1. (10%) Draw a diagram of the multiple-array representation for the sequence array [20, 5, 9, 18, 6, 10] stored as a doubly linked list. Also draw a diagram of the single-array representation for the same sequence array. Example 1: (From Parnika)

Example 2: (from Nhi)

Example 3: (from Kate)

2. (10%) Assume that algorithm A_1 takes time roughly $T_1(n) = 3n^2 + 2n + 6$ and algorithm A_2 takes time roughly $T_2(n) = 3n \lg(n) + 10$, and suppose that computer A's CPU runs 10⁸ instructions/sec. When the input size equals to 10⁴ and 10¹² respectively, how long will algorithm A₁ take to finish for each input size? How long will algorithm A2 take to finish for each input size? (Hint: Big O) Answer:

Algorithm $T_1(n) = 3n^2 + 2n + 6$ The complexity = $O(n^2)$ $T_1(n) = 3n^2 + 2n + 6 \le c^*n^2$ and find the value c and n_0 \Rightarrow 3 + 2/n + 6/n² \leq c \Rightarrow when c=4, and n₀ = 4 \leq n, The run time of Algorithm T_1 in computer A:

(1) $n = 10^4 : 4^* (10^4)^2 / 10^8$ ins/sec = 4 sec (2) $n = 10^{12} : 4^* (10^{12})^2 / 10^8$ ins/sec = 4*10¹⁶ sec (1.27* 10⁹ years)

 $T_2(n) = 3n \lg(n) + 10$ The complexity = O($n \lg(n)$) $3n \lg(n) + 10 \le c * n \lg(n) \rightarrow \text{ when } c=4, \text{ and } n_0 = 5 \le n, \lg(5) = 2.322$ \Rightarrow 3n lg(5) + 10 =34.829 ≤ 4 * 5 lg(5) = 46.44 (1) $n = 10^4 : 4^* (10^4) lg 10^4 / 10^8 ins/sec = 4^* (10^4) * 13.288 / 10^8 = 0.0053 sec$

(2) $n = 10^{12}$: 4* (10^{12}) lg10¹²/10⁸ ins/sec = 4* (10^{12}) * 39.86/10⁸

→ 1.59*10⁶ sec (18.4 Days)

H1.4

3. (32%) For each of the following "=", identify the corresponding constants C1, C2, n_n as appropriate. For each of "≠", lines, show they cannot possibly exist.

(3.1)
$$\frac{n^2}{4} - 8n + 12 = \Theta(n^2) = \Rightarrow g(n) = n^2$$

$$rightarrow c_1 n^2 \le n^2/4 - 8n + 12 \le c_2 n^2$$

$$\rightarrow c_1 \le 1/4 - 8/n + 12/n^2 \le c_2$$

⇒ when n=1 :
$$c_1 \le 1/4 - 8 + 12 \le c_2$$
 ⇒ $c_1 = 1/4 \le 17/4 = c_2$

⇒ pick
$$c_1 = 1/4$$
, $c_2 = 17/4$ and $n_0 = 1 \le n$

(3.2)
$$3+50/n = \Theta(1) \rightarrow g(n) = 1$$

 $\Rightarrow c_1 \le 3+50/n \le c_2 \Rightarrow pick c_1 = 3, c_2 = 53 \text{ and } n_0 = 1 \le n$

(3.3)
$$lg(2n) \neq \Theta(n) \Rightarrow g(n) = n$$

 $\rightarrow c_1$ n $\leq \lg(2n) \leq c_2$ n \rightarrow even we can find c_2 and n_0 to satisfy $\lg(2n) \leq c_2$ n for O(n), however, since n grows faster than $\lg(2n)$, we cannot find any c_1 and n_0 to satisfy c_1 n $\leq \lg(2n)$ for $\Omega(n)$, therefore $\lg(n) \neq \Theta(n)$.

(3.6)
$$4n^{1/2} \neq o(n^{1/2})$$
 (note the little-o) \Rightarrow $g(n) = n^{1/2} \Rightarrow$ By the definition $o(g(n)) = \{f(n) \mid \forall c, \exists n_0 \forall n > n_0.0 \leq f(n) \leq cg(n)\}$

(3.4) $n^{100} = O(2^n) \rightarrow g(n) = 2^n$

 $f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$\Rightarrow \lim_{n \to \infty} \frac{4n^{1/2}}{n^{1/2}} = 4 \quad \Rightarrow 4n^{1/2} \neq o(n^{1/2})$$
 We cannot find all constant values c and n_0 to satisfy $0 \le 4n^{1/2} \le c n^{1/2}$

$$(3.7) \quad \frac{n^3}{3} \neq \omega(n^3) \quad \Rightarrow g(n) = n^3$$

By the definition : $\omega(g(n)) = \{f(n) \mid \forall c, \exists n_0 \forall n > n_0, 0 \le cg(n) \le f(n)\}$

$$f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$\Rightarrow \lim_{n \to \infty} \frac{n^3 / 3}{n^3} = 1/3 \neq \infty$$

We cannot find all const values c and n_0 to satisfy $0 \le c \, n^3 \le n^3 / 3$

$$(3.8)\ 123n + 321 = \Theta(n) \Rightarrow g(n) = n$$

→
$$c_1 n \le 123 n + 321 \le c_2 n$$

→
$$c_1 \le 123 + 321/n \le c_2$$

$$\rightarrow$$
 pick $c_1 = 123$ and $c_2 = 444$, $n_0 = 1 \le n$

Let
$$p(n) = \sum_{i}^{d} a_{i} n^{i} \; , \label{eq:pn}$$

where $a_d > 0$, be a degree-d polynomial in n, and let k be a constant. Use the definitions of the asymptotic notations to prove the following properties.

a. If
$$k \ge d$$
, then $p(n) = O(n^k)$.

b. If
$$k \le d$$
, then $p(n) = \Omega(n^k)$.

c. If
$$k = d$$
, then $p(n) = \Theta(n^k)$.

d. If
$$k > d$$
, then $p(n) = o(n^k)$.

e. If
$$k < d$$
, then $p(n) = \omega(n^k)$.

H1.7 H1.8

4.a If $k \ge d$, then $p(n) = O(n^k)$.

If we pick any c>0, then, the end behavior of $cn^k-p(n)$ is going to infinity, in particular, there is an n_0 so that for every $n\geq n_0$, it is positive, so, we can add p(n) to both sides to get $p(n)< cn^k$.

4.b If $k \leq d$, then $p(n) = \Omega(n^k)$.

If we pick any c>0, then, the end behavior of $p(n)-cn^k$ is going to infinity, in particular, there is an n_0 so that for every $n\geq n_0$, it is positive, so, we can add cn^k to both sides to get $p(n)>cn^k$.

4.c If k = d, then $p(n) = \Theta(n^k)$.

We have by the previous parts that $p(n)=O(n^k)$ and $p(n)=\Omega(n^k)$. So, by Theorem 3.1, we have that $p(n)=\Theta(n^k)$.

4.d If k > d, then $p(n) = o(n^k)$.

$$\lim_{n\to\infty}\frac{p(n)}{n^k}=\lim_{n\to\infty}\frac{n^d(a_d+o(1))}{n^k}<\lim_{n\to\infty}\frac{2a_dn^d}{n^k}=2a_d\lim_{n\to\infty}n^{d-k}=0$$

H1.9

H1.11

4.e If k < d, then $p(n) = \omega(n^k)$.

$$\lim_{n \to \infty} \frac{n^k}{p(n)} = \lim_{n \to \infty} \frac{n^k}{n^d O(1)} < \lim_{n \to \infty} \frac{n^k}{n^d} = \lim_{n \to \infty} n^{k-d} = 0$$

H1.10

- 5. (18%) Identify and EXPLAIN all elements F of the set $\{ O, \Omega, \Theta, \omega, o \}$ such that the f(n) = F(g(n)) for each of the following asymptotic relations. Thus that if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ and $f(n) = \Omega(g(n))$ are the only three valid asymptotic relationships between f(n) and g(n), answer O, Ω, Θ .
- (5.1) $f(n) = n^2 + 5$, $g(n) = 3 n^2 + 4n$
- \rightarrow f(n) = O(g(n), we can find c>0 and $n_0 \le n$ to satisfy $n^2 + 5 \le c (3 n^2 + 4n)$, Pick c = 1, $n_0 = 1 \le n$
- \rightarrow f(n) $\neq \Omega$ (g(n), we cannot find c >0 and $n_0 \le n$ to satisfy c $(3n^2 + 4n) \le n^2 + 5$
- \rightarrow f(n) $\neq \Theta(g(n))$, since f(n) $\neq \Omega(g(n))$
- \rightarrow f(n) $\neq \omega$ (g(n), by the definition, $f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

$$\lim_{n \to \infty} \frac{n^2 + 5}{3n^2 + 4n} = 1/3 \qquad f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1/3$$

 \rightarrow f(n) \neq o(g(n)),

 \rightarrow F = {O}

(5.2)
$$f(n) = 2*log_2 n$$
, $g(n) = log_3(2n)$

- ⇒ f(n) = O(g(n), we can find c > 0 and $n_0 \le n$ to satisfy $2*log_2 n \le c (log_3(2n))$ Pick c = 2, $n_0 = 1 \le n$
- ⇒ $f(n) = \Omega(g(n))$, we can find c > 0 and $n_0 \le n$ to satisfy $c (\log_3(2n)) \le 2*\log_2 n$ Pick $c = \lg 3 = 1.58$, $n_0 = 2 \le n$
- \rightarrow f(n) = Θ (g(n)), since f(n) = O(g(n) and f(n) = Ω (g(n)
- \rightarrow f(n) $\neq \omega$ (g(n), by the definition, $f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

$$\lim_{n \to \infty} \frac{2\log_2 n}{\log_3(2n)} = \frac{\frac{2\log_3 n}{\log_3^2}}{\log_3(2n)} = \frac{2\log_3 n}{\underbrace{\log_3^2[\log_3 2 + \log_3 n]}} = \frac{2}{\log_3^2} \neq \infty$$

$$\rightarrow$$
 f(n) \neq o(g(n)), $f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$\rightarrow$$
 F = {O, Ω , Θ }

H1.12

(5.3)
$$f(n) = 2^n + 3n$$
, $g(n) = 3^n + 2n + 1$

- \rightarrow f(n) = O(g(n), we can find c >0 and $n_0 \le n$ to satisfy $2^n + 3n \le c (3^n + 2n + 1)$, Pick c = 1, $n_0 = 1 \le n$
- \rightarrow F(n) $\neq \Omega(g(n))$, we cannot find c > 0 and $n_0 \le n$ to satisfy $c(3^n + 2n + 1) \le 2^n + 1$
- \rightarrow f(n) \neq Θ (g(n)), since f(n) \neq Ω (g(n)
- \rightarrow f(n) $\neq \omega$ (g(n), by the definition, $f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

$$\lim_{n \to \infty} \frac{2^n + 3n}{3^n + 2n + 1} = 0$$

$$\rightarrow$$
 f(n) = o(g(n)), $f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$\rightarrow$$
 F = {O, o}

(5.4)
$$f(n) = n^{1/2}, g(n) = 4*log n$$

- \rightarrow f(n) \neq O(g(n), we cannot find c>0 and $n_0 \le n$ to satisfy $n^{1/2} \le c (4*log n)$
- \rightarrow F(n) = $\Omega(g(n))$, we can find c > 0 and $n_0 \le n$ to satisfy $c (4*log n) \le n^{1/2}$ Pick c = 1, $n_0 = 1 \le n$
- \rightarrow f(n) \neq Θ (g(n)), since f(n) \neq O(g(n)
- \rightarrow f(n) = ω (g(n), by the definition, $f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

$$\lim_{n\to\infty} \frac{\sqrt{n}}{4 \log n} = \infty$$

$$\lim_{n \to \infty} \frac{\sqrt{n}}{4 \log n} = \infty$$

$$\Rightarrow f(n) \neq o(g(n)), \quad f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\rightarrow$$
 F = { Ω , ω }

H1.13

(5.5)
$$f(n) = n^2 + 1$$
, $g(n) = 3n - 2$

- \rightarrow f(n) \neq O(g(n), we cannot find c>0 and $n_0 \le n$ to satisfy $n^2 + 1 \le c (3n 2)$
- \rightarrow F(n) = $\Omega(g(n))$, we can find c > 0 and $n_0 \le n$ to satisfy $c(3n-2) \le n^2 + 1$, $c=1, n_0 = 1 \le n$
- \rightarrow f(n) \neq Θ (g(n)), since f(n) \neq O(g(n)
- \rightarrow f(n) = ω (g(n), by the definition, $f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

$$\lim_{n\to\infty}\frac{n^2+1}{3n-1}=\infty$$

$$\rightarrow$$
 f(n) \neq o(g(n)), since f(n) = ω (g(n)) and $f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$\Rightarrow F = \{ \Omega, \omega \}$$

(5.6)
$$f(n) = 2n + 1$$
, $g(n) = 3*log^2n + 2$

- \rightarrow f(n) \neq O(g(n), we cannot find c>0 and $n_0 \le n$ to satisfy $2n + 1 \le c (3*log^2n + 2)$
- \rightarrow F(n) = $\Omega(g(n))$, we can find c > 0 and $n_0 \le n$ to satisfy $c(3*log^2n + 2) \le 2n + 1$ Pick c = 1, $n_0 = 1 \le n$
- \rightarrow f(n) \neq Θ (g(n)), since f(n) \neq O(g(n)
- \rightarrow f(n) = ω (g(n), by the definition, $f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

$$\lim_{n\to\infty} \frac{2n+1}{3\log^2 n + 2} = \infty$$

$$\lim_{n\to\infty} \frac{2n+1}{3\log^2 n + 2} = \infty$$

$$\Rightarrow f(n) \neq o(g(n)), \quad f(n) = o(g(n)) \Leftrightarrow \lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

$$\rightarrow$$
 F = { Ω , ω }

H1.15 H1.16 6. (20%) Convert the pseudo codes of the INSERTION-SORT(A) algorithm on page 18 and pseudo codes of the MERGE-SORT(A,p,r) algorithm on page 34 of the textbook respectively into executable Java codes to sort array A[18, 25, 6, 9, 15, 12, 5, 20, 11, 30]. Show all your source codes for both algorithms and take screen shots of each intermediate step of sorting results. (Note: 0 point will be received if you did not use the pseudo codes from the textbook.)

H1.17