(ECE) ELECTRONICS AND COMMUNICATION ENGINEERING INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
 the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
 SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
 - Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he/she enters his/her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

Set Code : T2

Booklet Code : A

- Note: (1) Answer all questions.
 - (2) Each question carries I mark. There are no negative marks.
 - (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
 - (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

- (1) 3I
- (2) 9I
- (3) 271
- (4) 81I

2. If
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$$
 is a skew symmetric matrix, then the value of x is

- (1) 1
- (2) 2
- (3) 3
- (4) 4
- 3. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512
- (4) 256

4. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1
- (2) 2
- (3)
- (4) 4

Set Code: **Booklet Code:**

						THE RESIDENCE OF THE PROPERTY
_	The solution of a system	CII	2	2- 0 1	1 6	1 7 in
5	The colution of a system	of linear equation	S/X-V+	3z = 9.x + v	+z = 0.x -	V + Z = Z 18
J.	The solution of a system	of fillout equation		,		/

- (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

(4) x=1, y=2, z=3

6. If
$$\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x - ai}$$
 then $A = \underline{\qquad}$, $B = \underline{\qquad}$.

- (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

7. If
$$\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)^2} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$$
 then $\sum_{i=1}^3 A_i$ is equal to

- (1) A,
- (2) 2A₂
- (3) 4A,

8. The period of the function
$$f(x) = |\sin x|$$
 is

- (1) π
- (3) 3π

- (1) 1
- (2) 0
- (3) 2

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$
- (3) $\frac{\sqrt{5}-1}{2}$

11. If
$$A+B+C = \pi$$
, then $\sin 2A + \sin 2B + \sin 2C =$

(1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

(4) 4 sinA sinB sinC

12. The principal solution of
$$Tanx = 0$$
 is

(1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

Set Code: **Booklet Code:**

13.	The va	lue of Tan	$-1(2) + Tan^{-1}$	(3) is
-----	--------	------------	--------------------	--------

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- (1) Δ^2

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- $(3) \quad \frac{1}{R} \qquad \qquad (4) \quad \frac{1}{\Lambda}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) cos⁻¹ (2/9)
- (2) cos⁻¹ (2/5)
- (3) $\cos^{-1}(7/9)$

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$
- (2) $\sqrt{2}e^{i\pi/4}$
- (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3} \cdot 2^{\omega^5} \cdot 2^{\omega}$ is

- (1) ω
- (2) ω^2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$
- (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- $(3) \quad (-3, -1) \qquad (4) \quad (-1, -3)$

Set Code: Booklet Code :

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (3) c/2
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
- (2) 8y-7=0 (3) 7y+8=0
- The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is

 - (1) c = a/m (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. Lt $\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1). 3
- (2) 2

- 27. $\log i =$ (1) $\pi/2$ (2) $\pi/4$

- (3) $i\pi/2$ (4) $i\pi/4$

- 28. $\frac{d}{dx}[\log_7 X] =$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^7$ (4) $\frac{1}{x} \log_7^e$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

Set Code : T Booklet Code :

- $30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 x^2}{1 + x^2} \right) \right] =$
- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$

- 31. If $x = at^2$, y = 2at, then $\frac{dy}{dx} =$
 - (1) $\sqrt{\frac{y}{r}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{r}}$

- The derivative of e^x with respect to \sqrt{x} is
 - $(1) \quad \frac{2\sqrt{x}}{e^x} \qquad (2) \quad 2\sqrt{x}e^x \qquad (3) \quad \frac{e^x}{2\sqrt{x}}$

- 33. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is

 - (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101
- 34. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is
 - (1) $\frac{\pi}{4}$
- (2) tan-1(2)
- (3) $tan^{-1}(3)$
- $(4) \tan^{-1}(4)$
- 35. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} = \frac{\partial^3 u}{\partial y^3}$ (1) $6(x^3+y^3)$ (2) $6x^3y^3$ (3) $6x^3$

- 36. $\int \csc x dx =$
 - (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x.\cot x + C$

7-A

Set Code : T2 Booklet Code :

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$

38.
$$\int f^{1}(x) [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

(2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$

$$(3) \quad n[f(x)]^{n-1} + C$$

(4)
$$(n+1)[f(x)]^{n+1} + C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+x^2}+C$$

(3)
$$x^2 . Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

41.
$$\int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log (1+e^x) + C$$

(3)
$$e^{-x} + C$$

(4)
$$e^x + 0$$

42.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- (2) 1
- (3) 2

Set Code : Booklet Code:

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 44. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} 3y = x$ is
 - · (1) 1
- (2) 4
- (3) 3

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
 - . (1) 4
- (2) 2
- (3) 1
- (4) 3
- The family of straight lines passing through the origin is represented by the differential equation
 - (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

- The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 48. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y \cdot e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- $(2) \quad C_1 \cos x + C_2 \sin x + C_3 e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- (4) $(C_1 + C_2 x + C_3 x^2) e^{x}$
- 50. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

Set Code : T2

Booklet Code : A

PHYSICS

5	for	ce. The dimension	ons of	B will be	lation	A/B = m where	m is linear mass density	and A
	(1)	same as that of	flaten	t heat	(2)	same as that o	of pressure	. 2
	(3)				(4)			
52.	The	e dimensional for	mula	of capacitance in	terms	ofM I Tand	Lie	
	(1)	$[ML^2T^2I^2]$	(2)	[ML-2T4]2]	(3)	[M-1L3T3I]	(4) $[M^{-1}L^{-2}T^4]^2$	
53.	If l,	m and n are the	directi	on cosines of a v	ector,	then .	7945 8	
	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4) lmn=1	
54.	The	angle between i-	i and	i+k is		1		
	(1)	0°	(2)		(3)	45°	(4) 60° ·	
,2	(1)	$\frac{1}{\sqrt{2}} \text{ ms}^{-2} \text{ towards}$ $\frac{1}{2} \text{ ms}^{-2} \text{ towards}$	ls nort	**	(2)		ds north-east	
56.	The l	inear momentum	ofap	particle varies wi	th tim	e t as p = a + bt + a	-ct ² which of the follow	ving is
		Force varies with Force is time-de		in a quadratic mant.	ınner.	8 8		
	(3)	The velocity of t	he par	ticle is proportio	nal to	time.		
	(4)	The displacement	nt of th	ne particle is prop	ortio	nal to t.		
57.	A she m/4 re	ll of mass m mov emains stationary	ing wi	ith a velocity v su velocity of the ot	ddenl	y explodes into	two pieces. One part of	mass
	(1)		(2) 2		3) 3	511 (1997)	(4) 4v/3	
				10-/	٠.			

Set Code: T2

Booklet Code : A

58.	The	velocity of a f	reely fal	ling body aft	er 2s is				
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms	1
59.		rge number of ground on whi				with the same	e speed u	. The max	imum area on
		$\frac{\pi u^2}{g^2}$	N ₂			*.*			
60.	The the	minimum stor coefficient of	ping dis friction b	tance for a ca between the t	r of mass yres and t	m, moving wi he road is μ, ν	th a spee will be	d v along	a level road, if
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{v}{2\mu g}$	
61.	Who	that it acts							two wheels is
	(1)								the rear wheel
	(2)							ection on	the rear wheel
	(3)					and the rear w			31
	(4)	In the forwar	d direct	ion on both th	ne front ar	nd the rear wh	eels		
62.	In a	perfectly inela	astic coll	lision, the tw	o bodies			en sin e S	*
		strike and ex			(2)	explode with	nout strik	ing	
	(3)	implode and	3		(4)	combine and	l move to	gether	
63.		der the action o	of a cons	tant force, a p	particle is	experiencing	a consta	nt acceler	ation, then the
	(1)	zero	- 3		(2)	positive	4		
	(3)	negative	1 8		. (4)	increasing u	niformly	with time	;
		343			11-A	9			-

								Set Cod	e: T2
								Booklet Cod	e : A
64.	Con	sider the follow	ving tw	o statements:			Ð	9	VI
	A:	Linear mome	ntum o	f a system of par	rticles	is zero.			
	B:	Kinetic energ	y of a s	ystem of particl	es is z	ero.			
	The	1				2		\$20°	
	(1)	A implies B &	B imp	lies A	(2)	A does r	ot imply B &	& B does not in	nply A
	(3)	A implies B b	ut B do	es not imply A	(4)			out B implies A	
65.		engine develop ht of 40 m? (G		V of power. Hov = 10 ms ⁻²)	v muc	h time wi	ll it take to li	ft a mass of 20	00 kg to a
	(1)	4s	(2)	5s	(3)	8s	(4)	10s	
66.				T, and is cut into				1	
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$	(3)	nΤ	(4)	T	
67.	Who (1) (2) (3)	en temperature increases decreases remains same		es, the frequency	y of a t	tuning for	k		6
8 89	(4)			s depending on	the ma	aterials			
68.	Ifa	simple harmon	ic motic	on is represented	i by $\frac{d}{d}$	$\frac{d^2x}{dy^2} + \alpha x = 0$	0, its time pe	eriod is	
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$	
69.		nema hall has v		of 7500 m ³ . It is hall should be	requi	red to hav	e reverberati	ion time of 1.5	seconds.
		850 w-m ²		82.50 w-m ²	(3)	8.250 w	-m ² (4)	0.825 w-m ²	ni 83

70. To absorb the sound in a hall which of the following are used (1) Glasses, stores (2) Carpets, curtains (3) Polished surfaces (4) Platforms 71. If N represents avagadro's number, then the number of molecules in 6 gm of hydrogen at NTP is (1) 2N (2) 3N (3) N (4) N/6 72. The mean translational kinetic energy of a perfect gas molecule at the temperature T K is (1) \frac{1}{2}kT (2) kT (3) \frac{3}{2}kT (4) 2kT 73. The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio \$Cp/Cv\$ for gas is (1) \frac{3}{2} (2) \frac{4}{3} (3) 2 (4) \frac{5}{3} 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from mechanical strength (4) to protect the fiber from electromagnetic guidance										Se	t Code :	T2
 Glasses, stores Polished surfaces Platforms If N represents avagadro's number, then the number of molecules in 6 gm of hydrogen at NTP is (1) 2N (2) 3N (3) N (4) N/6 The mean translational kinetic energy of a perfect gas molecule at the temperature T K is (1) 1/2 kT (2) kT (3) 3/2 kT (4) 2kT The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from mechanical strength 									3	Bookle	t Code :	A
 Glasses, stores Polished surfaces Platforms If N represents avagadro's number, then the number of molecules in 6 gm of hydrogen at NTP is (1) 2N (2) 3N (3) N (4) N/6 The mean translational kinetic energy of a perfect gas molecule at the temperature T K is (1) 1/2 kT (2) kT (3) 3/2 kT (4) 2kT The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from mechanical strength 	70	Took	sorb the sound i	n a ha	II which	of the follow	ing ar	e used				
 (3) Polished surfaces (4) Platforms 71. If N represents avagadro's number, then the number of molecules in 6 gm of hydrogen at NTP is (1) 2N (2) 3N (3) N (4) N/6 72. The mean translational kinetic energy of a perfect gas molecule at the temperature T K is (1) ½kT (2) kT (3) ½kT (4) 2kT 73. The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from mechanical strength 	70.					(2)	Car	pets, curta	ins			
 71. If N represents avagadro's number, then the number of molecules in 6 gm of hydrogen at NTP is (1) 2N (2) 3N (3) N (4) N/6 72. The mean translational kinetic energy of a perfect gas molecule at the temperature T K is (1) 1/2 kT (2) kT (3) 3/2 kT (4) 2kT 73. The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength 				es		(4)	Pla	tforms				
 (1) 2N (2) 3N (3) N (4) 1NO 72. The mean translational kinetic energy of a perfect gas molecule at the temperature T K is (1) 1/2 kT (2) kT (3) 3/2 kT (4) 2kT 73. The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from mechanical strength 				duo'o i	niumber	then the num	ber of	f molecule	s in 6 gn	n of hy	drogen at	NTP is
 72. The mean translational kinetic energy of a perfect gas molecule at the temperature T K is (1) 1/2 kT (2) kT (3) 3/2 kT (4) 2kT 73. The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from mechanical strength 	71.			(2)	3N	(3)	N		(4)	N/6		
 (1) \$\frac{1}{2}kT\$ (2) \$kT\$ (3) \$\frac{3}{2}kT\$ (4) \$2kT\$ 73. The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio \$Cp/C\(\bar{V}\)\$ for gas is (1) \$\frac{3}{2}\$ (2) \$\frac{4}{3}\$ (3) \$2\$ (4) \$\frac{5}{3}\$ 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from eorrosion (3) to protect the fiber from mechanical strength 		200										
 (1) \$\frac{1}{2}kT\$ (2) \$kT\$ (3) \$\frac{3}{2}kT\$ (4) \$2kT\$ 73. The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio \$Cp/C\(\bar{V}\)\$ for gas is (1) \$\frac{3}{2}\$ (2) \$\frac{4}{3}\$ (3) \$2\$ (4) \$\frac{5}{3}\$ 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from eorrosion (3) to protect the fiber from mechanical strength 	72.	The	mean translation	al kin	etic ene	rgy of a perfe	ct gas	molecule	at the to	empera	ture T K i	S
73. The amount of heat given to a body which raises its temperature by 1°C (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) 2 (4) $\frac{5}{3}$ 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength											3	
 (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength 		(1)	$-\frac{1}{2}$	(2)	KI	(-)	2			5		
 (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength 				19		1:1	ita ta	mperatur	by 1°C			
 (1) water equivalent (3) specific heat (4) temperature gradient 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength 	73.	The			to a body	y which raises	ils to	mperature	canacity	,		76
 74. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength 		(1)	water equivaler	nt								+0
absolute temperature. The ratio Cp/Cv for gas is (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) 2 (4) $\frac{5}{3}$ 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength		(3)	specific heat			(4)	ter	nperature	gradien			
absolute temperature. The ratio Cp/Cv for gas is (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) 2 (4) $\frac{5}{3}$ 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength	74	Dur	ino an adiabatic	proce	ss, the p	ressure of a g	gas is	found to b	e propo	rtional	to the cul	e of its
 (1) 3/2 (2) 4/3 (3) 2 (4) 5/3 75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength 	74.	abso	olute temperatur	e. The	ratio C	p/Cv for gas i	s	1				-
75. Cladding in the optical fiber is mainly used to (1) to protect the fiber from mechanical stresses (2) to protect the fiber from corrosion (3) to protect the fiber from mechanical strength									(4)	5		
 to protect the fiber from mechanical stresses to protect the fiber from corrosion to protect the fiber from mechanical strength 		(1)	$\frac{3}{2}$	(2)	3	(3)) 2		(4)	3 .		
 to protect the fiber from mechanical stresses to protect the fiber from corrosion to protect the fiber from mechanical strength 				1.01	:-	inly used to						
(2) to protect the fiber from corrosion(3) to protect the fiber from mechanical strength	75.	Cla	dding in the opti	cai iii	c	ahanical stre	eeee			ž.		
(3) to protect the fiber from mechanical strength		(1)	to protect the	fiber	Com me		3303				V.	
(4) to protect the fiber from electromagnetic guidance		(2)	to protect the	tiber	from co	chanical stre	noth					127
(4) to protect the fiber from electromagnetic guidance		(3)	to protect the	tiber	rom me	chamear suc	agui anid	ance	16			
		(4)	to protect the	fiber	from ele	ctromagnetic	guid	ance				
								- 85				

Set Code :	T2
Booklet Code :	A

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of	Phosph	orous atom (At.)	No. 15	i) is	
		$3s^2 3p^3$		3s1 3p3 3d1		$3s^2 3p^2 3d^1$		3s1 3p2 3d	2 .
77.	An	element 'A' of A	t.No.12	2 combines wi	th an ele	ment 'B' of At.N	o.17.	The compou	nd formed is
1	(1)	covalent AB	(2)	ionic AB ₂		covalent AB ₂		ionic AB	
78.	The	number of neut	rons p	resent in the at	om of	Ba ¹³⁷ is			
		56		137		193	(4)	.81	
79.	Hyd	rogen bonding	in wate	r molecule is	responsi	ible for			
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization	on
	(3)	increase in its	boiling	gpoint	(4)	decrease in its	boilin	g point	
80.	In th	e HCl molecule	, the bo	onding betwee	n hydro	gen and chlorine	is		
	(1)					polar covalent		complex c	oordinate
81.	Pota	ssium metal and	l potas	sium ions					<u>:</u>
*	(1)	both react with			(2)	have the same	numbe	er of protons	
	(3)	both react with	chlori	ne gas	(4)				
82.	stand	lard flask. 10 ml r into 100 ml of	of this: solutio	solution were p n. The concen	pipetted of tration of	water and the so out into another f of the sodium chl	lask ar oride s	nd made up v solution now	vith distilled
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M	¥.
83.	Conc	centration of a 1	.0 M s	olution of pho	sphoric	acid in water is		12	
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N	•
84.	Whic	ch of the followi	ng is a	Lewis acid?					-
	(1)	Ammonia			(2)	Berylium chlor	ide	*	
	(3)	Boron trifluorie	de		(4)	Magnesium oxi	de	· .	
					14-A				

					Set C	
	for a)	Booklet C	ode: A
85.	Which of the following constitutes the com	ponen	ts of a buffer so	olution	?	
	(1) Potassium chloride and potassium hyd	II OXIG	*			10.00
	(2) Sodium acetate and acetic acid	d				
	(3) Magnesium sulphate and sulphuric aci	u				
	(4) Calcium chloride and calcium acetate					
0.0	Which of the following is an electrolyte?			20		
86.		(3)	Urea	(4)	Pyridine	
	(1) Acetic acid (2) Glucose	(3)	. Cica	()		
87.	Calculate the Standard emf of the cell, Cd E^0 Cu/Cu ⁺² = (-) 0.34 V.					= 0.44V and
	(1) (-) 1.0 V (2) 1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	100
00	 nickel will be deposited on the anode H₂ gas will be liberated at the anode Which of the following metals will undergo 	(4)	nickel will be	deposi	ted on the	cathode
89.		(3)	Zinc	(4)	Iron	•
	(1) Cu (2) Li	(-)		13 (5)		
90.	Which of the following cannot be used for	the ste	erilization of dr	inking	water?	
90.	(1) Ozone	(2)	Calcium Oxyo	hlorid	e	
	(3) Potassium Chloride	(4)	1.1	r		
91.	A water sample showed it to contain 1.20 r terms of calcium carbonate equivalent is	ng/litr	e of magnesium			
	(1) 1.0 ppm (2) 1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppn	1
	Soda used in the L-S process for softening	ofw	nter is Chemica	llv.		
92.	Soda used in the L-5 process for softening	(2)	sodium carbo	nate de	cahydrate	
¥	(1) sodium bicarbonate	(4)		xide (4	10%)	
	(3) sodium carbonate	. (4)	socialitiny are	,,,,,,,		
02	The process of cementation with zinc pow	der is	known as			
93.	(1) sherardizing (2) zincing	(3)	metal claddin	g (4)	electrop	lating
	12	15-A				900

							Set Code : T2
						Bookl	et Code : A
94	. Ca	rrosion of a meta	l is fastest in		to:		4
		rain-water		ed water (3)	distilled water	(4) de-ion	nised water
95	. Wh	nich of the follow	ing is a thermos	et polymer	?		
		Polystyrene		(2)		4	
,	(3)	Polythene		(4)		yde resin	
96.	Che	emically, neopren	e is				8
		polyvinyl benze		(2)	polyacetylene		
2	(3)	polychloropren	e -	(4)	poly-1,3-butadie	ene	* 4
97.	Vul	canization involve	es heating of raw	rubber wit	h	-	
×	(1)		ent	(2)	elemental sulphi	ır	
	(3)	a mixture of Se	and elemental si		a mixture of sele	nium and sul	phur dioxide
98.	Petr	ol largely contain					phul dioxide
	(1)	a mixture of uns	aturated hydroc	arbons C _s -	C ₈		
	(2)	a mixture of ben	zene, toluene ar	d xylene			
	(3)	a mixture of satu	rated hydrocart	ons C ₁₂ - C	14		89
40	(4)	a mixture of satu	rated hydrocart	ons $C_6 - C_8$	1918.		
00		1 64 64	54				
99.	Whic	ch of the followin	g gases is large				47
	(1)	SO ₂ & NO ₂			CO ₂ & water vapo	our	72 80
	(3)	CO ₂ &N ₂		· (4)	N ₂ & CO ₂		65 01
100.	BOD	stands for					
	(1)	Biogenetic Oxyg	en Demand	(2)	Biometric Oxyger	Demand	
	(3)	Biological Oxyge	en Demand		Biospecific Oxygo		

Set Code : T2
Booklet Code : A

ELECTRONICS AND COMMUNICATION ENGINEERING

- 101. In a pn junction diode, if the junction current is zero, this means that
 - (1) there is no carriers crossing the junction.
 - (2) the number of majority carriers crossing the junction equals the number of minority carriers crossing the junction.
 - (3) the number of holes diffusing from the p-region equals the number of electrons diffusing from the n-region.
 - (4) the potential barrier has disappeared.
- 102. The circuit shown in Fig.1 acts as
 - (1) clamper
 - (2) rectifier
 - (3) comparator
 - (4) clipper

- 103. The emitter region in the pnp junction transistor is more heavily doped than the base region so that
 - (1) base current will be high
 - (2) the flow across the base region will be mainly because of electrons
 - (3) recombinations will be increased in the base region
 - (4) the flow across the base region will be mainly because of holes
- 104. A field-effect transistor (FET)
 - (1) depends on minority-carrier flow
- (2) uses high concentration emitter junction
- (3) has a very high input resistance
- (4) uses forward-biased pn junction
- 105. In a half wave rectifier, the load current flows for
 - (1) only for positive half cycle of input signal
 - (2) the complete cycle of the input signal
 - (3) more than half cycle but less than the complete cycle of input signal
 - (4) less than half cycle of input signal

17-A (ECE)

			Set Code : T2
			Booklet Code : A
106. A tra	ansistor is said to be in a quiescent state	when	9 <u>9</u>
(1)	no currents are flowing		
(2)	emitter-junction bias is just equal to	collect	or-junction bias
(3)	no signal is applied to the input		
(4)	it is unbiased		1
	*		
107. Con	npared to CB amplifier, the CE amplific	er has	
(1)	higher current amplification	(2)	lower input resistance
(3)	higher output resistance	(4)	lower current amplification
			2
108. The	negative output swing starts clipping fi	rst wh	en Q-point
(1)	is near saturation point	(2)	is near cut-off point
(3)	has optimum value	(4)	is in the active region of the load line
			•
109. Intr	oducing a resistor in the emitter of CI	E ampl	lifier stabilizes the dc operating point against
	ations in		3 . .
(1)	only the β of the transistor	(2)	both temperature and β
(3)	only the temperature	(4)	neither β nor temperature
			68.4.4.2
110. Wh	ich of the following class of amplifiers	has hi	ighest among of distortion?
(1)	class C (2) class AB	(3)	class B (4) class A
111. Tui	ned voltage amplifiers are not used		
(1)	in radio receivers		
(2)	where a band of frequencies is to be	selecte	ed and amplified
(3)	in television receivers		
(4)	in a public-address systems		
112. Fee	edback in a amplifier always helps to		
(1)	increase its gain	(2)	
(3)	decrease its input impedance	(4)	control its output
	8	18-A	(ECE)

								Dookiet Code .	
113	Anio	deal OP-AMP ha	as						
	(1)			ce and infinite	output	resistance			
	(2)			ce and zero out	7.75			, ,	
	(3)			and infinite out	-				
	(4)			and zero output					
	` '			•				5	
114.	Fors	quare wave ger	neration	n -	is us	ed.		8	
	(1)	bistable multiv				schmitt trigger			
	(3)	astable multivi	brator		(4)	monostable mi	ultivib	rator	
								20	
115.	Puls	e width of a coll	ector c	oupled monosta	able m	ultivibrator is gi	iven by	ý	- 4
		T = 0.69 RC				T = 1.69 RC			
116.	In se	ries resonance o	ircuit,	increasing indu	ctance	to twice its valu	ie and	reducing capacit	ance to
		its value.							
	(1)	will change the	maxin	num value of cu	irrent			(visi	
	(2)	will change the	reson	ance frequency			9		
	(3)			ctivity of the cir				x1	
	(4)	will change the	imped	lance at resonar	ice fre	quency			
				5 19					
117.	A hi	gh Q coil has		17.00					
	(1)	low losses			(2)	flat response			
	(3)	high losses			(4)	large bandwidt	h		
	_				16	c			
118.	•	erposition theore					(4)	non linoppity	
	(1)	duality	(2)	reciprocity	(3)	linearity	(4)	non-linearity	500
110	In th	e Thevenin equi	valent	circuit V equa	1c	20			
117.		short-circuit te			(2)	open-circuit te	rmina	voltage	
	(1)	net voltage ava			(4)	voltage of the			
	(3)	net voltage ava	illaule l	in the encur	(+)	Totage of the	Jourse		
					19-A				(ECE)

aver (1) 121. The (1) 122. Impo (1) (3) 123. A loc (1) (3) 124. Which (1) (3) 125. When bypa (1) 126. The standard (2)	independent vol rage power to a le $Z_L = R_S$ minimum stand zero edance matching singl stub quarter wave tr essless line will be is constant with varies directly ich of the follow one voltmeter,	ing wav (2) gover w ransform be distor h freque with fre	edance Z_L $Z_L = jX_S$ ves occur w unity vider-frequency equency	when (3) where refle (3) ency rang (2) (4) f the phase (2) (4)	Z _L = R _S +jX _S ection coefficie -1 e can be obtained double stub balun e shift varies inversible has nothing to	(4) Int is (4) Indicated with do with d	Booklet Co X_S delivers $Z_L = R_S - j$ ∞	a maximum
aver (1) 121. The (1) 122. Impo (1) (3) 123. A loc (1) (3) 124. Which (1) (3) 125. When bypa (1) 126. The standard (2)	rage power to a le $Z_L = R_S$ minimum stand zero edance matching singl stub quarter wave tr essless line will be is constant with varies directly ich of the follow one voltmeter,	ing wav (2) gover w ransform be distor h freque with fre	edance Z_L $Z_L = jX_S$ ves occur w unity vider-frequency equency	when (3) where refle (3) ency rang (2) (4) f the phase (2) (4)	Z _L = R _S +jX _S ection coefficie -1 e can be obtained double stub balun e shift varies inversible has nothing to	(4) Int is (4) Indicated with do with d	X_S delivers $Z_L = R_S - j$ ∞ frequency	a maximum
aver (1) 121. The (1) 122. Impo (1) (3) 123. A loc (1) (3) 124. Which (1) (3) 125. When bypa (1) 126. The standard (2)	rage power to a le $Z_L = R_S$ minimum stand zero edance matching singl stub quarter wave tr essless line will be is constant with varies directly ich of the follow one voltmeter,	ing wav (2) gover w ransform be distor h freque with fre	edance Z_L $Z_L = jX_S$ ves occur w unity vider-frequency equency	when (3) where refle (3) ency rang (2) (4) f the phase (2) (4)	Z _L = R _S +jX _S ection coefficie -1 e can be obtained double stub balun e shift varies inversible has nothing to	(4) Int is (4) Indicated with do with d	$Z_L = R_S - j$ frequency	X _s
(1) 121. The (1) 122. Impe (1) (3) 123. A loc (1) (3) 124. Whic (1) (3) 125. Whe bypa (1) 126. The s (1) (2)	Z _L = R _S minimum stand zero edance matching singl stub quarter wave to essless line will be is constant with varies directly sch of the follow one voltmeter,	(2) ling wav (2) g over w ransform be distor h freque with fre	Z _L = jX _s ves occur we unity vider-frequence retionless if ency equency	(3) where reflection (3) ency range (2) (4) f the phase (2) (4)	ection coefficie -1 e can be obtaine double stub balun e shift varies inverse has nothing to	nt is (4) ad ely with	. ∞ • frequency	
(1) 122. Impo (1) (3) 123. A lo (1) (3) 124. Whic (1) (3) 125. Whe bypa (1) 126. The s (1) (2)	edance matching singl stub quarter wave to essless line will be is constant with varies directly the of the follow one voltmeter,	(2) g over w ransform be distor h freque with fre	unity rider-frequence rtionless if ency equency	(3) ency rang (2) (4) f the phase (2) (4)	-1 e can be obtained double stub balun e shift varies inverse has nothing to	(4) dely with do with d	frequency	lossless line
122. Impo (1) (3) 123. A loc (1) (3) 124. Whic (1) (3) 125. Whe bypa (1) 126. The s (1) (2)	edance matching singl stub quarter wave to essless line will lis constant with varies directly sch of the follow one voltmeter,	g over w ransform be distor h freque with fre ing meth	rider-frequencer ner rtionless if ency equency	(2) (4) f the phase (2) (4)	e can be obtained double stub balun e shift varies inverse has nothing to	ely with	frequency	lossless line
(1) (3) 123. A loc (1) (3) 124. Whic (1) (3) 125. Whe bypa (1) 126. The s (1) (2)	singl stub quarter wave tr essless line will be is constant with varies directly ich of the follow one voltmeter,	ransform be distor h freque with fre ing metl	ner rtionless if ency equency	(2) (4) f the phase (2) (4)	double stub balun e shift varies invers has nothing to	ely with do with d	1070	lossless line
(1) (3) 123. A loc (1) (3) 124. Whic (1) (3) 125. Whe bypa (1) 126. The s (1) (2)	singl stub quarter wave tr essless line will be is constant with varies directly ich of the follow one voltmeter,	ransform be distor h freque with fre ing metl	ner rtionless if ency equency	(2) (4) f the phase (2) (4)	double stub balun e shift varies invers has nothing to	ely with do with d	1070	lossless line
(3) 123. A load (1) (3) 124. Which (1) (3) 125. When bypa (1) 126. The state (1) (2)	quarter wave to essless line will be is constant with varies directly ich of the follow one voltmeter,	be distor h freque with fre	rtionless if ency equency	(4) f the phase (2) (4)	balun e shift varies inverse has nothing to	do with d	1070	lossless line
(1) (3) 124. Whic (1) (3) 125. Whe bypa (1) 126. The : (1) (2)	is constant with varies directly ch of the follow one voltmeter,	h freque with fre ing metl	equency	(2) (4)	varies inverse has nothing to	do with d	1070	lossless line
(1) (3) 124. Whic (1) (3) 125. Whe bypa (1) 126. The : (1) (2)	is constant with varies directly ch of the follow one voltmeter,	h freque with fre ing metl	equency	(2) (4)	varies inverse has nothing to	do with d	1070	lossless line
(3) 124. Which (1) (3) 125. When bypa (1) 126. The s (1) (2)	varies directly ch of the follow one voltmeter,	with fre	equency	(4)	has nothing to	do with d	1070	lossless line
124. Whic (1) (3) 125. Whe bypa (1) 126. The : (1) (2)	ch of the follow one voltmeter,	ing metl					istortion on a	iossiess inte
(1) (3) 125. Whe bypa (1) 126. The: (1) (2)	one voltmeter,		hods can b	e used for				
(1) (3) 125. Whe bypa (1) 126. The: (1) (2)	one voltmeter,				measuring pov	er with	out using wa	ttmeter?
(3) 125. Whe bypa (1) 126. The: (1) (2)		UHC aill	meter		two voltmete	- 19		
bypa (1) 126. The: (1) (2)	three voltmete			200	three ammet			
(1) (2)	en large currents	s are to	be measur	red using	DC ammeter,	he majo	or part of th	e current is
(1) (2)	capacitor	(2)	resistor	(3)	inductor	(4)	diode	
(1) (2)	shunt-type ohm	meter is	suited to	the measu	rement of			
	high-value resi							
	medium-value		ice					
(3)	both medium a			stance				
(4)	low-value resis	- 5						4
127. Digit	tal instruments	are prefe	erred to ot	her indica	ting instrument	s becau	se of	
(1)	narrow bandwie			(2)				
(3)	LIGHTLY AND INCHASE			(4)	better resolu	.0.		
(5)				(.)	301101 100010	55-20		
	cost							(ECE)

				Set Code : T2
				Booklet Code : A
128	8. Wit	thout a spectrum analyzer, it is not possi	ble t	o determine
	(1)		(2)	
14	(3)	pulse width	(4)) - 1 Port 1 1 2 전 1 1 1 2 전 1 1 1 1 1 1 1 1 1 1 1
129	. The	Q-meter is used to measure the electric	cal p	roperties of
	(1)	resistors only	(2)	inductors only
	(3)	coils and capacitors	(4)	capacitors only
130		deflection sensitivity of a CRT depends	inve	ersely on the
	(1)	separation between Y plates	(2)	length of the vertical deflecting plates
	(3)	deflecting voltage	(4)	distance between screen and deflecting plates
131	. The	CRO is used to measure		
	(1)	power of the signal	(2)	time period of the signal only
	(3)	amplitude and time period of the signal	(4)	
132	. Aud	io frequency oscillators, operating roug	hlv i	n the
	(1)	0 Hz to 20 Hz	(2)	1 Hz to 1-MHz
	(3)	1 KHz to 1000 KHz	(4)	20 Hz to 20 KHz
133.	A no	on-triggered oscilloscope is one which		8
	(1)	has no sweep generator		# # ₁₀
	(2)	can not produce a stable stationary screen	en d	isplay
(8)	(3)	has a continuously running time-base g		T. (2)
	(4)	can display a portion of the input signal		
134.	After	r firing an SCR, the gating pulse is remo	ved	The current in the SCR will
	(1)		(2)	rise a little and then fall to zero
	(3)		(4)	remain the same
		2000 36		

21-A

Set Code :	T2
Booklet Code :	Α
807	

- 135. A TRIAC can be triggered into conduction by
 - (1) only positive voltage at either anode
 - positive or negative voltage at gate
 - (3) positive or negative voltage at gate and positive or negative voltage at either anode
 - (4) only negative voltage at either anode
- 136. An SCR conducts appreciable current when
 - (1) anode is negative and gate is positive with respect to cathode
 - (2) gate is negative and anode is positive with respect to cathode
 - (3) anode and gate are both positive with respect to cathode
 - (4) anode and gate both negative with respect to cathode
- 137. In a thyristor, the ratio of holding current to latching current is
 - (1) 0.4
- (2) 2.5
- (3) 1.0
- 138. In a 3-phase full converter, the output voltage pulsates at a frequency equal to
 - (1) supply frequency f

(2) 3f

(3) 6f

- (4) 2f
- 139. In BJT, the relation between α and β is
- (1) $\beta = \frac{\alpha}{(\alpha+1)}$ (2) $\beta = \frac{\alpha}{(\alpha-1)}$ (3) $\alpha = \frac{\beta}{(\beta+1)}$ (4) $\alpha = \frac{(\beta+1)}{\beta}$
- 140. In three-phase 180° mode bridge inverter, the lowest order harmonic in the line to neutral output voltage (fundamental frequency output = 50 Hz) is
 - (1) 100 Hz
- (2) 150 Hz
- (3) 250 Hz
- (4) 200 Hz
- 141. A single phase full bridge diode rectifier delivers a load current of 10A, which is ripple free. Average and RMS values of diode currents are respectively.
 - (1) 10A, 7.07A

(2) 5A, 7.07A

(3) 7.07A, 5A

(4) 5A, 10A

		75		Set Code: T2				
				Booklet Code : A				
142.	Rese	onant mode power supplies in compar	rison to	square mode ones				
	(1)	have smaller component count	(2)	do not cause over voltages				
	(3)	have negligible power loss	(4)	slower in control action				
143.		elta-connected induction motor being stant V/f control mode requires during		a 3-phase AC to DC inverter and operated in				
	(1)		(2)	no starter requires				
	(3)		(4)	direct online starter				
144.		message signal contains three frequential width of the AM signal is	encies 2	2 KHz, 5 KHz and 10 KHz respectively. The				
	(1)	20 KHz (2) 5 KHz	(3)	2 KHz (4) 10 KHz				
145.		rrier is simultaneously modulated by t esultant modulation index is	wo sine	e waves with modulation indices of 0.3 and 0.4;				
	(1)	0.7 (2) 0.4	(3)	0.3 (4) 0.5				
146.	Indi	cate which one of the following is not	advanta	age of FM over AM.				
	(1)			better noise immunity is provided				
	(3)	less modulating power is required	(4)					
147.		low-level AM system, amplifiers follo		223 21 21				
	(1)	harmonic devices	(2)	The state of the s				
	(3)	linear devices	(4)	class C amplifier				
148.	A _c a	nd A are peak amplitudes of carrier a	nd mod	dulating signal respectively. When $A_c = A_m$				
	(1)	modulation index is 100%	(2)	modulation index is zero				
	(3)	modulation index falls below 100%	(4)	modulation index is above 100%				
149	In a	SSB transmitter, one is most likely to	find a					
	(1)	class C audio amplifier	(2)	class A R.F. output amplifier				
	(3)	class B R.F. amplifier	(4)	tuned modulator				
	(-)	y **	23-A	(ECE)				

								Set Code Booklet Code	
								Booklet Code	·A
150.		perheterodyne re uency is	ceive	r with an I.F. of 4	50 KI	Hz is tuned to a si	gnal a	at 1200 KHz. Tł	ne image
	(1)	750 KHz	(2)	900 KHz	(3)	1650 KHz	(4)	2100 KHz	
151.	Ina	radio receiver wi	th sim	ple AGC					
	(1)	an increase in si	gnal s	strength produce	s mor	e AGC			
	(2)	the faster the A	GC tir	ne constant, the	more	accurate the outp	out		
	(3)	the highest AGO	Cvolta	age is produced l	betwe	en stations			
	(4)	the audio stage	gain i	s normally contr	olled	by the AGC			
152.	Тор	revent overloadi	ng of	the last I.F. ampl	ifier i	n a receiver, one		d use	
	(1)	double conversi	ion		(2)	variable selecti	vity		
	(3)	variable sensitiv	ity		(4)	squelch		* 3	
153.	One	of the main func	tions	of R.F. amplifier	rinas	superheterodyne	receiv	ver is to	
	(1)	provide improve	ed trac	cking					
	(2)	improve the rej	ection	of the image fro	equen	cy			
+	(3)	permit better ac	ljacen	t-channel rejecti	ion			89	
	(4)	increase the tun	ing ra	inge of the receiv	ver	£ =		•	27
154.	Freq	uencies in the Ul	HF rai	nge propagate by	mear	ns of			
+	(1)	sky waves	(2)	surface waves			(4)	space waves	
155.	Whe	n electromagnet	ic way	ves travel in free	space	only one of the	follow	ing can happer	to the
		attenuation				1 *		absorption	
156.	In Po	CM system, the q	uantiz	zation noise depe	ends u	pon			
	(1)	the sampling ra	te					38	
	(2)	both the sampling	ng rate	e and the number	r of qu	antization levels			
	(3)	the Nyquist rate	;						
	(4)	the number of q	uantia	zation levels		4			
				1	24-A				(ECE)

Set Code : T2

								Booklet Cod	e : A		
57.	The	bit rate of a dig	gital com	munication sy	stem is 3	6 Mbps, the m	odulatio	on scheme is Q	PSK. The		
	baud	rate of the sy	stem is		8						
	(1)	72 Mbps	(2)	68 Mbps	(3)	36 Mbps	(4)	18 Mbps			
158.	Whi	ch multiplexir	ng techni	ique transmits	analog si	ignal		(9)			
		FDM		WDM	(3)	TDM	(4)	both FDM ar	nd TDM		
159	The	standard refe	rence an	tenna for the d	lirective g	gain is the					
157.	(1)	half-wave di			(2)	isotropic ante	enna				
	(3)	infinitesima	7.1		(4)	elementary d	loublet				
160	Vagi	antenna conta	ains								
100.	(1)	one reflecto		e director	(2)	dipole, one r	eflector	and one direc	ctor		
	(3)				(4)						
161	The	radiation resi	stance o	f a Hertizian o	lipole	with in	ncrease	in length of di	pole.		
101.		increases	starice o	I u II vi ii ii ii	(2)	remains unch	nanged				
	(1) (3)		ximum a	nd then falls	(4)	decreases			1+		
1.00	TI.	lth-a	fa waya	in a wavemuide							
102.		wavelengtho	la wave	in a waveguide	un veloci	tv					
	(1)			nal to the grou							
	(2)			onal to the ph	ase veloc	ity					
	(3)	is greater th	an in fre	e space	-: amd	the free space	wavele	noth			
50	(4)	depends on	the wave	elength dimen	sions and	the free space	wavele	iigui			
163	. The	guide wavele	ength (λ _g) is related to f	free space	e(λ) waveleng	th and c	ut-off waveler	$ngth(\lambda_c)$ as		
	(1)	$\frac{1}{\lambda^2} = \frac{1}{\lambda_c^2} + \frac{1}{\lambda_c^2}$	$\frac{1}{\lambda_g^2}$	6	(2)	$\frac{1}{\lambda_{\kappa}^2} = \frac{1}{\lambda^2} + \frac{1}{\lambda^2}$	$\frac{1}{\lambda_c^2}$		20		
	(3)	$\frac{1}{\lambda_c^2} = \frac{1}{\lambda_p^2} +$	$\frac{1}{\lambda^2}$	18 18 18 10	(4)	$\frac{1}{\lambda^2} = \frac{1}{\lambda_c^2} + \frac{1}{\lambda_c^2}$	$\frac{1}{\ell_g^2}$	8	ne.		
									(ECE		

25-A

										Se	t Code :[T2
										Bookle	t Code :	A
164	4. If t	he peak Il be inc	transmi	tted po	wer in a rada tor of	ır system is	sincreas	ed by a fa	ector o	f 16, the r	maximum	range
8	(1)	8		(2)	4	(3)	2		(4)	16		
165	5. The	e bigges	t disadv	antage	of CW Dopp	oler radar	is that				(6	
	(1)				nge, but not							
	(2)				arget positio			5				
	(3)	it doe	s not giv	ve the t	arget veloci	ty		2				
	(4)	it doe	s not giv	e the t	arget range						*	
					4.39		140					
166				ving sy	stem is an ir	nternation	al syster	n		20	27	
	(1)	INSA		(2)	ATS-6	(3)	MARI	SAT	(4)	INTELS	AT	
167	A 4-		.: 1 61			8	734	•		*		
107			otical fit		••							
	(1)				core and lov							
	(2)	unitor	m reirac	tive in	dex core sur	rounded b	y variab	le refract	ive in	dex clade	ling	
	(3)	of the	core to	nigh va	dex core wit lue at the jur	nction wit	h the cla	dding		n low val	ue at the ce	ntre
	(4)	low re	fractive	index	core and high	h refractiv	e index	cladding	W 20			
168.	The	GSM st	andard i	s.	g T E	G						
	(1)			500	lar networks	(2)	second	l generati	ion ce	llular net	works	
	(3)				lar networks	, ,		3.70		ular netw		
						(.)	routin	Beneration	m cen	diai netw	OIKS	
169.	The	2's com	plemen	t of 10	00, is				15			
		0111	•		0001	(3)	1000	90 es	(4)	0101		
170.	Whi	ch of the	follow	ing is n	ot an octal n	number?						
	(1)			(2)		(3)	15		(4)	77		
				550.558	27.00000				()	0.00.50		
									19			
		(¥0) (¥				26-A					1	
						20-74					(E	CE)

									le: T2
								Booklet Cod	ie: A
171.	The	complete set	of only th	ose logic gat	es design	ated as univers	al gates	s is	
		NOT, OR an			(2)				
	(3)	NOR and N.	AND gate	s	(4)	XOR, NOR ar	nd NAN	D gates	
									2
172.		gates require							
	(1)	Ex-OR gate	and NOR	gate	(2)	three NAND			
	(3)	EX-OR gate	and OR	gate	(4)	EX-OR and A	ND gate	2	
173.		d and write ca	_			RAM			2
	(1)	Both ROM	and KAM		(2)			W.	
	(3)	ROM			(4)	Latch			
174	Anı	a-bit ADC usi	ing V as	reference vol	tage has a	a resolution (in	volts) c	of	*
174.		V _R /2 ⁿ		V _R .2n	(3)	V _R /2 ⁿ⁻¹ .	(4)	V _R .n	
		."	-			55.0			
175.	In a	4-bit weight	ed-resisto	r D/A conver	ter, the r	esistor value co	orrespo	nding to LSB	is 32 k Ω .
	The	resistor value						** 1.0	
	(1)	$16 \text{ k}\Omega$	(2)	8 kΩ	(3)	4 kΩ	(4)	32 kΩ	
						*			
176.			nber of N	AND gates re	quired to	implement the E	Boolean	function A+	AB+ABC
		qual to	. (2)		(2)		(4)	7	
	(1)	1	(2)	4	(3)	zero	(4)	,	
177	Whi	ich of the foll	owing AI	C is the faste	est type o	fADC			
177.		Dual slope i				Flash type of	ADC		
		Counter typ		+ 1		Integrator type of ADC			
	(3)	Counter typ	·		(-)	21			
178.	Who	en two n-bit b	inary nun	nbers are add	ed then th	ne sum will con	tain at t	he most	
		(n+2) bits		n bits	(3)	2n bits		(n+1) bits	11 2
		39				54 et 14			
179.	The	8051 microc			100	A		c 1	
	(1)	one bus	(2)	two buses	(3)	three buses	(4)	four buses	
	,				27-A				(ECE)
					100000000000000000000000000000000000000				

Set Code :	T2
Booklet Code :	A
Bookiet Code :	A

						ocontroller	2222	22000000000000000000000000000000000000	
	(1)	five	(2)	six	(3)	eight	(4)	three	
181.	The	8051 is an		micro	controller.				
	(1)	16 bit	(2)	32 bit	(3)	64 bit	(4)	8bit	
182.	The	8051 microco	ntroller	includes an	instructio	n set of	oper	ation codes.	
	(1)	245	(2)	255	(3)	250	(4)	260	
183.	The	8051 microco	ntroller	consists of			W.		
	(1)	256 bytes RA	M		(2)	512 bytes RA	M		
	(3)	128 bytes RA	M		(4)	64 bytes RAM	M		
184.	The	USART accept	s data c	haracters fro	om the CP	IJ			
	(1)					to a continuou	s serial	data stream	
	(2)	in serial forms							
						a paramer form	iai uaia	Sucam	
	(3)								
	(3) (4)	in parallel for	mat and	after certain	n delay tra	nsmits as a paramits as a serial	allel dat	a stream	
	(4)	in parallel form	mat and at and a	after certain	n delay tra delay trans	nsmits as a par mits as a serial	allel dat l data sti	a stream ream	ts.
185.	(4) The	in parallel for	mat and at and a	after certain of	n delay tra delay trans	nsmits as a par mits as a serial	allel dat l data str arately a	a stream ream	ts.
185.	(4) The (1)	in parallel formatin serial formations peripheral intentions three	mat and a at and a rface co (2)	after certain of the certain of ontroller 825 six	n delay trans delay trans 55 has (3)	nsmits as a par mits as a serial sep two	allel dat l data str arately a	a stream ream accessible por	ts.
185. 186.	(4) The (1)	in parallel formation in serial formations in the peripheral intendent three	mat and a at and a rface co (2)	after certain of ontroller 825 six odes of 825	n delay trans delay trans 55 has (3)	nsmits as a par mits as a serial sep two	allel dat l data str arately a	a stream ream accessible por eight	ts.
185. 186.	(4) The (1) The (1)	in parallel formation in serial formations in serial formation in the peripheral intended three three number of oper 4	mat and at and at and at ard ard (2) rating m (2)	after certain of ontroller 825 six odes of 825	n delay trans delay trans 55 has (3) 7 DMA co (3)	nsmits as a par smits as a serial sep two ontroller	allel data straarately (4)	a stream ream accessible por eight	ts.
185. 186.	(4) The (1) The (1) The r	in parallel formation in serial formations in serial formation in the peripheral intended three three anumber of open 4 anumber of address and the parallel formation in the p	mat and a rface co (2) rating m (2) ressing r	after certain of ontroller 825 six odes of 825 6	delay trans for has (3) 7 DMA co (3) able in 808	nsmits as a partimits as a serial september se	allel data strately a (4) (4)	a stream ream accessible por eight	ts.
185. 186.	(4) The (1) The (1)	in parallel formation in serial formations in serial formation in the peripheral intended three three number of oper 4	mat and at and at and at ard ard (2) rating m (2)	after certain of ontroller 825 six odes of 825 6	n delay trans delay trans 55 has (3) 7 DMA co (3)	nsmits as a partimits as a serial september se	allel data straarately (4)	a stream ream accessible por eight	ts.
185. 186. 187.	(4) The (1) The (1) The (1)	in parallel formation in serial formations in serial formation in the peripheral intended three three anumber of open 4 anumber of address and the parallel formation in the p	rating m (2) ressing r (2)	after certain of the certain of ontroller 825 six nodes of 825 6 modes availa	delay trans for has (3) 7 DMA co (3) able in 808	nsmits as a partimits as a serial september se	allel data strately a (4) (4)	a stream ream accessible por eight	ts.
185. 186. 187.	(4) The r (1) The r (1) The r (1)	in parallel formation in serial formations in serial formation in the peripheral intended three formations and the serial formation in the serial fore	rface co (2) rating m (2) ressing r (2)	after certain of the certain of ontroller 825 six nodes of 825 6 modes availa	delay trans for has (3) 7 DMA co (3) able in 808	nsmits as a partimits as a serial september se	allel data strately arately (4) (4) (5)	a stream ream accessible por eight	ts.
85. 86. 87.	(4) The (1) The (1) The (1) The (1) (1)	in parallel formation in serial formations in serial formation in serial formation in the serial intendent in the serial formation in the serial forma	rating m (2) ressing r (2) cessor i	after certain of the certain of ontroller 825 six nodes of 825 6 modes availa	on delay trans delay trans (3) 7 DMA co (3) able in 808 (3)	nsmits as a paramits as a serial september sep	allel data strately a (4) (4) (5) (5) (6)	a stream ream accessible por eight	ts.
185. 186. 187.	(4) The (1) The (1) The (1) The (1) (1)	in parallel formation in serial formations in serial formation in serial formation in the peripheral intended three formation in the serial formation	rating m (2) ressing r (2) cessor i	after certain of the certain of ontroller 825 six nodes of 825 6 modes availa	n delay trans delay trans 55 has (3) 7 DMA co (3) able in 808 (3)	nsmits as a paramits as a serial septimo septi	allel data strately a (4) (4) (5) (5) (6)	a stream ream accessible por eight	ts.

				Booklet Code : A
189.	A cc	omplete television signal consists of		
		camera signal	(2)	sync pulses and a sound signal
	(3)		(4)	a composite video signal and sound signal
190.	Inte	rlacing is used in TV frames to		
	(1)	avoid flicker		. *
	(2)	ensure scanning of all lines		
	(3)			
	(4)	ensure scanning of all lines and prod	uce ill	usion of motion
191.	In T	V system, equalizing pulses are sent du	aring	
	(1)	horizontal blanking	(2)	horizontal retrace
	(3)	serrations	(4)	vertical blanking
192.	In T	V signals, the colour burst is used to	Y	
	(1)	interface each horizontal line	(2)	ensure the I and Q phase correctly
	(3)	maintain the colour sequence	(4)	synchronise colours
193.	The	resolution of a TV picture is determin	ed by	
	(1)	video bandwidth	(2)	video amplification factor
	(3)	the number of frames scanned	(4)	the output of the video detector
194.		enuation will be more in		Special and the second
	(1)	multi mode fibers	(2)	
	(3)	multi mode and single mode fibers	(4)	single mode fibers of 8 µm core diameters
195.	Star	topologies are operated in		
	(1)	half duplex mode only	(2)	
	(3)	simplex mode only	(4)	half or full duplex mode

Set Code : T2

Booklet Code : A

Dat	agram switching is done at the		
(1)	data link layer	(2)	network layer
(3)	transport layer	(4)	physical layer
Whi	ich of the following reduces the	probability of	of collision
		. (2)	l-persistent
(3)	non-persistent	(4)	both l-persistent and non-persistent
The	multiple access technique used i	n wireless lo	ocal area network is
(1)	CSMA	(2)	CSMA/CD
(3)	CSMA/CA	(4)	CSMA with <i>l</i> -persistent
X.25	5 is a		
(1)	packet switching network	(2)	virtual-circuit switching network
(3)	circuit switching network	(4)	frame relay
The	ATM standard defines		*.
(1)	five layers	(2)	four layers
(3)	three layers	(4)	seven layers
	(1) (3) Whi (1) (3) The (1) (3) X.2: (1) (3) The (1)	(3) transport layer Which of the following reduces the (1) . p-persistent (3) non-persistent The multiple access technique used in (1) CSMA (3) CSMA/CA X.25 is a (1) packet switching network (3) circuit switching network The ATM standard defines (1) five layers	(1) data link layer (2) (3) transport layer (4) Which of the following reduces the probability of (1) p-persistent (2) (3) non-persistent (4) The multiple access technique used in wireless log (1) CSMA (2) (3) CSMA/CA (4) X.25 is a (1) packet switching network (2) (3) circuit switching network (4) The ATM standard defines (1) five layers (2)