Social Choice

Joseph Chuang-Chieh Lin

Dept. CSIE, Tamkang University, Taiwan

Outline

1 Introduction to Social Choice

- Peer-Grading in MOOCs
 - Preliminaries
 - Correctness of Recovered Pairwise Rankings

The Setting of Social Choice

Take voting scheme for example.

- A set O of outcomes (i.e., alternatives, candidates, etc.)
- The social choice function: a mapping from the profiles of the preferences to a particular outcome.

3/34

Outcomes & preferences

Preferences

- A binary relation > such that
 - for every $a,b\in O$, $a\neq b$, we have either $a\succ b$ or $b\succ a$ but NOT both.
 - for $a, b, c \in O$, if $a \succ b$ and $b \succ c$, then we have $a \succ c$.
- <u>►</u> can be defined similarly.
 - ≺: ¬≻

5/34

Agents with preferences

- E.g., five agents (voters).
- Each agent has its preference over four candidates $\{a, b, c, d\}$.

Agents with preferences

- E.g., three agents (voters).
- Each agent has its preference over four candidates $\{a, b, c, d\}$.

v_1	v_2	v_3
d	b	а
b	С	b
а	а	С
С	d	d

Plurality rule \Rightarrow a

• Plurality rule: each agent can only give score 1 to the most preferred one and 0 to the others.

8/34

Plurality rule (contd.)

• Plurality rule: each agent can only give score 1 to the most preferred one and 0 to the others.

Plurality rule (contd.)

• Plurality rule:

10/34

Plurality rule (contd.)

• Plurality rule: depending on the tie-breaking rule.

Fall 2022

- Condorcet rule:
 - a vs. b
 - a vs. c
 - a vs. d

- Condorcet rule:
 - a vs. $b \rightarrow b$
 - a vs. $c \rightarrow a$
 - a vs. $d \rightarrow a$

- Condorcet rule:
 - c vs. a
 - c vs. b
 - c vs. d

- Condorcet rule:
 - c vs. $a \rightarrow a$
 - c vs. $b \rightarrow b$
 - c vs. $d \rightarrow c$

- Condorcet rule:
 - b vs. a
 - b vs. c
 - b vs. d

- Condorcet rule:
 - b vs. $a \rightarrow b$
 - b vs. $c \rightarrow b$
 - b vs. $d \rightarrow b$

- Condorcet rule: b
 - b vs. $a \rightarrow b$
 - b vs. $c \rightarrow b$
 - b vs. $d \rightarrow b$

Borda rule

• Borda count rule:

Borda rule

Borda count rule:

- score of a: 1+1+3=5.
- score of b: 2+3+2=7.
- score of c: 0+2+1=3.
- score of d: 3 + 0 + 0 = 3.

Borda rule

- Borda count rule: b.
 - score of a: 1+1+3=5.
 - score of b: 2+3+2=7.
 - score of c: 0+2+1=3.
 - score of d: 3 + 0 + 0 = 3.

v_1		v_2		v_3	
а	2	а	2	а	2
b	1	b	1	b	1
С	0	С	0	С	0

	_	٠,	
b	2	b	2
С	1	С	1
а	0	а	0

 v_5

 v_{4}

v_1		v_2		v_3		v_4		v_5	
а	2	а	2	а	2	b	2	b	2
b	1	b	1	b	1	С	1	С	1
С	0	С	0	С	0	а	0	а	0

• Who is the winner by Borda counting?

• Who is the winner by Borda counting? a: 6, b: 7, c: 2.

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows?

v_1		v_2		v_3		v_4		v_5	
а	2	а	2	а	2	b	2	b	2
b	1	b	1	b	1	С	1	С	1
С	0	С	0	С	0	а	0	а	0

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.
- Who is the winner under the plurality rule?

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.
- Who is the winner under the plurality rule? a.

v_1	v_2	v_3
b	а	С
d	b	а
С	d	b
а	С	d

• Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:

v_1	v_2	v_3
b	а	С
d	b	а
С	d	b
а	С	d

• Successive elimination with ordering $a \to \not\! b \to c \to d$:

v_1	v_2	v_3
b	а	С
d	b	а
С	d	b
а	С	d

• Successive elimination with ordering $\not a \to \not b \to c \to d$:

18/34

v_1	,	v_2	v_3
b		а	С
d		b	а
С		d	b
а		С	d

• Successive elimination with ordering $\not a \to \not b \to \not c \to d$:

v_1	v_2	v_3
b	а	С
d	b	а
С	d	b
а	С	d

• Successive elimination with ordering $\not a \to \not b \to \not c \to d$: $\not d$

v_1	v_2	v_3
b	а	С
d	b	а
С	d	b
а	С	d

- Successive elimination with ordering $\not a \to \not b \to \not c \to d$: $\not d$
 - The issue: all of the agents prefer b to d!

v_1	v_2	v_3
b	а	С
d	b	а
С	d	b
а	С	d

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: **d**
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$:

v_1	v_2	v_3
b	а	С
d	b	а
С	d	b
а	С	d

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: **d**
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$:

Successive elimination (sensitive to the agenda order)

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: **d**
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$: **b**
- Successive elimination with ordering $b \rightarrow c \rightarrow a \rightarrow d$:

Successive elimination (sensitive to the agenda order)

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$: **b**
- Successive elimination with ordering $b \rightarrow c \rightarrow a \rightarrow d$:

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for C > B > A.
- Who is the Condorcet winner?

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for C > B > A.
- Who is the Condorcet winner? B.
- Who is the winner under the plurality rule?

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for C > B > A.
- Who is the Condorcet winner? B.
- Who is the winner under the plurality rule? A.

Exercise

On Borda Count & Condorcet

We have five voters with the following preferences (ordering) over the outcomes A, B, C, and D.

- $B \succ C \succ A \succ D$.
- $B \succ D \succ C \succ A$.
- $D \succ C \succ A \succ B$.
- $A \succ D \succ B \succ C$.
- $A \succ D \succ C \succ B$.

Who is the winner by the Borda Count rule?

Who is the Condorcet winner?

Let's consider a practical application in MOOCs.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.
 - > Ask each student to grade a SMALL number of her peers' assignments.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.
 - → Ask each student to grade a SMALL number of her peers' assignments.
 - Then merge individual rankings into a global one.

Terminologies

- A: universe of n elements (students).
- (n, k)-grading scheme: a collection \mathcal{B} of size-k subsets (bundles) of \mathcal{A} , such that each element of \mathcal{A} belongs to exactly k subsets of \mathcal{B} .
- The bundle graph: Represent the (n, k)-grading scheme with a bipartite graph.
- \prec_b : a ranking of the element b contains (partial order).

26 / 34

The aggregation rule

An aggregation rule:

profile of partial rankings \mapsto complete ranking of all elements.

• Borda:

а	LE BLE D'OR	5
	LE BLE 0'64.	_
b	CRYSTAL SPOON	4
С	Bei Yuan Restaurant	2
d	Tasty Steak TASTY	1
e	Capricciosa	3

a	LE BLE D'OR	4
b	CRYSTAL SPOON	5
С	Bei Yuan Restaurant	1
d	Tasty Steak TASTY	3
e	Capricciosa	2

• a: 14; b: 12; c: 4; d: 6; e: 9.

$$a \prec b \prec e \prec d \prec c$$
.

Order-revealing grading scheme

An aggregation rule in peer grading (Borda):

Alice: 9; Bob: 8; Curry: 5; David: 5; Elvis: 3.
Alice ≺ Bob ≺ Curry ≺ David ≺ Elvis.

Assumption (perfect grading)

Each student grades the assignments in her bundle consistently to the ground truth.

Order-revealing grading scheme (contd.)

Alice: 9; Bob: 8; Curry: 8; David: 5; Elvis: 4; Frank: 6; Green: 5; Henry: 3.
Alice ≺ Bob ≺ Curry ≺ Frank ≺ David ≺ Green ≺ Elvis ≺ Henry.

Order-revealing grading scheme (contd.)

Alice: 9; Bob: 8; Curry: 8; David: 5; Elvis: 4; Frank: 6; Green: 5; Henry: 3.
Alice ≺ Bob ≺ Curry ≺ Frank ≺ David ≺ Green ≺ Elvis ≺ Henry.

The bundle graph

The bundle graph:

The bundle graph

The bundle graph:

• A random *k*-regular graph:

A complete bipartite $K_{n,n} \mapsto$ removing edges $\{v, v\}$, $\forall v \mapsto$ repeat

"draw a perfect matching uniformly at random among all perfect matchings of the remaining graph"

for k times.

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

 $\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text{ such that } x, y \in B.$

31 / 34

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

$$\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text{ such that } x, y \in B.$$

- Suppose NO bundle contains both $x, y \in A$.
- Let \prec , \prec' be two complete rankings.
 - x, y are in the first two positions in \prec, \prec' ;
 - \prec and \prec' differs only in the order of x and y.
- Clearly, partial rankings within the bundles are identical in both cases.
- No way to identify whether \prec or \prec' is the ground truth.

Fall 2022

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

$$\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text{ such that } x, y \in B.$$

- Suppose NO bundle contains both $x, y \in A$.
- Let \prec , \prec' be two complete rankings.
 - x, y are in the first two positions in \prec, \prec' ;
 - \prec and \prec' differs only in the order of x and y.
- Clearly, partial rankings within the bundles are identical in both cases.
- No way to identify whether \prec or \prec' is the ground truth.
- To reveal the ground truth with certainty: $k = \Omega(\sqrt{n})$.
 - $n \cdot {k \choose 2} \geq {n \choose 2}$.

Seeking for approximate order-revealing grading schemes

- Use a bundle graph with a very low degree k (independent of n).
- Randomly permute the elements by $\pi: U \mapsto \mathcal{A}$ before associating them to the nodes of U of the bundle graph.
- Aiming at $\frac{\text{\#correctly recovered pairwise relations}}{\binom{n}{2}}$.

The main result

Theorem (Caragiannis, Krimpas, Voudouris@AAMAS'15)

When

- Borda is applied as the aggregation rule, and
- all the partial rankings are consistent to the ground truth, then the expected fraction of correctly recovered pairwise relations is $1 O(1/\sqrt{k})$.

Question

• What will happen if we assign for each student only two assignments and each assignment is graded by exactly two students?

