Метод блочного хранения данных с возможностью доказательства неправомерного доступа на основе хеш-сумм

Студент: Пересторонин Павел Геннадьевич

Руководитель: Григорьев Александр Сергеевич

Цель и задачи

Цель — разработать метод блочного хранения данных с возможностью доказательства неправомерного доступа на основе хеш-сумм.

Задачи:

- рассмотреть базовые элементы и понятия, используемые при проектировании методов хранения информации с возможностью защиты от неправомерного доступа;
- провести анализ существующих методов хранения информации с защитой от неправомерного доступа;
- провести анализ блочного хранения данных на предмет защиты информации от неправомерного доступа;
- спроектировать и реализовать метод блочного хранения данных с возмозможностью доказательства неправомерного доступа;
- исследовать метод на предмет невозможности реализации угроз при различных конфигурациях системы.

Защита информации ограниченного доступа

Информация ограниченного доступа:

- коммерческая тайна;
- персональные данные;
- служебная тайна;
- секрет производства;
- другое.
- количество утечек увеличивается;
- большую долю составляет сеть;
- тенденция на ужесточение регулирования в сфере информационной безопасности со стороны государств в мире.

Каналы утечек данных

Методы локального хранения данных с защитой от неправомерного доступа

Криптографические файловые системы

Методы распределенного хранения данных с защитой от неправомерного доступа

PASIS и OceanStore

Bitcoin

Виды защиты от неправомерного доступа

Анализ существующих решений на предмет защиты от неправомерного доступа

неправомерное действие (защита)	PASIS	КФС	OceanStore	Git	Bitcoin
чтение (исключение)	-	+	_	-	-
частичное изменение/удаление (восстановление)	+	-	+	-	-
изменение/удаление (исключение)	-	-	_	-	+
изменение (доказательство)	+	-	+	+/-	+
удаление (доказательство)	-	_	_	+/-	+

Метод блочного хранения данных в СУБД

СУБД с блочным хранением данных:

- Oracle Exadata;
- Vertica;
- ClickHouse.

Компоненты СУБД ClickHouse:

- Звено блок, единица хранения информации.
- Партиция логическая группа звеньев.
- Гранула единица записи и чтения данных.
- Индекс отсортированные значения первых в гранулах первичных ключей.
- Засечки смещение столбцов в файле для значений индекса.

Операции с данными в СУБД ClickHouse в MergeTree

Вставка:

- каждая вставка новый блок;
- атомарность операции за счет использования временного блока и переименовывания.

all 1 3 1 all 4 4 0

Слияния:

- служат для оптимизации хранения и поиска;
- на входе произвольное количество звеньев;
- на выходе всегда 1 звено.

Мутации:

- служат для изменения данных;
- могут применяться по несколько к одному звену;
- в одной задаче мутации участвует 1 звено.

Анализ существующей защиты данных от неправомерного доступа в движке MergeTree

- Дополнительные возможности:
 - о шифрование данных на уровне директории и столбца;
 - о проверка целостности данных на уровне звена.

неправомерное действие (защита)	без шифрования	с шифрованием	
чтение (исключение)	-	+	
удаление/изменение (исключение)	-	-	
частичное удаление/изменение (восстановление)	-	-	
удаление блока (доказательство)	-	-	
изменение (доказательство)	+/-	+	

Функциональная модель программного комплекса

Предлагаемый метод хранения данных с возможностью доказательства неправомерного доступа

Сценарии возможных угроз:

Формула расчета цепи хеш-сумм:

$$y_i = hash(x_i|y_{i-1}), y_1 = hash(x_1)$$

где:

- *i* индекс звена;
- hash хеш-функция;
- | операция конкатенации байтовых массивов;
- *х* метаданные звена в байтовом представлении.

Методы расчета и валидации цепи хеш-сумм и обновления состояния звеньев

Исследование метода на предмет невозможности реализации угроз при различных конфигурациях системы

Без шифрования:

С шифрованием:

Заключение

В результате выполнения данной работы была достигнута цель работы, а также решены все поставленные задачи, а именно:

- были рассмотрены базовые элементы и понятия, используемые при проектировании методов хранения информации с возможностью защиты от неправомерного доступа;
- был проведен анализ существующих методов хранения информации с защитой от неправомерного доступа;
- был проведен анализ блочного хранения данных на предмет защиты информации от неправомерного доступа;
- был спроектирован и реализован метод блочного хранения данных с возмозможностью доказательства неправомерного доступа;
- метод был исследован на предмет невозможности реализации угроз при различных конфигурациях системы.

Направления дальнейшего развития

- реализация метода блочного хранения данных с возможностью доказательства неправомерного доступа для движка ReplicatedMergeTree СУБД ClickHouse;
- реализация возможности восстановления после частичного удаления или изменения звена в движке ReplicatedMergeTree СУБД ClickHouse.

ReplicatedMergeTree — аналогичный с точки зрения физического хранения данных MergeTree движок, обладающий возможностью репликации звеньев.