Feladat: FIB

Fibonacci felbontások

magyar

CEOI 2018, nap 2. Memória limit: 256 MB.

16.08.2018

Tekintsük a Fibonacci sorozat alábbi definícióját:

$$\begin{split} F_1 &= 1 \\ F_2 &= 2 \\ F_n &= F_{n-1} + F_{n-2} \text{ for } n \geq 3 \end{split}$$

A sorozat első néhány eleme: 1, 2, 3, 5, 8, 13, 21, ...

Adott p egész számra jelölje X(p) azt, hogy p hányféleképpen állítható elő különböző Fibonacci számok összegeként. Két előállítást különbözőnek tekintünk, ha van olyan Fibonacci szám, amelyik csak az egyikben fordul elő tagként.

Adott egy n darab pozitív egész számot tartalmazó sorozat: a_1, a_2, \ldots, a_n . Ennek egy nem üres a_1, a_2, \ldots, a_k kezdőszeletére definiáljuk a $p_k=F_{a_1}+F_{a_2}+\ldots+F_{a_k}$ számot. Kiszámítandó $X(p_k)$ modulo 10^9+7 , minden $k=1,\ldots,n$ esetén.

Bemenet

A standard bemenet első sora az n értékét tartalmazza ($1 \le n \le 100\,000$). A második sorban n darab pozitív egész szám van, $a_1, a_2, ..., a_n$ $(1 \le a_i \le 10^9)$.

Kimenet

A standard kimenet n sort tartalmazzon. A k-adik sorba kell írni az $X(p_k)$ modulo $(10^9 + 7)$ értéket.

Példa

Példa bemenet:	Példa kimenet:
4	2
4 1 1 5	2
	1
	2

Magyarázat: A p_k értékek:

$$\begin{aligned} p_1 &= F_4 = 5 \\ p_2 &= F_4 + F_1 = 5 + 1 = 6 \\ p_3 &= F_4 + F_1 + F_1 = 5 + 1 + 1 = 7 \\ p_4 &= F_4 + F_1 + F_1 + F_5 = 5 + 1 + 1 + 8 = 15 \end{aligned}$$

Az 5 kétféleképpen állítható elő: $F_2 + F_3$, illetve F_4 magában (vagyis 2 + 3, illetve 5). Tehát $X(p_1) = 2$. $X(p_2) = 2$, mivel $p_2 = 1 + 5 = 1 + 2 + 3$.

A 7 csak egyféleképpen állítható elő különböző Fibonacci számok összegeként: 2+5.

Végül, a 15 kétféleképpen: 2 + 13 és 2 + 5 + 8.

Értékelés

Az alábbi részfeladatok vannak. Minden részfeladat egy vagy több teszt csoportot tartalmaz, és minden teszt csoportban egy vagy több teszteset van.

Részfeladat	Korlátok	Pontszám
1	$n, a_i \le 15$	5
2	$n, a_i \le 100$	20
3	$n \leq 100, a_i$ különböző természetes számok négyzetei	15
4	$n \le 100$	10
5	a_i különböző páros számok	15
6	nincs egyéb feltétel	35