

DEPARTMENT OF CHEMICAL ENGINEERING

Name:

NATIONAL INSTITUTE OF TECHNOLOGY CALICUT.

Reg. No.

WINTER SEMESTER 2014-15

Test 2 CH3007 PROCESS DYNAMICS AND CONTROL

Duration: 1 hour 15 min

Date:08.04.2015

Maximum Marks: [15]

1. The block diagram of a feed back control system is shown in figure. Determine the values of K_c that result in stable closed loop systems using Root Locus method. (3)

2. Draw the Bode plot for the transfer function

(3)

$$\frac{5(s+1)e^{-s}}{s(5s+1)(0.2s+1)}$$

- 3. The question has been raised whether an open loop unstable process can be stabilized with a proportional only controller. (3)
 - (a) For the process and the controller shown in figure, find the range of K_c values that yield a stable response (Note that τ is positive)

(b) Check the gain $Y(s)/Y_{sp}(s)$ to make sure that the process responds in the correct direction if Kc is within the range of part (a).

- (c) For K=10 and τ =20, find the value of K_c that yields a pole at s = -0.1. What is the offset for these conditions?
- 4. A closed loop feedback control system consists of a second order process (3)

$$G_p(s) = \frac{K_p}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

And a proportional controller ($G_c(s) = K_c$). The roots of characteristic equation of the closed loop system are -2 and -1 in absence of controller and roots are $-1.5 \pm 0.5i$ when $K_c = 4$

- a) Determine K_p , τ_1 , τ_2
- b) Determine limits on K_c so that the response of the system to a unit step input is non-oscillatory
- 5. Consider two non-interacting system. The liquid level in the tank 2 is controlled by manipulating flow rate F₁ (Inlet flow rate of tank 1) through a proportional controller. A₁=5 ft² and A₂=2 ft². Initially, the system is at steady state with F₁=1 ft³/min and h₁= 4 ft, h₂=3 ft. Find the values of the controller gain which produces (3)
 - a) Critically damped response
 - b) Underdamped response with a decay ratio of 0.25 for h₂