Interpolação polinomial: Polinômio de Lagrange

Marina Andretta

ICMC-USP

09 de maio de 2012

Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Aproximação de funções por polinômios

Considere, por exemplo, que temos uma tabela com anos e o número de habitantes de um país em cada um destes anos.

Podemos estar interessados em estimar qual será a população em um ano futuro, usando como base os dados da tabela.

Este processo é chamado de interpolação.

Aproximação de funções por polinômios

O que fazemos é aproximar uma função desconhecida (no caso do exemplo, a quantidade de habitantes em função do ano) por outra.

Uma classe de funções muito usada para aproximar outras funções desconhecidas é a de polinômios.

Primeiramente, é garantido que sempre é possível aproximar uma função contínua por um polinômio. Além disso, polinômios têm derivadas e integrais muito fáceis de serem calculadas.

A aproximação de funções por polinômios é chamada de interpolação polinomial.

Veremos agora como definir polinômios interpoladores a partir de pontos no plano onde estes polinômios devem passar.

O problema de encontrar um polinômio de grau um que passa pelos pontos distintos (x_0, y_0) e (x_1, y_1) é o mesmo de aproximar uma função f, para a qual $f(x_0) = y_0$ e $f(x_1) = y_1$, por um polinômio interpolador de grau um.

Primeiramente, vamos definir as funções

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 e $L_1(x) = \frac{x - x_0}{x_1 - x_0}$.

Depois, definimos o polinômio

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1).$$

Como

$$L_0(x_0) = 1$$
, $L_0(x_1) = 0$, $L_1(x_0) = 0$, $L_1(x_1) = 1$,

temos que

$$P(x_0) = 1f(x_0) + 0f(x_1) = f(x_0) = y_0$$

е

$$P(x_1) = 0f(x_0) + 1f(x_1) = f(x_1) = y_1,$$

como gostaríamos.

P é a única reta que passa pelos pontos (x_0, y_0) e (x_1, y_1) .

Para generalizar a idéia de interpolação linear (ou seja, aproximação de funções por uma reta), considere a construção de um polinômio de grau no máximo n que passe pelos n+1 pontos

$$(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n)).$$

Neste caso, precisamos construir uma função $L_{n,k}(x)$, para cada k = 0, 1, ..., n, para a qual vale que $L_{n,k}(x_k) = 1$ e $L_{n,k}(x_i) = 0$, se $i \neq k$.

Para que valha que $L_{n,k}(x_i) = 0$, se $i \neq k$, utilizamos o termo

$$(x-x_0)(x-x_1)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)$$

no numerador de $L_{n,k}(x_i)$.

Para que valha que $L_{n,k}(x_k) = 1$, precisamos que o numerador e o denominador de $L_{n,k}(x)$ sejam iguais quando $x = x_k$. Ou seja,

$$L_{n,k}(x) = \frac{(x-x_0)(x-x_1)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)(x_k-x_1)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}.$$

Interpolação polinomial de Lagrange

Uma vez conhecidas as funções $L_{n,k}$, um polinômio interpolador é facilmente determinado.

Este polinômio é chamado de *n*-ésimo polinômio interpolador de Lagrange e é definido como descrito no Teorema 1.

Interpolação polinomial de Lagrange

Teorema 1: Se $x_0, x_1, ..., x_n$ são n+1 números distintos e f é uma função cujos valores nestes números são dados, então existe um único polinômio P(x) de grau no máximo n com

$$f(x_k) = P(x_k)$$
, para $k = 0, 1, ..., n$.

Este polinômio é dado por

$$P(x) = f(x_0)L_{n,0}(x) + \dots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x),$$
 (1)

onde, para cada k = 0, 1, ..., n,

$$L_{n,k}(x) = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)} = \prod_{i=0, i\neq k}^n \frac{(x-x_i)}{(x_k-x_i)}.$$

Quando não houver dúvida quanto ao grau do polinômio, denotaremos $L_{n,k}(x)$ por $L_k(x)$.

Queremos determinar o segundo polinômio interpolador de Lagrange para a função $f(x) = \frac{1}{x}$, usando os pontos $x_0 = 2$, $x_1 = 2.5$ e $x_2 = 4$.

Para isto, o primeiro passo é determinar $L_0(x)$, $L_1(x)$ e $L_2(x)$.

Usando a definição vista anteriormente, temos que

$$L_0(x) = \frac{(x-2.5)(x-4)}{(2-2.5)(2-4)} = (x-2.5)(x-4),$$

$$L_1(x) = \frac{(x-2)(x-4)}{(2.5-2)(2.5-4)} = -\frac{(x-2)(x-4)}{0.75},$$

е

$$L_2(x) = \frac{(x-2)(x-2.5)}{(4-2)(4-2.5)} = \frac{(x-2)(x-2.5)}{3}.$$

Como

$$f(x_0) = f(2) = 0.5$$
, $f(x_1) = f(2.5) = 0.4$, $f(x_2) = f(4) = 0.25$,

temos que

$$P(x) = \sum_{k=0}^{2} f(x_k) L_k(x) =$$

$$0.5(x-2.5)(x-4) - 0.4\frac{(x-2)(x-4)}{0.75} + 0.25\frac{(x-2)(x-2.5)}{3} =$$

$$0.05x^2 - 0.425x + 1.15$$
.

Usando o polinômio P calculado, podemos estimar o valor da função $f(x) = \frac{1}{x}$ em um ponto.

Uma aproximação de $f(3) = \frac{1}{3}$ é

$$f(3) \approx P(3) = 0.325.$$

Precisamos agora de uma estimativa para o erro cometido na aproximação de uma função f por um polinômio interpolador P.

Erro da interpolação polinomial de Lagrange

Teorema 2: Suponha que $x_0, x_1, ..., x_n$ sejam números distintos no intervalo [a, b] e que $f \in C^{n+1}[a, b]$. Então, para cada $x \in [a, b]$, existe um número $\xi(x)$ (geralmente conhecido) em (a, b) tal que

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n),$$

onde P(x) é o polinômio interpolador (1).

Erro da interpolação polinomial de Lagrange

Observe que a forma do erro para o polinômio de Lagrange é parecida com a fórmula do erro para o polinômio de Taylor.

O *n*-ésimo polinômio de Taylor em torno de x_0 concentra todas as informações conhecidas em x_0 e possui um termo de erro da forma

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}.$$

Erro da interpolação polinomial de Lagrange

O n-ésimo polinômio de Lagrange utiliza informações dos números distintos $x_0, x_1, ..., x_n$.

Assim, no lugar do termo $(x-x_0)^{n+1}$, sua fórmula para o erro utiliza o produto dos n+1 termos $(x-x_0)(x-x_1)...(x-x_n)$, ou seja,

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n).$$

Suponha que montemos uma tabela com valores da função $f(x)=e^x$, para $x\in[0,1]$.

Suponha que o número de casas decimais usadas para cada valor de x seja $d \ge 8$ e que os valores de x estejam espaçados igualmente, com distância h (ou seja, $x_i = x_{i-1} + h$).

Qual deve ser o valor de h para que a interpolação linear (ou seja, primeiro polinômio interpolador de Lagrange) gere um erro absoluto de até 10^{-6} ?

Considere $x_0, x_1, ...$ os números nos quais f será calculada.

Tome $x \in [0,1]$ e j tal que $x_j \le x \le x_{j+1}$.

A equação do erro na interpolação linear é dada por

$$|f(x)-P(x)|=\left|\frac{f^{(2)}(\xi)}{2!}(x-x_j)(x-x_{j+1})\right|=\frac{|f^{(2)}(\xi)|}{2}|(x-x_j)||(x-x_{j+1})|.$$

Como a distância entre dois pontos consecutivos x_i e x_{i+1} é h, temos que $x_j = jh$ e $x_{j+1} = (j+1)h$. Assim,

$$|f(x)-P(x)|=\frac{|f^{(2)}(\xi)|}{2}|(x-jh)(x-(j+1)h)|.$$

Logo,

$$|f(x) - P(x)| \le \frac{1}{2} \max_{\xi \in [0,1]} e^{\xi} \max_{x_j \le x \le x_{j+1}} |(x - jh)(x - (j+1)h)| \le$$

$$\frac{1}{2} e \max_{x_j \le x \le x_{j+1}} |(x - jh)(x - (j+1)h)|.$$

Considerando g(x) = (x - jh)(x - (j + 1)h), para $jh \le x \le (j + 1)h$, podemos utilizar o Teorema do Valor Extremo para obter

$$\max_{x_j \le x \le x_{j+1}} |(x-jh)(x-(j+1)h)| = \max_{x_j \le x \le x_{j+1}} |g(x)| = \left| g\left(\left(j + \frac{1}{2} \right) h \right) \right| = \frac{h^2}{4}.$$

Assim, o erro da interpolação linear será limitado por

$$|f(x)-P(x)|\leq \frac{eh^2}{8}.$$

Ou seja, h deve ser escolhido de forma que

$$\frac{eh^2}{8} \le 10^{-6},$$

o que implica que

$$h < 1.72 \times 10^{-3}$$
.

Como h é escolhido de forma que os pontos $x_i \in [0,1]$ sejam igualmente espaçados, temos que n=(1-0)/h deve ser um número inteiro. Uma escolha para o tamanho de passo seria h=0.001.

Vejamos, agora, um exemplo em que a função a ser aproximada é desconhecida.

A tabela a seguir fornece os valores de uma função em vários pontos.

f(x)
0.7651977
0.6200860
0.4554022
0.2818186
0.1103623

Vamos comparar as aproximações de f(1.5) obtida através de vários polinômios interpoladores de Lagrange.

Como 1.5 está entre 1.3 e 1.6, o polinômio interpolador de grau um mais adequado é o que utiliza os pontos $x_0=1.3$ e $x_1=1.6$.

O valor deste polinômio interpolador de grau um, calculado em 1.5, é dado por

$$P_1(1.5) = \frac{(1.5 - 1.6)}{(1.3 - 1.6)} f(1.3) + \frac{(1.5 - 1.3)}{(1.6 - 1.3)} f(1.6) =$$

$$\frac{(1.5-1.6)}{(1.3-1.6)}0.6200860 + \frac{(1.5-1.3)}{(1.6-1.3)}0.4554022 = 0.5102968.$$

Para calcular um polinômio interpolador de grau dois e usá-lo para aproximar o valor de f(1.5), temos duas boas opções.

Uma é utilizar os pontos $x_0 = 1.3$, $x_1 = 1.6$ e $x_2 = 1.9$, obtendo

$$P_2(1.5) = \frac{(1.5 - 1.6)(1.5 - 1.9)}{(1.3 - 1.6)(1.3 - 1.9)} f(1.3) + \frac{(1.5 - 1.3)(1.5 - 1.9)}{(1.6 - 1.3)(1.6 - 1.9)} f(1.6) + \frac{(1.5 - 1.3)(1.5 - 1.6)}{(1.9 - 1.3)(1.9 - 1.6)} f(1.9) =$$

$$\frac{(1.5-1.6)(1.5-1.9)}{(1.3-1.6)(1.3-1.9)}0.6200860 + \frac{(1.5-1.3)(1.5-1.9)}{(1.6-1.3)(1.6-1.9)}0.4554022 +$$

$$\frac{(1.5-1.3)(1.5-1.6)}{(1.9-1.3)(1.9-1.6)}0.2818186 = 0.5112857.$$

A outra é utilizar os pontos $x_0 = 1$, $x_1 = 1.3$ e $x_2 = 1.6$, obtendo $\hat{P}_2(1.5) = 0.5124715$.

Para calcular um polinômio interpolador de grau três e usá-lo para aproximar o valor de f(1.5), temos, também, duas boas opções.

Uma é utilizar os pontos $x_0=1.3$, $x_1=1.6$, $x_2=1.9$ e $x_3=2.2$, obtendo $P_3(1.5)=0.5118302$.

A outra é utilizar os pontos $x_0=1$, $x_1=1.3$, $x_2=1.6$ e $x_3=1.9$, obtendo $\hat{P}_3(1.5)=0.5118127$.

O polinômio interpolador de Lagrange de grau quatro utiliza todos os pontos da tabela e obtém a aproximação $P_4(1.5)=0.51182$.

Como $P_3(1.5)$, $\hat{P}_3(1.5)$ e $P_4(1.5)$ coincidem com uma precisão de 2×10^{-5} , espera-se essa ordem de precisão para todas as aproximações.

Espera-se também que $P_4(1.5)$ seja a aproximação mais precisa, pois utiliza mais dados fornecidos.

A função que está sendo aproximada é a função de Bessel de primeira espécie e ordem zero, cujo valor em 1.5 é 0.5118277.

Portanto, as precisões verdadeiras obtidas são:

$$|P_1(1.5) - f(1.5)| \approx 1.53 \times 10^{-3}$$

$$|P_2(1.5) - f(1.5)| \approx 5.42 \times 10^{-4}$$

$$|\hat{P}_2(1.5) - f(1.5)| \approx 6.44 \times 10^{-4}$$

$$|P_3(1.5) - f(1.5)| \approx 2.5 \times 10^{-6}$$

$$|\hat{P}_3(1.5) - f(1.5)| \approx 1.5 \times 10^{-5}$$

$$|P_4(1.5) - f(1.5)| \approx 7.7 \times 10^{-6}$$

Apesar de $P_3(1.5)$ apresentar o menor erro de aproximação, sem conhecer o verdadeiro valor de f(1.5), acreditaríamos que a melhor aproximação é dada por $P_4(1.5)$.

Neste caso, o termo de erro do polinômio interpolação de Lagrange não é conhecido, já que não dispomos nem da função f, nem de suas derivadas.

Em geral, quando calculamos o polinômio interpolador, de fato, não conhecemos a função verdadeira ou suas derivadas.

Interpolação polinomial de Lagrange

Esta é uma dificuldade prática com a interpolação polinomial de Lagrange: como o termo de erro é difícil de ser calculado, não é possível garantir uma precisão desejada para as aproximações obtidas.

A prática mais comum é calcular as aproximações fornecidas para diversos polinômio e, então, escolher a mais adequada (como feito no exemplo anterior).

O problema com esta abordagem é que, ao se calcular uma nova aproximação, usando um novo polinômio, nenhum calculo é aproveitado. Vejamos como isto pode ser contornado.

Interpolação polinomial de Lagrange

Definição: Seja f uma função definida em $x_0, x_1, ..., x_n$ e suponha que $m_1, m_2, ..., m_k$ sejam k números inteiros distintos, com $0 \le m_i \le n$ para todo i. O polinômio de Lagrange que coincide com f(x) nos k pontos $x_{m_1}, x_{m_2}, ..., x_{m_k}$ é denotado por $P_{m_1, m_2, ..., m_k}(x)$.

Por exemplo, se $x_0=1$, $x_1=2$, $x_2=3$, $x_3=4$, $x_4=6$ e $f(x)=e^x$, o polinômio $P_{1,2,4}(x)$ é aquele que coincide com x_1 , x_2 e x_4 . Ou seja,

$$P_{1,2,4}(x) = \frac{(x-3)(x-6)}{(2-3)(2-6)}e^2 + \frac{(x-2)(x-6)}{(3-2)(3-6)}e^3 + \frac{(x-2)(x-3)}{(6-2)(6-3)}e^6.$$

Interpolação polinomial de Lagrange

Teorema 3: Seja f definida em $x_0, x_1, ..., x_k$ e sejam x_j e x_i dois números distintos neste conjunto. Então,

$$P(x) = \frac{(x - x_j)P_{0,1,\dots,j-1,j+1,\dots,k}(x) - (x - x_i)P_{0,1,\dots,i-1,i+1,\dots,k}(x)}{(x_i - x_j)}$$

descreve o k-ésimo polinômio de Lagrange que interpola f nos k+1 pontos $x_0, x_1, ..., x_k$.

Método de Neville

O Teorema 3 implica que os polinômios interpoladores podem ser gerados de maneira recursiva.

A tabela a seguir mostra como os cálculos podem ser feitos. Nesta tabela, cada coluna depende dos valores da coluna anterior.

<i>x</i> ₀	$P_0 = Q_{0,0}$				
<i>x</i> ₁	$P_1 = Q_{1,0}$	$P_{0,1} = Q_{1,1}$			
<i>x</i> ₂	$P_2 = Q_{2,0}$	$P_{1,2} = Q_{2,1}$	$P_{0,1,2} = Q_{2,2}$		
<i>X</i> ₃	$P_3 = Q_{3,0}$	$P_{2,3} = Q_{3,1}$	$P_{1,2,3} = Q_{3,2}$	$P_{0,1,2,3} = Q_{3,3}$	
					$P_{0,1,2,3,4} = Q_{4,3}$

Método de Neville

Este procedimento para calcular os polinômios interpoladores é chamado de Método de Neville.

Para evitar os subescritos mútiplos de P, denotaremos por $Q_{i,j}(x)$, $0 \le j \le i$, o polinômio interpolador de grau j nos (j+1) números $x_{i-j}, x_{i-j+1}, ..., x_{i-1}, x_i$. Isto é,

$$Q_{i,j} = P_{i-j,i-j+1,...,i-1,i}$$
.

Mais uma vez iremos aproximar o valor de f(1.5) para uma função desconhecida que tem valores da função em alguns pontos dados na tabela a seguir.

Х	f(x)
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

Iremos utilizar o Método de Neville para calcular esta aproximação.

Como $x_0 = 1$, $x_1 = 1.3$, $x_2 = 1.6$, $x_3 = 1.9$ e $x_4 = 2.2$, os valores de $Q_{0,0} = f(1)$, $Q_{1,0} = f(1.3)$, $Q_{2,0} = f(1.6)$, $Q_{3,0} = f(1.9)$ e $Q_{4,0} = f(2.2)$ são os cinco polinômios de grau zero que aproximam f(1.5).

Assim, temos a primeira coluna da tabela Q:

Xi	$Q_{i,0}$	$Q_{i,1}$	$Q_{i,2}$	$Q_{i,3}$	$Q_{i,4}$
1.0	0.7651977				
1.3	0.6200860				
1.6	0.4554022				
1.9	0.2818186				
2.2	0.1103623				

Para calcular a aproximação usando o primeiro polinômio de grau um, temos

$$Q_{1,1}(x) = \frac{(x - x_0)Q_{1,0} - (x - x_1)Q_{0,0}}{x_1 - x_0}.$$

$$Q_{1,1}(1.5) = \frac{(1.5 - x_0)Q_{1,0} - (1.5 - x_1)Q_{0,0}}{x_1 - x_0} = \frac{(1.5 - 1)Q_{1,0} - (1.5 - 1.3)Q_{0,0}}{1.3 - 1} =$$

$$\frac{0.5Q_{1,0}-0.2Q_{0,0}}{0.3} = \frac{0.5\times0.6200860-0.2\times0.7651977}{0.3} = 0.5233449.$$

Para calcular a aproximação usando o segundo polinômio de grau um, temos

$$Q_{2,1}(1.5) = \frac{(1.5 - x_1)Q_{2,0} - (1.5 - x_2)Q_{1,0}}{x_2 - x_1} =$$

$$\frac{(1.5-1.3)0.4554022-(1.5-1.6)0.6200860}{1.6-1.3}=0.5102968.$$

Como 1.5 está entre 1.3 e 1.6, esperamos que esta seja a melhor aproximação de f(1.5) usando polinômio interpolador de grau um.

Para calcular a aproximação usando o terceiro polinômio de grau um, temos

$$Q_{3,1}(1.5) = \frac{(1.5 - x_2)Q_{3,0} - (1.5 - x_3)Q_{2,0}}{x_3 - x_2} =$$

$$\frac{(1.5-1.6)0.2818186-(1.5-1.9)0.4554022}{1.9-1.6}=0.5132634.$$

Para calcular a aproximação usando o quarto polinômio de grau um, temos

$$Q_{4,1}(1.5) = \frac{(1.5 - x_3)Q_{4,0} - (1.5 - x_4)Q_{3,0}}{x_4 - x_3} =$$

$$\frac{(1.5-1.9)0.1103623 - (1.5-2.2)0.2818186}{2.2-1.9} = 0.510427.$$

Assim, temos a segunda coluna da tabela Q:

Xi	$Q_{i,0}$	$Q_{i,1}$	$Q_{i,2}$	$Q_{i,3}$	$Q_{i,4}$
1.0	0.7651977				
1.3	0.6200860	0.5233449			
1.6	0.4554022	0.5102968			
1.9	0.2818186	0.5132634			
2.2	0.1103623	0.5104270			

Para calcular a aproximação usando o primeiro polinômio de grau dois, temos

$$Q_{2,2}(1.5) = \frac{(1.5 - x_0)Q_{2,1} - (1.5 - x_2)Q_{1,1}}{x_2 - x_0} =$$

$$\frac{(1.5-1)0.5102968-(1.5-1.6)0.5233449}{1.6-1}=0.5124715.$$

Para calcular a aproximação usando o segundo polinômio de grau dois, temos

$$Q_{3,2}(1.5) = \frac{(1.5 - x_1)Q_{3,1} - (1.5 - x_3)Q_{2,1}}{x_3 - x_1} =$$

$$\frac{(1.5-1.3)0.5132634-(1.5-1.9)0.5102968}{1.9-1.3}=0.5112857.$$

Para calcular a aproximação usando o terceiro polinômio de grau dois, temos

$$Q_{4,2}(1.5) = \frac{(1.5 - x_2)Q_{4,1} - (1.5 - x_4)Q_{3,1}}{x_4 - x_2} =$$

$$\frac{(1.5-1.6)0.510427-(1.5-2.2)0.5132634}{2.2-1.6}=0.5137361.$$

Assim, temos a terceira coluna da tabela Q:

Xi	$Q_{i,0}$	$Q_{i,1}$	$Q_{i,2}$	$Q_{i,3}$	$Q_{i,4}$
1.0	0.7651977				
1.3	0.6200860	0.5233449			
1.6	0.4554022	0.5102968	0.5124715		
1.9	0.2818186	0.5132634	0.5112857		
2.2	0.1103623	0.5104270	0.5137361		

Da mesma forma, calculamos a quarta e quinta colunas da tabela Q, obtendo:

Xi	$Q_{i,0}$	$Q_{i,1}$	$Q_{i,2}$	$Q_{i,3}$	$Q_{i,4}$
1.0	0.7651977				
1.3	0.6200860	0.5233449			
1.6	0.4554022	0.5102968	0.5124715		
1.9	0.2818186	0.5132634	0.5112857	0.5118127	
2.2	0.1103623	0.5104270	0.5137361	0.5118302	0.5118200

Vejamos agora um exemplo da aplicação do Método de Neville para aproximar uma função conhecida.

A tabela a seguir mostra valores de ln(x) para alguns x_i dados, com as casas decimais dadas corretas.

i	Xi	$ln(x_i)$
0	2.0	0.6931
1	2.2	0.7885
2	2.3	0.8329

Utilizando o Método de Neville para aproximar o valor de f(2.1) = ln(2.1), temos

i	Xi	$x-x_i$	$Q_{i,0}$	$Q_{i,1}$	$Q_{i,2}$
0	1.0	0.1	0.6931		
1	2.2	-0.1	0.7885	0.7410	
2	2.3	-0.2	0.8329	0.7441	0.7420

Logo,
$$P_2(2.1) = Q_{2,2} = 0.7420$$
.

Como $f(2.1) = \ln(2.1) = 0.7419$ com precisão de quatro casas decimais, o erro absoluto é

$$|f(2.1) - P_2(2.1)| = |0.7419 - 0.7420| = 10^{-4}.$$

No entanto, f'(x) = 1/x, $f''(x) = -1/x^2$ e $f'(x) = 1/x^3$. Então, a fórmula do erro fornece

$$|f(2.1) - P_2(2.1)| = \left| \frac{f'''(\xi(2.1))}{3!} (x - x_0)(x - x_1)(x - x_2) \right| =$$

$$\left| \frac{1}{3(\xi(2.1))^3} (0.1)(-0.1)(-0.2) \right| \le \frac{0.002}{3 \times 2^3} = 8.\overline{3} \times 10^{-5}.$$

Note que, nos cálculos feitos, o erro excedeu o limitante teórico.

Isso acontece porque usamos uma precisão de 4 casas decimais, enquanto o resultado teórico pressupõe que os cálculos sejam feitos em aritmética de precisão infinita.

Algoritmo

Interpolação iterada de Neville: dados os números distintos $x_0, x_1, ..., x_n$, os valores $f(x_0), f(x_1), ..., f(x_n)$ como a primeira coluna $Q_{0,0}, Q_{1,0}, ..., Q_{n,0}$ de Q e um número x, calcula a tabela Q tal que $P(x) = Q_{n,n}$, com P(x) polinômio interpolador de f nos pontos $x_0, x_1, ..., x_n$.

Passo 1: Para i = 1, ..., n, execute o passo 2:

Passo 2: Para
$$j = 1, ..., i$$
, faça

$$Q_{i,j} \leftarrow \frac{(x-x_{i-j})Q_{i,j-1}-(x-x_i)Q_{i-1,j-1}}{x_i-x_{i-j}}.$$

Passo 3: Devolva Q e pare.

Método de Neville

O algoritmo pode ser modificado a fim de permitir que novas linhas sejam inseridas na tabela Q.

Isto pode ser feito, por exemplo, até que a desigualdade

$$|Q_{i,i}-Q_{i-1,j-1}|<\epsilon,$$

com ϵ dado, seja satisfeita.