Oppgave 1.

Oppgave 2.

i)

Gene, Exon, Isoform, and the connection entity Isoform_exons (represented as a many to many relationship in the ERD)

ii)

iii)

Gene id -> Name

Gene id ->Chromosome name

Gene_id -> Start_coord

Gene id -> Stop coord

Exon_id -> Exon_start_coord

Exon_id -> Exon_stop_coord

Exon_id -> Gene_id

Isoform_id -> isoform_name

Gene(**#Gene_id**,Name, Chromosome_name, Start_coord, Stop_coord) Exon(**#Exon_id**, Exon_start_coord, Exon_stop_coord, Gene_id*)

lsoform(#lsoform_id,lsoform_name)
lsoform Exons(#lsoform id*,#Exon id*)

Oppgave 3.

i)
 Chromosome, Gene, Publication, Author, Synonym, Reference (connection entity),
 Author_Publication (connection entity) where the connection entities are represented with a many to many relationship in the ERD.

. 1NF

Chromosome (#Chromosome name, Chromosome length)

Gene(**#Gene_symbol**, Official_name, Chromosome_name*, Start_coordinate, End coordinate)

Synonym(**#Synonym_name**, Gene_symbol*)

Reference(**#Gene_symbol***,**#Publication_id***,publication_title) -> <u>2NF violation</u>

Publication(**#Publication_id**, journal, year published)

Author_Publication(#Author_id*, #Publication_id*)

Author(#Author_id, First name, Last name)

iv)
BCNF

Chromosome(#Chromosome_name, Chromosome length)

Gene(**#Gene_symbol**, Official_name, Chromosome_name*, Start_coordinate, End coordinate)

Synonym(**#Synonym_name**, Gene_symbol*)

Reference(#Gene_symbol*,#Publication_id*)

Publication(#Publication_id, publication_title, journal, year_published)

Author_Publication(**#Author_id***, **#Publication_id***) Author(**#Author_id**, First_name, Last_name)

Oppgave 4

Disclaimer: several composite primary keys in the diagram, but since it not showing the weak entities, only parts of these composite keys are shown. For an example RoutePoint has a composite primary key consisting of Port_id,Cruise_id and the Arrival_date.

Oppgave 5

Container_type (#Type_id, Type_name, Max_weight, Cubic_quantity, Nightly_rate)

Container (**#Container_number**, Type_id*)

Customer (#Telephone number, Address)

Assignment (#Assignment_number, Telephone_number*, Container_number*, Start_date, End_date)

Assignment_number -> Telephone_number

Assignment_number -> Container_number

Assignment_number -> Start_date

Assignment_number -> End_date

Container_number -> Type_id

Type_id -> Type_name

Type_id -> Max_weight

Type_id -> Cubic_quantity

Type_id -> Nightly_rate

Telephone_number -> Address

Truck (Registration_number, Registration_year, Model, Maximum_weight, Assignment_number*)

This is a problematic setup with regards to redudancy, which would cause problems every time we would want to create, update or delete rows in tables affected by this redudancy (update anamolies).

With this setup and the business rule that multiple trucks can be involved with one assignment we use the Registration_number as our primary key. Instead of having the truck properties that is not inclined to change in one table and the assignment connection in another we end up with more redundant information which is bad with regards to space requirements and data integrity to name a few. We also see that we can determine the Maximum_weight from the Model. This tells us our table has a transitive dependacy.

ii)

Registration_number -> Registration_year
Registration_number -> Model
Registration_number -> Maximum_weight
Registration_number -> Assignment_number
Model -> Maximum_weight

iii)

The Registration_number is the candidate key for the Truck table.

iv)
 Transportation(#Assignment_number*,#Registration_number*)
 Truck (#Registration_number, Registration_year, Model*)
 TruckModel(#Model, Maximum weight)