6 Perturbation theory

Definition 6.1. Model Hamiltonian. The electronic Hamiltonian¹ can be expressed as the sum of a zeroth order or "model" Hamiltonian H_0 and a perturbation V_c , known as the fluctuation potential. For well-behaved electronic systems, a common choice for the model Hamiltonian is the diagonal part of the Fock operator.

$$H_0 \equiv f_p^p \tilde{a}_p^p \qquad V_c \equiv f_p^q (1 - \delta_p^q) \tilde{a}_q^p + \frac{1}{4} \overline{g}_{pq}^{rs} \tilde{a}_{rs}^{pq}$$

$$\tag{6.1}$$

This choice of H_0 brings the advantage that its eigenbasis is the standard basis of determinants.

$$H_0 \Phi = 0 \Phi \qquad H_0 \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k} = \mathcal{E}_{i_1 \cdots i_k}^{a_1 \cdots a_k} \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k} \qquad \mathcal{E}_{q_1 \cdots q_k}^{p_1 \cdots p_k} \equiv \sum_{r=1}^k f_{p_r}^{p_r} - \sum_{r=1}^k f_{q_r}^{q_r}$$
(6.2)

In general the model Hamiltonian is chosen to make the matrix representation of H_c in the model eigenbasis diagonally dominant. Our choice of H_0 is appropriate for weakly correlated systems, where the reference determinant can be chosen to satisfy $\langle \Phi | \Psi \rangle \gg \langle \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k} | \Psi \rangle$ for all substituted determinants. In this context it is convenient to employ intermediate normalization for the wavefunction, which will be assumed from here on out.

Definition 6.2. Perturbation theory. Perturbation theory analyzes the polynomial order with which the wavefunction and its observables depend on the fluctuation potential. For this purpose, we define a continuous series of Hamiltonians $H(\lambda) \equiv H_0 + \lambda V_c$ parametrized by a strength parameter λ that smoothly toggles between the model Hamiltonian at $\lambda = 0$ to the exact one at $\lambda = 1$. The m^{th} -order contribution to a quantity X is then defined as the m^{th} coefficient in its Taylor series about $\lambda = 0$, which is denoted by $X^{(m)}$. In particular, Ψ and E_c can be expanded as follows.

$$\Psi = \sum_{m=0}^{\infty} \Psi_{c}^{(m)} \quad E_{c} = \sum_{n=0}^{\infty} E_{c}^{(m)} \quad \Psi^{(m)} \equiv \frac{1}{m!} \left. \frac{\partial^{m} \Psi(\lambda)}{\partial \lambda^{m}} \right|_{\lambda=0} \quad E_{c}^{(m)} \equiv \frac{1}{m!} \left. \frac{\partial^{m} E(\lambda)}{\partial \lambda^{m}} \right|_{\lambda=0} \quad H(\lambda) \Psi(\lambda) = E(\lambda) \Psi(\lambda) \quad (6.3)$$

The order(s) at which a term contributes to the wavefunction or energy provides one measure of its relative importance.

Remark 6.1. Projecting the Schrödinger equation by Φ and using eq 6.2, along with intermediate normalization, implies

$$E_{\rm c} = \langle \Phi | V_{\rm c} | \Psi \rangle \qquad \Longrightarrow \qquad E_{\rm c}^{(m+1)} = \langle \Phi | V_{\rm c} | \Psi^{(m)} \rangle$$
 (6.4)

where the equation on the right follows from generalizing the energy expression to $E(\lambda) = \langle \Phi | \lambda V_c | \Psi(\lambda) \rangle$. In words, this says that the m^{th} -order wavefunction contribution determines the $(m+1)^{\text{th}}$ -order energy contribution. This immediately identifies the first-order energy as $E_{\rm c}^{(1)} = \langle \Phi | V_{\rm c} | \Phi \rangle = 0$, since $V_{\rm c}$ consists of Φ -normal-ordered operators.

Definition 6.3. Model space projection operator. The projection onto the reference determinant, $P = |\Phi\rangle\langle\Phi|$, is termed the model space projection operator. Its complement is the orthogonal space projection operator.

$$Q \equiv 1 - P = \sum_{k} \left(\frac{1}{k!}\right)^2 \sum_{\substack{a_1 \cdots a_k \\ a_1 \cdots a_k \\ a_2 \cdots a_k}} |\Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k}\rangle \langle \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k}|$$

$$(6.5)$$

Note that P and Q satisfy the following relationships, which are characteristic of complementary projection operators.

$$P + Q = 1$$
 $P^2 = P$ $Q^2 = Q$ $PQ = QP = 0$ (6.6)

Due to intermediate normalization, the model space projection operator also satisfies $P\Psi = \Phi$ and $Q\Psi = \Psi - \Phi$.

Definition 6.4. Resolvent. The resolvent, $R_0 \equiv (-H_0)^{-1}Q$, is the negative³ inverse of H_0 in the orthogonal space. Expanding the orthogonal space projection operator according to equation 6.5 yields the spectral decomposition for R_0 .

$$R_0 = \sum_{k} \left(\frac{1}{k!}\right)^2 \sum_{\substack{a_1 \cdots a_k \\ i_1 \cdots i_k}} \frac{|\Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k}\rangle \langle \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k}|}{\mathcal{E}_{a_1 \cdots a_k}^{i_1 \cdots i_k}}$$

$$(6.7)$$

Note that the resolvent satisfies $R_0P = 0$ and $R_0Q = R_0$. Restriction to the orthogonal space is necessary because H_0 is singular in the model space, which means that H_0^{-1} does not exist there.

For the sake of brevity I will here refer to H_c as "the electronic Hamiltonian". We could also use $H_e = E_0 + H_c$, which will simply shift some of the equations by a constant.

 $^{^2\}mathrm{See}$ https://en.wikipedia.org/wiki/Diagonally_dominant_matrix.

³The annoying sign factor is required for consistency with $R(\zeta) \equiv (\zeta - H_0)^{-1}Q$, which is a more general definition of the resolvent. ⁴Note that $(-H_0)^{-1}\Phi^{a_1\cdots a_k}_{i_1\cdots i_k} = (-\mathcal{E}^{a_1\cdots a_k}_{i_1\cdots i_k})^{-1}\Phi^{a_1\cdots a_k}_{i_1\cdots i_k}$ and $-\mathcal{E}^{a_1\cdots a_k}_{i_1\cdots i_k} = \mathcal{E}^{i_1\cdots i_k}_{a_1\cdots a_k}$

Remark 6.2. A recursive solution to the Schrödinger equation. Operating R_0 on the Schrödinger equation gives⁵

$$\Psi = \Phi + R_0(V_c - E_c)\Psi \tag{6.8}$$

which provides a recursive equation for Ψ . Applying the same manipulation to equation 6.3 gives

$$\Psi(\lambda) = \Phi + R_0(\lambda V_c - E(\lambda))\Psi(\lambda) \tag{6.9}$$

which can be used solve for wavefunction contributions order by order.

Example 6.1. The first two derivatives of equation 6.9 are given by

$$\begin{split} \frac{\partial \Psi(\lambda)}{\partial \lambda} = & R_0 \left(V_{\rm c} - \frac{\partial E(\lambda)}{\partial \lambda} \right) \Psi(\lambda) + R_0 (\lambda V_{\rm c} - E(\lambda)) \frac{\partial \Psi(\lambda)}{\partial \lambda} \\ \frac{\partial^2 \Psi(\lambda)}{\partial \lambda^2} = & - R_0 \frac{\partial^2 E(\lambda)}{\partial \lambda^2} \Psi(\lambda) + R_0 \left(V_{\rm c} - \frac{\partial E(\lambda)}{\partial \lambda} \right) \frac{\partial \Psi(\lambda)}{\partial \lambda} + R_0 (\lambda V_{\rm c} - E(\lambda)) \frac{\partial^2 \Psi(\lambda)}{\partial \lambda^2} \end{split}$$

which can be used to determine first- and second-order components of the wavefunction.

$$\Psi^{(1)} = \left. \frac{\partial \Psi(\lambda)}{\partial \lambda} \right|_{\lambda=0} = R_0 V_c \Phi \qquad \qquad \Psi^{(2)} = \left. \frac{\partial^2 \Psi(\lambda)}{\partial \lambda^2} \right|_{\lambda=0} = R_0 V_c \Psi^{(1)} = R_0 V_c R_0 V_c \Phi$$

Here we have used $E_{\rm c}^{(0)}=E_{\rm c}^{(1)}=0$ and $R_0\Phi=0$ to simplify the result.

Example 6.2. Expanding the resolvent according to eq (6.7) allows us to expand $\Psi^{(1)}$ in the determinant basis.

$$\Psi^{(1)} = R_0 V_c \Phi = \sum_{\substack{a \\ i}} \Phi_i^a \frac{\langle \Phi_i^a | V_c | \Phi \rangle}{\mathcal{E}_a^i} + \left(\frac{1}{2!}\right)^2 \sum_{\substack{ab \\ ij}} \Phi_{ij}^{ab} \frac{\langle \Phi_{ij}^{ab} | V_c | \Phi \rangle}{\mathcal{E}_{ab}^{ij}}$$

$$(6.10)$$

The expansion truncates at double excitations because the maximum excitation level of V_c is +2.

Example 6.3. The numerators in example 6.2 are easily evaluated using Slater's rules, which leads to the following.

$$\Psi^{(1)} = \sum_{\substack{a \ i}} \Phi_i^a \frac{f_a^i}{\mathcal{E}_a^i} + (\frac{1}{2!})^2 \sum_{\substack{ab \ ij}} \Phi_{ij}^{ab} \frac{\overline{g}_{ab}^{ij}}{\mathcal{E}_{ab}^{ij}} \qquad \Longrightarrow \qquad E_{\mathbf{c}}^{(2)} = \langle \Phi | V_{\mathbf{c}} | \Psi^{(1)} \rangle = \sum_{\substack{a \ i}} \frac{f_a^i f_a^i}{\mathcal{E}_a^i} + (\frac{1}{2!})^2 \sum_{\substack{ab \ ij}} \frac{\overline{g}_{ab}^{ab}}{\mathcal{E}_{ab}^{ij}}$$

Note that the singles contribution vanishes for canonical Hartree-Fock references, since $f_a^i = 0$. These extra terms are required for non-canonical orbitals, such as those obtained from restricted open-shell Hartree-Fock (ROHF) theory.

Example 6.4. Diagrammatically, $\Psi^{(1)}$ and $E_c^{(2)}$ can be expressed as follows.

$$\Psi^{(1)} = \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet} + \underbrace{\begin{array}{c} & & & \\ & & & \\ \end{array}}_{\otimes -\bullet$$

Remark 6.3. Notice that a fully contracted operator of the form $\sum_i v_i a_i |\Phi\rangle\langle\Phi|a_i^{\dagger}$ can be simplified as

$$\sum_{i} v_{i} \, \overrightarrow{a_{n}^{\dagger}} \overrightarrow{a_{i}} |\Phi\rangle \langle \Phi | \overrightarrow{a_{i}^{\dagger}} \overrightarrow{a_{g}} = v_{n} \, \overrightarrow{a_{n}^{\dagger}} \overrightarrow{a_{g}} |\Phi\rangle \langle \Phi |$$

where v_p is required to have an occupied index by the hole contraction. A similar argument can be made for completely contracted operators of the form $\sum_a v_a \, a_a^\dagger |\Phi\rangle\langle\Phi| a_a$ or in general $\sum_{\substack{abc \dots ijk \dots$

$$\langle \Phi | X R_0 X_1 R_0 X_2 \cdots R_0 X_n | \Phi \rangle = \overline{X} \overline{X_1 X_2 \cdots X_n}$$

$$(6.12)$$

for a general series of excitation operators X, X_1, \ldots, X_n . This makes a convenient corollary to Wick's theorem for operator products with resolvents.

⁵This follows from $R_0H_c\Psi = R_0(H_0 + V_c)\Psi = -Q\Psi + R_0\Psi$ along with $Q\Psi = \Psi - \Phi$.

⁶The dotted lines are resolvent lines.

Example 6.5. Expanding the resolvent in $\Psi^{(2)} = R_0 V_c \Psi^{(1)}$ gives an expansion that includes up to quadruples

$$\Psi^{(2)} = \sum_{\substack{a \\ i}} \Phi_i^a \frac{\langle \Phi_i^a | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_a^i} + (\tfrac{1}{2!})^2 \sum_{\substack{ab \\ ij}} \Phi_{ij}^{ab} \frac{\langle \Phi_{ij}^{ab} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{ab}^{ij}} + (\tfrac{1}{3!})^2 \sum_{\substack{ab \\ ijk}} \Phi_{ijk}^{abc} \frac{\langle \Phi_{ijk}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abc}^{ijkl}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{ijkl}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{ijkl}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{ijkl}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{ijkl}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{ijkl}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{ijkl}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abc} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd} | V_c | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd} | \Psi^{(1)} | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd} | \Psi^{(1)} | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd} | \Psi^{(1)} | \Psi^{(1)} \rangle}{\mathcal{E}_{abcd}^{abcd}} + (\tfrac{1}{4!})^2 \sum_{\substack{ab \\ ijkl}} \Phi_{ijkl}^{abcd} \frac{\langle \Phi_{ijkl}^{abcd$$

since the two-electron part of $\Psi^{(1)}$ has an excitation level of +2 and the excitation level of V_c ranges from -2 to +2.

Example 6.6. The expansion for $\Psi^{(2)}$ can be evaluated graphically. Assuming Brillouin's theorem for simplicity,

$$\Psi^{(2)} = \underbrace{\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array}$$

where the operators in the final diagram do not form an equivalent pair because they pass through different resolvent lines. This can be used to determine the third-order correlation energy

which also equals $\langle \Psi^{(1)}|V_{\rm c}|\Psi^{(1)}\rangle$. This is an example of the Wigner (2n+1) rule, which says that $E_{\rm c}^{(2n+1)}=\langle \Psi^{(n)}|V_{\rm c}|\Psi^{(n)}\rangle$. Note that $E_{\rm c}^{(m+1)}$ always only depends on the doubles contribution to $\Psi^{(m)}$, but that the doubles coefficients themselves may involve triples, quadruples and higher contributions from wavefunction components of order less than m.

Example 6.7. Using $^{(m)}c^{ij\cdots}_{ab\cdots} = \langle \Phi^{ab\cdots}_{ij\cdots} | \Psi^{(m)} \rangle$, the second order CI coefficients can be determined from eq 6.13 by contracting a bare excitation operator with the top of each diagram. Interpreting these graphs gives the following.

Note that the second order quadruples coefficient is disconnected. Prop. 6.1 shows that the second-order quadruples operator is actually a simple product of first-order doubles operators. This fact was an early motivation for coupled-pair many-electron theory,⁷ since it justifies approximating $\Psi_{\text{CIDQ}} = (1 + C_2 + C_4)\Phi$ by $\Psi_{\text{CPMET}} = (1 + C_2 + \frac{1}{2}C_2^2)\Phi$.

Proposition 6.1. $^{(2)}C_4 = \frac{1}{2}{}^{(1)}C_2^2$

Proof: This follows from rearranging the resolvent denominator.

$$\frac{1}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{ab}^{ij}} + \frac{1}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kl}} = \frac{\mathcal{E}_{cd}^{kl} + \mathcal{E}_{ab}^{ij}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{ij}} = \frac{1}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{ij}} \Longrightarrow {}^{(2)}C_4 = \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{ab}^{ij}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{ij}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl}} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl}} \frac{\overline{g}_{abcd}^$$

⁷This is the original name for coupled-cluster doubles.