Lecture 3

Principal values and Principal vectors; Symmetric and Skew-symmetric tensors; Axial vector

Review of L2

I. Tensors: Linear transformation of vectors

- 1. $\mathbf{A} \cdot \mathbf{a} = \mathbf{b}$ OR $\mathbf{a} \cdot \mathbf{A} = \mathbf{b}$.
- 2. $C = (A + B); D = A \cdot B.$
- 3. Understood by their operations.

II. Tensor product $a \otimes b$

- 1. $(\mathbf{a} \otimes \mathbf{b}) \cdot \mathbf{c} = (\mathbf{c} \cdot \mathbf{b})\mathbf{a}; \mathbf{c} \cdot (\mathbf{a} \otimes \mathbf{b}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b}$
- 2. $\mathbf{a} \otimes \mathbf{b} = (a_i b_j) \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j \text{ in } \{\mathcal{P}, P, \hat{\mathbf{e}}_i\}.$
- 3. Tensorial basis in $\{\mathcal{P}, P, \hat{\mathbf{e}}_i\}$ is $\hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$.
- 4. $A = A_{ij}\hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$, with $A_{ij} = \hat{\mathbf{e}}_i \cdot \mathbf{A} \cdot \hat{\mathbf{e}}_j$;

Matrix of A in
$$\mathscr{P}$$
: [A] $_{\mathscr{P}} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$

III. Tensor algebra

1.
$$A^T = A_{ji} \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j \implies (A^T)_{ij} = A_{ji}$$

2.
$$tr(A) = A_{ii} = A'_{ii} = tr(A^T)$$

Principal values, Principal vectors

- I. **Definition**: A tensor A has principal value λ with associated principal vector $\hat{\mathbf{v}}$ if $\mathbf{A} \cdot \hat{\mathbf{v}} = \lambda \hat{\mathbf{v}}$, $|\hat{\mathbf{v}}| = 1$.
 - 1. Same as eigenvalues and eigenvectors.
 - 2. Any scaling of $\hat{\mathbf{v}}$ is a principal vector.
 - 3. Principal pair $\{\lambda, \hat{\mathbf{v}}\}$ independent of CS.
- II. How to find $\{\lambda, \hat{\mathbf{v}}\}$ for a given A? Find $\{\lambda, [\mathbf{v}]_{\mathscr{P}}\}$ for $[A]_{\mathscr{P}}$ in any $\{\mathscr{P}, P, \hat{\mathbf{e}}_i\}$
- III. Properties: Real tensor A on 3D vectors:
 - 1. A always has 3 principal values λ_i :
 - i. all real or one real+complex conjugates
 - ii. not all unique; some may repeat;
 - 2. Real λ_i has a real principal vector $\hat{\mathbf{v}}_i$.
 - i. A *always* has at least *one* real $\hat{\mathbf{v}}$.
 - ii. A repeated λ may not have as many $\hat{\mathbf{v}}$.
 - iii. $\lambda_i \neq \lambda_i \implies \hat{\mathbf{v}}_i, \hat{\mathbf{v}}_i$ linearly independent.
 - 3. A and A^T have same λ_i but not same $\hat{\mathbf{v}}_i$.

Principal values, Principal vectors

I. Examples

- II. **Definition**: If A has three independent principal vectors $\hat{\mathbf{v}}_i$, i = 1...3, then they define the principal axes coordinate system $\{\mathcal{P}, O, \hat{\mathbf{v}}_i\}$ of A.
 - 1. Generally, $\hat{\mathbf{v}}_i \cdot \hat{\mathbf{v}}_j \neq \delta_{ij}$, i.e. $\{\mathcal{P}, O, \hat{\mathbf{v}}_i\}$ is not always a Cartesian CS.
- III. **Properties**: A has principal pairs $\{\lambda_i, \hat{\mathbf{v}}_i\}$, i = 1,2,3 and principal CS $\{\mathcal{P}, O, \hat{\mathbf{v}}_i\}$:
 - 1. Use similarity transformation to compute

$$[A]_{\mathscr{P}} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

A is diagonalized in its principal CS!

2. Thus,
$$A = \sum_{i=1}^{3} \lambda_i \hat{\mathbf{v}}_i \otimes \hat{\mathbf{v}}_i$$
.

Symmetric tensor

- I. **Definition**: S is symmetric if $S = S^T$.
- II. **Properties**: If S is symmetric with principal values S_i , i = 1...3:
 - 1. S_i are always real;
 - 2. There exist *three* principal vectors $\hat{\mathbf{e}}_i$.
 - i. $\hat{\mathbf{e}}_i$ are always <u>orthogonal</u>.
 - ii. Principal CS $\{\mathcal{P}, C, \hat{\mathbf{e}}_i\}$ is Cartesian.

3.
$$S = \sum_{i=1}^{3} S_i \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_i$$
 and $[S]_{\mathscr{P}} = \begin{bmatrix} S_1 & 0 & 0 \\ 0 & S_2 & 0 \\ 0 & 0 & S_3 \end{bmatrix}$.

Symmetric S is <u>always</u> diagonalizable. Action of S is a <u>stretch</u> by S_i along $\hat{\mathbf{e}}_i$.

III. **Definition**: S is *positive definite* if S is symmetric and $\lambda_i > 0$, i = 1...3. Example

Skew-symmetric tensor

I. **Definition**: W is *skew-symmetric* if $W = -W^T$ (also called *anti-symmetric*)

II. In any CS
$$\left\{ \mathcal{E}, O, \hat{\mathbf{E}}_i \right\}$$
: $[W]_{\mathcal{E}} = \begin{bmatrix} 0 & W_{12} & W_{13} \\ -W_{12} & 0 & W_{23} \\ -W_{13} & -W_{23} & 0 \end{bmatrix}$

- 1. W has three independent components.
- 2. W is naturally equivalent to a vector w.
- 3. $\mathbf{W} \cdot \mathbf{a} \equiv operation \text{ between } \mathbf{w} \text{ and } \mathbf{a}$ which outputs a *vector*.
- III. Property: $\mathbf{W} \cdot \mathbf{a} = \mathbf{w} \times \mathbf{a}$, if we define $\mathbf{w} := -\frac{1}{2} \epsilon_{ijk} W_{jk} \hat{\mathbf{E}}_i = -W_{23} \hat{\mathbf{E}}_1 + W_{12} \hat{\mathbf{E}}_2 W_{12} \hat{\mathbf{E}}_3$

IV. Remarks:

- 1. **w** is the axial vector of W: $\mathbf{w} = \mathbf{ax}(\mathbf{W})$.
- 2. Any vector \mathbf{w} gives a skew-symmetric tensor: $\mathbf{W} = -\epsilon_{ijk}w_i\hat{\mathbf{E}}_j\otimes\hat{\mathbf{E}}_k=:\operatorname{asym}(\mathbf{w}).$ Example

