Optimal Gradient Sliding and its Application to Distributed Optimization Under Similarity

Dmitry Kovalev KAUST

Aleksandr Beznosikov MIPT, HSE and Yandex

Ekaterina Borodich MIPT and HSE

Gesualdo Scutari **Purdue University**

Alexander Gasnikov MIPT, HSE and IITP

$$\min_{x \in \mathbb{R}^d} f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)$$

 f_i on local devices

$$\|\nabla^2 f_i(x) - \nabla^2 f(x)\| \le \delta$$

$$|| \log a| \qquad || \log a|$$

$$\|\nabla^2 f_i(x) - \nabla^2 f(x)\| \le \delta$$

$$|| \text{local global}|$$

For uniform data similarity parameter is **small**

$$\delta = \tilde{O}(1/\sqrt{n})$$

n – number of local samples

$$\|\nabla^2 f_i(x) - \nabla^2 f(x)\| \le \delta$$

$$|| \log a| \qquad || \log a|$$

Long similarity story

		Reference	Communication complexity	Local gradient complexity	Order	Limitations
		DANE [42]	$\mathcal{O}\left(\frac{\delta^2}{\mu^2}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta^3}{\mu^3}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	quadratic
		DiSCO [51]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log\frac{1}{\varepsilon} + C^2\Delta F_0)\log\frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	2nd	C - self-concordant $^{(3)}$
		AIDE [40]	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon}\lograc{L}{\delta} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\delta}\right)^{(4)}$	1st	quadratic
		DANE-LS [50]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \frac{\delta^{3/2}}{\mu^{3/2}} \log \frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
		DANE-HB [50]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
u u	Upper	SONATA [45]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	decentralized
Minimization	'n	SPAG [21]	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)^{(1)}$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{L}{\delta}}\log^2\frac{1}{arepsilon} ight)^{(1,2)}$	1st	${\cal M}$ - Lipshitz hessian
Mini		DiRegINA [12]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}+\sqrt{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt{\frac{MLR_0}{\mu}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	${\cal M}$ -Lipshitz hessian
		ACN [1]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\sqrt{\frac{L}{\delta}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	M -Lipshitz hessian
		AccSONATA [46]	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon}\lograc{L}{\mu} ight)$	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\log^2rac{1}{arepsilon}\lograc{\delta}{\mu} ight)^{(2)}$	1st	decentralized
		This paper	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$	1st	
	Lower	[4]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	_		
		[37]	_	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$		non-distributed

For uniform data similarity parameter is **small**

$$\delta = \tilde{O}(1/\sqrt{n})$$

n – number of local samples

$$\|\nabla^2 f_i(x) - \nabla^2 f(x)\| \le \delta$$

$$|| \log a| \qquad || \log a|$$

For uniform data similarity parameter is **small**

$$\delta = \tilde{O}(1/\sqrt{n})$$

n – number of local samples

Long similarity story

		Reference	Communication complexity	Local gradient complexity	Order	Limitations
		DANE [42]	$\mathcal{O}\left(\frac{\delta^2}{\mu^2}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta^3}{\mu^3}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	quadratic
		DiSCO [51]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log\frac{1}{\varepsilon} + C^2\Delta F_0)\log\frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	2nd	C - self-concordant $^{(3)}$
		AIDE 40	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon}\lograc{L}{\delta} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\delta}\right)^{(4)}$	1st	quadratic
		DANE-LS 50	$\mathcal{O}\left(\frac{\frac{\delta}{\mu}\log\frac{1}{\varepsilon}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \frac{\delta^{3/2}}{\mu^{3/2}} \log \frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
		DANE-HB [50]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
u _e	Upper	SONATA [45]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	decentralized
Minimization	n	SPAG [21]	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)^{(1)}$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{L}{\delta}}\log^2\frac{1}{\varepsilon}\right)^{(1,2)}$	1st	${\cal M}$ - Lipshitz hessian
Minir		DiRegINA [12]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon} + \sqrt{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt{\frac{MLR_0}{\mu}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	M -Lipshitz hessian
		ACN []	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\sqrt{\frac{L}{\delta}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	M -Lipshitz hessian
		AccSONATA [46]	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon}\lograc{L}{\mu} ight)$	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\log^2rac{1}{arepsilon}\lograc{\delta}{\mu} ight)^{(2)}$	1st	decentralized
		This paper	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$	1st	
	Lower	[4]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	_		
		[37]	_	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$		non-distributed

$$\|\nabla^2 f_i(x) - \nabla^2 f(x)\| \le \delta$$

$$|| \log a| \qquad || \log a|$$

For uniform data similarity parameter is **small**

$$\delta = \tilde{O}(1/\sqrt{n})$$

n – number of local samples

Long similarity story

		Reference	Communication complexity	Local gradient complexity	Order	Limitations
		DANE [42]	$\mathcal{O}\left(\frac{\delta^2}{\mu^2}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta^3}{\mu^3}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	quadratic
		DiSCO [51]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	2nd	C - self-concordant $^{(3)}$
		AIDE 40	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon}\lograc{L}{\delta} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\delta}\right)^{(4)}$	1st	quadratic
		DANE-LS [50]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \frac{\delta^{3/2}}{\mu^{3/2}} \log \frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
		DANE-HB [50]	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
l E	Upper	SONATA [45]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	decentralized
Minimization	'n	SPAG [21]	$\mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{arepsilon} ight)^{(1)}$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{L}{\delta}}\log^2\frac{1}{\varepsilon}\right)^{(1,2)}$	1st	${\cal M}$ - Lipshitz hessian
Mini		DiRegINA [12]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{arepsilon}+\sqrt{rac{M\delta R_0}{\mu}} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt{\frac{MLR_0}{\mu}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	${\it M}$ -Lipshitz hessian
		ACN [1]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\sqrt{\frac{L}{\delta}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	M -Lipshitz hessian
		AccSONATA [46]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon}\log\frac{\delta}{\mu}\right)^{(2)}$	1st	decentralized
		This paper	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$	1st	
	Lower	[4]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	_		
		[37]	_	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$		non-distributed

2015 — lower bounds

$$\|\nabla^2 f_i(x) - \nabla^2 f(x)\| \le \delta$$
local global

For uniform data similarity parameter is **small**

$$\delta = \tilde{O}(1/\sqrt{n})$$

n – number of local samples

Long similarity story

		Reference	Communication complexity	Local gradient complexity	Order	Limitations	
		DANE [42]	$\mathcal{O}\left(\frac{\delta^2}{\mu^2}\log\frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta^3}{\mu^3}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	quadratic	→ 2014 — 1st method
		DiSCO [51]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log\frac{1}{\varepsilon} + C^2\Delta F_0)\log\frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	2nd	C - self-concordant $^{(3)}$	
		AIDE [40]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\delta}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\delta}\right)^{(4)}$	1st	quadratic	
		DANE-LS [50]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \frac{\delta^{3/2}}{\mu^{3/2}} \log \frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)	
		DANE-HB [50]	$O\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\frac{L}{\mu}} \frac{\delta}{\mu} \log \frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)	2015 2022 no ontimal
[Upper	SONATA [45]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	decentralized	2015 - 2022 — no optimal
Minimization	ū	SPAG [21]	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)^{(1)}$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{L}{\delta}}\log^2\frac{1}{\varepsilon}\right)^{(1,2)}$	1st	${\cal M}$ - Lipshitz hessian	methods in general
Minir		DiRegINA [12]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}+\sqrt{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt{\frac{MLR_0}{\mu}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	${\cal M}$ -Lipshitz hessian	
		ACN [1]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\sqrt{\frac{L}{\delta}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	M -Lipshitz hessian	
		AccSONATA [46]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon}\log\frac{\delta}{\mu}\right)^{(2)}$	1st	decentralized	
		This paper	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$	1st		
	Lower	[4]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	_			✓ 2015 — lower bounds
	Lo	37]	_	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$		non-distributed	

$$\|\nabla^2 f_i(x) - \nabla^2 f(x)\| \le \delta$$

$$|| \log a| \qquad || \log b|$$

For uniform data similarity parameter is **small**

$$\delta = \tilde{O}(1/\sqrt{n})$$

n – number of local samples

Long similarity story

		Reference	Communication complexity	Local gradient complexity	Order	Limitations
	Upper	DANE [42]	$\mathcal{O}\left(\frac{\delta^2}{\mu^2}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta^3}{\mu^3}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	quadratic
		DiSCO [51]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}(\lograc{1}{arepsilon}+C^2\Delta F_0)\lograc{L}{\mu} ight)$	2nd	${\cal C}$ - self-concordant $^{(3)}$
		AIDE 40	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon}\lograc{L}{\delta} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\delta}\right)^{(4)}$	1st	quadratic
		DANE-LS 50	$\mathcal{O}\left(\frac{\frac{\delta}{\mu}\log\frac{1}{\varepsilon}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \frac{\delta^{3/2}}{\mu^{3/2}} \log \frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
		DANE-HB [50]	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
5		SONATA [45]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon}\right)^{(2)}$	1st	decentralized
Minimization		SPAG [21]	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{arepsilon} ight)^{(1)}$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{L}{\delta}}\log^2\frac{1}{\varepsilon}\right)^{(1,2)}$	1st	${\cal M}$ - Lipshitz hessian
Minin		DiRegINA [12]	$\mathcal{O}\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}+\sqrt{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt{\frac{MLR_0}{\mu}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	M -Lipshitz hessian
		ACN [1]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log^2\frac{1}{\varepsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\sqrt{\frac{L}{\delta}}\log\frac{1}{\varepsilon}\right)^{(2)}$	2nd	M -Lipshitz hessian
		AccSONATA [46]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log^2\frac{1}{\varepsilon}\log\frac{\delta}{\mu}\right)^{(2)}$	1st	decentralized
		This paper	$\mathcal{O}\left(\sqrt{rac{\delta}{\mu}}\lograc{1}{arepsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$	1st	
	Lower	[4]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	_		
		[37]	_	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$		non-distributed

2014 — 1st method

We present optimal method in communications and local computations!

2015 — lower bounds

Idea

$$\min_{x \in \mathbb{R}^d} r(x) = \underbrace{f_1(x)}_{:=q(x)} + \underbrace{\frac{1}{n} \sum_{i=1}^n [f_i(x) - f_1(x)]}_{:=p(x)}$$

Idea

$$\min_{x \in \mathbb{R}^d} r(x) = \underbrace{f_1(x)}_{:=q(x)} + \underbrace{\frac{1}{n} \sum_{i=1}^n [f_i(x) - f_1(x)]}_{:=p(x)}$$

$$= \underbrace{\delta}_{-\text{smooth and non-convex}}$$

Idea

Algorithm 1 Accelerated Extragradient

```
1: Input: x^0 = x_f^0 \in \mathbb{R}^d

2: Parameters: \tau \in (0,1], \, \eta, \theta, \alpha > 0, K \in \{1,2,\ldots\}

3: for k = 0,1,2,\ldots,K-1 do

4: x_g^k = \tau x^k + (1-\tau)x_f^k

5: x_f^{k+1} \approx \arg\min_{x \in \mathbb{R}^d} \left[ A_\theta^k(x) \coloneqq p(x_g^k) + \langle \nabla p(x_g^k), x - x_g^k \rangle + \frac{1}{2\theta} \|x - x_g^k\|^2 + q(x) \right]

6: x^{k+1} = x^k + \eta \alpha (x_f^{k+1} - x^k) - \eta \nabla r(x_f^{k+1})

7: end for

8: Output: x^K
```

Algorithm 1 Accelerated Extragradient

```
1: Input: x^0 = x_f^0 \in \mathbb{R}^d

2: Parameters: \tau \in (0,1], \, \eta, \theta, \alpha > 0, K \in \{1,2,\ldots\}

3: for k = 0,1,2,\ldots,K-1 do

4: x_g^k = \tau x^k + (1-\tau)x_f^k

5: x_f^{k+1} \approx \arg\min_{x \in \mathbb{R}^d} \left[ A_\theta^k(x) \coloneqq p(x_g^k) + \langle \nabla p(x_g^k), x - x_g^k \rangle + \frac{1}{2\theta} \|x - x_g^k\|^2 + q(x) \right]

6: x^{k+1} = x^k + \eta \alpha (x_f^{k+1} - x^k) - \eta \nabla r(x_f^{k+1})

7: end for

8: Output: x^K
```

3 ideas:

Extragradient: 2 steps per iteration

Algorithm 1 Accelerated Extragradient

```
1: Input: x^0 = x_f^0 \in \mathbb{R}^d
          2: Parameters: \tau \in (0,1], \eta, \theta, \alpha > 0, K \in \{1,2,\ldots\}
           3: for k = 0, 1, 2, \dots, K - 1 do
                       x_{q}^{k} = \tau x^{k} + (1 - \tau)x_{f}^{k}
                       x_f^{k+1} \approx \arg\min_{x \in \mathbb{R}^d} \left[ A_\theta^k(x) \coloneqq p(x_g^k) + \langle \nabla p(x_g^k), x - x_g^k \rangle + \frac{1}{2\theta} \|x - x_g^k\|^2 + q(x) \right] 
 x^{k+1} = x^k + \eta \alpha (x_f^{k+1} - x^k) - \eta \nabla r(x_f^{k+1}) 
           7: end for
           8: Output: x^K
3 ideas:
```

- Extragradient: 2 steps per iteration
- Sliding (inexact prox)

Algorithm 1 Accelerated Extragradient

```
1: Input: x^0 = x_f^0 \in \mathbb{R}^d

2: Parameters: \tau \in (0,1], \eta, \theta, \alpha > 0, K \in \{1,2,\ldots\}

3: for k = 0,1,2,\ldots, K-1 do

4: x_g^k = \tau x^k + (1-\tau)x_f^k

5: x_f^{k+1} \approx \arg\min_{x \in \mathbb{R}^d} \left[ A_\theta^k(x) := p(x_g^k) + \langle \nabla p(x_g^k), x - x_g^k \rangle + \frac{1}{2\theta} \|x - x_g^k\|^2 + q(x) \right]

6: x^{k+1} = x^k + \eta \alpha (x_f^{k+1} - x^k) - \eta \nabla r(x_f^{k+1})

7: end for

8: Output: x^K
```

3 ideas:

- Extragradient: 2 steps per iteration
- Sliding (inexact prox)
- Acceleration

Convergence

Theorem. Let assumptions from previous slides be satisfied with $\mu \leq \delta \leq L$. Then, to find ε -solution of the distributed optimization problem Algorithm 1 requires

$$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$$
 communication rounds and $\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$ local gradient computations.

Convergence

Theorem. Let assumptions from previous slides be satisfied with $\mu \leq \delta \leq L$. Then, to find ε -solution of the distributed optimization problem Algorithm 1 requires

$$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$$
 communication rounds and $\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$ local gradient computations.

Optimal estimates in terms of communications and local computations

Thank you!