TURINGQ DATASET Context-Free

EVALUATION

second to GPT-4 !!!

MODELS

Gemma-7B Llama2-7B Mistral-7B

GPT-4 Llama3-8B

FINETUNNING

SFT

Countability

Theory

Light Adapter improved Math skills!!

LLM AS A JUDGE

Similar Average Performance!

Llama3-8b **Human Expert**

You are an automated grading system for theory of computation and complexity answers. Assign a score of 1 to 4 based on correctness and alignment with the provided solution, following the specified rubrics...

Prefer Longer answers! (May) Inject their own reasoning!

TURINGQ INSTANCES

Is the language $L = \{x \in \{a, b\}^* : a \in \{a, b\}^* :$ x contains twice as many a's as b's}

regular or not?

The language L<u>is</u> regular.

L can be described by the regular expression aabb*.

Gemma-7b

True/False: For all languages L1 and L3: $(L1* \cup L3*) = (L1* \cup L3*)$ L3*)*

True: The Kleene star operation distributes over union.

Prove that the language $L = {<M1, M2> : M1,M2}$ are TMs and L(M1) = L(M2)}, is undecidable.

Since we have reached a contradiction, our initial assumption that L is decidable must be false. Therefore, L is

undecidable.

Llama3-8B TuringQ