

Systèmes optiques à face sphérique : Miroires sphériques et lentilles minces

1. Miroires sphériques

1.1. Définition

Ces miroirs possèdent des surfaces réfléchissantes et sont constitués d'une partie de sphère .

Ces miroirs sont de deux formes :

Miroirs sphériques concaves : Tel que la surface réfléchissante est tournée vers l'intérieur

Miroirs sphériques convexes : Tel que la surface réfléchissante est tournée vers l'extérieur

On caractérise un miroir sphérique par :

C: centre miroir

S: sommet du miroir

CS = R: rayon de courbure du miroir

r : rayon d'ouverture β : angle d'ouverture

1.2. Stigmatisme rigoureux

MA

Loi de sinus (Démonstration)

dans le triangle IAC :
$$\frac{\sin i}{\overline{AC}} = \frac{\sin \alpha}{\overline{CI}}$$

dans le triangle CA'I :
$$\frac{\sin i}{\overline{CA'}} = \frac{\sin \alpha'}{\overline{CI}}$$

Tel que
$$\alpha + i + \pi - \omega = \pi$$
 donc $\alpha = \omega - i$

et
$$\omega$$
 + i + π - α' = π donc α' = ω + i

$$\frac{\sin i}{\overline{CA}} = -\frac{\sin(\omega - i)}{\overline{CI}} = -\frac{\sin \omega \cdot \cos i - \cos \omega \cdot \sin i}{\overline{CI}}$$
 (1)

$$\frac{\sin i}{CA'} = -\frac{\sin(\omega + i)}{\overline{CI}} = \frac{\sin \omega \cdot \cos i + \cos \omega \cdot \sin i}{\overline{CI}}$$
 (2)

(1)+(2) :
$$\sin i \left[\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} \right] = \frac{2\sin i \cdot \cos \omega}{\overline{CI}}$$

$$\Rightarrow \frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2\cos\omega}{\overline{CI}}$$

 $\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2}{\overline{CI}}$: C'est la relation de conjugaison d'un miroir sphérique dans les conditions d'approximation de Gauss

1.3. Etude du miroir sphérique dans les conditions d'approximation de Gauss

Foyers et plans focaux

Par définition le foyer objet F à son image à l'infinies

$$\frac{1}{\overline{CF}} + \frac{1}{\overline{CF'}} = \frac{2}{\overline{CI}} \; ; \frac{1}{\overline{CF}} + \frac{1}{\infty} = \frac{2}{\overline{CI}} \; \Rightarrow \overline{CF} \; = \frac{\overline{CI}}{2}$$

Le foyer image F' est l'image d'un point provenant de l'infinie

$$\frac{1}{\overline{CF}} + \frac{1}{\overline{CF'}} = \frac{2}{\overline{CI}} ; \frac{1}{\overline{CF'}} + \frac{1}{\infty} = \frac{2}{\overline{CI}} \Rightarrow \overline{CF'} = \frac{\overline{CI}}{2}$$

$$\Rightarrow \overline{CF} = \overline{CF}'$$
 et donc $F \equiv F'$

 $\overline{SF} = f$: La distance focale objet

$$\overline{SF'} = f'$$
: La distance focale image

Pour le miroir sphérique :
$$f = f'$$

Le plan focale objet est un plan perpendiculaire à l'axe optique et qui passe par le foyer objet .

Le plan focale image est un plan perpendiculaire à l'axe optique et qui passe par le foyer image .

Pour un miroir sphérique, les plans focaux sont confondus.

Construction de l'image d'un point a situé sur l'axe optique

Image d'un point étendu \overline{AB} \perp à l'axe optique

$$\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2}{\overline{CS}} \implies \frac{\overline{CA} + \overline{CA'}}{\overline{CA} \cdot \overline{CA'}} = \frac{2}{\overline{CS}}$$

 $\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}}$: C'est la relation de conjugaison d'un miroir sphérique avec origine au sommet

Le grandissement (agrandissement) :

$$g = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}} = -\frac{\overline{SA'}}{\overline{SA}} = \frac{\overline{FS}}{\overline{FA}} = \frac{\overline{FA'}}{\overline{FS}}$$
$$\overline{FS}^2 = \overline{FA}.\overline{FA'} = f^2 > 0$$

2. Lentilles minces sphériques

MA

Une lentille est formé par l'association de deux dioptres limitant un milieu d'indice n d'épaisseur e très faible

On distingues deux types de lentilles minces :

2.1. Lentille mince convergente

 $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$: C'est la relation de conjugaison d'une lentille mince convergente

Tel que $\overline{\mathit{OF}'} = f$ ' : distance focale de f ; $\overline{\mathit{OF}} = f = -\overline{\mathit{OF}'} \Rightarrow f = -f$ '

2.2. Lentille mince divergente

Les foyers d'une lentille mince convergente sont réels Les foyers d'une lentille mince divergente sont virtuels

Remarque : $V = \frac{1}{f'}$ C'est la convergence

Construction de l'image d'un objet étendu \overline{AB} à travers une lentille mince

tg
$$\alpha = \frac{\overline{AB}}{\overline{AO}} = \frac{\overline{B'A'}}{\overline{OA'}}$$
, tg $\beta = \frac{\overline{AB}}{\overline{AF}} = \frac{\overline{B'A'}}{\overline{FO}}$, tg $\Theta = \frac{\overline{AB}}{\overline{AF'}} = \frac{\overline{B'A'}}{\overline{F'A'}}$

$$g = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = \frac{\overline{OF}}{\overline{AF}} = \frac{\overline{A'F'}}{\overline{OF'}}$$

On a : un objet réel une image virtuelle plus petite que l'objet une image droite