

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (W), Mumbai: 400058, India (Autonomous College of Affiliated to University of Mumbai)

End Semester Examination December 2022

Maxi Marks: 100

Class: T.E

Course code: CS301/IT301

Name of the course: Theory of Computation

Duration: 3 hours Semester: V

Branch: COMP/IT

Instructions:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q No		Max Marks	СО	В
Q1 a	Differentiate between Mealy machine and Moore machine	5	1	4
Q1 b	When we say a problem is decidable? Give an example of an undecidable problem?	5	4	4
Qle	Write a Context Free Grammar for generating a set of palindromes	5	3	3
Q1 d	Show that CFG with productions $S \rightarrow aS \mid aSabS \mid c$ is ambiguous. Show in particular with the string task.	5	3	3
Q2 a	Design a Mealy machine to determine the residue mod 5 of a binary number	10	1	3
Q2 b	Define Arden's theorem and construct the regular expression corresponding to automata given below b q2 b q3	10	1	3
)3 a	Using Pumping Lemma Prove that Language L= {a ^{i*i} i ≥ 1} is not regular.	5	2	3

Q3 b	Develop ε-NFA for the following regular expressions	5	1	3
	RE = $(a^* + b^*)^*$ (b) RE = $(01^*0 + 10^*1)^*$		1)
Q3 c	Describe recursive and recursively enumerable languages with example. Also compare recursive with recursively enumerable languages.	10	2	3
Q4 a	Describe different types of grammar with example.	10	3	3
Q4 b	Reduce the following production of grammar to Greibach Normal Form	10	3	3
	$S \rightarrow AA \mid a$ $A \rightarrow BS \mid b$ $B \rightarrow SA \mid a$			
Q5 a	Design a Turing machine to copy the given number 'n' on the tape such that, Input: 0 ⁿ Output: 0 ⁿ 1 0 ⁿ	10	4	3
	OR			
	Design a Turing machine to multiply the given number 'm' and 'n' such that, Input: B0^m 10ⁿ 1B Output: B0^{mn}B	270		
Q5 b	Design a Push Down Automata for the language $\{(ab)^n e^{-n} \mid n \ge 1\}$	10	4	3
	OR Design a Push Down Automata for the language $\{w w^R\mid w \epsilon(0+1)^* \text{ and } w^R \mid w \in (0+1)^* \}$			