Statistics 2 Unit 1

Team 8 April 24, 2018

Contents

1	Tas	PI64	2
	1.1	a)	2
	1.2	b)	2
	1.3	c)	2
	1.4	d)	2
2	Tas	PI66:	3
	2.1	a)	3
	2.2	b)	3
	2.3	$(c) \ { m and} \ { m d}) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	4
	2.4	e)	4
	2.5	f)	4
	2.6	g)	5

1 Task PI64

Let $X_1, ..., X_n$ be iid from a geometric distribution, i.e. $f(x) = p(1-p)^x$, x = 0, 1, ...

1.1 a)

The parameter by the MME is

$$\hat{\mu}_1 = \bar{X} = \frac{1 - \hat{p}}{\hat{p}} \iff \hat{p} = \frac{1}{\bar{X} + 1}.$$

1.2 b)

The parameter by the MLE is

$$l(p, x_i) = \prod_{i=0}^n p(1-p)^{x_i} = p^n (1-p)^{\sum x_i}$$
$$\frac{\partial log(l(x))}{\partial p} = \frac{1}{p} + \frac{x}{1-p} \stackrel{!}{=} 0$$
$$\hat{p} = \frac{1}{\bar{X}+1}.$$

1.3 c)

The Fisher information was already calculated in the exercise 62.

$$I(p) = \frac{1}{p^2(1-p)}$$

The asymptotic variance of the MLE is given by

$$\frac{1}{nI(p)} = n \ p^2 \ (1 - p).$$

1.4 d)

The posterior is defined as $f(p|x_i) \propto l(p, x_i) f(p)$. So we get for the uniform distribution on [0, 1] the following posterior:

$$f(p|x_i) \propto p^n (1-p)^{\sum x_i} \ 1 = \propto p^n (1-p)^{\sum x_i}$$
.

We see the posterior distribution can be written as a beta distribution with parameters $(\alpha = 2, \beta = \sum x_i + 1)$.

The posterior mean can be then found by using the mean of a beta:

$$X = \frac{\alpha}{\alpha + \beta} = \frac{2}{\sum x_i + 3}.$$

2 Task PI66:

2.1 a)

Writing $X = (X_1, \dots, X_n)$, the log-likelihood function is

$$\ell(\tau) = \log \prod_{i=1}^{n} \frac{1}{\tau} e^{-x_i/\tau}$$
$$= -n \log(\tau) - \frac{1}{\tau} \sum_{i=1}^{n} x_i$$

Now, take the derivative wrt to τ

$$\ell'(\tau) = -\frac{n}{\tau} + \frac{1}{\tau^2} \sum_{i=1}^{n} x_i$$

Solving for $l'(\tau) = 0$, the MLE of τ is

$$\widehat{\tau} = \overline{X}$$

2.2 b)

Let
$$S = X_1 + \ldots + X_n \sim \Gamma\left(n, \frac{1}{\tau}\right)$$

Thus, the PDF of $\overline{X} = \frac{S}{n}$ is:

$$f_{\overline{X}}(x) = \frac{s^{n-1}}{\tau^n \Gamma(n)} e^{-s/\tau} \left| \frac{ds}{dx} \right| = \frac{n^n x^{n-1}}{\tau^n \Gamma(n)} e^{-nx/\tau}, x > 0,$$

which is the PDF of the $\Gamma(n, n/\tau)$ distribution.

2.3 c) and d)

Since $\overline{X} \sim \Gamma(n, n/\tau)$, we have

$$E\left(\overline{X}\right) = \tau$$

$$Var\left(\overline{X}\right) = \frac{\tau^2}{n}$$

From the CLT it follows that $\frac{\overline{X} - \tau}{\sqrt{\frac{\tau^2}{n}}}$ is approximately distirbuted as $N\left(0,1\right)$

for large n.

2.4 e)

The Cramer-Rao lower bound is $1/[nI(\tau)]$, where

$$I\left(\tau\right) = -E\left[\frac{\partial^{2}}{\partial \tau^{2}}\log\left(\frac{1}{\tau}e^{-\frac{X_{1}}{\tau}}\right)\right] = -\frac{1}{\tau^{2}} - E\left(\frac{2X_{1}}{\tau^{3}}\right) = \frac{1}{\tau^{2}}$$

since $E(X_1) = \tau$. This implies that the Cramer-Rao lower bound is

$$\left[nI\left(\tau\right)\right]^{-1} = \frac{\tau^2}{n}$$

This lower bound equals the variance of \overline{X} .

Thus, we conclude that there is no other unbiased estimate of τ with a smaller variance than \overline{X} .

2.5 f)

From part (c), we have $\frac{\overline{X} - \tau}{\sqrt{\frac{\tau^2}{n}}}$ is approximately distirbuted as N(0,1) for

large n.

Thus, an approximate $100 (1 - \alpha) \%$ CI for τ is:

$$\overline{X} \pm z_{1-\alpha/2} \frac{\tau}{\sqrt{n}} \approx \overline{X} \pm z_{1-\alpha/2} \frac{\overline{X}}{\sqrt{n}}$$

or equivalently the set of τ 's satisfying

$$\tau - z_{1-\alpha/2} \frac{\tau}{\sqrt{n}} \le \overline{X} \le \tau + z_{1-\alpha/2} \frac{\tau}{\sqrt{n}}$$

2.6 g)

Note that \overline{X} has exactly the $\Gamma(n, n/\tau)$ distribution. Let $G_{\tau}(\alpha)$ denote the 100α percentile of $\Gamma(n, n/\tau)$ distribution, i.e.

$$P\left(\overline{X} \le C_{\tau}\left(\alpha\right)\right) = \alpha$$

Then an exact $100 \, (1-\alpha) \, \%$ CI for τ is given by the set of τ 's satisfying

$$G_{\tau}(\alpha/2) \le \overline{X} \le G_{\tau}(1 - \alpha/2)$$