K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam

MAY-JUNE 2021 (AUGUST 2021)

Semester: III

Branch: COMP

Max. Marks: 50 Duration: 1 Hr. 45 Min.

Class: SY Name of the Course: Discrete Mathematics

Course Code: 2UCC305

Instructions:

- All questions are compulsory (1)
- (2) Draw neat diagrams
- Assume suitable data if necessary (3)

Question No.		Max Marks
No. Q1 (A)	 Let N = {1, 2, 3,} be ordered by divisibility, which of the following subset is totally ordered, A) (24,6,2) B) (15,5,3) C) (16,9,2) D) (15,30,4) P → (Q → R) is equivalent to A) (P^Q) → R B) (P v Q) → R C) (P v Q) → R⁻¹ D) None of these If P, Q, R are subsets of the universal set U, then (PQQR)∪(P^c QQR)∪Q^c∪R^c is A) Q^c U R^c B) P U Q^c U R^c C) P^c U Q^c U R^c 	10
	 D) U 4. The following is the Hasse diagram of the poset [{a, b, c, d, e}, ≤] b a b b c d The poset is A) Lattice B) not a lattice 	

	,	a lattice but not a distributive lattice a distributive lattice but not a Boolean algebra	
	5.	If the function f and g are onto function then the function (gof) is function	
		Into function one to one function	
	C)	onto function	
	D)	one-to-many function	
	6.	The set of positive integers under the operation of ordinary multiplication is	
		Not a monoid	
	B)	A group	
	C)	Not a group	
	D)	An Abelian group	
	7.	Which of the following statement is a proposition?	
		A) Get me a glass of milkshake	
		B) God bless you!	
		C) What is the time now?	
		D) The only odd prime number is 2	
	8.	Range of a function is:	
		A)the maximal set of numbers for which a function is defined	
		B) the maximal set of numbers which a function can take values	
		C) it is set of natural numbers for which a function is defined	
		D) none of above	
	9.	For an onto function range is equivalent to codomain.	
		A) True	
		B) False	
	10.	The transitive closure of the relation {(0,1), (1,2), (2,2), (3,4), (5,3),	
		(5,4)} on the set {1, 2, 3, 4, 5} is	
		A) {(0,1), (1,2), (2,2), (3,4)}	
		B) {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)} C) {(0,1), (1,1), (2,2), (5,3), (5,4)}	
		D) {(0,1), (0,2), (1,2), (2,2), (3,4), (5,3), (5,4)}	
		2) ((0,1), (0,2), (1,2), (2,2), (3,1), (5,3), (5,1)	
0.1 (7)			10
Q1 (B)	Attem	pt any FIVE questions out of the following (any 5 out of 7)	10
	1.	Find the number of integers between 1 and 1000 which are divisible	
	1.	by 2, 3 or 5.	
		09 2, 3 01 3.	
	2.	State the converse and contrapositive of the following.	
		(i) If it is cold then he wears hat.	
		(ii) If integer is a multiple of 2, then it is even.	
	3.	Using laws of logic prove the following.	
		$p \lor q \lor (\sim p \land \sim q \land r) \leftrightarrow p \lor q \lor r$	

Determine the group code eH : $B^{2 \to} B^{5}$ OR

Consider the (3, 6) encoding function e : $B^{3 \to} B^{6}$ defined by e (000) = 0000000
e (001) = 001100
e (010) = 010011
e (011) = 011111
e (100) = 100101
e (101) = 101001
e (110) = 110110
e (111) = 111010

Decode the following words relative to a maximum likelihood decoding function. (a) 000101 (b) 010101