C2T1: Credit One Analysis Plan

Brian Mattis

Problem Statement and Business Goals

Problem Statement

An increasing number of customers are defaulting on loans

Business Goals

- Develop a better way to predict the creditworthiness of new and existing customers
 - Evaluate whether new customers should be approved
 - Compute an appropriate credit maximum based on customer information

Data Science Framework

- BADIR Data Science Framework methodology
 - Business Question
 - Analysis Plan
 - Data Collection
 - Insights
 - Recommendation
- BADIR chosen as it encourages initial thought of the most important question
 - what the analysis strives to answer
- BADIR places focus on the Insights phase, where both rear-looking analysis and predictive models work together iteratively to find answers to the business questions

Data Sources

- Data source resides on a remote MySQL database
 - Data will be imported into Jupyter Notebook and converted into a Pandas dataframe for further manipulation
- Data contains customer demographics, historical data, and account status
 - Demographic: education, marriage status, age, and gender
 - Historical Data: Prior billing amounts, prior payment amounts
 - Account Status: Credit limit, Monthly repayment status, client's default status

Data Management

- The data will be imported into Jupyter Notebook, with copies of the data exported to .csv and saved locally in case the connection to the remote MySQL server becomes unavailable.
- Analysis techniques will be done locally for optimum performance

Known Issues

 Incoming data set has the intended column names buried within the data

: _	MyUnknownColum	ın	Х1	Х2	Х3	X4	Х5	X6	Х7	X8	Х9		X15	X16	S X17	X18	Imported column names
0	1	D	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	·	BILL_AMT4	BILL_AMT5	BILL_AMT6	PAY_AMT1 P	Intended column names
1		1	20000	female	university	1	24	2	2	-1	-1		0	() (0	
2	!	2	120000	female	university	2	26	-1	2	0	0		3272	3455	3261	0	

- The data must be thoroughly cleaned before in-depth analysis can start:
 - Add descriptive column names
 - Remove character values from numeric fields
 - Remove duplicate entries
 - Convert columns to the proper numerical data types

BADIR Flowchart

Initial Insights

- The provided bill, payment, and monthly status data is not sufficient to calculate whether an account becomes labeled as defaulted.
 - Other prior payment and usage history data that is not available must drive this decision
- More than 20% of accounts are in default (22%)
- Significantly more female customers than male customers
 - 18100 vs 11900