Matheskript

Simon König

3. Februar 2018

INHALTSVERZEICHNIS

1	Gru	Grundlagen														2					
	1.1	Logik																			2
		1.1.1 Logische Junkto																			
	1.2	Prädikatenlogik und Qua																			
	1.3	Beweise																			
		1.3.1 Direkter Beweis																			
		1.3.2 Indirekter Bewei																			
		1.3.3 Widerspruchsber																			
2	Mengen, Relationen und Abbildungen													4							
	2.1	Abbildungen																			5
	2.2	Mächtigkeit von Mengen																			
	2.3	Zahlenmengen																			6
	2.4	Summen- und Produktze	ichen																		7
	2.5	Teilbarkeit und Primzahl	en						•												7
3																9					
	3.1	Polarkoordinaten-Darste	llung .						•		•				•	 •	 •				10
4	Gruppen, Ringe und Körper													11							
5	Lineare Algebra													13							
	5.1 Voktorräume												13								

1: GRUNDLAGEN

1.1: Logik

Definition 1.1: Aussage

Eine Aussage ist ein Satz, von dem es Sinn macht, zu fragen, ob er wahr oder falsch ist.

1.1.1: Logische Junktoren

Wir verknüpfen mehrere Aussagen zu größeren aussagelogischen Formeln mithilfe von logischen Junktoren:

NEGATION: $\neg A$ KONJUKTION: $A \wedge B$ DISJUNKTION: $A \vee B$

Durch verwenden dieser grundlegenden Junkoren kann man alle Verknüpfungen darstellen. Um Schreibarbeit zu sparen gibt es verkürzende Schreibweisen

IMPLIKATION: $A \Rightarrow B \equiv \neg (A \land \neg B)$

ÄQUIVALENZ: $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$

1.2: Prädikatenlogik und Quantoren

Ein Prädikat ist ein Ausdruck, der die Form einer Aussage hat, aber Variablen enthält.

 $P(m)\coloneqq$ "m ist eine gerade Zahl."

Eine Aussage wird daraus erst, wenn wir angeben, für welche m das Prädikat gelten soll.

Sei M eine Menge und P(m) für jedes $m \in M$ eine Aussage. Wir beschreiben die Aussage mit dem *Allquantor*:

$$\forall m \in M : P(m)$$

 $\text{d.h.}\, P(m) \, \text{soll für} \, \textit{jedes} \, m \in M \, \text{gelten.}$

Mit dem Existenzquantor bekommt das Prädikat eine andere Bedeutung:

$$\exists m \in M : P(m)$$

d.h. es soll mindestens ein $m \in M$ existieren, für das P(m) gilt.

BEISPIEL $M=\mathbb{N}, P(m)$: "m ist eine gerade Zahl." $(\forall m\in M: P(m))$ ist falsch. $(\exists m\in M: P(m))$ ist jedoch wahr.

Simon König KAPITEL 1. GRUNDLAGEN

Bemerkung:

• Verneinung von quantifizieren Prädikat-Aussagen: "Prädikat verneinen und Quantoren tauschen."

$$\neg(\forall m \in M : P(m)) \equiv \exists m \in M : \neg P(m)$$

• Bei Quantoren kommt es auf die Reihenfolge an:

$$\forall n \in \mathbb{N} \quad \exists m \in \mathbb{N} : m \geq n \quad \text{ist wahr} \\ \exists n \in \mathbb{N} \quad \forall m \in \mathbb{N} : m \geq n \quad \text{ist falsch}$$

1.3: Beweise

- 1.3.1: Direkter Beweis
- 1.3.2: Indirekter Beweis
- 1.3.3: Widerspruchsbeweis

2: MENGEN, RELATIONEN UND ABBILDUNGEN

Eine Menge ist eine wohldefinierte Gesamtheit von Objekten, den Elementen der Menge.

z.B.
$$\mathbb{Q}=\left\{rac{p}{q}\left|\,p\in\mathbb{Z},q\in\mathbb{N}
ight.
ight\}$$

Definition 2.1: Teilmenge

Eine Menge M_1 ist *Teilmenge* von M, wenn

$$\forall x \in M_1 : x \in M$$
$$\Rightarrow M_1 \subseteq M$$

Für jede Menge M gilt $\varnothing\subseteq M$ und $M\subseteq M$.

Gilt $M_1\subseteq M$ und $M_1\neq M$ ist M_1 eine echte Teilmenge von M, d.h. $M_1\subset M$ oder $M_1\subsetneq M$

POTENZMENGE

 $\mathcal{P}(M) = \operatorname{Pot}(M)$ ist die Menge aller Teilmengen von M.

SCHNITTMENGE

$$M_s = M_1 \cap M_2; \quad M_s := \{ m \in M_1 \mid m \in M_2 \}$$

Zwei Mengen M_1 und M_2 heißen disjunkt, falls $M_1\cap M_2=\varnothing$

VEREINIGUNG

$$M_v = M_1 \cup M_2$$
; $M_v := \{m \mid m \in M_2 \lor m \in M_2\}$

DIFFERENZ

$$M_1 \setminus M_2 := \{ m \in M_1 \mid m \notin M_2 \}$$

KARTESISCHES PRODUKT

$$M_1 \times M_2 := \{ (m_1, m_2) \mid m_1 \in M_1 \land m_2 \in M_2 \}$$

Definition 2.2: Relation

Eine Relation zwischen zwei Mengen M und N ist eine Teilmenge von $M \times N$.

$$R \subseteq M_1 \times M_2$$

ist $(x,y) \in R$, steht x mit y in Relation $\to x \sim y$. $R \subseteq M \times M$ heißt

reflexiv , falls $\forall x \in M: (x,x) \in R$ symmetrisch , falls $\forall x,y \in M: (x,y) \in M \Rightarrow (y,x) \in R$ antisymmetrisch , falls $\forall x,y \in R: (x,y) \in M \land (y,x) \in R \Rightarrow x=y$ transitiv , falls $\forall x,y,z \in M: (x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$

Definition 2.3: Äquivalenzrelation

Eine Relation heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.

Definition 2.4: Ordnungsrelation

Eine Relation heißt Ordnungsrelation, wenn sie reflexiv, antisymmetrisch und transitiv ist.

2.1: Abbildungen

Definition 2.5: Abbildung

Seien M und N zwei Mengen. Eine Zuordnungsvorschift, die jedem Element $x \in M$ ein Element $f(x) \in N$ zuweist, heißt Abbildung oder Funktion von M nach N.

$$f: M \to N, x \mapsto f(x)$$

M: Definitionsbereich, N: Wertebereich

Definition 2.6:

Sei $f:M\mapsto N$ eine Abbildung. Wir definieren

- $f \ddot{u} r x \in M$ heißt $f(x) \in N$ das *Bild* von x
- für eine Teilmenge $A \subseteq M$ heißt $f(A) = \{f(x) \mid x \in A\}$ das Bild der Teilmenge A
- für eine Teilmenge $B\subseteq N$ heißt $f^{-1}(B)=\{x\in M\ |\ f(x)\in B\}$ das *Urbild* von B

Definition 2.7: Abbildungseigenschaften

Sei $f: M \to N$ eine Abbildung. Dann heißt f:

injektiv, wenn jedes Element $y \in N$ höchstens ein Urbild hat.

 $\textbf{surjektiv} \ \ \text{, wenn jedes Element} \ y \in N \ \textit{mindestens ein Urbild} \ \text{hat.} \ \forall y \in N \ \exists x \in M : f(x) = y$

bijektiv , wenn jedes Element $y \in N$ genau ein Urbild hat. $\forall y \in N \; \exists ! x \in M : f(x) = y$

Bemerkung:

1. Bijektivität gilt genau dann, wenn es eine Umkehrabbildung f^{-1} gibt:

$$f:M\to N \qquad \qquad f^{-1}:N\to M$$

$$f\left(f^{-1}(x)\right)\quad \text{mit }x\in N \qquad \qquad f^{-1}\left(f(x)\right)=x\quad \text{mit }x\in M$$

2. Man kann jede Abbildung surjektiv machen, indem man den Wertebereich durch das Bild von f ersetzt: $N \coloneqq f(M)$

2.2: Mächtigkeit von Mengen

Die Mächtigkeit einer Menge ist die Anzahl ihrer Elemente. Man schreibt |M| für die Mächtigkeit von M. Zwei Mengen A und B sind gleich mächtig, wenn es eine bijektive Abbildung $f: A \to B$ gibt.

Eine Menge heißt abzählbar unendlich, falls $|A|=|\mathbb{N}|$ d.h. falls es eine bijektive Abbildung $f:A\to\mathbb{N}$ gibt.

Sie heißt *überabzählbar unendlich*, falls $|A| > |\mathbb{N}|$.

Es gilt immer auch für unendliche Mengen, dass |M| < |Pot(M)|.

Für endliche Mengen gilt $|Pot(M)| = 2^{|M|}$

2.3: Zahlenmengen

Definition 2.8: Natürliche Zahlen

Die natürlichen Zahlen sind eine Menge \mathbb{N} , auf der eine Abbildung $f:\mathbb{N}\to\mathbb{N}$ erklärt ist, die folgende Eigenschaften hat, wobei f(n) der Nachfolger von n heißt.

 $\mathbb{N}1$ Es gibt genau ein Element in \mathbb{N} , das nicht Nachfolger eines anderen Elements ist.

 $\mathbb{N}2$ f ist injektiv

 $\mathbb{N}3$ Ist $M\subseteq\mathbb{N}$ eine Teilmenge, die folgende Eigenschaften hat:

```
1. 1 \in M
```

2. Falls $m \in M$ und $f(m) \in M$

Dann gilt: $M = \mathbb{N}$

$$\mathsf{D.h.}\, M\subseteq \mathbb{N}: 1\in M \land (m\in M\Rightarrow f(m)\in M)\Rightarrow M=\mathbb{N}$$

Man kann zeigen, dass die natürlichen Zahlen durch diese Eigenschaften (die Peano-Axiome) gekennzeichnet sind. Das heißt, dass es im wesentlichen nur eine solche Menge mit einer solchen Abbildung f gibt, nämlich $\mathbb N$.

Das Axiom №3 heißt auch Induktionsaxiom. Aus ihm folgt:

Satz 2.1: Vollständige Induktion

Sei A(n) für jede natürliche Zahl $n \in \mathbb{N}$ eine Aussage, für die gilt:

- A(1) ist wahr
- $\forall n \in \mathbb{N} : A(n) \Rightarrow A(n+1)$

dann ist A(n) für alle $n \in \mathbb{N}$ wahr.

Definition 2.9: Graph einer Abbildung

Sei $f: M \to N$ eine Abbildung. Der Graph von f ist eine Teilmenge $\{(x, f(x)) \mid x \in M\} \subseteq M \times N$. Für Funktionen $f: \mathbb{R} \to \mathbb{R}$ ist der Graph eine Teilmenge der Ebene \mathbb{R}^2 .

Fasst man eine Funktion als eine Relation auf, so ist der Graph das selbe wie R. $\operatorname{Graph}(f) = R \subset \mathbb{R} \times \mathbb{R}$

Definition 2.10: Verkettung

Seien $f:M\to N$ und $g:N\to P$ Abbildungen. Dann ist die Verkettung:

$$g \circ f : M \to P$$

 $g \circ f(x) := g(f(x))$

Definition 2.11: Identität

Für jede Menge M ist

$$id_M: M \to M, x \mapsto x$$

die identische Abbildung auf M.

2.4: Summen- und Produktzeichen

$$\sum_{k=m}^{n} a_k := a_m + a_{m+1} + \ldots + a_n$$

Bei der Summe ist k der Summationsindex, m die untere und n die obere Summationsgrenze

$$\prod_{k=m}^{n} a_k \coloneqq a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$$

Bemerkung:

- Ist die obere Summationsgrenze kleiner als die untere, so handelt es sich um eine *leere Summe*, ihr Wert ist 0.
- Entsprechend ist der Wert des leeren Produkts 1.

2.5: Teilbarkeit und Primzahlen

Definition 2.12: Teilbarkeit

Seien $n\in\mathbb{Z}, m\in\mathbb{N}$. Die Zahl m heißt ein Teiler von n, in Zeichen $k\cdot m=n$, wenn es ein $k\in\mathbb{Z}$ gibt, so dass $k\cdot m=n$. In diesem Fall heißt n auch teilbar durch m. Die Zahl 0 ist durch alle $m\in\mathbb{Z}$ teilbar. Falls $m|n_1$ und $m|n_2$, dann folgt $m|n_1+n_2$.

Definition 2.13: Größter gemeinsamer Teiler

Sei $a \in \mathbb{Z}$, die Menge aller Teiler von a ist $\mathcal{D}(a) \coloneqq \{d \in \mathbb{N} \mid d \mid a\}$. Die Menge aller gemeinsamer Teiler von a und b mit $a,b \in \mathbb{Z} \setminus \{0\}$ ist $\mathcal{D}(a,b) = \mathcal{D}(a) \cap \mathcal{D}(b)$. Die Zahl $\operatorname{ggT}(a,b) = \max(\mathcal{D}(a,b))$ heißt größter gemeinsamer Teiler von a und b. Da eine ganze Zahl (außer der 0) nur endlich viele Teiler hat, existiert ggT(a,b).

Definition 2.14: Primzahl

Eine natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler besitzt, nämlich 1 und die Zahl selbst.

$$p \in \mathbb{N} \operatorname{mit} |\mathcal{D}(p)| = 2$$

Satz 2.2:

Jede natürliche Zahl $n \in \mathbb{N} \land n \ge 2$ ist ein Produkt aus Primzahlen (1 ist das leeren Produkt).

Beweis:

- A(n): "Jede natürliche Zahl kleiner oder gleich n ist das Produkt von Primzahlen."
- IA A(2) ist wahr, denn 2 ist selbst eine Primzahl.
- IS Fallunterscheidung:
 - 1. n+1 ist prim. Dann ist A(n+1) wahr.
 - 2. n+1 ist nicht prim. Dann gibt es natürliche Zahlen 1 und m, sodass $n+1=l\cdot m$, wobei l,m< n+1.

Nach Induktionsvoraussetzung sind somit l und m Produkte von Primzahlen, somit auch n+1.

3: KOMPLEXE ZAHLEN

Definition 3.1: Komplexe Zahlen

Wir definieren $\mathbb C$ als Menge $\mathbb C:=\mathbb R\times\mathbb R$, d.h. wir definieren die komplexen Zahlen als zusammengesetzte Zahlen, also als die Menge der geordneten Paare von reellen Zahlen. Wobei wir folgende Abbildungen mit $\mathbb C\times\mathbb C\to\mathbb C$ auf $\mathbb C$ festlegen:

ADDITION

$$(a,b) + (c,d) := (a+b,c+d)$$

MULTIPLIKATION

$$(a,b)\cdot(c,d) := (ac - bd, ad + bc)$$

Bemerkung:

Die Menge der reellen Zahlen kann als Teilmenge von $\mathbb C$ aufgefasst werden. $\mathbb R\subset\mathbb C$ indem man die injektive Abbildung $\mathbb R\to\mathbb C, a\mapsto(a,0)$ benutzt. Die oben definierten Verknüpfungen schränken sich dann auf die Verknüpfungen in $\mathbb R$ ein:

- (a,0) + (b,0) = (a+b,0)
- $(a,0) \cdot (b,0) = (a \cdot b 0, a \cdot 0 + b \cdot 0) = (a \cdot b,0)$

In diesem Sinne ist \mathbb{C} eine *Erweiterung* des Körpers \mathbb{R} .

Definition 3.2: Imaginäre Einheit

Wir führen die imaginäre Einheit ein. i := (0, 1) damit gilt:

$$(0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 0 \cdot 1) = (-1,0) = i^2 = -1$$

Es gilt also $\mathfrak{i}^2=-1$, daher schreibt man auch $\mathfrak{i}=\sqrt{-1}$. Die Zahlen $(0,y)=y\cdot\mathfrak{i},y\in\mathbb{R}$ heißten imaginäre Zahlen. Wir können uns wegen $\mathbb{C}=\mathbb{R}\times\mathbb{R}$ komplexe Zahlen als Punkte bzw. Vektoren in der *Gauß'schen Zahlenebene* vorstellen.

Satz 3.1:

Für jede komplexe Zahl $(a,b) \in \mathbb{C}$ gilt:

$$(a,b) = a + bi$$

Beweis:

durch ausrechnen der rechten Seite:

$$\begin{aligned} a + b\mathbf{i} &= (a, 0) + (b, 0) \cdot (0, 1) \\ &= (a, 0) + (b \cdot 0 - 0 \cdot 1, b \cdot 1 + 0 \cdot 0) \\ &= (a, 0) + (0, b) = (a, b) \end{aligned} \square$$

Bemerkung:

Wie man leicht nachrechnet, gelten wie in $\mathbb R$ die Kommutativ-, Assoziativ- und Distributivgesetze.

Definition 3.3: Konjugiert komplexe Zahl

Sei $z=a+b\mathfrak{i}\in\mathbb{C}$. Dann heißt \overline{z} die konjugiert komplexe Zahl $\overline{z}=a-b\mathfrak{i}$ von z.

Satz 3.2: Eigenschaften der konjugiert komplexen Zahl

Seien $z,w\in\mathbb{C}$ dann gilt:

1.
$$\overline{z+w} = \overline{z} + \overline{w}$$

2.
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

3.
$$\frac{1}{2}(z+\overline{z})=\mathfrak{Re}(z)$$

4.
$$\frac{1}{2}(z-\overline{z})=\mathfrak{Im}(z)$$

5.
$$z \cdot \overline{z} > 0 \in \mathbb{R}$$
 falls $z \neq 0$

Definition 3.4: Betrag einer komplexen Zahl

Mit der komplexen Zahl z=a+bi und $a,b\in\mathbb{R}$ gilt für den Betrag von z:

$$|z| = \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2}$$
$$|z| = |\overline{z}|$$

Insbesondere lässt sich das multiplikative Inverse wie folgt ausdrücken:

$$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \frac{a - bi}{a^2 + b^2}$$

3.1: Polarkoordinaten-Darstellung

4: GRUPPEN, RINGE UND KÖRPER

Definition 4.1: Verknüpfung

Sei M eine Menge. Eine Abbildung $M \times M \to M, (a,b) \mapsto a \star b$ nennt man Verknüpfung.

- 1. Eine Verknüpfung heißt kommutativ, falls $a \star b = b \star a \quad \forall a, b \in M$ gilt.
- 2. Sie heißt assoziativ, falls $a\star(b\star c)=(a\star b)\star c= \quad \forall a,b,c\in M$ gilt. Man kann auch $a\star b\star c$ schreiben.
- 3. Ein Element $e \in M$ heißt neutrales Element bezüglich der Verknüpfung \star , falls $a \star e = e \star a = a \quad \forall a \in M$ gilt.

Definition 4.2: Invertierbarkeit

Sei M eine Menge mit einer Verknüpfung \star , die ein neutrales Element e besitzt, ein Element $a \in M$ heißt invertierbar, falls es ein Element $a^{-1} \in M$ gibt, so dass gilt:

$$a \star a^{-1} = a^{-1} \star a = e$$

Definition 4.3: Gruppe

Eine Menge G mit einer Verknüpfung \star heißt Gruppe, falls

- **G1** Die Verknüpfung assoziativ ist,
- **G2** ein neutrales Element besitzt,
- **G3** jedes Element invertierbar ist.

Falls die Verknüpfung zusätzlich kommutativ ist, nennt man die Gruppe eine *abel'sche Gruppe* oder auch kommutative Gruppe.

Definition 4.4: Ring

Sei M eine Menge mit zwei Verknüpfungen $(+,\cdot)$ und den folgenden Eigenschaften:

- **R1** (M, +) ist eine abel'sche Gruppe mit neutralem Element 0.
- **R2** die Verknüpfung · ist assoziativ mit neutralem Element 1.
- R3 es gelten die Distributivgesetze:

$$(a+b) \cdot c = ac + bc$$
$$c \cdot (a+b) = ca + cb$$

R4 $0 \neq 1$

Dan heißt M ein Ring (genauer ein Ring mit Eins - unitärer Ring).

Ist zusätzlich auch die Multiplikation \cdot kommutativ und ist $M \setminus \{0\}$ eine Gruppe bezüglich \cdot (d.h. besitzt jedes Element ein Inverses bzgl. \cdot) so heißt M Körper.

Satz 4.1: Eindeutigkeit der neutralen Elemente

In einer Gruppe ist das neutrale Element stats eindeutig, d.h. ist e ein neutrales Element und gibt es ein Element:

$$a \in G, \forall g \in G : a \star g = g \star a = g$$

Dann ist a = e!

Beweis:

Gelte $a \star g = g$ für ein $g \in G$. Dann folgt:

$$(a \star g) \star g^{-1} = g \star g^{-1}$$

Mit G1 und G3 gilt:

$$a \star (g \star g^{-1}) = e$$

Dann folgt mit **G3**:

$$a\star e=e$$
 und damit $a=e$

Bemerkung:

Ähnlich dazu der Beweis, dass inverse Elemente eindeutig bestimmt sind.

Definition 4.5: Homomorphismus

Seien (G,\star) und (H,*) Gruppen. Eine Abbildung $f:G\to H$ heißt (Gruppen-)Homomorphismus, falls gilt:

$$f(a \star b) = f(a) * f(b) \quad \forall a, b \in G$$

Lemma 4.1:

Ein Gruppenhomomorphismus $f:G\to H$ bildet stets das neutrale Element in G auf das neutrale Element in H ab.

Beweis:

Sei e das neutrale Element in G, dann folgt:

$$f(e) * f(g) = f(e \star g) = f(g)$$

Es folgt dann, dass f(e) das neutrale Element in H ist.

Definition 4.6:

Sei G eine Gruppe mit Verknüpfung \star und neutralem Element e. Eine nichtleere Teilmenge $U\subseteq G$ heißt *Untergruppe* von G, falls gilt:

UG 1 $\forall a,b \in U: a \star b \in U$ (Abgeschlossenheit)

$$\operatorname{UG} \mathbf{2} \ \forall a \in U : a^{-1} \in U$$

Immer gilt, dass der Kern eines Homomorphismus $f:G\to H$ d.h. $\mathrm{Kern}(f)=f^{-1}(\{e\})$ eine Untergruppe von G ist.

5: LINEARE ALGEBRA

5.1: Vektorräume

BEISPIEL

$$\mathbb{R}^{2} = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}$$

$$\mathbb{R}^{3} = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$$

$$\vdots$$

$$\mathbb{R}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) \mid x_{1}, \dots, x_{n} \in \mathbb{R}\}$$

Wir schreiben die Elemente von \mathbb{R}^n auch als sogenannte Spaltenvektoren:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ anstatt von } (x_1, x_2, \dots, x_n)$$

Mit der komponentenweisen Addition, der Vektoraddition:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

wird \mathbb{R}^n zu einer abel'schen Gruppe mit dem Nullvektor als neutrales Element und dem negierten Vektor als inverses Element bezüglich der Addition.

In der Vektorrechnung nennt man Zahlen (z.B. Elemente aus $\mathbb{R}, \mathbb{C}, \mathbb{Q}$) *Skalare*, um Zahlen und Vektoren deutlich zu unterscheiden.

$$\text{Sei } x := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R} \text{ und } \lambda \in \mathbb{R}. \text{ Dann ist die } \textit{skalare Multiplikation } x \cdot \lambda \text{ definiert durch } x \cdot \lambda \coloneqq \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}$$

Die beiden Operationen Vektoraddition und skalare Multiplikation sind kennzeichnend für einen Vektorraum.

Definition 5.1: Vektorraum

Sei K ein Körper, dessen neutrales Element bezüglich der Multiplikation mit 1_K bezeichnet wird. Sei V eine Menge mit einer Verknüpfung +, so dass (V,+) eine abel'sche Gruppe bildet.

Sei weiter eine Abbildung, genannt skalare Multiplikation $K \times V \to V$ gegeben, so dass folgende Bedingungen $\forall \alpha, \beta \in K; x, y \in V$ gelten:

V1
$$(\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$
 (assoziativ)

V 2 $1_K \cdot x = x$ (neutrales Element des Körpers ist das neutrale bzgl \cdot)

V3
$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
 (distributiv 1)

V 4
$$\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$$
 (distributiv 2)

Dann ist V ein Vektorraum über dem Körper K. Kurz auch K-Vektorraum. Die Verknüpfung + wird Vektorraddition genannt. Für $K=\mathbb{R}$ bzw. $K=\mathbb{C}$ spricht man auch von einem reellen, bzw. komplexen Vektorraum.

Elemente von V nennt man Vektoren.

BEISPIELE

- $\mathbb{R}^2, \mathbb{R}^3, \dots$
- \bullet \mathbb{C}^2
- $\{0\}$ ist ein Vektorraum für jeden Körper K.
- Sei $V=\{f\,|\, f:\mathbb{R}\to\mathbb{R}\}$ die Menge der reellen Funktionen in einer Variable. Durch die punktweise Addition

$$(f+g)(x) = f(x) + g(x)$$

und die punktweise skalare Multiplikation

$$(\lambda f)(x) = \lambda \cdot f(x)$$

wird V zu einem Vektorraum.

Definition 5.2: Untervektorraum

Sei V ein K-Vektorraum. Eine nichtleere Teilmenge $U\subseteq V$ heißt Untervektorraum bzw. Teilvektorraum, falls gilt:

UV 1 Abschluss unter Vektoraddition:

$$\forall u, v : u, v \in U \Rightarrow u + v \in U$$

UV 2 Abschluss unter skalarer Multiplikation:

$$\forall u \in U, \lambda \in K: \lambda \cdot u \in U$$

BEISPIELE Die folgenden sind Untervektorräume von \mathbb{R}^2 :

•
$$U_1 \coloneqq \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$
 (die x -Achse)

•
$$U_2 \coloneqq \left\{ \begin{pmatrix} x \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$
 (die Winkelhalbierende des 1. und 3. Quadranten)

Lemma 5.1:

Für alle $\lambda \in K, v \in V$ wobei V ein K-Vektorraum ist, gilt:

1.
$$0_K \cdot v = 0_V$$

2.
$$(-\lambda) \cdot v = -(\lambda \cdot v)$$

Beweis:

1. Es gilt:

$$\begin{aligned} 0 \cdot v &= (0+0) \cdot v \underset{\text{(V3)}}{=} 0 \cdot v + 0 \cdot v \\ 0 \cdot v + (-(0 \cdot v)) &= (0 \cdot v + 0 \cdot v) + (-(0 \cdot v)) \\ &= 0 \cdot v + (0 \cdot v + (-0 \cdot v)) \\ 0 &= 0 \cdot v + 0 = 0 \cdot v \end{aligned}$$

Definition 5.3: Linearkombination

Seien v_1,v_2,\ldots,v_k Vektoren aus dem K-Vektorraum V und seien $\lambda_1,\lambda_2,\ldots,\lambda_k\in K$. Dann heißt der Vektor

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_k v_k = \sum_{j=1}^k \lambda_j v_j$$

Linearkombination von den Vektoren v_1, v_2, \dots, v_k . Die Skalare $\lambda_1, \lambda_2, \dots, \lambda_k$ heißen *Koeffizienten* der Linearkombination.

Sind in der Linearkombination alle Koeffizienten gleich Null, handelt es sich um die triviale Linearkombination. Gibt es hingegen mindestens einen Koeffizienten $\lambda_j \neq 0$, handelt es sich um einee nichttriviale Linearkombination.