NSI en Terminale

Sommaire

- Demandez le programme !
- Organisation des cours
- > L'épreuve du baccalauréat
- > Les projets

Demandez le programme!

Quatre grands thèmes

- 1. <u>Données</u> : représentent des informations très diverses sous forme unifiée.
- 2. <u>Algorithmes</u>: succession finie et ordonnées d'instructions en vue de résoudre un problème.
- 3. <u>Langages</u>: traduction d'algorithmes abstraits en programmes exécutables par une machine.
- 4. <u>Machines</u>: exécutent les programmes, assurent la persistance de données et gèrent la communication entre elles.

Données

- 1. <u>La programmation orientée objet</u> : classes, attributs, méthodes, *héritage* et *polymorphisme*.
- 2. <u>Listes, piles et files</u>: modes LIFO / FIFO, listes chaînées et *listes* doublement chaînées.
- 3. <u>Structures hiérarchique</u>: théorie des arbres, arbres binaires.
- 4. Structures relationnelles : théorie des graphes.

Algorithmique

- 1. Arbres binaires: taille, hauteur d'un arbre. Ordres infixe, préfixe. Coût.
- 2. <u>Graphes</u>: parcours en largeur, profondeur. Détection de cycle, recherche de chemin, algorithmes de Prim et Kruskal.
- 3. Méthode : « Diviser pour régner » : tri fusion, lien avec la récursivité.
- 4. Algorithme de Boyer-Moore : recherche d'un motif.
- 5. Algorithme d'Huffman: compression de fichiers (textes notamment).
- 6. Arbres AVL: rééquilibrage d'arbre après insertion.
- 7. <u>Tas</u> : tri de données.

Bases de données

- 1. <u>Modèle relationnel</u>: relation, attribut, domaine, clef primaire, clef étrangère, schéma relationnel.
- 2. <u>Base de données relationnelles</u> : structure vs contenu, conception d'une base de données.
- 3. <u>Langage SQL</u>: requêtes simples, clauses, jointures, *autres clauses*.
- 4. SGBDR: enjeux d'une base de données.

Langages et programmation

- 1. Récursivité : programme récursif en POO ou non, récursivité terminale.
- 2. Gestion des bugs: anticipation d'erreurs, assertions, gestion en POO.
- 3. <u>Paradigmes de programmation</u> : impératif, fonctionnel, objet, événementielle.
- 4. <u>Calculabilité, décidabilité</u> : un programme = une donnée, problème de l'arrêt.
- 5. Langages informatiques: PHP, C.

Machines

- 1. Système sur puce : composants (schéma de circuit), caractéristiques.
- 2. Système d'exploitation: multithreading, deadlock.
- 3. <u>Protocoles de routage</u> : protocoles RIP et OSPF, algorithmes de Bellman-Ford et Dijkstra.
- 4. <u>Sécurisation des communications</u> : chiffrement (a)symétrique, protocole https.

Organisation des cours

- ➤ En Terminale, 6H de cours par semaine, largement en autonomie.
- ➤ Les cours et exercices + corrigés numérisés et disponibles sur GitHub.
- ➤ 1 à 2 heures par semaine consacrée au « bachotage », épreuve écrite et pratique.
- > 2 heures par semaine d'activité de type « projet » / Trophées NSI.
- > Approfondissement notamment au troisième trimestre pour préparer au supérieur (prépa MP2I, écoles d'informatique).
- > Grand Oral : à partir du mois de mars.

L'épreuve du baccalauréat

Elle est composée d'une épreuve écrite et d'une épreuve pratique avec un coefficient 16.

Epreuve écrite (12 points):

- Durée de 3H30.
- Cinq exercices proposés, le candidat en choisit trois, chacun est sur 4 points.

<u>Thèmes</u>: Bases de données; Algorithmique et programmation; Réseaux et machines.

L'épreuve du baccalauréat

Epreuve pratique (8 points):

- > Durée de 1 heure.
- ➤ Deux exercices, chacun sur 4 points. Le premier est un algorithme vu en cours (Première y compris); le second est un algorithme à compléter, proche de ceux vu en cours (Terminale plutôt).
- > Sujets en ligne.
- > Utilisation d'un ordinateur.

Le projet de l'année

Un projet de création d'un jeu de rôle (RPG) en deux dimensions (2D) fonctionnel servira de fil conducteur cette année.

Plusieurs thèmes seront couverts:

- 1. <u>Infographie</u>: terrain, icônes.
- 2. <u>Gestion des données</u> : données du terrain, caractéristiques des personnages.
- 3. <u>POO</u>: gestion des personnages, combats.
- 4. Algorithmique: génération d'un donjon (labyrinthe).

RPG / Infographie

Logiciel Tiled Map Editor

RPG / Infographie

Logiciel GIMP

Des icônes

RPG / Infographie

Logiciel GIMP

RPG / Un aperçu

• Menu de départ

• La carte du jeu

Autres projets

➤ **Génération d'une base de données** permettant aux élèves / enseignants de **gérer les cours de soutien au collège / lycée** : SGBD, Langage SQL avancé.

Exemple de requête avancée :

Autres projets (Trophées NSI)

• **Génération d'un labyrinthe parfait** grâce à l'algorithme de Prim.

Le machine learning: programmation

- Présentation du machine learning.
- ➤ Programmation de situations d'apprentissage supervisé / non supervisé en Python.

Bibliothèques en Python

