1 Coupled Heat and Mass Transfer

The following figures use the data from Miller et al. corresponding to Figure 2 in that paper. Figures 1 and 2 show the results for a forward Euler method and Figures 3 and 4 show the results for a fourth order Runge-Kutta method. For both methods a timestep of 0.01s was used and the final mass was limited to $0.000000001 \ kg$.

Figures 5 and 6 shows the effect of increasing the timestep Δt .

(Apologies the figures are .png, I've tried out .eps and the figures take a while to load. Plotting data with Tikz is something I've used for reports in the past and I'll see if this works better).

Figure 1: D^2 for a droplet sized $D^2=1.1mm$ with $Re_d=0,\ T_{d_0}=282K,\ T_G=298K,\ Y_G=0$ and $\Delta t=0.01s$. Using a forward Euler method.

Figure 2: T_d for a droplet sized $D^2=1.1mm$ with $Re_d=0,\ T_{d_0}=282K,\ T_G=298K,\ Y_G=0$ and $\Delta t=0.01s$. Using a forward Euler method.

Figure 3: D^2 for a droplet sized $D^2=1.1mm$ with $Re_d=0,\ T_{d_0}=282K,\ T_G=298K,\ Y_G=0$ and $\Delta t=0.01s$. Using a Runge-Kutta method.

Figure 4: T_d for a droplet sized $D^2=1.1mm$ with $Re_d=0,\,T_{d_0}=282K,\,T_G=298K,\,Y_G=0$ for $\Delta t=0.01s.$ Using a Runge-Kutta method.

Figure 5: D^2 for a droplet sized $D^2=1.1mm$ with $Re_d=0,\,T_{d_0}=282K,\,T_G=298K,\,Y_G=0$ for different Δt . Using a Runge-Kutta method.

Figure 6: T_d for a droplet sized $D^2=1.1mm$ with $Re_d=0,\,T_{d_0}=282K,\,T_G=298K,\,Y_G=0$ and different Δt . Using a Runge-Kutta method.