MOOC 2: DES

Jean-Luc Falcone

26 novembre 2014

Agent Based Models

Week 8: Introduction to Agent Based Models
Jean-Luc Falcone

Motivation

Ant Corpse Piles (Messor sanctus)

Jost et al., J. R. Soc. Interface, 2007

4/76

Ant corpse piles: Some questions

- ► How does it work?
- ► Is it swarm intelligence?
- ▶ What is the simplest model able to explain the process ?

Bacteria

Chemotaxy

Movement

Stock Exchange

- ► Each trader makes individual decisions about bids and asks
- ► Most traders follow individual strategies
- ► Is it possible to explain market evolution knowing individual strategies.

Paul Jorion, 2007, Adam Smiths Invisible Hand Revisited. An Agent-Based simulation of the New York Stock Exchange,

```
http://www.pauljorion.com/blog/wp-content/uploads/2007/04/adamsmith-kyoto_rev.pdf
```

Agent based models

Main idea: Modeling the basic entities as individuals and observe the global *emergent* behavior.

Many more examples:

- ► Pedestrian simulation
- ► Epidemy propagation
- ► Ecological modeling
- ▶ ...

End of module Motivation

Coming next
Agents

Agents

(Intelligent) Agents

- ► Agents are the fundamental entities of ABM
- ► Concept introduced in the Artifical Intelligence field
- ► Autonomous and decentralized
- ► Interact with an environment

Agent

From an agent point of view

Simple Reflex Agent

Simple Reflex Agent

Behaviour: how the agent will react to the environement *perception*.

► Usually rule-based

PERCEPTION → ACTION

- ► May be stochastic
- ► Perception/Knowledge of environement is limited
- ► The *action* may affect the environment

Intelligent Agent

Intelligent Agent

The agent has a **state**, which can be as simple as a boolean or as complex as it needs to be

Behaviour function:

$PERCEPTION \times STATE \rightarrow ACTION \times STATE$

- ► The state is a kind of memory of past perceptions/actions
- ► The behaviour depends on memory
- ► Hence the agent is capable of **learning**

Example: Trading agent

```
def behavior( price, state ):
    lastTxPrice, cash, stocks = state
    if (price > lastTxPrice) and (price - lastTxPrice ) > RL:
n = floor(stocks * Cs)
return SELL( n, price )
    elif (price < lastTxPrice) and (lastTxPrice - price) > RL:
n = floor((cash * Cb) / price)
return BUY( n, price )
    else.
return NOP
```

End of module Agents

Coming next

Multi-Agent systems

Multi-Agent systems

Multi-Agent Systems

Multi-Agent Systems

- ► Usually a single system is modeled by many agents
- ► They could be identical, or similar, or not...
- ► They interact, either trough the environement or directly.
- ► Multi-agent systems are not synonymous of ABM. For instance:
 - Optimization
 - Network security
 - Videogames

Spatialized Agents (Physical)

- ► Agent may have a spatial location (2D, 3D, graph)
- ► They may move across the domain as a result of their actions (mobile)
- ► The location of the agents may affect:
 - ► Their environment perception
 - ► Their interactions with other agents

Environment awareness

Interaction topology

Agent Based Models

- ► The use of a multi-agent system system to model a natural phenomenon.
- ► A complex collective behaviour **emerges** from the simple behaviours of agents.

End of module

Multi-Agent Systems

Coming next

Implementation of Agent Based Models

Implementation of Agent Based Models

Object-Oriented definition

- Class: type of agentInstance: Agent
- ▶ **Private members:** internal state
- ► **Public methods:** behaviour

Asynchronous update

```
agents, env = initialize()
t = t_init
while t < t_max:
    for agent in agents:
p = computePerceptionFor(agent, env, agents)
action = agent.behaviour(p)
updateEnvironment( env, action )
    increment(t)</pre>
```

Synchronous update

```
agents, env = initialize()
t = t_init
while t < t_max:
    ps = computeAllPerceptions(env, agents)
    actions = allBehaviours( agents, ps )
    updateEnvironment( env, actions )
    increment(t)</pre>
```

Lagrangian approach

- ► Common approach
- ► Each agent is aware of its location
- ► Interactions and environment awareness can be globally computed.

```
agents = [
  Agent( id=1, posX=8.2, posY=0.5, ... ),
  Agent( id=2, posX=9.1, posY=2.7, ... ),
  Agent( id=3, posX=4.6, posY=1.8, ... ),
  ...
]
```

Spatial optimisation

- ► In most lagrangian models where agents communicate locally, it may be expensive to compute the interaction network.
- ▶ Naive approach, $O(n^2)$.
- ► Some specialised data structure may speed-up the process.
- ► For instance **k-d trees**:
 - ► Construction: $O(n \log n)$
 - ► Range search (in 2D): $O(n\sqrt{n})$

Eulerian approach

- ► Environment is a regular grid of cells
- ► Each cell contains a list of agents

Advantages:

- ► Interaction network easy to compute (neighboring cells).
- ► Interations are local (parallism possible)

Disadvantages:

► Loss of spatial precision

Time

- ► Usually continuous time
- ▶ But ABM can be used inside a Discrete Event System to update its state and produce new events.

```
def behavior( event, state ):
    ...
    return newState, [events]
```

End of module

Implementation of Agent Based Models

Coming next

Ant corpse clustering

Ants Corpse clustering

Ant Corpse Piles (Messor sanctus)

Jost et al., J. R. Soc. Interface, 2007

Questions

- ► How does it work?
- ► Is it swarm intelligence?
- ▶ What is the simplest model able to explain the process ?

Deneubourg's Model (1991)

- ► Ants on a regular grid, with 4 directions
- Random walk, can walk over a corpse
- ► Sequential (asynchronous) updating scheme

Ant Behaviour (i)

- ▶ With propability P_p , the workers pick up a corpse if it is isolated or in a small cluster
- ▶ With probability P_d , the workers deposit a corpse in large cluster of dead bodies
- ▶ How the ant does evaluate the cluster size ?
 - ► Each ant has a memory *M* of size *n*:
 - ► The memory locations indicate the state of the cells visited by the ant during the last n steps: M(i) = 1 if there was a corps at time t i, 0 otherwise

Ant Behaviour (ii)

► The probabilities are computed at each step as:

$$f = \sum_{i=1}^{n} M(i)$$

$$P_p = \left(\frac{k_1}{k_1 + f}\right)^2$$

$$P_d = \left(\frac{f}{f + k_2}\right)^2$$

where k_1 and k_2 are model parameters.

Result (i)

Result (ii)

Result (iii)

Result (iv)

Smart ants

- ► Deneubourg's model works well
- ► Basic mechanism is intuitive
- ► But it requires a lot of "intelligence" from ants

► What about dumber ants?

Unige Model (2000)

- ► Regular Grid, with 8 directions
- ► Random Walk with large diffusion constant
- ► Asynchronous updating

Behavior

- ► The ants avoids all obstacles:
 - ant corpses
 - ► other working ants
 - boundaries and walls
- ► An unloaded ant always picks a found corpse
- ▶ A loaded ant who finds another corpse always drops the carried corpse.

Result (i)

Result (ii)

Result (iii)

Result (iv)

It works... but why?

- ► The probabilities to remove a corpse from a cluster, or to add a new corpse are the same.
- ► Ants make no difference between a large or a small cluster
- ▶ When a cluster is emptied it will never reappear.
- ▶ Due to fluctuations, all clusters but one will eventually reach a zero size

Quantitative results

M=8 =32 =128 =512 Log(N(t)) 0.5 Log(t) Unige

Quantitative results

- ► In Deneubourg's model converges ~10x faster (using better random walk).
- ▶ In both models: not a collective behavior, N(t) = f(Mt)
- ▶ One single ant would make it, but slower

Final Cluster

Deneubourg, with 8 directions

Unige 59/76

With obstacle (i)

With obstacle (ii)

With obstacle (iii)

Conclusions

- ► Ant corps pile construction can be explained by statistical fluctuations
- ▶ Yet, intelligence speeds up the process
- ▶ Not a collective effect, just a collaboration with a linear speedup

End of module Ant corpse clustering

Coming next
Bacteria chemotaxy

Bacteria chemotaxy

Bacteria

Chemotaxy

Movement (1)

Movement (2)

Model

- ► Eulerian 2D Grid
- ► In each cell (x, y) we have:
 - List of Bacteria in the (x, y)
 - Concentration of nutrient $\rho_{x,y}$
- ▶ Bacteria are agents *i* with state (d_i, m_i) :
 - ► d_i : last direction taken (N, S, E, W)
 - \rightarrow m_i : last concentration of nutrient

Behaviour

- ▶ Bacteria remember last concentration (d_i)
- ▶ Bacteria at position (x, y) perceive the current concentration $\rho_{x,y}$
- ► There are two model parameters:
 - p_i : probability of tumbling when concentration increases
 - p_d : probability of tumbling when concentraion decreases
 - with $p_d > p_i$

Behaviour function

```
def behaviour( rho, m_i, d_i ):
   if rho <= m_i:
      p = p_d
   else:
      p = p_i
   if random() <= p:
      return rho, randomDirection()
   else:
      return rho, d_i</pre>
```

Environment

Nutrient diffusion: (solved with finite differences)

$$\frac{\partial \rho_{x,y}(t)}{\partial t} = D\nabla^2 \rho_{x,y}(t)$$

Bacteria movement:

 \blacktriangleright Each bacteria i is moved to the next cell in the direction d_i

Molecular Mechanism

End of module
Bacteria chemotaxy

End of Week 8
Agent Based Models

See also

- ► An overview of E. coli chemotaxis
- ▶ Robustness in bacterial chemotaxis, Alon *et al.*, Nature **397**, 1999

https://www.youtube.com/watch?v=Hc6kng5A81Q