Chapter 4

Vector Spaces

4.1 The Theory of linear equations

Definition 36. The *null space* of a matrix A is the set of all vectors \boldsymbol{x} that satisfy $A\boldsymbol{x} = \boldsymbol{0}$. We denote it as nullsp(A).

Example 4.1.1. Find the null space of A.

$$1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$2. \ A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}.$$

Example 4.1.2. Identify geometrically the null space of $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$.

Theorem 4.1.3. If A is an $m \times n$ matrix and m < n, then A has a nontrivial null space, i.e. there exists a vector $\mathbf{x} \neq \mathbf{0}$ such that $A\mathbf{x} = \mathbf{0}$.

Example 4.1.4. Let
$$A = \begin{bmatrix} 1 & -3 & -2 & 4 \\ 2 & 0 & 2 & 2 \\ 0 & 4 & 4 & -4 \end{bmatrix}$$
. Find the null space of A .

Definition 37. The $column\ space(row)$ of a matrix A is the set of all linear combinations of the columns (row) of A. It is denoted as colsp(A) (rowsp(A)).

Since A is $m \times n$, the columns of A are vectors in \mathbb{R}^m , so column space of A is a collection of vectors in \mathbb{R}^m , where as the null space of A consists of vectors in \mathbb{R}^n .

Example 4.1.5. Find the column space of A.

$$1. \ A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$2. \ A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}.$$

Example 4.1.6. Suppose $A = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$. The columns of this matrix are nonparallel vectors in \mathbb{R}^2 , so they span the xy-plane. The column space of the matrix is also \mathbb{R}^2 .

Example 4.1.7. Find the column space of $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ and describe geometrically.

Example 4.1.8. Find the column space of A in Example 4.1.4.

Theorem 4.1.9. A vector \mathbf{b} is in the column space of A if and only if the linear system $A\mathbf{x} = \mathbf{b}$ has a solution.

Theorem 4.1.10. The column space of an $m \times n$ matrix A is the set of all Ax as x ranges over all vectors in \mathbb{R}^n .

Example 4.1.11. Is $b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ in the column space of $A = \begin{bmatrix} 1 & 0 & -2 & -1 \\ -1 & 3 & 5 & 4 \\ 2 & 1 & -3 & -1 \end{bmatrix}$? What is the column space of A?

To find the column space of A, we consider

$$\begin{bmatrix} 1 & 0 & -2 & -1 \\ -1 & 3 & 5 & 4 \\ 2 & 1 & -3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Definition 38. The rank of a matrix A (denoted as rank(A) is the number of columns with a leading entry in its r.e.f.

Example 4.1.12. $\begin{bmatrix} 4 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$ has rank 2. Show that $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$ has rank 1.

Example 4.1.13. Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 12 & 11 & 10 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. What type of solutions does $A\mathbf{x} = \mathbf{b}$ have? Find the rank of A.

Example 4.1.14. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. What type of solutions does $A\mathbf{x} = \mathbf{b}$ have? Find the rank of A.

_

Theorem 4.1.15. Let A be an $m \times n$ matrix.

- 1. Let rank(A) = m. Then, for any vector \mathbf{b} in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has at least one solution.
- 2. Let rank(A) = n. Then, for any vector \mathbf{b} in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has at most one solution.
- 3. If m = n, the following statements are equivalent:
 - (a) $\operatorname{rank}(A) = n$.
 - (b) For any vector \mathbf{b} in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (c) A is invertible.
 - (d) $\det(A) \neq 0$.

4.2 Vector spaces and subspaces

Definition 39 (Vector Space Axioms). A real vector space consists of

- (a) a set V of objects (called *vectors*);
- (b) an operation of vector addition $\boldsymbol{u} + \boldsymbol{v}$ between any two vectors \boldsymbol{u} and \boldsymbol{v} in V; and
- (c) an operation of scalar multiplication $c\mathbf{u}$ between any real number c and any vector \mathbf{u} in V.

The operations must satisfy the following properties:

- (V1) Closure under the addition: For all $u, v \in V, u + v \in V$.
- (V2) Closure under the scalar multiplication: For all $\mathbf{u} \in V$ and $c \in \mathbb{R}, c\mathbf{u} \in V$.
- (V3) Existence of zero vector: There exists a zero vector $\mathbf{0} \in V$ such that

$$u+0=u=0+u$$

for all $\boldsymbol{u} \in V$.

(V4) Existence of negatives: For each $u \in V$, there exists $v \in V$ such that

$$u+v=0=v+u.$$

(\boldsymbol{v} is called the *negative* of \boldsymbol{u} and denoted by $-\boldsymbol{u}$.)

- (V5) Standard operation axioms: For all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $a, b \in \mathbb{R}$,
 - (i) u + v = v + u;
 - (ii) u + (v + w) = (u + v) + w;
 - (iii) $a(b\mathbf{u}) = (ab)\mathbf{u};$
 - (iv) $a(\boldsymbol{u} + \boldsymbol{v}) = a\boldsymbol{u} + a\boldsymbol{v}$;
 - (v) $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$;
 - (vi) $1\boldsymbol{u} = \boldsymbol{u}$.

Example 4.2.1.

- 1. \mathbb{R}^n is a vector space under the standard operations of addition and scalar multiplication defined in Chapter 1.
- 2. The set of all 2×2 matrices is a vector space under the addition and scalar multiplication defined in Chapter 2.

$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}.$$

3. Let $V = \mathbb{R}^2$ and define addition and scalar multiplication operations as follows: If $\mathbf{u} = [u_1, u_2]^T$ and $\mathbf{v} = [v_1, v_2]^T$, then define

$$\boldsymbol{u} + \boldsymbol{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$

and if $k \in \mathbb{R}$, then define

$$k\boldsymbol{u} = \begin{bmatrix} ku_1 \\ 0 \end{bmatrix}.$$

Is V a vector space under the stated operations?

Definition 40. A subset W of a vector space V is called a *subspace* of V if W is itself a vector space under the addition and scalar multiplication defined on V. We denote W is a subspace of V by $W \leq V$.

Theorem 4.2.2. If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following conditions hold.

- (a) If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u} + \mathbf{v} \in W$.
- (b) If k is any scalar and \mathbf{u} is any vector in W, then $k\mathbf{u}$ is in W.

Example 4.2.3. Determine whether W is a subspace of V for each of the following.

1.
$$V = \mathbb{R}^3$$
 and $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + y - z = 0 \right\}$.

2. $V = M_2$ and W is the set of all 2×2 diagonal matrices.

3.
$$V = \mathbb{R}^2$$
 and $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x = 1 \text{ and } y \in \mathbb{R} \right\}$.

4.
$$V = \mathbb{R}^3$$
 and $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x < y < z \right\}$.

Definition 41. Let V be a vector space. If $S = \{u_1, u_2, \dots, u_n\}$ is a subset of V, then the subspace

$$W = \{c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_n \mathbf{u}_n \mid c_1, c_2, \dots, c_n \in \mathbb{R}\}\$$

of V is called the space spanned by S (or by u_1, u_2, \dots, u_n) and we write

$$W = \operatorname{span}(S) \text{ or } W = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_n\}.$$

We also say that S spans W.

•

Note S is a subset of W.

Example 4.2.4.

1. The standard basis vectors of \mathbb{R}^n span \mathbb{R}^n i.e.

$$\operatorname{span}\{\boldsymbol{e}_1,\boldsymbol{e}_2,\cdots,\boldsymbol{e}_n\}=\mathbb{R}^n.$$

2. Let $V = \mathbb{M}_2$ and $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$. Every element in span(S) is of the form

- 3. The span of a single vector v is $\{av | a \in \mathbb{R}\}$ is just the set of all scalar multiples of v, a line passes through the origin.
- 4. The plane with equation 2x y + 3z = 0 is spanned by $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$. In fact any two nonparallel vectors in this plane span it.

Theorem 4.2.5. The span of any set of vectors is a subspace.

Proof.

80

Theorem 4.2.6.

- 1. The column space of an $m \times n$ matrix is a subspace of \mathbb{R}^m .
- 2. The row space of an $m \times n$ matrix is a subspace of \mathbb{R}^n with the vectors are row vectors.

Definition 42. If A and B are $m \times n$ matrices, we say that B is row-equivalent to A if B can be obtained from A by a finite sequence of elementary row operations.

Theorem 4.2.7. Let A and B be row equivalent matrices. Then the row space of A is the row space of B i.e. elementary row operations preserve the row space of a matrix.

Example 4.2.8. Suppose

$$A = \begin{bmatrix} 1 & 3 & 1 & -1 & 1 \\ -1 & -1 & 3 & 1 & 3 \\ 1 & 4 & 3 & -1 & 3 \end{bmatrix}.$$

Reduce matrix A to r.e.f. and hence verify that the row space of r.e.f.(A) is the row space of A.

81

4.3 Linear independence

Recall that

1. x_1, x_2, \dots, x_n are linearly independent if and only if the equation

$$c_1 \boldsymbol{x}_1 + c_2 \boldsymbol{x}_2 + \cdots + c_n \boldsymbol{x}_n = \boldsymbol{0}$$

has only trivial solution i.e. $c_1 = 0, c_2 = 0, \dots, c_n = 0;$

2. x_1, x_2, \dots, x_n are linearly dependent if and only if the equation

$$c_1 \boldsymbol{x}_1 + c_2 \boldsymbol{x}_2 + \cdots + c_n \boldsymbol{x}_n = \boldsymbol{0}$$

has nontrivial solutions, i.e. there exist real numbers c_1, c_2, \dots, c_n , not all c_i 's are zero, such that $c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n = \mathbf{0}$.

Example 4.3.1. Determine whether

$$oldsymbol{v}_1 = egin{bmatrix} 1 \ 2 \ 5 \end{bmatrix}, oldsymbol{v}_2 = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, oldsymbol{v}_3 = egin{bmatrix} -2 \ 1 \ 3 \end{bmatrix}$$

are linearly independent.

Example 4.3.2. Suppose v_1, v_2, v_3 are as in Example 4.3.1 and $v_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Are v_1, v_2, v_3 and v_4 linearly independent?

Theorem 4.3.3. If n > m, any n vectors in \mathbb{R}^m are linearly dependent.

Theorem 4.3.4. Vectors are linearly dependent if and only if one of them is a linear combination of the others.

82

Proof.

Example 4.3.5. Note that $\begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$. Then, $\begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$ are linearly dependent.

Example 4.3.6. The matrix

$$U = \begin{bmatrix} 3 & -1 & 4 & 1 & 2 & 8 \\ 0 & -2 & 0 & 5 & 7 & 5 \\ 0 & 0 & 0 & 8 & 3 & -2 \\ 0 & 0 & 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

is in r.e.f. The leading entries, 3, -2, 8, 0 are in column 1, 2, 4, 6. The column 1, 2, 4, 6 are linearly independent.

Theorem 4.3.7. Let U be a matrix in r.e.f.

- 1. The columns that contain leading entries of U are linearly independent.
- 2. The nonzero rows of U are linearly independent.

Theorem 4.3.8. If v_1, v_2, \dots, v_n are linearly independent vectors in vectors space V, then any vector in their span can be expressed in exactly one way as a linear combination of these vectors; the coefficient are unique.

4.4 Basis and dimension, change of basis

Theorem 4.4.1. Any linearly independent set of vectors in \mathbb{R}^m contains at most m vectors. Any spanning set for \mathbb{R}^m contains at least m vectors.

Example 4.4.2. Let
$$u_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}$, $u_3 = \begin{bmatrix} 9 \\ 10 \\ 11 \\ 12 \end{bmatrix}$, $u_4 = \begin{bmatrix} 13 \\ 14 \\ 15 \\ 16 \end{bmatrix}$. Do u_1, u_2, u_3, u_4 span

 \mathbb{R}^4 ?

Definition 43. Let $S = \{v_1, v_2, \dots, v_n\}$ be a subset of a vector space V. Then S is called a *basis* for V if

- 1. S is linearly independent and
- 2. S spans V.

Remark 4.4.3.

- 1. A basis for a vector space V contains the smallest possible number of vectors that can span V.
- 2. In general, a vector space has many different bases.

Example 4.4.4.

- 1. Standard basis vectors e_1, e_2, \dots, e_n in \mathbb{R}^n form a basis of \mathbb{R}^n .
- 2. Show that $\{[1,1]^T, [1,-1]^T\}$ is a basis for \mathbb{R}^2 .

3. Is $S = \{[1, 1, 1, 1]^T, [0, 0, 1, 2]^T, [-1, 0, 0, 1]^T\}$ a basis for \mathbb{R}^4 ?

4. Find a basis of the plane 2x - y + z = 0.

Definition 44. A nonzero vector space V is called *finite dimensional* if it has a basis with finite number of vectors. If V does not have a finite basis, then V is called *infinite dimensional*.

Definition 45. The *dimension* of a finite dimensional vector space V, denoted by $\dim(V)$, is defined to be the number of vectors in a basis for V. In addition, the dimension of the zero vector space is defined to be zero.

Example 4.4.5.

- 1. $\dim(\mathbb{R}^n) = n$.
- 2. Find a basis for and determine the dimension of the subspace

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x, y, z \in \mathbb{R} \text{ and } y = z \right\}$$

of \mathbb{R}^3 .

3. Find a basis for and determine the dimension of the subspace

$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \text{ and } b + c = 0 \right\}$$

of \mathbb{M}_2 .

Example 4.4.6. Find the dimension of the row space and the null space of

$$A = \begin{bmatrix} 1 & 2 & -1 & 1 & 3 \\ -3 & -6 & 4 & -13 & -17 \\ 4 & 8 & -6 & 25 & 29 \\ -1 & -2 & 0 & 10 & 6 \end{bmatrix}.$$

Definition 46. The *nullity* of a matrix A is the dimension of its null space.

Theorem 4.4.7. For any $m \times n$ matrix A, rank(A) + nullity(A) = n, the number of columns of A.

Example 4.4.8. Verify Theorem 4.4.7:

$$1. \ A = \begin{bmatrix} -3 & 6 \\ 2 & 5 \end{bmatrix}$$

2.
$$B = \begin{bmatrix} -3 & 4 & 5 & 8 & 1 \\ 1 & 0 & -2 & 1 & -1 \\ -2 & 4 & 3 & 9 & 0 \\ 4 & -4 & -7 & -7 & 3 \end{bmatrix}$$

Definition 47. Let $S = \{u_1, u_2, \dots, u_n\}$ be a basis for a vector space V and v be a vector in V. If

$$\boldsymbol{v} = c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2 + \cdots + c_n \boldsymbol{u}_n,$$

then the coefficients c_1, c_2, \dots, c_n are called the *coordinates* of \boldsymbol{v} relative to the basis S. The vector

$$(\boldsymbol{v})_S = [c_1, c_2, \cdots, c_n]^T$$

in \mathbb{R}^n is called the *coordinate vector* of \boldsymbol{v} relative to the basis S.

Example 4.4.9. Let $\mathcal{B} = \{ \boldsymbol{u}_1, \boldsymbol{u}_2 \}$ and $\mathcal{C} = \{ \boldsymbol{v}_1, \boldsymbol{v}_2 \}$, where $\boldsymbol{u}_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \boldsymbol{u}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find $(\boldsymbol{x})_{\mathcal{C}}$, given $(\boldsymbol{x})_{\mathcal{B}} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

Definition 48. Let $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ and $\mathcal{C} = \{v_1, v_2, \dots, v_n\}$ be bases for a vector space V. Then $n \times n$ matrix whose columns are the coordinate vectors $(u_1)_{\mathcal{C}}, (u_2)_{\mathcal{C}}, \dots, (u_n)_{\mathcal{C}}$ of the vectors in \mathcal{B} with respect to \mathcal{C} is denoted by $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and is called the *change-of-basis matrix* from \mathcal{B} to \mathcal{C} .

Theorem 4.4.10. Let $\mathcal{B} = \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_n \}$ and $\mathcal{C} = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n \}$ be bases for a vector space V and let $P_{\mathcal{C} \leftarrow \mathcal{B}}$ be the change-of-basis matrix from \mathcal{B} to \mathcal{C} . Then

- (a) $P_{\mathcal{C}\leftarrow\mathcal{B}}(\boldsymbol{x})_{\mathcal{B}} = (\boldsymbol{x})_{\mathcal{C}}$ for all \boldsymbol{x} in V.
- (b) $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is the unique matrix P with the property that $P(\boldsymbol{x})_{\mathcal{B}}=(\boldsymbol{x})_{\mathcal{C}}$ for all \boldsymbol{x} in V.
- (c) $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is invertible and $(P_{\mathcal{C} \leftarrow \mathcal{B}})^{-1} = P_{\mathcal{B} \leftarrow \mathcal{C}}$.

Example 4.4.11. Let $\mathcal{B} = \{i, j, k\}$ where i, j, k are standard basis vectors in 3-space and let

$$C = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}.$$

Find the coordinate vector of $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ with respect to \mathcal{C} .