Лабораторная работа №3

Математическое моделирование

Серёгина Ирина Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	14

Список иллюстраций

4.1	Модель боевых действий с участием регулярных войск	10
4.2	Модель боевых действий с участием регулярных войск и партизан-	
	ских отрядов	11
4.3	Код OpenModelica для первой модели	12
4.4	График OpenModelica для первой модели	12
4.5	Код OpenModelica для второй модели	13
4.6	График OpenModelica для второй модели	13

Список таблиц

1 Цель работы

Реализовать модель боевых действий на языке Julia и с помощью OpenModelica.

2 Задание

Между страной X и страной Y идет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t). В начальный момент времени страна X имеет армию численностью 20 850 человек, а в распоряжении страны Y армия численностью в 9 900 человек. Для упрощения модели считаем, что коэффициенты a,b,c,h постоянны. Также считаем P(t) и Q(t) непрерывные функции.

Построить графики изменения численности войск армии X и армии Y для следующих случаев:

1. Модель боевых действий между регулярными войсками

$$\begin{cases} \frac{dx}{dt} = -0.71x(t) - 0.85y(t) + \sin(6t) + 1\\ \frac{dy}{dt} = -0.59x(t) - 0.73y(t) + \cos(7t) + 1 \end{cases}$$

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

$$\begin{cases} \frac{dx}{dt} = -0.71x(t) - 0.81y(t) + 1,5sin(2t) \\ \frac{dy}{dt} = -0.59x(t)y(t) - 0.73y(t) + 1,5cos(t) \end{cases}$$

3 Теоретическое введение

Рассмотрим некоторые простейшие модели боевых действий — модели Ланчестера. В противоборстве могут принимать участие как регулярные войска, так и партизанские отряды. В общем случае главной характеристикой соперников являются численности сторон. Если в какой-то момент времени одна из численностей обращается в нуль, то данная сторона считается проигравшей (при условии, что численность другой стороны в данный момент положительна). Рассмотри три случая ведения боевых действий: 1. Боевые действия между регулярными войсками 2. Боевые действия с участием регулярных войск и партизанских отрядов 3. Боевые действия между партизанскими отрядами В первом случае численность регулярных войск определяется тремя факторами: - скорость уменьшения численности войск из-за причин, не связанных с боевыми действиями (болезни, травмы, дезертирство); - скорость потерь, обусловленных боевыми действиями противоборствующих сторон (что связанно с качеством стратегии, уровнем вооружения, профессионализмом солдат и т.п.); - скорость поступления подкрепления (задаётся некоторой функцией от времени)

Потери, не связанные с боевыми действиями, описывают члены -a(t)x(t), -h(t)y(t), члены -b(t)y(t), -c(t)x(t) отражают потери на поле боя. Коэффициенты b(t), c(t) указывают на эффективность боевых действий со стороны у и х соответственно a(t), h(t) - величины, характеризующие степень влияния различных факторов на потери. Функции P(t), Q(t) учитывают возможность подхода подкрепления к войскам X и У в течение одного дня. Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоян-

ной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что тем потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан.

4 Выполнение лабораторной работы

Реализую первую модель боевых действий с участием регулярных войск на языке Julia.

```
using DifferentialEquations, Plots;
# система ДУ
function reg(u, p, t)
    x, y = u
    a, b, c, h = p
    dx = -a*x - b*y+sin(6*t)+1
    dy = -c*x -h*y+cos(7*t)+1
    return [dx, dy]
end
# начальные условия
u0 = [20850, 9900]
p = [0.71, 0.85, 0.59, 0.73]
tspan = (0,1)
# проблема
prob = ODEProblem(reg, u0, tspan, p)
# решение системы ДУ
```

```
sol = solve(prob, Tsit5())
```

```
# построение графика
```

```
plot(sol, title = "Первая модель боевых действий", label = ["Армия X" "Армия Y"], хах
```

Получаю график уменьшения численности двух армий для первой модели (рис. 4.1).

Рис. 4.1: Модель боевых действий с участием регулярных войск

После этого перехожу к реализации второй модели, учитывающей участие партизанских отрядов.

```
# система ДУ
function reg_2(u, p, t)
    x, y = u
    a, b, c, h = p
    dx = -a*x - b*y+1.5*sin(2*t)
    dy = -c*x*y -h*y+1.5*cos(t)
    return [dx, dy]
end
```

начальные условия

```
u0 = [20850, 9900]

p = [0.71, 0.81, 0.59, 0.73]

tspan = (0,1)

# проблема

prob2 = ODEProblem(reg_2, u0, tspan, p)

# решение системы ДУ

sol2 = solve(prob2, Tsit5())
```

построение графика

plot(sol2, title = "Вторая модель боевых действий", label = ["Армия X" "Армия Y"], ха

Получаю следующий график (рис. 4.2).

Рис. 4.2: Модель боевых действий с участием регулярных войск и партизанских отрядов

После этого открываю ONEdit, что реализовать модель с помощью OpenModelica. Пишу код для первой модели (рис. 4.3).

```
model lab3
 1
 2
 3
    parameter Real a = 0.71;
 4
    parameter Real b = 0.85;
 5
    parameter Real c = 0.59;
    parameter Real h = 0.73;
 6
 7
    parameter Real x0 = 20850;
 8
    parameter Real y0 = 9900;
 9
10
    Real x(start=x0);
    Real y(start=y0);
11
12
13
    equation
14
15
    der(x) = -a*x - b*y+sin(6*time)+1;
16
    der(y) = -c*x -h*y+cos(7*time)+1;
17
18
    end lab3;
```

Рис. 4.3: Код OpenModelica для первой модели

Получаю график, идентичный полученному для этой модели ранее (рис. 4.4).

Рис. 4.4: График OpenModelica для первой модели

Пишу код для второй модели (рис. 4.5).

```
model lab3
 1
 2
 3
    parameter Real a = 0.71;
4
    parameter Real b = 0.81;
 5
    parameter Real c = 0.59;
    parameter Real h = 0.73;
 6
 7
    parameter Real x0 = 20850;
8
    parameter Real y0 = 9900;
9
10
    Real x(start=x0);
11
    Real y(start=y0);
12
13
    equation
14
15
    der(x) = -a*x - b*y+1.5*sin(2*time);
16
    der(y) = -c*x*y - h*y+1.5*cos(time);
17
18
    end lab3;
```

Рис. 4.5: Код OpenModelica для второй модели

Получаю график, идентичный полученному для этой модели ранее (рис. 4.6).

Рис. 4.6: График OpenModelica для второй модели

5 Выводы

Я реализовала модель боевых действий на языке Julia и с помощью OpenModelica.