

Advanced Algorithms

Lecture 2
All-Pairs Shortest Paths

Bin Yang

byang@cs.aau.dk

Center for Data-intensive Systems

ILO of Lecture 2

- Dynamic programming
 - All-pairs shortest paths
 - To understand the adjacency matrix and the distance/predecessor matrix, which are the representations of the input and output of most of the all-pairs shortest-path algorithms.
 - To understand how the dynamic programming principles play out in the repeated squaring and Floyd-Warshall algorithm.
 - Understand the definition of transitive closure of a directed graph.
 - Activity selection
 - Top-down with memoization.
 - Bottom-up, examples.

All-pairs shortest paths

- Finding shortest paths between all pairs of vertices in a graph.
- Why the problem is useful?
 - E.g., Google Maps, FlexDanmark.
- How to solve the problem efficiently?
 - Repeatedly run one-to-all shortest paths |V| times.
 - Repeated squaring
 - The Floyd-Warshall algorithm

Agenda

- Recall one-to-all shortest paths
- All-pairs shortest paths
- Repeated squaring algorithm
- Floyd-Warshall algorithm
- Transitive closure of a directed graph
- Activity selection (if time permits)

How to represent a graph?

Adjacency list vs. adjacency matrix

Space for the array: $\Theta(|V|)$

Space for the linked lists:Θ(|E|)

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	0 0 1 0 0

Space: $\Theta(|V|^2)$

Total space: $\Theta(|V|+|E|)$

How to represent edge weights for a weighted graph?

Relaxation

- For each vertex v in the graph, we maintain v.d
 - v.d is the estimated distance of the shortest path from s;
 - v.d is initialized to ∞ at the beginning.
- Relaxing an edge (u, v) means testing whether we can improve the shortest path distance to v found so far by going through u.

Dijkstra's algorithm


```
Dijkstra(G,s)
01 for each vertex u ∈ G.V()
02 u.setd(∞)
                                                      Initialize all vertices:
03 u.setparent(NIL)
                                                      \Theta(|V|)
04 s.setd(0)
          // Set S is used to explain the algorithm
05 S \leftarrow \emptyset
06 Q.init(G.V()) // Q is a priority queue ADT Initialize Q: O(|V|)
07 while not Q.isEmpty()
                                           |V| times of Q.extractMin():
0.8
       u \leftarrow Q.extractMin()
                                           |V| * O(|g|V|)
09
       S \leftarrow S \cup \{u\}
10
       for each v \in u.adjacent() do
11
          Relax(u, v, G)
                                           | E | times | of edge relax: | E |
          Q.modifyKey(V)
                                             times of Q.modifyKey():
                                           |E| * O(|g|V|)
```

A single Dijkstra's alg needs: O((|V|+|E|)*Ig|V|) O(|E|*Ig|V|)

All-pairs shortest paths: |V| times of Dijkstra's alg needs: O(|V||E|lg|V|)

Bellman-Ford

Bellman-Ford(G, S)

```
01 for each vertex u ∈ G.V()
                                                Initialize all vertices:
02 u.setd(\infty)
                                                \Theta(|V|)
03 u.setparent(NIL)
04 s.setd(0)
05 for i \leftarrow 1 to |G.V()|-1 do
                                                Keep relaxing edges:
0.6
        for each edge (u, v) \in G.E() do
                                                \Theta(|V|^*|E|)
07
            Relax (u, v, G)
08 for each edge (u, v) \in G.E() do
        if v.d() > u.d() + G.w(u,v) then
09
           return false
10
                                            Check negative cycles:
11 return true
                                            O(|E|)
```

A single Bellman-Ford: O(|V|*|E|)

All-pairs shortest paths: |V| times of Bellman-Ford needs: O(|V|²|E|)

Agenda

- Recall one-to-all shortest paths
- All-pairs shortest paths
- Repeated squaring algorithm
- Floyd-Warshall algorithm
- Transitive closure of a directed graph
- Activity selection

All-pairs shortest path

- Let n = |V|
- Input:
 - Adjacency matrix $\mathbf{W}=(w_{ij})$ is an n by n matrix, where w_{ij}
 - ◆ 0, if i=j;
 - The weight of directed edge (i, j), if i ≠ j and (i, j) is in E.
 - ∞, if i ≠ j and (i, j) is not in E.
- Output:
 - Distance matrix $D=(d_{ij})$ is an n by n matrix, where d_{ij}
 - $\delta(i, j)$: the weight of a shortest path from vertex i to vertex j.
 - Predecessor matrix $\mathbf{P}=(p_{ij})$ is an n by n matrix, where p_{ij}
 - Nil, if i=j or there is no path from vertex i to vertex j.
 - The predecessor of j on a shortest path from i.
 - The i-th row of this matrix encodes the shortest-path tree with root
 i.
 - One-to-all shortest path finding identifies a row of the predecessor matrix.

Agenda

- Recall one-to-all shortest paths
- All-pairs shortest paths
- Repeated squaring algorithm
- Floyd-Warshall algorithm
- Transitive closure of a directed graph
- Activity selection

Sub-problems

- I^(m)_{ii}: the minimum weight of any path from vertex i to vertex i that contains at most *m* edges.
- When m=0, there is a shortest path from i to j with no

edges if and only if i=j.
$$l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

$$L^{(0)} = \begin{pmatrix} 0 & \infty & \infty & \cdots & \infty \\ \infty & 0 & \infty & \cdots & \infty \\ \infty & \infty & 0 & \cdots & \infty \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \infty & \infty & \infty & \cdots & 0 \end{pmatrix}$$

For m>0, I^(m); is the minimum of the following

$$l_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\} .$$

- n is the number of vertices
- I^(m)_{ii} is the shortest path from i to j using at most m-1 edges
- Extends the shortest paths computed so far (i.e., I(m-1)ik) by one more edge (w_{ki}).
- Optimal sub-structure?
- What m will give the correct shortest path from i to j?

Sub-problems

- L⁽ⁿ⁻¹⁾_{ij} is the final distance matrix.
 - Path $p=\langle v_1, v_2, ..., v_l \rangle$ is **simple** if all vertices are distinct.
 - A shortest path from i to j is simple and can have at most n-1 edges

$$d_{ij} = \delta(i, j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \cdots$$

- Why?
 - Recall that n is the number of vertices.
 - This property is also used in Bellman-Ford algorithm.
- Naïve divide and conquer? Overlapping sub-problems?
- Dynamic programming: which order has to be used to compute the solutions to sub-problems?
 - Increasing m from 0 to n-1, i.e., bottom-up.

Algorithm

EXTEND-SHORTEST-PATHS (L, W)

```
1 n = L.rows

2 let L' = (l'_{ij}) be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 l'_{ij} = \infty

6 for k = 1 to n

7 l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})

8 return L'
```

Extends the shortest paths computed so far by one more edge.

```
l_{ij}^{(m)} = \min_{1 \le k \le n} \{ l_{ik}^{(m-1)} + w_{kj} \} .
```

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

Extends n-1 times in total.

```
1 n = W.rows

2 L^{(1)} = W

3 for m = 2 to n - 1

4 let L^{(m)} be a new n \times n matrix

5 L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W)

6 return L^{(n-1)}
```

Example

$$L^{(0)} = \begin{pmatrix} 0 & \infty & \infty & \cdots & \infty \\ \infty & 0 & \infty & \cdots & \infty \\ \infty & \infty & 0 & \cdots & \infty \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \infty & \infty & \infty & \cdots & 0 \end{pmatrix}$$

$$L^{(0)} = \begin{pmatrix} 0 & \infty & \infty & \cdots & \infty \\ \infty & 0 & \infty & \cdots & \infty \\ \infty & \infty & 0 & \cdots & \infty \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \infty & \infty & \infty & \cdots & 0 \end{pmatrix} \qquad W = \begin{pmatrix} 0 & 3 & 8 & \infty \\ \infty & 0 & \infty & \infty \\ \infty & 0 & \infty & 1 \\ \infty & 0 & \infty & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix}$$

$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

From 1 to 2 and 2 to 4, so 3+1=4

From 1 to 5 and 5 to 4, so -4+6=2

$$L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Extends n-1=5-1=4 times in total.

Run-time

EXTEND-SHORTEST-PATHS (L, W)

- n = L.rows
- let $L' = (l'_{ij})$ be a new $n \times n$ matrix

```
for i = 1 to n
     for j = 1 to n
           l'_{ii} = \infty
           for k = 1 to n
                l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})
```

Is this an efficient algorithm?

Three level of loops. Each takes n iterations. Thus, $\Theta(n^3)$

return L

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

- n = W.rows
- $2 L^{(1)} = W$

```
for m = 2 to n - 1
let L^{(m)} be a new n \times n matrix
  L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W)
```

n-1 times of $\Theta(n^3)$ Thus, $\Theta(n^4)$

Improvement – Repeated Squaring

- At step m, instead of extending the shortest paths computed so far by one more edge to get L^(m+1), we extend m more edges to get L^(2m).
 - $L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, L^{(5)}, ..., L^{(n-1)}$
 - $L^{(1)}$, $L^{(2)}$, $L^{(4)}$, $L^{(8)}$, $L^{(16)}$, ..., $L^{(x)}$, where $x = 2^{\lceil \lg(n-1) \rceil}$
 - E.g., if n = 36. n-1 = 35, $\lceil \lg(n-1) \rceil = \lceil 5.2 \rceil = 6$, $2^6 = 64$
 - 35 vs 6 times

n = W.rows

return $L^{(m)}$

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

```
2 L^{(1)} = W

3 m = 1

4 while m < n - 1

5 let L^{(2m)} be a new n \times n matrix

6 L^{(2m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m)}, L^{(m)})

7 m = 2m
```

Ign times of $\Theta(n^3)$ Thus, $\Theta(n^3 \text{ Ign})$

Example

$$L^{(0)} = \begin{pmatrix} 0 & \infty & \infty & \cdots & \infty \\ \infty & 0 & \infty & \cdots & \infty \\ \infty & \infty & 0 & \cdots & \infty \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \infty & \infty & \infty & \cdots & 0 \end{pmatrix}$$

$$L^{(0)} = \begin{pmatrix} 0 & \infty & \infty & \cdots & \infty \\ \infty & 0 & \infty & \cdots & \infty \\ \infty & \infty & 0 & \cdots & \infty \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \infty & \infty & \infty & \cdots & 0 \end{pmatrix} \qquad W = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$
No need to compute L⁽³⁾

No need to

$$L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Agenda

- Recall one-to-all shortest paths
- All-pairs shortest paths
- Repeated squaring algorithm
- Floyd-Warshall algorithm
- Transitive closure of a directed graph
- Activity selection

The Floyd-Warshall Algorithm

- Intermediate vertex of a simple path
 - Path p=<v₁, v₂, ..., v_I> is simple if all vertices are distinct.
 - An intermediate vertex is any vertex of p other than the source vertex v₁ and the destination vertex v₁.

Sub-problems

- d^(k)(i,j): minimum weight of a path where the only intermediate vertices (not i or j) allowed are from the set {1, ..., k}.
- $d^{(1)}(1, 3) = 8, <1,3>, {1}$
- $d^{(1)}(1, 4) = \infty$, no path, $\{1\}$
- $d^{(2)}(1, 3) = 8, <1,3>, {1, 2}$
- $d^{(2)}(1, 4) = 4, <1, 2, 4>, \{1, 2\}$
- $d^{(4)}(1, 3) = -1, <1, 2, 4, 3>, \{1, 2, 3, 4\}$
- $d^{(4)}(1, 4) = 4, <1, 2, 4>, \{1, 2, 3, 4\}$

- Floyd-Warshall algorithm uses d^(k)(i,j) as a sub-problem.
 - d⁽ⁿ⁾(i,j) is the solution to the original problem of all-pairs shortest paths.

Solving sub-problems

- Let p be the shortest path from i to j containing only the intermediate vertices from the set {1, ..., k}.
 - If vertex k is not in p then a shortest path with intermediate vertices in {1, ..., k-1} is also a shortest path with intermediate vertices in {1, ..., k}.
 - $d^{(k)}(i, j) = d^{(k-1)}(i, j)$
 - E.g.: $d^{(2)}(1, 3) = 8, <1,3>, {1, 2}$
 - d⁽²⁾(1, 3) = d⁽¹⁾(1, 3) = 8, since the shortest path p=<1, 3> does not contain 2 as an intermediate vertex.
 - If vertex k is an intermediate vertex in p, then we break down p into p₁ (from i to k) and p₂ (from k to j), where p₁ and p₂ are shortest paths with intermediate vertices in {1, ..., k-1}.
 - $d^{(k)}(i, j) = d^{(k-1)}(i, k) + d^{(k-1)}(k, j)$
 - E.g.: $d^{(4)}(1, 3) = -1, <1, 2, 4, 3>, \{1, 2, 3, 4\}.$

•
$$d^{(3)}(1, 4) + d^{(3)}(4, 3) = 4 + (-5) = -1$$

<1, 2, 4> <4, 3>

Recurrence

- The trivial sub-problems
 - $d^{(0)}(i, j) = W_{ij}$
- Recurrence

k is an intermediate vertex in p

$$d^{(k)}(i,j) = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d^{(k-1)}(i,j), d^{(k-1)}(i,k) + d^{(k-1)}(k,j)\right) & \text{if } k \ge 1 \end{cases}$$

k is not an intermediate vertex in p

- Optimal substructure and overlapping sub-problems?
- DP: Which order has to be used to compute the solutions to sub-problems?
 - Increasing k from 0 to n bottom up.

The Floyd-Warshall Algorithm


```
Floyd-Warshall (W[1..n] [1..n])

01 D ← W // D<sup>(0)</sup>

02 for k ← 1 to n do // compute D<sup>(k)</sup>

03 for i ←1 to n do

04 for j ←1 to n do

05 if D[i][k] + D[k][j] < D[i][j] then

06 D[i][j] ← D[i][k] + D[k][j]

07 return D
```

$$d^{(k)}(i,j) = \begin{cases} w_{ij} & \text{if } k = 0\\ \min(d^{(k-1)}(i,j), d^{(k-1)}(i,k) + d^{(k-1)}(k,j) \end{pmatrix} & \text{if } k \ge 1 \end{cases}$$

Predecessor matrix

- How do we compute the predecessor matrix?
 - Initialization:

$$p^{(0)}(i,j) = \begin{cases} nil & \text{if } i = j \text{ or } w_{ij} = \infty \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty \end{cases}$$

Updating:

```
Floyd-Warshall (W[1..n] [1..n])

01 D ← W // D<sup>(0)</sup>

02 for k ← 1 to n do // compute D<sup>(k)</sup>

03 for i ← 1 to n do

04 for j ← 1 to n do

05 if D[i][k] + D[k][j] < D[i][j] then

06 D[i][j] ← D[i][k] + D[k][j]

07 P[i][j] ← P[k][j]

08 return D
```


$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$P[4][5] \leftarrow P[1][5]$$

```
Floyd-Warshall (W[1..n][1..n])
```

```
01 D \leftarrow W // D^{(0)}
02 for k \leftarrow 1 to n do // compute D^{(k)}
03
        for i \leftarrow 1 to n do
04
            for j \leftarrow 1 to n do
05
               if D[i][k] + D[k][j] < D[i][j] then</pre>
06
                   D[i][j] \leftarrow D[i][k] + D[k][j]
07
                   P[i][j] \leftarrow P[k][j]
   return D
```


$$P[1][4] \leftarrow P[2][4]$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

Floyd-Warshall (W[1..n][1..n])

Run-time


```
Floyd-Warshall (W[1..n] [1..n])

01 D ← W // D<sup>(0)</sup>

02 for k ← 1 to n do // compute D<sup>(k)</sup>

03 for i ←1 to n do

04 for j ←1 to n do

05 if D[i][k] + D[k][j] < D[i][j] then

06 D[i][j] ← D[i][k] + D[k][j]

07 P[i][j] ← P[k][j]
```

Three level of loops. Each takes n iterations. Thus, $\Theta(n^3)$

Summary

- For a graph with non-negative weights
 - Run |V|=n times of Dijkstra: O(n|E|Ign)
 - In the worst case: |E|=|V|² =n² then, O(n³lgn)
- For a graph with negative weights
 - Run |V|=n times of Bellman-Ford: O(n²|E|)
 - Worst case: |E|=|V|² =n², O(n⁴).
- Repeated squaring Θ(n³ Ign)
- Floyd-Warshall Θ(n³)

Agenda

- Recall one-to-all shortest paths
- All-pairs shortest paths
- Repeated squaring algorithm
- Floyd-Warshall algorithm
- Transitive closure of a directed graph
- Activity selection

Transitive closure of a directed graph

- Given a graph G=(V, E), we may wish to find out whether there is a path in the graph from i to j for all vertex pairs.
 - Indicates reachability from every pair of (i, j).
 - E.g., whether I can go from i to j or whether i is a friend of j.
- Transitive closure of G is defined as G*=(V, E*)
 - E*={(i,j): there is a path from vertex i to vertex j in G}

$$E^* = \{(1,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)\}$$

Algorithm

- Using Floyd-Warshall to identify transitive closure
 - Assigne weight of 1 to each edge of E.
 - Run the Floyd-Warshall algorithm.
 - If d⁽ⁿ⁾(i, j) < n, there is path from vertex i to vertex j so that it should be included in E*.
 - Otherwise d⁽ⁿ⁾(i, j) = ∞, there is no path so that it is not in E*.

An alternative algorithm

- The same asymptotic run time, but can save time and space in practice.
- Substitutes the logical OR and logical AND for arithmetic min and plus in the Floyd-Warshall algorithm.

$$t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i,j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i,j) \in E, \end{cases}$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor \left(t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}\right)$$

$$\min \left(d^{(k-1)}(i,j), d^{(k-1)}(i,k) + d^{(k-1)}(k,j) \right)$$

Agenda

- Recall one-to-all shortest paths
- All-pairs shortest paths
- Repeated squaring algorithm
- Floyd-Warshall algorithm
- Transitive closure of a directed graph
- Activity selection

Activity Selection

Input:

• A set of n activities each with start and end times: s_i and f_i . The i-th activity lasts during the period $[s_i, f_i]$.

Output:

- The largest subset of mutually compatible activities.
- Activities are compatible if their intervals do not intersect.

- Activities 1 and 2 are not compatible.
- Activities 2 and 4 are compatible.

Some definitions

- Sort activities on the end time.
 - Introduce also "sentinel" activities a_0 and a_{n+1} .

0	i	1	2	3	4	5	6	7	8	9	10	11	12
-100	S_i	1	3	0	5	3	5	6	8	8	2	12	100
-100	f_i	4	5	6	7	9	9	10	11	12	14	16	100

- S_{i,j}: a set of activities that start after activity a_i finishes and that finish before activity a_i starts.
 - $S_{2,11} = \{a_4, a_6, a_7, a_8, a_9\}$ according to interval $[a_2.e=5, a_{11}.s=12)$.
 - $S_{0,12=}\{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}\}$
- M_{i,j}: a maximum set of mutually compatible activities in S_{i,i}.
- C_{i,j}: the cardinality of M_{i,j}
- Activity Selection: identify C_{0,n+1}

Optimal substructure

Choose an activity a_k in S_{i,j}, which splits S_{i,j} into S_{i,k} and S_{k,j}

i	1	2	3	4	5	6	7	8	9 8 12	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

- $S_{2,11} = \{a_4, a_6, a_7, a_8, a_9\}$
- $\bullet \quad a_8, \ S_{2,8=}\{a_4\} \ S_{8,11=}\{\}$
- The maximum number of compatible activities in $S_{i,j}$ is the maximum of the sum of the following over all possible a_k
 - maximum number of compatible activities in S_{i,k}, i.e., C_{i,k}
 - maximum number of compatible activities in S_{k,j}, i.e., C_{k,j}
 - 1, i.e., a_k itself
- Trivial sub-problems: 0 if S_{i,k} is empty.

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

Algorithm, Top down with memoization

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

Activity Selection: identify $C_{0,n+1}$ We should call ActivitySel1m(A, 0, n+1)

Algorithm, bottom-up

Activity Selection: identify C_{0,n+1}

Only the cells on the upper right part of the diagonal.

The cells on the diagonal and the cells on one-step to the right side of the diagonal are with 0.

 $c[0,2]=max_k\{c[0,k]+c[k,2]+1\}, k is in [1, 1]$ <math>c[1,3] = ..., c[2,4] = ...

 $c[0,3]=max_k\{c[0,k]+c[k,3]+1\}$, where k is in[1,2] c[1,4] = ...

 $c[0,4]=max_k\{c[0,k]+c[k,4]+1\}$, where k is in[1,3].

Do n-2 iterations in total.

For the i-th iteration, compute the cells that are i+1 steps from the diagonal to the right side, where i=1...n-2.

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

Note that k must be in [i+1, j-1], but not every integer in [i+1, j-1].

a1	a2	а3
1	2	4
3	5	6

a0	a1	a2	a3	a4
0	1	2	4	10
0	3	5	6	10

	0	1	2	3	4
0	0	0	0	1(a1)	2 (a1,a3)
1	Χ	0	0	0	1(a3)
2	Χ	X	0	0	0
3	Χ	X	X	0	0
4	Χ	X	Χ	X	0

 $c[0,3] = \max\{c[0,1] + c[1,3] + 1\}, \text{ where k is in[1,2] , only a1 is in } S_{0,3} \\ c[1,4] = \max\{c[1,3] + c[3,4] + 1\}, \text{ where k is in[2,3] , only a3 is in } S_{1,4}$

c[0,2]=0, k is in [1, 1], but a1 is not in $S_{0,2}$ c[1,3] =0, k is in [2, 2] but a2 is not in $S_{1,3}$ c[2,4] =0, k is in [3, 3] but a3 is not in $S_{2,4}$

 $c[0,4]=max\{c[0,1]+c[1,4]+1,$ c[0,2]+c[2,4]+1, $c[0,3]+c[3,4]+1\}$, where k is in[1,3], a1, a2 a3 are in $S_{0,4}$.

Algorithm, bottom-up

- How to write the pseudo code for the bottom-up algorithm?
 - It is quite similar to the Matrix-Chain-Order algorithm shown on p. 375, CLRS.
- What is the run-time?
 - Exercise 15.2-5 gives you some hint.
- What is the space used?
- The first exercise of this lecture.

A different sub-problem formulation

- Alternative way of thinking about it *binary choice*:
- Sort activities on the start time (have "sentinel" activity A [n +1] after all the other activities)
- Let $next(i) = min \{k \mid k > i \text{ and } notOverlaps(A[i], A[k])\}$
- The sub-problem is then to schedule all the activities starting with the *i-th activity* and after.
- C[i] denotes the maximum number of compatible activities in the set of activities $\{a_i, a_{i+1}, ..., a_n\}$.

$$c[i] = \begin{cases} 0 \\ \max(1 + c[next(i)], c[i+1]) \end{cases}$$
The maximum set

The maximum set includes the i-th activity.

- Activity Selection: identify c[1]

if i > n, otherwise.

The maximum set does not include the i-th activity.

ILO of Lecture 2

Dynamic programming

- All-pairs shortest paths
 - To understand the adjacency matrix and the predecessor matrix, which are the representations of the input and output of most of the all-pairs shortest-path algorithms.
 - To understand how the dynamic programming principles play out in the repeated squaring and Floyd-Warshall algorithm.
 - Understand the definition of transitive closure of a directed graph.
- Activity selection
 - Top-down with memoization.
 - Bottom-up, examples.
 - An alternative sub-problem formulation.

Lecture 3

- Flow network
 - to understand the formalisms of flow networks and flows;
 - to understand the Ford-Fulkerson method and why it works;
 - to understand the Edmonds-Karp algorithm and to be able to analyze its worst-case running time;
 - to be able to apply the Ford and Fulkerson method to solve the maximum-bipartite-matching problem.