Статистический вывод: n-граммные модели

глава 6 (Manning,Shutze) Statistical Natural language Processing

Языковые модели (language models)

• Определение вероятности предложений, последовательностей слов

- Как вероятна каждая последовательность?
 - P (w1, w2, w3,.. wn)
 - P(w5| w1, w2, w3, w4)

• Языковая модель – математическая модель, которая вычисляется вероятность последовательности слов или условную вероятность следования слова в контексте

Возможные применения:

- Распознавание речи
 - P (I saw a van)>P (eyes awe of an)
- Машинный перевод
 - P (high winds tonight)>P(large winds tonight)

- А также:
 - Распознавание сканированного текста
 - Спеллинг
 - Определение авторства
 - Определения языка текста и др.

"Shannon Game"

- Claude E. Shannon. "Prediction and Entropy of Printed English", Bell System Technical Journal 30:50-64. 1951.
- Предсказание следующего слова на основе (n-1) предшествующих слов

 Определение вероятности различных последовательностей на основе «тренировочного» корпуса

Цепи Маркова: предсказание на основе n-грамм

- Предположение Маркова (Марковские цепи) слово определяется относительно небольшим предшествующим контекстом (несколько слов)
- "n-граммы" = ПОСЛЕДОВАТЕЛЬНОСТЬ п СЛОВ
 - Униграммы: P(w1, w2, w3,...)=P(w1) P(w2)P(w3)...
 - биграммы: P(wi|w1, w2, w3,...)=P (wi|wi-1)
 - триграммы

Вопрос

- Какая последовательность слов наиболее вероятная по униграммной модели русского языка
 - (в, и, на, с)
 - (ехать, на, автобусе, домой)
 - (на, ехать, домой, автобусе)
 - (улучшить, обеспечение, населения, товарами)

Статистическая надежность vs. Качество предсказания

"большая зеленая _____" машина? лягушка? лампа? Таблетка?

"Проглотил большую зеленую _____" *таблетку? лягушку?*

Статистическая надежность vs. Качество предсказания

• Большая величина n:

- больше информации о контексте лучше предсказание продолжения
- Меньше статистических данных

• Меньшая величина n:

- Больше примеров в данных, больше статистики
- Возрастает неопределенность предсказания

Следствие: порождение текстов, похожих на естественные

- Порождение текстов на основе марковских моделей – один из известных видов поискового спама
 - Коллекция текстов нужной тематики
 - Извлечение статистики

• Эксперимент по порождению пьес Шекспира

Порождение Шекспира

- Порождение по униграммам...
 - Every enter now severally so, let
 - Hill he late speaks; or! a more to leg less first you enter
- На основе биграмм...
 - What means, sir. I confess she? then all sorts, he is trim, captain.
 - Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry.

Порождение Шекспира

- Триграммы
 - Sweet prince, Falstaff shall die.
 - This shall forbid it should be branded, if renown made it empty.

• Тетрограммы

- What! I will go seek the traitor Gloucester.
- Will you not tell me who I am?
- Это выглядит как Шекспир, поскольку это и есть Шекспир

Выбор п

Словарь (V) = 20,000 слов

n	Количество единиц
2 (биграмм)	400 000 000
3 (триграмм)	8000 000 000 000
4 (тетраграм м)	1.6 x 10 ¹⁷

Статистическая оценка

• Даны обучающие текстовые данные ...

• Как построить модель (распределение вероятностей), которая может предсказывать продолжение начатого текста

Вероятность появления следующего слова

$$P(Wn|W_1,...,W_{n-1}) = P(W_1,....W_n)/P(W_1,...W_{n-1})$$

MLE (максимальное правдоподобие)

Pmle
$$(W_1,...W_n) = C(W_1,...,W_n)/N$$

Pmle
$$(Wn|W_1,...,W_{n-1}) = C(W_1,...Wn) / C(W_1,...Wn-1)$$

С ()- частота появления подстроки

Для биграмм

Pmle (Wn|Wn-1)=C(Wn-1, Wn)/C(Wn-1)

Пример

• Корпус

- <s> Он пошел в школу </s>
- <s> Пошел он в школу</s>
- <s> Он не любит мясо</s>

• Оценки

- -P(oH| < s >)=2/3
- P (<s> |школу) ...
- Р (мясо|он)

Корпус отзывов о ресторанах

- P(english|want)=0.0011
- P(chinese|want)=0.0065
- P(to|want)=0.66
- P(eat|to)=0.28
- P(food|to)=0
- P(want|spend)=0
- P(I, <s>)=0.25

Корпус отзывов о ресторанах

- P(english|want)=0.0011 знания о мире
- P(chinese|want)=0.0065 знания о мире
- P(to|want)=0.66 грамматика
- P(eat|to)=0.28 грамматика
- P(food|to)=0 нет значения в корпусе
- P(want|spend)=0 грамматика
- P(I, <s>)=0.25

Статистическая оценка

Пример:

Корпус: пять романов Джейн Остин

N = 617,091 слов

V = 14,585 уникальных слов

Задание: предскажи следующее слово после триграммы "inferior to"

from test data, *Persuasion*: "[In person, she was] inferior to *both* [sisters.]"

Примеры в обучающем корпусе:

"inferior to _____"

Оценка максимального правдоподобия

Реальное распределение вероятностей:

Реальное распределение вероятностей

"Smoothing"- сглаживание

- Нужна модель, которая позволяет снизить вероятности уже встреченных событий и повысить вероятность еще не встречавшихся биграмм
- Также называется методы дисконтирования (Discounting methods)

Smoothing is like Robin Hood: Steal from the rich and give to the poor (in probability mass)

We often want to make predictions from sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

Smoothing flattens spiky distributions so they generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Very important all over NLP, but easy to do badly!

Сглаживание "adding one"

- Правило Лапласа оценки вероятности следующего результата S,F
 - P(s)=(s+1)/(s+f+2)
 - Предположение о равновероятном распределении:
 Uniform Prior

• Сглаживание

- Plap=(C(W1,...Wn)+1)/(N+B)
- C(W1,...Wn) частотность n-граммы
- N число слов в корпусе
- В число возможных значений предсказываемой величины

LaPlace's Law (adding one)

LaPlace's Law (adding one)

LaPlace's Law

Сглаживание Лапласа

- Для униграмм:
 - Добавляем 1 к частоте каждого слова
 - Нормализуем N (#tokens) + V (#types)
 - Исходная вероятность униграммы

$$P(w_i) = \frac{C_i}{N}$$

- Новая вероятность униграммы

$$P_{LP}(w_i) = \frac{c_i+1}{N+V}$$

- Для биграмм
- исходная $P(w_n|w_{n-1}) = \frac{c(w_n|w_{n-1})}{c(w_{n-1})}$
- новая $P(w_n|w_{n-1}) = \frac{c(w_n|w_{n-1})+1}{c(w_{n-1})+V}$

Однако

- Для больших словарей биграмм всегда много закон Лапласа дает слишком много вероятности не встречавшимся событиям
- (Church, Gale, 1991)
- Corpus Associated Press 44 млн. слов разделили на две части и пытались предсказать поведение на второй части
- - 400653 разных слов
- - $1.6*10^{11}$ число возможных биграмм

Предсказание числа биграмм

- $F_{lap} = ((r+1)/(N+B))*N$
- Биграммы встречались r раз в одной половине корпуса
- Нужно предсказать, сколько раз такие биграммы встретятся во второй половине корпуса
- N=22 млн. слов
- V= 273266 разных слов
- B=V*V

Закон Лапласа и реальные частоты

R=fmle	flap	femp
0	0.000137	0.000027
1	0.000274	0.448
2	0.000411	1.25
3	0.000548	2.24
4	0.000685	3.23
5	0.000822	4.21
6	0.000959	5.23

Flap – предсказание средней частоты во второй части по Лапласу

Femp – реальная средняя частота во второй части

Lidstone's Law

$$P_{Lid}(w_1 \cdots w_n) = \frac{C(w_1 \cdots w_n) + \lambda}{N + B\lambda}$$

Р = вероятность п-граммы

C = частота n-gram в обучающей колллекции

N = количество n-грамм в обучающих данных

В = количество типов (разных n-грамм)

$$\lambda:(0<<\lambda<<1)$$

M.L.E: $\lambda = 0$

LaPlace's Law: $\lambda = 1$

Jeffreys-Perks Law: $\lambda = \frac{1}{2}$

Jeffreys-Perks Law

Тестирование моделей

- Hold out ~ 5 10% для тестирования
- Hold out ~ 10% для подбора параметров (smoothing)
- Для тестирования: полезно тестировать на разных коллекциях, и исследовать поведение моделей

Кросс-валидация на двух частях (a.k.a. deleted estimation)

Use data for both training and validation

Кросс-валидация

Two estimates:

$$P_{ho} = \frac{T_r^{01}}{N_r^0 N}$$
 $P_{ho} = \frac{T_r^{10}}{N_r^1 N}$ part of training set $T_r^{ab} = \text{total number of those found in b-th part}$

 N_r^a = number of n-grams occurring r times in a-th

found in b-th part

Combined estimate:

$$P_{ho} = \frac{T_r^{01} + T_r^{10}}{N(N_r^0 + N_r^1)}$$
 (arithmetic mean)

Комбинирование оценок

- Иногда триграммная модель лучшая, иногда – биграммная, иногда униграммная
- Как сделать модель, которая использует несколько видов биграмм?

Простая линейная интерполяция

(a.k.a., finite mixture models; a.k.a., deleted interpolation)

$$P_{li}(w_n | w_{n-2}, w_{n-1}) =$$

$$\lambda_1 P_1(w_n) + \lambda_2 P_2(w_n \mid w_{n-1}) + \lambda_3 P_3(w_n \mid w_{n-2}, w_{n-1})$$

• Взвешенное среднее униграмм, биграмм и триграмм

Katz's Backing-Off

- Используем *n-gram* вероятность, когда достаточно данных
 - (когда частота > k; k usu. = 0 or 1)
- Если нет, то переходим ("back-off") на (n-1)-gram вероятность
- (Повторяем при необходимости)

Как оценить качество языковой модели?

- Имеется две языковые модели
 - Какая из них лучше подходит для корпуса?
 - = Какая из них лучше предсказывает следующее слово.
 - предсказывает более правильные предложения

Лучшее тестирование – внешнее (extrinsic)

- Поместить языковую модель в задачу
 - Спеллер, машинный перевод

- Выполнить задачу и проверить качество
 - Сколько слов обработано правильно
 - Сколько слов переведено правильно
 - Сравнить качество моделей А и В

– Это правильно, но дорого

Внутреннее (intrinsic) тестирование

- Разделение корпуса на две части
 - Обучение
 - Тестирование
- Вычисление перплексии (perplexity)

$$PP(W) = P(w_1 w_2 \dots w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

- Чем меньше перплексия тем лучше,
- Модель меньше удивляется продолжению предложения

Как вычислять перплексию

- Перплексия для униграмм
- Перплексия для биграмм
- Перплексия для предложения, состоящего из случайно последовательности цифр=10
- Перплексия это среднее число вариантов, из которых происходит выбор на каждом шаге.
- Перплексия: расчет

$$PP = 2^{-\frac{1}{N}\sum_{1}^{N} \log_2 p(x)}$$

Перплексия для корпуса Wall Street Journal

- Обучающая коллекция 38 млн. слов
- Тестовая коллекция 1.5 млн. слов
- Перплексия.Униграммы 962
- Перплексия. Биграммы 170
- Перплексия. Триграммы 109

Проблемы языковых моделей

- «Длинные зависимости» (long dependences)
 - Дом, в котором я был вчера вечером, состоял из пяти комнат
 - Биграмма (вечером состоял) не очень вероятна

Заключение

- Статистические методы обработки текстов применяют различные методы сглаживания для оценки вероятности еще не встречавшихся событий
- Применяются специальные методы тестирования и настройки моделей
 - Held-out data данные для настройки параметров
 - Testing data тестовая коллекция
 - Cross-validation кросс-проверка

Задание к 2 октября

- Выделить десятую часть из Вашего корпуса
- Вычислить вероятности
- Посчитать перплексию на другой части текста (15% общей длины)
 - По униграммам
 - По биграммам
 - В обоих случаях используем закон Jeffreys-Perks Law: $\lambda = \frac{1}{2}$
- Отчет
 - Название текста
 - Формулы
 - Необходимые данные
 - Результат вычислений