Physics/Maths Homework (1)

Student:
Date:
Due Date:
Topics:
Notes/Formulas
[Additional notes or definitions if needed]
Problems
Problem 1
Problem 1
[10 marks]
Find the derivative of $f(x) = 3x^4 - 2x^3 + 5x^2 - 7x + 4$. Then, find all values of x where the gradient of the curve is equal to zero. Determine whether each stationary point is a maximum, minimum, or point of inflection.
Answer:

[15 marks] A small metal sphere of mass 0.15 kg is attached to one end of a light inextensible string of length 0.85 m. The other end of the string is fixed to a point on a ceiling. The sphere is released from rest with the string horizontal, and swings in a vertical plane. (a) Calculate the speed of the sphere when the string makes an angle of 45° with the vertical. [5 marks] Answer: (b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks] Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume y = 9.8 m/s². [5 marks]	
A small metal sphere of mass 0.15 kg is attached to one end of a light inextensible string of length 0.85 m. The other end of the string is fixed to a point on a ceiling. The sphere is released from rest with the string horizontal, and swings in a vertical plane. (a) Calculate the speed of the sphere when the string makes an angle of 45° with the vertical. [5 marks] Answer: (b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks] Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g = 9.8 \text{ m/s}^2$. [5 marks]	Problem 2
other end of the string is fixed to a point on a ceiling. The sphere is released from rest with the string horizontal, and swings in a vertical plane. (a) Calculate the speed of the sphere when the string makes an angle of 45° with the vertical. [5 marks] Answer: (b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks] Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g = 9.8 \text{ m/s}^2$. [5 marks]	[15 marks]
swings in a vertical plane. (a) Calculate the speed of the sphere when the string makes an angle of 45° with the vertical. [5 marks] Answer: (b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks] Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g = 9.8 \text{ m/s}^2$. [5 marks]	A small metal sphere of mass 0.15 kg is attached to one end of a light inextensible string of length 0.85 m. The
(a) Calculate the speed of the sphere when the string makes an angle of 45° with the vertical. [5 marks] Answer: (b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks] Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume g = 9.8 m/s². [5 marks]	other end of the string is fixed to a point on a ceiling. The sphere is released from rest with the string horizontal, and
Answer: (b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks] Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g = 9.8 \text{ m/s}^2$. [5 marks]	swings in a vertical plane.
(b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks] Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g = 9.8 \text{ m/s}^2$. [5 marks]	(a) Calculate the speed of the sphere when the string makes an angle of 45° with the vertical. [5 marks]
(b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks] Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g = 9.8 \text{ m/s}^2$. [5 marks]	Δnswer·
Answer: (c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g = 9.8 \text{ m/s}^2$. [5 marks]	Allower.
(c) If the string can withstand a maximum tension of 12 N before breaking, determine the minimum height from which the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g=9.8 \text{ m/s}^2$. [5 marks]	(b) Calculate the tension in the string when it makes an angle of 45° with the vertical. [5 marks]
the sphere can be released horizontally without the string breaking at any point in its motion. Assume $g=9.8~{\rm m/s^2}.$ [5 marks]	Answer:
[5 marks]	
Answer:	
	Answer: