Unit 6. Additional Topics

6A. Indeterminate forms; L'Hospital's rule

6A-1 Find the following limits

a)
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$

b)
$$\lim_{x \to 0} \frac{\cos(x/2) - 1}{x^2}$$

c)
$$\lim_{x \to \infty} \frac{\ln x}{x}$$

a)
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$
 b) $\lim_{x \to 0} \frac{\cos(x/2) - 1}{x^2}$ c) $\lim_{x \to \infty} \frac{\ln x}{x}$ d) $\lim_{x \to 0} \frac{x^2 - 3x - 4}{x + 1}$ e) $\lim_{x \to 0} \frac{\tan^{-1} x}{5x}$ f) $\lim_{x \to 0} \frac{x - \sin x}{x^3}$ g) $\lim_{x \to 1} \frac{x^a - 1}{x^b - 1}$ h) $\lim_{x \to 1} \frac{\tan(x)}{\sin(3x)}$ i) $\lim_{x \to \pi} \frac{\ln \sin(x/2)}{x - \pi}$

$$e) \lim_{x \to 0} \frac{\tan^{-1} x}{5x}$$

f)
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

g)
$$\lim_{x \to 1} \frac{x^a - 1}{x^b - 1}$$

h)
$$\lim_{x \to 1} \frac{\tan(x)}{\sin(3x)}$$

i)
$$\lim_{x \to \pi} \frac{\ln \sin(x/2)}{x - \pi}$$

$$j) \lim_{x \to \pi} \frac{\ln \sin(x/2)}{(x-\pi)^2}$$

6A-2 Evaluate the following limits.

a)
$$\lim_{x\to 0^+} x^x$$

$$b) \lim_{x \to 0^+} x^{1/x}$$

c)
$$\lim_{x \to 0^+} (1/x)^{\ln x}$$

d)
$$\lim_{x\to 0^+} (\cos x)^{1/x}$$

e)
$$\lim_{x \to \infty} x^{1/x}$$

f)
$$\lim_{x\to 0^+} (1+x^2)^{1/x}$$

g)
$$\lim_{x\to 0^+} (1+3x)^{10/x}$$

h)
$$\lim_{x \to \infty} \frac{x + \cos x}{x}$$

i)
$$\lim_{x \to \infty} x \sin \frac{1}{x}$$

j)
$$\lim_{x\to 0^+} \left(\frac{x}{\sin x}\right)^{1/x}$$

g)
$$\lim_{x\to 0^+} (1+3x)^{10/x}$$
 h) $\lim_{x\to \infty} \frac{x+\cos x}{x}$ i) $\lim_{x\to \infty} x\sin\frac{1}{x}$ j) $\lim_{x\to 0^+} \left(\frac{x}{\sin x}\right)^{1/x^2}$ k) $\lim_{x\to \infty} x^a (\ln x)^b$. Consider all values of a and b .

6A-3 The power x^{-1} is the exceptional case among the integrals of the powers of x. It would be nice if

$$\lim_{a \to -1} \int x^a dx = \int x^{-1} dx$$

It seems hopeless for this to be true¹ since

$$\int x^a dx = \frac{x^{a+1}}{a+1} + c \text{ for } a \neq -1$$

involves only powers, yet the integral of x^{-1} is a logarithm. But it can be rescued using the definite integral. Show using L'Hospital's rule that

$$\lim_{a \to -1} \int_{1}^{x} t^{a} dt = \int_{1}^{x} t^{-1} dt \quad (= \ln x)$$

6A-4 Show that as a tends to -1 of a well-chosen solution to E30/1(a) tends to the answer in part (b). Hint: Follow the method of the preceding problem.

6A-5 By repeated use of L'Hospital's rule,

$$\lim_{x \to 0} \frac{3x^2 - 4x}{2x - x^2} = \lim_{x \to 0} \frac{6x - 4}{2 - 2x} = \lim_{x \to 0} \frac{6}{-2} = -3,$$

 $^{^{1}}$ It seems hopeless because for almost all choices of c the indefinite integral has an infinite limit as $a \to -1$. The definite integral leads to the correct choice of c, namely, c = -1/(a+1). The constant c is a constant with respect to x, but there is no reason why it can't vary with a. And the right choice of c makes the limit as $a \to -1$ finite.

yet when $x \simeq 0$, $\frac{3x^2 - 4x}{2x - x^2} \simeq \frac{-4x}{2x} = -2$. Resolve the contradiction.

6A-6 Graph the following functions. (L'Hospital's rule will help with some of the limiting values at the ends.)

a)
$$y = xe^{-x}$$

a)
$$y = xe^{-x}$$
 b) $y = x \ln x$

c)
$$y = x/\ln x$$

6B. Improper integrals

Test the following improper integrals for convergence by using comparison with a simpler integral.

6B-1.
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^3 + 5}}$$
 6B-2. $\int_{0}^{\infty} \frac{x^2 dx}{x^3 + 2}$ **6B-3.** $\int_{0}^{1} \frac{dx}{x^3 + x^2}$ **6B-4.** $\int_{0}^{1} \frac{dx}{\sqrt{1 - x^3}}$ **6B-5.** $\int_{0}^{\infty} \frac{e^{-x} dx}{x}$ **6B-6.** $\int_{1}^{\infty} \frac{\ln x dx}{x^2}$

6B-2.
$$\int_{0}^{\infty} \frac{x^2 dx}{x^3 + x^2}$$

6B-3.
$$\int_0^1 \frac{dx}{x^3 + x^2}$$

6B-4.
$$\int_0^1 \frac{dx}{\sqrt{1-x^3}}$$

6B-5.
$$\int_0^\infty \frac{e^{-x} dx}{x}$$

6B-6.
$$\int_{1}^{\infty} \frac{\ln x dx}{x^2}$$

6B-7 Decide whether the following integrals are convergent or divergent and evaluate if convergent.

a)
$$\int_0^\infty e^{-8x} dx$$

b)
$$\int_{1}^{\infty} x^{-n} dx, n > 1$$

c)
$$\int_{1}^{\infty} x^{-n} dx$$
, $0 < n \le 1$

$$d) \int_0^2 \frac{x dx}{\sqrt{4 - x^2}}$$

$$e) \int_0^2 \frac{dx}{\sqrt{2-x}}$$

f)
$$\int_{e}^{\infty} \frac{dx}{x(\ln x)^2}$$

g)
$$\int_0^1 \frac{dx}{x^{1/3}}$$

$$h) \int_0^1 \frac{dx}{x^3}$$

$$i) \int_{-1}^{1} \frac{dx}{x}$$

$$j) \int_0^1 \ln x dx$$

k)
$$\int_{0}^{\infty} e^{-2x} \cos x dx$$

vergent. a)
$$\int_{0}^{\infty} e^{-8x} dx$$
 b) $\int_{1}^{\infty} x^{-n} dx$, $n > 1$ c) $\int_{1}^{\infty} x^{-n} dx$, $0 < n \le 1$ d) $\int_{0}^{2} \frac{x dx}{\sqrt{4 - x^{2}}}$ e) $\int_{0}^{2} \frac{dx}{\sqrt{2 - x}}$ f) $\int_{e}^{\infty} \frac{dx}{x(\ln x)^{2}}$ g) $\int_{0}^{1} \frac{dx}{x^{1/3}}$ h) $\int_{0}^{1} \frac{dx}{x^{3}}$ i) $\int_{-1}^{1} \frac{dx}{x}$ j) $\int_{0}^{1} \ln x dx$ k) $\int_{0}^{\infty} e^{-2x} \cos x dx$ l) $\int_{e}^{\infty} \frac{dx}{x(\ln x)}$. (Use (f).) m) $\int_{0}^{\infty} \frac{dx}{(x + 2)^{3}}$ n) $\int_{0}^{\infty} \frac{dx}{(x - 2)^{3}}$ o) $\int_{0}^{10} \frac{(\ln x)^{2}}{x} dx$

$$\mathrm{m)} \int_0^\infty \frac{dx}{(x+2)^3}$$

n)
$$\int_0^\infty \frac{dx}{(x-2)^3}$$

o)
$$\int_{0}^{10} \frac{(\ln x)^2}{x} dx$$

p)
$$\int_0^{\pi} \sec x dx$$

6B-8 Find the following limits. (Use the fundamental theorem of calculus.)

a)
$$\lim_{x\to\infty} e^{-x^2} \int_0^x e^{t^2} dt$$

a)
$$\lim_{x \to \infty} e^{-x^2} \int_0^x e^{t^2} dt$$
 b) $\lim_{x \to \infty} x e^{-x^2} \int_0^x e^{t^2} dt$ c) $\lim_{x \to \infty} e^{x^2} \int_0^x e^{-t^2} dt$

c)
$$\lim_{x\to\infty} e^{x^2} \int_0^x e^{-t^2} dt$$

d)
$$\lim_{a\to 0^+} \sqrt{a} \int_a^1 \frac{dx}{\sqrt{x}}$$

e)
$$\lim_{a \to 0^+} \sqrt{a} \int_{a}^{1} \frac{dx}{x^{3/2}}$$

d)
$$\lim_{a \to 0^+} \sqrt{a} \int_a^1 \frac{dx}{\sqrt{x}}$$
 e) $\lim_{a \to 0^+} \sqrt{a} \int_a^1 \frac{dx}{x^{3/2}}$ f) $\lim_{b \to (\pi/2)^+} (b - \pi/2) \int_0^b \frac{dx}{1 - \sin x}$

6C. Infinite Series

- **6C-1** Find the sum of the following geometric series:
 - a) $1 + 1/5 + 1/25 + \cdots$ b) $8 + 2 + 1/2 + \cdots$
- c) $1/4 + 1/5 + \cdots$

Write the two following infinite decimals as the quotient of two integers:

- d) 0.4444...
- e) 0.0602602602602...
- **6C-2** Decide whether the following series are convergent or divergent; indicate reasoning. (Do not evaluate the sum.)
 - a) $1+1/2+1/3+1/4+1/5+\cdots$; use comparison with an integral.
 - b) $\sum_{n=0}^{\infty} \frac{1}{n^p}$; consider the cases p > 1 and $p \le 1$.
 - c) $1/2 + 1/4 + 1/6 + 1/8 + \cdots$
 - d) $1 + 1/3 + 1/5 + 1/7 + \cdots$
- e) $1 1/2 + 1/3 1/4 + 1/5 \cdots$ Hint: Combine pairs of consecutive terms to take advantage of the cancellation. Then use comparison.
 - f) $\sum_{i=1}^{\infty} \frac{n}{n!}$.
- g) $\sum_{n=1}^{\infty} \left(\frac{\sqrt{5}-1}{2}\right)^n$. h) $\sum_{n=1}^{\infty} \left(\frac{\sqrt{5}+1}{2}\right)^n 5^{-n/2}$.

- o) $\sum_{i=1}^{\infty} n^2 e^{-\sqrt{n}}$
- **6C-3** a) Use the upper and lower Riemann sums of

$$\ln n = \int_{1}^{n} \frac{dx}{x}$$

to show that

$$\ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \ln n$$

b) Suppose that it takes 10^{-10} seconds for a computer to add one term in the series $\sum 1/n$. About how long would it take for the partial sum to reach 1000?