| The | ξq | ui valent | Ckt. | of ar  | Induction | Motor |  |
|-----|----|-----------|------|--------|-----------|-------|--|
| ~~  |    | ~~~       | ~~~  | $\sim$ | ~~~~~~    |       |  |

Recap: Relative speed of rot, mag. field & votor bar.

· Slip speed: Nsip = Nsynco - Nm

 $Slip S = \frac{N_{slip} \times 100^{\circ}}{N_{sync}}$ 

I. M. => equ. cht. Model.

- Since the "Induction" of emf/current in

the votor bars (winding) of an I.M is in

brinciple a "TRANSFORMER ACTION".

Therefore, the oguivalent cht. model of I.M.

Corresponds to equivalent cht model of a Transformer.

- Also, it is noted that the I.M. is a "Singly

excited machine. That is, there is NO FIELD CURRENT





gwin as  $E_R = s E_{R0}$ Further, we also know that fr = s fe and the reactance X = 2x fe L X = 5 × Ro Where × Ro is the reactaine

1) the votor when it is Therefre, me chamically blocked The votor equivalent cht. will be  $\Rightarrow I_{R} = \frac{sE_{RO}}{R_{R} + j s \times R_{O}}$ Zr, equivalant = Kr + j Xro IR (inA) 100 % (in %) S=1 S=0



## Power and Torque in Induction Motor

- Recap: (i) Equivalent cht. model of I.M. corresponds to the quivalent cht. model of a transformer.
  - (ii) Stator cht. (primary cht.) remains the same.
  - (iii) Rotor cht. (secondary cht.) is 'SLIP' dependent.

    (ie, relative motion)

Power flow diagram of I.M.:



- · Input electrical power, Pin = 3\$ power supply = \( \bar{3} \) \( \bar{L} \) (580
- This input power is given to the stator winding, therefore, there is a copper loss in stator windings (Psch)
- · Since the stator winding is done over the laminated core, hence there are some amount of power loss due to hysteresis 2 eddy current. (Pcore)



Relate power & torque: here,  $X_2 = a_{\text{qf}}^{1} \times_{\text{RO}}$ R2 = a2 RR E = aeff Ero · From the equivalent cht., one can determine the input current (per phase). in the motor.  $T = \frac{\sqrt{\phi}}{2}$ here,  $Z_{qq} = R_1 + jX_1 + G_{e} - jB_m + \{\frac{R_2}{s} + jX_2\}$ Therefore, knowing the value of I, we can determine, the Stator copper loss & core loss.

P<sub>SCL</sub> = 
$$3I_1^2R_1$$

P<sub>COVE</sub> =  $3I_1^2$  =  $3G_cE_1^2$ 

R<sub>c</sub>

So, from this we get the power available in air-gap

P<sub>AG</sub> = P<sub>in</sub> - P<sub>SCL</sub> - P<sub>cove</sub>.

Age = P<sub>in</sub> - P<sub>SCL</sub> - P<sub>cove</sub>.

3I<sub>1</sub><sup>2</sup>R<sub>1</sub> 3G<sub>2</sub>E<sub>1</sub><sup>2</sup>

Now, out of available air-gap power (P<sub>AG</sub>) the only power consumed is the resistor R<sub>2</sub>/s.

So, one can say. P<sub>AG</sub> =  $3I_2^2\frac{R_e}{s}$ 

however, the rotor copper loss is expressed as

P<sub>RCL</sub> =  $3I_2^2R_2$ 

Comparing P<sub>AG</sub> & P<sub>RCL</sub> we get

P<sub>RCL</sub> =  $s$  P<sub>AG</sub>

P<sub>CCL</sub> =  $s$  P<sub>AG</sub>

P<sub>CCL</sub> =  $s$  P<sub>AG</sub>

