

Figure S1a. Sampling gear deployed above the navigation bridge on the ship.

Figure S1b. Arrangement of sampling gear installed on the aluminum scaffold.

Figure S1c. Tandem mist chamber samplers mounted within housing.

The Chemical Mechanism of MECCA

KPP version: 2.2.1 rs3

MECCA version: 2.5d

Date: August 21, 2009.

Selected reactions:

"Tr && (G || Aa) && !C && !I && ! Hg"

Number of aerosol phases: 1

Number of species in selected mechanism:

Gas phase: 57 Aqueous phase: 62 All species: 119

Number of reactions in selected mechanism:

Gas phase (Gnnn): 93
Aqueous phase (Annn): 115
Henry (Hnnn): 61
Photolysis (Jnnn): 32
Heterogeneous (HETnnn): 0
Equilibria (EQnn): 44

Dummy (Dnn): 1 All equations: 346

The following describes the full chemical mechanism and relevant parameters as used for the simulations reported in this publication. Reactions labeled with "a01" correspond to a specific aerosol size bin. Since the reaction mechanisms were identical for each size bin, the chemical mechanism for only one of the eight bins is described here.

Further information can be found in the article "Technical Note: The new comprehensive atmospheric chemistry module MECCA" by R. Sander et al. (Atmos. Chem. Phys. 5, 445-450, 2005), available at http://www.atmos-chem-phys.net/5/445.

Table 1: Gas phase reactions

#	labels	reaction	rate coefficient	reference
G1000	StTrG	$O_2 + O(^1D) \to O(^3P) + O_2$	3.3E-11*EXP(55./temp)	Sander et al. (2006)
G1001	StTrG	$\mathrm{O_2} + \mathrm{O(^3P)} ightarrow \mathrm{O_3}$	6.E-34*((temp/300.)**(-2.4))*cair	Sander et al. (2006)
G2100	StTrG	$\mathrm{H} + \mathrm{O}_2 o \mathrm{HO}_2$	k_3rd(temp,cair,4.4E-32,1.3,	Sander et al. (2006)
			4.7E-11,0.2,0.6)	
G2104	StTrG	$OH + O_3 \rightarrow HO_2 + O_2$	1.7E-12*EXP(-940./temp)	Sander et al. (2006)
G2105	StTrG	$\mathrm{OH} + \mathrm{H_2} \rightarrow \mathrm{H_2O} + \mathrm{H}$	2.8E-12*EXP(-1800./temp)	Sander et al. (2006)
G2107	StTrG	$\mathrm{HO_2} + \mathrm{O_3} \rightarrow \mathrm{OH} + 2 \mathrm{O_2}$	1.E-14*EXP(-490./temp)	Sander et al. (2006)
G2109	StTrG	$\mathrm{HO_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{O_2}$	4.8E-11*EXP(250./temp)	Sander et al. (2006)
G2110	StTrG	$\mathrm{HO_2} + \mathrm{HO_2} \rightarrow \mathrm{H_2O_2} + \mathrm{O_2}$	k_H02_H02	Christensen et al. (2002),
				Kircher and Sander $(1984)^*$
G2111	StTrG	$\mathrm{H_2O} + \mathrm{O(^1D)} \rightarrow 2 \mathrm{OH}$	1.63E-10*EXP(60./temp)	Sander et al. (2006)
G2112	StTrG	$\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{HO_2}$	1.8E-12	Sander et al. (2006)
G3101	StTrG	$N_2 + O(^1D) \to O(^3P) + N_2$	2.15E-11*EXP(110./temp)	Sander et al. (2006)
G3103	StTrGN	$NO + O_3 \rightarrow NO_2 + O_2$	3.E-12*EXP(-1500./temp)	Sander et al. (2006)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Sander et al. (2006)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Sander et al. (2006)
G3109	StTrGN	$\mathrm{NO_3} + \mathrm{NO_2} ightarrow \mathrm{N_2O_5}$	k_N03_N02	Sander et al. $(2006)^*$
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_N03_N02/(2.7E-27*EXP(11000./	Sander et al. $(2006)^*$
			temp))	
G3200	$\operatorname{Tr} G$	$NO + OH \rightarrow HONO$	$k_3rd(temp, cair, 7.0E-31, 2.6,$	Sander et al. (2006)
			3.6E-11,0.1,0.6)	
G3201	StTrGN	$NO + HO_2 \rightarrow NO_2 + OH$	3.5E-12*EXP(250./temp)	Sander et al. (2006)
G3202	StTrGN	$NO_2 + OH \rightarrow HNO_3$	$k_3rd(temp, cair, 1.8E-30, 3.0,$	Sander et al. (2006)
			2.8E-11,0.,0.6)	
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Sander et al. $(2006)^*$
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Sander et al. (2006)
G3205	$\operatorname{Tr} G$	$HONO + OH \rightarrow NO_2 + H_2O$	1.8E-11*EXP(-390./temp)	Sander et al. (2006)
G3206	StTrGN	$\mathrm{HNO_3} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{NO_3}$	k_HNO3_OH	Sander et al. (2006)*
G3207	StTrGN	$\mathrm{HNO_4} \rightarrow \mathrm{NO_2} + \mathrm{HO_2}$	k_NO2_HO2/(2.1E-27*EXP(10900./	Sander et al. (2006)*
			temp))	,

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3208	StTrGN	$\overline{\text{HNO}_4 + \text{OH} \rightarrow \text{NO}_2 + \text{H}_2\text{O}}$	1.3E-12*EXP(380./temp)	Sander et al. (2006)
G4101	StTrG	$CH_4 + OH \rightarrow CH_3O_2 + H_2O$	1.85E-20*EXP(2.82*log(temp)	Atkinson $(2003)^*$
			-987./temp)	
G4102	$\operatorname{Tr} G$	$\mathrm{CH_3OH} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{HO_2}$	2.9E-12*EXP(-345./temp)	Sander et al. (2006)
G4103	StTrG	$\mathrm{CH_3O_2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3OOH} + \mathrm{O_2}$	4.1E-13*EXP(750./temp)	Sander et al. $(2006)^*$
G4104	StTrGN	$CH_3O_2 + NO \rightarrow HCHO + NO_2 + HO_2$	2.8E-12*EXP(300./temp)	Sander et al. (2006)
G4105	TrGN	$CH_3O_2 + NO_3 \rightarrow HCHO + HO_2 + NO_2$	1.3E-12	Atkinson et al. (1999)
G4106a	StTrG	$\mathrm{CH_3O_2} + \mathrm{CH_3O_2} \rightarrow 2 \; \mathrm{HCHO} + 2 \; \mathrm{HO_2}$	9.5E-14*EXP(390./temp)/(1.+1./	Sander et al. (2006)
			26.2*EXP(1130./temp))	
G4106b	StTrG	$CH_3O_2 + CH_3O_2 \rightarrow HCHO + CH_3OH + O_2$	9.5E-14*EXP(390./temp)/(1.+	Sander et al. (2006)
			26.2*EXP(-1130./temp))	
G4107	StTrG	$CH_3OOH + OH \rightarrow .7 CH_3O_2 + .3 HCHO +$	k_CH300H_OH	Sander et al. $(2006)^*$
		$.3 \text{ OH} + \text{H}_2\text{O}$		
G4108	StTrG	$\mathrm{HCHO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2$	9.52E-18*EXP(2.03*log(temp)	Sivakumaran et al. (2003)
			+636./temp)	
G4109	TrGN	$\mathrm{HCHO} + \mathrm{NO}_3 \rightarrow \mathrm{HNO}_3 + \mathrm{CO} + \mathrm{HO}_2$	3.4E-13*EXP(-1900./temp)	Sander et al. $(2006)^*$
G4110	StTrG	$CO + OH \rightarrow H + CO_2$	1.57E-13 + cair*3.54E-33	McCabe et al. (2001)
G4111	$\operatorname{Tr} G$	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{HO}_2$	4.0E-13	Sander et al. (2006)
G6100	StTrGCl	$Cl + O_3 \rightarrow ClO + O_2$	2.8E-11*EXP(-250./temp)	Atkinson et al. (2007)
G6102a	StTrGCl	$ClO + ClO \rightarrow Cl_2 + O_2$	1.0E-12*EXP(-1590./temp)	Atkinson et al. (2007)
G6102b	StTrGCl	$ClO + ClO \rightarrow 2 Cl + O_2$	3.0E-11*EXP(-2450./temp)	Atkinson et al. (2007)
G6102c	StTrGCl	$ClO + ClO \rightarrow Cl + OClO$	3.5E-13*EXP(-1370./temp)	Atkinson et al. (2007)
G6102d	StTrGCl	$ClO + ClO \rightarrow Cl_2O_2$	k_C10_C10	Atkinson et al. (2007)
G6103	StTrGCl	$\text{Cl}_2\text{O}_2 \to \text{ClO} + \text{ClO}$	k_C10_C10/(9.3E-28*EXP(8835./	Atkinson et al. (2007), Sander
			temp))	et al. $(2006)^*$
G6202	StTrGCl	$Cl + H_2O_2 \rightarrow HCl + HO_2$	1.1E-11*EXP(-980./temp)	Atkinson et al. (2007)
G6204	StTrGCl	$ClO + HO_2 \rightarrow HOCl$	2.2E-12*EXP(340./temp)	Atkinson et al. (2007)
G6205	StTrGCl	$HCl + OH \rightarrow Cl + H_2O$	1.7E-12*EXP(-230./temp)	Atkinson et al. (2007)
G6300	StTrGNCl	$ClO + NO \rightarrow NO_2 + Cl$	6.2E-12*EXP(295./temp)	Atkinson et al. (2007)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6301	StTrGNCl	$ClO + NO_2 \rightarrow ClNO_3$	k_3rd_iupac(temp,cair,1.6E-31,	Atkinson et al. (2007)
			3.4,7.E-11,0.,0.4)	
G6302	TrGCl	$ClNO_3 \rightarrow ClO + NO_2$	6.918E-7*exp(-10909./temp)*cair	Anderson and Fahey (1990)
G6304	StTrGNCl	$ClNO_3 + Cl \rightarrow Cl_2 + NO_3$	6.2E-12*EXP(145./temp)	Atkinson et al. (2007)
G6400	StTrGCl	$Cl + CH_4 \rightarrow HCl + CH_3O_2$	6.6E-12*EXP(-1240./temp)	Atkinson et al. (2006)
G6401	StTrGCl	$Cl + HCHO \rightarrow HCl + CO + HO_2$	8.1E-11*EXP(-34./temp)	Atkinson et al. (2006)
G6402	StTrGCl	$Cl + CH_3OOH \rightarrow HCHO + HCl + OH$	5.9E-11	Atkinson et al. $(2006)^*$
G6403	StTrGCl	$ClO + CH_3O_2 \rightarrow HO_2 + Cl + HCHO$	3.3E-12*EXP(-115./temp)	Sander et al. (2006)
G7100	$\operatorname{StTr}\operatorname{GBr}$	$Br + O_3 \rightarrow BrO + O_2$	1.7E-11*EXP(-800./temp)	Atkinson et al. (2007)
G7102a	StTrGBr	${\rm BrO} + {\rm BrO} \rightarrow 2 \; {\rm Br} + {\rm O}_2$	2.7E-12	Atkinson et al. (2007)
G7102b	StTrGBr	$\mathrm{BrO} + \mathrm{BrO} \to \mathrm{Br}_2 + \mathrm{O}_2$	2.9E-14*EXP(840./temp)	Atkinson et al. (2007)
G7200	StTrGBr	$\mathrm{Br} + \mathrm{HO}_2 \to \mathrm{HBr} + \mathrm{O}_2$	7.7E-12*EXP(-450./temp)	Atkinson et al. (2007)
G7201	StTrGBr	$\mathrm{BrO} + \mathrm{HO}_2 \to \mathrm{HOBr} + \mathrm{O}_2$	4.5E-12*EXP(500./temp)	Atkinson et al. (2007)
G7202	StTrGBr	$\mathrm{HBr} + \mathrm{OH} \rightarrow \mathrm{Br} + \mathrm{H}_2\mathrm{O}$	6.7E-12*EXP(155./temp)	Atkinson et al. (2007)
G7204	StTrGBr	$\mathrm{Br}_2 + \mathrm{OH} \to \mathrm{HOBr} + \mathrm{Br}$	2.0E-11*EXP(240./temp)	Atkinson et al. (2007)
G7300	TrGBr	$Br + BrNO_3 \rightarrow Br_2 + NO_3$	4.9E-11	Orlando and Tyndall (1996)
G7301	StTrGNBr	$\mathrm{BrO} + \mathrm{NO} \to \mathrm{Br} + \mathrm{NO}_2$	8.7E-12*EXP(260./temp)	Atkinson et al. (2007)
G7302	StTrGNBr	$\mathrm{BrO} + \mathrm{NO}_2 \to \mathrm{BrNO}_3$	k_Br0_N02	Atkinson et al. $(2007)^*$
G7303	TrGBr	$BrNO_3 \rightarrow BrO + NO_2$	k_Br0_N02/(5.44E-9*exp(14192./	Orlando and Tyndall (1996),
			temp)*1.E6*R_gas*temp/(atm2Pa*N_	Atkinson et al. $(2007)^*$
			A))	
G7400	StTrGBr	$\mathrm{Br} + \mathrm{HCHO} \rightarrow \mathrm{HBr} + \mathrm{CO} + \mathrm{HO}_2$	7.7E-12*EXP(-580./temp)	Atkinson et al. (2006)
G7401	TrGBr	$\mathrm{Br} + \mathrm{CH_3OOH} \rightarrow \mathrm{CH_3O_2} + \mathrm{HBr}$	2.66E-12*EXP(-1610./temp)	Mallard et al. (1993)
G7402a	TrGBr	$BrO + CH_3O_2 \rightarrow HOBr + HCHO$	0.8/1.1*5.7E-12	Aranda et al. (1997)
G7402b	TrGBr	$BrO + CH_3O_2 \rightarrow Br + HCHO + HO_2$	0.3/1.1*5.7E-12	Aranda et al. (1997)
G7403	StTrGBr	$CH_3Br + OH \rightarrow H_2O + Br$	2.35E-12*EXP(-1300./temp)	Sander et al. (2006)
G7407	TrGBr	$CHBr_3 + OH \rightarrow H_2O + 3 Br$	1.35E-12*EXP(-600./temp)	Sander et al. (2006)*
G7408	TrGBr	$CH_2Br_2 + OH \rightarrow H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	Sander et al. (2006)*
G7600	TrGBrCl	$Br + BrCl \rightarrow Br_2 + Cl$	3.3E-15	Mallard et al. (1993)
G7601	TrGClBr	$Br + Cl_2 \rightarrow BrCl + Cl$	1.1E-15	Mallard et al. (1993)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G7602	TrGClBr	$Br_2 + Cl \rightarrow BrCl + Br$	1.2E-10	Mallard et al. (1993)
G7603a	StTrGClBr	$BrO + ClO \rightarrow Br + OClO$	1.6E-12*EXP(430./temp)	Atkinson et al. (2007)
G7603b	StTrGClBr	$BrO + ClO \rightarrow Br + Cl + O_2$	2.9E-12*EXP(220./temp)	Atkinson et al. (2007)
G7603c	StTrGClBr	$BrO + ClO \rightarrow BrCl + O_2$	5.8E-13*EXP(170./temp)	Atkinson et al. (2007)
G7604	TrGClBr	$BrCl + Cl \rightarrow Br + Cl_2$	1.5E-11	Mallard et al. (1993)
G7605	TrGBr	$\mathrm{CHCl_2Br} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{Br}$	2.0E-12*EXP(-840./temp)	see note
G7606	TrGBr	$CHClBr_2 + OH \rightarrow H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	see note
G7607	TrGBr	$CH_2ClBr + OH \rightarrow H_2O + Br$	2.4E-12*EXP(-920./temp)	Sander et al. $(2006)^*$
G9200	StTrGS	$\mathrm{SO}_2 + \mathrm{OH} \rightarrow \mathrm{H}_2\mathrm{SO}_4 + \mathrm{HO}_2$	k_3rd(temp,cair,3.3E-31,4.3,	Sander et al. (2006)
			1.6E-12,0.,0.6)	
G9400a	TrGS	$DMS + OH \rightarrow CH_3SO_2 + HCHO$	1.13E-11*EXP(-253./temp)	Atkinson et al. $(2004)^*$
G9400b	TrGS	$DMS + OH \rightarrow DMSO + HO_2$	k_DMS_OH	Atkinson et al. $(2004)^*$
G9401	TrGNS	$DMS + NO_3 \rightarrow CH_3SO_2 + HNO_3 + HCHO$	1.9E-13*EXP(520./temp)	Atkinson et al. (2004)
G9402	TrGS	$DMSO + OH \rightarrow .6 SO_2 + HCHO + .6 CH_3O_2$	1.E-10	Hynes and Wine (1996)
		$+ .4 \text{ HO}_2 + .4 \text{ CH}_3 \text{SO}_3 \text{H}$		
G9403	TrGS	$\mathrm{CH_3SO_2} \to \mathrm{SO_2} + \mathrm{CH_3O_2}$	1.9E13*EXP(-8661./temp)	Barone et al. (1995)
G9404	TrGS	$\mathrm{CH_3SO_2} + \mathrm{O_3} \to \mathrm{CH_3SO_3}$	3.E-13	Barone et al. (1995)
G9405	TrGS	$\mathrm{CH_3SO_3} + \mathrm{HO_2} \rightarrow \mathrm{CH_3SO_3H}$	5.E-11	Barone et al. (1995)
G9600	TrGSCl	$DMS + Cl \rightarrow CH_3SO_2 + HCl + HCHO$	3.3E-10	Atkinson et al. (2004)
G9700	TrGSBr	$DMS + Br \rightarrow CH_3SO_2 + HBr + HCHO$	9.E-11*EXP(-2386./temp)	Jefferson et al. (1994)
G9701	TrGSBr	$DMS + BrO \rightarrow DMSO + Br$	2.54E-14*EXP(850./temp)	Ingham et al. (1999)

Rate coefficients for three-body reactions are defined via the function $k_3rd(T, M, k_0^{300}, n, k_{\inf}^{300}, m, f_c)$. In the code, the temperature T is called temp and the concentration of "air molecules" M is called cair. Using the auxiliary variables $k_0(T)$, $k_{\inf}(T)$, and k_{ratio} , k_3rd is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n \tag{1}$$

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (2)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{3}$$

k_3rd =
$$\frac{k_0(T)M}{1 + k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{\text{ratio}}))^2}\right)} (4)$$

A similar function, called k_3rd_iupac here, is used by Atkinson et al. (2005) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$$
 (5)
 $k_{\text{inf}}(T) = k_{\text{inf}}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$ (6)
 $k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)}$ (7)
 $N = 0.75 - 1.27 \times \log_{10}(f_c)$ (8)
 $k_{\text{ratio}} = \frac{k_0(T)M}{1 + k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{\text{ratio}})/N)}\right)^2}$

G2110: The rate coefficient is: $k_H02_H02 = (1.5E-12*EXP(19./temp)+1.7E-33*EXP(1000./temp)*cair)* (1.+1.4E-21*EXP(2200./temp)*C(ind_H20)). The value for the first (pressure-independent) part is from Christensen et al. (2002), the water term from Kircher and Sander (1984).$

G3109: The rate coefficient is: k_NO3_NO2 = k_3rd(temp,cair,2.E-30,4.4,1.4E-12,0.7,0.6).
G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.
G3203: The rate coefficient is: k_NO2_HO2 = k_3rd(temp,cair,1.8E-31,3.2,4.7E-12,1.4,0.6).

G3206: The rate coefficient is: k_HNO3_OH = 2.4E-14 * EXP(460./temp) + 1./ (1./ (6.5E-34 * EXP(1335./temp)*cair) + 1./ (2.7E-17 * EXP(2199./temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4103: Sander et al. (2006) recommend a zero product yield for HCHO.

(5)4107: The rate coefficient is: $k_CH300H_0H = 3.8E-12*EXP(200./temp)$.

(6) The same temperature dependence assumed as for $CH_3CHO+NO_3$.

(76103: The rate coefficient is defined as backward reaction divided by equilibrium constant.

 $N = 0.75 - 1.27 \times \log_{10}(f_{\rm c}) \qquad (806402: {\rm The~initial~products~are~probably~HCl~and~CH_2OOH~(Atkinson~et~al.,~2006)}. {\rm It~is~assumed~that~CH_2OOH~dissociates~into~HCHO~and~oH.}$

G7302: The rate coefficient is: k_Br0_N02 = k_3rd(temp, cair, 5.2E-31, 3.2, 6.9E-12, 2.9, 0.6).

G7303: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (Orlando and Tyndall, 1996).

G7407: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7408: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7605: Same value as for G7408: $\mathrm{CH_2Br_2} + \mathrm{OH}$ assumed. It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G7606: Same value as for G7408: CH₂Br₂+OH assumed. It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G7607: It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G9400: Addition path. The rate coefficient is: $k_DMS_0H = 1.0E-39*EXP(5820./temp) *C(ind_02)/ (1.+5.0E-30*EXP(6280./temp) *C(ind_02)).$

Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J1000	StTrGJ	$O_2 + h\nu \to O(^3P) + O(^3P)$	jx(ip_02)	see note
J1001a	StTrGJ	$O_3 + h\nu \rightarrow O(^1D)$	jx(ip_O1D)	see note
J1001b	StTrGJ	${ m O_3} + { m h} u ightarrow { m O(^3P)}$	jx(ip_03P)	see note
J2101	StTrGJ	$\mathrm{H_2O_2} + \mathrm{h} \nu \rightarrow 2 \mathrm{~OH}$	jx(ip_H2O2)	see note
J3101	$\operatorname{StTrGNJ}$	$NO_2 + h\nu \rightarrow NO + O(^3P)$	jx(ip_NO2)	see note
J3103a	StTrGNJ	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	jx(ip_N020)	see note
J3103b	StTrGNJ	$NO_3 + h\nu \rightarrow NO$	jx(ip_N002)	see note
J3104a	StTrGNJ	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	see note
J3200	TrGJ	$\mathrm{HONO} + \mathrm{h}\nu \rightarrow \mathrm{NO} + \mathrm{OH}$	<pre>jx(ip_HONO)</pre>	see note
J3201	$\operatorname{StTrGNJ}$	$\mathrm{HNO_3} + \mathrm{h}\nu \rightarrow \mathrm{NO_2} + \mathrm{OH}$	<pre>jx(ip_HNO3)</pre>	see note
J3202	StTrGNJ	$\mathrm{HNO_4} + \mathrm{h}\nu \rightarrow .667 \ \mathrm{NO_2} + .667 \ \mathrm{HO_2} + .333 \ \mathrm{NO_3} + .333 \ \mathrm{OH}$	<pre>jx(ip_HNO4)</pre>	see note
J4100	StTrGJ	$CH_3OOH + h\nu \rightarrow HCHO + OH + HO_2$	jx(ip_CH3OOH)	see note
J4101a	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H}_2 + \mathrm{CO}$	<pre>jx(ip_COH2)</pre>	see note
J4101b	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H} + \mathrm{CO} + \mathrm{HO}_2$	jx(ip_CHOH)	see note
J6000	StTrGClJ	$\text{Cl}_2 + \text{h}\nu \rightarrow \text{Cl} + \text{Cl}$	jx(ip_Cl2)	see note
J6100	StTrGClJ	$\text{Cl}_2\text{O}_2 + \text{h}\nu \to 2 \text{ Cl}$	1.4*jx(ip_Cl202)	see note
J6101	StTrGClJ	$OClO + h\nu \rightarrow ClO + O(^3P)$	<pre>jx(ip_0C10)</pre>	see note
J6201	StTrGClJ	$HOCl + h\nu \rightarrow OH + Cl$	<pre>jx(ip_HOC1)</pre>	see note
J6300	TrGNClJ	$\text{ClNO}_2 + \text{h}\nu \rightarrow \text{Cl} + \text{NO}_2$	<pre>jx(ip_C1NO2)</pre>	see note
J6301a	StTrGNClJ	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{Cl} + \text{NO}_3$	<pre>jx(ip_ClNO3)</pre>	see note
J6301b	StTrGNClJ	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{ClO} + \text{NO}_2$	<pre>jx(ip_ClONO2)</pre>	see note
J7000	StTrGBrJ	$Br_2 + h\nu \rightarrow Br + Br$	jx(ip_Br2)	see note
J7100	TrGBrJ	$BrO + h\nu \rightarrow Br + O(^3P)$	jx(ip_BrO)	see note
J7200	StTrGBrJ	$\mathrm{HOBr} + \mathrm{h}\nu \to \mathrm{Br} + \mathrm{OH}$	jx(ip_HOBr)	see note
J7300	TrGNBrJ	${\rm BrNO_2} + {\rm h} u ightarrow {\rm Br} + {\rm NO_2}$	<pre>jx(ip_BrN02)</pre>	see note
J7301	StTrGNBrJ	${\rm BrNO_3 + h}\nu \to 0.29 \; {\rm Br} + 0.29 \; {\rm NO_3} + 0.71 \; {\rm BrO} + 0.71 \; {\rm NO_2}$	jx(ip_BrNO3)	see note
J7401	TrGBrJ	$\mathrm{CH_2Br_2} + \mathrm{h}\nu \to 2~\mathrm{Br}$	jx(ip_CH2Br2)	see note
J7402	TrGBrJ	$\mathrm{CHBr}_3 + \mathrm{h} \nu \to 3 \; \mathrm{Br}$	<pre>jx(ip_CHBr3)</pre>	see note
J7600	$\operatorname{StTrGClBrJ}$	$BrCl + h\nu \rightarrow Br + Cl$	jx(ip_BrCl)	see note
J7602	TrGClBrJ	$CH_2ClBr + h\nu \rightarrow Br + Cl$	jx(ip_CH2ClBr)	see note

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J7603	TrGClBrJ	$CHCl_2Br + h\nu \rightarrow Br + 2 Cl$	jx(ip_CHCl2Br)	see note
J7604	TrGClBrJ	$CHClBr_2 + h\nu \rightarrow 2 Br + Cl$	<pre>jx(ip_CHClBr2)</pre>	see note

J-values are calculated with an external module and then supplied to the MECCA chemistry J6100: Stimpfle et al. (2004) claim that the combination of absorption cross sections from Burkholder et al. (1990) and the Cl_2O_2 formation rate coefficient by Sander et al. (2003) can ap-

proximately reproduce the observed $\rm Cl_2O_2/ClO$ ratios and ozone depletion. They give an almost zenith-angle independent ratio of 1.4 for Burkholder et al. (1990) to Sander et al. (2003) J-values. The IUPAC recommendation for the $\rm Cl_2O_2$ formation rate is about 5 to 15 % less than the value by Sander et al. (2003) but more

than 20 % larger than the value by Sander et al. (2000). The J-values by Burkholder et al. (1990) are within the uncertainty range of the IUPAC recommendation.

J7301: The quantum yields are from Sander et al. (2003).

Table 3: Henry's law coefficients

substance	$rac{k_{ m H}^{\ominus}}{ m M/atm}$	$\frac{-\Delta_{\mathrm{soln}}H/R}{\mathrm{K}}$	reference
O_2	1.3×10^{-3}	1500.	Wilhelm et al. (1977)
O_3	1.2×10^{-2}	2560.	Chameides (1984)
OH	3.0×10^{1}	4300.	Hanson et al. (1992)
HO_2	3.9×10^{3}	5900.	Hanson et al. (1992)
H_2O_2	$1.\times10^{5}$	6338.	Lind and Kok (1994)
NH_3	58.	4085.	Chameides (1984)
NO	1.9×10^{-3}	1480.	Schwartz and White (1981)
NO_2	7.0×10^{-3}	2500.	Lee and Schwartz (1981)*
NO_3	2.	2000.	Thomas et al. (1993)
HONO	4.9×10^{1}	4780.	Schwartz and White (1981)
HNO_3	$2.45 \times 10^6 / 1.5 \times 10^1$	8694.	Brimblecombe and Clegg (1989)*
HNO_4	1.2×10^4	6900.	Régimbal and Mozurkewich (1997)
$\mathrm{CH_{3}O_{2}}$	6.	5600.	Jacob (1986)*
CH_3OOH	3.0×10^{2}	5322.	Lind and Kok (1994)
НСНО	7.0×10^{3}	6425.	Chameides (1984)
HCOOH	3.7×10^{3}	5700.	Chameides (1984)
CO_2	3.1×10^{-2}	2423.	Chameides (1984)
Cl_2	9.2×10^{-2}	2081.	Bartlett and Margerum (1999)
HCl	2./1.7	9001.	Brimblecombe and Clegg (1989)
HOCl	6.7×10^2	5862.	Huthwelker et al. (1995)
Br_2	7.7×10^{-1}	3837.	Bartlett and Margerum (1999)
HBr	1.3	10239.	Brimblecombe and Clegg (1989)*
HOBr	9.3×10^{1}	5862.	Vogt et al. (1996)*
BrCl	9.4×10^{-1}	5600.	Bartlett and Margerum (1999)
SO_2	1.2	3120.	Chameides (1984)
H_2SO_4	$1.\times10^{11}$	0.	see note
DMSO	$5. \times 10^4$	6425.	De Bruyn et al. $(1994)^*$

The temperature dependence of the Henry constants is:

$$K_{\rm H} = K_{\rm H}^{\ominus} imes \exp\left(\frac{-\Delta_{
m soln} H}{R} \left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right)$$

where $\Delta_{\rm soln}H=$ molar enthalpy of dissolution [J/mol] and R = 8.314 J/(mol K).

NO₂: The temperature dependence is from Lax (1969). Chameides (1984).

HNO₃: Calculated using the acidity constant from Davis and de Bruin (1964).

CH₃O₂: This value was estimated by Jacob (1986).

HBr: Calculated using the acidity constant from DMSO: Lower limit cited from another reference.

HOBr: This value was estimated by Vogt et al. (1996).

H₂SO₄: To account for the very high Henry's law coefficient of H₂SO₄, a very high value was chosen arbitrarily.

Table 4: Accommodation coefficients

		A 11/D	
substance	α^\ominus	$\frac{-\Delta_{\rm obs}H/R}{\rm K}$	reference
O_2	0.01	2000.	see note
O_3	0.002	0.	DeMore et al. $(1997)^*$
OH	0.01	0.	Takami et al. (1998)*
HO_2	0.5	0.	Thornton and Abbatt (2005)
$\mathrm{H_2O_2}$	0.077	3127.	Worsnop et al. (1989)
NH_3	0.06	0.	DeMore et al. $(1997)^*$
NO	5.0×10^{-5}	0.	Saastad et al. (1993)*
NO_2	0.0015	0.	Ponche et al. (1993)*
NO_3	0.04	0.	Rudich et al. $(1996)^*$
N_2O_5	0.1	0.	DeMore et al. $(1997)^*$
HONO	0.04	0.	DeMore et al. $(1997)^*$
HNO_3	0.5	0.	Abbatt and Waschewsky (1998)*
HNO_4	0.1	0.	DeMore et al. $(1997)^*$
$\mathrm{CH_{3}O_{2}}$	0.01	2000.	see note
$\mathrm{CH_{3}OOH}$	0.0046	3273.	Magi et al. (1997)
HCHO	0.04	0.	DeMore et al. $(1997)^*$
HCOOH	0.014	3978.	DeMore et al. (1997)
CO_2	0.01	2000.	see note
Cl_2	0.038	6546.	Hu et al. (1995)
HCl	0.074	3072.	Schweitzer et al. $(2000)^*$
HOCl	0.5	0.	see note
$ClNO_3$	0.108	0.	Deiber et al. $(2004)^*$
Br_2	0.038	6546.	Hu et al. (1995)
$_{ m HBr}$	0.032	3940.	Schweitzer et al. $(2000)^*$
HOBr	0.5	0.	Abbatt and Waschewsky (1998)*
$BrNO_3$	0.063	0.	Deiber et al. (2004)*
BrCl	0.38	6546.	see note
SO_2	0.11	0.	DeMore et al. (1997)
H_2SO_4	0.65	0.	Pöschl et al. (1998)*

Table 4: Accommodation coefficients (... continued)

substance	α^\ominus	$\frac{-\Delta_{\mathrm{obs}}H/R}{K}$	reference
CH_3SO_3H	0.076	1762.	De Bruyn et al. (1994)
DMSO	0.048	2578.	De Bruyn et al. (1994)

The temperature dependence of the accommodation coefficients is given by (Jayne et al., 1991):

$$\frac{\alpha}{1 - \alpha} = \exp\left(\frac{-\Delta_{\text{obs}}G}{RT}\right)$$
$$= \exp\left(\frac{-\Delta_{\text{obs}}H}{RT} + \frac{\Delta_{\text{obs}}S}{R}\right)$$

where $\Delta_{\rm obs}G$ is the Gibbs free energy barrier of the transition state toward solution (Jayne et al., 1991), and $\Delta_{\rm obs}H$ and $\Delta_{\rm obs}S$ are the corresponding enthalpy and entropy, respectively. The equation can be rearranged to:

$$\ln\left(\frac{\alpha}{1-\alpha}\right) = \frac{-\Delta_{\rm obs}H}{R} \times \frac{1}{T} + \frac{-\Delta_{\rm obs}S}{R}$$

and further:

$$\mathrm{d}\ln\left(\frac{\alpha}{1-\alpha}\right)/\mathrm{d}\left(\frac{1}{T}\right) = \frac{-\Delta_{\mathrm{obs}}H}{R}$$

If no data were available, a value of $\alpha=0.01$, $\alpha=0.1$, or $\alpha=0.5$, and a temperature dependence of $-\Delta_{\rm obs}H/R=2000$ K has been assumed.

O₂: Estimate.

O₃: Value measured at 292 K.

OH: Value measured at 293 K.

NH₃: Value measured at 295 K.

NO: Value measured between 193 and 243 K.

NO₂: Value measured at 298 K.

NO₃: Value is a lower limit, measured at 273 K.

 $\rm N_2O_5\colon$ Value for sulfuric acid, measured between 195 and 300 K.

HONO: Value measured between 247 and 297 K.

HNO₃: Value measured at room temperature. Abbatt and Waschewsky (1998) say $\gamma>0.2.$ Here $\alpha=0.5$ is used.

HNO₄: Value measured at 200 K for water ice.

CH₃O₂: Estimate.

HCHO: Value measured between 260 and 270 K.

 CO_2 : Estimate.

HCl: Temperature dependence derived from published data at 2 different temperatures

HOCl: Assumed to be the same as $\alpha(HOBr)$.

ClNO₃: Value measured at 274.5 K.

HBr: Temperature dependence derived from published data at 2 different temperatures

HOBr: Value measured at room temperature. Abbatt and Waschewsky (1998) say $\gamma > 0.2$. Here $\alpha = 0.5$ is used.

BrNO₃: Value measured at 273 K.

BrCl: Assumed to be the same as $\alpha(Cl_2)$.

H₂SO₄: Value measured at 303 K.

Table 5: Reversible (Henry's law) transfer and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H1000f_a01	TrAa01Sc	$O_2 \to O_2(aq)$	k_exf(01,ind_02)	see note
H1000b_a01	TrAa01Sc	$\mathrm{O}_2(\mathrm{aq}) o \mathrm{O}_2$	$k_{exb}(01, ind_02)$	see note
H1001f_a01	TrAa01MblScScm	$O_3 \to O_3(aq)$	k_exf(01,ind_03)	see note
H1001b_a01	TrAa01MblScScm	$O_3(aq) \to O_3$	k_exb(01,ind_03)	see note
H2100f_a01	TrAa01Sc	$OH \rightarrow OH(aq)$	k_exf(01,ind_OH)	see note
H2100b_a01	TrAa01Sc	$OH(aq) \rightarrow OH$	k_exb(01,ind_OH)	see note
H2101f_a01	TrAa01Sc	$\mathrm{HO}_2 \to \mathrm{HO}_2(\mathrm{aq})$	$k_{exf}(01, ind_{H02})$	see note
H2101b_a01	TrAa01Sc	$\mathrm{HO}_2(\mathrm{aq}) \to \mathrm{HO}_2$	$k_{exb}(01, ind_{H02})$	see note
H2102f_a01	TrAa01MblScScm	$H_2O_2 \to H_2O_2(aq)$	k_exf(01,ind_H202)	see note
H2102b_a01	TrAa01MblScScm	$\mathrm{H_2O_2(aq)} \to \mathrm{H_2O_2}$	$k_{exb}(01, ind_{H202})$	see note
H3101f_a01	TrAa01NSc	$NO_2 \rightarrow NO_2(aq)$	k_exf(01,ind_N02)	see note
H3101b_a01	TrAa01NSc	$NO_2(aq) \rightarrow NO_2$	$k_{exb}(01, ind_{02})$	see note
H3102f_a01	TrAa01NSc	$NO_3 \rightarrow NO_3(aq)$	$k_{exf}(01, ind_{N03})$	see note
H3102b_a01	TrAa01NSc	$NO_3(aq) \rightarrow NO_3$	$k_{exb}(01, ind_{N03})$	see note
H3200f_a01	TrAa01NMblScScm	$NH_3 \rightarrow NH_3(aq)$	<pre>k_exf(01,ind_NH3)</pre>	see note
H3200b_a01	TrAa01NMblScScm	$NH_3(aq) \rightarrow NH_3$	<pre>k_exb(01,ind_NH3)</pre>	see note
H3201_a01	TrAa01MblNScScm	$N_2O_5 \rightarrow HNO_3(aq) + HNO_3(aq)$	$k_exf_N205(01)*C(ind_H20_$	Behnke et al. (1994) ,
			a01)	Behnke et al. $(1997)^*$
H3202f_a01	TrAa01NSc	$HONO \rightarrow HONO(aq)$	k_exf(01,ind_HONO)	see note
H3202b_a01	TrAa01NSc	$HONO(aq) \rightarrow HONO$	k_exb(01,ind_HONO)	see note
H3203f_a01	TrAa01MblNScScm	$HNO_3 \rightarrow HNO_3(aq)$	<pre>k_exf(01,ind_HNO3)</pre>	see note
H3203b_a01	TrAa01MblNScScm	$HNO_3(aq) \rightarrow HNO_3$	k_exb(01,ind_HNO3)	see note
H3204f_a01	TrAa01NSc	$HNO_4 \rightarrow HNO_4(aq)$	k_exf(01,ind_HNO4)	see note
H3204b_a01	TrAa01NSc	$HNO_4(aq) \rightarrow HNO_4$	k_exb(01,ind_HNO4)	see note
H4100f_a01	TrAa01MblScScm	$CO_2 \to CO_2(aq)$	$k_{exf}(01, ind_{c02})$	see note
H4100b_a01	TrAa01MblScScm	$\mathrm{CO}_2(\mathrm{aq}) o \mathrm{CO}_2$	$k_{exb}(01, ind_{c02})$	see note
H4101f_a01	TrAa01ScScm	$\text{HCHO} \to \text{HCHO}(\text{aq})$	k_exf(01,ind_HCHO)	see note
H4101b_a01	TrAa01ScScm	$\mathrm{HCHO}(\mathrm{aq}) \to \mathrm{HCHO}$	k_exb(01,ind_HCHO)	see note
H4102f_a01	TrAa01Sc	$CH_3O_2 \rightarrow CH_3OO(aq)$	$k_{exf}(01, ind_{CH302})$	see note
H4102b_a01	TrAa01Sc	$CH_3OO(aq) \rightarrow CH_3O_2$	k_exb(01,ind_CH302)	see note

Table 5: Reversible (Henry's law) transfer and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H4103f_a01	TrAa01ScScm	$HCOOH \rightarrow HCOOH(aq)$	k_exf(01,ind_HCOOH)	see note
H4103b_a01	TrAa01ScScm	$HCOOH(aq) \rightarrow HCOOH$	k_exb(01,ind_HCOOH)	see note
H4104f_a01	TrAa01ScScm	$CH_3OOH \rightarrow CH_3OOH(aq)$	k_exf(01,ind_CH300H)	see note
H4104b_a01	TrAa01ScScm	$CH_3OOH(aq) \rightarrow CH_3OOH$	k_exb(01,ind_CH300H)	see note
H6000f_a01	TrAa01ClMblSc	$\text{Cl}_2 \to \text{Cl}_2(\text{aq})$	k_exf(01,ind_Cl2)	see note
H6000b_a01	TrAa01ClMblSc	$\mathrm{Cl}_2(\mathrm{aq}) \to \mathrm{Cl}_2$	k_exb(01,ind_Cl2)	see note
H6200f_a01	TrAa01ClMblScScm	$HCl \rightarrow HCl(aq)$	<pre>k_exf(01,ind_HCl)</pre>	see note
H6200b_a01	TrAa01ClMblScScm	$HCl(aq) \rightarrow HCl$	<pre>k_exb(01,ind_HCl)</pre>	see note
H6201f_a01	TrAa01ClMblSc	$HOCl \rightarrow HOCl(aq)$	k_exf(01,ind_HOCl)	see note
H6201b_a01	TrAa01ClMblSc	$HOCl(aq) \rightarrow HOCl$	k_exb(01,ind_HOCl)	see note
H6300_a01	TrAa01ClMblN	$N_2O_5 + Cl^-(aq) \rightarrow ClNO_2 + NO_3^-(aq)$	$k_{exf}N205(01) * 5.E2$	Behnke et al. (1994) ,
				Behnke et al. $(1997)^*$
H6301_a01	TrAa01ClMblN	$ClNO_3 \rightarrow HOCl(aq) + HNO_3(aq)$	$k_exf_ClN03(01) * C(ind_e)$	see note
			H2O_a01)	
H6302_a01	TrAa01ClMblN	$ClNO_3 + Cl^-(aq) \rightarrow Cl_2(aq) + NO_3^-(aq)$	$k_exf_ClNO3(01) * 5.E2$	see note
H7000f_a01	TrAa01BrMblSc	$Br_2 \to Br_2(aq)$	k_exf(01,ind_Br2)	see note
H7000b_a01	TrAa01BrMblSc	$\mathrm{Br}_2(\mathrm{aq}) \to \mathrm{Br}_2$	<pre>k_exb(01,ind_Br2)</pre>	see note
H7200f_a01	TrAa01BrMblScScm	$HBr \to HBr(aq)$	<pre>k_exf(01,ind_HBr)</pre>	see note
H7200b_a01	TrAa01BrMblScScm	$\mathrm{HBr}(\mathrm{aq}) \to \mathrm{HBr}$	<pre>k_exb(01,ind_HBr)</pre>	see note
H7201f_a01	TrAa01BrMblSc	$HOBr \rightarrow HOBr(aq)$	<pre>k_exf(01,ind_HOBr)</pre>	see note
H7201b_a01	TrAa01BrMblSc	$HOBr(aq) \rightarrow HOBr$	<pre>k_exb(01,ind_HOBr)</pre>	see note
H7300_a01	TrAa01BrMblN	$N_2O_5 + Br^-(aq) \rightarrow BrNO_2 + NO_3^-(aq)$	$k_exf_N205(01) * 3.E5$	Behnke et al. (1994) ,
				Behnke et al. $(1997)^*$
H7301_a01	TrAa01BrMblN	$BrNO_3 \rightarrow HOBr(aq) + HNO_3(aq)$	$k_exf_BrN03(01) * C(ind_$	see note
			H2O_a01)	
H7302_a01	TrAa01BrMblN	$BrNO_3 + Br^-(aq) \rightarrow Br_2(aq) + NO_3^-(aq)$	$k_exf_BrN03(01) * 3.E5$	see note
H7600f_a01	${\bf TrAa01ClBrMblSc}$	$BrCl \to BrCl(aq)$	k_exf(01,ind_BrCl)	see note
H7600b_a01	${\bf TrAa01ClBrMblSc}$	$BrCl(aq) \to BrCl$	k_exb(01,ind_BrCl)	see note
H7601_a01	${\rm TrAa01ClBrMblN}$	$ClNO_3 + Br^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	$k_exf_ClNO3(01) * 3.E5$	see note

Table 5: Reversible (Henry's law) transfer and irreversible ("heterogenous") uptake

#	labels	reaction	rate coefficient	reference
H7602_a01	TrAa01ClBrMblN	$BrNO_3 + Cl^-(aq) \rightarrow BrCl(aq) + NO_3^-(aq)$	k_exf_BrN03(01) * 5.E2	see note
H9100f_a01	TrAa01SMblScScm	$SO_2 \to SO_2(aq)$	k_exf(01,ind_S02)	see note
H9100b_a01	${\bf TrAa01SMblScScm}$	$SO_2(aq) \to SO_2$	$k_{exb}(01, ind_{S02})$	see note
H9200_a01	${\bf TrAa01SMblScScm}$	$\mathrm{H}_2\mathrm{SO}_4 \to \mathrm{H}_2\mathrm{SO}_4(\mathrm{aq})$	<pre>xnom7sulf*k_exf(01,ind_</pre>	see note
			H2SO4)	
H9400f_a01	TrAa01S	$DMSO \rightarrow DMSO(aq)$	k_exf(01,ind_DMSO)	see note
H9400b_a01	TrAa01S	$\mathrm{DMSO}(\mathrm{aq}) \to \mathrm{DMSO}$	k_exb(01,ind_DMSO)	see note
H9401_a01	TrAa01SMbl	$CH_3SO_3H \rightarrow CH_3SO_3^-(aq) + H^+(aq)$	k_exf(01,ind_CH3SO3H)	see note

coefficients are calculated in $_{
m the}$ file messy_mecca_aero.f90 using the accommodation coefficients subroutine $_{
m in}$ mecca_aero_alpha and Henry's law constants in subroutine mecca_aero_henry.

 $k_{\rm mt} = {\rm mass} \ {\rm transfer} \ {\rm coefficient}$

lwc = liquid water content of aerosol mode The forward (k_exf) and backward (k_exb) H3201, H6300, H6301, H6302, H7300, H7301, H7302, H7601, H7602: For uptake of X (= N₂O₅, ClNO₃, BrNO₃) and subsequent reaction with H₂O, Cl⁻, and Br⁻, we define $k_{\text{exf}}(X) = k_{\text{mt}}(X) \times lwc/([H_2O] + 5.0E2[Cl^-] +$ $3.0E5[Br^{-}]$).

H6301, H6302, H7601: The total uptake is de-

termined by $k_{\rm mt}({\rm ClNO_3})$. The relative rates are assumed to be the same as for N_2O_5 (H3201, H6300, H7300).

H7301, H7302, H7602: The total uptake is determined by $k_{\rm mt}({\rm BrNO_3})$. The relative rates are assumed to be the same as for N_2O_5 (H3201, H6300, H7300).

Table 6: Acid-base and other eqilibria

#	labels	reaction	$K_0[M^{m-n}]$	-	reference
				$\Delta H/R[K]$	
EQ20_a01	TrAa01Sc	$HO_2 \rightleftharpoons O_2^- + H^+$	1.6E-5		Weinstein-Lloyd and Schwartz (1991)
EQ21_a01	TrAa01MblScScm	$H_2O \rightleftharpoons H^+ + OH^-$	1.0E-16	-6716	Chameides (1984)
EQ30_a01	TrAa01MblNScScm	$NH_4^+ \rightleftharpoons H^+ + NH_3$	5.88E-10	-2391	Chameides (1984)
EQ31_a01	TrAa01NSc	$HONO \rightleftharpoons H^+ + NO_2^-$	5.1E-4	-1260	Schwartz and White (1981)
EQ32_a01	${\bf TrAa01MblNScScm}$	$HNO_3 \rightleftharpoons H^+ + NO_3^-$	15	8700	Davis and de Bruin (1964)
EQ33_a01	TrAa01NSc	$HNO_4 \rightleftharpoons NO_4^- + H^+$	1.E-5		Warneck (1999)
EQ40_a01	TrAa01MblScScm	$CO_2 \rightleftharpoons H^+ + HCO_3^-$	4.3E-7	-913	Chameides (1984)*
EQ41_a01	TrAa01ScScm	$\text{HCOOH} \rightleftharpoons \text{H}^+ + \text{HCOO}^-$	1.8E-4		Weast (1980)
EQ60_a01	TrAa01Cl	$Cl_2^- \rightleftharpoons Cl + Cl^-$	7.3E-6		Yu (2004)
EQ61_a01	${\bf TrAa01ClMblScScm}$	$HCl \rightleftharpoons H^+ + Cl^-$	1.7E6	6896	Marsh and McElroy (1985)
EQ62_a01	TrAa01ClSc	$HOCl \rightleftharpoons H^+ + ClO^-$	3.2E-8		Lax (1969)
EQ70_a01	TrAa01Br	$Br_2^- \rightleftharpoons Br + Br^-$	2.54E-6	-2256	Liu et al. (2002)
EQ71_a01	${\bf TrAa01BrMblScScm}$	$HBr \rightleftharpoons H^+ + Br^-$	1.0E9		Lax (1969)
EQ72_a01	TrAa01BrSc	$HOBr \rightleftharpoons H^+ + BrO^-$	2.3E-9	-3091	Kelley and Tartar (1956)*
EQ73_a01	TrAa01ClBrMbl	$BrCl + Cl^- \rightleftharpoons BrCl_2^-$	3.8	1191	Wang et al. (1994)
EQ74_a01	TrAa01ClBrMbl	$BrCl + Br^- \rightleftharpoons Br_2Cl^-$	1.8E4	7457	Wang et al. (1994)
EQ75_a01	TrAa01ClBrMbl	$Br_2 + Cl^- \rightleftharpoons Br_2Cl^-$	1.3	0	Wang et al. (1994)
EQ76_a01	TrAa01ClBrMbl	$\mathrm{Br}^- + \mathrm{Cl}_2 \rightleftharpoons \mathrm{Br}\mathrm{Cl}_2^-$	4.2E6	14072	Wang et al. (1994)
EQ90_a01	TrAa01SMblScScm	$SO_2 \rightleftharpoons H^+ + HSO_3^-$	1.7E-2	2090	Chameides (1984)
EQ91_a01	${\bf TrAa01SMblScScm}$	$HSO_3^- \rightleftharpoons H^+ + SO_3^{2-}$	6.0E-8	1120	Chameides (1984)
EQ92_a01	${\bf TrAa01SMblScScm}$	$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-}$	1.2E-2	2720	Seinfeld and Pandis (1998)
EQ93_a01	${\bf TrAa01SMblScScm}$	$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$	1.0E3		Seinfeld and Pandis (1998)

EQ72: For $pK_a(HOBr)$, see also Keller-Rudek et al. (1992).

EQ40: For $pK_a(CO_2)$, see also Dickson and Millero (1987).

Table 7: Aqueous phase reactions

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A1000_a01	TrAa01Sc	$O_3 + O_2^- \rightarrow OH + OH^-$	1.5E9		Sehested et al. (1983)
A2100_a01	TrAa01Sc	$OH + O_2^- \rightarrow OH^-$	1.0E10		Sehested et al. (1968)
A2101_a01	TrAa01Sc	$\mathrm{OH} + \mathrm{OH} \rightarrow \mathrm{H_2O_2}$	5.5E 9		Buxton et al. (1988)
A2102_a01	TrAa01Sc	$HO_2 + O_2^- \to H_2O_2 + OH^-$	1.0E8	-900	Christensen and Sehested
					(1988)
A2103_a01	TrAa01Sc	$\mathrm{HO_2} + \mathrm{OH} \rightarrow \mathrm{H_2O}$	7.1E9		Sehested et al. (1968)
A2104_a01	TrAa01Sc	$\mathrm{HO_2} + \mathrm{HO_2} ightarrow \mathrm{H_2O_2}$	9.7E5	-2500	Christensen and Sehested
					(1988)
A2105_a01	TrAa01Sc	$H_2O_2 + OH \rightarrow HO_2$	2.7E7	-1684	Christensen et al. (1982)
A3100_a01	TrAa01NSc	$NO_2^- + O_3 \rightarrow NO_3^-$	5.0E5	-6950	Damschen and Martin
					(1983)
A3101_a01	TrAa01NSc	$NO_2 + NO_2 \rightarrow HNO_3 + HONO$	1.0E8		Lee and Schwartz (1981)
A3102_a01	TrAa01NSc	$NO_4^- \to NO_2^-$	$8.0\mathrm{E}1$		Warneck (1999)
A3200_a01	TrAa01NSc	$NO_2 + HO_2 \rightarrow HNO_4$	1.8E9		Warneck (1999)
A3201_a01	TrAa01NSc	$NO_2^- + OH \rightarrow NO_2 + OH^-$	1.0E10		Wingenter et al. (1999)
A3202_a01	TrAa01NSc	$NO_3 + OH^- \rightarrow NO_3^- + OH$	8.2E7	-2700	Exner et al. (1992)
A3203_a01	TrAa01NSc	$HONO + OH \rightarrow NO_2$	1.0E10		Barker et al. (1970)
A3204_a01	TrAa01NSc	$\mathrm{HONO} + \mathrm{H_2O_2} + \mathrm{H^+} \rightarrow \mathrm{HNO_3} + \mathrm{H^+}$	4.6E3	-6800	Damschen and Martin
					(1983)
A4100_a01	TrAa01Sc	$\mathrm{CO_3^-} + \mathrm{O_2^-} \to \mathrm{HCO_3^-} + \mathrm{OH^-}$	6.5 E8		Ross et al. (1992)
A4101_a01	TrAa01Sc	$\mathrm{CO_3^-} + \mathrm{H_2O_2} \rightarrow \mathrm{HCO_3^-} + \mathrm{HO_2}$	4.3E5		Ross et al. (1992)
A4102_a01	TrAa01Sc	$\mathrm{HCOO^-} + \mathrm{CO_3^-} \rightarrow 2 \; \mathrm{HCO_3^-} + \mathrm{HO_2}$	1.5E5		Ross et al. (1992)
A4103_a01	TrAa01Sc	$\mathrm{HCOO^-} + \mathrm{OH} \rightarrow \mathrm{OH^-} + \mathrm{HO_2} + \mathrm{CO_2}$	3.1E9	-1240	Chin and Wine (1994)
A4104_a01	TrAa01Sc	$HCO_3^- + OH \rightarrow CO_3^-$	8.5E6		Ross et al. (1992)
A4105_a01	TrAa01Sc	$\text{HCHO} + \text{OH} \rightarrow \text{HCOOH} + \text{HO}_2$	7.7 E8	-1020	Chin and Wine (1994)
A4106_a01	TrAa01Sc	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{HO}_2 + \mathrm{CO}_2$	1.1E8	-991	Chin and Wine (1994)
A4107_a01	TrAa01Sc	$\mathrm{CH_3OO} + \mathrm{O_2^-} \rightarrow \mathrm{CH_3OOH} + \mathrm{OH^-}$	$5.0\mathrm{E}7$		Jacob (1986)
A4108_a01	TrAa01Sc	$\mathrm{CH_3OO} + \mathrm{HO_2} \rightarrow \mathrm{CH_3OOH}$	4.3E5		Jacob (1986)
A4109_a01	TrAa01Sc	$CH_3OH + OH \rightarrow HCHO + HO_2$	9.7E8		Buxton et al. (1988)

Table 7: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A4110a_a01	TrAa01Sc	$\mathrm{CH_3OOH} + \mathrm{OH} \rightarrow \mathrm{CH_3OO}$	2.7E7	-1715	Jacob (1986)
A4110b_a01	TrAa01Sc	$CH_3OOH + OH \rightarrow HCHO + OH$	1.1E7	-1715	Jacob (1986)
A6000_a01	TrAa01Cl	$Cl + Cl \rightarrow Cl_2$	8.8E7		Wu et al. (1980)
A6001_a01	TrAa01Cl	$\mathrm{Cl}_2^- + \mathrm{Cl}_2^- \to \mathrm{Cl}_2 + 2 \; \mathrm{Cl}^-$	3.5E9		Yu (2004)
A6100_a01	TrAa01Cl	$\text{Cl}^- + \text{O}_3 \rightarrow \text{ClO}^-$	3.0E-3		Hoigné et al. (1985)
A6101_a01	TrAa01Cl	$\mathrm{Cl}_2 + \mathrm{O}_2^- \to \mathrm{Cl}_2^-$	1.0E9		Bjergbakke et al. (1981)
A6102_a01	TrAa01Cl	$\mathrm{Cl}_2^- + \mathrm{O}_2^- \to 2 \ \mathrm{Cl}^-$	1.0E9		Jacobi (1996)*
A6200_a01	TrAa01Cl	$Cl \rightarrow H^+ + ClOH^-$	1.8E5		Yu (2004)
A6201_a01	TrAa01Cl	$Cl + H_2O_2 \rightarrow HO_2 + Cl^- + H^+$	2.7E7	-1684	Christensen et al. (1982)
A6202_a01	TrAa01Cl	$\mathrm{Cl}^- + \mathrm{OH} \to \mathrm{ClOH}^-$	4.2E9		Yu (2004)
A6203_a01	TrAa01Cl	$\text{Cl}_2 + \text{HO}_2 \rightarrow \text{Cl}_2^- + \text{H}^+$	1.0E9		Bjergbakke et al. (1981)
A6204_a01	TrAa01ClMbl	$\text{Cl}_2 \to \text{Cl}^- + \text{HOCl} + \text{H}^+$	21.8	-8012	Wang and Margerum
					(1994)
A6205_a01	TrAa01Cl	$\mathrm{Cl}_2^- + \mathrm{HO}_2 \rightarrow 2 \ \mathrm{Cl}^- + \mathrm{H}^+$	1.3E10		Jacobi (1996)
A6206_a01	TrAa01Cl	$HOCl + O_2^- \rightarrow Cl + OH^-$	7.5E6		Long and Bielski (1980)
A6207_a01	TrAa01Cl	$HOCl + HO_2 \rightarrow Cl$	7.5E6		Long and Bielski (1980)
A6208_a01	TrAa01ClMbl	$HOCl + Cl^- + H^+ \rightarrow Cl_2$	2.2E4	-3508	Wang and Margerum
					(1994)
A6209_a01	TrAa01Cl	$ClOH^- \rightarrow Cl^- + OH$	6.0E 9		Yu (2004)
A6210_a01	TrAa01Cl	$ClOH^- + H^+ \rightarrow Cl$	2.4E10		Yu (2004)
A6300_a01	TrAa01Cl	$Cl + NO_3^- \rightarrow NO_3 + Cl^-$	1.0E8		Buxton et al. (1999b)
A6301_a01	TrAa01Cl	$\mathrm{Cl^-} + \mathrm{NO_3} \rightarrow \mathrm{NO_3^-} + \mathrm{Cl}$	3.4E8		Buxton et al. $(1999b)^*$
A6302_a01	TrAa01Cl	$\text{Cl}_2^- + \text{NO}_2^- \rightarrow 2 \text{ Cl}^- + \text{NO}_2$	$6.0\mathrm{E}7$		Jacobi et al. (1996)
A6400_a01	TrAa01Cl	$\text{Cl}_2^- + \text{CH}_3\text{OOH} \rightarrow 2 \text{ Cl}^- + \text{H}^+ + \text{CH}_3\text{OO}$	5.0E4		Jacobi et al. (1996)
A7000_a01	TrAa01Br	${\rm Br}_2^- + {\rm Br}_2^- \to 2 \; {\rm Br}^- + {\rm Br}_2$	1.9E9		Ross et al. (1992)
A7100_a01	TrAa01Br	$\mathrm{Br}^- + \mathrm{O}_3 \to \mathrm{BrO}^-$	2.1E2	-4450	Haag and Hoigné (1983)
A7101_a01	TrAa01Br	$\mathrm{Br}_2 + \mathrm{O}_2^- \to \mathrm{Br}_2^-$	5.6E9		Sutton and Downes (1972)
A7102_a01	TrAa01Br	$\mathrm{Br}_2^- + \mathrm{O}_2^- \to 2~\mathrm{Br}^-$	1.7E8		Wagner and Strehlow
					(1987)
A7200_a01	TrAa01Br	${\rm Br}^- + {\rm OH} \rightarrow {\rm BrOH}^-$	1.1E10		Zehavi and Rabani (1972)

Table 7: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A7201_a01	TrAa01Br	$\mathrm{Br}_2 + \mathrm{HO}_2 \to \mathrm{Br}_2^- + \mathrm{H}^+$	1.1E8		Sutton and Downes (1972)
A7202_a01	TrAa01BrMbl	$\mathrm{Br}_2 \to \mathrm{Br}^- + \mathrm{HOBr} + \mathrm{H}^+$	9.7E1	-7457	Beckwith et al. (1996)
A7203_a01	TrAa01Br	${\rm Br}_2^- + {\rm HO}_2 \to {\rm Br}_2 + {\rm H}_2{\rm O}_2 + {\rm OH}^-$	4.4E9		Matthew et al. (2003)
A7204_a01	TrAa01Br	${\rm Br}_2^- + {\rm H}_2{\rm O}_2 \to 2~{\rm Br}^- + {\rm H}^+ + {\rm HO}_2$	1.0E5		Jacobi (1996)
A7205_a01	TrAa01Br	$HOBr + O_2^- \rightarrow Br + OH^-$	3.5E9		Schwarz and Bielski (1986)
A7206_a01	TrAa01Br	$HOBr + HO_2 \rightarrow Br$	1.0E9		Herrmann et al. (1999)
A7207_a01	TrAa01Br	$HOBr + H_2O_2 \rightarrow Br^- + H^+$	1.2E6		Bichsel and von Gunten (1999)
A7208_a01	TrAa01BrMbl	$HOBr + Br^- + H^+ \rightarrow Br_2$	1.6E10		Beckwith et al. (1996)
A7209a_a01	TrAa01Br	$BrOH^- \rightarrow Br^- + OH$	3.3E7		Zehavi and Rabani (1972)
A7209b_a01	TrAa01Br	$BrOH^- \rightarrow Br + OH^-$	4.2E6		Zehavi and Rabani (1972)
A7210_a01	TrAa01Br	$BrOH^- + H^+ \rightarrow Br$	4.4E10		Zehavi and Rabani (1972)
A7300_a01	TrAa01Br	$Br^- + NO_3 \rightarrow Br + NO_3^-$	4.0E9		Neta and Huie (1986)
A7301_a01	TrAa01Br	$\mathrm{Br}_2^- + \mathrm{NO}_2^- \to 2 \; \mathrm{Br}^- + \mathrm{NO}_2$	1.7E7	-1720	Shoute et al. (1991)
A7400_a01	TrAa01Br	$\mathrm{Br}_2^- + \mathrm{CH}_3\mathrm{OOH} \rightarrow 2~\mathrm{Br}^- + \mathrm{H}^+ + \mathrm{CH}_3\mathrm{OO}$	1.0E5		Jacobi (1996)*
A7601_a01	TrAa01Br	$Br^- + ClO^- + H^+ \rightarrow BrCl + OH^-$	3.7E10		Kumar and Margerum (1987)
A7602_a01	TrAa01ClBrMbl	$Br^- + HOCl + H^+ \rightarrow BrCl$	1.32E6		Kumar and Margerum (1987)
A7603_a01	TrAa01ClBrMbl	$HOBr + Cl^- + H^+ \rightarrow BrCl$	2.3E10		see note
A7604_a01	TrAa01ClBrMbl	$BrCl \rightarrow Cl^- + HOBr + H^+$	3.0E6		Liu and Margerum (2001)
A9100_a01	TrAa01SSc	$SO_3^- + O_2 \rightarrow SO_5^-$	1.5E9		Huie and Neta (1987)
A9101_a01	${\bf TrAa01SMblScScm}$	$SO_3^{2-} + O_3 \rightarrow SO_4^{2-}$	1.5E9	-5300	Hoffmann (1986)
A9102_a01	TrAa01SSc	$SO_4^- + O_2^- \to SO_4^{2-}$	3.5E9		Jiang et al. (1992)
A9103_a01	TrAa01SSc	$SO_4^- + SO_3^{2-} \to SO_3^- + SO_4^{2-}$	4.6E8		Huie and Neta (1987)
A9104_a01	TrAa01SSc	$SO_5^- + O_2^- \rightarrow HSO_5^- + OH^-$	2.3E8		Buxton et al. (1996)
A9105_a01	TrAa01S	$SO_5^- + SO_3^{2-} \rightarrow .72 SO_4^- + .72 SO_4^{2-} + .28 SO_3^- +$	1.3E7		Huie and Neta (1987),
		$.28~{\rm HSO_5^-} + .28~{\rm OH^-}$			Deister and Warneck
					(1990)*

Table 7: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A9106_a01	TrAa01S	$SO_5^- + SO_5^- \to O_2 + SO_4^{2-}$	1.0E8		Ross et al. $(1992)^*$
A9200_a01	TrAa01SSc	$SO_3^{2-} + OH \rightarrow SO_3^- + OH^-$	5.5E9		Buxton et al. (1988)
A9201_a01	TrAa01SSc	$SO_4^- + OH \rightarrow HSO_5^-$	1.0E9		Jiang et al. (1992)
A9202_a01	TrAa01SSc	$SO_4^- + HO_2 \to SO_4^{2-} + H^+$	3.5E9		Jiang et al. (1992)
A9203_a01	TrAa01SSc	$SO_4^- + H_2O \rightarrow SO_4^{2-} + H^+ + OH$	1.1E1	-1110	Herrmann et al. (1995)
A9204_a01	TrAa01SSc	$SO_4^- + H_2O_2 \rightarrow SO_4^{2-} + H^+ + HO_2$	1.2E7		Wine et al. (1989)
A9205_a01	TrAa01SSc	$HSO_3^- + O_2^- \to SO_4^{2-} + OH$	3.0E3		see note
A9206_a01	${\bf TrAa01SMblScScm}$	$HSO_3^- + O_3 \to SO_4^{2-} + H^+$	3.7E5	-5500	Hoffmann (1986)
A9207_a01	TrAa01SSc	$HSO_3^- + OH \rightarrow SO_3^-$	4.5E9		Buxton et al. (1988)
A9208_a01	TrAa01SSc	$HSO_3^- + HO_2 \to SO_4^{2-} + OH + H^+$	3.0E3		see note
A9209_a01	TrAa01SMblScScm	$HSO_3^- + H_2O_2 \to SO_4^{2-} + H^+$	5.2E6	-3650	Martin and Damschen (1981)
A9210_a01	TrAa01SSc	$HSO_3^- + SO_4^- \to SO_3^- + SO_4^{2-} + H^+$	8.0E8		Huie and Neta (1987)
A9211_a01	TrAa01S	${\rm HSO_3^-} + {\rm SO_5^-} \rightarrow .75 \; {\rm SO_4^-} + .75 \; {\rm SO_4^{2-}} + .75 \; {\rm H}^+ + .25 \; {\rm SO_3^-} + .25 \; {\rm HSO_5^-}$	1.0E5		Huie and Neta (1987)
A9212_a01	TrAa01SSc	$HSO_3^- + HSO_5^- + H^+ \rightarrow 2 HSO_4^- + H^+$	7.1E6		Betterton and Hoffmann (1988)
A9300_a01	TrAa01SSc	$\mathrm{SO_3^{2-}} + \mathrm{NO_2} \rightarrow \mathrm{SO_4^{2-}} + 2 \ \mathrm{HONO} - \mathrm{NO_2}$	2.0E7		Clifton et al. (1988)
A9301_a01	TrAa01SSc	$SO_4^- + NO_3^- \rightarrow SO_4^{2-} + NO_3$	5.0E4		Exner et al. (1992)
A9302_a01	TrAa01SSc	$SO_4^{2-} + NO_3 \to NO_3^{-} + SO_4^{-}$	1.0E5		Logager et al. (1993)
A9303_a01	TrAa01SSc	$\mathrm{HSO}_3^- + \mathrm{NO}_2 \to \mathrm{HSO}_4^- + 2 \; \mathrm{HONO} - \mathrm{NO}_2$	2.0E7		Clifton et al. (1988)
A9304_a01	TrAa01SSc	$HSO_3^- + NO_3 \to SO_3^- + NO_3^- + H^+$	1.4E9	-2000	Exner et al. (1992)
A9305_a01	TrAa01SSc	$\mathrm{HSO}_3^- + \mathrm{HNO}_4 \to \mathrm{HSO}_4^- + \mathrm{NO}_3^- + \mathrm{H}^+$	3.1E5		Warneck (1999)
A9400_a01	TrAa01SSc	$SO_3^{2-} + HCHO \rightarrow CH_2OHSO_3^- + OH^-$	1.4E4		Boyce and Hoffmann (1984)
A9401_a01	TrAa01SSc	$SO_3^{2-} + CH_3OOH + H^+ \rightarrow SO_4^{2-} + H^+ + CH_3OH$	1.6E7	-3800	Lind et al. (1987)
A9402_a01	TrAa01SSc	$HSO_3^- + HCHO \rightarrow CH_2OHSO_3^-$	4.3E-1		Boyce and Hoffmann (1984)
A9403_a01	TrAa01SSc	$\mathrm{HSO}_3^- + \mathrm{CH}_3\mathrm{OOH} + \mathrm{H}^+ \to \mathrm{HSO}_4^- + \mathrm{H}^+ + \mathrm{CH}_3\mathrm{OH}$	1.6E7	-3800	Lind et al. (1987)

Table 7: Aqueous phase reactions (...continued)

#	labels	reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference
A9404_a01	TrAa01SSc	$\mathrm{CH_2OHSO_3^-} + \mathrm{OH^-} \rightarrow \mathrm{SO_3^{2-}} + \mathrm{HCHO}$	3.6E3		Seinfeld and Pandis
					(1998)
A9600_a01	TrAa01SCl	$SO_3^{2-} + Cl_2^- \to SO_3^- + 2 Cl^-$	6.2E7		Jacobi et al. (1996)
A9601_a01	TrAa01SClMbl	$SO_3^{2-} + HOCl \rightarrow Cl^- + HSO_4^-$	7.6E8		Fogelman et al. (1989)
A9602_a01	TrAa01SCl	$SO_4^- + Cl^- \rightarrow SO_4^{2-} + Cl$	2.5 E8		Buxton et al. (1999a)
A9603_a01	TrAa01SCl	$\mathrm{SO_4^{2-}} + \mathrm{Cl} \rightarrow \mathrm{SO_4^-} + \mathrm{Cl^-}$	2.1E8		Buxton et al. (1999a)
A9604_a01	TrAa01SCl	$HSO_3^- + Cl_2^- \to SO_3^- + 2 Cl^- + H^+$	4.7E8	-1082	Shoute et al. (1991)
A9605_a01	TrAa01SClMbl	$\mathrm{HSO}_3^- + \mathrm{HOCl} \rightarrow \mathrm{Cl}^- + \mathrm{HSO}_4^- + \mathrm{H}^+$	7.6E8		see note
A9606_a01	TrAa01SCl	$\mathrm{HSO}_5^- + \mathrm{Cl}^- \to \mathrm{HOCl} + \mathrm{SO}_4^{2-}$	1.8E-3	-7352	Fortnum et al. (1960)
A9700_a01	TrAa01SBr	$SO_3^{2-} + Br_2^- \to 2 Br^- + SO_3^-$	2.2E8	-649	Shoute et al. (1991)
A9701_a01	TrAa01SBr	$SO_3^{2-} + BrO^- \to Br^- + SO_4^{2-}$	1.0E8		Troy and Margerum
					(1991)
A9702_a01	TrAa01SBrMbl	$SO_3^{2-} + HOBr \rightarrow Br^- + HSO_4^-$	5.0E9		Troy and Margerum
					(1991)
A9703_a01	TrAa01SBr	$\mathrm{SO_4^-} + \mathrm{Br^-} \to \mathrm{Br} + \mathrm{SO_4^{2-}}$	2.1E9		Jacobi (1996)
A9704_a01	TrAa01SBr	$HSO_3^- + Br_2^- \to 2 Br^- + H^+ + SO_3^-$	6.3E7	-782	Shoute et al. (1991)
A9705_a01	TrAa01SBrMbl	$\mathrm{HSO_3^-} + \mathrm{HOBr} \rightarrow \mathrm{Br}^- + \mathrm{HSO_4^-} + \mathrm{H}^+$	5.0E9		see note
A9706_a01	TrAa01SBr	$\mathrm{HSO}_5^- + \mathrm{Br}^- \to \mathrm{HOBr} + \mathrm{SO}_4^{2-}$	1.0E0	-5338	Fogelman et al. (1989)

A6102: Jacobi (1996) found an upper limit of 6E9 and cite an upper limit from another study of 2E9. Here, we set the rate coefficient to 1E9.

A6301: There is also an earlier study by Exner et al. (1992) which found a smaller rate coefficient but did not consider the back reaction.

A7400: Assumed to be the same as for Br_2^- + H_2O_2 .

A9105: The rate coefficient for the sum of the $\mbox{use SO}_4^{2-}$ as a proxy. Note that this destroys the paths (leading to either HSO_5^- or SO_4^{2-}) is from Huie and Neta (1987), the ratio 0.28/0.72 is from Deister and Warneck (1990).

A9106: See also: (Huie and Neta, 1987; Warneck, 1991). If this reaction produces a lot of SO_4^- , it will have an effect. However, we currently assume only the stable $S_2O_8^{2-}$ as product. Since $S_2O_8^{2-}$ is not treated explicitly in the mechanism, we

mass consistency for sulfur species.

A9205: D. Sedlak, pers. comm. (1993).

A9208: D. Sedlak, pers. comm. (1993).

A9605: assumed to be the same as for SO_3^{2-} +

A9705: assumed to be the same as for SO_3^{2-} +

References

- Abbatt, J. P. D. and Waschewsky, G. C. G.: Heterogeneous interactions of HOBr, HNO₃, O₃, and NO₂ with deliquescent NaCl aerosols at room temperature, J. Phys. Chem. A, 102, 3719–3725, 1998.
- Anderson, L. C. and Fahey, D. W.: Studies with ClONO₂: Thermal dissociation rate and catalytic conversion to NO using an NO/O₃ chemiluminescence detector, J. Phys. Chem., 94, 644–652, 1990.
- Aranda, A., Le Bras, G., La Verdet, G., and Poulet, G.: The BrO + CH₃O₂ reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745–2748, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version August 1999, http://www.iupac-kinetic.ch.cam.ac.uk/, 1999.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I gas phase reactions of

- O_x , HO_x , NO_x and SO_x species, Atmos. Chem. Phys., 4, 1461–1738, 2004.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, Jr., R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version March 2005, http://www.iupac-kinetic.ch.cam.ac.uk/, 2005.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625– 4055, 2006.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III — gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, 2007.
- Barker, G. C., Fowles, P., and Stringer, B.: Pulse radiolytic induced transient electrical conductance in liquid solutions, Trans. Faraday Soc., 66, 1509–1519, 1970.
- Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Role of adducts in the atmo-

- spheric oxidation of dimethyl sulfide, Faraday Discuss., 100, 39–54, 1995.
- Bartlett, W. P. and Margerum, D. W.: Temperature dependencies of the Henry's law constant and the aqueous phase dissociation constant of bromine chloride, Environ. Sci. Technol., 33, 3410–3414, 1999.
- Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35, 995–1000, 1996.
- Behnke, W., Scheer, V., and Zetzsch, C.: Production of BrNO₂, Br₂ and ClNO₂ from the reaction between sea spray aerosol and N₂O₅, J. Aerosol Sci., 25, S277–S278, 1994.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, 1997.
- Betterton, E. A. and Hoffmann, M. R.: Oxidation of aqueous SO₂ by peroxymonosulfate, J. Phys. Chem., 92, 5962–5965, 1988.
- Bichsel, Y. and von Gunten, U.: Oxidation of iodide and hypoiodous acid in the disinfection of natural waters, Environ. Sci. Technol., 33, 4040–4045, 1999.
- Bjergbakke, E., Navartnam, S., Parsons, B. J., and Swallow, A. J.: Reaction between HO₂.

- and chlorine in aqueous solution, J. Am. Chem. Buxton, G. V., Salmon, G. A., and Wang, J. Q.: Soc., 103, 5926-5928, 1981. The equilibrium $NO_3 + Cl^- \rightleftharpoons NO_3^- + Cl^-$: A
- Boyce, S. D. and Hoffmann, M. R.: Kinetics and mechanism of the formation of hydroxymethanesulfonic acid at low pH, J. Phys. Chem., 88, 4740–4746, 1984.
- Brimblecombe, P. and Clegg, S. L.: Erratum, J. Atmos. Chem., 8, 95, 1989.
- Burkholder, J. B., Orlando, J. J., and Howard, C. J.: Ultraviolet absorption cross sections of Cl₂O₂ between 210 and 410 nm, J. Phys. Chem., 94, 687–695, 1990.
- Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O⁻) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513–886, 1988.
- Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D.: A study of the spectra and reactivity of oxysulphurradical anions involved in the chain oxidation of S(IV): A pulse and γ -radiolysis study, Atmos. Environ., 30, 2483–2493, 1996.
- Buxton, G. V., Bydder, M., and Salmon, G. A.: The reactivity of chlorine atoms in aqueous solution: Part II. The equilibrium $SO_4^- + Cl^- \rightleftharpoons Cl^+ + SO_4^{2-}$, Phys. Chem. Chem. Phys., 1, 269–273, 1999a.

- Buxton, G. V., Salmon, G. A., and Wang, J. Q.: The equilibrium $NO_3 + Cl^- \rightleftharpoons NO_3^- + Cl^-$: A laser flash photolysis and pulse radiolysis study of the reactivity of NO_3 with chloride ion in aqueous solution, Phys. Chem. Chem. Phys., 1, 3589–3593, 1999b.
- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739–4755, 1984.
- Chin, M. and Wine, P. H.: A temperature-dependent competitive kinetics study of the aqueous-phase reactions of OH radicals with formate, formic acid, acetate, acetic acid, and hydrated formaldehyde, in: Aquatic and Surface Photochemistry, edited by Helz, G. R., Zepp, R. G., and Crosby, D. G., pp. 85–96, A. F. Lewis, NY, 1994.
- Christensen, H. and Sehested, K.: HO_2 and O_2^- radicals at elevated temperatures, J. Phys. Chem., 92, 3007–3011, 1988.
- Christensen, H., Sehested, K., and Corfitzen, H.: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, J. Phys. Chem., 86, 1588–1590, 1982.
- Christensen, L. E., Okumura, M., Sander, S. P., Salawitch, R. J., Toon, G. C., Sen, B., Blavier, J.-F., and Jucks, K. W.: Kinetics of $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$: Implications for stratospheric H_2O_2 , Geophys. Res. Lett., 29, doi: 10.1029/2001 GL014525, 2002.

- Clifton, C. L., Altstein, N., and Huie, R. E.: Rate constant for the reaction of NO₂ with sulfur(IV) over the pH range 5.3–13, Environ. Sci. Technol., 22, 586–589, 1988.
- Damschen, D. E. and Martin, L. R.: Aqueous aerosol oxidation of nitrous acid by O₂, O₃ and H₂O₂, Atmos. Environ., 17, 2005–2011, 1983.
- Davis, Jr., W. and de Bruin, H. J.: New activity coefficients of 0-100 per cent aqueous nitric acid, J. Inorg. Nucl. Chem., 26, 1069–1083, 1964.
- De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res., 99D, 16927–16932, 1994.
- Deiber, G., George, C., Le Calvé, S., Schweitzer, F., and Mirabel, P.: Uptake study of ClONO₂ and BrONO₂ by halide containing droplets, Atmos. Chem. Phys., 4, 1291–1299, 2004.
- Deister, U. and Warneck, P.: Photooxidation of SO_3^{2-} in aqueous solution, J. Phys. Chem., 94, 2191–2198, 1990.
- DeMore, W. B., Sander, S. P., Golden, D. M.,
 Hampson, R. F., Kurylo, M. J., Howard, C. J.,
 Ravishankara, A. R., Kolb, C. E., and Molina,
 M. J.: Chemical kinetics and photochemical

- data for use in stratospheric modeling. Evaluation number 12, JPL Publication 97-4, Jet Propulsion Laboratory, Pasadena, CA, 1997.
- Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res. A, 34, 1733–1743, 1987.
- Exner, M., Herrmann, H., and Zellner, R.: Laser-based studies of reactions of the nitrate radical in aqueous solution, Ber. Bunsenges. Phys. Chem., 96, 470–477, 1992.
- Fogelman, K. D., Walker, D. M., and Margerum, D. W.: Non-metal redox kinetics: Hypochlorite and hypochlorous acid reactions with sulfite, Inorg. Chem., 28, 986–993, 1989.
- Fortnum, D. H., Battaglia, C. J., Cohen, S. R., and Edwards, J. O.: The kinetics of the oxidation of halide ions by monosubstituted peroxides, J. Am. Chem. Soc., 82, 778–782, 1960.
- Haag, W. R. and Hoigné, J.: Ozonation of bromide-containing waters: Kinetics of formation of hypobromous acid and bromate, Environ. Sci. Technol., 17, 261–267, 1983.
- Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.: Measurement of OH and HO₂ radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem., 96, 4979–4985, 1992.

- Herrmann, H., Reese, A., and Zellner, R.: Time resolved UV/VIS diode array absorption spectroscopy of SO_x⁻ (x=3, 4, 5) radical anions in aqueous solution, J. Mol. Struct., 348, 183–186, 1995.
- Herrmann, H., Ervens, B., Nowacki, P., Wolke, R., and Zellner, R.: A chemical aqueous phase radical mechanism for tropospheric chemistry, Chemosphere, 38, 1223–1232, 1999.
- Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ., 20, 1145–1154, 1986.
- Hoigné, J., Bader, H., Haag, W. R., and Staehelin, J.: Rate constants of reactions of ozone with organic and inorganic compounds in water III Inorganic compounds and radicals, Wat. Res., 19, 993–1004, 1985.
- Hu, J. H., Shi, Q., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Reactive uptake of Cl₂(g) and Br₂(g) by aqueous surfaces as a function of Br⁻ and I⁻ ion concentration: The effect of chemical reaction at the interface, J. Phys. Chem., 99, 8768–8776, 1995.
- Huie, R. E. and Neta, P.: Rate constants for some oxidations of S(IV) by radicals in aqueous solutions, Atmos. Environ., 21, 1743–1747, 1987.
- Huthwelker, T., Clegg, S. L., Peter, T., Carslaw, K., Luo, B. P., and Brimblecombe, P.: Solu-

- bility of HOCl in water and aqueous H_2SO_4 to stratospheric temperatures, J. Atmos. Chem., 21, 81–95, 1995.
- Hynes, A. J. and Wine, P. H.: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + DMSO reaction, J. Atmos. Chem., 24, 23–37, 1996.
- Ingham, T., Bauer, D., Sander, R., Crutzen, P. J., and Crowley, J. N.: Kinetics and products of the reactions BrO + DMS and Br + DMS at 298 K, J. Phys. Chem. A, 103, 7199– 7209, 1999.
- Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91D, 9807–9826, 1986.
- Jacobi, H.-W.: Kinetische Untersuchungen und Modellrechnungen zur troposphärischen Chemie von Radikalanionen und Ozon in wäßriger Phase, Ph.D. thesis, Universität GH Essen, Germany, 1996.
- Jacobi, H.-W., Herrmann, H., and Zellner, R.: Kinetic investigation of the Cl₂⁻ radical in the aqueous phase, in: Air Pollution Research Report 57: Homogenous and hetrogenous chemical Processes in the Troposphere, edited by Mirabel, P., pp. 172–176, Office for official Publications of the European Communities, Luxembourg, 1996.

- Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase alcohol and organic acid molecules by water surfaces, J. Phys. Chem., 95, 6329–6336, 1991.
- Jefferson, A., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of the reactions $Br(^2P_{3/2}) + CH_3SCH_3 \leftrightarrow CH_3SCH_2$ + HBr. Heat of formation of the CH₃SCH₂ radical, J. Phys. Chem., 98, 7128-7135, 1994.
- Jiang, P.-Y., Katsumura, Y., Nagaishi, R., Domae, M., Ishikawa, K., Ishigure, K., and Yoshida, Y.: Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, vield and reactivity of sulfate radicals. J. Chem. Soc. Faraday Trans., 88, 1653–1658. 1992.
- Keller-Rudek, H., Koschel, D., Merlet, P., Ohms-Bredemann, U., Wagner, J., and Wietelmann, A.: Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Edition, Br, Bromine, Supplement Volume B2, Compounds with Oxygen and Nitrogen, Springer Verlag, Berlin, 1992.
- Kelley, C. M. and Tartar, H. V.: On the system: bromine-water, J. Am. Chem. Soc., 78, 5752– 5756, 1956.
- Kircher, C. C. and Sander, S. P.: Kinetics and mechanism of HO₂ and DO₂ disproportionations, J. Phys. Chem., 88, 2082–2091, 1984.

- Javne, J. T., Duan, S. X., Davidovits, P., Kumar, K. and Margerum, D. W.: Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid, Inorg. Chem., 26, 2706–2711, 1987.
 - Lax. E.: Taschenbuch für Chemiker und Physiker, Springer Verlag, Berlin, 1969.
 - Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840–848, 1981.
 - Lind, J. A. and Kok, G. L.: Correction to "Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid" by John A. Lind and Gregory L. Kok, J. Geophys. Res., 99D, 21119, 1994.
 - Lind, J. A., Lazrus, A. L., and Kok, G. L.: Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 92D, 4171 4177, 1987.
 - Liu, Q. and Margerum, D. W.: Equilibrium and kinetics of bromine chloride hydrolysis, Environ. Sci. Technol., 35, 1127–1133, 2001.
 - Liu, Y., Pimentel, A. S., Antoku, Y., Giles, B. J., and Barker, J. R.: Temperature-dependent rate and equilibrium constants for $Br \cdot (aq) +$ $Br^{-}(aq) \rightleftharpoons Br_{2}^{-} \cdot (aq)$, J. Phys. Chem. A, 106, 11 075-11 082, 2002.

- Logager, T., Sehested, K., and Holcman, J.: Rate constants of the equilibrium reactions SO_4 + $HNO_3 \rightleftharpoons HSO_4^- + NO_3$ and $SO_4 + NO_3 \rightleftharpoons$ $SO_4^{2-} + NO_3$, Radiat. Phys. Chem., 41, 539-543, 1993.
- Long, C. A. and Bielski, B. H. J.: Rate of reaction of superoxide radical with chloridecontaining species, J. Phys. Chem., 84, 555-557, 1980.
- Magi, L., Schweitzer, F., Pallares, C., Cherif, S., , Mirabel, P., and George, C.: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. Chem. A, 101, 4943–4949, 1997.
- Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzel, D. H.: NIST Chemical Kinetics Database: Version 5.0, National Institute of Standards and Technology, Gaithersburg, MD, 1993.
- Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075–1080, 1985.
- Martin, L. R. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ., 15, 1615–1621, 1981.
- Matthew, B. M., George, I., and Anastasio, C.: Hydroperoxyl radical (HO2.) oxidizes dibromide radical anion (Br_2) to bromine (Br_2)

- in aqueous solution: Implications for the formation of Br_2 in the marine boundary layer, Geophys. Res. Lett., 30, doi:10.1029/2003GL018572, 2003.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + CO under atmospheric conditions, Geophys. Res. Lett., 28, 3135–3138, 2001.
- Neta, P. and Huie, R. E.: Rate constants for reactions of NO₃ radicals in aqueous solutions, J. Phys. Chem., 90, 4644–4648, 1986.
- Orlando, J. J. and Tyndall, G. S.: Rate coefficients for the thermal decomposition of BrONO₂ and the heat of formation of BrONO₂, J. Phys. Chem., 100, 19398–19405, 1996.
- Ponche, J. L., George, C., and Mirabel, P.: Mass transfer at the air/water interface: Mass accommodation coefficients of SO₂, HNO₃, NO₂ and NH₃, J. Atmos. Chem., 16, 1–21, 1993.
- Pöschl, U., Canagaratna, M., Jayne, J. T., Molina, L. T., Worsnop, D. R., Kolb, C. E., and Molina, M. J.: Mass accommodation coefficient of H₂SO₄ vapor on aqueous sulfuric acid surfaces and gaseous diffusion coefficient of H₂SO₄ in N₂/H₂O, J. Phys. Chem. A, 102, 10 082–10 089, 1998.
- Régimbal, J.-M. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and kinetics at

- low pH, J. Phys. Chem. A, 101, 8822–8829, 1997.
- Ross, A. B., Mallard, W. G., Helman, W. P.,
 Bielski, B. H. J., Buxton, G. V., Cabelli, D. E.,
 Greenstock, C. L., Huie, R. E., and Neta,
 P.: NDRL-NIST Solution Kinetics Database:
 Ver. 1, National Institute of Standards and
 Technology, Gaithersburg, MD, 1992.
- Rudich, Y., Talukdar, R. K., Imamura, T., Fox, R. W., and Ravishankara, A. R.: Uptake of NO₃ on KI solutions: Rate coefficient for the NO₃ + I⁻ reaction and gas-phase diffusion coefficients for NO₃, Chem. Phys. Lett., 261, 467–473, 1996.
- Saastad, O. W., Ellermann, T., and Nielsen, C. J.: On the adsorption of NO and NO_2 on cold H_2O/H_2SO_4 surfaces, Geophys. Res. Lett., 20, 1191–1193, 1993.
- Sander, S. P., Friedl, R. R., DeMore, W. B., Golden, D. M., Kurylo, M. J., Hampson, R. F., Huie, R. E., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling. Supplement to evaluation 12: Update of key reactions. Evaluation number 13, JPL Publication 00-3, Jet Propulsion Laboratory, Pasadena, CA, http://jpldataeval.jpl.nasa.gov/, 2000.
- Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E.,

- Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., and Ravishankara, A. R.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.
- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, 2006.
- Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in: Advances in Environmental Science and Engineering, edited by Pfafflin, J. R. and Ziegler, E. N., vol. 4, pp. 1–45, Gordon and Breach Science Publishers, NY, 1981.
- Schwarz, H. A. and Bielski, B. H. J.: Reactions of HO_2 and O_2^- with iodine and bromine and the I_2^- and I atom reduction potentials, J. Phys. Chem., 90, 1445–1448, 1986.
- Schweitzer, F., Mirabel, P., and George, C.: Uptake of hydrogen halides by water droplets, J. Phys. Chem. A, 104, 72–76, 2000.
- Sehested, K., Rasmussen, O. L., and Fricke, H.:

- Rate constants of OH with HO_2 , O_2^- , and $H_2O_2^+$ from hydrogen peroxide formation in pulse-irradiated oxygenated water, J. Phys. Chem., 72, 626–631, 1968.
- Sehested, K., Holcman, J., and Hart, E. J.: Rate constants and products of the reactions of e_{aq}^- , O_2^- and H with ozone in aqueous solutions, J. Phys. Chem., 87, 1951–1954, 1983.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., 1998.
- Shoute, L. C. T., Alfassi, Z. B., Neta, P., and Huie, R. E.: Temperature dependence of the rate constants for reaction of dihalide and azide radicals with inorganic reductants, J. Phys. Chem., 95, 3238–3242, 1991.
- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821–4827, 2003.
- Stimpfle, R. M., Wilmouth, D. M., Salawitch, R. J., and Anderson, J. G.: First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex, J. Geophys. Res., 109, doi:10.1029/2003JD003811, 2004.
- Sutton, H. C. and Downes, M. T.: Reactions of the HO_2 radical in aqueous solution with

- bromine and related compounds, J. Chem. Soc. Faraday Trans. 1, 68, 1498–1507, 1972.
- Takami, A., Kato, S., Shimono, A., and Koda, S.: Uptake coefficient of OH radical on aqueous surface, Chem. Phys., 231, 215–227, 1998.
- Thomas, K., Volz-Thomas, A., and Kley, D.: Zur Wechselwirkung von NO₃-Radikalen mit wässrigen Lösungen: Bestimmung des Henry-und des Massenakkomodationskoeffizienten, Ph.D. thesis, Institut für Chemie und Dynamik der Geosphäre 2, Forschungszentrum Jülich GmbH, Germany, 1993.
- Thornton, J. and Abbatt, J. P. D.: Measurements of HO_2 uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss, J. Geophys. Res., 110D, doi:10.1029/2004JD005402, 2005.
- Troy, R. C. and Margerum, D. W.: Non-metal redox kinetics: Hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate, Inorg. Chem., 30, 3538–3543, 1991.
- Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, doi:10.1038/383327A0, 1996.
- Wagner, I. and Strehlow, H.: On the flash photolysis of bromide ions in aqueous solution, Ber. Bunsenges. Phys. Chem., 91, 1317–1321, 1987.

- Wang, T. X. and Margerum, D. W.: Kinetics of reversible chlorine hydrolysis: Temperature dependence and general-acid/base-assisted mechanisms, Inorg. Chem., 33, 1050–1055, 1994.
- Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, 1994.
- Warneck, P.: Chemical reactions in clouds, Fresenius J. Anal. Chem., 340, 585–590, 1991.
- Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, 1999.
- Weast, R. C., ed.: CRC Handbook of Chemistry and Physics, 61st Edition, CRC Press, Inc., Boca Raton, FL, 1980.
- Weinstein-Lloyd, J. and Schwartz, S. E.: Lowintensity radiolysis study of free-radical reactions in cloudwater: H₂O₂ production and destruction, Environ. Sci. Technol., 25, 791–800, 1991.
- Wilhelm, E., Battino, R., and Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, 1977.

- Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D.: Kinetics of aqueous phase reactions of the SO₄⁻ radical with potential importance in cloud chemistry, J. Geophys. Res., 94D, 1085–1094, 1989.
- Wingenter, O. W., Sive, B. C., Blake, N. J., and Rowland, F. S.: Atomic chlorine concentrations determined from ethane and hydroxyl measurements made over the Central Pacific Ocean, Eos, Trans. AGU (Abstract Supplement), 80, F149–F150, 1999.
- Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Watson, L. R., van Doren, J. M., Jayne, J. T., and Davidovits, P.: The temperature dependence of mass accommodation of SO₂ and H₂O₂ on aqueous surfaces, J. Phys. Chem., 93, 1159–1172, 1989.
- Wu, D., Wong, D., and Di Bartolo, B.: Evolution of Cl₂⁻ in aqueous NaCl solutions, J. Photochem., 14, 303–310, 1980.
- Yu, X.-Y.: Critical evaluation of rate constants

- and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions, J. Phys. Chem. Ref. Data, 33, 747–763, 2004.
- Zehavi, D. and Rabani, J.: The oxidation of aqueous bromide by hydroxyl radicals. A pulse radiolytic investigation, J. Phys. Chem., 76, 312–319, 1972.