Mean Field Games: Numerical Methods and Applications in Machine Learning

Part 7: Mean Field Reinforcement Learning

Mathieu Laurière

https://mlauriere.github.io/teaching/MFG-PKU-7.pdf

Peking University Summer School on Applied Mathematics July 26 – August 6, 2021

RECAP

Outline

- 1. Introduction
- 2. Mean Field Reinforcement Learning
- Model-Free Policy Gradient
- 4. Q-Learning

From Optimal Control to MFRL

Reinforcement Learning - Setup

- Markov Decision Process (MDP): (S, A, p, r, γ) , where:
 - ullet ${\cal S}$: state space, ${\cal A}$: action space,
 - $p: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$: transition kernel, $p(\cdot|s,a)$ gives next state's distribution
 - ullet $r:\mathcal{S} imes\mathcal{A} o\mathbb{R}:$ reward function, $\gamma\in(0,1):$ discount factor
- Goal: Find (stationary, mixed) policy π*: S → P(A) maximizing:

$$R(\pi) = \mathbb{E}\left[\sum_{n>0} \gamma^n r(s_n, a_n)\right], \quad \text{with } a_n \sim \pi(\cdot|s_n), s_{n+1} \sim p(\cdot|s_n, a_n)$$

Reinforcement Learning - Setup

- Markov Decision Process (MDP): (S, A, p, r, γ) , where:
 - S : state space, A : action space,
 - $p: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$: transition kernel, $p(\cdot|s,a)$ gives next state's distribution
 - ullet $r:\mathcal{S} imes\mathcal{A} o\mathbb{R}:$ reward function, $\gamma\in(0,1):$ discount factor
- Goal: Find (stationary, mixed) policy π*: S → P(A) maximizing:

$$R(\pi) = \mathbb{E}\left[\sum_{n>0} \gamma^n r(s_n, a_n)\right], \quad \text{with } a_n \sim \pi(\cdot|s_n), s_{n+1} \sim p(\cdot|s_n, a_n)$$

Model: p, r

Reinforcement Learning - Setup

- Markov Decision Process (MDP): (S, A, p, r, γ) , where:
 - ullet ${\cal S}$: state space, ${\cal A}$: action space,
 - $p: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$: transition kernel, $p(\cdot|s,a)$ gives next state's distribution
 - $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$: reward function, $\gamma \in (0,1)$: discount factor
- Goal: Find (stationary, mixed) policy $\pi^* : S \to \mathcal{P}(A)$ maximizing:

$$R(\pi) = \mathbb{E}\left[\sum_{n>0} \gamma^n r(s_n, a_n)\right], \quad \text{with } a_n \sim \pi(\cdot|s_n), s_{n+1} \sim p(\cdot|s_n, a_n)$$

- Model: p, r
- Two settings:
 - (1) Known model: Optimal control theory & methods
 - (2) Sample transitions & rewards: Reinforcement Learning (RL) framework

Reinforcement Learning - Paradigm

We want to **learn** the best control by performing **experiments** of the form:

Given the current state S_t ,

- (1) Take an action A_t
- (2) Observe reward R_{t+1} & new state S_{t+1}

¹ Sutton, R. S., & Barto, A. G. (2018). *Reinforcement learning: An introduction.* MIT press.

Reinforcement Learning - Paradigm

We want to **learn** the best control by performing **experiments** of the form:

Given the current state S_t ,

- (1) Take an action A_t
- (2) Observe reward R_{t+1} & new state S_{t+1}

¹ Sutton, R. S., & Barto, A. G. (2018). *Reinforcement learning: An introduction.* MIT press.

- Learning the policy:
 - Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a,\theta^{(\mathtt{k})})$$

Learning the policy:

Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a, \theta^{(\mathtt{k})})$$

- ▶ PPO, TRPO
- **>**

- Learning the policy:
 - Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a,\theta^{(\mathtt{k})})$$

- ▶ PPO, TRPO
- **>**
- Learning the value function:
 - Q-learning

$$Q^*(s, \mathbf{a}) = r(s, \mathbf{a}) + \gamma \max_{\pi} \mathbb{E}_{\mathbf{a}' \sim \pi(\cdot | \mathbf{s}), s' \sim p(\cdot | s, \mathbf{a}')} \left[Q^*(s', \mathbf{a}') \right]$$

Note:
$$V^*(s) = \max_{\mathbf{a} \in \mathcal{A}} Q^*(s, \mathbf{a}), \mathbf{v}^*(s) = \operatorname{argmax}_{\mathbf{a} \in \mathcal{A}} Q^*(s, \mathbf{a})$$

- Learning the policy:
 - Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a,\theta^{(\mathtt{k})})$$

- ▶ PPO, TRPO
- Learning the value function:
 - Q-learning

$$Q^*(s, \mathbf{a}) = r(s, \mathbf{a}) + \gamma \max_{\pi} \mathbb{E}_{\mathbf{a}' \sim \pi(\cdot | \mathbf{s}), s' \sim p(\cdot | s, \mathbf{a}')} \left[Q^*(s', \mathbf{a}') \right]$$

Note:
$$V^*(s) = \max_{a \in A} Q^*(s, a), v^*(s) = \operatorname{argmax}_{a \in A} Q^*(s, a)$$

- Deep Q-neural network (DQN)
- **.**..

- Learning the policy:
 - Policy Gradient

$$\theta^{(\mathtt{k}+1)} = \theta^{(\mathtt{k})} - \eta^{(\mathtt{k})} \nabla J(\theta^{(\mathtt{k})}), \qquad \pi^{(\mathtt{k})}(a|s) = \pi(s|a,\theta^{(\mathtt{k})})$$

- PPO, TRPO

Learning the value function:

Q-learning

$$Q^*(s, \mathbf{a}) = r(s, \mathbf{a}) + \gamma \max_{\pi} \mathbb{E}_{\mathbf{a}' \sim \pi(\cdot | \mathbf{s}), s' \sim p(\cdot | s, \mathbf{a}')} \left[Q^*(s', \mathbf{a}') \right]$$

Note:
$$V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a), v^*(s) = \operatorname{argmax}_{a \in \mathcal{A}} Q^*(s, a)$$

- Deep Q-neural network (DQN)
- **.**..
- Hybrid:
 - Deep Deterministic Policy Gradient (DDPG)
 - Soft Actor Critic (SAC)
 - . . .

Outline

Introduction

2. Mean Field Reinforcement Learning

3. Model-Free Policy Gradient

4. Q-Learning

Problem Formulation

Generic Mean Field model: for a typical infinitesimal agent

 $\diamond \pi_n$: a policy; randomized actions: $\alpha_n \sim \pi_n(\cdot|s_n,\mu_n)$

• Dynamics: discrete time

$$X_{n+1}^{\alpha,\mu} = F(X_n^{\alpha,\mu}, \alpha_n, \mu_n, \epsilon_{n+1}, \epsilon_{n+1}^0), \quad n \geq 0, \qquad X_0^{\alpha,\mu} \sim \mu_0$$

$$\diamond X_n^{\alpha,\mu} \in \mathcal{X} \subseteq \mathbb{R}^d : \text{state, } \alpha_n \in \mathcal{U} \subseteq \mathbb{R}^k : \text{action}$$

$$\diamond \epsilon_n \sim \nu : \text{idiosyncratic noise, } \epsilon_n^0 \sim \nu^0 : \text{common noise (random env.)}$$

$$\diamond \mu_n \in \mathcal{P}(\mathcal{X} \times \mathcal{A}) : \text{a state-action distribution}$$

Generic Mean Field model: for a typical infinitesimal agent

Dynamics: discrete time

$$X_{n+1}^{\alpha,\mu} = F(X_n^{\alpha,\mu},\alpha_n,\mu_n,\epsilon_{n+1},\epsilon_{n+1}^0), \quad n \geq 0, \qquad X_0^{\alpha,\mu} \sim \mu_0$$

$$\diamond X_n^{\alpha,\mu} \in \mathcal{X} \subseteq \mathbb{R}^d : \text{state, } \alpha_n \in \mathcal{U} \subseteq \mathbb{R}^k : \text{action}$$

$$\diamond \epsilon_n \sim \nu : \text{idiosyncratic noise, } \epsilon_n^0 \sim \nu^0 : \text{common noise (random env.)}$$

$$\diamond \mu_n \in \mathcal{P}(\mathcal{X} \times \mathcal{A}) : \text{a state-action distribution}$$

$$\diamond \pi_n : \text{a policy; randomized actions: } \alpha_n \sim \pi_n(\cdot|s_n,\mu_n)$$

$$\bullet \ \, \mathbf{Cost:} \ \, \mathbb{J}(\pi;\mu) = \mathbb{E}_{\epsilon,\epsilon^0} \bigg[\textstyle \sum_{n=0}^{\infty} \gamma^n f \big(X_n^{\alpha,\mu}, \alpha_n, \mu_n \big) \bigg]$$

Problem Formulation

Generic Mean Field model: for a typical infinitesimal agent

• Dynamics: discrete time

$$X_{n+1}^{\alpha,\mu} = F(X_n^{\alpha,\mu},\alpha_n,\mu_n,\epsilon_{n+1},\epsilon_{n+1}^0), \quad n \geq 0, \qquad X_0^{\alpha,\mu} \sim \mu_0$$

$$\diamond X_n^{\alpha,\mu} \in \mathcal{X} \subseteq \mathbb{R}^d : \text{state, } \alpha_n \in \mathcal{U} \subseteq \mathbb{R}^k : \text{action}$$

$$\diamond \epsilon_n \sim \nu : \text{idiosyncratic noise, } \epsilon_n^0 \sim \nu^0 : \text{common noise (random env.)}$$

$$\diamond \mu_n \in \mathcal{P}(\mathcal{X} \times \mathcal{A}) : \text{a state-action distribution}$$

$$\diamond \pi_n : \text{a policy; randomized actions: } \alpha_n \sim \pi_n(\cdot|s_n,\mu_n)$$

• Cost:
$$\mathbb{J}(\pi; \mu) = \mathbb{E}_{\epsilon, \epsilon^0} \left[\sum_{n=0}^{\infty} \gamma^n f(X_n^{\alpha, \mu}, \alpha_n, \mu_n) \right]$$

Two scenarios:

• Cooperative (MFC): Find π^* s.t.

$$\pi^*$$
 minimizes $\pi \mapsto J^{MFC}(\pi) = \mathbb{J}(\pi; \mu^{\pi})$ where $\mu_n^{\pi} = \mathbb{P}^0_{X_n^{\alpha, \mu^{\pi}}}$

Generic Mean Field model: for a typical infinitesimal agent

• Dynamics: discrete time

$$X_{n+1}^{\alpha,\mu} = F(X_n^{\alpha,\mu},\alpha_n,\mu_n,\epsilon_{n+1},\epsilon_{n+1}^0), \quad n \geq 0, \qquad X_0^{\alpha,\mu} \sim \mu_0$$

$$\diamond X_n^{\alpha,\mu} \in \mathcal{X} \subseteq \mathbb{R}^d : \text{state, } \alpha_n \in \mathcal{U} \subseteq \mathbb{R}^k : \text{action}$$

$$\diamond \epsilon_n \sim \nu : \text{idiosyncratic noise, } \epsilon_n^0 \sim \nu^0 : \text{common noise (random env.)}$$

$$\diamond \mu_n \in \mathcal{P}(\mathcal{X} \times \mathcal{A}) : \text{a state-action distribution}$$

$$\diamond \pi_n : \text{a policy; randomized actions: } \alpha_n \sim \pi_n(\cdot|s_n,\mu_n)$$

• Cost:
$$\mathbb{J}(\pi; \mu) = \mathbb{E}_{\epsilon, \epsilon^0} \left[\sum_{n=0}^{\infty} \gamma^n f(X_n^{\alpha, \mu}, \alpha_n, \mu_n) \right]$$

Two scenarios:

• Cooperative (MFC): Find π^* s.t.

$$\pi^*$$
 minimizes $\pi \mapsto J^{MFC}(\pi) = \mathbb{J}(\pi; \mu^{\pi})$ where $\mu_n^{\pi} = \mathbb{P}_{X_n^{\alpha}, \mu^{\pi}}^0$

• Non-Cooperative (MFG): Find $(\hat{\pi}, \hat{\mu})$ s.t.

$$\begin{cases} \hat{\pi} \text{ minimizes } \pi \mapsto J^{MFG}(\pi; \hat{\mu}) = \mathbb{J}(\pi; \hat{\mu}) \\ \hat{\mu}_n = \mathbb{P}^0_{X_n^{\hat{\alpha}, \hat{\mu}}} \end{cases}$$

$$\frac{\alpha^*}{\alpha^*} \in \operatorname*{argmin}_{\alpha} J^{MFC}(\alpha) = \mathbb{E}_{\epsilon, \epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \big(X_n^{\alpha}, \alpha_n, \mu_n^{\pi} \big) \Big], \qquad \mu_n^{\pi} = \mathbb{P}_{X_n^{\alpha}}^0$$

emark:
$$\boldsymbol{\alpha}^* \in \operatorname*{argmin}_{\boldsymbol{\alpha}} J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}_{\epsilon,\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \big(\boldsymbol{X}_n^{\boldsymbol{\alpha}}, \boldsymbol{\alpha}_n, \boldsymbol{\mu}_n^{\boldsymbol{\pi}} \big) \Big], \qquad \boldsymbol{\mu}_n^{\boldsymbol{\pi}} = \mathbb{P}_{\boldsymbol{X}_n^{\boldsymbol{\alpha}}}^0$$

$$= \mathbb{E}_{\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \big(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{\mu}_n^{\boldsymbol{\pi}} \big) \nu_n^{\boldsymbol{\pi}} (d\boldsymbol{x}, \boldsymbol{da})}_{\text{function of } \boldsymbol{\nu}_n^{\boldsymbol{\pi}}} \Big]$$

$$\begin{split} & \boldsymbol{\alpha}^* \in \operatorname*{argmin}_{\boldsymbol{\alpha}} J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}_{\epsilon, \boldsymbol{\epsilon}^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \Big(\boldsymbol{X}_n^{\boldsymbol{\alpha}}, \boldsymbol{\alpha}_n, \boldsymbol{\mu}_n^{\boldsymbol{\pi}} \Big) \Big], \qquad \boldsymbol{\mu}_n^{\boldsymbol{\pi}} = \mathbb{P}_{\boldsymbol{X}_n^{\boldsymbol{\alpha}}}^0 \\ & = \mathbb{E}_{\boldsymbol{\epsilon}^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \Big(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{\mu}_n^{\boldsymbol{\pi}} \Big) \, \boldsymbol{\nu}_n^{\boldsymbol{\pi}} (d\boldsymbol{x}, \boldsymbol{d}\boldsymbol{a}) \Big]}_{\text{function of } \boldsymbol{\nu}_n^{\boldsymbol{\pi}}} \end{split}$$

- Lifted problem: population / social planner's optimization problem:
 - \rightarrow state = population distribution μ_n^{π}
 - \rightarrow value function = function of the distribution μ

$$\begin{split} & \boldsymbol{\alpha}^* \in \operatorname*{argmin}_{\boldsymbol{\alpha}} J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}_{\epsilon,\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \big(\boldsymbol{X}_n^{\boldsymbol{\alpha}}, \boldsymbol{\alpha}_n, \boldsymbol{\mu}_n^{\boldsymbol{\pi}} \big) \Big], \qquad \boldsymbol{\mu}_n^{\boldsymbol{\pi}} = \mathbb{P}_{\boldsymbol{X}_n^{\boldsymbol{\alpha}}}^0 \\ & = \mathbb{E}_{\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \big(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{\mu}_n^{\boldsymbol{\pi}} \big) \, \boldsymbol{\nu}_n^{\boldsymbol{\pi}} (d\boldsymbol{x}, \boldsymbol{da})}_{\text{function of } \boldsymbol{\nu}_n^{\boldsymbol{\pi}}} \Big] \end{split}$$

- Lifted problem: population / social planner's optimization problem:
 - \rightarrow state = population distribution μ_n^{π}
 - \rightarrow value function = function of the distribution μ
- Mean Field Markov Decision Process (MFMDP): $(\bar{\mathcal{S}}, \bar{\mathcal{A}}, \bar{p}, \bar{r}, \gamma)$, where:
 - State space: $\bar{S} = \mathcal{P}(\mathcal{X})$
 - Action space: $\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$ with constraint: $pr_1(\bar{a}) = \mu$
 - Transition function: $\mu' = \bar{F}(\mu, \bar{a}, \epsilon^0) \sim \bar{p}(\mu, \bar{a})$
 - Reward function: $\bar{r}(\mu, \bar{a}) = -\int_{Y\times U} f(x, a, \mu) \bar{a}(dx, da)$

Key Remark:

$$\begin{split} & \boldsymbol{\alpha}^{*} \in \operatorname*{argmin}_{\boldsymbol{\alpha}} J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}_{\epsilon,\epsilon^{0}} \Big[\sum_{n=0}^{\infty} \gamma^{n} f \left(\boldsymbol{X}_{n}^{\boldsymbol{\alpha}}, \boldsymbol{\alpha}_{n}, \boldsymbol{\mu}_{n}^{\pi} \right) \Big], \qquad \boldsymbol{\mu}_{n}^{\pi} = \mathbb{P}_{\boldsymbol{X}_{n}^{\boldsymbol{\alpha}}}^{0} \\ & = \mathbb{E}_{\epsilon^{0}} \Big[\sum_{n=0}^{\infty} \gamma^{n} \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \left(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{\mu}_{n}^{\pi} \right) \boldsymbol{\nu}_{n}^{\pi} (d\boldsymbol{x}, \boldsymbol{da})}_{\text{function of } \boldsymbol{\nu}_{n}^{\pi}} \Big] \end{split}$$

- Lifted problem: population / social planner's optimization problem:
 - \rightarrow state = population distribution μ_n^{π}
 - \rightarrow value function = function of the distribution μ
- Mean Field Markov Decision Process (MFMDP): $(\bar{\mathcal{S}}, \bar{\mathcal{A}}, \bar{p}, \bar{r}, \gamma)$, where:
 - State space:

$$\bar{\mathcal{S}} = \mathcal{P}(\mathcal{X})$$

• Action space:

$$\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$$
 with constraint: $pr_1(\bar{\mathbf{a}}) = \mu$

Transition function:

$$\mu' = \bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \sim \bar{p}(\mu, \bar{\mathbf{a}})$$

• Reward function:

$$ar{r}(\mu,ar{a}) = -\int_{\mathcal{X} \times \mathcal{U}} f(x,a,\mu) ar{a}(dx,da)$$

 $\bullet \text{ Goal: max. } \bar{J}^{\bar{\pi}}(\mu) = \mathbb{E}\left[\sum^{\sim} \gamma^n \bar{r}\left(\mu_n^{\bar{\pi}}, \bar{a}_n\right)\right], \\ \bar{a}_n \sim \bar{\pi}(\cdot|\mu_n^{\bar{\pi}}), \\ \mu_{n+1}^{\bar{\pi}} \sim \bar{p}(\cdot|\mu_n^{\bar{\pi}}, \bar{a}_n), \\ \mu_0^{\bar{\pi}} = \mu$

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP

[Carmona, L., Tan'21]

Under suitable conditions,

$$\bar{J}^*(\mu) := \sup_{\bar{\pi}} \bar{J}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{J}^* \left(\bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$

Likewise for mean field state-action value function \bar{Q}^*

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP

[Carmona, L., Tan'21]

Under suitable conditions,

$$\bar{J}^*(\mu) := \sup_{\bar{\pi}} \bar{J}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{J}^* \left(\bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$

Likewise for mean field state-action value function \bar{Q}^*

Proof: based on "double lifting" [Bertsekas, Shreve'78]

Dynamic Programming Principle (DPP)

Theorem: DPP for MFMDP

[Carmona, L., Tan'21]

Under suitable conditions,

$$\bar{J}^*(\mu) := \sup_{\bar{\pi}} \bar{J}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{J}^* \left(\bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$

Likewise for mean field state-action value function Q^*

Proof: based on "double lifting" [Bertsekas, Shreve'78]

DPPs for MFC: [L., Pironneau; Pham, Wei; Gast et al.; Guo et al.; Motte, Pham;...]

Theorem: DPP for MFMDP

[Carmona, L., Tan'21]

Under suitable conditions,

$$\bar{J}^*(\mu) := \sup_{\bar{\pi}} \bar{J}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{J}^* \left(\bar{F}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$

Likewise for mean field state-action value function Q^*

Proof: based on "double lifting" [Bertsekas, Shreve'78]

DPPs for MFC: [L., Pironneau; Pham, Wei; Gast et al.; Guo et al.; Motte, Pham;...]

Here: discrete time, infinite horizon, common noise, feedback controls, ...

- \rightarrow well-suited for **RL**
- → Mean-field Q-learning algorithm

Mean Field Learning Settings

Hierarchy of settings:

- Setting 1: known model: computational method based on knowledge of MFMDP
 - (a) Gradient based methods
 - $(b) \ \, {\rm Dynamic\ programming\ based\ methods}$

Mean Field Learning Settings

Hierarchy of settings:

- Setting 1: known model: computational method based on knowledge of MFMDP
 - (a) Gradient based methods
 - (b) Dynamic programming based methods
- Setting 2: unknown model but samples from MFMDP: MF learning

Mean Field Learning Settings

Hierarchy of settings:

- Setting 1: known model: computational method based on knowledge of MFMDP
 - (a) Gradient based methods
 - (b) Dynamic programming based methods
- Setting 2: unknown model but samples from MFMDP: MF learning

• Setting 3: unknown model but samples from N-agent MDP: approx. MF learning

Mean Field Control: Finite Population Approximation

Outline

- Introduction
- 2. Mean Field Reinforcement Learning
- 3. Model-Free Policy Gradient
- 4. Q-Learning

Idea 1: Make the "policy gradient" approach model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Idea 1: Make the "policy gradient" approach model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model:

$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla J(\theta^{(k)})$$

Idea 1: Make the "policy gradient" approach model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

$$\boldsymbol{\theta}^{(\mathbf{k}+\mathbf{1})} = \boldsymbol{\theta}^{(\mathbf{k})} - \eta \nabla J(\boldsymbol{\theta}^{(\mathbf{k})})$$

(2) access to a mean field simulator:

$$\rightarrow$$
 idem + gradient estimation (0th-order opt.):

$$\boldsymbol{\theta}^{(\mathbf{k}+\mathbf{1})} = \boldsymbol{\theta}^{(\mathbf{k})} - \boldsymbol{\eta} \widetilde{\nabla} J(\boldsymbol{\theta}^{(\mathbf{k})})$$

Idea 1: Make the "policy gradient" approach model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

- (1) access to the exact (mean field) model: $\theta^{(k+1)} = \theta^{(k)} \eta \nabla J(\theta^{(k)})$
- (2) access to a **mean field simulator**: \rightarrow idem + gradient estimation (0th-order opt.): $\theta^{(k+1)} = \theta^{(k)} - \eta \widetilde{\nabla} J(\theta^{(k)})$
- (3) access to a N-agent **population simulator**:
 - ightarrow idem + error on mean pprox empirical mean (LLN): $heta^{(k+1)} = heta^{(k)} \eta \widetilde{\nabla}^N J(\theta^{(k)})$

Idea 1: Make the "policy gradient" approach model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla J(\theta^{(k)})$$

$$ightarrow$$
 idem + gradient estimation (0th-order opt.):

$$\boldsymbol{\theta}^{(\mathtt{k+1})} = \boldsymbol{\theta}^{(\mathtt{k})} - \eta \widetilde{\nabla} J(\boldsymbol{\theta}^{(\mathtt{k})})$$

(3) access to a N-agent **population simulator**:

$$ightarrow$$
 idem + error on mean $pprox$ empirical mean (LLN): $\theta^{(k+1)} = \theta^{(k)} - \eta \widetilde{\nabla}^N J(\theta^{(k)})$

Theorem: For Linear-Quadratic MFC

[Carmona, L., Tan'19]

In each case, convergence holds at a linear rate:

Taking
$$k \approx \mathcal{O}(\log(1/\epsilon))$$
 is sufficient to ensure $J(\theta^{(k)}) - J(\theta^*) < \epsilon$.

Proof: builds on [Fazel et al.'18], analysis of perturbation of Riccati equations

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,\mathbf{v}) = \underbrace{(\bar{\mu} - x)^2}_{\mbox{distance to mean position}} + \underbrace{\mathbf{v}^2}_{\mbox{cost of moving}}, \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}}$$

Value of the MF cost

Rel. err. on MF cost

MF cost = cost in the mean field problem

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,\pmb{v}) = \underbrace{(\bar{\mu}-x)^2}_{\mbox{distance to mean position}} + \underbrace{\pmb{v}^2}_{\mbox{cost of moving}}, \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}}$$

Value of the social cost

Rel. err. on social cost

Social cost = average over the N-agents

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,\mathbf{v}) = \underbrace{(\bar{\mu} - x)^2}_{\mbox{distance to mean position}} + \underbrace{\mathbf{v}^2}_{\mbox{cost of moving}}, \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}}$$

Value of the social cost

Rel. err. on social cost

Social cost = average over the N-agents

Main take-away:

Trying to learn the mean-field regime solution can be efficient even for N small

Outline

- Introduction
- 2. Mean Field Reinforcement Learning
- Model-Free Policy Gradient
- 4. Q-Learning

Idea 2: Generalize Q-learning to mean-field control