Planejamento de Experimentos

- Não constituem um delineamento
- São formas de MONTAR um experimento
- Podem ser aplicados em qualquer delineamento (DIC, DBC, DQL, ...), desde que
- Tenham dois ou mais fatores estudados simultaneamente.

Como funciona?

 Cada nível de um fator se combina ou o nível de outro fator para constituir um delineamento

Suponha 2 Fatores: A (2 níveis) e B (3 níveis)

Tratamentos

 a_1b_1 , a_1b_2 , a_1b_3 , a_2b_1 , a_2b_2 , a_2b_3 ,

Nomeclatura: Fatorial 2×3 .

Nomenclatura

```
Como seria um fatorial 3<sup>3</sup>?
```

Fatorial $3 \times 3 \times 3$

Três fatores com 3 níveis cada, seja A $(a_1, a_2 e a_3)$, B $(b_1, b_2 e b_3)$

e C $(c_1, c_2 e c_3)$

Quantos tratamentos?

27 tratamentos

Como seria um fatorial $2^2 \times 3$?

Efeitos

- Efeito Principal:
 - Efeito de cada fator independente dos outros fatores;
- Efeito da Interação:
 - Resposta da combinação dos efeitos dos fatores, independentte dos efeitos principais;
 - A interação ocorre quando o efeito de um fator interfere no efeito do outro.

Como analisar se existe efeito da interação?

Efeitos

	e1	e2	e3
v1	2	4	6
v2	5	7	9

Efeitos

	e1	e2	e3
v1	2	4	6
v2	5	8	3

Efeitos

Vantagem

Permite avaliar o efeito da interação independente do delineamento utilizado.

Desvantagem

Número elevado de unidades experimentais em decorrênica do aumento de fatores e seus níveis.

Análise estatística mais trabalhosa.

Modelo:

Modelo Matemático

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + e_{ijk}$$
 (1)

 y_{ijk} : observação relativa ao i-ésimo nível do fator A e ao j-ésimo nível do fator B aplicado na repetição k.

 μ : média geral do experimento

 α_i : efeito do i-ésimo nível do fator A

 β_i : efeito do j-ésimo nível do fator B

 $(\alpha\beta)_{ij}$: efeito da interação entre o i-ésimo nível do fator A e o j-ésimo nível do fator B

 e_{ijk} : erro aleatório associado à observação y_{ijk}

ANOVA - DIC:

FV	GL	SQ	QM	F
A	l-1	SQA		
В	J-1	SQB		
Interação A x B	(I-1)(J-1)	SQAxB		
(Tratamentos)	(IJ-1)	(SQTrat)		
Resíduo		SQRes		
Total	<i>IJK</i> – 1	SQTotal		

ANOVA - DBC:

FV	GL	SQ	QM	F
A	l-1	SQA		
В	J-1	SQB		
Interação A x B	(I-1)(J-1)	SQAxB		
(Tratamentos)	(IJ-1)	(SQTrat)		
Blocos	K-1	SQBloc		
Resíduo		SQRes		
Total	<i>IJK</i> – 1	SQTotal		

Hipóteses:

Interação

$$\begin{cases} H_0 : \alpha \beta_{11} = \alpha \beta_{22} = \dots = \alpha \beta_{IJ} = 0 \\ H_1 : \text{Não } H_0 \end{cases}$$
 (2)

Fator A

$$\begin{cases} H_0 : \alpha_1 = \alpha_2 = \dots = \alpha_I = 0 \\ H_1 : \text{Não } H_0 \end{cases}$$
 (3)

Fator B

$$\begin{cases} H_0 : \beta_1 = \beta_2 = \dots = \beta_J = 0 \\ H_1 : \text{N\tilde{a}o } H_0 \end{cases}$$
 (4)

Quando ocorrer blocos, linhas ou colunas, são as mesmas hipóteses já estudadas.

Passo a passo para realizar a análise:

- Se a interação não é significativa:
 - Cada fator é analisado de forma independente do outro
 - Conclui-se para cada fator
- Se a interação for significativa:
 - Deve-se abrir a interação e analisar os nívels de um fator dentro do outro
 - Conclui-se para cada nível analisado

ANOVA – DIC:

Considere um fatorial 2², ou sejam Fator A (a1 e a2) e Fator B (b1 e b2), com 5 repetições.

Vamos considerar que existe não interação significativa.

GI	SO	Ω	F
GL	3 Q	VIVI	I .
1	SQA		
1	SQB		
1	SQAxB		Não é significativa
16	SQRes		
19	SQTotal		
		1 SQA 1 SQB 1 SQAxB 16 SQRes	1 SQA 1 SQB 1 SQAxB 16 SQRes

ANOVA - DIC:

FV	GL	SQ	QM	F
А	1	SQA		Concluir para A
В	1	SQB		Concluir para B
Interação A x B	1	SQAxB		Não é significativa
Resíduo	16	SQRes		
Total	19	SQTotal		

ANOVA - DIC:

Considere um fatorial 2², ou sejam Fator A (a1 e a2) e Fator B (b1 e b2), com 5 repetições.

Vamos considerar que existe interação significativa.

FV	GL	SQ	QM	F
Α	1	SQA		
В	1	SQB		
Interação A x B	1	SQAxB		Interação significativa
Resíduo	16	SQRes		
Total	19	SQTotal		

ANOVA - DIC:

FV	GL	SQ	QM	F
Α	1	SQA		
В	1	SQB		
Interação A x B	1	SQAxB		Abrir a interação
Resíduo	16	SQRes		
Total	19	SQTotal		

ANOVA - DIC:

Abrindo A dentro de B

FV	GL	SQ	QM	F
В	1	SQB		
a1 x a2 dentro de b1	1	SQ(A/b1)		Concluir
a1 x a2 dentro de b2	1	SQ(A/b2)		Concluir
Resíduo	16	SQRes		
Total	19	SQTotal		

Abrindo B dentro de A

FV	GL	SQ	QM	F
А	1	SQA		
b1 x b2 dentro de a1	1	SQ(B/a1)		Concluir
b1 x b2 dentro de a2	1	SQ(B/a2)		Concluir
Resíduo	16	SQRes		
Total	19	SQTotal		

Como seria a ANAVA de um Fatorial 3³?

Como seria o croqui de um Fatorial 3³?

Obrigado!

Jalmar M F Carrasco carrascojalmar@gmail.com