

Klassifikation mit Naive Bayes

Naive Bayes Text Classification

- Anwendungen
 - Spam-Nonspam
 - Welcher Autor schrieb welches Dokument?
 - Männlicher/weiblicher AutorIn?
- Textklassifikation:
 - Input: Dokument d;
 - Output: Eine der Klassen c₁,c₂,...,c_J
- Bag of Words-Darstellung:
- Naive Bayes:

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

great	2
love	2
recommend	1
laugh	1
happy	1

Bayes-Regel

- Benutze Bayes-Regel: video 1, video 2, video 3
- Maximum a posteriori Klasse

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d)$$

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$

$$= \underset{c \in C}{\operatorname{argmax}} P(d \mid c)P(c)$$

Beispiel MLE bei normalverteilten Daten

Likelihood bei unabhängig Gauss-verteilten Daten

$$L(\mu, \sigma^{2}; x_{1}, \dots, x_{n}) = \prod_{j=1}^{n} f_{X}(x_{j}, \mu, \sigma^{2})$$

$$= \prod_{j=1}^{n} (2\pi\sigma^{2})^{-1/2} \exp\left(-\frac{1}{2} \frac{(x_{j} - \mu)^{2}}{\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{j=1}^{n} (x_{j} - \mu)^{2}\right)$$

Log davon (Position des Maximum ändert sich nicht):

$$\log L(\mu, \sigma^2; x_1, \dots, x_n) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{j=1}^n (x_j - \mu)^2$$

Besitzt ein Maximum bei den Werten

$$\hat{\mu} = \frac{1}{n} \sum_{j=1}^{n} x_j$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{j=1}^{n} (x_j - \hat{\mu})^2$$

Beispiel MLE bei binomialverteilten Daten

- X=0: Münze ist Kopf X=1: Münze ist Zahl
- Wahrscheinlichkeit p für Kopf, 1-p für Zahl
- Wahrscheinlichkeit, bei n Würfen x mal Kopf zu erhalten:
- Nehme Log davon:

- Wo ist das Maximum? → Ableiten nach p
- Dann Auflösen nach p:

$$\frac{p}{x} = -\frac{1-p}{n-x} \Rightarrow (x-n)p = x(p-1) \Rightarrow p = x(p-1)$$

$$\Rightarrow -np = -x$$

$$f(x|p) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$\ln \ell(p|x) = \binom{n}{x} \ln \left[p^x (1-p)^{n-x} \right]$$
$$= x \ln p + (n-x) \ln(1-p)$$

$$0 = \frac{d}{dp} \ln \ell(p|x) = \frac{x}{p} + \frac{n-x}{1-p}$$

$$\Rightarrow p = \frac{x}{n}$$

Likelihood-Grenzen bei Klassifikation

Likelihood-Grenzen in 2D-Daten:

$$p(c = 1|x) \stackrel{?}{>} p(c = 2|x)$$

Klassifizieren nach Bayes

Bestimme wahrscheinlichste Klasse:

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$
$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_n \mid c) P(c)$$

- P(c): Wahrscheinlichkeit der Klasse (über alle Dokumente)
- Dokument besteht aus Features unabhängigen x₁,...xn

$$P(x_1, x_2, \dots, x_n | c) = P(x_1 | c) P(x_2 | c) \cdots P(x_n | c)$$

Für jede Kasse: P(xi|c): Wahrscheinlichkeit der Anwesenheit von Wort i)

$$P(x_1, x_2, \dots, x_n | c) = P(x_1 | c) P(x_2 | c) \cdots P(x_n | c) P(c)$$

$$P(w_i|c) = \frac{\operatorname{count}(w_i, c)}{\sum_{w \in \operatorname{Vok}} \operatorname{count}(w, c)}$$

- Nenner: Wie viele Wörter enthält Klasse c (Anzahl Wörter in Spam-Dokumenten)
- Insgesamt: Welcher Bruchteil aller Wörter aller Dokumente der Klasse c hat das Wort wi?
 - Mega-Dokument aller Dokumente, welche zur Klasse c gehören
 - Häufigkeit des Wortes wi/ Anzahl Worte im Mega-Dokument

$$c_{MAP} = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_i|c) = 0$$

$$P(w_i|c) = \frac{\operatorname{count}(w_i, c)}{\sum_{w \in \operatorname{Vok}} \operatorname{count}(w, c)}$$

"Add-1-Smoothing!"

$$P(w_i|c) = \frac{\text{count}(w_i, c) + 1}{\sum_{w \in \text{Vok}} (\text{count}(w, c) + 1)}$$

Kochrezept

- 1. Erstelle ein Vokabular aller möglicher Wörter
- 2. Berechne P(c_i) für alle Klassen aus dem Trainingsset

$$P(c) = \frac{\text{Anz. Dok in Klasse c}}{\text{Anz. Dok}}$$

- 3. Für jede Klasse c erstelle Mega-Dokument aller Dokumente der Klasse c: text(c)
- 4. Für das Wort w_i in Klasse c:

$$P(w_i|c) = \frac{\text{count}(w_i, c) + 1}{\sum_{w \in \text{Vok}} (\text{count}(w, c) + 1)}$$

D.h. (Wie oft tritt Wort wi in text(c) auf +1) / (Anzahl Wörter in text(c) + Anzahl Wörter in Vokabular)

Kochrezept 2

5. Berechne das Klassenlabel

$$c_{MAP} = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_i|c) = 0$$

arg max ist die Funktion, die jenes c zurück gibt, für welches der Ausdruck rechts davon maximal ist

Wird der Ausflug dieses Jahr stattfinden? Bisher galt:

Aussicht	Temp	Feuchtigkeit	Wind	Ausflug findet statt
Sonne	Heiss	Hoch	FALSCH	Nein
Sonne	Heiss	Hoch	WAHR	Nein
Bewölkt	Heiss	Hoch	FALSCH	Ja
Regen	Mild	Hoch	FALSCH	Ja
Bewölkt	Mild	Hoch	FALSCH	Ja
Bewölkt	Kühl	Normal	WAHR	Ja
Sonne	Mild	Normal	WAHR	Nein
Sonne	Mild	Normal	FALSCH	Ja
Sonne	Mild	Normal	FALSCH	Ja
Regen	Kühl	Normal	WAHR	Ja
Regen	Kühl	Normal	WAHR	Ja
Regen	Kühl	Hoch	FALSCH	Nein
Bewölkt	Heiss	Normal	FALSCH	Ja
Regen	Mild	Hoch	WAHR	Nein

Zielvariable

Dieses Jahr gilt: Es ist sonnig bei kühlenTemperaturen, Es ist feucht und windig

Sonne Kühl Hoch WAHR	?
----------------------	---

- "Vokabular", Features: x_1 =Aussicht, x_2 =Temp, x_3 =Feuchtigkeit, x_4 =Wind
- Satz von Bayes:

$$P(\mathrm{Ja}|x) = \frac{P(x|\mathrm{Ja})P(\mathrm{Ja})}{P(x)}$$
$$P(\mathrm{Nein}|x) = \frac{P(x|\mathrm{Nein})P(\mathrm{Nein})}{P(x)}$$

- Wähle "Ja", wenn P(Ja|x) > P(Nein|x), sonst "Nein"
- P(x) spielt dafür keine Rolle
- Wie gross ist
 - P(Ja)
 - P(Nein)

Ausflug findet statt
Nein
Nein
Ja
Ja
Ja
Ja
Nein
Ja
Ja
Ja
Ja
Nein
Ja
Nein

?

Satz von Bayes:

$$P(\mathrm{Ja}|x) = \frac{P(x|\mathrm{Ja})P(\mathrm{Ja})}{P(x)}$$

$$P(\mathrm{Nein}|x) = \frac{P(x|\mathrm{Nein})P(\mathrm{Nein})}{P(x)}$$

- P(Ja) = 9/14
- P(Nein) = 5/14
- Wie gross ist P(x|Ja)?

Zielvariable

Ausflug
findet statt
Nein
Nein
Ja
Ja
Ja
Ja
Nein
Ja
Ja
Ja
Ja
Nein
Ja
Nein

Insh	esor	ndere	für	Y =
เมเอม	COUL	IUCIC	IUI	N -

- Featurevektor x: x_1 =Aussicht, x_2 =Temp, x_3 =Feuchtigkeit, x_4 =Wind
- Likelihood (="Wahrscheinlichkeit der Daten" x)

$$P(x|Ja) = P(x_1, x_2, x_3, x_4|Ja)$$

=
$$P(x_1|Ja) \cdot P(x_2|Ja) \cdot P(x_3|Ja) \cdot P(x_4|Ja)$$

- Welche Bedingung/Annahme erlaubte diesen Schritt?
- Wie berechnen wir nun z.B.

$$P(x_1|\mathrm{Ja})$$

?

■ Insbesondere für x₁= Sonne

Hilfreich zur Berechnung von $P(x_1|\mathbf{Ja})$

 x_1 x_2 x_3 x_4

Aussicht	Temp	Feuchtigkeit	Wind	Ausflug findet statt
Sonne	Heiss	Hoch	FALSCH	Nein
Sonne	Heiss	Hoch	WAHR	Nein
Bewölkt	Heiss	Hoch	FALSCH	Ja
Regen	Mild	Hoch	FALSCH	Ja
Bewölkt	Mild	Hoch	FALSCH	Ja
Bewölkt	Kühl	Normal	WAHR	Ja
Sonne	Mild	Normal	WAHR	Nein
Sonne	Mild	Normal	FALSCH	Ja
Sonne	Mild	Normal	FALSCH	Ja
Regen	Kühl	Normal	WAHR	Ja
Regen	Kühl	Normal	WAHR	Ja
Regen	Kühl	Hoch	FALSCH	Nein
Bewölkt	Heiss	Normal	FALSCH	Ja
Regen	Mild	Hoch	WAHR	Nein

Aussicht	Ja	Nein
Sonne	2	3
Bewölkt	4	0
Regen	3	2
Temp	Ja	a Nein
Heiss	2	2
Mild	4	2
Kühl	3	1
Feucht	Ja	Nein
Hoch	3	4
Normal	6	1
Wind	Ja	Nein
WAHR	3	3
FALSCH	6	2

P(x|c)

Für x= Sonne Kühl Hoch WAH

Aussicht	Ja	200	$D(C_{\alpha}, C_{\alpha}, C_{\alpha})$
Sonne	2	3	P(. Sonne)
Bewölkt	4	0	$P(. { m Bew\"{o}lkt}$
Regen	3	2	$P(. { m Bew\"{o}lkt})$ $P(. { m Regen})$
	P(. .	P(.	, ,

Aufgabe 1:

- \blacksquare P(Sonne|Ja) = ?
- P(Bewölkt|Nein)=?
- \blacksquare P(Ja|Regen) = ?

P(x|c)

Aussicht	Ja	Neir
Sonne	2	3
Bewölkt	4	0
Regen	3	2

- \blacksquare P(Sonne|Ja) = 2/9
- P(Bewölkt|Nein)= 0/5=0
- P(Ja|Regen) = 3/5

- Zur Erinnerung: x= Sonne Kühl Hoch WAHR
- $P(x|Ja) = P(x_1, x_2, x_3, x_4|Ja)$ $= P(x_1|Ja) \cdot P(x_2|Ja) \cdot P(x_3|Ja) \cdot P(x_4|Ja)_{\text{Aussicht}}$
- lacktriangle Gesucht ist u.a. $P(x_1|\mathrm{Ja})$
- $\begin{array}{lll} & P(sonnig|Ja) & = & ? \\ & P(k\ddot{u}h|Ja) & = & ? \\ & P(Hoch|Ja) & = & ? \\ & P(WAHR|Ja) & = & ? \end{array}$

Domonite		
Regen	3	2
Temp	Ja	Neir
Heiss	2	2
Mild	4	2

Sonne

Bewölkt

Kühl

Nein 3

0

Feucht	Ja	Neir
Hoch	3	4
Normal	6	1

Wind	Ja	Nein
WAHR	3	3
FALSCH	6	2

Likelihood P(x|Ja)

- Zur Erinnerung: x= Sonne Kühl Hoch WAHR
- $P(x|Ja) = P(x_1, x_2, x_3, x_4|Ja)$ $= P(x_1|Ja) \cdot P(x_2|Ja) \cdot P(x_3|Ja) \cdot P(x_4|Ja) \cdot P(Ja)$
- lacktriangle Gesucht ist u.a. $P(x_1|\mathrm{Ja})$
- P(sonnig|Ja) = 2/9
 P(kühl|Ja) = 3/9
 P(Hoch|Ja) = 3/9
 P(WAHR|Ja) = 3/9
- Also insgesamt

$$P(x|Ja) = \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} = 0.0082$$

Aussicht	Ja	Nein
Sonne	2	3
Bewölkt	4	0
Regen	3	2

Temp	Ja	Neir
Heiss	2	2
Mild	4	2
Kühl	3	1

Feucht	Ja	Nein
Hoch	3	4
Normal	6	1

Wind	Ja	Nein
WAHR	3	3
FALSCH	6	2

Likelihood P(x|Nein)

- Zur Erinnerung: x= Sonne Kühl Hoch WAHR
- $P(x|\text{Nein}) = P(x_1|\text{Nein}) \cdot P(x_2|\text{Nein})$ $\cdot P(x_3|\text{Nein}) \cdot P(x_4|\text{Nein})$ $\cdot P(\text{Nein})$
- P(Nein) = 5/14
- P(sonnig|Nein) = ?
 P(kühl|Nein) = ?
 P(Hoch|Nein) = ?
 P(WAHR|Nein) = ?

Aussicht	Ja	Nein
Sonne	2	3
Bewölkt	4	0
Regen	3	2
Temp	Ja	. Nein
Heiss	2	2
Mild	4	2
Kühl	3	1
Feucht	Ja	Nein
Hoch	3	4
Normal	6	1
Wind	Ja	Nein
WALD.	2	2

FALSCH

2

$$P(\text{Nein}|x) = P(x|\text{Nein}) \frac{P(\text{Nein})}{P(x)}$$

$$= P(x_1|\text{Nein}) \cdot P(x_2|\text{Nein})$$

$$\cdot P(x_3|\text{Ja}) \cdot P(x_4|\text{Ja}) \cdot \frac{P(\text{Nein})}{P(x)}$$

- P(Nein) = 5/14
- P(sonnig|Nein) = 3/5 P(kühl|Nein) = 1/5 P(Hoch|Nein) = 4/5 P(WAHR|Nein) = 3/5
- $P(x|\text{Nein}) = \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} = 0.0576$ $P(\text{Nein}|x) = P(x|\text{Nein}) \frac{P(\text{Nein})}{P(x)} = \frac{0.0206}{P(x)}$

Aussicht	Ja	Neir
Sonne	2	3
Bewölkt	4	0
Regen	3	2

Temp	Ja	Neir
Heiss	2	2
Mild	4	2
Kühl	3	1

Feucht	Ja	Neir
Hoch	3	4
Normal	6	1

Wind	Ja	Nein
WAHR	3	3
FALSCH	6	2

Klassenzuordnung

$$P(Ja) = 9/14$$

$$P(x|Ja) = \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} = 0.0082$$

•
$$P(Ja|x) = P(x|Ja)\frac{P(Ja)}{P(x)} = 0.0053/P(x)$$

P(Nein|x):

$$P(x|\text{Nein}) = \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} = 0.0576$$

$$P(\text{Nein}|x) = P(x|\text{Nein}) \frac{P(\text{Nein})}{P(x)} = 0.0206/P(x)$$

P(Nein|x) ist grösser als P(Ja|x), daher klassieren wir

Sonne Kühl Hoch WAHR Ne	in
-------------------------	----