The RKHSs underlying linear SDE Estimation, Kalman filtering and their relation to optimal control

Pierre-Cyril Aubin joint work with Alain Bensoussan (ex-INRIA, UT Dallas & CU Hong Kong)

Postdoc at INRIA Paris - SIERRA

Retraite SIERRA/WILLOW, October 2022
Paper accepted at *Pure and Applied Functional Analysis* (available on arXiv)

#1 Where's Waldo/Charlie the kernel? For optimal control

Time-varying state-constrained LQ optimal control

$$\begin{aligned} & \underset{x(\cdot),u(\cdot)}{\min} & g(x(T)) \\ & + \left\langle \Pi_0^{-1} x(t_0), x(t_0) \right\rangle + \left\langle \Sigma_T x(T), x(T) \right\rangle \\ & + \int_{t_0}^T \|u(\tau)\|^2 d\tau + \int_{t_0}^T \left\langle H^* R^{-1} H x(\tau), x(\tau) \right\rangle d\tau \\ & \text{s.t.} & \frac{d}{d\tau} x = F x(\tau) + G Q^{\frac{1}{2}} u(\tau), \text{ a.e. in } [t_0, T] \end{aligned}$$

What's the kernel?

#1 Where's Waldo/Charlie the kernel? For optimal control

Time-varying state-constrained LQ optimal control

$$\min_{x(\cdot),u(\cdot)} g(x(T)) \rightarrow L(x(t_j)_{j\in[J]})
+ \left\langle \Pi_0^{-1} x(t_0), x(t_0) \right\rangle + \left\langle \Sigma_T x(T), x(T) \right\rangle
+ \int_{t_0}^T \|u(\tau)\|^2 d\tau + \int_{t_0}^T \left\langle H^* R^{-1} H x(\tau), x(\tau) \right\rangle d\tau \rightarrow \|x(\cdot)\|_{\mathcal{S}^x_{[t_0,T]}}^2
\text{s.t.} \quad \frac{d}{d\tau} x = F x(\tau) + G Q^{\frac{1}{2}} u(\tau), \text{ a.e. in } [t_0, T] \rightarrow x(\cdot) \in \mathcal{S}^x_{[t_0,T]}$$

What's the kernel? It is the one describing the Sobolev-like space of trajectories

$$K(s,t|T) = \Phi_{F,\Sigma}(s,t_0)(\Pi_0^{-1} + \Sigma(t_0))^{-1}\Phi_{F,\Sigma}^*(t,t_0) + \int_{t_0}^{\min(s,t)} \Phi_{F,\Sigma}(s,\tau)GQG^*\Phi_{F,\Sigma}^*(t,\tau)d\tau \quad (1)$$

#2 Where's Waldo/Charlie the kernel? For Kalman estimation

Continuous-time estimation problem (smoothing/filtering) over GPs with linear SDE

dx(t) = Fx(t)dt + Gdw(t). $x(t_0) = \mathcal{E}$. dy(t) = Hx(t)dt + db(t). $v(t_0) = 0.$

Problem: Estimate
$$x(s)$$
 with the σ -algebra $\mathcal{Y}^T = \sigma(y(\tau), 0 \le \tau \le T)$ by (linear) minimum mean square estimator, a k a, the minimum variance linear estimator

(2)

(3)

mean square estimator, a.k.a. the minimum variance linear estimator

$$\hat{x}(s|T) = E[x(s)|\mathcal{Y}^{T}] = x_{S}(s|T) := \bar{x}(s) + \int_{t_{0}}^{T} S_{s}(t|T)dy(t). \tag{4}$$

$$F_{c}(s|T) := \chi(s) - \chi_{c}(s|T) = \chi(s) - \int_{-T}^{T} S_{c}(t|T) dy(t)$$
(5)

$$\epsilon_S(s|T) := x(s) - x_S(s|T) = x(s) - \int_{t_0}^T S_s(t|T) dy(t). \tag{5}$$

$$\epsilon_{S}(s|T) := x(s) - x_{S}(s|T) = x(s) - \int_{t_{0}}^{T} S_{s}(t|T)dy(t).$$
 (9)

$$\int_{t_0} s_s(t|t) ds(t).$$

$$\hat{S}_{\varepsilon}(\cdot|T) \in \operatorname{argmin} \Gamma_{S}(s|T) = \mathbb{E}[\epsilon_{S}(s|T)(\epsilon_{S}(s|T))^{*}].$$

$$\hat{S}_{s}(\cdot|T) \in \operatorname*{argmin}_{S}(s|T) = \mathbb{E}[\epsilon_{S}(s|T)(\epsilon_{S}(s|T))^{*}]. \tag{6}$$

$$S_s(\cdot|T)\in \operatorname*{argmin}\Gamma_S(s|T)=\mathbb{E}[\epsilon_S(s|T)(\epsilon_S(s|T))^*]. \ S(\cdot|T)$$

$$S_s(\cdot|T) \in \underset{S(\cdot|T)}{\operatorname{argmin}} S(s|T) = \mathbb{E}[\epsilon_S(s|T)(\epsilon_S(s|T))].$$

$$S(\cdot|T)$$

$$S(\cdot|I)$$

he kernel is the covariance of
$$\epsilon_0(|T|)$$
 and we have $\hat{S}(t|T) - K(s,t|T)H^*R^{-1}$

The kernel is the covariance of
$$\epsilon_{\hat{S}_s}(\cdot|T)$$
 and we have $\hat{S}_s(t|T) = K(s,t|T)H^*R^{-1}$,

 $K(s,t|T) = \mathbb{E}[\epsilon_{\hat{\mathsf{c}}}(s|T)(\epsilon_{\hat{\mathsf{c}}}(t|T))^*] \in \mathcal{L}(\mathbb{R}^{n,*},\mathbb{R}^n)$

Reproducing kernel Hilbert spaces (RKHS)

A RKHS $(\mathcal{H}_K, \langle \cdot, \cdot \rangle_{\mathcal{H}_K})$ is a Hilbert space of real-valued functions over a set \mathcal{T} if one of the following equivalent conditions is satisfied (Aronszajn's theorem)

 $\exists k : \mathfrak{T} \times \mathfrak{T} \to \mathbb{R} \text{ s.t. } k_t(\cdot) = k(\cdot, t) \in \mathcal{H}_K \text{ and } F = \langle f(\cdot), k_t(\cdot) \rangle_{\mathcal{H}_K} \text{ for all } t \in \mathfrak{T} \text{ and } f \in \mathcal{H}_K \text{ (reproducing property)}$

k is s.t. $\mathbf{G} = [k(t_i, t_j)]_{i,j=1}^n \succcurlyeq 0$ and $\mathcal{H}_K := \overline{\text{span}(\{k_t(\cdot)\}_{t \in \mathcal{T}})}$, i.e. the completion for the pre-scalar product $\langle k_t(\cdot), k_s(\cdot) \rangle_{k,0} = k(t,s)$

Loeve's theorem: a kernel is p.s.d. if and only if it is the (proper) covariance of second-order stochastic process

Two essential tools for computations

Representer Theorem

Let $L: \mathbb{R}^N \to \mathbb{R} \cup \{\infty\}$, strictly increasing $\Omega: \mathbb{R}_+ \to \mathbb{R}$, and

$$ar{f} \in \operatorname*{argmin}_{f \in \mathcal{H}_K} L\left((f(t_n))_{n \in [N]} \right) + \Omega\left(\|f\|_k \right)$$

Then $\exists (a_n)_{n \in [N]} \in \mathbb{R}^N$ s.t. $\overline{f}(\cdot) = \sum_{n \in [N]} a_n k(\cdot, t_n)$

 \hookrightarrow Optimal solutions lie in a finite dimensional subspace of $\mathcal{H}_K.$

Finite number of evaluations \implies finite number of coefficients

Kernel trick

$$\langle \sum_{n \in [N]} a_n k(\cdot, t_n), \sum_{m \in [M]} b_m k(\cdot, s_m) \rangle_{\mathcal{H}_K} = \sum_{n \in [N]} \sum_{m \in [M]} a_n b_m k(t_n, s_m)$$

 \hookrightarrow On this finite dimensional subspace, no need to know $(\mathcal{H}_K, \langle \cdot, \cdot \rangle_{\mathcal{H}_K})$.

In a nutshell

• finding an RKHS somewhere allows for simpler computations

• in LQ optimal control, RKHSs come from vector spaces of trajectories

• in linear estimation, kernels come from covariances of optimal errors

A detour through estimators - stochastic versions

$$\min_{\hat{X} \in L^2(\Omega \times \mathbb{T}), \, \Phi \text{ meas.}, \, \hat{X} = \Phi(Y)} \mathbb{E}((X - \hat{X})^\top (X - \hat{X})). \tag{MMSE}$$

$$\min_{\hat{X} \in L^2(\Omega \times \mathbb{T}), \, S \in \mathcal{L}(L^2, L^2), \, \hat{X} = \mathcal{S}Y} \mathbb{E}((X - \hat{X})^\top (X - \hat{X})). \tag{MVLE}$$

Gaussian process regression for real-valued x introduces the canonical congruence ψ_Y between Y and its RKHS \mathcal{H}_Y , i.e. $\psi_Y(v^\top Y_t)(s) = \mathbb{E}[Y_s Y_t^\top]v$ for all $v \in \mathbb{R}^m$,

$$\min_{\hat{X} \in L^2(\Omega \times \mathfrak{I}), \, g \in \mathcal{H}_Y, \, \hat{X} = \psi_Y^{-1}(g)} \mathbb{E}((X - \hat{X})^\top (X - \hat{X})). \tag{\mathsf{GP-reg}}$$

By convex duality, introducing a process Λ which acts as a Lagrange multiplier,

$$\max_{\boldsymbol{\Lambda} \in L^2(\Omega \times \mathfrak{I}, \mathbb{R}^{n,*})} \min_{\hat{X} \in L^2(\Omega \times \mathfrak{I}), \, \mathcal{S} \in \mathcal{L}(L^2, L^2)} \mathbb{E}((X - \hat{X})^\top (X - \hat{X})) + 2 \left\langle \boldsymbol{\Lambda}, \hat{X} - \mathcal{S} \boldsymbol{Y} \right\rangle_{L^2(\Omega \times \mathfrak{I}, \mathbb{R}^n)}.$$

Minimizing over S imposes $\Lambda \in \bar{\mathcal{L}}(Y)^{\perp}$, the orthogonal space of $\bar{\mathcal{L}}(Y)$ in $L^2(\Omega \times \mathfrak{T}, \mathbb{R}^n)$. Minimizing over \hat{X} gives $\hat{X}^{\top} = X^{\top} - \hat{\Lambda}$ so

$$\min_{\Lambda \in \mathcal{L}(Y)^{\perp}} \mathbb{E}((X^{\top} - \Lambda)^{\top}(X^{\top} - \Lambda)). \tag{MVLE-dual}$$

A detour through estimators - the deterministic viewpoint

Note that for any deterministic $\bar{\lambda}(\cdot) \in L^2([t_0, T], \mathbb{R}^{n,*})$, $\hat{\mathcal{S}}$ also minimizes

$$\min_{\hat{X} \in L^2(\Omega \times \mathfrak{I}), \, \mathcal{S} \in \mathcal{L}(L^2, L^2), \, \hat{X} = \mathcal{S}Y} \mathbb{E}(\|\bar{\lambda}(\cdot)^\top (X - \hat{X})\|_{L^2}^2).$$

For $Y = \mathcal{H}X + Z$, defining the deterministic $v(\cdot) = \mathcal{S}^{\top}\bar{\lambda}(\cdot)$, $\hat{\mathcal{S}}$ minimizes a "control" problem

$$\min_{\mathcal{S} \in \mathcal{L}(L^{2}, L^{2}), \ v(\cdot) = \mathcal{S}^{\top} \bar{\lambda}(\cdot)} \underbrace{\left\langle \bar{\lambda}(\cdot), \mathcal{C}_{X} \bar{\lambda}(\cdot) \right\rangle_{L^{2}} + \left\langle v(\cdot), \mathcal{C}_{Y} v(\cdot) \right\rangle_{L^{2}} - 2 \left\langle \bar{\lambda}(\cdot), \mathcal{C}_{XY} v(\cdot) \right\rangle_{L^{2}}}_{\left\langle \bar{\lambda}(\cdot) - \mathcal{H}^{\top} v(\cdot), \mathcal{C}_{X}(\bar{\lambda}(\cdot) - \mathcal{H}^{\top} v(\cdot)) \right\rangle_{L^{2}} + \left\langle v(\cdot), \mathcal{R} v(\cdot) \right\rangle_{L^{2}}}_{}. \quad (\text{MVLE-det})$$

Expressing the maximum log-likelihood estimator for a realization $y(\cdot)$ of Y as

$$\min_{\hat{x}(\cdot) \in L^2(\mathcal{T}, \mathbb{R}^n)} \underbrace{\left\langle \hat{x}(\cdot) - \mathcal{C}_{XY} \mathcal{C}_Y^{-1} y(\cdot), \mathcal{C}_\epsilon^{-1}(\hat{x}(\cdot) - \mathcal{C}_{XY} \mathcal{C}_Y^{-1} y(\cdot)) \right\rangle_{L^2} + \left\langle y(\cdot), \mathcal{C}_Y^{-1} y(\cdot) \right\rangle_{L^2}}_{\left\langle \hat{x}(\cdot), \mathcal{C}_X^{-1} \hat{x}(\cdot) \right\rangle_{L^2} + \left\langle y(\cdot) - \mathcal{H} \hat{x}(\cdot), \mathcal{R}^{-1}(y(\cdot) - \mathcal{H} \hat{x}(\cdot)) \right\rangle_{L^2}}. \quad \text{(LSE)}$$

Justifying the (dual) optimal control

We start by expressing $\left\langle \Gamma_S(s|T)\bar{\lambda},\bar{\lambda}\right\rangle$ more explicitly,

$$\left\langle \bar{\lambda}, \epsilon_{\hat{S}_{s}}(s|T) \right\rangle = \left\langle \bar{\lambda}, x(s) \right\rangle - \int_{t_{0}}^{T} \left\langle S_{s}^{*}(t|T)\bar{\lambda}, dy(t) \right\rangle = \left\langle \bar{\lambda}, x(s) \right\rangle - \int_{t_{0}}^{T} \left\langle S_{s}^{*}(t|T)\bar{\lambda}, Hx(t)dt + db(t) \right\rangle.$$

We seek an expression where x does not appear. We introduce the adjoint equation over λ_s

$$-\frac{d\lambda_{s}}{dt} = F^{*}\lambda_{s}(t) - H^{*}S_{s}^{*}(t|T)\bar{\lambda}, \quad \lambda_{s}(T) = \begin{vmatrix} 0 & \text{if } s < T \\ \bar{\lambda} & \text{if } s = T \end{vmatrix}, \quad \lambda_{s}(s) - \lambda_{s}(s^{+}) = \bar{\lambda}, \text{if } s < T,$$

$$(8)$$

Then a simple calculation shows that $\left\langle \bar{\lambda}, \epsilon_{\hat{S}_s}(s|T) \right\rangle = ...$ integration by parts ...

$$\left\langle \Gamma_{S}(s|T)\bar{\lambda}, \bar{\lambda} \right\rangle = \left\langle \Pi_{0}\lambda_{s}(t_{0}), \lambda_{s}(t_{0}) \right\rangle + \int_{t_{0}}^{T} \left\langle GQG^{*}\lambda_{s}(t), \lambda_{s}(t) \right\rangle dt$$

$$+ \int_{t_{0}}^{T} \left\langle RS_{s}^{*}(t|T)\bar{\lambda}, S_{s}^{*}(t|T)\bar{\lambda} \right\rangle dt$$
 (9)

A two-point boundary problem

More generally, beyond linear feedbacks $(S_s^*(\cdot|T)\bar{\lambda})$, for a general control input $v(\cdot)$ minimize

$$-rac{d\lambda_s}{dt} = F^*\lambda_s(t) + H^*v(t), \ \lambda_s(T) = igg| egin{array}{ll} 0 & ext{if } s < T \ ar{\lambda} & ext{if } s = T \end{array}, \quad \lambda_s(s) - \lambda_s(s^+) = ar{\lambda}, ext{if } s < T; \ J(v(\cdot)) = \langle \Pi_0\lambda_s(t_0), \lambda_s(t_0)
angle + \int_{t_0}^T \langle GQG^*\lambda_s(t), \lambda_s(t)
angle \, dt + \int_{t_0}^T \langle Rv(t), v(t)
angle \, dt. \end{array}$$

We get $\hat{S}_s^*(t|T)\bar{\lambda} = \hat{v}_s(t) = R^{-1}H\hat{\gamma}_s(t)$ and the Hamiltonian system:

$$egin{aligned} rac{d\hat{\gamma}_s}{dt} &= F\hat{\gamma}_s(t) - GQG^*\hat{\lambda}_s(t); \ -rac{d\hat{\lambda}_s}{dt} &= F^*\hat{\lambda}_s(t) + H^*R^{-1}H\hat{\gamma}_s(t) \ \hat{\gamma}_s(t_0) &= -\Pi_0\hat{\lambda}_s(t_0), \quad \lambda_s(T) &= \left| egin{array}{ccc} 0 & ext{if } s < T \ ar{\lambda} & ext{if } s = T \end{array}
ight., \quad \lambda_s(s) - \lambda_s(s^+) &= ar{\lambda}, ext{if } s < T. \end{aligned}$$

$$\frac{d\hat{\mu}}{dt} = F\hat{\mu}(t) - GQG^*\hat{\nu}(t) + I_{\mu}(t); \qquad -\frac{d\hat{\nu}}{dt} = F^*\hat{\nu}(t) + H^*R^{-1}H\hat{\mu}(t) - I_{\nu}(t)
\hat{\mu}(t_0) = -\Pi_0\hat{\nu}(t_0), \qquad \hat{\nu}(T) = \Sigma_T\hat{\mu}(T).$$

Kernels and Riccati equations

$$\frac{d\hat{\mu}}{dt} = F\hat{\mu}(t) - GQG^*\hat{\nu}(t) + I_{\mu}(t); \qquad -\frac{d\hat{\nu}}{dt} = F^*\hat{\nu}(t) + H^*R^{-1}H\hat{\mu}(t) - I_{\nu}(t)$$
$$\hat{\mu}(t_0) = -\Pi_0\hat{\nu}(t_0), \qquad \hat{\nu}(T) = \Sigma_T\hat{\mu}(T).$$

Set $\hat{\mu}(t) = -\Pi(t)\hat{\nu}(t)$ and $\hat{\nu}(t) = \Sigma(t)\hat{\mu}(t)$? Such as:

$$\begin{split} &-\frac{d}{dt}\Sigma = \Sigma(t)F + F^*\Sigma(t) - \Sigma(t)GQG^*\Sigma(t) + H^*R^{-1}H, & \Sigma(T) = \Sigma_T; \\ &\frac{d}{dt}\Pi = F\Pi(t) + \Pi(t)F^* - \Pi(t)H^*R^{-1}H\Pi(t) + GQG^*, & \Pi(t_0) = \Pi_0. \end{split}$$

Look for kernels K and Λ such that

$$\hat{\mu}(s) = \int_t^T K(s,t|T) l_{\nu}(t) dt \quad \text{ for } l_{\mu}(\cdot) \equiv 0, \ \hat{\nu}(s) = \int_t^T \Lambda(s,t|T) l_{\mu}(t) dt \quad \text{for } l_{\nu}(\cdot) \equiv 0.$$

A primal space of trajectories

Introduce semigroup of $F - GQG^*\Sigma(t)$ denoted $\Phi_{F,\Sigma}(s,t)$

$$\frac{d}{d\tau} \Phi_{F,\Sigma}(\tau,t) = (F - GQG^*\Sigma(\tau)) \Phi_{F,\Sigma}(\tau,t), \qquad \Phi_{F,\Sigma}(t,t) = \operatorname{Id}$$

$$\mathcal{S}^{\mathsf{x}}_{[t_0,T]} = \{ \mathsf{x}(\cdot) \in H^1 \mid \exists \ u(\cdot) \in L^2 \ \text{ s.t. } \frac{d}{d\tau} \mathsf{x} = F\mathsf{x}(\tau) + GQ^{\frac{1}{2}}u(\tau) \}$$

with square-norm

$$\|x(\cdot)\|_{\mathcal{S}^{ imes}_{[t_0,\,T]}}^2 = \left\langle \mathsf{\Pi}_0^{-1}x(t_0),x(t_0) \right
angle + \left\langle \Sigma_{\mathcal{T}}x(\mathcal{T}),x(\mathcal{T})
ight
angle \\ + \int_{t_0}^{\mathcal{T}} \|u(au)\|^2 d au + \int_{t_0}^{\mathcal{T}} \left\langle H^*R^{-1}Hx(au),x(au)
ight
angle d au$$

has kernel

$$egin{aligned} \mathcal{K}(s,t|T) &= \Phi_{F,\Sigma}(s,t_0) (\Pi_0^{-1} + \Sigma(t_0))^{-1} \Phi_{F,\Sigma}^*(t,t_0) \ &+ \int_{t_0}^{\min(s,t)} \Phi_{F,\Sigma}(s, au) GQG^* \Phi_{F,\Sigma}^*(t, au) d au \end{aligned}$$

A dual space of information vectors

Introduce semigroup of $F - \Pi(s)H^*R^{-1}H$, denoted $\Phi_{F,\Pi}(s,t)$)

$$rac{d}{d au}\Phi_{F,\Pi}(au,t)=(F-\Pi(au)H^*R^{-1}H)\Phi_{F,\Pi}(au,t),$$

$$\mathcal{S}^{\lambda}_{[t_0,T]}=\{\lambda(\cdot)\in H^1\,|\,v(\cdot)\in L^2\,\, ext{ s.t. } -rac{d}{dt}\lambda(t)=F^*\lambda(t)+H^*v(t)\}$$

with square-norm

$$\|\lambda(\cdot)\|_{\mathcal{S}^{\lambda}_{[t_0,T]}}^2 = \langle \Pi_0 \lambda(t_0), \lambda(t_0) \rangle + \left\langle \Sigma_{\mathcal{T}}^{-1} \lambda(\mathcal{T}), \lambda(\mathcal{T}) \right\rangle$$

$$+\int_{t_0}^T \left\langle \mathsf{G}\mathsf{Q}\mathsf{G}^*\lambda(t),\lambda(t)
ight
angle\,dt + \int_{t_0}^T \left\langle \mathsf{R}\mathsf{v}(t),\mathsf{v}(t)
ight
angle\,dt$$

has kernel

$$egin{aligned} \Lambda(s,t|T) &= \Phi_{F,\Pi}^*(T,s)(\Sigma_T^{-1}+\Pi(T))^{-1}\Phi_{F,\Pi}(T,t) \ &+ \int_{\mathsf{max}(s,t)}^T \Phi_{F,\Pi}^*(au,s)H^*R^{-1}H\Phi_{F,\Pi}(au,t)d au \end{aligned}$$

 $\Phi_{F,\Pi}(t,t) = \mathrm{Id};$

Dual deterministic problems

$$\begin{split} L_{x}(x(\cdot)) &:= \int_{t_{0}}^{T} \|y(t) - Hx(t)\|_{R^{-1}}^{2} dt + \|G^{\ominus}\left(\frac{d}{dt}x - Fx(t)\right)\|_{Q^{\ominus}}^{2} dt \\ &+ \left\langle \Pi_{0}^{\ominus}x(t_{0}), x(t_{0}) \right\rangle + \left\langle \Sigma_{T}x(T), x(T) \right\rangle \\ \int_{t_{0}}^{T} K(\cdot, t|T) H^{*}R^{-1}y(t) dt \\ &= \underset{x(\cdot) \in \mathcal{S}_{[t_{0}, T]}^{x}}{\operatorname{argmin}} L_{x}(x(\cdot)) = \|R^{-1/2}y(\cdot)\|_{L^{2}}^{2} + \|x(\cdot)\|_{\mathcal{S}_{[t_{0}, T]}^{x}}^{2} - 2\left\langle H^{*}(\cdot)R^{-1}(\cdot)y(\cdot), x(\cdot) \right\rangle_{L^{2}([t_{0}, T])} \end{split}$$

 $\overline{\mathsf{Set}\; R^{-1}y(t) = \mathsf{proj}^{\|\cdot\|_R}_{\mathsf{Im}\; H}(y(t)) \in R^{-1}\,\mathsf{Im}\; H \,+\, \mathsf{proj}^{\|\cdot\|_R}_{\mathsf{Ker}\; H^*(t)}(y(t)) \in \mathsf{Ker}\; H^*(t).}$

$$\begin{split} \min_{\lambda(\cdot) \in \mathcal{S}_{[t_0,T]}^{\lambda}} & \|\lambda(\cdot)\|_{\mathcal{S}_{[t_0,T]}^{\lambda}}^2 - 2\int_{t_0}^{T} \left\langle R \operatorname{proj}_{\operatorname{Im} H}^{\|\cdot\|_R}(y(t)), v(t) \right\rangle dt - \|R^{1/2} \operatorname{proj}_{\operatorname{Ker} H^*(\cdot)}^{\|\cdot\|_R}(y(\cdot))\|_{L^2}^2 \\ &= \int_{t_0}^{T} \|\operatorname{proj}_{\operatorname{Im} H}^{\|\cdot\|_R}(y(t)) - v(t)\|_R^2 dt + \int_{t_0}^{T} \left\langle GQG^*\lambda(t), \lambda(t) \right\rangle dt + \left\langle \Pi_0\lambda(t_0), \lambda(t_0) \right\rangle \\ &+ \left\langle \Sigma_T^{\ominus}\lambda(T), \lambda(T) \right\rangle - \|R^{-1/2}y(\cdot)\|_{L^2}^2. \end{split}$$

Summary

	Stochastic problems	Deterministic problems
(0	(i) Given Gaussian processes $(X_t)_{t\in[0,T]}$, $(Y_t)_{t\in[0,T]}$	(ii) Given RKHS $\mathcal{S}_{[t_0,T]}^x$ with kernel K , observations $y(\cdot)$
ple	Solve linear MMSE i.e. (MVLE)	Solve primal optimal control problem over trajectories
primal variables	$oxed{min_{\hat{X} \in \mathcal{L}(Y)} \mathbb{E}((X - \hat{X})^ op (X - \hat{X}))}$	$\min_{x(\cdot) \in \mathcal{S}_{[t_0,T]}^{\times}} \ x(\cdot)\ _{\mathcal{S}_{[t_0,T]}^{\times}}^2 - 2 \left\langle H^* R^{-1} y(\cdot), x(\cdot) \right\rangle_{L^2([t_0,T])}$
prii	Optimum: $\hat{X} = \mathbb{E}[X Y] = \hat{S}Y$	Optimum: $\hat{x}(\cdot) = \int_{t_0}^T K(\cdot, t T) H^* R^{-1} y(t) dt$ (iv) Given RKHS $\mathcal{S}_{[t_0, T]}^{\lambda}$ with kernel Λ , observations $y(\cdot)$
S	(iii) Given Gaussian processes $(X_t^{\top})_{t \in [0,T]}$, $(Y_t)_{t \in [0,T]}$	(iv) Given RKHS $\mathcal{S}_{[t_0,T]}^{\overline{\lambda}}$ with kernel Λ , observations $y(\cdot)$
ple	Solve over $(\Lambda_t)_{t \in [0,T]}$ (MVLE-dual)	Solve dual optimal control problem over adjoint/information
dual variables	$\left \ \min_{\Lambda \in \mathcal{L}(Y)^{\perp}} \mathbb{E}((X^{ op} - \Lambda)^{ op}(X^{ op} - \Lambda)) ight.$	$\left \min_{\lambda(\cdot) \in \mathcal{S}^{\lambda}_{[t_0,T]}} \ \lambda(\cdot)\ ^2_{\mathcal{S}^{\lambda}_{[t_0,T]}} - 2 \int_{t_0}^{T} \left\langle R \operatorname{proj}_{\operatorname{Im} H}^{\ \cdot\ _{R}}(y(t)), v(t) \right\rangle dt \right $
þ	Optimum: $\hat{X}^{ op} = X^{ op} - \hat{\Lambda}$	Optimum: $\hat{v}(t) = -R^{-1}H\hat{x}(t) + \operatorname{proj}_{\operatorname{Im} H}^{\ \cdot\ _R}(y(t))$

Table: Vertical: permute min-max into max-min. Horizontal: set dw(t) = u(t)dt.

Kernels of LQ optimal control come from Hilbertian vector spaces of trajectories. For estimation problems, they are covariances of GPs. The "Dual", deterministic and stochastic, nature of kernels leads to "duality" between optimal control and estimation in the LQ case.

Conclusion

In a nutshell

- finding an RKHS somewhere allows for simpler computations
- in LQ optimal control, RKHSs come from vector spaces of trajectories
- in linear estimation, kernels come from covariances of optimal errors

Objective:

- re-read known optimal control/estimation problems through kernel lens
- use nonlinear embeddings on the state, apply it to stochastic optimal control, and optimization over measures