А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекция 6

6.1. Гильбертовы пространства (продолжение)

6.1.1. Ортонормированные системы

Пусть H — предгильбертово пространство.

Определение 6.1. Система векторов $(e_i)_{i \in I}$ в H называется *ортогональной системой*, если $e_i \perp e_j$ для всех $i \neq j$. Если, кроме того, $\|e_i\| = 1$ для всех $i \in I$, то система $(e_i)_{i \in I}$ называется *ортонормированной системой*.

Пример 6.1. Пусть $H = \mathbb{C}^n$ или $H = \ell^2$, и пусть $e_i = (0, \dots, 0, 1, 0, \dots)$ (единица на i-ом месте). Очевидно, (e_i) — ортонормированная система в H. Более общим образом, если $H = \ell^2(I)$, то система $(e_i)_{i \in I}$ из примера 5.4 тоже является ортонормированной.

В следующих трех примерах описана, по сути, одна и та же система, но «в разных обличьях».

Пример 6.2 (*тригонометрическая система*). Пусть $H=L^2[-\pi,\pi]$. Нетрудно убедиться (убедитесь!), что система функций $\left(\frac{1}{\sqrt{2\pi}},\,\frac{1}{\sqrt{\pi}}\cos kt,\,\frac{1}{\sqrt{\pi}}\sin kt\right)_{k\in\mathbb{N}}$ — ортонормированная.

Пример 6.3 (*тригонометрическая система*). Пусть снова $H = L^2[-\pi, \pi]$ и $e_n(t) = \frac{1}{\sqrt{2\pi}}e^{int}$. Нетрудно убедиться (убедитесь!), что $(e_n)_{n\in\mathbb{Z}}$ — ортонормированная система.

Пример 6.4 (*тригонометрическая система*). Пусть $H = L^2(\mathbb{T})$ и $e_n(z) = z^n$. Нетрудно убедиться (убедитесь!), что $(e_n)_{n \in \mathbb{Z}}$ — ортонормированная система.

Замечание 6.1. С тригонометрической системой из примера 6.2 вы встречались в курсе анализа, когда изучали тригонометрические ряды Фурье. Это, пожалуй, самая классическая ортонормированная система функций, из которой и выросла общая наука об ортонормированных системах в гильбертовом пространстве. Системы из примеров 6.2 и 6.3 легко выражаются друг через друга посредством простого преобразования (убедитесь); первая система удобней с точки зрения всевозможных приложений к матфизике (потому что она состоит из вещественнозначных функций), вторая же удобнее в некоторых теоретических вопросах. Наконец, система из примера 6.4 получается из предыдущей применением унитарного изоморфизма $L^2[-\pi,\pi] \cong L^2(\mathbb{T})$, который был описан в примере 5.1.

Преимущество системы из примера 6.4 заключается в том, что состоит она в точности из унитарных характеров группы \mathbb{T} , т.е. из непрерывных гомоморфизмов $\mathbb{T} \to \mathbb{T}$. У этой системы есть далеко идущее обобщение: для любой компактной группы G ее унитарные характеры $G \to \mathbb{T}$ образуют ортонормированную систему в пространстве $L^2(G)$ (см. замечание 2.4). Попробуйте доказать это утверждение, приняв на веру существование меры Хаара на G.

Лекция 6 41

Пример 6.5 (*Cucmeма Радемахера*). Пусть $H = L^2[0,1]$. Для каждого $n \in \mathbb{N}$ положим $r_n(t) = \operatorname{sign} \sin(2^n \pi t)$:

Нетрудно проверить (проверьте!), что система функций $\{r_n\}_{n\in\mathbb{N}}$ — ортонормированная. Она называется системой Радемахера.

Система Радемахера играет довольно заметную роль в разных разделах математики. На нее можно (и полезно) смотреть как на последовательность независимых случайных величин, принимающих значения ± 1 с вероятностью 1/2.

Приступим к изучению общих свойств ортонормированных систем.

Определение 6.2. Пусть $(e_i)_{i \in I}$ — ортонормированная система в H, и пусть $x \in H$. Числа $c_i = \langle x, e_i \rangle$ $(i \in I)$ называются коэффициентами Фурье вектора x относительно системы $(e_i)_{i\in I}$.

Следующее простое предложение описывает, пожалуй, основное геометрическое свойство коэффициентов Фурье.

Предложение 6.1. Пусть (e_1,\ldots,e_n) — ортонормированная система в $H,\ H_0$ = $\operatorname{span}\{e_1,\ldots,e_n\},\ x\in H\ u\ c_i=\langle x,e_i\rangle.$ Справедливы следующие утверждения:

- (i) вектор $y=\sum_{i=1}^n c_i e_i$ проекция x на H_0 ; (ii) $\|y\|^2=\sum_{i=1}^n |c_i|^2$; (iii) $\rho(x,H_0)^2=\|x\|^2-\sum_{i=1}^n |c_i|^2$.

Доказательство. Для каждого j = 1, ..., n имеем

$$\langle x - y, e_j \rangle = \langle x, e_j \rangle - \sum_{i=1}^n c_i \langle e_i, e_j \rangle = \langle x, e_j \rangle - c_j = 0.$$

Это доказывает утверждение (i). Утверждения (ii) и (iii) следуют из (i) и теоремы Пифагора.

Следствие 6.2 (неравенство Бесселя). Пусть $(e_i)_{i \in I}$ — ортонормированная система в $H, x \in H$ и $c_i = \langle x, e_i \rangle$. Тогда семейство $|c_i|^2$ суммируемо и $\sum_{i \in I} |c_i|^2 \leqslant ||x||^2$.

Доказательство. Из п. (ііі) предложения 6.1 следует, что $\sum_{i \in A} |c_i|^2 \leqslant ||x||^2$ для каждого конечного подмножества $A \subset I$. Остальное следует из определения суммируемого семейства.

При исследовании гильбертовых пространств¹ важную роль играют ряды по ортонормированным системам, т.е. выражения вида $\sum_{i \in I} a_i e_i$, где $(e_i)_{i \in I}$ — ортонормированная система и $a_i \in \mathbb{C}$. Разумеется, чтобы такое выражение имело смысл, нужно, чтобы семейство $(a_i e_i)_{i \in I}$ было суммируемым.

Определение 6.3. Пусть $(e_i)_{i \in I}$ — ортонормированная система в предгильбертовом пространстве $H,\ x\in H$ и $c_i=\langle x,e_i\rangle.$ Формальное выражение $\sum_{i\in I}c_ie_i$ называется рядом Фурье вектора x по системе $(e_i)_{i\in I}$.

Подчеркием, что мы пока ничего не утверждаем про сходимость ряда Фурье, т.е. про суммируемость семейства $(c_i e_i)_{i \in I}$.

Предложение 6.3. Пусть $(e_i)_{i \in I}$ — ортонормированная система в H.

- (i) (единственность ряда Фурье). Пусть вектор $x \in H$ имеет вид $x = \sum_{i \in I} a_i e_i$ для некоторых $a_i \in \mathbb{C}$. Тогда $a_i = \langle x, e_i \rangle$ для всех $i \in I$.
- (ii) Пусть векторы $x,y\in H$ имеют вид $x=\sum_{i\in I}c_ie_i,\ y=\sum_{i\in I}d_ie_i.$ Тогда $\langle x,y\rangle=$
- $\sum_{i\in I} c_i \bar{d}_i$. (iii) (равенство Парсеваля). Пусть вектор $x\in H$ имеет вид $x=\sum_{i\in I} c_i e_i$. Тогда

Доказательство. (i) Для каждого $j \in I$ с учетом непрерывности скалярного произведения имеем:

$$\langle x, e_j \rangle = \left\langle \sum_{i \in I} a_i e_i, e_j \right\rangle = \sum_{i \in I} a_i \langle e_i, e_j \rangle = a_j.$$

(ii) С учетом непрерывности скалярного произведения имеем:

$$\langle x, y \rangle = \left\langle \sum_{i \in I} c_i e_i, \sum_{j \in I} d_j e_j \right\rangle = \sum_{i \in I} \sum_{j \in I} c_i \bar{d}_j \langle e_i, e_j \rangle = \sum_{i \in I} c_i \bar{d}_i.$$

(iii) Очевидным образом следует из (ii).

До сих пор мы занимались изучением свойств ортонормированных систем. А что можно сказать об их существовании? Исходя из известного вам конечномерного случая, естественно попытаться построить «достаточно большую» ортонормированную систему в H — настолько большую, чтобы каждый вектор можно было по ней разложить так, как в предложении 6.3. На самом деле существует не одно, а целых три взаимосвязанных определения «большой» ортонормированной системы.

Определение 6.4. Ортонормированная система $(e_i)_{i \in I}$ в предгильбертовом пространстве H называется

- (i) ортонормированным базисом, если каждый $x \in H$ имеет вид $x = \sum_{i \in I} a_i e_i$ для некоторых $a_i \in \mathbb{C}$ (или, что эквивалентно ввиду предложения 6.3, каждый вектор $x \in H$ является суммой своего ряда Фурье);
- (ii) тотальной, если $\overline{\operatorname{span}}\{e_i: i \in I\} = H;$
- (iii) максимальной, если она не содержится ни в какой большей ортонормированной системе.

 $^{^{1}{}m A}$ также всюду, где используется техника гильбертовых пространств — в теории функций, матфизике, геометрии, теории представлений...

Лекция 6 43

Замечание 6.2. Следует иметь в виду, что ортонормированный базис не является базисом в алгебраическом смысле (за исключением случая, когда H конечномерно). Иначе говоря, ряд Фурье вектора $x \in H$ содержит, вообще говоря, бесконечно много ненулевых членов.

Замечание 6.3. В литературе тотальные ортонормированные системы иногда называют *замкнутыми*, а максимальные — *полными*. Впрочем, эта не слишком удачная терминология, по-видимому, постепенно выходит из употребления.

Следующая теорема устанавливает связь между свойствами базисности, тотальности и максимальности ортонормированных систем.

Теорема 6.4. Рассмотрим следующие свойства ортонормированной системы $(e_i)_{i \in I}$ в предгильбертовом пространстве H:

- $(i) (e_i)_{i \in I} opmoнopмированный базис;$
- (ii) $(e_i)_{i\in I}$ тотальна;
- (iii) $(e_i)_{i\in I}$ максимальна.

Torda (i) \iff (ii) \implies (iii). Ecnu же пространство H гильбертово, то эти три свойства эквивалентны друг другу.

(ii) \Longrightarrow (iii). Если система $(e_i)_{i\in I}$ тотальна, то

$${e_i : i \in I}^{\perp} = \overline{\text{span}} {e_i : i \in I}^{\perp} = H^{\perp} = {0}.$$

Следовательно, $(e_i)_{i \in I}$ максимальна.

(ii) \Longrightarrow (i). Зафиксируем $x \in H$ и для каждого $A \in \text{Fin}(I)$ положим

$$H_A = \operatorname{span}\{e_i : i \in A\}.$$

Из тотальности системы $(e_i)_{i\in I}$ следует, что для каждого $\varepsilon > 0$ найдется такое $A \in \operatorname{Fin}(I)$, что $\rho(x, H_A) < \varepsilon$. Тогда для любого $B \in \operatorname{Fin}(I)$, содержащего A, с учетом предложения 6.1 имеем

$$\left\|x - \sum_{i \in B} c_i e_i\right\| = \rho(x, H_B) \leqslant \rho(x, H_A) < \varepsilon,$$

где $(c_i)_{i\in I}$ — коэффициенты Фурье вектора x. Это и означает, что $x=\sum_{i\in I}c_ie_i$.

Предположим теперь, что пространство H гильбертово, и докажем импликацию (iii) \Longrightarrow (ii). Положим $H_0 = \overline{\text{span}}\{e_i : i \in I\}$. Из теоремы об ортогональном дополнении следует, что $H = H_0 \oplus H_0^{\perp}$. С другой стороны, $H_0^{\perp} = 0$ в силу максимальности системы $(e_i)_{i \in I}$. Таким образом, $H = H_0$, т.е. система $(e_i)_{i \in I}$ тотальна.

Теорема 6.5. В любом предгильбертовом пространстве H существует максимальная ортонормированная система. Как следствие, в любом гильбертовом пространстве существует ортонормированный базис.

Доказательство. Рассмотрим множество M, состоящее из всех ортонормированных подмножеств в гильбертовом пространстве H, и упорядочим его по включению. Нетрудно видеть, что оно удовлетворяет условиям леммы Цорна: если $N \subset M$ — линейно упорядоченное подмножество, то объединение всех ортонормированных подмножеств, принадлежащих N, является верхней гранью для N. Следовательно, в M есть максимальный элемент, а значит, в H есть максимальная ортонормированная система.

Упражнение 6.1. С помощью леммы Цорна докажите, что в любом векторном пространстве существует *алгебраический* базис (т.е. максимальная линейно независимая система).

Пример 6.6. Пусть I — произвольное множество. Для каждого $i \in I$ обозначим через e_i функцию на I, которая принимает значение 1 в точке i, а в остальных точках равна нулю (см. примеры 5.4 и 6.1). Тогда из (5.1) следует, что $(e_i)_{i \in I}$ — ортонормированный базис в гильбертовом пространстве $\ell^2(I)$. Это — так называемый $\operatorname{cmandapmhu}$ й ортонормированный базис в $\ell^2(I)$.

Пример 6.7. Тригонометрическая система (см. примеры 6.2–6.4) является ортонормированным базисом в пространстве $L^2[-\pi,\pi]$ (или, смотря по смыслу, $L^2(\mathbb{T})$). Тотальность этой системы следует из классической теории рядов Фурье (см. курс анализа).

По поводу других примеров см. задачи 4.12 и 4.13 из листка 4.

В случае, когда пространство H сепарабельно, ортонормированный базис можно построить «вручную» с помощью *процесса ортогонализации Грама-Шмидта*, который составляет доказательство следующего предложения.

Предложение 6.6. Пусть H- предгильбертово пространство и $(x_i)_{1 \leqslant i < N}-$ линейно независимая система в H (где $N \in \mathbb{N}$ или $N = \infty$). Для каждого n < N положим $H_n = \mathrm{span}\{x_1, \ldots, x_n\}$. Тогда в H существует ортонормированная система $(e_i)_{1 \leqslant i < N}$, такая, что $H_n = \mathrm{span}\{e_1, \ldots, e_n\}$ для всех n < N.

Доказательство. Положим $e_1 = x_1/\|x_1\|$ и предположим, что векторы e_1, \ldots, e_{n-1} уже построены. Положим

$$e'_n = x_n - \sum_{i=1}^{n-1} \langle x_n, e_i \rangle e_i.$$

Согласно предложению 6.1 (i), $e'_n \perp H_{n-1}$. Очевидно, $H_n = \operatorname{span}\{e_1, \dots, e_{n-1}, e'_n\}$ и $e'_n \neq 0$ в силу линейной независимости x_i -ых. Остается положить $e_n = e'_n / \|e'_n\|$.

С помощью процесса ортогонализации получаются многие важные конкретные ортонормированные системы. Вот один пример:

Пример 6.8. Пусть $H = L^2(\mathbb{R})$. Для каждого $n \in \mathbb{Z}_+$ рассмотрим функцию $x_n(t) = t^n e^{-t^2/2}$ $(t \in \mathbb{R})$. Легко видеть, что $(x_n)_{n \in \mathbb{Z}_+}$ — линейно независимая система в H. Применяя к ней процесс ортогонализации, получим ортонормированную систему, которая называется *системой Эрмита*. Можно показать (мы это сделаем несколько позже), что система Эрмита является ортонормированным базисом в $L^2(\mathbb{R})$.

Предложение 6.7. В любом сепарабельном предгильбертовом пространстве существует не более чем счетный ортонормированный базис.

Доказательство. Согласно задаче 2.14 из листка 2, в сепарабельном предгильбертовом пространстве существует не более чем счетная тотальная линейно независимая система. Применим к ней процесс ортогонализации (предложение 6.6) и получим требуемый ортонормированный базис.

Лекция 6 45

Замечание 6.4. В силу задачи 4.14 из листка 4, в сепарабельном предгильбертовом пространстве любая ортонормированная система не более чем счетна. Тем не менее, предложение 6.7 не является следствием теоремы 6.5, т.к. в нем не предполагается, что рассматриваемое пространство полно. На самом деле существуют примеры неполных несепарабельных предгильбертовых пространств, в которых нет ортонормированного базиса (см. задачу 4.20-b из листка 4).

Следующая теорема полностью описывает все гильбертовы пространства с точностью до унитарного изоморфизма.

Теорема 6.8. Пусть H — гильбертово пространство u $(e_i)_{i \in I}$ — ортонормированный базис в H. Рассмотрим отображение

$$U: H \to \ell^2(I), \quad U(x) = (\langle x, e_i \rangle)_{i \in I}.$$

Tогда U-yнитарный изоморфизм.

Доказательство. Из неравенства Бесселя (следствие 6.2) следует, что U действительно отображает H в $\ell^2(I)$, а из базисности системы $(e_i)_{i\in I}$ и равенства Парсеваля (см. предложение 6.3) — что U изометричен. Осталось доказать, что U сюръективен. Для этого рассмотрим подпространство

$$c_{00}(I) = \{x \in \ell^2(I) : x_i = 0 \text{ для всех } i \in I, \text{ кроме конечного их числа} \}.$$

Из примера 6.6 следует, что $c_{00}(I)$ плотно в $\ell^2(I)$. Кроме того, ясно, что $c_{00}(I) \subset \operatorname{Im} U$. Но $\operatorname{Im} U$ замкнут в $\ell^2(I)$, так как он полон ввиду полноты H и изометричности U. Следовательно, $\operatorname{Im} U = \ell^2(I)$, и U — унитарный изоморфизм.

Следствие 6.9. Любое бесконечномерное сепарабельное гильбертово пространство унитарно изоморфно пространству ℓ^2 .

Пример 6.9. Из теоремы 6.8 и из тотальности системы Эрмита (см. пример 6.8) следует, что существует унитарный изоморфизм между пространствами $L^2(\mathbb{R})$ и $\ell^2(\mathbb{Z}_+)$, для каждого $n \in \mathbb{Z}_+$ переводящий n-ую функцию Эрмита в n-ый вектор стандартного ортонормированного базиса в $\ell^2(\mathbb{Z}_+)$ (см. пример 6.6). Этот изоморфизм несет в себе глубокий физический смысл: он осуществляет эквивалентность между матричной квантовой механикой Гейзенберга и волновой квантовой механикой Шредингера. Об этом мы поговорим подробнее в конце нашего курса (если позволит время).

Следствие 6.10 (теорема Рисса-Фишера). Пусть H — гильбертово пространство u $(e_i)_{i \in I}$ — ортонормированная система в H. Тогда для любого числового семейства $c = (c_i)_{i \in I} \in \ell^2(I)$ семейство $(c_i e_i)_{i \in I}$ суммируемо в H.

Доказательство. Положим $H_0 = \overline{\text{span}}\{e_i : i \in I\}$. В силу теоремы 6.8, существует унитарный изоморфизм между H_0 и $\ell^2(I)$, сопоставляющий каждому вектору из H_0 семейство его коэффициентов Фурье относительно системы $(e_i)_{i \in I}$. Для каждого $i \in I$ положим $\bar{e}_i = U(e_i)$. Легко видеть, что $(\bar{e}_i)_{i \in I}$ — это в точности стандартный ортонормированный базис пространства $\ell^2(I)$ из примера 6.6, поэтому $c = \sum_{i \in I} c_i \bar{e}_i$ в $\ell^2(I)$ (см. формулу (5.1)). Следовательно, $U^{-1}(c) = \sum_{i \in I} c_i e_i$ в H_0 , так что семейство $(c_i e_i)_{i \in I}$ суммируемо в H.

Замечание 6.5. Мы получили теорему Рисса—Фишера как следствие теоремы 6.8. Чаще, однако, поступают наоборот: сначала доказывают теорему Рисса—Фишера, а потом выводят из нее теорему 6.8. В этой связи слушателям курса рекомендуется придумать определение фундаментальной направленности в метрическом пространстве, доказать, что в полном метрическом пространстве каждая фундаментальная направленность сходится, затем с помощью этого утверждения доказать теорему Рисса—Фишера и, наконец, вывести из нее теорему 6.8.

Чтобы завершить классификацию гильбертовых пространств, нам осталось научиться отвечать на вопрос, какие гильбертовы пространства изоморфны, а какие нет. Для этого нам понадобится следующее утверждение.

Предложение 6.11. Пусть H — предгильбертово пространство, $(e_i)_{i \in I}$ и $(f_j)_{j \in J}$ — максимальные ортонормированные системы в H. Тогда $\operatorname{card} I = \operatorname{card} J$.

Доказательство. Положим $\alpha = \operatorname{card} I$ и $\beta = \operatorname{card} J$. Нам достаточно доказать, что $\beta \leqslant \alpha$, при этом мы можем считать, что мощность α бесконечна (в противном случае H конечномерно, и все ясно). Для каждого $i \in I$ рассмотрим подмножество

$$J(i) = \{j \in J : \langle e_i, f_j \rangle \neq 0\} \subset J.$$

Из неравенства Бесселя следует, что J(i) не более чем счетно. С другой стороны, $J = \bigcup_{i \in I} J(i)$ ввиду максимальности системы $(e_i)_{i \in I}$. Следовательно, $\beta \leqslant \alpha \cdot \aleph_0 = \alpha$, как и требовалось.

Определение 6.5. Мощность любой максимальной ортонормированной системы в предгильбертовом пространстве H называется его $\mathit{гильбертовой размерностью}$ и обозначается hilb. dim H.

Объединяя теорему 6.8 с предложением 6.11, получаем следующую теорему о классификации гильбертовых пространств.

Теорема 6.12. Любое гильбертово пространство H унитарно изоморфно пространству $\ell^2(I)$, где I — множество, мощность которого равна hilb. dim H. Гильбертовы пространства H_1 и H_2 унитарно изоморфны тогда и только тогда, когда их гильбертовы размерности равны.