Further Mathematics

S.Olivia

March 2024

目录

1	多元	函数的极限与连续	5
	1.1	基本概念	5
	1.2	二元函数的极限	5
		1.2.1 重极限与累次极限	6
	1.3	二元函数的连续性	6
		1.3.1 复合函数的连续性	6

4 目录

Chapter 1

多元函数的极限与连续

1.1 基本概念

平面: $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R} = \{(x, y) | x, y \in \mathbf{R}\}$

平面点集: $\{(x,y)|(x,y)$ 满足条件 $P\}$

邻域: $U(P_0, \delta) = \{P | |PP_0| < \delta\}$

内点: P_0 是集合D的内点, 如果存在 $\delta > 0$, 使得 $U(P_0, \delta) \subset D$

外点: P_0 是集合D的外点, 如果存在 $\delta > 0$, 使得 $U(P_0, \delta) \cap D = \emptyset$

(边) 界点: P_0 是集合D的边界点,如果对任意 $\delta > 0$, $U(P_0,\delta)$ 内既有D内的点,也有D外的点

聚点: 对任意 $\delta > 0$, $U(P_0, \delta)$ 内有D内的点

开集:集合D中的每一点都是D的内点,如(a,b)

闭集:集合D中的每一个边界点都是D的点,如[a,b]

开域: 联通的开集

闭域: 联通的闭集

有界集:集合D内的点都在某一邻域内

无界集:集合D内的点没有界限约束

联通集:集合D内的任意两点都可以用D内的折线连接

1.2 二元函数的极限

称f在D上当P → P₀时以A为极限,记

$$\lim_{P \to P_0} f(P) = A$$

当 P, P_0 分别用坐标 $(x, y), (x_0, y_0)$ 表示时,上式也常写作

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$$

多元函数的逼近可以沿着任何一条路径进行,但是极限只有一个,与逼近的路径无关。如果极限不相等,则称多元函数在该点无极限。

1.2.1 重极限与累次极限

在上面讨论的 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=A$ 中, 自变量 (x,y)是以任何方式趋于 (x_0,y_0) 的, 这种极限也称为重极限。

而x与y依一定的先后顺序, 相继趋于 x_0 与 y_0 时 f 的极限, 这种极限称为累次极限。若对每一个 $y \in Y(y,y_0)$,存在极限 $\lim_{x\to x_0} f(x,y)$,它一般与y有关,记作

$$\varphi(y) = \lim_{x \to x_0} f(x, y)$$

如果进一步还存在极限

$$L = \lim_{y \to y_0} \varphi(y)$$

则称此L为f(x,y)先对 $x(x \to x_0)$ 后对 $y(y \to y_0)$ 的累次极限,记作

$$L = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

定理 1.1 如果 f(x,y) 的重极限 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ 与累次极限 $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$ 都存在,则两者必定相等。

$\varepsilon - \delta$ 定义

对于任何正数 ε ,都能够找到一个正数 δ ,当x满足 $0<|x-a|<\delta$ 时,对于满足上式的x都有 $0<|f(x)-b|<\varepsilon$ 。

1.3 二元函数的连续性

和一元函数相似,二元函数的连续性也有以下三种定义:

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = f(x_0, y_0)$$

- 1. 有定义
- 2. 有极限
- 3. 极限等于函数值

几何意义:不断开的曲面。

1.3.1 复合函数的连续性

设函数z = f(x,y)在点 (x_0,y_0) 的某邻域内有定义,函数u = g(x,y)在点 (x_0,y_0) 的某邻域内有定义,且f(x,y)在点 (x_0,y_0) 连续,g(x,y)在点 (x_0,y_0) 连续,那么复合函数u = g(f(x,y))在点 (x_0,y_0) 连续。"连续函数的连续函数是连续函数"。