sriaz@usc.edu

USC ID: 1389209718

Homework 1

Question: 1

b)

i:

As we can clearly see that all images of 9 are not alike, some are comparatively straight while others are leaning either towards left or right.

ii:

None of my guesses were wrong but I had a hard time guessing figure_1-13.

iii:

Two different digits that look alike:

4 looks like 9 in this sample.

Three samples of the same digit that don't look alike:

Zeros in these images look different.

c)

i:

Predictions are made for a new instance by searching through the entire training set for the K most similar instances which are called the neighbors.

ii:

Metric in KNNClassifier = Euclidean

```
knn_classifier=KNeighborsClassifier(n_neighbors=5,metric='euclidean',algorithm='ball_t
ree')
knn_classifier.fit(x_train,y_train.ravel())
image indices = []
for test index in range(0,10):
    distances, indices = knn classifier.kneighbors(x test[test index].reshape(1,-1))
    for test data in indices:
         for index in test data:
             image indices.append(index)
image_plot_index = 0
for image_index in image_indices:
    image = x_train[image_index,:].reshape(28,28)
    image_plot_index = image_plot_index + 1
plot.subplot(10, 5, image_plot_index)
plot.imshow(image, cmap=plot.cm.gray)
plot.show()
iii:
         import numpy as np
         import mnist loader KNN as DS loader
         import matplotlib.pyplot as plt
         import random
         from sklearn.neighbors import KNeighborsClassifier
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn import metrics
```

```
from collections import defaultdict
import seaborn as sns
from struct import unpack
url train image = 'http://yann.lecun.com/exdb/mnist/train-images-idx3-
ubyte.gz'
url train labels = 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-
ubyte.gz'
num train samples = 60000
x train = DS loader.try download x(url train image, url train labels,
num train samples)
y train = DS loader.try download y(url train image, url train labels,
num_train_samples)
url test = 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz'
url test labels = 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
num test samples = 10000
temp=random.randrange(9999)
x test = DS loader.try download x (url test image, url test labels,
num_test_samples)
y test = DS loader.try download y(url test image, url test labels,
num test samples)
sample=x test[temp,:].reshape(28,28)
prime predictions = []
prime knnclassifier =
KNeighborsClassifier(n neighbors=1,algorithm='ball tree')
index error=1;
error score=[]
inc = 1
while(inc <= 10001):</pre>
    knnclassifier=KNeighborsClassifier(n_neighbors=inc,algorithm='ball_tree')
    knnclassifier.fit(x train,y train.ravel())
    predictions= knnclassifier.predict(x test)
    score=knnclassifier.score(x test,y test)
    error = metrics.mean squared error(y test,predictions)
    error score.append(error)
    plt.scatter(1/inc, error, 5, alpha=0.2)
    inc = inc + 200
plt.show()
```


iv:

Using K = 1 or 1.2 gives the best result. So, I have used K = 1 in my classifier for this problem. For training, I have used increments of 5000 images.

Conclusion:

With the increase in training data, error reduces. Best error calculated is 0.7 when train sample is close to 55000.

Plot of best error rates on the dataset:


```
error score=[]
index error=1
knn classifier=KNeighborsClassifier(n neighbors=1,algorithm='ball tree')
y_test_subset = y_test[:, :]
x_test_subset = x_test[:, :]
plot_x=[]
for index in range (1, 13):
    x \text{ temp} = x \text{ train}[:(index * 5000) + 1, :]
    y_temp = y_train[:(index * 5000) + 1, :]
    knn classifier.fit(x temp, y temp.ravel())
    predictions = knn classifier.predict(x test subset)
    score = knn_classifier.score(x_test_subset, y_test_subset)
    print(score)
   error = metrics.mean squared error(y test subset, predictions,
multioutput='raw values')
    print(error)
    error score.append(error)
    plot x.append(((i-1)*5000)+5000)
plt.plot(plot_x, error_score, marker='o', linestyle='--', color='r', label='Best Error
Rate')
plt.xlabel('Subset Size of Train Samples')
plt.ylabel('Error Rate')
plt.title('Best Error Rate')
plt.show()
```

d)

K nearest neighbors of some misclassified images:

In this image, first image is the expected output and the second is the prediction. For example, 4 was the expected output but prediction was 9, 3 was expected and 5 was the prediction and so on.

```
x_test_subset = x_test[:, :]

y_test_subset = y_test[:, :]

plot_x=[]

x_temp = x_train[:(15000)+1, :]

y_temp = y_train[:(15000)+1, :]

knnclassifier.fit(x_temp, y_temp.ravel())

predictions = knnclassifier.predict(x_test_subset)

prime_predictions = predictions

prime_knnclassifier = knnclassifier

miss_index = 0

misclassifiedIndexes = []

for label, predict in zip(y_test, prime_predictions):
    if label != predict:
```

```
misclassifiedIndexes.append(miss_index)
    miss index += 1
image indices = []
for i in misclassifiedIndexes:
    distances, indices = prime knnclassifier.kneighbors(x test[i].reshape(1,-1))
    for test_data in indices:
        for index in test_data:
            image indices.append(index)
plt.figure(figsize=(10,20))
img plot index = 0
for img_index in image_indices:
    img = x train[img index,:].reshape(28,28)
    img_plot_index = img_plot_index+1
    plt.subplot(10, 5, img_plot_index)
    plt.imshow(img,cmap=plt.cm.gray)
plt.show()
e)
i:
Minkowski Distance:
A. Manhattan with p = 1
knnclassifier=KNeighborsClassifier(n neighbors=1,metric='minkowski',p=1,algorithm='bal
l_tree')
Accuracy: 0.9283
Error: 1.56666667
B. log<sub>10</sub>(p)
knnclassifier=KNeighborsClassifier(n neighbors=1,metric='minkowski',p=log(.1),algorith
m='ball_tree')
knnclassifier=KNeighborsClassifier(n_neighbors=1,metric='minkowski',p=log(1.0),algorit
hm='ball_tree')
```

C. Chebyshev

 $\verb|knnclassifier=KNeighborsClassifier(n_neighbors=1, metric='chebyshev', algorithm='ball_tree')|$

Results:

Metric	Minkowski,	Minkowski,	Minkowski,	Minkowski,	Minkowski,	Minkowski,
	p=log(0.4)	p=log(0.2)	p=log(0.3)	p=log(0.5)	p=log(0.1)	p=log(0.6)
<u>Error</u>	8.59333333	0.89333333	8.59333333	8.59333333	0.745	8.59333333

Minkowski, p=log(0.8)	Minkowski, p=log(0.7)	Minkowski, p=log(0.9)
8.59333333	8.59333333	8.59333333

g)

Best error in *Minkowski* metric with $p = loq_{10}(0.1) = 0.745$

Question: 2

b)

i:

Rows: 517

Columns: 13

Rows = Data points

Columns = Predictors

ii:

Linear model has continuous data values whereas logistic has categorical data.

In my output, area is very skewed towards 0.0, thus logarithmic transformation is used.

iii: and iv:

Area does not change much depending upon predictors like FFMC and rain as it is accumulated only through one chunk of the plot.

Predictors like temp, RH, DMC and wind appear to be significant contributors. We shall observe new findings in further exercises.

Temp and RH also seem to have a good even distribution, it is far-fetched to say normal distribution just yet, but they provide signs of being co-related.

```
dataframe=pandas.read_csv("Forest_Fire/forestfires.csv")
# Encode Data

dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov','dec'),(1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)

dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)

dataframe['area'] = np.log(dataframe['area']+1)

scatter_matrix(dataframe)
plt.show()
```

Printing	median	Printing	Range	Printing	mean
X	4.00000	X	8.00000	x	4.669246
Y	4,00000	Y	7.00000	Y	4.299807
month	8.00000	month	11.00000	month	7.475822
day	5.00000	day	6.00000	day	4.259188
FFMC	91.60000	FFMC	77.50000	FFMC	90.644681
DMC	108,30000	DMC	290.20000	DMC	110.872340
DC	664.20000	DC	852.70000	DC	547.940039
ISI	8.40000	ISI	56.10000	ISI	9.021663
temp	19.30000	temp	31.10000	temp	18.889168
RH	42.00000	RH	85.00000	RH	44.288201
wind	4.00000	wind	9.00000	wind	4.017602
rain	0.00000	rain	6.40000	rain	0.021663
area	0.41871	area	6.99562	area	1.111026

1st qua	rtile	3rd qua	artile	Inter-q	martile Ranges
X	3.0	X	7.000000	X	4.000000
Y	4.0	Y	5.000000	Y	1.000000
month	7.0	month	9.000000	month	2.000000
day	2.0	day	6.000000	day	4.000000
FFMC	90.2	FEMC	92.900000	FFMC	2.700000
DMC	68.6	DMC	142.400000	DMC	73.800000
DC	437.7	DC	713.900000	DC	276.200000
ISI	6.5	ISI	10.800000	ISI	4.300000
temp	15.5	temp	22.800000	temp	7.300000
RH	33.0	RH	53.000000	RH	20.000000
wind	2.7	wind	4.900000	wind	2.200000
rain	0.0	rain	0.000000	rain	0.000000
area	0.0	area	2.024193	area	2.024193

```
print('Median')
print(dataframe.median())
print('Range')
print(dataframe.max()-dataframe.min())
```

```
print('Mean')
print(dataframe.mean())

print('1st quantile')
print(dataframe.quantile(q=0.25, axis=0, numeric_only=True, interpolation='linear'))

print('3rd quantile')
print(dataframe.quantile(q=0.75, axis=0, numeric_only=True, interpolation='linear'))

print('Inter-quartile Ranges')

print(dataframe.quantile(q=0.75, axis=0, numeric_only=True, interpolation='linear')-dataframe.quantile(q=0.25,axis=0, numeric_only=True, interpolation='linear'))
```

c)

Temp, RH are statistically significant while rain is not because temp has a near Gaussian distribution and RH also has close to Gaussian distribution.

Regression Results:

```
coef std err t P>|t| [0.025 0.975]

Intercept 1.3147 0.178 7.387 0.000 0.965 1.664

I(RH) -0.0046 0.004 -1.220 0.223 -0.012 0.003

coef std err t P>|t| [0.025 0.975]
```

```
Intercept 1.1086 0.062 17.965 0.000 0.987
                                           1.230
l(rain)
       0.1101 0.208 0.529 0.597 -0.299 0.519
      coef std err t P>|t| [0.025 0.975]
Intercept 0.8677 0.209 4.144 0.000
                                   0.456 1.279
```

ISI, rain and day do not have significant importance. RH, wind, X, temp, DMC, DC, month have significance.

Code:

l(temp)

```
plt.hist((dataframe.area))
dataframe.hist()
```

np.random.seed(seed)

```
and for the p-values:
import numpy as np
import pandas
import copy
import statsmodels.formula.api as smf
# fix random seed for reproducibility
seed = 7
```

```
# load the dataset
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
data=copy.copy(dataframe)
# Encode Data
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov', 'dec'), (1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
mod = smf.ols(formula='area~ I(ISI)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(RH)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(rain)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(day)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(month)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(Y)', data=dataframe)
res = mod.fit()
```

```
print(res.summary())
mod = smf.ols(formula='area~ I(X)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(wind)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(temp)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(DMC)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(DC)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(FFMC)', data=dataframe)
res = mod.fit()
print(res.summary())
```

Outliers:

2(d)
Multi-variate linear regression:


```
my labels=list(dataframe[0:13])
labels=my_labels[0:12]
pred_train, pred_test, tar_train, tar_test = train_test_split(X, Y,
                                                              test_size=.3,
random state=123)
multi_model=LassoLarsCV(cv=10, precompute=False).fit(pred_train,tar_train)
print(dict(zip(labels[:12], multi model.coef)))
# plot coefficient progression
m_log_alphas = -np.log10(multi_model.alphas_)
ax = plt.gca()
plt.plot(m_log_alphas, multi_model.coef_path_.T)
plt.axvline(-np.log10(multi_model.alpha_), linestyle='--', color='k',
            label='alpha CV')
print(multi_model.coef_)
print(multi_model.coef_.shape)
print('Error in multivariate ')
plt.ylabel('Regression Coefficients')
```

```
plt.xlabel('-log(alpha)')
plt.title('Regression Coefficients Progression for Lasso Paths')
plt.show()
```

We can reject DC, wind and DMC because they are significant to the response. The coefficients are 0 for these but as in the plot in part 2(c), they contribute to the response.

Regression Coefficients:

```
{'X': 0.040603750619177384, 'Y': 0.0, 'month': 0.015004361282338776, 'day': 0.0, 'FFMC': 0.0, 'DMC': 0.0, 'DC': 0.0, 'ISI': 0.0, 'temp': 0.006010421743721822, 'RH': -0.0005933952987996531, 'wind': 0.0, 'rain': 0.0}
```

e)

Code:

```
plt.scatter(coef_uni_vaale,multi_model.coef_
plt.ylabel('multivariate- Regression Coefficients')
plt.xlabel('univariate- Regression Coefficients')
plt.title('Regression Coefficients comparison')
plt.show()
```

f)

X, month and temp are significant

Non-linear model on all the predictors:

X:

OLS Regression Results

		=========				
Dep. Variable:	area	R-squa	red:		0.005	
Model:	OLS	Adj. R	-squared:		0.003	
Method:	Least Squares	F-stat	istic:		2.653	
Date:	Sat, 03 Feb 2018	Prob (F-statistic):		0.104	
Time:	11:11:55	Log-Li	kelihood:		-2879.1	
No. Observations:	517	AIC:			5762.	
Df Residuals:	515	BIC:			5771.	
Df Model:	1					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	8.4054					
I(X + X ** 2 + X **	•					0.047
Omnibus:		Durbin			1.656	
Prob(Omnibus):	0.000	Jarque	-Bera (JB):	(809290.384	
Skew:	12.774	Prob(J	B):		0.00	
Kurtosis:	195.135	Cond.	No.		418.	

DAY

	OLS Regre	ssion Re	sults		
Dep. Variable:	area	R-squ	ared:	0.005	
Model:	OLS	Adj.	R-squared:	0.003	
Method:	Least Squares	F-sta	tistic:	2.653	
Date:	Sat, 03 Feb 2018	Prob	(F-statistic):	0.104	
Time:	11:11:55	Log-L	ikelihood:	-2879.1	
No. Observations:	517	AIC:		5762.	
Df Residuals:	515	BIC:		5771.	
Df Model:]				
Covariance Type:	nonrobust	;			
	coef		t	•	
Intercept	8.4054				
I(X + X ** 2 + X **	•				0.047
Omnibus:			n-Watson:	 1.656	
Prob(Omnibus):	0.000	Jarqu	e-Bera (JB):	809290.384	
Skew:	12.774	Prob(JB):	0.00	
Kurtosis:	195.135	Cond.	No.	418.	

Month:

	OLS Regres	sion Resu	ilts				
Dep. Variable:	area	R-squar	ed:		0.002		
Model:	OLS	Adj. R-	squared:		0.000		
Method:	Least Squares	F-stati	stic:		1.203		
Date:	Sat, 03 Feb 2018	Prob (E	-statistic):		0.273		
Time:	11:21:26	Log-Lil	elihood:		-2879.8		
No. Observations:	517	AIC:			5764.		
Df Residuals:	515	BIC:			5772.		
Df Model:	1						
Covariance Type:	nonrobust						
			std err				
Intercept			5.642				
I(month + month ** 2	2 + month ** 3)	0.0091	0.008	1.097	0.273	-0.007	0.026
Omnibus:		Durbin-			1.645		
Prob(Omnibus):	0.000	Jarque-	Bera (JB):	8	07567.016		
Skew:	12.797	Prob(JE	3):		0.00		
Kurtosis:	194.921	Cond. 1	io.		1.37e+03		

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

DMC:

OLS Regression Results

Dep. Variable:	area	R-squared:			0.002	
Model:	OLS	Adj. R-squa	red:		0.000	
Method:	Least Squares	F-statistic	:		1.110	
Date:	Sat, 03 Feb 2018	Prob (F-sta	tistic):		0.293	
Time:	11:25:55	Log-Likelih	nood:	-21	379.9	
No. Observations:	517	AIC:			5764.	
Df Residuals:	515	BIC:			5772.	
Df Model:	1					
Covariance Type:	nonrobust					
	co	ef std err				
Intercept						
I(DMC + DMC ** 2 + DM						1.84e-06
Omnibus:		Durbin-Wats				
Prob (Omnibus):	0.000	Jarque-Bera	(JB):	81273	9.069	
Skew:	12.803	Prob(JB):			0.00	
Kurtosis:	195.544	Cond. No.		6.4		

DC:

OIS Degreesion Desults

	OLS Regre	ssion Result	s			
Dep. Variable: Model: Method: Date: Timme: No. Observations: Df Residuals: Df Model: Covariance Type:	OLS Least Squares Sat, 03 Feb 2018 11:26:56 517 515	F-statist Prob (F-s Log-Likel AIC:	uared: ic: tatistic):		0.001 -0.001 0.5276 0.468 -2880.2 5764. 5773.	
					[0.025	
Intercept I(DC + DC ** 2 + DC		5.051 1.69e-08	1.939 0.726	0.053	-0.130 -2.09e-08	19.718
Omnibus: Prob(Omnibus): Skew: Kurtosis:	983.288 0.000 12.797 195.033	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	tson: ra (JB):	80	1.646 8494.764 0.00 5.40e+08	

Dep. Variable:	area	R-squared	:		0.004		
Model:	OLS	Adj. R-sq	uared:		0.002		
Method:	Least Squares	F-statist	ic:		1.862		
Date:	Sat, 03 Feb 2018	Prob (F-s	atistic):		0.173		
Time:	11:29:23	Log-Likel	ihood:		-2879.5		
No. Observations:	517	AIC:			5763.		
Df Residuals:	515	BIC:			5772.		
Df Model:	1						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975	
Intercept	16.0295	3.642	4.402	0.000	8.875	23.184	
I(RH + RH ** 2 + RH	** 3) -2.483e-05	1.82e-05	-1.365	0.173	-6.06e-05	1.09e-05	
Omnibus:	982.283	Durbin-Wa	son:		1.644		
Prob(Omnibus):	0.000	Jarque-Be	ra (JB):	80	4594.772		
Skew:	12.770	Prob(JB):			0.00		
Kurtosis:	194.568	Cond. No.			2.61e+05		

Wind:

OLS Regression Results

Dep. Variable:	area	R-sq	uared:		0.000		
Model:	OLS	Adj.	R-squared:		-0.002		
Method:	Least Squares	F-st	atistic:		0.03147		
Date:	Sat, 03 Feb 2018	Prob	(F-statist	ic):	0.859		
Time:	11:30:17	Log-	Likelihood:		-2880.4		
No. Observations:	517	AIC:			5765.		
Df Residuals:	515	BIC:			5773.		
Df Model:	1						
Covariance Type:	nonrobust						
					P> t	•	
Intercept					0.000		
I(wind + wind ** 2	•					-0.038	0.032
Omnibus:	983.644		in-Watson:		1.651		
Prob(Omnibus):	0.000	Jarq	ue-Bera (JB):	809915.938		
Skew:	12.807	Prob	(JB):		0.00		
Kurtosis:	195.202	Cond	. No.		265.		

Rain:

OLS Regression Results

195.254 Cond. No.

Dep. Variable:	area	R-squared:		0.000		
Model:	OLS	Adj. R-squared: -0.002				
Method:	Least Squares	F-statistic:		0.001631		
Date:	Sat, 03 Feb 2018	Prob (F-statistic):	0.968		
Time:	11:31:08	Log-Likelihood:		-2880.4		
No. Observations:	517	AIC:		5765.		
Df Residuals:	515	BIC:		5773.		
Df Model:	1					
Covariance Type:	nonrobust					
		coef std err		P> t		0.975]
Intercept	12.	8525 2.805		0.000		18.364
I(rain + rain ** 2	+ rain ** 3) -0.	0.206	-0.040	0.968	-0.413	0.396
Omnibus:	983.739	Durbin-Watson:		1.649		
Prob(Omnibus):	0.000	Jarque-Bera (JB):		810350.266		
Skew:	12.809	Prob(JB):		0.00		

Code:

import pandas as pd

Kurtosis:

```
import statsmodels.formula.api as smf
```

```
dataframe = pd.read_csv("Forest_Fire/forestfires.csv")

dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov','dec'),(1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
```

13.6

```
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
mod = smf.ols(formula='area~ I(rain+rain**2+rain**3)', data=dataframe)
res = mod.fit()
print(res.summary())
g)
Code:
import numpy as np
import pandas
import copy
import statsmodels.formula.api as smf
seed = 7
np.random.seed(seed)
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
data=copy.copy(dataframe)
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov', 'dec'), (1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
mod = smf.ols(formula='area~ I(temp*month+temp*wind+month*wind)', data=dataframe)
res = mod.fit()
print(res.summary())
```

Temp, month and wind look like significant contributors to the response.

Results of several predictor combinations are as follows:

"This module wil	.1 be remo		.", Deprecat sion Results		1)			
Dep. Variable:		area	R-squared:			0.007		
Model:		OLS	Adj. R-squ	ared:		0.005		
Method:	Lea	st Squares	F-statisti	c:		3.667		
Date:	Sat, 0	3 Feb 2018	Prob (F-st	atistic):	0	0.0561		
Time:		12:10:16	Log-Likeli	hood:	-9	-904.64		
No. Observations:		517	AIC:			1813.		
Df Residuals:		515	BIC:			1822.		
Df Model:		1						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.975		
Intercept	0.9226	0.116	7.954	0.000	0.695	1.15		
I (month * DMC)	0.0002	0.000	1.915	0.056	-5.46e-06	0.00		
Omnibus:		91.501	Durbin-Wat	son:		0.922		
Prob(Omnibus):		0.000	Jarque-Ber	a (JB):	13	37.837		
Skew:		1.192	Prob(JB):		1.1	7e-30		
Kurtosis:		3.844	Cond. No.		2.0	0e+03		

OLS Regression Results

Dep. Variable:		area	R-squared	l:		0.007		
Model:		OLS	Adj. R-sq	uared:		0.005		
Method:	Le	Least Squares		ic:	3.667			
Date:	Sat,	03 Feb 2018	Prob (F-s	tatistic):	0.0561			
Time:		12:09:22	Log-Likel	Log-Likelihood:				
No. Observation	ns:	517	AIC:		1813.			
Df Residuals:		515				1822.		
Df Model:		1						
Covariance Type: nonrobust								
	coef	std err	t	P> t	[0.025	0.975]		
Intercept	0.8812	0.135	6.538	0.000	0.616	1.146		
I (month * DC)	5.011e-05	2.62e-05	1.915	0.056	-1.3e-06	0.000		
Omnibus:		93.627	Durbin-Wa	tson:		0.921		
Prob(Omnibus):		0.000		Jarque-Bera (JB):		142.615		
Skew:		1.205		Prob(JB):		1.08e-31		
Kurtosis:		3.901	Cond. No.			1.13e+04		

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.13e+04. This might indicate that there are strong multicollinearity or other numerical problems.

"This module will be removed in 0.20.", DeprecationWarning)

OLS Regression Results

Dep. Variabl	e:	area	R-squar	0.005		
Model:		OLS	Adj. R-	0.003		
Method:		Least Squares	F-stati	2.472		
Date:	Sa	t, 03 Feb 2018	Prob (F	0.116		
Time:		12:08:33	Log-Lik	-905.23		
No. Observat	ions:	517	AIC:	1814.		
Df Residuals	:	515	BIC:			1823.
Df Model:		1				
Covariance Type: nonrobust						
		std err			-	-
		0.103				
I(DMC * DC)	1.829e-06	1.16e-06	1.572	0.116	-4.56e-07	4.11e-06
Omnibus:		92.846	Durbin-	Watson:		0.922
Prob (Omnibus	0.000		Jarque-Bera (JB):			140.811
Skew:		1.201		Prob(JB):		
Kurtosis:		3.874	Cond. N	io.		1.50e+05

OLS Regression Results

Dep. Variable:	area	R-squared:	0.012
Model:	OLS	Adj. R-squared:	0.010
Method:	Least Squares	F-statistic:	6.299
Date:	Sat, 03 Feb 2018	Prob (F-statistic):	0.0124
Time:	12:13:40	Log-Likelihood:	-903.33
No. Observations:	517	AIC:	1811.
Df Residuals:	515	BIC:	1819.
Df Model:	1		
Covariance Type:	nonrobust		

			coef	std err	t	P> t	[0.025	0.975]
Intercept			0.6927	0.178	3.901	0.000	0.344	1.042
I(temp * month + temp * wind	+ month *	wind)	0.0017	0.001	2.510	0.012	0.000	0.003
Omnibus:	88.899	Durbin-	Watson:		0.920			
Prob(Omnibus):	0.000	Jarque-	Bera (JB):		132.189			
Skew:	1.177	Prob(JB):		1.98e-29			
Kurtosis:	3.774	Cond. N	o.		771.			

Warnings:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable:	area	R-squared:	0.008
Model:	OLS	Adj. R-squared:	0.006
Method:	Least Squares	F-statistic:	4.319
Date:	Sat, 03 Feb 2018	Prob (F-statistic):	0.0382
Time:	12:12:15	Log-Likelihood:	-904.31
No. Observations:	517	AIC:	1813.
Df Residuals:	515	BIC:	1821.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.8139	0.156	5.233	0.000	0.508	1.120
I(temp * month)	0.0020	0.001	2.078	0.038	0.000	0.004
						====
Omnibus:		90.075	Durbin-Wats	on:	0	.922
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	134	.681
Skew:		1.186	Prob(JB):		5.68	e-30
Kurtosis:		3.794	Cond. No.			403.
						====

h)

```
Code:
import numpy as np
import pandas
import copy
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

seed = 7
np.random.seed(seed)
```

```
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
data=copy.copy(dataframe)
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov','dec'),(1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
df sample = dataframe.sample(frac=0.7)
X_train=df_sample.iloc[:,:12]
Y train=df sample.iloc[:,12]
df rest = dataframe.loc[~dataframe.index.isin(df sample.index)]
X test = df rest.iloc[:, :12]
Y test = df rest.iloc[:, 12]
X_train['new_pred']=X_train['RH']*X_train['temp']+X_train['temp']*X_train['month']+X_t
rain['RH']*X train['month']
X test['new pred']=X test['RH']*X test['temp']+X test['temp']*X test['month']+X test['
RH']*X test['month']
plot_uni_model=LinearRegression()
res=plot uni model.fit(X train, Y train)
predictions=plot_uni_model.predict(X_test)
score=plot_uni_model.score(X_test,Y_test)
error = mean squared error(predictions, Y test)
```

Train errors:

dc,month,dmc:

1.82856750304499

```
month,temp,wind:
1.8257893729464
RH,month,temp:
1.8272469364478
Test Error:
dc,month,dmc:
2.5402531452328
temp,month,wind:
2.55770011868637
RH,month,temp:
2.5061727601934
i)
            i: First 4 predictors:
Best error rate when k=1
Code:
X_Knn_train=dataset[:400,0:4]
Y_Knn_train=dataset[:400,12]
X_Knn = dataset[400:, 0:4]
Y_Knn = dataset[400:, 12]
error_arr=[]
k_arr=[]
# knn regression
for k in range(1,350):
```

```
neigh = KNeighborsRegressor(n_neighbors=k)
neigh.fit(X_Knn_train, Y_Knn_train)
predictions=neigh.predict(X_Knn_train)

error= mean_squared_error(Y_Knn_train,predictions)
score=neigh.score(X_Knn_train,Y_Knn_train)
error_arr.append(error)
k_arr.append((1/k))
plt.plot(1/k, error, marker='o',linestyle='--', color='b')
plt.xlabel('1/k')
plt.ylabel('Error observed in Train Set')
plt.title('KNN-Regression with first 4 predictors')
plt.show()
```


i)

iii KNN regression with predictors 1,2,9,10,11 **K=1.1**

```
dataset_kNN = copy.copy(dataframe)
dataset knn.drop(['day','FFMC','DMC','DC','ISI','rain'],axis=1, inplace=True)
X Knn train=dataset kNN.iloc[:400,:]
Y Knn train=dataset[:400,12]
X Knn = dataset kNN.iloc[400:, :]
Y Knn = dataset [400:, 12]
error arr=[]
k_arr=[]
# knn regression
for k in range (1,350):
    neigh = KNeighborsRegressor(n neighbors=k)
    neigh.fit(X Knn train, Y Knn train)
    predictions=neigh.predict(X_Knn_train)
    # print(predictions)
    error= mean squared error(Y Knn train, predictions)
    score=neigh.score(X Knn train, Y Knn train)
    error arr.append(error)
    k \operatorname{arr.append}((1/k))
    plt.plot(1/k, error, marker='o', linestyle='--', color='b', label='vals')
             # , 16,c=1, alpha=0.5)
    plt.xlabel('1/k')
    plt.ylabel('Error observed in Train Set')
    plt.title('KNN-Regression with predictors- 1, 2, 9, 10 and 11')
plt.show()
```


ii)
ii: Last 4 predictors

k=1

Code:

```
X_Knn_train=dataset[:400,8:12]
Y_Knn_train=dataset[:400,12]
X \text{ Knn} = \text{dataset}[400:, 8:12]
Y Knn = dataset [400:, 12]
error_arr=[]
k arr=[]
# knn regression
for k in range (1,350):
    neigh = KNeighborsRegressor(n neighbors=k)
    neigh.fit(X_Knn_train, Y_Knn_train)
    predictions=neigh.predict(X Knn train)
    # print(predictions)
    error= mean_squared_error(Y_Knn_train,predictions)
    score=neigh.score(X_Knn_train,Y_Knn_train)
    error arr.append(error)
    k_{arr.append((1/k))}
    plt.scatter(1/k, error, 16,c=16, alpha=0.5)
    plt.xlabel('1/k')
    plt.ylabel('Error observed in Train set')
    plt.title('KNN-Regression with last 4 predictors')
plt.show()
```

Test Error:

j)

Best error rate for linear regression was 0.75 which was lower but took longer time. Best error rate of KNN regression was around 1 but it is faster.

Code

Question: 1

```
import numpy as np
import mnist_loader_KNN as DS_loader
import matplotlib.pyplot as plt
import random
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
\textbf{from} \text{ collections } \textbf{import} \text{ defaultdict}
import seaborn as sns
from struct import unpack
url train image = 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz'
url train labels = 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz'
num_train_samples = 60000
x_train = DS_loader.try_download_x(url_train_image, url_train_labels,
num train samples)
y_train= DS_loader.try_download_y(url_train_image, url_train_labels,
num train samples)
url test image = 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz'
```

```
url test labels = 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
num test samples = 10000
print("Downloading test data")
temp=random.randrange(9999)
x_test = DS_loader.try_download_x(url_test_image, url_test_labels, num_test_samples)
y_test = DS_loader.try_download_y(url_test_image, url_test_labels, num_test_samples)
print(y test.shape)
sample=x_test[temp,:].reshape(28,28)
index error=1;
error score=[]
for i in range(1,10001):
knnclassifier=KNeighborsClassifier(n neighbors=i,metrics='minkowski',p=1,algorithm='ba
11 tree')
   knnclassifier.fit(x train, y train.ravel())
   predictions= knnclassifier.predict(x test)
   score=knnclassifier.score(x test,y test)
   print(score)
   print(predictions)
   error score[index error]=metrics.mean squared error(y test, predictions,
multioutput='raw values')
   print(error score[index error])
   i=i+200
    index error+=1
Question 1e:
import numpy as np
import mnist loader KNN as DS loader
import matplotlib.pyplot as plt
import random
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from collections import defaultdict
import seaborn as sns
from struct import unpack
import plotly.plotly as py
import plotly.graph objs as go
url train image = 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz'
url_train_labels = 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz'
num_train_samples = 60000
print("Downloading train data")
x train = DS loader.try download x(url train image, url train labels,
num train samples)
y train = DS loader.try download y(url train image, url train labels,
num train samples)
url test image = 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz'
url test labels = 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
num test samples = 10000
print("Downloading test data")
temp=random.randrange(9999)
```

```
x test = DS loader.try download x(url test image, url test labels, num test samples)
y test = DS loader.try download y(url test image, url test labels, num test samples)
print(y test.shape)
sample=x test[temp,:].reshape(28,28)
index error=1
error score=[]
x \text{ test subset} = x \text{ test}[:600, :]
y test subset = y test[:600, :]
plot x=[]
x temp = x train[:25001, :]
y_temp = y_train[:25001, :]
for i in range (1,11):
    knnclassifier=KNeighborsClassifier(n neighbors=1, metric='minkowski', p=pow(10,i),
algorithm='ball tree')
    knnclassifier.fit(x_temp, y_temp.ravel())
    predictions = knnclassifier.predict(x test subset)
    score = knnclassifier.score(x test subset, y test subset)
    print(score)
    error = metrics.mean_squared_error(y_test_subset,predictions,
multioutput='raw values')
    error score.append(error)
trace = go.Table(
header=dict(values=['Minkowski(log)=0.1','Minkowski(log)=0.2','Minkowski(log)=0.3','Mi
nkowski(log)=0.4', 'Minkowski(log)=0.5', 'Minkowski(log)=0.6', 'Minkowski(log)=0.7', 'Mink
owski(log) 0.8', 'Minkowski(log)=0.9', 'Minkowski(log) 1.0']),
    cells=dict(values=error score))
data = [trace]
py.iplot(data, filename = 'basic table')
Question 1civ:
import numpy as np
import mnist_loader_KNN as DS_loader
import matplotlib.pyplot as plt
import random
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from collections import defaultdict
import seaborn as sns
from struct import unpack
#!gzip -d data/*.gz
url_train_image = 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz'
url_train_labels = 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz'
num train samples = 60000
print("Downloading train data")
x train = DS loader.try download x(url train image, url train labels,
```

```
num_train_samples)
y train = DS loader.try download y(url train image, url train labels,
num_train_samples)
url test image = 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz'
url test labels = 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
num\_test\_samples = 10000
print("Downloading test data")
temp=random.randrange(9999)
x test = DS loader.try download x(url test image, url test labels, num test samples)
y test = DS loader.try download y (url test image, url test labels, num test samples)
print(y_test.shape)
sample=x test[temp,:].reshape(28,28)
prime knnclassifier = KNeighborsClassifier(n neighbors=1,algorithm='ball tree')
prime predictions = []
index_error=1
error_score=[]
x_{test_subset} = x_{test_subset} : x_{test_subset_subset} : x_{test_subset_subset_subset_subset_subset_subset} : x_{test_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_subset_su
y_test_subset = y_test[:600, :]
knnclassifier=KNeighborsClassifier(n neighbors=1,algorithm='ball tree')
knnclassifier.fit(x_train,y_train.ravel())
print('The Model is now set')
predictions= knnclassifier.predict(x test subset)
print('Prediction Complete!')
prime predictions = predictions
prime knnclassifier = knnclassifier
miss index = 0
misclassifiedIndexes = []
for label, predict in zip(y_test_subset, prime_predictions):
        if label != predict:
                misclassifiedIndexes.append(miss index)
        miss index += 1
image indices = []
print(len(misclassifiedIndexes))
for i in misclassifiedIndexes:
        distances, indices = prime knnclassifier.kneighbors(x test[i].reshape(1,-1))
        for test data in indices:
                 for index in test data:
                         image_indices.append(index)
plt.figure(figsize=(10,20))
img_plot_index = 0
neighbour index=0
for img_index in misclassifiedIndexes:
         img = x test subset[img index, :].reshape(28, 28) #this is the prediction
        img_plot_index = img_plot_index + 1
        plt.subplot(10, 5, img plot index)
        plt.imshow(img, cmap=plt.cm.gray)
        img = x train[[image indices[neighbour index]],:].reshape(28,28) #this is the
        img plot index = img plot index + 1
        plt.subplot(10, 5, img_plot_index)
```

```
plt.imshow(img, cmap=plt.cm.gray)
   print("hello")
    neighbour index+=1
plt.show()
Question 2b iii and iv:
import numpy as np
import pandas
import copy
from sklearn.feature selection import RFE
from sklearn.ensemble import ExtraTreesRegressor
from scipy import stats
from scipy import stats
from sklearn.neighbors import KNeighborsRegressor
import matplotlib.pyplot as plt
from pandas.plotting import scatter matrix
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear model import LinearRegression
from sklearn.linear model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear model import Lasso
from sklearn.linear model import ElasticNet
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.metrics import explained variance score
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean squared error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np utils
from keras.constraints import maxnorm
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.cross validation import train test split
from sklearn.linear model import LassoLarsCV
# fix random seed for reproducibility
seed = 7
np.random.seed(seed)
# load the dataset
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
```

```
data=copy.copy(dataframe)
# Encode Data
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov', 'dec'), (1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
scatter matrix(dataframe)
plt.show()
Question 2:
import numpy as np
import pandas
import copy
from sklearn.feature selection import RFE
from sklearn.ensemble import ExtraTreesRegressor
from scipy import stats
from scipy import stats
from sklearn.neighbors import KNeighborsRegressor
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear model import LinearRegression
from sklearn.linear model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear model import Lasso
from sklearn.linear model import ElasticNet
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.metrics import explained variance score
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np utils
from keras.constraints import maxnorm
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.wrappers.scikit learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.cross validation import train test split
from sklearn.linear model import LassoLarsCV
```

```
np.random.seed(seed)
# load the dataset
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
data=copy.copy(dataframe)
# Encode Data
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov', 'dec'), (1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
print("Head:")
print(dataframe.head())
print("Statistical Description:")
print(dataframe.describe())
print("Shape:")
print(dataframe.shape)
print("Data Types:")
print(dataframe.dtypes)
print("Correlation:")
print(dataframe.corr(method='pearson'))
print('Median')
print(dataframe.median())
print('Range')
print(dataframe.max()-dataframe.min())
print('Mean')
print(dataframe.mean())
print('First Quartile')
print(dataframe.quantile(q=0.25, axis=0, numeric only=True, interpolation='linear')
print(Third Quartile')
print(dataframe.quantile(q=0.75, axis=0, numeric only=True, interpolation='linear')
print('Inter-quartile Ranges')
print(dataframe.quantile(q=0.75, axis=0, numeric only=True, interpolation='linear')-
dataframe.quantile(q=0.25,axis=0,numeric only=True,interpolation='linear'))
Questions 2 c:
import matplotlib.pyplot as plt
plt.hist((dataframe.area))
dataframe.hist()
import numpy as np
import pandas
import copy
import statsmodels.formula.api as smf
# fix random seed for reproducibility
seed = 7
```

```
np.random.seed(seed)
# load the dataset
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
data=copy.copy(dataframe)
# Encode Data
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov', 'dec'), (1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
mod = smf.ols(formula='area~ I(ISI)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(RH)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(rain)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(wind)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(temp)', data=dataframe)
res = mod.fit()
print(res.summary())
```

```
mod = smf.ols(formula='area~ I(DMC)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(DC)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(FFMC)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(day)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(month)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(Y)', data=dataframe)
res = mod.fit()
print(res.summary())
mod = smf.ols(formula='area~ I(X)', data=dataframe)
res = mod.fit()
print(res.summary())
Question 2g:
import numpy as np
import pandas
import copy
from sklearn.feature selection import RFE
from sklearn.ensemble import ExtraTreesRegressor
from scipy import stats
```

```
from scipy import stats
from sklearn.neighbors import KNeighborsRegressor
import matplotlib.pyplot as plt
from pandas.plotting import scatter matrix
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear model import LinearRegression
from sklearn.linear model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear model import Lasso
from sklearn.linear model import ElasticNet
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.metrics import explained variance score
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean squared error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np utils
from keras.constraints import maxnorm
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean squared error
from keras.wrappers.scikit learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.cross validation import train test split
from sklearn.linear model import LassoLarsCV
import statsmodels.formula.api as smf
seed = 7
np.random.seed(seed)
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
data=copy.copy(dataframe)
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov','dec'),(1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
mod = smf.ols(formula='area~ I(temp*month+temp*wind+month*wind)', data=dataframe)
res = mod.fit()
print(res.summary())
Question 2h:
import numpy as np
import pandas
import copy
import random
from sklearn.feature selection import RFE
from sklearn.ensemble import ExtraTreesRegressor
from scipy import stats
from scipy import stats
```

```
import matplotlib.pyplot as plt
from pandas.plotting import scatter matrix
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear model import LinearRegression
from sklearn.linear model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear model import Lasso
from sklearn.linear model import ElasticNet
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.metrics import explained_variance_score
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean squared error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np utils
from keras.constraints import maxnorm
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean squared error
from keras.wrappers.scikit learn import KerasRegressor
from sklearn.model selection import cross val score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.cross validation import train test split
from sklearn.linear_model import LassoLarsCV
import statsmodels.formula.api as smf
seed = 7
np.random.seed(seed)
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
data=copy.copy(dataframe)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov', 'dec'), (1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
df sample = dataframe.sample(frac=0.7)
X train=df sample.iloc[:,:12]
Y train=df sample.iloc[:,12]
df rest = dataframe.loc[~dataframe.index.isin(df sample.index)]
X test = df rest.iloc[:, :12]
Y test = df rest.iloc[:, 12]
```

```
X train['new_pred']=X_train['wind']*X_train['temp']+X_train['temp']*X_train['month']+X
train['RH']*X train['month']
X test['new pred']=X test['wind']*X test['temp']+X test['temp']*X test['month']+X test
['RH']*X test['month']
model=LinearRegression()
res=model.fit(X train, Y train)
predictions=plot_uni_model.predict(X_test)
score=model.score(X_test,Y_test)
error = mean squared error(predictions, Y test)
print(error)
print(score)
Question 2 remaining:
import numpy as np
import pandas
import copy
from sklearn.feature selection import RFE
from sklearn.ensemble import ExtraTreesRegressor
from scipy import stats
from scipy import stats
from sklearn.neighbors import KNeighborsRegressor
import matplotlib.pyplot as plt
from pandas.plotting import scatter matrix
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear model import LinearRegression
from sklearn.linear model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.metrics import explained variance score
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean squared error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np_utils
from keras.constraints import maxnorm
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.wrappers.scikit learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.cross validation import train test split
from sklearn.linear model import LassoLarsCV
seed = 7
np.random.seed(seed)
```

```
dataframe = pandas.read csv("Forest Fire/forestfires.csv")
data=copy.copy(dataframe)
# Encode Data
dataframe.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','
nov', 'dec'), (1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
dataframe.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7),
inplace=True)
dataframe['area'] = np.log(dataframe['area']+1)
print("Head:")
print(dataframe.head())
print("Statistical Description:")
print(dataframe.describe())
print("Shape:")
print(dataframe.shape)
print("Data Types:")
print(dataframe.dtypes)
print("Correlation:")
print(dataframe.corr(method='pearson'))
dataset = dataframe.values
X = dataset[:, 0:12]
Y = dataset[:,12]
#Feature Selection
uni model = ExtraTreesRegressor()
rfe = RFE(uni model, 4)
fit = rfe.fit(X, Y)
print("Number of Features: ", fit.n_features_)
print("Selected Features: ", fit.support )
print("Feature Ranking: ", fit.ranking)
scatter matrix(dataframe)
plt.show()
my labels=list(dataframe[0:13])
print(my labels)
labels=my labels[0:12]
print(labels)
plot uni model=LinearRegression()
coef_uni_vaale=plot_uni_model.fit(X,Y).coef_
uni pred=plot uni model.predict(X)
error=mean squared error(Y,uni pred)
print(error)
ax = plt.gca()
plt.scatter(labels, coef uni vaale, 16, alpha=0.5)
plt.ylabel('Regression Coefficients')
plt.xlabel('predictors')
plt.title('Regression Coefficients Progression for linear regression Paths')
plt.show()
pred train, pred test, tar train, tar test = train test split(X, Y,
                                                               test size=.3,
random state=123)
multi model=LassoLarsCV(cv=10, precompute=False).fit(pred train,tar train)
print(dict(zip(labels[:12], multi model.coef )))
```

```
# plot coefficient progression
m log alphas = -np.log10(multi model.alphas)
ax = plt.gca()
plt.plot(m log alphas, multi model.coef path .T)
plt.axvline(-np.log10(multi model.alpha), linestyle='--', color='k',
            label='alpha CV')
print(multi model.coef )
print(multi_model.coef_.shape)
print('Error in multivariate ')
plt.ylabel('Regression Coefficients')
plt.xlabel('-log(alpha)')
plt.title('Regression Coefficients Progression for Lasso Paths')
plt.show()
# 2c and 2d
ax = plt.qca()
plt.scatter(coef uni vaale, multi model.coef )
plt.ylabel('multivariate- Regression Coefficients')
plt.xlabel('univariate- Regression Coefficients')
plt.title('Regression Coefficients comparison')
plt.show()
print('in poly function now')
poly = PolynomialFeatures(degree=3)
poly feature=dataframe['temp']
print('printing Y')
print(Y)
print('shape of Y')
print(Y.shape)
X Knn train=dataset[:400,0:12]
Y Knn train=dataset[:400,12]
X \text{ Knn} = dataset[400:, 0:12]
Y Knn = dataset[400:, 12]
error arr=[]
k arr=[]
# knn regression
for k in range(1,350):
    neigh = KNeighborsRegressor(n neighbors=k)
    neigh.fit(X Knn train, Y Knn train)
    predictions=neigh.predict(X Knn)
    # print(predictions)
    error= mean_squared_error(Y_Knn,predictions)
    score=neigh.score(X_Knn,Y_Knn)
    error_arr.append(error)
    k \operatorname{arr.append}((1/k))
    plt.plot(1/k, error, marker='o', linestyle='--', color='b')
    plt.xlabel('1/k')
    plt.ylabel('Error in Test Set')
    plt.title('KNN-Regression with All predictors')
plt.show()
```