LA FONCTION CARRÉ E03

Construction d'un point de la parabole d'équation $y=x^2$

Objectif:

Dans le repère orthonormé $(O;\vec{i};\vec{j})$. Pour x un réel donné, on veut justifier la construction du point $M(x;x^2)$

EXERCICE N°1 Le protocole de construction (Le corrigé)

Une animation résumant les 5 questions est disponible en flashant le QRcode ci-contre ou simplement en cliquant dessus.

- 1) Placer un point A sur l'axe des abscisses. On note x son abscisse, ainsi A(x; 0).
- 2) Placer le point U(1;0).
- 3) Construire le point E(1; x) (Pensez au compas...).
- 4) Tracer la droite (UE) et la droite (d) passant par A et parallèle à (UE).
- 5) Tracer la droite (OE), elle coupe la droite (d) en M.

EXERCICE N°2 La justification

Nous devons justifier que le point $M(x;x^2)$, qui appartient évidemment à la droite (d), appartient aussi à la droite (OE).

1) Calculer les coordonnées des vecteurs \overrightarrow{OE} et \overrightarrow{OM}

$$\overrightarrow{OE} \begin{pmatrix} x_E - x_O \\ y_E - y_O \end{pmatrix} \text{ soit } | \overrightarrow{OE} \begin{pmatrix} 1 \\ x \end{pmatrix} | \\
\overrightarrow{OM} \begin{pmatrix} x_M - x_O \\ y_M - y_O \end{pmatrix} \text{ soit } | \overrightarrow{OM} \begin{pmatrix} x \\ x^2 \end{pmatrix} |$$

2) Démontrer que \overrightarrow{OE} et \overrightarrow{OM} sont colinéaires.

$$det(\overrightarrow{OE}, \overrightarrow{OM}) = 1 \times x^2 - x \times x = 0$$

On en déduit que \overline{OE} et \overline{OM} sont colinéaires.

3) Conclure.

Comme les vecteurs \overrightarrow{OE} et \overrightarrow{OM} sont colinéaires, les points O, E et M sont alignés ce qui signifie entre autre que $M \in (OE)$.

Nous sommes donc capables de construire chaque point de la parabole en suivant le protocole décrit à l'exercice n°1.

Gardons à l'esprit que la construction d'un petit morceau de la parabole (même un « petit millimètre »), nous prendrait quand même un temps infini avec cette méthode...