

Optimized Skill Endorsement Web based solution for the Entertainment Industry.

Team

Supervisor: Co-Supervisor:

Perera K.C.M

Abeyrathna H.K.H

Raja.R.K.K

M.A.R.F.M FAZIL

Introduction

- ❖ What is Cine-Collab?
- How to find Opportunities?
- What are the problems of existing platforms?
- **♦** How to give most accurate output?

Overall Project Description

- importance of collaboration in the entertainment industry
- growing interest in the local cinema industry, opportunities for them are limited
- ❖ A more collaborative and inclusive approach is needed to foster growth
- provision of a suitable platform for deserving talents

Objective

Main Objective: Solving issues related to showcasing skills and finding opportunities and collaborating issues in Entertainment Industry

Sub Objectives:

- Sub Objective 1:
- Sub Objective 2:
- Sub Objective 3: Facilitate the identification and selection of skilled dancers for specific dancerelated job roles in the entertainment industry.
- Sub Objective 4: Simplifying character role auditions and providing more accurate job recommendations by analyzing visual data.

System Overall Diagram

Research and Background Guidance

Gorden De Silva Director & Cinematographer (Rupawahini)

Abishek Palraj Film maker& Cinematographer

(Independent)

Gorden De Silva Actor & TV host (Maharaja Network)

IT20638504 | Perera K.C.M

Video classification & job recommendation

Bachelor of Science (Hons) in Information Technology Specializing in Interactive Media

Research Problem

- Limited industry exposure.
- * Lack of accessible platforms.
- Difficulty in Finding Opportunities according to their specific talents.
- Unidentified talent potential.

Research Questions

* How to classify job roles?

* How to suggest relevant job matches to the talents?

* How to recognize specific talents according to job rolls?

Research Gap

Classifying roles for Acting and Job recommendation

- Existing Platforms Do not Has a Feature to categorize uploaded videos/pictures according to type (live action, VFX, 2D/3D animation)
- integration of video and image analysis techniques, enabling the platform to understand visual content.
- Focus facial regions and Improving Face recognition on Shaky frames

Specific Objective

Video classification and job recommendation system

❖ To classifying similarities, types (genres) between uploaded videos/images by the user and recommend the best match.

Sub Objectives

Video classification and job recommendation system

- ❖ Develop a user-friendly interface for talents to upload their creations as videos or images.
- ❖ Implement video and image analysing techniques to process and categorize the uploaded content.
- ❖ Optimize the recommendation system to handle diverse talents effectively, ensuring that talents with unique artistic skills are appropriately matched with suitable job opportunities.

IT20638504 | Perera K.C.M| TMP-2023-24-109

System overview diagram

14

Methodology

Data Collection

• Gathering a diverse dataset of video content from various sources within the Sri Lankan entertainment industry, covering different genres such as live action, animation, and cinematic productions.

Feature Extraction

• Implement computer vision techniques to extract relevant features from the videos, such as visual cues, motion patterns, and color distributions.

Training the Model

- •Train a selected machine learning model on the labeled dataset for video classification.
- Fine-tune the model for optimal performance and accuracy.

User Interface and Database Development

- Develop a user-friendly interface for video upload and profile creation.
- •Set up a secure and scalable database to store user-uploaded videos and metadata.

Testing User Feedback, and **Updates**

- •Conduct extensive testing of the video recognition system and user interface.
- Incorporate user feedback to enhance the platform's functionality.

Research Gap Summary

Feature	A	В	С	D	Proposed S ystem
video classification with motion Detection.	X	√	√	×	✓
Motion Compensation	√	X	√	√	✓
Object Detection	√	√	X	X	√
Image recognition & video processing to classify genres	×	✓	×	✓	✓

Tools and Technologies

Technologies:

- **CNN VIDEO FRAME PROCESSING**
- **Inception V3**

Tools:

- **❖** Machine learning Python
- Version Controlling Git Hub
- ❖ For implementation needs Google collab
- ❖ Front end React JS
- Database mongo DB

Specific Objective:

- * keras
- ❖ Video processing Open CV

About Keras

Getting started

Code examples

Developer guides

API reference

Models API

Layers API

Callbacks API

Optimizers

Metrics

Losses

Data loading

Built-in small datasets

Keras Applications

Xception

EfficientNet B0 to B7

EfficientNetV2 B0 to B3 and S, M, L

ConvNeXt Tiny, Small, Base, Large,

XLarge

VGG16 and VGG19

ResNet and ResNetV2

MobileNet, MobileNetV2, and

» API reference / Keras Applications

Keras Applications

Keras Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

Weights are downloaded automatically when instantiating a model. They are stored at ~/.keras/models/.

Upon instantiation, the models will be built according to the image data format set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_data_format=channels_last, then any model loaded from this repository will get built according to the TensorFlow data format convention, "Height-Width-Depth".

Available models

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	79.0%	94.5%	22.9M	81	109.4	8.1
VGG16	528	71.3%	90.1%	138.4M	16	69.5	4.2
VGG19	549	71.3%	90.0%	143.7M	19	84.8	4.4
ResNet50	98	74.9%	92.1%	25.6M	107	58.2	4.6
ResNet50V2	98	76.0%	93.0%	25.6M	103	45.6	4.4
ResNet101	171	76.4%	92.8%	44.7M	209	89.6	5.2
ResNet101V2	171	77.2%	93.8%	44.7M	205	72.7	5.4
ResNet152	232	76.6%	93.1%	60.4M	311	127.4	6.5
ResNet152V2	232	78.0%	94.2%	60.4M	307	107.5	6.6
InceptionV3	92	77.9%	93.7%	23.9M	189	42.2	6.9
InceptionResNetV2	215	80.3%	95.3%	55.9M	449	130.2	10.0
MobileNet	16	70.4%	89.5%	4.3M	55	22.6	3.4

Keras Applications

- Available models
- ◆ Usage examples for image classification models

Classify ImageNet classes with ResNet50 Extract features with VGG16 Extract features from an arbitrary intermediate layer with VGG19 Fine-tune InceptionV3 on a new set of classes Build InceptionV3 over a custom input

References

A.[Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" by Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. (IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017)

B."You Only Look Once: Unified, Real-Time Object Detection" by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016)

C."Deep Residual Learning for Image Recognition" by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016)

D. ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. (Advances in Neural Information Processing Systems, 2012)

Functional Requirements

✓ Accurate Video Categorization

✓ Efficient Model Training

✓ User-Friendly Upload

✓ Accurate job recommendations

DATA COLLECTION AND PRE **PROCESSING**

```
img_height,img_width=299,299
batch_size=32
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)
Found 1238 files belonging to 3 classes.
Using 991 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation split=0.2.
```

MODEL TRAINING

```
inception_model = Sequential()
    pretrained_model= tf.keras.applications.InceptionV3(include_top=False,
                       input_shape=(299,299,3),
                       pooling='avg',classes=len(class_names),
                       weights='imagenet')
    for layer in pretrained_model.layers:
            layer.trainable=False
    inception_model.add(pretrained_model)
    inception_model.add(Flatten())
    inception_model.add(Dense(512, activation='relu'))
    inception_model.add(Dense(256 , activation='relu'))
    inception_model.add(Dense(len(class_names), activation='softmax'))
    Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
    inception_model.compile(optimizer=Adam(learning_rate=0.001),loss='sparse_categorical_crossentropy',metrics=['accuracy'])
pochs=30
    history = inception model.fit(
      train_ds,
      validation_data=val_ds,
      epochs=epochs
                                                                                                                                   3/4/4044
```


IT20166274 | Abeyrathna H.K.H

Job Posting and Skill Matching

Bachelor of Science (Hons) in Information Technology Specializing in Interactive Media

Research problem

How can a skill matching algorithm be used to compare job requirements with user profiles and identify potential matches?

Objectives

- Specific Objective:
- •Develop a job posting and skill matching component that utilizes machine learning algorithms to extract and analyze textual data from user profiles, information sections, and post captions to suggest relevant profiles for job postings within a web application.
- •Main Objective:
- •The main objective of this component is to enhance user experience and foster skill matching within the web application by:
- •1. Extracting and analyzing textual data from user profiles and posts.
- •2. Utilizing machine learning techniques for keyword extraction and data analysis.
- •3. Providing job posters with suggestions of relevant profiles based on their job requirements.

Technologies to be used...

•Web - react

•Main Back end: Node Express

framework

•ML backend: FastAPI framework

Database: MongoDB

•Scikit learn

Functional and non - functional requirements

Functional Requirements:

- User Registration and Profile Creation
- **User Input Collection**
- Data Analysis
- Job Recommendations
- Data Storage and Organization

Non-Functional Requirements:

- User-Friendly Interface
- Performance
- Security
- Reliability
- Accessibility
- Data Privacy

System overview diagram

Research gap

- Focus on Entertainment Industry: The research gap lies in the lack of dedicated platforms that focus on the unique challenges and opportunities in the entertainment industry.
- Limited Utilization of Advanced Technologies: There is a research gap in not fully leveraging and data analysis techniques to enhance job recommendations and skill matching in the entertainment industry.

Evidence

```
from matplotlib import pyplot as plt
  import seaborn as sns
 roles_df.groupby('Role').size().plot(kind='barh', color=sns.palettes.mpl_palette('Dark2'))
 plt.gca().spines[['top', 'right',]].set_visible(False)
       Uncle_Dad -
          Military -
  문 Love_Female -
            Elder
           Boxing ·
                           10
                                     20
                                               30
                                                                  50
```

Train and Test

```
[ ] # Split the data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    inference_data = X_test.head(1)
[ ] y_train
             Military
    211
            Uncle_Dad
           Love_Female
    118
    195
            Uncle_Dad
            Uncle_Dad
           Love Female
               Boxing
    92
          Love Female
             Military
          Love_Female
    Name: Role, Length: 197, dtype: object
```

[] svm_model.fit(X_train, y_train)
 logistic_model.fit(X_train, y_train)

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_sag.py:350: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge warnings.warn(

Accuracy Measure

```
[ ] svm_accuracy = accuracy_score(y_test, svm_predictions)
    logistic_accuracy = accuracy_score(y_test, logistic_predictions)
    print("SVM Accuracy:", svm_accuracy)
    print("Logistic Regression Accuracy:", logistic_accuracy)
    # You can also print classification reports to get more detailed metrics
    print("SVM Classification Report:")
    print(classification_report(y_test, svm_predictions))
    print("Logistic Regression Classification Report:")
    print(classification_report(y_test, logistic_predictions))
    SVM Accuracy: 0.21153846153846154
    Logistic Regression Accuracy: 0.019230769230769232
    SVM Classification Report:
                 precision recall fi-score support
          Boxing
                               0.23
          Elder
     Love_Female
                      0.00
                               0.00
        Military
                      0.00
                               0.00
                                        0.00
                                                   13
       Uncle_Dad
                      0.50
                              8.09
                                                   11
        accuracy
                                                   52
       macro avg
                      0.19
                               0.24
                                        0.14
    weighted avg
                      8.28
                               0.21
                                                    52
                                        0.14
    Logistic Regression Classification Report:
                 precision
                             recall fi-score support
          Boxing
          Elder
                      0.00
                               0.00
                                        0.00
     Love_Female
                      0.00
                               8.88
                                        0.00
        Military
                      0.11
                               8.68
                                        0.09
                                                   13
       Uncle_Dad
                               0.00
                                                   52
        accuracy
       macro avg
                      0.02
                               0.02
                                        0.02
                                                   52
    weighted avg
                      0.03
                               0.02
                                        0.02
```

Inference code

```
# / Compart | Section | Se
```

Inference cod

Inference code

```
[ ] svm_predictions = svm_model.predict(df)
    print(f"codition class ---> {svm_predictions[0]}")
    codition class ---> Uncle_Dad
```

save model

```
[ ] import joblib

model_filename = '/content/drive/MyDrive/Actor_project/svm_model.joblib'
joblib.dump(svm_model, model_filename)
['/content/drive/MyDrive/Actor_project/svm_model.joblib']
```

Research Gap Summary

Feature	1	2	3	Proposed S ystem
Improve accuracy on domain entity extraction.	X	√	X	
Detect accuracy of user input details.	√	√	√	
Skill Matching with Specific Requirements	X	X	X	
Multi-Dimensional Talent Evaluation	√	X	X	

32

DATA COLLECTION

DATA ANALYSIS

ENHANCE ALGORITHMS

Methodology

DATA INTEGRATION

EVALUATION

References

[1].A. -N. Lee, K. -Y. Chen and C. -T. Li, "ActRec: A Word Embedding-based Approach to Recommend Movie Actors to Match Role Descriptions," 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), The Hague, Netherlands, 2020, pp. 389-392, doi: 10.1109/ASONAM49781.2020.9381452.

[2]K. Appadoo, M. B. Soonnoo and Z. Mungloo-Dilmohamud, "Job Recommendation System, Machine Learning, Regression, Classification, Natural Language Processing," 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, Australia, 2020, pp. 1-6, doi: 10.1109/CSDE50874.2020.9411584.

[3]Peng Yi, C. Yang, Chen Li and Y. Zhang, "A job recommendation method optimized by position descriptions and resume information," 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, China, 2016, pp. 761-764, doi: 10.1109/IMCEC.2016.7867312.

IT20667146 | RAJA.R.K.K

Dance Demo Video Upload, Filtering and Recommending.

Bachelor of Science (Hons) in Information Technology Specializing in Interactive Media

Specific and Sub Objectives

Dance Demo Video Upload, Filtering, and Recommending

- Track the similarity between the original demo video and the dance videos submitted by job applicants.
- Utilization of video analysis techniques and machine learning algorithms to compare.
- ❖ Dance movements, gestures, and styles with consideration for Sri Lankan and South Indian cultural elements.
- The uploaded video will recommend to the similar role hiring clients or companys.

IT20667146 | RAJA.R.K.K | TMP-2023-24-109

Cosine Similarity in Python

CNN ARCHITECTURES EVIDENCE OF COMPLETION

Training Model

```
batch_size=batch_size)
    Found 599 files belonging to 8 classes.
    Using 480 files for training.
                                                                                                                                          ↑ ↓ ⊖ ‡ 🖟 📋 🗄
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
       validation_split=0.2,
       subset="validation",
      image_size=(img_height, img_width),
      batch size=batch size)
    Found 599 files belonging to 8 classes.
    Using 119 files for validation.
[ ] class_names = train_ds.class_names
    print(class names)
    ['bharatanatyam', 'kathak', 'kathakali', 'kuchipudi', 'manipuri', 'mohiniyattam', 'odissi', 'sattriya']
[ ] resnet model = Sequential()
    pretrained_model= tf.keras.applications.ResNet50(include_top=False,
```

Classes

System
Overview
Diagram

Methodology

- > Filtering Similar role
- Machine learning algorithms to compare dance movements
- > Training and Dataset Preparation

Technologies

- Machine learning Python
- React to front end
- Mongo DB
- Media Pipeline
- Cosine Similarity
- CNN(convolutional neural networks)
- ResNet

Research Gap Summary

Feature	A	В	С	D	Proposed S ystem
Dancer roll classification with motion Detection.	X	✓	√	×	
Based On Cosine Similarity		X		√	√
Research on privacy and security	✓	√	X	X	
Diverse user demographics and skill levels	X	√	X	✓	✓

Requirements

Functional Requirements:

- ❖ Ability to Recognize Movement features from video content
- ❖ Ability to classify character roles and dancing category from video content
- * Accuracy Classify dancers for most suitable category.

REFERENCES

GeeksforGeeks. (2022). How to Calculate Cosine Similarity in Python? [online] Available at: https://www.geeksforgeeks.org/how-to-calculate-cosine-similarity-in-python/ [Accessed 24 May 2023].

scikitlearn.org. (n.d.). Loading... [online] Available at:

https://scikitlearn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html [Accessed 1 Aug. 2023].

<u>www.sciencedirect.com</u>. (n.d.). *Filtering Operation - an overview | ScienceDirect Topics*. [online] Available at: https://www.sciencedirect.com/topics/computer-science/filtering-operation [Accessed 1 Aug. 2023].

GeeksforGeeks. (2022). How to Calculate Cosine Similarity in Python? [online] Available at: https://www.geeksforgeeks.org/how-to-calculate-cosine-similarity-in-python/ [Accessed 24 May 2023].

Rainie, L. and Duggan, M. (2016). *Privacy and Information Sharing*. [online] Pew Research Center: Internet, Science & Tech. Available at: https://www.pewresearch.org/internet/2016/01/14/privacy-and-information-sharing/.

IT20667146 | RAJA.R.K.K | TMP-2023-24-109

IT20050962 | M.A.R.F.M FAZIL

Classifying roles for Acting and Job recommendation

Bachelor of Science (Hons) in Information Technology Specializing in Interactive Media

Background

- Difficulty in Finding Talents for Acting
- Lengthy and Manual Casting Process
- Difficulty in Finding Opportunities for Acting
- Lack of Collaboration among Aspiring Creators

Research Gap Summery

Feature	A [1]	B [2]	C [3]	D [4]	Proposed System
Actor roll classification with emotion Recognition	X	✓	X	X	
Based on CNN	X	X		×	
Face Recognition and characteristics Id entification	X	✓		√	✓
Job Recommendation For actors using Image/Video based Approach	X	×	×	×	✓

IT20050962

Objectives

Specific Objective: Classifying roles for Acting and Job recommendation

Specific Objective:

- * Actor Role Classification with Emotion Recognition:
- ❖ Job Recommendation for Actors using Image/Video-Based Approach
- **❖** Advance machine learning Algorithms
- Enhancing Casting Process Efficiency

Research Questions

- * why we recognize human with facial attributes?
- How to Classify Character roles?
- * How to Recommend Actors for a job post?
- * How to recommend Job post for an Actor?

Methodology

System Overview Diagram

Methodology

- Gather the data for Actor image classification
- Preprocess the data by resizing and normalizing images.
- Design a Convolutional Neural Network (CNN) architecture.
- Train the model using the preprocessed dataset.

Data Collection

Data Pre-processing

Model Training

Data Visualization

Use the Data results for recommendation

Tools and Technologies

Technologies:

❖ CNN-VGG19

Tools:

- **❖** Machine learning − Python
- ❖ Hosting and Deploy AWS
- ❖ For implementation needs Google collab
- ❖ Front end React JS
- Database mongo DB
- ❖ Fast API

Specific Objective:

- Keras
- ❖ Face recognition and features Tensor flow

Data Collection and Pre-processing

```
img height, img width=224,224
batch size=32
train ds = tf.keras.preprocessing.image dataset from directory(
  data dir,
  validation split=0.2,
  subset="training",
  seed=123,
  image size=(img height, img width),
  batch size=batch size)
Found 2567 files belonging to 5 classes.
Using 2054 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data dir,
  validation split=0.2,
  subset="validation",
  seed=123,
  image size=(img height, img width),
  batch size=batch size)
Found 2567 files belonging to 5 classes.
Using 513 files for validation.
```

Model Training

```
history = vg19_model.fit(
 train ds.
  validation data=val ds,
                                        - 362s 5s/step - loss: 1.0148 - accuracy: 0.7283 - val_loss: 0.5929 <u>- val_accuracy: 0.8324</u>
                                         18s 247ms/step - loss: 0.3169 - accuracy: 0.8836 - val_loss: 0.5106 - val_accuracy: 0.8421
65/65 [===
65/65 [===
                                         17s 249ms/step - loss: 0.1913 - accuracy: 0.9309 - val loss: 0.5441 - val accuracy: 0.8441
Epoch 4/15
                                         17s 246ms/step - loss: 0.0935 - accuracy: 0.9757 - val loss: 0.5803 - val accuracy: 0.8635
65/65 [==
Epoch 5/15
65/65 [==
                                        - 17s 242ms/step - loss: 0.0412 - accuracy: 0.9903 - val loss: 0.5833 - val accuracy: 0.8558
Epoch 6/15
65/65 [===
                                         17s 247ms/step - loss: 0.0152 - accuracy: 0.9981 - val_loss: 0.6145 - val_accuracy: 0.8635
Epoch 8/15
                                         17s 245ms/step - loss: 0.0029 - accuracy: 1.0000 - val loss: 0.6446 - val accuracy: 0.8674
Epoch 9/15
65/65 [==:
Epoch 10/15
65/65 [==:
Epoch 11/15
```

CNN ARCHITECTURES EVIDENCE OF COMPLETION

CNN ARCHITECTURES EVIDENCE OF COMPLETION

sample test images

dc13aa265f

b69

0b1dda72a692d8

f098f95f64c6b50

526

1.646791d9-900d

733c4021

1.fa5a99b4dc818

1c8aac9a3246f0f

8be0

0ed8400238f7c8

2165aff2c0c7d5f

abc

0f325b2b0f9c904

2c2fc5dad58573

176

1.happy-senior-el

derly-couple-old

0f429509155d7e

98f4dea1e53c77

bb80

1.old-indian-fem

ale-and

01e9820dbe

752cdfb89d6

1aa04fb1c67

a144e60dd1

2f32

e7e3

IT20050962 | Fazil |

90ffb5e6b9ac896

2.500_F_1654630 32 PKs3x67sqT96

n Masterfile

-people-selfie

m-closeup-of-a-s an-posing-p

Data Visualization

Completion and Future Works

Completion of the components

- Collecting real test dataset with variety
- Model Training and Prediction

Future Implements

- Train another Model for analyze Accuracy
- Frontend Implementation

3/4/2024

Requirements

Functional Requirements:

- ❖ Ability to Recognize facial features from video content
- Ability to classify character roles from video content

Functional Requirements:

- ❖ Accuracy Classify characters for most suitable roles
- Usability understand users with different roles on his/her videos
- ❖ Performance Fast loading results without any lagging on website

3/4/2024

REFERENCES

A[1]	AN. Lee, KY. C. and CT. L., "ActRec: A Word Embedding-based Approach to Recommend Movie Actors to Match Role Descriptions," IEEE, The Hague, Netherlands,
	2020.
B[2]	H. X. and C. L., "Face Recognition and Application of Film and Television Actors Based on Dlib," IEEE, Suzhou, China, 2019.
C[3]	A. K. and C. T., "Using CNN and OpenCV, Emotion Recognition with Facial Feature Approach," IEEE, Greater Noida, India, 2023.
D[4]	T. C M. D M. v. d. G. C. H. and H. K. , "Multimodal Emotion Recognition for Visualizing," ICT, LEIDEN, THE NETHERLANDS, 2020.

<< Project ID>>