样条曲线设计文档

一、设计思路

1. 抽象与继承:

• 抽象出通用的 MathFunction 类和 Spline 基类,具体样条曲线通过继承实现扩展。

2. 模块化与复用性:

• 每个功能单元独立封装, 如多项式运算、分段插值和样条生成, 提升模块的复用性。

3. 数值稳定性与效率:

• 封装 LAPACK 库加速线性方程组求解,提高数值稳定性和效率。

二、程序结构说明

程序主要分为以下模块:

类	描述	属性/功能
MathFunction	表示数学函数,支持函数值计算。	_
Polynomial	表示多项式,支持多项式的创建、运算及求导。	coefficients - 各项系数
PiecewisePolynomial	表示分段多项式,支持分段多项式的创建、运算及求导。	polynomials - 各分段的多项式 points - 分段起点
Spline	定义通用样条曲线接口,支持参数方程表示。	dimensions -参数数量 spline_order -多项式次数
PPSpline	继承自 Spline , 实现分段多项式样条。	_
BSpline	继承自 Spline, 实现 B 样条的基函数计算及生成。	_
SphereSpline	用于处理球面上的样条曲线。	_
辅助函数	提供工具函数: 弦长计算、坐标变换、 边界条件解析等。	_
方程求解器	使用 LAPACK 库求解线性方程组。	_
JSON 解析器	用于读取 JSON 文件,构造样条曲线。	_

注: Spline类的dimensions属性表示参数方程参数的数量。例如:

参数方程 r(t) = (x(t), y(t)) 的 dimensions = 2,

普通的函数 y = y(x) 的 dimensions = 1。

三、类的功能接口

类	接口	
MathFunction 类	MathFunction(double (*func)(double x)): 通过函数指针初始化函数 double evaluate(double x): 计算函数在点 xx 的值。	
Polynomial 类	构造多项式 Polynomial(const std::vector <double>& coef): 直接使用系数构造 Polynomial(const std::vector<double>& x_values, const std::vector<double>& y_values): 通过 Newton 插值构造 输出表达式 void print(): 从低到高输出多项式各项系数 运算操作 重载 +, -, * 运算符 求导与计算 Polynomial derivative(): 返回导数 double evaluate(double x): 计算多项式值。</double></double></double>	
PiecewisePolynomial 类	构造分段多项式 PiecewisePolynomial(const std::vector <polynomial>& p, const std::vector<double>& x): 构造分段多项式 求值与打印 double evaluate(double x): 计算分段多项式值 void print(): 输出分段公式。</double></polynomial>	
Spline 类	std::vector <double> operator()(double t): 计算样条在参数 tt 处的值 void print(): 输出样条公式。</double>	
PPSpline 类	构造方法 1.针对给定的函数和分段点进行构造	

类	接口
	2.针对给定函数、区间、分段数进行构造,包括均匀选点和累积弦长法选点 3.通过读取json文件构造样条 4.通过给定的散点坐标构造样条
BSpline 类	构造方法 1.针对给定的函数和分段点进行构造 2.针对给定函数、区间、分段数进行构造,包括均匀选点和累积弦长法选点 3.通过读取json文件构造样条 4.通过给定的散点坐标构造样条