

theorem

property

 Theorem (Neyman-Fisher Factorization theorem: Necessary and sufficient conditions for sufficiency) A statistic $T = T(X_1, X_2, ..., X_n)$ is sufficient for parameter θ if and only if the joint density function (probability density function or probability mass function) $f(x_1, ..., x_n | \theta)$ can be expressed as $f(x_1, \dots, x_n | \theta) = g(T(x_1, x_2, \dots, x_n), \theta) \times h(x_1, \dots, x_n)$ where $g(\cdot)$ and $h(\cdot)$ are some nonnegative functions.

sufficiency: 已知T的情况下, X的概率分布和真实的参数独立<--只要知 道T,那么知不知道真实参数对我来说没有关系了,所以称为是 sufficient

T是一个统计量,由X来计算的统计量

completeness

Theorem (Rao-Blackwell Theorem) We let $T = T(X_1, X_2, ..., X_n)$ be a sufficient statistics for parameter θ and $\hat{\theta}_n$ be an unbiased estimator for θ . We define an estimator $\tilde{\theta}$ as $\tilde{\theta} = \mathbb{E}[\hat{\theta}_n | T]$.

Then $\tilde{\theta}$ is unbiased estimator and $\mathbb{E}\left[\left(\tilde{\theta}-\theta\right)^2\right] \leq \mathbb{E}\left[\left(\hat{\theta}_n-\theta\right)^2\right]$.

We say a statistic $T = T(X_1, X_2, ..., X_n)$ is complete if and only if the following condition holds: If $\mathbb{E}_{\theta}(g(T)) = 0$ for all θ , then g(T) = 0. property • Theorem We let $T = T(X_1, X_2, ..., X_n)$ be a <u>sufficient and complete</u> statistic for a parameter θ and $\hat{\theta}_n$ be any unbiased estimator, then the estimator is the unique UMVUE.

(*In other words, the estimator generated from Rao-Blackwell theorem is the desired UMVUE.)

 Definition 6 (k-parameter exponential families) A family of distribution $\{P_{\theta}\}$ (where $\theta = (\theta_1, \theta_2, ..., \theta_k)$ is k-dimension parameter) is called k-parameter exponential family if the probability density function (or probability mass function) can be expressed as $f(X|\theta) = \mathbf{1}_{\{X \in A\}} e^{\sum_{i=1}^{k} c_i(\theta) T_i(X) + d(\theta) + S(X)}$ where $c_i(\cdot)$, $d(\cdot)$, $S(\cdot)$ and $T_i(\cdot)$ are some functions. Here, A denotes the collection of possible values of the random variable (X) and it

既然有这么好的性质,那怎么判断一个T是充分完备统计量呢?

property

must be independent of θ .

Let $X_1, ..., X_n$ be an i.i.d sample from a k-parameter exponential family, then $(S_1 = \sum_{i=1}^n T_1(X_i))$..., $S_k = \sum_{i=1}^n T_k(X_i)$) is a set of complete and sufficient statistic for $(\theta_1, ..., \theta_k)$.