

WHAT IS CLAIMED IS:

1 1. A pipeline accelerator, comprising:
2 a communication bus; and
3 a plurality of pipeline units each coupled to the communication bus and each
4 comprising a respective hardwired-pipeline circuit.

1 2. The pipeline accelerator of claim 1 wherein each of the pipeline units
2 comprises:
3 a respective memory coupled to the hardwired-pipeline circuit; and
4 wherein the hardwired-pipeline circuit is operable to,
5 receive data from the communication bus,
6 load the data into the memory,
7 retrieve the data from the memory,
8 process the retrieved data, and
9 drive the processed data onto the communication bus.

1 3. The pipeline accelerator of claim 1 wherein each of the pipeline units
2 comprises:
3 a respective memory coupled to the hardwired-pipeline circuit; and
4 wherein the hardwired-pipeline circuit is operable to,
5 receive data from the communication bus,
6 process the data,
7 load the processed data into the memory,
8 retrieve the processed data from the memory, and
9 load the retrieved data onto the communication bus.

1 4. The pipeline accelerator of claim 1 wherein each of the hardwired-pipeline
2 circuits is disposed on a respective field-programmable gate array.

1 5. The pipeline accelerator of claim 1, further comprising:
2 a pipeline bus; and
3 a pipeline-bus interface coupled to the communication bus and to the pipeline
4 bus.

- 1 6. The pipeline accelerator of claim 1, further comprising:
2 wherein the communication bus comprises a plurality of branches, a respective
3 branch coupled to each pipeline unit; and
4 a router coupled to each of the branches.
- 1 7. The pipeline accelerator of claim 1, further comprising:
2 wherein the communication bus comprises a plurality of branches, a respective
3 branch coupled to each pipeline unit;
4 a router coupled to each of the branches;
5 a pipeline bus; and
6 a pipeline-bus interface coupled to the router and to the pipeline bus.
- 1 8. The pipeline accelerator of claim 1, further comprising:
2 wherein the communication bus comprises a plurality of branches, a respective
3 branch coupled to each pipeline unit;
4 a router coupled to each of the branches;
5 a pipeline bus;
6 a pipeline-bus interface coupled to the router and to the pipeline bus; and
7 a secondary bus coupled to the router.
- 1 9. The pipeline accelerator of claim 1 wherein:
2 the communication bus is operable to receive data addressed to one of the
3 pipeline units; and
4 the one pipeline circuit is operable to accept the data; and
5 the other pipeline circuits are operable to reject the data.
- 1 10. The pipeline accelerator of claim 1, further comprising:
2 wherein the communication bus comprises a plurality of branches, a respective
3 branch coupled to each pipeline unit;
4 a router coupled to each of the branches and operable to,
5 receive data addressed to one of the pipeline units, and
6 provide the data to the one pipeline unit via the respective branch of the
7 communication bus.

- 1 11. A computing machine, comprising:
 - 2 a processor;
 - 3 a pipeline bus coupled to the processor; and
 - 4 a pipeline accelerator comprising,
 - 5 a communication bus,
 - 6 a pipeline-bus interface coupled between the pipeline bus and the
 - 7 communication bus, and
 - 8 a plurality of pipeline units each coupled to the communication bus and
 - 9 each comprising a respective hardwired-pipeline circuit.
- 1 12. The computing machine of claim 11 wherein:
 - 2 the processor is operable to generate a message that identifies one of the
 - 3 pipeline units and to drive the message onto the pipeline bus;
 - 4 the pipeline-bus interface is operable to couple the message to the
 - 5 communication bus;
 - 6 the pipeline units are each operable to analyze the message;
 - 7 the identified pipeline unit is operable to accept the message; and
 - 8 the other pipeline circuits are operable to reject the message.
- 1 13. The computing machine of claim 11, further comprising:
 - 2 wherein the communication bus comprises a plurality of branches, a respective
 - 3 branch coupled to each pipeline unit;
 - 4 wherein the processor is operable to generate a message that identifies one of
 - 5 the pipeline units and to drive the message onto the pipeline bus; and
 - 6 a router coupled to each of the branches and to the pipeline-bus interface and
 - 7 operable to receive the message from the pipeline-bus interface and to provide the
 - 8 message to the identified pipeline unit.
- 1 14. The computing machine of claim 11, further comprising:
 - 2 wherein the communication bus comprises a plurality of branches, a respective
 - 3 branch coupled to each pipeline unit;
 - 4 a secondary bus; and

5 a router coupled to each of the branches, to the pipeline-bus interface, and to the
6 secondary bus.

1 15. A method, comprising:

2 sending data to first of a plurality of pipeline units via a communication bus, each
3 pipeline unit including a respective hardwired pipeline; and
4 processing the data with the first pipeline unit.

1 16. The method of claim 15 wherein sending the data comprises:

2 sending the data to a router; and
3 providing the data to the first pipeline unit with the router via a respective first
4 branch of the communication bus.

1 17. The method of claim 15 wherein sending the data comprises sending the
2 data to the first pipeline unit with a processor.

1 18. The method of claim 15 wherein sending the data comprises sending the
2 data to the first pipeline with a second of the plurality of pipeline units.

1 19. The method of claim 15, further comprising driving the processed data
2 onto the communication bus with the first pipeline unit.

1 20. The method of claim 15 wherein processing the data with the first pipeline
2 unit comprises:

3 receiving the data from the communication bus with a hardwired-pipeline circuit,
4 loading the data into a memory with the hardwired-pipeline circuit,
5 retrieving the data from the memory with the hardwired-pipeline circuit, and
6 processing the retrieved data with the hardwired-pipeline circuit.

1 21. The method of claim 15, further comprising:

2 wherein processing the data with the first pipeline unit comprises,
3 receiving the data from the communication bus with a hardwired-pipeline
4 circuit,
5 processing the received data with the hardwired-pipeline circuit, and

6 loading the processed data into a memory with the hardwired-pipeline
7 circuit; and
8 retrieving the processed data from the memory and driving the processed data
9 onto the communication bus with the hardwired-pipeline circuit.

1 22. The method of claim 15, further comprising:
2 generating a message that includes the data and that identifies the first pipeline
3 unit as a recipient of the message; and
4 wherein sending the data to the first pipeline unit comprises determining from the
5 message that the first pipeline is a recipient of the message.