ESE GATE PSUs State Engg. Exams

WORKHOOK 2025

Detailed Explanations of Try Yourself *Questions*

Civil Engineering

Construction Practice, Planning & Management

Basics of Project Management & Network Analysis

Detailed Explanationof Try Yourself Questions

T1: Solution

PERT Analysis

Detailed Explanation of Try Yourself Questions

T1: Solution

Activity	<i>t</i> ₀	<i>t</i> _m	<i>t</i> _p	<i>t</i> _e	Variance (σ²)	σ
а	10	22	22	20	4	2
b	20	20	20	20	0	0
С	4	10	16	10	4	2
d	2	14	32	15	25	5
е	8	8	20	10	4	2
f	8	14	20	14	4	2
g	4	4	4	4	0	0
h	2	12	16	11	5.4	2.32
i	6	16	38	18	28.4	5.33
j	2	8	14	8	4	2

Critical path is 1-2-5-7 and schedule completion time of project = 53 days

Standard deviation,

$$\sigma = \sqrt{\sigma_a^2 + \sigma_d^2 + \sigma_i^2} = \sqrt{4 + 25 + 28.4} = 7.576$$

$$z = \frac{T_{S} - T_{E}}{\sigma}$$

$$z = 1.5 + \frac{2.0 - 1.5}{97.92 - 93.92} (95 - 93.92) = 1.635$$

$$1.635 = \frac{T_s - 53}{7.576} \Rightarrow T_s = 65.38 \approx 66 \text{ days}$$

.. Time for 95% probability completion is 66 days.

T2: Solution

Calculation of expected time and standard deviation is done in table below:

Where,
$$t_e = \frac{t_0 + 4t_m + t_p}{6}$$
, $\sigma = \frac{t_p - t_0}{6}$

Activity	<i>t</i> ₀	<i>t</i> _m	t _p	t _e	σ
1 - 2	2	5	8	5	1
2 - 3	8	11	20	12	2
2 - 4	4	7	16	8	2
2 - 5	4	9	20	10	2.67
3 - 4	0	0	0	0	0
3 - 7	3	5	13	6	1.67
4 - 6	7	10	13	10	1
5 - 6	3	7	17	8	2.33
6 - 7	2	3	10	4	1.33
7 - 8	2	4	6	4	0.67

Calculation of T_E , T_L and slack has been done in network diagram below:

$$\sigma = \sqrt{1^2 + 2^2 + 0^2 + 1^2 + 1.33^2 + 0.67^2} = 2.867$$

$$Z = \frac{T_S - T_E}{\sigma}$$

For 95% probability,

$$Z = 1.6 + \frac{0.1}{95.54 - 94.52} \times 0.48 = 1.647$$

$$1.647 = \frac{T_S - 35}{\sigma}$$

$$T_S = 1.647 \times 2.567 + 35 = 39.72$$

CPM Analysis

Detailed Explanationof Try Yourself Questions

T1: Solution

Activity	Α	В	С	D	Ε	F	Dummy	G
Depends upon	_	_	Α	Α	С	С	D, E	<i>B</i> , Dummy
Duration, days	6	12	10	10	4	8	_	9

(i) Network diagram

(ii) Project duration

Calculation of critical path:

$$(1)$$
- (2) - (3) - $(6) = 6 + 10 + 8 = 24 days$
 (1) - (2) - (3) - (4) - (5) - $(6) = 6 + 10 + 4 + 9 = 29 days$
 (1) - (2) - (4) - (5) - $(6) = 6 + 10 + 9 = 25 days$
 (1) - (5) - $(6) = 12 + 9 = 21 days$
Critical path = (1) - (2) - (3) - (4) - (5) - (6)
Project duration = 29 days

T2: Solution

The critical path is 1-2-3-5-6

Project duration : 30 days

 $EST = T_F^i$

 $EFT = EST + t^{ij}$

 $LST = LFT - t^{ij}$

 $LFT = T_I^i$

Incorporating above formulas, all the activity times of the given network are shown in table below:

Activity	Tail	event	Head event		Duration	EST	EFT	LST	LFT
	T_E^i	T_L^i	T_E^j	T_L^j	t_L^{ij}				
1 – 2	0	0	5	5	5	0	5	0	5
2 – 3	5	5	13	13	8	5	13	5	13
3 – 4	13	13	16	22	3	13	16	19	22
3 – 5	13	13	24	24	11	13	24	13	24
4 – 5	16	22	24	24	2	16	18	22	24
5 – 6	24	24	30	30	6	24	30	24	30

T3: Solution

Project duration : 88 days

Activity times are

$$\begin{aligned} \mathsf{EST} &= T_E^i \\ \mathsf{EFT} &= \mathsf{EST} + \mathsf{t}^{ij} \\ \mathsf{LST} &= \mathsf{LFT} - \mathsf{t}^{ij} \\ \mathsf{LFT} &= T_L^j \end{aligned}$$

$$\mathsf{Total\ float}, \ F_T &= T_L^j - T_E^i - t^{ij} = \mathsf{LFT} - \mathsf{EFT}$$

$$\mathsf{Free\ float}, \ F_F &= F_T - S_i = F_T - \left(T_L^i - T_E^i\right)$$

$$\mathsf{Independent\ float}, \ F_I &= T_E^j - T_L^i - t^{ij} = F_F - S_i \\ &= F_F - \left(T_L^i - T_E^i\right) \end{aligned}$$

Incorporating the above formula, the elements of table given below are calculated:

Activity	Tail	event	Head event		Duration		Activi	ty time	s	F_{T}	F_F	E
	T_E^i	$\mathcal{T}_{\mathcal{L}}^{i}$	T_E^j	T_L^j	t ^{ij}	EST	EFT	LST	LFT	$\Gamma_{\mathcal{T}}$	F	F,
А	0	0	3	46	3	0	3	43	46	43	0	0
В	0	0	9	9	9	0	9	0	9	0	0	0
С	3	46	48	48	2	3	5	46	48	43	43	0
D	9	9	11	11	2	9	11	9	11	0	0	0
E	11	11	48	48	10	11	21	38	48	27	27	27
F	11	11	39	39	9	11	20	30	39	19	19	19
G	11	11	26	26	15	11	26	21	26	0	0	0
Н	26	26	30	30	4	26	30	26	30	0	0	0
/	30	30	39	39	9	30	39	30	39	0	0	0
J	39	39	48	48	9	39	48	39	48	0	0	0
К	39	39	68	68	8	39	47	60	68	21	21	21
L	48	48	68	68	20	48	68	48	68	0	0	0
М	68	68	88	88	20	68	88	68	88	0	0	0

Critical path of the network is B-D-G-H-I-J-L-M

CPM Cost Model Analysis

Detailed Explanation of

Try Yourself Questions

T1: Solution

Total direct cost (normal) of the project = 250 + 350 + 300 + 700 = ₹ 1600

Cost slope of
$$P = \frac{350 - 250}{7 - 6} = ₹100 / day$$

Cost slope of
$$Q = \frac{500 - 350}{10 - 8} = ₹75 / day$$

Cost slope of
$$R = \frac{400 - 300}{5 - 3} = ₹50$$
/ day

Cost slope of
$$S = \frac{950 - 700}{9 - 8} = ₹ 250 / day$$

Normal duration, crash duration and cost slope of each activity is indicated on the arrow diagram as shown below.

S.No	Description	Duration (Days)	Indirect Cost (₹)	Direct Cost (₹)	Total Project Cost (₹)	Remarks
1	All Normal	21	3990	1600	5590	Normal duration
2	Crashing R by 2 days	19	3610	1700	5310	
3	Crashing P and Q each by 1 day simultaneously	18	3420	1875	5295	Optimum duration
4	Crashing S by 1 day	17	3230	2125	5355	Minimum duration

Optimum duration of the project=18 days
Minimum (all crash) duration of the project = 17 days

T2: Solution

The mathematical modelling of CPM network is shown in the figure below:

SI. No.	Description	Project duration (days)	Indirect cost (₹)	Direct cost due to crashing (₹)	Total cost (₹)	Remarks
1.	All normal	20	1200	_	1200	Normal
2.	Crashing (3-4) by 1 day	19	1140	15	1155	Length
3.	Crashing (3-4) by 1 day	18	1080	30	1110	
4.	Crashing (3-4) by 1 day	17	1020	45	1065	
5.	Crashing (4-5) by 1 day	16	960	85	1045	Ontinuum
6.	Crashing (3-4) and (1-4) by 1 day	15	900	130	1030	Optimum Length
7.	Crashing (1-3) (2-4) and (1-4) each by 1 day	14	840	195	1035	
8.	Crashing (1-3) (2-4) and (1-4) each by 1 day	13	780	260	1040	B. disastras success
9.	Crashing (1-3) (1-2) and (1-4) each by 1 day	12	720	335	1055	Minimum Length

No further crashing since one of parallel critical paths is saturated.

Normal project length = 20 days

Optimum project length = 15 days

Minimum project length = 12 days.

Seven days scheduling (each by one day) is from s.no. 2 to 8 in the table.

T3: Solution

Network diagram corresponding to the given data:

So critical path is 1-2-3-5

Now, cost slopes for the various activities can be found out as,

Activity	$Cost slope = \left(\frac{C_c - C_n}{t_n - t_c}\right)$
1–2	2500
1–3	1500
2-3	1000
2-4	3500
3-4	3000

Cost of project = DC + IC

DC = Rs. 30,000

 $IC = 15 \times 3000 = Rs. 45000$

TC = Rs. 75000

1st stage: Crashing (2)-(3) by 2 weeks.

Duration of project = 13 weeks

Cost of project:

$$DC = 30000 + 2 \times 1000 = Rs. 32000$$

$$IC = 13 \times 3000 = Rs. 39000$$

$$TC = Rs.71000$$

2nd stage: Crashing (1)-(3) and (2)-(3) simultaneously by 1 week

Duration of project = 12 weeks

Cost of project:

$$DC = 32000 + 1000 + 1500 = Rs. 34500$$

$$IC = 12 \times 3000 = Rs. 36000$$

$$TC = Rs. 70500$$

3rd stage: Crashing (3)-(4) by 1 week

Duration of project = 11 weeks

Cost of project:

$$DC = 34500 + 3000 = Rs. 37500$$

$$IC = 11 \times 3000 = Rs. 33000$$

$$TC = Rs. 70500$$

4th stage: Crashing (1)-(2) and (1)-(3)

Duration of project = 9 weeks

Cost of project:

$$DC = 37500 + (2500 + 1500) \times 2 = Rs. 45500$$

$$IC = 9 \times 3000 = 27000$$

$$TC = 72500$$

Since cost will increasing for further stage of crushing.

:. Optimum time = 11 weeks Minimum cost = Rs. 70500

