CLAIMS

1	1. A character recognition system, comprising:
2	an optical character reader system for collecting character data by electro-optically
3	scanning printed characters;
4	a conversion system for converting the character data to a Magnetic Ink Character
5	Recognition (MICR) format; and
6	a recognition engine for interpreting the converted character data using a MICR
7	algorithm.
1	2. The character recognition system of claim 1, wherein the optical character reader
2	system scans at a pel density in a range of approximately 200 to 600 dpi.
1	3. The character recognition system of claim 1, wherein the character data is stored in a
2	grey scale image format.
1	4. The character recognition system of claim 3, wherein the conversion system scales the
2	character data to a pel density associated with a multigap MICR read head.
1	5. The character recognition system of claim 3, wherein the conversion system scales the
2	character data to approximately 0.33 millimeters/pixel in a horizontal dimension and 0.43
3	millimeters/pixel in a vertical dimension.

- 6. The character recognition system of claim 3, wherein the conversion system converts
 the grey scale image format to a black and white image format.
- 7. The character recognition system of claim 1, wherein the printed characters are printed in an E13B font.

1	8. A method for performing character recognition, comprising:
2	collecting character data by electro-optically scanning printed characters;
3	converting the character data to a Magnetic Ink Character Recognition (MICR)
4	format; and
5	interpreting the converted character data using a MICR algorithm.
1	9. The method of claim 8, wherein the character data is scanned at a pel density in a
2	range of approximately 200 to 600 dpi.
1	10. The method of claim 8, wherein the collection step stores the character data in a grey
2	scale image format.
1	11. The method of claim 8, wherein the converting step scales the character data to a pel
2	density associated with a multigap MICR read head.
1	12. The method of claim 8, wherein the converting step scales the character data to
2	approximately 0.33 millimeters/pixel in a horizontal dimension and 0.43
3	millimeters/pixel in a vertical dimension.
1	13. The method of claim 10, wherein the converting step converts the grey scale image
2	format to a black and white image format.
1	14. The method of claim 8, wherein the printed characters are printed in an E13B font.

2	recognition, comprising:
3	means for accessing character data collected by an electro-optical scanning
4	system;
5	means for converting the character data to a Magnetic Ink Character Recognition
6	(MICR) format; and
7	means for interpreting the converted character data using a MICR algorithm.
1	16. The program product of claim 15, wherein the character data comprises a pel density
2	in a range of approximately 200 to 600 dpi.
1	17. The program product of claim 15, wherein the converting means scales the character
2	data to a pel density associated with a multigap MICR read head.
1	18. The program product of claim 15, wherein the converting means scales the character
2	data to approximately 0.33 millimeters/pixel in a horizontal dimension and 0.43
3	millimeters/pixel in a vertical dimension.
1	19. The program product of claim 15, wherein the converting means converts a grey
2	scale image format to a black and white image format.
1	20. The program product of claim 15, wherein the character data collected by the electro-
2	optical scanning system comprises characters printed in an E13B font.

15. A program product stored on a recordable medium for performing character

1	21. A multi-voting character recognition engine for analyzing an inputted set of printed
2	characters, comprising:
3	a plurality of character recognition systems, wherein each character recognition
4	system independently analyzes the inputted set of printed characters, and wherein one or
5	the character recognition systems includes:
6	an optical character reader system for collecting character data by electro
7	optically scanning printed characters;
8	a conversion system for converting the character data to a Magnetic Ink
9	Character Recognition (MICR) format; and
10	a recognition engine for interpreting the converted character data using a
11	MICR algorithm; and
12	a voting system for combining results from each of the plurality of character
13	recognition systems and determining a recognized set of characters.
1	22. The multi-voting character recognition engine of claim 21, wherein the inputted set
2	of printed characters are printed in an E13B font.