

RECEIVED
CENTRAL FAX CENTER

MAR 30 2007

Amendments to the Claims:

1. (Currently amended) A method of detection in a multiple-input, multiple-output wireless communication system, comprising the steps of:

(a) receiving a signal representing a set of P symbols, one symbol transmitted from each of P antennas where P is a positive integer greater than 2;

(b) jointly estimating a subset of P_1 symbols of said set of P symbols where P_1 is a positive integer;

(c) after step (b), jointly estimating a subset of P_2 symbols of said set of P symbols where P_2 is a positive integer and wherein said subset of P_1 symbols and said subset of P_2 symbols are members of a partition of said set of P symbols and $P_1 + P_2$ is greater than 2 and wherein $P_1 = P_2 = P/2$ when there are 2 antennas.

2. (Cancelled)

~~2~~ ~~3.~~ (Original) The method of claim 1, further comprising:

(a) after step (c) of claim 1, for each m in the set $\{3, \dots, M\}$, jointly estimating a subset of P_m symbols of said set of P symbols where P_m is a positive integer and wherein said subset of P_m symbols is a member of a partition of said set of P symbols and $P_1 + P_2 + \dots + P_M = P$ where M is a positive integer.

~~3~~ ~~4.~~ (Original) The method of claim 3, wherein:

(a) $P_1 = P_2 = \dots = P_M = P/M$.

~~4~~ ~~5.~~ (Original) The method of claim 1, wherein:

(a) said jointly estimating of step (b) of claim 1 includes a decision using P_1 -vector of soft estimates $F_1 r$ where r is a Q -vector of said received signals of step (a) of claim 1 and F_1 is a $P_1 \times Q$ matrix for zero-forcing estimation;

(b) said jointly estimating of step (c) of claim 1 includes a decision using P_2 -vector of soft estimates $F_2 (r - G_1 s^{(1)})$ where F_2 is a $P_2 \times Q$ matrix for zero-forcing estimation, G_1 is a $Q \times P_1$

matrix for zero-forcing feedback cancellation, and $s^{(1)}$ is the P_1 -vector estimation result of step (b) of claim 1.

5. (Original) The method of claim 1, wherein:

(a) said jointly estimating of step (b) of claim 1 includes a decision using P_1 -vector of soft estimates $F_1 r$ where r is a Q -vector of said received signals of step (a) of claim 1 and F_1 is a $P_1 \times Q$ matrix for minimum mean square error estimation

(b) said jointly estimating of step (c) of claim 1 includes a decision using P_2 -vector of soft estimates $F_2 (r - G_1 s^{(1)})$ where F_2 is a $P_2 \times Q$ matrix for minimum mean square error estimation, G_1 is a $Q \times P_1$ matrix for zero-forcing feedback cancellation, and $s^{(1)}$ is the P_1 -vector estimation result of step (b) of claim 1.

6. (Original) The method of claim 1, wherein:

(a) said jointly estimating of step (b) of claim 1 includes a decision using P_1 -vector of soft estimates $F_1 r$ where r is a Q -vector of said received signals of step (a) of claim 1 and F_1 is a $P_1 \times Q$ matrix for minimum mean square error estimation

(b) said jointly estimating of step (c) of claim 1 includes a decision using P_2 -vector of soft estimates $F_2 (r - G_1 s^{(1)})$ where F_2 is a $P_2 \times Q$ matrix for minimum mean square error estimation including feedback error compensation, G_1 is a $Q \times P_1$ matrix for zero-forcing feedback cancellation including feedback error compensation, and $s^{(1)}$ is the P_1 -vector estimation result of step (b) of claim 1.

7. (Original) The method of claim 1, wherein:

(a) said subset of P_1 symbols of step (b) of claim 1 is determined according to signal-to-interference-plus-noise ratios of said P symbols prior to a decision in said estimating.

8. (Original) The method of claim 1, wherein:

(a) said subset of P_1 symbols of step (b) of claim 1 is determined according to projected signal-to-interference-plus-noise ratios of said P symbols after a decision in said estimating.

9

~~10.~~

(Original) The method of claim 1, wherein:

(a) said jointly estimating of step (b) of claim 1 includes a maximum likelihood decision; and
(b) said jointly estimating of step (c) of claim 1 includes a maximum likelihood decision.

10

~~11.~~

(Original) The method of claim 1, wherein:

(a) said jointly estimating of step (b) of claim 1 includes a soft decision; and
(b) said jointly estimating of step (c) of claim 1 includes a soft decision.

11

~~12.~~

(Original) The method of claim 1, further comprising:

(a) jointly re-estimating said subset of P_1 symbols using error compensation determined by said jointly estimating said subset of P_2 symbols of step (c) of claim 1.