עיצוב המערכת:

המערכת מחולקת לשני חלקים:

- 1. חישוב ה-Mi) (Mutual information)
 - 2. חישוב ה-Sim. (Similarity)

<u>חישוב ה-Mi:</u>

 $.mi(p, slot, w) = \log\left(\frac{|p, slot, w| \times |s, slot, w|}{|p, slot, w| \times |s, slot, w|}\right)$ בשלב זה, ברצוננו לחשב את הנוסחה הבאה:

להלן השלבים שמתבצעים כדי לחשב את הנוסחה:

א. ביצוע סינון לקלט:

קלט: כל השורות מקבצי ה-biarcs.

פלט: כל השלשות מהצורה x, path, y וכמות המופעים של כל שלשה.

הסינון מתבצע כך שכל שלשה תהיה חוקית, כלומר path מכיל פועל ומילות קישור ו-x, y הם שמות עצם.

במקביל לביצוע השלב הנ"ל מתבצע גם החישוב עבור $*, slot, * \mid .$ (סך כל ההשלמות עבור כל המסלולים, מספר זה נשמר בסביבה) בשלב זה לא בוצעו הנחות על הזיכרון.

ב. שלב ביניים עבור חישוב הרכיבים עבור הנוסחה:

שלב זה מורכב משלושה צעדי MR:

|*,slot,*| כל שלב מחשב חלק בנוסחה, למעט החישוב שבוצע בשלב הקודם עבור |*,slot,*| קלט: הפלט משלב א'.

פלטים:

.p מסוים במסלול משלימה slot משלימה w במסלול שהמילה - |p, slot, w|

.p סך כל ההשלמות עבור slot סך כל ההשלמות - סך כל ההשלמות עבור - |p,slot,*|

מסוים. slot סך כל הפעמים שהמילה w משלימה את כל המסלולים עבור +*, slot מסוים. בשלב זה לא בוצעו הנחות על הזיכרון.

ג. שלב חישוב הנוסחה:

שלב זה מורכב משני צעדי MR:

השלב השני ידאג לשאר ידאג, השלב הראשון מבצע את החישוב הבא: $\frac{|p,slot,w| imes |p,slot,*|}{|p,slot,*|}$, השלב השני ידאג לשאר

(ילקח מהסביבה * |*,slot,*|) .|p,slot,*|, |p,slot,w| - ילקח מהסביבה עבור השלב השני - הפלט של השלב הראשון ו-|*,slot,w|.

פלט: תוצאת ה-Mi עבור כל זוג, לכל

הנחות על הזיכרון:

בשלב הראשון הנחנו כי ניתן לשמור בזיכרון את כל המילים המשלימות מסלול (שמגיע creducer).

בשלב השני הנחנו כי ניתן לשמור בזיכרון את כל המסלולים שמילה (שמגיעה כמפתח ל-Reducer) משלימה.

עבור ריצה של 100% מהקבצים קיבלנו את מספרי זוגות ה מפתח-ערך הבאים:

Reducer output	Reducer input records	Mapper output	Mapper input records	פעולה שלב
records		records		
10,004,661	10,004,661	10,004,661	184,982,852	א'
2,907,012	8,828,749	30,013,983	30,013,983	ב'
5,776,743	5,776,743	5,776,743	5,776,743	ג'

חישוב ה-Sim:

בשלב זה ברצוננו לחשב את הנוסחות הבאות:

$$sim(slot_{1}, slot_{2}) = \frac{\sum_{w \in T(p_{1}, s) \cap T(p_{2}, s)} mi(p_{1}, s, w) + mi(p_{2}, s, w)}{\sum_{w \in T(p_{1}, s)} mi(p_{1}, s, w) + \sum_{w \in T(p_{2}, s)} mi(p_{2}, s, w)}$$

$$S(p_1, p_2) = \sqrt{sim(SlotX_1, SlotX_2) \times sim(SlotY_1, SlotY_2)}$$

להלן השלבים שמתבצעים כדי לחשב את הדומות בין המסלולים:

א. סינון ה-Mi:

קלט: הפלט מהשלב הקודם (חישוב Mi), TestSet הנבחר על ידי המשתמש. פלט: קובץ Mi המכיל את המסלולים מה-TestSet בלבד. (במידה וקיימים כאלו) הנחה על הזיכרון - ניתן לאחסן את המסלולים מה-TestSet בזיכרון.

ב. שלב ביניים עבור חישוב הנוסחה הראשונה:

שלב זה מורכב משלושה צעדי MR:

- כולל ה, w כולל מילה אכירת 'טבלה" אל כל המסלולים האפשריים, אי: יצירת "טבלה" של כל המסלולים האפשריים של כל מילה $mi(p_i, slot, w)$

צעד ב': חישוב סכום ה $mi(p,s,w_i)$ לכל מסלול $mi(p,s,w_i)$ אשר אשר משלימות ב': אותו.

צעד ג': חישוב סכום ה $mi(p,s,w_i)+mi(p',s,w_i)+mi(p',s,w_i)$ לכל זוג מסלולים $mi(p,s,w_i)+mi(p',s,w_i)$ כל המילים w_i אשר משלימות את שניהם. (על ידי הטבלה מהצעד הראשון) קלט: הפלט מהשלב הקודם.

פלטים: סכום ה $mi(p,s,w_i)+mi(p',s,w_i)$ סכום ה- $mi(p,s,w_i)+mi(p',s,w_i)$ לכל זוג מסלולים סכום ה- $p,p',p\neq p'$

הנחה על הזיכרון - ניתן לאחסן את המסלולים מה-TestSet בזיכרון.

ג. חישוב הנוסחה הראשונה:

קלט: שני הפלטים מהשלב הקודם.

. עבור x,y לכל זוג מסלולים $sim(slot_1,slot_2)$ פלט:

הנחה על הזיכרון - ניתן לשמור את כל המסלולים (שקיימים ב-TestSet) בזיכרון. אנחנו עושים זאת כדי ליצור את כל הזוגות מהקלט על מנת שיגיעו אותם מפתחות ל-Reducer.

ד. חישוב הנוסחה השניה וביצוע מיון על פי הדומות:

שלב זה מורכב משני צעדי MR:

צעד א': חישוב הנוסחה השניה.

צעד ב': מיון.

קלט: הפלט מהשלב הקודם. (הנוסחה הראשונה)

. פלט: הדומות בין המסלולים ב-TestSet, ממוינת בסדר יורד.

בשלב זה לא בוצעו הנחות על הזיכרון.

בשלב חישוב הsim, מספר זוגות ה מפתח – ערך המגיעים ל mapper הראשון הם כמספר השורות בשלב החושב בשלב הקודם. בקובץ ה MI החושב בשלב הקודם.

<u>חישוב ה-F1 Measure:</u>

0.001	0.01	Threshold
		Input size
0.9692	0.6996	100%
0.9435	0.7239	10%

:Precision recall-גרף

ניתוח שגיאות:

יבור threshold = 0.01 ו-100% מהקבצים:

True negative	False negative	True positive	False positive
 Associate 	 Accompany 	 Accompany, 	 Be against,
with,	with,	follow	produce

distinguish from Destroy, produce Resemble, differ from Contract, kill Have, kill	associate with Be for, prescribe for Be in, enter Give for, help Kill, eradicate	 Contain, include Bring, give Cause, trigger Develop, produce
---	---	---

עבור threshold = 0.01 ו-10% מהקבצים:

True negative	False negative	True positive	False positive
אין	 Contain, 	 Contain, 	 Contract, kill
	have	consist of	 Have, kill
	Have, receive	 Join with, unite with 	
	 Include, use 	 Reduce to, 	
	for	convert to	
	 Contain, 	 Receive, 	
	include	contain	
	 Help, 	 Control, 	
	control	reduce	

ניתן לראות כי עבור 100% מהקבצים קיבלנו פחות False positive, בנוסף ניתן לראות כי עבור 10% מהקבצים התוצאות יהיו מדויקות מהקבצים אין כלל True negative. לכן, ניתן להסיק שעבור 100% מהקבצים התוצאות יהיו מדויקות יותר.

נשים לב כי הזוגות שהתקבלו כ-False positive ב-10% מהקבצים, מזוהים כ-True negative ב-20% מהקבצים.

נשים לב כי למשל הזוג Contain, include התקבל כ-False negative ב-10% מהקבצים, אך ב-100% מהקבצים אך ב-100% מהקבצים הוא התקבל כ-True positive.