## Série 1

- 1. Sans utiliser de calculatrice, convertir
  - a)  $\alpha = 240^{\circ}$  en radians, b)  $\beta = 1$  rad en degrés et minutes, (poser  $\pi = \frac{22}{7}$ ).
- 2. Un polygone régulier de n côtés et de sommets  $A_1, A_2, \cdots, A_n$  et inscrit dans un cercle de centre O.

Exprimer en radians la mesure des angles  $\widehat{A_1OA_k}$ ,  $k=2,\cdots,n$ .

- 3. a) Un arc de cercle a pour longueur  $L=30\,\mathrm{cm}\,,\,$  son angle au centre mesure  $\alpha=4\,$  rad. Calculer son rayon  $\,r\,.\,$ 
  - b) Un secteur circulaire a pour angle au centre  $\beta=18^\circ$  et pour rayon  $r=12\,\mathrm{cm}$ . Calculer la longueur L de l'arc et l'aire A du secteur.
- 4. La roue ci-contre, de rayon  $\,r\,$ , a son centre situé à la distance  $\,d\,$  du mur. On la fait rouler jusqu'à ce qu'elle touche celui-ci.

De quel angle  $\alpha$  la roue a-t-elle tourné?



- 5. Un volant tourne de 48 tours en une minute. Exprimer sa vitesse angulaire  $\omega$  en radians par seconde.
- 6. Estimer la vitesse sur orbite de la lune dans sa course autour de la terre connaissant la distance qui sépare leur centre (environ 360'000 km) et en fixant une période lunaire approximativement à 30 jours.
- 7. Il est midi. Sur une montre analogique, l'aiguille des heures et celle des minutes sont superposées.
  - a) A quels instants (heures, minutes, secondes) le seront-elles de nouveau ? Indication : déterminer  $\alpha_1(t)$ , l'angle décrit par l'aiguille des heures en t secondes et  $\alpha_2(t)$ , l'angle décrit par l'aiguille des minutes.
  - b) Même question avec les trois aiguilles , celle des heures, des minutes et des secondes.

8. Sur une piste circulaire, deux personnes prennent simultanément le départ en un même point  $\,A\,.\,$ 

La première personne court à vitesse constante et effectue un tour complet en 60 secondes et la deuxième part en sens inverse, à vitesse constante et fait un tour en 250 secondes.

- a) Déterminer l'instant  $t_n$  où les deux coureurs se rencontrent pour la n-ième fois.
- b) Déterminer l'instant  $t_A$  où les deux personnes se rencontrent pour la première fois au point de départ A.

Réponses de la série 1

1. a) 
$$\alpha = \frac{4\pi}{3}$$
 rad

b) 
$$\beta \approx 57^{\circ} \, 16'$$
.

**2.** La mesure de l'angle  $\widehat{A_1OA_k}$  est égale à  $(k-1)\frac{2\pi}{n}$ ,  $k=2,\cdots,n$ .

3. a) 
$$r = 7,5 \text{ cm}$$

b) 
$$L = \frac{6\pi}{5} \text{ cm} , \quad S = \frac{36\pi}{5} \text{ cm}^2$$

4. 
$$\alpha = \frac{d-r}{r}$$
 rad

5. 
$$\omega = \frac{8\pi}{5} \text{ rad/sec}$$

- 6. La vitesse sur orbite de la lune est approximativement de  $3'140~\mathrm{km/h}$
- 7. a)  $t \approx k (1h \ 5' \ 27''), \quad k \in \mathbb{N}^*.$

b) 
$$t = 12 \,\text{h}.$$

8. a) 
$$t_n = n \cdot \frac{1500}{31}$$
 secondes,  $n \in \mathbb{N}^*$ , b)  $t_A = 25$  minutes.