ALTeGraD Data Challenge Final Presentation

Erwan Fagnou, Denis Duval

Team: Peptide Bond 007

January 2023

Table of contents

- 1 The dataset
- 2 Structure based methods
- 3 Learning node features from the sequences
- 4 Using the pretrained ESM-2 embeddings
- 5 Preventing overfitting
- 6 Final results

Table of Contents

- 1 The dataset
- 2 Structure based methods
- 3 Learning node features from the sequences
- 4 Using the pretrained ESM-2 embeddings
- 5 Preventing overfitting
- 6 Final results

Protein graph dataset

- 4888/1223 protein graphs in the training/test set → We took 500 proteins to make a validation set
- Task : Classify the protein graphs into 18 different classes
- Nodes as well as edges have features

Discrepancies in the dataset

Figure: Distribution of the classes in the dataset

Discrepancies in the dataset

	Min	0.25-quantile	Median	Mean	0.75-quantile	Max
Nodes	9	129	221	257	340.5	989
Edges	55	2187	3996	4721	6491	20417

Table: Statistics on the number of nodes and edges of the protein graphs.

Table of Contents

- 1 The dataset
- 2 Structure based methods
- 3 Learning node features from the sequences
- 4 Using the pretrained ESM-2 embeddings
- 5 Preventing overfitting
- 6 Final results

First approach

Graph convolutional networks on the default features from the dataset.

First approach

Graph convolutional networks on the default features from the dataset.

Fancier methods: Graph Attention Networks, Attentive FP, and DeeperGCN.

 \rightarrow No improvement

First approach

Graph convolutional networks on the default features from the dataset.

Fancier methods: Graph Attention Networks, Attentive FP, and DeeperGCN.

 \rightarrow No improvement

Same for the aggregation part: the mean is the best.

- From the literature:
 - Local Degree Profile
 - Laplacian Positional Embedding

- From the literature:
 - Local Degree Profile
 - Laplacian Positional Embedding
- Custom features:
 - Torsion angle
 - Distance to the center of mass
 - Position in the sequence

- From the literature:
 - Local Degree Profile (5)
 - Laplacian Positional Embedding (3)
- Custom features:
 - Torsion angle (2)
 - Distance to the center of mass (1)
 - Position in the sequence (1)

	Node features		
	default	default + extra features	
Number of features	83	95	
Validation loss	1.77	1.62	

Table: Performance of the same GCN model using extra node features.

Table of Contents

- 1 The dataset
- 2 Structure based methods
- 3 Learning node features from the sequences
- 4 Using the pretrained ESM-2 embeddings
- 5 Preventing overfitting
- 6 Final results

Masked language modelling with Bidirectional LSTM

Pretraining task: masked language modelling

 \rightarrow Quite bad...

Language modelling with LSTM

Pretraining task: language modelling

→ Already much better!

Performance with pretrained LSTM

Figure: Loss and accuracy during training with and without using a pretrained 2-layer LSTM for the node embeddings, before a GCN.

Combining different features

	Node features				
	default	default + extra features	LSTM	LSTM + extra features	
Number of features	83	95	512	524	
Validation loss	1.77	1.62	1.57	1.49	

Table: Performance of the same GCN model using different node features. The default features from the dataset can be improved with additional features, while replacing them with a pretrained LSTM is even better.

Table of Contents

- 1 The dataset
- 2 Structure based methods
- 3 Learning node features from the sequences
- 4 Using the pretrained ESM-2 embeddings
- 5 Preventing overfitting
- 6 Final results

What is ESM-2?

- Transformer protein language model
 - Introduced by FAIR in 2019
 - Unsupervised pre-training on 250 millions protein sequences
- Main task is (atomic resolution) structure prediciton, SOTA model
- Trained with MLM objective

ESM-2 as a feature extractor

- One could just fine-tune the model with a classification head : quick overfitting
- Works better : train a model on the transformed dataset
 - Combinations of the hidden states as embeddings
 - Different sizes of ESM-2: 8M, 35M, 150M, 650M, 3B
- Different models :
 - 1 MLP
 - 2 GNN
 - 3 Multi Head Attention

Influence of the size of ESM-2

Figure: Loss and accuracy during training with respect to the size of ESM-2.

Table of Contents

- 1 The dataset
- 2 Structure based methods
- 3 Learning node features from the sequences
- 4 Using the pretrained ESM-2 embeddings
- 5 Preventing overfitting
- 6 Final results

Preventing overfitting

■ Dropout (20%)

Preventing overfitting

- Dropout (20%)
- Label smoothing (0.05)

Label smoothing

Extreme case: output probabilities are 0 or 1 (before label smoothing)

Test accuracy = 85%, label smoothing = 0.05, 18 classes

Label smoothing

Extreme case: output probabilities are 0 or 1 (before label smoothing)

Test accuracy = 85%, label smoothing = 0.05, 18 classes

$$\Rightarrow \mathcal{L}_{\mathsf{test}} pprox -0.85 \log(1 - 0.05) - (1 - 0.85) \log \frac{0.05}{18 - 1} \ pprox 0.92$$

Preventing overfitting

- Dropout (20%)
- Label smoothing (0.05)
- Reducing the embedding dimension (PCA or learned)

Preventing overfitting

- Dropout (20%)
- Label smoothing (0.05)
- Reducing the embedding dimension (PCA or learned)
- Tuning the learning rate

Tuning the learning rate

Figure: Loss and accuracy during training with respect to the learning rate, for train and validation data (same model, using ESM-2 3B).

Preventing overfitting

- Dropout (20%)
- Label smoothing (0.05)
- Reducing the embedding dimension (PCA or learned)
- Tuning the learning rate
- Averaging predictions of multiple models

Improvements with averaging

	Number of models				
	1	4	25	336	
Average	0.684	0.638	0.628	0.625	
Median	0.684	0.659	0.635	0.631	

Table: Public score on Kaggle after aggregating the predictions of multiple models using ESM-2 650M, either with the average or the median.

Table of Contents

- 1 The dataset
- 2 Structure based methods
- 3 Learning node features from the sequences
- 4 Using the pretrained ESM-2 embeddings
- 5 Preventing overfitting
- 6 Final results

Scores of the models developed

	Sequence Baseline	GCN	GCN + LSTM	ESM-2 + MLP	ESM-2 + GNN	ESM-2 + MHA
Validation Loss	1.45	1.33	1.30	1.00	0.9	0.4
Validation Accuracy	≲ 0.5	0. 51	0.55	0.65	0.6	≥ 0.85
Kaggle private score	1.68	1.51	1.55	1.18	1.21	0.59

Table: Best scores obtained for each method

- Best method : ESM-2 + MHA
- 1st place on the leaderboard!

Tuning of the final solution : ESM-2 + MHA

ESM-2 embeddings with naive self attention layer is not enough. It scores only $\simeq 1.2$ of public score. In decreasing order, here is a list of hyper parameters with the greatest impact:

- 1 Size of the model: 3B
- Number of models used for prediction (averaging): 113
- Combination of the hidden layers of ESM-2: (2, 13, 24, 35)
- 4 Label smoothing, dropout, initial learning rate: 0.5, 0.2, 7e-5
- Hidden dimension, Number of queries, Number of heads: 128, 20, 4

Thank you!

Any question?