LECTURE 3, PART I: ERROR AND VALIDATION

² Text references: Chapter 3 i	n Shalizi
---	-----------

Review/Introductory Remark

- ⁵ Suppose X represents different covariates and Y is our response variable,
- and suppose that we are interested in the relationships between X and Y.
- Here are three *different* but related concepts:
- 1. association
- ₉ 2. causation
- 3. prediction
- Association does not imply causation. Do you remember when you would
- be able to make causal statements?

5

17

19

Lecture Notes for 36-402 Section B Last Updated February 11, 2019

Furthermore	, a strong association between X and Y does not necessarily
$_{\scriptscriptstyle 2}$ mean that X	is an important predictor in the model. Why? Give an exam-
₃ ple.	
4	
5	
6	
7	
In Lecture 2,	Parts III and IV, we discussed causal inference, and the pit-
falls of inter	preting relationships or the output of a multiple regression
program as o	casual. In this lecture, we are going to take a purely predic-
tive viewpoint	of regression. We start by describing the different sources of
errors in pred	diction and how to estimate error in practice.
3	
	ctive Viewpoint. Set-Up.
4 THE FIEUR	tive viewpoint. Set-Op.
5 Given data (2	$(X_1, Y_1), \ldots, (X_n, Y_n)$ we have two goals:
	Find an estimate $\hat{r}(x)$ of the regression function $r(x)$.
prediction:	Given a <i>new</i> X , predict Y ; we use $\hat{Y} = \hat{r}(X)$ as the prediction
7 Note the follo	owing (what is random? what is fixed?):
8	

Lecture 3, Part I: The Basics of Error and Validation	
Q: How well does the function \hat{r} , constructed	ed on the training set/sample
predict our new test point (X, Y) ?	0 1
predict our new test point (21, 1).	
To measure this, we define the expected test e :	rror (which is often referred
-	(Which is offen referred
to as prediction error or prediction risk):	
where the expectation is over all that is rand	
•	doni (numing set, and test
point).	

1	Q : Why would	we want to	measure this?	Here are two major	r reasons:

- 1. *Model assessment:* sometimes we would just like to know how well we can predict a future observation, in absolute terms
- 2. *Model selection:* often we will want to choose between different fitting functions; this could mean choosing between two different model classes entirely (e.g., linear regression versus some other fixed method) or choosing an underlying tuning parameter for a single method (e.g., choosing *k* in *k*-nearest neighbors). How to do this? A common way is to compare prediction errors (which are in practice *estimated* from data).

11	Note that there are two estimation problems:
12	
13	
14	
15	

The Bias-Variance Decomposition

First some intuition

- The expected test error or prediction risk R above has an important prop-
- erty: it decomposes into informative parts. But, before we go through the
- 21 mathematics of the decomposition, let's think about a few points:

1	. Can we ever predict Y from X with zero prediction error? Likely, no.
	Even if our function \hat{r} happened to capture the ideal relation underly-
	ing X,Y , i.e., the true regression function $r(X)=\mathbb{E}(Y X)$, we would
	still incur error, due to noise. We call this irreducible error; it can repre-
	sent
2	. What happens if our fitted function \widehat{r} belongs to a model class that is
	far from the true regression function r ? E.g., we may choose to fit a
	linear model in a setting where the true relationship is far from linear?
	We'll often refer to this as a <i>misspecified model</i> . As a result, we encounter
	error, what we call estimation bias; it represents
3	. What happens if our fitted (random) function \hat{r} is itself quite variable?
	In other words, for different training samples of size n , we end up con-
	structing substantially different functions \hat{r} ? This is another source of

	error, that we'll call estimation variance; it represents
_	
-	
-	
-	
Poir	nt Estimation Revisited. The Bias-Variance Decomposition of MSE
Befo	ore we return to regression, first recall the problem of point estimation
.e. t	the problem of providing a single "best guess" of some fixed quantit
of ir	nterest. More formally let Y_1, \ldots, Y_n be n IID data points from som
disti	ribution. A point estimator $\widehat{ heta}_n$ of a parameter $ heta$ is some function \mathfrak{c}
Y_1 ,.	\dots, Y_n (what is fixed? what is random?):
The	bias of a point estimator is defined by:

1	The distribution of $\widehat{\theta}_n$ is called the sampling distribution . Think about this
2	figure:
3	The quality of a point estimate is sometimes assessed by the mean squared
4	error, or MSE, defined by:
_	
5	
6	
7	The MSE can be written as:
8	
9	
10	Now compare point estimation with regression and curve estimation .
11	Think about this figure and compare with the one above!

The Bias-Variance Decomposition of the MSE in Regression

₂]	f X	and Y	are random	variables,	recall	the rule	of iterated	expectations
----------------	-----	---------	------------	------------	--------	----------	-------------	--------------

$$\mathbb{E}[g(X,Y)] = \mathbb{E}[\mathbb{E}[g(x,Y)|X=x]],$$

- where the inner expectation is taken with respect to Y|X and the outer one
- $_{5}$ is taken with respect to the marginal distribution of X. Throughout the
- $_{6}$ following section, we use this rule, conditioning on X to obtain the risk
- function R(x) at X = x.

8	Hence, for our expected test error or prediction error, we have
9	
10	
11	
12	
13	Now look at $R(x)$, the prediction error conditional on $X = x$ for some fixed
14	value of x:
15	value of x:
15 16	value of x:
15 16	value of x:
15 16	value of x:

Lecture 3, 1 ar	t I: The basics of Error and Validation
	term is just the <i>irreducible error</i> . The second term can be further
decompos	sed just as the MSE of a point estimator (NOTE: $\hat{r}(x)$ is a random
variable its	self, calculated at a fixed value of x) into a bias component and a
variance o	component at x . Therefore, altogether,
	called the bias-variance decomposition .
Typical tr	end: underfitting means high bias and low variance, overfitting
	w bias but high variance. E.g., think about k in k -nearest-neighbors
C	n: relatively speaking, how do the bias and variance behave for
small k , a	nd for large k? [See R Demo 1 and HW Set 1, Problem 1]

Lecture 5, Part 1: The basics of Error and Validation	
Finally, we have for the prediction error R :	
and $R_{\rm av}$ is called the average prediction risk .	
To assess with a Marsiala to larger D. the anadiation viola D. massid	
<u>To summarize</u> : We wish to know R , the prediction risk. R_{av} provid	
excellent approximation, but $R_{\rm av}$ is not a quantity that we can readily	y cal-
culate empirically because we do not know $\mathbb{R}(X_i)$. Let us next explore	e why
it is challenging to calculate R .	
The Optimism of the Training Error	
The Optimism of the framing Error	
Define the training error	
What wrong with the training error or expected training error? (As be	efore,
we will condition on x_1, \ldots, x_n in our discussion. If needed, one can al	wavs
	•
derive unconditional expectations by the "law of total expectations"	, and
unconditional variances by the "law of total variance".)	

- We might guess that $\hat{R}_{ ext{training}}$ estimates the prediction error (R) well but
- this is not true. The reason is that we used the observed pairs (x_i, Y_i) to
- obtain $\hat{Y}_i = \hat{r}(x_i)$. As a consequence Y_i and \hat{Y}_i are correlated. Typically \hat{Y}_i
- "predicts" Y_i better than it predicts a new Y at the same x_i . Let us explore
- this formally. Let $\overline{r}_i = \mathbb{E}(\hat{r}(x_i))$ and compute

$$\mathbb{E}(Y_i - \hat{Y}_i)^2 = \mathbb{E}(Y_i - r(x_i) + r(x_i) - \overline{r}(x_i) + \overline{r}(x_i) - \hat{Y}_i)^2$$

$$= \sigma^2 + \mathbb{E}(r(x_i) - \overline{r}(x_i))^2 + \mathbb{V}(\hat{r}(x_i)) - 2\mathsf{Cov}(\hat{Y}_i, Y_i).$$

- 8 Note: this time the cross-product involving the 1st and 3rd terms is not
- 0 because $Cov(\hat{Y}_i, Y_i) \neq 0$. This is because Y_i is a particular observation
- from which we calculated \hat{Y}_i , hence the two terms are correlated. This
- introduces a bias into the estimate of risk:

shall see how to estimate the prediction risk.

13

Typically, $Cov(\hat{Y}_i, Y_i) > 0$ and so $\hat{R}_{training}$ underestimates the risk. Later, we

18 _____

20 _____

21

Lecture 3, Part I: The Basics of Error and Validation						