culs)
s n
a el
i

Considerem les variables aleatòries X1="nombre d'errors en el primer mòdul" i X2="nombre d'errors en el segon mòdul" que són independents entre elles i que tenen les funcions de probabilitat que es mostren a continuació:

k	$P_{X1}(k)$	P _{X2} (k)
0	0.7	0.55
1	0.2	0.25 0.15
2	0.1	0.15
3	0.2 0.1 0	0.05

5. Calculeu l'esperança i la variància d'X1 (1 punt)

6. Anomenem Y="nombre total d'errors" obtinguda com Y=X1+X2. Calcula la funció de distribució d'Y i representa-la gràficament (2 punts)

7. Calculeu l'esperança i la variància d'Y (1 punt)

8. Calcula la correlació d'X1 i Y (1 punt)

N(OM:
	(Contesteu cada pregunta al seu lloc. Expliqueu i justifiqueu els càlculs).
	Problema 2 (B3-B4)
	El temps necessari per presentar un examen segueix una distribució normal amb mitjana de 70 minuts i desviació tipus de 12 minuts.
	$a) \ (1.0 \ \mathrm{pts.})$ Calculi la probabilitat que un alumne finalitzi l'examen abans d'una hora.
	$b)~(1.0~{\rm pts.})$ Quant ha de durar l'examen si es desitja que el 90 % dels estudiants tingui temp suficient per acabar-ho?
	L'examen consta de 16 preguntes d'opció múltiple, cadascuna amb cinc respostes possibles Només existeix una resposta correcta per a cada pregunta. Suposi que un dels alumnes contesta cadascuna de les preguntes de forma aleatòria i independent. a) (1.0 pts.) Quina és la probabilitat que l'alumne aprovi l'examen?
	$b) \ (0.5 \ \mathrm{pts.})$ Calculi el valor esperat del nombre de respostes correctes.
	(1.0 pts.) Suposi que només el 30 % dels estudiants aconseguiran contestar correctament a la pregunta No. 1 (ja sigui per sort o per haver estudiat). En el moment de corregir l'examen, e professor tria els exàmens de manera aleatòria i independent. Calculi la probabilitat que el 5 examen corregit sigui el primer en tenir correctament la pregunta No.1.
2.4	(1.0 pts.) El temps que triga un professor en revisar cadascuna de les preguntes de l'examen

constitueix una variable aleatòria independent amb mitjana d'1.5 minuts i variància d'1.0. Apro-

ximi la probabilitat que el professor pugui revisar 100 preguntes en menys de 2 hores.

- $2.5\,$ Suposi que fins ara s'han revisat $250\,$ exàmens. El professor troba que la pregunta No. $2\,$ ha estat resposta correctament per $134\,$ alumnes.
 - a) (0.5 pts.) Faci una estimació puntual per a la probabilitat que un alumne contesti correctament aquesta pregunta.
 - b) (1.0 pts.) Trobi un interval de confiança del 98 % per a aquesta probabilitat. Es pot dir que la majoria dels alumnes saben la resposta correcta a la pregunta No. 2?

c) (1.0 pts.) Quants exàmens s'haurien de corregir per afirmar que la majoria dels alumnes saben la resposta correcta a la pregunta No. 2? Utilitzi un risc del 5 %.(Assumeixi que la probabilitat estimada es manté).

2.6 Les edats de 5 professors de l'assignatura són: 39, 54, 61, 72, 59.

$$\sum x_i = 285 \qquad \sum (x_i)^2 = 16823$$

a) (1.0 pts.) Trobi un interval de confiança del 99 % per a la desviació tipus de l'edat dels professors de l'assignatura. Assumeixi que les edats segueixen una distribució Normal.

b) (1.0 pts.) Volem posar a prova que la desviació tipus de les edats és de 7.2 anys. Plantegi formalment una prova d'hipòtesi per contrastar aquesta qüestió amb un risc del 5 %. Faci el contrast que la desviació estàndard és menor a 7.2. Mostri gràficament la distribució de probabilitat de l'estadístic i marqui l'àrea de rebuig. Quina és la conclusió de la prova? Doni una aproximació per al p-valor.

NOM:	COGNOMS:				

(Contesteu cada pregunta en el seu lloc. Expliciteu i justifiqueu els càlculs)

Problema 3 (B5-B6)

Volem analitzar la relació que hi ha entre el temps de pujada d'una imatge a la web en el format TIFF (dades A) i en el format JPEG (dades B). Per dur a terme aquesta investigació es recull una mostra amb 32 observacions, 16 amb TIFF i 16 JPEG, i s'obtenen els següents temps [segons]:

A: 9.407 9.215 9.650 8.798 8.311 9.081 8.137 8.981 8.492 8.443 8.633 8.760 8.108 9.066 9.133 8.257 B: 7.657 9.178 8.659 9.308 8.683 9.270 7.680 8.340 8.674 8.462 7.767 8.570 7.996 8.115 7.632 8.175

Els estadístics a utilitzar són:

Mitjana A = 8.78; Mitjana B = 8.39; Covariància = 0.05 Variància A = 0.22; Variància B = 0.32; Variància diferència = 0.44

- 1. Assumim que són dades aparellades (mateixa imatge en dos formats); volem contrastar si l'esperança del temps de pujada per als dos formats és la mateixa o no:
 - a. Plantegeu quina és la hipòtesi nul·la i l'alternativa
 - b. Digueu quin és l'estadístic, la seva distribució sota H₀ i les premisses
 - c. Es pot rebutjar la hipòtesi nul·la? Raoneu la vostra resposta i doneu la conclusió. Nota: No calculeu aquí l'interval de confiança (2 punts)

- 2. Assumim ara que les dades no són aparellades, i resolem el mateix contrast:
 - a. Plantegeu quina és la hipòtesi nul·la i l'alternativa
 - b. Digueu quin és l'estadístic, la seva distribució sota H₀ i les premisses en aquest cas
 - c. Es pot rebutjar la hipòtesi nul·la? Raoneu la vostra resposta i doneu la conclusió.

Nota: No calculeu aquí l'interval de confiança. (2 punts)

3. Calculeu, interpreteu i compareu els intervals de confiança al 95% per a la diferència de mitjanes pels 2 casos anteriors. Tant si els intervals són similars com si són diferents, digueu quina creieu que és la raó per la seva semblança o disparitat. (1 punt)
4. Per veure si hi ha relació lineal entre els dos temps de pujada, volem calcular la recta de regressió de B (resposta) en funció de A (predictor). Estimeu puntualment el terme independent (Beta 0) i el pendent (Beta 1). Doneu un interval de confiança al 95% per a Beta 1 i interpreteu-ho. (2 punts)
5. Sabent que pujar una imatge TIFF ha trigat 10 segons, calculeu la predicció puntual del temps de pujada pel format JPEG i l'interval de confiança al 95% per al corresponent valor esperat (2 punts)
6. La validació del model lineal es realitza mitjançant gràfics dels residus. Quines són les premisses que s'avaluen? (Només heu de dir el nom de les premisses, no cal avaluar-les) ¿Per a quina premissa concreta es fa servir el gràfic dels residus en funció de l'ordre de recollida? Com s'interpreta? (1 punt)