

Elton Booker | Part-Time Lecturer | e.booker@northeastern.edu

Incident Response

CY5210 Information System Forensics

Incident Response

Module 1.1: Introduction to Incident Response

Module 1.2: Preparation

Module 1.3: Identification

Module 1.4: Containment

Module 1.5: Eradication

Module 1.6: Recovery

Module 1.7: Lessons Learned

Incident Handling

- Incident handling is an action plan for dealing with the misuse of computers systems and networks
 - Intrusions
 - Malicious code
 - Cyber-related theft
 - Denial of service
 - Other security-related events
- The goal is to return systems and networks to a normal state
- Policies and procedures should be in place to guide responders

Defining an Incident

- An "incident" is an adverse event in an information system or network...
- ...or the threat of the occurrence of such an event
- Focus is on detecting deviations from the normal state of networks and systems
- Examples of incidents include
 - Unauthorized use of another's account
 - Unauthorized use of system privileges
 - Execution of malicious code
- An incident implies harm or the threat of harm

Defining an Event

- An "event" is any observable occurrence in a system and/or network
- Examples of events include
 - A system randomly booting
 - A system crash
 - Packet flooding on the network
 - Failed login
- These type of events will be the bulk of incident response activities
- These events provide the bulk of a potential policy violation
 - Must be recorded in notes and logs
 - A chain of custody must be completed
 - Reporting the same event in multiple ways improves evidence (corroborating evidence)

Incident Response Summary

- Incident handling is similar to first aid
- Mistakes can be costly and stress is high
- A simple, well understood, documented process is best
- Keep the six stages if incident handling in mind:
 - Preparation
 - Identification
 - Containment
 - Eradication
 - Recovery
 - Lessons Learned
- Additional supporting material:
 - NIST's Computer Security Incident Handling Guide, Revision 2
 - https://csrc.nist.gov/publications/detail/sp/800-61/rev-2/final or on Blackboard

SANS Incident Handling Process

Incident Response

Module 1.1: Introduction to Incident Response

Module 1.2: Preparation

Module 1.3: Identification

Module 1.4: Containment

Module 1.5: Eradication

Module 1.6: Recovery

Module 1.7: Lessons Learned

Preparation Overview

The primary goal of this step is to ensure the environment, processes, and capabilities

- People
- Policy
- Procedures
- Data
- Software/Hardware
- Communications
- Supplies
- Secure Baselines

- Transportation
- Space
- Power and Environmental

Controls

- Documentation
- Training
- Network Configurations
- Security Tool Configurations

People

- One of the most overlooked infection vectors
- The most easily targeted
 - Targeted e-mail (Spear phishing)
 - Phone calls (social engineering)
 - Text messages (smishing)
- Frequent, ongoing training required
 - Annual training often ineffective
 - Constant reinforcement
 - Phishing education platforms

Regularly train employees with social-engineering tests

Phishing Frameworks

FEATURE	PHISHME	KNOWBE4	WOMBAT
AWS Instance	X	X	X
Voice phishing (Vishing)		X	
SMS / Text phishing (Smishing)		X	X
Fax phishing			
External device (USB) dead drops		X	X
Comprehensive User Training	X	X	X
Infographic / HTML	X	X	X
Videos	X	X	X
Redirect	X	X	X
Game / Quiz	X	X	X
Active Directory Integration	X	X	X
Reporting and Analytics	X	X	X
Vulnerable Plugin Check		X	X
Phishing Button	X	X	X
Benchmarking Comparison Against Sector	X		X
Weak Data Egress Control Test			X
Email Exposure Check		X	

Policy – Warning Banners

- Establish policy including warning banners
 - Limit the presumption of privacy
- Banners must advise the user community:
 - Access to the system is limited to company authorized activity
 - · Any unauthorized access, use or modification is prohibited
 - Unauthorized users may face civil/criminal penalties
 - The use of the system may be monitored and recorded Crucial
 - If criminal activity is identified, evidence may be submitted to LE
- Have your legal department approve the language
- Pay attention to local privacy laws (e.g. EU)

Policy – Response Strategies

- Establish an incident response plan
 - Include ancillary procedures (COOP, DRP, BCP, other DFIR policies)
- Decide how to handle important issues ahead of time
 - Remain covert or notify law enforcement
 - Contain or watch and learn
 - When will systems be contained
 - Roles and responsibilities
 - Definitions of events and incidents
- Obtain executive buy-in and written approval
- Perform tabletop exercises to prepare teams

Notifying Law Enforcement

- Reasons you **must**
 - Threat to public health
 - Threat to public safety
 - Legal industry requirement
- You may need to notify if PII/PHI breached
 - Most states have breach disclosure laws
 - If you business in a specific state with these laws, you may need to report
 - Most states and the U.S. Federal Government are working on similar laws
- **Optional** reasons
 - Benefit from discovery
 - Assist other companies

Not Notifying Law Enforcement

- Common reasons not to report
 - Loss of control
 - · Investigation and recovery goals are different
 - Negative publicity
 - Risk of continued attacks or loss of data
 - Risk of equipment seizure as a result of the investigation
 - Become an agent acting on behalf of LE
 - Legal protections apply

Developing LE Contacts

- Make use of SANS "Interfacing with LE" FAQ
- Develop relationships with LE
- Know the cases that warrant LE investigation
- Join various associations
 - High Technology Crime Investigation Association (HTCIA)
 - FBI Infragard
 - Electronic Crime Task Force (ECTF)
 - Local threat sharing groups (e.g. ND-ISAC)
- Report to local, state, and federal departments

Incident Response

Module 1.1: Introduction to Incident Response

Module 1.2: Preparation

Module 1.3: Identification

Module 1.4: Containment

Module 1.5: Eradication

Module 1.6: Recovery

Module 1.7: Lessons Learned

Identification Overview

- Prevention ideal, but detection is a must
- Do your best to alert early
 - Don't be afraid to declare an incident
 - The organization wins even if an attack hasn't happen ϵ
- Maintain situational awareness.
- Provide indications and warning
- Provide up-to-date "intelligence" to handlers
- Fuse or correlate information

Assigning Responders

- Assign a primary incident responder
 - One person to handle identification and assessment
 - Assign specific events and systems
- Empower the primary analyst
 - Decision making
 - Identifying resources
- Assign a secondary responder
 - If resources available
 - Second analyst can take notes

Control Information Flow

- Abide by the "need to know" policy
- Share details with the minimum amount of people
- Receive written permission to extend the scope
 - Human resources
 - Legal department
 - External attorneys
- Constantly remind parties of the need for discretion
- Remind them that they may need to testify

Communication Best Practices

- Avoid using potentially compromised systems (e-mail or chat)
- Rely on out-of-band communications
 - Telephones and faxes
 - Be careful with VOIP (Wireshark, CAIN, and VOMIT)
- Make sure the team(s) can share encrypted emails
- Exchange keys early
 - GnuPGP
 - PGP
 - S/MIME
- Use encrypted cloud storage

Where Might Identification Occur?

- Anywhere in your environment, but there are some specific locations
- Network perimeter detection
 - Firewalls, routers, external-facing network-based IDS, IPS, DMZ systems, etc
- Host perimeter detection
 - Data enters/leaves host
 - Personal firewall/IPS, local firewall, port sentry tools
- System-level (host) detection
 - Antivirus tools, endpoint security suites,
 - file integrity tools, user-reported behavior
- Application-level detection
 - Application logs (web app, app server, cloud services, etc)

Limitations

- No one tool or alert can detect every attack
 - The most dangerous attackers are more stealthy
 - The generic attackers are easier to detect
 - The attacker's may make mistakes
- Typically security analysts must understand "normal" behavior
 - Spot abnormal events
 - Procedures and processes show how to identify outliers

Initial Assessment

- Determine whether an event is an actual incident
 - Check for mistakes made by users, admins, etc
 - Assess the evidence in detail
 - Identify the scope!!!
 - Determine other possibilities
 - Incident response accounts for common methods
 - Report to executive leadership

Handling mistakes and errors effectively is part of the process

Assessment Questions

- Determine the extent of the damage
 - What is the scope of the incident?
 - How can the incident be contained?
 - How widely deployed is the OS, application, vulnerability?
 - What is the impact of exploitation, if one exists?
 - What is the value of systems impacted and risk?
 - What is the value or criticality of data on the systems?
 - Can the vulnerability be exploited remotely increased risk
 - Is there a public exploit available?
 - Is the exploit being used in the wild?

Additional Questions

- Also determine:
 - What level of skill or training is required to exploit the vulnerability?
 - What is the risk, threat, and impact?
 - Is the vulnerability wide-spread in a default configuration?
 - Is there a fix available for the vulnerability?
 - Are there existing mitigations that reduce the risk?
- Initial Security Incident Questionnaire for Responders
 - https://zeltser.com/security-incident-survey-cheat-sheet/

Chain of Custody

- Maintain a valid chain of custody!!
 - DO NOT delete any files until the case is closed
 - There should be a document retention policy
 - Identify every piece of evidence
 - Hash all files and evidence
 - Control access to evidence
- All evidence must be under the control of one person at any time
 - Record date/time
 - Person turning over and receiving evidence
- Have LE sign for evidence when they confiscate items

Incident Response

Module 1.1: Introduction to Incident Response

Module 1.2: Preparation

Module 1.3: Identification

Module 1.4: Containment

Module 1.5: Eradication

Module 1.6: Recovery

Module 1.7: Lessons Learned

Containment Overview

- The goal is to stop the bleeding
 - Prevent the attacker from getting any deeper into the network
- We'll discuss
 - The sub-phases of Containment
 - Methods for short-term Containment
 - System back-up
 - Methods for long-term Containment

Containment Sub-Phases

Deployment

- Deploy a small team to scope the incident
 - Typically same as identification team
 - Secure the area
 - Use pre-designed and printed forms
 - Review and verify the information from the Identification phase

Characterize Incident

After declaring an incident, record the category (might be more than one), criticality, and sensitivity...

Category

- Denial of Service
- Compromised Info
- Compromised Asset
- Unlawful Activity
- Internal Hacking
- External Hacking
- Malware
- E-mail
- Policy Violations

Criticality

- 1. Incident impacts critical systems: 60 min
- 2. Incident impacts non-critical systems: 4 hrs
- 3. Possible incident, non-critical: 24 hrs

Sensitivity

- 1. Extremely sensitive (CSIRT, mgmt)
- 2. Sensitive (CSIRT, mgmt, sys owners, Ops)
- 3. Less sensitive (isolated virus infection)

Notifying Management and Track Incident

- Notify your organizational incident response team
- Notify your manager and security officer
- Vertical and horizontal reporting may be necessary
 - Inform management
 - Inform affected business unit
- Create entry in incident tracking solution
 - The free RTIR Incident Response tracking tool
 - BMC Footprints for tracking
 - ServiceNow Incident Response module

Short-Term

- Prevent the attacker from causing more damage
- Create images to avoid contaminating evidence
- Short-term containment actions:
 - Disconnect network cable
 - Pull the power cable (caveats)
 - Use network management tools and place system(s) on infected VLAN
 - Apply filters to routers and/or firewalls
 - Change host name in DNS to point to a different IP address
- If the system must be disabled, notify the business unit
 - Information or application owner
 - Advise them in writing or email
 - They may disagree

ISP Coordination

- For external attacks, coordinate closely with you ISP
 - It may be able to assist in identification, containment, and recovery
 - · Large packet floods, botnets, worms, and spam
 - It may be able to throttle the attack (DoS/DDoS)
- You may need to work with another ISP to get a bot-infected system taken offline

Creating Forensic Images

- Make images of affected system(s) ASAP
- Grab an image of memory and the file system
 - Mandiant Redline and the Volatility Framework
- Use sterilized media and make a bit-by-bit image
- Not all incidents allow for a full backup or analysis
- Create a hash of the original and all images
 - Chain of custody
 - Use write-blocking hardware
 - Destination larger than source
 - Drive duplicator hardware

Long-Term

- After imaging, changes can be made to the system
- Longer-term containment strategies can be implemented
- <u>Ideal</u>: If the system can be kept offline, move to the eradication phase
 - Get rid of the attacker from the environment
- <u>Less-than-ideal</u>: If the system must be kept in production, perform long-term containment actions
 - This may be a business decision
 - Document your recommendation in writing and have the business unit agree

Long-Term Actions

- Numerous possible actions:
 - Patch affected and nearby systems
 - Insert Intrusion Prevention System (IPS) or in-line Snort
 - Null routing
 - Change passwords
 - Alter trust relationships
 - Apply firewall and router rules
 - Remove accounts used by attacker
 - Shutdown backdoor processes used by attacker
- Eradication must be performed
- The goal here is to provide a temporary solution and stay in production while re-building the system during **Eradication**

Incident Response

Module 1.1: Introduction to Incident Response

Module 1.2: Preparation

Module 1.3: Identification

Module 1.4: Containment

Module 1.5: Eradication

Module 1.6: Recovery

Module 1.7: Lessons Learned

Eradication Overview

- Goal is to get rid of the attacker's artifacts and prevent re-infection
- Determine cause and symptoms of the incident
 - Use info gathered during identification and containment
 - Try to isolate the attack and determine how it was executed
- Remove traces of attackers
- Ensure they cannot return and continue to affect systems
- May need to restore from backups
- System will need to be rebuilt
- Business unit could face downtime

Removing Malicious Software

- Remove malware inserted by the attack
 - Virus infestations
 - Backdoor
 - RootKits or Kernel-level RootKits
- If a RootKit exists, rebuild from scratch
 - Format the drive
 - Operating system (and all patches)
 - Applications (and patches)
 - Data (after the dataset has been scanned*)
- Encourage business unit to rebuild and a review by the CSIRT
- The attacker may not have used malware (SSH or RDP)

Improving Defenses

- Implement appropriate protection techniques
 - Applying firewall and/or router filters
 - Moving the system to a new name/IP address
 - Null routing particular IP addresses
 - Changing DNS names
 - Appling patches and hardening the system

Vulnerability Analysis

- Perform vulnerability analysis
 - System vulnerability analysis
 - Network vulnerability analysis
 - Search for related vulnerabilities
 - Scan network with a port scanner
 - Use a vulnerability scanner
 - Tenable's Nessus, OpenVAS, Qualys, etc
- Attackers often use the same exploit and backdoors on multiple machines
 - Look for these iOCs throughout your environment

Incident Response

Module 1.1: Introduction to Incident Response

Module 1.2: Preparation

Module 1.3: Identification

Module 1.4: Containment

Module 1.5: Eradication

Module 1.6: Recovery

Module 1.7 Lessons Learned

Validation

- Goal is to put impacted systems back into production
- Validate the system
 - After restoration, verify the operation was successful and the system normal
 - Ask for test plans and baseline documentation
 - Run through the tests, or have the business unit test

Restore Operations

- Decide when to restore operations
 - Try an off-hours timeslot
 - It's easier to monitor carefully
 - You may be overruled, since the business unit wants to restore service
 - Put the final decision on the system owner(s)
 - Provide advice, but the owner makes the call
 - Document advice in signed memo

Monitor

- Monitor the systems
 - Once the system is back online, continue to monitor for backdoors that were undetected
 - Utilize network and host-based intrusion detection systems and Intrusion Prevention Systems
 - If possible, create a custom signature to trigger on the original attack vector because the attacker may try the same thing
 - Carefully check operating system and application logs

Return of Artifacts

- Incident handlers should check regularly for re-compromise
- Attackers may use normal mechanisms instead of malware
 - Look for changes to configuration via registry keys and values
- Write a script to check for similar artifacts returning (daily)
 - Windows reg command
 - Look for unusual processes
 - Windows wmic or tasklist commands, or Linux ps command
 - Look for accounts used by the attacker
 - Windows wmic useraccount or net user commands, or Linux cat /etc/password
 - Look for simulataneous logins
- Utilize the cheat sheet techniques looking for specific indicators

Incident Response

Module 1.1: Introduction to Incident Response

Module 1.2: Preparation

Module 1.3: Identification

Module 1.4: Containment

Module 1.5: Eradication

Module 1.6: Recovery

Module 1.7: Lessons Learned

Report Writing

- Goal of Lessons Learned is to document what happened and improve
- Develop a follow-up report
 - Start this process right after Recovery (two weeks is too late)
 - Assign task to on-site team with a team lead
 - Encourage all participants to review the draft
 - Attempt to reach consensus and get sgn off
 - If someone doesn't agree have them submit their version
- Determine the report formats required
 - Forensic reports, malware reports, intermittent updates
 - Ensure the report is signed and submitted in a timely manner

Final Meeting

- Meet within two weeks of completing the incident
- Review the report
- Subject the report to peer review
- Finalize the Executive Summary
- Keep the meeting short and simple
- Take notes and track meeting minutes
 - Recommendations for improvement
 - Configuration changes
 - Improved process flows
 - Policies and procedures
- Request approval and funding
 - People, processes, and technology
 - Improve incident handling capabilities

Instructor Demo: Introduction to Wireshark

Become familiar with the basic review functions of Wireshark