Knowledge Representation & Symbolic Reasoning Assignment 1: Propositional Logic

Henk Jekel (5609593)

June 27, 2024

1 Modelling and reasoning in propositional logic

1.1 From natural language to logic

1. "There is a box of hagelslag on the table".

$$hagelsag_on_table$$
 (1)

2. "It is logically equivalent to say that it is possible to stock a product and to say that there is a product on the table and that the shelf is not full."

$$can_stock_product \leftrightarrow (product_on_table \land \neg full_shelf)$$
 (2)

3. "If there is hagelslag on the table or yogurt on the table then there is a product on the table".

$$(hagelslag_on_table \lor yogurt_on_table) \rightarrow product_on_table$$
 (3)

4. "If the shelf is full, then it is not possible to stock a product".

$$full_shelf \rightarrow \neg can_stock_product$$
 (4)

5. "It is logically equivalent to say that the shelf is full and that there is no room in the shelf".

$$full_shelf \leftrightarrow \neg room_in_shelf$$
 (5)

1.2

1. "There is a box of hagelslag on the table".

$$hagelsag_on_table$$
 (6)

2. "It is logically equivalent to say that it is possible to stock a product and to say that there is a product on the table and that the shelf is not full."

$$can_stock_product \leftrightarrow (product_on_table \land \neg full_shelf)$$
 (7)

Biconditional Equivalence:

$$can_stock_product \leftrightarrow (product_on_table \land \neg full_shelf) \equiv \\ (can_stock_product \rightarrow (product_on_table \land \neg full_shelf)) \land \\ ((product_on_table \land \neg full_shelf) \rightarrow can_stock_product)$$

$$(8)$$

Implication Equivalence:

$$(can_stock_product \rightarrow (product_on_table \land \neg full_shelf)) \land \\ ((product_on_table \land \neg full_shelf) \rightarrow can_stock_product) \equiv \\ (\neg can_stock_product \lor (product_on_table \land \neg full_shelf)) \land \\ (\neg (product_on_table \land \neg full_shelf) \lor can_stock_product)$$

$$(9)$$

$$(\neg can_stock_product \lor (product_on_table \land \neg full_shelf)) \land \\ (\neg (product_on_table \land \neg full_shelf) \lor can_stock_product) = \\ (\neg (can_stock_product \lor product_on_table) \land \\ (\neg (product_on_table \lor full_shelf) \lor can_stock_product)$$

3. "If there is hagelslag on the table or yogurt on the table then there is a product on the table".
$$(hagelslag_on_table \lor yogurt_on_table) \rightarrow product_on_table = \\ (hagelslag_on_table \lor yogurt_on_table) \rightarrow product_on_table = \\ (\neg (hagelslag_on_table \lor yogurt_on_table)) \lor product_on_table = \\ (\neg (hagelslag_on_table \lor yogurt_on_table)) \lor product_on_table = \\ ((\neg (hagelslag_on_table \lor yogurt_on_table)) \lor product_on_table = \\ ((\neg (hagelslag_on_table \lor yogurt_on_table)) \lor product_on_table = \\ ((\neg (hagelslag_on_table) \land (\neg yogurt_on_table)) \lor product_on_table = \\ ((\neg (hagelslag_on_table) \land (\neg yogurt_on_table)) \lor product_on_table) \Rightarrow product_on_table)$$

1.3

1.3.1 Modus Ponens to find that product_on_table based on knowledge base

Since we have that:
$$hagelslag_on_table \lor yogurt_on_table) \rightarrow product_on_table \Rightarrow product_on_table$$

(15)

Modus Ponens to find that product_on_table $\lor yogurt_on_table$ (16)

We have that:
$$hagelslag_on_table \lor yogurt_on_table) \rightarrow product_on_table \Rightarrow$$

 $can_stock_product$

(23)