МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ОТЧЕТ по лабораторной работе № 3: ВЫНУЖДЕННОЕ ДВИЖЕНИЕ И ПОКАЗАТЕЛИ КАЧЕСТВА

Вариант 27

по дисциплине «Линейные системы автоматического управления»

Студент:

Группа № R3338

А.А. Нечаева

Предподаватель:

ассистент факультера СУиР, к. т. н.

А.В. Пашенко

СОДЕРЖАНИЕ

1	ВЫНУЖДЕННОЕ ДВИЖЕНИЕ				
	1.1	Анализ результатов и вывод	10		
2	КАЧ	ЕСТВО ПЕРЕХОДНЫХ ПРОЦЕССОВ	12		
	2.1	Набор 1	13		
	2.2	Набор 2	14		
	2.3	Набор 3	15		
	2.4	Набор 4	16		
	2.5	Набор 5	17		
	2.6	Набор 6	18		
	2.7	Набор 7	19		
	2.8	Набор 8	20		
	2.9	Набор 9	21		
	2.10	Набор 10	22		
		Набор 11	23		
		Анализ результатов	23		
3	ВЫН	ВОД	25		

1 ВЫНУЖДЕННОЕ ДВИЖЕНИЕ

Рассмотрим систему 2-го порядка, заданную дифференциальным уравнением

$$\ddot{y} + a_1 \dot{y} + a_0 y = u. {1}$$

С использованием блоков элементарных операций построим структурную схему данной системы (рисунок 1). На структурной схеме отметим блоки, на которых задаются начальные условия y(0), $\dot{y}(0)$.

Рисунок 1 — Структурная схема исследуемой системы.

Для следующих наборов коэффициентов a_0 , a_1 :

$$\begin{cases} a_1 = 7.4 \\ a_0 = 38.69 \end{cases} \begin{cases} a_1 = 0 \\ a_0 = 841 \end{cases} \begin{cases} a_1 = -1.4 \\ a_0 = 25.49 \end{cases}$$
 (2)

И начальных условий

$$\begin{cases} y(0) = -1 \\ \dot{y}(0) = 0 \end{cases} \begin{cases} y(0) = 0 \\ \dot{y}(0) = 0 \end{cases} \begin{cases} y(0) = 1 \\ \dot{y}(0) = 0 \end{cases}$$
(3)

Входные воздействия:

$$u_1 = 2 \quad u_2 = 0.7t \quad u_3 = \cos(4t)$$
 (4)

Проведем моделирование с разными комбинациями входных сигналов, параметров a_i и начальных условий:

Рисунок 2 — График входного сигнала u=2.

Рисунок 3 — Графики моделирования при $a_1=7.4, a_0=38.69, u=2.$

Рисунок 4 — Графики моделирования при $a_1=0, a_0=841, u=2.$

Рисунок 5 — Графики моделирования при $a_1=-1.4, a_0=25.49, u=2.$

Рисунок 6 — График входного сигнала u = 0.7t.

Рисунок 7 — Графики моделирования при $a_1=7.4, a_0=38.69, u=0.7t.$

Рисунок 8 — Графики моделирования при $a_1=0, a_0=841, u=0.7t.$

Рисунок 9 — Графики моделирования при $a_1 = -1.4, a_0 = 25.49, u = 0.7t.$

Рисунок 10 — График входного сигнала u = cos(4t).

Рисунок 11 — Графики моделирования при $a_1=7.4, a_0=38.69, u=\cos(4t).$

Рисунок 12 — Графики моделирования при $a_1 = 0, a_0 = 841, u = cos(4t)$.

Рисунок 13 — Графики моделирования при $a_1 = -1.4, a_0 = 25.49, u = cos(4t)$.

1.1 Анализ результатов и вывод

Запишем типы устойчивости систем при свободном движении при a_i :

- $-a_1 = 7.4, a_0 = 38.69$ асимптотическая устойчивость;
- $-a_1 = 0, a_0 = 841$ устойчивость по Ляпунову;
- $-a_1 = -1.4, a_0 = 25.49$ неустойчивость.

Заметим, что для всех рассмотренных входных сигналов движение системы близко по характеру к соответствующим графикам свободного движения. Это объясняется тем, что решение дифференциального уравнения для вынужденного движения содержит решение для свободного.

При моделировании с входным сигналом u=2 для каждой из систем (рисунки 3-5) вид графика отличается от изображения свободного движения системы лишь на константную величину, хорошо заметно на рисунке 3, где графики всех вариаций системы сходятся к величине, отличной от нуля (к которому сходится свободное движение системы) на константу. Для входного сигнала u=0.7t, заметно отличие от графика свободного движения на величину, изменяющуюся по линейному закону (наглядно, рисунки 14 и 7). В случае с входным сигналом u=cos(4t) в отличие от свободного движения на графиках заметно добавление гармонической составляющей (рисунок 11).

Начальные условия влияют на амплитуду движения и точку начала.

Рисунок 14 — Графики дополнительного моделирования при $a_1=0, a_0=841, u=0.7t.$

2 КАЧЕСТВО ПЕРЕХОДНЫХ ПРОЦЕССОВ

Для системы 3-го порядка, заданной передаточной функцией

$$W(s) = \frac{|\lambda_1 \lambda_2 \lambda_3|}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)}$$
 (5)

исследуем зависимость качества переходной характеристики от выбора полюсов передаточной функции, для оценки качества будем использовать такие показатели, как **перерегулирование** и **время переходного процесса**.

Время переходного процесса (Settling Time) фиксируется, когда величина y(t) будет оставаться близкой к установившемуся значению **с точностью** 5%.

Формула для расчета перерегулирования: $\sigma = \frac{y_{max} - y_{end}}{y_{end}} \cdot 100\%$.

Зададимся наборами полюсов λ_1 , λ_2 и λ_3 с отрицательной вещественной частью. Половину наборов возьмем чисто вещественными, в половину включить комплексно-сопряженные полюса.

Таблица 1 — Наборы полюсов.

n	$Re(\lambda_1)$	$Im(\lambda_1)$	$Re(\lambda_2)$	$Im(\lambda_2)$	$Re(\lambda_3)$	$Im(\lambda_3)$
1	-10	0	-10	0	-10	0
2	-150	0	-2	0	-25	0
3	-10	-100	-10	100	-10	0
4	-100	0	-100	0	-100	0
5	-10	-100	-10	100	-100	0
6	-100	0	-10	0	-1	0
7	-10	0	-10	0	-0.5	0
8	-10	-250	-10	250	-100	0
9	-10	-250	-10	250	1000	0
10	-10	-250	-10	250	-10	0
11	-10	-10	-10	10	-1000	0

2.1 Набор 1

График переходного процесса при $\lambda_1=-10, \lambda_2=-10, \lambda_3=-10$ изображен на рисунке 15:

- перерегулирование: 0 %;
- время переходного процесса $T_s = 0.629593$ с.;

Рисунок 15 — График переходного процесса при $\lambda_1 = -10, \lambda_2 = -10, \lambda_3 = -10.$

2.2 Набор 2

При рассмотрении графика (рисунок 16) с парой комплесносопряженных $\lambda_1=-150, \lambda_2=-2, \lambda_3=-25$:

- перерегулирование: 0 %;
- время переходного процесса $T_s=1.54634~\mathrm{c.};$

Рисунок 16 — График переходного процесса при $\lambda_1 = -150, \, \lambda_2 = -2, \, \lambda_3 = -25.$

2.3 Набор 3

График переходного процесса при $\lambda_1=-10-100i, \lambda_2=-10+100i, \lambda_3=-10$ изображен на рисунке 17:

- перерегулирование: 0 %;
- время переходного процесса $T_s = 0.292734$ с.;

Рисунок 17 — График переходного процесса при $\lambda_1 = -10 - 100i, \lambda_2 = -10 + 100i, \lambda_3 = -10.$

2.4 Набор 4

График переходного процесса при $\lambda_1=-100, \lambda_2=-100, \lambda_3=-100$ изображен на рисунке 18:

- перерегулирование: 0 %;
- время переходного процесса $T_s = 0.0637018$ с.;

Рисунок 18 — График переходного процесса при $\lambda_1 = -100, \lambda_2 = -100, \lambda_3 = -100.$

2.5 Набор 5

График переходного процесса при $\lambda_1=-10-100i, \lambda_2=-10+100i, \lambda_3=-100$ изображен на рисунке 19:

- перерегулирование: 48.85 %;
- время переходного процесса $T_s = 0.357806$ с.;

Рисунок 19 — График переходного процесса при $\lambda_1 = -100 - 10i, \lambda_2 = -100 + 10i, \lambda_3 = -100.$

2.6 Набор 6

График переходного процесса при $\lambda_1=-100, \lambda_2=-10, \lambda_3=-1$ изображен на рисунке 20:

- перерегулирование: 0 %;
- время переходного процесса $T_s = 3.11115$ с.;

Рисунок 20 — График переходного процесса при $\lambda_1 = -100, \lambda_2 = -10, \lambda_3 = -1.$

2.7 Набор 7

График переходного процесса при $\lambda_1=-10, \lambda_2=-10, \lambda_3=-0.5$ изображен на рисунке 21:

- перерегулирование: 0 %;
- время переходного процесса $T_s = 6.19664$ с.;

Рисунок 21 — График переходного процесса при $\lambda_1 = -10, \lambda_2 = -10, \lambda_3 = -0.5.$

2.8 Набор 8

График переходного процесса при $\lambda_1 = -10 - 250i, \lambda_2 = -10 + 250i, \lambda_3 = -100$ изображен на рисунке 22:

- перерегулирование: 23.26 %;
- время переходного процесса $T_s = 0.194972$ с.;

Рисунок 22 — График переходного процесса при $\lambda_1 = -10 - 250i, \lambda_2 = -10 + 250i, \lambda_3 = -100.$

2.9 Набор 9

График переходного процесса при $\lambda_1 = -10 - 250i, \lambda_2 = -10 + 250i, \lambda_3 = -1000$ изображен на рисунке 23:

- перерегулирование: 85.35 %;
- время переходного процесса $T_s = 0.291491$ с.;

Рисунок 23 — График переходного процесса при $\lambda_1 = -10 - 250i, \lambda_2 = -10 + 250i, \lambda_3 = -1000.$

2.10 Набор 10

График переходного процесса при $\lambda_1=-10-250i, \lambda_2=-10+250i, \lambda_3=-10$ изображен на рисунке 24:

- перерегулирование: 0 %;
- время переходного процесса $T_s = 0.296328$ с.;

Рисунок 24 — График переходного процесса при $\lambda_1 = -10 - 250i, \lambda_2 = -10 + 250i, \lambda_3 = -10.$

2.11 Набор 11

График переходного процесса при $\lambda_1=-10-10i, \lambda_2=-10+10i, \lambda_3=-1000$ изображен на рисунке 25:

- перерегулирование: 0.422629 %;
- время переходного процесса $T_s = 0.208206$ с.;

Рисунок 25 — График переходного процесса при $\lambda_1 = -10 - 10i, \lambda_2 = -10 + 10i, \lambda_3 = -1000.$

2.12 Анализ результатов

Запишем формулу для упрощения работы:

$$\begin{cases} \lambda_1 = \alpha_1 + i\beta_1; \\ \lambda_2 = \alpha_2 + i\beta_2; \\ \lambda_3 = \alpha_3 \end{cases}$$
 (6)

- Если $\beta_1=\beta_2=0$, то перерегулирование нулевое (наборы под номерами 1, 2, 4, 6 и 7).
- При увеличении $|\alpha_i|$ время переходного процесса сокращается.
- При $|\beta_1|=|\beta_2|>|\alpha_1|=|\alpha_2|$ заметен гармонический компонент в графике (набор 3). В данном случае перерегулирование становится ненулевым при $|\alpha_3|>|\alpha_1|=|\alpha_2|$ (набор 5) и возрастает с увеличением $|\alpha_3|$ (наборы 8 и 9).

3 ВЫВОД

В ходе выполнения лабораторной работы были применены на практике знания о вынужденном движении системы. В первом задании выполнен анализ влияния разных входных воздействий и начальных условий на движение систем, о которых нам известен характер их свободного движения и тип устойчивости из предыдущей лабораторной работы. Во втором задании на основании показателей перерегулирования и времени переходного процесса были оценены качества переходной характеристики в зависимости от значений полюсов передаточной функции.