

Université de Lille, Sciences Humaines et Sociales UFR Mathématiques, Informatique, Management, Économie

Devoir maison : Applications des Méthodes de prévision

Indicateurs synthétiques du climat des affaires en France

Préparé par :

Ben Yassine Mohamed

02 Janvier 2020

Table des matières

I	Pré 0.1	esentation de série chronologique Source de la série chronologique:	2 4
	0.1	bource de la serie emonorogique.	•
II	A	pplicartions des méthodes de lissage	5
1	mét	hode de lissage simple	6
	1.1	Définition	6
	1.2	Formules de mise à jour	6
	1.3	Choix de la valeur initiale	6
	1.4	Erreur de prévision	7
	1.5	Résultats	8
2	mét	hode de holt	10
	2.1	Formules de mise à jour	10
	2.2	Choix de la valeur initiale	10
	2.3	Erreur de prévision	10
	2.4	Résultats	11
3	Mét	hode de winter	12
	3.1	additive	12
	3.2	Multiplicatif	14
III	т т	a méthodologie de Box et Jenkins	16
111	3.3	Présentation de la méthode	17
	3.4	Les Données	17
	3.5	Stabiliser la série	18
	3.6		20
	3.7	Autocorrélation et L'Autocorrélation partielle	20
	3./	Estimation du modèle	20
IV	C	conclusion	26

Première partie Présentation de série chronologique

L'indicateur synthétique mensuel présenté dans cet série constitue un résumé de l'information contenue dans l'enquête de conjoncture dans les services. Il est obtenu par extraction d'un signal commun à trois séries de fréquence mensuelle et trois de fréquence trimestrielle. L'indicateur synthétique est le résultat de l'estimation d'un modèle à composantes inobservables.

L'indicateur synthétique comprennent et appliqué aux trois sous-secteurs couverts par l'enquête de conjoncture dans les services :

- Services aux entreprises.
- Services aux particuliers et activités immobilières.

Cet indicateur contient une information spécifique par rapport à l'indicateur synthétique du climat des affaires dans l'industrie manufacturière et contribue ainsi à la prévision du Pib.

L'enquête a été réalisée pour la première fois en 1962. Jusqu'en 2007, l'enquête avait lieu chaque mois sauf au mois d'août. Depuis 2008, elle a lieu tous les mois.

La série chronologique étudiée comporte 331 observations (sans compter les douze dernières observation qui ont été conservé pour vérifier), ce sont des données mensuelles de 1991-01 jusqu'au mois d'août 2018.

102,1
100,7
99,2
98
94,7
91
87,2
88
88,7
89,2
90,4
90,6
90,9
89,7
88,5
88
88,2
89,2
90,1
88,3

Un Extrait du tableau des données

0.1 Source de la série chronologique :

Les données proviennent de l'Institut national de la statistique et des études économiques (INSEE), l'enquête a été réalisée pour la première fois en 1962. Jusqu'en 2007, l'enquête avait lieu chaque mois sauf au mois d'août. Depuis 2008, elle a lieu tous les mois.

Identifiant:001796629.

Graphique

Deuxième partie Applicartions des méthodes de lissage

Chapitre 1

méthode de lissage simple

1.1 Définition

Le lissage exponentiel simple (LES) s'applique à des séries chronologiques sans saisonnalité et à tendance localement constante.

Le principe consiste à donner plus d'importance aux dernières observations.

1.2 Formules de mise à jour

La formule est la suivante :

$$\hat{Y}_{T}(h) = \hat{Y}_{T-1}(h) + \alpha \left(Y_{T} - \hat{Y}_{T-1}(h)\right)$$

La prévision $\hat{Y}_{T}\left(h\right)$ peut aussi s'écrire sous la forme suivante :

$$\hat{Y}_T(h) = \alpha Y_T + (1 - \alpha) \,\hat{Y}_{T-1}$$

Le coefficient α , compris entre 0 et 1, s'applique à la dernière réalisation. Le coefficient $(1 - \alpha)$ s'applique à la prévision précédente.

1.3 Choix de la valeur initiale

On peut choisir pour valeur initiale :

- La moyenne de la série chronologique
- La première observation de la série chronologique

Dans ce cas la valeur initiale est la première observation de la série chronologique.

	t	Y_T	valeur prédite pour \mathbf{Y}_t
1991-01	1	102,1	102,1
1991-02	2	100,7	102,1
1991-03	3	99,2	100,71
1991-04	4	98	99,22
1991-05	5	94,7	98,01
1991-06	6	91	94,73
1991-07	7	87,2	91,04
1991-08	8	88	87,24
1991-09	9	88,7	87,99

1.4 Erreur de prévision

L'erreur utilisé ici c'est l'erreur moyennne absolue en pourcentage définie par :

$$MAPE = \frac{1}{T} \sum_{i=1}^{T} \left| \frac{e-t}{Y_t} \right|$$

Avec $\alpha=0.5$ le MAPE obtenu est égale à 2,22%.

				Lissa	Lissage exponentiel simple			
•	Y_chap	Erreur	Erreur Absolue	E carré	Erreur /Y			
402.4	402.40	0.00	0.00	0.00	0.000		ALPHA	
102,1	·			0,00	0,00%			
100,7				1,96	1,39%		0,5	
99,2				4,84	2,22%			
98	100,30	-2,30	2,30	5,29	2,35%			
94,7	99,15	-4,45	4,45	19,80	4,70%			
91	96,93	-5,93	5,93	35,11	6,51%		MAPE	
87,2	93,96	-6,76	6,76	45,73	7,76%		2,22%	
88	90,58	-2,58	2,58	6,66	2,93%			
88,7	89,29	-0,59	0,59	0,35	0,67%			
89,2	89,00	0,20	0,20	0,04	0,23%			
90,4	89,10	1,30	1,30	1,70	1,44%			
90,6	89,75	0,85	0,85	0,72	0,94%			

En utilisant le solver : la valeur de α qui minimise le MAPE est $\alpha=0,99$ ce qui donne une valeur de MAPE qui est égale à 1,55%

				Lissa	age expon	onentiel simple					
Υ	Y_chap	Erreur	Erreur Absolue	E carré	Erreur /Y						
102,1	102,10	0,00	0,00	0,00	0,00%		ALPHA				
100,7	102,10	-1,40	1,40	1,96	1,39%		0,99				
99,2	100,71	-1,51	1,51	2,29	1,53%						
98	99,22	-1,22	1,22	1,48	1,24%						
94,7	98,01	-3,31	3,31	10,97	3,50%						
91	94,73	-3,73	3,73	13,94	4,10%		MAPE				
87,2	91,04	-3,84	3,84	14,73	4,40%		1,55%				
88	87,24	0,76	0,76	0,58	0,87%						
88,7	87,99	0,71	0,71	0,50	0,80%						
89,2	88,69	0,51	0,51	0,26	0,57%						
90,4	89,19	1,21	1,21	1,45	1,33%						
90,6	90,39	0,21	0,21	0,04	0,23%						

1.5 Résultats

En Rouge : la courbe des valeurs prédites par la méthode de lissage exponentiel simple

	t	Y_T	valeur prédite pour \mathbf{Y}_t	\mathbf{e}_t
1991-01	1	102,1	102,1	0,00
1991-02	2	100,7	102,1	-1,40
1991-03	3	99,2	100,71	-1,51
1991-04	4	98	99,22	-1,22
1991-05	5	94,7	98,01	-3,31
1991-06	6	91	94,73	-3,73
1991-07	7	87,2	91,04	-3,84
1991-08	8	88	87,24	0,76
1991-09	9	88,7	87,99	0,71
1991-10	10	89,2	88,69	0,51
1991-11	11	90,4	89,19	1,21
1991-12	12	90,6	90,39	0,21
1991-13	13	90,9	90,60	0,30
1991-14	14	89,7	90,90	-1,20
1991-15	15	88,5	89,71	-1,21
1991-16	16	88	88,51	-0,51
1991-17	17	88,2	88,01	0,19
1991-18	18	89,2	88,20	1,00
1991-19	19	90,1	89,19	0,91
1991-20	20	88,3	90,09	-1,79

Extrait des résultats

Chapitre 2

méthode de holt

Le lissage exponentiel de Holt s'applique aux séries chronologiques sans composante saisonnière et à tendance localement linéaire.

2.1 Formules de mise à jour

La formule est donnée par

$$\hat{Y}_T(h) = S_T + hT_T$$

où

$$\begin{cases} S_T = \alpha Y_t + (1 - \alpha) (S_{t-1} + T_{t-1}) \\ T_t = \gamma (S_t - S_{t-1}) + (1 - \gamma) T_{t-1} \end{cases}$$

2.2 Choix de la valeur initiale

Ici la valeur initial pour T est zéro et pour S_t c'est la première valeur de la série chronologique. Pour α et γ on a donné une valeur arbitraire qui vaut 0.5.

								ALPHA	GAMMA
Horizon	Υ	St	Tt	Y_chap	Erreur	Erreur /Y		0,5	0,5
		102,10	0,00						
	102,1	102,10	0,00	102,10	0,00	0,00%			
	100,7	101,40	50,70	102,10	-1,40	1,39%			
	99,2	125,65	62,48	152,10	-52,90	53,33%			

2.3 Erreur de prévision

L'erreur utilisé est MAPE. avec $\alpha = \gamma = 0.5$ on a obtenu MAPE = 99,26%

2											
3										ALPHA	GAMMA
4	Date	Horizon	Υ	St	Tt	Y_chap	Erreur	Erreur /Y		0,5	0,5
5				102,10	0,00						
6	1991-01		102,1	102,10	0,00	102,10	0,00	0,00%			
7	1991-02		100,7	101,40	50,70	102,10	-1,40	1,39%			
8	1991-03		99,2	125,65	62,48	152,10	-52,90	53,33%			
9	1991-04		98	143,06	58,31	188,13	-90,13	91,96%			
10	1991-05		94,7	148,03	51,49	201,37	-106,67	112,64%		MAPE	
11	1991-06		91	145,26	45,96	199,52	-108,52	119,25%		99,26%	5
12	1991-07		87,2	139,21	42,48	191,22	-104,02	119,29%			
13	1991-08		88	134,84	41,42	181,69	-93,69	106,46%			
14	1991-09		88,7	132,48	42,82	176,26	-87,56	98,71%			
15	1991-10		89,2	132,25	44,23	175,30	-86,10	96,52%			
16	1991-11		90,4	133,44	45,20	176,48	-86,08	95,23%			
17	1991-12		90,6	134,62	45,79	178,64	-88,04	97,17%			
18	1992-01		90,9	135,65	45,82	180,41	-89,51	98,47%			
19	1992-02		89,7	135,59	45,42	181,47	-91,77	102,31%			

Avec solver : on abtenu :

2											
3										ALPHA	GAMMA
4	Date	Horizon	Υ	St	Tt	Y_chap	Erreur	Erreur /Y		0,8617927	0,99
5				102,10	0,00						
6	1991-01		102,1	102,10	0,00	102,10	0,00	0,00%			
7	1991-02		100,7	100,89	-0,17	102,10	-1,40	1,39%			
8	1991-03		99,2	99,41	-0,46	100,72	-1,52	1,53%			
9	1991-04		98	98,13	-0,27	98,95	-0,95	0,97%			
10	1991-05		94,7	95,14	-1,98	97,86	-3,16	3,33%		MAPE	
11	1991-06		91	91,30	-2,85	93,15	-2,15	2,36%		1,87%	

2.4 Résultats

La méthode de Holt repose sur deux paramètres et suppose la tendance localement linéaire.

A chaque date, on remet à jour le niveau et la pente de la tendance.

La méthode de lissage simple s'adapte mieux à cette série en là comparant avec la méthode Holt. car cette méthode s'applique sur des série avec tendance.

Les résultats obtenues avec Holt ne sont pas bonnes.

Chapitre 3

Méthode de winter

Le lissage de Winters concerne les séries chronologiques saisonnières La première étape consiste à choisir le modèle, additif ou multiplicatif, et à désaisonnaliser la série étudiée.

3.1 additive

3.1.1 Application du modèle

Appliquons la méthode à notre série mensuelle des indicateurs du Climat de l'emploi.

- On divise les données en un échantillon d'estimation et un échantillon de prévision.
- On crée 12 valeurs initiales de janvier 1990 à décembre 1990.

On initialise S_T = 93,32 la moyenne de 12 premiers observations de la série.

3.1.2 Formules de mise à jour

La formule est donnée par

$$\hat{Y}_T(h) = S_T + hT_T + I_{T+h-s}$$

On complète le tableau à partir de t = 1, à l'aide des formules suivantes : où

$$\begin{cases} S_T = \alpha (Y_t - I_{T+h-s}) + (1 - \alpha) (S_{t-1} - T_{t-1}) \\ T_t = \gamma (S_t - S_{t-1}) + (1 - \gamma) T_{t-1} \\ I_t = \delta (Y_t - S_t) + (1 - \delta) I_{t-s} \end{cases}$$

 S_T représente la composante de niveau, T_t la composante de tendance, I_t est un coefficient saisonnier et s la saison.

		t	Y_T	S_t	T_t	T_t	valeur prédite pour \mathbf{Y}_t	\mathbf{e}_t	$ \mathbf{e}_t/Y_t $
1990	Janvier'	-11		93,32	0,00	8,78			
	Février	-10		93,32	0,00	7,38			
	Mars	-9		93,32	0,00	5,88			
	Avril	-8		93,32	0,00	4,68			
	Mai	-7		93,32	0,00	1,38			
	Juin	-6		93,32	0,00	-2,32			
	Juillet	-5		93,32	0,00	-6,12			
	Août	-4		93,32	0,00	-5,32			
	Septembre	-3		93,32	0,00	-4,62			
	Octobre	-2		93,32	0,00	-4,12			
	Novembre	-1		93,32	0,00	-2,92			
	Décembre	0		93,32	0,00	-2,72			
1991	Janvier	1	102,1	93,32	0,00	8,78	102,10	0,00	0,00%
	Février	2	100,7	93,32	0,00	7,38	100,70	0,00	0,00%
				'	•	•	•		'
		,							
		,							
	•	,							
2017	Septembre	9	107	106,75	0,08	0,24	106,90	0,10	0,10%
	Octobre	10	108,8	107,83	0,09	0,97	107,34	1,46	1,34%
	Novembre	11	108,6	107,91	0,09	0,69	108,60	0,00	0,00%
	Décembre	12	109,1	107,97	0,09	1,14	109,15	-0,05	0,05%
	Janvier	1	109,5	108,68	0,09	0,82	108,58	0,92	0,84%
	Février	2	110,1	109,65	0,10	0,45	108,82	1,28	1,17%
	Mars	3	109,8	109,30	0,10	0,50	110,45	-0,65	0,59%
	Avril	4	108,9	108,86	0,09	0,04	109,69	-0,79	0,72%
	Mai	5	109,1	108,81	0,09	0,29	109,31	-0,21	0,20%
	Juin	6	110,1	109,78	0,10	0,31	108,81	1,29	1,17%
	Juillet	7	108,3	108,79	0,09	-0,49	109,89	-1,59	1,47%
	Août	8	107,7	108,69	0,09	-0,997	107,98	-0,28	0,26%
		9	1				108,44		
		10	2				109,14		
		11	3				110,23		
		12	4				110,82		
		1	5				119,75		
		2	6				121,25		
		3	7				120,29		
		4	8				119,25		
		5	9				116,49		
		6	10				113,10		
		7	11				109,44		
		8	12			13	109,26		

3.1.3 Erreur de prévision

Avec $\alpha = \gamma = \delta = 0.5$ on a obtenu MAPE = 13,30%.

En utilisant le solver on a obtenu : 2.36%, le solveur détermine un choix optimal des constantes.

3.1.4 Résultats

3.2 Multiplicatif

3.2.1 Formules de mise à jour

Dans le cas multiplicatif les prévisions sont de la forme :

$$\hat{Y}_T = (S_T + hT_T) I_{T+h-s}$$

où

$$\begin{cases} S_T = \alpha \left(\frac{Y_t}{I_{t-s}} \right) + (1 - \alpha) \left(S_{t-1} - T_{t-1} \right) \\ T_t = \gamma \left(S_t - S_{t-1} \right) + (1 - \gamma) T_{t-1} \\ I_t = \delta \left(\frac{Y_t}{S_t} \right) + (1 - \delta) I_{t-s} \end{cases}$$

3.2.2 Erreur de prévision

Avec $\alpha = \gamma = \delta = 0.5$ on a trouvé : MAPE = 15,11%

Après utilisation du solveur, les valeurs de $\alpha = \gamma = \delta$ qui minimisent le MAPE sont :

3.2.3 Résultats

Troisième partie La méthodologie de Box et Jenkins

Rappelons que la série chronologique étudiée concerne les Indicateurs synthétiques du climat des affaires en France, entre le mois de janvier 1991 jusqu'au mois d'août 2018.

3.3 Présentation de la méthode

Dans la méthodologie d'analyse des séries chronologiques synthétisée par **Box et Jenkins** en 1976, on utilise trois types de processus pour construire un modèle restituant le mieux possible le comportement d'une série temporelle selon une procédure en trois étapes : identification, estimation et diagnostic, qu'il convient de réitérer jusqu'à ce que le résultat soit jugé satisfaisant.

Les trois processus sont :

- Les processus auto-régressifs.
- Les moyennes mobiles.
- Les processus intégrés.]

3.4 Les Données

La figure suivante présente le graphe de la série chronologique

L'identification des processus autorégressifs et de moyennes mobiles susceptibles d'expliquer le comportement de la série temporelle suppose de vérifier tout d'abord la stationnarité de la série.

On remarque que la série n'est pas stationnaire, pour s'assurer on fait le test de racine unitaire. **Dickey-Fuller**. Rappelons que les hypothèse du test de Dickey-Fuller sont :

- $-H_0$ La série comporte une racine unitaire.
- $-H_1$ La série ne comporte pas une racine unitaire. La série est stationnaire.

Sur **Gretl** on trouve le résultat suivant :

```
Test de Dickey-Fuller pour Indic
taille de l'échantillon 331
hypothèse nulle de racine unitaire : a = 1

test avec constante
modèle: (1-L)y = b0 + (a-1)*y(-1) + e
valeur estimée de (a - 1): -0,0169428
statistique de test: tau_c(1) = -1,63567
p. critique 0,4632
Coeff. d'autocorrélation du ler ordre pour e: 0,241

avec constante et tendance temporelle
modèle: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e
valeur estimée de (a - 1): -0,0180267
statistique de test: tau_ct(1) = -1,72234
p. critique 0,7394
Coeff. d'autocorrélation du ler ordre pour e: 0,241
```

Etant donné que la p-value calculé est supérieur au niveau de signification $\alpha=0.05$ on doit accepter H_0 donc la série n'est pas stationnaire.

3.5 Stabiliser la série

Si la série n'est pas stationnaire il convient de transformer la série pour obtenir une série stationnaire. La transformation la plus courante est la différenciation de la série, opération où chaque valeur de la série est remplacée par la différence entre cette valeur et celle qui la précède ou faire une différence première. En applicant une différence première on obtient le graphe suivant :


```
Il faut tester la stationnarité de la nouvelle série :
```

```
Test de Dickey-Fuller pour d_Indic
taille de l'échantillon 330
hypothèse nulle de racine unitaire : a = 1

test avec constante
modèle: (1-L)y = b0 + (a-l)*y(-1) + e
valeur estimée de (a - 1): -0,765404
statistique de test: tau_c(1) = -14,2703
p. critique 5,239e-027
Coeff. d'autocorrélation du ler ordre pour e: -0,049

avec constante et tendance temporelle
modèle: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e
valeur estimée de (a - 1): -0,765925
statistique de test: tau_ct(1) = -14,2541
p. critique 3,065e-028
Coeff. d'autocorrélation du ler ordre pour e: -0,049
```

La valeur de la p-value est très petite pour cela on rejette H_0 donc la différence première de la série est stationnaire. Une fois obtenue la stationnairé de la série, l'étape suivante consiste à analyser le graphe de la fonction d'autocorrélation (FAC) et celui de la fonction d'autocorrélation partielle (FAP) afin d'estimer notre modèle.

3.6 Autocorrélation et L'Autocorrélation partielle

3.7 Estimation du modèle

En analysant le corrélogramme on voit que les valeurs de ACF sont décroissantes et significativement différentes de zéro, et que les valeurs de PACF sont nulles à partir du rang 5 .

On utilisant un processus autoregressive d'orde 2.

Évaluations de la fonction : 24 Évaluations du gradient : 6

Modèle 22: ARIMA, utilisant les observations 1991:02-2018:08 (T = 331)

Estimated using AS 197 (MV exacte) Variable dépendante: (1-L) Indic

Écarts type basés sur la matrice hessienne

	coefficient	erreur std.	z	p. critique	
const	0,00970661	0,162807	0,05962	0,9525	
phi 1	0,187178	0,0537246	3,484	0,0005	* *
phi_2	0,202215	0,0538006	3,759	0,0002	**
Moy. va	r. dép.	0,016918			
Éc. typ	e var. dép.	1,908423			
Moyenne	des innovations	0,003061			
Ec. typ	e des innovation	s 1,813774			
Log de	vraisemblance	-666,8193			
Critère	d'Akaike	1341,639			
Critère	de Schwarz	1356,847			
Hannan-	Quinn	1347,704			
	R	éel Imaginair	e Modulo	Fréquence	
AR					
Racine	1 1,8	086 0,0000	1,8086	0,0000	
Racine	•	•	2,7343	*	

vérification de la blancheur de l'erreur

On peut voir de ce graphe que l'espérance des erreurs est null, pour s'assurer on peut appliquer le test dans le cour, en calculant la statistique du test on trouve que $t=\sqrt{T}$ $\frac{\bar{e}}{\hat{\sigma}}=0.03<1,96$ donc on ne rejette pas H_0 donc l'espérance des erreurs est nulle.

Test PORTMANTEAU:

```
Test d'autocorrélation jusqu'à l'ordre 12

Ljung-Box Q' = 32,624,

avec p. critique = P(Chi-deux(10) > 32,624) = 0,0003150
```

La statistique Ljung-Box Q permet de déterminer si une série d'observations dans le temps sont aléatoires et indépendantes. Si les observations ne sont pas indépendantes, une obser- vation peut être corrélée avec une autre observation k unités de temps après, établissant ainsi une relation appelée autocorrélation. d'après le test portmanteau on a la p-critique très petite donc on ne retient pas le modèle. Il faut estimer un autre modèle, en regardant le corrélogramme des résidus on remarque qu'il faut ajouter d'autre coefficients significative : 12 et 24.

Cependant c'est ce pas un bon modèle car les autocorrélations ne forment pas un bruit blanc. En ajoutant les deux coefficient on obtient le modèle suivant : Évaluations de la fonction : 40 Évaluations du gradient : 9

Modèle 44: ARIMA, utilisant les observations 1991:02-2018:08 (T = 331)

Estimated using AS 197 (MV exacte) Variable dépendante: (1-L) Indic

Écarts type basés sur la matrice hessienne

	coefficient	erreur std.	Z	p. critique	
const	0,0324588	0,0841087	0,3859	0,6996	
phi_1	0,146117	0,0511556	2,856	0,0043	***
phi_2	0,191645	0,0511023	3,750	0,0002	***
phi 12	-0,253127	0,0514859	-4,916	8,81e-07	***
phi_24	-0,231684	0,0518210	-4,471	7,79e-06	***
Moy. var.	dép.	0,016918			
Éc. type	var. dép.	1,908423			
Moyenne d	les innovations	-0,018071			
Ec. type	des innovations	1,716841			
Log de vr	aisemblance	-649,6215			
Critère d	l'Akaike	1311,243			
Critère d	le Schwarz	1334,056			
Hannan-Qu	inn	1320,342			

On passe après au modèle suivant car le test Portmanteau implique qu'il ne faut pas retenir le modèle.

Évaluations de la fonction : 48 Évaluations du gradient : 13

Modèle 48: ARIMA, utilisant les observations 1991:02-2018:08 (T = 331)

Estimated using AS 197 (MV exacte) Variable dépendante: (1-L) Indic

Écarts type basés sur la matrice hessienne

	coefficient	erreur std.	z	p. critique	
const	0,0101964	0,0289907	0,3517	0,7251	
phi_1	0,379371	0,112721	3,366	0,0008	***
phi_2	0,315094	0,106301	2,964	0,0030	***
theta_1	-0,279315	0,103415	-2,701	0,0069	***
theta_2	-0,179926	0,0877109	-2,051	0,0402	**
theta 12	-0,318910	0,0555658	-5,739	9,51e-09	***
theta_24	-0,183421	0,0494952	-3,706	0,0002	***
Moy. var.	dép.	0,016918			
Éc. type var. dép.		1,908423			
Moyenne des innovations		0,008816			
Ec. type des innovations		1,671471			
Log de vraisemblance		-641,9694			
Critère d'Akaike		1299,939			
Critère de Schwarz		1330,356			
Hannan-Quinn		1312,070			

Le modèle estimé est correct. Je l'ai comparé avec d'autre modèles valides, mais celui-ci est le meilleur car il a le plus petit AIC et le plus petit SBIC.

On a les autocorrélations et les autocorrélations partielle qui sont tous à l'intérieur de la barre bleu et donc on ne rejette pas l'hypothèse nulle.

C'est un modèle dont les erreurs sont un bruit blanc.

En appliquant différent modèle on a pu trouver un bon modèle pour cette série . Le modèle à retenir s'écrit donc sous la forme suivante :

Modèle 1:

$$(1-B)(1-\phi_1B-\phi_2B^2)(X_t-\mu) = (1-\theta_1B-\theta_2B^2-\theta_{12}B^{12}-\theta_{24}B^{24})\epsilon_t$$

Prévision:

En faisant les prévisions pour les 12 dernières données conservées, on trouve un MAPE de 1,9493%

Statistiques d'évaluation des prédictions				
Erreur Moyenne	2,0707			
Racine de la moyenne des erreurs au carré	2,3974			
Erreur absolue moyenne	2,0707			
Mean Percentage Error 1,9493				
Mean Absolute Percentage Error	1,9493			
U de Theil	1,9637			
Proportion de biais, UM	0,74602			
Proportion des régressions, UR	0,096331			
Proportion des perturbations, UD	0,15765			

Quatrième partie Conclusion

- Méthodes de lissage :

Comparaison des méthodes (12 dernieres valeurs) :

		Lissage exponentiel simple		Méthode de holt			
Période	Y	valeur prédite pour \mathbf{Y}_t	e_t	$ \mathbf{e}_t/Y_t $	valeur prédite pour \mathbf{Y}_t	\mathbf{e}_t	$ \mathbf{e}_t/Y_t $
2018-09	107,4	107,71	-0,31	0,00	107,93	-0,53	0,00
2018-10	107,3	107,71	-0,41	0,00	108,02	-0,72	0,01
2018-11	105,5	107,71	-2,21	0,02	108,12	-2,62	0,02
2018-12	104,7	107,71	-3,01	0,03	108,21	-3,51	0,03
2019-01	105,1	107,71	-2,61	0,02	108,31	-3,21	0,03
2019-02	107	107,71	-0,71	0,01	108,41	-1,41	0,01
2019-03	107	107,71	-0,71	0,01	108,50	-1,50	0,01
2019-04	106,8	107,71	-0,91	0,01	108,60	-1,80	0,02
2019-05	104,6	107,71	-3,11	0,03	108,69	-4,09	0,04
2019-06	106,2	107,71	-1,51	0,01	108,79	-2,59	0,02
2019-07	105,9	107,71	-1,81	0,02	108,88	-2,98	0,03
2019-08	104,3	107,71	-3,41	0,03	108,98	-4,68	0,04
		\sum	-20,67		\sum	-29,65	
		MAPE	0,016361092		MAPE	0,023428886	
		La Méthode de V	Winters additive		La Méthode de Winters Multiplicatif		
Période	Y	valeur prédite pour \mathbf{Y}_t	\mathbf{e}_t	$ \mathbf{e}_t/Y_t $	valeur prédite pour \mathbf{Y}_t	\mathbf{e}_t	$ \mathbf{e}_t/Y_t $
2018-09	107,4	108,44	-1,04	0,01	109,25	-1,85	0,02
2018-10	107,3	109,14	-1,84	0,02	110,22	-2,92	0,03
2018-11	105,5	110,23	-4,73	0,04	110,08	-4,58	0,04
2018-12	104,7	110,82	-6,12	0,06	110,62	-5,92	0,06
2019-01	105,1	119,75	-14,65	0,14	110,34	-5,24	0,05
2019-02	107	121,25	-14,25	0,13	109,93	-2,93	0,03
2019-03	107	120,29	-13,29	0,12	109,92	-2,92	0,03
2019-04	106,8	119,25	-12,45	0,12	109,45	-2,65	0,02
2019-05	104,6	116,49	-11,89	0,11	109,70	-5,10	0,05
2019-06	106,2	113,10	-6,90	0,06	109,77	-3,57	0,03
2019-07	105,9	109,44	-3,54	0,03	109,08	-3,18	0,03
2019-08	104,3	109,26	-4,96	0,05	108,75	-4,45	0,04
		\sum	-95,67		Σ	-45,30	
		MAPE	0,075262384		MAPE	0,03572601	

En comparant les méthodes précedentes celon le MAPE obtenu , on retient **la méthode de lissage simple.** La Méthode de Lissage Simple donne un MAPE de 1,55%. Et donc en comparant la méthode de LES avec les autres méthodes, on constate que cette méthode donne le MAPE le plus petit en ajustement et en prévision. et en comparant aussi la somme des erreurs de prévisons on remarque que ça donne aussi la plus petite valeur (voir le tableau des comparaisons) Et donc ce résultat nous amène à préférer cette méthode par rapport aux autres.

La méthode du lissage exponentiel simple a permis de mettre en évidence l'importance du choix du paramètre :

Un paramètre proche de 1 donne plus d'importance aux observations récentes, tandis qu'un paramètre proche de 0 renforce l'importance du passé plus lointain (D'après le Solveur).

Parmi les méthodes de prévisions appliquées à la série des indicateurs synthétiques du climat des affaires en France, celle qui fournit le MAPE le plus faible est la méthode de lissage exponentiel simple avec un MAPE de prévision de 1,64

Le tableau ci-dessous résume les prévisions de la méthode de lissage exponentiel simple et celui de de la méthode Box et Jenkins :

		Lissage exponentiel simple	Box-Jenkis
Dates	valeurs observées	valeur prédite pour \mathbf{Y}_t	valeur prédite pour Y_t
2018-09	107,4	107,71	106,647
2018-10	107,3	107,71	105,557
2018-11	105,5	107,71	105,042
2018-12	104,7	107,71	104,092
2019-01	105,1	107,71	103,919
2019-02	107	107,71	103,943
2019-03	107	107,71	103,532
2019-04	106,8	107,71	103,673
2019-05	104,6	107,71	103,202
2019-06	106,2	107,71	102,410
2019-07	105,9	107,71	102,252
2019-08	104,3	107,71	102,681
		MAPE	MAPE
		1,64 %	1,9493%