LAB 02: DIODE CHARACTERISTIC

Spring 2024

Submitted by: Hassan Zaib

Registration

No:22pwsce2144

Class Section: A

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Submitted to:

Engr. Usman Malik

Month Day, Year (15 March, 2024)

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

OBJECTIVES:

To study the characteristics of silicon and germanium diodes.

Equipment:

1. DC power supply

2. 2. Function Generator

3. Digital Multimeter (DMM)

Components:

1. Diodes: Silicon (D1N4002), Germanium (D1N4148)

2. Resistors: $1k\Omega$, $1M\Omega$

Theory:

Diode:

A diode is a two-terminal electronic component that conducts current primarily in one direction; it has low resistance in one direction, and high resistance in the other.

CHARACTERISTICS: OF DIODE:

Three important characteristics of a diode are:

- 1. First, the forward voltage drops. Under a forward bias condition, this should be about 0.7 volts.
- 2. Then there is the reverse voltage drop. In the reverse, when we reverse bias the diode the depletion layer widens and usually, the applied voltages are felt across the diode.
- 3. Then there is the reverse breakdown voltage. Reverse voltage drop that will reverse current flow and, in most cases, destroy the diode.

Diode symbol:

Figure 1: Diode symbol

Function generator:

A function generator is an electronic test instrument used to generate a variety of electrical waveforms over a wide range of frequencies. It typically offers precise control over parameters such as frequency, amplitude, waveform shape, and modulation.

Figure 2: Function Generator

Power supply:

A power supply is an electronic device that supplies electric energy to an electrical load. The primary function of a power supply is to convert one form of electrical energy to another and, as a result power supplies are sometimes referred to as electric power converters.

Figure 3: Power supply

Digital Multimeter:

A digital Multimeter (DMM) is a test tool used to measure two or more electrical values principally voltage (volts), current (amps) and resistance (ohms). It is a standard diagnostic tool for technicians in electrical/electronic industries.

Figure 4: Multimeter

Procedur:

Forward bias diode characteristic:

1. Construct the circuit given below:

Figure 5: Forward biased circuit

2. Increase the supply voltage until VD reads 0.1 V. Then measure current ID and record the results in Table.

3. Repeat step 2 for the remaining settings of VD shown in the Table 3.1. Plot on a graph paper ID versus VD for the silicon. Complete the curves by extending the lower region of each curve to the intersection of the axis at ID = 0 mA and VD = 0 V.

Experiment:

Figure 6: Forward biased circuit on proteus

Observations:

R=1K

V	0.1	0.3	0.4	0.5	0.7	1	1.5	2	15
V _D	0.1	0.3	0.39	0.45	0.51	0.55	0.58	0.6	0.7
V _R	0	0	0.01	0.05	0.19	0.45	0.92	1.4	14.3
I _D	0	0	0.01mA	0.05mA	0.19mA	0.45mA	0.92mA	1.4mA	14.3mA

GRAPH:

Reversed bias diode characteristic:

1. Construct the circuit of Figure given below with E is set at 20V. Record the measured value of the resistor.

Figure 7:Reverse Biased Circuit

2. Measure the voltage VD. Measure the reverse saturation current, Is

Experiment:

Figure 8: Reversed biased circuit on proteus

Observation

:

R= 1M

V	-10	-15	-20	-30
V_{D}	-9.99	-14.9	-19.8	-29.7
V_R	-0.1	-0.15	-0.2	-0.30
I_D	1X10^-7	1.5X10^-7	2X10^-7	3X10^-7

GRAPH:

