

」「」」 2023 年深度行业分析研究报告

全网第一商业资料社群:

- ·每日分享50+行业报告、思维导图、行业资讯、 社群课程等
- ·全行业覆盖:新零售、AR、房地产、人工智能、新基建、生鲜、物联网、母婴、机器人、新能源汽车工业互联网、直播短视频等 460+个行业
- ·全网唯一终身制知识社群 长按识别右侧二维码,立即加入

内容目录

1.	海外大模型形成一超多强格局,OpenAI 被加速追赶	5
	1.1. Google Gemini: 原生多模态且能力有望追平 GPT-4	5
	1.2. 大模型 Mixtral 通过专家混合结构提质增效	8
	1.3. OpenAI 推出 GPT-4V 并持续保持领先	9
	1.4. Claude3 震撼发布,能力略超 GPT-4	10
	1.5. Meta 持续打造开源生态,加购算力研发 LLaMA3	11
2.	国内大语言模型能力突破,逐步达到甚至超过 GPT3.5 水平	12
	2.1. 智谱推出 GLM4,能力超过 CodeGeex2-6B	12
	2.2. 百度推出文心一言 4.0	13
	2.3. 讯飞正式发布星火大模型 3.5,能力比肩 GPT-4	14
	2.4. 通义干问推出 2.0 版本,能力赶超 GPT 3.5	15
	2.5. Minimax 在国内推出 MoE 模型 abab6	15
	2.6. 百川智能上线 Baichuan3,中文、医疗能力表现优秀	15
3.	多模态生成新技术不断突破,正处于技术突破的关键期	16
	3.1. SORA 模型横空出世,视频生成模型的 GPT3 时刻来临	16
	3.2. pika 推出 1.0,模型效果快速提升	16
	3.3. Stability.ai 发布并开源 Stable Video Diffusion 模型模型	17
	3.4. Google 发布 VideoPoet,基于 LLM 的技术路径表现出亮眼的视频生成能力	18
	3.5. Midjourney 推出 V6,大版本迭代带来更优异的图片生成能力	18
	3.6. 微软推出针对数字人的大模型 GAIA	18
	3.7. 阿里巴巴推出 Animate Anyone,让图片动的更自然	19
4.	应用端 OpenAI 正式推出 GPT store,生态体系正式建立	20
5.	海外模型大厂算力需求持续增加,模型 Scaling 趋势仍在继续	20
空	·····································	
图	1:Gemini 采用原生多模态的模型结构	5
	2:Gemini 可用来修订学生作业	
	3:Gemini 模型有三种等级的参数	
	4:Gemini 基准测试量化结果	
	5	
	6: Gemini 1.5 pro 拟人(humaneval)能力对比	
	7: Gemini 1.5 pro 多模态能力对比	
	8: 混合专家层结构	
	9: Mixtral 8*7B 标化测试结果	
冬	10: LMSys 排行榜(2023 年 12 月 22 日)	8

图 11:	Mixtral 8x7B、LLaMA2 测试结果对比	9
图 12:	Mixtral 8x7B 与 LLaMA2、GPT-3.5 对比	9
图13:	GPT-4V 输入、输出模式和应用场景	9
图 14:	Claude2.1 开放式 Q&A 精度提升	10
图 15:	Claude2.1 减少长文本错误率	10
图 16:	Claude3 模型的部分测试结果超过 GPT-4	11
图 17:	LLaMA1 与 LLaMA2 模型家族的参数和性能等	11
图 18:	闭源模型基准测试对比结果	11
图 19:	LLaMA2 软硬件投入	12
图 20:	GLM-4 基础能力和中文对齐能力	13
图 21:	智谱 GLM Store	13
图 22:	百度 "芯片+平台+模型+应用 "4 层架构	13
图 23:	干帆 AI 原生应用商店覆盖 B 端 5 大领域	13
图 24:	ERNIE 赋能文心产业级知识增强大模型	14
图 25:	ERNIE 效果对比	14
图 26:	用于训练新一代星火大模型的"飞星一号"平台	14
图 27:	讯飞星火 V3.5 七大能力提升	14
图 28:	讯飞大模型总开发者总数超 35 万	14
图 29:	星火开源-13B 上线	14
图 30:	通义干问 2.0 主流评测结果	15
图 31:	通义大模型训练的8大行业模型	15
图 32:	abab6 测评数据	15
图 33:	Baichuan 3 中英文、数学和代码评测	16
图 34:	Baichuan 3 对齐测试和医疗评测结果	16
图 35:	Sora 采用 DM+Transformer 结构	16
图 36:	Sora 视频生成效果	16
图 37:	DreamPropeller 方法提升视频生成速度效果展示	17
图 38:	SVD 文本-视频生成、图片-视频生成和多视图合成案例	17
图 39:	SVD 定量比较效果	17
图 40:	VideoPoet 能力概览	18
图 41:	VideoPoet 测评效果	18
图 42:	Midjourney V6 BETA 发布	18
图 43:	Midjourney V6 用户分享	18
图 44:	GAIA 原理示意图	19
图 45:	GAIA 效果定性比较	19
图 46:	Animate Anyone 模型结构	19
图 47:	Animate Anyone 模型效果	19
图 48:	Animate Anyone 时装视频合成测试结果	19
图 49:	Animate Anyone 舞蹈视频合成测试结果	19
图 50:	ChatGPT 自定义版本	20
图 51:	OpenAl GPT 商店	20

图 52: GPTs 覆盖领域和趋势榜(2024 年 2 月 5 日)2	20
图 53: GPTs 解锁费用2	20
图 54: Meta 2021 财年 Q2 到 2023 财年 Q4 的资本性支出	21
图 55: Microsoft 2021 财年 Q2 到 2023 财年 Q2 的资本性支出	21
图 56: Google 2021 财年 Q2 到 2023 财年 Q4 的资本性支出2	22
图 57:Amazon 2021 财年 Q2 到 2023 财年 Q4 的资本性支出2	22
表 1:GPT-4V 与 Gemini 对比1	LO

1. 海外大模型形成一超多强格局,OpenAI 被加速追赶

1.1. Google Gemini: 原生多模态且能力有望追平 GPT-4

2023 年 12 月 7 日,Google 发布了新一款基于联合训练的原生多模态大模型 Gemini。谷歌所发布的 Gemini 基于文本、图片、语音和视频联合训练,形成了跨模态的强大泛化能力,并在多个测试中有优秀表现。在 Gemini 的模型报告中,Gemini 可以理解文档和手写笔迹,识别学生的推理步骤,并给出详细的解答,生成对应的 Latex 公式。

图 1: Gemini 采用原生多模态的模型结构

资料来源:《Gemini: A Family of Highly Capable Multimodal Models》(作者 Gemini Team, Google),天风证券研究所

图 2: Gemini 可用来修订学生作业

资料来源:《Gemini: A Family of Highly Capable Multimodal Models》(作者 Gemini Team, Google),天风证券研究所

Gemini 模型分为 3 种规模,适用于从大型数据中心到移动设备的各种场景。Ultra 是Gemini 家族中最强大的模型,可以完成高度复杂的推理和多模态任务。Pro 在 Ultra 基础上进行了优化和平衡,仍然具有较强的推理性能和广泛的多模态能力。Nano 专为设备部署设计,Nano-1、Nano-2 参数量分别为 1.88 和 3.25B,分别针对不同内存的设备。Nano 通过将模型参数转化为 4 位表示的形式,减小了模型大小,在提高部署效率的同时,维持了优良的性能。

图 3: Gemini 模型有三种等级的参数

Model size	Model description				
Ultra	Our most capable model that delivers state-of-the-art performance across a wide range of highly complex tasks, including reasoning and multimodal tasks. It is efficiently serveable at scale on TPU accelerators due to the Gemini architecture.				
Pro	A performance-optimized model in terms of cost as well as latency that delivers significant performance across a wide range of tasks. This model exhibits strong reasoning performance and broad multimodal capabilities.				
Nano	Our most efficient model, designed to run on-device. We trained two versions of Nano, with 1.8B (Nano-1) and 3.25B (Nano-2) parameters, targeting low and high memory devices respectively. It is trained by distilling from larger Gemini models. It is 4-bit quantized for deployment and provides best-in-class performance.				

资料来源:《Gemini: A Family of Highly Capable Multimodal Models》(作者 Gemini Team, Google),天风证券研究所

Gemini Ultra 在文本处理基准测试优于 GPT4,展现出一流的复杂推理能力。根据 Google 的测试, 在综合知识(法律、生物和历史等)方面, Gemini Ultra 的 MMLU 指标达到 90.04%,超过人类专家的 89.8%,是首个超越人类的模型(GPT-4 的 MMLU 为 87.29%)。在数学领域,Gemini Ultra 的 GSM8K 指标为 94.4%,以往最高水平为 GPT-4 的 92.0%。在更加复杂的数学领域中,Gemini Ultra 的 MATH 指标(中学竞赛水平)得分为 53.2%,同样高于同期其他模型。在编程和复杂推理方面,编程模型 AlphaCode 2 基于 Gemini Pro,实现了在潜在程序空间大规模搜索。通过定制的过滤、聚类和排序机制,Gemini Pro 可以既生成候选代码,又产生奖励模型——用于选择出最合适的代码。与过去的 AlphaCode 相比,

_

AlphaCode 2 解决 Codeforces 分部中竞赛问题的数量,从原来的 25%,提高到了 43%,超过了 85%的参赛者。此外,在机器翻译、多语言能力、长文本处理和人类偏好评估方面,Gemini 同样展现了先进的性能。

图 4: Gemini 基准测试量化结果

	Gemini Ultra	Gemini Pro	GPT-4	GPT-3.5	PaLM 2-L	Claude 2	Inflect- ion-2	Grok 1	LLAMA-2
MMLU Multiple-choice questions in 57 subjects (professional &	90.04% CoT@32*	79.13% CoT@8*	87.29% CoT@32 (via API**)	70% 5-shot	78.4% 5-shot	78.5% 5-shot CoT	79.6% 5-shot	73.0% 5-shot	68.0%***
academic) (Hendrycks et al., 2021a)	83.7% 5-shot	71.8% 5-shot	86.4% 5-shot (reported)						
GSM8K Grade-school math (Cobbe et al., 2021)	94.4% Maj1@32	86.5% Maj1@32	92.0% SFT & 5-shot CoT	57.1% 5-shot	80.0% 5-shot	88.0% 0-shot	81.4% 8-shot	62.9% 8-shot	56.8% 5-shot
MATH Math problems across 5 difficulty levels &	53.2% 4-shot	32.6% 4-shot	52.9% 4-shot (via API**)	34.1% 4-shot (via API**)	34.4% 4-shot	_	34.8%	23.9% 4-shot	13.5% 4-shot
7 subdisciplines (Hendrycks et al., 2021b)			50.3% (Zheng et al., 2023)						
BIG-Bench-Hard Subset of hard BIG-bench tasks written as CoT prob- lems (Srivastava et al., 2022)	83.6% 3-shot	75.0% 3-shot	83.1% 3-shot (via API**)	66.6% 3-shot (via API**)	77.7% 3-shot	_	_	_	51.2% 3-shot
HumanEval Python coding tasks (Chen et al., 2021)	74.4% 0-shot (IT)	67.7% 0-shot (IT)	67.0% 0-shot (reported)	48.1% _{0-shot}	_	70.0% _{0-shot}	44.5% 0-shot	63.2% 0-shot	29.9% 0-shot
Natural2Code Python code generation. (New held-out set with no leakage on web)	74.9% 0-shot	69.6% _{0-shot}	73.9% 0-shot (via API**)	62.3% 0-shot (via API**)	_	_	_	_	_
DROP Reading comprehension & arithmetic. (metric: F1-score) (Dua et al., 2019)	82.4 Variable shots	74.1 Variable shots	80.9 3-shot (reported)	64.1 3-shot	82.0 Variable shots	_	_	_	_
HellaSwag (validation set) Common-sense multiple choice questions (Zellers et al., 2019)	87.8% 10-shot	84.7% 10-shot	95.3% 10-shot (reported)	85.5% 10-shot	86.8% 10-shot	_	89.0% 10-shot	_	80.0%**
WMT23 Machine translation (metric: BLEURT) (Tom et al., 2023)	74.4 1-shot (IT)	71.7 1-shot	73.8 1-shot (via API**)	_	72.7 1-shot	_	_	_	_

资料来源:《Gemini: A Family of Highly Capable Multimodal Models》(作者 Gemini Team, Google),天风证券研究所

作为原生多模态模型,Gemini 展现了较强的多模态能力。Gemini 可以在表格、图片、音频和视频中提取细节信息、空间布局和时间布局,并进行组合输出。例如,Gemini 可生成用于重新排列子画面的 matplotlib 代码,这表明 Gemini 结合了多种能力,如①识别子图;②逆推产生子图的代码;③从非直接的指示中,推理出子图新的排列顺序;④生成新的一组代码,重新生成、排列子图。

图 5: Gemini 模型结合了多种多模态能力

资料来源:《Gemini: A Family of Highly Capable Multimodal Models》(作者 Gemini Team, Google),天风证券研究所

Gemini 1.5 引入 MoE,最新的 1.5 pro 以更少计算量比肩 1.0 Ultra。Gemini 1.5 Pro 是 Gemini 家族的最新模型,于 2024 年 2 月 15 日发布,是一种高效的多模态混合专家模型,能够从数百万个上下文标记中回忆并推理出精细的信息,其中包括多个长文档和几小时的视频和音频。该模型在跨模态的长期上下文检索任务上实现了近乎完美的召回率,并在长文档问答、长视频问答和长上下文自动语音识别方面提高了现有最佳表现。该模型基于谷歌对 Transformer 和 MoE 的最新研究,与之前的版本相比,其性能在多个维度都有显著的改进,1.5 Pro 使用更少的计算实现了与 1.0 Ultra 相当的性能。

图 6: Gemini 1.5 pro 拟人 (humaneval) 能力对比

Capability	Benchmark		Gemini	
cupusiney	Deficient in the second of the	1.0 Pro	1.0 Ultra	1.5 Pro
	Hellaswag (Zellers et al., 2019)	84.7% 10-shot	87.8% 10-shot	92.5% 10-sho
	MMLU: Multiple-choice questions in 57 subjects (professional & academic). (Hendrycks et al., 2021a)	71.8% 5-shot	83.7% 5-shot	81.9% 5-shot
	GSM8K: Grade-school math problems. (Cobbe et al., 2021)	77.9% 11-shot	88.9% 11-shot	91.7% 11-sho
Math, Science & Reasoning	MATH: Math problems ranging across 5 levels of difficulty and 7 sub-disciplines. (Hendrycks et al., 2021b)	32.6% 4-shot Minerva prompt	53.2% 4-shot Minerva prompt	58.5% 4-shot Minervi prompt 59.4% 7-shot
	AMC 2022-23: 250 latest problems including 100 AMC 12, 100 AMC 10, and 50 AMC 8 problems.	22.8% 4-shot	30% 4-shot	37.2% 4-shot
	BigBench - Hard: A subset of harder tasks from Big Bench formatted as CoT problems. (Srivastava et al., 2022)	75.0% 3-shot	83.6% 3-shot	84.0% 3-shot
	DROP: Reading comprehension & arithmetic. (Metric: F1-Score). (Dua et al., 2019)	74.1% Variable shots	82.4% Variable shots	78.9% Variable shots
Coding	HumanEval chat preamble* (Metric: pass rate). (Chen et al., 2021)	67.7% 0-shot (PT)	74.4% 0-shot (PT)	71.9% 0-shot
	Natural2Code chat preamble* (Metric: pass rate).	69.6% 0-shot	74.9% 0-shot	77.7% 0-shot
Multilinguality	WMT23: sentence-level machine translation (Metric: BLEURT). (Tom et al., 2023)	71.73 (PT) 1-shot	74.41 (PT) 1-shot	75.20 1-shot
muniniguanty	MGSM: multilingual math reasoning. (Shi et al., 2023b)	63.45% 8-shot (PT)	78.95% 8-shot (PT)	88.73% 8-shot

图 7: Gemini 1.5 pro 多模态能力对比

Canability	Benchmark		Gemini	
ouput,		1.0 Pro	1.0 Ultra	1.5 Pr
Capability Image Understanding	MMMU (val) Multi-discipline college-level problems 0-shot (Yue et al., 2023)	47.9%	59.4%	58.5%
	Ai2D (test) Science diagrams 0-shot (Kembhavi et al., 2016)	73.9%	79.5%	80.3%
	MathViSTA (testmini) Mathematical reasoning 0-shot (Lu et al., 2023)	45.2%	53.0%	52.1%
Image Understanding	ChartQA (test) Chart understanding 0-shot (Masry et al., 2022)	74.1%	80.8%	81.3%
	VQAv2 (test-dev) Natural image understanding 0-shot (Goyal et al., 2017)	71.2%	77.8%	73.2%
	TextVQA (val) Text reading on natural images 0-shot (Singh et al., 2019)	74.6%	82.3%	73.5%
	DocVQA (test) Document understanding 0-shot (Mathew et al., 2021)	88.1%	90.9%	86.5%
	InfographicVQA (test) Infographic understanding 0-shot (Mathew et al., 2022)	75.2%	80.3%	72.7%
	VATEX (test) English video captioning 4-shot (Wang et al., 2019)	57.4	62.7	63.0
	VATEX ZH (val) Chinese video captioning 4-shot (Wang et al., 2019)	39.7	50.8	54.9
Video understanding	YouCook2 (val) English video captioning 4-shot (Zhou et al., 2018)	123.2	135.4	134.2
	ActivityNet-QA (test) Video question answering 0-shot (Yu et al., 2019)	49.8%	52.2%	56.7%
	EgoSchema (test) Video question answering 0-shot (Mangalam et al., 2023)	55.7%	61.5%	63.2%

资料来源:《Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context》(作者 Gemini Team, Google),天风证券研究所

资料来源:《Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context》(作者 Gemini Team, Google),天风证券研究所

1.2. 大模型 Mixtral 通过专家混合结构提质增效

MoE 方法每次只取用部分参数,同处理规模下推理较快。为了提升模型质量,研究人员不断增大参数规模,大模型的训练难度和推理成本也随之增大。为了实现大模型的高效训练和推理,人们提出了多种方法,包括 mamba 架构、URIAL 方法和 MoE 方法。MoE 在面对多个领域的复杂问题时,先分析任务,将其分发给多个领域的专家,再汇总结论。由于 MoE 结构处理单个 token 的时候只取用部分参数,在保持同等处理规模的情况下,实现了较快的推理速度。

图 8: 混合专家层结构

Mixture of Experts Layer

资料来源:《Mixtral of Experts》(作者 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux 等),天风证券研究所

Mixtral 采用了多个 70 亿参数量的 MoE 组合,结果跑分优于多个主流模型。2023 年 12 月 11 日,Mistral 发布 Mixtral 8x7B,该模型包括了 8 个 "专家"模块,分别来自 ArXiv、Github、PhilPapers、StackExchange、DM Mathematics、Gutenberg、PubMed Abstracts和 Wikipedia (en)。Mixtral 8x7B 的参数量仅为 470 亿。在综合基准测试中,Mixtral 优于或等于 LLaMA 2 70B 和 GPT-3.5。特别地,在数学、代码生成和多语言基准测试中,Mixtral 显著优于 LLaMA 2 70B。Mixtral 针对指令微调的模型——Mixtral 8x7B-Instruct 在人类基准测试中超过了 GPT-3.5Turbo、Claude-2.1、Gemini Pro 和 LLaMA2 70B 聊天模型。Mixtral 8x7B 在多语言和长文本领域也有较好表现。

图 9: Mixtral 8*7B 标化测试结果

	LLaMA 2 70B	GPT-3.5	Mixtral 8x7B
MMLU (MCQ in 57 subjects)	69.9%	70.0%	70.6%
HellaSwag (10-shot)	87.1%	85.5%	86.7%
ARC Challenge (25-shot)	85.1%	85.2%	85.8%
WinoGrande (5-shot)	83.2%	81.6%	81.2%
MBPP (pass@1)	49.8%	52.2%	60.7%
GSM-8K (5-shot)	53.6%	57.1%	58.4%
MT Bench (for Instruct Models)	6.86	8.32	8.30

资料来源:《Mixtral of Experts》(作者 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux 等),天风证券研究所

图 10: LMSys 排行榜 (2023 年 12 月 22 日)

Model	🖈 🙀 Arena Elo rating 🔺	<pre>MT-bench (score) A</pre>	License
GPT-4-Turbo	1243	9.32	Proprietary
GPT-4-0314	1192	8.96	Proprietary
GPT-4-0613	1158	9.18	Proprietary
Claude-1	1149	7.9	Proprietary
Claude-2.0	1131	8.06	Proprietary
Mixtral-8x7b-Instruct-v0.1	1121	8.3	Apache 2.0
Claude-2.1	1117	8.18	Proprietary
GPT-3.5-Turbo-0613	1117	8.39	Proprietary
Gemini Pro	1111		Proprietary
Claude-Instant-1	1110	7.85	Proprietary
Tulu-2-DPO-70B	1110	7.89	AI2 ImpACT Low-risk
Yi-34B-Chat	1110		Yi License
GPT-3.5-Turbo-0314	1105	7.94	Proprietary
Llama-2-70b-chat	1077	6.86	Llama 2 Community

资料来源:《Mixtral of Experts》(作者 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux 等),天风证券研究所

Mixtral 8x7B 模型的推理计算与存储成本显著缩小,SMoEs 更适用于并行运算。Mixtral 8x7B 仅使用 130 亿活动参数,多项跑分高于 700 亿活动参数的 LLaMA 2 70B。在不考虑内存成本和硬件利用率的情况下,活动参数越多,推理计算成本越大。因此 Mixtral 8x7B 在保持性能的同时,有效降低了推理成本。此外,在与存储成本相关的稀疏参数量方面,Mixtral 8x7B 仅有 470 亿参数量,显著小于 LLaMA 2 70B 的参数量。设备利用率方面,在单时间步中,SMoEs 层的路由机制引入了额外的运算量,用于在单个设备上加载数个"专家"模块。因此,使用 SMoEs 层更适用于并行运算,批量地处理 token,可以提高设备利用率。

因此我们认为,在供给侧,Mixtral 8x7B 所采用的方法以其小型化的特点,为边缘、终端部署大模型有力赋能;在需求侧,Mixtral SMoEs 会对硬件的并行运算能力提出新的要求。

图 11: Mixtral 8x7B、LLaMA2 测试结果对比

	LLaMA 2 70B	GPT-3.5	Mixtral 8x7B
MMLU (MCQ in 57 subjects)	69.9%	70.0%	70.6%
HellaSwag (10-shot)	87.1%	85.5%	86.7%
ARC Challenge (25-shot)	85.1%	85.2%	85.8%
WinoGrande (5-shot)	83.2%	81.6%	81.2%
MBPP (pass@1)	49.8%	52.2%	60.7%
GSM-8K (5-shot)	53.6%	57.1%	58.4%
MT Bench (for Instruct Models)	6.86	8.32	8.30

资料来源:《Mixtral of Experts》(作者 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux等),天风证券研究所

资料来源:《Mixtral of Experts》(作者 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux 等),天风证券研究所

1.3. OpenAI 推出 GPT-4V 并持续保持领先

OpenAI 在 2023 年 9 月发布的 GPT-4V 在处理交织的多模态互动方面体现了通用性和强大的处理能力。在输入模式方面,GPT-4V 具备图片标记互动、识别无定式图文输入和接受案例引导的能力。在输出模式方面,强大的多模态处理能力使得 GPT-4V 可以完成事件划分、视频解读和情感解读任务。基于丰富的功能,GPT-4V 衍生出了医学图像解读、具身代理和 GUI 导航等场景应用。还有许多潜在的功能等待使用者发掘。

图 13: GPT-4V 输入、输出模式和应用场景

资料来源:《The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)》(作者 Zhengyuan Yang, Linjie Li, Kevin Lin等),天风证券研究所

在工业具身代理、GUI 导航和多物体识别等领域,GPT-4V 测试表现优于 Gemini Pro。在基础的图像识别任务中,GPT-4V 和 Gemini Pro 均表现良好,在复杂的公式和表格信息处理方面存在差异。在图像推理和情绪理解方面,2 个模型都展现了理解多种情绪的能力。在 IQ 测试和多物体识别中,GPT-4V 略强,但 Gemini Pro 在单物体识别方面表现更好,且单图像+文本识别能力更强。在工业应用领域,尤其是包含了具身智能代理和 GUI 导航方面,GPT-4V 更具优势。GPT-4V 和 Gemini Pro 均为能力优秀的多模态大模型,GPT-4V 在某些领域略优于 Gemini Pro。

表 1: GPT-4V与 Gemini 对比

PT-4V	Gemini
好	较好
强	
· · · · · · · · · · · · · · · · · · ·	
	在某些方面表现更好
	更强
水平	同水平
强	
强	
	好 强 强 冰平 强

资料来源:《Gemini vs GPT-4V: A Preliminary Comparison and Combination of Vision-Language Models Through Qualitative Cases》(作者 Zhangyang Qi, Ye Fang 等),天风证券研究所

1.4. Claude3 震撼发布, 能力略超 GPT-4

Claude 2.1 显著减少幻觉率,处理更长文本可靠性更高。2023 年 11 月 21 日,Anthropic 推出 Claude 2.1。在开放式对话和复杂 QA 方面,Claude 2.1 幻觉率(Hallucination Rates)减少近 50%,为企业提供了更高的可靠性。与同期模型相比,Claude 2.1 在"诚实度(Honesty)"测试中,可以输出不确定性结果(例如,"我不确定玻利维亚人口第五大城市是什么"),而非输出一个错误结果(例如,"玻利维亚人口第五大城市是蒙特罗")。在文本处理方面,Claude 2.1 将 200k 长文本处理能力产品化,为业界首创。在处理可靠性要求高的文本(法律报告、财务报告和技术规范)时,Claude 2.1 错误答案减少了 30%,错误引用率减少为原来的 25%-33%。

图 14: Claude 2.1 开放式 Q&A 精度提升

资料来源:Anthropic 官网,天风证券研究所

图 15: Claude 2.1 减少长文本错误率

资料来源: Anthropic 官网, 天风证券研究所

Claude3 正式发布效果追平甚至超过 GPT4,成本梯度明显。Claude3 在 3 月 4 日发布,目前有 3 个型号 Haiku, Sonnet 和 Opus,其中 Opus 能力最强但成本最高,Haiku 能力最弱但最有性价比,Opus 和 Sonnet 现在可以在 Claude.ai 上使用,效果上包括以下几点特征: (1)在 MMLU、GPQA、基础数学 GSM8K 等测试机上,Opus 在表现出接近人类的理解力和流畅性,效果基本追平或者超过 GPT-4; (2)响应速度快,Haiku 最快,Sonnet 比上一代 2.1 块 2 倍,Opus 与上一代速度相似但水平更高; (3)视觉能力强,在视觉理解上可以理解照片、图表、图形等,效果追平 GPT-4V 和 Gemini1.0; (4)拒绝率下降,拒绝回答的概率相较于上一代下降一倍; (5)幻觉下降,准确度更高,开放问答的错误率更低; (6)长文本更长,Claude3 支持正常 200k 长文本,客户有需求可以接受最多 100

万 token 的长文本,同时'大海捞针'的召回能力更强。价格上,Opus 的价格目前每百万 tokens 输入 15 美元,输出 75 美元,Sonnet 为百万 tokens 输入 3 美元,输出 15 美元, Haiku 为百万 tokens 输入 0.25 美元,输出 1.25 美元。我们认为 Claude3 发布接近基本超越了 GPT4。

图 16: Claude3 模型的部分测试结果超过 GPT-4

	Claude 3 Opus	Claude 3 Sonnet	Claude 3 Haiku	GPT-4	GPT-3.5	Gemini 1.0 Ultra	Gemini 1.0 Pro
Undergraduate level knowledge MMLU	86.8% 5 shot	79.0% 5-shot	75.2% 5-shot	86.4% 5-shot	70.0% 5-shot	83.7% 5-shot	71.8% 5-shot
Graduate level reasoning GPQA, Diamond	50.4% 0-shot CoT	40.4% 0-shot CoT	33.3% 0-shot CoT	35.7% 0-shot CoT	28.1% 0-shot CoT	_	-
Grade school math GSM8K	95.0% 0-shot CoT	92.3% 0-shot CoT	88.9% 0-shot CoT	92.0% 5-shot CoT	57.1% 5-shot	94.4% Maj1@32	86.5% Maj1@32
Math problem-solving MATH	60.1% 0-shot CoT	43.1% 0-shot CoT	38.9% 0-shot CoT	52.9% 4-shot	34.1% 4-shot	53.2% 4-shot	32.6% 4-shot
Multilingual math MGSM	90.7% 0-shot	83.5% 0-shot	75.1% 0-shot	74.5% 8-shot	_	79.0% 8-shot	63.5% 8-shot
Code HumanEval	84.9% 0-shot	73.0% 0-shot	75.9% 0-shot	67.0% 0-shot	48.1% 0-shot	74.4% 0-shot	67.7% 0-shot
Reasoning over text DROP, F1 score	83.1 3-shot	78.9 3-shot	78.4 3-shot	80.9 3-shot	64.1 3-shot	82.4 Variable shots	74.1 Variable shots
Mixed evaluations BIG-Bench-Hard	86.8% 3-shot CoT	82.9% 3-shot CoT	73.7% 3-shot CoT	83.1% 3-shot CoT	66.6% 3-shot CoT	83.6% 3-shot CoT	75.0% 3-shot CoT
Knowledge Q&A ARC-Challenge	96.4% 25-shot	93.2% 25-shot	89.2% 25-shot	96.3% 25-shot	85.2% 25-shot	-	-
Common Knowledge <i>HellaSwag</i>	95.4% 10-shot	89.0% 10-shot	85.9% 10-shot	95.3% 10-shot	85.5% 10-shot	87.8% 10-shot	84.7% 10-shot

资料来源: Anthropic 官网, 天风证券研究所

1.5. Meta 持续打造开源生态,加购算力研发 LLaMA3

2023 年 7 月 19 日发布的 LLaMA 2 最多有 700 亿参数量,标化测试水平略高于 PaLM。 2023 年 7 月 19 日,Meta 发布免费可商用模型 LLaMA 2,最大参数量为 700 亿,可处理内 容长度为第一代的 2 倍。与 GPT-3.5、GPT-4、PaLM 和 PaLM-2-L 相比,LLaMA 2 70B 的 MMLU 最低,GSM8K 较低;TriviaQA 和 Natural Questions 水平介于 PaLM 和 PaLM-2-L 之间;HumanEval 和 BIG-Bench Hard 水平与 PaLM 相近,低于其他模型。

图 17: LLaMA1 与 LLaMA2 模型家族的参数和性能等

	Training Data	Params	Context Length	GQA	Tokens	LR
		7B	2k	Х	1.0T	3.0×10^{-4}
Llama 1	See Touvron et al.	13B	2k	X	1.0T	3.0×10^{-4}
	(2023)	33B	2k	Х	1.4T	1.5×10^{-6}
		65B	2k	Х	1.4T	1.5×10^{-6}
		7B	4k	Х	2.0T	3.0×10^{-6}
Llama 2	A new mix of publicly	13B	4k	X	2.0T	3.0×10^{-6}
	available online data	34B	4k	✓	2.0T	1.5×10^{-1}
		70B	4k	✓	2.0T	1.5×10^{-1}

资料来源:《LLaMA 2: Open Foundation and Fine-Tuned Chat Models》(作者 HugoTouvron, Louis Martin, Kevin Stonet),天风证券研究所

图 18: 闭源模型基准测试对比结果

Benchmark (shots)	GPT-3.5	GPT-4	PaLM	PaLM-2-L	Llama 2
MMLU (5-shot)	70.0	86.4	69.3	78.3	68.9
TriviaQA (1-shot)	-	-	81.4	86.1	85.0
Natural Questions (1-shot)	_	_	29.3	37.5	33.0
GSM8K (8-shot)	57.1	92.0	56.5	80.7	56.8
HumanEval (0-shot)	48.1	67.0	26.2	_	29.9
BIG-Bench Hard (3-shot)	-	-	52.3	65.7	51.2

资料来源:《LLaMA 2: Open Foundation and Fine-Tuned Chat Models》(作者 HugoTouvron, Louis Martin, Kevin Stone†),天风证券研究所

正加速研发。在 LLaMA2 训练过程中,投入了 330 万 GPU 小时(A100-80GB),用于 2 万亿 token 数据的预训练。微调数据包括公开可用的指令数据集,以及超过 100 万人工标注案例的实例。Meta 指出,预训练和微调数据集均不包括用户数据。

图 19: LLaMA2 软硬件投入

	Hardware and Software (Section 2.2)
Training Factors	We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
Carbon Footprint	Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO ₂ eq, 100% of which were offset by Meta's sustainability program.
	Training Data (Sections 2.1 and 3)
Overview	LLAMA 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
Data Freshness	The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.

资料来源:《LLaMA 2: Open Foundation and Fine-Tuned Chat Models》(作者 HugoTouvron, Louis Martin, Kevin Stone †),天风证券研究所

LLaMA3 有望比肩 GPT-4,最高 1400 亿参数,研究人员计划放松安全限制。2024 年 1 月 18 日扎克伯格透露,Meta 正在训练下一代大模型 LLaMA3,未来一年,将投入 35 万台 H100 GPU 用于构建计算基础设施。近期 The Information 报道,Meta 计划在今年 7 月份 发布 Llama 3 大模型,旨在与 OpenAI 的 GPT-4 模型相竞争。参数量方面,LLaMA3 的最大参数量可能超过 1400 亿,对标的 GPT-4 模型参数规模约为 1.8 万亿。Meta 在开发 LLaMA 2 时引入了安全机制,以避免回答可能引发争议的问题,这种过于谨慎的设计,在公司高层和模型研究人员中引发了关于其"过度安全"的担忧。鉴于此,研究人员计划在 LLaMA3 中放宽这些限制,以促进模型与用户之间的更多互动,提供更丰富的背景信息,而不仅仅是回避争议话题。

2. 国内大语言模型能力突破,逐步达到甚至超过 GPT3.5 水平

2.1. 智谱推出 GLM4, 能力超过 CodeGeex2-6B

GLM-4整体性能超过 GPT3.5,部分能力比肩 GPT-4,128k 文本能力测试超越 Claude2.1。2024年01月16日,智谱AI推出GLM-4。在基础能力方面,GLM-4在各项测评中达到了GPT-490%以上水平。长文本方面,基于LongBench(128k)的总结、信息抽取、复杂推理和代码场景中,GLM-4测试结果超过Claude2.1;在"大海捞针"(Needle in the Heystack,将一段信息放在一段长文本中的任意位置,检测大模型的回答准确率)测试中,GLM-4实现在128k文本长度内几乎100%的精度召回。此外,智谱AI在发布GLM-4的同时,发布了"定制化的个人GLM大模型"GLMs和GLM Store,对标OpenAI的GPTs。

资料来源: GLM 大模型公众号, 天风证券研究所

图 21: 智谱 GLM Store

资料来源:新智元公众号,天风证券研究所

2.2. 百度推出文心一言 4.0

基于文心一言 4.0, 百度打造应用商店和 4 层架构平台,服务企业。在模型领域,2023 年 10 月 17 日百度发布文心大模型 4.0, 个人和企业客户可通过百度智能云干帆大模型平台接入使用,百度可延伸提供企业级一站式客户服务,打通芯片+平台+模型+应用的 4 层架构,实现应用落地。在应用层面,百度 AI 原生应用商店引入 5 大领域应用,涵盖智能办公、营销服务、行业智能、生产提效和分析决策领域,助力企业业务提效和创新发展。

图 22: 百度"芯片+平台+模型+应用"4 层架构

资料来源:百度智能云千帆大模型官网,天风证券研究所

图 23: 千帆 AI 原生应用商店覆盖 B 端 5 大领域

资料来源:百度智能云千帆大模型官网,天风证券研究所

自研预训练框架 ERNIE 赋能文心大模型, 2023 年 10 月 17 日更新至 ERNIE 4.0。百度在 2019 年发布 ERNIE 1.0 版本。实证结果显示, ERNIE 3.0 在 54 项中文 NLP 任务上优于同期 最先进的模型,其英文版在 SuperGLUE 基准测试中排名第一(2021 年 7 月 3 日),超过 人类表现+0.8%(90.6%对 89.8%)。2023 年 10 月 17 日 ERNIE 更新至 4.0 版本,功能对标 GPT-4,在理解、生成、推理和记忆方面能力有所加强,进一步赋能文心大模型。

		文心	产业级知识均	曾强大模	型				
工具平台	数据标注与处	· 大模型	構術 大機	型压缩	商性能部署		场景化工具		
	行业大模型								
	自然语言处理			视觉		跨模态			
	文心一言 ERNE Box		OCR图像表征	OCR图像表征学习 VIMER-StructerT		文档智能 IFAIL Layout			
文心大模型	对语 PLATO	D. 授款 EINE			文庫性:		HelixGEM		
	跨语言 ERNE	M (CAS ERN)	S任务视觉表征	B任务视觉表征学习 VIMER-UFO		E-VILG	蛋白质结构短期 Helisfold		
		语言理解与生成 ERNIE	视觉处理	自监督视觉	夜尾 - 田田	連音 - 语言			
	ERINE 3.0 Zeus	翻练百度文心 ER	多任务学习 VIMER-TOR	表征学习 VIMER-CAE		ERNE -SAT	单序列蛋白质结构预测 HelaFold Single		

资料来源:	百度智能云千帆大模型官网,	天风证券研究所

Model	BoolQ	CB	COPA	MultiRC	ReCoRD	RTE	WiC	WSC Score
Human Baseline	89.0	95.8/98.9	100	81.8/51.9	91.7/91.3	93.6	80.0	100 89.8
T5+Menna	91.4	95.8/97.6	98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6 90.4
DeBERTa	90.4	95.7/97.6	98.4	88.2/ 63.7	94.5/94.1	93.2	77.5	95.9 90.3
ERNIE 3.0	91.0	98.6/99.2	97.4	88.6 /63.2	94.7/94.2	92.6	77.4	97.3 90.6

资料来源: 《ERNIE 3.0: LARGE-SCALE KNOWLEDGE ENHANCED

PRE-TRAINING FOR LANGUAGE UNDERSTANDING AND GENERATION》(作

者 Yu Sun, Shuohuan Wang 等),天风证券研究所

2.3. 讯飞正式发布星火大模型 3.5,能力比肩 GPT-4

基于全国产化算力平台"飞星一号", 星火大模型 V3.5 实现七大能力提升。2023 年 10 月 24 日,讯飞联合昇腾生态共同发布"飞星一号"大模型算力平台,并启动对标 GPT-4 的更大参数规模的星火大模型训练,自主生态平台为世界提供了新的选择。星火 V3.5 于 2024年1月30日发布,在文本生成、语言理解和知识问答等七大能力有所提升。在语言 理解、数学能力方面超越 GPT-4 Turbo, 在代码能力和多模态能力方面逼近 GPT-4 Turbo、 GPT-4V。此外,讯飞计划在 2024 年上半年发布 4.0 版本。

图 26: 用于训练新一代星火大模型的"飞星一号"平台

资料来源:科大讯飞公众号,天风证券研究所

图 27: 讯飞星火 V3.5 七大能力提升

资料来源: 讯飞开放平台公众号, 天风证券研究所

讯飞 AI 应用生态增长迅猛,发布星火开源-13B 进一步赋能开发者。自星火大模型发布以 来,大模型开发者总数超35万,其中企业开发者22万,遍布企业服务、教育培训、智能 客服、医疗健康等领域。此外,科大讯飞还首次开源了深度适配国产算力,拥有 130 亿参 数的 iFlytekSpark-13B 模型(星火开源-13B)。不仅场景应用效果领先,而且还对学术和 企业研究完全免费。具体来说,此次开源不仅包括基础模型 iFlytekSpark-13B-base、精调 模型 iFlytekSpark-13B-chat, 还有微调工具 iFlytekSpark-13B-Lora, 以及人设定制工具 iFlytekSpark-13B-Charater。基于这些全栈自主创新的套件,企业和机构可以方便地训练自 己的大模型。

图 29: 星火开源-13B 上线

图 28: 讯飞大模型总开发者总数超 35 万

资料来源:新智元公众号,天风证券研究所

2.4. 通义干问推出 2.0 版本, 能力赶超 GPT 3.5

通义千问能力评测超越 GPT-3.5,8 大行业应用组团上线。2023 年 10 月 31 日,阿里云正式发布干亿级参数大模型通义干问 2.0。在 10 项权威测评中,通义干问 2.0 综合性能超过 GPT-3.5,正在加速追赶 GPT-4。在 MMLU、C-Eval、4.GSM8K、HumanEval、MATH 等 10 个主流 Benchmark 测评集上,通义干问 2.0 的得分整体超越 Meta 的 LLaMA-2-70B,相比 OpenAI 的 Chat-3.5 是九胜一负,相比 GPT-4 则是四胜六负,与 GPT-4 的差距进一步缩小。与此同时,基于通义大模型训练的 8 大行业模型组团上线,8 大行业模型面向当下最受欢迎的多个垂直场景,使用领域数据进行专门训练。用户可以在官网直接体验模型功能,开发者可以通过网页嵌入、API/SDK 调用等方式,将模型能力集成到自己的大模型应用和服务中。

图 30: 通义千问 2.0 主流评测结果

资料来源: 阿里云开发者社区, 天风证券研究所

图 31: 通义大模型训练的 8 大行业模型

		阿里云 7 通义千何 7	遵义万相 3 通义产品应用 · 下
			通义产品应 服务各行各业,改变方方面
通义听悟工作学习以前手	通义灵码	通义星生 个性代纳色创作平台	通义晓蜜 为7那符位金额服务
		<u>6</u> 9	
通义点金	通义法者 让法律等关系统、原施、原图论	通义仁心 卵辺的专业体表加手	通义智文 原理(时) A 同原形学
<u> </u>	STO	1004	

资料来源:通义干问官网,天风证券研究所

2.5. Minimax 在国内推出 MoE 模型 abab6

MiniMax 在国内上线 MoE 模型,部分效果超过 Mistral 商用版。2024年1月16日,国内首个 MoE 大模型 abab6 上线。与上一代模型相比,其参数量还增大了一个数量级。从测评数据来看,在指令遵从、中文综合能力和英文综合能力上,abab6 大幅超过了 GPT-3.5;和 Claude 2.1 相比,abab6 也在指令遵从、中文综合能力和英文综合能力上略胜一筹;相较于 Mistral 的商用版本 Mistral-Medium,abab6 在指令遵从和中文综合能力上都优于 Mistral-Medium,在英文综合能力上与 Mistral-Medium 旗鼓相当。

图 32: abab6 测评数据

	abab6	abab5.5	Claude	Mistral	GPT-3.5	GPT-4
IFEval	0.67	0.49	0.57	0.56	0.55	0.75
MT-Bench	8.61	6.63	8.18	8.61	8.39	9.32
AlignBench	7.41	5.50	6.62	6.42	6.08	8.01

资料来源: MiniMax 稀字科技公众号, 天风证券研究所

2.6. 百川智能上线 Baichuan3,中文、医疗能力表现优秀

百川智能发布 Baichuan 3,中文评测超越 GPT-4。2024年1月29日,百川智能发布超干亿参数的大语言模型 Baichuan 3。在 CMMLU、GAOKAO 等多个中文评测榜单上,Baichuan 3 超越 GPT-4。同时,在多个英文评测中,Baichuan 3 表现出色,达到接近 GPT-4 的水平。

Baichuan 3的数学和代码能力介于 GPT-3.5 与 GPT-4 之间。此外,在 MT-Bench、IFEval 等对齐榜单的评测中,Baichuan 3 超越了 GPT-3.5、Claude 等大模型,处于行业领先水平。Baichuan 3 在多个权威医疗评测任务中表现优异,不仅 MCMLE、MedExam、CMExam 等中文医疗任务的评测成绩超过 GPT-4,USMLE、MedMCQA 等英文医疗任务的评测成绩也逼近了 GPT-4 的水准。

图 33: Baichuan 3 中英文、数学和代码评测

	數	学				
	GSM8K	MATH	HumanEval	МВРР	Crux-I	Crux-O
Baichuan 3	88.17	49.20	70.12	68.20	57.88	58.38
GPT-4	92.00	52.90	67.00	63.60	69.8	68.7
GPT-3.5	57.10	13.96	52.44	61.40	49.0	49.4
Baichuan 3/GPT-4	95.8%	93.0%	104.7%	107.2%	82.9%	85.0%
Baichuan 3/GPT-3.5	154.4%	352.4%	133.7%	111.1%	118.1%	118.2%

资料来源:百川大模型公众号,天风证券研究所

图 34: Baichuan 3 对齐测试和医疗评测结果

	中文			英文			
	MCMLE	MedExam	CMExam	USMLE	MedMCQA	PubMedQA	
Baichuan3	85.76	84.64	86.9	80.2	72.08	76	
GPT-3.5 (5 shot)	52.92	54.33	47.25	53.57	56.39	71.60	
GPT-4 (5 shot)	74.58	75.17	67.31	81.38	72.4	75.2	
GPT-4 (Med.prompt)	-	-		90.20	79.1	82.0	
Baichuan 3/GPT-4	1.15	1.13	1.29	0.99	1.0	1.0	

资料来源:百川大模型公众号,天风证券研究所

3. 多模态生成新技术不断突破,正处于技术突破的关键期

3.1. SORA 模型横空出世,视频生成模型的 GPT3 时刻来临

Sora 采用 Diffusion Transformer 结构,使用时空 Latent patch 表示视频和图像,或成为模拟现实的基础。Sora 建立在 DALL·E 和 GPT 的基础上,它采用扩散模型,以类似静态噪声的视频为起点,通过多个步骤去除噪声来逐渐产生视频。此外,Sora 引入了 Transformer 结构,OpenAI 团队用 patch 作为基本单位,把视频和图像表示为 patch 的组合(类似于GPT 中的 token)。patch 的表示方法扩大了 OpenAI 的数据集,因此 DM+Transformer 的训练可以引入不同持续时间、分辨率和纵横比的数据。OpenAI 认为,Sora 是 AI 理解和模拟真实世界的基础,是 AGI 的重要里程碑。

图 35: Sora 采用 DM+Transformer 结构

资料来源: OpenAI 官网, 天风证券研究所

图 36: Sora 视频生成效果

资料来源: OpenAI 官网, 天风证券研究所

3.2. pika 推出 1.0,模型效果快速提升

Pika labs 发布 1.0 产品,DreamPropeller 助力视频生成保质提速。2023 年 11 月 29 日,位于美国的初创企业 Pika Labs,对外正式发布了其全新的视频生成与编辑软件——Pika 1.0。该软件具备视频处理能力,可生成并编辑 3D 动画、动漫、卡通以及电影等多种形式的视频内容。值得一提的是,Pika 1.0 的使用门槛极低,用户仅需输入一句话,即可生成多种风格的视频。同时,用户还可以通过简单的描述,对视频中的形象和风格进行个性化调整。Pika 提出的 DreamPropeller 方法,以并行计算换取速度,将该方法用于 DreamGaussian和 ProlificDreamer 后,在保证生成质量的同时,实现了超过 4 倍的加速。

资料来源:《DreamPropeller: Supercharge Text-to-3D Generation with Parallel Sampling》(作者 Linqi Zhou, Andy Shih

等),天风证券研究所

3.3. Stability.ai 发布并开源 Stable Video Diffusion 模型

2023 年 11 月份上线的 Stable Video Diffusion 模型可用于视频、图片生成,性能优于部分同期模型。2023年11月21日,Stability.AI基于研究目的发布 Stable Video Diffusion(SVD) 模型和微调版本 SVD-XT。功能方面,SVD 可用于文本-视频生成、图片-视频生成和多视图合成。性能方面,SVD 的文生视频 FVD 测试得分(类似图像的 FID 指标,越小则越接近真实案例)优于 Make-A-Video 和 MagciVideo 等多个模型;此外,在图生视频方面,SVD 比 Pika 和 GEN-2 更受欢迎。

图 38: SVD 文本-视频生成、图片-视频生成和多视图合成案例

资料来源:《Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets》(作者 Andreas Blattmann, Tim Dockhorn, Sumith Kulal 等),天风证券研究所

图 39: SVD 定量比较效果

Table 2. UCF-101 zero-shot text-to-video generation. Comparing our base model to baselines (numbers from literature).

Method	FVD (↓)
CogVideo (ZH) [43]	751.34
CogVideo (EN) [43]	701.59
Make-A-Video [82]	367.23
Video LDM [9]	550.61
MagicVideo [115]	655.00
PYOCO [29]	355.20
SVD (ours)	242.02

Figure 6. Our 25 frame Imageto-Video model is preferred by human voters over GEN-2 [74] and PikaLabs [54].

资料来源:《Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets》(作者 Andreas Blattmann, Tim Dockhorn, Sumith Kulal 等),天风证券研究所

3.4. Google 发布 VideoPoet, 基于 LLM 的技术路径表现出亮眼的视频生成能力

VideoPoet 能力覆盖各种视频任务,效果亮眼。2023 年 12 月 19 日,谷歌发布视频生成大模型 VideoPoet,能够执行各种视频生成任务,包括文本到视频、图像到视频、视频风格化、视频修复和扩展,以及视频转音频。测试结果方面,VideoPoet 在零样本文本到视频基准测试上(MSR-VTT 和 UCF-101)实现了先进的性能。

图 40: VideoPoet 能力概览

资料来源:《VideoPoet: A Large Language Model for Zero-Shot Video Generation》(作者 Dan Kondratyuk, Lijun Yu,等),天风证券研究所

图 41: VideoPoet 测评效果

Model	MSR-V	UCF-101		
	CLIPSIM	FVD	FVD	IS
CogVideo (EN) [36]	0.2631	1294	702	25.27
MagicVideo [85]	-	998	655	-
Video LDM [5]	0.2929	-	551	33.45
ModelScopeT2V [67]	0.2930	550	-	-
InternVid [70]	0.2951	-	617	21.04
VideoFactory [69]	0.3005	-	410	-
Make-A-Video [56]	0.3049	-	367	33.00
Show-1 [81]	0.3072	538	394	35.42
VideoPoet (Pretrain)	0.3049	213	355	38.44
VideoPoet (Task adapt)	0.3123	-	-	-

资料来源:《VideoPoet: A Large Language Model for Zero-Shot Video Generation》(作者 Dan Kondratyuk, Lijun Yu,等),天风证券研究所

3.5. Midjourney 推出 V6,大版本迭代带来更优异的图片生成能力

Midjourney v6 优化 Prompt 模式,生成图片相较于前一代版本更加准确自然。2023 年 12 月 21 日,Midjourney v6 发布 BETA 版。与 v5 相比,v6 的主要变化,就是图像质量更好、语义理解更强、能嵌入英文单词、更容纳更多 token 了。从生成效果来看,v6 的效果更自然,已经达到了电影级别的质量。从光影效果来看,v6 更丰富、真实,有光追效果。

图 42: Midjourney V6 BETA 发布

资料来源:新智元公众号,天风证券研究所

图 43: Midjourney V6 用户分享

资料来源:新智元公众号,天风证券研究所

3.6. 微软推出针对数字人的大模型 GAIA

GAIA(Generative AI for Avatar)基于语音和单张人像图片,生成说话视频,比 Real Video 等模型效果更自然。2023 年 11 月 26 日,微软发表论文《GAIA: ZERO-SHOT TALKING AVATAR GENERATION》。将语音和人像图片输入 GAIA 可以得到对应的说话视频。原理上,GAIA 由一个变分自编码器(橙色模块)和一个扩散模型(蓝色和绿色模块)组成。效果上,与 Real Video、MakeltTalk、Audio2Head 和 SadTalker 进行定性比较,GAIA 实现

资料来源:《GAIA: ZERO-SHOT TALKING AVATAR GENERATION》《作者 Tianyu

图 45: GAIA 效果定性比较

资料来源:《GAIA: ZERO-SHOT TALKING AVATAR GENERATION》《作者 Tianyu He, Junliang Guo, Runyi Yu 等),天风证券研究所

3.7. 阿里巴巴推出 Animate Anyone, 让图片动的更自然

输入图片与姿势序列,Animate Anyone 模型引导图片产生预置运动。方法上,Animate Anyone 引入 Pose Guider 对特定舞蹈动作的姿势序列进行编码,混入噪声后加入去噪 UNet。参考图片给定后,被 VAE 编码,再通过 ReferenceNet 提取详细特征,用于空间注意力;同时用 CLIP 提取参考图像的语义特征,用于跨时空注意力。时间注意力用于去噪 UNet 在时域上的运行。对去噪 UNet 的输出进行 VAE 解码,产生视频(切面)。从生成效果上看,给定参考图像,Animate Anyone 可以实现连贯可控的角色动画效果,生成的视频结果清晰、稳定,且可以保持与参考图像的外观细节一致。

图 46: Animate Anyone 模型结构

He, Junliang Guo, Runyi Yu 等),天风证券研究所

资料来源:《Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation》(作者 Li Hu, Xin Gao 等),天风证券研究所

图 47: Animate Anyone 模型效果

资料来源:《Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation》(作者 Li Hu, Xin Gao 等),天风证券研究所

在时装和舞蹈合成方面,Animate Anyone 优于同期模型。时装视频合成方面,Animate Anyone 的 SSIM(结构相似性指数)和 PSNR(峰值信噪比)指标高于 MRAA(Motion Representations for Articulated Animation)等模型,其 LPIPS(图像感知相似度)和 FVD指标低于 MRAA 等模型。在舞蹈合成方面,Animate Anyone 的 SSIM、PSNR、LPIPS 和 FVD 参数优于 FOMM(First Order Motion Model for Image Animation)等模型。

图 48: Animate Anyone 时装视频合成测试结果

	SSIM ↑	PSNR ↑	LPIPS ↓	FVD↓
MRAA[37]	0.749	-	0.212	253.6
TPSMM[60]	0.746	-	0.213	247.5
BDMM[54]	0.918	24.07	0.048	148.3
DreamPose[19]	0.885	-	0.068	238.7
DreamPose*	0.879	34.75	0.111	279.6
Ours	0.931	38.49	0.044	81.6

资料来源:《Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation》(作者 Li Hu, Xin Gao 等),天风证券研究所

图 49: Animate Anyone 舞蹈视频合成测试结果

	SSIM ↑	PSNR ↑	LPIPS ↓	FVD↓
FOMM[35]	0.648	29.01	0.335	405.2
MRAA[37]	0.672	29.39	0.296	284.8
TPSMM[60]	0.673	29.18	0.299	306.1
Disco[45]	0.668	29.03	0.292	292.8
Ours	0.718	29.56	0.285	171.9

资料来源:《Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation》(作者 Li Hu, Xin Gao 等),天风证券研究所

4. 应用端 OpenAI 正式推出 GPT store, 生态体系正式建立

应用端持续增长,超过 300 万 GPT 应用在短时间迸发。ChatGPT 推出以来,人们产生了多样化的需求。为了满足这些需求,许多用户积累了精心设计、可复用的指令列表,手动将其复制到 ChatGPT 中。"指令工程师"(prompt engineer)的概念应运而生。2023 年11月6日,OpenAI 推出 ChatGPT 自定义版本,无需编程,用户就可以将积累的指令列表封装至自定义的 GPT 中。基于这一功能,用户 2 个月的时间就创建了超过 300 万个自定义版本的 ChatGPT。2024年1月10日,OpenAI 推出 GPT 商店,整合这些用 GPT 搭建的应用程序。在第一季度,OpenAI 会推出 GPT 构建者激励计划,根据开发参与度提供报酬。此外,GPT 商店即将推出企业版,内置更细致的分享机制,以迎合企业客户的管理需求。

图 50: ChatGPT 自定义版本

资料来源: OpenAI 官网, 天风证券研究所

图 51: OpenAI GPT 商店

资料来源: OpenAI 官网, 天风证券研究所

GPTs 覆盖领域广泛,形成付费生态。GPTs 应用覆盖绘画、写作、生产力、研究分析、编程、教育和生活领域,用户既可以使用其他 GPTs 应用,也可以自己创建应用。在 GPTs 社区中,趋势榜(Trending)最受欢迎的应用(2024年2月5日)包括设计领域的 Canva、image generator、Logo Creator 和 Cartoonize Yourself,用于绘制流程图的 Diagrams: Show Me,以及用于学术问答的 Consensus。GPTs 并非免费提供,购买了 PLUS 和团队版的用户可以使用。

图 52: GPTs 覆盖领域和趋势榜(2024年2月5日)

图 53: GPTs 解锁费用

资料来源: GPTs 网站,天风证券研究所

资料来源: GPTs 网站,天风证券研究所

5. 海外模型大厂算力需求持续增加,模型 Scaling 趋势仍在继续

Meta2024 年扩大 GPU 投资,预测未来计算需求将进一步增加。Meta 预计,到 2024 年底会拥有约 35 万台 H100,将其他 GPU 纳入计算,Meta 将拥有约 60 万台 GPU。今年会加大 AI 基础设施的投资,2024 年全年的资本支出将在 300 亿至 370 亿美元之间,比之前的上限增加 20 亿美元。

9000 40% 8000 30% 7000 6000 20% 5000 10% 4000 3000 0% 2000 -10% 1000 0 -20% 2021Q2 2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 2023Q1 2023Q2 2023Q3 2023Q4 CAPEX(百万美元)

图 54: Meta 2021 财年 Q2 到 2023 财年 Q4 的资本性支出

资料来源: Choice, 天风证券研究所

2023Q2微软 CAPEX 创 2021 财年以来新高,预计 Q3资本支出将环比大幅增加。微软 Azure 和其他云服务收入分别增长了 30%和 28%(固定汇率),其中 6%的增长来自于 AI 服务。目前共有 53,000 个 Azure AI 客户,超过三分之一的人是过去 12 个月中刚接触。微软预计资本支出将环比大幅增加,针对数据中心的投资将被用于满足云和 AI 基础设施的需求。

图 55: Microsoft 2021 财年 Q2 到 2023 财年 Q2 的资本性支出

资料来源: Choice, 天风证券研究所

谷歌 2023Q4 的资本支出为 110 亿美元,2024 年有望进一步扩大。Vertex AI 已经得到了广泛的应用,2023 年上半年到下半年 API 请求量增长了近 6 倍。此外三星最近宣布推出搭载 Vertex AI 的 Galaxy S24 系列智能手机使用了 Gemini 模型。2023Q4 大部分 CAPEX 用于投资技术基础设施,首先是服务器其次是数据中心。谷歌云引入了一种突破性的超级计算机架构 AIHyper,结合了强大的 TPU 和 GPU、AI 软件和多主机技术,为模型的训练和部署提供了性能和成本优势。到 2024 年,谷歌预计 CAPEX 将比 2023 年显著增加。

资料来源: Choice, 天风证券研究所

亚马逊 2024 年资本支出将增加,主要用于基础设施以支持 AWS 业务增长。2023 年全年资本支出为 484 亿美元,同比下降 102 亿美元。展望 2024 年,亚马逊预计资本支出将同比增加,主要是由基础设施资本支出增加推动的,支持 AWS 业务的增长,包括对生成人工智能和大型语言模型的额外投资。亚马逊认为,生成式 AI 分为 3 个层次,每一个层次都是巨大的,需要深度投资,亚马逊提供了最广泛的 Nvidia 芯片计算实例结合。此外,亚马逊的客户在生成式 AI 早期阶段认识到,不断地迭代模型版本是有必要的。因此,为了适应客户需求,提高 AI 芯片的性价比,亚马逊构建了名为 Trainium 的定制训练芯片和名为Inferentia 的推理芯片,2023 推出的 Trainium 2 训练性能是 Trainium 1 的 4 倍,内存容量是 Trainium 1 的 3 倍,用于服务包括 Anthropic、Airbnb 在内的客户。

图 57: Amazon 2021 财年 Q2 到 2023 财年 Q4 的资本性支出

资料来源: Choice, 天风证券研究所