Homework 12 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

May 9, 2024

- 1. (a) Since E is Jordan region, $Vol(\partial E) = 0$.
 - (b) Since $cl(E) = int(E) \cup \partial E$ and $int(E) \subseteq E \subseteq cl(E)$, $Vol(cl(E)) = Vol(int(E)) + Vol(\partial E) = Vol(int(E)) \le Vol(E) \le Vol(cl(E)).$ Therefore, Vol(cl(E)) = Vol(int(E)) = E.

(c)

- (\Longrightarrow) From (b), we know Vol(int(E)) = Vol(E) > 0, then we can find a set of rectangles R_n s.t. $\sum |R_n| > 0$ and $\bigcup R_n \subseteq \operatorname{int}(E)$. Therefore, $\operatorname{int}(E) \neq \emptyset$.
- (\iff) Since $\operatorname{int}(E)$ is non-empty, for any $x_0 \in \operatorname{int}(E)$, there exists $\varepsilon > 0$ s.t. $D(x_0, \varepsilon) \subseteq \operatorname{int}(E)$. Then, we can find a small rectangle R with each length is $\frac{\varepsilon}{2}$ and R is contained in $D(x_0, \varepsilon)$. Thus, $\operatorname{Vol}(\operatorname{int}(E)) > \left(\frac{\varepsilon}{2}\right)^2 > 0$.
- (d) Since f is continuous, for any $x_0 \in [a,b]$, we can find a sequence $x_k \to x_0$ s.t. $f(x_k) \to f(x_0)$. That is, $A = \{(x, f(x)) \mid x \in [a,b]\}$ is closed. And since $\partial A \subseteq A$, $\operatorname{Vol}(\partial A) \leq \operatorname{Vol}(A)$.

Since f is continuous on [a,b] is compact, for all $\varepsilon > 0$, we can find $\delta > 0$ s.t. $|x-y| < \delta$ implies That $|f(x)-f(y)| < \frac{\varepsilon}{b-a}$. Then, we can find a finite sequence $\{x_i \mid x_i \in [a,b]\}_{i=1}^N$ s.t. $[a,b] \subseteq D(x_i,\delta)$. Therefore, for any y=f(x), $y \in D(f(x_i),\varepsilon)$ for some i. Thus, $A=\{(x,f(x)) \mid x \in [a,b]\} \subseteq \bigcup_{i=1}^N D(x_i,\delta) \times D(f(x_i),\varepsilon)$ and $|D(x_i,\delta) \times D(f(x_i),\varepsilon)| = \delta \cdot \varepsilon < M \cdot \delta^2$. Since δ is arbitrary,