

MDA 071360

U.S. ARMY MISSILE RESEARCH AND DEVELOPMENT COMMAND

Redstone Arsenal, Alabama 35809

LEVELT

TECHNICAL REPORT H-78-1

COMPILATION OF DATA RELEVANT TO NUCLEAR PUMPED LASERS

VOLUME IV

E. W. McDaniel, M. R. Flannery, E. W. Thomas, H. W. Ellis and K. J. McCann School of Physics Georgia Institute of Technology Atlanta, Georgia 30332

S. T. Manson Physics Department Georgia State University Atlanta, Georgia 30303

J. W. Gallagher, J. R. Rumble, and E. C. Beaty Joint Institute for Laboratory Astrophysics University of Colorado Boulder, Colorado 80302

and

T. G. Roberts
High Energy Laser Laboratory

December 1978

Approved for public release; distribution unlimited

PREPARED FOR: High Energy Laser Laboratory US Army Missile Research and Development Command Redstone Arsenal, Alabama 35809

DMI FORM 1000, 1 APR 77

79 07 16 043

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OF MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

(14) DRDMI-H-78-1-VOLI-4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUM			READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER	/ 2	. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
H-78-1			
TITLE (and Subtitle)			5. TYPE OF REPORT & PERIOD COVERED
COMPILATION OF DATA RE	LEVANT TO NU	CLEAR PUMPED	7 Technical Data
Volume II.	J AO	53827	6. PERFORMING ORG. REPORT NUMBER
E. W. McDaniel, M. R. H. W. Ellis, and K. J J. W. Gallagher, J. R. T. G. Roberts	. McCann, S.	T. Manson,	6. CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAM	E AND ADDRESS	/	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Commander US Army Missile Resear Attn: DRDMI-H	ch and Devel	opment Command	(10 5736)
Redstone Arsenal, Alab	ama 35809		(10) - Fo
1. CONTROLLING OFFICE NAME AND Commander		(1	December 1978
US Army Missile Resear Attn: DRDMI-TI		copment Command	19. NUMBER OF PAGES
Redstone Arnsenal, Ala Monitoring Agency NAME & AD	DRESS(II different	from Controlling Office)	15. SECURITY CLASS. (of this report)
			Unclassified
			15a. DECLASSIFICATION DOWNGRADING
Approved for public re	lease; distr		
Approved for public re	lease; distr		
Approved for public re	lease; distr	n Block 20, If different fro	om Report)
Approved for public re	lease; distr	Volume I conto	
17. DISTRIBUTION STATEMENT (of the	lease; distr abstract entered in d College,	Volume I cont Volume II cont Volume III con Volume IV con	ains pages 1 through 427; tains pages 429 through 892; ntains pages 893 through 1348 tains pages 1349 through 1916
Approved for public re 17. DISTRIBUTION STATEMENT (of the 18. SUPPLEMENTARY NOTES *Present Address: Ecker St. Petersburg, FL 337	d College,	Volume I contivolume II contivolume III contivolume IV contidentity by block number ping mechanisms lides	ains pages 1 through 427; tains pages 429 through 892; ntains pages 893 through 1348 tains pages 1349 through 1916
Approved for public re 17. DISTRIBUTION STATEMENT (of the 18. SUPPLEMENTARY NOTES *Present Address: Ecker St. Petersburg, FL 337 19. KEY WORDS (Continue on reverse all Excitation Ionization	d College, de II necessary and Laser pump Heavy nucl Light nucl	Volume I contoured to Volume II contoured III contoured IV contoured I	ains pages 1 through 427; tains pages 429 through 892; ntains pages 893 through 1348 tains pages 1349 through 1916 High energy electron beam High energy ion beams
Approved for public re 17. DISTRIBUTION STATEMENT (of the 18. SUPPLEMENTARY NOTES *Present Address: Ecker St. Petersburg, FL 337 19. KEY WORDS (Continue on reverse all Excitation Ionization This volume and Vol to nuclear pumped lasers for gas laser research a "Commission of Data Rel	d College, de II necessary and Laser pump Heavy nucl Light nucl umes III and and are pain and developme evant to Ran McDaniel, M	Volume I contour Volume II contour Volume III contour Volume III contour Volume IV contour Volume IV contour Volume IV contour Mentity by block number of the Contour Volume IV contain a contour Volume IV co	ains pages 1 through 427; tains pages 429 through 892; ntains pages 893 through 1348 tains pages 1349 through 1916 High energy electron beam High energy ion beams ompilation of data relevant on atomic and molecular data two volumes, contained and Rare Gas-Monohalide H. W. Ellis, F. L. Eisele,

DD 1 JAN 73 1473

ABSTRACT (CONCLUDED)	
Volumes III and IV on atoms, molecules, an interest in laser media volumes cover all of that now secondary electrical volumes are secondary electrical volumes.	(presented here) contain data on many different species of ions: a large fraction of them are already of direct a; many more may become important in the future. These he subjects treated in Vols. I and II; one difference is attron energy sepctra are discussed in a separate chapter at has also been added.
A species index fo	or all five volumes will be published separately.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ACKNOWLEDGMENTS FOR VOLUME IV (CHAPTERS B AND C)

It is a pleasure to acknowledge the help of Dr. Daniel L. Albritton of NOAA, Boulder, Colorado, who permitted access to his compliation of ion-molecule reaction rates before its publication. Many of his data appear in Section B-1.B.

Special thanks are due Dr. C. F. Barnett, of the Oak Ridge National Laboratory, for permission to use many of his drawings in Chapter B. These figures can be identified by their ORNL number appearing at their upper right. They originally appeared in "Atomic Data for Controlled Fusion Research", by C. F. Barnett, J. A. Ray, E. Ricci, M. I. Wilker, E. W. McDaniel, E. W. Thomas, and H. B. Gilbody; ORNL-5206 and 5207. Oak Ridge National Laboratory, Oak Ridge, Tennessee (February 1977). These two volumes are available from the National Technical Information Service, US Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

Dr. David Garvin and Dr. Robert Hampson of the National Bureau of Standards were very helpful in supplying bibliographies on heavy particle reactions.

Dr. Fred L. Eisele of the Georgia Institute of Technology did much of the work on Section B-1.D, and we are grateful for his help.

The authors wish to thank Dr. A. V. Phelps of JILA for helpful discussions in the preparation of Chapter C. Gratitude is also expressed to Drs. Sydney Geltman, D. W. Norcross, D. G. Hummer. Thanks are given to the staff of the JILA Information Center Who helped collect and assemble the material: Greg Klingler, Doug McCampbell, Patti Krog, and Pat Ruttenberg. We are also grateful to Dr. S. F. Wong, who provided a number of figures showing data on electron collisions.

Acces	sion For	1
DDC To Unanno		A
Py		
Distr	bution/	
1921	ability Co	des
jst	Avail and/ special	01.
D		
11		

B. HEAVY PARTICLE - HEAVY PARTICLE COLLISIONS

CONTENTS

			Page
B-1.	Low Ene	rgy Heavy Particle - Heavy Particle Collisions	1350
	B-1.A.	Ion-Ion Recombination	1351
	В-1.В.	Ion-Molecule Reactions	1389
	B-1.C.	Energy Transfer; Quenching	1409
	B-1.D.	Ion-Neutral and Neutral-Neutral Collisions Involvin Noble Gas and Halogen Structures	
B-2.	High En	ergy Heavy Particle - Heavy Particle Collisions .	1529

B-1. LOW ENERGY HEAVY PARTICLE - HEAVY PARTICLE COLLISIONS

General References

- 1. G. Bekefi, Principles of Laser Plasmas, Wiley, New York (1976).
- 2. J. B. Hasted, Physics of Atomic Collisions (Second Edition), American Elsevier Publishing Co., Inc., New York (1972).
- 3. H. S. W. Massey, <u>Electronic and Ionic Impact Phenomena</u> (Second Edition), Vol. III, Oxford University Press (1971).
- 4. H. S. W. Massey and H. B. Gilbody, <u>Electronic and Ionic Impact</u> Phenomena (Second Edition), Vol. IV, Oxford University Press (1974).
- 5. E. W. McDaniel, Collision Phenomena in Ionized Gases, Wiley, New York, (1964).
- 6. Excimer Lasers, (Edited by C. K. Rhodes), Springer-Verlag, Berlin (1979).
- 7. M. H. Bortner and T. Baurer (Eds.), "Defense Nuclear Agency Reaction Rate Handbook" (Second Edition), DNA 1948-H (1972). Also see supplements published since 1972.
- C. F. Barnett, J. A. Ray, E. Ricci, I. Wilker, E. W. McDaniel, E. W. Thomas and H. B. Gilbody, "Atomic Data for Controlled Fusion Research," Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, Oak Ridge, Tenn. (February 1977). Reports ORNL 5206 and 5207, 680 pages.
- 9. C. F. Barnett, E. W. McDaniel, E. W. Thomas, et al., "Bibliography of Atomic and Molecular Processes" (1950-1978), Oak Ridge National Laboratory, Oak Ridge, Tennessee. Categorized according to kind of collision, process, or property. Information concerning procurement available from C. F. Barnett, P. O. Box X, Building 6003, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Section B-1.A. ION-ION RECOMBINATION

CONTENTS

		Page
Introducti	on	1354
B-1.A-1.	Two-Body Reactions (tabular data)	1356
B-1.A-2.	Three-Body Reactions (tabular data)	1360
B-1.A-3.	Cross Section for the Two-Body Mutual Neutralization of H^+ and H^- Ions	1363
B-1.A-4.	Cross Section for the Two-Body Mutual Neutralization of H^+ and H^- Ions	1364
B-1.A-5.	Cross Sections for the Two-Body Mutual Neutralization of He^+ with H^- Ions and of He^+ with D^- Ions	1365
B-1.A-6.	Cross Sections for Mutual Neutralization of He with D and H	1366
B-1.A-7.	Cross Sections for the Mutual Neutralization of N^+ with 0^- Ions, of 0^+ Ions with 0^- , and of H_2^+ with D^- Ions	1367
B-1.A-8.	Cross Sections for Mutual Neutralization of N ⁺ with 0 ⁻ Ions, of 0 ⁺ with 0 ⁻ Ions, and of H ₂ ⁺ with D ⁻ Ions	1368
B-1.A-9.	Cross Sections for Mutual Neutralization of	1369
B-1.A-10.	Cross Sections for the Two-Body Mutual Neutralization of 0_2^+ with 0_2^- Ions and of N_2^+ with 0_2^- Ions	1370
B-1.A-11.	Cross Section for Mutual Neutralization of O_2^+ and N_2^+ with O_2^-	1371

		Page
B-1.A-12.	Experimental Data on Mutual Neutralization of 0_2^+ and NO^+ with NO_2^-	1372
B-1.A-13.	Cross Sections for the Two-Body Mutual Neutralization of 0_2^+ with 0^- Ions and of ${\rm NO}^+$ with 0^- Ions	1373
B-1.A-14.	Cross Sections for Mutual Neutralization of NO^+ and $\mathrm{O_2}^+$ with O^-	1374
B-1.A-15.	Three-Body Recombination Rates for the Processes $X^+ + F^- + X \rightarrow XF^* + X$ (X = He, Ne, Ar, Kr, Xe) as a Function of Gas Density at 300°K	1375
B-1.A-16.	Ionic Recombination Coefficients for the Processes $X^+ + F^- + X \rightarrow XF^* + X$ (X = He, Ne, Ar, Kr, Xe) as a Function of Neutral Gas Density	1376
B-1.A-17.	Three-Body Recombination Rates for the Processes $X_2^+ + F^- + X \rightarrow [X_2F]^* + X$ (X = He, Ne, Ar, Kr, Xe) as a Function of Gas Density at $300^\circ K$	1377
B-1.A-18.	Ionic Recombination Coefficients for the Processes $X_2^+ + F^- + X \rightarrow [X_2F]^* + X$ (X = He, Ne, Ar, Kr, Xe) as a Function of the Neutral Gas Density	1378
B-1.A-19.	Rate Coefficient at 298°K for Recombination in the Systems $0_4^+ + 0_2^- + 0_2 + [0_6] + 0_2$ and $0_4^+ + 0_4^- + 0_2$ $\rightarrow [0_8] + 0_2$ as a Function of the 0_2 Number Density	1379
B-1.A-20.	Three-Body Recombination Rates for the Processes $Ar^+ + Y^- + Ar \rightarrow ArY^* + Ar$ with $Y^- = F^-$, $C1^-$, Br^- , I^- for Various Gas Densities at 300°K	1380

		Page
B-1.A-21.	Three-Body Ion-Ion Recombination Coefficients for the Processes $Ar^+ + Y^- + Ar \rightarrow ArY^* + Ar (Y^- = F^-, Cl^-, Br^-, I^-)$ as a Function of Neutral Gas Density	1381
B-1.A-22.	Three-Body Recombination Rates for the Processes $Kr^+ + F^- + Rg \rightarrow KrF^* + Rg$ (Rg = He, Ne, Ar, Xe) for Various Gas Densities at 300°K	1382
B-1.A-23.	Ionic Recombination Coefficients at 300° K for $Kr^{+} + F^{-} + M \rightarrow KrF^{*} + M$ (M = He, Ne, Ar, Kr, Xe) as a Function of Neutral Gas Density	1383
B-1.A-24.	Three-Body Recombination Rates for the Processes $\mathrm{Kr}_2^+\!\!+\mathrm{F}^-\!\!+\mathrm{Rg}\to [\mathrm{Kr}_2\mathrm{F}]^*\!\!+\mathrm{Rg}$ (Rg = He, Ne, Ar, Xe) for Various Gas Densities at 300°K	1384
B-1.A-25.	Ionic Recombination Coefficients at 300°K for $Kr_2^+ + F^- + M \rightarrow [Kr_2^+ F^-]^* + M$ (M = He, Ne, Ar, Kr, Xe) as a Function of Neutral Gas Density	1385
B-1.A-26.	Three-Body Recombination Rates for the Processes $Hg^+ + Y^- + Ar \rightarrow HgY^* + Ar (Y^- = F^-, Cl^-, Br^-, I^-)$ for Various Gas Densities at $300^{\circ}K$	1386
B-1.A-27.	Three-Body Ion-Ion Recombination Coefficients for the Processes $Hg^+ + Y^- + Ar \rightarrow HgY^* + Ar (Y^- = F^-,$	
	Cl , Br , I) as a Function of Neutral Gas Density	1387
References		1388

Introduction

The processes of interest here are the two- and three-body mechanisms which may respectively be written:

$$X^+ + Y^- \rightarrow [X + Y]$$

 $X^+ + Y^- + Z \rightarrow [X + Y] + Z$

The square brackets indicate that the species may remain associated after recombination. They may also be excited. Data for the two-body case are presented as a two-body rate in units of cm 3 s $^{-1}$. Data for the three-body case are normally presented in the form of a two-body rate for recombination (cm 3 s $^{-1}$) as a function of the total gas density; density is often expressed as the ratio N/N_L where N is the density (cm $^{-3}$) and N_L is Loschmidt's number (2.69 \times 10 19 cm $^{-3}$, the number density at STP). In the following tabular presentations a reaction is identified by the recombining ions but the final state of the atoms is not indicated unless the author of the original data has done so; in most experimental measurements only the loss of ions by recombination is monitored and the final state of the products is not defined.

General References:

- D. R. Bates, "Recombination", in "Case Studies in Atomic Physics" (Edited by E. W. McDaniel and M. R. C. McDowell), 4, 59, North-Holland, Amsterdam (1975).
- 2. M. R. Flannery, "Ionic Recombination", "Atomic Processes and Applications", (Edited by P. G. Burke and B. L. Moiseiwitsch), North-Holland, Amsterdam (1976).
- M. R. Flannery, "Three-Body Recombination of Positive and Negative Ions", "Case Studies in Atomic Collision Physics" (Edited by E. W. McDaniel and M. R. C. McDowell), 2, 3, North-Holland, Amsterdam (1972).
- 4. B. H. Mahan, "Recombination of Gaseous Ions," Advances in Chemical Physics, (Edited by I. Prigogine), 23, 1, (1973).
- 5. H. S. W. Massey, <u>Negative Ions</u> (Third Edition), Cambridge University Press, New York (1976).
- 6. H. S. W. Massey and H. B. Gilbody, Electronic and Ionic Impact Phenomena, 4, Clarendon Press, Oxford (1974).

- 7. E. W. McDaniel, <u>Collision Phenomena in Ionized Gases</u>, Wiley, New York (1964).
- 8. J. T. Moseley, R. E. Olson, and J. R. Peterson, "Ion-Ion Mutual Neutralization," <u>Case Studies in Atomic Physics</u> (Edited by E. W. McDaniel and M. R. C. McDowell), <u>5</u>, 1, North-Holland, Amsterdam (1976).

Data Needed: Experimental rate coefficients for three-body recombination in pure gases and gas mixtures at high pressures with positive identification of the recombining ionic species. "High pressure" means pressures from 1 Torr to the highest possible value.

Tabular Data B-1.A-1. Two-body reactions.

NedCLION	Temperature or Energy	Cross Section or Reaction Rate	Reference
H + H + H + H	. 300°K	$3.9 \pm 2.1 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
H + H - H + H	10^{-1} to 10^4 eV	Table B-1.A-3	2
		Graph B-1.A-4	
He + H - + He + H	300°K	$5.7 \text{ to } 7.3 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
		(theoretical estimate)	
He + H - + He + H	1 to 500 eV	Table B-1.A-5	3
		Graph B-1.A-6	
$He^+ + D^- \rightarrow He + D$	300°K	$4.5 \text{ to } 5.7 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
		(theoretical estimate)	
$He^+ + D^- + He + D$	500 to 6000 eV	Table B-1.A-5	8
		Graph B-1.A-6	
1+ 0 + Unspec.	300°K	$2.6 \pm 0.8 \times 10^{-7} \text{cm}^3 \text{s}^{-1}$	1
$N^+ + 0^- + Unspec.$	0.1 to 15 eV	Table B-1.A-7	1
		Graph B-2.A-8	
$0^+ + 0^- + \text{Unspec.}$	300°K	$2.7 \pm 1.3 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
0++0-+ Unspec.	0.1 to 20 eV	Table B-1A-7	1
		Graph B-1A-8	
Ne + F + Ne F	300°K	$1.0 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1}$	4
$Na^+ + 0^- + Unspec.$	300°K	$2.1 + 1.0 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1

Tabular Data B-1.A-1. (Continued).

Reaction	Temperature or Energy	Cross Section or Reaction Rate	Reference
$Na^+ + 0^- + Unspec.$	0.15 to 15 eV	Graph B-1.A-9	1, 5
Na + 0 - + Na + 0	0.1 to 7 eV	Graph B-1 A-9	9
Xe + F + Xe F*	300°K	1.0×10^{-6} cm ³ s ⁻¹	7
$H_2^+ + D^- + Unspec.$	300°K	$4.7 \pm 1.5 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$H_2^+ + D^- + Unspec.$	0.1 to 60 eV	Table B-1.A-7	1
		Graph B-1.A-8	
$N_2^+ + 0^- + Unspec.$	300°K	$2.0 \pm 0.6 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
		(theoretical estimate)	
$N_2^+ + O_2^- + Unspec.$	300°K	$1.6 \pm 0.5 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$N_2 + O_2 + Unspec.$	0.15 to 90 eV	Table B-1.A-10	1
		Graph B-1.A-11	
$N_2^+ + NO_2^- + Unspec.$	300°K	$1.3 \pm 0.5 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$NO^+ + O^- + Unspec.$	300°K	$4.9 \pm 2.0 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$NO^+ + O_2^- + Unspec.$	300°K	5.8 ± 1.0 × 10 ⁻⁷ cm ³ s ⁻¹	1
$NO^{+} + O_{2}^{-} + Unspec.$	0.15 to 100 eV	Values essentially equal to those for $02^+ + 02^-$ shown in B-1.A-10 and B-1.A-11	1
$NO^+ + NO_2^- + Unspec.$	300°K	$5.1 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	7
$NO^+ + NO_2^- + Unspec.$	300°K	$6.4 \pm 0.7 \times 10^{-8} \text{ cm}^3 \text{ s}^{-1}$	80
No + No + Unspec.	300°K	$5.1 + 1.5 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1

Tabular Data B-1.A-1. (Continued).

Nedection	lemperature or Energy	Cross Section or Reaction Rate	Reference
$NO^+ + NO_2^- + Unspec.$	300°K	$1.75 \pm 0.6 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$. 6
$NO^+ + NO_2^- + Unspec.$	300°K	$2.1 \pm 0.6 \times 10^{-7} \text{cm}^3 \text{s}^{-1}$	10
$NO^+ + NO_2^- + Unspec.$	0.1 to 200 eV	Graph B-1.A-12	7
No+ + NO3 + Unspec.	300°K	$8.1 \pm 2.3 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$NO^+ + NO_3^- + Unspec.$	300°K	$3.4 \pm 1.2 \times 10^{-8} \text{ cm}^3 \text{ s}^{-1}$	Ø,
$NO^+ + NO_3^- + Unspec.$	300°K	E	00
No+ + NO3 + Unspec.	0.15 eV	$3.0 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
02 + 0 - Unspec.	300°K	$1.0 \pm 0.4 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$0_2^+ + 0^- + $ Unspec.	0.15 to 80 eV	Table B-1.A-13	11
		Graph B-1.A-14	
$0_2^+ + 0_2^- + \text{Unspec.}$	300°K	$1.0 \pm 0.1 \times 10^{-7} \text{cm}^3 \text{s}^{-1}$	13
$0_2^+ + 0_2^- + \text{Unspec.}$	300°K	$4.2 \pm 1.3 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$0_2^+ + 0_2^- + $ Unspec.	0.15 to 14 eV	Table B-1.A-10	7
		Graph B-1.A-11	
$0_2^+ + NO_2^- + Unspec.$	300°K	$4.1 \pm 1.3 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$0_2^+ + NO_2^- + Unspec.$	0.1 to 180 eV	Graph B-1.A-12	7
$0_2^+ + NO_3^- + Unspec.$	300°K	$1.3 \pm 0.4 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$0_2^+ + NO_3^- + Unspec.$	0.15 to 700 eV	$1.2 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
		(invariant with energy)	
Ar2 + F + Ar F + Ar 300°K	300°K	$1.1 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1}$	14
Kr, + F + Kr F + Kr	300°K	$2 - 3 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1}$	15

Tabular Data B-1.A-1. (Concluded).

Reaction	Temperature or Energy	Cross Section or Reaction Rate	Reference
I, + I + Unspec	300°K	$1.22 \text{ to } 1.47 \times 10^{-7} \text{ cm}^3 \text{ s}^{-1}$	1
$Xe_2 + F^2 + XeF^* + Xe$	300°K	$1.0 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1}$	7
$C C \lambda_3^+$, $C C \lambda_3^+ + C \lambda_2^- + Unspec$.	300°K	4.5 ± 0.5 × 10-8 cm 3 s-1	00
$C C l_3 F^+$, $C C l l_2^+ + C l^- + Unspec$.	300°K	$4.1 \pm 0.4 \times 10^{-8}$ cm ³ s ⁻¹	00
H ₃ 0 ⁺ ·(H ₂ 0) ₃ + (NO ₃ + Unspec.	300°K	$5.5 \pm 1.0 \times 10^{-8} \text{ cm}^3 \text{ s}^{-1}$	16
NO ₂			
NO2. H20			
NO3 . H20			
H_30^+ (H_20) $_3^+$ ($N0_3^-$ HNO ₃ + Unspec.	300°K	5.7 + 1.0 × 10 -8 cm 3 -1	16
NO3 . H20			
NO3 · (HNO3)2			

Tabular Data B-1.A-2. Three-body reactions.

Reaction	Temperature or Energy	Cross Section or Reaction Rate	Reference
He + F + He + HeF + He	300°K	Table B-1.A-15	17
		Graph B-1.A-16	
He2 + F + He + He2F + He	300°K	Table B-1.A-17	18
		Graph B-1.A-18	
$0_4^+ + 0_2^- + 0_2^+ + 0_6^1 + 0_2^-$	300°K	Graph B-1.A-19	19
$0_4^+ + 0_4^- + 0_2^- + [0_8] + 0_2^-$	300°K	Graph B-1.A-19	19
Ne + F + Ne + NeF * + Ne	300°K	Table B-1.A-15	17
		Graph B-1.A-16	
$Ne_2 + F + Ne + Ne_2F + Ne$	300°K	Table B-1. A-17	18
		Graph B-1.A-18	
Ar + F + Ar + ArF * + Ar	300°K	Table B-1.A-15	17
		Graph B-1. A-16	
Ar + F + Ar + ArF + Ar	300°K	Table B-1. A-20	20
		Graph B-1. A-21	
Ar + Cl + Ar + Arcl + Ar	300°K	Table B-1. A-20	20
		Graph B-1. A-21	
Ar + Br + Ar + ArBr + Ar	300°K	Table B-1, A-20	20
		Graph B-1. A-21	
Ar + 1 - + Ar + ArI * + Ar	300°K	Table B-1, A-20	20
		Graph B-1 A-21	

Tabular Data B-1.A-2. (Continued).

Reaction	Temperature or Energy	Cross Section or Reaction Rate	Reference
$Ar_2^+ + F^- + Ar + Ar_2F^* + Ar$	300°K	Table B-1.A-17	18
		Graph B-1.A-18	
<pre>Kr + F + M + KrF * + M (third body Unspecd.)</pre>	300°K	$2 - 3 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1}$	15
Kr + F + He + KrF + He	300°K	Table B-1.A-22	21
		Graph B-1.A-23	
Kr + F + Ne + KrF + Ne	300°K	Table B-1.A-22	21
		Graph B-1.A-23	
Kr + F + Ar + KrF * + Ar	300°K	Table B-1.A-22	21
		Graph B-1.A-23	
Kr + F + Kr + KrF + Kr	300°K	Table B-1.A-15	17
		Graph B-1.A-16	
$Kr^+ + F^- + Xe + KrF^* + Xe$	300°K	Table 8-1.A-22	21
		Graph B-1.A-23	
Kr. + + + + + + + + + + + + + + + + + + +	3000K	Table B-1.A-24	21
7		Graph B-1.A-25	
$Kr_2 + F + Ne \rightarrow Kr_2F^* + Ne$	300°K	Table B-1.A-24	21
		Graph B-1.A-25	
$Kr_2^+ + F^- + Ar + Kr_2F^* + Ar$	300°K	Table B-1.A-24	21
		Graph B-1.A-25	
Kr2 + F + Kr + Kr2F + Kr	300°K	Table B-1.A-17	18
		Granh 8-1 4-18	

Tabular Data B-1.A-2. (Concluded).

Reaction	Temperature or Energy	Cross Section or Reaction Rate	Reference
$Kr_2 + F + Xe + Kr_2F + Xe$	300°K	Table B-1.A-24	41
		Graph B-1 A-25	•
$Xe^+ + F^- + Xe + XeF^* + F$	300°K	Table B-1.A-15	17
		Graph B-1.A-16	
$Xe_2^+ + F^- + Xe + Xe_2F^* + Xe$	300°K	Table B-1.A-17	18
		Graph B-1.A-18	
Hg + F + Ar + HgF + Ar	300°K	Table B-1.A-26	20
		Graph B-1.A-27	
$Hg^+ + Cl^- + Ar + HgCl + Ar$	300°K	Table B-1.A-26	20
		Graph B-1.A-27	
Hg + Br + Ar + HgBr + Ar	300°K	Table B-1.A-26	20
		Graph B-1.A-27	
$Hg^+ + I^- + Ar \rightarrow HgI^* + Ar$	300°K	Table B-1.A-26	20
		Graph B-1.A-27	
and the second s	The second secon		

Tabular Data B-1.A-3. Cross section for the two-body mutual neutralization of \mbox{H}^+ and \mbox{H}^- ions.

Barycentric Energy (eV)	Recombination Cross Section (cm ²)
	H ⁺ + H ⁻ → H + H
1.0 E-01	2.84 E-13
2.0 E-01	1.71 E-13
3.0 E-01	1.25 E-13
5.0 E-01	8.61 E-14
1.0 E 00	5.18 E-14
2.0 E 00	3.45 E-14
3.0 E 00	2.70 E-14
5.0 E 00	2.00 E-14
1.0 E 01	1.43 E-14
2.0 E 01	1.36 E-14
3.0 E 01	1.50 E-14
5.0 E 01	1.77 E-14
1.0 E 02	2.32 E-14
2.0 E 02	1.97 E-14
3.0 E 02	1.50 E-14
5.0 E 02	1.27 E-14
7.0 E 02	1.36 E-14
1.0 E 03	1.24 E-14
2.0 E 03	7.26 E-15
3.0 E 03	5.40 E-15
5.0 E 03	3.38 E-15

References:

J. Moseley, W. Aberth, and J.R. Peterson, Phys. Rev. Letts. 24, 435 (1970).

R.D. Rundel, R.L. Aitken, and M.F.A. Harrison, J. Phys. B 2, 954 (1969).

Accuracy:

Graphical Data B-1.A-4. Cross sections for the two-body mutual neutralization (Tabular data were presented on the previous page.) ions. of H and H

Tabular Data B-1.A-5. Cross sections for the two-body mutual neutralization of ${\rm He}^+$ with ${\rm H}^-$ ions and of ${\rm He}^+$ with ${\rm D}^-$ ions.

Barycentric Energy (eV)	Recombination Cross Section (cm ²)		
	He + D	He ⁺ + H ⁻	
1.0 E 00	1.00 E-13		
2.0 E 00	7.36 E-14		
3.0 E 00	6.14 E-14		
5.0 E 00	5.09 E-14		
1.0 E 01	3.88 E-14		
2.0 E 0.	2.98 E-14		
3.0 E 01	2.59 E-14		
5.0 E 01	2.18 E-14		
1.0 E 02	1.78 E-14		
2.0 E 02	1.53 E-14		
3.0 E 02	1.42 E-14	1.44 E-14	
5.0 E 02	1.25 E-14	1.23 E-14	
9.0 E 02		1.09 E-14	
1.5 E 03		9.06 E-15	
2.0 E 03		9.27 E-15	
4.0 E 03		4.42 E-15	
6.0 E 03		1.93 E-15	

References:

He + H : T.D. Gailey and M.F.A. Harrison, J. Phys. B 3, 1098 (1970).

He + D : R.E. Olson, J.R. Peterson, and J.T. Moseley, J. Chem. Phys. 53, 3391 (1970).

Accuracy:

Graphical Data B-1.A-6. Cross sections for mutual neutralization of He with D and H. (Tabular data were presented on the previous page.)

Tabular Data B-1.A-7. Cross sections for the two-body mutual neutralization of N^+ with 0^- ions, of 0^+ with 0^- ions, and of H_2^+ with D^- ions.

Barycentric Energy (eV)		Recombination Cross Sec (cm²)	tion
	$N^{+} + O^{-}$	0+ + 0-	$H_2^+ + D^-$
1.0 E-01		9.38 E-13	7.21 E-13
1.2 E-01	8.45 E-13	8.00 E-13	6.00 E-13
2.0 E-01	5.50 E-13	4.92 E-13	3.72 E-13
3.0 E-01	4.00 E-13	3.51 E-13	2.67 E-13
5.0 E-01	2.74 E-13	2.32 E-13	1.86 E-13
1.0 E 00	1.83 E-13	1.42 E-13	1.16 E-13
2.0 E 00	1.21 E-13	1.00 E-13	7.41 E-14
3.0 E 00	9.73 E-14	8.36 E-14	5.75 E-14
5.0 E 00	7.41 E-14	7.02 E-14	4.51 E-14
5.6 E 00	7.23 E-14	6.68 E-14	4.21 E-14
1.0 E 01	5.62 E-14	5.88 E-14	4.39 E-14
1.5 E 01	4.81 E-14	5.46 E-14	3.60 E-14
2.0 E 01		5.25 E-14	2.77 E-14
3.0 E 01			3.10 E-14
4.0 E 01			2.94 E-14
5.0 E 01			2.66 E-14
6.0 E 01			2.53 E-14

References:

 $N^+ + O^-$: W. Aberth and J.R. Peterson, Phys. Rev. A <u>1</u>, 158 (1970).

 $0^+ + 0^-$: J.T. Moseley, W. Aberth, and J.R. Peterson, J. Geophys. Res. $\underline{77}$, 255 (1972).

H₂⁺ + D-: W. Aberth, J.T. Moseley, and J.R. Peterson, Two Body Ion-Ion Neutralization Cross Sections, AFCRL Report No. 71-0481, Air Force Cambridge Research Laboratories, Bedford, Mass. (1971); J.T. Moseley, R.E. Olson, and J.R. Peterson, Case Studies in Atomic Physics 5, 1 (1975).

Accuracy:

Graphical Data B-1.A-8. Cross sections for mutual neutralization reactions. (Tabular data were presented on the previous page.)

- (a) Circles are a total cross section, triangles are for light emission in the $3\text{p}\to2\text{s}$ transition of Na.
- (b) Light emission in the 3d → 3p transition of Na.
- (c) Light emission in the $4p \rightarrow 3s$ transition of Na.

From J. T. Moseley et al., J. Geophys. Res. 77, 255 (1972) and J. Weiner et al., Phys. Rev. A 4, 1825 (1971).

Graphical Data B-1.A-9. Cross sections for mutual neutralization of Na † by 0 $^{-}$.

Tabular Data B-1.A-10. Cross sections for the two-body mutual neutralization of 0_2^+ with 0_2^- ions and of N_2^+ with 0_2^- ions.

Barycentric Energy (eV)	Recombination (cm ²	
	N2+ + O2-	02+02
1.5 E-01	1.20 E-12	2.42 E-12
2.0 E-01	1.00 E-12	1.91 E-12
3.0 E-01	7.20 E-13	1.48 E-12
4.0 E-01	6.12 E-13	1.25 E-12
6.0 E-01	4.88 E-13	1.03 E-12
1.0 E 00	3.57 E-13	7.48 E-13
2.0 E 00	2.21 E-13	3.87 E-13
3.0 E 00	1.64 E-13	2.29 E-13
4.0 E 00	1.27 E-13	1.73 E-13
4.5 E 00	1.13 E-13	1.80 E-13
5.0 E 00	1.20 E-13	1.95 E-13
6.0 E 00	1.42 E-13	1.55 E-13
7.0 E 00	1.59 E-13	1.35 E-13
8.0 E 00	1.52 E-13	1.29 E-13
9.0 E 00	1.42 E-13	1.07 E-13
1.0 E 01	1.27 E-13	1.00 E-13
1.2 E 01	9.12 E-14	1.09 E-13
1.4 E 01		9.00 E-14
1.5 E 01	1.18 E-13	
2.0 E 01	6.73 E-14	
2.5 E 01	7.30 E-14	
2.8 E 01	5.53 E-14	
3.2 E 01	6.22 E-14	
4.4 E 01	4.98 E-14	
5.0 E 01	5.98 E-14	
7.0 E 01	3.66 E-14	
8.0 E 01	4.33 E-14	
9.0 E 01	4.10 E-14	

References:

 0_2 + 0_2 : J.R. Peterson, W. Aberth, J.T. Moseley, and J.R. Sheridan, Phys. Rev. A $\underline{3}$, 1651 (1971).

 N_2 + O_2 : W. Aberth and J.R. Peterson, Phys. Rev. A 1, 158 (1970).

Accuracy:

Graphical Data B-1.A-11. Cross section for mutual neutralization of 0_2^+ and N_2^+ with 0_2^- . (Tabular data were presented on the previous page.)

Graphical Data B-1.A-12. Experimental data on mutual neutralization of 0_2^+ and $N0^+$ with $N0_2^-$. Data are in the form of cross sections multiplied by relative speed of the interacting ions to simulate the behavior of the reaction rate. [From J. R. Peterson et al., Phys. Rev. A 3, 1651 (1971)].

Tabular Data B-1.A-13. Cross sections for the two-body mutual neutralization of 0_2^+ with 0^- ions and of NO $^+$ with 0^- ions.

Barycentric Energy (eV)	Recombination (cm ²)	
	NO+ + O-	02+0-
1.5 E-01	1.12 E-12	4.17 E-13
2.0 E-01	8.97 E-13	3.44 E-13
3.0 E-01	6.41 E-13	2.53 E-13
5.0 E-01	4.44 E-13	1.83 E-13
1.0 E 00	2.71 E-13	1.19 E-13
2.0 E 00	1.66 E-13	8.53 E-14
5.0 E 00	1.00 E-13	5.88 E-14
1.0 E 01	7.94 E-14	4.74 E-14
2.0 E 01	6.30 E-14	3.80 E-14
2.5 E 01	5.93 E-14	3.37 E-14
5.0 E 01		3.11 E-14
8.0 E 01		2.67 E-14

Reference:

J.T. Moseley, W. Aberth, and J.R. Peterson, J. Geophys. Res. 77, 255 (1972).

Accuracy:

Graphical Data B-1.A-14. Cross sections for the mutual neutralization of NO $^+$ and O $_2^+$ with 0. (Tabular data were presented on the previous page.)

Tabular Data B-1.A-15. Three-body recombination rates $\alpha(10^{-6}~{\rm cm}^3~{\rm sec}^{-1})$ for the processes ${\rm X}^+ + {\rm F}^- + {\rm X} + {\rm XF}^* + {\rm X}$, (X \equiv He, Ne, Ar, Kr, Xe) as a function of gas density N at 300°K. Low-density limit is $\alpha_0^{\rm N/N}_{\rm L}$ ($10^{-6}~{\rm cm}^3~{\rm sec}^{-1}$).

N/N_L^a	He	Ne	Λr	Kr	Xe
0.1	0.591	0.315	0.817	0.597	0.351
0.2	1.110	0.601	1.434	1.061	0.662
0.4	1.990	1.107	2.312	1.739	1.193
0.6	2.717	1.541	2.867	2.173	1.592
0.8	3,333	1.913	3.197	2.420	1.849
1.0	3.864	2.232	3,364	2.528	1.978
1.2	4.327	2.502	3.417b	2.541 6	2.010 b
1.4	4.732	2.728	3.393	2.492	1.978
1.6	5.088	2.914	3.321	2.409	1,909
1.8	5.400	3.064	3.219	2.306	1.820
2.0	5.674	3.180	3.101	2.197	1.725
2.2	5.912	3.269	2.976	2.086	1.629
2.4	6.118	3.332	2.850	1.979	1.536
2.6	6.296	3.373	2.725	1.877	1.449
2.8	6.447	3.395	2.605	1.781	1.369
3.0	6.574	3.402b	2,491	1.692	1.294
3.5	6.801	3.366	2,233	1.495	1.134
4.0	6.920	3.277	2.013	1.334	1.005
4.5	6.958 b	3.160	1.827	1.200	0.900
5	6.933	3.028	1.669	1.089	0.813
6	6.756	2.755	1.417	0.916	0.681
7	6.485	2,499	1.228	0.789	0.585
8	6.174	2,270	1.082	0.692	0.512
9	5.853	2.071	0.966	0.616	0.455
10	5.541	1.899	0.872	0.554	0.410
20	3.392	0.998	0.439	0.277	0.205
30	2.368	0.670	0.293	0.185	0.137
40	1.797	0.503	0.220	0.139	0.102
50	1.441	0.403	0.176	0.111	0.082
α_0	6.340	3.305	9.579	6.936	3.777

 $^{^{2}}N_{L}$ is Loschmidt's number (2.69 $\times 10^{19}$ cm⁻³), the number density at STP.

References: M. R. Flannery and T. P. Yang, Applied Phys. Letts $\underline{32}$, 327 (1978).

b Indicates peak value.

Graphical Data B-1.A-16. Ionic recombination coefficients $\alpha(\text{cm}^3\text{ sec}^{-1})$ for the processes $X^+ + F^- + X \rightarrow XF^+ + X$ (X = He, Ne, Ar, Kr, Xe) as a function of neutral-gas indicated on each curve. Note that the rates for the He case have been divided by density N (in units of Loschmidt's number $N_{\rm L}$, 2.69 \times 10¹⁹ cm⁻³). Gas X is as 1.6. (Tabular data were presented on the previous page.)

Tabular Data B-1.A-17. Three-body recombination rates $\alpha(10^{-6} \text{ cm}^3 \text{ sec}^{-1})$ for the processes $X_2^+ + F^- + X \rightarrow [X_2F]^* + X$ (X = He, Ne, Ar, Kr, Xe) as a function of gas density N at 300°K. Low-density limit is $\alpha_0^{}$ N/N $_L$ (10 $^{-6}$ cm 3 sec $^{-1}$).

N/N_L^a	He	Ne	Λr	Kr	Xe
0.1	0.154	0.315	0.683	0.350	0.192
0.2	0.302	0.593	1.195	0.649	0.384
0.4	0.583	1.070	1.925	1.147	0.762
0.6	0.851	1.471	2.407	1.535	1.114
0.8	1.107	1.815	2.725	1.825	1.409
1.0	1.356	2.113	2.924	2.024	1.627
1.2	1.597	2.370	3.038	2.147	1.765
1.4	1.833	2,593	2.089	2.209	1.832
1.6	2.063	2,783	3.096b	2. 224b	1.845b
1.8	2.288	2.944	3.071	2, 207	1.819
2.0	2.508	3.079	3.023	2.166	1.768
2.2	2.723	3,190	2.960	2.110	1.704
2.4	2.933	3, 278	2.886	2.046	1.632
2.6	3.137	3,348	2.806	1.976	1,558
2.8	3,336	3,399	2.722	1.904	1.485
3.0	3.528	3,436	2.636	1.832	1.414
3.5	3.980	3.471b	2.421	1.659	1, 252
4.0	4.388	3,445	2.216	1.502	1.114
4.5	4.746	3,379	2.028	1.363	1.000
5	5.055	3, 287	1.859	1.242	0.902
6	5.519	3,064	1.576	1.046	0.754
7	5.795	2,829	1.358	0.898	0.646
8	5.914b	2,604	1.188	0.786	0.565
9	5, 912	2,398	1.054	0.698	0.502
10	5.823	2, 214	0.946	0.628	0.452
20	3.950	1, 189	0.468	0.313	0,226
30	2.750	0.797	0.312	0.209	0.150
40	2.082	0.598	0.234	0.156	0.113
50	1.671	0.479	0.187	0.125	0.090
αο	1.572	3.373	8.061	3.841	1.949

 $^{^{2}}N_{L}$ is Loschmidt's number (2.69 × 10¹⁹ cm⁻³), the number density at STP.

Reference: M. R. Flannery and T. P. Yang, Applied Phys. Letts. 32, 356 (1978).

b Indicates peak value.

Graphical Data B-1.A-18. Ionic recombination coefficients $\alpha(\text{cm}^3 \text{ sec}^{-1})$ for the processes $X_2^+ + F^- + X \rightarrow [X_2^F]^* + X$ (X = He, Ne, Ar, Kr, Xe) as a function of neutral-gas density N (in units of Loschmidt's number N_L , 2.69×10^{19} cm⁻³). The square brackets indicate Note that the rates for the He case have been divided by 1.5. (Tabular data were prethat the molecule $[X_2F]^*$ may not remain bound. Gas X is as indicated on each curve. sented on the previous page.)

Graphical Data B-1.A-19. Rate coefficient $\alpha(\text{cm}^3 \text{ sec}^{-1})$ at 298°K for recombination in the systems $0_4^+ + 0_2^- + 0_2^- + [0_6^-] + 0_2^-$ and $0_4^+ + 0_4^- + 0_2^- + [0_8^-] + 0_2^-$ shown as a function of the 0_2^- number density. Lines are theoretical calculations (by Flannery), crosses at low densities are experimental data for recombination in an experiment where the nature of the ions was not specified (by McGowan), and the crosses at high densities are data for recombination of unknown ions in air (by Machler). Reproduced from the work of Bates and Flannery, J. Phys., B 2, 184 (1969).

Tabular Data B-1.A-20. Three-body recombination rates $\alpha(10^{-6}~\text{cm}^3~\text{sec}^{-1})$ for the process Ar $^+$ + Y $^-$ + Ar $^+$ + Ar, with Y $^-$ = F $^-$, Cl $^-$, Br $^-$, I $^-$, for various gas densities N at 300°K. Low and high density limits are α_0 (N/N $_L$) and $\alpha_\infty(N_L/N)$.

N/N _L	F ⁻	C1	Br-	1-
0.5	2.622	1.583	1.212	1.231
1.0	3.364	2.300	1.821	1.743
1.4	3.394	2.491	2.029	1.896
1.8	3,219	2.490	2.077	1.923
2.0	3.101	2.449	2.063	1.908
2.4	2.850	2.324	1.990	1.847
3.0	2.491	2.100	1.829	1.716
3.5	2.233	1.917	1.686	1.598
4.0	2.013	1.750	1.549	1.484
5.0	1.669	1.473	1.315	1.278
αo	9.579	4.588	3.514	3.992
α_{∞}	8.783	7.949	7.098	6.863

Reference: M. R. Flannery, Chem. Phys. Letts., 56, 143 (1978).

Graphical Data B-1.A-21. Three-body ion-ion recombination coefficients $\alpha(\text{cm}^3 \text{ sec}^{-1})$ for the processes Ar + Y + Ar + ArY + Ar (Y = F , CL, Br, I) as a function of neutral-gas density N (in units of Loschmidt's number N_L, 2.69 × 10¹⁹ cm⁻³). Negative ion denoted on each curve. (Tabular data were presented on the previous page.)

Tabular Data B-1.A-22. Three-body recombination rates $\alpha(10^{-6}~\text{cm}^3~\text{sec}^{-1})$ for the processes Kr $^+$ + F $^-$ + Rg \rightarrow KrF * + Rg (Rg \equiv He, Ne, Ar, Xe) for various gas densities N at 300°K. Low- and high-density limits are α_0 (N/N_L) and α_∞ (N_L/N), respectively.

N/NL	Не	Ne	Ar	Xe
0.1	1.400 ^{-2b}	3.618-1	6.695	5.896-1
0.2	2.816-2	6.678-1	1.171	1.071
0.4	5.701-2	1.165	1.886	1.806
0.6	8.657-2	1.556	2.361	2.275
0.8	1.169-1	1.873	2.676	2.517
1.0	1.479-1	2.132	2.876	2.591°
1.2	1.797-1	2.346	2.992	2.557
1.4	2.123-1	2.522	3.046	2.462
1.6	2.457-1	2.667	3.056 ^c	2.338
1.8	2.799-1	2.784	3.035	2.205
2.0	3.149-1	2.877	2.991	2.072
2.2	3.508-1	2.951	2.932	1.945
2.4	. 3.874-1	3.008	2.864	1.827
2.6	4.248-1	3.050	2.789	1.718
2.8	4.630-1	3.079	2.711	1.618
3.0	5.021-1	3.098	2.632	1.527
3.5	6.031-1	3.108 ^c	2,436	1.334
4.0	7.090-1	3.079	2.250	1.181
4.5	8.194-1	3.027	2.080	1.057
5	9.340-1	2.959	1.925	9.551-1
6	1.174	2.800	1.661	7.995
,	1.427	2.632	1.449	6.866
	1.686	2.463	1.278	6.013-1
9	1.947	2.300	1.140	5.346-1
10	2.206	2.145	1.027	4.812-1
20	3.746°	1.143	5.107-1	2.406-1
30	3.000	7.582-1	3.400-1	1.604-1
10	2.255	5.676-1	2.549-1	1.203
50	1.802	4.537-1	2.039-1	9.623-2
a.,	1.391-1	3.967	7.909	6.683
•-	9.0041	2.2681	1.0191	4.811

 $^{^{}f a}$ K_L is Loschmidt's number (2.69 $10^{19}~{
m cm}^{-3}$), the number density at STP.

Reference: M. R. Flannery and T. P. Yang, Appl. Phys. Letts. 33, 574 (1978).

^bThe exponent denotes the power of ten by which the entry is to be sultiplied.

Indicates peak value.

* KrF* + M (M \equiv He, Ne, Ar, Kr, Xe) as a function of neutral-gas density N (in units of Loschmidt's number N_L, 2.69 \times 10¹⁹ cm⁻³). Buffer gas M is as indicated on each curve. (Tabular data were Graphical Data B-1.A-23. Ionic recombination coefficients $\alpha(\text{cm}^3 \text{sec}^{-1})$ at 300°K for Kr $^+$ + F $^-$ + M presented on the previous page.)

Tabular Data B-1.A-24. Three-body recombination rates $\alpha(10^{-6}~{\rm cm}^3~{\rm sec}^{-1})$, for the processes ${\rm Kr}_2^{+}+{\rm F}^{}+{\rm Rg}\rightarrow [{\rm Kr}_2{\rm F}]^{*}+{\rm Rg}~({\rm Rg}\equiv {\rm He},{\rm Ne},{\rm Ar},{\rm Xe})$, for various gas densities N at 300°K. The square brackets denote that the molecule ${\rm Kr}_2{\rm F}^{*}$ may not remain bound. Low- and high-density limits are $\alpha_0^{}$ (N/N_L) and $\alpha_\infty^{}$ (N/N), respectively.

N/NL	He	Ne	Ar	Xe
0.1	1.675 ^{-2b}	3.755-1	5.403-1	2.795
0.2	3.362-2	6.890-1	9.564-1	5.408-1
0.4	6.770-2	1.190	1.566	1.020
0.6	1.023-1	1.577	1.984	1.423
0.8	1.374-1	1.884	2.268	1.727
1.0	1.731-1	2.131	2.455	1.922
1.2	2.093-1	2.331	2.568	2.021
1.4	2.461-1	2.491	2.627	2.045°
1.6	2.836-1	2.620	2.648°	2.017
1.8	3.216-1	2.722	2.640	1.956
2.0	3.602-1	2.800	2.612	1.877
2.2	3.994-1	2.859	2.572	1.789
2.4	4.392-1	2.902	2.522	1.699
2.6	4.796-1	2.931	2.468	1.610
2.8	5.206-1	2.948	2.411	1.525
3.0	5.021-1	2.956°	2.353	1.445
3.5	6.682-1	2.942	2.210	1.268
4.0	7.774-1	2.895	2.073	1.122
4.5	8.893-1	2.829	1.943	1.003
5	1.003	2.752	1.818	9.051
6	1.236	2.587	1.582	7.552
7	1.472	2.425	1.375	6.471
8	1.705	2.278	1.205	5.659
9	1.931	2.146	1.069	5.029
10	2.148	2.027	9.596-1	4.524
20	3.622°	1.120	4.749-1	2.261
30	2.736	7.421-1	3.162-1	1.507
40	2.043	5.553-1	2.371-1	1.130
50	1.632	4.4.19-1	1.896-1	9.043
°o	1.670-1	4.145	6.277	2.928
۰_	8.1521	2.2191	9.481	4.522

 $^{^{}a}$ N_L is lowchmidt's number (2.69 10^{19} cm $^{-3}$), the number density of STP.

b The exponent denotes the power of ten by which the entry is to be multiplied.

Indicates peak value.

Reference: M. R. Flannery and T. P. Yang, Appl. Phys. Letts., 33, 574 (1978).

 $+ M + [Kr_2^{+}F^-]^* + M (M = He, Ne, Ar, Kr, Xe)$ as a function of neutral gas density N (in units of Loschmidt's number N_L , 2.69 \times 10¹⁹ cm⁻³). Buffer gas M is as indicated on each curve. The square brackets indicate that the product molecule may not remain bound. (Tabular data were Graphical Data B-1.A-25. Ionic recombination coefficients $\alpha(\text{cm}^3~\text{sec}^{-1})$ at 300°K for Kr_2^+ + $\text{F}^$ presented on the previous page.)

Tabular Data B-1.A-26. Three-body recombination rates $\alpha(10^{-6}~\text{cm}^3~\text{sec}^{-1})$ for the process Hg $^+$ + Y $^-$ + Ar \rightarrow HgY * + Ar and Y $^-$ = F , C& , Br , I , for various gas densities N at 300°K. Low- and high-density limits are $\alpha_0(\text{N/N}_L)$ and $\alpha_\infty(\text{N}_L/\text{N})$.

N/N _L	F	C.L.	Br	I -
0.5	1.727	1.485	0.488	0.198
1.0	2.380	2.013	0.887	0.456
1.4	2.557	2.163	1.153	0.694
1.8	2.573	2.195	1.360	0.934
2.0	2.548	2.184	1.441	1.046
2.4	2.461	2.136	1.557	1.237
3.0	2.295	2.031	1.632	1.416
3.5	2.156	1.935	1.624	1.469
4.0	2.025	1.837	1.574	1.456
5.0	1.787	1.633	1.415	1.335
αo	5.947	5.427	1.144	0.388
α	9.380	8.547	7.696	7.460

Reference: M. R. Flannery, Chem. Phys. Letts. 56, 143 (1978).

cesses Hg $^+$ + Y $^-$ + Ar $^+$ HgY * + Ar (Y $^ ^-$ F $^-$, CL $^-$, Br $^-$, I $^-$) as a function of neutral-gas density N (in units of Loschmidt's number N $^-$, 2.69 \times 10 $^-$ 0 $^-$ 0. Negative ion is denoted on each curve. Graphical Data B-1.A-27. Three-body ion-ion recombination coefficients $\alpha(\text{cm}^3 \text{ sec}^{-1})$ for the pro-(Tabular data were presented on the previous page.)

References

- Taken from the review by J. T. Moseley, R. E. Olson, and J. R. Peterson. Case Studies in Atomic Physics 5, 1 (1975).
- J. Moseley et al., Phys. Rev. Letts. <u>24</u>, 435 (1970). R. Rundel et al., J. Phys. B <u>2</u>, 954 (1969).
- T. D. Gailey and M. F. A. Harrison, J. Phys. B 3, 1098 (1970).
 R. E. Olson et al., J. Chem. Phys. 53, 3391 (1970).
- 4. M. A. Biondi (private communication quoted in NRL Memorandum Report 3753, April, 1978).
- J. T. Moseley, W. Aberth and J. R. Peterson, J. Geophys. Res. <u>77</u>, 255 (1972).
- 6. J. Weiner et al., Phys. Rev. A 4, 1825 (1971).
- 7. J. R. Peterson et al., Phys. Rev. A 3, 1651 (1971).
- 8. D. Smith and M. J. Church, Int. J. Mass. Spectrom. and Ion Physics 19, 185 (1976).
- 9. M. N. Hirsh and P. N. Eisner, Radio Sci. 7, 125 (1972).
- 10. B. H. Mahan and J. C. Person, J. Chem. Phys. 40, 392 (1964).
- J. T. Moseley, W. H. Aberth, and J. R. Peterson, J. Geophys. Res. 77, 255 (1972).
- 12. M. N. Hirsh and P. N. Eisner, Bull. Am. Phys. Soc. 17, 395 (1972).
- M. Rokni, J. H. Jacob, and J. A. Mangano, Phys. Rev. A <u>16</u>, 2216 (1977).
- 14. J. A. Mangano et al., Appl. Phys. Letts. 31, 26 (1977).
- 15. D. Smith et al., Planet Space Sci. 24, 697 (1976).
- 16. M. R. Flannery, and T. P. Yang, Appl. Phys. Letts. 32, 327 (1978).
- 17. M. R. Flannery, and T. P. Yang, Appl. Phys. Letts. 32, 356 (1978).
- 18. D. R. Bates and M. R. Flannery, J. Phys. B 2, 184 (1969).
- 19. M. R. Flannery, Chem. Phys. Letts. 56, 143 (1978).
- 20. M. R. Flannery and T. P. Yang, Appl. Phys. Letts. 33, 574 (1978).

Section B-1.B. ION-MOLECULE REACTIONS*

CONTENTS

B-1.B-1.	Rate	Coefficients	of	Ion-Molecule	Reactions	(Positive	Ions)		1392
B-1.B-2.	Rate	Coefficients	of	Ion-Molecule	Reactions	(Negative	Ions)		1401
General R	efere	nces:							

- 1. P. Ausloos (Editor), "Interactions Between Ions and Molecules," Plenum, New York (1975).
- P. Ausloos (Editor), "Kinetics of Ion-Molecule Reactions," Plenum, New York (1979).
- M. H. Bortner and T. Baurer (Editors), "Defense Nuclear Agency Reaction Rate Handbook" (Second Edition), DNA 1948-H (1972). Also see supplements published since 1972.
- 4. M. T. Bowers (Editor), "Ion-Molecule Reactions," Academic Press, New York (1979).
- M. T. Bowers and J. B. Laudenslager, "Thermal Energy Ion-Molecule Interactions," in G. Bekefi (Editor), "Principles of Laser Plasmas," 90, Wiley, New York (1976).
- M. T. Bowers and T. Su, "Thermal Energy Ion-Molecule Reactions," in L. Marton (Editor), "Advances in Electronics and Electron Physics," 34, 223, Academic, New York (1973).
- 7. J. V. Dugan, Jr. and J. L. Magee, "Dynamics of Ion-Molecule Collisions," in I. Prigogine (Editor), "Advances in Chemical Physics," 21, 207 (1971).
- 8. E. E. Ferguson, "Ion-Molecule Reactions," in H. Eyring (Editor), "Annual Review of Physical Chemistry," 26, 17, Annual Reviews, Inc., Palo Alto, California (1975).
- 9. J. L. Franklin (Editor), "Ion-Molecule Reactions," (2 Volumes), Plenum, New York (1972).
- H. S. W. Massey, "Negative Ions" (Third Edition), Cambridge University Press, New York (1976).

^{*}See also Section B-1, Vol. 1 and Section B-1.D of this volume.

- 11. E. W. McDaniel and E. A. Mason, "The Mobility and Diffusion of Ions in Gases," Wiley, New York (1973).
- 12. E. W. McDaniel, V. Ĉermak, A. Dalgarno, E. E. Ferguson, and L. Friedman, "Ion-Molecule Reactions," Wiley, New York (1970).
- L. W. Sieck and S. G. Lias, "Rate Coefficients for Ion-Molecule Reactions, I. Ions Containing C and H," Jour. Phys. Chem. Ref. Data <u>5</u>, 1123-1146 (1976).

<u>Data Needed</u>: The most pressing needs are for (1) rate coefficients for reactants in known excited states and (2) information concerning the states of excitation in which reaction products are formed.

Comments on Data Presented Here

The following data were selected from the compilation "Ion-Neutral Reaction-Rate Constants Measured in Flow Reactors Through 1977", by D. L. Albritton, Atomic Data and Nuclear Data Tables 22, 1-101 (1978). The Albritton compilation lists approximately 1600 ion-molecule reaction measurements made with flowing afterglow, flow drift, and selected ion-flow tubes. The rate constants measured in flow reactors constitute a sizable fraction of all measured ion-neutral rate constants. Some of the data were available in 1977 but published in 1978. Albritton's paper contains references, error estimates, and other information not presented here. The accuracies are typically approximately ± 30%. (See Section B-1.C for additional data.)

Explanation of Table

Reaction: Clustered, excited-state, and doubly-charged ions are listed after normal ions. When given, product ions were generally observed. Product neutrals were generally not observed.

Rate Constant: Bimolecular (k) $A^+ + B \rightarrow C^+ + D$ $cm^3/(molecule \cdot sec)$, abbreviated $\frac{d[A^+]}{dt} = -k[A^+][B]$ as cm^3/sec

Termolecular (k) $A^+ + B + M \rightarrow C^+ + D + M$ cm⁶/(molecule². sec), abbreviated $\frac{d[A^+]}{dt} = -k[A^+][B][M]$ as cm⁶/sec

When two or more product channels occur, the tabulated rate constant refers to the total rate into all product channels. Furthermore, when the reaction has been studied over a range of temperatures or kinetic energies, the tabulated rate constant refers to 300°K (or 0.04 eV) if the range includes room temperature or to the temperature or energy nearest 300°K if the range does not include room temperature.

Product Ratio: $k_i/\Sigma k_i$, where Σk_i corresponds to the tabulated total rate constant.

Energy Range: 82-290, 300 etc. Temperature in $^{\circ}$ K 0.14-2.0, etc. Relative kinetic energy in eV.

The tabulated energy range expresses the limits over which the reaction was studied. For temperature, these limits generally imply that a few intermediate temperatures were also used, but not always. For mean relative kinetic energy, many intermediate values were generally examined. Furthermore, the mean relative kinetic energy is that calculated for an ion-speed distribution that may sometimes differ significantly from a Maxwellian speed distribution.

Tabular Data B-1.B-1. Rate coefficients of ion-molecule reactions (positive ions).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$Ar^+ + Ar + He \rightarrow Ar_2^+ + He$	1 × 10 ⁻³¹		82 - 290
$Ar^+ + CO \rightarrow CO^+ + Ar$	9×10^{-11}		300
$Ar^{+} + CO_{2} + CO_{2}^{+} + Ar$	7.6×10^{-10}		300
$Ar^+ + H_2 \rightarrow ArH^+ + H$	7.4×10^{-10}		82 - 506
$Ar^+ + H_2O \rightarrow ArH^+ + HO$	1.43×10^{-9}		296
$Ar^+ + N_2 \rightarrow N_2^+ + Ar$	7×10^{-12}		280
$Ar^{+} + o_{2} + o_{2}^{+} + Ar$	5.2×10^{-11}		300
$Ar^{+} + O_{2} \rightarrow O_{2}^{+} + Ar$	4.6×10^{-11}		82 - 506
C ⁺ + CO → products	$\leq 5 \times 10^{-13}$		300
$c^+ + co_2 + co^+ + co$	1.1×10^{-9}		300
C ⁺ + H ₂ → products	$\leq 5 \times 10^{-13}$		300
$C^+ + H_2 + He \rightarrow CH_2^+ + He$	2.1×10^{-29}		90
$C^{+} + H_{2}O + CHO^{+} + H$	2.5×10^{-9}		300
$C^+ + N_2 \rightarrow products$	\leq 5 \times 10 ⁻¹³		300
$c^+ + N_2 o \rightarrow No^+ + CN$	9.1×10^{-10}		300
$c^+ + o_2 + co^+ + o$	9.9×10^{-10}	38	300
$CH^+ + CO \rightarrow CHO^+ + C$	7×10^{-12}		300
$CH^{+} + CO_{2} + CHO^{+} + CO$	1.6×10^{-9}		300
$CH^{+} + H_{2} + CH_{2}^{+} + H$	1.2×10^{-9}		300
$CH^{+} + H_{2}O + CHO^{+} + H_{2}$	2.9×10^{-9}		300
$co^{+} + cH_{2}o + cHo^{+} + cHo$	3.0×10^{-9}	55	300
$co^{+} + co_{2} + co_{2}^{+} + co$	1.0×10^{-9}		300
$co^{+} + H_{2} + CHO^{+} + H$	1.8×10^{-9}		300
$co^{+} + H_{2}O + H_{2}O^{+} + co$	2.2×10^{-9}		300
$co^+ + N + No^+ + C$	\leq 2 \times 10 ⁻¹¹		300
$co^+ + NO + NO^+ + CO$	3.3×10^{-10}		300

Tabular Data B-1.B-1. (Continued).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (^O K, eV)
CO ⁺ + N ₂ → products	≤ 4 × 10 ⁻¹⁴		300
$co^{+} + o + o^{+} + co$	1.4×10^{-10}		300
$co^+ + o_2 + o_2^+ + co$	1.2×10^{-10}		300
$co_2^+ + H + CHO^+ + O$	6×10^{-10}	83	300
$co_2^+ + H_2^- + CHO_2^+ + H$	1.4×10^{-9}		300
$20_2^+ + N \rightarrow \text{products}$	$\leq 1 \times 10^{-11}$		295
$co_2^+ + No \rightarrow No^+ + co_2$	1.2×10^{-10}		295
$co_2^+ + o + o^+ + co_2$	2.6×10^{-10}	37	295
$co_2^+ + o_2^- + o_2^+ + co_2^-$	5.6×10^{-11}		0.04 - 2
$co_2^+ + o_2^- + o_2^+ + co_2^-$	6.4×10^{-11}		300 - 870
$\frac{1}{2} + H_2 + C_2 H^+ + H$	1.4×10^{-9}		300
$1^+ + H_2 \rightarrow C1H^+ + H$	7.1×10^{-10}		297
$c1^+ + o_2^- + o_2^+ + c1$	4.6×10^{-10}		300
$21H^{+} + H_{2} + C1H_{2}^{+} + H$	5.2×10^{-10}		297
$e^+ + o_2 + Ar + Feo_2^+ + Ar$	1.0×10^{-30}		300
$e^+ + o_3 + FeO^+ + o_2$	1.5×10^{-10}		300
$a^+ + co_2 + cho^+ + o$	3×10^{-9}		300
H^+ + NO + NO $^+$ + H	1.9×10^{-9}		300
1 + 0 + 0 + H	3.75×10^{-10}		300
He ⁺ + H ₂ → products	\geq 3.5 \times 10 ⁻¹¹		200
$He^+ + N_2 \rightarrow HN_2^+ + He$	1.7×10^{-9}		300
$He_2^+ + H_2^- \rightarrow products$	3.0×10^{-10}		200
$n^+ + H_2 \rightarrow H_2 N^+ + H$	1 × 10 ⁻⁹		300
$N^+ + N_2 \rightarrow HN_2^+ + N$	1 × 10 ⁻⁹		300
Ne ⁺ + H ₂ → products	2.0×10^{-11}		200
Ne + H ₂ + products	9.6×10^{-11}		200

Table B-1.B-1. (Continued).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
но ⁺ + н ₂ + н ₂ о ⁺ + н	1.5 × 10 ⁻⁹		300
$Ho^+ + o_2 + o_2^+ + Ho$	2 × 10 ⁻¹⁰		300
$HO_2^+ + Ar + ArH^+ + O_2$	1.9×10^{-11}		0.21 - 2
$HO_2^+ + CO_2^- + CHO_2^+ + O_2^-$	1.1×10^{-9}		0.04 - 2
$HO_2^+ + H_2^- + H_3^+ + O_2^-$	3.0×10^{-10}		0.04 - 0
$HO_2^+ + NO \rightarrow HNO^+ + O_2$	7.3×10^{-10}		0.05 - 1
$HO_2^+ + N_2^- + HN_2^+ + O_2^-$	8.0 × 10 ⁻¹⁰		0.04 - 1
H ₂ He ⁺ + H ₂ + products	$\geq 2.4 \times 10^{-11}$		200
$H_2N^+ + H_2^- + H_3N^+ + H$	1×10^{-9}		300
H ₂ Ne ⁺ + H ₂ → products	\leq 4.0 \times 10 ⁻¹³		200
$H_2O^+ + H_2 + H_3O^+ + H$	1.4×10^{-9}		300
$H_2O^+ + H_2O \rightarrow products$	1.67×10^{-9}		300
$H_2O^+ + O_2 + O_2^+ + H_2O$	2 × 10 ⁻¹⁰		300
$H_2O_2^+ + CO + CHO^+ + HO_2$	5.5×10^{-11}		0.2 - 1.
$H_2O_2^+ + H_2O + H_3O^+ + HO_2$	1.7×10^{-9}		0.04 - 0
$H_2O_2^+ + NO + NO^+ + H_2O_2$	5.0×10^{-10}		0.04 - 1
$H_3^+ + Ar + ArH^+ + H_2$	≤ 1 × 10 ⁻¹¹		300
$H_3^+ + Ar + Ar + ArH_3^+ + Ar$	1×10^{-31}		300
$H_3^+ + Ar + H_2^- + ArH_3^+ + H_2^-$	1×10^{-31}		300
$H_3^+ + co + cho^+ + H_2$	1.4×10^{-9}		300
$H_3^+ + CO_2^- + CHO_2^+ + H_2^-$	1.9×10^{-9}		300
$H_3^+ + H_2^0 + H_3^0^+ + H_2$	4.3×10^{-9}		297
$H_3^+ + NO + HNO^+ + H_2$	1.4×10^{-9}		300
$H_3^+ + NO_2 + NO^+ + HO + H_2$	7×10^{-10}		300
$H_3^+ + N_2^- + HN_2^+ + H_2^-$	2.0×10^{-9}		300
$H_3^+ + N_2O \rightarrow HN_2O^+ + H_2$	1.8×10^{-9}		300

Table B-1.B-1. (Continued).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$H_3^+ + 0 \rightarrow \text{products}$	8.0 × 10 ⁻¹⁰		300
$H_3^+ + O_2 \rightarrow HO_2^+ + H_2$	7.0×10^{-10}		0.04 - 0.6
$H_3^+ + O_2^- + H_2^- + H_3^- O_2^+ + H_2^-$	3×10^{-29}		300
$H_30^+ + H_2 \rightarrow products$	\leq 5 \times 10 ⁻¹⁵		300
$H_30^+ + H_20 + H_2 + H_30^+ \cdot H_20 + H_2$	5×10^{-27}		300
$H_30^+ + H_20 + H_30^+ \cdot H_20 + H_3$	6.65×10^{-28}		296
$\mathrm{He}^+ + \mathrm{Ar} \rightarrow \mathrm{Ar}^+ + \mathrm{He}$	$\leq 1 \times 10^{-13}$		300
$He^+ + CO \rightarrow C^+ + He + O$	1.7×10^{-9}		300
$\text{He}^+ + \text{CO}_2 \rightarrow \text{CO}^+ + \text{He} + \text{O}$	1.1×10^{-9}	79	300
$He^+ + H_2 \rightarrow products$	$\leq 1 \times 10^{-13}$		300
$He^+ + H_2O \rightarrow HHe^+ + HO$	4.5×10^{-10}		300
He ⁺ + Kr → products	≤ 1 × 10 ⁻¹¹		300
$He^+ + NO \rightarrow N^+ + He + O$	1.5×10^{-9}		300
$He^+ + N_2 \rightarrow N^+ + He + N$	1.6×10^{-9}	60	300
$He^+ + N_2(v) \rightarrow N^+ + He + N$		70	300
$He^+ + O_2 + O^+ + He + O$	1.1×10^{-9}	97	300
He ⁺ + Xe → products	7×10^{-12}		300
$HeNe^+ + Ne \rightarrow Ne_2^+ + He$	1.4×10^{-10}		200
$He_2^+ + Ar + Ar^+ + 2He$	2.0×10^{-10}		200
$He_2^+ + CO \rightarrow CO^+ + 2He$	1.4×10^{-9}		200
$\text{He}_{2}^{+} + \text{CO}_{2} + \text{CO}^{+} + 2\text{He} + 0$	1.8×10^{-9}		200
$He_2^+ + H_2^- \rightarrow products$	5.3×10^{-10}		200
$He_2^+ + Kr + Kr^+ + 2He$	1.85×10^{-11}		200
$He_2^+ + NO \rightarrow NO^+ + 2He$	1.3×10^{-9}		200
$He_2^+ + N_2^- + N_2^+ + 2He$	1.2×10^{-9}		300 - 870
$He_2^+ + Ne \rightarrow Ne^+ + 2He$	6.0×10^{-10}		200

Table B-1.B-1. (Continued).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$\text{He}_2^+ + \text{Ne} \rightarrow \text{Ne}^+ + 2\text{He}$	1.4 × 10 ⁻¹⁰		300
$He_2^+ + O_2^- + O_2^+ + 2He^- + O$	1.05×10^{-9}		200
$Kr^+ + H_2 + HKr^+ + H$	2.01×10^{-10}		297
$Kr^{+} + H_{2}O + H_{2}O^{+} + Kr$	1.19×10^{-9}		296
$N^+ + CO \rightarrow CO^+ + N$	4.5×10^{-10}	88	300
$n^+ + co_2 + co^+ + no$	1.0×10^{-9}	25	300
$N^+ + F_6 S + F_5 S^+ + FN$	1.4×10^{-9}		300
N ⁺ + H ₂ + HN ⁺ + H	4.8×10^{-10}		300
$N^+ + H_2O + H_2O^+ + N$	2.8×10^{-9}		300
$N^+ + NO + NO^+ + N$	9 × 10 ⁻¹⁰		300
$N^+ + N_2 + He + N_3^+ + He$	8.6×10^{-30}		82 - 280
$N^+ + N_2 + He + N_2 \rightarrow N_3^+ + He + N_2$	5.2×10^{-30}		300
$n^+ + o_2 + no^+ + o$	6.1×10^{-10}	43	300
$NO^+ + CO_2 + Ar \rightarrow NO^+ \cdot CO_2 + Ar$	5.0×10^{-30}		300
$NO^+ + CO_2 + Ar + NO^+ \cdot CO_2 + Ar$	2.4×10^{-29}		196 - 214
$\text{NO}^+ + \text{CO}_2 + \text{He} + \text{NO}^+ \cdot \text{CO}_2 + \text{He}$	4.5×10^{-30}		300
$NO^{+} + CO_{2} + He + NO^{+} \cdot CO_{2} + He$	4×10^{-30}		197 - 290
$NO^{+} + CO_{2} + N_{2} + NO^{+} \cdot CO_{2} + N_{2}$	9.5×10^{-30}		225 - 300
NO ⁺ + H ₂ + products	$\leq 1 \times 10^{-13}$		300
$NO^{+} + H_{2}O + Ar \rightarrow NO^{+} \cdot H_{2}O + Ar$	7.8×10^{-29}		295
$NO^{+} + H_{2}O + He \rightarrow NO^{+} \cdot H_{2}O + He$	3.6×10^{-29}		295
$NO^{+} + H_{2}O + N_{2} + NO^{+} \cdot H_{2}O + N_{2}$	1.6×10^{-28}		295
$NO^{+} + H_{2}O + O_{2} + NO^{+} \cdot H_{2}O + O_{2}$	8.6 × 10 ⁻²⁹		296
$NO^+ + N_2 + He \rightarrow NO^+ \cdot N_2 + He$			80 - 296
$NO^{+} + N_{2} + N_{2} + NO^{+} \cdot N_{2} + N_{2}$	$\leq 1.0 \times 10^{-30}$		225 - 300
$NO^{+} + O_{2} + N_{2} \rightarrow NO^{+} \cdot O_{2} + N_{2}$	3 × 10 ⁻³¹		225 - 300

Table B-1.B-1. (Continued).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$N0^+ + O_3^- + NO_2^+ + O_2^-$	≤ 1 × 10 ⁻¹⁴		300
$NO^+ \cdot N_2 + He \rightarrow NO^+ + N_2 + He$			80 - 296
$N0^+ \cdot 0_2 + Ar \rightarrow N0^+ + 0_2 + Ar$			200
$NO^+ \cdot O_2 + He \rightarrow NO^+ + O_2 + He$			200
$NO_2^+ + N \rightarrow NO^+ + NO$	$\leq 8 \times 10^{-12}$		296
$80_2^+ + 0 \rightarrow 80_2^+ + 0_2^-$	$\leq 8 \times 10^{-12}$		296
$N_2^+ + co \rightarrow co^+ + N_2$	7.4×10^{-11}		300
$N_2^+ + co_2^- + co_2^+ + N_2^-$	7.7×10^{-10}		300
$N_2^+ + H_2 \rightarrow HN_2^+ + H$	2.1×10^{-9}		300
$H_2^+ + H_2^- O \rightarrow HN_2^+ + HO$	2.8×10^{-9}	18	300
$N_2^+ + N \rightarrow N_2^+ + N_2$	≤ 1 × 10 ⁻¹¹		300
$N_2^+ + NO + NO^+ + N_2^-$	3.3×10^{-10}		295
$N_2^+ + N_2^- + He \rightarrow N_4^+ + He$	1.9×10^{-29}		82 - 280
$N_2^+ + N_2^0 \rightarrow N_2^0^+ + N_2^-$	7.0×10^{-10}		300
$N_2^+ + O + NO^+ + N$	1.4×10^{-10}	<u>></u> 96	295
$n_2^+ + o_2^- + o_2^+ + n_2^-$	5.1×10^{-11}		300
$N_3^+ + CO + He + N_2 + N_3^+ \cdot CO + H$	_		300
$N_3^+ + CO_2^- + products$	\leq 5 \times 10 ⁻¹⁴		300
$H_3^+ + H_2^- + HN_2^+ + HN$	2 × 10 ⁻¹³		300
$N_3^+ + H_2O + H_2NO^+ + N_2$	3.3×10^{-10}		300
$N_3^+ + NO + NO^+ + N + N_2$	1.4×10^{-10}		0.04 - 0
$N_3^+ + O_2^- + NO^+ + N_2^-O$	5.1×10^{-11}	70	300
$N_4^+ + CO + CO^+ + 2N_2$	5 × 10 ⁻¹⁰		300
$N_4^+ + CO_2^- + CO_2^+ + 2N_2^-$	7.0×10^{-10}		300
$N_4^+ + H_2^- + HN_2^+ + H + N_2^-$	5.8×10^{-12}	87	300
$N_{4}^{+} + H_{2}O \rightarrow H_{2}O^{+} + 2N_{2}$	3.0×10^{-9}		300

Table B-1.B-1. (Continued).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$N_4^+ + O_2^- \rightarrow O_2^+ + 2N_2^-$	2.5 × 10 ⁻¹⁰		300
Ne ⁺ + CO + products	$\leq 1 \times 10^{-13}$		300
$Ne^+ + CO_2 \rightarrow products$	5 × 10 ⁻¹¹		300
$Ne^+ + H_2^- \rightarrow products$	$\leq 3 \times 10^{-13}$		300
$Ne^+ + H_2O \rightarrow HO^+ + H + Ne$	8.2×10^{-10}		300
$Ne^+ + NO \rightarrow N^+ + Ne + O$	1.2×10^{-10}		300
$Ne^+ + N_2^- \rightarrow products$	$\leq 1 \times 10^{-12}$		300
$Ne^+ + N_2(v=2) \rightarrow N_2^+ + Ne$	2.3×10^{-10}		300
$Ne^{+} + O_{2} + O^{+} + O + Ne$	5.5×10^{-11}		300
Ne ⁺ + Xe → products	\leq 5 \times 10 ⁻¹³		300
$Ne_2^+ + Ar + Ar^+ + 2Ne$	$\leq 5 \times 10^{-14}$		200
$Ne_2^+ + CO \rightarrow CO^+ + 2Ne$	5.1×10^{-10}		200
$Ne_2^+ + CO_2^- + CO^+ + 2Ne + O$	1.1×10^{-9}		200
$Ne_2^+ + H_2^- + products$	1.1×10^{-10}		200
$Ne_2^+ + Kr \rightarrow Kr^+ + 2Ne$	$\leq 5 \times 10^{-13}$		200
$Ne_2^+ + NO \rightarrow NO^+ + 2Ne$	7.0×10^{-10}		200
$Ne_{2}^{+} + N_{2}^{-} + N_{2}^{+} + 2Ne$	9.1×10^{-10}		200
$Ne_2^+ + O_2^- + O_2^+ + 2Ne + O$	7.1×10^{-10}		200
o ⁺ + co + products	$\leq 5 \times 10^{-13}$		300
$0^+ + co_2^- + co_2^+ + o$	9.0×10^{-10}		300 - 870
$0^+ + H_2^- + H0^+ + H$	1.7×10^{-9}		300
$0^{+} + H_{2}^{0} + H_{2}^{0} + 0$	3.2×10^{-9}		300
$0^{+} + N0 + N0^{+} + 0$	1.7×10^{-12}		0.2 - 3.5
$0^{+} + NO + NO^{+} + O$	≤ 8 × 10 ⁻¹³		300
$0^+ + NO_2 + NO_2^+ + O$	1.6×10^{-9}		393
$0^+ + N_2 + N0^+ + N$	1.2×10^{-12}		300

Table B-1.B-1. (Continued).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (^O K, eV)
$0^+ + N_2(v) + N0^+ + N$	1.3×10^{-12}		300
$0^{+} + N_{2} + He + N0^{+} + N + He$	5.4×10^{-29}		82
$0^+ + N_2 0 + N0^+ + N0$	6.3×10^{-10}		393
$0^+ + 0_2 + 0_2^+ + 0$	1.9×10^{-11}		300
$o_2^+ + co_2^- + He + o_2^+ \cdot co_2^- + He$	2.3×10^{-29}		200
$O_2^+ + H_2^- + products$	$\leq 1 \times 10^{-11}$		300
$o_2^+ + H_2^- + He^- + o_2^+ \cdot H_2^- + He^-$	7.4×10^{-31}		80
$o_2^+ + H_2^0 + Ar + o_2^+ \cdot H_2^0 + Ar$	2.0×10^{-28}		295
$o_2^+ + H_2^- o + He + o_2^+ \cdot H_2^- o + He$	9×10^{-29}		295
$o_2^+ + H_2^0 + N_2^- + o_2^+ \cdot H_2^0 + N_2^-$	2.8×10^{-28}		295
$o_2^+ + H_2^- o + o_2^- + o_2^+ \cdot H_2^- o + o_2^-$	2.3×10^{-28}		296
$o_2^+ + n + no^+ + o$	1.2×10^{-10}		296
$o_2^+ + no + no^+ + o_2$	4.4×10^{-10}		0.04 - 1.
$o_2^+ + N_2^- + No_2^+ + No_2^-$	$\leq 1 \times 10^{-15}$		600
$o_2^+ + n_2^- + no^+ + no$	≤ 1 × 10 ⁻¹⁵		300
$o_2^+ + N_2^- + He + o_2^+ \cdot N_2^- + He$	1.9×10^{-29}		80
$o_2^+ + N_2^- + N_2^- + o_2^+ \cdot N_2^- + N_2^-$	8×10^{-31}		296
$0_2^+ + N_2^0 + He + 0_2^+ \cdot N_2^0 + He$	5.2×10^{-29}		200
$0_2^+ + 0_2^- + \text{He}^- + 0_4^+ + \text{He}^-$	2.4×10^{-30}		200
$o_2^+ + o_2^- + o_2^- + o_4^+ + o_2^-$	2.5×10^{-30}		296
$0_2^+ + 0_3^- + \text{He}^- + 0_5^+ + \text{He}^-$	1×10^{-28}		200
$o_2^+(a^4\Pi_u) + Ar + Ar^+ + o_2$	5.0×10^{-10}		0.04 - 2.0
$o_2^+(a^4\pi_u) + co + co^+ + o_2$	2.0×10^{-10}		0.04 - 2.0
$o_2^+(a^4\pi_u) + co_2 + co_2^+ + o_2$	9.0×10^{-10}		0.04 - 2.0
$O_2^+(a^{-4}\Pi_u) + H_2 + HO_2^+ + H$	1.2×10^{-9}		0.04 - 0.
$o_2^+(a^4\pi_u) + No + No^+ + o_2$	1.1 × 10 ⁻⁹		0.05 - 1.5

Table B-1.B-1. (Concluded).

	Positive Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$o_2^+(a^{-4}\Pi_u) + N_2 + N_2^+ + o_2$	4.1 × 10 ⁻¹⁰		0.04 - 2.0
$o_2^+(a^4\Pi_u) + o_2 + o_2^+ + o_2$	3.1×10^{-10}		0.05 - 2.0
$o_4^+ + co_2^- + o_2^+ \cdot co_2^- + o_2^-$			250 - 295
$o_4^+ + H_2^- o + o_2^+ \cdot H_2^- o + o_2^-$	2.2×10^{-9}		295
$o_4^+ + \text{He} + o_2^+ + o_2^- + \text{He}$	3.6×10^{-14}		296
$o_4^+ + N_2^- + He + o_4^+ \cdot N_2^- + He$	1.0×10^{-29}		80
$o_4^+ + N_2^- o_2^+ \cdot N_2^- o_2^- + o_2^-$	2.5×10^{-10}		200
$o_4^+ + o + o_2^+ + o_3^-$	3×10^{-10}		295
$o_4^+ + o_2^- + o_2^+ + o_2^- + o_2^-$	1.8×10^{-13}		296
$o_4^+ + o_2^- + \text{He} + o_6^+ + \text{He}$	5.0×10^{-30}		80
$o_4^+ + o_3^- + o_5^+ + o_2^-$			250 - 295
$o_5^+ + co_2^- + o_2^+ \cdot co_2^- + o_3^-$	$\leq 1 \times 10^{-11}$		200
$o_5^+ + H_2^0 + o_2^+ \cdot H_2^0 + o_3$	1.2×10^{-9}		300
$o_5^+ + o_2^- + o_4^+ + o_3^-$			250 - 295
$s^+ + co_2 + os^+ + co$	$\leq 1 \times 10^{-12}$		300
$s^+ + No + No^+ + S$	4.2×10^{-10}		300
$s^{+} + o_{2} + os^{+} + o$	1.6×10^{-11}		300

Tabular Data B-1.B-2. Rate coefficient of ion-molecule reactions (negative ions).

	Negative Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (OK, eV)
$c^- + co + e + c_2o$	4.1 × 10 ⁻¹⁰		300
$c^- + co_2 + e + 2co$	4.7×10^{-11}		300
$C^- + H_2 + e + CH_2$	$\leq 1 \times 10^{-13}$		300
$C^- + N_2 O \rightarrow e + product(s)$	9.0×10^{-10}		300
$c^- + o_2 \rightarrow e + product(s)$	4.0×10^{-10}	≤15	300
$CN^- + H + e + CHN$	1.3×10^{-9}		296
$co_3^- + H + Ho^- + co_2^-$	1.7×10^{-10}		296
$co_3^- + H_2O + O_2^- + Co_3^- \cdot H_2O + O_2$	1×10^{-28}		296
$co_3^- + No + No_2^- + co_2$	1.1×10^{-11}		0.04 - 1
$co_3^- + No_2^- + No_3^- + co_2^-$	2×10^{-10}		296
$co_3^- + N_2^- O + co_4^- + N_2^-$	\leq 5 \times 10 ⁻¹³		298
$co_3^- + o + o_2^- + co_2$	1.1×10^{-10}		300
$co_3^- + o_2^- + o_3^- + co_2^-$	$\leq 6 \times 10^{-15}$		595
$co_3 \cdot H_2 o + No + No_2 + co_2 + H_2 o$	7×10^{-12}		296
$co_3 \cdot H_2 \circ + No_2 + No_3 + H_2 \circ + co_2$	1.5×10^{-10}		296
$co_3 \cdot H_2 o + o_2 + co_3 + H_2 o + o_2$	3.3×10^{-14}		296
$co_4^2 + H + co_3^2 + Ho$	2.2×10^{-10}		296
$co_4^- + H_2^- O \rightarrow o_2^- \cdot H_2^- O + co_2^-$			296
$co_4^- + No + No_3^- + co_2$	4.8×10^{-11}	≤ 2	300
$co_4^- + o + co_3^- + o_2^-$	1.4×10^{-10}		300
$co_4^- + o_2^- + o_4^- + co_2^-$			300
$co_4^- + o_3^- + o_3^- + co_2^- + o_2^-$	1.3×10^{-10}		296
$c_2^- + co + e + c_3 o$	≤ 1 × 10 ⁻¹²		298
$c_2^- + co_2^- + e + c_3^- o_2^-$	\leq 5 × 10 ⁻¹³		298
$C_2 + H_2 + C_2 H + H$	$\leq 1 \times 10^{-13}$		298
$C_2^- + H_2^0 \rightarrow e + product(s)$	≤ 1 × 10 ⁻¹²		298

Tabular Data B-1.B-2. (Continued).

	Negative Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$c_2^- + o_2^- + e + co_2^- + c$	2.1 × 10 ⁻¹¹		296
$c_2H + co + e + c_3Ho$	$\leq 1 \times 10^{-12}$		298
$c_2 H^- + co_2 + e + c_3 Ho_2$	$\leq 1 \times 10^{-13}$		298
$c_2 H^- + co_2 + He + c_3 Ho_2^- + He$	observed		300
$c_2 H^- + H_2 + e + c_2 H_3$	$\leq 1 \times 10^{-13}$		298
$C_2H^2 + H_2O + e + products$	$\leq 1 \times 10^{-12}$		298
$c_2H^- + H_2O + HO^- + c_2H_2$	9.3×10^{-15}		296
$C_2H^- + N_2O \rightarrow products$	not observed		300
C1 + H + e + C1H	9.3×10^{-10}		0.55 - 0.
C1 + H + e + C1H	9.6×10^{-10}		296
$c1^{-} + H_2O + O_2 + C1^{-} \cdot H_2O + O_2$	2×10^{-29}		296
$C1^- + N \rightarrow e + C1N$	$\leq 1 \times 10^{-11}$		300
$c1^- + No_2^- + No_2^- + C1$	\leq 6 \times 10 ⁻¹²		300
C1 + 0-+ e + C10	≤ 1 × 10 ⁻¹¹		300
$c1^{-} + o_{3} + c10^{-} + o_{2}$	\leq 5 × 10 ⁻¹³		300
$\text{C1}^{-} \cdot \text{H}_2\text{O} + \text{H} + \text{e} + \text{C1H} + \text{H}_2\text{O}$	< 8 × 10 ⁻¹¹		296
$c1^* \cdot H_2O + H_2O + O_2 \rightarrow c1^* \cdot 2H_2O +$	02		296
$c1^{-} \cdot H_{2}O + O_{2} + c1^{-} + H_{2}O + O_{2}$	4.1×10^{-16}		296
$c1 \cdot 2H_2O + H + e + C1H + 2H_2O$	$\leq 8 \times 10^{-11}$		296
$c1^{-} \cdot 2H_{2}O + H_{2}O + O_{2} + C1^{-} \cdot 3H_{2}O$	+ o ₂		296
$c1^{-} \cdot 2H_{2}O + O_{2} + C1^{-} \cdot H_{2}O + H_{2}O +$	02		296
C10 + CO ₂ + products	≤ 1 × 10 ⁻¹³		300
$C10^{-} + NO \rightarrow NO_{2}^{-} + C1$	2.9×10^{-11}		300
$c10^{-} + NO_{2} + NO_{2}^{-} + C10$	3.2×10^{-10}		300
$c10^{-} + o_{3} + c1^{-} + 2o_{2}$	7×10^{-11}	85	300
$C1_{2}^{-} + NO_{2} + C1^{-} + C1NO_{2}$	4×10^{-11}		280 - 500

Tabular Data B-1.B-2. (Continued).

	Negative Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$F^- + CO_2 + He \rightarrow F^- \cdot CO_2 + He$	2.9 × 10 ⁻²⁹		296
$F^- + H + e + FH$	1.6×10^{-9}		296
$F^- + NO_2 \rightarrow NO_2^- + F$	\leq 6 × 10 ⁻¹²		300
$H^- + CO \rightarrow e + CHO$	5×10^{-11}		278
$H^- + H \rightarrow e + H_2$	1.8×10^{-9}		296
$H^- + H_2O + HO^- + H_2$	3.7×10^{-9}		297
$H^- + NO \rightarrow e + HNO$	4.6×10^{-10}		278
$H^- + NO_2 + NO_2^- + H$	2.9×10^{-9}		300
$H^- + N_2O + HO^- + N_2$	1.1×10^{-9}		278
$H^{-} + O_{2} + e + HO_{2}$	1.2×10^{-9}	≥99	278
$HO^- + CO_2 + Ar + HO^- \cdot CO_2 + Ar$	8.6×10^{-28}		233
$HO^- + CO_2 + He + HO^- \cdot CO_2 + He$	2.5×10^{-28}		296
$HO^{-} + CO_{2} + O_{2} + HO^{-} \cdot CO_{2} + O_{2}$	7.6×10^{-28}		296
$HO^- + H^+ + e^- + H_2O^-$	1.4×10^{-9}		296
$HO^- + H_2 \rightarrow H^- + H_2O$	\leq 5 × 10 ⁻¹²		300
$HO^{-} + H_{2}O + O_{2} + HO^{-} \cdot H_{2}O + O_{2}$	2.5×10^{-28}		296
$HO^- + N \rightarrow e + HNO$	≤ 1 × 10 ⁻¹¹		300
$HO^- + NO_2 + NO_2^- + HO$	1.1×10^{-9}		300
$HO^- + O + e + HO_2$	2×10^{-10}		300
$HO^- + O_3 + O_3^- + HO$	9×10^{-10}		300
$I^- + H \rightarrow e + HI$	\leq 6 × 10 ⁻¹¹		296
$NO^- + CO \rightarrow e + CO + NO$	5.0×10^{-13}		193 - 506
$NO^- + CO_2 \rightarrow e + CO_2 + NO$	8.3×10^{-12}		193 - 506
$NO^- + C1H \rightarrow C1^- + HNO$	1.6 × 10 ⁻⁹		289
$NO^{-} + H_{2} + e + H_{2} + NO$	2.3×10^{-13}		193 - 506
NO^- + He \rightarrow e + He + NO	2.4×10^{-13}		193 - 506

Tabular Data B-1.B-2. (Continued).

	Negative Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$NO^- + NO \rightarrow e + 2NO$	5.0 × 10 ⁻¹²		285 - 506
$NO^- + NO_2 \rightarrow NO_2^- + NO$	7.4×10^{-10}		285
$NO^- + N_2O \rightarrow e + NO + N_2O$	5.1×10^{-12}		193 - 506
$NO^- + Ne \rightarrow e + Ne + NO$	2.9×10^{-14}		285 - 506
$NO^- + O_2 + O_2^- + NO$	5×10^{-10}		285
$NO_2^- + Cl_2^- + Cl_2^- + NO_2^-$	6.8×10^{-10}		280 - 500
$NO_2 + H \rightarrow e + HNO_2$	3.7×10^{-10}		296
$NO_{2}^{-} + H_{2}O + O_{2} + NO_{2} \cdot H_{2}O + O_{2}$	1.6×10^{-28}		296
$\sqrt{0_2} + N \rightarrow \text{products}$	$\leq 1 \times 10^{-11}$		300
$NO_2 + NO_2 \rightarrow NO_3 + NO$	$\leq 2 \times 10^{-13}$		298
$NO_2 + N_2O \rightarrow NO_3 + N_2$	$\leq 1 \times 10^{-12}$		298
$\sqrt{0_2} + 0 \rightarrow \text{products}$	$\leq 1 \times 10^{-11}$		300
$NO_2 + O_3 + NO_3 + O_2$	1.2×10^{-10}		300
$No_2^- + co_2^- + co_3^- + No$			300
$NO_3^- + CO_2^- + products$	not observed		296
NO ₃ + H + products	≤ 5 × 10 ⁻¹¹		296
NO ₃ + N + products	≤ 1 × 10 ⁻¹¹		300
$NO_3^- + NO + NO_2^- + NO_2$			300
$NO_3^- + O + e + NO_2 + O_2$	≤ 1 × 10 ⁻¹¹		300
$N_20^- + O_2 + O_3^- + N_2$	fast		80
$0^- + CO + e + CO_2$	5.5×10^{-10}		0.05 - 2
$0^- + co_2 \rightarrow e + co_3$	$\leq 1 \times 10^{-13}$		300
$0^- + CO_2 + He + CO_3 + He$	1.5×10^{-28}		296
$0^{-} + co_{2} + o_{2} + co_{3} + o_{2}$	3.1×10^{-28}		296
0 + C1H + C1 + HO	2.0×10^{-9}		300
0 + H ₂ + e + H ₂ 0	6.4×10^{-10}	94	0.04 - 0

Tabular Data B-1.8-2. (Continued).

	Negative Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$0^- + H_2O + e + H_2O_2$	≤ 6 × 10 ⁻¹³		296
$0^{-} + H_{2}0 + O_{2} + O^{-} \cdot H_{2}O + O_{2}$	1.3×10^{-28}		296
$0^- + N \rightarrow e + NO$	2.2×10^{-10}		300
$0^- + NO \rightarrow e + NO_2$	2.1×10^{-10}		0.04 - 1.
$0^- + NO_2 + NO_2^- + O$	1.0×10^{-9}		300
$0^- + N_2 + e + N_2 0$	$\leq 1 \times 10^{-12}$		0.04 - 1
$0^- + N_2 + He \rightarrow NO_2^- + He$	4.0×10^{-31}		200
$0^- + N_2 0 \rightarrow N0^- + N0$	2.0×10^{-10}		0.04 - 1.0
$0^{-} + 0 \rightarrow e + 0_{2}$	1.9×10^{-10}		300
$0^{-} + 0_{2} + e + 0_{3}$	$\leq 1 \times 10^{-12}$		300
$0^{-} + 0_{2}(a^{-1}\Delta_{g}) + e + 0_{3}$	3×10^{-10}		300
$0^{-} + 0_{3} + 0_{3}^{-} + 0$	8×10^{-10}		300
$0^{-} \cdot H_{2}^{0} + H_{2}^{0} + H_{2}^{-} \cdot H_{2}^{0} + H_{2}^{0}$	$\geq 1 \times 10^{-11}$		296
$0^{-} \cdot H_{2}^{0} + O_{2}^{-} + O_{3}^{-} + H_{2}^{0}$	$\geq 1 \times 10^{-11}$		296
$o_2^- + co_2^- + He \rightarrow co_4^- + He$	4.7×10^{-29}		200
$o_2^- + co_2^- + o_2^- + co_4^- + o_2^-$	4.7×10^{-29}		296
$0_{2}^{-} + C1H + C1^{-} + H0_{2}$	1.6×10^{-9}		289
$o_2^- + H + e + Ho_2$	1.4×10^{-9}		296
$0_2^- + H_2^- + products$	≤ 1 × 10 ⁻¹²		300
$o_2^- + H_2 o + o_2^- + o_2^- \cdot H_2 o + o_2^-$	2.2×10^{-28}		296
$o_2^- + N \rightarrow e + No_2$	4.0×10^{-10}		300
$o_2^- + No_2^- + No_2^- + o_2^-$	7×10^{-10}		300
$0_2^- + N_2^- + He + 0_2^- \cdot N_2^- + He$	4.0×10^{-32}		200
$0_2^- + N_2^- 0 + N0_2^- + N0$	\leq 2 × 10 ⁻¹⁴		298
$0_{2}^{-} + 0 + e + 0_{3}$	3.0×10^{-10}	50	300
$o_2^- + o_2^- + He + o_4^- + He$	3.4×10^{-31}		200

Tabular Data B-1.B-2. (Continued).

	Negative Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (OK, eV)
$0_2^- + 0_2(a^{-1}\Delta_g) + e + 20_2$	2 × 10 ⁻¹⁰		300
$0_{2}^{-} + 0_{3} + 0_{3}^{-} + 0_{2}^{-}$	6×10^{-10}		300
$o_2 \cdot H_2 o + co_2 + co_4 + H_2 o$	5.8×10^{-10}		300
$0_2 \cdot H_2 0 + H + e + H0_2 + H_2 0$	8×10^{-10}		296
$0_2 \cdot H_2 0 + H_2 0 + 0_2 + 0_2 \cdot 2H_2 0 + 0_2$			296
$0_2 \cdot H_2 O + NO \rightarrow NO_3 + H_2 O$	3.1×10^{-10}		300
$0_2 \cdot H_2 O + NO_2 + NO_2 + H_2 O + O_2$	9×10^{-10}		296
$0_{2} \cdot 2H_{2}O + CO_{2} + CO_{4} \cdot H_{2}O + H_{2}O$			296
$0_2 \cdot 2H_2O + H + e + HO_2 + 2H_2O$	3 × 10 ⁻¹⁰		296
$0_3^- + CO \rightarrow \text{products}$	slow		300
$o_3^- + co_2^- + co_3^- + o_2^-$	5.5×10^{-10}		185 - 600
$0_3 + C1_2 + C1 + product(s)$	1.3×10^{-9}		280
$0_3 + H + H0^- + 0_2$	8.4×10^{-10}		296
$0_3 + H_20 + O_2 + O_3 \cdot H_20 + O_2$	2.7×10^{-28}		296
$0_3^- + NO \rightarrow products$	2.6×10^{-12}		0.04 - 1.4
$0_3 + N0_2 + N0_3 + 0_2$	2.8×10^{-10}		280
$0_3 + N_2 + products$	$\leq 1 \times 10^{-15}$		300
$0_3 + N_2 + N_2 + products$	$\leq 1.5 \times 10^{-31}$		300
$0_3 + N_20 + e + N_2 + 20_2$	$\leq 2 \times 10^{-14}$		298
$0_3 + 0 + 0_2 + 0_2$	2.5×10^{-10}		300
$o_3 \cdot H_2 o + co_2 + co_3 + o_2 + H_2 o$	3.5×10^{-10}		296
$0_{3} \cdot H_{2}0 + H_{2}0 + O_{2} + O_{3} \cdot 2H_{2}0 + O_{2}$			296
$0_{3}^{-}\cdot 2H_{2}^{0} + co_{2} + co_{3}^{-}\cdot H_{2}^{0} + H_{2}^{0} +$	$0_2 \leq 1 \times 10^{-10}$		296
$0_4^- + co + co_3^- + o_2^-$	\leq 2.0 \times 10 ⁻¹¹		300
$0_4^- + c0_2 + c0_4^- + 0_2$	4.3×10^{-10}		300
$o_4^- + H_2^0 + o_2^- \cdot H_2^0 + o_2^-$	$\geq 1.0 \times 10^{-10}$		300

Tabular Data B-1.B-2. (Concluded).

	Negative Ions		
Reaction	Rate Constant (cm ³ /sec; cm ⁶ /sec)	Product Ratio (%)	Energy (°K, eV)
$0_4^- + NO \rightarrow NO_3^- + O_2^-$	2.5 × 10 ⁻¹⁰		300
$o_4 + N_2 + o_2 \cdot N_2 + o_2$	$\leq 1.0 \times 10^{-11}$		300
$0_4 + N_20 + 0_2 \cdot N_20 + 0_2$	$\leq 1.0 \times 10^{-12}$		300
$0_4^- + 0 + 0_3^- + 0_2$	4×10^{-10}		300
$s^- + co \rightarrow e + cos$	3.1×10^{-10}		300
$S^- + H_2 \rightarrow e + H_2 S$	≤ 1 × 10 ⁻¹⁵		300
$s^- + No_2 + No_2^- + s$	1.3 × 10 ⁻⁹		280
$5^{-} + 0_2 + e + 0_2 S$	3×10^{-11}		300

Section B-1.C. ENERGY TRANSFER; QUENCHING

CONTENTS

		Page
Introducti	on	1412
B-1.C-1.	Chain Reaction F_2/H_2 Model	1413
B-1.C-2.	Cold Reaction F_2/H_2 Model	1418
B-1.C-3.	$\mathrm{HF/CO}_2$ Transfer Reaction Model Subset	1421
B-1.C-4.	${\rm F_2/NO/HI/H_2}$ Reaction Model Subset	1423
B-1.C-5.	$F_2/O_2/H_2$ Reaction Model Subset	1426
B-1.C-6.	Cl $F_x/CS_2/H_2$ Reaction Model Subset	1428
B-1.C-7.	Chain Reaction F_2/D_2 Model	1430
B-1.C-8.	Cold Reaction F_2/D_2 Model	1437
B-1.C-9.	$\mathrm{DF/CO}_2$ Transfer Reaction Model Subset	1441
B-1.C-10.	${\rm Clf_x/CS_2/D_2}$ Reaction Model Subset	1443
B-1.C-11.	DF/HF, D/H V-V and Isotopic Exchange Reaction Model Subset	1444
B-1.C-12.	Elementary Reaction and Kinetic Data Pertinent to the O-CS $_2$ Chemical-Laser System	1446
B-1.C-13.	Chemical Distribution of CO Normalized to N $_{13}$ = 1.0 Versus Vibrational Level	1447
B-1.C-14.	Experimental V-T Rates for CO at 300°K	1448
B-1.C-15.	Experimental V-V Rates for CO-Diatomic Molecule Collisions at 300°K	1449
B-1.C-16.	Experimental V-V Rates for CO-Triatomic Molecule Collisions at 300°K	1450
B-1.C-17.	Collision Cross Sections for Broadening of CO V-R Optical Transitions by Various Gases	1451

		Page
B-1.C-18.	Chemical Reactions in an RI Photodissociation Laser	1452
B-1.C-19.	Broadening Coefficients β_M and Rate Coefficients k_m for Collisional Deactivation of I * , Tolerable Pressures at which the Deactivation Reaches 10% in $10\mu sec$, and Cross Sections σ	1453
B-1.C-20.	Reaction Rates for Transfer Chemical Lasers	1454
B-1.C-21.	Reaction Rates for Transfer Chemical Lasers	1455
B-1.C-22.	Experimental Probabilities for Energy Transfer Between HF(DF) and ${\rm CO}_2$ and the Theory of Dillon and Stephenson	1456
B-1.C-23.	Comparison Between Measured Probabilities for Energy Transfer Between HC ℓ and CO $_2$ and the Theory of Dillon and Stephenson	1457
B-1.C-24.	Temperature Dependences of $V\!\!\to\! V$, R Transfer Rates for Transfer Chemical Lasers	1458
B-1.C-25.	Temperature Dependences of $V \rightarrow R$, T Transfer Rates for Transfer Chemical Lasers	1459
B-1.C-26.	Energy Levels for Three Vibrational Modes in the CO $_2$ Molecule with those for $\rm N_2$ and CO $_2$	1460
B-1.C-27.	Molecular Energy Exchange Processes	1460
B-1.C-28.	Values of $\mathbf{k}_{\mbox{dl}}$ as a Function of Temperature for Various Species of Colliding Molecule	1461
B-1.C-29.	Values of \mathbf{k}_{d2} as a Function of Temperature for Various Species of Colliding Molecule	1463
B-1.C-30.	Intermolecular Vibrational Transfer Rate Coefficient	1465
B-1.C-31.	Intermolecular Vibrational Transfer Rate Coefficient	1467
B-1.C-32.	Recombination Rate in No as a Function of E/N	1469

		Page
B-1.C-33.	Recombination Rate in $\text{He:N}_2:\text{CO}_2$ 3:2:1 as a Function of E/N	1470
B-1.C-34.	Attachment Rates as a Function of E/N at 300°K	. 1471
B-1.C-35.	Ionized Species Reactions and Rate Coefficients for the ${\rm CO}_2$ Electric Discharge Laser	. 1472
B-1.C-36.	Excited Species Reactions and Rate Coefficients for the ${\rm CO}_2$ Electric Discharge Laser	. 1478
B-1.C-37.	Free Radical Species Reactions and Rate Coefficients for the ${\rm CO}_2$ Electric Discharge Laser	. 1481
B-1.C-38.	Dominant Formation Kinetics for ArF*	. 1484
B-1.C-39.	Dominant Quenching Kinetics of ArF*	. 1484
B-1.C-40.	Dominant Quenching Processes of KrF*	. 1485
B-1.C-41.	Dominant XeF* Quenching Processes	1485
B-1.C-42.	Detailed Flow Chart for the Ar - N ₂ - NO e-Beam Pumped System	. 1486
B-1.C-43.	Rate Coefficients for the Ar - N ₂ - NO e-Beam Pumped System	. 1487
B-1.C-44.	Reactions and Rates in Pure Xenon Kinetic Model	1489
B-1.C-45.	Energy Flow Diagram of the Xenon-Mercury System	. 1490
B-1.C-46.	Reactions and Rates in Xenon-Mercury System	1491
B-1.C-47.	Major Energy Flow Pathways in e-Beam Pumped Ne/Xe/NF ₃	. 1492
B-1.C-48.	Major Input Chain Reactions in $\mathrm{Ne}/\mathrm{Xe}/\mathrm{NF}_3$ Mixtures	1493
B-1.C-49.	Argon/Krypton Ion Chemistry	1495
References		1496

INTRODUCTION

The actual form of a nuclear pumped laser is not yet known, and nuclear pumping may become important in a hybrid laser where the excitation and ionization produced by nuclear pumping might be used to supply electrons for an electrical discharge laser, an initiator for a pulsed chemical laser, or an initiator and sustainer for a cw chemical laser. An attempt to include, in detail, the data relevant to all these systems is beyond the scope of this work. However, it is practical to include examples of the kinetics packages currently being used in computer codes for these systems.

Chemical laser systems for HF, DF, and CO; transfer chemical laser systems for ${\rm CO_2}$; e-beam sustained ${\rm CO_2}$ systems; and several e-beam pumped excimer systems are included.

Tables B-1.C-1 through B-1.C-11 require some additional explanation. The rates cover the temperature and pressure ranges in the optical cavities of interest which are generally on the order of 200 to $1200\,^\circ\text{K}$ and from 2 to 200 Torr. The rates are in the form

$$k = [A T^{-N} \exp (B/RT^{M})] cm^{3} molecule^{-1} sec^{-1}$$

where B is in calories mole $^{-1}$ and M = 1 if no entry appears. Abbreviated chain reaction models which give quite good results can be obtained from B-1.C-1 and B-1.C-7 by deleting reactions of excited $H_2(D_2)$, chain branching reactions, and V -> R,T relaxation reactions of all species other than HF/DF and F and H atoms leaving 93 reactions for the F_2/H_2 chain reaction model and 146 reactions for the F_2/D_2 chain reaction model. An even more abbreviated model which is useful in treating systems in which precombustion is used to largely dissociate F2 (or NFx) with H_2/D_2 ; NH_X/ND_X or similar fuels is given in B-1.C-2 and B-1.C-8. Reaction subsets for use in the precombustor with cold reaction model are also given in B-1.C-6 and B-1.C-10. A reaction subset for use in pulsed systems where 0_2 has been added to inhibit auto-ignition during mixing of the reactants is given in B-1.C-5, and a subset for use in the analysis of H_2 - F_2 systems ignited chemically by NO, with or without added HI is given in B-1.C-4, while the transfer reaction subsets are given in B-1.C-3 and B-1.C-9.

Additional information on all the data included in this section may be obtained from the references.

Tabular Data B-1.C-1. Chain reaction ${\rm F_2/H_2}$ model (148 reactions).

42(1)				¥+ H+	1.4 -19		
200	+F2		J LI		1.4 -19		
245	+F2		-	+6 +6	4.0 -17		
HF (5)	+F2		-	4.6	4.0 -17		
HF (6)	+172		-	+6 +6			
u	4	+w1	=F2	+ X 1	2 1 .	1250.	
I	I,	ZW+	=45(5)	₹ W +	1		
T	L. +	+M4	Sept.	+ M 4			
li.	100		= HF (1)	1,+	4.3 -11	- 1600.	
ta.			-	I.	4.3 -11	- 1600.	
ta.			-	H.	4.3 -11	- 1600.	
L.			=HF(2)	I.+	1.5 -10	- 1600.	
i.	+H2(1)		-	I.+	ın	- 1600.	
ta.			-	I.			
Ta.			LI	r.	5	- 1600.	
14.			= HF (3)	I.+	- 3	0	
14			=HF (3)	I +	1	- 1600.	
	I.		4 #	+H2(0)	6.1 -12	- 500.	
HF (4)	I.		L is	+H2(1)	.1 -1	- 5000	
-	I +		L II	+H2(0)	9	- 510.	
HF(5)	E +		LL.	+H2(1)	.2 - 1		
-	I.		le.	+H2(0)	9.	S	
100	I +		4=	+H2(1)	6.6 -12	- 560.	
HF (6)	I.		14.	+H2(2)	.8 -1	- 560.	
I	+F2		=HF(0)	+ 12	1.9 -12	24	
I	+F2		L	L4+	.15-1	240	
I	+F2		= HF (2)	+6	.8	240	
I	+F2		HF	+ 4	.0 -1	240	
I	+F2		-	+6	1.	24	
I	+F2		=HF(5)	+ 1.0	1-0.	240	
I	+F2		~	+	8.0 -11	240	
HF (!)	SW+		~	+w5	.0 -15-0.		.333
HF (2)	+ M.S		=HF(1)	(i) × +	.0 -15-0.		.33
HF (3)	+M5		~	+W5	15-0.	53.	0.3333
	+ M5		= HF (3)	+ M.5	.0 -15-0.		5
HF (5)	υ Σ.		= HF (4)	+M3	.0 -14-0.	S	.333.
HF (6)	SW+		-HF (5)	+ N.G.	.2 -14-0.	5	
HF (2)	S .+		-	5×+	0 -15-0.	រោ	0.3333
(7) LH	+××5		-	5^+	3.0 -15-0.5	53.	0.3333
HF (4)	+WS		=HF (2)	5×+	0 -15-0.	ហ	0.3333

Tabular Data B-1.C.1. Chain reaction F_2/H_2 model (148 reactions) (Continued).

		A N 8	×
HF (5) +M5	3)	-15-0.5	333
_	=HF(4) +MS	-15-0.5	0.3333
HF (3) +M5	_	2.0 -15-0.5 53.	333
(4)	=HF(1) +M5	-15-0.5	333
HF(5) +M5	_	-15-0.5	333
HF(6) +MS	=HF(3) +MS	.0 -15-0.5	33
HF (4) +M5	=HF(0) +M5	0 -15-0.5	333
HF(5) +M5	=HF(1) +M5	2.5 -15-0.5 53.	0.3333
HF (6) +M5	=HF(2) +M5	0 -15-0.5	0.3333
2	_	0 -15-0.5	333
HF (6) +M5	1)	4 -15-0.5	0.3333
HF (6) +M5	=HF(0) +MS	0 -15-0.5	333
(1)	0	-51.0 6 - 0	
HF(2) +F	(1)	-61-0 8 - 0	
-	0	0.75-	
HF(3) +F	=HF(2) +F	1.5 - 8 0.75- 3600.	
(3)	1)	- 9 0.75-	
HF(3) +F	ô	- 6 0.75-	
HF (4) +F	=HF(3) +F	0 - 8 0.75-	
HF(4) +F	=HF(2) +F	0	
HF (4) +F	(1)	3 - 9 0.75-	
HF(4) +F	=HF(0) +F	-61.0 6 - 0	
HF(S) +F	(4)	- 8 0.75-	
HF(5) +F	(3)	- 8 0.75-	
HF(2) +F	(5)	6 - 8	
HF(5) +F	=HF(1) +F	6.2 - 9 0.75- 3600.	
HF(5) +F	(0)	.0 6 - 0	
(9	(2)	- 8 0 15-	
HF (6) +F	+ (4)	5 - 8 0.75-	
HF(6) +F	=HF(3) +F	- 8 0.75-	
+ 10	(5)	- 9 0 • 75-	
65	=HF(1) +F	0 - 9 0.75- 36	
HF(6) +F	=HF(0) +F	0 6 - 0	
HF(1) +M7	=HF(0) +M7	-27-4	
-	+ (1)	-27-4	
HF (3) +N7	=HF(2) +M7	4	
4.3	=11F(3) +M7	-27-4	
HF (5) +M7	=HF(4) +M7	6.65-27-4.0	
HF (6) +M7	=HF(5) +M7	0 -27-4	
HF(1) +MB	=HF(0) +MB	1.4 -30-5.0	

Tabular Data B-1.C-1. Chain reaction F_2/H_2 model (148 reactions) (Continued).

HF (2)	+ MB	=HF(1) +M	18	-30-5	
HF (3)	+ M8	=HF(2) +M	жв	4.3 -30-5.0	
(t) JH	+w8	=HF(3) +>	ж	-30-5-	
HF (5)	₽w+	HF (4)	мв	7.2 -30-5.0	
HF (6)	₽w+	(5)	+M8	7 -30-5.	
HF (1)	6W+	HF(0) +	6w	.0 -20-2.	
HF (2)	ó₩+	(1)	6W+	-61- 0	
HF (3)	6W+	(2) +	6×	5 -19-2.	
HF (4)	6W+	HF(3) +	9×		
HF (5)	6W+	(4)	9×	5 -19-2.	
HF (6)	6W+	HF (5)	0 X +	.0 -19-2.	
HF(1)	+M10	=HF(0) +P	MIO	1.5 -10 0.28-	1170.
HF (2)	+W10	+ (0)	M10	.1 -11 0.	.006
HF (2)	+M10	F(1) +	0.1	.3 -12-0.	720.
HF (3)	+W10	=HF(0) +M	110	5 -11 0.0	760.
HF (3)	+M10	(1)	- W10	.7 -11 0.	680.
HF (3)	+w10	(2) +	M10	.2 -11 0.0	890
HF (4)		00	+M10	.5 -10 0.3	-
HF (4)	+W10	(1) +	M10	1.1 -11-0.09-	4
HF (4)	01w+	(5)	+M10	-11-11	670.
HF (4)	+W10	(3) +	MIO	2.7 -11	520.
HF (5)	+W10	+ (0)	M10	.6 -10 0.	640.
HF (5)	+W10	(1) +	M10	.6 -11 0.	-
HF (5)		5)	X10	.3 -11 0	710.
HF (5)	+W10	(3)	+W10	3 -11 0.	1
HF (5)	+W10	(4) +	M10	.6 -11 0	530.
HF(O)	+W10	+ (0)	018	.3 -10 0	620.
HF (6)	-	+	M10	.6 -12-0.16	570.
HF (0)	+W10	(2) +	X10	·8 -11 0	750.
HF (0)	+W10	(3) +	M10	.8 -11 0.0	670.
HF (6)	+W10	=HF(4) +N	M10	.1 -1	600
HF (0)	+W10	HF(5) +	M10	.5 -10 0.2	630.
HF(1)	+W1 1	HF(0) +	M111	7 -19-2.	
HF (2)	+M11	=HF(1) +	M111	3.3 -19-2.0	
HF (3)	+M11	HF(2) +	Ι. Σ	.0 -19-2.	
HF (4)	+W11	(3) +	¥1:1	.6 -19-2.	
HF (0)	+W11	+ (4)	411	.3 -1	
HF (6)	+ 4 1 1	=HF(5) +:	ж11	0 -18-2.	
HF (1)	+HF(1)	+ (0)	-		
11F(2)	+HF (2)	(1)	+HF(3)	.4 - 8 1.	

Tabular Data B-1.C-1. Chain reaction F_2/H_2 model (148 reactions) (Continued).

Z

		8 1
(4) +HF(4)	=HF(3) +HF(5)	1.4 - 8 1.0
5) +HF(5)	=HF(4) +HF(6)	1.4 - 8 1.0
1) +HF(2)	=HF(0) +HF(3)	7.0 - 9 1.0
(2) +HF(3)	=HF(1) +HF(4)	7.0 - 9 1.0
HF(3) +HF(4)	=HF(2) +HF(5)	7.0 - 9 1.0
HF (4) +HF (5)	=HF(3) +HF(6)	7.0 - 9 1.0
HF(1) +HF(3)	=HF(0) +HF(4)	3.5 - 9 1.0
HF (2) +HF (4)	=HF(1) +HF(5)	5 - 9 1
HF(3) +HF(5)	=HF(2) +HF(6)	3.5 - 9 1.0
HF (1) +HF (4)	=HF(0) +HF(5)	1.7 - 9 1.0
HF(2) +HF(5)	=HF(1) +HF(6)	1.7 - 9 1.0
HF(0) +H2(1)	=HF(1) +H2(0)	1.5 -12
HF(1) +H2(1)	=HF(2) +H2(0)	4.8 -12
HF(2) +H2(1)	=HF(3) +H2(0)	1.5 -11
HF (3) +H2(1)	=HF(4) +H2(0)	3.3 -11
HF(4) +H2(1)	=HF(5) +H2(0)	6.9 -11
HF(5) +H2(1)	=HF(6) +H2(0)	1.0 -10
HF(0) +H2(2)	=HF(1) +H2(1)	1.5 -12
HF(1) +H2(2)	=HF(2) +H2(1)	4.8 -12
HF(2) +H2(2)	=HF(3) +H2(1)	1.5 -11
HF (3) +H2(2)	=HF(4) +H2(1)	3.3 -11
HF (4) +H2(2)	=HF(5) +H2(1)	6.9 -11
HF(5) +H2(2)	=HF(6) +H2(1)	1.0 -10
H2(1) +M12	=H2(0) +M12	4.2 -28-4.3
H2(2) +M12	=H2(1) +M12	4.2 -28-4.3
2(1) +M13	=H2(0) +M13	1.7 -27-4.3
E 1 W 1 2	=H2(1) +M13	1.7 -27-4.3

Tabular Data B-1.C-1. Chain reaction F_2/H_2 model (148 reactions) (Concluded).

Catalytic Species

 $M_1 = 2.4F$, $2.4F_2$; All others: 1.0

 $M_2 = 20H$, All others: 1.0

 M_4 = All species

M5 = HF, DF

 $M_7 = Ar, F_2$

 $M_8 = He$

 $M_9 = N_2$

 $M_{10} = H$

 $M_{11} = H_2$

 M_{12} = All species except H and H_2

 $M_{13} = 1000 \text{ H, H}_2$

Tabular Data B-1.C-2. Cold reaction F_2/H_2 model (64 reactions).

					N A	В	Σ
L	+	- W+	=F2	1 ω+	-	250.	
ı	ı,	+M2	=H2	+M2	2.8 -30 1.0		
ı	4	7 W+	=HF (4)	+W+	-30		
u	+45		=HF(1)	I.	4.3 -11 - 1	•009	
L	+H2		=HF (2)	I.	1.5 -10 - 1	1600.	
u	445		=HF (3)	Į	7.3 -111 - 1	1600.	
HF (4)	I.		LE II	+H2	6.1 -12 -	.005	
ı	+F2		=HF (0)	+6	-12 - 21-	2400.	
ı	+F2		=HF(1)	+6	5-12	2400.	
I	+F2		=HF (2)	+6	•	2400.	
I	+F2		=HF (3)	+6	6.0 -12 - 2	.004	
ı	+F2		=HF (4)	*E	1.7 -10 - 2	2400.	
HF(1)	+M5		=HF(0)	+M5	2.0 -15-0.5	53.	0.3333
HF (2)	+1115		=HF(1)	+ M 5	4.0 -15-0.5	53.	0.3333
HF(3)	+M5		=HF(2)	5 ₩ +	6.0 -15-0.5	53.	0.3333
HF (4)	+ W 2		=HF (3)	+M5	8.0 -15-0.5	53.	0.3333
HF (2)	+ MS		=HF(0)	+ X 5	2.0 -15-0.5	53.	0.3333
HF (3)	+M5		=HF(1)	± ¥ €	3.0 -15-0.5	53.	0.3333
HF (4)	+.M5		=HF(2)	+M5	4.0 -15-0.5	53.	0.3333
HF (3)	+ MS		=HF(0)	+M5	2.0 -15-0.5	53.	0.3333
HF (4)	+MS		=HF(1)	+ W S	2.7 -15-0.5	53.	0.3333
HF (4)	+M5		=HF(0)	+ W S	2.0 -15-0.5	53.	0.3333
HF(1)	+		=HF(0)	+6	5.0 - 9 0.75- 3	3600.	
HF (2)	4.		=HF(1)	+	1.0 - 8 0.75- 3	3600.	
HF (2)	u.		=HF(0)	+1		3600.	
HF (3)	+		=HF (2)	+6	1.5 - 8 0.75- 3	3600.	
HF (3)	4		=HF(1)	+6		3600.	
HF (3)	4		=HF(0)	+6	5.0 - 9 0.75- 3	3600.	
HF (4)	u.		=HF (3)	+4	2.0 - 8 0.75- 3	3600.	
HF (4)	+		=HF(2)	+6	,	3600.	
HF (4)	+		=HF(1)	+	,	3600.	
HF (4)	+ 1		=HF (0)	+6	5.0 - 9 0.75- 3	3600.	
HF(1)	1 W +		=HF(0)	1×4	1.3 -27-4.0		
HF (2)	+W1		=HF(1)	+M7	2.7 -27-4.0		
HF(S)	+W4		=HF (2)		4.0 -27-4.0		
HF (4)	+ M.7		=HF (3)	+M7	5.3 -27-4.0		
HF(1)	+ M8		=HF(0)	+W8	1.4 -30-5.0		
HF (2)	+ 38		=HF(1)	+M8	2.9 -30-5.0		
HF (3)	+ MB		=HF(2)	+w8	4.3 -30-5.0		

Tabular Data B-1.C-2. Cold reaction F_2/H_2 model (64 reactions) (Continued).

				A	z	m	
HF (4)				5.8	-30-5.0		
HF(1)				2.0	-20-2-0		
HF (2)				0.1	-19-2.0		
HF(3)				1.5	-19-2.0		
HF (4)				2.0	-19-2.0		
HF(1)				1.5	-10 0.28-	-	
HF (2)				7.1	-11 0.08-		
HF (2)				7.3	-12-0.20-		
HF (3)				6.5	-11 0.06-		
HF (3)				4.7	-11 0.08-		
HF (3)				6.2	-11 0.09-		
HF (4)				2.5	-10 0.32-		
HF (4)				-:	-11-0.09-		
HF (4)		=HF(2)		2.1	-11-0.03-	670	
HF (4)				2.7	-111-		
HF(1)				1.7	-19-2.0		
HF (2)				3.3	-19-2.0		
HF (3)				5.0	-19-2.0		
HF (4)	+M1 1		+M11	9.9	-19-2.0		
HF(1)		#HF(0)	+HF(2)	1.4	- 8 1.0		
HF (2)				1.4	- 8 1.0		
HF (3)				1.4	- 8 1.0		
HF(1)				7.0	0 1 6 -		
HF (2)				7.0	0 1 6 -		
HE(I)	+HF(3)	=HF(0)	+HF(4)	3.5	0 1 6 -		

Tabular Data B-1.C-2. Cold reaction F_2/H_2 model (64 reactions) (Concluded).

Catalytic Species

 $M_1 = 2.4F$, $2.4F_2$; All others: 1.0

 $M_2 = 20H$; All others: 1.0

 M_4 = All species

 $M_5 = HF, DF$

 $M_7 = Ar, F_2$

 $M_8 = He$

 $M_9 = N_2$

 $M_{10} = H$

 $M_{11} = H_2$

Tabular Data B-1.C-3. $\mathrm{HF/CO}_2$ transfer reaction model subset (35 reactions).

		A	В
HF(1) +C02000	=HF(0) +C02001	6.0 -11 0.7	
HF(2) +C02000	=HF(1) +C02001	2.4 -10 0.7	
HF(3) +C02000	=HF(2) +C02001	3.6 -10 0.7	
HF(4) +C02C00	=HF(3) +C02001	7.2 -10 0.7	
HF(5) +C02000	=HF(4) +C02001	1.4 - 9 0.7	
HF(6) +C02000	=HF(5) +C02001	2.0 - 9 0.7	
CO2110+C02000	= C02100+C02010	1.25-13-0.5	
C02030+C02000	= C02100+C02010	1.8 -15-0.5	
C02030+C02000	=CU2020+C02010	3.1 -13-0.5	
CO2100+C02000	=C02010+C02010	4.0 -13	
C02020+C02000	= C02010+C02010	1.4 -12-0.5	
C02001+M5	=C02110+M5	6.0 -11 0.7	
C02001+M9	=CU2110+M9	1.1 -27-4.8	1404
C02001+M14	=C02110+M14	1.9 -31-5.8	2436.
C02001+M15	=C02110+M15	2.2 -17-1.5	
CO2001+M5	= CU2030+M5	3.4 -13	
C02001+M9	= C02030+M9	8.1 -31-5.6	1404.
C02001+M14	=C32030+M14	1.4 -34-6.6	2436.
C02001+M15	= CU2030+M15	1.7 -20-2.3	
CO2110+M16	=C02030+M16	4.3 -17-1.5	
CO2110+M16	=CU2020+M16	4.5 -27-4.2 -	903
CO2110+M16	=CU2020+M16	8.8 -20-2.5 -	4410.
CO2110+M16	=CU2100+M16	8.6 -24-3.8 -	549.
C02030+M16	=CU2020+M16	9.3 -22-3.3 -	1230.
C02030+M16	=C02100+M16	1.1 -21-3.0 -	1000
CO2100+M16	= C02020+M16	7.9 -18-1.5	
CO2100+M17	=CU2010+M17	5.65-22-3.3 -	1460.
CO2100+MB	=C02010+MB	1.8 -21-3.0	843.
CO2100+M18	=C02010+M18	4.3 -12	280.
C02020+M17	=C02010+M17	2.1 -21-3.2 -	135
C02020+M8	=C02010+M8	3.8 -21-3.0	843
C02020+M18	=C02010+M18	9.1 -12	280.
C02010+M17	=C02000+M17	3.4 -26-4.2	1130.
C02010+MB	=CU2000+MB	9.9 -22-3.0	0.40
CO2010+M18	=CU2000+M18	2.4 -12	266.

Tabular Data B-1.C-3. $\mathrm{HF/CO_2}$ transfer reaction model subset (35 reactions) (Concluded).

Catalytic Species

 $M_1 = 2.4F, 2.4F_2$; All others: 1.0

 $M_2 = 20H$; All others: 1.0

M₄ = All species

 $M_5 = HF, DF$

 $M_7 = Ar, F_2$

 $M_8 = He$

 $M_9 = CO_2, N_2$

 $M_{10} = H$

 $M_{11} = H_2$

M₁₂ = All species except H and H₂

 $M_{13} = 1000H, H_2$

 $M_{14} = Ar, 2F_2, 45H, He, 2N_2$

 $M_{15} = H_2$, 30F $M_{16} = 3H$, $3H_2$, 1.5He; All others: 1.0

 $M_{17} = CO_2$, HF, DF, 0.06 Ar, F, F₂,0.5N₂

N118 = H1H2

Tabular Data B-1.C-4. $F_2/NO/HI/H_2$ reaction model subset (71 reactions).

					A	Ω
HF (1)	+W14		=HF(0)	+W14	6.0 -11 0.7	
HF (2)	4 W 1 4		=HF(1)	+M14	2.4 -10 0.7	
HF (3)	+W14		=HF(2)	+M14	3.6 -10 0.7	
HF (4)	+M14		=HF(3)	+M14	7.2 -10 0.7	
HF (5)	+W14		=HF(4)	+M14	1.4 - 9 0.7	
HF (6)	+M14		=HF(5)	+M14	2.0 - 9 0.7	
HF(1)	(0) ON+		=HF(0)	+NO(2)	5.0 -16-1.0	
HF (2)	(0) ON+		=HF(1)	+NO(2)	1.0 -15-1.0	
HF (3)	(0)ON+		=HF(2)	+NO(2)	1.5 -15-1.0	
HF (4)	(0) ON+		=HF(3)	+NO(2)	2.0 -15-1.0	
HF(5)	(0) ON+		=HF (4)	+NO(2)	2.5 -15-1.0	
HF (6)	(0) ON+		=HF(5)	+NO(2)	3.0 -15-1.0	
0000	+F2		=FNO	+1	8.0 -14	1500.
L	IH+		=HF(1)		1.8 -111	1000
L	11+		=HF(2)	7	2.2 -111 -	1000
L	IH+		=HF(3)	-	2.6 -111 -	1000
u	14+		=HF (4)	7+	2.8 -11 -	1000
L	111+		=HF(5)	7	3.3 -11 -	1000
L	14+		=HF (6)		4.5 -11	1000
L	(0) ON+	+W+	=FNO	+M+	2.5 -29 1.0	
ı	(0) ON+	+W+	ONHI	+W4	S	•009
-	(0) ON+	+ W +	ON I =	+M4	10	
L	1+	+W+	=F1	+M4		
ı		4W+	"HI	+W¢	2.0 -29 1.5	
-	I +	+W15	=12	+M15	4.2 -29 1.5	
I	+12		IH:	7	1.7 -11-0.5	
I	IH+		=H2(0)		1.2 -12-0.5	
ï	I I +		=H2(0)		-12-0.5 -	43700.
ı	+12		1 J=	7	-13-	
1	+F2		1 4=	+4	3.0 -13-0.5	
OZL	I +		=HF(0)	(0)0N+	5.0 -13 -	2000
ONL	I +		=HF(0)	+NOC10	5.0 -13 -	2000-
OZL	I +		=HF(1)	(O)ON+	1.1 -12 -	2000
ONL	I +		=HF(1)	+NO(1)	1.1 -12 -	2000
OZL	Į,		=HF(2)	(0)0N+	1.6 -12 -	2000
OZL	I +		=HF(2)	+NO(1)	1.6 -12	2000
PNO	I +		=HF(3)	(O)ON+	1.6 -12 -	2000
ONL	I+		=HF(3)	+NO(1)	7	2000
ONL	I +		=HF(4)	+NO(0)	7.2 -12 -	2000
ONL	I +		=HF (4)	+NO(1)	7	2000

Tabular Data B-1.C-4. $F_2/NO/HI/H_2$ reaction model subset (71 reactions) (Continued).

PNO	I +	=HF (5)	10000+	1.6 -11	1	2000	
PNO	I.	=HF(5)	+NO(1)	1.6 -11	1	2000	
DZ	I.	=HF (6)	(0)0N+	2.2 -11	1	2000-	
FNO	I.	=HF(6)	+NO(1)	2.2 -11	1	2000-	
PNO	1+	1 H	+NO(0)	1.0 -12	1	2000	
ONI	+6	=HF(0)	(0)0N+	1.7 -13	1	2000-	
ONH	+4	=HF(0)	+200(1)	1.7 -13	1	2000-	
OZI	+F	=HF(1)	(0)0N+	3.7 -13	1	2000-	
OZI	+4	=HF(1)	+NOC10	3.7 -13	1	2000	
ONH	+4	=HF(2)	(0)0N+	5.3 -13	1	2000	
ONI	44	=HF(2)	+NOC10	5.3 -13	1	2000-	
INC	+4	=HF(3)	+NO(0)	5.3 -13	1	2000	
INC	++	=HF(3)	+NO(1)	5.3 -13	1	2000-	
ONI	+F	#HF (4)	(0)0N+	2.4 -12	1	2000-	
OZI	+	=HF (4)	+NO(1)	2.4 -12	ı	2000-	
ONH	+6	#HF(5)	+NO(0)	5.3 -12	1	2000-	
ONI	+4	#HF(5)	+NO(1)	5.3 -12	ı	2000-	
ONI	4	= HF (6)	(0)0N+	7.3 -12	1	2000-	
OZI	14	=HF(6)	+NOC10	7.3 -12	1	2000-	
OZI	I.	=H2(0)	(0)0N+	1.3 -11	1	2000	
OZI		H	+NO(0)	2.5 -11	1	2000-	
ON		=12	(0)02+	1.0 -12	•	2000-	
ONI	+6	1 4=	(0)0N+	4.0 -12	1	2000-	
ONI	I,	I H	(0)0N+	1.0 -10	- 2	-2000-	
NO(1)	+NO(1)	=NO(2)	(0)0N+	1.4 - 8 1.0	0		
2001	(0)0N+	=NO(0)	(0)0V+	2.0 -12-0.5	.5	80.	0.333
NO(2)	(0)0N+	12001	+NO(0)	4.0 -12-0.5	.5.	80.	0.333
NOCIO	+M16	(0)CN=	+M16	4.0 -14-0.5	.5.	80.	0.333
NO(2)	+M16	=NO(1)	+M16	8.0 -14-0.5	.5	80.	0.333
H2(1)	(0) ON+	=H2(0)	+NO(2)	5.0 -16-1.0	0		
H2(2)	1000N+	*H2(1)	+NO(2)	1.0 -15-1.0			

Tabular Data B-1.C-4. $F_2/NO/HI/H_2$ reaction model subset (71 reactions) (Concluded).

Catalytic Species

 $M_1 = 2.4F$, $2.4F_2$; All others: 1.0

 $M_2 = 20 H$; All others: 1.0

(4 = All species

M₅ = HF, HI

 $M_6 = F, I$

 $M_7 = Ar, F_2, FI, I_2$

 $M_8 = He$

19 = N2

M₁₀ = H

 M_{12} = All species except H and H₂

 $M_{13} = 1000 \text{ H}, H_2$

 $M_{14} = FNO, HNO, INO$

M₁₅ = 51, 51₂; All others: 1.0

M₁₆ = All species except NO

Tabular Data B-1.C-5. $F_2/O_2/H_2$ reaction model subset (35 reactions).

					A N	B
ı	+05	+W14	=H02	+M14	6.7 -33	580.
0	I +	+M15	HO=	+M15	2.0 -32	
0	0+	+M15	=02		3 -30	-040-
HO	I +	+W15	=H20	+ M 15	6.1 -26 2.0	0000
HO	+H2(0)		=H20	I.	1.0 -17-2.0	-0067-
HO	I+		=H2(0)	0+	1.4 -14-1.0	- 2000-
HO	0+		I.	+02	4.0 -11	
HO	HO+		=H20	0+	1.0 -11	-1100.
HC	14		0 =	+HF(0)	3.0 -11	-2000-
H20	+		=HF(0)	10+	5.0 -11	-2005-
HOZ	I +		=H2(0)	+02	4.2 -11	- 2007-
H02	I+		HO=	HO+	4.2 -10	-1900.
H02	+		=HF(0)	+02	1.0 -10	-2000-
NON	0+		HO=	+02	8.0 -11	-1000.
HOZ	HO+		=H20	NO+	3 - 1	-1000-
HON	+H2(0)		=H20	HO+	.2 -1	-18700.
H02	+F2		=02	+HF(0) +F	1	-12000.
HF (1)	+M16		=HF(0)	+×16	2 -02 3	
HF (2)	+W16		=HF(1)	+M16	4 -02 3.	
HF (3)	+M16		=HF(2)	+M16	6 -02 3.	
HF (4)	+W16		=HF (3)	+ W 1 6	8-0	
HF (5)	+W16		=HF(4)	+M16	.0-02 3.	
HF (6)	+W16		=HF(5)	+M16	2-02 3.	
HF(1)	+H20		=HF(0)	+H20	0 60-	
HF (2)	+H20		=HF(1)	+H20	-0 60-	
HF (3)	+H20		=HF(2)	+H20	-0 60-	
HF (4)	+H20		=HF (3)	+H20	2 -09 0.	
HF (5)	+H20		=HF (4)	+H20	1.5-09 0.	
HF (6)	+H20		=HF(5)	+H20	3.8-09 0.	
HF(1)	+02		=HF(0)	+02	.0 -12 0	
HF (2)	+02		=HF(1)	+02	0 -15 0	
HF (3)	+05		=HF(2)	+02	6.0 -12 0.5	
HF (4)	+02		=HF(3)	+02	8.0 -12 0.5	
HF (5)	+05		=HF(4)	+02	10.0-12 0.5	
HFIG	+00		=HF(5)	+05	.0-12 0	

Tabular Data B-1.C-5. $F_2/0_2/H_2$ reaction model subset (35 reactions) (Concluded).

Catalytic Species

 $M_1 = 2.4F$, $2.4F_2$, $2HO_2$. $2H_2O$; All others: 1.0

 $M_2 = 20H, 10H_2O; All others: 1.0$

M₄ = All species

 $M_5 = HF$

 $\Lambda_7 = Ar, F_2$

M₈ = He

 $M_9 = N_2$

 $M_{10} = H$

 $M_{11} = H_2$

 M_{12} = All species except H and H_2

 $M_{13} = 1000 \text{ H}, H_2$

 M_{14} = HF, Ar, F, F, 2H, 2H, 2H, 4e, 25HO₂, 25H₂O, 3N₂, 3O, 2OH, 3O₂

 $M_{15} = HF, 0.2 Ar, F, F_2, H, H_2, 0.2 He, 3 HO_2, 3 H_2 O, N_2, O, OH, O_2$

 $M_{16} = 0, 0H, HO_2$

Tabular Data B-1.C-6. C& F $_{\rm x}/{\rm CS}_2/{\rm H}_2$ reaction model subset * (19 reactions).

z	4.3 -31 1.0 1250.	1.0	1.0	ı	1	,	1	1	1	1	1	1	ı	3.0 -11 - 2400.0	4.0 -111 - 2400.0	1	1.4 -11 - 900.0	1	ı	
	44	77	77		I.+		-		7	7.		,	4	7.		4		,,	۲.	
	=CL2 +M																		=HF(3) +C	
	4 W +	1 W+	+W4																	
	75+	4	77+	+F2	+H2	+662	+CL2	+CLF	+CLF	+HCL	+HCL	+HCL	+HCL							
	CL	CL	I	CL	CL	L	I	I	I	I	I	I	I	I	I	L	L	L	L	

 M_1 = 2.4F, 2.4F₂; All others: 1.0 M_2 = 20H, All others: 1.0 M_4 = All species M_5 = HF, 0.2HCI

^{*} Note that M_6 replaces F in the HF(v) + F V-R, T relaxation reactions.

Tabular Data B-1.C-6. CL F $_{\rm x}/{\rm CS}_2/{\rm H}_2$ reaction model subset (19 reactions) (Concluded).

 $M_7 = Ar, F_2$, Cl_2 , Cl_1 , SF_4 , SF_6 , $4CF_4$

 $M_8 = He$

 $M_9 = N_2$

 $M_{10} = H$

 $M_{11} = H_2, 0.5 SOF_2, 0.5 SO_2 F_2$

M₁₂ = All species except H and H₂

 $M_{13} = 1000H, H_2$

Tabular Data B-1.C-7. Chain reaction F_2/D_2 model (261 reactions).

F(3) *F2 F(4) *F2 F(5) *F2 F(6) *F2 F(7) *F2 F(7) *F2 F(10) *F2 F(10) *F3 F(10) *F4 F(11) *F4 F(11) *F4 F(11) *F4 F(11) *F4 F(12) *F4 F(13) *F5 F(14) *F5 F(15)	02611	46.5	= DE (O)	4			22	
(5) FF2 (6) FF2 (7) FF2 (8) FF3 (9) FF	1	3						
(9) +F2 (9)	-	+F2	0 L CO		0			
(a) +F2	-	+F2	DFC		.0 -1			
(3) +F2 (4) +F2 (5) +F2 (6) +F (7) +F2 (7) +F2 (8) +F2 (9) +F3 (9) +F2 (9) +F3 (9) +F2 (9) +F3	-	+F2	DF (0			
(9) +F2 +F2 +M1 = DF(0) +F +F +F +F +O = DF(0) +F	-	+F2	DFC	L	.0 -1			
F(9) +F2 +M1 = EPE +M1	-	+F2	DF (L	- 0.			
+ + + + + + + + + + + + + + + + + + +	Ĭ	F2	DF (L	.0 -1			
+ M2		L	u	+ w 1	.3 -32 1.		1250.	
+ + + + + + + + + + + + + + + + + + +		0	0212	+M2	.8 -30 1.			
+02(0) +02(1) +0		L	DF	+ W 3	2 -30 1.			
+D2(1)		+02(0)	0	0+	- 0 6 -		2000-	
+D2(2) +D2(2) +D2(0) +D		+02(1)	0	0+	- 0 6 -	3	00	
+02(0) +02(1) +02(2) +02(2) +02(3) +0		+02(2)	2	0+	0 6 1		2000-	
+02(1)		-	DF (0+	.0 6 -	1	2000-	
+02(2) +02(2) +02(1) +02(1) +02(1) +02(2) +02(1) +02(2) +0		-	DF (.06 - 9		2000-	
+02(0) +02(1) +02(1) +02(2) +02(2) +02(2) +02(3) +02(3) +02(1) +02(1) +02(1) +02(1) +02(1) +02(1) +02(2) +02(1) +02(2) +02(1) +02(2) +02(1) +02(2) +02(1) +0		~	DFC		.0 6 -	1	00	
+02(1) +02(2) +02(2) +02(3) +02(3) +02(4) +02(1) +02(1) +02(1) +02(1) +02(1) +02(1) +02(2) +02(1) +02(2) +02(1) +02(2) +02(2) +02(2) +02(2) +02(3) +02(3) +02(4) +02(3) +02(4) +02(3) +02(4) +02(3) +02(4) +02(3) +02(4) +02(3) +02(4) +02(4) +02(5) +02(6) +0		-	DFI	0+	- 8 0.	1	2000-	
+ + + + + + + + + + + + + + + + + + +		-	DFC	0+	- 8 0	1	2000-	
+ D2(0)		-	DF (9	- 8 0.	1	2000	
+ 02(1) + 02(2) + 07(4) + 0 + 02(2) + 07(5) + 07(6) + 07(6) + 07(6) + 07(7) + 07(7) + 07(7) + 07(8) +		_	DF C	9	- 0 6 -	1	2000-	
+ + + + + + + + + + + + + + + + + + +		_	DFC	0+	.0 6 - 0.	1	2000	
+ 0F(5)		-	DF t	0+	.0 6 - 0		2000-	
+ 0F(5)		-		-	5 -1	1	500.	
+ DF(5)		-	L.	~	5	1	500.	
+ DF(6)		-	LL II	~	5 -1	ŧ	200	
+ DF(6)		~	L.	_	5 -1	1	500	
+ DF(5)		-	14	-	5 -1	ı	500	
+ DF(7)		-	11	-	5 -1	ŧ	500.	
+ 0F(7)		-	14.	-	5 - 1	1	500	
+ DF(7)		-	11	-	5 - 1	1	200	
+ DF(8)		+DF(7)	4	-	5 - 1	1	.005	
+ 0F(8) = F + 02(1) 5.5 - 12 - 12 - 12 + 0F(8) = F + 02(2) 5.5 - 12 - 12 + 0F(9) = F + 02(2) 5.5 - 12 - 12 + 05(9) = F + 02(2) 5.5 - 12 - 12 + 05(9) = F + 02(2) 5.5 - 12 - 12 + 05(9) = F + 0.0F(8) + F + 0.0F(8) + 0.0		-	4	51	5 -1	1	500.	
+ 0F(8) = F + 02(2) 5.5 - 12 - 12 + 0F(9) = F + 02(0) 5.5 - 12 - 12 + 0F(9) = F + 02(1) 5.5 - 12 - 12 + 05(9) = F + 02(2) 5.5 - 12 + 05(1) + 02(2) 5.5 - 12 + 05(1) + 02(2) + 05(1) +		_	L.	5	5 -1	1	500	
+0F(9) = F +02(1) 5.5 -12 - 12 - 12 +0F(9) = F +02(2) 5.5 -12 - 12 +0F(9) = F +02(2) 5.5 -12 - 12 + 12 + 12 + 12 + 12 + 12 + 12		-	i.	~	5	1	500.	
+0F(9) =F +02(1) 5.5 -12 - +0F(9) =F +02(2) 5.5 -12 - +F2 = 0F(4) +F 2.7 -12 - 2 +F2 = 0F(5) +F 4.7 -12 - 2 +F2 = 0F(5) +F 9.1 -12 - 2		-		-	5 - 1	ŧ	500	
+0F(9) =F +02(2) 5.5 -12 - 2 +F2 = DF(4) +F 2.7 -12 - 2 +F2 = DF(5) +F 4.7 -12 - 2 +F2 = DF(6) +F 9.1 -12 - 2		_		5	5 -1	1	500	
+F2 = 10 +F 2.7 -12 - 2 +F2 = 10F(5) +F 4.7 -13 - 2 +F2 = 10F(6) +F 9.1 -12 - 2		-	L	021	.5 -1	1	200	
+F2 = DF(5) +F		+F2	OF.		.7 -1	ı		
+F2 = UF(6) +F 9-1 -12 - 2		L	DF 15	+6	.7 -1	1	40	
			DF (+6	.1 -1	1	40	

Tabular Data B-1.C-7. Chain reaction F_2/D_2 model (261 reactions) (Continued).

				Z	20
(0 4	-	LL. +	5 -11	240
0 0	714	11	4.4	1	240
0	7 1	0	. 4	3 -12	240
	++ 2	10000	3 2 2 1	-22-2.	3200.
- 1	+M4	1	2) -22-2.	0
07 (2)	\$ 1 × 1	11	Σ ±	0 -22-2.	0
- :	J 22	14	4 ×	0 -22-2.	0
- 1	\$ W +	14	4×4	0 -22-2.	0
- 1	4 2 2	u	4 × +	0 -22-2.	0
	1 W +	2 1	4 Σ	0 -22-2.	0
- 1	1 × ×	10	+M4	0 -22-2.	0
	+ Mo	=DF(1)	+ M 4	7 -22-2.	3200.
- 1	t W+	0	+M4	0 -22-2.	0
1 1 1 1	1 W +	L	+M4	0 -21-2.	0
- 1	· W	= DF (3)	+M4	0 -22-2.	0
·	1 W +	ŭ	4M+	3 -22-2.	0
u	+ W +	Y	+W4	5 -22-2	O
L	ν × +	= UF(0)	+W+	0 -22-2	O
19140	+ W4	L	4 M +	2 -21-2	0
	+W4	L	4 X +	0 -22-2	0
u	+ W4	H	4×+	0 -22-2	0
	+ W4	ŭ	4 × +	0 -22-2	0
	+ W4	=DF(1)	+M4	25-2	3200.
	+ 4W4	1	+ M4	0 -22-2	0
	+ W4	= DF (6)	+W4	4 -21-2	0
	+M4) H (0 -22-2	0
	+M4	F (+W4	7 -22-2	0
	+ W.4	FC	+M4	5 -22-2	0
	4 W +	= DF (2)	+W4	8 -22-2	0
1.	+ W.	77	+M4	3 -25-2	0
	+ W4	JF (+W4	0 -22-2	0
	+ W4	=DF(7)	+M4	6 -21-2	0
	+M4	= UF (6)	+W4	-25- 0	0
	+ W.4	= UF (5)	+W4	.3 -22-2.	0
	+W4) H	+M4	.0 -22-2.	0
- 1	+ W4	= DF (3)	+M4	.2 -22-2.	O
- 1	+ W 4	= UF (2)	+W+	.7 -22-2.	O
li li	+ W4	140	+ W +	.3 -22-	01
0 40	+ W4	=DF(0)	+M4	0	O
0000	1 W +	-	+W4	-12- 8.	OI

Tabular Data B-1.C-7. Chain reaction F_2/D_2 model (261 reactions) (Continued).

0 -22-2.9 3200	0 -22-2.9 320	2.9 3200	.6 -22-2.9 320	.0 -22-2.9 3200	.7 -22-2.9 3200	.2 -22-2.9 320	.0 -22-2.9 320	.8 -21-2.	.6 -21-2.	.1 -20-2.	.5 -20-2.	.9 -20-2.	.3 -20-2.	.7 -20-2.	.1 -20-2.	.4 -20-2.	.3 -23-3.	.9 -22-3.	.8 -22-3.	.7 -22-3.	.6 -22-3.	.6 -22-3.	.5 -22-3.	.4 -22-3.	•4 -22-3.0	.7 - 9 0.75- 2180	•6 - 9 0.73	·1 -10 0.51- 2080	.4 - 9 0.70- 2240	.7 - 9 0.80- 215	.3 - 9 0.76- 2170	.9 - 9 0.72- 2200	.9 - 9 0.72- 220	.9 - 9 0.72- 2200	.9 - 9 0.72- 220	.8 - 9 0.72- 2210	.8 - 9 0.72- 221	.8 - 9 0.72- 2210
DF (7) +M	JF (6) +	5) +M	JF (4)	JF (3) +M	JF (2) +M	DF(1)	OF (0) +M	DF (JF(1) +M	JF (2)	JF (3)	OF (4)	OF (5)	JF (6)	JF (7)	DF (8)	DF(0)	DF(1)	0	DF (3)	DF (4)	DF (5)	DF (6)	DF (7)	S.F	UF(0)	OF (0)	UF(1)	DF(0)	DF(1)	DF (2)	DF(0)	DF(1)	DF (2)	DF (3)	UF (0)	DF(1)	DF (2)
+ (6)	+ (6)	+	+ (6)	+ (6)	+ (6)	-	(6)	1	-	(3)	(4)	(2)	(9)	(1)	(8)	(6)	(1)	(5)	DF (3) +M6	(4)	F(5)	(9)	(1)	(8)	(6)	-	51	-	(3)	(3)	(3)	(4)	(4)	(4)	-	(5)	-	DF(5) +D

Tabular Data B-1.C-7. Chain reaction F_2/D_2 model (261 reactions) (Continued).

A N	-8 - 9 0.72-	- 9 0.	-1 - 9 0.64-	-99.0 6 - 5.	-8 - 9 0.71-	-2 - 9 0.75-	-6 - 9 0.78-	-11.0 6 - 6.	-12.0 6 - 6.	-12.0 6 - 6.	-11-0 6 - 6.	-11-0 6 - 6.	-12-0 6 - 6.	-11-0 6 - 6.	-3 - 9 0.71-	-3 - 9 0.71-	-3 - 9 0.71-	·3 - 9 0.71-	·3 - 9 0.71-	3.3 - 9 0.71- 2240.	.3 - 9 0.71-	.3 - 9 0.71- 224	2 - 7.0 9 - 7.	.7 - 9 0.7 - 225	.7 - 9 0.7 - 22	.7 - 9 0.7 - 225	.7 - 9 0.7 - 225	.7 - 9 0.7 - 225	N	.7 - 9 0.7 - 225	- 9 0.7 - 22	4.5 -30-4.7	9.0 -30-4.7	1.4 -29-4.7	1.8 -29-4.7	2.2 -29-4.7	2.7 -29-4.7	3.1 -29-4.7	3.6 -29-4.7	4.0 -29-4.7	
	= UF (4) +D	2	DF(1)	F(2)	DF (3)	DF (4)	DF (5)	DF(0)	F(1)	DF(2)	DF (3)	DF (4)	(2)	DF(6)	60	DF(1)	(2)	DF (3)	DF (4)	UF (5)	(9)	DF (7)	0	(1)	~	(3)	(4)	DF (5)	= UF(6) +D	+ (1)	DF (8)	=UF(0) +M7	=DF(1) +M7	= DF (2) +M7	=DF(3) +M7	=DF(4) +M.7	=DF(5) +M7	=DF(6) +M7	= DF (7) +M7	=DF(8) +M7	
	DF(5) +0	OF(6) +0	OF (6) +D	OF (6) +0	DF(6) +D	05(6) +0	DF(6) +0	OF (7) +0	OF (7) +0	OF (7) +0	OF (7) +0	DF(7) +0	OF (7) +0	OF (7) +0	OF(8) +0	DF(8) +0	DF(8) +D	DF(8) +0	DF(8) +0	(8)	OF (8) +0	DF(8) +D	DF(9) +D	(6)	+ (6		DF(9) +D	+ (6	DF (9) +0	-		DF(1) +M7	DF(2) +M7	DF(3) +M7	DF (4) +M7	DF(5) +M7	DF(6) +M7	DF (7) +M7	+ (8)	DF (9) +M7	

Tabular Data B-1.C-7. Chain reaction F_2/D_2 model (261 reactions) (Continued).

07(2) +F 07(2) +F 07(3) +F 07(3) +F 07(3) +F 07(3) +F		5 - 9 0.75- 360
	0	
	(1)	0 - 9 0.75- 360
	(0)	5 - 9 0.75- 360
2222	100	5 - 9 0.75- 360
222	11.11	096 -57.0 6 - 7
	100	5 - 9 0.75- 360
	L	0 - 8 0.75- 360
	F(2)	0 - 9 0.75- 360
	F(1)	3 - 9 0.75- 360
	F(0)	5 - 9 0.75- 360
7	1 (4)	2 - 8 0.75- 360
0 10	F (3)	2 - 9 0.75- 360
0 10	F(2)	2 - 9 0.75- 360
)F(5) +F	F(1)	-51.0 6 - 0
	F(0)	5 - 9 0.75- 360
1 2	F(5)	5 - 8 0.75- 360
5	F (4)	5 - 9 0.75- 360
5	F (3)	0 - 9 0.75- 360
5	F(2)	8 - 9 0.75- 360
2	F(1)	0 - 9 0.75- 360
+ (9	(O) 4	5 - 9 0.75- 360
71 +	F(6)	8 - 8 0.75- 350
4 (2	F(5)	7 - 9 0.75- 360
7) +	F(4)	B - 9 0.75- 300
12	= DF(3) +F	0 0 0 0
7) +)F(2)	00 - 00 - 00 - 00
7) +	F(1)	0010 -010 6 - 6
1 +	JF (0)	30 - 31 - 30 - 6
8)	JF (7)	0 - 8 0 - 75 - 360
8) +	JF (6)	0 - 8 0.75- 360
8)	DF (5)	7 - 9 0.75- 360
8)	DF (4)	0 - 9 0.75- 360
8	DF (3)	0 - 9 0.75- 360
83	DF (2)	.3 - 9 0.75- 360
8	DF(1)	.8 - 9 0.75- 30
8)	DF (0)	.5 - 9 0.75- 360
6	UF (8)	.3 - 8 0.75- 360
6	(7)	.1 - 8 0.75- 360
DF (9) +F	(9)	.5 - 9 0 • 75 - 30
6	(5)	.6 - 9 0.75- 360

Tabular Data B-1.C-7. Chain reaction F_2/D_2 model (261 reactions) (Continued).

4	(4)	4.5 - 9 0.75- 3600.
LL U	DF (3)	2 - 9 0.75- 360
ı (ı	· iL	8 - 9 0.75- 3600
+	(O) +F	5 - 9 0.75- 360
+DF(1)	F(0) +DF(
-	F(1) +D	000
-	F(2) +DF(
-	F(3) +0F(
-	F(4) +DF(
	(6)	0 0
	F(2) +0F(0 - 8 1
+DF(2)	F(0) +DF(16-0
	F(1) +0F(0 - 9 1
	F(2) +0F(0 - 9 1
+DF(5)	F(3) +	0 - 9 1
+DF(6)	F(4) +	0 - 0 1
-	F(5)	0 - 0
)F(6) +[1 6 - 0
+DF(3)	F(0) +	5 - 9 1
-)F(1) +DF(5 - 9 1
-	1 (2)	1010
+0F(6)	1F(3) +DF(5 - 9 1
-)F(4) +DF(5 - 9 1
+OF(8))F(5) +DE(16-9
-)F(0) +	2 - 9 1
+OF(5))F(1) +DF(2 - 9 1
-	JF (2) +D	1 6 - 2
+DF(7)	JF (3) +DF (1 6 - 2
+DF(8)	DF(4) +D	1 6 - 2
-	JF (0) +D	0 -14-0
+02(0)	JF(1)	0 -13-0
-	OF (0) +D	0-13-0
-	DF(2) +D2(.5 -13-0
-	DF(1) +C	·5 -13-C
020	DF (3) +C	0 -13-0
0	DF(2) +D2(.0 -13-0
000	DF(4) +D2(.5 -13-0
		010

Tabular Data B-1.C-7. Chain reaction F_2/D_2 model (261 reactions) (Concluded).

				A
DF (6)	+02(0)	= DF (5)	+D2(1)	3.0 -13-0.5
DF(6)	+02(0)	= DF (4)	+02(2)	0 -13-0.
OF (7)	+02(0)	=DF(6)	+02(1)	3.5 -13-0.5
DF(7)	+02(0)	= DF (5)	+02(2)	3.5 -13-0.5
	+02(0)	= DF (7)	-	4.0 -13-0.5
DF (8)	+02(0)	· ·		4.0 -13-0.5
DF (9)	+02(0)	ű.	+02(1)	4.5 -13-0.5
DF (9)	+02(0)	= DF (7)	+02(2)	4.5 -13-0.5
1	+02(1)	4	+02(2)	5.0 -14-0.5
	+02(1)	= DF(1)	+02(2)	1.0 -13-0.5
	+02(1)	4	+02(2)	5 -1
	+02(1)	= DF (3)	+02(2)	2.0 -13-0.5
OF (5)	+02(1)	= DF (4)	+02(2)	2.5 -13-0.5
(9)	+02(1)	= DF (5)	+02(2)	3.0 -13-0.5
(7)	+02(1)	= DF (6)	+02(2)	3.5 -13-0.5
DF (8)	+02(1)	= DF (7)	+02(2)	4.0 -13-0.5
6	+D2(1)	= DF (8)	4	4.5 -13-0.5
-	+M15	=02(0)	+M15	1.5 -27-4.3
02(2)	+w15		+M15	1.5 -27-4.3
1		=02(0)	+M16	3.0 -28-4.3
5	+M16	=02(1)	+M16	3.0 -28-4.3

 $M_1 = 2.4F, 2.4F_2$; All others: 1.0 $M_2 = 20D, 1.75D_2$; All others: 1.0 $M_3 = All species$ $M_4 = DF, 2HF$ $M_5 = N_2$ $M_6 = D_2$ $M_7 = Ar, 2He, F_2$ $M_{15} = 1000D, D_2$ $M_{16} = DF, HF, Ar, F, F_2, He, N_2$

Tabular Data D-1.C-8. Cold reaction F_2/D_2 model (127 reactions).

A N B	21 001 25 50	6.2 -30 1.0	.2 - 9 0.9 - 200	.6 - 9 0.9 - 200	.2 - 8 0.9 - 200	.0 - 9 0.9 - 200	.5 -1	.7 -12 - 240	.2 -11 - 240	.0 -22-2.9 320	.0 -22-2.9 320	.0 -22-2.9 320	.0 -22-2.9 320	.0 -22-2.9 3	.0 -22-2.9 320	.0 -22-2.9 3	.0 -22-2.9 3	.7 -22-2.9 320	.0 -22-2.9 320	.0 -21-2.9 320	.0 -22-2.9 3	.3 -22-2.9 320	.5 -22-2.9 320	.0 -22-2.9 320	·8 -21-2.	.6 -21-2.	.1 -20-2.	1.5 -20-2.2	.9 -20-2.	.3 -23-3.	.9 -22-3.	-22-3.	.7 -22-3.	6 -22-3.	.5 -30-4.	9.0 -30-4.7	ŧ		2.4 -29-4.7
	E + 7	=02 +M2 =0F(5) +M3	UF(1) +	UF(2) +	DF (=DF(4) +D	=F +D2	DF (4) +	DF (DFI	2	0	DFC	0	DF (0	= UF(2) +M4	0	DF(0)	DFI	0	0	DF(1)	DF(0)	DF (0	DFC	= JF(3) +M5	DF (4)	Ĭ.	DFC	ĭ	DF(3) +		0	=DF(1) +M7	= DF(2) +M7	F(3) +	0
1		+ + + + + + + + + + + + + + + + + + +		+02	+02	+02	+DF(5)	+F2	+F2	+M4	+M4	+W4	+M4	+W4	+W4	+M4	+W4	+ M.4	+W4	+W4	+W4	+M4	+W4	+W4	+M5	+M5	+M5	+W5	+M5	+w6	+w6	+W6	+w6	+w6	+M7	+M7	+M7	+M7	+M7
u	L (0 0								F(1)	DF(2)	DF(2)	DF (3)	(3)	DF (3)	DF (4)	OF (4)	DF (4)	F(4)	F(5)	-	F	~	F(5)	F(1)	(5)	DF (3)	F(4)	F(5)	4		DF (3)	(4)	F(5)	OF(1)	DF(2)	OF (3)	OF (4)	DF(5)

Tabular Data B-1.C-8. Cold reaction F_2/D_2 model (127 reactions) (Concluded).

				A	z	gg
(1) +	0	JF (0)	0	1	0.7	- 218
DF(2) +0	0	= DF(0) +	0+	0	9 0.73	- 2220.
+ (5) +	0	DF(1)	٥	-	0	- 208
(3) +	0	10) JC	0	4	0.7	- 224
(3) +	0	JF(1)	2	1	0.0	- 216
(3) +	0	JF (2)	0	m	0.7	- 217
+ (4)+	0	JF (0)	0	0	0.7	- 220
+ (4) +	0	JF(1)	0	0	0.7	- 220
+ (4)+	0	DF (2)	0	6	0.7	- 220
+ (4) +	0	DF (3)	٩	-	0.7	- 220
+ (5)	0	JF (0)	0	α	0.7	- 221
+ (9)	0	JF(1)	0	α	0.7	- 221
+ (2)	0	JF (2)	0	8	0.7	- 221
+ (5)	0	JF (3)	0	B	0.7	- 221
+ (5) +	0	OF (4)	0	8	0.7	- 221
(1) +	Te.	OF (0)	14	67	0.7	- 360
(2) +	li.	JF(1)	4	0	0.7	- 360
(2) +	lı.	JF (0)	14	G	0.7	- 360
(3) +	lı.	DF (2)	4		0.7	- 360
(3) +	lı.	OF (1)	F	1	4 0.7	- 360
(3) +	lı.	OF (0)	L	ın	6 0.7	- 360
(4)	lı.	DF (3)	L	0	8 0.7	- 360
1 (4) +	t _k .	DF (2)	L.	0	7.0 6	- 360
+ (4)+	lı.	DF(1)	14	3	7.0 6	- 360
(4)	li.	DF (0)	L	n	6 0.7	- 360
1(2)	L	DF (4)	4	2	8 0.7	- 360
+ (8) +	lı.	UF (3)	L	- 2.9	7 0 6	360
+ (9) +	L	DF (2)	4	2	7.0 6	+ 360
+ (5) +	L	DF(1)	4	0	1.0 6	- 360
+ (9) +	tı.	DF (0)		0	6 0.7	- 360
+ (1) +	-	DF (0)	-	0	8 1.	
+ (2) +	-	DF(1)	3	0	8 1	
+ (3) +	-	DF(2)	4	0	8 1.	
+ (4) +	-	DF (3)	0	0	8 1.	
+ (1) +	-	DF(0)	-	0	9 1.	
+ (2) +	DF (3)	UF(1)	0	0	9 1.	
(3) +	-	DF (DF	0	9 -	
+(1)+	-	UF (0)	DF (4		9 1.	
+ (2) +	DF(4)		OF	5.	9 1.	
(1) +	DF (4)	OFC	DF			

Tabular Data B-1.C-8. Cold reaction F_2/D_2 model (127 reactions) (Continued).

В												53. 0.3333					0.333	3.			53. 0.3333	3. 0.333	3, 0,333	0	2190.	2160.	2180.	5220.	2170.	2190.	5200.	2125.	2260.	000	180.	540.	190.	on	1.60
× :	-11	-10		·	0-0		0.1 57-72-7	20-02	20-15 :·		50-10 3.	0-10-0.0	1.	1 10-00	30-10 1.	1. 01-07	10-0-01	10-0-01		10	15-0.	15-0	15-0	2.30-09 .74	.09 .72	-09 .74	99. 60-	-10 .58	60-0	60-	60-0	60-0	60-01.	1.70-09 .67	•	U	6. 60-02	7. 80-0	1.20-08 .76
Ü	DF (1)	F(2)	UF(3) +HF(-	DF(1)	DF(2) +HF	-	DF (5)	= UF(0) +HF(3)	HF (0)	=HF(0) +DF(2)	(0)	(5)	=HF(3) +HF(0)	20	(1)	(1)	0	HF(2) +DF((2)	(2)	(1)	(0)	F (0)	-	1000	0	~	(2)	=HF(2) +D	(3)	0	=DF(0) +H	=DF(1) +H	= DF(0) +H	F(1)	DF(2)	DF (2)	DF(3) +
	DF(3) +HF(0)	F(4) +HF((5) +HF(DF(3) +HF(0)	-	-	DF(0) +HF(3)	(1) +HF((5) +HF((1) +DF(~	HF(1) +M17	(1)	1.)	5)	21 +DF	~	(2)	(3)	(3) +	(3) +	(3)	(3)		+DF (+0F(+0F (+DF(+DF (+0F(+0+	+04	+0F (+DF(+DF (+DF(+DF (+04	-

Tabular Data B-1.C-8. Cold reaction F_2/D_2 model (127 reactions) (Concluded).

В	-1170.0	0.000	- 720.0	-2400.0			
Z	.28	.08	20		1.0	0.1	1.0
A	1.50-10	7.10-11	7.30-12	1.80-10	6.20-30	2.80-30	2.80-30
	I	I.	I.	+F	£ Σ+	+M2	+M2
	=HF(0)	=HF(0)	=HF(1)	=HF(3)	=HF(3)	=H2	QH=
					+W3	+W2	+M2
				+F2	14	I+	0+
	HF(1)	HF (2)	HE (2)	I	I	I	I

 $\begin{aligned} M_1 &= 2.4F, 2.4F_2; \text{ All others: } 1.0 \\ M_2 &= 20D, 20H, 1.75D_2, 1.75H2, 1.75HD; \text{ All others: } 1.0 \\ M_3 &= \text{All species} \\ M_4 &= DF, 2HF \\ M_5 &= N_2 \\ M_6 &= D_2, H_2, HD \\ M_7 &= 2He, F_2, 4CF_4, SF_6 \\ M_{17} &= 0.5DF, HF \end{aligned}$

Tabular Data B-1.C-9. $\mathrm{DF/CO}_2$ transfer reaction model subset (38 reactions).

DF(1) +C02000 DF(3) +C02000 DF(3) +C02000 DF(3) +C02000 DF(4) +C02000 DF(5) +C02000 DF(5) +C02000 DF(5) +C02000 DF(5) +C02000 DF(6) +C02001 DF		
+Co2000 +Co200	A	Q N
+Co2000 +Co2010 +M11 +Co2010 +M12 +Co2010 +M13 +Co2010 +M14 +Co2010 +M14 +Co2010 +M14 +Co2010 +M15 +Co2010 +M16 +Co2010 +M17 +Co2000 +Co2011 +Co2001 +	-	7.0
+CO2000 +CO200		7.0
+Co2000 +Co200	-	0.7
+CO2000		0.7
+CO2000		7.0
+CO2000		0.7
+CO2000 +CO2000 +CO2000 -CO2000 -CO2010 -CO201		7.0
+CO2000,		7.0
= CU2100+C02010 = CU2100+C02010 = CU2020+C02010 = CU2020+C02010 = CU2010+C02010 = CU2010+C02010 = CU2010+M4 = CU2010+M5 = CU2030+M4 = CU2030+M5 = CU2030+M1 = CU2020+M11 = CU2020+M11 = CU2020+M11 = CU2010+M12 = CU2010+M13 = CU2010+M13 = CU2010+M13 = CU20010+M13 = CU2010+M13 = CU20010+M13 = CU2000+M13	1 1.2 -	0.7
CU2020+C02010 CU2020+C02010 CU2020+C02010 CU2010+C02010 CU2110+M5 CU2110+M5 CU2030+M4 CU2030+M4 CU2030+M1 CU2030+M1 CU2020+M1 CU2020+M1 CU2020+M1 CU2020+M1 CU2020+M1 CU2020+M1 CU2020+M1 CU2010+M1 CU2010+M1 CU2010+M1 CU2010+M1 CU2010+M1 CU2010+M1 CU2010+M1 CU2010+M1	0 1.25-13-0.5	-0.5
= CUZOZO+COZO10 = COZO10+COZO10 = COZO10+COZO10 = COZ110+M4 = CUZO10+M4 = CUZO30+M4 = CUZO30+M4 = CUZO30+M1 = CUZO20+M1 = CUZOZO+M1 = CUZOZO+M1 = CUZOZO+M1 = CUZOZO+M1 = CUZOZO+M1 = CUZOZO+M1 = CUZO10+M1 = CUZO10+M1 = CUZO10+M1 = CUZO10+M1 = CUZO10+M1 = CUZO10+M1 = CUZO10+M1 = CUZO10+M1 = CUZO10+M1	1.8	-15-0.5
CO2010+CO2010 CO2010+CO2010 CO2110+M4 CO2110+M9 CO2110+M9 CO20110+M4 CO2030+M4 CO2030+M10 CO2020+M11 CO2020+M11 CO2020+M11 CO2020+M11 CO2020+M11 CO2010+M12 CO2010+M13 CO2010+M13 CO2010+M13 CO2010+M13 CO2010+M13	3.1	-13-0.5
CO2010+CO2010 CO2110+M4 CO2110+M5 CO2110+M9 CO2030+M4 CO2030+M4 CO2030+M1 CO2020+M1 CO2020+M1 CO2020+M1 CO2020+M1 CO2020+M1 CO2010+M1 CO2010+M1 CO2010+M1 CO2010+M1 CO2010+M1 CO2010+M1	0 4.0 -13	
COZ110+M4 COZ110+M5 COZ110+M9 COZ030+M4 COZ030+M5 COZ030+M9 COZ030+M1 COZ020+M11 COZ020+M11 COZ020+M11 COZ020+M11 COZ010+M12 COZ010+M12 COZ010+M13 COZ010+M13 COZ010+M13 COZ010+M14 COZ010+M14 COZ010+M14	1.1	-12-0.5
CO2110+M5	3.4 -11	7.0
CUZ110+M9		-27-4.8 1484.
CU2110+M10	1.9 -3	-31-5.8 2436.
CU2030+M4 CU2030+M5 CU2030+M9 CU2020+M11 CU2020+M11 CU2020+M11 CU2020+M11 CU2020+M11 CU2020+M11 CU2010+M11 CU2010+M12 CU2010+M13 CU2010+M13 CU2010+M13 CU2010+M13	2.0 -1	-18-1.5
CUEO30+M5	1.7 -13	
= CU2O3O+M9 = CU2O3O+M10 = CU2O3O+M11 = CU2O2O+M11 = CU2O2O+M11 = CU2O2O+M11 = CU2O2O+M11 = CU2O1O+M11 = CU2O1O+M12 = CU2O1O+M13 = CU2O1O+M13 = CU2OO+M13 = CU2OO+M13		-31-5.6 1484.
= CU2030+M10 = CU2030+M11 = CU2020+M11 = CU2020+M11 = CU2020+M11 = CU2010+M11 = CU2010+M12 = CU2010+M12 = CU2010+M12 = CU2010+M13 = CU2010+M13 = CU2000+M13	1.4 -3	-34-6.6 2436.
1	0	-21-2.3
1	0	-17-1.5
1 = C02020+M11 1 = C02100+M11 1 = C02020+M11 1 = C02020+M11 2 = C02010+M12 4 = C02010+M12 2 = C02010+M12 4 = C02010+M13 5 = C02010+M14 6 = C02010+M14 6 = C02010+M14	4.5 -2	-27-4.2 - 903.
1 = CO2100+M11 1 = CO2020+M11 1 = CO2020+M11 2 = CO2010+M12 4 = CO2010+M12 4 = CO2010+M12 5 = CO2010+M13 6 = CO2010+M13 6 = CO2010+M13 7 = CO2010+M13 6 = CO2010+M13	8-8-5	-20-2.5 - 4410.
= CO2O2O+M11 = CO2100+M11 = CO2O10+M11 = CO2O10+M12 = CO2O10+M13 = CO2O10+M14 = CO2O10+M14 = CO2O10+M14 = CO2O00+M13	8.6 -2	-24-3.8 - 549.
= CO2100+M11 = CU2020+M11 = CO2010+M12 = CO2010+M13 = CO2010+M14 = CO2010+M14 = CU2000+M13 = CU2000+M12	9.3 -2	-22-3.3 - 1230.
= CU2020+M11 = CO2010+M12 = CU2010+M13 = CU2010+M14 = CU2010+M12 = CU2010+M14 = CU2000+M12		-21-3.0 - 1060.
= CO2010+M12 = CO2010+M13 = CO2010+M14 = CO2010+M12 = CO2010+M13 = CO2000+M12	1- 6-7	-18-1.5
= CU2010+M13 = CU2010+M14 = CU2010+M12 = CU2010+M13 = CU2000+M14 = CU2000+M12	5.65-22-3.3	-3.3 - 1480.
= CO2010+M14 = CO2010+M12 = CO2010+M13 = CO2010+M14 = CO2000+M12		-21-3.0 843.
= CO2010+M12 = CO2010+M13 = CO2010+M14 = CO2000+M12	2.7 -10	1.0
= CO2010+M13 = CO2010+M14 = CO2000+M12 = CO2000+M13		-21-3.2 - 1350.
= CO2010+M14 = CO2000+M12 = CO2000+M13		-21-3.0 843.
= CONOO+MIN	5.8 -10	1.0
=CO2000+M13	3.4 -2	-26-4.2 1130.
0	2- 6-6	-22-3.0 843.
CO2010+M14 =C02000+M14 1.5	1.5 -10	1.0

Tabular Data B-1.C-9. $\mathrm{DF/CO}_2$ transfer reaction model subset (38 reactions) (Concluded).

Catalytic Species

 $M_1 = 2.4F, 2.4F_2$; All others: 1.0

 $M_2 = 20D, 1.75D_2; All others: 1.0$

M₃ = All species

 $M_4 = DF, 2HF$

 $M_5 = CO_2, N_2$

 $M_b = D_2$ $M_7 = Ar, 2He, F_2$

 $M_9 = Ar, 4D, 2F_2, He, 2N_2$

 $M_{10} = D_2,300F$

 $M_{11} = 2D, 2D_2, 1.5He; All others: 1.0$

 $M_{12} = CO_2, DF, HF, 0.06Ar, F, F_2, 0.5N_2$

 $M_{14} = D, D_2$

 $M_{15} = 1000 \text{ D, D}_2$

 $M_{16} = CO_2, DF, HF, Ar, F, F_2, He, N_2$

Tabular Data B-1.C-10. $CLF_x/CS_2/D_2$ reaction model subset (23 reactions).

,	20	1250.	1250.		1400.	. 6700.	1400.	. 5400.	. 2400.	. 5400.	1500.	1500.	1500.	1500.		5260.0	5400.0	5400.0	2400.0	240C.0	2400.0	0.006	0.006	0.006
	Z	0.1	0.1	0.1	•	•	•	•	•	•	•	•	•	•	0.1	•		•	•	•	•	•	•	•
	¥.								6.0 -11															
7		+M3	+W3	+M3	+6	9	+CL	+01	+1	+CL	+64	+CL	+CL	+CL	+M3	Ŧ	+¢r	+	+CL	+64	+CL	+CL	+CL	+cr
7 7 X		=(15	= CLF	= DCL	=CLF	=DCL	=CLF	=0CL	= DCL	=DF(4)	=DF(1)	=DF(2)	=DF(3)	=DF(4)	=HCL	=HCL	#HCL	=HCL	=HF(0)	=HF(1)	=HF(2)	=HF(0)	=HF(1)	=HF(2)
		+W3	+WB	+W3											+W3									
		٦ +	+	10+ +CL	+F2	+02	+CL2	+46	+CLF	+CLF	+DCL	+000	+DCL	+DCL	7+	+H2	+675	+CLF	+CLF	+CLF	+CLF	+HCL	+HCL	+HCL
		5	S.	٥	5	5	ı	٥	٥	٥	ı	L	L	L	I	5	I	I	I	I	I	L	L	L

 $M_1 = 2.4F$, $2.4F_2$; All others: 1.0

 $M_2 = 20D, 20H, 1.75D_2, 1.75H_2, 1.75HD; All others: 1.0$

M₃ = All species

M4 = DF, 0.2DCI, 0.4HCI, 2HF

 $M_8 = F, CI$

M₁₇ = 0.5DF, 0.1DCI, 0.2HCI, HF

*Note that Mg replaces F in the DF(v) + F V-R, T relaxation reactions.

Tabular Data B-1.C-11. DF/HF, D/H V-V and isotopic exchange reaction model subset (47 reactions).

A N B ×	3.40-11 1.0	0.60-11 1.0	0-1 01-77-1	2.30-10 1.0	1.50-02 1.0	0.1 0.00.4	1.00-00 1.0	0.1 40-07.4	1.00-00 1.0	0-40-12 1-0	4.20-10. 1.0	2.60-10 1.0	2.0 -15-0.5 53. 0.3333	1.40-08 1.0	7.00-09 1.0	5-50-10 1-0	0.1 01-00.4		2.0 -15-0.5 53. 0.3333	0.101.0	6.00-10 1.0				2.30-09 .74- 2240.0		-74-				-89-			1	1.70-09 .67- 2300.0	6.60-09 .89- 2180.0	3.50-10 .54- 2240.0			1.20-08 .70" 2160.0
	=DF(0) +MF(1)		=DF(2) +HF(1)	=0F(3) +HF(1)	=DF(0) +HF(2)	= DF(1) +HF(2)	=DF(2) +HF(2)	=0F(4) +HF(0)	=DF(5) +HF(0)	=DF(0) +HF(3)	=HF(0) +DF(1)	=HF(0) +DF(2)	=HF(0) +M17	=HF(2) +HF(0)	=HF(3) +HF(0)	=HF(1) +DF(1)	=HF(1) +DF(2)	=HF(1) +M17	=HF(0) +M17	=HF(2) +DF(1)	=HF(2) +DF(2)	=HF(2) +M17	=HF(1) +M17	=HF(0) +M17	=HF(0) +D	=HF(0) +D	=HF(1) +0	=HF(0) +D	=HF(1) +D	=HF(2) +D	=HF(2) +D	=HF(3) +D	=DF(0) +H	=0F(0) +H	=UF(1) +H	=DF(0) +H	=DF(1) +H	=DF(2) +H	=DF(2) +H	=DF(3) +H
	DF (2) +HF (0)	DF (3) +HF (0)	DF (4) +HF (0)	DF(5) +HF(0)	DF(3) +HF(0)	DF (4) +HF (0)	DF(5) +HF(0)	DF (0) +HF(3)	DF(1) +HF(3)	OF (5) +HF(0)	HF(1) +DF(0)	HF(1) +DF(1)	HF(1) +M17	HF(1) +HF(1)	HF(1) +HF(2)	HF(2) +DF(0)	HF(2) +DF(1)	HF(2) +M17	HF(2) +M17	HF(3) +DF(0)	HF(3) +DF(1)	HF(3) +M17	HF(3) +M17	HF(3) +M17	H +0F(1)	H +0F(2)	H +0F(2)	H +DF(3)	H +0F(3)	н +0F(3)	H +DF(4)	H +0F(5)	H +0F(1)	H +0F(2)	H +0F(2)	H +0F(3)	H +0F(3)	H +0F(3)	H +0F(4)	H +0F(5)

Tabular Data B-1.C-11. DF/HF, D/H V-V and isotopic exchange reaction model subset (47 reactions) (Concluded).

	HF(0) +H 1.50-10 = HF(0) +H 7.30-11 = HF(1) +H 7.30-12 = HF(3) +M 1 6.20-30 = HF(3) +M2 6.20-30 = HD +M2 2.80-30	++++++++++++++++++++++++++++++++++++++	=HF(0) +H =HF(0) +H =HF(1) +H =HF(3) +F =HF(3) +M3 =H2 +M2 =HD +M2
H + + + + + + + + + + + + + + + + + + +		######################################	++++++++++++++++++++++++++++++++++++++
		H H H H H H H H H H H H H H H H H H H	++++++++++++++++++++++++++++++++++++++

B -1170.0 - 900.0 - 720.0

Catalytic Species

 M_2 = 20D, 20H, 1.75D₂, 1.75H₂, 1.75HD; All others: 1.0

M₃ = All species

 $M_{17} = 0.5 DF, HF$

Tabular Data B-1.C-12. Elementary reaction and kinetic data pertinent to the 0-CS $_2$ chemical-laser system.

eaction	Heat of reaction, ΔH°, * kcal/mol	Reaction rate constant, k ₁ , cm ³ /mol-sec
1. O+CS ₂ → CS+SO	-22.0	$5.00 \times 10^{13} \exp(-1.9/RT)$
$2. O+CS \rightarrow CO^{\bullet}+S$	-85.0	$2.4 \times 10^{14} \exp(-2/RT)$
$3. S + O_2 \rightarrow SO + O$	-5.6	1.4×10 ¹²
$8. SO + O_2 \rightarrow SO_2 + O$	-12.8	$3.5 \times 10^{11} \exp(-6.5/RT)$
$S. O+CS_2 \rightarrow COS+S$	-31.1	$1.0 \times 10^{14} \exp(-8/RT)$
6. O+COS→CO+SO	-51.4	$1.9 \times 10^{13} \exp(-4.5/RT)$
7. $O+S_2 \rightarrow SO+S$	-22.1	4.0×10^{12}
$8. S + CS_2 \rightarrow CS + S_2$	+1.6	$1.0 \times 10^{14} \exp(-4/RT)$
$O_2 + CS \rightarrow CO + SO$	-90.0	$5.5 \times 10^{10} \exp(-2/RT)$
$O_2 + CS \rightarrow CPS + O$	-39.0	$1.0 \times 10^{13} \exp(-12/RT)$
$O_2 + CS_2 \rightarrow CS + SO_2$	24.0	$1.0 \times 10^{12} \exp (-43/RT)$
$S+COS \rightarrow CO+S_2$	-22.0	$1.9 \times 10^{13} \exp(-4.5/RT)$
$CS+SO \rightarrow CO+S_2$	-62.0	1.0×10°
$O_3 + O \rightarrow 2O_2$	-93.7	$3.1 \times 10^{13} \exp(-5.7/RT)$
$O_3 + SO \rightarrow O_2 + SO_2$	-48.8	$1.5 \times 10^{12} \exp(-2.1/RT)$
$SO + O \rightarrow SO_2 + h\nu$		$4.5 \times 10^{10}/T$
		k _M (cm ⁶ /mol ² -sec)
$. O+O+M \rightarrow O_2+M$	-119.1	$(4.6 \times 10^{17}/T) \exp(-0.172/T)$
$O+S+M \rightarrow SO+M$	-124.7	$K_{10} = K_{17}$
$. S+S+M \rightarrow S_2+M$	-101.7	$k_{19} = k_{17}$
$CO+O+M \rightarrow CO_2+M$	-127.2	$5.9 \times 10^{15} \exp(-4.1/RT)$
$CS+S+M \rightarrow CS_2+M$	-103.3	$k_{21} = k_{20}$
CO+S+M→COS+M	-73.0	$k_{22} = k_{20}$
$O_2+O+M\rightarrow O_3+M$	~25.5	$1.7 \times 10^{13} \exp(2.1/RT)$
. O+SO+M→SO2+M	-131.9	$9.6 \times 10^{19}/T$

⁶ Data obtained from JANAF Tables of Thermochemical Data, ⁹⁵ with the exception that Okabe's ¹⁷ value for AH? for the CS was assumed

for ΔH_1^o for the CS was assumed.

Activation energy E_A (kcal/mol); the gas constant R (kcal/mol- $^{\circ}$ K).

Chemical distribution of CO normalized to $N_{13} = 1.0$ versus vibrational level.

Note: HMS - Hancock, Morley, and Smith

TNB - Tsuchiya, Nielsen, and Bauer

PK - Powell and Kelley D - Djeu

Graphical Data B-1.C-13. Chemical distribution of CO normalized to $N_{13} = 1.0$ versus vibrational level.

Tabular Data B-1.C-14. Experimental V \rightarrow T rates for CO at 300°K.

$CO(v) + M \xrightarrow{k_v^M} CO(v-1) + 1$		
M	υ	$k_v^{\mathbf{M}}(\sec^{-1} \operatorname{Torr}^{-1})$
He	1	0.64 ± 0.07
	9	5.30
	10	9.19
	11	12.0
	12	18.7
	13	21.9
Ar	1	0.02 ± 0.002
H ₂	1	14.4 ± 0.6
D_2	1	0.45 ± 0.15
CO	1	0.01
0	1	610. ^b

 $^{^{\}mathrm{a}}$ Rates listed are taken from Bronfin and Jeffers.

 $^{^{}m b}$ Extrapolated to 300°K.

Tabular Data B-1.C-15. Experimental V+V rates for CO-diatomic molecule collisions at $300\,^{\circ}\text{K}$.

	CO(v	$O(v-1) + AB \xrightarrow{k^{\bullet \bullet}} CO(v-1) + AB^*$
AB	υ	$k_{v}^{AB}(\sec^{-1} \operatorname{Torr}^{-1})$
ĊO	2	$6.2 \pm 0.4 \times 10^4$
	3	$7.3 \pm 0.4 \times 10^4$
	4	$7.0 \pm 0.4 \times 10^4$
	5	$5.0 \pm 0.4 \times 10^4$
	6	$2.8 \pm 0.3 \times 10^4$
	7	$1.25 \pm 0.15 \times 10^4$
	8	$6.2 \pm 1.0 \times 10^3$
	9	$3.8 \pm 1.0 \times 10^3$
	10	$2.4 \pm 0.75 \times 10^3$
	11	$1.5 \pm 0.6 \times 10^3$
O_2	1	2.67 ± 0.46
	12	742
	13	1556
N ₂	1	179 ± 26
	4	84.8
	5	60.1
	6	38.5
	7	30.0
	8	25.5
	9	17.3
	10	14.1
-	11	7.8

aRates are taken from Bronfin and Jeffers.

Tabular Data B-1.C-16. Experimental V→V rates for CO-triatomic molecule collisions at 300°K.

CC)(v)+	$ABC \xrightarrow{ABC} CO(v-1) + ABC^{\bullet}$
ABC	υ	k. ABC (sec-1 Torr-1)
CS ₂	1	1.49 ± 0.17 × 10 ⁴
SO ₂	1	11.6±0.2
OCS	. 1	$2.63 \pm 0.48 \times 10^{5}$
	4	1.59×10°
	5	2.12×10 ⁶
	6	1.99×10 ⁶
	7	1.27×10°
	8	4.91 × 10°
	9	2.51×10°
	10	1.38×10°
	11	1.09×10 ⁵
	12	6.82 × 10 ⁴
	13	3.50×10 ⁴
N ₂ O	1	$1.51 \pm 0.13 \times 10^{5}$
	2	5.8×104
	3	3.0×10 ⁴
	4	1.8×10 ⁴
	5	7.8 × 103
	6	5.3×10 ³
	7	3.46×10^{3}
	8	3.04×10^{3}
	9	3.04×10^{3}
	10	3.50×103
	11	3.82×10^{3}
	12	3.29×10^{3}
	13	3.29×10^{3}
CO2	1	$2.0 \pm 0.1 \times 10^3$
	4	813
	5	601
	6	566
	7	537
	8	572
	9	742
	10	1.17×103
	11	1.87×10^{3}
	12	3.04×10^{3}
	13	4.24×10°

^{*}Rates are taken from Bronfin and Jeffers.

Tabular Data B-1.C-17. Collision cross sections for broadening of ${\tt CO}$ V-R optical transitions by various gases.

CO collision partner	Cross-section ^a $(cm^2 \times 10^{-14})$
СО	1.10
Не	0.30
Ar	0.96
H_2	0.35
N_2	1.04

 $^{^{\}rm a}$ values listed for first [P(1)] rotational line; see D. Williams for variation with rotational quantum number.

Tabular Data B-1.C-18. Chemical reactions in an RI photodissociation $laser^a$.

		$K\left(\frac{\text{cm}^3}{\text{sec}}\right)$	
Reactants	Products	$R = CF_3$	$R = C_3F_7$
I*+RI	I+RI	5.4E-17	8.0E - 18
I*+R	I+R	3.7E - 18	
I* + R2	I + R ₂	4.7E - 16	
I* + O2	I+O2	8.6E - 12	
$I^* + I_2$	I+I2	$1.3E - 14e^{1650/T}$	
		3.2E - 12	
R+R	R ₂	1.5E-11	1.0E-11
I+R	RI	5.0E - 11	
I*+R	RI	3.0E - 12	
R+RI	R ₂ +I	3.0E - 16	
I* + RI	$I_2 + R$	2.5E - 19	
R + I ₂	RI+I	4.0E - 12	
I+RI	$I_2 + R$	1.6E - 23	
2I + M	I2 + M	4.3E - 34	
2I + RI	$I_2 + RI$	$7.0E - 34e^{1600/T}$	$2.1E - 33e^{1600/7}$
		1.5E - 31	4.5E - 31
2I + He	I2 + He	$8.27E - 29T^{-1.7}$	
		4.6E-33	
2I + I ₂	212	$1.1E - 15T^{-5}$	
		2.9E - 30	
2I + O ₂	$I_2 + O_2$	3.7E - 32	
21 + R ₂	$I_2 + R_2$	5.8E - 32	
$I^* + I + M$	$I_2 + M$	4.3E - 34	
I*+I+RI	$I_2 + RI$	4.3E - 34	1.6E - 33
I* + I + He	$I_2 + He$	9.4E - 34	2.2E - 33
I* + I + I ₂	212	4.3E - 32	

 $^{^{\}rm a}$ Unless otherwise mentioned, rate constants are given at $300\,^{\rm o}{\rm K}$. The data are taken from K. Hohla and K. L. Kompa.

Tabular Data B-1.C-19. Broadening coefficients $\beta_{\mbox{\scriptsize M}}$ and rate coefficients $k_{\mbox{\scriptsize m}}$ for collisional deactivation of I * , tolerable pressures at which the deactivation reaches 10% in 10µsec, and cross sections $\sigma.$

					σ/1	0 ⁻¹⁹ cm ²
M	$\beta_{\rm M}/10^{15}$, cm ⁻² Torr ⁻¹	Reference	$k_{\rm M}/10^{-16}$, cm ³ /sec	P_{10} Torr	for P ₁₀	for 700 Tori
Не	3.1	41	0.02	170,000		4.6
Ar	3.8	41				3.8
	3.6	44				4.0
	4.1	45				3.5
	3.55	38	0.02	170,000		4.0
N ₂	5.1	38	2	1,700	1.15	2.8
CO	6.3	38	12	280	5.7	
CO ₂	7.0	38	1.5	2,200	0.65	2.0
	7.3	38	4.6	700		1.95
SF ₆	5.0	38	0.24	14,000		2.9
CF ₂ Cl ₂	11.3	38	25	135	6.6	
CF ₃ I	8.7	38	2.2	1,500	0.77	1.64
			0.65			
i-C3F7I	15.5	38	8.0	420	1.5	
CF ₃ Br	5.4	38	_•	(600) ^a	3.1	
(CF ₃) ₂ CO	14.4	38		(350) ^a	2.0	
I, I*	12.5	38				

 $^{^{\}rm a}{\rm Nonexponential}$ decay is found with CF $_{\rm 3}{\rm I.}$. The data are taken from K. Hohla and K. L. Kompa.

Tabular Data B-1.C-20. Reaction rates for transfer chemical lasers.

Some Experimental Values at 300°K for Rate Constants for Reactions

$$HX(v = 1) + CO_2(00^{\circ}0) \stackrel{k_r}{\longleftrightarrow} HX(v = 0) + CO_2(00^{\circ}1)$$

$$HX(v = 1) + CO_2(00^{\circ}0) \xrightarrow{k_{12}} HX(v = 0) + CO_2(00^{\circ}0)$$

System	Rate constants, sec ⁻¹ Torr ⁻¹	Zª	$\Delta E_{\rm e}, {\rm cm}^{-1}$
HCl-CO ₂	$k_e = 8.7 \times 10^4$	87	537
DCI-CO ₂	$k_{\rm c} = 2.9 \times 10^4$	262	-258
HBr-CO ₂	$k_e = 2.8 \times 10^5$	26	209
DBr-CO ₂	$k_r = 7.0 \times 10^2$	10,400	-540
HI-CO ₂	$k_e = 1.3 \times 10^{5}$	57.	-116
HF-CO ₂	$k_e + k_{12} = 7.0 \times 10^4$	118	1612
HF-CO ₂	$k_e + k_{12} = 3.6 \times 10^4$	230	1612
HF-CO ₂	$k_e + k_{12} = 5.9 \times 10^4$	140	1612
DF-CO ₂	$k_e + k_{12} = 2.4 \times 10^5$	34	558
DF-CO ₂	$k_r + k_{12} = 1.5 \times 10^5$	54	558

^a Approximate number of collisions for vibrational-energy transfer.

Tabular Data B-1.C-21. Reaction rates for transfer chemical lasers.

Some Experimental Values for the Rate Constants for Reaction

$$CO_2(00^{\circ}1) + HX(v = 0) \xrightarrow{k_{21}} CO_2(nm^{l}0) + HX(v = 0)$$

300°K

System	Rate constant, sec ⁻¹ Torr ⁻¹	Zª
HCl-CO ₂	$k_{21} = 4.1 \times 10^3$	1900
DCI-CO ₂	$k_{21} < 4.4 \times 10^3$	>1700
HBr-CO ₂	$k_{21} < 2.4 \times 10^3$	>3000
DBr-CO ₂	$k_{21} < 1.1 \times 10^3$	>6500
HI-CO ₂	$k_{21} < 2.3 \times 10^3$	>3200
DI-CO ₂	$k_{21} < 1.2 \times 10^3$	>6100
HF-CO ₂	$k_{21} = 5.3 \times 10^4$	160
HF-CO ₂	$k_{21} = 4.7 \times 10^4$	180
(HF-CO2)b	$(k_{21} = 2.2 \times 10^4)^b$	350 ^b
HF-CO ₂	$k_{21} = 3.4 \times 10^4$	250
DF-CO ₂	$k_{21} = 2.3 \times 10^4$	360
$(DF-CO_2)^b$	$(k_{21} = 1.9 \times 10^4)^b$	440 ^b
DF-CO ₂	$k_{21} = 2.6 \times 10^4$	320

^a Approximate number of collisions for vibrational deactivation. ^b At T = 350°K.

Graphical Data B-1.C-22. Experimental probabilities for energy transfer between HF(DF) and ${\rm CO}_2$ and the theory of Dillon and Stephenson.

Graphical Data B-1.C-23. Comparison between measured probabilities for energy transfer between HC ℓ and CO $_2$ and the theory of Dillon and Stephenson.

Comparison of the temperature dependences of the V+V,R transfer probabilities for the $\mathrm{HC}\ell\text{-CO}_2$, $\mathrm{DC}\ell\text{-CO}_2$, $\mathrm{HF-CO}_2$, and $\mathrm{DF-CO}_2$ systems: Δ , $\mathrm{HC}\ell\text{-CO}_2$, Stephenson et al.; Δ , $\mathrm{DC}\ell\text{-CO}_2$, Stephenson et al.; Δ , $\mathrm{HC}\ell\text{-CO}_2$, Dillon and Stephenson; \Box , $\mathrm{HF-CO}_2$, Stephens and Cool; \bullet , $\mathrm{HF-CO}_2$, Cool; $\mathrm{HF-CO}_2$, theory of Dillon and Stephenson; \Box , $\mathrm{DF-CO}_2$, Stephens and Cool; \bullet , $\mathrm{DF-CO}_2$, Cool; \bullet , $\mathrm{DF-CO}_2$, theory of Dillon and Stephenson.

Graphical Data B-1.C-24. Temperature dependences of $V\rightarrow V$, R transfer rates for transfer chemical lasers.

Comparison of the temperature dependences of the V-R,T deactivation probabilities of $CO_2(00^\circ 1)$ molecules by process (6) for HC ℓ , DC ℓ , HF, and Δ , CO_2 -HC ℓ , Stephenson et al.; Δ , CO_2 -DC ℓ , Stephenson et al.; \square , CO_2 -DF Stephens and Cool; \bullet , CO_2 -DF, Cool.

Graphical Data B-1.C-25. Temperature dependences of V→R,T transfer rates for transfer chemical lasers.

N2 : CO : CO2 LASER SYSTEM

Graphical Data B-1.C-26. Energy levels for three vibrational modes in the ${\rm CO}_2$ molecule with those for ${\rm N}_2$ and ${\rm CO}_2$.

Tabular Data B-1.C-27. Molecular energy exchange processes.

	Proces			Rate	Characteristic Time
				cm³ sec·1	atm sec
CO2(001)	· M	-co2(0310)	•м,	k _{dlj}	⁷ d1)
CO2 (01 10)	•м,	- CO2 (000)	•м,	k _{d2j}	7 _{d2)}
CO2 (02°0)	· CO2 (000)	-co2(01,0	+ CO2 (01 0)	k _{d3c}	⁷ d3c
N2(1)	· CO2 (000)	- N ₂ (0)	· CO2 (001)	k _{vv}	7,0
N2(1)	+ CO (0)	- N2(0)	+CO(1)	k CON	TCON
CO2 (001)	· CO(0)	- CO2 (000)	+CO(1)	*coc	†coc
	+CO(0)	- •	+CO(1)	kco(1)	TCO(1)
	· N2 (0)	- c	· N2(1)	k _N (1)	TN(1)
	. (0, 1000)		· CO2 (001)	k,3(1)	T ₍₃ (1)
	· (O2 (000)	- •	+CO2 (01 10)	k _{v2} (1)	T 2(1)

Graphical Data B-1.C-28. Values of $k_{\small dl}$ as a function of temperature for various species of colliding molecule. (Collision partners and references are given on page 1462).

Collision p	artners and r	eferences (for Graphical Data B-1.C-28):
	M = Ar	W. A. Rosser, Jr., A. D. Wood and E. T. Gerry, J. Chem. Phys., <u>50</u> , 4996 (1969).
	M = He	 W. A. Rosser, Jr. and E. T. Gerry, J. Chem. Phys., <u>51</u>, 2286 (1969). J. C. Stephenson, R. E. Wood and C. B. Moore, J. Chem. Phys., <u>54</u>, 3097 (1971).
	$M = N_2$	W. A. Rosser, Jr., A. D. Wood and E. T. Gerry, J. Chem. Phys., <u>50</u> , 4996 (1969).
	$M = N_2$	Y. Sato and S. Tsuchiya, J. Phys. Soc. Jap., 33, 1120 (1972).
	$M = O_2$	W. A. Rosser, Jr. and E. T. Gerry, J. Chem. Phys., <u>51</u> , 2286 (1969).
	$M = C1_2$	W. A. Rosser, Jr. and E. T. Gerry, J. Chem. Phys., <u>51</u> , 4131 (1971).
	M = NO	W. A. Rosser, Jr. and E. T. Gerry, J. Chem. Phys., <u>51</u> , 4131 (1971).
	$M = H_2$	 W. A. Rosser, Jr. and E. T. Gerry, J. Chem. Phys., <u>51</u>, 4131 (1971). J. C. Stephenson, R. E. Wood and C. B. Moore, J. Chem. Phys., <u>54</u>, 3097 (1971).
	$M = H_2O$	D. F. Heller and C. B. Moore, J. Chem. Phys., 52, 1005 (1970). W. A. Rosser, Jr. and E. T. Gerry, J. Chem. Phys., 51, 2286 (1969).
0	M = HC1	 J. C. Stephenson, J. Finzi and C. B. Moore, J. Chem. Phys., <u>56</u>, 5214 (1972).
	M = CO	W. A. Rosser, Jr., R. D. Sharma and E. T. Gerry, J. Chem. Phys., <u>54</u> , 1196 (1971).
	M = CO	Y. Sato and S. Tsuchiya, J. Phys. Soc. Jap., 33, 1120 (1972).
	$M = CO_2$	W. A. Rosser, Jr. and E. T. Gerry, J. Chem. Phys., <u>51</u> , 4131 (1971).
0	M = HF	R. S. Chang, R. A. McFarlane and B. J. Wolga, J. Chem. Phys., <u>56</u> , 2474 (1972).
٥	M = HF	J. K. Hancock and W. H. Green, J. Chem. Phys., 56, 2474 (1972).
۵	M = HF	R. R. Stephens and T. A. Cool, J. Chem. Phys., 56, 5863 (1972).

Graphical Data B-1.C-29. Values of $k_{\rm d2}$ as a function of temperature for various species of colliding molecule. (Collision pairs and references are given on page 1464).

Collision pairs and references (For Graphical Data B-1.C-29): C. J. S. M. Simpson and T. R. D. Chandler, (M = Ar,)Proc. Roy. Soc. Lond. A. 317, 265 (1970). (M = Ar,)C. J. S. M. Simpson, T. R. D. Chandler and A. C. Strawson, J. Chem. Phys., 51, 2214 (1969). $(M = N_2,)$ C. J. S. M. Simpson and T. R. D. Chandler, Proc. Roy. Soc. Lond. A. 317, 265 (1970). $(M = CO_2)$ C. J. S. M. Simpson and T. R. D. Chandler, Proc. Roy. Soc. Lond. A. 317, 265 (1970). $(M = CO_2)$ C. J. S. M. Simpson, T. R. D. Chandler and A. C. Strawson, J. Chem. Phys., 51, 2214 (1969). C. J. S. M. Simpson and T. R. D. Chandler, (M = He,)Proc. Roy. Soc. Lond, A. 317, 265 (1970). C. J. S. M. Simpson and T. R. D. Chandler, $(M = H_2,)$ Proc. Roy. Soc. Lond. A. 317, 265 (1970). (M = O,)R. E. Center, J. Chem. Phys., to be published. (M = H2O,) M. I. Buchwald and S. H. Bauer, J. Phys. Chem., 0 76, 3108 (1972). X (M = H₂O₁) J. W. L. Lewis and K. P. Lee, J. Acoust. Soc. Am., 38, 813 (1965).

Graphical Data B-1.C-30. Intermolecular vibrational transfer rate coefficient. (Collision pairs and references are given on page 1466).

Collision pairs and references (For Graphical Data B-1.C-30):

×	(CO ₂ , N ₂)	C. B. Moore, R. E. Wood, B-L Hu and J. T. Yardley, J. Chem. Phys., <u>46</u> , 4222 (1967).
♦	(CO ₂ , N ₂)	Y. Sato and S. Tsuchiya, J. Phys. Soc. Jap., 33, 1120 (1972).
	(CO ₂ , N ₂)	W. A. Rosser, Jr., A. D. Wood and E. T. Gerry, J. Chem. Phys., <u>50</u> , 4996 (1969).
\bigcirc	(CO ₂ , N ₂)	R. L. Taylor and S. A. Bitterman, J. Chem. Phys., <u>50</u> , 1720 (1969).
0	(HC1, CO ₂)	 J. C. Stephenson, J. Finzi and C. B. Moore, J. Chem. Phys., <u>56</u>, 5214 (1972).
Δ	(HF, CO ₂)	J. R. Airey and I. W. M. Smith, J. Chem. Phys., <u>57</u> , 1669 (1972).
D	(HF, CO ₂)	J. K. Hancock and W. H. Green, J. Chem. Phys., <u>56</u> , 2474 (1972).
1	(HF, CO ₂)	J. F. Bott and N. Cohen, J. Chem. Phys., 58, 4539 (1973).
>	(H ₂ , HF)	J. K. Hancock and W. H. Green, J. Chem. Phys., <u>56</u> , 2474 (1972).
-	(H ₂ , HF)	J. F. Bott and N. Cohen, J. Chem. Phys., 58, 4539 (1973).
0	(CO, O ₂)	Y. Sato, S. Tsuchiya and K. Kuratani, J. Chem. Phys., <u>50</u> , 1911 (1969).
\ominus	(CO, O ₂)	R. E. Center, J. Chem. Phys., in press.
0	(O ₂ , H ₂ O (v ₂))	R. G. Monk, J. Acoust. Soc. Amer., <u>46</u> , 580 (1969).
0	$(O_2, CO_2 (v_2))$	R. G. Monk, J. Acoust. Soc. Amer., <u>46</u> , 580 (1969).
Δ	$(O_2, CO_2 (v_2))$	H. E. Bass, J. Chem. Phys., <u>58</u> , 4783 (1973).
•	(CO_2, N_2)	K. Bulthuis, J. Chem. Phys., <u>58</u> , 5786 (1973).

Graphical Data B-1.C-31. Intermolecular vibrational transfer rate coefficient. (Collision pairs and references are given on page 1468).

Collision pairs and references (For Graphical Data B-1.C-31):

Θ	(N ₂ , CO)	T. I. McLaren and J. P. Appleton, Int. Shock Tube Symp., 8th London 1971, 27 (1971).
0	(N ₂ , CO)	Y. Sato, S. Tsuchiya and K. Kuratani, J. Chem. Phys., <u>50</u> , 1911 (1969).
\oslash	(N ₂ , CO)	C. W. vonRosenberg, Jr., K. N. C. Bray and N. H. Pratt, J. Chem. Phys., <u>56</u> , 3230 (1972).
×	(N ₂ , CO)	P. F. Zittel and C. B. Moore, Appl. Phys. Lett., 21, 81 (1972).
\otimes	(N_2, O_2)	W. D. Breshears and P. F. Bird, J. Chem. Phys. 48, 4768 (1968).
\oplus	(N_2, O_2)	 D. R. White and R. C. Millikan, AIAA J., 2, 1844 (1964). D. R. White, J. Chem. Phys., 49, 5472 (1968).
	(CO ₂ , CO)	W. A. Rosser, Jr., R. D. Sharma and E. T. Gerry, J. Chem. Phys., <u>54</u> , 1196 (1971).
	(CO ₂ , CO)	J. C. Stephenson and C. B. Moore, J. Chem. Phys., <u>56</u> , 1295 (1972).
\bigcirc	(CO ₂ , CO)	Y. Sato and S. Tsuchiya, J. Phys. Soc. Jap., 33, 1120 (1972).
\bigcirc	(CO ₂ , CO)	D. J. Seery, J. Chem. Phys., <u>56</u> , 631 (1972).
	(N ₂ , CO)	J. C. Stephenson, Appl. Phys. Lett., 576 (1973).
•	(N ₂ , CO)	D. F. Starr, J. K. Hancock and W. H. Green J. Chem. Phys. <u>61</u> (1974) (to be published).

Graphical Data B-1.C-32. Recombination rate in \mathbf{N}_2 as a function of $\mathbf{E}/\mathbf{N}.$

Graphical Data B-1.C-33. Recombination rate in ${\rm He:N}_2:{\rm CO}_2$ 3:2:1 as a function of E/N.

Graphical Data B-1.C-34. Attachment rates as a function of E/N at 300° K [Composition given by molar fraction in order $\text{He:N}_2:\text{CO}_2:\text{H}_2\text{O}$].

Tabular Data B-1.C-35. Ionized species reactions * and rate coefficients ** for the CO $_2$ electric discharge laser.

	A. Ionization Reactions	Rate Coefficient
Al	$CO_2(000) + e_{EB} \rightarrow CO_2^{\dagger} + e + e_{EB}$	$6.9 \times 10^{-7} E_{EB}^{-2.0}$
A2	$CO(0) + e_{EB} \longrightarrow CO^{\dagger} + e + e_{EB}$	$4.0 \times 10^{-7} E_{EB}^{-0.2}$
A3	$N_2(0) + e_{EB} \longrightarrow N_2^{\dagger} + e + e_{EB}$	$3.7 \times 10^{-7} E_{EB}^{-0.2}$
A4	$He + e_{EB} \longrightarrow He^{\dagger} + e + e_{EB}$	$6.5 \times 10^{-8} E_{EB}^{-0.2}$
A5	$NO + e \longrightarrow NO^{\dagger} + e + e$	$4.3 \times 10^{-6} u_e^{-4.8} \exp(-15/u_e)$
A6	$CO_2(000) + e \longrightarrow CO_2^{\dagger} + e + e$	$1.7 \times 10^{-5} u_e^{-6.3} \exp(-19/u_e)$
A7	$O_2 + e \longrightarrow O_2^{\dagger} + e + e$	$1.5 \times 10^{-5} u_e^{-6.3} \exp(-19/u_e)$
A 8	$N_2(0) + e \longrightarrow N_2^{\dagger} e + e$	$7.2 \times 10^{-4} u_e^{-10} \exp(-25.4/u_e)$
A 9	$CO(0) + e \longrightarrow CO^{\dagger} + e + e$	$1.5 \times 10^{-5} u_e^{-6.0} \exp(-20.3/u_e)$
A10	$O_2 + e_{EB} \rightarrow O_2^{\dagger} + e + e_{EB}$	$4.2 \times 10^{-7} E_{EB}^{-0.2}$
	B. Attachment Reactions	
B1	$NO_2 + e \longrightarrow O + NO$	$3.4 \times 10^{-10} u_e^{-2.4} \exp(-3.0/u_e)$
B2	$NO_2 + e \longrightarrow NO_2$	4.0×10^{-11}
B3	0 ₂ + e - 0 + 0	$2.8 \times 10^{-6} u_e^{-7.9} \exp(-13.5/u_e)$
B4	0 ₃ + e 0 + 0 ₂	4.0×10^{-11}
B 5	$NO + e \longrightarrow O^- + N$	$3.4 \times 10^{-6} u_e^{-8.2} \exp(-15.2/u_e)$
В6	$CO_2(000) + e \longrightarrow O^- + CO(0)$	$8.4 \times 10^{-8} u_e^{-6.4} \exp(-11.6/u_e)$

^{*}All forward reactions only

^{***}Units are as follows: Rate coefficients, cm³-particle-sec units; E_{EB}, keV; u_e, eV; T, ^oK; R, cal-mole⁻¹ - ^oK⁻¹. (u_e is the <u>reduced</u> average electron energy, i.e., u_e = k T_e).

Tabular Data B-1.C-35. Ionized species reactions * and rate coefficients ** for the CO $_2$ electric discharge laser (Continued).

 $co_2^{\dagger} + o_2 \longrightarrow o_2^{\dagger} + co_2(000)$

 $1.1 \times 10^{-14} \text{ T exp}(1800/RT)$

Tabular Data B-1.C-35. Ionized species reactions * and rate coefficients ** for the ${\rm CO}_2$ electric discharge laser (Continued).

D5	$CO_2^{\dagger} + NO \longrightarrow NO^{\dagger} + CO_2(000)$	1.2×10^{-10}
D6	$CO_2^+ + O \longrightarrow O_2^+ + CO(0)$	2.6×10^{-10}
D7	$O_2^{\dagger} + NO \longrightarrow NO^{\dagger} + O_2$	4.5×10^{-10}
D8	$O_2^{\dagger} + N \longrightarrow NO^{\dagger} + O$	1.8×10^{-10}
D9	$o^{-} + o_{3} \rightarrow o_{3} + o$	5.3×10^{-10}
D10	$O' + NO_2 \rightarrow NO_2 + O$	1.2×10^{-9}
D11	$O' + O_2 + M_1 \longrightarrow O_3 + M_1$	$3.0 \times 10^{-28} \mathrm{T}^{-1}$
D12	$O' + NO + M_1 \longrightarrow NO_2 + M_1$	$3.0 \times 10^{-28} \mathrm{T}^{-1}$
D13	$O' + CO_2(000) + M_1 \rightarrow CO_3 + M_1$	$5.0 \times 10^{-25} \mathrm{T}^{-1}$
D14	$O' + O_2 + M_4 \longrightarrow O_3 + M_4$	2.0×10^{-30}
D15	$O_2 + O_3 \longrightarrow O_3 + O_2$	3.0×10^{-10}
D16	$O_2 + NO_2 \longrightarrow NO_2 + O_2$	1.2×10^{-9}
D17	$O_2 + O + M_1 \longrightarrow O_3 + M_1$	$3.0 \times 10^{-28} \mathrm{T}^{-1}$
D18	$O_2 + NO + M_1 \longrightarrow NO_3 + M_1$	$3.0 \times 10^{-28} \mathrm{T}^{-1}$
D19	$O_3 + O \longrightarrow O_2 + O_2$	1.0×10^{-10}
D20	$O_3 + CO_2(000) \longrightarrow CO_3 + O_2$	6.0×10^{-10}
D21	$O_3 + NO \longrightarrow NO_3 + O$	1.0×10^{-11}
D22	$O_3 + NO_2 \longrightarrow NO_3 + O_2$	2.8×10^{-10}
D23	$CO_3 + O \longrightarrow O_2 + CO_2(020)$	8.0×10^{-11}
D24	$CO_3^- + NO \longrightarrow NO_2^- + CO_2(020)$	1.8×10^{-11}
D25	$CO_3^- + NO_2 \longrightarrow NO_3^- + CO_2(000)$	2.0×10^{-10}
D26	$NO_2 + NO_3 \longrightarrow NO_3 + NO_2$	3.0×10^{-10}
D27	$NO_2 + O_3 - NO_3 + O_2$	1.8×10^{-11}
D28	$O_2 + O_2 + M_1 \longrightarrow O_4 + M_1$	$2.0 \times 10^{-27} \mathrm{T}^{-1.5}$

Tabular Data B-1.C-35. Ionized species reactions * and rate coefficients ** for the CO $_2$ electric discharge laser (Continued).

D29	$O_2 + CO_2(000) + M_3 \longrightarrow CO_4 + M_3$	5.2×10^{-29}
D30	$O_4 + O \longrightarrow O_3 + O_2$	4.0×10^{-10}
D31	$O_4 + CO_2(000) \longrightarrow CO_4 + O_2$	4.8×10^{-10}
D32	$O_4 + NO \longrightarrow NO_3 + O_2$	2.5×10^{-10}
D33	$co_4^- + o \longrightarrow co_3^- + o_2^-$	1.5×10^{-10}
D34	$CO_4 + NO \longrightarrow NO_3 + CO_2(000)$	4.8×10^{-11}
D35	$CO_4 + O_3 \longrightarrow O_3 + CO_2(000) + O_2$	1.3×10^{-10}
D36	$CO_2^{\dagger} + H \longrightarrow HCO^{\dagger} + O$	6.0×10^{-10}
D37	$CO_2^{\dagger} + H_2 \longrightarrow HCO_2^{\dagger} + H$	1.4×10^{-9}
D38	$CO_2^{\dagger} + H_2O \longrightarrow HCO_2^{\dagger} + OH$	1.4×10^{-9}
D39	$HCO^{\dagger} + NO \longrightarrow NO^{\dagger} + CHO$	1.2×10^{-10}
D40	$HCO^{+} + H_{2}O \longrightarrow H_{3}O^{+} + CO(1)$	3.0×10^{-9}
D41	$HCO_2^{\dagger} + CO(0) \longrightarrow HCO^{\dagger} + CO_2(020)$	3.0×10^{-9}
D42	$HCO_2^{\dagger} + H_2O \longrightarrow H_3O^{\dagger} + CO_2(020)$	3.0×10^{-9}
D43	O + H ₂ O → OH + OH	1.4×10^{-9}
D44	$O^- + HNO_3 \longrightarrow NO_3^- + OH$	3.0×10^{-9}
D45	$OH + NO_2 \rightarrow NO_2 + OH$	1.9×10^{-9}
D46	$O_2 + OH \rightarrow OH + O_2$	6.0×10^{-10}
D47	$O_2 + HNO_3 \rightarrow NO_3 + HO_2$	2.8×10^{-9}
D48	$O_3 + H \longrightarrow OH + O_2$	8.4×10^{-10}
D49	$NO_2 + H \rightarrow OH + NO$	3.7×10^{-10}
D50	$NO_2 + HNO_3 \rightarrow NO_3 + HNO_2$	1.6×10^{-9}
D51	$CO_3 + H \longrightarrow OH + CO_2(000)$	1.7×10^{-10}
D52	CO_3 + HNO_3 \longrightarrow NO_3 + OH + CO_2 (000)	8.0×10^{-10}
D53	$CO_4^- + H \longrightarrow CO_3^- + OH$	2.2×10^{-10}

Tabular Data B-1.C-35. Ionized species reactions * and rate coefficients ** for the CO 2 electric discharge laser (Continued).

E. Recombination Reactions

El	$CO_2^{\dagger} + e \longrightarrow CO(1) + O$	$2.0 \times 10^{-5} T^{-1.0} u_e^{-0.5}$
E2	0 ⁺ ₂ + e - 0 + 0	$6.0 \times 10^{-7} \mathrm{T}^{-0.5} \mathrm{u}^{-0.5}$
E3*	$NO^{+} + e \longrightarrow N + O$	$1.2 \times 10^{-6} \text{ T}^{-0.5} \text{ u}^{-0.5}$
E3**	$NO^{+} + e \longrightarrow NO$	$3.0 \times 10^{-4} \text{ T}^{-1.0} \text{ u}_{e}^{-0.5}$
E4	$CO_2^+ + O_2^- \longrightarrow CO(1) + O_2^- + O$	6.0×10^{-7}
E5	$CO_2^+ + CO_3^- \longrightarrow CO_2(020) + O + CO_2(020)$	5.0×10^{-7}
E6	$CO_2^+ + NO_2^- \longrightarrow CO(1) + O + NO_2$	6.0×10^{-7}
E7	$CO_2^+ + NO_3^- \longrightarrow CO(1) + O + NO_3$	5.0×10^{-7}
E8	$O_2^+ + O_2^- \longrightarrow O_2^- + O_2^- + O_2^-$	4.0×10^{-7}
E9	$O_2^+ + CO_3^- \longrightarrow O_2^- + O + CO_2(020)$	3.0×10^{-7}
E10	$O_2^{\dagger} + NO_2^{-} \longrightarrow O + O + NO_2$	4.0×10^{-7}
E11	$O_2^{\dagger} + NO_3^{-} \longrightarrow O + O + NO_3$	1.3×10^{-7}
E12	$NO^{\dagger} + O_{2}^{\dagger} \longrightarrow N + O + O_{2}$	6.0×10^{-7}
E13	$NO^{+} + CO_{3}^{-} \longrightarrow NO + O + CO_{2}(020)$	6.0×10^{-7}
E14	$NO^{\dagger} + NO_{2}^{-} \longrightarrow N + O + NO_{2}$	5.0×10^{-7}
E15	$NO^{\dagger} + NO_{3}^{-} \longrightarrow N + O + NO_{3}$	8.0×10^{-7}
E16	$CO_2^+ + O_4^- \longrightarrow CO_2(020) + O_2 + O_2$	5.0×10^{-7}
E17	$CO_2^+ + CO_4^- \longrightarrow CO_2(020) + CO_2(020) + O_2$	5.0×10^{-7}
E18	$O_2^+ + O_4^- \longrightarrow O_2^- + O_2^- + O_2^-$	3.0×10^{-7}
E19	$O_2^+ + CO_4^- \longrightarrow O_2^- + CO_2^-(020) + O_2^-$	3.0×10^{-7}
E20	$NO^+ + O_4^- \longrightarrow NO + O_2 + O_2$	6.0×10^{-7}
E21	$NO^{+} + CO_{4}^{-} \rightarrow NO + CO_{2}(020) + O_{2}$	6.0×10^{-7}

^{*}Dry
***Moist

Tabular Data B-1.C-35. Ionized species reactions * and rate coefficients ** for the CO $_2$ electric discharge laser (Concluded).

E22	$HCO^{\dagger} + e \longrightarrow H + CO(1)$	$1.0 \times 10^{-5} \text{ T}^{-1} \text{ u}_{e}^{-0.5}$
E23	$HCO_2^+ + e \longrightarrow H + CO_2(020)$	$4.0 \times 10^{-5} \mathrm{T}^{-1} \mathrm{u_e^{-0.5}}$
E24	H ₃ O ⁺ + e → H + H + OH	$4.0 \times 10^{-6} \text{ T}^{-0.5} \text{ u}_{e}^{-0.5}$
E25	$HCO^{\dagger} + O_2^{-} \longrightarrow CO(1) + H + O_2$	3.0×10^{-7}
E26	$HCO^{+} + CO_{3}^{-} \longrightarrow CO(1) + CO_{2}(020) + OH$	3.0×10^{-7}
E27	$HCO^{+} + CO_{4}^{-} \longrightarrow CO(1) + CO_{2}(020) + HO_{2}$	3.0×10^{-7}
E28	$HCO_2^+ + O_2^- \longrightarrow CO_2(020) + H + O_2$	1.2×10^{-6}
E29	$HCO_2^{\dagger} + CO_3 \longrightarrow CO_2(020) + CO_2(020) + OH$	1.0×10^{-6}
E30	$HCO_2^{\dagger} + CO_4^{-} \longrightarrow CO_2(020) + CO_2(020) + HO_2$	1.0×10^{-6}
E31	$H_3O^+ + O_2^- \longrightarrow H_2O + H + O_2$	2.4×10^{-6}
E32	$H_3O^+ + CO_3^- \longrightarrow H_2O + CO_2(020) + OH$	2.4×10^{-6}
E33	$H_3O^+ + CO_4^- \longrightarrow H_2O + CO_2(020) + HO_2$	2.4×10^{-6}
E34	$H_3O^+ + NO_3^- \longrightarrow H_2O + NO_2 + OH$	2.4×10^{-6}
E35	$H_3O^+ + NO_2^- \longrightarrow H_2O + NO_2 + H$	2.4×10^{-6}

Catalytic Species

 $M_1 = All species$

 M_2 = All species except O, O₂ and O₃

 $M_3 = O, O_2, O_3$

 $M_4 = O_2$

Tabular Data B-1.C-36. Excited species reactions and rate coefficients $^{\rm a}$ for the CO $_2$ electric discharge laser.

A. Vibrational Pumping Reactions b

	$N_2(0) + e \longrightarrow N_2(1) + e$	$1.6 \times 10^{-11} \exp(9.1 u_e)$	
Al		$1 + 7.0 \times 10^{-4} \exp(9.1 u_e)$	
A2	CO(0) + e CO(1) + e	$\frac{2.4 \times 10^{-7} \text{ u}_{\text{e}}^{0.5} \exp(-1.31/\text{u}_{\text{e}})}{1 + 5.33 \text{ u}_{\text{e}} \exp(-1.31/\text{u}_{\text{e}})}$	
A 3	$CO_2(000) + e \longrightarrow CO_2(001) + e$	$7.9 \times 10^{-9} \exp(-0.38/u_e)$	
A4	$CO_2(000) + e \longrightarrow CO_2(010) + e$	$2.0 \times 10^{-8} u_{e}$	

B. Electronic Pumping and De-Excitation Reactions^c

В1	CO(0) + e CO* + e	$5.3 \times 10^{-9} u_e^{0.5} \exp(-2.6/u_e)$
B2	$CO^* + M_1 \longrightarrow CO(0) + M_1$	1.0×10^{-11}
В3	$CO^* + CO_2(000) \longrightarrow CO(0) + O + CO(0)$	1.0×10^{-10}
B4	$N_2(0) + e - N_2^* + e$	$1.3 \times 10^{-5} u_e^{-4.6} \exp(-11.5/u_e)$
B 5	$N_2^* + M_1 \longrightarrow N_2(0) + M_1$	1.0×10^{-11}
В6	$N_2^* + CO_2(000) \longrightarrow N_2(0) + O + CO(0)$	1.0×10^{-11}
B7	$N_2^* + CO_2(000) \longrightarrow N + NO + CO(0)$	1.0×10^{-10}
B8	CO ₂ (000) + e - CO ₂ + e	$2.5 \times 10^{-9} u_e^{1.6} \exp(-5.1/u_e)$
В9	$CO_2^* + M_1 \longrightarrow CO_2(000) + M_1$	1.0×10^{-11}
B10	$CO_2^* + CO_2(000) \longrightarrow CO_2(000) + O + CO(0)$	1.0×10^{-10}

^aUnits are as follows: Rate coefficients, cm³-particle-sec units; u_e, eV; T, ^oK; R, cal-mole⁻¹ ^oK⁻¹.

bAll reversible reactions; $k_r = k_f/K$. For the vibrational pumping reactions, K is the equilibrium coefficient for the essentially thermo-neutral forward reaction involving hot electrons.

cAll forward reactions only.

Tabular Data B-1.C-36. Excited species reactions and rate coefficients $^{\rm a}$ for the CO $_2$ electric discharge laser (Continued).

C. Vibrational Relaxation Reactions

C1
$$CO_2(110) + CO_2(000) \longrightarrow CO_2(100) + CO_2(010)$$
 $1.25 \times 10^{-13} \text{ T}^{0.5}$

C2 $CO_2(030) + CO_2(000) \longrightarrow CO_2(100) + CO_2(010)$ $1.8 \times 10^{-15} \text{ T}^{0.5}$

C3 $CO_2(030) + CO_2(000) \longrightarrow CO_2(020) + CO_2(010)$ $3.1 \times 10^{-13} \text{ T}^{0.5}$

C4 $CO_2(100) + CO_2(000) \longrightarrow CO_2(010) + CO_2(010)$ 4.0×10^{-13}

C5 $CO_2(020) + CO_2(000) \longrightarrow CO_2(010) + CO_2(010)$ $1.4 \times 10^{-12} \text{ T}^{0.5}$

C6 $CO_2(001) + M_5 \longrightarrow CO_2(110) + M_5$ $1.1 \times 10^{-27} \text{ T}^{4.8} \exp(1484/RT)$

C7 $CO_2(001) + M_8 \longrightarrow CO_2(110) + M_8$ $1.9 \times 10^{-31} \text{ T}^{5.8} \exp(2436/RT)$

C8 $CO_2(001) + M_5 \longrightarrow CO_2(030) + M_5$ $8.1 \times 10^{-31} \text{ T}^{5.6} \exp(1484/RT)$

C9 $CO_2(001) + M_8 \longrightarrow CO_2(030) + M_8$ $1.4 \times 10^{-34} \text{ T}^{6.6} \exp(2436/RT)$

C10 $CO_2(110) + M_6 \longrightarrow CO_2(030) + M_6$ $4.3 \times 10^{-17} \text{ T}^{1.5}$

C11 $CO_2(110) + M_6 \longrightarrow CO_2(020) + M_6$ $4.5 \times 10^{-27} \text{ T}^{4.2} \exp(-903/RT)$

C12 $CO_2(110) + M_6 \longrightarrow CO_2(020) + M_6$ $8.8 \times 10^{-20} \text{ T}^{2.5} \exp(-4410/RT)$

C13 $CO_2(110) + M_6 \longrightarrow CO_2(020) + M_6$ $8.6 \times 10^{-24} \text{ T}^{3.8} \exp(-549/RT)$

C14 $CO_2(030) + M_6 \longrightarrow CO_2(100) + M_6$ $9.3 \times 10^{-22} \text{ T}^{3.0} \exp(-1230/RT)$

C15 $CO_2(030) + M_6 \longrightarrow CO_2(100) + M_6$ $1.1 \times 10^{-21} \text{ T}^{3.0} \exp(-1230/RT)$

C16 $CO_2(100) + M_6 \longrightarrow CO_2(020) + M_6$ $1.1 \times 10^{-21} \text{ T}^{3.0} \exp(-1230/RT)$

C17 $CO_2(100) + M_6 \longrightarrow CO_2(020) + M_6$ $1.1 \times 10^{-21} \text{ T}^{3.0} \exp(-1230/RT)$

C18 $CO_2(100) + M_6 \longrightarrow CO_2(010) + M_7$ $5.6 \times 10^{-22} \text{ T}^{3.3} \exp(-1480/RT)$

C19 $CO_2(100) + M_7 \longrightarrow CO_2(010) + M_7$ $5.6 \times 10^{-22} \text{ T}^{3.0} \exp(843/RT)$

C19 $CO_2(100) + CO_2(010) + CO_2(0$

All reversible reactions.

Tabular Data B-1.C-36. Excited species reactions and rate coefficients a for the CO₂ electric discharge laser (Concluded).

C23
$$CO_2(010) + M_7 \longrightarrow CO_2(000) + M_7$$

C24
$$CO_2(010)$$
 + He \longrightarrow $CO_2(000)$ + He

C25
$$CO_2(010) + CO(0) \longrightarrow CO_2(000) + CO(0)$$

C26
$$CO_2(001) + N_2(0) \longrightarrow CO_2(000) + N_2(1)$$

C27
$$CO_2(001) + CO(0) \longrightarrow CO_2(000) + CO(1)$$

C28
$$N_2(1) + CO(0) - N_2(0) + CO(1)$$

C29
$$CO_2(010) + H_2O \longrightarrow CO_2(000) + H_2O$$

C30
$$CO_2(001) + H_2O \longrightarrow CO_2(030) + H_2O$$

C31
$$N_2(1) + H_2O \longrightarrow N_2(0) + H_2O$$

C32
$$CO(1) + H_2O \longrightarrow CO(0) + H_2O$$

C33
$$CO_2(010) + H_2 \longrightarrow CO_2(000) + H_2$$

$$C34 \quad CO_2(001) + H_2 \longrightarrow CO_2(110) + H_2$$

$$3.4 \times 10^{-26} \text{ T}^{4.2} \exp(1130/\text{RT})$$

$$9.9 \times 10^{-22} \text{ T}^{3.0} \exp(843/\text{RT})$$

$$4.5 \times 10^{-10} \text{ T}^{-1.0}$$

$$8.3 \times 10^{-12} \text{ T}^{-0.5}$$

$$1.4 \times 10^{-17} \, \mathrm{T}^{1.65}$$

$$2.7 \times 10^{-18} \text{ T}^{1.5}$$

$$3.2 \times 10^{-13} \exp(22.9/T^{1/3})$$

$$4.0 \times 10^{-13}$$

$$1.1 \times 10^{-10} \exp(-68.9/T^{1/3})$$

$$3.1 \times 10^{-10} \exp(-65.0/T^{1/3})$$

$$3.0 \times 10^{-12}$$

Catalytic Species

M₁ = All species

 M_5 = All species except He and N_2

 $M_6 = 1.5 \text{ He}$; All others: 1.0

 $M_7 = 0.5 N_2$; CO = He = 0; All others: 1.0

 $M_8 = \text{He}, 2N_2$

Tabular Data B-1.C-37. Free radical species reactions $^{\rm a}$ and rate coefficients $^{\rm b}$ for the CO $_2$ electric discharge laser.

A. Ternary Recombination Reactions

A1
$$N + N + M_9 \longrightarrow N_2(1) + M_9$$

A2
$$N + O + M_9 \longrightarrow NO + M_9$$

A3
$$O + CO(0) + M_{10} \longrightarrow CO_2(020) + M_{10}$$

A4
$$O + O + M_q \longrightarrow O_2 + M_q$$

A5
$$O + O_2 + M_9 \longrightarrow O_3 + M_9$$

A6
$$O + NO + M_9 \rightarrow NO_2 + M_9$$

A7
$$O + NO_2 + M_9 \longrightarrow NO_3 + M_9$$

A8
$$H + H + M_q \longrightarrow H_2 + M_q$$

A9 O+H+
$$M_9 \rightarrow OH + M_9$$

All
$$H + O_2 + M_9 \longrightarrow HO_2 + M_9$$

A12 CHO +
$$M_q \longrightarrow CO(0) + H + M_q$$

A13
$$CH_2O + M_9 \longrightarrow CO(0) + H_2 + M_9$$

A14
$$HO_2 + NO + M_9 \longrightarrow HNO_3 + M_1$$

A15 OH +
$$NO_2 \rightarrow HNO_3$$

A17
$$NO_2 + NO_3 \rightarrow N_2 O_5$$

Rate Coefficients

$$8.3 \times 10^{-34} \exp(1000/RT)$$

$$1.8 \times 10^{-31} \text{ T}^{-0.5}$$

$$2.0 \times 10^{-33} \exp{-(4000/RT)}$$

$$3.8 \times 10^{-30} \text{ T}^{-1} \exp{-(340/\text{RT})}$$

$$1.0 \times 10^{-34} \exp(1010/RT)$$

$$4.0 \times 10^{-33} \exp(1880/RT)$$

$$1.8 \times 10^{-32} \exp(1000/RT)$$

$$2.8 \times 10^{-30} \text{ T}^{-1.0}$$

$$1.0 \times 10^{-32}$$

$$2.1 \times 10^{-32} \exp(580/RT)$$

$$1.2 \times 10^{-10} \exp(-15000/RT)$$

$$3.5 \times 10^{-8} \exp(-35000/RT)$$

$$3.5 \times 10^{-31}$$

$$1.0 \times 10^{-11} \exp(-340/RT)$$

$$2.0 \times 10^{-12}$$

$$4.0 \times 10^{-12}$$

a All reversible reactions.

Units are as follows: Rate coefficients, cm³-particle-sec units; T, ^oK; R, cal-mole-1-oK-1.

Tabular Data B-1.C-37. Free radical species reactions $^{\rm a}$ and rate coefficients $^{\rm b}$ for the CO $_2$ electric discharge laser (Continued).

B. Binary Reactions

B1
$$N + NO \longrightarrow N_2(0) + O$$

B2
$$N + NO_2 \longrightarrow NO + NO$$

B3
$$N + NO_3 \rightarrow NO + NO_2$$

B4
$$N + O_2 \rightarrow NO + O$$

B5
$$N + O_3 \rightarrow NO + O_2$$

$$B6 \quad O + O_3 \longrightarrow O_2 + O_2$$

B7
$$O + NO_2 \rightarrow O_2 + NO$$

B8
$$O + NO_3 \rightarrow O_2 + NO_2$$

B10 NO +
$$O_3 \rightarrow NO_2 + O_2$$

B11
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$

B12
$$NO_2 + NO_3 \rightarrow NO_2 + O_2 + NO$$

B13
$$NO_3 + NO_3 \longrightarrow NO_2 + O_2 + NO_2$$

B17 OH +
$$HNO_3 \rightarrow H_2O + NO_3$$

B19
$$H + NO_2 \rightarrow OH + NO$$

$$2.7 \times 10^{-11}$$

$$1.4 \times 10^{-12}$$

$$5.7 \times 10^{-13}$$

$$1.1 \times 10^{-14} \text{ T exp-}(6300/\text{RT})$$

$$5.7 \times 10^{-13}$$

$$1.9 \times 10^{-11} \exp{-(4600/RT)}$$

$$5.7 \times 10^{-13}$$

$$8.7 \times 10^{-12}$$

$$9.0 \times 10^{-13} \exp{-(2400/RT)}$$

$$1.2 \times 10^{-13} \exp{-(4900/RT)}$$

$$2.3 \times 10^{-13} \exp{-(3200/RT)}$$

$$5.0 \times 10^{-12} \exp{-(6000/RT)}$$

$$1.1 \times 10^{-19} \text{ T}^2 \exp(1600/\text{RT})$$

$$1.0 \times 10^{-17} \text{ T}^2 \exp(-2900/\text{RT})$$

$$3.5 \times 10^{-13} \exp(-600/RT)$$

$$3.5 \times 10^{-13} \exp(-600/RT)$$

$$5.3 \times 10^{-11}$$

$$6.0 \times 10^{-10} \exp(-1500/RT)$$

$$4.0 \times 10^{-11}$$

$$1.0 \times 10^{-11} \exp(-1100/RT)$$

$$2.6 \times 10^{-11}$$

$$1.6 \times 10^{-12} \exp(-2000/RT)$$

Tabular Data B-1.C-37. Free radical species reactions $^{\rm a}$ and rate coefficients $^{\rm b}$ for the CO $_2$ electric discharge laser (Concluded).

B24	$O + N_2O_5 \longrightarrow NO_2 + NO_2 + O_2$	1.0×10^{-14}
B25	HO ₂ + H → OH + OH	$4.2 \times 10^{-10} \exp(-1900/RT)$
B 26	$HO_2 + H \longrightarrow H_2 + O_2$	$4.2 \times 10^{-11} \exp(-700/RT)$
B27	$HO_2 + NO \longrightarrow NO_2 + OH$	2.0×10^{-13}
B28	HO ₂ + O OH + O ₂	$8.0 \times 10^{-11} \exp(-1000/RT)$
B29	$HO_2 + OH \longrightarrow H_2O + O_2$	$8.3 \times 10^{-11} \exp(-1000/RT)$
B 30	$HO_2 + O_3 \longrightarrow OH + O_2 + O_2$	$1.0 \times 10^{-13} \exp(-2500/RT)$
B31	$CH_2O + H \longrightarrow CHO + H_2$	$2.2 \times 10^{-11} \exp(-3800/RT)$
B 32	CH ₂ O + O → CHO + OH	1.6×10^{-13}
B33	$CH_2O + OH \longrightarrow CHO + H_2O$	$9.0 \times 10^{-13} \text{ T}^{0.5}$
B34	CHO + O → CO(0) + OH	2.1×10^{-10}
B35	CHO + OH \longrightarrow CO(0) + H ₂ O	2.1×10^{-10}
B36	$CHO + O_2 \longrightarrow CO(0) + HO_2$	$8.3 \times 10^{-11} \exp(-1600/RT)$

Catalytic Species

 $M_9 = 2 GO_2$, He; All others: 1.0

 $M_{10} = 3 CO_2$, 1.5 CO; 20 O_2 ; All others: 1.0

Tabular Data B-1.C-38. Dominant formation kinetics for ArF*.

$$\vec{e}$$
 + Ar \rightarrow Ar* + \vec{e} + e_s
 e_s + F₂ \rightarrow F* + F 5×10^{-9} cm³/sec^a
F* + Ar* + (M) \rightarrow ArF* + (M)
High pressure
Ar* + 2Ar \rightarrow Ar* + Ar 2.5×10⁻³¹ cm⁶/sec^b
Ar* + F* \rightarrow ArF* + Ar

^aHao-Lin Chen, R.E. Center, Daniel W. Trainor, and W.I. Fyfe, Ap. '. Phys. Lett. 30, 99 (1977).

^bE.W. McDaniel, V. Cermak, A. Dalgarno, E.E. Ferguson, and L. Friedman, *Ion-Molecule Reactions* (Wiley-Interscience, New York, 1970), p. 338.

Tabular Data B-1.C-39. Dominant quenching kinetics of ArF*.

Reaction	(Rate constant) × (ArF* lifetime)	Rate constant a
ArF* + F ₂ → Products	$7.6 \pm 0.7 \times 10^{-18} \text{ cm}^3$	1.9×10 ⁻⁹ cm ³ /sec
ArF* + Kr → KrF* + Ar	$6.1 \pm 1.5 \times 10^{-18}$ cm ³	1.6×10 ⁻⁹ cm ³ /sec
ArF* + Xe → XeF* + Ar	$1.8 \pm 0.2 \times 10^{-17} \text{ cm}^3$	4.5×10 ⁻⁹ cm ³ /sec
ArF* + Ar → Products	$3.6 \pm 1 \times 10^{-20} \text{ cm}^3$	$9 \times 10^{-12} \text{ cm}^3/\text{sec}$
ArF* + 2Ar - Ar ₂ F* + Ar	$1.6 \pm 0.3 \times 10^{-39}$ cm ⁶	$4 \times 10^{-31} \text{ cm}^6/\text{sec}$

The rate constants have been evaluated assuming an ArF* lifetime of 4 ns

Tabular Data B-1.C-40. Dominant quenching processes of KrF*.

KT R (KrF*)	$k(T_R = 6.5 \text{ nsec})$
$5 \times 10^{-18} \text{ cm}^3$	$7.8 \times 10^{-10} \text{cm}^3 \text{sec}^{-1}$
$4.4 \times 10^{-39} \text{cm}^6$	$6.7 \times 10^{-31} \text{cm}^6 \text{sec}^{-1}$
≤ 1.1 x 10 ²⁰ cm ³	
$4.2 \times 10^{-39} \text{cm}^6$	6.5 x 10 -31 cm ⁶ sec -1
46 x 10 40 cm ⁶	$7 \times 10^{-32} \text{cm}^6 \text{sec}^{-1}$
	$5 \times 10^{-18} \text{ cm}^3$ $4.4 \times 10^{-39} \text{ cm}^6$ $\leq 1.1 \times 10^{-20} \text{ cm}^3$ $4.2 \times 10^{-39} \text{ cm}^6$

Tabular Data B-1.C-41. Dominant XeF* quenching processes.

REACTION	kT,	k (T, = 16 ns)
XeF + F2	5.3 x 10 ⁻¹⁸ cm ³	3 x 10 ⁻¹⁰ cm ³ /sec
XeF + NF3	2.8 x 10 ⁻¹⁹ cm ³	1 7 x 10 ⁻¹¹ cm ³ sec
XeF + Xe	4.5 x 10 ⁻¹⁹ cm ³	29 x 10 ⁻¹¹ cm ³ sec
XeF* + Ne	NEGLIGIBLE	
Xef* + Xe + Ne	1.23 x 10 ⁻³⁸ cm ⁶	7.7 × 10 -31 cm ⁶ sec
XeF + 2Ne	4 32 × 10 -41 cm ⁶	2 7 x 10 33 cm ⁶ sec
Xef . A.	1 28 • 10 20 cm ³	8 × 10 13 cm ³ sec
XoF + 2Ar	24 x 10 -40 cm6	15 × 10 32 cm ⁶ sec
Xef" . Xe . Ai	48 x 10 - 39 cm6	3 x 10 ⁻³¹ cm ⁶ sec

Graphical Data B-1.C-42. Detailed flow chart for the $Ar - N_2 - NO$ e-beam pumped system.

Tabular Data B-1.C-43. Rate coefficients for the Ar - N_2 - NO e-beam pumped system.

Reaction	Pasation	P. 4. 6. 6.4.
No.	Reaction	Rate Coefficient
	Excitation Reactions	-31 6
1	$Ar^{+}+2Ar \rightarrow Ar_{2}^{+}+Ar$	$2.5 \times 10^{-31} \text{ cm}^6/\text{sec}$
2	$Ar_2^+ + e^- \rightarrow Ar^+ + Ar$	$1x10^{-6} \text{ cm}^{3}/\text{sec}$
3	$Ar^* + 2Ar \rightarrow Ar_2^* + Ar$	1×10^{-32} cm ⁶ /sec
4	$Ar^* + Ar^* \rightarrow Ar^+ + Ar + e^-$	$5x10^{-10}$ cm ³ /sec
5	$Ar_2^* + e^- \rightarrow 2Ar + e^-$	1×10^{-9} cm ³ /sec
6	$Ar_2^* + Ar_2^* \rightarrow Ar_2^+ + 2Ar + e^-$	$5x10^{-10} \text{ cm}^3/\text{sec}$
7	$Ar_2^* \rightarrow 2Ar + h_V$	$2.4 \times 10^7 \text{ s}^{-1}$
	Transfer Reactions	
8	$Ar^* + N_2 \rightarrow total$	$3x10^{-11} \text{ cm}^3/\text{sec}$
9	" $\rightarrow N_2(B) + Ar$	1.7x10 ⁻¹¹ cm ³ /sec
10	-	$3x10^{-12}$ cm /sec
	$\stackrel{\text{"}}{\rightarrow} N_2(C) + Ar$	$\frac{3x10}{1x10} \frac{\text{cm /sec}}{\text{cm /sec}}$
11	$\stackrel{"}{\longrightarrow} N_2(E) + Ar$	
12	$Ar_2^{+N}_2 \rightarrow N_2(B) + 2Ar$	$1x10^{-11} \text{ cm}^3/\text{sec}$
	N Triplet Reactions	
13	$N_2(E) + Ar \rightarrow N_2(C) + Ar$	$3x10^{-12} \text{ cm}^3/\text{sec}$
14	$N_2(C) \rightarrow N_2(B) + hv$	$2.2 \times 10^{+7} \text{ s}^{-1}$
15	$N_2(C)+N_2 \rightarrow N_2(B)+N_2$	1.5×10^{-11} cm ³ /sec
16	$N_2(C) + Ar \rightarrow N_2(B) + Ar$	8x10 ⁻¹³ cm ³ /sec
17	$N_2(B) \rightarrow N_2(A) + h_V$	1.1x10 ⁵ s ⁻¹
18	$N_2(B) + N_2 \rightarrow N_2(A) + N_2$	$2.0 \times 10^{-12} \text{ cm}^3/\text{sec}$
19	$N_2(B)+Ar \rightarrow N_2(A)+Ar$	$4x10^{-15}$ cm ³ /sec

Tabular Data B-1.C-43. Rate coefficients for the Ar - N_2 - NO e-beam pumped system (Concluded).

Reaction		
No.	Reaction	Rate Coefficient
20	$N_2(A)+N_2(A) \rightarrow total$	$1x10^{-10} \text{ cm}^3/\text{sec}$
21	$" \rightarrow N_2(E) + N_2$	$1x10^{-11} \text{ cm}^3/\text{sec}$
22	$" \rightarrow N_2(C) + N_2$	$1x10^{-11} \text{ cm}^3/\text{sec}$
23	" $\rightarrow N_2(B)+N_2$	$8x10^{-11}$ cm ³ /sec
	NO Reactions	
24	$Ar_2^+ + NO \rightarrow NO^+ + 2Ar$	2.4×10^{-10} cm ³ /sec
25	Ar +NO → total	$2x10^{-10} \text{ cm}^3/\text{sec}$
26	Ar ₂ +NO → total	$7x10^{-10}$ cm ³ /sec
27	$N_2(B)+NO \rightarrow total$	$7x10^{-11} \text{ cm}^3/\text{sec}$
28	$N_2(A)+NO \rightarrow total$	$8x10^{-11} \text{ cm}^3/\text{sec}$
28a	$N_2(A)+NO \rightarrow NO(A)+N_2$	$4x10^{-11} \text{ cm}^3/\text{sec}$
29	$NO(A) \rightarrow NO(X) + h_{V}$	$4.5 \times 10^6 \text{ s}^{-1}$
30	$NO(A)+Ar \rightarrow total$	$8x10^{-15}$ cm ³ /sec
31	$NO(A)+NO \rightarrow total$	$2x10^{-10} \text{ cm}^3/\text{sec}$

Data taken from R. M. Hill, R. A. Gutchech, D. L. Huestis, D. Mukherjee, and D. C. Lorents.

Tabular Data B-1.C-44. Reactions and rates in pure xenon kinetic model.

Reaction	Rate (cm /sec, etc.)
$Xe^+ + 2Xe \rightarrow Xe_2^+ + Xe$	2.5 x 10 ⁻³¹
$Xe_2^+ + e \rightarrow Xe^{**} + Xe$	2 x 10 ⁻⁷
$Xe^{**} + 2Xe \rightarrow Xe_{2}^{**} + Xe$	10-31
$Xe^{**} \rightarrow Xe^{*} + hv$	1.5 x 10 ⁷
$Xe_2^{**} + Xe \rightarrow Xe^* + 2Xe$	10 ⁻¹¹
$Xe_2^{**} + e \rightarrow Xe_2^* + e$	10 ⁻⁶
$Xe^* + 2Xe \rightarrow Xe_2^* + Xe$	5 x 10 ⁻³²
$Xe_2^* \rightarrow 2Xe + hv$	Variable
$Xe_2^* + e \rightarrow 2 Xe + e$	10 ⁻⁹
$Xe^{**} + Xe^{**} \rightarrow Xe^{+} + Xe + e$	5 x 10 ⁻¹⁰
$Xe_{2}^{**} + Xe_{2}^{**} \rightarrow Xe_{2}^{+} + 2Xe + e$	5 x 10 ⁻¹⁰
$Xe_{2}^{*} + Xe_{2}^{*} \rightarrow Xe_{2}^{+} + 2Xe + e$	5 x 10 ⁻¹⁰
$Xe^* + Xe^* \rightarrow Xe^+ + Xe + e$	5 x 10 ⁻¹⁰

Data taken from D. C. Lorents, D. J. Eckstrom, and D. Huestis.

Graphical Data B-1.C-45. Energy flow diagram of the xenon-mercury system.

Tabular Data B-1.C-46. Reactions and rates in xenon-mercury system.

Reaction No.	Reaction		Rate Coefficient
1	Xe ⁺ + 2Xe	→ Xe ⁺ ₂ + Xe	2.5 x 10 ⁻³¹ cm ⁶ /sec
2	$Xe_{2}^{+} + e^{-}$	→ Xe** + Xe	$2 \times 10^{-7} \text{ cm}^3/\text{sec}$
3	4	→ Xe ^{**} + Xe	10 ⁻³¹ cm ⁶ /sec
4	Xe2** + Xe	→ Xe* + 2Xe	10 ⁻¹¹ cm ³ /sec
5	Xe* + 2Xe	→ Xe [*] ₂ + Xe	$5 \times 10^{-32} \text{ cm}^6/\text{sec}$
6	Xe *	→ 2Xe + h (1720 Å)	Variable
7	Xe2 + e-	$= Xe^* + Xe + e^-$	(a)
8	Xe* + Hg	\rightarrow Xe + Hg (7 ³ S)	Probably fast (5 x 10 ⁻¹⁰ cm ³ /sec)
9	Xe + Hg	$\rightarrow Xe + Hg (6^{3}P_{0,1,2})$	
10	Хе ₂ + Нg	→ XeHg * + Xe	
11	Xe ₂ + Hg	\rightarrow 2Xe + Hg $(6^{3}P_{0,1,2})$	Probably fast (>5 x 10 ⁻¹⁰ cm ³ /sec)
12	$2Xe + Hg(7^3S)$		> 1.6 x 10 ⁻³² cm ⁶ /sec
13	Hg (7 ³ S)	\rightarrow Hg (6 ³ P) + hv	$1.2 \times 10^8 \text{ s}^{-1}$
14	$Xe + Hg(7^3S)$	\rightarrow Xe + Hg(6 ³ P) + hv	fast (> 10 ⁻¹⁴ cm ³ /sec)
15	$Xe + Hg(6^3P)$	→ Xe + Hg + hv	2.1 x 10 ⁻¹⁴ cm ³ /sec
16	Xe-Hg	→ Xe + Hg + h∨	
17	Xe-Hg* + Xe	\rightleftharpoons 2Xe + Hg (6 ³ P)	(a)
18		$e \stackrel{?}{=} Hg (6^3 P_1) + Xe$	(a)
19	Xe-Hg + Hg		Probably fast
		-	

^aBecause the equilibrium constants are not known, these rates have not been derived.

Note: Energy input from the electrons comes in along the pump arrows. The specie in each box, plus the component along the reaction arrow, yields the result in the next box. The wavelengths of the emitting species are indicated. They may be subject to quenching by NF₃ or Xe (not shown). Nef is presumed to predissociate.

Graphical Data B-1.C-47. Major energy flow pathways in e-beam pumped ${\rm Ne/Xe/NF}_3$ mixtures.

Tabular Data B-1.C-48. Major input chain reactions in Ne/Xe/NF $_3$ mixtures.

Reaction	Rate Coefficient (cm molecule sec , etc.)
Fluorine Reactions	-10
20. $F + NF_3 \rightarrow F_2 + NF_2$	$2.5 \pm 0.1 \times 10^{-10}$
21. F + $Xe \rightarrow Xe$ + F + e	$3.1 \pm 0.1 \times 10^{-10}$
22. F + 2Ne - NeF + Ne	< 5 x 10 ⁻³⁵
23. F → hy (97 nm) + F	~ 104
	$< 5 \times 10^5$
24. $F_2^* \rightarrow hy (158 \text{ nm}) + F_2$	2 x 10 ⁷
25. $F_2^* + Xe \rightarrow XeF^* + F$	$1.3 \pm 0.2 \times 10^{-10}$
26. $F_2^* + NF_3 \rightarrow products$	$3.8 \pm 0.3 \times 10^{-10}$
Xenon Ion Reactions	
27. Xe ⁺ + Xe + Ne → Xe ₂ + Ne	1.5×10^{-31}
28. $Xe^+ + F^- (+ M) \rightarrow XeF^+ (+ M)$	10 ⁻⁶
29. $Xe_2^+ + e \rightarrow Xe^+ + Xe$	2 x 10 ⁻⁷ at 1 eV
30. $Xe_2^+ + F^- \rightarrow XeF^+ + Xe$	10 ⁻⁶
Excited Xenon Reactions	
31. Xe + Xe + Ne - Xe + Ne	$1.6 \pm 0.1 \times 10^{-32}$
32. $Xe^{*} + NF_{3} \rightarrow XeF^{*} + NF_{2}$	9 x 10 ⁻¹¹
33a. $Xe_2^+ + NF_3 \rightarrow XeF^+ + NF_2^- + Xe$	5 x 10 ⁻¹¹
33b. $Xe_2^+ + NF_3 \rightarrow 2Xe + F + NF_2$	
34. Xe ₂ → h _V (173 nm) + 2Xe	10 ⁷ -2 x 10 ⁸

Data Taken from D. L. Huestis, R. M. Hill, D. J. Eckstrom, M. V. McCusker, D. C. Lorents, H. H. Nakano, B. E. Perry, J. A. Mangevicius, and N. E. Schlotter.

Tabular Data B-1.C-48. Major input chain reactions in Ne/Xe/NF $_{\rm 3}$ mixtures (Concluded).

	Rate Coefficient
Reaction	(cm molecule sec , etc.)
Neon Ion Reactions	
1. Ne ⁺ + 2Ne → Ne ₂ + Ne	4.6 x 10 ⁻³²
2. $Ne^+ + NF_3 \rightarrow NF_3^+ + Ne$	5 x 10 ⁻¹⁰
3. $Ne^+ + Xe \rightarrow Xe^+ + Ne$	< 10 ⁻¹⁴
4. Ne + F (+ M) - NeF (+ M)	10 ⁻⁶
5. $Ne_2^+ + e \rightarrow Ne^+ + Ne$	4 x 10 ⁻⁸ at 1 eV
6. $Ne_2^+ + NF_3 - NF_3^+ + 2Ne$	5 x 10 ⁻¹⁰
7. $Ne_2^+ + Xe \rightarrow Xe^+ + 2Ne$	< 10 ⁻¹³
8. $Ne_2^+ + F^- \rightarrow NeF^+ + Ne$	10 ⁻⁶
9. Ne* + 2Ne → Ne2 + Ne	5 x 10 ⁻³⁴
2	$4.1 \pm 0.4 \times 10^{-34}$
	5.4 x 10 ⁻³⁴
* V.F . NF	$1.05 \pm 0.05 \times 10^{-10}$
10. $\text{Ne}^* + \text{NF}_3 \rightarrow \text{NeF}^* + \text{NF}_2$	7.8 x 10 ⁻¹¹
	7.8 x 10
11. Ne + Xe → Xe + Ne + e	7 x 10 ⁻¹¹
	$7.5 \pm 1.0 \times 10^{-11}$
	7.4×10^{-11}
12a. Ne ₂ + NF ₃ - NeF + NF ₂ + Ne	5 x 10 ⁻¹¹
12b. $\operatorname{Ne}_{2}^{*} + \operatorname{NF}_{3} \rightarrow \operatorname{Ne}_{2}^{*} + \operatorname{NF}_{2}$	-11
13. Ne, + Xe → Xe + 2Ne + e	7.5 x 10 ⁻¹¹
14. Ne ₂ → hv (85 nm) + 2Ne	2 x 10 ⁵ -3 x 10 ⁸
Neon Fluoride Reactions	
	4.2 x 10 ⁸
15. Nef → hv (107 nm) + Ne + F	
16. Nef → Ne + F	2 x 10 ⁹
17. Nef + NF ₃ → products	10 ⁻¹⁰
18. NeF + Xe \rightarrow Xe + F + Ne	10 ⁻¹⁰
19. NeF + 2Ne → Ne ₂ F + Ne	10-31

Tabular Data B-1.C-49. Argon/krypton ion chemistry. (Assuming 1500 Torr argon, 50 Torr krypton, and an ion density of approximately $10^{14}~{\rm cm}^{-3}$).

	Reaction	Rate	Characteristic Time	Ref.
1	$Ar^+ + 2Ar - Ar_2 + Ar$	$2.3x10^{-31} cm^6/sec$	2 ns	· А
2	$Ar_{2}^{+} + Kr \rightarrow Kr^{+} + 2Ar$ $Ar^{+} + Kr \rightarrow Kr^{+} + Ar$	$7.5 \times 10^{-10} \text{ cm}^3/\text{sec}$	1 ns	В
3	$Ar^{+} + Kr - Kr^{+} + Ar$	$\sim 5 \times 10^{-11} \text{ cm}^3/\text{sec}$	13 ns	C
	$Kr^{+} + 2Ar \rightarrow ArKr^{+} + Ar$	$2.3 \times 10^{-31} \text{ cm}^6/\text{sec}$	2 ns	D
5	$Kr^+ + Kr + Ar \rightarrow ArKr^+ + Ar$	$2.3x10^{-31} \text{ cm}^6/\text{sec}$	67 ns	D
6	$Kr^{+} + Kr + Ar \rightarrow Kr_{2}^{+} + Ar$	$2.3 \times 10^{-31} \text{ cm}^6/\text{sec}$	67 ns	D
7	$Ar_2^+ + Kr^- ArKr^+ + Ar$	$2x10^{-10}$ cm ⁶ /sec	3 ns	E
8	$ArKr^{+} + Kr \rightarrow Kr_{2}^{+} + Ar$	$3.2x10^{-10} \text{ cm}^3/\text{sec}$	2 ns	В
9	$Ar_{9}^{+} + e \rightarrow Ar^{*} + Ar$	$6.7 \times 10^{-7} \text{ cm}^3/\text{sec}$	15 ns	F
10	$ArKr^{+} + e \rightarrow Kr^{+} + Ar$	$10^{-6} \text{ cm}^3/\text{sec}$ (?)	10 ns	G
11	$Kr_{2}^{+} + e \rightarrow Kr^{*} + Ar$ $Ar + Kr + Ar \rightarrow ArKr^{+} + Ar$	$1.2 \times 10^{-6} \text{ cm}^3/\text{sec}$	9 ns	F
12	$Ar + Kr + Ar \rightarrow ArKr + Ar$	$2.3x10^{-31} \text{ cm}^6/\text{sec}$	67 ns	D

References

- A W. F. Liu and D. C. Conway, J. Chem. Phys. 62, 3070 (1975).
- B D. K. Bohme, N. G. Adams, M. Moseman, D. B. Dunkin, and E. E. Ferguson, J. Chem. Phys. <u>52</u>, 5094 (1970).
- C Estimate. This is a non-resonant charge transfer and should have a small rate constant.
- D Estimate based on the measured value of reference A.
- E Estimate based on Kr₂⁺ + Xe data of P. Kebarle, R. M. Haynes, and S. K. Searles, J. Chem. Phys. 42, 1684 (1967).
- F H. J. Oskam and J. R. Mittelstadt, Phys. Rev. 132, 1445 (1963).
- G Estimate based on reference F.

References

- 1. J. R. Airey, IEEE J. Quantum Electron. QE-3, 208 (1967).
- 2. J. R. Airey, J. Chem. Phys. 52, 156 (1969).
- 3. J. R. Airey and I. W. M. Smith, J. Chem. Phys. 57, 1669 (1972).
- G. Bekefi (Ed.), "Principles of Laser Plasmas," John Wiley and Sons, New York (1976).
- 5. J. A. Blauer and W. C. Solomon, "Deactivation of Vibrationally Excited Hydrogen Fluoride V-1 and V-2 by Atomic Fluorine," Int. J. Chem. Kinetics 5, 553 (1973).
- J. A. Blauer, W. C. Solomon, and T. W. Owens, "Vibrational Excitation of Deuterium Fluoride and Hydrogen Fluoride by Atomic and Diatomic Species," Int. J. Chem. Kinetics 4, 293 (1972).
- 7. M. H. Bortner, A Review of Rate Constants of Selected Reactions of Interest in Reentry Flow Fields in the Atmosphere, National Bureau of Standards Technical Note 484, Washington, D.C. (1969).
- 8. J. F. Bott, "Gasdynamic Corrections Applied to Laser-Induced Fluorescence Measurements of Hf(v=1) and DF (V=1) Deactivation," SAMSO-TR-74-275, The Aerospace Corporation, El Segundo, California (1975).
- 9. J. F. Bott and N. Cohen, "Temperature Dependence of V-V and V-R,T Energy Transfer Measurements in Mixtures Containing HF," J. Chem. Phys. 58, 4539 (1973).
- 10. J. F. Bott and N. Cohen, J. Chem. Phys. 59, 447 (1973).
- H. C. Brashears, Jr., and D. W. Setser, "Transfer and Quenching Rate Constants for XeF(III,1/2) and XeF(II,3/2)," Appl. Phys. Letts. (in press).
- B. R. Ronfin and W. O. Jeffers, "The CO Chemical Laser," in R. W. F. Gross and J. F. Bott (Eds.), "Handbook of Chemical Lasers,"
 John Wiley and Sons, New York (1973).
- 13. M. I. Buchwald and G. J. Wolga, "Vibrational Relaxation of CO₂ (001) by Atoms," J. Chem. Phys. 62, 2828 (1975).
- K. Bulthuis and G. J. Ponsen, "On the Relaxation of the Lower Laser Level of CO₂," Chem. Phys. Letts. <u>14</u>, 613 (1972).
- 15. R. E. Center, J. Chem. Phys. 58, 5230 (1973).

- R. S. Chan, R. A. McFarlane, and G. J. Wolga, J. Chem. Phys. <u>56</u>, 667 (1972).
- 17. H. L. Chen, R. L. Taylor, J. Wilson, P. Lewis, and W. Fyfe, "Atmospheric Pressure Pulsed HF Chemical Laser," J. Chem. Phys. 61, 306 (1974).
- 18. N. Cohen and J. F. Bott, "A Review of Rate Coefficients in the $\rm H_2\text{-}Cl_2$ Chemical Laser System," SAMSO-TR-75-82, The Aerospace Corporation, El Segundo, California (1975).
- 19. N. Cohen, "A Brief Review of Rate Coefficients for Reactions in the $\rm D_2\text{--}F_2$ Chemical System," SAMSO-TR-74-14, The Aerospace Corporation, El Segundo, California (1974).
- 20. N. Cohen and J. F. Bott, "Kinetics of Hydrogen-Halide Chemical Lasers," with 241 references to earlier work in R. W. F. Gross and J. F. Bott (Eds.), "Handbook of Chemical Lasers," John Wiley and Sons, New York, 33 (1973).
- 21. T. A. Cool, "Transfer Chemical Lasers," in R. W. F. Gross and J. W. Bott (Eds.), "Handbook of Chemical Lasers," John Wiley and Sons, New York, 431 (1973).
- 22. T. A. Dillon and J. C. Stephenson, J. Chem. Phys. 58, 2056 (1973).
- 23. T. A. Dillon and J. C. Stephenson, J. Chem. Phys. 58, 3849 (1973).
- 24. J. A. Dillon and J. C. Stephenson, "Energy Transfer During Orbiting Collisions," J. Chem. Phys. 60, 4286 (1974).
- N. Djeu, "Intercavity Laser Technique for Population Measurements," (to be published).
- 26. R. J. Donovan and D. Husaín, Ann. Rept. Chem. Soc. London Ser. A 68 (1971).
- D. H. Douglas-Hamilton and R. S. Lowden, "Carbon Dioxide Electric Discharge Laser Kinetics Handbook," AFWL Technical Report TR-74-216, Avco Everett Research Laboratory, Inc., Everett, Massachusetts (1975).
- 28. M. G. Dunn and J. A. Lordi, "Measurement of Electron Temperature and Number Density in Shock-Tunnel Flows, Part II: NO + e Dissociative Recombination Rate in Air," AIAA J. 11, 2099 (1969).

- 29. G. Emanuel and W. D. Adams, "RESALE-2, CO₂ and INHALE," Technical Report TR-0172(2776)-5, The Aerospace Corporation, El Segundo, California (1972).
- F. C. Fehsenfeld and E. E. Ferguson, "Laboratory Studies of Negative Ion Reactions with Atmospheric Trace Constituents," J. Chem. Phys. 61, 3181 (1974).
- 31. D. L. Albritton, Atomic Data and Nuclear Data Tables 22, 1-101 (1978).
- 32. J. W. Gallagher, "Energy Transfer Collisions of Atoms and Molecules," Joint Institute for Laboratory Astrophysics, NBS Newsletter, No. 8 (1979).
- 33. D. Garvin and D. F. Hampson (Eds.), "Chemical Kinetics Data Survey VII Tables of Rate and Photochemical Data for Modeling of the Stratoshpere (Revised)," NBS IR 74-430, Washington, D.C. (1974).
- 34. K. R. German, "Collision and Quenching Cross Sections in the $A^2 \Sigma^+$ State of OH and OD," J. Chem. Phys. <u>64</u>, 4065 (1976).
- 35. F. R. Gilmore, E. Bauer, and J. W. McGowan, "A Review of Atomic and Molecular Excitation Mechanisms in Nonequilibrium Gases Up to 20,000°K," J. Quant. Spectrosc. Radiat. Trans., 9, 157 (1969).
- M. C. Gower and A. I. Carswell, "Vibration-Translation Rates in CO₂ Glow Discharges," Appl. Phys. Letts. <u>22</u>, 321 (1973).
- 37. W. H. Green and J. K. Hancock, J. Chem. Phys. 59, 4326 (1973).
- 38. R. W. F. Gross and J. F. Bott (Eds.), "Handbook of Chemical Lasers," John Wiley and Sons, New York (1973).
- 39. R. A. Gutcheck, R. M. Hill, D. L. Huestis, D. C. Lorents, and M. V. McCusker, "Studies of E-Beam Pumped Molecular Lasers," Technical Report SRI No. MP 75-43, Stanford Research Institute, Menlo Park, California (1975).
- G. Hancock, C. Morley, and I. W. M. Smith, Chem. Phys. Letts. <u>12</u>, 193 (1971).
- 41. G. Hancock and I. W. M. Smith, Appl. Opt. 10, 1827 (1971).
- 42. C. F. Hansen "Temperature Dependence of NO + e-Dissociative Recombination Rate Coefficient," Phys. Fluids 11, 904 (1968).

- 43. R. F. Heidner and J. F. Bott, "Vibrational Deactivation of HF(v=1) and DF(v=1) by H and D Atoms," Technical Report SAMSO-TR-75-80, The Aerospace Corporation, El Segundo, California (1975).
- 44. W. L. Hendricks, J. Thoenoes, A. J. McDanal, and R. R. Mikatarian, "Laser and Mixing Program (LAMP) Theory and User's Guide," MICOM Technical Report RH-CR-77-4, Lockheed Missiles and Space Company, Huntsville, Alabama (1976).
- 45. R. M. Hill, R. A. Gutcheck, D. L. Huestis, D. Mukherjee, and D. C. Lorents, "Studies of E-Beam Pumped Molecular Lasers," Technical Report SRI No. MP 74-39, Stanford Research Institute, Menlo Park, California (1974).
- 46. K. Hohla and K. L. Kompa, "The Photochemical Iodine Laser," in R. W. F. Gross and J. F. Bott (Eds.), "Handbook of Chemical Lasers," John Wiley and Sons, New York, 667 (1973).
- 47. D. W. Howgate and T. A. Barr, Jr., J. Chem. Phys. <u>59</u>, 2815 (1973).
- 48. D. L. Huestis, R. M. Hill, H. H. Nakano, and D. C. Lorents, "Quenching of Ne*, F*, and F* in Ne/Xe/NF3 and Ne/Xe/F2 Mixtures," J. Chem. Phys. 69, (11), 5133, (1978).
- 49. D. L. Huestis, R. M. Hill, D. J. Eckstrom, M. V. McCusker, D. C. Lorents, H. H. Nakano, B. E. Perry, J. A. Margevicius, and N. E. Scholtter, "New Electronic Transition Laser Systems," Technical Report SRI No. 78-07, Stanford Research Institute, Menlo Park, California (1978).
- 50. R. E. Huie and J. T. Herron, "The Rate Constant for the Reaction $0_3 + N0_2 \rightarrow 0_2 + N0_3$ Over the Temperature Range 259-362°K," Chem. Phys. Letts. 27, 411 (1974).
- 51. E. C. Y. Inn, "Rate of Recombination of Oxygen Atoms and CO at Temperatures Below Ambient," J. Chem. Phys. <u>61</u>, 1589 (1974).
- J. H. Jacob, M. Rokni, J. A. Mangano, and R. Brochu, "Formation and Quenching Processes in E-Beam-Pumped Kr/F₂ Mixtures," Appl. Phys. Letts. 32, 109 (1978).
- 53. R. Johnsen, H. L. Brown, M. A. Biondi, "Ion-Molecule Reactions Involving N_2^+ , N_2^+ , O_2^+ and O_2^+ Ions from 300°K to ~ 1 eV," J. Chem. Phys. 52, 5080 (1970).

- 54. S. J. Kast and C. Cason, "Performance Comparison of Pulsed Discharge and E-Beam Controlled CO₂ Lasers," J. Appl. Phys. 44, (1631) (1973).
- 55. R. L. Kerber, N. Cohen, and G. Emanuel, "A Kinetic Model and Computer Simulation for a Pulsed DF-CO₂ Chemical Transfer Laser," IEEE J., Quant. Elect. QE-9, 94 (1973).
- 56. J. H. Kolts and D. W. Setser, "Decay Rates of Ar(4s, ${}^{3}P_{2}$), Ar(4s, ${}^{3}P_{0}$), Kr(5s, ${}^{3}P_{2}$), and Xe(6s, ${}^{3}P_{2}$) Atoms in Argon," J. Chem. Phys. 68, (11) 4848 (1978).
- 57. S. C. Kurzius, "LAMP Reaction Models For Analysis of Chemical Lasers," MICOM Technical Report -CR-75-31, Lockheed Missiles and Space Company, Huntsville, Alabama (1975).
- 58. S. C. Kurzius, "HF/DF Chemical Laser Performance Modification by Chemical Additives," MICOM Technical Report RK-CR-75-3, Lockheed Missiles and Space Company, Huntsville, Alabama (1974).
- 59. M. A. Kwok and N. Cohen, "Flow Tube Studies of the Deactivation of HF(v) by Selected Polyatomic Molecules," J. Chem. Phys. <u>61</u>, 5221 (1974).
- 60. R. D. Levine and J. Jortner (Eds.), "Molecular Energy Transfer," John Wiley and Sons, New York (1976).
- 61. P. F. Lewis and D. W. Trainor, "Survey of Vibrational Relaxation Data for 0_2 , N_2 , NO, H_2 , CO, HF, HC%, CO $_2$, and H_2 O" ARPA Report No. AMP422, Avco, Everett, Massachusetts (1974).
- 62. D. C. Lorents, D. J. Eckstrom, and D. Huestis, "Excimer Formation and Decay Processes in Rare Gases," Technical Report SRI No. MP 73-2, Stanford Research Institute, Menlo Park, California (1973).
- 63. R. A. Lucht and T. A. Cool, J. Chem. Phys. 60, 1026 (1974).
- 64. A. Mandl and J. J. Ewing, "Device for Optically Exciting XeF" and Other Rare-Gas Excited Complexes," Rev. Sci. Insturm. 48, 1434 (1977).
- 65. A. Mandl and J. H. Parks, "Collisional Quenching Kinetics for the HgCl* (B 1/2) State," Appl. Phys. Letts. 33, 498 (1978).
- 66. J. A. Mangano, J. H. Jacob, M. Rokni, and A. Hawryluk, "Three-Body Quenching of KrF* By Ar and Broad-Band Emission at 415-mm," Appl. Phys. Letts. 37, 326 (1971).

- 67. S. W. Mayer and N. Cohen, "Rate Coefficients Calculated by the Bond-Energy Bond-Order Method for Excited State F + H₂ \(\frac{7}{2} \) H + Hf Reactions," Report SAMSO-TR-79-18, Space and Missile System Organization, Air Force Systems Command, Los Angeles, California (1979).
- E. W. McDaniel, V. Cermák, A. Dalgarno, E. E. Furguson, and L. Friedman, <u>Ion-Molecule Reactions</u>, Wiley-Interscience, New York (1970).
- 69. M. McFarland, D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, "Flow-Drift Technique for Ion Mobility and Ion-Molecule Reaction Rate Constant Measurements. III. Negative Ion-Reactions of O- with CO, NO, H₂ and D," J. Chem. Phys. <u>59</u>, 6629 (1973).
- 70. R. C. Millikan, J. Chem. Phys. 38, 2855 (1963).
- R. K. Mitchum, J. P. Freeman, and G. G. Meisels, "Arrival Time Distribution in High Pressure Mass Spectrometry, VI, Formation and Reaction of Negative Ions in Carbon Dioxide," J. Chem. Phys. 62, 2464 (1975).
- 72. C. B. Moore, IEEE J. Quantum Electron. QE-4, 52 (1968).
- C. B. Moore, R. W. Wood, B. Lok Hu, and J. T. Yardley, "Vibrational Energy Transfer in CO₂ Lasers," J. Chem. Phys. 46, 4222 (1967).
- W. L. Nighan "Electron Energy Distributions and Collision Rates in Electrically Excited N₂, CO and CO₂," Phys. Rev. A. 2, 1989 (1970).
- W. L. Nighan and W. J. Wiegand, "Influence of Negative-Ion Processes on Steady-State Properties and Striations in Molecular Gas Discharges," Phys. Rev. A 10, 922 (1974).
- 76. H. Okabe, J. Chem. Phys. 56, 4381 (1972).
- 77. J. H. Parker and G. C. Pimentel, J. Chem. Phys. 51, 91 (1969).
- 78. H. T. Powell, J. Chem. Phys. 59, 4937 (1973).
- 79. H. T. Powell and J. D. Kelley, J. Chem. Phys. 60, 2191 (1974).
- A. W. Ratliff, S. C. Kurzius, A. J. McDanal, and R. R. Mikatarian, "Analysis of Chemical Lasers," MICOM Technical Report RK-CR-75-31, I, Lockheed Missiles and Space Company, Huntsville, Alabama (1975).
- M. Rokni, J. A. Mangano, J. H. Jacob, and J. C. Hsia, "Rare-Gas Fluoride Lasers," IEEE J. Quantum Electron. QE-14, (7), 468 (1978).
- M. Rokni, J. H. Jacob, J. A. Mangano, and R. Brochu, "Two-and Three-Body Quenching of XeF* By Ar and Xe," Appl. Phys. Letts. 30, 458 (1977).

- 83. M. Rokin, J. A. Jacob, J. A. Mangano, and R. Brochu, "Formation and Quenching of XeF* in Ne/Xe/F₂ Mixtures," Appl. Phys. Letts. 32, 223 (1978).
- 84. M. Rokni, J. H. Jacob, J. A. Mangano, and R. Brochu, "Formation and Quenching Kinetics of ArF," Appl. Phys. Letts. 31, 79 (1977).
- 85. M. Rokni, J. A. Jacob, and J. A. Mangano, "Dominant Formation and Quenching Processes in E-Beam Pumped ArF* and KrF* Lasers," Phys. Rev. <u>16</u>, 2216 (1977).
- 86. W. A. Rosser, A. D. Sharma, and E. T. Gerry, "Deactivation of Vibrationally Excited Carbon Dioxide (001) by Collisions with Carbon Monoxide," J. Chem. Phys. 54, 1196 (1971).
- 87. W. A. Rosser, A. D. Wood, and E. T. Gerry, "Deactivation of Vibrationally Excited Carbon Dioxide (v_3) by Collisions with Carbon Dioxide or with Nitrogen," J. Chem. Phys. $\underline{50}$, 4996 (1969).
- 88. W. A. Rosser, Jr. and E. T. Gerry, "De-Excitation of Vibrationally Excited ${\rm CO_2}^*$ (${\rm v_3}$) by Collisions with He, ${\rm O_2}$, and ${\rm H_2O}$," J. Chem. Phys. 53, 2286 (1969).
- 89. J. R. Rumble, Jr., and J. W. Gallagher, "Energy Transfer Collisions of Atoms and Molecules," Joint Institute for Laboratory Astrophysics, NBS Newsletter, No. 7, (1978).
- 90. Y. Sato and S. Tsuchiya, "Shock-Tube Study of Vibrational Energy Transfers in the CO₂-CO Systems," J. Phys. Soc., Japan <u>33</u>, 1120 (1972).
- 91. Y. Sato, S. Tsuchiya, and K. Kuratani, "Shock-Wave Study of Vibrational Energy Exchange Between Diatomic Molecules," J. Chem. Phys. 50, 1911 (1969).
- 92. V. H. Shui, Calculation of Recombination Rate Constants for KrF + R + R \rightarrow RKrF + R (R = Ar, Kr)," Appl. Phys. Letts. 31, 50 (1977).
- 93. R. Simonaitis and J. Heicklen, "Kinetics and Mechanism of the Reaction of 0 (3 P) with CO," J. Chem. Phys. <u>56</u>, 2004 (1972).
- 94. T. G. Slanger, B. J. Wood, and G. Black, "Investigation of the Rate Coefficient for 0 (3 P) + NO $_2$ \rightarrow 0 $_2$ + NO," Int. J. Chem. Kinetics 5, 615 (1973).
- 95. T. G. Slanger, B. J. Wood, and G. Black, "Kinetics of O (³P) + CO + M Recombination," J. Chem. Phys. <u>57</u>, 233 (1972).

- 96. D. J. Smith, D. W. Setser, K. C. Kim, and D. J. Bogan, "HF Infrared Chemiluminescence. Relative Rate Constants for Hydrogen Abstraction From Hydrocarbons, Substituted Methanes, and Inorganic Hydrides," J. Chem. Phys. 81, (9), 898 (1977).
- 97. I. W. M. Smith and C. Wittig, Trans. Faraday Soc. 69, 939 (1973).
- 98. D. F. Starr, J. K. Hancock, and W. H. Green, "Vibrational Deactivation of Carbon Monoxide by Hydrogen and Nitrogen from 100 to 650°K," J. Chem. Phys. 61, 5421 (1974).
- 99. R. R. Stephens and T. A. Cool, J. Chem. Phys. <u>56</u>, 5683 (1972).
- J. C. Stephenson, J. Finzi, and C. B. More, J. Chem. Phys. <u>56</u>, 5214 (1972).
- 101. D. R. Stull and H. Prophet, Januar Tables of Themochemical Data, Natl. Stand. Ref. Data Sec. 37 (1972).
- 102. J. H. Sullivan, R. C. Feber, and J. W. Starner, "Mechanisms and Types of Explosive Behavior in Hydrogen-Fluorine Systems," J. Chem. Phys., 62, 1714 (1975).
- 103. E. A. Sutton "Chemistry of Electrons in Pure-Air Hypersonic Wakes," AIAA J. 6, 1873 (1968).
- 104. K. Tamagake and D. W. Setser, "Simulation of the Bound-Free KrF* Emission Spectra from Reactive Quenching of Kr(5s[3/2]₂) and Kr (5s[3/2]₁) Atoms," J. Chem. Phys. 67, (10) 4370 (1977).
- 105. R. L. Taylor and S. Bitterman, "Survey of Vibrational Relaxation Data for Processes Important in the $\rm CO_2-N_2$ Laser System." Rev. Mod. Phys. 41, 26 (1969).
- 106. J. Thoenes and S. C. Kurzius, "Plasma Chemistry Processes in Pulsed Electric Discharge Lasers," MICOM Technical Report RH-CR-76-12, Lockheed Missiles and Space Company, Huntsville, Alabama (1976).
- 107. J. Thoenes and S. C. Kurzius, "EDC Performance Model Part III Analyses of Closed Cycle Electron-Beam Sustained CO₂ EDL with Air Contaminant," MICOM Technical Report RG-CR-75-2, Lockheed Missiles and Space Company, Huntsville, Alabama (1976).
- 108. J. Thoenes, S. C. Kurzius, and M. L. Pearson, "EDL Performance Model Part I - Theory and User's Guide," MICOM Technical Report RG-CR-75-2, Lockheed Missiles and Space Company, Huntsville, Alabama (1975).

- S. Tsuchiya, N. Nielsen, and S. H. Bauer, J. Phys. Chem. <u>77</u>, 2455 (1973).
- 110. C. Turner and N. L. Rapagnani, "Laser Fusion Program Semiannual Report, "UCRL-50021-73-1, Lawrence Livermore Laboratory, California, UCID-16935 (January-June 1973).
- 111. J. E. Velazco, J. H. Kolts, and D. W. Setser "Quenching Rate Constants for Metastable Ar, Kr, and Xe Atoms by Flourine Containing Molecules and Branching Ratios for XeF* and KrF* Formation," J. Chem. Phys. 65, (9), 3468 (1976).
- 112. J. F. Velazco, J. H. Kolts, and D. W. Setser, "Rate Constants and Quenching Mechanisms for the Metastable States of Ar, Kr, and Xe," J. Chem. Phys. (in press).
- 113. R. T. Watson "Chemical Kinetics Data Survey VIII Rate Constants of ClO of Atmosphere Interest," NBS IR 74-516, Washington, D.C. (1974).
- 114. W. J. Wiegand and W. L. Nighan, "Plasma Chemistry of CO₂-N₂-He Discharges," Appl. Phys. Letts. <u>22</u>, 583 (1973).
- 115. R. L. Wilkins "Monte Carlo Calculations of Reaction Rates and Energy Distributions Among Reactions Products. IV. $F + HF(v) \rightarrow HF(v') + F$ and $F + DF(v) \rightarrow DF(v') + F$," J. Chem. Phys. 49, 698 (1973).
- 116. R. L. Wilkins "Monte Carlo Calculations of Reaction Rates and Energy Distribution Among Reaction Products: Reactions of HF and DF with H- and D-Atoms," SAMSO-TR-74-94, The Aerospace Corporation, El Segundo, California (1974).
- 117. D. Williams et al., Mol. Phys. 20, 769 (1971).

Section B-1.D. ION-NEUTRAL AND NEUTRAL-NEUTRAL COLLISIONS INVOLVING NOBLE GAS AND HALOGEN STRUCTURES

CONTENTS

			Page
General	Referen	nces, Explanation of Table	1506
Tabular	Data:	Atomic Noble-Atomic Noble Reactants	1507
Tabular	Data:	Diatomic Noble-Noble Reactants	1511
Tabular	Data:	Atomic Noble-Noble Reactants	1512
Tabular	Data:	Atomic Noble-Diatomic Halogen (Homogeneous) Reactants	1513
Tabular	Data:	Atomic Noble-Diatomic Halogen (Non-Homogeneous) Reactants	1514
Tabular	Data:	Atomic Noble-NF $_3$ and Freon Reactants	1515
Tabular	Data:	Diatomic Noble-Halogen Reactants	1518
Tabular	Data:	Halogen-Noble Reactants	1519
Tabular	Data:	Noble Halogen-Noble and Halogen Reactants	1519
Tabular	Data:	Noble Halogen-Noble-Noble Reactants	1520
Tabular	Data:	Atomic Halogen-Diatomic Halogen (Homogeneous) Reactants	1520
Tabular	Data:	Atomic Halogen-Other Halogen Reactants	1521
Graphica	1 Data		1522
Referenc	es · ·		1526

General References:

- 1. C. H. Chen, J. B. Judish and M. G. Payne, J. Phys. B. 11, 2189 (1978).
- 2. J. H. Kolts and D. W. Setser, J. Chem. Phys. 68, 4848 (1978).
- J. E. Velazco, J. H. Kolts, and D. W. Setser, J. Chem. Phys. 69, 4357 (1978).

<u>Data Needed</u>: In general, there still exists a lack of knowledge concerning the excitation state of reaction products.

Explanation of Table

The data presented in the following table and its associated graphs have been taken for the most part from data reported in 1977 and 1978. This data table constitutes an update and continuation of Section B-I (Vol. I) of Technical Report H-78-1 ("Compilation of Data Relevant to Rare Gas-Rare Gas and Rare Gas-Monohalide Excimer Lasers," US Army Missile Command, Redstone Arsenal, Alabama, December 1977). This table contains data for both two- and three-body reactions. The general ordering of the reactions is two-body noble-noble, three-body noble-noble, two-body noble-halogen, three-body noble-halogen, two-body halogen-halogen, and three-body halogen-halogen. Both noble gases and halogens are listed in order from least massive to most massive.

The energy range covered in this table is from thermal to approximately 10 eV, with a few exceptions where graphical data were available both below and above 10 eV and there was no reason not to present the entire graph. In some cases the temperature at which a reaction rate was measured was not found in the reference, but the temperature was assumed to be $300\,^{\circ}\text{K}$. In these cases, the superscript "a" appears to the right of the reaction temperature. Toward the right side of this table, there is a list of cross sections, reaction rates, or (if data are available over an extended energy range) a graph number. These graphs can be found immediately following this table.

	Reaction	uc	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
		Atomic Noble-Ato	Atomic Noble-Atomic Noble Reactants		
* + He	†	total ionization	.01 - 10eV	Graph 1	1
He ²⁺ + He	1	He + He +	300°K	$4.8 \pm 0.5 \times 10^{-14} \text{cm}^{3/s}$	2
* + Ne *	+	HeNe + e	0.01 - 10eV	Graph 2	3
* * He + Ne	+	He + Ne + e	0.01 - 10eV	Graph 2	8
$^{+}(^{2}S) + Ne$	+	He + Ne	300°K	$1+0.5 \times 10^{-15} \text{cm}^3/\text{s}$	2
He ²⁺ + Ne	+	Не +	0.1 - 30eV	Graph 3	7
$He^*(2^1S) + Ar$	+	quenching	300°K	$2 \times 10^{-10} \mathrm{cm}^{3} / \mathrm{s}$	2
He $(2^1s) + Ar$	+	total ionization	$1-3x10^3$ m/s	Graph 4	9
$He^*(2^3S) + Ar$	+	total ionization	$1-3x10^3$ m/s	Graph 4	9
He + Ar	+	Ar + He	8 - 60eV	Graph 5	7
$He^*(2^1s) + Kr$	+	quenching	300°K	$3.8 \times 10^{-10} \text{cm}^3/\text{s}$	5
$^{\star}_{1}(2^{1}S) + Kr$	+	total ionization	$1-3x10^3$ m/s	Graph 6	9
$^*(2^3S) + Kr$	+	total ionization	$1-3x10^3$ m/s	Graph 6	9
He + Kr	+	Kr ⁺ + He	5 - 60eV	Graph 5	7
He $^*(2^1s) + Xe$	+	quenching	300°K	$4.8 \times 10^{-10} \text{cm}^3/\text{s}$	5

	NedC LON	no	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
$^*\text{He}^*(2^1s) + Xe$	+	total ionization	$1-3x10^3$ m/s	Graph 7	9
$He^*(2^3s) + Xe$	+	total ionization	$1-3\times10^3$ m/s	Graph 7	9
He ⁺ + Xe	+	Xe ⁺ + He	2 - 60eV	Graph 5	7
Ne ²⁺ + He	†	Ne + + He	300°K	$5.5 + 1 \times 10^{-15} \text{ cm}^3 / \text{s}$	2
Ne ²⁺ + He	†	He +	3 - 6eV	$< 2.0 \times 10^{-2} \text{ A}^2$	7
$Ne^{2+}(^{1}S) + Ne$	+	Ne + Ne	300°K	$2.7 \pm 0.3 \times 10^{-14} \text{cm}^3 / \text{s}$	2
$Ne^{2+(^3P)} + Ne$	+	Ne + Ne	300°K	$2.1 \pm 0.2 \times 10^{-14} \text{cm}^3/\text{s}$. 2
$Ne^{2+}(^{1}D) + Ne$	+	Ne+ + Ne+	300°K	$1.9 \pm 0.2 \times 10^{-14} \text{cm}^3/\text{s}$	2
Ne ²⁺ + Ne	+	Ne +	8eV	$< 1.5 \times 10^{-2} \text{ A}^2$	4
$Ne^{+}(^{2}P) + Ar$	†	Ne + Ar	300°K	$6+1 \times 10^{-15} \text{cm}^3/\text{s}$	2
$Ne^{2+} + Ar$	†	Ne+	0.1 - 24eV	Graph 8	7
Ne + Kr	+	Kr ⁺ + Ne	9 - 60eV	Graph 5	7
Ne + Xe	†	Xe ⁺ + Ne	3 - 60eV	Graph 5	7
$Ar^{2+}(^{1}S) + He$	*	Ar + He	300°K	$< 10^{-14} cm^3/s$	7
$Ar^{2+}(^{3}p) + He$	+	Ar + He+	300°K	$7+3\times10^{-11}$ cm $^3/s$	2

Reaction	no	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
Ar ²⁺ (1 ₉) + He +	Ar + He +	300°K	~2x10 ⁻¹⁰ cm ³ /s	2
Ar ²⁺ + He +	Ar+	0.1 - 10eV	Graph 9	4
Ar 3+ He +	Ar 2+	0.1 - 6eV	Graph 9	4
$Ar^{2+} + Ne$ \rightarrow	Ar+	0.1 - 20eV	Graph 3	7
Ar(3P _o) + Ar +	decay rate	300°K	$5.3\pm0.9\times10^{-15}$ cm ³ /s	00
$Ar(^3P_2) + Ar +$	decay rate	300°K	$2.1 \pm 0.3 \times 10^{-15} \text{cm}^3 / \text{s}$	∞
Ar 4p [1/2] ₁ + Ar +	deactivation	300°K	$2.0 \pm 0.6 \times 10^{-11} \text{cm}^3/\text{s}$	6
Ar 4p'[1/2] + Ar +	deactivation	300°K	$5.3\pm0.6 \times 10^{-11} \text{cm}^3/\text{s}$	6
Ar 4p[3/2], + Ar +	deactivation	300°K	7.7+0.8x10 ⁻¹¹ cm ³ /s	6
Ar 4p[3/2] ₂ + Ar +	deactivation	300°K	$\leq 1.8 \times 10^{-11} \text{cm}^3/\text{s}$	6
Ar 4p'[3/2] ₁ + Ar +	deactivation	300°K	$5.6+1.1\times10^{-11}$ cm ³ /s	6
Ar 4p'[3/2] ₂ + Ar +	deactivation	300°K	$1.1 \pm 0.12 \times 10^{-10} \text{cm}^3 / \text{s}$	6
Ar 4p[5/2], + Ar +	deactivation	300°K	4.7+0.7x10-11cm3/s	6
Ar 4p[5/2]3 + Ar +	deactivation	300°K	$5.9 \pm 0.4 \times 10^{-11} \text{cm}^3/\text{s}$	6
$Ar^{2+}(^{1}S) + Ar +$	Ar + Ar +	300°K	$6.0+2\times10^{-12}$ cm ³ /s	2

	Reaction	uo	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
$(r^{2+}(^3p) + Ar$	+	Ar + Ar +	300°K	$3.7 \pm 0.4 \times 10^{-14} \text{cm}^3/\text{s}$	2
r ²⁺ (¹ D) + Ar	+	Ar + Ar +	300°K	$10^{-12} cm^3/s$	2
Ar 2+ + Ar	+	Ar +	0.2 - 32eV	Graph 8	7
$Ar(^1p_1) + Kr$	+	quenching	300°K	$1.2 \times 10^{-12} \text{cm}^3/\text{s}$	11
$Ar(^3p_1) + Kr$	+	quenching	300°K	$9.1 \times 10^{-12} \text{cm}^3/\text{s}$	11
$Ar(^3p_2) + Kr$	+	quenching	300°K	$6 \times 10^{-12} \text{cm}^3/\text{s}$	10
Ar + Kr	+	Kr + Ar	9 - 20eV	Graph 5,10	7
Ar ²⁺ + Kr	+	Ar ⁺	0.1 - 40eV	1.1 ⁹²	7
$Ar(^{1}p_{1}) + Xe$	+	quenching	300°K	$3.3 \times 10^{-10} \text{cm}^3/\text{s}$	11
$Ar(^3P_0) + Xe$	+	quenching	300°K	3.0x10 ⁻¹⁰ cm ³ /s	10
$Ar(^3P_1) + Xe$	+	quenching	300°K	$2.2 \times 10^{-10} \text{cm}^3 / \text{s}$	111
$Ar(^3P_2) + Xe$	+	quenching	300°K	$1.8 \times 10^{-10} \text{cm}^3/\text{s}$	10
Ar + Xe	†	$Xe^+ + Ar$	6 - 20eV	Graph 5,10	7
$Kr^*(^3p_2) + He$	†	depolarization	300°K	10+1 A ²	12
$Kr(^3P_2) + Ar$	†	decay rate	300°K	$6.9\pm0.6\times10^{-16}$ cm ³ /s	00

N. C.	Reaction	uo	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
Kr*(3p2) + Kr	+	total disorientation	300°K	120+7 A ²	12
	+	Kr + Kr	300°K	4.8x10 ⁻¹⁴ cm ³ /s	2
Xe	†	quenching	300°K	$1.6 \times 10^{-10} \text{cm}^3 / \text{s}$	10
	1	$Xe^+ + Kr$	8 - 40ev	Graph 5	7
Ar	†	decay rate.	300°K	$5.0 \pm 0.7 \times 10^{-16} \text{cm}^3/\text{s}$	00
	†	decay rate	300°K	$3.7 \pm 0.4 \times 10^{-15} \text{cm}^3/\text{s}$	∞
a)	†	total disorientation	300°K	155+7 A ²	12
	†	disorientation without exchange $300^{\circ} K$	300°K	95+35 A ²	12
	+	disalignment without exchange	300°K	150+40 A ²	12
132Xe	+	132 Xe $^*(^3$ P ₂) + 129 Xe	300°K	70+30 A ²	12
	+		300°K	3.2+0.3cm ³ /s	2
		Diatomic Noble-Noble Reactants	le Reactants		
$He_2(2^3\Sigma) + He(2^3S)$	+	quenching	300°K ^a	$2.5 \times 10^{-9} \text{cm}^3 / \text{s}$	13
$He_{2}(2^{3}\Sigma) + He_{2}(2^{3}\Sigma)$	†	quenching	300°Ka	$1.3 \times 10^{-10} \text{cm}^3 / \text{s}$	14

	Reaction	no	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
$He_2(2^3\Sigma_{11}^+) + Ne$	+	Ne *	300°K	$2.1 \pm 0.6 \times 10^{-10} \text{cm}^3/\text{s}$	14
He ₂ + Ne	†	2He + Ne ⁺	300°K	$1.4 \times 10^{-10} \text{cm}^3 / \text{s}$	15
$He_2(^3\Sigma_{_{\Pi}}) + Ar$	†	excitation transfer	300°K	3.1x10 ⁻¹⁰	16
$He_2(2^3\Sigma_{\rm u}^+) + Ar$	+	ionization	300°K	$1.5 \pm 0.3 \times 10^{-10} \text{cm}^3/\text{s}$	17
Ne ₂ + Kr	t	NeKr + Ne	0.04 - 0.1eV(lab)	$< 10^{-13} \text{cm}^3/\text{s}$	18
$Ne_2^+ + Xe$	t	NeXe + Ne	0.04 - 0.1eV(lab)	$< 10^{-13} \text{cm}^3/\text{s}$	18
$Ar_2^*(1_n) + Kr$	†	quenching	300° K ^a	$9.1 \times 10^{-12} \text{cm}^3/\text{s}$	11
$Ar_2^*(0_n) + Xe$	†	quenching	300°K ^a	$2.4 \times 10^{-10} \text{cm}^3/\text{s}$	11
$Ar_2^*(1_n) + Xe$	†	quenching	300°K ^a	$2.2 \times 10^{-10} \text{cm}^3/\text{s}$	11
Kr, (0, + Kr	†	$Kr_2^*(^{1}\Sigma_{1}^{+},^{3}\Sigma_{1}^{+}) + Kr$	300°K	$10^{-10} \text{cm}^3/\text{s}$	19
$xe_{2}(o_{u}^{+}) + xe$	+	$xe_2^*(^{1}\Sigma_u^+, ^{3}\Sigma_u^+) + xe$	300°K	$8.7 \times 10^{-11} \text{cm}^3/\text{s}$	19
		Atomic Noble-Nob	Atomic Noble-Noble-Noble Reactants		
He ²⁺ + He + He	†	He + He + He	300°K	$2.0 \pm 1 \times 10^{-31} \text{cm}^{6}/\text{s}$	2
Ne ²⁺ + He + Ne	+	Ne + He + Ne	300°K	$2.0+0.5 \times 10^{-31} \text{cm}^6/\text{s}$	2

Re	Reaction	uo	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
$Ne^{+}(^{2}P) + Ar + Ar$	+	Ne + Ar + Ar	300°K	5+2×10 ⁻³²	2
$Ar(^3P_o) + 2Ar$	†	decay rate	300°K	8.3+10 ⁻³³ cm ⁶ /s	∞
$Ar(^3P_2) + 2Ar$	†	decay rate	300°K	$1.1 \pm 0.4 \times 10^{-32} \text{cm}^6/\text{s}$	∞
$Ar^{2+}(^{3}P) + Ar + Ar$	+	$Ar^+ + Ar^+ + Ar$	300°K	1.3±0.2×10 ⁻³⁰ cm ⁶ /s	2
$Kr(^3P_2) + 2Ar$	+	decay rate	300°K	1.0+0.4×10 ⁻³³ cm ⁶ /s	∞
$Kr^*(^3p_1) + 2Kr$	+	$Kr_{2}^{*}(0_{1}^{+}) + Kr$	300°K	$2.2 \times 10^{-32} \text{cm}^{6/\text{s}}$	19
$Kr^*(^3p_1) + 2Kr$	†	$\operatorname{Kr}_{2}^{\star}(^{1},^{3}\Sigma_{\varphi}^{+}) + \operatorname{Kr}$	300°K	$4.4 \times 10^{-32} \text{cm}^{6/\text{s}}$	19
$Kr^{2+} + Kr + Kr$	+	Kr + Kr + Kr	300°K	$2.2 \pm 0.5 \times 10^{-30} \text{ cm}^{6}/\text{s}$	2
$xe^{*}(^{3}p_{1}) + 2xe$	+	$Xe_{2}^{*}(0_{1}^{+}) + Xe$	300°K	$3.4 \times 10^{-32} \text{cm}^6/\text{s}$	19
$Xe(^{3}P_{2}) + 2Xe$	†	$xe_{2}^{*}(^{3}\Sigma_{u}^{+}) + xe$	300°K	$8.0\pm0.7\times10^{-32}$ cm ⁶ /s	20
$xe^{2+} + xe + xe$	†	Xe + Xe + Xe	300°K	$2.7 \pm 0.5 \times 10^{-30} \text{cm}^{6} / \text{s}$	2
		Atomic Noble-Diatomic Halogen (Homogeneous) Reactants	ogen (Homogeneous)	Reactants	
$Ar(^1P_1) + F_2$	+	quenching	300°K ^a	1.3x10 ⁻⁹ cm ³ /s	11
$Ar(^{3}P) + F_{3}$	+	quenching	300°K	$9.0 \times 10^{-10} \text{cm}^3/\text{s}$	10

		кеастіоп	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
$Ar(^{3}p_{1}) + F_{2}$	+	quenching	300°K	8.9x10 ⁻¹⁰ cm ³ /s	10
$Ar(^{3}P_{2}) + F_{2}$	+	quenching	300°K	$7.5 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Ar(^{1}P_{1}) + Cl_{2}$	1	quenching	300°K	$2.8 \times 10^{-10} \text{cm}^{3} / \text{s}$	10
$Ar(^{3}P_{o}) + Cl_{2}$	+	quenching	300°K	$7.2 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Ar(^3P_1) + Cl_2$	+	quenching	300°K	$2.7 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Kr(^3P_2) + F_2$	+	quenching	300°K	$7.2 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Kr(^3P_2) + Cl_2$	+	quenching	300°K	$7.3 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Kr(^3P_2) + Br_2$	†	quenching	300°K	$6.1 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Xe(^{3}P_{2}) + F_{2}$	+	quenching	300°K	$7.5 \times 10^{-10} \text{cm}^{3} / \text{s}$	10
$Xe(^{3}P_{2}) + Cl_{2}$	†	quenching	300°K	$7.2 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Xe(^3p_2) + Br_2$	+	quenching	300°K	$6.0 \times 10^{-10} \text{cm}^3/\text{s}$	10
	4	Atomic Noble-Diatomic Halogen (Non-Homogeneous) Reactants	(Non-Homogeneous)	Reactants	
$Ar(^3P_2) + C1F$	+	quenching	300°K	$7.4 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Ar(^{3}P_{-}) + IC1$	1	quenchine	300°K	6.1×10-10cm3/s	10

$Kr(^{3}P_{2}) + CIF$				Reaction Rate	
~	+	quenching	300°K	$6.8 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Kr(^{-p}_2) + IC1$	†	quenching	300°K	$4.9 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Kr(^3P_2) + IBr$	+	quenching	300°K	$7.1 \times 10^{-10} \text{cm}^{3} / \text{s}$	10
$Xe(^3P_2) + CIF$	+	quenching	300°K	$6.0 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Xe(^3P_2) + IC1$	+	quenching	300°K	$5.0 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Ar + NF_3$	†	$NF_2 + F + Ar$	$1330 - 2000^{\circ}$ K	$2.31 \times 10^{15} \exp(-20500/T) \text{cm}^3/\text{s}$	22
$Ar(^3P_0) + NF_3$	+	quenching	300°K	$7 \times 10^{-11} \text{cm}^3/\text{s}$	10
$Ar(^{3}P_{2}) + NF_{3}$	+	quenching	300°K	$1.4 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Ar(^3P_0) + CF_4$	†	quenching	300°K	$4 \times 10^{-11} \text{cm}^3 / \text{s}$	10
$Ar(^3P_2) + CF_4$	†	quenching	300°K	$4 \times 10^{-11} \text{cm}^3 / \text{s}$	10
$Ar(^3P_0) + CF_3C1$	†	quenching	300°K	$2.7 \times 10^{-10} \mathrm{cm}^{3} / \mathrm{s}$	10
$Ar(^3P_2) + CF_2C1$	+	quenching	300°K	$2.2 \times 10^{-10} \text{cm}^3/\text{s}$	10

No.	Reaction	uc	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
$Ar(^3P_o) + CF_2C1_2$	+	quenching	300°K	5.7x10 ⁻¹⁰ cm ³ /s	10
$Ar(^3P_2) + CF_2C1_2$	+	quenching	300°K	$3.7 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Ar(^3P_o) + CC1_3F$	t	quenching	300°K	$4.3 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Ar(^3p_2) + CC1_3F$	+	quenching	300°K	$5.5 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Ar(^3P_o) + CF_3Br$	+	quenching	300°K	$3.4 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Ar(^3P_2) + CF_3Br$	+	quenching	300°K	$3.1 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Ar(^3P_2) + CF_3I$	†	quenching	300°K	$4.7 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Kr(^3P_2) + NF_3$	+	quenching	300°K	$1.2 \times 10^{-10} \mathrm{cm}^{3} / \mathrm{s}$	10
$Kr(^3P_2) + CF_4$	+	quenching	300°K	$7 \times 10^{-13} \text{cm}^3/\text{s}$	10
$Kr(^3P_2) + CF_3C1$	+	quenching	300°K	$1.4 \times 10^{-10} \text{cm}^3/\text{s}$	10
$Kr(^3P_2) + CF_3Br$	+	quenching	300°K	$5.0 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Kr(^3P_2) + CF_3I$	+	quenching	300°K	$4.9 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Kr(^3P_2) + CC1_4$	+	quenching	300°K	$6.9 \times 10^{-10} \text{cm}^3/\text{s}$	10
$\operatorname{Xe}(^3\mathrm{P}_2) + \operatorname{NF}_3$	+	quenching	300°K	$9 \times 10^{-11} \text{cm}^3/\text{s}$	10
$Xe(^3P_2) + CF_A$	+	quenching	300°K	$3x10^{-13}cm^3/s$	10

Reaction	nol	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Kererence
$xe^*(25f) + CCl_3F \rightarrow$	Xe+	300°K	3.8 ± 0.7 x 10^{-7} cm 3 /s	23
$xe^*(27f) + cc1_3F \rightarrow$	Xe+	300°K	$4.6\pm0.9 \times 10^{-7} \text{cm}^3/\text{s}$	23
$xe^*(28f) + ccl_3F \rightarrow$	Xe+	300°K	$4.4 \pm 0.9 \times 10^{-7} \text{cm}^3/\text{s}$	23
$Xe^*(29f) + CCl_3F \rightarrow$	xe+	300°K	$4.7 \pm 0.9 \times 10^{-7} \text{cm}^3/\text{s}$	23
$Xe^*(31f) + CCl_3F \rightarrow$	xe+	300°K	5.9+1.1x10 ⁻⁷ cm ³ /s	23
$Xe^*(33f) + CCl_3F \rightarrow$	xe+	300°K	$6.1+1.2x10^{-7}$ cm 3 /s	23
$Xe^*(37\pm1)f + CC1_3F \rightarrow$	xe+	300°K	$5.8+1.2x10^{-7}$ cm ³ /s	23
$Xe^*(38\pm1)f + CC1_3F \rightarrow$	xe+	300°K	$6.3\pm1.1\times10^{-7}$ cm 3 /s	23
$Xe^*(40+2)f + CC1_3F +$	Xe+	300°K	$6.5 \pm 1.3 \times 10^{-7} \text{cm}^3/\text{s}$	23
$Xe(^3P_2) + CF_3Br +$	quenching	300°K	$4.2 \times 10^{-10} \text{cm}^3/\text{s}$	10
$\operatorname{Xe}(^3P_2) + \operatorname{CF}_3\mathrm{I} +$	quenching	300°K	$5.2 \times 10^{-10} \text{cm}^3 / \text{s}$	10
$Xe^*(25f) + CC1_4 \rightarrow$	Xe+	300°K	$2.6 \pm 0.5 \times 10^{-7} \text{cm}^3/\text{s}$	23
$Xe^*(26f) + CCl_q \rightarrow$	Xe+	300°K	$2.2 \pm 0.4 \times 10^{-7} \text{cm}^3/\text{s}$	23
$xe^*(27f) + CC1_4 +$	Xe+	300°K	$2.3\pm0.4\times10^{-7}$ cm 3 /s	23
Xe*(28f) + CC1, +	Xe ⁺	300°K	2.5+0.5×10 ⁻⁷ cm ³ /s	23

	Negocioni.	uo	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
$Xe^*(29f) + CC1_4$	†	Xe+	300°K	$2.9+0.6 \times 10^{-7} \text{cm}^3/\text{s}$	23
$xe^*(31f) + cc1_4$	†	Xe+	300°K	3.1+0.6x10 ⁻⁷ cm ³ /s	23
	†	Xe+	300°K	$3.6 \pm 0.7 \times 10^{-7} \text{cm}^3/\text{s}$	23
	†	xe+	300°K	$3.5 \pm 0.6 \times 10^{-7} \text{cm}^3/\text{s}$	23
7	+	Xe+	300°K	4.0±0.8x10 ⁻⁷ cm ³ /s	23
	†	xe ⁺	300°K	$3.7+0.7\times10^{-7}$ cm $^{3}/s$	23
	†	xe+	300°K	4.5+0.9×10 ⁻⁷ cm ³ /s	23
	*	Xe+	300°K	4.2±0.8×10 ⁻⁷ cm ³ /s	23
		Diatomic	Diatomic Noble-Halogen Reactants		
$Ar_2^+ + F^-$	†	ArF* + Ar	300°K	$1.1 \times 10^{-6} \text{cm}^3/\text{s}$	21
$Ar_{2}^{*}(1_{u}) + F_{2}$	†	quenching	300°K	$5.2 \times 10^{-10} \text{cm}^3 / \text{s}$	11
	†	ArF + Ar	300°K	$1.1 \times 10^{-6} \text{cm}^{3} / \text{s}$	21

C1 + He		NedCLION	lemperature, Velocity or Energy	Cross Section or Reaction Rate	Kererence
C1 + He		Halo	Halogen-Noble Reactants		
	†	C1 + He + e	6 - 11eV	Graph 11	24
C1 + Ne	+	C1 + Ne + e	7 - 13eV	Graph 12	54
C1 + Ar	†	C1 + Ar + e	7 - 20eV	Graph 13	54
Br + He	†	Br + He + e	5 - 11eV	Graph 14	24
Br + Ne	†	Br + Ne + e	8 - 15eV	Graph 15	24
Br + Ar	Ť	Br + Ar + e	7 - 10eV	Graph 15	24
Br + Kr	+	Br + Kr + e	7 - 11eV	Graph 13	24
		Noble-Halogen-	Noble-Halogen-Noble and Halogen Reactants	tants	
XeF(B) + He	†	quenching	300°K ^a	2.0+0.26×10 ⁻¹² cm ³ /s	25
XeF(B) + Ne	+	quenching	300°K ^a	$<3x10^{-13}$ cm $/s$	25
XeF(B) + Ar	†	quenching	300°K ^a	$3 \times 10^{-12} \text{cm}^3/\text{s}$	25
XeF(B) + Xe	†	deactivation	300°K ^a	$3.6 \times 10^{-11} \text{cm}^3/\text{s}$	26
$XeF(B) + XeF_2$	†	quenching	300°K	2.6±0.3×10 ⁻¹⁰ cm ³ /s	25
ArF + F	1	quenching	300°K	$1.9 \times 10^{-19} + 25 \% \text{cm}^3 / \text{s}$	27

Ar.F + F.			lemperature, Velocity or Energy	Cross Section or Reaction Rate	Kererence
7 7	+	quenching	300°K	2.1x10 ⁻¹⁰ +25%cm ³ /s	27
$XeF^*(B) + F_2$	†	deactivation	300°K ^a	$3.6 \times 10^{-10} \text{cm}^3/\text{s}$	26
$XeF^*(B) + NF_3$	+	deavtivation	300°K ^a	$2.4 \times 10^{-11} \text{cm}^3/\text{s}$	26
		Noble Halogen-Noble-Noble Reactants	Noble Reactants		
ArF* + 2Ar	+	quenching	300°K	$5.3 \times 10^{-31} + 25 \% \text{cm}^6/\text{s}$	27
XeF*(B) + 2Xe	†	deactivation	300°Ka	2.36±0.53×10 ⁻²⁹ cm ⁶ /s	26
	Atom	Atomic Halogen-Diatomic Halogen (Homogeneous) Reactants	n (Homogeneous) Rea	ictants	
C1 + Br ₂	†	BrCl + Br	6.8 Kcal/mole	11 A2	28
$c1 + Br_2$	+	BrC1 + Br	14.7 Kcal/mole	14 A ²	28
$Br^*(4^2p_{1_2}) + Br_2$	+	$Br + Br_2$	295°K	8.0+0.8x10 ⁻¹³ cm ³ /s	29
$I(5^2P_{1_2}) + C1_2$	+	deactivation	300°K ^a	$1.7 \pm 0.2 \times 10^{-12} \text{ cm}^3/\text{s}$	30
$I(5^2p_{1/2}) + Br_2$	+	deactivation	300°K	5.2+0.3x10 ⁻¹¹ cm ³ /s	30
1*(52p) + T		40000	3000ra	2 140 5.10-11,3/2	30

	Reaction	uo	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
		Atomic Halogen-Other Halogen Reactants	Halogen Reactant	S	
Br + IBr		$Br_2 + I$	295°K	$3.5 \times 10^{-11} \text{cm}^3/\text{s}$	29
$I(5^2P_{\lambda_{\lambda}}) + Brc1$	†	deactivation	$300^{\circ} K^{a}$	$2.7 \pm 0.2 \times 10^{-11} \text{cm}^3/\text{s}$	30
$I(5^2p_{\frac{1}{2}}) + ICI$	+	deactivation	300° K ^a	$2.3\pm0.2\times10^{-11}$ cm ³ /s	30
$I(5^2P_{1_5}) + IBr$	†	deactivation	300° K ^a	$6.6 \pm 0.3 \times 10^{-11} \text{cm}^3/\text{s}$	30
$c1^- + cc1F_2^+$	†	neutralization	300°K	$4.1\pm0.4\times10^{-8}$ cm ³ /s	31
$c1^{-} + cc1_{3}^{+}$	†	neutralization	300°K	$4.5 \pm 0.5 \times 10^{-8} \text{cm}^3/\text{s}$	31

FOOTNOTE

a. These temperatures are in doubt since they were not found in the reference.

Graph 2

Graph 3

Graph 4

Graph 5

Graph 6

Graph 7

A SECTION AND A

Graph 8

Graph 9

Graph 10

(b)
$$Ar^+ + Kr \rightarrow Kr^+ + Ar$$

Graph 11

Graph 12

Graph 13

(a)
$$C1^{-} + Ar + C1 + Ar + e^{-}$$

(b)
$$Br^- + Kr \rightarrow Br + Kr + e^-$$

Graph 14

Graph 15

(a)
$$Br^{-} + Ar + Br + Ar + e^{-}$$

(b)
$$Br^{-} + Ne + Br + Ne + e^{-}$$

References

- R. H. Neynaber, G. D. Magnuson, and S. Y. Tang, J. Chem. Phys. <u>68</u>, 5112 (1978).
- 2. R. Johnsen and M. A. Biondi, Phys. Rev. A 18, 996 (1978).
- 3. R. H. Neynaber and S. Y. Tang, J. Chem. Phys. 67, 5619 (1977).
- 4. W. B. Maier II and B. Stewart, J. Chem. Phys. 68, 4228 (1978).
- D. W. Martin, R. W. Gregor, R. M. Jordan, and P. E. Siska, J. Chem. Phys. 69, 2833 (1978).
- M. R. Woodard, R. C. Sharp, M. Seeley, and E. E. Muschlitz, Jr., J. Chem. Phys. 69, 2978 (1978).
- 7. W. B. Maier II, J. Chem. Phys. 69, 3077 (1978).
- 8. J. H. Kolts and D. W. Setser, J. Chem. Phys. 68, 4848 (1978).
- 9. R. S. F. Chang and D. W. Setser, J. Chem. Phys. 69, 3885 (1978).
- J. E. Velazco, J. H. Kolts, and D. W. Setser, J. Chem. Phys. 69, 4357 (1978).
- 11. C. H. Chen, J. B. Judish, and M. G. Payne, J. Phys. B. <u>11</u>, 2189 (1978).
- 12. V. Lefevre-Seguin and M. Leduc, J. Phys. B 10, 2157 (1977).
- 13. G. Myers and A. J. Cunningham, J. Chem. Phys. 67, 3352 (1977).
- 14. G. Myers and A. J. Cunningham, J. Chem. Phys. 67, 1942 (1977).
- 15. F. C. Fehsenfeld, A. L. Schmeltekopf, P. D. Goldan, H. I. Schiff, and E. E. Ferguson, J. Chem. Phys. 44, 4087 (1966).
- 16. F. W. Lee and C. B. Collins, J. Chem. Phys. 67, 2798 (1977).
- 17. L. C. Pitchford and R. Deloche, J. Chem. Phys. 68, 1185 (1978).
- R. Johnsen, J. MacDonald, and M. A. Biondi, J. Chem. Phys. <u>68</u>, 2991 (1978).
- 19. R. Brodmann and G. Zimmerer, J. Phys. B 10, 3395 (1977).
- 20. P. Millet, A. Birot, H. Brunet, J. Galy, B. Pons-Germain, and J. L. Teyssier, J. Chem. Phys. 69, 92 (1978).

- M. Rokni, J. H. Jacob, and J. A. Mangano, Phys. Rev. A <u>16</u>, 2216 (1977).
- 22. W. D. Breshears and P. F. Bird, J. Chem. Phys. 68, 2996 (1978).
- G. W. Foltz, C. J. Latimer, G. F. Hildebrandt, F. G. Kellert, K. A. Smith, W. P. West, F. B. Dunning, and R. F. Stebbings, J. Chem. Phys. 67, 1352 (1977).
- 24. B. T. Smith, W. R. Edwards III, L. D. Doverspike, and R. L. Champion, Phys. Rev. A 18, 945 (1978).
- 25. C. H. Fisher and R. E. Center, J. Chem. Phys. 69, 2011 (1978).
- 26. J. G. Eden and R. W. Waynant, J. Chem. Phys. 68, 2850 (1978).
- 27. C. H. Chen, M. G. Payne, and J. P. Judish, J. Chem. Phys. <u>69</u>, 1626 (1978).
- 28. J. J. Valentini and Y. T. Lee, J. Chem. Phys. 67, 4866 (1977).
- 29. J. R. Wiesenfeld and G. L. Wolk, J. Chem. Phys. 69, 1805 (1978).
- 36. H. Hofmann and S. R. Leone, J. Chem. Phys. 69, 641 (1978).
- 31. D. Smith, M. J. Church, and T. M. Miller, J. Chem. Phys. <u>68</u>, 1224 (1978).

B-2. HIGH ENERGY HEAVY PARTICLE - HEAVY PARTICLE COLLISIONS

CONTENTS

		Page
Introduction		1530
General References		1531
Hydrogen Ion and Atom	Impact	
B-2.1 - B-2.17.	Ionization of Gases by Protons and H Atoms	1532
B-2.18 — B-2.27.	Stripping of H Atoms in Gases and Electron Capture by Protons in Gases	1548
B-2.28 - B-2.50.	Selected Cross Sections for Excitation of	
	Target Gases as a Result of H and H Impact	1558
Helium Ion and Atom Im	pact	
B-2.51 - B-2.67.	Ionization of Gases by He ⁺ , He ²⁺ and	
	He ^o	1581
B-2.68 - B-2.84.	Stripping of He and He and Electron Capture by He and He in Gases	1598
n 2 05 n 2 02		1370
B-2.85 - B-2.92.	Selected Cross Sections for Excitation of Target Gases as a Result of He, He and	
	He ²⁺ Impact	1615
		1013
Heavy Ion and Atom Imp	act	
B-2.93 - B-2.95.	Ionization of Gases by Heavy Ions and Atoms	1621
B-2.96 - B-2.108.	Stripping and Capture by Heavy Ions in Various Targets	1626
B-2.109 - B-2.115.	Selected Cross Sections for Excitation of Target Gases as a Result of Heavy Ion	
	Impact	1645

Introduction

This section is concerned with charge changing, ionizing, and excitation collisions when fast (Energy > 1 keV) heavy projectiles traverse a gas. The data are in the form of cross sections; the behaviour in "thick" (high density) gas targets is considered elsewhere (Chapter G). The projectiles included here are positive ions and atoms of hydrogen and helium as well as of elements whose nuclear charge lies between 32 and 65 (fission fragments); these are considered to be the projectiles of interest in nuclear pumped laser mechanisms. For many mechanisms the data coverage for the more massive projectiles (32 < Z < 65) is very limited and sometimes representative data for other pro-</p> jectiles have been included to illustrate the general trends expected. Most of the data presented here are for targets of the rare gases (He, Ne, Ar, Kr, and Xe) and stable diatomic gases (H_2 , N_2 , O_2 , and CO). Other target species of interest are the halogens, H, N, C, O, $\mathrm{CO_2}$, $\mathrm{H_2O}$, HF, Hg, Cd, U, and UF6; data on these cases have been included where possible, but at best they are fragmentary and at worst nonexistent.

To produce a manageable data set it has been found to be necessary to limit, or omit altogether, coverage of certain mechanisms of peripheral interest; we instead refer the reader to standard works on the revelant subjects. Processes involving fast negative ions have been omitted entirely, although there are substantial data on these, particularly for the hydrogenic species. For projectiles traversing a thick target there will be few negative ions in the beams since the extra electron is weakly bound and readily removed by collision; moreover, it seems unlikely that negative ions will be produced in any reactor pumped laser configuration. For coverage of the cross sections for destruction and formation of negative hydrogen ions the reader is referred to the review by Tawara and Russek [Rev. Mod. Phys. 45, 178 (1973)]. We have also omitted coverage of fast molecular ions traversing gases since there is no reason to expect molecular species from nuclear reactions. For a bibliography on fast molecular dissociation, the reader should consult the book by McClure and Peek (Dissociation in Heavy Particle Collisions, Wiley Interscience, New York, 1972). Excitation of gases by heavy projectiles is a subject where there is a vast amount of relevant data, far too extensive to be reproduced here in its entirety. Coverage has been restricted to only a limited group of excited states for any one of the reactions of interest. A broader coverage with a complete compendium of data can be found in the book by Thomas (Excitation in Heavy Particle Collisions, Wiley Interscience, New York, 1972). It should of course always be remembered that excitation of a dense gas is primarily due to secondary electrons liberated by ionization of the medium; direct excitation by the fast heavy projectile is likely to be a small component.

For many of the mechanisms involving light projectiles (hydrogen and helium) there is an abundance of data and analyses have provided semi-empirical algebraic representations of how cross section varies with energy. Where available, these formulae have been reproduced since they are more convenient than data points for use in any modelling program.

General References:

- 1. C. F. Barnett, J. A. Ray, E. Ricci, I. Wilker, E. W. McDaniel, E. W. Thomas, and H. B. Gilbody, "Atomic Data for Controlled Fusion Research," Report ORNL 5206, Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee (February 1977).
- 2. H. D. Betz, Rev. Mod. Phys. 44, 465 (1972).
- R. C. Dehmel, H. K. Chau, and H. H. Fleishmann, Atomic Data <u>5</u>, 231 (1973).
- 4. H. H. Lo and W. L. Fite, Atomic Data 1, 305 (1973).
- 5. G. W. McClure and J. M. Peek, <u>Dissociation in Heavy Particle Collisions</u>, Wiley, New York (1972).
- 6. H. Tawara and A. Russek, Rev. Mod. Phys. 45, 178 (1973).
- 7. E. W. Thomas, Excitation in Heavy Particle Collisions, Wiley, New York (1972).

Tabular Data B-2.1. Ionization of He, Ne, Ar, Kr, $\rm H_2$, $\rm N_2$, and $\rm O_2$ by Protons.

$$H^{+} + X \rightarrow H^{+} + X^{+} + e^{a}$$

We suggest use of the following semi-empirical analytic expression by Green and McNeal which adequately represents the available data; applicable parameters are shown in tabular form below.

General analytic form
$$\sigma(E) = \frac{\sigma_o(Za)^{\Omega} (E-I)^{V}}{J^{\Omega+V} + E^{\Omega+V}}$$
 (1)

High energy asymptotic form $\sigma(E) = \sigma_0 \left(\frac{Za}{E}\right)^{\Omega}$

$$\sigma(E)$$
 = Cross section in cm² at impact energy E(keV) Ω = 0.75^(b)

$$\sigma_{\rm o} = 10^{-16} \, \rm cm^2$$
 $v = \rm See \ table \ below^{(c)}$

I = Ionization threshold of gas (keV)

Target	Chara	cteristics	Three	Parameter Varied ^e	s (v, J and a)		rameters ((v fixed	
Target Species	Z	I ^d (keV)	ν	J (keV)	a (keV)	ν	J (keV)	a (keV)
He	2	0.0247	1.25	58.86	65.05	1.00	69.05	71.15
Ne	10	0.0215	1.08	70.17	41.56	1.00	74.59	43.14
Ar	18	0.0157	1.00	46.18	102.78	1.00	47.67	94.33
Kr	36	0.0139	1.00	44.60	77.78	1.00	45.80	70.72
н2	2	0.0156	1.02	47.62	171.50	1.00	48.62	174.0
N ₂	14	0.0155	0.77	67.15	120.36	1.00	55.31	106.0
02	16	0.0125	0.82	69.08	105.62	1.00	59.91	97.0
Others			(see n	ote f bel	ow)			

Reference A. E. S. Green and R. J. McNeal, J. Geophys. Res. 76, 133 (1971).

C. F. Barnett, et al., "Atomic Data for Controlled Fusion Research" Oak Ridge National Laboratory Report ORNL 5206.

- Notes (a) Strictly speaking the cross section is the sum Σ_m σ_m of cross sections for the process $H^+ + X \to H^+ + X^m + me$ where m varies from 1 to the nuclear charge of X. In practise m = 1 will predominate.
 - (b) This value of Ω is consistent with the asymptotic high energy behaviour of the Born Approximation.
 - (c) This parameter is taken as unity for the two parameter fit and is varied in the three parameter fit.
 - (d) Handbook of Chemistry and Physics, 46th Edition (Chemical Rubber Pub. Co., Cleveland, 1966).
 - (e) The three parameter form is most accurate but differs significantly from the two parameter form only for He.
 - (f) For other gases a reasonable estimate may be made by using average values of ν, J and a with appropriate values of Z and I.

(a) Cross sections of proton impact ionization for rare gases. The solid curves are plots of equation 1 with Ω = 0.75, ν = 1.00, and two parameters (a and J) adjusted to the values shown in the Table. The dashed curves are similar plots with Ω = 0.75, and ν , a, and J adjusted. The error bars on the He curve show the spread in reported data at energies where more than one set of data is available. The curves were taken from Green and McNeal.

(b) Cross sections of proton impact ionization of molecular gases. Curves were taken from Green and McNeal. Data points are from the work of De Heer et al., Physica 32, 1766 (1966).

Graphical Data B-2.2. Cross sections of proton impact ionization for (a) rare gases and (b) molecular gases.

Tabular Data B-2.3. Ionization of He, Ne, Ar, Kr, Xe, $\rm H_2$, $\rm N_2$, and $\rm O_2$ by H atoms.

$$H + X \rightarrow H + X^{\dagger} + e^{a}$$

We suggest use of the following semi-empirical analytic expression by Green and McNeal which adequately represents the available data; applicable parameters are shown in tabular form below.

General analytic form
$$\sigma(E) = \frac{\sigma_o(Za)^{\Omega} (E-I)^{V}}{J^{\Omega+V} + E^{\Omega+V}}$$
 (1)

High energy asymptotic form $\sigma(E) = \sigma_o - (\frac{Za}{E})$

 $\sigma(E)$ = Cross section in cm² at impact energy E(keV) Ω = 0.75^(b)

$$\sigma = 10^{-16} \text{ cm}^2 \qquad v = \text{See table below}^{(c)}$$

Number of electrons in one molecule a,J = Parameters obtained by fitting to data. See below.

I = Ionization threshold of gas (keV)

Target	Chara	cteristics		Parameter aried ^e	s (v, J and a)		rameters (J (v fixed =	
Target Species	Z	I ^d (keV)	v	J (keV)	a (keV)	ν	J (keV)	a (keV)
Не	2	0.0247	1.83	28.85	25.35	1.00	53.11	35.75
Ne	10	0.0215	0.97	36.10	12.22	1.00	34.78	11.86
Ar	18	0.0157	0.70	36.88	41.72	1.00	24.49	31.34
Kr	36	0.0139	0.98	19.69	18.31	1.00	19.38	18.07
Xe	54	0.0121	1.15	13.22	11.46	1.00	16.61	14.67
н2	2	0.0156	1.04	23.68	47.45	1.00	24.67	48.70
N ₂	14	0.0155	0.63	28.80	38.82	1.00	16.91	27.10
02	16	0.0125	0.43	73.11	73.88	1.00	No fit	
Others			(see	note f b	elow)			

Reference A. E. S. Green and R. J. McNeal, J. Geophys. Res. 76, 133 (1971).

C. F. Barnett et al., "Atomic Data for Controlled Fusion Research" Oak Ridge National Laboratory Report ORNL 5206.

- Notes (a) Strictly speaking the cross section is the sum $\sum_{m} \sigma_{m}$ of cross sections for the process H + X + H + X + m + m where m varies from 1 to the nuclear charge of X. In practise m = 1 will predominate.
 - (b) This value of Ω is consistent with the asymptotic high energy behaviour of the Born Approximation.
 - (c) This parameter is taken as unity for the two parameter fit and is varied in the three parameter fit.
 - (d) Handbook of Chemistry and Physics, 46th Edition (Chemical Rubber Pub. Co. Cleveland, 1966).
 - (e) The three parameter form is most accurate but differs significantly from the two parameter form only for He; the two parameter fit does not work for O2.
 - (f) For other gases a reasonable estimate may be made by using average values of ν , J and a with appropriate values of Z and I.

(a) Cross sections of hydrogen atom impact ionization for rare gases. The dashed curves were obtained by varying ν , a, and J with Ω = 0.75. The solid curves were obtained with Ω = 0.75, ν = 1.00, and a and J varied. The error bars on the He curve show the spread in reported data at energies where more than one set of data is available. The data were taken from Green and McNeal.

(b) Cross sections for H atom impact ionization of molecular gases. Because there are large discrepancies between experimental measurements we have shown no data points. The lines were plotted from the three parameter fit of Green and McNeal.

Graphical Data B-2.4. Cross sections for H atom impact ionization of (a) rare gases and (b) molecular gases.

(a) Cross sections for production of slow positive and slow negative ions by H $^+$ impact on CO. σ_+ exceeds σ_- at low energies because σ_+ includes a component due to formation of slow positive ions as a result of charge pickup by the proton. R. J. McNeal, J. Chem. Phys. $\underline{53}$, 4308 (1970); and J. Desesquelles et al., Compt. Rend. B $\underline{262}$, 1329 (1966).

(b) Cross sections for ionization of CO by protons. J. W. Hooper, D. S. Harmer, D. W. Martin, and E. W. McDaniel, Phys. Rev. 125., 2000 (1962).

Graphical Data B-2.5. Ionization of CO by H+.

Graphical Data B-2.6. Cross sections for production of slow positive and slow negative ions by H impact on ${\rm CO}_2$. σ_+ exceeds σ_- at low energies because σ_+ includes a significant component due to formation of slow positive ions as a result of charge pick up by the proton. R. J. McNeal, J. Chem. Phys. $\underline{53}$, 4308 (1970); J. Desesquelles et al., Compt. Rend. B $\underline{262}$, 1339 (1966); and D. W. Koopman, Phys. Rev. $\underline{166}$, 57 (1968).

Graphical Data B-2.7. Cross sections for production of slow positive and slow negative ions by impact of H on CO and ${\rm CO}_2$. The values for σ_- exceed those for σ_+ because σ_- includes a component due to electrons stripped from the incoming H projectile. R. J. McNeal, J. Chem. Phys. 53, 4308 (1970).

$$Ba^{2+} + O_2 \rightarrow Ba^{0}$$
 symbol σ_{20}

$$O_2 \rightarrow Ba^{+}$$
 symbol σ_{21}

$$O_2 \rightarrow Ba^{n+}$$
 (n > 2) symbol σ_{2n}

Graphical Data B-2.104. Electron capture and loss for Ba^{2+} in O_2 .

Graphical Data B-2.105. Electron capture and loss for \mathbf{U}^{+} in Ne, Ar, $\mathbf{N_2}, \mathbf{0_2}$.

Algebraic Expression B-2.106. Electron capture by multiply charged heavy ions at impact energies below 25 keV/amu — A scaling law.

There is only a very limited amount of data for electron pick up by multiply charged ions at these energies. Much of the data can be expressed in a simple semi-empirical scaling law which is more convenient for modelling than the individual data points.

We reproduce here the empirical scaling law by Muller and Salzborn for electron capture by multiply charged ions. To within an accuracy of 35% it reproduces some two thirds of 268 separate cross section measurements by these authors, the measurements are in some seven papers cited in the references given below. The cross sections are virtually invariant with energy and quite uninteresting; we shall therefore not reproduce them. Moreover the cross section is independent of the projectile so that the cross sections for Neⁱ⁺, Arⁱ⁺, Krⁱ⁺ and Xeⁱ⁺ are the same.

Reaction $A^{i+} + B + A^{(i-k)+} + B^{k+}$

cross section symbol o

<u>Cross Section Formula</u> $\sigma_{i,i-k} = A_k i^{\alpha k} I^{\beta k}$

where:

i=Initial ionization state of projectile

k=Number of electrons transferred

Ak, ak, bk given in tabular form below

o_{i,i-k} = cross section in cm²

k	$A_{\mathbf{k}}$	αk	$^{\beta}$ k
1	1.43×10^{-12} 1.08×10^{-12} 5.50×10^{-16}	1.17	-2.76
2	1.08x10 1	0.71	-2.80
3	5.50x10 14	2.10	-2.89
4	3.57×10 ⁻¹⁶	4.20	-3.03

Note: Cross section is not a function of energy, and is the same for all projectiles species of the same initial charge.

Conditions of Applicability

i-Believed applicable for i>2. Tested for i=2 through 8

k-Believed applicable for any value. Tested for k=1,2,3,4 and i-k>1

Target-Believed applicable for any target. Tested for He,Ne,Ar,Kr,Xe,H₂,N₂,O₂,CH₄,CO₂

Projectile-Tested only for He,Ar,Kr, Xe. There are no data for projectiles

other than the rare gas ions

Energy Range Authors suggest that this not be used above 25keV/amu. No lower limit

is given but it has been tested down to 0.125 keV/amu.

<u>Reliability-Perhaps +35%</u>; this is the same as the data on which it is based.

<u>Reference-A. Muller and E. Salzborn.</u> Proceedings of the International Conference on Low Energy Ion Beams. [Inst. Phys. Conf. Ser. <u>38</u>, 169, (1978)]. A Muller and E. Salzborn, Physics Letters 62A, 391 (1977).

Tabular Data B-2.107. Electron capture and loss cross sections for heavy ions in gases at energies generally above 25 keV/amu.

Data for heavy ions in the mass range of interest are confined to Br, Kr, and I ions; they have been summarized by Betz (Rev. Mod. Phys. 44, 465 (1972) in tabular form and we reproduce that table here. It will be noted that with increasing energy the available data tend to be for the more highly charged species. At the end of the table we reproduce some of the data in graphical form; it will be observed that a given cross section does not vary greatly with the nature of the projectile or target.

The tabular data occupy the following six pages. Cross sections σ are given in units of 10^{-16} cm²/molecule for a projectile ion of charge q colliding with a target and emerging with a carge q'. Thus when q < q' the projectile has been ionized (stripped) and when q > q' the projectile has picked up an electron (charge transfer). The table is in three sections, corresponding to the three projectiles and arranged in order of increasing energy with each target handled separately; within a given energy-target block the data are arranged in order of increasing initial charge q and increasing number of transfered electrons n = q - q'. The reference letters identify the original source of the data.

These tables include data from a number of authors and where comparisons are possible they do not always agree. In general data for one electron transfer (q - q' = ± 1) are reasonably consistent while data for multiple electron transfer may differ by a factor of two between authors.

A limited part of this data compendium is displayed in figures following the table to indicate data trends.

Original References

- a. N.B. Angert, A. Moller and Ch. Schmelzer, Phys. Letts. 27A, 28 (1968); A. Moller, W. Angert, B. Franzke and C.H. Schmelzer, Phys. Letts. 27A, 621 (1968); also private communications to Betz.
- H.D. Betz, G. Ryding, A.B. Wittkower, Phys. Rev. A3, 197 (1971).
- c. H.D. Betz, and A.B. Wittkower, Phys. Rev. A6, 1485 (1972).
- e. S.H. Datz et al., Phys. Rev. A2, 430 (1970).
- f. C.D. Moak et al., Phys. Rev, Letters 18, 41 (1967).
- I.S. Dmitriev et al., zh. Eksperim. i Teor. Fiz. 42, 16 (1962) I Sov. Phys. JETP 15, 11 (1962)].
- j. C.D. Moak et al., Phys. Rev. 176, 427 (1968).
- k. V.S. Nikolaev et al. Zh. Eksperim i Teor. Fiz 40, 989 (1961) [Sov. Phys. JETP 13, 695 (1961)].
- 13, 695 (1961)].

 1. V.S. Nikolaev et al. Zh. Eksperim i Teor Fiz 41, 89 (1961) [Sov. Phys. JETP 14, 67 (1962)].
- m. G. Ryding et al., Phys. Rev. 184, 93 (1969).
- n. A. B. Wittkower and H.D. Betz, J. Phys. B4, 1173 (1971).
- o. G. Ryding et al., Phys. Rev. A3, 1658 (1971).
- p. B. Franzke et al., IEEE NS-19, No.2 266 (1972).

Tabular Data B-2.107. Electron capture and loss cross sections for heavy ions in gases at energies generally above $25~\rm keV/amu$ (Continued).

	q	q'	•	Ref.		q	ď	•	Ref.
	9	7	0.250	b		6	7	0.563	e
	2	3	1.980	Ь		8	9	0.220	e
	3	4	1.250	ь		10	11	0.101	e
	4	5	0.832	b		6	8	0.093	e
	5	6	0.442	b b		8	10	0.049	•
	7	8	0.124	b		0		0.041	e
	8	9	0.040	b				MeV, AR	
	9	10	0.025	b		6	5	7.490	e
	2	4	0.445	b		10	9	12.200 20.800	e
	3	5	0.313	ь		6	4	0.239	e
	6	8	0.022	ь		8	6	0.127	e
	2	5	0.160	ь		10	8	0.857	e
		10.00	MeV, HE			6	7	1.150	e
	3	2	0.898	. Ъ		8_	9	0.416	e
	4	3	1.970	b		10	11	0.363	e
	5	4	3.380	b	1.	6	8	0.432	e
	6	5	5.530	ь		8	10	0.401	e
	7	6	5.160	b		6	9	0.238	e
	8	7	7.680	ь				MeV, H2	
	9	8	10.400	b		4	3	0.640	b
	10	9	13.400	b		5	4	1.220	ь
	5	3	0.056	b b		6	5	2.660	ь
	7	5	0.154	b		7	6	2.740	Ь
	8	6	0.086	b		8	7	4.190	b
	3	4	1.250	ь		6	5	0.007	b
	4	5	0.854	b		8	6	0.006	b
	5	6	0.560	b		4	5	0.740	b
	6	7	0.320	b		5	6	0.450	b
	7	8	0.173	b		6	7	0.286	b
	8	9	0.106	ь		6	8	0.162	ь
	9	10	0.060	b		8	9	0.118	b
	10	11	0.038	b		4	6	0.130	b
	3	5	0.331	b		5	7	0.075	ь
	5	6	0.195	b . b		6	8	0.021	b
	6	8	0.131 0.048	b		7	9	0.010	Ь
	•			U		8	10	0.009	b
			MeV, H2			4	. 8	0.027	ь
	6	5	3.170	e		•			
35 m=79 Br Projectiles	7	6	3.110 5.290	e				MeV, HE	
	10	9	11.100	•		4	3	0.738	b
4 00 M-V UE	6	4	0.002			5	4	1.390	ь
6.00 MeV, HE	6	7	0.326	e		6	5	2.740	b
2 1 1.080 b	7	8	0.188	e		7	6	3.140	b
3 2 2.580 b 4 3 5.140 b	8	9	0.122	e		8	8	4.450 6.110	ь
5 4 7.120 b	10	11	0.096	e		10	9	8.180	b
6 5 9.970 b	6	8	0.031	e		7	5	0.038	b
7 6 9.300 b	7	9	0.028	e		9	7	0.037	b
8 7 13.000 b	8	10	0.029	e		10	8	0.022	b
9 8 16.600 b		13.90	MeV, HE			4	5	0.819	b
3 1 0.033 b	6	5	3.540	e		5	6	0.555	b
4 2 0.159 b	8	7	5.220	e		6	7	0.429	ь
5 3 0.392 b 6 4 0.684 b	10	9	11.300	•		7	8	0.228	ь
6 4 0.684 b	6	4	0.690	e		8	9	0.166	ь
7 5 0.740 b	8	6	0.410	e		9	10	0.111	ь
8 6 0.310 b	10	8	0.292	e	1	4	6	0.195	ь

Tabular Data B-2.107. Electron capture and loss cross sections for heavy ions in gases at energies generally above 25 keV/amu (Continued).

9	q'	•	Ref.	q	q'	•	Ref.	9	q'	•	Ref
5	7	0.155	b	7	8	0.929	1	7	6	18.500	c
6	8	0.037	b	8	9	0.056	f	8	7	22.000	c
7	9	0.019	b	7	9	0.302	f	9	8	31.000	c
	25.00	MeV, H2		8	10	0.289	f	10	9	36.000	c
7	6	0.298	•	7	10	0.197	1	11	10	41.000	c
8	7	0.559		8	11	0.180	f	12	11	47.000	c
9	8	0.923		7	11	0.126	f	13	12	53.000	c
10	9	1.370		8	12	0.152	1	14	13	67.000	C
11	10	2.130		7	12	0.106	1	15	14	85,000	C
7	8	0.278	e	8	13	0.098	f	2	0	0.025	c
8	9	0.197	e	7	13	0.073	1	3	1	0.256	c
9	10	0.128		8	14	0.072	1	•	3	0.801	c
10	11	0.106	·	7	14	0.052	1	5	3	1.990	c
11	12	0.082		8	15	0.370	f	6	4	1.650	C
7	9	0.021		7	15	0.031	f	7	5	1.190	c
8	10	0.010	e	Z = 36	m=84	Kr Pr	ojectiles	2	3	2.740	c
9	11	0.018	•					•	4	1.650	c
10	12	0.015	e			MeV, HE			5	0.965	c
11	13	0.020	•	3	2	4.000	k	5	6	0.345	c
7	10	0.001	e	4	3	6.800	k	6		0.197	c
9	12	0.016	e	3	4	1.130	g	7 2	8	0.044	c
	25 00			4	5	0.580	g	3	5	0.266	c
		MeV, HE			2.97 1	MeV, KR		4	6	0.104	c
7	6	0.586	e	3	2	21.500	k	5	7	0.023	c
8	1	7.120	e	1	3	30.300	k	6	8	0.023	c
9	8	1.850	e	3	1	2.400	î	2	5	0.136	c
11	10	3.610	e	1 4	2	4.200	i	•	7	0.019	c
7	8	0.365	•								c
8	9	0.303	e		2.97	MeV, N2			5.00	MeV, O2	
9	10	0.206	e	3	2	12.600	k	2	1	2.860	c
11	12	0.164	e	4	3	18.600	k	3	2	8.330	C
7	9	0.087	e	3	1	1.300	1	4	3	14.100	c
8	10	0.081	e	4	2	2.940	1	5	4	17.100	c
9	11	0.042	e	3	4	2.080	g	6	5	20.300	c
	13 10	0.074	•	4	5	1.320	8	7	6	16.700	c
7	12	0.024	•	Z=53 m	=127	T Dr	ojectiles	8	7	30.000	C
,			•				ojectites	9	8	34.000	C
		MeV, AR			4.50	MeV, H2		10	9	40.000	c
7	6	1.250	•	1	0	1.220	m	11	10	44.000	c
9	8	4.150	e	2	1	5.060	m	12	11	51.000	c
7	8	0.921	e	3	2	11.800	m	13	12	62.000	c
9	10	0.564	e	4	3	17.100	m	14	13	81.000	c
7	9	0.364	e	3	1	0.312	m	3	1	0.219	c
9	11	0.373	•	4	2	1.060	m	•	2	1.150	c
7	10	0.220	•	1	2	5.170	m	5	3	2.800	c
7	11	0.136	•	2	3	3.330	m	6 7	5	3.950	c
	41.67	MeV, H2		3	4	1.690	m	2		6.140	c
7	6	0.021	f		5	1.110	m	3	3	3.620	c
8	7	0.054	1	1	3	1.600	m	3	5	2.730 1.860	c
7	8	0.287	f	2	•	1.060	m		6	1.010	c
8	9	0.247	1	3	5	0.484	m	6	7	0.764	c
7	9	0.021	f	1	4	0.484	m	7		0.704	c
8	10	0.025	f		5.00 1	MeV, H2		2	4	1.620	c
7	10	0.002	f	2	1	3.540		3	5	1.460	c
8	11	0.011	f	3	2	9.390	c	,	6	1.060	c
	41.67	MeV, AR		1	3	14.600		5	7	0.545	c
7	6	0.099	1	5	4	18.000		6	8	0.343	
8	7	0.203	1	1 3	5	20.800	c	7	9	0.189	C

Tabular Data B-2.107. Electron capture and loss cross sections for heavy ions in gases at energies generally above 25 keV/amu (Continued).

9	ď	•	Ref.	9	q'	•	Ref.	9	q'	•	Ref.
2	5	1.02	c	3	6	1.400	P	6	7	0.744	b
	6	1.010	c	4	7	2.200	P	7	8	0.471	ь
	7	0.776	c	5	8	1.100	P	8	9	0.336	ь
	8	0.184	c	6	9	0.900	p	9	10	0.199	Ь
	9	0.124	c			MeV, H2		3	5	0.717	Ь
	7	0.247	c	3	2	3.210	c	4	6	0.463	ь
		leV, HE		4	3	5.990	c	5	7	0.349	ь
	1	1.120	Ь	5	4	9.080	c	7	8	0.194	Ь
	2	3.460	ь	6	5	13.700	c	3	6	0.124 0.328	b
	3	6.760	ь	7	6	18.100	c	4	7	0.328	b
	4	9.330	b	8	7	18.300	c	5	8	0.092	ь
	5	10.500	ь	10	9	27.000	c	,			U
	6	10.400	ь	11	10	31.000	c		10.00	MeV, O2	
	7	13.400	ь	12	11	36.000	c	3	2	3.240	c
	8	17.700	b	13	12	41.000	c	4	3	6.980	c
	3	0.057	b	14	13	53.000	c	5	4	9.950	c
		0.273	b	15 16	14 15	62.000 72.000	c	6	5	14.600	c
	5	0.418	b	17	16	88.000	c	7	6	15.100	c
	6	0.640	b b	18	17	99.000	c c	8	7	20.500	c
	7	0.910	b	9	8	24.000	c	9	8	24.100	c
	3	2.600	b	3	1	0.144	c	10	9	30.200	c
	4	1.500	ь	4	2	0.300	c	11	10	34.000	c
	5	1.270	b	5	3	0.499	c	12	11	40.000	C
i		0.761	ь	6	4	0.735	c	13	12	45.000	c
7		0.587	ь	7	5	1.06	c	14	13	59.000	c
8		0.294	ь	8	6	0.272	c	15	14	70.000	c
9		0.168	b	3	4	1.890	c	16	15	77.000	c
10		0.034	b	4	5	1.320	c	3	1	0.062	c
4		0.983	b	5	6	0.807	c	4	2	0.312	c
5		0.732	ь	6	7	0.724	c	5	3	0.738	c
6		0.321	ь	7	8	0.669	c	6	4	1.320	c
7		0.211	b	8	9	0.372	c	7	5	3.160	c
8		0.078	b	3	5	0.686	c	8	6	3.450	c
5		0.492	b	4	6	0.405	c	9	7	4.050	c
	6	0.239	ь	5	7	0.332	c	10	8	6.090	c
1	7	0.110	ь	6	8	0.183	c	3	4	2.690	c
	6	0.153	ь	7	9	0.319	c		5	2.110	c
9	50 M	eV CO2		3	6	0.369	c	5	6	1.400	c
	2	4.500	P	4	7	0.230	c	7	8	0.700	c
3		10.200	P	5	8	0.152	c	8	9	0.600	c
4		14.000	P	6	9	0.348	c	9	10	0.414	c
5		18.500	P		10.00	MeV HE		3	5	1.370	c
6		21.500	P	3	2	1.980	b	4	6	0.992	c
	7	25.000	P	4	3	4.460	b	5	7	0.705	c
3		6.600	P	5	4	6.280	b	6	8	0.366	c
4		5.400	P	6	5	7.350	b	7	9	0.390	c
	5	4.500	P	7	6	7.710	b	8	10	0.220	c
	6	2.800	P	8	7	10.600	b	9	11	0.247	c
	7	2.600	P	9	8	13.000	ь	3	6	1.010	c
	8	1.600	P	4	2	0.027	b	4	7	0.690	c
	9	1.250	P	5	3	0.117	ь	5	8	0.397	c
	4	3.400	P	6	4	0.185	b	6	9	0.250	c
	5	2.900	P	6 7 8	5	0.511	ь		10.00	MeV, AR	
6		2.400	P	8	6	0.272	b				
	7	1.600	P	3	7	0.500	b	4	3	6.740	c
8		1.400	P	3	4	1.630	b	4	5	2.230	c
9		0.700	P	4	5	1.340	b	4	6	0.879	c
	5	1.900	p	5	6	0.847	ь	4	7	0.497	C

Tabular Data B-2.107. Electron capture and loss cross sections for heavy ions in gases at energies generally above 25 keV/amu (Continued).

9	q'	•	Ref.	q	4	•	Ref.	9	q'	•	Ref.
4	8	0.233	c	6	7	2.420		4	7	0.275	b
4	9	0.157	c	6	8	0.912		5	8	0.152	ь
	12.00	MeV, H2		6	9	0.646			15.00	McV, O2	
5	4	6.390	n		15 00	MeV, H2		5	4	5.800	c
5	3	9.017	n		15.00	MCV, III		6	5	7.710	c
5	6	0.716	n	5	4	2.810	c	7	6	10.700	c
5	7	0.214	n	6	5	3.080	c	8	7	13.400	c
	12 00	MeV N2		7	6	5.250	c	9	8	16.100	c
				8	7	7.720	c	10	9	21.500	c
5	4	8.630	n	9	8	11.500	c	11	10	24.400	c
5	3	0.402	n	10	9	16.600	c	12	11	28.000	c
5	6	1.500	n	11	10	20.900	c	13	12	32.000	c
5	7	0.791	n	12	11	26.000	c	15	13	40.000	c
5	8	0.574	n	13	12	29.000	c		14	45.000	C
	12.00	MeV, O2		14	13	39.000	c	16		55.000	c
				15	14	44.000	c .	17	16	63.000	C
5	4	8.400	n	16	15	51.000	c	18	17	72.000	c
5	6	0.386	n	17	16	60.000	c	5	3	0.222	C
	7	1.510	n	6	4	0.134	c	6	4	0.332	c
5	8	0.903	n	7	5	0.040	c	7 8	5	1.230	c
3		0.602	n	8	6	0.287	c	9	7	1.600	c
	12.00	MeV, CO2		9	7	0.095	c	10			c
5	4	10.300	n	10	8	0.298	c	11	8	3.310 5.220	c
5	3	0.619	n	5	6	0.778	c	5			c
5	6	1.870	n	6	7	0.703	c	6	6	1.730	c
5	7	1.170	n	7	8	0.391	c	7			c
5	8	0.888	n	8	9	0.221	c	8	8	0.889	c
				9	10	0.140	c	9	10	0.583	c
	12.00	MeV, N2O		10	11	0.106	c	10	11	0.363	c
5	4	10.800	n	5	7	0.201	c	11	12	0.415	
5	3	0.539	n	6	8	0.172	c	5	7	1.020	c
5	6	1.790	n	7	9	0.099	c	6	8	0.662	c
5	7	1.030	n	8	10	0.064	c	7	9	0.487	c
5	8	0.871	n	5	8	0.041	c	8	10	0.442	c
	12.00	MeV, AIR						9	11	0.316	c
9	8	26.300			15.00	MeV, HE		10	12	0.268	c
13	12	45.500	0	4	3	2.260	b	11	13	0.245	c
15	14	62.200	0	5	4	3.210	b	5	8	0.579	c
16	15	85.200	0	6	5	4.020	b	6	9	0.413	c
17	16	73.000	0	7	6	5.590	b	7	10	0.361	c
18	17	77.000	0	8	7	7.410	b	8	11	0.349	c
.0				9	8	9.390	b	9	12	0.270	c
		MeV, CH4		10	9	12.200	b	10	13	0.199	c
5	4	11.200	n	6	4	0.044	b	5	9	0.399	c
5 5	3	0.612	n	7	5	0.240	b	6	10	0.356	c
5	6	1.480	n	8	6	0.063	b	7	11	0.328	c
5	7	0.641	n	9	7	0.163	b	8	12	0.236	c
5	8	0.417	n	10	8	0.282	b	9	13	0.151	c
	12 00	MeV, C1		4	5	1.240	b	5	10	0.362	c
	4	8.540	_	5	6	0.906	b	6	11	0.216	c
5 5 5 5	3	0.441	n	6	7	0.837	b	7	12	0.227	c
	6	1.460	n	7 8 9	8	0.545	b	8	13	0.120	c
	7	0.812	n	8	9	0.452	b	5	11	0.303	c
	8	0.499	n n	9	10	0.386	b	6	12	0.173	c
,				10	11	0.258	b	7	13	0.147	c
	13.69	MeV, N2		10 4 . 5	6	0.483	b	5	12	0.182	c
5	4	7.200		. 5	7	0.437	b	6	13	0.074	c
	5	16.820			8	0.278	b	5	13	0.094	c

Tabular Data B-2.107. Electron capture and loss cross sections for heavy ions in gases at energies generally above 25 keV/amu (Continued).

9	4	•	Ref.	9	ď	•	Ref.	q	q'	•	Ref.
	16.00	MeV, N2		9	7	0.803	c	8	11	0.480	Р
11	10	23.400	c	6	7	2.200	c	9	12	0.680	P
11	9	2.220	c	7	8	1.050	c				•
11	12	0.517	c	8	9	0.860	c		25.00	MeV, H2	
-				9	10	0.659	c	10	9	3.510	c
	16.00	MeV, AIR		10	11	0.538	c	14	13	13.000	c
10	9	19.500	0	6	8	1.120	c	15	14	16.000	c
11	10	23.400	0	7	9	0.525	c	10	8	0.010	c
12	11	28.000	0	8	10	0.316	c	10	11	0.205	c
13	12	36.400	0	9	11	0.295	c				
14	13	41.500	0	10	12	0.260	C		25.00	MeV, O2	
15	14	44.500	0	7	10	0.345	c	10	9	7.690	c
16	15	46.500	0	8	11	0.255	c	14	13	21.000	c
17	16	47.500	0	9	12	0.244	c	15	14	25.000	c
18	17	59.600	0		24.36	MeV, N2		10	8	1.080	c
19	18	57.500	0	6	5	4.860		10	11	0.533	c
20	19	70.800	0	7	6	5.140					
21	20	61.600	0	8	7	13.740	:		30.81	MeV, N2	
22	21	76.000	0	9	8	14.980		6	5	2.320	
	18.64	MeV, N2		10	9	21.200		7	6	2.200	
6	5	8.820		6	7	2.700		8	7	5.120	
	6	11.840	•	7	8	2.140		9	8	9.980	
7	7			8	9	1.802		10	9	12.780	
6	7	19.180 2.580	•	9	10	1.542		14	13	31.800	
7	8	1.728	•	10	11	1.370		15	14	31.400	
•				7	9	1.016		16	15	35.600	
	20.00	MeV, H2		8	10	0.968		17	16	35.200	
6	5	1.490	c	9	11	0.920		6	7	3.080	
7	6	1.270	c	7	10	0.576		7	8	2.380	
8	7	2.790	c	8	11	0.306		8	9	1.946	
9	8	6.330	c	9	12	0.518		9	10	1.540	
10	9	9.000	c	7	11	0.348		10	11	1.440	
12	11	14.400	c	8	12	0.260		7	9	0.904	
13	12	18.000	c	9	13	0.478		10	12	0.944	
14	13	25.000	c					7	10	0.404	
15	14	29.000	c		24.40	MeV, CO2		10	13	0.580	
16	15	35.000	c	5	4	2.150	P	7	11	0.628	
9	7	0.150	c	6	5	3.600	P	10	14	0.428	
6	7	0.780	c	7	6	4.800	P	7	12	0.410	
7	8	0.560	c	8	7	8.400	P		38 04	MeV, N2	
8	9	0.464	c	9	8	11.000	P				
9	10	0.267	c	10	9	13.200	P	8	7	2.200	
10	11	0.217	c	11	10	15.000	P	9	8	5.200	
7	9	0.052	c	4	5	4.800	P	10	9	9.660	
9	11	0.045	c	5	6	3.700	р	11	10	9.880	
	20.00	MeV, O2		6	7	3.300	P	10	8	0.130	
				7	8	2.600	P	8	9	2.360	
7	5	4.580	c	8 9	9	2.000	P	9	10	2.260	
,	6	5.510	c	9	10	1.500	P	10	11	1.562	
8	7	7.520	c	1	6	2.500	P	10	12	0.906	
9	8	13.500	c	5	7	1.800	P	10	13	0.750	
10	9	16.000	c	6	8	1.330	P	10	14	0.442	
12	11	20.000	c	7	9	1.200	P	10	15	0.248	
13	12	23.500	c	8	10	1.100	P		38.10	MeV, CO2	
14	13	33.000	c	9	11	0.910	P				
15	14	38.000	c	4	7	1.200	P	6	5	0.830	P
16	15	43.500 0.100	c	5 6	8	0.620	P	7 8	6	1.050 2.230	P
7			C		U	(1) K(4)	P	×	7	/ / 11)	P

Tabular Data B-2.107. Electron capture and loss cross sections for heavy ions in gases at energies generally above 25 keV/amu (Concluded).

q	q'	•	Ref.	q	q'	σ	Ref.	q	ď	•	Ref
10	9	6.600	p	11	16	0.206	a .	11	14	0.780	р
11	10	9.600	P	9	15	0.044	2	12	. 15	0.480	P
12	11	11.200	P	10	16	0.048					
13	12	12.500	P						64.28	MeV, N2	
	6	4.750	P		54.78	MeV, N2		12		3.680	
5	7	4.000	P					13	11		
7	8	3.150	P	10	9	2.220				4.440	
8	9	2.500	P	11	10	3.560		13	14	1.484	
9	10	2.100	P	12	11	5.480	a .		110 0	MeV, H2	
10	11	1.500	P	13	12	8.940	8		110.00	Micv, 112	
11	12	1.150	P	17	16	13.540	•	12	11	0.016	j
5	7	2.390	P	18	17	15.580	2	12	13	0.100	j
6	8	1.900	P	11	12	2.080	a	12	14	0.380	j
6	9	1.350	P	12	13	1.624	2	12	15	0.010	j
8	10	1.000	p	12	14	0.978	2	12	16	0.003	j
9	11	1.050	P	12	15	0.582	2	Seine Sein			
10	12	0.930	P	12	16	0.330	2		110.00	MeV, HE	
11	13	0.540	P	12	17	0.148		12		0.065	,
5	8	1.160	P	12	18	0.050			11		j
6	9	0.960	P					12	13	0.160	j
7	10	0.830	P		54.80	MeV, CO2		12	14	0.060	j
8	11	0.740	P					12	15	0.020	j
10	13	0.310	P	8	7	0.660	P	12	16	0.007	j
11	14	0.450	p	9	8	1.420	P	12	17	0.004	j
-		MeV, N2	•	10	9	2.450	P			16.W AD	
				11	10	3.350	P		110.00	MeV, AR	
9	8	3.140	a .	12	11	5.000	P	12	11	0.090	j
10	9	5.300	•	13	12	7.000	P	12	13	0.700	j
11	10	7.480	•	14	13	8.800	·P	12	14	0.400	j
12	11	10.640	•	15	14	10.100	P	12	15	0.180	j
9	7	0.084	•	16	15	11.000	P	12	16	0.120	j
10	8	0.048	•	7	8	3.800	P	12	17	0.070	j
12	10	0.186	•	8	9	3.300		12	18	0.050	j
9	10	1.804	•	9	10	2.850	P	12	19	0.037	j
10	11	1.328	•	10	11	2.400	p	12	20	0.030	j
11	12	1.830	•	11	12	1.930	P	12	21	0.024	j
12	13	1.404	•	12	13	1.600	p	12	22	0.020	j
9	11	1.184	•	13	14	1.380	P	12	23	0.014	j
10	12	0.890	•	14	15	1.100	p	12	24	0.011	j
11	13	0.420	•	15	16	0.940	P				
12	14	0.448	•	7	9	1.950	P		162.00	MeV, 02	
9	12	0.694	•	8	10	1.600	P	17	10	0.600	
10	13	0.628		9	11	1.490	P		18	0.600	j j
11	14	0.708	•	10	12	1.100	p	17	19	0.200	
12	15	0.326	•	11	13	0.850	P	17	20		j
9	13	0.312	2	12	14	0.720	p	17	21	0.080	j
10	14	0.262		13	15	0.480	P	17	22	0.060	j
11	15	0.422		7	10	0.980	Р	17	23	0.040	j
12	16	0.214	a .	8	11	0.830	P	17	24	0.022	,
9	14	0.080	•	9	12	0.700	P	17	25	0.010	,
10	15	0.118		10	13	0.850	P	17	26	0.002	j

Graphical Data B-2.108. Velocity dependence of cross sections for capture (full symbols) and loss (open symbols) of a single electron by Br and I ions in He, $\rm H_2$ and $\rm O_2$; drawn from the preceding table. The initial charge state is shown by each curve. The data were taken from H. Betz, Rev. Mod. Phys. 44, 465 (1972).

Data Source Listing B-2.109. Excitation of gases by heavy ion impact.

The literature on excitation by heavy ions is quite sparse for the projectiles of interest here (32 < Z < 65). The situation is summarized below and representative data are given in the following data tables and graphs. Additional data for lower Z projectiles (Z < 32) are to be found in "Excitation in Heavy Particle Collisions" by E. W. Thomas (Wiley, N.Y., 1972).

He Target

Data restricted to Kr⁺ and Xe⁺ impact at low energies; these are partly reproduced as B-2.110 and B-2.111.

Ne, Ar, Kr, No data. Xe Targets

H₂ Target A limited amount of data is available and reproduced here as figure B-2.112

O₂ Target No data.

 $\frac{N_2 \text{ Target}}{}$ A useful coverage is found for this case and reproduced as B-2.113 and B-2.114.

Other
Molecules

No cross section data. A paper by Haugh and Bayes (Phys. Rev. A 2, 1778 (1970)) considers Ar on N2O, HBr, HCl and Kr⁺ on HBr; it presents optical emission spectra and some qualitative discussion of relative intensities exhibited by different vibrational transitions.

Graphical Data B-2.110. Intensity (in arbitrary units) of certain He I lines excited by Kr impact on He. Note energy given both in laboratory and center of mass frames. The data were taken from E. Veje, University of Copenhagen, Private Communication.

Graphical Data B-2.111. Intensity (in arbitrary units) of certain He I lines excited by Xe impact on He. Note energy given in both laboratory and center of mass frames. The data were taken from E. Veje, University of Copenhagen, Private Communication.

Graphical Data B-2.112. Cross section for emission of the Lyman alpha (1216 Å) line of H induced by impact of an ion on H₂; (1) Na⁺, (2) K⁺, (3) Rb⁺, (4) Cs⁺, (5) He⁺, (6) H⁺. Energy is given in center of mass frame of reference.

Reference: S. Bobashev, "Electronic and Atomic Collisions" (Abstracts of Papers VIII ICPEAC, Belgrade 1973) (Institute of Physics, Belgrade) page 665.

Graphical Data B-2.113. Cross section for excitation of the 2p (1) and 2s (2) states of H due to Cs^+ impact on H_2 . Energy given in lab frame of reference.

Reference: S. Bobashev, "Electronic and Atomic Collisions" (Abstracts of Papers VIII ICPEAC, Belgrade 1973) (Institute of Physics, Belgrade) page 665.

Tabular Data B-2.114. Cross sections for emission of the N $_2^+$ 3914 Å transition (B $^2\Sigma_u^+$ \rightarrow X $^2\Sigma_g^+$ (0,0)) induced by heavy ion impact on N $_2$.

$$X^{+} + N_{2} \rightarrow (X^{+} + e) + N_{2}^{+*}$$

 $N_{2}^{+*} + N_{2}^{+} + hv$ (3914 \Re).

			Projectile				
1	N ⁺		Xe ⁺		Ba ⁺		Ba ²⁺
ENERGY (KEV)	CROSS SECTION (SQ. CM)	ENERGY (KEV)	CROSS SECTION (SQ. CM)	ENERGY (KEV)	CROSS SECTION (SQ. CM)	ENERGY (KEV)	CROSS SECTION (SO. CM)
3.20E 01 6.80E 01 5.10E 01 1.29E 02 1.48E 02 1.81E 02 2.19E 02 2.68E 02 2.74E 02 3.54E 02 3.54E 02 3.54E 02 6.71E 02 8.25E 02 1.01E 03 1.23E 03 1.49E 03 1.76E 03	1,21E-16 1,25E-16 1,25E-16 1,25E-16 1,25E-16 1,21E-16 1,21E-16 1,21E-16 1,24E-16 1,15E-16 1,15E-17 8,80E-17 7,80E-17 7,80E-17 6,10E-17 6,39E-17 6,39E-17 6,39E-17 6,39E-17 6,39E-17	2.74E 02 3.89E 02 4.85E 02 7.50E 02 9.62E 02 1.18E 03 1.44E 03 1.65E 03	5.00E-17 5.60E-17 6.33E-17 6.72E-17 7.12E-17 8.20E-17 7.70E-17 8.19E-17 8.64E-17 8.59E-17	2.286 02 4.026 02 4.346 02 5.286 02 7.526 02 1.782 03 1.236 03 1.236 03 1.326 03 1.326 03 1.586 03 1.756 03 2.056 03 2.056 03	3.826-17 3.596-17 3.596-17 3.596-17 3.596-17 4.206-17 3.746-17 6.156-17 6.156-17 7.166-17 8.946-17 1.056-16 1.156-16	6.04E 02 9.52E 02 1.08E 03 1.29E 03 1.50E 03 1.67E 03 2.40E 03 2.44E 03 2.44E 03 2.47E 03 3.41E 03 3.79E 03 3.83E 03	6.15E-17 6.65E-17 8.40E-17 1.60E-16 1.29E-16 1.37E-16 1.66E-16 1.66E-16 1.82E-16 1.88E-16 1.90E-16 1.90E-16

Reference: L. Kurzweg et al., Phys. Rev. <u>179</u>, 55 (1969). Also Erratum in Phys. Rev. <u>185</u>, 404 (1969).

- Note: (i) The above referenced paper also includes data for 0⁺ and N₂⁺ projectiles. Further data for moderately heavy ions (F⁺, Ne⁺, Na⁺, Rb⁺ at energies from 30 to 100 keV are to be found in the work of Hoffman et al; Phys. Rev. A 9, 187 (1974) and Sandia Laboratories Report SC-RR-70-695 (1970).
 - (ii) The spectral line considered here is only one of the First Negative Band System. Various studies suggest that the cross sections for other lines, and for level excitation, can be estimated by the use of theoretical transition probabilities as discussed earlier in Scaling Law B-2.46.
 - (iii) Some separate studies of the apparent "rotational temperature" of excited N₂⁺ induced by Kr⁺, Rb⁺, Xe⁺ and Cs⁺ impact are to be found in the work of Polyakova et al., Soviet Physics JETP 30, 63 (1970) and Lowe, "Fourth International Conf. on the Physics of Electronic and Atomic Collisions", Quebec 1965 (Science Bookcrafters N.Y. 1965) page 285.

Graphical Data B-2.115. Cross sections for collisionally induced emission of the 3914 $^{\rm A}$ N $_2^+$ line by N $^+$, Xe $^+$, Ba $^+$, and Ba $^{2+}$ impact on N $_2$. For tabular data and reference see preceding page.

C. ELECTRON-HEAVY PARTICLE COLLISIONS

CONTENTS

		Page
C-1.	Electron Scattering: Elastic, Total, and Momentum Transfer	1655
C-2.	Excitation by Electron Impact	1733
C-3.	Dissociation by Electron Impact	1753
C-4.	Ionization by Electron Impact	1819
C-5.	Electron-Ion Recombination	1835
C-6.	Negative Ion Formation by Electron Impact	1863

PRECEDING PAGE BLANK-NOT FILMED

C-1. ELECTRON SCATTERING: ELASTIC, TOTAL, AND MOMENTUM TRANSFER

CONTENTS

		Page
C-1.1.	Elastic scattering cross sections for electrons in ${\tt F}$	1659
C-1.2a.	Elastic scattering cross sections for electrons in \ensuremath{Cl}	1660
C-1.2b.	Elastic scattering cross sections for electrons in $\ensuremath{\mathtt{Br}}$	1661
C-1.2c.	Elastic scattering cross sections for electrons in $\ensuremath{\mathrm{I}}$	1662
C-1.3.	Momentum transfer cross sections for electrons in $\ensuremath{\mathrm{Ar}}$	1663
C-1.4.	Elastic scattering cross sections for electrons in $\ensuremath{\text{C}}$	1664
C-1.5.	Total scattering cross sections for electrons in N	1665
C-1.6.	Total scattering cross sections for electrons in N	1666
C-1.7.	Elastic scattering cross sections for electrons in $\ensuremath{\mathtt{N}}$	1667
C-1.8.	Elastic scattering cross sections for electrons in $\ensuremath{\text{0}}$	1668
C-1.9.	Total scattering cross sections for electrons in 0	1669
C-1.10.	Momentum transfer cross sections for electrons in $\ensuremath{\text{0}}$	1671
C-1.11.	Total scattering cross sections for electrons in \ensuremath{Hg}	1673
C-1.12.	Momentum transfer cross sections for electrons in \ensuremath{Hg}	1674
C-1.13.	Total scattering cross sections for electrons in \mathbf{H}_2	1675
C-1.14.	Momentum transfer cross sections for electrons in ${\rm H}_2$	1676
C-1.15.	Total scattering cross sections for electrons in \mathbf{N}_2	1678
C-1.16.	Elastic scattering cross sections for electrons in \mathbf{N}_2	1682
C-1.17.	Momentum transfer cross sections for electrons in \mathbf{N}_2	1684
C-1.18.	Total scattering cross sections for electrons in 0_2	1686
C-1.19.	Elastic scattering cross sections for electrons in 0,	1689

				Page
C-1.20.	Momentum transfer cross sections for electrons in $\boldsymbol{0}_2$			1690
C-1.21.	Total scattering cross sections for electrons in CO			1691
C-1.22.	Momentum transfer cross sections for electrons in CO			1694
C-1.23.	Total scattering cross sections for electrons in NO			1695
C-1.24.	Elastic scattering cross sections for electrons in $\ensuremath{\text{NO}}$			1697
C-1.25.	${\tt Momentum\ transfer\ cross\ sections\ for\ electrons\ in\ NO}$			1698
C-1.26.	Total scattering cross sections for electrons in ${\rm CO}_2$			1699
C-1.27.	Momentum transfer cross sections for electrons in ${\rm CO}_2$			1702
C-1.28.	Total scattering cross sections for electrons in $\mathrm{N}_2\mathrm{O}$			1704
C-1.29.	Momentum transfer cross sections for electrons in $\mathrm{N}_2\mathrm{O}$			1706
C-1.30.	Total scattering cross sections for electrons in ${\rm H}_{2}{\rm O}$			1708
C-1.31.	Momentum transfer cross sections for electrons in ${\rm H}_2{\rm O}$	•		1709
C-1.32.	${\tt Momentum\ transfer\ cross\ sections\ for\ electrons\ in\ OH}$			1711
C-1.33.	Total scattering cross sections for electrons in NH_3			1712
C-1.34.	Momentum transfer cross sections for electrons in $\ensuremath{\mathrm{NH}}_3$			1713
C-1.35.	Total scattering cross sections for electrons in CH_4			1714
C-1.36.	Momentum transfer cross sections for electrons in CH_4		• :	1716
C-1.37.	Total scattering cross sections for electrons in OCS			1717
C-1.38.	Total scattering cross sections for electrons in ${\rm C_2H_2}$. :	1718
C-1.39.	Total scattering cross sections for electrons in Cl_2			1719
C-1.40.	Total scattering cross sections for electrons in HC1		• :	1720
C-1.41a.	Elastic scattering cross sections for electrons in HCl		• :	1721
C-1.41b.	Rotational excitation cross sections for electrons in HCl (rotational transition is i = 0 to i = 1)			1722

		Page
C-1.41c.	Rotational excitation cross sections for electrons in HCl (rotational transition is $j=0$ to $j=2$)	1723
C-1.41d.	Rotational excitation cross sections for electrons in HCl (rotational transition is j = 0 to j = 3)	1724
C-1.42.	Momentum transfer cross sections for electrons in HCl	1725
C-1.43.	Elastic scattering cross sections for electrons in \ensuremath{HF}	1726
C-1.44.	Rotational excitation cross sections for electrons in HF	1727
C-1.45.	Momentum transfer cross sections for electrons in ${}^{\rm SF}_6$	1730
C-1.46.	Elastic scattering cross sections for electrons in ${}^{\rm UF}_6$	1731
C-1.47.	Momentum transfer cross sections for electrons in UF $_6$	1732

General Reference:

Y. Itikawa, "Momentum-Transfer Cross Sections for Electron Collisions with Atoms and Molecules: Revision and Supplement, 1977," Atomic Data and Nuclear Data Tables $\underline{21}$, 69 (1978).

Definitions of Various Kinds of Cross Sections

<u>Total Scattering</u> - The cross section for all scattering events, elastic and inelastic.

Momentum Transfer - A total cross section obtained by integrating the differential center-of-mass cross section over all angles weighted by the factor $(1-\cos\theta)$. θ is the center-of-mass scattering angle. Although it is often assumed that the momentum transfer cross section is an elastic cross section, it is often derived from experimental results which include inelastic effects. Care must be taken to determine the quantities used in the derivation, as discussed in the references.

<u>Total Elastic Scattering</u> - The unweighted integral of the differential elastic cross section.

<u>Total Ionization</u> - This is, in fact, the cross section for electron production and is also defined as

$$\sigma_{\rm T} = \sigma_1 + 2\sigma_2 + 3\sigma_3 + \dots$$

The subscripts on the σ 's on the right-hand side of the equation designate the individual cross sections for producing ions of positive charge indicated by the subscript.

Electronic Excitation - As used here this term is the total cross section for direct excitation of the atomic or molecular level indicated, unless otherwise noted. In some cases, the cross section refers to the radiation emitted with the decay of the excited state.

Tabular and Graphical Data C-1.1 Elastic scattering cross sections for electrons in F.

e + F + e + F

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
0.0680	0.149	6.80	4.63
0.136	0.314	8.16	4.80
0.680	1.28	9.52	4.90
1.50	2.24	10.9	4.95
2.04	2.73	12.2	4.96
2.86	3.30		
3.40	3.60		
4.08	3.91		
5.44	4.35		,

Cont. Next Column

Reference: E. J. Robinson and S. Geltman, Phys. Rev. 153, 4 (1967)

Tabular and Graphical Data C-1.2a. Elastic scattering cross sections for electrons in C1.

e + C1 + e + C1

Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.0680	7.90	5.44	14.5
0.136	4.04	6.80	17.0
0.680	0.847	8.16	19.6
1.50	3.66	9.52	22.1
2.04	5.66	10.9	24.2
2.86	8.33	12.2	25.6
3.40	9.87		
4.08	11.6		

Cont. Next Column

Reference: E. J. Robinson and S. Celtman, Phys. Rev. 153, 4 (1967)

Tabular and Graphical Data C-1.2b. Elastic scattering cross sections for electrons in Br.

e + Br + e + Pr

Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.0680	44.0	5.44	21.5
0.136	22.9	6.80	24.5
0.680	1.94	8.16	26.7
1.50	5.04	9.52	28.1
2.04	8.23	10.9	28.7
2.86	12.5	12.2	28.6
3.40	14.9		
4-08	17.5		

Cont. Next Column

Reference: E. J. Robinson and S. Geltman, Phys. Rev. 153, 4 (1967)

Tabular and Graphical Data C-1.2c. Elastic scattering cross sections for electrons in I.

e + I + e + I

lectron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.0680	60.0	5.44	38.9
0.136	28.0	6.80	41.8
0.680	3.87	8.16	42.3
1.50	11.8	9.52	41.1
2.04	17.7	10.9	39.5
2.86	25.C	12.2	38.0
3.40	29.0		
4.08	33.1		

Cont. Next Column

Reference: E. J. Robinson and S. Geltman, Phys. Rev. <u>153</u>, 4 (1967) 1662

Tabular and Graphical Data C-1.3. Momentum transfer cross section for electrons in Ar.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²
5	6.7	17	13.1
6	8.1	20	11.5
7	9.6	25	9.0
8	11.7	30	7.2
10	15.0	50	4.8
12	15.2	75	3.5
15	14.1	100	2.8

Cont. Next Column

Reference: F. E. Spencer and A. V. Phelps, Proceedings of the 15th Symposium on the Engineering Aspects of Magnetohydrodynamics, Philadelphia, Pa., May, 1976. Paper IX.9.1

Tabular and Graphical Data C-1.4. Elastic scattering cross sections for electrons in C.

e + C + e + C

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.0152	10.5	0.490	40.2	1.41	23.7
0.0516	10.7	0.522	40.4	1.73	21.8
0.134	12.5	0.559	40.6	2.18	20.3
0.271	16.2	0.602	40.3	3.02	19.7
0.389	22.3	0.628	39.7	3.56	19.4
0.440	29.3	0.681	37.2	3.88	19.0
0.466	34.1	0.764	34.2	4.48	18.6
0.465	37.2	0.907	30.8	4.82	18.8
0.472	39.6	1.08	27.9		

Cont. Next Column

Cont. Next Column

Electron Energy (eV)
Reference: L. D. Thomas, R. S. Oberoi, and R. K. Mesbet,
Phys. Rev. A 10, 1605 (1974)

Tabular and Graphical Data C-1.5. Total scattering cross sections for electrons in N.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²
0.190	66.0	1.05	16.1
0.230	56.5	1.32	10.1
0.270	49.3	1.56	21.5
0.300	43.0	1.81	21.4
0.440	36.7	1.94	19.6
0.550	30.4	2.06	16.2
0.810	24.3		

Cont. Next Column

Reference: T. M. Miller, P. N. Eisner and B. Bederson, Bull. Am. Phys. Soc. <u>15</u>, 416 (1970)

Tabular and Graphical Data C-1.6. Total scattering cross sections for electrons in N.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
2.47	3.43	6.94	6.05
2.75	3.26	7.34	7.24
2.95	5.07	7.95	5.38
3.18	3.61	8.42	7.08
3.41	5.45	8.83	6.00
4.09	5.10	9.23	5.62
4.56	5.51	9.68	5.65
4.90	5.62	9.96	5.96
5.36	6.42		
6.21	6.71		

Cont. Next Column

Reference: R. H. Neynaber, L. L. Marino, E. W. Rothe, S. M. Trujillo, Phys. Rev. 129, 2069 (1963)

Tabular and Graphical Data C-1.7. Elastic scattering cross sections for electrons in N_{\star}

e + N + e + N

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.0142	8.58	1.89	13.9	7.39	10.6
0.0620	9.69	2.38	13.3	7.97	10.4
0.118	10.7	2.73	12.9	8.61	10.2
0.223	11.9	3.24	12.6	9.15	10.1
0.353	13.1	3.97	12.4	9.75	9.90
0.494	13.8	4.38	12.1	10.3	9.82
0.684	14.5	4.98	11.7	10.9	9.58
0.951	14.9	5.69	10.9	11.0	9.48
1.25	14.8	6.39	10.6		
1.53	14.5	6.94	10.5		

Cont. Next Column

Cont. Next Column

Reference: L. D. Thomas, R. S. Oberoi, and R. F. Nesbet, Phys. Rev. A 10, 1605 (1974) Tabular and Graphical Data C-1.8. Elastic scattering cross sections for electrons in 0.

e + 0 + e + 0

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.0684	5.63	2.81	7.95	7.87	8.05
0.221	6.20	3.71	8.07	8.67	7.96
0.376	6.62	4.14	8.18	9.52	7.82
0.544	6.93	4.64	8.32	10.3	7.70
0.800	7.22	4.88	8.36	11.0	7.57
1.25	7.52	5.53	8.32		
1.65	7.72	6.16	8.24		
2.20	7.86	7.01	8.17		

Cont. Next Column

Reference: L. D. Thomas, R. S. Oberoi and R. K. Nesbet, Phys. Rev. A 10, 1605 (1974)

Tabular and Graphical Data C-1.9a. Total scattering cross sections for electrons in 0.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10^{-16} cm ²
11.3	7.30	7.20	9.10	3.05	6.30
10.8	8.20	6.70	8.70	2.50	7.90
10.2	9.50	6.20	6.90	2.00	5.30
9.75	8.60	5.70	6.30	1.50	6.70
9.25	8.20	5.15	8.60	1.000	5.20
8.75	10.1	4.65	6.30	0.500	5.70
8.20	9.40	4.10	7.60		
7.70	8.90	3.60	8.30		

Reference: G. Sunshine, B. B. Aubrey, B. Bederson, Phys. Rev. <u>154</u>, 1 (1967)

Tabular and Graphical Data C-1.9b. Total scattering cross sections for electrons in θ .

Electron	Cross
Energy	Section
eV	10^{-16}cm^2
12.1	8.11
15.8	7.99
24.9	7.38
35.7	6.66
48.8	6.43
63.8	6.16
80.7	6.27
99.6	6.01

Reference: G. Sunshine, B. B. Aubrey, and B. Bederson, Phys. Rev. <u>154</u>, 1 (1967)

Tabular and Graphical Data C-1.10a. Momentum transfer cross sections for electrons in 0.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10^{-16}cm^2
0.010	0.95	2.0	3.5
0.020	1.1	2.6	3.6
0.049	1.4	3.1	3.7
0.098	1.8	3.9	3.8
0.20	2.2	5.1	3.9
0.50	2.8	10	4.5
1.0	3.2		

Cont. Next Column

Reference: Y. Itikawa, At. Dat. and Nuc. Dat. Tables 21, 69 (1978)

Tabular and Graphical Data C-1.10b. Momentum transfer cross sections for electrons in 0.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-14} cm^2$	eV	10^{-14}cm^2	eV	10 ⁻¹⁴ cm ²
0.10	4.80	1.5	5.40	7.0	6.60
0.12	4.82	1.7	5.40	8.0	6.75
0.15	4.85	1.9	5.43	10.0	7.20
0.17	4.87	2.1	5.46	12	7.45
0.20	4.90	2.2	5.49	15	7.80
0.25	4.92	2.5	5.60	17	7.70
0.30	4.95	2.8	5.65	20	7.60
0.35	4.97	3.0	5.70	25	7.20
0.40	5.00	3.3	5.75	30	6.60
0.50	5.05	3.6	5.85	50	6.30
0.70	5.15	4.0	6.00	75	6.10
1.0	5.20	4.5	6.10	100	6.00
1.2	5.25	5.0	6.20		
1.3	. 5.35	6.0	6.40		

Reference: F. E. Spencer and A. V. Phelps, Proceedings of the 15th Symposium on the Engineering Aspects of Magnetohydrohynamics, Philadelphia, Pa., May, 1976. Paper IX.9.1

Tabular and Graphical Data C-1.11. Total scattering cross sections for electrons in Hg.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
0.038	50	0.50	120	1.5	120
0.098	54	0.53	130	1.7	110
0.15	55	0.60	150	1.8	100
0.21	52	0.65	170	2.0	96
0.24	47	0.72	180	2.2	89
0.28	41	0.77	190	2.4	82
0.32	40	0.81	190	2.6	75
0.37	41	0.85	180	2.9	68
0.40	51	0.90	180	3.1	64
0.41	64	0.97	170	3.4	61
0.42	78	1.1	160	3.6	58
0.43	89	1.2	140	3.8	55
0.46	100	1.4	130	3.9	54

Cont. Next Column

Reference: P. K. Hutt, J. Phys. B 8, L88 (1975)

Tabular and Graphical Data C-1.12. Momentum transfer cross sections for electrons in Hg.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²	eV	10-16 _{cm} 2
0.099	24.7	0.65	130	4.0	26.9
0.20	24.8	0.70	126	5.9	14.7
0.30	24.8	0.79	118	6.3	12.7
0.32	25.1	0.89	110	6.9	11.7
0.39	47.1	0.99	103	0.8	11.3
0.50	115	1.3	79.2	9.0	11.1
0.52	123	1.5	69.0	10.0	10.9
0.54	129	2.0	51.7	20	9.58
0.59	133	3.0	36.4	30	8.85

Cont. Next Column

Reference: S. D. Rockwood, Phys. Rev. A 8, 2348 (1973)

Tabular and Graphical Data C-1.13. Total scattering cross sections for electrons in ${\rm H}_2.$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10^{-16} cm ²	eV	10-16cm
0.324	9.45	2.85	15.6	7.54	11.2
0.324	9.69	2.99	15.6	7.88	11.0
0.384	9.99	3.09	15.8	8.00	10.8
0.443	10.3	3.23	15.6	8.24	10.6
0.503	10.6	3.33	15.5	8.72	10.2
0.523	10.8	3.57	15.3	9.03	9.91
0.582	11.1	3.88	15.1	9.53	9.57
0.642	11.5	3.98	14.9	10.1	9.21
0.622	11.9	4.26	14.8	10.2	9.27
0.761	12.3	4.46	14.5	10.5	8.98
0.801	12.4	4.56	14.4	11.0	8.66
0.901	12.5	4.66	14.4	11.5	8.42
0.960	12.8	4.74	14.3	11.7	8.32
1.06	13.1	4.90	14.2	11.9	8.11
1.000	13.2	5.10	13.8	12.4	7.93
1.06	13.3	5.28	13.7	12.5	7.93
1.32	13.5	5.61	13.3	12.7	7.83
1.58	14.2	5.89	13.0	13.0	7.69
1.76	14.7	6.05	12.8	13.5	7.55
1.86	14.6/	6.05	12.7	13.7	7.41
2.01	14.9	6.39	12.4	14.2	7.24
2.03	15.0	6.53	12.2	14.5	7.06
2.13	15.1	6.59	12.2	14.7	6.96
2.33	15.3	6.99	11.7	15.0	6.86
2.57	15.4	7.09	11.7		
2.73	15.7	7.28	11.5		

Cont. Next Column

Reference: D. E. Golden, H. W. Bandel and J. A. Salerno, Phys. Rev. 146 40 (1966)

Tabular Data C-1.14a. Momentum transfer cross sections for electrons in $\mathbf{H}_2\text{.}$

$$e + H_2 + e + H_2$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²	eV	10^{-16} cm ²
0	6.40	0.090	10.3	0.60	15.6
0.010	7.30	0.10	10.5	0.70	16.3
0.020	8.00	0.11	10.7	0.90	17.1
0.030	8.50	0.13	11.0	1.1	17.7
0.040	8.96	0.15	11.4	1.4	18.2
0.050	9.28	0.20	12.0	1.6	18.3
0.060	9.56	0.30	13.0	1.8	18.2
0.070	9.85	0.40	13.9	2.0	18.0
0.080	10.1	0.50	14.7		

Cont. Next Column

Cont. Next Column

Reference: R. W. Crompton, D. K. Gibson, and A. I. McIntosh, Australian J. Phys. 22, 715 (1969)

Tabular Data C-1.14b. Momentum transfer cross sections for electrons in $\mathbf{H}_2\text{.}$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10^{-16} cm ²	eV	10^{-16} cm ²
0.0101	7.26	0.143	11.3	1.40	18.0
0.0131	7.45	0.175	11.7	1.72	17.9
0.0169	7.76	0.221	12.2	2.09	17.6
0.0218	8.04	0.272	12.8	2.49	17.2
0.0283	8.43	0.340	13.4	2.70	16.8
0.0361	8.81	0.417	14.2	3.21	15.9
0.0462	9.25	0.512	15.0	3.73	14.9
0.0586	9.64	0.634	16.0	4.31	13.9
0.0748	9.98	0.778	16.8	4.78	13.0
0.0942	10.4	0.933	17.5		
0.115	10.8	1.17	18.2		

Cont. Next Column

Cont. Next Column

Reference: D. K. Gibson, Australian J. Phys. 23, 683 (1970)

Graphical Data C-1.14c. Momentum transfer cross sections for electrons in H_2 .

Tabular Data C-1.15a. Total scattering cross sections for electrons in $\mathbf{N}_2\text{.}$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.303	6.44	1.57	11.9	2.62	25.6
0.310	7.35	1.58	12.5	2.64	26.1
0.309	7.85	1.60	13.1	2.69	25.5
0.338	8.22	1.70	13.2	2.72	25.1
0.375	7.96	1.76	13.2	2.74	24.1
0.382	7.64	1.80	15.8	2.76	22.9
0.397	7.20	1.85	17.8	2.79	21.4
0.426	7.42	1.90	20.7	2.81	21.2
0.441	7.82	1.91	21.9	2.83	21.7
0.469	8.55	1.93	23.4	2.88	21.7
0.483	9.45	1.93	24.4	2.94	20.8
0.497	9.89	1.96	23.9	2.99	19.6
0.548	10.1	1.99	23.5	3.02	19.1
0.599	9.96	2.04	23.3	3.04	18.3
0.628	9.67	2.06	23.6	3.07	18.1
0.651	9.16	2.09	24.3	3.09	18.5
0.680	8.91	2.13	25.1	3.14	18.4
0.709	9.09	2.16	26.9	3.16	18.1
0.723	9.38	2.18	28.9	3.20	17.1
0.737	9.78	2.18	31.0	3.24	16.5
0.795	10.00	2.19	32.1	3.29	16.2
0.846	10.4	2.22	31.2	3.35	16.2
0.890	10.2	2.24	29.7	3.40	15.4
0.919	9.93	2.26	28.5	3.43	15.2
0.978	9.71	2.29	25.9	3.50	14.7
1.01	9.89	2.34	26.0	3.54	14.6
1.03	10.1	2.37	28.2	3.60	14.3
1.05	10.4	2.41	29.7	3.65	14.0
1.11	10.7	2.45	30.6	3.70	13.8
1.19	11.1	2.50	27.9	3.74	13.7
1.22	10.6	2.53	25.6	3.84	13.3
1.25	9.85	2.54	25.2	4.00	12.9
1.29	10.1	2.57	24.8	4.19	12.5
1.34	10.6	2.58	24.6	4.40	12.2
1.40	11.3	2.59	24.2	4.50	12.1
1.46	11.3	2.59	25.0	4.60	11.8
1.52	11.2	2.59	25.5	4.80	11.5
				5.00	11.3

Reference: D. E. Golden, Phys. Rev. Letters 17, 847 (1966)

Graphical Data C-1.15a. Total scattering cross sections for electrons in ${\rm N}_2$.

Tabular Data C-1.15b. Total scattering cross sections for electrons in $\mathbf{N}_2^{}.$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
0.519	8.79	2.40	30.8	8.10	11.2
0.570	8.94	2.46	31.8	8.46	11.3
0.628	9.43	2.53	27.3	8.85	11.3
0.695	9.38	2.59	25.2	9.27	11.4
0.774	9.53	2.66	27.9	9.72	11.7
0.868	9.73	2.73	25.9	10.2	11.8
0.916	9.18	2.80	22.2	10.7	11.9
0.943	9.85	2.87	22.8	11.3	11.8
0.972	9.96	2.95	21.6	11.9	12.0
1.00	9.91	3.03	19.3	12.5	11.9
1.02	9.86	3.12	19.2	13.2	12.2
1.06	10.0	3.21	17.5	14.0	12.5
1.09	10.1	3.30	16.7	14.9	12.6
1.13	10.1	3.39	16.0	15.8	12.6
1.16	10.2	3.49	15.2	16.8	12.8
1.20	10.1	3.59	14.6	17.9	13.1
1.24	10.3	3.70	14.1	19.1	13.1
1.29	10.4	3.81	13.6	20.4	13.2
1.33	10.4	3.93	13.3	21.9	13.4
1.38	10.6	4.05	12.9	23.6	13.2
1.43	10.8	4.18	12.5	25.4	12.9
1.49	11.0	4.31	12.3	27.5	12.6
1.54	11.4	4.45	12.2	29.9	12.3
1.60	11.9	4.60	12.0	32.6	11.9
1.67	12.7	4.75	11.9	35.6	11.7
1.74	13.8	4.92	11.6	39.1	11.4
1.81	16.4	5.09	11.7	43.1	10.9
1.87	19.1	5.27	11.4	47.8	10.3
1.91	22.3	5.46	11.4	51.3	10.3
1.95	25.4	5.66	11.5		
1.99	25.8	5.87	11.4		
2.04	24.5	6.09	11.1		
2.09	23.8	6.33	11.1		
2.13	27.2	6.58	11.1		
2.18	32.8	6.85	11.2		
2.24	32.6	7.13	11.1		
2.29	28.3	7.43	11.0		
2.35	26.4	7.75	11.1		

Cont. Next Column

Reference: R. Kennerly, Phys. Rev. A (submitted)

Graphical Data C-1.15b. Total scattering cross sections for electrons in ${\rm N}_2$.

Tabular and Graphical Data C-1.16a. Elastic scattering cross sections for electrons in ${\rm N}_2.$

$$e + N_2 + e + N_2$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
5.0	9.40	40	8.30
7.0	11.0	50	8.00
10.0	12.0	60	6.60
15	12.0	75	5.80
20	10.1		
30	8.80		

Cont. Next Column

Reference: S. K. Srivastava, A. Chutjian and S. Trajmar, J. Chem. Phys. <u>64</u>, 1340 (1976)

Tabular and Graphical Data C-1.16b. Elastic scattering cross sections for electrons in $\mathbf{N}_2.$

$$e + N_2 + e + N_2$$

Electron	Cross
Energy	Section
eV	10^{-16} cm ²
20	9.13
50	7.22
100	4.96
200	3.53
400	2.11
500	1.65
800	1.06

Reference: R. D. DuBois and M. F. Rudd, J. Phys. B <u>9</u>, 2657 (1976)

Tabular and Graphical Data C-1.17a. Momentum transfer cross sections for electrons in N $_{2}. \\$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.010	2.24	1.7	15.4	2.9	24.0
0.020	2.98	1.8	17.7	3.0	22.0
0.050	4.39	1.9	20.7	3.1	19.0
0.10	5.90	2.0	23.5	3.3	16.4
0.20	7.92	2.0	25.9	3.7	14.0
0.50	10.0	2.1	28.2	4.2	11.9
0.84	10.1	2.3	29.6	5.1	10.9
1.0	10.0	2.5	30.0	6.6	10.1
1.3	10.9	2.7	29.6	10.0	9.53
1.5	11.9	2.8	28.4		
1.6	13.3	2.8	25.9		

Cont. Next Column

Reference: Y. Itikawa, Atomic Data 14, 1 (1974)

Tabular and Graphical Data C-1.17b. Momentum transfer cross sections for electrons in $\mathbf{N}_2.$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-14} cm ²	eV	10 ⁻¹⁴ cm ²
10	10.2	30	11.1
12	10.4	50	9.3
15	11.1	75	7.7
17	11.6	100	6.6
20	12.0		
25	11.7		

Reference: F. E. Spencer and A. V. Phelps, Proceedings of the 15th Symposium on the Engineering Aspects of Magnetohydro-dynamics, Philadelphia, Pa., May, 1976. Paper IX.9.1

Tabular and Graphical Data C-1.18a. Total scattering cross sections for electrons in $\mathbf{0}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	èV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.187	7.04	0.242	4.38	0.592	6.11
0.154	6.34	0.242	3.96	0.592	5.86
0.191	6.25	0.320	4.44	0.646	6.08
0.179	5.97	0.323	4.92	0.807	5.88
0.175	5.69	0.403	5.49	0.949	6.65
0.215	5.63	0.495	5.43	1.34	6.39
0.210	4.92	0.493	6.08		

Cont. Next Column

Reference: C. Ramsauer and R. Kollath, Ann. Phys. (Leipz.) 4, 149 (1930)

Tabular and Graphical Data C-1.18b. Total scattering cross sections for electrons in $\mathbf{0}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	e V	10^{-16} cm ²	eV	10-16 _{cm} 2
2.33	6.22	6.49	7.79	12.7	10.0
2.50	6.29	6.58	7.75	13.2	9.85
2.99	6.38	6.68	7.90	13.4	9.73
3.05	6.53	6.73	7.70	13.5	9.76
3.36	6.80	6.95	8.04	14.2	9.69
3.64	6.79	7.52	8.16	14.3	9.66
4.30	7.03	7.88	8.58	15.4	9.55
4.38	6.86	8.02	8.56	16.4	9.48
4.39	6.98	8.33	8.88	17.4	9.44
4.92	7.20	8.60	9.09	18.2	9.41
5.01	7.06	8.59	9.21	19.2	9.39
5.48	7.22	9.14	9.41	20.1	9.40
5.60	7.38	9.64	9.65	20.3	9.41
5.70	7.28	10.1	9.89	20.4	9.41
5.91	7.36	10.4	9.98	20.9	9.45
5.90	7.47	11.0	10.1		
5.93	7.62	11.6	10.1		
6.11	7.69	12.1	10.1		

Reference: A. Salop and H. H. Nakano, Phys. Rev. A 2, 127 (1970)

Tabular and Graphical Data C-1.18c. Total scattering cross sections for electrons in $\mathbf{0}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
11.3	11.4	7.20	9.10	3.05	7.50
10.8	11.0	6.70	9.50	2.50	8.40
10.2	10.5	6.20	9.10	2.00	7.50
9.75	10.7	5.70	9.40	1.50	7.30
9.25	10.7	5.15	7.90	1.000	6.40
8.75	11.6	4.65	9.10	0.500	6.00
8.20	9.90	4.10	8.20		
7.70	10.5	3.60	8.50		

Cont. Next Column

Reference: G. Sunshine, B. B. Aubrey, and B. Bederson, Phys. Rev. <u>154</u>, 1 (1967)

Tabular and Graphical Data C-1.19. Elastic scattering cross sections for electrons in \mathbf{O}_2 .

 $e + 0_2 + e + 0_2$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
4.0	6.78	15	7.89
5.0	6.95	20	8.02
7.0	7.60	45	5.82
10.0	9.03		

Reference: S. Trajmar, D. C. Cartwright and W. Williams, Phys. Rev. A 4, 1482 (1971)

Tabular and Graphical Data C-1.20. Momentum transfer cross sections for electrons in $\mathbf{0}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Flectron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0	0.35	0.23	5.6	4.0	5.5
0.0010	0.35	0.35	5.7	4.5	5.5
0.0020	0.36	0.40	5.8	5.0	5.6
0.0030	0.40	0.50	5.9	6.0	6.0
0.0050	0.50	0.70	6.1	7.0	6.6
0.0070	0.58	1.00	7.2	8.0	7.1
0.0085	0.64	1.2	7.9	10.0	0.8
0.010	0.70	1.3	7.9	12	8.5
0.015	0.87	1.5	7.6	15	8.8
0.020	0.99	1.7	7.4	17	8.7
0.030	1.2	1.9	6.9	20	8.6
0.040	1.4	2.1	6.6	25	8.2
0.050	1.6	2.2	6.5	30	8.0
0.070	2.1	2.5	6.1	50	7.7
0.080	2.9 -	2.8	5.8	75	6.8
0.10	4.2	3.0	5.7	100	6.5
0.20	5.1	3.3	5.5		
0.21	5.4	3.6	5.5		

Reference: S. A. Lawton and A. V. Phelps, J. Chem. Phys. 69, 1055 (1978)

Tabular and Graphical Data C-1.21a. Total scattering cross sections for electrons in ${\tt CO.}$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.177	10.8	0.587	13.3	1.01	14.5
0.180	10.3	0.636	14.1	1.08	15.5
0.236	11.5	0.766	14.8	1.17	18.4
0.315	12.3	0.770	13.7	1.20	18.0
0.348	11.3	0.826	14.4		
0.352	12.7	0.920	14.3		
0.449	12.7	0.987	14.1		
0.587	13.9	1.01	15.1		

Reference: C. Ramsauer and R. Kollath, Ann. Phys. (Leipz.) 4, 91 (1930)

Tabular and Graphical Data C-1.21b. Total scattering cross sections for electrons in CO.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	1-15 cm ²	eV	10 ⁻¹⁵ cm ²	eV	10 ⁻¹⁵ cm ²
1.34	1.55	2.01	3.40	2.79	2.05
1.39	1.75	2.09	3.35	2.93	1.94
1.45	2.09	2.14	3.32	3.10	1.80
1.52	2.47	2.18	3.28	3.31	1.66
1.59	2.75	2.25	3.14	3.75	1.43
1.63	2.95	2.28	3.02	4.05	1.33
1.71	3.29	2.31	2.89	4.41	1.25
1.81	3.31	2.35	2.74	4.69	1.21
1.89	3.48	2.46	2.46	5.34	1.13
1.91	3.51	2.47	2.46	5.59	1.13

Reference: C. Szmytkowski and M. Zubek, Chem. Phys. Lett. 57, 105 (1978)

Tabular and Graphical Data C-1.21c. Total scattering cross sections for electrons in ${\tt CO}$.

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
10.0	32
15	24
20	14
30	9.0
40	6.4
50	5.5
60	4.1
80	2.1

Reference: D. G. Truhlar, W. Williams and S. Trajmar, J. Chem. Phys. <u>57</u>, 4307 (1972)

Tabular and Graphical Data C-1.22. Momentum transfer cross sections for electrons in CO.

E	Qm	E	Q	E	Qm
(eV)	(10 ⁻¹⁶ cm ²)	(eV)	(10 ⁻¹⁶ cm ²)	(eV)	(10 ⁻¹⁶ cm ²)
0.0	60.0	0.25	11.2	3.3	14.6
0.0010	40.0	c.30°	12.1	3.6	14.2
0.0020	25.0	0.35	13.0	4.0	13.8
0.0030	17.7	0.40	13,8	4.5	13.3
0.0050	12.3	0.50	15.4	5.0	12.9
0.0070	9.8	0.70	16.5	6.0	12.3
0.0085	8.6	1.00	18.5	7.0	11.8
0.0100	7.8	1.2	28.0	8.0	11.3
0.015	6.5	1.3	37.0	10.0	10.6
0.020	5.9	1.5	42.0	12.0	10.4
0.030	5.4	1.7	40.0	15.0	10.2
0.040	5.2	1.9	32.0	17.0	10.1
0.050	5.4	2.1	23.5	20.0	9.8
0,070	6.1	2.2	21.5	25.0	9.1
0.100	7.3	2.5	17.5	30.0	8.6
0.15	8.8	2.8	16.0	50.0	7.1
0.20	10.0	3.0	15.4	75.0	6.1
				100.0	5.5

Reference: J. Land, J. Appl. Phys. 49, 5716 (1978)

Tabular Data C-1.23. Total scattering cross sections for electrons in NO.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.0478	1.34	0.780	1.04	2.72	0.928
0.0521	1.20	0.827	1.07	2.83	0.920
0.0650	1.000	0.831	1.10	2.90	0.920
0.0747	0.899	0.848	1.15	3.00	0.913
0.0962	0.800	0.876	1.18	3.11	0.913
0.149	0.725	0.919	1.13	3.17	0.907
0.166	0.704	0.933	1:09	3.27	0.908
0.204	0.745	0.972	1.05	3.38	0.902
0.201	0.784	1.01	1.09	3.54	0.903
0.212	0.853	1.02	1.15	3.77	0.899
0.245	0.934	1.05	1.18	3.91	0.901
0.259	0.959	1.10	1.14	4.09	0.896
0.283	0.923	1.11	1.09	4.28	0.899
0.297	0.888	1.18	1.12	4.41	0.900
0.299	0.835	1.20	1.15	4.64	0.899
0.332	0.807	1.24	1.12	4.86	0.899
0.353	0.850	1.30	1.09	5.06	0.897
0.375	0.893	1.36	1.11	5.10	0.900
0.386	0.953	1.37	1.12	5.45	0.898
0.420	1.03	1.41	1.10	5.81	0.900
0.451	0.994	1.44	1.08	6.26	0.901
0.469	0.942	1.49	1.06	6.68	0.906
0.471	0.879	1.52	1.07	7.29	0.916
0.491	0.866	1.55	1.08	7.81	0.923
0.516	0.896	1.58	1.06	8.15	0.92
0.545	0.945	1.66	1.03	8.20	0.93
0.552	0.995	1.71	1.03	8.42	0.933
0.557	1.04	1.83	0.997	8.63	0.93
0.589	1.06	1.85	0.992	8.95	0.94
0.606	1.04	1.93	0.993	9.28	0.94
0.631	1.01	2.07	0.981	9.59	0.949
0.660	1.05	2.26	0.957		
0.714	1.11	2.42	0.948		
0.745	1.07	2.59	0.933		

Cont. Next Column

Reference: A. Zecca, I. Lazzizzara, M. Krauss, and C. E. Kuyatt, J. Chem. Phys. <u>61</u>, 4560 (1974)

Tabular Data C-1.24. Elastic scattering cross sections for electrons in NO.

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
0.43	19
0.60	17

Reference: J. Reinhardt, F. Gresteau, R. I. Hall, A Huetz and M. Tronc, ICPEAC IX Abstracts 1, 271 (1975)

Tabular and Graphical Data C-1.25. Momentum transfer cross sections for electrons in NO.

Flectron Fnerry	Cross Section	Flectron Fnergy	Cross Section	Flectron Fnerry	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²	eV	10-16 cm
0	120	C.20	5.30	3.3	8.60
0.0010	94.0	0.25	7.00	3.6	8.30
0.0020	58.0	0.30	11.1	4.0	8.10
0.0030	38.0	0.35	17.5	4.5	8.10
0.0050	22.5	0.40	22.5	5.0	8.10
0.0070	16.3	0.50	29.0	6.0	8.20
0.0085	13.3	0.70	22.5	7.0	8.30
0.010	12.0	1.0	16.1	8.0	8.40
0.015	8.10	1.2	14.5	10.0	8.80
0.020	6.20	1.3	13.7	12	9.90
0.030	4.65	1.5	12.9	15	11.5
0.040	3.85	1.7	11.7	17	11.4
0.050	3.40	1.9	11.1	20	11.0
0.070	3.00	2.1	10.7	25	10.7
0.10	3.10	2.2	10.4	30	10.3
0.12	3.45	2.5	9.90	50	9.20
0.15	4.05	2.8	9.30	75	8.20
0.17	4.55	3.0	9.10	100	7.50

Cont. Next Column Cont. Next Column

Reference: F. E. Spencer and A. V. Phelps, Proceedings of the 15th Symposium on the Engineering Aspects of Magnetodydrodynamics, Philadelphia, Pa., May, 1976. Paper Ix.9.1

Tabular Data C-1.26a. Total scattering cross sections for electrons in $\mathrm{CO}_2 \, .$

Electron Energy	Cross Section
eV	10^{-16}cm^2
1.80	6.14
3.76	14.5
5.76	8.23
13.2	13.9
24.2	16.4
41.7	14.8

Reference: E. Bruche, Ann. Phys. (Leipz.) 83, 1065 (1927).

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
0.949	6.87
0.949	6.45
1.39	5.35

Reference: C. Ramsauer, Ann. Phys. (Leipz.) 83, 1129 (1927).

Tabular and Graphical Data C-1.26b. Total scattering cross sections for electrons in ${\rm CO}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
1.51	6.18	3.53	14.6	4.67	9.45
1.72	6.12	3.56	14.9	4.83	8.81
1.99	6.20	3.61	15.2	5.14	8.21
2.29	6.57	3.65	15.3	5.25	8.08
2.57	7.08	3.76	15.3	5.41	8.02
2.92	8.27	3.82	15.2	5.59	8.11
3.05	9.22	3.85	15.0	6.08	8.63
3.13	10.0	3.94	14.6	6.44	9.01
3.19	10.9	4.06	13.9	6.84	9.35
3.31	12.3	4.16	13.2	7.21	9.65
3.38	13.1	4.27	12.4	7.67	9.96
3.45	13.8	4.53	10.2	8.01	10.2

Cont. Next Column

Reference: C. Szmytkowski and M. Zubek, Chem. Phys. Lett. <u>57</u>, 105 (1978)

Tabular and Graphical Data C-1.27a. Momentum transfer cross sections for electrons in ${\rm CO}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10^{-16} cm ²	eV	10-16 _{cm} 2
0.0099	173	0.59	8.53	3.9	15.3
0.020	121	0.69	7.48	4.1	15.4
0.030	97.9	0.78	6.78	4.4	14.5
0.039	84.3	0.88	6.21	4.9	12.8
0.050	75.5	0.99	5.77	5.9	10.4
0.069	64.5	1.3	5.13	6.3	9.91
0.079	60.1	1.5	5.01	6.9	9.93
0.089	55.7	1.8	5.04	7.8	10.4
0.097	52.8	2.0	5.19	8.8	11.2
0.20	31.3	2.4	6.07	9.8	12.0
0.29	20.2	2.9	8.59	11	12.7
0.39	13.8	3.2	11.4		
0.49	10.4	3.4	12.8		

Reference: Y. Itikawa, At. Data and Nuc. Data Tables 21, 69 (1978)

Tabular and Graphical Data C-1.27b. Momentum transfer cross sections for electrons in CO_2 .

Electron Energy	Cross Section	Electron Energy	Cross Section	
eV	10^{-16} cm ²	eV	10^{-16}cm^2	
10	12.0	25	16.0	
12	13.2	30	15.9	
15	14.5	50	12.9	
17	14.9	75	9.5	
20	15.6	100	8.0	

Reference: F. E. Spencer and A. V. Phelps, Proceedings of the 15th Symposium on the Engineering Aspects of Magnetohydro-dynamics, Philadelphia, Pa., May, 1976. Paper IX.9.1

Tabular Data C-1.28. Total scattering cross sections for electrons in ${\rm N_2O}$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	e V	10^{-16} cm ²	eV	10-16 _{cm} 2
0.195	7.33	1.89	12.1	4.34	9.41
0.224	6.75	1.97	12.3	4.45	9.41
0.242	6.24	2.04	12.5	4.53	9.39
0.245	6.11	2.11	12.6	4.58	9.41
0.290	6.02	2.19	12.6	4.64	9.46
0.349	5.94	2.23	12.6	4.77	9.44
0.403	5.98	2.31	12.5	4.91	9.46
0.428	6.04	2.36	12.4	5.04	9.46
0.518	6.26	2.44	12.1	5.15	9.56
0.651	6.65	2.49	11.9	5.29	9.61
0.790	6.97	2.57	11.7	5.39	9.68
0.902	7.36	2.63	11.4	5.57	9.80
1.02	7.71	2.67	11.3	5.66	9.86
1.15	8.22	2.74	11.2	5.81	10.0
1.21	8.47	2.83	10.9	5.98	10.2
1.31	8.84	2.89	10.7	6.15	10.5
1.38	9.17	3.03	10.4	6.32	10.7
1.41	9.34	3.21	10.1	6.53	11.0
1.45	9.56	3.33	10.00	6.67	11.2
1.48	9.75	3.42	9.90	6.83	11.3
1.54	10.1	3.54	9.78	6.91	11.4
1.60	10.5	3.69	9.65		
1.68	10.9	3.82	9.58		
1.78	11.5	3.98	9.52		
1.84	11.8	4.20	9.44		

Cont. Next Column

Reference: A. Zecca, I. Lazzizzara, M. Krauss, and C. E. Kuyatt, J. Chem. Phys. <u>61</u>, 4560 (1974)

Reference: A. Zecca, I Lazzizzara, M. Krauss, and C. E. Kuyatt, J. Chem. Phys. 61, 4560 (1974)

Graphical Data C-1.28. Total scattering cross sections for electrons in $\mathrm{N}_2\mathrm{O}\text{.}$

Tabular and Graphical Data C-1.29a. Momentum transfer cross section for electrons in ${\rm N}_2{\rm O}$.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.0080	49	0.030	25
0.0099	44	0.035	23
0.015	36	0.040	22
0.020	31	0.045	21
0.025	28	0.050	20

Cont. Next Column

Note: There is a misprint in the analytical expression for the cross section for N $_2$ O on page 2089 of this reference. The expression should be σ (N $_2$ O) = 4.4 × 10-16 μ -1/2 cm².

Reference: J. L. Pack, R. E. Voshall and A. V. Phelps, Phys. Rev. <u>127</u>, 2084 (1962) Tabular and Graphical Data C-1.29b. Momentum transfer cross sections for electrons in $\mathrm{N}_2\mathrm{O}\text{.}$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.50	8.47	2.0	20.9	3.1	12.5
0.86	7.50	2.1	21.5	3.4	10.2
0.98	7.86	2.2	21.5	4.0	9.17
1.2	9.87	2.4	20.9	4.5	9.03
1.5	14.1	2.5	20.1	5.0	9.15
1.7	18.1	2.8	16.0	9.5	13.0

Cont. Next Column

Cont. Next Column

Electron Energy (eV)

Note: Data from this reference for electron energies less than 0.5 eV have been omitted. They are incorrect due to application of the analytical expression from Pack, Voshall, and Phelps discussed in Data C-1.29a.

Reference: Y. Itikawa, Atomic Data 14, 1 (1974)

Tabular and Graphical Data C-1.30. Total scattering cross sections for electrons in ${\rm H}_2{\rm O}$.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
4.6	16	23	14
7.5	17	31	12
10	18	36	10
12	18	41	11
16	17	46	9.1
23	13		

Cont. Next Column

Reference. E. Bruche, Ann. Phys. (Leipz.) 2, 907 (1929)

Tabular and Graphical Data C-1.31a. Momentum transfer cross sections for electrons in ${\rm H}_2{\rm O}\text{.}$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10-16 _{cm} 2
0.010	3300	2.3	5.7	7.1	7.9
0.020	1600	2.5	5.4	7.7	8.1
0.052	600	3.0	5.3	8.0	8.2
0.10	270	3.6	5.5	8.4	8.1
0.20	120	4.7	6.2	8.8	8.1
0.50	37	5.0	6.4	9.5	7.9
1.00	14	6.0	7.3	10	7.6
2.0	6.3	6.6	7.6		

Reference: Y. Itikawa, At. Data and Nuc. Data Tables 21, 69 (1978)

Tabular and Graphical Data C-1.31b. Momentum transfer cross sections for electrons in ${\rm H}_2{\rm O}$.

Flectron Energy	Cross Section	Electron Fnergy	Cross Section	Flectron Energy	Cross Section
eV	10 ⁻¹⁴ cm ²	eV	10 ⁻¹⁴ cm ²	eV	10-14 cm2
0	500	0.200	1.53	3.30	0.116
0.00100	330	0.250	1.24	3.60	0.108
0.00200	165	0.300	1.02	4.00	0.100
0.00300	110	0.350	0.890	4.50	0.0930
0.00500	66.0	0.400	0.780	5.00	0.0860
0.00700	47.1	0.500	0.635	6.00	0.075
0.00850	38.9	0.700	0.463	7.00	0.070
0.0100	33.0	1.00	0.331	8.00	0.0670
0.0150	21.2	1.20	0.280	10.00	0.0660
0.0200	16.1	1.30	0.260	12.0	0.066
0.0300	10.6	1.50	0.229	15.0	0.0740
0.0400	8.30	1.70	0.200	17.0	0.0790
0.0500	6.50	1.90	0.182	20.6	0.084
0.0700	4.56	2.10	0.166	25.0	0.086
0.100	3.18	2.20	0.160	30.0	0.083
0.120	2.65	2.50	0.144	50.0	0.050
0.150	2.10	2.80	0.132	75.0	0.041
0.170	1.87	3.00	0.124	100	0.0350

Reference: F. E. Spencer and A. V. Phelps, Proceedings of the 15th Symposium on the Engineering Aspects of Magnetohydrodynamics, Philadelphia, Pa., May, 1976. Paper IX.9.1

Tabular and Graphical Data C-1.32. Momentum transfer cross sections for electrons in OH.

Flectron Energy	Cross Section	Electron Energy	Cross Section	Flectron Fnergy	Cross Section
eV	10^{-14} cm ²	eV	10 ⁻¹⁴ cm ²	eV	10-14 cm ²
0	400	0.050	5.20	0.70	0.370
0.0010	264	0.070	3.60	1.0	0.260
0.0020	132	0.10	2.57	1.2	0.220
0.0030	0.88	0.12	2.14	1.3	0.210
0.0050	52.8	0.15	1.70	1.5	0.183
0.0070	38.0	0.17	1.51	1.7	0.161
0.0085	31.0	0.20	1.22	1.9	0.145
0.010	26.4	0.25	1.00	2.1	0.132
0.015	17.0	0.30	0.820	2.2	0.128
0.020	13.0	0.35	0.710	2.5	0.115
0.030	8.50	0.40	0.620	2.8	0.106
0.040	6.60	0.50	0.510	3.0	0.099

Reference: F. E. Spencer and A. V. Phelps, Proceedings of the 15th Symposium on the Engineering Aspects of Magnetohydro-dynamics, Philadelphia, Pa., May, 1976. Paper IX.9.1

Tabular and Graphical Data C-1.33. Total scattering cross sections for electrons in $\ensuremath{\text{NH}}_3.$

Electron	Cross
Energy	Section
eV	10^{-16} cm ²
3.92	13.2
5.24	14.8
6.55	17.9
8.76	20.5
11.4	20.1
15.5	17.7
23.5	15.6
31.9	13.8
47.2	12.0

Reference: E. Bruche, Ann. Phys. (Leipz.) 1, 93 (1929)

Tabular and Graphical Data C-1.34. Momentum transfer cross sections for electrons in NH_3 .

Electron Energy	Cross Section	Flectron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.0098	1570	2.0	5.42
0.021	870	2.3	5.07
0.053	345	3.0	5.41
0.096	168	4.0	6.42
0.19	67.1	4.9	7.67
0.49	21.7	7.0	9.81
1.0	10.9	9.8	11.0
1.6	6.25		

Cont. Next Column

Reference: Y. Itikawa, Atomic Data 14, 1 (1974)

Tabular and Graphical Data C-1.35a. Total scattering cross sections for electrons in $\ensuremath{\text{CH}_4}$.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.142	2.40	0.409	1.30
0.150	2.55	0.513	1.33
0.190	2.35	0.587	1.32
0.190	2.23	0.729	1.63
0.204	1.86	1.04	2.18
0.248	1.69	1.29	2.82
0.331	1.36		
0.335	1.46		

Cont. Next Column

Reference: C. Ramsauer and R. Kollath, Ann. Phys. (Leipz.) 4, 91 (1930)

Tabular and Graphical Data C-1.35b. Total scattering cross sections for electrons in $\ensuremath{\text{CH}}_4.$

Electron	Cross Section
Energy	section
eV	10 ⁻¹⁶ cm ²
3.28	12.3
4.88	22.1
9.06	22.9
15.4	19.7
28.1	13.7
38.9	11.4

Reference: E. Bruche, Ann. Phys. (Leipz.) 4, 387 (1930)

Tabular and Graphical Data C-1.36. Momentum transfer cross sections for electrons in $\ensuremath{\text{CH}}_4.$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
0.010	96.4	0.31	1.11
0.019	23.6	0.42	1.43
0.049	3.53	0.50	1.81
0.099	1.61	0.98	2.87
0.20	1.02	2.0	5.16
0.25	0.980	4.0	10.1

Cont. Next Column

Reference: Y. Itikawa, Atomic Data 14, 1 (1974)

Tabular and Graphical Data C-1.37. Total scattering cross sections for electrons in OCS.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁵ cm ²	eV	10^{-15}cm^2	eV	10 ⁻¹⁵ cm ²
0.407	12.4	1.32	16.8	2.20	9.39
0.463	12.2	1.35	16.6	2.31	9.25
0.463	12.2	1.39	16.0	2.42	9.24
0.502	12.2	1.47	15.1	2.56	9.35
0.570	12.0	1.51	14.5	2.67	9.59
0.632	12.0	1.56	13.9	3.05	10.4
0.679	12.1	1.60	13.4	3.27	10.9
0.755	12.2	1.68	12.6	3.47	11.3
0.813	12.5	1.75	12.0	3.67	11.7
0.951	13.7	1.83	11.3	3.85	12.0
1.05	15.2	1.88	11.0	4.09	12.5
1.15	16.6	1.96	10.5	4.35	13.0
1.17	16.8	2.03	10.0	4.62	13.4
1.29	16.9	2.12	9.65	4.74	13.6

Cont. Next Column

Reference: C. Szmytkovski and M. Zubek, Chem. Phys. Lett. <u>57</u>, 105 (1978)

Tabular and Graphical Data C-1.38. Total scattering cross sections for electrons in $\rm C_2H_2$

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
2.92	39.6
6.35	25.4
12.8	25.0
18.2	22.5
24.1	21.1
38.2	16.9

Reference: E. Bruche, Ann. Phys. (Leipz.) 2, 909 (1929)

Tabular and Graphical Data C-1.39. Total scattering cross sections for electrons in Cl_2 .

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10^{-16} cm ²
2.25	291	7.24	588	18.7	375
2.31	276	8.12	585	21.7	364
2.69	249	8.18	577	21.8	350
3.24	243	9.06	563	25.2	350
3.65	251	9.06	549	28.5	344
3.92	267	10.6	521	28.5	358
4.04	286	11.5	501	33.4	330
4.45	297	11.5	493	33.3	322
4.54	330	12.8	473	38.2	308
5.38	398	14.3	437		
5.57	442	15.4	420		
6.20	532	18.7	384		

Reference: J. B. Fisk, Phys. Rev. <u>51</u>, 25 (1937)

Tabular and Graphical Data C-1.40. Total scattering cross sections for electrons in HCl.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
4.45	26.1	14.4	26.4
6.20	30.0	18.5	23.5
6.55	32.0	20.3	23.5
8.53	34.5	22.5	24.8
9.99	34.8	30.3	17.9
10.5	31.1		

Cont. Next Column

Reference: E. Bruche, Ann. Phys. (Leipz.) 82, 25 (1926)

Tabular and Graphical Data C-1.41a. Elastic scattering cross sections for electrons in HC1.

e + HC1 + e + HC1

Electron	Cross Section	Electron	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.13	290	0.25	114
0.14	265	0.28	95.1
0.15	242	0.32	79.5
0.16	213	0.36	66.5
0.18	181	0.40	54.5
0.21	156	0.43	46.6
0.22	135		

Reference: F. A. Gianturco and N. K. Rahman, J. Phys. B 11, 727 (1978)

Tabular and Graphical Data C-1.4lb. Rotational excitation cross sections for electrons in HCl (rotational transition is j=0 to j=1).

$$e + HC1 (j - 0) + e + HC1 (j - 1)$$

tron rgy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
€-V	$10^{-16} cm^2$	eV	10^{-16} cm ²	ϵV	10-16 _{cr}
0.0044	75.6	0.030	204	0.16	147
0.0063	114	0.033	201	0.20	136
0.0073	153	0.038	196	0.23	130
0.0098	172	0.047	196	0.27	120
0.014	188	0.055	195	0.32	112
0.016	197	0.058	193	0.38	105
0.018	203	0.078	184	0.43	101
0.022	204	0.10	172		
0.026	204	0.13	157		

Cont. Text Column

Cent. Sext Column

Reference: F. A. Gianturco and N. K. Rahman, J. Phys. B 11, 727 (1978)

Tabular and Graphical Data C-1.41c. Rotational excitation cross sections for electrons in HCl (rotational transition is j=0 to j=2).

e + HC1 (j = 0) + e + HC1 (j = 2)

Energy	Cross Section	Electron Energy	Cross Section	Electron	Cross Section
eV	10 ⁻¹⁶ cm ²	e!	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.015	6.94	0.090	28.0	0.28	27.8
0.016	9.08	0.11	29.4	0.32	26.6
0.019	11.8	0.14	30.2	0.35	25.4
0.024	14.7	0.16	30.5	0.38	24.2
0.032	18.1	0.18	30.6	0.41	23.4
0.040	21.0	0.20	30.4	0.43	22.8
0.052	23.6	0.22	29.9		
0.069	26.1	0.25	29.0		

Cont. Mext Column

Cont. Sext Column

Reference: F. A. Gianturco and N. K. Rahman, J. Phys. B 11, 727 (1978)

Tabular and Graphical Data C-1.4ld. Rotational excitation cross sections for electrons in HCl (rotational transition is j=0 to j=3).

$$e + HC1 (j = 0) + e + HC1 (j = 3)$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.0066	0.0425	0.22	6.81
0.025	0.475	0.25	7.56
0.048	1.06	0.30	8.43
0.076	1.96	0.34	8.94
0.11	3.05	0.38	9.25
0.15	4.31	0.41	9.41
0.18	5.66	0.43	9.49

Cont. Mext Column

Reference: F. A. Gianturco and N. K. Rahman, J. Phys. B 11, 727 (1978)

Tabular and Graphical Data C-1.42. Preliminary momentum transfer cross sections for electrons in HCl.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
0.015	870	0.49	35	3.2	48
0.020	640	0.52	45	4.1	45
0.041	330	0.54	58	5.2	40
0.062	220	0.56	89	6.1	37
0.081	170	0.62	130	7.1	34
0.10	130	0.70	150	8.0	31
0.15	90	0.81	150	10	27
0.20	66	1.0	120	14	22
0.30	43	1.3	76	18	18
0.40	33	1.6	58		
0.45	33	2.0	52		

Reference: W. L. Nighan, private communication

Tabular and Graphical Data C-1.43. Elastic scattering cross sections for electrons in HF.

e + HF + e + HF

Electron Energy	Cross Section	Electron Energy	Cross Section
eV .	10^{-14}cm^2	eV	10 ⁻¹⁴ cm ²
0.0046	48.6	0.14	163
0.0090	45.2	0.17	191
0.012	44.5	0.20	212
0.016	45.3	0.23	230
0.027	50.6	0.26	250
0.045	64.8	0.29	266
0.066	85.1	0.32	287
0.083	102	0.35	300
0.10	122	0.37	309
0.13	142	0.41	322

Reference: F. A. Gianturco and N. K. Rahman, J. Phys. B <u>11</u>, 727 (1978)

Tabular and Graphical Data C-1.44a. Cross sections for rotational excitation of HF by electron impact (rotational transition is j = 0 to j = 1).

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-16} \mathrm{cm}^2$	$\epsilon_{ m V}$	10 ⁻¹⁶ cm ²	eV	10-16 _{cm} 2
0.0057	87.6	0.025	439	0.15	285
0.011	220	0.029	432	0.19	264
0.013	313	0.035	414	0.24	245
0.016	395	0.047	386	0.28	234
0.016	422	0.059	366	0.33	220
0.018	431	0.073	344	0.38	201
0.020	436	0.090	325	0.41	201
0.022	4 3 9	0.11	306		

Cont. Next Column

Reference: F. A. Gianturco and N. K. Rahman, J. Phys. B 11, 727 (1978)

Tabular and Graphical Data C-1.44b. Cross sections for rotational excitation of HF by electron impact (rotational transition is j = 0 to j = 2).

$$e + HF (j = 0) + e + HF (j = 2)$$

Electron Energy	Section Section	Inergy	Section Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10-16 _{cm} 2	eV	10 ⁻¹⁶ cm ²
0.019	9.41	0.066	75.7	0.20	75.8
0.023	17.6	0.078	80.6	0.24	69.3
0.026	26.6	0.092	84.2	0.27	62.5
0.029	34.9	0.10	86.1	0.32	55.2
0.034	43.0	0.11	86.7	0.36	50.2
0.037	49.7	0.11	87.1	0.40	46.4
0.041	57.4	3.12	87.0	0.41	45.7
0.047	63.8	0.14	85.8		
0.056	70.5	16	83.5		

Cost. Next Column

Reference: F. A. Gianturco and N. K. Rahman, J. Phys. B 11, 727 (1978)

Tabular and Graphical Data C-1.44c. Cross sections for rotational excitation of HF by electron impact (rotational transition is j = 0 to j = 3).

$$e + HF (j = 0) + e + HF (j = 3)$$

Electron Energy	Section Section	Energy	Section	Energy	Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.068	4.16	0.20	13.5	0.35	10.7
0.084	5.83	0.21	13.7	0.37	10.1
0.10	7.44	0.23	13.8	0.39	9.73
0.12	9.24	0.24	13.8	0.41	9.41
0.14	10.8	0.27	13.4		
0.16	11.9	0.29	12.9		
0.18	12.9	0.33	11.3		

Cont. Next Column

Reference: F. A. Gianturco and N. K. Rahman, J. Phys. B 11, 727 (1978)

Tabular and Graphical Data C-1.45. Momentum transfer cross sections for electrons in ${\rm SF}_6$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.033	0.948	40	1.03
5.1	1.02	50	1.03
10	1.04	60	1.50
15	1.07	70	0.956
20	1.07	75	0.684
30	1.06	80	0.667

Cont. Next Column

Reference: L. E. Kline, D. K. Davies, C. L. Chen, and P. J. Chantry, (In) Gaseous Dielectrics, L. G. Christophorou, editor, 258 (1978)

Tabular and Graphical Data C-1.46. Elastic scattering cross sections for electrons in ${\rm UF}_6$.

e	+	UF ₆	+	e	+	UF,
		6				6

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
5.0	4.3
10.0	9.6
15	25
20	27
30	17
40	19
50	22
60	18
75	9.5

Reference: S. K. Srivastava, S. Trajmar, A. Chutjian and W. Williams, J. Chem. Phys. <u>64</u>, 2767 (1976)

Graphical Data B-2.8. Cross sections for forming various slow ions by H^+ (continuous curves) and H^0 (broken curves) impact on He, Ne, Ar, and Kr. σ_{oi} is the cross section for removing i electrons from a target atom. Data shown as a function of incident velocity v and energy T. E. L. Solovev et al., Soviet Physics, JETP 15, 459 (1962).

Graphical Data B-2.9. Cross sections for secondary ion production by H^+ impact on He, Ne, Ar, and Kr. E. S. Solovev et al., Soviet Physics, JETP $\underline{15}$, 459 (1962); S. Wexler, J. Chem. Phys. $\underline{41}$, 1714 (1964).

Graphical Data B-2.10. Total cross sections for production of xenon secondary ions by H^+ , H^0 , and H^- impact on Xe. Continuous curves are H^+ impact. Dashed and dash-dot curves are, respectively, data for H^0 and H^- impact.

Tabular Data B-2.11. Cross sections for the production of slow H₂ and H⁺ from H⁺ and H^o impact on H₂.

Energy (keV)		Cross Sectors (cm ²)	Cross Sections (cm ²)	
	H+H2+H2	H+H2+H+	H ^O +H ₂ →H ₂ +	H ^O +H ₂ →H
5.0 E 00 2.0 E 01 3.0 E 01 4.0 E 01 5.0 E 01	8.1 E-16 8.0 E-16 6.2 E-16 4.8 E-16 3.8 E-16 3.4 E-16	4.0 E-17 9.3 E-17 1.2 E-16 8.7 E-17 6.3 E-17 4.4 E-17	4.0 E-17 8.2 E-17 1.3 E-16 1.2 E-16 1.2 E-16	2.6 E-18 1.1 E-17 1.7 E-17 1.6 E-17 1.5 E-17

References:

H + H₂: V. V. Afrosimov, G. A. Leiko, Yu. A. Mamaev, M. N. Panov, and N. V. Fedorenko, Sov. Phys.-JETP 35, 1070 (1972); R. Browning and H. B. Gilbody, J. Phys. B 1, 1149 (1968).

Ho + H2: V. V. Afrosimov, G. A. Leiko, Yu. A. Mamaev, M. N. Panov, and N. V. Fedorenko, Sov.

Accuracy:

Phys.-JETP 35, 1070 (L972).

± 20%.

Graphical Data B-2.12. Cross sections for the production of slow H_2^+ and H^+ from H^+ and H^0 impact on H_2 . (The tabular data are presented on the previous page.)

Cross sections for production of N_2^+, N^+ , and N^{2+} ions by Tabular Data B-2.13. protons in N_2 gas.

Energy (keV)		Cross Sections (cm ²)	
	+ _N	N2+	N ²⁺
.0 E 00	1.05 E-16	1.00 E-15	
1.0 E 01	2.64 E-16	9.20 E-16	3.37 E-1
.0 E 01	3.23 E-16	7.10 E-16	7.58 E-18
.0 E 01	3.27 E-16	6.21 E-16	1.23 E-1
.0 E 01	3.07 E-16	5.60 E-16	1.45 E-1
.6 E 01	2.86 E-16	5.00 E-16	1.49 E-1

R. Browning and H.B. Gilbody, J. Phys. B $\underline{1}$, 1149 (1968).

Accuracy:

+ 20%.

Graphical Data B-2.14. Cross sections for production of N_2^+ , N^+ , and N^{2+} ions by protons in N_2 gas. (The tabular data are presented on the previous page.)

Tabular Data B-2.15. Cross sections for production of 0_2^+ , 0^+ , and 0^2 ions by protons in 0_2 .

Energy (keV)		Cross Sections (cm ²)	
	+0	02+	02+
6.0 E 00 2.0 E 01 3.0 E 01 4.0 E 01	2.40 E-16 3.08 E-16 3.76 E-16 3.87 E-16 3.81 E-16 3.75 E-16	8.12 E-16 7.00 E-16 5.40 E-16 4.47 E-16 4.12 E-16 4.00 E-16	2.34 E-18 4.26 E-18 9.64 E-18 1.47 E-17 1.77 E-17

R. Browning and H.B. Gilbody, J. Phys. B 1, 1149 (1968).

Accuracy:

+ 20%.

Graphical Data B-2.16. Cross sections for production of 0_2^+ , 0^+ , and 0^{2+} ions by protons in 0_2 . (The tabular data were presented on the previous page.)

targets by H $^+$ impact. (a) CO target; (b) CH $_4$ target. Open points are cross sections for specific secondary ions; the closed points are the total cross sections for formation of all positive ions. R. Browning and H. B. Gilbody, J. Phys. B $\underline{1}$, 1149 (1968). Graphical Data B-2.17. Cross sections for formation of various secondary ions in gaseous

(P)

(a)

10-11

(5mp) noitoss szond P

0

Tabular Data B-2.18. Stripping Cross Sections of H atoms in He, Ne, Ar, Kr, Xe, $\rm H_2$, $\rm N_2$.

$$H + X \rightarrow H^{\dagger} + X + e$$

We suggest use of the following semi-empirical analytic expression by Green and McNeal which adequately represents the available data; applicable parameters are shown in tabular form below.

General analytic form
$$\sigma(E) = \frac{\sigma_o(Za)^{\Omega} (E-I)^{V}}{J^{\Omega+V} + E^{\Omega+V}}$$
 (1)

High energy asymptotic form $\sigma(E) = \sigma_0 (\frac{Za}{E})^{\Omega}$

 $\sigma(E)$ = Cross section in cm² at impact energy E(keV) $\Omega = 0.75^{(a)}$

 $\sigma_0 = 10^{-16} \text{ cm}^2$ $v = \text{See table below}^{(b)}$

Z = Number of electrons in one molecule a,J = Parameters obtained by fitting to data. See below.

* Ionization threshold of hydrogen (0.0135 keV). Two Parameters (J and a) Varied (v fixed = 0.666)(c) Target Characteristics Three Parameters (v, J and a) Varied(c) Target J J Species (keV) (keV) (keV) (keV) He 0.56 21.00 46.40 0.666 21.00 46.40 42.93 Ne 10 0.60 60.63 0.666 51.26 37.27 Ar 18 0.69 88,90 91.00 0.666 89.90 91.00 36 0.79 98.00 78.00 0.666 98.00 78.00 Kr Xe 54 0.76 33.20 59.39 59.40 0.666 33.20 H_2 2 0.68 38.85 79.50 0.666 39.54 80.00 N₂ 14 0.59 56.50 94.92 0.666 49.64 88.22 Others (See note (d) below)

Reference A. E. S. Green and R. J. McNeal, J. Geophys. Res. <u>76</u>, 133 (1971). H. Tawara and A. Russek, Rev. Mod. Phys. <u>45</u>, 178 (1973).

- $\underline{\text{Notes}}$ (a) This value of Ω is consistent with the asymptotic high energy behaviour of the Born Approximation.
 - (b) This parameter is taken as 0.666 for the two parameter fit and is varied in the three parameter fit.
 - (c) The three parameter form is most accurate but does not differ appreciably from the two parameter form.
 - (d) For other gases a reasonable estimate may be made by using average values of ν , J and a with appropriate values of Z.

(a) Stripping cross sections for hydrogen atoms in rare gases. The curves show the fits obtained with Equation 1 with Ω = 0.75, ν = 0.666, and variable a and J. The data were taken from Green and McNeal.

(b) Stripping cross sections for hydrogen atoms in molecular gases. The curves show the fits with $\Omega=0.75$, and $\nu=0.666$. The data were taken from Tawara and Russek. Green and McNeal do not present an analytic expression for 0_2 , but clearly the data for 0_2 lie close to those for N_2 and can be well represented by the same expression.

Graphical Data B-2.19. Stripping cross sections for hydrogen atoms in (a) rare gases and (b) molecular gases.

Tabular Data B-2.20. Electron capture cross sections for protons in He, Ne, Ar, Kr, Xe, $\rm H_2$, $\rm N_2$, and $\rm O_2$.

$$H^+ + X \rightarrow H + X^+$$

We suggest use of the following semi-empirical analytic expression by Green and McNeal which adequately represents the available data; applicable parameters are shown in tabular form below.

General analytic form
$$\sigma(E) = {^\sigma o} \; \frac{(Za)^\Omega \; (E-I)^\nu}{J^{\Omega+\nu} + E^{\Omega+\nu} + (Za)^\Omega} \, E^\nu \; (E/C)^\Lambda$$
 High energy asymptotic form
$$\sigma(E) = (\frac{C}{F})^\Lambda$$

v, J, Ω , a, Λ , C = parameter

obtained by fitting to data.

See Below.

 $\sigma(E) = Cross section in cm² at impact energy E(keV)$

 $\sigma_{=10}^{-16} \text{ cm}^2$

Z = Number of electrons in one molecule of target gas

I = Ionization threshold of target gas (keV)

Target Characteristics

		1 (a)	1					
Species	Z	(keV)	ν	J	Ω	a	Λ	С
Не	2	0.0247	2.0	16.86	1.08	28.95	4.50	100.
Ne	10	0.0215	2.0	5.216	0.71	5.57	4.00	173.
Ar	18	0.0157	2.0	0.894	0.35	316.56	3.38	106.
Kr	36	0.0139	2.0	0.130	0.30	1364.67	2.86	110.
Xe	54	0.0121	2.0	0.141	0.38	347.67	3.00	100.
Н2	2	0.0156	2.0	1.215	0.271	4084.	4.80	75.8
N ₂	14	0.0155	2.0	1.433	0.375	258.	3.30	108.
02	16	0.0125	2.0	0.057	0.258	1038.	3.50	125.

References A. E. S. Green and R. J. McNeal, J. Geophys. Res. 76, 133 (1971).

Notes (a) "Handbook of Chemistry and Physics" 46th Edition (Chemical Rubber Pub. Co., Cleveland, 1966).

H. Tawara and A. Russek, Rev. Mod. Phys. 45, 178 (1973).

(a) Electron capture cross sections for fast protons in rare gases. The value of ν in Equation 2 is fixed at 2.0; other parameters were adjusted. The curves are plots of Equation 1 with the parameters listed in the facing table. The data were taken from Green and McNeal.

(b) Electron capture cross sections for protons in molecular gases. Details of curves are the same as those in caption (a). The data were taken from Tawara and Russek.

Graphical Data B-2.21. Electron capture cross sections for fast protons in (a) rare gases and (b) molecular gases.

Tabular Data B-2.22. Stripping cross sections for H atoms in ${\rm H_2O}$, CO, CO₂, C, O, and N.

$$H + X + H^{+} + X + e$$
.

(a) Stripping in H2O, CO and CO2 (Graphical Data on Facing Page)

		Cross Section c	m^2
Energy	Target	Gas	
(keV)	н ₂ о	со	co ₂
100	3.18x10 ⁻¹⁶	4.60x10 ⁻¹⁶	5.85x10 ⁻¹⁶
200	2.70×10^{-16}	3.60×10^{-16}	4.69×10^{-16}
300	2.10×10^{-16}	3.25×10^{-16}	4.28×10^{-16}
400		2.63×10^{-16}	3.72×10^{-16}
550	1.45×10^{-16}	2.32×10^{-16}	3.27×10^{-16}
800	1.12×10^{-16}	1.63×10^{-16}	2.44×10^{-16}
1000	9.81×10^{-17}	1.47×10^{-16}	2.17×10^{-16}
1250	8.02×10^{-17}	1.27×10^{-16}	1.91×10^{-16}
1500	6.82×10^{-17}	1.10×10^{-16}	1.69×10^{-16}
1750	6.07×10^{-17}	1.02×10^{-16}	1.51×10^{-16}
2000	5.67×10^{-17}	9.10×10^{-17}	1.33×10^{-16}
2250	5.11x10 ⁻¹⁷	8.51×10^{-17}	1.22×10^{-16}
2500	4.91x10 ⁻¹⁷	7.94×10^{-17}	1.11x10 ⁻¹⁶

Reference: L. H. Toburen, M. Y. Nakai and R. A. Langley, Phys. Rev. <u>171</u>, 114 (1968).

(b) Stripping in H, O and N

It is recommended that half the cross sections for H_2 , N_2 and O_2 be used; the values for molecular cases are shown in B-2.18 and B-2.19.

(c) Stripping in C

Data are derived values from analysis of measurements in CO, CO2 and hydrocarbons. (Graphical data on facing page).

Energy	Cross Section
(keV)	cm ²
100	1.87x10 ⁻¹⁶
300	1.36x10 ⁻¹⁶
550	1.01×10^{-16}
800	0.64×10-16
1500	0 45×10-10
2000	0.37×10^{-16} 0.37×10^{-16}
2500	0.32×10^{-16}

Reference: L. H. Toburen, M. K. Nakai and R. A. Langley, Phys. Rev. 171, 114 (1968).

Graphical Data B-2.23. Stripping cross sections for H atoms in ${\rm H_2^{0}},$ CO, CO, and C. The data were reproduced from the compendium by Dehmel et al., Atomic Data $\frac{5}{2}$, 231 (1973). Data for energies above 100 keV were taken from Toburen et al., and are reproduced on page 1552.

Tabular Data B-2.24. Electron capture cross sections for H^{+} in CO, CO_{2} , and C.

Energy (keV)		Cross Sections (cm ²)	
	<u>σ</u> 10 H ⁺ +CO→H°	010 H++CO2→H°	σ ₁₀
2.5.00		n reoz-n	H++C+Ho
2.5 E-02	4.7 E-16		
5.0 E-02	7.7 E-16	2.9 E-15	
.5 E-02	1.0 E-15	2.8 E-15	
.0 E-01	1.3 E-15	2.7 E-15	
2.0 E-01	1.7 E-15	2.4 E-15	
5.0 E-01	1.9 E-15	1.9 E-15	
7.5 E-01	1.8 E-15	1.7 E-15	
.0 E 00	1.8 E-15	1.5 E-15	
2.0 E 00	1.7 E-15	1.3 E-15	
5.0 E 00	1.3 E-15	1.1 E-15	
7.5 E 00	1.1 E-15	1.0 E-15	
.0 E 01	1.0 E-15	9.4 E-16	
2.0 E 01	6.8 E-16	7.5 E-16	
5.0 E 01	2.5 E-16	3.8 E-16	
7.5 E 01	1.3 E-16	2.3 E-16	
1.0 E 02	7.9 E-17	1.6 E-16	4.5 E-
2.0 E 02	1,5 E-17	2.5 E-17	1.3 E-
5.0 E 02	6.5 E-19	1.1 E-18	1.9 E-
7.5 E 02	1,8 E-19	2.6 E-19	6.3 E-
.0 E 03	6.7 E-20	9.0 E-20	2.6 E-2
2.5 E 03	3.0 E-21	3.6 E-21	1.1 E-2

H⁺+CO+H°: K. H. Berkner, R. V. Pyle, and J. W. Stearns, Nucl. Fusion 10, 145 (1970); E. S. Chambers, Report No. UCRL-14214 (1965); J. Desesquelles, G. D. Cao, and M. Dufay, Compt. Rend. 262B, 1329 (1966); H. B. Gilbody and J. B. Hasted, Proc. Roy. Soc. London 238A, 334 (1956); E. Gustafsson and and E. Lindholm, Ark. Fysik, 18, 219 (1960); R. J. McNeal, J. Chem. Phys. 53, 4308 (1970); M. C. Poulizac, J. Desesquelles, M. Dufay, Annls. Astrophys. 30, 301 (1967); L. H. Toburen, M. Y. Nakai, and R. A. Langley, Phys. Rev. 171, 114 (1968).

H⁺+CO₂+H°: M. A. Coplan and K. W. Ogilvie, J. Chem. Phys. <u>52</u>, 4154 (1970); J. Desesquelles, G. D. Cao, M. Dufay, Compt. Rend. <u>262B</u>, 1329 (1966); D. W. Koopman, Phys. Rev. <u>166</u>, 57 (1968); R. J. McNeal, J. Chem. Phys. <u>53</u>, 4308 (1970); L. H. Toburen, M. Y. Nakai, and R. A. Langley, Phys. Rev. <u>171</u>, 114 (1968).

 $H^+ + C \rightarrow H^0$: L. H. Toburen, M. Y. Wakai and R. A. Langley, Phys. Rev. 171, 114 (1968).

Graphical Data B-2.25. Electron capture cross section for H^+ in CO and CO_2 . (Tabular data are presented on page 1554).

Tabular Data B-2.26. Electron capture cross sections for H⁺ in H₂O, CH₄, H, N, and O. (For H, N and O, see note.)

Energy (keV)	Cross Sections (cm ²)		
	⁰ 10	^σ 10	
	H++H20+H°	H ⁺ +CH ₄ +H°	
5.0 E-02	3.0 E-15		
7.0 E-02	2.9 E-15	3.8 E-15	
1.0 E-01	2.8 E-15	3.8 E-15	
2.0 E-01	2.6 E-15	3.6 E-15	
5.0 E-01	2.3 E-15	3.1 E-15	
7.5 E-01	2.2 E-15	2.8 E-15	
1.0 E 00	2.1 E-15	2.7 E-15	
2.0 E 00	1.8 E-15	2.2 E-15	
5.0 E 00	1.4 E-15	1.7 E-15	
7.5 E 00	1.2 E-15	1.5 E-15	
1.0 E 01	1.1 E-15	1.3 E-15	
2.0 E 01	7.6 E-16	9.3 E-16	
5.0 E 01	3.5 E-16	4.5 E-16	
7.5 E 01	1.8 E-16	2.4 E-16	
1.0 E 02	9.0 E-17	1.0 E-16	
2.0 E 02	1.1 E-17	8.0 E-18	
5.0 E 02	4.3 E-19	2.9 E-19	
7.5 E 02	9.2 E-20	7.4 E-20	
1.0 E 03	3.4 E-20	3.0 E-20	
2.5 E 03	1.6 E-21	1.1 E-21	

H⁺+H₂O+H°: K. H. Berkner, R. V. Pyle, and J. W. Stearns, Nucl. Fusion <u>10</u>, 145 (1970); E. S. Chambers, Report No. UCRL-14214 (1965); M. A. Coplan and K. W. Ogilvie, J. Chem. Phys. <u>52</u>, 4154 (1970); R. Dagnac, D. Blanc, and D. Molina, J. Phys. B. <u>3</u>, 1239 (1970); D. W. Koopman, Phys. Rev. <u>166</u>, 57 (1968); L. H. Toburen, M. Y. Nakai, and R. A. Langley, Phys. Rev. <u>171</u>, 114 (1968).

H+CH2+H°: K. H. Berkner, R. V. Pyle, and J. W. Stearns, Nucl. Fusion 10, 145 (1970); E. S. Chambers, Report No. UCRL-14214 (1965); J. G. Collins and P. Kerbarle, J. Chem. Phys. 46, 1087 (1967); J. Desesquelles, G. D. Cao, and M. Dufay, Compt. Rend. 262B, 1329 (1966); D. W. Koopman, J. Chem. Phys. 49, 5203 (1968); R. J. McNeal, J. Chem. Phys. 53, 4308 (1970); L. H. Toburen, M. Y. Nakai, and R. A. Langley, Phys. Rev. 171, 114 (1968).

Note: For capture in H, N and O it is recommended that half the cross sections for H_2 , N_2 and O_2 be used; the data for the molecular cases are shown in B-2.20 and B-2.21.

Graphical Data B-2.27. Electron capture cross sections for H^{+} in H_{2}^{0} and CH_{4} . (Tabular data are presented on page 1556).

Tabular Data B-2.28. Excitation of He by H impact.

 $H^+ + He \rightarrow H^+ + He (n^1P)$

Energy	Cross Section cm ²		
keV	2 ¹ P	$3^{1}P$	4 ¹ P
2.0 E 00		7.6 E-21	
4.0 E 00		5.1 E-20	
6.0 E 00		1.0 E-19	
8.0 E 00		2.5 E-19	
1.0 E 01		5.6 E-19	1. 7-19
2.0 E 01		1.2 E-18	3. 7 -19
4.0 E 01	6.0 E-18	1.7 E-18	19
6.0 E 01	7.5 E-18	7.8 E-18	.9
8.0 E 01	1.1 E-17	3.4 E-18	9. 19
1.0 E 02	1.4 E-17	3.8 E-18	9.5 E-19
2.5 E 02		3.9 E-18	1.0 E-18
1.5 E 02	1.3 E-17	3.2 E-18	1.3 E-18
2.0 E 02	1.2 E-17	3.0 E-18	1.2 E-18
4.0 E 02	8.6 E-18	2.2 E-18	9.3 E-19
6.0 E 02	6.8 E-18	1.8 E-18	7.2 E-19
8.0 E 02	5.7 E-18	1.5 E-18	5.8 E-19
1.0 E 03	5.0 E-18	1.3 E-18	5.1 E-19

References: 2¹P state below 150 keV, J. T. Park and F. D. Showengerdt, Phys. Rev. <u>185</u>, 152 (1969). 3¹P and 4¹P states below 150 keV, J. Van der Bos et al., Physica <u>40</u>, 357 (1968). All data above 150 keV by R. Hippler and K. H. Shartner, J. Phys. B 7, 618 (1974).

Notes: (a) There is a clear discrepancy in absolute magnitude between the data sets at 150 keV, although the relative variation with energy seems reliable. It seems likely that the higher energy data are the more accurate.

- (b) The cross sections may be reliably extrapolated to higher energies by using the formula $\sigma = \frac{A}{E} \ln B E$ where E is energy and A and B may be found by fitting to the data above 300 keV.
- (c) Numerous other studies of helium excitation by H^+ have been published. Data for 4^1S and 4^1D formation is given in Vol I, pages 346 and 347. For other levels see the compilation by Thomas ("Excitation in Heavy Particle Collisions", Wiley, N. Y. 1971, pages 126 through 134).
- (d) The triplet states of helium are not excited by $\ensuremath{\mathrm{H}^{+}}$ impact.

Graphical Data B-2.29. Cross sections for formation of the $\mathrm{He}(n^1P)$ states by H^+ impact on He. Data shown by open points are reproduced from the table on page 1558. Other lines should be ignored.

Tabular Data B-2.30. Excitation of He by H^o impact.

$$H^{o} + He + H^{o} + He(n^{1}S, n^{1}P, n^{1}D)$$

+ $H^{o} + He(n^{3}S, n^{3}P, n^{3}D)$

	Cross Section cm ²			
Energy keV	4 ¹ s	4 ¹ P	4 ¹ D	
1.0 E 01		2.6 E-20		
2.0 E 01	4.1 E-19	1.2 E-19	9.1 E-20	
3.0 E 01	4.2 E-19	1.9 E-19	7.7 E-20	
4.0 E 01	3.7 E-19		8.4 E-20	
6.0 E 01	3.3 E-19		8.0 E-20	
8.0 E 01	2.7 E-19		6.4 E-20	
1.0 E 02	1.6 E-19		5.5 E-20	
		Cross Section cm ²		
Energy keV	4 ³ s	4 ³ p	4 ³ D	
1.0 E 01		3.6 E-19		
2.0 E 01	1.0 E-18	3.7 E-19	1.7 E-19	
3.0 E 01	8.9 E-19	1.7 E-19	9.6 E-20	
4.0 E 01	5.4 E-19		6.7 E-20	
6.0 E 01	2.5 E-19		4.4 E-20	
8.0 E 01	1.2 E-19		3.4 E-20	
1.0 E 02	8.5 E-20		2.8 E-20	

References: W. G. F. Blair and H. B. Gilbody, J. Phys. B <u>6</u>, 483 (1973). J. Van Eck et al., Physica <u>30</u>, 1171 (1964).

Notes: (a) These data for 4^1 S, and 4^3 S supersede those on pages 336 and 337 of Vol. I.

(b) Other data on formation of excited states are to be found in the compendium by Thomas ("Excitation in Heavy Particle Collisions", Wiley, N. Y. 1971, pages 137 to 139).

Graphical Data B-2.31. Cross sections for formation of the 4^1 S, 4^1 D, 4^3 S, 4^3 D states of He by H^{O} impact. (Tabular data are presented on page 1560).

(a) Cross sections for excitation of the ls_2 and ls_4 <u>levels</u> shown as dashed lines and inverted triangles. Cross sections for emission of the 734 \mathring{A} (ls_2 + ground state) and 744 \mathring{A} (ls_4 + ground state) <u>lines</u> are shown as open circles. Other lines are for excitation by equivelocity electrons and may be ignored.

(b) Cross sections for excitation of the ls_2 and ls_4 <u>levels</u> shown as dashed lines. Cross sections for emission of the 1067 A (ls_4 \rightarrow ground state) and 1048 Å (ls_2 \rightarrow ground state) <u>lines</u> shown as open triangles and open circles, respectively. Other lines and data points are for excitation by equivelocity electrons and may be ignored.

Graphical Data B-2.32. Cross sections for formation of excited Ne and Ar by H $^+$ impact. The data were taken from the work of Hippler and Schartner, Z. Physik $\underline{270}$, 225 (1974) and York et al., Phys. Rev. A $\underline{6}$, 1497 (1972).

Graphical Data B-2.33. Cross sections for excitation of heavy rare gases by protons — emission of Ne II, Ar II, and Kr II lines. [Cross sections for emission of certain ultraviolet lines of the singly ionized spectra induced by H⁺ impact on Ne, Ar and Kr. J. van Eck et al., Phys. Rev. 130, 656 (1963). The transitions involved are np 6 2 S_{1/2} $^+$ ground state.]

Graphical Data B-2.34. Cross sections for excitation of heavy rare gases by protons — emission of Ar I and Ar II lines. [Emission cross sections for the Ar I 4200 Å $(5p^2 + 4s)$ and Ar II 4431 Å $(4p^4p^0_{5/2} + 3d^4p_{5/2})$ lines by H impact on Ar. E. W. Thomas, J. Phys. B 2, 625 (1969).]

Graphical Data B-2.35. Cross sections for excitation of heavy rare gases by protons - emission of Ne I lines. [Emission cross sections of certain Ne I $3p \rightarrow 3s$ transitions by H impact on Ne. F. J. de Heer and J. Van Eck "Atomic Collision Processes," North Holland Publishing Co., Amsterdam, 635 (1964). Note that this paper has additional data on other Ne I lines.]

Tabular Data B-2.36. Cross sections for emission of the 1606 Å and 4180 Å $\rm H_2$ bands by $\rm H^+$ impact.

Energy (keV)	Emission (Cross (cm ²)	Section
	1606 % Band		4180A Band
2.0 E 01	3.3 E-18		
3.0 E 01	4.5 E-18		
4.0 E 01	5.0 E-18		
5.0 E 01	5.2 E-18		
6.0 E 01	5.2 E-18		
8.0 E 01	5.0 E-18		
1.0 E 02	4.7 E-18		
1.5 E 02			8.0 E-21
2.0 E 02			6.3 E-21
3.0 E 02			4.3 E-21
4.0 E 02			3.2 E-21
5.0 E 02			2.5 E-21
6.0 E 02			2.1 E-21
8.0 E 02			1.6 E-21
9.0 E 02			1.4 E-21

References:

1606 A Band: D.A. Dahlberg, D.K. Anderson, and I.E. Dayton, Phys. Rev. 170, 127 (1968).

4180 A Band: J.L. Edwards, and E.W. Thomas, Phys. Rev. 165, 16 (1968).

Accuracy:

Systematic error < 50% for 1606 Å band; systematic error < 20% for 4180 Å band. Random error < 10%.

Graphical Data B-2.37. Cross sections for emission of certain molecular hydrogen bands due to ${\rm H}^+$ impact on ${\rm H}_2$. (Tabular data are presented on page 1566).

Tabular Data B-2.38. Excitation cross sections for the reactions $H^+ + H_2 \rightarrow H^+ + H + H(2s, 2p, 3p)$.

Energy (keV)	Cross S	ections for Excited Society (cm ²)	tate nl
	<u>2s</u>	<u>2p</u>	<u>3p</u>
4.0 E 00 5.0 E 00 6.0 E 00 7.0 E 00 8.0 E 00 1.5 E 01 2.0 E 01 3.0 E 01 4.0 E 01 5.0 E 01 6.0 E 01	1.3 E-18 2.6 E-18 3.5 E-18 4.1 E-18 4.7 E-18 5.8 E-18 6.4 E-18 7.2 E-18	7.0 E-18 9.3 E-18 1.4 E-17 1.8 E-17 2.2 E-17 2.8 E-17 3.0 E-17 2.5 E-17 2.1 E-17 1.8 E-17 1.6 E-17	2.0 E-18 2.4 E-18 1.2 E-18
7.0 E 01 8.0 E 01 1.0 E 02		1.5 E-17 1.4 E-17 1.2 E-17	

References:

H+ H2+ H+ H+ H(2s): J.H. Birely and R.J. McNeal, Phys. Rev. A 5, 692 (1972); E.P. Andreev, V.A. Ankudinov, and S.V. Bobashev, Fifth International Conference on the Physics of Electronic & Atomic Collisions: Abstract of Papers, p.309, Publishing House Nauka, Leningrad, USSR (1967).

 H^+ + H_2 + H^+ + H + H(2p): J.H. Birely, R.J. McNeal, Phys. Rev. A $\underline{5}$, 692 (1972); R.H. Hughes, T.J. King, and Song-Sik Choe, Phys. Rev. A $\underline{5}$, 644 (1972).

 H^+ + H_2 + H^+ + H + H (3p): E.P. Andreev, V.A. Ankudinov, and S.V. Bobashev, Fifth International Conference on the Physics of Electronic & Atomic Collisions: Abstract of Papers, p.309, Publishing House Nauka, Leningrad, USSR (1967).

Accuracy:

Systematic error < 50% for H(2s) and H(2p); systematic error < 20% for H(3p). Random error < 10%.

Graphical Data B-2.39. Cross sections for formation of excited H in the target when protons are incident on $\rm H_2$. (Tabular data are presented on page 1568).

Tabular Data B-2.40. Cross sections for excitation of molecular oxygen by H⁺ impact.

6-4-6A		8-4-6C	AL. (230)	8-4-13A DUFAY ET A	1 . (1781	E-4-13C THOMAS ET	AL. (230)
CUFAY ET A	L. (178)	ING. AS ET		DOFAT ET A		ENERGY	CROSS
ENERGY	CROSS	ENERGY	CROSS	ENERGY	CROSS	(KEV)	SECTION
(KEV)	SECTION	(KEV)	SECTION	(KEV)	SECT ION	INCAL	(SQ. CM)
	(50. CM)		(50. CM)		(SQ. CM)		tsu. cmi
2.00E 01	1.606-17	1.50E 02	5.948-18	2.00F 01	2.70E-17	1.50E C2	9.50F-18
3.COE 01	1.30E-17	2.0CE 02	5. C4E-18	3.00E 01	2.20E-17	2.00E 02	8.10E-18
OCE 01	1.106-17	2.50E 02	4.10E-18	5.00F 01	1.80E-17	2.50E 02	6.60E-18
8.00E 01	9.7CE-18	3.0CE 02	3.91E-18	6.00E 01	1.60E-17	3.00E 02	6.30E-18
1.50E C2	8.75E-18	3.5CE 02	3.50E-18	1.50E 02	1.45E-17	3.50E 02	5.60E-18
3. CCE C2	7.85E-18	4.00E 02	3.25E-18	3.00E 02	1.30E-17	4.00E 02	5.20E-18
5.00E C2	7.30E-18	4.5CE 02	3.23€-18	5.00E 02	1.206-17	4.5CE 02	5.20E-18
2.00€ 65	7.306-18	5.COE 02	2.83E-18	000 02	1.206-11	5.00F 02	4.50E-18
		6. COE 02	2.746-18			6.00E 02	4.40E-18
		7.00E 02	2.51E-18	8-4-138		7.00E 02	4. COE-18
8-4-68		8. OCE 02	2.34 E-18	HUGHES ET	41 (1051	8.COE 02	3.70E-18
FUGHES ET	AL. (185)	6.000 02	21346 10	HOGHES ET	AC. (1037	5.00E 02	3.50E-18
ENERGY	CROSS			ENERGY	CROSS		
(KEV)	SECTION			(KEV)	SECTION		
	(50. CM)				ISQ. CM		
5.0CE 00	1.456-17			5.00E CO	2.218-17		
6.COE 00	1.576-17			E. CCE 00	2.40E-17		
8.0CE 00	1.775-17			8.00E CO	2.71E-17		
1.00E 01	1.886-17			1.005 01	2.86E-17		
1.10E 01	1.926-17			1.10E 01	2.94E-17		
1.20E 01	1.886-17			1.20E 01	2.86E-17		
1.30E 01	1.866-17			1.308 01	2.84E-17		
1.40E 01	1.826-17			1.40E 01	2.79E-17		
1.50E 01	1.776-17			1.50E 01	2.71E-17		
1.6CE 01	1.70E-17			1.60E 01	2.60E-17		
1.80E C1	1.636-17			1.80E 01	2.50E-17		
2.00E 01	1.57E-17			2.0CE 01	2.405-17		
3.0CF C1	1.356-17			3.00F 01	2.06E-17		
4.00E 01	1.216-17			4.00E 01	1.84E-17		
S. COE CI	1.136-17			5.00E C1	1.72E-17		
6.0UE .01	1.698-17			e. COE O1	1.66E-17		
7.0CE 01	1.045-17			7.00E C1	1.595-17		
8. COE 01	1.025-17			8.00E 01	1.55E-17		
9.0CE 01	9.871-18			5. OCE C1	1.516-17		
1.00E 02	9.766-18			1.00E 02	1.49E-17		
1.10€ 02	9.60E-18			1.1CE 02	1.47E-17		
1.2CE 02	9.436-18			1.20E 02	1.44E-17		
1.305 02	9.14F-18			1.306 07	1.39E-17		
1.50. 02	7.147-17						
,				/5.5			
(a	1)			(b)			

- (a) Cross sections for emission of the 5632 Å, 02 [b $^4\Sigma_g^-$ + a $^4\Pi_u$ (1,0)] first negative band.
- (b) Cross sections for excitation of the ${\rm O_2}^+$ [${\rm b^4\Sigma_g}^-$ (v=1)] level.

<u>References</u>: Dufay et al., Ann. Geophys. <u>22</u>, 615 (1966). Hughes et al., Phys. Rev. <u>136</u>, A1222 (1964), Thomas et al., J. Phys. B <u>1</u>, 233 (1968).

Notes:

Numerous other data sets for other levels are to be found in the compendium by Thomas ("Excitation in Heavy Particle Collisions", Wiley, N. Y., 1972) pages 288 to 292. The above tables are from this source.

Graphical Data B-2.41. Cross sections for emission of the 5632 $\overset{\circ}{\text{A}}$ $\overset{\circ}{\text{O}}_{2}^{+}$ first negative band excited by H⁺ on O₂. Partial representation of data from table (a) on page 1570.

Tabular Data B-2.42. Cross sections for excitation of the 4416 A O II line by ${\rm H}^{\dagger}$ impact on ${\rm O}_2$.

8-4-2A		8-4-2C	
CUFAY ET A	L. (178)	THOMAS ET	AL. (230)
ENERGY	CROSS	ENERGY	CROSS
(KEV)	SECTION	(KEV)	SECTION
	(SQ. CM)		(SQ. CM)
4.00E 01	5.20E-19	1.5CE 02	2.09E-19
5.00E 01	5.10E-19	2.00E 02	1.766-19
6.00F 01	5.10E-19	2.50E 02	1.27E-19
7.00E 01	4.40E-19	3.00E 02	1.00E-19
8.00E 01	4.30E-19	3.50E 02	8.20E-20
1.00E 02	3.40E-19	4.00E C2	7.00F-20
1.20E 02	3.80E-19	4.50E 02	6. COE-20
1.50E 02	2.30E-19	5.00E 02	5.30E-20
2.00E 02	2.00E-19	6.00E 02	4.40E-20
3.00E 02	1.40E-19	7.00E 02	3.70E-20
4.00E 02	1.15E-19	8. OCE C2	3.20E-20
5.00E 02	1.00E-19	9.00E 02	2.80E-20
		1.00E 03	2.50E-20

These data are cross sections for the emission of the 4415 and 4417 Å lines (unresolved) in the 3p $^2{\rm D}^{\rm O}$ + 3s $^2{\rm P}$ multiplet of 0 II.

References: Dufay et al., Ann. Geophys. 22, 615 (1966). Thomas et al., J. Phys. B 1, 233 (1968).

Notes:
Other data sets for 0 I and 0 II lines can be found in the compendium by Thomas ("Excitation in Heavy Particle Collisions", Wiley, N. Y. 1972) pages 288 to 292. The above tables are from this source.

Graphical Data B-2.43. Cross sections for emission of the 4415 and 4417 Å lines (unresolved) of 0 II by H^+ impact on O_2 . (Tabular data are presented on page 1572).

Tabular Data B-2.44. Cross sections for emission of the 3914 Å B $^{\circ}_{\Sigma}$ + X $^{2}_{\Sigma}$ + (0,0) first negative band of N_2^+ induced by H^+ impact on N_2^- .

Cross Section cm ²	65	20	11	22	02	64	4.79 E-17	04	99	54	33	09	1.29 E-17
Energy keV	ы	ы	ы	H	ы	ы	4.0E 01	E	H	ы	H	H	M

of the true value. It is drawn from the work of De Heer and Aarts (Physica, 48, 620 (1970)); it is consistent also with the judgement of McNeal and Birely. (Rev. Geophys. and Space Physics, 11, 633 section which all agree in general energy dependance but differ in magnitude by up to a factor of two. This table is a best estimate There are at least twelve independent measurements of this cross (a)

Notes:

(b) Numerous other measurements for other transitions are given in tabular form in the compendium by Thomas ("Excitation in Heavy Particle Collisions", Wiley, N. Y. 1972) pages 269 to 283.

Graphical Data B-2.45. Compendium of data for emission of the 3914 $\overset{\circ}{\text{A}}$ N₂ transition induced by H impact on N₂. The figure is from McNeal and Birely (Rev. Geophys. and Space Physics); the solid line is adjusted to be a best estimate of cross section and is consistent with the tabular data on page 1574).

Scaling Law B-2.46. Cross sections for excitation of N_2^+ by proton impact on N_2^- .

The Tabular Data B-2.44 give a best estimate for the cross section for emission of the 3914 Å N₂⁺ [B $^2\Sigma_u^+$ + X $^2\Sigma_g^+$ (0,0)] band due to H⁺ impact on

Numerous measurements exist in the literature for other v' + v'' transition in the First Negative Band. Regrettably the data often differ in magnitude. We suggest that the best procedure to estimate cross sections is to take the multiply it by the appropriate transition probabilities (from the theory of Nicholls in J. Res. Nat. Bur. Std. (U.S.) 65A, 451 (1961)) as discussed by Thomas (Phys. Rev. 165, 32 (1968)). These factors are given below. measured emission function for the 0+0 transition in the Table B-2.44 and

Transition or level		Multiplicative factor
3914 Å	0+0	1.00
4278 Å	0+1	0.30
4 4 709 X	0+2	90.0
5228 X	0+3	0.01
$B^2\Sigma_{\mathbf{u}}^+$ (v=0)	level excitation	1.37
3582 Å	1+0	0.068
3884 Å	1+1	0,040
4236 Å	1+2	0.039
4652 Å	1+3	0.014
5149 X	1+4	0.003
$B^2\Sigma_{11}^+$ (v=0)	level excitation	0.164

Graphical Data B-2.47. Cross sections for emission of the 3916 Å B $^2\Sigma_u^+ \rightarrow \chi^2\Sigma_g^+$ (0,0) first negative band of N $_2^+$ induced by H 0 impact on N $_2$. These data are drawn from the review by McNeal and Birely [Rev. Geophys. and Space Physics 11, 633 (1973)] and represent an objective judgement as to the best data. To estimate cross sections for emission of other transitions in this system, or for excitation of specific levels, we suggest use of the above data with the multiplicative factors shown in the Scaling Law B-2.46.

Graphical Data B-2.48. Cross sections for emission of the 3371 A C $^3\Pi_u$ - B $^3\Pi_g$ (0,0) second positive band of N₂ induced by H 0 impact on N₂. These data are drawn from J. H. Birely, Phys. Rev. A <u>10</u>, 550 (1974). Note protons do not excite this system.

Graphical Data B-2.49. Cross sections for emission of the 5005 A

N II and 4649 Å O II lines induced by H impact on NO. From J. M.
Robinson and H. B. Gilbody, Proc. Phys. Soc. (London) 92, 589 (1967).

Graphical Data B-2.50. Cross sections for various emissions induced by H⁺ impact on CO. The lower three curves with data points are for emission of the 2837 and 4267 Å lines of O II and the 7771 Å line of O I. The upper two curves with data points are emission cross sections for the 0-0 band in the first negative system of CO⁺ and the 2-0 band in the comet trail system of CO⁺. Also shown (without data points) are estimates of cross sections for formulation of the v = 0, 1, 2, and 3 vibrational levels of the B $^2\Sigma$ CO⁺ state and also for the v = 0, 1, 2, 3 levels of the A $^2\Pi$ CO⁺ state. From Poulizac et al., Ann. Astrophys. 30, 301 (1967).

Tabular Data B-2.51. Cross sections for production of free electrons by He impact on Ne, Ar, Kr, $\rm N_2$, $\rm 0_2$. (For corresponding data on He and H₂, see Vol.I page 380.)

Energy		Cross	Cross Section cm ²		
keV	Ne	Ar	Kr	N_2	02
.0 E 01	7.6 E-17	3.7 E-16	4.0 E-16	4.0 E-16	3.8 E-16
2.0 E 01	1.2 E-16	4.9 E-16	5.8 E-16	5.8 E-16	5.0 E-16
.0 E 01	1.8 E-16	7.0 E-16	8.5 E-16	8.5 E-16	6.4 E-16
.0 E 02	2.5 E-16	8.9 E-16	1.1 E-15	1.1 E-15	7.9 E-16
.0 E 02	4.2 E-16	1.1 E-15	1.4 E-15	1.2 E-15	
.0 E 02	4.1 E-16	1.0 E-15	1.3 E-15	1.0 E-15	
.0 E 03	3.4 E-16	7.5 E-16	. 1.0 E-15	7.0 E-16	
.8 E 03	2.9 E-16	5.9 E-16	8.5 E-16	6.0 E-16	

L. I. Pivovar et al., Soviet Physics, JETP <u>27</u>, 699 (1968). F. J. De Heer et al., Physica <u>32</u>, 1793 (1966). References:

These data represent ionization of the target, with at higher energies, a contribution from stripping of the projectile. Notes:

Tabular Data B-2.52. Cross sections for production of slow positive ions by He impact on Ne, Ar, Kr, N_2 , 0_2 . (For corresponding data on He and N_2 , see Vol. I page 382.)

		Cross	Cross Section cm		
Energy keV	Ne	Ar	Kr	N ₂	02
10 F 01	7.3 E-17	1.1 E-15	1.2 E-15	1.0 E-15	
2.0 E 02	7.4 E-17	1.2 E-15	1.4 E-15	1.3 E-15	1.3 E-15
5.0 E 01	5.8 E-17	1.4 E-15	1.6 E-15.	1.5 E-15	1.3 E-15
1.0 E 02	5.1 E-17	1.4 E-15	1.7 E-15	1.6 E-15	1.2 E-15
2.0 E 02	5.0 E-17	1.3 E-15	1.8 E-15	1.5 E-15	
5.0 E 02	3.8 E-17	9.5 E-16	1.3 E-15	9.3 E-16	
1.0 E 03	2.8 E-17	6.3 E-16	9.0 E-16	6.1 E-16	
1.8 E 03	2.2 E-17	4.5 E-16	7.5 E-16	4.5 E-16	

L. I. Pivovar et al., Soviet Physics, JETP $\overline{27}$, 699 (1968). F. J. De Heer et al., Physica $\overline{32}$, 1793 (1966). References:

These data represent ionization of the target plus a component due to electron pickup by the projectile. Notes:

Tabular Data B-2.53. Cross sections for the production of 0_2^+ , 0_2^+ , and 0_2^{2+} ions by He⁺ in 0_2 .

Energy (keV)		Cross Sections (cm ²)	
	02+	+01	+50
E	22	20	
(H)	43	19	
2.0 E 01	2.62 E-16	6.95 E-16	4.18 E-17
田〇	34	90	
(H)	26	22	
S E	65	57	

References:

R. Browning, C.J. Latimer, and H.B. Gilbody, J. Phys. B 2, 534 (1969).

Accuracy:

+ 20%.

Note:

Further information on the yield and energy distribution of fragments for 1 MeV He impact is to be found in the work of M. F. Steur et al., Phys. Rev. A 18, 1873 (1977).

Graphical Data B-2.54. Cross sections for production of secondary ions by He^+ impact on O_2 . (Tabular data were presented on page 1583).

Tabular Data B-2.55. Cross sections for production of $\rm N_2^+,$ $\rm N^+,~and~N^2^+$ by He $^+$ in $\rm N_2^-,$

Energy (keV)		Cross Sections (cm ²)	
	N2 +	*=	N ² +
[x]			1.44 E-17
1.0 E 01	1.67 E-16	5.16 E-16	2.20 E-17
[±]			4.03 E-17
[1]			5.99 E-17
[1]			7.66 E-17
[±]			8.28 E-17

References:

R. Browning, C.J. Latimer, and H.B. Gilbody, J. Phys. B 2, 534 (1969).

Accuracy:

+ 20%.

Note:

Further information on the yield and energy distribution of fragments for 1 MeV He⁺ impact is to be found in the work of A. K. Edwards et al., Phys. Rev. A 15, 48 (1977).

Graphical Data B-2.56. Cross sections for production of secondary ions by He^+ impact on N_2 . (Tabular data were presented on page 1585).

Graphical Data B-2.57. Cross sections for formation of various secondary ions in an H₂ target due to He⁺ impact. Open data points are cross sections for specific secondary ions; closed points are total cross sections for formation of all positive ions. Other lines should be ignored. From R. Browning, C. J. Latimer, H. B. Gilbody, J. Phys. B 2, 534 (1969). Further information on the yield of H⁺ and the kinetic energy of H⁺ fragments for 0.5 to 4 MeV He⁺ impact is to be found in A. K. Edwards et al., Phys. Rev. A 16, 1385 (1977).

R. Browning, C. J. Latimer and H. B. Gilbody, Graphical Data B-2.58. Cross sections for formation of various secondary ions by He impact on (a) CO, (b) ${\rm CO}_2$ and (c) ${\rm CH}_4$. Open points: secondary ion data; closed points: total cross section for formation of secondary ions. J. Phys. B $\underline{2}$, 534 (1969).

Graphical Data B-2.59. Cross section for free electron production in He, Ar, $\rm H_2$, and $\rm N_2$ targets by $\rm He^{2+}$ impact. L. J. Puckett et al., Phys. Rev. <u>178</u>, 271 (1969).

Graphical Data B-2.60. Cross sections for slow positive ion production in He, Ar, $\rm H_2$, and $\rm N_2$ targets due to $\rm He^{2+}$ impact. L. J. Puckett et al., Phys. Rev. <u>178</u>, 271 (1969). In addition to ionization of the target, this includes ion production as a result of electron pick up by the projectile.

Graphical Data B-2.61. Cross sections for formation of various secondary ions by ${}^{3}\text{He}^{2+}$ impact on (a) ${}^{4}\text{H}_{2}$ and (b) CO. Open points: secondary ion data; closed points: total cross sections for formation of all secondary ions. Neglect dashed lines. Note data are for the mass 3 isotope of helium, ${}^{3}\text{He}^{2+}$, and are given in terms of this projectiles' impact energy. The equivalent data for ${}^{4}\text{He}^{2+}$ impact (the mass 4 isotope) can be generated by multiplying the energy scale by 4/3. W. G. Graham, C. J. Latimer, R. Browning and H. B. Gilbody, J. Phys. B $\underline{7}$, L 405 (1974).

Graphical Data B-2.62. Cross sections for free electron production in He, Ar, $\rm H_2$, $\rm N_2$ targets by He° impact. L. J. Puckett et al., Phys. Rev. <u>178</u>, 271 (1969). In addition to electrons formed by ionization of the target, this includes free electrons from stripping of the projectile.

Graphical Data B-2.63. Cross sections for slow positive ion production in He, Ar, H₂, N₂ by He° impact. Above 150 keV, data by L. J. Puckett et al., Phys. Rev. <u>178</u>, 271 (1969); below 150 keV (shown as inset) due to E. S. Solovev et al., Soviet Physics JETP <u>18</u>, 342 (1964).

Graphical Data B-2.64. Cross section for forming various slow ions by He $^+$ (continuous curves) and He $^\circ$ (broken curves) impact on He, Ne, H $_2$, and N $_2$. σ_{oi} is the cross section for removing i electrons from a target atom. Data are shown as a function of incident velocity v and energy T. E. L. Solovev et al., Soviet Physics, JETP 18, 342 (1964).

Graphical Data B-2.65. Cross sections for formation of various secondary ions by He^{O} imapet on (a) H_2 , (b) N_2 . Open points, secondary ion data; closed points, total cross sections for formation of all secondary ions; neglect other curves. R. Browning, C. J. Latimer and H. B. Gilbody, J. Phys. B 3, 667 (1970).

Graphical Data B-2.66. Cross sections for formation of various secondary ions by ${\rm He}^0$ impact on (a) ${\rm O}_2$, (b) ${\rm CO}$. Open points, secondary ion data; closed points, total cross section for formation of all secondary ions; neglect other curves. R. Browning, C. J. Latimer and H. B. Gilbody, J. Phys. B $\underline{2}$, 667 (1970).

Graphical Data B-2.67. Cross sections for formation of various secondary ions by He^{O} impact on (a) CO_2 and (b) CH_4 . Open points secondary ion data; closed points, total cross sections for formation of all secondary ions. R. Browning, C. J. Latimer and H. B. Gilbody, J. Phys. B $\underline{2}$, 667 (1970).

(a) For He and He in He, see Vol. I, pages 378, 379, 388 and 389.

Energy (keV)

from the compendium by R. C. Dehmel et al., Atomic Data 5, 231 (1973). one electron from He $^+$ ($^{\sigma}_{12}$) in an Ne target. The data were taken Cross sections for stripping of one electron from He^{O} (σ_{01}) and (p)

Graphical Data B-2.68. Cross sections for stripping of one and two electrons from He and He traversing He and Ne.

Energy (keV)

(a) Cross sections for stripping one electron from ${\rm He}^{\rm O}$ (σ_{01}) and one electron from ${\rm He}^{+}$ (σ_{12}). The data were taken from the compendium by R. C. Dehmel et al., Atomic Data <u>5</u>, 231 (1973).

(b) Cross sections for stripping of one electron from ${\rm He}^{\rm O}$ (σ_{01}) and two electrons from ${\rm He}^{\rm O}$ (σ_{02}). The data were taken from P. Hvelplund and E. H. Pedersen, Phys. Rev. A <u>9</u>, 2434 (1974).

Graphical data B-2.69. Cross sections for stripping of one and two electrons from He and ${\rm He}^+$ traversing Ar.

Energy (keV)

(a) Cross section for stripping one electron from ${\rm He}^o$ (σ_{01} , open triangles and two upper solid lines) and stripping one electron from ${\rm He}^+$ (σ_{12}). The data were taken from the compendium by R. C. Dehmel et al., Atomic Data 5, 231 (1973).

(b) Cross sections for stripping one electron from ${\rm He}^{\rm O}$ (σ_{01}) and two electrons from ${\rm He}^{\rm O}$ (σ_{02}). The data were taken from P. Hvelplund and E. H. Pedersen, Phys. Rev. A 9, 2434 (1974).

Graphical Data B-2.70. Cross sections for stripping of one and two electrons from ${\rm He}^{^0}$ and ${\rm He}^{^+}$ traversing Kr.

Energy (keV)

Graphical Data B-2.71. Cross sections for stripping of one electron from ${\rm He}^{\rm O}$ traversing Xe. [From the compendium by R. C. Dehmel et al., Atomic Data $\underline{5}$, 231 (1973).]

(a) For He^{o} and $\mathrm{He}^{\mathrm{+}}$ in H_{2} , see Vol. I, pages 378, 379, 388 and 389.

Energy (keV)

(b) Cross sections for stripping one electron from ${\rm He}^{\rm O}$ as it traverses ${\rm O}_2$. The data were taken from the compendium by R. C. Dehmel et al., Atomic Data $\underline{\bf 5}$, 231 (1973).

Graphical Data B-2.72. Cross sections for stripping of one and two electrons from He and He $^+$ traversing H $_2$ and O $_2$.

(a) Cross sections for stripping one electron from ${\rm He}^{\rm O}$ (σ_{01}) and one electron from ${\rm He}^{+}$ (σ_{12}). The data were taken from the compendium by R. C. Dehmel et al., Atomic Data $\underline{5}$, 231 (1973).

(b) Cross sections for stripping one electron from ${\rm He}^{\rm O}$ (σ_{01}) and two electrons from ${\rm He}^{\rm O}$ (σ_{02}). The data were taken from P. Hvelplund and E. H. Pedersen, Phys. Rev. A $\underline{9}$, 2434 (1974).

Graphical Data B-2.73. Cross sections for stripping of one and two electrons from ${\rm He}^{\rm O}$ and ${\rm He}^{\rm +}$ traversing ${\rm N}_2 \cdot$

Tabular Data B-2.74. Electron capture by He in He, Ne, Ar, Kr, and Xe.

 $He^+ + X + He + X^+$ (For capture in He see Vol. I, page 374, 375)

		Cross	s Section (cm	2)
Energy keV	Ne	Ar	Kr	Xe
2.0 E-01	2.0 E-17	1.0 E-16	1.0 E-16	1.4 E-15
4.0 E-01	3.0 E-17	1.3 E-16	2.0 E-16	1.3 E-15
6.0 E-01	5.0 E-17	1.5 E-16	2.9 E-16	1.3 E-15
8.0 E-01	8.0 E-17	1.9 E-16	4.0 E-16	1.2 E-15
1.0 E00	1.1 E-16	2.1 E-16	5.0 E-16	1.2 E-15
2.0 E00	2.3 E-16	3.0 E-16	7.1 E-16	1.1 E-15
4.0 E00	5.8 E-16	4.2 E-16	8.5 E-16	1.3 E-15
6.0 E00	7.4 E-16	5.0 E-16	8.6 E-16	1.2 E-15
8.0 E00	7.3 E-16	5.1 E-16	8.7 E-16	1.1 E-15
1.0 E01	7.1 E-16	5.4 E-16	8.7 E-16	1.1 E-15
2.0 E01	6.5 E-16	7.5 E-16	9.0 E-16	1.1 E-15
4.0 E01	4.3 E-16	6.1 E-16	9.0 E-16	9.8 E-16
6.0 E01	3.5 E-16	6.0 E-16	8.5 E-16	1.1 E-15
8.0 E01	3.0 E-16	5.2 E-16	7.5 E-16	
1.0 E02	2.4 E-16	4.6 E-16	6.5 E-16	
2.0 E02	1.5 E-16	2.0 E-16	3.0 E-16	
4.0 E02	1.0 E-16	6.0 E-17	8.5 E-17	
6.0 E02		2.0 E-17	3.0 E-17	
8.0 E02		8.0 E-18	1.0 E-17	
1.0 E03		3.6 E-18	5.1 E-18	
1.4 E03		1.4 E-18	2.2 E-18	
1.5 E03		1.1 E-18	2.0 E-18	

References: J. B. A. Stedeford and J. B. Hasted, Proc. Roy. Soc. A227, 466 (1955). F. J. de Heer et al., Physica 32, 1793 (1966). C. F. Barnett and P. M. Stier, Phys. Rev. 109, 385 (1958). H. B. Gilbody et al., Proc. Roy. Soc. A274, 40 (1973). Jones et al., Phys. Rev. 113, 182 (1959). Fedorenko et al., Soviet Physics JTP 1, 1861 (1956).

L. I. Pivovar et al., Soviet Physics JETP 15, 1035 (1962).

Notes: He+ + Ne The tabular data are basically those of Stedeford and Hasted, Barnett and Stier, and of Gilbody et al. ${\rm He}^+ + {\rm Ar}\,$ The tabular data are basically those of Stedeford and

Hasted, Barnett and Stier, and of Pivovar et al.

He+ + Kr The tabular data are basically those of Stedeford and Hasted, Gilbody et al. and of Pivovar et al.

Graphical Data B-2.75. Cross sections for single electron capture by He⁺ in (a) Ne, (b) Ar, (c) Kr. Partial representations of available data only; it is recommended that the tabular data on the preceding page be utilized.

Tabular Data B-2.76. Electron capture cross sections for He $^+$ in H $_2$, O $_2$ and N $_2$. (For capture in H $_2$ see Vol I pages 374, 375).

Energy (keV)		Sections n ²)	
	<u>010</u>	010	
	He ⁺ +N ₂ →He°	He ⁺ +O ₂ +He°	
1.0 E-03	6.0 E-15		
2.0 E-03	5.2 E-15	3.0 E-15	
5.0 E-03	4.0 E-15	2.7 E-15	
1.0 E-02	3.0 E-15	2.2 E-15	
2.0 E-02	2.1 E-15	1.8 E-15	
5.0 E-02	1.4 E-15	1.4 E-15	
1.0 E-01	1.2 E-15	1.3 E-15	
2.0 E-01	1.1 E-15	1.3 E-15	
5.0 E-01	9.7 E-16	1.2 E-15	
1.0 E 00	9.2 E-16	1.1 E-15	
2.0 E 00	8.6 E-16	1.0 E-15	
5.0 E 00	8.0 E-16	9.4 E-16	
1.0 E 01	7.5 E-16	8.6 E-16	
2.0 E 01	7.0 E-16	7.7 E-16	
5.0 E 01	6.2 E-16	6.5 E-16	
1.0 E 02	4.7 E-16	4.8 E-16	
2.0 E 02	2.5 E-16	3.0 E-16	
5.0 E 02	6.0 E-17		
1.0 E 03	9.2 E-18		
1.5 E 03	2.5 E-18		

References:

He +N₂: C. F. Barnett and P. M. Stier, Phys. Rev. <u>109</u>, 385 (1958); F. J. De Heer, J. Schutten, and H. Moustafa, Physica <u>32</u>, 1793 (1966); D. W. Koopman, Phys. Rev. <u>166</u>, 57 (1968); R. C. C. Lao, R. Rozett, and W. S. Koski, J. Chem. Phys. <u>49</u>, 4202 (1968); P. Mahadevan and C. D. Magnuson, Fifth Int. Conf. on Electron and Atomic Collisions, p. 405, Leningrad (1967); V. S. Nikolaev, I. S. Dmitriev, L. N. Fateeva, and Ya. A. Teplova, Sov. Phys.-JETP <u>13</u>, 695 (1961); L. I. Pivovar, V. M. Tubaev, and M. T. Novikov, Sov. Phys.-JETP <u>14</u>, 20 (1962); R. F. Stebbings, J. A. Rutherford, and B. R. Turner, Planet. Space Sci. <u>13</u>, 1125 (1965); R. F. Stebbings, A. C. H. Smith, and E. Ehrhardt, J. Chem. Phys. <u>39</u>, 968 (1963).

He^{++O}₂: C. F. Barnett and P. M. Stier, Phys. Rev. $\underline{109}$, 385 (1958); F. J. De Heer, J. Schutten, and H. Mostafa, Physica $\underline{32}$, 1793 (1966); W. L. Fite, A. C. H. Smith, R. F. Stebbings, and J. L. Rutherford, J. Geophys. Res. $\underline{68}$, 3225 (1963); D. W. Koopman, Phys. Rev. $\underline{166}$, 57 (1968); P. Mahadevan and G. D. Magnuson, Fifth Int. Conf. on Electron and Atomic Collisions, p. 405, Leningrad (1967); P. Mahadevan and C. D. Magnuson, Phys. Rev. $\underline{171}$, 103 (1968); R. F. Stebbings, A. C. H. Smith and E. Ehrhardt, J. Chem. Phys. $\underline{39}$, 968 (1963).

Accuracy:

He++N2: ± 25%.

He++02: ± 25%.

and 0_2 . N_2 impact on Graphical Data B-2.77. Cross sections for capture of one electron by He Tabular data on preceding page.

Tabular Data B-2.78. Electron capture cross sections for ${\rm He}^{+}$ in ${\rm CO}_2$ and ${\rm H}_2{\rm O}$.

(Fragmentary Data)

$$He^+ + X \rightarrow He + X^+$$

		s Section cm ²)
Energy keV	co_2	н ₂ о
1.0 E-01	1.1 E-15	1.2 E-16
2.0 E-01	1.0 E-15	9.0 E-17
4.0 E-01	9.0 E-16	8.5 E-17
6.0 E-01	8.5 E-16	8.0 E-17
8.0 E-01	8.0 E-16	7.5 E-17
1.0 E00	7.9 E-16	7.0 E-17
1.4 E00	7.6 E-16	6.8 E-17

Reference: D. W. Koopman, Phys. Rev. 166, 57 (1968).

$${\rm He}^{2+} + {\rm Ar} \rightarrow {\rm He}^{+} + {\rm Ar}^{+}$$
 σ_{21}
 ${\rm He}^{2+} + {\rm Ar} \rightarrow {\rm He}^{0} + {\rm Ar}^{2+}$ σ_{20}

(a) Compendium of data for σ_{21} and σ_{20} drawn from the work of J. E. Bayfield and G. A. Khayrallah, Phys. Rev. A <u>11</u>, 920 (1975).

$$He^{2+} + Ar \rightarrow He^{+} + Ar^{+}$$
 σ_{21}
 $He^{2+} + Ar \rightarrow He^{0} + Ar^{2+}$ σ_{20}

(b) High energy data for σ_{21} from the work of P. Evelplund et al., J. Phys. B 9, 491 (1976). The data are shown as points; all the curves relate to theoretical estimates and may be ignored.

Graphical Data B-2.79. Electron capture cross sections for He^{2+} in Ar.

Tabular Data B-2.80. Electron capture cross sections for He $^{\rm H+}$ in H and H $_2$.

Energy (keV)		Cross Sections (cm ²)	
	<u>[©]21</u> He ⁺⁺ +H+He ⁺	³ 21 He ⁺⁺ +H ₂ →He ⁺	<u>о́20</u> Не +++Н ₂ →Не ⁰
5.3 E-01		3.8 E-17	2
8.0 E-01		7.8 E-17	
1.3 E 00		1.0 E-16	
2.7 E 00	8.4 E-17	1.3 E-16	
5.3 E 00	3.6 E-16	1.7 E-16	
6.0 E 00	4.2 E-16	1.8 E-16	
8.0 E 00	5.9 E-16	1.9 E-16	1.1 E-17
1.0 E 01	7.0 E-16	2.5 E-16	1.1 E-17
2.0 E 01	1.1 E-15	4.8 E-16	1.9 E-17
5.0 E 01	1.2 E-15	9.4 E-16	5.1 E-17
7.5 E 01	1.1 E-15	9.7 E-16	5.6 E-17
1.0 E 02	9.8 E-16	9.2 E-16	6.0 E-17
2.0 E 02	2.9 E-16	4.7 E-16	4.0 E-17
5.0 E 02	1.8 E-17	8.0 E-17	2.2 E-18
7.5 E 02		1.5 E-17	4.8 E-19
1.0 E 03		5.2 E-18	1.6 E-19
1.4 E 03		1.3 E-18	4.7 E-20
2.0 E 03		3.0 E-19	
3.0 E 03		4.4 E-20	
3.8 E 03		1.8 E-20	

References:

He+++H+Ne+: W. L. Fite, A. C. H. Smith, and R. F. Stebbings, Proc. Roy. Soc. London A268, 527 (1962); J. E. Bayfield and G. A. Khayrallah, Phys. Rev. A 12, 869 (1975); M. B. Shah and H. B. Gilbody, J. Phys. B7, 630 (1974). W. L. Nutt et al., J. Phys. B11, 1457 (1978); M. B. Shah and H. B. Gilbody, J. Phys. B11, 121 (1978).

He++H₂: S. K. Allison, Phys. Rev. 109, 76 (1958); S. K. Allison, J. Cuevas, and P. G. Murphy, Phys. Rev. 102, 1041 (1956); R. A. Baragiola and I. B. Nemirovsky, Nucl. Inst. and Meth. 110, 511 (1973); J. E. Bayfield and G. A. Khayrallah, Phys. Rev. A 11, 920 (1975); P. Hvelplund, J. Heinemeier, E. H. Pedersen and F. R. Simpson, 9th Int. Conf. Atomc. & Elect. Coll. p. 185, Seattle, Wash. (1975); L. I. Pivovar, M. T. Novikov and V. M. Tubaev, Sov. Phys.- JETP 15, 1035 (1962); L. I. Pivovar, V. M. Tubaev, and M. T. Novikov, Sov. Phys.- JETP 14, 20 (1962); M. B. Shah and H. B. Gilbody, J. Phys. B 7, 256 (1974). W. L. Nutt et al., J. Phys. B 11, 1457 (1978); M. B. Shah and H. B. Gilbody, J. Phys. B 9, 491 (1976).

Accuracy:

 $He^{++}H: \pm 40\%$. $He^{++}H_2: \pm 40\%$.

Graphical Data B-2.81. Electron capture cross sections for He $^{++}$ in H and H $_2$. (Tabular data are presented on the preceding page.)

Tabular Data B-2.82. Electron capture cross sections for He²⁺ in Kr.

$$He^{2+}+Kr \rightarrow He^{+}+Kr^{+}$$

 $\rightarrow He+Kr^{2+}$

Cross Section cm ²				
σ_{21} He ²⁺ +Kr \rightarrow He ⁺	σ ₂₀ He ²⁺ +Kr → He ^o			
1.9 E-15	4.3 E-16			
1.9 E-15	4.2 E-16			
1.8 E-15	3.9 E-16			
1.6 E-15	3.6 E-16			
7.0 E-16				
3.8 E-16	2.3 E-17			
1.4 E-16	4.1 E-18			
7.5 E-17	1.4 E-18			
4.5 E-17	8.0 E-19			
3.0 E-17	6.0 E-19			
2.0 E-17	5.8 E-19			
1.9 E-17	5.0 E-19			
	721 He ²⁺ +Kr + He ⁺ 1.9 E-15 1.9 E-15 1.8 E-15 1.6 E-15 7.0 E-16 3.8 E-16 1.4 E-16 7.5 E-17 4.5 E-17 3.0 E-17 2.0 E-17			

References: M. B. Shah and H. B. Gilbody, J. Phys. B $\frac{7}{1}$, 256 (1974); L. I. Pivovar et al., Soviet Physics, JETP, $\frac{15}{14}$, 1035 (1962). L. I. Pivovar et al., Soviet Physics, JETP, $\frac{14}{14}$, 20 (1962).

Note:

The data below 100 keV are by Shah and Gilbody, the data above 100 keV are by Pivovar et al. One may reasonably interpolate between these two data sets.

Tabular Data B-2.83. Electron capture cross sections for He $^{\rm H_2}$, and $^{\rm O}_2$. (For $^{\rm H_2}$ target see Vol. I, pages 376 and 377.)

Energy (keV)			Sections m ²)	
	°21 He ⁺⁺ +N ₂ →He ⁺	σ ₂₀ He ⁺⁺ +N ₂ →He°	³ He ⁺⁺ +02→H	e ^{+ 3} He ⁺⁺ +0 ₂ +He°
1.0 E 01	5.6 E-16	2.5 E-16	5.6 E-16	3,6 E-16
2.0 E 01	8.9 E-16	3.1 E-16	8.1 E-16	3.8 E-16
3.0 E 01	1.1 E-15	3.3 E-16	8.4 E-16	3.7 E-16
5.0 E 01	1.2 E-15	'3.3 E-16	8.5 E-16	3.2 E-16
7.0 E 01	1.2 E-15	3.1 E-16		
1.0 E 02	1.1 E-15	2.6 E-16		
2.0 E 02	6.1 E-16	1.0 E-16		
4.0 E 02	2.0 E-16	1.2 E-17		
7.0 E 02	7.3 E-17	2.0 E-18		
1.0 E 03	3.4 E-17	6.0 E-19		
1.5 E 03	7.7 E-18	1.4 E-19		

References:

He++N₂: J. E. Bayfield and G. A. Khayrallah, Phys. Rev. A 11, 920 (1975); V. S. Nikolaev, I. S. Dmitriev, L. N. Fateeva, and Ya. A. Teplova, Sov. Phys.-JETP 13, 695 (1961); V. S. Nikolaev, L. N. Fateeva, I. S. Dmitriev, and Ya. A. Teplova, Sov. Phys.-JETP 14, 67 (1962); L. I. Pivovar, M. T. Novikov, and V. M. Tubaev, Sov. Phys.-JETP 15, 1035 (1962); L. I. Pivovar, V. M. Tubaev, and M. T. Novikov, Sov. Phys.-JETP 14, 20 (1962); M. B. Shah and H. B. Gilbody, J. Phys. B 7, 256 (1974).

 $He^{++}+O_2$: M. B. Shah and H. B. Gilbody, J. Phys. B $\underline{7}$, 256 (1974).

Accuracy:

$$\text{He}^{++} + \text{N}_2 - \pm 20\%$$
. $\text{He}^{++} + \text{O}_2 - \pm 20\%$.

Note: Data for N₂ targets are with $^4\text{He}^{2+}$ projectiles and for O₂ targets with $^3\text{He}^{2+}$ projectiles. It is expected that $^3\text{He}^{2+}$ will behave identically with $^4\text{He}^{2+}$ at the same velocity.

Graphical Data B-2.84. Cross sections for one and two electron capture for He $^{++}$ in N $_2$ and O $_2$. (See the tabular data on the preceeding page and the note concerning the isotope of He $^{++}$ utilized.)

Data Source Listing B-2.85. Excitation of noble gases by helium impact.

Excitation of the noble gases (He, Ne, Ar, Kr, and Xe) has been adequately covered in Vol. I of this report and no further data will be reproduced here. Measurements are confined to impact energies below 100 keV and are entirely for He projectiles; there is no information for He and He impact. Page references in Volume I are as follows:

He⁺ + He
$$\rightarrow$$
 He⁺ + He^{*} (4³S, 4³P, 4³D) Pages 372 and 373

He⁺ + Ne \rightarrow Ne^{*} Page 426

He⁺ + Ar \rightarrow Ar^{*} Pages 421 and 426

He⁺ + Kr \rightarrow He^{*} Page 416

He⁺ + Kr \rightarrow Kr^{*}, Kr^{+*} Pages 421, 422, 424, and 426

He⁺ + Xe \rightarrow He^{*} Pages 421, 423, 424, and 426

These pages give a representative selection of data for a variety of excited states. Substantial additional information covering additional energy levels is to be found in the compendium by Thomas ("Excitation in Heavy Particle Collisions", Wiley, 1972). One should also note limited additional studies on the He $^+$ + Ar $^+$ reaction at energies up to 10 keV by Lipeless et al., Phys. Rev. Letters $\underline{24}$, 799 (1970) and Phys. Rev. A $\underline{4}$, 140 (1971), and by Isler, Phys. Rev. A $\underline{10}$, 117 (1974).

Data Source Listing B-2.86. Excitation of molecular gases by helium impact.

Excitation of molecular gases by helium impact has been covered only in a fragmentary fashion. The situation is as follows:

- H₂ Target Excitation of H₂ by He⁺ and He⁰ has been studied from 5 to 30 keV and is reproduced here in Tables and Figures B-2.87 through B-2.91.
- N_2 Target Excitation of one level in N_2^+ by He⁺ impact has been studied and is reproduced as Graphical Data B-2.92. There are also studies of the relative population of rotational levels in the excited N_2^+ (B $^2\Sigma_u^+$) state induced by He⁺ and He impact. These are not reproduced here and the reader is referred to the following publications:

Polyakova et al., Soviet Physics JETP 25, 430 (1967). Polyakova et al., Soviet Physics JETP 27, 201 (1968). Polyakova et al., Soviet Physics JETP 30, 63 (1970). Sheridan and Clark, Phys. Rev. 140, Al033 (1965). Moore and Doering, Phys. Rev. 182, (1969).

- 0, Target No published information.
- CO Target Very limited study on formation of excited carbon;
 II. Lipeless, Physics Letters 29A, 297 (1969). No cross section information.
- CO₂ Target Some studies of relative spectral line intensities but no cross section data; M. J. Haugh and J. H. Birely, J. Chem. Phys. 60, 264 (1974).
- Other Molecular Targets No published information.

Tabular Data B-2.87. Cross sections for formation of excited H by He^+ impact on H_2 and on H.

$$He^+ + H_2 + He^+ + H^*(n, \ell) + H$$

 $He^+ + H + He^+ + H^*(n, \ell)$

Energy		מבו מבוח	CLUSS SECTION (CIN.)	
keV	H ₂ t	H ₂ target	H	H target
	2s	2р	28	2p
5.0 E 00		3.8 E-17		3.4 E-17
7.0 E 00	2.6 E-18	3.8 E-17	2.6 E-18	3.4 E-17
1.0 E 01	1.0 E-17	4.3 E-17		4.1 E-17
1.5 E 01	9.8 E-18	4.8 E-17	2.2 E-18	4.1 E-17
2.0 E 01	3.1 E-18	4.8 E-17	2.2 E-17	5.2 E-17
2.6 E 01	4.0 E-18	5.0 E-17	6.0 E-18	3.5 E-17

Reference: J. D. A. McKee et al., J. Phys. B 10, 1679 (1977).

Authors' estimates of reliability indicate large uncertainties in the 2s data; as much as \pm 100% in some cases. For the 2p level the estimated reliability is about \pm 5%. Data are reproduced on the following page and includes error bars. Accuracy:

Graphical Data B-2.88. Cross sections for formation of H(2s) (squares) and H(2p) (circles) by He $^+$ impact on H $_2$ (upper graph) and on H (lower graph). The data were taken from J. D. A. McKee et al., J. Phys. B $\underline{10}$, 1679 (1977).

Tabular Data B-2.89. Cross sections for formation of excited H by He impact on H₂.

Energy keV		Cross Section	on (cm ²)	
	3s	3p	3d	n=3
.00 E 01	2.17 E~19	2.36 E-18	3.25 E-18	5.78 E-18
1.20 E 01	2.24 E-19	2.36 E-18	3.26 E-18	5.83 E-18
1.40 E 01	2.31 E-19	2.30 E-18	3.29 E-18	5.76 E-18
1.60 E 01	2.45 E-19	2.36 E-18	3.47 E-18	6.00 E-18
1.80 E 01	2.38 E-19	2.56 E-18	3.65 E-18	6.38 E-18
2.00 E 01	2.38 E-19	2.71 E-18	3.85 E-18	6.75 E-18
2.20 E 01	1.75 E-19	2.78 E-18	3.98 E-18	6.97 E-18
2.40 E 01	2.17 E-19	2.75 E-18	3.88 E-18	6.84 E-18
2.60 E 01	2.59 E-19	2.66 E-18	3.78 E-18	6.63 E-18
2.80 E 01	2.17 E-19	2.58 E-18	3.65 E-18	6.38 E-18
3.00 E 01	1.33 E-19	2.37 E-18	3.42 E-18	6.00 E-18

Reference: V. A. Ankudinov, S. V. Bobashev and E. P. Andreev, Soviet Physics JETP 25, 236 (1967).

Note:

The data shown under n=3 is the sum of cross sections for the 3s, 3p and 3d states representing the cross section for formation of H in the n=3 state.

E(keV)

Graphical Data B-2.90. Cross sections for formation of H in the 3s, 3p, and 3d excited states by H⁺ impact on H₂ and also the sum of these three cross sections. (The data were taken from the preceeding table.)

Tabular Data B-2.91. Emission of the Balmer α and β lines of H Induced by He and He impact on H₂. [These data are cross sections for emission of the Balmer α (6563 Å) and β (4861 Å) spectral lines.]

keV	He + Impa	et	He O Impa	et
	Ha	НВ	На	н _в
1.0 E-01	4.6 E-18	5.7 E-19		
2.0 E-01	7.3 E-18	9.0 E-19		
6.6 E-01	3.6 E-18	8.2 E-19	6.4 E-19	1.7 E-19
1.0 E 00	2.6 E-18	5.1 E-19	8.8 E-19	2.7 E-19
2.0 E 00	2.1 E-18	4.0 E-19	1.1 E-18	4.4 E-19
5.0 E 00	2.0 E-18	3.9 E-19	1.6 E-18	5.4 E-19
7.0 E 00	2.1 E-18	3.8 E-19	1.8 E-18	5.6 E-19
1.0 E 01	2.3 E-18	4.2 E-19	1.9 E-18	5.5 E-19
2.0 E 01	3.1 E-18	5.7 E-19	1.7 E-18	4.6 E-19
3.0 E 01	3.5 E-18	4.9 E-19	1.6 E-18	4.0 E-19

Reference: V. A. Gusev, G. N. Polyakova, V. F. Erko, Ya. M. Fogel, and A. V. Zats. Abstracts of the "Sixth International Conference on the Physics of Electronic and Atomic Collisions", MIT Press, Cambridge, Massachusetts., 809 (1969).

Graphical Data B-2.92. Cross sections for excitation of the N $_2^+$ 3914 Å (B $^2\Sigma_u^+ \to X^2\Sigma_g^+$ (0,0)) transition by He $^+$ impact on N $_2$. The data are shown as a function of projectile velocity (corresponding to 0.5 to 34 keV energy) and compared with equivelocity protons. The data were taken from P. J. Wehrenberg, Phys. Rev. A 15, 843 (1977).

Slow Electron Production by Impact of Heavy Ions and Atoms

Introduction

The slow electrons produced by impact of a heavy ion on a target arise from ionization of the target and also by ionization of the projectile (stripping); data on this total electron production are given here. Regrettably the data are fragmentary and by no means have the scope required for modelling of nuclear pumped lasers; however they do seem to represent the only significant data sets in the published literature.

Energy

Graphical Data B-2.93a. Total cross sections for production of free electrons in gases by impact of (a) Ne⁺, (b) Ne⁰, (c) Kr⁺, and (d) Kr⁰. The gases are Xe, Kr, Ar, Ne, and He. The data were taken from I. P. Flaks, Soviet Physics, Technical Physics 31, 263 (1961).

Graphical Data B-2.93b. Total cross sections for production of electrons by various multiply charged ions (individually identified on the graphs) on Ne, Kr, and Xe (identified in circle). The data were taken from Fedorenko et al., Soviet Physics, JETP 11, 519 (1960) and Flaks et al., Soviet Physics JETP 14, 1027 (1962).

Introduction The slow ions produced by impact of a heavy atom on a target represent ionization of the target only plus a component due to electron pick up by the projectile. Data on total slow ion formation are given here. Regrettably the data are fragmentary and by no means have the scope required for modelling of nuclear pumped lasers; however they do seem to be the only significant data set in the published literature.

Energy

Graphical Data B-2.94. Total cross sections for production of slow ions in gases by impact of (a) Ne⁺, (b) Ne⁰, (c) Kr⁺, (d) Kr⁰. The gases are Xe, Kr, Ar, Ne, and He. The data were taken from J. P. Flaks, Soviet Physics, Technical Physics 31, 263 (1961).

Introduction This material refers to formation of an ion B^{m+} when a projectile Aⁿ⁺ (n times ionized) is incident on a neutral target B. The data include direct removal of target electrons by ionization as well as pick up of electrons by the projectile from the target atom in the charge transfer process. The data are fragmentary and in no sense provide the scope necessary for laser modelling; they do however appear to be the only data of this type in the literature.

Graphical Data B-2.95. Ionization of (a) Kr and (b) Xe by Kr^o, Kr⁺, Kr²⁺ and Kr³⁺ (as indicated on the graphs) leading to formation of singly (top box), doubly (middle box), and triply (lower box) charged ions of the target. The data were taken from Flaks et al., Soviet Physics, JETP 14, 781 (1962).

Electron Loss and Capture for Singly

Charged Heavy Ions at Energies Below 25keV/amu Traversing Various Gases

Introduction and Explanation of Symbols in Graphical Data B-2.96 (a) Through B-2.105

Electron capture and loss by singly charged ions have been quite well investigated for rare gas and halogen projectiles at energies up to about 25keV/amu. Cross sections for loss of one or more electrons by Ar and Kr rise rapidly from the lowest studied energies (about 50keV) to peak at about 2MeV. Cross section decreases with increasing number of electrons removed. Cross sections for one electron capture are slowly decreasing over the corresponding energy range. Little significant information is found for singly charged ions above 2MeV energy.

The graphical data on the following pages are drawn from the compendium by H. H. Lo and W. L. Fite (Atomic Data $\underline{1}$, 305 (1970)). They represent cross sections for one or more electron loss from singly charged projectiles, one electron loss from neutral projectiles and one electron pick up by singly charged ions. The data cover Kr, Sr, Rb, Ag, Sb, Xe, I, Cs, Ba and U in Ne, Ar, N $_2$ and O $_2$. The mechanisms, and the symbols used to identify them are as follows:

$$A^{+} + B \rightarrow A^{n+} + B + (n-1)e$$
 σ_{1n} where n>1
 $A^{+} + B \rightarrow A^{0} + B^{+}$ σ_{10}
 $A^{0} + B \rightarrow A^{+} + B + e$ q_{0}

Data points connected with lines and lying at energies above 0.1 MeV are due to Lo and Fite; remaining data are due to other authors. In some cases, particularly for multiple electron loss, the data from different sources show severe unexplained discrepancies.

There are a few additional segments of data which we do not reproduce here. Dehmel et al. (Atomic Data $\underline{5}$, 231 (1973)) have some further fragmentary data on stripping from neutral and singly charged ions. Also Pivovar et al. (Soviet Physics, JETP $\underline{22}$, 508 (1966)) have some data on Kr ions in Kr and Xe over very limited energy ranges.

It will be noted that for a given projectile the cross sections do not vary greatly with the nature of the target gas. Also, when plotted on a velocity scale, cross sections do not vary appreciably with the nature of the projectile.

Graphical Data B-2.96. Electron capture and loss for ${\rm Kr}^+$ and ${\rm Kr}^0$ in Ne, Ar, N $_2$ and O $_2$.

Graphical Data B-2.97. Electron capture and loss for $\rm Sr^+$ and $\rm Sr^0$ in Ar, $\rm N_2$, $\rm O_2$.

Graphical Data B-2.98. Electron capture and loss for ${\rm Rb}^+$ and ${\rm Ag}^+$ in Ar, N2, 02.

Graphical Data B-2.99. Electron capture and loss for ${\rm Sb}^+$ in Ar, ${\rm N_2,~0_2}.$

Graphical Data B-2.100. Electron capture and loss for Xe^{+} and Xe in Ne, Ar, N_2 , O_2 .

Graphical Data B-2.101. Electron capture and loss for I $^{+}$ in Ar, N $_{2}$, $^{0}\mathrm{_{2}}.$

Graphical Data B-2.102. Electron capture and loss for Cs $^{+}$ in Ar, N $_{2}$, $^{0}2$.

Graphical Data B-2.103. Electron capture and loss for Ba $^+$ in Ar, N $_2$, 02 .

Tabular and Graphical Data C-1.47. Momentum transfer cross section for electrons in ${\rm UF}_6$.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
5.0	2.4	40	13
10.0	5.9	50	13
15	24	60	13
20	19	75	8.0
30	13		

Cont. Next Column

Reference: S. K. Srivastava, S. Trajmar, A. Chutjian and W. Williams, J. Chem. Phys. <u>64</u>, 2767 (1976)

C-2. EXCITATION BY ELECTRON IMPACT

CONTENTS

											Page
C-2.1.	Cross	sections	for	electron	impact	excitation	of	c^{3+}			1734
C-2.2.	Cross	sections	for	electron	impact	excitation	of	Hg			1735
C-2.3.						excitation					1737
C-2.4.	Cross	sections	for	electron	impact	excitation	of	U.			1741
C-2.5.	Cross	sections	for	electron	impact	excitation	of	н ₂			1742
C-2.6.	Cross	sections	for	electron	impact	excitation	of	N_2		•	1743
C-2.7.	Cross	sections	for	electron	impact	excitation	of	N_2^+			1745
C-2.8.	Cross	sections	for	electron	impact	excitation	of	o_2	•		1746
C-2.9.	Cross	sections	for	electron	impact	excitation	of	со			1749
C-2.10.	Cross	sections	for	electron	impact	excitation	of	NO			1750

Tabular and Graphical Data C-2.1. Cross sections for electron impact excitation of ${\mbox{\scriptsize C}}^{3+}$.

$$e + c^{3+}(2^2s_{1/2}) + e + c^{3+}(2^2p_{1/2,3/2})$$

Cross section vs. electron energy for e + $\rm C^{3+}$ ($\rm 2^2S_{1/2}$) + e + $\rm C^{3+}$ ($\rm 2^2P_{1/2}$, $\rm 3/2$). Open circle is an absolute measurement. Crosses are measured relative to open circle. The dashed curve: two-state close coupling from N. H. Magee, Jr., J. B. Mann, A. L. Merts, and W. D. Robb, Los Alamos Scientific Laboratory Report No. LA-6691-MS, April 1977 (unpublished). Dotted curve: Unitarized Coulomb-Born with exchange (same reference). Solid curve: "expected" cross section resulting from convolution of electron energy distribution with the two-state close-coupling calculation. Bars represent statistical uncertainties at 90% confidence level. Measured points (open circle and crosses) are tabulated below.

		Flectron	Cross
Electron	Cross Section	Energy	Section
Energy	section	i.iie i K)	
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
5.82	0.0440	9.26	4.81
6.16	0.314	9.51	5.28
6.72	0.643	9.90	5.47
7.25	1.82	10.2	5.39
7.71	2.40	10.5	5.33
8.40	3.51	11.1	4.58
8.80	4.67	13.3	4.31
9.06	4.80		

Cont . Eext Column

Reference: P. O. Taylor, D. Gregory, G. H. Dunn, R. A. Phaneuf and D. H. Crandall, Phys. Rev. Lett. 39, 1256 (1977)

Tabular Data C-2.2. Cross sections for electron impact excitation of ${\rm Hg.}$

Excitation of the $6^{3}P_{2}$ State

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
5.7	0
5.8	2.70
6.2	3.20
8.0	1.80
15	1.65
30	1.50

Excitation of the 6^1P_1 State

Electron	Cross
Energy	Section
eV	10 ⁻¹⁶ cm ²
6.7	0
8.0	2.00
10.0	3.00
12	4.00
15	4.30
24	3.00
30	2.00
40	1.000

Excitation of Higher Electronic Levels

Electron	Cross
Energy	Section
eV	10^{-16} cm ²
12	0
15	1.30
20	3.70
30	5.30
40	6.30
50	7.30
60	7.30

Reference: S. D. Rockwood, Phys. Rev. A <u>8</u>, 2348 (1973) 1735

Reference: S. D. Rockwood, Phys. Rev. A <u>8</u>, 2348 (1973)

Graphical Data C-2.2. Cross sections for electron impact excitation of Hg.

Tabular and Graphical Data C-2.3a. Cross sections for electron impact excitation of Hg ions.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
7.6	1.16	11.0	1.93	31.6	1.64
8.0	1.40	11.4	2.24	46.0	1.64
8.4	1.72	11.8	1.78	85.5	1.21
8.8	1.83	12.2	2.12	142.1	0.92
9.4	2.08	13.0	2.26	194.3	0.70
9.9	2.04	14.5	2.21	273.8	0.64
10.5	1.94	20.4	2.00		

Cont. Next Column

Cont. Next Column

Reference: D. H. Crandall, R. A. Phaneuf and G. H. Dunn, Phys. Rev. A <u>11</u>, 1223 (1975)

Tabular and Graphical Data C-2.3b. Cross sections for electron impact excitation of Hg ions.

 $e + H_g^+ \rightarrow H_g^+ (398.4 nm)$

Electron	Cross
Energy	Section
eV	10 ⁻¹⁸ cm ²
8.4	0.59
9.7	0.65
18.8	0.45

Reference: D. H. Crandall, R. A. Phaneuf, and G. H. Dunn, Phys. Rev. A <u>11</u>, 1223 (1975)

Tabular and Graphical Data C-2.3c. Cross sections for electron impact excitation of Hg ions.

$$e + Hg^{+1} \rightarrow Hg^{+1}$$
 (284.7 nm)

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁷ cm ²	eV	10^{-17} cm ²	eV	10 ⁻¹⁷ cm ²
12.1	2.15	20.5	0.687	68.0	0.463
12.5	2.29	23.4	0.771	91.5	0.414
12.8	2.10	28.3	1.04	141	0.336
13.1	1.35	32.5	0.944	264	0.142
15.2	1.30	43.7	0.654		
17.6	0.880	56.2	0.626		

Cont. Next Column

Cont. Next Column

Reference: R. A. Phaneuf, P. O. Taylor, and G. H. Dunn, Phys. Rev. A 14, 2021 (1976)

Tabular and Graphical Data C-2.3d. Cross sections for electron impact excitation of Hg ions.

$$e + Hg^{2+} + Hg^{2+}$$
 (479.7 nm)

Electron	Cross
Energy	Section
eV	10 ⁻¹⁹ cm ²
24.3	4.77
54.3	0.846
91.2	0.176

Reference: R. A. Phaneuf, P. O. Taylor, and G. H. Dunn, Phys. Rev. A 14, 2021 (1976)

Tabular and Graphical Data C-2.4. Cross sections for electron impact excitation of U.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18}cm^2	· eV	10 ⁻¹⁸ cm ²
3.18	0.0103	3.53	19.0	26.2	21.6
3.16	0.0159	3.74	27.4	35.7	17.4
3.20	0.0627	3.89	32.0	47.6	13.2
3.20	0.160	4.28	39.9	66.8	9.61
3.21	0.317	4.87	43.3	88.9	7.83
3.25	0.697	5.93	44.7	124	5.92
3.24	1.33	7.58	42.4	179	4.09
3.25	2.74	9.28	38.8	275	2.84
3.26	4.81	11.9	35.9	439	1.86
3.35	8.65	15.2	31.1	700	1.22
3.45	13.2	20.2	26.0	928	0.956

Cont. Next Column

Cont. Next Column

Reference: E. L. Maceda, C. G. Bathke, and G. H. Miley, Trans. Am. Nucl. Soc. <u>22</u>, 153 (1975) Tabular and Graphical Data C-2.5. Cross sections for electron impact excitation of ${\rm H}_2$.

$$e + H_2(^3\Sigma_g^+) \rightarrow e + H_2(^3\Pi_u)$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-18} \mathrm{cm}^2$	eV	10^{-18} cm ²
10.00	0	60.0	0.190
15.6	4.20	70.0	0.140
20.0	3.19	80.0	0.0760
22.5	2.48	90.0	0.0590
30.0	1.26	100	0.0460
40.0	0.0590		
50.0	0.300		

Cont. Next Column

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. Lett. 43, 240 (1976)

Tabular Data C-2.6. Cross sections for electronic impact excitation of $\ensuremath{\text{N}_2}\xspace$

			Uni	Units are 10^{-16}	10^{-16}	$6_{\rm cm}^2$					
Eo (eV)		A 3 2.	B 3 H €	W3Q.	B' 3L.	a,,, p.	a 'H'	18 'A	C3H,	6325	a'''E;
-	Whoeshold	(6.1693)	(7.3529)	(7.3623)	(8.16.17)	(8.3987)	(8.5189)	(N. 89 IN)	(11.0316)	(11.8766)	(12.2530)
	The same of the sa	0.030	:	:	:	:	:	::	:	:	:
- 7		0.063	0.054	0.027	:	:	:	:	:		:
		0.094	0.140	0.074	0.016	0.010	610.0	0.005	:	:	:
		0 155	0.225	0.120	0.035	0.027	0.039	0.039	:	:	:
		0.148	0.278	0.166	0 055	0.045	660.0	0.071	:		:
: :		0 171	666.0	0.213	₱ £ £ 0° 0	0.062	0.110	0.099	0.146	0.000.0	:
1 1		0 130	767 0	6.260	1.00.0	0.00.0	0.150	0.117	0.208	0.001	0,003
. :		0.00	0.271	908: 0	0.113	960.0	0.220	0.115	0.443	0,0021	0.018
		0 010	0.211	0.351	0.125	0.104	0.256	0.100	0.389	0.0030	0.02×
2 5		0.44.0	91.0	0.380	0.111	580.0	0.286	0.081	0.231	0.00.10	0.037
2 !		0.000	261 0	0.376	0.092	0.064	0 302	990.0	0.234	0.0050	0.045
: 2		0.214	621 0	0.350	0.073	0.052	0.297	0.056	0.202	0.0056	0.052
		0 1 0	0.166	0.309	0.061	0.0455	0.287	0.049	0.181	0,0062	0.057
900		0.153	0.156	0.265	0.054	0.041	0.276	0.043	0.165	0.0070	0.058
2 5		0.155	0.142	0 197	0.0.17	0.0345	0.258	0.036	0.139	0.0078	0.051
1 :		0.1.10	0.130	0.153	0.043	0.0300	0.212	0.032	0.118	0800 0	0.011
		0 113	0.1.0	0.126	0.0395	0.0275	0.228	6.00	0 1 0	0.0080	0,034
07:		6600	0.110	801.0	0.0363	0.0250	0.216	0.026	980 0	0.0065	0.028
01.		0.037	0 101	0.094	0.0337	0.0230	0.204	0.023	0.074	0.0050	0.023
0.2.		K20 0	0.092	0.0835	0.0313	0.0215	1.61.0	0.021	990.0	0.0040	0.020
2 2		0.079	1.60.0	0.07.4	0.0292	0.0200	0.184	0.018	0.059	0.0032	0.019
		9000	0.076	990.0	0.0275	0.0195	0.175	0.016	0.052	0.0027	0.017
		0.00	0.070	0.059	0.020.0	0.0147	0.166	0.014	0.0.17	0.00.00	0.0165
200		0.053	0.06.1	0.052	0.0245	0.0185	0.159	0.013	0.045	0.0018	0.016
4.7		950.0	0.058	0.017	0.0230	0.0184	0,152	0.011	85:0:0	0.0013	0.015
40		0.05.1	1.00.0	0.012	0.0220	0.0143	0.145	0.010	0.034	0.0010	0.015
41.		0.052	0.019	PE0 0	0.0210	0.0182	0.139	600'0	0.031	6000'0	0.0145
4		0.501	0.045	0.031	0.0200	0.0141	0.131	800.0	x 70 0	F000'0	0.0111
				***************************************		00100	0 1.97	200 0	9600	0 0007	0.0143

Reference: D. C. Cartwright, S. Trajmar, A. Chutjian, and W. Williams, Phys. Rev. A 16, 1041 (1977)

Reference: D. C. Cartwright, S. Trajmar, A Chutjian, and W. Williams, Phys. Rev. A 16, 1041 (1977)

Graphical Data C-2.6. Cross sections for electronic impact excitation of $\mathbf{N}_2\text{.}$

Tabular and Graphical Data C-2.7. Cross sections for electron impact excitation of $\mathrm{N_2}^+$.

$$e + N_2^+(x^2 \Sigma_g^+) \rightarrow e + N_2^+(B^2 \Sigma_u^+)$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²
3.15	2.97	6.27	2.37	18.2	0.994
3.37	3.19	7.19	2.26	21.4	0.835
3.43	2.77	8.08	1.80	31.2	0.718
3.61	2.73	10.2	1.52	45.2	0.553
4.02	2.78	12.2	1.25	64.1	0.393
4.68	2.52	13.7	1.05	90.0	0.257
5.21	2.33	13.9	1.20	92.8	0.312
5.87	2.44	16.4	1.02		

Cont. Next Column

Cont. Next Column

Reference: D. H. Crandall, W. E. Kauppila, R. A. Phaneuf, P. O. Taylor, and G. H. Dunn, Phys. Rev. A 9, 2545 (1974)

Tabular and Graphical Data C-2.8a. Cross sections for electron impact excitation of O_2 .

$$e + o_2(x^3 \Sigma_g^-) \rightarrow e + o_2(a^1 \Delta_g)$$

Electron	Cross	
Energy	Section	
eV	10^{-18} cm ²	
4.04	6.56	
5.04	7.20	
7.01	10.1	
10.0	6.99	
15.2	5.07	
15.2	5.07	
20.1	4.12	
45.1	1.11	

Reference: S Trajmar, D. C. Cartwright, and W. Williams, Phys. REv. A 4, 1462 (1971)

Tabular and Graphical Data C-2.8b. Cross sections for electron impact excitation of $\mathbf{0}_2$.

$$e + o_2(x^3 \Sigma_g^-) + e + o_2(b^1 \Sigma_g^+)$$

Electron	Cross
Energy	Section
eV	10^{-18} cm ²
4.09	1.56
4.97	1.72
7.07	2.09
9.95	1.46
15.1	1.10
20.1	1.34
45.2	0.270

Reference: S. Trajmar, D. C. Cartwright, and W. Williams, Phys. Rev. A $\underline{4}$, 1482 (1971)

Tabular Data C-2.8c. Cross sections for electron impact excitation of 0₂.

$$e + o_2(x^3 \varepsilon_g^-) \rightarrow e + o_2(x^3 \varepsilon_u^+ + c^3 \Delta_u)$$

Electron	Cross
Energy	Section
eV	10 ⁻¹⁸ cm ²
19.8	2.55
30.0	13.3
50.0	4.52
70.1	5.22

Reference: A. Konishi, K. Wakiya, M. Yamamoto and H. Suzuki, J. Phys. Soc. Japan 29, 526 (1970)

Tabular and Graphical Data C-2.9. Cross sections for electron impact excitation of CO.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-17} cm ²	eV	$10^{-17} cm^2$	eV	10^{-17}cm^2
8.08	0.0226	17.4	4.22	64.6	3.52
8.55	0.646	20.2	4.32	80.9	3.28
9.07	1.30	22.9	4.34	106	3.01
9.67	2.20	26.0	4.33	141	2.72
10.5	3.04	30.3	4.25	187	2.43
11.5	3.46	35.3	4.12	242	2.17
12.7	3.77	41.3	3.96	294	1.98
14.7	4.02	51.4	3.75		

Cont. Next Column

Reference: J. M. Ajello, J. Chem. Phys. <u>55</u>, 3158 (1971)

Tabular and Graphical Data C-2.10a. Cross sections for electron impact excitation of NO.

$$e + NO(b^{4}\Sigma^{-}) + e + NO(a^{4}\Pi)$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-18} cm^2$	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
6.39	0.0103	7.52	3.06	8.49	5.50
6.46	0.0916	7.62	3.35	8.55	5.47
6.53	0.220	7.75	3.82	8.60	5.42
6.59	0.347	7.81	4.11	8.67	5.36
6.67	0.541	7.89	4.36	8.78	5.24
6.79	0.782	7.98	4.69	8.96	5.02
6.85	0.957	8.07	4.95	9.17	4.66
6.94	1.18	8.18	5.19	9.37	4.38
7.03	1.46	8.23	5.32	9.51	4.13
7.11	1.69	8.28	5.37	9.63	3.90
7.21	1.98	8.31	5.41	9.76	3.65
7.29	2.24	8.35	5.45	9.90	3.36
7.34	2.44	8.37	5.47	9.96	3.26
7.40	2.65	8.41	5.49		
7.46	2.82	8.45	5.50		

Cont. Next Column

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. Lett. 49, 588 (1977)

Tabular and Graphical Data C-2.10b. Cross sections for electron impact excitation of NO.

Y bands

		Cro	ss section	(cm ² ×10 ⁻¹⁹)
Energy (eV)	(0, 1) 2366 Å	(0, 2) 2474 Å	(1, 0) 2151 Å	(1, 5) 2675 Å	(2,7) 2759 Å
6		0.34	0.4	0.10	
7	0.76	0.70	3.2	0.63	0.22
8	1.16	0.95	4.4	0.82	0.35
9	1.41	1.14	5.1	0.96	0.43
10	1.60	1.30	5.6	1.05	0.48
12	1.85	1.50	6.2	1.18	0.54
14	2.00	1.61	6.3	1.23	0.56
16	2.10	1.70	6.3	1.28	0.58
18	2.13	1.73	6.2	1.29	0.58
20	2.16	1.76	6.0	1.29	0.57
25	2.12	1.73	5.6	1.24	0.55
30	2.03	1.67	5.2	1.19	0.52
40	1.88	1.52	4.5	1.07	0.48
50	1.73	1.40	4.0	0.98	0.45
60	1.60	1.29	3.6	0.89	0.42
80	1.40	1.11	3.0	0.77	0.37
100	1.24	1.00	2.6	0.68	0.34
200	0.84	0.67	1.63	0.46	0.24
400	0.55	0,43	1.00	0.31	0.17
700	0.39	0.30	0.67	0.22	0.13
1000	0.31	0.24	0.52	0.18	0.10

Reference: M. Imami and W. L. Borst, J. Chem. Phys. <u>63</u>, 3602 (1975)

C-3. DISSOCIATION BY ELECTRON IMPACT

CONTENTS

			Page
C-3.1.	Cross sections for electron impact dissociation of to form excited fragments	of H ₂	1754
C-3.2.	Cross sections for electron impact dissociation of to form excited fragments	of D ₂	1757
C-3.3.	Cross sections for electron impact dissociation of $\mathrm{H_3}^+$		1760
C-3.4.	Cross sections for electron impact dissociation of \mathbf{N}_2 to form excited fragments	of •••	1761
C-3.5.	Cross sections for electron impact dissociation of \mathbf{N}_2		1771
C-3.6.	Cross sections for electron impact dissociation of to form excited fragments	of	1772
C-3.7.	Cross sections for electron impact dissociation of CO to form excited fragments \dots	of 	1782
C-3.8.	Cross sections for electron impact dissociation of NO to form excited fragments		1785
C-3.9.	Cross sections for electron impact dissociation of ${\rm CO}_2$ to form excited fragments		1789
C-3.10.	Cross sections for electron impact dissociation of $\mathrm{H}_2\mathrm{O}$ to form excited fragments	of 	1795
C-3.11.	Cross sections for electron impact dissociation of NH $_3$ to form excited fragments		1803
C-3.12.	Cross sections for electron impact dissociation of CH_4 to form excited fragments		1807
C-3.13.	Cross sections for electron impact dissociation of $\mathbf{C_2H_2}$ to form excited fragments	of 	1814

Tabular and Graphical Data C-3.1a. Cross sections for electron impact dissociation of $\rm H_2$ to form excited fragments.

 $e + H_2 \rightarrow H (656.3 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10^{-18} cm ²	eV	$10^{-18} cm^2$
20	0.582	60	0.965	600	0.279
22	0.600	70	1.01	700	0.243
24	0.603	80	1.03	800	0.216
26	0.605	90	1.04	900	0.195
28	0.645	100	1.00	1000	0.177
30	0.691	150	0.853	1200	0.151
35	0.771	200	0.723	1500	0.123
40	0.832	300	0.510	1700	0.110
45	0.874	400	0.396	2000	0.095
50	0.907	500	0.331		

Cont. Next Column

Reference: G. R. Mohlmann, F. J. de Heer and J. Los, Chem. Phys. 25, 103 (1977)

Tabular and Graphical Data C-3.1b. Cross sections for electron impact dissociation of ${\rm H}_2$ to form excited fragments.

 $e + H_2 \rightarrow H (486.1 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²
20	0.0650	60	0.199	600	0.044
22	0.0680	70	0.206	700	0.038
24	0.0690	80	0.206	800	0.033
26	0.0690	90	0.199	900	0.030
28	0.0740	100	0.192	1000	0.027
30	0.104	150	0.157	1200	0.022
35	0.141	200	0.124	1500	0.018
40	0.163	300	0.0859	1700	0.016
45	0.177	400	0.0659	2000	0.014
50	0.186	500	0.0526		

Cont. Next Column

Reference: G. R. Mohlmann, F. J. de Heer, and J. Los, Chem Phys. 25, 103 (1977)

Tabular and Graphical Data C-3.1c. Cross sections for electron impact dissociation of $\rm H_2$ to form exicted fragments.

e + H₂ + H (434.0 nm)

		Column	Cont. Next Column	Column	Cont. Next Column
		1.50	200	4.88	20
0.39	2000	1.88	007	4.37	45
0.460	1700	2.50	300	3.76	04
0.520	1500	3.52	200	3.03	35
0.65	1200	4.35	150	2.07	30
0.76	1000	5.38	100	1.74	28
0.84	006	5.68	06	1.55	56
0.95	800	5.82	80	1.55	24
1.10	200	5.85	70	1.54	22
1.28	009	5.59	09	1.45	20
10-20cm ²	e V	10 ⁻²⁰ cm ²	eV	10-20cm ²	eV
Cross	Electron Energy	Cross	Electron Energy	Cross	Electron Energy

Tabular and Graphical Data C-3.2a. Cross sections for electron impact dissociation of ${\rm D}_2$ to form excited fragments.

 $e + D_2 + D$ (Balmer α)

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10^{-18} cm ²
20	0.389	60	0.799	600	0.229
22	0.400	70	0.836	700	0.198
24	0.403	80	0.861	800	0.176
26	0.403	90	0.869	900	0.158
28	0.433	100	0.840	1000	0.144
30	0.483	150	0.722	1200	0.121
35	0.587	200	0.605	1500	0.0986
40	0.657	300	0.424	1700	0.0887
45	0.707	400	0.328	2000	0.0766
50	0.740	500	0.272		

Cont. Next Column

Reference: G. R. Mohlmann, F. J. de Heer, and J. Los, Chem. Phys. <u>25</u>, 103 (1977)

Tabular and Graphical Data C-3.2b. Cross sections for electron impact dissociation of ${\rm D}_2$ to form excited fragments.

 $e + D_2 + D$ (Balmer β)

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10^{-18} cm ²
20	0.0300	60	0.153	600	0.0360
22	0.0320	70	0.163	700	0.030
24	0.0330	80	0.166	800	0.026
26	0.0330	90	0.162	900	0.024
28	0.0350	100	0.156	1000	0.021
30	0.0500	150	0.127	1200	0.018
35	0.0790	200	0.101	1500	0.014
40	0.103	300	0.0693	1700	0.013
45	0.121	400	0.0527	2000	0.011
50	0.134	500	0.0421		

Cont. Next Column

Cont. Next Column

Reference: G. R. Mohlmann, F. J. de Heer and J. Los, Chem. Phys. 25, 103 (1977)

Tabular Data C-3.2c. Cross sections for electron impact dissociation of ${\rm D}_2^{}$ to form excited fragments.

 $e + D_2 + D$ (Balmer Y)

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-20} cm ²	eV	10^{-20} cm ²	eV	10^{-20} cm ²
20	0.340	60	4.37	600	1.02
22	0.364	70	4.65	700	0.887
24	0.365	80	4.74	800	0.755
26	0.369	90	4.60	900	0.669
28	0.470	100	4.34	1000	0.610
30	0.770	150	3.49	1200	0.525
35	1.71	200	2.86	1500	0.413
40	2.58	300	1.98	1700	0.362
45	3.26	400	1.53	2000	0.317
50	3.76	500	1.20		

Cont. Next Column

Tabular and Graphical Data C-3.3. Cross sections for electron impact dissociation of ${\rm H_3}^+.$

$$e + H_3^+ + H^+ + H_2$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
19.2	2.80	59.0	7.16	241	4.50
20.4	3.08	69.0	6.90	261	4.83
21.0	2.08	79.0	7.60	281	4.36
22.9	3.83	94.0	7.09	311	4.15
24.8	4.54	109	7.19	331	3.94
26.1	5.34	124	6.46	361	3.78
28.1	6.04	139	5.•99	411	3.62
29.5	6.14	159	5.49	461	3.41
29.0	6.32	169	5.52	511	3.12
34.0	6.52	189	5.62	611	2.99
49.0	6.54	211	5.08		

Cont. Mext Column

Reference: B. Peart and K. T. Dolder, J. Phys. B 8, L143 (1975)

Tabular and Graphical Data C-3.4a. Cross sections for electron impact dissociation of $\rm N_2$ to form excited fragments.

$$e + N_2 + N (108.4 nm)$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm
42.1	0.109	74.7	13.0	131	25.3
43.7	0.782	78.0	14.0	135	25.4
46.6	2.03	81.3	15.1	140	25.4
49.4	3.21	86.2	16.6	145	25.2
52.8	4.56	91.9	18.2	151	24.9
56.1	5.81	98.3	20.0	157	24.5
58.4	6.66	103	21.1	164	23.9
60.7	7.55	109	22.4	172	23.2
63.8	8.93	114	23.5	178	22.5
66.8	10.1	121	24.5	187	21.6
70.6	11.5	127	25.0		

Cont. Next Column

Cont. Next Column

Reference: W. Sroka, Z. Naturforsch. 24a, 398 (1969)

Tabular and Graphical Data C-3.4b. Cross sections for electron impact dissociation of $\rm N_2$ to form excited fragments.

 $e + N_2 + N (113.4 nn)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	.Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10^{-18}cm^2
0.714	0.483	1.68	5.91	2.66	3.67
0.832	1.37	1.82	5.98	2.76	3.15
0.935	2.30	1.98	5.88	2.85	2.64
1.04	3.16	2.10	5.68	2.96	2.23
1.19	3.93	2.19	5.44	3.05	1.86
1.28	4.54	2.28	5.18	3.15	1.53
1.40	5.03	2.37	4.89	3.24	1.26
1.49	5.39	2.47	4.55	3.34	1.02
1.58	5.70	2.57	4.15	3.43	0.828
				3.52	-0.651
ont. Next	Column	Cont. Next	Column	3.63	0.482
				3.72	0.278
				3.82	0.020

Peference: W. Sroka, Z. Naturforsch. 24a, 398 (1969)

Tabular and Graphical Data C-3.4b. Cross sections for electron impact dissociation of $\rm N_2$ to give excited fragments (Concluded).

$$e + N_2 + N (113.4 nm)$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²
60	1.05	500	0.390
80	1.13	800	0.240
100	1.05	1000	0.220
150	0.920	1500	0.157
200	0.780	2000	0.121
300	0.620	3000	0.0890
400	0.470		

Cont. Next Column

Reference: J. F. M. Aarts and F. J. de Heer, Physica 52, 45 (1971)

Tabular and Graphical Data C-3.4c. Cross sections for electron impact dissociation of $\rm N_2$ to form excited fragments.

 $e + N_2 + N (116.7 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
24.3	0.170	74.2	4.87	122	5.49
27.9	0.680	81.5	5.12	131	5.54
33.1	1.25	86.5	5.32	140	5.46
38.7	1.88	91.8	5.44	149	5.36
44.6	2.47	96.5	5.49	158	5.26
49.9	2.97	99.7	5.48	167	5.15
56.4	3.56	104	5.51	175	4.97
61.6	4.00	108	5.48	184	4.83
67.4	4.47	114	5.52		

Cont. Next Column

Reference: W. Sroka, Z. Naturforsch. 24a, 398 (1969)

Tabular and Graphical Data C-3.4d. Cross section for electron impact dissociation of ${\rm N}_2$ to form excited fragments.

 $e + N_2 + N (120.0 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
25.0	0.530	47.5	3.22	175	5.49
27.5	1.00	50.0	3.69	200	5.11
30.0	1.37	60.0	5.30	225	4.75
32.5	1.71	76.0	6.35	250	4.43
35.0	1.84	0.03	6.70	275	4.15
37.5	1.97	90.0	6.75	300	3.98
40.0	2.01	100	6.70	325	3.74
42.5	2.35	125	6.30	350	3.57
45.0	2.78	150	5.87		

Cont. Next Column

Cont. Next Column

Reference: Mumma, M.J., Zipf, E.C., J. Chem. Phys. 55, 5582 (1971)

Tabular and Graphical Data C-3.4d. Cross sections for electron impact dissociation of $\rm N_2$ to form excited fragments (Concluded).

$$e + N_2 + N (120.0 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
50	5.06	300	2.78	1500	0.830
60	5.06	400	2.20	2000	0.650
80	4.86	500	1.91	3000	0.470
100	4.72	600	1.66	4000	0.400
150	4.07	800	1.42	5000	0.300
200	3.47	1000	1.22		

Cont. Next Column

Reference: J. F. M. Aarts and F. J. de Heer, Physica 52, 45 (1971)

Tabular and Graphical Data C-3.4e. Cross sections for electron impact dissociation of $\rm N_2$ to form excited fragments.

$$e + N_2 + N (124.3 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
22.5	0.0580	47.5	0.899	200	0.990
25.0	0.0940	50.0	0.990	225	0.920
27.5	0.290	60.0	1.35	250	0.850
30.0	0.406	70.0	1.52	275	0.780
32.5	0.508	80.0	1.54	300	0.720
35.0	0.573	90.0	1.52	325	0.690
37.5	0.630	100	1.45	350	0.650
40.0	0.681	125	1.33		
42.5	0.718	150	1.20		
45.0	0.812	175	1.09		

Cont. Next Column

Reference: M. J. Mumma, E. C. Zipf, J. Chem. Phys. <u>55</u> (1971)

Tabular and Graphical Data C-3.4e. Cross sections for electron impact dissociation of $\rm N_2$ to form excited fragments (Concluded).

 $e + N_2 + N (124.3 \text{ nm})$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18}cm^2	eV	$10^{-18} cm^2$
50	1.79	300	0.730	1500	0.181
60	1.66	400	0.590	2000	0.136
80	1.60	500	0.500	3000	0.0960
100	1.52	600	0.400	4000	0.0860
150	1.23	800	0.340	5000	0.0630
200	1.01	1000	0.260		

Cont. Next Column

Reference: J. F. M. Aarts and F. J. de Heer, Physica 52, 45 (1971)

Tabular and Graphical Data C-3.4f. Cross sections for electron impact dissociation of $\rm N_2$ to form excited fragments.

$$e + N_2 + N (149.3 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
10.00	0.120	35.0	1.02	125	2.51
11.2	0.150	37.5	1.03	150	2.35
12.5	0.180	40.0	1.19	175	2.15
14.0	0.170	42.5	1.47	200	1.98
15.8	0.170	45.0	1.59	225	1.86
17.8	0.165	47.5	1.79	250	1.73
20.0	0.196	50.0	1.89	275	1.60
22.5	0.419	60.0	2.39	300	1.52
25.0	0.634	70.0	2.68	325	1.47
27.5	0.851	80.0	2.68	350	1.33
30.0	0.956	90.0	2.68		
32.5	1.00	100	2.62		

Cont. Next Column

Reference: M. J. Mumma, E. C. Zipf, J. Chem. Phys. <u>55</u>, 5582 (1971)

Tabular and Graphical Data C-3.4f. Cross sections for electron impact dissociation of $\rm N_2$ to give excited fragments (Concluded).

 $e + N_2 + N (149.3 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²
50	2.00	300	1.12	1500	0.310
60	2.00	400	0.880	2000	0.250
80	1.95	500	0.760	3000	0.177
100	1.88	600	0.630	4000	0.137
150	1.72	800	0.510	5000	0.107
200	1.43	1000	0.420		

Cont. Next Column

Cont. Next Column

Reference: J. F. M. Aarts and F. J. de Heer, Physica 52, 45 (1971)

Tabular and Graphical Data C-3.5. Cross sections for electron impact dissociation of $\mathbf{N}_2\text{.}$

$$e + N_2 \rightarrow e + N + N$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
3.10	0	36.5	1.48	112	1.97
10.1	0	47.9	1.70	126	1.92
14.8	0.294	57.5	1.85	147	1.87
21.3	0.878	67.1	1.87	172	1.79
25.6	1.19	82.9	2.05	197	1.73
31.3	1.35	97.4	2.06		

Cont. Next Column

Reference: H. F. Winters, J. Chem. Phys. 44, 1472 (1966)

Tabular and Graphical Data C-3.6a. Cross sections for electron impact dissociation of $\mathbf{0}_2$ to form excited fragments.

 $e + 0_2 \rightarrow 0 (71.7 \text{ nm})$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
48.3	0.0626	127	3.02
51.0	0.170	133	3.22
55.1	0.318	140	3.38
59.7	0.490	144	3.45
64.8	0.710	148	3.51
71.6	0.962	151	3.54
79.0	1.25	155	3.55
85.5	1.51	159	3.56
92.4	1.77	162	3.55
99.6	2.05	173	3.45
105	2.27	177	3.40
112	2.54	180	3.33
119	2.78		

Cont. Next Column

Reference: W. Sroka, Z. Naturforsch. 23a, 2004 (1968)

Tabular Data C-3.6b. Cross sections for electron impact dissociation of $\mathbf{0}_2$ to form excited fragments.

 $e + 0_2 + 0$ (83.3 nm)

Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
eV	$10^{-18} c m^2$	eV	10^{-18} cm ²
37.5	0.0681	97.5	7.48
38.6	0.180	102	7.76
41.3	0.589	108	8.08
44.9	1.19	114	8.30
48.8	1.80	119	8.51
52.5	2.36	126	8.71
55.8	2.85	132	8.87
58.9	3.31	139	8.98
67.1	4.55	146	9.05
71.0	5.07	160	9.02
75.1	5.54	167	8.95
78.9	5.96	174	8.85
82.4	6.33	180	8.74
86.0	6.65	188	8.54
89.3	6.92		
93.0	7.19		

Cont. Next Column

Reference: W. Sroka, Z. Naturforsch. 23a, 2004 (1968)

Tabular and Graphical Data C-3.6c. Cross sections for electron impact dissociation of $\mathbf{0}_2$ to form excited fragments.

$$e + 0_2 + 0 (87.9 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
26.1	0.293	100	2.43
33.9	0.611	110	2.47
41.5	0.931	122	2.50
48.9	1.22	131	2.47
57.2	1.60	142	2.41
65.1	1.91	152	2.33
73.4	2.18	161	2.29
81.8	2.35		
91.4	2.41		

Reference: W. Sroka, Z. Naturforsch 23a, 2004 (1968)

Tabular and Graphical Data C-3.6d. Cross sections for electron impact dissociation of $\mathbf{0}_2$ to form excited fragments.

 $e + 0_2 + 0 (99.0 \text{ nm})$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
21.3	0.288	70.1	3.89	130	3.27
24.5	0.620	73.8	3.97	134	3.28
27.7	0.935	77.3	4.00	138	3.27
31.1	1.23	81.1	4.00	143	3.32
34.4	1.51	84.7	3.96	147	3.37
37.4	1.76	88.3	3.92	152	3.45
40.0	2.02	92.1	3.83	155	3.54
42.6	2.25	95.9	3.73	160	3.69
46.1	2.56	100	3.63	163	3.85
49.0	2.81	107	3.53	167	4.06
52.8	3.08	112	3.44	171	4.31
56.3	3.30	115	3.39	175	4.58
63.7	3.68	122	3.34		
66.7	3.81	126	3.31		

Cont. Next Column

Reference: W. Sroka, Z. Naturforsch. 23a, 2004 (1968)

Tabular Data C-3.6e. Cross sections for electron impact dissociation of $\mathbf{0}_2$ to form excited fragments.

 $e + 0_2 + 0 (130.0 \text{ nm})$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
17.3	0.178	36.9	2.71	56.6	3.71
17.9	0.368	37.7	2.68	57.3	3.62
18.7	0.459	38.1	2.75	58.1	3.65
19.5	0.789	39.0	2.71	58.9	3.68
20.1	0.912	39.3	2.80	59.5	3.76
20.6	1.17	40.4	2.87	60.5	3.76
21.4	1.26	40.9	2.92	61.1	3.72
21.7	1.37	41.6	2.75	61.8	3.80
22.6	1.36	42.2	2.84	62.3	3.77
23.2	1.53	43.0	2.86	63.0	3.79
23.8	1.65	43.6	2.92	64.0	3.72
25.1	1.65	44.4	3.10	64.2	3.76
24.4	1.73	45.0	3.02	65.0	3.77
25.6	1.78	45.8	3.08	65.9	3.75
26.3	1.87	46.6	3.11	66.3	3.79
26.9	1.96	47.0	3.14	66.7	3.82
27.6	2.07	47.6	3.20	67.6	3.77
28.1	2.12	48.4	3.21	68.0	3.83
29.0	2.25	49.1	3.19	68.9	3.83
29.9	2.25	49.7	3.20	69.5	3.81
30.4	2.30	50.2	3.30	70.2	3.90
30.9	2.44	50.8	3.25	70.9	3.77
31.6	2.40	51.4	3.23	71.5	3.86
32.3	2.36	51.9	3.42		
33.0	2.49	52.7	3.33		
33.5	2.41	53.4	3.45		
34.0	2.61	54.1	3.62		
34.7	2.62	54.5	3.51		
35.7	2.64	55.4	3.51		
35.9	2.71	56.3	3.49		

Cont. Next Column

Cont. Next Column

Reference: M. J. Mumma and E. C. Zipf, J. Chem. Phys. 55, 1661 (1971)

Graphical Data C-3.6e. Cross sections for electron impact dissociation of $\boldsymbol{0}_2$ to form excited fragments. (Tabular data on the facing page.)

Tabular and Graphical Data C-3.6f. Cross sections for electron impact dissociation of ${\rm O}_2$ to form excited fragments.

 $e + 0_2 + 0 (130.4 \text{ nm})$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
21.4	0.976	69.3	3.12	248	1.95
23.5	1.20	79.5	3.20	305	1.71
26.3	1.48	90.3	3.19	365	1.54
29.8	1.80	107	3.04	427	1.39
35.1	2.10	127	2.82	533	1.22
41.3	2.37	149	2.60	667	1.05
46.9	2.57	169	2.43	806	0.947
50.6	2.68	194	2.24	931	0.853
58.6	2.92	218	2.09		

Cont. Next Column

Peference: G. M. Lawrence, Phys. Rev. A 2, 397 (1970)

Tabular and Graphical Data C-3.6f. Cross sections for electron impact dissociation of $\mathbf{0}_2$ to form excited fragments (Concluded).

$$e + 0_2 + 0 (130.4 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
100	3.50	1000	0.955
150	3.01	1500	0.685
200	2.76	2000	0.570
300	2.08	3000	0.406
400	1.79	4000	0.318
500	1.52	5000	0.269
600	1.34		
800	1.11		

Cont. Next Column

Reference: J. F. M. Aarts and F. J. de Heer, Physica 56, 294 (1971)

Tabular and Graphical Data C-3.6g. Cross sections for electron impact dissociation of $\mathbf{0}_2$ to form excited fragments.

 $e + 0_2 + 0$ (135.6 nm)

Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
14.8	0.00841	58.0	1.57
14.8	0.0724	68.0	1.60
14.9	0.172	78.2	1.62
15.1	0.281	89.0	1.63
15.4	0.405	97.8	1.64
15.7	0.501	105	1.64
16.1	0.593	119	1.64
17.0	0.712	138	1.61
17.8	0.818	168	1.56
19.0	0.904	193	1.51
20.8	1.02	230	1.43
22.6	1.13	260	1.37
24.8	1.21	238	1.31
28.3	1.30	303	1.28
38.1	1.44		
47.2	1.51		

Reference: J. M. Ajello, J. Chem. Phys. <u>55</u>, 3156 (1971)

Tabular and Graphical Data C-3.6h. Cross sections for electron impact dissociation of $\mathbf{0}_2$ to form excited fragments.

 $e + 0_2 + 0 (844.7 \text{ nm})$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	10^{-18}cm^2
21.7	0.603	74.3	1.99	251	1.15
22.3	0.676	81.9	2.03	271	1.09
23.3	0.764	89.9	2.03	335	0.917
24.4	0.850	98.2	2.02	405	0.804
25.7	0.933	103	2.00	497	0.693
27.4	1.03	118	1.91	588	0.616
29.6	1.13	131	1.85	701	0.540
32.7	1.26	145	1.75	860	0.464
37.0	1.41	155	1.68		
41.0	1.49	165	1.61		
46.4	1.61	178	1.51		
51.9	1.72	193	1.43		
58.4	1.83	206	1.35		
65.6	1.93	227	1.26		

Cont. Next Column

Reference: G. M. Lawrence, Phys. Rev. A 2, 397 (1970)

Tabular and Graphical Data C-3.7a. Cross sections for electron impact dissociation of CO to form excited fragments.

e + co + o (130.4 nm)

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10^{-18} cm ²
45.6	0.357	80.3	0.846	284	0.518
47.3	0.418	88.8	0.857	339	0.459
49.5	0.479	97.5	0.846	402	0.406
51.5	0.536	107	0.840	485	0.351
54.5	0.607	120	0.814	575	0.309
57.8	0.662	134	0.790	681	0.269
60.3	0.709	149	0.750	832	0.224
63.6	0.755	173	0.693		
67.7	0.802	203	0.640		
73.7	0.831	237	0.582		

Cont. Next Column

Cont. Next Column

Reference: G. M. Lawrence, Phys. Rev. A 2, 397 (1970)

Tabular and Graphical Data C-3.7b. Cross sections for electron impact dissociation of CO to form excited fragments.

e + CO + C (127.8/128.0 nm)

Electron Energy	Cross Section	Electron Energy	. Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
21.0	0.0201	41.9	5.08	139	6.65
21.5	0.407	48.8	5.76	155	6.40
22.6	0.971	55.2	6.16	176	6.07
24.1	1.63	65.7	6.58	202	5.64
27.1	2.52	78.0	6.91	228	5.20
29.4	2.94	96.1	7.14	255	4.75
31.1	3.27	100	7.12	293	4.17
34.2	3.88	113	7.03		
37.3	4.44	126	6.86		

Cont. Next Column

Reference: J. M. Ajello, J. Chem. Phys. 55, 3158 (1971)

Tabular and Graphical Data C-3.7c. Cross sections for electron impact dissociation of CO to form excited fragments.

e + CO + O (844.7 nm)

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
47.1	0.343	89.0	0.622	251	0.432
49.1	0.391	95.0	0.619	287	0.402
52.5	0.450	102	0.617	337	0.366
55.6	0.492	112	0.605	387	0.338
57.8	0.518	126	0.588	446	0.307
60.1	0.542	140	0.562	535	0.275
64.7	0.574	158	0.537	634	0.246
69.0	0.597	178	0.513	721	0.223
73.6	0.611	200	0.484	780	0.210
79.2	0.616	225	0.453		

Cont. Next Column

Reference: G. M. Lawrence, Phys. Rev. A 2, 397 (1970)

Tabular and Graphical Data C-3.8a. Cross sections for electron impact dissociation of NO to form excited fragments.

e + N0 + 0 (130.4 nm)

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²
24.4	0.118	60.6	0.919	202	0.897
25.3	0.142	65.0	0.992	231	0.835
26.7	0.164	68.7	1.04	269	0.762
28.8	0.197	74.1	1.09	315	0.694
31.3	0.231	80.4	1.12	381	0.619
34.7	0.261	85.1	1.14	463	0.548
38.1	0.300	94.8	1.15	557	0.486
41.5	0.355	104	1.14	677	0.428
44.0	0.417	114	1.13		
46.6	0.513	119	1.11		
49.3	0.621	129	1.09		
50.7	0.689	140	1.07		
53.9	0.784	152	1.02		
57.0	0.856	171	0.971		

Cont. Next Column

Reference: G. M. Lawrence, Phys. Rev. A 2, 397 (1970)

Tabular and Graphical Data C-3.8b. Cross sections for electron impact dissociation of NO to form excited fragments.

$$e + NO + O (844.7 nm)$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	10^{-18}cm^2
26.5	0.103	53.3	0.388	182	0.450
27.5	0.109	56.7	0.426	212	0.415
29.3	0.116	61.0	0.463	247	0.382
31.6	0.124	65.5	0.491	292	0.341
34.5	0.137	72.2	0.528	338	0.313
36.5	0.148	79.2	0.547	387	0.287
39.2	0.163	83.9	0.548	469	0.252
41.4	0.181	93.0	0.558	587	0.217
42.0	0.196	101	0.551	726	0.182
42.7	0.225	112	0.544	920	0.153
43.3	0.248	120	0.538		
45.7	0.285	130	0.526		
47.4	0.311	146	0.502		
50.2	0.350	164	0.480		

Cont. Next Column

Reference: G. M. Lawrence, Phys. Rev. A 2, 397 (1970)

Tabular Data C-3.8c. Cross sections for electron impact dissociation of NO to form excited fragments.

e + NO + N (120.0 nm)

Electron Energy	Cross Section	Electron Fnergy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²	eV	10-18 _{cm} 2
18.3	0.0477	53.0	3.58	132	4.39
19.5	0.288	56.5	3.97	144	4.26
22.2	0.670	61.3	4.35	156	4.15
25.4	1.24	68.3	4.61	168	4.03
29.5	1.68	76.3	4.77	181	3.91
33.4	1.91	85.4	4.84	195	3.79
39.7	2.17	95.2	4.81	210	3.68
45.1	2.58	107	4.71	224	3.59
49.1	3.14	118	4.56	235	3.59

Cont. Mext Column

Cont. Next Column

Tabular Data C-3.8d. Cross sections for electron impact dissociation of NO to form excited fragments.

e + NO + N (149.3 nm)

Electron Energy	Cross Section	Flectron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²	eV	10-18 _{cm} 2
19.7	0.0380	54.4	1.19	149	1.31
22.1	0.155	64.2	1.38	163	1.27
25.8	0.380	75.4	1.50	175	1.24
33.4	0.778	86.1	1.52	188	1.19
37.2	0.791	97.8	1.51	200	1.16
40.8	0.812	110	1.49	214	1.14
45.9	0.945	121	1.45	227	1.09
46.5	0.976	134	1.38	236	1.09

Cont. Next Column Cont. Next Column

Reference: J. E. Mentall and H. D. Morgan, J. Chem. Phys. 56, 2271 (1972)

Tabular and Graphical Data C-3.8e. Cross sections for electron impact dissociation of NO to form excited fragments.

e + NO * M (124.3 nm)

Electron Energy	Cross Section	Flectron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
22.0	0.029	55.8	0.81	164	0.70
24.0	0.14	64.9	0.90	178	0.67
27.2	0.32	74.3	0.94	196	0.66
30.5	0.48	86.4	0.94	210	0.66
37.2	0.57	101	0.92	225	0.62
44.2	0.62	116	0.85	233	0.63
47.0	0.64	131	0.80		
49.7	0.73	146	0.75		

Cont. Mext Column

Cont. Next Column

Reference: J. E. Mentall and H. D. Morgan, J. Chem. Phys. <u>56</u>, 2271 (1972) Tabular and Graphical Data C-3.9a. Cross sections for electron impact dissociation of ${\rm CO}_2$ to form excited fragments.

$$e + CO_2 + O (130.4 \text{ nm})$$

Electron Energy	Cross Section	Electron	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁹ cm ²	eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
21.1	0.0238	43.4	5.23	138	7.08
22.4	0.713	47.2	5.65	156	6.83
24.8	1.64	53.7	6.16	176	6.57
29.5	2.66	63.6	6.68	202	6.21
31.0	2.90	73.6	7.04	224	5.92
32.6	3.13	81.3	7.21	242	5.69
34.1	3.43	89.7	7.30	265	5.34
35.7	3.77	97.8	7.36	296	4.93
38.1	4.31	107	7.35		
40.2	4.70	120	7.25		

Cont. Next Column

Reference: J. M. Ajello, J. Chem. Phys. 55, 3169 (1971)

Tabular and Graphical Data C-3.9b. Cross sections for electron impact dissociation of ${\rm CO}_2$ to form excited fragments.

$$e + co_2 + o (135.6 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
27.1	0.0394	59.1	6.33	178	7.10
27.7	0.612	69.4	6.98	203	6.75
28.9	1.46	79.8	7.41	227	6.35
31.2	2.53	90.9	7.65	244	6.05
33.9	3.21	99.9	7.78	264	5.68
37.5	3.95	109	7.81	283	5.26
43.2	4.83	130	7.69	299	4.91
50.5	5.66	154	7.44		

Cont. Next Column

Reference: J. M. Ajello, J. Chem. Phys. 55, 3169 (1971)

Tabular and Graphical Data C-3.9c. Cross sections for electron impact dissociation of ${\rm CO}_2$ to form excited fragments.

$$e + C_2 + C (132.9 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²
23.9	0.0014	67.7	0.25	211	0.19
25.0	0.024	80.7	0.26	233	0.17
26.7	0.059	93.7	0.26	257	0.16
28.7	0.099	105	0.26	277	0.15
30.5	0.13	120	0.26	300	0.14
34.2	0.16	135	0.25	327	0.13
39.7	0.18	149	0.24	344	0.13
46.7	0.21	167	0.22		
55.9	0.23	186	0.21		

Cont. Next Column

Cont. Next Column

кеference: M. J. Mumma, E. J. Stone, W. L. Borst, and F. C. Zipf, J. Chem. Phys. <u>57</u>, 68 (1972) Tabular and Graphical Data C-3.9d. Cross sections for electron impact dissociation of ${\rm CO}_2$ to form excited fragments.

$$e + co_2 + c (156.1 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Flectron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
10.8	0.0035	37.4	0.62	131	0.93
12.1	0.027	41.6	0.62	144	0.90
13.3	0.050	45.1	0.63	155	0.87
15.2	0.072	46.9	0.63	171	0.83
17.4	0.091	49.2	0.66	184	0.79
19.1	0.10	51.7	0.69	198	0.75
21.9	0.12	55.1	0.75	218	0.70
23.3	0.14	59.6	0.82	234	0.66
24.2	0.20	63.8	0.88	251	0.63
25.2	0.27	69.1	0.91	268	0.60
27.4	0.37	73.7	0.93	285	0.58
29.2	0.49	80.1	0.95	303	0.55
30.2	0.56	87.0	0.97	325	0.52
30.9	0.58	95.4	0.98	336	0.51
32.4	0.60	106	0.97	348	0.50
34.3	0.61	120	0.95		

Cont. Next Column

Cont. Next Column

Reference: M. J. Mumma, E. J. Stone, W. L. Borst, and E. C. Zipf, J. Chem. Phys. <u>57</u>, 68 (1972)

Tabular and Graphical Data C-3.9e. Cross sections for electron impact dissociation of ${\rm CO}_2$ to form excited fragments.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
14.1	0.00012	45.1	1.1	144	1.4
15.7	0.058	47.9	1.1	159	1.4
19.0	0.11	51.4	1.2	178	1.3
21.7	0.14	57.6	1.3	193	1.2
23.6	0.17	64.6	1.4	220	1.1
25.5	0.39	73.6	1.4	242	1.0
28.6	0.76	84.1	1.5	264	0.97
29.9	0.91	94.9	1.5	291	0.88
31.8	0.96	107	1.5	309	0.83
34.7	1.0	120	1.5	335	0.75
40.1	1.1	133	1.4		

Cont. Next Column

Reference: M. J. Mumma, F. J. Stone, W. L. Borst, and E. C. Zipf, J. Chem. Phys. <u>57</u>, 68 (1972)

Tabular and Graphical Data C-3.9f. Cross sections for electron impact dissociation of ${\rm CO}_2$ to form excited fragments.

$$e + co_2 + co (A - \Sigma)$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
30.4	1.28	118	1.17
33.6	1.27	144	1.13
38.7	1.27	172	1.08
45.5	1.26	213	1.02
52.3	1.26	256	0.940
65.2	1.24	290	0.878
82.0	1.22	322	0.825
98.5	1.20		

Cont. Next Column

1794

Tabular and Graphical Data C-3.10a. Cross sections for electron impact dissociation of $\rm H_2O$ to form excited fragments.

$$e + H_20 \rightarrow 0 (130.4 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19}cm^2	eV	10^{-19}cm^2	eV	10 ⁻¹⁹ cm ²
37.5	1.13	123	3.63	396	1.61
39.4	1.33	132	3.54	450	1.43
43.0	1.65	145	3.41	531	1.23
48.0	2.13	157	3.26	621	1.08
57.0	2.72	173	3.08	709	0.960
66.4	3.23	192	2.88	795	0.866
77.8	3.59	221	2.63	880	0.786
88.7	3.75	244	2.44		
98.4	3.77	279	2.20		
110	3.74	330	1.91		

Cont. Next Column

Tabular and Graphical Data C-3.10b. Cross sections for electron impact dissociation of $\rm H_20$ to form excited fragments.

$$e + H_2^0 \rightarrow 0 (844.7 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁹ cm ²	eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
34.9	0.487	95.2	2.09	289	0.979
36.7	0.595	103	2.10	336	0.829
40.2	0.771	113	2.06	388	0.700
43.8	0.951	124	1.98	451	0.580
47.9	1.13	143	1.82	521	0.481
54.7	1.38	159	1.67	570	0.431
61.3	1.60	180	1.51	605	0.398
67.3	1.74	204	1.36		
74.6	1.90	227	1.23		
88.5	2.05	262	1.08		

Cont. Next Column

Reference: G. M. Lawrence, Phys. Rev. A 2, 397 (1970)

Tabular and Graphical Data C-3.10c. Cross sections for electron impact dissociation of $\rm H_20$ to form excited fragments.

 $e + H_20 + H (656.3 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-17} \mathrm{cm}^2$	eV	10^{-17}cm^2	eV	10-17 cm ²
41	0.756	74	3.23	190	5.22
41	0.842	82	3.67	200	5.08
44	1.06	89	4.01	210	4.89
46	1.20	97	4.33	230	4.74
49	1.41	110	4.66	250	4.57
51	1.60	120	4.90	270	4.42
54	1.85	130	5.16	290	4.25
58	2.12	150	5.36	350	3.97
62	2.41	160	5.34	370	3.82
68	2.84	170	5.28	400	3.65

Cont. Next Column

Cont. Next Column

Reference: S. Tsurubuchi, T. Iwai and T. Horie, J. Phys. Soc. Japan 36, 537 (1974) Tabular and Graphical Data C-3.10d. Cross sections for electron impact dissociation of $\rm H_20$ to form excited fragments.

 $e + H_2O \rightarrow H (486.1 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10^{-19} cm ²	eV	10^{-19} cm ²
40	3.1	140	5.8	500	2.4
50	4.0	170	5.2	600	2.1
60	5.3	200	4.9	700	1.8
70	5.9	250	4.2	800	1.6
80	6.3	300	3.7	900	1.5
90	6.4	350	3.3	1000	1.4
100	6.4	400	2.9		
120	6.1	450	2.6		

Cont. Next Column

Cont. Next Column

Reference: C. I. M. Beenakker, F. J. de Heer, H. B. Krop, and G. R. Mohlmann, Chem. Phys. <u>6</u>, 445 (1974)

Tabular and Graphical Data C-3.10e. Cross sections for electron impact dissociation of $\rm H_2O$ to form excited fragments.

$$e + H_2O + H (434.0 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-18} \mathrm{cm}^2$	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
51	0.535	120	2.76	290	2.40
59	0.766	140	2.90	310	2.32
63	0.928	150	2.96	320	2.27
73	1.30	170	2.93	340	2.22
80	1.54	190	2.85	350	2.16
87	1.82	210	2.74	370	2.10
95	2.06	220	2.69	380	2.04
100	2.25	240	2.61	400	2.00
110	2.40	260	2.53		
120	2.59	230	2.45		

Cont. Next Column

Cont. Mext Column

Reference: S. Tsurubuchi, T. Iwai and T. Horie, J. Phys. Soc. Japan <u>36</u>, 537 (1974) Tabular and Graphical Data C-3.10f. Cross sections for electron impact dissociation of $\rm H_20$ to form excited fragments.

$$e + H_2O \rightarrow H (410.2 nm)$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-19} cm^2$	eV	10 ⁻¹⁹ cm ²	eV	10-19cm2
46	3.32	120	10.7	250	10.7
50	3.70	120	11.1	260	10.5
53	4.16	130	11.7	280	10.1
57	4.70	140	11.9	300	9.81
63	5.46	150	12.0	320	9.42
68	5.90	160	12.1	340	9.10
73	6.49	170	12.1	350	8.90
78	7.03	180	12.0	370	8.56
83	7.60	190	11.8	390	8.36
90	8.43	200	11.7	400	8.22
97	9.08	210	11.5		
100	9.57	220	11.3		
110	10.1	230	11.0		

Cont. Next Column

Cont. Next Column

Reference: S. Tsurubuchi, T. Iwai and T. Horie, J. Phys. Soc. Japan 36, 537 (1974) Tabular and Graphical Data C-3.10g. Cross sections for electron impact dissociation of ${\rm H}_2{\rm O}$ to form excited fragments.

 $e + H_2O + H (121.6 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²	eV	10-18 _{cm} 2
14.6	0.0498	51.4	4.55	114	9.03
16.0	0.156	56.7	5.28	122	8.95
17.8	0.308	59.6	5.78	134	8.83
20.0	0.340	62.7	6.28	145	8.69
22.8	0.397	66.2	6.82	159	8.49
25.4	0.632	70.0	7.31	174	8.29
28.1	0.934	74.7	7.79	189	8.08
31.4	1.37	79.7	8.26	204	7.89
34.4	1.83	83.9	8.62	218	7.69
37.7	2.37	89.3	8.92	232	7.48
40.7	2.82	95.4	9.06	246	7.31
44.2	3.35	101	9.11	259	7.13
47.9	4.00	107	9.09		

Cont. Next Column

Cont. Next Column

Reference: H. D. Morgan and J. E. Mentall, J. Chem. Phys. <u>60</u>, 4734 (1974) Tabular and Graphical Data C-3.10h. Cross sections for electron impact dissociation of $\rm H_20$ to form excited fragments.

 $e + H_2O + OH (306.4 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁹ cm ²	eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
40	66.3	140	40.0	500	19.6
50	60.3	170	36.4	600	17.9
60	56.6	200	33.9	700	15.8
70	53.5	250	29.7	800	14.9
80	50.8	300	26.6	900	13.1
90	48.3	350	24.0	1000	12.1
100	46.4	400	22.4		
120	43.2	450	20.6		

Cont. Next Column

Cont. Next Column

Reference: C. I. M. Beenakker, F. J. de Heer, H. B. Krop and G. R. Mohlmann, Chem. Phys. <u>6</u>, 445 (1974) Tabular and Graphical Data C-3.11a. Cross sections for electron impact dissociation of NH_3 to form excited fragments.

 $e + NH_3 + H (121.6 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁷ cm ²	eV	10 ⁻¹⁷ em ²	eV	10- L7 cm2
22.3	0.00565	57.9	0.786	151	0.963
24.5	0.0648	60.8	0.839	168	0.916
27.2	0.121	65.0	0.902	185	0.866
29.8	0.197	71.0	0.959	201	0.822
32.6	0.265	78.0	1.01	215	0.790
35.2	0.331	87.9	1.05	230	0.748
39.3	0.422	96.3	1.06	246	0.705
42.8	0.490	104	1.07	259	0.672
46.5	0.560	119	1.06	273	0.631
49.7	0.630	128	1.03		
54.3	0.712	140	0.997		

Cont. Next Column

Cont. Next Column

Reference: H. D. Morgan and J. E. Mentall, J. Chem. Phys. <u>60</u>, 4734 (1974) Tabular and Graphical Data C-3.11b. Cross sections for electron impact dissociation of NH_3 to form excited fragments.

$$e + MH_3 + N (149.3 nn)$$

Electron Energy	Cross Section	Flectron Energy	Cross Section	Electron	Cross Section
eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
25.7	0.0139	84.5	0.418	191	0.391
29.7	0.0332	93.6	0.437	204	0.374
34.5	0.0479	104	0.450	218	0.359
38.1	0.0758	113	0.460	232	0.342
42.5	0.120	126	0.462	245	0.326
47.6	0.183	137	0.456	260	0.311
53.3	0.247	148	0.442	271	0.297
59.3	0.308	158	0.431	277	0.29
68.5	0.356	170	0.418		
77.0	0.394	180	0.404		

Cont. Next Column

Cont. Next Column

Reference: H. D. Morgan and J. F. Mentall, J. Chem. Phys. <u>60</u>, 4734 (1974) Tabular and Graphical Data C-3.11c. Cross sections for electron impact dissociation of NH_3 to form excited fragments.

 $e + NH_3 \rightarrow N (120.0 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10-18 _{cm} 2	eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²
	0.0174	71.0	0.566	193	0.599
29.2		77.7	0.626	206	0.57
30.1	0.0546	85.7	0.678	212	0.563
32.3	0.110	97.2	0.721	222	0.543
34.4	0.175		0.740	236	0.516
36.1	0.239	107		248	0.49
39.5	0.286	115	0.743	259	0.46
44.6	0.323	124	0.737		0.44
50.4	0.358	135	0.721	271	
55.3	0.410	147	0.697	284	0.41
59.6	0.458	162	0.667		
64.0	0.510	178	0.634		

Cont. Next Column

Cont. Next Column

Reference: H. D. Morgan and J. E. Mentall, J. Chem. Phys. <u>60</u>, 4734 (1974) Tabular and Graphical Data C-3.11d. Cross sections for electron impact dissociation of NH_3 to form excited fragments.

$$e + NH_3 + N (124.3 nm)$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
. eV	10^{-18} cm ²	eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²
26.9	0.0203	91.1	0.198	207	0.172
29.4	0.0311	100	0.215	221	0.164
35.5	0.0416	110	0.220	240	0.151
42.8	0.0565	122	0.218	255	0.140
51.1	0.0870	137	0.210	270	0.132
58.9	0.116	155	0.201	279	0.128
70.1	0.149	172	0.193		
81.2	0.180	189	0.182		

Cont. Next Column

Cont. Mext Column

Reference: H. D. Morgan and J. F. Mentall, J. Chem. Phys. <u>60</u>, 4734 (1974) Tabular and Graphical Data C-3.12a. Cross sections for electron impact dissociation of CH_4 to form excited fragments.

 $e + CH_4 + H (121.6 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm
22.6	0.00976	53.0	0.871	123	1.10
25.4	0.0547	57.1	0.984	136.	1.04
29.0	0.112	61.7	1.06	148	0.988
32.2	0.187	68.7	1.14	166	0.929
36.6	0.266	76.2	1.18	181	0.873
38.9	0.342	84.9	1.20	196	0.823
42.5	0.449	89.9	1.21	224	0.73
45.2	0.545	96.8	1.20	237	0.69
47.0	0.646	105	1.17	247	0.65
49.4	0.750	112	1.15		

Cont. Next Column

Cont. Mext Column

Reference: H. D. Morgan and J. E. Mentall, J. Chem. Phys. <u>60</u>, 4734 (1974) Tabular and Graphical Data C-3.12b. Cross sections for electron impact dissociation of CH_4 to form excited fragments.

e + CH₄ + H (656.3 nm)

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10^{-19} cm ²
20	0	300	15.0
40	16.7	500	8.80
60	26.7	1000	4-40
80	30.1	1300	3.30
100	31.2	1700	2.60
150	28.4	2000	2.10
200	22.1		

Cont. Next Column

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. 19, 233 (1977)

Tabular and Graphical Data C-3.12c. Cross sections for electron impact dissociation of CH_4 to form excited fragments.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
40	3.69	600	1.39
60	5.68	800	1.04
80	6.36	1000	0.820
100	6.48	1500	0.524
150	5.21	2000	0.396
200	4.15	3000	0.267
300	2.86	4000	0.204
400	2.12	5000	0.167
500	1.65		

Reference: J. F. M. Aarts, C. J. M. Beenakker, and F. J. de Heer, Physica 53, 32 (1971)

Tabular and Graphical Data C-3.12d. Cross sections for electron impact dissociation of CH₄ to form excited fragments.

 $e + CH_4 + C (156.1 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18}cm^2	eV	10^{-18} cm ²
27.1	0.000625	85.2	0.0328	191	0.0210
		94.9	0.0340	201	0.0203
29.0	0.00426	101	0.0341	215	0.0191
32.3	0.00854	109	0.0333	226	0.0181
36.9	0.0135	116	0.0322	239	0.0173
42.2	0.0167	127	0.0302	251	0.0164
45.7	0.0181	137	0.0287	264	0.0157
51.3	0.0197	145	0.0272	271	0.0151
57.7	0.0219	156	0.0254	284	0.0147
64.7	0.0254	168	0.0236		
70.3	0.0281	179	0.0223		
78.0	0.0311				

Cont. Next Column

 $e + CH_4 \rightarrow C (156.1 \text{ nm})$

300

Cont. Next Column

Reference: H. D. Morgan and J. E. Mentall, J. Chem. Phys. 60, 4734 (1974)

100 150 200 Electron Energy (eV)

Tabular and Graphical Data C-3.12e. Cross sections for electron impact dissociation of ${\rm CH}_4$ to form excited fragments.

 $e + CH_4 + C (165.7 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	10^{-18} cm ²
24.7	0.000487	68.5	0.0507	161	0.0544
		73.6	0.0554	178	0.0506
25.4	0.00336	80.3	0.0595	196	0.0466
26.8	0.00719	87.3	0.0634	212	0.0432
29.7	0.0126	95.0	0.0660	224	0.0409
31.9	0.0163	101	0.0668	235	0.0393
34.8	0.0195	106	0.0669	247	0.0369
39.1	0.0232	112	0.0664	257	0.0347
44.3	0.0255	1!4	0.0657	270	0.0323
49.2	0.0275	120	0.0651	282	0.0298
53.9	0.0307	138	0.0602		
59.4	0.0385	149	0.0572		
63.3	0.0448				

---- Cont. Next Column

Cont. Next Column

Reference: H. D. Morgan and J. E. Mentall, J. Chem. Phys. <u>60</u>, 4734 (1974)

Tabular and Graphical Data C-3.12f. Cross sections for electron impact dissociation of ${\rm CH}_4$ to form excited fragments.

 $e + CH_4 + C (193.1 nm)$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
26.7	0.00163	76.4	0.0309	182	0.0203
28.0	0.00565	85.9	0.0327	197	0.0188
31.4	0.00897	96.3	0.0326	212	0.0173
35.1	0.0102	105	0.0317	229	0.0161
40.7	0.0101	114	0.0303	244	0.0150
44.9	0.0113	125	0.0291	255	0.0136
50.9	0.0144	139	0.0271	268	0.0130
55.8	0.0188	155	0.0236	275	0.0128
65.3	0.0256	167	0.0216		

Cont. Next Column

Cont. Mext Column

Reference: H. D. Morgan and J. E. Mentall, J. Chem. Phys. <u>60</u>, 4734 (1974) Tabular and Graphical Data C-3.12g. Cross sections for electron impact dissociation of ${\rm CH}_4$ to form excited fragments.

e + CH₄ + CH (420.0-440.0 nm)

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
20	6.10	600	4.90
40	17.4	800	3.77
60	17.7	1000	3.09
80	17.3	1500	2.23
100	17.0	2000	1.73
150	14.3	3000	1.20
200	11.6	4000	0.925
300	8.53	5000	0.785
400	6.91		
500	5.75		

Cont. Next Column

Reference: J. F. M. Aarts, C. I. M. Beenaker, and F. J. de Heer, Physica 53, 32 (1971)

Tabular and Graphical Data C-3.13a. Cross sections for electron impact dissociation of ${\rm C_2H_2}$ to form excited fragments.

 $e + C_2H_2 + H (656.3 nm)$

Electron	Cross Section	Electron	Cross Section
Energy	Section	Energy	Section
eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
20	0	300	14.0
40	13.2	500	8.30
60	23.3	1000	4.00
80	26 - 8	1300	3.00
100	28.4	1700	2.30
150	24.8	2000	1.90
200	19.8		

Cont. Next Column

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. 19, 233 (1977)

Tabular and Graphical Data C-3.13b. Cross sections for electron impact dissociation of $\rm C_2H_2$ to form excited fragments.

$$e + C_2H_2 + H (486.1 nm)$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
40	3.20	200	4.64	600	1.52
60	5.71	250	3.67	700	1.30
80	6.45	300	3.05	800	1.09
100	6.68	350	2.67	900	1.02
120	6.34	400	2.38	1000	0.908
140	5.74	450	2.09		
170	5.03	500	1.81		

Cont. Next Column

Reference: C. I. M. Beenakker and F. J. de Heer, Chem. Phys. 6, 291 (1974)

Tabular and Graphical Data C-3.13c. Cross sections for electron impact dissociation of $\mathrm{C_2H_2}$ to form excited fragments.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19}cm^2	eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
40	4.35	200	7.34	600	2.50
60	8.43	250	5.90	700	2.17
80	10.00	300	5.04	800	1.83
100	10.3	350	4.28	900	1.66
120	10.1	400	3.73	1000	1.44
140	9.31	450	3.25		
170	8.23	500	2.99		

Cont. Next Column

Reference: C. I. M. Beenakker and F. J. de Heer, Chem. Phys. <u>6</u>, 291 (1974)

Tabular and Graphical Data C-3.13d. Cross sections for electron impact dissociation of $\rm C_2H_2$ to form excited fragments.

$$e + C_2H_2 + CH (420.0-440.0 nm)$$

Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²
20	24.6	300	19.7
40	35.8	500	13.8
60	38.4	1000	8.10
80	37.8	1300	6.70
100	35.8	1700	5.40
150	30.8	2000	4.80
200	25.9		

Cont. Next Column

Reference: G. R. Mohlmann and F. J. de Heer, Chem. Phys. 19, 233 (1977)

C-4. IONIZATION BY ELECTRON IMPACT

CONTENTS

		Page
C-4.1.	Cross sections for electron impact ionization of \ensuremath{He}	1820
C-4.2.	Cross sections for electron impact ionization of 0	1821
C-4.3.	Cross sections for electron impact ionization of N $$	1822
C-4.4.	Cross sections for electron impact ionization of $\ensuremath{\text{C}}$	1823
C-4.5.	Cross sections for electron impact ionization of \mathbf{C}^{3+}	1824
C-4.6.	Cross sections for electron impact ionization of ${\rm N}^{4+}$	1825
C-4.7.	Cross sections for electron impact ionization of 0^{5+}	1826
C-4.8.	Cross sections for electron impact ionization of Ne $_2^*(^1\Sigma_u^+)$ metastable excimer	1827
C-4.9.	Cross sections for electron impact ionization of Ne $_2^{\ *}(^3\Sigma_u^+)$ metastable excimer	1828
C-4.10.	Cross sections for electron impact ionization of ${\rm Ar_2}^*(^1\Sigma_u^+)$ metastable excimer	1829
C-4.11.	Cross sections for electron impact ionization of ${\rm Ar_2}^*(^3\Sigma_{\rm u}^+)$ metastable excimer	1830
C-4.12.	Cross sections for dissociative ionization of ${\rm CO}_2$	1831
C-4.13.	Cross sections for simultaneous electron impact ionization and excitation of ${\rm Hg}^+$	1832
C-4.14.	Cross sections for electron impact ionization of ${\tt U}$	1833

Tabular and Graphical Data C-4.1. Cross sections for electron impact ionization of He.

$$e + He \rightarrow 2e + He^{+}$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-17} cm ²	eV	10^{-17} cm ²	eV	10 ⁻¹⁷ cm ²
12.3	0	28.3	0.270	97.0	3.84
13.3	0.110	29.3	0.330	97.0	3.70
13.8	0.250	30.3	0.520	147	3.65
14.3	0.290	31.3	0.530	197	3.38
15.3	0.370	32.3	0.490	247	3.16
17.3	0.320	33.3	0.810	297	2.88
19.3	0.0600	34.3	0.840	347	2.75
21.3	0.0400	35.3	1.18	397	2.47
22.3	0.380	36.3	0.960	447	2.47
22.3	0.0500	37.3	1.24	547	2.15
24.3	0.0900	37.3	1.18	697	1.71
25.3	0.330	47.0	2.16	847	1.52
27.3	0.300	67.0	3.05	997	1.37

Cont. Next Column

Reference: E. Brook, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B. <u>11</u>, 3115 (1978)

Tabular and Graphical Data C-4.2. Cross sections for electron impact ionization of $\mathbf{0}$.

$$e + 0 \rightarrow 2e + 0^{+}$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Flectron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
11.9	0	26.9	0.596	197	1.24
12.9	0.0470	31.9	0.735	247	1.09
13.9	0.0570	36.9	0.879	297	0.994
14.9	0.0930	47.0	1.07	297	1.05
15.9	0.170	47.0	1.14	397	0.863
16.9	0.231	57.0	1.22	397	0.816
17.9	0.246	72.0	1.30	497	0.784
18.9	0.241	97.0	1.36	597	0.686
20.9	0.353	97.0	1.30	797	0.571
21.9	0.427	122	1.33	997	0.482
22.9	0.439	147	1.28		
24.9	0.576	147	1.32		

Cont. Next Column

Reference: E. Brook, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B. <u>11</u>, 3115 (1978)

Tabular and Graphical Data C-4.3. Cross sections for electron impact ionization of N_{\star}

$$e + N \rightarrow 2e + N^{+}$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
10.9	0	19.9	0.372	87.0	1.61
11.4	0.0870	21.9	0.568	97.0	1.59
11.9	0.00700	23.9	0.608	147	1.45
12.4	0.0350	26.9	0.799	197	1.29
12.9	0.0540	31.9	0.945	297	1.10
13.9	0.113	36.9	1.16	397	0.914
14.9	0.122	37.0	1.12	497	0.816
15.9	0.248	47.0	1.34	597	0.697
16.9	0.232	67.0	1.51	797	0.587
17.9	0.280	77.0	1.59	997	0.490

Cont. Next Column

Cont. Next Column

Reference: E. Brook, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B. <u>11</u>, 3115 (1978)

Tabular and Graphical Data C-4.4. Cross sections for electron impact ionization of C.

$$e + C \rightarrow 2e + C^{\dagger}$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10^{-16} cm ²	eV	10^{-16} cm ²
7.90	0	18.9	1.037	107	2.103
8.40	0.01100	20.9	1.184	137	1.909
8.90	0.009000	22.9	1.282	147	1.834
		24.9	1.451	172	1.765
9.40	0.03200	26.9	1.630	197	1.608
10.4	0.03200	31.9	1.882	207	1.614
11.1	0.01900	36.9	2.073	247	1.531
11.9	0.01000	37.0	2.042	297	1.310
12.6	0.1160	47.0	2.215	347	1.220
12.9	0.2250	57.0	2.309	397	1.117
13.9	0.2830	57.0	2.239	497	0.9940
14.4	0.4120	67.0	2.315	597	0.8740
14.9	0.5810	77.0	2.234	697	0.7440
15.9	0.6530	87.0	2.193	797	0.7270
16.9	0.8000	97.0	2.118	997	0.5960
17.9	0.8720				

----- Cont. Next Column

Reference: E. Brook, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B <u>11</u>, 3115 (1978)

Tabular and Graphical Data C-4.5. Cross sections for electron impact ionization of ${\mbox{\scriptsize C}}^{3+}$.

$$e + c^{3+} \rightarrow 2e + c^{4+}$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
70.3	0.460	271	2.40	451	2.25
75.4	1.07	284	2.33	516	2.10
80.6	1.20	296	2.37	645	2.00
90.2	1.43	309	2.47	773	1.92
142	2.51	322	2.49	967	1.78
232	2.59	338	2.39	1180	1.47
258	2.37	387	2.41	1480	1.37

Cont. Next Column

Reference: D. H. Crandall, R. A. Phaneuf, B. E. Hasselquist, and D. C. Gregory, submitted to J. Phys. B, 1979

Tabular and Graphical Data C-4.6. Cross sections for electron impact ionization of N^{4+} .

$$e + N^{4+} \rightarrow 2e + N^{5+}$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²
107	0.280	352	1.40	548	1.41
115	0.560	391	1 . 32	587	1.40
122	0.740	411	1.33	685	1.35
137	0.930	431	1.41	783	1.30
166	1.21	450	1.42	979	1.22
196	1.27	470	1.44	1170	1.16
245	1.45	489	1.46	1470	1.05
294	1.47	514	1.42		

Cont. Next Column

Cont. Next Column

Reference: D. H. Crandall, R. A. Phaneuf, B. E. Hasselquist, and D. C. Gregory, submitted to J. Phys. B, 1979

Tabular and Graphical Data C-4.7. Cross sections for electron impact ionization of 0^{5+} .

$$e + 0^{5+} \rightarrow 2e + 0^{6+}$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10 ⁻¹⁸ cm ²
162	0.31	580	0.84
193	0.45	635	0.89
235	0.70	691	0.88
304	0.82	773	0.88
414	0.75	997	0.74
497	0.67	1100	0.70
552	0.76	1380	0.48

Cont. Next Column

Reference: D. H. Crandall, R. A. Phaneuf, B. E. Hasselquist, and D. C. Gregory, submitted to J. Phys. B, 1979

Tabular and Graphical Data C-4.8. Cross sections for electron impact ionization of Ne $_2^*$ ($^1\Sigma^+_u$) metastable excimer.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
5.0	4.97	15	8.98
6.0	7.73	20	7.91
7.0	9.04	30	6.21
8.0	9.61	40	5.06
9.0	9.80	50	4.25
10.0	9.82		

Cont. Next Column

Reference: K. J. McCann, M. R. Flannery, and A. Hazi, submitted to Applied Phys. Lett., 1979

Tabular and Graphical Data C-4.9. Cross sections for electron impact ionization of Ne $_2^*(^3\Sigma_u^+)$ metastable excimer.

Electron	Cross Section	Electron	Cross Section
Energy	Section	Energy	Section
eV	10^{-16}cm^2	eV	10 ⁻¹⁶ cm ²
5.0	4.43	15	8.71
6.0	7.20	20	7.72
7.0	8.57	30	6.12
8.0	9.17	40	5.02
9.0	9.40	50	4.23
10.0	9.44		

Cont. Next Column

Reference: K. J. McCann, M. R. Flannery, and A Hazi, submitted to Applied Phys. Lett, 1979

Tabular and Graphical Data C-4.10. Cross sections for electron impact ionization of Ar $_2^*(^1\Sigma_u^+)$ metastable excimer.

Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
5.0	10.74	15	12.66
6.0	12.84	20	10.89
7.0	13.77	30	8.290
8.0	14.19	40	6.590
9.0	14.31	50	5.430
10.0	14.23		

Cont. Next Column

Reference: K. J. McCann, M. R. Flannery, and A. Hazi, submitted to Applied Phys. Lett., 1979

Tabular and Graphical Data C-4.11. Cross sections for electron impact ionization of ${\rm Ar_2}^*(^3\Sigma_{\bf u}^+)$ metastable excimer.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
5.0	9.840	15	12.29
6.0	12.02	20	10.67
7.0	13.00	30	8.200
8.0	13.46	40	6.550
9.0	13.62	50	5.400
10.0	13.61		

Cont. Next Column

Reference: K. J. McCann, M. R. Flannery, and A. Hazi, submitted to Applied Phys. Lett., 1979

Tabular and Graphical Data C-4.12. Cross sections for dissociative ionization of ${\rm CO}_2$ to give ${\rm C}^+$.

$$e + co_2 \rightarrow c^+ (333.5 \text{ nm})$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
45.4	0.0060	118	0.90	214	0.95
49.3	0.093	132	0.95	241	0.90
56.8	0.24	147	0.99	261	0.85
67.5	0.41	158	1.0	287	0.80
78.3	0.54	171	1.0	310	0.76
89.3	0.67	182	1.0	333	0.72
103	0.81	195	0.98	346	0.69

Cont. Next Column

Reference: M. J. Mumma, E. J. Stone, W. L. Borst, and E. C. Zipf, J. Chem. Phys. <u>57</u>, 68 (1972)

Tabular and Graphical Data C-4.13. Cross sections for simultaneous electron impact ionization and excitation of Hg⁺.

Reference: R. A. Phaneuf, P. O. Taylor, and G. H. Dunn, Phys. Rev. A <u>14</u>, 2021 (1976)

Tabular and Graphical Data C-4.14. Cross sections for electron impact ionization of U.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	10-18 _{cm} 2
4.83	0.0927	13.5	10.6	122	3.58
4.92	0.167	16.9	10.2	151	2.92
4.84	0.317	20.3	10.1	186	2.46
5.05	0.621	25.5	9.79	228	2.02
5.22	1.07	31.2	8.73	279	1.67
5.47	1.86	38.1	7.71	349	1.43
5.82	3.13	45.6	7.03	433	1.16
6.63	4.84	55.7	6.21	525	0.977
7.62	6.71	68.6	5.37	614	0.827
9.06	8.48	83.3	4.89	735	0.727
10.9	9.33	98.8	4.20	881	0.610

Cont. Next Column

Reference. E. L. Maceda, C. G. Bathke, and G. H. Miley, Trans. Am. Nucl. Soc. 22, 153 (1975)

C-5. ELECTRON-ION RECOMBINATION

CONTENTS

		Page
C-5.1.	Cross sections for recombination of electrons with $\mathrm{H_3O}^+$	1837
C-5.2.	Cross sections for recombination of electrons with NH_4^+	1839
C-5.3.	Cross sections for dissociative recombination of electrons with ${\rm H}_2^+$	1841
C-5.4.	Cross sections for dissociative recombination of electrons with H_3^+	1842
C-5.5.	Cross sections for dissociative recombination of electrons with ${\rm NO}^{+}$	1843
C-5.6.	Cross sections for dissociative recombination of electrons with 0_2^+	1844
C-5.7.	Cross sections for dissociative recombination of electrons with N $_2^+$	1845
C-5.8.	Cross sections for dissociative recombination of electrons with N2H $^{+}$	1846
C-5.9.	Cross sections for dissociative recombination of electrons with ions	1847
C-5.10.	Cross sections for dissociative recombination of electrons with OH^+	1848
C-5.11.	Cross sections for dissociative recombination of electrons with ${\rm H_20}^+$	1849
C-5.12.	Cross sections for dissociative recombination of electrons with ${\rm H_30}^+$	1850
C-5.13.	Cross sections for dissociative recombination of electrons with C_2^+	1851

		Page
C-5.14.	Cross sections for dissociative recombination of electrons with CH ⁺	1852
C-5.15.	Cross sections for dissociative recombination	
	of electrons with CH_2^+	1853
C-5.16.	Cross sections for dissociative recombination of electrons with CH_3^+	1854
C-5.17.	Cross sections for dissociative recombination of electrons with CH^+_{L}	1855
C-5.18.	Cross sections for dissociative recombination	
C-5.19.	of electrons with CH_5^+	1856
C-3.19.	of electrons with $c_2H_2^+$	1857
C-5.20.	Cross sections for dissociative recombination of electrons with ${\rm C_2H_3^+}$	1858
C-5.21.	Coefficients for radiative recombination of electrons with ions	1859
C-5.22.	Coefficients for radiative recombination of electrons with ions	1860
C-5.23.	Coefficients for dielectronic recombination of electrons with ions	1861

Graphical Data C-5.1. Cross sections for recombination of electrons with ${\rm H_3O}^+$.

Electron-H₃0⁺ recombination cross section vs energy, taken with a narrow electron energy distribution of a high-resolution electron gun (a), and with a wide energy distribution of a low-resolution electron gun (b). In both (a) and (b) the actual cross-section data are indicated by the points, the solid line represents the deduced cross section, the dashed lines represent a convolution of the deduced cross section with the respective electron energy distributions. The dotted lines represent an extension of the deduced cross section, made to be consistent with the present data, the rate-coefficient measurement of M. T. Leu, M. A. Biondi, and R. Johnsen, Phys. Rev. A 7, 292 (1973) and with theoretical threshold behavior of recombination cross sections. The open circle in (b) represents the average cross section of nine measurements. The star represents the average cross section value obtained from the rate-coefficient measurement of Leu, Biondi, and Johnsen.

Reference: R. A. Heppner, F. L. Walls, W. T. Armstrong, and G. H. Dunn, Phys. Rev. A 13, 1000 (1977).

Tabular Data C-5.1. Cross sections for recombination of electrons with $\mathrm{H_30}^+$.

(a	a)		(b)	
Narrow electron		Wide e	lectron ener	gy
distributi	lon		istribution	
High-resolution	n electron gun	Low-reso	lution elect	ron gun
Electron	Cross	Electron	Cross	
Energy	Section	Energy	Section	
eV .	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²	
0.062	30	0.18	11	
0.078	7.0	0.18	4.2	
0.085	21	0.20	6.1	
0.086	10	0.23	4.2	
0.10	3.6	0.22	2.3	
0.11	3.4	0.22	2.7	
0.11	4.2	0.23	2.0	
0.11	5.0	0.25	2.2	
0.12	2.6	0.26	2.3	
0.13	3.0	0.25	1.5	
0.13	2.6	0.26	1.2	
0.15	1.8	0.25	1.3	
0.16	2.1	0.30	1.7	
0.16	1.8	0.31	1.5	
0.17	2.0	0.31	1.4	
0.18	2.0	0.34	1.1	
0.20	1.6	0.34	1.3	
0.21	1.7	0.35	1.5	
0.19	1.0	0.39	1.6	
0.21	1.0	0.39	0.95	•
0.26	1.4	0.40	0.86	
0.26	1.5	0.43	0.55	
0.30	1.1	0.43	0.60	
0.35	0.98	0.44	0.64	
0.36	0.93	0.44	0.85	
0.39	0.62	0.49	1.2	
		0.45	0.60	
		0.52	0.45	
		0.62	0.27	
		0.66	0.25	
		1.2	0.030	

Reference: R. A. Heppner, F. L. Walls, W. T. Armstrong and G. H. Dunn, Phys. Rev. A 13, 1000 (1976)

Graphical Data C-5.2. Cross sections for recombination of electrons with NH_{h}^{+} .

Electron-NH $_4^+$ recombination cross section vs energy. The points are measurements using a high-resolution electron gun in a 0.85 -V well (o); the low-resolution gun (LRG) in a 0.85-V well (x); the LRG in a 0.85-V well with large heating corrections (Δ) (see reference); the LRG in a 1.85-V well (\square). The solid line is the deduced cross section from Eq. (6) of the reference. The *'s represent rate-coefficient data of C. M. Huang, M. A. Biondi, and R. Johnsen, Phys. Rev. A 14, 984 (1976) converted approximately to cross sections as discussed in the reference.

Reference: R. D. DuBois, J. B. Jeffries, and G. H. Dunn, Phys. Rev. A, 1314 (1978) Tabular Data C-5.2. Cross sections for recombination of electrons with NH_4^+ .

High-Resolution Electron Gun

0.85-V well (o)

0.85-V well (□)

	See caption of	associated fig	ure
Electron	Cross	Electron	Cross
Energy	Section	Energy	Section
eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁸ c _{4n} ²
0.069	190	0.67	80
0.081	200	0.84	49
0.093	140	0.95	12
0.10	130	1.0	12
0.12	100	1.0	13
0.14	69	1.1	1.8
0.17	73	1.2	9.6
0.20	67	1.3	5.6
0.22	25	1.5	6.6
0.24	21	1.7	11
0.26	27		
0.29	20		
0.32	11		
0.36	11		
0.44	5.7		
0.48	4.4		
0.61	4.5		
0.62	1.8		
0.62	2.8		
0.74	1.6		
0.63	3.1		
0.77	1.1		
0.87	0.90		

Reference: R. D. DuBois, J. B. Jeffries, and G. H. Dunn, Phys. Rev. A, 1314 (1978).

Tabular and Graphical Data C-5.3. Cross sections for dissociative recombination of electrons with H_2^+ .

$$e + H_2^+ + H + H$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.013	31	0.42	1.7
0.024	24	0.57	1.4
0.036	17	0.72	1.1
0.058	11	0.98	0.82
0.090	7.3	1.7	0.49
0.14	4.8	2.2	0.39
0.22	3.2	3.1	0.30
0.32	2.3	3.5	0.33

Cont. Next Column

The $\rm H_2^+$ ions are vibrationally hot. The structure detail shown in the figure is not given in the table. Also shown in the figure are the experimental results of B. Peart and K. T. Dolder, J. Phys. B, 236 (1974) (x) and theoretical calculations from C. Bottcher, J. Phys. B 9, 2899 (1976) (broken curve).

Reference: D. Auerbach et. al., J. Phys. B 10, 3797 (1977).

Tabular and Graphical Data C-5.4. Cross sections for dissociative recombination of electrons with H_3^+ .

$$e + H_3^+ \rightarrow H + H_2$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	еV	10^{-16} cm ²
0.010	570	0.86	9.1
0.016	390	1.2	5.3
0.032	220	1.5	4.5
0.052	140	2.2	3.3
0.098	79	2.8	3.1
0.15	47	4.1	2.3
0.19	31	4.6	2.1
0.26	21	5.4	2.8
0.47	12		

Cont. Next Column

The H_3^+ ions may be vibrationally hot. The structure detail shown in the figure is not given in the table Also shown in the figure are the experimental results of B. Peart and K. T. Dolder, J. Phys. B 7, 1948 (1974) (x) and of M. T. Leu, M. A. Biondi and R. Johnsen, Phys. Rev A 8, 413 (1973) (Δ).

Reference: D. Auerbach et. al., J. Phys. B <u>10</u>, 3797 (1977).

Tabular and Graphical Data C-5.5. Cross sections for dissociative recombination of electrons with NO^+ .

$$e + NO^+ \rightarrow N + O$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.0094	64	0.12	3.8
0.012	49	0.15	3.1
0.022	27	0.22	2.0
0.033	17	0.30	1.1
0.049	11	0.37	0.89
0.073	7.3	0.54	0.67
0.094	6.6	1.1	0.38

Cont. Next Column

Note: These ions may be vibrationally hot.

Reference: P. M. Mul and J. Wm. McGowan, J. Phys. B (to be published).

Tabular and Graphical Data C-5.6. Cross sections for dissociative recombination of electrons with 0_2^+ .

$$e + 0_2^+ + 0 + 0$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10^{-15} cm ²
0.0099	47	0.16	2.6-
0.013	38	0.22	1.7
0.021	22	0.28	1.3
0.036	13	0.35	0.95
0.052	8.7	0.49	0.86
0.074	6.1	0.68	0.70
0.10	4.8	0.87	0.61
0.13	3.3		

Cont. Next Column

Note: These ions may be vibrationally hot.

Reference: P. M. Mul and J. Wm. McGowan, J. Phys. B (to be published).

Tabular and Graphical Data C-5.7. Cross sections for dissociative recombination of electrons with N_2^+ .

$$e + N_2^+ \rightarrow N + N$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.0095	100	0.082	10
0.018	47	0.14	6.6
0.027	31	0.26	3.0
0.045	22	0.48	1.5
0.063	14	0.85	0.84

Cont. Next Column

Note: These ions may be vibrationally hot.

Reference: P. M. Mul and J. Wm. McGowan, J. Phys. B (to be published).

Tabular and Graphical Data C-5.8. Cross sections for dissociative recombination of electrons with N_2H^+ .

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	$10^{-14} cm^2$	eV	10 ⁻¹⁴ cm ²
0.0100	18	0.11	1.1
0.019	9.0	0.17	0.64
0.031	5.6	0.23	0.46
0.047	3.4	0.31	0.24
0.066	2.2	0.49	0.13

Cont. Next Column

Reference: P. M. Mul and J. Wm. McGowan, Ap. J. 227, L157 (1979).

Tabular Data C-5.9. Cross sections for dissociative recombination of electrons with ions.

The data in C - 5.10 to C - 5.20 are summarized in the following table. The electron-ion dissociative recombination was measured in an electron-ion merged-beam experiment. The cross sections at 0.01 eV are given below. The cross sections have an approximate 1/E electron-energy dependence at electron energies below 0.08 eV. The onset of deviation indicates the energy at which the cross section deviates from the 1/E behavior.

Recombining Ion	Cross Section at 0.01 eV (1 0 ⁻¹³ cm ²)	Onset of Deviation from 1/E (eV)
он+	0.2	
н ₂ о+	1.8	0.1
н ₃ о+	1.5	0.1
c_2^+	1.4	
CH ⁺ (excited)	1.1	
CH ₂ ⁺	1.2	
сн ₃ +	1.7	0.1
CH ₄ ⁺	1.3	0.07
сн ₅ +	1.5	0.08
$c_{2}^{H_{2}^{+}}$ $c_{2}^{H_{3}^{+}}$	1.4	0.1
c2H3+	2.2	0.1

Note: These ions may be vibrationally hot.

Reference: J. Wm. McGowan et. al., Phys. Rev. Lett. 42, 373 (1979).

Tabular and Graphical Data C-5.10. Cross sections for dissociative recombination of electrons with OH^+ .

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	1Q ⁻¹⁵ cm ²
0.0036	59	0.050	4.3
0.0069	29	0.082	2.1
0.0091	18	0.12	1.8
0.016	11	0.23	0.88
0.025	7.2		

Cont. Next Column

Tabular and Graphical Data C-5.11. Cross sections for dissociative recombination of electrons with ${\rm H_2O}^+$.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁵ cm ²	eV	10 ⁻¹⁵ cm ²
0.0066	230	0.18	7.5
0.011	150	0.30	2.9
0.019	84	0.42	1.4
0.029	62	0.72	0.48
0.056	32		
0.093	20		

Tabular and Graphical Data C-5.12. Cross sections for dissociative recombination of electrons with ${\rm H_30}^+$.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15}cm^2	eV	10 ⁻¹⁵ cm ²
0.0039	390	0.053	_ 30
0.0053	260	0.071	21
0.0074	200	0.090	16
0.0099	140	0.11	11
0.013	94	0.16	7.4
0.016	90	0.21	4.3
0.023	59	0.28	2.4
0.031	51	0.41	1.1
0.042	36	0.67	0.44

Cont. Next Column

Tabular and Graphical Data C-5.13. Cross sections for dissociative recombination of electrons with C_2^+ .

Electron	Cross
Energy	Section
eV	10 ⁻¹⁵ cm ²
0.0051	240
0.0090	130
0.016	83
0.025	56
0.055	27
0.096	15
0.20	7.6
0.53	2.7
0.98	0.93

Tabular and Graphical Data C-5.14. Cross sections for dissociative recombination of electrons with CH^+ .

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.0067	140	0.15	8.7
0.012	87	0.25	5.3
0.020	59	0.37	2.8
0.038	27	0.69	2.1
0.068	20	1.7	0.75

Cont. Next Column

Tabular and Graphical Data C-5.15. Cross sections for dissociative recombination of electrons with CH_2^+ .

 Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10^{-15} cm ²
0.0032	270	0.15	8.2
0.0044	210	0.26	5.0
0.0075	130	0.41	2.8
0.012	86	0.56	1.8
0.021	64	0.94	1.4
0.042	36	1.4	0.98
0.072	19		

Cont. Next Column

Tabular and Graphical Data C-5.16. Cross sections for dissociative recombination of electrons with CH_3^+ .

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.0031	470	0.15	~9.5
0.0042	340	0.20	5.8
0.0058	270	0.26	4.1
0.011	140	0.34	3.2
0.019	92	0.41	1.8
0.028	61	0.58	1.1
0.039	41	0.75	0.75
0.070	25	1.2	0.64
0.10	15	1.7	0.39

Cont. Next Column

Tabular and Graphical Data C-5.17. Cross sections for dissociative recombination of electrons with CH^+_{λ} .

Electron Energy	Cross Section	Electron Energy	Cross Section	
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²	
0.0035	360	0.060	23	
0.0049	250	0.076	17	
0.0068	180	0.095	14	
0.0090	140	0.14	8.4	
0.015	97	0.19	5.5	
0.022	70	0.25	3.6	
0.031	48	0.32	2.4	
0.044	37	0.48	1.7	

Cont. Next Column

Tabular and Graphical Data C-5.18. Cross sections for dissociative recombination of electrons with CH_5^+ .

Electron Cross Electron Cross Section eV 10 ⁻¹⁵ cm ² eV 10 ⁻¹⁵ cm ² 0.0027 600 0.069 19 0.0038 340 0.088 18 0.0054 290 0.13 11 0.0071 200 0.18 7.2 0.0092 170 0.24 3.9 0.017 99 0.30 2.4 0.025 73 0.44 1.5 0.038 48 0.63 0.77 0.052 32					_
0.0027 600 0.069 19 0.0038 340 0.088 18 0.0054 290 0.13 11 0.0071 200 0.18 7.2 0.0092 170 0.24 3.9 0.017 99 0.30 2.4 0.025 73 0.44 1.5 0.038 48 0.63 0.77	 				_
0.0038 340 0.088 18 0.0054 290 0.13 11 0.0071 200 0.18 7.2 0.0092 170 0.24 3.9 0.017 99 0.30 2.4 0.025 73 0.44 1.5 0.038 48 0.63 0.77	eV	10 ⁻¹⁵ cm ²	eV	10 ⁻¹⁵ cm ²	
0.0054 290 0.13 11 0.0071 200 0.18 7.2 0.0092 170 0.24 3.9 0.017 99 0.30 2.4 0.025 73 0.44 1.5 0.038 48 0.63 0.77	0.0027	600	0.069	19	
0.0071 200 0.18 7.2 0.0092 170 0.24 3.9 0.017 99 0.30 2.4 0.025 73 0.44 1.5 0.038 48 0.63 0.77	0.0038	340	0.088	18	
0.0092 170 0.24 3.9 0.017 99 0.30 2.4 0.025 73 0.44 1.5 0.038 48 0.63 0.77	0.0054	290	0.13	11	
0.017 99 0.30 2.4 0.025 73 0.44 1.5 0.038 48 0.63 0.77	0.0071	200	0.18	7.2	
0.025 73 0.44 1.5 0.038 48 0.63 0.77	0.0092	170	0.24	3.9	
0.038 48 0.63 0.77	0.017	99	0.30	2.4	
40	0.025	73	0.44	1.5	
0.052 32	0.038	48	0.63	0.77	
	0.052	32			

Cont. Next Column

Tabular and Graphical Data C-5.19. Cross sections for dissociative recombination of electrons with ${\rm C_2H_2^+}$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.0055	240	0.15	7.6
0.0099	120	0.29	3.9
0.018	76	0.51	1.9
0.029	47	0.71	1.4
0.060	23	1.2	0.73
0.10	13		

Cont. Next Column

Note: These ions may be vibrationally hot.

Tabular and Graphical Data C-5.20. Cross sections for dissociative recombination of electrons with ${\rm C_2H_3^+}$.

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-15} cm ²	eV	10 ⁻¹⁵ cm ²
0.0070	260	0.18	9.7
0.013	190	0.24	6.7
0.022	120	0.31	4.5
0.034	60	0.42	3.2
0.052	46	0.84	1.9
0.072	27	1.4	1.3
0.12	18		

Cont. Next Column

Tabular C-5.21a. Coefficients for radiative recombination of electrons with ions (α_{rad}) at T = 100 K. $e + x^{n+} \rightarrow x^{(n-1)+}$

$$e + x^{n+} \rightarrow x^{(n-1)+}$$

Ion (x ⁿ⁺)	(10 ⁻¹² cm ³ /sec)
c ⁺	8.83
N ⁺	8.11
o ⁺	7.49
Ne +	7.00
Ar+	7.26

Tabular C-5.21b. Coefficients for radiative recombination of electrons with ions (α_{rad}) at $T = 10^4 K$.

$$e + x^{n+} \rightarrow x^{(n-1)+}$$

Ion (x ⁿ⁺)	$(10^{-13} \text{cm}^3/\text{sec})$
Ar ⁺¹	3.30
Ar ⁺²	24.5
Ar ⁺³	43.1
Ar ⁺⁴	74.0

Reference: R. J. Gould, Astrophys. J. 219, 250 (1978)

Tabular Data C-5.22. Coefficients for radiative recombination of electrons with ions $(\alpha_{\mbox{\scriptsize rad}})$.

$$e + x^{n+} + x^{(n-1)+}$$

General formula:

$$\alpha_{\text{rad}} = A_{\text{rad}} (T_e/10^4)^{-\eta}$$

 $\alpha_{\text{rad}} = (T_e = 10^4) = A_{\text{rad}}$

Ion	Arad	
(x^{n+})	$(10^{-12} \text{cm}^3/\text{sec})$	η
c ⁺¹	.47	.624
c^{+2}	2.3	.645
c+3	3.2	.770
c+4	7.5	.817
c ⁺⁵	17.0	.721
N^{+1}	0.41	0.608
N^{+2}	2.2	0.639
N^{+3}	50	0.676
N+4	6.5	0.743
N+5	0.15	0.850
N+6	0.29	0.750
o ⁺¹	0.31	0.678
0+2	2.0	0.646
0+3	5.1	0.666
0+4	9.6	0.670
o ⁺⁵	1.2	0.779
0+6	23	0.802
0+7	41	0.742
Ne ⁺¹	0.22	0.759
Ne ⁺²	1.5	0.693
Ne ⁺³	4.4	0.675
Ne ⁺⁴	9.1	0.668
Ne ⁺⁵	15	0.684
Ne+6	23	0.704

Reference: S. M. V. Aldrovandi and D. Pequignot, Astron. and Astrophys. 25, 137 (1973) Tabular Data C-5.23. Coefficients for dielectronic recombination of electrons with ions.

$$\alpha_{di} = A_{di} T_e^{-3/2} \exp(-T_0/T_e)(1 + B_{di} \exp(-T_1/T_e))$$

Recombining	Δ	T	P.	
Ion	Adi	T ₀	B _{di}	^T 1
1011	10 ⁻³ cm ³ sec ⁻¹ °K ^{3/2}	10 ⁵ °К		10 ⁵ °K
He ⁺¹	1.9	4.7	0.3	0.94
c ⁺¹	0.69	1.1	3.0	0.49
c ⁺²	7.0	.15	0.5	2.3
c+3	3.8	.91	2.0	3.7
c+4	48	34	0.2	5.1
c+5	48	41	0.2	7.6
N+1	.52	1.3	3.8	0.48
N ⁺²	1.7	1.4	4.1	0.68
N ⁺³	12	1.8	1.4	3.8
N+4	5.5	1.1	3.0	5.9
N+5	76	47	0.2	7.2
N ⁺⁶	66	54	0.2	9.8
o ⁺¹	1.4	1.7	2.5	1.3
0+2	1.4	1.7	3.3	.58
0+3	2.8	1.8	6.0	.91
0+4	17	2.2	2.0	5.9
0+5	7.1	1.3	3.2	8.0
0+6	110	62	0.2	9.5
o ⁺⁷	86	70	0.2	13
Ne^{+1}	1.3	3.1	1.9	.15
Ne ⁺²	3.1	2.9	0.6	1.7
Ne ⁺³	7.5	2.6	0.7	4.5
Ne ⁺⁴	5.7	2.4	4.3	1.7
Ne ⁺⁵	10	2.4	4.8	3.5
Ne ⁺⁶	40	2.9	1.6	11

Reference: S. M. V. Aldrovandi and D. Pequignot, Astron. and Astrophys. 25, 137 (1973).

C-6. NEGATIVE ION FORMATION BY ELECTRON IMPACT

CONTENTS

		Page
C-6.1.	Coefficient for radiative attachment of electrons to H	1865
C-6.2.	Coefficient for radiative attachment of electrons to C	1866
C-6.3.	Coefficient for radiative attachment of electrons to 0	1867
C-6.4.	Coefficient for radiative attachment of electrons to F \dots	
C-6.5.	Coefficient for radiative attachment of electrons to Cl	
C-6.6.	Coefficient for radiative attachment of electrons to I	1870
C-6.7.	Cross sections for dissociative attachment of electrons to \mathbf{H}_2	1871
C-6.8.	Cross sections for dissociative attachment of electrons to HD	1873
C-6.9.	Cross sections for dissociative attachment of electrons to \mathbf{D}_2	1874
C-6.10.	Cross sections for dissociative attachment of electrons to $\mathrm{H_2}^+$	1875
C-6.11.	Cross sections for dissociative attachment of electrons to 0_2	1876
C-6.12.	Cross sections for dissociative attachment of electrons to Cl_2	
C-6.13.	Cross sections for dissociative attachment of electrons to \mathbf{I}_2	
C-6.14.	Cross sections for dissociative attachment of electrons to HCl	

			Page
C-6.15.		dissociative attachment of electrons	1883
C-6.16.		dissociative attachment of electrons	1884
C-6.17.		dissociative attachment of electrons	1885
C-6.18.		dissociative attachment of electrons	1886
C-6.19.		dissociative attachment of electrons	1888
C-6.20.		dissociative attachment of electrons	1889
C-6.21.		dissociative attachment of electrons	1893
C-6.22.		dissociative attachment of electrons	1895
C-6.23.		dissociative attachment of electrons	1897
C-6.24.		dissociative attachment of electrons	1900
C-6.25.		dissociative attachment of electrons	1901
C-6.26.		dissociative attachment of electrons	1904
C-6.27.		dissociative attachment of electrons	1910
C-6.28.		dissociative attachment of electrons	1915

Tabular and Graphical Data C-6.1. Coefficient for radiative attachment of electrons to H.

e + H + H

Temperati	Coefficient	Temperati	Coefficient	Temperati	ure Attachment Coefficient
o _K	10^{-15} cm 3 /sec	° _K	10 ⁻¹⁵ cm ³ /sec	°K	10 ⁻¹⁵ cm ³ /sec
164	0.248	2530	3.21	7250	5.64
339	0.505	2890	3.51	7840	5.82
672	1.02	3920	4.18	8410	5.98
985	1.52	4400	4.46	8820	6.07
1170	1.76	5190	4.88	9300	6.19
1880	2.61	5650	5.06	9300	6.14
2240	2.93	6690	5.46	9720	6.27

Cont. Mext Column

Cont. Next Column

Reference: J. Callaway, Phys. Letters A 48, 359 (1974)

Tabular and Graphical Data C-6.2. Coefficient for radiative attachment of electrons to C.

e + C + C

Temperature Attachment Coefficient		Temperature Attachmen Coefficie		
deg K	10 ⁻¹⁵ cm ³ /sec	deg K	10 ⁻¹⁵ cm ³ /sec	
10	0.2610	500	1.541	
20	0.3650	700	1.742	
30	0.4460	1000	1.795	
50	0.5770	2000	1.780	
70	0.6850	3000	1.750	
100	0.8240	5000	1.709	
200	1.174	7000	1.624	
300	1.402	10000	1.438	

Cont. Next Column

Reference: H. P. Mital, S. Chandra, and U. Narain, J. Phys. Soc. Jpn. <u>42</u>, 1282 (1977)

Tabular and Graphical Data C-6.3. Coefficient for radiative attachment of electrons to 0.

e + 0 + 0

Temperature Attachment Coefficient		Temperature Attach		
deg K 10 ⁻¹⁵ cm ³ /sec		$deg \ K \ 10^{-15} cm^3/s$		
10	0.1650	500	1.071	
20	0.2350	700	1.155	
30	0.2880	1000	1.226	
50	0.3730	2000	1.336	
70	0.4440	3000	1.418	
100	0.5340	5000	1.675	
200	0.7600	7000	2.097	
300	0.9070	10000	2.945	

Cont. Next Column

Reference: H. P. Mital, S. Chandra, and U. Narain, J. Phys. Soc. Jpn. 42, 1282 (1977)

Tabular and Graphical Data C-6.4. Coefficient for radiative attachment of electrons to F.

e + F + F

Temperature Attachment Coefficient		Temperature Attachm Coeffic		
deg K	10^{-15} cm 3 /sec	deg K	10 ⁻¹⁵ cm ³ /sec	
10	0.105	300	0.620	
20	0.158	500	0.722	
30	0.197	700	0.772	
50	0.258	1000	0.813	
70	0.307	2000	0.877	
100	0.370	3000	0.909	
200	0.523			

Cont. Next Column

Reference: H. P. Mital, S. Chandra, and U. Narain, J. Phys. Soc. Jpn. <u>42</u>, 1282 (1977)

Tabular and Graphical Data C-6.5. Coefficient for radiative attachment of electrons to Cl.

e + C1 + C1

Temperature Attachment Coefficient		Temperature Attachment Coefficien		
deg K	10 ⁻¹⁵ cm ³ /sec	deg K	10 ⁻¹⁵ cm ³ /sec	
10	2.709	500	2.888	
20	2.704	700	2.946	
30	2.643	1000	3.006	
50	2.593	2000	3.013	
70	2.601	3000	2.858	
100	2.648	5000	2.391	
200	2.771	7000	1.953	
300	2.822	10000	1.468	

Cont. Next Column

Reference: H. P. Mital, S. Chandra, and U. Narain, J. Phys. Soc. Jpn. <u>42</u>, 1282 (1977)

Tabular and Graphical Data C-6.6. Coefficient for radiative attachment of electrons to I.

e + I + I

Temperature Attachment Coefficient		Temperature Attachment Coefficient		
deg K 10 ⁻¹⁵ cm ³ /sec		$deg \ K = 10^{-15} cm^3 / cm^3$		
10	3.513	500	8.654	
20	4.970	700	7.860	
30	6.077	1000	7.004	
50	7.675	2000	5.643	
70	8.681	3000	5.204	
100	9.511	5000	5.069	
200	10.02	7000	5.081	
300	9.631	10000	4.913	

Cont. Next Column

Reference: H. P. Mital, S. Chandra, and U. Narain, J. Phys. Soc. Jpn. <u>42</u>, 1282 (1977)

Tabular and Graphical Data C-6.7a. Cross sections for dissociative attachment of electrons to ${\rm H}_2\text{.}$

$$e + 11_2 + 11^-$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-21} cm ²	eV	10^{-21} cm ²	eV	10^{-21} cm ²
2.90	0.00508	3.82	1.59	4.69	0.278
3.00	0.00877	3.90	1.52	4.80	0.237
3.10	0.0350	4.00	1.27	4.89	0.215
3.20	0.0652	4.10	0.983	5.00	0.190
3.30	0.124	4.20	0.865	5.09	0.179
3.41	0.251	4.30	0.604	5.19	0.178
3.50	0.495	4.39	0.482	5.28	0.165
3.59	0.827	4.49	0.392	5.39	0.163
3.70	1.37	4.59	0.340		

Cont. Next Column

Cont. Next Column

Reference: G. J. Schulz and R. K. Asundi, Phys. Rev. 158, 25 (1967)

Tabular and Graphical Data C-6.7b. Cross sections for dissociative attachment of electrons to ${\rm H}_2$.

 $e + H_2 + negative ions$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-20} cm ²	eV	10^{-20} cm ²	eV	10 ⁻²⁰ cm ²
7.67	0.194	12.1	0.680	14.3	1.39
7.84	0.264	12.4	0.557	14.4	1.26
8.08	0.376	12.6	0.517	14.5	1.12
8.30	0.490	12.9	0.501	14.6	1.02
8.59	0.651	13.2	0.556	14.7	0.933
8.87	0.815	13.2	0.692	14.8	0.888
9.17	0.974	13.3	0.903	15.0	0.831
9.48	1.10	13.5	1.19	15.2	0.803
9.78	1.19	13.5	1.32	15.4	0.789
9.99	1.22	13.5	1.48	15.5	0.785
10.2	1.23	13.7	1.70	15.6	0.786
10.4	1.23	13.7	1.80	15.9	0.797
10.6	1.20	13.8	1.89	16.4	0.829
10.8	1.16	13.8	1.95	16.9	0.870
11.0	1.12	13.9	1.98	17.4	0.941
11.2	1.08	13.9	1.95	18.0	1.00
11.4	1.02	14.0	1.89		
11.6	0.929	14.1	1.72		
11.8	0.827	14.2	1.55		

Cont. Next Column

Cont. Next Column

Reference: D. Rapp, T. E. Sharp and D. D. Briglia, Phys. Rev. Letters 14, 533 (1965)

Tabular and Graphical Data C-6.8. Cross sections for dissociative attachment of electrons to HD.

e + HD * negative ions

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-20} cm ²	eV	10^{-20} cm ²	eV	10^{-20} cm ²
8.96	0.411	12.6	0.394	14.1	1.39
9.15	0.469	12.8	0.387	14.2	1.34
9.37	0.514	13.0	0.410	14.2	1.30
9.56	0.552	13.2	0.474	14.2	1.26
9.78	0.583	13.3	0.538	14.4	1.16
9.98	0.606	13.4	0.656	14.5	1.07
10.2	0.624	13.5	0.893	14.6	0.984
10.4	0.634	13.5	1.00	14.7	0.870
10.6	0.622	13.6	1.11	14.9	0.804
10.8	0.611	13.6	1.18	15.2	0.773
11.0	0.588	13.7	1.25	15.5	0.769
11.2	0.575	13.7	1.33	15.9	0.803
11.4	0.573	13.8	1.38	16.4	0.836
11.6	0.549	13.8	1.43	16.8	0.878
11.8	0.526	13.9	1.45	17.4	0.938
12.0	0.504	13.9	1.46	17.8	0.983
12.2	0.447	14.0	1.45		
12.3	0.428	14.0	1.43		

Cont. Next Column

Cont. Next Column

Reference: D. Rapp, T. E. Sharp and D. D. Briglia, Phys. Rev. Letters 14, 533 (1965) Tabular and Graphical Data C-6.9. Cross sections for dissociative attachment of electrons to \mathbf{D}_2 .

$$e + p_2 + p^-$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-20} cm ²	eV	10^{-20} cm ²	εV	10 ⁻²⁰ cm ²
8.65	0.103	12.2	0.304	14.2	0.937
8.83	0.118	12.4	0.303	14.3	0.898
9.02	0.140	12.6	0.310	14.4	0.844
9.24	0.173	12.8	0.330	14.5	0.805
9.43	0.195	13.0	0.366	14.6	0.786
9.59	0.208	13.2	0.427	14.8	0.787
9.76	0.229	13.4	0.485	15.0	0.804
10.0	0.257	13.4	0.560	15.4	0.859
10.3	0.270	13.5	0.659	15.9	0.901
10.6	0.273	13.6	0.713	16.4	0.948
10.9	0.265	13.6	0.748	16.9	0.992
11.2	0.254	13.7	0.804	17.4	1.05
11.4	0.252	13-8	0.885	17.9	1.11
11.6	0.270	13.9	0.963		
11.8	0.292	14.0	0.988		
12.0	0.301	14.1	0.971		

Cont. Next Column

Cont. Next Column

Reference: D. Rapp, T. E. Sharp and D. D. Briglia, Phys. Rev. Letters 14, 533 (1965)

Tabular and Graphical Data C-6.10. Cross sections for dissociative attachment of electrons to $\mathrm{H_2}^+$.

$$e + H_2^+ + H^+ + H^-$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
0.400	4.94	1.56	3.22	2.88	1.52
0.500	4.10	1.77	2.79	3.18	1.36
0.600	4.01	1.96	2.78	3.39	1.37
0.700	3.90	1.99	2.80	3.60	1.15
0.800	3.37	2.19	2.27	3.96	1.16
0.990	3.46	2.40	2.61		
1.09	3.31	2.59	1.89		
1.31	3.22	2.73	1.68		

Cont. Next Column

Cont. Next Column

Reference: B. Peart and K. T. Dolder, J. Phys. B 8, 1570 (1975)

Tabular Data C-6.11. Cross sections for dissociative attachment of electrons to $\mathbf{0}_2$.

e + 0₂ + 0

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
4.75	0.0259	6.11	1.57	7.09	1.32
4.80	0.0356	6.17	1.66	7.15	1.23
4.86	0.0518	6.21	1.74	7.20	1.17
4.89	0.0647	6.27	1.84	7.28	1.08
4.95	0.0813	6.31	1.88	7.36	1.01
5.00	0.0955	6.32	1.90	7.44	0.933
5.05	0.110	6.34	1.92	7.69	0.721
5.13	0.140	6.36	1.94	7.79	0.639
5.20	0.168	6.37	1.96	7.88	0.561
5.27	0.208	6.41	1.98	7.94	0.515
5.34	0.261	6.45	2.00	8.12	0.414
5.42	0.337	6.51	2.00	8.35	0.299
5.48	0.435	6.55	1.99	8.45	0.251
5.52	0.517	6.59	1.98	8.54	0.233
5.57	0.616	6.62	1.96	8.72	0.179
5.67	0.751	6.66	1.94	8.84	0.160
5.74	0.854	6.72	1.88	9.01	0.133
5.78	0.970	6.79	1.82	9.20	0.111
5.83	1.06	6.85	1.74	9.39	0.0888
5.90	1.16	6.89	1.66		
5.95	1.25	6.94	1.58		
5.99	1.37	6.98	1.51		
6.06	1.48	7.04	1.41		

Cont. Next Column

Cont. Next Column

Reference: L. G. Christophorou, D. L. McCorkle and V. E. Anderson, J. Phys. B <u>4</u>, 1163 (1971)

Tabular and Graphical Data C-6.12. Cross sections for dissociative attachment of electrons to ${\rm Cl}_2$.

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18}cm^2	eV	$10^{-18} cm^2$
1.11	0.0361	4.12	1.40	7.11	1.66
1.32	0.222	4.36	1.99	7.33	1.21
1.53	0.595	4.55	2.66	7.53	0.805
1.72	1.12	4.75	3.33	7.70	0.475
1.92	1.77	4.94	3.89	7.90	0.309
2.14	2.36	5.14	4.36	8.14	0.200
2.33	2.72	5.31	4.62	8.31	0.144
2.46	2.79	5.53	4.77	8.52	0.0618
2.54	2.78	5.63	4.77	8.72	0.0273
2.74	2.49	5.77	4.71	9.10	0.0303
2.92	2.06	5.94	4.56	9.32	0.0396
3.13	1.49	6.14	4.25	9.51	0.0390
3.32	1.03	6.34	3.89	9.73	0.0402
3.52	0.787	6.52	3.39		
3.71	0.765	6.73	2.86		
3.93	0.985	6.93	2.24		

Cont. Next Column

Cont. Next Column

Reference: M. V. Kurepa and D. S. Belic, J. Phys. B 11, 3719 (1978).

Tabular and Graphical Data C-6.13. Cross sections for dissociative attachment of electrons to ${\rm I}_2$.

e + 1₂ + 1

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁶ cm ²	eV	10^{-16}cm^2	eV	10^{-16} cm ²
0.0101	31.0	0.0227	1.53	0.412	0.257
0.0105	25.4	0.0254	1.38	0.551	0.218
0.0113	18.8	0.0309	1.24	0.717	0.183
0.0123	13.1	0.0394	1.09	0.975	0.151
0.0135	8.75	0.0500	0.929	1.26	0.122
0.0149	5.73	0.0631	0.801	1.68	0.099
0.0161	3.99	0.0884	0.651	1.99	0.086
0.0172	2.87	0.127	0.530	2.44	0.073
0.0177	2.45	0.171	0.449	2.81	0.066
0.0187	2.07	0.228	0.372		
0.0209	1.74	0.289	0.314		

Cont. Next Column

Cont. Next Column

Reference: M. A. Biondi and R. E. Fox, Phys. Rev. 109, 2012 (1958)

Tabular and Graphical Data C-6.14a. Cross sections for dissociative attachment of electrons to HCl.

e + HC1 + C1

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
ev	10^{-17} cm ²	ev	10^{-17} cm ²	ev	10-17 _{cm} 2
0.529	0.0188	0.789	1.87	0.939	1.15
0.544	0.121	0.801	1.94	0.957	1.01
0.566	0.320	0.814	1.97	0.977	0.884
0.583	0.451	0.823	1.96	0.989	0.829
0.598	0.566	0.837	1.91	1.00	0.783
0.613	0.691	0.851	1.83	1.02	0.732
0.631	0.833	0.865	1.75	1.12	0.583
0.646	0.940	0.876	1.67	1.18	0.498
0.675	1.13	0.880	1.65	1.24	0.401
0.703	1.32	0.892	1.58	1.30	0.278
0.752	1.64	0.904	1.47		
0.770	1.75	0.922	1.32		

Cont. Next Column

Reference: L. G. Christophorou, R. N. Compton, and H. W. Dickson, J. Chem. Phys. 48, 1949 (1968)

Tabular and Graphical Data C-6.14a. Cross sections for dissociative attachment of electrons to HCl (Concluded).

e + HC1 + C1

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
0.043	0.49	0.60	8.9	5.7	0.39
0.21	0.85	0.66	8.8	5.9	0.48
0.30	1.4	0.73	8.2	6.5	0.59
0.31	2.2	0.80	7.4	6.8	0.65
0.32	2.9	0.90	6.5	7.1	0.66
0.35	3.5	1.0	5.4	7.5	0.58
0.38	4.1	1.1	4.2	8.0	0.49
0.40	4.7	1.2	3.3	. 8.3	0.45
0.42	5.3	1.3	2.2	8.7	0.47
0.44	5.9	1.5	1.1	9.1	0.49
0.45	6.8	1.8	0.75	9.6	0.47
0.50	7.6	2.2	0.52	10.0	0.44
0.49	8.5	2.9	0.40	11	0.38
0.53	8.8	3.9	0.38	11	0.38
0.54	8.9	5.0	0.36	12	0.30

Cont. Next Column

Cont. Next Column

Reference: R. Azria, L. Roussier, R. Paineau, and M. Tronc, Rev. Phys. Appl. 9, 469 (1974)

Tabular and Graphical Data C-6.14b. Cross sections for dissociative attachment of electrons to HC1.

e + HC1 + H-

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19}cm^2	eV	10^{-19} cm ²	eV	10^{-19} cm ²
4.9	0.44	7.0	5.2	9.6	2.3
5.2	0.58	7.1	5.1	9.8	2.1
5.4	0.69	7.3	4.6	10	1.8
5.8	1.1	7.5	4.0	10	1.5
6.0	1.7	7.7	3.4	11	1.1
6.1	2.2	7.9	2.8	11	0.83
6.1	2.7	8.0	2.4	11	0.69
6.3	3.2	8.1	2.1	11	0.66
6.5	3.7	8.3	2.0	12	0.50
6.6	4.3	8.4	2.0		
6.7	4.8	8.6	2.2		
6.8	5.1	8.8	2.3		
6.9	5.1	9.0	2.4		
6.9	5.2	9.3	2.4		

Cont. Next Column

Cont. Next Column

Reference: R. Azria, L. Roussier, R. Paineau and M. Tronc, Rev. Phys. Appl. 9, 469 (1974) Tabular and Graphical Data C-6.15. Cross sections for dissociative attachment of electrons to DC1.

e + DC1 + C1

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-17} cm ²	eV	10^{-17}cm^2	eV	10^{-17} cm ²
0.587	0.0376	0.836	1.25	1.01	0.537
0.605	0.111	0.846	1.23	1.05	0.470
0.627	0.224	0.854	1.21	1.08	0.418
0.650	0.354	0.864	1.18	1.11	0.362
0.676	0.501	0.877	1.12	1.16	0.303
0.700	0.654	0.893	1.06	1.21	0.263
0.732	0.880	0.905	0.990	1.23	0.232
0.750	0.987	0.920	Q. 911	1:25	0.232
0.767	1.05	0.936	0.815		
0.788	1.14	0.948	0.749		
0.809	1.19	0.957	0.710		
0.825	1.23	0.972	0.643		

Cont. Next Column

Reference: L. G. Christophorou, R. N. Compton, and H. W. Dickson, J. Chem. Phys. 48, 1949 (1968)

Tabular and Graphical Data C-6.16. Cross sections for dissociative attachment of electrons to HBr.

 $e + HBr \rightarrow Br$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-16} cm ²	eV	10 ⁻¹⁶ cm ²	eV	10 ⁻¹⁶ cm ²
0.0791	0.0241	0.197	1.82	0.348	2.23
0.0976	0.129	0.204	2.01	0.367	1.96
0.114	0.246	0.215	2.19	0.393	1.71
0.135	0.363	0.227	2.36	0.427	1.36
0.150	0.468	0.244	2.53	0.464	1.04
0.158	0.579	0.261	2.63	0.515	0.698
0.166	0.749	0.278	2.69	0.578	0.459
0.172	0.909	0.293	2.71	0.624	0.408
0.175	1.05	0.306	2.68	0.668	0.355
0.181	1.29	0.316	2.61	0.696	0.324
0.189	1.55	0.326	2.49	0.715	0.297

Cont. Next Column

Reference. L. G. Christophorou, R. N. Compton, and H. W. Dickson J. Chem. Phys. 48, 1949 (1968)

Tabular and Graphical Data C-6.17. Cross sections for dissociative attachment of electrons to HI.

 $e + HI \rightarrow I^{-}$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-14}cm^2	eV	10^{-14}cm^2	eV	10^{-14}cm^2
0.0017	2.30	0.12	1.05	0.31	0.328
0.012	2.25	0.14	0.910	0.34	0.274
0.020	2.19	0.15	0.792	0.39	0.215
0.028	2.12	0.17	0.692	0.45	0.167
0.035	2.03	0.18	0.636	0.50	0.138
0.049	1.88	0.20	0.567	0.56	0.115
0.065	1.68	0.22	0.505	0.61	0.0893
0.083	1.47	0.24	0.447	0.65	0.0873
0.10	1.24	0.27	0.391	0.71	0.0797

Cont. Next Column

Cont. Next Column

Reference: L. G. Christophorou, R. N. Compton, and H. W. Dickson, J. Chem. Phys. 48, 1949 (1968)

Tabular and Graphical Data C-6.18a. Cross sections for dissociative attachment of electrons to ${\rm CO}_{\odot}$

 $e + co + o^{-}$

lectron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19}cm^2	eV	10^{-19} cm ²
9.53	0.957	10.7	1.91
9.65	1.15	10.8	1.77
9.72	1.62	11.0	1.65
9.85	2.31	11.2	1.49
9.95	2.39	11.4	1.33
10.1	2.42	11.7	1.12
10.2	2.43	12.0	1.05
10.3	2.37	12.3	1.04
10.4	2.29	12.6	1.02
10.4	2.22	12.9	1.07
10.5	2.14		
10.7	2.02		

Cont. Next Column

Reference: G. J. Schulz, Phys. Rev. <u>128</u>, 178 (1962)

Tabular and Graphical Data C-6.18b. Cross sections for dissociative attachment of electrons to CO.

e + CO + negative ions

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10^{-19} cm ²	eV	10^{-19} cm ²
9.20	0.0880	10.2	1.90	11.6	0.326
9.30	0.185	10.3	1.80	11.7	0.282
9.35	0.264	10.4	1.70	11.8	0.238
9.40	0.343	10.5	1.55	11.9	0.194
9.45	0.730	10.6	1.38	12.0	0.167
9.60	1.13	10.7	1.24	12.1	0.141
9.65	1.69	10.8	1.12	12.2	0.114
9.70	1.83	10.9	1.00	12.3	0.0968
9.75	1.93	11.0	0.880	12.4	0.0880
9.80	1.99	11.1	0.766	12.5	0.079
9.85	2.00	11.2	0.651	12.6	0.070
9.90	2.02	11.3	0.554	12.8	0.061
10.00	2.02	11.4	0.466	13.0	0.061
10.1	1.98	11.5	0.396		

Cont. Next Column

Cont. Next Column

Reference: D. Rapp and P. D. Briglia, J. Chem. Phys. 43, 1480 (1965)

Tabular and Graphical Data C-6.19. Cross sections for dissociative attachment of electrons to NO.

e + NO + negative ions

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	10^{-18} cm ²	eV	10^{-18}cm^2
6.50	0	3.10	1.12	9.70	0.581
6.60	0	8.20	1.12	9.80	0.510
6.70	0.00880	8.30	1.11	9.90	0.440
6.80	0.0176	8.40	1.10	10.00	0.378
6.90	0.0440	8.50	1.10	10.1	0.317
7.00	0.0792	8.60	1.11	10.2	0.264
7.10	0.150	8.70	1.10	10.3	0.220
7.20	0.334	8.80	1.09	10.4	0.176
7.30	0.537	3.90	1.07	10.5	0.141
7.40	0.713	9.00	1.04	10.6	0.114
7.50	0.862	9.10	1.00	10.7	0.092
7.60	0.959	9.20	0.950	10.8	0.079
7.70	1.04	9.30	0.889	10.9	0.070
7.80	1.08	9.40	0.827	11.0	0.061
7.90	1.10	9.50	0.748	11-5	0.044
8.00	1.11	9.60	0.651	12.0	0.044
				12.5	0.035
ont. Next	Column	Cont. Next	Column	13.0	0.035

Reference: Rapp, D., Briglia, D. D., J. Chem. Phys. 43, 1480 (1965)

Tabular Data C-6.20a. Cross sections for dissociative attachment of electrons to CO_2 to form O-.

e + co₂ + o

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19} cm ²	eV	10 ⁻¹⁹ cm ²	eV	10 ⁻¹⁹ cm ²
3.3	0	5.6	0.0176	7.9	3.96
3.4	0.0176	5.7	0.00880	8.0	4.24
3.5	0.0616	5.8	0	8.1	4.29
3.6	0.141	5.9	0.00880	8.2	4.14
3.7	0.273	6.0	0.0176	8.3	3.80
3.8	0.528	6.1	0.0264	8.4	3.36
3.9	0.818	6.2	0.0440	8.5	2.83
4.0	1.06	6.3	0.0616	8.6	2.15
4.1	1.28	6.4	0.106	8.7	1.72
4.2	1.41	6.5	0.141	8.8	1.36
4.3	1.48	6-6	0.202	8.9	1.02
4.4	1.36	6.7	0.290	9.0	0.783
4.5	1.21	6.8	0.387	9-1	0.616
4.6	0.977	6.9	0.528	9 - 2	0.484
4.7	0.774	7.0	0.686	9.3	0.370
4.8	0.598	7.1	0.898	9.4	0.290
4.9	0.443	7.2	1.14	9.5	0.229
5.0	0.282	7.3	1.45	9.6	0.176
5.1	0.194	7.4	1.78	9.7	0.132
5.2	0.132	7.5	2.16	9.8	0.106
5.3	0.0880	7.6	2.67	9.9	0.0793
5.4	0.0616	7.7	3.12	10.0	0.0616
5.5	0.0264	7.8	3.57		

Cont. Next Column

Cont. Next Column

Reference: Rapp. D., Briglia, D. D., J. Chem. Phys. 43, 1480 (1971)

Graphical Data C-6.20a. Cross sections for dissociative attachment of electrons to CO_2 to

Tabular Data C-6.20b. Cross sections for dissociative attachment of electrons to CO_2 to form 0 .

 $e + co_2 + o^-$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	unknown	eV	unknown	eV	unknown
3.20	0.0362	5.27	0.595	8.80	2.98
3.43	0.178	5.41	0.429	8.94	2.04
3.57	0.429	5.55	0.295	9.06	1.58
3.66	0.977	6.01	0.167	9.31	0.998
3.72	1.61	6.30	0.208	9.57	0.621
3.77	2.27	6.52	0.309	10.0	0.305
3.84	2.96	6.66	0.436	10.0	0.204
3.90	3.65	6.73	0.598	10.4	0.136
3.96	4.46	6.95	1.25	10.8	0.104
4.01	5.20	7.10	2.03	11.3	0.083
4.02	5.41	7.26	2.88	11.6	0.082
4.02	6.04	7.38	3.72	11.9	0.112
4.08	6.61	7.46	4.45	12.1	0.160
4.08	7.04	7.56	5.19	12.5	0.214
4.15	7.36	7.60	5.40	12.9	0.256
4.22	7.70	7.63	5.86	13.2	0.258
4.34	7.81	7.71	6.71	13.4	0.225
4.41	7.68	7.80	7.50	13.7	0.168
4.49	7.19	7.87	8.23	14.2	0.117
4.55	6.66	7.98	8.93	14.8	0.099
4.60	6.01	7.99	9.53	15.2	0.127
4.65	5.42	8.09	9.75	15.8	0.139
4.72	4.80	8. 31	9.66	16.4	0.160
4.77	4.01	8.39	9.11	17.1	0.170
4.82	3.23	8.45	8.24	17.7	0.174
4.92	2.52	8.52	7.14	18.2	0.186
4.96	2.04	8.58	6.04	18.8	0.205
5.02	1.56	8.59	5.40	19.5	0.208
5.13	1.05	8.65	4.71	19.9	0.218
5.20	0.722	8.76	3.68		

Cont. Next Column

Cont. Next Column

Note peak above 10 eV.

Reference: P. J. Chantry, J. Chem. Phys. <u>57</u>, 3180 (1972)

Graphical Data C-6.20b. Cross sections for dissociative attachment of electrons to ${\rm CO}_2$ to form ${\rm O}$.

Tabular Data C-6.21. Cross sections for dissociative attachment of electrons to $\mathrm{CO}_2\, \cdot$

 $e + CO_2 \rightarrow C^-$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻²¹ cm ²	eV	10^{-21} cm ²	eV	10^{-21} cm ²
14.0	0.0251	18.1	1.34	19.2	1.53
14.3	0.0163	18.2	1.44	19.2	1.42
14.8	0.0145	18.2	1.56	19.3	1.30
15.1	0.0173	18.3	1.66	19.4	1.25
15.6	0.0116	18.4	1.75	19.4	1.13
15.7	0.102	18.4	1.82	19.4	1.05
15.9	0.178	18.4	1.88	19.5	0.873
16.0	0.247	18.5	1.91	19.6	0.749
16.5	0.253	18.5	1.95	19.7	0.640
16.7	0.324	18.5	2.00	19.9	0.473
16.9	0.371	18.6	2.00	20.0	0.346
17.3	0.377	18.7	1.98	20.2	0.249
17.5	0.452	18.8	1.96	20.4	0.181
17.7	0.563	18.9	1.88	20.6	0.091
17.8	0.766	18.9	1.79	20.9	0.078
17.9	1.01	19.0	1.77		
18.0	1.17	19.1	1.65		

Cont. Next Column

Cont. Next Column

Reference: D. Spence and G. J. Schulz, J. Chem Phys. <u>60</u>, 216 (1974)

Graphical Data C-6.21. Cross sections for dissociative attachment of electrons to ${\rm CO}_2$ to form C $\bar{}_{\rm .}$

Tabular and Graphical Data C-6.22a. Cross sections for dissociative attachment of electrons to $\rm N_2O$.

$$e + N_2 0 \rightarrow 0^-$$

Flectron Fnergy	Cross Section	Electron Energy	Cross Section	Flectron Fnergy	Cross Section
eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²	eV	10-18 _{cm} 2
0.213	0.165	1.40	3.57	2.49	10.1
0.312	0.431	1.50	3.46	2.58	9.15
0.418	0.629	1.61	3.21	2.70	6.50
0.517	0.847	1.71	3.09	2.79	4.51
0.611	1.96	1.80	3.18	2.90	2.78
0.715	1.27	1.90	3.75	3.00	1.54
0.820	1.59	2.00	5.14	3.10	0.808
0.921	1.83	2.10	6.90	3.21	0.433
1.01	2.14	2.14	7.81	3.31	0.213
1.11	2.58	2.18	8.79	3.51	0.0828
1.22	3.03	2.29	10.1	3.71	0.0534
1.31	3.43	2.39	10.3		

Cont. Mext Column

Cont. Mext Column

Reference: L. G. Christophorou, D. L. McCorkle, and V. E. Anderson, J. Phys. B 4, 1163 (1971)

Tabular and Graphical Data C-6.22b. Cross sections for dissociative attachment of electrons to $\rm N_{\rm 2}0.$

 $e + N_20 + negative ions$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18} cm ²	eV	$10^{-18} cm^2$	eV	10 ⁻¹⁸ cm ²
0.40	0.458	1.9	6.64	3.4	0.466
0.50	1.33	2.0	7.59	3.5	0.352
0.60	1.73	2.1	8.28	3.6	0.282
0.70	1.93	2.2	8.61	3.7	0.229
0.80	2.04	2.3	8.57	3.8	0.194
0.90	2.09	2.4	8.04	3.9	0.167
1.0	2.16	2.5	7.10	4.0	0.132
1.1	2.24	2.6	5.98	4.1	0.123
1.2	2.33	2.7	4.84	4.2	0.106
1.3	2.49	2.8	3.57	4.3	0.0968
1.4	2.79	2.9	2.60	4.5	0.0968
1.5	3.29	3.0	1.92	5.0	0.0968
1.6	3.92	3.1	1.39		
1.7	4.94	3.2	0.968		
1.8	5.95	3.3	0.634		

Cont. Next Column

Reference: D. Rapp and D. D. Briglia, J. Chem. Phys. 43, 1480 (1965)

Tabular and Graphical Data C-6.23a. Cross sections for dissociative attachment of electrons to $\rm H_20\textsc{.}$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-18}cm^2	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
5.3	0.0200	7.0	2.21	8.6	1.28
5.6	0.800	7.2	1.57	8.8	1.21
5.8	1.28	7.4	1.44	9.0	0.850
6.0	2.71	7.6	0.850	9.2	0.690
6.2	4.80	7.8	0.570	9.4	0.570
6.4	4.90	8.0	0.820	9.5	0.420
6.6	4.17	8.2	1.09	9.8	0.270
6.8	3.34	8.4	1.17		

Cont. Next Column

Reference: I. S. Buchelnikova, Sov. Phys. JETP USSR (Eng. Trans.) 35, 783 (1959)

Tabular Data C-6.23b. Cross sections for dissociative attachment of electrons to $\mathrm{H}_2\mathrm{O}$.

 $e + H_{2}O + H^{-}$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10^{-18} cm ²	eV	10 ⁻¹⁸ cm ²
5.70	0.0451	6.64	6.82	8.48	1.28
5.73	0.229	6.73	6.30	8.54	1.23
5.76	0.407	6.78	6.00	8.63	1.18
5.81	0.559	6.83	5.67	8.72	1.10
5.84	0.873	6.86	5.47	8.80	1.07
5.89	1.33	6.91	5.25	8.89	1.05
5.90	1.46	6.92	4.95	8.94	0.996
5.95	2.20	6.97	4.83	9.03	0.925
6.01	2.71	7.03	4.43	9.11	0.858
6.02	2.84	7.11	3.71	9.24	0.779
6.06	3.13	7.16	3.31	9.30	0.687
6.08	3.44	7.22	3.16	9.35	0.614
6.11	3.66	7.26	2.74	9.42	0.559
6.14	4.02	7.29	2.45	9.51	0.514
6.15	4.51	7.37	2.32	9.61	0.495
6.17	4.73	7.40	2.01	9.70	0.449
6.20	4.89	7.44	1.89	9.70	0.449
6.21	5.04	7.50	1.66	9.79	0.373
6.23	5.26	7.54	1.57	9.88	0.341
6.25	5.58	7.58	1.48	9.99	0.331
6.28	5.71	7.64	1.42	10.1	0.384
6.29	5.85	7.69	1.32	10.3	0.344
6.32	6.06	7.75	1.24	10.5	0.312
6.33	6.32	7.85	1.21	10.7	0.274
6.34	.6.49	7.91	1.21	10.9	0.286
6.38	6.71	8.01	1.24	11.1	0.230
6.42	6.83	8.08	1.28	11.3	0.191
6.43	6.95	8.17	1.31	11.7	0.169
6.52	6.94	8.25	1.37		
6.62	6.95	8.38	1.34		

Cont. Next Column

Cont. Next Column

Reference: R. N. Crompton and L. G. Christophorou, Phys. Rev. <u>154</u>, 110 (1967)

Graphical Data C-6.23b. Cross sections for dissociative attachment of electrons to H_2^{0} (Concluded).

Tabular and Graphical Data C-6.24. Cross sections for dissociative attachment of electrons to NH_3 .

 $e + NH_3 \rightarrow negative ions$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²	eV	10 ⁻¹⁸ cm ²
0.795	0.047	2.79	5.1	5.37	0.39
0.893	0.11	2.87	4.9	6.46	0.26
1.05	0.36	2.95	4.6	7.29	0.24
1.33	1.4	3.05	4.3	7.92	0.25
1.39	1.6	3.13	3.9	8.67	0.32
1.45	2.0	3.18	3.9	9.06	0.42
1.54	2.7	3.21	3.7	9.48	0.45
1.78	3.8	3.27	3.6	9.88	0.54
1.92	4.5	3.29	3.4	10.3	0.51
2.11	5.2	3.40	3.0	10.5	0.55
2.21	5.5	3.46	2.8	10.9	0.46
2.29	5.6	3.57	2.5	11.4	0.41
2.47	5.7	3.62	2.5	11.7	0.28
2.55	5.6	3.71	2 • 1	11.9	0.12
2.61	5.5	3.94	1.5	12.0	0.020
2.67	5.3	4.21	1.1		
2.76	5.1	4.68	0.68		

Cont. Next Column

Reference: R. N. Compton, J. A. Stockdale and P. W. Reinhardt, Phys. Rev. <u>180</u>, 111 (1969)

Tabular and Graphical Data C-6.25a. Cross sections for dissociative attachment of electrons to ${\rm NF}_3$.

a. $e + NF_3 + F$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁷ cm ²	eV	10^{-17} cm ²	eV	10-17 _{cm.} 2
0.714	0.483	1.98	5.88	3.05	1.86
0.832	1.37	2.10	5.68	3.15	1.53
0.935	2.30	2.19	5.44	3.24	1.26
1.04	3.16	2.28	5.18	3.34	1.02
1.19	3.93	2.37	4.89	3.43	0.828
1.28	4.54	2.47	4.55	3.52	0.651
1.40	5.03	2.57	4.15	3.63	0.482
1.49	5.39	2.66	3.67	3.72	0.278
1.58	5.70	2.76	3.15	3.82	0.0206
1.68	5.91	2.85	2.64		
1.82	5.98	2.96	2.23		

Cont. Next Column

Reference: P. W. Harland and J. L. Franklin, J. Chem. Phys. 61, 1621 (1974)

Tabular and Graphical Data C-6.25b. Cross sections for dissociative attachment of electrons to ${\rm NF}_3$.

b. $e + NF_3 + F_2$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-17}cm^2	eV	10 ⁻¹⁷ cm ²
1.01	0.437	2.26	4.98
1.13	1.23	2.35	4.61
1.23	2.14	2.46	4.15
1.32	3.10	2.56	3.61
1.45	4.01	2.67	3.03
1.55	4.85	2.74	2.43
1.65	5.50	2.84	1.85
1.75	5.89	2.93	1.31
1.87	6.00	3.01	0.824
1.96	5.83	3.12	0.439
2.07	5.60	3.22	0.169
2.18	5.32		

Cont. Next Column

Reference: P. W. Harland and J. L. Franklin, J. Chem. Phys. <u>61</u>, 1621 (1974)

Tabular Data C-6.25. Cross sections for dissociative attachment of electrons to ${\rm NF}_3$.

c.
$$e + NF_3 + NF_2$$

Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-17} cm ²	eV	10 ⁻¹⁷ cm ²
0.997	0.361	1.98	5.84
1.12	1.49	2.08	5.49
1.23	2.64	2.17	4.87
1.37	3.73	2.26	4.00
1.48	4.63	2.34	2.90
1.58	5.30	2.43	1.67
1.67	5.71	2.53	0.480
1.77	5.92		
1.89	5.99		

Cont. Next Column

Reference: P. W. Harland and J. I. Franklin, J. Chem. Phys. <u>61</u>, 1621 (1974) Tabular and Graphical Data C-6.26a. Cross sections for dissociative attachment of electrons to OCS to form ${\tt S}$.

a. e + ocs * s-

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁷ cm ²	eV	10 ⁻¹⁷ cm ²	eV	10 ⁻¹⁷ cm ²
0.700	0.0216	1.23	3.10	1.67	1.31
0.735	0.0308	1.24	3.12	1.70	1.17
0.779	0.0397	1.26	3.10	1.74	0.993
0.811	0.0569	1.29	3.04	1.77	0.877
0.854	0.102	1.32	2.98	1.80	0.752
0.894	0.176	1.34	2.93	1.81	0.730
0.923	0.269	1.36	2.92	1.83	0.653
0.944	0.341	1.38	2.88	1.86	0.577
0.962	0.449	1.38	2.86	1.89	0.500
0.992	0.665	1.39	2.86	1.93	0.423
1.02	0.948	1,40	2.84	1.96	0.354
1.05	1.18	1,41	2.80	2.02	0.264
1.07	1.44	1.43	2.76	2.08	0.189
1.09	1.73	1.44	2.71	2.14	0.137
1.12	2.16	1.46	2.62	2.20	0.109
1.14	2.41	1.48	2.49	2.26	0.085
1.15	2.52	1.50	2.36	2.34	0.059
1.17	2.75	1.53	2.15		
1.19	2.90	1.56	1.93		
1.20	2.96	1.59	1.72		
1.21	3.02	1.61	1.60		
1.22	3.08	1.64	1.45		

Reference: J. P. Ziesel, G. J. Schulz, and J. Milhaud, J. Chem. Phys. 62, 1936 (1975)

Tabular and Graphical Data C-6.26a. Cross sections for dissociative attachment of electrons to OCS to form S (Continued).

$$e + OCS + S$$

Electron Fnergy	Cross Section	Electron Fnergy	Cross Section	Flectron Fnergy	Cross Section
eV	arbitrary	eV	arbitrary	eV	arbitrary
1.01	35.6	1.89	95.0	2.70	45.0
1.20	35.9	1.97	100	2.79	27.7
1.30	36.7	2.09	100	2.91	16.5
1.40	42.3	2.17	99.3	3.02	5.91
1.51	50.3	2.27	96.0	3.11	1.86
1.62	63.3	2.37	89.0	3.23	C.757
1.71	75.8	2.48	75.3		
1.80	28.5	2.61	60.2		

Cont. Next Column

Cont. Next Column

Reference: K. A. G. MacNeil and J. C. J. Thynne, J. Phys. Chem. <u>73</u>, 2960 (1969) Tabular and Graphical Data C-6.26a. Cross sections for dissociative attachment of electrons to OCS to form S (Concluded).

e + ocs + s

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	arbitrary	eV	arbitrary	eV	arbitrary
5.95	0.0995	7.86	C.0572	9.73	0.0320
6.04	0.0835	7.95	0.0511	0.94	0.0350
6.16	0.0717	8.06	0.0451	10.1	0.0361
6.23	0.0689	8.14	0.0381	10.3	0.0373
6.45	0.0663	8.24	0.0340	10.5	0.0383
6.54	0.0654	8.31	0.0295	10.7	0.0384
6.64	0.0645	8.42	0.0274	10.9	0.0383
6.77	0.0639	8.53	0.0248	11.1	C.037
6.98	0.0644	8.64	0.0229	11.3	0.0355
7.06	0.0656	8.75	0.0218	11.5	0.0319
7.16	0.0669	8.94	0.0207	11.7	0.0271
7.24	0.0676	9.12	0.0200	11.9	0.0224
7.34	0.0684	9.25	0.0228		
7.45	0.0676	9.33	0.0252		
7.55	0.0669	9.42	0.0268		
7.67	0.0642	9.53	0.0281		
7.76	0.0609	9.64	0.0299		

Cont. Next Column

Reference: K. A. G. MacNeil and J. C. J. Thynne, J. Phys. Chem. 73, 2960 (1969)

Tabular and Graphical Data C-6.26b. Cross sections for dissociative attachment of electrons to OCS.

e + ocs + o

Flectron	Cross	Flectron	Cross	Hectron	Cross Section
merty	section	rue ray			
eV	arbitrary	e ^{ss}	arbitrary	eV	arbitrar
3.45	16.4	6.00	1.59	8.35	1.21
3.66	16.4	6.11	1.37	₹.43	1.33
3.89	17.7	6.10	1.12	F.54	1.44
3.98	20.5	6.31	0.042	€.62	1.51
4.09	29.4	6.41	0.623	8.72	1.55
4.19	32.1	6.50	0.494	8.50	1.50
4.27	40.2	6.62	0.425	0.01	1.63
4.30	45.5	6.71	0.315	0.04	1.63
4.46	40.0	6.87	0.308	9.13	1.51
4.57	55.5	6.96	0.314	9.23	1.40
4.66	66.7	7.02	0.240	4.15	1.24
4.80	80.5	7.13	0.240	9.45	0.812
4.99	84.4	7.26	0.250	9.57	0.366
4.98	0.83	7.37	0.265	5.63	0.212
5.06	91.2	7.45	0.361	9.76	(1.093
5.16	58.9	7.53	0.340	9.00	0.061
5.30	76.6	7.15	0.415	9.90	0.645
5.37	66.0	7.73	0.412	10.2	1.1155
5.46	54.1	7.83	0.633		
5.57	39.2	7.94	0.735		
5.70	14.5	8.04	0.812		
5.80	8.60	F.14	0.867		
5.91	4.67	F.22	1.04		

Reference: K. A. G. MacNeil and J. C. J. Thynne, J. Phys. Chem. 73, 2960 (1969)

Tabular and Graphical Data C-6.26c. Cross sections for dissociative attachment of electrons to OCS.

 $e + ocs \rightarrow os$

Flectron Energy	Cross Section	Electron	Cross Section	Flectron Energy	Cross Section
eV	arbitrary	eV	arbitrary	eľ	arbitrary
3.74	7.53	5.18	37.9	6.24	27.1
3.95	7.92	5.25	42.8	6.33	18.1
4.16	8.28	5.36	52.8	6.44	14.2
4.28	8.41	5.46	56.1	6.55	10.7
4.40	8.56	5.57	60.9	6.66	7.73
4.58	10.4	5.66	63.3	6.76	4.79
4.69	11.8	5.75	61.0	6.29	2.96
4.77	17.4	5.85	52.4	6.98	2.09
4.85	21.1	5.95	45.0	7.06	1.82
4.97	25.4	5.05	39.7	7.17	0.260
5.09	30.8	6.13	35.2		

Cont. Next Column

Cont. Mext Column

Reference: K. A. G. MacNeil and J. C. J. Thynne, J. Phys. Chem. <u>73</u>, 2960 (1969) Tabular and Graphical Data C-6.26d. Cross sections for dissociative attachment of electrons to OCS.

 $e + OCS \rightarrow CS^{-}$

Electron Energy	Cross Section	Flectron Energy	Cross Section	Electron Energy	Cross Section
eV	arbitrary	ev	arbitrary	eV	arbitrary
4.75	8.44	6.10	20.7	7.31	30.5
4.92	2,63	6.18	25.2	7.37	20.8
5.05	8.62	6.25	29.3	7.48	15.6
5.18	8.61	6.30	32.5	7.60	9.94
5.30	8.51	6.48	36.6	7.67	7.41
5.38	9.05	6.58	42.5	7.79	5.58
5.48	9.92	6.67	48.1	7.90	4.88
5.62	13.7	6.76	52.2	8.03	4.26
5.67	16.5	6.86	54.2	8.12	3.87
5.81	17.8	6.98	51.4	8.24	2.89
5.89	10.1	7.07	42.1		
5.97	20.9	7.17	34.1		

Cont. Next Column

Reference: K. A. G. MacNeil and J. C. J Thynne, J. Phys. Chem. <u>73</u>, 2960 (1969)

Tabular and Graphical Data C-6.27a. Cross_sections for dissociative attachment of electrons to ${\rm CS}_2$ to form ${\rm S}$.

e + CS₂ + 5

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁹ cm ²	eV	10 ⁻¹⁹ cm ²	eV	10 ⁻¹⁹ cm
2.67	0.0357	3.29	3.20	3.78	2.73
2.69	0.0613	3.31	3.38	3.80	2.66
2.73	0.0483	3.32	3.66	3.82	2.49
2.75	0.0428	3.34	3.53	3.85	2.29
2.77	0.0822	3.35	3.75	3.89	2.13
2.82	0.0889	3.40	3.59	3.92	1.84
2.85	0.140	3.40	3.43	3.95	1.64
2.89	0.186	3.43	3.54	3.97	1.51
2.91	0.180	3.43	3.38	4.04	1.14
2.93	0.254	3.47	3.26	4.03	1.08
2.95	0.337	3.46	3.17	4.07	0.99
2.96	0.303	3.50	3.09	4.10	0.820
2.99	0.456	3.51	2.99	4.14	0.65
3.00	0.446	3.54	3.01	4.15	0.549
3.02	0.586	3.54	2.95	4.19	0.45
3.04	0.683	3.55	2.82	4.23	0.34
3.08	0.958	3.57	2.93	4.27	0.28
3.12	1.25	3.60	2.96	4.31	0.20
3.14	1.47	3.63	3.00		
3.15	1.60	3.64	3.00		
3.16	1.64	3.66	2.97		
3.17	1.84	3.68	3.02		
3.21	2.10	3.71	3.00		
3.22	2.45	3.73	2.91		
3.25	2.84	3.75	2.84		

Reference: J. P. Ziesel, G. J. Schulz and J. Milhaud, J. Chem. Phys. 62, 1936 (1965)

Tabular and Graphical Data C-6.27a. Cross sections for dissociative attachment of electrons to ${\rm CS}_2$ (Concluded).

 $e + cs_2 + s^-$

Flectron	Cross Section	Flectron		Flectron	Cross Section
eV	arbitrary	eV	arbitrary	eV	arbitrar
2.43	25.4	5.11	0.672	7.60	0.125
2.58	25.4	5.21	0.625	7.69	0.125
2.73	25.4	5.30	0.595	7.82	0.113
2.83	30.8	5.39	0.554	7.92	0.098
2.94	36.4	5.51	0.515	8.00	0.084
3.02	43.1	5.63	0.528	8.10	0.068
3.21	58.9	5.75	0.595	F.21	0.056
3.30	66.4	5.85	0.656	8.31	0.050
3.40	74.9	5.94	0.722	8.39	0.040
3.49	82.5	6.02	0.739	8.50	0.035
3.60	86.6	6.12	0.757	8.59	0.029
3.69	88.7	6.22	0.739	8.70	0.025
3.80	86.6	6.31	0.722	9.80	0.022
3.90	82.5	6.40	0.640		
4.01	76.8	6.51	0.595		
4.10	66.4	6.59	0.503		
4.20	58.9	6.70	0.415		
4.30	47.4	6.80	0.319		
4.40	37.3	6.92	0.239		
4.50	26.6	7.62	0.192		
4.61	17.3	7.07	0.170		
4.71	10.2	7.21	0.144		
4.82	4.95	7.27	0.141		
4.89	1.72	7.38	0.137		
5.01	0.722	7.51	0.131		

Reference: K. A. G. MacNeil and J. C. J. Thynne, J. Phys. Chem. 73, 2960 (1969)
1911

Tabular and Graphical Data C-6.27b. Cross sections for dissociative attachment of electrons to ${\rm CS}_2$.

$$e + cs_2 + s_2^-$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron	Cross Section
eV	arbitrary	eV	arbitrary	eV	arbitrary
3.00	23.5	4.33	37.0	5.84	56.9
3.13	23.7	4.44	35.1	5.95	63.2
3.23	23.7	4.53	31.8	6.02	65.9
3.35	24.2	4.74	30.9	6.13	64.0
3.45	25.9	4.92	29.0	6.22	56.2
3.53	30.4	5.03	27.9	6.33	49.1
3.64	32.4	5.14	27.2	6.42	34.3
3.75	36.1	5.21	27.4	6.50	26.3
3.85	40.4	5.34	30.3	6.58	20.1
3.95	41.4	5.46	34.7	6.69	15.1
4.03	42.6	5.54	39.5	6.80	10.7
4.14	42.2	5.64	45.9	6.89	4.83
4.25	41.0	5.73	51.4	6.99	2.92

Cont. Mext Column

Reference: K. A G. MacNeil and J. C. J. Thynne, J. Phys. Chem. <u>73</u>, 2900 (1969)

Tabular and Graphical Data C-6.27c. Cross sections for dissociative attachment of electrons to CS_2 .

$$e + cs_2 + c^-$$

Electron Energy	Cross Section	Flectron Fnergy	Cross Section	Flectron	Cross Section
eV	arbitrary	eV	arbitrary	eV	arbitrary
4.40	1.26	6.29	64.8	7.79	13.6
4.58	1.17	6.38	70.3	7.88	11.7
4.75	2.06	6.48	75.9	8.00	11.9
4.93	3.90	6.60	88.2	8.09	12.4
5.04	4.35	6.83	95.4	8.18	13.3
5.21	5.39	6.92	84.5	8.27	13.4
5.41	7.19	7.01	64.1	8.34	12.5
5.64	16.8	7.10	47.7	. 8.38	10.4
5.81	28.9	7.17	40.0	8.49	8.15
5.91	32.7	7.29	32.9	8.60	6.30
6.01	42.0	7.38	25.6	8.68	5.69
6.11	51.8	7.47	18.4	08.8	5.33
6.21	61.1	7.58	15.5		

Cont. Next Column

Reference: K. A. G. MacNeil and J. C. J. Thynne, J. Phys. Chem. <u>73</u>, 2960 (1969)

Tabular and Graphical Data C-6.27d. Cross sections for dissociative attachment of electrons to ${\rm CS}_2$.

$$e + cs_2 + cs^-$$

Electron Energy	Cross Section	Electron Fnergy	Cross Section	Electron Fnergy	Cross Section
eV	arbitrary	eV	arbitrary	eV	arbitrary
4.21	5.37	6.20	86.8	8.44	0.423
4.41	6.66	6.35	89.2	8.51	C.351
4.62	7.82	6.42	86.8	8.64	0.324
4.82	10.2	6.56	82.3	8.75	0.315
5.03	14.1	6.54	73.9	8.83	0.299
5.13	16.5	6.87	55.1	8.95	0.291
5.22	22.8	7.05	40.0	9.04	0.276
5.32	29.0	7.22	28.2	9.13	0.255
5.41	38.9	7.42	16.1	9.22	0.229
5.53	45.7	7.63	8.93	9.34	0.211
5.61	53.6	7.82	2.47	9.43	0.195
5.72	63.0	8.02	1.30	9.52	0.166
5.81	70.1	8.17	1.08	9.62	0.130
5.92	75.9	8.23	0.742		
6.00	82.3	8.32	0.599		

Cont. Next Column

Reference: K. A. G. MacNeil and J. C. J. Thynne, J. Phys. Chem. <u>73</u>, 2960 (1969)

Tabular and Graphical Data C-6.28a. Cross sections for dissociative attachment of electrons to ${\rm CF}_4.$

$$e + CF_4 + F^-$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10 ⁻¹⁹ cm ²	eV	10 ⁻¹⁹ cm ²	eV	10^{-19}cm^2
4.66	0.0572	6.77	4.84	8.86	1.22
4.76	0.0609	6.88	4.69	8.96	1.07
4.86	0.0851	6.97	4.62	9.07	0.940
4.96	0.119	7.06	4.58	9.16	0.849
5.06	0.206	7.17	4.58	9.26	0.756
5.15	0.432	7.27	4.58	9.35	0.653
5.24	0.826	7.37	4.54	9.45	0.555
5.35	1.38	7.48	4.45	9.56	0.462
5.46	2.06	7.58	4.32	9.65	0.388
5.55	2.77	7.67	4.18	9.75	0.319
5.66	3.34	7.78	3.98	9.84	0.275
5.77	4.21	7.87	3.77	9.94	0.259
5.88	4.88	7.97	3.51	10.1	0.254
5.98	5.43	8.06	3.24	10.2	0.235
6.07	5.82	8.16	2.92	10.2	0.202
6.16	5.99	8.28	2.61	10.4	0.159
6.27	5.94	8.36	2.31	10.5	0.119
6.38	5.76	8.47	2.06	10.6	0.063
6.47	5.49	8.58	1.82	10.7	0.025
6.56	5.23	8.67	1.62		
6.68	5.01	8.76	1.43		

Cont. Next Column

Reference: P. W Harland and J. L. Franklin, J. Chem. Phys. $\underline{61}$, $\underline{1621}$ $\underline{(1974)}$

Tabular and Graphical Data C-6.28b. Cross sections for dissociative attachment of electrons to ${\rm CF}_4.$

$$e + CF_4 \rightarrow CF_3^-$$

Electron Energy	Cross Section	Electron Energy	Cross Section	Electron Energy	Cross Section
eV	10^{-19}cm^2	eV	10 ⁻¹⁹ cm ²	eV	10^{-19}cm^2
5.40	0.162	6.99	3.94	8.63	0.388
5.50	0.165	7.10	3.72	8.74	0.339
5.60	0.177	7.21	3.42	8.83	0.314
5.70	0.214	7.30	3.08	8.92	0.274
5.82	0.293	7.40	2.74	9.02	0.263
5.92	0.453	7.50	2.34	9.12	0.247
6.01	0.679	7.59	1.93	9.23	0.227
6.11	1.02	7.71	1.53	9.32	0.194
6.20	1.46	7.80	1.21	9.43	0.184
6.29	1.94	7.91	0.979	9.53	0.175
6.40	2.44	10.8	0.806	9.63	0.162
6.50	2.87	8.12	0.687	9.72	0.158
6.60	3.22	8.22	0.603	9.82	0.152
6.70	3.56	8.32	0.534	9.92	0.142
6.80	3.85	8.42	0.502	10.0	0.140
6.89	4.00	8.52	0.446		

Cont. Next Column

Cont. Next Column

Reference: P. W. Harland and J. L. Franklin, J. Chem. Phys. <u>61</u>, 1621 (1974)

DISTRIBUTION

	No. of Copies
School of Physics	
Georgia Institute of Technology	
Attn: Dr. E. W. McDaniel	50
K. J. McCann	10
Dr. F. L. Eisele	10
E. W. Thomas	10
Dr. W. M. Pope	10
Dr. M. R. Flannery Atlanta, Georgia 30332	10
Joint Institute for Laboratory Astrophysics	
University of Colorado	
Attn: J. W. Gallagher	10
J. R. Rumble	10
E. C. Beaty Boulder, Colorado 80302	10
Eckerd College	
Attn: Dr. H. W. Ellis	10
St. Petersburg, Florida 33733	
Physics Department	
Georgia State University	
Attn: S. T. Manson	10
Atlanta, Georgia 30303	
Defense Documentation Center	
Cameron Station	
Alexandria, Virginia 22314	2
Director	
Ballistic Missile Defense Advanced Technology Center	
Attn: ATC, Mr. J. D. Carlson	1
ATC-0, Mr. W. Davies	1
Mr. G. Sanmann	1
Mr. J. Hagefstration	1 1
-T, Dr. E. Wilkinson -R, Mr. Don Schenk	1
P. O. Box 1500	
Huntsville, Alabama 35807	
Defense Advanced Research Project	
1400 Wilson Boulevard	
Attn: Director, Laser Division	1
Arlington, Virginia 22209	

	No. of Copies
Lawrence Livermore Laboratory P. O. Box 808	
Attn: Dr. Joe Fleck	1
Dr. John Emmet	1
Livermore, California 94550	
Los Alamos Scientific Laboratory	
P. O. Box 1663	
Attn: Dr. Keith Boyer (MS 550)	1
Los Alamos, New Mexico 87544	
Central Intelligence Agency	
Attn: Mr. Julian C. Nall (OSI/PSTD)	1
Washington, D.C. 20505	
US Army Research Office	
Attn: Dr. Robert Lontz	2
P. O. Box 12211	
Research Triangle Park, North Carolina 27709	
DRCPM-HEL, COL D. H. Lueders	1
HEL-T, Dr. C. J. Albers	1
DRSMI-LP, Mr. Voigt	1
DRDMI-T, Dr. Kobler	1
-H, Dr. Hallowes	1
-HS, Dr. Honeycutt	1
Mr. Cason	1
Dr. Roberts (Additional Distribution)	485
-NS	1
-TBD	3
-TI (Record Set)	1
(Reference Copy)	1