ÁLGEBRA II-ÁLGEBRA — EXAMEN FINAL 30/06/2017

NOMBRE Y APELLIDO: JUNIONCI MORQUE 3

CARRERA: LIC. EN MOHE MOTICO *Para aprobar el examen, deben aprobarse las partes PRÁCTICA y TEÓRICA por separado.

Para ello cada parte debe estar correctamente resuelta en un 45%. *Quienes hayan regularizado la materia durante el primer cuatrimestre de 2017 tendrán un

puntaje extra de acuerdo a la notas de los parciales. *Los alumnos en Condición Regular no deben resolver el ítem (b) del Ejercicio 1: el puntaje del mismo se les sumará automáticamente por revestir esta condición.

Justificar todas las respuestas. No está permitido el uso de calculadoras o dispositivos electrónicos.

Parte Práctica

Ejercicio I, (a) (10 pts.) Describir paramétricamente el conjunto solución del sistema

$$\begin{cases} x + y + z + w = 0 \\ 3x + 3y - 2z + 3w = 0 \\ y - z = 0 \\ 2x - y + 2w = 0 \end{cases}$$

- (b) (3 pts.) (solo alumnos libres) Sea A la matriz asociada al sistema anterior. Dar una matriz escalón reducida por filas equivalente a A.
- Ejercicio 2. (a) (7 pts.) Dar la ecuación normal al plano que contiene al vector v=(1,1,1) y pasa por los puntos p = (0, 0, 0) y q = (0, 1, 1).
 - (b) (4 pts.) Dar la fórmula de la reflexión S_L en el plano con respecto a la recta $L = \{(x, y) : x + 3y = 0\}.$

Ejercicio 3. Sean V_1 y V_2 los siguientes subespacios de \mathbb{R}^4 :

$$\begin{split} V_1 &= \langle (1,1,0,1), (0,1,1,0), (1,0,-1,1) \rangle, \\ V_2 &= \{ (x,y,z,w) \in \mathbb{R}^4 : y = z, x+w = 0 \}. \end{split}$$

- (a) (6 pts.) Dar una base de V_1 y V_2 .
- (b) (6 pts.) Describir $V_1 \cap V_2$ implicitamente.
- (c) (2 pts.) Calcular la dimensión de $V_1 + V_2$.
- Ejercicio 4. Sean P^3 , P^4 los conjuntos de polinomios p(x) de grado menor a 3 y 4 respectivamente y sea $T: P^3 \to P^4$ la función:

$$T(p(x)) = (x+1)p(x-1).$$

(a) (5 pts.) Mostrar que T es una transformación lineal.

- (b) (7 pts.) Dar una base de la imagen y calcular la dimensión del núcleo.
- Ejercicio 5. (a) (9 pts.) Definir una transformación lineal survectiva $T: \mathbb{R}^4 \to \mathbb{R}^2$ tal que

$$T(1,0,0,1) = (1,0) \quad \text{y} \quad (1,1,1,1) \in \operatorname{Nu} T.$$

(b) (4 pts.) Dar la matriz de T en las bases canônicas de \mathbb{R}^4 y \mathbb{R}^2 .

Ejercicio 6. Sea
$$A = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$
.

- (a) (4 pts.) Calcular el determinante de A.
- (b) (5 pts.) Calcular la inversa de A.
- (c) (3 pts.) Calcular el polinomio característico de A.

Parte Teórica

- Ejercicio 7. (10 pts.) Sea $T \in L(V, W)$ y sean B, B' bases de V y W respectivamente. Enuncie el teorema que define y caracteriza a la matriz $A = [T]_{B'}^B$ asociada a T.
- Ejercicio 8. (10 pts.) Demuestre que si V es un \mathbb{R} -espacio vectorial de dimensión n entonces V es isomorfo a \mathbb{R}^n .
- Ejercicio 9. (5 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar o dar un contraejemplo según el caso.
 - (a) $T: V \to W$ es inyectiva si y solo si 0 no es autovalor.
 - (b) Sean A, B matrices $n \times n$ tales que AB = BA y $A^2 = B^2$. Entonces $A = \pm B$.
 - (c) Existen 3 vectores en R³ que son linealmente dependientes, y tales que dos cualesquiera de ellos son linealmente independientes.

	RELEGICAL DE			4	5	6	Total
Ejercicio	1	2	3	4	3	-	-
Puntaje							1
				B H B			

		- 0	Total	Extra	Total
1	8	9	Total	-	
Sept 1			1000		
		8	8 9	8 9 10.00	8 9 10