Quiz

Prove one of the following two statements:

- 1. If M is invertible then Row MA = Row A (assumes it is legal to multiply MA)
- 2. The union of a basis for subspace $\mathcal U$ and subspace $\mathcal V$ is a basis for $\mathcal U\oplus\mathcal V$ (assumes it is legal to take the direct sum $\mathcal U\oplus\mathcal V$)

Quiz

What are the rank and nullity of the following matrices?

$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Using Gaussian elimination for other problems

So far:

- we know how to use Gaussian elimination to transform a matrix into echelon form;
- nonzero rows form a basis for row space of original matrix

We can do other things with Gaussian elimination:

- Solve linear systems (used in e.g. Lights Out)
- ► Find vectors in null space (used in e.g. integer factoring)

Key idea: keep track of transformations performed in putting matrix in echelon form.

Gaussian elimination: recording the transformations

▶ Maintain M (initially identity) and U (initially A)

	V	√ha	teve	er t	rans	forma	atio	ns y	ou d	o to	U,	do s	sam	e tr	ans	form	atio	ns to	o M
		0	1	2	3			A	В	C	D				A	В	C	D	
,	0	1	0	0	0		0	0	0	1	1			0	0	0	1	1	ColumnA:
	1	0	1	0	0	*	1	1	0	1	1	\checkmark	=	1	1	0	1	1	select row 1
	2	0	0	1	0		2	1	0	0	1			2	1	0	0	1	add it to rows 2,3
	3	0	0	0	1		3	1	1	1	1			3	1	1	1	1	
		0	1	2	3			A	В	С	D				A	В	С	D	ColumnB:
	0	1	0	0	0		0	0	0	1	1	√		0	0	0	1	1	select row 3
	1	0	1	0	0	*	1	1	0	1	1	\checkmark	=	1	1	0	1	1	add it to no rows
	2	^	4	1	^		0	1	^	^	1			2	_	^	4	0	ColumnC:

select row 0 add it to row 2

ColumnD: select row 2 dana

Code for finding transformation to echelon form

- ▶ Initialize rowlist to be list of rows of A
- ▶ Initialize M_rowlist to be list of rows of identity matrix

```
for c in sorted(col_labels, key=str):
```

```
rows with nonzero = [r for r in rows left if rowlist[r][c] != 0]
```

```
if rows_with_nonzero != []:
    pivot = rows_with_nonzero[0]
```

```
rows_left.remove(pivot)
new_M_rowlist.append(M_rowlist[pivot])
```

```
for r in rows_with_nonzero[1:]:
```

```
multiplier = rowlist[r][c]/rowlist[pivot][c]
```

```
rowlist[r] -= multiplier*rowlist[pivot]
M_rowlist[r] -= multiplier*M_rowlist[pivot]
```

```
for r in rows_left: new_M_rowlist.append(M_rowlist[r])
```

```
Finally, return matrix M formed from new_M_rowlist
```

Code provided in module echelon

Instead of finding basis for null space of A, find basis for Input:

{u	: 1	.] *	A =	= U }	· = N	Iull A'								1			
Fin	d <i>N</i>	1 sı	ıch	tha	t the	matrix	U =	MA	is i	n ec	helo	n f	form	and	Μ	is	inv
	0	1	2	3	4		$\mid A$	В	C	D				0	1	2	3

Gaussian Elimination: Finding basis for null space

	0	1	2	3	4			A	В	C	D	
			0						0			
1	1	1	0	0	0	.1.			1			
			1			*	2	0	1	0	1	_
			1				3	1	1	1	1	
4	1	1	1	0	1		4	0	0	0	1	
					,		. '				,	

Last two rows of U are zero vectors.

► Row 3 of *U* is (row 3 of *M*) * *A*

Gaussian Elimination: Finding basis for null space

Find M such that the matrix U = MA is in echelon form and M is invertible

► Row 3 of *U* is (row 3 of *M*) * *A*

Therefore two rows in $\{\mathbf{u} : \mathbf{u} * A = \mathbf{0}\}$ are rows 3 and 4 of M.

To show that these two rows form a basis for $\{\mathbf{u}: \mathbf{u}*A=\mathbf{0}\}...$ dim Row A=3. By Rank-Nullity Theorem, dim Row $A+\dim \mathrm{Null}\ A^T=\mathrm{number}\ \mathrm{of}\ \mathrm{rows}=5$.

Shows that dim Null $A^T = 2$. Since M is invertible, all its rows are linearly independent.

Gaussian Elimination: Solving system of equations

Key idea: keep track of transformations performed in putting matrix in echelon form.

Given matrix A, compute matrices M and U such that MA = U• U is in echelon form

► *M* is invertible

- To solve $A\mathbf{x} = \mathbf{b}$:

 Compute M and U so that MA = U
- ► Compute the matrix-vector product $M\mathbf{b}$, and solve $U\mathbf{x} = M\mathbf{b}$.
- Claim: This gives correct solution to $A\mathbf{x} = \mathbf{b}$
- **Proof:** Suppose \mathbf{v} is a solution to $U\mathbf{x} = M\mathbf{b}$, so $U\mathbf{v} = M\mathbf{b}$
 - ► Multiply both sides by M^{-1} : $M^{-1}(U\mathbf{v}) = M^{-1}(M\mathbf{b})$
 - Multiply both sides by M^{-1} : $M^{-1}(U\mathbf{v}) = M^{-1}(M\mathbf{b})$ • Use associativity: $(M^{-1}U)\mathbf{v} = (M^{-1}M)\mathbf{b}$
- ► Cancel M^{-1} and M: $(M^{-1}U)\mathbf{v} = \mathbb{1}\mathbf{b}$ ► Use $M^{-1}U = A$: $A\mathbf{v} = \mathbb{1}\mathbf{b} = \mathbf{b}$
- How to solve Ux = Mb?
 If U is triangular, can solve using back-substitution (triangular_solve)
 - In general, can use similar algorithm