МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

по дисциплине

«Дискретные системы управления»

по теме:

ИССЛЕДОВАНИЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ С ДИСКРЕТНЫМ ПИД-РЕГУЛЯТОРОМ

Студент.	
Γpynna № R3435	Зыкин Л. В
Вариант №8	

Ступент:

Предподаватель: доцент Краснов А. Ю.

1 ПОСТАНОВКА ЗАДАЧИ

Цель работы: исследовать цифровую САУ температуры, синтезировать и настроить дискретный регулятор согласно порядку выполнения из методички (стр. 49–56). Вариант: **8** (табл. 7: $T_1 = 0.9$, $T_2 = 1.05$).

1.1 Модель объекта и выбор периода дискретизации

Непрерывная часть объекта представляется последовательно соединёнными звеньями вида $\frac{1}{T_1s+1}$ и $\frac{1}{T_2s+1}$. Период дискретизации выбираем по заданию: сначала $T=T_1/2$, затем $T=T_1/4$. В качестве датчика используем ZOH.

1.2 Синтез дискретного регулятора

Для структуры согласно рис. 17–18 методички выполняется расчёт параметров регулятора и подбор коэффициента передачи q_0 , обеспечивающего слабоколебательный процесс. Моделирование и поиск q_0 выполняются в Руthon (см. листинги), графики приведены ниже.

Методика подбора q_0 (в соответствии с п. 2–3 порядка работ):

- 1. фиксируем период дискретизации T (сначала $T=T_1/2$, затем $T=T_1/4$) и дискретизуем объект через ZOH;
- 2. проводим серию моделирований по сетке $q_0 \in [q_{\min}, q_{\max}];$
- 3. выбираем q_0 , обеспечивающий перерегулирование в пределах 5— 15% и минимальное время установления (если таких нет, берём минимум по интегральному критерию ISE при устойчивости).

По результатам подбора: при $T=T_1/2$ получено $q_0\approx 4.00$, при $T=T_1/4$ — $q_0\approx 4.92$.

1.3 Эксперименты

Для каждого из периодов дискретизации проведены три эксперимента:

1. реакция на ступенчатое задающее воздействие;

- 2. реакция на ступенчатое возмущающее воздействие;
- 3. реакция на возмущение, изменяющееся по случайному закону.

Рисунок 1 — Ступенчатое задание, $T=T_1/2$

Рисунок 2 — Ступенчатое возмущение, $T=T_1/2$

Рисунок 3 — Случайное возмущение, $T=T_1/2$

Для $T = T_1/4$ получены аналогичные результаты (см. ниже):

Рисунок 4 — Ступенчатое задание, $T=T_1/4$

Рисунок 5 — Ступенчатое возмущение, $T=T_1/4$

Рисунок 6 — Случайное возмущение, $T=T_1/4$

1.4 Влияние периода дискретизации и неточности T_2

Сравниваются качества процесса управления при $T=T_1/2$ и $T=T_1/4$ (Рисунок ниже): уменьшение T снижает дискретизационные искажения и ускоряет процесс, цена — более частое обновление управления. Также исследуется влияние неточности компенсации полюсов: T_2 изменяется на $\pm 20\%$, реакции фиксируются при неизменном q_0 для режима $T=T_1/2$. При занижении/завышении T_2 наблюдаются соответственно более быстрые/замедлен-

ные переходные и изменение перерегулирования — это демонстрирует чувствительность САУ к ошибок идентификации.

Рисунок 7 — Сравнение $T=T_1/2$ и $T=T_1/4$ (переходные по заданию)

Рисунок 8 — Влияние ошибки T_2 на реакцию на возмущение

1.5 Выводы

Получены следующие выводы: (i) $T=T_1/4$ обеспечивает лучшее качество (меньше ISE и время установления) при сопоставимом перерегулировании, чем $T=T_1/2$; (ii) корректный выбор q_0 позволяет добиться сла-

боколебательных переходных; (iii) ошибка в T_2 на $\pm 20\%$ заметно влияет на быстродействие и перерегулирование, что требует уточнения модели в контуре настройки.