Assignment 1 - Introduction to Algorithms

A20436467 - Chirag Bansali A20447312 - Shantanoo Sinha A20452776 - Geethanjali Pinnaka A20445645 - Sainath Macharla

exponential - 22n, 2n, non, 2n, non Date:	(/ /
$\rightarrow 2^{lqn} = n$	
lat u - 9 lan	
lan	
19 y = 19 Z	
$\frac{lgy = lgnlg2}{}$	
lg y = lg n	
y=n	
$\rightarrow \eta^{(g,g)} = (lan)^{(g,n)}$	
lan	
$\rightarrow \gamma$	şi
$\alpha = n^{-\alpha}$	1
applying log on both sides	14
))
1 Jan	4 21 1,5
lgx = lgnton	1
· ·	T v
= Ignxlgn	n si
ig vi	
7 -2	1,)
	. ,

$$\frac{Pa}{3} + T(m) = 4T(\frac{n}{3}) + n \lg n$$

$$a = 4, b = 3, f(n) = n \lg n$$

$$a = \frac{4}{3} + \frac{n \lg (\frac{n}{3})}{3}$$

$$= \frac{4n (\lg n - \lg 3)}{3}$$

$$\frac{4n \lg n}{3} + \frac{4n \lg n - 4n \lg 3}{3} + \frac{3n \lg n}{3}$$

$$\frac{4n \lg n}{3} + \frac{4n \lg n - 4n \lg 3}{3} + \frac{n \lg n}{n \lg n}$$

$$\frac{4n \lg n}{3} + \frac{4n \lg n - 4n \lg 3}{3} + \frac{n \lg n}{n \lg n}$$

$$\frac{4n \lg n}{3} + \frac{4n \lg n - 4n \lg 3}{3} + \frac{n \lg n}{n \lg n}$$

$$\frac{4n \lg n}{3} + \frac{4n \lg n - 4n \lg 3}{3} + \frac{n \lg n}{n \lg n}$$

$$\frac{4n \lg n}{3} + \frac{4n \lg n - 4n \lg 3}{3} + \frac{n \lg n}{n \lg n}$$

$$\frac{4n \lg n}{3} + \frac{4n \lg n - 4n \lg 3}{3} + \frac{n \lg n}{n \lg n}$$

$$\frac{4n \lg n}{3} + \frac{4n \lg n - 4n \lg 3}{3} + \frac{n \lg n}{n \lg n}$$

MATRIKAS

$$af(\frac{n}{b}) = cf(n)$$

$$\frac{4}{3} > c > 1 \Rightarrow c > 1$$
According to master theorem Case (2)
$$T(n) = O(n^{\log n}) + O(n^{\log 4})$$

$$= O(n^{\log 4})$$

b)
$$T(n) = 3T(\frac{N}{3}) + \frac{n}{19n}$$

$$a=3$$

$$b=3$$

$$-\{(n) = \frac{n}{19n}$$

$$a+(\frac{N}{b}) = 3+(\frac{N}{3}) = 3-(\frac{N}{3}) = \frac{n}{19n}$$

when $n-3$ at $(\frac{n}{b})$ almost same as $f(n)$

Recurrence tree: -

Scanned by CamScanner

$$T(n) := \frac{m}{19n} + \frac{n}{19n - 193} + \frac{n}{19n - 2193}$$

$$= n \left(\frac{1}{19n} + \frac{1}{19n - 193} + \frac{1}{19n - 2193} + \frac{1}{19n - 2$$

$$P_{3}C, T(n) = 4T(\frac{n}{2}) + n^{2}\sqrt{n}$$

$$Q = 4, b = 2, f(n) = n^{2}\sqrt{n}$$

$$Q = 4 f(\frac{n}{2}) = 4 f(\frac{n}{2})^{2} = 4 f(\frac{n}{2})^$$

P₃ d T(n) = 3T(n/3-2) + n/2-2 is ignored since follows of n

Subtraction of -2 will not make a significant

difference a = 3, b = 3, f(n) = n/2 $\alpha f(n) = 3f(n) = 3 + (n) = n/2$

According to
$$T(n) = Cf(n)$$

The cording to $T(n) = O(f(n) \log n)$

The case (3)

$$= O(n) \log n$$

$$= O(n) \log n$$

MATRIKAS

 $T(n) = \frac{4n-1}{2} \frac{n}{4n-1}$ Date: / / n ly lgn) H= 1+1 + 3+ Mn ~ lgn+r