সৃষ্টি কলেজ অব টাজ্ঞাইল

তারিখ: ১২-০১-২০২৩

উচ্চতর গণিত ২য় পত্র(কণিক)

উপকেন্দ্র, দিকাক্ষ ও উৎকেন্দ্রিকতা

কার্তেসীয় সমতলে একটি নির্দিষ্ট বিন্দু ও একটি নির্দিষ্ট সরলরেখা থেকে যে সব বিন্দুর দরত্বের অনুপাত একটি ধ্রবক, তাদের সেট একটি সঞ্জারপথ এবং তাকে কণিক বলা হয়।

এই নির্দিষ্ট বিন্দুটিকে কনিকের উপকেন্দ্র বা ফোকাস (Focus) বলা হয়।

নির্দিষ্ট সরলরেখাটিকে কনিকের দিকাক্ষ বা নিয়ামক (Directrix) বলা হয়।

ধ্রব অনুপাতটিকে উৎকেন্দ্রিকতা (Eccentricity) বলা হয় এবং e দ্বারা সচিত করা হয়।

e -এর বিভিন্ন মানের জন্য সঞ্জারপথের আকৃতি বিভিন্ন হয়।

- (i) e = 1 হলে সঞ্জারপথ পরাবৃত্ত (Parabola) হয়।
- (ii) 0 < e < 1 হলে সঞ্জারপথ উপবৃত্ত (Ellipse) হয়।
- (iii) e > 1 হলে সঞ্জারপথ অধিবৃত্ত (Hyperbola) হয়।

পরাবৃত্তের সমীকরণ $\mathbf{y}^2 = 4\mathbf{a}\mathbf{x}$ হলে	পরাবৃত্তের সমীকরণ $x^2=4ay$ হলে
(i) শীর্ষবিন্দুর স্থানাঙ্ক, (0, 0)	(i) শীর্ষবিন্দুর স্থানাজ্ঞ্ক, $(0,0)$
(ii) উপকেন্দ্রের স্থানাজ্ঞ্ক, (a, 0)	(ii) উপকেন্দ্রের স্থানাঙ্ক, (0, a)
(iii) দিকাক্ষের সমীকরণ, $x=-a$	(iii) দিকাক্ষের সমীকরণ, $y=-a$
(iv) অক্ষরেখার সমীকরণ, y = 0	(iv) অক্ষরেখার সমীকরণ, x = 0
(v) উপকেন্দ্রিক লম্বের দৈর্ঘ্য = 4a	(v) উপকেন্দ্রিক লম্বের দৈর্ঘ্য = 4a
(vi) উপকেন্দ্রিক লম্বের সমীকরণ, x = a	(vi) উপকেন্দ্রিক লম্বের সমীকরণ, y = a

$\frac{x^2}{2} + \frac{y^2}{12} = 1$ উপবৃত্ত সম্পর্কে নিমুলিখিত ফলগুলো স্মরণ রাখতে হবে

a D	
a > b	a < b
(i) উপবৃত্তের কেন্দ্রের স্থানাঙ্ক $(0,0)$	(i) উপবৃত্তের কেন্দ্রের স্থানাঙ্ক $(0,0)$
(ii) বৃহৎ অক্ষ = 2a	(ii) বৃহৎ অক্ষ = 2b
(iii) ক্ষুদ্ৰ অক্ষ = 2b	(iii) ক্ষুদ্ৰ অক্ষ = 2a
(iv) উপকেন্দ্রের স্থানাজ্ঞ্ক, (±ae, 0)	(iv) উপকেন্দ্রের স্থানাঙ্ক, (0,±be)
(v) বৃহৎ অক্ষের সমীকরণ, $y=0$	(v) বৃহৎ অক্ষের সমীকরণ, $\mathrm{x}=0$
(vi) ক্ষুদ্র অক্ষের সমীকরণ, x = 0	(vi) ক্ষুদ্র অক্ষের সমীকরণ, $\mathrm{y}=0$
$(ext{vii})$ উৎকেন্দ্রিকতা, $e = \sqrt{1 - rac{b^2}{a^2}}$	$(ext{viii})$ উৎকেন্দ্রিকতা, $e=\sqrt{1-rac{a^2}{b^2}}$
$(viii)$ উপকেন্দ্ৰিক লম্ব = $\frac{2b^2}{a}$	(ix) উপকেন্দ্রিক লয় $=rac{2a^2}{b}$