Il s'agit de calculer le polynôme de Taylor de la fonction $f(x) = \sqrt[3]{8+x}$ en 7.8 a=0, d'un degré n suffisamment élevé pour que l'erreur soit inférieure à un millième, c'est-à-dire $|R_n(-1)| < \frac{1}{1000} = 0{,}001.$

Polynôme de Taylor de degré 1

$$f(0) = \sqrt[3]{8+0} = \sqrt[3]{2^3} = 2$$

$$f'(x) = \left(\sqrt[3]{8+x}\right)' = \left((8+x)^{\frac{1}{3}}\right)' = \frac{1}{3}(8+x)^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{(8+x)^2}}$$

$$f'(0) = \frac{1}{3\sqrt[3]{(8+0)^2}} = \frac{1}{3\sqrt[3]{2^6}} = \frac{1}{3\cdot 2^2} = \frac{1}{12}$$

$$P_1(x) = 2 + \frac{1}{12}x$$

 $P_1(-1) = 2 + \frac{1}{12} \cdot (-1) = \frac{23}{12} \approx 1,916 667$

Il reste encore à déterminer l'erreur commise par cette première approximation, c'est-à-dire à estimer $R_1(-1)$.

$$f''(x) = \left(\frac{1}{3\sqrt[3]{(8+x)^2}}\right)' = \frac{1}{3}(8+x)^{-\frac{2}{3}} = -\frac{2}{9}(8+x)^{-\frac{5}{3}} = -\frac{2}{9\sqrt[3]{(8+x)^5}}$$

$$R_1(-1) = \frac{-\frac{2}{9\sqrt[3]{(8+c)^5}}}{2!} (-1)^2 = -\frac{1}{9\sqrt[3]{(8+c)^5}} \quad \text{avec } c \in [-1; 0]$$

Vu la croissance de la fonction $\sqrt[3]{(8+x)^5}$, on en tire que :

$$\left| \mathbf{R}_{1}(-1) \right| \leqslant \frac{1}{9\sqrt[3]{(8+(-1))^{5}}} = \frac{1}{9\sqrt[3]{7^{5}}} = \frac{1}{9\cdot7\sqrt[3]{7^{2}}} = \frac{1}{63\sqrt[3]{49}} \approx 0,004 \ 338$$

L'erreur commise par cette première approximation étant inférieure au centième, mais supérieure au millième, on en conclut qu'elle est exacte au centième près, mais pas nécessairement au millième près.

Polynôme de Taylor de degré 2

$$f''(0) = -\frac{1}{9\sqrt[3]{(8+0)^5}} = -\frac{1}{9\sqrt[3]{2^{15}}} = -\frac{1}{9 \cdot 2^5} = -\frac{1}{288}$$

$$\begin{aligned} \mathbf{P}_2(x) &= 2 + \frac{1}{12} \, x - \frac{1}{288} \, x^2 \\ \mathbf{P}_2(-1) &= 2 + \frac{1}{12} \cdot (-1) - \frac{1}{288} \cdot (-1)^2 = \frac{551}{288} \approx 1{,}913 \, 194 \end{aligned}$$

Déterminons à présent l'erreur commise par cette deuxième approximation.

$$f^{(3)}(x) = \left(-\frac{2}{9\sqrt[3]{(8+x)^5}}\right)' = \left(-\frac{2}{9}(8+x)^{-\frac{5}{3}}\right)' = \frac{10}{27}(8+x)^{-\frac{8}{3}} = \frac{10}{27\sqrt[3]{(8+x)^8}}$$

$$R_2(-1) = \frac{\frac{10}{27\sqrt[3]{(8+c)^8}}}{3!}(-1)^3 = -\frac{5}{81\sqrt[3]{(8+c)^8}} \quad \text{avec } c \in [-1;0]$$

Comme la fonction
$$\sqrt[3]{(8+x)^8}$$
 est croissante, il en résulte : $\left| \mathbf{R}_2(-1) \right| \leqslant \frac{5}{81\sqrt[3]{(8+(-1))^8}} = \frac{5}{81\sqrt[3]{7^8}} = \frac{5}{81\cdot7^2\sqrt[3]{7^2}} = \frac{5}{3969\sqrt[3]{49}} \approx 0,000344 < 0,001$

Puisque l'erreur commise par cette deuxième approximation est inférieure au millième, on en conclut qu'elle est exacte au millième près.