WSTĘP DO RACHUNKU PRAWDOPODOBIEŃSTWA

3. Aksjomatyczna definicja prawdopodobieństwa.

Przestrzenie produktowe i warunkowe.

Definicja. Przestrzenią probabilistyczną nazywamy trójkę $(\Omega, \mathcal{F}, \mathbb{P})$, gdzie Ω jest zbiorem zdarzeń elementarnych, \mathcal{F} jest "porządną" rodziną podzbiorów (σ -algebrą), której elementy nazywamy zdarzeniami, a $\mathbb{P}: \mathcal{F} \to [0,1]$ jest funkcją prawdopodobieństwa takq, że

- (A1) $0 \leq \mathbb{P}(A) \leq 1$ dla dowolnego zdarzenia $A \in \mathcal{F}$;
- (A2) $\mathbb{P}(\Omega) = 1$;
- (A3) Dla ciągu parami rozłącznych zdarzeń A_1, A_2, \ldots, z achodzi $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

Własności przestrzeni probabilistycznej:

- (W1) $\mathbb{P}(\emptyset) = 0$;
- (W2) Dla ciągu parami rozłącznych zdarzeń A_1, A_2, \ldots, A_n , zachodzi $\mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$;
- (W3) $\mathbb{P}(A') = 1 \mathbb{P}(A);$
- (W4) Jeśli $A \subset B$, to $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$;
- (W5) Jeśli $A \subset B$, to $\mathbb{P}(A) \leq \mathbb{P}(B)$;
- (W6) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$;
- (W7) $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A \cap B)$;
- $(\text{W8}) \ \mathbb{P}\left(A \cup B \cup C\right) = \mathbb{P}\left(A\right) + \mathbb{P}\left(B\right) + \mathbb{P}\left(C\right) \mathbb{P}\left(A \cap B\right) \mathbb{P}\left(A \cap C\right) \mathbb{P}\left(B \cap C\right) + \mathbb{P}\left(A \cap B \cap C\right).$

Definicja. Niech $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ i $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ będą dwoma przestrzeniami probabilistycznymi. **Iloczynem (produktem)** tych przestrzeni nazywamy przestrzeń $(\Omega, \mathcal{F}, \mathbb{P})$, gdzie $\Omega = \Omega_1 \times \Omega_2$, \mathcal{F} zawiera wszystkie zbiory typu $A_1 \times A_2$, gdzie $A_1 \in \mathcal{F}_1$ i $A_2 \in \mathcal{F}_2$, oraz dla takiej pary zbiorów mamy

$$\mathbb{P}(A_1 \times A_2) = \mathbb{P}_1(A_1) \cdot \mathbb{P}_2(A_2).$$

W podobny sposób definiujemy iloczyn większej (skończonej lub przeliczalnej) rodziny przestrzeni probabilistycznych.

Przykłady:

Schemat Bernoulliego. Niech $p \in (0,1)$ a n będzie liczbą naturalną. Przypuśćmy, że powtarzamy n razy eksperyment losowy, w którym prawdopodobieństwo sukcesu wynosi p (a porażki 1-p). Jeśli przez τ_k oznaczymy prawdopodobieństwo, że uzyskamy sukces w dokładnie k z n prób, to

$$\tau_k = \binom{n}{k} p^k (1-p)^{(n-k)}$$
 dla $k = 0, 1, \dots, n$.

Rozkład geometryczny. Przypuśćmy, że powtarzamy eksperyment losowy, w którym prawdopodobieństwo sukcesu wynosi p, dopóty, dopóki nie osiągniemy sukcesu. Jeśli przez σ_k oznaczymy prawdopodobieństwo, że potrzebujemy na to k rund, to

$$\sigma_k = p(1-p)^{k-1}$$
 dla $k = 1, 2, \dots$

Definicja. Jeśli $(\Omega, \mathcal{F}, \mathbb{P})$ jest przestrzenią probabilistyczną, a $B \in \mathcal{F}$ jest zdarzeniem, dla którego $\mathbb{P}(B) > 0$, wtedy możemy skonstruować przestrzeń warunkową $(B, \mathcal{F}_B, \mathbb{P}_B)$ przyjmując

$$\mathcal{F}_B = \{ A \cap B : A \in \mathcal{F} \},\$$

a dla każdego $A \in \mathcal{F}$

$$\mathbb{P}_B(A \cap B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

 $Prawdopodobieństwo \mathbb{P}_B(A)$ zwykle zapisujemy jako $\mathbb{P}(A|B)$ i czytamy jako prawdopodobieństwo (warunkowe) zdarzenia A pod warunkiem (zajścia) zdarzenia B.

Uwaga. Jeśli zdarzenia A i B są niezależne, to

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$
 i $\mathbb{P}(B|A) = \mathbb{P}(B)$,

zakładając, że $\mathbb{P}(A), \mathbb{P}(B) > 0$, bo inaczej prawdopodobieństwa warunkowe nie sa dobrze zdefiniowane.

Dodatek A. Zadania na ćwiczenia

Zadanie A.1. O zdarzeniach A i B wiadomo, że $\mathbb{P}(A) = 3/4$ i $\mathbb{P}(B) = 1/3$. Uzasadnij, że $1/12 \leq \mathbb{P}(A \cap B) \leq 1/3$ i podaj przykłady świadczące o tym, że te oszacowania są optymalne.

Zadanie A.2. Rzucamy symetryczną monetą do momentu kiedy wyrzucimy orła po raz pierwszy. Niech E oznacza zdarzenie, że wykonamy parzystą liczbę rzutów, a $A_{\geqslant k}$ zdarzenie, że wykonamy co najmniej k rzutów.

- (a) Wypisz elementy przestrzeni zdarzeń elementarnych Ω. Czy jest to przestrzeń skończona?
- (b) Znajdź $\mathbb{P}(E)$, $\mathbb{P}(E|A_{\geq 3})$ i $\mathbb{P}(E|A_{\geq 4})$.
- (c) Czy zdarzenia E i $A_{\geqslant 4}$ są niezależne?
- (d) Czy zdarzenia E i $A_{\geqslant 3}$ są niezależne?

Zadanie A.3. W urnie są 3 czerwone, 2 niebieskie i 1 zielona kula. Wybieramy z niej losowe dwie kule, wrzucamy z powrotem do urny i powtarzamy proces od nowa.

- (a) Znajdź prawdopodobieństwo warunkowe, że w pierwszej rundzie wyciągniemy kule o różnych kolorach pod warunkiem, że nie wyciągnęliśmy kuli zielonej.
- (b) Znajdź prawdopodobieństwo, że w pierwszych n rundach dokładnie k razy wyciągniemy kule o różnych kolorach.
- (c) Znajdź prawdopodobieństwo, że pierwszy raz wyciągniemy kule o różnych kolorach w n-tej rundzie.
- (d) Kontynuujemy proces, dopóki nie wyciągniemy kul o różnych kolorach w dwóch niekoniecznie po sobie następujących rundach. Znajdź prawdopodobieństwo, że proces będzie trwał n rund.
- (e) Kontynuujemy proces, dopóki nie wyciągniemy kul o różnych kolorach w dwóch kolejnych rundach. Znajdź prawdopodobieństwo, że proces bedzie trwał n rund.

Zadanie A.4. Pokaż, że dla ciągu zdarzeń A_1, A_2, \ldots , gdzie dla każdego $i = 1, 2, \ldots$, mamy $\mathbb{P}(A'_i) \leq 3^{-i}$, zachodzi

$$\mathbb{P}\left(\bigcap_{i=1}^{\infty} A_i\right) \geqslant 1/2.$$

Czy jeśli dla każdego $i=1,2,\ldots,$ mamy $\mathbb{P}\left(A_{i}^{\prime}\right)=3^{-i},$ to wtedy

$$\mathbb{P}\left(\bigcap_{i=1}^{\infty} A_i\right) = 1/2?$$

Zadanie A.5. Rzucamy cztery razy kostką. Niech A będzie zdarzeniem, że dokładnie dwa razy otrzymaliśmy wynik parzysty, a B zdarzeniem, że dokładnie raz wyrzuciliśmy szóstkę. Oblicz $\mathbb{P}(A|B)$ i $\mathbb{P}(B|A)$. Czy zdarzenia A i B są niezależne?

Dodatek B. Zadania domowe

Zadanie B.1. Udowodnij własności (W1) – (W8) z wykładu.

Zadanie B.2. Niech $\Omega=\{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5\}$ i $\mathbb{P}(\{\omega_1\})=\frac{1}{8},\ \mathbb{P}(\{\omega_2\})=\mathbb{P}(\{\omega_3\})=\mathbb{P}(\{\omega_4\})=\frac{3}{16}$ oraz $\mathbb{P}(\{\omega_5\})=\frac{5}{16}$. Niech $A=\{\omega_1,\omega_2,\omega_3\},\ B=\{\omega_1,\omega_2,\omega_4\}$ i $C=\{\omega_1,\omega_3,\omega_4\}$. Pokaż, że $\mathbb{P}(A\cap B\cap C)=\mathbb{P}(A)\cdot\mathbb{P}(B)\cdot\mathbb{P}(C)$, ale zdarzenia A,B,C nie są niezależne.

Zadanie B.3. W sesji student zdaje dwa egzaminy, z analizy i algebry. Szansa, że student zda egzamin z analizy wynosi 4/5, że zda algebrę 7/10, a że zda oba egzaminy 13/20. Jakie jest prawdopodobieństwo, że student:

- (a) zda analize, a obleje algebre?
- (b) zda tylko jeden egzamin?
- (c) nie zda żadnego egzaminu?
- (d) Znajdź prawdopodobieństwo warunkowe, że student zda analize, pod warunkiem, że zda algebrę.

Zadanie B.4. Znajdź prawdopodobieństwo, że rzucając monetą 28 razy, dokładnie 13 razy wyrzucimy orła.

Zadanie B.5. W urnie znajdują się trzy kule czerwone, dwie niebieskie i jedna zielona. Z urny wybieramy losowo dwie kule. Znajdź prawdopodobieństwo warunkowe zdarzenia, że wybierzemy kule różnych kolorów, pod warunkiem, że wiemy, iż wybraliśmy co najmniej jedną czerwoną kulę.

Zadanie B.6. Rzucamy kostką tak długo, dopóki wyrzucimy szóstkę po raz pierwszy. Przez $D_{\leqslant k}$ oznaczmy zdarzenie, że wykonamy co najwyżej k rzutów.

- (a) Znajdź $\mathbb{P}(D_{\leqslant 3})$. (b) Oblicz $\mathbb{P}(D_{\leqslant 3}|D_{\leqslant 2})$.
- (c) Oblicz $\mathbb{P}(D_{\leq 2}|D_{\leq 3})$.
- (d) Znajdź prawdopodobieństwo, że w pierwszych dwóch rzutach otrzymaliśmy co najmniej jedną jedynkę, pod warunkiem, że rzucaliśmy dokładnie trzy razy.

Dodatek C. Odpowiedzi do zadań domowych

B.2 Sprawdź, czy zdarzenia są parami niezależne.

 $B.3 \ (a) \ 0.15, \quad (b) \ 0.2, \quad (c) \ 0.15, \quad (d) \ 13/14.$

 $B.4 \binom{28}{13}/2^{28}$

B.5 0,75

B.6 (a)
$$\frac{1}{6} + \frac{5}{6} \cdot \frac{1}{6} + \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}$$
, (b) 1, (c) $\frac{\frac{1}{6} + \frac{5}{6} \cdot \frac{1}{6}}{\frac{1}{6} + \frac{5}{6} \cdot \frac{1}{6} + \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6}}$, (d) $\frac{9}{25}$