Improved decision procedures for multi-modal tense logic using CEGAR-tableaux or Rational reconstruction of CEGAR-tableaux from a tableau perspective

Rajeev Goré¹ Cormac Kikkert²

¹Monash University, Melbourne, Australia

²Cormac Kikkert Research

September 26, 2025

Modal Tableaux: CPL-tableaux with extra (K) rule

Negation normal form: rewrite implications $A \to B$ as $\neg A \lor B$ and push negations down to atoms using de Morgan dualities

Old way: cpl-tableaux plus (K) rule for modalities in nnf

(Id) $\frac{p; \neg p; X}{A; B; X}$ (\land) $\frac{A \land B; X}{A; B; X}$ (\lor) $\frac{A \lor B; X}{A; X}$ (\lor) $\frac{\Diamond A; \Box X; \Diamond Y; L}{A; X}$ where X, Y are finite sets, and comma is set partition and L is a set of atoms and negated atoms and (K) chooses A non-deterministically

$$\frac{\neg(\Box(p\to q)\to(\Box p\to\Box q))}{\frac{\Box(\neg p\lor q)\land\Box p\land\Diamond\neg q}{\Box(\neg p\lor q)\;;\;\Box p\;;\;\Diamond\neg q}} \underset{(K)}{\text{nnf}}$$

$$\frac{\neg p\;;\;p\;;\;\neg q}{\neg p\;;\;p\;;\;\neg q} \underset{(id)}{\text{(id)}}$$

Closed tableau for negation of K-axiom $\Box(p \to q) \to (\Box p \to \Box q)$

Using a CPL Oracle via a Restart Rule

cpl: as an oracle sets up OR-branching but needs backtracking

$$(\mathsf{cpl}) \xrightarrow[L_1; \square X_1; \lozenge A_1; \dots; \lozenge A_m]{Z_0} - \xrightarrow[L_2; \square X_2; \lozenge Y_2]{Z_0} - \xrightarrow[L_2; \square X_2; \lozenge Y_2]{Z_0} - \cdots$$

Intuitions: don't make the same mistake twice!

Restart Z_0 by learning negation of conflict set $\varphi := \neg(\Box X_1; \Diamond A_1)$

$$(\mathsf{cpl}) \begin{tabular}{l} $L_1; \square X_1; \lozenge A_1; \cdots; \lozenge A_m \\ & & X_1; X_1 \end{tabular} (\mathsf{K}) \end{tabular}$$

Too naive: $\neg \Box B_1 \lor \cdots \lor \neg \Box B_n \lor \neg \Diamond A_1$ creates work!

Relevance: which members of conflict set are necessary for clash?

Modal KE-Tableaux Using Negation Normal Form

$$(\operatorname{Id}) \xrightarrow{p; \neg p; X} (\land) \xrightarrow{A \land B; X} (\operatorname{KE}) \xrightarrow{A; \overline{A} \lor B; X} (\operatorname{K}) \xrightarrow{\Diamond A; \Box X; \Diamond Y; L} (\operatorname{PB}) \xrightarrow{X} \xrightarrow{A; X} \xrightarrow{\overline{A}; X} \xrightarrow{A \lor B; X} (\operatorname{PB}) \xrightarrow{A; X} (\operatorname{FB})$$

D'Agostino and Mondadori 1994: KE-tableaux plus (K) rule in nnf Explicit Cut rule: (PB) rule necessary for completeness (KE): is (ineffective) modus ponens from A and $A \rightarrow B$ infer B (\lor) rule: with mutually exclusive OR-branches is derivable Example: Closed KE-tableau for negation of K-axiom

$$\frac{\neg(\Box(p \to q) \to (\Box p \to \Box q))}{\Box(\neg p \lor q) \land \Box p \land \Diamond \neg q \atop \Box(\neg p \lor q) ; \Box p ; \Diamond \neg q \atop (K)} \text{nnf}$$

$$\frac{\neg (\Box(p \to q) \to (\Box p \to \Box q))}{\Box(\neg p \lor q) ; \Box p ; \Diamond \neg q \atop (K)} \text{nnf}$$

$$\frac{\neg p \lor q ; p ; \neg q \atop (KE)}{\neg q ; p ; \neg q \atop (id)}$$

Note: atomic KE rule is effective!

Modal Clausal Normal Form

MCNF: convert given $\neg \varphi_0$ into modal clausal normal form via fresh atomic formulae (names) for subformulae of $\neg \varphi_0$ (Mints)

$$\begin{array}{ll} \text{cpl-clauses: } I_1 \wedge \cdots \wedge I_n \to r_1 \vee \cdots \vee r_m & (\mathcal{C}^{cpl}) \\ \text{box-clauses: } a \to \Box b & (\mathcal{C}^{box}) \\ \text{dia-clauses: } c \to \Diamond d & (\mathcal{C}^{dia}) \end{array}$$

Lemma: A formula of modal depth κ can be put into a modal clausal normal form below which is equi-satisfiable

$$mcnf(nnf(\neg \varphi_0)) = \Box^0 \mathcal{C}_0 \; ; \; \Box^1 \mathcal{C}_1 \; ; \; \cdots \; ; \; \Box^\kappa \mathcal{C}_\kappa$$

where every C_i is a set of modal clauses

(recursive)

Example: consider the negation of the K axiom

$$(\mathsf{mcnf}) \frac{\neg (\Box(p \to q) \to (\Box p \to \Box q))}{\Box(\neg p \lor q) \; ; \; \Box p \; ; \; \Diamond \neg q} \\ (\mathsf{mcnf}) \frac{}{a_1; \, a_2; \, c_1; \, a_1 \to \Box b_1; \, a_2 \to \Box p; \, c_1 \to \Diamond \neg q; \Box (b_1 \to (\neg p \lor q))}$$

Modal KE-tableaux with clause learning in MCNF?

Example: what we can learn from a jump that closes?
$$\mathcal{C}^{cpl} \; ; \; \mathcal{C}^{box} \; ; \; \mathcal{C}^{dia} \; ; \; \square \mathcal{MC}$$

$$a_1; a_2; c_1 \; ; \; a_1 \to \square b_1; a_2 \to \square p \; ; \; c_1 \to \lozenge \neg q \; ; \; \square(b_1 \to \neg p \vee q) \\ \hline \frac{a_1; a_2; c_1; \square b_1; \square p; \lozenge \neg q; \square(b_1 \to \neg p \vee q)}{b_1; p; \neg q; b_1 \to (\neg p \vee q)} \; (\mathsf{KE}) \times 2 \\ \hline \frac{b_1; p; \neg q; q}{\times} \; (\mathrm{id})$$
 Fact: each of $\{b_1, p, \neg q\}$ is essential for clash Fact: so $(\square b_1; \square p; \lozenge \neg q)$ is K-unsatisfiable Could learn $\neg (\square b_1; \square p; \lozenge \neg q) = (\neg \square b_1 \vee \neg \square p \vee \neg \lozenge \neg q)$ But: the culprits are actually their names $(a_1; a_2; c_1)$ Instead Learn $\varphi := (\neg a_1 \vee \neg a_2 \vee \neg c_1)$ and restart $\mathcal{C}^{cpl} \; ; \; \mathcal{C}^{box} \; ; \; \mathcal{C}^{dia} \; ; \; \square \mathcal{MC}$ (restart $(\mathcal{C}^{cpl}; \varphi)$) $\underline{a_1; a_2; c_1; \neg a_1 \vee \neg a_2 \vee \neg c_1} \; ; \; \mathcal{C}^{box} \; ; \; \mathcal{C}^{dia} \; ; \; \square \mathcal{MC}$ (KE)×3

CEGAR-tableaux Rules (Downwards)

$$(\mathsf{cpl}) \stackrel{\mathcal{C}^{\mathit{cpl}}}{=} ; \stackrel{\mathcal{C}^{\mathit{box}}}{:} ; \stackrel{\mathcal{C}^{\mathit{dia}}}{:} ; \square \mathcal{MC} \atop \times } \mathit{cpl}(\mathcal{C}^{\mathit{cpl}}) = \mathit{unsat}$$

jump: (KE+K) rule which builds in multiple modus ponens steps

$$(\mathsf{jump}) \frac{\vartheta \; ; \; \mathcal{C}^{dia} \; ; \; \mathcal{C}^{box} \; ; \; \Box \mathcal{M} \mathcal{C}}{d \; ; \; B \; ; \; \mathcal{M} \mathcal{C}} \; cpl(\mathcal{C}^{cpl}) = \vartheta$$
 where $(c \to \lozenge d) \in \mathcal{C}^{dia} \; \& \; c \in \vartheta \; \mathsf{via} \; (\mathsf{KE})$ and $B := \{b \; | \; (a \to \Box b) \in \mathcal{C}^{box} \; \& \; a \in \vartheta \} \; \mathsf{via} \; (\mathsf{KE}) + (\mathsf{K})$

CEGAR-tableaux Rules (both ways)

SAT-solver: a cpl oracle which either returns a cpl-valuation ϑ or-else returns a "minimal unsatisfiable core" UC (id): rule to close a branch

$$(\mathsf{id}) \, \frac{\mathcal{C}^{\mathit{cpl}} \, \; ; \; \mathcal{C}^{\mathit{box}} \; ; \; \mathcal{C}^{\mathit{dia}} \; ; \; \Box \mathcal{MC}}{\times} \, \mathit{sat}(\mathcal{C}^{\mathit{cpl}}) = (\mathit{unsat}, \mathit{UC})$$

(jump/restart): (KE+K) rule which builds in multiple modus ponens steps and relevant clause-learning and restart

$$\frac{w_0 := \mathcal{C}^{cpl} \; ; \; \mathcal{C}^{dia} \; ; \; \mathcal{C}^{box} \; ; \; \Box \mathcal{MC}}{d \; ; \; B \; ; \; \mathcal{MC} \qquad w_0; \; \varphi} \; sat(\mathcal{C}^{cpl}) = (sat, \vartheta)$$

(jump): exists
$$(c \to \Diamond d) \in \mathcal{C}^{dia} \& c \in \vartheta$$
 and $B := \{b \mid (a \to \Box b) \in \mathcal{C}^{box} \& a \in \vartheta\}$ (restart): if $d; B; \mathcal{MC}$ returns (unsat, UC) then conflict set: $CS(w_0) = \{c\}; \{a \mid (a \to \Box b) \in \mathcal{C}^{box} \& b \in UC\}$ clause learning: restart with $\varphi := \neg CS(w_0) = (\neg I_1 \lor \cdots \lor \neg I_n)$

Three valued logic: a "false" is not the same as $\Box b$ "false"

CEGAR-tableaux Rules (both ways) Example

Example: consider negation of the K axiom

$$\begin{array}{c} \mathcal{C}^{cpl} \; ; \; \mathcal{C}^{box} \; ; \; \mathcal{C}^{dia} \; ; \; \square \mathcal{M} \mathcal{C} \\ \text{(jump/restart)} \; \frac{a_1; \, a_2; \, c_1; \, a_1 \rightarrow \square b_1; \, a_2 \rightarrow \square p; \, c_1 \rightarrow \lozenge \neg q; \, \square(b_1 \rightarrow \neg p \vee q)}{\neg q; \, b_1; \, p; \qquad \qquad \qquad (\neg a_1 \vee \neg a_2 \vee \neg c_1); \, a_1; \, a_2; \, c_1; \\ \text{(id)} \; \frac{b_1 \rightarrow \neg p \vee q}{\left(\textit{unsat}, \{\neg q, b_1, p\}\right)} \; & \frac{\mathcal{C}^{box} \; ; \; \mathcal{C}^{dia} \; ; \; \square \mathcal{M} \mathcal{C}}{\left(\textit{unsat}, \{a_1, a_2, c_1\}\right)} \; \text{(id)} \end{array}$$

```
SAT-solver: sat(\mathcal{C}^{cpl}) = (sat, \vartheta) where \vartheta = \{a_1, a_2, c_1\} pre-jump: exists (c_1 \to \Diamond \neg q) \in \mathcal{C}^{dia} such that c_1 \in \vartheta pre-jump: let B = \{b \mid (a \to \Box b) \in \mathcal{C}^{box} \& a \in \vartheta\} = \{b_1, p\} jump: to node (d; B; \mathcal{MC}) = (\neg q; b_1; p; b_1 \to \neg p \lor q) SAT-solver: sat(\mathcal{C}^{cpl}) = (unsat, UC) where UC = \{\neg q, b_1, p\} Conflict set: CS(w_0) = \{a_1, a_2, c_1\} Restart: with \neg CS(w_0) = (\neg a_1 \lor \neg a_2 \lor \neg c_1)
```

CEGAR-tableaux = Modal KE-Tableaux in MCNF

Example: consider negation of the K axiom

$$(\mathsf{KE}+\mathsf{K}) \frac{ (\mathsf{PB}) \frac{a_1 \to \Box b_1; \, a_2 \to \Box p; \, c_1 \to \Diamond \neg q; \Box (b_1 \to \neg p \lor q)}{a_1; \, a_2; \, c_1} }{ \neg q; \, b_1; \, p; } \frac{ (\neg a_1 \lor \neg a_2 \lor \neg c_1); \, a_1; \, a_2; \, c_1;}{\mathcal{C}^{box} \; ; \; \mathcal{C}^{dia} \; ; \; \Box \mathcal{MC}}$$

$$(\mathsf{KE}+\mathsf{id}) \frac{b_1 \to \neg p \lor q}{\times} \frac{ (\mathsf{KE}+\mathsf{id})^2 }{ \times}$$

SAT-solver with assumptions: $sat(\mathcal{A}, \mathcal{C}^{cpl} \setminus \mathcal{A}) = (sat, \vartheta \supseteq \mathcal{A})$ correctly guesses the conflict set $CS(w_0) = \{a_1, a_2, c_1\} \subseteq \vartheta$

Restart: with $\neg CS(w_0) = (\neg a_1 \lor \neg a_2 \lor \neg c_1)$ is just (PB)

Conclusion: CEGAR-tableaux are modal KE-tableaux!

Residuation in Classical Propositional Tense Logic

Syntax: given some set *Atm* of atomic formulae

$$A ::= p \mid \neg A \mid A \land A \mid A \lor A \mid A \rightarrow A \mid \Box A \mid \Diamond A \mid \blacksquare A \mid \spadesuit A$$

Reading of $\Box A$: "always in the future A"

Reading of $\blacksquare A$: "always in the past A"

Reading of $\Diamond A := \neg \Box \neg A$: "sometime in the future A"

Reading of $A := \neg \blacksquare \neg A$: "sometime in the past A"

 $\blacklozenge \Box p \rightarrow p$: if sometime in the past always in the future p then p

 $\Diamond \blacksquare p \rightarrow p$: if sometime in the future always in the past p then p

Extensions For Handling Converse

Problem: traditional modal tableaux cannot go "back" in time

$$(\mathsf{K}) \xrightarrow{\langle A; \Box X; \Diamond Y; L} \langle A; X \rangle \Rightarrow A; X; \blacksquare B$$

Various Solutions: labels, display calculi, (linear) nesting, hypersequents, restricted cut rule, restart rule, ...

Restart Rule: intuitions only (i.e read paper)

$$(\text{restart}) \xrightarrow{ \Diamond A; \, \Box X; \, \Diamond Y; \, L \longrightarrow A; \, X; \, \blacksquare B} \\ \Diamond A; \, \Box X; \, \Diamond Y; \, L; \, B$$

Example: residuation axiom $\neg(\lozenge \blacksquare p \to p) = (\lozenge \blacksquare p; \neg p)$

$$(K) \xrightarrow{\Diamond \blacksquare p; \neg p}$$

$$(restart) \xrightarrow{\Diamond \blacksquare p; \neg p \longrightarrow \blacksquare p}$$

$$(id) \xrightarrow{\times}$$

Concrete Paper: Rajeev Goré, Björn Lellmann: Syntactic Cut-Elimination and Backward Proof-Search for Tense Logic via Linear Nested Sequents. TABLEAUX 2019: 185-202

Residuation Again But Locally

Residuation
$$\lozenge \blacksquare A \to A$$
 and $\blacklozenge \square A \to A$
Claim: $\square(A \to \blacksquare B) \to (\lozenge A \to B)$ and $\blacksquare(A \to \square B) \to (\blacklozenge A \to B)$
(not-inwards) $\frac{\neg(\square(A \to \blacksquare B) \to (\lozenge A \to B))}{\square(A \to \blacksquare B); \lozenge A; \neg B}$
(K) $\frac{\neg(A \to \blacksquare B); \lozenge A; \neg B}{\square(A \to \blacksquare B); \lozenge A; \neg B \longrightarrow A; A \to \blacksquare B}$
(mP) $\frac{\neg(A \to \blacksquare B); \lozenge A; \neg B \longrightarrow A; A \to \blacksquare B; \blacksquare B}{\square(A \to \blacksquare B); \lozenge A; \neg B \longrightarrow A; A \to \blacksquare B; \blacksquare B}$

Preprocessing rules:

$$\frac{X; \Box(A \to \blacksquare B)}{X; \Box(A \to \blacksquare B); \Diamond A \to B} \qquad \frac{X; \blacksquare(A \to \Box B)}{X; \blacksquare(A \to \Box B); \blacklozenge A \to B}$$

Problem: how to "see" $\Box(A \rightarrow \blacksquare B)$ "here" in these rules

Modal Clausal Normal Form For Tense Logic

Lemma: A formula of modal depth κ can be put into a modal clausal normal form below which is equi-satisfiable

$$\square^{0}\mathcal{C}_{0}; \square^{1}\mathcal{C}_{1}; \blacksquare^{1}\mathcal{D}_{1}; \square^{1}\blacksquare^{1}\mathcal{E}_{1}; \blacksquare^{1}\square^{1}\mathcal{F}_{1}; \cdots; \square^{\kappa}\mathcal{C}_{\kappa}; \blacksquare^{\kappa}\mathcal{D}_{\kappa}$$

where every $C_i, D_i, \mathcal{E}_i, \mathcal{F}_i$ is a set of modal clauses Problem: how to "see" $\square(a \to \blacksquare b)$ "here"

. How to see
$$\triangle(a / 2b)$$
 Here

$$\begin{array}{c} X; \square(a \to \blacksquare b) \\ X; \square(a \to \blacksquare b); \Diamond a \to b \end{array} \qquad \begin{array}{c} X; \blacksquare(a \to \square b) \\ X; \blacksquare(a \to \square b); \blacklozenge a \to b \end{array}$$

Example: consider the negation of one of the residuation axioms

$$(\text{residuation}) \underbrace{ (\text{mcnf}) \frac{\neg (\blacklozenge \Box p \rightarrow p)}{\blacklozenge \Box p; \neg p}}_{\text{$(\text{jump/restart})}} \underbrace{ \frac{(\text{mcnf}) \frac{\neg (\blacklozenge \Box p \rightarrow p)}{\blacklozenge \Box p; \neg p}}{c_1; \neg p; c_1 \rightarrow \blacklozenge d_1; \blacksquare (d_1 \rightarrow \Box p)}}_{\text{$(\text{unsat}, d_1; \neg d_1)$}} \underbrace{ \frac{d_1; \neg d_1; d_1 \rightarrow \Box p}{(\text{unsat}, d_1; \neg d_1)}}_{\text{$(\text{unsat}, c_1; \neg p)$}} \underbrace{ \frac{w_0; \neg c_1 \lor p}{(\text{unsat}, c_1; \neg p)}}_{\text{$(\text{unsat}, c_1; \neg p)$}}$$

Results for Tense Logic

Figure: CEGARBox++ versus fact++ and Konklude

Experimental Results for K

KT (reflexive) and S4 (reflexive and transitive)

Rajeev Goré, Cormac Kikkert: CEGAR-Tableaux: Improved Modal Satisfiability via Modal Clause-Learning and SAT. TABLEAUX 2021: 74-91

Results for five basic extensions

			Fire M	ladal Eukanaian E	Danulas fau DEOs		
Five Modal Extension Results for 250s							
Logic	Status	ksp	GMR	CEGARBox++	CEGARBox++	CEGARBox++	CEGARBox++
		Local		Local	Global	Bespoke	Single
K	sat	100	85	100	NA	NA	100
K	unsat	78	76	90	NA	NA	90
KD	sat	100	85	100	NA	NA	100
KD	unsat	75	76	90	NA	NA	90
KT	sat	69	79	97	NA	100	95
KT	unsat	75	77	90	NA	90	90
KB	sat	64	57	100	NA	100	97
KB	unsat	52	78	87	NA	89	90
K4	sat	58	85	78	82	84	98
K4	unsat	32	51	45	69	69	69
K5	sat	37	60	90	90	92	97
K5	unsat	32	45	60	42	49	62
NA means "prover does not exist"							

Table: Number of problems solved (out of 100 for each category) for five extensions of K using benchmarks from Nalon et al 2022.

Some version of CEGARBox++ is best

What about the modal cube?

Simple Extensions: of K by five basic axioms of D, T, 4, 5, B Modal Cube: 15 different logics obtained by mixing and matching Nalon et al: give reductions of all 15 logics into K

Cláudia Nalon, Ullrich Hustadt, Fabio Papacchini, Clare Dixon: Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic. CADE 2023: 382-400

Thm: for every formula φ , for every logic L in the modal cube, φ is L-satisfiable iff $\tau(\varphi)$ is K-satisfiable (Nalon et al)

Nalon et al: "the combination of the definitional reduction with CEGARBox is currently the best performing approach on our collection of benchmark formulae for the modal cube"

Questions?

Original Haskell Version: by Cormac Kikkert
https://github.com/cormackikkert/CEGARBox-1

New C++ Version: by Robert McArthur and Cormack Kikkert https://github.com/cormackikkert/CEBARBoxCPP