MA2.101: Linear Algebra (Spring 2022)

Mid-semester Exam

Tuesday, 17 May 2022

Attention

- 1. Mid-sem exam is 15% of total marks for this course (50% of the total marks is allocated to the first part). 2 marks out of 15 (assuming total of 100 marks for full course) allocated for Mid-sem exam is from the inhouse Mid-sem exam that asked you to submit a question with solution by 8 PM, 14 May 2022.
- 2. Total points for in-class Midsem exam questions is 65: Q1=23, Q2=11, Q3=11, Q4=20. 65 points $\equiv 13$ marks allocated for in-class Midsem exam.
- 3. You may opt to submit solution of either Question 1 or Question 4 by Tuesday midnight (11:59:59 PM, 17 May 2022) via moodle. However, total points allocated for given question will be reduced to half of the original.

Question 1

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation whose action is given by

$$T(x, y, z) = (x + 2y + z, z, -x + y - 5z, 3x + 2z)$$

- What are the standard ordered bases for \mathbb{R}^3 and \mathbb{R}^4 . (2 points).
- Write the matrix representation of T relative to the standard ordered bases of \mathbb{R}^3 and \mathbb{R}^4 . (12 points).
- If the standard ordered basis for \mathbb{R}^4 is $\{\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4\}$ (in the given sequence). Then find the matrix representation of T relative to the standard ordered basis for \mathbb{R}^3 and the ordered basis $\{\epsilon_2, \epsilon_1, \epsilon_3, \epsilon_4\}$ (in the given sequence) for \mathbb{R}^4 . (7 points)
- Is T invertible? Why or why not? (2 point)

Question 2

If a linear transformation $T: V \to W$ is an isomorphism, then the inverse map $T^{-1}: W \to V$ is also an isomorphism. Give a formal proof of this statement. (11 points)

Question 3

Let A be an $m \times n$ matrix representing a linear transformation with respect to a pair of ordered bases. Suppose that the nullspace of A is a plane in \mathbb{R}^3 and the range is spanned by a nonzero vector $\overrightarrow{v} \in \mathbb{R}^5$.

- Determine m and n. (2 points)
- Find the rank and nullity of A. (6 points)
- Write the expression for rank-nullity theorem for given A. (3 points)

Question 4

Consider a linear transformation $T: \mathbb{R}^3 \to P_2$ from \mathbb{R}^3 to the vector space P_2 of polynomials in x with real coefficients, where the degree of polynomial is at most 2:

 $T(a,b,c) = (a-b)x^{2} + cx + (a+b+c).$ (1)

Find the matrix representation of T with respect to the pair of ordered bases $\{(1,0,0),(1,1,0),(0,-1,1)\}$ and $\{x+1,x^2-x,x^2+x+1\}$ for \mathbb{R}^3 and P_2 , respectively. (20 points)