Spatial Databases

Spatial Data Analysis and Simulation modelling, 2020, Dr. Zhiyong Wang

Learning goals

- The basic concepts of spatial databases
- Learn to create your own spatial database
- Learn to import geo-data into the spatial database
- Learn to perform simple and complex spatial queries.

Outline

- Spatial Databases
- PostGIS
 - Install and set up PostGIS
 - Spatial data types and geometric types
 - Spatial reference ID
 - Spatial functions
- Practical examples
 - Non-spatial query
 - Spatial query

Spatial Databases

What is a spatial database?

A spatial database is a database that is optimized for storing and querying data that represents objects defined in a geometric space.

extensions to store and manage spacial data

Why spatial databases?

Spatial databases VS Shapefiles

Shapefile < 2GB

limitations because only less than 2GB data

Why spatial databases?

Examples of spatial databases

PostgreSQL / PostGIS (open source)

Oracle / Oracle Spatial and Graph

DB2 spatial extender

SpatiaLite (dateibasiert)

NoSQL:

PostGIS PostGIS

Postgresql

Postgresql is a free and open-source relational database management system (RDBMS).

- -- over 30 years of active development
- -- provides a variety of datatypes
- -- available for many operating systems

PostGIS

PostGIS adds spatial capabilities to the PostgreSQL relational database. It is an extension of PostgreSQL, and enables it to store, query, and manipulate spatial data.

build on top of PostgreSQL - extension for spatial functions and datatypes

Install PostgreSQL /PostGIS

Install PostgreSQL

Source code

The source code can be found in the main file browser or you can access the source control repository directly at git.postgresql.org. Instructions for building from source can be found in the documentation.

Install PostGIS

Set up PostGIS

Activate the PostGIS extension in PostgreSQL

```
CREATE DATABASE ads_db;
CREATE EXTENSION postgis; activation of PostGIS
```

This will install the corresponding PostGIS functions in the public schema. In addition, a table "spatial_ref_sys" and four views "geometry_columns", "geography_columns", "raster_columns" and "raster_overviews" are created.

PostGIS: Spatial datatypes

PostGIS – Geometric types

supports different geometrics like:

one can express them in text representation which can be used as input and output

Geometry Type	WKT representation
Point	POINT(3 7)
•	,
Multinoint	MULTIPOINT(3 7, 4 2, 8 6)
Multipoint	0881313811115 /) 4 2) 0 0/
•	
_	
•	
LineString	LINESIRING(1 2, 3 6, 9 4)
/	
MultiLineString	<u>MULTILINESTRING((</u> 1 8, 4 4), (4 9, 8 5, 6 2, 1 4))
, \	
Polygon	POLYGON((1 2, 6 1, 9 3, 8 5, 3 6, 1 2))
2 23,8211	
Polygon (with hole)	POLYGON((1 2, 6 1, 9 3, 8 5, 3 6, 1 2), (3 3, 5 5, 6 2, 3 3))
Polygon (with note)	
MultiPolygon	MULTIPOLYGON(((1 2, 6 1, 9 3, 3 6, 1 2)), ((4 9, 7 6, 9 8, 4 9)))
CoometryCollection	GEOMETRYCOLLECTION(POINT(4 5), POINT(7 4), POINT(6 2),
GeometryCollection	LINESTRING(4 5, 6 7, 7 4, 6 2),
	POLYGON((1 2, 6 1, 9 3, 8 5, 3 6, 1 2)))
/ /	

PostGIS: Spatial Reference ID

- A Spatial Reference Identifier (SRID) is an identifier associated with a specific coordinate system.
- All existing projections are stored in the spatial_ref_sys table.

```
SRID:28992 --- Amersfoort / RD New
```

SRID:4326 --- WGS 84 (World Geodetic System)

- Search for suitable SRID or EPSG codes:
 - http://www.epsg-registry.org
 - http://spatialreference.org/ref/epsg/

PostGIS: spatial functions

Creation, access, editing and output of geometries

- Creation of points, lines and polygons:
 - <u>ST MakePoint</u>, <u>ST MakeLine</u>, <u>ST MakePolygon</u>
- Access to geometries:
 - <u>ST StartPoint</u>, <u>ST EndPoint</u>, <u>ST X</u>, <u>ST Y</u>

all start with ST=spatial type

- Access to properties:
 - <u>ST_IsValid</u>, <u>ST_IsClosed</u>, <u>ST_Npoints</u>, <u>ST_IsSimple</u>
- Edit geometries:
 - <u>ST AddPoint</u>, <u>ST Multi</u>, <u>ST Translate</u>
- Ouput geometries:
 - <u>ST AsText</u>, <u>ST AsKML</u>, <u>ST AsGML</u>

PostGIS: create spatial tables

PostGIS: Create and import geometries

- via GUI (e.g., pgAdmin (<u>www.pgadmin.org</u>))
- via command line (ogr2ogr, shp2pgsql...)
 e.g., ogr2ogr -f "PostgreSQL" PG:"host=<hostname> dbname=<dbname> user=<yourusername> password=<yourpassword>" <dir>\yourdatafile.shp
- and many more

http://postgis.net/workshops/postgis-intro/loading_data.html https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/importing-spatial-data-to-postgis/ba-p/1255421

PostGIS: Transformation

Coordinate transformation of a geometry column:

```
ALTER TABLE hospitals
ADD COLUMN geom_utm geometry(POINT, 28992);

UPDATE hospitals SET geom_utm = ST_Transform(geom, 28992);
```


adding a new geometry column based on the dutch coordinate system two geometry columns

Use case

Hospitals in the Netherlands

Practical examples: non-spatial query

• **SELECT** count (*) **FROM** hospitals

nonspatial query count the number of hospitals

Result: 186

Practical examples: spatial query

• SELECT count(*) from hospitals hp JOIN municipality_ams ma on

st_contains(ga.geom, hp.geom)

spatial query: joining two tables (municipality and hospitals)

Result: 7

Practical examples: spatial query

 SELECT count(*) from hospitals hp JOIN gemeente_ams ga on st_contains(ga.geom, hp.geom) where hp.id > 100

constrain the query so only hospitals with IDs larger than 100

are included____

Result:

3

returns ID and distances of first 3 hospitals that are closest to point

Practical examples: spatial query

• SELECT id, st_distance(ST_SetSRID(ST_MakePoint(126706.3, 482433.8),28992), geom) from hospitals ORDER BY

st distance(ST SetSRID(ST MakePoint(126706.3, 482433.8), 28992),

geom) ASC limit 3;

Dat	a Output	Ex	cplain	Messages	N
_	id numeric	<u></u>	st_dist	ance precision	1
1	1.00000		4009	.818241516679	3
2	90.000	000	51	23.1914984704	7
3	139.000	000	538	8.79939596937	6

then st_distance to calculate the distance from hospitals to point then order the hospitals in ascending order and limit the amount to 3

Reference

- Introduction to PostGIS https://postgis.net/workshops/postgis-intro/
- PostGIS 2.4.5dev Manual: http://postgis.net/docs/manual-2.4/
- Open Geospatial Consortium Inc. (2011) OpenGIS Implementation Stadnard for Geographic information - Simple feature access - <u>Part 1:</u> <u>Common architecture.</u> & <u>Part 2: SQL option.</u>
- Rigaux, P., Scholl, M. & Voisard, A. (2002) Spatial databases with application to GIS. San Francisco, CA.

Questions (Q&A session)

z.wang2@uu.nl

