Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине «Прикладные интеллектуальные системы и экспертные системы»

Бинарная классификация фактографических данных

Студент Коровайцев А.А.

Группа М-ИАП-23-1

Руководитель Кургасов В.В.

Доцент

Цель работы

Получить практические навыки решения задачи бинарной классификации данных в среде Jupiter Notebook. Научиться загружать данные, обучать классификаторы и проводить классификацию. Научиться оценивать точность полученных моделей.

Задание кафедры

- 1) В среде Jupiter Notebook создать новый ноутбук (Notebook)
- 2) Импортировать необходимые для работы библиотеки и модули
- 3) Загрузить данные в соответствие с вариантом
- 4) Вывести первые 15 элементов выборки (координаты точек и метки класса)
- 5) Отобразить на графике сгенерированную выборку. Объекты разных классов должны иметь разные цвета.
- 6) Разбить данные на обучающую (train) и тестовую (test) выборки в пропорции 75% 25% соответственно.
- 7) Отобразить на графике обучающую и тестовую выборки. Объекты разных классов должны иметь разные цвета.
- 8) Реализовать модели классификаторов, обучить их на обучающем множестве. Применить модели на тестовой выборке, вывести результаты классификации:
 - 9) Истинные и предсказанные метки классов
 - 10) Матрицу ошибок (confusion matrix)
 - 11) Значения полноты, точности, f1-меры и аккуратности
 - 12) Значение площади под кривой ошибок (AUC ROC)
- 13) Отобразить на графике область принятия решений по каждому классу
 - 14) В качестве методов классификации использовать:
 - 15) Метод к-ближайших соседей (n_neighbors = $\{1, 3, 5, 9\}$)
 - 16) Наивный байесовский метод
 - 17) Случайный лес (n_estimators = $\{5, 10, 15, 20, 50\}$)
- 18) По каждому пункту работы занести в отчет программный код и результат вывода.
- 19) По результатам п.8 занести в отчет таблицу с результатами классификации всеми методами и выводы о наиболее подходящем методе классификации ваших данных.

20) Изучить, как изменится качество классификации, если на тестовую часть выделить 10% выборки, 35% выборки. Для этого повторить п.п. 6-10.

Вариант №7

Вид классов: moons

Random_state: 77

noise: 0.25

Ход работы

Подготовка данных

Для генерации данных воспользуемся функцией make_moons из пакета sklearn.datasets. Результат генерации данных и вывод первых 15 значений представлен на рисунке 1.

Генерация выборки

```
1 | X, y = make_moons(n_samples=1000, shuffle=True, noise=0.25, random_state=77)
 1 print('Координаты точек: ')
 2 print(X[:15])
 3 print('Метки класса: ')
 4 print(y[:15])
Координаты точек:
[ 0.75917445  0.37546408]
 [ 0.16596943    1.06109846]
 [ 2.23428045  0.2359786 ]
 [-0.89666798 1.0952051]
 [ 0.94876632  0.31861216]
 [-0.81661113 0.04043469]
 [ 0.02592078  0.16408361]
 [-0.92023208 0.20859127]
 [ 0.27797801  0.63569972]
 [ 0.83512001  0.62834727]
 [ 0.0828706 -0.14748687]
 [ 0.15418065  0.92032556]
 [-0.39249897    1.18232379]
 [ 1.19731795 -0.30376657]]
Метки класса:
[0 0 0 1 0 0 0 1 0 0 0 1 0 0 1]
```

Рисунок 1 – Генерация данных и вывод первых 15-ти значений

Отобразим на графике сгенерированную выборку с выделением классов разными цветами. Для этого воспользуемся функцией scatter из библиотеки matplotlib.pyplot. Результат визуализации представлен на рисунке 2.

```
1 plt.scatter(X[:, 0], X[:, 1], c=y)
2 plt.show()
```


Рисунок 2 – Визуализация выборки

Разделим данных на обучающую и тестовую выборку. Для этого воспользуемся функцией train_test_split из пакета sklearn.model_selection. Скрипт для разделения данных представлен на рисунке 3. Результат разбиения выборки на тестовую и обучающую с последующей их визуализацией представлены на рисунке 4 и 5.

Разбитие выборки на обучающее и тестовое множество (75/25)

Рисунок 3 – Разделение выборки на обучающее и тестовое множество

Рисунок 4 – Обучающая выборка

7

Классификация с помощью метода к-ближайших соседей

Использование параметра n_neighbors = 1. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 6. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 7.

```
knn = KNeighborsClassifier(n_neighbors=1, metric='euclidean')

# Обучаем модель данных
knn.fit(X_train, y_train)

# Оцениваем качество модели
prediction = knn.predict(X_test)

# Выводим сводную информацию
show_info(knn, 'ближайшие соседи (1)', y_test, prediction)
```

Рисунок 6 – Код для классификатора с помощью метода к-ближайших соседей с параметром n neighbors = 1

Метод классификации: ближайшие соседи (1)

Матрица неточностей [[116 8] [8 118]]

Точность классификации: 0.936

Полнота:

	precision	recall	f1-score	support
0	0.94	0.94	0.94	124
1	0.94	0.94	0.94	126
accuracy			0.94	250
macro avg	0.94	0.94	0.94	250
weighted avg	0.94	0.94	0.94	250

Площадь под кривой: 0.9359959037378393

БЛИЖАЙШИЕ СОСЕДИ (1)

Рисунок 7 – Результат классификации с помощью метода к-ближайших соседей с параметром n neighbors = 1

Запустим классификацию с использованием параметра n_neighbors = 3, 5 и 9. Результаты классификации представлены на рисунках 8, 9 и 10 соответственно.

Метод классификации: ближайшие соседи (3)

Предсказанные и реальные значения: $[1\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 1\$ 1 1 0 1 0 1 1 0 1 0 0 0 1100101000 10011 100 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1]

Матрица неточностей [[116 8] [5 121]]

Точность классификации: 0.948

Полнота:

	precision	recall	f1-score	support
0	0.96	0.94	0.95	124
1	0.94	0.96	0.95	126
accuracy			0.95	250
macro avg	0.95	0.95	0.95	250
weighted avg	0.95	0.95	0.95	250

Площадь под кривой: 0.9479006656426012

Рисунок 8 – Результат классификации с помощью метода к-ближайших соседей с параметром n neighbors = 3

Метод классификации: ближайшие соседи (5)

Предсказанные и реальные значения: $[1\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0$ $1\;1\;1\;1\;1\;1\;0\;1\;1\;0\;1\;1\;0\;0\;0\;1\;1\;1\;0\;0\;1\;1\;1\;0\;0\;0\;1\;0\;1\;1\;1\;0\;0$ 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 100010011000101010 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0111011101110011100010001111111101]

Матрица неточностей [[117 7] [4 122]]

Точность классификации: 0.956

Полнота:

	precision	recall	f1-score	support
0	0.97	0.94	0.96	124
1	0.95	0.97	0.96	126
accuracy			0.96	250
macro avg	0.96	0.96	0.96	250
weighted avg	0.96	0.96	0.96	250

Площадь под кривой: 0.9559011776753714

БЛИЖАЙШИЕ СОСЕДИ (5) Первый класс

Рисунок 9 — Результат классификации с помощью метода к-ближайших соседей с параметром n_neighbors = 5

Метод классификации: ближайшие соседи (9) Предсказанные и реальные значения: 10001000010011011000 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 $1\;1\;1\;1\;1\;1\;0\;1\;1\;0\;1\;0\;0\;0\;0\;1\;1\;1\;0\;0\;1\;1\;1\;0\;0\;0\;1\;0\;1\;1\;1\;0\;0$ 10001010100001011101 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1] 100010001100 1011100 0

Матрица неточностей [[120 4] [5 121]]

Точность классификации: 0.964

 $0\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1$

_	1~			та	
	IO.	ш	10	1 1	-

110711101111	precision	recall	f1-score	support
0 1	0.96 0.97	0.97 0.96	0.96 0.96	124 126
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	250 250 250

Площадь под кривой: 0.9640296979006657

ВЛИЖАЙШИЕ СОСЕДИ (9)

Рисунок 10 – Результат классификации с помощью метода к-ближайших соседей с параметром n neighbors = 9

Классификация с помощью наивного байесовского классификатора

Составленный код для использования данного классификатора представлен на рисунке 11. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 12.

```
from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

# Обучаем модель данных
nb.fit(X_train, y_train)

# Оцениваем качество модели
prediction = nb.predict(X_test)

# Выводим сводную информацию
show_info(nb, 'Наивный байесовский классификатор', y_test, prediction)
```

Рисунок 11 — Код для классификатора с помощью наивного байесовского классификатора

Метод классификации: Наивный байесовский классификатор

Предсказанные и реальные значения: 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 [1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 101010110 1011001001001 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1]

Матрица неточностей [[112 12] [19 107]]

Точность классификации: 0.876

Полнота:

	precision	recall	f1-score	support
0	0.85	0.90	0.88	124
1	0.90	0.85	0.87	126
accuracy			0.88	250
macro avg	0.88	0.88	0.88	250
weighted avg	0.88	0.88	0.88	250

Площадь под кривой: 0.876216077828981

НАИВНЫЙ БАЙЕСОВСКИЙ КЛАССИФИКАТОР

Первый класс

Рисунок 12 — Результат классификации с помощью наивного байесовского классификатора

Классификация с помощью случайного леса

Использование параметра n_estimators = 5. Составленный код для использования данного классификатора с данным параметром представлен на рисунке 13. Полученная информация о точности классификации при использовании данного метода представлена на рисунке 14.

```
1 rfc = RandomForestClassifier(n_estimators=5)

2 # Обучаем модель данных
4 rfc.fit(X_train, y_train)

5 # Оцениваем качество модели
7 prediction = rfc.predict(X_test)

8 # Выводим сводную информацию
10 show_info(rfc, 'случайный лес (5)', y_test, prediction)
```

Рисунок 13 – Код для классификатора с помощью случайного леса с параметром n_ estimators = 5

Рисунок 14 — Результат классификации с помощью случайного леса с параметром n_ estimators = 5

Запустим классификацию с использованием параметра n_ estimators = 10, 15, 20 и 50. Результаты классификации представлены на рисунках 15, 16, 17 и 18 соответственно.

Метод классификации: случайный лес (10)

Предсказанные и реальные значения:

[1	1	0	1	0	0	0	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	0	1	0	1	1	0	0	1	0	0	1	0	1	1
0	1	0	0	0	1	0	0	0	0	1	0	0	1	1	0	1	1	1	1	0	0	1	0	1	0	0	1	0	1	1	0	0	0	0	0	1
0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	1	1	1	0	1	1	0	1	0	0	1	0	0	1	0	0	1
1	1	0	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0	1
0	1	1	1	1	1	1	1	0	0	1	1	1	0	0	0	1	0	0	1	1	1	1	1	1	1	0	1									
[1	1	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	0	1	0	0	1
0	1	0	0	0	1	0	0	0	1	1	0	0	1	1	0	1	1	1	0	0	0	1	0	1	1	0	1	0	1	1	0	0	0	0	0	1
1	0	0	0	1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	1	1	0	1	1	0	1	1	0	1	0	0	1	0	0	1
1	1	0	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	1	0	1	0	1	0
1	1	1	1	0	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
0	1	0	0	0	1	0	1	0	1	1	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	1	1
0	1	1	1	0	1	1	1	0	0	1	1	1	0	0	0	1	0	0	0	1	1	1	1	1	1	0	1	l								

Матрица неточностей [[118 6] [9 117]]

Точность классификации: 0.94

Полнота:

	precision	recall	f1-score	support
0	0.93	0.95	0.94	124
1	0.95	0.93	0.94	126
accuracy			0.94	250
macro avg	0.94	0.94	0.94	250
weighted avg	0.94	0.94	0.94	250

Площадь под кривой: 0.9400921658986175

ОЛУЧАЙНЫЙ ЛЕС (10)

Рисунок 15 — Результат классификации с помощью случайного леса с параметром n_ estimators = 10

Первый класс

Метод классификации: случайный лес (15)

Предсказанные и реальные значения:

ιιρι	-н,	·KC	450	anı	IDIO	_ ,	" P	$\mathcal{L}_{\mathcal{L}}$	2716	2110		31	ıa	101	1117	٦.																				
[1	1	0	1	0	0	0	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	0	1	0	1	1
0	1	0	0	0	1	0	0	0	0	1	0	0	1	1	0	1	1	1	1	0	0	1	0	1	1	0	1	0	1	1	0	0	0	0	0	1
0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	1	1	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	1	0	1	0	1	0
1	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
_	_	_	_	_	_	_	_	_		_	0	_	_	_	_			_	_	_		_	_	_	-	_	_	_	1	1	0	0	0	1	0	1
0	1	1	1	1	1	1	1	0	0	0	1	1	0	0	0	1	0	0	1	1	1	1	1	1	1	0	1]	l								
[1	1	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	0	1	0	0	1
0	1	0	0	0	1	0	0	0	1	1	0	0	1	1	0	1	1	1	0	0	0	1	0	1	1	0	1	0	1	1	0	0	0	0	0	1
1	0	0	0	1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	1	1	0	1	1	0	1	1	0	1	0	0	1	0	0	1
1	1	0	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	1	0	1	0	1	0
1	1	1	1	0	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
0	1	0	0	0	1	0	1	0	1	1	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	1	1
0	1	1	1	0	1	1	1	0	0	1	1	1	0	0	0	1	0	0	0	1	1	1	1	1	1	0	11	ı								

Матрица неточностей [[118 6] [9 117]]

Точность классификации: 0.94

Полнота:

	precision	recall	f1-score	support
0	0.93	0.95	0.94	124
1	0.95	0.93	0.94	126
accuracy			0.94	250
macro avg	0.94	0.94	0.94	250
weighted avg	0.94	0.94	0.94	250

Площадь под кривой: 0.9400921658986175

ОЛУЧАЙНЫЙ ЛЕС (15)

Первый класс

Рисунок 16 – Результат классификации с помощью случайного леса с параметром n_ estimators = 15

Метод классификации: случайный лес (20)

Предсказанные и реальные значения:

[1	1	0	1	0	0	0	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	0	1	0	1	1
0	1	0	0	0	1	0	0	0	0	1	0	0	1	1	0	1	1	1	1	0	0	1	0	1	1	0	1	0	1	1	0	0	0	0	0	1
0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	1	1	1	0	1	1	0	1	0	0	1	0	0	1	0	0	1
1	1	0	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0	1
0	1	1	1	1	1	1	1	0	0	1	1	1	0	0	0	1	0	0	1	1	1	1	1	1	1	0	1]									
[1	1	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	0	1	0	0	1
0	1	0	0	0	1	0	0	0	1	1	0	0	1	1	0	1	1	1	0	0	0	1	0	1	1	0	1	0	1	1	0	0	0	0	0	1
1	0	0	0	1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	1	1	0	1	1	0	1	1	0	1	0	0	1	0	0	1
1	1	0	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	1	0	1	0	1	0
1	1	1	1	0	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
0	1	0	0	0	1	0	1	0	1	1	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	1	1
0	1	1	1	0	1	1	1	0	0	1	1	1	0	0	0	1	0	0	0	1	1	1	1	1	1	0	1	ı								

Матрица неточностей [[118 6] [7 119]]

Точность классификации: 0.948

Полнота:

	precision	recall	f1-score	support
0	0.94	0.95	0.95	124
1	0.95	0.94	0.95	126
accuracy			0.95	250
macro avg	0.95	0.95	0.95	250
weighted avg	0.95	0.95	0.95	250

Площадь под кривой: 0.9480286738351255

ОДРУЧАЙНЫЙ ЛЕС (20)

Рисунок 17 — Результат классификации с помощью случайного леса с параметром n_ estimators = 20

Метод классификации: случайный лес (50)

Предсказанные и реальные значения:

[1	1	0	1	0	0	0	1	0	0	1	1	0	1	0	1	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	0	1	0	1	1
0	1	0	0	0	1	0	0	0	0	1	0	0	1	1	0	1	1	1	1	0	0	1	0	1	1	0	1	0	1	1	0	0	0	0	0	1
0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	1	1	1	0	1	1	0	1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0	1
0	1	1	1	1	1	1	1	0	0	1	1	1	0	0	0	1	0	0	1	1	1	1	1	1	1	0	1]	ı								
[1	1	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	0	1	0	0	1
0	1	0	0	0	1	0	0	0	1	1	0	0	1	1	0	1	1	1	0	0	0	1	0	1	1	0	1	0	1	1	0	0	0	0	0	1
1	0	0	0	1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	1	1	0	1	1	0	1	1	0	1	0	0	1	0	0	1
1	1	0	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0	1	1	1	0	0	1	1	0	1	0	1	0
1	1	1	1	0	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
0	1	0	0	0	1	0	1	0	1	1	0	0	0	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	1	1	0	0	0	1	1	1
0	1	1	1	0	1	1	1	0	0	1	1	1	0	0	0	1	0	0	0	1	1	1	1	1	1	0	1]	ı								

Матрица неточностей [[118 6] [8 118]]

Точность классификации: 0.944

Полнота:

	precision	recall	f1-score	support
0	0.94	0.95	0.94	124
1	0.95	0.94	0.94	126
accuracy			0.94	250
macro avg	0.94	0.94	0.94	250
weighted avg	0.94	0.94	0.94	250

Площадь под кривой: 0.9440604198668715

ОПУЧАЙНЫЙ ЛЕС (50)

Первый класс

Рисунок 18 — Результат классификации с помощью случайного леса с параметром n_ estimators = 50

Анализ результатов

Сведем полученные данные в таблицу 1 и сделаем вывод.

Таблица 1 – Результат классификации по методам про 75% обучающей выборки

Метод (параметры)	Точность	Площадь под кривой				
Метод к-ближайших	0,936	0,936				
coceдей (n_neighbors = 1)	0,930	0,230				
Метод к-ближайших	0,948	0,948				
coceдей (n_neighbors = 3)	0,240	0,740				
Метод к-ближайших	0,956	0,956				
coceдей (n_neighbors = 5)	0,730	0,750				
Метод к-ближайших	0,964	0,964				
coceдей (n_neighbors = 9)	0,204	0,704				
Наивный байесовский	0,876	0,876				
классификатор	0,070	,,,,,,				
Случайный лес	0,924	0,924				
$(n_{estimators} = 5)$	0,724	0,721				
Случайный лес	0,936	0,936				
$(n_{estimators} = 10)$	0,730	0,730				
Случайный лес	0,944	0,944				
$(n_{estimators} = 15)$	0,744	0,544				
Случайный лес	0,948	0,948				
$(n_{estimators} = 20)$	0,270	0,270				
Случайный лес	0,944	0,944				
$(n_{estimators} = 50)$	0,277	0,777				

Исходя из таблицы 1, можно сделать вывод о том, что лучше всего себя показал метод к-ближайших соседей (n_neighbors = 9), хуже всего – наивный байесовский классификатор.

Рассмотрим случай уменьшения тестовой выборки. Установим, что тестовая выборка составляет 10% и построим графики визуализации обучающей и тестовой выборки, данные графики представлены на рисунках 19 и 20 соответственно.

Рисунок 19 – Обучающая выборка при 90% от общего размера

Рисунок 20 – Тестовая выборка при 10% от общего размера

Сведем полученные данные в таблицу 2 и сделаем вывод.

Таблица 2 – Результат классификации по методам про 90% обучающей выборки

Метод (параметры)	Точность	Площадь под кривой
Метод к-ближайших coceдей (n_neighbors = 1)	0,93	0,928
Метод к-ближайших coceдей (n_neighbors = 3)	0,93	0,928
Метод к-ближайших coceдей (n_neighbors = 5)	0,93	0,93
Метод к-ближайших coceдей (n_neighbors = 9)	0,94	0,939
Наивный байесовский классификатор	0,88	0,878
Случайный лес (n_estimators = 5)	0,91	0,906
Случайный лес (n_estimators = 10)	0,91	0,906
Случайный лес (n_estimators = 15)	0,92	0,917
Случайный лес (n_estimators = 20)	0,94	0,939
Случайный лес (n_estimators = 50)	0,94	0,939

Исходя из таблицы 2, можно сделать вывод о том, что лучше всего себя показал метод к-ближайших соседей (n_neighbors = 9) и случайный лес (n_estimators = 20 и n_estimators = 50), хуже всего — наивный байесовский классификатор.

Рассмотрим случай уменьшения тестовой выборки. Установим, что тестовая выборка составляет 35% и построим графики визуализации обучающей и тестовой выборки, данные графики представлены на рисунках 21 и 22 соответственно.

Рисунок 21 – Обучающая выборка при 65% от общего размера

Рисунок 22 – Тестовая выборка при 35% от общего размера

Сведем полученные данные в таблицу 3 и сделаем вывод.

Таблица 3 — Результат классификации по методам про 65% обучающей выборки

Метод (параметры)	Точность	Площадь под кривой
Метод к-ближайших coceдей (n_neighbors = 1)	0,934	0,934
Метод к-ближайших coceдей (n_neighbors = 3)	0,954	0,954
Метод к-ближайших coceдей (n_neighbors = 5)	0,963	0,963
Метод к-ближайших coceдей (n_neighbors = 9)	0,971	0,971
Наивный байесовский классификатор	0,886	0,889
Случайный лес (n_estimators = 5)	0,949	0,949
Случайный лес (n_estimators = 10)	0,929	0,929
Случайный лес (n_estimators = 15)	0,943	0,943
Случайный лес (n_estimators = 20)	0,951	0,951
Случайный лес (n_estimators = 50)	0,946	0,946

Исходя из таблицы 3, можно сделать вывод о том, что лучше всего себя показал метод к-ближайших соседей (n_neighbors = 9), хуже всего — наивный байесовский классификатор.

Вывод

В ходе выполнения данной лабораторной работы мною были получены практические навыки решения задачи бинарной классификации данных в среде Jupiter Notebook. Также я научился загружать данные, обучать классификаторы и проводить классификацию и получил опыт в оценивании точности полученных моделей.

В результате анализа полученных результатов выяснилось, что наивысшая точность классификации 0,971 (и наибольшая площадь под кривой) достигается, когда размер обучающей выборки равен 65% и в качестве метода выбран метод к-ближних соседей при n neighbors = 9.

Приложение А

Исходный код при 25% тестовой выборки

```
#!/usr/bin/env python
# coding: utf-8
# ## Лабораторная работа №1
# ### Задание
# ### Вариант №7
# ### Вид классов: `moons`
# ### Random state: `77`
# ### noise: `0.25`
# In[25]:
# Модуль numpy (сокращение от "Numerical Python") предоставляет
функциональность для эффективной работы
# с массивами и математическими операциями на ними.
import numpy as np
# Модуль matplotlib.pyplot используется для создания графиков и визуализации
данных.
# Он предоставляет множество функций для построения различных типов графиков.
import matplotlib.pyplot as plt
from sklearn.datasets import make moons
from sklearn.model selection import train test split
# In[26]:
# А для отображения на графике области принятия решения - готовую функцию
plot 2d separator,
# которой нужно передать на вход объект classifier - модель классификатора и
Х - массив входных данных:
def plot 2d separator(classifier, X, fill=False, line=True, ax=None,
eps=None):
    if eps is None:
       eps = 1.0
    x \min, x \max = X[:, 0].\min() - eps, X[:, 0].max() + eps
    y \min, y \max = X[:, 1].\min() - eps, X[:, 1].max() + eps
    xx = np.linspace(x min, x max, 100)
    yy = np.linspace(y min, y max, 100)
    x1, x2 = np.meshgrid(xx, yy)
    X grid = np.c [x1.ravel(), x2.ravel()]
    try:
        decision values = classifier.decision function(X grid)
        levels = [0]
        fill levels = [decision values.min(), 0, decision values.max()]
    except AttributeError:
        decision values = classifier.predict proba(X grid)[:, 1]
        levels = [.5]
        fill levels = [0, .5, 1]
    if ax is None:
       ax = plt.gca()
    if fill:
        ax.contourf(x1,
                    decision values.reshape(x1.shape),
```

```
levels=fill levels,
                    colors=['cyan', 'pink', 'yellow'])
    if line:
        ax.contour(x1,
                   decision values.reshape(x1.shape),
                   levels=levels,
                   colors='black')
    ax.set xlim(x min, x max)
    ax.set ylim(y min, y max)
    ax.set_xticks(())
    ax.set yticks(())
# ### Генерация выборки
# In[27]:
X, y = make moons(n samples=1000, shuffle=True, noise=0.25, random state=77)
# In[28]:
print('Координаты точек: ')
print(X[:15])
print('Метки класса: ')
print(y[:15])
# In[29]:
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
# ### Разбитие выборки на обучающее и тестовое множество (75/25)
# In[30]:
X train, X test, y train, y test = train test split(X,
                                                     test size=0.25,
                                                     random state=77)
# In[31]:
plt.title('Обучающая выборка')
plt.scatter(X train[:, 0], X train[:, 1], c=y train)
plt.show()
# In[32]:
plt.title('Тестовая выборка')
plt.scatter(X test[:, 0], X test[:, 1], c=y test)
```

```
plt.show()
# ### Классификация
# In[33]:
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn.metrics import roc auc score
# In[34]:
def show info(classifier, classifier name, real values, prediction values):
    print(f'Метод классификации: {classifier name}\n')
    # Выводим предсказанное и реальное значение
    print('Предсказанные и реальные значения:')
    print(prediction values)
    print(real values)
    # Выводим матрицу неточностей
    print('\nМатрица неточностей')
    print(confusion matrix(real values, prediction values))
    # Выводим точность классификации
    print(f'\nТочность классификации: {accuracy score(prediction values,
real values) }')
    # Выводим полноту
    print('\nПолнота: ')
    print(classification report(real values, prediction values))
    # AUC ROC
    print(f'\nПлощадь под кривой: {roc auc score(real values,
prediction values)}')
    plt.xlabel('Первый класс')
    plt.ylabel('Второй класс')
    plt.title(classifier name.upper())
    plot 2d separator(classifier, X, fill=True)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=70)
# ### Метод k-ближайших соседей (1)
# In[35]:
from sklearn.neighbors import KNeighborsClassifier
# In[36]:
knn = KNeighborsClassifier(n neighbors=1, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
```

```
# Оцениваем качество молели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (1)', y test, prediction)
# ### Метод k-ближайших соседей (3)
# In[37]:
knn = KNeighborsClassifier(n neighbors=3, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (3)', y test, prediction)
# ### Метод k-ближайших соседей (5)
# In[38]:
knn = KNeighborsClassifier(n neighbors=5, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (5)', y test, prediction)
# ### Метод k-ближайших соседей (9)
# In[39]:
knn = KNeighborsClassifier(n neighbors=9, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# In[40]:
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (9)', y test, prediction)
```

```
# ## Наивный байесовский классификатор
# In[41]:
from sklearn.naive bayes import GaussianNB
nb = GaussianNB()
# Обучаем модель данных
nb.fit(X train, y train)
# Оцениваем качество модели
prediction = nb.predict(X test)
# Выводим сводную информацию
show info(nb, 'Наивный байесовский классификатор', y test, prediction)
# ### Случайный лес (5)
# In[42]:
from sklearn.ensemble import RandomForestClassifier
# In[43]:
rfc = RandomForestClassifier(n estimators=5)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (5)', y test, prediction)
# ### Случайный лес (10)
# In[44]:
rfc = RandomForestClassifier(n estimators=10)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (10)', y test, prediction)
# ### Случайный лес (15)
# In[45]:
```

```
rfc = RandomForestClassifier(n estimators=15)
# Обучаем модель данных
rfc.fit(X_train, y_train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (15)', y test, prediction)
# ### Случайный лес (20)
# In[46]:
rfc = RandomForestClassifier(n estimators=20)
# Обучаем модель данных
rfc.fit(X_train, y_train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (20)', y test, prediction)
# ### Случайный лес (50)
# In[47]:
rfc = RandomForestClassifier(n estimators=50)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (50)', y test, prediction)
```

Приложение Б

Исходный код при 10% тестовой выборки

```
#!/usr/bin/env python
# coding: utf-8
# ## Лабораторная работа №1
# ### Задание
# ### Вариант №7
# ### Вид классов: `moons`
# ### Random state: `77`
# ### noise: `0.25`
# In[23]:
# Модуль numpy (сокращение от "Numerical Python") предоставляет
функциональность для эффективной работы
# с массивами и математическими операциями на ними.
import numpy as np
# Модуль matplotlib.pyplot используется для создания графиков и визуализации
данных.
# Он предоставляет множество функций для построения различных типов графиков.
import matplotlib.pyplot as plt
from sklearn.datasets import make moons
from sklearn.model selection import train test split
# In[24]:
# А для отображения на графике области принятия решения - готовую функцию
plot 2d separator,
# которой нужно передать на вход объект classifier - модель классификатора и
Х - массив входных данных:
def plot 2d separator(classifier, X, fill=False, line=True, ax=None,
eps=None):
    if eps is None:
       eps = 1.0
    x \min, x \max = X[:, 0].\min() - eps, X[:, 0].max() + eps
    y \min, y \max = X[:, 1].\min() - eps, X[:, 1].max() + eps
    xx = np.linspace(x min, x max, 100)
    yy = np.linspace(y min, y max, 100)
    x1, x2 = np.meshgrid(xx, yy)
    X grid = np.c [x1.ravel(), x2.ravel()]
    try:
        decision values = classifier.decision function(X grid)
        levels = [0]
        fill levels = [decision values.min(), 0, decision values.max()]
    except AttributeError:
        decision values = classifier.predict proba(X grid)[:, 1]
        levels = [.5]
        fill levels = [0, .5, 1]
    if ax is None:
       ax = plt.gca()
    if fill:
        ax.contourf(x1,
                    decision values.reshape(x1.shape),
```

```
levels=fill levels,
                    colors=['cyan', 'pink', 'yellow'])
    if line:
        ax.contour(x1,
                   decision values.reshape(x1.shape),
                   levels=levels,
                   colors='black')
    ax.set xlim(x min, x max)
    ax.set ylim(y min, y max)
    ax.set xticks(())
    ax.set yticks(())
# ### Генерация выборки
# In[25]:
X, y = make moons(n samples=1000, shuffle=True, noise=0.25, random state=77)
# In[26]:
print('Координаты точек: ')
print(X[:15])
print('Метки класса: ')
print(y[:15])
# In[27]:
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
# ### Разбитие выборки на обучающее и тестовое множество (90/10)
# In[28]:
X train, X test, y train, y test = train test split(X,
                                                     test size=0.10,
                                                     random state=77)
# In[29]:
plt.title('Обучающая выборка')
plt.scatter(X train[:, 0], X train[:, 1], c=y train)
plt.show()
# In[30]:
plt.title('Тестовая выборка')
plt.scatter(X test[:, 0], X test[:, 1], c=y test)
```

```
plt.show()
# ### Классификация
# In[31]:
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn.metrics import roc auc score
# In[32]:
def show info(classifier, classifier name, real values, prediction values):
    print(f'Метод классификации: {classifier name}\n')
    # Выводим предсказанное и реальное значение
    print('Предсказанные и реальные значения:')
    print(prediction values)
    print(real values)
    # Выводим матрицу неточностей
    print('\nМатрица неточностей')
    print(confusion matrix(real values, prediction values))
    # Выводим точность классификации
    print(f'\nТочность классификации: {accuracy score(prediction values,
real values) }')
    # Выводим полноту
    print('\nПолнота: ')
    print(classification report(real values, prediction values))
    # AUC ROC
    print(f'\nПлощадь под кривой: {roc auc score(real values,
prediction values)}')
    plt.xlabel('Первый класс')
    plt.ylabel('Второй класс')
    plt.title(classifier name.upper())
    plot 2d separator(classifier, X, fill=True)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=70)
# ### Метод k-ближайших соседей (1)
# In[33]:
from sklearn.neighbors import KNeighborsClassifier
# In[34]:
knn = KNeighborsClassifier(n neighbors=1, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
```

```
# Оцениваем качество молели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (1)', y test, prediction)
# ### Метод k-ближайших соседей (3)
# In[35]:
knn = KNeighborsClassifier(n neighbors=3, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (3)', y test, prediction)
# ### Метод k-ближайших соседей (5)
# In[36]:
knn = KNeighborsClassifier(n neighbors=5, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (5)', y test, prediction)
# ### Метод k-ближайших соседей (9)
# In[37]:
knn = KNeighborsClassifier(n neighbors=9, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (9)', y test, prediction)
# ## Наивный байесовский классификатор
# In[38]:
```

```
from sklearn.naive bayes import GaussianNB
nb = GaussianNB()
# Обучаем модель данных
nb.fit(X_train, y_train)
# Оцениваем качество модели
prediction = nb.predict(X test)
# Выводим сводную информацию
show info(nb, 'Наивный байесовский классификатор', y test, prediction)
# ### Случайный лес (5)
# In[39]:
from sklearn.ensemble import RandomForestClassifier
# In[40]:
rfc = RandomForestClassifier(n estimators=5)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X_test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (5)', y test, prediction)
# ### Случайный лес (10)
# In[41]:
rfc = RandomForestClassifier(n estimators=10)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X_test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (10)', y test, prediction)
# ### Случайный лес (15)
# In[42]:
rfc = RandomForestClassifier(n estimators=15)
# Обучаем модель данных
```

```
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show_info(rfc, 'случайный лес (15)', y_test, prediction)
# ### Случайный лес (20)
# In[43]:
rfc = RandomForestClassifier(n estimators=20)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show_info(rfc, 'случайный лес (20)', y_test, prediction)
# ### Случайный лес (50)
# In[44]:
rfc = RandomForestClassifier(n_estimators=50)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show_info(rfc, 'случайный лес (50)', y_test, prediction)
```

Приложение В

Исходный код при 35% тестовой выборки

```
#!/usr/bin/env python
# coding: utf-8
# ## Лабораторная работа №1
# ### Задание
# ### Вариант №7
# ### Вид классов: `moons`
# ### Random state: `77`
# ### noise: `0.25`
# In[1]:
# Модуль numpy (сокращение от "Numerical Python") предоставляет
функциональность для эффективной работы
# с массивами и математическими операциями на ними.
import numpy as np
# Модуль matplotlib.pyplot используется для создания графиков и визуализации
# Он предоставляет множество функций для построения различных типов графиков.
import matplotlib.pyplot as plt
from sklearn.datasets import make moons
from sklearn.model selection import train test split
# In[2]:
# А для отображения на графике области принятия решения - готовую функцию
plot 2d separator,
# которой нужно передать на вход объект classifier - модель классификатора и
Х - массив входных данных:
def plot 2d separator(classifier, X, fill=False, line=True, ax=None,
eps=None):
    if eps is None:
        eps = 1.0
    x_{min}, x_{max} = X[:, 0].min() - eps, <math>X[:, 0].max() + eps
    y_{min}, y_{max} = X[:, 1].min() - eps, <math>X[:, 1].max() + eps
    xx = np.linspace(x min, x max, 100)
    yy = np.linspace(y_min, y_max, 100)
    x1, x2 = np.meshgrid(xx, yy)
    X grid = np.c [x1.ravel(), x2.ravel()]
    try:
        decision values = classifier.decision function(X grid)
        levels = [0]
        fill_levels = [decision_values.min(), 0, decision values.max()]
    except AttributeError:
        decision_values = classifier.predict_proba(X grid)[:, 1]
        levels = [.5]
        fill levels = [0, .5, 1]
    if ax is None:
        ax = plt.gca()
    if fill:
        ax.contourf(x1,
```

```
x2,
                    decision values.reshape(x1.shape),
                    levels=fill levels,
                    colors=['cyan', 'pink', 'yellow'])
    if line:
        ax.contour(x1,
                   decision values.reshape(x1.shape),
                   levels=levels,
                   colors='black')
    ax.set xlim(x min, x max)
    ax.set ylim(y min, y max)
    ax.set xticks(())
    ax.set yticks(())
# ### Генерация выборки
# In[3]:
X, y = make moons(n samples=1000, shuffle=True, noise=0.25, random state=77)
# In[4]:
print('Координаты точек: ')
print(X[:15])
print('Метки класса: ')
print(y[:15])
# In[5]:
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
# ### Разбитие выборки на обучающее и тестовое множество (65/35)
# In[6]:
X train, X test, y train, y test = train test split(X,
                                                     test size=0.35,
                                                     random state=77)
# In[7]:
plt.title('Обучающая выборка')
plt.scatter(X train[:, 0], X train[:, 1], c=y train)
plt.show()
# In[8]:
```

```
plt.title('Тестовая выборка')
plt.scatter(X test[:, 0], X test[:, 1], c=y test)
plt.show()
# ### Классификация
# In[9]:
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn.metrics import roc auc score
# In[10]:
def show info(classifier, classifier name, real values, prediction values):
    print(f'Метод классификации: {classifier name}\n')
    # Выводим предсказанное и реальное значение
    print('Предсказанные и реальные значения:')
    print(prediction values)
    print(real values)
    # Выводим матрицу неточностей
    print('\nМатрица неточностей')
    print(confusion matrix(real values, prediction values))
    # Выводим точность классификации
    print(f'\nТочность классификации: {accuracy score(prediction values,
real values) } ')
    # Выводим полноту
    print('\nПолнота: ')
    print(classification report(real values, prediction values))
    # AUC ROC
    print(f'\nПлощадь под кривой: {roc auc score(real values,
prediction values)}')
    plt.xlabel('Первый класс')
    plt.ylabel('Второй класс')
    plt.title(classifier name.upper())
    plot 2d separator(classifier, X, fill=True)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=70)
# ### Метод k-ближайших соседей (1)
# In[11]:
from sklearn.neighbors import KNeighborsClassifier
# In[12]:
knn = KNeighborsClassifier(n neighbors=1, metric='euclidean')
```

```
# Обучаем модель данных
knn.fit(X_train, y_train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (1)', y_test, prediction)
# ### Метод k-ближайших соседей (3)
# In[13]:
knn = KNeighborsClassifier(n neighbors=3, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (3)', y test, prediction)
# ### Метод k-ближайших соседей (5)
# In[14]:
knn = KNeighborsClassifier(n neighbors=5, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (5)', y test, prediction)
# ### Метод k-ближайших соседей (9)
# In[15]:
knn = KNeighborsClassifier(n neighbors=9, metric='euclidean')
# Обучаем модель данных
knn.fit(X train, y train)
# Оцениваем качество модели
prediction = knn.predict(X test)
# Выводим сводную информацию
show info(knn, 'ближайшие соседи (9)', y test, prediction)
# ## Наивный байесовский классификатор
```

```
# In[16]:
from sklearn.naive bayes import GaussianNB
nb = GaussianNB()
# Обучаем модель данных
nb.fit(X train, y train)
# Оцениваем качество модели
prediction = nb.predict(X test)
# Выводим сводную информацию
show info(nb, 'Наивный байесовский классификатор', y test, prediction)
# ### Случайный лес (5)
# In[17]:
from sklearn.ensemble import RandomForestClassifier
# In[18]:
rfc = RandomForestClassifier(n estimators=5)
# Обучаем модель данных
rfc.fit(X_train, y_train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (5)', y test, prediction)
# ### Случайный лес (10)
# In[19]:
rfc = RandomForestClassifier(n estimators=10)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (10)', y test, prediction)
# ### Случайный лес (15)
# In[20]:
rfc = RandomForestClassifier(n estimators=15)
```

```
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X_test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (15)', y test, prediction)
# ### Случайный лес (20)
# In[21]:
rfc = RandomForestClassifier(n estimators=20)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (20)', y test, prediction)
# ### Случайный лес (50)
# In[22]:
rfc = RandomForestClassifier(n estimators=50)
# Обучаем модель данных
rfc.fit(X train, y train)
# Оцениваем качество модели
prediction = rfc.predict(X test)
# Выводим сводную информацию
show info(rfc, 'случайный лес (50)', y test, prediction)
```