3.2 Graphing using the first and second derivatives

If f''(x) > 0 on I , then $\underline{f'(x)}$ increases on \underline{I} and the graph of $\underline{f(x)}$ is concave up on \underline{I} .

If f''(x) < 0 on I, then $\underline{f'(x)}$ decreases on I and the graph of $\underline{f(x)}$ is concave down on I.

Concaving and inflection points

On an interval,

f'' > 0 means that f is concave up

f'' < 0 means that f is concave down

An inflection point is where the concaving changes (f'' must be zero or undefined)

example 1

$$f(x) = x^3 - 9x^2 + 24x$$

$$f'(x) = 3x^2 - 18x + 24 = 3(x - 2)(x - 4) = 0$$

$$\Rightarrow$$
 1st order C.N. $\begin{cases} x = 2 \\ x = 4 \end{cases}$

$$f''(x) = 6x - 18 = 0$$

$$\Rightarrow$$
 2nd order C.N. $x = 3$

intervals	sign of f'	sign of $f^{\prime\prime}$	$\uparrow or \downarrow$	concavity	shape
<i>x</i> < 2	+	_	1	down	
2 < x < 3	_	_	\downarrow	down	
3 < x < 4	_	+	\downarrow	up	
x > 4	+	+	1	up	

- 1. f(x) has a relative maximum at x = 2 and f(2) = 20 f(x) has a relative minimum at x = 4 and f(4) = 16
- 2. Inflection point = (3, 18)
- 3. graph: P. 185

example 2

$$f(x) = 18x^{\frac{1}{3}}$$

$$f'(x) = 6x^{-\frac{2}{3}}$$
 is undefined at $x = 0$

$$\Rightarrow$$
 1st order C.N. $x = 0$

$$f''(x) = -4x^{-\frac{5}{3}}$$
 is undefined at $x = 0$

$$\Rightarrow$$
 2nd order C.N. $x = 0$

intervals	sign of f'	sign of f''	\uparrow or \downarrow	concavity	shape
<i>x</i> < 0	+	+	1	up	
<i>x</i> > 0	+	_	1	down	

- 1. No relative extremum
- 2. Inflection point: (0,0)
- 3. graph: P. 206

Second – derivative test

If x = c is a critical number of f at which f'' is defined, then

- 1. f''(c) > 0 means that f has a relative minimum at x = c
- 2. f''(c) < 0 means that f has a relative maximum at x = c
- 3. f''(c) = 0 means that the test is inconclusive.

example 4

$$f(x) = x^3 - 9x^2 + 24x$$

$$f'(x) = 3x^2 - 18x + 24 = 3(x - 2)(x - 4) = 0$$

$$\Rightarrow \quad \text{C.N. } \begin{cases} x = 2 \\ x = 4 \end{cases}$$

$$f''(x) = 6x - 18$$

$$f''(2) = -6 < 0 \implies f(x)$$
 has a relative minimum at $x = 2$

$$f''(4) = 6 > 0 \implies f(x)$$
 has a relative maximum at $x = 4$

Note:

If (c, f(c)) is an inflection point, then either f''(c) = 0 or f''(c) is undefined.

If f''(c) = 0 or f''(c) is undefined, $\Rightarrow (c, f(c))$ is an inflection point,

example : $f(x) = x^4$