Guía de estudio: Relatividad especial

Fenomenología Cuántica y Relativista Facultad de Física-Universidad Veracruzana

1 Guía de Relatividad Especial

Postulados de Einstein y Factor de Lorentz

- Principio de Relatividad: las leyes de la física son las mismas en todos los sistemas de referencia inerciales.
- Invariancia de c: la velocidad de la luz en el vacío, c, es la misma para todos los observadores inerciales.
- Factor de Lorentz (γ): es el factor de corrección relativista, definido por la velocidad relativa v o el factor $\beta = v/c$.

$$\gamma \equiv \frac{1}{\sqrt{1-v^2/c^2}} = \frac{1}{\sqrt{1-\beta^2}}$$

Observadores y Mediciones

- sistema S (laboratorio): el marco de referencia del observador O, a quien consideramos en reposo. usa las coordenadas (x, y, z, t).
- sistema S' (en movimiento): el marco del observador O', que se mueve con velocidad constante u respecto a S. usa las coordenadas (x', y', z', t').
- medición propia: una medida de tiempo o longitud realizada en el sistema donde el objeto de interés está quieto.
 - tiempo propio (Δt_0): el intervalo de tiempo medido por un reloj en reposo junto al evento. es el intervalo más corto que se puede medir.
 - **longitud propia** (L_0): la longitud de un objeto medida en su propio marco de reposo. es la longitud más larga que se puede medir.

Transformaciones de Coordenadas y Velocidad

Concepto	Ecuación
Transformaciones de Lorentz (de S a S')	$x' = \gamma_u(x - ut)$ $y' = y$ $z' = z$ $t' = \gamma_u \left(t - \frac{ux}{c^2}\right)$
Dilatación del Tiempo (Δt_0 = tiempo propio)	$\Delta t = \gamma \Delta t_0$
Contracción de la Longitud (L_0 = longitud propia)	$L = \frac{L_0}{\gamma}$
Suma de Velocidades (para la componente en x)	$v_x = \frac{v_x' + u}{1 + \frac{v_x' u}{2}}$
Efecto Doppler (fuente y obs. separándose)	$f_{obs} = f_{fuente} \sqrt{rac{1 - u/c}{1 + u/c}}$

Masa

Concepto	Ecuación
Momento Lineal	$\vec{p} = \gamma m \vec{v}$
Energía en Reposo	$E_0 = mc^2$
Energía Cinética	$K = E - E_0 = (\gamma - 1)mc^2$
Energía Total	$E = \gamma mc^2$
Relación Energía-Momento	$E^2 = (pc)^2 + (mc^2)^2$
Aproximación Ultrarrelativista	Forms
$v \approx c \circ m = 0$	$E \approx pc$

Constantes y Teoremas Fundamentales

• Factor de Velocidad (β): la razón adimensional entre la velocidad de un objeto y la velocidad de la luz.

$$\beta = \frac{v}{c}$$

• Constante de Estructura Fina (α): una constante fundamental adimensional que caracteriza la fuerza electromagnética.

$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137}$$

■ Teorema del Binomio y Aproximación: para $|x| \ll 1$, la expansión $(1+x)^n$ se puede aproximar a su primer orden:

$$(1+x)^n \approx 1 + nx$$

se usa para demostrar que la relatividad se reduce a la mecánica clásica a bajas velocidades. por ejemplo, $\gamma=(1-\beta^2)^{-1/2}\approx 1+\frac{1}{2}\beta^2.$