余切复形

G.Li

在交换代数中,环同态 $\alpha: R \to A$ 的光滑性可以通过相对微分模 $\Omega_{A/R}$ 来描述,由于

$$\Omega_{-/R}: R - \mathbf{Algebra} \to R - \mathbf{Mod}$$

是一个函子,因而给定一个单纯 R 代数 A_* ,都可以由这个函子得到一个单纯 R 模 $(\Omega_{A/R})_*$,且一个单纯 R 代数态射 $f:A_*\to B_*$ 也给出单纯 R 模态射 $(\Omega_{f/R})_*$.

定义. 给定环同态 $f: R \to S$,若 P_* 是 $s(S)_*$ 在 $s(R)_*$ 上的单纯消解,令

$$\mathcal{L}_{S/R} := \Omega_{P/R} \otimes_P s(S)_*,$$

于是 $\mathcal{L}_{S/R}$ 是一个单纯 $s(S)_*$ 模,称它对应的复形 $L_{S/R}$ 为 S 在 R 上的余切复形 (cotangent complex of S over R). 当 R 的特征是 0 时,单纯消解可以由 DG 消解代替,在实际情形中 DG 消解远比单纯消解容易计算.

由于单纯消解是同伦下唯一的,于是 $L_{S/R}$ 是良定义的.

练习 1. 设 $s(R)_* \hookrightarrow P_* \rightarrow s(S)_*$ 是一个单纯消解,令

$$I := \operatorname{Ker} P_* \to s(S)_*,$$

证明存在单纯 $s(S)_*$ 模同构

$$I/I^2 \cong \mathcal{L}_{S/R}$$
.

定义. 给定 R 代数 A 和 A 模 M, 借助余切复形可以定义 André-Quillen 同调 (André-Quillen homology) (对应地, André-Quillen 上同调 (André-Quillen cohomology)) 为

$$D_n(A/R, M) := H_n(L_{A/R} \otimes_S M)$$

(対应地, $D^n(A/R, M) := H_{-n}(\operatorname{Hom}(L_{A/R}, M))$).

例 1. 设 R 是交换环且 S = R[x] 是以 x 为未定元的 R 多项式代数,那么

$$\mathcal{L}_{S/R} \simeq s(\Omega_{S/R})_*,$$

进而对任意 n > 0, $D^n(S/R, M) = D_n(S/R, M) = 0$.

取 $R \hookrightarrow R[x]$ 的单纯消解为 $R \hookrightarrow s(R[x])_* \to R[x]$, 于是

$$\mathcal{L}_{S/R} := \Omega_{s(R[x])_*/R} \otimes_{s(R[x])_*} s(R[x])_* \cong s(\Omega_{S/R})_*.$$

考虑它对应的 R[x] 模链为

$$0 \leftarrow \Omega_{R[x]/R} \stackrel{0}{\leftarrow} \Omega_{R[x]/R} \stackrel{1}{\leftarrow} \Omega_{R[x]/R} \stackrel{0}{\leftarrow} \Omega_{R[x]/R} \stackrel{1}{\leftarrow} \cdots,$$

于是 $L_{R[x]/R} \cong \Omega_{R[x]/R}[0]$.

例 2. 设 r 是交换环 R 的非零因子, S := R/(r). 取 $R \to S$ 的单纯消解为 Q_* , 于是

$$\mathcal{L}_{S/R} := \Omega_{Q_*/R} \otimes_{Q_*} s(R/(r))_* \simeq s(\Omega_{S/R})_*.$$

引理 1. 设 R 是交换环.

1. 若 P 是投射 R 模, 那么扩张

$$\mathcal{L}_{\operatorname{Sym}_R(P)/R} \to s(\Omega_{\operatorname{Sym}_R(P)/R})_*$$

是弱等价.

2. 若 A,B 是 R 代数, 且 A,B 中至少一个是 R 平坦的, 那么

$$s(A \otimes_R B)_* \otimes_{s(A)_*} \mathcal{L}_{A/R} \oplus s(A \otimes_R B)_* \otimes_{s(B)_*} \mathcal{L}_{B/R} \to \mathcal{L}_{s(A \otimes_R B)_*/R}$$

是 $s(A \otimes_R B)_*$ 模同构.

命题 1 (基变换). 设 R 是交换环, A 是 R 代数, $f: R \to S$ 是交换环间的态射, 因此有

这诱导了单纯 $s(A \otimes_R S)_*$ 模同态

$$\mathcal{L}_{A/R} \otimes_{s(A)_*} s(A \otimes_R S)_* \to \mathcal{L}_{A \otimes_R S/S}.$$

定理 2 (平坦基变换). 如定理1中的条件,若 f,α 中任意一个是平坦的,则定理1中诱导的同态是弱等价.

定理 3. 设 $R \to S \to T$ 是交换环的映射,那么

$$s(T)_* \otimes \mathcal{L}_{S/R} \to \mathcal{L}_{T/R} \to \mathcal{L}_{T/S}$$

是单纯 $s(T)_*$ 模的余纤维序列,于是对任意的 T 模 P,存在 T 模长正合序列

$$\cdots \to D_1(S/R,M) \to D_1(T/R,M) \to D_1(T/S,M) \to P \otimes_T \Omega_{S/R} \to P \otimes_T \Omega_{T/R} \to P \otimes_T \Omega_{T/S} \to 0,$$

特别地, 当 M = T 时,这个序列是相对余切序列的延申.

定理 4. 交换环的态射 $f:R\to S$ 是光滑的当且仅当 $L_{S/R}\to\Omega_{S/R}$ 是弱等价且 $\Omega_{S/R}$ 是投射 S 模. 特别地, f 是平展的当且仅当 $L_{S/R}$ 只有平凡上同调.

定理 5 (第一消去定理).

以上的三个定理证明都需要用到模型范畴, 我们略过.

除此之外,我们还有一种对余切复形更加范畴化的构造方式,它来源于 Quilen. 定理3告诉我们, $L_{A/R}$ 事实上是 $\Omega_{A/R}$ 的导出函子,但在之前的构造我们并没有用同调代数中已经存在的结果,这主要的原因是范畴 $R-\mathbf{Algebra}$ 不是一个 Abel 范畴(原因:一个 R 代数同态 $f:A\to B$ 没有核).Quillen 的想法是将这个范畴"Abel 化",这就是在后面讨论的内容. 引理3在另一方面说明范畴 $R-\mathbf{Algebra}$ 不是合适的范畴.

我们尝试用两个例子说明这样的考虑是合适的: 考虑 Y 是一个拓扑空间, X 是它的 CW 逼近. 令 Ab(X) 是 X 上的自由拓扑 Abel 群, 那么 Dold-Thom 定理说明

$$\pi_*(\mathrm{Ab}(X)) \cong H_*(X) \cong H_*(Y).$$

注意到我们在求 Ab(-) 之前必须要找一个 CW 逼近,用模型范畴的语言来说,这是一个余纤维替代 (cofibrant replacement). 所以我们可以把奇异复形看作 Ab(-) 的导出函子. 另一个例子来源于单纯代数的同伦群,Dold-Kan 对应说明一个单纯代数 A_* 的同伦群与它的 Abel 化的同调群是一样的. 这里我们不需要取余纤维替代,只是因为单纯代数的范畴中所有的对象都是余纤维.

定义. 设 \mathcal{C} 是一个范畴, 若 \mathcal{C} 中的对象 A 满足函子 $hom_{\mathcal{C}}(-,A):\mathcal{C}\to\mathbf{Set}$ 可以分解为

$$\mathcal{C} o \mathbf{Ab} \xrightarrow{U} \mathbf{Set},$$

则称 A 是 Abel 群对象 (abelian group object). 对 Abel 群对象 A, B,态射 $f: A \to B$ 若满足对任意 \mathcal{C} 中的 对象 \mathcal{C} ,映射

$$\hom_{\mathcal{C}}(C, f) : \hom_{\mathcal{C}}(C, A) \to \hom_{\mathcal{C}}(C, B)$$

都是群同态,则称 f 是 Abel 群对象态射 (a morphism of abelian group objects).

对范畴 \mathcal{C} 记它的 Abel 群对象和 Abel 群对象态射组成的范畴为 \mathcal{C}_{ab} .

引理 2. 对任意范畴 C,

$$s(\mathcal{C}_{ab}) \simeq (s\mathcal{C})_{ab}.$$

练习 2. 设范畴的嵌入 $\mathcal{C}_{ab} \hookrightarrow \mathcal{C}$ 有左伴随 $Ab: \mathcal{C} \to \mathcal{C}_{ab}$, 那么嵌入 $s\mathcal{C}_{ab} \hookrightarrow s\mathcal{C}$ 也有左伴随, 在每一层都是 Ab.

定义. 设 \mathcal{C} 是一个模型范畴,且 \mathcal{C}_{ab} 上也有模型范畴结构,满足 $\mathcal{C}_{ab} \hookrightarrow \mathcal{C}$ 是右 Quillen 伴随,有左 Quillen 伴随 Ab: $\mathcal{C} \to \mathcal{C}_{ab}$,称为 Abel 化 (abelianisation).

引理 3. R – **Algebra** 中的 Abel 群对象只有零代数.

设 R 是给定的交换环,A 是给定的 R 代数,接下来我们的讨论都限定在范畴 $R-\mathbf{Algebra}/A$ 中,即所有的 R 代数映射 $f:B\to$ 的全体. 考虑函子

$$\ltimes : A - \mathbf{Mod} \to R - \mathbf{Algebra}/A$$

$$M \mapsto A \ltimes M.$$

其中, $A \ltimes M$ 作为 A 模是 $A \oplus M$, 且乘法满足

$$(a,m)\cdot(b,n):=(ab,an+bm).$$

命题 6. 函子 $\ltimes : A-\mathbf{Mod} \to R-\mathbf{Algebra}/A$ 有分解 $A-\mathbf{Mod} \to (R-\mathbf{Algebra}/A)_{ab} \hookrightarrow R-\mathbf{Algebra}/A$, 并且给出了范畴的等价

$$A - \mathbf{Mod} \simeq (R - \mathbf{Algebra}/A)_{ab}$$
.

证明.

1 一些计算 4

定理 7.

$$\Omega_{-/R} \otimes_{-} A : R - \mathbf{Algebra}/A \leftrightarrows A - \mathbf{Mod} : \ltimes$$

是一对伴随函子.

于是根据练习2,这个伴随可以扩张到

$$s(R - \mathbf{Algebra}/A) \leftrightarrows s(A - \mathbf{Mod}).$$

在给定两个范畴正确的模型范畴结构后,可以证明

引理 4. 上述提到的左右伴随函子都是 Quillen 伴随.

定义. 余切复形函子是全左导出函子

$$\mathcal{L}Ab: D(s(R - \mathbf{Algebra}/A)) \to D(s(A - \mathbf{Mod})).$$

R 代数 A 的余切复形是

$$\mathcal{L}_{A/R} := \mathcal{L}\mathrm{Ab}(s(A)_*).$$

1 一些计算

余切复形的计算是非常困难的,这其中最根本的原因在于单纯预解是非常大的,里面包含了非常多的信息. 当环的特征为 0 时,DG 消解会极大地减少计算量.

例 3. 设 $f \in k[x_1, \dots, x_n]$ 是多项式, $X = \operatorname{Spec} k[x_1, \dots, x_n]/(f) = \operatorname{Spec} R$ 是超平面. 那么 R 有 DG 消解

$$R[y] = k[x_1, \cdots, x_n, y]$$

其中 $\deg x_i = 0, \deg y = -1$, 微分映射满足 d(y) = f. 于是存在序列

$$0 \to k[x_1, \cdots, x_n] \cdot y \xrightarrow{d} k[x_1, \cdots, x_n] \to 0,$$

将函子 $\Omega_{-/k}$ 作用在以上序列得到余切序列

$$0 \to k[x_1, \cdots, x_n] \cdot dy \xrightarrow{D} \bigoplus_{i=1}^n k[x_1, \cdots, x_n] dx_i \to 0, \tag{1}$$

其中 D 将 dy 映到 $D(dy)=dd(y)=df=\sum_{i=1}^{n}\frac{\partial f}{\partial x_{i}}dx_{i}$, 基变换后得到

$$0 \to A \cdot dy \xrightarrow{D} \bigoplus_{i=1}^{n} Adx_i \to 0,$$

于是我们得到了X的余切复形,其中

$$L_{X/k}^{0} = \bigoplus_{i=1}^{n} A dx_{i} / (\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} dx_{i}) = \Omega_{X/k},$$

若 f 是不可约多项式, 那么 $d: A \cdot dy \to A$ 是单射, 进而 $D: A \cdot dy \to \bigoplus_{i=1}^n Adx_i$ 也是单射,

这里对余切序列 (1) 多做一点解释,事实上 P=R[y] 并不是真正意义上自由的,它只是 DG 代数范畴中的自由对象——变量 y 满足关系 $y^2=0$,因此 $\Omega_{P/k}$ 中存在关系 ydy=0,故 DG 阶数为 -1 的直和项如上所示.

2 形变理论 5

例 4. 设 k 是一个域, $k[\epsilon] = k[x]/(x^2)$ 且 $k[\epsilon] \to k$ 是一阶加厚, 那么我们有正合列

$$0 \to (\epsilon) \to k[\epsilon] \to k \to 0.$$

根据前面的结果,

$$0 \to k[x] \cdot y \xrightarrow{d} k[x] \to 0$$

是单纯消解, 其中 $d(y) = x^2$, 那么 $k[\epsilon]$ 的余切复形为

$$0 \to k[\epsilon] \cdot dy \xrightarrow{D} k[\epsilon] dx \to 0$$

满足 $D(dy) = 2\epsilon d\epsilon$. 于是, $L^1 = (\epsilon) = (x)/(x^2)$.

设 R 是交换环且 M 是 R 模,若元素 $x_1, \dots, x_n \in M$ 满足 $(x_1, \dots, x_n)M \neq M$,且对任意 $1 \leq i \leq n$, x_i 都是 $M/(x_1, \dots, x_i)M$ 的非零因子,则称 x_1, \dots, x_n 是正则序列 (regular sequence). 给定的 Noether 环同态 $f: R \to S$,若 f 是满射且 Ker f 被一组正则序列生成,则称 f 是完全交 (complete intersection). 若对 S 中的任意素理想 \mathfrak{q} ,诱导同态 $f_{\mathfrak{q}}: R_{\mathfrak{q} \cap R} \to S_{\mathfrak{q}}$ 都是完全交,则称 f 是局部完全交 (locally complete intersection).

对于概型的态射 $f: X \to Y$,若存在开覆盖 $\{U_i\}_{i \in I}$,在每个仿射局部分解

使得

2 形变理论

- 定义 (Tag 04EW). 1. 给定概型 Y, 若概型 $X \to Y$ 是闭子概型且 X = Y 有相同的底空间 (underlying space), 则称 Y = X 的加厚 (thickening).
 - 2. 若 Y 是 X 的加厚,且 $X \hookrightarrow Y$ 的定义理想层 \mathscr{I} 满足 $\mathscr{I}^2 = 0$,则称 Y 是 X 的一阶加厚 (first order thickening).
 - 3. 给定两个加厚 $X \hookrightarrow Y, Z \hookrightarrow W$, 若态射 $f: Y \to W$ 满足 $f|_X$ 是态射 $X \to Z$,则称 $(f, f|_X): (X \subseteq Y) \to (Z \subseteq W)$ 是加厚的态射 (morphism of thickings).
 - 4. 类似地可以定义 S 上的概型的加厚和加厚的态射,这只要把以上定义中的概型和映射换为 $\mathbf{Sch}_{/S}$ 中的对象和映射即可.

引理 5.

定义. 设 $S \hookrightarrow T$ 是一阶加厚,且 $f: X \to S$ 是概型的态射. 若 X 的一阶加厚 X' 满足存在平坦态射 $g: X' \to T$ 使得图

$$X \hookrightarrow X'$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$S \hookrightarrow T,$$

交换且是拉回,则称 X' 是 X 的形变 (deformation).

练习 3 (Tag 08KY). 记 \mathscr{I} , \mathscr{I} 分别是一阶加厚 $S \hookrightarrow T$ 和 $X \hookrightarrow X'$ 的定义层,那么存在自然的 \mathscr{O}_X 模态射 $f^*\mathscr{I} \to \mathscr{I}$. 求证态射 $f^*\mathscr{I} \to \mathscr{I}$ 是满态射当且仅当定义中的交换图是拉回,且在此情况下, $f^*\mathscr{I} \to \mathscr{I}$ 是同构当且仅当 g 是平坦的.

定理 8 (Tag 08UX). 设 $S \hookrightarrow T$ 是由 \mathscr{I} 定义的一阶加厚, $f: X \to S$ 是概型的态射.

1. 存在自然的元素 $o(f) \in \operatorname{Ext}^2_X(L_{X/S}, f^*\mathscr{I})$, 满足形变存在当且仅当 o(f) = 0.

元素 o(f) 被称为 (obstruction class).

3 Lichtenbaum-Schlessinger 构造

历史上对余切复形的构造最初并不是如前描述的. 在 Lichtenbaum-Schlessinger 中,余切复形是这样构造的: 对于环同态 $R \to S$,选定正合序列

$$0 \to E_2 \xrightarrow{e_2} E_1 \xrightarrow{e_1} E_0 \xrightarrow{e_0} S \to 0$$

满足 $e_0: E_0 \to S$ 是环的满同态, e_2, e_1 是 E_0 模同态, 且对任意 $x, y \in E_1$ 满足

$$e_1(x)y - xe_1(y) = 0.$$

注意此时 E_2 是一个 S 模, 取 $a \in I := \text{Ker } E_0 \to S, z \in E_2$,根据正合性存在 $x \in E_1$ 满足 $e_1(x) = a$,于是

$$e_2(az) = ae_2(z) = e_1(x)e_2(z) = xe_1(e_2(z)) = 0,$$

注意到 e_2 是单射,于是 $IE_2=0$.

这样就诱导了一个 3 项 S 模复形

$$0 \to E_2 = E_2 \otimes_{E_0} S \xrightarrow{d_2} E_1 \otimes_{E_0} S \xrightarrow{d_1} \Omega_{E_0/R} \otimes_{E_0} S \to 0,$$

其中 $d_2 := e_2 \otimes \mathrm{id}_S$,注意到 $\mathrm{Im}\ e_1 = I$,且有同态 $d: I/I^2 \to \Omega_{E_0/R} \otimes_{E_0} S$, d_1 取 $d \circ (e_1 \otimes_{E_0} \mathrm{id})$.