

Mathématiques

Classe: 4^{ème} Mathématiques

Série n°1: Ln

Nom du prof : Aguir Imed

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

Exercice 1:

(S) 30 min

3 pts

Soient $n \in \mathbb{N}^*$ et f_n la fonction définie sur $]0, +\infty[$ par $f_n(x) = nx^2 - (n+1) + \ln x$

- 1) a) Montrer que f_n réalise une bijection de $]0, +\infty[$ sur $\mathbb R$.
 - b) En déduire que l'équation $f_n(x) = 0$ admet une unique solution α_n dans $]0, +\infty[$ et que $1<\alpha_n<2$
- 2) a) Montrer que pour tout $n \in \mathbb{N}^*$, $f_n(\alpha_{n+1}) = 1 (\alpha_{n+1})^2$.
 - b) Etudier la monotonie de (α_n) puis en déduire qu'elle est convergente.
- 3) a) Montrer que pour tout $x \in [0, +\infty[$, $\frac{x}{x+1} \le \ln(x+1) \le x$.
 - b) En déduire que pour tout $n \in \mathbb{N}^*$, $\frac{2-\alpha_n}{n(1+\alpha_n)} \le \alpha_n 1 \le \frac{1}{n\alpha_n(1+\alpha_n)}$.
 - c) Déterminer en justifiant la réponse : $\lim_{n\to +\infty}\alpha_n$ et $\lim_{n\to +\infty}n(\alpha_n-1)$

Exercice 2:

- A) Soit f la fonction définie sur $]-1,+\infty[$ par $f(x) = \frac{x}{1+x} \ln(1+x)$
- 1) a) Montrer que $\lim_{x\to(-1)^+} f(x) = -\infty$.
 - b) Dresser le tableau de variation de f, en déduire le signe de f(x).
 - c) Montrer que pour tout x de $]0,+\infty[$ on a : $\frac{1}{v+1} \le \ln(1+\frac{1}{v})$
 - d) Montrer que $\forall x \ge 1, \int_{1}^{x} \ln(1 + \frac{1}{t}) \frac{1}{1 + t} dt = x \ln(1 + \frac{1}{t}) \ln 2$. Déduire que $\forall x \ge 1, x \ln(1 + \frac{1}{x}) \ge \ln 2$.
 - e) Construire la courbe (C) de f dans un repère orthonormé (O,\vec{i},\vec{j})
- 2) a) Vérifier que pour tout t de $[0, +\infty[$ on a : $0 \le 1 \frac{1}{1+t} \le t$.
 - b) En déduire que pour tout x de $[0, +\infty[$ on a : $0 \le x \ln(1+x) \le \frac{x^2}{2}$.
- **B)** Soit la suite V définie sur \mathbb{N}^* par $V_n = \frac{n^n}{n!}$.
- 1) a) Montrer que pour tout n de \mathbb{N}^* , on a : $\frac{V_{n+1}}{V} = (1 + \frac{1}{n})^n$
 - b) Montrer que pour tout n de \mathbb{N}^* , on a : $(1+\frac{1}{n})^n \ge 2$
 - c) En déduire que pour tout n de \mathbb{N}^* , on a : $V_n \ge 2^{n-1}$. Déterminer $\lim_{n \to \infty} V_n$.
- 2) a) Montrer que pour tout n de \mathbb{N}^* , on a : $0 \le 1 + \ln(V_n) \ln(V_{n+1}) \le \frac{1}{2n}$
 - b) Montrer que $\forall n \in \mathbb{N}^*, 1 + \frac{1}{2} + \frac{1}{2} + ... + \frac{1}{n} \le 1 + \ln(n)$.

En déduire que $\forall n \in \mathbb{N}^*$; $n - \frac{1}{2}(1 + \ln n) \le \ln(V_{n+1}) \le n$.

c) Déterminer alors $\lim_{n\to+\infty} \frac{1}{n} \ln(V_n)$ et $\lim_{n\to+\infty} \frac{\sqrt[n]{n!}}{n}$

7,5 pts

On considère la suite (U_n) définie sur \mathbb{N}^* par : $U_n = n - \left(n + \frac{1}{2}\right) Ln(n) + Ln(n!)$

- A/1) Soit φ la fonction définie sur \mathbb{R}_{+}^{*} par $\varphi(x) = Ln\left(\frac{x}{k}\right) \frac{x}{k} + 1$ avec $k \in \mathbb{N}^{*}$
 - a) Etudier les variations de φ . En déduire que pour tout $k \in \mathbb{N}^*$, $\int_{k-1}^{k+\frac{1}{2}} Ln\left(\frac{x}{k}\right) dx \le 0$
 - b) Prouver alors que pour tout $n \in \mathbb{N}^*$; $\int_{\frac{1}{2}}^{n+\frac{1}{2}} Ln(x) dx Ln(n!) \le 0$.
 - c) Montrer que pour tout $n \in \mathbb{N}^*$: $Ln(n!) + n \left(n + \frac{1}{2}\right) Ln\left(n + \frac{1}{2}\right) Ln\sqrt{2} \ge 0$
 - 2) Soient f et g deux fonctions définies sur [1,2[par $g(x)=\frac{1}{x(2-x)}$ et $\begin{cases} f(x)=\frac{1}{x-1}\int_1^x g(t)dt & \text{si } x \neq 1 \\ f(1)=1 & \text{si } x \neq 1 \end{cases}$
- a) Etudier les variations de g.
 - b) Montrer que pour tout $x \in]1,2[$, $1 \le f(x) \le \frac{1}{x(2-x)}$.
- c) Déduire que f est continue à droite en 1.
- d) Vérifier que $\frac{1}{t(2-t)} = \frac{1}{2} \left(\frac{1}{t} + \frac{1}{2-t} \right)$. et en déduire que pour tout $x \in]1,2[$, $f(x) = \frac{1}{2(x-1)} Ln \frac{x}{2-x}$.
- 3) a) Vérifier que pour tout $n \in \mathbb{N}^*$, $U_{n+1} U_n = 1 f\left(\frac{2n+2}{2n+1}\right)$.

En déduire le sens de variation de la suite (U_n) .

- b) Montrer que pour tout $n \in \mathbb{N}^*$, $U_n \ge Ln\sqrt{2}$
- c) Montrer que la suite (U_n) est convergente.

B/ Soit la suite (V_n) définie par : $V_0 = \int_0^1 \sqrt{1-x} \ dx$ et pour tout $n \in \mathbb{N}^*$, $V_n = \int_0^1 \left(\sqrt{x}\right)^n \sqrt{1-x} \ dx$

- 1) Calculer V_0 .
- 2) a) Le plan étant muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , déterminer l'ensemble des points M(x, y) tels que $y^2 - x(1-x) = 0$.
 - b) En déduire que $V_1 = \frac{\pi}{0}$.
 - 3) a) Montrer que pour tout $n \in \mathbb{N}$, $V_n > 0$.
 - b) Montrer que la suite (V_n) est décroissante.
 - c) Déduire que (V_n) est convergente.
 - 4) a) Prouver à l'aide d'une intégration par parties que pour tout $n \in \mathbb{N}$, $V_{n+2} = \frac{n+2}{n+5}V_n$.
 - b) En déduire que pour tout $n \in \mathbb{N}$, $\frac{n+2}{n+5} \le \frac{V_{n+1}}{V_n} \le 1$ et $\lim_{n \to +\infty} \frac{V_{n+1}}{V_n} = 1$.
 - 5) a) Montrer, par récurrence, que pour tout $n \in \mathbb{N}$, $V_n V_{n+1} = \frac{2\pi}{(n+2)(n+3)(n+4)}$
 - b) Montrer que $\lim_{n \to +\infty} n \sqrt{n} \ V_n = \sqrt{2\pi}$.

- 6) a) Montrer que pour tout $n \in \mathbb{N}$, $V_{2n} = \frac{2}{(2n+1)(2n+3)} \frac{(2^n n!)^2}{(2n)!}$.
 - b) Montrer que pour tout $n \in \mathbb{N}^*$, $2U_n U_{2n} = Ln \left[\frac{(2n+1)(2n+3)}{2} V_{2n} \times \sqrt{\frac{2}{n}} \right]$.
 - c) Déterminer $\lim_{n\to+\infty} U_n$.

