452	+ L2040-W45
T60006-	T60006-	T60006-	T60006-
L2045-V101#	L2050-W565#	L2063-V110	£ L2160-V066

Wire Para	re Parameters		
Name (Unit)	Min	Max	Increment
Inductor fill factor	0.4	0.4	0.1

Extra Wire Parameters	
s as % of d	0.05
Minimum s (mm)	0.001

Thermal Properties	
Core orientation	VERTICAL
Non-exposed sides	None

Capacitor Series (max. 40 shown)			
Y1 B81123	Y2 B32021-6		

Optimization Parameters

Optimization Goal: 0.5

Optimization type: Exhaustive (brute force)

Converter output power: 7.5 kW Converter switching frequency: 36 kHz

Optimization Results

Overall Best Filter Design: 1-Stage Filter

(See the pages for the best 1-stage filter for details)

Total Losses: 68.091 W Efficiency: 99.1%

Total Volume: 0.935 L Power Density: 8.018 kW/L

EMI Filter Pareto-Optimal Designs:

Best 1-Stage Filter Design

Total Losses: 68.091 W

Total Volume: 0.935 L

Stage 1	
LDM1	440.43 uH
CDM1	14.1 uF
LCM1	51.36 mH
CCM1	33 nF

Efficiency: 99.1%

Power Density: 8.018 kW/L

Filter Stage 1

Differential mode:

Common mode:

DM Capacitor and Inductor Design For Stage 1

3 x EPCOS B32924C3475M Capacitor:

Capacitance: $C = 14.1 \mu F$ Rated Voltage: Vr = 305 VVolume: 56.133 cm^3

************* *************

Toroid-Inductor: L = 437.5036 µН

Core: т184

Type: R (toroidal) Core Material: Micrometals -14

Number stacked:

Dimensions (mm):

Outer Diameter:
Inner Diameter: do = 46.7di = 24.1Thickness: t = 36.0

Winding: Custom Litz (fill factor)
Type: Round litz wire
Material: Annealed Copper
Number of turns: N = 81

Dimensions (mm):

d = 1.893Wire spacing: yd = 0.0

Losses (W):

Core Losses: 0.14
Winding losses DC: 4.750999553154194E-10
Winding losses skin effect: 16.52
Winding losses prox. effect: 0.0 16.66 TOTAL:

Winding temperature: 91.02 C Core Temperature: 91.3 C Inductor Orientation: VERTICAL Convection: NATURAL

Total Boxed Volume: 159.6564 cm^3

CM Capacitor and Inductor Design For Stage 1

1 x EPCOS B32022A3333 Capacitor:

Capacitor:
Capacitance:
Rated Voltage: C = 33.0 rVr = 300 VC = 33.0 nF

3.304496127659499E-8 W

Volume: 2.016 cm^3

************* *************

Toroid CM 3ph-Inductor: L = 51.524 mm Ls = 38.2144 mH

T60006-L2050-W565# Core: Type: R (toroidal)

Core Material: Vitroperm 500F-18k

Number stacked:

Dimensions (mm):

Inner Diameter:
Thickness: do = 50.0di = 40.0t = 40.0

Custom SR (fill factor) Type: Round solid wire Material: Annealed Copper

Number of turns: $3 \times N = 40$

Dimensions (mm):

Conductor diameter: d = 1.834
Isolation thickness: s = 0.0917 yd = 0.0Wire spacing:

Losses (W):

Core Losses: 0.05
Winding losses DC: 4.093933540197082E-15
Winding losses skin effect: 17.91
Winding losses prox. effect: 0.0 TOTAL: 17.95

Winding temperature: 93.68 C Core Temperature: 93.88 C Inductor Orientation: VERTICAL Convection: NATURAL

200.9776 cm^3 Total Boxed Volume:
