Introductory Econometrics

Lecture 12: Properties of OLS in the multiple regression model

Instructor: Ma, Jun

Renmin University of China

October 27, 2022

Multiple regression and OLS

- Consider the multiple regression model with k regressors: $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + ... + \beta_k X_{k,i} + U_i$.
- ▶ Let $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ be the OLS estimators: if

$$\hat{U}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \hat{\beta}_2 X_{2,i} - \dots - \hat{\beta}_k X_{k,i},$$

then

$$\sum_{i=1}^{n} \hat{U}_i = \sum_{i=1}^{n} X_{1,i} \hat{U}_i = \dots = \sum_{i=1}^{n} X_{k,i} \hat{U}_i = 0.$$

► As in Lecture 10, we can write $\hat{\beta}_1$ as

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$
, where

 $ightharpoonup \tilde{X}_{1,i}$ are the fitted OLS residuals:

$$\tilde{X}_{1,i} = X_{1,i} - \hat{\gamma}_0 - \hat{\gamma}_2 X_{2,i} - \ldots - \hat{\gamma}_k X_{k,i}.$$

- $\hat{\gamma}_0, \hat{\gamma}_2, \dots, \hat{\gamma}_k$ are the OLS coefficients: $\sum_{i=1}^{n} \tilde{X}_{1,i} = \sum_{i=1}^{n} \tilde{X}_{1,i} X_{2,i} = \dots = \sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i} = 0.$
- ► Similarly, we can write $\hat{\beta}_2$ as

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n \tilde{X}_{2,i} Y_i}{\sum_{i=1}^n \tilde{X}_{2,i}^2}$$
, where

 $ightharpoonup \tilde{X}_{2,i}$ are the fitted OLS residuals:

$$\tilde{X}_{2,i} = X_{2,i} - \hat{\delta}_0 - \hat{\delta}_1 X_{1,i} - \hat{\delta}_3 X_{3,i} - \ldots - \hat{\delta}_k X_{k,i}.$$

•
$$\hat{\delta}_0, \hat{\delta}_1, \hat{\delta}_3, \dots, \hat{\delta}_k$$
 are the OLS coefficients: $\sum_{i=1}^n \tilde{X}_{2,i} = \sum_{i=1}^n \tilde{X}_{2,i} X_{1,i} = \sum_{i=1}^n \tilde{X}_{2,i} X_{3,i} = \dots = \sum_{i=1}^n \tilde{X}_{2,i} X_{k,i} = 0.$

The OLS estimators are linear

ightharpoonup Consider $\hat{\beta}_1$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2} = \sum_{i=1}^n \frac{\tilde{X}_{1,i}}{\sum_{l=1}^n \tilde{X}_{1,l}^2} Y_i = \sum_{i=1}^n w_{1,i} Y_i,$$

where

$$w_{1,i} = \frac{\tilde{X}_{1,i}}{\sum_{l=1}^{n} \tilde{X}_{1,l}^{2}}.$$

▶ Recall that \tilde{X}_1 are the residuals from a regression of X_1 against X_2, \ldots, X_k and a constant, and therefore $w_{1,i}$ depends only on X's.

Unbiasedness

- ► Suppose that
 - 1. $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i$.
 - 2. Conditional on X's, $E[U_i] = 0$ for all i's.
 - Conditioning on *X*'s means that we condition on $X_{1,1}, ..., X_{1,n}, X_{2,1}, ..., X_{2,n}, ..., X_{k,1}, ..., X_{k,n}$: $E\left[U_i \mid X_{1,1}, ..., X_{1,n}, X_{2,1}, ..., X_{2,n}, ..., X_{k,1}, ..., X_{k,n}\right] = 0.$

► Under the above assumptions:

$$E [\hat{\beta}_0] = \beta_0,$$

$$E [\hat{\beta}_1] = \beta_1,$$

$$\vdots \vdots \vdots$$

$$E [\hat{\beta}_k] = \beta_k.$$

Proof of unbiasedness

$$\begin{split} \hat{\beta}_1 &= \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2} &= \frac{\sum_{i=1}^n \tilde{X}_{1,i} \left(\beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i\right)}{\sum_{i=1}^n \tilde{X}_{1,i}^2} \\ &= \beta_0 \frac{\sum_{i=1}^n \tilde{X}_{1,i}}{\sum_{i=1}^n \tilde{X}_{1,i}^2} + \beta_1 \frac{\sum_{i=1}^n \tilde{X}_{1,i} X_{1,i}}{\sum_{i=1}^n \tilde{X}_{1,i}^2} + \beta_2 \frac{\sum_{i=1}^n \tilde{X}_{1,i} X_{2,i}}{\sum_{i=1}^n \tilde{X}_{1,i}^2} \\ &+ \cdots + \beta_k \frac{\sum_{i=1}^n \tilde{X}_{1,i} X_{k,i}}{\sum_{i=1}^n \tilde{X}_{1,i}^2} + \frac{\sum_{i=1}^n \tilde{X}_{1,i} U_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2} \end{split}$$

Using the partitioned regression results from Lecture 10:

$$\sum_{i=1}^{n} \tilde{X}_{1,i} = \sum_{i=1}^{n} \tilde{X}_{1,i} X_{2,i} = \dots = \sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i} = 0, \sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i} = \sum_{i=1}^{n} \tilde{X}_{1,i}^{2}.$$

Therefore,

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n \tilde{X}_{1,i} U_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}.$$

► We have that

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n \tilde{X}_{1,i} U_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}.$$

Conditional on X's,

$$\mathrm{E}\left[U_{i}\right]=0.$$

ightharpoonup Therefore, conditional on X's,

$$E[\hat{\beta}_{1}] = E\left[\beta_{1} + \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} U_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}\right]$$

$$= \beta_{1} + E\left[\frac{\sum_{i=1}^{n} \tilde{X}_{1,i} U_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}\right]$$

$$= \beta_{1} + \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} E[U_{i}]}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}$$

$$= \beta_{1}.$$

Conditional variance of the OLS estimators

- ► Suppose that:
 - 1. $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i$.
 - 2. Conditional on X's, $E[U_i] = 0$ for all i's.
 - 3. Conditional on X's, $E[U_i^2] = \sigma^2$ for all i's.
 - 4. Conditional on X's, $E\left[U_i\overline{U}_j\right] = 0$ for all $i \neq j$.
- ► The conditional variance of $\hat{\beta}_1$ given X's, is

$$\operatorname{Var}\left[\hat{\beta}_{1}\right] = \frac{\sigma^{2}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}.$$

► Gauss-Markov Theorem: Under Assumptions 1-4, the OLS estimators are BLUE.

► We have
$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n \bar{X}_{1,i} U_i}{\sum_{i=1}^n \bar{X}_{i,i}^2}$$
 and $E[\hat{\beta}_1] = \beta_1$.

ightharpoonup Conditional on X's,

$$\operatorname{Var}\left[\hat{\beta}_{1}\right] = \operatorname{E}\left[\left(\frac{\sum_{i=1}^{n} \tilde{X}_{1,i} U_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}\right)^{2}\right] \\
= \left(\frac{1}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}\right)^{2} \operatorname{E}\left[\left(\sum_{i=1}^{n} \tilde{X}_{1,i} U_{i}\right)^{2}\right] \\
= \left(\frac{1}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}\right)^{2} \operatorname{E}\left[\sum_{i=1}^{n} \tilde{X}_{1,i}^{2} U_{i}^{2} + \sum_{i=1}^{n} \sum_{j \neq i} \tilde{X}_{1,i} \tilde{X}_{1,j} U_{i} U_{j}\right] \\
= \left(\frac{1}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}\right)^{2} \left(\sum_{i=1}^{n} \tilde{X}_{1,i}^{2} \sigma^{2} + \sum_{i=1}^{n} \sum_{j \neq i} \tilde{X}_{1,i} \tilde{X}_{1,j} 0\right) \\
= \left(\frac{1}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}\right)^{2} \sigma^{2} \sum_{i=1}^{n} \tilde{X}_{1,i}^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}.$$

Conditional covariance of the OLS estimators

► Consider $\hat{\beta}_1$ and $\hat{\beta}_2$:

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} U_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}},$$

$$\hat{\beta}_{2} = \beta_{2} + \frac{\sum_{i=1}^{n} \tilde{X}_{2,i} U_{i}}{\sum_{i=1}^{n} \tilde{X}_{2,i}^{2}},$$

where

- \check{X}_1 are the fitted residuals from the regression of X_1 against a constant and X_2, X_3, \ldots, X_k .
- $ightharpoonup \tilde{X}_2$ are the fitted residuals from the regression of X_2 against a constant and X_1, X_3, \ldots, X_k .
- \blacktriangleright We will show that given Assumptions 1-4, conditional on X's:

$$Cov \left[\hat{\beta}_{1}, \hat{\beta}_{2}\right] = \sigma^{2} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} \tilde{X}_{2,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2} \sum_{i=1}^{n} \tilde{X}_{2,i}^{2}}$$

Conditional on X's,

$$\begin{aligned} \operatorname{Cov}\left[\hat{\beta}_{1},\hat{\beta}_{2}\right] &= \operatorname{E}\left[\left(\hat{\beta}_{1} - \operatorname{E}\left[\hat{\beta}_{1}\right]\right)\left(\hat{\beta}_{2} - \operatorname{E}\left[\hat{\beta}_{2}\right]\right)\right] \\ &= \operatorname{E}\left[\left(\frac{\sum_{i=1}^{n}\tilde{X}_{1,i}U_{i}}{\sum_{i=1}^{n}\tilde{X}_{1,i}^{2}}\right)\left(\frac{\sum_{i=1}^{n}\tilde{X}_{2,i}U_{i}}{\sum_{i=1}^{n}\tilde{X}_{2,i}^{2}}\right)\right] \\ &= \frac{1}{\sum_{i=1}^{n}\tilde{X}_{1,i}^{2}\sum_{i=1}^{n}\tilde{X}_{2,i}^{2}}\operatorname{E}\left[\left(\sum_{i=1}^{n}\tilde{X}_{1,i}U_{i}\right)\left(\sum_{i=1}^{n}\tilde{X}_{2,i}U_{i}\right)\right] \\ &= \frac{1}{\sum_{i=1}^{n}\tilde{X}_{1,i}^{2}\sum_{i=1}^{n}\tilde{X}_{2,i}^{2}}\operatorname{E}\left[\sum_{i=1}^{n}\tilde{X}_{1,i}\tilde{X}_{2,i}U_{i}^{2} + \sum_{i=1}^{n}\sum_{j\neq i}\tilde{X}_{1,i}\tilde{X}_{2,j}U_{i}U_{j}\right] \\ &= \frac{1}{\sum_{i=1}^{n}\tilde{X}_{1,i}^{2}\sum_{i=1}^{n}\tilde{X}_{2,i}^{2}}\sum_{i=1}^{n}\tilde{X}_{1,i}\tilde{X}_{2,i}\sigma^{2}. \end{aligned}$$

Normality of the OLS estimators

- ► In addition to Assumptions 1-4, assume that conditional on *X*'s, *U_i*'s are jointly normally distributed.
- \triangleright $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ are linear estimators:

$$\hat{\beta}_{j} = \sum_{i=1}^{n} w_{j,i} Y_{i} = \beta_{j} + \sum_{i=1}^{n} w_{j,i} U_{i},$$

where

$$w_{j,i} = \frac{\tilde{X}_{j,i}}{\sum_{l=1}^n \tilde{X}_{j,i}^2},$$

and $\tilde{X}_{j,i}$ are the residuals from the regression of $X_{j,i}$ against the rest of the regressors.

► It follows that $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ are jointly normally distributed (conditional on X's).

Inclusion of irrelevant regressors

- Suppose that the true model is $Y_i = \beta_0 + \beta_1 X_{1,i} + U_i$.
- ▶ We could estimate β_1 by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_{1,i} - \bar{X}_1) Y_i}{\sum_{i=1}^n (X_{1,i} - \bar{X}_1)^2}.$$

Suppose that instead we regress Y against a constant, X_1 and additional k-1 regressors X_2, \ldots, X_k , i.e. we estimate β_1 by

$$\tilde{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}.$$

► We have

$$\tilde{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} \left(\beta_0 + \beta_1 X_{1,i} + U_i\right)}{\sum_{i=1}^n \tilde{X}_{1,i}^2} = \beta_1 + \frac{\sum_{i=1}^n \tilde{X}_{1,i} U_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}.$$

Since conditional on X's E $[U_i] = 0$, $\tilde{\beta}_1$ is unbiased!

► When $Y_i = \beta_0 + \beta_1 X_{1,i} + U_i$,

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_{1,i} - \bar{X}_1) Y_i}{\sum_{i=1}^n (X_{1,i} - \bar{X}_1)^2} \text{ and } \tilde{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2} \text{ are both unbiased.}$$

ightharpoonup Conditional on X's,

$$\operatorname{Var}\left[\hat{\beta}_{1}\right] = \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{1,i} - \bar{X}_{1}\right)^{2}} \text{ and } \operatorname{Var}\left[\tilde{\beta}_{1}\right] = \frac{\sigma^{2}}{\sum_{i=1}^{n}\tilde{X}_{1,i}^{2}}.$$

► Since the true model has only X_1 , by Gauss-Markov Theorem $\hat{\beta}_1$ is BLUE and

$$\operatorname{Var}\left[\hat{\beta}_{1}\right] \leq \operatorname{Var}\left[\tilde{\beta}_{1}\right].$$

▶ Without Gauss-Markov Theorem, one can show directly that $\sum_{i=1}^{n} (X_{1,i} - \bar{X}_1)^2 \ge \sum_{i=1}^{n} \tilde{X}_{1,i}^2$.

Proof of $\sum_{i=1}^{n} (X_{1,i} - \bar{X}_1)^2 \ge \sum_{i=1}^{n} \tilde{X}_{1,i}^2$

 $ightharpoonup \tilde{X}_{1,i}$ are the fitted residuals from regressing $X_{1,i}$ against a constant, $X_{2,i}, \ldots, X_{k,i}$:

$$X_{1,i} = \hat{\gamma}_0 + \hat{\gamma}_2 X_{2,i} + \ldots + \hat{\gamma}_k X_{k,i} + \tilde{X}_{1,i}.$$

► Consider the sums-of-squares for this regression:

$$SST_{1} = \sum_{i=1}^{n} (X_{1,i} - \bar{X}_{1})^{2},$$

$$SSE_{1} = \sum_{i=1}^{n} (\hat{\gamma}_{0} + \hat{\gamma}_{2}X_{2,i} + \dots + \hat{\gamma}_{k}X_{k,i} - \bar{X}_{1})^{2},$$

$$SSR_{1} = \sum_{i=1}^{n} \tilde{X}_{1,i}^{2}.$$

► Thus,

$$\sum_{i=1}^{n} (X_{1,i} - \bar{X}_1)^2 - \sum_{i=1}^{n} \tilde{X}_{1,i}^2 = SST_1 - SSR_1 = SSE_1 \ge 0.$$

Var $[\hat{\beta}_1]$ and the number of regressors k

► In $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + \hat{\beta}_2 X_{2,i} + \ldots + \hat{\beta}_k X_{k,i} + \hat{U}_i$, the variance of the OLS estimator $\hat{\beta}_1$ is

$$\operatorname{Var}\left[\hat{\beta}_{1}\right] = \frac{\sigma^{2}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} = \frac{\sigma^{2}}{SSR_{1}},$$

where SSR_1 is the residual sum-of-squares from the regression of X_1 against a constant and the rest of the regressors.

- ► Since SSR_1 can only decrease when we add more regressors, $Var\left[\hat{\beta}_1\right]$ increases with k, if the added regressors are irrelevant but correlated with the included regressors.
- ▶ If the added regressors are uncorrelated with X_1 , inclusion of such regressors will not affect SSR_1 (in large samples) or the variance of $\hat{\beta}_1$.
- ▶ If the added regressors are uncorrelated with X_1 and affect Y, their inclusion will reduce σ^2 without affecting SSR_1 and will reduce the variance of $\hat{\beta}_1$.

Estimation of variances and covariances

$$In Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + \hat{\beta}_2 X_{2,i} + \ldots + \hat{\beta}_k X_{k,i} + \hat{U}_i,$$

$$\operatorname{Var}\left[\hat{\beta}_{1}\right] = \frac{\sigma^{2}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} \text{ and } \operatorname{Cov}\left[\hat{\beta}_{1}, \hat{\beta}_{2}\right] = \sigma^{2} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} \tilde{X}_{2,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2} \sum_{i=1}^{n} \tilde{X}_{2,i}^{2}}.$$

▶ Variances and covariances can be estimated by replacing σ^2 with

$$s^{2} = \frac{1}{n - k - 1} \sum_{i=1}^{n} \hat{U}_{i}^{2}.$$

► Estimated variance and covariance:

$$\widehat{\text{Var}}\left[\hat{\beta}_{1}\right] = \frac{s^{2}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} \text{ and } \widehat{\text{Cov}}\left[\hat{\beta}_{1}, \hat{\beta}_{2}\right] = s^{2} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} \tilde{X}_{2,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2} \sum_{i=1}^{n} \tilde{X}_{2,i}^{2}}.$$