Décrets, arrêtés, circulaires

TEXTES GÉNÉRAUX

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

Arrêté du 17 octobre 2018 modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement

NOR: TREL1819387A

Le ministre d'Etat, ministre de la transition écologique et solidaire, et la ministre des solidarités et de la santé,

Vu la convention sur la protection du milieu marin et du littoral de la mer Méditerranée, signée à Barcelone le 7 février 1976 et amendée le 10 juin 1995, ratifiée le 11 mars 1978 et publiée dans sa version authentique, en langue française, par les décrets n° 78-1000 du 29 septembre 1978 et n° 2004-958 du 2 septembre 2004 ;

Vu le protocole relatif à la protection de la mer Méditerranée contre la pollution d'origine tellurique, signé à Athènes le 17 mai 1980, ratifié le 13 juillet 1982 et publié par le décret n° 85-65 du 16 janvier 1985 ;

Vu la convention pour la protection du milieu marin de l'Atlantique du Nord-Est, signée à Paris le 22 septembre 1992, ratifiée le 25 mars 1998 et publiée dans sa version authentique, en langue française, par le décret n° 2000-830 du 24 août 2000;

Vu la convention pour la protection et la mise en valeur du milieu marin dans la région des Caraïbes, signée à Carthagène le 24 mars 1983, ratifiée le 13 novembre 1983 et publiée dans sa version authentique, en langue française, par le décret n° 87-125 du 19 février 1987;

Vu la convention sur la protection et l'utilisation des cours d'eau transfrontières et des lacs internationaux, faite à Helsinki le 17 mars 1992, publiée par le décret n° 98-911 du 5 octobre 1998, notamment son article 4, ainsi que les accords multilatéraux pour la protection du Rhin, de la Moselle-Sarre, de la Meuse, de l'Escaut et du lac Léman;

Vu le règlement (CEE) n° 1210/90 du Conseil du 7 mai 1990 relatif à la création de l'Agence européenne pour l'environnement et du Réseau européen d'information et d'observation pour l'environnement, modifié par le règlement CE n° 933/1999 du Conseil du 29 avril 1999 ;

Vu la directive 78/659/CEE du Conseil du 18 juillet 1978 concernant la qualité des eaux douces ayant besoin d'être protégées ou améliorées pour être aptes à la vie des poissons ;

Vu la directive 79/409/CEE du Conseil du 2 avril 1979 concernant la conservation des oiseaux sauvages;

Vu la directive 79/923/CEE du Conseil du 30 octobre 1979 relative à la qualité requise des eaux conchylicoles ;

Vu la directive 80/68/CEE du Conseil du 17 décembre 1979 concernant la protection des eaux souterraines contre la pollution causée par certaines substances dangereuses ;

Vu la directive 91/271/CEE du Conseil du 21 mai 1991 relative au traitement des eaux urbaines résiduaires ;

Vu la directive 91/676/CEE du Conseil du 12 décembre 1991 concernant la protection des eaux contre la pollution par les nitrates à partir de sources agricoles ;

Vu la directive 92/43/CEE du Conseil du 21 mai 1992 concernant la conservation des habitats naturels ainsi que de la faune et de la flore sauvages ;

Vu la directive 98/83/CE du Conseil du 3 novembre 1998 relative à la qualité des eaux destinées à la consommation humaine ;

Vu la directive 2000/60/CE du Parlement européen et du Conseil du 23 octobre 2000 établissant un cadre pour une politique communautaire de l'eau ;

Vu la directive 2006/7/CE du Parlement européen et du Conseil du 15 février 2006 concernant la gestion de la qualité des eaux de baignade ;

Vu la directive 2006/11/CE du Parlement européen et du Conseil du 15 février 2006 concernant la pollution causée par certaines substances dangereuses déversées dans le milieu aquatique de la Communauté ;

Vu la directive 2006/118/CE du 12 décembre 2006 sur la protection des eaux souterraines contre la pollution ; Vu la directive 2008/105/CE du 16 décembre 2008 établissant des normes de qualité environnementale dans le domaine de l'eau :

Vu la directive 2009/90/CE de la Commission du 31 juillet 2009 établissant, conformément à la directive 2000/60/CE du Parlement européen et du Conseil, des spécifications techniques pour l'analyse chimique et la surveillance de l'état des eaux ;

Vu le code de l'environnement, notamment ses articles L. 124-7, L. 211-2, L. 212-1, L. 212-2-2, L. 213-2, L. 214-3, L. 564-1, L. 564-2, L. 564-3, D. 211-10 et D. 211-11, R. 211-11-1 à R. 211-11-3, R. 211-14, R. 211-71 à R. 211-75 à R. 211-79, R. 212-3, R. 212-4, R. 212-9, R. 212-22, R. 213-12-2, D. 213-12-2-1, R. 213-13 à R. 213-16, R. 414-3 à R. 414-7 et R. 512-1 à R. 512-73;

Vu le code de la santé publique, notamment ses articles L. 1321-4, L. 1321-5, R. 1321-15, R. 1321-16, R. 1321-19 et R.* 1321-21;

Vu le code général des collectivités territoriales, notamment ses articles R. 2224-8, R. 2224-10, R. 2224-15 et R. 2224-17;

Vu l'ordonnance n° 2005-1516 du 8 décembre 2005 relative aux échanges électroniques entre les usagers et les autorités administratives et entre les autorités administratives :

Vu l'arrêté du 26 décembre 1991 portant application de l'article 2 du décret n° 91-1283 du 19 décembre 1991 relatif aux objectifs de qualité assignés aux cours d'eau, sections de cours d'eau, canaux, lacs ou étangs et aux eaux de la mer dans les limites territoriales et portant modalités administratives d'information de la Commission des Communautés européennes ;

Vu l'arrêté du 2 février 1998 modifié relatif aux prélèvements et à la consommation d'eau ainsi qu'aux émissions de toute nature des installations classées pour la protection de l'environnement soumises à autorisation ;

Vu l'arrêté du 16 mai 2005 portant délimitation des bassins ou groupements de bassins en vue de l'élaboration et de la mise à jour des schémas directeurs d'aménagement et de gestion des eaux ;

Vu l'arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique ;

Vu l'arrêté du 25 janvier 2010 modifié relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement ;

Vu l'arrêté du 25 janvier 2010 modifié établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement ;

Vu l'arrêté du 27 octobre 2011 portant modalités d'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques au titre du code de l'environnement ;

Vu l'arrêté du 21 juillet 2015 relatif aux systèmes d'assainissement collectif et aux installations d'assainissement non collectif, à l'exception des installations d'assainissement non collectif recevant une charge brute de pollution organique inférieure ou égale à 1,2 kg/j de DBO5;

Vu les observations formulées lors de la consultation du public réalisée du 1^{er} juin 2018 au 24 juin 2018, en application de l'article L. 123-19-1 du code de l'environnement;

Vu l'avis de la mission interministérielle de l'eau en date du 3 mai 2018,

Arrêtent:

- **Art. 1**er. A l'article 10 de l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement susvisé, les mots: « l'arrêté du 21 janvier 2010 susvisé » sont remplacés par le mot: « arrêté ».
- **Art. 2.** Au II de l'article 11 de l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement susvisé, les mots : « Le choix des sites et » sont supprimés et le mot : « sont » est remplacé par le mot : « est ».
- **Art. 3.** Les annexes à l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement susvisé sont remplacées par les annexes du présent arrêté.
- **Art. 4.** Le directeur de l'eau et de la biodiversité et le directeur général de la santé sont chargés, chacun en ce qui le concerne, de l'exécution du présent arrêté, qui sera publié au *Journal officiel* de la République française.

Fait le 17 octobre 2018.

Le ministre d'Etat, ministre de la transition écologique et solidaire, Pour le ministre d'Etat et par délégation: Le directeur de l'eau et de la biodiversité, T. VATIN

La ministre des solidarités et de la santé, Pour la ministre et par délégation : Le directeur général de la santé, J. SALOMON

ANNEXES

ANNEXE I

PERTINENCE DES ÉLÉMENTS DE QUALITÉ DE L'ÉTAT ÉCOLOGIQUE DES EAUX DE SURFACE

L'élément de qualité substances de l'état écologique est pertinent pour tous les types et catégories de masse d'eau de surface (cours d'eau, plans d'eau, eaux de transition et eaux côtières), que ces masses d'eau soient naturelles, artificielles, ou fortement modifiées.

Un élément de qualité (hors substances) est pertinent pour un type de masse d'eau de surface lorsqu'il apporte des informations valables pour en évaluer l'état écologique. Cela implique de pouvoir définir pour cet élément des valeurs de référence caractéristiques du type de masses d'eau de surface considéré, indépendamment de la disponibilité actuelle de ces valeurs.

La collecte des données est menée sur l'ensemble des types de masse d'eau de surface où l'élément de qualité est pertinent même si les modalités d'évaluation de l'état écologique pour cet élément de qualité ne sont pas arrêtées.

Les éléments de qualité applicables aux masses d'eau de surface artificielles ou fortement modifiées sont ceux qui sont applicables aux masses d'eau des catégories d'eau de surface naturelle (cours d'eau ou plan d'eau) qui ressemblent le plus à la masse d'eau de surface artificielle ou fortement modifiée concernée.

La pertinence des éléments de qualité physico-chimique (hors substances) et hydromorphologique des eaux douces de surface est précisée dans la colonne « sites concernés » des tableaux 44 et 45 de l'annexe VI.

La pertinence des éléments de qualité de l'état écologique est définie par typologie de masse d'eau (cf. arrêté du 12 janvier 2010 relatif aux méthodes et aux critères à mettre en œuvre pour délimiter et classer les masses d'eau et dresser l'état des lieux prévu à l'article R. 212-3 du code de l'environnement):

- pour les cours d'eau et plans d'eau, la pertinence de chacun des éléments de qualité biologique est évaluée dans les tableaux 1 à 12; la physico-chimie et l'hydromorphologie étant pertinentes pour toutes les typologies.
 A noter que tous les éléments de qualité biologiques ne sont pas pertinents sur les canaux : le cas des canaux est ainsi traité en bas de tableau de chaque élément;
- pour les masses d'eaux côtières et de transition, la pertinence de chacun des éléments de qualité biologique et physico-chimiques est évaluée dans les tableaux 13 à 22; l'hydromorphologie étant pertinente pour toutes les masses d'eau.

	Tableau 1: pertinence de pour l'évaluation écologiq	l'élément de qualité invertébrés ue des cours d'eau de métropole	Case blanche avec code: type pertinent - case grise avec code: type non pertinent					
Ну	droécorégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits	
		Cas général		GM20 GM20/9		P20	TP20	
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9 (Tables Calcaires)						
		Exogène de l'HER 21 (Massif Central Nord)		004	Mod			
21	MASSIF CENTRAL NORD	Cas général		G21	M21	P21	TP21	
		Cas général		G3	M3	P3	TP3	
	MASSIF CENTRAL SUD	Exogène de l'HER 19 (Grands Causses)			M3/19			
3		Exogène de l'HER 8 (Cévennes)			M3/8			
		Exogène de l'HER 19 ou 8		G3/19-8				
		Cas général			M17	P17	TP17	
17	DEPRESSIONS SEDIMENTAIRES	Exogène de l'HER 3 ou 21 (M.Cent.S ou N)	TG17/3-21	G17/3-21	M15- 17/3-21	P17/3-21	TP17/3- 21	
		Exogène de l'HER 3 ou 21			17/3-21			
45	DI AINIE CA ONIE	Exogène de l'HER 5 (Jura)		G15/5	MP	15/5		
15	PLAINE SAONE	Cas général	TG15		MP15		TP15	
		Exogène de l'HER 4 (Vosges)	TG10-15/4					
_	WD4 / DD5 41 D50 D11 1/2-5	Cas général		G5	M5	P5	TP5	
5	JURA / PRE-ALPES DU NORD	Exogène de l'HER 2 (Alpes Internes)	TG5/2	GM	GM5/2			
TTGA	FLEUVES ALPINS	Cas général	TTGA					

Tableau 1 : pertinence de l'élément de qualité invertébrés pour l'évaluation écologique des cours d'eau de métropole Case blanche avec code: type pertinent - case grise avec code: type non pertinent Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2 Très Très Petits Hydroécorégions de niveau 1 Grands Movens Petits Grands MP2 2 ALPES INTERNES Cas général G2 TP2 GMP7 TP7 Cas général 7 PRE-ALPES DU SUD Exogène de l'HER 2 (Alpes Internes) GM7/2 TG6-7/2 Exogène de l'HER 2 ou 7 GM6/2-7 Exogène de l'HER 7 (Pré-Alpes du Sud) GM6/2-7 6 **MEDITERRANEE** Exogène de l'HER 8 (Cévennes) GM6/8 TG6/1-8 Exogène de l'HER 1 (Pyrénées) GM6/1 Cas général G6 MP6 TP6 Cas général GM8 PTP8 **CEVENNES** 8 A-HER niveau 2 n°70 M8-A PTP8-A A-HER niveau 2 n°22 M16-A PTP16-A 16 CORSE G16 B-HER niveau 2 n°88 M16-B PTP16-B Cas général P19 **GRANDS CAUSSES** 19 Exogène de l'HER 8 (Cévennes) GM19/8 TP11 P11 Cas général 11 CAUSSES AQUITAINS M11/3-Exogène de l'HER 3 (MCN) et/ou 21 (MCS) TG11/3-21 G11/3-21 P11/3-21 21 M14/3-Exogène des HER 3, 8, 11 ou 19 TG14/3-11 G14/3 Exogène de l'HER 3 (MCN) ou 8 (Cév.) M14/3-8 **COTEAUX AQUITAINS** 14 TP14 Cas général GM14 P14 Exogène de l'HER 1 (Pyrénées) TG14/1 G14/1 M14/1 P14/1 P13 TP13 13 LANDES Cas général M13 1 **PYRENEES** Cas général G1 M1 P1 TP1 A-Centre-Sud (HER niveau 2 nº 58 et 117) M12-A P12-A TP12-A ARMORICAIN 12 G12 B-Ouest-N E (HER niveau 2 nº 55, 59 et 118) TP12-B M12-B P12-B TTGL LA LOIRE TTGL Cas général A-HER niveau 2 n°57 M9-A P9-A TG9 M9 P9 TP9 Cas général G9 9 TABLES CALCAIRES M9/10 Exogène de l'HER 10 G9/10 Exogène de l'HER 21 (Massif Central Nord) TG9/21 M9-G9-10/21 10/21 Exogène de l'HER 21 (Massif Central Nord) 10 **COTES CALCAIRES EST** Cas général G10 M10 P10 TP10 TG10-15/4 Exogène de l'HER 4 (Vosges) M10/4 G10/4 P4 TP4 4 **VOSGES** Cas général M4 22 **ARDENNES** Exogène de l'HER 10 (Côtes Calcaires Est) TG22/10

Tableau 1: pertinence de l'élément de qualité invertébrés pour l'évaluation écologique des cours d'eau de métropole

Case blanche avec code: type pertinent - case grise avec code: type non pertinent

Hydroécorégions de niveau 1		Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands Moyens		Petits	Très Petits
		Cas général		GM22		P22	TP22
10	ALCACE	Cas général			MF	P18	TP18
18	ALSACE	Exogène de l'HER 4 (Vosges)		G18/4	M18/4	P18/4	

Les cases sans code sont des typologies non présentes sur le territoire métropolitain. Cet élément de qualité est pertinent sur les canaux.

Tableau 2: pertinence de l'élément de qualité invertébrés pour l'évaluation écologique des cours d'eau des DOM

Pertinence, par type
Case blanche avec code: type pertinent – case grise avec code: type non pertinent

	DOM								
Bassin	Hydro	écorégions	Très grands	Grands	Moyens	Petits	Très petits		
	1	Cirques au vent			M61	P61			
D.C.	2	Cirques sous le vent			M62	P62			
Réunion	3	Versants au vent			M				
	4	Versants sous le vent			MI				
	1	Basse-Terre plaine nord- est			M				
Guadeloupe	2	Grande Terre Volcans			M				
	3	Basse-Terre vol- cans			M33	P33			
NAC.	1	Pitons du Nord			M41	P41			
Martinique	2	Mornes du Sud			M				
•	1	Plaine littorale du Nord	TG51	G51	M51	PT	P51		
Guyane	2	Bouclier guya- nais	TG52	G52	M52	PTP52			
	1	Versant nord- ouest au vent							
Mayotte (*)	2	Versant est sous le vent	_						
	3	Versant sud							

Les cases sans code sont des typologies non présentes sur le territoire.

(*) Il n'y a pas de typologie des cours d'eau de Mayotte. Cependant le SDAGE de Mayotte reconnait trois secteurs, correspondant à un découpage préliminaire en HER, réalisé dans le cadre de l'état des lieux du district hydrographique de Mayotte en 2007. Trois HER y sont reconnues: versant nord-ouest au vent, versant est sous le vent et versant sud, comprenant respectivement 16, 7 et 3 masses d'eau. Ce découpage n'a pas été validé par l'Irstea.

Tableau 3: pertinence de l'élément de qualité diatomées en cours d'eau de métropole

Pertinence, par type
Case blanche avec code: type pertinent - case grise
avec code: type non pertinent

			avec code : type non pertinent					
н	lydroécorégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits	
		Cas général		GN	120	P20	TP20	
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9 (Tables Calcaires)		GM	20/9			
		Exogène de l'HER 21 (Massif Central Nord)						
21	MASSIF CENTRAL NORD	Cas général		G21	M21	P21	TP21	
		Cas général		G3	M3	P3	TP3	
		Exogène de l'HER 19 (Grands Causses)			M3/19			
3	MASSIF CENTRAL SUD	Exogène de l'HER 8 (Cévennes)			M3/8			
		Exogène de l'HER 19 ou 8		G3/19-8				
		Cas général			M17	P17	TP17	
17	DEPRESSIONS SEDIMENTAIRES	Exogène de l'HER 3 ou 21 (M.Cent.S ou N)	TG17/3-21	G17/3-21		P17/3-21	TP17/3-	
		<u> </u>	1017/021	G17/021	M15- 17/3-21	1 1770 21	21	
		Exogène de l'HER 3 ou 21						
15	PLAINE SAONE	Exogène de l'HER 5 (Jura)		G15/5	MP			
		Cas général	TG15		MF	P15	TP15	
		Exogène de l'HER 4 (Vosges)	TG10-15/4					
5	JURA / PRE-ALPES DU NORD	Cas général		G5	M5	P5	TP5	
		Exogène de l'HER 2 (Alpes Internes)	TG5/2	GM5/2				
TTG- A	FLEUVES ALPINS	Rhin, Rhône jusqu'à Lyon	TTGA					
TTG- A	FLEUVES ALPINS	Rhône de l'aval confluence Saône à Lyon jusqu'à l'exutoire	TTGA					
2	ALPES INTERNES	Cas général		G2	MP2		TP2	
_	DDE ALDEO DU QUD	Cas général			GMP7		TP7	
7	PRE-ALPES DU SUD	Exogène de l'HER 2 (Alpes Internes)		GM	17/2			
		Exogène de l'HER 2 ou 7	TG6-7/2	GM6/2-7				
		Exogène de l'HER 7 (Pré-Alpes du Sud)		GM	6/2-7			
6	MEDITERRANEE	Exogène de l'HER 8 (Cévennes)		GM	16/8			
		Exogène de l'HER 1 (Pyrénées)	TG6/1-8	GM	16/1			
		Cas général		G6	М	P6	TP6	
		Cas général		GI	VI8	PT	P8	
8	CEVENNES	A-HER niveau 2 n°70			M8-A	PTF	P8-A	
		A-HER niveau 2 n°22			M16-A	PTP	16-A	
16	CORSE	B-HER niveau 2 n°88		G16	M16-B	PTP	16-B	
		Cas général				P19		
19	GRANDS CAUSSES	Exogène de l'HER 8 (Cévennes)		GM	19/8			
11	CAUSSES AQUITAINS	Cas général				P11	TP11	

Tableau 3: pertinence de l'élément de qualité diatomées en cours d'eau de métropole

Pertinence, par type
Case blanche avec code: type pertinent - case grise
avec code: type non pertinent

Ну	rdroécorégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits
		Exogène de l'HER 3 (MCN) et/ou 21 (MCS)	TG11/3-21	G11/3-21	M11/3-21	P11/3-21	
		Exogène des HER 3, 8, 11 ou 19	TG14/3-11	011/0	M14/3-11		
	0075410740107400	Exogène de l'HER 3 (MCN) ou 8 (Cév.)		G14/3	M14/3-8		
14	COTEAUX AQUITAINS	Cas général		GN	114	P14	TP14
		Exogène de l'HER 1 (Pyrénées)	TG14/1	G14/1	M14/1	P14/1	
13	LANDES	Cas général			M13	P13	TP13
1	PYRENEES	Cas général		G1	M1	P1	TP1
40	ADMODIANA	A-Centre-Sud (HER niveau 2 n° 58 et 117)	*		M12-A	P12-A	TP12-A
12	ARMORICAIN	B-Ouest-N E (HER niveau 2 n° 55, 59 et 118)		G12	M12-B	P12-B	TP12-B
TTG- L	LA LOIRE	Cas général	TTGL				
	TABLES CALCAIRES	A-HER niveau 2 n°57			M9-A	P9-A	
		Cas général	TG9	G9	M9	P9	TP9
9		Exogène de l'HER 10		G9/10	M9/10		
		Exogène de l'HER 21 (Massif Central Nord)	TG9/21	00.40/04	NAO 40/04		
		Exogène de l'HER 21 (Massif Central Nord)		G9-10/21	M9-10/21		
10	COTES CALCAIRES EST	Cas général	T040 45/4	G10	M10	P10	TP10
		Exogène de l'HER 4 (Vosges)	TG10-15/4	040/4	M10/4		
4	VOSGES	Cas général		G10/4	M4	P4	TP4
00	ADDENNES	Exogène de l'HER 10 (Côtes Calcaires Est)	TG22/10				
22	ARDENNES	Cas général		GN	122	P22	TP22
40	410405	Cas général			MF	P18	TP18
18	ALSACE	Exogène de l'HER 4 (Vosges)		G18/4	M18/4	P18/4	

Les cases sans code sont des typologies non présentes sur le territoire métropolitain. Cet élément de qualité est pertinent pour les canaux.

Tableau 4: բ	Tableau 4: pertinence de l'élément de qualité diatomées pour les cours d'eau des DOM			Pertinence par type Case blanche avec code: type pertinent – case grise avec code: type non pertinent					
Bassin		Hydroécorégions	Très grands	Grands	Moyens	Petits	Très petits		
Réunion	1	Cirques au vent			M61 P61				
	2 Cirques sous le vent				M62	P62			
	3	Versants au vent			MP63				
	4	Versants sous le vent			MF	64			
Guadeloupe	1	Basse-Terre plaine nord-est			MF	31			
	2	Grande Terre Volcans			MF	32			
	3	Basse-Terre volcans			M33 P33				
Martinique	1 Pitons du Nord				M41	P41			
	2 Mornes du Sud				MP42				

Tableau 4: pertinence de l'élément de qualité diatomées pour les cours d'eau des DOM Pertinence par type
Case blanche avec code: type pertinent – case grise avec code: type non pertinent Bassin Hydroécorégions Moyens Petits Très petits Plaine littorale du Nord TG51 G51 M51 PTP51 Guyane 1 2 Bouclier guyanais TG52 G52 M52 PTP52 Mayotte (*) 1 Versant nord-ouest au vent 2 Versant est sous le vent 3 Versant sud

Les cases sans code sont des typologies non présentes sur le territoire.

(*) Il n'y a pas de typologie des cours d'eau de Mayotte. Cependant le SDAGE de Mayotte reconnait trois secteurs, correspondant à un découpage préliminaire en HER, réalisé dans le cadre de l'état des lieux du district hydrographique de Mayotte en 2007. Trois HER y sont reconnues: versant nord-ouest au vent, versant est sous le vent et versant sud, comprenant respectivement 16, 7 et 3 masses d'eau. Ce découpage n'a pas été validé par l'Irstea.

	Tableau 5: pertinence de l'él pour les cours d	ément de qualité phytoplancton l'eau de métropole	Case blanch	e avec code	ertinence par ty type pertiner pe non pertine	ıt - case gris	e avec code :
Hydro	écorégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits
		Cas général		GM20		P20	TP20
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9 (Tables Calcaires)		GN	GM20/9		
		Exogène de l'HER 21 (Massif Central Nord)		201			
21	MASSIF CENTRAL NORD	Cas général		G21	M21	P21	TP21
		Cas général		G3	M3	P3	TP3
		Exogène de l'HER 19 (Grands Causses)			M3/19		
3	MASSIF CENTRAL SUD	Exogène de l'HER 8 (Cévennes)			M3/8		
		Exogène de l'HER 19 ou 8		G3/19-8			
	DEPRESSIONS SEDIMEN- TAIRES	Cas général			M17	P17	TP17
17		Exogène de l'HER 3 ou 21 (M.Cent.S ou N)	TG17/3-21	G17/3-21	M15-17/3-	P17/3-21	TP17/3-21
	PLAINE SAONE	Exogène de l'HER 3 ou 21			21		
		Exogène de l'HER 5 (Jura)		G15/5	MP1	5/5	
15		Cas général	TG15	MP1		15	TP15
		Exogène de l'HER 4 (Vosges)	TG10-15/4				
_	JURA / PRE-ALPES DU	Cas général		G5	M5	P5	TP5
5	NORD	Exogène de l'HER 2 (Alpes Internes)	TG5/2	G	M5/2		
TTGA	FLEUVES ALPINS	Cas général	TTGA				
2	ALPES INTERNES	Cas général		G2	MP	2	TP2
		Cas général			GMP7		TP7
7	PRE-ALPES DU SUD	Exogène de l'HER 2 (Alpes Internes)		G	M7/2		
		Exogène de l'HER 2 ou 7	TG6-7/2	GN	16/2-7		
		Exogène de l'HER 7 (Pré-Alpes du Sud)		GN	16/2-7		
6	MEDITERRANEE	Exogène de l'HER 8 (Cévennes)		G	M6/8		
		Exogène de l'HER 1 (Pyrénées)	TG6/1-8	G	GM6/1		
		Cas général		G6	MP	6	TP6
	1	1	1				

Tableau 5: pertinence de l'élément de qualité phytoplancton pour les cours d'eau de métropole

Pertinence par type
Case blanche avec code: type pertinent - case grise avec code: type non pertinent

				-,	ype non perment		
Hydroé	corégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Peti
_		Cas général		(iM8		PTP8
8	CEVENNES	A-HER niveau 2 n°70			M8-A	PTP8-A	
		A-HER niveau 2 n°22			M16-A	P1	TP16-A
16	CORSE	B-HER niveau 2 n°88		G16	M16-B	P	ГР16-В
40	0044400	Cas général				P19	
19	GRANDS CAUSSES	Exogène de l'HER 8 (Cévennes)		GN	Л19/8		
		Cas général				P11	TP11
11	CAUSSES AQUITAINS	Exogène de l'HER 3 (MCN) et/ou 21 (MCS)	TG11/3-21	G11/3-21	M11/3-21	P11/3-21	
		Exogène des HER 3, 8, 11 ou 19	TG14/3-11	2	M14/3-11		
	COTE ALLY A CLUTAING	Exogène de l'HER 3 (MCN) ou 8 (Cév.)		G14/3	M14/3-8		
14	COTEAUX AQUITAINS	Cas général		G	M14	P14	TP14
		Exogène de l'HER 1 (Pyrénées)	TG14/1	G14/1	M14/1	P14/1	
13	LANDES	Cas général			M13	P13	TP13
1	PYRENEES	Cas général		G1	M1	P1	TP1
		A-Centre-Sud (HER niveau 2 n° 58 et 117)			M12-A	P12-A	TP12-
12	ARMORICAIN	B-Ouest-N E (HER niveau 2 n° 55, 59 et 118)		G12	M12-B	P12-B	TP12-E
TTGL	LA LOIRE	Cas général	TTGL				
		A-HER niveau 2 n°57			M9-A	P9-A	
		Cas général	TG9	G9	M9	P9	TP9
9	TABLES CALCAIRES	Exogène de l'HER 10 -		G9/10	M9/10		
		Exogène de l'HER 21 (Massif Central Nord)	TG9/21	00.40/04	NO 40/04		
		Exogène de l'HER 21 (Massif Central Nord)		G9-10/21	M9-10/21		
10	COTES CALCAIRES EST	Cas général	T040 45/4	G10	M10	P10	TP10
		Exogène de l'HER 4 (Vosges)	TG10-15/4	040/4	M10/4		
4	VOSGES	Cas général		G10/4	M4	P4	TP4
00	ABBETTUES	Exogène de l'HER 10 (Côtes Calcaires Est)	TG22/10				
22	ARDENNES	Cas général		G	GM22		TP22
10		Cas général			MP	18	TP18
18	ALSACE	Exogène de l'HER 10		G18/4	M18/4	P18/4	

Les cases sans code sont des typologies non présentes sur le territoire métropolitain. Cet élément de qualité est pertinent pour les canaux. Cet élément de qualité peut être pertinent sur certains cours d'eau lents et profonds (à évaluer localement).

	Tableau 6: pertinence de l'élément de qualité phytoplancton pour les cours d'eau des DOM			Pertinence par type Case blanche avec code: type pertinent - case grise avec code: type non pertinent						
Bassin	in Hydroécorégions			Grands	Moyens	Petits	Très petits			
Réunion	1	Cirques au vent			M61	P61				

Tableau 6: pe	rtinence de pour les c	l'élément de qualité phytoplancton cours d'eau des DOM	Case blanche	avec code: type	<i>Pertinence par t</i> y pertinent - case g	<i>/pe</i> rise avec code : t	ype non pertinent
Bassin		Hydroécorégions	Très grands	Grands	Moyens	Petits	Très petits
	2	Cirques sous le vent			M62	P62	
	3	Versants au vent			MF	P63	
	4 Versants sous le vent				MF		
	1	Basse-Terre plaine nord-est			MP31		
Guadeloupe	2	Grande Terre Volcans			MP32		
	3	Basse-Terre volcans			M33	P33	
	1	Pitons du Nord			M41	P41	
Martinique	2	Mornes du Sud			MP42		
	1	Plaine littorale du Nord	TG51	G51	M51	F	TP51
Guyane	2	Bouclier guyanais	TG52	G52	M52	F	TP52
	1	Versant nord-ouest au vent					
Mayotte (*)	2	Versant est sous le vent					
	3	Versant sud					

Les cases sans code sont des typologies non présentes sur le territoire.

(*) Il n'y a pas de typologie des cours d'eau de Mayotte. Cependant le SDAGE de Mayotte reconnait trois secteurs, correspondant à un découpage préliminaire en HER, réalisé dans le cadre de l'état des lieux du district hydrographique de Mayotte en 2007. Trois HER y sont reconnues: versant nord-ouest au vent, versant est sous le vent et versant sud, comprenant respectivement 16, 7 et 3 masses d'eau. Ce découpage n'a pas été validé par l'Irstea.

Tableau 7: pertinence de l'élément de qualité macrophytes
pour les cours d'eau de métropole

Pertinence, par type

Case blanche avec code : type pertinent - case grise avec code : type
non pertinent - case gris clair :
pertinence à évaluer localement

		pertinence a evaluer localement						
corégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits		
	Cas général		GM	Л20	P20	TP20		
DEPOTS ARGILO SABLEUX	Exogène de l'HER 9 (Tables Calcaires)		GM	120/9				
	Exogène de l'HER 21 (Massif Central Nord)							
MASSIF CENTRAL NORD	Cas général		G21	M21	P21	TP21		
	Cas général		G3	M3	P3	TP3		
MASSIF CENTRAL	Exogène de l'HER 19 (Grands Causses)			M3/19				
SUD	Exogène de l'HER 8 (Cévennes)			M3/8				
	Exogène de l'HER 19 ou 8		G3/19-8					
DEPRESSIONS SEDI-	Cas général			M17	P17	TP17		
MENTAIRES	Exogène de l'HER 3 ou 21 (M.Cent.S ou N)	TG17/3-21	G17/3-21	M15-17/3-	P17/3-21	TP17/3-21		
	Exogène de l'HER 3 ou 21			21				
DI AINE CA ONE	Exogène de l'HER 5 (Jura)		G15/5	MP	15/5			
PLAINE SAUNE	Cas général	TG15		MF	P15	TP15		
	Exogène de l'HER 4 (Vosges)	TG10-15/4						
JURA / PRE-ALPES DU	Cas général		G5	M5	P5	TP5		
NORD	Exogène de l'HER 2 (Alpes Internes)	TG5/2	GN	N5/2				
	DEPOTS ARGILO SABLEUX MASSIF CENTRAL NORD MASSIF CENTRAL SUD DEPRESSIONS SEDI-MENTAIRES PLAINE SAONE	Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2 Cas général Cas général Exogène de l'HER 9 (Tables Calcaires) Exogène de l'HER 21 (Massif Central Nord) MASSIF CENTRAL NORD MASSIF CENTRAL SUD Cas général Exogène de l'HER 19 (Grands Causses) Exogène de l'HER 19 (Grands Causses) Exogène de l'HER 19 ou 8 Cas général Exogène de l'HER 19 ou 8 Cas général Exogène de l'HER 3 ou 21 (M.Cent.S ou N) Exogène de l'HER 3 ou 21 (M.Cent.S ou N) Exogène de l'HER 5 (Jura) PLAINE SAONE Cas général Exogène de l'HER 4 (Vosges) JURA / PRE-ALPES DU NORD	Cas général, cours d'eau exogène de l'HER de niveau 2 Cas général Cas général Cas général Cas général Exogène de l'HER 9 (Tables Calcaires) Exogène de l'HER 21 (Massif Central Nord) MASSIF CENTRAL NORD MASSIF CENTRAL SUD Cas général Exogène de l'HER 19 (Grands Causses) Exogène de l'HER 19 (Grands Causses) Exogène de l'HER 19 ou 8 Cas général Exogène de l'HER 19 ou 8 Cas général Exogène de l'HER 3 ou 21 (M.Cent.S ou N) TG17/3-21 Exogène de l'HER 5 (Jura) PLAINE SAONE Cas général TG15 Exogène de l'HER 4 (Vosges) TG10-15/4	corégions de niveau 1 Classes de taille de cours d'eau exogène de l'HER de niveau 2 Très Grands Grands DEPOTS ARGILO SABLEUX Exogène de l'HER 9 (Tables Calcaires) GM MASSIF CENTRAL NORD Exogène de l'HER 21 (Massif Central Nord) G21 MASSIF CENTRAL SUD Cas général G3 Exogène de l'HER 19 (Grands Causses) G3 Exogène de l'HER 8 (Cévennes) Exogène de l'HER 19 ou 8 G3/19-8 DEPRESSIONS SEDI-MENTAIRES Cas général Exogène de l'HER 3 ou 21 (M.Cent.S ou N) TG17/3-21 G17/3-21 PLAINE SAONE Exogène de l'HER 5 (Jura) G15/5 JURA / PRE-ALPES DU NORD Cas général TG10-15/4 JURA / PRE-ALPES DU NORD Cas général G5	Corégions de niveau 1 Classes de taille de cours d'eau exogène de l'HER de niveau 2 Très Grands Grands Moyens DEPOTS ARGILO SABLEUX Exogène de l'HER 9 (Tables Calcaires) GM20/9 MASSIF CENTRAL NORD Exogène de l'HER 21 (Massif Central Nord) G21 M21 MASSIF CENTRAL SUD Cas général G3 M3 Exogène de l'HER 19 (Grands Causses) G3/19-8 Exogène de l'HER 8 (Cévennes) M3/8 DEPRESSIONS SEDI-MENTAIRES Cas général M17 Exogène de l'HER 3 ou 21 (M.Cent.S ou N) TG17/3-21 G17/3-21 Exogène de l'HER 3 ou 21 (M.Cent.S ou N) TG17/3-21 M15-17/3-21 PLAINE SAONE Cas général TG15 MP Cas général TG15 MF JURA / PRE-ALPES DU NORD Cas général TG10-15/4	Classes de taille de cours d'eau (Classes de taille de cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2		

Tableau 7: pertinence de l'élément de qualité macrophytes pour les cours d'eau de métropole Pertinence, par type

Case blanche avec code: type pertinent - case grise avec code: type
non pertinent – case gris clair:
pertinence à évaluer localement

Hydroé	corégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits
TTGA	FLEUVES ALPINS	Cas général	TTGA				
2	ALPES INTERNES	Cas général		G2 N		P2	TP2
_	225 44 250 244 2442	Cas général			GMP7		TP7
7	PRE-ALPES DU SUD	Exogène de l'HER 2 (Alpes Internes)		GN	Л7/2		
		Exogène de l'HER 2 ou 7	TG6-7/2	GM	6/2-7		
		Exogène de l'HER 7 (Pré-Alpes du Sud)		GM	6/2-7		
6	MEDITERRANEE	Exogène de l'HER 8 (Cévennes)		GN	/ 16/8		
		Exogène de l'HER 1 (Pyrénées)	TG6/1-8	GN	Л6/1		
		Cas général		G6		P6	
		Cas général		G	M8	P.	TP8
8	CEVENNES	A-HER niveau 2 n°70			M8-A		
		A-HER niveau 2 n°22			M16-A		
16	CORSE	B-HER niveau 2 n°88		G16	M16-B		
		Cas général					
19 GRANDS CAUSSES		Exogène de l'HER 8 (Cévennes)		GM	119/8		
		Cas général					TP11
11	CAUSSES AQUITAINS	Exogène de l'HER 3 (MCN) et/ou 21 (MCS)	TG11/3-21	G11/3-21	M11/3-21		
		Exogène des HER 3, 8, 11 ou 19	TG14/3-11		M14/3-11		
	COTEAUN AGUI	Exogène de l'HER 3 (MCN) ou 8 (Cév.)		G14/3	M14/3-8		
14	COTEAUX AQUI- TAINS	Cas général		GM14 P1		P14	
		Exogène de l'HER 1 (Pyrénées)	TG14/1	G14/1	M14/1		
13	LANDES	Cas général			M13		TP13
1	PYRENEES	Cas général		G1	M1		TP1
		A-Centre-Sud (HER niveau 2 n° 58 et 117)			M12-A		TP12-A
12	ARMORICAIN	B-Ouest-N E (HER niveau 2 n° 55, 59 et 118)		G12	M12-B		TP12-B
TTGL	LA LOIRE	Cas général	TTGL				
		A-HER niveau 2 n°57			M9-A		
		Cas général	TG9	G9	M9		TP9
9	TABLES CALCAIRES	Exogène de l'HER 10		G9/10	M9/10		
		Exogène de l'HER 21 (Massif Central Nord)	TG9/21				
		Exogène de l'HER 21 (Massif Central Nord)		G9-10/21	M9-10/21		
10	COTES CALCAIRES	Cas général		G10	M10	P10	TP10
	EST	Exogène de l'HER 4 (Vosges)	TG10-15/4	-	M10/4	-	
4	VOSGES	Cas général		G10/4	M4	P4	TP4

Tableau 7: pertinence de l'élément de qualité macrophytes pour les cours d'eau de métropole Pertinence, par type
Case blanche avec code: type pertinent - case grise avec code: type
non pertinent – case gris clair:
pertinence à évaluer localement

Hydroécorégions de niveau 1		Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits
ADDEANIES		Exogène de l'HER 10 (Côtes Calcaires Est)	TG22/10				
22	ARDENNES	Cas général		GN	M22 P22		TP22
40	41.04.05	Cas général			MF	P18	TP18
18 ALSACE		Exogène de l'HER 4 (Vosges)		G18/4	M18/4	P18/4	

Les cases sans code sont des typologies non présentes sur le territoire métropolitain. Cet élément n'est pas pertinent sur les canaux.

Pertinence de l'élément de qualité macrophytes pour les cours d'eau des DOM Cet élément de qualité n'est pas pertinent pour les DOM.

		ence de l'élément de qualité poissons c cours d'eau de métropole	Case bland	Pertinence par type Case blanche avec code: type pertinent - case grise avec code: type non pertinent				
Hydroé	corégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits	
		Cas général		GN	/120	P20	TP20	
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9 (Tables Calcaires)		GM	20/9			
		Exogène de l'HER 21 (Massif Central Nord)						
21	MASSIF CENTRAL NORD	Cas général	G21 M21		M21	P21	TP21	
		Cas général		G3	M3	P3	TP3	
•	MASSIF CENTRAL	Exogène de l'HER 19 (Grands Causses)			M3/19			
3	SUD	Exogène de l'HER 8 (Cévennes)			M3/8			
		Exogène de l'HER 19 ou 8		G3/19-8				
47	DEPRESSIONS SEDI-	Cas général			M17	P17	TP17	
17	MENTAIRES	Exogène de l'HER 3 ou 21 (M.Cent.S ou N)	TG17/3-21	G17/3-21	M15-17/3-	P17/3-21	TP17/3-21	
		Exogène de l'HER 3 ou 21			21			
	PLAINE SAONE	Exogène de l'HER 5 (Jura)		G15/5	MP15/5			
15		Cas général	TG15		MP15		TP15	
		Exogène de l'HER 4 (Vosges)	TG10-15/4					
_	JURA / PRE-ALPES DU	Cas général		G5	M5	P5	TP5	
5	NORD	Exogène de l'HER 2 (Alpes Internes)	TG5/2	GN	15/2			
TTGA	FLEUVES ALPINS	Cas général	TTGA					
2	ALPES INTERNES	Cas général		G2	М	P2	TP2	
		Cas général			GMP7		TP7	
7	PRE-ALPES DU SUD	Exogène de l'HER 2 (Alpes Internes)		GN	17/2			
		Exogène de l'HER 2 ou 7	TG6-7/2	GM6/2-7				
		Exogène de l'HER 7 (Pré-Alpes du Sud)		GM	6/2-7			
6	MEDITERRANEE =	Exogène de l'HER 8 (Cévennes)		GN	16/8			
		Exogène de l'HER 1 (Pyrénées)	TG6/1-8	GN	16/1			

Tableau 8: pertinence de l'élément de qualité poissons pour les cours d'eau de métropole

Pertinence par type
Case blanche avec code: type pertinent - case grise avec code:
type non pertinent

	pour les cours à éau de menopole			type non pertinent				
Hydro	écorégions de niveau 1	Classes de taille de cours d'eau Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits	
		Cas général		G6	N	IP6	TP6	
•	OFMENNEO	Cas général		G	M8	P ⁻	ГР8	
8	CEVENNES	A-HER niveau 2 n°70			M8-A	PT	P8-A	
	20005	A-HER niveau 2 n°22		240	M16-A	PTF	216-A	
16	CORSE	B-HER niveau 2 n°88		G16	M16-B P		P16-B	
40	ODANIDO GALIGODO	Cas général				P19		
19	GRANDS CAUSSES	Exogène de l'HER 8 (Cévennes)		GM	119/8			
		Cas général				P11	TP11	
11	CAUSSES AQUITAINS	Exogène de l'HER 3 (MCN) et/ou 21 (MCS)	TG11/3-21	G11/3-21	M11/3-21	P11/3-21		
		Exogène des HER 3, 8, 11 ou 19	TG14/3-11		M14/3-11			
	COTEAUX AQUI-	Exogène de l'HER 3 (MCN) ou 8 (Cév.)		G14/3 M14/3-8				
14	TAINS	Cas général	GM14		P14	TP14		
		Exogène de l'HER 1 (Pyrénées)	TG14/1	G14/1	M14/1	P14/1		
13	LANDES	Cas général			M13	P13	TP13	
1	PYRENEES	Cas général		G1	M1	P1	TP1	
		A-Centre-Sud (HER niveau 2 n° 58 et 117)			M12-A	P12-A	TP12-A	
12	ARMORICAIN	B-Ouest-N E (HER niveau 2 nº 55, 59 et 118)		G12	M12-B	P12-B	TP12-B	
TTGL	LA LOIRE	Cas général	TTGL					
		A-HER niveau 2 n°57			M9-A	P9-A		
•	TABLES OAL SAIDES	Cas général	TG9	G9	M9	P9	TP9	
9	TABLES CALCAIRES	Exogène de l'HER 10)		G9/10	M9/10			
		Exogène de l'HER 21 (Massif Central Nord)	TG9/21	CO 10/01	MO 10/01			
		Exogène de l'HER 21 (Massif Central Nord)		G9-10/21	M9-10/21			
10	COTES CALCAIRES EST	Cas général	TC10.15/4	G10	M10	P10	TP10	
		Exogène de l'HER 4 (Vosges)	TG10-15/4	G10/4	M10/4			
4	VOSGES	Cas général		G10/4	M4	P4	TP4	
22	ADDEMNIC	Exogène de l'HER 10 (Côtes Calcaires Est)	TG22/10					
22	ARDENNES	Cas général		GI	M22	P22	TP22	
10	ALCACE	Cas général			М	P18	TP18	
18	ALSACE	Exogène de l'HER 4 (Vosges)		G18/4	M18/4	P18/4		

Les cases sans code sont des typologies non présentes sur le territoire métropolitain. Les poissons sont potentiellement pertinents partout sauf dans les zones apiscicoles ou assimilables qui ne peuvent être décrites par les types DCE mais peuvent éventuellement être définis par expertise AFB si des connaissances existent. Cet élément de qualité n'est pas pertinent pour les canaux.

Tableau 9 : _l	Tableau 9 : pertinence de l'élément de qualité poissons pour les cours d'eau des DOM		Pertinence par type Case blanche avec code: type pertinent – case grise avec code: type non pertiner				
Bassin		Hydroécorégions	Très grands	Grands	Moyens	Petits	Très petits
	1	Cirques au vent			M61	P61	
n' i	2	Cirques sous le vent			M62	P62	
Réunion	3	Versants au vent			MP63		
	4	Versants sous le vent			MP64		
	1	Basse-Terre plaine nord-est			MP31		
Guadeloupe	2	Grande Terre Volcans			MP32		
	3	Basse-Terre volcans			M33	P33	
Martiniana	1	Pitons du Nord			M41	P41	
Martinique	2	Mornes du Sud			MP	42	
Courana	1	Plaine littorale du Nord	TG51	G51	M51		PTP51
Guyane	2	Bouclier guyanais	TG52	G52	M52		PTP52
	1	Versant nord-ouest au vent					
Mayotte (*)	2	Versant est sous le vent					
	3	Versant sud					

Les cases sans code sont des typologies non présentes sur le territoire.

(*) Il n'y a pas de typologie des cours d'eau de Mayotte. Cependant le SDAGE de Mayotte reconnait trois secteurs, correspondant à un découpage préliminaire en HER, réalisé dans le cadre de l'état des lieux du district hydrographique de Mayotte en 2007. Trois HER y sont reconnues: versant nord-ouest au vent, versant est sous le vent et versant sud, comprenant respectivement 16, 7 et 3 masses d'eau. Ce découpage n'a pas été validé par l'Irstea.

Tableau 10: pe po	rtinence de our les DOI	l'élément de qualité macro-crustacés M insulaires uniquement	Pertinence par type Case blanche avec code: type pertinent - case grise avec code: type non pertine					
Bassin		Hydroécorégions	Très grands	Grands	Moyens	Petits	Très petits	
	1	Cirques au vent			M61	P61		
Réunion	2	Cirques sous le vent			M62	P62		
	3	Versants au vent			MP63			
	4	Versants sous le vent			MP64			
	1	Basse-Terre plaine nord-est			MP31			
Guadeloupe	2	Grande Terre Volcans			MP32			
	3	Basse-Terre volcans			M33	P33		
B. G. and Carlo	1	Pitons du Nord			M41	P41		
Martinique	2	Mornes du Sud			MF	242		
0	1	Plaine littorale du Nord	TG51	G51	M51		PTP51	
Guyane	2	Bouclier guyanais	TG52	G52	M52		PTP52	
Mayotte (*)	1	Versant nord-ouest au vent						
	2	Versant est sous le vent						
	3	Versant sud				· · · · · · · · · · · · · · · · · · ·		

Les cases sans code sont des typologies non présentes sur le territoire.

(*) Il n'y a pas de typologie des cours d'eau de Mayotte. Cependant le SDAGE de Mayotte reconnait trois secteurs, correspondant à un découpage préliminaire en HER, réalisé dans le cadre de l'état des lieux du district hydrographique de Mayotte en 2007. Trois HER y sont reconnues: versant nord-ouest au vent, versant est sous le vent et versant sud, comprenant respectivement 16, 7 et 3 masses d'eau. Ce découpage n'a pas été validé par l'Irstea.

Tableau 11: pertinence des éléments de qualité l pour les plans d'eau de métropole		Pertinence des éléments biologiques Case blanche: type pertinent - case grise avec code: pertinent					
Typologie		Invertébrés	Poissons	Macrophytes (*)	Diatomées (*)	Phytoplanctor	
Lac de haute montagne avec zone littorale	N1						
Lac de haute montagne à berges dénudées	N2						
Lac de moyenne montagne calcaire peu profond	N3						
Lac de moyenne montagne calcaire profond à zone littorale	N4						
Lac de moyenne montagne non calcaire peu profond	N5						
Lac de moyenne montagne non calcaire profond à zone littorale	N6						
Lac de moyenne montagne non calcaire profond sans zone littorale importante	N7						
Lac des coteaux aquitains	N8						
Lac profond du bord de l'atlantique	N9						
Lac peu profond du bord de l'atlantique	N10						
Lac de basse altitude en façade méditerranéenne	N11						
Autres lacs de basse altitude	N12						
Plans d'eau à marnage très important voire fréquent	A8			**			
Retenue de haute montagne	A1						
Retenue de moyenne montagne calcaire peu profonde	A2						
Retenue de moyenne montagne calcaire profonde	А3						
Retenue de moyenne montagne non calcaire peu profonde	A4						
Retenue de moyenne montagne non calcaire profonde	A5						
Retenue de moyenne montagne méditerranéenne sur socle cristallin peu profonde	A9						
Retenue de moyenne montagne méditerranéenne sur socle cristallin profonde	A10						
Retenue de basse altitude peu profonde non calcaire	A6a						
Retenue de basse altitude profonde non calcaire	A6b						
Retenue de basse altitude peu profonde calcaire	A7a						
Retenue de basse altitude profonde calcaire	A7b						
Retenue méditerranéenne de basse altitude sur socle cristallin peu profonde	A11						
Retenue méditerranéenne de basse altitude sur socle cristallin profonde	A12						
Plan d'eau vidangé à intervalles réguliers	A13a						
Plan d'eau généralement non vidangé mais à gestion hydraulique contrôlée	A13b						

Tableau 11: pertinence des éléments de qualité bi pour les plans d'eau de métropole	Pertinence des éléments biologiques Case blanche: type pertinent - case grise avec code: pertinent					
Typologie		Invertébrés	Poissons	Macrophytes (*)	Diatomées (*)	Phytoplancton
Plan d'eau créé par creusement, en roche dure, cuvette non vidangeable	A14					
Plan d'eau profond, obtenu par creusement, en lit majeur d'un cours d'eau, en relation avec la nappe, forme de type P, thermocline, berges abruptes.	A15					
Plan d'eau peu profond, obtenu par creusement, en lit majeur d'un cours d'eau, en relation avec la nappe, forme de type L, sans thermocline.	A16					

^(*) Les macrophytes et diatomées (pour l'ensemble des types) ne sont pas pertinents pour les plans d'eau à fort marnage (supérieur à deux mètres). (**) Pour les macrophytes, on entend par très important un marnage supérieur à 2 mètres.

Tableau 12: pertinence des éléments de qualité biologique pour les plans d'eau des DOM

Pertinence des éléments de qualité biologique Case blanche: type pertinent - case grise foncée: non pertinent - case gris clair: pertinence à évaluer

•	,		pertii	nence a evaluer		
Bassin	Plans d'eau	Phytoplancton	Macrophytes	Diatomées	Invertébrés	Poissons
Réunion	Grand Etang					
Guadeloupe	Gachet (MEA)					
Martinique	Manzo (MEA)					
Guyane	Petit Saut (MEFM)					
Mayotte						

Tableau 13 : pertinence des élén les eaux côtières de l'Atlantiqu	nents de qualité biologiques pour ue, la Manche et la mer du Nord	Pertinence, par type				
Élément de qualité	Paramètre DCE	Туре	Pertinence			
	Chlorophylle a		Oui			
Phytoplancton	Abondance (blooms)	C01 à 17	Oui			
	Composition taxonomique		En cours de développement			
Invertébrés benthiques	Invertébrés benthiques de substrat meuble	C01 à 17	Ouisauf pour la ME "Côte Landaise" (secteur ultra battu)			
	Blooms à ulves	C01 à 17	Oui			
	Blooms autres	C01 à 17 MEC abritées	Oui			
Macroalgues	Substrat dur intertidal	C01 à 17	Oui sauf FRGC48			
	Substrat dur subtidal	C01 à 17 (sauf C5, C6, C8, C16) 13 types répartis en 3 super-types : A: côte rocheuse peu turbide (C1, C2, C14, C15); B: côte sablo-vaseuse peu turbide (C3, C4, C7, C9, C10, C11, C13, C17); C: côte rocheuse ou sablo-vase	Oui sauf ME Côte Landaise (absence de macroagues)			
Angiospermes	Zostera marina et noltii	C01 à 17	Oui			

Tableau 13 : pertinence des élér les eaux côtières de l'Atlantiqu	nents de qualité biologiques pour ue, la Manche et la mer du Nord	Pertinence, par type			
Élément de qualité	Paramètre DCE	Туре	Pertinence		
	Température		Oui		
	Salinité		Non, paramètre explicatif		
	Turbidité		Oui		
Physico-Chimie	Oxygène dissous	C01 à 17	Oui, sauf si fond > 20m dans les zones brassées		
	Nutriments : azote (ammo- nium+nitrite +nitrate)		Oui		
	Nutriments autres : PO4, Si		Pertinence à étudier		
Hydromorphologie		C01 à C17	Oui		

Tableau 14 : pertinence des élém les eaux côtières	nents de qualité biologiques pour s de Méditerranée	Pertinence, pa	r type
Élément de qualité	Paramètre DCE	Туре	Pertinence
	Chlorophylle a		Oui
Phytoplancton	Abondance (blooms)	C18 à 26	Oui
	Composition taxonomique		En cours de développement
Invertébrés benthiques	Invertébrés benthiques de substrat meuble	C18 à 26 (en infralittoral)	Oui
Macroalgues	Substrat dur infralittoral	C18 à 26	Oui
Angiospermes	Posidonies	C18 à 26	Oui (sauf en C19, herbier régressif)
	Température		Oui
	Salinité		Non, paramètre explicatif
	Turbidité		Oui
Physico-Chimie	Oxygène dissous	C18 à 26	Oui
	Nutriments : azote (ammo- nium+ nitrite + nitrate)		Oui
	Nutriments autres : PO4, Si		Pertinence à étudier
Hydromorphologie		C18 à 26	Oui

ableau 15 : pertinence des éléments de qualité biologiques pour les eaux de transition de l'Atlantique, la Manche et la mer du Nord		Pertinence, par type	
Élément de qualité	Paramètre DCE	Туре	Pertinence
	Chlorophylle a	T01 à 09	Oui, sauf MET turbides (FRHT03, FRHT05, FRGT04, FRGT10, FRGT12, FRGT25 à FRGT31, FRFT04, FRFT06, FRFT32 à FRFT35)
Phytoplancton	Abondance (blooms)		Oui, sauf MET turbides (FRHT03, FRHT05, FRGT04, FRGT10, FRGT12, FRGT25 à FRGT31, FRFT04, FRFT06, FRFT32 à FRFT35)
	Composition taxonomique		En cours de développement
Invertébrés benthiques	Invertébrés benthiques de substrat meuble	T01 à T09 par zone haline	En cours de développement
Manadana	Blooms autres		Oui
Macroalgues	Substrat dur intertidal	T01 à 09	Oui
Angiospermes	Zostera marina et noltii		Oui

s eaux de transition de l'A	éments de qualité biologiques pour tlantique, la Manche et la mer du Nord		Pertinence, par type
Élément de qualité	Paramètre DCE	Туре	Pertinence
Poissons	Poissons	T01 à 09	Oui
	Température		Non
	Salinité		Non, paramètre explicatif
	Turbidité		Non, paramètre explicatif
Physico-Chimie	Oxygène dissous	T01 à 09	Oui
	Nutriments : azote (ammonium+ nitrite + nitrate)		Oui
	Nutriments autres : PO4, Si		Pertinence à étudier
Hydromorphologie		Tous	Oui

Tableau 16 : pertinence des élém- les eaux de transitio	ents de qualité biologiques pour on de Méditerranée		Pertinence, par type
Élément de qualité	Paramètre DCE	Туре	Pertinence
	al la conte lla co	T10 (lagunes)	Oui
	chlorophylle a	T11 et T12 (Rhônes)	Oui sauf FRDT19 et FRDT20
Di e i		T10 (lagunes)	oui
Phytoplancton	abondance (blooms)	T11 et T12 (Rhônes)	Oui sauf FRDT19 et FRDT20
		T10 (lagunes)	Paramètre en cours de développement
	composition taxonomique	T11 et T12 (Rhônes)	Paramètre en cours de développement
	invertébrés benthiques de	T10 (lagunes)	Oui sauf lagunes oligo et mésohalines
Invertébrés benthiques	substrat meuble	T11 et T12 (Rhônes)	Oui sauf FRDT19 et FRDT20
	macrophytes	T10 (lagunes)	Oui
Flore autre que phytoplancton	macrophytes	T12 (Rhônes)	Non
Poissons	poissons	T10 - T12	Paramètre en cours de développement
	Température	T10 (lagunes)	Non
		T11 et T12 (Rhônes)	Non
	Salinité	T10 (lagunes)	Non, paramètre explicatif
		T11 et T12 (Rhônes)	Non, paramètre explicatif
	Turbidité	T10 (lagunes)	Non, paramètre explicatif
N . 01		T11 et T12 (Rhônes)	oui
Physico-Chimie	Oxygène dissous	T10 (lagunes)	Non, paramètre explicatif
		T11 et T12 (Rhônes)	Oui
	Nutriments : azote (ammo-	T10 (lagunes)	Oui
	nium+ nitrite + nitrate)	T11 et T12 (Rhônes)	Pertinence à étudier
	N. diameter and BOA Ci	T10 (lagunes)	Oui
	Nutriments autres : PO4, Si	T11 et T12 (Rhônes)	Pertinence à étudier
		T10 (lagunes)	Oui
Hydromorphologie		T11 et T12 (Rhône)	Oui

Tableau 17 : pertinence des éléments de qualité biologiques pour les eaux côtières de la Réunion		Pertinence, par type
Élément de qualité	Paramètre DCE	Pertinence
	Chlorophylle a	Oui sauf Type 5
Phytoplancton	Abondance (blooms)	Oui sauf Type 5
	Composition taxonomique	Oui sauf Type 5
	Substrats meubles	Oui sauf Type 5
Invertébrés benthiques	Substrats durs	Oui sauf Type 1 à 4 (*)
	Macro-algues	Non pertinence à étudier (*)
Flore autre que phytoplancton	Angiospermes	Non
	Mangrove	Non
	Température	Oui
	Salinité	Non, paramètre explicatif
	Turbidité	Oui
Physico-Chimie	Oxygène dissous	Oui sauf Type 5 et si fond > 30 m pour Type 1 à 4
	Nutriments : azote (ammonium+ nitrite + nitrate)	Indicateur en développement
	Nutriments autres : PO4, Si	Indicateur en développement
Hydromorphologie		Oui

^(*) L'indicateur BSD « pente externe » est composé de plusieurs indices dont un indice « Algues dressées ».

- Oui: grille existante

- Out: griffe existante
 Indicateur en développement: le paramètre est jugé pertinent mais l'indicateur n'est pas finalisé
 Pertinence à étudier: les travaux existants n'ont pas permis de juger de la pertinence ou non de l'indicateur
 Non pertinence à étudier: le paramètre est jugé non pertinent et en attente du rapport justifiant sa non pertinence
- Non: sans objet

Tableau 18: pertinence des éléments de qualité biologiques pour les eaux côtières de Mayotte		Pertinence, par type
Élément de qualité	Paramètre DCE	Pertinence
	Chlorophylle a	Indicateur en développement
Phytoplancton	Abondance (blooms)	Indicateur en développement
	Composition taxonomique	Pertinence à étudier
loo (f) (a bandisaa	Substrats meubles	Indicateur en développement mais pertinence à étudier pour certaines masses d'eau
Invertébrés benthiques	Substrats durs	Indicateur en développement mais pertinence à étudier pour certaines masses d'eau
	Macro-algues	Non pertinence à étudier
Flore autre que phytoplancton	Angiospermes	Indicateur en développement
	Mangrove	Indicateur en développement
	Température	Oui
	Salinité	Non, paramètre explicatif
Physico-Chimie	Turbidité	Oui
,	Oxygène dissous	Oui
	Nutriments : azote (ammonium+ nitrite + nitrate)	Indicateur en développement

Tableau 18: pertinence pour les e	des éléments de qualité biologiques aux côtières de Mayotte	Pertinence, par type
Élément de qualité	Paramètre DCE	Pertinence
	Nutriments autres : PO4, Si	Indicateur en développement
Hydromorphologie		Oui

- Oui: grille existante

- lour. griffe existante
 lour. griffe
 lour. griff
 lour.

Tableau 19: pertinence pour les eau	e des éléments de qualité biologiques ux côtières de Guadeloupe	Pertinence, par type
Elément de qualité	Paramètre DCE	Pertinence
	Chlorophylle a	Oui
Phytoplancton	Abondance (blooms)	Oui
	Composition taxonomique	Indicateur en développement
Lead On Colored Service	Substrats meubles	Pertinence à étudier
Invertébrés benthiques	Substrats durs	Indicateur en développement
	Macro-algues	Pertinence à étudier
Flore autre que phytoplancton	Angiospermes	Indicateur en développement
	Mangrove	Indicateur en développement
	Température	Oui
	Salinité	Non, paramètre explicatif
	Turbidité	Oui
Physico-Chimie	Oxygène dissous	Oui
	Nutriments : azote (ammonium+ nitrite + nitrate)	Indicateur en développement
	Nutriments autres : PO4, Si	Indicateur en développement
Hydromorphologie		Oui

- Oui: grille existante
- Indicateur en développement: le paramètre est jugé pertinent mais l'indicateur n'est pas finalisé
- Pertinence à étudier: les travaux existants n'ont pas permis de juger de la pertinence ou non de l'indicateur
 Non pertinence à étudier: le paramètre est jugé non pertinent et en attente du rapport justifiant sa non pertinence
- Non: sans objet

Tableau 20: pertiner pour les	nce des éléments de qualité biologiques eaux côtières de Martinique	Pertinence, par type
Elément de qualité	Paramètre DCE	Pertinence
	Chlorophylle a	Oui
Phytoplancton	Abondance (blooms)	Oui
	Composition taxonomique	Indicateur en développement
	Substrats meubles	Pertinence à étudier
Invertébrés benthiques	Substrats durs	Indicateur en développement
	Macro-algues	Pertinence à étudier
Flore autre que phytoplancton	Angiospermes	Indicateur en développement
	Mangrove	Indicateur en développement

	ce des éléments de qualité biologiques aaux côtières de Martinique	Pertinence, par type
Elément de qualité	Paramètre DCE	Pertinence
Physico-Chimie	Température	Oui
	Salinité	Non, paramètre explicatif
	Turbidité	Oui
	Oxygène dissous	Oui
	Nutriments : azote (ammonium+ nitrite + nitrate)	Indicateur en développement
	Nutriments autres : PO4, Si	Indicateur en développement
Hydromorphologie		Oui

- Oui: grille existante

- Indicateur en développement: le paramètre est jugé pertinent mais l'indicateur n'est pas finalisé
 Pertinence à étudier: les travaux existants n'ont pas permis de juger de la pertinence ou non de l'indicateur
 Non pertinence à étudier: le paramètre est jugé non pertinent et en attente du rapport justifiant sa non pertinence
- Non: sans objet

Tableau 21: pertinence des éléments de qualité biologique pour les eaux côtières de Guyane		Pertinence, par type
Elément de qualité	Paramètre DCE	Pertinence
	Chlorophylle a	Oui
Phytoplancton	Abondance (blooms)	Oui
	Composition taxonomique	Oui
	Substrats meubles	Pertinence à étudier
Invertébrés benthiques	Substrats durs	Non
	Macro-algues	Non
Flore autre que phytoplancton	Angiospermes	Non
	Mangrove	Non
	Température	Oui
	Salinité	Non, paramètre explicatif
	Turbidité	Non
Physico-Chimie	Oxygène dissous	Oui
	Nutriments : azote (ammonium+ nitrite + nitrate)	Indicateur en développement
	Nutriments autres : PO4, Si	Indicateur en développement
Hydromorphologie		Oui

- Oui: grille existante
 Indicateur en développement: le paramètre est jugé pertinent mais l'indicateur n'est pas finalisé
 Pertinence à étudier: les travaux existants n'ont pas permis de juger de la pertinence ou non de l'indicateur Non pertinence à étudier: le paramètre est jugé non pertinent et en attente du rapport justifiant sa non pertinence
 Non: sans objet

Tableau 22: pert pour le	inence des éléments de qualité biologique es eaux de transition de Guyane	Pertinence, par type
Elément de qualité	Paramètre DCE	Pertinence
	chlorophylle a	Non
Phytoplancton	abondance (blooms)	Non

Tableau 22: pertinenc pour les eau	e des éléments de qualité biologique ux de transition de Guyane	Pertinence, par type
Elément de qualité	Paramètre DCE	Pertinence
	composition taxonomique	Non
	Substrats meubles	Pertinence à étudier
Invertébrés benthiques	Substrats durs	Pertinence à étudier
	Mangrove	Indicateur en développement
Flore autre que phytoplancton	Macro-algues	Non
	Angiospermes	Non
Poissons	Poissons	Indicateur en développement
	Température	Oui
	Salinité	Non, paramètre explicatif
	Turbidité	Pertinence à confirmer selon la ME
Physico-Chimie	Oxygène dissous	Oui
	Nutriments : azote (ammonium+ nitrite + nitrate)	Indicateur en développement
	Nutriments autres : PO4, Si	Indicateur en développement
Hydromorphologie		Oui

- Oui : grille existante
 Indicateur en développement : le paramètre est jugé pertinent mais l'indicateur n'est pas finalisé
 Pertinence à étudier : les travaux existants n'ont pas permis de juger de la pertinence ou non de l'indicateur
 Non pertinence à étudier : le paramètre est jugé non pertinent et en attente du rapport justifiant sa non pertinence
- Non: sans objet

ANNEXE II

SUBSTANCES DE L'ÉTAT CHIMIQUE DES EAUX DE SURFACE ET POLLUANTS SPÉCIFIQUES DE L'ÉTAT ÉCOLOGIQUE DES EAUX DE SURFACE

Le tableau 23 récapitule les codes Sandre et les numéros CAS des substances de l'état chimique devant être surveillées dans les eaux de surface.

Certaines substances font l'objet d'un double suivi sur la matrice biote et sur la matrice eau, en vue respectivement de la mesure d'une concentration moyenne annuelle et d'une concentration maximale annuelle.

Pour le DEHP, les chloroalcanes et le pentachlorobenzène, la directive 2013/39/UE préconise un suivi sur eau sur l'ensemble du réseau de contrôle de surveillance. Il est préconisé de suivre ces substances sur biote lorsque cela est possible, compte tenu de leurs propriétés physico-chimiques, de leur potentiel de bioaccumulation et de l'existence d'une norme de qualité environnementale dans le biote. A défaut, le suivi pourra être réalisé sur la matrice eau.

Pour les bassins métropolitains, la mise en œuvre du suivi dans la matrice biote est détaillée dans la note technique du 26 décembre 2017 relative au suivi des substances de l'état chimique des eaux de surface dans le biote.

Pour les bassins ultramarins, la mise en œuvre du suivi dans la matrice biote sera précisée dans une note technique dédiée. Dans l'attente de la parution de ces éléments, le suivi sur biote n'est pas imposé en outremer. Le suivi sur sédiments est destiné à l'évaluation des tendances (cf. annexe VI, paragraphe 8).

Tableau 23 : substances de l'état chimique des eaux de surface

			N. (000 (0)		Matrice	
N°	Code Sandre	Paramètre Paramètre	Numéro CAS (1)	Eau	Biote	Sédiments
1	1101	Alachlore	15972-60-8	Х		
2	1458	Anthracène	120-12-7	Х		Х
3	1107	Atrazine	1912-24-9	Х		
4	1114	Benzène	71-43-2	Х		
		Diphényléthers bromés		Х	Х	Х
	2915	BDE100	189084-64-8	Х	Х	Х
	2912	BDE153	68631-49-2	Х	Х	Х
<u>5</u>	2911	BDE154	207122-15-4	Х	Х	Х
	2920	BDE28	41318-75-6	Х	Х	Х
	2919	BDE47	5436-43-1	Х	Х	Х
	2916	BDE99	60348-60-9	Х	Х	Х
6	1388	Cadmium et ses composés	7440-43-9	Х		Х
6 bis	1276	Tétrachlorure de carbone	56-23-5	Х		
7	1955	Chloroalcanes C10-C13	85535-84-8	Х	Х	Х
8	1464	Chlorfenvinphos	470-90-6	Х		
9	1083	Chlorpyrifos (éthylchlorpyrifos)	2921-88-2	Х		
		Pesticides cyclodiènes		Х		
	1103	Aldrine	309-00-2	Х		
9 bis	1173	Dieldrine	60-57-1	Х		
	1181	Endrine	72-20-8	Х		
	1207	Isodrine	465-73-6	Х		
		DDT total et para-para-DDT	sans objet	Х		
9 ter	1144	DDD 44'	72-54-8	Х		
	1146	DDE 44'	72-55-9	Х		

N°	Code Sandre	Paramètre	Numéro CAS (1)		Matrice	
IN	Code Salidie	raiamene	Numero CAS (1)	Eau	Biote	Sédiments
	1147	DDT 24'	789-02-6	Х		
	1148	DDT 44'	50-29-3	Х		
10	1161	1,2-dichloroéthane	107-06-2	Х		
11	1168	Dichlorométhane	75-09-2	Х		
12	6616	Di(2-ethylhexyle)-phthalate (DEHP)	117-81-7	Х	Х	Х
13	1177	Diuron	330-54-1	Х		
		Endosulfan		Х		
14	1178	Endosulfan alpha	959-98-8	Х		
	1179	Endosulfan bêta	33213-65-9	Х		
15*	1191	Fluoranthène	206-44-0	Х	Х	Х
16	1199	Hexachlorobenzène	118-74-1	Х	Х	Х
17	1652	Hexachlorobutadiène	87-68-3	Х	Х	Х
		Hexachlorocyclohexane		Х		Χ
	1200	Hexachlorocyclohexane alpha	319-84-6	Х		Х
18	1201	Hexachlorocyclohexane bêta	319-85-7	Х		Х
	1202	Hexachlorocyclohexane delta	319-86-8	Х		Х
	1203	Hexachlorocyclohexane gamma	58-89-9	Х		Х
19	1208	Isoproturon	34123-59-6	Х		
20	1382	Plomb et ses composés	7439-92-1	Х		Х
<u>21</u>	1387	Mercure et ses composés	7439-97-6	Х	Х	Х
22	1517	Naphtalène	91-20-3	Х		
23	1386	Nickel et ses composés	7440-02-0	Х		
24	1958	Nonylphénois (4-nonylphénoi)	84852-15-3	Х		
25	1959	Octylphénols (4-1,1',3,3'-tétraméthylbutylphénol)	140-66-9	Х		
26	1888	Pentachlorobenzène	608-93-5	Х	Х	Х
27	1235	Pentachlorophénol	87-86-5	Х		
		Hydrocarbures aromatiques polycycliques (HAP)	sans objet	Х	Х	Х
<u>28</u> (*)	1115	Benzo(a)pyrène	50-32-8	Х	Х	Х
29	1263	Simazine	122-34-9	Х		
29 bis	1272	Tétrachloroéthylène	127-18-4	Х		
29 ter	1286	Trichloroéthylène	79-01-6	Х		
30	2879	Composés du tributylétain (Tributylétain cation)	36643-28-4	Х		Х
		Trichlorobenzène		Х		
	1630	Trichlorobenzène-1,2,3	87-61-6	Х		
31	1283	Trichlorobenzène-1,2,4	120-82-1	Х		
	1629	Trichlorobenzène-1,3,5	108-70-3	Х		

N°	Codo Sandra	Doromàtro	Numéro CAS (4)		Matrice	
N°	Code Sandre	Paramètre	Numéro CAS (1)	Eau	Biote	Sédiments
32	1135	Trichlorométhane	67-66-3	Х		
33	1289	Trifluraline	1582-09-8	Х		
34	1172	Dicofol	115-32-2		Х	Х
<u>35</u>	6561	Acide perfluorooctanesulfonique et ses dérivés (perfluorooctanesulfonate PFOS)	1763-23-1	Х	Х	X
36	2028	Quinoxyfène	124495-18-7	Х		Х
		Dioxines et composés de type dioxine			Х	Х
	2566	1,2,3,4,6,7,8,9-Octachlorodibenzodioxine	3268-87-9		Х	Х
	2575	1,2,3,4,6,7,8-Heptachlorodibenzodioxine	35822-46-9		Х	X
	2596	1,2,3,4,6,7,8-Heptachlorodibenzofurane	67562-39-4		Х	X
	2597	1,2,3,4,7,8,9-Heptachlorodibenzofurane	55673-89-7		Х	Х
	2571	1,2,3,4,7,8-hexachlorodibenzo[b,e][1,4]dioxine	39227-28-6		Х	Х
	2591	1,2,3,4,7,8-hexachlorodibenzofurane	70648-26-9		Х	Х
	2592	1,2,3,6,7,8-Hexachlorodibenzofurane	57117-44-9		Х	Х
	2572	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxine	57653-85-7		Х	Х
	2594	1,2,3,7,8,9-Hexachlorodibenzofurane	72918-21-9		Х	Х
	2573	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxine	19408-74-3		Х	Х
	2588	1,2,3,7,8-Pentachlorodibenzofurane	57117-41-6		Х	Х
	2569	1,2,3,7,8-Pentachlorodibenzo-p-dioxine	40321-76-4		Х	Х
	2593	2,3,4,6,7,8-Hexachlorodibenzofurane	60851-34-5		Х	Х
	2589	2,3,4,7,8-Pentachlorodibenzofurane	57117-31-4		Х	Х
<u>37</u> (**)	2586	2,3,7,8-Tetrachlorodibenzofurane	51207-31-9		Х	Х
	2562	2,3,7,8-Tetrachlorodibenzo-p-Dioxine	1746-01-6		Х	Х
	5248	Octachlorodibenzofuranne	39001-02-0		Х	Х
	1627	PCB 105	32598-14-4		Х	Х
	5433	PCB 114	74472-37-0		Х	Х
	1243	PCB 118	31508-00-6		Х	Х
	1089	PCB 126	57465-28-8		Х	Х
	2032	PCB 156	38380-08-4		Х	Х
	5435	PCB 157	69782-90-7		Х	Х
	5436	PCB 167	52663-72-6		Х	Х
	1090	PCB 169	32774-16-6		Х	Х
	1091	PCB 77	32598-13-3		Х	Х
	5432	PCB 81	70362-50-4		Х	Х
	5434	PCB123	65510-44-3		Х	Х
	5437	PCB189	39635-31-9		Х	Х
38	1688	Aclonifène	74070-46-5	Х		

					Matrice	
N°	Code Sandre	Paramètre	Numéro CAS (1)	Eau	Biote	Sédiments
39	1119	Bifénox	42576-02-3	Х		
40	1935	Cybutryne	28159-98-0	Х		
41	1140	Cyperméthrine	52315-07-8	Х		
42	1170	Dichlorvos	62-73-7	Х		
		Hexabromocyclododécane (HBCDD)		Х	Х	Х
40	6651	Alpha 1,2,5,6,9,10-HBCDD	134237-50-6	Х	Х	Х
<u>43</u>	6652	Beta 1,2,5,6,9,10-HBCDD	134237-51-7	Х	Х	Х
	6653	Gamma 1,2,5,6,9,10-HBCDD	134237-52-8	Х	Х	Х
		Heptachlore et époxyde d'heptachlore		Х	Χ	Х
44	1197	Heptachlore	76-44-8	Х	Х	Х
<u>44</u>	1748	Heptachlore époxyde exo cis	1024-57-3	Х	Χ	Х
	1749	Heptachlore époxyde endo trans	28044-83-9	Х	Х	Х
45	1269	Terbutryne	886-50-0	Х		

^(*) substance analysée dans crustacés ou mollusques d'après la directive 2013/39/UE (**) substance analysée dans le poisson ou crustacé ou mollusque d'après la directive 2013/39/UE - substance ubiquiste

⁽¹⁾ C.A.S.: Chemical abstract service

Le tableau 24 récapitule les codes Sandre et les numéros CAS des polluants spécifiques de l'état écologique à surveiller dans les eaux de surface, ainsi que les bassins concernés par cette surveillance.

Tableau 24: polluants spécifiques de l'état écologique des eaux de surface

		,	o onicoo	Darring or suinced of the base of suince	1000	, aioca	o noo en ó						
Code Sandre	Nom substance	Numéro CAS	annoss 2-suob A	eibirsoi9-siotrA	engster8-erioJ	esueM-nidA	Rhône-Méditerranée	Seine-Normandie	Guadeoulpe	Биуапе	eupinitrsM	Mayotte	noinnèA
1670	Métazachlore	67129-08-2	×	×	×	×	× ×	×					
1383	Zinc	7440-66-6	X	×	×	×	×	×	×	×	×	×	×
1369	Arsenic	7440-38-2	X	×	×	×	×	×	×	×	×	×	×
1392	Cuivre	7440-50-8	×	×	×	× ×	× ×	×	×	×	×	×	×
1389	Chrome	2-47-044	×	×	×	× ×	×	×	×	×	×	×	×
1136	Chlortoluron	15545-48-9	×	×	×	×	× ×	×	×	×	×	×	×
1105	Aminotriazole	61-82-5	×	×	×	×	×	×					
1882	Nicosulfuron	111991-09-4	×	-	×	×	×	×					
1667	Oxadiazon	19666-30-9	×	×	×	×	×	×	×	×	×	×	×
1907	AMPA	1066-51-9	×	×	×	×	×	×			×		
1506	Glyphosate	1071-83-6	×	×	×	×	×	×			×		
1113	Bentazone	25057-89-0	×										
1212	2,4 MCPA	94-74-6	X	×	×	×	×	×	×	×	×	×	×
1814	Diflufenicanil	83164-33-4		×	×	×	×	×					
1359	Cyprodinil	121552-61-2		×			× ×						
1877	Imidadopride	138261-41-3		×				×					
1206	Iprodione	36734-19-7		×									
1141	2,4D	94-75-7		×	×	×		×	×	×	×	×	×
1951	Azoxystrobine	131860-33-8		×									

	Mayotte										×		
	ensynÐ Martinique										×	×	×
	Guadeoulpe										×	×	
	Seine-Normandie			×	×	×		×	×				
ernés	Corse		×					×		×			
ns conc	Phône-Méditerranée		X					×		×			
de bassi	əsuəM-nidA						X						X
pement	Loire-Bretagne	Х			X	X							
Bassins ou groupement de bassins concernés	eibirsoiq-siotA		X					×					
Bassine	9nno1s2-1uobA												
	Numéro CAS	108-88-3	126-73-8	92-52-4	188425-85-6	108-62-3	107534-96-3	101-21-3	1330-20-7	40487-42-1	330-55-2	143-50-0	148-79-8
	Nom substance	Toluène	Phosphate de tributyle	Biphényle	Boscalid	Métaldéhyde	Tebuconazole	Chlorprophame	Xylène	Pendiméthaline	Linuron	Chlordécone	Thiabendazole
	Code Sandre	1278	1847	1584	5526	1796	1694	1474	1780	1234	1209	1866	1713

L'unique polluant spécifique de l'état écologique à surveiller en eaux littorales est le chlordécone. Celui-ci est à suivre uniquement en Guadeloupe et en Martinique. L'ensemble de ces polluants est à suivre dans la matrice eau, à l'exception du chlordécone, dont la matrice de suivi privilégiée est le biote.

ANNEXE III

SUBSTANCES PERTINENTES À SURVEILLER DANS LES EAUX DE SURFACE

Contrairement aux substances de l'état chimique et de l'état écologique, les substances pertinentes à surveiller ne sont pas utilisées pour évaluer l'état des eaux de surface.

Il s'agit de substances recherchées pour répondre aux objectifs du point I de l'article 4 du présent arrêté, et notamment pour préciser les niveaux de présence et de risque associés à ces substances, en vue d'une possible inclusion dans les listes de polluants spécifiques.

Les listes de substances ci-dessous constituent, avec les substances de l'état chimique et les polluants spécifiques, le socle minimal de substances à surveiller pour les eaux de surface, identifiées au terme d'une réflexion menée collectivement au niveau national. Les bassins complètent cette surveillance en fonction des enjeux spécifiques identifiés au niveau de chaque bassin.

Si une substance est identifiée comme polluant spécifique dans un bassin métropolitain, pour tous les bassins métropolitains pour lesquels cette substance n'est pas un polluant spécifique, cette substance est surveillée comme substance pertinente.

Par ailleurs, il peut être choisi de ne pas surveiller les substances pertinentes identifiées comme pesticides dans les tableaux ci-dessous, et dont les usages ne correspondraient à aucune culture présente sur le bassin.

Certaines substances sont identifiées dans les tableaux ci-après comme faisant partie d'une liste A, d'une liste B ou à la fois d'une liste A et d'une liste B, suivant les difficultés analytiques identifiées.

Les substances faisant partie de la liste A sont surveillées dès le début de cycle en respectant la limite de quantification (LQ) en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques.

Les substances faisant partie de la liste B sont surveillées à partir du milieu du cycle, soit à partir de 2019, en respectant la LQ en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques.

Pour les substances faisant partie à la fois de la liste A et de la liste B:

- pour les cours d'eau, la première année de surveillance aura lieu lors de la première partie du cycle, soit avant 2019, et la seconde année à partir du milieu du cycle, soit à partir de 2019, en respectant la LQ en vigueur à la date de surveillance dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques.
- pour les plans d'eau et les eaux littorales, l'année de surveillance aura lieu à partir du milieu du cycle, soit à partir de 2019, en respectant la LQ en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques.

SUBSTANCES COMMUNES METROPOLE ET DOM

Matrice eau

Tableau 25 : substances pertinentes communes métropole et DOM à surveiller dans les eaux de surface, matrice eau

Code	Danam Mara	No CAC	Familia Obiminus	Lis	ste	Usage Pesticide ou métabolite
Sandre	Paramètre	N° CAS	Famille Chimique	А	В	de pesticide
1084	Cyanures libres		Autres éléments minéraux	Х	Х	
1129	Carbendazime	10605-21-7	Carbamates	Х	Х	Х
1149	Deltaméthrine	52918-63-5	Divers (autres organiques)		Х	Х
1221	Métolachlore	51218-45-2	Organochlorés	Х		Х
1376	Antimoine	7440-36-0	Métaux et métalloides	Х		
1385	Sélénium	7782-49-2	Métaux et métalloides	Х		
1394	Manganèse	7439-96-5	Métaux et métalloides	Х		
1414	Propyzamide	23950-58-5	Divers (autres organiques)	Х		Х
1462	n-Butyl Phtalate	84-74-2	Phtalates		Х	
1527	Diéthyl phtalate	84-66-2	Phtalates		Х	
1700	Fenpropidine	67306-00-7	Divers (autres organiques)	Х		Х
1709	Piperonyl butoxyde	51-03-6	Divers (autres organiques)	Х	Х	Х
1903	Acétochlore	34256-82-1	Divers (autres organiques)	Х		Х

Code	Paramètre	N° CAS	Famille Chimique	Li	ste	Usage Pesticide ou métabolite
Sandre	raiamene	IN CAS	rannie Chinique	Α	В	de pesticide
2766	Bisphenol A	80-05-7	Alkylphénols, nonylphénols et bisphénols A	Х	Х	
5296	Carbamazepine	298-46-4	Divers (autres organiques)	Х		
5325	Diisobutyl phthalate	84-69-5	Phtalates	Х		
5349	Diclofénac	15307-86-5	Divers (autres organiques)	Х		
5350	Ibuprofène	15687-27-1	Divers (autres organiques)	Х		
5353	Ketoprofene	22071-15-4	Divers (autres organiques)	Х		
5354	Paracétamol	103-90-2	Divers (autres organiques)	Х		
5356	Sulfamethoxazole	723-46-6	Divers (autres organiques)	Х		
5375	Oxazepam	604-75-1	Divers (autres organiques)	Х		
5430	Triclosan	3380-34-5	Autres phénols	Х		
6219	Perchlorate	14797-73-0	Autres éléments minéraux	Х	Х	
6509	Acide perfluoro-decanoïque	335-76-2	PFC (PFOA, PFOS)		Х	
6533	Ofloxacine	82419-36-1	Divers (autres organiques)	Х		
6644	Ethylparaben	120-47-8	Divers (autres organiques)	Х	Х	
6693	Propylparaben	94-13-3	Divers (autres organiques)	Х	Х	
6695	Methylparaben	99-76-3	Divers (autres organiques)	Х	Х	
6725	Carbamazepine époxide	36507-30-9	Divers (autres organiques)	Х		
6755	Metformine	657-24-9	Divers (autres organiques)		Х	
6853	Métolachlore OXA	152019-73-3	Divers (autres organiques)	Х		Х
6854	Métolachlore ESA	171118-09-5	Divers (autres organiques)	Х		Х
6870	2-(3-trifluoromethylphenoxy)nicotinamide	4394-00-7	Divers (autres organiques)		Х	
6989	Triclocarban	101-20-2	Divers (autres organiques)		Х	

Matrice sédiment

Tableau 26 : substances pertinentes communes métropole et DOM à surveiller dans les eaux de surface, matrice sédiment

Code		N: 040	- W 011 1	Li	ste
Sandre	Paramètre	N° CAS	Famille Chimique	А	В
1149	Deltaméthrine	52918-63-5	Divers (autres organiques)		Х
1376	Antimoine	7440-36-0	Métaux et métalloides	Х	
1385	Sélénium	7782-49-2	Métaux et métalloides	Х	
1394	Manganèse	7439-96-5	Métaux et métalloides	Х	
1462	n-Butyl Phtalate	84-74-2	Phtalates	Х	
1523	Perméthrine	52645-53-1	Organochlorés		Х
2013	Anthraquinone	84-65-1	Anilines et dérivés		Х
5325	Diisobutyl phthalate	84-69-5	Phtalates		Х
6369	4-nonylphenol diethoxylate (mélange d'isomères)	27176-93-8	Alkylphénols, nonylphénols et bisphénols A	Х	

Code	•	No OAO	5 11 01: :	Lis	ste
Sandre	Paramètre	N° CAS	Famille Chimique	А	В
6618	Galaxolide	1222-05-5	Divers (autres organiques)		Х
6989	Triclocarban	101-20-2	Divers (autres organiques)		Х
7497	Monophenyletain cation		Organométalliques		Х

La surveillance sur sédiment dans les cours d'eau n'est pas pertinente à La Réunion.

Compte tenu de la répartition des sédiments à la Martinique et en Guadeloupe, il est possible que sur certains sites de surveillance les quantités de sédiment ne soient pas suffisantes pour la réalisation d'analyses.

SUBSTANCES COMPLEMENTAIRES POUR LA METROPOLE

Matrice eau

Tableau 27 : substances pertinentes complémentaires pour la métropole à surveiller dans les eaux de surface, matrice eau

Code Sandre	Paramètre	N° CAS	Famille Chimique	Lis	ste	Usage Pesticid ou métabolite de pesticide
				А	В	
1108	Atrazine déséthyl	6190-65-4	Triazines et métabolites	Х		Х
1109	Atrazine déisopropyl	1007-28-9	Triazines et métabolites	Х		Х
1125	Bromoxynil	1689-84-5	Divers (autres organiques)	Х		Х
1175	Diméthoate	60-51-5	Organophosphorés	Х		Х
1209	Linuron	330-55-2	Urées et métabolites	Х		Х
1210	Malathion	121-75-5	Organophosphorés		Х	Х
1230	Ométhoate	1113-02-6	Organophosphorés		Х	Х
1253	Prochloraz	67747-09-5	Divers (autres organiques)		Х	Х
1261	Pyrimiphos-méthyl	29232-93-7	Organophosphorés	Х		Х
1268	Terbuthylazine	5915-41-3	Triazines et métabolites	Х		Х
1271	Tétrachloroéthane-1,1,2,2	79-34-5	COHV, solvants chlorés, fréons	Х		
1285	Trichloroéthane-1,1,2	79-00-5	COHV, solvants chlorés, fréons	Х		
1361	Uranium	7440-61-1	Métaux et métalloides	Х		
1364	Lithium	7439-93-2	Métaux et métalloides	Х		
1368	Argent	7440-22-4	Métaux et métalloides	Х		
1370	Aluminium	7429-90-5	Métaux et métalloides	Х		
1373	Titane	7440-32-6	Métaux et métalloides	Х		
1377	Béryllium	7440-41-7	Métaux et métalloides	Х		
1379	Cobalt	7440-48-4	Métaux et métalloides	Х		
1380	Etain	7440-31-5	Métaux et métalloides	Х		
1384	Vanadium	7440-62-2	Métaux et métalloides	Х		
1393	Fer	7439-89-6	Métaux et métalloides	Х		
1395	Molybdène	7439-98-7	Métaux et métalloides	Х		
1396	Baryum	7440-39-3	Métaux et métalloides	Х		
1406	Lénacile	2164-08-1	Divers (autres organiques)	Х		Х

Code Sandre	Paramètre	N° CAS	Famille Chimique	Lis	ste	Usage Pesticide ou métabolite de pesticide
Gundre				Α	В	
1465	Acide monochloroacétique	79-11-8	Divers (autres organiques)		Х	
1480	Dicamba	1918-00-9	Organochlorés	Х		Х
1489	Phtalate de diméthyle	131-11-3	Phtalates	Х		
1494	Epichlorohydrine	106-89-8	Organochlorés	Х		
1498	Dibromoéthane-1,2	106-93-4	COHV, solvants chlorés, fréons	Х		Х
1510	Mercaptodiméthur	2032-65-7	Carbamates	Х		Х
1512	Méthyl tert-butyl Ether	1634-04-4	Divers (autres organiques)	Х		
1528	Pirimicarbe	23103-98-2	Carbamates	Х		Х
1530	Bromure de méthyle	74-83-9	COHV, solvants chlorés, fréons	Х		Х
1577	Dinitrotoluène-2,6	606-20-2	Benzène et dérivés		Х	
1578	Dinitrotoluène-2,4	121-14-2	Benzène et dérivés	Х		
1586	Dichloroaniline-3,4	95-76-1	Anilines et dérivés	Х		Х
1638	Méthylphénol-4	106-44-5	Autres phénols	Х		
1640	Méthylphénol-2	95-48-7	Autres phénols	Х		
1650	Chlorophénol-4	106-48-9	Autres phénols	Х		
1675	Flurochloridone	61213-25-0	Divers (autres organiques)	Х		Х
1678	Diméthénamide	87674-68-8	Organochlorés	Х		X
1744	Epoxiconazole	133855-98-8	Triazines et métabolites	Х		X
1753	Chlorure de vinyle	75-01-4	COHV, solvants chlorés, fréons	Х		
1830	Atrazine déisopropyl déséthyl	3397-62-4	Triazines et métabolites	Х		Х
1892	Rimsulfuron	122931-48-0	Urées et métabolites		Х	Х
1924	Butyl benzyl phtalate	85-68-7	Phtalates		Х	
1929	1-(3,4-dichlorophenyl)-3-methyl-uree	3567-62-2	Urées et métabolites	Х		X
1945	Isoxaflutole	141112-29-0	Divers (autres organiques)	Х		X
2023	Flumioxazine	103361-09-7	Divers (autres organiques)	Х		X
2555	Thallium	7440-28-0	Métaux et métalloides	Х		
2614	Nitrobenzène	98-95-3	Benzène et dérivés	Х		
3159	Atrazine 2-hydroxy-desethyl	19988-24-0	Triazines et métabolites	Х		X
5347	Acide perfluoro-octanoïque	335-67-1	PFC (PFOA, PFOS)	Х	Х	
5369	Acide fénofibrique	42017-89-0	Divers (autres organiques)	Х		
5396	Estrone	53-16-7	Stéroles et stéroïdes (oestrogènes, pro- gestogènes)	Х		
5400	Noréthindrone	68-22-4	Stéroles et stéroïdes (oestrogènes, pro- gestogènes)		Х	
5978	Acide perfluoro-n-hexanoÃ ⁻ que	307-24-4	PFC (PFOA, PFOS)	Х		
6733	Cyclophosphamide	50-18-0	Divers (autres organiques)		Х	

Code Sandre	Paramètre	N° CAS	Famille Chimique	Liste		Usage Pesticide ou métabolite de pesticide	
Camaro				Α	В		
6830	Acide sulfonique de perfluorohexane	355-46-4	PFC (PFOA, PFOS)	Х			
6842	Carboxy-ibuprofène	15935-54-3	Divers (autres organiques)		Χ		
7011	1-Hydroxy Ibuprofène	53949-53-4	Divers (autres organiques)		Χ		
7594	Bisphenol S	80-09-1	Divers (autres organiques)		Х		

Matrice sédiment

Tableau 28 : substances pertinentes complémentaires pour la métropole à surveiller dans les eaux de surface, matrice sédiment

Code Sandre	Paramètre	No OAO		Liste		
		Nº CAS	Famille Chimique	Α	В	
1094	Lambda-cyhalothrine	91465-08-6	Divers (autres organiques)		Х	
1194	Flusilazole	85509-19-9	Triazines et métabolites	Χ		
1234	Pendiméthaline	40487-42-1	Divers (autres organiques)		Х	
1278	Toluène	108-88-3	Benzène et dérivés	Χ		
1359	Cyprodinil	121552-61-2	Divers (autres organiques)		Х	
1361	Uranium	7440-61-1	Métaux et métalloides	Х		
1364	Lithium	7439-93-2	Métaux et métalloides	Х		
1368	Argent	7440-22-4	Métaux et métalloides	Х		
1369	Arsenic	7440-38-2	Métaux et métalloides	Х		
1370	Aluminium	7429-90-5	Métaux et métalloides	Х		
1373	Titane	7440-32-6	Métaux et métalloides	Х		
1377	Béryllium	7440-41-7	Métaux et métalloides	Х		
1379	Cobalt	7440-48-4	Métaux et métalloides	Χ		
1380	Etain	7440-31-5	Métaux et métalloides	Χ		
1383	Zinc	7440-66-6	Métaux et métalloides	Χ		
1384	Vanadium	7440-62-2	Métaux et métalloides	Χ		
1389	Chrome	7440-47-3	Métaux et métalloides	Χ		
1392	Cuivre	7440-50-8	Métaux et métalloides	Х		
1393	Fer	7439-89-6	Métaux et métalloides	Χ		
1395	Molybdène	7439-98-7	Métaux et métalloides	Χ		
1396	Baryum	7440-39-3	Métaux et métalloides	Х		
1453	Acénaphtène	83-32-9	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	Χ		
1524	Phénanthrène	85-01-8	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	Х		
1584	Biphényle	92-52-4	Benzène et dérivés	Χ		
1618	Méthyl-2-Naphtalène	91-57-6	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	X		
1631	Tetrachlorobenzène-1,2,4,5	95-94-3	Chlorobenzène et mono-aromatiques halogénés	Χ		

Code	D-w-w-htm-	No CAO		Liste		
Sandre Paramètre		N° CAS	Famille Chimique	Α	В	
1780	Xylène	1330-20-7	COHV, solvants chlorés, fréons		Х	
1814	Diflufenicanil	83164-33-4	Divers (autres organiques)	Χ		
1815	Décabromodiphényl éther	1163-19-5	PBDE et PBB	Χ		
1924	Butyl benzyl phtalate	85-68-7	Phtalates		Х	
1936	Tétrabutylétain	1461-25-2	Organométalliques	Χ		
1952	Oxyfluorfène	42874-03-3	Divers (autres organiques)		Х	
2010	1,2,3,4-Tetrachlorobenzene	634-66-2	Chlorobenzène et mono-aromatiques halogénés	Χ		
2536	1,2,3,5 tétrachlorobenzène	634-66-2	Chlorobenzène et mono-aromatiques halogénés	Х		
2542	Monobutylétain cation	78763-54-9	Organométalliques		Х	
2547	Fluroxypyr-meptyl	81406-37-3	Divers (autres organiques)		Х	
2555	Thallium	7440-28-0	Métaux et métalloides	Χ		
2610	4-tert-butylphénol	98-54-4	Alkylphénols, nonylphénols et bisphénols A		Х	
3383	Dodécyl phénol	27193-86-8	Alkylphénols, nonylphénols et bisphénols A		Х	
5360	Clotrimazole	23593-75-1	Divers (autres organiques)		Х	
5921	Tetramethrin	7696-12-0	Divers (autres organiques)		Х	
6215	Diisononyl phtalate	28553-12-0	Phtalates		Х	
6372	Triphénylétain cation	668-34-8	Organométalliques	Х		
6536	4-Methylbenzylidene camphor	36861-47-9	Divers (autres organiques)		Х	
6657	Tetrabromobisphenol A bis(2,3-dibro- mopropyl ether)	21850-44-2	Divers (autres organiques)		Х	
6658	Diisodecyl phthalate	26761-40-0	Phtalates		Х	
6664	Methyl triclosan	4640-01-1	Autres phénols		Х	
6686	Octocrylene	6197-30-4	Divers (autres organiques)		Х	
6716	Amiodarone	1951-25-3	Divers (autres organiques)		Х	
7020	Plomb diethyl	24952-65-6	Organométalliques		Х	
7074	Dibutyletain cation	14488-53-0	Organométalliques		Х	
7101	4-sec-Butyl-2,6-di-tert-butylphenol	17540-75-9	Divers (autres organiques)		Х	
7102	Anthanthrene	191-26-4	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)		Х	
7118	Diosgenin	512-04-9	Divers (autres organiques)		Х	
7129	Irganox 1076	2082-79-3	Divers (autres organiques)		Х	
7131	Tetrabromobisphenol A	79-94-7	Divers (autres organiques)		Х	
7495	Diphényl étain cation	53675-52-8	Organométalliques		Х	

SUBSTANCES COMPLEMENTAIRES POUR LES DOM

Matrice eau

Tableau 29 : substances pertinentes complémentaires pour les DOM à surveiller dans les eaux de surface, matrice eau

Code San- dre	Paramètre	Code CAS	Famille chimique	Liste		Usage pesticide ou métabolite de	
				Α	В	pesticide	
1210	Malathion (*)	121-75-5	Organophosphorés		Х	Х	
1361	Uranium (*)	7440-61-1	Métaux et métalloides	Χ			
1364	Lithium (*)	7439-93-2	Métaux et métalloides	Χ			
1368	Argent (*)	7440-22-4	Métaux et métalloides	Χ			
1370	Aluminium (*)	7429-90-5	Métaux et métalloides	Χ			
1373	Titane (*)	7440-32-6	Métaux et métalloides	Χ			
1377	Béryllium (*)	7440-41-7	Métaux et métalloides	Χ			
1379	Cobalt (*)	7440-48-4	Métaux et métalloides	Χ			
1380	Etain (*)	7440-31-5	Métaux et métalloides	Χ			
1384	Vanadium (*)	7440-62-2	Métaux et métalloides	Χ			
1393	Fer (*)	7439-89-6	Métaux et métalloides	Х			
1395	Molybdène (*)	7439-98-7	Métaux et métalloides	Х			
1396	Baryum (*)	7440-39-3	Métaux et métalloides	Х			
1877	Imidaclopride	138261-41-3	Divers (autres organiques)	Х		Х	
1924	Butyl benzyl phtalate (*)	85-68-7	Phtalates		Х		
2555	Thallium (*)	7440-28-0	Métaux et métalloides	Χ			
5372	Diazepam (*)	439-14-5	Divers (autres organiques)	Χ			
5374	Lorazepam (*)	846-49-1	Divers (autres organiques)	Χ			
5396	Estrone (*)	53-16-7	Stéroles et stéroïdes (oestrogènes, progestogènes)	Χ			
5400	Noréthindrone (*)	68-22-4	Stéroles et stéroïdes (oestrogènes, progestogènes)		Х		
6366	4-nonylphenol monoethoxylate (mélange d'isomères)		Alkylphénols, nonylphénols et bisphénols À	Х			
6525	Sulfamethazine (*)	57-68-1	Divers (autres organiques)	Χ			
7136	Acetazolamide (*)	59-66-5	Divers (autres organiques)		Х		
7140	Midazolam (*)	59467-70-8	Divers (autres organiques)		Х		
7141	1,3,5-Benzenetriol (*)	108-73-6	Divers (autres organiques)		Х		
7594	Bisphenol S (*)	80-09-1	Divers (autres organiques)		Х		

Matrice sédiment

Tableau 30 : substances pertinentes complémentaires pour les DOM à surveiller dans les eaux de surface, matrice sédiment

Code San- dre	Paramètre	Code CAS	Formillo obienieno	Liste		
		Code CAS	Famille chimique	Α	В	
1361	Uranium	7440-61-1	Métaux et métalloides	Χ		
1364	Lithium	7439-93-2	Métaux et métalloides	Χ		
1368	Argent	7440-22-4	Métaux et métalloides	Χ		
1370	Aluminium	7429-90-5	Métaux et métalloides	Χ		
1373	Titane	7440-32-6	Métaux et métalloides	Χ		
1377	Béryllium	7440-41-7	Métaux et métalloides	Χ		
1379	Cobalt	7440-48-4	Métaux et métalloides	Χ		
1380	Etain	7440-31-5	Métaux et métalloides	Χ		
1384	Vanadium	7440-62-2	Métaux et métalloides	Χ		
1393	Fer	7439-89-6	Métaux et métalloides	Χ		
1395	Molybdène	7439-98-7	Métaux et métalloides	Χ		
1396	Baryum	7440-39-3	Métaux et métalloides	Χ		
1815	Décabromodiphényl éther	1163-19-5	PBDE et PBB	Х		
1924	Butyl benzyl phtalate	85-68-7	Phtalates		Х	
2555	Thallium	7440-28-0	Métaux et métalloides	Х		
2610	4-tert-butylphénol	98-54-4	Alkylphénols, nonylphénols et bisphénols A		Х	
5360	Clotrimazole	23593-75-1	Divers (autres organiques)		Х	
5921	Tetramethrin	7696-12-0	Divers (autres organiques)		Х	
6366	4-nonylphenol monoethoxylate (mélange d'isomères) (**)		Alkylphénols, nonylphénols et bisphénols A	Х		
6716	Amiodarone	1951-25-3	Divers (autres organiques)		Х	
7020	Plomb diethyl	24952-65-6	Organométalliques		Х	
7074	Dibutyletain cation	14488-53-0	Organométalliques		Х	
7099	2,6-di-tert-butyl-4-phenylphenol	2668-47-5	Alkylphénols, nonylphénols et bisphénols A		Х	
7101	4-sec-Butyl-2,6-di-tert-butylphenol	17540-75-9	Divers (autres organiques)		Х	
7102	Anthanthrene	191-26-4	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)		Х	
7118	Diosgenin	512-04-9	Divers (autres organiques)		Х	
7129	Irganox 1076	2082-79-3	Divers (autres organiques)		Х	
7131	Tetrabromobisphenol A	79-94-7	Divers (autres organiques)		Х	

La surveillance sur sédiment dans les cours d'eau n'est pas pertinente à la Réunion.

Compte tenu de la répartition des sédiments à la Martinique et en Guadeloupe, il est possible que sur certains sites de surveillance les quantités de sédiment ne soient pas suffisantes pour la réalisation d'analyses. (**) Seuls ces paramètres sont obligatoires à la Réunion. Les autres paramètres sont optionnels pour la Réunion.

ANNEXE IV

PRÉCONISATIONS POUR LES MÉTHODES À UTILISER POUR LE CONTROLE DES ÉLÉMENTS DE QUALITÉ, PARAMÈTRES OU GROUPES DE PARAMÈTRES POUR LE PROGRAMME DE SURVEILLANCE DES EAUX DE SURFACE

De manière générale, la période à laquelle les contrôles sont effectués doit être déterminée de manière à réduire au maximum l'effet des variations saisonnières et/ou des événements hydrologiques particuliers sur les résultats.

Les analyses des eaux, des sédiments et du biote nécessaires à la mise en œuvre et au suivi du programme de surveillance sont effectuées par des laboratoires agréés pour les éléments de qualité et paramètres analysés conformément aux dispositions prévues par l'article L. 212-2-2 du code de l'environnement.

Les modalités d'agrément des laboratoires sont définies par l'arrêté du 27 octobre 2011 portant modalités d'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques au titre du code de l'environnement.

Dans le cas où ces méthodes ne sont pas disponibles ou ne sont pas adaptées aux spécificités des milieux, notamment en outre-mer, le préfet coordonnateur de bassin fixe les méthodes à utiliser dans le bassin et les notifie à l'Agence française pour la biodiversité.

Dans certains cas, le respect des objectifs de bon état et de non-dégradation des masses d'eau peut nécessiter la mise en œuvre de limites de quantification (LQ) qui soient inférieures à celles mentionnées dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques. La fixation de LQ plus contraignantes pour la mise en œuvre de la surveillance est alors laissée à l'appréciation des bassins.

1. Description des outils, méthodes d'échantillonnage, de traitement et d'analyse des échantillons pour les cours d'eau

1.1. Eléments biologiques

Les méthodes de mesure, de prélèvement et d'analyse à utiliser pour les contrôles des éléments biologiques sont celles indiquées ci-dessous.

Les documents de référence technique indiqués peuvent être, selon les cas, des protocoles techniques, des normes expérimentales ou homologuées, des guides techniques. Certains de ces référentiels étant encore évolutifs, il conviendra d'utiliser les versions et documents d'application les plus à jour. Par exemple, les normes qui auront été publiées en remplacement de protocoles techniques, ainsi que les guides d'application publiés en appui à l'application des normes.

Pour assurer le suivi des opérations de surveillance comme pour permettre la mise en œuvre des prescriptions de démarche qualité, le lieu de chaque mesure hydrobiologique sera tracé avec précision. Les coordonnées géographiques précises des limites du « point de prélèvement » (au sens du dictionnaire Sandre), exprimées dans le système Lambert 93, seront relevées lors de chaque mesure. Le point exact à considérer est celui précisé dans chaque protocole d'échantillonnage ou de relevé hydrobiologique.

1.1.1. Phytoplancton

1.1.1.1. Méthode ou principes applicables en métropole

Méthode ou principes d'échantillonnage :

- XP T90-719 - Qualité de l'eau - échantillonnage du phytoplancton dans les eaux intérieures.

Méthodes ou principes de traitement et d'analyse des échantillons :

- Norme européenne : NF EN 15204. Qualité de l'eau Norme guide pour le dénombrement du phytoplancton par microscopie inversée (méthode Utermöhl) ;
- l'application de cette norme doit suivre les prescriptions du détail opératoire précisées dans le chapitre « 5 analyse du phytoplancton » du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE en plan d'eau (version 3.3.1) (cf. paragraphe 2.1.1.).

1.1.1.2. Méthode ou principes applicables en Guyane

Méthode ou principes d'échantillonnage :

- XP T90-719 - Qualité de l'eau - échantillonnage du phytoplancton dans les eaux intérieures.

Méthodes ou principes de traitement et d'analyse des échantillons :

- Norme européenne : NF EN 15204. Qualité de l'eau Norme guide pour le dénombrement du phytoplancton par microscopie inversée (méthode Utermöhl) ;
- l'application de cette norme doit suivre les prescriptions du détail opératoire précisées dans le chapitre « 5 analyse du phytoplancton » du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE en plan d'eau (version 3.3.1) (cf. paragraphe 2.1.1.).

1.1.2. Phytobenthos: diatomées

1.1.2.1. Méthodes ou principes applicables en métropole

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

 Norme française : NF T90-354. Qualité de l'eau - Echantillonnage, traitement et analyse de diatomées benthiques en cours d'eau et canaux.

1.1.2.2. Méthodes ou principes applicables en Guadeloupe et en Martinique

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

 Guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer - l'indice diatomiqués ntillaisAn(IDA)

1.1.2.3. Méthodes ou principes applicables à La Réunion

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

- Guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer – d'indice diatomiqueées nion (IDR). ;.

1.1.2.4. Méthodes ou principes applicables à Mayotte

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

- Guide méthodologique de mise en œuvre de l'indice diatomées Mayotte dès parution;
- Norme française : NF T90-354. Qualité de l'eau Échantillonnage, traitement et analyse de diatomées benthiques en cours d'eau et canaux;
- Compte-tenu des spécificités de l'environnement tropical insulaire et du peuplement diatomique de Mayotte, des adaptations du protocole d'échantillonnage sont nécessaires (nature du support, surface à échantillonner...).

1.1.2.5. Méthodes ou principes applicables en Guyane

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

- Guide méthodologique de mise en œuvre de l'indice diatomées Guyane dès parution;
- Norme française : NF T90-354. Qualité de l'eau Echantillonnage, traitement et analyse de diatomées benthiques en cours d'eau et canaux;
- Compte-tenu des spécificités de l'environnement tropical insulaire et du peuplement diatomique de Guyane, des adaptations du protocole d'échantillonnage sont nécessaires (nature du support, surface à échantillonner...).

1.1.3. Macrophytes : angiospermes, bryophytes ptéridophytes et macro-algues

La définition du protocole est uniquement applicable en métropole. Cet élément de qualité biologique est jugé non pertinent pour les DOM.

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

- Norme française : NF T90-395. Qualité de l'eau Détermination de l'indice biologique macrophytique en rivière (IBMR);
- Guide d'application de la norme NF T90-395 (dès son homologation).

1.1.4. Faune benthique invertébrée

1.1.4.1 Méthodes ou principes applicables en métropole

Cas des cours d'eau peu profonds

Méthode ou principes d'échantillonnage :

- Norme française : NF T90-333 : Qualité de l'eau Prélèvement des macro-invertébrés aquatiques en rivières peu profondes.
- Guide d'application : FD T90-733 Qualité de l'eau Guide d'application de la norme NF T90-333.

Méthode ou principes de traitement et d'analyse des échantillons :

- Norme française : XP T90-388 (puis NF T90-388 dès son entrée en vigueur) : Qualité de l'eau Traitement au laboratoire d'échantillons contenant des macro-invertébrés de cours d'eau.
- Guide d'application: GA T90-788: Qualité de l'eau Guide d'application de la norme expérimentale XP T90-388 (traitement au laboratoire d'échantillons contenant des macro-invertébrés de cours d'eau).

Cas des cours d'eau profonds

Méthode ou principes d'échantillonnage :

 Protocole expérimental d'échantillonnage « invertébrés » en grands cours d'eau, décembre 2009, université de Metz, Cemagref (ou version ultérieure ou norme ultérieure remplaçant ce protocole expérimental).

Méthode ou principes de traitement et d'analyse des échantillons :

- Norme française : XP T90-388 (puis NF T90-388 dès son entrée en vigueur) : Qualité de l'eau Traitement au laboratoire d'échantillons contenant des macro-invertébrés de cours d'eau.
- Guide d'application: GA T90-788: Qualité de l'eau Guide d'application de la norme expérimentale XP T90-388 (traitement au laboratoire d'échantillons contenant des macro-invertébrés de cours d'eau).

Cas des canaux

Méthode ou principes d'échantillonnage :

 Protocole expérimental d'échantillonnage « invertébrés » en grands cours d'eau, décembre 2009, université de Metz, Cemagref (ou version ultérieure ou norme ultérieure remplaçant ce protocole expérimental).

Méthode ou principes de traitement et d'analyse des échantillons :

- Norme française: XP T90-388 (puis NF T90-388 dès son homologation): Qualité de l'eau Traitement au laboratoire d'échantillons contenant des macro-invertébrés de cours d'eau.
- Guide d'application: GA T90-788: Qualité de l'eau Guide d'application de la norme expérimentale XP T90-388 (traitement au laboratoire d'échantillons contenant des macro-invertébrés de cours d'eau).

1.1.4.2. Méthodes ou principes applicables en Guadeloupe et en Martinique

Méthode ou principe d'échantillonnage, de traitement et d'analyse des échantillons :

 Guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer - l'indice biologique macroinvertébrés Antilles -(IBMA).

1.1.4.3. Méthodes ou principes applicables à La Réunion

Méthode ou principe d'échantillonnage, de traitement et d'analyse des échantillons :

 Guide méthodologique de mise en œuvre d'indices biologiques en outre-mer - l'indice Réunions macroinvertébrés - IRM.

1.1.4.4. Méthodes ou principes applicables à Mayotte

Méthode ou principes d'échantillonnage :

- guide méthodologique pour la mise en œuvre de l'indice macro-invertébrés Mayotte dès parution;
- Norme française : NF T90-333: Qualité écologique des milieux aquatiques. Qualité de l'eau. Prélèvement des macro-invertébrés aquatiques en rivières peu profondes, 2009;
- Protocole à adapter en fonction des spécificités de l'environnement étudiée l'édition œuvre de l

Méthode ou principes de traitement et d'analyse des échantillons :

- Norme XP T 90-388 (puis NF T90-388 dès son entrée en vigueur) : Qualité écologique des milieux aquatiques. Qualité de l'eau. Traitement au laboratoire d'échantillons contenant des macro-invertébrés de cours d'eau. 2010;
- Protocole à adapter en fonction des spécificités des échantillons mahorais (dès parution du guide de mise en œuvre de l'indice macro-invertébrés Mayotte).

1.1.4.5. Méthodes ou principes applicables en Guyane

Méthode ou principe d'échantillonnage, de traitement et d'analyse des échantillons :

 Guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer - Score moyen des éphéméroptères de Guyane (SMEG).

1.1.5. Ichtyofaune (et macro-crustacés pour les DOM insulaires)

1.1.5.1 Méthodes ou principes applicables en métropole

Méthode ou principes d'échantillonnage :

 Partie échantillonnage de la norme XP T90-383 (puis NF T90-383 dès son homologation): échantillonnage des poissons à l'électricité dans le cadre des réseaux de suivi des peuplements de poissons en lien avec la qualité des cours d'eau; en particulier les chapitres 4, 6 et 7 de la norme.

Méthode ou principes de traitement et d'analyse des échantillons :

- Niveau de détermination : espèce (réf.: Keith P., Persat H., Feunteun E., Allardi J. (coords), 2011. Les poissons d'eau douce de France. Biotope, Mèze ; Museum National d'Histoire Naturelle, Paris (collection Inventaires et biodiversité), 552 p.);
- Biométrie Partie analyse de la norme XP T90-383 (puis NF T90-383 dès son homologation) : échantillonnage des poissons à l'électricité dans le cadre des réseaux de suivi des peuplements de poissons en lien avec la qualité des cours d'eau ; en particulier le chapitre 8.1 de la norme.

1.1.5.2. Méthodes ou principes applicables en Guadeloupe et Martinique

Dans l'attente de la définition d'un nouvel indice de bioindication de la qualité de l'eau propre aux cours d'eau antillais à partir des poissons et des macro-crustacés, les protocoles d'échantillonnage et d'analyse compatibles DCE de métropole seront à adapter au mieux aux cas antillais.

Méthode ou principes d'échantillonnage recommandés:

 Partie échantillonnage de la norme XP T90-383 (puis NF T90-383 dès son homologation): échantillonnage des poissons à l'électricité dans le cadre des réseaux de suivi des peuplements de poissons en lien avec la qualité des cours d'eau; en particulier les chapitres 4, 6 et 7 de la norme.

Méthode ou principes de traitement et d'analyse des échantillons :

 Biométrie - Partie analyse de la norme XP T90-383 (puis NF T90-383 dès son homologation) : échantillonnage des poissons à l'électricité dans le cadre des réseaux de suivi des peuplements de poissons en lien avec la qualité des cours d'eau ; en particulier le chapitre 8.1 de la norme.

1.1.5.3. Méthodes ou principes applicables à La Réunion

Méthode ou principes d'échantillonnage :

Guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer - l'indice Réunion poissons
 IRP.

Méthode ou principes de traitement et d'analyse des échantillons :

Keith, P., G. Marquet, P. Valade, P. Bosc, and E. Vigneux. 2006. Atlas des poissons et des crustacés d'eau douce des Comores, Mascareignes et Seychelles, Muséum national d'Histoire Naturelle, Paris, Collection Patrimoines Naturels, 65 p.

1.1.5.4. Méthodes ou principes applicables à Mayotte

Dans l'attente de la définition d'un indice de bioindication de la qualité de l'eau propre aux cours d'eau mahorais à partir des poissons, les protocoles d'échantillonnage et d'analyse compatibles DCE de métropole seront à adapter au mieux au cas mahorais.

Méthode ou principes d'échantillonnage :

 Partie échantillonnage de la norme XP T90-383 (puis NF T90-383 dès son homologation): échantillonnage des poissons à l'électricité dans le cadre des réseaux de suivi des peuplements de poissons en lien avec la qualité des cours d'eau; en particulier les chapitres 4, 6 et 7 de la norme.

Méthode ou principes de traitement et d'analyse des échantillons :

- Biométrie Partie analyse de la norme XP T90-383 (puis NF T90-383 dès son homologation) : échantillonnage des poissons à l'électricité dans le cadre des réseaux de suivi des peuplements de poissons en lien avec la qualité des cours d'eau ; en particulier le chapitre 8.1 de la norme.
- Niveau de détermination : espèce (réf. : Keith P., Marquet G., Valade P., Bosc P., Vigneux E. 2006. Atlas des poissons et des crustacés d'eau douce des Comores, Mascareignes et Seychelles. Muséum national d'histoire naturelle, Paris. Patrimoines naturels, 250 p.).

1.1.5.6. Méthodes ou principes applicables en Guyane (poissons uniquement)

- Guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer l'indice poissons Guyane global - IPG-global.
- Niveau de détermination: espèce (réf.: Planquette, P., Keith, P., Le Bail, P.Y. 1996 Atlas des poissons d'eau douce de Guyane. Tome 1. Collection du patrimoine naturelle, Paris, 429p. / Keith, P., Le Bail, P.Y., Planquette, P. 2000 Atlas des poissons d'eau douce de Guyane. Tome 2. Fascicule 1. Collection du patrimoine naturelle, Paris, 286p. / Le Bail, P.Y., Keith, P., Planquette, P. 2000 Atlas des poissons d'eau douce de Guyane. Tome 2. Fascicule 2. Collection du patrimoine naturelle, Paris, 307p.)

1.2. Eléments physico-chimiques

Ces paramètres sont applicables aux DOM (sauf ceux de la matrice sédiment pour la Réunion).

Tableau 31: paramètres physico-chimiques pour les cours d'eau

Paramètre Physico-chimique Cible	CSP	Libellé Sandre du paramètre	SSO	Libellé Sandre du support	CSF	Libellé Sandre de la fraction	csu	Symbole Sandre Unité
			Groupe	Groupe 1 (mesuré in situ)	(r			
Température	1301	Température de l'Eau	ო	Eau	23	Eau brute	27	J,
Oxygène dissous	1311	Oxygène dissous	3	Eau	23	Eau brute	175	mg(02)/L
Saturation en 02 dissous	1312	Taux de saturation en oxygène	3	Eau	23	Eau brute	243	%
Hd	1302	Potentiel en Hydrogène (pH)	3	Eau	23	Eau brute	264	unité pH
Conductivité	1303	Conductivité à 25°C	3	Eau	23	Eau brute	147	mS/cm
		Grou	upe 2 (m	Groupe 2 (mesuré en laboratoire)	toire)			
DB05	1313	Demande Biochimique en oxygène en 5 jours (D.B.O.5)	3	Eau	23	Eau brute	175	mg(02)/L
NKJ	1319	Azote Kjeldahl	က	Eau	23	Eau brute	168	mg(N)/L
P total	1350	Phosphore total	3	Eau	23	Eau brute	177	mg(P)/L
MEST	1305	Matières en suspension	3	Eau	23	Eau brute	162	mg/L
Turbidité (*)	1295	Turbidité Formazine Néphélométrique	3	Eau	23	Eau brute	232	NFU
Chlorophylle a (***)	1439	Chlorophylle a	3	Eau	23	Eau brute	133	hg/L
phéopigments (***)	1436	Phéopigments	3	Eau	23	Eau brute	133	µg/L
DCO (*)	1314	Demande Chimique en Oxygène (D.C.O.)	က	Eau	23	Eau brute	175	mg(02)/L
		Groups	e 2 bis (Groupe 2 bis (mesuré en laboratoire)	ratoire)			
NH4+	1335	Ammonium	က	Eau	8	Phase aqueuse de l'eau (filtrée, centrifugée)	169	mg(NH4)/L
NO3-	1340	Nitrates	က	Eau	8	Phase aqueuse de l'eau (filtrée, centrifugée)	173	mg(NO3)/L
NO2-	1339	Nitrites	က	Eau	8	Phase aqueuse de l'eau (filtrée, centrifugée)	171	mg(NO2)/L
PO4(3-)	1433	Orthophosphates (PO4)	က	Eau	8	Phase aqueuse de l'eau (filtrée, centrifugée)	176	mg(PO4)/L
COD	1841	Carbone Organique	က	Eau	8	Phase aqueuse de l'eau (filtrée, centrifugée)	163	mg(C)/L
Silice dissoute	1342	Silicates	က	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	273	mg(SiO2)/L
		Grou	m) g adr	Groupe 3 (mesuré en laboratoire)	toire)			
Chlorures	1337	Chlorures	က	Eau	ъ	Phase aqueuse de l'eau (filtrée, centrifugée)	164	mg(Cl)/L
		-						

Paramètre Physico-chimique Cible	CSP	Libellé Sandre du paramètre	CSS	Libellé Sandre du support	CSF	Libellé Sandre de la fraction	nso	Symbole Sandre Unité
Sulfates	1338	Sulfates	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	179	mg(SO4)/L
Bicarbonates	1327	Hydrogénocarbonates	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	274	mg(HCO3)/L
Calcium	1374	Calcium	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	292	mg(Ca)/L
Magnésium	1372	Magnésium	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	320	mg(Mg)/L
Sodium	1375	Sodium	က	Eau	က	Phase aqueuse de l'eau (filtrée, centrifugée)	326	mg(Na)/L
Potassium	1367	Potassium	က	Eau	က	Phase aqueuse de l'eau (filtrée, centrifugée)	316	mg(K)/L
Dureté TH (**)	1345	Dureté totale	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	28	} ₀
TAC	1347	Titre alcalimétrique complet (T.A.C.)	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	28	},
		Grou	upe 4 (n	Groupe 4 (mesuré en laboratoire)	re)			
Granulométrie (***)	6228	Particule inférieures à 20 µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Granulométrie (***)	3054	Particule entre [20,63] µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Granulométrie (***)	7042	Particule entre [63,150] µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Granulométrie (***)	7043	Particule entre [150,200[µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Granulométrie (***)	7044	Particule supérieures ou égales à 200 µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Perte au feu (***)	6578	Perte au feu à 550°C	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Carbone organique total (***)	1841	Carbone Organique	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)
		Grou	upe 5 (n	Groupe 5 (mesuré en laboratoire)	re)			
Aluminium (***)	1370	Aluminium	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)
Fer (***)	1393	Fer	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)
Manganèse (***)	1394	Manganèse	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)
Abréviations : CSP = Code Sandre Parar	nètre; CS;	Abréviations : CSP = Code Sandre Paramètre ; CSS = code Sandre support ; CSF = code Sandre fraction ; CSU = code Sandre unité	U = code	3 Sandre unité				

Abréviations : CSP = Code Sandre Paramètre ; CSS = code Sandre support ; CSF = code Sandre fraction ; CSD = code Sandre unite
(*): paramètres optionnels
(**) : paramètres calculés
(***) : paramètres calculés
(***) : paramètres non pertinent à La Réunion (insuffisance de la fraction fine du sédiment, forte variabilité temporelle de la granulométrie y compris en période d'étiage)

<u>Définition du groupe 6 :</u> substances de l'état chimique, polluants spécifiques de l'état écologique et substances pertinentes à surveiller.

Ces paramètres et groupes de paramètres sont mesurés en laboratoire.

Pour les paramètres et groupes de paramètres pour lesquels la matrice pertinente est l'eau, la mesure est réalisée sur eau brute (non filtrée), à l'exception des métaux et métalloïdes et des perchlorates mesurés sur la fraction dissoute, obtenue par filtration de l'eau brute à travers un filtre de porosité 0,45 micromètres ou par tout autre traitement préliminaire équivalent.

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

Pour tous les paramètres, conformément au guide pour la demande de prestation d'échantillonnage et d'analyse physico-chimique dans le cadre de la surveillance DCE publié par le ministère de la Transition écologique et solidaire, dans sa version la plus récente.

Dans l'attente de la publication de ce guide, la réalisation des mesures (échantillonnage, traitement des échantillons, transport et analyse) s'appuiera, dans la mesure du possible, sur le guide des recommandations techniques d'Aquaref dans sa version la plus récente.

1.3. Eléments hydromorphologiques

Pour chaque élément de qualité sont prescrits ci-dessous les paramètres à suivre, les outils et méthodes de description ainsi que leur utilisation.

Trois éléments de qualité sont pris en compte pour l'hydromorphologie :

- le régime hydrologique (quantité et dynamique du débit, connexion résultante aux eaux souterraines). Il s'agit également d'une composante majeure des conditions environnementales nécessaire à l'interprétation de la biologie;
- la continuité de la rivière. Il s'agit des dimensions longitudinale et latérale de l'hydrosystème. Elle traduit la migration des organismes aquatiques et la continuité sédimentaire (transferts des flux solides). Pour la surveillance, cet élément de qualité ne peut être considéré qu'en replaçant la station du réseau de contrôle de surveillance (RCS) dans son contexte d'axe ou de linéaire fluvial;
- les conditions morphologiques (types de chenaux, variations de largeur et de profondeur, faciès et vitesses d'écoulement, état du substrat, état et structure des rives, zone riparienne).

Pour les éléments hydromorphologiques, les fréquences du contrôle de surveillance sont définies à l'annexe VI du présent arrêté.

1.3.1. Régime hydrologique

La surveillance peut être initiée en s'appuyant sur le référentiel de mesure des débits suivants :

Réseau de mesures national HYDRO; ministère de l'environnement, de l'énergie et de la mer, 2017. Charte qualité de l'hydrométrie – Guide des bonnes pratiques. France, 83 p. (http://www.eaufrance.fr/site-156/documents/?id_article=615).

D'autres outils peuvent permettre de comprendre les régimes hydrologiques non influencés de certains sites où il n'existe pas de mesures :

 Reconstitution des chroniques hydrologiques journalières - Méthode de simulation de débits en site non jaugé développée par l'Irstea (http://carmen.carmencarto.fr/66/AFB_Reconstitution-chroniques-hydrologiques. map) et fichier d'avertissement sur les limites des reconstitutions à lire avant utilisation.

1.3.2. Continuité de la rivière

La surveillance peut être initiée en s'appuyant sur l'exploitation du référentiel des obstacles à l'écoulement (ROE) et la méthode de recueil d'informations sur la continuité écologique (ICE), qui porte sur la continuité piscicole à la montaison au niveau de chaque obstacle.

Le ROE permet de recenser les ouvrages faisant obstacles aux écoulements et de calculer des indicateurs de pressions liées à ces structures.

L'ICE permet d'évaluer les problématiques de montaison piscicole par groupe d'espèces au niveau de chaque obstacle suivant des classes de franchissabilité comprises entre 0 et 1. S'agissant de la dévalaison piscicole, au regard de la complexité des mécanismes biologiques et de la nécessité de disposer d'une bonne connaissance de l'hydrologie du cours d'eau, aucune méthode d'évaluation par un indicateur n'existe. ICE se propose toutefois de recueillir les éléments caractéristiques de l'ouvrage, indispensables à la consolidation de l'expertise pour l'appréhension de ces impacts.

Guides de référence:

Pour le référentiel des obstacles à l'écoulement (ROE)

- Sandre, 2015. Description des ouvrages faisant obstacle à l'écoulement, Dictionnaire de données, 128 p.
- Sandre, 2015. Obstacles à l'écoulement, Présentation des données, 80 p.
- Sandre, 2016. Diffusion du référentiel des obstacles à l'écoulement des obstacles à l'écoulement aux formats simplifiés, 32 p.

Pour la méthode de recueil d'informations sur la continuité écologique (ICE)

 ONEMA, 2014. Evaluer le franchissement des obstacles par les poissons. Principes et méthodes. Onema, 200 p. ONEMA, 2015. ICE, Informations sur la continuité écologique, Protocole de terrain pour l'acquisition des données, 88 p.

1.3.3. Conditions morphologiques

La méthode de caractérisation de l'hydromorphologie des cours d'eau (CARHYCE) est mise en œuvre. Elle permet, par des mesures standardisées sur les cours d'eau, de reconstituer leurs morphologies, de calculer les paramètres de géométrie au jour d'acquisition et à plein bord mais aussi les paramètres relatifs à leur dynamique et à la diversité des formes du lit, ainsi que de caractériser les sédiments. Le traitement des informations collectées permet une estimation du niveau d'altération des paramètres de fonctionnement du cours d'eau au travers d'un indicateur morphologique global (IMG)auquel s'associent des indicateurs plus contextuels sur la structure de la ripisylve et de la granulométrie des sédiments.

A ce stade de développement du CARHYCE, le protocole ne s'applique que pour les cours d'eau prospectables à pied. *Guide de référence* :

 AFB, 2017. CARHYCE: caractérisation de l'hydromorphologie des cours d'eau: protocole de recueil de données hydromorphologiques à l'échelle de la station sur des cours d'eau prospectables à pied. 56 p.

> 2. Description des outils, méthodes d'échantillonnage, de traitement et d'analyse des échantillons pour les plans d'eau

2.1. Eléments biologiques

Les méthodes de mesure, de prélèvement et d'analyse à utiliser pour les contrôles des éléments biologiques sont celles indiquées ci-dessous.

Les fréquences de contrôle sont indiquées à l'annexe VI du présent arrêté.

2.1.1. Phytoplancton

Méthode ou principes d'échantillonnage:

- XP T90-719 - Qualité de l'eau - échantillonnage du phytoplancton dans les eaux intérieures.

Méthode ou principe de traitement et d'analyse des échantillons :

- Norme NF EN 15-204 Norme guide pour le dénombrement du phytoplancton par microscopie inversée (méthode Utermöhl);
- Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE en plan d'eau (version 3.3.1).

2.1.2. Macrophytes (angiospermes, macro-algues, bryophytes)

Méthode ou principes d'échantillonnage :

- Norme française: XP T 90-328 (puis NF T90-328 dès son homologation). Echantillonnage des communautés de macrophytes en plans d'eau;
- Guide d'application: FD T90-728 Guide d'application de la norme expérimentale XP T90-328
 « échantillonnage des macrophytes en plans d'eau ».

Méthode ou principes de traitement et d'analyse des échantillons :

- Norme française: XP T 90-328 (puis NF T90-328 dès son homologation). Echantillonnage des communautés de macrophytes en plans d'eau;
- Guide d'application: FD T90-728 Guide d'application de la norme expérimentale XP T90-328
 « échantillonnage des macrophytes en plans d'eau ».

2.1.3. Faune benthique invertébrée

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

- Protocole test pour les invertébrés en plans d'eau :
- « Annexe technique: protocole test » du rapport relatif au développement d'un indice macro-invertébrés lacustres DCE français (Nicolas Dedieu et Valérie Verneaux novembre 2017 université de Franche-Comté (ou version ultérieure de ce protocole ou norme ultérieure).

2.1.4. Ichtyofaune

Méthode ou principes d'échantillonnage :

 Norme européenne : NF EN 14757 (juillet 2015) - T90-366. Qualité de l'eau - échantillonnage des poissons à l'aide de filets maillants.

Méthode ou principes de traitement et d'analyse des échantillons :

 Norme européenne : NF EN 14757 (juillet 2015) - T90-366. Qualité de l'eau - échantillonnage des poissons à l'aide de filets maillants.

2.1.5 – Diatomées

Méthode ou principes d'échantillonnage :

 Irstea, 2013. Echantillonnage des communautés de phytobenthos en plan d'eau, 8 p. (ou version ultérieure ou norme ultérieure remplaçant ce prototype de protocole).

Méthode ou principes de traitement et d'analyse des échantillons :

 Norme française : NF T90-354. Qualité de l'eau - Echantillonnage, traitement et analyse de diatomées benthiques en cours d'eau et canaux.

2.1.6 – Cas des départements d'outre-mer

En outre-mer, à ce stade des connaissances, seule la méthodologie d'échantillonnage du phytoplancton est transposable. La fréquence de suivi préconisée dans la méthodologie reste à consolider La pertinence des autres éléments de qualité biologique et de leurs protocoles d'échantillonnage devra être précisée. L'AFB proposera (en lien avec le pôle AFB-IRSTEA d'hydro-écologie des plans d'eau) une méthodologie d'acquisition de données afin de pouvoir qualifier le bon état ou le bon potentiel à dire d'expert.

2.2. Eléments physico-chimiques

Ces paramètres sont applicables aux DOM.

Tableau 32 : paramètres physico-chimiques pour les plans d'eau

J	- C - I							
Paramètre Physico-chimique Cible	CSP	Libellé Sandre du paramètre	css	Libellé Sandre du support	CSF	Libellé Sandre de la fraction	nso	Symbole Sandre Unité (****)
			Gr	Groupe 1 (mesuré in situ)	situ)			
Transparence	1332	Limpidité - Disque de Secchi	3	Eau	23	Eau brute	13	cm
Température	1301	Température de l'Eau	3	Eau	23	Eau brute	27	၁့
Oxygène dissous	1311	Oxygène dissous	8	Eau	23	Eau brute	175	mg(02)/L
Saturation en O2 dissous	1312	Taux de saturation en oxygène	8	Eau	23	Eau brute	243	%
Н	1302	Potentiel en Hydrogène (pH)	3	Eau	23	Eau brute	264	unité pH
Conductivité	1303	Conductivité à 25°C	3	Eau	23	Eau brute	147	μS/cm
Cote à l'échelle	1429	Cote à l'échelle lue au moment du prélèvement, ou de l'opération hydrométrique	3	Eau	23	Eau brute	111	٤
			Group	Groupe 2 (mesuré en laboratoire)	oratoire)			
NKJ	1319	Azote Kjeldahl	3	Eau	23	Eau brute	168	mg(N)/L
P total	1350	Phosphore total	3	Eau	23	Eau brute	582	μg(P)/L
MEST	1305	Matières en suspension	3	Eau	23	Eau brute	162	mg/L
Turbidité	1295	Turbidité Formazine Néphélométrique	3	Eau	23	Eau brute	232	NFU
Matière minérale en suspension	6048	Matière minérale en suspension	3	Eau	23	Eau brute	162	mg/L
Chlorophylle a	1439	Chlorophylle a	3	Eau	23	Eau brute	133	µg/L
phéopigments	1436	Phéopigments	က	Eau	23	Eau brute	133	hg/L
			Groupe	Groupe 2 bis (mesuré en laboratoire)	boratoire)			
NH4+	1335	Ammonium	3	Eau	ဇ	Phase aqueuse de l'eau (filtrée, centrifugée)	378	μg(NH4)/L
NO3-	1340	Nitrates	3	Eau	ဇ	Phase aqueuse de l'eau (filtrée, centrifugée)	173	mg(NO3)/L
NO2-	1339	Nitrites	3	Eau	ဇ	Phase aqueuse de l'eau (filtrée, centrifugée)	583	μg(NO2)/L
PO4(3-)	1433	Orthophosphates (PO4)	3	Eau	ဇ	Phase aqueuse de l'eau (filtrée, centrifugée)	379	μg(PO4)/L
COD	1841	Carbone Organique	3	Eau	ဇ	Phase aqueuse de l'eau (filtrée, centrifugée)	163	mg(C)/L
Silice dissoute	1342	Silicates	3	Eau	ဇ	Phase aqueuse de l'eau (filtrée, centrifugée)	273	mg(SiO2)/L
			Group	Groupe 3 (mesuré en laboratoire)	oratoire)			

Paramètre Physico-chimique Cible	CSP	Libellé Sandre du paramètre	SSO	Libellé Sandre du support	CSF	Libellé Sandre de la fraction	CSU	Symbole Sandre Unité (****)
Chlorures	1337	Chlorures	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	164	mg(CI)/L
Sulfates	1338	Sulfates	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	179	mg(SO4)/L
Bicarbonates	1327	Hydrogénocarbonates	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	274	mg(HCO3)/L
Calcium	1374	Calcium	ဇ	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	292	mg(Ca)/L
Magnésium	1372	Magnésium	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	320	mg(Mg)/L
Sodium	1375	Sodium	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	326	mg(Na)/L
Potassium	1367	Potassium	ဇ	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	316	mg(K)/L
Dureté TH (**)	1345	Dureté totale	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	28	۴
TA (***)	1346	Titre alcalimétrique (T.A.)	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	28	۰ ۲
TAC (***)	1347	Titre alcalimétrique complet (T.A.C.)	ဇ	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	28	۴
Aluminium	1370	Aluminium	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	278	µg(AI)/L
Fer	1393	Fer	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	307	hg(Fe)/L
Manganèse	1394	Manganèse	3	Eau	3	Phase aqueuse de l'eau (filtrée, centrifugée)	321	µg(Mn)/L
			Groupe	Groupe 4 (mesuré en laboratoire)	ratoire)			
Carbone organique total	1841	Carbone Organique	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)
NKJ	1319	Azote Kjeldahl	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)
Phosphore total	1350	Phosphore total	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)
Perte au feu	6578	Perte au feu à 550°C	9	Sédiments	32	Particule < 2 mm de sédiments	245	% poids sec
Granulométrie	6228	Particule inférieures à 20 µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Granulométrie	3054	Particule entre [20,63] µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Granulométrie	7042	Particule entre [63,150[µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Granulométrie	7043	Particule entre [150,200[µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
Granulométrie	7044	Particule supérieures ou égales à 200 µm de sédiments	9	Sédiments	32	Particule < 2 mm de sédiments	246	% poids sec
			Groupe 4	Groupe 4 bis (mesuré en laboratoire)	oratoire)			
PO4(3-)	1433	Orthophosphates (PO4)	9	Sédiments	വ	Eau interstitielle sédiments	379	µg(PO4)/L

Paramètre Physico-chimique Cible	CSP	Libellé Sandre du paramètre	SSO	Libellé Sandre du support	CSF	Libellé Sandre de la fraction	csu	Symbole Sandre Unité (****)
Phosphore total	1350	1350 Phosphore total	9	Sédiments	2	Eau interstitielle sédiments	582	µg(P)/L
NH4+	1335	Ammonium	9	Sédiments	2	Eau interstitielle sédiments	378	µg(NH4)/L
			Group	Groupe 5 (mesuré en laboratoire)	ratoire)			
Aluminium	1370	1370 Aluminium	9	Sédiments	32	Particule < 2 mm de sédiments	160	160 mg/(kg MS)
Fer	1393	Fer	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)
Manganèse	1394	1394 Manganèse	9	Sédiments	32	Particule < 2 mm de sédiments	160	mg/(kg MS)

Abréviations : CSP = Code Sandre Paramètre ; CSS = code Sandre support ; CSF = code Sandre fraction ; CSU = code Sandre unité (*) : paramètres optionnels

(**): paramètres calculés (***): paramètres calculés (***): TAC (à privilégier) ou TA (***): Le « code Sandre unité dans laquelle doit être exprimée la mesure. Cette unité ne remet pas en cause la limite de quantification du paramètre fixée par avis en application de l'arrêté du 27 octobre 2011 portant modalités d'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques.

<u>Définition du groupe 6 :</u> Substances de l'état chimique, polluants spécifiques de l'état écologique et substances pertinentes.

Ces paramètres et groupes de paramètres sont mesurés en laboratoire.

Pour les paramètres et groupes de paramètres pour lesquels la matrice pertinente est l'eau, la mesure est réalisée sur eau brute (non filtrée), à l'exception des métaux et métalloïdes et des perchlorates mesurés sur la fraction dissoute, obtenue par filtration de l'eau brute à travers un filtre de porosité 0,45 micromètres ou par tout autre traitement préliminaire équivalent.

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

Pour tous les paramètres, conformément au guide pour la demande de prestation d'échantillonnage et d'analyse physico-chimique dans le cadre de la surveillance DCE publié par le ministère de la Transition écologique et solidaire, dans sa version la plus récente.

Dans l'attente de la publication de ce guide, la réalisation des mesures (échantillonnage, traitement des échantillons, transport et analyse) s'appuiera, dans la mesure du possible, sur le guide des recommandations techniques d'Aquaref dans sa version la plus récente.

2.3. Eléments hydromorphologiques

Pour chaque élément de qualité sont précisés ci-dessous les paramètres à suivre, les outils et méthodes de description. Deux éléments de qualité sont pris en compte :

- le régime hydrologique (amplitude et dynamique du marnage, quantité et dynamique des débits entrant et sortant, temps de séjour, connexion avec les eaux souterraines);
- les conditions morphologiques (état et structure des rives, variation de la profondeur du lac, état et structure du substrat).

Pour les éléments hydromorphologiques, les fréquences du contrôle de surveillance sont définies à l'annexe VI du présent arrêté.

2.3.1 - Régime hydrologique

A ce jour, il n'existe pas de méthodes standardisées pour la surveillance des paramètres hydrologiques des plans d'eau. Ces données sont globalement déficitaires, ce qui engendre une surveillance et une évaluation incomplète des paramètres hydromorphologiques. Pour les écosystèmes dotés d'une gestion hydraulique contrôlée, il est a minima nécessaire de rechercher les chroniques disponibles (sur le plan de gestion considéré) auprès des gestionnaires locaux, en particulier pour :

- le suivi des variations de niveaux d'eau (amplitude et dynamique du marnage);
- le suivi des débits entrants et sortants (si dispositif de suivi existant).

Les données disponibles doivent être transmises sous format numérique au pôle R&D AFB-Irstea pour être bancarisées dans la base nationale plans d'eau.

2.3.2 - Conditions morphologiques

Les protocoles développés et standardisés, à utiliser pour recueillir les données du contrôle de surveillance concernant les conditions morphologiques des plans d'eau sont listés ci-dessous. Ces méthodes sont applicables aux DOM.

TiFB (**DIR**)- **ALBER** = Protocole de terrain consacré à la caractérisation des altérations des berges des plans d'eau

Norme française: XP T90-714 dès son entrée en vigueur): Qualité de l'eau – Qualité des milieux – Caractérisation des altérations des berges de plans d'eau.

Guides de référence:

Pôle AFB-IRSTEA, 2017. Protocole de caractérisation des altérations des berges.

 CHARLI = Protocole de terrain consacré à la Caractérisation des habitats des rives et du littoral des plans d'eau.

Norme française: XP T90-718, août 2016 Qualité de l'eau – Qualité des milieux – Caractérisation des habitats des rives et du littoral des plans d'eau.

Guides de référence:

Pôle AFB-Irstea, 2017. Protocole de caractérisation des habitats des rives et du littorale des plans d'eau.

 BATHYMETRIE = Protocole de terrain d'analyse bathymétrique de la forme et des variations de profondeur du plan d'eau. La bathymétrie constitue une donnée initiale et doit être réactualisée dès lors que l'on se trouve dans des systèmes très évolutifs (facteurs naturels ou anthropiques). Cette caractéristique sera appréciée à dire d'expert par les directions régionales de l'AFB.

Guide de référence:

Alleaume *et al.*, 2010. Bathymétrie des plans d'eau. Protocole d'échantillonnage et descripteurs morphométriques. Rapport du pôle ONEMA/CEMAGREF, 24 p.

 SEDIMENTS = Protocole de terrain de caractérisation des sédiments des fonds lacustres par hydroacoustique. Ce protocole est expérimental, il pourra en conséquence être consolidé au prochain cycle. Le type et la répartition du substrat des fonds lacustres constituent une donnée qui pourra être initiée puis réactualisée dès lors que l'on se trouve dans des systèmes très évolutifs (facteurs naturels ou anthropiques générant une accélération des dépôts sédimentaires et le vieillissement prématuré des plans d'eau: apports de fines, eutrophisation, etc.). Cette caractéristique sera appréciée à dire d'expert par les directions régionales de l'AFB. Les relevés peuvent être réalisés de manière simultanée avec le protocole de relevé bathymétrique, dès lors que le matériel le permet (système RoxAnn).

Guide de référence:

Mouget *et al.*, 2017. Protocole d'utilisation du système RoxAnn© pour la classification des fonds lacustres. Rapport INRA/Pôle AFB-Irstea, 49 p.

3. Description des outils, méthodes d'échantillonnage, de traitement et d'analyse des échantillons pour les eaux littorales

Les méthodes suivantes sont détaillées dans le guide relatif aux règles d'évaluation de l'état des eaux littorales.

3.1. Éléments biologiques

Les méthodes de mesure, de prélèvement et d'analyse à utiliser pour les contrôles des éléments biologiques sont celles indiquées ci-dessous. Les fréquences de contrôle sont indiquées à l'annexe VI du présent arrêté.

3.1.1. Phytoplancton

Protocole d'échantillonnage

Localisation du prélèvement : le prélèvement est effectué en sub-surface (0-1m) et :

- pour les eaux côtières de Manche et d'Atlantique, de préférence en dehors de la zone estran, à pleine mer plus ou moins deux heures;
- pour les eaux côtières de Méditerranée, de préférence dans la matinée ou en milieu de journée, et hors influence directe de sources de perturbation;
- pour les lagunes méditerranéennes, de préférence dans la matinée ou en milieu de journée et hors période de vent :
- pour les eaux de transition estuariennes, au centre du fleuve, à pleine mer plus ou moins deux heures.

Mode de prélèvement et de conservation : eau brute prélevée à d'une bouteille de prélèvement de type Niskin (Daniel, 2009).

Indicateurs et paramètres:

L'indicateur phytoplancton (EQB) est composé de 3 indices :

- IB (indice de biomasse), calculé à partir de la concentration en chlorophylle-a du phytoplancton retenu par un filtre GF/F de 0.7 μm de maille.
- IA (indice d'abondance), calculé comme un pourcentage de blooms acceptables sur la période de gestion (grilles). Ces blooms sont considérés éligibles si les abondances d'un taxon dépassant des seuils définis pour les fractions micro- et nanophytoplanctoniques selon la masse d'eau et la région étudiée. Ce sont donc, les identifications et dénombrements phytoplanctoniques qui serviront à bâtir l'indice IA. Il est utilisé le microscope optique pour les fractions micro- et nanophytoplanctoniques, si ces dernières sont en colonie, ou par la méthode de cytométrie en flux pour le pico- et nanophytoplancton dans le cas des lagunes et eaux oligotrophes.
- IC (indice de composition). Non défini encore par l'UE ni par les États membres. Il pourrait être calculé à partir des identifications et dénombrements phytoplanctoniques, mais présente l'inconvénient que la fraction picophytoplanctonique et une part du nanophytoplancton échappent à l'identification par microscopie optique. Une alternative a été présentée avec les pigments obtenus par chromatographie liquide (HPLC). Voir Lampert (2017).

Méthodes d'analyse:

Les paramètres mesurés sont la biomasse chlorophyllienne (chlorophylle-a), et l'identification et dénombrement des taxons de la fraction microphytoplanctonique et du nanophytoplancton colonial (flores totales et/ou indicatrices). Dans le cas des lagunes la cytométrie en flux permettra de dénombres le pico- et nanophytoplancton en quelques groupes fonctionnels.

La concentration en chlorophylle-a peut être déterminée après filtration et extraction à l'aide de 3 techniques :

- la méthode spectrophotométrique (Aminot et Kérouel, 2004);
- la méthode fluorimétrique (Aminot et Kérouel, 2004);
- la méthode chromatographique HPLC (van Heukelem and Thomas, 2001; Wright et al., 1991; Zapata et al., 2000).

Les résultats sont exprimés en microgramme par litre d'eau brute.

Dans l'état d'avancement technologique actuel, les mesures de chlorophylle-a obtenues à l'aide de capteurs de fluorescence in vivo sont des mesures semi-quantitatives qui ne peuvent pas être interprétées avec la même grille de lecture que les mesures réalisées au laboratoire avec les méthodes décrites ci-dessus.

Par contre, dans la mesure où l'équivalence des résultats a été démontrée, il est possible d'utiliser les images satellites pour l'évaluation de la chlorophylle-a en masse d'eau côtière.

Abondances phytoplanctoniques:

L'identification et le dénombrement des cellules des fractions micro- et nanophytoplanctoniques (ces dernières en colonie) [flores totales et/ou indicatrices] sont effectués sous microscope inversé selon la méthode d'Uthermöhl (1958). Les procédures sont décrites dans la norme NF EN 15204. L'identification se fait au plus précis, espèce ou genre si possible, sinon à un niveau taxonomique supérieur (famille, voire classe). Les résultats sont exprimés en nombre de cellules par litre d'eau brute.

Par cytométrie de flux, c'est la méthode décrite par Sieburth et al. (1978) qui devra être utilisée. Les résultats sont exprimés en nombre de cellules par litre d'eau brute.

Références

Aminot A. et Kérouel R. (2004). Hydrologie des écosystèmes marins - Paramètres et analyses. Ed. Ifremer, 336p.

Daniel A. (2009). Techniques de prélèvement hydrologique en milieu marin (HYPERLINK « http://envlit. ifremer.fr/var/envlit/storage/documents/dossiers/prelevementhydro/presentation.html » http://envlit.ifremer.fr/var/envlit/storage/documents/dossiers/prelevementhydro/presentation.html)

Lampert, Luis. 2017. « Calcul d'un indice de composition phytoplanctonique pigmentaire pour les eaux guyanaises (DCE) », juin. http://archimer.ifremer.fr/doc/00389/50040/.

Norme NF EN 15204 (2006). Qualité de l'eau - Norme guide pour le dénombrement du phytoplancton par microscopie inversée (méthode Utermöhl). 39 pages.

Miossec L. (2013) Guide méthodologique des méthodes DCE en hydrobiologie littorale. Rapport AQUAREF 2013, 32 p.

Sieburth, J., Smetacek, V., Lenz, J. (1978). Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256-1263.

Uthermöhl H. (1958). Zur vervolkommnung der quantitativen phytoplankton methodik. Mit. tint. ver theor. angew. Limnol. 9: 1-38.

Van Heukelem L., Thomas C (2001). Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of chromatography A, 910, 31-49.

Wright, S.W., Jeffrey, S.W., Mantoura R.F.C., Lewellyn C.A., Bjornland T., Repeta D., Welschmeyer N.A. (1991). Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 77: 183-196.

Zapata, M, Rodríguez, F., Garrido J., (2000). Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series 195: 29-45.

3.1.2. Macro-algues (eaux côtières - facade Méditerranée)

Protocole d'échantillonnage

Concerne les substrats durs en mésolittoral et limite supérieur de l'infralittoral.

Observations et relevés à partir d'un zodiac, positionné à 3 m du bord ; période d'observation mai-juin.

Géomorphologie et présence/absence et abondance des communautés littorales notées directement sur carte ou photos aériennes sur le linéaire côtier découpé en unités de 50 m de long.

Références

Laurence Miossec - Guide méthodologique des méthodes DCE en hydrobiologie littorale - CARLIT, macrophytes en lagunes et posidonies - Rapport AQUAREF 2014 – 13 p (sous presse) (nb de pages).

Thibaut T., Mannoni PA. 2007. Cartographie des paysages marins : encorbellements à Lithophyllum et faciès à cystoseires Site Natura 2000 FR 9301624 - Cap Lardier - Cap Taillat - Cap Camarat. Contrat GIS Posidonie & Observatoire Marin du Littoral des Maures, ECOMERS publ. Nice, 18 p.

Thibaut T., Mannoni P.A., Markovic L., Geoffroy K., Cottalorda J.M. 2008. Préfiguration du réseau macraolgues - Bassin Rhône Méditerranée Corse - Application de la directive Cadre Eau - Rapport d'état écologique des masses d'eau. Contrat Agence de l'Eau RMC – Unsa: 38 p + Atlas cartographique.

Thibaut T. et L. Markovic (2009). Préfiguration du réseau macroalgues – Bassin Rhône Méditerranée

Corse – Application de la directive Cadre Eau -Rapport d'état écologique des masses d'eau – Ensemble du littoral rocheux continental français de Méditerranée. Contrat Agence de l'Eau Rhône Méditerranée Corse / Université de Nice – Sophia Antipolis, convention 2009 01 11, 31 pages.

Thibaut T., L. Markovic et A. Blanfune (2010). Préfiguration du réseau macroalgues - Bassin Rhône Méditerranée Corse – Application de la directive Cadre Eau -Rapport d'état écologique des masses d'eau – Littoral rocheux de la Corse. Contrat Agence de l'Eau Rhône Méditerranée Corse / Université de Nice – Sophia Antipolis, convention 2009 1431, 24 pages.

Thibaut T., L. Markovic et A. Blanfune (2011). Préfiguration du réseau macroalgues - Bassin Rhône Méditerranée Corse – Application de la directive Cadre Eau - Rapport d'état écologique des masses d'eau – Littoral rocheux de la Corse. Contrat Agence de l'Eau Rhône Méditerranée Corse / Université de Nice – Sophia Antipolis, convention 2011 011, 22 pages.

3.1.3. Macro-algues de type bloom à ulves (eaux côtières et de transition - façade Manche Atlantique)

Protocole d'échantillonnage

Données collectées sur photos aériennes prises lors de 3 survols annuels en mai, juillet et septembre en période de vive-eau (coefficient supérieur à 75) ; appareil de type CESSNA ; altitude du vol entre 1500 et 4000 pieds ; survols suivis de contrôle terrain si échouages détectables avec récolte d'algues.

Méthode d'analyse

Intégration et géo-référencement des photos aériennes dans un SIG, digitalisation des dépôts d'algues et estimation visuelle du pourcentage de couverture algale dans ces dépôts ; évaluation des surfaces potentiellement colonisables sur carte IGN (1/25000°) et sur photos aériennes ; identification des espèces récoltées sous microscope

Références

Laurence Miossec – Guide méthodologique des méthodes DCE en hydrobiologie littorale. Rapport AQUAREF 2013 - 32 p.

3.1.4. Macro-algues de substrat dur intertidal (eaux côtières - façade Manche Atlantique)

Protocole d'échantillonnage

Evaluation des surfaces couvertes et identification *in situ* d'espèces algales caractéristiques et opportunistes sur substrat rocheux de l'estran par coefficients de marée supérieurs à 95 entre mars et juillet ; l'analyse se fait dans 3x3 quadrats (n=9) positionnés de manière aléatoire dans chacune des ceintures identifiées de l'estran (2 ou 6 ceintures suivant les secteurs).

Méthode d'analyse

Déterminations algales à l'œil nu, sur sites (si problème, un échantillon est rapporté au laboratoire pour détermination sous loupe binoculaire) ; les superficies sont réalisées à l'oeil nu ou bien à l'aide d'un GPS et du logiciel ARGIS

Références

Miossec L., Soudant D. et Le Stum M. - Consolidation et mise au point de méthodes de bio-indication et transfert aux opérateurs. Contributions Hydrobiologie en milieu marin, Rapport Aquaref, 2012

3.1.5. Macro-algues de substrat dur subtidal (eaux côtières - façade Manche Atlantique

Protocole d'échantillonnage

Identification qualitative et quantitative en plongée d'espèces algales caractéristiques et opportunistes et des invertébrés fixés, sur quadrats, dans l'infralittoral et le circalittoral côtier et à 3 profondeurs fixes entre mi-mars et mi-juillet.

Méthode d'analyse

Les déterminations algales se font à l'œil nu, sur sites (si problème, un échantillon est rapporté au laboratoire pour détermination sous microscope et loupe binoculaire) ; les comptages et mesures à différentes profondeurs (comprenant aussi les mesures des longueurs des stipes de Laminaria hyperborea et la surface moyenne des épibioses) sont également réalisés principalement *in situ* et ex situ lorsque cette espèce est présente en forte densité. De plus, un échantillonnage de la faune de l'infralittoral supérieur et du circalittoral côtier est réalisé.

Références

Derrien-Courtel S. et Le Gal A. – Protocole de surveillance DCE pour l'élément de qualité « Macroalgues subtidales » - second cycle de suivi (DCE-2). Rapport du Museum National d'Histoire Naturelle, station de Biologie Marine de Concarneau, janvier 2014.

Le Gal A. et Derrien-Courtel S. Quality Index of Subtidal Macroalgae (QISubMac), a suitable tool for ecological quality status assessment under the scope of European Water Framework Directive. Submitted to Ecological indicators, 23/02/2015

Miossec L., Soudant D. et Le Stum M. - Consolidation et mise au point de méthodes de bio-indication et transfert aux opérateurs. Contributions Hydrobiologie en milieu marin, Rapport Aquaref, 2012

3.1.6. Angiospermes (eaux côtières - facade Méditerranée)

Protocole d'échantillonnage

Prélèvements et observations réalisées en plongée, de préférence en avril ; relevés de la profondeur de la limite inférieure et de l'état dynamique (échelle qualitative) de l'herbier à cette profondeur ; à 15m, relevé du nombre de faisceaux dans des quadrats (0,16 m² ; 20 quadrats) et prélèvements de faisceaux (n=20)

Méthode d'analyse

Biométrie des feuilles ; pesées des feuilles et des épibiontes des feuilles (poids sec).

Références

Laurence Miossec – Guide méthodologique des méthodes DCE en hydrobiologie littorale - CARLIT, macrophytes en lagunes et posidonies - Rapport AQUAREF 2014, 13 pages

Gobert S., S. Sartoretto, V. Rico-Raimondino, B. Andral, A. Chery, P. Lejeune et P. Boissery. 2009. Assessment of the ecological status of Mediterranean French coastal waters as required by the Water Framework Directive using the *Posidonia oceanica* Rapid Easy Index: PREI. *Marine Pollution Bulletin*, 58, 1727 – 1733.

Sartoretto S. 2008. Soutien méthodologique à la mise en œuvre de la Directive Cadre Eau (item: herbier de posidonie) – Validation du protocole de calcul de l'EQR (District Rhône et côtiers méditerranéens). RST/DOP/LER-PAC/08-01, 40 pages.

3.1.7. Angiospermes (eaux côtières et de transition - façade Manche Atlantique)

Protocole d'échantillonnage

Zostera noltii

L'échantillonnage est réalisé entre août et septembre, période de biomasses maximales. Les relevés de densité des zostères se font à partir d'une grille d'échantillonnage par estimation visuelle et prise de photos ; prélèvement de sédiment à l'aide d'un carottier ; prélèvement d'algues.

Zostera marina

Echantillonnage au printemps en Manche Atlantique et entre fin août et début septembre en Aquitaine ; relevé du type biosédimentaire ; comptage et prélèvement de pieds de zostères dans quadrats ; prélèvement de sédiment à l'aide d'un carottier ; prélèvement d'algues

Si problème d'identification des espèces in situ, prélèvement pour analyse au laboratoire.

Méthode d'analyse

Zostera noltii

Evaluation semi-quantitative et visuelle du taux de recouvrement de *Z. noltii* confirmée par une analyse semi-automatique des photos à l'aide d'un logiciel ; pesées des macroalgues après séchage (poids sec) ; analyse granulométrique et teneur en matière organique pour les sédiments (poids sec et poids de cendre).

Zostera marina

Si problème d'identification des espèces in situ, détermination au laboratoire sous microscope.

Biométrie des échantillons de zostères prélevés ; étuvage des échantillons pour calcul de biomasse (poids sec et poids de cendre) ; biométrie des macroalgues ; pesée des épiphytes présents sur les feuilles ; évaluation en pourcentage du wasting disease.

Références

Laurence Miossec – Guide méthodologique des méthodes DCE en hydrobiologie littorale. Rapport AQUAREF 2013 - 32 p.

Auby I., Dalloyau S., Fortune M., Hily C., Oger-Jeanneret H. Plus M., Sauriau P-G, Trut G., Protocole de suivi stationnel des herbiers à Zostères pour la Directive Cadre sur l'Eau (DCE) Zostera marina, Zostera noltii. Rapport Ifremer RST/LER/MPL/13.01, mars 2013.

3.1.8. Macroalgues et angiospermes (eaux de transition - façade Méditerranée)

Protocole d'échantillonnage

Prélèvements et observations réalisées en surface ou en plongée suivant la profondeur, au printemps, avant les mortalités estivales ; la trajectoire du plongeur se fait en cercle autour du bateau (surface environ 120 m²) ; relevés du taux de recouvrement végétal total, du taux de recouvrement relatif des espèces de référence et de la richesse spécifique ; relevé de la profondeur ; prélèvement de sédiment.

Si problème d'identification des espèces in situ, prélèvement pour analyse au laboratoire.

Méthode d'analyse

Si problème d'identification des espèces *in situ*, détermination au laboratoire sous microscope ; analyse granulométrique et mesure du taux de matière organique (une fois par plan de gestion).

Références

Laurence Miossec – Guide méthodologique des méthodes DCE en hydrobiologie littorale - CARLIT, macrophytes en lagunes et posidonies - Rapport AQUAREF 2014, 13 pages.

Lauret M., J. Oheix, V. Derolez et T. Laugier. (2011). Réseau de suivi lagunaire, 2011. Guide de reconnaissance des lagunes du Languedoc-Roussillon: 148 pages.

3.1.9. Invertébrés benthiques de substrat meuble (façades Mer du Nord, Manche, Atlantique et Méditerranée)

Protocole d'échantillonnage

- Façade Manche Atlantique (eaux côtières et de transition):
 - zone intertidale : échantillonnage à l'aide d'un carottier ou d'un quadrat (surfaces entre 0,03 et 0,1 m² de 5 à 9 réplicats par station) ; tamisage sur maille de 1 mm;
 - zone subtidale : échantillonnage, à l'aide de bennes Van Veen, Smith-Mc Intyre ou Ekman-Birge (surfaces entre 0,025 et 0,1 m² de 5 et 10 réplicats par station) ; tamisage sur maille de 1mm.
 - Façade Méditerranée (eaux côtières):
 - échantillonnage à l'aide de benne Van Veen (surface de 0,025 m², 5 réplicats par station) en zone subtidale ;
 tamisage sur maille de 1mm.
- Façade Méditerranée (eaux de transition):
 - prélèvements réalisés à l'aide d'une benne Eckmann Birge (surface de 0,0225 m²; 3 sous-stations par station et 4 réplicats par sous-stations), tamisage sur maille de 1 mm; prélèvements de sédiments par carottages (n=3 par station) et mesure du potentiel d'oxydo-réduction avec un pH-mètre Poncelle.

Méthode d'analyse

Détermination de la faune benthique sous loupe binoculaire, dénombrement et pesée (poids sec) ; les paramètres mesurés sont la composition spécifique, l'abondance spécifique, la biomasse spécifique.

Analyse granulométrique et teneur en matière organique pour les sédiments.

Références

Norme NF EN ISO 16665 (lignes directrices pour l'échantillonnage quantitatif et le traitement d'échantillons de la macrofaune marine des fonds meubles).

3.1.10. Invertébrés benthiques de substrat meuble (La Réunion)

Protocole d'échantillonnage

Echantillonnage à la benne Van Veen ou Smith McIntyre (surface de 0,1 m², 5 réplicats par station pour l'analyse faunistique et 1 pour l'analyse du sédiment), entre 25 et 70 m de profondeur pour le contrôle de surveillance; tamisage sur maille de 1mm

Méthode d'analyse

Détermination au niveau spécifique ou supra et dénombrement de la faune benthique sous loupe binoculaire ; le paramètre mesuré est, l'abondance par taxon.

Analyse granulométrique et teneur en matière organique pour les sédiments.

Références

Norme NF EN ISO 16665 (Lignes directrices pour l'échantillonnage quantitatif et le traitement d'échantillons de la macrofaune marine des fonds meubles)

Ropert Michel, Bigot Lionel, Frouin Patrick, Maurel Laurence, Scolan Pierre, Duval Magali, Le Goff Ronan, Talec Pascal, Turquet Jean, Vermenot Coralie (2012). Fascicule technique pour la mise en oeuvre du réseau de contrôle de surveillance DCE « Benthos de Substrats Meubles » à La Réunion. http://archimer.ifremer. fr/doc/00168/27913/

3.1.11. Benthos récifal - pente externe (La Réunion)

Protocole d'échantillonnage

L'échantillonnage est réalisé en période estivale. En fonction des paramètres relevés, trois protocoles d'échantillonnage sont mise en œuvre : Line Intercept Transect (3 x 20 m), Belt Transect (3 x 20 m x 4 m) et Quadrat (5 x 1 m²).

NB : Actuellement, seul le Line Intercept Transect est nécessaire pour le calcul de l'indicateur, mais celui-ci est amené à évoluer et à prendre en compte des paramètres supplémentaires.

Méthode d'analyse

Les paramètres relevés en plongée et synthétisés au bureau sont pour les coraux dur: le recouvrement en corail vivant, le recouvrement en acropores branchus et tabulaires ; pour les algues le recouvrement en algues dressées et le recouvrement en algues calcaires ; pour les alcyonaires : le recouvrement.

NB: la liste complète des paramètres à relever pour faire évoluer l'indicateur sont pour les coraux: le recouvrement, les groupes fonctionnels, les taxons, les maladies et nécroses, le recrutement; pour les algues: le recouvrement et les groupes fonctionnels; pour les invertébrés: l'abondance.

Références

Ropert Michel, Bigot Lionel, Chabanet Pascale, Cuet Pascale, Nicet Jean-Benoit, Maurel Laurence, Scolan Pierre, Cambert Harold, Cauvin Bruce, Duval Magali, Le Goff Ronan, Pothin Karine, Mouquet Pascal, Quod Jean-Pascal, Talec Pascal, Turquet Jean, Vermenot Coralie, Zubia Mayalen (2012). Fascicule technique pour la mise en œuvre du réseau de contrôle de surveillance DCE « Benthos de Substrats Durs » à La Réunion. http://archimer.ifremer.fr/doc/00167/27806/

Hill J. et Wilkinson C., 2004. Methods for Ecological Monitoring of Coral Reefs. Version 1. Livre 123p.

3.1.12. Benthos Récifal (Antilles)

Protocole d'échantillonnage

Echantillonnage en plongée sur 6 transects pérennes de 10 m avec relevés de type « point intercept » (PIT). Identification de la nature du substrat et les taxons présents en un point sous le transect tous les 20 cm.

Méthode d'analyse

Echantillonnage de la composition et de l'abondance relative des peuplements coralliens et des autres organismes benthiques susceptibles d'être en compétition avec les coraux (algues et invertébrés sessiles). Reconnaissance au niveau du genre pour les macroalgues et les coraux. Les résultats permettent de calculer les indices « corail » et « macroalgues ». L'indice « corail » est le rapport « couverture corallienne vivante / substrat colonisable par les coraux ».

Références

Bouchon, C., Bouchon-Navaro, Y., Louis, M., 2004. Critère d'évaluation de la dégradation des communautés coralliennes dans la région Caraïbe. Revue d'Ecologie (la Terre et la Vie), 59 (1-2): 113-121.

Impact Mer, Pareto, Equilibre, 2010. Directive Cadre sur l'eau : Suivi des stations des réseaux de référence et de surveillance des Masses d'Eau côtières et de Transition au titre de l'année 2009. - Volet Biologie. Rapport de synthèse : Réseau de surveillance. Rapport pour : DIREN Martinique, 166 (annexes inclues) pp.3.1.13. Poissons (eaux de transition - façade Manche Atlantique).

Protocole d'échantillonnage

Echantillonnage au chalut à perche, de taille adaptée à celle de l'estuaire :

- pour les grands estuaires (par exemple Gironde, Loire, Seine) : grand chalut à perche classique de 3 mètres ;
- pour les estuaires de taille moyenne ou réduite, ou encore avec des fonds irréguliers (par exemple Adour, Charente): petit chalut à perche de 1,5 mètre.

Le secteur d'étude est situé dans la partie tidale des estuaires. La répartition des zones d'échantillonnage dans l'estuaire devra être représentative de ceux-ci.

Pour les estuaires présentant 3 zones halines : à l'intérieur de chaque MET, répartition des traits de chalut à perche, au sein de la zone la plus aval, de la zone médiane et de la zone plus amont, de manière à échantillonner les trois secteurs de salinité différente de manière homogène, avec un minimum de 8 traits au sein de chaque zone haline.

Pour les estuaires ne présentant pas les 3 zones halines : échantillonnage selon une répartition géographique de ses zones halines, en intégrant la majeure partie de ses habitats essentiels.

Pour les masses d'eau ne présentant qu'une seule zone haline, un minimum de 12 traits sera effectué.

Des variables environnementales sont aussi relevées (température, salinité, conductivité, oxygène dissous au fond). Une norme AFNOR décrivant l'échantillonnage des poissons en estuaire à l'aide de chalut à perche est disponible.

Méthode d'analyse

Les captures de chaque trait de chalut sont traitées autant que possible à bord : identifications, mesures, pesées. Pour les très petits individus et les juvéniles, une conservation en vue d'un examen au laboratoire peut être nécessaire (glace ou possibilités de réfrigération, si besoin éviter le formol et préférer l'alcool).

- Identification jusqu'à l'espèce.
- Mesures à la fourche (et au mm) pour les espèces ayant une fourche et longueur totale pour les autres espèces. En cas d'effectif supérieur à 30 individus, pour une espèce dans un trait, seul un échantillon (30 poissons pris au hasard) représentatif des tailles de l'ensemble du trait, est mesuré; les individus surnuméraires étant uniquement comptés pour obtenir l'effectif global. En cas de très gros échantillon, un sous-échantillonnage est réalisé pour estimer l'effectif total de l'échantillon.
- Le poids total par espèce et par trait est noté. Pour les individus de plus de 50 g, le poids individuel est aussi relevé. En cas de traitement au laboratoire les poids individuels inférieurs à 50 g sont aussi notés.

Références

Lepage M, Girardin M., Bouju V., 2009. Inventaire Poisson dans les eaux de transition. Protocole d'échantillonnage pour les Districts de la façade Atlantique et Manche. Version 3 du 06/04/2009. CEMAGREF, 29 p.

AFNOR (2011). XP T 90-701 juin 2011 - Qualité de l'eau - Echantillonnage au chalut à perche des communautés de poissons dans les estuaires. Norme expérimentale. 16 p.

3.2. Eléments physico-chimiques en eaux littorales

Les méthodes de mesure, de prélèvement et d'analyse à utiliser pour les contrôles des éléments physicochimiques sont celles indiquées ci-dessous. Les fréquences de contrôle sont indiquées à l'annexe VI du présent arrêté

3.2.1. Température, salinité, transparence, oxygène dissous

Protocole d'échantillonnage

Les paramètres mesurés, de préférence in situ, en sub-surface (0-1 m) sont la température, la salinité, la turbidité. Les paramètres mesurés au fond de la colonne d'eau sont l'oxygène, la température et la salinité. Lorsque le matériel le permet, il est souhaitable d'effectuer un profil de ces trois paramètres sur l'ensemble de la colonne d'eau.

Méthode d'analyse

Les mesures de température, salinité, turbidité et de l'oxygène sont effectuées *in situ* à l'aide de sondes (Daniel, 2009). Les mesures de salinité et de turbidité peuvent être toutefois effectuées sur échantillon au laboratoire dans des délais acceptables (Aminot et Kérouel, 2004).

Les sondes doivent faire l'objet d'opérations rigoureuses de métrologie (contrôle, vérification, étalonnage). Les capteurs de turbidité doivent être conformes aux spécifications de la norme NF EN ISO 7027-1.

Références

Aminot A. et Kérouel R., 2004. Hydrologie des écosystèmes marins - Paramètres et analyses. Ed. Ifremer, 336p. Daniel A. (2009). Techniques de prélèvement hydrologique en milieu marin (http://envlit.ifremer.fr/var/envlit/storage/documents/dossiers/prelevementhydro/presentation.html)

3.2.2. Nutriments

Protocole d'échantillonnage

Localisation du prélèvement : le prélèvement est effectué en sub-surface (0-1m) et :

- pour les eaux côtières de Manche et d'Atlantique, de préférence en dehors de la zone estran, à pleine mer plus ou moins deux heures;
- pour les eaux côtières de Méditerranée, de préférence dans la matinée ou en milieu de journée, et hors influence directe de sources de perturbation;
- pour les lagunes méditerranéennes, de préférence dans la matinée ou en milieu de journée et hors période de vent;
- pour les eaux de transition estuariennes, au centre du fleuve, à pleine mer plus ou moins deux heures.

Mode de prélèvement et de conservation: eau brute prélevée à l'aide d'une bouteille de prélèvement de type Niskin (Daniel, 2009).

Méthode d'analyse

Les nutriments inorganiques dissous (ammonium, nitrate, nitrite, orthophosphate, orthosilicate) et les nutriments dissous totaux (azote total dissous et phosphore total dissous) sont dosés de préférence en flux continu selon les méthodes décrites par Aminot et Kérouel (2007) ou de façon « manuelle » selon les méthodes décrites par Aminot et Kérouel (2004). Ces méthodes ont fait l'objet de fiches méthodes AQUAREF (http://www.aquaref.fr).

Références

Aminot A. et Kérouel R. (2004). Hydrologie des écosystèmes marins - Paramètres et analyses. Ed. Ifremer, 336p.

Aminot A. et Kérouel R. (2007). Dosage automatique des nutriments dans les eaux marines : méthodes en flux continu. Ed. Ifremer, 188 p.

Daniel A. (2009). Techniques de prélèvement hydrologique en milieu marin.

(http://envlit.ifremer.fr/var/envlit/storage/documents/dossiers/prelevementhydro/presentation.html)

3.2.3 Micropolluants

Ces paramètres et groupes de paramètres sont mesurés en laboratoire.

Pour les paramètres et groupes de paramètres pour lesquels la matrice pertinente est l'eau, la mesure est réalisée sur eau brute (non filtrée), à l'exception des métaux mesurés sur la fraction dissoute, obtenue par filtration de l'eau brute à travers un filtre de porosité 0,45 micromètres ou par tout autre traitement préliminaire équivalent.

4. Description des outils, méthodes d'échantillonnage, de traitement et d'analyse des échantillons pour les eaux souterraines

Méthode ou principes d'échantillonnage, de traitement et d'analyse des échantillons :

Conformément au guide pour la demande de prestation d'échantillonnage et d'analyse physico-chimique dans le cadre de la surveillance DCE publié par le ministère de la Transition écologique et solidaire, dans sa version la plus récente

Dans l'attente de la publication de ce guide, la réalisation des mesures (échantillonnage, traitement des échantillons, transport et analyse) s'appuiera, dans la mesure du possible, sur le guide des recommandations techniques d'Aquaref dans sa version la plus récente.

ANNEXE V

MÉTHODOLOGIE DE SÉLECTION DES SITES D'ÉVALUATION POUR LE PROGRAMME DE CONTRÔLE DE SURVEILLANCE DES EAUX SUPERFICIELLES CONTINENTALES

Pour assurer le contrôle de surveillance des eaux de surface continentales (cours d'eau, canaux et plans d'eau), un réseau de sites pérennes répartis sur l'ensemble du territoire (métropole et DOM) est mis en place de façon à disposer d'un suivi des milieux aquatiques dont l'objectif est de suivre l'état général des eaux.

La localisation des sites d'évaluation est adaptée à cette logique.

Pour le contrôle de surveillance, le suivi de toutes les masses d'eau n'est pas requis.

1. Choix des sites « cours d'eau »

Le tableau indicatif ci-dessous donne un ordre de grandeur de la répartition du nombre de sites par bassin métropolitain et par taille de cours d'eau

Tableau 33 : ordre de grandeur de la répartition du nombre de sites d'évaluation pour le programme de contrôle de surveillance des eaux superficielles continentales par bassin métropolitain et par taille de cours d'eau

Tailles des cours d'eau	% du nombre de stations RCS par taille de cours d'eau	Rhône Méditerranée et Corse	Loire- Bretagne	Adour- Garonne	Seine- Normandie	Rhin-Meuse	Artois-Picardie
Très Petits	30 %	117	125	102	64	27	13
Petits	25 %	99	104	85	54	22	12
Moyens	25 %	99	104	85	54	22	12
Grands	10 %	40	42	34	21	9	4
Très Grands	10 %	40	42	34	21	9	4
Total	100 %	395	417	340	214	89	45

Cette répartition indicative peut être ajustée pour chaque bassin en fonction des différentes classes de taille représentées dans le bassin, de leurs proportions respectives et des situations locales particulières.

Pour obtenir une représentativité de l'état général des eaux dans chaque district, le choix des sites tient compte :

- de la logique de construction qui est celle d'un suivi de milieu, et non d'un suivi d'impact. A ce titre, il convient d'éviter les singularités (aval de rejets, aval immédiat de barrages, amont immédiat de confluence, etc.);
- des différents types de masses d'eau définies dans l'arrêté du 12 janvier 2010 relatif aux méthodes et critères à mettre en œuvre pour délimiter et classer les masses d'eau et dresser l'état des lieux prévu à l'article R. 212-3 du code de l'environnement;
- de la surface relative des hydroécorégions par bassin et de leur densité de drainage (tableau ci-dessous) ;
- des forces motrices.

Le tableau indicatif ci-dessous donne un ordre de grandeur de la répartition du pourcentage de sites, par bassin métropolitain et par hydroécorégion de rang 1 (HER 1), en proportion de surface par bassin et selon la densité de drainage.

Tableau 34 : ordre de grandeur de la répartition du pourcentage de sites, par bassin métropolitain et par hydroécorégion de rang 1 (HER 1), en proportion de surface par bassin et selon la densité de drainage

	Hydroécorégion de niveau 1	Rhône, Méditerranée et Corse	Loire- Bretagne	Adour- Garonne	Seine- Normandie	Rhin-Meuse	Artois- Picardie
1	Pyrénées	2 %		10 %			
2	Alpes internes	2 %					
3	Massif Central Sud	3 %	10 %	17 %			
4	Vosges	1 %				20 %	
5	Jura-Préalpes Nord	15 %				0 %	
6	Méditerranée	27 %					
7	Préalpes du Sud	11 %					
8	Cévennes	6 %	0 %	1 %			

	Hydroécorégion de niveau 1	Rhône, Méditerranée et Corse	Loire- Bretagne	Adour- Garonne	Seine- Normandie	Rhin-Meuse	Artois- Picardie
9	Tables calcaires		24 %	6 %	69 %	1 %	69 %
10	Côtes calcaires Est	6 %	2 %		16 %	56 %	
11	Causses calcaires			6 %			
12	Armoricain		36 %		11 %		
13	Landes		0 %	11 %			
14	Coteaux aquitains	1 %		41 %			
15	Plaine Saône	7 %					
16	Corse	8 %					
17	Dépressions sédiment		6 %				
18	Alsace	0 %				20 %	
19	Grands Causses	1 %	0 %	2 %			
20	Dépôts argilo-sableux		5 %	0 %	1 %		27 %
21	Massif Central Nord	0 %	16 %	5 %	3 %		
22	Ardennes				0 %	3 %	4 %
		100 %	100 %	100 %	100 %	100 %	100 %

En outre, des stations destinées à évaluer les flux qui rejoignent les eaux littorales et de transition sont à positionner. Elles concernent les principaux fleuves et doivent être placées en dehors de l'influence des marées.

2. Choix des stations « plans d'eau »

La règle générale retenue est le suivi de 50 % des plans d'eau dont la superficie est supérieure ou égale à 50 hectares. Cette règle peut être ajustée :

- en sélectionnant tous les plans d'eau naturels de plus de 50 hectares ;
- en sélectionnant les plans d'eau d'origine anthropique selon le volume qu'ils représentent (par ordre décroissant) et en couvrant au mieux la diversité rencontrée des types anthropiques définis dans l'arrêté du 12 janvier 2010 relatif aux méthodes et critères à mettre en œuvre pour délimiter et classer les masses d'eau et dresser l'état des lieux prévu à l'article R. 212-3 du code de l'environnement;
- en sélectionnant des plans d'eau inférieurs à 50 hectares, présentant une forte valeur patrimoniale ou de forts enjeux socio-économiques.

3. Remplacement de sites du RCS posant des problèmes avérés

Dans l'hypothèse où le remplacement d'un site du RCS est nécessaire, il conviendra de respecter la logique de construction initiale du réseau.

En outre, les sites d'évaluation dont la localisation permet de retenir un point de prélèvement unique pour les différents éléments de qualité seront privilégiés.

De surcroit, autant que possible, le site d'évaluation sera également représentatif de l'état de la masse d'eau.

ANNEXE VI

PARAMÈTRES ET FRÉQUENCES POUR LE PROGRAMME DE CONTRÔLE DE SURVEILLANCE DES EAUX DE SURFACE

Durant la période couverte par le schéma directeur d'aménagement et de gestion des eaux, le contrôle de surveillance est effectué pour :

- (A) les paramètres indicatifs de tous les éléments de qualité biologique ;
- (B) les paramètres indicatifs de tous les éléments de qualité hydromorphologique;
- (C) les paramètres indicatifs de tous les éléments de qualité physico-chimique ;
- (D) les substances de l'état chimique et les polluants spécifiques de l'état écologique définies à l'annexe II du présent arrêté, qui sont rejetées dans le bassin ou le sous-bassin hydrographique.

Pour les paramètres des catégories (A) à (C), le nombre d'années de suivi par schéma directeur d'aménagement et de gestion des eaux, les fréquences et sites d'évaluation concernés par le programme de surveillance des eaux de surface sont définis pour chaque catégorie de masses d'eau dans les chapitres 1 à 4 qui suivent.

Pour les substances de l'état chimique et les polluants spécifiques de l'état écologique, à savoir la catégorie (D), le nombre d'années de suivi par schéma directeur d'aménagement et de gestion des eaux, les fréquences et sites d'évaluation concernés par le programme de surveillance des eaux de surface sont définis pour toutes les catégories de masses d'eau dans les chapitres 5 à 8 ci-dessous. On distingue la surveillance dont l'objectif est la qualification de l'état chimique des masses d'eau de celle dont l'objectif est d'apprécier l'évolution en tendance des concentrations de substances potentiellement bioaccumulables dans les milieux aquatiques de surface. Pour les substances de l'état chimique numérotées 34 à 45 (cf. annexe II), l'obligation de prise en compte dans le calcul de l'état chimique ne s'applique qu'à partir du 22 décembre 2018.

En outre, afin de répondre à l'objectif du I de l'article 4 du présent arrêté, des contrôles sont effectués sur certains sites du réseau de contrôle de surveillance sur une liste de substances pertinentes définie à l'annexe III. Le nombre d'années de suivi, les fréquences de suivi et les modalités de choix des sites d'évaluation sont définis également dans les chapitres 5 à 8 ci-dessous. La liste des substances pertinentes et leurs modalités de surveillance (nombre d'années de suivi par schéma directeur d'aménagement et de gestion des eaux, fréquences et sites de suivi) sont intégrées au programme de surveillance arrêté par le préfet coordonnateur de bassin.

Les fréquences données dans les tableaux ci-dessous sont les fréquences minimales à suivre, à moins que des intervalles plus longs ne se justifient sur la base des connaissances techniques et des avis d'experts.

Si l'exercice précédent de contrôle de surveillance a montré que l'état des eaux concernées était bon et que rien n'indique, d'après l'analyse d'incidence de l'activité humaine effectuée en application du point I, 2° de l'article R. 212-3 du code de l'environnement, que les incidences sur ces eaux ont changé, alors en pareil cas, le contrôle de surveillance est effectué tous les trois schémas directeurs d'aménagement et de gestion des eaux.

Pour les eaux littorales, les données des réseaux de surveillance établis au titre du présent arrêté contribueront à la surveillance mise en œuvre en application de la directive 2008/56/CE du 17 juin 2008 établissant un cadre d'action communautaire dans le domaine de la politique pour le milieu marin (directive-cadre « stratégie pour le milieu marin »).

Une liste de vigilance sera définie au niveau européen pour les eaux de surface. Cette liste sera composée de substances pour lesquelles des données de surveillance complémentaires doivent être recueillies afin d'étayer les futurs exercices de sélection des substances prioritaires. A partir du 14 septembre 2015 ou dans les six mois suivant la publication officielle au niveau européen de la liste de vigilance, les substances de cette liste sont surveillées *a minima* sur 26 sites d'évaluation représentatifs, à une fréquence qui ne sera pas inférieure à une fois par an.

1. Surveillance des éléments de qualité de l'état écologique pour les eaux côtières

1.1. Eaux côtières de l'Atlantique, la Manche et la mer du Nord

Tableau 35 : surveillance des éléments de qualité de l'état écologique pour les eaux côtières de l'Atlantique, la Manche et la mer du Nord

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)
	E	BIOLOGIE	
Phytoplancton (biomasse)	6	8 (mars à octobre)	Tous, sauf types où cet élément n'est pas pertinent
Phytoplancton (abondance, composition)	6	12	
Angiospermes	6	1	Tous
Macro-algues (blooms)	6	3	Tous, sauf types où cet élément n'est pas pertinent
Macro-algues (intertidal)	2	1	Tous
Macro-algues (subtidal)	2	1	Tous

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)
	6 (sites sensibles et/ou à varia- bilité naturelle importante)		
Invertébrés	6 (sites d'appui) 2 (autres sites)	1	Tous
	PHY	SICO-CHIMIE	
Température Salinité Turbidité	6	En fonction des besoins de la physico- chimie et de la biologie	Tous
Oxygène dissous	6	Au minimum 4 (de juin à septembre) en même temps que phytoplancton	Tous
Nutriments	6	Au minimum 4 (de novembre à février)	Tous
	HYDRO	MORPHOLOGIE	
Hydromorphologie	1	1	Tous

1.2. Eaux côtières de Méditerranée

Tableau 36 : surveillance des éléments de qualité de l'état écologique pour les eaux côtières de Méditerranée

	-	9.1.1	
Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)
	BI	OLOGIE	
Phytoplancton (biomasse, abondance, composition)	6	12	Tous, sauf site où cet élément n'e pas pertinent
Angiospermes	2	1	Tous
Macro-algues	1	1	Tous
Invertébrés de substrat meuble	2	1	Tous
	PHYS	ICO-CHIMIE	
Température 6 Salinité Turbidité		En fonction des besoins de la physico- chimie et de la biologie	Tous
Oxygène dissous	6	Au minimum 4 (de juin à septembre en même temps que phytoplancton)	Tous
Nutriments	1	12	Tous
	HYDRON	1ORPHOLOGIE	
Hydromorphologie	1	1	Tous

1.3. Eaux côtières de Martinique et de Guadeloupe

Tableau 37 : surveillance des éléments de qualité de l'état écologique pour les eaux côtières de Martinique et Guadeloupe

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)
	BIOI	.OGIE	
Phytoplancton (biomasse et abondance)	6	6 minimum	Tous
		12	2 sites représentatifs pour la Martinique, 3 sites représentatifs pour la Guadeloupe
Angiospermes	2	1	Tous
Benthos récifal	2	1	Tous
	PHYSIC	O-CHIMIE	
Physico-chimie	6	6 minimum	Tous

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)	
(paramètres généraux)		12	2 sites représentatifs pour la Martinique, 3 sites représentatifs pour la Guadeloupe	
HYDROMORPHOLOGIE				
Hydromorphologie	1	1	Tous	

1.4. Eaux côtières de La Réunion¹

Tableau 38 : surveillance des éléments de qualité de l'état écologique pour les eaux côtières de La Réunion

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)			
	BIO	LOGIE				
Phytoplancton : (biomasse)	6	6	Toutes les masses d'eau de type 1 à 4 + 1			
(Phytoplancton : abondance/composition) 2	6	3	station « large Ermitage »			
Invertébrés de substrat meuble	2	1	Toutes les masses d'eau de type « côtier » (du type 1 à 4)			
Benthos récifal	2	1	Toutes les masses d'eau de type « récifal » (de type 5)			
	PHYSIC	O-CHIMIE				
Physico-chimie: Paramètres généraux3	6	6	Toutes les masses d'eau + 1 station « large Ermitage »			
	HYDROMORPHOLOGIE					
Hydromorphologie	1	1	Toutes les masses d'eau			
1 Eléments détaillés dans les 4 fascicules techniques élaborés dans le cadre des « GT DCE eaux côtières » à La Réunion 2 Sur un nombre restreint de masses d'eau. Suivi réalisé uniquement sur 4 stations (126-P-006 (LC01), -0,14 (LC04), -0,16 (LC06) et -0,20 (LC07) pour 2016-2021. 3 O2 dissous non pertinent sur des fonds supérieur à 30m et pour le type 5						

1.5. Eaux côtières de Mayotte

Tableau 39 : surveillance des éléments de qualité de l'état écologique pour les eaux côtières de Mayotte

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe l)	
	BIOL	LOGIE		
Phytoplancton (biomasse)	6	2	Toutes les masses d'eau	
Phytoplancton (abondance/composition)	2	2	7 masses d'eau	
Benthos de substrat dur	2	1	7 masses d'eau de type côtières	
	PHYSIC	O-CHIMIE		
Physico-chimie (paramètres généraux)	6	2	Toutes les masses d'eau	
HYDROMORPHOLOGIE				
Hydromorphologie	1	1	Toutes les masses d'eau	

1.6. Eaux côtières de Guyane

Tableau 40 : surveillance des éléments de qualité de l'état écologique pour les eaux côtières de Guyane

Eléments suivis	Nombre d'années de suivi parSDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)	
BIOLOGIE				
Phytoplancton (biomasse)	6	4 au minimum	Masse d'eau côtière	
Phytoplancton (abondance/composition)	6	4 au minimum	Masse d'eau côtière	

Eléments suivis	Nombre d'années de suivi parSDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)			
	PHYSICO-CHIMIE					
Physico-chimie (paramètres généraux)	6	4 au minimum	Masse d'eau côtière			
	HYDROMORPHOLOGIE					
Hydromorphologie	1	1	Masse d'eau côtière			

2. Surveillance des éléments de qualité de l'état écologique pour les eaux de transition

2.1. Eaux de transition de l'Atlantique, la Manche et la mer du Nord

Tableau 41 : surveillance des éléments de qualité de l'état écologique pour les eaux de transition de l'Atlantique, la Manche et la mer du Nord

Eléments suivis	Nombre d'années de suivi SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)
	BI	OLOGIE	
Phytoplancton (biomasse)	•	8 (mars à octobre)	Tous, sauf sites des types où cet élément n'est pas pertinent
Phytoplancton (abondance, composition)	6	12	
Angiospermes	6	1	Tous, sauf sites des types où cet élément n'est pas pertinent
Macro-algues (blooms)	6	3	Tous, sauf sites des types où cet élément n'est pas pertinent
Macro-algues (intertidal)	2 (tous les 3 ans)	1	Tous, sauf sites des types où cet élément n'est pas pertinent
Invertébrés de substrat meuble	2 (tous les 3 ans)	1	Tous
Ichtyofaune	3 (3 ans consécutifs)	2	30 à 50 % des sites
	PHYS	ICO-CHIMIE	
Température Salinité Turbidité	6	En fonction des besoins de la physico- chimie et de la biologie	Tous, sauf sites des types où cet élément n'est pas pertinent
Oxygène dissous	6	Au minimum 4 (de juin à septembre en même temps que phytoplancton)	Tous
Nutriments	2 (OSPAR sans problème) 6 (autres)	Au minimum 4 (de novembre à février)	Tous
	HYDRON	MORPHOLOGIE	
Hydromorphologie	1	1	Tous

2.2. Eaux de transition de Méditerranée

Tableau 42 : surveillance des éléments de qualité de l'état écologique pour les eaux de transition de Méditerranée

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)
	BIO	LOGIE	
Phytoplancton (biomasse, abondance, composition)	6 pour le bras du Rhône	12	Type 12 sauf exception argumentée
	2	3 (tous les mois, de juin à août)	Type 10
Macro-algues et angiospermes	2	1	Type 10
Invertébrés de susbtrat meuble	2	1	Tous (sauf lagunes oligo et mésohalines)

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)	
Ichtyofaune	Non défini	Non défini	Non défini	
	PHYSIC	O-CHIMIE		
- · ·	6	12	Type 12	
Température Salinité Turbidité	turbidité : = 2 (température et salinité non perti- nent)	3	Туре10	
O selections	6	12	Type 12	
Oxygène dissous	2	3	Type 10	
N. C. contract	1	12	Type 12	
Nutriments	2	3	Type 10	
HYDROMORPHOLOGIE				
Hydromorphologie	1	1	Tous	

2.3. Eaux de transition de Guyane

Tableau 43 : surveillance des éléments de qualité de l'état écologique pour les eaux de transition de Guyane

Eléments Nombre d'années de suivi suivis par SDAGE		Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)		
	PHYSICO-CHIMIE				
Physico-chimie (paramètres généraux)	6	4 au minimum	Toutes les masses d'eau		
	HYDROMORPHOLOGIE				
Hydromorphologie	1	1	Toutes les masses d'eau		

3. Surveillance des éléments de qualité de l'état écologique pour les cours d'eau

Tableau 44 : surveillance des éléments de qualité de l'état écologique pour les cours d'eau

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)	
		HYDROMORPHOLOGIE ¹		
Morphologie	1 ²	1	Tous	
Continuité écologique	1 ²	1	Tous	
Hydrologie	6	En fonction des besoins pour l'interprétation de la physico-chimie et de la biologie	Tous sauf canaux	
		BIOLOGIE		
Poissons ³	34	1	Tous, sauf sites des types où cet élément n'est pas pertinent	
Invertébrés benthiques	6	1	Tous, sauf sites des types où cet élément n'est pas pertinent	
Phytoplancton ⁶	6	4	Tous, sauf sites des types où cet élément d qualité n'est pas pertinent	
Diatomées 6 1		Tous, sauf sites des types où cet élément d qualité n'est pas pertinent		
Macrophytes	3	1	Tous, sauf sites des types où cet élément n'est pas pertinent	
PHYSICO-CHIMIE ¹				
Paramètres physico-chimiques des groupes 1 ⁵ , 2 et 2bis	6	6	Tous	

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)
Paramètres physico-chimiques du groupe 3	6	2	Tous
Paramètres physico-chimiques des groupes 4 et 5	2	1	Tous sites où le suivi sédiments est possible

¹ Les paramètres hydromorphologiques et physico-chimiques à suivre sont indiqués à l'annexe IV.

² Prise en compte possible d'éventuelles modifications importantes entre deux investigations.

⁴ En métropole, chaque année, la moitié des sites seront surveillés

4. Surveillance des éléments de qualité de l'état écologique pour les plans d'eau

Tableau 45 : surveillance des éléments de qualité de l'état écologique pour les plans d'eau

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés (cf. annexe I)				
	HYDROMORPHOLOGIE¹						
Morphologie	1	12	Tous				
Hydrologie	1	En fonction des besoins pour l'interprétation de la physico- chimie et de la biologie ²	Tous				
	BIOL	OGIE					
Poissons	1	1	Tous, sauf sites des types où cet élément n'est pas pertinent				
Invertébrés	1	1	Tous, sauf sites des types où cet élément n'est pas pertinent				
Phytoplancton	2 ³	44	Tous, sauf sites des types où cet élément n'est pas pertinent				
Macrophytes	1	1	Tous, sauf sites des types où cet élément n'est pas pertinent				
Diatomées	1	1	Tous, sauf sites des types où cet élément n'est pas pertinent				
PHYSICO-CHIMIE ¹							
Paramètres physico-chimie des groupes 1, 2 et 2bis	2 ⁵	4 ⁵	Tous				
Paramètres physico-chimiques du groupe 3	1 ⁶	1 ⁶	Tous				
Paramètres physico-chimiques des groupes 4, 4bis et 5	17	17	Tous				

¹ Les paramètres hydromorphologiques et physico-chimiques à suivre sont indiqués à l'annexe IV.

Dans la mesure du possible, les campagnes pour les paramètres des groupes 1 à 3 seront réalisées au jour (+/- 1 ou 2 jours) du passage des satellites dont les dates seront communiquées pour chaque plan d'eau par le pôle AFB-Irstea plans d'eau.

5. Surveillance des substances de l'état chimique, polluants spécifiques de l'état écologique et substances pertinentes dans les eaux de surface continentales pour les cours d'eau

Tableau 46 : surveillance des substances de l'état chimique, polluants spécifiques de l'état écologique et substances pertinentes dans les eaux de surface continentales pour les cours d'eau

³ Dans les DOM insulaires (Guadeloupe, Martinique, Mayotte, La Réunion) la surveillance des macro-crustacés est associée à la surveillance des poissons.

⁵ Il est recommandé d'assurer un suivi en continu du paramètre température.

⁶ Le phytoplancton doit être fait de manière synchrone avec la physico-chimie.

² Prise en compte possible d'éventuelles modifications importantes entre deux investigations.

³ 2 années de suivi par plan de gestion sont requises en général. Toutefois, certains plans d'eau peuvent être suivis 1 année par plan de gestion, dans les cas suivants :

⁻ lorsque que 1 seule année de suivi par plan de gestion permet une évaluation suffisamment fiable de son état écologique (faible variabilité interannuelle de l'élément de qualité phytoplancton; informations disponibles sur ce plan d'eau ; etc..) et/ou ;

le suivi présente des contraintes très importantes (cas des plans d'eau de montagne difficilement accessibles notamment).

⁴ Les périodes de prélèvement stipulées dans le protocole suscité doivent être scrupuleusement respectées et tout particulièrement la première campagne décrite comme devant avoir lieu « entre mi-février et fin mars, fin de l'hiver, correspondant à la période de brassage (...) » pour les plans d'eau ayant une stratification saisonnière estivale.

⁵ Le suivi des paramètres physico-chimiques généraux est réalisé en concomitance avec le suivi phytoplancton

⁶ Fin de période de mélange hivernale.

⁷ De préférence à la fin de l'été

Paramètres contrô- lés	Propriétés des paramètres	Matrice	Nombre d'année de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés
	Substances disposant d'une	Poisson (²)	3	1	Tous sites où la pêche est possible et la ressource halieutique suffisante
Les substances de l'état chimique (annexe II)	norme de qualité environne- mentale (NQE) biote (¹)	Invertébrés (²)	3	3	Tout ou partie des sites poissons, complété par des sites représentatifs des bassins
	Substances ne disposant pas d'une NQE biote	Eau	Voir tableau n°47	12	Tous
Les polluants spécifiques de l'état écologique (annexe II)		Eau	2	4	Tous
Les substances perti-	Si la matrice eau est pertinente (cf. annexe III)	Eau	Liste A: 2 Liste B: 1 (³)	6 pour les pesticides 4 pour les autres micro- polluants	25 % des sites du réseau de contrôle de surveil- lance
nentes (annexe III)	Si la matrice sédiment est pertinente (cf. annexe III)	Sédiment	Liste A: 2 Liste B: 1 (3)	1	25 % des sites du réseau de contrôle de surveil- lance

(¹) Substances numérotées 5, 7, 12, 15, 16, 17, 21, 26, 28, 34, 35, 37, 43 et 44 (Tableau 23 de l'annexe II du présent arrêté). Pour rappel, la directive préconise un suivi sur l'ensemble des sites du réseau de contrôle de surveillance, 6 années par SDAGE ou 2 pour les substances ubiquistes. Les fréquences indiquées dans ce tableau sont issues d'études de faisabilité scientifique et économique.

(3) En l'absence d'une limite de quantification en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques en 2019, la substance ne sera pas analysée.

Une surveillance dans une autre matrice ou un autre taxon de biote que celui indiqué dans le tableau ci-dessus est possible si les conditions suivantes sont remplies :

 la NQE utilisée dans la nouvelle matrice ou le nouveau taxon de biote garantit au moins le même niveau de protection que la NQE pour la matrice citée dans le tableau ci-dessus.

ET

- la limite de quantification pour la matrice choisie ou le taxon de biote choisi est inférieure à 30 % de la NQE correspondante et l'incertitude de la mesure associée est inférieure ou égale à 50 % (facteur d'élargissement k=2) au niveau de la norme de qualité environnementale correspondante, OU si ces deux conditions sur la limite de quantification et l'incertitude ne sont vérifiées simultanément pour aucune matrice, alors la surveillance est effectuée à l'aide des meilleures techniques disponibles n'entraînant pas de coûts excessifs, et les performances analytiques sur la nouvelle matrice choisie ou le nouveau taxon de biote choisi sont au moins aussi bonnes que sur la matrice citée dans le tableau ci-dessus.

Si l'une de ces 2 conditions n'est pas vérifiée, la surveillance se fait obligatoirement sur la matrice citée dans le tableau ci-dessus.

Si la nouvelle matrice choisie est le biote, alors les contrôles ont lieu conformément aux fréquences indiquées dans le tableau ci-dessus suivant le taxon considéré.

Si la nouvelle matrice choisie est l'eau, les contrôles ont lieu au moins douze fois par an, une année par cycle de gestion.

Lorsqu'une NQE pour le biote ou les sédiments est utilisée, un contrôle est réalisé dans l'eau de surface pour vérifier le respect de la conformité à la NQE en concentration maximale admissible, au moins dans les cas où un risque potentiel pour ou via l'environnement aquatique résultant d'une exposition aiguë est constaté sur la base de concentrations ou d'émissions mesurées ou estimées dans l'environnement.

Les modalités de suivi dans le biote en métropole sont complétées par la note technique du 26 décembre 2017 relative à la mise en œuvre du suivi des substances de l'état chimique dans le biote.

Les modalités de suivi dans le biote en outremer seront complétées par une note technique dédiée. Dans l'attente de ces éléments de stratégie, le suivi sur biote en outremer n'est pas imposé.

⁽²⁾ Pour rappel, la directive 2013/39 exige le suivi sur poisson, à l'exception des substances n°15 (fluoranthène), n°28 (HAP) et n°37 (dioxines et composés de type dioxine). Pour les substances n°15 (fluoranthène) et n°28 (HAP), la surveillance doit être réalisée dans les crustacés ou mollusques. Pour la substance n°37 (dioxines et composés de type dioxine), la surveillance est réalisée dans le poisson, ou le crustacé ou le mollusque, conformément à l'annexe, section 5.3 du règlement (UE) n°1259/2011 de la Commission du 2 décembre 2011 modifiant le règlement (CE) n°1881/2006 en ce qui concerne les teneurs maximales en dioxines, en PCB de type dioxine et en PCB autres que ceux de type dioxine des denrées alimentaires

Tableau 47 : nombre d'années de surveillance par SDAGE, pour chaque substance de l'état chimique, par bassin - cours d'eau, matrice eau

							Ba	Bassins ou groupement de bassins concernés	vement de bas	sins concerne	és			
ž	Code Sandre	Paramètre	Numéro CAS	-Аdour-Garonne	eibinsoi9-ziot1A	-Bretagne	эгиэМ-пі4Я	eèrnsrietibèM-enôri et Corse	Seine-Normandie	ednolebsuð	ansynd	Martinique	Mayotte	noinuèA
1	1101	Alachlore	15972-60-8	1	0	0	0	0	0	1	2	2	2	0
2	1458	Anthracène	120-12-7	1	2	1	1	1	1	1	2	2	2	1
3	1107	Atrazine	1912-24-9	2	2	2	1	-	2	1	2	2	2	-
4	1114	Benzène	71-43-2	-	-	1	-	-	-	-	2	2	2	-
9	1388	Cadmium et ses composés	7440-43-9	-	2	-	-	-	-	-	2	2	2	-
6 bis	1276	Tétrachlorure de carbone	56-23-5	1	1	1	1	1	1	1	2	2	2	1
7	1955	Chloroalcanes C10- C13	85535-84-8	1	1	1	1	1	1	1	1	1	1	1
8	1464	Chlorfenvinphos	470-90-6	-	0	0	0	0	0	-	2	2	2	0
6	1083	Chlorpyrifos (éthyl- chlorpyrifos)	2921-88-2	1	-	1	1	1	1	1	2	2	2	1
		Pesticides cyclodiè- nes												
_	1103	Aldrine	309-00-2	1	0	0	0	0	1	0	2	2	2	1
9 bis	1173	Dieldrine	60-57-1	1	0	0	0	0	1	0	2	2	2	1
	1181	Endrine	72-20-8	1	0	0	0	0	1	0	2	2	2	1
	1207	Isodrine	465-73-6	_	0	0	0	0	_	0	2	2	2	1
		DDT total et para- para-DDT												
9 ter	1144	DDD 44′	72-54-8	_	0	1	0	0	_	1	2	2	2	1
	1146	DDE 44'	72-55-9	-	0	-	0	0	-	-	2	2	2	1
	1147	DDT 24'	789-02-6	-	0	-	0	0	-	-	2	2	2	-
										Ì				

		1		1				1	1	1	1								
	noinuàA	-	1	1	-	1		1	1		-	1	-	1	1	2	-	2	-
	Mayotte	2	2	2	-	2		2	2		2	2	2	2	2	2	2	2	2
	əupinitrisM	2	2	2	-	2		2	2		2	2	2	2	2	2	2	2	2
se	Guyane	2	2	2	-	2		2	2		2	2	2	2	2	2	2	2	2
ssins concerné	Guadeloupe	-	1	1	-	1		1	1		1	1	1	1	1	2	-	2	-
oement de ba	Seine-Normandie	-	1	1	-	2		0	0		2	2	2	2	2	~	2	-	-
Bassins ou groupement de bassins concernés	Phône-Méditerranée et Corse	0	1	1	-	2		0	0		1	1	1	1	1	2	2	2	-
Bas	əsnəM-nidЯ	0	1	1	-	2		0	0		1	1	1	1	2	2	2	2	2
	engster8-erioJ	-	1	1	-	2		1	1		1	1	1	1	2	-	2	-	-
	eibirsoiq-siotrA	0	1	1	-	2		0	0		1	1	1	1	2	-	2	2	-
	anno1s2-1uobA	-	1	1	-	2		1	1		1	1	1	1	1	~	2	-	-
	Numéro CAS	50-29-3	107-06-2	75-09-2	117-81-7	330-54-1		8-86-656	33213-65-9		319-84-6	319-85-7	319-86-8	58-89-9	34123-59-6	7439-92-1	91-20-3	7440-02-0	84852-15-3
	Paramètre	DDT 44'	1,2-dichloroéthane	Dichlorométhane	Di(2-ethylhexyle)- phthalate (DEHP)	Diuron	Endosulfan	Endosulfan alpha	Endosulfan bêta	Hexachlorocyclohe- xane	Hexachlorocyclohe- xane alpha	Hexachlorocyclohe- xane bêta	Hexachlorocyclohe- xane delta	Hexachlorocyclohe- xane gamma	Isoproturon	Plomb et ses com- posés	Naphtalène	Nickel et ses com- posés	Nonylphénols (4- nonylphénol)
	Code Sandre	1148	1161	1168	6616	1177		1178	1179		1200	1201	1202	1203	1208	1382	1517	1386	1958
	ž		10	11	12	13		14				18			19	20	22	23	24

	1										I.	-	-			-		
noinuàA	1	l	ı	1	1	-			—	-	1	-	0	2	2	2	2	2
Mayotte	2	1	2	2	2	2	-		2	2	2	2	2	2	2	2	2	2
əupinitrisM	2	1	2	2	2	2	1		2	2	2	2	2	2	2	2	2	2
Эикуапе	2	1	2	2	2	2	1		2	2	2	2	2	2	2	2	2	2
Guadeloupe	1	1	1	1	1	1	1		-	-	1	1	1	2	2	2	2	2
Seine-Mormandie	1	1	1	1	1	-	1		-	-	1	1	0	2	2	2	2	2
Phône-Méditerranée et Corse	1	1	1	1	1	-	-		-	-	-	_	0	2	2	2	2	2
9su9M-nidA	1	1	1	1	1	-	1		-	-	1	1	0	2	2	2	2	2
engster8-erioJ	1	1	1	1	1	-	1		~	-	1	-	0	2	2	2	2	2
eibinsoiq-siotrA	1	1	1	1	1	-	-		-	-	1	-	0	2	2	2	2	2
enno1s2-1uobA	1	1	1	1	1	-	1		~	-	1	-	-	2	2	2	2	2
Numéro CAS	140-66-9	608-93-5	87-86-5	122-34-9	127-18-4	79-01-6	36643-28-4		87-61-6	120-82-1	108-70-3	67-66-3	1582-09-8	124495-18-7	74070-46-5	42576-02-3	28159-98-0	52315-07-8
Paramètre	Octylphénols (4- 1,1',3,3'-tétramé- thylbutylphénol)	Pentachlorobenzène	Pentachlorophénol	Simazine	Tétrachloroéthylène	Trichloroéthylène	Composés du tribu- tylétain (Tributy- létain cation)	Trichlorobenzène	Trichlorobenzène- 1,2,3	Trichlorobenzène- 1,2,4	Trichlorobenzène- 1,3,5	Trichlorométhane	Trifluraline	Quinoxyfène	Aclonifène	Bifénox	Cybutryne	Cyperméthrine
Code Sandre	1959	1888	1235	1263	1272	1286	2879		1630	1283	1629	1135	1289	2028	1688	1119	1935	1140
ž	25	26	27	29	29 bis	29 ter	30			31	<u> </u>	32	33	36	38	39	40	41
	Numero Code Sandre Annorac CAS Sandre Annorac CAS Seine-Mentagne Britanian-Mentagne Seine-Mentagne Guadeloupe Guadeloupe Seine-Mormandie annorac CAS Seine-Mormandie Seine-Mormandie Seine-Mormandie annorac CAS Seine-Mormandie Seine-Mormand	Code Sandre Paramètre Numéro CAS Andre CAS And	Code Sandre Insertation Paramètre Invitation Numéro CAS Actour die raggine et agent and ie et Conservation Ribin-Meure et Courant inique	Code Sandre Inserte In Numéro CAS Numéro CAS Richien in indication indication in indication indication in indication indication in indication indin	Code Sandre Integrated Sandre Sandr	Code Sandre Insertion of Sandre Insertion o	Code Sandre Inset Paramètre Inset (Gato onine) Numéro CAS Actionaridie de la presentation of the foliation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presentation of thy language (Gato onine) Actionaridie de la presen	Code Sandre Incompletion of Mannetor CAS (Sandre Incompletion) of Mannetor CAS (Sandre Incompletion) (A. 1.1.3.3.4 etrain) (A. 1.1.6.6.9) Incompletion (A. 1.1.6.9.9) Incompletion (A. 1.1.6.	Code Sandre Perramètre Numero CAS CAS Action of Principal Residence o	Code Sandre University Lights Numero CAS Action of Parameter (All December) Action of Parameter (All	Code Sandre Paramètre Numéro CAS Répérenting Répérenting	Code Sandre Paramètre Numitor CAS read of parameter read of param	Code Sundry Parameters Number OAS Code Sundry Add Justice States A	Code Sandrey Parameters Number CASS Code Sandrey Total Code Sandrey Application of the Code Sandrey Code Sandrey	Code Sundry Parameter Numéro CAS Que de	Code Sundre Parameters Numeiro Case Appendix N	Code Stands Premates Numbte Code Code Code Stands Total Code Stands Action Stands Total Stands Action Stands Total Stands Action Stands	Code Standth Personther Perso

	noinuèA	2	2
	Mayotte	2	2
	eupinitisM	2	2
ıés	Биуапе	2	2
Bassins ou groupement de bassins concernés	ednolebenĐ	2	2
pement de ba	9ibnsmroM-əniəS	2	2
assins ou grou	Ahône-Méditerranée et Corse	2	2
Bg	əsnəM-nidЯ	2	2
	engster8-erioJ	2	2
	eibinsoiq-siotıA	2	2
	эппот ь Ә-тиоbA	2	2
	Numéro CAS	62-73-7	886-50-0
	Paramètre	Dichlorvos	Terbutryne
	Code Sandre	1170	1269
	ž	42	45

6. Surveillance des substances de l'état chimique, polluants spécifiques de l'état écologique et substances pertinentes dans les eaux de surface continentales – plans d'eau

Tableau 48 : surveillance des substances de l'état chimique, polluants spécifiques de l'état écologique et substances pertinentes dans les eaux de surface continentales – plans d'eau

		=	=		
Paramètres contrôlés	Propriétés des paramètres	Matrice	Nombre d'année de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation RCS concernés
	Substances disposant d'une norme de qualité	Poisson (²)	1	1	Tout site où la pêche est possible et la ressource halieutique suffisante
Les substances de l'état chimique (annexe II)	environnementale (NQE) biote (1)	Invertébrés (²)		s n'est pas imposé sur plan eloppement des protocoles a	
	Substances ne disposant pas d'une NQE biote	Eau	0 ou 1 (Voir Tableau n°39)	4	Tous
Les polluants spécifiques de l'état écologique (annexe II)		Eau	1	4	Tous
Les substances pertinen-	Si la matrice eau est per- tinente (cf annexe III)	Eau	1 (3)	4 pour les autres micro- polluants	25 % des sites du réseau de contrôle de surveillance
tes (annexe III)	Si la matrice sédiment est pertinente (cf. annexe III)	Sédiment	1 (3)	1	25 % des sites du réseau de contrôle de surveillance

⁽¹) Substances numérotées 5, 7, 12, 15, 16, 17, 21, 26, 28, 34, 35, 37, 43 et 44 (tableau 23 de l'annexe II du présent arrêté). Pour rappel, la directive préconise un suivi sur l'ensemble des sites du réseau de contrôle de surveillance, 6 années par SDAGE ou 2 pour les substances ubiquistes. Les fréquences indiquées dans ce tableau sont issues d'études de faisabilité scientifique et économique.

Une surveillance dans une autre matrice ou un autre taxon de biote que celui indiqué dans le tableau ci-dessus est possible si les conditions suivantes sont remplies;

 la NQE utilisée dans la nouvelle matrice ou le nouveau taxon de biote garantit au moins le même niveau de protection que la NQE pour la matrice citée dans le tableau ci-dessus.

FT

- la limite de quantification pour la matrice choisie ou le taxon de biote choisi est inférieure à 30 % de la NQE correspondante et l'incertitude de la mesure associée est inférieure ou égale à 50 % (facteur d'élargissement k=2) au niveau de la norme de qualité environnementale correspondante, OU si ces deux conditions sur la limite de quantification et l'incertitude ne sont vérifiées simultanément pour aucune matrice, alors la surveillance est effectuée à l'aide des meilleures techniques disponibles n'entraînant pas de coûts excessifs, et les performances analytiques sur la nouvelle matrice choisie ou le nouveau taxon de biote choisi sont au moins aussi bonnes que sur la matrice citée dans le tableau ci-dessus.

Si l'une de ces 2 conditions n'est pas vérifiée, la surveillance se fait obligatoirement sur la matrice citée dans le tableau ci-dessus.

Si la nouvelle matrice choisie est le biote, alors les contrôles ont conformément aux fréquences indiquées dans le tableau ci-dessus suivant le taxon de biote considéré.

Si la nouvelle matrice choisie est l'eau, les contrôles ont lieu au moins quatre fois par an, une année par cycle de gestion.

Lorsqu'une NQE pour le biote ou les sédiments est utilisée, un contrôle est réalisé dans l'eau de surface pour vérifier le respect de la conformité à la NQE en concentration maximale admissible, au moins dans les cas où un risque potentiel pour ou via l'environnement aquatique résultant d'une exposition aigüe est constaté sur la base de concentrations ou d'émissions mesurées ou estimées dans l'environnement.

Les modalités de suivi dans le biote en métropole sont complétées par la note technique du 26 décembre 2017 relative à la mise en œuvre du suivi des substances de l'état chimique dans le biote.

Les modalités de suivi dans le biote en outremer seront complétées par une note technique dédiée. Dans l'attente de ces éléments de stratégie, le suivi sur biote en outremer n'est pas imposé.

⁽²⁾ Pour rappel, la directive 2013/39 exige le suivi sur poisson, à l'exception des substances n°15 (fluoranthène), n°28 (HAP) et n°37 (dioxines et composés de type dioxine). Pour les substances n°15 (fluoranthène) et n°28 (HAP), la surveillance doit être réalisée dans les crustacés ou mollusques. Pour la substance n°37 (dioxines et composés de type dioxine), la surveillance est réalisée dans le poisson, ou le crustacé ou le mollusque, conformément à l'annexe, section 5.3 du règlement (UE) n°1259/2011 de la Commission du 2 décembre 2011 modifiant le règlement (CE) n°1881/2006 en ce qui concerne les teneurs maximales en dioxines, en PCB de type dioxine et en PCB autres que ceux de type dioxine des denrées alimentaires

⁽³⁾ En l'absence d'une limite de quantification en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques en 2019, la substance ne sera pas analysée.

Tableau 49 : nombre d'années de surveillance par SDAGE, pour chaque substance de l'état chimique, par bassin - plans d'eau, matrice eau

		•		,									Ī
						Bassir	Bassins ou groupement de bassins concernés	ent de bass	sins conc	cernés			
ž	Code Sandre	Paramètre	Numéro CAS	anno1s2-1uobA	Loire-Bretagne	- esueM-nidA	eènerranèd eènoù te et Corse	eibnsmroM-enie	Guadeloupe	биуапе	eupinitrsM	Mayotte	noinuàЯ
1	1101	Alachlore	15972-60-8	1 0	1	1	0	0	1	1	1	-	-
2	1458	Anthracène	120-12-7	1 1	1	1	1	1	1	1	1	1	1
3	1107	Atrazine	1912-24-9	1 1	1	1	1	1	1	1	1	1	1
4	1114	Benzène	71-43-2	1 1	1	1	1	1	1	1	1	1	1
9	1388	Cadmium et ses composés	7440-43-9	1		_	-	-	_	-	_	_	_
6 bis	1276	Tétrachlorure de carbone	56-23-5	1	_	-	_	-	_	-	_	_	_
7	1955	Chloroalcanes C10-C13	85535-84-8	1	_	_	-	-	-	-	_	_	-
∞	1464	Chlorfenvinphos	470-90-6	1 0	-	-	0	0	_	-	_	_	-
6	1083	Chlorpyrifos (éthylchlorpyrifos)	2921-88-2	1	-	-	-	-	-	-	-	-	-
		Pesticides cyclodiènes											
	1103	Aldrine	309-00-2	1 0	-	-	-	0	-	-	-	_	-
9 bis	1173	Dieldrine	60-57-1	1 0	_	-	-	0	-	-	-	_	-
	1181	Endrine	72-20-8	1 0	-	-	-	0	_	-	-	_	-
	1207	Isodrine	465-73-6	1 0	1	1	1	0	1	1	1	1	1
		DDT total et para-para-DDT											
	1144	DDD 44'	72-54-8	1 0		_	-	0	_	-	_	_	_
9 ter	1146	DDE 44'	72-55-9	1 0	_	_	-	0	_	_	_	_	_
	1147	DDT 24'	789-02-6	1 0	-	-	-	0	_	-	_	_	-
	1148	DDT 44'	50-29-3	1 0		_	-	0	_	-	_	_	_
10	1161	1,2-dichloroéthane	107-06-2	1	-	-	-	-	_	-	-	_	-
11	1168	Dichlorométhane	75-09-2	1 1	1	1	1	1	1	1	1	1	1
													1

							Bassins	Bassins ou groupement de bassins concernés	nt de bassi	ins conce	ernés			
ž	Code Sandre	Paramètre	Numéro CAS	Adour-Garonne	eibrsoiq-siotrA	engster8-evicd	esueM-nidA	eènerranée esroO te	Seine-Normandie	ednolebsuð	Guyane	eupinitrsM	Mayotte	noinuàA
12	6616	Di(2-ethylhexyle)-phthalate (DEHP)	117-81-7	1	1	1	1	1	1	1	1	1	1	1
13	1177	Diuron	330-54-1	1	1	1	1	1	1	1	1	1	1	1
		Endosulfan												
14	1178	Endosulfan alpha	8-86-696	-	0	-	-	0	0	-	-	-	-	-
	1179	Endosulfan bêta	33213-65-9	-	0	-	-	0	0	_	_		_	_
		Hexachlorocyclohexane												
	1200	Hexachlorocyclohexane alpha	319-84-6	1	1	1	1	1	1	1	1	1	1	1
18	1201	Hexachlorocyclohexane bêta	319-85-7	1	1	1	1	1	1	1	1	1	1	1
	1202	Hexachlorocyclohexane delta	319-86-8	1	1	1	1	1	1	1	1	1	1	1
	1203	Hexachlorocyclohexane gamma	58-89-9	1	1	1	1	1	1	1	1	1	1	1
19	1208	Isoproturon	34123-59-6	-	-	-	-	-	-	-	-	_	-	1
20	1382	Plomb et ses composés	7439-92-1	-	-	-	-	-	-	-	-	-	-	-
22	1517	Naphtlaine	91-20-3	1	1	1	1	1	1	1	1	1	1	1
23	1386	Nickel et ses composés	7440-02-0	-	-	-	-	-	-	_	-		-	_
24	1958	Nonylphénols (4-nonylphénol)	84852-15-3	-	-	-	-	-	-	-	-	_	-	1
25	1959	Octylphénols (4-1,1',3,3'-tétraméthylbutylphénol)	140-66-9	-	-	1	-	-	-	-	_	_	_	-
26	1888	Pentachlorobenzène	608-93-5	-	-	-	-	1	-	-	_	_	_	-
27	1235	Pentachlorophénol	87-86-5	-	-	-	-	-	-	_	-	_	_	1
29	1263	Simazine	122-34-9	-	-	-	-	-	-	-	-	-	-	-
29 bis	1272	Tétrachloroéthylène	127-18-4	-	-	-	-	1	-	-	-		-	-
29 ter	1286	Trichloroéthylène	79-01-6	-	-	-	-	-	-	-	-	-	-	-
30	2879	Composés du tributy/étain (Tributy/étain cation)	36643-28-4	-	-	-	-	1	-	_	-	_	-	_

						Bassins	Bassins ou groupement de bassins concernés	nt de bassi	ins conce	ernés			
Š	Code Sandre	Paramètre	Numero CAS	eibrsoiq-siotrA	engster8-erioJ	əsnəM-nidA	Phône-Méditerranée et Corse	Seine-Normandie	ednolebsuð	Эикуапе	eupiniħsM	Mayotte	noinuèA
		Trichlorobenzène											
Ç	1630	Trichlorobenzène-1,2,3	87-61-6	1	1	1	1	1	1	1	1	1	-
ე ე	1283	Trichlorobenzène-1,2,4	120-82-1	1	1	1	1	1	1	1	1	1	1
	1629	Trichlorobenzène-1,3,5	108-70-3	1	1	1	1	1	1	1	1	1	1
32	1135	Trichlorométhane	67-66-3		_	-	-	-	-	_	-	-	_
33	1289	Trifluraline	1582-09-8	0	1	1	1	1	1	1	1	1	-
36	2028	Quinoxyfène	124495-18-7	1	1	1	1	1	1	1	1	1	1
38	1688	Aclonifène	74070-46-5		_	-	-	-	-	_	-	-	_
39	1119	Bifénox	42576-02-3	1	1	1	1	1	1	1	1	1	-
40	1935	Cybutryne	28159-98-0	1	1	1	1	1	1	1	1	1	1
41	1140	Cyperméthrine	52315-07-8		_	-	-	-	-	_	-	-	_
42	1170	Dichlorvos	62-73-7	1	1	1	1	1	1	1	1	1	-
45	1269	Terbutryne	886-50-0	1	1	1	-	1	1	-	-	1	1

7. Surveillance des substances de l'état chimique, polluants spécifiques de l'état écologique et substances pertinentes dans les eaux littorales

Tableau 50 : surveillance des substances de l'état chimique, polluants spécifiques de l'état écologique et substances pertinentes dans les eaux littorales

Propriétés des paramètres	Matrice	Nombre d'année de suivi par SDAGE	Fréquence des contrôles par année	Sites d'évaluation concernés
Substances disposant d'une norme de qualité environnementale (NQE) biote (¹) et substances prioritaires bioaccu- mulées par les mollusques bivalves et non métabolisées par ces orga- nismes (⁴)	Mollusque (²)	2 (Réseau ROCCH) 2 (Réseau RINBIO)	1	Réseaux ROCCH et RINBIO
Substances ne disposant pas d'une NOE biote et substances n'étant pas bioaccumulées par les mol- lusques bivalves.	Eau	(Les prescriptions nationales seront définies en fonction des résultats des chantiers en cours sur les échantillonneurs pas- sifs.)	12	Tous
Chlordécone en Guadeloupe et Martinique	Eau	(Les prescriptions nationales seront définies en fonction des résultats des chantiers en cours sur les échantillonneurs passifs)	4	Tous
	Biote	Les taxons, fréquences et sites ser	ont définis en fonction en cours	des études de faisabilité
Si la matrice eau est pertinente (cf. annexe III)				25 % des sites du réseau de contrôle de surveillance
Si la matrice sédiment est perti- nente (cf. annexe III)	Sédiment	1 (³)	1	25 % des sites du réseau de contrôle de surveillance
	Substances disposant d'une norme de qualité environnementale (NQE) biote (¹) et substances prioritaires bioaccumulées par les mollusques bivalves et non métabolisées par ces organismes (⁴) Substances ne disposant pas d'une NQE biote et substances n'étant pas bioaccumulées par les mollusques bivalves. Chlordécone en Guadeloupe et Martinique Si la matrice eau est pertinente (cf. annexe III)	Substances disposant d'une norme de qualité environnementale (NQE) biote (¹) et substances prioritaires bioaccumulées par les mollusques bivalves et non métabolisées par ces organismes (⁴) Substances ne disposant pas d'une NQE biote et substances n'étant pas bioaccumulées par les mollusques bivalves. Eau Chlordécone en Guadeloupe et Martinique Biote Si la matrice eau est pertinente (cf. annexe III) Si la matrice sédiment est perti-	Substances disposant d'une norme de qualité environnementale (NQE) biote (¹) et substances prioritaires bioaccumulées par les mollusques bivalves et non métabolisées par ces organismes (⁴) Substances ne disposant pas d'une NQE biote et substances n'étant pas bioaccumulées par les mollusques bivalves. Eau Eau Chlordécone en Guadeloupe et Martinique Eau Chlordécone en Guadeloupe et Martinique Eau Chlordécone en Guadeloupe et Martinique Si la matrice eau est pertinente (cf. annexe III) Si la matrice sédiment est perti- Sédiment Mollusque (²) 2 (Réseau ROCCH) 2 (Réseau ROCCH) 2 (Réseau RINBIO) 1 (Les prescriptions nationales seront définies en fonction des résultats des chantillonneurs passifs.) Les taxons, fréquences et sites ser Les prescriptions nationales seront définies en fonction des résultats des chantillonneurs passifs) Les taxons, fréquences et sites ser Les prescriptions nationales seront définies en fonction des résultats des chantillonneurs passifs)	Substances disposant d'une norme de qualité environnementale (NQE) biote (¹) et substances prioritaires bioaccumulées par les mollusques bivalves et non métabolisées par ces organismes (⁴) Substances ne disposant pas d'une NQE biote et substances n'étant pas bioaccumulées par les mollusques bivalves. Substances ne disposant pas d'une NQE biote et substances n'étant pas bioaccumulées par les mollusques bivalves. Eau

⁽¹⁾ Substances numérotées 5, 7, 12, 15, 16, 17, 21, 26, 28, 34, 35, 37, 43 et 44 (Tableau 23 de l'annexe II du présent arrêté). Pour rappel, la directive préconise un suivi sur l'ensemble des sites du réseau de contrôle de surveillance, 6 années par SDAGE ou 2 pour les substances ubiquistes. Les fréquences indiquées dans ce tableau sont issues d'études de faisabilité scientifique et économique.

(4) Substances numérotées 2, 6, 7, 8, 9, 9bis, 9ter, 12, 14, 18, 20, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 36, 38, 39, 40, 41, 45.

Une surveillance dans une autre matrice ou un autre taxon de biote que celui indiqué dans le tableau ci-dessus est possible si les conditions suivantes sont remplies;

 la NQE utilisée dans la nouvelle matrice ou le nouveau taxon de biote garantit au moins le même niveau de protection que la NQE pour la matrice citée dans le tableau ci-dessus.

ЕΊ

- la limite de quantification pour la matrice choisie ou le taxon de biote choisi est inférieure à 30 % de la NQE correspondante et l'incertitude de la mesure associée est inférieure ou égale à 50 % (facteur d'élargissement k=2) au niveau de la norme de qualité environnementale correspondante, OU si ces deux conditions sur la limite de quantification et l'incertitude ne sont vérifiées simultanément pour aucune matrice, alors la surveillance est effectuée à l'aide des meilleures techniques disponibles n'entraînant pas de coûts excessifs, et les performances analytiques sur la nouvelle matrice choisie ou le nouveau taxon de biote choisi sont au moins aussi bonnes que sur la matrice citée dans le tableau ci-dessus.
- Si l'une de ces deux conditions n'est pas vérifiée, la surveillance se fait obligatoirement sur la matrice citée dans le tableau ci-dessus.
- Si la nouvelle matrice choisie est le biote, alors les contrôles ont lieu conformément aux fréquences indiquées dans le tableau ci-dessus.
- Si la nouvelle matrice choisie est l'eau, les contrôles ont lieu au moins douze fois par an, une année par cycle de gestion.

Lorsqu'une NQE pour le biote ou les sédiments est utilisée, un contrôle est réalisé dans l'eau de surface pour vérifier le respect de la conformité à la NQE en concentration maximale admissible, au moins dans les cas où un

⁽²) L'ensemble des substances doit être mesuré sur les mollusques, et ce en dépit des taxons spécifiques indiqués dans la directive :

Pour rappel, la directive 2013/39 exige le suivi sur poisson, à l'exception des substances n°15 (fluoranthène), n°28 (HAP) et n°37 (dioxines et composés de type dioxine). Pour les substances n°15 (fluoranthène) et n°28 (HAP), la surveillance doit être réalisée dans les crustacés ou mollusques. Pour la substance n°37 (dioxines et composés de type dioxine), la surveillance est réalisée dans le poisson, ou le crustacé ou le mollusque, conformément à l'annexe, section 5.3 du règlement (UE) n°1259/2011 de la Commission du 2 décembre 2011 modifiant le règlement (CE) n°1881/2006 en ce qui concerne les teneurs maximales en dioxines, en PCB de type dioxine et en PCB autres que ceux de type dioxine des denrées alimentaires

⁽³⁾ En l'absence d'une limite de quantification en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques en 2019, la substance ne sera pas analysée.

risque potentiel pour ou via l'environnement aquatique résultant d'une exposition aigüe est constaté sur la base de concentrations ou d'émissions mesurées ou estimées dans l'environnement.

Les modalités de suivi dans le biote en métropole sont complétées par la note technique du 26 décembre 2017 relative à la mise en œuvre du suivi des substances de l'état chimique dans le biote.

Les modalités de suivi dans le biote en outremer seront complétées par une note technique dédiée. Dans l'attente de ces éléments de stratégie, le suivi sur biote en outremer n'est pas imposé.

8. Surveillance visant à évaluer l'évolution en tendance des concentrations de substances potentiellement bioaccumulables dans les milieux aquatiques de surface

Les substances à analyser en priorité pour la surveillance en tendance à long terme sont celles qui ont tendance à s'accumuler dans le biote et/ou les sédiments. Il s'agit des métaux et polluants organiques dont le log Kow est supérieur à trois et tout particulièrement des substances 2, 5, 6, 7, 12, 15, 16, 17, 18, 20, 21, 26, 28, 30, 34, 35, 36, 37, 43 et 44 de l'annexe X de la directive 2000/60/CE.

Ce contrôle de surveillance est effectué dans le biote ou les sédiments ou encore les deux sur l'ensemble des sites de contrôle de surveillance à raison d'une fois par an tous les trois ans *a minima*. Ce suivi est effectué sur l'ensemble des sites de contrôle de surveillance où le suivi de la matrice choisie est possible.

ANNEXE VII

FRÉQUENCES ET VALEURS GUIDES DE DENSITÉS MINIMALES POUR LE RÉSEAU DE SURVEILLANCE DE L'ÉTAT QUANTITATIF DES EAUX SOUTERRAINES

1. Densité minimale

Tableau 51 : densités minimales pour le réseau de surveillance de l'état quantitatif des eaux souterraines

	TYPE DE LA MASSE D'E	AU SOUTERRAINE	Valeurs guides de DENSITÉ minimale¹
Classes de masses d'eau souterraine	1	Nature des écoulements	(nombre de points/km²)
Dominante sédimentaire	Entièrement libre (EL)	Avec présence de karstification	1/500
non alluviale (DS)		Sans présence de karstification	1/500
	Entièrement captif (EC)		1/3000
	Une ou des partie(s) libre(s) et une ou des partie(s) captive(s), les écoulements sont majoritairement libres (ML)		1/500
	Une ou des partie(s) libre(s) et u majoritairement captifs (MC)	une ou des partie(s) captive(s), les écoulements sont	1/3000
	Alluvial (A)	1/500
	Socie (S	S)	1/7000
	Edifice volcani	que (EV)	1/7000
Système hydr	aulique composite propre aux zon	es intensément plissées de montagne (IP)	1/7000
	Système imperméable loca	alement aquifère (IL)	à adapter au cas par cas

^{1.} Les densités indicatives données dans le tableau ci-dessus peuvent être toutefois diminuées sur la base des connaissances techniques et des avis d'experts argumentés, si cette diminution n'influe pas sur le niveau de connaissance de l'état de la masse d'eau.

2. Fréquences de suivi

Tableau 52 : fréquences de suivi minimales pour le réseau de surveillance de l'état quantitatif des eaux souterraines

		TYPE DE LA MASSE D'EA	U SOUTERRAINE	Pression (présence de pompages)	Fréquence minimale
			Avec précepte de legetification	Oui	1/ j
		Entièrement libre (EL)	Avec présence de karstification	Non	1/ semaine
	Libre(s) et captif dis-	Entierement libre (EL)	Sans présence de karstification	Oui	1/ semaine
	sociés		Sans presence de karstinication	Non	1/ 15j
Dominante sédimen- taire non		Entièrement captif (EC)		Oui	1/ mois
alluviale (DS)		Entierement captil (EC)		Non	2/ an (*)
(50)		Une ou des partie(s) libre(s) et une ou des partie(s) captive(s), les écoulements sont majoritairement captifs (MC)		Oui	1/ mois
captif	Libre(s) et			Non	2/ an (*)
	associés	Une ou des partie(s) libre(s) et (une ou des partie(s) captive(s), les écoulements sont	Oui	1/ semaine
		majoritairement libres (ML)		Non	1/ 15j
		Alluvial (A)		Oui	1/ semaine
		Alluviai (A	Non	1/ 15j	
		Cools (C)		Oui	1/ semaine
		Socle (S)		Non	1/ 15j
		Edifica valoorio:	FUTTO A LONG OF A (FV)		1/ semaine
		Edifice volcaniqu	uc (Lv)	Non	1/ 15j
	Cuatàma hudra	ligus composito propre con	a intercément plicaées de mentagne (ID)	Oui	1/ semaine
	Systeme nyarau	ilique composite propre aux zones	s intensément plissées de montagne (IP)	Non	1/ 15j
		Cuntàma impoumántele le el	oment equifixe (III)	Oui	1/ semaine
		Système imperméable local	ement aquirere (IL)	Non	1/ 15j
*) Avec un pré	lèvement en péri	ode de hautes eaux et un prélève	ment en période de basses eaux		

ANNEXE VIII

DENSITÉS MINIMALES DES SITES, PARAMÈTRES ET FRÉQUENCES POUR LE PROGRAMME DE CONTRÔLE DE SURVEILLANCE DE L'ÉTAT CHIMIQUE DES EAUX SOUTERRAINES

1. Densités minimales

Tableau 53 : densités minimales pour le réseau de surveillance de l'état chimique des eaux souterraines

	TYPE DE LA MASSE	D'EAU SOUTERRAINE		Valeurs guides de DENSITÉ minimale (2)
Classes de masses d'eau souterraine		Nature des écoulements		(nombre de points/km²)
			Avec présence de karstifica- tion	1/500
	Libre(s) et captif dissociés	Entièrement libre (EL)	Sans présence de karstifica- tion	1/500
Dominante sédimentaire non alluviale (DS)		Entièreme	Entièrement captif (EC)	
	Libra(s) at cantif associás	Une ou des partie(s) libre(s) et une ou des partie(s) captive(s), les écoulements sont majoritairement captifs MC)		1/3000
	Libre(s) et captif associés	Une ou des partie(s) libre(s) e les écoulements sont r	et une ou des partie(s) captive(s), majoritairement libres (ML)	1/500
	Alluv	vial (A)		1/500
	Soc	sle (S)		1/3500
	Edifice vol	canique (EV)		1/3500
Système hy	draulique composite propre aux	zones intensément plissées de i	montagne (IP)	1/3500
	Système imperméable	localement aquifère (IL)		Au cas par cas en tenant compte des connaissances sur le fonctionnement hydro- dynamique du système.

⁽²⁾ Les densités indicatives données dans le tableau ci-dessus peuvent être toutefois diminuées sur la base des connaissances techniques et des avis d'experts argumentés, si cette diminution n'influe pas sur le niveau de connaissance de l'état de la masse d'eau.

2. Paramètres et fréquences

Les listes de substances ci-dessous constituent le socle minimal de substances à surveiller. Les bassins complètent cette surveillance en fonction des enjeux spécifiques identifiés au niveau de chaque bassin.

Il convient notamment d'ajouter aux listes ci-dessous les paramètres indicatifs des pressions qui s'exercent sur les masses d'eau souterraine et, en particulier, les paramètres pour lesquels une norme de qualité ou une valeur seuil a été fixée par l'arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines.

Certaines substances sont identifiées comme faisant partie d'une liste A, d'une liste B ou à la fois d'une liste A et d'une liste B.

Les substances faisant partie de la liste A sont surveillées dès le début de cycle en respectant la LQ en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux.

Les substances faisant partie de la liste B sont surveillées à partir du milieu du cycle, soit à partir de 2019, en respectant la LQ en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques.

Pour les substances identifiées comme faisant partie la fois de la liste A et de la liste B, la surveillance doit être menée sur les trois premières années du cycle en respectant la LQ en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques, et la surveillance pour le reste du cycle (à compter de 2019) doit respecter la nouvelle LQ en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques, si elle existe.

 Trois niveaux d'analyses (régulière, photographique et intermédiaire) décrits aux 2.1, 2.2 et 2.3 ci-dessous sont à mener pour le contrôle de surveillance de l'état chimique des eaux souterraines.

2.1. Analyse régulière

Réalisée tous les ans sur tous les sites du programme de contrôle de surveillance de l'état chimique des eaux souterraines, elle comprend *a minima* un prélèvement annuel pour les nappes captives, et deux prélèvements dans

l'année pour les nappes libres avec un prélèvement en période de hautes eaux et un prélèvement en période de basses eaux.

Les paramètres à analyser à minima dans ce cadre comprennent les paramètres listés dans les deux tableaux cidessous :

Tableau 54 : paramètres de l'analyse régulière du contrôle de surveillance de l'état chimique des eaux souterraines

Code Sandre	Nom Sandre	Code CAS	Fond géochimique élevé reconnu comme possible en France	Fraction à analyser	Laboratoire / in situ	LQ	Unité
1295	Turbidité			Eau brute	in situ	0,1	NFU
1301	Température			Eau brute	in situ	-	-
1302	pH			Eau brute	in situ	-	-
1303	Conductivité (25°)		х	Eau brute	in situ	-	-
1311	O2 dissous			Eau brute	in situ	-	-
1312	taux de saturation en O2			Eau brute	in situ	-	-
1327	Bicarbonates	71-52-3	х	Eau filtrée	Laboratoire	15	mg/l
1328	Carbonates	3812-32-6	х	Eau filtrée	Laboratoire	15	mg/l
1330	Potentiel redox			Eau brute	in situ	-	mV ENH
1335	Ammonium	14798-03-9	х	Eau filtrée	Laboratoire	0,01	mg/l
1337	Chlorures	16887-00-6	х	Eau filtrée	Laboratoire	1	mg/l
1338	Sulfate	14808-79-8	х	Eau filtrée	Laboratoire	1	mg/l
1339	Nitrites	14797-65-0	x	Eau filtrée	Laboratoire	0,01	mg/l
1340	Nitrates	14797-55-8	х	Eau filtrée	Laboratoire	0,5	mg/l
1342	Silicates	15593-90-5	x	Eau filtrée	Laboratoire	0,05	mg/l
1347	T.A.C.			Eau filtrée	Laboratoire	-	-
1350	Phosphore total	7723-14-0	x	Eau brute	Laboratoire	0,01	mg/l
1367	Potassium	7440-9-7	x	Eau filtrée	Laboratoire	1	mg/l
1372	Magnésium	7439-95-4	x	Eau filtrée	Laboratoire	1	mg/l
1374	Calcium	7440-70-2	x	Eau filtrée	Laboratoire	1	mg/l
1375	Sodium	7440-23-5	x	Eau filtrée	Laboratoire	1	mg/l
1393	Fer	7439-89-6	x	Eau filtrée	Laboratoire	1	μg/l
1394	Manganèse	7439-96-5	Х	Eau filtrée	Laboratoire	1	1μg/l
1399	Chlore total (*)			Eau brute	Laboratoire	-	-
1433	Orthophosphates (PO4)	14265-44-2	Х	Eau filtrée	Laboratoire	0,02	mg/l
1841	Carbone organique			Eau brute	Laboratoire	0.3	mg/l
7073	Fluorure	16984-48-8	Х	Eau filtrée	Laboratoire	0,1	mg/l

(*) Uniquement si chloration à la crépine

Les paramètres ci-dessous sont à analyser sur eau brute en laboratoire. Le suivi de ces paramètres peut passer en analyse photographique sur les points du RCS soumis à aucunes pressions et sur lesquels aucun micropolluant n'a été quantifié. En effet, pour ces points, le suivi en régulier peut se limiter aux seuls paramètres non micropolluants.

Dans le cas où un fond géochimique élevé est identifié pour l'un des paramètres suivants, le paramètre est à intégrer dans l'analyse régulière du contrôle de surveillance de la masse d'eau concernée : As, Al, Se, Ba, Br, B, Cu, Ni, Zn. (3)

Tableau 55 : liste des micropolluants de l'analyse régulière du contrôle de surveillance de l'état chimique des eaux souterraines

Code Sandre	Paramètre	Code CAS	Famille chimique	Li	ste	Optionnel
oode Gandre	raiametre	ooue ono	r annie cinnique	Α	В	pour les DOM
1107	Atrazine	1912-24-9	Triazines et métabolites	Х		
1108	Atrazine déséthyl	6190-65-4	Triazines et métabolites	х		
1109	Atrazine déisopropyl	1007-28-9	Triazines et métabolites	Х		
1113	Bentazone	25057-89-0	Divers (autres organiques)	х		х
1177	Diuron	330-54-1	Urées et métabolites	х		
1221	Métolachlore	51218-45-2	Organochlorés	х		
1263	Simazine	122-34-9	Triazines et métabolites	х		х
1506	Glyphosate	1071-83-6	Divers (autres organiques)	х		
1830	Atrazine déisopropyl déséthyl	3397-62-4	Triazines et métabolites	х		х
1832	2-hydroxy atrazine	2163-68-0	Triazines et métabolites	х		х
1907	AMPA	1066-51-9	Divers (autres organiques)	х	х	
1958	4-nonylphenols ramifiés	84852-15-3	Alkylphénols, nonylphénols et bisphénols A	Х		х
2766	Bisphenol A	80-05-7	Alkylphénols, nonylphénols et bisphénols A	х		
3159	Atrazine 2-hydroxy-desethyl	19988-24-0	Triazines et métabolites	х		х
5347	Acide perfluoro-octanoïque (PFOA) (*)	335-67-1	PFC (PFOA, PFOS)		х	
6561	Perfluorooctane sulfonate (PFOS) (*)	45298-90-6	PFC (PFOA, PFOS)	Х	х	
6616	Di(2-ethylhexyl) phtalate (DEHP)	117-81-7	Phtalates	x		х
6853	Metolachlor OXA	152019-73-3	Organochlorés	х		
6854	Metolachlor ESA	171118-09-5	Organochlorés	х		
5977	Acide perfluoro-n-heptanoïque (PFHpA) (*)	375-85-9	PFC (PFOA, PFOS)		х	
5978	Acide perfluoro-n-hexanoïque (PFHxA) (*)	307-24-4	PFC (PFOA, PFOS)		х	
6550	Acide perfluorodecane sulfo- nique (PFDS) (*)	335-77-3	PFC (PFOA, PFOS)		х	х
6660	Tolyltriazole	29385-43-1	Divers (autres organiques)		х	х
6830	Perfluorohexanesulfonic acid (PFHS) (*)	355-46-4	PFC (PFOA, PFOS)		х	
7543	Benzotriazole	95-14-7	Divers (autres organiques)		х	

⁽³⁾ Si la valeur « anomalique » et la variabilité temporelle naturelle des concentrations sont connues et que l'absence d'anthropique (direct ou indirect) est certain (uniquement naturel), alors une campagne par cycle peut s'avérer suffisante.

2.2. Analyse photographique

Réalisée une fois par cycle sur tous les sites du programme de contrôle de surveillance de l'état chimique des eaux souterraines, elle comprend un prélèvement annuel pour les nappes captives, et deux prélèvements dans l'année pour les nappes libres avec un prélèvement en période de hautes eaux et un prélèvement en période de basses eaux.

2.2.1 Substances communes métropole et DOM

Les paramètres *a minima* à analyser en laboratoire concernant <u>tout le territoire national</u> sont listés dans le tableau ci-dessous. La fraction à analyser est l'eau brute pour tous les paramètres, à l'exception des paramètres de la famille « Métaux/métalloïdes » et des paramètres perchlorates (code Sandre 6219) et chlorates (code Sandre 1752) qui sont à analyser sur eau filtrée.

Tableau 56 : paramètres de l'analyse photographique du contrôle de surveillance de l'état chimique des eaux souterraines communs métropole et DOM

Code Sandre	Paramètre	Code CAS	Famille chimique	Li	ste
Joue Sandre	raianicue	Code CAS	i ainine cininque	А	В
1084	Cyanures libres		Autres éléments minéraux	х	х
1105	Aminotriazole	61-82-5	Divers (autres organiques)	х	
1122	Bromoforme	75-25-2	COHV, solvants chlorés, fréons	х	
1129	Carbendazime	10605-21-7	Carbamates	х	х
1135	Chloroforme	67-66-3	COHV, solvants chlorés, fréons	х	
1141	2,4-D	94-75-7	Divers (autres organiques)	х	
1158	Dibromochloromethane	124-48-1	COHV, solvants chlorés, fréons	х	
1167	Dichloromonobromométhane	75-27-4	COHV, solvants chlorés, fréons	х	
1185	Fénarimol	60168-88-9	Divers (autres organiques)	x	
1209	Linuron	330-55-2	Urées et métabolites	х	
1210	Malathion	121-75-5	Organophosphorés	х	
1212	2,4-MCPA	94-74-6	Urées et métabolites	х	
1228	Monuron	150-68-5	Urées et métabolites	х	
1269	Terbutryne	886-50-0	Triazines et métabolites	х	
1362	Bore	7440-42-8	Métaux/métalloïdes	х	
1369	Arsenic	7440-38-2	Métaux/métalloïdes	х	
1370	Aluminium	7429-90-5	Métaux/métalloïdes	х	
1376	Antimoine	7440-36-0	Métaux/métalloïdes	х	
1382	Plomb	7439-92-1	Métaux/métalloïdes	х	
1383	Zinc	7440-66-6	Métaux/métalloïdes	х	
1385	Sélénium	7782-49-2	Métaux/métalloïdes	х	
1386	Nickel	7440-02-0	Métaux/métalloïdes	х	
1387	Mercure	7439-97-6	Métaux/métalloïdes	х	
1388	Cadmium	7440-43-9	Métaux/métalloïdes	х	
1389	Chrome	7440-47-3	Métaux/métalloïdes	х	
1390	Cyanures totaux	57-12-5	Autres éléments minéraux	х	Х
1392	Cuivre	7440-50-8	Métaux/métalloïdes	х	
1396	Baryum	7440-39-3	Métaux/métalloïdes	х	
1414	Propyzamide	23950-58-5	Divers (autres organiques)	x	
1462	n-Butyl Phtalate (DBP)	84-74-2	Phtalates	x	
1666	Oxadixyl	77732-09-3	Divers (autres organiques)	x	
1670	Métazachlore	67129-08-2	Organochlorés	x	

Code Sandre	Paramètre	Code CAS	Famille chimique	Lis	ste
Code Sandie	raiamene	Code CAS	r annie cinnique	Α	В
1700	Fenpropidine	67306-00-7	Divers (autres organiques)	х	
1709	Piperonyl butoxyde	51-03-6	Divers (autres organiques)	х	
1752	Chlorates	14866-68-3	Autres éléments minéraux	х	
1814	Diflufenicanil	83164-33-4	Divers (autres organiques)	х	
1877	Imidaclopride	138261-41-3	Divers (autres organiques)	х	
1903	Acétochlore	34256-82-1	Divers (autres organiques)	х	
1924	Butyl benzyl phtalate (BBP)	85-68-7	Phtalates	х	
1951	Azoxystrobine	131860-33-8	Divers (autres organiques)	х	
1954	Terbuthylazine hydroxy	66753-07-9	Triazines et métabolites	х	
1965	asulame	3337-71-1	Carbamates	х	
2011	2,6-Dichlorobenzamide	2008-58-4	Divers (autres organiques)	х	
2013	Anthraquinone	84-65-1	Anilines et dérivés	х	
2051	Terbumeton désethyl	30125-64-5	Triazines et métabolites	х	
2773	Diméthylamine	124-40-3	Divers (autres organiques)		х
5296	Carbamazepine	298-46-4	Divers (autres organiques)	х	
5349	Diclofenac	15307-86-5	Divers (autres organiques)	х	
5350	Ibuprofene	15687-27-1	Divers (autres organiques)	х	
5353	Ketoprofene	22071-15-4	Divers (autres organiques)	х	
5354	Paracetamol	103-90-2	Divers (autres organiques)	х	
5356	Sulfamethoxazole	723-46-6	Divers (autres organiques)	х	
5430	Triclosan	3380-34-5	Autres phénols	х	
6219	Perchlorate	14797-73-0	Autres éléments minéraux	х	
6505	Bromure	24959-67-9	Autres éléments minéraux	х	
6533	Ofloxacine	82419-36-1	Divers (autres organiques)	х	
6540	Ciprofloxacine	85721-33-1	Divers (autres organiques)	х	
6618	Galaxolide	1222-05-5	Divers (autres organiques)	х	
6725	Carbamazepine epoxide	36507-30-9	Divers (autres organiques)	х	
6731	Metronidazole	443-48-1	Divers (autres organiques)	х	
7012	2-Hydroxy Ibuprofen	51146-55-5	Divers (autres organiques)	х	
1738	Dibromoacétonitrile	3252-43-5	Divers (autres organiques)		х
2629	Ethynyl estradiol	57-63-6	Stéroles et stéroïdes (oestrogènes, progestogènes)		х
5400	Norethindrone	68-22-4	Stéroles et stéroïdes (oestrogènes, progestogènes)		х
5424	Sotalol	3930-20-9	Divers (autres organiques)		Х
6519	Cafeine	58-08-2	Divers (autres organiques)		х
6735	Acide acetylsalicylique	50-78-2	Divers (autres organiques)		х

0.1.0.1.		0 1 040		Lis	ste
Code Sandre	Paramètre	Code CAS	Famille chimique	Α	В
6755	Metformine	657-24-9	Divers (autres organiques)		х
6856	Acetochlor ESA	187022-11-3	Organochlorés		х
6862	Acetochlor OXA	194992-44-4	Divers (autres organiques)		х
7007	Hydrocarbures dissous		Divers (autres organiques)	х	
7594	Bisphenol S	80-09-1	Alkylphénols, nonylphénols et bisphénols A		х

2.2.2 Substances complémentaires pour la métropole

Les paramètres *a minima* à analyser en laboratoire sur eau brute, <u>uniquement en métropole</u>, sont listés dans le tableau suivant.

Tableau 57 : paramètres de l'analyse photographique du contrôle de surveillance de l'état chimique des eaux souterraines complémentaires pour la métropole

Code Sandre	Paramètre	Code CAS	Famille chimique	Lis	ste
Code Sandre	Farametre	Code CAS	ramme chimique	Α	E
1082	Benzo(a)anthracène	56-55-3	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1092	Prosulfocarbe	52888-80-9	Carbamates	х	
1101	Alachlore	15972-60-8	Organochlorés	х	
1116	Benzo(b)fluoranthène	205-99-2	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	Х	
1133	Chloridazone	1698-60-8	Divers (autres organiques)	х	
1136	Chlortoluron	15545-48-9	Urées et métabolites	х	
1139	Cymoxanil	57966-95-7	Divers (autres organiques)	х	
1150	Déméton-O	298-03-3	Organophosphorés	х	
1169	Dichlorprop	120-36-5	Divers (autres organiques)	х	
1175	Diméthoate	60-51-5	Organophosphorés	х	
1176	Dinoterbe	1420-07-1	Divers (autres organiques)	х	
1178	Endosulfan alpha	959-98-8	Organochlorés	х	
1179	Endosulfan bêta	33213-65-9	Organochlorés	х	
1184	Ethofumésate	26225-79-6	Divers (autres organiques)	х	
1191	Fluoranthène (*)	206-44-0	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	Х	
1197	Heptachlore	76-44-8	Organochlorés	Х	
1204	Indéno(1,2,3-cd)pyrène	193-39-5	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	Х	
1206	Iprodione	36734-19-7	Divers (autres organiques)	х	
1208	Isoproturon	34123-59-6	Urées et métabolites	Х	
1215	Métamitrone	41394-05-2	Triazines et métabolites	Х	
1225	Métribuzine	21087-64-9	Triazines et métabolites	Х	
1253	Prochloraz	67747-09-5	Divers (autres organiques)	х	
1261	Pyrimiphos-méthyl	29232-93-7	Organophosphorés	Х	
1268	Terbuthylazine	5915-41-3	Triazines et métabolites	х	

Code Sandre	Paramètre	Code CAS	Famille chimique	Lis	ste
code Sandre	raiamene	Code CAS	r annie chimique	Α	В
1272	Tétrachloroéthylène	127-18-4	COHV, solvants chlorés, fréons	х	
1278	Toluene	108-88-3	Benzène et dérivés	х	
1284	Trichloroéthane-1,1,1	71-55-6	COHV, solvants chlorés, fréons	х	
1286	Trichloroéthylène	79-01-6	COHV, solvants chlorés, fréons	х	
1288	Triclopyr	55335-06-3	Divers (autres organiques)	х	
1359	Cyprodinil	121552-61-2	Divers (autres organiques)	х	
1403	Diméthomorphe	110488-70-5	Divers (autres organiques)	х	
1406	Lénacile	2164-08-1	Divers (autres organiques)	х	
1432	Pyriméthanil	53112-28-0	Divers (autres organiques)	х	
1453	Acénaphtène (*)	83-32-9	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1456	Dichloroéthylène-1,2 cis	156-59-2	COHV, solvants chlorés, fréons	х	
1474	Chlorprophame	101-21-3	Carbamates	х	
1476	Chrysène (*)	218-01-9	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1480	Dicamba	1918-00-9	Organochlorés	х	
1487	Dichloropropène-1,3	542-75-6	COHV, solvants chlorés, fréons	х	
1517	Naphtalène (*)	91-20-3	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1519	Napropamide	15299-99-7	Divers (autres organiques)	х	
1524	Phénanthrène	85-01-8	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1528	Pirimicarbe	23103-98-2	Carbamates	х	
1537	Pyrène (*)	129-00-0	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1618	Méthyl-2-Naphtalène (*)	91-57-6	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1621	Dibenzo(a,h) anthracène (*)	53-70-3	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1623	Fluorène (*)	86-73-7	HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés)	х	
1662	Sulcotrione	99105-77-8	Divers (autres organiques)	х	
1680	Cyproconazole	94361-06-5	Triazines et métabolites	х	
1688	Aclonifène	74070-46-5	Divers (autres organiques)	х	
1694	Tébuconazole	107534-96-3	Divers (autres organiques)	х	
1708	Piclorame	1918-02-1	Divers (autres organiques)	х	
1744	Epoxiconazole	133855-98-8	Triazines et métabolites	х	
1763	Ethidimuron	30043-49-3	Urées et métabolites	х	
1765	Fluroxypyr	69377-81-7	Divers (autres organiques)	х	
1796	Métaldéhyde	108-62-3	Divers (autres organiques)	Х	
1797	Metsulfuron méthyle	74223-64-6	Urées et métabolites	х	

0-4-0	Davis No.	0-4-040	Familia III	Liste	
Code Sandre	Paramètre	Code CAS	Famille chimique	Α	В
1879	Metconazole	125116-23-6	Triazines et métabolites	х	
1913	Thifensulfuron méthyl	79277-27-3	Urées et métabolites	х	
1940	Thiafluamide	142459-58-3	Divers (autres organiques)	х	
1959	4-tert-Octylphenol	140-66-9	Alkylphénols, nonylphénols et bisphénols A	х	
1969	mepiquat	15302-91-7	Divers (autres organiques)	х	Х
2008	Flurtamone	96525-23-4	Divers (autres organiques)	х	
2017	Clomazone	81777-89-1	Divers (autres organiques)	х	
2045	Terbuthylazine désethyl	30125-63-4	Triazines et métabolites	х	
2076	Mésotrione	104206-82-8	Aldéhydes et cétones	х	
2085	Sulfosulfuron	141776-32-1	Urées et métabolites	х	
2087	Quinmerac	90717-03-6	Divers (autres organiques)	х	
2096	Trinexapac-ethyl	95266-40-3	Divers (autres organiques)	х	
2534	Prosulfuron	94125-34-5	Urées et métabolites	х	
2546	Dimétachlore	50563-36-5	Organochlorés	х	
2563	lodosulfuron-methyl	185119-76-0	Urées et métabolites	х	
2566	1,2,3,4,6,7,8,9-Octa chlo rodibenzo-p-dioxine (***)	3268-87-9	PCB (arochlors), PCT, Dioxines, Furanes (PCDD, PCDF)	х	
2575	1,2,3,4,6,7,8-Hepta chlo rodibenzo-p-dioxine (***)	35822-46-9	PCB (arochlors), PCT, Dioxines, Furanes (PCDD, PCDF)	х	
2578	mesosulfuron-methyl	208465-21-8	Urées et métabolites	х	
2596	1,2,3,4,6,7,8-Hepta chlo rodibenzofurane (***)	67562-39-4	PCB (arochlors), PCT, Dioxines, Furanes (PCDD, PCDF)	х	
2597	1,2,3,4,7,8,9-Hepta chlorodibenzofurane	55673-89-7	PCB (arochlors), PCT, Dioxines, Furanes (PCDD, PCDF)	х	
2610	4-tert-butylphénol	98-54-4	Alkylphénols, nonylphénols et bisphénols A	х	
2744	Fosthiazate	98886-44-3	Organophosphorés	х	
2806	Foramsulfuron	173159-57-4	Urées et métabolites	х	
2810	Florasulam	145701-23-1	Triazines et métabolites	х	
2915	pentabromodiphényl éther (congénère 100) (**)	189084-64-8	PBDE et PBB	х	
2916	Pentabromodiphényl éther (congénère 99) (**)	60348-60-9	PBDE et PBB	х	
2986	Imazamox	114311-32-9	Divers (autres organiques)	х	
5248	Octachlorodibenzofuranne	39001-02-0	PCB (arochlors), PCT, Dioxines, Furanes (PCDD, PCDF)	х	
5299	N-Butylbenzene sulfonamide	3622-84-2	Benzène et dérivés		х
5526	Boscalid	188425-85-6	Divers (autres organiques)	х	
5597	Daminozide	1596-84-5	Divers (autres organiques)	х	
6390	Thiamethoxam	153719-23-4	Divers (autres organiques)	х	
6522	Erythromycine	114-07-8	Divers (autres organiques)	х	
6720	Tramadol	27203-92-5	Divers (autres organiques)	х	

0 1 0 1	e Paramètre Code CAS		Liste		
Code Sandre	Parametre	Code CAS	Famille chimique	Α	В
6800	Alachlor ESA	142363-53-9	Organochlorés	х	
1699	Diquat	2764-72-9	Divers (autres organiques)		х
1816	Fosetyl	15845-66-6	Divers (autres organiques)		х
2929	Dichlormide	37764-25-3	Divers (autres organiques)		х
2978	Clethodim	99129-21-2	Divers (autres organiques)		х
5554	Chlormequat	7003-89-6	Divers (autres organiques)		х
5645	Hydrazide maleique	123-33-1	Divers (autres organiques)		х
6393	Flonicamid	158062-67-0	Divers (autres organiques)		х
6520	Cotinine	486-56-6	Divers (autres organiques)		х
6751	1,7-Dimethylxanthine	611-59-6	Divers (autres organiques)		х
6855	Alachlor OXA	171262-17-2	Organochlorés		х
7522	Beflubutamide	113614-08-7	Divers (autres organiques)		х

^(*) Pour les HAP (Hydrocarbures, aromatiques, polycyclique, pyrolytique et dérivés), dans un objectif de cohérence analytique et/ou cohérence avec des listes issues des ESU, il est possible de demander aux laboratoires en plus des substances du tableau, les substances aux codes Sandre suivants sans surcoût : 1524, 1458, 1082, 1116, 1117, 1115 et 1118

2.2.1 Substances complémentaires pour les DOM

Pour les DOM, les paramètres complémentaires à analyser *a minima* sur eau brute en laboratoire, sont les suivants :

Tableau 58: paramètres de l'analyse photographique du contrôle de surveillance de l'état chimique des eaux souterraines complémentaires pour les DOM

0.1.0.1.	.	0 1 010		Liste	
Code Sandre	Paramètre	Code CAS	Famille chimique	А	В
1104	Amétryne	834-12-8	Triazines et métabolites	х	
1113	Bentazone	25057-89-0	Divers (autres organiques)	х	
1157	Diazinon	333-41-5	Organophosphorés	x	
1170	Dichlorvos	62-73-7	Organophosphorés	х	
1173	Dieldrine	60-57-1	Organochlorés	х	
1201	Hexachlorocyclohexane bêta (*)	319-85-7	Organochlorés	х	
1202	Hexachlorocyclohexane delta (*)	319-86-8	Organochlorés	х	
1203	Hexachlorocyclohexane gamma (*)	58-89-9	Organochlorés	х	
1235	Pentachlorophénol	87-86-5	Autres phénols	х	
1257	Propiconazole	60207-90-1	Triazines et métabolites	х	
1263	Simazine	122-34-9	Triazines et métabolites	х	
1280	Triadiménol	55219-65-3	Divers (autres organiques)	х	
1515	Métobromuron (*)	3060-89-7	Urées et métabolites	х	
1540	Chlorpyriphos-méthyl	5598-13-0	Organophosphorés	х	

^(**) Pour les PBDE et PBB, dans un objectif de cohérence analytique et/ou cohérence avec des listes issues des ESU, il est possible de demander aux laboratoires en plus des substances du tableau, sans surcoût, les substances aux codes Sandre suivants : 2911, 2912, 2919 et 2920

^(***) Pour les dioxines et furanes, dans un objectif de cohérence analytique et/ou cohérence avec des listes issues des ESU, il est possible de demander aux laboratoires en plus des substances du tableau, sans surcoût, les substances aux codes Sandre suivants: 2562, 2569, 2571, 2572, 2573, 2586, 2588, 2589, 2591, 2592, 2593, 2594, 2597

Ondo Conduc	Paramètre Paramètre	Code CAS	FIII	Liste	
Code Sandre	Parametre	Code CAS	Famille chimique	A	В
1673	Hexazinone	51235-04-2	Triazines et métabolites	х	
1686	Bromacil	314-40-9	Divers (autres organiques)	х	
1704	lmazalil	35554-44-0	Divers (autres organiques)	х	
1748	Heptachlore époxyde exo cis	1024-57-3	Organochlorés	х	
1749	Heptachlore époxyde endo trans	28044-83-9	Organochlorés	х	
1830	Atrazine déisopropyl déséthyl	3397-62-4	Triazines et métabolites	х	
1832	2-hydroxy atrazine	2163-68-0	Triazines et métabolites	х	
1866	Chlordécone (*)	143-50-0	Organochlorés	х	
1905	Difénoconazole	119446-68-3	Divers (autres organiques)	х	
1958	4-nonylphenols ramifiés	84852-15-3	Alkylphénols, nonylphénols et bisphénols A	х	
2009	Fipronil	120068-37-3	Divers (autres organiques)	х	
2847	Didemethylisoproturon	56046-17-4	Urées et métabolites	х	
3159	Atrazine 2-hydroxy-desethyl	19988-24-0	Triazines et métabolites	х	
6260	1-(2,6-Dichloro-4-trifluoromethylphenyl)-3-cyano-4-trifluoromethanesul fonyl-5-aminopyrazole	120068-36-2	Divers (autres organiques)	х	
6577	Chlordecone-5b-hydro (*)	53308-47-7	Organochlorés	х	
6616	Di(2-ethylhexyl)phtalate (DEHP)	117-81-7	Phtalates	х	
7494	Dioctylétain cation	60004-29-7	Divers (autres organiques)	х	
6550	Acide perfluorodecane sulfonique (PFDS)	335-77-3	PFC (PFOA, PFOS)		х
6660	Tolyltriazole	29385-43-1	Divers (autres organiques)		х
6824	N,N-Dimethyl-N'-p-tolylsulphamide	66840-71-9	Divers (autres organiques)		х
(*) Paramètres	optionnels à La Réunion				

2.3. Analyse intermédiaire

En complément de l'analyse photographique, une analyse complémentaire est à réaliser sur un quart des sites du programme de contrôle de surveillance. Certains paramètres de la campagne photographique sont donc à analyser deux fois par cycle sur un nombre réduit de points. Dans la mesure du possible, ces analyses sont réalisées à trois ans d'intervalle.

Cette analyse intermédiaire complémentaire sur un nombre réduit de point comprend un prélèvement annuel pour les nappes captives, et deux prélèvements dans l'année pour les nappes libres avec un prélèvement en période de hautes eaux et un prélèvement en période de basses eaux.

Les paramètres *a minima* à analyser en laboratoire dans ce cadre sont listés dans le tableau ci-dessous. La fraction à analyser est l'eau brute pour tous les paramètres, à l'exception des paramètres de la famille « Métaux/métalloïdes » et des paramètres perchlorates (code Sandre 6219) et chlorates (code Sandre 1752), qui sont à analyser sur eau filtrée.

Tableau 59 : paramètres de l'analyse intermédiaire du contrôle de surveillance de l'état chimique des eaux souterraines

Code Sandre Paramètre	Paramètre	Code CAS	Famille chimique	Liste		Optionnel pour les DOM
Gode Ganare	T unumotic		r annie ommique	Α	В	
1084	Cyanures libres		Autres éléments minéraux	х	х	
1105	Aminotriazole	61-82-5	Divers (autres organiques)	х		
1129	Carbendazime	10605-21-7	Carbamates	х	х	
1136	Chlortoluron	15545-48-9	Urées et métabolites	х		х

Code Sandre	Paramètre	Code CAS	Famille chimique	Liste		Optionnel pour les DOM	
ooue ounare				Α	В		
1141	2,4-D	94-75-7	Divers (autres organiques)	х			
1175	Diméthoate	60-51-5	Organophosphorés	х		х	
1206	Iprodione	36734-19-7	Divers (autres organiques)	х		х	
1209	Linuron	330-55-2	Urées et métabolites	х			
1210	Malathion	121-75-5	Organophosphorés	х			
1212	2,4-MCPA	94-74-6	Urées et métabolites	х			
1253	Prochloraz	67747-09-5	Divers (autres organiques)	х		х	
1261	Pyrimiphos-méthyl	29232-93-7	Organophosphorés	х		х	
1268	Terbuthylazine	5915-41-3	Triazines et métabolites	х		х	
1278	Toluene	108-88-3	Benzène et dérivés	х		х	
1359	Cyprodinil	121552-61-2	Divers (autres organiques)	х		х	
1369	Arsenic	7440-38-2	Métaux/métalloïdes	х			
1370	Aluminium	7429-90-5	Métaux/métalloïdes	х			
1376	Antimoine	7440-36-0	Métaux/métalloïdes	х			
1383	Zinc	7440-66-6	Métaux/métalloïdes	х			
1385	Sélénium	7782-49-2	Métaux/métalloïdes	х			
1389	Chrome	7440-47-3	Métaux/métalloïdes	х			
1390	Cyanures totaux	57-12-5	Autres éléments minéraux	х	Х		
1392	Cuivre	7440-50-8	Métaux/métalloïdes	х			
1396	Baryum	7440-39-3	Métaux/métalloïdes	х			
1406	Lénacile	2164-08-1	Divers (autres organiques)	х		х	
1414	Propyzamide	23950-58-5	Divers (autres organiques)	х			
1462	n-Butyl Phtalate(DBP)	84-74-2	Phtalates	х			
1474	Chlorprophame	101-21-3	Carbamates	х		х	
1480	Dicamba	1918-00-9	Organochlorés	х		х	
1528	Pirimicarbe	23103-98-2	Carbamates	х		х	
1670	Métazachlore	67129-08-2	Organochlorés	х			
1694	Tébuconazole	107534-96-3	Divers (autres organiques)	х		х	
1700	Fenpropidine	67306-00-7	Divers (autres organiques)	х			
1709	Piperonyl butoxyde	51-03-6	Divers (autres organiques)	х			
1744	Epoxiconazole	133855-98-8	Triazines et métabolites	х		х	
1796	Métaldéhyde	108-62-3	Divers (autres organiques)	х		х	
1814	Diflufenicanil	83164-33-4	Divers (autres organiques)	х			
1877	Imidaclopride	138261-41-3	Divers (autres organiques)	х			
1903	Acétochlore	34256-82-1	Divers (autres organiques)	х			
1924	Butyl benzyl phtalate (BBP)	85-68-7	Phtalates	х			

Code Sandre	Paramètre	Code CAS	Famille chimique	Li	ste	Optionnel pour les DOM
0000 00000	Talament Gode SAG Talament			Α	В	
1951	Azoxystrobine	131860-33-8	Divers (autres organiques)	х		
5296	Carbamazepine	298-46-4	Divers (autres organiques)	х		
5349	Diclofenac	15307-86-5	Divers (autres organiques)	х		
5350	Ibuprofene	15687-27-1	Divers (autres organiques)	Х		
5353	Ketoprofene	22071-15-4	Divers (autres organiques)	х		
5354	Paracetamol	103-90-2	Divers (autres organiques)	х		
5356	Sulfamethoxazole	723-46-6	Divers (autres organiques)	х		
5430	Triclosan	3380-34-5	Autres phénols	х		
5526	Boscalid	188425-85-6	Divers (autres organiques)	х		х
6219	Perchlorate	14797-73-0	Autres éléments minéraux	х		
6533	Ofloxacine	82419-36-1	Divers (autres organiques)	х		
6725	Carbamazepine epoxide	36507-30-9	Divers (autres organiques)	х		
5400	Norethindrone	68-22-4	Stéroles et stéroïdes (oestrogènes, progestogènes)		х	
6755	Metformine	657-24-9	Divers (autres organiques)		х	
7594	Bisphenol S	80-09-1	Alkylphénols, nonylphénols et bisphénols A		х	

3. Fréquences

Tableau 60 : fréquences de suivi des paramètres de l'état chimique des eaux souterraines

Paramètres contrôlés	Nombre d'année de suivi	Fréquence des contrôles par année	Sites concernés
raidifieties controles	par SDAGE	Frequence des controles par année	Sites concernes
Les substances de l'analyse régulière	régulière Liste A: 6 Liste B: 3 (*)		Tous
Les substances de l'analyse intermé- diaire	Liste A: 2 Liste B: 1 (*)	1 pour les nappes captives, 2 pour les nappes libres avec un prélèvement en période de hautes eaux et un	25 % des sites du réseau de contrôle de surveillance
Les substances de l'analyse photo- graphique	Liste A: 1 Liste B: 1 ou 0 (en fonction de la date de réalisation de la campagne) (*)	prélèvement en période de basses eaux.	Tous

^(*) En l'absence d'une limite de quantification en vigueur dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques en 2019, la substance ne sera pas analysée.

ANNEXE IX

MÉTHODOLOGIE D'IDENTIFICATION DES MASSES D'EAU À SUIVRE ET DE SÉLECTION DES SITES D'ÉVALUATION POUR LE PROGRAMME DE CONTRÔLES OPÉRATIONNELS DES EAUX DE SURFACE

Des contrôles opérationnels sont effectués pour toutes les masses d'eau qui sont identifiées comme risquant de ne pas répondre à leurs objectifs environnementaux mentionnés au IV de l'article L. 212-1 du code de l'environnement sur la base de l'étude d'incidence effectuée en application du point I (2°, d) de l'article R. 212-3 du code de l'environnement ou d'un contrôle de surveillance, et pour les masses d'eau dans lesquelles sont rejetées des substances de la liste de substances prioritaires.

Les sites d'évaluation du contrôle opérationnel doivent être représentatifs de l'état d'une masse d'eau dans son ensemble, vis-à-vis de sa typologie naturelle et de l'incidence des pressions anthropiques qui s'y exercent. L'état évalué doit en effet refléter la situation dominante observée à l'échelle de la masse d'eau et non pas les incidences locales de pressions sans incidences sur le fonctionnement global de la masse d'eau. Les sites d'évaluation représentatifs de l'état de la masse d'eau sont sélectionnés comme suit :

- pour les masses d'eau courant un risque en raison de pressions ponctuelles importantes : des points de contrôle en nombre suffisant pour évaluer l'ampleur et l'incidence des pressions ponctuelles. Lorsqu'une masse d'eau est soumise à plusieurs pressions ponctuelles, les points de contrôle peuvent être sélectionnés en vue d'évaluer l'ampleur et l'incidence de ces pressions dans leur ensemble ;
- pour les masses d'eau courant un risque en raison de pressions diffuses importantes : des points de contrôle en nombre suffisant, à l'intérieur d'une sélection des masses d'eau, pour évaluer l'ampleur et l'incidence des pressions diffuses. Les masses d'eau sont sélectionnées de manière à être représentatives des risques relatifs de pressions diffuses et des risques relatifs de ne pas avoir un bon état des eaux de surface ;
- pour les masses d'eau courant un risque en raison de pressions hydromorphologiques importantes : des points de contrôle en nombre suffisant, à l'intérieur d'une sélection des masses d'eau, pour évaluer l'ampleur et l'incidence des pressions hydromorphologiques. Les masses d'eau sont sélectionnées de manière à donner des indications sur l'incidence globale des pressions hydromorphologiques auxquelles toutes les masses sont soumises.

Ainsi, les masses d'eau sont suivies :

- soit directement au niveau de la masse d'eau concernée ;
- soit indirectement, par extrapolation à partir de données obtenues sur des masses d'eau adjacentes ou dans des contextes similaires.

Le suivi indirect des masses d'eau par extrapolation spatiale. Cette deuxième possibilité peut être pertinente dans les cas suivants :

Dans le cas de pressions d'origine diffuse ou hydromorphologique, si des données obtenues dans des contextes similaires (masses d'eau de même type et soumises à des pressions comparables) peuvent être extrapolées pour évaluer l'impact des pressions à l'échelle de la masse d'eau considérée. Cette extrapolation pourra s'effectuer par le biais d'outils de modélisation.

Il est possible dans ce cas de procéder par échantillonnage de masses d'eau représentatives. Seule cette sélection de masses d'eau représentatives est suivie directement.

Cette approche peut également être appliquée dans le cas de pressions ponctuelles pour les très petits cours d'eau uniquement.

 Dans le cas de pressions ponctuelles, si les informations sur les masses d'eau adjacentes permettent d'évaluer l'impact des pressions à l'échelle de la masse d'eau considérée.

Le suivi indirect des masses d'eau devra pouvoir être justifié et documenté.

En complément de ce programme de contrôle opérationnel élaboré et mis en œuvre spécifiquement pour répondre aux objectifs de l'article 7 du présent arrêté à l'échelle des districts, le programme de contrôles opérationnels peut également inclure des contrôles effectués pour répondre à d'autres finalités, notamment du suivi de pressions à une échelle plus locale que celle de la masse d'eau, lorsque cela est pertinent par rapport aux objectifs visés, notamment :

- 1° Le contrôle des eaux réceptrices de rejets provenant de stations d'épuration des eaux urbaines résiduaires et, plus généralement, de l'ensemble des contrôles des déversements et des eaux réceptrices prévus à l'article R. 211-14 du code de l'environnement; les contrôles déjà effectués au titre de l'auto-surveillance exercée par l'exploitant, dans les conditions fixées par l'article 4 de l'arrêté du 22 décembre 1994 susvisé, peuvent être utilisés à cette fin;
- 2º Le contrôle des effets sur l'environnement des émissions provenant d'installations classées pour la protection de l'environnement prévu à l'article R. 512-28 du code de l'environnement ; les contrôles déjà effectués au titre de l'arrêté du 2 février 1998 susvisé peuvent être utilisés à cette fin ;
- 3° Le contrôle sanitaire déjà effectué en application des articles R. 1321-15 et R. 1321-16 du code de la santé publique.

ANNEXE X

MÉTHODOLOGIE DE SÉLECTION DES ÉLÉMENTS DE QUALITÉ, PARAMÈTRES ET FRÉQUENCES POUR LE PROGRAMME DE CONTRÔLES OPÉRATIONNELS DES EAUX DE SURFACE

1. Principes généraux

La règle générale est d'évaluer l'impact des pressions à l'origine du risque de non atteinte des objectifs environnementaux au travers du suivi des éléments de qualité ou paramètres les plus sensibles à ces pressions.

Ceci correspond:

– pour l'état écologique : à un ou des paramètres physico-chimiques à risque de dépassement des valeurs-seuils (cf. arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique de l'état chimique et du potentiel écologique des eaux de surface), et/ou la (ou les) substance(s) rejetée(s) en quantité (s) importante(s) (substances autres que les substances de l'état chimique), et/ou un (ou des) élément(s) hydromorphologique(s) et/ou le (ou les) élément(s) biologique(s) plus sensible(s);

Et/ou

- pour l'état chimique : à la ou les substance(s) à risque de dépassement des normes de qualité environnementale (annexe VIII de l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement).

Le suivi du compartiment écologique et/ou chimique est à adapter suivant la nature de la pression à l'origine du risque.

1.1. Sélection des éléments de qualité et paramètres

Dans le cadre du programme de contrôles opérationnels, un suivi peut être réalisé avant la mise en œuvre des programmes de mesures pour établir l'état et identifier les éléments les plus sensibles aux pressions.

Après la mise en œuvre des mesures et dans un délai compatible avec la réalisation de leurs effets sur le milieu, le suivi porte d'abord, préférentiellement, sur le ou les éléments physico-chimiques, chimiques ou hydromorphologiques les plus sensibles aux pressions à l'origine du risque. Le ou les éléments biologiques les plus sensibles aux pressions peuvent être contrôlés dans un second temps lorsqu'une amélioration de ces éléments physico-chimiques, chimiques ou hydromorphologiques est constatée.

L'évaluation du retour au bon état écologique et/ou chimique, ou au bon potentiel écologique, s'effectue :

- avec l'ensemble des éléments de qualité qui servent à évaluer cet état, dans le type considéré, conformément aux modalités définies par l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état des eaux. C'est-à-dire sur la base de données issues de suivis directs menés dans le cadre des contrôles opérationnels (pour les éléments les plus sensibles sélectionnés ci-dessus) et de données mesurées, extrapolées, modélisées ou expertisées (pour les éléments non sensibles aux pressions à l'origine du risques);
- sur la base de la chronique de données définies par l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état des eaux.

Les paramètres morphologiques définis pertinents par avis d'expert, sensible(s) aux pressions à l'origine du RNAOE, pourront ainsi être caractérisés en retenant préférentiellement les protocoles des méthodes existantes telles que CARHYCE ou AURAH-CE. Dès lors que l'un de ces protocoles est mis en œuvre, il est recommandé de le réaliser dans son intégralité.

Guide de référence:

- AFB, 2017. CARHYCE: caractérisation de l'hydromorphologie des cours d'eau: protocole de recueil de données hydromorphologiques à l'échelle de la station sur des cours d'eau prospectables à pied. 56 p.
- ONEMA 2013. Protocole d'audit rapide de l'hydromorphologie des cours d'eau (AURAH-CE). Guide, 46 p.

1.2. Sélection des fréquences

La fréquence des contrôles requise pour tout paramètre est déterminée de manière à apporter des données suffisantes pour une évaluation valable de l'état de l'élément de qualité en question. A <u>titre indicatif</u>, les contrôles devraient avoir lieu *a minima* aux fréquences indiquées dans le tableau ci-dessous, à moins que des fréquences moins importantes ne se justifient sur la base des connaissances techniques et des avis d'experts. Les fréquences peuvent également dans certains cas être augmentées, par exemple pour les éléments de qualité biologique et chimique les plus sensibles aux pressions afin de suivre la tendance de retour au bon état.

Tableau 61 : fréquences des contrôles opérationnels des eaux de surface

	COURS D'EAU	PLAN D'EAU	EAUX DE TRANSITION	EAUX CÔTIÈRES	
Biologique					
Phytoplancton	2 fois par an tous les ans (*)	4 fois par an tous les 3 ans	6 mois	6 mois	
Autre flore aquatique	3 ans	3 ans	3 ans	3 ans	

	COURS D'EAU	PLAN D'EAU	EAUX DE TRANSITION	EAUX CÔTIÈRES		
Macro-invertébrés	3 ans	3 ans	3 ans	3 ans		
Poissons	3 ans	3 ans	3 ans			
Hydromorphologique						
Continuité	6 ans					
Hydrologie	Continu	1 mois				
Morphologie	6 ans	6 ans	6 ans	6 ans		
	Physico-chimique					
Température	4 fois par an tous les ans	4 fois par an tous les 3 ans	3 mois	3 mois		
Bilan d'oxygène	4 fois par an tous les ans	4 fois par an tous les 3 ans	3 mois	3 mois		
Salinité	4 fois par an tous les ans	4 fois par an tous les 3 ans	3 mois			
Nutriments	4 fois par an tous les ans	4 fois par an tous les 3 ans	3 mois	3 mois		
Etat d'acidification	4 fois par an tous les ans	4 fois par an tous les 3 ans				
Autres polluants	4 fois par an tous les ans	4 fois par an tous les 3 ans	3 mois	3 mois		
Substances prioritaires	1 mois	4 fois par an tous les 3 ans	1 mois	1 mois		
(*) Prévoir les prélèvements en période de croissance de la végétation (mai à octobre pour la métropole)						

Les fréquences intra-annuelles et interannuelles sont choisies de manière à parvenir à un niveau de confiance et de précision acceptable. Les fréquences interannuelles sont notamment à adapter en fonction des caractéristiques et de l'état de la masse d'eau ainsi que de la nature des mesures mises en place. L'évaluation de la confiance et de la précision atteinte par le système de contrôle utilisé est indiquée dans le schéma directeur d'aménagement et de gestion des eaux.

Les fréquences de contrôle sont choisies de manière à tenir compte de la variabilité des paramètres résultant des conditions à la fois naturelles et anthropiques. L'époque à laquelle les contrôles sont effectués est déterminée de manière à réduire au minimum l'effet des variations saisonnières sur les résultats, et donc à assurer que les résultats reflètent les modifications subies par la masse d'eau du fait des variations des pressions anthropiques.

Pour constater le retour au bon état de la masse d'eau, les fréquences de contrôle seront accrues, lorsque cela est nécessaire, pour disposer de la chronique de données définies par l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état des eaux. Ainsi, pour constater le retour au bon état la périodicité et la fréquence de contrôle sur les stations du contrôle opérationnelle sera identique à celles réalisées sur les stations de contrôle de surveillance (cf. annexe VI).

Dès lors que la masse d'eau est évaluée en bon état, le contrôle opérationnel réalisé sur celle-ci pourra être adaptée (e.g fréquence interannuelles assouplies) dans l'attente d'une nouvelle évaluation du risque qui viendra le cas échéant confirmer la possibilité de lever le contrôle opérationnel sur cette masse d'eau, à l'occasion de la mise à jour du programme de contrôle opérationnel du bassin.

2. Paramètres et éléments de qualité à suivre par type d'eaux à titre indicatif

Les tableaux suivants décrivent les paramètres et éléments de qualité à suivre, à titre indicatif, par type d'eaux en fonction du type de pression.

Eaux côtières (toutes façades)

Tableau 62 : paramètres et éléments de qualité à suivre dans les eaux côtières

Eléments physico-chimiques (ATL): - flux de nutriments - suivi hivernal de nutriments dans la masse d'eau - suivi estival de l'oxygène dissous Eléments biologiques: - phytoplancton ou macroalgues
Eléments chimiques : substance(s) de l'état chimique ou polluant(s) spécifique(s) de l'état écologique Eléments biologiques :
- - E

Type de pression	Paramètres et éléments de qualité à suivre
	Tous les éléments pertinents du type
	Eléments hydromorphologiques : Inventaire et surface des emprises
Emprises et constructions littorales : enjeu destruction d'habitats côtiers	Éléments biologiques : - en fonction de l'habitat détruit (ATL) - herbiers surveillance microsurfacique ou macroalgues (MED)
Activités nautiques (ancre, arts traînants): enjeu pression physique	Eléments biologiques : - angiospermes et invertébrés (ATL) - herbiers : surveillance microsurfacique (MED)
Espèces exotiques envahissantes	Eléments biologiques à l'origine de la pression : caractéristiques de colonisation par la ou les espèces (recouvrement relatif, profondeur maximale de colonisation, compétition avec les communautés indigènes)
	Eléments biologiques du même compartiment biologique que l'espèce exotique envahissante
	Eléments physico-chimiques : turbidité
Activités de dragage, clapage ou rejets : enjeu turbidité et transport de micropolluants	Eléments chimiques : substance(s) de l'état chimique ou polluant(s) spécifique(s) de l'état écologique pertinent(s)
	Eléments biologiques: macrophytes ou invertébrés
Piétinement	Eléments biologiques : macrophytes

2.2. Eaux de transition (façade Manche Atlantique)

Tableau 63 : paramètres et éléments de qualité à suivre dans les eaux de transition (façade Manche Atlantique)

Type de pression	Paramètres et éléments de qualité à suivre
Rejets de nutriments d'origine ponctuelle ou diffuse : enjeu eutrophisation	Eléments physico-chimiques : bilan d'oxygène, nutriments
	Eléments biologiques : macro-invertébrés benthiques, ou macrophytes, ou phytoplancton (pour les masses d'eau de faible turbidité uniquement)
Rejets de micropolluants d'origi ne ponctuelle ou diffuse	Paramètres chimiques : substance(s) de l'état chimique ou polluant(s) spécifique(s) de l'état écologique
	Eléments biologiques : tous
Dégradation thermique	Eléments physico-chimiques : température, oxygène
	Eléments biologiques : tous
Pressions sur l'hydrologie (prélèvement d'eau, drainage, régulation du débit)	Eléments hydromorphologiques : - quantité et dynamique du débit (abaissement des étiages, modification des crues) ou modifications des écoulements - indicateurs de la dynamique du bouchon vaseux dans les estuaires (position, fréquence d'expulsion)
	Eléments biologiques : tous
Pressions sur la morphologie (altération du lit mineur, des berges, et de la ripisylve)	Eléments hydromorphologiques : - indicateurs d'altérations morphologiques
	Eléments physico-chimiques : oxygène, turbidité
	Eléments biologiques: - poissons et invertébrés
Pressions sur le transit sédimentaire (barrages, gravières)	Eléments hydromorphologiques : bathymétrie, granulométrie sédiments

Type de pression	Paramètres et éléments de qualité à suivre	
	Eléments physico-chimiques: turbidité	
	Eléments biologiques : macro-invertébrés benthiques, ou poissons	
	Eléments hydromorphologiques : à définir	
Erosion des sols, colmatage	Eléments physico-chimiques : turbidité	
	Eléments biologiques : macrophytes ou macro-inverébrés ou poissons	
Espèces exotiques envahissantes	Eléments biologiques à l'origine de la pression : caractéristiques de colonisation par la ou les espèces (recouvrement relatif, profondeur maximale de colonisation, compétition avec les communautés indigènes)	
	Eléments biologiques du même compartiment biologique que l'espèce exotique envahissante	

2.3. Eaux de transition (façade Méditerranée)

Tableau 64 : paramètres et éléments de qualité à suivre dans les eaux de transition (façade Méditerranée)

Type de pression	Paramètres et éléments de qualité à suivre
Rejets de nutriments d'origine ponctuelle ou diffuse : enjeu eutrophisation	Eléments physico-chimiques : oxygène dissous, turbidité, P minéral et total, N minéral et total
	Eléments biologiques : phytoplancton (biomasse), ou macrovégétaux (macroalgues et angiospermes) ou invertébrés
Rejets de micropolluants (d'origine domestique ou industrielle ou agricole) : enjeu pollution par les substances toxiques	Eléments chimiques : substance (s) de l'état chimique ou polluant (s) spécifique (s) de l'état écologique
	Eléments biologiques : macrophytes (pesticides)
Pressions sur l'hydromorphologie	Eléments hydromorphologiques : à préciser ultérieurement
	Eléments biologiques : macrophytes principalement
Espèces exotiques envahissantes	Eléments biologiques à l'origine de la pression : caractéristiques de colonisation par la ou les espèces (recouvrement relatif, profondeur maximale de colonisation, compétition avec les communautés indigènes)
	Eléments biologiques du même compartiment biologique que l'espèce exotique envahissante

2.4. Cours d'eau

Tableau 65 : paramètres et éléments de qualité dans les cours d'eau

Type de pression	Paramètres et éléments de qualité à suivre
Rejets de macropolluants d'origine ponctuelle ou diffuse	Eléments physico-chimiques : bilan d'oxygène, nutriments, effets des proliférations végétales pour les cours d'eau lents, particules en suspension
	Eléments biologiques : macro-invertébrés ou diatomées ou macrophytes (nutriments uniquement), phytoplancton pour les grands cours d'eau
Rejets de micropolluants d'origine ponctuelle ou diffuse	Paramètres : substance(s) de l'état chimique ou polluant(s) spécifique(s) de l'état écologique (a)
	Eléments biologiques : macro-invertébrés
Pollution par acidification	Eléments physico-chimiques : acidification
	Eléments biologiques : macro-invertébrés

Type de pression	Paramètres et éléments de qualité à suivre
Dégradation thermique	Eléments physico-chimiques : température
	Eléments biologiques : diatomées ou macrophytes
Pressions sur l'hydrologie (prélèvement d'eau, drainage, régulation du débit)	Eléments hydromorphologiques : quantité et dynamique du débit (abaissement des étiages, modification des crues) ou ralentissement des écoulements
	Eléments biologiques : macro-invertébrés ou poissons
Pressions sur la morphologie (altération physique du lit mineur, des berges, et de la ripisylve) Blocage du transit sédimentaire (barrages, gravières) Continuité écologique (blocage des organismes aquatiques, obstacle à la continuité écologique)	Eléments hydromorphologiques : indicateurs d'altérations morphologiques (sinuosité, succession des faciès, débit de plein bord, altération du corridor, granulométrie, incision)
	Eléments biologiques : macro-invertébrés ou poissons
Erosion des sols	Eléments hydromorphologiques : colmatage
	Eléments biologiques : macro-invertébrés ou poissons
Espèces exotiques envahissantes	Eléments biologiques à l'origine de la pression : caractéristiques de colonisation par la ou les espèces (recouvrement relatif, profondeur maximale de colonisation, compétition avec les communautés indigènes)
	Eléments biologiques du même compartiment biologique que l'espèce exotique envahissante

2.5. Plans d'eau

Un suivi préalable pour le contrôle opérationnel des plans d'eau peut être réalisé avant la mise en œuvre des programmes de mesures pour établir l'état et identifier les éléments les plus sensibles aux pressions.

Le suivi pour le contrôle opérationnel des plans d'eau porte sur les éléments de qualité de l'annexe VI les plus sensibles aux pressions à l'origine du risque. En l'absence de recommandations nationales, la sélection des éléments de qualité à suivre se fera par expertise sur la base des recommandations du groupe de travail sur les plans d'eau

Les suivis des micropolluants et des éléments biologiques seront adaptés à leur pertinence en fonction de l'état et du type de masse d'eau.

Dans le cas d'espèces exotiques envahissantes, le suivi est complété par la détermination des caractéristiques de colonisation par la ou les espèce (s) (recouvrement relatif, profondeur maximale de colonisation, compétition avec les communautés indigènes).

Un suivi des flux sur les tributaires du plan d'eau peut compléter le suivi des plans d'eau (pour les micropolluants et les nutriments).

ANNEXE XI

MÉTHODOLOGIE DE SÉLECTION DES SITES DE CONTRÔLE POUR LE PROGRAMME DES CONTRÔLES OPÉRATIONNELS DES EAUX SOUTERRAINES

Des contrôles opérationnels sont effectués pour toutes les masses d'eau ou tous les groupes de masses d'eau souterraine qui, sur la base de l'étude d'incidence effectuée en application du point I 2° de l'article R. 212-3 du code de l'environnement et d'un contrôle de surveillance, sont identifiés comme risquant de ne pas répondre aux objectifs environnementaux mentionnés au IV de l'article L. 212-1 du code de l'environnement. La sélection des sites de contrôle doit également refléter une évaluation de la représentativité des données de contrôle provenant de ce site quant à la qualité de la masse ou des masses d'eau souterraine en cause.

Le programme de contrôles opérationnels peut notamment inclure, lorsque cela est pertinent par rapport aux objectifs visés :

- 1° Une partie des contrôles déjà effectués au titre de l'autosurveillance d'installations classées pour la protection de l'environnement, dans les conditions fixées par l'arrêté du 2 février 1998 susvisé ;
 - 2º Les contrôles déjà effectués au titre du suivi des sols pollués ;
- 3° Le contrôle sanitaire déjà effectué en application des articles R. 1321-15 à R. 1321-16 du code de la santé publique.

ANNEXE XII

FRÉQUENCES POUR LES CONTRÔLES OPÉRATIONNELS DE L'ÉTAT CHIMIQUE DES EAUX SOUTERRAINES

Le choix des fréquences des contrôles repose sur la connaissance du fonctionnement hydrogéochimique et des pressions. Les fréquences minimales suivantes doivent être respectées :

- a) Une fois par an, pour les masses d'eau sédimentaires avec un caractère captif ;
- b) Quatre à douze fois par an, pour les masses d'eau sédimentaires à caractère karstique présentant une grande variabilité ;
- c) Au moins deux fois par an dans les autres cas, avec un contrôle en période de basses eaux et un en période de hautes eaux.

ANNEXE XIII

INFORMATIONS À RECUEILLIR EN VUE DU RAPPORTAGE DES CONTRÔLES D'ENQUÊTE

Afin de répondre aux obligations de rapportage auprès de la commission européenne, les informations minimales à recueillir et à conserver par les bassins, pour chacun des contrôles d'enquête mis en œuvre, sont les suivantes :

- le type de contrôle d'enquête: contrôle d'enquête mis en œuvre pour cause d'excédent dont l'origine est inconnue, de non atteinte probable des objectifs, de pollution accidentelle, ou autres, à préciser;
- un bref résumé illustrant la stratégie mis en œuvre et son fonctionnement dans le cadre de ce contrôle;
- le nombre de sites suivis pour ce contrôle ainsi que leur code;
- la date de démarrage et de fin des suivis ;
- les fréquences de contrôles;
- les éléments de qualité suivis.

ANNEXE XIV

OBJECTIFS ET HISTORIQUE DE LA CONSTRUCTION DU RRP DES COURS D'EAU DE MÉTROPOLE

1. Historique de la construction du réseau de référence pérenne des cours d'eau en métropole

En 2004, un réseau national de référence a été pré-qualifié sur la base de premiers critères de sélection afin de répartir ces sites par hydro-écorégions et de façons à ce qu'ils soient proportionnels et représentatifs des cours d'eau au niveau national avec la mise en place des suivis de 2005 à 2007.

Par la suite, un travail de qualification du réseau par l'Irstea s'est appuyé sur les critères de pression anthropique retenus par le travail européen REFCOND.

Le ministère en charge de l'environnement a initié en 2010 la construction du réseau de référence pérenne (RRP) des cours d'eau en poursuivant la logique de mise en œuvre du réseau de référence initial et en le complétant avec des types majeurs des cours d'eau non couverts pour assurer la meilleure représentativité du réseau hydrographique en se basant sur des critères environnementaux garantissant le minimum de pressions anthropiques pour le type considéré

La mise en œuvre de ce réseau a commencé en 2012.

En 2017-2018, la DEB et l'AFB ont lancé un travail d'actualisation et de validation des sites RRP avec l'ensemble des acteurs du bassin afin d'avoir une liste métropole consolidée et stable des stations du RRP en prévision du troisième cycle DCE.

2. Objectifs du réseau de référence pérenne des cours d'eau de métropole

Le dimensionnement du réseau de référence pérenne est de l'ordre de 300 sites pour les cours d'eau, hypothèse jugée comme la meilleure adéquation entre moyens et besoins pour assurer une représentativité des principaux types de cours d'eau du réseau hydrographique métropolitain. Sur ces sites, une partie est déjà suivie notamment dans le cadre du réseau de contrôle de surveillance.

Le dimensionnement du réseau de référence pérenne vise à assurer une couverture de l'ensemble des types majeurs de cours d'eau de métropole, à savoir cinquante types de cours d'eau.

Le réseau de référence pérenne des cours d'eau a été mis en place afin :

- que soient établies des <u>conditions</u> de <u>référence</u> des éléments de qualité biologique, hydromorphologique et physico-chimique fondant la classification de l'état écologique par type de masse d'eau de surface;
- que soient évalués les <u>changements à long terme</u> des conditions naturelles.

Ce réseau ayant vocation à suivre les changements à long terme des conditions naturelles, son organisation doit permettre un suivi pérenne, sur plusieurs décennies, et le choix des sites a dû être défini de façon robuste et partagé par les services. Cette organisation doit également permettre d'assurer la non dégradation des conditions de référence sur ces sites afin de stabiliser le réseau.

La mise en place du réseau de référence pérenne ne s'applique pas aux départements d'outre-mer.

3. Suivi des éléments de description des pressions des sites du réseau de référence pérenne pour les cours d'eau

Les éléments de description concernent exclusivement les « pressions anthropiques » qui s'exercent sur les milieux.

La démarche proposée est construite en cohérence avec les critères de pressions définis dans le guide de recommandations européennes REFCOND (version 7.1, 2003), et utilisés dans les groupes d'interétalonnage.

Les facteurs de pression anthropique sont à rechercher et évaluer tous les six ans, de préférence au moment de l'état des lieux à trois échelles spatiales différentes :

- le bassin versant amont du site;
- le tronçon du cours d'eau (équivalent à la masse d'eau);
- le site proprement dit (station de mesure).

Une grille d'analyse est disponible pour décrire les échelles de pression dans l'annexe 10 de la circulaire du 29 janvier 2013 relative à l'application de l'arrêté du 25 janvier 2010 modifié.

ANNEXE XV

PARAMÈTRES ET FRÉQUENCES POUR LE SUIVI DU RÉSEAU DE RÉFÉRENCE PÉRENNE EN COURS D'EAU

1. Paramètres et fréquences

Tableau 66 : Paramètres et fréquences pour le suivi du réseau de référence pérenne en cours d'eau

Eléments suivis	Nombre d'années de suivi par SDAGE	Fréquence des contrôles par année	Sites concernés	
HYDROMORPOLOGIE ³				
Morphologie	1	1 ² Tous		
Continuité de la rivière	1	1 ²	Tous	
Hydrologie	6	Données hydrologiques mesurées ou modélisées	Tous	
BIOLOGIE				
Poissons	6	1	Tous ¹	
Invertébrés	6	1	Tous ¹	
Phytoplancton	6	4	Tous ¹	
Diatomées	6	1	Tous ¹	
Macrophytes	6	1	Tous¹	
PHYSICO-CHIMIE ³				
Paramètres physico-chimiques des groupes 1 ⁴ , 2 et 2 bis	6	6	Tous	
Paramètres physico-chimiques du groupe 3	6	2	Tous	
Paramètres physico-chimiques des groupes 4 et 5	2	1	Tous	
Thermie Pression	6	continu	Tous	
SUIVIS COMPLEMENTAIRES				
Pression (fiche pressions)	1	1	Tous	

¹ Tous, sauf types où cet élément n'est pas pertinent (cf. annexe I).

2. Suivi de l'hydromorphologie

Une campagne de terrain (protocole CARHYCE) tous les six ans est nécessaire pour renseigner les éléments descriptifs de l'hydromorphologie.

² Prise en compte possible d'éventuelles modifications importantes entre deux investigations.

³ Les paramètres hydromorphologiques et physico-chimiques à suivre sont indiqués à l'annexe IV de l'arrêté surveillance.

⁴ Il est recommandé d'assurer un suivi en continu du paramètre température.

L'utilisation des données hydrologiques disponibles et l'acquisition de données complémentaires le cas échéant sont réalisées selon les méthodes proposées au 1.3.1. de l'annexe IV (partie régime hydrologique des cours d'eau) du présent arrêté.

3. Suivi physico-chimique

Limites de quantification (LQ)

Le suivi des paramètres physico-chimiques sera réalisé sous agrément. L'utilisation de limites de quantification inférieures à celles mentionnées dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques est laissée à l'appréciation des bassins en fonction de leurs connaissances de la physico-chimie de leurs sites de références. Ainsi, à titre d'information, les LQ du tableau 67 ci-dessous peuvent être visées en remplacement de celles figurant dans l'arrêté du 27 octobre 2011 portant modalités d'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques au titre du code de l'environnement.

Tableau 67 : limites de quantification plus basses que celles figurant dans l'arrêté du 27 octobre 2011 portant modalités d'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques et pouvant être utilisée pour les sites de référence

Code Sandre	Paramètre	LQ	Pour les eaux douces
1319	Azote total Kjeldahl	0,05 mg/l	sur eau brute
1335	Ammonium	0,005 mg/l	sur eau filtrée
1433	Orthophosphates (PO4)	0,015 mg/l	sur eau filtrée

4. Suivis complémentaires des sites RRP

Pressions anthropiques

Les facteurs de pression anthropique sont à réévaluer tous les six ans, de préférence au moment de l'état des lieux à trois échelles spatiales différentes.

Pour les sites du RRP nouvellement proposés, la grille de pression sera renseignée lors du premier passage (détermination de la station, coordonnées géographiques XY) ou lors de la première campagne de terrain. Pour les stations reprises d'un réseau existant (RCS, IPR ou réseau de référence 2005-2007), les grilles seront actualisées durant les 3 premières années.

Substances

Des modalités de suivi adaptées aux objectifs du RRP seront établies pour le 3^{ème} cycle DCE.

Le suivi des substances sur le RRP sera effectué à raison d'une campagne par cycle, selon les fréquences intraannuelles définies pour le contrôle de surveillance. Les substances prioritaires, les PSEE ainsi que les substances pertinentes à surveiller seront analysées *a minima* à raison d'une campagne par cycle selon les fréquences intraannuelles définies pour le contrôle de surveillance (cf. fréquences pour les matrices eau, biote et sédiment du tableau 46).

La fréquence pourra être augmentée à raison de deux campagnes par cycle en cas d'identification de dépassements des normes de qualité ou valeurs guides pour les substances prioritaires et les polluants spécifiques.