Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_pedagogic*

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{2}{5}\right)^{-1} = \frac{5}{2}, \ 2\frac{1}{2} = \frac{5}{2}$	3p
	$\left(\frac{2}{5}\right)^{-1} + 2\frac{1}{2} = \frac{5}{2} + \frac{5}{2} = 5$	2p
2.	$f(a) = a+1, \ f(1) = 2, \ f(5) = 6$	3 p
	$a+1=\frac{2+6}{2}$, de unde obţinem $a=3$	2p
3.	$2\sqrt{x-1} = 2$, de unde obținem $x-1=1$	3p
	x = 2, care convine	2p
4.	Mulțimea M are 2022 de elemente, deci sunt 2022 de cazuri posibile	2p
	Multiplii de 2 din M sunt $2\cdot 1$, $2\cdot 2$, $2\cdot 3$,, $2\cdot 1011$, deci sunt 1011 cazuri favorabile	3p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri favorabile}} = \frac{1}{2}$	
	$p - \frac{1}{\text{nr. cazuri posibile}} - \frac{1}{2}$	
5.	BC = 3, $AC = 4$, $AB = 5$	3p
	$BC^2 + AC^2 = AB^2$, deci triunghiul ABC este dreptunghic în C	2p
6.	$\frac{10}{\sin A} = 2.5$	3p
	$\sin A = 1$	2p

 $(-5) \circ (-6) = (-5) \cdot (-6) + 8(-5-6) + 56 =$ 1. **3**p = 30 - 88 + 56 = -2 $x \circ y = xy + 8x + 8y + 64 - 8 =$ **2p 3p** = x(y+8)+8(y+8)-8=(x+8)(y+8)-8, pentru orice numere reale x şi y **2p** $x \circ (-7) = (x+8)(-7+8) - 8 = x + 8 - 8 = x$, pentru orice număr real x **2p** $(-7) \circ x = (-7+8)(x+8) - 8 = x + 8 - 8 = x$, pentru orice număr real x, deci e = -7 este **3p** elementul neutru al legii de compoziție "o" $x \circ (x+2) = (x+8)(x+10) - 8$ **2p 3**p $(x+8)(x+10)-8 \le -8 \iff (x+8)(x+10) \le 0$, de unde obţinem $x \in [-10,-8]$ $2^{x} \circ (-7) = 2^{x}$ 5. **3**p

 $2^x = 2^4$, de unde obtinem x = 4

 $a \circ 1 = 9a + 64$, $a \circ 2 = 10a + 72$

2p

3p

2p

(30 de puncte)

SUBIECTUL al II-lea

18a + 128 = 11a + 72, de unde obtinem a = -8

SUBIECTUL al III-lea (30 de		uncte)
1.	$\det A = \begin{vmatrix} 0 & 3 \\ 2 & 1 \end{vmatrix} = 0 \cdot 1 - 2 \cdot 3 =$	3p
	=0-6=-6	2 p
2.	$M(x) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 3x \\ 2x & x \end{pmatrix} =$	3р
	$= \begin{pmatrix} 1 & 3x \\ 2x & x+1 \end{pmatrix}, \text{ pentru orice număr real } x$	2p
3.	$M(-1) \cdot M(1) = \begin{pmatrix} -5 & -3 \\ -2 & -6 \end{pmatrix}, B = (-1) \cdot M(-1) \cdot M(1) = \begin{pmatrix} 5 & 3 \\ 2 & 6 \end{pmatrix}$	3p
	5+3+2+6=16, care este pătratul numărului natural 4	2 p
4.		2p
	$6x^2 - x - 1 = 0$, deci $x = -\frac{1}{3}$ sau $x = \frac{1}{2}$	3 p
5.	$C = \begin{pmatrix} 0 & -6 \\ -4 & -2 \end{pmatrix}$	3p
	$\det C = -24 \neq 0$, deci matricea C este inversabilă	2 p
6.	$aM(b) + bM(a) = \begin{pmatrix} a & 3ab \\ 2ab & ab+a \end{pmatrix} + \begin{pmatrix} b & 3ab \\ 2ab & ab+b \end{pmatrix} = \begin{pmatrix} a+b & 6ab \\ 4ab & 2ab+a+b \end{pmatrix}$	2p
	$ \begin{pmatrix} a+b & 6ab \\ 4ab & 2ab+a+b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ de unde obținem perechile de numere naturale } (0,1) \text{ și } (1,0) $	3р