AE618 Assignment 1

Name: Vedant Joshi Roll No: 180856

A.

A. Given,
$$v_r = 0$$
, $v_0 = \frac{5}{8}$

4) $r = \hat{r} + \hat{r} + \hat{r} = 0$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{r} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

$$\Rightarrow \hat{r} = 0 \quad \text{and} \quad \hat{0} = \frac{5}{8}$$

2) Sample calculation for ealer method,

At = 1.0

$$0 = \frac{5}{\chi^{2}} = 5$$

$$0 = \frac{5}{\chi^{2}} = 5$$

$$\frac{0_{2} - 0_{1}}{t_{2} - t_{1}} = 5 \Rightarrow \frac{0_{2} - 0}{1.0} = 5$$

$$0 = 5 \text{ rad}.$$

using this step several times we can get discrete values of 0 of particle at discrete perticular intervals.

3) sample calculation for improved euler method.

$$\frac{O_{2}^{\prime}-O_{1}}{\Delta t}=5\Rightarrow O_{2}^{\prime}=5$$

$$\frac{O_2 - O_1}{\Delta t} = \frac{1}{2}(5+5) \Rightarrow 5$$

in short, improved euler methods and basic euler methods will give same results

Comments:

- 1) Solution from Basic and Improved Euler method are same as angular position is linear in time.
- 2) As time step decreases accuracy of solution increases.

$$C. \quad \underline{U} = V_{\overline{s}} \stackrel{\circ}{e}_{\overline{s}} + V_{\overline{o}} \stackrel{\circ}{e}_{\overline{o}} = V_{\overline{r}} \left((050 \hat{i} + bino \hat{j}) + V_{\overline{o}} \left(- \sin 0 \hat{i} + \cos 0 \hat{j} \right) \right)$$

$$= V_{\overline{o}} \stackrel{\circ}{i} + V_{\overline{o}} \stackrel{\circ}{j}$$

$$\Rightarrow \left[\dot{x} = -5\dot{y}\right] \text{ and } \left[\dot{y} = 5\dot{x}\right]$$

sample calculations using Basic Faler method

$$\frac{dx}{dt} = -5y \Rightarrow \frac{x_2 - x_1}{\Delta t} = -5y_1$$

$$\Rightarrow \frac{x_2 - x_1}{\Delta t} = -5(0)$$

$$\Rightarrow x_2 = 1$$

sample calculation using Improved Euler method $\frac{dx}{dt} = -5y$ 28' - 24 = -5%, x3 = 1 $\frac{x_3-y_4}{\delta t}=-5\left(\frac{y_1+y_2}{2}\right)$ => %= -11.5

$$\frac{dy}{dt} = 5x$$

$$\frac{y_{3}^{\prime} - y_{1}}{\Delta t} = 5x$$

$$\frac{y_{2}^{\prime} - y_{1}}{\Delta t} = 5(1) \times 1 + 0 = 5$$

$$\frac{y_{2}^{\prime} - y_{1}}{\Delta t} = 5\left(\frac{x_{1} + x_{2}^{\prime}}{2}\right)$$

$$= 3 + 3 + 5 = 5$$

Comments:

- 1) Improved Euler method gives better results for fixed time step than Basic Euler method.
- 2) As time step decreases accuracy of solution increases and plot moves more closer to actual solution

c.

In Gauss Sidel iterative method to solve equation Ax = b

define iteration by

where,

$$A = L_* + V$$
, and

Lx is photosty lower and U is strictly upper tolongular matrix.

So Ax = b can be written as $L_x x = b - U_x$

Gauss Sidel applied as

equation can be written as

$$\chi_{i}^{(kH)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=1}^{i+1} a_{ij} \chi_{j}^{(kH)} - \sum_{j=i+1}^{n} a_{ij} \chi_{j}^{(k)} \right)$$

Example solved using Gauss Sidel

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ 12 \\ 2 \end{bmatrix}$.

Iteration 1:	Iteration 4:	Iteration 7:
0.814724	1.769455	2.003602
0.905792	1.028818	0.999550
0.126987	-2.115273	-1.998199
Iteration 2:	Iteration 5:	Iteration 8:
0.061429	2.057636	1.999099
1.461091	0.992795	1.000113
-3.844363	-1.971182	-2.000450
Iteration 3:	Iteration 6:	Iteration 9:
2.922181	1.985591	2.000225
0.884727	1.001801	0.999972
-1.538909	-2.007205	-1.999887

Iteration 10:

1.999944

1.000007

-2.000028

The final answer obtained after 26 iterations is

x =

2.0000

1.0000

-2.0000