MECH 6v29 - Model Predictive Control Homework 1

Jonas Wagner jonas.wagner@utdallas.edu

2023, September 29^{th}

Contents

Probler	oblem 1																2															
1a)																			 								 				 	2
1b)																			 								 				 	2

Problem 1

1a)

Figure 1: Problem 1a results

The transient behavior is pretty reasonable and has a mild overshoot. The maximum output is around 2.5 (2.409) and it appears to initially reach the origin after 4 timesteps but takes around 7 to settle.

1b)

Figure 2: Problem 1b results

The controller is unable to stabilize the system. $\,$

Is it possible to tune the cost function matrices? Potentially, although I'm not sure how to explicitly prove this for every case. (Although for this exact initial condition and other parameters I believe taking R=0 may work)