REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)	
03-01-2004	Technical Paper (View Graph)		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER	
		F04611-99-C-0025	
Monitoring Micro-Structural Evo	5b. GRANT NUMBER		
under Incremental Strain Conditi	5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)	5d. PROJECT NUMBER		
• •		2302	
C. T. Liu, Lee M. Klynn, Jay D. T	5e. TASK NUMBER		
		0378	
		5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAM	8. PERFORMING ORGANIZATION REPORT NUMBER		
•			
ERC Incorporated			
555 Sparkman Drive			
Huntsville, AL 35816-000	0		
9. SPONSORING / MONITORING AGEN	10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research Laboratory (AFI	MC)	14	
AFRL/PRSB		11. SPONSOR/MONITOR'S	
4 Draco Drive		NUMBER(S)	
Edwards AFB CA 93524-7160	AFRL-PR-ED-VG-2004-049		
40 DIOTRIBUTION / AVAIL ABILITY OT	4 T		

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

JANNAF Nondestructive Evaluation Subcommittee Meeting (NDES)

New Orleans, LA, 29 Mar – 02 Apr 2004 14. ABSTRACT

20040503 189

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Linda Talon	
a. REPORT	b. ABSTRACT	c. THIS PAGE	A	10	19b. TELEPHONE NUMBER (include area code)
Unclassified	Unclassified	Unclassified	Α	10	(661) 275-5865

Evolution and Crack Formation ncremental Strain Condition-Monitoring Micro-Structural Using Digital Radiograph Xin a Solid Propellant under Ray Techniques

C. T. Liu AFRL/PRSM 10 E. Saturn Blvd. Edwards AFB CA 93524-7680 Lee M. Klynn & Jay D. Thompson

Lockheed Martin Advanced Technology Center

3251 Hanover St. Palo Alto, CA 91356

> Distribution A: Approved for Public Release; distribution unlimited

Objective

Monitor Micro-Structure Evolution, Damage process, and Crack Formation in a Solid Propellant.

Testing Setup

X-Ray Images at Different Amounts of Stretch

Test Sample #3

Approved for Public Release; distribution unlimited

Difference X-Ray Images of the Change from One Stretch to the Next

Approved for Public Release; distribution unlimited

Section Strain as a Function of Applied Strain

Strain plot for Uniaxial Tensile Test #3

Histogram of X-Ray Intensity as Function of the Applied Strain at the Crack Location

Coefficient of Variation of X-Ray Intensity and Volume Dilatation as Functions of Applied

Approved for Public Release; distribution unlimited

6

Volume Dilatation as a Function of Applied Strain

B0094 JANNAF04.ppt/

Approved for Public Release; distribution unlimited

Conclusions

- The degree of inhomogeneity of material's microstructure and number of non-propagating cracks increase as the applied strain is increased.
- The rate of x-ray intensity increases very fast prior to the formation of a crack.
- At high applied strain levels, the strain distributions are highly non-uniform.
- A good correlation exists between the dilatations measured by x-ray technique and dilatometer.
- micro-structure change and crack formation in solid X-ray technique is a promising method to monitor propellants.