Assignment 3

1. Consider the following dataset:

[(2, 6)
[(3, 4)
	(3, 8)
	(4, 7)
	(6, 2)
	(6, 4)
	(7, 3)
	(7, 4)
	(8, 5)
	(7, 6)
	- CALL

- a. Perform K-Means Clustering where K=3
- b. Perform K-Medoid Clustering where K=2, $C_1=x_2$ and $C_2=x_8$
- 2. Given 2 objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):
 - a) Compute the Euclidean distance between two objects
 - b) Compute the Manhattan distance between two objects
 - c) Compute the Minkowski distance between two objects where q=3
- Construct the dendrogram, draw the nested clusters and show all the steps for single link and complete link hierarchical clustering for the distance matrix given below:

P1	(1, 1)
P2	(1.5, 1.5)
P3	(5, 5)
P4	(3, 4)
P5	(4, 4)
P6	(3, 3.5)

- Explain Hadoop ecosystem with a diagram
- 5. How does MapReduce help in Big Data?

a)

Data	distance from m1=(2,6)	distance from m2=(3,4)	distance from m3=(3,8)	Cluster
(2,6)	0	2.236	2.236	CI
(3,4)	2.236	0	4	C2
(3,8)	2.236	4	0	СЗ
(4,7)	2.236	3.162	1.414	СЗ
(6,2)	5.654	3.606	6.708	C 2
(6,4)	4.472	3	5	CZ
(7,3)	5.831	4.123	6.403	C2
(7,4)	5.385	4	5.657	C 2
(8,5)	6.083	5.099	5.831	CZ
(7,6)	5	4-472	4.472	ca

Data	distance from m, (2,6)	distance from m2=(6.286,4)	distance from mg - (3.573)	Chalter
(2,6)	0	4.729	2.121	CI
(3,4)	2-236	3.286	3.536	CI
(3,8)	2.236	5.171	0.707	С.3
(4,1)	2.236	3.772	0.707	C3
(6,2)	5.657	2.02	6.042	C2
(6,4)	4-472	0.286	4.301	Ca
(7,3)	5.831	1.229	5.1	ca
(7,4)	5.385	0.714	4.949	C 2
(8,5)	6.083	1.984	5.148	C2
(7,6)	5	2.124	3.808	C2

$$m_{1} = \left(\frac{2+3}{2}, \frac{6+4}{2}\right) = \left(2.5, 5\right)$$

$$m_{2} = \left(\frac{6+6+7+7+8+7}{6}, \frac{2+4+3+4+5+6}{6}\right)$$

$$= \left(\frac{41}{6}, \frac{24}{6}\right) = \left(6.83, 4\right)$$

$$m_{3} = \left(3.5, 7.5\right)$$

Data	distance from m=(2.5,5)	distance from m2=(6.83,4)	distance from m3 =(3.5, 7.5)	Chuben
(2,6)	1.118	5.228	2.121	CI
(3,4)	1.118	3.83	3.536	CI
(3,8)	3.041	5.538	0.707	с3
(4,7)	2.5	4.124	0.707	C3
(6,2)	4.609	2.165	6.042	C 2
(6,4)	3.64	0.83	4.301	C2
(7,3)	4.924	1-014	5.7	C2
(7,4)	4-609	0.11	4-949	C 2
(8,5)	5.5	1.539	5.148	C2
(7,6)	4.609	2:00 1	3.808	C2

". no change in duster augment

C18 (2,6), (3,4)

(2: (6,2),(6,4)(7,3)(7,4)(8,5)(7,6)

C3: (3,8), (4,1)

Dota	distance from m, =(2,6)	distance from ma = (3,4)	Cluster
(2,6)	-	-	CI
(3,4)	2-236 -		C2
(3,8)	2-234	4	CI
(4,7)	2.236	3.162	CI
(6,2)	5.657	3.606	C 2
(6,4)	4.472	3	C 2
(7,3)	5. 9 31	4.123	c2
(7,4)	5.385	4	C2
(8,5)	6.083	5.099	c2.
(7,6)	5	4.472	F = 4

tost = (4 13.162) Cost = (2.236+2.236) + (3.606+3+4.123+4 +5.099+4.472

= 4.412+243: 2

Lets choose ne. medoid m = (3,8)

Data	distance mi=(3,8)	distance from m2 = (3,4)	auster
(2,6)	2.234	2.236	CI
(3,4)		-	C2
(3,8)	-	-	C1
(4,7)	1.414	3.162	C1
(6,2)	6.708	3.606	C2
(6,4)	5	3	ca
(7,3)	6.403	4-123	C2
(7,4)	5.654	4	Ca
(8,5)	5.931	5.099	C2
(7,6)	4472	4.472	ca

the previous cost, we choose $m_i = (4, 1)$

Data	distance from m=(4,7)	dutance from mx = (3,4)	custer
(2,6)	2.236	2.236	CI
(3,4)		-	C 2
(3,8)	1.414	4	CI
(4,7)	-		CI
(6,2)	5.385	3.606	C2
(6,4)	3.606	3	C2
(7,3)	5	4.123	C2
(4,4)	4.243	4	Ca
(8,5)	4.472	5.099	CI
(マノム)	3.162	4.472	CI

cost = (2.236+1.414 +3.162) +(3.606+3+4.123+4) = 6.812 +14.729 = 21.541

Repeat itil cost is greater than previous iteration

2. a) Exclidean distance between
$$(x_1, y_1)$$
 and (x_2/y_2)

$$= \int (x_1 - x_2)^2 + (y_1 - y_2)^2$$

2 a) Euclidean distance between
$$(\alpha_1, \alpha_2, \dots \alpha_n)$$
 and $(y_1, y_2, \dots y_n) = \int_{i=1}^{\infty} (\alpha_i - y_i)^2)^{i/2}$

C) Minkowski distance between
$$(20,1,40,0)$$
 $(x_1,x_2...x_n)$ and $(y_1,y_2,...y_n)$ when $q=3=\left(\sum\limits_{i=1}^{2}(x_i-y_i)^3\right)^{1/3}$

.. Minkowski dietonce between
$$(22,1,42,10)$$
 and $(22,0,36,8)$ when $9=3$

$$= \sqrt[3]{(|22-22|)^3+(|1-0|)^3+(|42-36|)^3+(|10-8|)^3} = \sqrt[3]{0+1+216+8}$$

30) single tink thierarchical churtering

Til dean distance mobix

Eucu	P1 (1,1)	(1.5,1.5)	P3 (5,5)	P4 (3,4)	P5 (4,4)	(3,3.5)
PI (1,1)	-	0.707	5 657	3.606	4-243	3.201
pa(15,15)	0.107	-	4.949	2.915	3. 53 6	25
3(5,5)	5.65#	4.949		2.236	1.414	2-5
((3,4)	3.606	2.915	9.236		1	0.5
5(4,4)	4.243	3.536	1-414	1	_	1-11.8
6(3,35)	3,201	2.5	2.5	0.5	1-118	

6

a) Single Link chustering minimum dustance between P4&P6

	PI	P2	P3	P46	P.5
PI	-	0.707	5.657	3. 201	4-243
P2	0.707	-	4.949	2.5	3.534
P3	5.657	4.949	-	2. 236	1-414
P46	3.201	2.5	2.236	-	1
P5	4.243	3.536	1.414	11	-

minimum distance is between PI and P2 PI2 P3 P46 P5

P12	-	4.949	2.5	3.536
P3	4.949		2.236	1.414
246	2.5	2-236	-	1
P5	3.536	1-414		1-

minimum distance is between P46 & P5

	PI2	Р3	P465
PIZ		4.949	2.5
P3	4.949		1.414
P465	2.5	1.414	

minimum distance is between P3 & P465

6) Complete link hierarchical chulering

From Euclidean distance matrix, we know that the minimum distance is between P4 & P6

	PI	Pa	Р3	P46	P5
PI	-	0.707	5.657	3.606	4 243
P2	0.707	-	4.949	2.915	3.534
3	5.657	4.949	-	2.5	ьцы
46	3. 606	2,915	2.5	-	1.118
5	4-243	3.534	1-414	1-118	

minimum distance is between PI 1 P2

	P12	Р3	P46	, ,
PI2	-	5.657	3 606	4.243
P3	5.657	-	2.5	1.414
PHL	3.606	2.5	-	1.118
P5	4.243	1.414	1-118	-

minimum distance is between P464 P5

	P12	P3	P465
Di 2	F-	5.657	4.243
P2	5.657	12	2.5
DUES	4.243	2.5	
Pus-	THE REAL PROPERTY.	-	

minimum distance is between P3 & P465

	P12	P3465
P12		5.657
P3465	5.657	-
THE REAL PROPERTY.		

