计算方法第一次上机作业

曾梦辰*

2024年5月8日

摘要

本次作业完成教材第 20 页 17 题, 分析舍入误差与有效数.

1 问题

设
$$S_N = \sum_{j=2}^N \frac{1}{j^2 - 1}$$
, 其精确值为 $\frac{1}{2} \left(\frac{3}{2} - \frac{1}{N} - \frac{1}{N+1} \right)$.

(1) 编写按从大到小 (求和指标上升) 的顺序计算 S_N 的通用程序, 即

$$S_N = \frac{1}{2^2 - 1} + \frac{1}{3^2 - 1} + \dots + \frac{1}{N^2 - 1}$$

(2) 编写按从小到大 (求和指标下降) 的顺序计算 S_N 的通用程序, 即

$$S_N = \frac{1}{N^2 - 1} + \frac{1}{(N - 1)^2 - 1} + \dots + \frac{1}{2^2 - 1}$$

(3) 按以上程序计算 S_{10^2} , S_{10^4} , S_{10^6} , 并指出有效位数, 数据使用单精度格式储存. 分析以上结果.

2 运行结果

程序参考附件 1, 以下列举运行结果.

*学号: 202011999050

3 结果分析 2

N	精确值	从大到小	从小到大
10^{2}	0.74004950	0.74004948	0.74004954
10^{4}	0.74990000	0.74985212	0.74989998
10^{6}	0.74990000	0.74985212	0.74999899

表 1: 运行结果

使用 $\varepsilon_1(N)$ 表示从大到小计算时的绝对误差限, $\varepsilon_2(N)$ 表示从小到大计算时的绝对误差限. 当 $N=10^2$ 时, 从大到小计算有 7 位有效数, 从小到大计算有 7 位有效数, 且 $\varepsilon_1(10^2)<\varepsilon_2(10^2)$; 当 $N=10^4$ 时, 从大到小计算有 3 位有效数, 从小到大计算有 3 位有效数, 且 $\varepsilon_1(10^4)>\varepsilon_2(10^4)$; 当 $N=10^6$ 时, 从大到小计算有 3 为有效数, 从小到大计算有 4 位有效数, 自然 $\varepsilon_1(10^6)>\varepsilon_2(10^6)$.

3 结果分析

通过以上结果可知,从大到小计算的有效数位数总是不大于从小到大计算的有效数位数. 这是因为计算时,为了执行大数加小数的加法,计算机会对齐大数与小数的有效数,导致大数加小数时在计算后期大量损失有效数,从而产生更大的误差.

4 附件

附件 1: program.c, 见文件夹中或https://github.com/matthewzenm/Computational-Methods/blob/master/problem1/program.c.