코알라유니브_week4 "Random Forest로 아이리스 종 구분하기"

발표자 김채은

3주차. "Scikit-learn으로 Decision Tree구현" 4주차. "Scikit-learn으로 Random Forest구현"

■Stage1

- -Ensemble 소개
- -Random Forest 소개
- -Decision Tree를 Ensemble 해보기

□Ensemble 소개 Ensemble(앙상블)이란? 여러개의 Machine결과를 연결하여 취합한 보다 강력한 모델

□Random Forest 소개 Random Forest란? Ensemble 알고리즘의 일종으로, 여러 Decision Tree만들고 연결하여 결과 취합 후 평균

✔Why Random Forest? Decision Tree는 학습 데이터를 과하게 학습하여(overfitting), 실 제 데이터에서 오차 발생시키는 단점 존재 → 여러개의 Decision Tree를 만들면 overfitting 된 부분이 각기 다르기 때문에 모델들을 평균내면 overfitting 문제가 상당부분 해결

□Decision Tree를 Ensemble 해보기 1) 트리 여러개 만들기 <코드> from sklearn.tree import DecisionTreeClassifier

tree = DecisionTreeClassifier()
tree.fit(x_train, y_train)
print('training set accuracy: ')
tree.score(x_train, y_train)

tree1 = DecisionTreeClassifier()
tree1.fit(x_train, y_train)
print('training set accuracy: ')
tree1.score(x_train, y_train)

tree2 = DecisionTreeClassifier()
tree2.fit(x_train, y_train)
print('training set accuracy: ')
tree2.score(x_train, y_train)

결과>>> tree, tree1, tree2의 accuracy가 똑같음 \rightarrow 데이터가 제한되어있는데, 한 번 학습을 했으므로, 여러개 만들어도 유사한 정확도를 가지는 모델로 생성됨 \rightarrow 데이터 제한된 경우는 정석적인 데이터 분석 필요

<training데이터를 training과 validation으로 나누기>

Training set 모델의 학습에 사용되는 데이터 Test set 모델의 최종 성능을 평가하기 위한 데이터

Validation set

모델 제작 과정 중, 학습된 모델의 성능을 측정하기 위한 데이터

Validation은 최종 Test하기 이전에 중간중간 예비 Test

≫비유

Test ≒ 수능

Validation ≒ 3, 6, 9월 모의고사

<코드>

 $x_valid = x_train[0:100]$

 $y_valid = y_train[0:100]$

 $x_{train} = x_{train}[100:]$

y_train = y_train[100:]

```
tree = DecisionTreeClassifier()
tree.fit(x_train, y_train)
print('training set accuracy: ',tree.score(x_train, y_train))
print('validation set accuracy: ',tree.score(x_valid, y_valid))
tree1 = DecisionTreeClassifier()
tree1.fit(x_train, y_train)
print('training set accuracy: ',tree1.score(x_train, y_train))
print('validation set accuracy: ',tree1.score(x_valid, y_valid))
tree2 = DecisionTreeClassifier()
tree2.fit(x_train, y_train)
print('training set accuracy: ',tree2.score(x_train, y_train))
print('validation set accuracy: ',tree2.score(x_valid, y_valid))
찍어보면 validation set accuracy는 실행할 때마다 다른 값을 보임 -> train데이터처럼 과
하게 학습되지 않았기 때문. 따라서 트리의 정확도는 training set accuracy보다 validaion
set accuracy로 보는게 합당
□Decision Tree를 Ensemble해보기
<코드>
1. 각 모델 예측하기
prediction = tree.predict(test)
prediction1 = tree1.predict(test)
prediction2 = tree2.predict(test)
2. 예측값들 평균내기
ensemble = (prediction + prediction1 + prediction2) / 3
ensemble[ensemble > 0.5] = 1
ensemble[ensemble <= 0.5] = 0
3. 평균을 구함으로써 소수점으로 된 survived 데이터를 다시 1, 0으로 표시
  즉, 실수형을 정수형으로 형변환
ensemble = ensemble.astype(int)
```

■Stage2

- -Iris 문제 분석
- -Feature Engineering with Pandas / Visualizaion with Seaborn
- -바이올린플롯 배우기

□Iris 문제 분석

꽃잎 및 꽃받침의 길이와 너비정보(SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm)로 → Iris 종(Setosa, Versicolor, Virginica) 구분하기

<코드>

df.info() #행, 열 개수와 각 변수들의 자료개수 및 형태(type) df.describe() #변수별로 자료개수, 평균값, 표준편차, 다섯숫자요약(최대값, 최소값, 사분위수)

□Feature Engineering with Pandas / Visualizaion with Seaborn 특징들이 종을 얼마나 잘 구분해줄 수 있는지를 그래프로 봄

<코드>

import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()

↗꽃받침(Sepal)의 길이와 너비로 Plot그리기

<코드>

sns.catplot(data=df, x='SepalLengthCm', y='SepalWidthCm', hue = 'Species', aspect=2)

▶꽃잎(Petal)의 길이와 너비로 Plot 그리기

<코드>

sns.catplot(data=df, x='PetalLengthCm', y='PetalWidthCm', hue = 'Species', aspect=2)

↗꽃받침 길이(SepalLengthCm)에 따른 밀집도

<코드>

facet = snsFacetGrid(df, hue='Species', aspect=2)
facet.map(sns.kdeplot, 'SepalLengthCm')

facet.add_legend()

plot.show()

☞ (Species)에 따른 꽃받침 길이(SepalLengthCm) boxplot그려보기 sns.catplot(kind='box', data=df, x='Species', y='SepalLengthCm', aspect=2)

□바이올린플롯 배우기

violin plot그리기 데이터 범위와 밀집정도를 한번에 확인가능 kdeplot과 boxplot의 장점 합친 것

<코드> sns.violinplot(data=df, x='Species', y=SepallLengthCm')

■Stage3

-Iris를 Scikit-learn으로 Random-Forest구현하기

□Scikit-learn으로 Random-Forest구현하기

- 1. Input data와 Target data 나누기
- 2. Training set과 Test set 나누기 ← 비율은 보통 8:2, 7:3

1. Input data(X)와 Target data(Y) 나누기

input_data = df[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
target_data = df['Species']

2. Training data와 Test data 나누기

#First, Decision Tree

```
from sklearn.tree import DecisionTreeClassifier #불러오기
tree = DecisionTreeClassifier #Decision Tree알고리즘으로 초기화
tree.fit(x_train,y_train) #학습시킴

print('training set accuracy: ', tree.score(x_train, y_train))
print('test set accuracy:', tree.score(x_test, y_test)) #정확도

prediction = tree.predict(x_test) #예측하기
prediction
```

#Second, Random Forest

```
from sklearn.ensemble import RandomForestClassifier #불러오기
forest = RandomForestClassifier(n_estimators=100) #RandomForest알고리즘으로 초기화
#Decision Tree의 개수
forest.fit(x_train, y_train) #학습시킴

print('training set accuracy: ', forest.score(x_train, y_train))
print('test set accuracy:', forest.score(x_test, y_test)) #정확도

prediction_by_forest = forest.predict(x_test) #예측하기
prediction_by_forest
```

■Stage4. 누가 내 우수고객이 될까?

(우수고객1, 아님0)

1. machine learning 위해서는 문자형 데이터를 숫자로 바꾸어주어야함

```
df.loc[조건, 열] = 원하는 값
```

df.loc[df['지역'] == '서울', '지역'] = 0

df.loc[df['지역'] == '경기', '지역'] = 1

df.loc[df['지역'] == '제주', '지역'] = 2

2. Input데이터와 Target데이터 나누어주기

x_train = df[['나이', '성별', '지역', '관심사']] #ID와 이름은 우수고객에 영향 없을 것임 y_train = df['우수고객분류']

3. 모델 만들기 및 정확도

from sklearn.ensemble import RandomForestClassifier #불러오기
forest = RandomForestClassifier(n_estimators=10) #RandomForest알고리즘으로 초기화
forest.fit(x_train, y_train) #학습시킴

print('training set accuracy: ', forest.score(x_train, y_train)) #정확도

4. 예측하기

prediction

df_test = pd.read_csv('data/new_customers.csv') #파일읽기 문자형 자료는 -> 숫자형으로 변환 x_test = df_test[['나이', '성별', '지역', '관심사']] #Input data(X)만들기 prediction = forest.predict(x_test) #예측하기