6. Übung zu Numerische Methoden und Simulation

Sommersemester 2022

ABGABE: bis 7.6.2022

1. Monte-Carlo-Simulation des Ising-Modells

1.5 + 1.5 Punkte

- a) Schreiben Sie ein Programm zur Monte-Carlo-Simulation des Ising-Modells mit dem Metropolis-Verfahren auf dem Quadratgitter mit Nächst-Nachbar-Wechselwirkung. Sie können Ihr eigenes Programm von "scratch" schreiben oder die "templates" verwenden.
- b) Berechnen und plotten Sie mit dem Programm die Magnetisierung $\langle |M| \rangle$, $\langle M^2 \rangle$, $\langle M^4 \rangle$ sowie die Binder-Kumulante $1 \frac{1}{3} \frac{\langle M^4 \rangle}{\langle M^2 \rangle^2}$ als Funktion der Temperatur (inkl. T = 1, 2, 3, 4) für verschiedene System-Größen (inkl. 4×4 , 8×8 , 16×16 und 32×32). Schätzen Sie die kritische Temperatur ab (hierfür werden Sie mehr T-Werte und System-Größen benötigen).

Abgabe:

- 1) Programm (C oder FORTRAN oder Python)
- 2) Plots (PS oder PDF) aller Größen aus b)
- 3) Protokoll.txt:

Parameter (sweeps, warm-up...) T_C mit Begründung