COMP9414 Tutorial

Week 5

News

- Assignment 1 is due this week (Friday, 3rd July)
 - Wayne will do one final consultation session on it
 - Make sure you're printing to standard output so that piping will work (program > output1.txt)
- Assignment 2 will be released next week
 - Will only know how to complete it after the week 7 lecture
 - Not expected to start it
- Week 6 will be a week break for us
 - Consultations only

Background – Base Example

- 24 Shapes in total
 - 14 Circles
 - 8 Triangles
 - 2 Squares

• P(Circle) =
$$\frac{14}{24}$$
 = 0.58 = 58%

• P(Triangle) =
$$\frac{8}{24}$$
 = 0.33 = 33%

• P(Square) =
$$\frac{2}{24}$$
 = 0.08 = 8%

Background – Conditional Probability

$$P(A \mid B)$$

= $P(A \land B) / P(B)$

Given a circle, what is the probability that it is blue: P(Blue | Circle)

• P(Blue) =
$$\frac{10}{24}$$
 = 0.42

•
$$P(Circle) = \frac{14}{24} = 0.58$$

• P(Blue
$$\land$$
 Circle) = $^{7}/_{24}$ = 0.29

• P(Blue | Circle) =
$$\frac{P(Blue \land Circle)}{P(Circle)}$$

= 0.29 / 0.58 = 0.5

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Background – Product Rule

$$P(A \land B) = P(A \mid B) \times P(B)$$

 $P(B \land A) = P(B \mid A) \times P(A)$

What is the probability of a shape being blue and a circle: $P(Blue \land Circle)$

• P(Blue | Circle) =
$$\frac{P(Blue \land Circle)}{P(Circle)}$$

= 0.29 / 0.58 = 0.5

- $P(Circle) = \frac{14}{24} = 0.58$
- P(Blue \land Circle) = 0.5 * 0.58 = 0.29

$$P(A \land B) = P(A \mid B) \times P(B)$$

 $P(B \land A) = P(B \mid A) \times P(A)$

Bayes Theorem

$$P(H \mid E) = \frac{P(E \mid H) \times P(H)}{P(E)}$$

Probability of a given event occurring based on our prior knowledge or evidence

$$P(Hypothesis \mid Evidence) =$$

$$\frac{P(Evidence \mid Hypothesis) \times P(Hypothesis)}{P(Evidence)}$$

Bayes Theorem - Walkthrough

Evaluate a probability based on evidence that may increase or decrease it whilst being known.

- Low chance of a general fire
 - P(Fire) = 0.01 = 1%

Bayes Theorem - Walkthrough

Smoke is relatively common

• P(Smoke) = 0.1 = 10%

High chance of there being smoke if we see a fire

• P(Smoke | Fire) = 0.9 = 90%

P(Fire | Smoke) =
$$\frac{P(Smoke | Fire) \times P(Fire)}{P(Smoke)} = \frac{0.9 \times 0.01}{0.1}$$

$$=\frac{0.009}{0.1}=0.09=9\%$$

Question 1 - Proof

$$P(A \land B) = P(A \mid B) \times P(B)$$

 $P(B \land A) = P(B \mid A) \times P(A)$

Show how to derive Bayes' Rule from the definition:

$$P(A \wedge B) = P(A \mid B) \times P(B)$$

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

Question 1 - Proof

$$P(A \land B) = P(A \mid B) \times P(B)$$

 $P(B \land A) = P(B \mid A) \times P(A)$

Show how to derive Bayes' Rule from the definition:

$$P(A \wedge B) = P(A \mid B) \times P(B)$$

$$P(A \land B) = P(A|B) \times P(B)$$

 $P(B \land A) = P(B|A) \times P(A)$

$$P(A \land B) = P(B \land A)$$

 $P(A|B) \times P(B) = P(B|A) \times P(A)$

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

Question 2 – Conditional Probability

Determine the conditional probability of a patient suffering from mumps given that they have don't have a fever:

```
P(Mumps \mid \neg Fever)
```

- Mumps causes fever 75% of the time (0.75)
- The chance of a patient having mumps is $\frac{1}{15000}$
- The chance of a patient having fever is $\frac{1}{1000}$

Question 2 – Conditional Probability

 $P(Mumps \mid \neg Fever)$

P(Mumps) = 0.000066

P(Fever) = 0.001

 $P(Fever \mid Mumps) = 0.75$

Question 2 – Conditional Probability

 $P(Mumps \mid \neg Fever)$

$$P(Mumps) = 0.000066$$

$$P(Fever) = 0.001$$

$$P(Fever \mid Mumps) = 0.75$$

$$P(Mumps \mid \neg Fever)$$

$$\frac{P(\neg Fever \mid Mumps) \times P(Mumps)}{P(\neg Fever)}$$

$$\frac{(1 - P(Fever \mid Mumps)) \times 0.000066}{1 - P(Fever)}$$

$$\frac{0.25 \times 0.000066}{0.999}$$

0.0000165

Headaches and blurred vision may be the result of sitting too close to a monitor. Headaches may also be caused by bad posture. Headaches and blurred vision may cause nausea. Headaches may also lead to blurred vision.

Н	Headache
В	Blurred Vision
S	Sitting to close to a monitor
Р	Bad posture
N	Nausea

Headaches and blurred vision may be the result of sitting too close to a monitor. Headaches may also be caused by bad posture. Headaches and blurred vision may cause nausea. Headaches may also lead to blurred vision.

Н	Headache
В	Blurred Vision
S	Sitting to close to a monitor
Р	Bad posture
N	Nausea

 $P(H \wedge B \wedge S \wedge P \wedge N) =$

 $P(H \wedge B \wedge S \wedge P \wedge N) =$

$P(H P \wedge S)$	$P(B S \wedge H)$	P(S)
P(P)	$P(N H \wedge B)$	

 $P(H \land B \land S \land P \land N) = P(H|P \land S) \times P(B|S \land H) \times P(S) \times P(P) \times P(N|H \land B)$

Background – Joint Probabilities

Enumerate through all possible probabilities based on the value distribution of the variables involved.

	Smoke	¬Smoke	Total
Fire	0.009	0.001	0.01
¬Fire	0.01	0.899	0.99
Total	0.1	0.9	1.0

$$P(Fire \mid Smoke) = \frac{P(Fire \land Smoke)}{P(Smoke)} = \frac{0.009}{0.1} = 0.09$$

$P(H P \land S) = 0.8$	$P(H P \land \neg S) = 0.4$
$P(H \neg P \land S) = 0.6$	$P(H \neg P \land \neg S) = 0.02$

$P(B S \wedge H) = 0.4$	$P(B S \land \neg H) = 0.2$
$P(B \neg S \wedge H) = 0.3$	$P(B \neg S \land \neg H) = 0.01$

$P(N H \wedge B) = 0.9$	$P(N H \land \neg B) = 0.5$
$P(N \neg H \land B) = 0.3$	$P(N \neg H \land \neg B) = 0.7$

$$P(S) = 0.1$$

$$P(P) = 0.2$$

$$P(H) = True$$

$$P(N) = False$$

$$P(H \land \neg N \land B \land S \land P)$$

$$P(H \land \neg N \land \neg B \land S \land P)$$

$$P(H \land \neg N \land B \land \neg S \land P)$$

$$P(H \land \neg N \land B \land S \land \neg P)$$

$$P(H \land \neg N \land \neg B \land \neg S \land P)$$

$$P(H \land \neg N \land \neg B \land S \land \neg P)$$

$$P(H \land \neg N \land B \land \neg S \land \neg P)$$

$$P(H \land \neg N \land \neg B \land \neg S \land \neg P)$$

P(H) = True	P(N) = False	
$P(H \land \neg N \land B \land S \land P)$		
P(H P,S) = 0.8	P(S) = 0.1	
$P(\neg N H,B) = 0.1$	P(P) = 0.2	
P(B S,H) = 0.4		

P(H) = True	P(N) = False	
$P(H \land \neg N \land B \land S \land P)$		
P(H P,S) = 0.8	P(S) = 0.1	
$P(\neg N H,B)=0.1$	P(P) = 0.2	
P(B S,H) = 0.4		

$$P(H \land \neg N \land B \land S \land P) = P(H|P,S) \times P(\neg N|H,B) \times P(B|S,H) \times P(S) \times P(P)$$

 $P(H \land \neg N \land B \land S \land P) = 0.8 \times 0.1 \times 0.4 \times 0.1 \times 0.2$

0.00064

P(H) = True	P(N) = False	
$P(H \land \neg N \land \neg B \land \neg S \land \neg P)$		
$P(H \neg P, \neg S) = 0.02$	$P(\neg S) = 0.9$	
$P(\neg N H, \neg B) = 0.5$	$P(\neg P) = 0.8$	
$P(\neg B \neg S, H) = 0.7$		

P(H) = True	P(N) = False
$P(H \land \neg N \land \neg$	$B \wedge \neg S \wedge \neg P)$
$P(H \neg P, \neg S) = 0.02$	$P(\neg S) = 0.9$
$P(\neg N H, \neg B) = 0.5$	$P(\neg P) = 0.8$
$P(\neg B \neg S, H) = 0.7$	

$$P(H \land \neg N \land \neg B \land \neg S \land \neg P) = P(H|\neg P, \neg S) \times P(\neg N|H, \neg B) \times P(\neg B|\neg S, H) \times P(\neg S) \times P(\neg P)$$

$$P(H \land \neg N \land B \land S \land P) = 0.02 \times 0.5 \times 0.7 \times 0.9 \times 0.8 \qquad 0.00504$$

What is the probability that the patient suffers from bad posture given that they are suffering from headaches but not from nausea?

	Product Rule
$P(P \mid H \land \neg N)$	$\frac{P(P \land H \land \neg N)}{P(H \land \neg N)}$
	$P(H \land \neg N)$

What is the probability that the patient suffers from bad posture given that they are suffering from headaches but not from nausea?

$$P(P \mid H \land \neg N)$$

$$P(H \land \neg N \land B \land S \land P) = 0.00064$$

$$P(H \land \neg N \land \neg B \land S \land P) = 0.00480$$

$$P(H \land \neg N \land B \land \neg S \land P) = 0.00216$$

$$P(H \land \neg N \land B \land S \land \neg P) = 0.00192$$

$$P(H \land \neg N \land \neg B \land \neg S \land P) = 0.02520$$

$$P(H \land \neg N \land \neg B \land S \land \neg P) = 0.0144$$

$$P(H \land \neg N \land B \land \neg S \land \neg P) = 0.000432$$

$$P(H \land \neg N \land \neg B \land \neg S \land \neg P) = 0.00504$$

$$\sum_{b,s} P(H \land \neg N \land b \land s \land P)$$

$$P(H \land \neg N \land B \land S \land P) = 0.00064$$

$$P(H \land \neg N \land \neg B \land \neg S \land P) = 0.02520$$

$$P(H \land \neg N \land \neg B \land S \land P) = 0.00480$$

$$P(H \land \neg N \land B \land \neg S \land P) = 0.00216$$

0.00064 + 0.02520 + 0.00480 + 0.00216

0.0328

$$\sum_{b,s,p} P(H \land \neg N \land b \land s \land p)$$

$P(H \land \neg N \land B \land S \land P) = 0.00064$	$P(H \land \neg N \land \neg B \land S \land P) = 0.00480$
$P(H \land \neg N \land B \land \neg S \land P) = 0.00216$	$P(H \land \neg N \land B \land S \land \neg P) = 0.00192$
$P(H \land \neg N \land \neg B \land \neg S \land P) = 0.02520$	$P(H \land \neg N \land \neg B \land S \land \neg P) = 0.0144$
$P(H \land \neg N \land B \land \neg S \land \neg P) = 0.000432$	$P(H \land \neg N \land \neg B \land \neg S \land \neg P) = 0.00504$
0.00064 + 0.00480 + 0.00216 + 0.00192 + 0.02520 + 0.0144 + 0.000432 + 0.00504	0.054592

$$\frac{P(P \wedge H \wedge \neg N)}{P(H \wedge \neg N)}$$

$$P(P \mid H \land \neg N) =$$

$$\frac{P(P \wedge H \wedge \neg N)}{P(H \wedge \neg N)}$$

$$\frac{0.0328}{0.054592} = 0.6008$$

The probability of observing two events A and B is equivalent to the probability of observing A multiplied by the probability of observing B given A

$$P(A \land B \land C \land D) = P(A \mid B, C, D)$$

$$P(A \land B \land C \land D) = P(A \mid B, C, D) \times P(B \mid C, D)$$

$$P(A \land B \land C \land D) = P(A \mid B, C, D) \times P(B \mid C, D) \times P(C \mid D)$$

$$P(A \land B \land C \land D) = P(A \mid B, C, D) \times P(B \mid C, D) \times P(C \mid D) \times P(D)$$

$$P(Burglary) = 0.001$$

$$P(Earthquake) = 0.002$$

$$P(Alarm \mid Burglary \land Earthquake) = 0.95$$

 $P(Alarm | Burglary \land \neg Earthquake) = 0.94$

 $P(Alarm \mid \neg Burglary \land Earthquake) = 0.29$

 $P(Alarm \mid \neg Burglary \land \neg Earthquake) = 0.001$

$$P(JohnCalls \mid \neg Alarm) = 0.05$$

$$P(MaryCalls \mid Alarm) = 0.70$$

$$P(MaryCalls \mid \neg Alarm) = 0.01$$

 $\frac{P(Alarm \mid Burglary) \times P(Burglary)}{P(Alarm)}$

P(Burglary | Alarm) =

 $\frac{P(Alarm \mid Burglary) \times P(Burglary)}{P(Alarm)}$

P(Alarm Burglary)	P(Burglary)			
$P(Alarm \mid Burglary \land Earthquake) \times P(Earthquake)$		$0.95 \times 0.002 \times 0.001$	0.0000019	
$P(Alarm \mid Burglary \land \neg Earthquake) \times P(\neg Earthquake)$		$0.94 \times 0.998 \times 0.001$	0.0009381	

0.0000019 + 0.0009381 = 0.00094

 $\frac{P(Alarm \mid Burglary) \times P(Burglary)}{P(Alarm)}$

P(Burglary | Alarm) =

 $\frac{P(Alarm \mid Burglary) \times P(Burglary)}{P(Alarm)}$

P(Alarm)

 $P(Alarm \mid Burglary \land Earthquake) \times P(Burglary) \times P(Earthquake)$

 $P(Alarm \mid Burglary \land \neg Earthquake) \times P(Burglary) \times P(\neg Earthquake)$

 $P(Alarm \mid \neg Burglary \land Earthquake) \times P(\neg Burglary) \times P(Earthquake)$

 $P(Alarm \mid \neg Burglary \land \neg Earthquake) \times P(\neg Burglary) \times P(\neg Earthquake)$

 $\frac{P(Alarm \mid Burglary) \times P(Burglary)}{P(Alarm)}$

$$P(Burglary | Alarm) =$$

 $\frac{P(Alarm \mid Burglary) \times P(Burglary)}{P(Alarm)}$

P(Alarm)			
$0.95 \times 0.02 \times 0.001$	0.000019		
$0.94 \times 0.998 \times 0.001$	0.000938		
$0.29 \times 0.999 \times 0.002$	0.000579		
$0.001 \times 0.998 \times 0.999$	0.000997		

$$0.000019 + 0.000938 + 0.000579 + 0.000997$$

= 0.002533

 $\frac{P(Alarm \mid Burglary) \times P(Burglary)}{P(Alarm)}$

$$P(Burglary \mid Alarm) = \frac{P(Alarm \mid Burglary) \times P(Burglary)}{P(Alarm)}$$

$$\frac{0.00094}{0.00094} = 0.3711$$

Question 5 - Proof

$$P(B \mid A, C) = \frac{P(A \mid B, C) \times P(B \mid C)}{P(A \mid C)}$$

Chain Rule

$$P(A \land B \land C) = P(B \mid A, C) \times P(A \mid C) \times P(C)$$

$$= P(A \mid B, C) \times P(B \mid C) \times P(C)$$

Both are equivalent

Question 5 - Proof

$$P(B \mid A, C) = \frac{P(A \mid B, C) \times P(B \mid C)}{P(A \mid C)}$$

$$P(B \mid A, C) \times P(A \mid C) \times P(C) = P(A \mid B, C) \times P(B \mid C) \times P(C)$$

$$P(B \mid A, C) \times P(A \mid C) = P(A \mid B, C) \times P(B \mid C)$$

$$P(B \mid A, C) = \frac{P(A \mid B, C) \times P(B \mid C)}{P(A \mid C)}$$

Notes

- All python files for the assignment can be found at:
 - https://artint.info/AIPython/
- Some nice videos on Bayes Theorem:
 - https://www.youtube.com/watch?v=OqmJhPQYRc8
 - https://www.youtube.com/watch?v=HZGCoVF3YvM
 - https://www.youtube.com/watch?v=U 85TaXbelo