SIMULACIÓN

Método del rechazo

Método del rechazo

Objetivo del método: generar un *valor de la variable aleatoria* y probar que dicho valor simulado proviene de la distribución de probabilidad que se está analizando.

Para ello considerar que f(x) es una distribución de probabilidad acotada, donde: $a \le x \le b$.

Con M un valor igual o mayor que el máximo valor de f(x) en el intervalo.

Método del rechazo

Pasos a seguir:

- 1. Generar dos números pseudoaleatorios (que hayan superado las pruebas) r1 y r2. Determinar (definir M)
- 2. Determinar el valor de la variable aleatoria x de acuerdo a la siguiente relación lineal de r1: $x = a + (b a)^* r1$
- 3. Determinar la función de probabilidad f(x) en $x = a + (b a)^* r1$
- 4. Determinar si la siguiente desigualdad se cumple:

$$r2 \le f(a + (b-a) * r1) / M$$

SI se cumple entonces: aceptar x como valor simulado de la variable aleatoria f(x).

Si NO se cumple entonces volver al paso 1, y repetir tantas veces sea necesario.

Método del rechazo

Concepto: este método se apoya en el hecho de que la probabilidad que $r2 \le f(x)/M$, es f(x)/M.

Por lo tanto, si un x (entre a y b) al azar

con: x = a + (b-a) * r1,

es rechazado si r2 > f(x) / M

=> la distribución de probabilidad de los X aceptados será f(x). El inconveniente a considerar en este método es la cantidad de pruebas rechazadas

La eficiencia del método estará dada por: $e = \frac{Area \ bajo \ la \ curva}{Area \ del \ rectángulo}$

Sea:
$$f(x) = x^2 + \frac{2}{3}$$
; $con \ 0 \le x \le 1$

Sea:

$$f(x) = x^2 + \frac{2}{3}$$
; $con \ 0 \le x \le 1$

Con Excel, se utiliza el método y se obtienen valores para x

Orden	r1	r2	Х	f(x)	f(x)/M	
1	0.18153596	0.37215327	0.18153596	0.69962197	0.41977318	ACEPTO x
2	0.81002387	0.03793809	0.81002387	1.32280533	0.7936832	ACEPTO x
3	0.49196537	0.15967564	0.49196537	0.90869659	0.54521795	ACEPTO x
4	0.04406406	0.7088468	0.04406406	0.66860831	0.40116498	RECHAZO x
5	0.4244873	0.47877381	0.4244873	0.84685614	0.50811368	ACEPTO x
6	0.35252539	0.35088623	0.35252539	0.79094082	0.47456449	ACEPTO x
7	0.76106879	0.60156475	0.76106879	1.24589237	0.74753542	ACEPTO x
8	0.08585333	0.61058511	0.08585333	0.67403746	0.40442248	RECHAZO x
9	0.40685271	0.28411377	0.40685271	0.83219579	0.49931748	ACEPTO x
10	0.60876483	0.56325478	0.60876483	1.03726128	0.62235677	АСЕРТО х

а	0
b	2
m	0.75

Acepto X

Sea:
$$f(x) = \frac{3}{2}x - \frac{3}{4}x^2$$
; $con \ 0 \le x \le 2$

M = 3/4

Sea:
$$f(x) = \frac{3}{2}x - \frac{3}{4}x^2$$
; $con \ 0 \le x \le 2$

Con Excel, se utiliza el método y se obtienen valores para x

Orden	r1	r2	x	f(x)	f(x)/M	
1	0.52626299	0.78584959	1.05252598	1.37107442	1.82809922	ACEPTO x
2	0.25402546	0.2928344	0.50805092	0.71367968	0.95157291	ACEPTO x
3	0.01787355	0.59986948	0.03574711	0.05338106	0.07117475	RECHAZO x
4	0.56417759	0.27151796	1.12835518	1.4538105	1.93841401	ACEPTO x
5	0.44527792	0.09183613	0.89055585	1.18712945	1.58283927	ACEPTO x
6	0.22675506	0.14353456	0.45351013	0.6417018	0.8556024	ACEPTO x
7	0.13448541	0.15156523	0.26897081	0.38989147	0.5198553	ACEPTO x
8	0.04625273	0.34563359	0.09250547	0.13715371	0.18287162	RECHAZO x
9	0.97567637	0.81441625	1.95135273	2.21307082	2.95076109	ACEPTO x
10	0.75117134	0.41758903	1.50234268	1.83032024	2.44042698	ACEPTO x

a	0
b	1
m	1.66666667

Sea:

$$f(x) = \begin{cases} \frac{x}{30} + \frac{1}{60} & \text{; } 5 \le x \le 15 \\ -\frac{x}{300} + \frac{7}{60} & \text{; } 15 \le x \le 25 \end{cases}$$

$$M = 1/15$$

