QE 351 M35 V.43 Quelet 1992 N/C

MINERALOGICAL ABSTRACTS

Sci

Volume 43 1992 Index

Mineralogy

Geochemistry

Petrology

MINERALOGICAL ABSTRACTS

VOLUME 43 1992

PRINCIPAL EDITOR R. A. HOWIE

EDITORS

P. BROWNE R. J. L. COLVINE C. H. DONALDSON

J. M. HADFIELD R. M. F. PRESTON R. E. SAMSON

INDEXER DR. G. HODGSON

ORGANIZERS OF ABSTRACTS

Great Britain:

MR. R. K. HARRISON,
27 Springfield Park,
Twyford,
Berkshire RG10 9JG.

America:
DR. K. A. RIGGS,
Dept. of Geology & Geography,
Mississippi State University,
Mississippi 39762.

Australia: DR. R. L. OLIVER, Dept. of Geology & Geophysics, University of Adelaide. GPO Box 498, Adelaide,

South Australia 5001.

Austria: PROF. H. G. SCHARBERT, Institut für Petrologie, Universität Wien.

Belgium: DR. R. VAN TASSEL, Institut Royal des Sciences Naturelles, Brussels.

Brazil: DR. J. M. CORREIA NEVES, Instituto de Geociências, Universidade Federal de Minas Gerais, 30.000

Belo Horizonte, Minas Gerais.

Bulgaria: PROF. IV. KOSTOV, Chair of Mineralogy, University of Sofia.

Canada: PROF. R. F. MARTIN, Dept. of Geology, McGill Univerity, Montreal.

Czechoslovakia: PROF. DR. M. KODĚRA, Katedra Min. Kryšt, University Komenského, Bratislava.

Denmark: MR. OLE JOHNSEN, Mineralogisk Museum, Østervoldgade 5–7, DK-1350 Copenhagen K.

France: DR. M. LAGACHE, Ecole Normale Superieure, 46 Rue d'Ulm, 75005 Paris.

Germany: PROF. DR. K. von GEHLEN, Inst. für Geochemie Petrologie und Lagerstättenkunde der Universität,

Frankfurt, D-6000 Frankfurt a. M. 1.

Hungary: DR. G. PAPP, Dept. of Mineralogy and Petrology, Ntural History Museum, Budapest H-1088.

India: DR. V. K. NAYAK, Indian School of Mines, Dhanbad 826. Israel: PROF. A. SINGER, Hebrew University, Rehovot, 76-100.

Italy: PROF. A. MOTTANA, Catedra di Mineralogia, Citta Universitaria, 00185, Roma.
 Japan: DR. ICHIRO SUNAGAWA, Inst. Min. Petr. & Econ. Geology, Tohoku Univ., Sendai.
 Netherlands: DR. R. O. FELIUS, Rijksuniversiteit Utrecht, Possbus 80.021, 3508 TA Utrecht.

New Zealand: DR. K. A. RODGERS, Dept. of Geology, University of Auckland.

Norway: DR. G. RAADE, Mineralogisk-Geologisk Museum, Sars Gate 1, Oslo 5.

Pakistan: DR. K. A. BUTT, Atomic Energy Commission, P.O. Box 34, Peshawar University.

Protugal: PROF. L. A. A. BARROS, Lab. de Mineralogia y Petrologia, Av. Rovisco Pais, Lisboa 1.

Spain: DR. F. VELASCO, Dpto. de Mineralogia y Petrologia, Universidad del Pais Vasco, E48080 Bilbao.

Sweden: DR. B. LINDQVIST, Naturhistoriska Riksmuseet, 104 05 Stockholm 50. Switzerland: PD. DR. W. B. STERN, Mineralog.-Petrograph. Institut der Universität, Basel.

Turkey DR. M. C. GÖNCÜOĞLU, MTA, Jeoloji Etüdl. D., 06520 Ankara.

PUBLISHED JOINTLY BY

THE MINERALOGICAL SOCIETY OF GREAT BRITAIN AND THE MINERALOGICAL SOCIETY OF AMERICA

© 1993 The Mineralogical Society of Great Britain and the Mineralogical Society of America

ERRATA

Mineralogical Abstracts, Vol. 43, 1992

92M/0877 92M/1195 text, line 1: for Alluair read Alluaiv citation: for J. J. Kisch read H. J. Kisch

92M/3437 92M/3853 text, line 1: for Kakum read Kakun text, lines 8: for cumengéite read cumengite

ii

ORGANIZATION OF ABSTRACTS

Arising from a decision taken at the meeting of the International Mineralogical Association in Copenhagen in 1961 the Mineralogical Societies of America and Great Britain agreed to issue a joint statement to National Societies adhering to the Association inviting each Society to organize contributions of abstracts of papers published in the journals of its country on subjects relevant to *Mineralogical Abstracts*. This invitation was issued and has brought a gratifying response. Members of Societies which have agreed to co-operate in this way are entitled to receive *Mineralogical Abstracts* for their personal use at a reduced rate of subscription on application, which must be made through their National Society. The countries now co-operating include: Australia, Austria, Belgium, Bulgaria, Canada, Czechoslovakia, Denmark, Finland, France, Germany, India, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Pakistan, Portugal, South Africa, Spain, Sweden, Switzerland, Turkey.

ABSTRACTORS

Contributors to this volume of *Mineralogical Abstracts* are: Akizuki, M. (M.Ak.), *Japan*; Arnaudova, R. (R.A.), *Bulgaria*; Bayliss, P. (P.B.), *Canada*; Brearley, A.J. (A.J.B.), *U.S.A.*; Briggs, R.M. (R.M.B.), *New Zealand*; Brown, P.E. (P.E.B.), *U.S.A.*; Browne, P. (P.Br.), *Gt. Britain*; Chan, C.-L. (C.L.C.), *U.S.A.*; Chisholm, J.E. (J.E.C.), *Gt. Britain*; Dietrich, R.V. (R.V.D.), *U.S.A.*; Donaldson, C.H. (C.H.D.), *Gt. Britain*; Frank-Kamenetskiĭ, V.A. (V.A.F.-K.), *U.S.S.R.*; Frisch, T. (T.F.), *Canada*;

Gait, R.I. (R.I.G.), Canada; Gehlen, K. von (K.v.G.), West Germany; Göncüoğlu, M.C. (M.C.G.), Turkey; Grew, E.S. (E.S.G.), U.S.A.; Hadfield, J.M. (J.M.H.), Gt. Britain; Harrison, R.K. (R.K.H.), Gt. Britain; Hauck, S.A. (S.A.H.), U.S.A.; Hayashi, H. (H.H.), Japan; Howie, R.A. (R.A.H.), Gt. Britain; Hsu, L.C. (L.C.H.), U.S.A.; Jones, R.H. (R.H.J.), U.S.A.; Kanazawa, Y. (Y.K.), Japan; Kostov, I. (I.K.), Bulgaria; Lagache, M. (M.L.), France; Lindqvist, B. (B.L.), Sweden; Mendelssohn, M.J. (M.J.M.), Gt. Britain; Miura, H. (H.M.), Japan; Miyamoto, M. (M.My.), Japan; Mottana, A. (A.M.), Italy; Mourant, A.E. (A.E.M.), Gt. Britain;

O'Donoghue, M.J. (M.O'D.), Gt. Britain; Oinuma, K. (K.O.), Japan; Ozawa, T. (T.O.), Japan; Petersen, E.U. (E.U.P.), U.S.A.; Raade, G. (G.R.), Norway; Riggs, K.A. (K.A.R.), U.S.A.; Rodgers, K.A. (K.R.), New Zealand; Samson, R.E. (R.E.S.), Gt. Britain; Sasaki, N. (N.S.), Japan; Siegrist, M. (M.S.), U.S.A.; Solie, D.N. (D.N.S.), U.S.A.; Sundeen, D. (D.A.S.), U.S.A.; Tomita, K. (K.T.), Japan; Van Tassel, R.V. (R.V.T.), Belgium; Velasco, F. (F.V.), Spain; Warner, J.L. (J.L.W.), U.S.A.; Watters, W.A. (W.A.W.), New Zealand; Žak, L. (L.Ž.), Czechoslovakia; Zilczer, J.A. (J.A.Z.), U.S.A.

ABBREVIATIONS AND SYMBOLS

used in the text of abstracts

Andrew Land and the Control of the C				OPERCAL					
EMICAL & PHYSICAL CHE	MICA	L		OPTICAL					
tomic absorption spectrophotome	try		AAS	dispersion, e.g.					r > v
efore present			B.P.	extinction angle, e.g.					Y.C
ation-exchange capacity			c.e.c.	infrared				W. DOT	IR
oncentrated			conc.	optic axial angle					2V
ifferential thermal analysis			DTA	—, plane					O.A.P.
			dil.	refractive index in te					refr. ind.
ilute	***		EDA	— of isotropic min					n
nergy dispersive analysis	***	***			Clais		•••		"
lectron probe microanalysis	• • •		EPMA	refractive indices	,				
thylenediaminetetra-acetic acid	• • •	***	EDTA	of uniaxial miner				***	ω,ε
igacity			f	of biaxial minera		• • •			α,β,γ
as chromatography			GC	scanning electron mi				* * . *	SEM
eat of formation (absolute temper	ature su	bscript)	ΔHf	transmission electron	n micros	сору			TEM
ydrogen ion conc. acidity			pH	sign of biaxiality					
ductively coupled plasma	1		ICP	negative				07	2V _a or -
nitial ratio, e.g				positive				9	2V _y or +
		• • •	is all res	ultraviolet					UV
soluble residue		***	insol. res.	untaviolet	•••				OV
otopes, e.g	***		⁴⁰ Ar, ⁴⁰ K	CHD. Dr. Stranger					
otope ratio, e.g		• • •	$\delta^{18}O$	PHYSICAL					
otope ratio normalised to chondr	ite, e.g.		ε_{Nd}						
rge ion lithophile	***		LIL	calculated					calc.
oss on ignition			ign. loss	cathodoluminescence	e			***	CL
nid-ocean ridge basalt			MORB	cycles per second					c/s
illiequivalent			me.	degree centigrade					°C
ass absorption spectrometry			MAS	degrees absolute			111		K
ass spectrometry			MS	density					D (quote units)
nicrogram				electron paramagneti					'1
			μg						e.p.r.
illion years		***	m.y.	hardness			• • •	•••	H.
eutron activation analysis			NAA						kbar
ot determined			n.d.						m.p.
ot found			nt. fd.	micron (10 ⁻³ mm)					μm
uclear magnetic resonance			NMR	nanometre (10 ⁻⁶ mm)				nm
arts per billion (10 ⁻⁹)			ppb	natural remanent ma					n.r.m.
arts per million			ppm						Ω
arts per trillion (10^{-12})			ppt	pressure(s)					P
atinum group elements, minerals			PGE, M	*				•••	7 .
		• • •							sol.
re earth elements		***	REE	specific gravity, term				own	sp.gr.
andard mean ocean water	***	4.4"	SMOW	4				***	T
rength of solution, normal			N	thermoluminescence					TL
—, molar			M	Vickers hardness nur	mber				VHN
ibstances in ionic state				wavelength					λ
anions, e.g			Cl ⁻ , SO ₄ ² -						
cations, e.g			K ⁺ , Fe ³⁺						
ermogravimetric analysis			TGA	SYMBOLS					
ousand years									
		• • •	k.y.	approximately equal		• • •	***	* * *	~
		***	tr.	equal to		• • •			=
-ray powder diffraction	* * *	***	XRD	equal to or greater th	an			* * *	>
-ray fluorescence analysis	***	***	XRF	equal to or less than					<
				equilibrium					=
STALLOGRAPHIC & STR	UCTU	RAL		greater, less than					>, <
	00101		0	much greater, less th					
ngstrom unit (10 ⁻⁸ cm)			Å	41.1.		• • •	***	• • •	>>, <<
ystal axes		***	a, b, c			• • •	• • •		
— face indices			(hkl)	per cent	***	• • •	***	• • •	%
— form indices			{hkl}	per mille	***				%0
— zone indices			[hkl]	perpendicular to					1
dices of X-ray diffractions			hkl	proportional to					oc

tensity	***	***	1	GEOGRAPHICAL					
— relative	4.4.4		$I/I_{\rm o}$	GEOGRAFIICAL					
terplanar spacing			d	East Pacific rise					EPR
ica structural polymorphs			1 M ₁ , 2 M	mid-Atlantic ridge					
nit cell, formula units			Z	east, eastern	***	***		***	MAR
——, repeat distances			a,b,c		• • • •			***	E
		• • •		north, northern	***				N
, reciprocal lattice length of	or edges		a^*,b^*,c^*	south, southern				***	S
——, interaxial angles direct la			α,β,γ						

Aario, R., 92M/1883 Aarssen, B. G. K. van, 92M/4529 Abalos, M., 92M/2094 Abbey, S., 92M/2476 Abbink, O. A., 92M/4529 Abbot Jr, R. N., 92M/0228 Abbott, G. D., 92M/4510 Abbott Jr, R. N., 92M/2606 Abbott, L. D., 92M/3393 Abdel-Fattah, W. I., 92M/1411 Abdel-Karim, A.-A. M., 92M/1726, 2287 Abdel-Monem, A. A., 92M/3727, 3728, 3729, 3730 Abdel-Rahman, A. M., 92M/3264 Abdel Rehim, A. M., 92M/2517 Abdelsalam, M. G., 92M/1090 Abe, M., 92M/0348 Abe, S., 92M/4843 Abe, S. D., 92M/3974 Abercrombie, H. J., 92M/1840 Abia, H., 92M/4802 Abouchami, W., 92M/4875 Abrahão, J. R. S., 92M/1877 Abraham, D. A., 92M/3408 Abrams, M., 92M/2230 Abrecht, J., 92M/2291, 2715 Abrio, M. T. Ruiz, 92M/2541 Absar, A., 92M/0734, 3248 Abulgazina, S. D., 92M/2046 Acharyya, S. K., 92M/0938 Achenauer, U., 92M/2339 Ackermand, D., 92M/4612 Acquafredda, P., 92M/0634, 1262 Adam, J., 92M/0403 Adams, J., 92M/2391 Adams, J. L., 92M/0399 Adams, M. C., 92M/4254 Adams, S. J., 92M/2625 Adamy, J., 92M/0527 Advocat, T., 92M/2837 Aerden, D. G. A. M., 92M/1474 Aftalion, M., 92M/0026 Agar, S. M., 92M/4961 Agel, A., 92M/1208 Aggarwal, R. K., 92M/0734 Aggrey, K. E., 92M/0664 Agostini, A., 92M/1081 Agrinier, P., 92M/0539, 1069, 3526 Aguilar, A., 92M/1453, 1456 Aharon, P., 92M/2257, 2442 Ahlsved, C., 92M/1874 Ahmad, T., 92M/0646 Ahmat, A. L., 92M/1286 Ahmed, A., 92M/0953 Ahmed, J., 92M/0953 Ahmed, Z., 92M/1747 Ahmed-Zaid, I., 92M/1573 Ahn, J. H., 92M/2616, 2618 Ahrens, T. J., 92M/0779, 2860, 4109 Aines, R. D., 92M/1955 Ainsworth, C. C., 92M/1356 Ainsworth, P., 92M/4882 Aires-Barros, L., 92M/4475, 4615 Airo, M.-L., 92M/3380 Aitcheson, S. J., 92M/0009, 4782 Aizawa, J., 92M/1111 Aizenshtat, Z., 92M/1858 Aja, S. U., 92M/2550 Ajie, H. O., 92M/2395, 4215 Ajmone Marsan, F., 92M/2592 Akagi, T., 92M/2493 Akai, J., 92M/3215 Akande, S. O., 92M/3888

Akaogi, M., 92M/0212 Akar, A., 92M/1866 Akiman, O., 92M/3435 Akimov, V. V., 92M/1602 Akinci, O., 92M/1734 Akizuki, M., 92M/1199, 2627 Akoitai, S., 92M/2783 Aksoyoglu, E. S., 92M/2540 Akyol, A., 92M/2928 Al Azri, H., 92M/0304 Al-Harthy, M. S., 92M/3541 Al-Shanti, A. M. S., 92M/3728, 3730 Al Toba, A., 92M/3550 Albaigés, J., 92M/0756, 1864, 3156 Albarède, F., 92M/1657, 4200, 4308, 4363 Albertini, C., 92M/4992 Alboom, A. Van, 92M/2600 Albrecht, P., 92M/3149, 4522 Albrecht, P. A., 92M/4520 Alcalde, C., 92M/1429 Alcobé, X., 92M/4638 AlDahan, A. A., 92M/2090 Alderton, D. H. M., 92M/0545, Aldiss, D. T., 92M/1172 Aleinikoff, J. N., 92M/0058, 1301 Aleksandrov, A. V., 92M/1177 Aleksashin, N. D., 92M/3396 Alexander, C. M. O'D., 92M/1932 Alexander, P., 92M/1476 Alexander, R., 92M/3143 Alexandrov, I. V., 92M/4382 Ali, M. M., 92M/0381, 4808 Ali, S., 92M/3727, 3729 Alia, J. M., 92M/1366 Alibert, C., 92M/0679 Allard, P., 92M/1028, 1045, 1048, 2205, 2209, 3483, 4848 Allègre, C. J., 92M/1030, 1725, 2993, 3046, 3767 Allen, C. M., 92M/1024 Allen, J. C., 92M/3058 Allen, T., 92M/1178 Aller, R. C., 92M/1801 Allibone, A. H., 92M/3397 Almeida Saraiva, A., 92M/1207 Almen, H., 92M/1416 Almogi-Labin, A., 92M/1867 Alonso, J. M., 92M/1496 Alperovitch, N., 92M/0158 Alpers, C. N., 92M/2757, 4495 Alpin, A. C., 92M/4457 Alsop, G. I., 92M/4697 Alston, A. J., 92M/1472 Alt, J. C., 92M/2570, 3529 Altermann, W., 92M/2095 Alvarenga, C. J. S. de, 92M/3898 Alvarez, A., 92M/3793 Alvarez, G. Mora, 92M/2225 Alvarez, P., 92M/0921 Alvarez, W., 92M/4597 Alves, J.-P., 92M/1629 Alvi, S. H., 92M/3026, 4385 Amakawa, H., 92M/1782 Amanor, J., 92M/3928 Amari, S., 92M/0786, 4589 Amelin, Yu. V., 92M/4278 Amelinckx, S., 92M/3820 Ames, D. E., 92M/0288 Amokrane, A., 92M/3784 Amonette, J. E., 92M/1317 Amouric, M., 92M/0017, 0857,

Amrani, I.-E. el, 92M/1001 Amrhein, C., 92M/4114 Amthauer, G., 92M/0419, 1386 Anan'ev, V. V., 92M/2073 Anand, R. R., 92M/0694 Ananiev, S. A., 92M/1910, 2065 Ananieva, T. A., 92M/1910 Anastase, S., 92M/3878 Andaverde, J., 92M/4863 Andergassen, W., 92M/2914 Anders, E., 92M/0783, 0786, 4589 Andersen, D. J., 92M/0406 Andersen, E. Krogh, 92M/0266 Andersen, F., 92M/0978 Andersen, T., 92M/0992, 4915 Anderson, A. L., 92M/4192 Anderson, A. T., 92M/4421 Anderson, D. L., 92M/0386 Anderson, E. B., 92M/4608 Anderson, G., 92M/3920 Anderson, G. M., 92M/0416, 1701, Anderson, J. B., 92M/4711 Anderson, J. L., 92M/1772, 3477, 4416 Anderson Jr., A. T., 92M/1023 Anderson, M. A., 92M/0094 Anderson, M. M., 92M/4454 Anderson, M. T., 92M/0317 Anderson, T. B., 92M/0173, 4913 Andersson, U. B., 92M/0887, 4917 Ando, A., 92M/0655, 1918 Andonaegui, P., 92M/3416 Andrade, W. O., 92M/1889 Andrault, D., 92M/1596 Andre, M., 92M/3111 Andréasson, P.-G., 92M/4783 Andreev, A., 92M/1732 Andreev, A. P., 92M/0827 Andreev, S. I., 92M/4313 Andreeva, L., 92M/2026 Andres, C. Behr, 92M/3169 Andres, R. J., 92M/1085, 4867 Andresen, A., 92M/1128 Andrew, A. S., 92M/1678 Andrews, A. S., 92M/0573 Andrews, J. E., 92M/3087 Andrews, J. N., 92M/1833, 1836, Andrews, M. J., 92M/1911 Andriessen, P. A. M., 92M/0019, Angel, R. J., 92M/0217, 0226 Angélica, R. S., 92M/1894 Angell, C. A., 92M/4055 Angelone, M., 92M/2594 Angelov, S., 92M/2346 Anguita, F., 92M/2215, 4864 Anikeeva, L. I., 92M/4313 Anil, G. S., 92M/3924 Anirudhan, S., 92M/1108 Annels, A. E., 92M/1330 Annersten, H., 92M/2890 Annor, A. E., 92M/3437 Anovitz, L. M., 92M/0184, 1569, 2269, 2308, 2615 Ansdell, K. M., 92M/0591 Antonini, P., 92M/2167 Anwar, J., 92M/4183 Anwar, M., 92M/0949 Aoki, K.-i., 92M/3037, 3039 Aoki, M., 92M/3493 Aoki, S., 92M/0177 Aoki, Y., 92M/4113 Aoyama, H., 92M/0041

Aparicio, A., 92M/1254 Appiah, H., 92M/3887 Appleton, J. D., 92M/1872 Appleyard, E. C., 92M/0279, 0282 Appriou, P., 92M/2937 Apps, J. A., 92M/0497 Apte, S. C., 92M/2783 Aquirre, E., 92M/1448 Aragoneses, F. J., 92M/0198 Arai, S., 92M/0957, 3548, 4640 Araki, T., 92M/0208 Aramaki, S., 92M/2195 Aranovich, L. Ya., 92M/2805 Arantes, D., 92M/3883 Araujo, L., 92M/3933 Araujo, P. R. Da Rocho, 92M/4027 Aravena, R., 92M/1832, 1868 Arden, J. W., 92M/1932 Ardouin, B., 92M/4848 Arduino, E., 92M/2592 Arehart, G. B., 92M/4343 Arenas, R., 92M/4924 Argast, S., 92M/3803 Arif, A. Z., 92M/0953 Arita, K., 92M/3256 Ariunbileg, S., 92M/1903 Árkai, P., 92M/0995, 1265, 2276, 2298, 4930, 4942 Armbruster, T., 92M/1386, 1390, 2641, 2648, 2877, 3298, 3333 Armienti, P., 92M/3436 Armstrong, M., 92M/0318 Armstrong, R. A., 92M/2411, 4730 Armstrong, R. L., 92M/0053 Arnaudova, R., 92M/1993 Arndt, N. T., 92M/2424, 3067 Arne, D. C., 92M/0585 Arnold, G. O., 92M/2730 Arnold, J., 92M/0794 Arnold, J. R., 92M/0528, 0778, 1306, 3208 Arora, M., 92M/1109 Arora, R., 92M/3126 Aróstegui, J., 92M/2581 Arquit, A., 92M/2116 Arsadi, E. M., 92M/0658 Arth, J. G., 92M/1288, 4403 Artioli, G., 92M/1960, 3838 Asada, N., 92M/4528 Asai, K.-I., 92M/2098 Asaro, F., 92M/4597 Asghar, M., 92M/3808 Ashalatha, B., 92M/2320 Ashchepkov, I. V., 92M/3516 Åsheim, A., 92M/4677 Ashikhmina, N. A., 92M/4616 Ashley, P., 92M/2689 Ashley, R. P., 92M/0308 Ashraf, M., 92M/1465 Ashworth, J. R., 92M/0863, 3258 Asif Khan, M., 92M/0923 Askren, D. R. R., 92M/0677 Aslam, M., 92M/1109 Asmerom, Y., 92M/1245, 1649 Aspen, P., 92M/4360 Assami, M., 92M/3332 Asthana, D., 92M/0820 Asubiojo, O. I., 92M/0640 Atanasov, V., 92M/2026 Atkinson, D., 92M/3872 Atkinson, M. R., 92M/0076 Atkinson, S. S., 92M/4759 Atkinson, T. C., 92M/0388 Attas, M., 92M/0096 Attawiya, M. Y., 92M/4808

Attrep Jr, M., 92M/4446 Atwater, B. F., 92M/2124 Atzori, P., 92M/0630, 1263 Audren, C., 92M/3616 Augué, L. F., 92M/1588 August, C., 92M/2512 Aurisicchio, C., 92M/0817 Austrheim, H., 92M/1130, 4912, 4915 Auwera, J. V., 92M/3386 Auzende, J.-M., 92M/3121 Avigad, D., 92M/4941 Awan, M. A., 92M/2279 Ayalon, A., 92M/0696 Ayers, J. C., 92M/4968 Ayliffe, L. K., 92M/4317 Ayora, C., 92M/0918, 2712 Ayres, L. D., 92M/0883, 1075 Ayrton, S., 92M/2128 Ayuso, R. A., 92M/1900 Azambre, B., 92M/3613, 4363 Azevedo, J. M. M., 92M/1054 Aznar, A. J., 92M/3793 Azri, H. Al, 92M/0304, 3522

Baadsgaard, H., 92M/2408, 2414 Baar, H. J. W., 92M/1847 Babaei, A., 92M/1196 Babaei, H. A., 92M/1196 Baccelle, L. Scudeler, 92M/3157 Bäckblom, G., 92M/1521 Bäcker, H., 92M/2957 Bacon, C. R., 92M/4420 Bacon, M. P., 92M/1820 Bada, J. L., 92M/1929 Badiola, E. Rodríguez, 92M/2227 Badra, L., 92M/2719 Baer, G., 92M/4720 Baerlocher, C., 92M/0240 Baginski, B., 92M/1114 Bagy, B., 92M/4325 Bahn, P., 92M/2495 Bai, G., 92M/0564 Bailey, D. K., 92M/4776, 4807 Bailey, S. W., 92M/0121, 0127 Baird, W. J., 92M/2354 Baisert, D., 92M/3560 Bakas, T., 92M/2619 Baker, D. R., 92M/4061 Baker, E. M., 92M/0573 Baker, E. T., 92M/0738 Baker, J. H., 92M/2948 Baker, M. B., 92M/4073 Baker, P. A., 92M/1647 Baker, P. E., 92M/1738 Bakhchisaraitsev, A. Yu., 92M/2074 Bakhtina, A. P., 92M/4622 Bakker, P. M. A. de, 92M/1600 Bakker, R. J., 92M/0476 Bakos, F., 92M/3926 Bakshi, D., 92M/1424 Baksi, A. K., 92M/0059 Bakun-Czubarow, N., 92M/2403 Balacó Moreira, J. C., 92M/0379 Balakrishnan, S., 92M/0037, 2097 Balanyá, J. V., 92M/4795 Balaram, V., 92M/0649 Balashov, V. N., 92M/2806 Baldwin, S., 92M/3732 Balerna, A., 92M/1960 Balke, J., 92M/3084 Ball, N., 92M/2610 Ball, T. K., 92M/0387

Ballance, P. F., 92M/4702 Ballentine, C. J., 92M/1643 Baller, T., 92M/2801 Ballesta, R. J., 92M/1339 Ballèvre, M., 92M/1137, 1154 Ballhaus, C., 92M/0405 Ballirano, P., 92M/3278 Balogh, K., 92M/1265, 1278 Baltatzis, E., 92M/1169, 3433 Bamba, M., 92M/3256 Banakar, V. K., 92M/1641 Banda, E., 92M/4795 Bandyopadhyay, M., 92M/2526 Banerjee, H., 92M/0815 Banerjee, P. K., 92M/2300 Banerjee, R., 92M/3027 Banerjee, S. K., 92M/1205 Banerji, R. K., 92M/2256 Banfield, J. F., 92M/0846, 0881, 1370, 1371 Bank, H., 92M/1621, 1633, 1634, 1965, 4156, 4168, 4176 Banks, D. A., 92M/4262 Bankwitz, E., 92M/4569, 4801 Bankwitz, P., 92M/4569, 4801 Banner, J. L., 92M/3089 Banno, S., 92M/4903 Bannon, M. P., 92M/4261 Bansal, B. M., 92M/4565 Banse, T., 92M/1338, 2560 Baragar, W. R. A., 92M/4827 Barber, A. J., 92M/0956 Barber, D. J., 92M/0788 Barber, J. P., 92M/1134 Barberi, F., 92M/2199, 4868 Barberis, E., 92M/2592 Barbero, L., 92M/3416 Barbey, P., 92M/2169, 3415 Barbie, J., 92M/1595 Barbiei, M., 92M/4437 Barbieri, M., 92M/0550, 1262, 1734, 3070 Barbin, V., 92M/2408 Bard, E., 92M/0052, 2392 Barefoot, R. R., 92M/1323 Bargossi, G. M., 92M/3434 Bargossi, M., 92M/3420 Bariac, T., 92M/3111 Barker, A. J., 92M/4251 Barker, C. E., 92M/2579 Barker, J. C., 92M/0313 Barker, J. F., 92M/1868 Barker, P. F., 92M/4709 Barkham, S. T., 92M/0956 Barley, M. E., 92M/0884 Barnard, P. C., 92M/4444 Barnes, C. G., 92M/1778, 4422, 4423 Barnes, C. J., 92M/4485 Barnes, H. L., 92M/0502, 0503, 2894, 4135 Barnes, M. A., 92M/4422 Barnes, S.-J., 92M/0005 Barnes, S. J., 92M/2736 Barnes, Sarah-Jane, 92M/2736 Barnett, D. E., 92M/1193 Barnett, R. L., 92M/2622, 3290 Barnicoat, A. C., 92M/1124, 2666 Barooah, B. P., 92M/4764 Barovich, K. M., 92M/3106 Barquero, J., 92M/4866, 4867 Barr, M. W. C., 92M/4841 Barr, S. M., 92M/2433 Barrès, O., 92M/4257 Barrett, P. J., 92M/4706

Barrett, T. J., 92M/1439, 2739 Barriga, F. J. A. S., 92M/0301, 3942, 4240 Barron, B. R., 92M/3257 Barron, K. M., 92M/3865 Barrows, E. M., 92M/3195 Barrows, J. A. N., 92M/3195 Barry, J. C., 92M/4031 Barsukov, V. L., 92M/2996 Bartels, K. S., 92M/1538 Barth, A., 92M/2665, 2943, 2946 Barth, A. P., 92M/3107 Barth, N., 92M/2665 Barth, S., 92M/3418 Bartl, U., 92M/2566 Bartle, K. D., 92M/1866 Bartley, J. M., 92M/2318 Bartnik, K., 92M/3684 Bartnitsky, Ye. B., 92M/1277 Bartoli, F., 92M/0192 Barton, C. M., 92M/1173 Barton, E. S., 92M/2412 Barton Jr, P. B., 92M/0268, 0504 Barton, M., 92M/1970, 3487 Barton, M. D., 92M/2305, 3065, 3589, 3596 Bartos, P. J., 92M/1422, 2755 Bartram, J. A., 92M/2692 Bas, M. J. Le, 92M/4645 Basavalingu, 92M/0509 Baskaran, M., 92M/1825 Bassi, G., 92M/2322 Basso, R., 92M/0242 Bastide, J. P., 92M/3784 Bastow, M. A., 92M/4444 Bastro, M. J., 92M/4312 Baştürk, Ö., 92M/1524 Basu, A. R., 92M/1751, 3064 Basu, P. K., 92M/3885 Batchelor, J. D., 92M/3210, 4578 Bates, M. P., 92M/4740 Bates, N. R., 92M/1697 Batie, W. C., 92M/0098 Batik, H., 92M/0348 Batiza, R., 92M/0660, 2241 Battarbee, R. W., 92M/0741 Battistini, G. Di. 92M/1040 Bau, M., 92M/2842 Baubron, J.-C., 92M/1028, 3483 Bauder, C., 92M/4522 Baumann, A., 92M/2401, 2987. 3010 Baumann, H., 92M/1213 Baumann, L., 92M/2676 Baur, H., 92M/0783 Baurer, G. R., 92M/4396 Baxter, A. N., 92M/2757 Bayley, M. P., 92M/2360 Bayliss, P., 92M/0867, 2628, 3306 Bazhenova, L. F., 92M/0880 Bea, F., 92M/0706 Beary, E. S., 92M/3759 Beato, B. D., 92M/1853, 1855 Beattie, J. K., 92M/0501 Beattie, P., 92M/2854 Beaucaire, C., 92M/1882 Beauchemin, D., 92M/2482 Beaudoin, G., 92M/4339 Beaufort, D., 92M/0811, 1355, 2709 Beaumier, M., 92M/2484 Beauvais, A., 92M/2586 Bebout, G. E., 92M/3108, 3109 Beccaluva, L., 92M/3356, 4836 Beccar, I., 92M/1084

Béchennec, F., 92M/3537 Bechtel, A., 92M/0548 Beck, C., 92M/4683 Beck, J. W., 92M/4144 Becker, A. F. A., 92M/4173 Becker, C. H., 92M/0785 Becker, K., 92M/2352 Becker, K. H., 92M/0708 Becker, R. H., 92M/0799 Becker, S. M., 92M/3271 Beckers, W., 92M/3813 Beckholmen, M., 92M/1520 Bédard, J. H., 92M/1768 Beddoe-Stephens, B., 92M/0912, 2164 Bedini, R. M., 92M/3420 Beer, J., 92M/3207, 4447 Beer, M., 92M/4175 Beest, B. W. H. van, 92M/0236 Begét, J. E., 92M/4857 Behr Andres, C., 92M/3169 Behr, H. J., 92M/0710, 4241 Behrendt, J. C., 92M/4715 Behrens, H., 92M/4060, 4112 Behrensmeyer, A. K., 92M/2779 Behrmann, J. H., 92M/4693 Behzani, V., 92M/3390 Beier, J. A., 92M/0759 Bein, A., 92M/1867 Bekendam, R. F., 92M/0958 Bekins, B. A., 92M/4680 Belakowski, D. I., 92M/2377 Belkin, H. E., 92M/1900 Bell, D. R., 92M/0447, 0821 Bell, K., 92M/3021, 4417, 4825 Bell, T. H., 92M/2261, 2731, 3605 Bell, V. A., 92M/0155 Bellanca, A., 92M/0550, 2952, 2953 Bellido, F., 92M/1253 Bellieni, G., 92M/0626, 0632, 4425 Bellmann, H.-J., 92M/2582 Bellon, H., 92M/0661, 3462 Bellucci, F., 92M/2198 Belonoshko, A., 92M/2845 Belzile, E., 92M/3965 Bencini, A., 92M/0620, 3909, 4372 Bender Koch, C., 92M/2591, 3559, 4642 Bender, M., 92M/0737 Benedetti, M., 92M/0546 Benek, R., 92M/3427 Beneke, K., 92M/2613 Benharbit, M., 92M/2416 Benharree, M., 92M/4802 Benimoff, A. I., 92M/1977 Benito, A. López, 92M/1724 Bennett, D. G., 92M/4251 Bennett, P. C., 92M/0746 Bennett, V. C., 92M/4273 Benning, L. G., 92M/4699 Benoit, G., 92M/0699 Benoit, J. M., 92M/2249 Benoit, P. H., 92M/0795, 1977, 2015, 3210, 4577 Benson, C., 92M/4212 Bente, K., 92M/4137 Benthaus, F.-C., 92M/2708 Bentley, C. R., 92M/4712 Bentzon, M. D., 92M/4642 Beny, C., 92M/2982, 3938 Beny, J., 92M/1581 Benz, H. M., 92M/4973 Beran, A., 92M/3294, 4166 Berdusco, E. N., 92M/2386

Berendsen, P., 92M/0314 Berg, J. H., 92M/3500 Bergantz, G. W., 92M/3584 Berge, S. A., 92M/0978 Bergen, M. J. van, 92M/4391, 4392 Berger, A., 92M/4167 Berger, G. W., 92M/1307, 2437, 3707 Bergeron, M., 92M/2484 Bergh, S. G., 92M/3475 Bergk, K.-H., 92M/2613, 2621 Bergman, S., 92M/4916 Bergman, S. C., 92M/0118 Bergman, T., 92M/2707 Bergner, R., 92M/3637 Berkovits, D., 92M/4479 Berman, R. G., 92M/1571, 2861, 2906 Bermanec, V., 92M/2010, 3333, 4650 Bermudez, C., 92M/2757 Bernard, A., 92M/2228 Bernard-Griffiths, J., 92M/0639, 3353 Bernard, J. H., 92M/3991 Bernat, M., 92M/2778 Bernatowicz, T. J., 92M/0791, 4068 Berndt, M. E., 92M/4074, 4144 Berner, R. A., 92M/4295 Berner, U., 92M/4521 Berner, Z., 92M/0713 Bernhard-Griffiths, J., 92M/4373 Bernhardt, H.-J., 92M/0069, 1620, 2067, 4673 Bernoulli, D., 92M/0174 Berrino, G., 92M/2202 Berrow, M. L., 92M/1375 Berry, R. F., 92M/0405 Bershov, L. V., 92M/1208 Bertagnini, A., 92M/2211 Berthelin, J., 92M/0538 Berti, G., 92M/0091 Bertine, K. K., 92M/0682 Bertolani, M., 92M/1160 Bertolino, S. R. A., 92M/3786 Bertoni, C. H., 92M/3965 Bertram, M. A., 92M/2903 Bertrand, H., 92M/0004, 0035, 1000 Bertrand, J., 92M/1967, 3275 Bertrand, J.-M., 92M/2439 Bertrand, P., 92M/1563, 3647 Bertsch, P. M., 92M/0094 Beryozkin, V. I., 92M/4610 Besch, R., 92M/4833 Besenbacher, F., 92M/1341 Besnus, Y., 92M/0688 Besson, M., 92M/3045, 3255 Bethke, P. M., 92M/2977, 4316 Bettenay, L. F., 92M/4729 Bettencourt, J. S., 92M/3880, 3955 Bettison-Varga, L., 92M/2274 Bettles, K. H., 92M/1493 Betzhold, J., 92M/1452 Beukes, N. J., 92M/0758, 3080 Beunk, F. F., 92M/1717, 1719 Beurrier, M., 92M/3550 Bevan, A. W. R., 92M/0800 Bevier, M. L., 92M/1293 Bevins, R. E., 92M/0616, 2275 Beyer, H. K., 92M/2621 Beyth, M., 92M/4720 Beziat, A., 92M/2776 Béziat, D., 92M/3296 Bezmen, N. I., 92M/1551

Bhalla, J. K., 92M/0648 Bhandage, G. T., 92M/0509 Bhatt, J. V., 92M/1498 Bhattacharaya, S. K., 92M/4209 Bhattacharayya, C., 92M/2300 Bhattacharya, A., 92M/4042 Bhattacharya, D. K., 92M/3322 Bhattacharya, P. K., 92M/0815 Bhattacharya, S. K., 92M/3082 Bhosale, U., 92M/0394, 0395 Bhosale, V. N., 92M/1374 Bhushan, Ravi, 92M/1825 Bialek, R., 92M/2612 Bibby, H. M., 92M/1070 Bibikova, E. V., 92M/1276 Bibou, A., 92M/0393 Bickford, M. E., 92M/4416 Bickle, M. J., 92M/1557, 4967 Bideau, D., 92M/3047, 4803, 4873 Biehler, R., 92M/1620 Bielicki, K.-H., 92M/1275, 2426 Biellmann, C., 92M/4147 Bierens de Haan, S., 92M/0860 Bierman, P. R., 92M/4431 Biggar, G. M., 92M/2794 Bigi, S., 92M/1415 Bikerman, M., 92M/4417 Bilik, I., 92M/1726 Billaud, P., 92M/3992 Billström, K., 92M/2947 Bin Ghoth, M., 92M/2595 Bin, Z., 92M/2344 Binard, N., 92M/3047 Bingen, B., 92M/0613 Binggeli, N., 92M/1401 Bingler, L. S., 92M/1610 Bini, C., 92M/2594 Biondi, J. C., 92M/3927 Birak, D. J., 92M/3862 Birch, W. D., 92M/4667 Birck, J.-L., 92M/3767 Bird, D. K., 92M/1714, 2994, 4904 Bird, R. T., 92M/5010 Birdi, J. J., 92M/3258 Birkenmajer, K., 92M/1756 Birkett, T. C., 92M/3054 Birnie, A., 92M/2490 Bischoff, A., 92M/3205 Bischoff, J. L., 92M/0871, 1562, 4082 Bischoff, W. D., 92M/2903 Bish, D. L., 92M/2008 Bishop, F. C., 92M/0406, 2903 Bishop, J. K. B., 92M/3756 Bishop, P. K., 92M/0390 Bishui, P. K., 92M/0036, 0648 Bisso, C. R., 92M/1448 Biswas, S. K., 92M/3877 Bitencourt, M. F., 92M/2319 Bjørlykke, A., 92M/3921, 4007 Bjørlykke, K., 92M/4879 Bjergbakke, E., 92M/1816 Bjorøy, M., 92M/3132, 3133 Björklund, A., 92M/2387 Björnsson, A., 92M/1033 Black, L. P., 92M/0049, 2425 Black, P. M., 92M/4701, 4906, 4950, 4952 Black, R., 92M/4805 Black, R. D., 92M/4820 Black, S. N., 92M/1607 Black, T. M., 92M/3736

Blair, N. E., 92M/4537

Blais, S., 92M/0614

Blaise, B., 92M/0736

Blake, K., 92M/4008 Blake, S., 92M/1535, 4850 Blamart, D., 92M/4943 Blanchard, D. L., 92M/2902 Blanckenburg, F. von, 92M/1259, 4370 Blanco, C., 92M/3788 Bland, D. J., 92M/3287, 3987 Blank, R. R., 92M/3785 Blankenburg, H.-J., 92M/1865, 2925, 2942, 2969, 3556 Blaske, A. R., 92M/2748 Blass, G., 92M/1226, 4999 Blattner, P., 92M/0662 Blencoe, J. G., 92M/4620 Blendiger, W., 92M/3536 Blenkinsop, J., 92M/1695 Blessing, C., 92M/3680 Blichert-Roft, J., 92M/4353 Blino, G. G., 92M/2291 Bloch, S., 92M/1098 Blomqvist, R. G., 92M/1516 Bloom, M. S., 92M/1679 Bloomer, S. H., 92M/2079, 2184 Blount, A. M., 92M/0311, 0312 Bluck, B. J., 92M/3409 Blum, A. E., 92M/0470 Blum, J. D., 92M/4596 Blum, N., 92M/0581, 0713, 3052, 4874 Blümel, P., 92M/2156 Blundy, J. D., 92M/4116 Bluth, G. J. S., 92M/4293 Boadi, I., 92M/3887 Boaretto, E., 92M/4479 Bobonga, W., 92M/2783 Bocchia, R., 92M/4599 Bocchio, R., 92M/0724, 1728 Boclet, D., 92M/4599, 4900 Bodak, V., 92M/2382 Bodinier, J.-L., 92M/3024, 3343, 3344, 3346, 3351 Bodnar, R. J., 92M/1490, 1700, 2840 Boer, J. Z. de, 92M/3462 Boero, V., 92M/2592 Boespflug, X., 92M/2113 Boettcher, S. L., 92M/2811 Bogdanov, G. V., 92M/1945 Bogdanova, A. N., 92M/4608 Bogomolov, Ye. S., 92M/4092 Bogush, I. A., 92M/4655 Bohlen, S. R., 92M/0450, 1532 Böhler, G., 92M/2410 Böhlke, J. K., 92M/4259, 4260 Böhme, R., 92M/0206, 0207 Bohrmann, G., 92M/4448 Bohrson, W. A., 92M/2185 Boiron, M. C., 92M/3867, 3907, 3945, 4258 Boivin, P., 92M/4069 Boix, F., 92M/2214 Bojadžiev, S. G., 92M/0827 Boland, J. N., 92M/2871 Boles, J. R., 92M/1845 Bombach, G., 92M/4560 Bonaccorsi, E., 92M/3335 Bonani, G., 92M/4447 Bonardi, M., 92M/3325 Bonavia, F. F., 92M/2096 Bonazzi, A., 92M/1161 Bonazzi, P., 92M/3249 Bond, A. M., 92M/3763 Bondi, M., 92M/1143, 1575 Bonefede, M., 92M/2208

Boneß, M., 92M/0526 Boney, I. K., 92M/0866, 3305 Bonhomme, M. G., 92M/3617 Bonin, B., 92M/0895, 2130 Bonjour, J.-L., 92M/1785 Bonneau, M., 92M/3643, 3644 Bonnett, R., 92M/1856 Bonnichsen, B., 92M/3459 Bonté, Ph., 92M/1943, 4598, 4599 Boon, J. J., 92M/4507 Boorder, H. De, 92M/0958 Booth, R. A., 92M/1019 Borbély, G., 92M/2621 Borchiellini, S., 92M/2778 Bordère, S., 92M/2514 Borges, W. R., 92M/3880 Borggaard, O. K., 92M/0493 Borgia, A., 92M/4837, 4866 Boric, R., 92M/1455 Borisovskiy, S. Y., 92M/0831 Bornhold, B. D., 92M/0736 Bornhorst, T. J., 92M/2748 Borodaev, J., 92M/0864, 0868, 2044 Borole, D. V., 92M/1641 Boronikhin, V. A., 92M/0831 Borsier, M., 92M/2473 Borst, W. L., 92M/3139 Borstel, L. E. v., 92M/2066 Bortnikov, N., 92M/0868 Bortnikov, N. S., 92M/2034 Bortschuloun, D., 92M/2764 Borutzky, B. E., 92M/1958 Boscardi, M., 92M/2498 Boscardin, M., 92M/3697, 4636 Bosch, D., 92M/3023, 3726 Bose, M. R., 92M/0469 Bose, U., 92M/3653 Bossé, J., 92M/3053 Bosshart, G., 92M/0515, 1623 Bostick, N. H., 92M/0308 Boström, B., 92M/1322 Boström, K., 92M/1322, 4473 Boswell, R. J., 92M/3958 Both, R. A., 92M/1479 Bothe, M., 92M/3428, 3429 Botinelly, T., 92M/4899 Bott, M. H. P., 92M/2329 Bottazzi, P., 92M/3355, 4371 Böttcher, M. E., 92M/3316 Bottomley, D. J., 92M/4304 Bottrell, S. H., 92M/1310, 3167, 4463 Botz, R., 92M/4448 Bouchardon, J. L., 92M/2166 Boucher, R. J., 92M/1857 Boudier, F., 92M/1564, 3354, 3512, 3513, 3530, 3534 Boudon, G., 92M/4861 Boudreau, A. E., 92M/0872 Bouffette, J., 92M/1140 Bougault, H., 92M/2113, 2937, 2998, 3117, 4803 Boulanger, B., 92M/0259 Boulègue, J., 92M/0546, 4685, 4686 Boullier, A.-M., 92M/0527 Bouloton, J., 92M/1001 Boundy, T. M., 92M/4912 Bourlès, D. L., 92M/1830, 4450, Bourne, J. H., 92M/1765, 3053 Bourot-Denise, M., 92M/4571 Boutaleb, M., 92M/4943 Bouton, S. L., 92M/0535

Buchan, K. L., 92M/4738

Buchanan, D. L., 92M/2724

Bowden, M. E., 92M/0089, 1350 Bowden, P., 92M/1737 Bowell, R. J., 92M/0544, 3288 Bowen, L. H., 92M/1600 Bowers, J. R., 92M/1191, 3592 Bowers, T. S., 92M/1652 Bowes, D. R., 92M/0012, 0026, 4764, 4765 Bowker, K. A., 92M/1800 Bowman, J. R., 92M/1976, 3086 Bowring, S. A., 92M/0467, 1292 Bowser, C., 92M/4207 Boyce, A. J., 92M/1658, 1659 Boyd, D. M., 92M/4753 Boyd, F. R., 92M/3439, 3440, 4044 Boyd, R., 92M/0005 Boyd, S. A., 92M/1357 Boyd, S. R., 92M/4326 Boyer, L. L., 92M/2888 Boyle, A. P., 92M/3612 Boyle, E. A., 92M/0729, 2932, 3124 Boyle, J. F., 92M/1088 Boyle, R. W., 92M/0588 Boynton, W. V., 92M/0776, 0796, 3227, 3232 Boysen, H., 92M/1404, 1407 Boysen, N., 92M/3833 Bracci, G., 92M/4994 Brace, T., 92M/3057 Bradley, A. D., 92M/3765 Bradley, R., 92M/3939, 4012 Bradshaw, T. K., 92M/4414 Brady, J. M., 92M/2748 Braithwaite, C. J. R., 92M/1097 Braitseva, O. A., 92M/1055 Braman, D. R., 92M/0797 Brand, U., 92M/1697 Brandberg, F., 92M/4139 Brandon, A. D., 92M/3000 Brandstätter, F., 92M/3203, 3211 Brandt, A., 92M/2621 Branham, T. D., 92M/0598 Brannath, A., 92M/3989 Branney, M. J., 92M/3411 Brannon, J. C., 92M/0780, 3743 Branthaver, J. F., 92M/1851 Brantley, S. L., 92M/4142, 4866 Brasier, M. D., 92M/4454 Brassell, S., 92M/0754 Brassell, S. C., 92M/3149, 4456, 4534, 4535 Brathwaite, R. L., 92M/3997, 4820 Bray, C. J., 92M/3175, 3891, 3993, 4264 Brearley, A. J., 92M/4086, 4575, 4585 Breen, C., 92M/2553, 2554 Breit, G. N., 92M/1705, 1848 Breit, U., 92M/1400 Breiter, K., 92M/1731 Brell, J. M., 92M/1430 Bremer, M., 92M/1212 Bremond d'Ars, J. de, 92M/2165 Brenan, J., 92M/2907, 3588 Brenan, J. M., 92M/0457, 4045 Brenner, T. L., 92M/2752 Brereton, R., 92M/2335 Brese, N. E., 92M/0204 Breskovska, V., 92M/0859, 2044 Breskovska, V. V., 92M/0864, 0868 Brew, D. A., 92M/4954

Bridgwater, D., 92M/0610 Brigatti, M. F., 92M/1397, 1415 Briggs, P. H., 92M/0742 Bril, H., 92M/2709 Brillanceau, A., 92M/0688 Brink, M. R. Buchholtz Ten, 92M/0703 Brink, M. R. B. Ten, 92M/1795 Brink, M. R. Buchholtz Ten, 92M/4427, 4430 Brint, J. F., 92M/4883 Briole, P., 92M/3483 Briot, D., 92M/0524, 0981 Briqueu, L., 92M/3534 Bristow, C. R., 92M/2253 Bristow, J. W., 92M/1651, 2412 Brito Neves, B. B. de, 92M/2077 Britvin, S. N., 92M/4608 Brizi, E., 92M/1937 Broadhurst, C. L., 92M/4068 Bröcker, M., 92M/1168 Brocker, M., 92M/1811 Brodholt, J., 92M/2337 Brodie, K. H., 92M/0903 Brohi, I. A., 92M/0949 Brok, S. W. J. den, 92M/0441 Bromley, L. A., 92M/1607 Bronec, J. Le, 92M/3483 Bronnimann, C. E., 92M/0508 Brook, E. J., 92M/0051 Brook, F. J., 92M/3997 Brooker, R. A., 92M/4039 Brookfield, M. E., 92M/5011 Brookins, D. C., 92M/3128 Brookins, D. G., 92M/3508 Brooks, A. S., 92M/3146 Brooks, C. K., 92M/1714 Brooks, J. M., 92M/4540 Brooks, R. R., 92M/1922 Brophy, J. A., 92M/3872 Brophy, J. G., 92M/3400 Brousse, R., 92M/3048 Brouxel, M., 92M/4419 Brow, A. C., 92M/3922 Brown, A. C., 92M/0276, 0587, 2738, 3932, 4019 Brown, E. T., 92M/0051, 1830, 4450, 4506 Brown, G., 92M/1625 Brown, G. C., 92M/1026 Brown, I. D., 92M/1417 Brown Jr, G. E., 92M/0210 Brown, K. M., 92M/4962 Brown, L. J., 92M/3844, 4497 Brown, M., 92M/0900, 3057 Brown, P. E., 92M/0611, 0723, 1482, 2281, 2311 Brown, S., 92M/4883 Brown, W. L., 92M/1736, 4816 Browne, P. R. L., 92M/3667, 3798 Brownlee, D. E., 92M/0778, 1940 Broxton, D. E., 92M/1773 Bruce, C., 92M/1444 Brueckner, H. K., 92M/2403 Brügmann, G. E., 92M/1691 Brulhet, J., 92M/1661 Brumsack, H. J., 92M/1795 Brunel, M., 92M/4914 Bruno, J., 92M/2820, 4139, 4140 Bruque, S., 92M/4105 Bryant, J. M., 92M/3799 Bryndzia, L. T., 92M/1423, 1709 Bryner, V., 92M/3321 Bucciaanti, A., 92M/2206 Buchan, G. D., 92M/0168

Buchardt, B., 92M/0542 Bucher, M., 92M/3535 Bucher-Nurminen, K., 92M/4905 Buchholtz Ten Brink, M. R., 92M/0703, 4427, 4430 Buchwald, V. F., 92M/0245 Buck, P. S., 92M/3883 Bucknam, C. H., 92M/0307 Büder, W., 92M/1234 Budzinski, H., 92M/3007, 3091 Buesch, D., 92M/3477 Buffet, B. A., 92M/4975 Buggisch, W., 92M/2272 Buheitel, F., 92M/0716 Buhl, J.-C., 92M/0239 Bühmann, C., 92M/0185, 1376 Buhmann, D., 92M/0506 Bühmann, D., 92M/3797 Bührer, W., 92M/0263 Bukowinski, M. S. T., 92M/2869 Bullen, W. D., 92M/3966 Bundtzen, T. K., 92M/2118 Buntebarth, G., 92M/1211, 2154, 2160 Burakov, B. E., 92M/4608 Burandt, B., 92M/3833 Burattini, E., 92M/1960 Burckle, L. H., 92M/4713 Burdige, D. J., 92M/3071 Burg, J.-P., 92M/1187 Burgath, K.-P., 92M/4334 Burger, K., 92M/1368 Burger, M., 92M/3207 Burgess, R., 92M/3733, 4632 Burgina, E. B., 92M/4652 Burgsteiner, E., 92M/3696 Burke, E. J. A., 92M/4915 Burke, R. M., 92M/1307 Burkhard, D. J. M., 92M/1018, 2605 Burkhard, M., 92M/1803 Burkov, K. A., 92M/0265, 2650 Burlinson, K., 92M/3173 Burnell, D. K., 92M/2350 Burnett, C., 92M/3754 Burnett, D. S., 92M/0791 Burnham, C. W., 92M/0081, 0226, Burns, L. E., 92M/2119 Burns, P. C., 92M/0262, 2639 Burns, R. G., 92M/0221 Burragato, F., 92M/3788 Burri, G., 92M/3301 Burruss, R. C., 92M/2934 Bursik, M. I., 92M/1035, 2197 Burt, D. M., 92M/0534, 2804 Burton, B. P., 92M/1204 Burton, E. A., 92M/0702 Burton, K. W., 92M/3710, 4911 Burvald, I., 92M/0978 Burzynski, J. F., 92M/2699 Busani, G., 92M/1514 Buseck, P. R., 92M/0244, 2616, 2618 Bushmakin, A. F., 92M/2069 Bussel, M. A., 92M/2757 Bussod, G. Y., 92M/3342 Bussy, F., 92M/2128, 2404 Bustillo, M., 92M/1787, 1788, 1789 Bustillo, M. A., 92M/1361 Butcher, A. R., 92M/1005, 1669 Butler, J. R., 92M/4731 Butt, K. A., 92M/0953

Butterfield, N. J., 92M/1649 Büttner, H., 92M/4110 Byerly, G. R., 92M/0033, 0720 Bylund, G., 92M/4784 Byrne, R. H., 92M/1610, 4038

Caballero, E., 92M/2557 Caballero M., C., 92M/2225 Cabalzar, W., 92M/3275 Cabella, R., 92M/4644 Cabri, L. J., 92M/0073, 1319, 1668 Caby, R., 92M/1171, 3648 Cacho, L. García, 92M/2215, 4864 Cadet, J.-P., 92M/3643, 3644, 4683 Cadman, A., 92M/4721 Caen-Vachette, M., 92M/0029 Cagatay, A., 92M/2718 Caggianelli, A., 92M/0624 Cahill, T. A., 92M/4856 Caillet, C., 92M/0792 Caithness, S. J., 92M/2692 Cakalli, P., 92M/3390 Calas, G., 92M/0213, 2346, 2614 Calderoni, G., 92M/1734 Calk, L. C., 92M/1034 Calle, C. de la, 92M/2552 Calle Guntiñas, M. B. de la, 92M/2485 Callot, H. J., 92M/4522 Calon, T., 92M/2123 Calsteren, P. C. Van, 92M/1279 Calsteren, P. van, 92M/3731 Calvache V., M. L., 92M/4294 Calvert, S. E., 92M/1792, 4532 Calvez, J. Y., 92M/3527 Calvo, M., 92M/1448 Calvo Perez, B., 92M/1724 Camacho, A. G., 92M/2217 Camacho, A. González, 92M/2215 Cámara, C., 92M/2485 Camara, D., 92M/0030 Camargo Z., A., 92M/3232 Cambier, P., 92M/0135, 1353 Camerlenghi, A., 92M/4688 Camerola, M., 92M/2051 Cameron, D. G., 92M/0387, 3287, 3987 Cameron, E. M., 92M/2258 Cameron, M., 92M/1410, 2644 Camm, G. S., 92M/1223 Camm, S., 92M/1222 Campana, R., 92M/0628, 3420, 3434 Campbell, A. C., 92M/3118 Campbell, I. H., 92M/0973, 1537, 2136, 2181, 3897 Campbell, J. E., 92M/1893 Campbell, S. D. G., 92M/3476 Campos, E. G., 92M/3196 Campredon, R., 92M/0035, 2778 Camus, F., 92M/1449, 1455 Camus, G., 92M/1080, 3553 Canals, A., 92M/0919, 2712 Candan, O., 92M/2410 Candela, P. A., 92M/0535, 2133 Canfield, D. E., 92M/3151 Canil, D., 92M/2830, 4090 Cann, J. R., 92M/2231, 3547 Cannat, M., 92M/3524, 4803 Cannet, M., 92M/4873 Cannillo, E., 92M/3826 Cao, R.-J., 92M/2385 Cao, R.-L., 92M/0935 Capaccioni, B., 92M/2206

Brey, G., 92M/1921

Briand, B., 92M/2166

Capasso, G., 92M/4838 Capdevila, R., 92M/3414 Capedri, S., 92M/1415 Capitan, J., 92M/1361 Capitani, C. de, 92M/0424 Capitani, L. De, 92M/0724, 0823, Capon, R. J., 92M/0747 Caporuscio, F. A., 92M/0719, 1394 Carbonin, C., 92M/1396 Carbonin, S., 92M/0242 Carbotte, S., 92M/1094 Carcangiu, G., 92M/3628 Carcangui, G., 92M/0380 Card, J. W., 92M/4417 Cardellach, E., 92M/0919, 2712 Cardile, C. M., 92M/3844 Carey, A. E., 92M/4490 Carey-Gailhardis, E., 92M/2326 Carey, S., 92M/4605 Caristan, Y., 92M/1069 Carl, C., 92M/3706 Carl, G., 92M/0084 Carlisle, D. B., 92M/0797 Carlo, E. H. de, 92M/3580 Carlo, E. H. De, 92M/4075, 4335 Carlson, C., 92M/1288 Carlson, R. M. K., 92M/3162 Carlson, R. W., 92M/0660, 4387 Carlson, W. D., 92M/1121, 1197 Carlton, R. W., 92M/2578 Carman, R., 92M/0687 Carmichael, I. S. E., 92M/1539, 3505, 4067, 4352 Carmody, R., 92M/3473 Carne, R. C., 92M/3985 Carney, J. N., 92M/1173 Caroff, M., 92M/3497, 3676 Caron, J.-M., 92M/1140 Carpenter, M. A., 92M/1585, 1586 Carpenter, R. H., 92M/2772 Carpenter, S. F., 92M/2772 Carpenter, S. J., 92M/0530, 4315 Carracedo, J. C., 92M/2227 Carrara, R., 92M/0091 Carrasco, A., 92M/1082 Carrasco, F., 92M/1363 Carrasco-Núñez, G., 92M/2219 Carré, D., 92M/0251 Carrigan, C. R., 92M/4288 Carrigan, W. J., 92M/2258 Carroll, G. W., 92M/0083, 2445 Carroll, M. R., 92M/0431 Carroll, S. A., 92M/0150 Carson, B., 92M/4965 Carson, R. W., 92M/3032 Carter, A. H. C., 92M/3889, 3902 Carter Jr, W. D., 92M/4537 Carter, S. J., 92M/4185 Cartwright, I., 92M/3090, 3104 Caruba, R., 92M/3240 Carvalho, A., 92M/1904 Carvalho, I. G., 92M/1905 Carvalho III, A. V., 92M/4643 Carver, G. A., 92M/1307 Carville, D. P., 92M/1475 Cas, R. A. F., 92M/1031 Casal, B., 92M/3793 Casal Moura, A., 92M/0342 Casanova, I., 92M/4575 Casares, M. A., 92M/1457 Casero, P., 92M/0920 Cases, J. M., 92M/0122

Casey, W. H., 92M/0471, 4083

Cashman, K. V., 92M/2394, 3737, Cassani, F., 92M/1871 Cassano, E., 92M/2199 Cassedanne, J.-P., 92M/1629 Cassidy, K. F., 92M/0884, 1004 Cassidy, W. A., 92M/4573 Castano, J., 92M/2090 Castelli, J. C., 92M/1455 Castet, S., 92M/0416 Castillo, P. R., 92M/0660 Castillo-Román, J., 92M/4863 Castro, A., 92M/0991, 2126 Catel, N., 92M/2797 Cathcart, J. B., 92M/4899 Cathelineau, M., 92M/2221, 3274, 3867, 3898, 3907, 3945, 3960, 4258 Cathles, L. M., 92M/0280, 4242 Catlow, C. R. A., 92M/3818, 3835 Cattalani, S., 92M/1439, 2739 Catti, M., 92M/3247 Caucia, F., 92M/1950 Cavarretta, G., 92M/3251 Cavazzini, G., 92M/0626, 0632 Cavin, O. B., 92M/3326 Cavounidis, S., 92M/0195 Cawood, P. A., 92M/3533 Cawthorn, R. G., 92M/0642, 1004 Ceci, V. M., 92M/3060 Cecile, M. P., 92M/2415 Celik, M., 92M/3646 Cellini Legittimo, P., 92M/2206 Cemič, L., 92M/2792 Censi, P., 92M/2944, 2953 Cepin, A., 92M/0864, 0868 Cerling, T. E., 92M/3086, 4031, 4296 Cerny, P., 92M/0901 Černý, P., 92M/2610, 2940 Cervelle, B., 92M/0065, 0074, 1206 Cesare, B., 92M/3618 Cesbron, F., 92M/3240 Cesbron, F. P., 92M/3338 Ceuleneer, G., 92M/0304, 3517 Chacko, T., 92M/0418, 1608, 1813, 2302 Chacksfield, B. C., 92M/0318 Chadwick, B., 92M/3391 Chadwick Jr, W. W., 92M/1082, 1083 Chaffee, M. A., 92M/1906 Chai, G., 92M/4813 Chakoumakos, B. C., 92M/3239 Chakrabarti, C., 92M/3941 Chakraborti, S., 92M/0815 Chakraborty, A., 92M/2300 Chakraborty, K. L., 92M/3654 Chakraborty, S., 92M/0648 Challis, G. A., 92M/3997, 4953 Chalot-Prat, F., 92M/1966 Chamberlain, C. P., 92M/1178, Chamberlain, S. C., 92M/2379 Champenois, M., 92M/0527 Champion, D. E., 92M/4229 Champness, P. E., 92M/1159, 4909 Chan, Chong Houe, 92M/0843 Chan, K. Y., 92M/0194 Chan, L., 92M/2257 Chan, L. H., 92M/4290 Chandler, V. W., 92M/0374, 1489 Chaney, R. L., 92M/0399 Changkakoti, A., 92M/0555, 2961

Channer, D. M. De R., 92M/4263

Chappell, B. W., 92M/3894 Charbonneau, H. E., 92M/0675 Charlesworth, E. G., 92M/3943, 3953, 4014 Charlou, J. L., 92M/2937, 3117 Charlton, T. R., 92M/0956 Charoy, B., 92M/1920, 2714, 2964 Chartrand, F., 92M/2739 Chaschin, V. V., 92M/4810 Chase, C. G., 92M/1068 Chatterjee, A. C., 92M/0557 Chatterjee, A. K., 92M/1770, 3193 Chatterton, B. D. E., 92M/4446 Chatti, H. R., 92M/0937 Chattopadhyay, P., 92M/2483 Chattopadhyay, T., 92M/3846 Chaudhuri, J. N. B., 92M/4658 Chaudhury, G. R., 92M/0522 Chauris, L., 92M/3413 Chaussidon, M., 92M/1943, 4222, Chauvel, C., 92M/1758, 2424 Chauvet, A., 92M/4914 Chayes, F., 92M/2992 Chazot, G., 92M/1000 Check, G., 92M/1298 Chelikowsky, J. R., 92M/1401 Chemale Jr, F., 92M/3931 Chemineé, J. L., 92M/1029 Cheminee, J. L., 92M/3047, 3552 Chen, C.-H., 92M/1796, 1972, 4397 Chen, C.-Y., 92M/4387, 4388 Chen, G. L., 92M/4946 Chen, J., 92M/3031, 3033 Chen, J. H., 92M/1852, 3089, 3745 Chen, K., 92M/3306 Chen, L.-H., 92M/1827 Chen, M., 92M/4984 Chen, N., 92M/3995 Chen, S., 92M/1677 Chen, T. M., 92M/2647 Chen, X., 92M/2872 Chen, Y. D., 92M/3357 Cheney, E. S., 92M/2176, 3081 Chengde, S., 92M/4447 Chernenko, M. Yu., 92M/4655 Cherneva, Z., 92M/1993 Cherniak, D. J., 92M/0510 Chernomorskaya, E. M., 92M/1991 Chernyshev, I. V., 92M/1273, 1745, 2414 Chesner, C. A., 92M/1063 Chesnokov, B. V., 92M/0880, 2069 Chevallier, L., 92M/3450 Chevé, S., 92M/4469 Chevrel, S., 92M/3550 Chevremont, P., 92M/3550 Chevrier, G., 92M/0267, 3848 Chi, S. J., 92M/0572 Chi, S.-J., 92M/2963 Chiang, S.-C., 92M/1827 Chiarenzelli, J., 92M/3457 Chiari, G., 92M/1381 Childs, J. F., 92M/0386 Chin, C. S., 92M/0738 Chin, P.-K. F., 92M/0149 Chiodini, G., 92M/1553 Chipera, S. J., 92M/2008 Chipley, D., 92M/1654 Chivas, A. R., 92M/0733, 1675, 1828, 4031, 4317 Cho, M., 92M/0460, 2616 Choi, J. H., 92M/0110, 0111, 0246 Choi, S. G., 92M/2728 Choi, S. H., 92M/2728

Choi, S.-H., 92M/4333 Chong Houe, Chan, 92M/0843 Chopelas, A., 92M/0448, 1384, 2631 Chopin, C., 92M/2288, 3247 Chork, C. Y., 92M/3164 Chorlton, L., 92M/0272 Chosson, P., 92M/0763 Chou, I.-M., 92M/0308, 4266 Choubey, V. M., 92M/0931, 0937 Choudary, B. M., 92M/0144 Choudhary, A. K., 92M/3731 Choudhouri, A., 92M/3930 Choudhuri, A., 92M/4743 Christensen, O. D., 92M/3860, Christeson, G. L., 92M/4981 Christie, D. M., 92M/4832 Christie, J. M., 92M/2265, 3342 Christofides, G., 92M/3434 Christy, A. A., 92M/1862 Christy, A. G., 92M/3825 Chrosniak, C. E., 92M/2785 Chryssoulis, S. L., 92M/0073, 1319 Chu, X.-L., 92M/0415 Chung, C. F., 92M/2652 Chung, S.-L., 92M/1972 Chung, S. L., 92M/4870 Chvileva, T. N., 92M/4656 Chyba, C., 92M/4512 Číčel, B., 92M/2556 Cidu, R., 92M/0765 Cigolini, C., 92M/3508 Cilento, L., 92M/2203 Cina, A., 92M/2717 Cioni, R., 92M/1081, 1553 Circone, S., 92M/2862 Cisowski, S. M., 92M/3223 Cita, M. B., 92M/4688 Citiroglu, M., 92M/1866 Citro, V. T., 92M/0155 Civetta, L., 92M/0622, 1042 Civiš, S., 92M/2058 Claessens, W., 92M/0030 Claesson, S., 92M/3369 Claeys, P., 92M/4597 Clague, D. A., 92M/1067, 1761, 2112, 2185, 2427, 4396 Claoué-Long, J. C., 92M/1243 Claoue-Long, J. C., 92M/2413 Claoué-Long, J., 92M/3734 Claoué-Long, J. C., 92M/3717, 3739 Clardy, J., 92M/3162 Clare, A., 92M/4121 Clare, A. K., 92M/0461 Clark, A. H., 92M/2440, 2704, 2756, 2762, 2763, 2986 Clark, A. L., 92M/3983 Clark, D. R., 92M/1346 Clark, E. A., 92M/0668 Clark, I. D., 92M/4330 Clarke, D. B., 92M/1770, 2125, 3193, 3774 Clarke, D. S., 92M/2682, 2683 Clarke, G., 92M/1187 Clarke, G. L., 92M/1186, 2307 Clarke, K., 92M/0109 Claude, J.-M., 92M/3240 Clauer, N., 92M/1268, 4429 Claverol, M. Gutiérrez, 92M/1313 Clayton, J. L., 92M/4536 Clayton, R. N., 92M/0789, 0840, 1608, 1931, 4195, 4269 Clayton, T., 92M/0172

Clemens, J. D., 92M/1550, 2125 Clerk, S. B., 92M/1769 Cliff, R. A., 92M/0009, 0013, 1738, 3558, 4008 Clipstone, P., 92M/4793 Cloarec, M. F. Le, 92M/4848 Clocchiatii, R., 92M/4088 Clocchiatti, R., 92M/2283, 3482 Cloetingh, S. A. P. L., 92M/2331 Closs, L. G., 92M/4558 Cloth, P., 92M/1939 Clowe, C. A., 92M/2617 Coale, K. H., 92M/0738 Coats, J. S., 92M/0061, 0318 Cochrane, G., 92M/4962 Coelho, C. E. S., 92M/2982 Coelho, C. E., 92M/3948 Coenraads, R. R., 92M/2696 Coetzee, J., 92M/2721 Coey, J. M. D., 92M/2619 Cofer-Shabica, S., 92M/3126 Cohen, A. S., 92M/4393, 4483 Cohen, L. H., 92M/0097, 4760 Cohen, R. E., 92M/0480, 2874, 2888 Coish, R. A., 92M/4408 Coker, W. B., 92M/1875, 1892, 1893 Cole, D. R., 92M/4065 Cole, M. M., 92M/0769 Cole, R. B., 92M/3064 Colella, C., 92M/1038 Coleman, M., 92M/4434 Coleman, M. C., 92M/4457 Coleman, R. G., 92M/2500, 3541 Coles, B., 92M/4250, 4551 Coles, B. J., 92M/2474 Colgan, M. W., 92M/3555 Colin, F., 92M/0554, 2983 Collaku, A., 92M/3643, 3644 Collerson, K. D., 92M/4413 Colley, H., 92M/3463 Collier, R. J., 92M/0753 Collini, B, 92M/2090 Collins, M. J., 92M/0748, 4508 Collins, W. J., 92M/2307 Collinson, D. W., 92M/4586 Collyer, T., 92M/1635 Collyer, T. A., 92M/4160 Colman, T. B., 92M/0298, 0387 Colombi, A., 92M/3621 Colombo, F., 92M/2215 Colson, R. O., 92M/1544, 4047 Coltorti, M., 92M/1040, 3356 Colucci, M. T., 92M/2939, 4426 Colville, A. A., 92M/3261 Comans, R. N. J., 92M/0511, 4106 Comet, P. A., 92M/4540 Commandeur, J., 92M/1881 Commeau, J. A., 92M/0060, 0384 Compston, W., 92M/1284, 1285, 1651, 2411, 2412, 3723, 3735, 4232 Compton, J. S., 92M/2590, 4546 Conceição, H., 92M/0895 Concha, M. A., 92M/1853 Condie, K. C., 92M/0722, 0889, 3068 Condliffe, E., 92M/4630 Condomines, M., 92M/1716, 2997 Cong, B., 92M/3262 Cong, X.-D., 92M/0225 Congdon, R., 92M/3473 Congdon, R. G., 92M/2190 Connan, J., 92M/0763

Connolly, C., 92M/4198 Connolly, J. A. D., 92M/0413, 1560, 4239 Connolly Jr, H. C., 92M/1927 Conrad, J. E., 92M/2420 Conrad, W. K., 92M/4275 Constantin, M., 92M/0281 Conte, J. A., 92M/3105 Conticelli, S., 92M/0621, 0625, 3014 Cook, F. A., 92M/0668 Cook, N. J., 92M/1129, 4005, 4006 Cook, R. D., 92M/3398 Cook, R. J., 92M/3783 Cooke, A. C., 92M/4733 Cooney, T. F., 92M/3815 Cooper, A. F., 92M/4377 Cooper, D. C., 92M/3166, 3987 Cooper, L. W., 92M/4216 Copeland, P., 92M/1281 Copuroglu, I., 92M/2718 Corbella, M., 92M/2170 Corbett, G., 92M/2689, 2694 Cordani, U. G., 92M/2077 Cordier, P., 92M/0234, 3277 Corfield, R. M., 92M/4454 Corfu, F., 92M/0055, 1294, 1299, 3738 Cormier, R. F., 92M/0057 Cornell, R. M., 92M/0492, 1328, 1599, 2540 Cornwell, J. D., 92M/3987 Corrado, G., 92M/2202 Corsini, F., 92M/2848, 3866 Cortecci, G., 92M/2205 Cortini, M., 92M/2203 Cosca, M. A., 92M/1976, 3740 Costa, I. Ribeiro da, 92M/4366 Costa, M. L., 92M/1894 Costa, R. R., 92M/3955 Costa, S., 92M/3715 Costi, H. T., 92M/1896 Coté, B., 92M/4056 Cotelo Neiva, J. M., 92M/2047 Cotter-Howells, J., 92M/1511 Cottier, D., 92M/1607 Coulon, C., 92M/4875 Courtillot, V., 92M/4978 Courtney, S. F., 92M/3321, 4651 Couture, J. F., 92M/0274 Coutures, J.-P., 92M/4056 Couturier, Y., 92M/4129 Coveney Jr, R. M., 92M/3995 Cowan, C. E., 92M/0507 Coward, M. P., 92M/0923, 3160 Cowie, G. L., 92M/4532 Cox, D. P., 92M/1433 Cox, K. G., 92M/1741 Cox, S. C., 92M/3397 Cox, S. F., 92M/1473 Cozzupoli, D., 92M/3419 Craddock, C., 92M/2183 Craig, H., 92M/3120 Craig, J. R., 92M/0070, 0071, 1490, 1700, 3304 Craighead, G. A., 92M/2685 Crain, J. S., 92M/0101 Crandell, D. T., 92M/3503 Craw, D., 92M/0328, 1420, 1421, 3984 Crawford, A. J., 92M/1093, 3042 Crawford, J. W., 92M/0193 Crawford, M. L., 92M/1704, 2187, 3398, 4243 Crawford, W. A., 92M/2187, 3398

Creager, K. C., 92M/4974 Crépeau, R., 92M/2738 Crerar, D. A., 92M/4500 Crespi, R., 92M/1728 Crespo, H., 92M/1448 Crespo, P. P. Gil, 92M/1457 Cresser, M., 92M/2487 Criddle, A. J., 92M/0062, 0067, 3306, 3312, 3330 Crisci, G. M., 92M/0633, 2168 Criss, R. E., 92M/4196, 4229 Crocetti, C. A., 92M/2976 Crock, J. G., 92M/3328 Crocket, H., 92M/1591 Crocket, J. H., 92M/0273, 0289, 3052 Cronan, D. S., 92M/0525, 1329, 1436, 3982 Crossey, L. J., 92M/0512 Crovisier, J.-L., 92M/0523, 2837 Crow, M. J., 92M/1173 Crowe, D. E., 92M/1482 Crowley, K. D., 92M/2644 Cruz, M. D. Ruiz, 92M/1321, 1363, 1364, 1365, 1428 Cruz-Reyna, S. De La, 92M/3467, 3471 Cuadra, P. Perez, 92M/1362 Cuadra, W. A., 92M/1445, 1448 Cubas, C. R., 92M/2171 Cubellis, E., 92M/1041, 2207 Cullen, R., 92M/1420 Cullers, R. L., 92M/1772, 4416, 4455 Culshaw, N., 92M/0271, 1298, 3946 Cumbest, R. J., 92M/2086, 2394 Cumming, G. L., 92M/0054, 0583, 1708, 2429, 2986 Cundari, A., 92M/0983 Cunningham, C. G., 92M/0308 Curiale, J. A., 92M/1849, 3134 Currie, D. B., 92M/0247 Currie, K. L., 92M/3600 Curry, G. B., 92M/0748 Curtis, C., 92M/0146 Curtis, C. D., 92M/4457 Curtis, G. H., 92M/1271 Curtis, L. W., 92M/0585 Curzon, E. H., 92M/2625 Cusimano, G. L., 92M/0740 Cygan, G. L., 92M/2895 Cygan, R. T., 92M/4288 Czamanske, G. K., 92M/0673, 3062, 3323 Czank, M., 92M/1399, 4612 Czechowski, F., 92M/1856 Czurda, K. A., 92M/2566

D'Amico, C., 92M/0628, 3434
D'Angelo, W. M., 92M/2895
D'Arco, Ph., 92M/0237
d'Espinose de la Caillerie, J.-B., 92M/0148
D'Hondt, S., 92M/1943, 4605
D'Lemos, R. S., 92M/0015, 0900, 1252, 2078, 2400
da Costa, I. Ribeiro, 92M/4366
Da Rocho Araujo, P. R., 92M/4027
da Silva, F. C. A., 92M/3859, 3944
da Silva, L. C., 92M/3886
da Silveira, C. L. Porto, 92M/1902
Dabard, M.-P., 92M/1785
Dabira, M., 92M/0435

Dachs, E., 92M/0419 Dacol, F., 92M/2624 Dagge, G., 92M/1939 Dahl, B., 92M/1862 Dahl, R., 92M/3310 Dahlin, D. C., 92M/0309 Daigneault, R., 92M/0277 Dal Negro, A., 92M/1396 Dal Piaz, G. V., 92M/4928 Dalena, D., 92M/4994 Daley, E. E., 92M/4415 Daley, L., 92M/3920 Dalkilic, B., 92M/3435 Dalkilic, F., 92M/3435 Dallmeyer, R. D., 92M/0015, 1158, 1252, 1267, 1283, 2398, 2400, 2432, 3742, 4925 Dalton, E., 92M/2280 Daly, J. S., 92M/0009, 0013 Daly, W. E., 92M/3862 Dalziel, I. W. D., 92M/4709 Damaskinos, S., 92M/0076 Damm, E., 92M/2448 Damm, K. W., 92M/4299 Damm, V., 92M/3675 Damon, P., 92M/1245 Damsté, J. S. Sinninghe, 92M/4507, 4520, 4524, 4545 Dandurand, J. L., 92M/4143 Daněk, V., 92M/4054 Dang, M.-Z., 92M/3829 Daniels, L. R., 92M/1655 Daniels, L. R. M., 92M/1530 Daniels, P., 92M/3821 Danielson, A., 92M/4285 Danilchenko, N. A., 92M/4646 Dann, J. C., 92M/3554 Daoud, Y., 92M/2561 Darce, M., 92M/3461 Dardaine, M., 92M/2776 Dardenne, M. A., 92M/2982, 3938, 3952 Darimont, A., 92M/1135 Darling, R., 92M/0331 Darling, R. S., 92M/4153 Darnley, A. G., 92M/1502 Das, N., 92M/3073 Das, N. C., 92M/2526 Das, R. P., 92M/0522 Das, S., 92M/5009 Dasgupta, S., 92M/0036, 0815, 0942, 1179, 1533, 3322 Dasu, S. P. Venkata, 92M/3392 Datta, M., 92M/0498 Dautel, D., 92M/0031 Daux, V., 92M/0523 Davenport, P. H., 92M/1914 Davey, R., 92M/0146 Davey, R. J., 92M/1607 David, J., 92M/3056 David, K., 92M/4749 David, M. B., 92M/4518 Davidson, E. A., 92M/1373 Davidson, G. J., 92M/2966 Davidson, J., 92M/1446 Davidson, J. P., 92M/4426 Davidson, P. J., 92M/4660 Davies, A. M., 92M/1936 Davies, B. M., 92M/4663 Davies, G. R., 92M/0638, 3350

Davies, H. L., 92M/2684

Davies, J. F., 92M/2700

Davies, J. H., 92M/4967

Davis, A., 92M/0400

Davis, A. M., 92M/1923, 3229, 4421 Davis, A. S., 92M/2112 Davis, B. L., 92M/3269 Davis, D. W., 92M/0055, 0056, 4325 Davis, G. R., 92M/3523 Davis, M. W., 92M/4002 Davis, S. N., 92M/1838 Davison, I., 92M/2750 Davison, W., 92M/0109 Davoli, I., 92M/2615 Davy, P., 92M/2165 Dawes, I. P., 92M/3612 Dawes, R. L., 92M/3460 Dawood, H., 92M/4183 Dawoud, A. S., 92M/1090, 1272 Dawson, J. B., 92M/1742, 3488 Dawson, K. M., 92M/2971 Day, H. W., 92M/1119, 3246 Day, R. A., 92M/4818, 4819 de Alvarenga, C. J. S., 92M/3898 de Bakker, P. M. A., 92M/1600 de Boer, J. Z., 92M/3462 De Boorder, H., 92M/0958 de Bremond d'Ars, J., 92M/2165 de Brito Neves, B. B., 92M/2077 de Capitani, C., 92M/0424 De Capitani, L., 92M/0724, 0823, 1728 de Carlo, E. H., 92M/3580 De Carlo, E. H., 92M/4075, 4335 de Donato, P., 92M/0538 de Federico, A. Diaz, 92M/1143 de Figueiredo, A. M., 92M/3905 De Fino, M., 92M/3478 De Grave, E., 92M/1600, 2600 de Grave, E., 92M/4670 de Groot, P. A., 92M/2948 de Haan, S. Bierens, 92M/0860 De Jong, B. H. W. S., 92M/2605 de la Calle Guntiñas, M. B., 92M/2485 de la Calle, C., 92M/2552 De La Cruz-Reyna, S., 92M/3467, 3471 de La Nava, P. Muñoz, 92M/1362 de la Nuez, J., 92M/2171 de la Rosa, J. D., 92M/0991, 2126 de la Vega, R. Lopez, 92M/1854 de Laeter, J. R., 92M/0577, 3043, De Las Heras, F. X., 92M/3156 de Leeuw, J. W., 92M/1864, 4507, 4508, 4520, 4524, 4529, 4542, 4545 de Lima, E. Fernandes, 92M/1922 de Los Rios, H. C., 92M/2758 de Matos, A. Vilela, 92M/0988, de Matos, T. T., 92M/3955 de Meersche, E. Van, 92M/3694 de Miguel, J. M. García, 92M/1431 De Natale, G., 92M/2209 De Nobili, M., 92M/2527 de Oliveira, S. M. B., 92M/3196 de Parseval, P., 92M/1988 De R. Channer, D. M., 92M/4263 de Ronde, C. E. J., 92M/0032, 3891 De Ronde, C. E. J., 92M/3993 De Rosa, R., 92M/0633 De Roy, T., 92M/1082 de S. F. Gomes, C., 92M/1336 De Souza, L. H., 92M/3955 de Toro, C., 92M/2217

de Vidales, J. L. Martín, 92M/1366 de Vidales, J. L. Martin, 92M/2552 De Vivo, B., 92M/1900, 3482 de Wall, H., 92M/4465, 4937 De Wet, M., 92M/1004 de Wit, M. J., 92M/3891 De Wit, M. J., 92M/3993 De Yoreo, J. J., 92M/0458 de'Gennaro, M., 92M/1038 Deak, J., 92M/1643 Deák, J., 92M/4477 Dean, W. E., 92M/0308 Dearnley, R., 92M/0980 Debari, S., 92M/2186 Debat, A., 92M/3614 Debat, P., 92M/3648 Debenay, J.-P., 92M/3314 Deblond, A., 92M/2480 Debroas, E.-J., 92M/3613 Debschütz, W., 92M/1210 DeCelles, P. G., 92M/3064 Decher, A., 92M/2580 Decker, B. B., 92M/1331 Decker, H., 92M/2364 Decker, J., 92M/2119 Decker, R. W., 92M/1331 Deconinck, J.-F., 92M/0174 Dee, S., 92M/1427 Deer, W. A., 92M/1327 Defant, M. J., 92M/3462 Degueldre, C., 92M/1523 DeHart, J. M., 92M/4577 Deines, P., 92M/1671 Deiseroth, H. J., 92M/2640 Dekkers, M. J., 92M/1881 Del Moro, A., 92M/0625, 1263 del Tanago, J. González, 92M/2290 del Tánago, J. Gónzalez, 92M/4924 Delaloye, M., 92M/3532, 4381 DeLaloyoye, M., 92M/2247 Delaney, J. R., 92M/2427 Delano, J. W., 92M/3199 Delbove, F., 92M/0435, 0469, 2898 Deleens, E., 92M/3111 Delft, W. van, 92M/2443 Delgado, A., 92M/2557 Deliens, M., 92M/0858 Dell'Anna, L., 92M/2574 Della Giusta, A., 92M/0242 Della Ventura, G., 92M/0829, 3300 DeLong, S. E., 92M/4769 Delor, C., 92M/1187 Delor, C. P., 92M/0808, 1478, 3448 Delorme, H., 92M/2218 deLorraine, W., 92M/0700 Deloule, E., 92M/1657, 2655, 4200 Demaiffe, D., 92M/0613, 1736, 2228 Demarchi, G., 92M/2167 DeMatties, T. A., 92M/4020 Dempster, T. J., 92M/0611, 2281, 3409, 4621 den Akker, A. H. Van, 92M/2443, 2443 den Brok, S. W. J., 92M/0441 den Haute, P. van, 92M/0018 den Kerkhof, A. M. van, 92M/1195 Den Kerkhof, A. M. Van, 92M/1805 den Kerkhof, A. M. van, 92M/3114 Deng, W., 92M/3030 DeNiro, M. J., 92M/2456, 4216 Denis, J. H., 92M/0143 Denison, J. R., 92M/4410

Denoux, G. J., 92M/4540

Dent Glasser, L. S., 92M/2611 Denton, G. H., 92M/4713 DePaolo, D. J., 92M/4415, 4470 DePaula, F. C. F., 92M/1877 Depetris, P. J., 92M/3786 Depmeier, W., 92M/0263, 3837 der Heyden, P. van, 92M/0053 der Hilst, R. van, 92M/1216 der Laan, S. R. van, 92M/2817, 2833 der Linden, B. van, 92M/3149 der Lingen, G. J. van, 92M/4897 der Merwe, A. J. van, 92M/0158 der Merwe, N. J. Van, 92M/4031 der Plicht, J. van, 92M/3714 der Pluijm, B. A. van, 92M/2312 der Voo, R. van, 92M/2082 DeRoo, J. A., 92M/1488 Derré, C., 92M/4011 Derry, L. A., 92M/4428 Déruelle, B., 92M/4349 Des Marais, D. J., 92M/4519 Desborough, G. A., 92M/3306 Deschamps, M. T., 92M/0982 deSilva, S., 92M/1085 Desmons, J., 92M/4932 Dessai, A. G., 92M/3442 Dessort, D., 92M/0763 Destrigneville, C., 92M/1069 Detra, D. E., 92M/3189 Detrick, R. S., 92M/3510 Deubener, J., 92M/2867 Deutsch, A., 92M/4120 Devey, C. W., 92M/2178, 2995 Devine, J. D., 92M/1032 Dewers, T., 92M/1122 Dewey, J. F., 92M/3768 DeWitt, E., 92M/0332 Dexter, A. R., 92M/0194 Dhillon, K. S., 92M/2780 Dhillon, S. K., 92M/2780 Di Battistini, G., 92M/1040 Di Florio, M. R., 92M/0624 Di Gerolamo, P., 92M/3484 Di Girolamo, P., 92M/4836 Di Pisa, A., 92M/0625 Dia, A. N., 92M/4483 Diakite, K., 92M/3939, 4012 Diakow, L. J., 92M/0284 Diamond, L. W., 92M/1666, 1920, 4265 Diaz de Federico, A., 92M/1143 Dick, A. L., 92M/0396 Dick, H. J. B., 92M/4383 Dicken, A. P., 92M/1737 Dickin, A. P., 92M/0012, 0676, 1777, 3741, 4405 Dickinson, J. T., 92M/2902, 4107 Dickinson, W. R., 92M/1245 Dickson, B. L., 92M/4489, 4491, 4492 Dickson, F. W., 92M/3336 Dickson, J. A. D., 92M/1650, 1706 Diella, V., 92M/4931 Diethelm, K., 92M/3012, 4370 Dietrich, H., 92M/3564 Dietrich, H.-G., 92M/3388, 3778, 3779, 4934 Dietrich, P. G., 92M/2668, 4004, 4017, 4018 Diggs, T. N., 92M/3671 Dikov, Y. P., 92M/1551 DiLabio, R. N. W., 92M/1893 Dilek, Y., 92M/3532 Dill, H., 92M/4835

Dilles, J. H., 92M/2978 Dillon, P. J., 92M/1526 Dimitrijević, R., 92M/1412 Din, M., 92M/0950 Din, V. K., 92M/4841 Ding, K., 92M/4074 Ding, T., 92M/0559 Ding, X., 92M/0356, 1466 Dingess, P. R., 92M/2744 Dingwell, D. B., 92M/2790, 2826, 4041, 4048, 4060, 4108 Dion, C., 92M/3518 Dipietro, J. A., 92M/0955 Dirks, P. G. H. M., 92M/0958 Dirks, P. H. G. M., 92M/2306 Ditchburn, R. G., 92M/4449 Dixon, A. E., 92M/0076 Dixon, G. H., 92M/2966 Dixon, J. E., 92M/1761 Djro, C., 92M/3616 Dobbe, R. T. M., 92M/0336, 3309 Dobbs, B., 92M/1607 Doblas, M., 92M/3988 Dobosi, G., 92M/1968 Dobretsov, N. L., 92M/3516 Dobrovol'skaya, M. G., 92M/2034 Dobson, M. H., 92M/1579 Dobson, M. R., 92M/0295 Dockhorn, B., 92M/3209 Dods, G. H., 92M/1911 Doe, T. C., 92M/3862 Doering, Th., 92M/4137 Doern, D. C., 92M/1527 Dogan, R., 92M/0348 Doggett, M., 92M/3854 Doherty, W., 92M/1764 Doig, R., 92M/1296, 1300, 2670 Doirisse, M., 92M/0192 Dokuchaeva, V. S., 92M/4278 Dolivo-Dobrovolsky, D. V., 92M/1947 Dollase, W. A., 92M/0258, 2604, 2632 Dolozi, M. B., 92M/1075 Donahue, D. J., 92M/1933, 4856 Donaldson, C. H., 92M/4361 Donato, J. A., 92M/0912 Donato, P. de, 92M/0538 Donelick, R. A., 92M/0873 Dongarrà, G., 92M/4838 Donoghue, S. L., 92M/4849 Donval, J. P., 92M/3117 Dorais, M. J., 92M/0678 Doria, A., 92M/2714 Dorn, R. I., 92M/1305, 1642, 3069, 4292, 4856 Dornsiepen, U., 92M/4299 Dorofeyeva, V. A., 92M/2996 Dorokhova, G. I., 92M/2020 Dos Santos, A. B. R. M. D., 92M/1895 dos Santos, M. L., 92M/1922 Dosso, L., 92M/2113, 2998 Dostal, J., 92M/1766 Douce, A. E. Patiño, 92M/0425 Douglas, B. J., 92M/2338 Doukhan, J. C., 92M/0234, 0784 Doukhan, J.-C., 92M/3277 Doukhan, N., 92M/0784 Doval, M., 92M/1430 Dove, M. T., 92M/0216, 2872, 4095 Dovesi, R., 92M/0237, 3818 Dowd, J. F., 92M/4210 Dowling, K., 92M/0370

Downes, H., 92M/0524, 0636, 0995, 3015, 3346 Downey, M., 92M/3454 Downey, W. S., 92M/1053 Downs, R. T., 92M/0082 Dowuona, G. N., 92M/4451 Doyle, B. J., 92M/2693 Drach, V. von, 92M/3022 Draganić, Z. D., 92M/1816 Draganić, I. G., 92M/1816 Dragovitsch, P., 92M/1939 Drake, B., 92M/2623 Drake, M. J., 92M/4068 Drake, R. E., 92M/1271, 3509 Draper, D. S., 92M/3458 Dreibus, G., 92M/3205, 4349 Dreiss, S. J., 92M/4680 Drevbrodt, W., 92M/0506 Drew, L. J., 92M/2669, 4015 Drewery, S. E., 92M/3558 Drexler, J. W., 92M/0261 Driesner, T., 92M/5000 Drimmie, R. J., 92M/1832, 1833 Drinkwater, J. L., 92M/3323 Droop, G. T. R., 92M/1159, 4909 Drovenik, M., 92M/0553 Drubetskov, E., 92M/1254 Drummond, M. S., 92M/3462 Drummond, S. E., 92M/1611 Drury, M. R., 92M/1944 Drury, S. A., 92M/1279 Drysdale, J., 92M/2391 Du, S., 92M/1243 Duan, Z., 92M/4079 Duane, M. J., 92M/1673 Dubanská, V., 92M/1589 Dube, B., 92M/0291 Dubé, L. M., 92M/3922 Dubessy, J., 92M/0527, 2714. 3274, 3898, 3960, 4515 Dubinska, E., 92M/1162 Dubler, E., 92M/1409 Dubois, J., 92M/0972, 1029 Dubovinsky, M., 92M/2382 Dubrawski, J. V., 92M/2509 Dubuit, M., 92M/0192 Duchesne, J.-C., 92M/2283, 3001 Duchi, V., 92M/3480 Duchini Jr, J., 92M/3973 Ducreux, C., 92M/4444 Duda, R., 92M/5001 Dudás, F. Ö., 92M/4563 Dudauri, O., 92M/1278 Dudauri, O. Z., 92M/1273, 1277, Duddridge, G. A., 92M/3178 Dudka, S., 92M/1510 Duff, J. H., 92M/0397 Duffield, W. A., 92M/1442, 3066, Dujon, S.-C., 92M/2839 Dulski, P., 92M/4285 Dumke, I., 92M/2492 Dunbar, N. W., 92M/4847 Duncan, A. R., 92M/3438, 4730 Duncan, R. A., 92M/4832 Duncker, K. E., 92M/1777 Dungan, M. A., 92M/4426 Dunkerley, P. M., 92M/1445, 1448 Dunkl, I., 92M/1264 Dunkley, P. N., 92M/4390 Dunlap, W. J., 92M/3732 Dunn, C. E., 92M/1892, 1893, 1913 Dunn, P. J., 92M/2636, 3330

Dunning, G. R., 92M/1250, 2433, 3057 Dunsworth, S. M., 92M/2123 Dupont, J., 92M/0659 Dupree, R., 92M/0412, 1402, 4039, 4058 Dupuy, C., 92M/0639, 0644, 1766, 3024, 3341, 3344, 3513 Duran, H., 92M/0914, 0916 Durán, M. E., 92M/3179 Durana, K., 92M/3146 Durasova, N. A., 92M/2996 Durben, D. J., 92M/2633 Durney, D. W., 92M/2965 Duroc-Danner, J. M., 92M/4159 Durrance, E. M., 92M/3178 Durrani, K. J., 92M/0950 Dusausoy, Y., 92M/1208 Dutra Leal, E., 92M/3923 Dutrow, B., 92M/0452 Dutrow, B. L., 92M/0220, 2607 Dutton, S. P., 92M/3671 Duval, J. S., 92M/1915 Duyne, G. Van, 92M/3162 Duyster, J., 92M/4937 Dvorak, J. J., 92M/2201 Dyar, M. D., 92M/0220, 0221, 0834, 2607, 2939, 3404 Dymek, R. F., 92M/1971 Dymoke, P., 92M/4949 Dymond, J., 92M/3122 Dyos, H., 92M/1908 Dyrssen, D. W., 92M/1603

Eadie, J., 92M/1640 Eakin, P. A., 92M/0753, 3153 Eales, E. V., 92M/1007 Earley III, D., 92M/4957 Earnest, C. M., 92M/2521, 2522 Eary, L. E., 92M/2784 Easterbrook, D. J., 92M/1307 Eastman, H. S., 92M/1495 Eastman, M. P., 92M/4663 Eaton, A. N., 92M/2470 Eaton, P. C., 92M/1065 Eatough, M. O., 92M/3814 Ebel, D. S., 92M/0505 Eberhard, E., 92M/1385 Eberhart, J. P., 92M/0119 Eberz, G. W., 92M/1770 Ebihara, M., 92M/3218 Eby, G. N., 92M/4772 Eby, R. K., 92M/0262, 1414 Echeverria, L. M., 92M/0681 Echtler, H., 92M/3715 Eckels, D. E., 92M/0101 Eckerlin, P., 92M/1383 Eckert Jr, J. O., 92M/0404 Economou-Eliopoulos, M., 92M/0343, 2954, 3289 Economou, M., 92M/3796 Edén, P., 92M/2140 Edenborn, H. M., 92M/0698 Edgar, A. D., 92M/0675, 4625 Edgell, H. S., 92M/3570 Ediriweera, R. N., 92M/1636, 2916 Edmond, J. M., 92M/0051, 0095, 1820, 1830, 3118, 4290, 4505, 4506 Edmunds, W. M., 92M/0765, 1503 Edström, K., 92M/0241 Edwards, A. C., 92M/0333, 2490

Edwards, G. R., 92M/0669

Edwards, M. H., 92M/1094

Edwards, R., 92M/2911, 4133 Effenberger, H., 92M/2626 Egan, S. S., 92M/3531 Egashira, K., 92M/0187 Egeberg, P. K., 92M/1784 Eggins, S. M., 92M/4823, 4824, 4872 Eggleston, C. M., 92M/1406, 3845 Eggleton, R. A., 92M/0190 Eglinton, G., 92M/0753, 1857, 1871, 4534, 4535 Eglinton, T. I., 92M/4507, 4545 Egorov, K. N., 92M/1945 Eguiluz, L., 92M/2094 Eichinger, L., 92M/0716 Eidam, J., 92M/0993 Eijkel, G., 92M/4507 Eikenberg, J., 92M/0023, 1458 Einaudi, M. T., 92M/0595, 1495, 2968, 2978 Eisenhauer, A., 92M/4336 Eisenlohr, B. N., 92M/2675 Eissen, J.-P., 92M/3553 Ekberg, M., 92M/3921 Ekinci, E., 92M/1866 Eklund, O., 92M/4778, 4779 Ekvall, J., 92M/0802 Ekwueme, B. N., 92M/4745 el Amrani, I.-E., 92M/1001 El-Anbaawy, M. I. H., 92M/0381 El Goresy, A., 92M/0792, 1240, el Mouraouah, A. el A., 92M/1001 El Moutaouakkil, N., 92M/0835 El-Shazly, A. K., 92M/1176 Elan, R., 92M/3477 Elbert, D. C., 92M/0965 Elderfield, H., 92M/0731, 1647, 4478, 4960 Eldridge, C. S., 92M/1651, 4344 Eleftheriadis, G., 92M/3434 Elert, K.-H., 92M/2460 Eliasson, T., 92M/0897 Eliopoulos, D. G., 92M/0343, 3289 Ellam, R. M., 92M/1741, 4970 Eller, P. G., 92M/4663 Elliott-Meadows, S. R., 92M/0282 Ellis, A. T., 92M/2464 Ellis, D. J., 92M/1563 Elming, S.-Å, 92M/4784 Elmore, D., 92M/1305, 1642, 2436, 3208, 4504 Elphick, S. C., 92M/0438 Elsass, F., 92M/1377, 3806, 3810 Elston, W. E., 92M/1077 Eltantawy, I. M., 92M/0137 Elthon, D., 92M/1771, 2236 Elton, N. J., 92M/3320 Elvevold, S., 92M/0007 Embey-Isztin, A., 92M/0994, 3015 Emeis, K. C., 92M/1861 Emiliani, C., 92M/4213, 4214 Emmermann, R., 92M/0115, 0711, 3778, 3779 Emmett, T. F., 92M/3258 Emofurieta, W. O., 92M/1170 Emslie, R. F., 92M/0890 Encinas, M., 92M/1313 Endo, E. T., 92M/2196 Endo, T., 92M/0139 Endoh, A., 92M/0483

Endt, D. W. von, 92M/3145

Engebretson, D. C., 92M/5007

Engdahl, R., 92M/1216

Engel, M. H., 92M/3135, 3141, 4516 England, P., 92M/2334 Engstrom, D. R., 92M/0741 Engvoldsen, T., 92M/0978 Enrique, P., 92M/0917, 3005 Ensenat, S. E., 92M/1778 Enzweiler, J., 92M/1891 Epelbaum, M. B., 92M/1551 Epicier, T., 92M/1387 Eppinger, R. G., 92M/1885, 4558 Epple, M., 92M/4118 Epshtein, E. M., 92M/4646 Epstein, S., 92M/0579, 1859, 2456, 4199, 4233, 4588 Erceg, M. M., 92M/2685 Ercit, T. S., 92M/3337 Erd, R. C., 92M/0878, 3337, 4672 Erdem, E., 92M/1524 Erdmer, P., 92M/3265 Erel, Y., 92M/0726, 4311 Erez, J., 92M/4442 Ergin, M., 92M/1524 Erickson, C. L., 92M/4248 Ericson, D. B., 92M/4213 Ericsson, T., 92M/4627 Eriksson, K. A., 92M/4271 Eriksson, L., 92M/1391, 2651 Eriksson, P. G., 92M/3081 Erlank, A. J., 92M/4730 Erlenkeuser, H., 92M/2106 Erler, A., 92M/3435 Ernst, R., 92M/3638 Ernst, R. E., 92M/4739, 4825, 4827 Ernst, W. G., 92M/0460, 2812, 3065 Ertel, J. R., 92M/4547 Erzinger, J., 92M/0714, 4300 Esat, T. M., 92M/4281 Esikov, A. D., 92M/1056 Eskenazi, G., 92M/0718 Esperança, S., 92M/0633 Espíndola, J.-M., 92M/3506 Espinosa, A., 92M/2247 Essarraj, S., 92M/3945, 4258 Essene, E. J., 92M/0184, 1559, 1569, 1976, 2899, 3332, 3740 Estrada Maldonado, C. F., 92M/4143 Etheridge, M. A., 92M/1473 Eugster, O., 92M/1934, 3207, 4564 Euzen, T., 92M/3414 Evans, B. W., 92M/1118, 3460, 4103, 4941 Evans, D., 92M/1508 Evans, D. M., 92M/2724 Evans, J. A., 92M/1173 Evans Jr, H. T., 92M/0879, 2856, Evarts, R. C., 92M/3528 Evdokimov, M. D., 92M/1947, Evstigneeva, T. L., 92M/4678 Ewart, A., 92M/3438 Ewart, J. A., 92M/1033 Ewing, R. C., 92M/3239, 4152 Exley, R. A., 92M/2244 Eyal, M. T., 92M/2690 Eymery, J.-P., 92M/0811 Eysel, W., 92M/2515

Fabbri, B., 92M/2777 Faber, E., 92M/2492, 4521 Fabiani, W. M. B., 92M/3902

Fabre, J., 92M/2405 Fabriès, J., 92M/3344, 3346 Fabryka-Martin, J., 92M/1838 Fagan, R. K., 92M/2654 Fagerland, N., 92M/1102 Fago, F. J., 92M/3162, 4544 Fairbanks, R. G., 92M/0052, 2392 Fairchild, I. J., 92M/3072, 3557 Fallick, A. E., 92M/0519, 0552, 0753, 1251, 1658, 1659, 1716, 4329, 4361, 4461, 4462, 4883 Falloon, T. J., 92M/1093, 3019, 4872 Fan. D., 92M/3994 Fan, H., 92M/1467 Fan, P., 92M/3136 Fan, Q., 92M/0651 Fang, J. H., 92M/3751 Fanghänel, T., 92M/2910 Farber, D., 92M/4424 Fare, R. J., 92M/2666 Fareeduddin, 92M/3653 Farges, F., 92M/0210, 0213, 2599 Farhangi, A., 92M/3971 Farinha Ramos, J., 92M/0342 Farinha Ramos, J. M., 92M/0378 Farmer, C. B., 92M/0845 Farmer, G. L., 92M/1773 Farmer, V. C., 92M/0389, 0463, 4104 Farnan, I., 92M/4051 Farooq, M., 92M/0925 Farquhar, F., 92M/1813 Farguhar, R. M., 92M/1297 Farrar, E., 92M/2440, 2756, 2762, 2986 Farrington, G. C., 92M/0241 Farver, J. R., 92M/0478, 0479 Fassett, J. D., 92M/1690 Fatmi, A. N., 92M/0949 Faure, K., 92M/1740 Faure, M., 92M/3948 Favara, R., 92M/4838 Fazeli, A. R., 92M/0509 Fazey, P. G., 92M/0496 Federico, A. Diaz de, 92M/1143 Fedi, M., 92M/2200 Fedikow, M. A. F., 92M/0287 Fediuk, F., 92M/1107 Fediukova, E., 92M/1143 Fedorowich, J., 92M/1687 Fee, J. A., 92M/4488 Fegan, N. E., 92M/4486, 4493, 4494 Fehlhaber, K., 92M/2994 Fehn, U., 92M/4504 Fei, Y., 92M/2818, 3666, 4127 Feigenson, M. D., 92M/3462 Fein, J. B., 92M/2895, 2909 Feitzinger, G., 92M/4995 Felix, M., 92M/2723 Felsche, J., 92M/0239 Feltham, D. J., 92M/4666 Feng, R., 92M/2430, 4236 Feng, X., 92M/4218 Feng, Z., 92M/0565 Fengchao, L., 92M/2344 Fenlon, B. J., 92M/2883 Fentaw, H. M., 92M/2576 Féraud, G., 92M/0004, 0017, 0035 Feraud, G., 92M/1000 Ferderer, R. J., 92M/1489 Ferguson, A. K., 92M/0983 Ferguson, K. M., 92M/4426 Fermont, W. J. J., 92M/4523

Fernandes de Lima, E., 92M/1922 Fernandez, A., 92M/0906 Fernández, J., 92M/1588 Fernandez, J. F., 92M/4866 Fernández, M., 92M/2451 Fernandez, M., 92M/4866 Fernández-Nieto, C., 92M/2289 Fernández, S., 92M/2171 Fernández-Turiel, J. L., 92M/3179 Ferrand, T., 92M/0166 Ferrara, G., 92M/1749, 4221 Ferrari, L., 92M/2220, 4837 Ferrario, A., 92M/0321 Ferraris, G., 92M/3247 Ferreira, K. J., 92M/0287 Ferreira, M. O. Quinta, 92M/0969 Ferreira, M. P., 92M/0034 Ferreira, M. Portugal, 92M/0990, 1144 Ferreira Pinto, A. F., 92M/0021, 0987, 1145 Ferrell Jr, R. E., 92M/1358, 4546 Ferret, J., 92M/1988 Ferrill, D. A., 92M/2053 Ferrini, V., 92M/1734 Ferris, F. G., 92M/4452 Ferroni, R. Trosti, 92M/3299 Ferrow, E. A., 92M/4918 Ferry, J. M., 92M/0592, 0825, 2267, 3590, 4091 Fershtater, G. B., 92M/2127 Fesefeldt, K., 92M/3978 Feuer, H., 92M/2148 Feuerbach, D. L., 92M/3502 Fišera, M., 92M/2373 Fiala, J., 92M/2382 Fiala-Médioni, A., 92M/4683 Ficklin, W. H., 92M/4557 Fiechtner, L., 92M/4374 Fiedler, H. J., 92M/1312, 2593, 3748 Field, D., 92M/1246, 2999 Fierstein, J., 92M/3466 Fiest, W., 92M/3795 Figgemeier, C., 92M/0714, 4464, 4935 Figueiredo, A. M. de, 92M/3905 Figueiredo, B., 92M/3930 Figueiredo, M. C. H., 92M/2076 Figueiredo, M. O., 92M/4312 Filatov, S. K., 92M/0253, 2073, 3852 Filby, R. H., 92M/1853 Filges, D., 92M/1939 Filho, A. Issa, 92M/1895 Filho, C. R. S., 92M/3936 Filimonova, A. A., 92M/2034 Filipek, L. H., 92M/0744 Filippi, F., 92M/3697 Filippidis, A., 92M/4627 Finch, A. A., 92M/0839, 1113, 3271, 3850 Finger, F., 92M/0419, 1948 Finger, L. W., 92M/0224, 1587, 2598, 4124 Fink, D., 92M/0528, 0778, 0794, 1306, 3208, 3209, 3228 Finkel, R. C., 92M/3207 Finlayson, E. J., 92M/3395 Finnerty, A. A., 92M/4044 Fino, M. De, 92M/3478 Finster, V., 92M/4122 Fioravanti, G., 92M/0817 Fiore, S., 92M/3324 Fioretti, A. M., 92M/0626, 0632

Fiori, M., 92M/3870 Fiori, S., 92M/1160 Fiquet, G., 92M/2821, 4084 Firestone, M. K., 92M/1373 First, D. M., 92M/2694 Fischer, H., 92M/1261 Fischer, J., 92M/2671 Fisher, A., 92M/4681, 4687 Fisher, A. T., 92M/1218, 2352 Fisher, N. J., 92M/3902, 3903 Fisher, N. S., 92M/4136 Fisher, R. L., 92M/2184 Fishkin, L., 92M/3673 Fitton, J. G., 92M/0612, 1716 FitzGerald, J. D., 92M/1645, 2018, 2343, 2871 Fitzpatrick, J. J., 92M/0878, 3328 Fitzwater, S. E., 92M/4531 Fleer, A. P., 92M/1820 Fleet, M. E., 92M/0233, 0813, 1591, 1797, 2039, 2639, 2678, 2972, 3831, 4624 Fleitout, L., 92M/2328 Fleming, P. D., 92M/4754 Fletcher, I. R., 92M/1286, 3043, Fletcher, J. G., 92M/0260, 3850 Fletcher, W. K., 92M/3192 Flexser, S., 92M/3130 Flicoteaux, R., 92M/4027 Flinn, D., 92M/1249 Flint, S., 92M/2260, 3746 Flisch, M., 92M/3538 Flögel, J., 92M/1400 Flohr, M. J., 92M/0602 Flohr, M. J. K., 92M/4830 Flood, P. G., 92M/0770 Florence, F. P., 92M/1120, 2444 Florio, M. R. Di, 92M/0624 Flörke, O. W., 92M/0235, 2001 Florkowski, T., 92M/1836 Floss, C., 92M/3224 Flotow, H. E., 92M/4123 Flower, M. F., 92M/2237 Flower, M. F. J., 92M/3032, 4387, 4388 Floyd, J. D., 92M/2384 Floyd, P. A., 92M/1332, 2239 Fockenberg, T., 92M/0446 Foden, J. D., 92M/4101, 4757 Fodor, R. V., 92M/4396 Fogel, M. L., 92M/2779, 2786, Foit Jr, F. F., 92M/3254 Foland, K. A., 92M/3031, 3058, 4343 Földvári, M., 92M/2511 Foley, J., 92M/0212 Foley, N. K., 92M/2977 Foley, S., 92M/1580 Folin, M., 92M/0631 Fonarev, V. I., 92M/2802 Fonseca, E., 92M/3923 Fonseca, L. R., 92M/1894 Font, X., 92M/1429 Fontboté, L., 92M/2705, 2988 Fontes, J.-C., 92M/2397, 4330 Fontes, V. M. S., 92M/1905 Fontignie, D., 92M/1369, 1762, 4375, 4381 Foord, E. E., 92M/0878, 3328, 4185 Forbes, P., 92M/1268 Ford, A. B., 92M/3323, 4708, 4954 Ford, C., 92M/2854

Ford, C. R. B., 92M/3939, 3974, 4012 Ford, D. C., 92M/0584, 0586, 1685 Forde, A., 92M/1435 Forde, E. B., 92M/2938 Fórizs, I., 92M/4942 Formoso, M. L. L., 92M/2005 Fornari, D. J., 92M/1094 Fornari, M., 92M/3869 Förster, H., 92M/2881 Förster, H.-J., 92M/2829, 3008, Forster, H. S., 92M/1354 Forster, M., 92M/0716 Fort, R., 92M/1787, 1788, 1789 Fortey, N. J., 92M/0318, 1132, 3677 Fortune, J.-P., 92M/1988 Fosberg, M. A., 92M/3785 Fossen, H., 92M/3711 Foster, D. A., 92M/2189, 4719 Foster, R. P., 92M/3890, 3902, 3903, 3913, 3950, 3951, 3958 Foucher, J.-P., 92M/4681, 4684, 4687 Fouillac, A. M., 92M/3004 Fountain, D. M., 92M/4912 Fourcade, S., 92M/0614, 0639, 1775, 2997 Fournes, L., 92M/1988 Fowler, A., 92M/4734 Fowler, A. D., 92M/0317 Fowler Jr, T. K., 92M/3595 Fox, C. G., 92M/4832 Fox, L. E., 92M/0398 Foxford, K. A., 92M/0340 Francalanci, L., 92M/0621, 1756 France-Lanord, C., 92M/0527, 4200 Franceschelli, M., 92M/1980, 3267, 3627, 3628 Francheteau, V., 92M/4873 Francis, D., 92M/2131, 4406 Francis, G., 92M/3394 Francis, P., 92M/1085 Franco, E., 92M/1590 François, M., 92M/0122, 2638 Francois, R., 92M/0102 Frank, E., 92M/1981 Frank-Kamenetskaya, O. V., 92M/1991 Frank-Kamenetskii, V. A., 92M/4313, 4623 Franke, N. D., 92M/2752 Franklin, J. M., 92M/0288, 1440 Frantz, J. D., 92M/2824, 2844, 4059 Franz, L., 92M/4940 Franzini, L., 92M/2014 Franzini, M., 92M/4994 Franzke, H. J., 92M/1149, 3387 Fraser, D. G., 92M/4666 Fraser, F. M., 92M/4765 Fraser, G., 92M/3609 Freeman, B., 92M/2268 Freitas-Silva, F. H., 92M/3952 French, D. H., 92M/0575 French, W. J., 92M/0910 Frenzel, G., 92M/0392, 2110, 2111 Frere, B., 92M/1866 Freshney, E. C., 92M/2253 Frey, F., 92M/1404, 1407 Frey, F. A., 92M/0666, 1715, 2931, 3352, 4396 Frey, M., 92M/0424, 2530

Garcia-Gonzalez, T., 92M/0230

Garcia-Navarro, F., 92M/1366

García Romero, E., 92M/1362

Gardeweg, M., 92M/1085

Garduño, V. H., 92M/2220

Gareau, S. A., 92M/2309

Gardien, V., 92M/1138

Freyhoff, G., 92M/0319, 2710 Frezzotti, M. L., 92M/3482, 4009, 4247 Frias, J. M., 92M/3977 Frias, M., 92M/1339 Fridleifsson, G. O., 92M/2273 Friedel, C.-H., 92M/3562 Friedl, J., 92M/0294 Friedman, G. M., 92M/3581 Friedman, I., 92M/4211, 4212 Friedman, J. D., 92M/1696 Friedrich, G., 92M/0202, 0302 0303, 1786, 1904, 2580, 2667, 3868, 3900 Friedrich, M, 92M/4658 Friedrichsen, H., 92M/4374 Friend, C. R. L., 92M/0911, 2418 Friese, K., 92M/0709 Frikh-Khar, D. I., 92M/4616 Frimmel, H. E., 92M/0685, 2951 Fripiat, J. J., 92M/0148 Frisch, W., 92M/3385 Frischbutter, A., 92M/2450, 3094 Friske, P. W. B., 92M/3190 Fritsch, E., 92M/1619, 3253 Fritz, B., 92M/0704 Fritz, P., 92M/0715, 1832, 1837, 1868, 4330 Fritz, S. C., 92M/0741 Frizzo, C., 92M/3937 Froese, E., 92M/0288 Froget, L., 92M/4598, 4599, 4900 Fröhlich, F., 92M/2958 Fröhlich, G., 92M/3470 Fröhlich, K., 92M/1834, 1839 Frölich, A., 92M/1385 Frost, B. R., 92M/0847, 0848, 0852, 0904, 1115, 2317, 3587 Frost, C. D., 92M/0674, 1851, 4400 Frost, K. M., 92M/1481 Frostang, S., 92M/1391 Froude, D. O., 92M/3735 Früh-Green, G., 92M/4370 Fryer, B. J., 92M/0589, 2122 Fryer, C. W., 92M/1612, 1628, 1632, 4193 Fryer, P., 92M/1091 Fu, M., 92M/2961 Fuchs, K., 92M/2324 Fuchs, Y., 92M/3252, 3254 Fuchter, W. H. A., 92M/3964 Fuck, R. A., 92M/1309 Fucugauchi, J. Urrutia, 92M/2225 Fudali, R. F., 92M/0800 Fuess, H., 92M/1399, 2148, 2626 Fueten, F., 92M/2310 Fuganti, A., 92M/3022 Fuge, R., 92M/1505, 1507 Fuhrmann, R., 92M/3718 Fujibayashi, N., 92M/2024 Fujii, N., 92M/0180 Fujimaki, H., 92M/0654, 3039 Fujinawa, A., 92M/1013 Fujino, K., 92M/0453 Fujita, T., 92M/1348 Fujiwara, Y., 92M/3245 Fujuoka, M., 92M/1533 Fukunaga, K., 92M/0485 Fukuoka, M., 92M/0815, 1179 Fukushima, Y., 92M/1335, 1342, 2549 Fullagar, P. D., 92M/2435 Fulst, J., 92M/3813 Funakoshi, R., 92M/3263 Fundamensky, V. S., 92M/0253

Fung, D. K., 92M/2722, 3020 Furkawa, Y., 92M/0453 Furlong, K. P., 92M/1191, 3592 Furmakova, L. N., 92M/4668 Furman, T., 92M/1715 Furnes, H., 92M/4351, 4356 Furukawa, N., 92M/0465 Fusi, P., 92M/2527 Fustaing, G., 92M/2952 Fuster, N., 92M/1453 Futrell, D. S., 92M/0801 Fyfe, W. S., 92M/0801 Fyfe, W. S., 92M/0189, 0301, 0315, 2751, 2754, 3290, 3856, 4240, 4452 Fyson, W. K., 92M/0963

Gaál, G., 92M/3375 Gaans, C. van, 92M/1970 Gadel, F., 92M/0757 Gading, M., 92M/4782 Gaeta, M., 92M/0830 Gaffey, M. J., 92M/4514 Gaffey, S. J., 92M/0508 Gaggero, L., 92M/4644 Gagnon, M., 92M/0291 Gagny, C., 92M/0299 Gaillard, J.-F., 92M/1860 Galácz, A., 92M/0525 Galati, R., 92M/1042 Galbreath, K. C., 92M/3049 Galbrun, B., 92M/2408 Galer, S. J. G., 92M/2075, 4393, 4593 Galetti, G., 92M/1806, 1808 Galimov, E. M., 92M/0537 Galindo, C., 92M/0989, 1144 Gallagher, K., 92M/3161 Gallagher, M. J., 92M/0318 Gallagher, V., 92M/4362 Gallahan, W. E., 92M/4085 Gallart, J., 92M/2214 Galli, E., 92M/0238, 0292, 1397 Gallo, G., 92M/0622, 2212 Galoisy, L., 92M/2614 Gamble, J. A., 92M/0605, 3003 Gamo, T., 92M/2930, 4481, 4685, 4686 Gamsjäger, H., 92M/4141 Ganeo, S., 92M/1396 Gangopadhyay, S., 92M/3139 Ganguin, J., 92M/3621 Ganguly, J., 92M/4043 Gannicott, R. A., 92M/1714 Gao, C., 92M/1750 Gao, G., 92M/1799 Gao, S., 92M/1750 Gao, X., 92M/1938 Gaonach, H., 92M/4406 Garanin, V. K., 92M/0844, 4618, 4639 Garayp, E., 92M/3940 Garbarino, C., 92M/2584, 3249, 3870, 3926 Garbarino, J. R., 92M/0098 Garche, M., 92M/1416 García, A., 92M/2224 Garcia, C., 92M/3806, 3810 García Cacho, L., 92M/2215, 4864 García de Miguel, J. M., 92M/1431 García-Dueñas, V., 92M/4795 García, E., 92M/1430 García, F. González, 92M/2541 García Garzón, J., 92M/1253 García-González, M. T., 92M/0198 Garfunkel, Z., 92M/4941 Gariépy, C., 92M/3056 Garnaes, J., 92M/1341 Garrett, R. G., 92M/1917 Garrido, L. B., 92M/1337 Garrison, D. H., 92M/4594 Gartzos, E., 92M/1667, 2025 Garuti, G., 92M/0321 Garven, G., 92M/0739 Garvie, L. A. J., 92M/0197 Garzón, J. García, 92M/1253 Gascón, J. V. Navarro, 92M/1362 Gaspar, J. C., 92M/4606 Gaspar, O., 92M/0341 Gasparini, P., 92M/2201 Gasperini, P., 92M/1044 Gasquet, D., 92M/4804 Gastil, G., 92M/0968 Gat, J. R., 92M/4207 Gatellier, J.-P., 92M/3311 Gates, A. E., 92M/0310, 2316 Gaudette, H. E., 92M/4488 Gaudichet, A., 92M/3498 Gauline, R., 92M/0275 Gault, C. D., 92M/3872 Gault, R. A., 92M/3327 Gauthier-Lafaye, F., 92M/2663, 2677, 4325 Gauthier, M., 92M/4019 Gayer, R. A., 92M/0009 Gazis, C., 92M/0779 Gazzaz, M. A., 92M/3979, 3980, 3981, 4443 Gebauer, D., 92M/3716 Gebert, H., 92M/3976 Gebhard, G., 92M/2506 Geddes, A. J. S., 92M/1917 Geen, A. van, 92M/0729 Gehlen, K. von, 92M/1152, 1153 Gehlken, P.-L., 92M/3316 Gehrels, G. E., 92M/1289, 1302, 1763, 2308, 2438, 4717 Gehrmann, H. L., 92M/1235 Geiger, C. A., 92M/0447, 2648, 4050 Geisler, M., 92M/1744, 3403 Geissman, J. W., 92M/1077 Geist, D. J., 92M/0674 Gély, J.-P., 92M/2958 Gembitskiĭ, V. V., 92M/4093 Gemeinert, M., 92M/2764 Genc, S., 92M/3645 Genereux, D. P., 92M/1315 Genkin, A. D., 92M/2034, 4678 Gensel, K., 92M/1345 George, A. D., 92M/1287 George, R., 92M/2466 Georgievskaya, O. M., 92M/4656 Gerbaud, A., 92M/3111 Gerbe, M.-C., 92M/1012 Gerke, J., 92M/3150 Gerlach, D., 92M/0682 Gerlach, D. C., 92M/0703, 1795, 4427 Gerlach, H., 92M/0451 Gerler, J., 92M/0710 German, C. R., 92M/1820, 3118,

Gerolamo, P. Di, 92M/3484 Gerstein, D., 92M/2708 Gerstenberger, H., 92M/1273, 1275, 2393, 2926, 3093 Gervill, F., 92M/0339 Geven, A., 92M/3435 Ghaffar, A., 92M/0950 Ghazban, F., 92M/0584, 0586, 1685 Ghent, E. D., 92M/3265 Ghezzo, C., 92M/4009 Ghigliotti, M., 92M/4868 Ghiorso, M. S., 92M/0488, 0853, 0854, 1534, 1818, 2813 Ghittoni, A. G. Loschi, 92M/1160 Ghose, S., 92M/2875 Ghosh, S., 92M/0648 Ghosh, S. K., 92M/3577 Ghoth, M. Bin, 92M/2595 Giampaolo, C., 92M/2841 Gianelli, G., 92M/3267 Gianfagna, A., 92M/0816 Giannérini, G., 92M/0035 Giannini, L., 92M/2206 Giannini, W. F., 92M/4000 Giaramita, M. J., 92M/1119, 3246 Gibb, F. G. F., 92M/4775 Gibbins, W. A., 92M/3872 Gibbs, G. V., 92M/0440 Giblin, A. M., 92M/4486, 4490, 4491 Gibson, P. C., 92M/2760 Gibson, S. A., 92M/2132 Gier, T. E., 92M/4989 Gies. H., 92M/3821 Gieskes, J. M., 92M/4450 Giester, G., 92M/0252, 2643, 3847, 3848 Giggenbach, W. F., 92M/1037, 4848 Gil Crespo, P. P., 92M/1457 Gil Ibarguchi, J. I., 92M/0915, 1141, 1142 Gil, P. P., 92M/4664 Giles, M. R., 92M/4882 Giles, P. S., 92M/1770 Giletti, B. J., 92M/1723, 2870 Gilkes, R. J., 92M/0129, 0694, 2538, 3752, 3807 Gill, T. E., 92M/4856 Gillard, R. D., 92M/2911, 4133 Gillet, P., 92M/0462, 4084, 4147 Gillet, Ph., 92M/0473 Gilligan, L. B., 92M/2656 Gillis, K., 92M/4290 Gillot, P.-Y., 92M/2408 Gillyon, P., 92M/3133 Gilstrap, M. S., 92M/4341 Gimeno, M. J., 92M/1588 Ginott, Y., 92M/0108 Gioan, P., 92M/1171 Giordano, T. H., 92M/1611 Giovanoli, R., 92M/0492, 0683, 4476 Girard, J.-P., 92M/3722 Girardeau, J., 92M/0809, 1142, 1570, 3348 Girat, G., 92M/0994 Giresse, P., 92M/0757 Giret, A., 92M/2130 Giroir, G., 92M/4143 Girolamo, P. Di, 92M/4836 Girvin, D. C., 92M/2784 Gisbert, T., 92M/3048 Gittins, J., 92M/1002

Giudice, A. Lo, 92M/0630 Giuliani, G., 92M/3899, 3933, 3938 Giuseppetti, G., 92M/0222, 0238 Giusta, A. Della, 92M/0242 Gize, A. P., 92M/3153, 3958 Gjata, K., 92M/3390 Glaçon, G., 92M/4683 Gladwin, M. T., 92M/4977 Glasby, G. P., 92M/0383, 1677, 2104 Glascock, M. D., 92M/3555, 3995 Glasmacher, U., 92M/3868 Glasmann, J. R., 92M/4880 Glass, B. P., 92M/3230 Glasser, F. P., 92M/0260 Glasser, L. S. Dent, 92M/2611 Glaum, R., 92M/2646 Glaze, L., 92M/2230 Glazner, A. F., 92M/2318 Gleason, J., 92M/4212 Gleiss, N., 92M/4464, 4934, 4936 Gleuher, M. Le, 92M/3960 Glikson, A. Y., 92M/0578 Glinnemann, J., 92M/2624 Glückert, G., 92M/3152 Gluyas, J., 92M/4434 Gnos, E., 92M/3417, 3551 Godinho, M. M., 92M/1984, 1994 Godizart, G., 92M/4936, 4937 Godwin, C. I., 92M/0053, 2971 Goehner, R. P., 92M/3814 Goel, O. P., 92M/1905 Goellnicht, N. M., 92M/0899 Goetz, C., 92M/3725 Goff, F., 92M/3128 Goffé, B., 92M/1582, 3530 Goffette, O., 92M/0617, 1139, 3092 Gögen, K., 92M/4336 Gohn, E., 92M/0708, 1209 Goilo, E. A., 92M/4623 Gökce, A., 92M/2955, 2956 Goldberg, E. D., 92M/0682, 1817 Goldberg, S., 92M/1354 Goldberg, S. A., 92M/1303, 4731 Goldenberg, G., 92M/2658 Goldfarb, R. J., 92M/0532, 1290, Goldhaber, B., 92M/0593 Goldhaber, M. B., 92M/0594, 4080 Golding, S. D., 92M/0370 Goldring, D. C., 92M/2662 Goldsmith, J. R., 92M/1584, 1608 Goldstein, J. I., 92M/0793 Goldstein, S. J., 92M/2427 Golestaneh, F., 92M/2587 Golightly, J. P., 92M/0277 Goltrant, O., 92M/3277 Gomes, C. de S. F., 92M/1336 Gomes, C. L., 92M/4647 Gomes, C. Leal, 92M/0986 Gomez, B., 92M/1099 Gomez-Caballero, A., 92M/1901 Gong, Z., 92M/2888 Gonzáles Rodriquez, M., 92M/2541 Gonzalez, A., 92M/3988 González Camacho, A., 92M/2215 González del Tanago, J., 92M/2290 Gónzalez del Tánago, J., 92M/4924 González García, F., 92M/2541 González-López, J. M., 92M/2289 González Pardo, J. J., 92M/1863 Goodell, P. C., 92M/2991 Goodfriend, G. A., 92M/3145, 3147 Gooding, C. R., 92M/5011 Gooding, J. L., 92M/0781

Goodman, S., 92M/3410 Goodrich, C. A., 92M/4354 Goodwin, L. B., 92M/1308 Gorbatschev, R., 92M/0010 Gordienko, V. V., 92M/4628 Gordon, T. M., 92M/4298 Goresy, A. El, 92M/0792, 1240 Gorga, R., 92M/1497 Gorgoni, C., 92M/2841 Gorody, T., 92M/2090 Gorter, J. D., 92M/3573 Gorton, M. P., 92M/1688 Gorzawski, H., 92M/2988 Goscombe, B., 92M/4948 Gosselin, D. C., 92M/4503 Gosso, G., 92M/4928 Gostin, V. A., 92M/3083 Goswami, J. N., 92M/0789 Goto, H., 92M/0691 Goto, Y., 92M/0111, 2880, 4722 Gotoh, Y., 92M/0138 Gotte, W., 92M/3640 Gottesmann, B., 92M/2571 Götz, D., 92M/3691 Götze, J., 92M/0993 Gotze, J., 92M/1865 Götze, J., 92M/3556 Gouchi, N., 92M/4722 Gougeon, P., 92M/2638 Gough, D. I., 92M/4234 Gould, S. A. C., 92M/1341 Gould, W. D., 92M/2901 Gourgaud, A., 92M/1080 Govers, R., 92M/2331 Govil, P. K., 92M/0649 Gower, C. F., 92M/0896 Gowing, C. J. B., 92M/2459 Goy-Eggenberger, D., 92M/2286 Goyette, R. J., 92M/1386 Grønlie, A., 92M/0377, 4696 Graber, E. R., 92M/2442 Grabezhev, A. I., 92M/4622 Grabman, K. B., 92M/1583 Graça, R. C., 92M/4475 Grachev, A., 92M/1254 Gracheva, T. V., 92M/1276 Grade, J., 92M/0342 Grady, M. M., 92M/3213, 4582 Graeme-Barber, A., 92M/0466 Graeser, S., 92M/2032 Graetsch, H., 92M/0235, 2001 Graf, H.-W., 92M/3678 Gragnani, R., 92M/2594 Graham, A. L., 92M/0782 Graham, C. M., 92M/0438, 1557, 1558, 1698, 2862, 4117 Graham, E. K., 92M/2342 Graham, I. J., 92M/1287, 4700 Graham, J., 92M/2446 Graham, J. R., 92M/3383 Grainger, P., 92M/3178 Gramaccioli, C. M., 92M/0518 Grambling, J. A., 92M/2607 Gramlich, V., 92M/2612 Graney, J. R., 92M/3170 Grant, A. H., 92M/1887, 2819 Grant, J. A., 92M/1115 Grantham, G. H., 92M/1020, 2100 Grapes, R. H., 92M/0038, 1646 Graphchikov, A. A., 92M/2802 Gratton, Y., 92M/0698 Grauch, R. I., 92M/0058, 3995 Grauert, B., 92M/2401 Graupner, T., 92M/3426 Grave, E. De, 92M/1600, 2600

Grave, E. de, 92M/4670 Gray, C. M., 92M/2931 Gray, D. R., 92M/2965 Gray, J., 92M/2961 Gray, J. E., 92M/3189 Greally, K. B., 92M/1872 Greaves, M. J., 92M/0731 Green, D. H., 92M/0405, 0459, 1563, 3019, 3042, 4101, 4872 Green, F., 92M/0014 Green, P. M., 92M/3166 Green, T. H., 92M/0403, 2941, 4818 Green, W. V., 92M/2339 Greenberg, J., 92M/4079 Greenough, J. D., 92M/2122, 4723, 4956 Greenwood, H. J., 92M/2861 Greenwood, P. B., 92M/0638 Greenwood, P. G., 92M/0318 Greenwood, R. C., 92M/4361 Gregoire, D. C., 92M/3193 Grégoire, D. C., 92M/3757, 3985 Gregory, M. R., 92M/4651 Gregory, R. T., 92M/2965, 4201 Greis, O., 92M/3308 Grenèche, J.-M., 92M/0617 Grenne, T., 92M/0335, 2706 Grenthe, I., 92M/2820 Gresham, J. J., 92M/1480 Gresta, S., 92M/1043 Grew, E. S., 92M/0831, 2609, 2808, 3332, 4609, 4610 Grewal, K. S., 92M/0168 Grez, E., 92M/1453, 1456 Grice, J. D., 92M/2601, 2610, 2636, 3327, 3330 Grieken, R. E. Van, 92M/3753 Griffen, W. L., 92M/1753 Griffin, B. J., 92M/0083 Griffin, T., 92M/4416 Griffin, W. L., 92M/0805, 3357, 4379 Griffith, J. D., 92M/4248 Griffiths, R. W., 92M/0973 Grifoll, M., 92M/0756 Grillet, Y., 92M/0122 Grillo, S. M., 92M/3568, 3870 Grimalt, J. O., 92M/0756, 1864, 3156 Grimaud, D., 92M/3121 Grime, G. W., 92M/0109 Grimm, B., 92M/3900 Grimm, K., 92M/3986 Grimm, R. E., 92M/0774 Grins, J., 92M/1391 Grishin, M. P., 92M/3572 Grobler, N. J., 92M/3043 Groenewald, P. B., 92M/0663, 2100 Gromoll, L., 92M/3565 Grönvold, K., 92M/1716 Groos, A. F. Koster van, 92M/0124 Groos, A. F. K. van, 92M/0464 Groos, A. F. Koster van, 92M/1554 Groot, P. A. de, 92M/2948 Gropper, H., 92M/1448 Grossl, P. R., 92M/4149 Grossman, E. L., 92M/4146 Grossman, J. N., 92M/4579, 4594 Grossman, L., 92M/1923, 4590 Grossmann, M., 92M/1237 Grove, H. E., 92M/4504 Grove, T. L., 92M/1538, 2831 Groves, D., 92M/3920

Groves, D. I., 92M/0327, 0577, 0884, 0885, 0899, 1478, 1481, 1739, 2666, 3893, 3897, 3916, 3947 Grozaz, G., 92M/3224 Grozdanov, L., 92M/0826 Grozdanov, L. A., 92M/0827 Gruau, G., 92M/0614, 3353 Grubb, P. L. C., 92M/1376 Grubb, S. M. B., 92M/2536 Grubessi, O., 92M/0817 Gruehn, R., 92M/2646 Gruenewaldt, G. Von, 92M/4328 Grunder, A. L., 92M/3063 Grundlach, H., 92M/2105 Grundmann, G., 92M/0549, 1622, 3250 Grundy, H. D., 92M/1378 Gruneisen, P., 92M/0999 Grunsky, E. C., 92M/1294 Grzechnik, A., 92M/1165, 1413 Gschwend, P. M., 92M/2457, 3794 Gu, X., 92M/1750, 2962 Gubanov, A. M., 92M/4656 Gübelin, E. J., 92M/4184 Gudmundson, G., 92M/2791 Gudmundsson, A., 92M/3474, 4724 Guevara, M., 92M/2221 Guggenheim, R., 92M/2032 Guggenheim, S., 92M/0124, 0232, 0464, 2619 Guha, D., 92M/1533 Guha, J., 92M/0274, 0277, 0279, 0291 Guha, S., 92M/0036 Guidi, M., 92M/1081, 1553 Guidotti, C. V., 92M/0834, 1192, 2939, 4620 Guilemany, J. M., 92M/4638 Guilhamou, N., 92M/3938 Guiliani, G., 92M/3906 Guille, G., 92M/3676 Guillen, J., 92M/2451 Guillot, F., 92M/2405 Guillou, J. J., 92M/3314 Guimarães, P. J., 92M/3923 Guindo, A., 92M/3939, 3974, 4012 Guinea, J. G., 92M/3977 Guise, P. G., 92M/1579 Guiseppetti, G., 92M/3822, 3853 Gülec, N., 92M/1733 Gumiel, P., 92M/1427 Gunalan, N., 92M/0555 Gunasekera, H. P. N. J., 92M/2916 Gunawardane, R. P., 92M/2611 Gunn, A. G., 92M/4320 Gunnarsson, B., 92M/3473 Gunnesch, K. A., 92M/2987 Gunnesch, M., 92M/2987 Gunnlaugsson, E., 92M/1819 Gunten, H. R. von, 92M/4476 Gunter, M. E., 92M/0082, 2071, 2877, 4177 Günther, D., 92M/2472 Guntiñas, M. B. de la Calle, 92M/2485 Guo, G., 92M/3672 Guo, J., 92M/0561 Guo, J. F., 92M/2941 Guo, W., 92M/0297 Gupta, L. N., 92M/3236 Gupta, P. K. S., 92M/1392, 1393, 1412 Gupta, S. N., 92M/0036, 0648

Gurney, J. J., 92M/1270, 1530, 1671, 4154, 4379 Gurney, J. L., 92M/1655 Guse, W., 92M/1405 Guth, J.-L., 92M/2876 Guthrie Jr, G. D., 92M/1995, 2013 Gutiérrez Claverol, M., 92M/1313 Gutteridge, P., 92M/2252 Güttler, B. K., 92M/3825 Güven, N., 92M/1334, 3782 Guyot, F., 92M/3817 Gwanmesia, G. D., 92M/2343 Gwozdz, R., 92M/2108 Gwyther, R. L., 92M/4977 Gyapong, W., 92M/3928

Ha, N. T., 92M/3579 Haack, U., 92M/0526, 0708, 0709 Haag, R. A., 92M/0776 Haake, B., 92M/2365 Haake, R., 92M/1236 Haan, S. Bierens de, 92M/0860 Haase, G., 92M/1275, 2926 Habedank, M., 92M/1275 Habfast, K., 92M/3706 Hackbarth, C. J., 92M/2759 Hacker, B. R., 92M/3065 Hadan, M., 92M/2764 Hadizadeh, J., 92M/0907, 1196, 3610 Haendel, D., 92M/3084 Haeussier, G. T., 92M/2963 Haeussler, G. T., 92M/4411 Hafner, S. S., 92M/1208 Hagee, B., 92M/0791 Hagee, B. E., 92M/4068 Hagemann, S. G., 92M/3947 Hagenfeldt, S. E., 92M/0802 Hager, I., 92M/2764 Hager, J. W., 92M/0100 Haggerty, S. E., 92M/0850, 0851 Hagni, R. D., 92M/0314, 2744 Hagstrum, J. T., 92M/4858 Hahn, T., 92M/2624 Hahne, K., 92M/3657 Haile-Meskel, A., 92M/2096 Hakim, M., 92M/2587 Halbach, P., 92M/2667, 2970 Hälbich, I. W., 92M/2095 Hald, N., 92M/4781 Halden, N. M., 92M/0883 Hale, M., 92M/4551 Hales, P. E., 92M/2481 Halfpenny, R., 92M/2685 Halicz, L., 92M/1255 Hall, A., 92M/0620, 4372 Hall, A. J., 92M/0519, 1658 Hall, C. M., 92M/0032, 0059 Hall, D. L., 92M/1490, 1700 Hall, G. E. M., 92M/1311, 1893, 2478, 2479, 3191, 4345, 4562 Hall, K., 92M/3132, 3133 Hall, L. M., 92M/4671 Hall, P. B., 92M/3132 Hall, P. L., 92M/0143 Hall, R. P., 92M/4762 Hallacli, H., 92M/3390 Hallbauer, D. K., 92M/2412 Hallberg, J. A., 92M/0884, 0885 Halley, S., 92M/2680 Halliday, A. N., 92M/0530, 0773, 1304, 1737, 4318 Halls, C., 92M/0845, 1129, 4006 Halls, H. C., 92M/4738, 4740

Hallsworth, C. R., 92M/3244 Halsor, S. P., 92M/3507 Hambleton-Jones, B. B., 92M/3185 Hamelin, B., 92M/0052, 2392 Hamer, R. D., 92M/3949 Hamidullah, S., 92M/0925 Hamilton, P. J., 92M/1658, 4882, Hammarstrom, J. M., 92M/4186 Hammer, V. M. F., 92M/3294 Hammerschmidt, K., 92M/1981, 4374, 4391 Hammond, J. G., 92M/4732 Hammond, L. C., 92M/0496 Hammond, P. E., 92M/3744 Hammond, R., 92M/1595 Hampton, C. M., 92M/4776 Han, B., 92M/4842 Han, F., 92M/0358 Hanan, B. B., 92M/2998, 4375 Hancock, P. L., 92M/2325 Hancock, R. G., 92M/1297 Hand, M., 92M/2306 Hanes, J., 92M/0004 Hanke, H., 92M/3698 Hanna, J. V., 92M/2555 Hanna, S. S., 92M/3541 Hanneman, W. W., 92M/4190 Hanni, H. A., 92M/1616 Hannington, M. D., 92M/2661, 3194 Hansen, B. T., 92M/2407 Hansen, E., 92M/3939 Hansen, H. C. B., 92M/1340, 1372, 2905 Hansen, K. S., 92M/0701 Hansen, P. L., 92M/1341 Hansley, P. L., 92M/4541 Hansma, P. K., 92M/1341 Hansmann, J., 92M/4300, 4464, 4934, 4935, 4936 Hansmann, W., 92M/0027 Hanson, D. R., 92M/0445 Hanson, G. N., 92M/0037, 0674, 2193, 4314 Hanson, R. B., 92M/3592, 3604 Hanssen, E., 92M/3974, 4012 Hansteen, T. H., 92M/0992, 3405 Harada, K., 92M/0841 Harakal, J. E., 92M/0053 Hardarson, B. S., 92M/0612 Harder, H., 92M/2918, 4169 Harder, V., 92M/0377 Hardie, L. A., 92M/1106 Hardy, L. S., 92M/2743 Hardy, M., 92M/1377, 3811 Hare, P. E., 92M/3145, 3146, 4525 Hari, K. R., 92M/0557 Hariya, Y., 92M/0110, 0111, 0246 Harle, S., 92M/0171 Harley, M., 92M/3943, 3953, 4014 Harmanto, 92M/0368 Harmon, R. S., 92M/0524, 0545, 1777, 2159, 4277, 4299 Harneit, O., 92M/4118 Harney, D. M. W., 92M/4328 Harnish, R. A., 92M/4496 Harnois, L., 92M/0670, 1767, 3051 Harper, T. R., 92M/2323 Harpp, K. S., 92M/4832 Harrigan, S. G., 92M/4501 Harris, C., 92M/0663, 1740 Harris, D. C., 92M/0072 Harris, J. W., 92M/1270, 1651, 1671, 3733

Harris, N. B. W., 92M/1812 Harris, N. B., 92M/4881 Harris, N. B. W., 92M/3731, 4384, 4945 Harris, W. B., 92M/2435 Harris, W. G., 92M/0151 Harrison, J. C., 92M/2415 Harrison, R. W., 92M/3169 Harrison, T. M., 92M/1281, 2351, 2822, 4719 Harrison, T. N., 92M/0611, 2281 Harrison, W. J., 92M/4511 Harrold, B. P., 92M/2680 Hart, R. H. G., 92M/4977 Hart, S. C., 92M/1373 Hart, S. R., 92M/0520, 0606, 1668, 1670, 4284, 4334 Harte, B., 92M/2143, 2150, 2151, 2161 Hartel, T. H. D., 92M/1184 Hartley, A., 92M/2260 Hartley, A. J., 92M/3746 Hartley, G., 92M/3141 Hartley, J. S., 92M/1472 Hartman, J. S., 92M/1378 Hartmann, L. A., 92M/2319, 3931 Hartopanu, I., 92M/3878 Hartopanu, P., 92M/3878 Hartsch, J., 92M/3180 Harvey, C. C., 92M/3798 Harvey, H. H., 92M/4499 Harvey, H. R., 92M/3148 Harvey, R. P., 92M/4581 Hasegawa, A., 92M/1215 Hasegawa, H. S., 92M/2391 Hasenaka, T., 92M/0654 Hashimoto, A., 92M/4567 Hashimoto, M., 92M/1326, 3102, 3263 Hashizume, K., 92M/4297 Haskin, L. A., 92M/1544, 3202, 4831 Haswell, S. J., 92M/2464 Haszeldine, R. S., 92M/4883 Hatcher, P., 92M/3141 Hatcher, P. G., 92M/4547 Hatton, C. J., 92M/1004 Hattori, K., 92M/1668, 4284, 4334 Hauck, S. A., 92M/4828 Haudenschild, U., 92M/1723 Haugen, J.-E., 92M/0752 Haugerud, R. A., 92M/2810 Hauschka, P. V., 92M/2395 Hausen, D. M., 92M/0305, 0306, 0307 Hauser, S., 92M/4838 Häusler, W., 92M/3789 Hausner, R., 92M/4141 Häussinger, H., 92M/4936 Haute, P. van den, 92M/0018 Haven, H. L. Ten, 92M/3149, 4524, 4533, 4539 Haverbeke, L., 92M/2908 Haverkamp, S., 92M/3747 Hawke, D. T., 92M/2464 Hawkes, D. D., 92M/4548 Hawkes, G. E., 92M/2625 Hawkesworth, C., 92M/0665 Hawkesworth, C. J., 92M/1752, 1776, 3731, 4970 Hawkins, K., 92M/1408 Hawkworth, M. A., 92M/4022 Hawthorne, F. C., 92M/0214, 0262, 1414, 2601, 2610, 3826,

3827, 4099

Hay, B. J., 92M/4441 Hay, G. W., 92M/2482 Hay, R. L., 92M/1271 Hay, W. W., 92M/2248 Hayama, Y., 92M/4815 Hayashi, H., 92M/0175 Hayashi, K. I., 92M/0486 Hayashi, K.-I., 92M/1604 Hayashi, M., 92M/1949, 3235 Hayes, J. M., 92M/0758 Haymon, R. M., 92M/1094 Hayward, C. L., 92M/0977 Hayward, N., 92M/2261, 2742 Hayward, S. B., 92M/2694 Hazen, R. M., 92M/0224, 1587, 2598, 2603, 3664, 4124 Hazlett, R. W., 92M/3477 He, Y., 92M/4433 Heaman, L., 92M/1309 Heaman, L. M., 92M/0896, 3453, 4404, 4826 Heaney, P. J., 92M/0474, 2873 Heape, J. M. T., 92M/2692 Hearn Jr, B. C., 92M/4413 Heath, G. R., 92M/0189 Heath, M. J., 92M/0391 Hebeda, E. H., 92M/0019 Hebert, R., 92M/0281 Hébert, R., 92M/4873 Heckel, J., 92M/2466 Hedenquist, J. W., 92M/1645, 1682, 3493 Hedge, G. V., 92M/3391 Hedges, J. I., 92M/4532, 4547 Hefferan, K., 92M/2079 Hefferan, K. P., 92M/5008 Heger, G., 92M/3848 Heggie, M., 92M/3835 Heggie, M. I., 92M/4119 Hegner, E., 92M/1293 Heick, E. L., 92M/1354 Heide, B., 92M/4030 Heide, K., 92M/2516, 4040 Heidemann, D., 92M/2613 Heider, F., 92M/4988 Heijl, E., 92M/2347 Heijnis, H., 92M/3714 Heil, A., 92M/2525 Hein, J. R., 92M/0329 Heine, V., 92M/1528, 2872, 3819 Heininger, P., 92M/4438 Heinrich, A. R., 92M/0240 Heinrich, C. A., 92M/0536, 1678, 4016 Heinrich, W., 92M/4833 Heinrichs, H., 92M/0610 Heinschild, H.-J., 92M/0714, 4300, Heithersay, P. S., 92M/3734 Heithmar, E. M., 92M/0105, 3758 Heizler, M. T., 92M/2351 Hejl, E., 92M/0018, 1256 Hekinian, R., 92M/3047, 4873 Heldal, M., 92M/4351 Helffrich, G., 92M/2337 Helgason, Ö., 92M/4642 Heller-Kallai, L., 92M/0152, 0159, 1858 Hellermann, B. E., 92M/1807 Helleur, R., 92M/3141 Hellingwerf, R. B., 92M/4460 Hellmann, R., 92M/2623 Helmers, H., 92M/1184, 1717 Helms, T. S., 92M/3399 Helmstaedt, H., 92M/3549

Helvaci, C., 92M/2410, 2927 Helz, R. T., 92M/0855 Hem, J. D., 92M/1598 Hemingway, B. S., 92M/0462, 0497, 1352, 2856, 2863, 4128 Hemley, J. J., 92M/2895, 2896 Hemley, R. J., 92M/0484, 1587, Hemming, N. G., 92M/4314 Hemming, S., 92M/4270 Hemond, C., 92M/2997 Hemond, H. F., 92M/0699, 1315 Henderson, C. M. B., 92M/0412, 1402, 2177, 4775 Hendry, G. L., 92M/0676 Hendry, J. P., 92M/0869 Hendry, M. J., 92M/1831, 1832, 1833, 1834 Henley, R. W., 92M/1476 Henmi, C., 92M/2002, 2009 Henmi, K., 92M/0163 Henmi, T., 92M/2565 Henn, U., 92M/1621, 1633, 1634, 1965, 4156, 4168, 4173, 4176, Hennig-Michaeli, C., 92M/1556 Henning, K.-H., 92M/1345, 2537 Henriquez, F., 92M/1456 Henry, A. L., 92M/4538 Henry, C. D., 92M/3465 Henry, D. A., 92M/4667 Henry, D. J., 92M/1192 Henry, P., 92M/4684, 4964 Hensel, H. D., 92M/3447 Hensen, B. J., 92M/4468 Henshaw, J. M., 92M/0105 Henson, T. J., 92M/3326 Hentschel, G., 92M/4675 Heppner, P.-M., 92M/4299 Hérail, G., 92M/3869 Heras, F. X. De Las, 92M/3156 Herbert, A., 92M/2484 Herbert, H. J., 92M/1815 Herbert, T. D., 92M/3754 Herbst, D. B., 92M/0871 Herczeg, A. L., 92M/1526, 4485, 4489, 4490, 4492 Hergt, J. M., 92M/1752, 4970 Hernán, F., 92M/2171 Hernández-Chiva, E., 92M/3179 Hernandez, J., 92M/4088 Hernández Pacheco, A., 92M/2171 Herndon, J., 92M/3126 Heroux, Y., 92M/4538 Herrero, J., 92M/3788 Herrero, J. M., 92M/1457 Herrick,, R. R., 92M/0774 Herrington, C. R., 92M/0107 Herrmann, A. G., 92M/2066 Hertogen, J., 92M/0613 Hertwig, T., 92M/3181, 3183 Herut, B., 92M/4479 Hervig, R. L., 92M/0430 Herzig, P., 92M/0302 Herzig, P. M., 92M/2661 Herzog, G. F., 92M/3209, 3228 Hess, J., 92M/0737 Hesse, K.-F., 92M/3823 Hesse, R., 92M/0182, 2280, 2620 Hessels, J. K. C., 92M/4529 Hester, B. W., 92M/1486 Hetenyi, M., 92M/3158 Heughebaert, L., 92M/3792 Heumann, K. G., 92M/0526 Heurck, C. Van, 92M/3820

Heuss-Aßbichler, S., 92M/2152, 2153, 2161 Heusser, E., 92M/0772 Hewins, R. H., 92M/1927 Hewitt, D. A., 92M/2434 Hewitt, W. V., 92M/1911 Heyden, P. van der, 92M/0053 Hi, D. Y., 92M/4560 Hibberson, W., 92M/0423 Hickey III, R. J., 92M/2746 Hickey-Vargas, R., 92M/3041 Hickling, N. L., 92M/1112 Hieftje, G. M., 92M/0104 Hieke, W., 92M/4688 Hieshima, G. B., 92M/3574 Higgins, M. D., 92M/3741, 4725 Highton, A. J., 92M/4920 Hildebrand, A. R., 92M/3232, 4597 Hildreth, W., 92M/1781, 3509 Hileman Jr, O. E., 92M/4078 Hileman, O. E., 92M/4138 Hilgen, F. J., 92M/2396 Hill, B., 92M/4185 Hill, D. H., 92M/0776 Hill, R. I., 92M/0902 Hill, R. J., 92M/0088 Hill, S. J., 92M/1655 Hillaire-Marcel, C., 92M/3725 Hiller, A., 92M/1234, 3718 Hiller, H., 92M/1275, 2426 Hillier, S., 92M/0836 Hilst, R. van der, 92M/1216 Hilton, D. R., 92M/4391 Hilz, M., 92M/4669 Himmelberg, G. R., 92M/4708, Hines, M. E., 92M/4486, 4487, 4490, 4493, 4494 Hinkley, T. K., 92M/1066 Hinners, T. A., 92M/0105, 3758 Hinterlechner-Ravnik, A., 92M/2296, 2297 Hinton, R. W., 92M/0878, 3237, 4269 Hirajima, T., 92M/3262, 4903 Hirata, T., 92M/2493 Hirayama, K., 92M/2489 Hirn, A., 92M/2214, 2218 Hirner, A. V., 92M/0761, 1850 Hirosue, H., 92M/2546 Hirsch, L. M., 92M/2823, 2887 Hirschmann, M., 92M/1568 Hitterman, R. L., 92M/2630 Hiyagon, H., 92M/4286, 4305 Hlava, P. F., 92M/0878 Ho, C.-H., 92M/1076 Ho, C. H., 92M/3502 Hoang, C. T., 92M/0052 Hoashi, M., 92M/1922 Hoatson, D. M., 92M/0578, 2732 Hobbs, B. E., 92M/2871 Hobbs III, C. H., 92M/0385 Hoblitt, R. P., 92M/3503, 4845 Hochella Jr, M. F., 92M/0255, 1406, 3845, 4145 Hockley, D. E., 92M/4106 Hodder, R. W., 92M/0669 Hodeau, J.-L., 92M/4125 Hodge, G. D., 92M/0155 Hodge, V., 92M/0682 Hodgson, C. J., 92M/3964 Hodgson, N. A., 92M/4645 Hodkinson, I. P., 92M/2180 Hodkinson, R. A., 92M/1436 Hodych, J. P., 92M/4723

Hoefs, J., 92M/0711, 0712, 3663, 4347 Hoehn, E., 92M/4476 Hoek, J. D., 92M/0958, 3449 Hoering, T. C., 92M/0592, 2447, Hoernes, S., 92M/1810, 2157, 2159, 2161, 4089 Hoemle, K., 92M/3017 Hoernle, K. A., 92M/1735 Hoffer, R. L., 92M/3602 Hoffman, S. J., 92M/1876 Hoffman, V., 92M/2019, 2035 Hoffmann, C. F., 92M/1679 Hoffmann, V., 92M/4988 Hofmann, A. W., 92M/2995, 3067, 3100, 4279 Hofmann, B., 92M/0320, 1458 Hofmann, B. A., 92M/3076, 4574 Hofmann, H. J., 92M/2386, 3207 Hofmann, R., 92M/3839 Hofmann, R. A., 92M/0684 Hofmann, W., 92M/2593 Hofmeister, A. M., 92M/0448, 2631, 4126 Hofstetter, A., 92M/2455 Hofstra, A. H., 92M/3168, 3862 Hogg, A. J. C., 92M/4884 Hohenberg, C. M., 92M/1932 Höhener, P., 92M/0683 Hohino, K., 92M/0949 Höhndorf, A., 92M/0022 Hoinkes, G., 92M/1156 Hoisch, T. D., 92M/1578, 4719 Holasek, R. E., 92M/1071 Holdaway, M. J., 92M/0220, 2607 Holden, P., 92M/0530 Holden, P. N., 92M/4514 Holdren, G. R., 92M/0471 Hole, M. J., 92M/4788 Höll, R., 92M/1664 Holland-Duffield, C. E., 92M/0793 Holland, H. D., 92M/2976 Holland, J. G., 92M/2470 Holland, T., 92M/2843, 4111 Holland, T. J. B., 92M/0461 Holliday, B. P., 92M/4478 Holliger, P., 92M/3907, 4325 Hollister, L. S., 92M/2428 Hollister, V., 92M/4021 Hollocher, K., 92M/1194 Holloway, J. R., 92M/0430, 2791 Holloway, S., 92M/0912 Holm, N. G., 92M/4689 Holme, K., 92M/1720 Holmes, J. A., 92M/2481 Holmes, M. L., 92M/4965 Holness, M. B., 92M/0438, 1557, 1558 Holser, W. T., 92M/1844 Holtstam, D., 92M/2003, 2353 Hölttä, P., 92M/3365 Holtz, F., 92M/0432, 1541, 2169, 2793, 2834, 4049, 4060 Holzbecher, J., 92M/1922 Homer, D. L., 92M/4497 Honda, S., 92M/2422, 2577 Hong, L., 92M/1436 Honjo, N., 92M/3459 Honjo, S., 92M/0759 Hooft, E. E., 92M/5010 Hoogewerff, J. A., 92M/4391 Hoogvliet, H., 92M/2693 Hooper, J. J., 92M/3320 Hooper, P. R., 92M/0651

Hoover, J. D., 92M/1778 Hopgood, A. M., 92M/4765 Hopkins, D. M., 92M/3188 Hoppis, H. A., 92M/3958 Horáková, M., 92M/2017, 2062 Horan, M. F., 92M/0681 Horath, F., 92M/4962 Horbe, A. C., 92M/1896 Horbe, M. A., 92M/1896 Hori, S., 92M/1215 Hori, T., 92M/4482 Horio, M., 92M/2529, 2563 Horiuchi, J., 92M/0223 Horiuchi, S., 92M/1215 Horn, E. E., 92M/0710 Horn, I., 92M/1209 Hornbrook, E. H. W., 92M/3190 Hornemann, U., 92M/4120 Hort, M., 92M/2828, 4770 Horvath, F., 92M/1643 Horylová, A., 92M/2036 Hoshizumi, H., 92M/1058 Hosking, P., 92M/0201 Hosoya, S., 92M/2341 Hossain, M. B., 92M/1412 Hostettler, F. D., 92M/3138 Hoth, K., 92M/3639 Houghton, B. F., 92M/3495, 4851, 4852, 4853 Houk, R. S., 92M/0101, 0103 Housh, T., 92M/0467 Housh, T. B., 92M/0472 Housley, R. M., 92M/3308 Houston, H., 92M/1214 Hovis, G. L., 92M/0469, 4121 Hovorka, D., 92M/1953 Howard, J. J., 92M/1359 Howard, J. L., 92M/3659 Howard, K. A., 92M/1083 Howell, D., 92M/0225 Howell, V. J., 92M/0762 Howells, M. F., 92M/3476 Howes, B. L., 92M/0397 Howie, R. A., 92M/1327 Howie, R. Alan, 92M/0260, 2611 Hoz, L. R., 92M/0333 Hristov, L., 92M/1996 Hruska, D., 92M/4021 Hu, J., 92M/4127 Hu, J.-Y., 92M/1827 Hu, L., 92M/3875 Hu, M., 92M/3824 Hu, S., 92M/0561 Hu, W., 92M/0366 Hu, Z., 92M/0561 Huanbo, Z., 92M/1552 Huang, B., 92M/4332 Huang, D., 92M/0356, 1466 Huang, E., 92M/0357 Huang, F., 92M/0562 Huang, P. M., 92M/4104 Huang, W., 92M/1751 Huang, W. L., 92M/1334 Huang, W.-P., 92M/0936 Huang, Y., 92M/4329 Huard, E., 92M/0152 Hubbard, N., 92M/2360, 2362 Hubert, C., 92M/0276, 0587, 2738, 3922, 3932 Hubert, M. L., 92M/5012 Hübner, G., 92M/0376 Hübner, M., 92M/2568 Huckenholz, H. G., 92M/2857, 2858 Hudak, G. J., 92M/1440

Huebner, J. S., 92M/0602 Huertas, F., 92M/2557 Huertas, M. Ortega, 92M/4437 Huff, W. D., 92M/0173 Hughes-Clarke, M. W., 92M/3541 Hughes, D. J., 92M/4762 Hughes, J. M., 92M/0261, 1410, 2644 Hughes, N., 92M/0061 Hughes, P. S., 92M/1856 Huhma, H., 92M/3368, 3369, 3370 Huichu, R., 92M/1433 Hulbert, L. J., 92M/3985 Hummel, W., 92M/2641 Humphrey, J. D., 92M/3089 Humphries, W., 92M/2502 Hunger, W., 92M/2593 Hunt, J. P., 92M/2896 Huntemann, T., 92M/3629 Hunter, B. K., 92M/3842 Hunter, D. R., 92M/1020 Hunziker, J., 92M/3621 Hunziker, J. C., 92M/0024, 4927 Huon, S., 92M/1369 Huppert, H. E., 92M/0975, 4975 Hurdley, J., 92M/1916 Hurford, A. J., 92M/0024, 1260, 2408, 3607 Hurlbut Jr, C. S., 92M/1325 Hurst, A. W., 92M/1070 Hurst, S., 92M/0716 Hussain, A. G., 92M/0035 Hussain, S., 92M/4183 Hussein, I. M., 92M/2080 Huston, T. J., 92M/0530, 4318 Hut, G., 92M/1832 Hutcheon, I. D., 92M/4233, 4588 Hutchinson, R. W., 92M/0300, Hutchison, R., 92M/0788 Hutton, D. H. W., 92M/0611, 2281 Hutton, D. R., 92M/4163 Hutton, R. C., 92M/2470 Hyde, R. S., 92M/4898 Hyndham, D. W., 92M/2189 Hyndman, R. D., 92M/4681, 4687 Hyršl, J., 92M/2064, 3687, 3688, 3692, 3693 Hyrsl, J., 92M/2374, 2375

Ias, M. E., 92M/1480 Ibaraki, M., 92M/2567 Ibarguchi, J. I. Gil, 92M/0915, 1141, 1142 Ibarguchi, J. I. G., 92M/0809, 1157, 1158, 1570, 3348 Ibisi, M. I., 92M/0157 Ibrahim, M. S., 92M/1686 Ichikawa, J., 92M/3834 Ida, Y., 92M/3492 Igarashi, G., 92M/3494, 4481 Igarashi, S., 92M/3036 Ige, O. A., 92M/0640 Ignatenko, K. I., 92M/4649 Ignatov, S. I., 92M/4178 Iidaka, T., 92M/4985 Iijima, A., 92M/0835 Iishi, K., 92M/0453 Iiyama, J. T., 92M/4683 Iiyama, T., 92M/0465 Iizumi, S., 92M/4815 Ikawa, N., 92M/0139 Ikawa, T., 92M/4843 Ikeda, S., 92M/0002

Ikeda, T., 92M/1987, 3035 Ikeda, Y., 92M/3035, 3218 Ikingura, J. R., 92M/4329 Ikonen, L., 92M/4635 Ilani, S., 92M/0690 Ilchik, R. P., 92M/0601, 3589 Ilgen, G., 92M/1312, 2593, 3748 Ilich, M., 92M/0552 Iliinsky, G. A., 92M/4608 Imai, N., 92M/0653 Imeokparia, E. G., 92M/1170 Ince, F., 92M/2357, 2358 Indraratna, B., 92M/0169 Inger, S., 92M/4384, 4945 Ingle, J. D., 92M/0093 Ingri, J., 92M/1782, 4473 Injoque-Espinoza, J., 92M/2989, 2990 Innocenti, F., 92M/3436 Inoue, A., 92M/0128, 0178, 0179, 0188, 1355 Inoue, M., 92M/0495 Inskeep, W. P., 92M/4149 Insley, M. W., 92M/1501 Inui, T., 92M/0495 Ioppolo, S., 92M/0623 Iozzelli, P., 92M/2206 Ireland, T. R., 92M/3705, 4272 Irvine, T. N., 92M/3358, 3451 Irwin, J. J., 92M/4259, 4260 Isaac, M. J., 92M/3997 Ishibashi, J., 92M/2930, 3494, 4481 Ishibashi, J.-I., 92M/3121 Ishibashi, J.-i., 92M/4685 Ishida, T., 92M/0205, 0957, 1060 Ishihara, S., 92M/0042, 0637, 2984 Ishikawa, T., 92M/3767, 4399 Ishiwatari, A., 92M/3545 Ishiyama, D., 92M/0567 Ishizuka, H., 92M/0814 Islam, F., 92M/0925 Islam, R., 92M/1010 Isles, D. J., 92M/4733 Issa Filho, A., 92M/1895 Isshiki, N., 92M/3490 Itagaki, M., 92M/0481 Italiano, F., 92M/1047 Itaya, T., 92M/0038, 4722 Ito, E., 92M/0225, 1566, 4086, Ito, K., 92M/0485 Ito, Y., 92M/2875 Itoh, J., 92M/3038, 3489 Iturralde-Vinent, M. A., 92M/4902 Ivaldi, G., 92M/3247 Ivanenko, V. V., 92M/2402 Ivanov, A. A., 92M/4944 Ivanov, M. A., 92M/1991 Ivanov, P., 92M/0843 Ivanova, G. F., 92M/4649 Ivanovich, M., 92M/1742, 1834 Ivanyuk, G. Yu., 92M/4614 Iwasaki, T., 92M/0132 Iyatomi, N., 92M/4113 Iyer, G. V. A., 92M/3924 Iyer, S. D., 92M/3027 Iyer, S. S., 92M/4347

Jabeen, N., 92M/0928 Jackman, J. A., 92M/1920 Jackman, P., 92M/3141 Jackson, B., 92M/4172, 4660 Jackson, D. H., 92M/1812, 4467

Izquierdo, G., 92M/2221

Jackson, I., 92M/2343 Jackson, J. L., 92M/1289 Jackson, M. C., 92M/1091 Jackson, M. J., 92M/3575 Jackson, S. L., 92M/1299 Jackson, T. E., 92M/3462 Jacob, K.-H., 92M/2846, 2847 Jacob, R. E., 92M/3864 Jacobs, G. K., 92M/4065 Jacobsen, S. B., 92M/1649, 3232, 4428, 4498 Jaffe, H. W., 92M/4671 Jago, B. C., 92M/1002 Jagoutz, E., 92M/1270, 3721, 4279 Jahren, J. S., 92M/0837 Jain, S. C., 92M/0922 Jaireth, S., 92M/0533, 1008, 2884 Jambon, A., 92M/1819, 4088, 4349 Jambor, J. L., 92M/0113 James, D., 92M/4413 James, D. M. D., 92M/4886 Jamieson, H. E., 92M/2819 Jamieson, R. A., 92M/1189, 2433, 3603 Jamtveit, B., 92M/1954, 4905 Jan, M. Q., 92M/0927, 0928, 0940, 0954 Jan, M. Qasim, 92M/0951 Jan, M. R., 92M/0950 Janacković, J., 92M/0165 Janardhan, A. S., 92M/3651 Janasi, V. A., 92M/0898 Janecky, D. R., 92M/2427 Janeczek, J., 92M/0996, 1946, 4617 Janev, J., 92M/2346 Jannik, N. O., 92M/2436 Jansa, J., 92M/2060 Jansen, J. B. H., 92M/0476, 1805 Janssen, C., 92M/2849, 3562, 3675 Janssen, M. A., 92M/1881 Jantschik, R., 92M/1369 Jarosch, D., 92M/3848 Jarrar, G. H., 92M/4380 Jarvie, D. M., 92M/3137 Jarvis, I., 92M/2468, 2469 Jarvis, K. E., 92M/2468, 2469, 2471 Jaupart, C., 92M/1030, 3469 Javoy, M., 92M/4283, 4376 Jayananda, M., 92M/0647, 3652 Jaynes, W. F., 92M/1357 Jean-Baptiste, P., 92M/3117 Jeanloz, R., 92M/2886, 3664 Jébrak, M., 92M/0670, 2698, 2737 Jedlička, J., 92M/2055 Jedwab, J., 92M/0304, 2047 Jefferis, S. A., 92M/2558 Jefferson, C. W., 92M/2349, 2652 Jeffery, R. G., 92M/1912 Jéhanno, C., 92M/4598, 4599, 4900 Jelínek, E., 92M/1163 Jelsma, H., 92M/0992 Jemielita, R. A., 92M/0589 Jenatton, L., 92M/3174, 3513 Jeng, R.-C., 92M/1951 Jenkin, G. R. T., 92M/0611, 4461, 4462 Jenkins, D. M., 92M/0461, 2616 Jenkins, G. R. T., 92M/1251 Jenkins, R., 92M/0090 Jenkins, W. J., 92M/0003 Jenne, E. A., 92M/2784 Jenner, G. A., 92M/3057 Jennings, W. L., 92M/4951 Jensen, L. C., 92M/2902, 4107

Jenyon, M. K., 92M/2087 Jerrow, M., 92M/2487 Jessberger, E. K., 92M/0772, 4601 Ji, H., 92M/0561 Jiang, R., 92M/0364 Jiang, S., 92M/0559 Jiang, S.-J., 92M/0103 Jiang, W.-T., 92M/2536, 2570 Jiang, X., 92M/1500 Jie, L., 92M/4577 Jilemnická, L., 92M/1624, 2016, 2019 Jimenez-Lopez, A., 92M/4105 Jiménez, P. Rodríguez, 92M/1363, 1365 Jin, L., 92M/4302 Jin, S., 92M/0365 Jing, Y., 92M/1180 Jingxiu, L., 92M/1552 João, X. J., 92M/4735 Joachim, H., 92M/2367 Joanny, V., 92M/3608 Jochum, K. P., 92M/3067, 3205 Joekes, I., 92M/1891 Joesten, R., 92M/0705 Joesten, R. L., 92M/3593 Johan, V., 92M/3255 Johan, Z., 92M/2717, 3255 Johannes, W., 92M/0432, 1541, 2793, 2834, 4946 Johansen, R. J., 92M/4356 Johanson, B., 92M/3371, 3372, 3373, 3876 Johansson, I., 92M/2141, 4783, 4785 Johansson, L., 92M/0010 Johansson, S. A. E., 92M/3761 Johnson, B. D., 92M/4980 Johnson, C. A., 92M/1597, 2974 Johnson, C. D., 92M/1197 Johnson, C. M., 92M/1774 Johnson, D., 92M/2394 Johnson, D. A., 92M/3596 Johnson, D. M., 92M/4138 Johnson, E. L., 92M/2838, 4267 Johnson, G. K., 92M/4123 Johnson, H. P., 92M/4965 Johnson, K. S., 92M/0738 Johnson, K. T. M., 92M/2114 Johnson, M. L., 92M/0791 Johnson, R. W., 92M/2831 Johnson, S. E., 92M/3605 Johnson, S. L., 92M/0742 Johnson, T. E., 92M/0905 Johnsson, P. A., 92M/1406 Johnston, A. D., 92M/0425, 4066 Johnston, C. L., 92M/4177 Johnston, D. A., 92M/1074 Johnston, J. H., 92M/1922 Johnston, P. J., 92M/2313 Johnston, T. P., 92M/2092 Joliff, B. L., 92M/4412 Jolliff, B. L., 92M/3202 Jolly, W. T., 92M/4405 Jonasson, I. R., 92M/2021 Jones, A. P., 92M/0977 Jones, B. F., 92M/1370, 1371 Jones, D. L., 92M/0703, 4427, 4430 Jones, D. M., 92M/0753 Jones, G., 92M/1089, 3547 Jones, G. C., 92M/4841 Jones, G. Ll., 92M/4698 Jones, H. D., 92M/1699, 3170, 4255 Jones, J. H., 92M/1592

Jones, M. H., 92M/2463 Jones, P., 92M/2739 Jones, P. J., 92M/3717 Jones, R., 92M/3835 Jones, R. D., 92M/0750 Jones, R. H., 92M/0408, 3226, 4591 Jong, B. H. W. S. De, 92M/2605 Jonsson, P., 92M/0687 Jørgensen, P., 92M/4472 Joron, J.-L., 92M/2113, 2998, 3048 Joseph, L. E., 92M/3395 Joseph, M., 92M/4750 Joshi, A., 92M/2182 Joshi, S. R., 92M/1513 Jost, H., 92M/3873, 3906, 3952 Joubert, M., 92M/0547 Jourdan, A. J., 92M/4884 Jovanović, N., 92M/0165 Jowett, E. C., 92M/1463 Jowhar, T. N., 92M/0080 Juan, V. C., 92M/2084, 2264 Judy, C., 92M/4211 Juggins, S., 92M/0741 Juhlin, C., 92M/2090 Julien, Ch., 92M/0473 Julio, J. M., 92M/0180 Julivert, M., 92M/0914 Jull, A. J. T., 92M/1933, 4856 Jumeau, J., 92M/3133 Jurdy, D. M., 92M/2332 Jurišić-Miletić, V., 92M/2226 Just, G., 92M/2450 Justo, A., 92M/2520 Juteau, T., 92M/3520

Kabengele, M., 92M/4746 Kabesh, M. L., 92M/4808 Kabi, R., 92M/2783 Kaczor, S. M., 92M/2193 Kaden, M., 92M/3687 Kaeding, L., 92M/2525 Kaftanaty, A. B., 92M/4655 Kagami, H., 92M/0656, 3034, 3035, 4815 Kageyama, S., 92M/2489 Kagi, R. I., 92M/3143 Kahmann, H.-J., 92M/2950 Kahr, G., 92M/2539 Kaija, J., 92M/3378 Kainz, W., 92M/2665 Kaiser, C. J., 92M/1606 Kaji, K., 92M/3036 Kaji, S., 92M/2546 Kakar, D. M., 92M/0950 Kakubuchi, S., 92M/3040 Kakuto, Y., 92M/0196, 2555 Kakuwa, Y., 92M/0692 Kalachev, V. N., 92M/2020 Kale, V. S., 92M/0775 Kalkreuth, W. D., 92M/4898 Kallemeyn, G. W., 92M/3206 Kalsbeek, F., 92M/3708, 4459 Kalsbeek, N., 92M/3840 Kamata, H., 92M/1017, 1074 Kamenov, B., 92M/1732 Kamenov, B. K., 92M/0050, 1996 Kamensky, I. L., 92M/4278 Kamgang, P., 92M/3018 Kamigaito, O., 92M/1335, 1342 Kamineni, D. C., 92M/0671, 2313, Kamioka, H., 92M/0092 Kamm, H., 92M/4300, 4464, 4935

Kabata-Pendias, A., 92M/1510

Kammer, D. P., 92M/0667 Kammerling, R. C., 92M/0513, 0517, 1325, 1613, 1614, 1617, 1619, 1628, 1639, 2917, 4164, 4171, 4194 Kampf, A. R., 92M/0254 Kämpf, H., 92M/3657 Kanagawa, K., 92M/2304 Kanai, Y., 92M/0655 Kanaori, Y., 92M/2098, 2099 Kanazawa, Y., 92M/4676 Kanazirski, M., 92M/2263 Kane, R. E., 92M/1617, 1619, 4171 Kang, J.-K., 92M/0329 Kang, Y., 92M/0323 Kanig, M., 92M/0202 Kano, K., 92M/1058, 3491 Kano, T., 92M/3599 Kanzaki, M., 92M/0411, 0456 Kapenda, D., 92M/4746 Kaplan, I. R., 92M/2395, 3777, 4215 Kappel, V., 92M/0023 Kar, R. N., 92M/0522 Karabinos, P., 92M/1301 Karaj, N., 92M/2717 Karametaxas, G., 92M/4476 Karanth, R. V., 92M/4752 Karge, H. G., 92M/2621 Karkare, S. G., 92M/4748 Karlin, R., 92M/0736 Karlin, R. E., 92M/1792 Karlsson, F., 92M/1521 Karlsson, H. R., 92M/0840 Karmakar, S., 92M/1179 Karmalkar, N. R., 92M/3442 Karpe, W., 92M/2582 Karpenko, M. I., 92M/2402 Karppanen, T., 92M/3375 Karr, C. I., 92M/3751 Karson, J. A., 92M/3511, 3532, 4802, 5008 Karstang, T. V., 92M/1862 Karup-Møller, S., 92M/4630 Kasahara, K., 92M/4843 Kasatov, A. S., 92M/2033 Kasolo, P. C., 92M/3951 Kašpar, P., 92M/2040 Kasper, H. U., 92M/3011 Kaspersen, P. O., 92M/4006 Kassoli-Fournaraki, A., 92M/1963, 2004, 2299 Kasting, J. F., 92M/4689 Kastner, M., 92M/1647, 4960 Kasuya, M., 92M/0002 Katada, M., 92M/0691 Katagas, C., 92M/1169 Katagas, C. G., 92M/4939 Kath, R. L., 92M/3269 Kato, A., 92M/3302, 3312 Kato, C., 92M/0145 Kato, Y., 92M/1015 Katsui, Y., 92M/2195 Katz, A., 92M/4479 Kaufman, A. J., 92M/0758, 4428 Kaufman, D. S., 92M/1437 Kauwenbergh, S. J. Van, 92M/0874 Kavaliers, I., 92M/2680 Kavanagh, M. E., 92M/1476 Kawabe, Y., 92M/4843 Kawachi, S., 92M/0047 Kawachi, Y., 92M/1922, 3331 Kawahara, A., 92M/0223

Kawai, S., 92M/0044

Kawai, T., 92M/4481

Kawakami, S.-I., 92M/2099 Kawamura, K., 92M/0223 Kawano, K., 92M/3801 Kawano, M., 92M/0140, 0147, 0832, 2562 Kawano, Y., 92M/0656, 1015, 3036 Kawasaki, T., 92M/4947 Kawata, Y., 92M/4390 Kay, R. W., 92M/2186, 3359 Kay, S. M., 92M/2186 Kazmi, A. H., 92M/3771, 4181, 4182, 4183, 4188, 4189 Keall, M. J., 92M/0143 Keays, R. R., 92M/0371, 0578, 1469, 2732, 3083 Keck, E., 92M/1228 Keedy, C. R., 92M/1544 Keeley, J. E., 92M/4216 Kehelpannala, W., 92M/3443 Kehinde-Phillips, O. O., 92M/0199 Keil, K., 92M/0777, 4575, 4576, 4595 Keil, R., 92M/4476 Keith, T. E. C., 92M/1073, 3049 Kelepertsis, A. E., 92M/0393 Keller, A. S., 92M/4180 Keller, J., 92M/3010, 4367 Keller, L. P., 92M/4584 Kelley, D. L., 92M/4556 Kelley, K. D., 92M/4556 Kelley, S. P., 92M/4100, 4632 Kelly, W. C., 92M/2899 Kemensky, I. L., 92M/1824 Kemp, A. E. S., 92M/0172 Kempe, U., 92M/4648 Kempton, P. D., 92M/0524, 4277 Kenj, H., 92M/2583 Kennan, P. S., 92M/4362 Kennedy, A. K., 92M/0666, 2831 Kennedy, B. M., 92M/4305 Kennedy, J. A., 92M/4456 Kennicutt II, M. C., 92M/4540 Kent, D. V., 92M/3230 Kenyon, P., 92M/4691 Keppens, E., 92M/1822, 4429 Keppie, J. D., 92M/2432 Keppler, H., 92M/2827, 3816, 4041 Kerkhof, A. M. van den, 92M/1195 Kerkhof, A. M. Van Den, 92M/1805 Kerkhof, A. M. van den, 92M/3114 Kerr, A., 92M/0096 Kerr, R. C., 92M/2136, 2250, 4726 Kerrich, R., 92M/0589, 1687, 1803, 2430, 3739, 3908, 4227, 4236 Kerrick, D. M., 92M/0450, 1191, 2497, 2856, 3583, 3594 Kesler, S. E., 92M/3170, 4023, 4255, 4343 Kessler, H., 92M/2876 Ketcham, P. D., 92M/4210 Ketola, M., 92M/3152 Ketterer, M. E., 92M/2491 Kettles, I. M., 92M/1875 Key, R. M., 92M/1615, 4500 Keyn, J., 92M/2629 Keyssner, S., 92M/0302, 4936, Khai, N. D., 92M/1617 Khan, M. A., 92M/0954 Khan, M. Asif, 92M/0923 Khan, T., 92M/4183 Khan, Z., 92M/0950 Khoa, N. D., 92M/1617

Khomenko, V., 92M/1201 Khomenko, V. M., 92M/4618 Khomyakov, A. P., 92M/0877, 2068, 2074 Kickmaier, W., 92M/3540 Kiddie, A., 92M/1095 Kieber, D. J., 92M/0750 Kieber, R. J., 92M/0750 Kiefert, L., 92M/0516, 1618 Kieffer, S. W., 92M/4195 Kienast, J. R., 92M/3619, 3643, 3647, 4914 Kienle, J., 92M/4857 Kiessling, R., 92M/2723 Kihara, S., 92M/4482 Kikkawa, K., 92M/0653 Kilius, L. R., 92M/0099, 2734 Killops, S. D., 92M/0762 Kim, A. A., 92M/2072 Kim, E.-S., 92M/2930 Kim, K. H., 92M/0582 Kim, S. J., 92M/2027 Kim, Y. H., 92M/1566 Kimata, M., 92M/2610 Kimball, B. A., 92M/4496 Kimbell, G. S., 92M/4786, 4789 Kimber, R. W. L., 92M/4525 Kimmel, G., 92M/0078 Kimura, N., 92M/0645 Kinealy, K. M., 92M/0575 King, B.-S., 92M/4495 King Jr, H. E., 92M/2624 King, L. L., 92M/0760 King, R. J., 92M/2359 King, R. W., 92M/3739 King, S. D., 92M/4690 Kinga-Mouzeo, 92M/0757 Kinloch, E. D., 92M/0350, 1670 Kinnunen, K. A., 92M/0077, 4635 Kinny, P. D., 92M/1285, 2425, 3369, 3735 Kinoshita, M., 92M/3222, 4687 Kinowski, J., 92M/3828 Kinzler, R. J., 92M/1538 Kippenberger, C., 92M/3978 Kirkland, B. L., 92M/1706 Kirkley, M. B., 92M/1270, 1655 Kirkpatrick, R. J., 92M/0225, 2862, 3825 Kirov, G. K., 92M/0454 Kirov, G. N., 92M/0843, 1561 Kirschvink, J. L., 92M/3723 Kisch, H. J., 92M/1195, 2271, 2277 Kish, S. A., 92M/2741 Kishida, A., 92M/2749, 3859 Kissin, S. A., 92M/0585 Kistler, R. W., 92M/3128, 4422, 4423 Kitaenko, A. E., 92M/4654 Kitajev, N. A., 92M/1903 Kitajima, K., 92M/1398 Kitakaze, A., 92M/1604 Kitamura, M., 92M/1577 Kitsul, V. I., 92M/4610 Kiyosu, Y., 92M/4528 Kjarsgaard, B., 92M/1003 Kjarsgaard, B. A., 92M/2177 Klaeboe, P., 92M/4122 Klaper, E. M., 92M/2282 Klaska, R., 92M/2609 Kleeman, J. D., 92M/1680 Kleemann, U., 92M/1148 Klein, C., 92M/0758, 3080 Klein, E. M., 92M/3028

Klein, J., 92M/0528, 0778, 0794, 1306, 3208, 3209, 3228 Klein, V., 92M/3365, 3370 Kleinrock, M. C., 92M/5010 Kleinschrodt, R., 92M/3443 Klemd, R., 92M/1146, 1164 Klemm, W., 92M/2942 Kleppa, O. J., 92M/0404 Klerkx, J., 92M/0030 Klewin, K. W., 92M/3500 Kleyenstüber, A., 92M/0514 Klika, Z., 92M/1957 Klinkhammer, G. P., 92M/0725 Klishevitch, I. A., 92M/1177 Klussmann, U., 92M/3154 Knabe, H.-J., 92M/3075 Knauth, L. P., 92M/3085, 4203 Kniewald, G., 92M/4650 Knipe, R. J., 92M/3768, 4961 Knipe, S. W., 92M/3913 Knipper, A. L., 92M/3543 Knitter, R., 92M/0468 Knittle, E., 92M/2886 Knitzschke, G., 92M/2950 Knizel, A. A., 92M/4774 Knoche, R., 92M/2790, 4048 Knoll, A. H., 92M/1649, 3557 Knöller, W., 92M/4041 Knorring, O. von, 92M/4630 Knoth, S., 92M/3180 Knowles, C. R., 92M/4177 Knudsen, C., 92M/0542, 3406 Knutson, J., 92M/3600 Ko, J., 92M/2603, 4124 Kobayashi, K., 92M/4682, 4684 Kobayashi, T., 92M/1335 Kobe, H. W., 92M/3996 Koch, C. B., 92M/1372 Koch, C. Bender, 92M/2591, 3559, 4642 Koch-Müller, M., 92M/2792 Koch, P. L., 92M/2779, 4318 Koch-van Dalen, A. C., 92M/4520, 4524 Kocherlakota, N., 92M/3749 Kochhar, N., 92M/3236 Kodosky, L. G., 92M/1072 Kodra, A., 92M/3390 Koeberl, C., 92M/1942, 3203, 3211, 4282, 4596, 4604 Koehler, G. D., 92M/1654 Koellner, M. S., 92M/1699 Koepke, J., 92M/1983 Koeppenkastrop, D., 92M/3580, Kogarko, L. N., 92M/2177, 3975 Kögel, W., 92M/2363 Kogure, T., 92M/3851 Koh, Y. K., 92M/2728 Kohara, S., 92M/0223 Kohl, C. P., 92M/0528, 1306 Kohl, J., 92M/4936 Kohler, E. E., 92M/2620 Köhler, T., 92M/1921 Kohlstedt, D. L., 92M/0422, 1529 Kohn, M. J., 92M/0401, 0402, 2444 Kohn, S. C., 92M/0412, 1402, 4039, 4058 Kohnen, M. E. L., 92M/4524 Kohout, K., 92M/2366 Kohring, R., 92M/4890 Kohyama, N., 92M/0175 Koide, M., 92M/0682 Koide, Y., 92M/0111

Koivula, J. I., 92M/0513, 0517, 1613, 1614, 1617, 1619, 1628, 1639, 4164, 4171, 4194 Koivulo, J. I., 92M/2917 Koizumi, M., 92M/0481, 0482 Kojima, H., 92M/1931 Kojima, S., 92M/0568 Kojonen, K., 92M/3371, 3372, 3373, 3876 Kokelaar, B. P., 92M/3411 Kokines Miller, A., 92M/0124 Kokis, J. E., 92M/3146 Kokkinakis, A., 92M/3016 Kolčeva, K., 92M/0718 Kolak, J. K., 92M/0508 Kolassa, J. E., 92M/4035 Kolker, A., 92M/0674 Kolkila, A. A., 92M/0381 Kolodny, Y., 92M/0733, 1675, 1828, 4204, 4311 Kolotyrkina, I. Ya., 92M/2462 Komadel, P., 92M/2556 Komar, P. D., 92M/4026 Komarneni, S., 92M/0141 Komatsu, G., 92M/0775 Komi, H., 92M/0106 Komorek, M., 92M/3833 Komorowski, J.-C., 92M/3506 Komura, R., 92M/0181 Kondo, Y., 92M/0495 Kong, L. S. L., 92M/4981 Königsberger, E., 92M/4141 Konilov, A. N., 92M/4609 Koningsveld, H. van, 92M/1403 Konishi, H., 92M/3245 Konishi, N., 92M/0223 Kononkova, N. N., 92M/1935 Konovalenko, S. I., 92M/2065 Konstantopoulou, G., 92M/2954 Konta, J., 92M/2572 Kontak, D. J., 92M/0057, 1694, 2762, 2986, 3050 Kontar, E. A., 92M/4017 Kontinen, A., 92M/3361, 3362 Kontny, A., 92M/0302, 0303 Kontoniemi, O., 92M/3367, 3372 Kontorovich, A. Eh., 92M/3572 Koons, P. O., 92M/0328 Kopp, O. C., 92M/3326 Köppel, V., 92M/1810 Korbel, P., 92M/1961, 2029 Korhonen, J. V., 92M/3379 Korich, D., 92M/3403, 3422, 3424 Koritiake, M., 92M/3880 Korkmaz, S., 92M/3159 Kornicker, W. A., 92M/0500, 4078, 4138 Kornprobst, J., 92M/4364 Koroleva, O. V., 92M/4767 Korotev, R. L., 92M/3202 Korsch, R. J., 92M/3573, 4271, 4700 Korschinek, G., 92M/1837, 3209 Kos'ko, M. K., 92M/2415 Koshemchuck, S. K., 92M/1551 Koshil, I. M., 92M/2376 Köster, H. M., 92M/4669 Koster van Groos, A. F., 92M/0124, 1554, 2817 Kostner, A., 92M/1156 Kostopoulos, D. K., 92M/0420 Kostov, R. I., 92M/2346 Kotelnikov, P. E., 92M/2046 Kotopouli, C. N., 92M/0635, 4939 Kotov, N. V., 92M/4093, 4623

Kotschoubey, B., 92M/2597 Kotzer, T. G., 92M/0590 Kouda, R., 92M/0079 Kovách, Á., 92M/1265 Koval, P. V., 92M/1656, 1903 Kovatchev, V., 92M/0347 Koziol, A. M., 92M/1571 Kozlov, N. E., 92M/4944 Kozmenko, O. A., 92M/0721 Kozłowska, A., 92M/2037 Kozłowski, K., 92M/1107 Kracher, A., 92M/0994, 1968 Kraft, G., 92M/4030 Krähenbühl, U., 92M/1727, 3207, Králík, J., 92M/1999 Kramer, G. J., 92M/0236 Kramer, W., 92M/3431 Kramers, J. D., 92M/1269, 2135 Kramm, U., 92M/0730, 4367 Kranendonk, M. J. Van, 92M/0960 Krasnova, N. I., 92M/4641 Krause, C., 92M/2155 Krause, W., 92M/1229, 3315 Krauthan, P., 92M/1837 Krentz, O., 92M/3642 Kress, V. C., 92M/1539 Kretschmer, R., 92M/4800 Kretser, Yu. L., 92M/4641 Kretz, R., 92M/4665 Kreulen, R., 92M/4392 Kreuzer, H., 92M/0022 Kríbek, B., 92M/1665 Kring, D. A., 92M/0796, 1928, 3232 Krinsley, D. H., 92M/3069 Krishnakumar, N., 92M/3962, 3969 Krishnamurthy, R. V., 92M/1859, 4209 Krishnamurti, G. S. R., 92M/4104 Krishnaswami, . S., 92M/4480 Krishnaswami, S., 92M/1825 KRISP Working Party, 92M/2321 Krogh Andersen, E., 92M/0266 Krogh, E. J., 92M/0007 Krogh, T. E., 92M/0056 Krohe, A., 92M/3423, 3634 Kroll, H., 92M/0468, 1400, 2155, 2162, 3813 Kromer, H., 92M/4669 Kronberg, B. I., 92M/4458 Kröner, A., 92M/0998, 2080, 2419 Kronfeld, J., 92M/0690, 1823 Krooss, B., 92M/3154 Krouse, E. R., 92M/0555 Krouse, H. R., 92M/2901, 2961, 4347, 4451 Krstic, D., 92M/0054, 1708, 2429, Krückel, U., 92M/1210 Krueger, H. W., 92M/1695 Krueger, S., 92M/0494 Krüger, F. J., 92M/0642 Kruger, F. J., 92M/0872, 1673 Kruger, W., 92M/3084 Kruhl, J. H., 92M/3629 Krumm, S., 92M/2272 Kruner, A., 92M/0033 Kruse, K., 92M/1344 Krüsemann, R., 92M/3813 Krzyczkowska-Everest, A., 92M/3566 Ku, T. L., 92M/0740 Kubicki, J. D., 92M/1549

Kubik, P. W., 92M/1305, 1642, 1838, 3208, 4504 Kubilius, W. P., 92M/4407 Kübler, B., 92M/1369, 2270, 2286, 2569 Kubovics, I., 92M/2287 Kucha, H., 92M/4659 Kudělásková, M., 92M/2007 Kudělásek, V., 92M/1957, 2007, 2056 Kudo, A. M., 92M/3508 Kudou, H., 92M/0246 Kudrass, H.-R., 92M/2769, 2771 Kudryavtseva, G. P., 92M/0844 Kuehner, S., 92M/2875 Kuehner, S. M., 92M/0418, 4431 Kuganenthira, N., 92M/0169 Kühn, P., 92M/2061, 3334 Kühn, W., 92M/1662 Kühne, R., 92M/3180 Kuhs, W. F., 92M/3849 Kuijper, R. P., 92M/4794 Kukkonen, I., 92M/3378 Kulenkampff, J., 92M/1212 Kulikova, G. V., 92M/4668 Kulkarni, A. V., 92M/1374 Kullerud, L., 92M/1242 Kumar, K. T. S., 92M/3881 Kumarapeli, S. P., 92M/4734 Kumaratieake, W. L. D. R. A., 92M/4165 Kump, L. R., 92M/4293 Kunk, M. J., 92M/3740 Kunz, M., 92M/1386 Kunz, P., 92M/2246 Kunze, K., 92M/3606 Kunzendorf, H., 92M/1677, 2108 Kunzmann, T., 92M/2858 Kupčik, V., 92M/1416 Küpfer, T., 92M/3417 Kupferschmidt, W., 92M/0096 Kurat, G., 92M/1968, 3203, 3211 Kurita, K., 92M/2891 Kuroda, K., 92M/0145 Kuroda, P. K., 92M/0790 Kurokawa, K., 92M/3245 Kurz, M. D., 92M/0003, 0051, 0667 Kusachi, I., 92M/2002, 2009 Kusakabe, K., 92M/3263 Kusakabe, M., 92M/0740, 3234 Kuschka, E., 92M/2765, 2766 Kushiro, I., 92M/0428, 2814, 2852 Kusky, T. M., 92M/0962 Kuslys, M., 92M/4476 Kustova, G. N., 92M/4652 Kusznir, N. J., 92M/2330 Kutoglu, A., 92M/3843 Kutschke, D., 92M/1345, 3638 Kutz, K. B., 92M/2701 Kuyumijian, R. M., 92M/3874, 3884 Kuznetsov, G. V., 92M/4629 Kuznetsova, I. K., 92M/2065 Kvalheim, O. M., 92M/1862 Kvenvolden, K. A., 92M/3138 Kwak, T. A. P., 92M/2961 Kwon, S.-T., 92M/0666 Kyle, J. R., 92M/0583, 1890 Kyle, P. R., 92M/1085, 4847 Kyser, T. K., 92M/0590, 0591, 1653, 1654, 1686, 2933, 4227 Kyte, F. T., 92M/4600

Koike, T., 92M/1181

L'Heureux, M., 92M/1765 La Iglesia, A., 92M/1590 La Placa, S. J., 92M/2624 La Torre, P., 92M/2199 La Volpe, L., 92M/3478 Laajoki, K., 92M/4319, 4919 Laan, S. R. van der, 92M/2817, Labhart, T., 92M/0023 Labhart, T. P., 92M/3417 Labhasetwar, N. K., 92M/4028 Labotka, T. C., 92M/3399, 3585 Lacerda, H., 92M/3879 Lachize, M., 92M/3520 Lachowski, E. E., 92M/0159 Lacroix, S., 92M/0331 Lacy, W. C., 92M/1419 Ladeira, E. A., 92M/3769, 3857, Laderoute, D. G., 92M/3454 Laegsgaard, E., 92M/1341 Laeter, J. R. de, 92M/0577, 3043, Laffoley, N. d'A., 92M/3958 Laflamme, J. H. G., 92M/0063 Laflèche, M. R., 92M/1766 Lafon, J.-M., 92M/4160 Lagabrielle, Y., 92M/3121 Lagache, M., 92M/0409, 0410, 2797, 2839 Lagaly, G., 92M/2613 Lager, G. A., 92M/1386, 2630 Lagerbäck, R., 92M/2089 Lagerman, B., 92M/2820 Lahermo, P., 92M/1517 Lahti, S. I., 92M/3366 Lahtinen, R., 92M/3165 Lai, M., 92M/4386 Lai, Y., 92M/0565 Laiba, A. A., 92M/3396 Laidlaw, I. M. S., 92M/1507 Laird, G. M., 92M/2118 Laird, M. G., 92M/4705 Lajoie, K. R., 92M/3745 Lakshminarayana, L., 92M/1499 Lal, D., 92M/0529, 3120 Lallemand, S. E., 92M/4683 Lalonde, A. E., 92M/1052, 3829 Lalor, G. C., 92M/1916 Lamb, W. M., 92M/0723 Lamberg, P., 92M/3363 Lambert, B., 92M/4900 Lambert, R. St J., 92M/4759 Lambert, S. J., 92M/4206 Lampert, G., 92M/3812 Lampio, E., 92M/1874 Lan, Y. Q., 92M/4946 Lanau, C., 92M/0763 Lancelot, J. R., 92M/3726 Land, L. S., 92M/1799, 4205 Landa, E. R., 92M/2774 Landefeld, L. A., 92M/4240 Landi, P., 92M/2211 Landis, C. R., 92M/3139 Landis, G. P., 92M/3168 Lanford, W. A., 92M/0510 Lang, A. R., 92M/3285 Lang, B., 92M/1255 Lang, H. M., 92M/0220 Langbein, R., 92M/3317 Lange, G., 92M/0319, 2710 Lange, H., 92M/1677 Lange, J.-M., 92M/3633 Lange, R. A., 92M/0458, 3505, 4046

Lange, S. P., 92M/2767 Langenhorst, F., 92M/4120 Langer, K., 92M/0447, 2792 Langevelde, F. Van, 92M/4250 Langford, S. C., 92M/2902, 4107 Langier-Kuzniarowa, A., 92M/2523 Langmead, R. P., 92M/2688 Langmuir, C. H., 92M/3028 Lanier, W. P., 92M/4516 Lantai, Cs., 92M/4942 Laperche, V., 92M/0833 Lapido-Loureiro, F. E. V., 92M/1895 Lapierre, H., 92M/0679, 4875 Laporte, D., 92M/0906 Lapp, M., 92M/4936 Lardeaux, J. M., 92M/0227, 1138, 3608, 3615, 4928 Larese, R. E., 92M/0443 Larichev, A. I., 92M/3572 Larsen, A. O., 92M/4677 Larsen, G., 92M/2881 Larsen, J. M., 92M/4817, 4871 Larsen, R. B., 92M/1426 Larson, E. M., 92M/4663 Larson, L. T., 92M/2760 Larson, P. B., 92M/1704, 4231 Larson, R. L., 92M/4979, 5010 Larsson, L., 92M/4917 Lasaga, A. C., 92M/0440, 0470, 1549, 3594 Laschtowitz, K., 92M/0708, 1209 Laskou, M., 92M/3796 Laskowenkow, A. F., 92M/4155 Lasthiotakis, H., 92M/5010 Latin, D., 92M/0615 Lattanzi, P., 92M/0541, 3866, 3915 Lattard, D., 92M/4103 Lauenstein, H.-J., 92M/3303 Lauha, E. A., 92M/1493 Laul, J. C., 92M/3049, 4503 Laurec, J., 92M/3676 Laurent, R., 92M/3518 Lauriat-Rage, A., 92M/4683 Lauterjung, J., 92M/0115, 3778, 3779, 4934 Laviano, R., 92M/2574, 3324 Lavin, O. P., 92M/1886, 1887, 1907, 4453 Lawless, P. J., 92M/4806 Lawrence, D. H., 92M/0283 Lawrence, J. R., 92M/4208 Lawrence, R. D., 92M/0955, 4182 Lawton, D. E., 92M/3555 Lawwongngam, K., 92M/3140 Lay, N., 92M/3939, 4012 Layer, P. W., 92M/1202 Lazar, B., 92M/4442 Lazarev, A. N., 92M/4987 Le Bas, M. J., 92M/0966, 4645 Le Bronec, J., 92M/3483 Le Cloarec, M. F., 92M/4848 Le Gleuher, M., 92M/3960 Le Goff, E., 92M/1154 Le Métour, J., 92M/3537, 3538, 3550 Le Mouël, J.-L., 92M/4861 Le Page, Y., 92M/1393 Le Pichon, X., 92M/4682, 4684, le Roex, A. P., 92M/4383 Le Roux, J. P., 92M/3185 Lea. D. W., 92M/1704, 2932 Leach, D. L., 92M/0597, 2975

Leake, B. E., 92M/1251, 3383, 4462 Leake, R. C., 92M/3287 Leal Gomes, C., 92M/0986 Leat, P. T., 92M/0676, 1777 Leavitt, S. W., 92M/1515 Lebedeva, M. I., 92M/2806 Leblanc, M., 92M/0304, 0339, 3442, 3521, 3992 Leblanc, M. L., 92M/2699 LeCheminant, A. N., 92M/4826 Lechmann, E., 92M/2465 Leckie, J. F., 92M/1475 Leckie, J. O., 92M/4145 Lécolle, M., 92M/4011 Lécorché, J. P., 92M/1267 Lécuyer, C., 92M/1096, 1775 Lecuyer, C., 92M/3353 Ledru, P., 92M/3957 Lee, C. A., 92M/1669 Lee, D.-C., 92M/0773 Lee, J. H., 92M/1610, 4038 Lee, J. K. W., 92M/2394 Lee, K.-Y., 92M/2963 Lee, T., 92M/1796 Lee-Thorp, J. A., 92M/4031 Lee, W. E., 92M/1970 Leeder, M. R., 92M/3558 Leeder, O., 92M/2942, 3426, 3561 Leelanandam, C., 92M/3441 Leeman, W. P., 92M/3109, 3459, 3759, 4287 Lees, G. J., 92M/0616 Leeuw, J. W. de, 92M/1864, 4507, 4508, 4520, 4524, 4529, 4542, 4545 Lefèvre, A., 92M/4034 Lefevre, R., 92M/3498 Léger, A., 92M/0825 Legg, I. C., 92M/2092 Legittimo, P. Cellini, 92M/2206 Leguern, F., 92M/3498 Lehmann, B., 92M/0368, 2984 Lehmann, B. E., 92M/1835, 1836 Lehtonen, K., 92M/3152 LeHuray, A. P., 92M/4348 Leikine, M., 92M/1982, 3644 Leinbach, A., 92M/3352 Leinenweber, K., 92M/2891 Leitch, C. H. B., 92M/0053, 2971 Lelkes-Felvári, Gy., 92M/4942 LeMasurier, W. E., 92M/4710 Lemière, B., 92M/3537 Lemieux, M. M., 92M/4254 Lemire, R. J., 92M/0671 Lemoine, P., 92M/0251 Lemos, R. L., 92M/1894 Lemos, V. P., 92M/1894 Lenarčič, T., 92M/1909 Lenaz, R., 92M/2543 Lengauer, W., 92M/2638 Lengeler, R., 92M/1155 Lennard, W., 92M/1319 Lensch, G., 92M/4839 Lent, R. M., 92M/4487, 4490 Lenthe, J. H. van, 92M/2605 Lenz, H., 92M/0022 Leon, O., 92M/1081 Leonardos, O. H., 92M/2981, 3873, 3933 Leonardsen, E., 92M/0266 Leonardsen, E. S., 92M/1959, 4630 Leonhardt, H., 92M/1233 Leonhardt, W., 92M/1233 Leoni, L., 92M/1980, 3335, 3627

Leontiev, S. I., 92M/1910 Leotot, C., 92M/3048 Lepel, E. A., 92M/4503 Lépine, J.-C., 92M/2218 Leplat, P., 92M/3132 Lepper, J., 92M/3797 Lesch, L., 92M/2729 Lescuyer, J.-L., 92M/0547 Lescuyer, J. L., 92M/3527, 3537 Leshendok, M. P., 92M/3336 Lesher, C. E., 92M/4353 Lesher, C. M., 92M/1491, 3897 Leslie, M., 92M/0216 Lespinasse, M., 92M/3945, 4258 Lestinen, P., 92M/3374, 3963 Leterrier, J., 92M/2439, 4804 Letnikov, F. A., 92M/3172 Levchenkov, O. A., 92M/4093 Leventhal, J. S., 92M/0764, 4325 Levi, B., 92M/1084 Levine, R. M., 92M/1425 Levinson, A. A., 92M/4154 Levy, G. J., 92M/0158 Lewis, D. G., 92M/3844 Lewis, P. J., 92M/2685 Lewis, R. S., 92M/0783, 4589 Lewis, S., 92M/2232, 3580 Leyreloup, A. F., 92M/0524 Leythaeuser, D., 92M/3135, 3154 Lhoest, J., 92M/3699 Li, C., 92M/0323, 1500, 1690, 3983 Li, C. H., 92M/2647 Li, H., 92M/0531, 1282 Li, J., 92M/3101, 3262 Li, M. Z., 92M/4026 Li, T., 92M/0566 Li, X., 92M/0563 Li, Y., 92M/1086 Li, Y.-H., 92M/3112 Li, Z., 92M/1757, 3136 Ličko, T., 92M/4054 Liang, W., 92M/1180 Liang, X., 92M/3911 Liao, Z., 92M/3672 Liati, A., 92M/1167 Libby, W. G., 92M/3044 Liborio, G., 92M/0724, 0823, 1728 Libourel, G., 92M/1543, 4050 Libowitzky, E., 92M/2022 Lich, S., 92M/4465, 4937, 4938 Lichtenstein, V., 92M/4089 Lichtentaler, R., 92M/0752 Lidiak, E. G., 92M/3060 Liebau, F., 92M/3823 Lieber, W., 92M/2381, 2702, 3702, 3703, 3704 Liebermann, R. C., 92M/1567, 2343, 2634 Liégeois, J. P., 92M/0030 Liegeois, J.-P., 92M/2405 Liégeois, J. P., 92M/4805 Liew, T. C., 92M/3100 Ligang, Z., 92M/1552 Lightfoot, P. C., 92M/1764 Lii, K. H., 92M/2647 Liipo, J., 92M/4319 Lillo, J., 92M/3988, 4322 Lilov, P., 92M/0028 Lilov, P. J., 92M/0050 Lima, A., 92M/1900 Lima, E. Fernandes de, 92M/1922 Limburg, E. M., 92M/3486 Lin, B., 92M/1676 Lin. J., 92M/3444 Lin, P.-N., 92M/4303

Lin, S., 92M/3088 Lin, S. B., 92M/3981 Lin, W., 92M/3231 Lin, Y., 92M/0186, 1282, 2588 Linares, J., 92M/2557 Lind, C. J., 92M/1598 Lindberg, B., 92M/4778, 4779 Linden, B. van der, 92M/3149 Lindgreen, H., 92M/1341 Lindh, A., 92M/1720, 1721, 2141 Lindqvist, J.-E., 92M/4785 Lindqvist, K., 92M/0171 Lindsay, C. G., 92M/1379 Lindsley, D. H., 92M/0117, 0406, 0490, 0848 Lindström, M., 92M/0802 Lindstrom, M. M., 92M/3197, 3204 Ling, H., 92M/4386 Lingen, G. J. van der, 92M/4897 Lingner, S., 92M/0772 Linick, T. W., 92M/4856 Linklater, C., 92M/4461 Linklater, C. M., 92M/2151 Linnebacher, P., 92M/2080 Linnen, R. L., 92M/1693, 4337 Liou, J. G., 92M/0424, 1176, 1180, 1198, 3655 Lipatova, E. A., 92M/4668 Lipkina, M. I., 92M/0170 Lipman, P. W., 92M/4858 Lippolt, H. J., 92M/2402 Lipschutz, M. E., 92M/3204, 3212, 3217, 3225 Lira, R., 92M/0604, 4306 Lirer, L., 92M/2198, 2210 Lisk, M., 92M/3667 Lister, C. R. B., 92M/3515 Lister, J. R., 92M/2136, 3402, 4726, 4975 Litochleb, J., 92M/2045 Littke, R., 92M/3154 Little, T. A., 92M/2119 Liu, C.-Q., 92M/4331 Liu, D., 92M/3863 Liu, L., 92M/3863 Liu, L.-G., 92M/1956, 2889 Liu, M., 92M/1068 Liu, R., 92M/3101 Liu, S., 92M/0740 Liu, S. F., 92M/4754 Liu, X., 92M/1757, 2634 Liu, Y., 92M/0093, 0560, 2960 Liu, Z., 92M/0908 Livermore, R. A., 92M/2383 Livingstone, A, 92M/4660 Livingstone, A., 92M/2052, 2354, 3244 Ljul, A. Yu., 92M/4637 Llavský, I., 92M/4324 Lloyd, G. E., 92M/0085, 1124, 2268 Lloyd, J. W., 92M/0390 Lo Giudice, A., 92M/0630 Lobato, L. M., 92M/2751, 3912, 3914 Løberg, R., 92M/3132 Locardi, E., 92M/1730 Lochmann, D., 92M/2705 Locke, C. A., 92M/1217 Lodders, K., 92M/0429 Löffler, H. K., 92M/3598 Lofgren, G. E., 92M/4577 Lohf, W., 92M/3683 Lohmann, K. C., 92M/0530, 4315 Lombardo, B., 92M/1749

London, D., 92M/2940, 4321 Loney, R. A., 92M/4954 Long, A., 92M/1515, 4360 Long, D. T., 92M/4486, 4487, 4488, 4490, 4493, 4494 Long, G. G., 92M/0494 Long, L. E., 92M/1779 Longhi, J., 92M/0427 Longinelli, A., 92M/2167 Longstaffe, F. J., 92M/0696 Lonker, S. W., 92M/1645 Löns, J., 92M/1400 Lonsdale, P., 92M/4874 Loomis, J. L., 92M/2940 Loon, G. W. van, 92M/2482 Loon, J. C. Van, 92M/1323 Loosli, H. H., 92M/1833, 1835, 1836 Lopes Nunes, J. E., 92M/0986 Lopes, R. M. C., 92M/3468 Lopez-Arbeloa, F., 92M/3793 Lopez-Arbeloa, I., 92M/3793 López Benito, A., 92M/1724 Lopez, D., 92M/4294 Lopez de la Vega, R., 92M/1854 López Munguira, A., 92M/3631 Lopotko, M. Z., 92M/1793 Lorand, J.-P., 92M/3344, 3345, 3346, 3520 Lorenz, J., 92M/0875 Lorenz, V., 92M/3470 Lorenz, W., 92M/3639 Lorenzoni, E. Z., 92M/1262 Lorenzoni, E. Zanettin, 92M/0634 Lorenzoni, S., 92M/0634, 1262 Loring, D. H., 92M/1841 Loschi Ghittoni, A. G., 92M/1160 Løseth, H., 92M/4695 Losno, R., 92M/1048 Lotov, E. V., 92M/2069 Lottermoser, B. G., 92M/0574 Lottermoser, W., 92M/1386 Lotyshev, V. I., 92M/3572 Loubet, M., 92M/3526 Loucks, R. R., 92M/1465, 3266 Loukola-Ruskeeniemi, K., 92M/3375, 3380 Love, D. A., 92M/0290 Love, K. M., 92M/2904 Lovely, D. R., 92M/2774 Lovera, O. M., 92M/1281, 2822 Loveridge, W. D., 92M/0896 Lövgren, L., 92M/4130 Lowe, B. M., 92M/4117 Lowe, D. J., 92M/4846 Lowe, D. R., 92M/0033, 4600 Lowe-Ma, C. K., 92M/0250 Lowell, G. R., 92M/0893 Lowell, R. P., 92M/2350 Lowenstern, J. B., 92M/3481 Lowie, W., 92M/4597 Lowry, D., 92M/1659 Lowson, R. T., 92M/0501 Lu, B., 92M/0561 Lu, C., 92M/4253 Lu, F., 92M/4421 Lu, H.-Z., 92M/0291 Lu, M., 92M/1680 Lu, Q., 92M/2421, 3766 Lubala, R. T., 92M/4746 Lubnin, E. N., 92M/4616 Luca, V., 92M/2532, 2533 Lucas, S. B., 92M/2314, 3549 Lucchetti, G., 92M/4644 Luck, J.-M., 92M/1725, 2993

Ludden, J. N., 92M/4406 Ludwig, G., 92M/4024 Lueth, V. W., 92M/2991 Luff, I. W., 92M/0924 Lugmair, G. W., 92M/4593 Luhr, J. F., 92M/0472 Lui, K.-K., 92M/1827 Lui, T., 92M/3994 Lui, Y.-G., 92M/3201 Lukashev, V. K., 92M/1793 Lukkarinen, H., 92M/3002 Lum, J., 92M/2102 Lumbers, S. B., 92M/3453 Lumpkin, G. R., 92M/3239, 4152 Lunar, R., 92M/3988 Luo, G., 92M/3824 Luo, J., 92M/0650 Luo, Z., 92M/0357 Luongo, G., 92M/1041, 2207, 3483 Lupashko, T. N., 92M/4629 Lusk, J., 92M/1318 Lussiez, P., 92M/4088 Lustenhouwer, W. J., 92M/3297 Luth, R. W., 92M/2811 Luther III, G. W., 92M/1601 Luttrell, G. W., 92M/5012 Lutz, H. D., 92M/0248, 2637 Lutz, T. M., 92M/2345, 4307 Luxan, M. P., 92M/1339 Luz, B., 92M/4204 Lyatuu, D. R., 92M/3934 Lyon, G. L., 92M/0761 Lyons, J. B., 92M/4901 Lyons, P. C., 92M/3501 Lyons, W. B., 92M/4486, 4487, 4488, 4490, 4493, 4494 Lysne, P., 92M/2935 Lytle, F. W., 92M/4663

Ma, G., 92M/1243, 3723 Maas, R., 92M/0048, 3735 Maaskant, P., 92M/1184 Maboko, M. A. H., 92M/1284 Maccioni, L., 92M/4552 Macdonald, A. J., 92M/1691 Macdonald, K. C., 92M/1094 Macdonald, R., 92M/4413 Macdougall, J. D., 92M/0727 Macedo, C. A. R., 92M/0020, 0021 Macedonio, G., 92M/4868 Macera, P., 92M/0625 Macfarlane, A. W., 92M/2985, 4348 Machado, J. I. L., 92M/1635 Machado, N., 92M/4404 Machel, H.-G., 92M/2255 Machesky, M. L., 92M/1889 Machon, L., 92M/4464 Macias-Romo, C., 92M/1901 MacInnis, I. A., 92M/4142 MacIntyre, D. G., 92M/3998 Macintyre, R. M., 92M/1251 MacKay, M., 92M/4962 Mackenzie, A. B., 92M/3073 Mackenzie, B., 92M/3854 Mackenzie, F. T., 92M/0256, 2903 MacKenzie, K. J. D., 92M/1350 Mackenzie, R. C., 92M/0159, 2508 MacKenzie, W. S., 92M/0408 MacKinnon, D., 92M/0748 Mackinnon, I. D. R., 92M/2274 Macko, S. A., 92M/3135, 3141 Mackwell, S. J., 92M/2853 Maclaurin, A. I., 92M/3191

MacLean, P. J., 92M/2678 MacLean, W. H., 92M/0283 Maclean, W. H., 92M/1439 MacLellan, H. E., 92M/1542 Macleod, G., 92M/0519 MacLeod, G., 92M/3242 MacLeod, G. K., 92M/0728 MacLeod-Kinsel, S., 92M/2159 MacPherson, G. J., 92M/4590 Macpherson, G. L., 92M/4502 Macqueda, C., 92M/0142 MacRae, C. M., 92M/1320, 2453 MacRae, N. D., 92M/3453, 4458 Macumber, P. G., 92M/4484, 4485, 4486, 4490, 4493, 4494 Maddison, P., 92M/1619 Mäder, R. K., 92M/2906 Madhavan, V., 92M/4749 Mädler, F., 92M/2370 Madon, M., 92M/0473, 1570, 1573 Madrid, Y., 92M/2485 Madsen, M. B., 92M/4642 Madu, B. E., 92M/2735 Maeda, J., 92M/3256 Maeder, R., 92M/3077 Magaritz, M., 92M/1844, 4220, 4224 Magee, M., 92M/2336 Magganas, A., 92M/3016 Maggetti, M., 92M/1806 Magro, G., 92M/3479 Mahabaleswar, B., 92M/0647, 3392, 3652 Mahender, K., 92M/2256 Mahlburg-Kay, S., 92M/3359 Mahoney, J., 92M/0644 Mahoney, J. J., 92M/0657 Mahood, G. A., 92M/3481 Mahroof, M. M. M., 92M/2915 Mai, H., 92M/3573 Maier, W. D., 92M/1007 Maijer, C., 92M/1805 Maillet, P., 92M/0659, 0661 Mainprice, D., 92M/0085 Maiorani, A., 92M/2205 Maj, S., 92M/2340 Majid, M., 92M/0952 Majumder, T., 92M/3654 Makarov, V. A., 92M/1276 Makhotko, V. F., 92M/2072 Mäkinen, J., 92M/1783 Mäkinen, J. E., 92M/3377 Makishima, A., 92M/1919, 2467 Makrygina, V. A., 92M/3097 Malaroda, R., 92M/2285 Maldonado, C. F. Estrada, 92M/4143 Malhotra, R., 92M/0785 Malinverno, A., 92M/2389 Maliotis, G., 92M/2661 Malisa, E., 92M/1517 Malia, P. B., 92M/0141 Mallard, D. J., 92M/5005 Maloszewski, P., 92M/1837 Malov, V. S., 92M/4809 Malpas, J., 92M/3057 Maluski, H., 92M/3715 Mambo, V. S., 92M/1059 Manalac, G. C., 92M/0200 Mandado, J., 92M/1588 Mandour, M. A., 92M/2056 Manduca, C. A., 92M/3061 Manega, P. C., 92M/1271 Manetti, P., 92M/0629 Mange, M. A., 92M/2499

Manghnani, M. H., 92M/1566 Mangini, A., 92M/2107, 4336 Mango, F. D., 92M/0749, 4517 Mango, H., 92M/1707 Maniar, P. D., 92M/2634 Mankov, S., 92M/2043 Mann, A. L., 92M/0751 Manne, R., 92M/0090 Manner, H. I., 92M/3809 Manning, C. E., 92M/1532, 3062, 4904 Manning, L. K., 92M/1851 Manton, W., 92M/2080 Mänttäri, I., 92M/3370 Manuppella, G., 92M/0379 Mao, H. K., 92M/0484, 1587, 2818, 3666 Mao, H.-K., 92M/4127 Mao, S. H., 92M/2727 Maqueda, C., 92M/2520 Marais, D. J. Des, 92M/4519 Marais, S., 92M/1528 Marakushev, A. A., 92M/2800 Maras, A., 92M/3278, 3300 Marcello, A., 92M/3870 Marcet, P., 92M/4348 Marchand, J., 92M/1137 Marchesi, S., 92M/3356 Marchetto, C. M. L., 92M/2753, 3905 Marchev, P., 92M/3432 Marchi, M., 92M/4552 Marchig, V., 92M/0581, 2104, 2105, 2115, 2667, 2957 Marcinkowski, B., 92M/3292 Marconnet, B., 92M/0299 Marcoux, É., 92M/0547 Marcoux, E., 92M/3311 Mardix, S., 92M/0249 Mardock, C. L., 92M/0313 Maresch, W. V., 92M/0724, 1399, 2156, 2801 Margolis, J., 92M/2745 Margolis, S. V., 92M/4597 Margulies, L., 92M/2535 Mariano, A. N., 92M/1410, 4989 Marignac, C., 92M/3415, 3867, 4943 Marikos, M. A., 92M/3589 Marimon, M. P. C., 92M/2749 Marini, L., 92M/1081, 1553 Marini, O. J., 92M/1309, 3899 Marion, P., 92M/0294, 0538, 3907 Mariotti, A., 92M/0757, 3111 Mark, T. D., 92M/2410 Marker, A., 92M/1904 Markgraaff, J., 92M/3904 Markowicz, A. A., 92M/3753 Marnier, G., 92M/0259 Marquer, D., 92M/3384 Marques, F., 92M/4925 Marques, J. M., 92M/4475, 4615 Marquez, N., 92M/0831, 2808, 4609 Marquis, P., 92M/0276, 0587 Marr, I., 92M/2487 Marro, Ch., 92M/2404 Marsan, F. Ajmone, 92M/2592 Marsh, B. D., 92M/0976, 3473 Marsh, J. S., 92M/0643, 4730 Marsh, T. M., 92M/2748 Marshall, B., 92M/2656 Marshall, J. D., 92M/0869, 1822, 4291 Marshall, J. S., 92M/2390

Martens, L., 92M/1556 Martí, J., 92M/1039 Martin, A., 92M/1269 Martin, B., 92M/0428, 2001 Martín de Vidales, J. L., 92M/1366 Martin de Vidales, J. L., 92M/2552 Martin, E. E., 92M/0727 Martin, J. B., 92M/4960 Martin, J. H., 92M/4519, 4531 Martin, J.-M., 92M/4474 Martin, N., 92M/3609 Martin, P., 92M/0679 Martin, R. F., 92M/3328 Martin, S., 92M/3272, 3618, 3619 Martínez, F. J., 92M/3630 Martínez, J. G., 92M/0086 Martinez, R. R., 92M/3204 Martinez Ruiz, F., 92M/4437 Martini, J. E. J., 92M/1174, 2720 Martini, M., 92M/2206 Martinotti, G., 92M/4927 Martins, H. C., 92M/4365 Martiny, B., 92M/1901 Marton, A. S., 92M/1471 Marty, B., 92M/1819, 3483, 4286 Martynova, A. V., 92M/2074 Maruyama, S., 92M/1180, 2864 Maruyama, T., 92M/0043 Marzi, R., 92M/4509 Marzzocchi, W., 92M/1044 Masch, L., 92M/2152, 2153, 2161 Masi, U., 92M/1734 Maskall, J., 92M/1509 Maslenikov, A. V., 92M/4093 Mason, B., 92M/3197, 3780, 4674 Mason, D. C., 92M/1660 Mason, D. O., 92M/3996 Mason, D. R., 92M/4760 Mason, I., 92M/2164 Mason, R. A., 92M/3271 Masse, P., 92M/0999 Massiot, D., 92M/4056 Massonne, H.-J., 92M/3634 Massoth, G. J., 92M/0738 Masters, G., 92M/1220 Masters, T. G., 92M/4976 Mastin, L. G., 92M/3504 Masuda, A., 92M/1782, 2421, 2493, 3766, 4331, 4390 Masuda, H., 92M/0265, 2650 Masuda, T., 92M/1181 Matýsek, D., 92M/1957, 2007, 2056 Mata, J., 92M/4366 Mateer, N. J., 92M/1738 Matesanz, E., 92M/1989 Mateus, A., 92M/3942 Mathavan, V., 92M/2179 Mathé, G., 92M/3641 Mather, P. J., 92M/4729 Mathez, E. A., 92M/1006 Mathies, D., 92M/2455 Mathison, C. I., 92M/1019 Mathur, A. K., 92M/2301 Mathurin, G., 92M/4444 Matias, M. K., 92M/4615 Matos, A. Vilela de, 92M/0988, 0990 Matos, F. M. V., 92M/3944 Matos, T. T. de, 92M/3955 Matsubara, K., 92M/0697, 1941, 1942 Matsubara, O., 92M/0567

Matsubara, S., 92M/3302, 3312

Matsuda, J., 92M/0697, 1941

Matsuda, J.-I., 92M/0485, 1942 Matsuda, T., 92M/0160, 0162, 0163, 0167, 2544 Matsue, N., 92M/2565 Matsueda, H., 92M/0567 Matsui, K., 92M/0045 Matsui, M., 92M/0455, 4094, 4482 Matsumoto, A., 92M/0001, 0112, 1918 Matsumoto, E., 92M/0039 Matsumoto, Y., 92M/3040 Matsunami, S., 92M/3220, 3221 Matsuo, S., 92M/1059, 2195 Matsusue, R., 92M/2879 Mattey, D. P., 92M/0638, 1812, 2832, 3350, 4393 Matthäus, U., 92M/3538 Matthes, S., 92M/1146, 1152, 1164 Matthews, A., 92M/4941 Mattias, P., 92M/3830 Mattielli, N., 92M/2228 Mattioli, V., 92M/3822 Maurel, C., 92M/2900 Maurer, H., 92M/3813 Maurer, H. F. W., 92M/2499 Maurette, M., 92M/0778 Maurin, J.-C., 92M/0921 Maury, R., 92M/3252, 3254 Maury, R. C., 92M/3462, 3676 Maus, H., 92M/2658 Mavrogenes, J. A., 92M/2744 Maxwell, S., 92M/3717, 4755 May, D. J., 92M/3107 Mayeda, T. K., 92M/0789, 1608, 1931 Mayer, L. A., 92M/1219 Mayhew, M. A., 92M/4980 Maynard, J. R., 92M/1103 Mayor, N., 92M/3988 Maza-Rodriquez, J., 92M/4105 Mazurek, M., 92M/4799, 4926 Mazzella, A., 92M/3568, 3926 Mazzi, F., 92M/0222, 0238, 3853 Mazzoli, C., 92M/1161, 4620 Mazzuchelli, M., 92M/2167 Mazzuoli, R., 92M/0633 McBirney, A. R., 92M/4832 McBride, K. S., 92M/2811 McCabe, W. J., 92M/4449 McCaffrey, K. J. W., 92M/4792 McCaffrey, M. A., 92M/4544 McCandless, T. E., 92M/4327 McCarthy, J. J., 92M/4501 McCarthy, T. S., 92M/3116 McCarty, D. K., 92M/0191 McClay, K. R., 92M/1438 McClellan, E. A., 92M/3660 McClellan, G. H., 92M/0874 McClelland, W. C., 92M/1289, 1302, 1763, 2308, 4717 McClenaghan, M. B., 92M/4453 McClure, S. F., 92M/1617, 4171 McConnell, B. J., 92M/3411 McConville, P., 92M/0579 McCormack, J. K., 92M/3336 McCormick, A. G., 92M/3003 McCormick, G. R., 92M/3544 McCoy, T. J., 92M/4576 McCready, R. G. L., 92M/2901 McCulley, B., 92M/1762 McCulloch, M. T., 92M/0048, 0605, 1675, 1754, 1828, 3894, 3908, 4273, 4274 McDermott, F., 92M/0665, 4970 McDermott, M., 92M/2669

McDonald, K. J., 92M/1320, 2453 McDonald, T. J., 92M/4540 McDonough, W. F., 92M/1758, 4279, 4309, 4971 McDougall, I., 92M/0659, 3732, 3734, 3894 McElduff, B., 92M/1464 McEwan, C. J. A., 92M/0599 McGee, J. J., 92M/0107 McGoldrick, P. J., 92M/1469 McGuiness, M. J., 92M/1070 McGuire, A. V., 92M/3404 McGuire, W. J., 92M/1046 McHardy, W. J., 92M/0463 McHugh, J. B., 92M/4557, 4561 McIntosh, W. C., 92M/1077 McIntyre, G. J., 92M/3846 McIver, J. R., 92M/3116 McKay, D. S., 92M/3204, 4584 McKee, E. H., 92M/1451, 2420, 2758 McKee, J. D., 92M/4494 McKelvey, B. C., 92M/4714 McKenzie, D., 92M/2083 McKibben, A., 92M/4344 McKibben, M. A., 92M/2979, 4345 McKinney, D. T., 92M/4191 Mckinney, L., 92M/4191 McKitrick, S. A., 92M/2748 McKnight, D. M., 92M/4496 McLaren, A. C., 92M/0120, 2871 McLean, R. F., 92M/0201 McLelland, J., 92M/2809, 3457 McLemore, V. T., 92M/2192, 4908 McLennan, S. M., 92M/4268, 4270 McLeod, R. L., 92M/2688 McLimans, R. K., 92M/3743 McManus, A., 92M/2423 McManus, G. B., 92M/3148 McMillan, P. F., 92M/0212, 0411, 2633, 4049, 4052, 4055, 4117 McMullan, R. K., 92M/0217 McMullen, M. J., 92M/1221 McMurry, J., 92M/1779 McMurtry, G., 92M/2116, 3552 McMurtry, G. M., 92M/0582, 4335 McNaughton, N. J., 92M/0899, 2666, 2967, 3947 McNeal, J. M., 92M/1909 McNeil, J., 92M/2380 McNeill, B., 92M/2441 McNichol, A. P., 92M/1798 McPhail, D. C., 92M/2861 McQueen, K. G., 92M/0334 McReath, I., 92M/1656, 1895, 2749 McSween Jr, H. Y., 92M/0824, 4581 McVeety, B. D., 92M/1356 Mearns, E. W., 92M/4876 Measures, C. I., 92M/0095, 4506 Mecklenburg, S., 92M/2401 Medaris Jr, L. G., 92M/1163, 2403 Meersche, E. Van de, 92M/3694 Meert, J. G., 92M/2082, 3673 Meeten, G. H., 92M/0143 Mei, E.-J., 92M/0933 Meier, W. M., 92M/0482 Meighan, I. G., 92M/3003 Meijer, P. Th., 92M/2331 Meilliez, F., 92M/0617 Meinert, L. D., 92M/4022 Meinhold, R. H., 92M/1350 Meissner, R., 92M/2149, 4235 Meissner, R. O., 92M/1086 Melas, F. F., 92M/3581

Melcher, F., 92M/3291 Melekestsev, I. V., 92M/1055 Melfi, A., 92M/1904 Melfi, A. J., 92M/2983 Melgarejo, J C., 92M/0918, 2170 Melling, D. R., 92M/2733 Mellini, M., 92M/3335 Mellors, R. A., 92M/1051 Melluso, L., 92M/3484 Melnikov, N. V., 92M/3572 Melnikov, V. S., 92M/4629 Melo Jr, G., 92M/3892 Memmi, I., 92M/3267, 3627 Mena, M., 92M/2223 Menaert, B., 92M/0259 Menard, T., 92M/2444 Menchetti, S., 92M/3249 Mendelovici, E., 92M/0499 Mendelssohn, M. J., 92M/0444 Mendia, M., 92M/0809 Mendia, M. S., 92M/1141, 1142 Mengal, J. M., 92M/0949 Mengel, F., 92M/2431 Menon, A. G., 92M/3924 Ménot, R.-P., 92M/3385, 3617, 4373 Mentzen, B. F., 92M/2876 Menzie, W. D., 92M/2669 Menzies, M. A., 92M/2245, 3341, Mercer, G. E., 92M/1853 Mercier, A., 92M/3614, 3648 Mercier, J. L., 92M/2326 Mercier, L., 92M/3615 Mercolli, I., 92M/1050, 2291, 3421, 3538 Merino, E., 92M/4662 Merker, G., 92M/2729 Merkle, R. K. W., 92M/1005, 4328 Merlino, S., 92M/0816, 0841, 0877, 3335, 3823 Mermut, A. R., 92M/4451 Mernagh, T. P., 92M/1679, 1956, 2889 Merriman, R. J., 92M/1132, 2284 Merry, M., 92M/1222, 1223 Merschat, C. E., 92M/4001 Mertanen, S., 92M/4741 Mertz, D. F., 92M/2402, 2995 Merwe, A. J. van der, 92M/0158 Merwe, N. J. Van der, 92M/4031 Merwin, L., 92M/4041, 4050 Merwin, L. H., 92M/0218 Merz, C., 92M/1992 Meshesha, M. Y., 92M/4701 Mesmer, R. E., 92M/0416 Messiga, B., 92M/1125, 3597 Messina, A., 92M/1900 Mestre, A., 92M/1455 Mestrinho, S. S. P., 92M/1905 Métour, J. Le, 92M/3537, 3538, 3550 Metrich, N., 92M/1032, 1943, 4062 Meunier, A., 92M/0811, 1355, 2531 Meunier-Christmann, C., 92M/3149 Meunier, J. D., 92M/1661 Meunier, J.-D., 92M/1705 Mevel, C., 92M/3024, 3117, 3524, 3534 Meybeck, M., 92M/4474 Meyer, A. J. H. M., 92M/2605 Meyer, C., 92M/4232 Meyer, F. M., 92M/0352 Meyer, G., 92M/3045

Meyer, P. S., 92M/0642, 1032 Meyer, R. P., 92M/2339 Meyer, V. R., 92M/3147 Meyers-Schulte, K. J., 92M/4547 Meynadier, L., 92M/4978 Michael, P. J., 92M/2194 Michalski, I., 92M/1258, 3538 Michard, A., 92M/0031, 3530, 4222 Michard, G., 92M/4129 Michel, D., 92M/3906 Michel, H., 92M/2984 Michel-Levy, M. C., 92M/4571 Michel, R., 92M/1939 Michel, Th., 92M/1934, 3207 Michot, L., 92M/0122, 0294 Michot, L. J., 92M/3790 Micklethwaite, R. K., 92M/2482 Middleburg, J. J., 92M/0511 Middlemost, E. A. K., 92M/0967 Middleton, R., 92M/0528, 0778, 0794, 1306, 3208, 3209, 3228 Miehe, G., 92M/1399 Miekeley, N., 92M/1902 Miele, G., 92M/3483 Mielke, H. W., 92M/0399 Mielke Jr, P. W., 92M/0399 Migdisova, L. P., 92M/1935 Migiros, G., 92M/2025 Migisha, C. J. R., 92M/1479 Miguel, J. M. García de, 92M/1431 Mikheeva, E. E., 92M/4608 Miki, T., 92M/1111 Milán, M., 92M/2219, 4864 Milési, J. P., 92M/3537 Milesi, J. P., 92M/3957 Milisenda, C. C., 92M/3100 Millard, R. L., 92M/3842 Milledge, H. J., 92M/4256, 4326 Miller, A., 92M/0800 Miller, A. K., 92M/0464 Miller, A. Kokines, 92M/0124 Miller, C., 92M/2294 Miller, C. E., 92M/4719 Miller, C. F., 92M/0882 Miller, D. J., 92M/1465 Miller, D. S., 92M/2348 Miller, H. G., 92M/1527 Miller, J., 92M/2984 Miller, J. A., 92M/1249 Miller, L. D., 92M/1290 Miller, M. F., 92M/3167 Miller, M. L., 92M/4575 Miller, R. R., 92M/3054 Miller, S., 92M/1436 Miller, W. M., 92M/1251 Miller, W. R., 92M/4557 Millholland, M. A., 92M/1482 Mills, G. L., 92M/0149 Mills Jr, J. G., 92M/0803 Mills, K. J., 92M/4758 Millward, D., 92M/3382 Milne, J. V., 92M/0959 Milner, S. C., 92M/3438 Milnes, A. G., 92M/1522 Miloslavski, I., 92M/1858 Mimura, K., 92M/0047 Minčeva-Stefanova, J., 92M/0870 Minamoto, J., 92M/3965 Mindszenty, A., 92M/0525 Mineau, R., 92M/1767 Ming, L. C., 92M/1566 Minghua, Z., 92M/0556 Mingram, B., 92M/2449 Minguzzi, V., 92M/2882

Minissale, A., 92M/1241 Minster, T., 92M/4526 Minter, W. E. L., 92M/2703, 3925, 3940 Mirgorodsky, A. P., 92M/4987 Misar, Z., 92M/1163 Misawa, K., 92M/0106 Mishra, B., 92M/2042 Misra, K. C., 92M/3105, 4253 Misra, S., 92M/1710, 1985 Mita, N., 92M/0571, 1918 Mitchell, J. G., 92M/4750 Mitchell, J. I., 92M/1123 Mitchell, R. H., 92M/0118, 1485, 3259, 3454, 4360 Mitchell, R. L., 92M/1375 Mitra, S., 92M/0856 Mittlefehldt, D. W., 92M/3204, 4587 Mittwede, S. K., 92M/3601 Mittwede, S. T., 92M/3059 Miura, H., 92M/0246 Mixon, P. H., 92M/0638 Miyajima, H., 92M/1014 Miyamoto, M., 92M/0787, 3198, 3222 Miyawaki, R., 92M/0156, 2864 Miyazaki, K., 92M/1572 Mizota, T., 92M/0453 Mizuno, K., 92M/0653 Mizuta, H., 92M/0153, 0156, 2864 Mizutani, T., 92M/1335, 1342 Mladenova, V., 92M/0864 Modreski, P. J., 92M/4908 Moecher, D. P., 92M/1559 Moëlo, Y., 92M/0065 Möelo, Y., 92M/0074 Moëlo, Y., 92M/2900, 3311 Moenke-Blankenburg, L., 92M/2472 Mogessie, A., 92M/1703 Mogk, D. W., 92M/0386 Moh, G., 92M/0419 Moh, G. H., 92M/2885, 3308 Mohabey, D. M., 92M/3082 Mohanty, L., 92M/4042 Mohr, P., 92M/3412 Mohr, P. A., 92M/4791 Moine, B., 92M/1988 Molák, B., 92M/4553 Moldowan, J. M., 92M/3162, 4544 Molin, G., 92M/1969 Molin, G. M., 92M/1937 Molina, A. L., 92M/1496 Moll-Stalcup, E. J., 92M/4403 Möller, N., 92M/4079 Möller, P., 92M/4285 Molling, P. A., 92M/4081 Molnár, J., 92M/5001 Molnar, P., 92M/2334 Molyneux, S. G., 92M/3382 Momoi, H., 92M/3318 Moncaster, S. J., 92M/1310 Monceau, P., 92M/4125 Monchoux, P., 92M/3296 Monego, M., 92M/3419 Mongelli, G., 92M/2585 Monger, J. W. H., 92M/1190 Monjaret, M. C., 92M/0661 Monod, O., 92M/4875 Montalto, A., 92M/1043 Montana, A., 92M/0450, 2811 Montana, G., 92M/2944 Montanari, A., 92M/4597 Montanaro, L., 92M/3784

Monteiro, R. N., 92M/3931 Montel, J.-M., 92M/1001 Montel, J. M., 92M/3415 Montes, M. Ruiz, 92M/1496 Montgomery, H., 92M/4603 Montoya, J. P., 92M/4501 Monzier, M., 92M/3553 Mookherjee, A., 92M/2042 Moon, A. R., 92M/2892 Moon, K. J., 92M/3177 Moorbath, S., 92M/0028, 1269, 1781 Moorby, S. A., 92M/0525 Moore, D., 92M/0972 Moore, G., 92M/4962 Moore, J. C., 92M/4962 Moore, J. G., 92M/1034, 1067 Moore, J. M., 92M/0219, 3051 Moore, J. N., 92M/2787, 4254 Moore Jr, T. C., 92M/5004 Moore, M., 92M/3284 Moore, P. B., 92M/1392, 1393, 1977, 2808 Moore, P. R., 92M/4820 Moore, R., 92M/4021 Moore, R. B., 92M/4856 Moore, R. M., 92M/1842 Moore, W. S., 92M/0729, 3122 Moores, E. M., 92M/3532 Moorhead, C. F., 92M/1475 Moort, J. C. van, 92M/0576 Mopper, K., 92M/0750 Mora Alvarez, G., 92M/2225 Mora, C., 92M/1617 Mora, C. I., 92M/1814 Moraes, M. A. S., 92M/2259 Morales, M., 92M/2224 Moran, S. B., 92M/1842 Morandi, N., 92M/2882, 3464 Moravec, B., 92M/2030 Morden, S. J., 92M/4586 More, A. P., 92M/0863 Moreau, C., 92M/1736 Moreira, J. C. Balacó, 92M/0379 Morelli, E., 92M/3760 Morelli, F., 92M/2848 Moreno Real, L., 92M/1321 Moreno Roa, H., 92M/1085 Moreno-Ventas, I., 92M/0991, 2126 Moresi, M., 92M/1367, 2573, 2585 Moreton, C., 92M/1488 Moretzsohn, J. S., 92M/3956 Morgan, D., 92M/2361 Morgan, J. A. W., 92M/0109 Morgan, J. J., 92M/0726 Morgan, J. W., 92M/1690, 4579 Morgan, M. E., 92M/4031 Morgan VI, G. B., 92M/4266 Mori, H., 92M/1930, 3198, 3834 Mori, T., 92M/2781, 2782 Mori, W., 92M/2691 Morikawa, H., 92M/3755 Morikawa, T., 92M/1181 Morillo, E., 92M/0142 Morin, N., 92M/3353 Morishima, H., 92M/2589 Moritz, R., 92M/4469 Moritz, R. P., 92M/0273, 0289 Mørk, M. B. E., 92M/0008 Moro, A. Del, 92M/0625, 1263 Moro, A. del, 92M/2406 Morozov, S. P., 92M/4811 Morra, V., 92M/3356, 3484 Morris, E., 92M/2441

Morris, S., 92M/4037 Morrison, D. A., 92M/3834 Morrison, G. W., 92M/0533 Morrison, J., 92M/3260 Morrison, M. A., 92M/0676, 4788 Morrison, R. J., 92M/3808, 3809 Morse, J. W., 92M/0500, 1861, 3088, 4134, 4146 Morse, S. A., 92M/0672, 4115 Morteani, G., 92M/0293, 0717, 3022, 3250 Morten, L., 92M/1143 Mortensen, J. K., 92M/1295 Morton, A. C., 92M/0011, 3244, 4877, 4878 Morton, J. L., 92M/2112 Morton, P., 92M/3452 Morton, R. D., 92M/4338 Morton, R. L., 92M/1440 Mortuza, M. G., 92M/0412, 1402, Morvik, R., 92M/2138, 3407 Mose, D. M., 92M/2785 Moser, M. R., 92M/4256 Mosigi, B., 92M/3882 Mosler, H., 92M/3669 Mosser, C., 92M/0688 Mossman, D. J., 92M/0351, 2699, 4325 Mossman, J.-R., 92M/0016, 4457 Mottana, A., 92M/0724, 0829, 0830, 2615, 2841, 3300, 3830 Motyka, R. J., 92M/1072 Mötzing, R., 92M/3563 Mouche, E., 92M/2776 Mouël, J.-L. Le, 92M/4861 Mountain, B. W., 92M/2883 Moura, A. Casal, 92M/0342 Mouraouah, A. el A. el, 92M/1001 Moutaouakkil, N. El, 92M/0835 Mouty, M., 92M/4381 Moxon, T. J., 92M/2919, 4174 Moyes, A. B., 92M/1020 Moyle, A. J., 92M/2693 Mozgova, N., 92M/0864, 0868, 2044 Mpodozis, C., 92M/1446 Mposkos, E., 92M/1167 Mrazek, R., 92M/3694 Mrázek, Z., 92M/2028 Mrini, Z., 92M/4802, 4804 Muchez, P., 92M/1822 Mücke, A., 92M/3437, 4010 Mudiguza, K., 92M/3934 Muehlenbachs, K., 92M/1684, 2735, 4198 Mueller, A. G., 92M/0327, 0577, 0808, 1477, 1478 Mueller, P. A., 92M/0015, 3079 Muenow, D. W., 92M/0664, 4350 Muff, R., 92M/3805 Mühe, R., 92M/0392, 2109, 2110, 2111 Muhe, R., 92M/3047 Muhling, J. R., 92M/0083 Muhlmeister, S., 92M/4171 Mühlstedt, P., 92M/0319 Muir, I. J., 92M/2868 Muir, R. J., 92M/0013 Mukasa, S. B., 92M/2989, 2990, 3347, 3349 Mukherjee, A. B., 92M/2768 Mukherjee, A. D., 92M/2038

Mukherjee, M. M., 92M/3954

Mukhopadhyay, A., 92M/4042

Mukhopadhyay, B., 92M/0807, Mukhopadhyay, M., 92M/2607 Mukhtar, S., 92M/2464 Mulargia, F., 92M/1044 Müle, K., 92M/3103 Mulholland, I. R., 92M/1470 Mulja, T., 92M/1485 Müller, B., 92M/0248 Muller, B., 92M/2335 Müller, B., 92M/2637 Müller-Beneke, G., 92M/3841 Müller, D. W., 92M/3079 Müller, E., 92M/4040 Müller, G., 92M/1388, 1576, 1815, 2626, 2867, 3663 Müller, H., 92M/0711 Müller, P., 92M/2115 Müller, R., 92M/3561 Müller, V., 92M/1462 Müller-Vonmoos, M., 92M/2539 Müller, W. F., 92M/1925, 1926, 2608, 3841 Mullineaux, D. R., 92M/3503 Mullis, J., 92M/2530 Mumme, W. G., 92M/4674 Munguira, A. López, 92M/3631 Munha, J., 92M/4240 Munhá, J., 92M/4366 Munksgaard, N. C., 92M/4468 Muñoz de La Nava, P., 92M/1362 Muñoz, I., 92M/4603 Munshii, C. L., 92M/1748 Muntean, J. L., 92M/4023 Munz, I. A., 92M/1131, 2138, 3407 Murad, E., 92M/1347 Murakami, T., 92M/3239 Murasaki, M., 92M/0658 Murasawa, K., 92M/0181 Murat, M., 92M/3784 Murata, A., 92M/3276 Murata, K. J., 92M/2005 Murata, M., 92M/3256 Muravitskaya, G. N., 92M/2033, Murdock, C. R., 92M/5012 Murowchick, J. B., 92M/1684, 3995 Murphy, J. B., 92M/1300, 2078 Миггау, Н. Н., 92М/1349, 3786, 3802 Murray, J. B., 92M/1046 Murray, R. W., 92M/0703, 1795, 4427, 4430 Murray, T., 92M/2196 Murrell, M. T., 92M/2427 Murty, S. V. S., 92M/4301 Mørup, S., 92M/2591, 4642 Musgrave, J. A., 92M/0600 Mushrush, G. W., 92M/2785 Mussalam, K., 92M/3542 Mustin, C., 92M/0538 Muszyński, M., 92M/0686 Mutschler, F. E., 92M/1696 Muyzer, G., 92M/0748, 4508 Myers, J. D., 92M/4400 Myers, J. S., 92M/1286 Myers, W. A., 92M/0790 Mysen, B., 92M/2825, 4057 Mysen, B. O., 92M/2814, 2815,

2818, 2824, 2852, 4059

Naar, D. F., 92M/5010 Nabelek, P. I., 92M/3591, 4410, 4411 Nada, R., 92M/3818 Naden, J., 92M/3463 Nagahara, H., 92M/2852 Nagamoto, H., 92M/0106 Nagao, T., 92M/3445 Nagasawa, K., 92M/2589 Nagata, H., 92M/0188 Naghdi, P. M., 92M/2390 Nägler, Th. F., 92M/3716 Nahon, D., 92M/0857, 2983 Naidenova, E., 92M/0345 Naidja, A., 92M/3791 Naidoo, D. D., 92M/2079 Nair, K. K. K., 92M/0922 Nairn, I. A., 92M/3495 Nakada, S., 92M/1017, 1025 Nakai, S., 92M/0773, 2421 Nakajima, W., 92M/2878, 2879 Nakamura, E., 92M/1919, 2467, 3767, 4399 Nakamura, N., 92M/0106, 3216 Nakamura, T., 92M/1826, 3755 Nakamura, Y., 92M/3281, 4389 Nakamuta, Y., 92M/1111 Nakano, S., 92M/3490 Nakano, T., 92M/0570 Nakao, S., 92M/0571 Nakaya, S., 92M/0740 Nakayama, T., 92M/0106 Nakazawa, H., 92M/1348, 2547 Naldrett, A. J., 92M/0321, 1690, 1691, 4813 Namba, T., 92M/0426 Nancarrow, P. H. A., 92M/3677 Nance, R. D., 92M/1300, 2078 Nanda-Kumar, V., 92M/3099 Nandy, D. R., 92M/0942 Nappi, G., 92M/1040, 2213 Naqvi, S. M., 92M/0649 Narasimhan, T. N., 92M/1218 Narayanaswamy,, 92M/3962, 3969 Nardi, S., 92M/3157 Narita, E., 92M/0569 Narseev, A. V., 92M/3172 Naschwitz, W., 92M/0576 Nasdala, L., 92M/3686 Nash, J. T., 92M/0532 Nash, W. P., 92M/2190 Nasir, S., 92M/0022, 2266, 4368 Nassau, K., 92M/2913, 4161 Nasseef, A. O., 92M/3727 Natale, G. De, 92M/2209 Natarajan, R., 92M/3651 Nathan, S. S., 92M/2483 Nathan, Y., 92M/0108, 4526 Nathenson, M., 92M/3466 Natland, J., 92M/2235, 2242 Naumann, T. R., 92M/3502 Nauruzbayev, K. A., 92M/4623 Nautiyal, A. C., 92M/1110 Nava, P. Muñoz de La, 92M/1362 Navarro Gascón, J. V., 92M/1362 Navarro, J. V., 92M/1430 Navidad, M., 92M/0915 Navon, O., 92M/1713, 2012, 2013 Navrotsky, A., 92M/0225, 0458, 1550, 2862, 4046 Navrotsky, W., 92M/2634 Nawab, Z. A., 92M/3979, 3980 Naya, H., 92M/2422 Nayak, B. K., 92M/2454, 2959

Neal, C. R., 92M/0773, 2175, 3201, 4566 Neale, T., 92M/2689 Nebauer, F., 92M/3385 Necheljustov, G. N., 92M/4646 Nechelyustov, G. N., 92M/2068 Nedkvitne, T., 92M/4879 Nega, H., 92M/2849 Negretti, G., 92M/3419 Negrini, L., 92M/2167 Negro, A. Dal, 92M/1396 Nehlig, P., 92M/1087 Nehru, C. E., 92M/0316 Neiva, A. M. R., 92M/2047 Neiva, J. M. Cotelo, 92M/2047 Nekvasil, H., 92M/2129 Nell, J., 92M/0489, 1203 Nelridge, R. A., 92M/0312 Nelsen, T. A., 92M/2938 Nelson, B. K., 92M/0728, 3110 Nelson, D. E., 92M/0740 Nelson, D. R., 92M/3043 Nelson, T., 92M/2937 Némec, D., 92M/2173 Němec, D., 92M/2716 Nerci, K., 92M/4011 Neri, R., 92M/0550, 2952, 2953 Nesbitt, B. E., 92M/1684, 2735 Nesbitt, H. W., 92M/2868, 4458 Nesterov, A. R., 92M/4641 Neto Parra, A. A. H., 92M/0766 Neuman, R. B., 92M/4869 Neumann, E.-R., 92M/0992 Neumann, Th., 92M/1683 Neumayr, P., 92M/1948 Neurdin-Trescartes, J., 92M/2575 Neves, B. B. de Brito, 92M/2077 Neves, L. J. P. F., 92M/0020, 1984, 1994 Newberger, F., 92M/4085 Newberry, R. J., 92M/1290, 1495, 2119 Newesely, H., 92M/2587 Newton, R. C., 92M/0404, 1545, 2302, 4910 Neykov, H., 92M/0866, 0870 Neziraj, A., 92M/2717 Ngako, V., 92M/0031 Niametullah, M., 92M/0950 Nichol, I., 92M/1886, 1887, 1907, 4453, 4554 Nicholls, I. A., 92M/4275 Nichols Jr, R. H., 92M/1932 Nichols, S. J., 92M/2853 Nicholson, D. M., 92M/1006 Nicholson, H., 92M/1716 Nicholson, R., 92M/0340 Nickel, E. H., 92M/3327, 3339 Nicolas, A., 92M/2500, 3354, 3512, 3522 Nicoletti, M., 92M/1734 Nicollet, C., 92M/0644 Nie, F., 92M/0354 Niederbudde, E. A., 92M/3789 Niedermann, S., 92M/1934, 4564 Niedermayr, G., 92M/2372, 2380 Nielsen, F. M., 92M/0979 Nielsen, R. L., 92M/4085, 4769 Nielsen, T. F. D., 92M/4763 Nielson, J. E., 92M/3347, 3404 Niemeyer, A., 92M/3795 Niemeyer, S., 92M/0682 Nieto, F., 92M/2581, 3631 Nieuwenhuize, J., 92M/2443 Nieva, D., 92M/2222, 4862

Nigmatulina, E. N., 92M/2069 Nijampurkar, V. N., 92M/4474 Nikkarinen, M. E., 92M/3377 Nikolaeva, I. V., 92M/4623 Nikolaeva, L. D., 92M/4608 Nilsen, B., 92M/4696 Nilsen, K. S., 92M/3921 Nilsen, O., 92M/4007 Nilsson, M., 92M/4359 Nimfopoulos, M. K., 92M/0344 Nimick, D. A., 92M/2787 Niquet, S., 92M/0192 Nir, S., 92M/2535 Nishanbaev, T. P., 92M/0880 Nishi, T., 92M/3276 Nishidai, T., 92M/3160 Nishido, H., 92M/3283 Nishiizumi, K., 92M/0528, 0778, 0794, 1306 Nishikawa, Y., 92M/0106 Nishimura, H., 92M/3220, 3221 Nishimura, S., 92M/1244 Nishiyama, T., 92M/0161 Nishizumi, K., 92M/3208 Niskavaara, H., 92M/3374 Nissen, A. L., 92M/3711 Niu, Y., 92M/1491 Niven, M. L., 92M/0219 Nixon, P. H., 92M/3350, 3523 Njonfang, E., 92M/3018 Nkurunziza, P., 92M/3800 Nobili, M. De, 92M/2527 Noble, D. C., 92M/2191, 2758, 2760, 2761 Noble, S. R., 92M/3738 Noda, S., 92M/0106, 2781, 2782 Nohda, S., 92M/0658 Nojiri, Y., 92M/4481 Nolan, J., 92M/2477 Nolan, K. M., 92M/0672 Nolan, L. W., 92M/1914 Nolet, G., 92M/1216 Nolte, E., 92M/1837, 3209 Nonaka, T., 92M/2781, 2782 Nord, A. G., 92M/0264, 2649 Nordquist, G. A., 92M/3127 Nordstrom, D. K., 92M/4495 Norman, D. I., 92M/0031, 3169, 3176, 3887 Norman, M. D., 92M/4280 Noronha, F., 92M/2714, 4365 Norrell, G. T., 92M/0964 Norris, R. J., 92M/3984 Norrish, K., 92M/0130 Norry, M. J., 92M/4969 Northrop, H. R., 92M/0593, 0594 Notarpietro, A., 92M/2406 Notsu, K., 92M/1826, 3494 Novák, F., 92M/2062 Novak, G. A., 92M/3261 Novák, J. K., 92M/2041 Novák, L., 92M/2061 Novák, M., 92M/1624, 1961, 2016, 2373 Novikov, G. V., 92M/1793 Novitsky, I., 92M/1254 Novoselova, L. N., 92M/1964 Novosselova, L. N., 92M/4637 Novotný, J., 92M/2058 Nowakowski, A., 92M/1997 Noyan, Ö. F., 92M/2416 Nozaka, T., 92M/3446 Nozawa, T., 92M/0968

Nuez, J. de la, 92M/2171 Nugteren, H. J., 92M/3297 Nunes, J. E. Lopes, 92M/0986 Nunziata, C., 92M/2200 Nur, A., 92M/4311 Nurmi, P. A., 92M/3374, 3963 Nusbaum, R. L., 92M/3555 Nutalaya, P., 92M/0169 Nutman, A. P., 92M/0911, 1285, 2414, 2418 Nwe, Y. Y., 92M/0549 Nyelo, G., 92M/3934 Nyman, M. W., 92M/1974 Nyquist, L. E., 92M/4565 Nyström, J. O., 92M/1084 Nystrom, J. O., 92M/1456 Nzenti, J.-P., 92M/0031

O'Beirne-Ryan, A. M., 92M/1189 O'Brien, P. J., 92M/1147, 1164 O'Connor, B. H., 92M/0496 O'Connor, E. A., 92M/4003 O'Connor, P. J., 92M/4362 O'Connor, W. K., 92M/0309 O'Donnell, J., 92M/2249 O'Hanley, D. S., 92M/2933, 4252 O'Hara, K., 92M/2315 O'Hare, P. A. G., 92M/4123 O'Keefe, M., 92M/0204 O'Keefe, M. A., 92M/1387 O'Keeffe, M., 92M/2602 O'Leary, R. M., 92M/4561 O'Neil, J. R., 92M/3777, 4197, 4225, 4343 O'Neill, H. St C., 92M/2632, 2855, 2890 O'Nions, R. K., 92M/1643, 2083, 3710, 4393, 4483, 4911 O'Reilly, S. Y., 92M/1185, 1753, 2941, 3357 Oba, T., 92M/4275 Obata, M., 92M/3352 Öberg, S., 92M/3835 Oberhänsli, R., 92M/1727, 1808, 3333, 3421, 3621, 3622 Oberli, F., 92M/0027 Oberthür, T., 92M/3928 Oberti, R., 92M/1394, 1950, 3826 Obrizzo, F., 92M/1041, 2207 Obst, P., 92M/1962 Ocampo, R., 92M/4522 Ochieng, J. O., 92M/1615 Oda, I., 92M/3279 Oddone, M., 92M/1263, 1367 Odehnal, F., 92M/1961 Odekirk, J. R., 92M/0306 Odermatt, J. R., 92M/1849 Odin, G. S., 92M/0173, 1260, 2408 Odukoya, A. A., 92M/0199 Oelkers, E. H., 92M/4077 Oeschger, H., 92M/4447 Offermann, E., 92M/1224 Officer, C. B., 92M/4901 Ogata, H., 92M/1930 Ogawa, M., 92M/0145 Ogawa, Y., 92M/4686 Ogden III, J. G., 92M/4032 Oggiano, G., 92M/0625 Oh, C.-W., 92M/1198 Ohashi, F., 92M/1338, 2559, 2560 Ohashi, H., 92M/1395 Ohe, T., 92M/0417 Öhlander, B., 92M/1247, 2142

Öhman, P., 92M/0735

Ohmoto, H., 92M/0415, 0486, 0700, 2663, 4065, 4407 Ohnenstetter, D., 92M/3240, 3310, 4816 Ohnenstetter, M., 92M/2717 Ohr, M., 92M/1304 Ohta, E., 92M/0348, 4676 Ohta, T., 92M/3037 Ohtake, M., 92M/4843 Ohtaki, H., 92M/0265, 2650 Ohtsubo, M., 92M/1351, 2567 Oikawa, J., 92M/3492 Oinuma, K., 92M/0177 Oka, H., 92M/3755 Okada, A., 92M/1335, 1342 Okada, K., 92M/0138 Okano, J., 92M/2851 Okazaki, M., 92M/2864 Okimura, Y., 92M/0949 Okrugin, A. V., 92M/4766 Okrusch, M., 92M/0022, 1146, 1151, 1152, 1164, 4933, 4940 Okrusch, N., 92M/4368 Okumura, K., 92M/0653 Oleinikov, B. V., 92M/4766 Olesik, J. W., 92M/2488 Olijnyk, H., 92M/2789 Olinger, C. T., 92M/1932, 4594 Olivarez, A. M., 92M/0695, 1829 Oliveira, C. G., 92M/2981 Oliveira, E. P., 92M/4735, 4743 Oliveira, J. A. L., 92M/2752 Oliveira, J. M. Santos, 92M/0767 Oliveira, S. M. B., 92M/1884 Oliveira, S. M. B. de, 92M/3196 Oliver, J., 92M/4238 Oliver, N. H. S., 92M/0592 Oliver, P. J., 92M/4854 Olivera-Pastor, P., 92M/4105 Olives, J., 92M/1343 Oliviera, C. G., 92M/3873 Olivo, G. R., 92M/3899 Olley, J. M., 92M/4485 Ollier, G., 92M/3676 Olmi, F., 92M/3299 Olsen, E., 92M/3229 Olsen, E. J., 92M/0789, 1936 Olsen, R. L., 92M/0400 Olson, K. E., 92M/4409 Olson, P., 92M/4979 Olson, S., 92M/3974 Olson, S. F., 92M/3939, 4012 Omana, P. K., 92M/0353, 3286 Omar. G., 92M/2345 Omar, G. I., 92M/3398 Omitogun, A. A., 92M/3648 Omura, A., 92M/0044 Ondruš, P., 92M/2054 Önen, P., 92M/3435 Ono, K., 92M/1057 Onstone, T. C., 92M/2428 Onstott, T. C., 92M/0540, 2394, 3722 Onuki, H., 92M/1183 Opheim, J. A., 92M/1128 Opluštil, S., 92M/3689 Oppenheimer, C., 92M/4865 Oppenheimer, C. M. M., 92M/1027 Oppenländer, F., 92M/2367 Oppenländer, F. W.-H., 92M/4998 Oppermann, H., 92M/2923 Ord, A., 92M/2871 Ordoñez, S., 92M/1788, 1789 Orellana, H., 92M/4868

Oreskes, N., 92M/1707, 2968

Ormerod, D. S., 92M/1776 Orpen, J. L., 92M/1269 Orr, T. O. H., 92M/2180 Orrego, A., 92M/2247 Orsi, G., 92M/0622, 1049, 2212 Ortega-Gutierrez, F., 92M/2438 Ortega-Huertas, M., 92M/1367 Ortega Huertas, M., 92M/4437 Ortega, L. A., 92M/0915 Ortegas-Huertas, M., 92M/2581 Orth, C. J., 92M/4446 Ortiz, L. E., 92M/4875 Ortoleva, P., 92M/1122 Osadchii, E., 92M/1605 Osanai, Y., 92M/3256, 4947 Osawa, T., 92M/1395 Osborne, G. A., 92M/3883 Oscarson, R. L., 92M/3337 Oshagan, A., 92M/2869 Oshima, O., 92M/2195 Oskarsson, N., 92M/1819, 2997 Östmo, S. R., 92M/4472 Ostrooumov, M. N., 92M/1630 Oswald, H. R., 92M/1409 Ōtani, S., 92M/1338 Otsubo, T., 92M/0043 Otsuka, N., 92M/0138 Otsuki, K., 92M/0949 Ott, L., 92M/4012 Otter, M. L., 92M/1270, 1655, 4806 Otto, J., 92M/4572 Ottolini, L., 92M/3355, 4371 Oun, K. M., 92M/0810 Ourzik P., 92M/3614 Outerbridge, W. F., 92M/3501 Ouyang, J., 92M/1750 Ouyang, Z., 92M/3231 Ouzegane, Kh., 92M/3647 Oviedo, L., 92M/1453 Owada, M., 92M/0111, 4947 Owen, J. V., 92M/1188, 2122, 4956 Owen, R. M., 92M/0695, 1829 Oxburgh, E. R., 92M/1643 Ōya, A., 92M/1338, 2559, 2560 Oyarzun, R., 92M/3988 Özgür, N., 92M/3184, 3919 Ozima, M., 92M/1644, 1819, 4286, 4481 Paavola, J., 92M/3368 Pacalo, R. E., 92M/2342 Paces, J. B., 92M/0773 Pacheco, A. Hernández, 92M/2171 Pacheco, J. F., 92M/5006 Padalino, G., 92M/4552 Padgham, W. A., 92M/3872 Padlewski, S., 92M/3819 Padmalal, D., 92M/1794 Padova, A., 92M/0682 Paech, H.-J., 92M/2722, 3396, 3562

Orlandi, P., 92M/3335, 4994

Paavola, J., 92M/3368
Pacalo, R. E., 92M/2342
Paces, J. B., 92M/0773
Pacheco, A. Hernández, 92M/2171
Pacheco, J. F., 92M/5006
Padalino, G., 92M/4552
Padgham, W. A., 92M/3872
Padlewski, S., 92M/3819
Padmalal, D., 92M/1794
Padova, A., 92M/0682
Paech, H.-J., 92M/2722, 3396, 3562
Paerl, H. W., 92M/2786
Paetzel, M., 92M/432
Pagani, F., 92M/2841
Page, R. A., 92M/0494
Pagel, M., 92M/1268, 1661
Pages, J., 92M/3314
Paige, C. R., 92M/4078, 4138
Pajares, J. A., 92M/3788
Pakkanen, L., 92M/3788
Pakkunc, D., 92M/385
Pal, T., 92M/0856
Pal, Tapan, 92M/0856
Palacios, C. M., 92M/3184

Nuccio, P. M., 92M/1047

Nuchanong, T., 92M/1886, 4554

Pälchen, W., 92M/3009, 3180, 3183 Palin, J. M., 92M/2447 Pallister, J. S., 92M/3503, 4845 Palme, H., 92M/0429, 1921, 3205 Palmer, A. S., 92M/4849 Palmer, D., 92M/2866 Palmer, D. A., 92M/4132 Palmer, M. R., 92M/0720, 0725, 2936, 4289, 4505 Palmieri, F., 92M/0389, 0463 Palomares, M., 92M/2254 Palomba, M., 92M/0380, 2584, 3568 Palomo, I., 92M/1367, 4437 Pamić, J., 92M/2226 Pan, G., 92M/1180 Pan, J. J., 92M/2940 Pan, P., 92M/0487 Pan. V., 92M/0430, 2791 Pan, Y., 92M/0813, 1797, 2972, 4624 Panchapakesan, V., 92M/2454 Panchenko, V. I., 92M/2376 Pandalai, H. S., 92M/0555 Pandya, N., 92M/4350 Panem, C. C., 92M/1062 Pang, L. S. K., 92M/4530 Pani, E., 92M/3926 Pankrath, R., 92M/0477 Pannhorst, W., 92M/1576 Pannila, A. S., 92M/2916 Pannuti, F., 92M/3628 Panov, E. N., 92M/4774 Pant, N. C., 92M/2182 Panteleyev, A., 92M/0284 Pantó, G., 92M/0995 Paolieri, M., 92M/3480 Papanastassiou, D. A., 92M/4580, 4596 Papatheodorou, K., 92M/4627 Papesch, W., 92M/2951 Papike, J. J., 92M/3049, 4402, 4412 Papp, C. S. E., 92M/0744 Parafiniuk, J., 92M/2050 Parashenko, T. M., 92M/2074 Parbery, D. D., 92M/0287 Parbo, A., 92M/3770 Parc, S., 92M/0857 Parcharidis, I., 92M/2025 Pardo, E. Sebastián, 92M/3631 Pardo, J. J. González, 92M/1863 Parduhn, N. L., 92M/1879 Pareschi, M. T., 92M/3436, 4868 Parga, J., 92M/2451 Parimo, M. L., 92M/2182 Paris, E., 92M/0829, 2615, 2789, 3830 Park, J. K., 92M/2349 Park, K.-H., 92M/1715 Park, R. G., 92M/4721 Parker, A., 92M/4991 Parker, A. J., 92M/3775 Parker, R. J., 92M/4702, 4817 Parkison, G. A., 92M/0311 Parks, D., 92M/0014 Parks, G. A., 92M/4145 Parmentier, E. M., 92M/2134 Parnell, J., 92M/0754, 4325 Parodi, G. C., 92M/3300 Parra, A. A. H. Neto, 92M/0766 Parrish, R. R., 92M/1292, 2415 Parron, C., 92M/4027 Parseval, P. de, 92M/1988

Parsons, I., 92M/3271, 4632

Partington, G. A., 92M/0372 Pascoe, G. J., 92M/2687 Pasero, M., 92M/1389, 2014 Pasquarè, G., 92M/2220, 4837 Passaglia, E., 92M/0292, 4636 Passchier, C. W., 92M/0958 Passero, M., 92M/3335 Pasteris, J. D., 92M/4266 Patane, G., 92M/1043 Patchett, P. J., 92M/1289, 1302, 1763, 2438, 3106, 4354, 4717 Patel, A., 92M/0444 Paterson, B. A., 92M/3241 Paterson, E., 92M/1346 Paterson, S. R., 92M/2305, 3595, 4692 Patience, R. L., 92M/0751 Patil, D. N., 92M/1374, 3576 Patil, S. K., 92M/4751 Patiño Douce, A. E., 92M/0425 Patrier, P., 92M/0811 Patterson, C. C., 92M/4219 Patterson, D. J., 92M/1678 Patterson, M. G., 92M/3025 Pattison, D., 92M/2159 Pattison, D. R. M., 92M/1324, 2144, 2150, 2151, 2158, 2161, Patton, W. W., 92M/1288 Pattrick, R. A. D., 92M/0344, 0543, 0544, 1659 Patwardhan, A. M., 92M/3578 Patzak, M., 92M/1151 Paufler, P., 92M/1314, 2629 Paul, D. K., 92M/0036, 0648 Paul, M., 92M/4479 Paul, R. L., 92M/3217 Paulet, P. H., 92M/3254 Pauley, J. C., 92M/0913 Pauliš, P., 92M/2030 Paulis, P., 92M/1236 Paulsen, P. J., 92M/3759 Pavlis, T. L., 92M/2119 Pavlishin, V. I., 92M/2376 Pavlov, G. F., 92M/1626 Pavlutchenko, V. S., 92M/2069 Pawley, A. R., 92M/2795, 2859 Pazero, M., 92M/0877 Pazukhin, E. M., 92M/4608 Pe-Piper, G., 92M/0635, 0842, 1769, 2174, 4939 Peacock, S. M., 92M/2444, 4966 Peacor, D. R., 92M/1304, 1986, 2536, 3332 Peakman, T. M., 92M/4533, 4539, 4542 Pearce, F. M., 92M/1504 Pearce, J., 92M/2355 Pearce, P., 92M/2355 Pearce, R. B., 92M/0172 Pearce, T. H., 92M/1648 Pearl, Z., 92M/4220 Pearson, D. G., 92M/0638, 3350, 3440, 3523 Pearson, N. J., 92M/1185, 3357 Peate, D. W., 92M/1752 Peccerillo, A., 92M/0626, 0631, 1756 Pecher, A., 92M/2416 Peck, D. C., 92M/0371 Peckett, A., 92M/2496 Pécsay, Z., 92M/1265 Pedersen, T. F., 92M/4527 Peinado, M., 92M/2290 Pekkarinen, L. J., 92M/3002

Pelayo, A., 92M/2327 Peltonen, P., 92M/3363 Penaye, J., 92M/0031 Penfield, G. T., 92M/3232 Penn, I. E., 92M/2253 Pennanen, M., 92M/3379 Pennell, K. D., 92M/0151 Pennisi, M., 92M/3479 Pentinghaus, H., 92M/1400 Pentzel, A., 92M/2925 Pepin, R. O., 92M/0799 Perch-Nielsen, K., 92M/1260 Perchiazzi, N., 92M/0816, 2014 Perchuk, L. L., 92M/2503, 2799, 2803, 2805 Percival, J. A., 92M/2188, 3658 Pereira, A. J. S. C., 92M/1984 Perera, S. Z., 92M/2916 Perersen, U., 92M/4348 Peretti, R., 92M/0380 Perez, B. Calvo, 92M/1724 Perez Cuadra, P., 92M/1362 Perez-Rodriguez, J. L., 92M/2520 Pérez-Rodriquez, J. L., 92M/0142 Perezyera, J., 92M/2224 Perfit, M. R., 92M/0664 Perham, A., 92M/3457 Perkins, C., 92M/3734 Perkins, D., 92M/0184, 3661 Perkins, W., 92M/1505 Perkins, W. T., 92M/1507 Pernicka, E., 92M/4336 Perrault, G., 92M/0278 Perring, C. S., 92M/0884, 0885, 1755, 2967 Perroud, P., 92M/2051, 2070, 3275, 3329 Perruchot, A., 92M/0435 Perry, C. L., 92M/0220 Perseil, E. A., 92M/1663, 2958, 3293 Persoons, R. M., 92M/1600 Persoz, F.-P., 92M/1992 Pertsev, N. N., 92M/0831 Peruzzo, R., 92M/3270, 4619 Pesonen, L. J., 92M/4741 Pesquera, A., 92M/4664 Pessagno, E., 92M/4603 Pessagno, J., 92M/4603 Pessel, G. H., 92M/2119 Petch, G. S., 92M/4510 Peter, J. M., 92M/4346 Peterman, Z. E., 92M/2193 Peters, E. K., 92M/1443, 4504 Peters, M. J., 92M/2491 Peters, S. G., 92M/0370 Peters, T., 92M/4799 Peters, Tj., 92M/1743, 1790, 2500, 3077, 3538, 3539, 3540, 3625 Peters-Zimmermann, H., 92M/4440 Petersen, E. U., 92M/2759 Petersen, O. V., 92M/1237, 1959, Petersen, S. W., 92M/4423 Petersen, U., 92M/2757, 2759, 2985 Peterson, J. W., 92M/0418, 1545 Peterson, M. L., 92M/3129 Peterson, R. C., 92M/2630, 3842 Peterson, T., 92M/1003, 3021 Petit, J.-C., 92M/0523 Petit, S., 92M/0811 Petrazzuoli, S. M., 92M/1041, 2207 Petrov, I., 92M/1208 Petrov, O. E., 92M/0454

Petruciani, C., 92M/1734 Petruk, W., 92M/0075, 0316 Petrunov, R. I., 92M/0346 Petrusenko, S. I., 92M/0819 Petterson, M. G., 92M/0924, 0926, 1009 Petts, G. E., 92M/0061 Petty, D. R., 92M/4497, 4896 Petzel, V. F. W., 92M/3864 Peucat, J. J., 92M/1142 Peucat, J.-J., 92M/4373 Peuraniemi, V., 92M/1883 Peyeri, W., 92M/0350 Pezdič, J., 92M/0553 Pezzino, A., 92M/0623, 0630 Pfeifer, H., 92M/2640 Pfeifer, H. R., 92M/1808 Pfeifer, H.-R., 92M/3621 Pfeiffer, L., 92M/4800 Pflumio, C., 92M/3525, 3526 Philippe, S., 92M/3056 Philippy, R., 92M/0192 Phillips, B. L., 92M/0225, 3825 Phillips, D., 92M/0540, 1672 Phillips, E., 92M/4921, 4922, 4923 Phillips, E. J. P., 92M/2774 Phillips, F. M., 92M/1305, 1642, 2436 Phillips, G. N., 92M/1434, 3897 Phillips, M. R., 92M/2892 Phillips, M. W., 92M/2617 Phillips, O. M., 92M/1106 Phillips, R. J., 92M/4570 Philp, R. P., 92M/1852, 3136, 3140 Philpotts, J., 92M/0563 Phinney, W. C., 92M/4036 Piaz, G. V. Dal, 92M/4928 Piboule, M., 92M/2166 Picard, C., 92M/3553, 4406 Piccardo, G. B., 92M/3355 Piccarreta, G., 92M/3478 Piccirillo, E. M., 92M/1396 Pichavant, M., 92M/2793, 3415, 4049 Pichon, X. Le, 92M/4682, 4684, 4964 Pickard, N. A. H., 92M/4698 Pickering, K. T., 92M/3768, 4963 Pickthorn, W., 92M/1773 Pickthorn, W. J., 92M/3528 Pidgeon, R. T., 92M/4607 Piekarz, G. E., 92M/3930 Piepgras, D. J., 92M/4498 Piirainen, T., 92M/4780 Piispanen, R., 92M/1506 Pilarski, J., 92M/3657 Pilbeam, D. R., 92M/4031 Pilkington, M., 92M/3232 Pillinger, C. T., 92M/3162, 3213, 4326, 4582 Pilot, J., 92M/2711 Pilote, P., 92M/0277 Pilskaln, C. H., 92M/0759 Pilz, W., 92M/3686 Pimentel, M. M., 92M/1309 Pinardon, J. L., 92M/4914 Pinarelli, L., 92M/0627 Pineau, F., 92M/1819, 4376 Pingitore Jr, N. E., 92M/2991, 4663 Pingue, F., 92M/2209 Pinka, J., 92M/2897 Pinnavaia, T. J., 92M/3790 Pinto, A., 92M/0341 Pinto, A. F. Ferreira, 92M/0021, 0987, 1145

Pinto, L. C., 92M/3973 Pintson, H., 92M/4734 Piper, D. J. W., 92M/1769 Piper, D. Z., 92M/1802 Piper, J. D. A., 92M/3611, 3674, 4972 Pipping, F., 92M/3364 Pirajno, E., 92M/3864 Pirajno, F., 92M/4611 Pirc, S., 92M/1909 Pires, C. A. C., 92M/0034 Pironon, J., 92M/4257, 4515 Pirri, I. Venerandi, 92M/4657 Pisa, A. Di, 92M/0625 Pisias, N. G., 92M/0736 Piskin, O., 92M/4381 Pita, F. A. G., 92M/0154 Pitre, K. S., 92M/4445 Pittman, E. D., 92M/0443, 3670 Pivec Jr, E., 92M/1952, 4626 Pizzetti, A., 92M/3480 Placa, S. J. La, 92M/2624 Plaksenko, A. N., 92M/0997, 2033 Plant, D. A., 92M/2177 Plant, J. A., 92M/1916, 2478, 2479, 3166 Platonov, A. N., 92M/1958, 4178 Platt, R. G., 92M/3454 Platten, I. M., 92M/4787 Plazolles V., A., 92M/2756 Plicht, J. van der, 92M/3714 Plimer, I. R., 92M/1680 Ploegsma, M., 92M/1248 Ploug-Sørensen, G., 92M/0266 Pluger, W. L., 92M/2667 Pluijm, B. A. van der, 92M/2312 Plum, K.-H., 92M/2881 Pluth, J., 92M/3229 Poblet, J., 92M/3005 Pock, R., 92M/3680 Podlesski, K. D., 92M/2805 Podosek, F. A., 92M/0780, 0791, 3743 Poe, B., 92M/0212, 0411 Poe, B. T., 92M/4052, 4055 Poggenburg, J., 92M/2492 Pognante, U., 92M/4814 Pohl, D., 92M/3974, 4012 Pohlmann, M., 92M/1209 Poirier, J. P., 92M/0784, 1596 Pokhilenko, N. P., 92M/3440 Pokrovsky, B. G., 92M/1746 Pol'shin, E. V., 92M/1958 Polanco, J., 92M/4023 Poley-Vos, C. H., 92M/2443 Polezhaeva, L. I., 92M/0877 Polgari, M., 92M/0525 Polgári, M., 92M/4553 Poli, G., 92M/0626, 0627, 0629, 3013, 4372, 4798 Poli, G. E., 92M/0971 Poli, S., 92M/0619 Pollard, A. M., 92M/2911 Pollard, P. J., 92M/1739, 2964 Pollard, R. J., 92M/1600, 3844 Pöllmann, H., 92M/3681 Polya, D. A., 92M/0340, 0543 Pompilio, M., 92M/3436 Ponader, C. W., 92M/0210 Ponahlo, J., 92M/3668 Ponnamperuma, C., 92M/0175 Ponomarenko, A. I., 92M/4809 Ponomareva, N. I., 92M/4628 Pons, C. H., 92M/2552 Pontér, C., 92M/4473

Pool, W., 92M/4507 Poorter, R. P. E., 92M/4392 Poplett, I. J. F., 92M/0751 Popp, R. K., 92M/1583, 2617, 2844 Poppek, K., 92M/2925 Poppi, L., 92M/1397 Porath, M., 92M/3561 Porcelli, D. R., 92M/4393 Porcu, R., 92M/3568 Poreda, R. J., 92M/4392 Poritskaya, L. G., 92M/4093 Porter, C. W., 92M/3902, 3950 Porto, C. G., 92M/3883, 3959 Porto da Silveira, C. L., 92M/1902 Portugal, E., 92M/2222, 4862 Portugal Ferreira, M., 92M/0990, 1144 Poryvaev, S. G., 92M/4652 Post, J. E., 92M/0245 Postl, W., 92M/3321 Potdevin, J.-L., 92M/1139, 3092 Potel, M., 92M/2638 Poths, H., 92M/4033, 4217 Potter, T. F., 92M/1473 Potts, G. J., 92M/2417 Potts, P. J., 92M/2459, 3772 Poty, B., 92M/3867, 4258 Poulson, S. R., 92M/4407 Poupeau, G., 92M/2416 Pous, J., 92M/2214 Poutiainen, M., 92M/4634 Povarennykh, M. Yu., 92M/2031 Powell, A., 92M/1117 Powell, M. D., 92M/1653 Powell, R., 92M/1186, 2306, 2843, 4111 Pownceby, M. I., 92M/2855 Pozo, M., 92M/1366 Pozzuoli, A., 92M/1590, 2551 Prabhakar, B. C., 92M/3961 Pradel, Ph., 92M/1943 Prakash, G., 92M/0734 Prandl, W., 92M/1380 Prasad, B. P., 92M/0144 Prasad, M. S., 92M/1349 Prather, B. E., 92M/3582 Prati, F., 92M/2206 Pratt, L. M., 92M/3574, 4543 Pratt, W., 92M/2284 Prentice, M. L., 92M/4713 Presnall, D. C., 92M/4397 Press, W., 92M/3833 Presta, P. A., 92M/4138 Prestvic, T., 92M/4423 Pretti, S., 92M/3870, 4552 Pretto, G., 92M/3697 Prewitt, C. T., 92M/0211, 0217, 0224 Price, D. A., 92M/4214 Price, G. D., 92M/0444, 0455, 0473, 3819, 4094 Price, L. C., 92M/4536 Price, N. B., 92M/4527 Price, R. C., 92M/0659, 2931, 4274 Pride, D. E., 92M/4716 Prieto, A. C., 92M/3274 Primmer, T. J., 92M/2278 Pringle-Goodell, L., 92M/0540 Prinz, M., 92M/1931, 3218, 4585 Prinzhofer, A., 92M/4580 Prior, D. J., 92M/0085, 4961 Proctor, J., 92M/1908 Prohić, E., 92M/1909 Prol-Ledesma, R. M., 92M/0743 Prost, A. E., 92M/2719

Prost, A. E. P., 92M/3948 Prost, R., 92M/0152, 0833 Protas, J., 92M/0259 Provost, A., 92M/4069 Prownpuntu, A., 92M/2461 Pruett, R. J., 92M/3802 Pu, X-c., 92M/0087 Puchelt, H., 92M/0581, 0713, 4874 Puffer, J. H., 92M/0886 Puga, E., 92M/1143 Puglisi, G., 92M/0623 Pullen, A. D., 92M/1046 Pulz, G. M., 92M/3906 Pun, A., 92M/4576 Pungartnik, M., 92M/0553 Punongbayan, R. S., 92M/2228 Purdy, G. M., 92M/4981 Purohit, K. K., 92M/1010 Purton, J., 92M/3835 Puteanus, D., 92M/2957, 3047, 3552 Püttmann, W., 92M/0548, 4523 Puttner, M., 92M/4996 Pütün, E., 92M/1866 Puura, V., 92M/3370 Puxeddu, M., 92M/3251 Puziewicz, J., 92M/1983 Pyle, D. M., 92M/1742

Qadir, A., 92M/0953 Oasim Jan. M., 92M/0951 Qi, H., 92M/4302 Qiao, L., 92M/3911 Qin, K., 92M/0325 Qingrun, M., 92M/4015 Quade, J., 92M/3086, 4031 Quadt, A. von, 92M/1257, 3720 Quan, Z., 92M/0558 Queen, L., 92M/3394 Quellmalz, W., 92M/0114, 1239, 3690 Querol, X., 92M/3179 Quick, J. E., 92M/2081 Quinn, R., 92M/0748 Quinta Ferreira, M. O., 92M/0969 Quirk, D. G., 92M/4661 Quirk, J. P., 92M/0130 Quirke, J. M. E., 92M/1853, 1854, 1855 Quiros, M., 92M/2788 Qureshi, A. R., 92M/0950

Raab, M., 92M/0437 Raab, S., 92M/3638 Raade, G., 92M/4677 Rabbel, W., 92M/2149 Rabone, G., 92M/1906 Rabone, S. D. C., 92M/4555 Rabouille, C., 92M/1860 Rabu, D., 92M/3537 Rad, U. von, 92M/2101, 2109, 2110, 2117, 2771 Radain, A. A., 92M/3727, 3728, 3729, 3730 Radhakrishna, T., 92M/4750 Radke, M., 92M/3155 Radovanovic, A., 92M/1503 Radulova, A. S., 92M/3305 Rae, J. E., 92M/0197 Raeburn, S. P., 92M/3594 Raeside, R. P., 92M/2433 Ráfales, J. B., 92M/0086 Rafalska, J. K., 92M/4516

Rafiq, M., 92M/0951 Raflska-Bloch, J., 92M/1857 Rager, H., 92M/0218, 1201 Raheim, A., 92M/1246 Rahman, S. H., 92M/1385 Rahn, M., 92M/2530, 3620 Rai, S. D., 92M/1499 Raina, A. K., 92M/1748 Rainbird, R. H., 92M/4826 Raisbeck, G. M., 92M/0051, 1830, 4450, 4506 Raiswell, R., 92M/3575 Rajamani, V., 92M/0037, 2097, 2679 Rajan, S., 92M/2901 Raju, K. K., 92M/3918 Ramadorai, G., 92M/0307 Ramakrishnan, M., 92M/3392 Ramanaidou, E., 92M/3960 Rambis, J., 92M/2783 Ramesh, R., 92M/4480 Ramm, M., 92M/4879 Rammensee, W., 92M/4110 Rammlmair, D., 92M/3882, 3934 Rämö, O. T., 92M/0892, 1722, Ramos, J. Farinha, 92M/0342 Ramos, J. M. Farinha, 92M/0378 Rampone, E., 92M/3355, 4371 Ramsay, D. M., 92M/4869 Ramsden, A. R., 92M/0575 Ramsev, M. H., 92M/2474, 4250 Ranasinghe, U. N., 92M/4165 Rancourt, D. G., 92M/3829 Randløv, J., 92M/1959 Ranganathan, G., 92M/3967 Ranganathan, N., 92M/2023 Ranganathan, V., 92M/0689 Rank, G., 92M/3009, 3183 Rankin, A. H., 92M/4250, 4256 Rankin, P., 92M/4449 Ranløv, J., 92M/1971 Rao, A. T., 92M/3325, 4631 Rao, B. K., 92M/3391 Rao, B. R., 92M/4631 Rao, C. N., 92M/2576, 3650 Rao, G. V. S. P., 92M/4751 Rao, J. M., 92M/4749, 4751 Rao, N. V., 92M/2023 Rao, P. R., 92M/0649 Rao, S. R., 92M/4631 Rao, Y. V. Subba, 92M/0144 Rapela, C., 92M/2984 Rapolla, A., 92M/2200 Rapp, J. B., 92M/3138, 3142 Rapp, R. P., 92M/0882 Rashwan, A. A., 92M/0998 Rasilainen, K., 92M/3376 Rastsvetaeva, R. K., 92M/1958, 2068 Rau, G. H., 92M/4519 Rauber, D., 92M/1835 Rauche, H., 92M/1149 Raudsepp, M., 92M/3827, 4099 Raumer, J. F. von, 92M/1808, 3385 Rausell-Colom, J. A., 92M/0230, 1989 Ravasz-Baranyai, I., 92M/1278 Raveh, A., 92M/4526 Ravenhurst, C. E., 92M/1695 Ravikumar, V. C., 92M/0399 Ravindra, G. R., 92M/2302 Ravindranathan, P., 92M/0141 Ravizza, G., 92M/4441 Ray, G. E., 92M/0330

Ray, K. K., 92M/0938 Rayner, J. G., 92M/1475 Raynor, J. B., 92M/4661 Raza, M., 92M/3026, 4385 Rea, D. K., 92M/0695, 5004 Read, P. G., 92M/2921 Read, W. A., 92M/1104 Reagan, M. K., 92M/3737 Real, L. Moreno, 92M/1321 Reardon, N. C., 92M/3193 Reay, D. M., 92M/0912 Rebbert, C. R., 92M/0220 Reche, J., 92M/0916 Reddy, S. L. R., 92M/2023 Redecke, P., 92M/1786 Redmann, M., 92M/4179 Reed, B. L., 92M/1442, 2669 Reed, M. H., 92M/4253, 4401 Reeder, R. J., 92M/0258 Reedman, A. J., 92M/3166, 3476 Reedy, B. J., 92M/0501 Reedy, R. C., 92M/3208 Rees, J. G., 92M/4698 Reeves-Smith, G. J., 92M/1279 Regba, M., 92M/3526 Regueiro, M. N., 92M/4125 Rehman, S. S., 92M/0952 Reichhard, E., 92M/1455 Reid, D. L., 92M/4377, 4747 Reid, K. J., 92M/1349 Reid, M. R., 92M/0520, 4287 Reif, J., 92M/2063 Reimann, M., 92M/4025 Reimer, T. O., 92M/0351 Reinecke, T., 92M/1389, 2067 Reineking, A., 92M/1209 Reinhardt, J., 92M/3656 Reinhardt, M. C., 92M/2750 Reinitz, I. M., 92M/4398 Reisberg, L. C., 92M/1725 Reischmann, T., 92M/2080 Reiszmann, R., 92M/2671 Rejou-Michel, A., 92M/4283 Reller, A., 92M/1409 Remkes, M. J. N., 92M/2331 Remond, G., 92M/3240 Remsberg, A. R., 92M/1567 Ren, T., 92M/3187 Rencz, A. N., 92M/1893, 3191 Rendell, H., 92M/0014 Renfrew, C., 92M/2495 Rengarajan, R., 92M/3120 Renger, F. E., 92M/2703, 3925, 3940 Renmin, H., 92M/1433 Renne, P. R., 92M/1308 Rentzsch, J., 92M/3182 Renzulli, A., 92M/1040, 2213 Repeta, D. J., 92M/0760, 4519 Repetto, S., 92M/1617 Resch, C. T., 92M/0507 Reschl, J. J., 92M/2491 Retief, E. A., 92M/2411 Reuber, I., 92M/3513, 3514, 4802 Reutel, C., 92M/0710, 0711 Reuter, N., 92M/3430 Rex, A. J., 92M/3958 Rex, D. C., 92M/1280, 1579, 2417, 3450, 3746, 4710 Reyes, A. G., 92M/4845 Reyes, E., 92M/2557 Reyes, J., 92M/1253 Reyes, M., 92M/1454 Reynard, B., 92M/0462, 1200, 3817 Reynolds, G. A., 92M/3977

Reynolds, I., 92M/1593 Reynolds, J. H., 92M/0579 Reynolds, P., 92M/2431 Reynolds, P. H., 92M/1298, 1695 Reynolds, W. R., 92M/0183, 2788 Reyss, J.-L., 92M/0732 Rezek, K., 92M/2058, 2063 Rhodes, J. M., 92M/0672 Rhue, R. D., 92M/0151 Ribba, L., 92M/1453 Ribeiro, A., 92M/4240, 4925 Ribeiro da Costa, I., 92M/4366 Ricchiuto, T., 92M/4688 Rice, A. H. N., 92M/0009, 1123, 1126, 1127 Rice, C. M., 92M/0599, 4885 Rice, J. F., 92M/2811 Richard, D., 92M/4008 Richard, M., 92M/3932 Richards, D. G., 92M/2713 Richards, J. M., 92M/3965 Richards, J. P., 92M/3894, 3908 Richards, M. A., 92M/4832, 5007 Richardson, C.K., 92M/1699 Richardson, S. B., 92M/1526, 3113 Richardson, S. M., 92M/0701 Richerson, P. M., 92M/3462 Richet, P., 92M/2821, 4084 Richey, G., 92M/0753 Richnow, H., 92M/3552 Richter, D., 92M/4839 Richter, D. H., 92M/1442 Richter, F. M., 92M/1281, 2822, 4470 Richter, H., 92M/2729 Richter, P., 92M/1152 Riciputi, L. R., 92M/1774 Rickard, D., 92M/0337 Rickwood, P. C., 92M/3775, 4727 Ridgway, J., 92M/1872, 1901, 4559 Řídkošil, T., 92M/2054 Riech, V., 92M/2101, 2103 Rieder, M., 92M/2071 Rieken, R., 92M/2672 Rietmeijer, F. J. M., 92M/4592 Riffel, B. F., 92M/1895 Rigali, M. J., 92M/4325 Rigden, S. M., 92M/2343 Rigg, D. M., 92M/0276, 0587 Righi, D., 92M/2531 Rijpstra, W. I. C., 92M/4542 Riley Jr, G. N., 92M/1529 Ring, U., 92M/3624 Ringwood, A. E., 92M/0423, 0974, 2018, 4279 Rios, H. C. de Los, 92M/2758 Ripa, M., 92M/4918 Ripley, E. M., 92M/0375, 0596, 0598, 0604, 4306, 4341, 4342 Ririe, G. T., 92M/0270 Risacher, F., 92M/0704 Risku-Norja, H., 92M/4358 Ristori, G. G., 92M/2527, 2594 Risvanova, N. G., 92M/4093 Ritchie, J. D., 92M/3408 Rivalenti, G., 92M/2167 Rivers, T., 92M/2431 Riviello, J. M., 92M/3758 Roa, H. Moreno, 92M/1085 Roach, G. I. D., 92M/0694 Roach, R. A., 92M/0616 Robb, L. J., 92M/0352 Robert, D., 92M/1631 Robert, F., 92M/0277, 0056, 0291, 3858, 4283

Robert, J., 92M/1581 Robert, J.-L., 92M/0829, 3827 Robert, M., 92M/2561, 3806, 3810 Roberts, A. C., 92M/2642, 3337 Roberts, B., 92M/1132, 2284 Roberts, D., 92M/0006, 0377, 3546, 3712, 4694, 4696 Roberts, J., 92M/3717 Roberts, M., 92M/1377 Roberts, P. D., 92M/0387 Roberts, P. J., 92M/1673 Roberts, R. G., 92M/0290 Roberts, S., 92M/1427 Roberts, S. K., 92M/4203 Robertson, A. H. F., 92M/1089, Robertson, C., 92M/1831 Robertson, I. D. M., 92M/0190 Robertson, S., 92M/2091, 4394 Robie, R. A., 92M/0462, 0497, 1352, 2856 Robin, C., 92M/1080, 3553 Robin, E., 92M/4598, 4599, 4900 Robin, P.-Y. F., 92M/2310 Robin, R., 92M/0090 Robins, B., 92M/4782 Robinson, B. W., 92M/0761 Robinson, D., 92M/2275, 2278 Robinson, G. R., 92M/2895 Robinson, N., 92M/0754 Robinson, P., 92M/0965, 3340 Robinson, P. D., 92M/0876 Robotham, H., 92M/1916 Rocchi, S., 92M/3436 Rocchia, R., 92M/4598, 4900 Rocha, J., 92M/3828 Rochelle, C. A., 92M/1124 Rochette, P., 92M/3513 Rock, N. M. S., 92M/0083, 1755, 2445, 3448, 4729, 4737 Rodd, J. A., 92M/4435 Rodda, P., 92M/2102 Roddick, J. C., 92M/1295, 4563 Roddom, D., 92M/1249 Roddy, D. J., 92M/1305 Roden, M. F., 92M/0677 Roden, M. K., 92M/2348 Rodgers, K. A., 92M/0580, 2388, 2770, 3321, 3667, 4651 Rodrigues, E. G., 92M/1635 Rodrigues, K., 92M/1869 Rodríguez Badiola, E., 92M/2227 Rodríguez-Elizarrarás, S., 92M/3506 Rodríguez Jiménez, P., 92M/1363, 1365 Rodriguez-Jimenez, P., 92M/1428 Rodriguez, M. Gonzáles, 92M/2541 Roedder, E., 92M/0579, 4246 Roeder, P. L., 92M/0855, 1593, Roelandts, I., 92M/2480 Roermund, H. L. M. van, 92M/0227, 3615 Roermund, H. van, 92M/3608 Roeser, H., 92M/1815, 3910 Roessner, F., 92M/4122 Roex, A. P. le, 92M/4383 Rogers, G., 92M/1716 Rogers, K. P., 92M/1507 Rogers, N. W., 92M/1776 Rogers, P. J., 92M/1892, 4032 Rogers, S. J., 92M/3751 Rogerson, R., 92M/2501, 3394 Röhling, S, 92M/3317

Röhr, C., 92M/1151, 1152 Roisenberg, A., 92M/2005 Rokoengen, K., 92M/1101 Rolandi, G., 92M/2198, 2210 Roller, E., 92M/2525 Röller, K., 92M/2001 Röllig, G., 92M/3430 Romanek, C. S., 92M/4146 Romer, R. L., 92M/2142, 3713 Romer, W., 92M/0202 Romero, E. García, 92M/1362 Romero, P., 92M/2216 Romero, R., 92M/3806, 3810 Romick, J. D., 92M/3499 Ron, H., 92M/4311 Rona, P., 92M/2937 Rona, P. A., 92M/2661, 4982 Ronde, C. E. J. de, 92M/0032, 3891, 3993 Rondorf, A., 92M/1227 Rondorf, E., 92M/1227 Rønsbo, J. G., 92M/1959, 3840 Roonwal, G. S., 92M/0176 Root, D. H., 92M/2669 Rosa, J. D. de la, 92M/0991, 2126 Rosa, R. De, 92M/0633 Rosas, A., 92M/2224 Rösch, H., 92M/0581 Rose, A. W., 92M/1889 Rose, N. M., 92M/2865 Rose, S., 92M/3126 Rose, T. P., 92M/0803 Rose, W. I., 92M/1063, 1071, 1085, 3507, 4401, 4867 Rose, W. J., 92M/0533, 1065 Roselieb, K., 92M/4110 Rosen, D. M., 92M/0722 Rosenbauer, R. J., 92M/0871, 1562 Rosenberg, P., 92M/3254 Rosenberg, P. E., 92M/0257, 2902, Rosenhauer, M., 92M/4110 Roser, B. P., 92M/1646 Rosi, M., 92M/4868 Rosing, M. T., 92M/4353 Rösler, H. J., 92M/2711, 3428, 3429, 4560 Rösli, U., 92M/1810 Ross, G. M., 92M/1291, 1292 Ross II, C. R., 92M/2604, 2632, 2789 Ross, M., 92M/4830 Ross, M. E., 92M/4761 Rosshirt, E., 92M/1404 Rossi, G., 92M/1950 Rossi, P., 92M/3004 Rossman, G. R., 92M/0229, 0447, 0804, 0821, 1955, 2013, 2341, 2610, 3238, 3253, 4989 Rossovskii, I. N., 92M/4811 Rossy, M., 92M/4363 Rota, J. C., 92M/0305 Roth, E., 92M/3920 Rothery, D. A., 92M/1027, 3551 Rottura, A., 92M/3420 Rouquerol, F., 92M/2514 Rouquerol, J., 92M/2514 Roure, F., 92M/0920 Rout, J. E., 92M/1607 Roux, J., 92M/4034, 4121 Roux, J. P. Le, 92M/3185 Rowan, E. L., 92M/2975 Rowan, J. T., 92M/3758 Rowbotham, G., 92M/2275 Rowe, G. T., 92M/1798

Rowe Jr, G. L., 92M/4866 Rowley, D. B., 92M/4470 Rowley, P. D., 92M/4716 Roy, A., 92M/3929 Roy, R., 92M/0141 Roy, S., 92M/0815, 1424 Roy, T. De, 92M/1082 Roychowdhuri, A., 92M/3650 Roycroft, P., 92M/4793 Rózańska, B., 92M/2486 Rozhdestvenskaya, I. V., 92M/3852 Rozhkov, A. M., 92M/1056 Rozinova, E. L., 92M/4668 Ruan, C., 92M/2452 Ruaya, J. R., 92M/1062 Rub, A., 92M/2539 Rubie, D. C., 92M/3226, 4086 Rubin, A. E., 92M/1924, 4583, Rubin, A. M., 92M/2860 Rubin, C. M., 92M/2120 Rubin, M., 92M/2210, 4856 Rucklidge, J. C., 92M/0099, 2734 Ruddock, R. S., 92M/4703, 4819 Rude, P. D., 92M/1801 Rudnick, R. L., 92M/4268, 4276 Rudnicki, M., 92M/0731 Ruffet, G., 92M/0017 Rüger, F., 92M/2363 Ruggieri, G., 92M/3866, 3915 Rui, Z., 92M/1432 Ruis-Hitzky, E., 92M/3793 Ruiz Abrio, M. T., 92M/2541 Ruiz Cruz, M. D., 92M/1321, 1363, 1364, 1365, 1428 Ruiz, F. Martinez, 92M/4437 Ruiz, J., 92M/2438, 4327, 4418 Ruiz, J. L., 92M/3977 Ruiz Montes, M., 92M/1496 Rull, F., 92M/1366 Rullkötter, J., 92M/3149, 4533, 4539 Rullo, A., 92M/2203 Rumble, D., 92M/2447 Rumble III, D., 92M/0592, 2607 Rummel, F., 92M/2324 Rummel, P. H., 92M/1320, 2453 Rumyantsev, V. N., 92M/0475 Rundle, C. C., 92M/0173 Rusby, R. I., 92M/5010 Rushdi, A., 92M/0736 Rushmer, T., 92M/1540 Rusmore, M. E., 92M/2121 Russ III, G. P., 92M/0703, 1795, 4427 Russ-Nabelek, C., 92M/4410, 4411 Russe, B., 92M/2363 Russe, C., 92M/2363 Russell, D., 92M/2854 Russell, M. J., 92M/0552 Russell, N., 92M/4023 Rust, S., 92M/2172 Rustad, J. R., 92M/3836 Rutherford, M. J., 92M/4062 Rutter, E. H., 92M/0903, 0907 Ruvo, L., 92M/1049 Ryan, B., 92M/0891 Ryan, C. G., 92M/0805, 1753, 4379 Ryan, D. E., 92M/1922 Ryan, J. G., 92M/3109 Ryan, J. N., 92M/2457, 3794 Ryan, M. J., 92M/0089 Ryan, P. D., 92M/3383 Ryback, G., 92M/4990 Rybka, R., 92M/1953, 2041

Rye, D. M., 92M/0641, 2712, 2974, 3163 Rye, R. O., 92M/0700, 2977, 4316, 4340, 4495 Ryerson, F. J., 92M/0445, 0510, 2191 Ryka, W., 92M/3389 Rymer, H., 92M/1026 Rytwo, G., 92M/2535

Sa, J.-M., 92M/2439 Saalfeld, H., 92M/0451, 1405 Säävuori, H., 92M/3379 Sabaté, P., 92M/0895 Sabelli, C., 92M/3299 Sabine, P. A., 92M/1238 Sabrier, R., 92M/2575 Sabroux, J.-C., 92M/1028 Sacchi, M., 92M/1960 Sacerdote-Peronnet, M., 92M/2876 Sacerdoti, M., 92M/3300 Sachanbiński, M., 92M/4178, 4617 Sachanbinski, M., 92M/0996 Sack, R. O., 92M/0488, 0505, 0853, 0854, 1534 Sad, J. H. G., 92M/3912, 3914 Sadykov, V. A., 92M/4652 Saffarini, G. A., 92M/4380 Sagan, C., 92M/4512 Sagarzazu, A., 92M/0499 Sagawa, A., 92M/0045 Sage, R. P., 92M/2386 Sagon, J.-P., 92M/3613 Sahl, K., 92M/1574 Sahoo, K. C., 92M/2301 Sahu, K. C., 92M/0394, 0395, 1525 Saigal, G. C., 92M/1784, 4879 Saint-Martin, B., 92M/0755 Saito, J., 92M/3198, 3219 Saito, Y., 92M/3302 Saitoh, M., 92M/0426 Saiz-Jimenez, C., 92M/1864 Sakaguchi, K., 92M/1057 Sakaguchi, Y., 92M/3445 Sakai, H., 92M/2930, 4286, 4481, 4683, 4685, 4686 Sakamoto, T., 92M/0655 Sakko, M., 92M/0892 Saleeby, J. B., 92M/2120 Salem, A.-K. A., 92M/4808 Salihoglu, I., 92M/3078 Salje, E., 92M/1528, 1555 Salje, E. K. H., 92M/0466 Salkow, S. A., 92M/2046 Salminen, R., 92M/3165 Salminen, R. K., 92M/3377 Salmon, G. L., 92M/0876 Salpas, P. A., 92M/4831 Salters, V. J. M., 92M/0606 Salvatori, S., 92M/1514 Salvi, S., 92M/3055 Salvioli-Mariani, E., 92M/3750 Salzer, R., 92M/4122 Samajova, E., 92M/1561 Samaniego-M., D., 92M/4864 Samejima, S., 92M/2864 Samel, M., 92M/0714 Sameshima, T., 92M/3331 Sammis, C. G., 92M/2085 Samoilov, V. S., 92M/1897 Sampson, D. B., 92M/1912 Samson, I. M., 92M/0373, 1692,

1693

Samson, S. D., 92M/1289, 1302, 1763, 4717 Samuel, C., 92M/1525 Samuel, K., 92M/2695 Sanchez, A., 92M/2984 Sánchez-Camazano, M., 92M/3781 Sánchez-Martín, M. J., 92M/3781 Sanchiz, I., 92M/4638 Sandberg, P. A., 92M/0748 Sander, M. V., 92M/0595 Sanders, I. S., 92M/1133 Sanders, L. L., 92M/1843 Sanderson, D. J., 92M/1427 Sandiford, M., 92M/1117, 3609, 4949 Sandmeier, K.-J., 92M/4237 Sandomirskaya, S. M., 92M/4678 Sandstedt, H., 92M/2090 Sandström, H., 92M/1517 Sanford, W. E., 92M/2773 Sangawa, T., 92M/0041 Sänger, A. T., 92M/3849 Sangster, A. L., 92M/3999 Sangster, D. F., 92M/0583, 2670, 4339 Sanjuan, B., 92M/4129 Sankaran, R. N., 92M/1499 Sano, Y., 92M/1037, 3494 Sansoni, G., 92M/4560 Sant, D. A., 92M/4752 Santacroce, R., 92M/1042, 2211 Santallier, D., 92M/2166 Santaren, J., 92M/3793 Santen, R. A. van, 92M/0236 Santi, P., 92M/2213 Santini, L., 92M/3272, 3621 Santo, A. P., 92M/0621, 0627 Santos, A. B. R. M. D. Dos, 92M/1895 Santos, M. D., 92M/3933 Santos, M. L. dos, 92M/1922 Santos, M. M., 92M/3938 Santos Oliveira, J. M., 92M/0767 Santosh, M., 92M/0353, 0557, 0647, 1812, 3098, 3099, 3286, 4467, 4907 Santoyo, E., 92M/2222 Santoyo-Gutiérrez, S., 92M/2224 Sapin, M., 92M/2218 Saquaque, A., 92M/2079, 4802, 5008 Saraiva, A. Almeida, 92M/1207 Sariel, I. D. J., 92M/0078 Sarin, M. M., 92M/4480 Sarkar, A., 92M/0648, 3082 Sarkar, S., 92M/4891 Sarkar, S. S., 92M/1710 Sarkisov, Ju. M., 92M/3360 Sarma, D. D., 92M/3970 Sarp, H., 92M/2051, 2070, 3275, 3301, 3329, 4674 Sartori, F., 92M/1360, 1980 Sartori, M., 92M/1155, 3623 Sartori, R., 92M/2543 Sasaki, A., 92M/4894 Sasaki, K., 92M/3144 Sasaki, N., 92M/2048, 2049, 3313 Sass, E., 92M/1867 Sassano, G. P., 92M/0862 Sassi, F. P., 92M/2296, 2297, 4620 Sassi, R., 92M/1161, 3270, 4619, 4930 Satir, M., 92M/3022 Sato, A., 92M/1395, 2596 Sato, H., 92M/3234

Sato, J., 92M/3755 Sato, K., 92M/1016 Sato, M., 92M/0125, 0126 Sato, R. K., 92M/0212, 4055 Sato, T., 92M/0079, 0134, 0139 Sattler, C.-D., 92M/2970 Saucedo, R., 92M/3506 Saul, S. L., 92M/2338 Saunders, A. D., 92M/2240, 4969 Saunders, C. M., 92M/0285 Saunders, J. A., 92M/0332 Saunders, S. J., 92M/1046 Saunders, V. R., 92M/0237, 3818 Saupé, F., 92M/0338 Sauvage, J. F., 92M/4805 Sava, A., 92M/2204 Savin, S. M., 92M/4218 Savoyant, L., 92M/3024 Savva, N. E., 92M/1626 Savvinov, V. T., 92M/4766 Sawada, Y., 92M/2195 Sawaki, T., 92M/1182 Sawatari, H., 92M/4390 Sawatzki, J., 92M/4515 Säwe, B., 92M/0802 Sawolwicz, Z., 92M/3990 Sawyer, E. W., 92M/1021 Sawłowicz, Z., 92M/0551 Saxena, S. K., 92M/0449, 1937, 2845, 4097 Saydam, C., 92M/1524 Sayyed, M. R. G., 92M/3578 Sazonov, A. M., 92M/1910 Sbrana, A., 92M/2199, 2211 Scandone, R., 92M/2198, 3472, 3477 Scarano, G., 92M/3760 Scarpati, C., 92M/1049 Scarpelli, W., 92M/3871, 3937 Šćavničar, S., 92M/2006 Schaefer, S. J., 92M/3452, 4294 Schaeffer, R., 92M/1461 Schaerer, J.-P., 92M/1155 Schäfer, H.-J., 92M/3716 Schaller, T., 92M/4041 Schaltegger, U., 92M/1257, 3417 Schaltegger, V., 92M/2404 Schandl, E. S., 92M/1688, 1689, 2933, 3601, 4252 Scharbert, H. G., 92M/0994 Schärer, U., 92M/0896 Scharm, B., 92M/1999, 2057, 2061, 3334 Scharmová, M., 92M/2057, 2061, 3334 Schebesta, K., 92M/3695 Scheller, T., 92M/4160 Schellmann, W., 92M/2597 Schenk, P., 92M/1664 Schertl, H.-P., 92M/1809, 2288 Schiano, P., 92M/3048 Schieber, J., 92M/1441 Schiegl, S., 92M/1240, 5003 Schiemenz, F., 92M/2365 Schiffman, P., 92M/2273, 2274, 3528 Schiffries, C. M., 92M/0641 Schilka, W., 92M/2659 Schilling, J.-G., 92M/0609, 0737, 1762, 2998, 4375 Schirn, R., 92M/2946 Schirrmeister, L., 92M/3579, 3800 Schlaegel-Blaut, P., 92M/2672 Schleicher, H., 92M/3010, 4367 Schlemper, E. O., 92M/1392

Schlenker, U., 92M/3186 Schliestedt, M., 92M/4946 Schlomann, C., 92M/1230, 3679 Schlosser, P., 92M/4477 Schlüssel, R., 92M/4162 Schlüter, J., 92M/1627 Schmädicke, E., 92M/3428, 4933 Schmale, H. W., 92M/1409 Schmetzer, K., 92M/0516, 1616, 1618, 1620, 4167, 4673 Schmidt, K., 92M/1164 Schmidt, K. H., 92M/1209 Schmidt, M. W., 92M/4102 Schmidt, N.-H., 92M/0085 Schmidt, P. W., 92M/4742 Schmidt, S., 92M/0732 Schmidt, W., 92M/2664, 3020, 3186, 3649, 4933 Schmincke, H. U., 92M/1037 Schmincke, H.-U., 92M/3017, 3485 Schmitt, G. E., 92M/1153 Schmitt, H. H., 92M/0771 Schmitt, R. A., 92M/3201 Schmitz, B., 92M/4436, 4602 Schmitz, W., 92M/2105 Schnabel, B., 92M/3833 Schneider, D. A., 92M/3230 Schneider, D. L., 92M/1846 Schneider, G. I. C., 92M/3303 Schneider, H., 92M/0218, 1416 Schneiderman, J. S., 92M/0822, 1022 Schnering, H. G. von, 92M/3846 Schnetger, B., 92M/4439 Schnorrer-Köhler, G., 92M/2368, 2369 Schöberg, H., 92M/0897, 1247 Schoell, M., 92M/3162, 4544 Scholz, C. H., 92M/5006 Scholz, F., 92M/3763 Schomburg, J., 92M/2518, 2528 Schoonen, M. A. A., 92M/0502, 0503, 4135, 4136 Schoonheydt, R. A., 92M/3792 Schopper, J. R., 92M/1210, 1212 Schorrer-Köhler, G., 92M/1225 Schorscher, H. D., 92M/0315, 1902 Schott, J., 92M/0416, 1069, 4143 Schouenborg, B. E., 92M/0010 Schouten, H., 92M/5010 Schouten, S., 92M/4524 Schouwstra, R. P., 92M/3904 Schrader, H., 92M/4432 Schrank, A., 92M/3930, 3936 Schreiber, D. W., 92M/2705 Schreiter, E., 92M/2711 Schreyer, W., 92M/0446, 1175, 1399, 1574, 1809, 2156, 2288, 2608, 2796, 2801 Schrijver, K., 92M/0862, 2670 Schröcke, H., 92M/4151 Schröder, B., 92M/0319 Schroeder, E., 92M/3632 Schroeter, T. G., 92M/0284 Schrön, W., 92M/2923, 4560 Schröpfer, L., 92M/2148 Schuermann, K., 92M/3910 Schuiling, R. D., 92M/1512, 4029 Schultz, A. J., 92M/1386 Schultz-Güttler, R., 92M/1968 Schulz, B., 92M/2295, 4929 Schulz, H., 92M/2624 Schulz-Kuhnt, D., 92M/1815, 3663 Schulz, M. S., 92M/0329 Schulze, D. J., 92M/4806

Schumacher, R., 92M/1975, 3485 Schumann, R., 92M/1231 Schuppan, W., 92M/1234 Schüssler, U., 92M/1152 Schutjens, P. M. T. M., 92M/0442 Schwab, G., 92M/2660 Schwarcz, H. P., 92M/0531, 0584, 0586, 1685 Schwartz, F. W., 92M/1831 Schwartz, M. O., 92M/0367, 0369, Schwarz, C., 92M/3197 Schwarz, D., 92M/4157, 4158 Schwerdtner, W. M., 92M/0961. 3233 Schwertmann, U., 92M/1328 Schwieger, W., 92M/2613, 2621 Sclar, C. B., 92M/1977, 2015, 4643 Score, R., 92M/3197 Scott, A. D., 92M/1317 Scott, B. J., 92M/1070 Scott, D. J., 92M/3549 Scott, E. R. D., 92M/4595 Scott, K. M., 92M/1906 Scott, R. A., 92M/0543 Scott, S. D., 92M/1423, 2661, 3194 Scott, W., 92M/2669 Scowen, P. A. H., 92M/0855 Scribano, V., 92M/0984, 0985 Scripkin, M. Y., 92M/0265, 2650 Scudeler Baccelle, L., 92M/3157 Scumacher, G. A., 92M/2578 Séa, F., 92M/0278 Seal II, R. R., 92M/2899, 4187, 4340 Seal, M. J., 92M/4326 Seaman, S. J., 92M/1077 Searl, A., 92M/0845 Searle, M. P., 92M/0946 Searle, R. C., 92M/5010 Sears, D. W. G., 92M/0795, 3210, 4577, 4578 Sears, H., 92M/0795, 3210 Sebai, A., 92M/0004, 0035 Sebald, A., 92M/0218, 4041, 4050 Sebastian, A., 92M/0409, 0410, 0916, 2839, 3630 Sebastián Pardo, E., 92M/3631 Sébrier, M., 92M/2326 Seccombe, P. K., 92M/2894 Sedwick, P., 92M/3552 Segalstad, T. V., 92M/3176 Segev, A., 92M/1255 Segura P., A., 92M/1880 Sehested, K., 92M/1816 Seiberl, W., 92M/2857, 2858 Seidel, E., 92M/3247 Seifert, F., 92M/1324, 4612 Seim, R., 92M/1997 Seipp, J., 92M/4214 Sejkora, J., 92M/2054 Sekine, T., 92M/2860, 4109 Self, P. G., 92M/0244 Self, S., 92M/4834 Selim, M. M., 92M/1411 Sellier, E., 92M/4258, 4884 Seltmann, R., 92M/2450, 2659, 4801 Selverstone, J., 92M/0717 Semenova, T. F., 92M/2073, 3852 Sen, A. K., 92M/1008 Sen, L., 92M/0559 Sen, P. P., 92M/2038 Sena, F. O., 92M/3859 Sénémaud, C., 92M/0090

Sengupta, D. K., 92M/2576, 2768 Sengupta, P., 92M/0815, 1179, 1533 Sengupta, S., 92M/0938 Senior, A., 92M/0818 Sennit, C. M., 92M/1472 Serafimova, E. K., 92M/1056 Seralthan, P, 92M/1794 Serban, C., 92M/2535 Serbanescu, A., 92M/3878 Serenko, V. P., 92M/4639 Sergent, M., 92M/2638 Sergunenkov, B. B., 92M/4812 Seritti, A., 92M/3760 Serri, G., 92M/4836 Seto, M., 92M/0841 Setterfield, T. N., 92M/1065 Settle, D. M., 92M/4219 Severin, V. V., 92M/2011 Severson, M. J., 92M/4828, 4829 Ševců, J., 92M/2035, 2058 Sevigny, J. H., 92M/0668 Sevilla, M. J., 92M/2216 Seyfried Jr, W. E., 92M/4074, 4144 Seymour, K. M., 92M/1912 Seymour, K. St., 92M/4734 Shaalan, M. M. B., 92M/0381 Shackleton, N. J., 92M/4483 Shaffer, N. R., 92M/4341 Shafiqullah, M., 92M/1245 Shah, S. K., 92M/0939 Shahabpour, J., 92M/1674 Shainberg, I., 92M/0158 Shang, R., 92M/1757 Shankland, T. J., 92M/2823, 2887 Shanklin, J. D., 92M/4651 Shanks, C. A., 92M/1373 Shanks III, W. C., 92M/4346 Shanks, W. S., 92M/0961, 3233 Shannon, R. D., 92M/2341, 4989 Shao, J., 92M/0361 Sharma, A. K., 92M/3653 Sharma, J. P., 92M/3918 Sharma, K. K., 92M/0116, 0929, 0930, 0931, 0932, 0937, 0945, 4480 Sharma, M., 92M/3064 Sharma, P., 92M/1642, 1838, 3208, 4504 Sharma, R., 92M/2959 Sharma, S. K., 92M/0256, 4350 Sharp, W. E., 92M/3059 Sharp, Z. D., 92M/2870 Shatsky, V. S., 92M/0721, 2413 Shau, Y.-H., 92M/1986 Shaw, D. M., 92M/0531 Shaw, J., 92M/4453 Shaw, M. H., 92M/0318, 4320 Shaw, R. P., 92M/3965, 4338 Shaw, T. J., 92M/0102 Shawe, D. R., 92M/3855 Shcherbak, N. P., 92M/1277 Shearer, C. K., 92M/3049, 4412 Shearer, P. M., 92M/4976 Sheets, J. M., 92M/1970 Shellabear, J. N., 92M/0885 Shelton, A. W., 92M/3531 Shelton, K. L., 92M/0572, 2963, 4333 Shemesh, A., 92M/4311 Shen, J., 92M/1392 Shen, M., 92M/3672 Shen, P., 92M/3268 Shen, S., 92M/1885 Shen, W., 92M/4386

Shepherd, T. J., 92M/2757, 3167, 3463 Sheppard, D. S., 92M/4848 Sheppard, R. A., 92M/4860 Sheppard, S., 92M/3916, 4943 Sheppard, S. M. F., 92M/1657, 4222 Sheraton, J. W., 92M/2425 Sheridan, M., 92M/2230 Sherlock, R. R., 92M/0168 Sherman, D. M., 92M/2635 Shernakow, W. I., 92M/4155 Sherriff, B. L., 92M/1378 Shervais, J. W., 92M/3347, 3349 Shevenell, L., 92M/3123 Shi, P., 92M/1543, 4072, 4097 Shibasaki, Y., 92M/0153, 0156, 2864 Shibata, K., 92M/0001, 0040, 0041, 0042, 0043 Shibata, T., 92M/0111 Shieh, X.-N., 92M/4228 Shieh, Y.-N., 92M/1827, 4424 Shigley, J. E., 92M/1619, 3253 Shih, C.-Y., 92M/4565 Shiller, A. M., 92M/3124 Shilts, W. W., 92M/1875 Shimada, M., 92M/0139 Shimamoto, T., 92M/2098 Shimazaki, H., 92M/0570 Shimazu, M., 92M/0656, 3036 Shimizu, H., 92M/1782, 2421, 2493, 4331, 4390 Shimizu, M., 92M/0570, 0865, 3280, 3312 Shimizu, N., 92M/3352, 3355 Shimmield, G. B., 92M/4527 Shimobayashi, N., 92M/1577, 4098 Shimosaka, K., 92M/0200 Shimoyama, A., 92M/0175 Shimura, T., 92M/3256 Shin, S.-C., 92M/1244 Shinjo, R., 92M/0654 Shinno, I., 92M/1949 Shirahata, H., 92M/3098 Shirai, G. A., 92M/4656 Shirai, O. E., 92M/4656 Shirey, S. B., 92M/0681 Shirozu, H., 92M/0838 Shitashima, K., 92M/2930, 4685 Shoemaker, E. M., 92M/1306 Sholkovitz, E. R., 92M/1846 Shoval, S., 92M/0108 Shpigun, L. K., 92M/2462 Shrivastava, O. P., 92M/4028 Shu, J., 92M/3666, 4127 Shuali, U., 92M/2539 Shukla, B. S., 92M/1513 Shuler, P. J., 92M/1800 Shulyatin, O. G., 92M/3396 Shuto, K., 92M/0652, 3034 Shvanov, V. N., 92M/1177 Sial, A. N., 92M/1779, 4743 Šibenik-Studen, M., 92M/2010, 2226 Sibley, D. F., 92M/1609 Sibson, R. H., 92M/4244 Sibuet, M., 92M/4683 Sickel, H., 92M/2460 Siddaiah, N. S., 92M/2679 Sidder, G. B., 92M/2990 Sideris, C., 92M/3016 Sides, E. J., 92M/2713 Sidler, D. M., 92M/4699 Sie, A., 92M/2695

Sie, S. H., 92M/0805 Siebe, C., 92M/3506 Siegel, F. R., 92M/1880, 3195 Sieger, P., 92M/0239 Siegers, A., 92M/2703, 2767, 3925, 3940 Siemes, H., 92M/1556 Siemroth, J., 92M/3682 Siena, F., 92M/3356 Siffert, B., 92M/3791 Sighinolfi, G. P., 92M/2841 Sigmarsson, O., 92M/1012, 2997 Signer, P., 92M/0023, 0783 Sigurdsson, H., 92M/1032, 1943, 4604, 4605 Sigvaldason, G. E., 92M/3475 Sijarić, G., 92M/2010 Sikka, D. B., 92M/0316 Sikorski, R. J., 92M/0750 Silaev, V. I., 92M/4629 Silber, A., 92M/2000 Silfer, J. A., 92M/3141 Sillitoe, R. H., 92M/1447, 1450, 1451, 1452, 2730 Silva, F. C. A. da, 92M/3859, 3944 Silva, H. M., 92M/3923 Silva, L. C. da, 92M/3886 Silveira, C. L. Porto da, 92M/1902 Silver, E. A., 92M/3393 Silver, L. T., 92M/0804, 3061, 4226 Silverberg, N., 92M/0698 Silvi, B., 92M/0237 Simões, E. J. M., 92M/3914 Simanga, S., 92M/1173 Simard, J. M., 92M/3922 Simeoni, S., 92M/1960 Simmons, S. F., 92M/2980 Simon, K., 92M/0712, 1681 Simon, O. J., 92M/0019 Simon, S. B., 92M/1923 Simpson, C., 92M/3304 Simpson, P. R., 92M/1916, 3166 Sinclair, A. J., 92M/0286, 1873 Singer, A., 92M/2000, 2116 Singer, B. S., 92M/4400 Singer, D. A., 92M/2652 Singh, B., 92M/0129, 2538, 3752, 3807 Singh, N. N., 92M/2725 Singh, R., 92M/3965 Singh, R. N., 92M/2320 Singh, S., 92M/1110 Singh, Y., 92M/1499 Sinha, A. K., 92M/2434 Sinigoi, S., 92M/2167 Sinjarić, G., 92M/2226 Sinkankas, J., 92M/1638 Sinninghe Damsté, J. S., 92M/4507, 4520, 4524, 4545 Sinton, C. W., 92M/4408 Sinton, J. M., 92M/2114 Sipiera, P. P., 92M/1922 Sipila, E., 92M/3371 Sipilä, P., 92M/2139, 4777 Širáńová, V., 92M/2534 Sisson, T. W., 92M/0680, 4420 Sisson, V. B., 92M/4287 Sivasubramanian, P., 92M/3651 Sivell, W. J., 92M/1754 Skřivánek, F., 92M/1637 Skácelová, D., 92M/2373 Skeffington, S., 92M/1908 Sketchley, D. A., 92M/0286 Skewes, M. A., 92M/1449, 1455

Skijerlie, K. P., 92M/4066 Skinner, B. J., 92M/2974 Skjerlie, K. P., 92M/4356, 4357 Sklavounos, S., 92M/4627 Skogby, H., 92M/0229, 4096 Skounakis, S., 92M/3433 Skowron, A., 92M/1417 Skrotzki, R., 92M/0711 Slack, J. F., 92M/0107 Slade, P. G., 92M/0130 Slaughter, K. E., 92M/3189 Slavova, E., 92M/1996 Sloan, L. C., 92M/5004 Sloan, R. J., 92M/0197 Slyunyaev, A. A., 92M/2033 Smale, D., 92M/4895 Smalley, P. C., 92M/1246, 1706, 2999 Smedley, P. L., 92M/1821 Smeds, S.-A., 92M/4550 Smelik, E. A., 92M/0828, 1974 Smellie, J. A., 92M/1518 Smelov, A. P., 92M/2414 Smetannikova, O. G., 92M/4313 Smillie, R. W., 92M/4395 Smirnova, O. K., 92M/4649 Smit, J., 92M/4597 Smith, B. M., 92M/3131 Smith, C., 92M/4603 Smith, C. B., 92M/1270, 1673, 2412 Smith, C. L., 92M/0768 Smith, D., 92M/0805, 3257 Smith, D. C., 92M/1950 Smith, D. J., 92M/0881 Smith, D. K., 92M/0097, 3269 Smith, D. L., 92M/3673 Smith, E. I., 92M/3502 Smith, G. I., 92M/2436 Smith, G. R., 92M/4318 Smith, H. S., 92M/4154 Smith, I. E. M., 92M/2682, 4274, 4818, 4819, 4850 Smith, J. V., 92M/3488 Smith, K. S., 92M/0744 Smith, L. J., 92M/2488 Smith, M. R., 92M/4503 Smith, P. E., 92M/1297 Smith, R. A., 92M/2092 Smith, R. C., 92M/0332 Smith, R. E., 92M/1884 Smith, R. L., 92M/0397 Smith, S. C., 92M/1356 Smith, S. S., 92M/1305 Smithies, R. H., 92M/4611 Smoot, N. C., 92M/1092 Smrekar, S. E., 92M/4570 Smulikowski, W., 92M/1978 Smyk, M. C., 92M/1487 Smykatz-Kloss, W., 92M/2505, 2525 Smyth, J. R., 92M/0821 Snape, C. E., 92M/1866 Snavely Jr, P. D., 92M/3138 Snee, L. W., 92M/1290, 3771, 4182, 4185, 4188, 4189 Snodgrass, W. J., 92M/4078, 4138 Snoke, A. W., 92M/2317, 4225 Snow, E. A., 92M/3596 Snyder, D. A., 92M/4067 So, C. S., 92M/0572, 2728, 2963 So, C.-S., 92M/4333 Soba, D., 92M/0031 Sobel, H., 92M/2395

Sobolev, A. V., 92M/2413

Sobolev, N. V., 92M/0721, 2413, Socki, R. A., 92M/2257 Soegaard, K., 92M/4603 Soesila, B., 92M/1878 Sokol, A., 92M/1731 Sokolová, M., 92M/1731 Solanas, A. M., 92M/0756 Soldatos, T., 92M/3434 Solé, A., 92M/2451 Soler, A., 92M/0918 Soler, V., 92M/2227 Solomon, D. K., 92M/3086 Solomon, G. C., 92M/2978, 4230 Solomon, M., 92M/2096, 4016 Solomon, S. C., 92M/4981 Solyom, Z., 92M/4783, 4785 Somasiri, L. L. W., 92M/2490 Somayajulu, B. L. K., 92M/3120, 4474 Somerville, I. D., 92M/4698 Sommerfeld, R. A., 92M/4211 Song, L.-H., 92M/0388 Song, S., 92M/0322 Song, X., 92M/0360 Soni, S., 92M/2768 Sonnino, M., 92M/0633 Sonntag, C., 92M/4477 Soom, M., 92M/1258 Soong, R., 92M/3799 Sørensen, S., 92M/1101 Sorensen, S. S., 92M/0812 Sorey, M. L., 92M/3127 Soriano, M. C. O., 92M/0086 Sorjonen-Ward, P., 92M/3362 Sosedko, T. A., 92M/1964, 4668 Soubias, I., 92M/2289 Soulard, H., 92M/4069 Southon, J. R., 92M/0740 Southwick, D. L., 92M/3455 Souza, F. A., 92M/1905 Souza, L. H. De, 92M/3955 Sovilla, S., 92M/2498, 3697 Sova, T., 92M/1057 Spadea, P., 92M/2247 Spakman, W., 92M/1216 Spalla, M. I., 92M/4928, 4931 Sparks, D. W., 92M/2134 Sparks, R. S. J., 92M/1051, 1065 Sparrow, G. J., 92M/1320, 2453 Spear, F. S., 92M/0401, 0402, 1116, 1120, 2444 Spearing, D. R., 92M/4121 Speczik, S., 92M/4523 Speer, J. A., 92M/0824, 2316 Spell, T. L., 92M/0964 Spencer, K. J., 92M/0657 Spera, F. J., 92M/3836, 4071 Sperling, H., 92M/1460 Sperling, T., 92M/4997 Sperling, Z., 92M/1382 Spettel, B., 92M/3205 Spišiak, J., 92M/1953 Spiegelman, M., 92M/4691 Spiers, C. J., 92M/0441 Spies, D., 92M/1153 Spiess, R., 92M/2292 Spilde, M. N., 92M/3049, 3269 Spilker, M., 92M/2950 Spirakis, C. S., 92M/0861, 4541 Spiridonov, A. M., 92M/1903 Spirito, W. A., 92M/1893 Spiro, B., 92M/0437 Spitz, A. H., 92M/3227 Spohn, T., 92M/2828, 4770

Spooner, E. T. C., 92M/0032, 3175, 3891, 3895, 3993, 4249, 4263, 4264 Spörli, K. B., 92M/4702, 4703, 4871 Sposito, G., 92M/0135, 1353 Spray, J. G., 92M/1250, 2234 Springel, K. van, 92M/2908 Sprinivas, M., 92M/4749 Sprinivasan, T. P., 92M/4749 Spry, P. G., 92M/1423, 1699, 2701 Squadrone, A., 92M/0625 Šrein, V., 92M/2045 Srinivasa, A. R., 92M/2390 Srinivasan, K., 92M/3650 Srivastava, R. K., 92M/4748 Srivastava, S. C., 92M/3967 Srivastava, S. K., 92M/0176 St-Onge, M. R., 92M/2314, 3549 St Seymour, K., 92M/1052, 1095 Staňková, J., 92M/1999 Staal, C. R. van, 92M/1768 Stabel, A., 92M/0008 Stackebrandt, W., 92M/3657 Stackelberg, U. von, 92M/2101, 2115, 2117, 2667, 2957 Stadermann, F. J., 92M/0772 Stahl, W., 92M/4521 Stakes, D. S., 92M/4202 Staley, R., 92M/3920 Stallard, R. F., 92M/4500 Stancheva, E., 92M/1993 Stanger, G., 92M/1372 Stanger, L. W., 92M/0876 Stanjek, H., 92M/3789 Stanley, C. J., 92M/0865, 1659, 3312, 3330, 3913 Stanley, C. R., 92M/1648 Stanley, D. A., 92M/3751 Stanley, K. D., 92M/1854 Stansfield, R. F. D., 92M/3846 Starck, S., 92M/2519 Starinsky, A., 92M/0733, 1675, 1828, 4479 Starke, R., 92M/2582, 2711 Starkey, R., 92M/2361 Starkey, R. E., 92M/2358, 2360 Starkova, G. L., 92M/0253 Stattegger, K., 92M/4878 Staudacher, T., 92M/3046 Staude, J.-M., 92M/0717, 3596 Staudigel, H., 92M/3028, 4690 Stauffer, M., 92M/1687 Stauffer, R. E., 92M/3125 Steacy, S. J., 92M/2085 Stearley, R. F., 92M/4318 Stebbins, J. F., 92M/0209, 0411, 4051, 4121 Steele, I. M., 92M/3229, 3488 Steen, H., 92M/1230 Steenfelt, A., 92M/1898 Stefanick, M., 92M/2332 Stefanini, B., 92M/4009 Stefanov, A. D., 92M/3796 Stefanova, M., 92M/2137 Steiger, R. H., 92M/0025 Stein, D. J., 92M/4071 Stein, G., 92M/5000 Stein, H. J., 92M/2741 Stein, M., 92M/3745 Stein, S., 92M/2327 Steinberg, K.-H., 92M/4122 Steinberg, M., 92M/1943, 2539 Steinitz, G., 92M/1255 Steinkamp, K., 92M/2667

Steinthorsson, S., 92M/4642 Stel, H., 92M/2088, 4773 Steltenpohl, M. G., 92M/1303 Štemprok, M., 92M/1011 Stendal, H., 92M/1899, 3986 Stenden, G., 92M/1857 Stensgaard, I., 92M/1341 Stepanyuk, L. M., 92M/1277 Stephan, T., 92M/4601 Stephens, M. B., 92M/2398 Stephens, R., 92M/2310 Stephens, W. E., 92M/2178, 3241 Stephenson, P. J., 92M/4756 Stepkowska, E. T., 92M/2520, 2551, 2558 Stern, C. R., 92M/1780, 2338 Stern, R. J., 92M/0998, 1272, 2080, 4397 Stern, T. W., 92M/1288 Stern, W. B., 92M/2530 Stern, W. H., 92M/1979 Sterner, S. M., 92M/2840, 4076 Sternitzke, M., 92M/1388, 2867 Sterte, J., 92M/0136 Sterzel, W., 92M/3839 Stettler, A., 92M/3625 Steuer, H., 92M/2658 Steven, N. M., 92M/3935 Stevens, M. A., 92M/0103 Stevenson, D., 92M/1026 Stewart, A. D., 92M/3074, 4435 Stewart, R. B., 92M/4274, 4849 Stewart, R. H., 92M/3462 Stiehl, G., 92M/2949 Stievenard, M., 92M/3117 Stijfhoorn, D. E., 92M/4905 Stille, P., 92M/0025, 1727, 2291, 4370, 4429 Stipp, S. L., 92M/0255, 4145 Stiven, G. I., 92M/2384 Stix, J., 92M/1036 Stixrude, L., 92M/2869 Stoch, H.-G., 92M/4309 Stoch, L., 92M/2513, 2542 Stöckelmann, D., 92M/3813 Stockmeyer, M., 92M/1344 Stockmeyer, M. R., 92M/0164 Stoeppler, M., 92M/4438 Stoeser, J. W., 92M/0532 Stoesseil, G. F. U., 92M/1743 Stoffers, P., 92M/2104, 2107, 2108, 2111, 2116, 2667, 2957, 2995, 3047, 3552 Stöffler, D., 92M/0772, 3205, 4120, 4595 Stokes, T. R., 92M/0271, 3946 Stolper, E., 92M/1713, 4199 Stolper, E. M., 92M/1548 Stone, D., 92M/2313 Stone, J., 92M/4233, 4455, 4588 Stone, M., 92M/4790 Stone, P., 92M/4789 Stone, W. E., 92M/1591, 1797, 2039, 2972 Stoppani, F. S., 92M/3300 Storey, B. C., 92M/4709 Stormer Jr, J. C., 92M/0678, 3459 Störr, M., 92M/2537, 2583, 2595, 3579, 3633, 3638, 3800, 4669 Stosch, H. G., 92M/1806 Stössel, F., 92M/3539 Stösser, R., 92M/3800 Stout, J. H., 92M/0414, 4957 Stout, M. Z., 92M/3265 Stout, P. M., 92M/1647

Stowell, H. H., 92M/2428 Stoynova, M., 92M/2044 Strachan, R. A., 92M/0015, 1252, 2078, 2400 Strahm, C., 92M/2658 Strasser, J. C., 92M/4965 Strauch, G., 92M/2949 Streckeisen, A. L., 92M/0966 Street-Perrott, F. A., 92M/2481 Streufert, R. K., 92M/4002 Strogen, P., 92M/4698 Strohalmová, M., 92M/1589 Strong, D. F., 92M/0296, 2159 Struiver, M., 92M/2124 Strull, A., 92M/0690 Stuanes, A. O., 92M/4472 Stüben, D., 92M/1677, 1683 Stucki, J. W., 92M/0131 Stumm, W.. 92M/0683, 4139, 4140 Stumpfl, E. F., 92M/1464, 1703, 4659 Sturchio, N. C., 92M/3127 Sturkell, E. F. F., 92M/0802 Sturt, B. A., 92M/3546, 4869 Stute, M., 92M/4477 Stutenbämer, T., 92M/3813 Styles, M. T., 92M/3287 Su, S.-C., 92M/3332 Suarez, D. L., 92M/4114 Suárez, I., 92M/1863 Subba Rao, Y. V., 92M/0144 Subrahmanyam, C., 92M/2320 Subrahmanyam, N. P., 92M/3441 Subramanian, M. A., 92M/2341, Subroto, E. A., 92M/3143 Šucha, V., 92M/2534 Suemnicht, G. A., 92M/3127, 3131 Suetake, S., 92M/3256 Suetsugu, D., 92M/4985 Sugaki, A., 92M/0568, 1604 Sugavanam, E. B., 92M/3941 Sugihara, S., 92M/1949 Sugisaki, R., 92M/0697 Sugiura, N., 92M/4297 Sugiyama, K., 92M/0243 Sugiyama, M., 92M/4482 Sugiyama, Y., 92M/0040 Suhr, G., 92M/2123 Suhr, P., 92M/2671 Suk, N. I., 92M/1551 Sukla, L. B., 92M/0522 Šulcová, V., 92M/2040 Sullivan, M., 92M/0926 Sullivan, R. W., 92M/4563 Sulovský, P., 92M/3334 Summons, R. E., 92M/0747 Sun, C. M., 92M/1967 Sun, D., 92M/1282, 4302 Sun, G., 92M/0363 Sun, S.-S., 92M/0578, 4279, 4870 Sun, Y., 92M/0561 Sun, Z., 92M/3573 Sunagawa, I., 92M/0153 Sundararman, P., 92M/4514 Sundblad, K., 92M/0894, 1708, 2707 Sundby, B., 92M 0698 Sundman, B., 92M/4097 Sundvoll, B., 92M/0006, 4423 Suner, F., 92M/3319 Suominen, V., 92M/2399 Surana, A. P., 92M/3576 Surjono, 92M/0367, 0369 Surkov, V. S., 92M/3572

Surová, E., 92M/4553 Sutchkov, I. A., 92M/4313 Sutcliffe, R. H., 92M/1299, 1764 Suter, M., 92M/4447 Suto, S., 92M/1057 Sutter, J. F., 92M/3740 Suzuki, H., 92M/4843 Suzuki, K., 92M/2529 Sułek, Z., 92M/2520 Svenningsen, O., 92M/4783 Sverjensky, D. A., 92M/0434, 4081 Svingor, E., 92M/1265 Svjatets, A. V., 92M/4093 Svrkota, R., 92M/1909 Swart, P. K., 92M/3762 Swash, P. M., 92M/4806 Sweeney, R. J., 92M/3019 Sweet, P. C., 92M/4000 Swensson, E., 92M/4913 Swett, K., 92M/1649, 3557 Swihart, G. H., 92M/1412, 2808 Swinburne, N. H. M., 92M/4597 Swindle, T. D., 92M/4594 Sykes, L. R., 92M/5006 Sylvester, P. J., 92M/4590 Symes, S., 92M/3210 Symkatz-Kloss, W., 92M/3989 Symmes, G. H., 92M/2267, 4091 Symonds, R. B., 92M/1072, 4401 Synal, H. A., 92M/3207 Szafranek, D., 92M/2000 Szurowski, H., 92M/2363 Szymanski, J. S., 92M/2323 Szymanski, J. T., 92M/2642 Tabaco, F., 92M/4862 Tachibana, R., 92M/3834

Taddeucci, G., 92M/2409 Tadini, C., 92M/0222, 0238, 3822, 3853 Taftø, J., 92M/4677 Tagai, T., 92M/3834 Taggart Jr, J. E., 92M/3328 Tagliavini, M. A., 92M/4636 Taguchi, K., 92M/3144 Taguchi, S., 92M/1949 Tainosho, Y., 92M/0968, 4815 Taipe A., J., 92M/2440 Taira, A., 92M/4683, 4963 Tait, S., 92M/4771 Takada, A., 92M/1057 Takagi, H., 92M/0040 Takahashi, A., 92M/4843 Takahashi, K., 92M/4331 Takahashi, N., 92M/3519 Takahashi, T., 92M/4519 Takai, V., 92M/3937, 3973 Takasaki, Y., 92M/0483 Takashima, I., 92M/2422 Takasu, A., 92M/1283, 3742 Takazawa, E., 92M/0111, 3352 Takeda, H., 92M/0782, 1930, 3198, 3219, 3834 Takenouchi, S., 92M/3171 Takeshi, H., 92M/3220, 3221 Takeuchi, K., 92M/0046, 1058 Takéuchi, Y., 92M/0243, 3851 Takusagawa, N., 92M/1398 Talapatra, A., 92M/1424 Talbot, C. J., 92M/1519 Tamanyu, S., 92M/0044 Tamponi, M., 92M/1360 Tamura, S., 92M/3034

Tan, L. P., 92M/3979, 3980, 3981, 4443 Tan, Y., 92M/0364, 3863 Tanago, J. González del, 92M/2290 Tánago, J. Gónzalez del, 92M/4924 Tanaka, H., 92M/0483 Tanaka, N., 92M/3163 Tanaka, T., 92M/0092, 0181 Tandy, P. C., 92M/4990 Tanelli, G., 92M/2848, 3866, 3915 Taner, M. F., 92M/0637, 1483 Tang, G., 92M/2726 Tang, M., 92M/1282 Tanguay, M. G., 92M/0278 Taniguchi, H., 92M/2836 Tanimoto, T., 92M/4983 Tanino, H., 92M/0495 Tanokura, T., 92M/1183 Tanskanen, H., 92M/3378 Tao, W., 92M/0382 Tao, X., 92M/4386 Tapfer, M., 92M/2424 Taran, M., 92M/1201 Taran, M. N., 92M/1958, 4618 Taran, Yu. A., 92M/1056 Tarbayev, M. B., 92M/3901 Tard, F., 92M/0999 Tardy, Y., 92M/2586 Tareen, J. A. K., 92M/0509, 4117 Tarkian, M., 92M/0345, 3289, 3308 Tarling, D. H., 92M/1053 Tarney, J., 92M/0646, 2240, 3768, 4721, 4735, 4969 Taruta, S., 92M/1398 Tarutis Jr, W. J., 92M/4513 Tarvainen, T., 92M/1874 Tasaka, T., 92M/0569 Tasker, I. R., 92M/4123 Tasov, W. M., 92M/2046 Tassel, R. van, 92M/4670 Tateo, F., 92M/2882 Tatevama, H., 92M/2546 Tatsumi, Y., 92M/0645, 0658, 3019 Tatsumoto, M., 92M/0563, 0791, 1751, 4389 Tauber, F., 92M/3094 Täuber, H., 92M/3315 Taulelle, F., 92M/4056 Tauson, V. L., 92M/1602 Tautz, F. S., 92M/2872 Tauxe, L., 92M/3230 Taxer, K., 92M/2645 Taylor, B. E., 92M/4223, 4339 Taylor, G. J., 92M/3200 Taylor, G. K., 92M/2078 Taylor, H. E., 92M/0098 Taylor, H. P., 92M/1704, 3061 Taylor, J. F., 92M/4310 Taylor Jr, H. P., 92M/2978, 3777, 4221, 4224, 4225, 4230 Taylor, K., 92M/1105 Taylor, L. A., 92M/0773, 2175, 3201, 4566 Taylor, P. N., 92M/0011, 1269 Taylor, R. G., 92M/1739 Taylor, R. M., 92M/1340, 1372, 2905

Taylor, R. P., 92M/0296, 1739,

Taylor, S. R., 92M/2931, 4271,

Tazaki, K., 92M/0038, 0189, 2781,

4060, 4329

2782, 4452

Taylor, S., 92M/1940

4280, 4281, 4568

Tchoua, F., 92M/3234

Torii, K., 92M/0132

Tchoua, F. M., 92M/3018 Teagle, D. A. H., 92M/3984 Tedesco, D., 92M/1028, 1048, 2205, 3483 Teferra, E., 92M/2096 Tegyey, M., 92M/3537 Teichmann, F., 92M/1192, 2970 Teigler, B., 92M/1007 Teixeira, J. B. G, 92M/2749 Teixeira, J. T., 92M/1896 Teixeira, N. A., 92M/2752, 3874 Teixeira, W., 92M/2076, 4744 Temby, P. A., 92M/3600 Ten Brink, M. R. Buchholtz, 92M/0703 Ten Brink, M. R. B., 92M/1795 Ten Brink, M. R. Buchholtz, 92M/4427, 4430 Ten Haven, H. L., 92M/3149, 4524, 4533, 4539 Tena, J. M., 92M/1588 Tendeloo, G. Van, 92M/3820 Teng, R. T. D., 92M/4504 Teptelev, M. P., 92M/3295 Terada, S., 92M/0111 Terashima, M., 92M/0745 Terashima, S., 92M/0571, 0637 Terets, G. Ya., 92M/1276 Ternes, B., 92M/5002 Tesfaye, G., 92M/2740 Tessier, D., 92M/0131 Tewari, R. C., 92M/1109 Teyssier, C., 92M/3732 Thakur, V. C., 92M/0934, 1010 Thalheim, K., 92M/2593 Thampi, P. K., 92M/4750 Thamsó-Bozsó, E., 92M/4888 Theilen, Fr., 92M/1086 Thélin, P., 92M/1155 Thelin, P., 92M/1992 Thélin, P., 92M/3623 Theobald, P. K., 92M/1885 Thériault, R. J., 92M/1291 Theye, T., 92M/3247 Thibault, Y., 92M/3518 Thiele, R., 92M/1084 Thiemens, M. H., 92M/1938 Thiergärtner, H., 92M/2850 Thirlwall, M. F., 92M/0995, 1316, 2494, 3015, 3346, 3351 Thomann, W. F., 92M/3602 Thomas, A. P., 92M/3238 Thomas, A. V., 92M/3175, 4249 Thomas, C. A., 92M/0314 Thomas, C. R., 92M/4250 Thomas, G., 92M/1387 Thomas, J. O., 92M/0241 Thomas, K. L., 92M/4584 Thomas, R., 92M/2664, 2676, 2942, 3094, 3401, 3425, 3642 Thompson, A. B., 92M/4239 Thompson, C., 92M/1916 Thompson, G., 92M/2238, 2661, 4290 Thompson, G. R., 92M/0191 Thompson, J. F. H., 92M/2752 Thompson, M., 92M/4551 Thompson, P. J., 92M/0965 Thompson, R. N., 92M/0676, 1777, 2132 Thompson, S., 92M/4444 Thompson, T. B., 92M/0600 Thomson, M. L., 92M/2754 Thöni, M., 92M/1156 Thoni, M., 92M/3721

Thonnard, N., 92M/1835 Thorman, C. H., 92M/3861 Thornton, I., 92M/1509, 1511 Thorseth, I. H., 92M/4351 Thorsnes, T., 92M/4695 Thorson, J. P., 92M/0332 Thost, D. E., 92M/4468 Thrivikramaji, K. P., 92M/1108 Thuss, K.-H., 92M/2371 Thy, P., 92M/4070, 4355 Thyne, G. D., 92M/4511 Tiainen, M., 92M/3165, 3381 Tian, W., 92M/0361 Tiba, T., 92M/2195 Tibaldi, A., 92M/2220 Tibljaš, D., 92M/2006, 4650 Tillmanns, E., 92M/1416, 2067 Tillmans, E., 92M/4675 Tilton, G., 92M/3017 Tilton, G. R., 92M/1735, 1809 Timellini, G., 92M/1514 Timi, D., 92M/2783 Tindle, A., 92M/2319 Tindle, A. G., 92M/3772 Tingey, . R. J., 92M/4707 Tingey, R. J., 92M/3773, 4704 Tingle, T. N., 92M/0785 Tippelt, B., 92M/1314 Tippins, P. A., 92M/3916 Tirados, J., 92M/2451 Tirén, S. A., 92M/1520 Tischendorf, G., 92M/2504, 2657, 2660, 2945, 3007, 3008, 3425, 4323, 4369 Tisti, M., 92M/2984 Titapiwatanakun, U., 92M/2461 Toba, A. Al, 92M/3550 Tobisch, O. T., 92M/2305, 4692 Tobschall, H. J. J., 92M/1815 Tobschall, H. J., 92M/3910 Todd, J. G., 92M/1221 Todorov, K., 92M/1996 Todt, W., 92M/2424, 2995 Togashi, S., 92M/0039 Tognoni, C., 92M/2912 Togonidze, M., 92M/1278 Togonidze, M. G., 92M/1273, 1276, 1277, 1746 Tohgoh, H., 92M/0483 Toivola, V., 92M/3368 Toja, J., 92M/1864 Tokarev, I. V., 92M/1824 Tokarski, A. K., 92M/4728 Tolessa, S., 92M/2096 Tolomeo, L., 92M/0550, 1734 Tolstikhin, I. N., 92M/1824, 4278 Tom, B. A., 92M/3754 Tomšík, J., 92M/1999 Tomadin, L., 92M/2543 Tomeoka, K., 92M/3214 Tomita, K., 92M/0140, 0147, 0832, 2562, 3801 Tomlinson, J. S., 92M/2383 Tommasini, S., 92M/0629, 0971, 4798 Tomschey, O., 92M/1791 Tomshin, M. D., 92M/4766, 4767 Tomura, S., 92M/0153, 0156, 2864 Tonarini, S., 92M/1749 Tonegatti, D., 92M/0631 Toolin, L. J., 92M/4856 Töpel, J., 92M/1324 Topp, J., 92M/0710

Toramaru, A., 92M/1536

Torgersen, T., 92M/2249

Torillo, A. R., 92M/0200 Torné, M., 92M/4795 Törnroos, R., 92M/3373 Toro, C. de, 92M/2217 Torssander, P., 92M/1819 Tosdal, R. M., 92M/2756 Tossell, J. A., 92M/1379 Toteu, S. F., 92M/0031 Totland, M., 92M/2469 Touchard, G., 92M/0972 Toulhoat, P., 92M/1882 Toulmin III, P., 92M/0504 Touray, J. C., 92M/2719, 2982, 3938, 3948 Touret, J. L. R., 92M/1805, 2283 Tourigny, G., 92M/2738 Tourpin, S., 92M/0614 Toutain, J.-P., 92M/1028 Toutain, J. P., 92M/1048 Toutain, J.-P., 92M/3483 Toyoshima, T., 92M/2303 Trønnes, R. G., 92M/3000 Tracy, R. J., 92M/0822, 3273, 3586, 3587 Trägårdh, J., 92M/2262 Traore, I., 92M/2676 Traube, V. V., 92M/3396 Traversa, G., 92M/1263 Trdlička, Z., 92M/2019, 2035 Tredoux, M., 92M/0349 Treloar, P. J., 92M/0947, 1173, 1280, 2417, 3463 Trembath, L. T., 92M/1542 Trendall, A. F., 92M/3043 Trendel, J. M., 92M/3149 Trescases, J. J., 92M/2983, 3960 Treuil, M., 92M/3048 Trewin, N. H., 92M/4885 Triboulet, C., 92M/1136, 3616 Tribuzio, R., 92M/1125, 3597 Trinkler, M., 92M/4648 Triplehorn, D. M., 92M/3501 Triscari, M., 92M/2673 Tritlla, J., 92M/0919 Trivedi, J. R., 92M/4480 Trivett, D. A., 92M/4982 Trofimuk, A. A., 92M/3572 Troll, G., 92M/2145, 2146, 2455 Trommsdorff, V., 92M/1560 Trompette, R., 92M/4027 Trossarelli, C., 92M/2920 Trosti Ferroni, R., 92M/3299 Trottier, J., 92M/4019 Trouiller, A., 92M/1661 Troup, G. T., 92M/4163 Trubkin, N. V., 92M/4678 Truckenbrodt, W., 92M/2597 Trudel, P., 92M/0269, 0275, 0278, 1483 Trudu, C., 92M/1262 Truesdell, A. H., 92M/4197 Trull, T. W., 92M/0003 Tschapek, B., 92M/4887 Tschischow, N., 92M/1453 Tshimanga, K., 92M/4746 Tsolis-Katagas, P., 92M/0842, 1169 Tsuchida, Y., 92M/2891 Tsuchiya, N., 92M/0111, 3034 Tsuchiyama, A., 92M/2851 Tsuda, S., 92M/0187 Tsukamoto, M., 92M/0417 Tsukimura, K., 92M/0180 Tsysin, G. I., 92M/2462 Tu, K., 92M/4387

Tubia, J. M., 92M/1157 Tucholka, P., 92M/4978 Tucker, D. H., 92M/3775, 4753 Tucker, G. B. H., 92M/1878 Tucker, M. E., 92M/2251 Tucker, R. D., 92M/0005, 0896, 3712 Tufar, W., 92M/2681, 2957 Tullai-Fitzpatrick, S., 92M/4504 Tullis, J., 92M/1804, 3610 Tulloch, A. J., 92M/4394 Tunesi, A., 92M/4931 Tungsheng, L., 92M/4447 Turan, J., 92M/1953, 4324 Turanova, L., 92M/4324 Turbeville, B. N., 92M/4797 Turcotte, D. L., 92M/2655 Turekian, K. K., 92M/3163, 4398, Turi, B., 92M/1749, 2205, 4221 Turner, B., 92M/4163 Turner, G., 92M/3733, 4100, 4261 Turner, J. S., 92M/0975, 1537 Turner, P., 92M/2260, 3746 Turner, P. A., 92M/1714 Turner, R. L., 92M/1885 Turner, S. P., 92M/4757 Turnock, A. C., 92M/4099 Turpin, L., 92M/1268, 1943, 3048 4900 Tuttas, D., 92M/3706 Tvrdý, J., 92M/2029 Twist, D., 92M/2176, 2721 Tyler, I. M., 92M/3044 Tyrna, P. L., 92M/0232 Tyrwhitt, D. S., 92M/1418 Tzirlin, V. A., 92M/4608 Uchida, E., 92M/2728 Uchiumi, S., 92M/0040, 0041, 0042, 2225 Ucik, F. H., 92M/2372 Udubasa, G., 92M/3878 Ueda, S., 92M/0481, 0482, 2878 Uehara, S., 92M/3276 Uhlmann, W., 92M/2775 Uiike, O., 92M/3038 Ulbrich, H. H. G. J., 92M/0898 Ullrich, B., 92M/1345, 3638 Ulrych, J., 92M/1973 Umeji, A. C., 92M/0029 Umsonst, T., 92M/4464 Umstattd, K., 92M/4965 Unan, C., 92M/3435 Ungaretti, L., 92M/3826 Unger, H. J., 92M/3795 Ünlü, T., 92M/1899 Unohara, N., 92M/2489

Tu, Kan, 92M/3032

Tuach, J., 92M/0285

AUTHOR INDEX

Usui, A., 92M/0571 Utada, M., 92M/0178, 0179, 0188, 3280, 3282, 4893 Uto, K., 92M/0001, 1057 Utsumi, W., 92M/2891 Utting, J., 92M/4898 Uyeda, C., 92M/2851

Vaasjoki, M., 92M/0892, 3366, Vaccaro, C., 92M/1263 Vail, L. W., 92M/2784 Vaive, J. E., 92M/4562 Valbracht, P. J., 92M/1717, 1718, 1719 Valdrè, G., 92M/1575 Valente, J., 92M/3968 Valentine, P. C., 92M/0060, 0384 Valentino, A. J., 92M/4643 Valenza, M., 92M/4838 Valera, R. G., 92M/3926 Valet, J.-P., 92M/4978 Valeton, I., 92M/2674 Vali, H., 92M/2620 Valley, J. W., 92M/0723, 1698, 1814, 3090, 3104, 4245 Vallier, T. L., 92M/1759 Vallinayagam, G., 92M/3236 Valois, J.-P., 92M/0618 van Aarssen, B. G. K., 92M/4529 Van Alboom, A., 92M/2600 van Beest, B. W. H., 92M/0236 van Bergen, M. J., 92M/4391, 4392 Van Calsteren, P. C., 92M/1279 van Calsteren, P., 92M/3731 Van de Meersche, E., 92M/3699 van Delft, W., 92M/2443 Van den Akker, A. H., 92M/2443 van den Haute, P., 92M/0018 van den Kerkhof, A. M., 92M/1195 Van Den Kerkhof, A. M., 92M/1805

van den Kerkhof, A. M., 92M/3114 van der Heyden, P., 92M/0053 van der Hilst, R., 92M/1216 van der Laan, S. R., 92M/2817,

van der Linden, B., 92M/3149 van der Lingen, G. J., 92M/4897 van der Merwe, A. J., 92M/0158 Van der Merwe, N. J., 92M/4031 van der Plicht, J., 92M/3714 van der Pluijm, B. A., 92M/2312 van der Voo, R., 92M/2082 Van Duyne, G., 92M/3162 van Gaans, C., 92M/1970 van Geen, A., 92M/0729 Van Grieken, R. E., 92M/3753 van Groos, A. F. Koster, 92M/0124 van Groos, A. F. K., 92M/0464 van Groos, A. F. Koster, 92M/1554 Van Heurck, C., 92M/3820 Van Kauwenbergh, S. J., 92M/0874 van Koningsveld, H., 92M/1403 Van Kranendonk, M. J., 92M/0960 Van Langevelde, F., 92M/4250 van Lenthe, J. H., 92M/2605 van Loon, G. W., 92M/2482 Van Loon, J. C., 92M/1323 van Moort, J. C., 92M/0576 van Roermund, H. L. M.,

92M/0227

van Santen, R. A., 92M/0236

van Springel, K., 92M/2908

van Staal, C. R., 92M/1768 van Tassel, R., 92M/4670 Van Tendeloo, G., 92M/3820 Vance, G. F., 92M/4518 Vandenberghe, N., 92M/1822 Vandenberghe, R. E., 92M/1600 Vanderah, T. A., 92M/0250 Vanko, D. A., 92M/4248 Vannucci, R., 92M/1125 Vanucci, R., 92M/3355 Varadachari, C., 92M/0498 Varakov, A. S., 92M/1990 Varekamp, J. C., 92M/3486, 4392 Varentsov, I. M., 92M/2893 Varker, W. J., 92M/1103 Varma, O. P., 92M/1008 Vasconcelos, P., 92M/1890 Vaselli, O., 92M/3014 Vasilishin, I. S., 92M/2376 Vaskó-Dávid, K., 92M/4889 Vassallo, A. M., 92M/4530 Vasseur, G., 92M/3343 Vassileva, M., 92M/2026 Vassmyr, S., 92M/1100 Vasudev, V. N., 92M/3391, 3961 Vaughan, D. J., 92M/0066, 0068, 0113, 0863, 0064 Vaughan, J. P., 92M/2653 Vavra, G., 92M/2407 Vázquez, G. R., 92M/2221 Vearncombe, J. R., 92M/3916, 3947 Veblen, D. R., 92M/0203, 0215,

0474, 0828, 0846, 0881, 1370, 1371, 1974, 1995, 2013, 2873 Veeh, H. H., 92M/4317 Vega, R. Lopez de la, 92M/1854 Veiga, M. M., 92M/0315 Veizer, J., 92M/4269, 4304, 4471 Veksler, I. V., 92M/3295 Velasco, F., 92M/1457, 2581, 4664 Velde, B., 92M/0835, 0836, 0972 Velho, J. A. G. L., 92M/1336 Velilla, N., 92M/3631 Velinov, I., 92M/2263 Velinsky, D. J., 92M/3071 Venerandi Pirri, I., 92M/4657 Vengosh, A., 92M/0733, 1675, 1828

Venkata Dasu, S. P., 92M/3392 Ventura, G. D., 92M/1581, 3827 Ventura, G. Della, 92M/0829, 3300 Venturini, G., 92M/4927 Vercoutere, C., 92M/0018 Vergara, M., 92M/1084 Vergasova, L P., 92M/3852 Vergasova, L. P., 92M/0253, 2073 Vergilov, I., 92M/1996 Verhagen, B. Th., 92M/3116 Verma, M. P., 92M/4862 Verma, N., 92M/4445 Verma, P. K., 92M/1985 Verma, R. K., 92M/0941, 0943, 0944 Verma, S. P., 92M/2219, 2222,

4863, 4864 Vernaz, E., 92M/2837 Vernières, J., 92M/3343 Vernon, R. H., 92M/2305, 2307, 3595 Verrucchi, C., 92M/3909 Verschure, R. H., 92M/0019

Vertolli, V. M., 92M/3453

Verwoerd, W. J., 92M/3450 Vetter, U., 92M/3928

Via, J., 92M/1570 Viaene, W. A., 92M/1822 Vially, R., 92M/0920 Viard, B., 92M/4633 Vicat, J.-P., 92M/1171 Vickers, G. H., 92M/0104 Vidal C., C. E., 92M/2989, 2990 Vidal, C. E., 92M/2761 Vidal, O., 92M/1582 Vidal, P., 92M/4804 Vidale, J. E., 92M/4973 Vidales, J. L. Martín de, 92M/1366 Vidales, J. L. Martin de, 92M/2552 Viehweg, M., 92M/3430 Vieillard, P., 92M/0554 Vieira, F. W. R., 92M/3896, 3914 Vieira Jr, N., 92M/1711, 1712 Vieira, R., 92M/2215, 2217 Vieth-Redemann, A., 92M/1368 Viets, J. G., 92M/0597 Vigil, R., 92M/1339 Vila, T., 92M/1450, 1451, 1452 Viladevall, M., 92M/1429 Vilela de Matos, A., 92M/0988, 0990 Viljoen, K. S., 92M/4806 Vilks, P., 92M/1523, 1527 Villa, I. M., 92M/1259, 1261, 1263, 1729, 2409, 3722 Villaseca, C., 92M/3416 Villasenor-Cabral, M. G., 92M/1901 Villemin, G., 92M/3314 Villemure, G., 92M/3787 Villeneuve, M. E., 92M/1291, 1292 Villiéras, F., 92M/0122, 0294 Vinogradov, V. I., 92M/1274, 1745 Vinx, R., 92M/2401 Violante, A., 92M/0389, 0463 Violante, P., 92M/0389, 0463 Virag, A., 92M/4589 Viraz, A., 92M/0786 Virgo, D., 92M/2890 Virke, P. G., 92M/1494, 2747 Virtanen, I., 92M/4433 Viscardi, A., 92M/1900 Visona, D., 92M/0631 Visonà, D., 92M/2296, 2297 Visona, D., 92M/3252 Visser, D., 92M/0818 Visser, W., 92M/3571 Viswanathan, K., 92M/2798, 4118 Viteri, E., 92M/1452 Vivallo, W., 92M/0337 Vivier, G., 92M/3617 Vivo, B. De, 92M/1900, 3482 Vlasimsky, P., 92M/3692 Vochten, R., 92M/2908 Vocke Jr, R. D., 92M/3759 Vogel, J. C., 92M/1823 Vogel, J. S., 92M/0740 Vogel, T. A., 92M/2191 Vogt, S., 92M/3209, 3228

Vogt, T., 92M/1407, 2626

Vohra, C. P., 92M/0036

Volborth, A., 92M/3308

Volkert, R. A., 92M/0886

Vollbrecht, A., 92M/2172

Vollmer, R., 92M/4796

Voight, B., 92M/1033

Vogtmann-Becker, J., 92M/0302

Vokes, F. M., 92M/0335, 3304

Voll, G., 92M/1324, 2143, 2144,

2154, 2155, 2157, 2163, 3443

Voland, B., 92M/2722, 3020

4370 Vyhnal, C. R., 92M/0824 Waagstein, R., 92M/4781 Wada, K., 92M/0196, 2555

Vollstädt, H., 92M/3638 Volpe, A. M., 92M/3737, 3744 Volpe, L. La, 92M/3478 Volvovskij, B. S., 92M/3360 Volvovskij, Ju. S., 92M/3360 Volzone, C., 92M/1337 von Blanckenburg, F., 92M/1259, von Drach, V., 92M/3022 von Endt, D. W., 92M/3145 von Gehlen, K., 92M/1152, 1153 Von Gruenewaldt, G., 92M/4328 von Gunten, H. R., 92M/4476 von Knorring, O., 92M/4630 von Quadt, A., 92M/1257, 3720 von Rad, U., 92M/2101, 2109, 2110, 2117, 2771 von Raumer, J. F., 92M/1808, 3385 von Schnering, H. G., 92M/3846 von Stackelberg, U., 92M/2101, 2115, 2117, 2667, 2957 Vorren, T. O., 92M/1100 Vortisch, W., 92M/3804 Vortsepnev, V. V., 92M/1626 Vrána, S., 92M/2071 Vriend, S. P., 92M/1881 Vry, J. K., 92M/2311 Vuichard, J. P., 92M/3626 Vuollo, J., 92M/4780

Wada, S., 92M/1351, 2548 Wada, S.-I., 92M/0196 Wada, Y., 92M/4844 Wadge, G., 92M/1660, 3468 Wadleigh, M. A., 92M/4471 Wagenknecht, R., 92M/3182 Wagner, F. E. W., 92M/0294 Wagner, F. E., 92M/3907 Wagner, G. A., 92M/0018, 1256, Wagner, J. J., 92M/2247 Wagner, J.-J., 92M/4381 Wagner, R., 92M/3567 Wagner, U., 92M/1347 Wahsner, M., 92M/2970 Waidmann, E., 92M/4438 Waitt, R. B., 92M/1074 Waizumi, K., 92M/0265, 2650 Wake, B. A., 92M/1468 Wakeham, S. G., 92M/0759 Wakita, H., 92M/1826, 3494 Walcher, E., 92M/1460 Walder, G., 92M/2410 Walder, I. F., 92M/3176 Waldron, J. W. F., 92M/0959 Walgenwitz, F., 92M/0999, 2397 Walker, C. D., 92M/3113 Walker, C. L., 92M/2243 Walker, D., 92M/1531, 1592 Walker, D. R., 92M/0400 Walker, F. D. L., 92M/0438, 0839, Walker, G. P. L., 92M/2229, 4850, 4855 Walker, I. W., 92M/1912

Walker, J. G. G., 92M/5004 Walker, J. S., 92M/1440 Walker, R. J., 92M/0681, 1690, 4579 Wall, F., 92M/4841 Wall, H. de, 92M/4465, 4937

Wall, V. J., 92M/1473, 2125, 2855, 4310 Wallace, D. A., 92M/0578 Wallace, M. E., 92M/0459 Wallace, M. W., 92M/2423, 3083 Wallace, P., 92M/4352 Walmsley, J. C., 92M/3285 Walsh, J., 92M/0909 Walsh, J. N., 92M/2475 Walsh, M. M., 92M/3569 Walshe, J. L., 92M/1645, 2680 Walter, L. M., 92M/0530, 0702, 4318 Walter, P., 92M/2104, 2108 Walter, R. C., 92M/1271 Walther, J. V., 92M/0150, 4087 Wan, D., 92M/0559 Wanamaker, B. J., 92M/0422 Wand, U., 92M/1744, 2426, 2969, 3103, 3403 Wang, D., 92M/1750 Wang, F., 92M/3911 Wang, G. Y., 92M/4510 Wang, H. F., 92M/1079, 1163 Wang, J., 92M/1751, 3863 Wang, K., 92M/0563, 3101, 4446 Wang, M. C., 92M/0123 Wang, M.-S., 92M/3204, 3212 Wang, P., 92M/2651 Wang, P.-L., 92M/2649 Wang, Q. M., 92M/3160 Wang, S-d., 92M/0087 Wang, S. L., 92M/2647 Wang, X., 92M/1180, 1888, 2458, 3655 Wang, Y., 92M/2634, 4302, 4662 Wang, Z., 92M/0325 Wänke, H., 92M/3205 Wanty, R. B., 92M/0594, 0742, 1848, 4080 Ward, D., 92M/3508 Ward, D. M., 92M/4534, 4535 Ward, P. D., 92M/0728 Ware, A. R., 92M/2693 Ware, N. G., 92M/4309 Wares, R., 92M/1095 Warne, S. St J., 92M/2505, 2510 Warr, L. N., 92M/2278 Warren, P. H., 92M/3206 Warren, R. G., 92M/1773 Wartho, J., 92M/1579 Wasilewski, P. J., 92M/4980 Wassenaar, L. I., 92M/1832, 1868 Wasserburg, G. J., 92M/1547, 1548, 3089, 3745, 4233, 4580, 4588, 4596 Wasserman, M. D., 92M/4316 Watanabe, E., 92M/2529, 2563 Watanabe, H., 92M/0426 Watanabe, K., 92M/3235 Watanabe, M., 92M/3235 Watanabe, T., 92M/0128, 0134, 0188, 0231, 2507 Watanuki, K., 92M/2048, 2049, 3313 Waters, D. J., 92M/0219 Waters, F. G., 92M/0615 Watkeys, M. K., 92M/2100 Watkins, P. J., 92M/2477 Watkins, R. T., 92M/4383, 4730 Watkinson, D. H., 92M/1487, 2021, 2733, 3310, 4329 Watson, E. B., 92M/0421, 0433,

Watters, B. R., 92M/0663 Watters, R. A., 92M/1878 Watters, W. A., 92M/4953 Watterson, J., 92M/0909 Watts, A. H., 92M/3964 Waychunas, G. A., 92M/0849 Wayne, D. M., 92M/2434 Weare, J. H., 92M/4079 Weaver, B. L., 92M/0607 Weaver, S. D., 92M/4851, 4852, 4853 Webb, H. L., 92M/3326 Webb, P. C., 92M/3772 Webb, S. L., 92M/2790, 3665, 4048, 4053, 4108 Weber, F., 92M/2663, 2677 Weber, H., 92M/3205 Weber, K., 92M/2172, 2424 Weber, W. J., 92M/3239 Weber, W. S., 92M/1761 Webster, J. D., 92M/3066, 4063, 4064 Weckwerth, G., 92M/3205 Wedepohl, K. H., 92M/0610, 0730, 2922 Weerth, A., 92M/2378, 3700 Wei, K., 92M/4090 Weiblen, P. W., 92M/1703 Weidner, D. J., 92M/4986 Weihed, P., 92M/4549 Weijermars, R., 92M/2093 Weijun, S., 92M/4015 Weinberg, R. F., 92M/4768 Weiner, K. L., 92M/1240, 5003 Weinlich, F. H., 92M/3115 Weis, D., 92M/1736 Weisberg, M. K., 92M/1931 Weisbrod, A., 92M/4943 Weise, S. M., 92M/0715 Weise, W., 92M/2363 Weiser, T., 92M/2115 Weiser, Th., 92M/3928 Weiss, S., 92M/2145, 2146, 2147, 2161, 4993 Weisz, J., 92M/4088 Weitschat, W., 92M/1627 Welch, M. D., 92M/2859, 3828 Welch, S., 92M/4490 Welke, H. J., 92M/2411 Weller, M. T., 92M/0247 Wells, J. T., 92M/1818 Wells, K., 92M/2686 Wells, M. L., 92M/1817 Welte, D. H., 92M/3155 Wendlandt, R. F., 92M/1546 Wendt, I., 92M/3706, 3709 Wendt, J. I., 92M/3706 Wendt, T., 92M/0084 Wenger, M., 92M/2648, 3298 Wenk, E., 92M/4466 Wenk, H.-R., 92M/2265 Wenner, D. B., 92M/4210 Wente, M., 92M/4136 Wentworth, S. J., 92M/0781, 3204 Wenzel, F., 92M/4237 Wenzel, T., 92M/2910 Wenzel, Th., 92M/3421 Werding, G., 92M/2796 Werner, C.-D., 92M/2926, 3636 Werner, P.-E., 92M/0264, 2649, 2651 Werner, W., 92M/1459, 2672 Wersin, P., 92M/0683, 4139, 4140 Wertz, P., 92M/0613 Wesolowski, D. F., 92M/4132

Wesolowski, D. J., 92M/4131 West, H. B., 92M/0666 Westbroek, P., 92M/0748, 4508 Westbrook, G. K., 92M/4959 Westendorp, R. W., 92M/2021 Westerlund, S., 92M/0735 Westrich, H. R., 92M/0471, 4083 Wet, M. De, 92M/1004 Wetherbee, G. A., 92M/4496 Wetmiller, R. J., 92M/2391 Wetzel, K., 92M/1744, 2924, 2926, 3006, 3093 Wever, Th., 92M/4235 Whalen, J. B., 92M/1295 Wheatley, M. R., 92M/2445 Wheeler, D. E., 92M/1492 Wheeler, J., 92M/2293, 2417 Whelan, J. F., 92M/0700 Whipple, J. W., 92M/0332 White, A. F., 92M/3129 White, B. S., 92M/2811, 4073 White, C. M., 92M/2183 White, J. C., 92M/2622 White, J. D. L., 92M/1078 White, J. S., 92M/4672 White, J. W. C., 92M/4208 White, L. D., 92M/4495 White, R. S., 92M/2233 White, T. J., 92M/1408 White, W. M., 92M/4832 Whiteford, P. C., 92M/1064 Whitehead, N. E., 92M/4449 Whiteman, M. I., 92M/4666 Whitmore, D. O., 92M/1838 Whitney, D. L., 92M/0806, 3662 Whitney, J. A., 92M/0677, 0678 Whitten, E. H. T., 92M/0970 Whitworth, M. P., 92M/3243 Wickham, S. M., 92M/3063, 4224, 4225 Wicks, F. J., 92M/1689, 2933, 4252 Wiebcke, M., 92M/0239 Wiebe, R. A., 92M/3456 Wiechmann, M. J., 92M/0215 Wiedemann, R., 92M/3635, 3642 Wiedicke, M., 92M/2106 Wiefel, H., 92M/2665 Wieler, R., 92M/0783 Wiener, L. S., 92M/4001 Wierzchołowski, B., 92M/1166 Wiese, R. G., 92M/4452 Wiesmann, H., 92M/4565 Wiesner, K., 92M/4013 Wiewiora, A., 92M/0230 Wiewióra, A., 92M/1989 Wiggins, L. B., 92M/0504 Wight, Q., 92M/3701 Wignall, P. B., 92M/1103 Wijayanda, N. P., 92M/3982 Wikström, A., 92M/0888, 4917 Wilbur, J. S., 92M/1696 Wilde, A. R., 92M/1679 Wildner, M., 92M/0252, 2643, 3847, 3848 Wilkins, R. W. T., 92M/1678, 3174 Wilkinson, J. F. G., 92M/1760, 3447 Wilks, E., 92M/3776 Wilks, J., 92M/3776 Wilks, M., 92M/0722 Willan, R. C. R., 92M/4821 Willfahrt, M., 92M/2764 Williams, A. E., 92M/2979, 3528, Williams, C. T., 92M/3297, 4841

Williams, D. B., 92M/0793 Williams, G. E., 92M/0693 Williams, I. R., 92M/3044 Williams, I. S., 92M/1284, 1285, 1651, 2411, 2412, 3369, 3723, 3735, 4232 Williams, J., 92M/0146 Williams, J. G., 92M/0662 Williams-Jones, A. E., 92M/0603, 1692, 1693, 2670, 3055, 4148, Williams, K. L., 92M/2445 Williams, L. B., 92M/1358, 4546 Williams, M. L., 92M/1077 Williams, M. P., 92M/0948, 1280 Williams, P. A., 92M/2911, 4133 Williams, P. F., 92M/1488 Williams, P. J., 92M/1484, 4955 Williams, P. L., 92M/4716 Williams, Q., 92M/1214, 2886, 3815 Williams, S. A., 92M/3338 Williams, S. N., 92M/4294 Williamsen, E. J., 92M/2488 Williamson, J. P., 92M/0318 Williford Jr, C. W., 92M/2788 Willis, R. D., 92M/1835 Willner, A. P., 92M/1175, 3634 Willsch, H., 92M/3155 Wilmart, E., 92M/2283 Wilshire, H. G., 92M/3347 Wilson, A. H., 92M/0349 Wilson, B. W., 92M/2463 Wilson, C. J. N., 92M/3496, 4850, 4851, 4852, 4853 Wilson, D. A., 92M/0104 Wilson, E. N., 92M/1106 Wilson, G. C., 92M/0099, 2734 Wilson, J. F., 92M/1269 Wilson, J. R., 92M/0876, 0979 Wilson, L., 92M/0777 Wilson, M., 92M/0636 Wilson, M. A., 92M/2555, 4530 Wilson, M. J., 92M/2545 Wilson, P. N., 92M/0876 Wilson, R. E., 92M/2931 Wilson, S. K., 92M/3126 Wilton, D. H. C., 92M/2973 Wimmenauer, W., 92M/0707 Winchester, J. A., 92M/1768 Windley, B. F., 92M/0924, 0926, 0954, 1009, 3025 Winer, N., 92M/3939, 3974, 4012 Wing, M. R., 92M/1929 Wingren, N., 92M/2003 Winkelmann, L., 92M/2984 Winkler, B., 92M/0216, 0447, 4095 Winkler, G. R., 92M/2119 Winkler, W., 92M/1260 Winn, K., 92M/2106 Winter, B. L., 92M/3085 Winter, W., 92M/1576 Wirth, R., 92M/2001 Wise, W. S., 92M/4123 Wiser, N. M., 92M/1565 Wit, M. J. de, 92M/3891, 3993 Witt, W. K., 92M/2697 Wittchen, B. D., 92M/3125 Wlotska, F., 92M/3705 Wogelius, R. A., 92M/4087, 4666 Wohlenberg, J., 92M/3747 Wöhrl, T., 92M/3778, 3779, 4934 Wolcott, J., 92M/3192 Wold, C. N., 92M/2248 Wolery, T. J., 92M/0436

0457, 0882, 4045, 4968

Watt, D. S., 92M/3162

AUTHOR INDEX

Wolf, D., 92M/4648 Wolf, F., 92M/0419 Wolf, G. H., 92M/2633, 4052 Wolf, M., 92M/1837 Wolf, M. B., 92M/2835 Wolf, P., 92M/3180 Wolfe, J. A., 92M/0798 Wolff, J. A., 92M/1777, 3465 Wölfli, W., 92M/3207, 4447 Wollenberg, H. A., 92M/3128 Wong, L., 92M/0056 Wood, B. J., 92M/0489, 0608, 1203, 1565, 1709, 4116, 4364 Wood, D. J., 92M/2428 Wood, J. R., 92M/1845 Wood, M., 92M/2356 Wood, R. M., 92M/5005 Wood, S. A., 92M/0439, 0487, 0603, 2883, 4148, 4150 Wood, W. W., 92M/2773 Woodcock, J. T., 92M/1320, 2453 Woodcock, N. H., 92M/2279 Wooden, J. L., 92M/0673, 3107, 4424, 4732 Woodhead, J. A., 92M/0804, 3238 Woodland, A. B., 92M/0489, 4364 Woods, A. E., 92M/4834 Woods, A. W., 92M/1035, 2197,

Woods, A. E., 92M/4834
Woods, A. W., 92M/1035, 2197, 4975
Woods, G. A., 92M/1876
Woodsworth, G. J., 92M/2121
Woodward, R. L., 92M/1220
Wooldridge, J., 92M/2358
Woollett, R. W., 92M/2383
Woollety, A. R., 92M/4841
Wopenka, B., 92M/4589
Worden, R. H., 92M/1159, 4632, 4909
Worku, T., 92M/4991

Wormald, P. J., 92M/2180 Wörner, G., 92M/4822 Woronow, A., 92M/0521, 2904 Worsley, P., 92M/0014 Wortel, M. J. R., 92M/2331 Wright, D., 92M/1094

Wright, I. C., 92M/0383 Wright, I. P., 92M/4582 Wright, J. E., 92M/3713 Wright, J. V., 92M/1031

Wright, N., 92M/1202 Wright, V. P., 92M/0197 Wróblewski, P., 92M/4178 Wruck, B., 92M/0466

Wu, C., 92M/0356, 0564, 1466 Wu, M., 92M/1079 Wu, T., 92M/3453

Wu, T.-W., 92M/4405 Wu, X., 92M/2898 Wunder, B., 92M/1574

Wünsch, K., 92M/3095, 3096 Würsten, F., 92M/3538

Wyder, R., 92M/3551 Wyers, G. P., 92M/3487 Wyllie, P. J., 92M/2816, 2827, 2833, 2835, 4073

Wyns, R., 92M/3550 Wyszomirski, P., 92M/0686

Xavier, R., 92M/3930 Xavier, R. P., 92M/2749, 3890 Xe, X., 92M/3187 Xia, M., 92M/1180

Xia, M., 92M/1180 Xia, S., 92M/4984 Xiao, X., 92M/3225 Xiao, Y., 92M/4302 Xiaochun, W., 92M/0556 Xiaodan, T., 92M/4783 Xie, G., 92M/1751, 3268, 4387, 4388 Xie, G.-H., 92M/4331 Xie, Guanghong, 92M/3032 Xie, H.-S., 92M/1566 Xie, Q., 92M/1750 Xie, X., 92M/1888 Xing, F., 92M/3031 Xu, H., 92M/3039, 3824 Xu, Q., 92M/2452 Xu, S., 92M/3972 Xu, S. J., 92M/0748 Xu, W., 92M/3444 Xu, X., 92M/3031 Xu, Z., 92M/1850 Xue, E., 92M/1086 Xue, J., 92M/3824

Xue, X., 92M/0411, 4051

Xyla, A. G., 92M/1597

Yacoot, A., 92M/3284 Yagi, T., 92M/2891 Yagonda, M., 92M/2783 Yahata, M., 92M/3279 Yaich-Aerrache, H. B., 92M/2638 Yairi, K., 92M/2099 Yajima, J., 92M/0569, 0637, 4676 Yamada, H., 92M/0482, 1348 Yamagata, Y., 92M/0426 Yamagishi, H., 92M/1061 Yamaguchi, D. K., 92M/2124 Yamaguchi, H., 92M/0196 Yamaguchi, S., 92M/0045 Yamaji, A., 92M/4679 Yamamoto, A., 92M/1215 Yamamoto, K., 92M/0106, 3216 Yamamoto, M., 92M/3144 Yamamoto, T., 92M/1057, 1058, 3490 Yamamura, B. K., 92M/2440 Yamanaka, K., 92M/0092 Yamano, M., 92M/4681, 4687 Yamaoka, K., 92M/3492 Yamashita, Y., 92M/0156 Yan, L., 92M/4500 Yanai, K., 92M/1931 Yanez, P., 92M/2438 Yang, C., 92M/0182 Yang, H.-Y., 92M/1986 Yang, J., 92M/4386, 4613 Yang, S., 92M/3875, 4984 Yang, Y., 92M/3917 Yao, B., 92M/3972 Yao, Z., 92M/3972 Yapes, W., 92M/2783 Yapp, C. J., 92M/1702, 4033 Yapp, C. Y., 92M/4217 Yaprak, G., 92M/3764 Yardley, B. W. D., 92M/1124,

Yapes, W., 92M/2783
Yapp, C. J., 92M/1702, 4033
Yapp, C. Y., 92M/4217
Yaprak, G., 92M/3764
Yardley, B. W. D., 92M/1124,
1134, 4262, 4463
Yarenskaya, M. A., 92M/2046
Yariv, S., 92M/2524, 2539
Yaroshevsky, A. A., 92M/1935
Yashima, R., 92M/0652
Yashunsky, Yu. V., 92M/4653
Yasnitskaya, G. P., 92M/2046
Yates, M. G., 92M/0831, 2808,
4609, 4610

Yavuz, F., 92M/2928

Ye, D., 92M/0211

Yaxley, G. M., 92M/3042

Ye, J., 92M/3994 Ye, Q., 92M/0362 Ye, X., 92M/0564 Yeats, P. A., 92M/1841 Yedekar, D. B., 92M/0922 Yeh, H.-W., 92M/2116 Yeh, H. W., 92M/4443 Yener, G., 92M/3764 Yielding, G., 92M/0909 Yilmaz, A., 92M/3078 Ying, G., 92M/3136 Yiou, F., 92M/0051, 1830, 4450, 4506 Yoder Jr. H. S., 92M/2857, 2858. 2870 Yokoyama, I., 92M/2223, 3471 Yong, R. N., 92M/1351 Yoreo, J. J. De, 92M/0458 York, D., 92M/0032, 0059, 1202 Yörük, R., 92M/1524 Yoshida, M., 92M/1059, 3098, 3099, 4907 Yoshida, Y., 92M/4528 Yoshii, M., 92M/0079, 0691 Yoshimura, A., 92M/1351 Yoshimura, T., 92M/3279 Yoshinaga, N., 92M/2565 Yoshioka, K., 92M/1348 Yost, R. A., 92M/1853, 1854, 1855 Young, B., 92M/3677, 3987 Young, D. C., 92M/3162 Young, D. J., 92M/2686 Young, D. N., 92M/0049 Young, E. D., 92M/4424 Young, I. M., 92M/0193 Young, L. B., 92M/4499 Young, M., 92M/0445 Young, P. A. V., 92M/1660 Younker, L. W., 92M/2191 Yruela, I., 92M/1864 Yu, X., 92M/3136 Yuan, B., 92M/4892 Yuan, Z., 92M/0564 Yuen, D. A., 92M/3836 Yui, T.-F., 92M/1827, 1951

Zaback, D. A., 92M/4543 Żabiński, W., 92M/4170 Záček, V., 92M/3688 Záček, V., 92M/2059 Zachař, Z., 92M/2063 Zachara, J. M., 92M/0507, 1356 Zachos, J. C., 92M/5004 Zaggia, L., 92M/3618 Zagorčev, I., 92M/0028 Zahn, R., 92M/0736 Zahnleiter, W., 92M/4997 Zaitseva, L. V., 92M/2893 Žák, K., 92M/3991 Žák, L., 92M/1962, 1998 Zakrzewski, M. A., 92M/3297 Zanazzi, P. F., 92M/1969 Zanchi, A., 92M/2212 Zanettin, B., 92M/4840 Zanettin Lorenzoni, E., 92M/0634 Zang, W., 92M/3290

Zanotto, E. D., 92M/4040

Yuko, T., 92M/1181

Yun, S. T., 92M/0572

Yvon, K., 92M/2638

Yvon, Y., 92M/0294

Yurdakul, M., 92M/4782

Yvon, J., 92M/0122, 0166

Yund, R. A., 92M/0478, 0479, 1804

Zantedeschi, C., 92M/3719 Zantedeschi, P., 92M/0626, 0632 Zantop, H., 92M/1707 Zaraisky, G. P., 92M/2807 Zartman, R. E., 92M/1245, 1696 Zashu, S., 92M/1644, 4286 Zavelsky, V. O., 92M/1551 Zayakina, N. V., 92M/2072 Zecchini, P., 92M/4633 Zeda, O., 92M/1040 Zeegers, H., 92M/1884 Zemann, J., 92M/3848 Zen, E-an, 92M/2810, 4718 Zeng, Y. B., 92M/4534, 4535 Zentill, M., 92M/0271 Zentilli, M., 92M/1695, 3946 Zernke, B., 92M/3181, 3183 Zettler, A., 92M/2658 Zevin, L. S., 92M/3832 Zeween, S., 92M/2764 Zhai, M., 92M/3029 Zhang, B., 92M/1750, 4386 Zhang, C., 92M/0355, 0356, 1466 Zhang, G.-X., 92M/4228 Zhang, H., 92M/0354, 1432 Zhang, J., 92M/0211, 0360, 2603 Zhang, M., 92M/2929, 4387, 4388 Zhang, Ming, 92M/3032 Zhang, N., 92M/0357 Zhang, R., 92M/3262 Zhang, V.-S., 92M/4983 Zhang, Y., 92M/1548 Zhang, Z., 92M/0316, 0449, 0564, 1243, 3723 Zhao, D., 92M/1215, 2726 Zhao, F., 92M/1282 Zhao, H., 92M/4892 Zhao, J. X., 92M/4273 Zhao, R., 92M/1467 Zhao, Y., 92M/0326, 4986 Zharikov, V. A., 92M/1551, 2807 Zhelyaskova-Panayotova, M., 92M/0345, 3796 Zheng, G., 92M/0365 Zheng, M., 92M/2962 Zheng, Y., 92M/2929 Zheng, Y.-F., 92M/0491, 1681 Zhensheng, C., 92M/1552 Zhon, X., 92M/0750 Zhou, B., 92M/4758 Zhou, G., 92M/0186, 2588 Zhou, H., 92M/1282 Zhou, L., 92M/4600 Zhou, Q., 92M/0558 Zhou, S., 92M/2960, 3609 Zhou, T., 92M/3031 Zhou, Y., 92M/2962 Zhou, Z., 92M/1467 Zhu, C., 92M/0434 Zhu, S., 92M/0324 Zhu, Z., 92M/0359 Zhulanov, B. G., 92M/1626 Ziechmann, W., 92M/3150 Ziegenbein, D., 92M/0711

Zientek, M. L., 92M/0596, 0673, 3062 Zierenberg, R. A., 92M/1562 Zimanowski, B., 92M/3470 Zimmer, M., 92M/0714, 4464 Zimmerle, W., 92M/2846

Zimmerman, B. S., 92M/4231

Ziegler, U. R. F., 92M/1743, 4378

Ziegler, U., 92M/3539

Ziehlke, D. V., 92M/0883

Zielinski, R. A., 92M/2934

AUTHOR INDEX

Zimmermann, J.-L., 92M/4875 Zimmermann, U., 92M/2658 Zindler, A., 92M/0052, 2392 Zingel, A., 92M/3813 Zingg, A. J., 92M/0407 Zinner, E., 92M/0786, 4589 Zinner, E. K., 92M/0792 Zipfel, J., 92M/4822 Zirino, A., 92M/3760 Zirpoli, G., 92M/4930 Zlobin, V. L., 92M/0722 Zlotnicki, J., 92M/4861 Zoback, M. D., 92M/2324, 2333 Zoback, M. L., 92M/0781 Zolensky, M. E., 92M/0781 Zoli, M., 92M/1514 Zöller, M. H., 92M/4675 Zollo, A., 92M/2209 Zolotov, A. N., 92M/3572 Zolotov, Y. A., 92M/2462 Zorina, L. D., 92M/1903 Zörkendörfer, E., 92M/4024 Zreda, M. G., 92M/1305, 1642 Zsolnay, A., 92M/1870 Zucca, A., 92M/0380 Zuccone, A., 92M/1453 Zulauf, G., 92M/1150 Zuluaga, M. C., 92M/2581 Zumbo, V., 92M/0035 Zuppetta, A., 92M/2204 Zussman, J., 92M/1327 Zviadadze, U. I., 92M/3119 Zwahr, H., 92M/2583

SUBJECT INDEX

to *Mineralogical Abstracts*, vol. 43. Names of REGIONS are printed in capitals, subjects in lower-case roman and *Localities* in italics

Abhurite, stability, relationship to Sn(II), Sn(IV) oxides, hydroxides, 92M/4133

Abswurmbachite, new min. of braunite group, occurrence, synthesis, crystal struct., 92M/2067

Acanthite, Bulgaria, Ardino, in polymetallic deposit, 92M/0866; China, Hebei, Caijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356; Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; Germany, Wittichen, occurrence, 92M/4998; Slovakia, Cervenica-Dubnik, mins. assoc. with opal deposits, 92M/5001

Accretionary prisms, condus. for hydrofracture, fluid permeability of, 92M/4693; plumbing, effects permeability variations, 92M/4962: simplified anal. of parameters controlling dewatering in, 92M/4680; water budgets in, comparison, 92M/4964; Canada, Ontario, Ouetico, Archaean granite, genesis through two-stage melting at transpressional plate boundary, 92M/3455; Italy, Apennines, growth processes, mélange formation, 92M/0920; Mediterranean Ridge, geol. evidence for mud diapirism, 92M/4688; Pacific, Cascadia, fluid expulsion from, evidence from porosity distribn., direct GLORIA measurements, 92M/4965; Pacific, Nankai Trough, fluid venting activity within, 1989 Kaiko-Nankai results, 92M/4682; heat flow, fluid flow in, 92M/4687; seafloor manifestations of fluid seepage at top of 2000-metre-deep ridge in, long-lived venting, tectonic implications, 92M/4683; time-variations of fluid expulsion velocities at toe of, 92M/4684

 wedge tectonics, geophys. evidence for role of fluids in, 92M/4959

Acid magmatism v. magmatism, acid

Actinolite v. amphibole

Acuminite, crystal struct., 92M/0266

Adamite, cuproadamite, Germany, Hartz Mts, occurrence, 92M/1225

Adularia v. feldspar

Aegirine v. pyroxene

Aenigmatite, Ethiopia, Wonchi volcano, in syenitic ejectum, phase relations, 92M/0830

AFGHANISTAN, emerald and assoc. mins., min. chem., electron microprobe study, 92M/4186; emerald deposits, fluid inclusion geochem., 92M/4187; regional chem. differences among emerald and host rocks, implications for origin, 92M/4185; Pabrok, viitaniemiite crystals, occurrence, 92M/3700

AFRICA, mantle origins of Karoo picrite, 92M/3019; MORB-related dolerite assoc. with final phases of Karoo flood basalt volcanism. 92M/4730; Proterozoic

palaeomagnetism and tectonic models, 92M/2082; variations in trapping T, tr. elems, in peridotite-suite inclusions from diamonds, evidence for two inclusion suites, implications for lithosphere stratigr., 92M/4379; E, occurrence, geochem. of fluorides in natural waters, geomedical implications, 92M/1517; SE, and Antarctica, Dronning Maud Land, geol.evidence for Proterozoic to Mesozoic link between, 92M/2100; S, evidence for transition to O-rich atmosphere during evolution of red beds in Lower Proterozoic sequences, 92M/3081; lithosphere, O fugacity constraints, 92M/1530; post-Karoo carbonatite, geochem., Sm-Nd, Rb-Sr studies, 92M/4378; U isotopes in surface waters, 92M/1823; off W coast, marine mining of diamonds, 92M/4154; Congo River, particulate organic matter, C isotope compn., geochem., application to study of Ouaternary sediments off river mouth, M'Bout-Bakel 92M/0757: Mauritanide orogen, 40Ar/39Ar dating, 92M/1267; Pan-African Belt, eclogites, isotopic, tr. elem. geochem., case study of REE fractionation during high-grade metamorphism, 92M/4373; Shombole volcano, Nd, Sr isotope systematics, links between nephelinite, phonolite, carbonatite, 92M/3021

Afwillite, Germany, Bavaria, in metamorphosed carbonate xenolith, 92M/3681

Agardite-(Y) v. mixite

Agate v. quartz

Age determination, calculation of isochrons, 92M/1242; complete Pb/U anal. of unspiked samples by measuring Pb isotopes only, 92M/3706; diffusion of cosmogenic ³He in olivine, quartz, implications for surface exposure dating, 92M/0003; evaluation of in situ natural production of 36Ar via 36Cl, geochem., geochronol. implications, 92M/2397; extension of astronomically calibrated (polarity) time scale to Miocene/Pliocene boundary, 92M/2396; numerical age of Devonian-Carboniferous 92M/3717; radioactive disequilibrium dating of corals by nuclear track detection, 92M/0002; statistical distribn. of mean squared weighted deviation, isochrons, errorchrons, use of MSWD-values, comment, 92M/3708, reply, 92M/3709; Western Australia, Fraser Complex, mid-Proterozoic lower crust, isotopic evidence on age, origin, 92M/1286; China, age of Permian-Triassic boundary, ion microprobe dating of zircon in bentonite layer, 92M/1243; China, Zhongtiao Mts, Precambrian geochronol., chronotectonic framework, model of chronocrustal struct.,

92M/1282; Germany, Upper Harz Mts, isotopic age detn. of crystalline rocks, 92M/2401; USA, Arizona, Meteor Crater, age, geomorphic history from cosmogenic ³⁶Cl, ¹⁴C in, 92M/1305; ¹⁰Be-²⁶Al exposure ages, 92M/1306; New England, evidence for major Middle Proterozoic, post-Grenvillian igneous event, 92M/1301

 — —, amino acid racemization dating, wide range of racemization of amino acids in human fossil bone, implications for,

92M/4525

-, ⁴⁰Ar/³⁹Ar dating, incremental heating of hornblende in vacuo, implications for, interpn. of thermal histories, 92M/2394; laser probe, step-heating methods, application to dating of diagenetic K-feldspar overgrowths, 92M/3724; laser probe studies, clinopyroxene in eclogitic diamond, 92M/3733; Africa, M'Bout-Bakel region, Mauritanide orogen, 92M/1267; Alps. Bregaglia, tonalite, 92M/1259; Central Atlantic rift, tholeiitic magmatism related to early opening of, 92M/0004; Australia, New South Wales, Goonumbla, porphyry Cu-Au deposits, 92M/3734; Canada, Grenville orogen, differential unroofing within central metasedimentary belt, 92M/3740; Ontario, Grenville Province, Britt domain, post-tectonic cooling, 92M/1298; Channel Islands, Guernsey, timing of post-tectonic Cadomian magmatism, 92M/2400; China, Inner Mongolia, Bayan Obo, vein amphibole from REE deposit, constraints on mineralization, deposition, 92M/2420; Tibet, K-feldspar, tectonics, 92M/1281; France, Armorican Massif, N Trégor Batholith, and laser dating of biotites, comparison, 92M/0017; Brittany, Baie de Saint-Brieuc, Cadomian tectonothermal activity, 92M/1252; Massif Central, late Variscan tectonic evolution by thinning of earlier thickened crust, 92M/3715; Germany, Schwarzwald, evidence for Jurassic tectonism in basement, 92M/2402; Italy, Alban Hills, Quaternary volcanic rocks, 92M/3722; Japan, Shikoku, Sebadani metagabbro and Sanbagawa schist, tectonometamorphic evolution, 92M/1283; Peru, Choquene dist., Palca 11 mine, magmatism, W mineralization, 92M/2440; Saudi Arabia, alkaline and tholeiitic related to early Red Sea rifting, 92M/0035; South Africa, Barberton greenstone belt, Archaean sedimentary rocks, laser step-heating, technique for detecting cryptic tectonothermal events, 92M/0032; Sweden, Ravvejaure, Seve Nappe Complex, eclogite retrogression, 92M/2398; Tanzania, Olduvai Gorge, Bed 1, laser-fusion, 92M/1271; USA, Alaska, Coast Plutonic Complex sill,

emplacement, uplift, cooling, 92M/2428; Oregon, Steens Mountain, basalt, age of geomagnetic polarity transition, 92M/0059; Rhode Island, Narragansett Basin, detrital muscovite, implications for rejuvenation during very low-grade metamorphism, 92M/3742

— —, ³⁶Cl dating, USA, California, Owens River system, Pleistocene, lucustrine

sedimentation, 92M/2436

-, fission track dating, apatite, agspectrum based on projected track-length anal., 92M/2347; comparison of zeta calibration constants for, 92M/1244; long-term stability of fission tracks in apatite, zircon, importance for knowledge of Alpine orogenesis, 92M/1256; uplift, cooling pathways derived from, 92M/3607; Germany, Bavaria, KTB pilot hole, Upper Cretaceous erosion, 92M/0018; Hungary, Transdanubia, North Bakony Mts, Eocene tuff, 92M/1264; Japan, Niigata Pref., Uonuma group, Pliocene, Pleistocene volcanic ash, 92M/0046; Norway, Trondheimsfjord, fluorite mineralization along fracture zones, 92M/0377; Pakistan, Karakoram, Yasgil Dome, apatite, Pliocene-Quaternary denudation rate, 92M/2416; Switzerland, Aar and Gotthard massifs, Alpine thermo-tectonic evolution, 92M/1258; Switzerland, Alps, Schlieren flysch, Palaeocene bentonite, 92M/1260; Turkey, Menderes Massif, Gördes Submassif, apatite, 92M/2410; USA, Deerfield, Hartford, Newark Taylorsville basins, tectono-thermal history, 92M/2348

—, ³H–⁴He dating, mixing of young, old

groundwater, 92M/1824

-, K/Ar dating, altered rocks, variability of excess Ar in hydrothermal mins., 92M/2409; andesitic hornblende, age of Taveyannaz volcanic event, 92M/1261; authigenic illite-smectite clay material, application to complex mixtures of mixed-layer assemblages, 92M/0016; improvement for detn. of K in, by flame-emission spectrometry, 92M/0112; peak comparison method, new technique applicable to rocks younger than 0.5 m.y., 92M/0001; Australia, Ruby Gap, ages of deformation, 92M/3732; Canada, Quebec, Gaspé, McGerrigie Mts plutonic complex, petrogenesis, cooling history, 92M/1295; Chile, Andes, Maricunga, Au-Ag belt, 92M/1451; France, W Alps, Belledonne massif, amphibole, tectonometamorphic evolution, 92M/3617; Georgia, Caucasus, Kelasuri Massif, ore mineralization, 92M/1278; Transcausasus, Gorab-Kelasuri, intrusive complex, geol. setting, petrol., K-Ar dating, 92M/1273; Germany, Black Forest, Eisenbach region, Mn mins., age of ore emplacement, 92M/1255; Greece, Cyclades, and Spain, tourmaline, comparison with other radiometric dating systems in Alpine anatectic leucosomes. metamorphic rocks, 92M/0019; Naxos, mica from marbles, influence of metamorphic fluids, lithol. on blocking T, 92M/1266; Hungary, Drava Basin, very low-, low-grade metamorphic rocks in

pre-Tertiary basement, 92M/1265; Ireland, Galway, Connemara, fluid disturbed, Dalradian rocks, 92M/1251; Italy, Western Alps, Gran Paradiso massif, revised thermal history, 92M/0024; Japan, ore deposits related to Cretaceous- Palaeogene granitic rocks, 92M/0042; Hokkaido, Irumukeppu Volcano, Otoe Yama lava, and palaeomagnetism, 92M/0045; Shikoku, fault gouges from Median Tectonic Line, 92M/0041; Matsuyama, acidic dykes intruding into Ryoke granites, 92M/0038; Shikoku, Nara Pref., Yoshino area, rocks along Median Tectonic Line, 92M/0040; Mexico, Sierra de Las Cruces, southward migration of volcanic activity, 92M/2225; Niger, Akouta, U deposits, 92M/1268; North Sea, Brent Group reservoirs, illite, 92M/4882; Portugal, Avô, quartz, albite, perthite, in granite, 92M/0020; Portugal, Viseu, Penalva do Castelo, granodiorite, 92M/0021; Spain, Toledo, migmatite, 92M/1254; Switzerland, Aar and Gotthard massifs, Alpine thermo-tectonic evolution, 92M/1258; USA, California, Santa Rosa, effects of progressive mylonitization on Ar retention in biotites from mylonite zone, thermochronol, implications, 92M/1308

— —, La-Ba dating, China, Inner Mongolia, Bayan Obo, REE deposit, 92M/2421

— —, Pb/Pb dating, Antarctica, Schirmacher Oasis, pegmatitic K-feldspar, 92M/2426; Canada, Manitoba, Flin Flon area, Namew lake, Ni-Cu deposit, 92M/2429; Georgia, Caucasus, Abchasia, Kelasuri and Gorabi, igneous rocks, 92M/1275; Zimbabwe, Archaean craton, 92M/1269

-, radiocarbon dating, comparison of bone collagen, osteocalcin, for detn. of ages, palaeodietary reconstruction, 92M/2395; methods for samples of 40,000 to 50,000 years B.P. using benzene-liquid 92M/0039; scintillation, of bone, osteocalcin as recommended biopolymer for, δ^{13} C, δ^{15} N palaeodietary reconstruction, 92M/4215; Germany, Saxony and Thuringia, Pleistocene freshwater carbonates, 92M/3718; Italy, Campi Flegrei caldera, age of 'Museum Breccia', relevance for origin of Campanian ignimbrite, 92M/2210; Japan, Yakedake Volcano, Ouaternary deposits, 92M/0047; Federation, Kamchatka, Karymskyvolcano, eruptive history, 92M/1055; USA, Washington, Cascadian subduction zone, of coastal trees, test of earthquake magnitude, 92M/2124

— —, radiometric dating, application of daughter-elem. isotope ratios, 92M/2393; *Italy*, volcano-sedimentary layers, age, duration of Priabonian stage, 92M/2408

—, Rb/Sr dating, volcanic rocks, resetting of ages by low-grade burial metamorphism, 92M/1245; Alps, granitic gneiss, 92M/3719; Antarctica, Alexander Is., plutonic complex, 92M/0050; Bulgaria, metamorphic, igneous rocks, 92M/0028; Finland, Suomusjärvi, ultramylonite, Rb—Sr dating, evidence for post-Svecofennian deformation, 92M/1248; France, Alps, Mont Blanc, granites, microgranular enclaves, 92M/2404; Georgia, Caucasus, Abchasia, Kelasuri and

igneous rocks, Gorabi, 92M/1275: Gorab-Kelasuri intrusive complex, 92M/1277; Caucasus, Kelasuri, granite, 92M/1274; Greece, Naxos, mica from marbles, influence of metamorphic fluids, lithol. on blocking T, 92M/1266; Hungary, Drava Basin, very low-, low-grade metamorphic rocks in pre-Tertiary basement, 92M/1265; India, Orissa, Singhbhum craton, granitic rocks, 92M/0036; Italy, Central Alps, Upper Valtellina, Hercynian granitic rocks overprinted by eo-Alpine metamorphism, 92M/2406; Japan, Hida Mts, Utsubo granitic complex, 92M/0043; New Zealand, Torlesse accretionary prism, isochrons, from pseudo-isochrons turbidites, 92M/1287; Nigeria, Nassarawa-Egon, rhyolite dyke, 92M/0029; Norway, Gardar-age layered alkaline monzonite, 92M/1246; Finnmark, Kalak Thrust Zone, mylonites, 92M/0006; Olden Window, Blåfjellhatten granite, 92M/3711; Norway, Seiland Igneous Province, Øksfjord peninsula, Precambrian age for early gabbro-monzonitic intrusive, 92M/0007; Saudi Arabia, Afif-Halaban-Ad-Dawādimī -Ar-Ryan areas, gneiss, felsic intrusions, 92M/3728; Arabian Shield, Wadi Shuqub quadrangle, plutonic rocks, 92M/3727; Central Arabian Shield, Wadi Turabah, felsic plutonic ring complex, geochronol., geochem. evolution, 92M/3729; Spain, Lugo, Friol-Puebla de Parga, granite, petrol., 92M/1253; USA, Alabama Inner Piedmont, timing, characteristics of Palaeozoic deformation, metamorphism, 92M/1303; Texas, Gulf coast, evidence for clay diagenesis, 92M/1304; Upper Mississippi Valley, sphalerite, Zn-Pb deposit, Alleghenian age, 92M/3743; Zimbabwe, Archaean craton, 92M/1269

-, Sm/Nd dating, pelite, isochron 1000 m.y. in excess of depositional age, significance, 92M/3716; Austria, Alps, Tauern Window, basic, ultrabasic rock, 92M/3720; Canada, Fort Simpson magnetic high, two subsurface granites, 92M/1291; Canada, Grenville province, evidence for major 1500 m.y. crust-forming event, 92M/3741; India, Holenarsipur, Archaean metavolcanic rocks, 92M/1279; Niger, Akouta, U deposits, 92M/1268; North Sea, Brent group, provenance age, 92M/4876; Norway, Øksfjord peninsula, Cambrian ultramafic intrusion, high-grade metamorphism, 92M/0008; Scotland and NW Ireland, isotopic evidence for extent of early Proterozoic basement, 92M/0012; USA, Texas, Gulf Coast, evidence for clay diagenesis, 92M/1304; Zimbabwe, Archaean craton, 92M/1269

²³²Th-series dating, *Antarctica*, *Mt Erebus*, phonolite fractionation, 92M/3737

——, thermoluminescence dating, use of glass for dating volcanic ash, 92M/2437; volcanic ash, 92M/3707; Gt. Britain, Chelford Interstadial, 92M/0014; Japan, Aomori Pref., Hakkoda, pyroclastic flow deposits, 92M/2422; USA, California, coastal sediments, 92M/1307

— , U-series dating, Antarctica, Mt Erebus, phonolite fractionation, 92M/3737; Kenya, Lake Magadi, lake sediments, disequilibria in early diagenetic mins., dating potential, 92M/3725; USA, California, solitary coral, 92M/3745

, U/Pb dating, early Cambrian time-scale, 92M/3723; of columbite, geochronol. tool to date magmatism, ore deposits, 92M/3713; secondary calcite, carbonate diagenesis, 92M/1297; Alps, Tauern Window, pre-Mesozoic gneiss, implications for Penninic basement evolution, 92M/2407; Antarctica, Heimefrontfjella, granitic rocks, charnockite, supracrustal rocks, 92M/2424; Antarctica, Mawson Coast, Proterozoic igneous charnockites, 92M/0049; Australia, Musgrave Ranges, granulite, P, T history, 92M/1284; Western Australia, Narryer, gneiss, 92M/1285; Austria, Alps, Tauern Window, basic, ultrabasic rock, 92M/3720; Brazil, Precambrian Sn-bearing continental-type acid magmatism. 92M/1309; Brazil, Borborema Province, Orós belt, geodynamic evolution, geochronol., 92M/2439; Cameroon, Lom, Proterozoic schist, gneiss, 92M/0031; Canada, Alberta Basin, crystalline geochronol.. basement, geophysics, 92M/1292; British Columbia, Coast Mts batholith, Cretaceous, Tertiary plutons, 92M/1302; Fort Simpson magnetic high, two subsurface granites, 92M/1291; Labrador, Grenville Province, Grenvillian magmatism, 92M/0896; Nova Scotia, Avalon composite terrain, Cobequid Highlands, Proterozoic, 92M/1300; Nova Scotia, Cape Breton Is, Bras d'Or and Mira terrains, contrasting ages from plutons, discussion, 92M/2432, reply, 92M/2433; Ontario, Abitibi belt, Timiskaming group, Archaean alkalic magmatism and non-marine sedimentation. tectonic significance, 92M/1299; Quebec, Gaspé, McGerrigie Mts plutonic complex, petrogenesis, cooling history, 92M/1295; Grenville Province, Morin, anorthosite, 92M/1296; Quebec, Val d'Or, Archaean greenstone, Au mineralization, zircon, rutile chronol., 92M/0056; Superior Province, Batchawana Greenstone Belt, igneous, tectonic evolution, 92M/1294; Czech Republic, Bohemian Massif, Mariánské Lázně complex, early Ordovician, late Proterozoic units, 92M/0026; Finland, Mustajärvi area, volcanic rocks, 92M/3366; France, Vanoise, Mont Pourri, Cambrian 92M/2405; Georgia, granophyres, Gorab-Kelasuri intrusive Caucasus, complex, 92M/1277; Gorabi Massif, diorite, 92M/1276; India, Karnataka, Closepet granite, Peninsular gneiss, 92M/2418; Ireland, Donegal, Inishtrahull, syenitic gneiss, precise zircon age, 92M/0013; Italy, Alps, Adamello batholith, zircon inheritance in igneous rocks, implications for petrogenesis, 92M/0027; Mali, short-lived Eburnian orogeny, 92M/0030; Mexico, Acatlan complex, implications for Palaeozoic North America tectonics, 92M/2438; Niger, Akouta, U deposits, 92M/1268; Norway, Caledonides, Gjersvik

Nappe. Møklevatnet, granodiorite, 92M/3712; Råna intrusion, Caledonides, evidence of Silurian basic magmatism, 92M/0005; Norway, Western Gneiss Region, Caledonides, basement gneisses, discordant felsic dykes, 92M/0010; Russian Federation, Wrangel Is., Wrangel complex, Precambrian igneous rocks, 92M/2415; Scandinavia, Proterozoic Svecofennian metasediments, provenance, 92M/3369; Scotland, Shetland, oceanic fragment, evidence from anatectic plagiogranites in 'layer 3' shear zones, 92M/1250; South Africa, Witwatersrand supergroup, Ventersdorp contact reef, provenance ages, 92M/2412; Sweden, Alegranite, Proterozoic, post-kinematic 92M/1247; Bohus, Grenvillian granite, evidence of restitic zircon, 92M/0897; Sweden, Kiruna, magnetite ore, 92M/4008; Switzerland, Alps, Aar massif, Central Aar Granite, 92M/1257; Switzerland, Siviez-Mischabel nappe, greenschist facies U mineralization, 92M/0023; USA, Alaska, Ketchikan, Coast Mts batholith, two pre-Tertiary plutons, 92M/1289; Alaska, Ruby geanticline and S Brooks Range, granite, granitic gneiss, 92M/1288; New York, Hudson Highlands, geochronol. constraints on origin of monazite-xenotime gneiss, 92M/0058

— —, U/Th dating, accuracy of age of last interglacial period, ²³⁴U/²³⁸U mass spectrometry of corals, 92M/2392; *Barbados*, and *Pacific, Mururoa atoll*, coral, 92M/0052; *Europe*, Pleistocene peat deposits, 92M/3714; *Pacific, Juan de Fuca* and *Gorda ridges*, MORB, 92M/2427

Aggregate, New Zealand, marine min. potential in exclusive economic zone, 92M/0383

Agrellite, *Tadzhikistan*, *Dara-i-Pioz*, occurrence, 92M/2377

Aikinite, Bulgaria, Zidarovo ore field, 92M/0347; occurrence, Germany, Schwarzwald, Rippoldsau, occurrence. 92M/1230; Japan, Hokkaido, Jokoku-Katsuraoka mining area. occurrence. 92M/0567; Sweden. Bergslagen, Tunaberg, in Cu deposits, 92M/0336; Turkey, Anatolia, in Pb-Zn deposits, 92M/2718

-- bismuthinite series, Bulgaria, Jambol dist., new data on Bi sulphosalts, 92M/0868
 Akaganéite, crystal struct. refinement, 92M/0245; transformation into goethite, hematite, in presence of Mn, 92M/0492

Åkermanite v. melilite

Alabandite, Sweden, Bergslagen, Tunaberg Cu-Co deposit, assoc.with Mn, Cd-bearing tetrahedrite, 92M/3309

ALBANIA, min. resources, 92M/3978; Kruja Zone, metamorphism, 92M/3644; Lura, metamorphic rocks, petrol., P-T condns., 92M/3643; Tropoja and Bulqiza massifs, PGE mineralization in ophiolites, 92M/2717 Albite v. feldspar

Albitite, Alps, from ophiolite, geochem., 92M/1726

Aleksite, Bulgaria, Ardino, in polymetallic deposit, 92M/0866

ALGERIA, Chélif basin, clay mins., geodynamic interpn., 92M/2575; Hoggar, In Ouzzal, P-T-X relationships in Precambrian Al-Mg-rich granulites, 92M/3647; Sahara Desert, meteorite finds, Algeria, 92M/4572

Algodonite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Alkali igneous complex, India, Rajasthan, Mundwara, Toa pluton, cumulophyric layered suite, geochem., petrol., 92M/3441

Alkaline magma v. magma, alkaline

- magmatism v. magmatism, alkaline

 province, Mali, Tadhak, Permo-Jurassic, geol., geochronol., tectonic significance, 92M/4805

 ring complexex, intermediate compns. for liquids filling up crustal magma chambers, 92M/2130

— rocks, conversion of nepheline to sodalite during subsolidus processes in, 92M/1113

Allanite v. epidote

Allophane, formation process of type-A zeolite by treatment of, in sodium hydroxide solution, 92M/0483; struct., thermal transformations studied by ²⁹Si, ²⁷Al high resolution solid-state NMR, 92M/1350; synthetic proto-phyllosilicate, stability relative to bayerite, 92M/0463; synthetic, and layer-silicate formation in SiO₂-Al₂O₃-FeO-Fe₂O₃196MgO-H₂O systems at 23°C, 89°C in calcareous envt., 92M/4104; XRD detn., 92M/1321

Alluaivite, new titanosilicate of eudialyte struct., 92M/2068

Alluvium, *Chile, Andes*, analcime, characteristic authigenic phase of, 92M/2260

Almandine v. garnet

Alı.öite, Canada, Quebec, Île Cadieux, geochem., 92M/1767

ALPS, (v. also Austria, France, Italy, Switzerland) correlation, evolution of basement, 92M/3385; granitic gneiss, Rb-Sr dating, 92M/3719; Mg-Al rich, Fe-Ti rich metagabbro, albitites, from ophiolite, geochem., 92M/1726: Central. metamorphic rocks, chem. compn., 92M/4466; relics of high-P metamorphism in different lithols., 92M/3621; E Central, Alpine geodynamic evolution of Penninic nappes, geothermobarometric, kinematic data, 92M/3624; E, Central, granitic rocks, F, Cl distribn. in, 92M/0631; central, S, granitic rocks, Hf isotope systematics, 92M/0025; E, biotite in metapelites, min. W, data. 92M/3270; eclogitic metaophiolites, prograde, retrograde metamorphism, P-T path, 92M/1140; Aar massif, geochem., tectonic significance of late Hercynian potassic, ultrapotassic magmatism, 92M/3417; Bergell intrusion, columbite in pegmatites of calc-alkaline intrusion, 92M/3298; Nd-, Sr-, O-isotopic, chem.evidence for two-stage contamination history of mantle magma, 92M/4370; Bregaglia, tonalite, 40Ar/39Ar dating, 92M/1259; Mt Mary nappe, Austroalpine, mantle peridotite, petrogr., EPMA data, 92M/3618; Pennine Western Alps, min. compn., polymetamorphic evolution, 92M/4932; Piedmont Zone, ophiolite, metavolcanic rocks, petrol., 92M/2287;

Tauern Window, pre-Mesozoic gneiss, CL studies, U/Pb dating, implications for Penninic basement evolution, 92M/2407

Alstonite, France, Pyrenees, Pierrefitte, in hydrothermal veins, min. data, 92M/3255

Altaite, Canada, Abitibi Belt, Macassa Au mine, assoc. with Au-tellurides-sulphide mineralization, 92M/2740

Alumina, densification, characterization by multiple small-angle neutron scattering, 92M/0494; Na⁺β-, Na-ion distribn. in, 92M/0241

Aluminium, detn. of, in kaolinite by flow injection, 92M/2461; dissolved, potential source of, from resuspended sediments to North Atlantic Deep Water, 92M/1842; Wales, Ceredigion, in potable waters, 92M/1505

borate, incorporation of Cr into, 92M/1416
 isotopes, ²⁶Al, Antarctica, cosmic ray

 isotopes, ²⁶Al, Antarctica, cosmic ray produced, in rocks, exposure, erosion history, 92M/0528

Aluminosilicate glass, ²⁷Al NMR spectroscopy, 92M/4056; F-bearing, NMR evidence for five- and six-coordinated Al fluoride complexes in, 92M/0412

- magma v. magma, aluminosilicate

- melt v. melts, aluminosilicate

 minerals, static lattice energy minimization, lattice dynamics calculations, 92M/0216

Alunite, in acid sulphate alteration, stable isotope geochem., 92M/4316; Australia, chem., crystallographic, stable isotopic props. of, from acid-hypersaline lake, 92M/4495; Victoria, Lake Tyrrell, formation of, in hypersaline system, 92M/4494; Dominican Republic, Pueblo Viejo, Monte Negro, in acid sulphate Au-Ag deposit, 92M/4023; Iran, Kabutar-Kuh, occurrence, formed by hydrothermal alteration of volcanic rocks, 92M/2587; Italy, Grosseto, Paganico, in clay sediments, genesis, 92M/1360; Pacific, Lau Basin, in volcanic rocks, 92M/2111; Spain, Almería, Benahadux and Las Balsas, assoc. with S deposits, 92M/1496; USA, Nevada, evidence for supergene origin of, in sediment-hosted Au deposits, 92M/4343; Nevada, Alligator Ridge-Bald Mountain mining dist., Vantage, geol., geochem., 92M/0601

 -- crandallite group, Czech Republic, Bohemia, Liteň fm., occurrence, 92M/2062
 Alunogen, Czech Republic, Bohemia, Kladno,

occurrence, 92M/2059

Amazonite v. feldspar

Amblygonite, *Portugal, Minho, Arga*, in aplite swarm, 92M/4647

—, montebrasite, dielectric constants of, oxide additivity rule, 92M/4989

Amethyst v. quartz

Amino acids, and neutral sugars, lignin in intermittently anoxic marine envt., sources, relative reactivities of, 92M/4532; in fossil protein, influence of intramolecular interactions on racemization of, 92M/0755; incorporated into melanoidins, retardation of racemization rates of, 92M/4516; wide range of racemization of, in human fossil bone, implications for amino acid racemization dating, 92M/4525

Amphibole, and plagioclase, min. reactions in closed systems involving, 92M/0407; compn. in tonalite as function of P, exptl.calibration of Al-in-hornblende geobarometer, 92M/4102; compositional constraints on incorporation of Cl into, 92M/3260; compositional variation of, in alkaline plutonic complexes, 92M/3259; D/H anal. by microprobe, 92M/5000; effect of bulk rock compn. on stability in upper mantle, implications for solidus positions, mantle metasomatism, 92M/0459; from ultramafic rocks, H isotope heterogeneities in mantle from ion probe anal. of, 92M/1657; in gneiss, vapour-absent melting at 10 kbar of, 92M/4066; intensity of OH bands in IR absorption spectrum, 92M/0229; poss. role in origin of andesite, exptl., natural evidence, 92M/4101; regional-metamorphic, from moderate-T range, compositional variations 92M/0827; synthesis at low P, 92M/4099; triclinic, crystal struct., 92M/1399; Australia, New South Wales, -dominated fractionation of alkaline magmas, analcite mugearite-megacryst assocn., implications for, 92M/3447; Brazil, Rio Grande do Sul, Feio, amphibolite metamorphism, min.chem., 92M/2319; Bulgaria, Stanke Dimitrov, Djakovo, in diorite, min. data, 92M/0826; France, W Alps, Belledonne massif, K/Ar dating, tectonometamorphic evolution, 92M/3617; Greece, Sarti area, assoc. with Ca-rich scapolite in amphibolites, 92M/2004; Japan, Wakayama, Sanbagawa terrain, limori, Mn-rich, from quartz schists, 92M/3263; Norway, Modum Complex, orthoamphibole-cordierite rocks, P-T-t path, 92M/1131; Tadzhikstan, Yagnodsky metamorphic complex, Na-bearing, occurrence, 92M/1177; Taiwan, megacrysts in alkali basalt, REE geochem., origin, 92M/1972; USA, Massachusetts, prograde dehydration reactions during high-grade regional metamorphism, 92M/1194; Wyoming, Leucite Hills, in lamproites, F-bearing phases in, 92M/0675 actinolite, tschermakite inclusions in,

host-inclusion relationships, 92M/2086; Western Australia, Boddington Au mine, in Archaean porphyry Cu-Au-Mo deposit, 92M/3920; Austria, Tyrol, Schlegeisspeicher, occurrence, 92M/1235; Brazil, Tocantins, Pontal, in Au quartz vein. 92M/3938; Bulgaria, W Srednogorie, formation nature, physico-chem. anal. of min. parageneses in metasomatic zones of acid leaching, 92M/2263; Italy, Orobic Alps, Como, Val Biandino intrusion, assoc. with cummingtonite, min.data, 92M/0823; Japan, Katsunuma area, Kobotoke group, in talc-amphibole rocks, geochem., 92M/0957; Japan, Sangun and Sanbagawa belts, in greenschist, 92M/3102; Peru, Cu-Fe skarn deposits, amphibolitic 92M/2990; Poland, Sudetes, Ciechanowice, from albite-amphibole schist, min. data, 92M/1978; Tadzhikstan, Yagnodsky metamorphic complex, occurrence, 92M/1177

—, — -hornblende, zoned, non-steady-state modification to account for, 92M/3258

—, anthophyllite, thermodynamic props., corrections, discussion of calorimetric data, 92M/2863; Norway, Bamble sector, bearing rocks, Mg-rich dumortierite in, 92M/0818; Sweden, Bergslagen, Boviksgruvan, in sulphide deposit, 92M/2707

—, — asbestos, Czech Republic, Bohemia, Křemže, from lateritized serpentinite, 92M/1973

—, arfvedsonite, *Egypt*, assoc. with astrophyllite, 92M/3264

—, calcic, exptl. detn. of solid solution along join tremolite-tschermakite, 92M/0460; pervasive exsolution within, TEM evidence for miscibility gap between actinolite and hornblende, 92M/1974; USA, Massachusetts, in epidote-, clinopyroxene-bearing rocks of amphibolite, lower granulite facies, compns., phase relations, 92M/1975

 —, crocidolite, microstructs., fibre-formation mechanisms of, 92M/2618

—, crossite, Japan, Wakayama, Sanbagawa terrain, Iimori, from quartz schists, 92M/3263; Tadzhikstan, Yagnodsky metamorphic complex, occurrence, 92M/1177

—, cummingtonite, from glaucophane, new orientation for exsolution lamellae in, 92M/0828; Italy, Orobic Alps, Como, Val Biandino intrusion, min. data, 92M/0823; New Zealand, Taupo Volcanic Zone, in rhyolite, nature of primary rhyolitic magma involved in crustal evolution, exptl. study, 92M/4275; USA, Colorado, Gold Brick dist., -cordierite facies rocks, petrol., 92M/4957

—, eckermannite, synthesis at low *P*, 92M/4099

—, edenite, USA, New York, Fowler, Mn-rich silicic, in Grenville marble, 92M/1977

—, ferriwinchite, Poland, Sudetes, Ciechanowice, from albite-amphibole schist, min. data, 92M/1978

—, fluor-edenite, synthesis at low P, 92M/4099

—, fluor-richterite, synthesis at low *P*, 92M/4099

—, fluor-tremolite, partitioning of F-Cl-OH between mins. and hydrothermal fluid, 92M/0434; synthesis at low *P*, 92M/4099

—, gedrite, Sweden, Bergslagen, chem., reaction mechanisms, micro-structs. during retrograde metamorphism of gedrite-biotite-plagioclase bearing rocks, 92M/4918

—, glaucophane, entropy, 92M/0462; exsolution of cummingtonite from, 92M/0828; phase relations of epidote-blueschists, 92M/1118; France, Brittany, Ile de Groix, in amphibolites, geothermobarometry, 92M/1136; Japan, Sangun and Sanbagawa belts, in schist, 92M/3102; Oman, -bearing assemblages, petrol.significance, petrogenetic grid for high P metapelites, 92M/1176

—, — -lawsonite rock, XANES studies of Fe in pumpellyite group mins., 92M/1960

- —, grunerite, air-heated, oxidation effects in, structl.investigation, 92M/2617; experiments on stability of, 92M/4103
- —, hastingsite, Atlantic, Gulf of Guinea, Principe Is., from volcanic rocks, anals., 92M/4615; Australia, Mud Tank, in carbonatite, 92M/3600; Brazil, Bahia, Lagoa Real, metamorphism, metasomatism, mineralization, 92M/2751
- , hornblende, and hastingsite, metamorphic, anals., implications normalizations, calculated H2O activities, thermobarometry, 92M/1976; incremental heating of, in vacuo, implications for 40 Ar/ 39 Ar dating, interpn. of thermal histories, 92M/2394; metamorphic, chem. anals., implications for normalizations, calculated H₂O activities, thermobarometry, 92M/1976; Germany, KTB pilot hole, in gneiss, geochem., 92M/0707; Saxony, Seuzergrundel, occurrence, 92M/2370; Spessart complex, geochronol., 92M/0022; Himalayas, metamorphic, mechanisms of Ar release from, 92M/1579; Japan, Hime-shima, in volcanic rocks, Sr isotope compns., magma mixing, 92M/3038; Yagnodsky metamorphic Tadzhikstan, complex, occurrence, 92M/1177; USA, Minnesota, Giants Range Granite, laser probe ⁴⁰Ar-³⁹Ar measurements of loss profiles within individual grains, 92M/4100; Vermont, Waits River formation, highly aluminous, from low-P metacarbonates, thermodynamic model for Al content of calcic amphibole, 92M/0825; USA, southern chem., Appalachians, in granite, implications for thermobarometry, magmatic epidote stability, 92M/0824
- —, asbestos, Czech Republic, Chvaletice, assoc. with armenite in basic volcanic rocks, 92M/1962
- —, jade, stone-age tools, prehistoric carvings, 92M/4169
- -, kaersutite, Australia, New South Wales, megacrysts, assoc.with analcite mugearite, implications for high-P amphiboledominated fractionation of alkaline magmas, 92M/3447; Czech Republic, Moravia, Kunčice pod Ondřejníkem, in teschenitic rocks, 92M/2056; Russian Monchegorsk, Federation, clinopyroxenite-wehrlite intrusions. 92M/4810; USA, California. Bernardino County, Cima volcanic field, megacrysts, and assoc. crystal inclusions, 92M/3261
- —, magnesio-hastingsite, USA, Colorado, San Juan volcanic field, Carpenter Ridge Tuff, min. constraints on petrogenesis of trachyte, 92M/0678
- —, nephrite, stone-age tools, prehistoric carvings, 92M/4169
- —, nyböite, synthetic, and nyböiteglaucophane, compns., stabilities, exptl. study, 92M/2795
- —, orthoamphibole, *Finland*, *Orijärvi*, in gneiss, min. chem., 92M/0822
- hydroxy-endmembers of, 92M/1580; metamorphic, chem. anals., implications for normalizations, calculated H₂O activities, thermobarometry, 92M/1976; synthesis at

- low P, 92M/4099; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808
- —, richterite, behaviour of Ti in, four, six-coordinate Ti in, 92M/3826; K-, high-P stability of fluor-and hydroxy-end-members of, 92M/1580; spectroscopic evidence for tetrahedrally-coordinated Ti in, 92M/0829; synthesis at low P, 92M/4099; synthetic Ti-rich potassic, tetrahedrally coordinated Ti⁴⁺ in, XRD, FTIR, Raman studies, 92M/1581; synthetic, XRD data for, 92M/3827
- —, riebeckite, Australia, Mud Tank, in carbonatite, 92M/3600
- —, taramite, Australia, Mud Tank, in carbonatite, 92M/3600
- -, tremolite, enthalpy, entropy data from phase equilibrium study of reaction tremolite = 2 diopside + 1.5 orthoenstatite + β -quartz + H₂O, 92M/2859; synthetic, exptl. detn.of the P, T stability field, thermochem. props., 92M/0461; synthetic, structl. defects in, 92M/2616; Canada, Ontario, Hemlo, in Au deposit, min. chem., geochem., 92M/4624; China, Handan-Xingtai, Hanxing, skarn Fe deposits, in alteration-mineralization, 92M/0565
- —, asbestos, Czech Republic, Bohemia, Litošice, in hyalophane-zoisite veins from pyrite-rhodochrosite deposit, min. data, 92M/1998
- —, -calcite, reactions rims, zoning in, between quartz, dolomite, 92M/0705
- —, tschermakite, inclusions in actinolite, host-inclusion relationships, 92M/2086; synthesis at low P, 92M/4099
- —, winchite, Japan, Wakayama, Sanbagawa terrain, Iimori, from quartz schists, 92M/3263
- Amphibolite, partial melting, contrasting exptl. results under fluid-absent condns., 92M/1540; refined garnet-biotite Fe-Mg exchange geothermometer, application in, 92M/1533; solid, dehydration-melting of, at 10 kbar, textural development, liquid interconnectivity, applications to magma segregation, 92M/2835; France, Brittany, Ile de Groix, glaucophane-bearing, geothermobarometry, 92M/1136; Greece, Sarti area, Ca-rich scapolite in, min, data, 92M/2004; India, Kolar Schist Belt, high Mg and tholeitic, Pb, Nd isotope constraints on origin, 92M/0037; Italy, Calabrian Arc, Montalto, petrol., geochem. 92M/0623: Mozambique. Nhamarenza River, K/Ar dating, fragment of Limpopo belt, 92M/0034; Pakistan, Kohistan arc, petrol., geochem., 92M/0927; Poland, Ząbkowice Śląskie, Bukowczyk Hill, petrol., 92M/1166; Spain, Cordoba, Sierra Albarrana, garnet-bearing, geothermometry, 92M/4924; Switzerland, Lake Emosson/ Aiguilles Rouges, tholeiites of Palaeozoic rift zone, 92M/1808; USA, California, Catalina Schist, from palaeo-subduction zone, petrogenetic significance of zoned allanite in, 92M/0812; North Carolina, Ashe and Alligator Back fms., samples of late Proterozoic-early Palaeozoic oceanic crust, 92M/3105; Texas, Llano uplift, coronal reaction textures in, 92M/1197

- facies v. metamorphic facies
- Amphibolitic rocks, nomenclature, 92M/2266 Analcite (analcime) v. zeolite
- Analytical techniques, automated anal. of geol. materials, 92M/2473
- Anatase, phase transitions, Raman spectra at high P, room T, 92M/2889; Austria, Salzburg, Pinzgau, Felbertal, occurrence, 92M/3696; Brazil, Maicuru, alkaline-ultramafic-carbonatite complex, geochem. exploration, 92M/1894; Czech Republic, Hrubý Jeseník Mts, occurrence in veins of 'Alpine paragenesis' type, 92M/2373; Wales, Clwyd, Glyn Ceiriog, Hendre quarry, occurrence, 92M/2360
- Anchimetamorphism, *India, Andhra Pradesh, Cuddapah supergroup, Cumbum fm.*, illite crystallinity indices, significance in, 92M/3650
- Andalusite, equilibria kvanite = sillimanite, kyanite = andalusite, revised triple point for Al₂SiO₅ polymorphs, 92M/0450; evidence from min. assemblages for infiltration of pelitic schist by aqueous fluids during metamorphism, 92M/2267; heat capacities, entropy of, and Al₂SiO₅ phase diagram, 92M/2856; Raman spectra at high P, room 92M/1956; static lattice energy minimization, lattice dynamics calculations, 92M/0216; Canada, Quebec, Dumagami mine, progressive alteration assoc. with auriferous massive sulphide deposits, 92M/0587; France, Massif Central, Montagne Noire, in gneiss, 92M/3614; Japan, Niigata Pref., from Pliocene subaqueous ash layer, 92M/3245; South Africa, Transvaal, Hoogenoeg mine, high grade, producer of, 92M/2767; USA, Maine, Cupsuptic aureole, isograds, conduction model for thermal evolution, 92M/1191
- —, chiastolite, porpyroblast textural sector zoning, matrix displacement, 92M/1123
- Andersonite, England, Cornwall, Geevor mine, occurrence, new to Britain, 92M/3320
- ANDES, (v. also *Bolivia, Chile, Ecuador, Peru, South America*) palaeostress detns. from fault kinematics, application to neotectonics, 92M/2326
- Andesine v. feldspar
- Andesite, poss. role of amphibole in origin of, exptl., natural evidence, 92M/4101: Ecuador, alteration to kaolinite, geochem., statistical, min. investigations, 92M/3805; Greece, Skyros, magnesian, geochem., 92M/2174; regional significance, Guatemala, Lake Atilán, calc-alkaline, min. relations, magma mixing in, 92M/3507; Japan, North Fossa Magna, Naeba and Torikabuto volcanoes, calc-alkali, gabbroic xenoliths in, chem. compns., Sr, Nd isotope ratios, 92M/3036; Pacific, Lau Basin, Valu Fa Ridge, subalkaline, back-arc spreading centre, petrogenesis, comparative chem., tectonic implications, 92M/1759; USA, Colorado, San Juan volcanic field, Huerto, petrol., geochem., 92M/0677
- Andesitic magma v. magma, andesitic

Andorite series, Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864

Andradite v. garnet

Anglesite, Austria, Styria, Öblarn, occurrence, 92M/3695; England, Derbyshire, Matlock Wapping mine, occurrence, 92M/2357; W Shropshire orefield, genesis, evidence from fluid inclusions, sphalerite chem., S isotopic ratios, 92M/0544; France, Var, Cap Garonne, assoc. with cobaltoan nickeloan kténasite, 92M/2051; Russian Federation, Kamchatka, Tolbachik, assoc. with new min., leningradite, 92M/2073

ANGOLA, carbonatite, geol., petrol., chem., 92M/1895

Anhydrite, conversion to gypsum, borehole data, 92M/4025; Western Australia, Canning Basin, Milankovitch-band cyclicity in bedded halite contemporaneous with Ordovician-Silurian glaciation, 92M/0693; Bulgaria, Sredna Gora Mt, in Cu-pyrite deposit, 92M/0346; Germany, Thuringia, Caaschwitz, occurrence, 92M/2364; Red Sea, in metalliferous muds, 92M/3980

deposit, Germany, Harz, Nordhausen, Niedersachswerfen, mins. of, 92M/3682

Anilite, India, Malanjkhand, geochem. of secondary Cu mins.from Proterozoic porphyry Cu deposit, 92M/0316

Ankerite, dolomite-ankerite solid-solution series, structl.variation, X-ray, Mössbauer, TEM study, discussion, 92M/0257, reply, 92M/0258; evidence from min. assemblages for infiltration of pelitic schist by aqueous fluids during metamorphism, 92M/2267; XRD, IR, Mössbauer studies, 92M/4664; Canadian Cordillera, in mesothermal Au-stibnite-quartz vein, 92M/2735; England, Cumbria, Nenthead, Brownley Hill mine, assoc. with strontianite, 92M/2356; Germany, Thuringia, Caaschwitz, occurrence, 92M/2364; Peru, W(-Mo, Au) deposit, San Judas Tadeo, Permian lithophile mineralization. 92M/2762; USA, Arkansas, Saline County, Stand-on-your-head mine, assoc. with cookeite, 92M/2380

Annite v. mica Anorthite v. feldspar Anorthoclase v. feldspar

Anorthosite, and related assocns., petrol., 92M/0890; Archaean and lunar, partition coefficients for Fe between plagioclase and basalt as function of O fugacity, implications for, 92M/4036; cataclastic semi-brittle deformation 92M/3610; origin, evolution of monzonorite related to, 92M/3001; Canada, Ontario, Bad Vermilion Lake, crystallographic investigations of calcic plagioclase from, 92M/3834; Ontario, Grenville Province, Central Gneiss Belt, Fishog subdomain, magmatic sheet origin, 92M/0960; Quebec, Grenville Province, Morin, U-Pb dating, 92M/1296; Finland, Wiborg rapakivi area. new U-Pb ages, 92M/0892; Niger, Air Province, -bearing anorogenic complexes, geochem., isotopic evidence for origin of, 92M/1736; Norway, Bergen granulite-facies, eclogitic shear zones in, field relationships, emplacement scenario,

92M/2282: USA, Montana, Stillwater complex, genesis of compositional characteristics, 92M/4831; Wyoming, Maloin Ranch Pluton, Nd, Sr, Pb isotopes, implications for origin of evolved rocks,

ANTARCTICA, Archaean, Proterozoic rocks,

regional geol., 92M/4704; Belgica-7904,

new kind of carbonaceous chondrite, min.,

petrol., 92M/3214; carbonaceous chondrites, Y-86720, Y-82162, min. evidence of heating events in, 92M/3215; Ce anomalies in LEW85300 eucrite, Antarctic weathering, 92M/3224; configuration, struct. of subglacial crust, 92M/4712; consortium study of labile tr. elems. in carbonaceous Antarctic, non-Antarctic chondrites, meteorite comparisons, 92M/3217; cosmic ray produced ¹⁰Be, ²⁶Al in rocks, exposure, erosion history, 92M/0528; cosmogenic Ne in quartzite, 92M/3046; detn. of half-life of ⁴¹Ca from measurements of five meteorites, 92M/0794; discovery of meteorites, 92M/4573; dissakisite-(Ce), new member of epidote group, Mg analogue of allanite-(Ce), 92M/3332; equilibration of eucritic pyroxenes, thermal metamorphism of earliest planetary crust, 92M/0782; five new ureilites, LEW86216, LEW85328, Y-791839, Y-75154, Y-8448, mineralogy, origin of chem. variations of pyroxene, 92M/3219; geol., (book), 92M/3773; ice sheet, Cainozoic history, 92M/4713; late Proterozoic-middle Palaeozoic rocks, 92M/4705; low-T opal-CT precipitation in deep-sea sediments, evidence from O isotopes, 92M/4448; lunar highland meteorites, MacAlpine Hills 88104, 88105, descriptn., consortium, 92M/3197; metallic, non-metallic min. resources, 92M/4716; min.compns. micrometeorites, in 92M/4571; petroleum resource potential, scientific studies, 92M/4715; Alexander island, plutonic complex, Rb/Sr dating, 92M/0050; Allan Hills, TL survey of 12 meteorites collected by European 1988 expedition, importance of acid washing for TL sensitivity measurements, 92M/0795; continental shelf, marine geol., geophys. studies, 92M/4711; Dronning Maud Land, and SE Africa, geol. evidence for Proterozoic to Mesozoic link between. 92M/2100; graphite-bearing marble, C isotope geothermometry, 92M/3103; Mesozoic basic dykes, geochem., 92M/0663; Dronning Maud Land, H.U.Sverdrupfjella, Dalmatian granite, age, petrogenesis, emplacement, 92M/1020; W Dronning Maud Land, geol., 92M/3396; Dufek intrusion, apatite, distribn., paragenesis, chem., 92M/3323; geol., crystallization, 92M/4708; Ferrar group, Mesozoic tholeiite, petrol., 92M/4707; Heimefrontfjella, granitic rocks. charnockite, supracrustal rocks, dating, Nd isotopic compn., 92M/2424; King George Is., Fildes peninsula, characteristics of island-arc volcanism, 92M/1757; Lützow-Holm Bay, charnockite, fluid phase petrol., implications for carbonic metamorphism, 92M/4907; Marie Byrd Land, volcanic province, relation to

Cainozoic W Antarctic rift system, 92M/4710; Mawson Coast, Proterozoic igneous charnockites, U/Pb dating, 92M/0049; Mt Erebus, phonolite fractionation, ²³⁸U-, ²³²Th-series dating, 92M/3737; Peninsula, concns., sources of metals in aerosol, 92M/0396; Petermann ranges, granites, genesis, 92M/2182; Prince Charles Mts, Proterozoic granulite, geochem., 92M/4468; Princess Elizabeth Land, Vestfold Hills, alkaline-ultramafic lamprophyre dykes, primitive magmas of deep mantle origin, 92M/3448; Quatermain Mts, Arena Valley, examination of surface exposure ages of moraines using ¹⁰Be, ²⁶Al, 92M/0051; Ross Sea margin, four-, five-phase peridotites from continental rift system, evidence for upper mantle uplift, cooling, 92M/4822; Schirmacher Oasis, contribn.to weathering-controlled removal of chem. elems. from active debris layer, 92M/3084: lamprophyre, petrogr., geochem., 92M/3403; pegmatitic K-feldspar, Pb/Pb dating, 92M/2426; Scotia arc, tectonic development, 92M/4709; South Shetland Is., King George Is., microcrystalline quartz in volcanic rocks, geochem. study, 92M/2969; petrol., geochem. constraints on genesis of Mesozoic-Cainozoic magmatism, 92M/1756; South Shetland Is., Livingston Is., peperite, hydrothermal veins, breccias, field observations, 92M/4821; Thurston Is., igneous rocks, compns., evidence for late Palaeozoic-Middle Mesozoic Andinotype continental 92M/2183: margin, Transantarctic Mts, Beacon supergroup and correlatives, Devonian to Jurassic, geol., 92M/4706; Vestfold Hills, difficulties of dating basic dykes, 92M/2425; Precambrian dyke swarms, classification of dyke-fracture geometry, 92M/3449; Proterozoic geol. evolution, 92M/0958; Victoria Land, McMurdo Sound, Cainozoic glacial record, geol. evaluation of drilling projects, 92M/4714; Taylor Valley and Ferrar Glacier, granite, suite subdivision, petrol.evolution, 92M/4395; S Victoria Land, Dry Valleys region, petrogenesis of orthogneiss, 92M/3397; Weddell Sea, Cd, Cu, Co, Ni, Pb, Zn in water column, 92M/0735; Wohlthat Massif, photograph interpn., 92M/3657

Anthophyllite v. amphibole Anthracite v. coal

Antigorite v. serpentine

Antimony, Czech Republic, Bohemia, Slaný mining area, occurrence, 92M/3689; Norway, Sulitjelma, -rich min.parageneses, assocn. with Au mins. in massive sulphides, 92M/4005; Peru, Huancavelica, assocn. of Ag, Hg, As, Sb, carbonaceous material, 92M/2761

mineralization, France, Massif Central, Haut Allier, hydrothermal alteration, fluid circulation related to, 92M/2709

minerals, chem. compn., 92M/2044

-gold deposits, N Atlantic, of Acadian-Hercynian domain, geol.. 92M/2699

Antlerite, France, Var, Cap Garonne, assoc. with cobaltoan nickeloan kténasite, 92M/2051; France, Var, Cap Garonne, assoc.with new min., geminite, 92M/2070

- Apatite, and non-silicate fluids, partitioning of F, Cl between, at high P, T, 92M/2907; cation substitution in tetrahedral site, crystal structs. of type hydroxyellestadite and fermorite, 92M/0261; crystallographic orientation dependence of etchable fission track length, empirical model, exptl. observations, 92M/0873; daughter-parent isotope systematics in U-Th-bearing igneous accessory min. assemblages as potential indices of metamorphic history, 92M/4226; derivative struct.: vitusite, 92M/3850; fission track age spectrum based on projected track-length anal., 92M/2347; fission-track data, inverse method of modelling thermal histories from, 92M/2345; in supercritical aqueous fluids, solubility of, implications for subduction zone geochem., 92M/4968; long-term stability of fission tracks in, importance for knowledge of Alpine orogenesis, 92M/1256; natural Mn-, Sr-bearing, crystal struct. refinements, ordering of divalent cations in, 92M/2644; natural REE-bearing, REE ordering, structl. variations in, 92M/1410; Pb diffusion using ion implantation, Rutherford backscattering technique, 92M/0510; volcanic production of polyphosphates, relevance to prebiotic evolution, 92M/0426; Antarctica, Dufek intrusion, distribn., paragenesis, chem., 92M/3323; Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694; China, Yunnan, Xikang-Yunnan axis, Jinningian, in granite, fingerprint characteristics, SIMS study, 92M/2960; Germany, Bavaria, KTB pilot hole, fission track dating, 92M/0018; Saxony, Geyer-Ehrenfriedersdorf area, occurrence, 92M/2371; India, West Bengal, Puruliya Dt, in amphibolites, 92M/2300; India, Sung Valley, in carbonatite, fluid inclusion studies, evidence of melt-fluid immiscibility, 92M/1008; Japan, Tojo-cho, Kushiro, assoc. with nepheline, 92M/2002; Pacific, Lau Basin, in volcanic rocks, Karakoram, 92M/2111; Pakistan, occurrence, 92M/2378; South Africa, Bushveld Complex, Merensky compositional variation in cyclic unit, 92M/0872; Turkey, Avnik, -rich iron deposits, REE in, 92M/2927; USA, Wyoming, Leucite Hills, in lamproites, F-bearing phases in, 92M/0675; Wales, Clwyd, Glyn Ceiriog, Hendre quarry, occurrence, 92M/2360
- —, chlorapatite, partitioning of F-Cl-OH between mins. and hydrothermal fluid, 92M/0434
- —, dahllite, Tuvalu, occurrence, 92M/0580
- deposits, island, O isotopes of phosphate and origin of, 92M/4317
- —, fermorite, crystal struct., cation substitution in apatite tetrahedral site, 92M/0261
- —, fluorapatite, partitioning of F-Cl-OH between mins. and hydrothermal fluid, 92M/0434; relationship of pentacalcium triborate fluoride to, 92M/0260; Israel, Golan Heights, Har Peres, from pyroclastics, 92M/2000

- —, francolite, from fossils, coprolites, detn. of, 92M/4668; min., chem. variation with geol. time, 92M/0874; SE England, in phosphatic concretions in Wealden, 92M/1105
- —, hedyphane, Czech Republic, Bohemia, Příbram, Vrančice, assoc. with brandtite, chervetite, 92M/2028
- —, hydroxylapatite, Cd sorption on, 92M/0511; chem. precipitated, biological, thermal behaviour, structl. variations, 92M/1411; from recent and fossil salmon, Sr isotopic compn., record of lifetime migration and diagenesis, 92M/4318; *Italy, Apulia*, from caves, new min.data, 92M/3324; kinetics of octacalcium phosphate crystal growth in presence of organic acids, 92M/4149; partitioning of F-Cl-OH between mins. and hydrothermal fluid, 92M/0434; structl. disorder in, 92M/3849
- mineralization, India, West Bengal, Purulia, Beldih, genetic control, 92M/3322 Aplite-pegmatite, Portugal, Arga, Li

mineralization in, 92M/0986

- Apophyllite, Italy, Vicentino, occurrence, (book), 92M/2498; Japan, Okayama Pref., Fuka, assoc. with monoclinic tobermorite, 92M/2009; Scotland, Skye, Sgurr nam Boc, occurrence, 92M/2355
- Appinite, Scotland, Caledonides, zoning, layering in diorite, 92M/4787

Aquamarine v. beryl

Aqueous ions, and crystalline solids, linear free-energy relationship for, 92M/4081

- solutions, containing fluoride ions at 50°C, Al hydroxide solubility in, comment, 92M/4128, reply, 92M/4129; solid-solution phase equilibria in, system CdCO₃-CaCO₃-CO₂-H₂O, 92M/4141
- systems, organic-rich, quartz dissolution in, 92M/0746
- Aquifers, Canada, Alberta, Milk River, dissolved gases in, 92M/1833; geochem. of halogens in, 92M/1838; hydrogeol., hydrochem., 92M/1831; underground production of radionuclides in, 92M/1836; U-series radionuclides in fluids, solids, 92M/1834; Mexico, Sonora, Guaymas, thermalized, chem. geothermometers applied to study of, 92M/0743; USA, Georgia, Cumberland Is., confined, mixing zone hydrochem. in, 92M/3126
- ARABIAN SEA, *Oman Margin*, lack of enhanced preservation of organic matter in sediments under O minimum, 92M/4527
- Aragonite, chem. changes induced in, using treatments for destruction of organic materials, 92M/2904; high P, T behaviour, Raman spectroscopic study, 92M/4147; synthetic, C isotopic fractionation in, effects of T, precipitation rate, 92M/4146; Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694: Germany, Thuringia. Caaschwitz, occurrence, 92M/2364; Greece, Dodecanese, Arki Is., in blueschist, 92M/4940; USA, New Mexico, Otero County, Pennsylvanian biogenic, abiogenic, C, O isotopes in, laser microprobe study, 92M/1706
- ARCTIC OCEAN, Barents Sea, Quaternary sediments, clast petrogr., stratigr., 92M/1100

Ardennite, crystal chem., HRTEM anal., polytypic behaviour, 92M/1389

Arfvedsonite v. amphibole

ARGENTINA, effect of physico-chem., min. props. on Na₂CO₃ activation of bentonite, 92M/1337; Argentine Is., Faraday Base, Al hydroxide polymorphs in waste deposit, 92M/4651; Bermejo river basin, regular kaolinite/smectite, occurrence, 92M/3786; Las Chacras Batholith, Rodeo de Los Molles, REE, Th deposit, fluid inclusion studies, comment, 92M/0603, reply, 92M/0604; Rodeo de Los Molles deposit, hydrothermal alteration, REE-Th mineralization, 92M/4306; Patagonia, Esquel, meteoritic olivine from pallasite, gem props., 92M/4173; Sierra de Cacheuta, La Rioja, Condor mine, schmiederite, occurrence, min. data, 92M/3301

Argentite, Tl, Au, exptl. contributions to mineralogy, geochem., crustal chem., 92M/2885; Chile, Andes, Atacama, La Coipa, precious metal deposit, geol., 92M/1453; Germany, Wittichen, occurrence, 92M/4998; Italy, Bolzano/Bozen, Terlan, in Pb-Zn veins, 92M/1232; Norway, Oslo, Akersberg mine, occurrence, 92M/4007; USA, North Carolina, Virgilina district, in Cu-bearing vein deposits, 92M/2741

Argillaceous rocks, *Japan, Mino-Tamba Terrain*, assoc. with Triassic, Jurassic chert, petrogr., geochem., 92M/0692

Arkose, Scotland, Skye, Sleat and Torridon groups, geochem., provenance, palaeoclimate, 92M/3074

Armenite, superstructs., (Si,Al), H₂O ordering in, 92M/1390

 feldspar veins, Czech Republic, Chvaletice, in basic volcanic rocks, 92M/1962

Arsenic, *Peru, Huancavelica*, assocn. of Ag, Hg, As, Sb, carbonaceous material, 92M/2761

Arseniosiderite, Germany, Spessart Mts, assoc. with new Ca-Mn arsenate of mitridatite group, 92M/0875

Arsenoflorencite-(La), Czech Republic, Bohemia, new min., 92M/3334

Arsenoflorencite-(Nd), Czech Republic, Bohemia, new min., 92M/3334

Arsenogoyazite, Czech Republic, Bohemia, occurrence, min. data, 92M/3334

Arsenopalladinite Brazil, Goiás, Cavalcante

Arsenopalladinite, *Brazil, Goiás, Cavalcante*, assoc. with Au, 92M/3905

Arsenopyrite, Au-bearing, hydrothermal synthesis of, 92M/2898; min.factors in processing of Archaean sulphide Au ore, 92M/2653; min.technique for recognising cyanicides in Au processing, 92M/2446; Australia, Queensland, Hodgkinson Gold Field, assoc. with mélange-, sedimenthosted Au-bearing quartz veins, 92M/0370; Brazil, Bahia, Fazenda Maria Preta mine, assoc. with Au, 92M/3890; Canada, New Brunswick, Mount Pleasant, fluid evolution, mineralization in subvolcanic granite stock, 92M/0373; Canadian Cordillera, in mesothermal Au-stibnite-quartz vein, 92M/2735; China, Hebei, Caijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356; Finland, Ilomantsi, assoc. with Au deposits in late Archaean greenstone belt, 92M/3876; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Turkey, Pontides, Akarşen, assoc. with Cu deposits, 92M/3919 – geothermometry, Korea, Yeonhwa I mine, Taebaek, Pb-Zn(-Ag) deposit, 92M/2728

Arsenosulvanite v. sulvanite

Asbecasite, Italy, Piemonte, Novara, Alpe Devero, occurrence, 92M/4992; Roman potassic province, Vico, antimonian, in syenitic ejectum of pyroclastic rocks, 92M/3300

Asbestos, Canada, Ontario, Munro Township, Munro mine, two stages of CO₂ metasomatism, evidence from fluid-inclusion, stable-isotope, min. studies, 92M/1689

Ashburtonite, Western Australia, Ashburton Downs, new bicarbonate-silicate min., descriptn., struct. detn., 92M/3327

Ashoverite, British Isles, occurrence, 92M/4990

ASIA, cosmogenic Ne in ultramafic nodules, 92M/3046; roquesite, new data, 92M/4656; SE, occurrence of polycyclic sesqui-, tri-, oligoterpenoids derived from resinous polymeric cadinene in crude oils, 92M/4529; Okhotsk Sea, South China Sea, clay min. distribn. in surface sediments, 92M/0177; The Gulf, Proterozoic salt basins, role in hydrocarbon generation, 92M/3570

Astrophyllite, *Egypt*, min. chem., paragenesis of, 92M/3264

—, Ce-kupletskite, Tadzhikistan, Dara-i-Pioz, occurrence, 92M/2377

Atacamite, England, Cornwall, St. Just, Botallack mine, occurrence, 92M/3288; Germany, Frankfurt, occurrence, 92M/3680

Atheneite, Brazil, Minas Gerais, Iron Quadrangle, assoc. with black Pd Au, 92M/3910; Portugal, Bragança-Vinhais, from ultrabasic rocks, 92M/2047

ATLANTIC OCEAN, dissolved organic C in, 92M/4531; isotopic compns. of Ce, Nd, Sr in ferromanganese nodules, 92M/1782; N, ocean crust, petrol., 92M/2243; Sb-Au deposits of Acadian-Hercynian domain, geol., 92M/2699; NE, Quaternary clay sediments, K-Ar, Rb-Sr anals., mineralogy, 92M/1369; relationship between δ^{13} C of organic matter and [CO2(aq)] in ocean surface water, 92M/4519; Azores, Flores, volcaniclastic deposits, lithol., envt. of formation, 92M/1054; Cape Verde Is., Fogo volcano, heterogeneities of inner zoning of pyroxene, poss. genetic meaning, 92M/4616; San Vicente, geochem., cryptic zonation of pyrochlore, 92M/4645; Central Atlantic rift, tholeiitic magmatism related to early opening of, ⁴⁰Ar/³⁹Ar dating, geochem., 92M/0004; Gulf of Guinea, Principe Is., pyroxenes from volcanic rocks, EPMA results, 92M/4615; Inaccessible Is., geol., geochronol., 92M/3450; Labrador Trough, basalts, gabbros, poss.remnants of Proterozoic failed ocean, 92M/1095; Mid-Atlantic ridge, hydrothermal scavenging, radionuclide distribns... 92M/1320; Au-rich seafloor gossan,

92M/2661; accommodation zones, transfer faults, integral components of extensional systems, 92M/3511; basalt, isotopic 92M/4375; hydrothermal geochem., scavenging, modification of tr. elem. dissolved fluxes, 92M/3118; serpentinized peridotite, gabbro in axial valley, 92M/4803; volatiles record of 'popping' rock, chem., isotopic compn. of gas trapped in vesicles, 92M/4376; 10° to 17°N, Sr-Nd-Pb geochem. morphol., new MORB isotope signature, 92M/2998; 26°N, struct., mass, interactions of hydrothermal plumes, 92M/2938; Oceanographer Transform, Ca-rich brines and hydrothermal fluids in fluid inclusions from plutonic rocks, 92M/4248; Snake Pit site, 23°N, He, methane measurements in hydrothermal fluids, 92M/3117; Mid-Atlantic Ridge, TAG site, 26°N, and serpentinized ultrabasic diapir, 15°05', hydrothermal plumes, different TDM/CH₄ signatures, 92M/2937; Middle Atlantic Bight, radiocarbon δ^{13} C, ²¹⁰Pb, ¹³⁷Cs record in box cores from continental margin, 92M/3163; Rockall Bank, geochem., isotopic constraints on nature, age of basement rocks, 92M/0011; N Rockall Trough, Darwin complex, Tertiary igneous centre, seismic data, gravity modelling, 92M/3408; Sargasso Sea, Ce anomalies, 92M/1847, Ce redox cycles, REE in, 92M/1846; Tristan da Cunha, Inaccessible Island, volcanic rocks, geochem., 92M/1738

Atmosphere v. Earth

Augite v. pyroxene

Aurichalcite, Austria, Carinthia, occurrence, 92M/4996

Aurostibite, min. factors in processing of Archaean sulphide Au ore, 92M/2653; Norway, Sulitjelma, in massive sulphides, 92M/4005; Sulitjelma ore field, occurrence, 92M/4006

AUSTRALASIA, history of mining, metallurgy, (book), 92M/3770

AUSTRALIA, chem., crystallographic, stable isotopic props. of alunite, jarosite, from acid-hypersaline lake, 92M/4495; mapping of magnetic dykes, 92M/4753; Nd. Sr. isotopic study of tektites, new constraints on provenance, age of target materials, 92M/4596; S-, I-type granites, T, redox path, 92M/1018; salt lakes, B isotope geochem., 92M/1828; thermobarometry, P-T-t paths, granulite to eclogite transition in lower crustal xenoliths, 92M/1185; unconformity-related U deposits, fluid inclusion evidence on origin, 92M/1679; fluid-enhanced deformation. transformation of granitic rocks to banded mylonites, 92M/2305; Mesozoic Gondwana low-Ti flood basalts, petrogenesis, 92M/1752; Amadeus Basin, Sm-Nd, U-Pb zircon isotopic constraints on provenance of sedimentary rocks, evidence for REE fractionation, 92M/4273; Arunta inlier, Anmatjira range, discrete Proterozoic structl. terrains assoc. with low-P, high-T metamorphism, tectonic implications, 92M/2307; Australian-Pacific Region, Au exploration, 92M/1418; Gippsland basin, estimating kinetic parameters for organic reactions from geol. data, 92M/3161; Harts Range, Nd evidence for ultra-depleted mantle in early Proterozoic, 92M/1754; Lake Argyle, tektites, anals., 92M/0800; Mary Kathleen Fold belt, low-P, high-T metamorphism in compressional tectonic setting, 92M/3656; Mt Gambier, and Cameroon, Lakes Nyos, Monoun, Germany, Laacher See, Indonesia, Dieng, CO2-rich gases, variations on common theme, 92M/1037; Mud Tank carbonatite, example of metasomatism at mid-crustal levels, 92M/3600; Musgrave complex, decompressional coronas, symplectites in granulites, 92M/1186; Musgrave Ranges, granulite, P, T history, U-Pb dating, 92M/1284; Reynolds Range, deformation path for mid-Proterozoic, low P terrain, 92M/2306; Ruby Gap, ages of deformation from K/Ar, 40 Ar/39 Ar dating, Strangways 92M/3732; Range, silica-undersaturated sapphirine, spinel, kornerupine granulite-facies 92M/4948

NEW SOUTH WALES, analcite mugearite-megacryst assocn., implications high-P amphibole-dominated fractionation of alkaline magmas, 92M/3447; Broken Hill, exhalites assoc. with sulphide deposit, tr. elem. compn., 92M/0574; weathered rock geochem.data, statistical techniques, 92M/1907; Goonumbla, porphyry Cu-Au deposits, ⁴⁰Ar/³⁹Ar dating, 92M/3734; Mole granite, fluid inclusions in topaz, laser-ICP, synchrotron-XRF microprobe anal., compn. of hypersaline, Fe-rich granitic fluids, 92M/4250; tr. elem., REE in cassiterite, sources of components for Sn deposits, 92M/1680; New England fold belt, relict clinopyroxenes from within-plate metadolerites, 92M/0820; New England gem fields, key areas for alluvial diamond, sapphire exploration, 92M/2696; Sydney basin, geochem. characterization of dykes, 92M/4755; Sydney basin, Kiama, attempt to determine uplift from palaeomagnetic signatures of dyke contacts, 92M/4742; Wagga Tank, polymetallic deposit, weathering, effect upon geochem. dispersion, 92M/1906; Werris Creek. prospecting for natural zeolites, 92M/0770; Wonominta Block, multiple dyke emplacement, tectonic significance in relation to Tasman line, 92M/4758

—, NORTHERN TERRITORY, Coronation Hill, unconformity related Au, Pt, Pd prospect, 92M/1475; Cotan prospect, decrepitation in Au exploration, 92M/3173; Tom's Gully mine, Proterozoic thermal-aureole-type mineralization, 92M/3916

--, QUEENSLAND, weathering of granitic muscovite to kaolinite, halloysite, 92M/0190; Charters Towers, Thalanga, Pb-Zn-Cu deposit, remote sensing, geobotany, biogeochemistry, 92M/0769; Emuford, albite-rich, silica-depleted metasomatic rocks, min., geochem., fluid inclusion constraints on hydrothermal evolution, Sn mineralization, 92M/2964; Hodgkinson Gold Field, mélange-

sediment-hosted Au-bearing quartz veins, 92M/0370; Kidston, Au-bearing breccia pipe, geol., fluid inclusion, stable isotope studies, 92M/0573; Magpie, volcanogenic massive sulphide deposits, geol., petrol., alteration geochem., 92M/1470; Mt Isa inlier, 1800-1670 m.y. mudstone, siltstone, geochem., provenance, tectonic implications, 92M/4271; Cu ore formation, S isotope systematics, 92M/1678; Cu, Pb-Zn-Ag ores, cogenesis, 92M/1469; role of thrusting in structl. development, relevance to exploration, 92M/2731; and McArthur River, high-heat producing granites, role in origin of giant lead-zinc deposits, 92M/4016; Mt Isa, Eastern Succession, two S isotope provinces deduced from ores, 92M/2966; Mt Leyshon Au mine, intrusive breccia, igneous complex, 92M/2180; Mt Morgan, Au-Cu deposit, evidence for intrusion-related replacement origin, 92M/2730; Sybil graben, Mt Fullstop, epithermal Au deposit, history, 92M/1471; Townsville-Ingham dist., dyke emplacement, characteristics, 92M/4756; Twin Hills, epithermal Au deposit, geol., 92M/1472

-, SOUTH AUSTRALIA, importance of methanogenesis for organic mineralization in groundwater contaminated by liquid effluent, 92M/1526; nature of basic magmatism through development of Adelaide geosyncline and subsequent Delamerian orogeny, 92M/4757; S Adelaide foldbelt, basic dykes, tectonic setting, 92M/4754; Andamooka, treated matrix opal, 92M/1625; Mt Lofty Ranges, phase relationships in Buchan facies series pelitic rocks, calculations with application to parageneses, andalusite-staurolite 92M/4949; Stuart Shelf, Olympic Dam, origin of hydrothermal fluids, fluid stable isotope evidence, inclusion, 92M/2968

—, TASMANIA, Heazlewood River Complex, Pt-group elem., chromitite, geol., geochem., origin, 92M/0371; Hellyer, volcanogenic massive sulphide deposit, Au grades, Fe content of sphalerite, 92M/0575; Lord Brassey mine, otwayite, theophrastite, min. data, 92M/4667; Rosebery, foliationboudinage control on formation of Pb-Zn orebody, 92M/1474; geochem. of wallrock alteration, 92M/0576

-, VICTORIA, Au deposits, major province within Palaeozoic sedimentary succession, 92M/1434; effects of weathering on REE, Y, Ba abundances in Tertiary basalts, 92M/2931; evidence for carbonatite metasomatism in spinel peridotite xenoliths, 92M/3042; late orogenic timing of mineralization in slate belt Au deposits, 92M/1435; Lachlan Fold Belt. deformational, metamorphic processes in formation of mesothermal vein-hosted Au 92M/1473; rock-buffered deposits, in deformed fluid-rock interaction quartz-rich turbidites, 92M/2965; Lake Tyrrell, acid brine, geochem., 92M/4486, acidic, saline groundwater discharge zone, sedimentary biogeochem., 92M/4487, brines, tr.-metal geochem., 92M/4490,

deposition of tr. elems., radionuclides in spring zone, 92M/4492, formation of alunite, jarosite, hydrous iron oxides, in hypersaline system, 92M/4494, groundwater-surface water interactions, stable isotope investigation, 92M/4485, metal partitioning in acid hypersaline sediments, 92M/4493, naturally-occurring radionuclides in acid-saline groundwaters, 92M/4489, REE distribn. in groundwater, 92M/4488, source, distribn., economic significance of tr. elems. in groundwater, 92M/4491; Tyrrell Basin, hydrol.processes, 92M/4484

, WESTERN AUSTRALIA, Archaean Au deposits, and SE USA, Palaeozoic, comparison of alteration assemblages assoc. with, 92M/0270; Au in Archaean, exploration. evaluation. 92M/1912: greenstone-hosted Au deposits, classification according to wallrock-alteration min. assemblages, 92M/0327; implanted ³He, ⁴He, Xe in studies of diamonds, 92M/0579; K-rich beidellite from laterite pallid zone, TEM study, 92M/0129; lamprophyre dyke swarms, pipes, petrol., 92M/4737; Ashburton Downs, ashburtonite, new bicarbonate-silicate min., descriptn., struct. detn., 92M/3327; Boddington, Au mine, primary mineralization, Archaean porphyry Cu-Au-Mo deposit, 92M/3920; Canning Basin, Milankovitch-band cyclicity in bedded halite contemporaneous with Ordovician-Silurian glaciation, 92M/0693; Canning Basin, Lennard Shelf, age of Mississippi Valley-type sulphides, CL cement stratigr., 92M/2423; Darling Range, bauxite, geochem., min. characteristics, 92M/0694; Eastern goldfields province, regional metamorphic controls on alteration assoc. with Archaean Au mineralization, implications for timing, origin of, 92M/2697; Fraser Complex, mid-Proterozoic lower crust, isotopic evidence on age, origin, 92M/1286; Greenbushes, envt., structl. controls on intrusion of giant rare metal pegmatite, 92M/0372; Hunt mine, immobility of REE, high field-strength elems., transition metals during Archaean Au-related hydrothermal alteration of metabasalts, 92M/3897; Kambalda, basalt, komatiite, tr. elem. geochem., 92M/3045; magmatic contacts between immiscible sulphide and komatiite melts, implications for genesis of sulphide ores, 92M/1481; Kambalda and Norseman golf camps, relationship between Archaean gold mineralization and assoc. minor intrusions, Pb isotope evidence, 92M/2967; Kambalda Goldfield, relationships between calc-alkaline acidic and basic magmas in late Archaean composite dykes, 92M/1755; Kambalda-St Ives, Au deposits, rediscovery, development, 92M/1480; Meekatharra, Paddy's Flat Au dist., mineralization styles, geochem., 92M/1476; Mt Mulgine, Trench, W-Mo deposit, Trench, 92M/1479; Mt Narryer and Jack Hills, Earth's oldest known crust, 3900-4200 m.y. old detrital zircons, geochronol., geochem. study, 92M/3735; Narryer Gneiss complex,

provenance of Archaean clastic metasediments, tr. elem. geochem., Nd isotopes, U/Pb dating for detrital zircons, 92M/0048; U-Pb dating, 92M/1285; Norseman-Wiluna belt, Archaean, nature, distribn., inferred tectonic setting of granite, 92M/0884: 'porphyry-gold' assocn., implications for models of Archaean Au metallogeny, 92M/0885; Paterson Province, Telfer, Proterozoic fractionated granitic rock, petrol., 92M/0899; Pilbara Block, Archaean polyphase deformation, metamorphism, 92M/1187; and Halls Creek Mobile Zone, use of geochem. as guide to Pt-group elem. potential of mafic-ultramafic rocks, 92M/0578; Munni Munni layered intrusion, formation of platiniferous sulphide deposits by crystal fractionation, magma mixing, 92M/2732; Shaw batholith, late Archaean metamorphosed ultramafic lamprophyre dykes, 92M/4729; Pilbara craton, isotope, REE evidence for late Archaean terrain boundary, 92M/3044; comparative study of geochem., isotopic systematics of late Archaean flood basalt, 92M/3043; Southern Cross greenstone belt, Marvel Loch Au-Ag mine, Savage Lode, magnesian skarn, P-T estimates, constraints on fluid sources, 92M/1478, magnesian skarn, structl. setting, petrogr., geochem., 92M/1477; Wiluna, lode-Au deposits, geol. setting, highest crustal-level endmembers of Archaean-Au deposit continuum. 92M/3947; Windimurra, macrorhythmically layered gabbronorites, petrol., 92M/1019; Yilgarn Block, Archaean lode-Au deposits, products of crustal-scale hydrothermal systems, 92M/3893; crustal magnetization, T at depth beneath inferred from Magsat data, 92M/4980; hydrothermal mins. from epigenetic Archaean Au deposits, Sr isotope systematics, 92M/0577; spatial associations between post-cratonization dykes and Au deposits, 92M/4733; synmetamorphic lode-Au deposits in high-grade Archaean settings, 92M/2666; Yilgarn Block, Southern Cross greenstone belt, goldmanite in skarn veins, min. data, 92M/0808

AUSTRIA, E Alps, pre-Hercynian magmatism. origin of metabasites from Austroalpine basement, 92M/0619; Bleiberg, thiosulphates as precursors of banded sphalerite, pyrite, 92M/4659; Burgenland and Styria, pyroxene chem., evolution of alkali basalt, 92M/1968; Carinthia, beta-duftite occurrence, 92M/4996; Hüttenberg, iron mines, geol., mining history, min., 92M/2372; Carinthia/Styria, Saualpe, Koralpe type-locality, eclogites in orogenic belts, Sm-Nd, Rb-Sr, Pb-Pb dating, 92M/3721; Carinthia, Zirknitz-Wurtental, Au-Ag mineralization, geol., 92M/4995; Hohe Tauern, Felbertal, scheelite deposit, fluid evolution, metamorphic ore remobilization, 92M/1664; Kapfenstein, upper mantle xenoliths, comparison with Hungary, Transdanubian volcanic region, 92M/0994; Koralpe and Saualpe, eclogites, 92M/2294; Leiten, X-ray characterization of mica in metapelites, boundary between the low-, very low-grade south-alpine basement. 92M/4930;

Merano-Meran, high-P alteration of eclogites from Austroalpine basement, 92M/2292; Ötztal basement, Eoalpine eclogite facies metamorphism, petrol., 92M/1156; Salzburg, Hüttau, Larzenbach, Cu mineralization, mins. of, 92M/3694; Salzburg, Pinzgau, Felbertal, mins. of, 92M/3696; Steinkogel area, microstructs., min. chem., P-T-deformation paths from micaschists in hanging wall of Variscan thrust, 92M/4929; Stradner Kogel, motukoreaite, SEM study, 92M/3321; Styria, Öblarn, slag mins., 92M/3695; Tauern Window, basic, ultrabasic rock, U-Pb, Sm-Nd geochronol., 92M/3720; fluid channelling during ductile shearing, transformation of granodiorite aluminous schist, 92M/0717; mica schists, tectonic significance of early-Alpine P-T-deformation path, 92M/2295; zircon from leucogranitic orthogneiss, magmatic origin, min. data, 92M/1948; Tauern Window, Habachtal, emerald mineralization during regional metamorphism, 92M/3250; emerald, occurrence, descriptn., 92M/1622; fluid inclusions in emeralds, evolution of metamorphic fluids in shear zones, 92M/0549; Tyrol, Brenner, Mesozoic Fe-Ti-oxide assemblages, occurrence, 92M/3291; Brixlegg, baryte deposit, Sr, O, isotope study, 92M/2951; Schlegeisspeicher, actinolite, occurrence, 92M/1235; Tyrol, Schwaz dolomite, baryte-sulphide mineralization, fluid/rock in carbonate rocks, isotopic ratios constraints, 92M/0685

Awaruite, euhedral, in Allende meteorite, 92M/1924; revised unit-cell dimensions, space group, chem. formula, 92M/2628

Azurite, England, Warwickshire, Judkins Quarry, occurrence, 92M/2358; Germany, Thuringia, Caaschwitz, occurrence, 92M/2364; Nordpfalz, Rockenhausen, occurrence, 92M/2366; Germany, Schwarzwald, Wattkopf road tunnel, occurrence, 92M/3679; Scotland, Mannoch Hill, occurrence, 92M/1221

Babingtonite, crystal chem., Mössbauer spectra, 92M/0221

Baddeleyite, Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; Italy, Latium, Albano Lake crater, assoc. with guarinite in sanidinite ejecta of hydromagmatic unit, 92M/0816; Sweden, Bergslagen, Koberg mine, occurrence, 92M/3297

Bafertisite, hetjmanite, Mn-dominant analogue of, new min., 92M/2071

BAFFIN BAY, early diagenetic transformation of higher-plant triterpenoids in deep-sea sediments, 92M/4533

BALTIC SEA, distribn. patterns of phosphorus in sediments, 92M/0687; isotopic compns. of Ce, Nd, Sr in ferromanganese nodules, 92M/1782; quartz from sediment cores, grain surfaces, optical, SEM microscopy, subdivision of sediments, 92M/3565

BALTIC SHIELD, *Hinneryd granite*, Proterozoic, chem. compn., 92M/2141

Baotite, France, Pyrenees, Pierrefitte, W-bearing, in hydrothermal veins, min. data, 92M/3255

Baratovite, *Tadzhikistan*, *Dara-i-Pioz*, occurrence, 92M/2377

BARENTS SEA, isotopic compns. of Ce, Nd, Sr in ferromanganese nodules, 92M/1782

Barium-fluorine vein, Spain, Catalonian Coastal Ranges, Atrevida vein, origin, min., fluid inclusion, stable isotope study, 92M/2712

 — lead sulphate solid solution series, aqueous dissolution kinetics at 25 and 60°C, 92M/4138

———zinc mineralization, Canada, Quebec, Appalachian Thrust Belt, epigenetic, model for, fluid inclusion, isotope evidence, 92M/2670

 -- zinc-lead deposits, Scotland, Aberfeldy, recent discovery, 92M/0298

Barstowite, British Isles, occurrence, 92M/4990

Barylite, Greenland, llímaussaq alkaline complex, min. data, 92M/1959

Baryte, exploration, assocns. of elems. derived by factor anl., multiple correlation, 92M/3181; molecular design on recognition at inorganic surfaces, 92M/1607; XRD anal. of Sr in, 92M/0086; Austria, Tyrol, Brixlegg, Sr, O, C isotope study, 92M/2951; Tyrol, Schwaz dolomite, -sulphide mineralization, fluid/rock ratios in carbonate rocks, isotopic constraints, 92M/0685; Bulgaria, E Rhodope, in high-K dacite, 92M/3432; Canada, British Columbia, Gataga Dist., modification of sedimentary textures during deformation, 92M/1501; sedimentary exhalative, geol. setting, genesis, 92M/3998; Czech Republic, Bohemia, Teplice, occurrence, 92M/3693; Moravia, Horní Benešov, from Pb-Zn deposit, 92M/1999; Moravia, Kunčice pod Ondrejníkem, in teschenitic rocks, 92M/2056; Egypt, Bahariya descripn., mineralogy, 92M/0381; England, Cumbria, Cockermouth area, min. exploration, 92M/3987; Lake District, potential S sources for Palaeozoic-hosted mineralization, S 92M/1659; investigation, Nenthead, Brownley Hill mine, assoc. with strontianite, 92M/2356; Derbyshire, Matlock Bath, Wapping mine, occurrence, 92M/2357; Warwickshire, Judkins Quarry, occurrence, 92M/2358: Germany, Schiefergebirge, Altenbüren, sulphide mineralization, 92M/1459; Erzgebirge, -quartz-fluorite-hematitegalena-sphalerite veins, age of, 92M/2671; Saxony, Meissen Massif, assoc. with kaolinization of pitchstone, felsite, quartz porphyry, 92M/2583; Thuringian Forest, Ruhla mining region, occurrence. 92M/1231; Indian Ocean, Kerguelen-Heard Plateau, hydrothermal mineralization, 92M/2958; Italy, Sicily, Alcamo and Calatafimi, from vein mineralizations, Sr isotope compn. in, 92M/0550; Poland, Tarnobrzeg, in S deposits, 92M/2050; Red Sea, in metalliferous muds, 92M/3980; Scotland, Dalradian Argyll group, origin of S in metamorphosed stratabound mineralization, 92M/0543; Scotland, Mannoch Hill, occurrence, 92M/1221; Switzerland, Grison Canton, Oberhalbstein, in Mn deposits, presence of Sr, evolution, parageneses, 92M/1663; USA, Tennessee, Elmwood, occurrence, 92M/3703; Vietnam, Dong Pao, geol., 92M/2729

—, hokutolite, Japan, Tamagawa, Pb-bearing baryte, from hot spring waters, changes in chem. compn., crystal growth rate of, 92M/2048; Taiwan, Peito, from hot springs, chem. compn., lattice parameters, 92M/2049; occurrence, min. data, 92M/3313

— mineralization, Canada, Nova Scotia, Carboniferous, formation of, from basin-derived fluids, 92M/1695; Italy, Sicily, evolution of hydrothermal systems forming, isotope geochem., 92M/2953; Scotland, Aberfeldy, late Proterozoic stratiform, isotopic evidence of depositional envt. of, 92M/1658

Basalt, Apollo 17 high-Ti mare, Sr, Nd isotopic study, resolution of ages, evolution magmas, origins of source 92M/0773; assessing heterogeneities, sea-water/basalt exchange of Sr isotopes in hydrothermal processes on flanks of mid-ocean ridges, 92M/0737; Ba partitioning, origin of anorthoclase megacrysts in, 92M/2941; crystallization processes, effects of FeO on system CMAS at low P, implications for, 92M/1543; DSDP/ODP Hole 504B, ocean crust, B isotope geochem., 92M/4399; evolution at low P, implications from exptl. study in CaO-FeO-MgO-Al₂O₃-SiO₂, system 92M/4072; hypersthene-normative, comparative liquidus equilibria at low P. 92M/0427; immiscibility synthesis as indication of cooling rates, 92M/0428; Nb-Th-La in, constraints on komatiite petrogenesis, mantle evolution, 92M/3067; partition coefficients for Fe between plagioclase and, as function of O fugacity, implications for Archaean and lunar anorthosites, 92M/4036; primitive, eruption of komatiite, picrite, in preference to, 92M/2136; submarine, Li isotopic compn. of, implications for Li cycle in oceans. 92M/4290; Atlantic, Labrador Trough, and gabbros, poss. remnants of Proterozoic failed ocean, 92M/1095; Mid-Atlantic Ridge, isotopic geochem., 92M/4375; N Rockall Trough, Darwin complex, Tertiary igneous centre, seismic data, gravity modelling, 92M/3408; Australia, Victoria, Tertiary, effects of weathering on REE, Y, Ba abundances in, 92M/2931; Western Australia, Kambalda, tr. elem. geochem., 92M/3045; Burundi, weathering products 92M/3800; Cameroon, olivine phenocrysts in, implications for primary magma compn., 92M/3234; Canada, British Columbia, Cassiar, Total Erickson Gold mine, carbonate alteration in, 92M/0286; Quebec, Calumet mine, Grenville Province, Elzevir Terrain, metamorphosed boninitic, and cryptic volcanic stratigr., 92M/4955; Quebec, Noranda, Horne mine, hydrothermally altered. 92M/0283; Northwest Territories, Anderson

Plains, Copper mine, geochem., seismic stratigraphic setting, 92M/0668; China, Hainan, Sr, Nd, Pb isotopic compns., implication for subcontinental lithosphere Dupal source, 92M/3032; S China Basin, Hainan Is., post-spreading Quaternary, 92M/4388; Costa Rica, Poás volcano, -andesite relationship, petrogenesis in magmatic arc, 92M/3508; Denmark, Faeroe Is., Tertiary dykes, sills, 92M/4781; Greenland, Skaergaard, magmahydrothermal system, porosity evolution, fluid flow in, 92M/4904; Iceland, maghemite in, min. data, 92M/4642; India, Bombay, chem. weathering of, control on heavy metal contamination in soils, 92M/1525; Indian Ocean, Carlsberg Ridge, petrogr., chem., 92M/3027; Southeast Indian Ridge, geochem., 92M/3028; Kenya, E African Rift, secular variation of chem., evidence for pulsing of asthenospheric upwelling, 92M/0645; Madagascar, tracking oceanic, continental sources, Norway, 92M/0644: Caledonides, Solund-Stavfjord ophiolite, FeTi-poor, FeTi-rich, relationship, genesis, 92M/4356; Easter Island microplate, Pacific, 92M/1762; Melanesian geochem., Borderland, Wallis Is., geochem., evidence for lithospheric origin, 92M/0659; N Fiji Basin, back-arc basin, petrol., tectonic setting, formation, 92M/2114; Rurutu island and Sasha seamount, Pb isotopic compn., sample contamination, 92M/1758; Pacific, Woodlark Basin, submarine, abundances of volatiles, genetic relationships, 92M/0664; Philippines, Luzon, Mt Pinatubo, trigger for 1991 eruptions, 92M/4845; Spain, Canary Islands, Lanzarote, olivine growth rate in, Nubian Desert, 92M/3436; Sudan, Cretaceous-Tertiary, K-Ar ages, Sr-isotopic compns., chem., 92M/3022; USA, Alaska, Aleutian arc, Seguam volcanic centre, closed-system fractional crystallization of, 92M/4400; California, Big Pine volcanic field, alkali-olivine, inverse modelling of, melting in lithospheric mantle, 92M/1776; California, Medicine Lake volcano, primitive high-alumina, high P phase relations, 92M/1538; Hawaii, evolution, hotspot melting model, 92M/1068; indicators of differentiation, partial melting, 92M/3473; Vietnam, laterite bauxite, weathering products of, 92M/3579

—, alkali, xenoliths, chem. of zircon, variations within, between large crystals from, 92M/3237; Austria, Burgenland and Styria, chem., evolution, 92M/1968; Japan, Chugoku, Cainozoic, kyanite-bearing anorthosite inclusions in, 92M/3446; Japan, Kibi-kogen, Cr-rich, Al-rich spinels in, 92M/2024; Japan, Shimane Pref., Masuda, Kawashimo, Cainozoic, ultramafic xenoliths in, 92M/3445; Thailand, Kanchanaburi, Boi Ploi, weathered, sapphire in, 92M/4162; USA, Hawaii, Kahoolawe Is., ages, REE enrichment, petrogenesis, 92M/4396

— dykes, *Pakistan, Kohistan, Jutal*, Cretaceous, field relations, geochem., petrogenesis, 92M/3025

 eruptions, *Iceland*, present-day, evaluation of oxidizing-reducing condns. of, 92M/2996

- —, flood, Australia, Pilbara craton, and South Africa, Kaapvaal craton, late Archaean, comparative study of geochem., isotopic systematics of, 92M/3043; SE Australia, Mesozoic Gondwana low-Ti, petrogenesis, 92M/1752
- glass, natural, importance of microbiol. activity in alteration of, 92M/4351; REE behaviour in low-T weathering, 92M/0523; Pacific, noble gases in, constraints on early history of Earth, 92M/4286
- intrusions, in buried spreading centre, numerical simulations of hydrothermal circulation resulting from, 92M/1218; Mexico, Gulf of California, Guaymas basin, and heat flow, hydrothermal circulation, 92M/2352; Central Oman Mts, Tertiary, petrol., 92M/3541
- —, ocean island, origin of end-member compns., tr. elem., isotopic constraints, 92M/0607
- —, ocean ridge (MORB), and islands, arcs, mantle sources, Hf-isotope connection, 92M/0606; exptl. phase petrol., 92M/2236; lab.albitization of, 92M/1562; Mid-Atlantic Ridge, 10° to 17°N, Sr-Nd-Pb geochem. morphol., new MORB isotope signature, 92M/2998; Indian Ocean, SW Indian Ridge, anomalous K-enriched, petrogenesis, 92M/4383; Pacific, Juan de Fuca and Gorda ridges, geochronol., petrogenesis, 92M/2427
- —, oceanic, back-arc basins, petrol., 92M/2240; compn., petrogenesis, (book), 92M/1332; history of research, ophiolite model, 92M/2231; I abundances in, implications for Farth dynamics, 92M/4349; mineralogy, crystallization, 92M/2235; ocean floor surveying, sampling, 92M/2232; stable, noble gas isotopes, 92M/2244; *Indian Ocean*, ocean crust, petrol., 92M/2242; *Pacific*, ocean crust, petrol., 92M/2241
- -, tholeiite, olivine growth rates in, exptl. study of melt inclusions in plagioclase, 92M/4088; Antarctica, Ferrar group, Mesozoic, petrol., 92M/4707; Canada, Quebec, Calumet mine, Grenville Province, Elzevir Terrain, arc, and cryptic volcanic stratigr., 92M/4955; Ontario, Keweenawan Osler group, crustal contamination in, tr. elem. perspective, 92M/1764; Japan, Oita Pref., Yabakei dist., primitive, geochem., 92M/3040; Morocco, early Mesozoic, geochem., geochronol., 92M/4374; Sweden, Bergslagen, Proterozoic continental, geodynamic inferences, 92M/1719, Nd, Sr isotopic variations, implications from Sm-Nd systematics for Svecofennian sub-continental mantle, 92M/1718, petrol., geochem. petrogenesis, geotectonic setting, 92M/1717; Switzerland, Lake Emosson/ Aiguilles Rouges, of Palaeozoic rift zone, 92M/1808; USA, Hawaii, petrogenesis, dynamic melt segregation, 92M/4824, phase equilibria, 92M/4823; Kahoolawe Is., ages, REE enrichment, petrogenesis, 92M/4396; Hawaii, Mauna Loa and Kilauea, with low 'ferromagnesian-fractionated' 100 Mg/(Mg + Fe²⁺) ratios, poss. primary liquids from upper mantle, 92M/1760

- —, dykes, Brazil, Ceará-Mirim, K/Ar age, palaeomagnetism, petrol., Sr-Nd isotope characteristics, evidence of magmatic activity related to Jurassic, Cretaceous rifting, 92M/4425; Canada, New Brunswick, Palaeozoic, poss. evidence for early opening of ensialic Taconian back-arc basin, 92M/3056; Guiana, Amazon craton, unmetamorphosed Proterozoic, evolution of basaltic magmatism, 92M/4743; Seychelles, original spatial extent of Deccan, 92M/2178
- —, magma v. magma, tholeiite
- —, melts v. melts, tholeiitic
- -- pantellerite suite, C2/c clinopyroxenes from, influence of magma compn., O fugacity on crystal struct., 92M/1396
- --sea-water interactions, metamorphic, hydrothermal processes, 92M/2238
- Basaltic lava v. lava, basaltic
- magma v. magma, basaltic
- magmatism v. magmatism, basaltic
- melts v. melts, basaltic
- rocks, China, Cainozoic, petrol., chem. compn., 92M/0651; Korea, Pohang-Yangnam, major, minor elem. compns., Sr, Nd isotope ratios, 92M/0656
- Basement-cover relationships, *Norway, Troms, Vanna*, discussion, 92M/1127, reply, 92M/1128
- Basic dyke swarms, Canadian shield, Proterozoic, magma flow directions in, estimated using anisotropy of magnetic susceptibility data, 92M/4739, palaeomagmatism, 92M/4738; India, Karimnagar, Proterozoic, geochem., palaeomagnetic studies, 92M/4751; Scotland, Scourie, Lewisian complex, Proterozoic, separation of, by structl.relationships, 92M/4764; South America, Amazonian craton, Proterozoic, tectonic evolution based on Rb-Sr, K-Ar, 40Ar/39Ar geochronol., 92M/4744; Sweden, Caledonides, Sarek Mts, Seve Nappe Complex, of Baltica-Iapetus transition, 92M/4783; S, central Sweden, Proterozoic, geochem., genesis, geotectonic setting, 92M/4785
- dykes, emplacement mechanisms, (book), 92M/3775; Antarctica, Dronning Maud Land, Mesozoic, geochem., 92M/0663; Antarctica, Vestfold Hills, difficulties of dating, 92M/2425; South Australia, S Adelaide foldbelt, tectonic setting, 92M/4754; Greenland, Precambrian, petrol., 92M/4762; SW India, Phanerozoic, from high grade terrain, K-Ar isotope, geochem.implications, 92M/4750; Nigeria, Precambrian basement, petrol., 92M/4745; Sweden, Proterozoic, geochem., 92M/4359; Swiss/Italian border, Bergell pluton, mineralogy, geochem., products of magma mingling, 92M/3012; USA, California, Peninsula Ranges batholith, Bernasconi pluton, basic enclaves, and host granitic rocks, field, mineralogical, microtextural relationships hetween 92M/4760; New York, Adirondack Mts. geochem., implications for late Proterozoic continental riftings, 92M/4408
- intrusions, Scotland, Iona, Lewisian complex, Precambrian deformed, petrol.,
 92M/4765; Sri Lanka, layered, deformed, metamorphosed in granulite facies,

- 92M/3443; Zaïre, Marungu plateau, Proterozoic, petrol., geochem., 92M/4746
- magmatism v. magmatism, basic
- melts v. melts, basic
- rocks, alkaline, CaO-MgO-Al₂O₃—SiO₂-Na₂O at 1 bar from low to high Na₂O contents, topology of analogue for, 92M/4069; Canada, Quebec, Grenville Front, disequilibrium melting, rate of melt-residuum separation during migmatization of, 92M/1021; Japan, Kinki and Setouchi, Ryoke Belt, petrogenesis, 92M/4815; USA, New York, Adirondack Highlands, petrol., geochem., 92M/4409
- xenoliths, Spain, Canary Islands, Hierro, fluid, silicate glass inclusions in, implications for mantle metasomatism, 92M/0992
- -ultrabasic rocks, Finland, Norway, Raisduoddar-Halti area, in Caledonides, petrogr., mineralogy, geochem., 92M/2139; Greenland, Nagssugtoqidian mobile belt, Proterozoic, with eclogitic relics, 92M/1125; Pakistan, Indus Suture Zone, review, 92M/0928; Kohistan, Chilas, oxide phases, min. chem., 92M/0954; Portugal, Alentejo, Alter do Chão, geochem., 92M/4366; Switzerland, Helvetic domain, markers of ophiolitic pre-Variscan sutures, 92M/2291
- Bassanite, England, Dorset, Lyme Regis, in Lower Lias rocks, occurrence, 92M/4991
- Bastnäsite, economic occurrences, 92M/0293; petrogenetic grid for *REE* fluorcarbonates, assoc. mins., 92M/4148; *Argentina, Las Chacras Batholith, Rodeo de Los Molles*, in *REE*, Th deposit, fluid inclusion studies, comment, 92M/0603, reply, 92M/0604; *Vietnam, Dong Pao*, 92M/2729
- Batholiths, India, Jammu and Kashmir, Ladakh, petrol., geochem., role in evolution of magmatic arc, 92M/0932; Pakistan, Kohistan, petrol., chronol., structl., geochem. review, relationship to regional tectonics, 92M/0926
- Bauxite, uplift type, coastal platform type, examples, 92M/2674; Albania, min. resources, 92M/3978; Western Australia, Darling Range, geochem., min. characteristics, 92M/0694; Fiji, geol. evolution, min. deposits, 92M/2102; Iberian Peninsula, geochem., 92M/1788; Spain, karstic, geochem., 92M/1789; Vietnam, laterite, weathering products of basalt, petrol., 92M/3579
- Bavenite, Germany, Bayerischen Wald, occurrence, 92M/4997; Poland, Strzegom, from pegmatite, 92M/4617
- Bayerite, metastability in near-surface rocks of mins. in system Al₂O₃-SiO₂-H₂O, 92M/0184; stability of synthetic protophyllosilicate allophane relative to, 92M/0463; Argentine Is., Faraday Base, Al hydroxide polymorphs in waste deposit, 92M/4651
- Bayldonite, England, Cornwall, Penberthy Croft, and assoc.mins., 92M/1223; Cornwall, St Hilary, Penberthy Croft mine, occurrence, 92M/1222
- Beaverite, England, Cornwall, Penberthy Croft, occurrence, 92M/1223 Beidellite v. clay minerals

- Belendorffite, new Cu amalgam dimorphous with kolymite, 92M/4673
- BELGIUM, Devonian sedimentary rock, REE compn., ICP-AES, 92M/2480; Campine Basin, Poederler borehole, vein cements, geochem. evolution of subsurface fluids in Visean, 92M/1822; Givonne, lower Palaeozoic metasedimentary rocks, petrol., 92M/1135
- Benitoite, gem min., detn. of dispersion using refractometer, 92M/4190
- Benjaminite, *Bulgaria*, *Ardino*, in polymetallic deposit, 92M/0866
- acid-activated, pore struct., Bentonite, adsorption props., 92M/0165; formation of, mass balance effects, 92M/2557; influence of microstruct.on firing colour of clays, 92M/2558; of different organophilicitites, adsorption of Zn, Ni ions, phenol, diethylketones by, 92M/1344; organophilic, adsorption of organic compounds on, 92M/0164; Argentina, effect of physicochem., min. props. on Na₂CO₃ activation of, 92M/1337; British Isles, Southern Uplands-Down-Longford terrain, Silurian, chemostratigr., K-Ar ages, illitization, 92M/0173; China, ion microprobe dating of zircon in, age of Permian-Triassic boundary, 92M/1243; Germany, Bavaria, from molasse, anals., 92M/3795; Spain, Cabo de Gata, derivation, 92M/2580; Switzerland, Alps, Schlieren flysch, Palaeocene, fission track and nannofossil ages, 92M/1260; USA, Kentucky, Ohio, Lexington limestone, Point Pleasant fm., impure K-, 92M/2578; Wyoming, acid-treated, thermogravimetric study of desorption of cyclohexyl-amine, pyridine from, 92M/2553; Yemen, Hadramawt Province, Gayl Bawazir, min. study, 92M/2595
- -- laponite mixtures, P-induced cation exchange in, 92M/1346
- Berlinite, Czech Republic, Zlaté Hory, from sulphide ore deposit, min. data, 92M/2063
- Berryite, *Bulgaria, Jambol dist.*, new data on Bi sulphosalts, 92M/0868; *Germany, Schwarzwald, Rippoldsau*, occurrence, 92M/1230
- Berthierine, Spain, in flysch, 92M/1363
- Berthierite, crystal struct., 92M/0251; Czech Republic, Bohemia, Slaný mining area, occurrence, 92M/3689
- Bertrandite, Czech Republic, Moravia, Věžná, pseudomorphs of, after beryl, 92M/1961; Italy, Val Vigezzo, X-ray structl. refinement, 92M/3822
- Beryl, Austria, Salzburg, Pinzgau, Felbertal. occurrence, 92M/3696; Czech Republic. Kracovice, in pegmatite, 92M/2716; Moravia, Věžná, pseudomorphs of bertrandite, epididymite after, 92M/1961; Czech Republic, Skály, blue, rich in Mg. Fe. 92M/1624; Nigeria, gem notes, 92M/4194; Poland, Strzegom-Sobótka massif, in pegmatite in two-mica granite, 92M/0996; Sweden, Nynäshamn, Stora Vika, assoc. with zincian helvite in pegmatite, 92M/2003; Ukraine, Wolynia, occurrence, 92M/2376; USA, Utah, red, genesis, growth. 92M/0817

- —, aquamarine, *Brazil*, geol., mineralogy, 92M/1629; *Pakistan, Karakoram*, occurrence, 92M/2378
 - -, emerald, applicability of structl. features for distinction of natural from flux-grown, hydrothermally-grown synthetic, 92M/0516; fracture filling, Opticon and traditional 'oils', 92M/1619; porphyroblast textural sector zoning, matrix displacement, 92M/1123; radioactive glass imitation, 92M/4159; world deposits, geol., review, 92M/4188; Austria, Habachtal, occurrence, descriptn., 92M/1622; Habachtal, and South Africa, Transvaal, Leydsdorp, during mineralization metamorphism, 92M/3250; Tauern Window, Habachtal, fluid inclusions in, evolution of metamorphic fluids in shear 92M/0549; Brazil, Bahia, Campo Formoso and Carnaiba, assoc. with phlogopite, 92M/4160; Colombia, chem. compn., 92M/4157; descriptn., 92M/0515; fracture filling with oils, 92M/1623; Colombia, Cordillera Oriental, geol., 92M/4158; inclusions, implications, Madagascar, 92M/0514; Nigeria, anals., 92M/4156; Nigeria, Jos Plateau, gem quality, from pegmatite, 92M/1621; Pakistan, gem characteristics, 92M/4184; geol., 92M/4183; geol., gemmology, genesis, (book), 92M/3771; geol.setting, 92M/4182; origin, classification, 92M/4189; Karakoram, occurrence, 92M/2378; Pakistan and Afghanistan, and host rocks, regional chem. differences among, implications for origin, 92M/4185, fluid inclusion geochem., 92M/4187, min. chem., electron microprobe study, 92M/4186; Russian Federation, Urals, occurence, 92M/4155; Ural Mts, anals., 92M/1620
- Beryllium isotopes, ¹⁰Be, *Antarctica*, cosmic ray produced, in rocks, exposure, erosion history, 92M/0528
- Beryllonite, dielectric constants of, oxide additivity rule, 92M/4989
- Betafite v. pyrochlore
- Betekhtinite, USA, New Mexico, Chloride mining dist., St. Cloud and U.S. Treasury mines, geol., geochem. anal. of mineralizing fluids. 92M/3169
- Beudantite, Austria, Styria, Öblarn, occurrence, 92M/3695; Western Australia, Ashburton Downs, assoc. with ashburtonite, new bicarbonate-silicate min., 92M/3327
- Billingsleyite, revised unit-cell dimensions, space group, chem.formula, 92M/2628
- Biogeochemical mapping, at low sample density, assessment of, 92M/1913
- Biogeochemistry, of hot spring envts., apolar, polar lipids in biologically active layers of cyanobacterial mat, 92M/4535; USA, Wyoming, Yellowstone, of hot spring envts., lipid compns. of cyanobacterial, Chloroflexus mats, 92M/4534
- Bioherms, *China, Wumishan fm.*, Proterozoic, origin, order of cyclic growth patterns in, 92M/2385
- Biopyribole, characterization of polysomatism in, double-triple-chain lamellar intergrowths, 92M/3828; stability relationships, energy calculations, 92M/0228
- Biotite v. mica

- Birnessite, in marine hydrothermal sediments, scanning tunneling microscopy, 92M/3580; precipitation during transformation of akaganéite into goethite and hematite in presence of Mn, 92M/0492; Germany, Hesse, Giessen, in Mn ore, 92M/3989; Pacific, Lau and North Fiji Basins, hydrothermal mineralization, 92M/2115
- Bismuth, detn. in geol. materials by flame AAS using selective extraction technique, 92M/2483; China, Hebei, Caijiaying Pb-Zn-Ag deposit, min. characteristics, occurrence, 92M/0356; Germany, Wittichen, occurrence, 92M/4998; Sweden, Bergslagen, Tunaberg Cu-Co deposit, assoc. with Mn, Cd-bearing tetrahedrite, 92M/3309
- minerals, Bulgaria, Ardino, in polymetallic deposit, 92M/0866
- —, native, Czech Republic, Příbram, Bohutín, assoc. with krupkaite, min. data, 92M/2045; Sweden, Bergslagen, Boviksgruvan, in sulphide deposit, 92M/2707; Turkey, Anatolia, in Pb-Zn deposits, 92M/2718
- Bismuthinite, Tl, Au, exptl. contributions to mineralogy, geochem., crustal chem., 92M/2885; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Canada, New Brunswick, Mount Pleasant, fluid evolution, mineralization in subvolcanic granite stock, 92M/0373
- --- stibnite solid solution, Peru, Julcani, compositional variations in, evolution of ore system, 92M/2991
- Bismutoferrite, England, Cumbria, Buckbarrow Beck, assoc. with russellite, 92M/3677

Bitumen v. hydrocarbons

Bityite v. mica

- Bixbyite, USA, Utah, inclusions in red beryl, 92M/0817
- BLACK SEA, enrichment in saturated compounds of interfacial sediments, 92M/0759; geochem. of Re, Os in recent sediments, 92M/4441; novel pyropheophorbide steryl esters in sediments, 92M/0760; redox cycling of *REE* in suboxic zone, 92M/4478; relationships between S, organic C, Fe in modern sediments, 92M/1792
- Blende, marmatite, China, Hebei, Catijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356
- Blixite, secondary min. formation in PbO-H₂O-HCl system, 92M/2911
- Blödite, ground-water control of evaporite deposition, 92M/2773
- Blueschist, epidote-, phase relations, 92M/1118; Canada, British Columbia, Pinchi Lake, howieite in, 92M/3265; Greece, Cyclades, Sifnos, cooling during exhumation of, 92M/4941; Greece, Dodecanese, Arki Is., aragonite-bearing, 92M/4940; USA, California, Franciscan Complex, sediment-derived fluids in subduction zones, isotopic evidence from veins in, 92M/3110

Blueschist facies v. metamorphic facies

Boehmite, formation of organic derivatives by reaction of gibbsite with glycols, arninoalcohols, 92M/0495; metastability in near-surface rocks of mins. in system

- Al₂O₃-SiO₂-H₂O, 92M/0184; related species, phases in system Al-H-O, thermodynamic props., 92M/0497; synthesis, characterization, 92M/0498
- Bogdanovite, revised unit-cell dimensions, space group, chem. formula, 92M/2628
- Boleite, crystal struct. of pseudoboleite, relations with structs.of, 92M/3853
- BOLIVIA, Chiquitos supergroup, Cambrian, BIF, Mn formations, 92M/4003; Sn, Ag, Au Pt deposits, min. resource potential, 92M/1444; Andes, magmatic processes in titanite-bearing dacites, 92M/1025; regional Sn distribn., 92M/2984; Central Altiplano, Uyuni and Coipasa, Quaternary geochem. evolution of salars, 92M/0704; 'Eastern Cordillera', Lower Palaeozoic Au occurrences, 92M/3869
- Boninite dyke, *Pacific, New Caledonia*, glassy four-pyroxene, overgrowth textures, disequilibrium zoning, cooling history, 92M/4816
- lava v. lava, boninite
- Boracite, Germany, Saxony, Lüneberg, occurrence, 92M/5000
- BORNEO, Pt-group mins. in chromitites in ultramafic intrusions, assoc.placers, Os isotope study, 92M/4334
- Bornite, Asia, assoc. with roquesite, 92M/4656; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Czech Republic, Horní Slavkov, Huber stock, min. data, 92M/2041, wittichenite inclusions in, min. data, 92M/2041; Czech Republic, Příbram, Vrančice, Pošepný vein, occurrence, min. data, 92M/2040; England, Warwickshire, Judkins Quarry, occurrence, 92M/2358; India, Malanjkhand, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336; USA, Minnesota, Duluth Complex, Babbitt deposit, assoc. with Cu-Ni mineralization, 92M/0375; New Mexico, Chloride mining dist., St. Cloud and U.S. Treasury mines, geol., geochem. anal. of mineralizing fluids, 92M/3169; North Carolina, Virgilina district, in Cu-bearing vein deposits, 92M/2741; Oklahoma, Paoli, in Ag-Cu deposit, ore microscopy, 92M/0314; Zimbabwe, Dalny mine, fluid-rock interaction, Au deposition in Archaean shear zone, 92M/3889

Boromuscovite v. mica

- Boron, detn. of tr. amounts of, from single Na carbonate fusion of small geol. samples, 92M/2455; in modern biogenic carbonate, coprecipitation, isotopic fractionation of, 92M/1675; in wastewater from ceramic tile industry, removal, 92M/1514; precise B isotopic anal.of natural rock samples using B-mannitol complex, 92M/3767
- deposit, China, Zhejiang, Changxing, Heping, geol., genesis, 92M/0365
- Borosilicate nuclear glass, corrosion of, effect of pH on dissolution mechanism, 92M/2837
- BOSNIA, tobermorite in serpentine zone, min. data, 92M/2010; *Dinarides*, magnesite deposits assoc. with Alpine-type ultramafic rocks, stable isotope study, 92M/0552; *Doboj*, basic volcanic rocks, petrogr., 92M/2226

- BOTSWANA, Motloutse Complex and Zimbabwe Craton/Limpopo Belt transition, Archaean, petrol., 92M/1172; Okavango Delta swamp, groundwater evolution, chem. sedimentation, carbonate brine formation, 92M/3116; Vumba schist belt, mineralization in relation to metamorphism, 92M/3882
- Boulangerite, chem. compn., 92M/2044; Tl, Au, exptl. contributions to mineralogy, geochem., crustal chem., 92M/2885; Bulgaria, Kanala, Sb sulphosalt, min. data, 92M/2043
- Bournonite, chem. compn., 92M/2044; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567
- Boussingaultite, Bohemia, Kladno, calcium acetate, occurrence, 92M/2059; Germany, Hartz Mts, occurrence, 92M/1225
- Bowieite, sulrhodite discredited in favour of, min. nomenclature, 92M/3306
- Brandtite, Czech Republic, Bohemia, Příbram, Vrančice, occurrence, min. data, 92M/2028
- Braunite, Germany, Black Forest, Eisenbach, K-Ar dating, age of ore emplacement, 92M/1255; Thuringia, Ilmenau, Oehrenstock, occurrence, 92M/2365; Italy, Maritime Alps, Internal Brianconnais, in Mn-ores from Jurassic meta-arenites, marbles, 92M/4644; Switzerland, Grisons, Falotta, occurrence, min. data, 92M/3275; USA, California, Franciscan Complex, in microbanded Mn formations, 92M/0602; New York, Fowler, assoc. with edenite in Grenville marble, 92M/1977
- BRAZIL, aquamarine deposits, geol., mineralogy, 92M/1629; Archaean. Proterozoic strata-bound tourmalinites, potential Au deposits, 92M/3886; Au deposits, economics, geol., geochem., genesis, (book), 92M/3769; Au deposits, shear zone relationships in Precambrian, 92M/3873; Au-bearing iron duricrust, 92M/3196; comparison of dissolved humic substances from sea-water with Amazon River counterparts by spectrometry, 92M/4547; compn., origin of clay cover on laterites, 92M/2597; Precambrian Sn-bearing continental-type acid magmatism, U-Pb dating, 92M/1309; central, Au deposit types, economic significance, distribn., 92M/3879; Amapá and Jari, Mesozoic dyke swarms, geochem., plume-related magmatism during opening of central Atlantic, 92M/4735; Amazon craton. Cumaru. mesothermal granodiorite-hosted Au mineralization, 92M/3933; Bahia, geochem.evolution of laterite from semiarid areas, 92M/1905; Bahia, Campo Formoso and Carnaiba, phlogopite assoc. with emerald, 92M/4160; Carajas, lateritic Au deposit, Ag-Pd alloy from, 92M/3290; Fazenda Brasileiro, Au deposit, geol., hydrothermal alteration, fluid inclusion studies, 92M/2749; greenstonehosted Au deposit, statistical assessment of geochem. alteration surrounding, 92M/3892; structl., lithol. controls on Au deposition in shear zone-hosted mine, 92M/2750; Bahia, Fazenda Maria Preta, Au deposit, kinematic study, metallogenic implications, 92M/3948; role

carbonaceous shear bands in fluid-flow and Au precipitation, 92M/3890; Gentio do Ouro, precipitation, concentration of Au in colluvial soils in semiarid region, 92M/3900; Iramaia sheet, geochem. prospecting for V, Cr, 92M/1877; Itiúba, syenite, min., geochem., petrol., relation to genesis of rapakivi magmatism, 92M/0895; Lagoa Real, U deposits, metamorphism, metasomatism, mineralization, 92M/2751; Bahia, Rio Itapicuru greenstone belt, Medium Itapicuru, Au deposits, economic geol., structl. controls of orebodies, 92M/3944; Borborema, Orós belt, geochronol., geodynamic evolution, 92M/2439; Carajas, Au distribn., mobility in surficial envt., 92M/1889; Carajás, Salobo, relationship of Cu with hydrous ferric oxides, 92M/0315; Ceará-Mirim, evidence of magmatic activity related to Jurassic, Cretaceous rifting, K/Ar age, palaeomagnetism, petrol., Sr-Nd isotope characteristics, 92M/4425; Chapada, Cu-Au deposit, hydrothermal exhalative origin for, 92M/3884; Córrego do Sítio, Au deposit, geol., 92M/3973; Crixas, Brazil Au mineralization, poss. Brasilino cycle age, 92M/2754; Crixás greenstone belt, Córrego Geral sector, controls of Au mineralization, 92M/3955; Cuiaba, Au-ore deposition-rock deformation-ore fluid chem. relationship in quartz veins, 92M/3898; Diadema shear belt, Au mineralization, alteration mineralogy, chem., 92M/2981; Dona Ines Pluton, evolution of heterogeneous, continentally derived granite, 92M/1779; Gerais, Raposos mine, wall rocks, BIF-host rock to Au mineralization, petrol., geochem., 92M/3914; Goiás, Cavalcante, Pt-group mins. assoc. with Au, 92M/3905; Mara Roas, Posse deposit, Stone Line, laterite, Au grains, grade distribn., morphol., 92M/3959; Maria Lázara, Archaean Au deposit, example of Au-Bi-Te-S metallogeny related to shear zones intruded by synkinematic granite, 92M/3906; Niquelandia, lateritic weathering pyroxenites, supergene behavior of Ni, 92M/2983; Goiás, Santa Rita prospect, hydrothermal Au deposits hosted by middle to upper Proterozoic carbonate sequence, 92M/3899; Iron Quadrangle, Au mineralization, 92M/3871; Jacupiranga alkaline complex, chlorite, silcrete formation above serpentinized dunite, palaeoclimatic implication for laterite genesis, 92M/0202; titanian clinohumite in carbonatites, min. chem., 92M/4606; Maicuru, alkaline-ultramafic-carbonatite complex, geochem.exploration, 92M/1894; Mara Rosa, volcano-sedimentary sequence and assoc. Au mineralization, 92M/3883; Minas Gerais, gneiss, granulite facies terrains, geochem., 92M/1815; Minas Gerais, Abre Campo-Jequeri quadrangle, metamorphic terrains metamorphism, high-grade, 92M/3663; Bambui group, S. Pb isotope geochem. of galena, implications for ore genesis, 92M/4347; Gandarela syncline, Moeda fm., Archaean, Proterozoic Au placers, 92M/3925; Gandarela syncline, Moeda fm., Proterozoic Au placers,

92M/2703; Minas Gerais, Iron Quadrangle, black Pd Au, anals., 92M/3910; Nova Lima group, textures, processes of hydrothermal alteration, mineralization, 92M/3896; Ouro Fino, Au deposit, geol., 92M/3923; Paracatú, Morro do Ouro, Au deposit, lithostructl. control, 92M/3952; Pitangui, Au mineralization, geol., 92M/3937; mine-Patos de Minas, Rocinha evolution phosphorites, genesis, of Proterozoic deposit tectonized by Brasiliano orogeny, 92M/4027; Minas Gerais, São Gonçalo do Sapucaí, Andrelândia group, Au mineralization, petrol. of Proterozoic host rocks, 92M/3912; Morro do Ferro greenstone belt, O'Toole, Ni deposit, geol., 92M/2752; O'Toole, Ni-Cu-Co deposit, Pt-group mins. in, 92M/2753; Ouro Fino syncline, Au mobility during hydrothermal, supergene alteration of BIF, 92M/3960; Pará, Curionopois, Serra Verde, malachite, mineable deposit, 92M/1635; Pará, Gurupi belt, Cachoeira, Au deposit, geol., struct., 92M/3880; Paraiha. mineralization, Espinharas, geochem. of albitization and related U mineralization, 92M/1902; Paraíba, São José de Batalha, origin of colour in cuprian elbaite, 92M/3253; Paraná, Iguaraçu H5 chondrite, fall, 1977, 92M/1922; Passa Tres granite, porphyrytype Au deposits, geol., 92M/3930; Pitinga cryolite-tin-bearing mine, granites, geochem. characteristics, 92M/1896; Potiguar basin, Cretaceous sandstone reservoirs, lacustrine deltaic, turbiditic, diagenesis, microscopic heterogeneity, 92M/2259; Quadrilátero Ferrífero, genesis of Au, 92M/3857; Ouadrilatero Ferrifero, Ouro Fino syncline, Moeda, placer Au deposits, geol., 92M/3940; Rio das Velhas greenstone belt, Mateus Leme-Pitangui hydrothermal zone, fossil hot spring system, 92M/3874; Rio das Velhas greenstone belt, Tinguá, Au mineralization, litho-structl. control, geometry, geothermometry, 92M/3936; Rio de Janeiro, Tanguá deposit, fluid, solid inclusion studies in fluorite, constraints on hydrothermal solutions, 92M/2982; Rio Grande Do Sul, Parana Basin, zeolite distribn. in lavas, 92M/2005; Rio Grande do Sul, Passo Feio, amphibolite metamorphism, min. chem., 92M/2319; Rio Itapicuru, greenstone belt, geol., Au mineralization, 92M/3859; São Francisco craton, early Proterozoic crustal evolution, 92M/2076; São Paulo, Proterozoic granitic magmatism, petrol., 92M/0898; Tocantins, Pontal, Au quartz vein, mineralogy, 92M/3938 Breccia, USA, Georgia, Appalachians,

Breccia, USA, Georgia, Appalachians, Towaliga Fault, development of interlaced mylonites, cataclasites, breccias, 92M/1196

— pipes, Australia, Queensland, Kidston, Au-bearing, geol., fluid inclusion, stable isotope studies, 92M/0573; Chile, Inca de Or'o, San Pedro de Cachijuyo, formation of, 92M/3463

Breithauptite, Norway. Sulitjelma ore field, occurrence, 92M/4006; in massive sulphides, 92M/4005

Breunnerite v. magnesite

Brine, chloride, concentrated, measurement of H, O isotopic compns., 92M/1654; hot flow of, in cracks, and formation of ore deposits, 92M/2655; influence of brine-hydrocarbon interactions on FT-IR microspectroscopic anals. of intracrystalline fluid inclusions, 92M/4257; marine-derived, C geochem. of, ¹³C depletions due to intense photosynthesis, 92M/4442; time-dependent Soret transport, applications to, 92M/4288; Ridge, Oceanographer Mid-Atlantic Transform, Ca-rich, and hydrothermal fluids in fluid inclusions from plutonic rocks, 92M/4248; Australia, Victoria, Tyrrell, acid, geochem., 92M/4486; tr.-metal geochem., 92M/4490; China, Qinghai, Da Qaidam Lake, B isotopic compn., 92M/4302; *India, Kharaghoda*, shallow, Ra isotopes, ²²²Rn in, 92M/1825; Israel, Dead Sea, and assoc. hot springs, B isotope geochem. as tracer for evolution, 92M/0733

Britholite, Argentina, Las Chacras Batholith, Rodeo de Los Molles, in REE, Th deposit, fluid inclusion studies, reply, 92M/0604

BRITISH ISLES, supplementary list of mins., 92M/4990; Southern Uplands-Down-Longford terrain, Silurian bentonites, chemostratigr., K-Ar ages, illitization, 92M/0173

Brochantite, Western Australia, Ashburton Downs, assoc. with ashburtonite, new bicarbonate-silicate min., 92M/3327; France, Var, Cap Garonne, assoc with new min., geminite, 92M/2070; Germany, Frankfurt, occurrence, 92M/3680; Japan, Gifu Pref., Unuma, in siliceous sedimentary rocks, min. data, 92M/3302

Brockite, Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; Bohemia, assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061

Bronzite v. pyroxene

Brookite, *India, Andhra Pradesh*, in granitic soils, 92M/1499; *Wales, Clwyd, Glyn Ceiriog, Hendre quarry*, occurrence, 92M/2360

Brucite, Hartree-Fock band struct., equation of state, *P*-induced H bonding in, 92M/2635; *Tuvalu*, occurrence, 92M/0580

Brushite, *Italy, Apulia*, from caves, new min. data, 92M/3324

Bukovskyite, Germany, Saxony, Czech Republic, mins. of mine dumps, 92M/3687

BULGARIA, stolzite in quartz-scheelite veins, 92M/0859; S, metamorphic, igneous rocks, Rb/Sr, K/Ar geochronol. studies, 92M/0028; Ardino, Ag, Bi, Te mins. in polymetallic deposit, 92M/0866; Jambol dist., Bakadžik, new data on Bi sulphosalts, 92M/0868; Kanala, boulangerite, Sb sulphosalt, min.data, 92M/2043; Kremikovtsi deposit, chalcophanite, min. data, 92M/2026; Madam, Gradishte, chalcopyrite whiskers, data, 92M/3305; min. Rhodopes, geochem., metaeclogites. 92M/0718; Pt-group mins. in chromitites, 92M/0345; Central Rhodopes, K-feldspar metamorphic complex, structl. state, geochem. characteristics, 92M/1993; E Rhodopes, electron paramagnetic resonance of perlite, 92M/2346; primary baryte in high-K dacite, 92M/3432; E Rhodopes, Zvezdel-Pčelojad ore field, sulphosalts, min.data, 92M/0864; Rila Mtn, diopside in skarns, min. data, 92M/0819; Sredna Gora Mt, hypogene sulphate-sulphide zoning in Cu-pyrite deposit, 92M/0346; Srednogorie. formation nature. physicochem. anal. of min. parageneses in metasomatic zones of acid leaching, 92M/2263; Stanke Dimitrov, Djakovo, amphibole in diorite, min. data, 92M/0826; Stara Planina Mt, trigonal-trapezohedral monohydrocalcite from oxidation zone, min.data, 92M/0870; N Strandža Mt, Vâršilo pluton, petrochem. evolution of major elems. in pluton, correspondent factor anal., 92M/1732; petrogenetic significance of feldspar, 92M/1996; Zidarovo ore field, rare and precious elems., occurrence, 92M/0347

BURUNDI, weathering products of basalt, 92M/3800

Cadmium, Georgia, leached from rocks by different solutions, exptl. study, 92M/3119; Switzerland, Weiach, natural Cd-contents of Permo-Carboniferous-Mesozoic sequence in drillhole, 92M/3077; USA, Minnesota, in envt. of five cities, 92M/0399

Caesium cations, intraparticle diffusion into rock materials, 92M/0417

Cafarsite, Italy, Piemonte, Novara, Alpe Devero, occurrence, 92M/4992

Calc-alkaline magma v. magma, calc-alkaline Calc-alkaline plutonism, France, Vosges, Champ du Feu Massif, and Variscan post collision evolution, 92M/0982; Oman, in ophiolite, Sr, Nd, Pb isotopic constraints in genesis of, related to obduction process, 92M/3534

Calc-silicate minerals, USA, Idaho, Idaho batholith, prograde, retrograde fluid-rock interaction in, stable isotopic evidence, 92M/1814

Calcareous ooze, *Pacific, Lau* and *North Fiji*basins, volcanic ash, metalliferous sediments in Quaternary, 92M/2103

— rocks, comparison of methods for extraction of smectite from, by acid dissolution, 92M/3783

Calcite, application of isotopic doping techniques to evaluation of reaction kinetics, fluid/min. distribn. coefficients. exptl. study, 92M/4144; brachiopod shell, envtl., physiol. influences on isotopic, elem. compns., implications for isotopic evolution of Palaeozoic oceans, 92M/1697; δ¹³C, δ¹⁸O anal.using laser extraction system, 92M/1653; Cd²⁺ uptake by, solid-state diffusion, formation of solid-solution, XPS, LEED, AES study, 92M/4145; CO₂ emission accompanying fracture 92M/2902; Devonian abiotic marine, 18O values, 87Sr/86Sr, Sr/Mg ratios, implications for compn. of ancient sea-water, 92M/0530; dissolution of, in sea-water from 40° to 90°C at atmospheric P, 35% salinity, 92M/4143; dissolution, role of dislocations, surface morphol. in, 92M/4142; dynamic model of oscillatory zoning of tr. elems. in, double

inhibition. self-organization. 92M/4662; ferroan, appearance, distribn. in Lower Palaeozoic deep-water carbonates, 92M/3317; high P, T behaviour, Raman spectroscopic study, 92M/4147; magnesian, influence of T on stability of, 92M/2903; mass transfer model for dissolution. precipitation from solutions in turbulent motion, 92M/0506; mechanism of carbonate growth on concrete structs., C. O isotope anals., 92M/0519; mode of incorporation of Sr²⁺ in, detn. by X-ray absorption spectroscopy, 92M/4663; modern marine, Sr/Mg ratios, empirical indicators of ocean chem., precipitation rate, 92M/4315; natural, disequilibrium C, O isotope variations in, 92M/1650; O isotope thermometer calibrations, 92M/4195; O. C. isotope fractionations between CO2 and, 92M/1608; petrogenetic grid for REE fluorcarbonates, assoc. mins., 92M/4148; secondary, U-Pb dating, carbonate diagenesis, 92M/1297; solid-solution phase equilibria in aqueous solutions, system CdCO₃-CaCO₃-CO₂-H₂O, 92M/4141; sorption of divalent metals on, 92M/0507; struct., bonding envts. at calcite surface, XPS, LEED, 92M/0255; synthetic, C isotopic fractionation in, effects of T, precipitation rate, 92M/4146; twin widths, intensities as metamorphic indicators in natural low-T deformation of limestone, 92M/2053; unusual kaolinite-calcite interaction, 92M/0159; vein, and fluid inclusions, isotopic compn. of, implications for paleohydrol.systems, tectonic events, vein formation processes, 92M/4311; Argentina, Las Chacras Batholith, Rodeo de Los Molles, in REE, Th deposit, fluid inclusion studies, comment, 92M/0603; Precambrian Shield. Canadian recrystallized fracture, isotopic, chem. evolution, evidence for nature of groundwater flow in fractured rock, 92M/4304; China, Sichuan, Hongtupo, assoc. with Au deposit, 92M/3917; Czech Republic, Bohemia, Litice nad Orlici, occurrence, min. data, 92M/2030; Moravia, Trinec, assoc. with calcian strontianite, 92M/2055; England, Cumbria, Nenthead, Brownley Hill mine, assoc, with strontianite, 92M/2356; Derbyshire, Matlock Bath, Wapping mine, occurrence, 92M/2357; Germany, Bavaria, KTB pilot hole, in gneiss, 92M/0711; Saxony, veinlets in microgabbro, Carboniferous elem. migration by lateral secretion, 92M/3428; Caaschwitz, Thuringia, occurrence. Poland, formation of 92M/2364; sulphide-calcite veinlets in Kupferschiefer Cu-Ag deposits by natural hydrofracturing during basin subsidence, 92M/1463; Scotland, Highland, Ballachulish igneous complex, thermal history of mins. from study of intracrystalline processes, 92M/2162; Spain, Canary Is., Gomera, occurrence, 92M/5002; USA, California, Long Valley caldera, hydrothermal, and thermal water, rocks, Sr-isotopic comparison between, 92M/3128; Maine, Waterville limestone, from chlorite zone rocks, C, O isotope geochem., 92M/0592;

Tennessee, Elmwood, fine specimens of, 92M/3703

--- cement, central England, sparry, Jurassic, disequilibrium tr. elem. partitioning in, implications for crystal growth mechanisms during diagenesis, 92M/0869

-- mineralization, England, Derbyshire, Wall Shaft mine, electron resonance spectroscopic evidence for condns., sequence of, 92M/4661; Italy, Sicily, evolution of hydrothermal systems forming, isotope geochem., 92M/2953

— magnesite series, IR spectroscopy, 92M/3316

-- rhodochrosite series, IR spectroscopy, 92M/3316

Calcium acetate, Czech Republic, Bohemia, Kladno, occurrence, 92M/2059

Calcrete, *India*, *Maharashtra*, *Saswad-Nira* area, origin, 92M/3576

Calderas, chaotic collapse of, comment, 92M/3471, reply, 92M/3472; Canada, Ontario, Sturgeon Lake, Archaean submarine, Mattabi tuff, relationships with deposit, Mattabi massive sulphide 92M/1440; Fiji, Tavua Caldera, shoshonitic, formed by concurrent faulting, downsagging, 92M/1065; Indian Ocean, Reunion Is., Piton de la Fournaise, episodes of pit-crater collapse documented by seismology, 92M/2218; Indonesia, Sumatra, Toba, stratigr., evolution, 92M/1063; Italy, Campania-Campi Flegrei area, structl. model from gravity interpn., 92M/2200; Campi Flegrei, resurgent, mechanics, 92M/1041; structl. evolution, 92M/2199; Pantelleria and Ischia, simple-shearing block resurgence in caldera depressions, 92M/2212; Italy, Vulsini, evidence of incremental growth in, 92M/2213; Japan, Hokkaido, Toya caldera, formation, geochem., 92M/3035; Mexico, Amealco, geol., geochem., 92M/2219; Jalisco, La Primavera, applied technol. in solution of drilling problems of deep wells, 92M/2224; struct. deduced from gravity anomalies, drilling results, 92M/2223; Los Azufres, deep geothermal wells, volcanic basement stratigr. based on major-elem.anal., 92M/2221; geol., relationships with regional tectonics, 92M/2220; Mexican Volcanic Belt, Mazahua, new, field data, 92M/4864; Spain, Canary Is., Gran Canaria, Roque Nublo, new stratocone caldera, 92M/2215; Teide, ground deformation control by statistical anal. of geodetic network, 92M/2216; Canary Is., Tenerife, Las Cañadas, microgravimetric model, 92M/2217

Caledonite, Austria, Styria, Öblarn, occurrence, 92M/3695; Western Australia, Ashburton Downs, assoc. with ashburtonite, new bicarbonate-silicate min., 92M/3327; England, Cornwall, Penberthy Croft, and assoc. mins., 92M/1223

Calkinsite-(Ce), Czech Republic, Bohemia, from Cretaceous, 92M/2057

Calorimetry, differential scanning, applications to mineralogy, geosciences, 92M/2509

Calzirtite, Russian Federation, Siberia, Guli, from carbonatite, Na-rich carbonate inclusions in, 92M/2177 Camerolaite, France, Var, Cap Garonne mine, new min., 92M/3329

CAMEROON, olivine phenocrysts in basalts, implications for primary magma compn., 92M/3234; plutonic-volcanic complexes, geochem., differentiation of intermediate magma, 92M/3018; Adamaoua, Anloua, Cainozoic lacustrine basin, relationship between sediments, igneous source rocks, using clay min. multi-elem. chem., 92M/0688; Lakes Nyos, Monoun, and Germany, Laacher See, Indonesia, Dieng, Australia, Mt Gambier, CO2-rich gas, variations on common theme, 92M/1037; Lom, Proterozoic, schist, gneiss, U/Pb dating, 92M/0031

CANADA, national geochem. reconnaissance programme, 92M/3190; N, nature, timing of Franklin igneous events, implications for late Proterozoic mantle plume, breakup of Laurentia, 92M/4826; W Canada sedimentary basin, hydrogeol. model for formation of giant oil sands, errata, 92M/0739; Abitibi greenstone Archaean hydrothermal zircon, constraints on timing of Au mineralization, comment, 92M/0055, reply, 92M/3739; genesis, evidence from zircon Hf isotope anal. using single filament technique, 92M/3738; Macassa gold mine, Au-tellurides-sulphide mineralization, ore-microscopic, geochem. characteristics, 92M/2740; Abitibi Subprovince, Au metallogeny of greenstone belts, 92M/3858; Abitibi-Pontiac collision, Archaean geodynamics, implications for advection of metamorphic fluids of transpressive collisional boundaries, origin of giant quartz vein systems, 92M/4236; Gt 92M/4825; Abitibi dyke, petrol., Appalachians, clay mins. as indicators of diagenetic, anchimetamorphic grade in overthrust belt, 92M/0182; Canadian Cordillera, deformation of stratiform Zn-Pb-baryte deposits, 92M/1438; genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb, Hg deposits, 92M/1684; mesothermal Au-stibnite-quartz vein, 92M/2735; Canadian Cordillera, Coast Mountains batholith, Nd. Sr isotopic constraints on petrogenesis, 92M/1763; Canadian Shield, application of geochem.discrimination diagrams for tectonic interpn. of igneous rocks hosting Au mineralization, 92M/2479; magma flow directions in basic Proterozoic dyke swarms estimated using anisotropy of magnetic susceptibility data, 92M/4739; nature of groundwater flow in fractured rock, evidence from isotopic, chem. evolution of recrystallized calcites. 92M/4304; palaeomagmatism Proterozoic basic dyke swarms, 92M/4738; surficial geochem., implications for envtl. assessment, 92M/1875; Canadian Shield, Sudbury structure, crude quantitative estimates of original NW-SE dimension of, 92M/3233; structl. anal., 92M/0961; Fort Simpson magnetic high, two subsurface granites, U-Pb, Sm-Nd dating, 92M/1291; Grenville orogen, differential unroofing within central metasedimentary belt, ⁴⁰Ar/³⁹Ar thermochronol., 92M/3740;

Grenville province, Sm/Nd evidence for major 1500 m.y.crust-forming event, 92M/3741; Haughton impact struct., isotope systematics, shock-wave metamorphism, K-Ar in experimentally, naturally shocked rocks, 92M/4601; Kidd Creek, Archaean massive sulphide deposits, postore mobilization of REE, 92M/1688; Lake Superior region, Animikie group, Proterozoic carbonate concretions, stable isotope geochem., evidence for anaerobic bacterial processes, 92M/3085; Little Dal and Coates Lake groups, Proterozoic, magnetic, tectonic history, 92M/2349; Mackenzie, giant radiating dyke swarm, evidence from magnetic fabric for flow pattern of magma, 92M/4827; Mackenzie Delta and Beaufort Sea, Tertiary 'non-marine' oils, petroleum geochem., 92M/3134; Matachewan, 2450 m.y. dyke swarm, evolution of, 92M/4740; Miramichi Highlands, geochem. variations in Ordovician volcanic rocks, tectonic significance, 92M/1768; Rocky Mts, Athabasca Pass, quartzite-hosted lode Au mineralization, fluid inclusion study, 92M/4338; Slave Province, Archaean, angular volcanic belts, structl. development, discussion, 92M/0962, reply, 92M/0963; Superior Province, fractionation of rhyolite from rhyodacite in Archaean volcanic complex, 92M/0669; relationship of Archaean Au to alkaline magmatism, 92M/3865; Ashuanipi Complex, fluid inclusion studies, retrograde P-T path, condns. of Au formation, 92M/4469; Batchawana Greenstone Belt, igneous, tectonic evolution, U-Pb dating, 92M/1294; Superior Province, Kapuskasing lineament, Proterozoic transcurrent movements along, relationship to surrounding structs., 92M/5011; Ungara, first surface faulting from historical intraplate earthquake, 92M/2391

, ALBERTA, nanometre-size diamonds in Cretaceous/Tertiary boundary 92M/0797; noble gases in CH₄-rich gas fields, 92M/4305; Alberta Basin, crystalline basement, geophysics, geochronol., 92M/1292; Belly River group, min., O-isotope studies of diagenesis, porewater evolution in Cretaceous continental sandstones, 92M/0696; Cold Lake, Leming pilct, reservoir processes in steam-assisted recovery of bitumen, compns., mixing, sources of co-produced waters, 92M/1840; Milk River, aquifer system, hydrogeol., hydrochem., 92M/1831; aquifer, 81Kr, 85Kr in groundwater, 92M/1835; aquifer, measurements, interpns. of ³⁶Cl in groundwater, 92M/1837; aquifer, old groundwaters, isotopic dating methods, 92M/1839; aquifer, radiocarbon, stable isotopes in water and dissolved constituents. 92M/1832; dissolved gases in aquifer, 92M/1833; geochem. of halogens in aquifer, 92M/1838; radionuclides in Milk River aquifer, 92M/1836; U-series radionuclides in fluids, solids, 92M/1834

—, BRITISH COLUMBIA, Bridge River
 Camp, Au deposit, geochronometry,
 92M/0053; Cretaceous-Tertiary Au

mineralization, galena Pb isotope study, 92M/2971: Cassiar, origin of rodingites, use to estimate T, $P(H_2O)$ during serpentization, 92M/4252; Cassiar, Total Erickson gold mine, carbonate alteration in basalt, 92M/0286; Coast Mts batholith, Cretaceous, Tertiary plutons, U-Pb dating, 92M/1302; Coast Mts. Settler Schist, correlation with USA, Washington, Cascades, Darrington Phyllite, Shuksan Greenschist, tectonic implications, 92M/1190; Coast Mts and adjacent Intermontane Belt, distribn... tectonic significance of Upper Triassic terrain, 92M/2121; Coast plutonic complex, Scotia-Quaal metamorphic belt, distinct assemblage with late Cretaceous deformational, metamorphic history, 92M/2309; Gataga Dist., modification of sedimentary baryte textures during 92M/1501; sedimentary deformation, exhalative baryte, geol. setting, genesis, 92M/3998; Harris Creek, transport of magnetite, Au, implications for exploration, 92M/3192; Harrison Lake, vein Au mineralization related to mid-Tertiary plutonism, 92M/0330; Pinchi Lake, howieite in blueschists, 92M/3265; Rossland, sulphide Au content of skarn mineralization, 92M/2734; Toodoggone River, Jurassic epithermal deposits, precious metal mineralization, 92M/0284; Trout Lake, evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, molybdenite deposition, 92M/4337

LABRADOR, central mineral belt, metallogenic, tectonic implications of Pb isotope data for galena separates, 92M/2973; Grenville Province, Grenvillian magmatism, U-Pb dating, 92M/0896; Kiglapait intrusion, redox effect on partitioning of Ni in olivine, 92M/0672; Makhavinekh Lake pluton, geol., subdivisions, mode of emplacement, comparison with Finnish rapakivi granite, 92M/0891; Nain complex, diorite, petrol., 92M/3456; Saglek fiord, Torngat orogen, lithotectonic elems., tectonic evolution, 92M/2431

MANITOBA, Bear Lake, Proterozoic basaltic andesite tuff-breccia, downslope, sub-aqueous mass transport phreatomagmatically-generated tephra, 92M/1075; Bissett, San Antonio gold mine, zonation of hydrothermal alteration, 92M/0288; Flin Flon, Namew lake, Ni-Cu deposit, geochronol., Pb/Pb dating, 92M/2429; Ni-Cu orebody, geochronol., thermal history of metamorphic terrain, 92M/0054; Flin Flon greenstone belt, Laurel Lake, Proterozoic Au-Ag deposit, geochem., fluid history, 92M/0591; Lynn Lake, Lar, Cu-Zn deposit, alteration geochem., petrol., 92M/0282; Tanco, zoned granitic pegmatite, volatile geochem. of magmatic H2O-CO2 fluid inclusions from, 92M/4249; Trans-Hudson Orogen, Tartan Lake, Proterozoic Au deposit, structl. setting, fluid characteristics, 92M/1687; Whiteshell research area, natural colloids, suspended particles, potential effect on radiocolloid formation, 92M/1527

—, NEW BRUNSWICK, Palaeozoic tholeitic dykes, poss. evidence for early opening of ensialic Taconian back-arc basin, 92M/3056; Bathurst, volcanogenic massive sulphide deposit, multidisciplinary exploration, 92M/1876; Health Steele, base metal sulphide orebodies, struct., evolution, 92M/1488; Mount Pleasant, W-Mo-Sn deposits, fluid evolution, mineralization in subvolcanic granite stock, 92M/0373

NEWFOUNDLAND processes of ophiolite emplacement, 92M/3533; Cambrian carbonates, O, C isotope stratigr., 92M/4454; Appalachians, Humber Zone, tectonic history, post-Taconian deformation in Old Man's Pond area, 92M/0959; Appalachians, White Bay, Rattling Brook, potassic, sodic alteration accompanying Au mineralization, 92M/0285; Barachois group, Carboniferous petrol., coal, palynology, depositional envts., 92M/4898; Bay of Islands ophiolite, geochem. evidence for formation of ophiolite above subduction zone, 92M/1771; Bay of Islands ophiolite, Lewis Hills, origin of complex upper mantle structs., 92M/2123; Bay of Islands and Little Port complexes, ophiolites, age, geochem., isotopic evidence confirm suprasubductionzone origin, 92M/3057; Dunnage Zone, nature of sialic basement, evidence from crustal xenoliths, 92M/2122; Fleur de Lys supergroup, decompression-induced growth of albite porphyroblasts, 92M/1189

-, NORTH WEST TERRITORIES, Anderson Plains, Coppermine, basalt, geochem., seismic stratigraphic setting, 92M/0668; Baffin Island, Nanisivik, Internal zonation in Zn-Pb-Ag carbonate-hosted 92M/0585; hydrothermal fluids responsible for Zn-Pb deposits, stable isotopic compn., 92M/0586; Pb-Zn deposits, C, sulphur isotope evidence for in situ reduction of sulphate, 92M/0584; Zn-Pb deposits, correlated Sr, C, O isotopes in carbonate gangue, 92M/1685; Ferguson Lake, behaviour of PGE in surficial envt., 92M/1893; Gordon Lake, structl., lithol. controls of Au-bearing quartz-breccia in Archaean, 92M/0271; Pine Pt., Pb isotope homogeneity in Mississippi Valley-type dist., 92M/0583; Slave Province, Gordon Lake region, structl. controls, fluid focussing, age of Au-bearing quartz-breccia in Archaean metaturbidites, 92M/3946; Slave province, Central Iron Formation Au-rich Archaean metallotect, zone. 92M/3872

SCOTIA, formation **NOVA** Carboniferous Pb-Zn, baryte mineralization from basin-derived fluids, 92M/1695; geochem.consequences of envtl. change, human activity, 92M/4032; reconnaissance, detailed geochem. surveys for Au using plants, lake sediment, soil, till, 92M/1892; tourmaline compn. as guide to min. exploration, reconnaissance study, discriminant function anal., 92M/3193; Avalon composite terrain, Cobequid Highlands, Proterozoic, U-Pb dating, 92M/1300; Cape Breton Is., Bras d'Or and Mira terrains, U-Pb dating, contrasting ages from plutons, discussion, 92M/2432, reply, 92M/2433; Cobequid Highlands. persistent mafic igneous activity in A-type granite pluton, 92M/1769; Meguma group, light stable isotope evidence for metamorphogenic origin bedding-parallel Au-bearing veins in Cambrian flysch, 92M/3999; Meguma Lithotectonic Zone, chem., isotopic compn. of lower crust, evidence from granulite facies xenoliths, 92M/1770; Popes Harbour dyke, empirical sapphirine-spinel Mg-Fe exchange thermometer, application to high grade xenoliths, 92M/4956; South Mountain Batholith, geochem.behaviour of S in granitic rocks during intrusion, 92M/4407; Yarmouth County, E Kemptville, muscovite-topaz leucogranite, geochronol. evidence for multiple tectono-thermal overprinting events, 92M/0057; S isotope study of main-stage Sn, base metal mineralization, evidence for magmatic origin of metals, S, 92M/1694; topaz-muscovite leucogranite, geol. setting, whole rock geochem., 92M/3050

, ONTARIO, controls on transport, C isotopic compn. of dissolved organic C in shallow groundwater system, 92M/1868; Abitibi belt, Timiskaming group, Archaean alkalic magmatism and non-marine sedimentation, tectonic significance, U-Pb dating, 92M/1299; Abitibi Subprovince, Rundle Au deposit, Au mineralization and assoc. alteration, geol., geochem., 92M/0290; Atikokan, thorite in fault zones of granitic pluton, implications for radioactive waste disposal, 92M/0671; Atikokan, Quetico, sedimentary rocks, metamorphism, min. chem., 92M/2313; Aulneau batholith, Archaean diapirism preceded by coalescence of granitic magma at depth, 92M/0883; Bad Vermilion Lake, crystallographic investigations of calcic plagioclase from anorthosite complex, 92M/3834; Bancroft, sodalite, observed, simulated IR spectra, 92M/3278; Bancroft shear zone, marble mylonites, microstructs.. deformation mechanisms, 92M/2312; Clearwater Lake, recovery of highly acidified watershed simulated with ILWAS model, 92M/2784; Cobalt, sulphide remobilization in Archaean volcano-sedimentary rocks, significance in Proterozoic Ag vein genesis, discussion, 92M/1486, reply, 92M/1487; Coldwell Complex, alkaline lamprophyre, petrol., 92M/3454; timing, origin of midcontinental rift alkaline magmatism, 92M/4404; Geordie Lake intrusion, Pd-Te-rich disseminated sulphide from tholeittic magma, 92M/1485; Coldwell Complex, Two Duck Lake intrusion, zoned hollingworthite, 92M/3310; Dome mine, mechanics of formation of Au-bearing quartz-fuchsite vein, 92M/0273; Grenville Province, Britt domain, post-tectonic cooling, 40Ar/39Ar dating, 92M/1298; Central Gneiss Belt, Fishog subdomain, magmatic sheet origin for thin metagabbroic anorthosite, 92M/0960: Central Metasedimentary Belt. two metavolcanic arc suites, geochem., 92M/3051; Grenville province, Mulock, A-type granite batholith, petrol., age,

92M/3453; Gunflint fm., carbonate, sulphide mins., petrol., stable isotope studies. evidence for origin of Proterozoic iron formation, 92M/2258; Hemlo, microstructl. signatures, glide twins in microcline, 92M/2622; vanadian silicates in Au deposit. min. chem., geochem., 92M/4624; White River Property, skarn Cr, Fe, Au mineralization in Archaean greenstone belt 92M/2972; Hemlo gold deposit, vanadian allanite-(La), vanadian allanite-(Ce), min. data, 92M/0813; Keweenawan Osler group, tholeiite, crustal contamination in, tr.elem. perspective, 92M/1764; Kirkland Lake, Larder Lake group, late Archaean, repetitive cyclical volcanism, implications of geochem. on magma genesis, 92M/3052; Lac des lles complex, magma mixing, constitutional zone refining, genesis of PGE mineralization, 92M/1691; Mamainse Point, Keweenawan lavas, petrol., petrogenesis, continental rift evolution, 92M/3500; Matheson, geochem., clast lithol., aid to till classification, 92M/4453; Munro Township, Munro mine, two stages of CO2 metasomatism, evidence from fluid-inclusion, stable-isotope, min. studies, 92M/1689; Quetico, accretionary prism, Archaean granite, genesis through two-stage melting at transpressional plate boundary, 92M/3455; Sandybeach Lake, Goldlund mine, vein-like Au mineralization, regional setting, 92M/0272; Sturgeon Lake, Archaean submarine caldera, Mattabi tuff, relationships with Mattabi massive sulphide deposit, 92M/1440; Sudbury Igneous Complex, Ni-Cu sulphide ores, Re-Os isotope systematics, evidence for major crustal component, 92M/1690; Superior Province, komatiitic pyroclastic deposits, geol., petrogr., correlation, 92M/3452; Superior Province, Hemlo-Heron Bay greenstone belt, Archaean metasedimentary rocks, geochem., implications provenance, tectonic setting, 92M/1797; Thessalon, Huronian continental volcanic rocks, geochem.stratigr., contributions of two-stage crustal fusion, 92M/4405; Dome mine, hydrothermal Timmins wall-rock alteration, formation of Au-bearing quartz-fuchsite vein, 92M/0289; Wawa-Kapuskasing crustal transect, deep crustal O isotope variations, 92M/0531; Wawa, Michipicoten group, Archaean stromatolites in siderite ore, 92M/2386

-, QUEBEC, fluid characteristics of vein and altered wall rock in Archaean mesothermal Au deposits, 92M/0291; vesuvianite, gem notes, 92M/1614; Abitibi greenstone belt, Archaean orogenic ultrapotassic magmatism, 92M/1766; Archaean Au deposits, geol., 92M/2698; Archaean Au-Mo mineralization assoc. episyenite, 92M/2737; Bousquet mine, synvolcanic, syntectonic Au mineralization, 92M/2738; Casa-Berardi, Au deposits, structl.context, 92M/0277; Clericy pluton, Archaean ultrapotassic pyroxenite-syenite suite, petrogr., geochem., 92M/1765; Dumagami mine, overprinting of early, Fe, Pb-Zn mineralization by late-stage Au-Ag-Cu deposition, 92M/0276;

progressive alteration assoc. with auriferous massive sulphide deposits, 92M/0587; Elder mine, Au mineralization, petrogr., geochem., 92M/0275; Joutel, Agnico-Eagle mine, Au-bearing massive siderite deposit, 92M/3922; Pierre Beauchemin mine, Archaean granite-hosted Au deposits, 92M/3932; Taschereau stock, two-stage evolution in Archaean tonalite, 92M/0670; Abitibi greenstone belt and Pontiac subprovince, Archaean, single zircon age constraints on tectonic juxtaposition, 92M/2430; Acton Vale quarry, Cambro-Ordovician framboidal pyrite, diagenetic, hydrothermal occurrences, comment, 92M/0861, reply, 92M/0862; Appalachians, Gaspé Peninsula, diagenetic, low-grade metamorphic terrains related to geol. struct. of Taconian, Acadian orogenic belts, 92M/2280; Appalachian ophiolite belt, Ordovician rift envt. for Memphremagog polymetallic massive sulphide deposit, 92M/4019; Appalachian Thrust Belt, model for epigenetic Ba-Pb-Zn mineralization, inclusion, isotope evidence, 92M/2670; Ashuanipi Complex, granulite facies metamorphism, crustal magmatism, 92M/3658; Ashuanipi, Desliens igneous suite, orthopyroxene poikilitic tonalites, 92M/2188; Calumet, evidence for late metamorphic origin of disseminated Au mineralization in Grenville gneisses, 92M/1484; Calumet mine, Grenville Province, Elzevir Terrain, metamorphosed boninitic basalt, arc tholeiite, and cryptic volcanic stratigr., 92M/4955; Cape Smith thrust belt, evolution of regional metamorphism, interaction of tectonic, thermal processes, 92M/2314; Cape Smith belt, Purtuniq ophiolite, Proterozoic, geol., chem., 92M/3549; Dumagami mine, progressive alteration assoc, with auriferous massive sulphide deposits, 92M/0587; Eastmain River deposit, timing of emplacement of Archaean lode Au deposit, 92M/0274; Gaspé, Madeleine, graniterelated Cu deposit, fluid evolution, role in genesis of, 92M/1693, S isotope study, example of sedimentary S source, 92M/1692; Gaspé, McGerrigie Mts plutonic complex, U-Pb, K-Ar dating, petrogenesis, cooling history, 92M/1295; Grenville Front, melting, disequilibrium melt-residuum separation during migmatization of mafic rocks, 92M/1021; Grenville Province, Morin, anorthosite, U-Pb dating, 92M/1296; Île Cadieux, monticellite alnöite, geochem., 92M/1767; Labrador Trough, Aulneau-Redcliff, tectonized Cu-Ni deposits, 92M/0331; Lac Shortt area, ultrabasic, calc-alkaline lamprophyre, geochem., 92M/3053; Mistastin batholith, cordierite + spinel parageneses in gneiss from contact aureoles, 92M/1188; Mont Saint Hilaire, catapleiite, gem props., 92M/4179; hackmanite. gemstone, descriptn., 92M/1633; mins. of. 92M/3701; Montreal Is., Francon-Quarry, carbonatite, mineralogy, 92M/2379; Noranda, Aldermac mine, massive sulphide deposits, geol., 92M/2739; Noranda, Horne mine, hydrothermally altered rocks,

geochem., 92M/0283; massive sulphide deposits, 92M/1439; Pointe du Criard, three-component composite dyke and assoc. intrusion, 92M/4725; Purtuniq ophiolite and Proterozoic Cape Smith Belt, Nd, Pb isotopic constraints on origin, 92M/1293; Quebec/Labrador, Strange Lake, role of hydrothermal processes in granite-hosted Zr, Y, REE deposit, fluid inclusion evidence, comment, 92M/3054, reply, 92M/3055; Rouyn-Noranda, Ansil Cu-Zn mine, Si-bearing zoned magnetite crystals and evolution of hydrothermal fluids, 92M/2021; St. Lawrence estuary, dissolved, particulate metal distribus., 92M/1841; Ungava, Katinia, Ni deposit, new interpn., 92M/2736; Val d'Or, Archaean greenstone, Au mineralization, U/Pb zircon, rutile 92M/0056; Val-d'Or. chronol., Lamaque-Sigma mines, Au distribn., 92M/1483

—, SASKATCHEWAN, salt crusts, isotopic compn., 92M/4451; Whitemud fm., clay mineralogy, alteration history, economic geol., 92M/3802; Reindeer zone, Kisseynew gneiss, and related rocks, metamorphism, 92M/3661; Star Lake Lode, high-T Proterozoic Au deposit, fluid inclusion, isotope systematics, 92M/1686

—, YUKON TERRITORY, Nick Property, sedimentary Ni, Zn, PGE mineralization in Devonian black shale, new deposit type, 92M/3985; Sixtymile River area, volcanic hosted 'epithermal type' Au-sulphide mineralization, enrichment processes, 92M/3868

Canfieldite, SW England, Cu analogue of, occurrence, min. data, 92M/3307

Capgaronnite, France, Var, new sulphide-halide min., 92M/4674

Carbon dioxide, compensated-Redlich-Kwong (CORK) equation for vols., fugacities of CO₂, H₂O in range 1–50 kbar, 100–1600°C, 92M/2843; equation of state to high P, T, 92M/2906; Cameroon, Lakes Nyos, Monoun, Germany, Laacher See, Indonesia, Dieng, Australia, Mt Gambier, variations on common theme, 92M/1037

—, organic, dissolved, photochem. degradation and impact on oceanic C cycle, 92M/0750; Middle Atlantic Bight, radiocarbon 8¹³C, ²¹⁰Pb, ¹³⁷Cs record in box cores from continental margin, 92M/3163; South Australia, importance of methanogenesis for organic C mineralization in groundwater contaminated by liquid effluent, 92M/1526; New Zealand, detn. in soils, 92M/0168

Carbonaceous material, *Peru, Huancavelica*, assocn. of, with Ag, Hg, As, Sb, 92M/2761

rocks, V accumulation in, geochem.
 controls during deposition, diagenesis,
 92M/1848

Carbonate, Fe-rich, XRD, IR, Mössbauer studies, 92M/4664; influence of, in min. dissolution, solubility of Fe(CO₃)(s) at 25°C, 1 atm total P, 92M/4140; influence of, in min. dissolution, thermodynamics, kinetics of hematite dissolution in bicarbonate solutions at T = 25°C, 92M/4139; mechanism of growth on concrete structs., C, O isotope anals., 92M/0519; Canada, British Columbia,

Cassiar, Total Erickson gold mine, alteration in basalt, 92M/0286

 aquifer, England, Lincolnshire Limestone, use of ¹⁴C modelling to determine vulnerability, pollution of, 92M/0390

—, biogenic, modern, coprecipitation, isotopic fractionation of B in, 92M/1675; Raman spectroscopy, 92M/0256; skeletal material, effects of drying, heating, annealing, roasting, geochem., diagenetic implications, 92M/0508; skeletons, exptl. evidence for condensation reactions between sugars, proteins in, 92M/4508

 concretions, Canada, Lake Superior region, Animikie group, Proterozoic, stable isotope geochem., evidence for anaerobic bacterial

processes, 92M/3085

- diagenesis, U-Pb dating, 92M/1297

- gangue, Canada, North West Territories, Baffin Island, Nanisivik Zn-Pb deposits, correlated Sr, C, O isotopes in, 92M/1685

— minerals, calibration of ion microprobe for quantitative detn. of Sr, Fe, Mn, Mg in, 92M/3762; double metal-hydroxy, formation of synthetic analogues of, under controlled pH condns., 92M/2905

 muds, Holocene, geochem. indicators of depositional, early diagenetic facies in, preservation potential during stabilization, 92M/3087

— rocks v. sedimentary rocks, carbonate

- sediments v. sediments, carbonate

- terrains, geochem. mapping, 92M/1909

Carbonatite, exptl. boundaries for origin, evolution of, 92M/4073; extrusive, origin, new exptl. data, 92M/1002; geochem., 92M/1897; Africa, Shombole volcano, Nd, Sr isotope systematics, 92M/3021; southern Africa, post-Karoo, geochem., Sm-Nd, Rb-Sr studies, 92M/4378; Angola, geol., petrol., chem., 92M/1895; Australia, Mud Tank, example of metasomatism at mid-crustal levels, 92M/3600; Brazil, Jacupiranga complex, titanian clinohumite in, min. chem., 92M/4606; Canada, Quebec, Montreal Is., Francon-Quarry, mineralogy, 92M/2379; Germany, Kaiserstuhl, isotope studies, 92M/4367; Leipzig, Delitzsch, ultramafic, petrol., 92M/3430; Upper Rhine rift valley, Kaiserstuhl, Pb isotopic systematics, 92M/3010; Greenland, high-technology metals in, recognition, exploration, 92M/1898; Greenland. Qasiarsuk, Proterozoic petrogr., extrusive, CL 92M/0977; India, Sung Valley, fluid inclusion studies in apatite, evidence of melt-fluid immiscibility, 92M/1008; Namibia, Dicker Willem, O, C isotope patterns, 92M/4377; Russian Federation. Siberia, Guli, Na-rich carbonate inclusions in perovskite, calzirtite from, 92M/2177; United Arab Emirates, Uyaynah area, extrusive, petrol., 92M/4841; USA, New Mexico, Lemitar Mts, altered rocks assoc. with, mineralogy, geochem., 92M/4908; geol., regional implications of, 92M/2192

complex, Greenland, petrol., geochem.,
 economic geol., 92M/3406; W Greenland,
 Qagarssuk, C, O isotope compn. of
 carbonates, 92M/0542; Pakistan, Sillai

Patti, chem., petrogr., 92M/0953

- eruptions, Zambia, mantle, crustal context, implications, 92M/4807
- metasomatism, Australia, Victoria, in spinel peridotite xenoliths, evidence for, 92M/3042
- Carlinite, Tl, Au, exptl. contributions to mineralogy, geochem., crustal chem., 92M/2885
- Carminite, England, Cornwall, Penberthy Croft, occurrence, 92M/1223
- Carnallite, T-dependent changes in kieserite/carnallite ratio in salt, 92M/2910
- Carnallitite, Germany, Harz Mts, Zechstein, kieserite in, 92M/3563
- CARPATHIAN MTS., Inner West, spessartine, piemontite, in Lower Palaeozoic metasediments, 92M/1953
- Carrollite, Czech Republic, Bohemia, assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336; USA, Missouri, Viburnum Trend, occurrence, 92M/3704
- Caryopilite, Japan, Ehime Pref., Sagadani mine, primary textures of Mn ore, 92M/3318; New Zealand, Otago, assoc. with coombsite, new Mn analogue of zussmanite, 92M/3331
- Cassiterite, KC-1, new reference material, 92M/4560; placer deposits, economic potential, 92M/2769; Australia, New South Wales, Mole Granite, tr., REE in, sources of components for Sn deposits, 92M/1680; Czech Republic, Bohemia, České Středohoří Mts, assoc. with perovskite, 92M/2017; Horní Slavkov, Huber stock, min. data, 92M/2041; England, Cornwall, S Crofty mine, in composite lodes, CL, growth of, 92M/0845; Indonesia, Belitung, Tikus, in Sn-W deposit, 92M/0367; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Italy, Sardinia, in coastal sand, 92M/0380; Portugal, Góis, prospecting for, soil sampling survey, 92M/0766; Spain, Pyrenees, in pegmatite, Catalonia. Spain, Neves-Corvo, in 92M/1428; volcanogenic massive sulphides, 92M/0341; USA, Virginia, occurrence, 92M/4000
- Cataclastic rocks, microstructl. study, 92M/2450; USA, Georgia, Appalachians, Towaliga Fault, development of interlaced mylonites, cataclasites, breccias, 92M/1196
- Catapleiite, Canada, Quebec, Mont Saint Hilaire, gem props., 92M/4179; Russian Federation, assoc. with new min., manganotychite, 92M/2074
- Cathodoluminescence, of thin sections, review, 92M/2449
- Cation-exchange separation, detn. of *REE*, Y, Sc, Hf using, 92M/2477
- Cattiertite, pyrite-cattiertite system, effect of crystallite size on solid state miscibility, 92M/1602
- CAUCASUS MTS., Abchasaia, Kelasuri and Gorabi, igneous rocks, Rb-Sr, Pb-Pb dating, 92M/1275; Pervomaiskoe deposit, size distribn. of pyrite crystals, 92M/4654
- Čechite, Czech Republic, Bohemia, Příbram, Vrančice, assoc. with brandtite, chervetite, 92M/2028

- Celestine, Czech Republic, Moravia, Třinec, assoc. with calcian strontianite, 92M/2055; Germany, Harz, Nordhausen, Niedersachswerfen, in anhydrite deposit, 92M/3682; Italy, Vicentino, occurrence, (book), 92M/2498; Vicentino, Val di Londe, occurrence, 92M/3697; Poland, Tarnobrzeg, in S deposits, 92M/2050
 Celsian v. feldspar
- CENTRAL AFRICAN REPUBLIC, Haut-Mbomou, geochem. degradation of iron duricrusts in tropical, humid climate at edge of equatorial forest, 92M/2586
- Ceramic industry, pollution sources in, 92M/2777
- Ceramics, shrinkage on firing, application to thermal anal.development, 92M/2508; technical, natural, synthetic raw materials for, 92M/0376
- Cerargyrite, Chile, Andes, Atacama, La Coipa, precious metal deposit, geol., 92M/1453
- Cerium isotopes, in rock samples, precise measurement, 92M/1919
- Černyite, kesterite-černyite solid solution in system Cu₂SnS₃-ZnS-CdS, at 400°C, 101·3 MPa, 92M/1605
- Cerussite, neutron single-crystal refinement, comparison with other aragonite-type carbonates, 92M/3848; Western Australia, Ashburton Downs, assoc. with ashburtonite, new bicarbonate-silicate min., 92M/3327; Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694; Styria, Öblarn, occurrence, 92M/3695; England, Cornwall, Penberthy Croft, and assoc. mins., 92M/1223; Derbyshire, Matlock Bath, Wapping mine, occurrence, 92M/2357; Leicestershire, Pb-Mo mineralization in ancient cave, 92M/2359; W Shropshire orefield, genesis, evidence from fluid inclusions, sphalerite chem., S isotopic ratios, 92M/0544; Warwickshire, Judkins Quarry, occurrence, 92M/2358; Greece, Thasos Is., metalliferous mining, soil contamination at old mining sites, 92M/0393
- Cervandonite-(Ce), *Italy, Piemonte, Novara*, *Alpe Devero*, occurrence, 92M/4992

Chabazite v. zeolite

Chalcanthite, France, Var, Cap Garonne, assoc. with new min., geminite, 92M/2070

- Chalcedony, in agate from volcanic rocks, fluid inclusion study, 92M/2942; Czech Republic, Bohemia, assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061; Germany, Saxony, remaining in volcanic weathered rocks during kaolinization of rhyolite, 92M/2925; Indian Kerguelen-Heard Plateau, hydrothermal mineralization, 92M/2958; USA, California, Coast Ranges, assoc.with Au-bearing hot spring systems, 92M/1443
- —, flint, calcined, solid state ²⁹Si NMR study, 92M/2625; Germany, Saxony, content in gravel, 92M/4024
- hematite, Czech Republic, Krušné Hory Mts, hydrothermal vein fillings used as semiprecious stones in Middle Ages, 92M/1637
- Chalcocite, min. technique for recognising cyanicides in Au processing, 92M/2446; Czech Republic, Příbram, Vrančice,

- Pošepný vein, occurrence, min. data, 92M/2040; England, Warwickshire, Judkins Quarry, occurrence, 92M/2358; India, Malanjkhand, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316; Japan, Gifu Pref., Unuma, in siliceous sedimentary rocks, min. data, 92M/3302; USA, Missouri, Viburnum Trend, occurrence, 92M/3704; North Carolina, Virgilina district, in Cu-bearing vein deposits, 92M/2741; Oklahoma, Paoli, in Ag-Cu deposit, ore microscopy, 92M/0314
- Chalcomenite, Argentina, Sierra de Cacheuta, La Rioja, Condor mine, assoc. with schmiederite, 92M/3301
- Chalcophanite, Bulgaria, Kremikovtsi deposit, min. data, 92M/2026
- Chalcopyrite, min. technique for recognising cyanicides in Au processing, 92M/2446; nature of inclusions in sphalerite, exsolution, coprecipitation, 92M/2034; Bulgaria, Ardino, in polymetallic deposit, 92M/0866; Madam, Gradishte, whiskers, min. data, 92M/3305; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Canada, Abitibi Belt, Macassa gold mine, assoc. with Au-tellurides-sulphide mineralization, 92M/2740; Flin Flon greenstone belt, Laurel Lake, in Proterozoic Au-Ag deposit, 92M/0591; Quebec, Noranda area, Horne mine, massive sulphide deposits, 92M/1439; Czech Republic, Chvaletice, assoc. with armenite in basic volcanic rocks, 92M/1962; Horní Slavkov, Huber stock, min. data, 92M/2041; England, Cumbria, Cockermouth area, min. exploration, 92M/3987; Germany, Rhenish Schiefergebirge, Altenbüren, sulphide mineralization, 92M/1459; Germany, Thuringia, Caaschwitz, occurrence, 92M/2364; India, Malanjkhand, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Italy, Bolzano/Bozen, Terlan, in Pb-Zn veins, 92M/1232; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Norway, Høydal, volcanogenic deposit massive sulphide deposit with sea-floor depositional features, 92M/0335; Norway, Løkken greenstones, Dragset, assoc. with Cu-Zn deposit, 92M/0334; Peru, San Judas Tadeo, W(-Mo, Au) deposit, Permian lithophile mineralization, 92M/2762; Scotland, Mannoch Hill, occurrence, 92M/1221; Turkey, Anatolia, in Pb-Zn deposits, 92M/2718; USA, Oklahoma, Paoli, in Ag-Cu deposit, ore microscopy, 92M/0314
- Chalk, chem. reaction between concrete and groundwaters, implications for commissioning of observation boreholes in, 92M/0388
- diagenesis, North Sea, cementation, healing of fractures, 92M/1784

Chamosite v. chlorite

CHANNEL ISLANDS, Guernsey, gravity instabilities in magma chambers, rheological modelling, 92M/2165; Guernsey, timing of post-tectonic Cadomian

magmatism, 40Ar/39Ar dating, 92M/2400; Guernsey, Sark, early Cadomian arc development, tectonothermal chronol., 92M/0015

Charnockite, Antarctica, Heimefrontfjella, U-Pb dating, Nd isotopic compn., 92M/2424; Lützow-Holm Bay, fluid phase petrol., implications for carbonic metamorphism, 92M/4907; Antarctica, Mawson Coast, Proterozoic igneous, U/Pb dating, 92M/0049; India, Kabbaldurga, Closepet, fluid evolution in granite, magmatic source for CO2 in, 92M/0647; Kerala, Pan-African, 92M/3731; S India, carbonic fluid inclusions in granulites, evidence for entrapment during charnockite formation, 92M/1812; Norway, Rogaland, Bjerkreim-Sokndal massif, fluid inclusions in, fluid origin, in situ evolution, 92M/2283; Sudan, Jebel Moya, late Precambrian, link hetween Mozambique Belt Arabian-Nubian Shield, 92M/1272; Sweden, Karlskoga, at boundary between early Svecofennian rocks and Småland-Värmland granite, 92M/4917

Charnockitic alteration, evidence for CO2 infiltration in granulite metamorphism, 92M/4910

Charoite deposit, pyroxenes from, genesis, 92M/4614

Chenite, Germany, Hartz Mts, occurrence, 92M/1225; Virneberg mine, occurrence, 92M/1229

Cheremnykhite, Russian Federation, Yakutia, Aldan, Kuranakhsky deposit, new tellurate,

Chernikovite, transformation into parsonite, study of solubility product, 92M/2908

Chert, bedded, diagenetic formation of, evidence from chem. of chert-shale couplet, 92M/4430; diffusion-controlled growth of reaction rims in dolomite, local equilibrium in metasomatic processes, 92M/0705; Fe, graphite, assoc. with fossil bacteria in, 92M/4452; inter-ocean variation in REE, major, tr. elem. chem., DSDP, ODP record, 92M/4427; isotopic compn. of H in insoluble organic matter from, 92M/1859; England, Rhynie, Devonian, stratigr., sedimentol., 92M/4885; Mino-Tamba Terrain, Triassic, Jurassic, argillaceous rocks assoc. with, petrogr., geochem., 92M/0692; USA, California, Franciscan Complex and Monterey group, REE, major, tr. elems. in, assessing REE sources to fine-grained marine sediments, 92M/0703; USA and Japan, Mesozoic, noble gases in, 92M/0697

Chervetite, Czech Republic, Bohemia, Příbram, Vrančice, occurrence, min.data, 92M/2028

Chiastolite v. andalusiteChiavennite, in situ heated, XRD study, 92M/1575

CHILE, excessive SO₂ emissions from volcanoes, 92M/1085; Andes, analcime, characteristic authigenic phase of alluvium, 92M/2260; Au deposits, production, history, 92M/1445; Au metallogeny, 92M/1447; crustal contributions to arc magmatism, comment, 92M/1780; crustal contributions to arc magmatism, reply, 92M/1781; epithermal Au deposits, geol. setting, 92M/1446; magmatic processes titanite-bearing dacites, 92M/1025; Tertiary Andean volcanism in caldera-graben setting, 92M/1084; Andes, Andacolla, strata-bound Au deposit in porphyry Cu-Au system, 92M/1454; Antofagasta, Faride, epithermal Ag-Au deposit, 92M/1449; Atacama, La Coipa, precious metal deposit, geol., 92M/1453; Choquelimpie, epithermal Au-Ag deposit, 92M/1448; Magnetita Pedernales, new magmatic iron deposit, 92M/1456; Maricunga Belt, Au-rich porphyry systems, 92M/1450; Maricunga, Au-Ag belt, reconnaissance K-Ar geochronol., 92M/1451; Marte, porphyry Au deposit, 92M/1452; Petorca, El Bronce, epithermal vein system, geol., structl., fluid inclusion studies, 92M/1455; Andes, Volcán Quizapu, petrol., 92M/3509; Cordillera del Paine pluton, intrusion of basaltic magma, 92M/2194; Inca de Oro, San Pedro de Cachijuyo, formation of breccia pipes, Mejillones Peninsula, 92M/3463; geochronol., palaeomagnetic, geol. constraints on tectonic evolution. 92M/3746; Tatara-San Pedro volcano, chem. variable, mafic magmatic system, 92M/4426

CHINA, age of Permian-Triassic boundary, ion microprobe dating of zircon in bentonite layer, 92M/1243; ¹⁰Be in loess, 92M/4447; Cainozoic basaltic rocks, petrol., chem. compn., 92M/0651; Cainozoic volcanic rocks, major elem., REE, Pb, Nd, Sr isotopic geochem., implications for origin from suboceanic-type mantle reservoirs. 92M/1751; Carlin-type Au deposits, 92M/3863; Cu deposits, metallogenic envts., potentials, 92M/0325; field relations, origins, resource implications platiniferous Mo-Ni ore in black shales, 92M/3995; metallic ore deposits, distribn., 92M/0322; non-metallic deposits, exploration, prospects, 92M/0382; porphyry Cu deposits, geol. setting, 92M/1432; relations between red beds and U mineralization, 92M/0558; stoping of underground Au veins, 92M/3972; stratabound ore deposits, distribn., 92M/0324; W deposits, characteristics. distribn., 92M/0323; 633-2 U deposit, relationship of faulting to mineralization, 92M/0364; N, sedimentary evolution, minerogenic background of Proterozoic era, 92M/0566; E, granitic rocks, petrogenesis, metallogenesis in relation to tectonic settings, 92M/0561; SE, two types of fluorite deposits, minerogenetic model, 92M/1500; S, genesis of elem. assemblage variation in linear subbasin-controlled Au deposits, 92M/3875; Bajiazi, Pb-Zn deposit. H, O, C, Si stable isotope studies, 92M/0559; Chengmenshan and Wushan, Cu deposits, genesis, 92M/0357; Dabie Mts. regional ultrahigh-P coesite-bearing eclogite, evidence from country rocks, gneiss, marble, metapelite, 92M/3655; Dachang, skarn Sn deposits, O, H, S, C isotope study, 92M/2961; Sn-polymetallic sulphide deposits, evidence for exhalative origin, geol., geochem.characteristics, 92M/0358; Fuping, gneiss, origin of, 92M/3101; Hainan, basalt, Sr, Nd, Pb compns., implication subcontinental lithosphere Dupal source, 92M/3032; Handan-Xingtai, Hanxing, alteration-mineralization of skarn iron deposits, 92M/0565; Honglazi, Au deposit, formation mechanism, exptl. study, 92M/3911; Jianghan and Biyang basins, porphyrin distribus. in crude oils, 92M/1852; Jinchuan, Cu-Ni deposit, ore-controlling effect of brittle-ductile shear zone, 92M/0363; Kunlun orogenic belt, shoshonitic lava, geol., geochem., age, 92M/3030; Leizhou Peninsula, local geothermal anomalies. formation mechanisms, 92M/4984; Luochuan, opal in loess, significance, 92M/4892; S China Basin, magmatism, isotopic, tr.-elem. evidence for endogenous Dupal mantle component, 92M/4387; S China Basin, Hainan Is., magmatism, post-spreading Quaternary basalts, 92M/4388; Sinkiang, Karakoram, shoshonitic, ultrapotassic post-collisional dykes, 92M/4814; Tarim Basin, formation, aspects of petroleum Wumishan 92M/3160; Proterozoic bioherms, origin, order of cyclic growth patterns in, 92M/2385; Xinjiang, Junggar, Devonian bimodal assocn. of volcanic rocks, 92M/4842; Yangtze Basin, Ir abundance maxima at latest Ordovician mass extinction horizon, terrestrial or extraterrestrial, 92M/4446; Yangtze Craton, Qinling Orogenic Belt, post-Archaean sedimentary, volcanic rocks, geochem., 92M/1750; SE margin of Yangtze block, magmatism, Precambrian collision of Yangtze, Cathysia blocks, 92M/3031; Zhongtiao Mts, Precambrian geochronol., chronotectonic framework, model of chronocrustal struct., 92M/1282

ANHUI PROVINCE, Dabie Mts, eclogites, field occurrences, petrol., 92M/1180; Tongling Dist., massive S-Fe-Au deposits, Pb isotopic studies, 92M/4332; Xiangshannan, pyrite deposit, exhalative sedimentation, hydrothermal superimposition-transformation

characteristics, 92M/0366

GANSU PROVINCE, Jinchuan, ultramafic intrusion, cumulate of high-Mg basaltic magma, 92M/4813; Lijiagou, Pb-Zn deposit, geochem. condns. of metallization, 92M/1676

-, GUANGDONG PROVINCE, coastal area, weathering-residual type kaolinite deposits, 92M/2588

GUIZHOU PROVINCE, occurrence, distribn. of invisible Au in Carlin-type deposit, 92M/2727; sedimentary-rockhosted disseminated Au deposits, geol., geochem., 92M/0308

HEBEI PROVINCE, Caijiaying, Pb-Zn-Ag deposit, characteristics, 92M/0355, min. characteristics, occurrence, 92M/0356; Handan-Xingtai discovery, study of mantle-derived dunite inclusions in hornblende diorite, 92M/3444; Qianian block, Liuguzhuang, origin of flecked gneiss, 92M/4946

, HENAN PROVINCE, Luoning County, Jinjiawan, Au deposit, geol., 92M/1467

- —, HUBEI PROVINCE, Doushantuo fm., Sinian, black shale hosted Ag-V deposits, 92M/3994
- —, HUNAN PROVINCE, Shizuyan-Yejiwei, W-Sn-Mo-Bi-polymetallic deposit, fluid inclusion study, 92M/0360
- —, INNER MONGOLIA, Bayan Obo, Fe-REE-Nb deposits, geol., 92M/4015; Nb-REE-iron deposit, metallogenic epoch, genesis, 92M/0564; Nd, Sr isotopic systematics from REE-enriched deposit, 92M/0563; REE deposit, La-Ba dating, 92M/2421; Bayan Obo, vein amphibole from REE deposit, ⁴⁰Ar/³⁹Ar dating, constraints on mineralization, deposition, 92M/2420; Bieluwutu, volcanohydrothermal origin of Cu-S polymetallic deposit, 92M/0354
- —, JIANGXI PROVINCE, Dajishan mine, stable isotope studies of quartz-vein type W deposits, 92M/4228; Huichang, Yanbei, Sn deposit, characteristics, 92M/0359
- —, JIANGSU PROVINCE, Donghai area, nyböite-bearing eclogite, petrol., 92M/3262
- —, JILIN PROVINCE, Haigou, Au deposit, isotope geochem., metallogenic regularity, 92M/0560; Siping, Shanmen, Ag deposit, geol., 92M/0361
- —, QINGHAI PROVINCE, Da Qaidam Lake, B isotopic compn. of brine, sediments and source water, 92M/4302
- —, SHAANXI PROVINCE, discovery, primary study of glauconite in Upper Triassic oil-bearing sandstone, 92M/3268
- SICHUAN PROVINCE, Dongbeizhai, fine-disseminated Au deposit, isotopic compns., genetic implications, 92M/2962; Daliangzi, Pb-Zn deposit, genesis, 92M/0556; Gacun, Au-, Ag-bearing polymetallic deposit, geol., genesis, 92M/0362; Hongtupo, hematite calcite type Au deposit, metallogenic characteristics, prospecting, 92M/3917; Sichuan basin, Proterozoic petroleum province, 92M/3573; Yanbian. Proterozoic ophiolite, clinopyroxene in plutonic, volcanic sequences, geochem., petrogenetic, geotectonic implications, 92M/1967
- —, TIBET, palaeostress detns. from fault kinematics, application to neotectonics, 92M/2326; tectonics, ⁴⁰Ar/³⁹Ar dating of K-feldspar, 92M/1281; *Qinghai-Xizang plateau*, ophiolites and Cainozoic rift magmatism in *Qing-Zang terrain*, 92M/0933; *Xizang plateau*, late Pleistocene, Holocene uplift, climate changes, evidence from vertebrate fossils, archaeol. finds, 92M/0936; *Yarlung Zangbo*, regional framework, tectonics, 92M/0934
- -, YUNNAN PROVINCE, granite, Pb, Sr isotopic compns., age, nature of basement, 92M/3033; granitic rocks related to Sn deposits, 92M/0650; secondary enrichment of phosphorite, formation mechanism, 92M/0562; Dongchuan area, Cu deposition by fluid mixing in deformed strata adjacent to salt diapir, 92M/1433; Tengchong, Rehai, characteristics of geothermal reservoir, 92M/3672; geothermal field, tr.-elem. zoning, 92M/2929; Ximeng county, Amo, hypothermal Sn deposit, geochem. metallogenic model, characteristics,

- 92M/2726; Xikang-Yunnan axis, Jinningian, granite, fingerprint characteristics of mins. from, SIMS study, 92M/2960
- —, ZHEJIANG PROVINCE, Changxing, Heping, B deposit, geol., genesis, 92M/0365; Xiqiu, spilite-keratophyre, Nd, Sr, O isotopic study, 92M/4386
- Chkalovite, Greenland, llímaussaq alkaline complex, barylite pseudomorph after, 92M/1959
- Chlorannite, partitioning of F-Cl-OH between mins. and hydrothermal fluid, 92M/0434
- Chlorapatite v. apatite
- Chlorine, detn. of tr. amounts of, from single Na carbonate fusion of small geol. samples, 92M/2455
- isotopes, ³⁶Cl, cosmogenic, production rates in terrestrial rocks, 92M/1642
- buffering Chlorite. assemblage staurolite-aluminium silicate-biotitegarnet-chlorite, 92M/1119; diagenetic, octahedral occupancy, chem. compn., 92M/0836; low-T, compositional homogeneity in, 92M/0835; magnesian, exptl., theoretical constraints on Al substitution in, 92M/2861; relationship between compn., d_{001} for, 92M/1989; trioctahedral, IR spectra, chem.compn., 92M/0838; trioctahedral, struct.-compn. relationships in, vibrational spectroscopy study, 92M/3274; X-ray luminescence of, 92M/4629; Austria, E Alps, Tauern Window, in schist, 92M/0717; Brazil, Jacupiranga alkaline complex, formation above serpentinized dunite, palaeoclimatic implication for laterite genesis, 92M/0202; Bulgaria, W Srednogorie, formation nature, physico-chem, anal, of min, parageneses in metasomatic zones of acid leaching. 92M/2263; Canada, Appalachians, indicators of diagenetic, anchimetamorphic grade in overthrust belt, 92M/0182; New Brunswick, Mount Pleasant, fluid evolution, mineralization in subvolcanic granite stock, 92M/0373; China, Handan-Xingtai, in skarn Fe Hanxing, deposits, alteration-mineralization, 92M/0565; Czech Republic, Bohemian massif, clay and accompanying mins.transported, deposited in rivers, 92M/2572; France, Pyrenees, Trimouns, (⁵⁷Fe):Fe³⁺ in talc-chlorite deposit, in, 92M/1988; distribn. Germany, Bavaria, KTB pilot hole, in gneiss, 92M/0711; Hungary, crystallinity, Palaeozoic, Mesozoic rocks, empirical correlation with approach. crystallinity, coal rank, min. facies, 92M/2276; Indian Ocean, in pelagic sediments, 92M/0176; Japan, Akita Pref., Hanaoka area, in Miocene metabasites, 92M/1183; Honshu, Kumikita, smectite to chlorite transformation in thermally metamorphosed volcanoclastic rocks, 92M/0178; Ohyu caldera, trioctahedral smectite-to-chlorite conversion series, chemiographic anal., 92M/1355; offshore Norway, diagenetic, from reservoir rocks, evidence of Ostwald ripening related recrystallization of, 92M/0837; Red Sea, in metalliferous muds, 92M/3981; South Africa, Barberton Greenstone Belt, in
- Archaean Fig Tree Shale, 92M/0175; Sweden, Bergslagen, metamorphism of Mg-altered felsic volcanic rocks, 92M/2262; Allen USA, Indiana, County, vermiculitization, pyroxene etching, in aeolian periglacial sand dune, 92M/3803; Maine, Rangeley area, in metapelites, evidence for equilibrium assemblages, 92M/1192; New Mexico, Central Mining Dist., Groundhog vein system, alteration, fluid inclusion study, 92M/4022; Utah, Henry Basin, in epigenetic, sandstone-hosted V-U deposit, 92M/0594
- —, chamosite, Brazil, Diadema shear belt, assoc. with Au mineralization, 92M/2981
- —, clinoclore, exptl., theoretical constraints on Al substitution in magnesian chlorite, thermodynamic model for H₂O in magnesian cordierite, 92M/2861; Brazil, Diadema shear belt, assoc. with Au mineralization, 92M/2981; Switzerland, Grisons, Falotta, manganoan, occurrence, min. data, 92M/3275
- geothermometer, application of, compositional variations in mafic phyllosilicates from metabasites, 92M/2275
- —, ripidolite, Moravia, Příbor, Hončova hůrka, in picrite, 92M/2007
- -- smectite, USA, California, Point Sal ophiolite, mixed-layer, integrated TEM, XRD, electron microprobe investigation, 92M/2274
- Chloritoid, Belgium, Givonne, in lower Palaeozoic metasedimentary rocks, 92M/1135; Oman, -bearing assemblages, petrol.significance, petrogenetic grid for high P metapelites, 92M/1176
- -- group, Fe-Mg series in, min. data, 92M/3247
- —, magnesiochloritoid, Fe-Mg series in chloritoid group, min.data, 92M/3247
- Chondrodite v. humite
- Chromatography, electron capture detection gas, shipboard detn. of Al in sea-water at nanomolar level by, 92M/0095; high-performance liquid, detn. of U in groundwaters, 92M/0096; ion, speciation of Al in aqueous solutions using, 92M/0094
- Chromite v. spinel
- Chromitite, Australia, Tasmania, Heazlewood River Complex, occurrence, geol., geochem., origin, 92M/0371; Borneo, in ultramafic intrusions, assoc. placers, Pt-group mins., Os isotope study, 92M/4334; Bulgaria, Rhodope, Pt-group mins. in, 92M/0345
- ore, Greece, Vourinos, distribn. of PGE, Au in, 92M/2954
- Chromium, Brazil, Bahia State, Iramaia sheet, geochem.prospecting, 92M/1877
- Chromspinellid v. spinel
- Chrysoberyl, Czech Republic, Hohes Gesenke, Hrubý Jeseník, occurrence, 92M/3691
- Cianciulliite, crystal struct., 92M/2636; USA, New Jersey, Franklin, new min., 92M/3330
- Cinnabar, England, Cumbria, Cockermouth area, min. exploration, 92M/3987; Slovakia, Cervenica-Dubnik, mins. assoc. with opal deposits, 92M/5001; Spain, Ciudad Real, Almadén, in Hg deposit, 92M/0338; USA, California, San Benito County, Clear Creek Claim, assoc. with new min., szymańskiite,

92M/3337; Nevada, Humboldt County, McDermitt Hg deposit, assoc. with new min., radtkeite, 92M/3336

— vein deposits, USA, Alaska, Kuskokwim river region, geochem. exploration, 92M/3189

Citrine v. quartz

Clathrate, guest molecules in, IR, Raman spectroscopy, 92M/3839

Clausthalite, Argentina, Sierra de Cacheuta, La Rioja, Condor mine, assoc. with schmiederite, 92M/3301; Australia, Northern Territory, Coronation Hill, assoc. with unconformity related Au, Pt, Pd prospect, 92M/1475; Brazil, Goiás, Cavalcante, assoc.with Au, 92M/3905; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336

Clay, clay adsorbed dyes, methylene blue on laponite, 92M/3792; clay/aqueous electrolyte interfaces, problems on struct. of surfaces of, 92M/2548; colloidal, effect of iron diagenesis on transport of, in unconfined sand aquifer, 92M/3794; fired, SEM study, 92M/0200; from saline soils, influence of particle size, clay organization on hydraulic conductivity, moisture retention of, 92M/2561; influence of microstruct. on firing colour of, 92M/2558; surfactant-modified pillared, adsorption of chlorinated phenols from aqueous solution by, 92M/3790; swelling of, exptl. quantification, 92M/2568; synthetic, as catalysts, fascinating swellable crystals, 92M/2564; India, West Bengal, Purulia dist., Malti, characterization of, 92M/2576

condensates, reactions with n-alkanes, 92M/1858

 geothermometry, New Zealand, Wairakei geothermal field, mixed-layer, 92M/3798

— mineralogy, Canada, Saskatchewan, Whitemud fm., alteration history, economic geol., 92M/3802; Zimbabwe, Wankie concession, Matura Hill borehole core, 92M/3797

- minerals, Ca-rich 25 Å mins., hydrothermal origin. min. data. 92M/2544: characterization, genetic interpn. of clays in acid brown soil developed in granitic saprolite, 92M/2531; charge distribn. in struct., molecular orbital calculation, 92M/2565; diagenesis, metamorphism, 92M/2569; fine struct., struct. of water molecules in interlayer, 92M/2507; fractional extraction of humic substance involved in Kibushi-clay, 92M/2529; indexing of XRD patterns, 92M/0121; interstratified structs., theoretical XRD patterns, 92M/0125; interstratified, and fundamental particles, 92M/2545; microstruct., props. of, 92M/2551: nomenclature for regular interstratifications, 92M/0127; problems on struct. of surfaces of, 92M/2548; retrograde alteration in U deposits, radiation catalysed or low-Texchange, 92M/0590; retrograde exchange of H isotopes between hydrous mins. and water at low T, 92M/4227; specific props. unconventional, prospective applications, 92M/2542; TEM, SEM micrographs, 92M/2537; thermal anal.,

applications, 92M/2523; thermal anal., application in raw material control and during production process, 92M/2519; thermal reactions of, significance as 'archaeological thermometers' in ancient potteries, 92M/2528; Algeria, Chélif basin, geodynamic interpn., 92M/2575; Asia, Okhotsk Sea, South China Sea, Okhotsk Sea, 92M/0177; NE Atlantic, Quaternary sediments, K-Ar, Rb-Sr anals., mineralogy, 92M/1369; Korea, 14 Å intergradient min. in Ultisol, chem. compn., struct., 92M/2555; Mediterranean Sea, Tyrrhenian Basin, as natural tracers in sediments, water column, lower atmosphere, 92M/2543; Spain, Betic Cordilleras, Subbetic zone, sedimentary model in passive continental margin, min., geochem. approach, 92M/1367; USA, California, Santa Maria basin, Monterey fm., origin, diagenesis of, 92M/2590

—, beidellite, paragonite-beidellite, syntheses, props. of regularly interstratified 25 Å mins., 92M/0163; Western Australia, K-rich, from laterite pallid zone, TEM study, 92M/0129; Japan, Nagano Pref., Sano mine, min. data, 92M/0167

-, dickite, synthesis of kaolinite with, 92M/0156; Czech Republic, Bohemia, Slaný mining area, occurrence, 92M/3689; Germany, Saxony, Altenberg, min. data, 92M/2571; Saxony, Brand, anals., 92M/1345; Japan, Kagoshima Pref., Makurazaki volcanic area, mineralogy, genesis of, in postmagmatic alteration zones, 92M/3801; Spain, Aljibe, in sandstone cement, 92M/1364; USA, Arkansas, Saline County, Stand-on-your-head mine, assoc. with cookeite, 92M/2380

-, halloysite, colloidal, effects of freezing on, implications for temperate soils, 92M/3785; embryonic, in paddy soil derived from volcanic ash, 92M/0196; in fired clay, SEM study, 92M/0200; metastability in near-surface rocks of mins. in system Al₂O₃-SiO₂-H₂O, 92M/0184; Mössbauer spectra, 92M/1347; neoformation in soils developed from crystalline rocks, TEM study, 92M/3810; Australia, Queensland, weathering of granitic muscovite to, 92M/0190; Western Australia, Darling Range, in bauxite, 92M/0694; Burundi, weathering products of basalt, 92M/3800; China, Guangdong, in weathering crust, 92M/0186; Costa Rica, weathering products of Cainozoic volcanic ash, 92M/3804; Japan, Honshu, Mashiko area, pottery clay, 92M/0181; Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001

—, hectorite, synthesis, 92M/0132

—, illite, ammonium substitution in, during maturation of organic matter, 92M/1358; authigenic, prelim. ⁵⁷Fe-Mössbauer spectroscopic anal., 92M/0146; combined freeze-etch replicas, HRTEM images as tools to study fundamental particles and multiphase nature of 2:1 layer silicates, 92M/2620; deconvolution of first illite basal reflection, 92M/2530; effects of octahedral Mg²⁺, Fe³⁺ substitutions on hydrothermal illitization reactions, 92M/1334; equilibria in solutions, 92M/2550; kinetics of Cs

sorption on, 92M/4106; particle interaction, rheology, 92M/1351; polytypism, TEM observations, 92M/2536; thermal anal., 92M/2521; British Isles, Southern Uplands-Down-Longford terrain, in Silurian bentonites, chemostratigr., K-Ar ages, 92M/0173; Canada, Appalachians, indicators of diagenetic, anchimetamorphic grade in overthrust belt, 92M/0182; Greece, Peloponesus Zaroucha group, crysta" in low grade metasedimentary rocks, 92M/1169; India, Andhra Pradesh, Cuddapah supergroup, Cumbum fm., crystallinity indices, significance in anchimetamorphism, mineralization. 92M/3650; Indian Ocean, in pelagic sediments, 92M/0176; Italy, Grosseto, Paganico, in clay sediments, genesis, 92M/1360; Japan, Hokkaido, trioctahedral, from talc mines, 92M/0133; North Sea, Brent Group reservoirs, K-Ar dating, 92M/4882; Scotland, Southern Uplands, and organic maturity in Silurian sedimentary rocks, 92M/0172; South Africa, Barberton Greenstone Belt, in Archaean Fig Tree shale, 92M/0175; Spain, Aragón, industrial use, 92M/1362; Spain, Campo de Gibraltar, Almarchal unit, in flysch, 92M/1363; USA, Central Appalachian basin, Princess No. 6, in Pennsylvanian volcanic ash, 92M/3501

-, - crystallinity, and mixed-layers, 92M/2270; sample preparation, XRD settings, interlab. samples, 92M/2271; sample prepn.effects on measurement, grain-size gradation, particle orientation, 92M/2272; Canada, Quebec, Appalachians, Gaspé Peninsula, diagenetic, low-grade metamorphic terrains related to geol. struct.of Taconian, Acadian orogenic belts, 92M/2280; Hungary, Palaeozoic, Mesozoic rocks, 92M/2276; Switzerland, Morcles Nappe, metamorphism, 92M/2286; Wales, Welsh Basin, Corris Slate Belt, in mudrocks, influence of strain, lithol., stratigraphical depth on, implications for timing of metamorphism, 92M/2284

— —, — -kaolinite mixtures, flocculation as affected by Na adsorption ratio, pH, 92M/1354

— —, — — — montmorillonite mixtures, flocculation as affected by Na adsorption ratio, pH, 92M/1354; interstratification, theoretical XRD patterns, 92M/0126

-, -- smectite, aspects of thermally induced parent material discontinuity, 92M/0185; authigenic, K/Ar dating, application to complex mixtures of mixedlayer assemblages, 92M/0016; diagenesis, porosimetry measurement of shale fabric, relationship to, 92M/1359; hydrothermally precipitated mixed-layer, in recent massive sulphide deposits from sea-floor, 92M/2570; mixed-layer, definition of, 92M/3782; structl. model, 92M/0231; Japan, Shinzan, Sweden, Kinnekulle, from hydrothermally altered tuffs, diagenetic bentonites, IR spectra, 92M/0128; North Sea, ultrafine particles of, STM, AFM, 92M/1341; Spain, Basque-Cantabrian Basin, diagenesis, 92M/2581; USA, Montana, burial diagenesis in two Tertiary basins, 92M/0191

- -, kaolinite, and sericite, difference of colloidal props.between, 92M/2546; Ca-, Na-, Li-saturated, effect of heat treatments on total charge, exchangeable cations of, 92M/0151; concn. of iron oxides from soil clay by 5 M NaOH treatment, complete removal of, 92M/2538; detn. of Al in, by flow injection, 92M/2461; disorder induced by de-intercalation of DMSO from, 152; dissolution at 25°, 60°, 80°C, 92M/0150; effect of Na-hexametaphosphate on hydraulic conductivity of kaolinite-sand mixtures, 92M/0158; effect of pellet pressing on IR spectrum, 92M/0155; effects of solution chem. on hydrothermal synthesis of, 92M/2864; heat capacities from 7 to 380 K, entropy, 92M/1352; in fired clay, SEM study, 92M/0200; kinetics, mechanisms of dissolution, effects of organic liquids, 92M/0149; Mössbauer spectra, firing products, 92M/1347; of different degrees of crystallinity, effects of dry grinding on, 92M/2541; processing, props., applications, 92M/1349; spherical, origin of morphol., 92M/0153; synthesis of, with dickite, 92M/0156; thermally activated, synthesis of zeolites from, observations on nucleation, 92M/3784; unusual growth, kaolinite-calcite interaction, 92M/0159; weathering of chromian muscovite to, Queensland, 92M/3807: Australia, weathering of granitic muscovite to, 92M/0190; Western Australia, Darling Range, in bauxite, 92M/0694; Brazil, compn., origin of clay cover on laterites, 92M/2597; Burundi, weathering products of basalt, 92M/3800; China, Guangdong Province, coastal area, weathering-residual type deposits, 92M/2588; Czech Republic, Bohemian massif, clay and accompanying mins. transported, deposited in rivers, 92M/2572; Dominican Republic, Pueblo Viejo, Monte Negro, in acid sulphate Au-Ag deposit, 92M/4023; Ecuador, Andes, alteration of andesitic rocks to, geochem., statistical, min. investigations, 92M/3805; Germany, Ibbenburen, in coal tonstein, Westphalian B, 92M/1368; Saxony, Meissen Massif, kaolinization of pitchstone, felsite, quartz porphyry, 92M/2583; India, West Bengal, Purulia dist., Malti, in clay deposit, 92M/2576; Iran, Kabutar-Kuh, formed by hydrothermal alteration of volcanic rocks, 92M/2587; Italy, Calabria, Serre, biotite-kaolinite transformation in granitic saprolite, 92M/2585; Grosseto, Paganico, in clay sediments, genesis, 92M/1360; Sardinia, Tresnuraghes, kaolinized rhyolite, electron microprobe study of alteration processes, 92M/2584; Japan, Kagoshima Pref., Iriki deposit, min. props., formation process of, 92M/2562; Kagoshima Pref., Makurazaki volcanic area, smectite, 92M/3801; Kyushu, Iriki, occurrence, genetic processes, 92M/0180; Seto area, characteristics of exchangeable cations on materials, 92M/2563; Nigeria, characterization of kaolinitic clays, 92M/0157; Poland, Lower Silesia, ferruginous micronodules, min., geochem. 92M/0686; Portugal, studies. characterization for paper industry,
- beneficiation through new delamination techniques, 92M/1336; Portugal, Serpins, Olho Marinho, props., 92M/0154; Spain, Aljibe, in sandstone cement, 92M/1364; Aragón, industrial use, 92M/1362; Campo de Gibraltar, Almarchal unit, in flysch, 92M/1363; Campo de Gibraltar, Bolonia unit, in flysch, 92M/1365; USA, Mississippi, Porters Creek and Wilcox, discrimination of varieties, 92M/0183
- —, -smectite, interstratification sequence from basalt-derived soils, 92M/1376; Argentina, Bermejo river basin, occurrence, 92M/3786
- -, montmorillonite, Ag+-exchanged, control of antimicrobial, antifungal activities of, by intercalation of polyacrylonitrile, 92M/2560; aluminium oxide cross-linked, synthesis and catalytic props., 92M/0139; ammonium, synthesis, 92M/0138: and 3-aminotriazole, mechanisms of interaction between, 92M/0142; antimicrobial, antifungal agent derived from, 92M/1338, 92M/2559; exchange selectivity of lanthanide ions in, 92M/4105; expansion characteristics under various relative humidity condns., 92M/0134; H-, swelling volumes of, homoionic, 92M/2556; natrification, non-biol.degradation of oxamide adsorbed on, 92M/2527; intercalation of Cu metal clusters in, 92M/0141; large-pore La-Al-pillared, prepn., props. of, 92M/0136; methylene blue (MB)-, IR, ESR, X-ray parameters, 92M/0137; mixed (Na,K) ion-exchanged, influence of K concn. on swelling, compaction of, 92M/0143; new triphase catalysts from, 92M/0144; Ni-, Co-exchanged, thermogravimetric, IR study of desorption of butylamine, cyclohexamine, pyridine from, 92M/2554; -polyacrylamide intercalation compounds, prepn., water absorbing props., 92M/0145; oriented films exchanged with enantiomeric, racemic cations, XRD patterns, 92M/3787; stereoselectivity of, in adsorption, deamination of amino acids, 92M/3791; synthetic hydroxy-aluminium, interactions of citric acid and, 92M/0135; use of methylene blue, crystal violet for detn. of exchangeable cations in, 92M/2535; X-ray of rehydration behaviours, 92M/0140; Burundi, weathering products of basalt, 92M/3800; Indian Ocean, in pelagic sediments, 92M/0176; Italy, Marche, Gola del Furlo, Fe envt. in, synchronous radiation XANES, Mössbauer study, 92M/3830; Japan, Honshu, Mashiko area, pottery clay, 92M/0181; Nigeria, Ogun State, Ibese, in clay-shale, anals., 92M/0199
- —, -beidellite series, synthesis, 92M/1348
- —, nacrite, IR spectra at room and low *T*, 92M/0161; *Germany, Saxony, Brand*, anals., 92M/1345
- —, nontronite, catalysis in phenols, glycine transformations, 92M/0123; detection of tetrahedral Fe³⁺ sites in, by Mössbauer spectroscopy, 92M/2532; Na-nontronite gels, effects of iron oxidation state on texture, structl. order, 92M/0131; structl. changes during dehydration of, ⁵⁷Fe

- Mössbauer study, effect of different exchangeable cations, 92M/2533; Burundi, weathering products of basalt, 92M/3800; Pacific, Lau Basin, hydrothermal, geochem., 92M/2116; Lau and North Fiji Basins, hydrothermal mineralization, 92M/2115; Red Sea, in metalliferous muds, 92M/3981; Red Sea, Atlantis II Deep, O isotope T of, 92M/4443; Spain, Cabo de Gata, assoc. with bentonite, 92M/2580
- —, palygorskite, evolution of porous structure, surface area under vacuum thermal treatment, 92M/0122; pyridine-treated, thermal anal., 92M/2539; -supported Rh catalysts, surface acidity of, 92M/3788; New Zealand, South Island, Cromwell Gorge, Gibraltar Rock, occurrence, 92M/3799; N Pacific, formed on montmorillonite in deep-sea sediments, 92M/0189; Japan, Gifu Pref., Unuma, in siliceous sedimentary rocks, min. data, 92M/3302; Spain, Aragón, industrial use, 92M/1362
- —, rectorite, expansion characteristics, 92M/0160; Japan, Honshu, Kamikita Kuroko, in hydrothermal aluminous clays, 92M/0179; Kagoshima Pref., Makurazaki volcanic area, smectite, 92M/3801
- —, saponite, dehydration, rehydration, 92M/0147; expansion characteristics under various relative humidity condns., 92M/0134
- —, sepiolite, gel, adsorption of methylene blue on, spectroscopic, rheological studies, 92M/3793; hydrothermal synthesis, 92M/1342; pyridine-treated, thermal anal., 92M/2539; Spain, Aragón, industrial use, 92M/1362; Madrid Basin, Vicálvaro, in opaline rocks and assoc. sediments, 92M/1361
- -, smectite, ammonium, K fixation in, by wetting, drying, 92M/2534; and other hydrothermal alteration products of synthetic glasses, 92M/2881; comparison of methods for extraction from calcareous rocks by acid dissolution, 92M/3783; crystal, probable key for detailed study, use, 92M/2547; hydrolysis of azinphosmethyl induced by surface of, 92M/3781; hydrophobicity of siloxane surfaces in, revealed by aromatic hydrocarbon adsorption from water, 92M/1357; illitization of, high resolution TEM, 92M/1343; interstratified dioctahedral mica-smectite, min. study, 92M/0162; samples in concentrated NaCl solutions, crystalline swelling in relation to layer charge, 92M/0130; struct. of clay polymers inclusion mins./organic compounds, 92M/2549; thermal anal., 92M/2522; transformation of 1-aminonaphthalene at surface 92M/1356; Costa Rica, weathering products of Cainozoic volcanic ash, 92M/3804; Czech Republic, Bohemian massif, clay and accompanying mins. transported, deposited in rivers, 92M/2572; Haiti, geochem, of impact glasses from Cretaceous/Tertiary boundary, relation to, 92M/4604; Japan, Akita Pref., Ohyu Dist., trioctahedral, conversion to interstratified chlorite/ smectite in Pliocene acidic pyroclastic

- sediments, 92M/0188; Honshu, Kamikita, to chlorite transformation in thermally metamorphosed volcanoclastic rocks. 92M/0178; Kagoshima Pref., Makurazaki volcanic area, smectite, 92M/3801; Kyushu, high-charge, in weathered granitic rocks, 92M/0187; Ohyu caldera, trioctahedral smectite-to-chlorite conversion series, chemiographic anal., 92M/1355; Pacific, Lau Basin, in volcanic rocks, 92M/2111; Spain, high-charge, in 'raña', 92M/0198; Cabo de Gata, assoc. with bentonite, 92M/2580; Spain, Madrid Basin, Vicálvaro, in opaline rocks and assoc. sediments, 92M/1361
- —, -chlorite transition, Iceland, Nesjavellir geothermal field, drillhole NJ-15, XRD, BSE, electron microprobe investigations, 92M/2273

— —, stevensite, Spain, Madrid Basin, -kerolite mixed-layers, anals., 92M/1366; USA, Oregon, Abert Lake, in sedimentary assemblage, weathering, diagenesis, AEM-TEM study, 92M/1371

- —, vermiculite, 'dealumination', aluminium intercalation of, 92M/0148; dehydration, rehydration of, 92M/0147; detection of tetrahedral Fe³⁺ sites in, by Mössbauer spectroscopy, 92M/2532; removal of Pb by, 92M/2526; Czech Republic, Bohemian massif, clay and accompanying mins. transported, deposited in rivers, 92M/2572; Greece, Chalkidiki peninsula, occurrence, 92M/3796; Malawi, K-Mg interstratification in, 92M/2552; USA, Indiana, Allen County, chlorite vermiculitization in aeolian periglacial sand dune, 92M/3803
- pastes, thermal props. for pelotherapy, 92M/0166
- --, pottery, Japan, Honshu, Tochigi Pref., Mashiko area, min.assemblage, 92M/0181
- sediments v. sediments, clay
- —, soil clay, concn. of iron oxides from, by 5 M NaOH treatment, complete removal of sodalite, kaolinite, 92M/2538; n-alkyl-ammonium-treated fine, improved evaluation of layer charge of, by Lorentz-polarization-correction, curve-fitting, 92M/3789; France, derived from sedimentary rocks, crystallochem., props., organization, 92M/1377
- suspensions, electrolyte, particle-size characterization of flocs, sedimentation volume in, 92M/2567
- barrier system, migration, retention phenomena of radionuclides in, 92M/2566
- --- graphite mixtures, used as engineered barriers for radioactive waste disposal, measurements of thermal conductivity, 92M/2776
- —-sand mixtures, used as engineered barriers for radioactive waste disposal, measurements of thermal conductivity, 92M/2776
- Climate studies, elusive climate signal in isotopic compn. of precipitation, 92M/4208; extraction of high-resolution carbonate data for palaeoclimate reconstruction, 92M/1219; interglacial T maxima, causes of, 92M/4214; reconstruction of past changes using diatom-based transfer

- function, 92M/0741; China, Tibet, Xizang plateau, late Pleistocene, Holocene uplift, climate changes, evidence from vertebrate fossils, archaeol. finds, 92M/0936
- Clinochlore v. chlorite
- Clinoclase, crystal struct., geometry of [5]-coordinate Cu²⁺ in mins., 92M/1414
- Clinoenstatite v. pyroxene
- Clinoferrosilite v. pyroxene
- Clinohumite v. humite
- Clinoptilolite v. zeolite Clinopyroxene v. pyroxene
- Clinopyroxenite-wehrlite intrusions, Russian Federation, Monchegorsk, chem. compn. of rock-forming mins. from, 92M/4810
- Clinozoisite v. epidote
- Coal, C₆₀ separation on, 92M/4530; Canada, Newfoundland, Barachois group, Carboniferous, petrol., palynology, depositional envts., 92M/4898; Germany, Thuringian Forest, Ruhla mining region, occurrence, 92M/1231
- —, anthracite, USA, Pennsylvania, Appalachians, Valley-and-Ridge province, CH₄-rich inclusions from quartz veins, 92M/1195
- basin, Hungary, Transdanubia, Ajka-II,
 Upper Cretaceous, tr. elems., 92M/1791
- bituminous, porphyrin index of coalification for, 92M/1856
- —, brown, Tertiary, novel C-ring cleaved triterpenoid-derived aromatic hydrocarbons in, 92M/3156
- —, huminitic, and methane, mathematical simulation of C isotopic fractionation between, 92M/4521
- , lignite, Albania, min. resources, 92M/3978
 , vitrinite reflectance, Japan, Kyushu, relationships between authigenic min. transformation, variation in, during diagenesis, Tertiary example, 92M/1111;
 Mexico, Cerro Prieto geothermal system.
 - diagenesis, Tertiary example, 92M/111; Mexico, Cerro Prieto geothermal system, rapid increase, stabilization of, at peak T, implications for organic maturation studies, 92M/2579
- Cobaltite, struct., twinning of, 92M/2639; Germany, KTB pilot hole, occurrence in metamorphic rocks, 92M/0302; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336
- Coesite, China, Dabie Mts, in regional ultrahigh-P eclogite, 92M/3655; South Africa, Vredefort Dome, assoc. with pseudotachylite, nature, distribn., genesis, 92M/1174
- Coffinite, Czech Republic, Bohemia, assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061; Czech Republic, Jachymov, compn., origin, 92M/1946; France, Gironde, Coutras deposit, in palaeodeltaic envt., 92M/1661; USA, Utah, Henry Basin, in epigenetic, sandstone-hosted V-U deposit, 92M/0594; in tabular-type V-U deposits, genesis, 92M/0593
- Collisional orogens, P-T-t paths, 92M/3603
- COLOMBIA, emeralds, chem. compn., 92M/4157; emeralds, descriptn., 92M/0515; emeralds, fracture filling with oils, 92M/1623; Cordillera Oriental, geol., emerald mineralization, 92M/4158; Gorgona Is., Re-Os isotopic constraints on

- origin of volcanic rocks, Os isotopic evidence for mantle heterogeneities, 92M/0681; La Tetilla, ophiolite, petrol., 92M/2247
- Columbite, from rare-metal granite, compn., phys. props., 92M/2031; U-Pb dating, geochronol. tool to date magmatism, ore deposits, 92M/3713; Central Alps, Bergell, in pegmatites of calc-alkaline intrusion, 92M/3298; Mozambique, Muiane, in Nb-Ta pegmatite, 92M/2722; Poland, Strzegom-Sobótka massif, in pegmatite in two-mica granite, 92M/0996; USA, North Carolina, Kings Mt., partially ordered, from pegmatite, cation distribn. in, 92M/2648; Virginia, occurrence, 92M/4000
- —, ferrocolumbite, Portugal, Minho, Arga, in aplite swarm, 92M/4647; USA, Virginia, occurrence, 92M/4000
- —, manganocolumbite, *USA*, *Virginia*, occurrence, 92M/4000
- Columbite-tantalite, *Portugal, Minho, Arga*, in aplite swarm, 92M/4647; *Spain, Catalonia, Pyrenees*, in pegmatite, 92M/1428
- Combeite, Tanzania, Oldoinyo Lengai volcano, in lapilli of 1966 ash eruption, 92M/3488
- Computer programs, BASIC, for O fugacity, T evaluation, 92M/3750; DRILL, program to aid in building ball and spoke crystal 92M/0082; models. for study crystallographic textures, 92M/0085: GEOCAPS, interactive geochem. data anal. program system, 92M/0079; graphic techniques, and profile-fitting method, anal. of CuKB XRD peaks broadening, 92M/0091; interactive, XPAS, for anal. of XRD patterns, 92M/3752; LCLSO, lattice parameter refinement using correction terms for systematic errors, 92M/0081; MacSuite, compendium of geoscientific programs for Apple Macintosh, 92M/2445; RECALC2, for processing min. anals. produced by electron microprobe, 92M/0083; thermodynamic props. of mins. at higher T, P, FORTRAN-77 program, 92M/0080
- Concrete, microbial corrosion on mortar bars, 92M/2782; microbially corroded, min. investigation, jarosite formation, 92M/2781; petrography, review, 92M/0910
- CONGO, Chaillu granite massif, Bouenza sequence, greenschist facies metamorphism, 92M/1171; Comba basin, Proterozoic, tectonic, sedimentary evolution, 92M/0921
- Connellite, Germany, Frankfurt, occurrence, 92M/3680
- Convergent margins, fluids in, compn., origin, role in diagenesis, importance for oceanic chem. fluxes, 92M/4960
- Cookeite, exptl. study, thermodynamical anal. of compatibility relations in Li₂O-Al₂O₃-H₂O system, 92M/1582; USA, Arkansas, Saline County, Stand-on-your-head mine, assoc. with quartz, 92M/2380
- Coombsite, New Zealand, Otago, new Mn analogue of zussmanite, 92M/3331
- Copiapite, Germany, Hartz Mts, occurrence, 92M/1225; Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001
- Copper, enrichment in Upper Trias coaly clay, sandstone horizons, 92M/1662; mining operations, XRD mineralogic logging of

drill samples, 92M/0306; Brazil, Carajás, Salobo, relationship with hydrous ferric oxides, 92M/0315; China, Yunnan Province, Dongchuan area, deposition by fluid mixing in deformed strata adjacent to salt diapir, 92M/1433; Italy, Sardinia, Calabona intrusive complex, evidence for porphyry Cu system, 92M/4009; New Zealand, Hawkes Bay, Kairakau Rocks, native, assoc. with pillow lava, 92M/4820; Turkey, Maden Complex, trend surface anal. of primary rock samples from region of Cu, Zn mineralization, 92M/2928

- compounds, Cu(OH)₂, crystal struct., 92M/1409
- deposits, Albania, min. resources, 92M/3978; Canada, Quebec, Gaspé, copper granite-related, deposits, Madeleine, 92M/1693; Gaspé, Madeleine, granite-related, S isotope study, example of sedimentary S source, 92M/1692; Chile, Andes, Petorca, El Bronce, epithermal vein system, geol., structl., fluid inclusion studies, 92M/1455; China, metallogenic potentialities, 92M/0325; Chengmenshan and Wushan, genesis, 92M/0357; China, Inner Mongolia, Bieluwutu, Cu-S polymetallic deposit, volcano-hydrothermal origin, 92M/0354; Germany, Marsberg, mins.of, 92M/2368, 92M/2369; North America, porphyry, temporal-spatial aspects, 92M/2700; Peru, Cu-Fe skarn, amphibolitic, geochem., 92M/2990; Sweden, mineralogy, Bergslagen, Tunaberg, Cu-Co deposit, Mn, Cd-bearing tetrahedrite from, 92M/3309; tellurides, selenides and assoc. mins. in, 92M/0336; Sweden, Tallberg, Proterozoic, lithogeochem., metal, alteration zoning in, 92M/4549; Turkey, Pontides, Akarsen, Au assoc. with, 92M/3919; E Pontic metallotect, Murgul, volcanogenic, geochem. proximity indicators, 92M/3184; USA, North Carolina, Virgilina district, post-Acadian metasomatic origin for, 92M/2741
- -, porphyry, relationship to prograde, retrograde base metal lode deposits, 92M/1422; China, geol. setting, 92M/1432; Fiji, geol. evolution, min. deposits, 92M/2102; Greece, Chalkidiki, Skouries, Pt-group elem., Au in, 92M/0343; Greece, Skouries, mineralogy of precious metals in, 92M/3289; India, Malanjkhand, Proterozoic, geochem. of secondary Cu mins. from, 92M/0316; Peru, Cuajone, Quellaveco and Toquepala, geomorphol. envt., age of supergene enrichment, 92M/2756; Turkey, Thrace, Derekoy, geol., mineralization, 92M/0348; USA, Nevada, Ann-Mason, hydrothermal Yerrington, alteration, O, H isotope characteristics, 92M/2978
- mineralization, use of tourmaline in geochem. prospecting for, 92M/1903; Austria, Salzburg, Hüttau, Larzenbach, mins. of, 92M/3694; Morocco, Bleida, zoned, recurrent deposition of Na-Mg-Fe-Si exhalites, Cu-Fe sulphides along synsedimentary faults, 92M/3992; USA, Kansas, sediment-hosted, genesis, S/C, S isotope systematics, 92M/0598; Utah,

Lisbon Valley, Colorado, Slick Rock district, fault-controlled, fluid inclusion, $\delta^{18}O$, $\delta^{7}Sr/\delta^{8}Sr$ evidence for origin of, 92M/1705

- minerals, Germany, Siegerland, Steinbach, Grube Bindweide, occurrence, 92M/3683;
 Zaïre, Shaba, occurrence, 92M/3699
- ore, separation of tr. amounts of Ag by volatilization prior to AAS detn. in, 92M/2486; Australia, Mt Isa, and Pb-An-Ag ore, cogenesis, 92M/1469; S isotope systematics, 92M/1678; Norway, Sulitjelma ore field, geol., 92M/4006
- -gold deposits, Australia, New South Wales, Goonumbla, 40 Arj³⁹ Ar dating, 92M/3734; Brazil, Chapada, hydrothermal exhalative origin for, 92M/3884; Papua New Guinea, Morobe province, Wamum and Idzan creeks, geol., 92M/2690; Thailand, geochem. dispersion of Au related to, 92M/1886
- -lead deposits, Japan, Hokkaido, Jokoku-Katsuraoka mining area, 92M/0567; Peru, Quiruvilca mining dist., metal ratios, 92M/2755
- molybdenum deposits, Western Australia, Boddington gold mine, Archaean porphyry, primary mineralization, 92M/3920; Iran, Kerman, Sar-Chesmeh, porphyry, secondary ore formation features, 92M/1674; Peru, Toquepala, porphyry, slump breccias of, implications for fragment rounding in hydrothermal breccias, 92M/2763
- nickel deposits, Canada, Quebec, Labrador Trough, Aulneau-Redcliff, tectonized, 92M/0331; China, Jinchuan, ore-controlling effect of brittle-ductile shear zone, 92M/0363; USA, Minnesota, geochem. exploration for, in cool-humid climate, 92M/4557; USA, Minnesota, Duluth Complex, gravity, magnetic data, interpn., 92M/0374; gravity, magnetic perspective, 92M/1489; Duluth Complex, Babbitt deposit, Pt-group elem. geochem., 92M/0375; Babbitt area, Virginia fm., Se/S ratios, 92M/4342
- -- pyrite deposits, Bulgaria, Sredna Gora Mt, hypogene sulphate-sulphide zoning in, 92M/0346; Ukraine, Komsomolskoe, pyrite from, crystal morphol., 92M/4655
- tin mine, Portugal, Neves-Corvo, evolution of ore-reserve estimation strategy, methodology, 92M/2713
- -zinc deposits, Canada, Manitoba, Lynn Lake, Lar, alteration geochem., petrol., 92M/0282; Norway, Løkken greenstones, Dragset, deformed, volcanogenic sulphide, 92M/0334; Scotland, Gairloch, recent discovery, 92M/0298; USA, North Carolina, geol. map, 92M/4001
- Coral, illustrated postage stamps, 92M/1640; radioactive disequilibrium dating by nuclear track detection, 92M/0002; ²³⁴U/²³⁸U mass spectrometry of, accuracy of U-Th age of last interglacial period, 92M/2392; *Barbados*, and *Pacific, Mururoa atoll*, U/Th dating, 92M/0052; *USA*, *California*, solitary, U-series dating by MS, 92M/3745

Corderoite, USA, Nevada, Humboldt County, McDermitt Hg deposit, assoc. with new min., radtkeite, 92M/3336 Cordierite. assoc. with new min., dmishteinbergite, 92M/2069; flux-grown Mg-, abrupt high/low transition in single crystals with hour-glass struct., 92M/1574; magnesian, thermodynamic model for H2O in, 92M/2861; natural, synthetic raw materials for technical ceramics, 92M/0376; phase chemographies in quaternary systems of seven phases, 92M/0414; static lattice energy minimization, lattice dynamics 92M/0216: calculations. synthetic K-bearing, NMR-spectroscopy, 92M/3821; Canada, Quebec, Mistastin batholith, in gneiss from contact aureoles, 92M/1188; Finland, Orijärvi, in gneiss, min.chem., 92M/0822; France, Massif Central, Montagne Noire, in gneiss, 92M/3614; Germany, Eifel volcanic field, natural, microstructl. variations in, 92M/2608; India, Eastern Ghats, Arakau, in granulites, petrogenetic grid for sapphirine-free rocks in system FMAS, 92M/1179; Japan, Gifu Pref., Nogo-Hakusan, in symplectite in Fe-Al-rich hornfels, 92M/1182; Norway, Bamble sector, -bearing rocks, Mg-rich dumortierite in, 92M/0818; Norway, Modum Complex, orthoamphibole-cordierite rocks, P-T-t path, 92M/1131; Scotland, Highland, Ballachulish igneous complex, in contact-metamorphosed pelites, search for variations in structl. states of, 92M/2156; thermal history of mins. from study of intracrystalline processes, 92M/2162; Sweden, Bergslagen, metamorphism of Mg-altered felsic volcanic rocks, 92M/2262; USA, Colorado, Gold Brick dist., -cummingtonite facies rocks, petrol., 92M/4957

—, iolite, strongly pleochroic chatoyant gems, 92M/2917

Core v. Earth

Corkite, England, Cornwall, Penberthy Croft, occurrence, 92M/1223

Cornwallite, Germany, Hartz Mts, occurrence, 92M/1225

Coronadite, Germany, Black Forest, Eisenbach, K-Ar dating, age of ore emplacement, 92M/1255

Corrensite, Finland, Veitsivaara, hydrothermal, occurrence, anals., 92M/0171

Corundum, in metamorphic rocks, stability, 92M/0847; in Murchison meteorite, ion microprobe study of, implications for ²⁶Al, ¹⁶O in early solar system, 92M/0786; phase chemographies in quaternary systems of seven phases, 92M/0414; synthetic, rough grinding pavilions for intentional light scattering, 92M/0517; Verneuil-grown, tr. H in, colour varieties, IR spectroscopic study, 92M/4166; Western Australia, Darling Range, in bauxite, 92M/0694; Czech Republic, Bohemia, České Středohoří Mts, assoc. with perovskite, 92M/2017; Sri Lanka, Avissawella and Getahetta, in gem pockets, 92M/4165; USA, Colorado, San Juan volcanic field, Carpenter Ridge Tuff, min. constraints on petrogenesis of trachyte, 92M/0678

—, geuda, anomalous behaviour during heat treatment, 92M/2916; benefications, colour changes, 92M/1636 -, ruby, crimson rose, gem notes, 92M/1614; gem trade lab notes, 92M/1612; microscopic detn. of structl. props. for distinction of natural, synthetic, 92M/1618; Verneuil synthetic, 92M/4159; SE Kenya, growth of, 92M/1615; Sri Lanka, history of gemmology, C.P. Thunberg, 18th century collector, 92M/1638; likely to be ruby spinel, 92M/2915; Tanzania, Morogoro area, new, anals., 92M/1616; Vietnam, found to be synthetic, gem notes, 92M/4194; gemmology, 92M/1617

-, sapphire, containing Fe, Ti, titania precipitation in, 92M/2892; gem trade lab. notes, 92M/4193; microscopic detn. of structl. props.for distinction of natural, synthetic, 92M/1618; synthetic, natural 'padparadscha', magnetic resonance distinction between, 92M/4163; yellow, seven types of, and proposed Ponahlo test, 92M/4161; Australia, New South Wales, New England gem fields, alluvial, key areas for exploration, 92M/2696; Sri Lanka, history of gemmology, C.P. Thunberg, 18th century collector, 92M/1638; inclusion in, 92M/2914; Thailand, Kanchanaburi, Boi Ploi, in weathered alkali basalt, 92M/4162; USA, Montana, heat-treated, gem notes, 92M/1614; Montana, Dry Cottonwood Creek, garnet inclusion in, 92M/1628; Vietnam, gemmology, 92M/1617

Cosalite, Se analogue of, Pb₄Sb₄Se₁₀, crystal struct., 92M/1417; Sweden, Bergslagen, Boviksgruvan, in sulphide deposit,

92M/2707

COSTA RICA, weathering products of Cainozoic volcanic ash, 92M/3804; Poás volcano, crater lake system, fluid-volcano interaction in active stratovolcano, lava, basalt-andesite 92M/4866; relationship, petrogenesis in magmatic arc, 92M/3508; new measurements of SO₂ flux, 92M/4867; S eruptions, 92M/4865; Tilarán-Montes del Aguacate, Au deposit, Curatella americana, biogeochem. sample medium, 92M/1880

Coticules, Norway, Sulitjelma, origin, 92M/1129

Covellite, Czech Republic, Příbram, Vrančice, Pošepný vein, occurrence, min. data, 92M/2040; England, W Shropshire orefield, genesis, evidence from fluid inclusions, sphalerite chem., S isotopic ratios, 92M/0544; France, Var, Cap Garonne, assoc. with new min., geminite, 92M/2070; India, Malanjkhand, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316; Norway, Oslo, Akersberg mine, occurrence, 92M/4007; Missouri, Viburnum occurrence, 92M/3704; Oklahoma, Paoli, in Ag-Cu deposit, ore microscopy, 92M/0314

Crandallite, Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; occurrence, min. data. 92M/3334; Germany, Bavaria, Hirschau-Schnaittenbach, in kaolinized arkose, 92M/4669

Crater lake system, Costa Rica, Poás volcano, fluid-volcano interaction in active stratovolcano, 92M/4866

Crednerite, Filipstad, Jakobsberg, Långban and Jakobsberg, occurrence, min. chem., 92M/2353

Cretaceous/Tertiary boundary, formation of spinel in cosmic objects during atmospheric entry, clue to event, 92M/4598; geochem.constraints on source regions of impact glasses, 92M/1943; impact of bolide on evaporite terrain, generation of major sulphuric acid aerosol, 92M/4605; rapid change in Sr isotopic compn. of sea-water before, 92M/0728; sea-water Sr isotopes at, 92M/0727; Canada, Alberta, diamonds in clay, nanometre-size 92M/0797; Cuba, late Maastrichtian megaturbidite, poss, impact-derived deposit, 92M/4902; Haiti, altered spherules of impact melt, assoc. relic glass from sediments, 92M/0796; geochem. of impact glasses from, relation to smectite and new type of glass, 92M/4604; mineralogy, petrol., 92M/4901; Haiti, Beloc, no evidence for impact in Caribbean Area, 92M/4900; NE Mexico, tektite-bearing deep-water clastic unit, 92M/4597; Spain, Agost, geochem., mineralogy, 92M/4437; Tunisia, El Kef, stratigraphic distribn. of Ni-rich spinel in rocks, 92M/4599; USA, Texas, Falls County, Brazos River, biostratigraphy, 92M/4603; Wyoming, Teapot Dome, palaeobotanical evidence for June 'impact winter', 92M/0798; W interior USA, chalcophile elems., Ir in continental clays, 92M/4602

Crichtonite, exptl. studies, 92M/0490

Criddleite, France, Massif Central, Creuse, Viges, new discovery, 92M/3311

Cristobalite, in fired clay, SEM study, 92M/0200; periodic Hartree-Fock study, 92M/0237; transformation of quartz to, during quartz glass production, 92M/2764; Israel, Golan Heights, Har Peres, from pyroclastics, 92M/2000; Pacific, Lau Basin, in volcanic rocks, 92M/2111

Crocidolite v. amphibole

Crocoite, Germany, Saxony, Callenberg, occurrence, 92M/1233

Crossite v. amphibole

Crust v. Earth

Cryolite, NMR evidence for five- and six-coordinated Al fluoride complexes in F-bearing aluminosilicate glass, 92M/0412; Brazil, Pitinga mine, -bearing granite, geochem. characteristics, 92M/1896

Cryptomelane, Germany, Black Forest, Eisenbach region, K-Ar dating, age of ore emplacement, 92M/1255; Hesse, Giessen, in Mn ore, 92M/3989; Italy, Maritime Alps, Internal Brianconnais, in Mn-ores from Jurassic meta-arenites, marbles, 92M/4644; Switzerland, Grison Canton, Oberhalbstein, in Mn deposits, presence of Sr, evolution, parageneses, 92M/1663

Crystal structure, α -Cu₂HgI₄, phase transition, 'δ-Al₂O₃', 92M/2651; 92M/1405; absorption correction of Debye-Scherrer diagrams, 92M/1383; bond-valence for solids, 92M/0204; Ca-O coordination. statistical method to determine coordination number, 92M/1381; calculations of ¹⁷O, ⁿT NMR parameters in H₃ TO TH₃ dimers. T_3O_9 trimeric rings, 92M/1379; cation

studies of three (Ni,Mg) orthovanadates, 92M/0264; crystal struct. anal. as chem. analytical method, application to light elems., 92M/2601; crystallographic orientation-relationship between β- and γ-Ca₂SiO₄ determined by 92M/1385; Cs₂TiO(P₂O₇), HRTEM, 92M/0259; dense, rare four-connected nets, 92M/2602; detn. for crystals with twinning by hemihedry or pseudohemihedry, 92M/0208; DRILL, program to aid in building ball and spoke crystal models, 92M/0082; GaMo₄S₈, phase transition in, 92M/2638; H₆Si₂O₇, ab initio molecular calculations, two geometric conformations, 92M/2605; $In_5S_4 = SnIn_4S_4$. corrected struct., 92M/2640; influence of twinning by merohedry on intensity statistics, 92M/3812; MgCl₂•RbCl•6H₂O, 92M/0265; Mg,Co, Co,Ni orthovanadate solid solutions, cation distribn. studies, 92M/2649; MnS₂, XRD, neutron diffraction study, 92M/3846; orientationally disordered Na₂(Ca,Sr)SiO₄, 92M/2604; permanent samples for Guinier cameras, 92M/1382; phase detn., Patterson maps from multiwavelength powder data, 92M/1380; relationship between ²⁹Si MAS NMR chem. shift and silicate min. struct., 92M/1378; relationship between unit-cell volumes and cation radii of isostructural compounds, 92M/0211; simulation of, by combined distance-least-squares/valence-rule method, 92M/3813; sodium vanadyl(IV) orthophosphate, synthesis, structl. characterization, 92M/2647; structs. with approximate pseudotranslational symmetry, E values obtained by renormalizing procedure, 92M/0206, renormalizing procedure for superstructure reflexions, 92M/0207; study of grazing incidence configurations, effect on XRD data, 92M/3814; superstructure K₃HGe₇O₁₆•4H₂O, 92M/2612; TiPO₄, VPO₄, synthesis, crystallization, 92M/2646

Crystalline solids, and aqueous ions, linear free-energy relationship for, 92M/4081

Crystallography, textures, computer program for study of, 92M/0085; twinning, strain-related transformation in mins., 92M/1555

CUBA, late Maastrichtian megaturbidite, poss. impact-derived deposit, 92M/4902

Cubanite, USA, Minnesota, Duluth Complex, Babbitt deposit, assoc.with Cu-Ni mineralization, 92M/0375

Cumengite, crystal struct. of pseudoboleite, relations with structs.of, 92M/3853

Cummingtonite v. amphibole

Cuprite, Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694; Japan, Gifu Pref., Unuma, in siliceous sedimentary rocks, min. data, 92M/3302; New Zealand, Hawkes Bay, Kairakau Rocks, assoc. with pillow lava, 92M/4820

Cuproadamite v. adamite

Cuprotungstite, England, Cumbria. Buckbarrow Beck, assoc. with russellite, 92M/3677

Cyanotrichite, France, Var, Cap Garonne mine, assoc. with new min., camerolaite, 92M/3329; Germany, Frankfurt, occurrence, 92M/3680

Cymrite, exptl., thermodynamic study of stability in system BaO-Al₂O₃-SiO₂-H₂O, 92M/4117; hydrated Ba aluminosilicates, BaAl₂Si₂O_{8*}nH₂O, relation to, 92M/4118; Czech Republic, Moravia, Horní Benešov, from Pb-Zn deposit, 92M/1999

CYPRUS, *Troodos ophiolite*, Au-rich seafloor gossan, 92M/2661; evidence for role of fluid phase accompanying chromite formation, 92M/1464; S isotopic profile, 92M/3529; structl., petrol. features of peridotite intrusions, 92M/3518

CZECH REPUBLIC, mins. of mine dumps, 92M/3687; Bohemia, calkinsite-(Ce) from Cretaceous, 92M/2057; florencite-(La) in U deposits in Cretaceous, 92M/2061; geochem, specialization of Sn-bearing granitic rocks, 92M/1731; philipsbornite, arsenoflorencite-(La), arsenoflorencite-(Nd) from U dist., 92M/3334; red pyropε, anals., 92M/1627; Bohemian massif, clay and accompanying mins, transported, deposited in rivers, 92M/2572; eclogites, petrol., 92M/1164; high P metamorphism, comparisons, contrasts between Moldanubian Zone, Münchberg Massif, ZEV, ZTT, Erzgebirge, 92M/1147; Nd, Sr age, isotope patterns from Variscan eclogites, 92M/2403; role of organic matter in metallogeny, 92M/1665; Variscan vein Pb-Zn-Ag mineralization, stable isotope 92M/3991; xenolithic porphyries, 92M/2173; Bohemian Massif, Moldanubian zone, crustal garnet peridotites, thermobarometry, diffusion modelling, cooling rates, 92M/1163; Bohemia, České Středohoří Mts, perovskite alluvium heavy-min.concentrates, 92M/2017; Erzgebirge, Cinovec, zeunerite, crystallogr., 92M/2375; Kladno, calcium acetate, occurrence, 92M/2059; Křemže, anthophyllite asbestos from lateritized serpentinite, 92M/1973; Liteň fm., alunite-crandallite group mins., occurrence, 92M/2062; Bohemia, Litice nad Orlicí, francevillite, occurrence, min. 92M/2030; Litošice, hyalophane-zoisite veins from pyrite-rhodochrosite deposit, 92M/1998; Mariánské Lázně, Planá, topotactic intergrowths of rauenthalite and phaunouxite, 92M/2029; Mariánské Lázně complex, U-Pb zircon isotopic evidence for early Ordovician, late Proterozoic units, 92M/0026; Příbram, Vrančice, brandtite, chervetite, 92M/2028; Slaný mining area, dawsonite, occurrence, 92M/3689; Staré Ransko ore deposit, Zn contents of spinellids, ilmenite, 92M/2019; Bohemia, Teplice, baryte occurrence, 92M/3693; Hohes Gesenke, Hrubý Jeseník, mins. of, 92M/3691; Horní Slavkov, Huber stock, inclusions of wittichenite in bornite, min. data, 92M/2041; Hrubý Jeseník Mts, anatase occurrence in veins of 'Alpine paragenesis' type, 92M/2373; Jachymov, coffinite, compn., origin, 92M/1946; Krhanice village, zoned phlogopite rimmed by biotite in minettes, 92M/4626; Krušné Hory Mts, hydrothermal vein fillings used as semiprecious stones in Middle Ages,

92M/1637; Kutna Hora, geol., mining history, mins., 92M/2374; Měděnec, skarn deposit, mins. of, 92M/1236; Milín, garnet from leucocratic miarolitic granite, 92M/1952; Moravia, datolite in hornstone assoc. with teschenite, 92M/1957; Moravia, ilmenite from pegmatites, min. data, 92M/2016; Moravia, Horní Benešov, cymrite from Pb-Zn deposit, 92M/1999; mineralogy, Kracovice, pegmatite, 92M/2716; Kunčice pod Ondřejníkem, witherite, baryte in teschenitic rocks, 92M/2056; Moravia, Rýmařov, Nová Ves, plumbogummite, min. data, 92M/2060; Ostrava-Karviná coal field, millerite, new occurrences, 92M/2036; Příbor, Hončova hůrka, zeolites in picrite, 92M/2007; Třinec, calcian strontianite, min. data, 92M/2055; Moravia, Věžná, pseudomorphs of bertrandite, epididymite after beryl, 92M/1961; Příbram, geol., mineralogy, mining history, 92M/3692; Bohutín, krupkaite, min.data, 92M/2045; Vrančice monohydrocalcite deposit, from polymetallic vein, 92M/2054; Příbram, Vrančice, Pošepný vein, mckinstryite, jalpaite, occurrence, min. data, 92M/2040; Skály, blue beryl rich in Mg, Fe, 92M/1624; Sokolov, Lomnice, humboldtine in Tertiary brown coal layer, min. data, 92M/2058; Zlaté Hory, berlinite from sulphide ore deposit, min.data, 92M/2063

Dachiardite v. zeolite

Dacite, Atlantic, N Rockall Trough, Darwin complex, Tertiary igneous centre, seismic data, gravity modelling, 92M/3408; Bulgaria, E Rhodope, primary baryte in, 92M/3432; Chile and Bolivia, Andes, titanite-bearing, magmatic processes in, 92M/1025; Panama, La Yeguada volcanic complex, genesis via both slab melting and differentiation, 92M/3462; USA, Washington, Mt St Helens, groundmass crystallization, 1980–1986, tool for interpreting shallow magmatic processes, 92M/4859

Dacitic melts v. melts, dacitic

Dahllite v. apatite

Dalyite, *Murunsky complex*, in alkaline metasomatites, 92M/1947

Danburite, dielectric constants of, oxide additivity rule, 92M/4989; *Sri Lanka*, gem notes, 92M/4194

Darapiosite, *Tadzhikistan*, *Dara-i-Pioz*, occurrence, 92M/2377

Datolite v. gadolinite

Dawsonite, Czech Republic, Bohemia, Slaný mining area, occurrence, 92M/3689

Decasodium tetraberyllotetrasilicate, struct., ionic conductivity, 92M/1391

DENMARK, Faeroe Is., Tertiary dykes, sills of basalt plateau, 92M/4781

Desautelsite, synthesis of, 92M/2905

Descloizite, V-O stretching, V-O bond-bond interaction force constants of VO₄³⁻ ion in struct., 92M/1413

Devilline, and serpierite, orthoserpierite, REM photographs, chem. anals., crystallography, distinguishing features, 92M/3315; Germany, Frankfurt, occurrence, 92M/3680

Diabase, Finland, Postjotnian and Subjotnian, chronostratigr., 92M/2399; Jordan, Wadi Um Salab, Precambrian, geochem., petrogenesis, implications for mantle, 92M/4380; SW USA, Proterozoic, isotopic constraints on petrogenesis of, 92M/4732

- dykes, Finland, and silicic magmatism, evidence from Proterozoic, 92M/4736; Sonkajärvi-Varpaisjärvi area, Proterozoic, petrogr., geochem., 92M/3368; Finland, Wiborg rapakivi area, new U-Pb ages, 92M/0892; France, Ardennes, fluid infiltration during greenschist facies metamorphism, 92M/3092; Ardennes, Rocroi massif, redox process, Mössbauer spectrometry, 92M/0617; Rocroi Massif, Grande Commune, Variscan retrograde metamorphism, 92M/1139; Oman, emplacement in ophiolite, magnetic fabric study, geochem., 92M/3513; Switzerland, Silvretta, geochem., 92M/1807

Diaboleite, Western Australia, Ashburton Downs, assoc. with ashburtonite, new bicarbonate-silicate min., 92M/3327

Diadochite, Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001

Diagenesis, development of positive Eu anomaly during, 92M/4458; min. formation. change in, 92M/4893; of terrigenous triterpenoids, Δ^2 -triterpenes, intermediates in, 92M/4539; zeolitization in marine sediments, time-dependent function on diagenetic change, 92M/4894; Germany, Rhenish Schiefergebirge, Romberg borehole, Brilon reef complex, 92M/2255; Hungary, Igal, and low-T metamorphism in tectonic link between Dinarides and W Carpathians, 92M/4942; North Sea, Brent group, Jurassic reservoirs, 92M/4879; open, restricted hydrologies in, 92M/4883; North Sea, Stratfjord, Hutton and Lyell fields. Brent group, burial, of sandstone, 92M/4881; USA, California, Monterey fm., early, in marine envts., reevaluation of S reactions during, 92M/4543; Texas, Gutf coast, clay, Sr, Nd isotopic evidence for, 92M/1304

Diamond, application of C isotope measurements to identification of source of C in, 92M/1655; automatic procedure for computing optimum cut proportions of gems, 92M/2912; coated, C, N isotopic compn., IR absorption spectra of, evidence for regional uniformity of CO2-H2O rich fluids in lithospheric mantle, 92M/4326; coated, noble gas state of ancient mantle deduced from noble gases in, 92M/1644; crushing C₆₀ to, at room T, 92M/4125; De Beers' exptl. synthetic, CL spectra, 92M/3668; eclogitic, clinopyroxene in, ⁴⁰Ar/³⁹Ar laser probe studies, 92M/3733; filled, identifying features, 92M/0513; fluid inclusions, high internal P in, determined by IR absorption, 92M/2012; formation, isotope evidence for involvement of recycled sediments in, 92M/1651; formation, isotope fractionation related to kimberlitic magmatism and, 92M/0537; gem trade lab notes, 92M/1612; illustrated postage stamps, 92M/1640; international gemmological symposium 1991, 92M/4180; new field, gem notes, 92M/1614; optical transitions at ultrahigh P, 92M/0484; oriented biotite inclusions in diamond coat, 92M/3285; props., applications of, (book), 92M/3776; submicrometer fluid inclusions in turbid coats on, 92M/2013; synthetic, props. of, 92M/4194; unusual octahedral, min. data, 92M/3284; vapour-growth, noble comparison studies, shock-produced diamonds, origin of diamonds in ureilites, 92M/0485; Africa, variations in trapping T, tr. elems. in peridotite-suite inclusions from, evidence for two inclusion suites, implications for lithosphere stratigr., 92M/4379; southern Africa, off W coast, marine mining, 92M/4154; Australia, New South Wales, New England gem fields, alluvial, key areas for exploration, 92M/2696; Western Australia, implanted ³He, ⁴He, Xe in studies of, 92M/0579; Canada, Alberta, nanometresize, in Cretaceous/Tertiary boundary clay, 92M/0797; Morocco, Beni Bousera, oceanic lithosphere connection, 92M/3523; Russian Federation, Siberia, megacrystalline dunites, peridotites, hosts for, 92M/3440; Yakutia, inclusion-bearing, from kimberlite, morphol., phys. props., paragenesis, 92M/0844; South Africa, Finsch and Kimberley Pool, eclogite, websterite inclusions in, Nd, Sr isotope systematics, 92M/1270; Jagersfontein and Koffiefontein kimberlite, lithospheric, asthenospheric, C isotopic compn., N content, 92M/1671; South Africa, Premier mine, Centenary, gem notes, 92M/1613

Diaoyudaoite, Germany, occurrence, 92M/1225

Diaphorite, E Bulgaria, Rhodopes, Zvezdel-Pčelojad ore field, min. data,

Diapir, Red Sea, Zabargad Is., metasomatism, Sr, Nd isotopic anal., 92M/3023

Diaspore, and B-, Be-, P-containing mins., polarizabilities of B₂O₃, P₂O₅, dielectric constants of, oxide additivity 92M/4989; Dominican Republic, Pueblo Viejo, Monte Negro, in acid sulphate Au-Ag deposit, 92M/4023

Dickite v. clay minerals

Digenite, USA, Missouri, Viburnum Trend, occurrence, 92M/3704; New Mexico, Chloride mining dist., St. Cloud and U.S. Treasury mines, geol., geochem. anal. of mineralizing fluids, 92M/3169; Oklahoma, Paoli, in Ag-Cu deposit, ore microscopy, 92M/0314

Dinite v. hydrocarbons

Dinosaur eggshells, stable isotope anals., palaeoenvtl. implications, 92M/3082

Diopside v. pyroxene

Diorite, Bulgaria, Stanke Dimitrov, Djakovo, amphibole in, min. data, 92M/0826; Canada, Labrador, Nain complex, petrol., 92M/3456; China, Hebei, Handan-Xingtai area, hornblende, discovery, study of mantle-derived dunite inclusions 92M/3444; Europe, Bohemian Massif, xenolithic porphyries, 92M/2173; Georgia, Caucasus, Gorabi Massif, U-Pb dating, 92M/1276; Scotland, Caledonides, zoning, layering in, 92M/4787; Scotland, Highland, Ballachulish igneous complex, hypersthene, nucleation, growth of pyroxene in, 92M/2147; USA, California, Bristol Lake region, geochem, evolution of, role of assimilation, 92M/4424

Dioritic rocks, of hybrid origin, quartz textures in, 92M/2128

Dissakisite-(Ce), Sweden, Bergslagen, Koberg mine, occurrence, 92M/3297

Djerfisherite, in xenolith from kimberlite pipe, mineralogy, 92M/4639

Djurleite, India, Malanjkhand, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316; USA, Missouri, Viburnum Trend, occurrence, 92M/3704

Dmishteinbergite, new min., 92M/2069

Dolerite, Africa, MORB-related, assoc. with final phases of Karoo flood basalt volcanism, 92M/4730; Africa, Karoo, weathered, REE fractionation, anomalies, 92M/0643; Ireland, Connemara, Loch Ána, Palaeocene, newly discovered, 92M/4791; Netherlands, offshore well G/17-2, petrol., 92M/4794; Scotland, Islay, Cnoc Rhaonastil, differentiated, natural expt. in low P differentiation of alkali olivine-basalt magma, 92M/4788; Sweden, Dala, palaeomagnetic signature, 92M/4784

dykes, South Africa, Cape Peninsula, petrol., 92M/4747; Sweden, Södermanland, geochem., 92M/4358; Zaïre, Marungu plateau, Proterozoic, petrol., geochem.,

92M/4746

Dolomite, and quartz, zoning in reaction rims between, 92M/0705; appearance, distribn. in Lower Palaeozoic deep-water carbonates, 92M/3317; δ^{13} C, δ^{18} O anal. using laser extraction system, 92M/1653; diffusioncontrolled growth of chert nodule reaction rims in, local equilibrium in metasomatic processes, 92M/0705; dolomite-ankerite solid-solution series, structl. variation, X-ray, Mössbauer, TEM study, discussion, 92M/0257, reply, 92M/0258; high P, T behaviour, Raman spectroscopic study, 92M/4147; rapid method for detn. of major components of, by X-ray spectrometry, 92M/2463; saddle, carousel model for crystallization of, 92M/4665; XRD. IR, Mössbauer studies, 92M/4664; Western Australia, Canning Basin, Milankovitchcyclicity in bedded contemporaneous with Ordovician-Silurian glaciation, 92M/0693; Germany, Nordpfalz, Rockenhausen, occurrence, 92M/2366; Italy, Gargano Peninsula, tr. elem. zoning in, proton microprobe data, thermodynamic constraints on fluid compns., 92M/4666; Latemar buildup, massive, dolomitization front geometry, fluid flow patterns, origin, 92M/1106; Italy, Sicily, reservoir rock, petrogr., isotopic geochem., 92M/2952; Poland, Olkusz-Kolesław region, dolomite, ore-bearing, petrogr. 92M/3566; characteristics, Portugal, Trás-os-Montes and Alto Douro, geol., exploration, uses, 92M/0379; Scotland, Highland, Ballachulish igneous complex, siliceous, decarbonation reactions in, 92M/2152; USA, Maine, Waterville limestone, from chlorite zone rocks, C, O isotope geochem., 92M/0592

Dolomitic rock, review of origins, geometry, textures, 92M/1097

unstable Dolomitization, stable to transformation during, 92M/1609; India, Adilabad, Andhra Pradesh, Chanda Limestone, Proterozoic, off-platform. 92M/4891; Pacific, Niue, of atolls by sea-water convection flow, 92M/2257; Svalbard. Draken fm., Riphaean. coastal lithofacies. syndepositional, biofacies assoc. with, 92M/3557

Dolostone, USA, NE Gulf Coast, Smackover fm., Oxfordian, reservoir rocks, origin of, 92M/3582

Domeykite, Kazakhstan, assoc. with koutekite, 92M/2046

DOMINICAN REPUBLIC, Pueblo Viejo, Monte Negro, evolution of acid sulphate grade development, Au-Ag deposit, 92M/4023

Dravite v. tourmaline

Duftite, Western Australia, Ashburton Downs, with ashburtonite, assoc. new bicarbonate-silicate min., 92M/3327; Austria, Carinthia, beta-, occurrence, 92M/4996

Dumortierite, South Africa, Bushmanland, -topaz-white mica fels from peraluminous metamorphic suite, 92M/1175; USA, Nevada, Humboldt Range, zonally arranged in hydrothermal Ag-Au deposits, 92M/3254

Dunite, Fe transport in, diffusion in fluid-bearing, slightly-melted rocks, exptl., numerical approaches, 92M/0421; China, Hebei, Handan-Xingtai area, inclusions in diorite, hornblende mantle-derived, discovery, study of, 92M/3444; Russian Federation, Siberia, megacrystalline, hosts for diamonds, 92M/3440

Dyke swarms, as stress indicators, 92M/4728; giant radiating mafic, in failed arm setting, problem of magma source of, 92M/4734; Proterozoic, intrusion, crystallisation features in, 92M/4721; Antarctica, Vestfold Hills, Precambrian, classification of dyke-fracture geometry, 92M/3449; Brazil, Amapá and Jari, Mesozoic, geochem., plume-related magmatism during opening of central Atlantic, 92M/4735; Canada, Mackenzie, giant radiating, evidence from magnetic fabric for flow pattern of magma, 92M/4827; Canada, Matachewan, 2450 m.y., evolution of, 92M/4740; Greenland, Melville Bugt, major 1645 m.y. alkaline magmatic event, 92M/4763; India, Deccan Trap, related to alkaline province, 92M/4748; Elchuru, Proterozoic, mica lamprophyres, microshonkinites, 92M/4749; India, Lower Narmada Valley, emplacement of, 92M/4752; Japan, Shiretoko peninsula, radial, reconstruction of Pleistocene submarine volcanoes, 92M/4722; Russian Federation, Siberian platform, Anabar massif, Precambrian, petrol., 92M/4766

Dykes, (v. also basalt, basic, diabase, dolerite, lamprophyre, metabasite, rhyolite, tholeiite, dykes) anatomy of, detn. of propagation, magma flow directions, 92M/4727; dyke segmentation in fractured host rocks. mechanism of, 92M/4720; emplacement at divergent plate boundaries, 92M/4724; fluid-mechanical models of propagation,

magma transport, 92M/4726; Australia, magnetic, mapping of, 92M/4753; New South Wales, Sydney basin, Kiama, attempt to determine uplift from palaeomagnetic signatures of, 92M/4742; Sydney basin, geochem. characterization, 92M/4755; Wonominta Block, multiple dyke emplacement, tectonic significance in relation to Tasman line, 92M/4758; Queensland, Townsville-Ingham dist., emplacement, characteristics, 92M/4756; Western Australia, Yilgarn block, post-cratonization, and Au deposits, spatial associations between, 92M/4733; Canada, Quebec, Pointe du Criard, three-component composite, and assoc. intrusion, 92M/4725; Superior Province, Gt Abitibi, petrol., 92M/4825; China, Sinkiang, Karakoram, shoshonitic, ultrapotassic post-collisional, 92M/4814; Denmark, Faeroe Is., Tertiary, of basalt plateau, 92M/4781; Italy, Sardinia, late Hercynian, geochronol., Sr isotope geochem., 92M/1263; Japan, Miyake-Jima, magma flow directions inferred from preferred orientations of phenocrysts in, 92M/4844; E North America, Mesozoic, evidence for lateral magma injection in. 92M/4723; Russian Federation, Yakutia, Siberian platform, Vilyuisk palaeorift system, composite, petrol., 92M/4767; USA, Appalachians, Proterozoic rift-related, petrol., 92M/4731; California, Trinity ophiolite, multiple injection, geochem. consequences of flow differentiation in, 92M/4419; Columbia River Basalt group, Roza Member, feeder dyke system, compositional variation, emplacement, 92M/4759; Colorado, Front Range, magmatic epidote-bearing, mineralogy, geothermobarometry, 92M/3460; Massachusetts, Avalon terrain, Precambrian, tectonic geochem., significance, 92M/4761

- Earth, dynamic structure, global convection framework, concepts of symmetry, stratification, system in, 92M/3358; O isotopic homogeneity, new evidence, 92M/4283
- —, atmosphere, CO₂ in, evidence from Cainozoic, Mesozoic palaeosols, 92M/4296; model for atmospheric CO₂ over Phanerozoic time, 92M/4295
- —, core, analytical model for solidification of, 92M/4975; inner, anisotropy of, from differential travel times of phases PKP, PKIKP, 92M/4974; solubilities of mantle oxides in molten Fe at high P, T, implications for compn., formation, 92M/0423; partitioning of Ni between magnesiowüstite and metal at high P: implications for core-mantle equilibrium, 92M/1594
- —, crust, electromagnetic exploration for fluids in, 92M/4234; origin, evolution, Taylor Colloquium, 92M/4268; Sr isotopic variations of Neoproterozoic sea-water, implications for crustal evolution, 92M/1649; stress magnitudes in, constraints from stress orientation, relative magnitude data, 92M/2336; Western Australia, oldest

known, 3900–4200 m.y.-old detrital zircons, geochronol., geochem. study, 92M/3735; Brazil, São Francisco craton, early Proterozoic crustal evolution, 92M/2076; Germany, Black Forest, gecphys. evidence for metamorphic fluids in, 92M/4237; Kenya rift, 3-D seismic image, 92M/2339

- —, —, continental, chem. compn., fractionation of, 92M/2922; lower, creation, destruction of, 92M/3359; lower, restites, Eu anomalies, 92M/4276; new concept for genesis, evolution of, 92M/3360; possible role of metamorphic fluids for structuring of, 92M/4235; secular B isotope variations in, ion microprobe study, 92M/4308; Estonia, Proterozoic, Nd-isotopic evidence for, 92M/3370; Italy, Calabria, lower, structl. state of, 92M/3629
- —, —, lower, B geochem., evidence from granulite and deep crustal xenoliths, 92M/4287; granulite formation driven by magmatic processes in, 92M/4245; models of chem. alteration caused by movement of metamorphic fluids in, 92M/4242; O isotope evidence for large-scale hybridization of, during magmatic underplating, 92M/4277; *Ireland, Ox Mts*, exhumed, model for crustal conductivity, 92M/1133
- —, —, oceanic, DSDP/ODP Hole 504B, B isotope geochem., 92M/4399; Eu anomalies in BIFs and thermal history of, 92M/4285; struct. deduced from ophiolites, 92M/2234; struct. from geophys. measurements, 92M/2233; subducted, partial melting of, isolation of residual eclogitic lithol., 92M/4971; N Atlantic, Iceland, petrol., 92M/2243; Indian Ocean, petrol., 92M/2244; Pacific, petrol., 92M/2241; Turkey, Kizildağ ophiolite, Neotethyan, magmatic extension, tectonic denudation, implications for evolution of, 92M/3532
- -, lithosphere, accessible, nature, detn. of stress in, 92M/2323; density-stratified, steady solutions for feeder dykes in, 92M/3402; distribn. of stress with depth in, geodynamic thermo-rheological, constraints, 92M/2330; dynamics, and intraplate stress field, 92M/2331; evolution of, inferred increasing size of mantle convection cells over geol. time, 92M/2812; inferences of deviatoric stress in actively deforming belts from simple phys. models, 92M/2334; lithospheric stretching and hydrothermal processes in oceanic gabbros from slow-spreading ridges, 92M/3524; origin of continental plates extraterrestrial planetismals, 92M/0908; rheology, 92M/0903; source of tectonic stress, 92M/2328; subducted, relationship of deep seismicity to thermal struct. of, 92M/2337; southern Africa, O fugacity constraints, 92M/1530; Central Europe, Variscides, magma formation, and evolution of, basic rocks, geochem., 92M/3431; Kenya rift, large-scale variation in struct., 92M/2321; NW Pacific, subducted, below island arcs, tomographic imaging, 92M/1216; USA, Nevada, Great Basin, isotopic evidence for lithospheric thinning during extension, 92M/4415

- —, —, oceanic, evolution of, and ophiolite genesis, (book), 92M/2500; seismological constraints on stress in, 92M/2327; Morocco, Beni Bousera, diamond connection, 92M/3523
- -, mantle, beneath spreading centres, melt extraction from, 92M/2134; convecting, dynamics of long-lived plume conduits in, 92M/0973; differentiation, ultrafast subduction, poss. key to slab recycling efficiency, 92M/4690; eduction, tectonic fluidization at depth, 92M/4240; global mapping of topography on 660-km discontinuity, 92M/4976; H isotope heterogeneities in, from ion probe anal. of amphibole from ultramafic 92M/1657; increased melting beneath Snaefellsjökull volcano during late Pleistocene deglaciation. 92M/0612: continental interrelationships between freeboard, tectonics and mantle T, 92M/2075; K, Rb, Cs in, evolution of, 92M/4279; large-scale convection and history of subduction, 92M/5007; magmatic consequences of volatile fluxes from, 92M/2816; oceanic, Os-isotopic evolution of, 92M/4284; phase transformations, bearing on constitution, dynamics, 92M/0974; processes, in small planetary bodies, phosphates in pallasite meteorites as probes of, 92M/1936; pyroxene-garnet equilibration during cooling in, 92M/3257; Australia, Harts Range, ultra-depleted, Nd evidence for, in early Proterozoic, 92M/1754; Italy, Lanzo lherzolite massif, continental to oceanic transition, REE, Sr-Nd isotopic geochem., 92M/3351; E Pacific Rise, H, S, Nd isotope variations in, 92M/4222; Spain, Canary Islands, Hierro, metasomatism, fluid, silicate glass inclusions in ultramafic, mafic xenoliths, implications for, 92M/0992
- -, --, lithospheric, C, N isotopic compn., IR absorption spectra of coated diamonds, evidence for regional uniformity of CO₂-H₂O rich fluids in, 92M/4326; underneath Archaean continents, models for origin, 92M/2135; Spain, Canary Islands, Lanzarote, ridge to hot-spot evolution of, evidence from peridotite xenoliths, 92M/3356
- —, —, lower, high-P form of Al₂SiO₅ as poss. host of Al in, 92M/1573; struct., ScS-S differential travel times 92M/1220
- —, plumes, control of magnetic reversal frequency, 92M/4979; fluid dynamic analogues, life cycle of hotspots, 92M/0902; fluxes, excess *T* inferred from interaction with migrating mid-ocean ridges, 92M/0609; redox state, C-O-H volatile compn. of from O thermobarometry of abyssal spinel peridotites, 92M/1709; subcontinental, hotspots, and pre-existing thinspots, 92M/2132; *N* of Iceland, Sr-Nd-Pb isotope evidence against mantle plume—asthenosphere mixing, 92M/2995; *Pacific, Tasmantid Seamounts*, shallow melting, contamination of, 92M/4872
- —, transition zone, hydroxyl groups in β-Mg₂SiO₄, 92M/0212; spinel elasticity and seismic struct. of, 92M/2343; stress relief

during solid-state transformations in mins., 92M/4037

-, -, upper, applications of olivineorthopyroxene-spinel O geobarometers to redox state of, 92M/3357; as chromatographic column, geochem. consequences of melt percolation, 92M/1713; eclogite shell in, 92M/2084; effect of bulk rock compn. on stability of amphibole in, implications for solidus positions, mantle metasomatism, 92M/0459; high P exptl. calibration of olivine-orthopyroxene-spinel geobarometer, implications for oxidation state, 92M/0405; oxide mineralogy, 92M/0850; periodic hotspot distribn., small-scale convection in, 92M/4679; regeneration processes in continental, ocean rift zones, melt migration, depletion, 92M/3516; seismic discontinuities, thermal struct. of subduction zones, 92M/4973; shallow, melting, 92M/0420; Japan, Horoman peridotite massif, of arc system, evolutional history of, petrol., 92M/3519; Kenya rift, 3-D seismic image, 92M/2339; Mexico, San Luis Potosí, beneath young back-arc extensional zone, thermal history, 92M/4833; Pyrenees, evolution, evidence from orogenic spinel lherzolite massifs, 92M/3344; South America, rheology from peridotite xenoliths, inferred 92M/2338; USA, Hawaii, structs., and global convection, 92M/3451

Earthquakes, changes in frequency-size relationship from small to large, 92M/5006; deep, fast rise times, phys. mechanism, 92M/1214; Canada, Ungara, historical intraplate, first surface faulting from, 92M/2391; Pacific, Macquarie Ridge, 1989, reactivation of oceanic fracture by, 92M/5009; USA, California, Loma Prieta, shear-strain anomaly following, 92M/4977

EAST CHINA SEA, marine min. resources, scientific, economic opportunities, 92M/3983

Eastonite v. mica

Eckermannite v. amphibole

Eclogite, group B, C, Schreinemakers' nets for, in model 4-component, 8-phase system, 92M/4903; mantle, clinopyroxenes from, crystal chem., 92M/1394; partial melting of subducted oceanic crust, isolation of residual eclogitic 92M/4971; lithol.. petrogenetic evolution, 92M/2264: retrograde, clinopyroxene/plagioclase symplectite in, potential geothermobarometer, 92M/3608; shell in upper mantle, 92M/2084; titanite-rutile barometry in, 92M/1532; Austria, Alps, Koralpe and Saualpe, petrol., 92M/2294; Merano-Meran, from Austroalpine basement, high-P alteration, 92M/2292; Carinthia/Styria, in orogenic belts, Sm-Nd, Rb-Sr, Pb-Pb dating, 92M/3721; China, Anhui, Dabie Mts, field occurrences, petrol., 92M/1180; Dabie Mts, regional ultrahigh-P coesite-bearing, evidence from country rocks, gneiss, marble, metapelite, 92M/3655; China, Jiangsu Province, Donghai area, nyböite-bearing, petrol., 92M/3262; Czech Republic, Bohemian Massif, petrol., 92M/1164; Variscan, Nd, Sr age, isotope patterns from, 92M/2403;

France, Massif Central, Maclas, retrograde metamorphism, 92M/1138; Germany, Bavaria, Münchberg gneiss complex, Weissenstein, high-P relics in metasediments intercalated with, 92M/1146; Greece, Rhodope Zone, metamorphic 92M/1167; evolution, Greenland, Nagssugtogidian mobile belt, Proterozoic, relics in basic-ultrabasic rocks, 92M/1125; Russian Federation, Yakutia, Udachnaya, xenolith from kimberlite, 92M/4809; Slovenia, Alps, Pohorje, petrol., min. chem., 92M/2296; South Africa, min. phases, O isotope systematics, 92M/0719; Bellsbank kimberlite, with oceanic crustal, mantle signatures, min., petrol., whole rock chem., 92M/2175; South Africa, Finsch and Kimberley Pool, inclusions in diamond, Nd, Sr isotope systematics, 92M/1270; Spain, Betic Cordillera, Alpujárride complex, Ojén nappe, record of subduction, 92M/1157; Betic Cordillera, Sierra Nevada, ophiolitic, petrol., geochem., metamorphic evolution, 92M/1143; Spain, Cabo Ortegal Complex, petrol., 92M/1142; Sweden, Ravvejaure, Seve Nappe Complex, retrogression, chronol., 40Ar/39Ar dating, 92M/2398; Switzerland, Valais, Siviez-Mischabel nappe, Minugrat, petrol., 92M/3620; Switzerland, Wallis, Palaeozoic or early Alpine, in basement of Penninic Siviez-Mischabel nappe, 92M/1155; USA, California, Franciscan Complex, metamorphic evolution of two different, 92M/1198; sediment-derived fluids in subduction zones, isotopic evidence from veins in, 92M/3110; Venezuela, Isla Margarita, La Rinconada and Juan Griego groups, geochem. of metabasic lithols., 92M/0724

— facies v. metamorphic facies

ECUADOR, Pt ore, working of, 2nd century B.C., archaeology: theories, methods, practice, (book), 92M/2495; Andes, alteration of andesitic rocks to kaolinite, geochem., statistical, min. investigations, 92M/3805; Guagua Pichincha volcano, fluid geochem. in volcanic surveillance, 92M/1081; volcanic hazard assessment based on past behaviour, numerical models, 92M/4868

Edenite v. amphibole

Edgarbaileyite, USA, California, San Benito County, Clear Creek Claim, assoc. with new min., szymańskiite, 92M/3337

Eggshell, ostrich, proteins, differences between lab.-induced and natural diagenesis in, 92M/3146, rapid racemization of aspartic acid in, new method for dating on decadal time scale, 92M/3145

EGYPT, min. chem., paragenesis of astrophyllite, 92M/3264; wall paintings, deterioration processes, 92M/5003; ancient, colour pigments in wall paintings, 92M/1240; Eastern Desert, Precambrian high volcanicity rift, petrol., 92M/0998; Western and Eastern Desert, formation of iron ore, 92M/4010

Ekanite, Italy, Latium, Albano Lake crater, assoc. with guarinite in sanidinite ejecta of hydromagmatic unit, 92M/0816

Elbaite v. tourmaline

Electrochemical experiments, banded structs. in rocks, ores, reproduced in, 92M/2847

 measuring system, battery-operated, field-based min. identification using, with mechanical transfer of solid to graphite electrode, 92M/3763

Electron diffraction, structl., chem. anal. of materials, (book), 92M/0119

microprobe analysis, of B using MoB₄C layered synthetic crystals, 92M/0107

Electrum v. gold

Elements, high field strength, analytical errors in detn. of, implications in tectonic interpn. studies, 92M/2478

—, rare earth, examination of comparative *REE* complexation behaviour using linear free-energy relationships, 92M/4038; mins., production, technical use, 92M/0293; partial melt distributions from inversion of *REE* concentrations, 92M/2083; *China, Inner Mongolia, Bayan Obo, REE* deposit, vein amphibole from, ⁴⁰Ar/³⁹Ar dating, constraints on mineralization, deposition, 92M/2420, La–Ba dating, 92M/2421, Nd, Sr isotopic systematics, 92M/0563

—, trace, detn. in rocks, soils, ion-exchange method, 92M/1312

Emerald v. bervl

Emplectite, Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336; Turkey, Anatolia, in Pb-Zn deposits, 92M/2718

Enargite, Dominican Republic, Pueblo Viejo, Monte Negro, in acid sulphate Au-Ag deposit, 92M/4023; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Peru, Quiruvilca mining dist., in Cu-Pb-Ag deposit, 92M/2755

Enderbite, Sudan, Jebel Moya, late Precambrian, link between Mozambique Belt and Arabian-Nubian Shield, 92M/1272

ENGLAND, Cambrian carbonates, O, C isotope stratigr., 92M/4454; central, disequilibrium tr. elem. partitioning in Jurassic sparry calcite cements, implications for crystal growth mechanisms during diagenesis, 92M/0869; N, Carboniferous radioactive shale, petrol., 92M/1103; NE. and North Sea, carbonate-evaporite basins, sequence stratigr., models, applications to Upper Permian (Zechstein), 92M/2251; SE, phosphatic concretions in Wealden, 92M/1105; SW, fuid inclusion, stable isotope evidence for origin of mineralizing fluids, 92M/0545; radon in surface waters, bearing on U distribn., fault, fracture systems, human health, 92M/0391; stannite, status of, 92M/3307; Variscan very low-grade metamorphism, diastathermal, thrust-related origin, 92M/2278; SW and NE, Ar isotope geochem, of fluid inclusions from granite-assoc. min. veins, 92M/4261; E Midlands, Pb-Zn-F-Ba mineralization, simulation of geol. processes using expert system, 92M/1660; Ludlow Bone Bed, Silurian, Ir anomaly, 92M/4436; Pennines, Millstone Grit, Namurian, eustatically controlled sequence stratigr., 92M/1104; sourcelands for Carboniferous river system. sedimentary evidence, U-Pb geochronol.

- using zircon, monazite, 92M/3558; N Pennine Orefield, banded sphalerite, min. data, 92M/0863; Welsh Borderland, discrimination of bitumen sources in Precambrian, Palaeozoic rocks by gas chromatography—mass spectrometry, 92M/0754; Longmyndian supergroup, stratigraphic revision, relationship to Uriconian volcanic complex, 92M/0913
- , CORNWALL, Carnmenellis, groundwater, REE geochem., 92M/1821; Geevor mine, andersonite, schröckingerite, two species new to Britain, 92M/3320; Penberthy Croft, bayldonite and assoc. mins., 92M/1223; S Crofty mine, CL, growth of cassiterite in composite lodes, 92M/0845; St Hilary, Penberthy Croft mine, bayldonite, occurrence, 92M/1222; St. Just, Botallack occurrence, 92M/3288: mine, Au. Tregonning, granite petrogenesis in Cornubian batholith, 92M/4790
- -, CUMBRIA, Buckbarrow Beck, russellite, occurrence, 92M/3677; Cockermouth area, min. exploration, 92M/3987; Eskdale, Borrowdale Volcanic group, volcanogenetic significance of garnet-bearing minor intrusions, 92M/2164; Lake District, areas of very low grade metamorphism, excursion guide, 92M/1132; Bad Step tuff, lava-like rheomorphic ignimbrite in calc-alkaline caldera, petrol., 92M/3411; potential S sources for Palaeozoic-hosted vein mineralization, S isotopic investigation, 92M/1659; regional distribn. of As, Sb, Bi, implications for Au metallogeny, 92M/3166; Lake District, Eycott Volcanic group, field, biostratigraphic evidence for unconformity at base, 92M/3382; Nenthead, Brownley Hill mine, strontianite, 92M/2356; Nenthead, occurrence. Smallcleugh and Brownley Hill mines, Zn analogue of ktenasite, min. data, 92M/2052
- —, DERBYSHIRE, sources, pathways of envtl. Pb to children in mining village, 92M/1511; Matlock Bath, Wapping mine, mineralogy, 92M/2357; Wall Shaft mine, electron resonance spectroscopic evidence for condns., sequence of calcite mineralization, 92M/4661; Edale Basin, Dinantian sedimentation, petrol., 92M/2252
- —, DEVON, internal struct. of Au-Pd-Pt grains in relation to low-T transport, deposition, 92M/3287
- —, DORSET, Bournemouth, Tertiary sediments, geol. memoir, 92M/2253; Lyme Regis, bassanite in Lower Lias rocks, occurrence, 92M/4991
- —, LEICESTERSHIRE, Pb-Mo mineralization in ancient cave, 92M/2359
- —, LINCOLNSHIRE, Lincolnshire Limestone, use of ¹⁴C modelling to determine vulnerability, pollution of carbonate aquifer, 92M/0390
- —, SHROPSHIRE, W Shropshire orefield, genesis, evidence from fluid inclusions, sphalerite chem., S isotopic ratios, 92M/0544
- —, WARWICKSHIRE, Judkins Quarry, geol., mineralogy, 92M/2358

Enstatite v. pyroxene

Environmental studies, thermal anal. in, 92M/2525; Canada, Nova Scotia, geochem.

- consequences of envtl. change, human activity, 92M/4032
- Epididymite, Czech Republic, Moravia, Věžná, pseudomorphs of, after beryl, 92M/1961
- Epidote, dissolution rates of, 92M/2865; hydrothermal, indicator of T, fluid compn., 92M/3248; in blueschist, phase relations, 92M/1118; Western Australia, Boddington Au mine, in Archaean porphyry Cu-Au-Mo deposit, 92M/3920; Bulgaria, Rila Mtn, in skarns, min. data, 92M/0819; Bulgaria, W Srednogorie, formation nature, physico-chem. anal. of min. parageneses in metasomatic zones of acid leaching, 92M/2263; Canada, Ontario, Hemlo, in Au deposit, min. chem., geochem., 92M/4624; China, Handan-Xingtai, Hanxing, in skarn deposits, alteration-mineralization, 92M/0565; Germany, Saxony, veinlets in Carboniferous microgabbro, migration by lateral secretion, 92M/3428; Greece, Sarti area, assoc. with Ca-rich scapolite in amphibolites, 92M/2004; India, Singrauli coalfield, Moher-Subbasin, Barakar, in sandstone, 92M/1109; Japan, Akita Pref., Hanaoka area, in Miocene metabasites, 92M/1183; Lesser Antilles, St Martin, from ancient geothermal field, detn. of non-equilibrium ordering state in, 92M/0811: Mössbauer spectroscopy, Pakistan. Karakoram, occurrence. 92M/2378; Poland, Strzegom, zoned, from pegmatite, 92M/4617; Switzerland, Ticino, Riveo, occurrence, 92M/4993; USA. Colorado, Front Range, -bearing dykes, mineralogy, magmatic. geothermobarometry, 92M/3460; Massachusetts. -bearing rocks, compns., phase relations of calcic amphiboles in, 92M/1975; South Carolina, S Appalachian Piedmont, in rodingite, 92M/3601; S Appalachians, hornblende chem. in granite, implications for thermobarometry and magmatic epidote stability, 92M/0824
- -, allanite, daughter-parent isotope systematics in U-Th-bearing igneous accessory min. assemblages as potential indices of metamorphic history, 92M/4226; USA, California, Catalina Schist, zoned, petrogenetic significance in garnet amphibolites from palaeo-subduction zone, 92M/0812
- —, allanite-(Ce), Canada, Ontario, Hemlo gold deposit, min. data, 92M/0813; Sweden, Bergslagen, Koberg mine, occurrence, 92M/3297
- —, allanite-(La), Germany, Bayerischen Wald, occurrence, 92M/4997
- clinozoisite, Poland, Lower Silesia, Sobótka, Naslawice, in rodingite, 92M/1162
 dissakisite-(Ce), Antarctica, new min., Mg
- analogue of allanite-(Ce), 92M/3332

 —, piemontite, Inner West Carpathians, in
- Palaeozoic metasediments, 92M/1953; Italy, Alpi Apuane, Monte Brugiana, REE-bearing, crystal chem., 92M/3249; Switzerland, Grison Canton, Oberhalbstein, in Mn deposits, presence of Sr in, evolution, parageneses, 92M/1663
- —, zoisite, Czech Rebpublic, Bohemia, Litošice, -hyalophane veins from pyrite-rhodochrosite deposit, 92M/1998;

- Greece, Sarti area, assoc. with Ca-rich scapolite in amphibolites, 92M/2004; Tanzania, Merelani, green, gem notes, 92M/1613
- Episyenite, Canada, Quebec, Abitibi greenstone belt, Archaean, assoc. with Au-Mo mineralization, 92M/2737
- Equilibrium, kinetic rate laws derived from order parameter theory, computer simulations of ordering processes using soft Ising model, 92M/1528

Erionite v. zeolite

Erlichmanite, *Portugal*, *Bragança-Vinhais*, from ultrabasic rocks, 92M/2047

Erosion surfaces, cosmic ray labelling, *in situ* nuclide production rates, erosion models, 92M/0529

Eruptive activity, explosive, Poisson-distributed patterns of, 92M/3467

Erythrite, Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694; Germany, Nordpfalz, Rockenhausen, occurrence, 92M/2366; Schwarzwald, Wittichen, occurrence, 92M/2367

ESTONIA, PT-development of granulite facies rocks, 92M/3365; Nd-isotopic evidence for Proterozoic crust, 92M/3370

ETHIOPIA, evolution of volcanic province, 92M/4840; Moyale, structl. pattern of Pan-African rocks, 92M/2096; Wonchi volcano, phase relations of aenigmatite mins. in syenitic ejectum, 92M/0830

Ettringite, Germany, Bavaria, in metamorphosed carbonate xenolith, 92M/3681; Tuvalu, occurrence, 92M/0580

Euclase, dielectric constants of, oxide additivity rule, 92M/4989

- Eudialyte, Libya, Jabal Al Hasawinah, poikilitic nature, 92M/0810; Murunsky complex, in alkaline metasomatites, 92M/1947; Russian Federation, new min., assoc. with new min., manganotychite, 92M/2074; Kola Peninsula, Khibini complex, optical, Mössbauer study, 92M/1958; Tadzhikistan, Dara-i-Pioz, occurrence, 92M/2377
- EUROPE, Cadomian terrane, Proterozoic tectonostratigraphic evolution, 92M/2078; Pleistocene peat deposits, U/Th dating, 92M/3714; poss. role of organic matter in transport, accumulation of metals in Permian Kupferschiefer fm., 92M/4523; stress, contributions from borehole breakouts, 92M/2335; Central, fractionation categories of crust-derived magmatites, 92M/4369; metallogenesis of transition period between Hercynian orogenesis, subsequent platform stage, 92M/2660; Central, Variscides, basic rocks, geochem., magma formation, and evolution of lithosphere, 92M/3431; W, Hercynian Au-bearing quartz veins, 'shear zone 92M/3867; W, central, Tertiary-Quaternary extension-related alkaline magmatism, 92M/0636; Upper Rhine Graben, distribn. of alkylated aromatic hydrocarbons, dibenzothiophenes in rocks, 92M/3155
- Euxenite, USA, Virginia, occurrence, 92M/4000
- Evaporite basin, USA, New York, Balmat, Proterozoic, isotopic geochem., 92M/0700

ground-water control Evaporites, deposition, 92M/2773; Germany, Saxony, Gorleben, Zechstein, compn., origin of fluid inclusions in, 92M/2066; Mediterranean, Messinian, origin, age of, implications from Sr isotopes, 92M/3079; USA, Iowa, sulphate, stable isotopes in, indications of postdepositional change, 92M/0701

Exhalite, Australia, Broken Hill, assoc. with sulphide deposit, tr. elem. compn.,,

92M/0574

- Exploration, in anthropogenically contaminated regions, 92M/3180; resource assessment, quantitative link with min. deposit modelling, geoscience mapping, 92M/2652; USA, fluid inclusion gas chem. as potential min. exploration tool, 92M/3168
- biogeochemical, Costa Rica. Tilarán-Montes del Aguacate, Au deposit, 92M/1880; Ireland, Galway, Connemara, Dawros, ultrabasic rocks, 92M/1908; USA, California, Mesquite deposit, microbial method, for Au, 92M/1879; Maryland, Great Falls, Piedmont, Au-bearing quartz veins, 92M/3195

geobotanical, Australia, Queensland, Charters Towers, Thalanga, Pb-Zn-Cu

deposit, 92M/0769

- ALKEMIA, VAX geochemical, minicomputer database, program package for, 92M/1874; assessment of least median squares regression in, 92M/3164; effect of scale on interpn. of geochem. anomalies, 92M/1885; evaluation of molecular recognition ligand for extraction of Pd, Pt, Rh from ion-charged solutions, application to, 92M/2484; for Au, 92M/1888; fundamental approach to threshold estimation in, probability plots, 92M/1873; in basement regions, methods, 92M/3183; mapping, multielem. anomalies, cluster anal., 92M/3182; target selection along Agassiz metallotect utilizing stepwise discriminant function anal., 92M/0287; variations in regional geochem. patterns, effects of site-selection, data-processing algorithms, 92M/1872; Canada, national reconnaissance programme, 92M/3190; Canadian Shield, surficial geochem., implications for envtl. assessment, 92M/1875; Italy, Sardinia, in semiarid climate. porphyry-type occurrence. 92M/4552; Portugal, Nisa, well sediments, medium for, 92M/1881; Spain, Salamanca, Guijuelo-Cespedosa, Au, Sn, W, 92M/1429; Spain, Zamora, Ricobayo, in Hercynian tin-bearing batholith, 92M/3179; USA, Alaska, Geol. Survey geochem. studies, 92M/0532; Brooks Range, implications for exploration sediment-hosted Zn-Pb-Ag deposits, 92M/4556; Alaska, Kuskokwim river region, criteria for epithermal cinnabar, stibnite vein deposits, 92M/3189; Minnesota, for Cu-Ni deposits in cool-humid climate, 92M/4557
- hydrogeochemical, for concealed U deposits, comparison between Pb isotopes, ²³⁴U/²³⁸U activity ratio, saturation index in, 92M/1882; Saudi Arabia, Eastern Province, for halite, using Cl-Br ratios, 92M/0768;

United Kingdom, Au prospecting, 92M/0765

Exsudatinite, in shale, photochem., 92M/3139

Fahlore, As-Ag incompatibility in, 92M/0505; Italy, Bolzano/Bozen, Terlan, in Pb-Zn veins, 92M/1232

Famatinite, luzonite, Peru, Quiruvilca mining dist., in Cu-Pb-Ag deposit, 92M/2755

Fassaite v. pyroxene

- Fault activity, Germany, Franconian Line, Cretaceous time markers, Variscan, 92M/1149
- kinematics, Tibet and Andes, palaeostress detns. from, application to neotectonics,
- zones, automaton for fractal patterns of fragmentation in, 92M/2085; Germany, Harz Mts, Strassberg, kinematic studies, 92M/3387; Scotland, Strathclyde, Southern Upland Fault, rare temporary exposure, 92M/2384

Faults, when is fault 'extinct', 92M/5005 Favalite v. olivine

Fedotovite, crystal struct., 92M/0253

Feldspar, (Ba,K,Na)-, solid solutions, unmixing in, 92M/2797; effect of excess Al on phase relations in system Q-Ab-Or, exptl. study, 92M/2793; fracture-induced emission of alkali atoms from, 92M/4107; from peraluminous granites, pegmatites, rhyolites, P2O5 content of, 92M/4321; intermediate Ge, low Ga and intermediate Ge, crystal struct., tetrahedral-site ordering, 92M/0233; $MAISi_3O_8$ (M = H, Li, Ag), synthesized by low-T ion exchange, 92M/2867; Na-, kinetics of Al,Si disordering in, 92M/0466; phase relations, compositional dependence of H2O solubility in quartz-feldspar melts, 92M/4049; reversed experiments on biotite-quartzfeldspar melting in system KMASH: implications for crustal anatexis, 92M/1545; ternary, solid solutions, unmixing in, XRD study, 92M/2798; Bulgaria, Northern Strandža Mt, feldspar, petrogenetic significance of, 92M/1996; China, Guangdong, in weathering crust, 92M/0186; Czech Republic, Chvaletice, -armenite veins in basic volcanic rocks, 92M/1962; Germany, Bavaria, etched, in granite, Pb isotope anal., 92M/0709; Saxony, Meissen, melt inclusions in rock-forming mins. in granite, 92M/3426; North Sea, Brent group, fate of, in reservoirs, diagenesis in shallow. intermediate, deep burial envts., 92M/4880

adularia, optical anomaly of mins., 92M/1199; Czech Republic, Chvaletice, assoc. with armenite in basic volcanic rocks, 92M/1962; Papua New Guinea, Tolukuma, assoc. with epithermal Au-Ag deposit, 92M/2688

albite, + petalite + quartz equilibrium in Li-rich granitic pegmatite, 92M/0409; + spodumene + quartz equilibrium in Li-rich granitic pegmatite, 92M/0410; atomic force microscopy imaging, 92M/2623; -celsian solvus, determined by ion-exchange expts., 92M/2797; dissolution rates of, 92M/2865; fluxing effect of F at magmatic T (600-800°C), scanning calorimetric study,

92M/4108; lab. albitization of MORB, 92M/1562; O isotope thermometer calibrations, 92M/4195; role of surface speciation in dissolution of, 92M/0470; synthetic B, tetrahedral-site occupancies in, 92M/3831; thermodynamic props. of mins. at higher T, P, FORTRAN-77 program, 92M/0080; vitreous, solubility, diffusion of noble gases in, 92M/4110; Australia, Queensland, Emuford, -rich, silica-depleted metasomatic rocks, min., geochem., fluid inclusion constraints on hydrothermal evolution, tin mineralization, 92M/2964; Canada, Newfoundland, Fleur de Lys supergroup, decompression-induced growth of porphyroblasts, 92M/1189; Czech Republic, Horní Slavkov, Huber stock, min. data, 92M/2041; Germany, Erzgebirge, Altenberg tin deposit, origin in syenite, granite, pericline twinning as criterion of, 92M/1997; Indonesia, Belitung, Tikus, assoc. with Sn-W deposit, 92M/0367; Italy, Western Alps, Gran Paradiso nappe, in orthogneiss, geothermobarometry, 92M/1154; Mongolia, Ongon Kharikhan, in ongonite, 92M/1011; Mozambique, Province, Marropino, in Zambézia pegmatite, 92M/2723; Switzerland, Valais, Siviez-Mischabel massif, porphyroblasts in augen schist, 92M/3623

-, — glass, Ar diffusion in, 92M/0431; ¹³C MAS NMR, method for studying CO2 speciation in, 92M/4039

-, — melts v. melts, albite

albitization. allometasomatism. autometasomatism, geochem., 92M/4382; Greenland, Disko Bugt, Qegertakavsak Is., of siltstones, 92M/4459

- alkali, diffusion domains determined by ³⁹Ar released during step heating, 92M/2822; Ge-substituted, order, anti-order in, 92M/1400; Gibbs energies, entropies of K-Na mixing from phase equilibrium data, implications for feldspar solvi, short-range order, 92M/0469; of REE granitic pegmatites, P in, 92M/2940; Pb isotopic heterogeneities in, implications for detn. of initial Pb isotopic compns., 92M/0467; Germany, Sachsen-Anhalt, Halle, from volcanic rocks, cation deficit caused by metasomatism, 92M/3598; Greenland, Blå Måne Sø. from perthosite, CL. microporosity in, 92M/0839; Scotland, Highland, Ballachulish igneous complex, from contact-metamorphosed quartzite, disordering, re-ordering, unmixing in, 92M/2155; Scotland, Isle of Skye, turbid, min. data, 92M/1995
- -, amazonite, world occurrences, 92M/1630
- -, andesine, Canada, Quebec, Dumagami mine, progressive alteration assoc. with auriferous massive sulphide deposits, 92M/0587
- anorthite, assoc. with new min., dmishteinbergite, 92M/2069; crystallization behaviour of P2₁, C2 phases of, 92M/4113; diopside-anorthite system, entropy dependence of viscosity, the glass-transition T of melts in, 92M/2836; -diopside system, T-dependent thermal expansivities of silicate melts, 92M/4048; factors affecting dissolution kinetics of, at 25°C, 92M/4114;

high-*T* heat capacity, premelting of mins. in system MgO–CaO–Al₂O₃–SiO₂, 92M/2821; in eclogite, 92M/1532; liquidus phase relationships in system KAlSi₃O₈–CaAl₂Si₂O₈–KAlSiO₄ at *P*(H₂O) = 5 kbar, 92M/0408; mechanisms, kinetics of Al–Si ordering in, energetics, Ginzburg-Landau rate law, 92M/1586, incommensurate struct., domain coarsening, 92M/1585; O isotope thermometer calibrations, 92M/4195; solubility, partitioning of Ne, Ar, Kr, Xe in mins. and synthetic basaltic melts, 92M/4068

—, anorthoclase, megacrysts in basalt, Ba partitioning, origin of, 92M/2941; modelling of rock cooling paths, Al,Si exchange kinetics in, 92M/0468; Australia, New South Wales, megacrysts, assoc. with analcite mugearite, implications for high-P amphibole-dominated fractionation of alkaline magmas, 92M/3447

—, celsian, exptl., thermodynamic study of stability in system BaO-Al₂O₃-SiO₂-H₂O, 92M/4117; synthetic, stacking faults in, 92M/3832; France, Pyrenees, Pierrefitte, in hydrothermal veins, min. data, 92M/3255

—, hyalophane, Czech Republic, Bohemia, Litošice, -zoisite veins trom pyriterhodochrosite deposit, 92M/1998; Moravia, Horní Benešov, from Pb-Zn deposit, 92M/1999; Moravia, Kunčice pod Ondřejníkem, in teschenitic rocks, 92M/2056; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808

, K-, diagenetic overgrowths, 40Ar/39Ar dating, laser-probe, step-heating methods, application to, 92M/3724; in zeolite diagenesis of rhyolite tuff, 92M/1561; thermodynamic props. of mins. at higher T, P, FORTRAN-77 program, 92M/0080; Antarctica, Schirmacher Oasis, pegmatitic, Pb/Pb dating, 92M/2426; Bulgaria, Central Rhodopes, from metamorphic complex, structl. state, geochem. characteristics, 92M/1993; *China, Tibet*, ⁴⁰Ar/³⁹Ar dating, 92M/1281; tectonics. Germany, Schwarzwald, laser probe 40Ar/39Ar dating, evidence for Jurassic tectonism in basement, 92M/2402; Greenland, in rapakivi granites, textural evolution, Sr, O, H isotopic study, 92M/0611; India, Andhra Pradesh, E Godavari Dist., Rampachodavaram, geochem., 92M/4631; Japan, Tojo-ciio, Kushiro, assoc. with nepheline, 92M/2002; Portugal, Sintra, from granite, syenite, unit-cell parameters, structl. state, 92M/1994; Scotland, Highland. Ballachulish igneous complex, in quartzites as indicators of O isotope exchange kinetics, 92M/2157; thermal history of mins. from study of intracrystalline processes, 92M/2162; Sweden, tr. elems. in, as guide in prospecting for Li-, Sn-bearing pegmatite, 92M/4550; Switzerland, Alps, Gothard massif, Medel, from undeformed, deformed granite, influence of metamorphism, deformation on structl. state, 92M/1992; USA, Ohio, authigenic, in Precambrian basement, effect on tectonic discrimination of granitic rocks, 92M/3060; South Carolina, Haile gold mine, hydrothermal,

assoc. with Au deposits, 92M/2743; *Utah*, inclusions in red beryl, 92M/0817

—, labradorite, effects of aqueous cations on dissolution of, 92M/2868; high resolution X-ray investigations on supersatellite reflections of, 92M/3833; Ireland, Mayo, W Connacht, Siofra, in gabbro, 92M/3412; USA, Oregon, Lake County, Rabbit Hills, gem props., 92M/4176; Oregon, Ponderosa mine, sunstone, gem quality, 92M/4177

, microcline, enhanced Al/Si diffusion at high P, effect of H, 92M/1584; from muscovite pegmatites, modelling of Al-Si disorder in 92M/1991; Bulgaria, Central Rhodopes, from metamorphic complex, structl. state, geochem. characteristics, 92M/1993; Canada, Ontario, Hemlo, microstructl. signatures, glide twins in, 92M/2622; Czech Republic, Bohemia, Litošice, in hyalophane-zoisite veins from pyrite-rhodochrosite deposit, min. data, 92M/1998; Mozambique, Zambézia Province, Marropino, in pegmatite, 92M/2723; Switzerland, Alps, Gothard massif, Medel, from undeformed, deformed granite, influence of metamorphism, deformation on structl. state, 92M/1992

—, moonstone, Sri Lanka, Metiyagoda, mining, 92M/2918

—, myrmekite, *Sri Lanka*, *Ambagaspitiya*, origin in granitic rocks, 92M/2179

—, oligoclase, Czech Republic, Chvaletice, oligoclase-andesine, assoc. with armenite in basic volcanic rocks, 92M/1962; Poland, Strzegom-Sobótka massif, in pegmatite in two-mica granite, 92M/0996

—, orthoclase, glass, Ar diffusion in, 92M/0431; Mongolia, Ongon Kharikhan, in ongonite, 92M/1011

—, pericline, Germany, Erzgebirge, Altenberg tin deposit, twinning as criterion of albite origin in syenite, granite, 92M/1997; Italy, Piemonte, Novara, Alpe Devero, occurrence, 92M/4992

—, perthite, Greenland, Klokken, microtextures, fluid inclusions in, from syenite, ⁴⁰Ar-³⁹Ar anal., 92M/4632

plagioclase, activity-compn. relations based upon Darken's quadratic formalism, Landau theory, 92M/4111; Al zoning in, window on late prograde to early retrograde P-T paths in granulite terranes, 92M/2269; and amphibole, min. reactions in closed systems involving, 92M/0407; and basalt, partition coefficients for Fe between, as function of O fugacity, implications for Archaean and lunar anorthosites, 92M/4036; and melt, partitioning of Sr between, comment, 92M/4115, reply, 92M/4116; CaO-MgO-Al₂O₃-SiO₂-Na₂O at 1 bar from low to high Na2O contents, topology of analogue for alkaline basic rocks, clinopyroxene/plagioclase symplectite in retrograde eclogite, potential geothermobarometer, 92M/3608: compositionally variable, in chondrites, 92M/4583; AH of reaction, recalibration of garnet-pyroxene-plagioclase-quartz

geobarometers in CMAS system by solution calorimetry, 92M/0404; dissolution rates, 92M/0471; geobarometers involving, estimation of *P* in quartz-absent

assemblages, 92M/4042; glass, and supercooled melts, Na, Ca tracer diffusion in, 92M/4112; in tuff, min. data, 92M/2006; -melt equilibria in hydrous systems. 92M/0472; olivine growth rates in tholeiite, exptl. study of melt inclusions in, 92M/4088; quartz + muscovite + biotite + garnet + plagioclase assemblage, equilibria, implications for mixing props. of octahedrally-coordinated cations muscovite, biotite, 92M/1578; Bulgaria, Rila Mtn, in skarns, min. data, 92M/0819; Canada, Ontario, Bad Vermilion Lake, calcic, from anorthosite complex, crystallographic investigations 92M/3834; Greenland, in rapakivi granites, textural evolution, Sr. O, H isotopic study, 92M/0611; Italy, Apennines, olivine, reaction between, as consequence of fluid-rock interactions during sub-seafloor metamorphism, 92M/3597; Norway, Modum complex, cumulus phase in metagabbros, 92M/3407; Pacific, Lau Basin, in volcanic rocks, 92M/2111; Russian Federation, Monchegorsk, in clinopyroxenite-wehrlite intrusions, 92M/4810; South Africa, Bushveld Complex, adcumulus growth of, unusual textures, structs., assoc. with magnetite layer, 92M/1005; Bushveld Complex, Lower and Critical Zones, corroded inclusions in orthopyroxene, olivine, 92M/1007; Spain, Ronda and Morocco, Beni Bousera, in magmatic ores in high-T alpine-type lherzolite massifs, 92M/0339; Sweden, Bergslagen, chem., reaction mechanisms, micro-structs. during retrograde metamorphism of gedrite-biotite-plagioclase bearing rocks, 92M/4918; USA, Montana, Stillwater Complex, Pb isotopic study, constraints on crustal contamination, source regions, 92M/0673; Washington, Cascades, Ca depletion haloes, Fe-Mn-Mg zoning around faceted inclusions in garnet from high-grade pelitic gneiss, 92M/0806

---, --- hornblende thermometry, Poland, Zelazno, Kłodzko-Złoty Stok, T of contact changes in rocks of cover of intrusion, 92M/1114

—, reedmergnerite, tetrahedral-site occupancies in, 92M/3831; *Tadzhikistan, Dara-i-Pioz*, occurrence, 92M/2377

—, sanidine, modelling of rock cooling paths, Al,Si exchange kinetics in, 92M/0468; Germany, Eifel, Volksfeld, assoc. with magnetite, 92M/1227; Italy, Latium, Albano Lake crater, assoc. with guarinite, 92M/0816; USA, Colorado, San Juan volcanic field, Carpenter Ridge Tuff, min. constraints on petrogenesis of trachyte, 92M/0678

Feldspathoid, non-crystalline hydrous, in late Permian carbonate rock, 92M/3559

minerals, phase transitions in, 92M/2866
 Felsic domes, Spain, Canary Is, Tenerife, morphol., petrol., geochem., 92M/2171

- magma v. magma, felsic

Fenite, *Greenland, Gardar Province*, Proterozoic, compositional zoning in hydrothermal aegirine from, 92M/1971

Ferberite, England, Cumbria, Buckbarrow Beck, assoc. with russellite, 92M/3677;

Peru, San Judas Tadeo, W(-Mo, Au) deposit, Permian lithophile mineralization, 92M/2762

Fergusonite, USA, Virginia, occurrence, 92M/4000

Fermorite v. apatite

Ferrierite v. zeolite

Ferrihydrite, characterization of FeOOH polymorphs and, using low-*T*, applied-field Mössbauer spectroscopy, 92M/3844

Ferriwinchite v. amphibole

Ferrocolumbite v. columbite

Ferrokesterite v. kesterite

Ferromanganese crusts, Pt, Au geochem., 92M/0571; Indian Ocean, Central Indian basin, depth profiles of ²³⁰Thexcess transition metals, mineralogy, implications for palaeoceanographic influence on crust genesis, 92M/1641; Pacific, Hawaiian Archipelago, REE geochem., 92M/4335; Pacific, Tuamotu archipelago, geochem., growth history, 92M/1683

— deposits, ocean, min., chem. compn., genesis, 92M/4313; Hungary, Tethyan, from Jurassic rocks, 92M/0525

— mineralization, Tonga-Lau region, insular, submarine, characteristics, distribn., 92M/0329

— nodules, Mexico, Clarion Is., from oceanic area, 92M/0333; Pacific, Atlantic, Baltic Sea, Barents Sea, Gulf of Bothnia, isotopic compns. of Ce, Nd, Sr in, 92M/1782

Ferronickelplatinum, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Ferrostrunzite, Germany, Sauerland, Arnsberg, min. data, 92M/4670

Fetiasite, Italy, Piemonte, Novara, Alpe Devero, occurrence, 92M/4992

Fibroferrite, Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001

Fibrolite, heat capacities, entropy of, and Al₂SiO₅ phase diagram, 92M/2856

 nodules, *Italy, Sardinia*, formation of, in gneiss from Hercynian basement, 92M/3628
 FIJI, geol. evolution, min. deposits, 92M/2102;

Tavua Caldera, shoshonitic caldera formed by concurrent faulting, downsagging, 92M/1065

FINLAND, Cr-spinel in Svecofennian ultramafic intrusions, compositional evolution during fractional crystallization, cooling, regional metamorphism, alteration, 92M/3363; deep groundwater in crystalline basement, implications for radioactive waste disposal studies, 92M/1516; diabase dyke swarms, silicic magmatism, evidence from Proterozoic, 92M/4736; hydromorphic dispersion of U in surficial envt., 92M/1883; occurrence, geochem. of fluorides in natural waters, geomedical implications, 92M/1517; rapakivi granite, comparison with Canada, Labrador, Makhavinekh Lake pluton, 92M/0891; REE in mesothermal Au deposits, geochem. implications revealed by multivariate techniques, 92M/3374; resetting of REE, Nd, Sr isotopes during carbonitization of komatiite 92M/0614; statistical interpn, of regional geochem. mapping data based on heavy fraction of till, 92M/3377; N, correlation of cancer incidence with groundwater

geochem., 92M/1506; S, opal, new hydromorphic precipitate type from gravel deposits, 92M/4635; Ahvenisto complex, specialized topaz-bearing rapakivi granite and assoc. mineralized greisen, 92M/2140; Åland, interaction between basaltic melts and wallrock in dykes, sills, 92M/4778; mixing between basaltic, granitic magma in quartz-feldspar porphyry, 92M/4779; Fennoscandia, palaeomagnetism of early Proterozoic layered intrusions, 92M/4741; Proterozoic rapakivi granite and related basic rocks, petrogenesis, Nd, Pb isotopic, 92M/1722; constraints, sulphide-bearing rocks, petrophys. props., expression as geophysical anomalies, 92M/3379: Haapavesi, Kiimala, Au deposit, formation of, 92M/3371; Hammaslahti Cu mine, geochem., struct., genesis, exploration tools for sediment-hosted massive sulphide deposit, 92M/3375; Ilomantsi greenstone belt, Au deposits in late Archaean, ore mineralogy, 92M/3876; Ilomantsi, Hattu schist belt, Korvilansuo, Au prospect, Ag-Tl telluride from, 92M/3373; Kainuu Schist Belt, Proterozoic, and assoc. gneiss, stratigr., 92M/4919; Proterozoic metamorphosed black shales, geophysical props. correlated with petrogr., geochem., 92M/3380; Kangasjärvi, massive sulphide deposit, geochem., wall rock alteration, 92M/3376; Karelia, Koli, 2200 m.y. layered sill, low-Al tholeitic magma type, differentiation, 92M/4780; Karevansuo virgin bog, lipids in surface water, 92M/3152; Kiihtelysvaara-Tohmajärvi dist., Proterozoic volcanism, geochem., 92M/3002; Lapland, Halti-Ridnistohkka, Caledonian igneous complex, petrol., 92M/4777; Lappajärvi, impact crater, borehole results, 92M/3364; Luumäki, fluid inclusions in cavity quartz crystals in rapakivi, 92M/4634; Mustajärvi area, volcanic rocks, zircon U-Pb dating, 92M/3366; Nurmes, late Archaean gneiss. evidence for significant paragneiss component within, 92M/3361; Orijärvi, orthoamphibole-cordierite gneiss, petrol., min. chem., 92M/0822; Postjotnian and Subjotnian, diabases, chronostratigr., 92M/2399; Pusula, heterogeneous fluids in high-grade siliceous marbles, 92M/3114; Raisduoddar-Halti area, basic, ultrabasic rocks in Caledonides, petrogr., mineralogy, 92M/2139; Rantasalmi, geochem., Osikonmäki, Au deposit, ore mineralogy, 92M/3372; Proterozoic Au prospect, studies, 92M/3367; isotopic Sonkajärvi-Varpaisjärvi area, Proterozoic diabase dykes, petrogr., geochem., 92M/3368; Suomusjärvi, ultramylonite, dating, evidence post-Svecofennian deformation, 92M/1248; Vaaraslahti, Proterozoic mangerite intrusion, Rb-Sr, O isotope geochem., 92M/1723; Vähäjoki, Proterozoic iron ore, mineralogy, geochem., metamorphism, 92M/4319; Vanmala and Kylmäkoski, Ni deposits, similarity anal. applied to till geochem. data, 92M/3165; Veitsivaara, hydrothermal corrensite, occurrence, anals., 92M/0171; Wiborg rapakivi area, rapakivi

granite-anorthosite-diabase dyke assocn., new U-Pb ages, 92M/0892

Fission reactors, Gabon, Franceville basin, Oklo, petrogr., geochem. of host ore, 92M/2663

- track dating v. age determination

Fletcherite, USA, Missouri, Viburnum Trend, occurrence, 92M/3704

Flint v. chalcedony

Florencite-(Ce), Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061; occurrence, min. data, 92M/3334; Bohemia, Liteň fm., occurrence, 92M/2062

Florencite-(La), Czech Republic, Bohemia, in U deposits in Cretaceous, 92M/2061; occurrence, min. data, 92M/3334

Florencite-(Nd), Czech Republic, Bohemia, assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061

Fluid immiscibility, in system H₂O-NaCl-CO₂, investigation of, using mass spectrometry, microthermometry techniques applied to synthetic fluid inclusions, 92M/2844

- inclusion gas analysis, application in min. exploration, 92M/3177; application to assessment of lode Au, W deposits, 92M/3172; jasper inclusion fluids, application to exploration for micron Au deposits, 92M/3170; min. deposits and geothermal area, 92M/3171; multichannel micro-Raman spectroscopy of gases in min. exploration, 92M/3174; volatile anal. by heated crushing, on-line gas chromatogr., applications to Archaean fluids, 92M/3175; Canada, Northern Territory, Cotan prospect, decrepitation in Au exploration, 92M/3173; USA, potential min. exploration tool, 92M/3168; Wales, Dolgellau, exploration guide to black shale-hosted Au deposits, 92M/3167

inclusions, anal. of leachates from quartz by ion chromatogr., 92M/4263; applications in study, exploration of min. deposits, 92M/0541; CO₂-enriched, formation, distribn. of, in epithermal envts., 92M/4254; crush-leach anal. of, in small natural, synthetic samples, 92M/4262; gas compn. of min. deposits and geothermal area, 92M/3171; H₂O-CO₂-NaCl, equation to calculate NaCl contents from final clathrate melting Ts in, implications for P-T isochore location, 92M/4153; identification of, in relation to host microstructl, domains in quartz by CL, 92M/4258; in rodingite, geothermometer for serpentinization, 92M/2933; in salt mins., classification, 92M/3561; interpn. of data, 92M/4243; intracrystalline, influence brine-hydrocarbon interactions on FT-IR microspectroscopic anals. of, 92M/4257; laser microprobe anals. of Cl, Br, I, K in, implications for sources of salinity in ancient hydrothermal fluids, 92M/4260; laser microprobe anals. of noble gas isotopes, halogens in, anals. of microstandards, synthetic inclusions in quartz, 92M/4259; NIR FT-Raman

microspectroscopy, comparisons with VIS

microspectroscopies,

Raman, FT-IR

92M/4515; petrography, 3-D microscope image using analyphic filters, 92M/0077; quantitative detn., coulometric method, 92M/2460; speciation in exptl. C-O-H fluids produced by thermal dissociation of oxalic acid dihydrate, 92M/4266; stability of CO2 clathrate hydrate, application to salinity estimates of, 92M/4265; synthetic, application to high P-T exptl. aqueous geochem., 92M/4076; synthetic, exptl. detn. of P-V-T-X props. in CO₂-H₂O system to 6 kb, 700°C, 92M/2840; theory of number of hexagonally distributed points in given circle, application to study of, 92M/2454; volatile anal. by gas chromatogr. with photoionization/micro-thermal conductivity detectors, applications to magmatic MoS₂, other H₂O-CO₂, H₂O-CH₄ 92M/4264; Australia, Mole granite, in laser-ICP, synchrotron-XRF microprobe anal., compn. of hypersaline, Fe-rich granitic fluids, 92M/4250; Canada, Manitoba, Tanco, magmatic H2O-CO2, from zoned granitic pegmatite, volatile geochem. of, 92M/4249; SW and NE England, from granite-assoc. min. veins, Ar isotope geochem. of, 92M/4261; USA, Alaska, Tin Creek, and skarn-forming reactions, Zn-Pb skarn mineralization, 92M/4253; Tennessee, Mississippi Valley-type districts, gas chem., evidence implications for immiscibility, depositional mechanisms, 92M/4255

— -rock interaction, hydrothermal, metamorphic, REE mobility during, significance of oxidation state of Eu, 92M/2842

Fluids, supercritical, CO₂, CH₄, CO, O₂, H₂, molecular dynamics study of *P-V-T* props. of, 92M/2845

Fluocerite, petrogenetic grid for REE fluorcarbonates, assoc. mins., 92M/4148

Fluor-edenite v. amphibole

Fluor-richterite v. amphibole

Fluor-tremolite v. amphibole

Fluorannite v. mica

Fluorapatite v. apatite

Fluoride, prelim. investigation of alternative buffers for detn. of, in natural waters, 92M/3765

Fluorine, detn. of tr. amounts of, from single Na carbonate fusion of small geol. samples, 92M/2455

Fluorite, exploration, assocns. of elems. derived by factor anl., multiple correlation, 92M/3181; gem min., detn. of dispersion refractometer, 92M/4190; petrogenetic grid for REE fluorcarbonates, assoc. mins., 92M/4148; variation of tr. elems., REE in, poss. tool for exploration, 92M/4558; Argentina, Las Chacras Batholith, Rodeo de Los Molles, in REE, Th deposit, fluid inclusion studies, comment, 92M/0603, reply, 92M/0604; Brazil, Rio de Janeiro, Tanguá deposit, fluid, solid studies, inclusion constraints hydrothermal solutions, 92M/2982; Czech Republic, Bohemia, Litice nad Orlicí, occurrence, min. data, 92M/2030; England, Derbyshire, Matlock Bath, Wapping mine, occurrence, 92M/2357; SW England, fuid inclusion, stable isotope evidence for origin of mineralizing fluids, 92M/0545; Germany, Harz Mts, Strassberg, fine-grained cataclastic, from fault zones, kinematic studies, 92M/3387; Saxony, Erzgebirge, -quartz-baryte-hematite-galena-sphalerite veins, age of, 92M/2671; post-Hercynian veins, isotopic anal., Saxony, 92M/2949; Geyer-Ehrenfriedersdorf area, occurrence, 92M/2371; Thuringia, Caaschwitz. occurrence, 92M/2364; Indonesia, Belitung, Tikus, assoc. with Sn-W deposit, 92M/0367; Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Italy, Sicily, Alcamo and Calatafimi, from vein mineralizations, Sr isotope compn. in, 92M/0550; Sweden, Nynäshamn, Stora Vika, assoc, with zincian helvite in pegmatite, 92M/2003; United Kingdom, Windy Knoll, assoc. with bitumen deposit, hydrocarbon-bearing fluid inclusions in, 92M/4256; USA, Illinois, Rosiclare, 92M/2381; occurrence. Tennessee. Elmwood, occurrence, 92M/3703; Tri-state Dist., Joplin, occurrence, 92M/3702; Joplin, Viburnum Trend, Elmwood and Rosiclare, Mississippi Valley type, 92M/2702

— deposits, SE China, minerogenetic model, 92M/1500; India, Bihar, Palamau, and assoc. Fe-F-W skarns, hornfelses, 92M/2768; South Africa, Transvaal Sequence, Proterozoic, Pb, Sr isotopes, origin, 92M/1673; Vietnam, Dong Pao, geol., 92M/2729

mineralization, *Italy, Sicily*, evolution of hydrothermal systems forming, isotope geochem., 92M/2953; *Norway, Trondheimsfjord*, along fracture zones, fission-track dating, 92M/0377

 -- baryte veins, Germany, Saxony, fault sytems, classification, 92M/2766; Vogtland, major fault systems, economic significance, 92M/2765

Fluormuscovite v. mica

Fluorphlogopite v. mica

Fluorspar, min. deposits related to granite, geol., 92M/0296; USA, Illinois, Cave-in-Rock Fluorspar Dist., Denton mine, thermochem. changes in ore fluid during deposition, 92M/1699

Fluortalc, partitioning of F-Cl-OH between mins. and hydrothermal fluid, 92M/0434

Flysch, Poland, Carpathians, Rytro, Magura nappe, exotic rocks, heavy mins., 92M/1107; Spain, Campo de Gibraltar, Almarchal unit, clay mineralogy, 92M/1363; Campo de Gibraltar, Bolonia unit, mineralogy, genesis, 92M/1365

Fold nappes, USA, Vermont, relative scales of thermal-, fluid infiltration-driven metamorphism in, 92M/1193

Foraminifera, planktonic, Ba in, 92M/2932

Forsterite v. olivine

Fractionation, boundary layer, numerical approach to, application to differentiation in magma systems, 92M/4769

FRANCE, crystallochem., props., organization of soil clays derived from sedimentary rocks, 92M/1377; Alpes Maritimes, radon isotopes, factors controlling emanation of, influence of seismicity, 92M/2778; Internal Brianconnais, hollandite-cryptomelane,

braunite in Mn-ores from Jurassic meta-arenites, marbles, 92M/4644; Alpes Maritimes, Beonia, pseudoporphyritic gneiss, mineralogy, 92M/2285; Alps, Mont Blanc, granites, microgranular enclaves, Rb-Sr dating, 92M/2404; W Alps, Belledonne massif, tectonometamorphic eolution, K/Ar dating of amphiboles, 92M/3617; Ardennes, diabase dyke, fluid infiltration during greenschist facies metamorphism, 92M/3092; Ardennes, Rocroi massif, diabase dyke, redox process, Mössbauer spectrometry, 92M/0617; Rocroi Massif, Grande Commune, diabase dyke, Variscan retrograde metamorphism, 92M/1139; Armorican Massif. Champtoceaux nappe, eclogite facies metamorphism, 92M/1137; île d'Ouessant, porphyroid granite, represents W unit of red 'granite', 92M/3413; Mancellia, Cadomian granites, relationship to St. Malo migmatite belt, petrogenesis, tectonic setting, 92M/0900; Pontivy, origin of microgranular enclaves in peraluminous granite, 92M/3414; Armorican Massif, N Trégor Batholith, 40Ar/39Ar and laser dating of biotites, comparison, 92M/0017; Brittany, Baie de Saint-Brieuc, Cadomian tectonothermal activity, 40 Ar/39 Ar dating, 92M/1252; Brittany, Ile de Groix, glaucophane-bearing amphibolites. geothermobarometry, 92M/1136; mica schist assoc. with blueschist, P-T-t path, 92M/3616; Gironde, Coutras deposit, U, organic matter in palaeodeltaic envt., 92M/1661; Massif Central, late Variscan tectonic evolution by thinning of earlier thickened crust, $^{40}{\rm Ar}^{-39}{\rm Ar}$ dating, 92M/3715; Pb, O isotope systematics in granulite facies xenoliths, implications for crustal processes, 92M/0524; two Ordovician bimodal igneous complexes, geochem., tectonic implications, 92M/2166; and Scandinavia, Caledonides, comparison of P-T-t paths in allochthonous high Pmetamorphic terrains, contrasted thermal structs. during uplift, 92M/3615; Massif Central, Beauvoir granite, near-solidus 18O depletion in Ta-Nb-bearing albite granite, 92M/3004: Brame/Saint-Sylvestre/ Saint-Goussaud, granite, geochem. mapping, application to U prospecting, 92M/0618; Creuse, Viges, criddleite, new discovery, 92M/3311; Haut Allier, hydrothermal alteration, fluid circulation related to W, Au, Sb vein mineralization, 92M/2709; Maclas, eclogites, retrograde metamorphism, 92M/1138; Montagne Noire, metamorphic evolution, axial zone, metamorphic evolution, 92M/3614; Pavin lake, ²¹⁰Pb, ²²⁶Ra, ³²Si, 92M/4474; Sancy volcano, magma mixing vs xenocryst assimilation, genesis of trachyandesites, 92M/0981; Massif Central, Velay, thermobarometry and granite genesis, Hercynian low-P, high-T anatectic dome. 92M/3415; Montagne Noire, Salsigne, Cr-, Zr- spinels, occurrence, 92M/3296; Pyrenees, Canigou, Fe-Zn-Ba-F stratiform mineralization, Pb isotope compns., 92M/0547; and Italy, Lanzo Massif, orogenic lherzolite, sulphide petrol., S

geochem., comparative study, 92M/3345; Pyrenees, Baronnies graben, Cretaceous metamorphic evolution, diagenesis to amphibolite facies, 92M/3613; Lherz, peridotite massif, intrinsic Nd, Pb, Sr isotopic heterogeneities exhibited by, 92M/3347; Pierrefitte, W-bearing baotite in hydrothermal veins, min. data, 92M/3255; Trimouns, (57Fe):Fe3+ distribn. in chlorite in Mössbauer talc-chlorite deposit, spectroscopy, 92M/1988; N Pyrenean Rift Zone, alkaline magmatism from Cretaceous, REE, Sr-Nd isotope geochem., 92M/4363; Mont Pourri, Cambrian Vanoise, granophyres, U/Pb dating, 92M/2405; Var, capgaronnite, new sulphide-halide min., 92M/4674; Var, Cap Garonne, cobaltoan nickeloan-kténasite, new 92M/2051; geminite, new min., 92M/2070; Vosges, Champ du Feu Massif, calc-alkaline plutonism and Variscan post collision evolution, 92M/0982

—, CORSICA, Mt Cinto, Palaeozoic volcanic rocks, petrol., 92M/3419

Francevillite, Czech Republic, Bohemia, Litice nad Orlicí, occurrence, min. data, 92M/2030

Francolite v. apatite

Franklinite v. spinel Freibergite v. tetrahedrite

Freieslebenite, Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864

FRENCH GUIANA, metallogenic relationship between Au-bearing shear zones, conglomerates in Proterozoic, 92M/3957

Froodite, *Portugal, Bragança-Vinhais*, from ultrabasic rocks, 92M/2047

Fülöppite, Czech Republic, Bohemia, Slaný mining area, occurrence, 92M/3689

Fumaroles, Costa Rica, Volcán Poás, S eruptions, 92M/4865; Italy, Campi Flegrei caldera, Solfatara, isotopic study of origin of S, C in, 92M/2205; Italy, Vulcano, isotopic compn. of steam, implications for volcanic surveillance, 92M/4838; Spain, fossil, discovery of, 92M/3977; USA, Alaska, Katmai, Valley of Ten Thousand Smokes, 92M/4402; fossil, active, in 1912 eruptive deposits, 92M/1073

Fumarolic deposits, USA, Alaska, Valley of Ten Thousand Smokes, geochem., mineralogy, bulk chem., min. evolution of dacite-rich protolith, 92M/3049

- emissions, USA, Alaska, Mt St. Augustine, 1979–1984 degassing trends, volatile sources, poss. role in eruptive style, 92M/1072
- fluids, Italy, Aeolian Is., Vulcano, noble gases, N mixing, temporal evolution in, 92M/3479
- processes, USA, Alaska, Augustine volcano, origin, speciation, fluxes of tr.-elem. gases, 92M/4401
- Gabbro, controlled by *P*, main types, 92M/2127; *Atlantic, Labrador Trough*, and basalts, poss. remnants of Proterozoic failed ocean, 92M/1095; *Mid-Atlantic Ridge*, serpentinized, in axial valley, 92M/4803; *Greece, Pindos, Labanova*, coronas in,

92M/3433; Greenland, Kap Edward Holm Complex, Lower Layered Series, O isotope exchange, min. alteration in, 92M/2994; Ireland, Mayo, W Connacht, Siofra, petrol., 92M/3412; Italy, Sardinia, Punta Falcone, Carboniferous, petrol., 92M/4798; Norway, Bamble, REE, Th, Hf, Ta in, implications for tectonic setting, 92M/2999; Oman, Semail ophiolite, Haylayn Block, layered, Cu-Ni-PGE magmatic ores in, 92M/3520

 -- monzonitic intrusive, Norway, Seiland Igneous Province, Øksfjord peninsula, Rb/Sr dating, Precambrian age, 92M/0007

- -- syenite, Greenland, Klokken intrusion, biotite equilibria, fluid circulation in, 92M/3271
- tonalite-monzogranite assocn., Spain, Toledo, Hercynian Iberian belt, origin of, 92M/3416
- Gabbroic cumulate, *Indonesia*, *Galunggung*, assoc. with andesite, amphibole in, 92M/1012
- xenoliths, Japan, North Fossa Magna, Naeba and Torikabuto volcanoes, in calc-alkali andesite, chem. compns., Sr, Nd isotope ratios, 92M/3036
- Gabbronorite, Western Australia, Windimurra, macrorhythmically layered, petrol., 92M/1019
- GABON, Proterozoic U deposits, geol., 92M/2677; Dondo Mobi, behaviour of Au in lateritic equatorial envt., weathering, surface dispersion of residual Au particles, 92M/0554; Franceville basin, Oklo, natural fission reactors, petrogr., geochem. of host ore, 92M/2663; Moanda, Mn-oxyhydroxide transformations in laterite, high-resolution TEM study, 92M/0857; Oklo natural reactors, organic matter and containment of U and fissiogenic isotopes, 92M/4325
- Gadolinite, datolite, dielectric constants of, oxide additivity rule, 92M/4989; Czech Republic, Moravia, in hornstone assoc. with teschenite, 92M/1957

Gahnite v. spinel

Galena, in Zn-Pb deposit, S isotope compn., 92M/0553; Australia, Queensland, Hodgkinson gold field, assoc. with mélange-, sediment-hosted Au-bearing quartz veins, 92M/0370; Brazil, Minas Gerais, Bambui group, S, Pb isotope geochem., implications for ore genesis, 92M/4347; Bulgaria, Ardino, polymetallic deposit, 92M/0866; Sredna Gora Mt, in Cu-pyrite deposit, 92M/0346; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Canada, British Columbia, Bridge River mining camp, Pb isotope Cretaceous-Tertiary mineralization, 92M/2971; central mineral belt, metallogenic, tectonic implications of Pb isotope data, 92M/2973; England, Derbyshire, Matlock Bath, Wapping mine, occurrence, 92M/2357; Leicestershire, Pb-Mo mineralization in ancient cave, 92M/2359; W Shropshire orefield, genesis, evidence from fluid inclusions, sphalerite chem., S isotopic ratios, 92M/0544; Germany, KTB pilot hole, occurrence. 92M/0302; Nordpfalz, Rockenhausen, occurrence, 92M/2366; Rhenish Schiefergebirge, Altenbüren,

92M/1459; mineralization, sulphide Saxony, Erzgebirge, Germany, -quartz-baryte-fluorite-hematite-sphalerite veins, age of, 92M/2671; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Ireland, mins. of, Tara, occurrence, 92M/2708; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Scotland, Mannoch Hill, occurrence, 92M/1221; Sweden, Bergslagen, Tunaberg Cu-Co deposit, assoc. with Mn, Cd-bearing tetrahedrite, 92M/3309; Turkey, Anatolia, in Pb-Zn deposits, 92M/2718; USA, Missouri, Viburnum Trend, S-Pb isotope systematics, compn. of fluid inclusions in, 92M/2976; Tennessee, Elmwood. occurrence. 92M/3703

Galenobismutite, China, Hebei, Caijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356; Sweden, Bergslagen, Boviksgruvan, in sulphide deposit, 92M/2707

Garnet, assessment of garnet–clinopyroxene Fe–Mg exchange thermometer using new exptl. data, 92M/0403; buffering in assemblage staurolite–aluminium silicate–biotite–garnet–chlorite, 92M/1119; compatibility of geobarometers in system CaO–FeO–Al₂O₃–SiO₂–TiO₂, implications for mixing models, 92M/1569; computer simulation of MgSiO₃ polymorphs, 92M/4094; ΔH of reaction, recalibration of garnet-pyroxene-plagioclase-quartz

geobarometers in CMAS system by solution calorimetry, 92M/0404; diffusion during cooling, interpn. of peak metamorphic T, 92M/1116; effects of diffusional modification of garnet growth zoning on P-T path calculations, 92M/1120; four-phase AFM assemblage staurolite-Al silicate-biotite-garnet, extra components, implications for staurolite-out isograds, 92M/3246; garnet-clinopyroxene geobarometry, problems, approx. solution, applications, 92M/0807; geobarometers involving, estimation of P in quartz-absent assemblages, 92M/4042; high-resolution chronometry, rates of metamorphic processes, 92M/3710; in high-silica rhyolite, tr. elem. partition coefficients measured by ion microprobe, 92M/4420; in pelitic schist, effect of whole-rock MnO content on stability of, during metamorphism, 92M/4091; in xenolith from kimberlite pipe, mineralogy, 92M/4639; low Ca. mantle-derived, constraints on origin of, 92M/4090; new scheme for calculating min. end members, 92M/4613; Ostwald ripening in high P/T metamorphic rocks, 92M/1572; phase chemographies in quaternary systems of seven phases, 92M/0414; porphyroblasts, competitive diffusion-controlled growth of, 92M/1121; porpyroblast textural sector zoning, matrix displacement, 92M/1123; pyroxene-garnet equilibration cooling in mantle, 92M/3257; quartz + muscovite + biotite + garnet + plagioclase assemblage, equilibria, implications for mixing props. of octahedrally-coordinated cations in muscovite, biotite, 92M/1578; texturally-early fluid inclusions in, poss.

evidence of prograde metamorphic path, 92M/2311; Austria, E Alps, Tauern Window, in schist, 92M/0717; England, Cumbria, Eskdale, Borrowdale Volcanic -bearing minor intrusions, volcanogenetic significance, 92M/2164; Germany, Erbendorf, KTB pilot hole, inter-, intracrystalline cation distribn. in, 92M/0419; India, Singrauli coalfield, Moher-Subbasin, Barakar, in sandstone, 92M/1109; SE Ireland, assoc. with Li pegmatites, petrogenetic implications, 92M/3243; Italy, Western Alps, Gran Paradiso in orthogneiss, nappe, geothermobarometry, 92M/1154; Zealand, Northland, phenocrysts in Miocene calc-alkaline volcanics, origin, significance of, 92M/4818; Scotland, zoned manganiferous, of magmatic origin, 92M/3242; South Africa, in eclogite, O isotope systematics, 92M/0719; South Africa, N Cape, Finsch kimberlite, in diamoniferous harzburgite, 92M/4806; Cabo Ortegal Complex, in Spain, metabasites, 92M/1142; Pyrenees, Cabo de Creus, in pegmatite, stable isotope constraints on origin of, 92M/4299; Taiwan, Tananao schist, Yuantoushan gneiss, compositional zoning, 92M/1951; Urals, gem notes, 92M/4194; USA, Arizona, Colorado Plateau, The Thumb, tr. elem. zonation in, heating, melt infiltration, 92M/0805; Sierra Nevada, breakdown in deep seated garnetiferous xenoliths, petrol., implications, 92M/4958; tectonic Washington, Cascades, Ca depletion haloes, Fe-Mn-Mg zoning around faceted plagioclase inclusions in, from high-grade pelitic gneiss, 92M/0806

--, almandine, Czech Republic, Bohemia, České Středohoří Mts, assoc. with perovskite, 92M/2017; Bohemia, Milín, from leucocratic miarolitic granite, 92M/1952; Poland, Carpathians, Rytro, Magura nappe, in flysch, 92M/1107; USA, Montana, Dry Cottonwood Creek, inclusion

in sapphire, 92M/1628

-, andradite, characterization, thermodynamic props., 92M/1570; optical anomaly of mins., thermodynamic 92M/1199: props., application to skarn with coexisting andradite, hedenbergite, 92M/0449; Brazil, Bahia, Lagoa Real, metamorphism, metasomatism, mineralization, 92M/2751; Canada, British Columbia, Rossland, in skarn mineralization, 92M/2734; China, Handan-Xingtai, Hanxing, in skarn iron alteration-mineralization. deposits. 92M/0565; Italy, Latium, Albano Lake crater, assoc. with guarinite in sanidinite ejecta of hydromagmatic unit, 92M/0816; Tanzania, Oldoinyo Lengai volcano, in lapilli of 1966 ash eruption, 92M/3488

--, goldmanite, Western Australia, Yilgarn Block, Southern Cross greenstone belt, in skarn veins, min. data, 92M/0808; North Sea, detrital, from Palaeocene sandstone, 92M/3244; Pakistan, Swat, with tsavorite,

gemstone, 92M/4172

—, grossular, gem trade lab. notes, 92M/4193; optical anomaly of mins., 92M/1199; thermodynamic props. from vibrational spectroscopy, 92M/0448; Bulgaria, Rila Mtn, in skarns, min. data, 92M/0819; Germany, Bavaria, in veinlets, post-Variscan deformation, 92M/1150; Poland, Carpathians, Rytro, Magura nappe, in flysch, 92M/1107; Sri Lanka, history of gemmology, C.P. Thunberg, 18th century collector, 92M/1638; Tanzania, gem notes, 92M/4194

—, — -andradite, hydrothermal, oscillatory zonation patterns in, nonlinear dynamics in regions of immiscibility, 92M/1954; USA, South Carolina, S Appalachian Piedmont, in rodingite, 92M/3601

—, — hydrogrossular, hydrous components in, 92M/1955

—, — pyrope-almandine, ternary excess props. of, influence in geothermobarometry, 92M/1571

---, --- spessartine, and water, O isotope fractionation between, exptl. study, 92M/4089

—, hydrogrossular, incorrectly known as 'Transvaal jade', compn., 92M/4170; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808

—, pyrope, synthetic, hydroxide component in, 92M/0447; thermodynamic props. from vibrational spectroscopy, 92M/0448; Czech Republic, Bohemia, red, anals., 92M/1627; Bohemia, České Středohoří Mts, assoc. with perovskite, 92M/2017; Poland, Carpathians, Rytro, Magura nappe, in flysch, 92M/1107

—, — -coesite rocks, Italy, W Alps, Dora Maira Massif, Parigi, and country rocks, petrogr., min. chem., PT-path, 92M/2288

- —, spessartine, Czech Republic, Bohemia, Milín, from leucocratic miarolitic granite, 92M/1952; Inner W Carpathians, in Lower Palaeozoic metasediments, 92M/1953; Norway, Sulitjelma, in coticules, 92M/1129; Poland, Carpathians, Rytro, Magura nappe, in flysch, 92M/1107; Pakistan, Karakoram, occurrence, 92M/2378
- —, tsavorite, *Pakistan, Swat*, gemstone, 92M/4172
- —, uvarovite, North Sea, assoc. with detrital goldmanite from Palaeocene sandstone, 92M/3244
- -biotite geothermometry, Spain, Arribes del Duero, calibration of, 92M/3630
- -- -ilmenite Fe-Mn exchange equilibria, exptl. study of effect of Ca upon, 92M/2855 Garronite v. zeolite
- Gas, Germany, Bavaria, KTB pilot hole, geochem., 92M/0714
- —, natural v. hydrocarbons
- —, noble, *India, Gujarat*, and N in natural gases, 92M/4301; *USA* and *Japan*, in Mesozoic cherts. 92M/0697

Gasparite-(Ce) v. monazite

Gaspeite, hydrothermal decompn. curves, thermodynamic data, 92M/0509

Gaylussite, USA, California, Mono Lake, formation in desert basin, 92M/0871 Gedrite v. amphibole

Geerite, *India, Malanjkhand*, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316 Gehlenite v. melilite Gem crystals, illustrated postage stamps, 92M/1640

 industry, international gemmological symposium 1991, 92M/4180

minerals, Germany, Saxony, descriptn., bibliography, (book), 92M/0114

Geminite, France, Var, Cap Garonne, new min., 92M/2070

Gemmology, application of minerological techniques to, 92M/0518; automatic procedure for computing optimum cut proportions of gemstones, 92M/2912; curves, optics in nontraditional gemstone cutting, 92M/4192; Jemeter Digital 90, reflectance instrument, test report, 92M/2921; technol. developments, (book), 92M/1325; use of inverted microscope in, 92M/2920

Geobarometry, Al-in-hornblende barometer, amphibole compn. in tonalite as function of P, exptl. calibration of, 92M/4102; compatibility of geobarometers in system CaO-FeO-Al₂O₃-SiO₂-TiO₂, implications for garnet mixing models, 92M/1569; derivation of thermodynamically consistent set of geobarometers for metamorphic, magmatic rocks, 92M/2803; error propagation, accuracy, precision of experimentally located end-member reactions, 92M/0401; error propagation, application to rocks, 92M/0402; garnetclinopyroxene, problems, approx. solution, applications, 92M/0807; high P exptl. calibration of olivine-orthopyroxene-spinel oxygen geobarometer, implications for oxidation state of upper mantle, 92M/0405; hydrothermal aqueous solutions, theoretical investigation based min.-solution equilibrium model, 92M/1553; involving clinopyroxene, garnet, plagioclase, ilmenite, rutile, sphene, quartz, estimation of *P* in quartz-absent assemblages, 92M/4042; sphene-rutile barometry in eclogite, 92M/1532

Geochemical cycles, global, Phanerozoic, 92M/4293

mapping, definition of large-scale zones of hydrothermal alteration by, using organic lake sediment, 92M/1914; international, and environment, 92M/1502; of carbonate terrains, 92M/1909; *Jamaica*, multi-purpose, of *Caribbean region*, 92M/1916; *USA*, K, U, Th geochem. maps, 92M/1915

Geochemistry, end-member unmixing, of compositional data, 92M/0521; environmental, engineering aspects, 92M/1512; stable isotope, tribute to Samuel Epstein, (book), 92M/3777; V.M. Goldschmidt, (book), 92M/3780; vectors, components, mins., 92M/0534; China, regional, national reconnaissance project, 92M/3187; USA, Alaska, Geol. Survey geochem. studies, 1989, 92M/0532

Geologists at war, forensic investigation in field of war-time diplomacy, 92M/1238

GEORGIA, Cd leached from rocks by different solutions, exptl. study, 92M/3119; Caucasus, Gorabi Massif, diorite, U-Pb dating, 92M/1276; Gorab-Kelasuri intrusive complex, geol. setting, petrol., K-Ar dating, 92M/1273; O isotope compn.,

92M/1746; U-Pb, Rb-Sr dating, 92M/1277; Kelasuri Massif, granite, Rb-Sr dating, 92M/1274; granitic rocks, geochem., 92M/1744; Nd isotope ratios, REE concentration in whole-rock samples, 92M/1745; ore mineralization, K/Ar dating, 92M/1278

Geothermal fields, China, Leizhou Peninsula, local geothermal anomalies, formation mechanisms, 92M/4984; China, Yunnan Province, Tengchong, Rehai, tr.-elem. zoning, 92M/2929; Iceland, Nesjavellir, drillhole NJ-15, smectite-chlorite transition, XRD, BSE, electron microprobe investigations, 92M/2273; Italy, Larderello, geol. review, 92M/1241; Mexico, Jalisco, La Primavera caldera, applied technol. in solution of drilling problems of deep wells, 92M/2224; Mexico, Los Azufres, variability in gas phase compn. of fluids discharged 92M/2222; New Zealand, from, Broadlands-Ohaaki, thermal inversion T of quartz, 92M/3667; New Zealand, Wairakei, clay geothermometry, mixed-laver 92M/3798; Taiwan, Chinghui, meteoric, thermal waters, H, O isotopic compns., 92M/1827; USA, California, Salton Sea, heating duration, provenance age of rocks, 92M/2351

— fluid, *Iceland, SE rift zone, Hengill*, gas geochem., 92M/1819

— reservoirs, China, Yunnan Province, Rehai field, characteristics of, 92M/3672; Mexico, Los Azufres caldera, volcanic basement stratigr. based on major-elem. anal., 92M/2221

- systems, India, Jammu and Kashmir, Nubra Valley, conceptual model, 92M/0734; Mexico, Cerro Prieto, rapid increase, stabilization of vitrinite reflectance at peak T, implications for organic maturation studies, 92M/2579; Mexico, Michoacán, Los Azufres, C stable isotope geochem., 92M/4862: New Zealand. Broadlands-Ohaaki, min.-fluid interactions. 92M/1645; New Zealand, Waiotapu, boiling, dilution in shallow portion, 92M/1682; Philippines, MtNatib, caldera-hosted, geochem. model, 92M/1062

Geothermobarometry, evaluation geothermobarometers for garnet peridotites, comment, 92M/4043, reply, 92M/4044; generalized, solution of inverse chem. equilibrium problem using data for individual species, 92M/4298; min. thermodynamics, equilibria, 92M/2799; O. of orogenic lherzolite massifs, 92M/4364; ternary excess props. of grossular-pyropealmandine garnet, influence in, 92M/1571; thermodynamics of framework silicates, and equilibria, application to, 92M/2805; USA, Alaska, Coast Mountains batholith, constraints on structl. evolution, 92M/2308; S Appalachians, hornblende chem. in granite, implications for, 92M/0824

Geothermometry, assessment of garnet-clinopyroxene Fe-Mg exchange thermometer using new exptl. data, 92M/0403; chemical, in hydrothermal aqueous solutions, theoretical investigation based on min.-solution equilibrium model, 92M/1553; ΔH of reaction, recalibration of

garnet-pyroxene-plagioclase-quartz geobarometers in CMAS system by solution calorimetry, 92M/0404; derivation of thermodynamically consistent set geothermometers for metamorphic, magmatic rocks, 92M/2803; Fe-Ti oxide, thermodynamic formulation, estimation of intensive variables in silicic magma, 92M/1534; natural calibration of 18O/16O application geothermometers, quartz-rutile min. pair, 92M/0539; O calibrations, thermometer isotope 92M/4195; refined garnet-biotite Fe-Mg exchange geothermometer, application in amphibolites, granulites, 92M/1533; silica-quartz geothermometric calibrations, 92M/1588; two-pyroxene, evaluation, 92M/2802; Mexico, Sonora, Guaymas, chem, geothermometers applied to study of thermalized aquifers, 92M/0743

GERMANY, metamorphic quartz, geochem., 92M/3095; natural gas mixtures in Kupferschiefer mines, 92M/2950; ore mins. in Carboniferous to Tertiary sedimentary rocks, 92M/0320; Permian salt deposits, gases in, 92M/3075; porphyrins from Eocene oil-shale, struct. elucidation, geochem., biol. significance, distribn. as function of depth, 92M/4522; soils overlying sandstone,, phyllite, gneiss, rhyolite, basalt, major, tr. elem. anal., 92M/2593; Sr, S isotopic compn. in sea-water, Zechstein age, 92M/0730; NE, magmatic rocks, petrol., 92M/3424; E, U deposits, production, 92M/0319; Bavaria, bentonite from molasse, anals., 92M/3795; granites, Pb isotope anal., 92M/0709; carbonate metamorphosed xenolith, mineralogy, 92M/3681; post-Variscan deformation, grossular-diopside veinlets, 92M/1150; serpentinite, genesis, petrol., 92M/1153; U, Th, K contents of rocks, used as basis for prediction of T-depth profiles, 92M/0708: Variscan basement, development of microcracks in granite during cooling, uplift, 92M/2172; Bohemian Massif, volcanic, volcaniclastic rocks, petrol., 92M/4835; Hirschau-Schnaittenbach, crandallite, woodhouseite, in kaolinized arkose, 92M/4669; Bavaria, KTB, continental deep drilling program, 92M/0115; KTB borehole, differential deformation anal. to determine P of crack closure in drill-cores, 92M/1213; drilling for seismic network, petrol. of rocks recovered, 92M/4938; evaluation of borehole measurements in igneous, metamorphic rocks, 92M/1212; heat production mesurement techniques, 92M/1209; measurement of hydraulic props. to characterize internal struct. of pore space, 92M/1210; measurement of rock phys. props. down to 4000 m, 92M/1211; paramagnetic defects in quartz, 92M/1208; profile of metamorphic rocks, 92M/3388; report on first 1720m, (book), 92M/3778; results of geoscientific investigation in the KTB field lab., O-6000 m, (book), 92M/3779; stress measurement profile to mid-crustal depth, 92M/2324; Bavaria, KTB main borehole, 0-6000 m, geol. survey, 92M/4937; 0-1720 m, gneiss, metabasic

intercalations, 92M/4936; chem. anals. of drilling fluid, dissolved gases, 92M/4935; drilling artifacts in cuttings samples, 92M/4465; on-line detn. of ²²²Rn in drilling fluids, 92M/4300; results of geoscientific investigations in the KTB field lab., 0-6000 m, geochem., mineralogy, 92M/4464; technical details, handling of recovered rock, 92M/4934; Bavaria, KTB pilot hole, apatite fission track dating, Upper Cretaceous erosion, 92M/0018; biotite gneiss, geochem., 92M/0707; borehole logging tools, 92M/3747; fluid inclusion study, 92M/0710; formation of graphite in fault zones, 92M/0711; geochem. of gases, 92M/0714; He, Ne isotopes in drilling fluid 92M/0715; meta-ultramafites, metagabbros, petrol., 92M/1152; metabasite, petrogr., geochem., min. chem., metamorphic evolution, 92M/1151; metamorphic rocks, accessory ore mins., 92M/0302;Ra, Cl in deep waters, 92M/0716; S isotopes in sulphides, 92M/0713; stable isotope study, 92M/0712; top 450 m, accessory ore mins., anals., 92M/0303; Bavaria, Münchberg gneiss complex, Weissenstein eclogite, high-P relics in metasediments intercalated with, Bavaria, 92M/1146; Vor-Spessart, metabasites, geochem., 92M/4368; Bayerischen Wald, mins. of, 92M/4997; Black Forest, geophys. evidence for metamorphic fluids in crust, 92M/4237; U, Th, K contents of rocks, used as basis for prediction of T-depth profiles, 92M/0708; Black Forest, Eisenbach region, Mn mins., K-Ar dating, age of ore emplacement, 92M/1255; Dresden, Cretaceous limestone, weathering, 92M/0392; Eastern Highlands province, Basangka, discovery of Au deposits, 92M/2691; Eifel, Ba-rich phlogopite, biotite from Quaternary alkali mafic lavas, 92M/4625; mines of, 92M/3678; mins. of, 92M/3685; quartz crystals with pseudocubic habit in Carboniferous, 92M/1226; Eifel, Laacher-See, min. paragenesis, mins. of, 92M/4999; Eifel volcanic field, natural cordierite, microstructl, variations in, 92M/2608; Volksfeld, magnetite assoc. with sanidine, 92M/1227; N Eifel, Palaeozoic sedimentary rocks, geochem., 92M/1786; R. Elbe, detn. of Th in sediments using isotope dilution MS with thermal ionization, 92M/4438; tektites in Neogene river gravels, anals., 92M/3633; Erbendorf, KTB pilot hole, inter-, intracrystalline cation distribn. in mins., 92M/0419; Franconian Line, fault activity, Variscan, Cretaceous time markers, 92M/1149; Frankfurt, slag mins., 92M/3680; Goslar Trough, Neues Lager, sulphide ore, geol., 92M/1460; Harz Mts, diagenesis of Devonian reef carbonates, 92M/3562; mins. of, 92M/1225; kieserite in carnallitite, Zechstein; 92M/3563; Harz, Nordhausen, Niedersachswerfen, anhydrite deposit, mins. of, 92M/3682; Selke, greywacke, lithol., 92M/4887; Strassberg, fault zones, kinematic studies, 92M/3387; Upper Harz Mts, isotopic age detn. of crystalline rocks. 92M/2401; Hesse, Giessen, Mn ore,

mineralogy, 92M/3989; Ibbenburen. kaolinite coal tonstein, Westphalian B, 92M/1368; Kaiserstuhl, alkaline volcanic rocks, carbonatites, isotope studies, 92M/4367; Laacher See volcano, accretionary lapilli, internal struct., occurrence, 92M/3485; Laacher See, and Cameroon, Lakes Nyos, Monoun, Indonesia, Dieng, Australia, Mt Gambier, CO2-rich gases, variations on common theme, 92M/1037; Leipzig, Delitzsch, ultramafic petrol., lamprophyre, carbonatite, 92M/3430; Marsberg, Cu deposits, mins. of, 92M/2368, 92M/2369; Mecklenburg-Vorpommern, microsyenite, micromonzogranite, derived from partial anatexis of intermediate crustal rocks, 92M/3422; Meggen, Th in jarosite in flue dust of roasted pyrite, 92M/4030; Meißen massif, plutonic rocks, evidence for open, closed system fractionation processes, 92M/3421; Mid-German Crystalline Rise, Odenwald, tectonothermal evolution of part of Variscan magmatic arc, 92M/3634; Nordpfalz, Rockenhausen, mins. of, 92M/2366; Oberpfalz, Gross Teichelberg, rhodesite, 92M/1228; occurrence, Odenwald, emplacement of synkinematic plutons in Variscan controlled by transtensional tectonics, 92M/3423; Ramsbeck, Zn analogue of schulenbergite, min. data, 92M/4660; Rhenish Schiefergebirge, Altenbüren. sulphide mineralization, 92M/1459; Romberg borehole, Brilon reef complex, Devonian, diagenesis, 92M/2255; Rhenish Schiefergebirge, Sauerland, synsedimentary, stratiform pyrite mineralization, 92M/1461; Richelsdorf, mins. of, 92M/1225; origin of Kupferschiefer-type mineralization, stable isotope, organic geochem. studies, 92M/0548; Sachsen-Anhalt, Halle, alkali feldspar from volcanic rocks, cation deficit caused by metasomatism, 92M/3598; Sachsen-Anhalt, Magdeburg, glauconite in Eocene sediments, 92M/2582; Sauerland, Arnsberg, ferrostrunzite, min. data, Carboniferous 92M/4670; Saxony, microgabbro, elem. migration by lateral secretion, 92M/3428; flint content in gravel, 92M/4024; fluorite-baryte veins, fault sytems, classification, 92M/2766; gem mins., descriptn., bibliography, (book), 92M/0114; geochem., isotope constraints on evolution of granulite massif, 92M/3093; geochem., 92M/3636; granulites, harmotome in greywackes, 92M/3686; kaolinization of rhyolite, 92M/2925; mins. of mine dumps, 92M/3687; paragonite in phyllites, greenschist facies metamorphism, geol., mineralogy, 92M/3638; tourmaline in granulites, 92M/3684; Saxony, Altenberg, dickite, min. data, 92M/2571; Callenberg, geol., mineralization, crocoite, occurrence, 92M/1233: Saxony, Erzgebirge, breccia-related tin granite, metallogenesis, 92M/2659; Carboniferous to Permian volcanic rocks, geochern., 92M/3009; eclogite facies rocks, high P metamorphism under contrasting P-T condns., 92M/4933; fluorite, quartz, from post-Hercynian veins, isotopic anal., 92M/2949; geochem., genesis

of gases in mineral springs, 92M/3115: granitic rocks, thermobarometry, quartz, fluid inclusion study, 92M/3094; granulite, gneiss, metamorphic stages, 92M/3637; grey gneiss, formation of, 92M/3640; lithostratigr., 92M/3639; melt inclusions in quartz in granite, 92M/3425; metamorphic rocks, melt, fluid inclusion studies. 92M/3642; min. collections, 92M/1239; quartz-baryte-fluorite-hematite-galena-spha lerite veins, age of, 92M/2671; russellite, occurrence, 92M/3688; koechlinite, serpentinite, geol., 92M/3641; silicic magmatism, metallogenesis, (book), 92M/2504; tectonic overprint of metamorphic rocks, quartz microfabric anal., 92M/3635; volatile parameters of Hercynian postkinematic granites, significance in solving petrogenetical problems, 92M/3008; volatile signatures of granites, Hercynian postkinematic implications for Sn-W-Mo metallogenesis, 92M/4323; Erzgebirge, Niederbobritzsch, Hercynian granodiorite, petrol., 92M/3429; Sadisford, emplacement of granite intrusion explosive breccia, 92M/4801; Schneeberg, Sauschwart mine, Ag mining history, 92M/1462; Teplice, Westfalian rhyolite, volume, caldera model, 92M/3427; Tellerhäuser, Ag deposits, mineralogy, 92M/1234; Erzgebirge, Zinnwald, wolframite, occurrence, 92M/3690; Saxony, Freiberg, Brand, nacrite, dickite, anals., 92M/1345; Geyer-Ehrenfriedersdorf area, geol., mining history, mins., 92M/2371; Gorleben, compn., origin of fluid inclusions Zechstein evaporites, 92M/2066; Hohenbocka, distribn., tr. elem. content of humic acids in quartz sand, 92M/1865; Lüneberg, geol., salt mining history, 92M/5000; Meissen, melt inclusions in rock-forming mins. in granite, 92M/3426; Meissen Massif, kaolinization of pitchstone, felsite, quartz porphyry, 92M/2583; Mittweida, granite, formation of, 92M/3006; Niederbobritzsch granite, sulphide, Mo mineralization, 92M/2711; Saxonian Granulite Massif, history of granites, modelling of elem. pair behaviour during magmatic processes, 92M/2926; Seuzergrundel, mins. of, 92M/2370; Saxony, Vogtland, fluorite-baryte veins, major fault systems, economic significance, 92M/2765; and Thuringia, Pleistocene freshwater carbonates, radiocarbon dating, 92M/3718; Schwarzwald, application of stable isotopes in identifying Hercynian synplutonic rift zone and assoc. meteoric-hydrothermal activity, 92M/4224; evidence for Jurassic tectonism in basement, laser probe 40Ar/39Ar dating, K-feldspar, 92M/2402; mediaeval and earlier mining, history, 92M/2658; W mineralization, occurrence, 92M/2672; Schwarzwald, Clara mine, yukonite, occurrence, 92M/1225; Krunkelbach, U deposit, correlation of radiometric ages with min. stages, fluid inclusions, 92M/1458; Rippoldsau, aikinite, berryite, occurrence, 92M/1230; Wattkopf road tunnel, mins. of, 92M/3679; Schwarzwald, Wittichen, geol., min., mining, erythrite occurrence, 92M/2367;

Siegerland, mins. of, 92M/1225; Siegerland, Steinbach, Grube Bindweide, Fe, Cu mins., occurrence, 92M/3683; Spessart complex, hornblendes, orthogneiss, geochronol., 92M/0022; Spessart Mts, new min. of mitridatite group, Mn-analogue of arseniosiderite, occurrence, anals., 92M/0875; Thuringia, modelling of compaction processes of clastic sediments, 92M/3564; Thuringia, Caaschwitz, mins. of, 92M/2364; Greiz, fabric of phyllites, 92M/3632; Ilmenau, Oehrenstock, Mn mins., occurrence, 92M/2365; Ronneburg, U deposits, geol., mining, 92M/2710; U mins., occurrence, 92M/2363; Thuringian Forest, Ruhla mining region, geol., mins. of, 92M/1231; Upper Rhine rift valley, Kaiserstuhl, alkaline volcanic rocks, carbonatite, Pb isotopic systematics, 92M/3010; Velbert, nordstrandite, occurrence, 92M/1225; Virneberg mine, chenite, occurrence, 92M/1229; Vogtland, Westerzgebirge, REE distribn. among mins. in Hercynian postkinematic granites, 92M/3007; Wittichen, mins. of, 92M/4998; ZEV/Moldanubian gneiss boundary, petrol., 92M/1148

Gersdorffite, Germany, KTB pilot hole, occurrence in metamorphic rocks, 92M/0302; Ukraine, Voronezh crystalline massif, in ultramafic xenoliths from Ni-bearing norites, 92M/2033; USA, Missouri, Viburnum Trend, occurrence, 92M/3704

GHANA, conflicting evidence on timing of mesothermal, palaeoplacer Au mineralization in early Proterozoic rocks, 92M/2675; metallogenic relationship between Au-bearing shear zones, conglomerates in Proterozoic, 92M/3957; min., chem. characteristics of tropical weathering profile implications for Au exploration, 92M/3958; Obuasi, Ashanti mine, Au mineralization, min., geochem. data, 92M/3928; Prestea and Ashanti, goldfields, geol., comparative study, 92M/3887

Gibbsite, formation of organic derivatives of boehmite by reaction of gibbsite with glycols, aminoalcohols, 92M/0495; metastability in near-surface rocks of mins. in system Al₂O₃-SiO₂-H₂O, 92M/0184; solubility, exptl. study of Al-oxalate complexing at 80°C, implications for formation of secondary porosity within sedimentary reservoirs, 92M/2909; solubility, in acidic sodium chloride solutions from 30 to 70°C, Al speciation, equilibria in aqueous solution, 92M/4132; solubility, in system Na-K-Cl-OH-Al(OH)₄ from 0 to 100°C, Al speciation, equilibria in aqueous solution, 92M/4131; synthesis, characterization, 92M/0498; thermodynamic studies, 92M/4123: Argentine Is., Faraday Base, Al hydroxide polymorphs in waste deposit, 92M/4651; Western Australia, Darling Range, in bauxite, 92M/0694; Brazil, compn., origin of clay cover on laterites, 92M/2597; Costa Rica, weathering products of Cainozoic volcanic ash, 92M/3804; New Zealand, Northland, unusual, petrogr., 92M/4896

Gillulyite, USA, Utah, Mercur Au deposit, new Tl As sulphosalt, 92M/0876

Glaciology, Antarctica, Victoria Land, McMurdo Sound, Cainozoic glacial record, geol. evaluation of drilling projects, 92M/4714

Glass, (v. also albite, aluminosilicate, basalt, melilite, nepheline, picrite, rhyolite, silicate glass) ¹³C MAS NMR, method for studying CO₂ speciation in, 92M/4039; CaNiSi₂O₆, spectroscopic evidence for five-coordinated Ni in, 92M/2614; in system CaSiO₃–MgSiO₃–Al₂O₃, ²⁹Si, ²⁷Al MAS–NMR spectroscopy, 92M/4050; SiO₂–Al₂O₃, and liquids, Al, Si coordination in, NMR, IR spectroscopy, MD simulations, 92M/4055; synthetic, zeolite and other hydrothermal alteration products of, 92M/2881

Glauberite, ground-water control of evaporite deposition, 92M/2773

Glauconite v. mica

Glaucophane v. amphibole

Gneiss. amphibole-bearing tonalitic. vapour-absent melting at 10 kbar of, implications for generation of A-type granite, 92M/4066; coarse-grained, model for development of domainal quartz c-axis fabric in coarse-grained, 92M/2310; Western Australia, Narryer, U-Pb dating, 92M/1285; Brazil, Minas Gerais, geochem., 92M/1815; Canada, Quebec, Mistastin batholith, from contact aureoles, cordierite + spinel parageneses in, 92M/1188; Saskatchewan, Trans-Hudson orogen, Reindeer zone, Kisseynew, metamorphism, 92M/3661; China, Fuping, origin of, 92M/3101; Hebei, Qianian block. Liuguzhuang, flecked, origin of, 92M/4946; Finland, Nurmes, late Archaean, evidence for significant paragneiss component within, 92M/3361; Orijärvi, orthoamphibolecordierite, petrol., min. chem., 92M/0822; Alpes Maritimes, Beonia, France, pseudoporphyritic, mineralogy, 92M/2285; Massif Central, Montagne Noire, axial zone, metamorphic evolution, 92M/3614; Germany, Bavaria, KTB main borehole, to 1720 m depth, 92M/4936; KTB pilot hole, geochem., 92M/0707; Saxony, Erzgebirge, grey, formation of, 92M/3640; metamorphic stages, 92M/3637; Greenland, constraints on Archaean trondhjemite genesis from hydrous crystallization expts. 92M/2833; India, Karnataka, Peninsular Gneiss, SHRIMP U-Pb dating, 92M/2418; Ireland, Donegal, Inishtrahull, syenitic, precise U/Pb zircon age, 92M/0013; Italy, Sardinia, from Hercynian basement, formation of fibrolite nodules in, 92M/3628; Nigeria, Igbeti area. Precambrian, protoliths, petrogenesis, 92M/1170; North America, W Cordillera, Cascades, Skagit, high-P metamorphism, 92M/3662; Norway, Sunnfjord, Western Region, basement, contact relationships between Askvoll group and, 92M/4913; Red Sea, Zabargad is., high P-high T, Pan-African age, implications for early stages of rifting, 92M/3726; Saudi Arabia.

Afif-Halaban-Ad-Dawādimī-Ar-Ryan areas, Rb/Sr dating, 92M/3728; Scotland,

Scourian Complex, O isotope geochem., granulite facies metamorphism, 92M/3090; Sweden, Karlskoga, garnet-cordierite, at boundary between early Svecofennian rocks and Småland-Värmland granite, 92M/4917; Taiwan, Tananao schist, Yuantoushan, garnet in, compositional zoning, 92M/1951; USA, New England, fluid inclusion evidence for basement decompression during Permo-Triassic extension,, 92M/2315; New York, anorogenic magmatic complex, early history, 92M/2809; Adirondack lowlands, field, Hyde School, age, petrol. relationships, criteria for intrusive igneous origin, 92M/3457; Hudson Highlands, monazite-xenotime, U/Pb geochronol. constraints on origin of, 92M/0058

—, augen gneiss, Japan, Hida metamorphic complex, and related mylonite, metasomatic origin, 92M/3599

—, granitic, Alps, Rb-Sr dating, 92M/3719; USA, Alaska, Ruby geanticline and S Brooks Range, U/Pb dating, 92M/1288; California, San Gabriel Mts, mid-Cretaceous, small scale heterogeneity of Phanerozoic lower crust, evidence from isotopic, geochem. systematics of, 92M/3107

—, orthogneiss, Antarctica, South Victoria Land, Dry Valleys region, petrogenesis, 92M/3397; Germany, Spessart complex, geochronol., 92M/0022; Italy, Western Alps, Gran Paradiso nappe, geothermobarometry, 92M/1154; Spain, Catalonian Coastal Ranges, Ordovician, Silurian, petrol., 92M/0915; Spain, Ossa-Morena zone, Badajoz, San Amaro, peralkaline, petrol., geochronol., 92M/1144; Switzerland, Silvretta, genesis, geochem., 92M/1806

—-charnockite reaction front, Sri Lanka, fluid characteristics across, implications for granulite formation in Gondwanian deep crust, 92M/3099

— -granulite transformation, *India*, in 'incipient charnockite' zones, geochem., 92M/3098

Goethite, Au sorption onto, radiotracer study, 92M/4136; ¹³C/¹²C ratios of Fe(III) carbonate component in, 92M/4217; complexation reactions of phthalic acid, Al (III) with surface of, 92M/4130; crystalline. inclusions of, in mica, 92M/4653; detn. of δ¹⁸O values by selective dissolution of impurities, 5 M NaOH method, 92M/1702; simultaneous incorporation of Mn, Ni, Co in, 92M/1599; synthetic Al-substituted, Rietveld XRD characterization, 92M/0496; thermal decomposition products, vibrational spectroscopic investigation of, 92M/4652; Western Australia, Darling Range, in bauxite, 92M/0694; Costa Rica, weathering products of Cainozoic volcanic ash. 92M/3804; Egypt, Bahariya oases, in baryte deposits, 92M/0381; England, W Shropshire orefield, genesis, evidence from fluid inclusions, sphalerite chem., S isotopic ratios, 92M/0544; Germany, Schwarzwald, Wattkopf road tunnel, occurrence, 92M/3679; Scotland, Mannoch Hill. occurrence, 92M/1221; USA, Arkansas, Saline County, Stand-on-your-head mine, assoc. with cookeite, 92M/2380; Oklahoma, Paoli, in Ag-Cu deposit, ore microscopy, 92M/0314; Wisconsin, Neda fm., ancient atmospheric CO₂ P inferred from, 92M/4033

Gold, Au-chloride complexes in acidic aqueous solutions at 25-300°C, laser Raman spectroscopic study, 92M/0487; bias in anal. of geol. materials for, using current methods, comment, 92M/4561, reply, 92M/4562; colloidal, adsorption on colloidal iron oxides, 92M/1891; deposition of, P-induced fluid immiscibility, assoc. stable isotope signatures, 92M/1652; detn. in geol. samples, analytical workshop, 92M/1311; fluorescence reaction of sodium 7-phenylazo-8-aminoquinoline-5-sulphonate with, analytical application, 92M/2452; geochem. exploration for, 92M/1888; hydrothermal precipitation of precious metals on sulphide substrates, 92M/3913; in ocean-floor ferromanganese crusts, nodules, geochem., 92M/0571; in ophiolites, distribn., fractionation from mantle to oceanic floor, 92M/3521; in semiarid weathering envt., supergene geochem., crystal morphol., application to Au exploration, 92M/1890; in vegetation, comparison of anal. results for, with, without high-T ashing, 92M/3191; mechanism of transfer, deposition in supergene envt., 92M/0546; mining operations, XRD mineralogic logging of drill samples, 92M/0306; morphol., chem. of transported Au grains as exploration tool, 92M/1887; native, degree, character of compositional heterogeneity as guide feature of, 92M/2011; processing, min. technique for recognising cyanicides in, 92M/2446; rapid location in polished sections with SEM, 92M/1320; rapid technique for detn. of, in geol. samples, based on selective aqua regia leach, 92M/2459; refractory, in characterization of, electron microprobe, Mössbauer spectrometry, ion microprobe study, 92M/3907; solubility in NaCl-, H₂S-bearing aqueous solutions at 250-350°C, 92M/0486; solubility, transport of, in saline hydrothermal fluids, 92M/4345; sorption onto pyrite, goethite, radiotracer study, 92M/4136; transport, deposition of, 92M/3856; typological, quantitative classification of min. deposits with, 92M/3927; typomorphism of Au crystals from quartz reefs, 92M/3901; use of Mössbauer spectroscopy in extractive metallurgy, 92M/0294; Brazil, Goiás, Posse deposit, Stone Line, Au grains in laterite, grade distribn., morphol., 92M/3959; Australia, Northern Territory, Coronation Hill, unconformity related Au, Pt, Pd prospect, 92M/1475; Queensland, Kidston, in breccia pipe, geol., fluid inclusion, stable isotope studies, 92M/0573; Tasmania, Hellyer, volcanogenic massive sulphide deposit, Au grades, Fe content of sphalerite, 92M/0575; Western Australia, in Archaean, exploration, evaluation, 92M/1912; Hunt mine, immobility of REE, high fieldstrength elems., transition metals during Archaean Au-related hydrothermal alteration of metabasalts, 92M/3897; Western Australia, Norseman-Wiluna belt,

'porphyry-Au' assocn., implications for models of Archaean Au metallogeny, 92M/0885; Brazil, in iron duricrust, 92M/3196; Bahia, Fazenda Maria Preta mine, precipitation, role of carbonaceous shear bands in fluid-flow and, 92M/3890; Bahia, Gentio do Ouro, precipitation, concentration of, in colluvial soils in semiarid region, 92M/3900; Carajas region, distribn., mobility in surficial envt., 92M/1889; Goiás, Cavalcante, Pt-group mins. assoc. with, 92M/3905; Minas Gerais, Iron Quadrangle, black Pd, anals., 92M/3910; Ouro Fino syncline, mobility during hydrothermal, supergene alteration of BIF, 92M/3960; Brazil, Quadrilátero Ferrifero, genesis of, 92M/3857; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Canada, British Columbia, Harris Creek, transport of, implications for exploration, 92M/3192; British Columbia, Rossland, content of skarn mineralization, 92M/2734; North West Territories, Gordon Lake, in quartz-breccia, Archaean, structl., lithol. controls, 92M/0271; Slave province, Central Iron Formation zone, Archaean metallotect, 92M/3872; North West Territories, Slave Province, Gordon Lake region, -bearing quartz-breccia in Archaean metaturbidites, structl. controls, fluid focussing, age, 92M/3946; Nova Scotia, reconnaissance, detailed geochem, surveys using plants, lake sediment, soil, till, 92M/1892; Nova Scotia, Meguma group, -bearing veins in Cambrian flysch, light stable isotope evidence for metamorphogenic origin for, 92M/3999; Ontario, Dome mine, in quartz-fuchsite vein, mechanics of formation, 92M/0273; Ontario, Timmins, Dome mine, in quartz-fuchsite vein, hydrothermal wall-rock alteration, formation of, 92M/0289; Quebec, Abitibi greenstone belt, Joutel, Agnico-Eagle mine, in siderite deposit, 92M/3922; Dumagami mine, progressive alteration assoc. with auriferous massive sulphide deposits, 92M/0587; Superior Province, Archaean, relationship of, to alkaline magmatism, 92M/3865; Superior Province, Ashuanipi Complex, retrograde P-T path, condns. of Au formation, 92M/4469; Chile, Andes, metallogeny, 92M/1447; Chile, Maricunga Belt, in porphyry systems, 92M/1450; China, stoping of underground veins, 92M/3972; Hebei, Caijiaying Pb-Zn-Ag deposit, min. characteristics, occurrence, 92M/0356; China, Sichuan, Gacun, in polymetallic deposit, geol., genesis, 92M/0362; Cyprus, Troodos ophiolite, and Mid-Atlantic Ridge, -rich seafloor gossan, 92M/2661; Czech Republic, Hohes Gesenke, Hrubý Jeseník, occurrence, 92M/3691; England, Cornwall, St. Just, Botallack mine, occurrence, 92M/3288; Cumbria, Cockermouth area, min. exploration, 92M/3987; Devon, internal struct. of Au-Pd-Pt grains in relation to low-T transport, deposition, 92M/3287; Gabon, Dondo Mobi, behaviour in lateritic equatorial envt., weathering, surface dispersion of residual Au particles, 92M/0554; Ghana and French Guiana,

-bearing shear zones, conglomerates in Proterozoic, metallogenic relationship between, 92M/3957; Greece, Chalkidiki, Skouries, in porphyry Cu deposit, 92M/0343; Greece, Vourinos, distribn. in chromitite ore, 92M/2954; Greenland, Skaergaard intrusion, -bearing horizon, 92M/1714; India, Dhawar Sandur-Copper mountain belt, chem. sedimentary sequences, potential ore zones for, in Archaean, 92M/3961; Karnataka Craton, potential major Au habitat, 92M/3881; Kerala, Nilambur, morphol. of grains in laterite, implications for genesis of supergene Au deposits, 92M/0353; very high purity, from lateritic weathering profiles, 92M/3286; Nilambur, Maruda, concentration of, in in situ laterite, 92M/3962; Indonesia, alluvial, exploration, 92M/1911; Indonesia, Kalimantan, reconnaissance, follow-up exploration, 92M/1878; Italy, Sardinia, epithermal, Tertiary, occurrences, 92M/3870; Italy, Vulsinian dist., in magmatic rocks, geochem. research for, 92M/3909; Mali, Misseni, dispersion in laterite above Au zone, 92M/0278; New Zealand, vein, in metamorphic rocks, 92M/1421; New Zealand, Otago Schist, Hyde-Macraes shear zone, -bearing quartz mineralization in duplex thrust system, structl. controls on, 92M/3984; Norway, Sulitjelma, Sb-rich min. parageneses, assocn. with Au mins. in massive sulphides, 92M/4005; Papua New Guinea, Mt Kare, mining project, 92M/2692; Peru and Bolivia, 'Eastern Cordillera', Lower Palaeozoic, occurrences, 92M/3869; Portugal, Góis, prospecting for, soil sampling survey, 92M/0766; Romania, S Carpathians, in metamorphic rocks, 92M/3878; Scotland, Grampian Highlands, and England, Cumbria, Lake District, regional distribn. of As, Sb, Bi, implications for metallogeny, 92M/3166; Scotland, Ochil Hills, in heavy min. concentrates, 92M/0318; South Africa, Natal, Archaean, exploration model for, 92M/3966; Thailand, geochem. dispersion of, assoc. with three Au prospects, implications for exploration, 92M/4554; Thailand, geochem. dispersion of, related to Cu-Au mineralization, 92M/1886; Turkey, Pontides, Akarşen, assoc. with Cu deposits, 92M/3919; United Kingdom, hydrogeochem. prospecting, 92M/0765; USA, production, past, present, future, 92M/3855; USA, Alaska, Geol. Survey geochem. studies, 1989, 92M/0532; California, Coast Ranges, -bearing hot spring systems, 92M/1443; California, Mesquite deposit, microbial method of min. exploration, 92M/1879; Colorado, occurrences, 92M/4002; Maryland, Great Falls, Piedmont, biogeochem. prospecting for, 92M/3195; Nevada, Round Mountain, epithermal deposition during transition from propylitic to potassic alteration, 92M/0595; New Mexico, Valles Caldera, radical S isotope zonation of pyrite accompanying boiling and epithermal Au deposition, SHRIMP study, 92M/4344; USA, North Carolina, Virgilina district, in Cu-bearing deposits, 92M/2741; Yemen, vein

Habban-Al Mukalla, min. potential, 92M/2665; Zimbabwe, precipitation in BIF, deformation, fluid-flow, 92M/3903; Zimbabwe, Bulawayo, How mine, structl. controls in distribn. of, 92M/4014

- deposits, Archaean, recent developments in study of, 92M/0269; axiometric projection in, 92M/3956; hydrothermal leaching in epithermal envt., 92M/1419; mesothermal, rapid dewatering of crust deduced from ages of, 92M/1290; micron, application of gas anal. of jasper inclusion fluids to exploration for, 92M/3170; oxide, in situ leaching, 92M/2654; primary, reserves estimation of, 92M/3968; use of fluid inclusion gas surveys for assessment of lode deposits, 92M/3172; Australia, Kambalda-St Ives, rediscovery, development, 92M/1480; Queensland, Sybil graben, Mt Fullstop, epithermal, history, 92M/1471; Queensland, Twin Hills, epithermal, geol., 92M/1472; Victoria, major province within Palaeozoic sedimentary succession, 92M/1434; slate belt, late orogenic timing of mineralization in, 92M/1435; Victoria, Lachlan FoldBelt, mesothermal vein-hosted, deformational, metamorphic processes in formation of, 92M/1473; Western Australia, Archaean, and SE USA, Palaeozoic, comparison of alteration assemblages assoc. with, 92M/0270; greenstone-hosted, classification according to wallrock-alteration min. assemblages, 92M/0327: Western Australia, Meekatharra, Paddy's Flat Au dist., mineralization styles, geochem., 92M/1476; Wiluna, geol. setting, highest crustal-level endmembers of Archaean Au deposit continuum, 92M/3947; Yilgarn Block, Archaean lode-, products of crustal-scale hydrothermal systems, 92M/3893; epigenetic Archaean, hydrothermal mins. from, Sr isotope systematics, 92M/0577; spatial associations between post-cratonization dykes and, 92M/4733; synmetamorphic lode-Au in high-grade Archaean settings, 92M/2666; Bolivia, min. resource potential, 92M/1444; Brazil, Archaean, Proterozoic strata-bound tourmalinites, 92M/3886; economics, geol., geochem., genesis, (book), 92M/3769; shear zone relationships in Precambrian, 92M/3873; Bahia, Fazenda Brasileiro, geol., hydrothermal alteration, fluid inclusion studies, 92M/2749; structl., lithol. controls on Au deposition in shear zonehosted mine, 92M/2750; greenstone-hosted, statistical assessment of geochem. alteration surrounding, 92M/3892; Fazenda Maria Preta, kinematic study, metallogenic implications, 92M/3948; Rio Itapicuru greenstone belt, economic geol., structl. controls of orebodies, 92M/3944; Córrego do Sítio, geol., 92M/3973; Crixas, thrust-related, postpeak metamorphic Au mineralization, poss. Brasilino cycle age, 92M/2754; Cuiaba, ore deposition-rock deformation-ore fluid chem. relationship in quartz veins, 92M/3898; Goiás, Maria Lázara, Archaean, example of Au-Bi-Te-S metallogeny related to shear zones intruded by synkinematic granite, 92M/3906; Goiás,

Santa Rita prospect, hydrothermal, hosted by middle to upper Proterozoic carbonate sequence, 92M/3899; Minas Gerais, Nova Lima group, textures, processes of hydrothermal alteration, mineralization, 92M/3896; Ouro Fino, geol., 92M/3923; Minas Gerais, Paracatú, Morro do Ouro, lithostructl. control, 92M/3952; Pará, Gurupi belt, Cachoeira, geol., struct., mineralization, 92M/3880; Passa Tres granite, porphyry-type, geol., 92M/3930; central Brazil, deposit types, economic significance, distribn., 92M/3879; Canada, British Columbia, Bridge River Camp, geochronometry, 92M/0053; British Columbia, Cassiar, Total Erickson Gold mine, carbonate alteration in basalt, 92M/0286; Manitoba, Bissett, San Antonio gold mine, zonation of hydrothermal alteration, 92M/0288; Manitoba, Trans-Hudson Orogen, Tartan Lake, Proterozoic, structl. setting, characteristics, 92M/1687; Ontario, Hemlo, vanadian allanite-(La), allanite-(Ce) in, 92M/0813; vanadian silicates in, min. chem., geochem., 92M/4624; Quebec, Archaean mesothermal, fluid characteristics of vein and altered wall rock in, 92M/0291; Quebec, Abitibi, Archaean, geol., 92M/2698; Abitibi greenstone belt, Pierre Beauchemin mine, Archaean granite-hosted, 92M/3932; Abitibi, Casa-Berardi, structl. context, 92M/0277; Quebec, Eastmain River deposit, lode, Archaean, timing of emplacement, 92M/0274; Quebec, Val-d'Or, Lamaque-Sigma mines, distribn., 92M/1483; Saskatchewan, Star Lake Lode, high-T Proterozoic, fluid inclusion, isotope systematics. 92M/1686; Canadian Cordillera, mesothermal, and related Sb, Hg deposits, genetic implications of stable isotope characteristics, 92M/1684; Chile, Andes, epithermal, geol. setting, 92M/1446; production, history, 92M/1445; Andes, Andacolla, strata-bound, in porphyry Cu-Au system, 92M/1454; Marte, porphyry, 92M/1452; Petorca, El Bronce, epithermal vein system, geol., structl., fluid inclusion studies, 92M/1455; China, Carlin-type, 92M/3863; Anhui, Tongling Dist., Pb isotopic studies, 92M/4332; Guizhou, Carlin-type, occurrence, distribn. of invisible Au 92M/2727: in. sedimentary-rock-hosted disseminated, geol., geochem., 92M/0308; Henan, Luoning County, Jinjiawan, geol., 92M/1467; Honglazi, exptl. study, 92M/3911; Jilin Province, Haigou, isotope geochem., metallogenic regularity, 92M/0560; Sichuan, Dongbeizhai, fine-disseminated, isotopic compns., genetic implications, 92M/2962; Sichuan, Hongtupo, hematite calcite type, metallogenic characteristics, prospecting, 92M/3917; S China, linear subbasincontrolled, genesis of elem. assemblage variation in, 92M/3875; Costa Rica, Tilarán-Montes del Aguacate, Curatella americana, biogeochem, sample medium, 92M/1880; East China Sea, marine min. resources, scientific, economic

92M/3983; Finland, opportunities, geochem. mesothermal, REE in, implications revealed by multivariate techniques, 92M/3374; Finland, Haapavesi, 92M/3371; Kiimala, formation of, Ilomantsi, in late Archaean greenstone belt, ore mineralogy, 92M/3876; Ilomantsi, Hattu schist belt, Korvilansuo, Ag-Tl telluride from, 92M/3373; Rantasalmi, Osikonmäki, ore mineralogy, 92M/3372; Proterozoic, isotopic studies, 92M/3367; Germany, Eastern Highlands province, Basangka, discovery of, 92M/2691; India, Karnataka, Hutti, geol., mineralization, 92M/3918; Kolar Gold Fields, Mallappakonda, geostatistical modelling, 92M/3967; Kolar schist belt, Archaean, geol., mineralogy, geochem., genesis, 92M/2679; Mali, Kalana, quartz, sulphides from, fluid inclusion, isotope data, thermobarometry, 92M/2676; Mali, Syama, Proterozoic, regional setting, struct., geol., 92M/4012; Mexico, Guanajuato, hydrothermal, ammonium geochem. in search for, 92M/4559; Papua New Guinea, tectonic setting, 92M/2684; Papua New Guinea, Lihir is., Ladolam, geol., mineralization, 92M/2693; New Britain, Maragorik prospect, epithermal, geol., 92M/2694; Porgera, assocn. with alkalic magmatism in continent-island-arc collision 92M/3894; sources of metals, 92M/3908; Papua New Guinea, Wafi river, high sulphidation epithermal, exploration history, geol., metallurgy, 92M/2685; Portugal, Góis and Vila Pouca de Aguiar-Vila Real, geol., min., lithogeochem. studies, 92M/0767; South Africa, Transvaal Sequence, Proterozoic, Pb, Sr isotopes, origin, 92M/1673; USA, Alaska, Russian Mission C-1 quadrangle, geol., min. resources, 92M/2118; Arizona, Montana, Colorado, epithermal, history, production, geol., 92M/0332; Coeur d'Alene mines, production, 92M/1492; Comstock Lode, fluid-min. relations, 92M/1494; Great Basin, geol. setting, 92M/3861; Nevada, sediment-hosted, evidence for supergene origin of alunite in, 92M/4343; Alligator Ridge-Bald Mountain mining dist., Vantage, geol., geochem., 92M/0601; Carlin trend, disseminated, 92M/3860; Carlin Trend, Goldstrike mine, geol., 92M/1493; Elko County, Hollister mine, epithermal, and related hot spring deposit, 92M/4021; Gold Quarry mine, geol., 92M/0305; Jerritt Canyon, Carlin-type, geol., genesis, 92M/3862; Nevada, Sandstorm and Kendall Au mines, ledge formation, 92M/2747; South Carolina, Carolina Slate Belt, Haile Gold mine, controls on syntectonic replacement mineralization in parasitic antiforms, 92M/2742; Haile gold mine, hydrothermal K-feldspar occurrence, 92M/2743; Washington, Okanogan County, Buckhorn Mt, skarn, geol., alteration, mineralization. 92M/2746; Wales, Dolgellau, black shalehosted, fluid inclusion gas anal., exploration guide, 92M/3167; Zimbabwe, Dalny mine, fluid-rock interaction, in Archaean shear zone, 92M/3889; Globe and Phoenix.

- multi-phase ductile-brittle deformation, role of Archaean thrust tectonics in evolution of, 92M/3950; How mine, structurally controlled, Archaean, 92M/3943
- ——, placer, economic potential, 92M/2769; nature, distribn., results of exploration, evaluation, 92M/3969; ore textures, paragenetic studies, 92M/0071; Brazil, Minas Gerais, Gandarela syncline, Moeda fm., Archaean, Proterozoic, 92M/3925; Proterozoic, 92M/2703; Brazil, Quadrilatero Ferrifero, Ouro Fino syncline, Moeda, geol., 92M/3940; USA, Alaska, Goodnews Bay, offshore, transport, deposition of Au in, 92M/0313; Alaska, Nome nearshore area, Cainozoic geol. history, 92M/1437
- —, electrum, Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Canada, Flin Flon greenstone belt, Laurel Lake, in Proterozoic Au-Ag deposit, 92M/0591; China, Hebei, Caijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Norway, Sulitjelma, in massive sulphides, 92M/4005; Norway, Sulitjelma ore field, occurrence, 92M/4006; Peru, San Judas Tadeo, W(-Mo, Au) deposit, Permian lithophile mineralization, 92M/2762; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336
- exploration, freeze-sampling method of collecting drainage sediments for, 92M/0061; pathfinder elems. in, based on multielem. pilot studies of mesothermal deposits in Archaean, Proterozoic terrains, 92M/3963; statistical modelling, prediction in, 92M/3970; worldwide trends in, 92M/3854; Australian-Pacific Region, 92M/1418; Canada, Northern Territory, Cotan prospect, decrepitation in, 92M/3173; Ghana, min., chem. characteristics of tropical weathering profile, implications for, 92M/3958; Iran, Esfahan, Muteh, 92M/3971; Papua New Guinea, 1987–1991, 92M/2687
- -- metallogeny, Canada, Abitibi Subprovince, of greenstone belts, 92M/3858; Italy, Tuscany, 92M/3866
- mineralization, calculated solubility of Pt, Au in O-saturated fluids, genesis of, in unconformity-related U deposits, 92M/2884; epithermal, contrasting, in andesitic, rhyolitic terrains, 92M/2683; in volcanogenic massive sulphides, sulphidation equilibria as guides to, evidence from sulphide mineralogy, compn. of sphalerite, 92M/3194; use of tourmaline in geochem. prospecting for, 92M/1903; Australia, Northern Territory, Tom's Gully mine, Proterozoic thermal-aureole-type. 92M/3916; Western Australia, Eastern Goldfields province, Archaean, regional metamorphic controls on alteration assoc. with, implications for timing, origin of, 92M/2697; Kambalda and Norseman gold camps, Archaean, and assoc. minor intrusions, relationship between, Pb isotope evidence, 92M/2967; Austria, Carinthia, Zirknitz-Wurtental, geol., 92M/4995; Botswana, Vumba schist belt, in relation to metamorphism, 92M/3882; Brazil, Amazon

craton, Cumaru, mesothermal granodioritehosted, 92M/3933; Crixás greenstone belt, Córrego Geral sector, controls of, 92M/3955; Diadema shear belt, alteration mineralogy, chem., 92M/2981; Gerais, Raposos mine, wall rocks, BIF-host rock, petrol., geochem., 92M/3914; Iron Quadrangle, 92M/3871; Mara Rosa, and assoc. volcano-sedimentary sequence, 92M/3883; Minas Gerais, Pitangui, geol., 92M/3937; Minas Gerais, São Gonçalo do Sapucaí, Andrelândia group, petrol. of Proterozoic host rocks, 92M/3912; Rio das Velhas greenstone belt, Tinguá, litho-structl. control. geometry, geothermometry, 92M/3936; Rio Itapicuru, greenstone belt, 92M/3859; Canada, Abitibi greenstone belt, constraints on timing, comment, 92M/0055; timing of, Archaean hydrothermal zircon, reply, 92M/3739; Abitibi Belt, Macassa mine, Au-telluride-sulphide, ore-microscopic, geochem. characteristics, 92M/2740; British Columbia, Bridge River mining camp, Cretaceous-Tertiary, galena Pb isotope study, 92M/2971; Harrison Lake, related to mid-Tertiary plutonism, 92M/0330; Canadian Shield, application of geochem, discrimination diagrams for tectonic interpn. of igneous rocks hosting, 92M/2479; Newfoundland, Appalachians, Rattling Brook, potassic, sodic alteration accompanying, 92M/0285; Ontario, Abitibi Subprovince, Rundle gold deposit, and assoc. alteration, geol., geochem., 92M/0290; Sandybeach Lake, Goldlund mine, vein-like, regional setting, 92M/0272; Quebec, Abitibi greenstone belt, Bousquet mine, synvolcanic, syntectonic, 92M/2738; Abitibi, Elder mine, petrogr., geochem., 92M/0275; Abitibi greenstone belt, Au-Mo, assoc. with episyenite, Archaean, 92M/2737; Quebec, Calumet, disseminated, in Grenville gneisses, evidence for late metamorphic origin, 92M/1484; Quebec, Val d'Or, Archaean, U/Pb zircon, rutile chronol., 92M/0056; Rocky Mts, Athabasca Pass, quartzite-hosted lode, fluid inclusion 92M/4338; Yukon Territory, Sixtymile River area, Au-sulphide, volcanic hosted 'epithermal type', enrichment processes, 92M/3868; France, Massif Central, Haut Allier, hydrothermal alteration, fluid circulation related to, 92M/2709; Ghana, mesothermal, palaeoplacer, in early Proterozoic rocks, conflicting evidence on timing, 92M/2675; Ghana, Obuasi, Ashanti mine, min., geochem. data, 92M/3928; Guyana, Omai property, geol., 92M/3965; India, Dharwar craton, in greenstone belts, 92M/3885; Karnataka, Dharwar craton, Gadag greenstone belt, structurally controlled, 92M/3941; Hutti-Maski greenstone belt, geol., timing of, 92M/3877; geol., 92M/3929; Kolar Gold Fields, in sulphide-rich Oriental type lodes. phys.-chem. condns., thermodynamic characterization, 92M/3924; S Kolar schist belt. Chigargunta, deposit-scale structl. control of, 92M/3954; Indonesia, Kalimantan, Muyup prospect, 92M/1468; North Sulawesi, Pani Volcanic complex,

dome-related, geol. relations, fluid inclusions, chlorite compns., 92M/2680; Italy, Sardinia, Serrenti-Furtei, epithermal, fluid inclusion data, 92M/3915; Mali, Syama-Bundiali belt, exploration history, geol. setting, 92M/3974; Namibia, Damara orogen, Central Zone, distal skarn-type, 92M/3864; Namibia, Sandamap Noord prospect, turbidite-hosted, 92M/3935; New Zealand, Coromandel, Kennedy Bay, As-Au soil geochem. as guide to, 92M/4555; New Zealand, Southern Alps, as consequence of continental collision, 92M/0328; Papua New Guinea, intrusive rocks assoc. with, 92M/2682; Hamata deposit, geol., exploration, 92M/2686; Papua New Guinea, Sudest Is., prelim. findings, 92M/2689; South Africa, Pietersburg greenstone belt, Mt Mare area, structl. controls, setting of, 92M/3949; South Africa, Sheba gold mine, Zwartkoppie shoot, wallrock alteration, 92M/3904; Tanzania, Jubilee Reef deposit, geol., 92M/3934; Zambia, Mwembeshi shear zone. Proterozoic, fluid-channelling. 92M/3951; Zimbabwe, Blanket mine, magnetic mapping of cryptic wall rock alteration assoc. with, 92M/3964; Midlands greenstone belt. Archaean lode-, tectonic, magmatic framework, 92M/3902

mines, Australia, Queensland, Mt Leyshon, intrusive breccia, igneous complex, 92M/2180; Western Australia, Boddington, primary mineralization, Archaean porphyry Cu-Au-Mo deposit, 92M/3920; Mali, Syama, geol., 92M/3939; Papua New Guinea, Eastern Highlands province, Mt Victor, 92M/2695; South Africa, Transvaal, goldfield, Sabie-Pilgrim's Rest Elandshoogte, mineralization, struct... 92M/3953; Uruguay, Depto Rivera, Zapucay, geochem., structl. 92M/3931

-- mining, (book), 92M/1333; New Zealand, E Otago, Au prices, technological change, 92M/1420; Nicaragua, La Libertad, mineralogic alteration patterns in volcanic rocks, 92M/3461

— ore, sulphide, Archaean, min. factors in processing of, 92M/2653

 --copper deposits, Australia, Queensland, Mt Morgan, evidence for intrusion-related replacement origin, 92M/2730; Norway, Bidjovagge, geol., 92M/3921

-quartz veins, Archaean, magmatic model for origin, 92M/3895; content of sulphide-poor quartz veins and guide features for component mins., 92M/1910; relationships between deformation, fluid migration, Au deposition in, methodology, modelling, 92M/3945; Australia, Queensland, Hodgkinson Gold Field, mélange-, sediment-hosted, 92M/0370; Brazil, Tocantins, Pontal, mineralogy, 92M/3938; Canadian Cordillera, mesothermal Au-stibnite, 92M/2735; W Europe, Hercynian, 'shear zone model', 92M/3867; Italy, Val d'Ayas, Brusson, cation ratios of fluid inclusions in, 92M/1920; late-Alpine, fluid inclusion evidence for P-V-T-X evolution of hydrothermal solutions in, 92M/1666; Nicaragua, Chortis Block, epithermal, Pb

isotope evidence for formation of, 92M/1708; Nigeria, in schist belts, geol. setting, evolution, 92M/3888; Peru, Pataz, hosted by plutonic rocks, geol. setting, paragenesis, physicochem., 92M/2705; South Africa, Barberton greenstone belt, mafic-ultramafic hosted, shear zone related, structl. style, fluid props., light stable isotope geochem., 92M/3891; shear zone-related, field. petrographic characteristics, fluid props., stable isotope geochem., 92M/3993; Spain, La Codosera area tectonic setting, fluid evolution, 92M/1427

-silver deposits, geol., geochem. controls on Ag content of Au in, 92M/0533; in Archaean greenstone belts, lithophile-elem. systematics, implications for source processes, discussion, 92M/0588, reply, 92M/0589; Western Australia, Southern Cross greenstone belt, Marvel Loch Au-Ag mine, Savage Lode, magnesian skarn, structl. setting, petrogr., geochem., 92M/1477, P-T estimates, constraints on fluid sources, 92M/1478; Canada, Flin Flon greenstone belt, Laurel Lake, Proterozoic, geochem., fluid history, 92M/0591; Quebec, Abitibi, Dumagami mine, overprinting of early Fe, Pb-Zn mineralization by late-stage Au-Ag-Cu deposition, 92M/0276; Chile, Choquelimpie, epithermal, 92M/1448; Andes, Maricunga, reconnaissance K-Ar geochronol., 92M/1451; Dominican Republic, Pueblo Viejo, Monte Negro, evolution of, grade development, 92M/4023; Fiji, Au-Ag telluride, geol. evolution, min. deposits, 92M/2102; Italy, Sardinia, Sarrabus, min. assocn., genetic relevance, 92M/3926; Korea, Tongyoung, geochem., evidence of meteoric water dominance in Te-bearing epithermal system, 92M/2963; Papua New Guinea, Tolukuma, epithermal, characteristics, 92M/2688; Portugal, Vilariça fault, mineralization, 92M/3942; Scotland, Gairloch, Au-Ag-Pb, recent discovery, 92M/0298; USA, Colorado. Rosita Hills, epithermal mineralization in evolving volcanic centre, tr.-elem. geochem., alteration facies assoc. with, 92M/0599; Washington, Wenatchee, arkose-hosted mineralization, aquifer-controlled, epithermal, 92M/2745

Goldfields, Ghana, Prestea and Ashanti, geol., comparative study, 92M/3887

Goldmanite v. garnet

Gonnardite v. zeolite

Gorceixite, Czech Republic, Bohemia, Liteň fm., occurrence, 92M/2062

Goslarite, Netherlands, Moresnet, Geul Valley, encrustation on mine tailings, 92M/4029

Gossan, Cyprus, Troodos ophiolite and Mid-Atlantic Ridge, Au-rich seafloor, 92M/2661

Goyazite, Czech Republic, Bohemia, occurrence, min. data, 92M/3334

Grandidierite, relationship of werdingite to, 92M/0219; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808

Grandreefite, crystal struct., relationship to lanthanide oxide sulphates, 92M/0254

Granite, anorogenic, relation with Precambrian granulites, 92M/0889; Cl-rich, fluid-melt

interactions involving, exptl. study from 2 to 8 kbar, 92M/4063; controlled by P, main types, 92M/2127; disequilibrium melting at contact with basic plug, geochem., petrogr., 92M/2193; fertile, of Precambrian REE pegmatite fields, geochem., tectonic or lithol. control, 92M/0901; fractal patterns of fractures in, 92M/0972; geochem., economic geol., 92M/1656; graphic, diagnostic microstructs. for primary and deformational quartz rods in, 92M/4773; classification, (hybrid), nomenclature, revision, 92M/2126; isotopic exchange in min.-fluid systems, rates, mechanisms of O isotope exchange in system granite-H2O ± NaCl ± KCl at hydrothermal condns., 92M/4065; lunar, initial Pb isotopic compns. determined by ion microprobe, 92M/4232; M-, I-, S-, A-, linear discrimination among, 92M/1710; mechanical consequences of emplacement during high-T, low-P metamorphism, origin of 'anticlockwise' P-T paths, 92M/3609; min. deposits related to, geol., 92M/0296; models for evolution, source compns., 92M/2125; mylonitized, interactions between deformation, metamorphism and chem. mass transfer, 92M/3384; order of crystallization, postmagmatic changes, mathematical model. 92M/2850; pelite-derived, modelling, tr. elem. 92M/4384; peraluminous, genesis, exptl. investigation of melt compns. at 3, 5 kb, various H2O activities, 92M/1541; REE content, statistical anal., 92M/1724; used in rockfill dams, geol., min., geochem. of Antarctica, weathering, 92M/0969; Dronning Maud Land, H.U. Sverdrupfiella, age, petrogenesis, emplacement, 92M/1020; Victoria Land, suite subdivision, petrol. evolution, 92M/4395; Petermann ranges, genesis, 92M/2182; central Asia, use of accessory zircon for correlation, 92M/4812; Australia, S-, I-type, T, redox path, 92M/1018; Mt Isa and McArthur River, high-heat producing, role in origin of giant lead-zinc deposits, 92M/4016; Western Australia, Norseman-Wiluna Archaean, nature, distribn., inferred tectonic setting, 92M/0884; Baltic Shield, Hinneryd, Proterozoic, chem. compn., 92M/2141; Brazil, Dona Ines Pluton, heterogeneous, continentally derived, evolution of, 92M/1779; Pitinga mine, cryolite-tinbearing, geochem. characteristics, 92M/1896; Canada, Fort Simpson magnetic high, two subsurface, U-Pb, Sm-Nd dating, 92M/1291; New Brunswick, Pleasant, fluid evolution, mineralization in subvolcanic stock, 92M/0373; Ontario, Grenville province, A-type, petrol., age, 92M/3453; Ontario, Quetico accretionary prism, Archaean, genesis through two-stage melting at transpressional plate boundary. 92M/3455; China, Yunnan, Pb, Sr isotopic compns., age, nature of basement, 92M/3033; Yunnan, Xikang-Yunnan axis, Jinningian, fingerprint characteristics of mins. from, SIMS study, 92M/2960; England, Cornwall, Tregonning, petrogenesis in Cornubian batholith, 92M/4790; Fennoscandian shield, episodes

of felsic plutonism, mafic-felsic magma interaction in Svecofennian, 92M/0887; France, Alps, Mont Blanc, microgranular enclaves, Rb-Sr dating, 92M/2404; Armorican Massif, île d'Ouessant, represents W unit of red 'granite', 92M/3413: Cadomian, Mancellia, relationship to St. Malo migmatite belt, petrogenesis, tectonic setting, 92M/0900; Pontivy, peraluminous, origin of microgranular enclaves in, 92M/3414; Massif Central, Beauvoir granite, Ta-Nb-bearing albite, near-solidus 18O depletion in, 92M/3004; Velay, genesis, and thermobarometry, Hercynian low-P, high-T anatectic dome, 92M/3415; Georgia, Caucasus, Kelasuri, Rb-Sr dating, 92M/1274; Germany, Bavaria, development of microcracks in, during cooling, uplift, Variscan basement, 92M/2172;Pb isotope anal., 92M/0709; Erzgebirge, Hercynian postkinematic, volatile signatures of, implications for Sn-W-Mo metallogenesis, 92M/4323; Erzgebirge, Hercynian postkinematic, volatile parameters of, significance in solving petrogenetical problems, 92M/3008; Erzgebirge, melt inclusions in quartz in, 92M/3425; Erzgebirge, tin, breccia-related, metallogenesis, 92M/2659; Erzgebirge, Altenberg tin deposit, pericline twinning as criterion of albite origin in, 92M/1997; Erzgebirge, Sadisford, emplacement of, in explosive breccia, 92M/4801; Saxony, formation of, 92M/3006; Saxonian Granulite Massif, history of, modelling of elem. pair behaviour during magmatic processes, 92M/2926; Germany, Vogtland, Westerzgebirge, Hercynian postkinematic, REE distribn. among mins. in, 92M/3007; India, Karnataka, Closepet, SHRIMP U-Pb dating, 92M/2418; Kabbaldurga, Closepet, fluid evolution in, magmatic source for CO₂ charnockite, 92M/0647; Meghalaya, E Khasi Hills, geochronol., geochem., 92M/0648; Indonesia, Belitung, Tanjungpandan, large-scale Sn depletion in, 92M/0368; Italy, Sardinia, Mount Genis, magmatic immiscibility, fluid phase evolution in, 92M/4247; Sardinia, W Gallura, syn-tectonic peraluminous, geochem., Rb-Sr age, constraints on genesis, 92M/0625; Italy, Tuscan magmatic province, magmatic, hydrothermal 92M/4372; ammonium in, Janan. microstruct. of deformed biotite defining foliation in cataclasite zones in, 92M/2099; Zealand, South Westland-Nelson, F contents of, 92M/4394; North Sea, E Shetland Platform, distribu., seismic data, 92M/0912; Norway, Olden Window, Blåfjellhatten, Rb-Sr dating, 92M/3711; Oslo Rift, Drammen and Finnemarka batholiths. peraluminous high-silica, in continental rift, 92M/3000; Pakistan, Ambala, geochem., petrogenesis, 92M/0951; Portugal, Aguiar da Beira, economic potential as ornamental material, 92M/0378; Carregal do Sal, Santo Comba Dão, metamorphic aureole, geophys. studies, 92M/1207; Olivenza-Monesterio anticlinorium. petrol.,

92M/0989; Sátão, shear zone, mylonite, chem. evolution, 92M/0987; Sintra, K-feldspar from, unit-cell parameters, structl. state, 92M/1994; Tourem complex, peraluminous, genesis of, mineralogy, chem., sequential melting vs restite unmixing, 92M/2169; Trás-os-Montes, Vila post-kinematic, Real, emplacement mechanisms, 92M/0990; Vial Pouca de Aguiar, biotite, post-tectonic, geochem., petrol., 92M/4365; Portugal, Vila Real, Sanguinhedo, differentiation of, 92M/0988; Scotland, Aberdeenshire, Inverurie. Granite, gravity Middleton survey, 92M/4786; Highlands, Glen Clova-Upper Glen Esk area, emplacement during folding episode, 92M/2091; South Zaaiplaats tin mine, Bushveld complex, pervasively altered, petrographic, geochem. evolution, 92M/1739; Spain, Lugo, Friol-Puebla de Parga, petrol., Rb-Sr dating, 92M/1253; Sudan, Jebel Moya, late Precambrian, link between Mozambique Belt and Arabian-Nubian Shield, 92M/1272; Sweden, Ale, Proterozoic, character, U-Pb dating, 92M/1247; Bohus, post-kinematic Grenvillian, U-Pb dating, evidence of restitic zircon, 92M/0897; Ursand, chem. compn., 92M/1720; central Sweden, structl. features, implications for tectonic 92M/0888; Switzerland, subdivision, Hercynian, petrogr., 92M/4799; Alps, Aar massif, Central Aar Granite, U-Pb dating, 92M/1257; Tanzania, Karagwe-Ankolean belt, stable isotope compns. of tourmaline from, 92M/4329; USA, Alaska, Ruby geanticline and S Brooks Range, U/Pb dating, 92M/1288; Arizona, Harquahala Mts, mylonitized, Hf, Nd, Sr isotopic study, behaviour of isotopic systematics during deformation, metamorphism, 92M/3106; Colorado, Wet Mts, San Isabel batholith, mid-crustal, of anorogenic affinities, 1360 Ma, origin, chem. evolution, 92M/4416; South Dakota, Black Hills, petrogenetic relationships between pegmatite, granite, based on geochem. of muscovite in pegmatite wall zones, 92M/4412; New England, White Mountain, Mesozoic anorogenic, magma sources for, 92M/3058; Yemen, geochem. of, to assess Sn-W, rare metal potential, 92M/2946

-, A-type, review of occurrence, chem. characteristics, petrogenesis, 92M/4772; vapour-absent melting at 10 kbar of biotite-, amphibole-bearing tonalitic gneiss, implications for generation of, 92M/4066

, rapakivi, and related assocns., petrol., 92M/0890; ascent of felsic magma and formation of, 92M/2129; Finland, comparison with Canada, Labrador, Makhavinekh Lake pluton, 92M/0891; Ahvenisto complex, specialized topazbearing, and assoc. mineralized greisen, 92M/2140; Fennoscandia, Proterozoic, and related basic rocks, petrogenesis, Nd, Pb isotopic, geochem. constraints, 92M/1722; Finland, Wiborg rapakivi area, new U-Pb ages, 92M/0892; Greenland, textural evolution, Sr, O, H isotopic study, 92M/0611

- -- greenstone, South Africa, Barberton Mountain Land, Archaean, chronol. based on precise dating by single zircon evaporation, 92M/0033; Mozambique Belt, Archaean, activation of, 92M/3649
- Granitic clasts, New Zealand, Kawhia Syncline, in Moeatoa conglomerate, age, provenance of, 92M/4700
- Granitic gneiss v. gneiss, granitic
- magma v. magma, granitic
- magmatism v. magmatism, granitic
- pegmatite v. pegmatite, granitic
- plutons, reversely zoned, genesis, 92M/0993; Canada, Nova Scotia, Cobequid Highlands, A-type, persistent mafic igneous activity in, 92M/1769; India, Garhwal Himalaya, Bhilangna valley, birth history, geochem., 92M/1010; USA, Idaho, across steeply-dipping boundary between contrasting lithospheric blocks, ⁸⁷Sr/⁸⁶Sr, ¹⁸O/¹⁶O isotopic systematics, geochem. of, 92M/3061; Yemen, Hajja, petrol., 92M/4808
- rccks, (book), 92M/3774; calc-alkaline, model for origin, significance of microgranular enclaves in, 92M/0971; intergrowth of magnetite, biotite from, 92M/4774; linear dilatation structs., syn-magmatic folding in, 92M/2088; peraluminous, phase equilibria, melt productivity in pelitic system, implications for origin, 92M/0425; role of quartz crystallization in development, preservation of igneous texture in, exptl. evidence at 1 kbar, 92M/1542; Alps, central, S, Hf isotope systematics, 92M/0025; E, Central Alps, F, Cl distribn. in, 92M/0631; Antarctica, Heimefrontfiella, U-Pb dating, Nd isotopic compn., 92M/2424; Western Australia, Paterson Province, Proterozoic fractionated, petrol., 92M/0899; Canada, Nova Scotia, South Mountain Batholith, geochem. behaviour of S in, during intrusion, 92M/4407; China, Yunnan, related to tin deposits, 92M/0650; E China, petrogenesis, metallogenesis in relation to tectonic settings, 92M/0561; Czech Republic, Bohemia, Sn-bearing, geochem. specialization, 92M/1731; Fennoscandian Shield, 1800-1400 m.y., Pb isotopic evidence for origin, 92M/0894; Georgia, Caucasus, Kelasuri Massif, geochem., 92M/1744; Kelasuri and Gorabi massifs, O isotope compn., 92M/1746; Germany, Saxony, Erzgebirge, thermobarometry, quartz, fluid inclusion study, 92M/3094; India, Orissa, Singhbhum craton, Rb-Sr chronol., petrochem., 92M/0036; Kolar Schist Belt, geochem., petrogenesis, 92M/2097; Malani igneous suite, zircon from, morphol., chem., 92M/3236; Italy, Central Alps, Upper Valtellina, Hercynian, overprinted by eo-Alpine metamorphism, dating, 92M/2406; Rb-Sr Tuscan geochem., role of archipelago, hybridization processes in genesis, 92M/3013; Italy, Tuscan magmatic province, ammonium content in, 92M/0620; Japan, Kyushu, weathered, high-charge smectite in, 92M/0187; Mozambique Belt, petrochem., 92M/3020; Sri Lanka, Ambagaspitiya, origin of myrmekite in,

92M/2179; Sweden, calc-alkaline, Proterozoic, tr.-elem. variation in, 92M/1721; Turkey, Pontids, geochem., 92M/0637; USA, Ohio, authigenic K-feldspar in Precambrian basement, effect on tectonic discrimination of, 92M/3060; California, Turtle pluton, and mafic enclaves, local equilibrium of, min., chem., isotopic evidence, 92M/1024

- suites, geol. petrol., 92M/0970

 systems, Cl-rich, water solubility, Cl partitioning in, effects of melt compn. at 2 kbar, 800°C, 92M/4064

Granodiorite, Austria, E Alps, Tauern Window, transformation into aluminous schist, fluid channelling during ductile shearing, 92M/0717; Germany, Saxony, Erzgebirge, Niederbobritzsch, Hercynian, petrol., 92M/3429; Italy, Calabria, Capo Vaticano, Hercynian porphyritic, mineralogy, petrogr., 92M/3420; Norway, Caledonides, Gjersvik Nappe, Møklevatnet, U-Pb dating, 92M/3712; Portugal, Viseu, Penalva do Castelo, geochronol., 92M/0021

 — granite complex, Saudi Arabia, Jeddah-Makkah Region, Bahrah, age, petrochem., 92M/3730

Granophyre, France, Vanoise, Mont Pourri, Cambrian, U/Pb dating, 92M/2405; Ireland, Slieve Gullion central complex, Tertiary, petrogenesis, 92M/3003; USA, Montana, Stillwater Complex, low-K, anals., origin, 92M/3062

Granulite, Al zoning in pyroxene, plagioclase, window on late prograde to early retrograde P-T paths in, 92M/2269; aluminous, phase equilibria, melt productivity in pelitic system, implications for origin, 92M/0425; B geochem. of lower crust, evidence from, 92M/4287; experimentally determined limits for H2O-CO2-NaCl immiscibility in, 92M/2838; formation driven by magmatic processes in deep crust, 92M/4245; formation, isotopic evidence for involvement of CO₂-bearing magma in, 92M/1813; Precambrian, relation with anorogenic granite, 92M/0889; Rb/Cs fractionation in, 92M/0520; refined garnet-biotite Fe-Mg exchange geothermometer, application in, 92M/1533; Algeria, Hoggar, In Ouzzal, Precambrian Al-Mg-rich, relationships, 92M/3647; Antarctica, Prince Charles Mts, Proterozoic, geochem., 92M/4468; Australia, Musgrave complex, decompressional coronas, symplectites in, 92M/1186; Musgrave Ranges, P, T history, U-Pb dating, 92M/1284; Germany, Saxony, geochem., 92M/3636; geochem., isotope constraints on evolution of, 92M/3093; Greenland, Ketilidian mobile belt, low-P, thermobarometry, 92M/2281; India, Eastern Ghats, Arakau, spinel, petrol., petrogenetic grid for sapphirine-free rocks in system FMAS, 92M/1179; S India, carbonic fluid inclusions in, evidence for entrapment during charnockite formation, 92M/1812; Norway, Rogaland, high-T, retrograde methane-dominated fluid inclusions from, 92M/1805; Scotland, Scourian complex, geochem., 92M/3091; Sri Lanka, Highland, and Scotland, Lewisian, Greenland, Nuk, isotopic contrasts, chronol. of elem.

transfers, high-grade metamorphism, 92M/3100; Sweden, Karlskoga, pyroxene, at boundary between early Svecofennian rocks and Småland-Värmland granite, 92M/4917; USA, New York, Adirondacks, fluid inclusions in, implications for retrograde P-T path, 92M/0723; Zimbabwe, Zambezi Belt, deep-crustal, with migmatitic, mylonitic fabrics, 92M/1173

- facies v. metamorphic facies

Graphite, assoc. with fossil bacteria in chert, 92M/4452; assoc. with new min., dmishteinbergite, 92M/2069; electromagnetic exploration for fluids in 92M/4234; crust, fluid-absent melting expts. in presence of, O fugacity, ferric/ferrous ratio, dissolved CO2, 92M/2791; Antarctica, Dronning Maud Land, -bearing marble, C isotope geothermometry, 92M/3103; Brazil, Tocantins, Pontal, in Au quartz vein, 92M/3938; Germany, Bavaria, KTB pilot hole, in gneiss, formation of, in fault zones, 92M/0711; Greece, Sarti area, assoc. with Ca-rich scapolite in amphibolites, 92M/2004

Gravel, Germany, Saxony flint content in, 92M/4024

Gravity studies, *Himalayas*, continent—continent collision, 92M/0943; *USA*, *Minnesota*, *Duluth Complex*, data interpn., 92M/0374

GREECE, Adros Is., Apika, abswurmbachite, new min. of braunite group, 92M/2067; Aegean island arc, Nisyros volcano, monitoring O fugacity condns. in pre-, syn-, postcaldera magma chamber, 92M/1052; Chalkidiki peninsula, chem. variations in tourmaline from pegmatite, 92M/1963; Sithonia, plutonic complex, petrol., 92M/3434; Skouries, Pt-group elem., Au in porphyry Cu deposit, 92M/0343; Chalkidiki, Vavdos and Gerakini, vermiculite occurrence, 92M/3796; Chortiatis series, metabasite dykes, petrol., P-T condns. of metamorphism. 92M/2299; Cyclades. Alpine anatectic leucosomes, metamorphic rocks, tourmaline K/Ar ages, comparison with other radiometric dating systems in, 92M/0019; Sifnos, cooling exhumation of blueschist terrain, 92M/4941; Tinos Is., metabasic rocks, greenschist facies, contact metamorphic equivalents, geochem., 92M/1811; metabasites, blueschist-greenschist transition. compositional control or fluid infiltration?, 92M/1168; Dodecanese, Arki aragonite-bearing blueschists, 92M/4940; Evia, chromite from ultramafic rocks, geotectonic significance, 92M/2025; Hellenic Rhodope, Paranestion, volcanic rocks, geochem., 92M/0635; Laurium, geol., mineralogy, 92M/3698; Milos Is., Chivadolimni deposits, oxidation state of biotite from heated perlite, 92M/4627; Naxos, mica from marbles, Rb-Sr dating, influence of metamorphic fluids, lithol. on blocking T, 92M/1266; Nisyros, pumice deposits, petrol., 92M/3486; North Evia, C, O isotope constraints on origin of magnesite deposits, 92M/1667; Patmos, estimates of P, T, PH2O, fO2 for lavas, implications for

92M/3487; magmatic evolution, Peloponnesus, Pindos Nappe, volcanic rocks, petrol., 92M/4839; Peloponesus Zaroucha group, low metasedimentary rocks, illite, crystallinity 92M/1169; Pindos. genesis, emplacement of supra-subduction zone ophiolite, 92M/3547; Mesozoic ophiolite, tectono-stratigr., evolution, 92M/1089; Pindos, Labanova, coronas in olivine gabbros, 92M/3433; Rhodopes, eclogites, metamorphic evolution, 92M/1167; min., textural evolution of Mn mineralization, 92M/0344; Central Rhodope, Xanthemetamorphic Echinos, metamorphism, migmatization, 92M/4939; Samos, K-rich mordenite from Miocene rhyolitic tuffs, 92M/0842; Santorini, spatter-rich pyroclastic flow deposits, petrol., 92M/1051; Sarti area, Ca-rich scapolite in amphibolites, min. data, 92M/2004; Sithonia, geol., geochem., evolution of oceanic crustal rift, 92M/3542; Skouries, porphyry Cu deposit, mineralogy of precious metals in, 92M/3289; Skyros, magnesian andesites, geochem., regional significance, 92M/2174; Thasos Is., heavy metal contamination of soils old mining 92M/0393; Thera, reworking characteristics of Quaternary pyroclastic deposits determined using magnetic props., 92M/1053; Thrace, circum-Rhodope belt, marginal basin-volcanic arc origin of metabasic rocks, 92M/3016; Vourinos, distribn. of PGE, Au, in chromitite ore, 92M/2954

GREENLAND, high-technology metals in alkaline and carbonatitic rocks, recognition, exploration, 92M/1898; min. compns. in micrometeorites, 92M/4571; Precambrian basic dykes, petrol., 92M/4762; quartzfeldspathic rocks in Archaean crust, chem. characteristics, genesis, 92M/0610; rapakivi granite, textural evolution, Sr, O, H isotopic study, 92M/0611; E, Tertiary macrodyke complex, selectively contaminated magma, 92M/4353; Blå Måne Sø, CL, microporosity in alkali feldspars from perthosite, 92M/0839; Disko Bugt, Qeqertakavsak Is., large-scale albitization of siltstones, 92M/4459; Disko Is., metallic Fe-bearing, sediment-contaminated Tertiary volcanic rocks, Nd, Sr isotope chem., 92M/4354; Gardar province, palaeomagnetism of Proterozoic igneous complexes, apparent polar wander track, 92M/3674; Proterozoic, compositional zoning in hydrothermal fenites, aegirine from 92M/1971: Godthåbsfjord, refolded nappes formed during late Archaean terrain assembly, 92M/0911; Kap Edward Holm Complex, Lower Layered Series, O isotope exchange, min. alteration in gabbros, 92M/2994; Ketilidian mobile belt, low-P granulites, thermobarometry, 92M/2281; Klokken, perthite microtextures, fluid inclusions in alkali feldspars from syenite, 40Ar-39Ar anal., 92M/4632; Klokken intrusion, biotite equilibria, fluid circulation in gabbrosyenite, 92M/3271; llímaussag alkaline complex, and assoc. fenites, barylite, 92M/1959; Melville Bugt, dyke swarm,

major 1645 m.y. alkaline magmatic event, 92M/4763; Nagssugtoqidian mobile belt, Proterozoic, basic-ultrabasic rocks with eclogitic relics, 92M/1125; Nuk, constraints on Archaean trondhjemite genesis from hydrous crystallization expts. on gneiss at 10-17 kbar, 92M/2833; Qagarssuk, C, O isotope compn. of carbonates from carbonatite complex, 92M/0542; carbonatite complex, petrol., geochem., economic geol., 92M/3406; Qasiarsuk, Proterozoic extrusive carbonatite, CL petrogr., 92M/0977; Skaergaard, magma-hydrothermal system, porosity evolution, fluid flow in basalt, 92M/4904; Skaergaard intrusion. Au-bearing horizon, 92M/1714

Greenockite, sphalerite-greenockite solid solution in system Cu₂SnS₃-ZnS-CdS, at 400°C, 101·3 MPa, 92M/1605

Greenschist, Japan, Sangun and Sanbagawa belts, actinolite, ferric-ferrous ratios of, 92M/3102

— facies v. metamorphic facies

Greenstone belts, Brazil, Bahia, Rio Itapicuru, Au deposits, economic geol., structl. controls of orebodies, 92M/3944; Rio Itapicuru, geol., Au mineralization, 92M/3859; Brazil, Rio das Velhas, Tinguá, Au mineralization, litho-structl. control, geometry, geothermometry, 92M/3936; Abitibi Subprovince, Au Canada, metallogeny of, 92M/3858; Canada, Superior Province, Abitibi, genesis, evidence from zircon Hf isotope anal. using single filament technique, 92M/3738; Finland, Ilomantsi, Au deposits in late Archaean, ore mineralogy, 92M/3876; India, Karnataka, Dharwar craton, criteria for Au mineralization in, 92M/3885; Dharwar craton, Gadag, structurally controlled Au mineralization, 92M/3941; Hutti-Maski, timing of Au mineralization, 92M/3877; Karnataka, Jayachamarajapura, komatiite-rich, Sargur-Dharwar relationship 92M/3392; South around, Africa, Pietersburg, Mt Mare area, structl. controls, setting of Au mineralization, 92M/3949; Zimbabwe, Midlands, tectonic, magmatic framework of Archaean lode-Au mineralization in, 92M/3902

Greywacke, lithol., Germany, Selke, lithol., 92M/4887

Grossular v. garnet

Ground deformation, *Italy, Campi Flegrei* caldera, hot fluid migration, efficient source of, application to 1982–1985 crisis, 92M/2208

Grunerite v. amphibole

GUADELOUPE, *La Soufrière*, volcanic activity, structl., tectonic implications, 92M/4861

Guanajuatite, Brazil, Goiás, Cavalcante, assoc. with Au, 92M/3905

Guarinite, *Italy, Latium, Albano Lake crater*, new finding in sanidinite ejecta of hydromagmatic unit, 92M/0816

GUATEMALA, *Lake Atilán*, min. relations, magma mixing in calc-alkaline andesites, 92M/3507

Gudmundite, *Norway, Sulitjelma ore field*, in massive sulphides, 92M/4005; occurrence, 92M/4006

Guerinite, Germany, Wittichen, occurrence, 92M/4998

GULF OF ADEN, thermal maturity development, source-rock occurrence, 92M/4444

GULF OF BOTHNIA, isotopic compns. of Ce, Nd, Sr in ferromanganese nodules, 92M/1782

GULF OF MEXICO, origins of petroleum, 92M/4540; sulphate reduction, iron sulphide min. formation in anoxic sediments, 92M/3088

Gustavite, *Bulgaria*, *Ardino*, in polymetallic deposit, 92M/0866; *Jambol dist.*, new data on Bi sulphosalts, 92M/0868

GUYANA, Amazon craton, unmetamorphosed Proterozoic tholeite dykes, evolution of basaltic magmatism, 92M/4743; Omai property, Au mineralization, geol., 92M/3965

Gypsum, conversion of anhydrite to, borehole data, 92M/4025; water of crystallization, and coexisting solution, kinetics of H isotopic exchange between, 92M/2944; England, Derbyshire, Matlock Bath, Wapping mine, occurrence, 92M/2357; Germany, Saxony, Lüneberg, geol., salt mining history, 92M/5000; Red Sea, in metalliferous muds, 92M/3980; Senegal, Casamance Ria, tabular, lenticular crystals, occurrence, min. data, 92M/3314; Yemen, Habban-Al Mukalla, construction material, potential, 92M/2665

Hackmanite, Canada, Quebec, Mount St Hilaire, gemstone, descriptn., 92M/1633

HAITI, altered spherules of impact melt, assoc. relic glass from Cretaceous/Tertiary boundary sediments, 92M/0796; Cretaceous/Tertiary boundary section, mineralogy, petrol., 92M/4901; geochem. of impact glasses from Cretaceous/Tertiary boundary, relation to smectites and new type of glass, 92M/4604; *Beloc*, Cretaceous-Tertiary boundary, no evidence for impact in *Caribbean Area*, 92M/4900

Halite, brine from fluid inclusions in, measurement of H, O isotopic compns., 92M/1654; ground-water control of evaporite deposition, 92M/2773; heating studies, T-dependent deformation, migration of gas microinclusions, 92M/3669; Western Australia, Canning Basin, bedded, contemporaneous with Ordovician-Silurian glaciation, Milankovitch-band cyclicity in, 92M/0693; Red Sea and USA, Illinois basin, removal from sediments, salt diffusion in interstitial waters, 92M/0689

Halloysite v. clay minerals

Halotrichite, Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001

Hambergite, dielectric constants of, oxide additivity rule, 92M/4989; Czech Republic, Moravia, Kracovice, in pegmatite, 92M/2716

Haplogranitic melt v. melt, haplogranitic Harmotome v. zeolite

Harzburgite, high-T, exptl. evidence for exsolution of cratonic peridotite from, 92M/2830; orogenic massifs: protolith, process, provenance, 92M/3341: South

Africa, N Cape, diamondiferous garnet-, from kimberlite, 92M/4806

Hastingsite v. amphibole

Hausmannite, Mn₃O₄ at high P, diamondanvil-cell study, structl. modelling, 92M/2789; precipitation during transformation of akageneite into goethite and hematite in presence of Mn, 92M/0492; Germany, Black Forest, Eisenbach, K-Ar dating, age of ore emplacement, 92M/1255; Thuringia, Ilmenau, Oehrenstock, occurrence, 92M/2365; USA, California, Franciscan Complex, in microbanded Mn formations, 92M/0602

Heat flow estimates, deep sea bottomsimulating-reflectors, calibration of base of hydrate stability field used for, 92M/4681

Heazlewoodite, Italy, Central Alps, Val Lanterna, in steatite deposit, 92M/1497

Hectorite v. clay minerals

Hedenbergite v. pyroxene

Hedyphane v. apatite

Helium isotopes, Russian Federation, Kola Peninsula, Monche Pluton, ³He/⁴He ratios frozen in ultrabasic rocks, 92M/4278

Helvite, zincian, Sweden, Nynäshamn, Stora Vika, in pegmatite, min. data, 92M/2003

Hematite, evaluation of ferrous, ferric Mössbauer fractions, 92M/2600; imaging molecular-scale struct., microtopogr. with atomic force microscope, 92M/1406; interplay of chemical, magnetic ordering, 92M/1204; magnetic props., 92M/1205; O fractionation in, theoretical calculation, application to geothermometry of metamorphic iron formations, 92M/1681; thermodynamics, kinetics of dissolution in bicarbonate solutions at $T = 25^{\circ}$ C, 92M/4139; transformation of akagenéite into, in presence of Mn, 92M/0492; Western Australia, Darling Range, in bauxite, 92M/0694; China, Handan-Xingtai, Hanxing, in skarn Fe deposits, alterationmineralization, 92M/0565; Sichuan, Hongtupo, assoc. with Au deposit, 92M/3917; Egypt, Bahariya oases, in baryte deposits, 92M/0381; Germany, Sachsen-Anhalt, Magdeburg, assoc. with glauconite in Eocene sediments, 92M/2582; Saxony, Erzgebirge, melt inclusions in quartz in granite, 92M/3425; -quartz-baryte-fluoritegalena-sphalerite veins, age of, 92M/2671; Thuringian Forest, Ruhla mining region, occurrence, 92M/1231; Germany, Schwarzwald, mediaeval and earlier mining, history, 92M/2658; Pakistan, Karakoram, occurrence, 92M/2378; Scotland, Mannoch Hill, occurrence, 92M/1221; Oklahoma, Paoli, in Ag-Cu deposit, ore microscopy, 92M/0314; Utah, inclusions in red beryl, 92M/0817

Hemimorphite, England, Derbyshire, Matlock Bath, Wapping mine, occurrence, 92M/2357

Hemusite, *Japan*, antimonian, bismuthian varieties of, new compositional, optical data. 92M/3312

Hercynite v. spinel

Herderite, Pakistan, Karakoram, occurrence, 92M/2378

Hessite, Bulgaria, Ardino, in polymetallic deposit, 92M/0866; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Japan,

Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Norway, Oslo, Akersberg mine, occurrence, 92M/4007; Peru, Orcopampa, Calera, in epithermal Ag-Au vein system, 92M/2760; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336; Turkey, Anatolia, in Pb-Zn deposits, 92M/2718

Hetjmanite, new min., Mn-dominant analogue of bafertisite, 92M/2071; *Tadzhikistan*, *Dara-i-Pioz*, occurrence, 92M/2377

Heulandite v. zeolite

Hexacelsian, hydrated Ba aluminosilicates, BaAl₂Si₂O₈•nH₂O, relation to, 92M/4118

Hexahydrite, ground-water control of evaporite deposition, 92M/2773

Hexatestibiopanickelite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Heyrovskyite, China, Hebei, Caijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356

HIMALAYAS, collision zone, geol., geodynamic evolution, 92M/0945; collision zone, geol., geodynamic evolution, (book), 92M/0116; continent-continent collision, gravity 92M/0943: field. metamorphic rocks, tectonic implications, 92M/0940; mechanisms of Ar release from metamorphic hornblende, 92M/1579; Baltoro-Muztagh Karakoram, thermal model, 92M/0946; Ganga-Brahmaputra river system, Sr isotopes, Rb in, fluxes to Bay of Bengal, contribus. to evolution of oceanic 87Sr/86Sr, 92M/4480; Gophu La and Gumburanjun, leucogranites, Sr, Nd, O isotopic characterization, 92M/1749; Kashmir, Bandipura, petrochem. studies of trap rocks, 92M/1748

Hokutolite v. baryte

Hollandite, K-, disorder diffuse scattering in, 92M/1404; Germany, Hesse, Giessen, in Mn ore, 92M/3989; Thuringia, Ilmenau, Oehrenstock, occurrence, 92M/2365; Black Forest, Eisenbach region, K-Ar dating, age of ore emplacement, 92M/1255; Italy, Maritime Alps, Internal Brianconnais, in Mn-ores from Jurassic meta-arenites, marbles, 92M/4644; Switzerland, Grison Canton, Oberhalbstein, in Mn deposits, presence of Sr, evolution, parageneses, 92M/1663

Hollingworthite, Canada, Ontario, Coldwell complex, Two Duck Lake intrusion, zoned, 92M/3310

Hornblende v. amphibole

Hornfels, Japan, Gifu Pref., Nogo-Hakusan, Fe-Al-rich, cordierite-olivine symplectites in, 92M/1182; New Zealand, Northland, high T calc-silicate, 92M/4952

Hot spots, subcontinental mantle plumes, and pre-existing thinspots, 92M/2132; Pacific, Galapagos Is., drowned islands downstream from, 92M/4832; Solomon Is., Manihiki and Ontong Java, isotopic evidence for origin of oceanic plateaux, 92M/0657; USA, Hawaii, evolution of basalt, hotspot melting model, 92M/1068

Howieite, Canada, British Columbia, Pinchi Lake, in blueschists, 92M/3265

Hübnerite, assoc. with wolframite, 92M/4649; from rare-metal granite, compn., phys. props., 92M/2031

Humboldtine, Czech Republic, Sokolov, Lomnice, in Tertiary brown coal layer, min. data, 92M/2058

Humic acids, Germany, Saxonia, Hohenbocka, in quartz sand, distribn., tr. elem. content, 92M/1865

Humite, chondrodite, assoc. with new min., dmishteinbergite, 92M/2069

—, clinohumite, Antarctica, assoc. with new min., dissakisite-(Ce), 92M/3332; Brazil, Jacupiranga complex, in carbonatites, min. chem., 92M/4606

—, norbergite, assoc. with new min., dmishteinbergite, 92M/2069

HUNGARY, Cainozoic psammite, heavy min. content, mineralogical maturity, 92M/4888; Neogene sedimentary rocks, organic hydrocarbon potential, geochem.. 92M/3158; Palaeozoic, Mesozoic rocks, coal rank, min. facies, chlorite crystallinity, empirical approach, correlation with illite crystallinity, 92M/2276; Tethyan ferromanganese deposits from Jurassic rocks, 92M/0525; Bükk Mts, Mesozoic igneous rocks, petrol., geochem., 92M/0995; Drava Basin, very low-, lowgrade metamorphic rocks in pre-Tertiary basement, K-Ar, Rb-Sr dating, 92M/1265, min. assemblages, illite 'crystallinity', b data, 92M/2298; Great Hungarian Plain, He in deep circulating groundwater, flow dynamics, crustal, mantle He fluxes, 92M/4477; Igal, basement of, diagenesis and low-T metamorphism in tectonic link between Dinarides and W Carpathians, 92M/4942; Pannonian basin, rare gas constraints on hydrocarbon accumulation, crustal degassing, groundwater flow, 92M/1643; spinel peridotite xenoliths, petrol., geochem., evidence for assocn. between enrichment, texture in upper mantle, 92M/3015; Transdanubian volcanic region, upper mantle xenoliths, comparison with Austria, Kapfenstein, 92M/0994; Transdanubia, Ajka-II, Upper Cretaceous coal basin, tr. elems., 92M/1791; N Bakony Mts, Eocene tuff, fission track dating, Urkút, 92M/1264: Jurassic shale-hosted Mn carbonate deposits, organic geochem., 92M/4553

Huntite, white, *ancient Egypt*, colour pigments in wall paintings, 92M/1240

Hyaloclastite, S Iceland, basaltic, Pleistocene mass-flow deposits on shallow submarine shelf, 92M/3475

Hyalophane v. feldspar

Hydroboracite, Germany, Harz, Nordhausen, Niedersachswerfen, in anhydrite deposit, 92M/3682

Hydrocarbons, indigenous vs migrated in mature shale/sandstone sequence, application of stable isotopes for distinguishing, 92M/3135; influence of brine-hydrocarbon interactions on FT-IR microspectroscopic anals. of intracrystalline fluid inclusions, 92M/4257; light, detn. of stable C, H isotopes of, 92M/2492; novel C-ring cleaved triterpenoid-derived aromatic, in Tertiary brown, 92M/3156;

stability of, under time-T condns. of petroleum genesis, 92M/0749; Asia, The Gulf, generation, Proterozoic salt basins, role in, 92M/3570; Hungary, potential, Neogene sedimentary rocks, 92M/3158; Hungary, rare gas constraints on accumulation, crustal degassing, groundwater flow, 92M/1643; Norwegian Sea, Mid-Norway shelf, habitat in relation to tectonic elems., 92M/1102; Oman, source rocks, Proterozoic, burial, thermal history, 92M/3571; Red Sea and Gulf of Aden, thermal maturity development, source-rock occurrence, 92M/4444; United Kingdom, Windy Knoll, -bearing fluid inclusions in fluorite assoc. with bitumen deposit, 92M/4256; USA, California, Santa Maria and San Joaquin basins, Monterey fm., mineralization of organogenic ammonium in, 92M/4546

- —, aliphatic, distribns. in marine sediments, statistical approach to interpn. of, 92M/3142
 —, alkylated aromatic, Europe, Upper Rhine Graben, distribn. in rocks, 92M/3155
- bitumen, basic N compounds in, 92M/3144; quantification of loss of calcite, pyrite, organic matter due to weathering of Toarcian black shales, effects on, 92M/3154; uraniferous, reflected-light microscopy, 92M/3153; Canada, Alberta, Cold Lake, Leming pilot, reservoir processes in steam-assisted recovery of, compns., mixing, sources of co-produced waters, 92M/1840; England, Welsh Borderland, discrimination of sources in Precambrian, Palaeozoic rocks by gas chromatographymass spectrometry, 92M/0754; Germany, Schwarzwald, Wattkopf road tunnel, occurrence, 92M/3679; USA, California, Monterey fm., identification, origin of $\Delta^{8(14)}5\alpha$ -, $\Delta^{14}5\alpha$ -sterenes in, 92M/4542; Indiana, New Albany Shale, Henryville bed, geoporphyrin from, mass spectrometry, 92M/1853
- —, dinite, *Italy, Tuscany, Garfagnana*, organic min., rediscovery, redefinition, 92M/2014
- —, gas, Canada, Alberta, noble gases in CH₄-rich gas fields, 92M/4305; Germany, in Kupferschiefer mines, 92M/2950; Japan, Matsukawa geothermal area, light, origin of, 92M/4528
- kerogen, detn. of molecular struct. using ¹³C NMR spectroscopy, 92M/0751; in shales, porphyrin concn. in, high-resolution reflectance spectroscopy, 92M/4514; pyrolysate, alkylpyrroles in, evidence for abundant tetrapyrrole pigments, 92M/4545; quantification of loss of calcite, pyrite, organic matter due to weathering of Toarcian black shales, effects on, 92M/3154; RuO₄ oxidation of natural organic macromolecules. 92M/1857: vitrinite, kinetics of sterane biol. marker release, degradation processes during hydrous pyrolysis of, comment, 92M/4509, reply, 92M/4510; South Africa, Transvaal supergroup, distribn. in Proterozoic limestone/iron-formation transition, 92M/0758; Turkey, Anatolia, Sivas Basin, source rock, organic geochem. study, 92M/3159

- —, methane, in marine sediments, C isotope biogeochem. of acetate from, 92M/4537; mathematical simulation of C isotopic fractionation between huminitic coal and, 92M/4521; poss. methane-induced polar warming in early Eocene, 92M/5004; prediction of solubility in natural waters to high ionic strength from 0 to 250°C, 0 to 1600 bar, 92M/4079; venting as poss. mechanism for glacial plucking, fragmentation of Precambrian crystalline bedrock, 92M/2387; Pacific, Nankai Trough, ethane, total inorganic C in fluid samples, 1989 Kaiko-Nankai project, 92M/4685
- oil, basic N compounds in, 92M/3144; C isotope variations in n-alkanes, isoprenoids of, 92M/3133; crude, 30-norhopanes, occurrence in, 92M/3143; crude, and source rocks from different sedimentary envts., biomarker distribus. in, 92M/3136; marine evaporitic crude, microbial degradation, 92M/0756; source rocks, biomarker analy. thermal extraction-GC-MS, 92M/3132; SE Asia, crude, occurrence of polycyclic sesqui-, tri-, oligoterpenoids derived from resinous polymeric cadinene in, 92M/4529; Korea Bay Basin, lacustrine pentacyclic triterpanes 92M/0762; Kuwait, Burgan and Raudhatain oil fields, crude, stable C, S isotope distribns., 92M/0761; Spain, Tarragona Basin. crude, identification long-chain, 1, 2-di-n-alkylbenzenes in, implications for origin, 92M/4520; Thailand, Phisanulok Basin, Sirikit Oilfield, geochem., 92M/3140; USA, California, Monterey fm., crude, C isotopic compns. of 28,30-bisnorhopanes and other biol. markers, 92M/4544
- —, sands, W Canada sedimentary basin, giant, hydrogeol. model for formation of, errata, 92M/0739
- -, shale v. shale, oil-shale
- -, petroleum, and natural gas, transition metal catalysis, 92M/4517; biodegradation of refractory hydrocarbon biomarkers from, under lab. condns., 92M/0763; crude oil and source rocks, Nd isotopic study, applications for petroleum exploration, 92M/1851; exploration, crude oil and source rocks, Nd isotopic study, applications for, 92M/1851; exploration, diffuse reflectance Fourier-transformed IR spectroscopy in, multivariate approach to maturity detn., 92M/1862; extraction of whole vs ground source rocks, geochem, implications, 92M/4536; identification, significance of 3 β-ethyl steranes in, 92M/0747; rearranged hopanes in, 92M/3162; Antarctica, resource potential, scientific studies, 92M/4715; Australia, Velkerri fm., Proterozoic potential oil source, sedimentol., C-S geochem., 92M/3575; Canada, Mackenzie Delta and Beaufort Sea, Tertiary 'non-marine' oils, geochem., 92M/3134; China, Jianghan and Biyang basins, porphyrin distribns. in crude oil, 92M/1852; Sichuan basin, Proterozoic petroleum province, 92M/3573; China, Tarim Basin, geol., formation, aspects of, 92M/3160; Gulf of Mexico, origins of, 92M/4540; Jamaica,

potential, organic geochem., 92M/1869; Russian Federation, Siberia, Riphean sedimentary basins, petroleum potential, 92M/3572; USA, Washington, Olympic Peninsula, biomarkers in Tertiary mélange, 92M/3138; Venezuela, extra-heavy crude, organic geochem., molecular assessment of biodegradation, 92M/1871

Hydrogarnet, LDF pseudopotential calculations of α-quartz struct. and hydrogarnet defect, 92M/3835

Hydrogen octosilicate, chem. characterization, structl. features, thermal behaviour, 92M/2621

Hydrogeochemical surveys, anal. method for, ICP-AES after using enrichment coprecipitation with Co, and ammonium pyrrolidine dithiocarbamate, 92M/3188

Hydrogrossular v. garnet

Hydrotalcite, and other hydrothermal alteration products of synthetic glasses, 92M/2881; use of glycerol intercalates in exchange of CO₃² with SO₄², NO₃ or Cl⁻ in pyroaurite-type compounds, 92M/1340; Austria, Stradner Kogel, assoc. with motukoreaite, 92M/3321

Hydrothermal activity, on ocean floor, development of, 92M/2957; Papua New Guinea, Bismarck Sea, Manus back-arc basin, modern, formation of massive sulphide deposits and assoc. vent communities, 92M/2681

— alteration, studies, applications to min. exploration, 92M/0279; Argentina, Las Chacras batholith, Rodeo de Los Molles deposit, REE-Th mineralization, 92M/4306

 circulation, Mexico, Gulf of California, Guaymas basin, and heat flow, basalt intrusions, 92M/2352

- deposits, USA, Gulf of California, Guaymas Basin, submarine, S, C, O isotope variations in 92M/4346
- experiments, fluid-min. interactions, SIMS ion imaging techniques, 92M/0438
- field, Pacific, Okinawa trough, CLAM, high alkalinity due to sulphate reduction, 92M/2930
- fluids, ancient, laser microprobe anals, of Cl, Br, I, K in fluid inclusions, implications for sources of salinity in, 92M/4260; B isotope systematics of, 92M/2936; oceanic, salinity, fluid inclusion study, 92M/1087; partitioning of F-Cl-OH between mins. and, 92M/0434; saline, metal speciation, solubility in, empirical approach based on geothermal brine data, 92M/2979; Mid-Atlantic Ridge, Oceanographer Transform, in fluid inclusions from plutonic rocks, 92M/4248; Mid-Atlantic Ridge, Snake Pit site, 23°N, He, methane measurements in, 92M/3117; Australia, Stuart Shelf, Olympic Dam, origin of, fluid inclusion, stable isotope evidence, 92M/2968
- metamorphism, USA, California, Coast Range ophiolite, in oceanic crust, fluid-rock interaction in rifted island arc, 92M/3528
- mineralization, Indian Ocean, Kerguelen-Heard Plateau, zeolite, chalcedony, phosphate, baryte, 92M/2958; Pacific, Lau and North Fiji Basins, 92M/2115

- minerals, variability of excess Ar in, K-Ar dating of altered rocks, 92M/2409
- ore-forming processes, studies in rock-buffered systems, Fe-Cu-Zn-Pb sulphide solubility relations, 92M/2895, geol. applications, 92M/2896
- plumes, in-situ chem. mapping of dissolved Fe, Mn in, 92M/0738; Mid-Atlantic Ridge, hydrothermal scavenging, modification of tr. elem. dissolved fluxes, 92M/3118; MAR, 26°N, struct., mass, interactions, 92M/2938; MAR, TAG site, 26°N, and serpentinized ultrabasic diapir, 15°05°, different TDM/CH4 signatures, 92M/2937
- processes, in oceanic gabbros from slow-spreading ridges, and lithospheric stretching, 92M/3524; Pacific, Lau and North Fiji basins, Sonne cruise SO-35, ocean ridge, 92M/2101
- solutions, thermodynamic constraints on solubility of Pt, Pd in, reassessment of hydroxide, bisulphide, ammonia complexing, 92M/2883
- systems, importance of vein selvaging in controlling intensity, character of subsurface alteration in, 92M/0280; ocean ridge, coupled fluid flow, reaction in, behaviour of silica, 92M/1818; single-pass, mathematical modelling of conductive heat transfer from freezing, convecting magma chamber to, implications for black smokers, 92M/2350; isotope systematics, submarine, Be 92M/1830: mid-Atlantic ridge. hydrothermal scavenging, radionuclide distribns., 92M/1820; Greenland, Skaergaard, porosity evolution, fluid flow in basalt, 92M/4904; USA, California, Long Valley caldera, O isotope evidence for past, present hydrothermal regimes, 92M/3131; Long Valley caldera, western moat, hydrothermal alteration, thermal regimes, 92M/3130; California, Mojave Desert, fossil, O isotope studies, Jurassic 92M/4230; Colorado, Rico, variations in δ¹⁸O values, water/rock ratios, water flux in palaeothermal anomaly, 92M/4231; Nevada, Comstock Lode mining dist., fossil, O isotope study, 92M/4229
- veins, Antarctica, South Shetland Is., Livingston Is., field observations, 92M/4821; Portugal, Minas da Panasqueira, W-Cu-Sn-bearing, textural evolution, 92M/0340
- vents, submarine vent fluids, controls over chloride concentration of, evidence from Sr/Ca, ⁸⁷Sr/⁸⁶Sr ratios, 92M/4289; E Pacific Rise, distribn., relationship to magmatic, tectonic processes on fast-spreading mid-ocean ridges, 92M/1094; Pacific, Juan de Fuca Ridge, Axial Volcano, discrete, diffuse heat transfer at ASHES vent field, 92M/4982
- zone, Brazil, Rio das Velhas greenstone belt, Mateus Leme-Pitangui, fossil hot spring system, 92M/3874
- Hydroxide solutions, aqueous, exptl. detn. of hydrolysis constants of Pt²⁺, Pd²⁺ at 25°C from solubility of Pt, Pd in, 92M/0439
- Hydroxyaluminium silicate, amorphous, formed under saline condns., and in CaCO₃-buffered solutions, stability,

- significance for Alzheimer plaque precipitates, 92M/0389
- Hydroxyellestadite, crystal struct., cation substitution in apatite tetrahedral site, 92M/0261

Hydroxylapatite v. apatite

Hydrozircon v. zircon

- Hyperbyssal rocks, Spain, Pyrenees, Llavorsi syncline, Hercynian, late Hercynian, geochem., 92M/3005
- Hyperite, comparison with, Lyngdal, geochem., comparison with monzonorite assoc. with Rogaland anorthosite complex, 92M/0613

Hypersthene v. pyroxene

- IBERIAN PENINSULA, *Iberian pyrite belt*, massive sulphide deposits, mineralogy, paragenesis, 92M/1431; *NE*, bauxite deposits, geochem., 92M/1788
- Ice sheet, Antarctica, Cainozoic history, 92M/4713
- ICELAND, degassing, differentiation in subglacial volcanoes, 92M/1034; evaluation oxidizing-reducing condns. present-day basalt eruptions, 92M/2996; maghemite in basalt, min. data, 92M/4642; ocean crust, petrol., 92M/2243; origin of silicic magma revealed by Th isotopes, 92M/2997; rhyolite, indicators differentiation, partial melting, 92M/3473; S, basaltic hyaloclastite, Pleistocene mass-flow deposits on shallow submarine shelf, 92M/3475; N of, Sr-Nd-Pb isotope evidence against plume-asthenosphere mixing, 92M/2995; Hekla, 1991 eruption, 92M/3474; Krafla, elastic deformation models, 1975-1985, 92M/1033; geochem., isotopic evidence for crustal assimilation, 92M/1716; Lakagigar eruption, 1783, geochem., CO2, S degassing, 92M/1032; Mælifell, multi-stage evolution of picrite pillow lava, constraints from mineralogy, fluid, glass inclusions in olivine, 92M/3405; Nesjavellir geothermal field, drillhole NJ-15, smectite-chlorite transition, XRD, BSE, electron microprobe investigations, 92M/2273; SE rift zone, Hengill, geothermal fluid, gas geochem., 92M/1819; Surtsey, 1965 eruption, mildly alkalic lava 1965, exptl. results, 92M/4070; high, low P phase equilibria of alkalic lava from 1965 eruption, 92M/4355; Vestmannaeyjar, Eldfell and Surtsey, mildly alkaline lavas, chem. constraints on petrogenesis, 92M/1715
- Idaite, India, Malanjkhand, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316
- Idocrase, vesuvianite, with hydrogrossular in 'Transvaal jade', 92M/4170; Bulgaria, Rila Mtn, in skarns, min. data, 92M/0819; Canada, Ontario, Hemlo, in Au deposit, min. chem., geochem., 92M/4624; Quebec, gem notes, 92M/1614; USA, California, Crestmore, low-symmetry, domain struct., 92M/0215
- Igneous complexes, Finland, Lapland, Halti-Ridnistohkka, Caledonian, petrol., 92M/4777; France, Massif Central, two Ordovician bimodal, geochem., tectonic

implications, 92M/2166; India, Jammu and Kashmir, Ladakh, Kargil, obducted base of Dras island arc, 92M/0931; Ireland, Ox Mts, igneous emplacement in transpressive shear zone, 92M/4792; Pacific, Nauru Basin, origin, Sr, Nd, Pb isotope, REE constraints, 92M/0660; Pakistan, Kohistan arc, Kalam-Dir, petrol., geochem., 92M/0925; Scotland, Highland, Ballachulish, and aureole, equilibrium, kinetics in contact metamorphism, (book), 92M/1324; evidence of fluid phase behaviour, controls in, 92M/2161; nucleation, growth of pyroxene in hypersthene diorite, 92M/2147; regional geol., 92M/2144; shape of intrusion, geophys. data, 92M/2149; stable isotope geochem., 92M/2159; struct., petrogr., emplacement, 92M/2145; thermal condns., crystalization sequence, deduced from whole-rock, min. chem., 92M/2146; thermal models of cooling, 92M/2160; geol. setting, 92M/2143; USA, Ascutney Mtn., petrol., min. chem., 92M/1022

- petrology, importance of careful observation to make meaningful maps, 92M/3340
- phenocrysts, selective preservation of melt inclusions in, 92M/4771
- rocks, adaptation of Pearce element ratio diagrams to complex high silica systems, 92M/4414; atomic ratios of Al to other petrogenic elems, in bulk chem, compns, of, petrol. criterion, 92M/2137; classification, 92M/0967; distribn. of orthocumulate textures in, 92M/2181; IUGS systematics, 92M/0966; occurrence of Fe-Ti oxides in, 92M/0848; peraluminous, chem. features of orthopyroxene in, 92M/3256; Antarctica, Dufek intrusion, geol., crystallization, 92M/4708; Antarctica, Thurston Is., compns., evidence for late Palaeozoic-Middle Mesozoic Andinotype continental margin, 92M/2183; N Canada, nature, timing of Franklin igneous events, implications for late Proterozoic mantle plume, breakup of Laurentia, 92M/4826; Shield, Canadian hosting mineralization, application of geochem. discrimination diagrams for tectonic interpn. of, 92M/2479; Georgia, Caucasus, Kelasuri Nd isotope ratios. concentration in whole-rock samples, 92M/1745; Hungary, Bükk Mis, Mesozoic, petrol., geochem., 92M/0995; Italy, Tuscany and Tyrrenian Sea, Miocene/Pliocene, 92M/0629; Japan, Ryukyu, petrol., Ishigaki-jima Is., Omoto pluton, petrol., 92M/1015; New Zealand, Northland, Ahipara Tangihua Massif, petrol., tectonic significance of, 92M/4817; Oman Mts, Hawasina nappes and Hajar supergroup, significance in birth, evolution of composite extensional margin of E Tethys, 92M/3537; Pacific, Tonga Trench, petrol., geochem., non-accreting plate boundary, 92M/2184; Scotland, Lesmangow inlier, minor intrusions, petrogr., 92M/0980; Spain, Catalonian Coastal Ranges, Hercynian, petrol., 92M/0917; Ordovician, Silurian, petrol., 92M/0915; USA, Klamath Mts, tectonic implications of isotopic variation among Jurassic, early Cretaceous plutons,

92M/4423; Minnesota, Duluth complex, Partridge River intrusion, geol., geochem., stratigr., 92M/4828, geol., struct., 92M/4829; Texas and New Mexico, El Paso area, Eocene, and enclaves, mineralogy, geochem., 92M/1778

Ignimbrite, and subaqueous pyroclastic flows, assessment, 92M/1031; generation of, 92M/3472; England, Cumbria, Lake District, Bad Step tuff, in calc-alkaline caldera, petrol., 92M/3411; Italy, Campi Flegrei caldera, ¹⁴C age of 'Museum Breccia', relevance for origin of, 92M/2210; New Zealand, morphol., effects of erosion, case study, 92M/3496

 — -granite complex, USA, Missouri, Butler Hill caldera, Proterozoic, petrol., 92M/0893
 Illite v. clay minerals

Ilmenite, computer simulation of MgSiO3 polymorph, 92M/4094; experimentally determined min.-melt partition coefficients for Sc, Y, REE for, 92M/4085; garnetilmenite Fe-Mn exchange equilibria, exptl. study of effect of Ca upon, 92M/2855; geobarometers involving, estimation of P in quartz-absent assemblages, 92M/4042; in metamorphic rocks, stability, 92M/0847; in Pomozdino eucrite meteorite, chem. compn., 92M/1935; in xenolith from kimberlite pipe, mineralogy, 92M/4639; influence of O fugacity on W, Mo partitioning between silicate melts and, 92M/0535; internally consistent solution models for Fe-Mg-Mn-Ti oxides, 92M/0406; interplay of chemical, magnetic ordering. 92M/1204: MgSiO₃. thermodynamic props. from vibrational spectra, 92M/4126; placer deposits, economic potential, 92M/2769; texture, 92M/0851; upper mantle oxide mineralogy, 92M/0850; Austria, Tyrol, Brenner, occurrence, 92M/3291; Czech Republic, Bohemia, Staré Ransko ore deposit, Zn contents of, 92M/2019; Moravia, from pegmatites, min. data, 92M/2016; India, Andhra Pradesh, in granitic soils, 92M/1499; Indonesia, Kelapa Kampit, Nam Salu, assoc, with strata-bound Sn deposit, 92M/0369; Norway, Modum complex, intercumulus phase in metagabbros, 92M/3407; Pacific, Lau Basin, in volcanic rocks, 92M/2111; Poland, Carpathians, Rytro, Magura nappe, in flysch, 92M/1107; Poland, Tajno massif, processes of metamorphosis, mineralization in pyroxenite, 92M/3292; USA, New Jersey, Sussex County, Beemerville, pyrophanite-ilmenite solid solution in magnetite, 92M/2015; North Carolina and Virginia, heavy min. deposits in upper coastal plain, 92M/2772; Oregon and Washington, Columbia River, in beach placers at river mouth, 92M/4026; Virginia, reconnaissance exploration on continental shelf, 92M/0385

- —-geikielite solid solution, *Antarctica*, assoc. with new min., dissakisite-(Ce), 92M/3332
- -structured MgSiO₃, ab initio Hartree-Fock study, 92M/3818
- Ilvaite, *Germany, KTB pilot hole*, occurrence in metamorphic rocks, 92M/0302

Impact crater, Finland, Lappajärvi, borehole results, 92M/3364

structure, Sweden, Siljan Ring, Deep Gas
 Drilling Project, summary report, 92M/2090

INDIA, gneiss-granulite transformation in 'incipient charnockite' zones, geochem., 92M/3098; Phanerozoic rocks along N boundary of Indian plate, stratigraphic setting, 92M/0939; stable O, H isotope ratios in shallow groundwater, role of evapotranspiration in monsoon, 92M/4209; NE, and adjacent areas, seismotectonic demains, 92M/0942; E, ore deposit modelling technique using qualitative data from known min. belts, 92M/1424; S, carbonic fluid inclusions in granulites, evidence for entrapment during charnockite formation, 92M/1812; SW, Phanerozoic basic dykes from high grade terrain, K-Ar isotope, geochem. implications, 92M/4750; Dist., Sangrampur Hill, Banda differentiation of Semri group, Kaimur group on basis of heavy min. suites, 92M/1110; Bombay, heavy metal pollution in water, suspended particles, sediments, 92M/0395; heavy metal pollution of aquatic sediments, recognition of envtl. discriminants, 92M/0394; Central Indian shear zone, major Pre-cambrian crustal boundary, 92M/0922; Deccan Trap alkaline province, regional dyke swarms related to, 92M/4748; Eastern Ghats, monazite from granulite terrain, geochem., 92M/3325; Eastern Ghats, Arakau, spinel granulites, petrol., petrogenetic grid for sapphirine-free rocks in system FMAS, 92M/1179; Elchuru, dyke Proterozoic swarm, lamprophyres, microshonkinites, 92M/4749; Garhwal Himalaya, volcanic rocks, geochem., petrogenesis, implications for evolution of lithosphere, 92M/0646; Garhwal Himalaya, Bhilangna valley, granitic plutons, birth history, geochem., 92M/1010; Himalayas, seismicity, nature of continent-continent collision, 92M/0941; Holenarsipur, Archaean metavolcanic rocks, Sm-Nd dating, 92M/1279; Indian peninsula, Himalayas and Indus suture, palaeomagnetism, implications continental drift, India-Asia collision, 92M/0944; Kabbaldurga, Closepet, fluid evolution in granite, magmatic source for CO₂ in charnockite, 92M/0647; Karimnagar, Proterozoic basic dyke swarm, geochem., palaeomagnetic 92M/4751; Kharaghoda, Ra isotopes, ²²²Rn in shallow brines, 92M/1825; Kolar Gold Fields, Au mineralization in sulphide-rich Oriental type lodes, phys.-chem. condns., thermodynamic characterization, 92M/3924; Kolar Gold Fields, Mallappakonda, Au deposit, geostatistical modelling, 92M/3967; Kolar schist belt, Archaean, geol., mineralogy, geochem., genesis of Au deposits, 92M/2679; granitic rocks, geochem., petrogenesis, 92M/2097; high Mg and tholeiitic amphibolites, Pb, Nd isotope constraints on origin, 92M/0037; S Kolar schist belt, Chigargunta, Au mineralization, deposit-scale structl, control of, 92M/3954; Ladakh Himalaya, Indus ophiolite, podiform chromites in peridotite,

92M/3442; Lesser Himalaya, Kumaun, Nagthat fm., Proterozoic, source rock characteristics, 92M/3577; Lower Narmada Valley, emplacement of dyke swarms, 92M/4752; Malani igneous suite, zircon from granitic rocks, morphol., chem., 92M/3236; Malanjkhand, geochem. of secondary Cu mins, from Proterozoic porphyry Cu deposit, 92M/0316; Nilambur, very high purity Au from lateritic weathering profiles, 92M/3286; Nuliyam, dehydration reaction, isotope front transport induced by CO2 infiltration, 92M/4467; Punjab, accumulation of Se in sugarcane in seleniferous areas, 92M/2780; tetrahedrite Rajpura-Dariba, from polymetallic deposit, min. chem., metal zoning, thermodynamic assessment. 92M/2042; Singrauli Moher-Subbasin, Barakar, sandstone, heavy min. suite in, 92M/1109; Sukinda, Mössbauer hyperfine parameters of Fe³⁺-chromite from ultramafites, petrogenetic implication, 92M/0856; Sung Valley, carbonatite, fluid inclusion studies in apatite, evidence of melt-fluid immiscibility, 92M/1008

—, ANDAMAN ISLANDS, and Naga Hills, ophiolite belt, geol. setting, collisional emplacement history, 92M/0938

-, ANDHRA PRADESH, Y min. potential of granitic soils, 92M/1499; Adilabad and Karimnagar, Kamthi and Lower Maleri fms., petrographic, geochem. 92M/3578; Adilabad, characteristics, Chanda Limestone, Proterozoic, offplatform dolomitization, 92M/4891; Cuddapah supergroup, Cumbum fm., illite crystallinity indices, significance in anchimetamorphism, mineralization. 92M/3650; \boldsymbol{E} Godavari Dist., Rampachodavaram, K feldspar, geochem., 92M/4631

—, ARUNACHAL PRADESH, Lohit Himalaya, ophiolites, magmatic arc, geol. setting, petrochem., 92M/0937

—, BIHAR, Amjhore deposit, relationship between C, S, pyritic Fe, 92M/0555; Palamau, fluorite deposit and assoc. Fe-F-W skarns, hornfelses, 92M/2768

—, GUJARAT, noble gas and N in natural gases, 92M/4301; Panchanahal dist., Raujitpura-Chalwad, phosphorite deposit, geochem., 92M/1498; Pavagad igneous suite, primary silicate-melt inclusions in olivine phenocrysts, 92M/0557

—, HIMACHAL PRADESH, Chaur area, metamorphic biotites, IR spectroscopy, 92M/1985

-, JAMMU AND KASHMIR, Dras, Shvok, Khardung and Chushul volcanics, petrochem., tectonic envt., comparative study, 92M/0930; Kashmir, Quaternary non-marine ostracods, tr.-elem. chem. as means of palaeolimnological reconstruction, 92M/2481; Ladakh, batholith, petrol., geochem., role in evolution of magmatic 92M/0932; collision zone. tectonomagmatic, sedimentation history, 92M/0929; Ladakh, Kargil, complex, obducted base of Dras island arc. 92M/0931; Ladakh, Nubra Valley.

- geothermal system, conceptual model, 92M/0734; Riasi, Great Limestone, syn-sedimentary and later remobilised epithermal Pb-Zn mineralization, fluid inclusion, stable isotope compns., 92M/2959
- -, KARNATAKA, Closepet, generation, emplacement of granite during late granulite metamorphism, Archaean 92M/3652; Closepet granite and Peninsular gneiss, SHRIMP U-Pb dating, 92M/2418; Dharwar craton, criteria for Au mineralization in greenstone belts, 92M/3885; Dharwar craton, Gadag greenstone belt, structurally controlled Au mineralization, 92M/3941; Sandur-Copper mountain belt, chem. sedimentary sequences, potential ore zones for Au in Archaean, 92M/3961; Dharwar craton, Sargur terrain, titanomagnetite, new 'lode stone' band, 92M/2023; Hassan Dist., Sigegudda. trondhiemite. geochem., 92M/0649; Honnali Dome, Dharwar supergroup, stratigr., struct., implications for late Archaean basin development, regional struct., 92M/3391; Hutti, Au deposit, geol., mineralization, 92M/3918; Hutti-Maski greenstone belt, Au mineralization, geol., timing of, 92M/3877; Au mineralization, geol., 92M/3929; Sargur-Dharwar Jayachamarajapura, relationship around komatiite-rich greenstone belt, 92M/3392; Karnataka Craton, potential major Au habitat, 92M/3881
- —, KERALA, khondalite belt, granulite facies supracrustal terrain, metamorphic P-T condns., 92M/2302; Pan-African charnockite, 92M/3731; Bharathapuzha, petrogr. of light detrital grains, 92M/1108; Nilambur, morphol. of Au grains in laterite, implications for genesis of supergene Au deposits, 92M/0353; Nilambur Valley, Maruda, concentration of Au in in situ laterite, 92M/3962; Pozhikkara Cliff section, Tertiary formation, geochem., palaeoenvtl. significance, 92M/1794
- —, MAHARASHTRA, Pune Dist., Lonavala, lateritic soils, clay mineralogy, geochem., 92M/1374; Saswad-Nira area, origin of calcrete deposits, 92M/3576
- —, MEGHALAYA, E Khasi Hills, granite, geochronol., geochem., 92M/0648
- —, ORISSA, Precambrian banded iron formation, unusual diagenetic struct. in, 92M/3654; Singhbhum craton, granitic rocks, Rb-Sr chronol., petrochem., 92M/0036
- —, RAJASTHAN, occurrence of Sargur type banded iron formation in banded gneissic complex, 92M/2301; Delhi fold belt, tectonic slices of high-grade rocks, 92M/3653; Jaisalmer, Jurassic carbonates, petrol., diagenesis, depositional envt., 92M/2256; Khetri copper belt, Chandmari mine, compositional variations in mackinawites, 92M/2038; Mundwara, Toa pluton, alkali igneous complex, cumulophyric layered suite, geochem., petrol., 92M/3441; Rajpura-Dariba, meneghinite, X-ray, microprobe, optical props., 92M/4658

- --, SIKKIM, *Bhotang*, sulphide deposit, control of mineralization, 92M/2725
- —, SINGHBHUM, Jagannathpur, volcanic rocks, nature, magma type, 92M/3026; Singhbhum craton, Dhanjori, volcanic rocks, geochem. evidence for volcanic arc tectonic setting, 92M/4385
- —, TAMIL NADU, Palani Hills, Perumalmalai, sapphirine-bearing assemblages, 92M/3651
- —, WEST BENGAL, Purulia dist., Malti, clay deposit, characterization of, 92M/2576; Purulia, Beldih, apatite mineralization, genetic control, 92M/3322; Puruliya Dt, apatite-magnetite amphibolites, petrol., geochem., role in phosphate mineralization, 92M/2300
- INDIAN OCEAN, ocean crust, petrol., 92M/2242; pelagic sediments, clay mineralogy, 92M/0176; sediments and marine min. resources, 92M/3982; 32Si profiles, 92M/3120; Carlsberg Ridge, basalt, petrogr., chem., 92M/3027; Central Indian basin, ferromanganese crusts, depth profiles of 230 Thexcess, transition metals, mineralogy, implications for palaeoceanographic influence on crust genesis, 92M/1641; Chagos-Laccadive ridge, origin, compensation, gravity, bathymetry data, 92M/2320; Kerguelen-Heard Plateau, mineralized rocks, hydrothermal processes, 92M/2958; Macdonald seamount, gas-rich submarine exhalations during 1989 eruption, 92M/3552; Reunion Is., Piton de la Fournaise, episodes of pit-crater collapse documented by seismology, 92M/2218; SW Indian Ridge, anomalous K-enriched MORB, petrogenesis, 92M/4383; basalt, geochem., 92M/3028
- INDONESIA, exploration for hard rock, alluvial Au, 92M/1911; Belitung, Tanjungpandan, Sn granite, large-scale Sn depletion in, 92M/0368; Belitung, Tikus, Sn-W deposit, greisenization, albitization, 92M/0367; Dieng, and Cameroon, Lakes Nyos, Monoun, Germany, Laacher See, Australia, Mt Gambier, CO2-rich gases, variations on common theme, 92M/1037; Galunggung, amphibole in gabbroic cumulates assoc. with andesite, 92M/1012; Kalimantan, reconnaissance, follow-up exploration for Au, 92M/1878; Kalimantan, Muyup prospect, Au mineralization, 92M/1468; Kelapa Kampit, Nam Salu, strata-bound Sn deposit, mineralogy, 92M/0369; North Sulawesi, Pani Volcanic complex, dome-related Au mineralization, geol. relations, fluid inclusions, chlorite compns., 92M/2680; Sulawesi, garnet peridotite and assoc. high-grade rocks, 92M/1184; Sulawesi, Quaternary lavas, geochem., transfer of subduction components into mantle wedge, 92M/0658; Sumatra, Toba, caldera complex, Toba Tuffs, stratigr., evolution, 92M/1063; Sunda-Banda arc, mapping magma sources, constraints from He isotopes, 92M/4391; Sunda and Banda arcs, volcanic gas, chem., isotopic compns., 92M/4392; Timor, collision complex, structl. evolution, 92M/0956

Iolite v. cordierite

- Ion microprobe, calibration of, for quantitative tr. precious metal anals. of ore mins., 92M/1319
- IRAN, Esfahan, Muteh, Au exploration, 92M/3971; Kabutar-Kuh, kaolinite, formed by hydrothermal alteration of volcanic rocks, 92M/2587; Kerman, Sar-Chesmeh, porphyry Cu-Mo deposit, secondary ore formation features, 92M/1674
- Irarsite, Bulgaria, Rhodope, in chromitites, 92M/0345; Portugal, Bragança-Vinhais, from ultrabasic rocks, 92M/2047
- IRELAND, detrital magmatic muscovite from Lower Carboniferous, poss, buried granites uncovered, 92M/4793; SE, petrogenetic implications of garnets assoc. with Li pegmatites, 92M/3243; SW, polygenetic palaeosol from Silurian, 92M/0197; NW, isotopic evidence for extent of early Proterozoic basement, 92M/0012; Leinster Granite, genesis of Li pegmatite, geochem. constraints, 92M/4362; Ox Mts, exhumed lower crust, model for crustal conductivity, 92M/1133; Ox Mts igneous complex, igneous emplacement in transpressive shear zone, 92M/4792; Slieve Gullion central Tertiary complex, microgranites, granophyres, petrogenesis, 92M/3003; Tara, Pb-Zn mine, mins, of, 92M/2708
- —, DONEGAL, Central Donegal Slide, reversals in polarity of structl. facing across early ductile thrust, 92M/4697; Inishtrahull, syenitic gneiss, precise U/Pb zircon age, 92M/0013
- —, DOWN, *Newtownards*, geol. memoir, 92M/2092
- —, GALWAY, Connemara, contrasted metamorphic, structl. evolutions across major ductile/brittle displacement zone, 92M/3612; Dalradian rocks, fluid disturbed hornblende K— ages, 92M/1251; silica mobility, fluid movement during metamorphism of schist, 92M/4463; stable isotope study of retrograde alteration, 92M/4462; Clifden, Loch Ána, newly discovered Palaeocene dolerite intrusion, 92M/4791; Connemara, Dawros, ultrabasic rocks, biogeochem. exploration, 92M/1908
- —, MAYO, S, regional geol., 92M/3383; W Connacht, Síofra gabbro, petrol., 92M/3412
- —, MEATH, Walterstown-Kentstown area, Dinantian stratigr., struct., 92M/4698 Iridium. China. Yangte Basin, abundance
- Iridium, China, Yangtze Basin, abundance maxima at latest Ordovician mass extinction horizon, terrestrial or extraterrestrial, 92M/4446; England, Ludlow Bone Bed, Silurian, Ir anomaly, 92M/4436
- Iron, effect of iron diagenesis on transport of colloidal clay in unconfined sand aquifer, 92M/3794; high-P melting curve of, technical discussion, 92M/2886; in Palaeozoic shale, estimation of, using reflectometer or Munsell colour chart, 92M/1313; molten, solubilities of mantle oxides in, at high P, T, implications for compn., formation Earth's core, 92M/0423; oxidation state, fa content of normative ol, 92M/2992; transport in dunite, diffusion in fluid-bearing, slightly-melted rocks, exptl., numerical approaches, 92M/0421; USA, Arizona, Meteor Crater, Cañon Diablo,

- meteoritic, U accumulation during weathering of, 92M/4574
- deposits, Chile, Andes, Magnetita Pedernales, new magmatic, 92M/1456; China, Handan-Xingtai, Hanxing, skarn, alteration-mineralization, 92M/0565; Spain, Cantabria, Dícido, strata-bound, geol., 92M/1457; Turkey, Avnik, apatite-rich, REE in, 92M/2927
- duricrusts, Brazil, Au-bearing, 92M/3196; Central African Republic, Haut-Mbomou, geochem. degradation in tropical, humid climate at edge of equatorial forest, 92M/2586
- formations, Canada, Ontario, Gunflint fm., Proterozoic, carbonate, sulphide mins., petrol., stable isotope studies, evidence for origin of, 92M/2258; South Africa, Transvaal supergroup, Proterozoic, geochem., sedimentology of facies transition from limestone to, 92M/3080
- —, banded, Eu anomalies in, and thermal history of oceanic crust, 92M/4285; significance of pre- or syntectonic origin for iron ore hosted in, 92M/2662; Bolivia, Chiquitos supergroup, Cambrian, 92M/4003; Brazil, Ouro Fino syncline, Au mobility during hydrothermal, supergene alteration of, 92M/3960; India, Orissa, Precambrian, unusual diagenetic struct in, 92M/3654; Rajasthan, Sargur type, in banded gneissic complex, occurrence, 92M/2301; Zimbabwe, deformation, fluid-flow Au precipitation in, 92M/3903
- mineralization, Sweden, Bergslagen, exhalative, high elem. mobility in 1900-1860 m.y. hydrothermal alteration zones, relationships with, 92M/2948
- minerals, Germany, Siegerland, Steinbach, Grube Bindweide, occurrence, 92M/3683
- mines, Austria, Carinthia, Hüttenberg, geol., mining history, min., 92M/2372
- ore, hosted in BIFs, significance of pre- or syntectonic origin for, 92M/2662; Egypt, Western and Eastern Desert, formation of, 92M/4010; Finland, Vähäjoki, Proterozoic, mineralogy, geochem., metamorphism, 92M/4319; Turkey, Anatolia, Divrigi region, rock geochem., exploration model, 92M/1899
- oxidation, kinetics, precipitation by Thiobacillus ferrooxidans in presence, absence of metal ions, 92M/0522
- oxide, aggregation of soil particles by, in various size fractions of B horizons, 92M/2592; dissolution in EDTA and oxalate, effects of phosphate, 92M/0493; colloidal, adsorption of colloidal Au on, 92M/1891; extraction from sediments using reductive dissolution by Ti(III), 92M/2457; gel, XRD detn., 92M/1321; laboratory prepn., characterization, (book), 92M/1328; stromatolitic, evidence that sea-level changes can cause sedimentary Ir anomalies, 92M/3083
- phyllosilicates, 1:1, 2:1, synthesis, characterization of Fe state, Mössbauer spectroscopy, 92M/1335
- -copper deposits, New Zealand, Northland, assoc. with ophiolites, 92M/3996
- -rare-earth-niobium deposits, China, Inner Mongolia, Bayan Obo, geol., 92M/4015

- --zinc-barium-fluorine deposits, France, Pyrenees, Canigou, stratiform, Pb isotope compns., 92M/0547
- Ironstone, oolitic, O isotopes in, 92M/1702
- Island arcs, Mexico, Guanajuato, intra-oceanic, crustal section of, late Jurassic-early Cretaceous magmatic sequence, 92M/4875; Vanuatu, magmatism of troughs behind, K-Ar geochronol., petrol., 92M/0661
- Isokite, USA, New York, Adirondack Highlands, Benson mines, with wagnerite, 92M/4671
- Isotopic analysis, calibration of Nd tracer isotopic compns. for Sm-Nd studies, 92M/4563; isotopic compn. of H in insoluble organic matter from, 92M/1859; isotopic exchange reactions involving intra-and intermolecular reactions, kinetics, rate law for system with two chem. compounds, three exchangeable atoms, 92M/0415; isotopic fractionation factors, T dependence of, 92M/4196
- ISRAEL, ³⁶Cl in chloride-rich rainwater, 92M/4479; C, S relationships in marine Senonian organic-rich, Fe-poor sediments, 92M/4526; *Dead Sea*, B isotope geochem. as tracer for evolution of brines and assochot springs, 92M/0733; *Dead Sea coast*, Raprecipitation, extreme ²³⁸U-series disequilibrium, 92M/0690; *Scythopolis* and *Caesarea*, Roman marble trade, stable isotopes, 92M/4220
- ITALY, B, Cs, Li distribn. in alkaline potassic volcanic rocks, 92M/3014; origin of potassic magma, one-dimensional diffusion-controlled model of source metasomatism, 92M/4796; volcanosedimentary layers, multi-method radiometric dating, age, duration of Priabonian stage, 92M/2408; zeolites, stability diagrams, phillipsite, chabazite from pyroclastic rocks, 92M/1590; Aeolian Is., Lipari, multiple magma mingling, 92M/2168; volcanism, temporal evolution of three component system, 92M/0633; Aeolian Is., Panerea, submarine volcanic exhalations, geochem. study, 92M/1047; Aeolian Is., Vulcano, chem. variations in fumarolic gases, seasonal, volcanic effects, 92M/1048; continuous monitoring of volcanic gas emanations, 92M/3483; intracrystalline Fe2+-Mg ordering in augite, exptl. study, geothermometric applications, 92M/1969; isotopic compn. of rain water, well water, fumarole steam, implications for volcanic surveillance, 92M/4838; noble gases, N, mixing, temporal evolution in fumarolic fluids, 92M/3479; role of magma mixing during recent activity, 92M/3478; Alban Hills, Quaternary volcanic rocks, 40 Arf 39 Ar dating, 92M/3722; Alpi Apuane, Monte Brugiana, REE-bearing piemontite, crystal chem., 92M/3249; Alps, Adamello batholith, zircon inheritance in igneous rocks, implications for petrogenesis, 92M/0027; Adamello batholith, Re di Castello, microgranular mafic enclaves in tonalite, petrol., geochem., Sr isotope data, 92M/0632; Alps, Tisana and Ora, vitrophyre, petrol., 92M/3418; Val d'Ayas, Brusson, cation ratios of fluid inclusions in

Au-quartz vein, 92M/1920; fluid inclusion evidence for P-V-T-X evolution of hydrothermal solutions in late-Alpine Au-quartz veins, 92M/1666; Central Alps, Upper Valtellina, Hercynian granitic rocks overprinted by eo-Alpine metamorphism, Rb-Sr dating, 92M/2406; Central Alps, Val Lanterna, steatite deposit, 92M/1497; E Alps, min., geochem. evolution of two podzolic soils on granitic rock, 92M/2594; E Alps, Vedrette di Ries plutonic complex, microgranular mafic enclaves, petrol., geochem., 92M/0626; S Alps, Lombardian Basin, Mesozoic pelagic and flysch sedimentary rocks, clay min. assemblages, palaeotectonics, for implications palaeoclimate, diagenesis, 92M/0174; W Alps, Dora Maira Massif, Pb-Sr-Nd isotopic behaviour of deeply subducted crustal rocks, age of ultrahigh-P metamorphism, 92M/1809; subducted continental sliver, structl. evolution, 92M/2293; Dora Maira Massif, Parigi, pyrope-coesite rocks and country rocks, petrogr., min. chem., PT-path, 92M/2288; W Alps, Gran Paradiso massif, K/Ar dating, revised thermal history, 92M/0024; Gran Paradiso nappe, albite-garnet orthogneiss, geothermobarometry, 92M/1154; W Alps, Piemonte ophiolite, Praborna, high-P-low-T manganiferous quartzite, petrol., 92M/3619; Piemonte, Novara, Alpe Devero, mins. of, 92M/4992; W Alps, Sesia-Lanzo zone, metamorphism, P-T 92M/3626; metamorphism, condns., tectonics, 92M/4928; Sesia-Lanzo Zone, Aosta valley, protoliths of 'eclogitic micaschists', 92M/4927; Apennines, growth processes, mélange formation accretionary wedge, 92M/0920; minerogenesis, mantle origin, 92M/1730; re-equilibration of detrital muscovite and formation of interleaved phyllosilicate grains in low T metamorphism, 92M/3267; reaction between olivine, plagioclase, as consequence of fluid-rock interactions during sub-seafloor metamorphism, 92M/3597; Apennines, Verrucano, b of muscovite in low, high grade variance assemblages, 92M/3627; crystallinity distribn., crystallinity—bo relationships in white K-micas, 92M/1980; Apulia, brushite, hydroxylapatite, taranakite, from caves, new min. data, 92M/3324; Bergell aureole, reaction antigorite \rightarrow olivine + talc + H₂O, 92M/1159; Bolzano/Bozen, Terlan, lead-zinc veins, mineralogy, 92M/1232; Calabria, structl. state of former lower continental crust, 92M/3629; trondjhemitic evolution caused by compaction of crystal mush, 92M/0624; Aspromonte. Montalto, amphibolites, petrol., geochem. study, 92M/0623; Capo Vaticano, Hercynian porphyritic granodiorite, mineralogy, petrogr., 92M/3420; Serre, biotite-kaolinite transformation in granitic saprolite, 92M/2585; Calabria-Peloritani Region, syn-late-Hercynian leucocratic plutonic rocks, geochem., 92M/0630; Campania-Campi Flegrei area, caldera, structl. model from gravity interpn., 92M/2200; Campanian Plain, Naples, struct., activity

of volcanoes, 92M/2198; Campi Flegrei caldera, 14C age of 'Museum Breccia', relevance for origin of Campanian ignimbrite, 92M/2210; geophys., geochem. modelling of 1982-1984 unrest phenomena, 92M/2209; history of earthquakes, vertical movement, comparison precursory events, 92M/2201; hot fluid migration, efficient source of ground deformation, application to 1982-1985 92M/2208; resurgent caldera, mechanics, 92M/1041; stress pattern from focal mechanisms of 1982-1984 earthquakes, 92M/2204; structl. evolution, 92M/2199; tidal signal in recent dynamics, 92M/2202; vertical ground movements as chaotic dynamic phenomenon, 92M/2203; Campi Flegrei caldera, Solfatara, isotopic study of origin of S, C in fumaroles, 92M/2205; Carrara, mineralization in marble, 92M/4994; Gargano Peninsula, tr. elem. zoning in dolomite, proton thermodynamic microprobe data, constraints on fluid compns., 92M/4666; Grosseto, Paganico, clay sediments assoc. with quartz sand, compn., genesis, 92M/1360; Ischia, Sr, Nd isotope, tr.-elem. constraints on chem. evolution of magmatic system in last 55 k.y., 92M/0622; Ivrea Zone, interactions of mantle, crustal magmas, 92M/2167; Pt-group elems., control by sulphide assimilation, silicate fractionation, 92M/0321; Ivrea zone, Balmuccia, calc-silicate marbles in mafic rocks of deep crust, 92M/1160; Balmuccia massif, orogenic lherzolite, petrol., 92M/3349; Ivrea zone, Traversella, porphyritic monzodiorite, facies. endoskarns, implications for evolution of main intrusion, 92M/3386; Lanzo massif, lherzolite, continental to oceanic mantle transition, REE, Sr-Nd isotopic geochem., 92M/3351; Lanzo Massif, and France, Pyrenees, orogenic lherzolite, sulphide petrol., S geochem., comparative study, 92M/3345; Lanzo and Bracco, ophiolites, metarodingite, isotope data, indications for evolution of Alpino-type ultramafic-mafic complexes, 92M/1810; Larderello geothermal field, geol. review, 92M/1241; schorl-davite-ferridravite tourmaline deposited by hydrothermal magmatic fluids, 92M/3251; Latemar buildup, Triassic massive dolomite, dolomitization front geometry, fluid flow patterns, origin, 92M/1106; Latium, natural gas, water discharges, geochem., circulation, evolution of fluids, geothermal potential, 92M/3480; Latium, Albano Lake crater, guarinite, new sanidinite finding in ejecta hydromagmatic unit, 92M/0816; Lucanian basin, Pleistocene clay, min., chem. classification for use in tile industry, 92M/2574; Lugano, obsidian in Permian volcanics, geochem., 92M/1728; Marche, Gola del Furlo, Fe envt. in montmorillonite, synchronous radiation XANES, Mössbauer study, 92M/3830; Monzoni, metamorphic aureole, carbonate rocks, microtextures, reaction mechanisms, comparison with Scotland, Highland, Ballachulish igneous complex, 92M/2153; Neapolitan area,

Tyrrhenian margin, phys. model for origin of volcanism, 92M/2207; Orobic Alps, contrasting thermomechanical evolutions in Southalpine metamorphic 92M/4931; Orobic Alps, Como, Val Biandino intrusion, cummingtonite, min. data, 92M/0823; Pantelleria, pantellerite, magmatic H₂O content, implications for petrogenesis, eruptive dynamics, 92M/3481; recent explosive volcanism, 92M/1049; Pantelleria and Ischia, simple-shearing block resurgence in caldera depressions, 92M/2212; Phlegrean Fields, 1980-1990, 10 yrs of geochem. investigation, 92M/2206; Pontine Is., M. Ernici and Campania, comparisons of 18O/16O, 87Sr/86Sr in volcanic rocks, 92M/4221; Puglia, Pleistocene clay deposit, genesis, evolution, 92M/2573: Roccamonfina volcano. magmatic activity, petrol., geochem., relationships with Campanian volcanics, 92M/3484; Roman potassic province, Vico, antimonian asbecasite in syenitic ejectum of pyroclastic rocks, 92M/3300; Roman Volcanic Province, petrogenesis, tectonic setting, 92M/4836; potassic volcanic rocks, excess Ar geochem. in, 92M/1729; Sila batholith, rock chem., fluid inclusion studies as exploration tools for ore deposits, 92M/1900; Sila, Bocchigliero, Palaeozoic sequence, age of volcanism, metamorphism, 92M/1262; Sondrio, structl. observations at border between Margna nappe and Malenco ultramafics, 92M/4699; St. Marcel-Praborna, rutile in Mn formations, 92M/3293; Toblach, Dobbiaco, X-ray characterization of mica in metapelites, boundary between the low-, very low-grade south-alpine basement, 92M/4930; Trentino, Cima d'Asta, Permian volcanic rocks, plutonic rocks, geostatistical comparison anal., 92M/0628; W Trentino, margarite in Upper Austroalpine basement, 92M/3272; Trento-Alto Adige, Chiusa-Bressanone, tourmaline crystallochem., structl. evolution in magmatic series, 92M/3252; Tuscany, Au metallogeny, 92M/3866; pitiglianoite, new feldspathoid, chem. compn., crystal struct., 92M/3335; Tuscany and Tyrrenian Sea. Miocene/Pliocene intrusive rocks, petrol., 92M/0629; Tuscan archipelago, granitic rocks, geochem., role of hybridization processes in genesis, 92M/3013; Boccheggiano-Campiano, polymetallic sulphide (Cu-Pb-Zn) assemblage from pyrite deposit, application of stannitesphalerite geothermometer, 92M/2848; Garfagnana, dinite, organic min., rediscovery, redefinition, 92M/2014: Tuscan magmatic province, ammonium content in granitic rocks, 92M/0620; magmatic, hydrothermal ammonium in granite, 92M/4372; Tuscan magmatic province, Roccastrada and San Vincenzo centres, recent volcanism, geochem., 92M/0627; Val Vigezzo, bertrandite, X-ray structl. refinement, 92M/3822; Venanzo and Cupaello, Roman Comagmatic Region, petrogenetic relationships between melilitite, lamproite, 92M/0983; Veneto, Rosso Ammonitico Veronese, interaction between CaCO3 and organic matter,

92M/3157; Vesuvius, 1906 eruption, magmatic to phreatomagmatic activity through flashing of shallow depth hydrothermal system, 92M/2211; geol., failure condns., implications of seismogenic avalanches of 1944 eruption, 92M/3477; magma mixing, convective compositional layering in magma chamber, 92M/1042; Vetralla, sodalite, observed, simulated IR spectra, 92M/3278; Vicentino, celestine, occurrence, (book), 92M/2498; Vicentino, Val di Londe, celestine, occurrence, 92M/3697; Vicenze, Fara Vicentina, garronite, gonnardite and other zeolites, 92M/4636; Vulsini, evidence of incremental growth in calderas, 92M/2213; geochem. research for epithermal Au in magmatic rocks, 92M/3909; Vulsini, Latera, lavas, petrol., min., geochem., Sr-isotopic data, genesis of potassic magmas, 92M/0621; Latera caldera, relationships between chamber margin accumulates, pore liquids, evidence from arrested in situ processes in ejecta, 92M/4797; Vulsini, Montefiascone Volcanic complex, structl. setting, magmatic evolution, 92M/1040

-, SARDINIA, formation of fibrolite nodules in gneiss from Hercynian basement, 92M/3628; geochem. exploration in semiarid climate, porphyry-type occurrence, 92M/4552; heavy mins. in coastal sand, electron microanal., beneficiation tests, 92M/0380; late Hercynian dykes, geochronol., Sr isotope geochem., 92M/1263; mixite group minerals, crystal chem., 92M/3299; Tertiary epithermal Au occurrences, 92M/3870; C. Malfatano-Chia, Bithia fm., metamorphism in metapelites, 92M/1161; Calabona intrusive complex, evidence for porphyry Cu system, 92M/4009; Cape Frasca to Cape Caccia, continental shelf, sand, geol. setting, min., sedimentol., chem. study, 92M/3568; W Gallura, syn-tectonic peraluminous granite, geochem., Rb-Sr age, constraints on genesis, 92M/0625; Mount Genis, magmatic immiscibility, fluid phase evolution in granite, 92M/4247; Nurra, Argentiera, willyamite from Pb-Zn-Ag-Sb deposit, 92M/4657; Punta Falcone, Carboniferous gabbro, petrol., 92M/4798; Sarrabus, Au-Ag lode, min. assocn., genetic relevance, 92M/3926; Serrenti-Furtei, epithermal Au mineralization, fluid inclusion data, 92M/3915; Tresnuraghes, electron microprobe study of alteration processes in kaolinized rhyolite, 92M/2584

-, SICILY, dolomite reservoir rock, petrogr., isotopic geochem., 92M/2952; evolution of hydrothermal systems forming calcite, fluorite, baryte mineralization, isotope geochem., 92M/2953; pyroxenite nodules, megacrysts, partial melting, 92M/0984; Alcamo and Calatafimi, Sr isotope compn. fluorite, from vein baryte, mineralizations. 92M/0550: Calabrian-Peloritan arc, Devonian. Carboniferous volcanism, evolution of Palaeozoic basins, 92M/0634; Hyblean Plateau, lower-crustal nodules, petrol., 92M/0985; Mt Etna, eruptive, diffuse emissions of CO₂ from volcano, 92M/1045; ground deformation monitoring, evidence for dyke emplacement, slope instability, 92M/1046; importance of gravitational spreading in tectonic, volcanic evolution, 92M/4837; melt-min.-fluid interactions in ultrabasic nodules from alkaline lavas, 92M/3482; pattern recognition applied to volcanic activity, identification of precursory patterns to flank eruptions, rest periods, 92M/1044; volcanic tremor, 1984–1985, relationship to eruptive activity, modelling of summit feeding system, 92M/1043; Peloritani Mts, pyrrhotite, occurrence, 92M/2673

IVORY COAST, microtektite strewn field, descriptn., relation to Jaramillo geomagnetic event, 92M/3230

Jade v. amphibole Jadeite v. pyroxene

Jalpaite, Czech Republic, Příbram, Vrančice, Pošepný vein, occurrence, min. data, 92M/2040

JAMAICA, multi-purpose geochem. mapping of Caribbean region, 92M/1916; organic geochem., petroleum potential, 92M/1869; regional drainage geochem., 92M/1917; Hope Gate fm., dolomitization by sea-water, reassessment of mixing-zone dolomite, 92M/4205

Jamesonite, Czech Republic, Bohemia, Slaný mining area, occurrence, 92M/3689

JAPAN, antimonian, bismuthian varieties of hemusite, new compositional, optical data, 92M/3312; dating of Pleistocene volcanic products by radioactive disequilibrium system between ²³⁸U, ²³⁰Th, 92M/0044; geol., (book), 92M/1326; hot spring, min. spring waters, Sr isotopic compn., 92M/1826; meteoric interaction with magmatic discharges, significance for mineralization, 92M/3493; microstruct. of deformed biotite defining foliation in cataclasite zones in granite, 92M/2099; ore deposits related to Cretaceous-Palaeogene granitic rocks, K/Ar dating, 92M/0042; skarn deposits, Sr isotope systematics, metallogenesis, 92M/0570; time-space distribn., petrol. diversity of ophiolites, 92M/3545; central, Miocene granitic magmatism at island-arc junction, 92M/1016; Adatara volcano, tholeitic, calc-alkaline magma, mineralogy, phase relations, 92M/1013; Circum-Izu massif, peridotite as back-arc mantle fragments of Izu-Bonin arc, 92M/3548; Chugoku, kyanite-bearing anorthosite inclusions in Cainozoic alkali basalt, 92M/3446; Hachijojima Is., Nishiyama volcano, major-elem. chem., 92M/3490; Hachiro-gata polder, heavy clay soil, agriculture, chem., phys. props., 92M/2596; Hida metamorphic complex, augen gneiss and related mylonite, metasomatic origin, 92M/3599; Hida Mts, Utsubo granitic complex, Rb/Sr dating, 92M/0043; Izu Peninsula, zeolites, occurrence, distribn., genesis, 92M/3280; Izu peninsula, Higashi-Izu, monogenetic volcano group, petrol., implication of xenocrysts, time, spatial variation of ejecta, 92M/1014; off E

Izu Peninsula, 1989 submarine eruption, ejecta, eruption mechanisms, 92M/1057; Izu-Oshima volcano, isotropic source of volcanic tremor, observation with dense seismic network, 92M/3492; underground struct., magmatic activity, seismic reflection survey, 92M/4843; Japan arc, deep struct., relationship to seismic, volcanic activity, 92M/1215; lateral variation of major, tr. elems. in Pliocene volcanic rocks, 92M/0652; Kibi-kogen, Cr-rich, Al-rich spinels in alkali basalts, 92M/2024; Kinki and Setouchi, Ryoke Belt, basic rocks, petrogenesis, 92M/4815; Kitakami, change in dominant mechanisms for phyllosilicates preferred orientation during cleavage development in slates, 92M/2304; minor elems. of Palaeozoic-Mesozoic sandstone, mudstone, 92M/0691; Lake Biwa, geochem. study on specific distribn. of Ba in, 92M/4482; Lake Mashu, mantle He flux from lake bottom, 92M/4481; Matsukawa geothermal area, origin of light hydrocarbon gases, 92M/4528; Mino-Tamba Terrain, argillaceous rocks assoc. with Triassic, Jurassic chert, petrogr., geochem., 92M/0692; Miyake-Jima, magma flow directions inferred from preferred orientations of phenocrysts in composite feeder dyke, 92M/4844; Mt Usu, partition of As, P between volcanic gases and rock, 92M/1059; Nankai, Izu-Bonin and Japan forearc slopes, trenches, sediment deformation and fluid activity, 92M/4963; North Fossa Magna, Naeba and Torikabuto volcanoes, gabbroic xenoliths in calc-alkali andesite, chem. compns., Sr, Nd isotope ratios, 92M/3036; Sangun and Sanbagawa belts, glaucophane schists, actinolite greenschists, ferric-ferrous ratios of, 92M/3102; Seto area, characteristics of exchangeable cations on clay materials, 92M/2563; Shimokita peninsula, Miocene submarine basaltic, andesitic lavas, morphol., 92M/1061; Shinzan, interstratified illite/smectite from hydrothermally altered tuffs, IR spectra, 92M/0128; Shiretoko peninsula, radial dyke swarms. reconstruction of Pleistocene submarine volcanoes, 92M/4722; South Fossa Magna region, explosive breccia pipes, linear arrangement, 92M/1060; Tamagawa, changes in chem. compn., crystal growth rate of Pb-bearing baryte, hokutolite, from hot spring waters, 92M/2048; Wakayama, Sanbagawa terrain, Iimori, Mn-rich amphiboles from quartz schists, 92M/3263; Yakedake Volcano, Quaternary deposits, 14C dating, 92M/0047; Yanai, Ti substitution in biotite from metamorphic rocks, 92M/1987

-, HOKKAIDO, metal production, concn. rate, 92M/0569; trioctahedral illite from talc mines, 92M/0133; Hidaka metamorphic belt, tectonic evolution implication for late Cretaceous-Middle Tertiary tectonics, 92M/2303; Tertiary deep crustal ultrametamorphism, 92M/4947; Horoman peridotite massif, petrol., evolutional history of uppermost mantle of arc system, 92M/3519; compositional variations within the lower layered zone, constraints on models for melt-solid interaction. 92M/3352; Irumukeppu Volcano, Otoe Yama lava, K/Ar dating, palaeomagnetism, 92M/0045; Jokoku-Katsuraoka mining area, Cu-Pb-Zn mineralization, 92M/0567; Kamuikotan zone, Horokani metamorphic facies, pumpellyite from zeolite facies metabasites, 92M/0814; Nishi-Iburi, analcime-wairakite series, min. data, 92M/3279; Oe mine, vein mins., stable isotope compns., 92M/0568; Pirika mine, ramsdellite, crystal struct., 92M/0246; Tokoro belt, Mn deposits, tr. elem. concns., XRF anal., 92M/0110; Toya caldera, formation, geochem., 92M/3335

-, HONSHU, Kamikita, smectite to chlorite transformation in thermally metamorphosed volcanoclastic rocks, 92M/0178; Kamikita Kuroko, hydrothermal aluminous clays, mineralogy, genesis, 92M/0179; Kanto, chem. Quaternary tephra, compn., 92M/0655; AKITA PREF., Hanaoka area, Miocene metabasites, 92M/1183; Ohyu Dist., conversion of trioctahedral smectite to interstratified chlorite/smectite in Pliocene acidic pyroclastic sediments, 92M/0188; Omori-machi, Yokote and Yasawagi, clay deposits, zeolite rocks, exploitative history, 92M/2577; AOMORI PREF., Hakkoda, pyroclastic flow deposits, TL ages, 92M/2422; FUKUSHIMA PREF., Ono-Niimachi, weathered biotite, 92M/2589; GIFU Nogo-Hakusan, cordierite-olivine symplectites in Fe-Al-rich hornfels, 92M/1182; Unuma, V mins. in siliceous sedimentary rocks, min. data, 92M/3302; HIROSHIMA PREF., Tojo-cho, Kushiro, nepheline, occurrence, min. data. 92M/2002; NAGANO PREF., Sano mine, beidellite, min. data. 92M/0167; NIIGATA PREF., osumilite, andalusite, from Pliocene subaqueous ash layer, 92M/3245; Uonuma group, Pliocene, Pleistocene volcanic ash, fission track dating, 92M/0046; OKAYAMA PREF., Fuka, monoclinic tobermorite, min. data, 92M/2009; SHIMANE PREF., Masuda, Kawashimo, ultramafic xenoliths in Cainozoic alkali basalt, 92M/3445; Oki Is., Dogo, volcanic rocks, temporal variations of Sr isotopic compns., 92M/3039; Shimane Peninsula, Miocene pillowed sills, petrol., 92M/3491; Shimane Peninsula, Ushikiri fm., subaqueous rhyolite block lavas, Miocene, petrol., morphol., 92M/1058; TOCHIGI PREF., Mashiko area, pottery clay, min. assemblage, 92M/0181; YAMANASHI PREF., Katsunuma area, Kobotoke group, talc-amphibole rocks, geochem., 92M/0957 -, KYUSHU, change in chem. of magma

source, progressive contamination of mantle wedge, 92M/1017; high-charge smectite in weathered granitic rocks, 92M/0187; relationships between authigenic min. transformation, variation in vitrinite reflectance during diagenesis, Tertiary example, 92M/1111; Hime-Shima, volcanic rocks, petrol., 92M/3489; Hime-shima, volcanic rocks, Sr isotope compns., magma disequilibrium mixing, hornblende, 92M/3038; Yufu-Tsurumi volcano group, origin of andesitic magma, binary mixing model, 92M/3037; FUKUOKA PREF., Fukuoka City, crystal morphol. of zircon in granitic

rocks, 92M/3235; Munakata area, heulandite-clinoptilolite in Tertiary sedimentary rocks, thermal, chem. props., 92M/3281; KAGOSHIMA PREF., Aira, ammonium-bearing dioctahedral 2M1 mica, min. data, 92M/0832; Makurazaki volcanic area, mineralogy, genesis of clays in postmagmatic alteration zones, 92M/3801; Iriki, kaolinite deposits, occurrence, genetic processes, 92M/0180; Iriki deposit, min. props., formation process of kaolinite, 92M/2562; Iriki mine, coupled substitutions goldfieldite-tetrahedrite 92M/0865; OITA PREF., Yabakei dist., primitive tholeiite, geochem., 92M/3040

—, RYUKYU ISLANDS, Aguni-jima Is., Higashi fm., volcanic rocks, petrol., 92M/0654; Ishigaki-jima Is., Omoto pluton,

petrol., 92M/1015

—, SHIKOKU, discontinuous grain growth of quartz in metacherts, influence of mica on microstructl. transition, 92M/1181; fault gouges from Median Tectonic Line, K/Ar dating, 92M/0041; Matsuyama, acidic dykes intruding into Ryoke granite, K–Ar dating, 92M/0038; Sebadani metagabbro and Sanbagawa schist, 40Ar/39Ar dating, tectonometamorphic evolution, 92M/1283; EHIME PREF., Sagadani mine, primary textures of Mn ore, 92M/3318; NARA PREF., Yoshino area, isotopic ages of rocks along Median Tectonic Line, 92M/0040

JAPAN SEA, Dupal anomaly, Pb, Nd, Sr isotopic variations at eastern Eurasian continental margin, 92M/4389; REE in sediments, diagenetic behavior of Ce/Ce*, ODP Leg 127, 92M/1795; Shiribeshi volcano, Quaternary, geochem., 92M/3034

Jarosite, formation on corroded portland cement, 92M/2781; Australia, chem., crystallographic, stable isotopic props. of, from acid-hypersaline lake, 92M/4495; Victoria, Lake Tyrrell, formation of, in hypersaline system, 92M/4494; Czech Republic, Bohemia, Liteň fm., occurrence, 92M/2062; Egypt, formation of, during deterioration processes wall paintings, 92M/5003; Germany, Meggen, Thin, in flue dust of roasted pyrite, 92M/4030; Pacific, Lau Basin, in volcanic rocks, 92M/2111; USA, Utah, Tooele Country, U.S. mine, assoc. with tooeleite, new min., 92M/3338 Jasper v. quartz

JORDAN, Wadi Um Salab, Precambrian diabase, geochem., petrogenesis, implications for mantle, 92M/4380

Joseite, Sweden, Bergslagen, Boviksgruvan, in sulphide deposit, 92M/2707

Kaersutite v. amphibole

Kalsilite-nepheline crystalline solutions, XRD, ²³Na, ²⁷Al, ²⁹Si MAS-NMR study, 92M/4121

Kankite, Germany, Richelsdorf, occurrence, 92M/1225; Saxony, Czech Republic, mins. of mine dumps, 92M/3687

Kaolinite v. clay minerals

Kashinite, end-member of solid solution series, 92M/3306

Kassite, struct. model, 92M/0244

Kawazulite, Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336

KAZAKHSTAN, koutekite, new data, 92M/2046; Kokchetav massif, zircon response to diamond-P metamorphism, 92M/2413

Keatite, substitutional, thermal expansion in MAlSi₂O₆ aluminosilicates, 92M/1388

Kehoeite, not valid species, 92M/4672

Keithconnite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Kentrolite-melanotekite series, chem. crystallographic relations, long-pair splitting, cation relation to 8URe₂, 92M/1392

KENYA, soils, plants in conservation areas, tr. elem. geochem., implications for wildlife nutrition, 92M/1509; SE, growth of ruby, 92M/1615; Amboseli National Park, isotopic ecol. of plants, animals, 92M/2779; E African Rift, secular variation of basalt chem., evidence for pulsing asthenospheric upwelling, 92M/0645; Kenya rift, 3-D seismic image of crust, upper mantle, 92M/2339; Kenya rift, large-scale variation in lithospheric struct., 92M/2321; Lake Magadi, sediments, U-series disequilibria in early diagenetic mins., dating potential, 92M/3725: Shombole volcano, nephelinite-carbonatite liquid immiscibility, petrogr., exptl. evidence, 92M/1003

Kerogen v. hydrocarbons

Kerolite, dehydration at elevated P, bond energy of adsorbed and interlayer water, 92M/0124

— -stevensite, Spain, Madrid Basin, mixed-layers, anals., 92M/1366

Kerstenite, Argentina, Sierra de Cacheuta, La Rioja, Condor mine, assoc. with schmiederite, 92M/3301

Kesterite, SW England, occurrence, min. data, 92M/3307; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Spain, Neves-Corvo, in volcanogenic massive sulphides, 92M/0341

—, ferrokesterite, British Isles, occurrence, 92M/4990; SW England, occurrence, min. data, 92M/3307

 -černyite solid solution, in system Cu₂SnS₃-ZnS-CdS, at 400°C, 101·3 MPa, 92M/1605

Khamrabaevite, XRD anal., 92M/4638

Khondalite belt, India, Kerala, granulite facies supracrustal terrain, metamorphic P-T condns., 92M/2302

Kieserite, Germany, Harz Mts, in carnallitite, Zechstein, 92M/3563

— -type compounds, crystal struct., 92M/3847; Me(II)SO₄*H₂O (Me = Mn, Fe, Co, Ni, Zn), crystal structs., 92M/0252

— /carnallite ratio in salt, T-dependent changes, 92M/2910

Kimberlite, Russian Federation, Yakutia, inclusion-bearing diamonds from, morphol., phys. props., paragenesis, 92M/0844; monticellite in, 92M/1945; South Africa, phlogopite from, Ar isotope, halogen chem., combined step-heating, laser probe, electron microprobe, TEM study, 92M/1672; South Africa, N Cape, Finsch, diamondiferous garnet harzburgite from, 92M/4806

Kimberlitic magmatism v. magmatism, kimberlitic

Klaprothite, *Turkey, Anatolia*, in Pb-Zn deposits, 92M/2718

Koechlinite, Germany, Saxony, Erzgebirge, occurrence, 92M/3688

Kolbeckite, *USA*, *Georgia*, discovery of, two poss. lattices, 92M/3326

Kolymite, belendorffite, new Cu amalgam dimorphous with, 92M/4673

Komatiite, eruption of, in preference to primitive basalt, 92M/2136; Nb-Th-La in, constraints on petrogenesis, mantle evolution, 92M/3067; Western Australia, Kambalda, tr. elem. geochem., 92M/3045

 flow, Finland, resetting of REE, Nd, Sr isotopes during carbonitization, 92M/0614

— melts, Australia, Kambalda, magmatic contacts between immiscible sulphide and, implications for genesis of sulphide ores, 92M/1481

KOREA, 14 Å intergradient min. in Ultisol, chem. compn., struct., 92M/2555; Dongmyeong mine, skarn evolution, W mineralization, 92M/4333; Gyeongchang, W-Mo mine, geochem., progressive meteoric water inundation of magmatic hydrothermal system, 92M/0572; Janggun takanelite. characterization, 92M/2027; Korea Bay Basin, pentacyclic triterpanes in lacustrine sourced oil, 92M/0762; Pohang-Yangnam, basaltic rocks, major, minor elem. compns., Sr, Nd isotope ratios, 92M/0656; Tongyoung, Au-Ag deposits, geochem., evidence of meteoric water dominance in Te-bearing epithermal system, 92M/2963; Yeonhwa I mine, Taebaek Pb-Zn(-Ag) deposit, arsenopyrite geothermometry, sphalerite geobarometry, 92M/2728

Kornerupine, B-free, crystal struct., 92M/2609; Australia, Strangways Range, in granulite facies rocks, 92M/4948; Russian Federation, Aldan Shield, Usmun River Basin, in slyudite, geol., petrol., chem. of mins., min. reactions, 92M/4610; Kola Peninsula, Sholt-Yavr, from Archaean Kola Series, 92M/4609; Sri Lanka, gem notes, 92M/4194

Koutekite, Kazakhstan, new data, 92M/2046
Krupkaite, Czech Republic, Příbram, Bohutín, min. data, 92M/2045

Kténasite, England, Cumbria, Nenthead, Smallcleugh and Brownley Hill mines, Zn analogue of, min. data, 92M/2052; France, Var, Cap Garonne, cobaltoan nickeloan-, new variety, 92M/2051

Kuksite, Russian Federation, Yakutia, Aldan, Kuranakhsky deposit, new tellurate, 92M/2072

Kupletskite, (Ce)-, v. astrophyllite

Kuramite, SW England, occurrence, min. data, 92M/3307

Kutnahorite v. rhodochrosite

KUWAIT, Burgan and Raudhatain oil fields, stable C, S isotope distribus. of crude oil and source rock constituents, 92M/0761

Kyanite, assoc. with magnesiochloritoid, chloritoid group, min. data, 92M/3247; equilibria kyanite = sillimanite, kyanite = andalusite, revised triple point for Al₂SiO₅ polymorphs, 92M/0450; evidence from min.

assemblages for infiltration of pelitic schist by aqueous fluids during metamorphism, 92M/2267; heat capacities, entropy of, and Al₂SiO₅ phase diagram, 92M/2856; in eclogite, 92M/1532; Raman spectra at high P, room T, 92M/1956; static lattice energy minimization, lattice dynamics calculations, 92M/0216; Canada, Quebec, Dumagami mine, progressive alteration assoc. with auriferous massive sulphide deposits, 92M/0587; Italy, W Trentino, assoc. with margarite in Upper Austroalpine basement, 92M/3272; Japan, Chugoku, -bearing anorthosite inclusions in Cainozoic alkali basalt, 92M/3446; Spain, Cabo Ortegal, Cr-rich, in high-P ultrabasic rocks, 92M/0809; USA, North Carolina and Virginia, heavy min. deposits in upper coastal plain, 92M/2772

Labradorite v. feldspar

Lakes v. sediments, lake, and water, lake

Lamproite, petrol., (book), 92M/0118; Italy, S. Venanzo and Cupaello, Roman Comagnatic Region, and melilitite, petrogenetic relationships between, 92M/0983; USA, Wyoming, Leucite Hills, F-bearing phases in, 92M/0675

Lamprophyre, Antarctica, Schirmacher Oasis, petrogr., geochem., 92M/3403; Canada, Ontario, Coldwell, alkaline, petrol., 92M/3454; Quebec, Lac Shortt area, ultrabasic, calc-alkaline, geochem., 92M/3053; Germany, Leipzig, Delitzsch, ultramafic, petrol., 92M/3430; India, Elchuru, Proterozoic dyke swarm, 92M/4749; Morocco, Tamazert, Sr, Nd, O, C isotopic study, crustal contamination processes, source characteristics, 92M/0639

— dykes, Antarctica, Princess Elizabeth Land, Vestfold Hills, alkaline-ultramafic, primitive magmas of deep mantle origin, 92M/3448; Western Australia, dyke swarms, pipes, petrol., 92M/4737; Western Australia, Pilbara block, Shaw batholith, metamorphosed ultramafic, late Archaean, 92M/4729; Scotland, Lomondside, xenoliths in, nature of crust beneath southern Dalradian, 92M/3409

- lava, v. lava, lamprophyre

Långbanite, crystal struct., chem. crystallogr., relation to other cation close-packed structs., 92M/1393; monoclinic, crystal struct., 92M/0222

Langite, Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694; Styria, Öblarn, occurrence, 92M/3695

Lanthanum copper oxide, LaCuO₃, crystal struct. by powder diffraction, 92M/0247

Lapilli, Germany, Laacher See volcano, accretionary, internal struct., occurrence, 92M/3485

Laser diffraction, new method for grain size anal. of sediments, 92M/2448

Laterite, above ultrabasic complexes, control of distribn. of Mn, Co, Zn, Ar, Ti, *REE* during evolution of, 92M/1904; geochem. of precious metals in, 92M/1884; *Brazil*, compn., origin of clay cover on, 92M/2597; from semiarid areas, geochem. evolution, 92M/1905; *Brazil*, *Jacupiranga alkaline*

complex, palaeoclimatic implication for genesis from chlorite, silcrete formation above serpentinized dunite, 92M/0202; Mn-oxyhydroxide Moanda, high-resolution transformations, study, 92M/0857; India, Kerala, Nilambur, morphol. of Au grains in, implications for genesis of supergene Au 92M/0353; Nilambur, Maruda, concentration of Au in, 92M/3962; Mali, Misseni, above Au zone, Au dispersion in, 92M/0278

Latite rheoignimbrite flows, Namibia Etendeka fm., petrol., 92M/3438

Laumontite v. zeolite

Laurite, Australia, Tasmania, Heazlewood River Complex, occurrence, 92M/0371; Bulgaria, Rhodope, in chromitites, 92M/0345; Portugal, Bragança-Vinhais, from ultrabasic rocks, 92M/2047

Lava, effects of compressibility on flow of, 92M/3469; highly alkaline, in Proterozoic rift zone, implications for Precambrian mantle metasomatism, 92M/4406; Canada, Ontario, Mamainse Point, Keweenawan, petrol., petrogenesis, continental rift evolution, 92M/3500; Greece, Patmos, estimates of P, T, PH2O, fo2 for, implications for magmatic evolution, 92M/3487; Iceland, Surtsey, alkalic, from 1965 eruption, high, low P phase equilibria of, 92M/4355; mildly alkalic, 1965 eruption, high, low P phase equilibria of, results, 92M/4070; exptl. Iceland. Vestmannaeyjar, Eldfell and Surtsey, mildly alkaline, chem. constraints on petrogenesis, 92M/1715; Indonesia, Quaternary, geochem.. transfer of subduction components into mantle wedge, 92M/0658; Italy, Sicily, Mt Etna, alkaline, melt-min.fluid interactions in ultrabasic nodules from, 92M/3482; Pacific, Galápagos Islands, Islá Isabela, Urvina Bay, Volcán Darwin, flank, min. constraints on magmatic history, 92M/3555; Papua New Guinea, Lihir Is., exptl., major elem. constraints on evolution of, 92M/2831; Philippine Sea, submarine, isotope characteristics, implications for origin of arc, basin magmas of Philippine plate, 92M/3041; USA, Hawaii, struct., origin by injection of lava under surface crust, of tumuli, 'lava rises', 'lava-rise pits', 'lava-inflation clefts', 92M/2229; Hawaii, Mauna Kea volcano, postshield, isotopic compn., 92M/0666; Montana, Bearpaw Mts, potassic mafic, mineralogy, chem., origin, 92M/4413; New Mexico, Rio Grande Rift, Cerros del Rio volcanic field, diverse mantle, crustal components in, 92M/1777

—, basaltic, Japan, Shimokita peninsula, Miocene submarine, morphol., 92M/1061; Pacific, French Polynesia, Marquesas, Eiao Is., vesicle zonation, olivine settling in, 92M/3497

—, boninite, *Pacific*, *Tonga ridge*, petrogenesis, 92M/1093

— flows, lobes of, 92M/3468

 fountains, USA, Hawaii, microspherules in aerosols of, 92M/3498

— lake, USA, Hawaii, Kilauea Iki, reequilibration of chromite in, 92M/0855

—, lamprophyre, *Mexico*, *San Sabastian*, potassic volcanic front, petrol., 92M/3505

—, natro-carbonatite, Tanzania, Oldoinyo Lengai, short-lived decay series disequilibria in, constraints on timing of magma genesis, 92M/1742

—, pillow, comparisons bewteen palaeovolcanism and recent flows on active ocean ridges, 92M/2246; *Iceland, Mælifell*, picrite, multi-stage evolution, constraints from mineralogy, fluid, glass inclusions in olivine, 92M/3405; *New Zealand, Hawkes Bay, Kairakau Rocks*, and assoc. Cu mins., 92M/4820

—, rhyolite, Japan, Honshu, Shimane Peninsula, Ushikiri fm., subaqueous block, petrol., morphol., 92M/1058; USA, New Mexico, Taylor Creek, lava domes, compositional gradients in silicic magma reservoirs evidenced by ignimbrites vs, 92M/4418

—, shoshonitic, *China*, *Kunlun orogenic belt*, geol., geochem., age, 92M/3030

Lavendulan, France, Var, Cap Garonne, assoc with new min., geminite, 92M/2070; Germany, Wittichen, occurrence, 92M/4998

Lawsonite, SrMn₂[Si₂O₇](OH)₂•H₂O, new min. of lawsonite type, 92M/3333

 -- glaucophane rock, XANES studies of Fe in pumpellyite group mins., 92M/1960

Layered intrusion, *Norway, Bjerkreim-Sokndal*, crystallization processes in, evidence from boundary between two macrocyclic units, 92M/0979

Lazulite, Austria, Salzburg, Pinzgau, Felbertal, occurrence, 92M/3696

Lead, enrichment in Upper Trias coaly clay, sandstone horizons, 92M/1662; England, Derbyshire, envtl., sources, pathways to children in mining village, 92M/1511; Germany, Schwarzwald, mediaeval and earlier mining, history, 92M/2658; Peru, Andes, Pb isotope variation, 92M/2987; Peru, Cordillera Oriental, Pb isotopic compn. in ore deposits, 92M/2986; South America, central Andes, Pb isotope provinces inferred from ores, crustal rocks, 92M/4348; USA, Alaska Range, Sheep Creek prospect, ore mineralogy, phys. characteristics, 92M/0309; USA, Joplin, Viburnum Trend, Elmwood and Rosiclare, Mississippi Valley type, 92M/2702

— isotopes, ²¹⁰Pb, evidence for diffusive redistribn. in lake sediments, 92M/0699; Canada, Northwest Territories, Pine Pt., homogeneity in Mississippi Valley-type dist., 92M/0583

-zinc deposits, geopressure zones as proximal sources of hydrothermal fluids in sedimentary basins, origin of Mississippi Valley-type deposits, 92M/0317: Australia. Mt Isa and McArthur River, high-heat producing granites, role in origin of, 92M/4016; Tasmania, Rosebery, foliation-boudinage control on formation of, 92M/1474; Canada, Northwest Territories, Baffin Island, Nanisivik, C, sulphur isotope evidence for in situ reduction of sulphate. 92M/0584; China, Bajiazi, H, O, C, Si stable isotope studies, 92M/0559; Gansu Province, Lijiagou, geochem. condns. of metallization, 92M/1676; Hebei, Caijiaying, characteristics, 92M/0355; China, Sichuan, Daliangzi, genesis, 92M/0556; Czech Republic, hyalophane, cymrite from, 92M/1999; Korea, Yeonhwa I mine, Taebaek, arsenopyrite geothermometry, sphalerite geobarometry, 92M/2728; Peru, Cordillera, Hualgayoc, Pb isotopes, implications for metal provenance, genesis of polymetallic mining dist., 92M/2985; Turkey, Anatolia, mineralogy, 92M/2718

- - mine, Ireland, Tara, mins. of, 92M/2708

-- mineralization, Canada, Nova Scotia, Carboniferous, formation of, from basin-derived fluids, 92M/1695; England, E Midlands, simulation of geol. processes using expert system, 92M/1660; India, Jammu and Kashmir, Riasi, Great Limestone, epithermal, syn-sedimentary and later remobilised, fluid inclusion, stable isotope compns., 92M/2959; USA, Montana, Proterozoic Newland fm., sandstone-hosted, in pyritic shale, origin, economic potential, 92M/1441; Upper Mississippi Valley, and metal mineralization, genetic relationship between, 92M/2701

- - veins, Italy, Bolzano/Bozen, Terlan, mineralogy, 92M/1232

- -copper deposits, Norway, Nordland, Mjønesfjell area, geol. setting, 92M/3986; Turkey, Koyulhisar-Sivas, Kursunlu, fluid inclusion, geothermometry studies. 92M/2955: Ortaköy-Koyulhisar-Sivas, Kursunlu, vein type, S isotope study, 92M/2956

-- silver deposits, Australia, Mt Isa, and Cu ore, cogenesis, 92M/1469; China, Hebei Province, Caijiaying, Au, Ag, Bi, min. characteristics, occurrence, 92M/1466; Czech Republic, Bohemian Massif. Variscan, stable isotope study, 92M/3991; USA, California, Darwin, zoning, genesis, 92M/1495

Leadhillite, Germany, occurrence, 92M/1225 LEBANON, volcanic activity between

Jurassic, Recent, 92M/4381

Leiteite, Austria, Styria, Öblarn, occurrence, 92M/3695

Leningradite, Russian Federation, Kamchatka, Tolbachik, new min. from volcanic sublimates, 92M/2073

Lepidocrocite, thermal decompn. of. Mössbauer study, characterization of decompn. products, 92M/1600; Egypt, Bahariya oases, in baryte deposits, 92M/0381; Germany, Hesse, Giessen, in Mn ore, 92M/3989

Lepidolite v. mica

Lepidomelane v. mica

LESSER ANTILLES, St Martin, detn. of non-equilibrium ordering state in epidote from ancient geothermal field, Mössbauer spectroscopy, 92M/0811

Letovicite, Czech Republic, Bohemia, Kladno, occurrence, 92M/2059

Leucite, O diffusion in, structl. controls, 92M/4198; phase transitions in, 92M/2866; phase transitions in, determined by high T, single crystal XRD, 92M/2875; static lattice energy minimization, lattice dynamics calculations, 92M/0216; synthetic analogue, NMR study of struct., ordering in, 92M/1402

Leucogranite, Canada, Nova Scotia, Yarmouth County, East Kemptville, muscovite-topaz, geochronol. evidence for multiple tectono-thermal overprinting events, 92M/0057; Nova Scotia, East Kemptville, topaz-muscovite, geol. setting, whole rock geochem., 92M/3050; Himalayas, Gophu La and Gumburanjun, Sr. Nd, O isotopic characterization, 92M/1749; USA, South Dakota, Black Hills, Harney Peak, Proterozoic, generation, crystallization condns., petrol., geochem. constraints, 92M/4410, stable isotope evidence for petrogenesis, fluid evolution, 92M/4411

Leucosphenite, Tadzhikistan, Dara-i-Pioz, occurrence, 92M/2377

Leucoxene, Brazil, Diadema shear belt, assoc. with Au mineralization, 92M/2981; Germany, KTB pilot hole, occurrence in metamorphic rocks, 92M/0302; USA, Virginia, reconnaissance exploration on continental shelf, 92M/0385

Lherzolite, orogenic massifs: protolith, process, provenance, 92M/3341; spinel, experimentally deformed at hypersolidus condns., textural development, melt topology in, 92M/3342; France, Pyrenees, and Italy, Lanzo Massif, orogenic, sulphide petrol., S geochem., comparative study, 92M/3345; Pyrenees, spinel, orogenic massifs, evolution of upper mantle, evidence from, 92M/3344; Italy, Balmuccia massif, orogenic, petrol., 92M/3349

massifs, orogenic, O thermobarometry, 92M/4364; Italy, Lanzo, continental to oceanic mantle transition, REE, Sr-Nd isotopic geochem., 92M/3351; Spain, Ronda, and Morocco, Beni Bousera, high-T alpine-type, magmatic ores in, 92M/0339

xenoliths, metasomatized spinel, residence of tr. elems. in, proton-microprobe study,

LIBYA, Jabal Al Hasawinah, poikilitic nature of eudialyte, 92M/0810; Libyan Desert, noble gases, K-Ar ages in impact glasses, 92M/1942

Liddicoatite, Portugal, Minho, Arga, in aplite swarm, 92M/4647

Liebauite, new silicate min. with 14er single chain, 92M/4675

Lignite v. coal

Lime, high-T heat capacity, premelting of mins. in system MgO-CaO-Al₂O₃-SiO₂, 92M/2821

Limestone, calcite twin widths, intensities as metamorphic indicators in natural low-T deformation of, 92M/2053; Triassic, petromagnetic fabric anal., 92M/3675; Belgium, Campine Basin, Poederlee borehole, vein cements, geochem, evolution of subsurface fluids in Visean, 92M/1822; Germany, Dresden, Cretaceous, weathering, 92M/0392; New Zealand, Cape Brett, Motukokako, Tertiary, and Zn-Pb mineralized skarn, 92M/3997; Portugal, Trás-os-Montes and Alto Douro, geol., exploration, uses, 92M/0379; Scotland, Highland, Ballachulish igneous complex, impure, decarbonation reactions in, 92M/2152; South Africa, Transvaal

supergroup, Proterozoic, geochem., sedimentology of facies transition to iron formation, 92M/3080; USA, Oklahoma, Arbuckle, Cambro-Ordovician, geochem., implications for diagenetic δ^{18} O alteration. secular δ¹³C, ⁸⁷Sr/⁸⁶Sr variation, 92M/1799; Yemen, Habban-Al Mukalla, construction material, potential, 92M/2665

Limonite, Egypt, Bahariya oases, in baryte deposits, 92M/0381; Germany, Thuringia, Caaschwitz, occurrence, 92M/2364; Sachsen-Anhalt, Magdeburg, assoc. with glauconite in Eocene sediments, 92M/2582

Linarite, England, Cornwall, Penberthy Croft, and assoc. mins., 92M/1223

Linnaeite, siegenite, Germany, KTB pilot hole, occurrence in metamorphic rocks, 92M/0302

Lintisite, Russian Federation, Kola Peninsula, Lovozero Massif, new min., min. data, 92M/0877

Lipids, sedimentary, sources deduced from stable C-isotope anals. of individual compounds, 92M/0753

Liquids, and vapours in boiling NaCl-H2O solutions, densities of, P-V-T-X summary from 300° to 500°C, 92M/4082

Liquidus relations, in system NaCl-H2O to 6 bar, differential thermal anal. of, 92M/1554

Liroconite, heteropolyhedral framework oxysalt min., struct. refinement, 92M/0262

Lithiophorite, Germany, Hesse, Giessen, in Mn ore, 92M/3989

Lithium mineralization, Portugal, Arga, in aplite-pegmatite field, 92M/0986

Lithosphere v. Earth

Loess, chem. compn. of, 92M/4439; China, ¹⁰Be in, 92M/4447; China, Luochuan, opal in, significance, 92M/4892

Löllingite, Kazakhstan, assoc. with koutekite, 92M/2046

Lorenzenite v. ramsayite

Ludjibaite, Slovakia, Lubietová, min. data, 92M/2064

Ludwigite, crystal struct. type, 92M/3851 Lunar studies, Apollo 14 rocks, new ⁴⁰Ar-³⁹Ar ages, case for younger Imbrium basin, 92M/0772; Apollo 17 high-Ti mare basalts, Sr, Nd isotopic study, resolution of ages, evolution of magmas, origins of source heterogeneities, 92M/0773; evidence for metasomatism of lunar highlands, origin of whitlockite, 92M/4566; evolution of Moon: Apollo model, 92M/0771; geochem. of lunar crustal rocks from breccia 67016 and compn. of Moon, 92M/4280; granite, initial Pb isotopic compns. determined by ion microprobe, 92M/4232; lunar meteorite found outside Antarctica, 92M/0776; Moon, K, Rb, Cs in, 92M/4279; Nb-Sr, Sm-Nd chronol. of Apollo 17 KREEP basalt, 92M/4565; noble gases in lunar anorthositic rocks 60018, 65315, acquisition of terrestrial Kr, Xe indicating irreversible adsorption process, 92M/4564; soils, Mg isotope fractionation in, 92M/4281

Lüneburgite, crystal struct., 92M/1412 Luzonite v. famatinite

Maar-diatreme phreatomagmatism, USA, Arizona, Navajo Nation, petrol., 92M/1078

Macfallite, assoc. with SrMn₂[Si₂O₇](OH)₂•H₂O, new min. of lawsonite type, 92M/3333

Mackinawite, India, Rajasthan, Khetri copper belt, Chandmari mine, compositional variations in, 92M/2038; USA, Minnesota, Duluth Complex, Babbitt deposit, assoc. with Cu-Ni mineralization, 92M/0375

MADAGASCAR, basalt, tracking oceanic, continental sources, 92M/0644; inclusions in emerald, implications, 92M/0514

Maghemite v. spinel

- Magma, classification, 92M/0967: CO₂-bearing, isotopic evidence involvement of, in granulite formation, 92M/1813; cooling, model of nucleation, growth of crystals in, 92M/1536; migration, requirements for chem. disequilibrium during, 92M/4691; time-dependent Soret transport, applications to, 92M/4288; Alps, Bergell intrusion, mantle, Nd-, Sr-, O-isotopic, chem. evidence for two-stage contamination history of, 92M/4370; evidence Canada, Mackenzie, magnetic fabric for flow pattern of, 92M/4827; E Greenland, selectively contaminated, of Tertiary macrodyke 92M/4353; Indonesia, complex, Sunda-Banda arc, mapping magma sources, constraints from He isotopes, 92M/4391; Italy, Ivrea Zone, mantle, crustal, interactions, 92M/2167; Lipari, multiple magma mingling, 92M/2168; Japan, Kyushu, chem. of source, progressive contamination of mantle wedge, 92M/1017; Miyake-Jima, flow directions inferred from preferred orientations of phenocrysts in composite feeder dyke, 92M/4844; New Zealand, Largs, climatic controls of O isotopes in, high-latitude O isotope anomaly, 92M/0662; Pacific, Mariana Arc, tr. elem., isotopic characteristics of pelagic sediments, implications for petrogenesis of, 92M/4303; Pakistan, Kohistan, Chalt volcanics and Kohistan batholith, source regions, crustal growth, 92M/1009; USA, Alaska, Revillagigedo Is., emplacement in convergent tectonic orogen, 92M/2187; California, Long Valley Caldera, role of, in phreatic eruptions, 92M/3504
- -, alkaline, mafic, implications of xenolith glasses for mantle sources of, 92M/2131; ore-forming potential of, 92M/3975; Australia, New South Wales, analcite mugearite assoc. with megacrysts, implications high-P for amphibole-dominated fractionation Scotland, 92M/3447; Islay, Cnoc Rhaonastil, olivine-basalt, differentiated expt. dolerite, natural in low differentiation of, 92M/4788; USA, Colorado, Yampa area, hybrid mafic, relationship to Yellowstone mantle plume, lithospheric mantle domains, 92M/0676
- -, aluminosilicate, interaction between water and, 92M/4058
- -, andesitic, Japan, Kyushu, Yufu-Tsurumi volcano group, origin of, binary mixing model, 92M/3037

-, basaltic, S in, 92M/4352; Chile, Cordillera del Paine pluton, intrusion into crystallizing granitic magma chamber, 92M/2194; China, Gansu, Jinchuan ultramafic intrusion, high-Mg, cumulate of, 92M/4813; Finland, Aland, and granitic, mixing between, in quartz-feldspar porphyry, 92M/4779

bodies, cooling, T in, around, 92M/2813; crystallization calculations for binary melt cooling at constant rates of heat removal, implications for crystallization self-convecting, upward 92M/4770;

migration of, 92M/3515

calc-alkaline, Western Australia, Kambalda goldfield, acidic, in late Archaean composite dykes, relationships between, 92M/1755; Japan, Adatara volcano, mineralogy, phase relations, 92M/1013; Swiss/Italian border, Bergell pluton, mineralogy, geochem., products of magma mingling, 92M/3012

- chambers, basaltic, lab, investigation of assimilation at top of, 92M/1537; physics of aqueous phase evolution in plutonic envts., 92M/2133; sediment entrainment in viscous fluids, crystal eruption from magma chamber floors 92M/1535; sheet-like, convective style, vigour in, comment, 92M/0975, reply, 92M/0976; Channel Islands, Guernsey, gravity instabilities in, rheological modelling, 92M/2165; Italy, Vesuvius, magma mixing, convective compositional layering, 92M/1042; Mexico, Puebla, Caldera de Los Humeros, thermal modelling, 92M/4863; E Pacific Rise, ridge crest, marine seismic expts., 92M/3510; USA, California, Long Valley,, borehole stability near, stress modelling, 92M/1079
- , felsic, ascent of, and formation of rapakivi, 92M/2129
- -, granitic, behaviour of Sn in, 92M/4310; formation, ascent of, 92M/2834; Canada, Ontario, Goldlneau batholith, Archaean diapirism preceded by coalescence of, at depth, 92M/0883
- mixing, France, Massif Central, Sancy volcano, vs xenocryst assimilation, genesis of trachyandesites, 92M/0981; Italy, Aeolian Is., La Fossa di Vulcano, role of, during recent activity, 92M/3478; Tanzania, Oldoinyo Lengai volcano, carbonate, 92M/3488; USA, Nevada, Thirsty Canyon Tuff, limits to, based on chem., mineralogy of pumice erupted from chem. zoned magma body, 92M/2191
- , pantelleritic, New Zealand, Major Is., Opo Bay tuff cone, rising gas-poor, and external water, 92M/4851
- -, pegmatite, USA, Utah, Honeycomb Hills, eruptive, rhyolite, 92M/2190
- -, picritic, olivine xenocrysts in, exptl., microstructl. study, 92M/1564
- , potassic, Italy, origin of, one-dimensional diffusion-controlled model of source metasomatism, 92M/4796; Italy, Vulsini Mts, Latera, min., geochem., Sr-isotopic data, genesis of, 92M/0621
- , rhyolitic, New Zealand, nature of, involved in crustal evolution, exptl. study, 92M/4275; USA, California, Bishop Tuff, melt inclusions, crystal-liquid separation in. 92M/4421

- -, S-type, P in, P₂O₅ content of feldspar, 92M/4321
- , silicic, Fe-Ti oxide geothermometry, thermodynamic formulation, estimation of intensive variables in, 92M/1534; hydrous silicic to intermediate, diffusion of dissolved CO2, Cl in, 92M/0433; Iceland, origin of, revealed by Th isotopes, 92M/2997; Philippines, Mt Pinatubo, S-rich silicic, anhydrite-bearing pumice, evidence for existence of, 92M/2228
- -, subduction zone, fluid influence on tr. elem. compns. of, 92M/4969
- , tholeiitic, Canada, Ontario, Coldwell Complex, Geordie Lake intrusion. Pd-Te-rich disseminated sulphide from, 92M/1485; Japan, Adatara volcano, mineralogy, phase relations, 92M/1013
- Magmatic arcs, rates of processes in, implications for timing, nature of pluton emplacement, wall rock deformation, 92M/4692
- diapirs, international circulation in buoyant two-fluid Newtonian sphere, implications for, 92M/4768
- differentiation, fluid inclusion evidence for immiscibility in, 92M/4246
- emulsions, rheology, microstruct., theory, expts., 92M/4071
- immiscibility, Italy, Sardinia, Mount Genis, fluid phase evolution in granite, 92M/4247
- liquid, and heterogranular peridotite matrix, modelling of tr. elem. transfer between, 92M/3343; volatiles in, 92M/2815
- petrology, memorial vol. in honour of D.S. Korzhinskiy, (book), 92M/2503
- processes, geochem., 92M/1711; in oceanic ridge, intraplate settings, 92M/2237; O partial P as indicator of, 92M/2923; quantification methods, 92M/1712: Germany, Saxonian Granulite Massif, modelling of elem. pair behaviour during, 92M/2926
- rocks, relationship between major elem. chem. of, and crystallization T, 92M/3401; significance of low symmetry fabrics in, 92M/0906; NE Germany, petrol., 92M/3424; Turkey, Kaman Kirsehir, Kirsehir Massif, and Yozgat Regions, petrol., geochem., 92M/3435
- systems, calc-alkaline, orogenic, compn. critical crystallinity, fractional crystallization in, 92M/3400; numerical approach to boundary layer fractionation, application to differentiation in, 92M/4769; Chile, Tatara-San Pedro volcano, chem. variable, mafic, 92M/4426; Italy, Ischia, Sr, Nd isotope, tr.-elem. constraints on chem. evolution in last 55 k.y., 92M/0622
- Magmatism, Central Alps, Aar massif, late Hercynian potassic, ultrapotassic, geochem., tectonic significance, 92M/3417; Antarctica, South Shetland Is., King George Is., Mesozoic-Cainozoic, petrol., geochem. constraints on genesis, 92M/1756; Austria, E Alps, pre-Hercynian, origin of metabasites from Austroalpine basement, 92M/0619; Canada, Quebec, Abitibi greenstone belt, orogenic ultrapotassic, Archaean, 92M/1766; Labrador, Grenville Province, Grenvillian, U-Pb dating, 92M/0896; China, SE margin of Yangtze block, Precambrian

collision of Yangtze, Cathysia blocks, 92M/3031; S China Basin, isotopic, tr.-elem. evidence for endogenous Dupal mantle component, 92M/4387; S China Hainan Is., post-spreading Quaternary basalts, 92M/4388; Peru, Choquene dist., Palca 11 mine, 40 Ar/39 Ar dating. 92M/2440; USA, Alaska. Revillagigedo Is., deformation, 92M/3398; Nevada, extension-related, homogenization, lowering of ¹⁸O/¹⁶O in mid-crustal rocks during, 92M/3063; Oregon, Basin and Range Province, Cainozoic bimodal, petrol., 92M/3458; Yemen, Red Sea-Aden, rifting, Tertiary, evolution of transitional magma by fractional crystallization, crustai contamination, 92M/1000

—, acid, Brazil, Precambrian Sn-bearing continental-type, U-Pb dating, 92M/1309

, alkaline, volatiles in, 92M/4776; Canada, Ontario, Abitibi belt, Timiskaming group, U-Pb dating, Archaean, tectonic significance, 92M/1299; Ontario, Coldwell Complex, midcontinental rift, timing, origin, 92M/4404: W. central Europe. Tertiary-Quaternary extension-related, 92M/0636; France-Spain, N Pyrenean Rift Zone, from Cretaceous, REE, Sr-Nd isotope geochem., 92M/4363

—, arc, *Chile, Andes*, crustal contributions to, comment, 92M/1780, reply, 92M/1781

—, basaltic, Guiana, Amazon craton, evolution of, unmetamorphosed Proterozoic tholeiite dykes, 92M/4743

—, basic, South Australia, nature of, through development of Adelaide geosyncline and subsequent Delamerian orogeny, 92M/4757

—, granitic, Brazil, São Paulo, Proterozoic, petrol., 92M/0898; central Japan, Miocene, at island-arc junction, 92M/1016; Norway, late Caledonian, petrogenesis, significance, 92M/4357

—, kimberlitic, and diamond formation, isotope fractionation related to, 92M/0537

—, silicic, Finland, and diabase dyke swarms, evidence from Proterozoic, 92M/4736; Germany, Saxony, Erzgebirge, and metallogenesis, (book), 92M/2504

—, subduction related, elem. fluxes assoc. with, 92M/4970; geochem., geodynamical constraints, 92M/0605

Magmatite, Central Europe, crust-derived, fractionation categories of, 92M/4369

Magnesio-hastingsite v. amphibole

Magneriochloritoid v. chloritoid

Magnesiowüstite v. periclase

Magnesite, calcite-magnesite series, IR spectroscopy, 92M/3316; rapid method for detn. of major components of, by X-ray spectrometry, 92M/2463; Bulgaria, W Srednogorie, formation nature, physico-chem. anal. of min. parageneses in metasomatic zones of acid leaching, 92M/2263; Canadian Cordillera, in mesothermal Au-stibnite-quartz vein, 92M/2735

—, breunnerite, Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694

 deposits, Bosnia Herzegovina, Dinarides, assoc. with Alpine-type ultramafic rocks, stable isotope study, 92M/0552; Greece, North Evia, C, O isotope constraints on origin, 92M/1667; Slovakia, W Carpathians, occurrences, 92M/4324

Magnesium oxide, molecular dynamics simulations of melting at high *P*, 92M/2888

Magnetic studies, magnetic petrol., factors that control occurrence of magnetite in crustal rocks, 92M/0852; mantle plumes, control of magnetic reversal frequency, 92M/4979; palaeomagnetic constraints on geometry of field during reversals, geomagnetic 92M/4978: Triassic limestone, petromagnetic fabric anal., 92M/3675; Africa, Proterozoic palaeomagnetism and tectonic models, 92M/2082; Western Australia, Yilgarn block, magnetization, T at depth beneath, inferred from Magsat data, 92M/4980; Finland, Fennoscandia, palaeomagnetism of early Proterozoic layered intrusions, 92M/4741; Greenland, Gardar province, palaeoof Proterozoic magnetism igneous complexes, apparent polar wander track, 92M/3674; Indian Peninsula, Himalayas and Indus suture, palaeomagnetism, implications of continental drift, India-Asia collision, 92M/0944; Mexico, Sierra de Las Cruces, southward migration of volcanic activity, palaeomagnetic study, 92M/2225; New Zealand, Ruapehu and Ngauruhoe, search for volcano-magnetic effect, 92M/1064; Pacific, Funafuti, geophys. constraints on struct., 92M/1217; Scotland, Minches, post-Laxfordian magnetic imprint in Lewisian metamorphic rocks, strike slip motion, 92M/3611; Wigtownshire, Sandhead, geophys. evidence for concealed Caledonian intrusive body, 92M/4789; USA, Oregon, Steens Mountain, basalt, laser probe ⁴⁰Ar/³⁹Ar dating, age of geomagnetic polarity transition, 92M/0059; Minnesota, Duluth Complex, interpn. of magnetic data, 92M/0374

Magnetite v. spinel

Makatite, struct. of silicate layers in, ²⁹Si-NMR expts., 92M/2613

Malachite, 'emerald oiling', interpn. of Pliny's statement, 92M/2913; Western Australia, Ashburton Downs, assoc. with ashburtonite, new bicarbonate-silicate min., 92M/3327; Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694; Brazil, Pará, Serra Verde, mineable deposit, 92M/1635; England, Cornwall, Penberthy Croft, and assoc. mins., 92M/1223; Cockermouth area, min. exploration, 92M/3987; Warwickshire, Judkins Quarry, occurrence, 92M/2358; France, Var, Cap Garonne mine, assoc. with new min., 92M/3329; camerolaite, Nordpfalz, Rockenhausen, occurrence, 92M/2366; Schwarzwald, Wattkopf road tunnel, occurrence, 92M/3679; Thuringia, Caaschwitz, occurrence, 92M/2364; Scotland, Mannoch Hill, occurrence, 92M/1221

MALAWI, K-Mg interstratification in vermiculite, 92M/2552; Chilwa, Zomba, aegirine, occurrence, 92M/1237

MALI, short-lived Eburnian orogeny, geol., tectonics, U-Pb, Rb-Sr geochronol., 92M/0030; Kalana, quartz, sulphides from Au deposits, fluid inclusion, isotope data,

thermobarometry, 92M/2676; Syama, Au mine, geol., 92M/3939; Proterozoic Au deposit, regional setting, struct., geol., 92M/4012; Syama–Bundiali belt, Au mineralization, exploration history, geol. setting, 92M/3974; Tadhak, Permo-Jurassic alkaline province, Mali, 92M/4805

Manganese, diagenesis in bioturbated sediments, mathematical model, 92M/0698; oxidation in presence of Cd, coprecipitation mechanisms, products in, 92M/1598; relative importance of, in sorption of tr. metals by surficial lake sediments, 92M/4499; shipboard flow injection method for detn. of, in sea-water, using in-valve preconcentration, catalytic photometric detection, 92M/2462; Bolivia, Chiquitos Cambrian, supergroup, 92M/4003; Sweden, Kalix River, geochem., 92M/4473; USA, California, Franciscan Complex. microbanded formations. protoliths, 92M/0602

crusts, climatic influences on growth rates of, during late Quaternary, 92M/4336;
 Philippine Sea, distribn., morphol., geochem., 92M/1677; Pacific, pore sizes in, 92M/4018; central Pacific, hydrogenetic formation of, 92M/2970

deposits, stratabound, world occurrences of economic deposits, review, 92M/3976; Hungary, Urkút, and Slovakia, Branisko Mountains, Jurassic black shale-hosted, organic geochem., 92M/4553; Japan, Hokkaido, Tokoro belt, tr. elem. concns., XRF anal., 92M/0110; Oman, Wahrah fm., chert-hosted, depositional model, 92M/3540; Switzerland, Grison Canton, Oberhalbstein, presence of Sr in, evolution, parageneses, 92M/1663

 hexafluorosilicate-deuterium oxide, crystal struct., example of arrangement of antiphase domains, 92M/0267

— mineralization, Greece, Rhodopes, min., textural evolution, 92M/0344

— minerals, characteristics of products from acid ammonium oxalate treatment, 92M/0499; Germany, Thuringia, Ilmenau, Oehrenstock, occurrence, 92M/2365

— nodules, size, shape, quantitative measures, 92M/4004; New Zealand, marine min. potential in exclusive economic zone, 92M/0383; Pacific, distribn. of, 92M/4017; exploration, 92M/2667; pore distribn. in, 92M/2668; Pacific, Aitutaki–Jarvis transect, in EEZ, evaluation of, 92M/1436

— ore, Germany, Hesse, Giessen, mineralogy, 92M/3989; Japan, Ehime Pref., Sagadani mine, primary textures of, 92M/3318

— oxide, synthetic, *P*, *T* dependence of elastic props. of, 92M/2342

 oxyhydroxides, influence of major ions of sea-water on Cu(II) sorption by, model of polymetallic ore formations in recent basins, 92M/2893

Manganite, oxidation of Cr(III) to Cr(VI) on surface of, 92M/1597; precipitation during transformation of akagenéite into goethite and hematite in presence of Mn, 92M/0492; Gabon, Moanda, Mn-oxyhydroxide transformations in laterite, high-resolution TEM study, 92M/0857; Germany, Thuringia, Ilmenau, Oehrenstock,

occurrence, 92M/2365; New Zealand, Hawkes Bay, Kairakau Rocks, assoc. with pillow lava, 92M/4820; Red Sea, Atlantis II Deep, in metalliferous sediments, 92M/3979

Manganocolumbite v. columbite

Manganotantalite v. tantalite

Manganotychite, Russian Federation, Kola Peninsula, new min., 92M/2074

Mangerite intrusion, Finland, Vaaraslahti, Proterozoic, Rb-Sr, O isotope geochem., 92M/1723

Mantle v. Earth

Mapping, geoscience, quantitative link with min. deposit modelling, exploration-resource assessment, 92M/2652

Marble, forsterite, kinetics of textural equilibration in, 92M/1557; Antarctica, Dronning Maud Land, graphite-bearing, C geothermometry, 92M/3103; isotope Finland, Pusula, high-grade siliceous, heterogeneous fluids in, 92M/3114; Israel, Scythopolis and Caesarea, Roman marble trade, stable isotopes, 92M/4220; Italy, Carrara, mineralization in, 92M/4994; Italy, Ivrea-zone, Balmuccia, calc-silicate, in mafic rocks of deep crust, 92M/1160; Pamirs, Mg-rich, formation of granite pegmatite in, 92M/4811; Sweden, Gruvåsen, hosting Cu-Zn-Fe- Pb-As sulphides, tr. elem. zonation in, 92M/4460; USA, New York, Fowler, Grenville, Mn-rich silicic edenite in, 92M/1977

— metagranite contacts, USA, New York, Adirondack Mts, steep O-isotope gradients at, products of fluid-hosted diffusion, 92M/3104

Marcasite, mechanisms of formation from hydrothermal processes, solution. 92M/4135; reactions forming marcasite from solution, nucleation of FeS2 below 100°C, 92M/0502, via FeS precursors below 100°C, 92M/0503; England, Derbyshire, Matlock Bath, Wapping mine, goethite pseudomorphs after, occurrence, 92M/2357; Germany, KTB pilot hole, occurrence, 92M/0302; Nordpfalz, Rockenhausen, 92M/2366; occurrence, Rhenish Schiefergebirge, Altenbüren, 92M/1459; mineralization, Thuringia, Caaschwitz, occurrence, 92M/2364; Italy, occurrence, Sicily, Peloritani Mts, 92M/2673; Pacific, Lau and North Fiji Basins, hydrothermal mineralization. 92M/2115; Wales, influence of acidic mine, spoil drainage on water quality, 92M/1507

type iron chalcogenides, pnictides, FeX₂, single-crystal Raman spectra, 92M/2637

Margarite v. mica

Mariposite v. mica

Marl, simultaneous detn. of c.e.c., exchangeable cations on, 92M/2540; Yemen, Habban-Al Mukalla, construction material, potential, 92M/2665

Marmatite v. blende

Marokite, Mn_3O_4 at high P, diamond -anvil-cell study, structl. modelling, 92M/2789

Martensite, symmetry, martensitic transformations in ZnS crystals, 92M/0249 Matildite, *Bulgaria, Ardino*, in polymetallic deposit, 92M/0866

Maucherite, USA, Minnesota, Duluth Complex, Babbitt deposit, assoc. with Cu-Ni mineralization, 92M/0375

Mawsonite, Asia, assoc. with roquesite, 92M/4656; SW England, occurrence, 92M/3307; Spain, Neves-Corvo, in volcanogenic massive sulphides, 92M/0341; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336

Maxwellite, USA, New Mexico, Catron County, Black Range Sn dist., new min., 92M/0878

Mckinstryite, Czech Republic, Příbram, Vrančice, Pošepný vein, occurrence, min. data, 92M/2040

MEDITERRANEAN SEA, origin, age of Messinian evaporites, implications from Sr isotopes, 92M/3079; REE in sea-water, mixing in Mediterranean outflow, 92M/0731; U concn. in sea-water, relationship with salinity, 92M/0732; NE, compn. of sediments, 92M/3078; Tyrrhenian Basin, clay mins. as natural tracers in sediments, water column, lower atmosphere, 92M/2543

Melanephelinite dykes, Scotland, Orkney Is., primitive olivine, 92M/4360

Melanterite, Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001

Melaphyre, Czech Republic, Bohemia, agate in, 92M/4175

Melilite, CaO-Mg modulated struct. in, 92M/3820; -åkermanite-gehlenite join at 950°C, 5 kbar, in presence of CO₂ + H₂O, 92M/2858; O-Al₂O₃-SiO₂-Na₂O at 1 bar from low to high Na₂O contents, topology of analogue for alkaline basic rocks, 92M/4069; *Tanzania, Oldoinyo Lengai volcano*, in lapilli of 1966 ash eruption, 92M/3488

—, åkermanite, solid solution, heat capacity anomalies at incommensurate-normal transition, 92M/0453; –gehlenite-melilite join at 950°C, 5 kbar, in presence of CO₂ + H₂O, 92M/2858

—, gehlenite, static lattice energy minimization, lattice dynamics calculations, 92M/0216; –åkermanite-melilite join at 950°C, 5 kbar, in presence of CO₂ + H₂O, 92M/2858; *Japan, Okayama Pref., Fuka*, assoc. with monoclinic tobermorite, 92M/2009; *Tojo-cho, Kushiro*, in skarn, 92M/2002

— glass, ¹³C MAS NMR, method for studying CO₂ speciation in, 92M/4039

Melilitite, Italy, S. Venanzo and Cupaello, Roman Comagmatic Region, and lamproite, petrogenetic relationships between, 92M/0983

Melt migration, in upper mantle-type rocks, kinetics of, 92M/1529

 percolation, geochem. consequences of, upper mantle as chromatographic column, 92M/1713

Melts, and aqueous fluid, partitioning of Cu, Sn, Mo, W, U, Th between, in systems haplogranite—H₂O—HCl, haplogranite—H₂O—HF, 92M/2827; and fluids, halogen fugacities (HF, HCl) in, 92M/2829; and plagioclase, partitioning of Sr between, comment, 92M/4115, reply, 92M/4116; in system diopside—anorthite, entropy

dependence of viscosity, the glass-transition T of, 92M/2836; multicomponent, in thin dykes, sills, numerical simulation of crystallization of, effects of heterocatalytic nucleation, compn., 92M/2828; NaAlSi₃O₈, -H₂O, mixing props., calorimetric data, geol. implications, 92M/1550; partial melt distributions from inversion of *REE* concentrations, 92M/2083; quartz-feldspar, phase relations, compositional dependence of H₂O solubility in, 92M/4049; water solubility, Cl partitioning in Cl-rich granitic systems, effects of melt compn. at 2 kbar, 800°C, 92M/4064; *North Sea*, generation during rifting, 92M/0615

—, albite, system NaAlSi₃O₈–H₂O–H₂, solubility, interaction mechanism of fluid species with melt, 92M/1551

—, aluminosilicate, haplogranite compn., water solubility in, at 2 kbar, 92M/4060; ²⁷Al NMR spectroscopy, 92M/4056; peralkalinity, Al ≠ Si substitution,

solubility mechanisms of H₂O in, 92M/4057—, basaltic, CO₂ solubility, C isotope fractionation in 92M/2832; crystallization of chromite and Cr solubility in, 92M/1593; O diffusion in, exptl. results, discussion of chem. vs tracer diffusion, 92M/1546; partitioning of Pd, Ir, Pt between sulphide liquid and, effects of melt compn., concentration, O fugacity, 92M/1591; synthetic, solubility, partitioning of Ne, Ar, Kr, Xe in mins. and, 92M/4068; Finland, Åland, and wallrock in dykes, sills, interaction between, 92M/4778

—, basic, olivine-liquid equilibria, chem. activities of FeO, NiO, Fe₂O₃, MgO in, 92M/4067

—, dacitic, rhyolite, tracer diffusion of network formers, multicomponent diffusion in, 92M/4061

—, haplogranitic, Mg solubility in, exptl. study. 92M/0432

study, 92M/0432 -, silicate, and ilmenite, influence of O fugacity on W, Mo partitioning between, 92M/0535; and olivine, effect of melt compn. on wetting angle between, 92M/0422; crystal field spectra, geochem. of transition metal ions in, 92M/3816; diffusion of water in, 92M/1547; Fe-bearing, redox viscometry, 92M/2826; high-T, Raman spectra, 92M/2824; hydrous, Cl behaviour in, exptl. study, 92M/4062; kinetic anal. of crystallization by DSC, DTA, thermal optical methods, 92M/2516; MgSiO₃, Mg₂SiO₄, molecular dynamics simulations of P, T effects on, 92M/1549; peralkalinity, H₂O solubility mechanisms in, 92M/2825; Raman spectroscopy at magmatic T, Na₂O-SiO₂, K₂O-SiO₂, Li₂O-SiO₂ binary compns. in T range 25-1475°C, 92M/4059; reinterpn. of reduction potential measurements done by linear sweep voltammetry in, 92M/1544; shear, volume, enthalpy, structl. relaxation in, 92M/4053; solubility of neutral Ni in, implications for Earth's siderophile elem. budget, 92M/4047; T-dependent thermal expansivities of, system anorthite-diopside,

thermodynamic

physico-chem. props., 92M/4054

model.

92M/4048;

- —, tholeiitic, P, T dependence of CO₂ solubility in, 92M/0430
- Mendipite, secondary min. formation in PbO-H₂O-HCl system, 92M/2911
- Meneghinite, *India, Rajastan, Rajpura-Dariba,* X-ray, microprobe, optical props., 92M/4658
- Mercury, *Peru, Huancavelica*, assocn. of Ag, Hg, As, Sb, carbonaceous material, 92M/2761
- deposits, Spain, Centro-Iberian Zone, Almadén mine, geol., metallogeny, 92M/1430; Spain, Ciudad Real, Almadén, geol., 92M/0338
- ---, native, USA, California, San Benito County, Clear Creek Claim, assoc. with new min., szymańskiite, 92M/3337
- Mertieite, rapid technique for detn. of precious metals in geol. samples, based on selective aqua regia leach, 92M/2459
- Merwinite, stability, high-T phase relations in presence of CO₂ + H₂O, 92M/2857
- Mesolite v. zeolite
- Meta-carbonatite, N Oman Mtns., Dibba zone, Semail ophiolite, in metamorphic series, 92M/3539
- Meta-igneous suite, USA, South Carolina, Hammett Grove, tr.-elem. geochem., oceanic origin for, 92M/3059
- Meta-lamprophyre, Switzerland, Alps, from Variscan massifs, contrasting REE characteristics, 92M/1727; mineralogy, Alpine metamorphism, 92M/3622
- Meta-ultramafite, Germany, KTB pilot hole, petrol., 92M/1152
- Metabasalt, Archaean, geotectonic significance, 92M/3029; Western Australia, Hunt mine, immobility of REE, high field-strength elems., transition metals during Archaean Au-related hydrothermal alteration of, 92M/3897
- Metabasic rocks, Greece, Cyclades, Tinos Is., greenschist facies metamorphic equivalents, geochem., 92M/1811; Thrace, circum-Rhodope belt, marginal basin-volcanic arc origin of, 92M/3016
- Metabasite, compositional variations in mafic phyllosilicates from, application of chlorite geothermometer, 92M/2275; low-grade, petrogenetic grid, 92M/0424; Germany, KTB pilot hole, petrogr., geochem., mineral chem., metamorphic 92M/1151; Vor-Spessart, evolution, geochem., 92M/4368; Japan, Akita Pref., Hanaoka area, Miocene, 92M/1183; Hokkaido, Kamuikotan zone, Horokani metamorphic facies, zeolite facies, pumpellyite from, 92M/0814; Slovenia, Alps, Pohorje, petrol., min. 92M/2297; Spain, Cabo Ortegal Complex, clinopyroxene-garnet-, petrol., 92M/1142
- dykes, Greece, Chortiatis series, petrol., P-T condns. of metamorphism, 92M/2299
- Metacarbonate rocks, petrogenetic grids for, P-T phase-diagram projection for mixed-volatile systems, 92M/1560
- Metachert, Japan, Ryoke, discontinuous grain growth of quartz in, influence of mica on microstructl. transition, 92M/1181; New Zealand, Marlborough, Onamalutu Valley, Mn-, Fe-bearing, petrol., 92M/4953

- Metaeclogite, Bulgaria, Rhodopes, geochem., 92M/0718
- Metagabbro, Alps, Mg-Al rich, Fe-Ti rich, from ophiolite, geochem., 92M/1726; Germany, KTB pilot hole, petrol., 92M/1152; Japan, Shikoku, Sebadani, ⁴⁰Ar/³⁹Ar dating, tectonometamorphic evolution, 92M/1283; Norway, Modum complex, heat source for Sveconorwegian metamorphism, 92M/3407; important heat source for Sveconorwegian metamorphism, 92M/2138; Poland, Ząbkowice Śląskie, Bukowczyk Hill, petrol., 92M/1166; Central Scotland, Inverness-shire, Highlands. pre-750 Ma. tectonostratigraphical significance, 92M/4920; United Arab Emirates, N Oman Mt, Asimah Window, min. equilibria in, evidence for polymetamorphic evolution, 92M/3535
- Metagreywacke, Russian Federation, Karelia, Proterozoic, geochem., provenance, lithostratigraphic correlation, depositional setting, 92M/3362
- Metal, assoc. with organic matter, sensitivity, effectiveness of extractants used to release, 92M/0744; comparison of microwave, conventional extraction techniques for detn. of, in soil, sediment, sludge samples by AAS, 92M/2443; distribn. between particulate, gaseous forms in volcanic plume, 92M/1066; enrichment in Upper Trias coaly clay, sandstone horizons, 92M/1662; Antarctica, Peninsula, concns., sources in aerosol, 92M/0396; Canada, Quebec, St. Lawrence estuary, dissolved, distribns., 92M/1841: particulate, Greenland, high-technology, in alkaline and carbonatitic rocks, recognition, exploration, 92M/1898; USA, Colorado, Clear Creek, distribn, between water and entrained sediment in streams contaminated by acid mine drainage, 92M/0400; Indiana, New Albany Shale, enrichment, distribn., geochem. characteristics of. Devonian-Mississippian, 92M/4341: Montana, Clark Fork valley, water-soluble, prediction of concentrations in fluvially deposited tailings sediments, 92M/2787
- deposits, Australia, New South Wales, Wagga Tank, weathering, effect upon geochem. dispersion, 92M/1906; China, distribn., 92M/0322; China, Hunan, Shizuyan-Yejiwei, W-Sn-Mo-Bipolymetallic deposit, fluid inclusion study, 92M/0360; Japan, Hokkaido, production, concn. rate, 92M/0569; Pacific, Lau and North Fiji basins, calcareous ooze, volcanic ash, metalliferous sediments in Quaternary, 92M/2103; Spain, Linares-La Carolina, vein-type base, Pb isotopic constraints, 92M/4322; Spanish Central System, Variscan Ba-(F)-(base-metal) vein deposits, geol., metallogenic aspects, 92M/3988; USA, Alaska, Russian Mission C-1 quadrangle, geol., min. resources, 92M/2118; California, Mojave Desert, Shumake, precious, volcanic dome-hosted epithermal, 92M/2748; Idaho, Bayhorse, stable isotope study of water-rock interaction, ore formation, 92M/4340
- —, heavy, pollution, in shooting range envt., 92M/3378; Greece, Thasos Is., soil

- contamination old mining sites, 92M/0393; India, Bombay, contamination in soils, chem. weathering of basalts, control on, 92M/1525; pollution in water, suspended particles, sediments, 92M/0395; pollution of aquatic sediments, recognition of envtl. discriminants, 92M/0394; Norway, Barnesfjord, (Zn, Cu, Pb), accumulation, 92M/4432; Turkey, Sea of Marmara, concentrations in surface sediments from two coastal inlets, 92M/1524; Wales, Ceredigion, in potable water, 92M/1505
- mineralization, Canada, British Columbia, Toodoggone River, precious, Jurassic epithermal deposits, 92M/0284; USA, Alaska, Mt Estelle pluton, precious, base, assoc. with high-salinity fluids, 92M/1482
- —, noble, South Africa, Barberton Greenstone Belt, abundances in early Archaean impact deposit, 92M/4600
- oxides, calculation of O isotope fractionation in, 92M/0491
- —, precious, detn., instrumental methods, (book), 92M/1323; hydrothermal precipitation of, on sulphide substrates, 92M/3913; in laterite, geochem., 92M/1884; in situ anal. in polished min. samples, sulphide 'standards' by accelerator mass spectrometry at concentrations of ppb, 92M/0099; rapid technique for detn. of, in geol. samples, based on selective aqua regia leach, 92M/2459
- —, trace, contents of dandelion as convenient envtl. indicator, 92M/1510; in natural waters, automated two-column ion exchange systems for detn. of speciation, 92M/0093; Papua New Guinea, Morobe Province, Labu Lakes, distribn. in estuarine ecosystem, 92M/2783
- —, transition, catalysis, in generation of petroleum, natural gas, 92M/4517
- Metalamprophyric dykes, Switzerland, Silvretta, Mönchalp granite, geochem., origin, 92M/3011
- Metallogeny, and plutonism, volcanism, in continental crust, relationships between, 92M/2657; Central Europe, of transition period between Hercynian orogenesis, subsequent platform stage, 92M/2660; Germany, Saxony, Erzgebirge, and silicic magmatism, 92M/2504; Peru, Andes, geol., geochronol. constraints on metallogenic evolution, 92M/2704
- Metallophyrin, spectroscopic props., 92M/1854
- Metallurgy, Au, (book), 92M/1333
- Metamorphic aureoles, low-P, influence of crystallogr., kinetics on phengite breakdown reactions in, 92M/4909; Scotland, Highland, Ballachulish igneous complex, pelite, petrogr., min. chem., 92M/2150, partially melted pelitic rocks, field relations, petrogr., 92M/2151, decarbonation reactions in siliceous dolomites, impure limestone, 92M/2152, carbonate rocks, microtextures, reaction mechanisms, comparison with Italy, Monzoni, 92M/2153, quartz grain coarsening by collective crystallization in contact quartzite, 92M/2154, P-T-a(H₂O) condns. in, 92M/2158, stable isotope geochem., 92M/2159, evidence of fluid phase behaviour, controls in, 92M/2161;

- Ballachulish igneous complex, modelling of min. $\delta^{18}O$ values in, closed-system model predicts apparent open-system $\delta^{18}O$ values, 92M/4461
- belts, Brazil, Minas Gerais, Abre Campo-Jequeri quadrangle, petrol., 92M/3663; Canada, British Columbia, Coast plutonic complex, Scotia-Quaal, distinct assemblage with late Cretaceous deformational, metamorphic history, 92M/2309; Japan, Hokkaido, Hildaka, tectonic evolution, implication for late Cretaceous-Middle Tertiary tectonics, 92M/2303; USA, Alaska, N American distribn., characteristics, Cordillera. 92M/4954
- complex, Greece, Central Rhodope, Xanthe-Echinos, metamorphism, migmatization, 92M/4939
- differentiation, geochem. self-organization, mechano-chem. model of, 92M/1122
- facies, amphibolite facies, Brazil, Rio Grande do Sul, Passo Feio, min. chem., 92M/2319; Ireland, Galway, Connemara Schists, melting reactions, role of water infiltration in formation of migmatites, 92M/1134; Norway, Caledonides, Bergen Arcs, fluid-induced retrogression of granulites, fluid inclusion evidence from shear zones, 92M/4915
- —, blueschist facies, *Greece, Cyclades, Tinos Is.*, blueschist-greenschist transition, metabasite, compositional control or fluid infiltration?, 92M/1168; *Portugal*, Hercynian, tectonothermal implications, 92M/1158
- —, eclogite facies, Austria, Ötztal basement, Eoalpine, petrol., 92M/1156; France, Armorican Massif, Champtoceaux nappe, 92M/1137; Germany, Saxony, Erzgebirge, high P metamorphism under contrasting P-T condns., 92M/4933; Norway, Bergen Arcs, structl. development, petrofabrics of shear zones, implication for deep crustal deformation processes, 92M/4912
- -, granulite facies, charnockitic alteration, evidence for CO₂ infiltration in, 92M/4910; P-T condns., assessment of accuracy of isochore location techniques for H2O-CO2-NaCl fluids at, 92M/4267; Australia, Strangways Range, silica-undersaturated sapphirine, spinel, kornerupine rocks, 92M/4948; Brazil, Minas Gerais, terrains, geochem., 92M/1815; Canada, Quebec, Ashuanipi Complex, and crustal magmatism, 92M/3658; Estonia, rocks, PT-development, 92M/3365; Karnataka, Closepet, late Archaean, generation, emplacement of granite during, 92M/3652; Norway, Bergen granulite-eclogite transition, comparison of exptl. work and natural occurrence, 92M/1130; Sri Lanka, layered basic intrusion, deformed, metamorphosed in, 92M/3443; USA, New York, Johnsburg, paragenesis of serendibite, example of B enrichment in, 92M/2808
- —, greenschist facies, Congo, Chaillu, Bouenza sequence, 92M/1171; France, Ardenne, fluid infiltration during, diabase dyke, 92M/3092

- —, zeolite facies, Japan, Hokkaido, Kamuikotan zone, Horokani metamorphic facies, pumpellyite from metabasites, 92M/0814
- fluids, electromagnetic exploration for fluids in Earth's crust, 92M/4234; fault-valve behaviour, hydrostatic-lithostatic fluid P interface, 92M/4244; migration of, mass, heat transfer, 92M/4239; models of chem. alteration caused by movement of, in deep crust, 92M/4242; palaeopermeability, fluid-flow in crystalline bedrock, 92M/4241; possible role of, for structuring of continental crust, 92M/4235; Austria, Tauern Window, Habachtal, evolution in shear zones, fluid inclusions in emeralds, 92M/0549; Germany, Black Forest, geophys. evidence for, in crust, 92M/4237
- minerals, oscillatory zoning in, indicator of infiltration metasomatism, 92M/1124
- ore textures, importance of deformation expts, on mins, for interpn. of, 92M/1556
- petrology, computer programs for P-T-t path calculations, 92M/2444; importance of careful observation to make meaningful maps, 92M/3340; memorial vol. in honour of D.S. Korzhinskiy, (book), 92M/2503
- processes, high-resolution garnet chronometry, rates of, 92M/3710
 - rocks, Cl, Br, I anals. by isotope dilution mass spectrometry, 92M/0526; high P/T, Ostwald ripening of garnet in, 92M/1572; movement zones in, microstructl. relationships, shear sense, 92M/3605; P-T-t path studies, 92M/2810; stability of oxide mins., 92M/0847; Albania, Lura, petrol., P-T condns., 92M/3643; Alps, Briançon basement, min. compn., polymetamorphic evolution, 92M/4932; Central Alps, chem. compn., 92M/4466; Australia, Reynolds Range, P-T deformation path for mid-Proterozoic, low P terrain, 92M/2306; Finland, Kainuu Schist Belt, and assoc. gneiss, Proterozoic, stratigr., 92M/4919; Germany, Bavaria, KTB borehole, profile of, 92M/3388; Erzgebirge, tectonic overprint of, quartz microfabric anal., 92M/3635; KTB pilot hole, accessory ore mins., 92M/0302; Mid-German Crystalline Rise, Odenwald, tectonothermal evolution of part of Variscan magmatic arc. 92M/3634; Saxony, Erzgebirge, melt, fluid inclusion studies, 92M/3642; Himalayas, high-P, tectonic implications, 92M/0940; Hungary, Drava Basin, very low-, low-grade, in pre-Tertiary basement, K-Ar, Rb-Sr dating, 92M/1265; very low-, low-grade, in Pre-Tertiary basement, min. assemblages, illite 'crystallinity', b data, 92M/2298; India, Nuliyam, dehydration reaction, isotope front transport induced by CO₂ infiltration, 92M/4467; Ireland, contrasted Connemara. metamorphic, structl. evolutions across major ductile/brittle displacement 92M/3612; Italy, Alps, Sesia-Lanzo Zone, metamorphism, tectonics, 92M/4928; Italy, Alps, Sesia-Lanzo Zone, Aosta valley, protoliths of 'eclogitic micaschists', 92M/4927; Nepal, Langtang Valley, High Himalayan Crystalline sequence, tectonothermal evolution, 92M/4945; New
- Zealand, vein Au in, 92M/1421; Norway, Western Gneiss Region, Scandian Mt belt. petrol. constraints, P-T path of Devonian collapse tectonics, 92M/4914; Romania, S Carpathians, Au in, 92M/3878; Russian Federation, Kola Peninsula, compn. of, and evolution of Lapland Granulite Belt, 92M/4944; Scotland, Minches, Lewisian, post-Laxfordian magnetic imprint in, strike slip motion, 92M/3611; Spain, Córdoba, Sierra Albarrana, petrol., 92M/2290; Pyrenees, Leiza Fault, high-grade, petrol., 92M/1141; Turkey, Bitlis Massif. Cökekyazi-Gökay area, petrol., metamorphism, genesis, 92M/3645; USA, California, Catalina schist. subduction-related, B, Be concentrations in, implications for subduction-zone recycling, 92M/3109; Virginia, Blue Ridge province, lithofacies of Precambrian basement complex, 92M/3659 Metamorphism, daughter-parent
- systematics in U-Th-bearing igneous accessory min. assemblages as potential indices of metamorphic history, 92M/4226; equilibrium dihedral angles in system H₂O-CO₂-NaCl-calcite, implications for fluid flow during, 92M/1558; timing of min. growth across regional metamorphic sequence, 92M/4911; Albania, Kruja Zone, 92M/3644; Canada, Ontario, Atikokan, Quetico, sedimentary rocks, min. chem., 92M/2313; France, Pyrenees, Baronnies graben, Cretaceous, metamorphic evolution, diagenesis to amphibolite facies, 92M/3613; Himalayas, Baltoro-Muztagh Karakoram, thermal model, 92M/0946; Italy, Apennines, sub-seafloor, reaction between olivine, plagioclase, as consequence of fluid-rock interactions during, 92M/3597; Orobic Alps, contrasting thermomechanical evolutions in metamorphic Southalpine basement, 92M/4931; W Alps, Sesia-Lanzo zone, P-T condns., 92M/3626; Japan, Hidaka metamorphic belt, Tertiary deep crustal ultra-, 92M/4947; Kazakhstan, Kokchetav massif, diamond-P, zircon response to, 92M/2413; New Zealand, Northland, Omahuta and Puketi Forests, Waipapa Terrain, 92M/4951; Northland, Tangihua Volcanics, hydrothermal, review, synthesis, 92M/4906; Northland, Waipapa group, regional, 92M/4950; Nigeria, Igarra belt, Pan-African, 92M/3648; Scandinavia, Handöl area, P-T paths, record of Caledonian accretion of outboard rocks to Baltoscandian margin, 92M/4916; Spain, Catalonian Coastal Ranges, Hercynian, 92M/0916; Hesperian massif, compn. of phyllosilicates in Precambrian, low-grademetamorphic, clastic rocks used as indicator of metamorphic condns., 92M/3631; Turkey, Ankara Mélange, characteristics of, 92M/3646; USA, California, Old Woman Mts area, 40 Arl 39 Ar thermochronol., thermobarometry of, 92M/4719; Georgia, Blue Ridge, Soque River and Chunky Gal Mt thrust sheets, contrasting deformation, 92M/3660; Massachusetts, Hope Valley Shear Zone, across lithologic boundary, differential response of zircon U-Pb isotopic systematics to, 92M/2434; Wales,

Welsh Basin, Corris Slate Belt, influence of strain, lithol., stratigraphical depth on illite crystallinity in mudrocks, implications for timing of, 92M/2284

—, burial, low-grade, resetting of Rb-Sr ages of volcanic rocks by, 92M/1245

- -, contact, aureole systematics, 92M/3596; aureole tectonics, 92M/3595; chem., phys. props. of fluids, 92M/3585; dehydration, decarbonation reactions as record of fluid infiltration, 92M/3590; effects of fluid production on fluid flow during, 92M/3604; kinetics of coarsening, diffusion-controlled min. growth, 92M/3593; kinetics of heterogeneous reactions, 92M/3594; mechanisms for fluid transport during, 92M/3588; metasomatism, 92M/3589; modeling thermal regimes, 92M/3592; overview, 92M/3583; phase equilibria, thermobarometry of calcareous, ultramafic, mafic rocks, iron formations, 92M/3587; phase equilibria, thermobarometry of metapelites, 92M/3586; phys., chem. characterization of plutons in relation to, 92M/3584; review, (book), 92M/2497; stable isotope monitors, 92M/3591; Canada, British Columbia, Trout Lake, evolution of aqueous-carbonic fluids during, 92M/4337; Norway, Oslo Rift, of layered shalecarbonate sequences, buffering, infiltration, mechanisms of mass transport, 92M/4905; Scotland, Highland, Ballachulish igneous complex, 92M/2163; igneous complex and aureole, equilibrium, kinetics in, (book), 92M/1324; USA, Texas, Franklin Mts, Castner Marble, Proterozoic, progressive, 92M/3602; Wyoming, Morton Pass, Laramie anorthosite, partial melting of pelitic rocks, 92M/1115
- —, high-grade, calculation of CO₂ activities using scapolite equilibria, constraints on presence, compn. of fluid phase during, 92M/1559; Pan-African Belt, eclogites, isotopic, tr. elem. geochem., case study of REE fractionation during, 92M/4373; USA, Nevada, Ruby Mts-E Humboldt Range core complex, O, H isotope study, 92M/4225

—, high-P, REE behaviour during, 92M/0721; Central Alps, relics of, in different lithols., 92M/3621; Europe, Bohemian Massif, comparisons, contrasts between Moldanubian Zone, Münchberg Massif, ZEV, ZTT, Erzgebirge, 92M/1147; Italy, W Alps, Dora Maira Massif, ultrahigh-P, age of, Pb-Sr-Nd isotopic behaviour of deeply subducted crustal rocks, 92M/1809

---, high-T-low-P, in convergent orogens, 92M/1117; mechanical consequences of granite emplacement during, origin of 'anticlockwise' P-T paths, 92M/3609; Australia, Arunta inlier, Anmatjira range, discrete Proterozoic structl. terrains assoc. with, tectonic implications, 92M/2307; Mary Kathleen Fold belt, in compressional tectonic setting, 92M/3656

—, regional, effects of fluid production on fluid flow during, 92M/3604; Belgium, Givonne, lower Palaeozoic metasedimentary rocks, petrol., 92M/1135; Canada, Quebec, Cape Smith thrust belt, evolution of, interaction of tectonic, thermal processes, 92M/2314; USA, South Dakota, Black Hills, low-P, Proterozoic pelitic schist, petrogenesis, constraints on, 92M/3399

retrograde, in thrust zones, high salinity fluids, result of, 92M/4251; Western Alps. and prograde, eclogitic metaophiolites, P-T path, 92M/1140; France, Ardenne, Rocroi Massif, Grande Commune, diabase dyke, Variscan, 92M/1139; Massif Central. Maclas, eclogites, 92M/1138; Ireland, Connemara, stable isotope study of retrograde alteration, 92M/4462; Russian Federation, Baikal region, and prograde, geochem., 92M/3097; Sweden, Bergslagen, of gedrite-biotite-plagioclase bearing rocks, chem., reaction mechanisms, micro-structs. during, 92M/4918; USA, Virginia, allochem. retrograde, in shear zones, metapelites, 92M/2316

—, shock, of single-crystal quartz, effect of T on, 92M/4120; Canada, Haughton impact struct., and isotope systematics, K-Ar in experimentally, naturally shocked rocks, 92M/4601

—, very low grade, degree of, and development of slaty cleavage, 92M/2277; England, Cumbria, Lake District, and Scotland, Southern Uplands, Rhinns of Galloway, areas of, excursion guide, 92M/1132; SW England, Variscan, diastathermal, thrust-related origin, 92M/2278

Metamunirite, USA, Colorado, San Miguel County, new anhydrous Na metavanadate, 92M/0879

Metaophiolite, Western Alps, eclogitic, prograde, retrograde metamorphism, P-T path, 92M/1140

Metapelite, H, O variation in biotite from, 92M/2939; phase equilibria, thermobarometry, 92M/3586; Alps, Val Pusteria, muscovite in, 92M/4619; Italy, Sardinia, C. Malfatano-Chia, Bithia fm., metamorphism in, 92M/1161; Oman, high P, glaucophane chloritoid-bearing assemblages, petrol. significance, petrogenetic grid 92M/1176; Russian Federation, Karelia, geochem., Proterozoic, provenance, lithostratigraphic correlation, depositional setting, 92M/3362; USA, Maine, Rangeley area, chlorite-bearing, evidence for assemblages, 92M/1192; equilibrium Virginia, allochem. retrograde metamorphism in shear zones, 92M/2316

Metarodingite, *Italy, Lanzo* and *Bracco*, ophiolite, isotope data, indications for evolution of Alpino-type ultramafic-mafic complexes, 92M/1810

Metasandstone, USA, California, Catalina schist, stable isotope, tr. elem. indicators of devolatilization history in, 92M/3108

Metasedimentary rocks, Canada, Ontario, Superior Province, Hemlo-Heron Bay greenstone belt, Archaean, geochem., implications for provenance, tectonic setting, 92M/1797; Greece, Peloponesus Zaroucha group, low grade, chem. mineralogy, illite crystallinity, 92M/1169; Russian Federation, Siberia, Anabar Shield, Precambrian, geochem., 92M/0722

Metasomatism, infiltration, oscillatory zoning in metamorphic mins., indicator of, 92M/1124; local equilibrium in,

diffusion-controlled growth of chert nodule dolomite, 92M/0705; macrokinetic model of origin, development of monomineralic bimetasomatic zone, 92M/2806; mantle, evidence from MARID-harzburgite compound xenolith, 92M/3439; mantle, Precambrian, highly alkaline lava in Proterozoic rift zone, implications for, 92M/4406; wall-rock, exptl. modelling, 92M/2807; South Africa, Barberton greenstone belt. Archaean. by evaporite-derived B. tourmaline mineralization, 92M/0720

Metasomatite, Russian Federation, Urals, Novonickolaevskă ore-field, of porphyry Cu deposits, paragonite-bearing, 92M/4622

Metavolcanic rocks, W Alps, Piedmont Zone, petrol., 92M/2287; Canada, Ontario, Grenville province, Central Metasedimentary Belt, arc suites, geochem., 92M/3051; India, Holenarsipur, Archaean, Sm-Nd dating, 92M/1279; Morocco, Bou Azzer-El Graara ophiolite, geochem., significance of, 92M/2079

Metavoltine, Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001
Meteorites.

Allan Hills A77307, 92M/4591; A81005, 92M/3199, 92M/3208, 92M/3213
Allende, 92M/0783, 92M/0784, 92M/0785, 92M/1923, 92M/1924, 92M/1925, 92M/1926, 92M/3841

Angra dos Reis, 92M/1934, 92M/4593 Belgica-7904, 92M/3214 Bencubbin, 92M/0788

Carlisle Lakes, 92M/1931 Chassigny, 92M/4582 Eagle Station, 92M/1936 El Sampal IIIA, 92M/3229

Fayetteville, 92M/3225 Fayetteville, 92M/3225 Iguaraçu, 92M/1922 Inman, 92M/1932

Ivuna, 92M/1929 Johnstown, 92M/1937 Kernouvé, 92M/0793

Lewis Cliff 85300, 92M/3224; 85328, 92M/3219; 86010, 92M/1934, 92M/4593; 86216, 92M/3219; 87051, 92M/1934

92M/3219; 87051, 92M/1934 Los Martinez, 92M/4575 MacAlpine Hills 92M/3204, 92M/3206; MAC88104, 92M/3197, 92M/3201, 92M/3202, 92M/3207, 92M/3208, 92M/3209; MAC88105, 92M/1933, 92M/3197,

92M/3198, 92M/3199, 92M/3200, 92M/3201, 92M/3202, 92M/3203, 92M/3207, 92M/3208, 92M/3209

Mt Padbury, 92M/3218 Murchison, 92M/0785, 92M/0786, 92M/4589 Nakhla, 92M/0781

Nilpena, 92M/4585 Nuevo Mercurio, 92M/3222 Pomozdino, 92M/1935 Saint Severin, 92M/0793

Semarkona, 92M/3221, 92M/4594 Springwater, 92M/1936

Tieschitz, 92M/1932 Vaca Muerta, 92M/3218 Vigarano, 92M/0792, 92M/4590 Weston, 92M/0799

Yamato, 92M/3198; Y-8448, 92M/3219; Y-74123, 92M/1930; Y-75154, 92M/3219; Y-82162, 92M/3215, 92M/3216; Y-86032, 92M/3209, 92M/3211, 92M/3212, 92M/3213; Y-86720, 92M/3215, 92M/3216; Y-790981, 92M/1930; Y-791186, 92M/0782; Y-791197, 92M/3208, 92M/3209; Y-791839, 92M/3219; Y-792410, 92M/0782

Meteorites, accretion in inner nebula, relationship between terrestrial planetary compns. and, 92M/4568; compn. of solar

wind noble gases released by surface oxidation of metal separate from Weston, 92M/0799; cosmic spherules in geol. record, 92M/1940; detn. of cooling rates using Ca exchange between olivine, clinopyroxene, 92M/1921; detn. of picogram quantities of REE in meteoritic materials bv direct-loading thermal ionization MS, 92M/0106; exposure history of individual cosmic particles, 92M/0778; Fe-Mg order-disorder in orthopyroxene crystal from Johnstown, 92M/1937; oldest zircons in solar system in Vaca Muerta, Simmern, 92M/3705; production of cosmogenic nuclides in, by galactic protons, 92M/1939; Sm-Nd evolution of, 92M/4580; Algeria, Sahara Desert, new meteorite finds, 92M/4572; Antarctica, detn. of half-life of ⁴¹Ca from measurements of five meteorites, 92M/0794; discovery of, 92M/4573; Allan Hills, TL survey of 12 meteorites collected by European 1988 expedition, importance of acid washing for TL sensitivity measurements, 92M/0795; Antarctica and Greenland. min. compns. micrometeorites, 92M/4571; Ivory Coast, microtektite strewn field, descriptn., relation to Jaramillo geomagnetic event, 92M/3230; USA, Arizona, Meteor Crater, Cañon Diablo, U accumulation during weathering of meteoritic iron, 92M/4574

- —, angrites, age, isotopic relationships among Lewis Cliff 86010, Angra dos Reis, 92M/4593; ²⁴⁴Pu–Xe formation, gas retention age, exposure history, terrestrial age of LEW86010, LEW87051, comparison with Angra dos Reis, 92M/1934
- —, aubrites, missing basalts on parent body, consequences of explosive eruptions on small solar system bodies, 92M/0777
- basaltic, TL constraints on metamorphic, shock, brecciation history, 92M/4578
- —, chondrites, Carlisle Lakes-type, new grouplet with high Δ¹⁷O, evidence for nebular oxidation, 92M/1931; chronol. in initial ⁸⁷Sr/⁸⁶Sr in phosphates, 92M/0780; exptl. studies of system Mg₂SiO₄–SiO₂–H₂, application to condensation, vaporization processes in primitive solar nebula, 92M/2814; pregraphitic, poorly graphitized C in porous micrometeorites, 92M/4592; solution, shock-induced exsolution of Ar in vitreous C, 92M/0779; USA, New Mexico, Roosevelt County, spinel-bearing, Al-rich chondrules in, indicators of nebular and parent body processes, 92M/4576
- —, —, carbonaceous, Allende, microstruct. of mins. in chondrule from, 92M/1925; Allende, microstruct. of mins. in chondrule from, thermal history deduced from clinopyroxenes and other mins., 92M/1926; correlated Si isotope anomalies, large ¹³C enrichments in family of exotic SiC grains, 92M/4588; fassaite compn. trends during crystallization of Allende type B refractory inclusion melts, 92M/1923; ion microprobe study of corundum in Murchison, implications for ²⁶Al, ¹⁶O in early solar system, 92M/0786; isotopic, optical, tr. elem. props. of large single SiC grains from Murchison, 92M/4589; noble gases in 'phase Q', closed-system etching of Allende

- residue, 92M/0783; organic compounds in Murchison, Allende, photoionization MS, 92M/0785; parent body of Ivuna, geochromatogr., 92M/1929; refractory inclusion from Allende, anatomy of pyroxene, TEM, 92M/0784; refractory inclusions with unusual chem. compns. from Vigarano, 92M/4590; relationship between isolated and chondrule olivine grains in ALHA 77307, 92M/4591; SiC in, Si, C, N isotopic studies, 92M/4233; stacking faults in magnetite from Allende, 92M/3841; Yamato-82162, Yamato-86720, classification, characteristics, 92M/3216; Antarctica, Belgica-7904, new kind, min., petrol., 92M/3214; consortium study of labile tr. elems. in, Antarctic, non-Antarctic meteorite comparisons, 92M/3217; min. evidence of heating events in Y-86720, Y-82162, 92M/3215
- —, —, CI, CI chondrite-like clasts in Nilpena polymict ureilite, implications for aqueous alteration processes in, 92M/4585; interplanetary dust particle with links to, 92M/4584; thermal metamorphism, internal heating model, 92M/0787
- —, —, CK, and ordinary feldspar, shock-metamorphic model for silicate darkening, compositionally variable plagioclase in, 92M/4583
- —, —, CM, thermal metamorphism, internal heating model, 92M/0787
- —, —, CO3, thermal histories of, application of olivine diffusion modelling to parent body metamorphism, 92M/3226
- —, —, CV3, euhedral awaruite in Allende, implications for origin of awaruite-, magnetite-bearing nodules, 92M/1924; evidence for extraneous origin of magnesiowüstite-metal from Vigarano, 92M/0792
- —, —, enstatite, SiC in, Si, C, N isotopic studies, 92M/4233
- —, —, H, chem. studies, regolith evolution of Fayetteville chondrite parent, 92M/3225
- —, —, H5, *Brazil, Paraná*, Iguaraçu, fall, 1977, 92M/1922
- —, —, L6, Los Martinez, mineralogy, poss. origin of unusual Cr-rich inclusion in, 92M/4575
- —, —, LL3, compositional heterogeneity of fine-grained rims in Semarkona, 92M/3221; I–Xe, chem., petrographic studies of Semarkona chondrules, evidence for timing of aqueous alteration, 92M/4594
- —, —, ordinary, actinide abundances in, comment, 92M/0790, reply, 92M/0791; implications of magnetism of, 92M/4586; model for anal. of spectral reflectance of min. mixtures in Nuevo Mercurio, 92M/3222; O isotope studies, 92M/0789; shock metamorphism of, 92M/4595; type 6,, struct., compn. of metal particles in Kernouvé, Saint Severin, 92M/0793; unequilibrated, chem. compns., textures of matrices, chondrule rims of, implications for formation of matrix olivine, 92M/3220; Xe, Ne from acid-resistant residues of Inman, Tieschitz, 92M/1932
- —, chondrules, compositional classification scheme for, 92M/4577; in primitive chongrites, high T rims around, evidence for

- fluctuating condns. in solar nebula, 92M/1928; influence of bulk compn., dynamic melting condns. on olivine chondrule textures, 92M/1927
- —, eucrites, chromspinellids, ilmenite in Pomozdino, chem. compn., 92M/1935; unbrecciated, remanent magnetic props. of, 92M/3223; Antarctica, Ce anomalies in LEW85300, Antarctica weathering, 92M/3224; Yamato 791186, Yamato 792410, equilibration of pyroxenes, thermal metamorphism of earliest planetary crust, 92M/0782
- impacts, impact glasses, Cretaceous/ Tertiary, geochem. constraints on source regions, 92M/1943; impact of Cretaceous/ Tertiary bolide on evaporite terrain, generation of major sulphuric acid aerosol, 92M/4605; Canada, Alberta, nanometresize diamonds in Cretaceous/Tertiary boundary clay, 92M/0797; Haughton impact struct., isotope systematics, shock-wave metamorphism, K-Ar in experimentally, naturally shocked rocks, 92M/4601; Canadian Shield, Sudbury structure, crude quantitative estimates of original NW-SE dimension of, 92M/3233; Haiti, altered spherules of impact melt, assoc, relic glass from Cretaceous/Tertiary boundary sediments, 92M/0796; geochem. of impact glasses from Cretaceous/Tertiary boundary, relation to smectite and new type of glass, 92M/4604; Libyan Desert, Aouelloul, Zhamanshin, impact glasses, noble gases, K-Ar ages, 92M/1942; Mexico, Yukatan Peninsula, Chicxulub crater, poss. Cretaceous/Tertiary boundary impact crater, 92M/3232; South Africa, Barberton Greenstone Belt, noble metal abundances in early Archaean impact deposit, 92M/4600; Central Sweden, Cambrian, well-preserved, 92M/0802; USA, Wyoming, Teapot Dome, palaeobotanical evidence for June 'impact winter' at Cretaceous/Tertiary boundary, 92M/0798
- —, iron, ⁴¹Ca in Grant, Estherville, production rates, related exposure age calculations, 92M/3228; groups II AB, III Ab, magmatic, Re—Os isotope systematics in, 92M/4579; occurrence, crystal struct. of Ca-free beusite in El Sampal IIIA, 92M/3229; rapid, high-purity chem. separation of Mo from, for isotopic anal. using thermal ionization MS, 92M/3766; systematic study of S isotopic compn. in, occurrence of excess ³³S, ³⁶S, 92M/1938
- lunar, ALHA-81005, MAC88104. MAC88105, Y791197, exposure histories, 92M/3208; ALHA-81005, Y-86032, C, N stable isotope geochem., 92M/3213; basaltic, natural thermoluminescence of, 92M/3210: compn. of lunar crust, 92M/3205; ferroan region of lunar highlands recorded in MAC88104. MAC88105, 92M/3202; found outside Antarctica, 92M/0776; geochem. comparison of impact glasses from ALHA81005, MAC88105, Apollo 16 regolith 64001, 92M/3199; impact melts in MAC88105, inferences for lunar magma ocean hypothesis, diversity of basaltic impact melts, 92M/3200; labile tr. elems, in

Yamato-86032, 92M/3212; MAC88104, MAC88105, Y791197, Y86032, exposure histories, 92M/3209; MAC88105, regolith breccia from lunar highlands, min., petrol., geochem. studies, 92M/3203; MacAlpine Hills, geochem., petrogr., 92M/3204; MacAlpine Hills, implications for compn., origin of Moon, 92M/3206; min.-chem. comparisons of MAC 88105 with Yamato, 92M/3198; paired, MAC88104, MAC88105, history derived from noble gas isotopes, radionuclides, chem. abundances, 92M/3207: paired, MAC88104. MAC88105. petrol., 92M/3201; Yamato-86032, min., petrol., geochem. studies, 92M/3211; Antarctica, ¹⁴C content of MacAlpine Hills 88105, 92M/1933; MacAlpine Hills 88104, 88105, descriptn., consortium, 92M/3197

---, mesosiderites, classification of mafic clasts from, implications for endogenous igneous processes, 92M/4587; enclaves in Mt Padbury, Vaca Muerta, magmatic, residue (or cumulate) rock types, 92M/3218

—, nakhlites, and Chassigny, C-bearing components, relationship to Martian envtl. condns., 92M/4582; aqueous alteration of Nakhla, 92M/0781; petrogenesis, evidence from cumulate min. zoning, 92M/4581

—, pallasites, phosphate in, as probes of mantle processes in small planetary bodies, 92M/1936; Argentina, Patagonia, Esquel, meteoritic olivine from, gem props., 92M/4173

—, stony-iron, Bencubbin meteorite breccia, electron petrogr., shock-history, affinities of carbonaceous chondrite clast, 92M/0788

—, tektites, anomalous Ne enrichments in, 92M/1941; folded Muong Nong-type, tektite glass origin, 92M/0801; glasses after nuclear explosion and from impact craters, source rocks of, 92M/3231; Muong Nong-type, geochem., origin, 92M/4282; Australia, Nd, Sr isotopic study, new constraints on provenance, age of target materials, 92M/4596; Australia, Lake Argyle, anals., 92M/0800; Germany, R. Elbe, in Neogene river gravels, anals., 92M/3633; NE Mexico, in deep-water clastic unit at Cretaceous—Tertiary boundary, 92M/4597

—, ureilites, polymict, CI chondrite-like clasts in Nilpena, implications for aqueous alteration processesin CI chondrites, 92M/4585; mineralogy of interstitial rim materials of Yamato 74123, Yamato 790981 and origin, 92M/1930; tr. elem. anal., new constraints on petrogenesis, 92M/3227; Antarctica, five new ureilites, LEW86216, LEW85328, Y-791839, Y-75154, Y-8448, mineralogy, origin of chem. variations of pyroxene. 92M/3219

Methane v. hydrocarbons

MEXICO, NE, tektite-bearing deep-water clastic unit at Cretaceous-Tertiary boundary, 92M/4597; Acatlan complex, isotopic studies, implications for Palaeozoic North America tectonics, 92M/2438; Amealco caldera, geol., geochem., 92M/2219; Baja California Sur, Tertiary sedimentary phosphate deposit, geochem., 92M/1802; Cerro Prieto geothermal system,

rapid increase, stabilization of vitrinite reflectance at peak T, implications for organic maturation studies, 92M/2579; Clarion Is., polymetallic nodule study from oceanic area, 92M/0333; Colima volcano, monitoring using satellite data, 92M/2230; Fresnillo, hydrol. implications of alteration, fluid inclusion studies, evidence for brine reservoir, descending water table during formation of hydrothermal Ag-Pb-Zn orebodies, 92M/2980; Fuego de Colima volcano, eruptive, magmatic cycles, 92M/1080; Guanajuato, ammonium geochem, in search for hydrothermal Au deposits, 92M/4559; late Jurassic-early Cretaceous magmatic sequence, crustal section of intra-oceanic island arc, 92M/4875: Guanajuato. Ravas. Ag-Au-Cu-Pb-Zn mine, fluid inclusion, isotope study, 92M/1707; Gulf of California, Guaymas basin, heat flow, hydrothermal circulation, basalt intrusions, 92M/2352; Jalisco, La Primavera caldera, geothermal field, applied technol. in solution of drilling problems of deep wells, 92M/2224; struct. deduced from gravity anomalies, drilling results, 92M/2223; Los Azufres caldera, deep geothermal wells, volcanic basement stratigr. based on major-elem. anal., 92M/2221; geol., relationships with regional tectonics, 92M/2220; Los Azufres, variability in gas phase compn. of fluids discharged from geothermal field, 92M/2222; Mexican Volcanic Belt, Mazahua, new collapse caldera, field data, 92M/4864; Michoacán, Los Azufres, geothermal system, C stable isotope geochem., 92M/4862; Puebla, Caldera de Los Humeros, magma chamber, thermal modelling, 92M/4863; San Luis Potosí, upper mantle beneath young back-arc extensional zone, thermal history, ultrabasic xenoliths, 92M/4833; San Sabastian, lamprophyre lava, potassic volcanic front, petrol., 92M/3505; Sierra de Las Cruces, southward migration of activity, K-Ar dating, palaeomagnetic study, 92M/2225; Sonora, Guaymas, chem. geothermometers applied to study of thermalized aquifers, 92M/0743; Volcán de Colima, pristine block-, ash-flow deposits, 1991, field observations, 92M/3506; Yukatan Peninsula, Chicxulub crater, poss. Cretaceous/Tertiary boundary impact crater, 92M/3232

Mgriite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Miargyrite, Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864; Peru, Orcopampa, Calera, in epithermal Ag-Au vein system, 92M/2760

Mica, brittle mica-beidellite, syntheses, props. of regularly interstratified 25 Å mins., 92M/0163; dioctahedral, qualitative, quantitative anal. of correlation between chem. substitution and intensity of 001 reflections, 92M/1982; inclusions of crystalline goethite in, 92M/4653; interstratified dioctahedral mica-smectite, min. study, 92M/0162; Li-, vector representation of, 92M/2804; microsamples, prepn., cell refinement, 92M/1979; synthetic

F, effects of layer charge on IR spectra, 92M/1398; trioctahedral, tetrahedral Fe³⁺ in, Mössbauer spectroscopy of, 92M/3829; Italy, Toblach, Dobbiaco, X-ray characterization of, boundary between the low-, very low-grade south-alpine basement, 92M/4930; Japan, Kyushu, Kagoshima Pref., Aira, ammonium-bearing dioctahedral 2M₁, min. data, 92M/0832; Japan, Ryoke, influence of, on microstructl. transition, discontinuous grain growth of quartz in metachert, 92M/1181; USA, New Jersey, Lime Crest and Sterling Hill, Franklin Marble, Ba-rich, occurrence, 92M/3273

—, annite, Mg-Ni, Fe-Ni ion-exchange reactions under hydrothermal condns., 92M/0465

, biotite, and magnetite, intergrowth of, biotite from, 92M/4774; assignment of far-IR absorption bands of K in, 92M/0833; biotite-1M crystal chem., effect of Ti substitution in, 92M/1397; buffering in assemblage staurolite-aluminium silicate-biotite-gamet-chlorite, 92M/1119; D/H anal. by microprobe, 92M/5000; four-phase AFM assemblage staurolite-Al silicate-biotite-garnet, extra components, implications for staurolite-out isograds, 92M/3246; from metapelites, H, O variation in, 92M/2939; granitic ferrous, major elem. distribn., 92M/1984; in gneiss, vapour-absent melting at 10 kbar of, 92M/4066; laser microprobe measurement of Cl, Ar zonation in, 92M/0540; metamorphic, ferric iron in, petrol., crystallochem. implications, 92M/0834; new insights into thermal history from single grain 40Ar/39Ar anal., 92M/1202; oriented inclusions in diamond coat, 92M/3285; quartz + muscovite + biotite + garnet + plagioclase assemblage, equilibria, implications for mixing props. of octahedrally-coordinated cations muscovite, biotite, 92M/1578; reference intensity ratio, mass absorption measurements, 92M/3269; reversed experiments on biotite-quartz-feldspar melting in system KMASH: implications for crustal anatexis, 92M/1545; sagenitic, oriented titanite, rutile inclusions in, 92M/1986; E Alps, in metapelites, min. data, 92M/3270; Australia, -bearing granites, T, redox path, 92M/1018; Czech Republic, Krhanice village, zoned phlogopite rimmed by, in minettes, 92M/4626; Moravia, Kracovice, in pegmatite, 92M/2716; Germany, Eifel, from Quaternary alkali mafic lavas, 92M/4625; Erbendorf, KTB pilot hole, inter-, intracrystalline cation distribn. in, 92M/0419; KTB pilot hole, in gneiss, geochem., 92M/0707; Greece, Milos Is., Chivadolimni deposits, from heated perlite, oxidation state of, 92M/4627; Greenland, Klokken intrusion, equilibria, fluid circulation in gabbro-syenite, 92M/3271; India, Himachal Pradesh, Chaur area, metamorphic, IR spectroscopy, 92M/1985; Italy, Calabria, Serre, biotite-kaolinite transformation in granitic saprolite, 92M/2585; Japan, deformed, microstruct. defining foliation in cataclasite zones in granite, 92M/2099; Fukushima Pref., Ono-Niimachi, weathered, 92M/2589; Yanai, from Ryoke Yanai, Ti substitution in, 92M/1987; Poland, Sudetes, Strzegom-Sobotka massif, from two-mica granite, controls on TiO2 content in, 92M/1983; Sweden, Bergslagen, chem., reaction mechanisms, micro-structs. during retrograde metamorphism of gedritebiotite-plagioclase bearing rocks, 92M/4918; USA, California, Santa Rosa, from mylonite zone, effects of progressive mylonitization on Ar retention in, thermochronol. implications, 92M/1308; Colorado, San Juan volcanic field, Carpenter Ridge Tuff, min. constraints on petrogenesis of trachyte, 92M/0678; Maine, Cupsuptic aureole, isograds, conduction model for thermal evolution, 92M/1191

- -, bityite, Sweden, Nynäshamn, Stora Vika, assoc. with zincian helvite in pegmatite, 92M/2003
- -, boromuscovite, USA, California, Ramona, Little Three mine pegmatite, new min., 92M/3328
- --, eastonite, Japan, Yanai, Ti end-member compn. of biotite from Ryoke metamorphic rocks, 92M/1987
- , fluormuscovite, partitioning of F-Cl-OH between mins. and hydrothermal fluid,
- -, fluorphlogopite, partitioning of F-Cl-OH between mins. and hydrothermal fluid, 92M/0434
- -, glauconite, combined freeze-etch replicas, HRTEM images as tools to study fundamental particles and multiphase nature of 2:1 layer silicates, 92M/2620; glauconitization, Sr isotopic constraints on process of, 92M/4429; hydrothermal, in marine sediments, implications for hydrothermal min. deposits, 92M/0170; natural and hydrothermally treated, ordering of octahedral cations in, according to X-ray 92M/4623; China, Yanchang, in Upper Triassic oil-bearing sandstone, 92M/3268; Germany, Sachsen-Anhalt, Magdeburg, in Eocene sediments, 92M/2582; India, Banda Dist., Sangrampur Hill, differentiation of Semri group, Kaimur group on basis of heavy min. suites, 92M/1110; Red Sea, in metalliferous muds, 92M/3981; Red Sea, Atlantis II Deep, O isotope T of, 92M/4443; USA, South Carolina, Santee River area, Middle Eocene, late Oligocene isotopic dates, 92M/2435
- -, lepidolite, phys., chem. condition of lepidolite-forming processes, 92M/4628; England, Cornwall, Tregonning, in granite, 92M/4790
- , lepidomelane, fluorannite, partitioning of F-Cl-OH between mins. and hydrothermal fluid, 92M/0434
- -, margarite, Italy, W Trentino, in Upper Austroalpine basement, 92M/3272
- mariposite, Canadian Cordillera, in Au-stibnite-quartz mesothermal 92M/2735
- -, muscovite, assignment of far-IR absorption bands of K in, 92M/0833; chromian,

weathering of, to kaolinite, 92M/3807; compositional controls on cell dimensions of, 92M/4620; D/H anal. by microprobe, -hydromuscovite-hydro-92M/5000; pyrophyllite solutions, bound interlayer H₂O content of, 92M/3266; prepn., cell refinement of microsamples, 92M/1979; quartz + muscovite + biotite + garnet + plagioclase assemblage, equilibria, implications for mixing props. of octahedrally-coordinated cations muscovite, biotite, 92M/1578; shock wave equation of state of, 92M/2860; thermodynamic props. of mins. at higher T, P, FORTRAN-77 program, 92M/0080; Alps, Val Pusteria, in metapelites, 92M/4619: Australia, Queensland, kaolinite, halloysite, weathering to 92M/0190; Czech Republic, Moravia, Kracovice, in pegmatite, 92M/2716; India, Singrauli coalfield, Moher-Subbasin, Barakar, in sandstone, 92M/1109; Ireland, magmatic, from Carboniferous, poss. buried granites uncovered, 92M/4793; Italy, Apennines, detrital, re-equilibration of, and formation of interleaved phyllosilicate grains in low-T metamorphism, 92M/3267; Apennines, Verrucano rocks, bo of, in low, grade variance assemblages, 92M/3627; Japan, Yanai, Ti end-member compn. of biotite from Ryoke metamorphic rocks, 92M/1987; Poland, Sudetes, Strzegom-Sobotka massif, from two-mica granite, controls on TiO2 content in, 92M/1983; Sweden, tr. elems. in, as guide in prospecting for Li-, Sn-bearing pegmatite, 92M/4550; USA, Nova Scotia, East Kemptville, in leucogranite, 92M/3050; Rhode Island, Narragansett Basin, detrital, ⁴⁰Ar/³⁹Ar dating, implications rejuvenation during very low-grade metamorphism, 92M/3742; South Dakota, Black Hills, in pegmatite wall zones, petrogenetic relationships between pegmatite, granite based on geochem. of, 92M/4412

- -, norrishite, crystal struct., 92M/0232
 - -, paragonite, compositional controls on cell dimensions of, 92M/4620; prepn., cell refinement of microsamples, 92M/1979; thermodynamic props. of mins. at higher T, P, FORTRAN-77 program, 92M/0080; Russian Federation, Urals, nickolaevskii ore-field, in metasomatites of porphyry Cu deposits, 92M/4622; Germany, Saxony, in phyllites, greenschist facies metamorphism, geol., mineralogy, 92M/3638
- -beidellite, syntheses, props. of regularly interstratified 25 Å mins., 92M/0163
- -, phengite, assoc. with magnesiochloritoid, chloritoid group, min. data, 92M/3247; breakdown reactions in low-P metamorphic aureole, influence of crystallogr., kinetics on, 92M/4909; prepn., cell refinement of microsamples, 92M/1979; zoning, recrystallization of, implications metamorphic equilibration, 92M/4621
- , phlogopite, + quartz, effects of F on vapour-absent melting, implications for

deep-crustal processes. 92M/0418: assignment of far-IR absorption bands of K in, 92M/0833; in haplogranitic melts, Mg solubility in, exptl. study, 92M/0432; Mg-Ni, Fe-Ni ion-exchange reactions under hydrothermal condns., 92M/0465; retrograde exchange of H isotopes between hydrous mins. and water at low T, 92M/4227; substitution of [6,4] Al in, mica characterization, unit-cell variation, ²⁷Al and 29Si MAS-NMR spectroscopy, Al-Si distribn. in tetrahedral sheet, 92M/2862; Antarctica, assoc. with new min., dissakisite-(Ce), 92M/3332; Brazil, Bahia, Campo Formoso and Carnaiba, assoc. with emerald, 92M/4160; Canada, Ontario, Hemlo, in Au deposit, min. chem., geochem., 92M/4624; Czech Republic, Krhanice village, rimmed by biotite in minettes, 92M/4626; Moravia, Horní Benešov, from Pb-Zn deposit, 92M/1999; Germany, Eifel, Ba-rich, from Quaternary alkali mafic lavas, 92M/4625; Japan, Yanai, Ti endmember compn. of biotite from Ryoke metamorphic rocks, 92M/1987; Russian Federation, Aldan Shield, Usmun River Basin, in slyudites, geol., petrol., chem. of mins., min. reactions, 92M/4610; South Africa, from kimberlites, Ar isotope, halogen chem., combined step-heating, laser probe, electron microprobe, TEM study, 92M/1672; Spain, Ronda and Morocco, Beni Bousera, in magmatic ores in high-T alpine-type lherzolite massifs, 92M/0339; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808; Wyoming, Leucite Hills, in lamproites, F-bearing phases in, 92M/0675

- , polylithionite, Tadzhikistan, Dara-i-Pioz, occurrence, 92M/2377
- -, preiswerkite, Italy, Piemonte, Novara, Alpe Devero, occurrence, 92M/4992
- -, roscoelite, Japan, Gifu Prefecture, Unuma, in siliceous sedimentary rocks, min. data, 92M/3302
- -, sericite, and kaolinite, difference of colloidal props. between, 92M/2546; Brazil, Diadema shear belt, assoc. with Au mineralization, 92M/2981; Bulgaria, W Srednogorie, formation nature, physicochem. anal. of min. parageneses in metasomatic zones of acid leaching, 92M/2263; Canada, Quebec, Dumagami mine, progressive alteration assoc. with auriferous massive sulphide deposits, 92M/0587; Canadian Cordillera, in mesothermal Au-stibnite-quartz 92M/2735; Papua New Guinea, Tolukuma, assoc. with epithermal Au-Ag deposit, 92M/2688; USA, North Carolina, Virgilina district, in Cu-bearing vein deposits, 92M/2741
- , white, Italy, Apennines, K-, crystallinity distribn., crystallinity-b relationships in, 92M/1980; South Africa, Bushmanland, -dumortierite-topaz fels from peraluminous metamorphic suite, 92M/1175; Switzerland, Lepontine Alps, K-, 40Ar/39Ar, microprobe anals., relics of high-P metamorphism, Wales, 92M/1981; Berwyn crystallinity study, 92M/2279

—, zinnwaldite, *England*, *Cornwall*, *Tregonning*, in granite, 92M/4790

Microcline v. feldspar

Microcrack growth, in brittle materials, macroscopic theory, 92M/2390

Microfossils, South Africa, Barberton Mountain Land, Onverwacht group, early Archaean, 92M/3569

Microgabbro, Germany, Saxony, Carboniferous, elem. migration by lateral secretion, 92M/3428

Microgranite, *Ireland, Slieve Gullion central* complex, Tertiary, petrogenesis, 92M/3003 Microlite v. pyrochlore

Micromonzogranite, Germany, Mecklenburg-Vorpommern, derived from partial anatexis of intermediate crustal rocks, 92M/3422

Microscopy, 3-D microscope image using anaglyphic filters, new aid to fluid inclusion petrography, 92M/0077; electron, structl., chem. anal. of materials, (book), 92M/0119; of ore mins., microscope-photometry, reflectance measurement, quantitative colour, 92M/0067; prepn. of materials for, 92M/0063; quantitative anal. of stress using polarizing microscope, 92M/1314; reflected-light optics, for study of ore mins., 92M/0065; scanning confocal microscope for transmission and reflection imaging, 92M/0076: TEM, of mins., rocks, (book). 92M/0120; use of reflected-light polarizing microscope, microscope-spectrophotometer for study of ore mins., 92M/0062

Microshonkinite, *India, Elchuru*, Proterozoic dyke swarm, 92M/4749

Microsyenite, Germany, Mecklenburg-Vorpommern, derived from partial anatexis of intermediate crustal rocks, 92M/3422

Migmatite, Brazil, Minas Gerais, geochem., 92M/1815; Ireland, Galway, Connemara Schists, amphibolite facies, role of water infiltration in formation of, 92M/1134; Norway, Finnmark, Sørøy, Kalak Nappe Complex, poss. basement rocks, petrol., 92M/1126; Scotland, NE and Central Highlands, Pannanich Hill complex, origin of, 92M/3410; Switzerland, metapelitic, phase equilibria, O isotopes in evolution of, 92M/4926

 — -granite, Sweden, Luleå area, Degerberg, occurrence, constraints on geol. development, 92M/2142

Migmatization, Canada, Quebec, Grenville Front, of mafic rock, disequilibrium melting, rate of melt-residuum separation during, 92M/1021

Milarite, Germany, Bayerischen Wald, occurrence, 92M/4997

- group, crystal chem., 92M/2610

Millerite, Czech Republic, Moravia, Ostrava-Karviná coal field, occurrences, 92M/2036; Germany, KTB pilot hole, occurrence in metamorphic rocks, 92M/0302; Italy, Central Alps, Val Lanterna, in steatite deposit, 92M/1497; Poland, Suwatki massif, occurrence, genesis, 92M/2037; USA, California, San Benito County, Clear Creek Claim, assoc. with new min., szymańskiite, 92M/3337; Missouri, Viburnum Trend, occurrence, 92M/3704

Millosevichite, Czech Republic, Bohemia, Kladno, occurrence, 92M/2059

Mimetite-pyromorphite, England, Cornwall, Penberthy Croft, and assoc. mins., 92M/1223

Mine geology, conference proc., (book), 92M/2501

tailings, Netherlands, Moresnet, Geul Valley, goslarite encrustation on, 92M/4029
 Mineral deposits, evaluation, (book), 92M/1330; marine, in exclusive economic zones, (book), 92M/1329; related to granite, geol., 92M/0296

— exploration, applications of hydrothermal alteration studies to, 92M/0279; conference proc., (book), 92M/2501; significance of lineament corridors (reflectance anomalies) detected by remote sensing, 92M/0299; Canada, Quebec, Noranda, Horne mine, hydrothermally altered rocks, geochem., 92M/0283

- nomenclature, solid solutions in, 92M/3339

processing, development of mineralogy applications in, 92M/0294

 prospecting, GOLDFINDER, knowledgebased system for, 92M/4548

— technology, application of thermal anal. in, 92M/2517

 zoning, tr. elem., isotopic zoning in mins., models of compositional fractionation by min. separation procedures, 92M/4307

Mineralogy, experimental, detn. of defect equilibria in mins., 92M/2823; lubrication, gasketing, precision in multianvil expts., 92M/1531

—, technical, thermal investigations in, 92M/2518

Minerals, framework, phase transitions in, 92M/2866

heavy, in colour, (book), 92M/2499; placer deposits in submarine fan channels. 92M/0295; Fiji, geol. evolution, min. deposits, 92M/2102; Italy, Sardinia, in coastal sand, electron microanal., beneficiation tests, 92M/0380; Zealand, Westland, Alpine Fault, from Cretaceous-Cainozoic sediments. provenance changes, fault movement indicated by, 92M/4895; USA, North Carolina and Virginia, deposits, in upper coastal plain, 92M/2772; Virginia, reconnaissance exploration on continental shelf, 92M/0385

-, opaque, colours of, (book), 92M/2496

—, rock-forming, (book), 92M/1327

Minnesotaite, Mössbauer spectra, 92M/2619 Mirabilite, ground-water control of evaporite deposition, 92M/2773

Miserite, Tadzhikistan, Dara-i-Pioz, occurrence, 92M/2377

Mitridatite group, Germany, Spessart Mts, new min., Mn-analogue of arseniosiderite, occurrence, anals., 92M/0875

Mixite, agardite-(Y), Zaïre, Shaba, Mutoshi, min. data, 92M/0858

- group minerals, *Italy, Sardinia*, crystal chem., 92M/3299

Moissanite, Russian Federation, Yakutia, Udachnaya, in eclogite xenolith from kimberlite, 92M/4809; Siberia, Russian Federation, geochem. peculiarities of rare accessories from Riphean-Lower Palaeozoic carbonaceous rocks, 92M/4637

Molluscs, rapid racemization of aspartic acid in, new method for dating on decadal time scale, 92M/3145; fossil, modern, comparative study of kinetics of amino acid racemization/epimerization in, 92M/3147

Molybdenite, Western Australia, Boddington Au mine, in Archaean porphyry Cu-Au-Mo deposit, 92M/3920; Canada, British Columbia, Trout Lake, deposition, evolution of aqueous-carbonic fluids during contact metamorphism and, 92M/4337; Canada, New Brunswick, Mount Pleasant, fluid evolution, mineralization in subvolcanic granite stock, 92M/0373; Korea, Gyeongchang W-Mo mine, progressive meteoric water inundation of magmatic hydrothermal system, 92M/0572; Norway, in W skarn in regional metamorphic terrain, 92M/1426; Peru, San Judas Tadeo, W(-Mo, Au) deposit, Permian lithophile mineralization, 92M/2762

Molybdenum, chalcophile character of, detn. of sulphide/silicate partition coefficients of Mo, W, 92M/0429

deposits, North America, porphyry, temporal-spatial aspects, 92M/2700; Norway, Oslo rift, assoc. with Drammen granite, fluid inclusion gas anal., 92M/3176

— mineralization, Germany, Saxony, Niederbobritzsch granite, 92M/2711

 --- nickel ore, China, platiniferous, in black shales, field relations, origins, resource implications for, 92M/3995

Molybdomenite, Argentina, Sierra de Cacheuta, La Rioja, Condor mine, assoc. with schmiederite, 92M/3301

Monazite, economic occurrences, 92M/0293; in supercritical aqueous fluids, solubility of, implications for subduction zone geochem., 92M/4968; placer deposits, economic potential, 92M/2769; China, Inner Mongolia, Bayan Obo, in Fe-REE-Nb deposits, 92M/4015; India, Andhra Pradesh, in granitic soils, 92M/1499; Eastern Ghats, from granulite terrain, geochem., 92M/3325; Italy, Sardinia, in coastal sand, 92M/0380; Sweden, Bohus, post-kinematic Grenvillian granite, U-Pb 92M/0897; USA, Virginia, reconnaissance exploration on continental shelf, 92M/0385

—, gasparite-(Ce), *Italy, Piemonte, Novara,* Alpe Devero, occurrence, 92M/4992

—, monazite-(Ce), Wales, Clwyd, Glyn Ceiriog, Hendre quarry, occurrence, 92M/2360

Monetite, Tuvalu, occurrence, 92M/0580

MONGOLIA, *Ongon Kharikhan*, ongonite, petrol., 92M/1011

Monohydrocalcite, Bulgaria, Stara Planina Mt, trigonal-trapezohedral, from oxidation zone, min. data, 92M/0870; Czech Republic, Příbram, Vrančice deposit, from polymetallic vein, 92M/2054; Germany, Richelsdorf, occurrence, 92M/1225

Montebrasite v. amblygonite

Monticellite v. olivine

Montmorillonite v. clay minerals

Montroseite, Japan, Gifu Pref., Unuma, in siliceous sedimentary rocks, min. data,

92M/3302; USA, Utah, Henry Basin, in epigenetic, sandstone-hosted V-U deposit, 92M/0594

Montroydite, USA, California, San Benito County, Clear Creek Claim, assoc. with new min., szymańskiite, 92M/3337

Monzodiorite, Italy, Ivrea, Traversella, porphyritic facies, endoskarns, implications for evolution of main intrusion, 92M/3386

Monzonite, Norway, layered alkaline, Gardar-age, Rb-Sr systematics, 92M/1246

Monzonorite, related to anorthosite, origin, evolution of, 92M/3001; Norway, Rogaland anorthosite complex, monzonorite, comparison with Lyngdal hyperite, 92M/0613

Moonstone v. feldspar Mordenite v. zeolite

MOROCCO, early Mesozoic tholeiites, 92M/4374; geochem., geochronol., Anti-Atlas Mts, Proterozoic collisional

basins in Pan-African suture zone, 92M/5008; Anti-Atlas, Jbel Saghro, evidence for Panafrican volcanic arc, wrench fault tectonics, 92M/4802: Anti-Atlas, Sidi Flah, Proterozoic sulphide alteration pipe, geotectonic evolution of Pan-African belt, 92M/4011; Beni Bousera, diamond, oceanic lithosphere connection, 92M/3523; magmatic ores in high-T alpine-type lherzolite massifs, 92M/0339; O isotope evidence for origin of pyroxenite in peridotite, derivation from subducted oceanic lithosphere, 92M/0638; peridotite, diamond facies pyroxenites, C isotope study, 92M/3350; Bleïda, zoned, recurrent deposition of Na-Mg-Fe-Si exhalites, Cu-Fe sulphides along synsedimentary faults, 92M/3992; Bou Azzer-El Graara ophiolite. geochem., significance of metavolcanic rocks, 92M/2079; Central High Atlas, Msemrir, Guettioua Member, Bathonian (Dogger) of red beds, biol. metal accumulation in, 92M/4890; High Atlas, Zn-Pb mineralization, relative chronology, Hercynian deformation, 92M/2719; Jebilet, Oulad Ouaslam, peraluminous xenoliths in granite, petrol., 92M/1001; Tamazert, lamprophyre and assoc. dykes, Sr. Nd. O. C. isotopic study, crustal contamination processes, source characteristics, 92M/0639; Tazekka, clinopyroxenes from Variscan basic rocks, min. data, 92M/1966; Walmès, tourmalinized pelite and its Sr-Be vein, comparative thermobarometry, 92M/4943; Western High Atlas, Tichka plutonic complex, Hercynian, petrogenesis, tr. elem., Rb-Sr, Sm-Nd isotopic constraints, 92M/4804

Mottramite, England, Warwickshire, Judkins Quarry, occurrence, 92M/2358

-duftite, England, Cornwall, Penberthy Croft, occurrence, 92M/1223

Motukoreaite, New Zealand, Brown's Is., and Austria, Stradner Kogel, SEM study, 92M/3321

MOZAMBIQUE, geochem. prospection of Nb-Ta- pegmatites, 92M/3186; Nb-Ta pegmatites, formation condns., 92M/2664; Mozambique Belt, activation of Archaean granite greenstone assocn., 92M/3649; granitic rocks, petrochem., 92M/3020;

Muiane, Nb-Ta pegmatite, geochem., 92M/2722; Nhamarenza River, amphibolite, gneiss, K/Ar dating, fragment of Limpopo belt, 92M/0034; Zambézia Province, pegmatite, characteristics, Marropino, 92M/2723

Mud diapirism, Mediterranean Ridge, geol. evidence for, on accretionary complex, 92M/4688

Mudstone, Australia, Queensland, Mt Isa inlier, 1800-1670 m.y., geochem., provenance. tectonic implications, 92M/4271: Japan, Kitakami Mts, minor elems.. Palaeozoic-Mesozoic, 92M/0691

Mugearite, Australia, New South Wales, analcite, -megacryst assocn., implications high-P amphibole-dominated fractionation of alkaline magmas, 92M/3447

Mullite, 3:2, atomic imaging, 92M/1387; (Al,Ge)-, solid solution, optical props., 92M/0451; assoc. with new dmishteinbergite, 92M/2069; effect of excess Al on phase relations in system Q-Ab-Or, exptl. study, 92M/2793; in fired clay, SEM study, 92M/0200; relationship of werdingite to, 92M/0219; ²⁹Si, ²⁷Al MAS NMR spectroscopy, 92M/0218; struct., atomic ordering around O vacancies in sillimanite, model for, 92M/3819; superstruct. by substruct., neutron diffraction, 92M/0217

Muscovite v. mica

Mylonite, low-T, CL observations, potential for detection of solution-precipitation microstructs., 92M/2098; Canada, Ontario, Bancroft shear zone, marble, microstructs., deformation mechanisms. 92M/2312: Portugal, Sátão shear zone, granite, chem. evolution, 92M/0987; Scotland, Culachy, petrol., metamorphic history, microfabric anal., 92M/4921; Spain, Juzbado-Penalva Castelo ductile shear zone. microstructural anal., 92M/1145: Switzerland, Glarus nappe, fluid-rock interactions during thrusting, evidence from geochem., stable isotope data, 92M/1803; California, Mojave Desert, extensional, volume loss, fluid flow, state of strain in, 92M/2318; California, Santa Rosa, effects of progressive mylonitization on Ar retention in biotites from, thermochronol. implications, 92M/1308; Sierra Nevada, and SE Australia, banded, transformation of to, granitic rocks fluid-enhanced deformation. 92M/2305: Georgia, Appalachians, Towaliga Fault, development of interlaced mylonites, cataclasites, breccias, 92M/1196

Mylonitic metasediments, Scotland, Great Glen Fault, petrol., 92M/4922

Myrmekite v. feldspar

Nacrite v. clay minerals Nahcolite, Turkey, Beypazeri, distribn. of Ca, Mg, K, Rb in, 92M/3319

NAMIBIA, Damara orogen, Central Zone, distal skarn-type Au mineralization, 92M/3864; Dicker Willem, carbonatite, O, C isotope patterns, 92M/4377; Etendeka fm., quartz latite rheoignimbrite flows, petrol., 92M/3438; Gorob-Hope Cu deposit, vesigniéite, new occurrence, min. data, 92M/3303; Sandamap Noord prospect, turbidite-hosted Au mineralization, 92M/3935; Tsumeb, geol. mineralogy, mining history, (book), 92M/2506; Windhoek, Aris, tuperssuatsiaite from phonolite, 92M/4630

Namuwite, Germany, Richelsdorf, occurrence, 92M/1225

Nappes, Greenland, Godthåbsfjord, refolded, formed during late Archaean terrain assembly, 92M/0911

Natrojarosite, Czech Republic, Bohemia, Liteň fm., occurrence, 92M/2062

Natrolite v. zeolite

Neodymium, high-precision multicollector isotope anal. of low levels of Nd as oxide, 92M/1316

Neotectonics, Tibet and Andes, palaeostress detns. from fault kinematics, application to, 92M/2326

NEPAL, High Himalayas, linked fluid, tectonic evolution, 92M/0527; Langtang Valley, High Himalayan Crystalline sequence. tectonothermal evolution, 92M/4945

Nepheline, CaO-MgO-Al₂O₃-SiO₂-Na₂O at 1 bar from low to high Na₂O contents. topology of analogue for alkaline basic rocks, 92M/4069; conversion to sodalite during subsolidus processes in alkaline rocks, 92M/1113; shock-induced transformations in system NaAlSiO₄-SiO₂, new interpn., 92M/4109; Czech Republic, Moravia, Kunčice pod Ondřejníkem, in teschenitic rocks, 92M/2056; Italy, Latium, Albano Lake crater, assoc. with guarinite, 92M/0816; Japan, Tojo-cho, Kushiro, occurrence, min. data, 92M/2002; Tanzania, Oldoinyo Lengai volcano, in lapilli of 1966 ash eruption, 92M/3488

glass, ¹³C MAS NMR, method for studying CO₂ speciation in, 92M/4039

-kalsilite crystalline solutions, XRD, ²³Na, ²⁷Al, ²⁹Si MAS-NMR study, 92M/4121

Nephelinite, Africa, Shombole volcano, Nd, Sr isotope systematics, 92M/3021

-carbonatite, Kenya, Shombole volcano, liquid immiscibility, petrogr., exptl. evidence, 92M/1003

Nephrite v. amphibole

Neptunite, acentric, Fe, Ti ordering, octahedral distortions in, T-dependent X-ray, neutron struct. refinements, Mössbauer spectroscopy, 92M/1386; Tadzhikistan, Dara-i-Pioz, occurrence, 92M/2377

NETHERLANDS, Moresnet, Geul Valley, goslarite encrustation on mine tailings, 92M/4029; offshore well G/17-2, dolerite,

petrol., 92M/4794

Neutron activation analysis, of rock reference samples, automated y-ray counting, data processing system for, 92M/0092

Neutron diffraction, structl., chem. anal. of materials, (book), 92M/0119

New minerals,

abswurmbachite, 92M/2067 alluaivite, 92M/2068 arsenoflorencite-(La), 92M/3334 arsenoflorencite-(Nd), 92M/3334 ashburtonite, 92M/3327 belendorffite, 92M/4673

boromuscovite, 92M/3328 camerolaite, 92M/3329 capgaronnite, 92M/4674 cheremnykhite, 92M/2072 cianciulliite, 92M/3330 coombsite, 92M/3331 dissakisite-(Ce), 92M/3332 dmishteinbergite, 92M/2069 geminite, 92M/2070 gillulyite, 92M/0876 hetimanite, 92M/2071 kuksite, 92M/2072 leningradite, 92M/2073 liebauite, 92M/4675 lintisite, 92M/0877 manganotychite, 92M/2074 maxwellite, 92M/0878 metamunirite, 92M/0879 pitiglianoite, 92M/3335 radtkeite, 92M/3336 rorisite, 92M/0880 squawcreekite, 92M/0878 SrMn₂[Si₂O₇](OH)₂•H₂O, lawsonite type, crystal struct., 92M/3333 szymańskiite, 92M/3337 tooeleite, 92M/3338 toyohaite, 92M/4676 tvedalite, 92M/4677 vyalsovite, 92M/4678

NEW ZEALAND, ignimbrite morphol., effects of erosion, case study, 92M/3496; marine min. potential in exclusive economic zone, 92M/0383; organic C detn. in soils, 92M/0168; tephra studies, historical review, 92M/4846; vein Au in metamorphic rocks, 92M/1421; Broadlands-Ohaaki geothermal field, min,-fluid interactions in geothermal system, 92M/1645; thermal inversion T of 92M/3667; quartz, Brown's motukoreaite, SEM study, 92M/3321; Canterbury, Leeston-1 oil exploration well, surface textures on quartz grains, 92M/4897; Canterbury, Rakaia Gorge and Malvern Hills, mid-Cretaceous volcanic rocks, petrol., 92M/4854; Cape Brett, Motukokako, Tertiary limestone, Zn-Pb mineralized skarn, 92M/3997; Chatham Rise, phosphorite exploration, 92M/2771; Coromandel, Kennedy Bay, As-Au soil geochem. as guide to Au mineralization, 92M/4555; Egmont Volcano, young volcanic rocks, Pb-Nd-Sr isotopic compns., tr. elem. characteristics, comparisons with Taupo Volcanic Zone, 92M/4274; Hawkes Bay, Kairakau Rocks, pillow lava and assoc. Cu mins., 92M/4820; Kawhia Syncline, Moeatoa conglomerate, age, provenance of granitic clasts in, 92M/4700; Kidnappers group, Middle Pleistocene, chronol., correlation to global O isotope stratigr., 92M/3736; Largs, high-latitude O isotope anomaly, climatic controls of O isotopes in magma, 92M/0662; Major Is., Opo Bay, tuff cone, interaction between rising gas-poor pantelleritic magma and external water, 92M/4851; Marlborough, Onamalutu Valley, Mn-, Fe-bearing metachert, petrol., 92M/4953; Mayor Is., fused tree moulds in unwelded airfall deposit, 92M/4853; Strombolian deposits, 'basaltic' eruption styles displayed by peralkaline rhyolitic volcano, 92M/4852; Northland, Fe-Cu-(Zn) sulphide deposits assoc. with ophiolite, 92M/3996; high T calc-silicate hornfels, 92M/4952; origin, significance of garnet phenocrysts, garnet-bearing xenoliths in

Miocene calc-alkaline volcanics, 92M/4818: unusual gibbsite deposit, petrogr., 92M/4896; Northland, Ahipara Tangihua Massif, igneous rocks, petrol., tectonic significance of, 92M/4817; ophiolite, struct., 92M/4871; Bay of Islands, Purerua Peninsula, volcanic, sedimentary rocks, geol., 92M/4701; Karikan, relation between intrusion, tectonics in Miocene pluton, 92M/4703; Northland Allochthon, Tangihua, small volcanic masses, tectonic significance, 92M/4702; Northland Peninsula, Miocene arc-type volcanic/plutonic complexes, petrol., 92M/4819; Omahuta and Puketi Forests, Waipapa Terrain, metamorphism, Tangihua Volcanics. hydrothermal metamorphism, synthesis, 92M/4906; Northland, Waipapa group, regional metamorphism, 92M/4950; Otago, coombsite, new Mn analogue of zussmanite, 92M/3331; E Otago, Au mining, Au prices, technological change, 92M/1420; Otago Schist, Hyde-Macraes shear zone, structl, controls on Au-bearing quartz mineralization in duplex thrust system, 92M/3984; Ruapehu Crater Lake, heat source, deductions from energy, mass balances, 92M/1070; Ruapehu and Ngauruhoe, search for volcano-magnetic effect, 92M/1064; South Island, Cromwell Gorge, Gibraltar Rock, palygorskite, occurrence, 92M/3799; South Island, Westland-Nelson, F contents of granite and assoc. metasedimentary country rocks, 92M/4394; Southern Alps, mineralization as consequence continental collision, 92M/0328; Taupo Volcanic Zone, nature of primary rhyolitic magmas involved in crustal evolution, exptl. study, 92M/4275; volatile contents of obsidian clasts in tephra, implications for eruptive processes, 92M/4847; Taupo Volcano, Waimihia, petrol., dynamics of mixed magma eruption, 92M/4850; Tongariro Volcanic Centre, Mangamate tephra, morphol., chem. of olivine phenocrysts, 92M/4849; Torlesse accretionary prism, Rb-Sr isochrons, pseudo-isochrons from turbidites. 92M/1287; Waiotapu, boiling, dilution in shallow portion of geothermal system, 92M/1682; Wairakei geothermal field, mixed-layer clay geothermometry, 92M/3798; Wanganui River, thermal, min. water springs, chem. anals., 92M/4497; Wellington, Red Rocks, volcanic, pelagic turbidite lithologies, whole-rock, min. anal., 92M/1646; Western Province, Torlesse, gneiss, greywacke, crustal evolution, evidence from age distribus. of detrital zircon, 92M/4272; Westland, Alpine Fault, provenance changes, fault movement indicated by heavy mins. from Cretaceous-Cainozoic sediments, 92M/4895; White Is., 1976-1982 Strombolian, phreatomagmatic eruptions, eruptive, depositional mechanisms at 'wet' volcano, 92M/3495; radioactive isotopes, tr. elems. in volcanic gas emissions, 92M/4848 NICARAGUA, Chortis Block, Pb isotope evidence for formation of epithermal

Au-quartz veins, 92M/1708; *La Libertad*, Au mining dist., volcanic rocks, mineralogic alteration patterns in, 92M/3461

Nickel deposits, Brazil, Morro do Ferro greenstone belt, O'Toole, geol., 92M/2752; Canada, Quebec, Ungava, Katiniq, new interpn., 92M/2736; Yukon Territory, Nick Property, sedimentary Ni, Zn, PGE mineralization in Devonian black shales, new deposit type, 92M/3985; Finland, Vanmala and Kylmäkoski, similarity anal. applied to till geochem. data, 92M/3165

—-copper deposit, Canada, Manitoba, Flin Flon, Namew Lake, geochronol., thermal history of metamorphic terrain, 92M/0054; Ontario, Sudbury Igneous Complex, Re-Os isotope systematics, evidence for major crustal component, 92M/1690

Nickeline, *Kazakhstan*, assoc. with koutekite, 92M/2046

NIGER, Air Province, geochem., isotopic evidence for origin of anorthosite-bearing anorogenic complexes, 92M/1736; Akouta, U deposits, U-Pb, Sm-Nd, K-Ar systematics, 92M/1268

NIGERIA, Au-bearing quartz veins in schist belts, geol. setting, evolution, 92M/3888; basic dykes in Precambrian basement, petrol., 92M/4745; beryl, gem notes, 92M/4194; characterization of kaolinitic clays, 92M/0157; emeralds, anals., 92M/4156; Apomu and Ife-Ilesa, metaultramafites, tr. elem. geochem., petrogenesis, 92M/0640; Igarra belt, Pan-African metamorphism, 92M/3648; Igbeti area, Precambrian gneisses, protoliths, petrogenesis, 92M/1170; Jos Plateau, basement and Mesozoic ring complexes, Pb, Sr, Nd isotope study, 92M/1737; emerald, gem quality, from pegmatite, 92M/1621; Kakun, igneous cumulate magnetite deposit, formation of, 92M/3437; Nassarawa-Egon, rhyolite dyke, geochronol., 92M/0029; Ogun State, Ibese, montmorillonitic clay-shale, anals... 92M/0199

Ningyoite v. rhabdophane

Niobium-REE-iron deposit, China, Inner Mongolia, Bayan Obo, metallogenic epoch, genesis, 92M/0564

Nitrogen, cosmogenic, measurement of, using static MS system, implication, 92M/4297

 isotopes, ¹⁵N, USA, Chesapeake Bay, rapid, storm-induced changes in natural abundance of, in planktonic ecosystem, 92M/4501

Nontronite v. clay minerals

Norbergite v. humite

Nordstrandite, metastability in near-surface rocks of mins. in system Al₂O₃–SiO₂–H₂O, 92M/0184; Austria, Stradner Kogel, assoc. with motukoreaite, 92M/3321; Germany, Velbert, occurrence, 92M/1225

Norite, Ukraine, Voronezh crystalline massif, Ni-bearing, min. inclusions in olivine megacrysts from, 92M/0997

Norrishite v. mica

NORTH AMERICA, porphyry Cu, Mo deposits, temporal-spatial aspects, 92M/2700; E, evidence for lateral magma injection in Mesozoic dykes, 92M/4723; midcontinent rift, Nonesuch fm., Proterozoic, S/C ratios, extractable organic

matter, 92M/3574; W Cordillera, Cascades, Skagit gneiss, high-P metamorphism, 92M/3662

NORTH SEA, chalk diagenesis, cementation, healing of fractures, 92M/1784; detrital goldmanite from Palaeocene sandstone, 92M/3244; melt generation during rifting, particles 92M/0615; ultrafine illite/smectite, STM, AFM, 92M/1341; Alwyn South, Brent group, CL of quartz cements in sandstones, 92M/4884; Brent group, fate of feldspar in reservoirs, diagenesis in shallow, intermediate, deep burial envts., 92M/4880; illite in reservoirs, K-Ar dating, 92M/4882; Jurassic reservoirs, diagenesis, 92M/4879; open, restricted hydrologies in diagenesis, 92M/4883; sandstones, provenance, heavy min. constraints, 92M/4877; Brent group, Sm-Nd provenance age, 92M/4876; E Shetland Platform, granite and Devonian distribn., seismic sediments, 92M/0912; Oseberg Field, Brent group, sandstone, garnet compns., statistical anal., lithostratigraphic correlation, 92M/4878; Stratfjord, Hutton and Lyell fields, Brent group, burial diagenesis of sandstones, 92M/4881; Utsira, Jurassic sedimentary bedrock, petrol., 92M/1101

NORWAY, donathite, intergrowth of causing form magnetite, chromite, birefringence, 92M/2022; Gardar-age layered alkaline monzonite, Rb-Sr systematics, 92M/1246; late Caledonian petrogenesis, magmatism, granitic significance, 92M/4357; W skarn in regional metamorphic terrain, metamorphic ore deposit, 92M/1426; Bamble sector, Mg-rich dumortierite in cordierite-anthophyllite-bearing 92M/0818; REE, Th, Hf, Ta in gabbros and amphibolitized equivalents, implications for tectonic setting, 92M/2999; Barnesfjord, heavy metal (Zn, Cu, Pb) accumulation, 92M/4432; Bergen arcs, eclogitic shear zones in granulite-facies anorthosite complex, field relationships, emplacement scenario, 92M/2282; Bergen Arcs, fluid-induced retrogression of granulites, fluid inclusion evidence from amphibolite facies shear zones, 92M/4915; granuliteeclogite transition, comparison of exptl. work and natural occurrence, 92M/1130; structl. development, petrofabrics of eclogite facies shear zones, implication for deep crustal deformation processes. 92M/4912; Bidjovagge, Au-Cu deposit, geol.. 92M/3921; Bjerkreim-Sokndal, crystallization processes in layered intrusion, evidence from boundary between two macrocyclic units, 92M/0979; low-Ca clinopyroxene, occurrence, role of deformation in formation pyroxene-Fe-Ti oxide symplectites. 92M/1970; Caledonides, Gjersvik Nappe, Møklevatnet, granodiorite, U-Pb dating, 92M/3712; Helgeland Nappe Complex, Velfjord-Tosen region, tectonostratigr., 92M/4695; Lokken, ophiolite-hosted massive sulphide deposit and related mineralization, feeder zone to, 92M/2706; Caledonides, Solund-Stavfjord ophiolite, FeTi-poor, FeTi-rich basalts, relationship, genesis, 92M/4356; Finnmark, Caledonides, geochronol. evidence from discordant plutons for late Proterozoic orogen, 92M/0009; Finnmark, Børselv, Kalak Thrust Zone, mylonites, Rb/Sr dating, 92M/0006; Lebesby, contemporary small-scale thrust-fault, 92M/4694; Sørøy, Kalak Nappe Complex, poss. basement rocks, petrol., 92M/1126; Finnmark, Seiland Igneous Province, Øksfjord peninsula, for Precambrian age gabbro-monzonitic intrusive, 92M/0007; Høydal, Caledonides, volcanogenic massive sulphide deposit with sea-floor depositional features, 92M/0335; Løkken greenstones, Dragset, Cu-Zn deposit, deformed, volcanogenic sulphide, 92M/0334; Larvik, mineral deposits, pegmatite geol., 92M/0978; Lille Kufjord Intrusion, Lower Zone, origin of macrorhythmic units, 92M/4782; Lyngdal, hyperites, geochem., comparison with monzonorite assoc. with Rogaland anorthosite complex, 92M/0613; Modum complex, metagabbros, heat source Sveconorwegian metamorphism, 92M/3407; metagabbros, important heat source for Sveconorwegian metamorphism, 92M/2138; whiteschists, orthoamphibolecordierite rocks, P-T-t path, 92M/1131; Nordland, Mjønesfjell area, Pb-Zn-Cu mineralization, geol. setting, 92M/3986; offshore, evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks, 92M/0837; Øksfjord peninsula, ultramafic intrusion, high-grade metamorphism, Cambrian dates, 92M/0008; Olden Window, Blåfjellhatten granite, Rb-Sr dating, 92M/3711; Oslo, Akersberg mine, Ag mineralization, occurrence, 92M/4007; Oslo Region, tvedalite, new min. from syenite pegmatite, 92M/4677; Oslo Rift, metamorphism of layered shale-carbonate buffering, sequences, infiltration. mechanisms of mass transport, 92M/4905; Drammen and Finnemarka batholiths, mildly peraluminous high-silica granite in continental rift, 92M/3000; Drammen granite, fluid inclusion gas analysis of hydrothermal vein Mo deposits assoc. with granite, 92M/3176; Oslofjord, amino acid diagenesis, organic C, N mineralization in surface sediments, 92M/0752: Raisduoddar-Halti area, basic, ultrabasic rocks in Caledonides, petrogr., mineralogy, geochem., 92M/2139; Råna intrusion, Caledonides, U/Pb dating, evidence of Silurian basic magmatism, 92M/0005; Rogaland, retrograde methane-dominated fluid inclusions from high-T granulites, 92M/1805; Rogaland, Bjerkreim-Sokndal massif, fluid inclusions in charnockites, fluid origin, in situ evolution, 92M/2283; Romerike, aqueous geochem., 92M/4472; Solund-Stavfjord, geol. implications of mixed oceanic-metalliferous, continental sediments from ophiolite complex, 92M/1088; Sulitjelma, coticules, origin, 92M/1129; Cu ore, geol., 92M/4006; Sb-rich min. parageneses, assocn, with Au mins. in massive sulphides, 92M/4005;

Sunnfjord, Western Gneiss Region, contact relationships between Askvoll group and basement gneiss, 92M/4913; Troms, Vanna, basement-cover relationships, discussion, 92M/1127, reply, 92M/1128; Trøndelag, Fosen Peninsula, brittle deformation history of fault rocks, 92M/4696; Trondheimsfjord, fluorite mineralization along fracture zones, fission-track dating, 92M/0377; Western Gneiss Region, Caledonides, basement gneisses, discordant felsic dykes, U/Pb dating, 92M/0010; Western Gneiss Region, Scandian Mt belt, petrol. constraints, PT path of Devonian collapse tectonics, 92M/4914

NORWEGIAN SEA, *Mid-Norway shelf*, hydrocarbon habitat in relation to tectonic elems., 92M/1102

Nsutite, Germany, Hesse, Giessen, in Mn ore, 92M/3989
Nuffieldite synthesis of 92M/2900

Nuffieldite, synthesis of, 92M/2900 Nyböite v. amphibole

Obduction, Oman and other Tethyan settings, vs subduction, collision, 92M/3530

Obsidian, *Italy, Switzerland, Lugano*, in Permian volcanics, geochem., 92M/1728; *New Zealand, Taupo Volcanic Zone*, in tephra, volatile contents of, implications for eruptive processes, 92M/4847

Ocean ridges, inverse square-root dependence of flank roughness on spreading rate, 92M/2389; melt extraction from partially molten regions beneath, 92M/1086; phase equilibria constraints on chem. of hot spring fluids at, 92M/4074; relationship between spreading rate and seismic struct., 92M/4981; Mid-Atlantic ridge, accommodation zones, transfer faults, integral components of extensional systems, 92M/3511; E Pacific Rise, fast-spreading, hydrothermal vent distribn., relationship to magmatic, tectonic processes on, 92M/1094

Oceans, detn. of volume of, 92M/4689 Ochre sludge, identification of green rust in, 92M/2591

Octacalcium phosphate, kinetics of crystal growth in presence of organic acids, 92M/4149

Oil v. hydrocarbons Okhotskite v. pumpellyite Olenite v. tourmaline Oligoclase v. feldspar

Olivine, and aqueous fluids, tr. elem. partitioning between, at high P-T, implications for effect of fluid compn. on tr.-elem. transport, 92M/4045; clinopyroxene, detn. of meteorite cooling using Ca exchange between, 92M/1921; and orthopyroxene in system MgO-FeO-SiO2, exptl., thermodynamic study of Fe-Mg exchange between, 92M/2792; Ca₂GeO₄, Mg2GeO4, CaMgGeO₄, anharmonicity, high-T hear capacity of crystals, 92M/4084; diffusion of cosmogenic ³He in, implications for surface exposure dating, 92M/0003; dissolution kinetics at near-surface condns., 92M/4087; effect of melt compn. on wetting angle between silicate melts and, 92M/0422; experimentally determined min.-melt

partition coefficients for Sc, Y, REE for, 92M/4085; exptl. detn. of activities in, at 1400 K, 92M/1565; growth rates in tholeiite, exptl. study of melt inclusions in plagioclase, 92M/4088; high P exptl. calibration of olivine-orthopyroxene-spinel oxygen geobarometer, implications for oxidation state of upper mantle, 92M/0405; in ALHA 77307 carbonaceous chondrite, 92M/4591; in chondrule from Allende meteorite, microstruct., 92M/1925; in chondrules, influence of bulk compn., dynamic melting condns. on textures, 92M/1927; in unequilibrated ordinary chondrites, 92M/3220; internally consistent solution models for Fe-Mg-Mn-Ti oxides, 92M/0406; mantle, naturally deformed, hydration-induced climb dissociation of dislocations in, 92M/1944; metasomatic oxidation of upper mantle peridotite, 92M/3404; metastable, seismological evidence for, inside subducting slab, 92M/4985: multicomponent. thermodynamics and solution props. of (Ni,Mg,Fe)₂SiO₄, (Ca,Mg,Fe)₂SiO₄ olivines, 92M/1568; porous aggregates, grain growth in, 92M/2853; single-crystal IR reflectivity, 92M/1200; synthetic Fe-bearing, growth, characterization, 92M/0445; thermal histories of CO3 chondrites, application of olivine diffusion modelling to parent body metamorphism, 92M/3226; Ti, REE distribn. between peridotite mins., 92M/4309; tr. elem. partitioning between carbonate melt, clinopyroxene and, at mantle P-T condns., 92M/0457; xenocrysts in picritic magmas, exptl., microstructl. study, 92M/1564; Argentina, Patagonia, Esquel, from pallasite, gem props., 92M/4173; Cameroon, phenocrysts in basalts, implications for primary magma compn., 92M/3234; Canada, Labrador, Kiglapait intrusion, redox effect on partitioning of Ni in, 92M/0672; Greece, Pindos, Labanova, in gabbro, 92M/3433; Iceland, Mælifell, multi-stage evolution of picrite, constraints from mineralogy, fluid, glass inclusions in, 92M/3405; India, Gujarat, Pavagad igneous suite, phenocrysts, primary silicate-melt inclusions in, 92M/0557; Italy, Apennines, plagioclase, reaction between, consequence of fluid-rock interactions sub-seafloor metamorphism, during 92M/3597; Italy, Bergell aureole, reaction antigorite -> olivine + talc + H2O, 92M/1159; Japan, Gifu Pref., Nogo-Hakusan, in symplectite in Fe-Al-rich hornfels, 92M/1182; New Zealand, Tongariro Volcanic Centre, Mangamate tephra, phenocrysts, morphol., chem., 92M/4849; Norway, Modum complex, cumulus phase in metagabbros, 92M/3407; Pacific, French Polynesia, Marquesas, Eiao Is., settling in basaltic lava, 92M/3497; Pacific, Lau Basin, in volcanic rocks, 92M/2111; Russian Federation, Monchegorsk, in clinopyroxenite-wehrlite intrusions, 92M/4810; South Africa, Bushveld Complex, Lower and Critical Zones, corroded plagioclase inclusions in, 92M/1007; Ukraine, Voronezh crystalline

massif, megacrysts from Ni-bearing norite, min. inclusions in, 92M/0997

— compounds, P-induced structl. modifications, amorphization in, 92M/3817

- —, fayalite, assoc. with new min., dmishteinbergite, 92M/2069; dielectric constants and oxide additivity rule, 92M/2341; single crystal Raman spectra, 92M/1384; system Mg₂SiO₄-Fe₂SiO₄ at low *P*, 92M/2852; *USA*, *Nevada*, manganoan, new occurrence in rhyolitic ash-flow tuff, 92M/0803
- -, forsterite, CaO-MgO-Al₂O₃-SiO₂-Na₂O at 1 bar from low to high Na2O contents, topology of analogue for alkaline basic rocks, 92M/4069; exptl., theoretical constraints on Al substitution in magnesian chlorite, thermodynamic model for H2O in magnesian cordierite, 92M/2861; in marble, kinetics of textural equilibration in, 92M/1557; mechanisms of transformations between α, β, γ polymorphs of Mg₂SiO₄ at 15 GPa, 92M/4086; O isotope thermometer calibrations, 92M/4195; single crystal Raman spectra, 92M/1384; single crystal IR reflectivity, 92M/1200; solubility, partitioning of Ne, Ar, Kr, Xe in mins. and synthetic basaltic melts, 92M/4068; synthetic Cr-doped, polarized optical absorption spectra, 92M/1201; system Mg₂SiO₄-Fe₂SiO₄ at low P, 92M/2852; Antarctica, assoc. with new min., dissakisite-(Ce), 92M/3332; Russian Federation, Pamirs, Kukhilal deposit, spinel from forsterite skarn, comparative crystal morphol., 92M/2020
- —, monticellite, single crystal Raman spectra, 92M/1384; Canada, Quebec, Île Cadieux, in alnöite, geochem., 92M/1767; Russian Federation, Yakutia, in kimberlite, 92M/1945
- tephroite, dielectric constants and oxide additivity rule, 92M/2341
- -liquid equilibria, chem. activities of FeO, NiO, Fe₂O₃, MgO in natural basic melts, 92M/4067
- -melt systems, partition coefficients for, 92M/2854
- -- orthopyroxene-spinel O geobarometers, applications of, to redox state of upper mantle, 92M/3357
- -pyroxene-Pt-Fe alloy as O geobarometer, 92M/2819
- OMAN, and other Tethyan settings, obduction vs subduction, collision, 92M/3530; chromite-rich, chromite-poor ophiolites, petrol., 92M/3522; diabase dykes, emplacement in ophiolite, magnetic fabric study, geochem., 92M/3513; glaucophane chloritoid-bearing assemblages, petrol. significance, petrogenetic grid for high P metapelites, 92M/1176; hydrothermal concn. of Pd, Pt in peridotite in ophiolite, 92M/0304; obduction of ophiolite-crustal loading, flexure, 92M/3531; processes of ophiolite emplacement, 92M/3533; Proterozoic source rocks, burial, thermal history, 92M/3571; rooting of sheeted dyke complex in ophiolite, 92M/3512; Sr, Nd, Pb isotopic constraints in genesis of calc-alkaline plutonic suite in ophiolite related to obduction process, 92M/3534;

stable isotope disequilibria in travertine from high pH waters, lab., field observations, 92M/4330; use digitally-processed spot data in geol. mapping of ophiolite, 92M/3550; Al Aridh fm., stratigr., palaeographic significance, 92M/3536; Magsad, mantle structs., evidence for palaeo-spreading centre in ophiolite, 92M/3517; Oman Mts, sulphide deposits, Pb isotope geochem., 92M/3527; Hawasina nappes and Hajar supergroup, igneous rocks, significance in birth, evolution of composite extensional margin of E Tethys, 92M/3537; Oman Mts, Wuqbah Block, comparison between mapping at 1:25000 scale and decorrelation stretched landsat thematic mapper images, 92M/3551; Central Oman Mts, Tertiary basaltic intrusions, petrol., 92M/3541; N Oman Mts, Dibba zone, Semail ophiolite, meta-carbonatite in metamorphic series, 92M/3539; Salahi Massif, ophiolite, geometry, flow pattern of plutonic sequence, key to decipher successive magmatic events, 92M/3514; Salahi Block, Semail ophiolite, evidence for polyphased oceanic alteration of extrusive sequence, 92M/3525; Semail ophiolite, Haylayn Block, Cu-Ni-PGE magmatic ores in layered gabbros, 92M/3520; Sur area, Jabal J'alan, uplift history of Precambrian crystalline basement, 92M/3538; Wahrah fm., chert-hosted Mn deposits, depositional model, 92M/3540; Zuha, ophiolite, sulphide deposit, geochem. study of fossil oceanic hydrothermal discharge zone, 92M/3526

Omphacite v. pyroxene

Ongonite, *Mongolia*, *Ongon Kharikhan*, petrol., 92M/1011

- Opal, micro- and non-crystalline silica mins., nomenclature based on struct., microstruct., 92M/2001; solid state ²⁹Si NMR study, 92M/2625; South Australia, matrix, treated, 92M/1625; China, Luochuan, in loess, significance, 92M/4892; S Finland, new hydromorphic precipitate type from gravel deposits, 92M/4635
- deposits, Slovakia, Cervenica-Dubnik, mins. assoc. with, 92M/5001
- Opal-CT, Antarctica, low-T precipitation in deep-sea sediments, evidence from O isotopes, 92M/4448
- Ophiolite complexes, genesis, and evolution of oceanic lithosphere, (book), 92M/2500; obduction, relationship of sedimentol. of trench-arc sediments to, 92M/0935; Os isotopes in, 92M/2993; PGE, Au in, distribn., fractionation from mantle to oceanic floor, 92M/3521; struct. of oceanic crust deduced from, 92M/2234; Albania, Tropoja and Bulqiza massifs, PGE mineralization in, 92M/2717; W Alps, Piedmont Zone, metavolcanic rocks, petrol., 92M/2287; Canada, Newfoundland, Bay of Islands, geochem, evidence for formation above subduction zone, 92M/1771; Bay of Islands, Lewis Hills, origin of complex upper mantle structs., 92M/2123; Bay of Islands and Little Port complexes, age, geochem., isotopic evidence confirm suprasubduction-zone origin, 92M/3057; Quebec, Cape Smith belt, Purtunia,

Proterozoic, geol., chem., 92M/3549; Quebec, Purtuniq, Nd, Pb isotopic constraints on origin, 92M/1293; China, Tibet, Qinghai-Xizang plateau, and Cainozoic rift magmatism in Qing-Zang terrain, 92M/0933; Columbia, La Tetilla, petrol., 92M/2247; Cyprus, Troodos, Au-rich seafloor gossan in, 92M/2661; S isotopic profile, 92M/3529; structl., petrol. features of peridotite intrusions from, 92M/3518; Greece, Pindos, Mesozoic, tectono-stratigr., evolution, 92M/1089; supra-subduction zone, genesis, emplacement, 92M/3547; India, Andaman Islands, and Naga Hills, geol. setting, collisional emplacement history, 92M/0938; Arunachal Pradesh, Lohit Himalaya, geol. setting, petrochem., 92M/0937; Ladakh Himalaya, Indus, podiform chromite in India peridotite, 92M/3442; Italy, Lanzo and Bracco, metarodingite, isotope data, indications for evolution of Alpino-type ultramafic-mafic complexes, 92M/1810; W Alps, Piemonte, Praborna, high-P-low-T manganiferous quartzite, petrol., 92M/3619; Japan, time-space distribn., diversity, 92M/3545; Lesser Caucasus, Triassic-Jurassic sedimentary breccia in, 92M/3543; Morocco, Bou Azzer-El Graara, geochem., significance of metavolcanic rocks, 92M/2079; New Zealand, Northland, Fe-Cu-(Zn) sulphide deposits assoc. with, 92M/3996; Northland, Ahipara, Tangihua, struct., 92M/4871; Norway, Caledonides, Solund-Stavfjord, FeTi-poor, FeTi-rich basalts, relationship, genesis, 92M/4356; Solund-Stavfjord, geol. implications of mixed oceanic-metalliferous, continental sediments from, 92M/1088; Oman, crustal loading, flexure, obduction, 92M/3531; diabase dykes emplacement in ophiolite fabric study, geochem., magnetic 92M/3513; hydrothermal concn. of Pd, Pt in peridotite, 92M/0304; rooting of sheeted dyke complex in, 92M/3512; Sr, Nd, Pb constraints in genesis calc-alkaline plutonic suite in, related to obduction process, 92M/3534; use of digitally-processed spot data in geol. mapping of, 92M/3550; N Oman Mtns., Dibba zone, Semail, meta-carbonatite in metamorphic series below, 92M/3539; Magsad, evidence palaeo-spreading centre in, mantle structs., 92M/3517; Salahi Massif, geometry, flow pattern of plutonic sequence, key to decipher successive magmatic events, 92M/3514; Salahi Block, Semail, evidence for polyphased oceanic alteration of extrusive sequence, 92M/3525; Semail, Haylayn Block, Cu-Ni-PGE magmatic ores in layered gabbros, 92M/3520; Zuha, sulphide deposit, geochem. study of fossil oceanic hydrothermal discharge zone, and 92M/3526; Oman Canada. Newfoundland, processes of emplacement, 92M/3533; Pakistan, Baluchistan, Muslim emplacement, breakup Gondwanaland, 92M/0949; Scandinavia, tectonostratigraphic relationships, obduction histories, 92M/3546; Scandinavia. Caledonides, Vågåmo, indications of

92M/4869: orogenesis, Ordovician Scotland, Shetland, age of hornblende schist, obduction of, 92M/1249; E Taiwan, genetic model, implications for Dupal domains in N Hemisphere, 92M/4870; Turkey, Kizildağ, magmatic extension, tectonic denudation, implications for evolution of Neotethyan oceanic crust, 92M/3532; USA, Arizona, Proterozoic, petrol., 92M/3554; California, Coast Range, hydrothermal metamorphism in oceanic crust, fluid-rock interaction in rifted island arc, 92M/3528; California, Point Sal, mixed-layer chlorite-smectite integrated TEM, XRD, electron microprobe investigation, 92M/2274; California, Trinity, chem. transfer between mantle xenoliths and basic magmas, evidence from oceanic magma chambers, 92M/1096; origin, petrogenesis, REE, Nd isotope data, 92M/3353; Silurian, O isotope evidence for multi-stage hydrothermal alteration at fossil slow-spreading centre, 92M/1775

Ophiolitic mélange, Sudan, Kabus, bearing on W boundary of Nubian Shield, 92M/1090

 thrust sheet, USA, Georgia, Appalachians, Ropes Creek assemblage, petrol., geochem., tectonic setting, 92M/0964

Ore deposit geology, development of, review, 92M/0297

— deposits, flow of hot brines in cracks and formation of, 92M/2655; magmatogenic, fractionation as precondition of formation of, 92M/2945; textures, interpn., problems, 92M/0268; China, stratabound, distribn., 92M/0324; E India, modelling technique using qualitative data from known min. belts, 92M/1424; South Africa, Witwatersrand and Bushveld, Os isotope systematics, 92M/1670; Spain, Catalonian Coastal Ranges, Hercynian, 92M/0918

minerals, advanced microscopy, (book), 92M/0113; advanced microspectroscopy, 92M/0074; calibration of ion microprobe for quantitative tr. precious metal anals. of, 92M/1319; determining min. characteristics by image anals., 92M/0075; electronmicroprobe anals., 92M/0072; Carboniferous to Tertiary sedimentary rocks, 92M/0320; microhardness props. in characterization of, 92M/0068; microscopephotometry, reflectance measurement, quantitative colour, 92M/0067; microscopic identification, 92M/0069; microscopy, observations, qualitative approaches, limitations, 92M/0064; microscopy, reflected-light optics, 92M/0065; microscopy, textures, 92M/0070; optical props., chem., 92M/0066; prepn. of materials for microscopy, 92M/0063; tr.-elem. microbeam anals., 92M/0073; use of reflected-light polarizing microscope, microscope-spectrophotometer for study of, 92M/0062

Organic acids, diagenetic reactions in presence of, 92M/4511

 geochemistry, factors affecting Rock-Eval derived kinetic parameters, 92M/3137;
 Australia, Gippsland basin, estimating kinetic parameters for organic reactions from geol. data, 92M/3161; Hungary, and hydrocarbon potential, Neogene sedimentary rocks, 92M/3158

- matter, containing C, H, O, N, S, detn. of concentration, stable isotopic compn. of O in, 92M/2456; decompn., T dependence of rate constants derived from power model of, 92M/4513; fossil, preservation biopolymeric structs., immunological evidence, 92M/0748; in Palaeozoic shale, estimation of, using reflectometer or Munsell colour chart, 92M/1313; in peat, isotopic compns. of carbohydrates as indicators of early diagenesis of, 92M/3141; insoluble, from chert, isotopic compn. of H in, 92M/1859; O2, NO3, Mn, PO4, early diagenesis of, model depicting, 92M/1860; sedimentary, anal. of distribus. of S-containing pyrolysis products using multivariate techniques, 92M/4507; sensitivity, effectiveness of extractants used to release metals assoc. with, 92M/0744; soluble, chem. characteristics, acidity of, from northern hardwood forest floor, 92M/4518; Africa, Congo River, particulate, C isotope compn., geochem., Africa, 92M/0757; Arabian Sea, Oman Margin, in sediments under O minimum, lack of enhanced preservation of, 92M/4527; NE Atlantic, and [CO2(aq)] in ocean surface water, relationship between δ¹³C of, 92M/4519; Czech Republic, Bohemian Massif, role in metallogeny, 92M/1665; Europe, poss. role in transport, accumulation of metals in Permian Kupferschiefer fm., 92M/4523; France, Gironde, Coutras deposit, in palaeodeltaic envt., 92M/1661; Italy, Veneto, Rosso Ammonitico Veronese, interaction between CaCO3 and, 92M/3157; North America, rift, Nonesuch midcontinent Proterozoic, S/C ratios, 92M/3574; Spain, Asturias, Peñarrubia, in marine sequence, geochem., 92M/1863; USA, California, Santa Maria Basin, Monterey fm., organically bound metals, biomarkers, 92M/1849; Colorado Plateau, Morrison fm., diagenesis, genesis of tabular V deposits, 92M/4541; Missouri, Viburnum Trend Pb-Zn dist., alteration of, 92M/4538

 molecules, origins of life, endogenous production, exogenous delivery, impact-shock synthesis of, 92M/4512

 species, aqueous, calculation of diffusion coefficients for, at T from 0-350°C, 92M/4077

Organo-clay complexes, differential thermal anal., 92M/2524

Orientite, assoc. with SrMn₂[Si₂O₇]-(OH)_{2*}H₂O, new min. of lawsonite type, 92M/3333

Ornamental rock, Portugal, Algarve, characteristics, economic potential, 92M/0342

Orogenesis, episodic metamorphic reactions during, control of deformation partitioning on reaction sites, reaction duration, 92M/2261

Orpiment, Tl, Au, exptl. contributions to mineralogy, geochem., crustal chem., 92M/2885; ancient Egypt, yellow, colour pigments in wall paintings, 92M/1240 Orthoclase v. feldspar

Offinociase v. feidspa

Orthoenstatite v. pyroxene

Orthopyroxene v. pyroxene

Osarsite, Bulgaria, Rhodope, in chromitites, 92M/0345

Osbornite, XRD anal., 92M/4638

Osmium, detn. of Os, Os isotope ratios by microelectrothermal vaporization ICP-MS, 92M/2493; in marine sediments, 92M/0682

Ostracods, *India, Kashmir*, non-marine, Quaternary, tr.-elem. chem. as means of palaeolimnological reconstruction, 92M/2481

Osumilite, in hydrothermal crystallization of quartz, 92M/0454; *Japan, Niigata Pref.*, from Pliocene subaqueous ash layer, 92M/3245

Otavite, Cd²⁺ uptake by calcite, solid-state diffusion, formation of solid-solution, XPS, LEED, AES study, 92M/4145; solid-solution phase equilibria in aqueous solutions, system CdCO₃-CaCO₃-CO₂-H₂O₃92M/4141

Otwayite, Australia, Tasmania, Lord Brassey mine, min. data, 92M/4667

Oxalate species, aqueous, thermal degradation, 92M/0512

Oxide minerals, crystal chem., 92M/0849; exptl. studies, 92M/0490; Fe-poor, energy gap for, 92M/2340; macroscopic, microscopic thermodynamic props., 92M/0489; petrol., magnetic significance, (book), 92M/0117; texture, 92M/0851; thermochem., 92M/0488

systems, binary, thermoanalytical investigations of, 92M/2515

Oxygen fugacity, petrol. importance, 92M/0904

Oxyhydroxide minerals, crystal chem., 92M/0849

PACIFIC OCEAN, aeolian dust in pelagic geochem., palaeoclimatic sediments, implications, 92M/0695; dissolved organic C in, 92M/4531; distribn. of Mn nodules, 92M/4017; EPR, ridge crest magma chambers, marine seismic expts., 92M/3510; fluxes of ²²⁶Ra, Ba, importance of boundary processes, 92M/3122; isotopic compns. of Ce, Nd, Sr in ferromanganese nodules, 92M/1782; manganese nodules, exploration, 92M/2667; ocean crust, petrol., 92M/2241; pore distribn. in Mn nodules, 92M/2668; pore sizes in Mn crusts, 92M/4018; ³²Si profiles, 92M/3120; *central*, hydrogenetic formation of Mn crusts, 92M/2970; central equatorial, large-scale lateral advection of sea-water through oceanic crust, 92M/1647; N, palygorskite formed on montmorillonite in deep-sea sediments, 92M/0189; REE behaviour in sea-water, detn. of variations in, 92M/4498; S, aeolian inputs of Pb via rain and dry deposition from industrial, natural sources, 92M/4219; NW, tomographic imaging of subducted lithosphere below island arcs, 92M/1216: Australian-Pacific Region, Au exploration, 92M/1418; Cascadia accretionary prism, fluid expulsion from, evidence from porosity distribn., direct measurements, GLORIA imagery, 92M/4965; Circum-Pacific Belt, skarn

deposits. characteristics, distribn., 92M/0326; Cook Is., evaluation of Mn nodules, Co-rich crusts in EEZ, 92M/1436; Easter Island microplate, basalt, geochem., 92M/1762; E Pacific Rise, hydrothermal vent distribn., relationship to magmatic, tectonic processes on fast-spreading mid-ocean ridges, 92M/1094; H, S, Nd isotope variations in mantle, 92M/4222; massive sulphides from ultra-fast spreading ridge, geochem., 92M/0581; French Polynesia, Marquesas, Eiao Is., vesicle zonation, olivine settling in basaltic lava, 92M/3497; French Polynesia, Tahaa volcano, exceptional REE enrichments in, 92M/3048; Funafuti, geophys. constraints on struct., 92M/1217; Galapagos Is., drowned islands downstream from hotspot imply extended speciation times, 92M/4832; Galapagos Is., Fernandina and Isabela, volcanoes, pattern of circumferential, radial eruptive fissures, 92M/1083; Fernandina volcano, Sept. 1988 intracaldera avalanche, eruption, 92M/1082; Galápagos Is., Islá Isabela, Urvina Bay, Volcán Darwin, flank lava, min. constraints on magmatic history, 92M/3555; Garrett transform fault, volcanic activity, crust-mantle exposure, 92M/4873; Hawaiian Archipelago, REE geochem. of ferromanganese crusts, 92M/4335; Juan de Fuca ridge, hydrothermal sulphides, radial growth rates, ²¹⁰Pb ages, 92M/0582; Axial Volcano, discrete, diffuse heat transfer at ASHES vent field, 92M/4982; Juan de Fuca and Gorda ridges, MORB, geochronol., petrogenesis, 92M/2427; Juan Fernandez microplate, roller-bearing tectonic evolution, 92M/5010; Lau Basin, high resolution ²³⁰Th depth profile in piston core, 92M/2107; hydrothermal nontronite deposit, geochem., 92M/2116; sediments, major, tr. elem. geochem., 92M/2104; sediments, rare, precious elem. geochem., 92M/2108; volcanic glass compns. from two spreading centres, 92M/2112; volcanic rocks, petrol., 92M/2111; volcanic rocks, tr. elem., isotopic geochem., 92M/2113; Lau Basin, Valu Fa Ridge, back-arc spreading centre, subalkaline andesite, petrogenesis, comparative chem., tectonic implications, 92M/1759; Lau and North Fiji basins, calcareous ooze, volcanic ash, metalliferous sediments in Quaternary, 92M/2103; hydrothermal mineralization, 92M/2115; mineralogy, chem. compn., origin of volcanic ash, pumice, in sediments, 92M/2109; origin, alteration of submarine volcaniclastic rocks, 92M/2110; Sonne Cruise SO-35, geol, evolution, hydrothermal activity, 92M/2117; Sonne cruise SO-35, ocean ridge, hydrothermal processes, 92M/2101; Loihi seamount, noble gases in submarine glasses, constraints on early history of Earth, 92M/4286; Macquarie Ridge, earthquake 1989, reactivation of oceanic fracture by, 92M/5009; Mariana Arc, tr. elem., isotopic characteristics of pelagic sediments, implications for petrogenesis of magmas, 92M/4303; Marquesas, Eiao Is., volcanic rocks, logging data, 92M/3676; Melanesian Borderland, Wallis Is., basalt, geochem.,

evidence for lithospheric origin, 92M/0659; Nankai Trough, 1989 Kaiko-Nankai project, methane, ethane, total inorganic C in fluid samples, 92M/4685; fluid venting activity within accretionary wedge, 1989 Kaiko-Nankai results, 92M/4682; heat flow, fluid flow regime in accretionary wedge, 92M/4687; stable isotopic ratios, origins of carbonates assoc. with cold seepage, 92M/4686; Nankai accretionary wedge, seafloor manifestations of fluid seepage at top of 2000-metre-deep ridge in, long-lived venting, tectonic implications, 92M/4683; Nauru Basin, origin of igneous complex, Sr, Nd, Pb isotope, REE constraints, 92M/0660; Nauru Is., chronosequence of soil C, N development after phosphate mining, 92M/3809; New Caledonia, glassy four-pyroxene boninite dyke, overgrowth textures, disequilibrium zoning, cooling history, 92M/4816; Niue Is., dolomitization of atolls by sea-water convection flow, 92M/2257; new model for origin of anomalous radioactivity in soils, 92M/4449; North Fiji Basin, back-arc basin basalts, petrol., tectonic setting, formation, 92M/2114; sediment cores, geochem., 92M/2105; 17°S active site, chem. of hydrothermal fluids, 92M/3121; Okinawa trough, CLAM hydrothermal field, high alkalinity due to sulphate reduction, 92M/2930; Pacific-Cocos East Pacific Rise, triple junction, Sea Beam survey, 92M/4874; Peru Margin, geochem. of inorganic, organic S in organic-rich sediments, 92M/4457; Rurutu island and Sasha seamount, basalts, Pb isotopic compn., sample contamination, 92M/1758; S Honshu and E Mariana ridges, growth rate of submarine volcanoes, comment, 92M/1091, reply, 92M/1092; Society Is. and Austral Is., submarine intraplate volcanism, geol. setting, petrol., 92M/3047; Solomon Is., Bonin Is., island are volcanic rocks with negative Ce anomaly, Ce, Nd isotope geochem., existence of sources with concave *REE* patterns in mantle, 92M/4390; Solomon Is., Manihiki and Ontong Java, isotopic evidence for origin of oceanic plateaux, 92M/0657; South Lau and North Fiji Basins, stable isotope stratigr., palaeoproductivity, sedimentation rates, 92M/2106; subarctic, carbonate deposition, benthic δ^{13} C, implications for changes of oceanic carbonate system during past 750,000 yr., 92M/0736; Tasmantid Seamounts, shallow melting, contamination of EM1 mantle plume, 92M/4872; Tonga ridge, high-Ca boninite lava, petrogenesis, 92M/1093; Tonga Trench, igneous rocks, petrol., geochem., non-accreting plate boundary, 92M/2184; Tuamotu archipelago, ferromanganese crusts, geochem., growth history, 92M/1683; Woodlark Basin, submarine basalts, abundances of volatiles, genetic relationships, 92M/0664

PAKISTAN, 16-m.y. record of palaeodiet using C, O isotopes in fossil teeth, 92M/4031; emerald and assoc. mins., min. chem., electron microprobe study, 92M/4186; emerald deposits, 92M/4183; emerald deposits, fluid inclusion geochem.,

92M/4187; emerald deposits, geol. setting, 92M/4182; emerald deposits, origin, classification, 92M/4189; emerald, gem characteristics, 92M/4184; emeralds, geol., gemmology, genesis, (book), 92M/3771; geol., metallogenic provinces, 92M/4181; origin of volcanic rocks in Tethyan suture zone, 92M/3544; regional chem. differences among emerald and host rocks, implications for origin, 92M/4185; Ambala, granitic petrogenesis, geochem., complex, 92M/0951; Baltistan, Main Karakoram Thrust, metamorphic evidence for inverted crustal section, 92M/1178; Baluchistan, Muslim Bagh, breakup of Gondwanaland, emplacement of ophiolite, 92M/0949; Besham area, deformation, imbrication in footwall of Main Mantle Thrust, 92M/0948; Himalaya, role of erosion, extension in unroofing Indian Plate thrust stack, 92M/1280; Himalayas, Jijal, mineralization in layered ultramafic-mafic complex, 92M/1465; Himalayas, Nanga Parbat syntaxis, structl. evolution, asymmetric uplift, 92M/2417; Indus Suture Zone, mafic-ultramafic plutonic complexes, review, 92M/0928; Karakoram, new min. finds, 92M/2378; Karakoram, Yasgil Dome, Pliocene-Quaternary denudation fission track dating of apatite, 92M/2416; Kohistan arc, amphibolites, petrol., geochem., 92M/0927; entrapment of intra-oceanic island arc in collision tectonics, structl. history, 92M/0923; Kohistan arc, Kalam-Dir igneous complex, petrol., geochem., 92M/0925; Kohistan, Chalt volcanics and Kohistan batholith, magma source regions, crustal growth, 92M/1009; high-Mg tholeiitic, low-Mg calc-alkaline volcanism in Cretaceous island 92M/0924; Kohistan. Chilas. mafic-ultramafic complex, oxide phases, min. chem., 92M/0954; Jutal, Cretaceous basaltic dykes, field relations, geochem., petrogenesis, 92M/3025; Kohistan batholith, petrol., chronol., structl., geochem, review, relationship to regional tectonics, 92M/0926; Lower Swat, Main Mantle Thrust, Himalayan metamorphism, 92M/0955; N Indian plate, Himalayas, imbrication, unroofing of thrust stack, 92M/0947; Nanga Parbat-Haramosh loop, petrol., 92M/0952; Quetta, Bibai and Gogai nappes, emplacement, 92M/0950; Sakhakot-Qila ophiolite, comparison of geochem. of ophiolitic pyroxenites and fractionated pyroxenite dyke, 92M/1747; Sillai Patti, carbonatite complex, chem., petrogr., 92M/0953; Swat, tsavorite, gemstone, 92M/4172

Palladium, rapid technique for detn. of, in geol, samples, based on selective aqua regia leach, 92M/2459; Australia, Northern Territory, Coronation Hill, unconformity related Au, Pt, Pd prospect, 92M/1475

Palladobismutharsenide, Brazil, Goiás, Cavalcante, assoc. with Au, 92M/3905

Palygorskite v. clay minerals

PANAMA, La Yeguada volcanic complex. dacite genesis via both slab melting and differentiation, 92M/3462

Pantellerite, Italy, Pantelleria, magmatic H2O content, implications for petrogenesis, eruptive dynamics, 92M/3481

Pantelleritic magma v. magma, pantelleritic

PAPUA NEW GUINEA, Au exploration, 1987-1991, 92M/2687; intrusive rocks assoc. with Au mineralization, 92M/2682; mid Cretaceous to Palaeogene marine volcanic rocks, distribn., mineralization, 92M/3394; min. deposits, tectonic setting, 92M/2684; Bismarck Sea, Manus back-arc basin, modern hydrothermal activity, formation of massive sulphide deposits and assoc. vent communities, 92M/2681; Eastern Highlands province. Mt Victor, Au mine, 92M/2695; Finisterre Range, geol., case history of arc-continent collision, 92M/3393; Hamata mineralization, Au deposit, exploration, 92M/2686; Lihir Is., exptl., major elem. constraints on evolution of lava, 92M/2831; Lihir is., Ladolam, Au deposit, geol., mineralization, 92M/2693; Morobe Province, Labu Lakes, tr. metal distribn. in estuarine ecosystem, 92M/2783; Morobe province, Wamum and Idzan creeks, Cu-Au mineralization, 92M/2690; Mt Kare, Au project, 92M/2692; New Britain, Maragorik epithermal Au deposits, geol., 92M/2694; Porgera, Au deposit, assocn. with alkalic magmatism in continent-island-arc collision zone, 92M/3894; Au deposit, sources of metals, 92M/3908; Sudest Is., Au mineralization, prelim. findings, 92M/2689; Tolukuma, epithermal Au-Ag deposit, characteristics, 92M/2688; Wafi river, high sulphidation epithermal Au deposit, exploration history, geol., metallurgy, 92M/2685; Woodlark Is., Muyua, revised stratigr., 92M/3395

Paragonite v. mica

Paramontroseite, USA, Utah, Henry Basin, in epigenetic, sandstone-hosted V-U deposit, 92M/0594

Parasymplesite, Germany, Wittichen, occurrence, 92M/4998

Paratacamite, New Zealand, Hawkes Bay, Kairakau Rocks, assoc. with pillow lava, 92M/4820

Pargasite v. amphibole

Parisite, petrogenetic grid for REE fluorcarbonates, assoc. mins., 92M/4148

Parkerite, Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336

Parnauite, France, Var, Cap Garonne mine, assoc. with new min., camerolaite, 92M/3329

Parsettensite, New Zealand, Otago, assoc. with coombsite, new Mn analogue of zussmanite, 92M/3331

Parsonite, transformation of chernikovite into, study of solubility product, 92M/2908

Pearcite, Sb-, Germany, Siegerland, occurrence, 92M/1225

Peat, in different mire types, variation in water content, tr. metal concn. in, 92M/4433; isotopic compns. of carbohydrates as indicators of early diagenesis of organic matter in, 92M/3141; Europe, Pleistocene, U/Th dating, 92M/3714

Pectolite, Italy, Vicentino, occurrence, (book), 92M/2498

Pegmatite, Western Australia, Greenbushes, giant rare metal, envt., structl. controls on intrusion of, 92M/0372; Czech Republic, Moravia, ilmenite from, min. data, 92M/2016; Moravia, Kracovice. mineralogy, 92M/2716; Greece, Chalkidiki peninsula, chem. variations in tourmaline from, 92M/1963; Ireland, Leinster Granite, geochem. genesis, constraints, 92M/4362; SE Ireland, petrogenetic implications of garnet assoc. with, 92M/3243; Mozambique, Nb-Ta, formation condns., 92M/2664; Nb-Ta, geochem. prospection, 92M/3186; Muiane, Nb-Ta, 92M/2722; geochem., Mozambique, Zambézia Province, Marropino, characteristics, 92M/2723; Norway, Larvik, min. deposits, geol., 92M/0978; Poland, Strzegom, babingtonite, Y-Al-rich titanite, zoned epidote from, 92M/4617; Strzegom-Sobótka massif, beryl-bearing, in two-mica granite, 92M/0996; Spain, Catalonia. Pyrenees, Sn-Nb-Ta-Be mineralization in, 92M/1428; Pyrenees, Cap de Creus, distribn. of phosphate mins. in, 92M/2170; Pyrenees, Massif des Alberes, Cabo de Creus, garnet-tourmaline, stable isotope constraints on origin of, 92M/4299; Sweden, Li-, Sn-bearing, tr. elems. in K-feldspar, muscovite, as guide in prospecting for, 92M/4550; Sweden, Nynäshamn, Stora Vika, zincian helvite in, min. data, 92M/2003; Ukraine, Wolynia, mineralogy, 92M/2376; USA. Carolina, Kings Mt, cation distribn. in partially ordered columbite 92M/2648; South Dakota, Black Hills, petrogenetic relationships between granite, based on geochem. of muscovite in pegmatite wall zones, 92M/4412

fields, REE, Precambrian, fertile granites of, geochem., tectonic or lithol. control, 92M/0901

, granitic, Li-rich, petalite + albite + quartz equilibrium in, exptl. study, 92M/0409; Li-rich, spodumene + albite + quartz equilibrium in, exptl. study, 92M/0410; Li-rich, thermodynamic implications of experiments in Na-Li-Cs consequences for solute props., 92M/2839; REE, P in alkali feldspar of, 92M/2940; Canada, Manitoba, Tanco, zoned, volatile geochem. of magmatic H2O-CO2 fluid inclusions from, 92M/4249; Pamirs, formation of, in Mg-rich marble, 92M/4811

magma v. magma, pegmatite

Pelite, Sm-Nd isochron 1000 m.y. in excess of depositional age, significance, 92M/3716; South Australia, Mount Lofty Ranges, Buchan facies series, phase relationships in, calculations with application andalusite-staurolite parageneses, 92M/4949; Morocco. Walmès. tourmalinized, and its Sr-Be vein, comparative thermobarometry, 92M/4943; Scotland, Highland, Ballachulish igneous complex, contact-metamorphosed, search for variations in structl. states of cordierite in, 92M/2156; partially melted, field relations, petrogr., 92M/2151; petrogr., min. chem., 92M/2150; USA, Wyoming, Morton Laramie anorthosite, contact metamorphism, partial melting, 92M/1115

Pentlandite, in xenolith from kimberlite pipe, mineralogy, 92M/4639; Germany, KTB pilot hole, occurrence, 92M/0302; Italy, Peloritani Mts, occurrence, 92M/2673; Italy, Central Alps, Val Lanterna, in steatite deposit, 92M/1497; Ukraine, Voronezh crystalline massif, in ultramafic xenoliths from Ni-bearing norites, 92M/2033; USA, Montana, Stillwater complex, unnamed Re-Mo-Cu sulphide inclusions in, 92M/3308

Peperite, Antarctica, South Shetland Is., Livingston Is., field observations, 92M/4821 Peraluminous system, Spain, Peña Negra Complex, geochem. modelling of low melt-fraction anatexis in, 92M/0706

xenoliths, Morocco, Jebilet, Oulad Ouaslam, in granite, petrol., 92M/1001

Periclase, high-T heat capacity, premelting of mins, in system MgO-CaO-Al₂O₃-SiO₂, 92M/2821; upper mantle oxide mineralogy, 92M/0850

-, magnesiowüstite, and metal, partitioning of Ni between, at high P: implications for equilibrium, 92M/1594; core-mantle equilibrium point defect concentrations in MgO, mechanisms of conduction, diffusion, role of Fe impurities, 92M/2887; exptl. 92M/0490; (Fe,Mg)O, (Fe,Mg)SiO₃-perovskite, simultaneous high measurements of, diffraction P-Timplications for lower mantle compn., 92M/3666; from Vigarano CV3 chondrite, evidence for extraneous origin, 92M/0792; P-V-T equation of state of, 92M/4127

Pericline v. feldspar

Peridotite, cratonic, exptl. evidence for exsolution of, from high-T harzburgite, 92M/2830; garnet, evaluation of geothermobarometers for, comment, 92M/4043, reply, 92M/4044; heterogranular matrix, and magmatic liquid, modelling of tr. elem. transfer between, 92M/3343; mantle, complementary Ti, Zr anomalies in orthopyroxene, clinopyroxene 92M/4371; oceanic, petrol., geochem., 92M/2245; orogenic massifs: protolith, process, provenance, 92M/3341; spinel, abyssal, O thermobarometry of, redox state, C-O-H volatile compn. of sub-oceanic upper mantle, 92M/1709; spinel, O barometry, 92M/0608; upper mantle, metasomatic oxidation of, 92M/3404; W Alps, Mt Mary nappe, mantle, Austroalpine, **EPMA** data, 92M/3618; petrogr., Antarctica, Ross Sea margin, four-, five-phase, from continental rift system, evidence for upper mantle uplift, cooling, Mid-Atlantic 92M/4822; Ridge. serpentinized, in axial valley, 92M/4803; Cyprus, Troodos, from ophiolite, structl., petrol. features, 92M/3518; Czech Republic, Bohemian Massif, Moldanubian zone, thermobarometry, diffusion modelling, cooling rates, 92M/1163; India, Ladakh Himalaya, Indus ophiolite, podiform chromite in, 92M/3442; Indonesia, Sulawesi, and assoc. high-grade rocks, petrol., 92M/1184; Japan, Hokkaido,

Horoman, compositional variations within the lower layered zone, constraints on models for melt-solid interaction, 92M/3352; Central Japan, Circum-Izu massif, as back-arc mantle fragments of Izu-Bonin arc, 92M/3548; Morocco, Beni Bousera, O isotope evidence for origin of pyroxenite in, derivation from subducted oceanic lithosphere, 92M/0638; Oman, hydrothermal concn. of Pd, Pt in ophiolite, 92M/0304; Red Sea, Zabargad, evidence for multistage metasomatism during rifting, 92M/3024; high-T hydrothermal alteration of, 92M/3354; Russian Federation, Siberia, megacrystalline, hosts for diamonds, 92M/3440; Spain, Cabo Ortegal complex, pyroxenite-rich, evidence for large-scale upper-mantle heterogeneity, 92M/3348; Pyrenees, Leiza Fault, and high-grade metamorphic rocks, petrol., 92M/1141; Switzerland, Alps, Totalp, radiometric age, thermobarometry, mode of emplacement,

massifs, France, Pyrenees, Lherz, intrinsic Nd, Pb, Sr isotopic heterogeneities exhibited by, 92M/3347; Japan, Horoman, petrol., evolutional history of uppermost mantle of arc system, 92M/3519; Pyrenees, REE, Sr-Nd isotopic geochem., sub-continental lithospheric mantle modified by continental

magmatism, 92M/3346

xenoliths, Australia, Victoria, spinel, evidence for carbonatite metasomatism in, 92M/3042; Hungary, Pannonian Basin, spinel, petrol., geochem., evidence for assocn. between enrichment, texture in upper mantle, 92M/3015; South America, rheology of upper mantle inferred from, 92M/2338; Spain, Canary Islands, Lanzarote, ridge to hot-spot evolution of Atlantic lithospheric mantle, evidence from,

-pyroxenite, Red Sea, Zabargad Is., clinopyroxene from, REE, tr. elem. geochem., 92M/3355

-suite inclusions, Africa, from diamonds, variations in trapping T, tr. elems. in, evidence for two inclusion suites, implications for lithosphere stratigr., 92M/4379

Perlite, Bulgaria, E Rhodopes, electron 92M/2346; paramagnetic resonance, Greece, Milos Is., Chivadolimni deposits, heated, oxidation state of biotite from, 92M/4627

Perovskite, CaGeO3, phase transition in, XRD, thermal expansion, heat capacity, 92M/2634; CaGeO₃, Raman scattering study of high-T vibrational props., stability of, 92M/2633; defect struct., chem., 92M/1408; evolution of distortion of, under P: EXAFS study of BaZrO3, SrZrO3, CaGeO₃, 92M/1596; exptl. studies, 92M/0490; (Fe,Mg)SiO₃-, and (Fe,Mg)O magnesiowüstite, simultaneous high P-T diffraction measurements of, implications for lower mantle compn., 92M/3666; high P rhombohedral phase, min. data, 92M/2018; MAS NMR spectroscopic study, 92M/0225; pre-melting behaviour at high P, T, 92M/0455; SrZrO₃, BaZrO₃, thermal expansion of, 92M/4986; thermodynamic

props. derived from large scale molecular dynamics simulations, 92M/4095; unquenchable high-P polymorphs of MnSnO₃, FeTiO₃, 92M/2891; Czech Republic, Bohemia, České Středohoří Mts, of alluvium heavy-min. concentrates, 92M/2017; Russian Federation, Siberia, Guli, from carbonatite, Na-rich carbonate inclusions in, 92M/2177; USA, Virginia, occurrence, 92M/4000

- type minerals, condns. for crystallization, concentration of, in alkaline magmas, 92M/3295

-type structure, [Mg(H₂O)₆]CsCl₃, crystal struct., 92M/2650

Perthite v. feldspar

Perthosite, Greenland, Blå Måne Sø, CL, microporosity in alkali feldspars from, 92M/0839

PERU, amphibolitic Cu-Fe skarn deposits, geochem., mineralogy, 92M/2990; central, S, Pb isotope bearing on metallogenesis of sulphide ore deposits, 92M/2989; Andes, geol., geochronol. constraints metallogenic evolution, 92M/2704; Pb isotope variation, 92M/2987; Arcata dist., geol. setting, epithermal Ag veins, 92M/2758; Choquene dist., Palca 11 mine, magmatism, W mineralization, 40Ar/39Ar dating, 92M/2440; Cordillera, Hualgayoc, Pb isotopes, implications for metal provenance, genesis of polymetallic mining dist., 92M/2985; Cordillera Oriental, Pb isotopic compn. in ore deposits, 92M/2986; 'Eastern Cordillera', Lower Palaeozoic Au occurrences, 92M/3869; Cuajone, Quellaveco and Toquepala, porphyry Cu deposits, geomorphol. envt., age of enrichment, 92M/2756; supergene Huancavelica, assocn. of Ag, Hg, As, Sb, carbonaceous material, 92M/2761; Julcani, evolution of ore system in bismuthinitestibnite compns., 92M/2991; Orcopampa, ore zoning, Ag deposits, tetrahedrite compositional variation, 92M/2759; Orcopampa, Calera, epithermal Ag-Au vein system, multistage evolution, 92M/2760; Pataz, Au quartz veins hosted by plutonic rocks, geol. setting, paragenesis, physicochem., 92M/2705; Quiruvilca mining dist., Cu-Pb-Ag deposit, metal ratios, 92M/2755; San Judas Tadeo, W(-Mo, Au) deposit, Permian lithophile mineralization, 92M/2762; San Vicente, genesis of Mississippi Valley-type Zn-Pb deposit, geol., isotopic evidence, 92M/2988; Toquepala, slump breccias of porphyry Cu-(Mo) deposit, implications for fragment rounding in hydrothermal breccias, 92M/2763; Uchucchacua, Ag-Mn-Pb-Zn vein, replacement, skarn deposits, struct., mineralogy, metal zoning, Sr isotopes of fluid inclusions, 92M/2757

Petalite, + albite + quartz equilibrium in Li-rich granitic pegmatite, exptl. study, 92M/0409; in Li-rich granitics, thermodynamic implications of experiments in Na-Li-Cs system, consequences for solute props., 92M/2839; Li/H-exchanged, crystal struct., H bonding in, 92M/2626; Portugal, Minho, Arga, in aplite swarm, 92M/4647

Petrogenesis, thermodynamic systems, factors of, 92M/2800

Petroleum v. hydrocarbons

Phase conversions, natural elem., isotope separations by, 92M/2924

 relations, in system MgO-FeO-SiO₂ at high P, T, exptl. detn. of elem. partitioning, 92M/2818

Phaunouxite, Czech Republic, Bohemia, Mariánské Lázně, Planá, and rauenthalite, topotactic intergrowths of, 92M/2029

Phengite v. mica

PHILIPPINE SEA, Mn crusts, nodules, distribn., morphol., geochem., 92M/1677; submarine lavas, isotope characteristics, implications for origin of arc, basin magmas of Philippine plate, 92M/3041

PHILIPPINES, Luzon, Mt Pinatubo, anhydrite-bearing pumices, evidence for existence of S-rich silicic magma, 92M/2228; basalt trigger for 1991 eruptions, 92M/4845; Mt Natib, caldera-hosted geothermal system, geochem. model, 92M/1062

Philipsbornite, Czech Republic, Bohemia, occurrence, 92M/3334

Phillipsite v. zeolite

Phlogopite v. mica

Phonolite, Africa, Shombole volcano, Nd, Sr isotope systematics, 92M/3021; Antarctica, Mt Erebus, fractionation, ²³⁸U-, ²³²Th-series dating, 92M/3737; Namibia, Windhoek, Aris, tuperssuatsiaite from, 92M/4630

Phosgenite, Wales, Gwynedd, Penrhyn Du mine, first Welsh occurrence, 92M/2362

Phosphate, effects on iron oxide dissolution in EDTA and oxalate, 92M/0493; in pallasite meteorites, as probes of mantle processes in small planetary bodies, 92M/1936; O isotopes of, and origin of island apatite deposits, 92M/4317; of fossil fish, Devonian to Recent, O isotopes in, 92M/4204; REE complexation by PO₄³⁻ ions in aqueous solution, 92M/1610; volcanic production of polyphosphates, reievance to prebiotic evolution, 92M/0426; Indian Ocean, Kerguelen-Heard Plateau, hydrothermal mineralization, 92M/2958

— deposits, Albania, min. resources, 92M/3978; Mexico, Baja California Sur, sedimentary, Tertiary, geochem., 92M/1802; Tuvalu, Ellice Is., phosphatic limestones, derivation, 92M/2770

 mineralization, India, West Bengal, Puruliya Dt, apatite-magnetite amphibolites, role in, 92M/2300

 minerals, Indian Ocean, marine min. resources, 92M/3982; Spain, Pyrenees, Cap de Creus, distribn. in pegmatite, 92M/2170

 mining, Pacific, Nauru Is., chronosequence of soil C, N development after, 92M/3809

Phosphatic concretions, SE England, in Wealden, 92M/1105

Phosphorite, Brazil, Minas Gerais, Rocinha mine-Patos de Minas, genesis, evolution of Proterozoic deposit tectonized by Brasiliano orogeny, 92M/4027; China, Yunnan, secondary enrichment, formation mechanism, 92M/0562; India, Gujarat State, Panchanahal dist., Raujitpura-Chalwad, geochem., 92M/1498; New Zealand, marine min. potential in exclusive

economic zone, 92M/0383; New Zealand, Chatham Rise, exploration, 92M/2771

Phosphorus, USA, Hudson River, chem., 92M/0398

Phreatomagmatic explosions, quantitative expts. on, 92M/3470

Phyllite, Germany, Thuringia, Greiz, fabric of, 92M/3632

Phyllosilicate, *Japan, Kitakami*, in slates, change in dominant mechanisms for Kitakami, 92M/2304

— minerals, Spain, Hesperian massif, in Precambrian, low-grade-metamorphic, clastic rocks, compn. of, used as indicator of metamorphic condns., 92M/3631

Pickeringite, *Slovakia*, *Cervenica-Dubnik*, assoc. with opal deposits, 92M/5001

Picrite, eruption of, in preference to primitive basalt, 92M/2136; Karoo, mantle origins of, 92M/3019; *Iceland, Mælifell*, multi-stage evolution, constraints from mineralogy, fluid, glass inclusions in olivine, 92M/3405; *South Africa, Karoo*, interaction between asthenospheric magmas, mantle lithosphere, 92M/1741

- glass, USA, Hawaii, geochem., 92M/1761

- magma ν. magma, picrite

Picropharmacolite, Germany, Wittichen, occurrence, 92M/4998

Piemontite v. epidote

Pigeonite v. pyroxene

Pimelite v. serpentine

Pitchblende v. uraninite

Pitiglianoite, *Italy, Tuscany*, new feldspathoid, chem. compn., crystal struct., 92M/3335

Pitticite, Germany, Saxony, Czech Republic, mins. of mine dumps, 92M/3687

Placer deposits, USA, Oregon and Washington, Columbia River, at river mouth, 92M/4026

Plagioclase v. feldspar

Plagionite, Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864

Planetary studies, accretion in inner nebula, relationship between terrestrial planetary compns. and meteorites, 92M/4568; ancient oceans, ice sheets, hydrological cycle on Mars, 92M/0775; effect of H2O gas on volatilities of plant-forming major elems., exptl. detn. of thermodynamic props. of Ca-, Si-hydroxide gas molecules, application to solar nebula, 92M/4567; Mars, Olympus Mons, lobes of lava flows, 92M/3468; planetary crusts, origin, evolution, Taylor Colloquium, 92M/4268; terrestrial spreading centres under Venus condns., evaluation of crustal spreading model for Aphrodite Terra, comment, 92M/0774; Venus surface features, geol., 92M/4569; Venusian highlands, geoid to topography ratios, implications, 92M/4570

Plate tectonics, convergence, collision of large land masses, fluid regime, resulting min. deposits, 92M/4238; forces driving plates, constraints from lineations, stress observations, 92M/2332; sublithospheric loading, plate-boundary forces, 92M/2329; Himalayas, continent—continent collision, gravity field, 92M/0943; collision zone, geol., geodynamic evolution, 92M/0945; India, Himalayas, seismicity, nature of continent—continent collision, 92M/0941; Jammu and Kashmir, Ladakh, collision

tectonomagmatic, sedimentation history, 92M/0929; Indian Peninsula, Himalayas and Indus suture, palaeomagnetism, implications of continental drift, India-Asia collision, 92M/0944; Pakistan, Kohistan arc, collision, entrapment of intra-oceanic island arc, 92M/0923; Kohistan batholith, petrol., chronol., structl., geochem. review, relationship to regional tectonics, 92M/0926; Papua New Guinea, Finisterre Range, modern arc-continent collision, case history of, 92M/3393; South America, global tectonic evolution during late Proterozoic, 92M/2077; USA, Alaska, Chugach Mts, island arc setting, tectonic history, 92M/2119

Platinum, in ocean-floor ferromanganese crusts, nodules, geochem., 92M/0571; Australia, Northern Territory, Coronation Hill, unconformity related Au, Pt, Pd prospect, 92M/1475

— deposits, *Bolivia*, min. resource potential, 92M/1444

group elements, detn. in geol. samples, 92M/1311; in analytical workshop, ophiolites, distribn., fractionation from mantle to oceanic floor, 92M/3521; solubility, transport of, in saline hydrothermal fluids, 92M/4345; Albania, Tropoja and Bulgiza massifs, in ophiolites, 92M/2717; Australia, Tasmania, Heazlewood River Complex, occurrence, geol., geochem., origin, 92M/0371; Western Australia, Pilbara Block and Halls Creek Mobile Zone, use of geochem. as guide to potential of mafic-ultramafic rocks. 92M/0578; Canada, North West Territories, Ferguson Lake, behaviour of, in surficial envt., 92M/1893; Greece, Vourinos, distribn. in chromitite ore, 92M/2954; Italy, Ivrea zone, in magmatic sulphides, control sulphide assimilation, silicate fractionation, 92M/0321; Scotland, Aberdeenshire, Oldmeldrum, Hill of Barra, investigations for, 92M/4320; South Africa, Bushveld Complex, Upper Zone, behaviour, implications for formation of magnetite layer, 92M/4328; Zimbabwe, Great Dyke, Darwendale subchamber, in pyroxenite, 92M/0349; Great Dyke, Zinca prospect, mineralization, petrographic studies, 92M/2724

mineralization, Canada, Ontario, Lac des Iles complex, magma mixing, constitutional zone refining, genesis of, 92M/1691; Pakistan, Himalayas, Jijal, in lavered ultramafic-mafic complex, 92M/1465; South Africa, Bushveld Complex, Os isotopes and crustal sources for, 92M/4327; USA, Alaska, Salt Chuck Intrusion, in low-T Cu sulphide-rich assemblages, hydrothermal 92M/2733

— minerals, assoc. with ultrabasic intrusions, Os isotope ratios of, Os-isotopic evolution of oceanic mantle, 92M/4284; microprospecting for, 92M/2453; Borneo, in chromitite in ultramafic intrusions, assoc. placers, Os isotope study, 92M/4334; Brazil, Goiás, Cavalcante, assoc. with Au, 92M/3905; Brazil, O'Toole, in Ni-Cu-Co deposit, 92M/2753; Merensky Reef,

occurrence, genetic implications, 92M/0350; Portugal, Bragança-Vinhais, from ultrabasic rocks, 92M/2047; Sierra Leone, Freetown Layered Complex, Os isotope ratios of PGM grains, origin, 92M/1668; USA, Alaska, Goodnews Bay, transport, deposition of, in offshore placers, 92M/0313; Minnesota, Duluth Complex, role of fluids in formation of, textural, chem. evidence, 92M/1703

— ore, Ecuador, working of, 2nd century B.C., archaeology: theories, methods, practice, (book), 92M/2495

— -iron alloys, in exptl. petrol. applied to high-P research on Fe-bearing systems, 92M/2817

 --- palladium mineralization, calculated solubility of Pt, Au in O-saturated fluids, genesis of, in unconformity-related U deposits, 92M/2884

Plattnerite, Western Australia, Ashburton Downs, assoc. with ashburtonite, new bicarbonate-silicate min., 92M/3327

Plumasite, Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864

Plumbogummite, Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; Moravia, Rýmařov, min. data, 92M/2060

Plutonic complexes, alkaline, compositional variation of amphibole in, 92M/3259; Greece, Chalkidiki, Sithonia, petrol., 92M/3434; Morocco, Western High Atlas, Tichka, Hercynian, petrogenesis, tr. elem., Rb–Sr, Sm–Nd isotopic constraints, 92M/4804

rocks, oceanic layer 3, high-T deformation, metamorphism, O, H isotope compns., 92M/4202; Germany, Meißen massif, evidence for open, closed system fractionation processes, 92M/3421; Italy, Calabria-Peloritani Region, syn-late-Hercynian leucocratic, geochem, 92M/0630; USA, Alaska, Canadian Cordillera, Coast Mountains batholith, Nd, Sr isotopic constraints on petrogenesis, 92M/1763

 -- volcanic complexes, Cameroon, geochem., differentiation of intermediate magma, 92M/3018

Plutonism, and volcanism, metallogenesis, in continental crust, relationships between, 92M/2657; USA, California, Old Woman Mts area, 40Ar/39Ar thermochronol., thermobarometry of, 92M/4719

Plutons, asymmetrically zoned, tectonic implications, 92M/0968; phys., chem. characterization of, in relation to contact metamorphism, 92M/3584; Bulgaria, N Strandža Mt, Vâršilo, petrochem. evolution of major elems. in, correspondent factor anal., 92M/1732; Canada, British Columbia, Coast Mts batholith, Cretaceous, Tertiary, U-Pb dating, 92M/1302; New Zealand, Northland, Karikan, Miocene, relation between intrusion, tectonics in, 92M/4703

POLAND, C, O, S isotopic compn. in organic-rich Cu-bearing shale from Kupferschiefer, 92M/0551; formation of sulphide-calcite veinlets in Kupferschiefer Cu-Ag deposits by natural hydrofracturing during basin subsidence, 92M/1463; Baltic area, Zechstein, extent, facies, stratigr., 92M/3567; Baltic Shield, crystalline basement, petrol., 92M/3389; Carpathians. Rytro, Magura nappe, flysch, exotic rocks, heavy mins., 92M/1107; Fore-Sudetic monocline, Kupferschiefer, primary sulphide mineralization in Cu-Fe-S zones, 92M/3990; Zelazno, Kłodzko-Złoty Stok, T of contact changes in rocks of cover of intrusion, 92M/1114; Lower Silesia, ferruginous micronodules from kaolinite. min., geochem. studies, 92M/0686; natural prasiolite, props., 92M/4178; Lower Silesia, Sobótka, Naslawice, clinozoisite in rodingites, 92M/1162; Olkusz-Kolesław Olkusz-Kolesław region, ore-bearing dolomites, petrogr. characteristics, 92M/3566; Silesia, Mt Sobotka, amesite, nonstandard polytype, crystal struct., 92M/0230; Silesia, Zlaté Hory, metacolloidal squalerite, occurrence, min. data, 92M/2035; Stronie Śląskie, Krzyżnik Mt, staurolite in mica schists, 92M/1165; Strzegom, babingtonite, Y-Al-rich titanite, zoned epidote, from pegmatite, 92M/4617; Strzegom-Sobótka massif, beryl-bearing pegmatite in two-mica granite, 92M/0996; Sudetes, Ciechanowice, sodic-calcic amphiboles from albiteamphibole schist, min. data, 92M/1978; Sudetes, Strzegom-Sobótka massif, controls on TiO2 content in muscovite, biotite from two-mica granite, 92M/1983; Suwałki massif, millerite, occurrence, genesis, 92M/2037; Tajno massif, processes of ilmenite metamorphosis, mineralization in pyroxenite, 92M/3292; Tarnobrzeg, Sr, Ba mins. in S deposits, 92M/2050; Zabkowice Śląskie, Bukowczyk Hill, metagabbros, amphibolites, petrol., 92M/1166

Polarite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Pollucite v. zeolite

Polybasite, Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864

-- pearceite group, Asia, assoc. with roquesite, 92M/4656

Polydymite, USA, Missouri, Viburnum Trend, occurrence, 92M/3704

Polyhalite, ground-water control of evaporite deposition, 92M/2773

Polylithionite v. mica

Polysomatism, and polysomatic series, review, applications, 92M/0203

Porphyrin, anal. and coal rank, porphyrin index of coalification for bituminous coal, 92M/1856; desorption tandem MS, C number, pyrrolic struct., sequencing information of, desorption tandem MS, 92M/1855

Porphyroblasts, competitive diffusioncontrolled growth of, 92M/1121; textural sector zoning, matrix displacement, 92M/1123

Portlandite, mechanism of carbonate growth on concrete structs., C, O isotope anals., 92M/0519

PORTUGAL, Hercynian blueschist metamorphism, tectonothermal implications, 92M/1158; kaolin, characterization for paper industry, beneficiation through new

delamination techniques, 92M/1336; Aguiar da Beira, granite, economic potential as ornamental material, 92M/0378; Alentejo, Alter do Chão, basic-ultrabasic rocks, geochem., 92M/4366; Algarve, ornamental rock, characteristics, economic potential, 92M/0342; Alustrel, Feitas, giant pyritic base metal deposits, reply, 92M/0301, comment, 92M/0300; Arga, Li mineralization in aplite-pegmatite field, 92M/0986; Avô, quartz, albite, perthite in K/Ar dating, Bragança-Vinhais, Pt group mins. from ultrabasic rocks, 92M/2047; Carregal do Sal, Santo Comba Dão, metamorphic aureole of granite, geophys. studies, 92M/1207; Chaves, thermal groundwater, geochem., 92M/4475; Góis, prospecting for cassiterite, wolframite, Au, soil sampling survey, 92M/0766; Góis and Vila Pouca de Aguiar-Vila Real, Au, Au-Ag, Sn-W deposits, geol., min., lithogeochem. studies, 92M/0767; Minas da Panasqueira, textural evolution W-Cu-Sn-bearing hydrothermal veins, 92M/0340; Minho, Arga, columbite-tantalite in aplite swarm, 92M/4647; Neves-Corvo, Cu-Sn mine, evolution of ore-reserve estimation strategy, methodology, 92M/2713; Nisa, well sediments, medium for geochem. prospecting, 92M/1881; Olivenza-Monesterio anticlinorium, granite. petrol., 92M/0989; Panasqueira, characterization, timing of different types of fluids present in barren and ore-veins of W-Sn deposit, 92M/2714; Sátão, granite, mylonite, shear zone, chem. evolution, 92M/0987; Serpins, Olho Marinho, kaolinite, props., 92M/0154; Sintra, K-feldspar from granite, syenite, unit-cell parameters, structl. state, 92M/1994; Tourem complex, genesis of peraluminous granites, mineralogy, chem., sequential melting vs restite unmixing, 92M/2169; Trás-os-Montes, Vila Real, post-kinematic granite, emplacement mechanisms. 92M/0990; Trás-os-Montes and Alto Douro, limestone, dolomite, geol., exploration, uses, 92M/0379; Vial Pouca de Aguiar, post-tectonic biotite granite, geochem., petrol., 92M/4365; Vila Real, Sanguinhedo, differentiation of post-kinematic granite, 92M/0988: Vilariça fault, mineralization, 92M/3942; Viseu, Penalva do Castelo, granodiorite, geochronol.,

Potarite, *Portugal, Bragança-Vinhais*, from ultrabasic rocks, 92M/2047

Prasiolite, *Poland, Lower Silesia*, natural, props., 92M/4178

Prehnite, dissolution rates of, 92M/2865; Japan, Akita Pref., Hanaoka area, in Miocene metabasite, 92M/1183

Preiswerkite v. mica

Pressure vessels, internally heated, fast-quench device for, 92M/4034

Probertite, Germany, Harz, Nordhausen, Niedersachswerfen, in anhydrite deposit, 92M/3682

Protoenstatite v. pyroxene Protopyroxene v. pyroxene

- Proustite, Germany, Wittichen, occurrence, 92M/4998
- Psammite, *Hungary*, Cainozoic, heavy min. content, mineralogical maturity, 92M/4888

Pseudoboehmite, synthetic, adsorption of citric acid by, 92M/1353

Pseudoboleite, crystal struct., relations with structs. of boleite, cumengite, 92M/3853

Pseudomalachite, Slovakia, Lubietová, min. data, 92M/2064

Pseudorutile, Austria, Tyrol, Brenner, occurrence, 92M/3291; Czech Republic, Moravia, from pegmatites, min. data, 92M/2016

Pseudotachylite, South Africa, Vredefort Dome, coesite, stishovite assoc. with, nature, distribn., genesis, 92M/1174

Pseudowollastonite, high-T heat capacity, premelting of mins. in system MgO-CaO-Al₂O₃-SiO₂, 92M/2821

Psilomelane, Egypt, Bahariya oases, in baryte deposits, 92M/0381; Germany, Hesse, Giessen, in Mn ore, 92M/3989; Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001

Pumice, Greece, Nisyros, petrol., 92M/3486; Pacific, Lau and North Fiji Basins, in sediments, mineralogy, chem. compn., origin, 92M/2109; Philippines, Mt Pinatubo, anhydrite-bearing, evidence for existence of S-rich silicic magma, 92M/2228; USA, Nevada, Thirsty Canyon Tuff, erupted from chem. zoned magma body, limits to magma mixing based on chem., mineralogy of, 92M/2191

Pumpellyite, new hydrous, high-P phase with pumpellyite struct. in system MgO-Al₂O₃-SiO₂-H₂O, 92M/2801; phase relations of epidote blueschists, 92M/1118; Canada, Ontario, Hemlo, in Au deposit, min. chem., geochem., 92M/4624; Japan, Akita Pref., Hanaoka area, in Miocene metabasite, 92M/1183; Hokkaido, Kamuikotan zone, Horokani metamorphic facies, from zeolite facies metabasites, 92M/0814

— group, XANES studies of Fe in, 92M/1960; India, Sausar group, Precambrian, Mn-rich mins. of, min. data, 92M/0815

— —, okhotskite, assoc. with SrMn₂[Si₂O₇](OH)₂·H₂O, new min. ot lawsonite type, 92M/3333; *India, Sausar* group, Precambrian, min. data, 92M/0815

Pyrargyrite, Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864; China, Hebei, Caijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356; Peru, Orcopampa, Calera, in epithermal Ag-Au vein system, 92M/2760

PYRENEES, peridotite massifs, REE, Sr-Nd isotopic geochem., sub-continental lithospheric mantle modified by continental magmatism, 92M/3346

Pyrite, Au sorption onto, radiotracer study, 92M/4136; bacterial oxidation, exptl. data, 92M/2897; characterization of refractory Au in, electron microprobe, Mössbauer spectrometry, ion microprobe study, 92M/3907; detn. of superficial min. species during bacterial oxidation of, 92M/0538; in Zn-Pb deposit, S isotope compn., 92M/0553; interactions of divalent cations with surface, 92M/0500; mechanisms of

formation from solution, hydrothermal processes, 92M/4135; metamorphosed, ore textures, paragenetic studies, 92M/0071; min, factors in processing of Archaean sulphide Au ore, 92M/2653; min. technique for recognising cyanicides in Au processing, oxidation, vibrational 92M/2446; spectroscopic ¹⁸O tracer study, 92M/0501; porpyroblast textural sector zoning, matrix displacement, 92M/1123; pyrite-type RuS2, RuSe2, OsS2, OsSe2, PtP2, PtAs2, single crystal Raman studies, 92M/0248; rate of oxidation in aqueous systems at low T, 92M/0860; reactions forming pyrite from solution via FeS precursors below 100°C, 92M/0503; reactions forming pyrite from solution, nucleation of FeS2 below 100°C, 92M/0502; scanning tunneling microscopy, struct., step reconstruction, surface 92M/3845; sedimentary, in sea-water, oxidation kinetics, 92M/4134; synthesis via polysulphide compounds. 92M/1601; Austria. Bleiberg, thiosulphates precursors of, 92M/4659; Bulgaria, Sredna Gora Mt, hypogene sulphate-sulphide zoning in Cu-pyrite deposit, 92M/0346; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Canada, Quebec, Abitibi greenstone belt, Joutel, Agnico-Eagle mine, in Au-bearing massive siderite deposit, 92M/3922; Acton Vale quarry, framboidal, Cambro-Ordovician, diagenetic, hydrothermal occurrences, comment, 92M/0861, reply, 92M/0862; Quebec, Noranda area, Horne mine, massive deposits, 92M/1439; Czech sulphide Republic, Chvaletice, assoc. with armenite in basic volcanic rocks, 92M/1962; Dominican Republic, Pueblo Viejo, Monte Negro, in acid sulphate Au-Ag deposit, 92M/4023; Germany, KTB pilot hole, occurrence, 92M/0302; Meggen, roasted, Th in flue dust of, 92M/4030; Rhenish Schiefergebirge, Sauerland, synsedimentary, stratiform mineralization, Germany, 92M/1461: Thuringia, Caaschwitz, occurrence, 92M/2364; India, Bihar, Amjhore deposit, relationship between C, S, pyritic Fe, 92M/0555; India, Malanjkhand, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound deposit, 92M/0369; volcanogenic massive sulphide deposit with sea-floor depositional features, 92M/0335; Norway, Løkken greenstones, Dragset, assoc. with Cu-Zn deposit, 92M/0334; Portugal, Alustrel, Feitas, giant pyritic base-metal deposits, comment, 92M/0300, reply, 92M/0301; Scotland, Dalradian Argyll group, origin of S in metamorphosed stratabound mineralization, 92M/0543; South Africa, Witwatersrand Gold Fields. detrital, evidence from truncated growth banding, 92M/2678; Ukraine. Komsomolskoe, from Cu-pyrite deposit, crystal morphol., 92M/4655; USA, New Mexico, Valles Caldera, radical S isotope zonation of, accompanying boiling, epithermal Au deposition, SHRIMP study, 92M/4344; Oklahoma, Paoli, in Ag-Cu

- deposit, ore microscopy, 92M/0314; Tennessee, Ducktown, rotational fabrics in, 92M/3304; Wales, influence of acidic mine, spoil drainage on water quality, 92M/1507
- crystals, Caucasus, Pervomaiskoe deposit, size distribn. of, 92M/4654
- deposits, China, Anhui, Xiangshannan, exhalative sedimentation, hydrothermal superimposition-transformation characteristics, 92M/0366; Italy, Tuscany, Boccheggiano-Campiano, polymetallic sulphide (Cu-Pb-Zn) assemblage from, application of stannite-sphalerite geothermometer, 92M/2848
- -cattiertite system, effect of crystallite size on solid state miscibility, 92M/1602
- --- rhodochrosite deposit, Czech Rebpublic, Bohemia, Litošice, hyalophane-zoisite veins from, 92M/1998
- Pyroaurite, natural, genesis, compn., 92M/1372
- Pyrochlore, Atlantic, Cape Verde Is., San Vicente, geochem., cryptic zonation of, 92M/4645; Italy, Latium, Albano Lake crater, assoc. with guarinite in sanidinite ejecta of hydromagmatic unit, 92M/0816; USA, Virginia, occurrence, 92M/4000
- —, bariopyrochlore, hypogenic, from carbonatites, carbonatitoides, 92M/4646
- —, betafite, USA, Virginia, occurrence, 92M/4000
- group, geochem. alteration of, 92M/4152
- —, microlite, geochem. alteration of, 92M/4152; Mozambique, Muiane, in Nb-Ta pegmatite, 92M/2722; USA, Virginia, occurrence, 92M/4000
- Pyroclastic deposits, Canada, Ontario, Superior Province, komatiitic, geol., petrogr., correlation, 92M/3452; Greece, Thera, Quaternary, reworking characteristics determined using magnetic props., 92M/1053; Israel, Golan Heights, Har Peres, nodular silica-phosphate mins. from, 92M/2000; Vanuatu, Ambrym caldera, petrol., 92M/3553
- eruption, USA, Alaska, Augustine volcano, 1976, stratigr., chronol., character, 92M/1074
- flow deposits, subaqueous, and ignimbrites, assessment, 92M/1031; Greece, Santorini, spatter-rich, petrol., 92M/1051; Japan, Aomori Pref., Hakkoda, TL ages, 92M/2422
- Pyrolusite, Gabon, Moanda, Mn-oxyhydroxide transformations in laterite, high-resolution TEM study, 92M/0857; Germany, Black Forest, Eisenbach, K-Ar dating, age of ore emplacement, 92M/1255; Hesse, Giessen, in Mn ore, 92M/3989; Thuringia, Ilmenau, Oehrenstock, occurrence, 92M/2365
- Pyromorphite, England, Derbyshire, Matlock Bath, Wapping mine, occurrence, 92M/2357; Scotland, Mannoch Hill, occurrence, 92M/1221
- Pyrophanite, USA, New Jersey, Sterling Hill, -franklinite-magnetite intergrowths in Zn deposit, 92M/4643
- Pyrophyllite, Dominican Republic, Pueblo Viejo, Monte Negro, in acid sulphate Au-Ag deposit, 92M/4023; Iran, Kabutar-Kuh,

occurrence, formed by hydrothermal alteration of volcanic rocks, 92M/2587; Japan, Kagoshima Pref., Makurazaki volcanic area, mineralogy, genesis of, in postmagmatic alteration zones, 92M/3801; Peru, San Judas Tadeo, W(-Mo, Au) deposit, Permian lithophile mineralization, 92M/2762

Pyroxene, Al zoning in, window on late prograde to early retrograde P-T paths in granulite terranes, 92M/2269; ΔH of reaction, recalibration of garnetpyroxene-plagioclase-quartz geobarometers in CMAS system by solution calorimetry, 92M/0404; from charoite deposit, genesis, 92M/4614; in refractory inclusion from Allende meteorite, anatomy of, 92M/0784; high silica rhyolite tr. elem. partition coefficients measured by ion microprobe, 92M/0680; olivine-pyroxene-Pt-Fe alloy as O geobarometer, 92M/2819; two-pyroxene thermometry, evaluation, 92M/2802; Antarctica, eucritic, Yamato 791186, Yamato 792410, equilibration of, thermal metamorphism of earliest planetary crust, 92M/0782; in five new ureilites, origin of chem. variations of, 92M/3219; Atlantic, Cape Verde Is., Fogo volcano, heterogeneities of inner zoning, poss. genetic meaning, 92M/4616; Germany, Saxony, in groundmass, grain tephrite. 92M/4800; Pacific, New Caledonia, in boninite dyke, overgrowth textures, disequilibrium zoning, cooling history, 92M/4816; Scotland, Highland. Ballachulish igneous complex, igneous, microstructs., thermal behaviour of, 92M/2148; nucleation, growth of, in hypersthene diorite, 92M/2147; thermal history of mins. from study of intracrystalline processes, 92M/2162; Spain, Ronda and Morocco, Beni Bousera, in magmatic ores in high-T alpine-type lherzolite massifs, 92M/0339; USA, Indiana, Allen County, etching, in aeolian periglacial sand dune, 92M/3803

—, aegirine, from charoite deposit, genesis, 92M/4614; Atlantic, Gulf of Guinea, Principe Is., from volcanic rocks, EPMA results, 92M/4615; Australia, Mud Tank, in carbonatite, 92M/3600; China, Inner Mongolia, Bayan Obo, in Fe-REE-Nb deposits, 92M/4015; Greenland, Gardar Province, hydrothermal, from Proterozoic fenites, compositional zoning in, 92M/1971; Malawi, Chilwa, Zomba, occurrence, 92M/1237

, augite, Atlantic, Gulf of Guinea, Principe

Is., from volcanic rocks, EPMA results, 92M/4615; Australia, New England fold belt, Petroi metabasalt, relict, from within-plate metadolerites, 92M/0820; Czech Republic, Moravia, Kunčice pod Ondřejníkem, in teschenitic rocks, 92M/2056; Ireland, Mayo, W Connacht, Siofra, in gabbro, 92M/3412; Italy, Aeolian Islands, Vulcano, intracrystalline Fe²⁺—Mg ordering in, exptl. study, geothermometric applications, 92M/1969; Italy, Orobic Alps, Como, Val Biandino intrusion, assoc. with

cummingtonite, min. data, 92M/0823;

Japan, Ryukyu, Aguni-jima Is., Higashi fm., in volcanic rocks, 92M/0654

 , bronzite, Sri Lanka, descriptn., 92M/1634
 , clinoenstatite, computer simulation of MgSiO₃ polymorphs, 92M/4094

—, clinoferrosilite, from charoite deposit, genesis, 92M/4614

-, clinopyroxene, and olivine, detn. of meteorite cooling rates using Ca exchange between, 92M/1921; assessment of garnet-clinopyroxene Fe-Mg exchange thermometer using new exptl. data, 92M/0403; C2/c, from basalt-pantellerite suite, influence of magma compn., O fugacity on crystal struct., 92M/1396; Ca-poor, phase transition in, high T TEM study, 92M/1577; clinopyroxene/plagioclase symplectite in retrograde eclogite. potential geothermobarometer, 92M/3608; diffusion in coronas around, modelling with local equilibrium, steady state, 92M/3258; evidence for P dependence of peak position in REE min./melt partition patterns of, 92M/4331; formed at 6 GPa P, crystal struct., 92M/1395; from mantle eclogites, crystal chem., 92M/1394; from mantle peridotite, complementary Ti, Zr anomalies in, 92M/4371; garnet-clinopyroxene geobarometry, problems, approx. solution, applications, 92M/0807; geobarometers involving, estimation of P in quartz-absent assemblages, 92M/4042; in eclogitic diamond, 40Ar/39Ar laser probe studies, 92M/3733; metasomatic oxidation of upper mantle peridotite, 92M/3404; microstruct. of mins. in chondrule from Allende meteorite, thermal history deduced from, 92M/1926; new scheme for calculating min. end members, 92M/4613; Ti, REE distribn. between peridotite mins., 92M/4309; tr. elem, partitioning between carbonate melt, olivine and, at mantle P-T condns., 92M/0457; upper-mantle, incorporation of hydroxyl in, 92M/0821; Australia, New England fold belt, Petroi metabasalt, relict, from within-plate metadolerites, 92M/0820; Austria, Burgenland and Styria, chem., evolution of alkali basalt, 92M/1968; China, Sichuan province, Yanbian, in plutonic, volcanic sequences, Proterozoic, geochem., petrogenetic, geotectonic implications, 92M/1967; Greece, Pindos, Labanova, coronas in olivine gabbros, 92M/3433; Japan, Tojo-cho, Kushiro, assoc. with nepheline, 92M/2002; Morocco, Tazekka, from Variscan basic rocks, min. data, 92M/1966; Norway, Bjerkreim-Sokndal, occurrence, role of deformation in formation of pyroxene-Fe-Ti oxide symplectites, 92M/1970; Red Sea, Zabargad Is., from peridotite-pyroxenite assocn., REE, tr. elem. geochem., 92M/3355; South Africa, in eclogite, O isotope systematics, 92M/0719; Spain, Cabo Ortegal Complex, in metabasites, 92M/1142; Taiwan, megacrysts in alkali basalt, REE geochem., origin, 92M/1972; USA, Colorado, San Juan volcanic field, Carpenter Ridge Tuff, min, constraints on petrogenesis of trachyte, 92M/0678; Massachusetts, -bearing rocks, compns., phase relations of calcic amphiboles in, 92M/1975

diopside. and protopyroxene, orthopyroxene. pigeonite, subsolidus equilibria between, 92M/2794; CaO-MgO-Al₂O₃-SiO₂-Na₂O at 1 bar from low to high Na₂O contents, topology of analogue for alkaline basic rocks, 92M/4069; fluxing effect of F at magmatic T (600-800°C), scanning calorimetric study, 92M/4108; from charoite deposit, genesis, 92M/4614; high-T heat capacity, premelting of mins, in system MgO-CaO-Al₂O₃-SiO₂, 92M/2821; new enthalpy, entropy data from phase equilibrium study of reaction, 92M/2859; O thermometer calibrations. 92M/4195; scanning calorimetric measurement of heat capacity during incongruent melting, 92M/0458; solubility, partitioning of Ne, Ar, Kr, Xe in mins, and synthetic basaltic melts, 92M/4068; static lattice energy minimization, lattice dynamics calculations, 92M/0216; Australia, New England fold belt, Petroi metabasalt, relict, from within-plate metadolerites, 92M/0820; Bulgaria, Rila Mtn, in skarns, min. data, 92M/0819; China, Handan-Xingtai, Hanxing, in skarn iron deposits, alteration-mineralization, 92M/0565; Germany, Bavaria, in veinlets, post-Variscan deformation, 92M/1150; Tanzania, gem notes, 92M/4194

—, — -anorthite system, entropy dependence of viscosity, the glass-transition T of melts in, 92M/2836; T-dependent thermal expansivities of silicate melts, 92M/4048

—, enstatite, in xenolith from kimberlite pipe, mineralogy, 92M/4639

—, fassaite, compn. trends during crystallization of Allende meteorite type B refractory inclusion melts, 92M/1923

—, hedenbergite, from charoite deposit, genesis, 92M/4614; evaluation of ferrous, ferric Mössbauer fractions, 92M/2600; in skarn, thermodynamic props. of andradite, 92M/0449; Brazil, Amazon craton, Cumaru, assoc. with Au mineralization, 92M/3933; Canada, British Columbia, Rossland, in skarn mineralization, 92M/2734

—, hypersthene, comparative liquidus equilibria of hypersthene-normative basalt at low P, 92M/0427; Japan, Ryukyu, Aguni-jima Is., Higashi fm., in volcanic rocks, 92M/0654; Scotland, Highland, Ballachulish igneous complex, in diorite, nucleation, growth of pyroxene in, 92M/2147

—, — -sillimanite-quartz assemblage, stability, exptl. investigation in system FeO-MgO-Al₂O₃-SiO₂, 92M/1563

---, jadeite, NMR evidence for five- and six-coordinated Al fluoride complexes in F-bearing aluminosilicate glass, 92M/0412; shock-induced transformations in system NaAlSiO₄-SiO₂, new interpn., 92M/4109; stone-age tools, prehistoric carvings, 92M/4169

—, omphacite, assoc. with magnesiochloritoid, chloritoid group, min. data, 92M/3247; dislocation glide, creep mechanisms, petrol. consequences, 92M/0227

—, orthoenstatite, computer simulation of MgSiO₃ polymorphs, 92M/4094; new enthalpy, entropy data from phase

- equilibrium study of reaction, 92M/2859; orthoenstatite/clinoenstatite transition, 92M/0456
- orthopyroxene, and protopyroxene, pigeonite, diopside, subsolidus equilibria between, 92M/2794; coherent exsolution from sapphirine, 92M/4612; crystal from Johnstown meteorite, Fe-Mg order-disorder in, 92M/1937; experimentally determined min.-melt partition coefficients for Sc, Y, REE for, 92M/4085; exptl., thermodynamic study of Fe-Mg exchange between olivine and, in system MgO-FeO-SiO2, 92M/2792; from mantle peridotite, complementary Ti, Zr anomalies in, 92M/4371; high P exptl. calibration of olivine-orthopyroxene-spinel oxygen geobarometer, implications for oxidation state of upper mantle, 92M/0405; in peraluminous igneous rocks, chem. features, 92M/3256; natural, heated, detn. of Fe-Mg intersite distribn. in, by synchrotron X-ray absorption spectroscopy, 92M/2615; of ophiolite origin, order-disorder kinetics in, 92M/4096; phase chemographies in quaternary systems of seven phases, 92M/0414; sublattice solid solution model, application to, 92M/4097; Ti, REE distribn. between peridotite mins., 92M/4309; with space group P2₁ca, confirmation of terrestrial occurrence of, 92M/3824; Canada, Labrador-Quebec, Ashuanipi, Desliens igneous suite, poikilitic tonalites, 92M/2188: Germany, Saxony, Seuzergrundel, occurrence, 92M/2370; Greece, Pindos, Labanova, coronas in olivine gabbros, 92M/3433; South Africa, Bushveld Complex, Lower and Critical Zones, corroded plagioclase inclusions in, 92M/1007
- —, melt systems, partition coefficients for, 92M/2854
- protopyroxene, pigeonite, and orthopyroxene, diopside, subsolidus equilibria between, 92M/2794; direct observation on formation of antiphase 92M/4098; domain boundaries in, experimentally determined min.-melt partition coefficients for Sc, Y, REE for, 92M/4085; effects of FeO on system CMAS at low P, implications for basalt crystallization processes, 92M/1543
- —, protoenstatite, computer simulation of MgSiO₃ polymorphs, 92M/4094
- protopyroxene, and orthopyroxene, pigeonite, diopside, subsolidus equilibria between, 92M/2794
- —, spodumene, + albite + quartz equilibrium in Li-rich granitic pegmatite, exptl. study, 92M/0410; Mozambique, Zambézia Province, Marropino, in pegmatite, 92M/2723; Portugal, Minho, Arga, in aplite swarm, 92M/4647
- -garnet equilibration during cooling in mantle, 92M/3257
- Pyroxenite, Brazil, Goias, Niquelandia, lateritic weathering of, supergene behavior of Ni, 92M/2983; Italy, Sicily, nodules, megacrysts, partial melting, 92M/0984; Morocco, Beni Bousera, in peridotite, O isotope evidence for origin, derivation from subducted oceanic lithosphere, 92M/0638; diamond facies, C isotope study, 92M/3350;

ophiolite, Sakhakot-Qila Pakistan, ophiolitic, geochem., 92M/1747; Poland, Tajno massif, processes of ilmenite mineralization metamorphosis, 92M/3292; South Africa, Bushveld Complex, addition of magma, 92M/0642; Bushveld Complex, South Africa, Rustenburg section, Merensky Reef, petrogenesis, 92M/1006; Zimbabwe, Great Dyke, Darwendale subchamber, Pt-group elems., petrogenetic controls on sulphide mineralization in, 92M/0349

-- syenite suite, Canada, Quebec, Abitibi region, Clericy pluton, Archaean, ultrapotassic, petrogr., geochem., 92M/1765
 Pyroxenoid, pyroxene-pyroxenoid polysomatism, 92M/0226

Pyrrhotite, bacterial oxidation, exptl. data, 92M/2897; hexagonal, and sphalerite geobarometer, correction in calibration, application, 92M/1423; min. technique for recognising cyanicides in Au processing, 92M/2446; Australia, Hodgkinson Gold Field, assoc. with mélange-, sediment-hosted Au-bearing quartz veins, 92M/0370; Canada, Quebec, Noranda area, Horne mine, massive sulphide deposits, 92M/1439; Czech Republic, Chvaletice, assoc. with armenite in basic volcanic rocks, 92M/1962; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Italy, Sicily, Peloritani Mts, occurrence, 92M/2673; Pacific, Lau and North Fiji Basins, hydrothermal mineralization, 92M/2115; Peru, San Judas Tadeo, W(-Mo, Au) deposit, Permian lithophile mineralization, 92M/2762

Quartz, + muscovite + biotite + garnet + plagioclase assemblage, equilibria, implications for mixing props. octahedrally-coordinated cations muscovite, biotite, 92M/1578; + petalite + albite equilibrium in Li-rich granitic pegmatite, 92M/0409; + phlogopite, effects of F on vapour-absent melting, implications for deep-crustal processes, 92M/0418; + spodumene + albite equilibrium in Li-rich granitic pegmatite, 92M/0410; anal. of fluid inclusion leachates from, by 92M/4263: chromatogr., anals. microstandards, synthetic inclusions in, 92M/4259; and dolomite, zoning in reaction rims between, 92M/0705; 'Aqua Aura' enhanced fashioned gems, props. of, 92M/4164; content of clay, silt fractions in soils, XRD measurement of, 92M/3811; ΔH of reaction, recalibration of garnetpyroxene-plagioclase-quartz geobarometers in CMAS system by solution calorimetry, 92M/0404; 'diamond softening', interpn. of Pliny's statement, 92M/2913; diffusion of cosmogenic ³He in, implications for surface exposure dating, 92M/0003; dislocations, molecular water pump in, 92M/4119; dissolution in organic-rich aqueous systems, 92M/0746; effect of excess Al on phase relations in system Q-Ab-Or, exptl. study, 92M/2793; exchanged with CO2, O diffusion rates in, 92M/2870; geobarometers

involving, estimation of P in quartz-absent assemblages, 92M/4042; heat capacities, entropy of, and Al₂SiO₅ phase diagram, 92M/2856; high, low, periodic Hartree-Fock study, 92M/0237; high-quality crystals, characterization of inhomogeneity in, 92M/4633; hydrothermal crystallization in boiling solutions, 92M/0475; identification of fluid inclusions in relation to host microstructl. domains in, by CL, 92M/4258; in agate from volcanic rocks, fluid inclusion study, 92M/2942; in sand, fluid inclusion study, source rock, transport direction, 92M/3556; melting behaviour of, during production of quartz glass, 92M/2764; microstructs. in water-weakened single crystals of, 92M/2871; model for development of domainal c-axis fabric in coarse-grained gneiss, 92M/2310; natural, exptl. post-entrapment water loss from synthetic CO₂-H₂ inclusions in, 92M/0476; fine-grained natural, aggregates, measurement of O grain boundary diffusion in, 92M/0478; new method for measuring crystallinity index by IR spectroscopy, 92M/0108; O diffusion in, dependence on T, water fugacity, 92M/0479; O isotope thermometer calibrations, 92M/4195; observation of α-β phase transition in, 92M/0474; observation, kinetic anal. of memory effect at α-β transition, 92M/2873; osumilite group min. in hydrothermal crystallization of, 92M/0454; phase transitions among GeO2 polymorphs, vibrational study, 92M/0473; reversed experiments on biotite-quartz-feldspar melting in system KMASH: implications for crustal anatexis, 92M/1545; rigid unit modes in molecular dynamics simulation of, and incommensurate phase transition. 92M/2872; rods in graphic granite, diagnostic microstructs. for primary and deformational. 92M/4773; role crystallization in development, preservation of igneous texture in granitic rocks, exptl. evidence at 1 kbar, 92M/1542; shocked, planar deformation features in, TEM study, 92M/3277; single-crystal, effect of T on shock metamorphism of, 92M/4120; structl. transformation at high P, 92M/1401; synthetic smoky, polarized IR spectra, 92M/0477; textures in dioritic rocks of hybrid origin, 92M/2128; thermodynamic props. of mins. at higher T, P, FORTRAN-77 program, 92M/0080; water speciation in, near IR study, 92M/0234; Antarctica, South Shetland Is., King George Is., microcrystalline, in volcanic rocks, geochem. study, 92M/2969; Baltic Sea, from sediment cores, grain surfaces, optical, SEM microscopy, subdivision of sediments, 92M/3565; Canadian Cordillera, mesothermal Au-stibnite-quartz 92M/2735; China, Bajiazi, in Pb-Zn deposit. H, O, C, Si stable isotope studies, 92M/0559; Guangdong, in weathering crust, 92M/0186; China, Handan-Xingtai, Hanxing, in skarn deposits, Fe alteration-mineralization, 92M/0565; Dominican Republic, Pueblo Viejo, Monte Negro, in acid sulphate Au-Ag deposit, 92M/4023; SW England, fluid inclusion,

stable isotope evidence for origin of mineralizing fluids, 92M/0545; Finland, Luumäki, fluid inclusions in cavity crystals rapakivi. 92M/4634; Germany, geochem., metamorphic, 92M/3095; metamorphic, in greenschist facies rocks, thermobarometry, chem., isotope geochem., 92M/3096; Bavaria, KTB borehole, paramagnetic defects in, 92M/1208; Eifel, crystals with pseudocubic habit in Carboniferous, 92M/1226: Saxony, Erzgebirge, -barvte-fluorite-hematitegalena-sphalerite veins, age of, 92M/2671; from post-Hercynian veins, isotopic anal., 92M/2949; in granitic rocks, fluid inclusion study, 92M/3094; in granite, melt inclusions in, 92M/3425; microfabric anal., tectonic overprint of metamorphic rocks, 92M/3635; Saxony, Geyer-Ehrenfriedersdorf area, occurrence, 92M/2371; Saxony, Meissen, melt inclusions in rock-forming mins. in granite, 92M/3426; Israel, Golan Heights, Har Peres, from pyroclastics, 92M/2000; Japan, Ryoke, discontinuous grain growth in metacherts, influence of mica on microstructl. transition, 92M/1181; New Zealand, Broadlands-Ohaaki geothermal field, thermal inversion T of, 92M/3667; Scotland, Highland, Ballachulish igneous complex, detrital, in quartzites as indicators of O isotope exchange kinetics, 92M/2157; coarsening by collective crystallization in contact quartzite, 92M/2154; Spain, Badojoz-Córdoba ductile shear zone, in mylonite, microstructs., deformation history, 92M/2094; USA, Arkansas. Saline County. Stand-on-your-head mine, assoc. with cookeite, 92M/2380; California, Coast Ranges, assoc. with Au-bearing hot spring systems, 92M/1443; Colorado, Creede mining dist., reinterpn. of δD_{H_2O} of fluid inclusions in, 92M/2977; Nevada, Alligator Ridge-Bald Mountain mining Vantage, geol., geochem., 92M/0601

—, α-quartz, high-P crystal chem., amorphization of, 92M/1587; LDF pseudopotential calculations of struct. and hydrogarnet defect, 92M/3835; molecular force constants in dynamical model of, calculation of phonon spectrum, elastic, piezoelectric props., 92M/4987

—, β-quartz, new enthalpy, entropy data from phase equilibrium study of reaction, 92M/2859

-, agate, dendritic, and glass, unusual assembled inclusion specimen, 92M/1639; from volcanic rocks, quartz, chalcedony in, fluid inclusion study, 92M/2942; Czech Bohemia, in melaphyre, Republic. 92M/4175: Germany, Nordpfalz, Rockenhausen, occurrence, 92M/2366; Scotland, Midland Valley, fortification, origin of, 92M/4174; origin of fortification agate, 92M/2919

—, amethyst, microscopic detn. of structl. props. for distinction of natural, synthetic, 92M/1618; structl. features, origin, 92M/1626; Czech Republic, Krušné Hory Mts, hydrothermal vein fillings used as semiprecious stones in Middle Ages, 92M/1637; Sri Lanka, history of

gemmology, C.P. Thunberg, 18th century collector, 92M/1638

cement, North Sea, Alwyn South, Brent group, in sandstones, CL, 92M/4884

—, citrine, microscopic detn. of structl. props. for distinction of natural, synthetic, 92M/1618; Sri Lanka, history of gemmology, C.P. Thunberg, 18th century collector, 92M/1638

— grains, SEM electron channelling anal. of dynamic recrystallization in, 92M/2268; New Zealand, Canterbury, Leeston-1 oil exploration well, surface textures on, 92M/4897

—, jasper, inclusion fluids, application of gas anal. of, to exploration for micron Au deposits, 92M/3170; Germany, Schwarzwald, mediaeval and earlier mining, history, 92M/2658

veins, relationships between deformation, fluid migration, Au deposition in, modelling, 92M/3945: methodology, sulphide-poor, Au content, and guide features for component mins., 92M/1910; Australia, Lachlan fold belt, in turbidites, rock-buffered fluid-rock interaction in, isotopic anal., 92M/2965; Brazil, Cuiaba, Au-ore deposition-rock deformation-ore fluid chem. relationship in, 92M/3898; Abitibi-Pontiac Canada. collision. Archaean geodynamics, implications for advection of metamorphic fluids of transpressive collisional boundaries, origin of, 92M/4236; Spain, La Codosera area, auriferous, tectonic setting, fluid evolution, 92M/1427: USA. Pennsylvania. Appalachians, Valley-and-Ridge province, CH₄-rich inclusions from, 92M/1195

 feldspar melts, phase relations, compositional dependence of H₂O solubility in, 92M/4049

— – porphyry, Finland, Åland, mixing between basaltic, granitic magma in, 92M/4779

—-feldspathic rocks, Greenland, in Archaean crust, chem. characteristics, genesis, 92M/0610

—-fuchsite vein, Canada, Ontario, Timmins, Dome mine, Au-bearing, hydrothermal wall-rock alteration, formation of, 92M/0289; Au-bearing, mechanics of formation, 92M/0273

 --rutile mineral pair, natural calibration of ¹⁸O/¹⁶O geothermometers, application to, 92M/0539

— -type phases of SiO₂, GeO₂, low-T, crystal structs., 92M/2624

--- water-salt system, O isotope fractionation in, 92M/1552

Quartzite, exptl. evidence for water weakening by microcracking plus solution-precipitation creep, 92M/0441; heterogeneous deformation, geometrical hardening in simulation of texture development of, 92M/3606; Antarctica, cosmogenic Ne in, 92M/3046; Italy, W Alps, Piemonte ophiolite, Praborna, high-P-low-T manganiferous, petrol., 92M/3619; Scotland, Highland, Ballachulish igneous

complex, contact-metamorphosed, disordering, re-ordering, unmixing in alkali feldspar from, 92M/2155

Radioactive waste disposal, high-level, measurements of thermal conductivity of clay-sand, clay-graphite mixtures used as engineered barriers for, 92M/2776; problems posed to bedrock radwaste repository by dipping fracture zones, 92M/1519; UO₂⁺ uptake by tobermorite, use for uranyl removal, 92M/4028; Canada, Manitoba, Whiteshell research area, natural colloids, suspended particles, potential effect on radiocolloid formation, 92M/1527; Ontario, Atikokan, thorite in fault zones of granitic pluton, implications for, 92M/0671; Finland, deep groundwater in crystalline basement, implications for, 92M/1516; Sweden. natural analogue studies. applications, 92M/1518; programme for, geol. aspects, 92M/1521; Switzerland, review, 92M/1522; Switzerland, Grimsel test site, sorption behaviour of ⁸⁵Sr, ¹³¹I, 137Cs on colloids, suspended particles, 92M/1523

Radiocarbon dating v. age determination

Radionuclides, environmental, role of water/soil distribn. coefficient in watershed transport of, 92M/1513; Canada, Alberta, Milk River, in aquifer, underground production of, 92M/1836

Radium isotopes, ²²⁶Ra, release from U mill tailings by microbial Fe(III) reduction,

92M/2774

Radon, behaviour in geol. envt., 92M/0387; SW England, in surface waters, bearing on U distribn., fault, fracture systems, human health, 92M/0391; USA, Virginia, relative levels, 92M/2785

 isotopes, France, Maritime Alps, factors controlling emanation of, influence of seismicity, 92M/2778

Radtkeite, USA, Nevada, Humboldt County, McDermitt Hg deposit, new min., 92M/3336

Ramsayite, lorenzenite-lamprophyllite, Russian Federation, Kola Peninsula, assoc. with new min., manganotychite, 92M/2074

Ramsbeckite, Austria, Styria, Öblarn, occurrence, 92M/3695

Ramsdellite, Germany, Thuringia, Ilmenau, Oehrenstock, occurrence, 92M/2365; Japan, Hokkaido, Pirika mine, crystal struct., 92M/0246

Ranciéite, Germany, Hesse, Giessen, in Mn ore, 92M/3989; Korea, Janggun mine, takanelite, Mn analogue of, characterization, 92M/2027

Rauenthalite, Czech Republic, Bohemia, Mariánské Lázně, Planá, and phaunouxite, topotactic intergrowths of, 92M/2029

Rayite, Tl, Au, exptl. contributions to mineralogy, geochem., crustal chem., 92M/2885

Realgar, China, Sichuan Province, Dongbeizhai, assoc. with fine-disseminated Au deposit, 92M/2962; ancient Egypt, red, colour pigments in wall paintings, 92M/1240 Recrystallization, dynamic, compositional changes of mins. assoc. with, 92M/1804

Rectorite v. clay minerals

Red beds, reduction spheroids in, mineralogy, geochem., 92M/0684; U series disequilibrium investigation of reduction spheroids in, 92M/3076; southern Africa, in Lower Proterozoic sequences, evidence for transition to O-rich atmosphere during evolution of, 92M/3081; Morocco, Central High Atlas, Msemrir, Guettioua Member, Bathonian (Dogger) of, biol. metal accumulation in, 92M/4890

RED SEA, salt diffusion in interstitial waters, halite removal from sediments, 92M/0689; silicate mins. in metalliferous muds, 92M/3981; sulphate mins. in metalliferous muds, 92M/3980; thermal maturity development, source-rock occurrence, 92M/4444; Atlantis II Deep, metalliferous sediments, mineralogy, 92M/3979; O isotope T of glauconite, mixed-layer glauconite/nontronite, 92M/4443; Zabargad Is., clinopyroxene from peridotitepyroxenite assocn., REE, tr. geochem., 92M/3355; diapir, metasomatism, Sr, Nd isotopic anal., 92M/3023; high-T hydrothermal alteration of peridotite, 92M/3354; Pan-African age high-P-high-T granulite gneisses, implications for early stages of rifting, 92M/3726; peridotite, evidence multistage metasomatism during rifting, 92M/3024

Reedmergnerite v. feldspar

Reference materials, evaluation, application of, for anal. of rocks, mins., 92M/2476; geochem. compn., (book), 92M/3772; igneous rocks, 1987 compilation of K₂O concentrations in, 92M/1918

Refractory ores, USA, Nevada, Carlin, metallurgical, analytical, mineralogical features, 92M/0307

Reichenbachite, Slovakia, Lubietová, min. data, 92M/2064

Reinerite, Germany, occurrence, 92M/1225

Remote sensing, application of min. constraints to, 92M/1206

Restites, Eu anomalies and lower continental crust, 92M/4276

Rhabdophane, ningyoite, Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061

--, tristramite, *British Isles*, occurrence, 92M/4990

Rhodesite, crystal struct., relation to other silicates with drier double layers, 92M/3823; Germany, Oberpfalz, Gross Teichelberg, occurrence, 92M/1228

Rhodochrosite, assoc. with wolframite, 92M/4649; δ^{13} C, δ^{18} O anal. using laser extraction system, 92M/1653; calciterhodochrosite series, IR spectroscopy, 92M/3316; Japan, Ehime Pref., Sagadani mine, primary textures of Mn ore, 92M/3318; Hokkaido, Oe mine, stable isotope compns., 92M/0568; Peru, Orcopampa, Calera, in epithermal Ag-Au vein system, 92M/2760; Cordillera, Hualgayoc, in polymetallic mining dist.,

92M/2985; Peru, Quiruvilca mining dist., in Cu-Pb-Ag deposit, 92M/2755; Red Sea, Atlantis II Deep, in metalliferous sediments, 92M/3979; USA, California, Franciscan Complex, in microbanded Mn formations, 92M/0602; Colorado, San Juan Mts, Sultan Mountain mine, in Cu-Pb-Zn-Ag-Au ores, 92M/0600

—, kutnahorite, Czech Republic, Kutna Hora, occurrence, 92M/2374

Rhodonite, crystal chem., thermal stability of coordination complexes of transition metal ions in struct. of, 92M/4618; Peru, Orcopampa, Calera, in epithermal Ag-Au vein system, 92M/2760

Rhodostannite, toyohaite, new min., Ag analogue of, 92M/4676

Rhyodacite, Canada, Superior Province, in Archaean volcanic complex, fractionation of rhyolite from, 92M/0669; USA, Alaska, Aleutian arc, Seguam volcanic centre, closed-system fractional crystallization of, 92M/4400

Rhyolite, garnet high-silica, tr. elem. partition coefficients measured by ion microprobe, 92M/4420; pyroxene-high silica tr. elem. partition coefficients measured by ion microprobe, 92M/0680; Canada, Superior Province, fractionation from rhyodacite in Archaean volcanic complex, 92M/0669; Germany, Saxony, kaolinization of, 92M/2925; Saxony, Erzegebirge, Teplice, Westfalian, volume, caldera model, 92M/3427; Iceland, indicators differentiation, partial melting, 92M/3473; Italy, Sardinia, Tresnuraghes, kaolinized, electron microprobe study of alteration processes, 92M/2584; New Zealand, Mayor Is., strombolian deposits, 92M/4852; USA, California, Bishop Tuff, hourglass inclusions, theory, application, 92M/1023; California, Inyo volcanic chain, Obsidian Dome, degassing of, 92M/4223; Idaho, Snake River plain, high-T, mineralogy, geothermometry, 92M/3459; New Mexico, Taylor Creek, volatiles, lithophile elems. in, constraints from glass inclusion anal., 92M/3066; Utah, Honeycomb eruptive pegmatite magma, 92M/2190

dyke, Nigeria, Nassarawa-Egon, Rb/Sr dating, 92M/0029

- glass, Ar diffusion in, 92M/0431

— lava v. lava, rhyolite

Rhyolitic magma v. magma, rhyolitic

Rhyolitic tuff, K-feldspar and SiO₂ min. in zeolite diagenesis of, 92M/1561; *Greece, Samos*, Miocene, K-rich mordenite from, 92M/0842

Ripidolite v. chlorite Richterite v. amphibole Riebeckite v. amphibole

Rift zones, continental, ocean, regeneration processes in upper mantle, melt migration, depletion, 92M/3516; Germany, Schwarzwald, Hercynian synplutonic, and assoc. meteoric-hydrothermal activity, application of stable isotopes in identifying, 92M/4224

Rifting, continental, factors controlling style of, numerical modelling, 92M/2322

Ring complexes, *Nigeria, Jos Plateau*, Mesozoic, Pb, Sr, Nd isotope study, 92M/1737

Roaldite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Rock varnish, cation-leaching sites in, 92M/3069; deposition of Mn by bacteria, 92M/4292; measurement of chem. using SEM/EDS, 92M/4431; USA, Arizona, Meteor Crater, age, geomorphic history from cosmogenic ³⁶Cl, ¹⁴C in, 92M/1305; Hawaii, Hualalai and Mauna Kea volcanoes, 92M/4856

Rodingite, Canada, British Columbia, Cassiar, origin of, use to estimate T, P(H₂O) during serpentization, 92M/4252; Poland, Lower Silesia, Sobótka, Naslawice, clinozoisite in, 92M/1162; USA, South Carolina, S Appalachian Piedmont, petrol., 92M/3601

Roedderite-type solid solutions, thermal stability, lattice constants, thermal expansion, 92M/1576

Roggianite, crystal struct., 92M/0238

ROMANIA, S Carpathians, Au in metamorphic rocks, 92M/3878

Roquesite, Asia, new data, 92M/4656 Rorisite, new min., anals., 92M/0880

Rosasite, Austria, Carinthia, occurrence, 92M/4996; Germany, Frankfurt, occurrence, 92M/3680

Roscoelite v. mica

Rozenite, *USA*, *Georgia*, assoc. with kolbeckite, 92M/3326

Ruarsite, *Bulgaria*, *Rhodope*, in chromitites, 92M/0345

Rubidium/strontium dating v. age determination

Ruby v. corundum

Ruizite, assoc. with SrMn₂[Si₂O₇](OH)₂•H₂O, new min. of lawsonite type, 92M/3333

Russellite, England, Cumbria, Buckbarrow Beck, occurrence, 92M/3677; Germany, Saxony, Erzgebirge, occurrence, 92M/3688

RUSSIAN FEDERATION, non-transparent cubic zirconia, gem props., 92M/4171; Altai-Sayan folded region, Batenevsky ridge, authigenic tourmaline carbonatite, 92M/1964; Baikal region, prograde, retrograde metamorphism, geochem., 92M/3097: Kamchatka, Karymsky volcano, eruptive history, tephra stratig., ¹⁴C dating, 92M/1055; 92M/1055; Klyuchevskoy volcano, magmatic gases from 1988 eruption, chem., isotopic compns., 92M/1056; Kamchatka, Tolbachik, leningradite, new min. from volcanic sublimates, 92M/2073; Karelia, Proterozoic metagreywacke, metapelite, geochem., provenance, lithostratigraphic correlation, depositional setting, 92M/3362; Kola Peninsula, compn. of metamorphic rocks, and evolution of Lapland Granulite Belt, 92M/4944; manganotychite, new min., 92M/2074; Khibini complex, eudialyte group, optical, Mössbauer study, 92M/1958; Lovozero Massif, lintisite, new min., min. data, 92M/0877; Monche Pluton, ³He/⁴He ratios frozen in ultrabasic rocks, 92M/4278; Kola Peninsula, Sholt-Yavr, kornerupine from Archaean Kola Series, 92M/4609;

Monchegorsk, chem. compn. of rockforming mins, from clinopyroxenitewehrlite intrusions, 92M/4810; Pamirs, viitaniemiite from miarolitic pegmatites, 92M/2065; Pamirs, Kukhilal deposit, spinel from forsterite skarn, comparative crystal morphol., 92M/2020; Siberia, geochem. peculiarities of rare accessories from Riphaean-Lower Palaeozoic carbonaceous rocks, 92M/4637; megacrystalline dunites, peridotites, hosts for diamonds, 92M/3440; Riphaean sedimentary basins, petroleum potential, 92M/3572; Siberian platform, Anabar massif, Precambrian dyke swarms, petrol., 92M/4766; Siberian platform, Vilyuisk palaeorift system, composite dykes, petrol., 92M/4767; Aldan Shield, age of Archaean components, evidence for widespread reworking in mid-Proterozoic, 92M/2414; Aldan Shield, Tayozhnoye deposit, serendibite, min. data, 92M/0831; Aldan, Kuranakhsky deposit, kuksite, cheremnykhite, new tellurates, 92M/2072; Anabar Shield, Precambrian Hapschan Series, metasedimentary rocks, geochem., 92M/0722; Aldan Shield, Usmun River Basin, kornerupine in slyudite, geol., petrol., chem. of mins., min. reactions, 92M/4610; Siberia, Guli, Na-rich carbonate inclusions in perovskite, calzirtite, from carbonatite, 92M/2177; Urals, emeralds, occurence, 92M/4155; Urals, Novonickolaevskii ore-field, paragonite-bearing metasomatites of porphyry Cu deposits, 92M/4622; Wrangel Is., Wrangel complex, igneous rocks, Precambrian U-Pb ages, 92M/2415; Yakutia, inclusion-bearing diamonds from kimberlite, morphol., phys. props., paragenesis, 92M/0844; monticellite in kimberlites. 92M/1945: Yakutia. Udachnaya, moissanite eclogite xenolith from kimberlite, 92M/4809

Rutile, crystal struct., 92M/3843; crystal struct. as function of T up to 1600°C, 92M/0243; fine-grained, from sediment, sedimentary rocks, concentration method by chem. leaching, 92M/0060; from different geol. envts., variations in OH concentration of, 92M/3294; geobarometers involving, estimation of P in quartz-absent assemblages, 92M/4042; in eclogite, 92M/1532; in supercritical aqueous fluids, solubility of, implications for subduction zone geochem., 92M/4968; metamorphic, struct., origin of Fe-bearing platelets in, 92M/0846; natural calibration of 18O/16O application geothermometers, quartz-rutile min. pair, 92M/0539; oriented inclusions in sagenitic biotite, 92M/1986; phase transitions among GeO2 polymorphs, vibrational study, 92M/0473; phase transitions, Raman spectra at high-P, room T, 92M/2889; placer deposits, economic potential, 92M/2769; Austria, Salzburg, Pinzgau, Felbertal, occurrence, 92M/3696; Brazil, Goiás, Cavalcante, assoc. with Au, 92M/3905; Canada, Quebec, Dumagami mine, progressive alteration assoc. with auriferous massive sulphide deposits, 92M/0587; Czech Republic, Moravia, from pegmatites, min. data, 92M/2016; Finland, Ilomantsi, assoc. with Au deposits in late

Archaean greenstone belt, 92M/3876; India, Andhra Pradesh, in granitic soils, 92M/1499; India, Singrauli coalfield, Moher-Subbasin, Barakar, in sandstone, 92M/1109; Italy, St. Marcel-Praborna, in Mn formations, 92M/3293; USA, Maine, Gulf of Maine, fine-grained, diagenetic origin, source rocks, depositional envt., 92M/0384; North Carolina and Virginia, heavy min. deposits in upper coastal plain, 92M/2772; Virginia, reconnaissance exploration on continental shelf, 92M/0385; Wales, Clwyd, Glyn Ceiriog, Hendre quarry, occurrence, 92M/2360

Safflorite, Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057

Sainfeldite, Germany, Wittichen, occurrence, 92M/4998

Salars, Bolivia, Central Altiplano, Uyuni and Coipasa, Quaternary geochem. evolution, 92M/0704

Salinity, reconstruction of past changes using diatom-based transfer function, 92M/0741

Salt basins, *Asia, The Gulf*, Proterozoic, role in hydrocarbon generation, 92M/3570

— crusts, Canada, Saskatchewan, isotopic compn., 92M/4451

— deposits, Germany, Permian, gases in, 92M/3075; Saxony, Lüneberg, geol., salt mining history, 92M/5000; New Zealand, marine min. potential in exclusive economic zone, 92M/0383

— diapirs, alternatives to halokinesis in, 92M/2087; China, Yunnan Province, Dongchuan area, Cu deposition by fluid mixing in deformed strata adjacent to, 92M/1433

— lakes, Australia, B isotope geochem., 92M/1828

Samarskite, USA, Virginia, occurrence, 92M/4000

Sample preparation, prepn. of double-polished fluid inclusion wafers from friable, water-sensitive material, 92M/2441

Sand, lithic, compaction, exptl. results, applications, 92M/0443; quartz, exptl. compaction at low effective stress, T condns., 92M/0442; quartz, fluid inclusion study, source rock, transport direction, 92M/3556; Italy, Sardinia, Cape Frasca to Cape Caccia, continental shelf, geol. setting, min., sedimentol., chem. study, 92M/3568

Sandstone, diagenetically altered, cementation of, 92M/3560; green, tr. anal. by voltammetry, 92M/4445; porosity, permeability, empirical prediction, 92M/1098; relationship of porosity, permeability to various parameters derived from Hg injection-capillary P curves for, 92M/3670; Canada, Alberta, Belly River group, Cretaceous, continental, min., O-isotope studies of diagenesis, porewater evolution, 92M/0696; Alberta, Milk River, aquifer system, hydrogeol., hydrochem., 92M/1831; England, Pennines, sourcelands for Carboniferous river system, sedimentary evidence, U-Pb geochronol. using zircon, monazite, 92M/3558; India, Andhra

Pradesh, Adilabad, Kamthi and Lower Maleri fms., petrographic, geochem. characteristics, 92M/3578; coalfield, Moher-Subbasin, Barakar, heavy min. suite in, 92M/1109; Japan, Kitakami Mts, Palaeozoic-Mesozoic, minor elems.. 92M/0691; North Sea, Alwyn South, Brent group, CL of quartz cement in, 92M/4884; Brent group, provenance, heavy min. constraints, 92M/4877; Oseberg Field, Brent group, garnet compns., statistical anal., lithostratigraphic correlation, 92M/4878; North Sea, Stratfjord, Hutton and Lyell fields, Brent group, burial diagenesis, 92M/4881; USA, Colorado, Rangely Field, Weber, CO2 injection, resultant alteration, 92M/1800; Texas, Travis Peak fm., Lower Cretaceous, evolution of porosity, permeability in, 92M/3671; Wyoming, Rock Springs uplift, Fox Hills Sandstone, petrol., 92M/1112

reservoirs, Brazil, Potiguar basin, Cretaceous), lacustrine deltaic, turbiditic, diagenesis, microscopic heterogeneity, 92M/2259

Sanidine v. feldspar Saponite v. clay minerals Sapphire v. corundum

Sapphirine, coherent orthopyroxene exsolution from, 92M/4612; natural, synthetic, ²⁷Al, ²⁹Si MAS NMR, IR spectroscopic study of Al-Si ordering in, 92M/3825; phase chemographies in quaternary systems of seven phases, 92M/0414; Australia, Strangways Range, in granulite facies rocks, 92M/4948; Canada, Nova Scotia, Popes Harbour dyke, -spinel Mg-Fe exchange thermometer, empirical, application to high grade xenoliths, 92M/4956; India, Tamil Nadu, Palani Hills, Perumalmalai, -bearing assemblages, 92M/3651; Federation, Kola Peninsula, Sholt-Yavr, assoc. with kornerupine, 92M/4609; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808

 -- quartz assemblage, stability, exptl. investigation in system FeO-MgO-Al₂O₃-SiO₂, 92M/1563

Saprolite, granitic, characterization, genetic interpn. of clays in acid brown soil developed in, 92M/2531; *Italy, Calabria, Serre*, granitic, biotite-kaolinite transformation in, 92M/2585

Sapropel, lake, used as fertilizers, fodder additives, geochem., 92M/1793

Sartorite, Switzerland, Binntal, Lengenbach, assoc. with brannerite, occurrence, min. data, 92M/2032

SAUDI ARABIA, alkaline and tholeiitic magmatism related to early Red Sea rifting, 40 Ar/39 Ar dating, 92M/0035; evolution of Pan-African island are assemblages, geochem., geochronol., 92M/2080; Afif-Halaban-Ad-Dawādimī-Ar-Ryan areas, gneiss, felsic intrusions, Rb-Sr dating, 92M/3728; Arabian Shield, Wadi Shuqub quadrangle, plutonic rocks, Rb-Sr dating, geochem., 92M/3727; Central Arabian Shield, Wadi Turabah, felsic plutonic ring complex, geochronol., geochem. evolution, 92M/3729; Eastern Province, halite, hydrogeochem. exploration using Cl-Br

ratios, 92M/0768; Jeddah-Makkah Region, Bahrah, granodiorite-granite complex, age, petrochem., 92M/3730; Nabitah fault system, Proterozoic transpression, implications for assembly of Arabian Shield, 92M/2081

SCANDINAVIA, ophiolite terrains, tectonostratigraphic relationships, obduction histories, 92M/3546; Proterozoic Svecofennian metasediments, provenance, detrital U-Pb dating, 92M/3369: Caledonides, and France, Massif Central, comparison of P-T-t paths in allochthonous high P metamorphic terrains, contrasted thermal structs. during uplift, 92M/3615; Caledonides, Otta conglomerate, Vågåmo ophiolite, indications of Ordovician orogenesis, 92M/4869; Fennoscandian shield, episodes of felsic plutonism, maficfelsic magma interaction in Svecofennian, 92M/0887; Pb isotopic evidence for origin of 1800-1400 m.y. ores, granitic rocks, 92M/0894; Handöl area, P-T paths, record of Caledonian accretion of outboard rocks to Baltoscandian margin, 92M/4916

Scapolite, equilibria, calculation of CO₂ activities using, constraints on presence, compn. of fluid phase during high grade metamorphism, 92M/1559; Bulgaria, Rila Mtn, in skarns, min. data, 92M/0819; Greece, Sarti area, Ca-rich, in amphibolites, min. data, 92M/2004; Peru, in amphibolitic Cu-Fe skarn deposits, 92M/2990; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808

Scheelite, relationship between REE content, intensity of photoluminescence for, 92M/4648; solubility, calculation of, exptl. of solubility of WO₃(s), thermodynamic props. of H₂WO₄(aq) in range 300-600°C at 1 kbar, 92M/4150; Western Australia, Yilgarn block, from epigenetic Archaean Au deposits, Sr isotope systematics, 92M/0577; Austria, Hohe fluid Tauern, Felbertal, evolution, metamorphic ore remobilization, 92M/1664; Germany, Black Forest, Eisenbach, K-Ar dating, age of ore emplacement, 92M/1255; Schwarzwald, occurrence, 92M/2672; Korea, Gyeongchang W-Mo mine, progressive meteoric water inundation of magmatic hydrothermal system, 92M/0572; Norway, in W skarn in regional metamorphic terrain, 92M/1426; Peru, San Judas Tadeo, W(-Mo, Au) deposit, Permian lithophile mineralization, 92M/2762: Zimbabwe, Dalny mine, fluid-rock interaction, Au deposition in Archaean shear zone, 92M/3889

Schirmerite group, *Bulgaria, Jambol dist.*, new data on Bi sulphosalts, 92M/0868

Schist, pelitic, effect of whole-rock MnO content on stability of garnet in, during metamorphism, 92M/4091; pelitic, evidence from min. assemblages for infiltration of, by aqueous fluids during metamorphism, 92M/2267; Austria, Alps, Steinkogel area, in hanging wall of Variscan thrust, microstructs., min. chem., P-T-deformation paths from, 92M/4929; Alps, Tauern window, tectonic significance of early-Alpine P-T-deformation path, 92M/2295;

France, Brittany, Ile de Groix, assoc. with blueschistP-T-t path, 92M/3616; Ireland, Connemara, silica mobility, fluid movement during metamorphism of, 92M/4463; Japan, Sangun and Sanbagawa belts, glaucophane, ferric-ferrous ratios of, 92M/3102; Norway, Modum Complex, whiteschist, P-T-t path, 92M/1131; Poland, Stronie Śląskie, Krzyznik Mt, staurolite in, 92M/1165; Scotland, Appin group, pelitic, metamorphic history, microfabric anal., 92M/4923; Shetland, Norwick, age of, obduction of ophiolite, 92M/1249; Switzerland, Valais, Siviez-Mischabel massif, augen, with albite porphyroblasts, 92M/3623; USA, South Carolina, Lake Murray spillway, high P pelitic, exhumation of, evidence for crustal extension during Alleghanian strike-slip faulting, 92M/2317; South Dakota, Black Hills, Proterozoic, petrogenesis, constraints regional low-P metamorphism, 92M/3399

— belts, Nigeria, Au-bearing quartz veins in, geol. setting, evolution, 92M/3888

Schmiederite, Argentina, Sierra de Cacheuta, La Rioja, Condor mine, occurrence, min. data, 92M/3301

Scholzite, order-disorder, polymorphism of compound with compn. of, 92M/2645

Schorl v. tourmaline

Schröckingerite, England, Cornwall, Geevor mine, occurrence, new to Britain, 92M/3320 Schulenbergite, Germany, Ramsbeck, Zn analogue of, min. data, 92M/4660 Scolecite v. zeolite

Scorodite, Germany, Saxony, Czech Republic, mins. of mine dumps, 92M/3687; USA, Utah, Tooele Country, U.S. mine, assoc. with tooeleite, new min., 92M/3338

SCOTLAND, isotopic evidence for extent of early Proterozoic basement, 92M/0012; Appin group, pelitic schist, metamorphic history, microfabric anal., 92M/4923; Argyll group, Dalradian, origin of S in metamorphosed stratabound mineralization, 92M/0543; Argyllshire, Craignish, native sulphur, occurrence, 92M/2354: Caledonides, appinite, zoning, layering in diorite, 92M/4787; Culachy, mylonite, petrol., metamorphic history, microfabric anal., 92M/4921; Grampian Highlands, regional distribn. of As, Sb, Bi, implications for Au metallogeny, 92M/3166; Lesmangow inlier, minor intrusions, petrogr., 92M/0980; Lomondside, xenoliths in lamprophyre dykes, nature of crust beneath southern Dalradian, 92M/3409; Mannoch Hill, vein mins., 92M/1221; Midland Valley, fortification agate, origin of, 92M/2919; Minches, post-Laxfordian magnetic imprint in Lewisian metamorphic rocks, strike slip motion, 92M/3611; NE and Central Highlands, Pannanich Hill complex, origin of Grinan Subgroup migmatites, 92M/3410; Orcadian basin, U distribn., geochem. in lacustrine deposits, fission track study, 92M/3073; Southern Uplands, illitization. organic maturity in Silurian sedimentary rocks, 92M/0172; zoned manganiferous garnets of magmatic origin, 92M/3242; Southern Uplands, Rhinns of Galloway,

areas of very low grade metamorphism, excursion guide, 92M/1132

—, DUMFRIES AND GALLOWAY, Wigtownshire, Sandhead, geophys. evidence for concealed Caledonian intrusive body, 92M/4789

—, GRAMPIAN, Aberdeenshire, Inverurie, Middleton Granite, gravity survey, 92M/4786; Oldmeldrum, Hill of Barra, investigations for Cu-Ni, PGE, 92M/4320; Rhynie chert, Devonian, stratigr., sedimentol., 92M/4885

HIGHLAND, Ballachulish igneous complex, and aureole, equilibrium, kinetics contact metamorphism, 92M/1324; and metamorphic aureole, evidence of fluid phase behaviour, controls in, 92M/2161; and metamorphic aureole, stable isotope geochem., 92M/2159; contact metamorphism, 92M/2163; decarbonation reactions in siliceous dolomites, impure limestone, 92M/2152; detrital quartz, K-feldspar, in quartzites as indicators of O isotope exchange kinetics, 92M/2157; disordering, re-ordering, unmixing in alkali feldspar from contact-metamorphosed quartzite, 92M/2155; geol. setting, 92M/2143; metamorphic aureole, carbonate rocks, microtextures, reaction mechanisms, comparison with Italy, Monzoni, 92M/2153; microstructs., thermal behaviour of igneous pyroxenes, 92M/2148; modelling of min. δ^{18} O values in metamorphic aureole, closed-system model predicts apparent open-system δ^{18} O values, 92M/4461; nucleation, growth of pyroxene in hypersthene diorite, 92M/2147; P-T-a(H₂O) condns. in thermal aureole, 92M/2158; pelite, petrogr., min. chem., 92M/2150; quartz grain coarsening by collective crystallization in contact quartzite, 92M/2154; regional geol., 92M/2144; search for variations in structl. states of cordierite in contactmetamorphosed pelites, 92M/2156; shape of intrusion, geophys. data, 92M/2149; struct., petrogr., emplacement, 92M/2145; thermal condns., crystalization sequence, deduced from whole-rock, min. chem., 92M/2146; thermal history of mins. from study of intracrystalline processes, 92M/2162; thermal models of cooling, 92M/2160; Great Glen Fault, mylonitic metasediments. petrol., 92M/4922; Highlands, Glen Clova-Upper Glen Esk area, older granites, emplacement during folding episode, 92M/2091; Inverness-shire, Central Highlands, tectonostratigraphical significance of pre-750 m.y. metagabbro, 92M/4920; Rhum, ultrabasic intrusion, O isotope evidence for major fluid flow along contact zone, 92M/4361; Scourian Complex, gneiss, O isotope geochem., granulite facies metamorphism, 92M/3090; granulites, geochem., 92M/3091; Scourie, Lewisian complex, separation of Proterozoic basic dyke swarms by structl, relationships. 92M/4764; Skye, turbid alkali feldspars, min. data, 92M/1995; Sgurr nam Boc, mins. of, 92M/2355; Skye, Sleat and Torridon groups, arkose, geochem., provenance, palaeoclimate, 92M/3074; Torridon group,

- Diabaig fm., geochem., weathering, diagenesis, 92M/4435
- —, ORKNEY, primitive olivine melanephelinite dykes, 92M/4360
- —, SHETLAND, oceanic fragment, U/Pb dating, evidence from anatectic plagiogranites in 'layer 3' shear zones, 92M/1250; Norwick, age of homblende schist, obduction of ophiolite, 92M/1249
- —, STRATHCLYDE, Abington, Southern Upland Fault, rare temporary exposure, 92M/2384; Iona, Lewisian complex, Precambrian deformed basic intrusions, petrol., 92M/4765; Islay, Cnoc Rhaonastil, differentiated dolerite, natural expt. in low P differentiation of alkali olivine-basalt magma, 92M/4788
- —, TAYSIDE, Aberfeldy, isotopic evidence of depositional envt. of late Proterozoic stratiform baryte mineralization, 92M/1658; Ochil Hills, Au in heavy min. concentrates, 92M/0318
- Sediment cores, Pacific, Lau Basin, high resolution ²³⁰Th depth profile in, 92M/2107; North Fiji Basin, geochem., 92M/2105; South Lau and North Fiji Basins, stable isotope stratigr., palaeoproductivity, sedimentation rates, 92M/2106
- deformation, Nankai, Izu-Bonin and Japan forearc slopes, trenches, and fluid activity, 92M/4963
- diagenesis, material flux, porosity changes during, 92M/4434
- entrainment, in viscous fluids, crystal eruption from magma chamber floors, 92M/1535
- flux, ancient, estimation, 92M/2248
- Sedimentary breccia, *Lesser Caucasus*, Triassic-Jurassic, in ophiolite, 92M/3543
- cycling, envtl. change in late Proterozoic, evidence from stable, radiogenic isotopes, 92M/4428
- rocks, Cl, Br, I anals. by isotope dilution mass spectrometry, 92M/0526; diagenetic phenomena in, rhythmic banding through energy dissipation, electrochem. exptl. study, 92M/2846; Sm/Nd elemental, isotopic systematics in, 92M/4270; V accumulation in, thermodynamics, kinetics of reactions involving V in natural systems, 92M/4080; Australia, Amadeus Basin, Sm-Nd, U-Pb zircon isotopic constraints on provenance of, evidence for REE Belgium, fractionation, 92M/4273; Devonian, REE compn., ICP-AES. 92M/2480; China, Yangtze Craton, Qinling Orogenic Belt, post-Archaean, geochem., 92M/1750; England, Dorset, Bournemouth, Tertiary, geol. memoir, 92M/2253; Namurian Millstone Grit, Pennines. eustatically controlled sequence stratigr., 92M/1104; France, crystallochem., props., organization of soil clays derived from, 92M/1377; Germany, N Eifel, Palaeozoic, 92M/1786; Germany. geochem., Switzerland, Carboniferous to Tertiary, ore mins. in, 92M/0320; Hungary, Neogene, organic geochem., hydrocarbon potential, 92M/3158; India, Kerala, Pozhikkara Cliff section, Tertiary, geochem., palaeoenvtl. significance, 92M/1794; Italy, S Alps, Lombardian Basin, Mesozoic pelagic and

- flysch, clay min. assemblages in. implications for palaeotectonics. palaeoclimate, diagenesis, 92M/0174; New Zealand, Northland, Purerua Peninsula, geol., 92M/4701; North Sea, Utsira, Jurassic, bedrock, petrol., 92M/1101; Poland, Baltic area, Zechstein, extent, facies, stratigr., 92M/3567; Scotland, Orcadian basin, lacustrine, U distribu., geochem. in, fission track study, 92M/3073; Southern Uplands, Silurian, illitization, organic maturity in, 92M/0172; Torridon group, Diabaig fm., geochem., weathering, diagenesis, 92M/4435; Switzerland, Mesozoic, Permo-Carboniferous, distribn. of exchangeable cations in, 92M/1790: USA, Colorado, Pennsylvanian Fountain fm., chem., min. comparison with rocks from other tectonic envts., 92M/4455; Wales, Dinas Mawddwy, Ordovician, Silurian strata, depositional, tectonic relationships, 92M/4886
- -, carbonate, climatic, oceanographic isotopic signals from rock record, 92M/4291; Cretaceous organic-rich, S sinks, organic C relationships in, implications for evaluation of O-poor depositional envts., 92M/1867; late Permian, non-crystalline hydrous feldspathoids in, 92M/3559; Precambrian, geochem., Palaeoproterozoic 92M/4269; sea-water. Canada. Newfoundland and England, Cambrian, O. C isotope stratigr., 92M/4454; NE England and North Sea, carbonate-evaporite basins, sequence stratigr., models, applications to Upper Permian (Zechstein), 92M/2251; Germany, Harz Mts, Devonian reef, diagenesis of, 92M/3562; India, Rajasthan, Jaisalmer, Jurassic, petrol., diagenesis, depositional envt., 92M/2256; Spain, Cantabria, Santillana del Mar anticline, diagenetic processes, geochem., 92M/1787
- Sedimentation, Spain, Guadalquivir basin, Neogene, petrol., 92M/2254; USA, Derbyshire, Edale Basin, Dinantian, petrol., 92M/2252
- Sedimentology, bedload transport, 92M/1099 Sediments, 30-norhopanes, occurrence in, 92M/3143; bioturbated, mathematical model for Mn diagenesis in, 92M/0698; drainage, freeze-sampling method of collecting, for Au exploration, 92M/0061; extraction of iron oxide using reductive dissolution by Ti(III), 92M/2457; hydrothermally altered. Be isotope geochem., 92M/4450; identification, significance of 3 \(\beta\)-ethyl steranes in, 92M/0747; immature, identification, geochem. significance of cyclic di- and trisulphides with linear, acyclic isoprenoid C skeletons in, 92M/4524; laminated, molecular records of twentieth-century El Niño events in, 92M/4456; laser diffraction, new method for grain size anal., 92M/2448; occurrence of dammar-13(17)-enes in, poss. indications for unrecognized microbial constituent, 92M/3149; rearranged hopanes in, 92M/3162; resuspended, potential source of dissolved Al from, to North Atlantic Deep Water, 92M/1842; XRF, application to elem. detns. in, 92M/2464; Arctic Ocean, Barents Sea, Quaternary, clast petrogr.,

- stratigr., 92M/1100; Australia, Victoria, Lake Tyrrell, acid hypersaline, metal partitioning in, 92M/4493; India, Kerala, Bharathapuzha, petrogr. of light detrital grains, 92M/1108
- -, carbonate, acidic amino acids, non-protein amino acids in, relationship to diagenetic decompn., 92M/0745; F mobility during early diagenesis of, indicator of min. transformations, 92M/1801; modern marine, B isotopic compn., concentration in, 92M/4314; muddy, acidic amino acids, non-protein amino acids in, relationship to diagenetic decompn., 92M/0745; recent platform, dissolution in marine pore fluids, 92M/0702; Germany, Saxony and Thuringia, Pleistocene freshwater. radiocarbon dating, 92M/3718; subarctic Pacific, deposition, benthic δ^{13} C. implications for changes of oceanic carbonate system during past 750,000 yr., 92M/0736; West Indies, Barbados, Pleistocene, U-series evidence on diagenesis, hydrol, in, 92M/3089
- —, clastic, terrigenous, Ti/Nb ratios used as indicator of provenance, 92M/1785; Germany, Thuringia, modelling of compaction processes of, 92M/3564
- —, clay, effects of secondary compression on horizontal stresses of deep clays, 92M/0195; marine, thermal behaviour, geotechnical props., 92M/2520; NE Atlantic, Quaternary, K-Ar, Rb-Sr anals., mineralogy, 92M/1369; Italy, Grosseto, Paganico, assoc. with quartz sand, compn., genesis, 92M/1360; Lucanian basin, Pleistocene, min., chem. classification for use in tile industry, 92M/2574; Puglia, Pleistocene, genesis, evolution, 92M/2573
- —, fjord, Norway, Oslofjord, amino acid diagenesis, organic C, N mineralization in, 92M/0752
- —, inland sea, *Black Sea*, enrichment in saturated compounds, 92M/0759; modern, relationships between S, organic C, Fe in, 92M/1792; novel pyropheophorbide steryl esters in, 92M/0760; recent, geochem. of Re, Os in, 92M/4441
- —, lagoon, Spain, Guadalquivir Delta, Santa Olalla Lagoon, hypereutrophic alkaline, sedimentary lipid biogeochem., 92M/1864
- , lake, evidence for diffusive redistribn. of ²¹⁰Pb in, 92M/0699; fresh-water, early diagenetic influences on Fe transformations in, 92M/0683; organic, definition of large-scale zones of hydrothermal alteration by geochem. mapping using, 92M/1914; surficial, relative importance of Mn and iron oxides, organic matter in sorption of tr. metals by, 92M/4499; Australia, acid-hypersaline, chem., crystallographic, stable isotopic props. of alunite, jarosite from, 92M/4495; Cameroon, Adamaoua, Anloua, Cainozoic, relationship between sediments, igneous source rocks, using clay min. multi-elem. chem., 92M/0688; China, Qinghai, Da Qaidam Lake, B isotopic compn., 92M/4302; Kenya, Lake Magadi, U-series disequilibria in early diagenetic mins., dating potential, 92M/3725; USA, California, Owens River system, saline, Pleistocene, ³⁶Cl dating, 92M/2436

- -, marine, anoxic, N diagenesis in, isotopic effects, 92M/3071; ciliates as widespread source of tetrahymanol, hopan-3β-ol in, 92M/3148; detn. of total available Sb in, by slurry formation, hydride generation AAS, 92M/2485; fast ICP-MS assay for detn. of ²³⁰Th in, 92M/0102; hemipelagic upwelling, controls on C/S ratios in, 92M/1861; tunneling hydrothermal, scanning microscopy, 92M/3580; hydrothermal glauconite in, implications for hydrothermal min. deposits, 92M/0170; methanogenic, C isotope biogeochem, of acetate from, 92M/4537; Os in, 92M/0682; statistical approach to interpn. of aliphatic hydrocarbon distribns. in, 92M/3142; trench-arc, sedimentol., relation to ophiolite obduction, 92M/0935; zeolitization in, time-dependent function on diagenetic change, 92M/4894; Arabian Sea, Oman Margin, under O minimum, lack of enhanced preservation of organic matter in, 92M/4527; Baltic Sea, distribn. patterns of P in, 92M/0687; Gulf of Mexico, anoxic, sulphate reduction, iron sulphide min. formation, 92M/3088; Israel, marine Senonian organic-rich, Fe-poor, C, S relationships in, 92M/4526; Japan Sea, REE in, diagenetic behaviour of Ce/Ce*, ODP Leg 127, 92M/1795; Mediterranean Sea, Tyrrhenian Basin, clay mins. as natural tracers in, 92M/2543; NE Mediterranean, compn. of, 92M/3078; Pacific, Lau Basin, major, tr. elem. geochem., 92M/2104; rare, precious elem. geochem., 92M/2108; Red Sea and USA, Illinois basin, halite removal from, salt diffusion in interstitial waters, 92M/0689; USA, California, Franciscan Complex and Monterey group, fine-grained, assessing REE sources to, REE, major, tr. elems. in chert, 92M/0703; Venezuela Basin, pyrolysis-MS, multivariate data anal., 92M/1870
- —, —, coastal, inhabited by sedentary polychaetes, advection/diffusion model ²²²Rn transport in, 92M/2249; *Turkey, Sea of Marmara*, heavy metal concentrations in, 92M/1524; *USA, Massachusetts, Buzzards Bay*, C cycling in, estimating remineralization, 92M/1798
- —, deep-sea, precise major component detns. in, using Fourier Transform IR spectroscopy, 92M/3754; sulphate reduction in, 92M/3151; Antarctica, low-T opal-CT precipitation in, evidence from O isotopes, 92M/4448; Baffin Bay, early diagenetic transformation of higher-plant triterpenoids in, 92M/4533; N Pacific, palygorskite formed on montmorillonite in, 92M/0189
- —, —, oceanic, U in, 92M/0725; and young island arc volcanic rocks, Th, Pb, Sr isotope variations, 92M/0665
- —, —, pelagic, Indian Ocean, clay mineralogy, 92M/0176; Pacific, aeolian dust in, geochem., palaeoclimatic implications, 92M/0695; Pacific, Mariana Arc, tr. elem., isotopic characteristics, implications for petrogenesis of magmas, 92M/4303
- —, metalliferous, *Indian Ocean*, marine min. resources, 92M/3982; *Red Sea*, silicate mins. in, 92M/3981; sulphate mins. in,

- 92M/3980; Red Sea, Atlantis II Deep, mineralogy, 92M/3979
- —, organic-rich, Pacific, Peru Margin, geochem. of inorganic, organic S in, 92M/4457
- —, pelitic, assoc. with volcaniclastic materials, geochem., 92M/3070
- —, river, Germany, River Elbe, detn. of Th in, using isotope dilution MS with thermal ionization, 92M/4438; Taiwan, Nd-Sr isotopic study, 92M/1796
- —, stream, geochem. reconnaissance using stream-sediment pebble coatings, laser ablation ICP-AES, 92M/4551; Wales, River Ystwyth, contaminated, chem., phys. partitioning in, 92M/1508
- Seismology, anisotropy of inner core from differential travel times of phases PKP, PKIKP, 92M/4974; evidence for metastable olivine inside subducting slab, 92M/4985; global mapping of topography on 660-km 92M/4976; discontinuity in mantle, relationship between spreading rate and seismic struct. of mid-ocean ridges, 92M/4981; ridges, hotspots, interaction observed in seismic velocity maps, 92M/4983; upper mantle seismic discontinuities, thermal struct. of subduction zones, 92M/4973; Japan, Izu-Oshima volcano, underground struct., magmatic seismic reflection survey, activity, 92M/4843
- Seismotectonic demains, *NE India*, and adjacent areas, 92M/0942
- Selenium, *India*, *Punjab*, accumulation in sugarcane in seleniferous areas, 92M/2780
- Semseyite, Czech Republic, Bohemia, Slany mining area, occurrence, 92M/3689; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567
- Senaite, former Yugoslavia, Alinci, U-rich metamict, min. data, 92M/4650
- Senarmontite, Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001
- SENEGAL, Casamance Ria, gypsum, tabular, lenticular crystals, occurrence, min. data, 92M/3314

Sepiolite v. clay minerals

Serendibite, Russian Federation, Siberia, Aldan Shield, Tayozhnoye deposit, min. data, 92M/0831; USA, New York, paragenesis of, example of B enrichment in granulite facies, 92M/2808

Sericite v. mica

- Serpentine, and related mins., X-ray microanal. by TEM, 92M/3276; in xenolith from kimberlite pipe, mineralogy, 92M/4639; retrograde exchange of H isotopes between hydrous mins, and water at low T, 92M/4227; six-layer orthoserpentine. Unst-type-povlen-chrysotile-60rc1, min. data, 92M/1990; Bosnia, assoc. with tobermorite, min. data, 92M/2010: Canadian Cordillera, in mesothermal Au-stibnite-quartz vein, 92M/2735; China, Handan-Xingtai, Hanxing, in skarn Fe deposits, alteration-mineralization. 92M/0565
- —, antigorite, Italy, Bergell aureole, reaction antigorite → olivine + talc + H₂O, 92M/1159; Piemonte, Novara, Alpe Devero, occurrence, 92M/4992

- —, pimelite, Brazil, Goias, Niquelandia, pseudomorphs after pyroxene, lateritic weathering of pyroxenites, supergene behavior of Ni, 92M/2983
- Serpentinite, Germany, Bavaria, genesis, petrol., 92M/1153; Saxony, Erzgebirge, geol., 92M/3641; USA, Pennsylvania Piedmont, State-line, shear zone control on min. deposits, 92M/0310
- Serpentinization, fluid inclusions in rodingite, geothermometer for, 92M/2933; Canada, British Columbia, Cassiar, origin of rodingite, use to estimate T, P(H₂O) during, 92M/4252
- Serpierite, and orthoserpierite, devilline, REM photographs, chem. anals., crystallography, distinguishing features, 92M/3315
- SEYCHELLES, tholeiitic dykes, original spatial extent of Deccan, 92M/2178
- Shale, exsudatinite in, photochem., 92M/3139; REE in, 92M/3068; Palaeozoic, estimation of organic matter, Fe content, using reflectometer or Munsell colour chart, 92M/1313; porosimetry measurement of fabric, relationship to illite/smectite diagenesis, 92M/1359; porphyrin concn. in kerogen in, high-resolution reflectance spectroscopy, 92M/4514; N England, radioactive, Carboniferous, petrol.. Poland, 92M/1103; organic-rich Cu-bearing, from Kupferschiefer, C, O, S isotopic compn., 92M/0551; South Africa, Barberton Greenstone Belt, Fig Tree shale, Archaean, chlorite, illite in, 92M/0175; USA, California, Catalina schist, stable isotope, tr. elem, indicators devolatilization history in, 92M/3108
- —, black, Toarcian, quantification of loss of calcite, pyrite, organic matter due to weathering of, effects on kerogen, bitumen characteristics, 92M/3154; Canada, Yukon Territory, Nick Property, Devonian, sedimentary Ni, Zn, PGE mineralization in, new deposit type, 92M/3985; Finland, Kainuu schist belt, metamorphosed, Proterozoic, geophysical props. correlated with petrogr., geochem., 92M/3380
- —, oil-shale, tr. metal speciation, 92M/1850; Germany, Eocene, porphyrins from, struct. elucidation, geochem., biol. significance, distribn. as function of depth, 92M/4522; Turkey, Göynük and Seyitomer, organic geochem., 92M/1866
- Shear deformation, of low-melting point plastic model materials, 92M/2849
- zone, Central Indian shear zone, major
 Pre-cambrian crustal boundary, 92M/0922
- Shoshonite, Swiss/Italian border, Bergell pluton, mineralogy, geochem., products of magma mingling, 92M/3012

Shoshonitic lava v. lava, shoshonitic

Siderite, δ¹³C, δ¹⁸O anal. using laser extraction system, 92M/1653; evidence from min. assemblages for infiltration of pelitic schist by aqueous fluids during metamorphism, 92M/2267; XRD. IR, Mössbauer studies, 92M/4664; Brazil, Tocantins, Pontal, in Au quartz vein, 92M/3938; Czech Republic, Bohemia, assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound

- Sn deposit, 92M/0369; USA, Colorado, San Juan Mts, Sultan Mountain mine, in Cu-Pb-Zn-Ag-Au ores, 92M/0600
- Siderophile elements, in Fe-Ni-S system, 1 bar to 80 kbar, partitioning of, 92M/1592 Siegenite v. linnaeite
- SIERRA LEONE, Freetown Layered Complex, Os isotope ratios of PGM grains, origin, 92M/1668
- Silcrete, Brazil, Jacupiranga alkaline complex, formation above serpentinized dunite, palaeoclimatic implication for laterite genesis, 92M/0202
- Silica, hydrous, solid state ²⁹Si NMR study, 92M/2625; ore textures, interpn., problems, 92M/0268; *New Zealand*, marine min. potential in exclusive economic zone, 92M/0383
- geothermometers, in T range 100–350°C, exptl. water-rock interactions, 92M/2841
- minerals, micro- and non-crystalline, nomenclature based on struct., microstruct., 92M/2001
- polymorphs, relation between crystal sýmmetry, ionicity in, 92M/0236; tetracoordinated, periodic Hartree-Fock study, 92M/0237
- --phosphate minerals, Israel, Golan Heights, Har Peres, nodular, from pyroclastics, 92M/2000
- Silicate gels, and aqueous solutions, exchange equilibria of alkaline-earth ions between, exptl. study, 92M/0435
- glass, and CO2 vapour, O isotope partitioning between, 92M/4199; cation field effects on vibrations, 92M/3815; coordination changes, vibrational spectrum of, at high P, 92M/2869; coordination variability, structl. components of, under high P. 92M/3836; crystal field spectra, geochem, of transition metal ions in, 92M/3816; F in, multinuclear NMR study, 92M/4041; influence of cation coordination on nucleation in, 92M/4040; MgSiO₃, Mg₂SiO₄, molecular dynamics simulations of P, T effects on, 92M/1549; NMR evidence for five-coordinated Si in, at atmospheric P, 92M/0209; P-induced Si coordination, tetrahedral structl. changes in alkali oxide-silica melts, NMR, Raman, IR spectroscopy, 92M/0411; structl. envt. around Th⁴⁺ in, implications for geochem. of incompatible Me4+ elems., 92M/2599
- -- melt systems, structl. envts. of incompatible elems. in, Zr at tr. levels, 92M/0210
- liquids, alkali, struct., dynamics of, NMR spectroscopy, 92M/4051; containing Fe₂O₃, compressibility of, effect of compn., T, O fugacity, P on redox states, 92M/1539; detn. of thermal expansivity using dilatometry, calorimetry, 92M/2790; Fe₂O₃-bearing, heat capacities of, 92M/4046; glasses, vibrational spectroscopy, 92M/4052
- melts v. melts, silicate
- minerals, Al₂SiO₅ polymorphs, Raman spectra at high P, room T, 92M/1956; computer simulation approach to modelling struct., thermodynamics, O isotope equilibria, 92M/0444; control of dissolution rates of, by divalent metal—O bonds, 92M/4083; diffusion of multi-species

- component, role in O, water transport in. 92M/1548; Fe-bearing anhydrous phase B, crystal chem., implications for transition zone mineralogy, 92M/4124; Fe-poor, energy gap for, 92M/2340; melting of, from atmospheric to high P, 92M/2811; Mg₁₂Si₄O₁₉(OH)₂ (phase B), Mg₁₄Si₅O₂₄ (phase AnhB), crystal structs., 92M/0224; Na₂Si₂O₅, shear, volume relaxation in, 92M/3665; non-refractory, detn. of ferrous iron in, improved semi-micro oxidimetric method. 92M/1317: produced expts., condensation Mg isotopic fractionation of, 92M/2851; synthetic potassium zihc silicate, crystal struct., 92M/0223
- rocks, detn. of Li, Be, Co, Ni, Cu, Rb, Cs, Pb, Bi in, by direct atomization AAS, 92M/3755
- weathering, USA, effects on water chem. in forested, upland, felsic terrain, 92M/3125
- Silicic magma v. magma, silicic
- magmatism v. magmatism, silicic
- rocks, Wales, Ordovician bimodal volcanism, geochem. evidence for petrogenesis, 92M/0616
- Siliciclastic rocks, influence of porosity on low-T brittle-ductile transition in, 92M/0907
- Silicification, Svalbard, Draken fm., Riphaean, coastal lithofacies, biofacies assoc. with, 92M/3557
- Silicon, linear coefficient of thermal expansion of, at room *T*, 92M/2344; octahedral, predicted high-*P* min. structs. with, 92M/2598
- isotopes, Pacific, Indian Ocean, ³²Si profiles, 92M/3120
- Sillimanite, atomic ordering around O vacancies in, model for mullite struct., 92M/3819; equilibria kyanite = sillimanite, kyanite = andalusite, revised triple point for Al₂SiO₅ polymorphs, 92M/0450; heat capacities, entropy of, and Al₂SiO₅ phase diagram, 92M/2856; phase chemographies in quaternary systems of seven phases, 92M/0414; Raman spectra at high P, room T, 92M/1956; relationship of werdingite to, 92M/0219: static lattice energy minimization, lattice dynamics calculations, 92M/0216; India, Banda Dist., Sangrampur Hill, differentiation of Semri group, Kaimur group on basis of heavy min. suites, 92M/1110; Sri Lanka, blue, gem notes, 92M/4194; USA, Maine, Cupsuptic aureole, isograds, conduction model for thermal evolution, 92M/1191
- -- quartz-hypersthene assemblage, stability, exptl. investigation in system FeO-MgO-Al₂O₃-SiO₂, 92M/1563
- Sills, convection, crystal settling in, 92M/4775; Denmark, Faeroe Is., Tertiary, of basalt plateau, 92M/4781; Finland, Karelia, Koli, layered, 2200 m.y., low-Al tholeitic magma type, differentiation, 92M/4780; Japan, Shimane Peninsula, Miocene pillowed, petrol., 92M/3491
- Siltstone, Greenland, Disko Bugt, Qeqertakavsak Is., large-scale albitization of, 92M/4459
- Silver, geol., geochem. controls on Ag content of Au in Au-Ag deposits, 92M/0533;

- separation of tr. amounts of, by volatilization prior to AAS detn. in copper ore, 92M/2486; Canada, Ontario, Cobalt, sulphide remobilization in Archaean volcano-sedimentary rocks, significance in Proterozoic Ag vein genesis, 92M/1486, 92M/1487; China, Hebei, Caijiaying Pb-Zn-Ag deposit, min. characteristics, occurrence, 92M/0356; Sichuan, Gacun, in polymetallic deposit, geol., genesis, 92M/0362; Czech Republic, Měděnec, mins. of skarn deposit, 92M/1236; Germany, Erzgebirge, Schneeberg, Sauschwart mine, mining history, 92M/1462; Schwarzwald, mediaeval and earlier mining, history, 92M/2658; Kazakhstan, native, assoc. with koutekite, 92M/2046; Peru, Huancavelica, assocn. of Ag, Hg, As, Sb, carbonaceous material, 92M/2761; Scotland, Mannoch Hill, native, occurrence, 92M/1221; USA, Alaska Range, Sheep Creek prospect, ore mineralogy, phys. characteristics, 92M/0309
- deposits, Bolivia, min. resource potential, 92M/1444; Chile, Andes, Petorca, El Bronce, epithermal vein system, geol., structl., fluid inclusion studies, 92M/1455; China, Jilin, Siping, Shanmen, geol., 92M/0361; Germany, Erzgebirge, Tellerhäuser, mineralogy, 92M/1234; Mexico, ammonium geochem., 92M/1901; Peru, Orcopampa, ore zoning, tetrahedrite compositional variation. 92M/2759; Uchucchacua, Ag-Mn-Pb-Zn replacement, skarn deposits, mineralogy, metal zoning, Sr isotopes of fluid inclusions, 92M/2757; Portugal, Góis and Vila Pouca de Aguiar-Vila Real, geol., min., lithogeochem. studies, 92M/0767; USA, Coeur d'Alene mines, production, 92M/1492; Comstock Lode, fluid-min. relations, 92M/1494
- mineralization, Austria, Carinthia, Zirknitz-Wurtental, geol., 92M/4995; Norway, Oslo, Akersberg mine, occurrence, 92M/4007
- minerals, Bulgaria, Ardino, in polymetallic deposit, 92M/0866
- veins, Peru, Arcata dist., geol. setting, 92M/2758
- --- copper deposit, USA, Oklahoma, Paoli, ore microscopy, 92M/0314
- --gold deposits, Chile, Andes, Antofagasta, Faride, epithermal, 92M/1449; Mexico, Guanajuato, Rayas Ag-Au-Cu-Pb-Zn mine, fluid inclusion, isotope study, 92M/1707; Peru, Orcopampa, Calera, epithermal Ag-Au vein system, multistage evolution, 92M/2760; USA, Nevada, Humboldt Range, hydrothermal, schorl, dumortierite, zonally arranged in, 92M/3254
- --lead-zinc deposits, and metamorphic core complexes, hydrologic regimes, during crustal extension, 92M/4339; Mexico, Fresnillo, evidence for brine reservoir, descending water table during formation of hydrothermal Ag-Pb-Zn orebodies, 92M/2980
- --- palladium alloy, Brazil, Bahia, Carajas, from lateritic Au deposit, 92M/3290
- vanadium deposits, China, Hubei Province, Sinian Doushantuo fm., black shale hosted, 92M/3994

- - zinc deposit, USA, New Mexico, Central Mining Dist., Groundhog vein system, alteration, fluid inclusion study, 92M/4022

Frankfurt, Germany, Simonkolleite, occurrence, 92M/3680

Sinhalite, dielectric constants of, oxide additivity rule, 92M/4989; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808

Siögrenite, Germany, occurrence, 92M/1225

Skarn, with coexisting andradite, hedenbergite, thermodynamic props. of andradite, 92M/0449; Western Australia, Southern Cross greenstone belt, Marvel Loch Au-Ag mine, Savage Lode, structl. setting, petrogr., geochem., 92M/1477, P-T estimates, constraints on fluid sources, 92M/1478; Bulgaria, Rila Mtn, diopside in, min. data, 92M/0819; Norway, in regional metamorphic terrain, 92M/1426

Circum-Pacific Belt. deposits, characteristics, distribn., 92M/0326; Czech Republic, Měděnec, mins. of, 92M/1236; Japan, Sr isotope systematics,

metallogenesis, 92M/0570

- mineralization, Canada, British Columbia, Rossland, sulphide Au content of, 92M/2734

Skutterudite, Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057

Slate, Canada, Appalachians, clay mins. as indicators of diagenetic, anchimetamorphic grade in overthrust belt, 92M/0182

Slaty cleavage, development of, degree of very low-grade metamorphism, 92M/2277

SLOVAKIA, Branisko Mountains, Jurassic black shale-hosted Mn carbonate deposits, geochem., 92M/4553; organic Cervenica-Dubnik, mins. assoc. with opal deposits, 92M/5001; Lubietová, three polymorphs of Cu₅(PO₄)₂(OH)₄, min. data, 92M/2064; W Carpathians, magnesite deposits, occurrences, 92M/4324

SLOVENIA, Alps, Pohorje, eclogites, petrol., min. chem., 92M/2296; metabasites, petrol.,

min. chem., 92M/2297

Slyudite, Russian Federation, Aldan Shield, Usmun River Basin, kornerupine in, geol., petrol., chem. of mins., min. reactions, 92M/4610

Smectite v. clay minerals

Smithsonite, England, W Shropshire orefield, genesis, evidence from fluid inclusions. sphalerite chem., S isotopic ratios, Greece, 92M/0544; Thasos metalliferous mining, soil contamination at old mining sites, 92M/0393

Snow, isotopic changes during formation of depth hoar in exptl. snowpacks, 92M/4211

- metamorphism, isotopic changes during, 92M/4212

Sobolevskite, revised unit-cell dimensions, space group, chem. formula, 92M/2628; Portugal, Bragança-Vinhais, ultrabasic rocks, 92M/2047

Sodalite, aluminate, crystal struct., 92M/0263; concn. of iron oxides from soil clay by 5 M NaOH treatment, complete removal of, 92M/2538; conversion of nepheline to, during subsolidus processes in alkaline rocks, 92M/1113; orientational disorder of

nitrite anion in, 92M/0239; Italy, Vetralla, and Canada, Ontario, Bancroft, observed, simulated IR spectra, 92M/3278

family, symmetries occurring in, 92M/3837 Sodium octosilicate, chem. characterization, features, thermal behaviour, structl. 92M/2621

Sodium strontium silicate, Na₄SrSi₃O₉, crystal struct., 92M/2611

Tadzhikistan, Dara-i-Pioz, Sogdianite, occurrence, 92M/2377

Soil aggregates, fractal struct., measurement, interpn., 92M/0193

gas, geochemistry, fault detection using, 92M/3178; measurement of ²²²Rn in, by liquid scintillation counting, 92M/1315

- leachates, detn. of metal-organic assocns.

in, by ICP-AES, 92M/2482

Soils, adsorption of cationic surfactant, 92M/3150; aggregation of soil particles by iron oxide in various size fractions of B 92M/2592; hasalt-derived. horizons. kaolin-smectite interstratification sequence from, 92M/1376; CO2, isotopic compn. of C in, 92M/3086; comparison of granulometric methods for, 92M/1339; comparison of microwave, conventional extraction techniques for detn. of metals in by AAS, 92M/2443; decomposition procedure for quantitative detn. of major, minor, tr. elems. by AAS, 92M/3748; developed from crystalline rocks, abundance of halloysite neoformation in, TEM study, 92M/3810; developed from crystalline rocks. weathering microsystems in, TEM study, 92M/3806; ICP-AES for anal. of soil extracts prepared on ion-exchanged resins, 92M/2490; measuring gross mineralization, immobilization, nitrification by 15N isotopic pool dilution in soil cores, 92M/1373; mechanical props. influenced by exchangeable cations, 92M/0194; paddy, derived from volcanic ash, embryonic halloysites in, 92M/0196; saline, influence of particle size, clay organization on hýdraulic conductivity, moisture retention of clay from, 92M/2561; silty, sandy, struct., self-similarity in, fractal approach, 92M/0192; soil profiles, total contents of particle-size separates. 92M/1375: temperate, effects of freezing on colloidal halloysite, implications for, 92M/3785; XRD measurement of quartz content of clay, silt fractions in, 92M/3811; XRF, application to elem. detns. in, 92M/2464; Brazil, Bahia, Gentio do Ouro, colluvial, precipitation, concentration of Au in, in semiarid region, 92M/3900; Germany, overlying sandstone, phyllite, gneiss, rhyolite, basalt, major, tr. elem. anal., 92M/2593; India, Andhra Pradesh, granitic, Y min. potential of, 92M/1499; Bombay, chem. weathering of basalts, control on heavy metal contamination in, 92M/1525; Kenya, in conservation areas, tr. elem. geochem., implications for wildlife nutrition, 92M/1509; New Zealand, organic C detn. in, 92M/0168; Pacific, Nauru Is., chronosequence of C, N development after phosphate mining, 92M/3809; Pacific, Niue Is., new model for origin of anomalous radioactivity in, 92M/4449; Thailand,

dispersive, stabilization of, by blending with fly ash, 92M/0169; Tuvalu, outer islands, characteristics, 92M/0201; Western Samoa, Upolu, Laloanea Farm, classification, 92M/3808

-, acid brown, developed in granitic saprolite, characterization, genetic interpn. of clays in,

-, clay, Japan, Hachiro-gata polder, heavy, agriculture, chem., phys. props., 92M/2596

-, lateritic, India, Maharashtra, Pune Dist., Lonavala, clay mineralogy, geochem., 92M/1374

-, palaeosol, SW Ireland, polygenetic, from Silurian, 92M/0197

-, podzolic, Italy, E Alps, on granitic rock, min., geochem. evolution, 92M/2594

-, 'raña', Spain, high-charge smectite in, 92M/0198

Solute-water interactions, isotope fractionation studies, 92M/4197

Sophiite, new min., crystal struct., phys. props., 92M/3852

SOUTH AFRICA, eclogite min. phases, O isotope systematics, 92M/0719; phlogopite from kimberlites, Ar isotope, halogen chem., combined step-heating, laser probe, electron microprobe, TEM 92M/1672; Barberton greenstone belt, Archaean sedimentary rocks, 40 Ar/ 39 Ar step-heating age spectra. for detecting technique cryptic events, 92M/0032; tectono-thermal mafic-ultramafic hosted, shear zone related Au-quartz vein deposits, structl. style, fluid props., light stable isotope geochem., 92M/3891; noble metal abundances in early Archaean impact deposit, 92M/4600; shear zone-related Au-bearing quartz vein deposits, field, petrographic characteristics, fluid props., stable isotope geochem., 92M/3993; tourmaline mineralization, Archaean metasomatism evaporite-derived B, 92M/0720; Barberton Greenstone Belt, Fig Tree shale, Archaean, chlorite, illite in, 92M/0175; Barberton greenstone belt, Kaap Valley, 3200 m.y. tonalite, O, C isotope geochem., 92M/1740; Barberton Mountain Land, Archaean granite-greenstone evolution, chronol. based on precise dating by single zircon evaporation, 92M/0033; Barberton Mountain Land, Onverwacht group, early Archaean microfossils, 92M/3569; Bellsbank kimberlite, eclogites with oceanic crustal, mantle signatures, min., petrol., whole rock chem., 92M/2175; Bushmanland, dumortierite-topaz-white mica fels from peraluminous metamorphic suite, 92M/1175; Bushveld Complex, Os isotopes and crustal sources for PGEmineralization, 92M/4327; pyroxenite, addition of magma, 92M/0642; stable isotopic systematics, constraints on hydrothermal processes in layered intrusions, 92M/0641; unusual textures, structs., assoc. with magnetite layer, adcumulus growth of plagioclase, 92M/1005; Bushveld Complex, Lower and Critical Zones, corroded plagioclase

inclusions in orthopyroxene, olivine,

92M/1007; Merensky reef, compositional

variation of apatite in cyclic unit, 92M/0872; Rustenburg section, Merensky Reef, petrogenesis, 92M/1006; Upper Zone, PGE behaviour, implications for formation of magnetite layer, 92M/4328; E Bushveld Complex, Atok section, Merensky and Bastard reef units, cyclicity in Sr isotope stratigr., 92M/1669; Cape Peninsula. dolerite dyke swarm, petrol., 92M/4747; N Cape, Finsch, diamondiferous garnet harzburgite from kimberlite, 92M/4806; Finsch and Kimberley Pool, eclogite, websterite inclusions in diamond, Nd, Sr isotope systematics, 92M/1270; Genadendal, Zn-Pb-Mn mineralization, poss, early Proterozoic alkaline hydrothermal system, 92M/2720; Jagersfontein and Koffiefontein, kimberlite, C isotopic compn., N content of lithospheric, asthenospheric diamonds, 92M/1671; Kaapvaal craton, comparative study of geochem., isotopic systematics of late Archaean flood basalt, 92M/3043; Kaapvaal craton, Namaqua realm, structl. history, 92M/2095; Karoo Basin, anal. of termite hills to locate U mineralization, 92M/3185; picrite basalts, interaction between asthenospheric magmas, mantle lithosphere, 92M/1741; Natal, exploration model for Archaean Au, 92M/3966; Pietersburg greenstone belt, Mt Mare area, controls, setting of Au mineralization, 92M/3949; Premier mine, Centenary diamond, gem notes, 92M/1613; Transkei, Mt Ayliff intrusion, Ti-rich chromite, evidence for high Ti tholeiitic magma, 92M/1004; Transvaal Sequence, Proterozoic fluorite, Au deposits, Pb, Sr isotopes, origin, 92M/1673; Transvaal succession, Bushveld, mafic rocks, conformable emplacement along regional 92M/2176; unconformity, Transvaal supergroup, carbonate petrogr., kerogen distribn., C, O isotope variations in Proterozoic limestone/iron-formation 92M/0758; transition. Proterozoic. sedimentology of facies geochem., transition from limestone to iron formation, 92M/3080; Hoogenoeg mine, producer of high grade andalusite, 92M/2767; Leydsdorp, emerald mineralization during regional metamorphism, 92M/3250; Transvaal, Sabie-Pilgrim's Rest Goldfield, Elandshoogte, Au mine, mineralization, struct., 92M/3953; Vredefort Dome, coesite, stishovite assoc. with pseudotachylite, nature, distribn., genesis, 92M/1174; Witwatersrand, nature of hinterland, 92M/0352; ore mineralogy, 92M/0351; Witwatersrand Gold Fields, detrital pyrite, evidence from truncated growth banding, 92M/2678; Witwatersrand supergroup and Ventersdorp contact reef, provenance ages, U-Pb dating, 92M/2412; Witwatersrand triad, volcano-sedimentary basins, zircon ion microprobe studies, age, evolution, 92M/2411: Witwatersrand and Bushveld, ore deposits, Os isotope systematics, 92M/1670; Zaaiplaats mine, Bushveld, disseminated tin mineralization in roof of granite pluton, implications for genesis of magmatic hydrothermal tin systems,

92M/2721; petrographic, geochem. evolution of pervasively altered granites, 92M/1739; Zwartkoppie shoot, Sheba Au mine, Au mineralization, wallrock alteration, 92M/3904

SOUTH AMERICA, rheology of upper mantle, inferred from peridotite xenoliths, 92M/2338; tectonic evolution during late Proterozoic, 92M/2077; Amazonian craton, Proterozoic basic dyke swarms and alkaline intrusions, tectonic evolution based on Rb–Sr, K–Ar, 40Ar/39Ar geochronol., 92M/4744; central Andes, Pb isotope provinces inferred from ores, crustal rocks, 92M/4348

SOUTHERN OCEAN, dissolved organic C in, 92M/4531

SPAIN. Alpine anatectic leucosomes, metamorphic rocks, tourmaline K/Ar ages, comparison with other radiometric dating systems in, 92M/0019; discovery of fossil fumaroles, 92M/3977; high-charge smectite in 'raña' soils, 92M/0198; NE, karstic bauxite, geochem., 92M/1789; Agost, Cretaceous-Tertiary boundary, geochem., mineralogy, 92M/4437; Aljibe sandstone, cement, compn., genesis, 92M/1364; Almería, Benahadux and Las Balsas, sulphur deposits, geol., 92M/1496; Aragón, clays, industrial use, 92M/1362; Arribes del Duero, calibration of garnet-biotite geothermometry, 92M/3630; Asturias, Peñarrubia, organic matter in marine sequence, geochem., 92M/1863; Badojoz-Córdoba ductile shear zone, quartz microstructs. in mylonite, deformation history, 92M/2094; Basque-Cantabrian Basin, diagenesis based on illite-smectite distribn., 92M/2581; Betic Cordillera, Alpuiárride complex. Oién nappe, eclogites, record of subduction, 92M/1157; Betic Cordillera, Sierra Nevada, ophiolitic eclogites, petrol., geochem., metamorphic evolution, 92M/1143: Betic Cordillera. Subbetic zone, sedimentary model in passive continental margin, min., geochem. approach, clay mineralogy, 92M/1367; Betic Zone, geol., tectonics, 92M/2093; Betic-Rif orogenic belt, Ronda peridotite, Alboran crustal domain, mantle-lithosphere bodies, 92M/4795; Cabo de Gata, bentonite, derivation, 92M/2580; Cabo Ortegal Complex, eclogites, clinopyroxene-garnet metabasites, petrol., 92M/1142; Mg-, Cr-rich staurolite, Cr-rich kyanite, in high-P ultrabasic rocks, 92M/0809; pyroxenite-rich peridotites, evidence for large-scale upper-mantle heterogeneity, 92M/3348; Campo de Gibraltar, Almarchal unit, flysch, clay mineralogy, 92M/1363; Campo de Gibraltar flysch, Bolonia unit, Campo de Gibraltar, mineralogy, genesis, 92M/1365; Cantabria, Dícido, strata-bound Fe deposit, geol., 92M/1457; Cantabria, Santillana del Mar anticline, carbonate rocks, diagenetic processes, geochem., 92M/1787; Catalonian Coastal Ranges, Hercynian intrusive rocks, 92M/0917; Hercynian petrol., metamorphism, 92M/0916; Hercynian ore deposits, 92M/0918; Hercynian struct., 92M/0914; late, post-Hercynian low T veins, 92M/0919; Ordovician, Silurian

igneous rocks, gneiss, petrol., 92M/0915: Catalonian Coastal Ranges, Atrevida vein, Ba-F, origin, min., fluid inclusion, stable isotope study, 92M/2712; Catalonia, Pyrenees, Sn-Nb-Ta-Be mineralization in pegmatite, 92M/1428; Centro-Iberian Zone. Almadén mine, Hg deposits, geol., metallogeny, 92M/1430; Ciudad Real, Almadén, Hg deposit, geol., 92M/0338; Cordoba, Sierra Albarrana, garnet-bearing amphibolites, geothermometry, 92M/4924; metamorphism, 92M/2290; Guadalquivir basin, Neogene sedimentation, petrol., 92M/2254; Guadalquivir Delta, Santa Olalla Lagoon, hypereutrophic alkaline lagoon, sedimentary lipid biogeochem., 92M/1864; Gulf of Cadiz, tr. metal enrichments in sea-water, 92M/0729; Hercynian belt, multistage crystallization of tonalite enclaves in granitic rocks, implications for magma mixing, 92M/0991; Hesperian massif, compn. of phyllosilicates in phyllosilicate minerals used as indicator of metamorphic condns., 92M/3631; Huesca, Sallent de Gállego, Devonian, Carboniferous, min. study, 92M/2289; Juzbado-Penalva do Castelo ductile shear Sátão granite, mylonite, microstructural anal., 92M/1145; La Codosera area, auriferous quartz veins, tectonic setting, fluid evolution, 92M/1427; Linares-La Carolina, vein-type base metal ore Pb isotopic constraints, 92M/4322; Lugo, Friol-Puebla de Parga, granite, petrol., Rb-Sr dating, 92M/1253; Madrid Basin, kerolite-stevensite mixed-layers, anals., 92M/1366; Madrid Basin, Vicálvaro, opaline rocks and assoc. sediments, petrol., sedimentol., 92M/1361; Morais and Bragança Massifs, polyphase Variscan emplacement of exotic terrains onto Iberian successions, evidence from ⁴⁰Ar/³⁹Ar min. 92M/4925: ages. Neves-Corvo. volcanogenic massive sulphides, ore textures, implications for ore beneficiation, 92M/0341; Ossa-Morena zone, Badajoz, San Amaro, peralkaline orthogneisses, petrol., geochronol., 92M/1144; Peña Negra Complex, geochem. modelling of low melt-fraction anatexis in peraluminous system, 92M/0706; Pyrenees, Cap de Creus, distribn. of phosphate mins. in pegmatite, 92M/2170; Catalonia, caldera-like structs. related to Permo-Carboniferous volcanism. 92M/1039; Leiza Fault, high-grade metamorphic rocks, peridotites, petrol., 92M/1141; Llavorsi syncline, Hercynian, Hercynian hyperbyssal rocks, geochem., 92M/3005; Massif des Alberes, de Creus, garnet-tourmaline pegmatite, stable isotope constraints on origin of, 92M/4299; Pyrenees, Olot, volcanic areas, geophys. constraints on crustal struct., 92M/2214; N Pyrenean Rift Zone, alkaline magmatism from Cretaceous, REE, Sr-Nd isotope geochem., 92M/4363; Ronda, magmatic ores in high-T alpine-type lherzolite massifs, 92M/0339; ultramafic complex, Re-Os systematics, 92M/1725; Salamanca, Guijuelo-Cespedosa, Au. Sn. W, geochem. prospecting, 92M/1429; Variscan Spanish Central System,

- Ba-(F)-(base-metal) vein deposits, geol., metallogenic aspects, 92M/3988; Tarragona Basin, identification of longchain, 1,2-di-n-alkylbenzenes in crude oil, implications for origin, 92M/4520; Toledo, Hercynian Iberian belt, origin of gabbro-tonalite-monzogranite assocn., 92M/3416; Vértes Foreground, chromite, significance in Cretaceous, 92M/4889; lithogeochem. Ricobayo, Zamora, exploration in Hercynian tin-bearing batholith, 92M/3179
- -, CANARY IS, Fuerteventura, volcanic rocks, Sr-Nd-Pb isotope data, applications to magma genesis, evolution, 92M/1735; Gomera, mins. of, 92M/5002; Gran Canaria, volcanic rocks, Sr-Nd-Pb isotopic evolution, evidence for shallow enriched mantle, 92M/3017; Gran Canaria, Roque Nublo caldera, new stratocone caldera, 92M/2215; Hierro, ultramafic, mafic xenoliths, fluid, silicate glass inclusions in, implications for mantle metasomatism, 92M/0992; Lanzarote, 1730 volcanic struct., petrol. evolution, 92M/2227; crystal population density in volcanic rocks, estimate of olivine growth rate in basalt, 92M/3436; ridge to hot-spot evolution of Atlantic lithospheric mantle, evidence from peridotite xenoliths, 92M/3356; *Teide*, ground deformation control by statistical anal. of geodetic network in caldera, 92M/2216; Tenerife, felsic domes, morphol., petrol., geochem., 92M/2171; Tenerife, Las Cañadas caldera, microgravimetric model, 92M/2217
- Spectrometry, accelerator mass spectrometry, in situ anal. of precious metals in polished min. samples, sulphide 'standards' at concentrations of ppb, 92M/0099
- -, atomic absorption spectrometry, direct atomization, detn. of Li, Be, Co, Ni, Cu, Rb, Cs, Pb, Bi in silicate rocks by, 92M/3755; direct injection graphite furnace, detn. of Ba in sea-water using V/Si modifier and, 92M/3756
- atomic emission spectrometry, laser microanal. of geol. samples by, (LM-AES), 92M/2472
- -, direct current plasma AES, Mg as modifier for Ba detn. in offshore oil-well waters, 92M/2487
- -, direct loading thermal ionization MS, detn. of picogram quantities of REE in meteoritic materials by, 92M/0106
- -, flame AAS, Mg as modifier for Ba detn. in offshore oil-well waters, 92M/2487
- -, flame-emission, improvement for detn. of K in K/Ar dating, 92M/0112
- -, hydride generation AAS, detn. of total available Sb in marine sediments by slurry formation, 92M/2485
- -, inductively coupled plasma atomic emission spectrometry, anal. of natural waters, Mg-hydroxide precipitation as pre-enrichment procedure for, 92M/1322; detn. of REE, Y, Sc, Hf using, 92M/2477; for anal. of soil extracts prepared on ion-exchanged resins, 92M/2490; laser microanal. of geol. samples (LM-ICP-AES), 92M/2472; separation, preconcn. of vanadium (v), vanadium (iv) in

- natural waters with EDTA-bonded silica gels followed by V detn. by, 92M/2489; signal fluctuations due to individual droplets in, 92M/2488; use of multiple internal standards for high-precision, routine anal. of geol. samples by, 92M/2475
- ICP-MS, alleviation of overlap interferences for detn. of K isotope ratios by, 92M/0103; application of flow injection sample introduction for geochem. anal., 92M/2470; detection of negative ions by, 92M/0104; detn. of tr. elems. in surface water subject to acidic deposition, 92M/0105; fast assay for detn. of 230Th in 92M/0102; sediments, laser-ablation-, relative elemental responses 92M/0100: microelectrothermal for. vaporization, detn. of Os, Os isotope ratios 92M/2493; minimization interferences in, using on-line preconcentration, 92M/3758; multivariate calibration in, 92M/2491; noise power spectral characteristics of ICP mass spectrometer, 92M/0101; role of slurry nebulisation for anal. of geol. samples by, 92M/2471; sample introduction techniques for detn. of Os isotope ratios by, 92M/3757; strategies of multielem. calibration for maximising accuracy of geochem. anal. by, 92M/2474
- , ICP-MS/optical emission spectrometry, simultaneous detn. of major, tr. elems. by, 92M/0098: preparation of multi-elem. standards for, 92M/3749
- -, infrared, new method for measuring crystallinity index of quartz by, 92M/0108; Fourier Transform IR, precise major component detns. in deep-sea sediments using, 92M/3754
- -, ion, structl., chem. anal. of materials, (book), 92M/0119
- -, low energy scintillation gamma, direct measurement of ²³⁸U and disequilibrium state in geol. samples by, 92M/3764
- -, mass, long-term reproducibility of multicollector Sr, Nd isotope ratio anal., 92M/2494; multicollector, calibration of Faraday cup efficiency in, 92M/2467; precise B isotopic anal. of aqueous samples, ion exchange extraction and, 92M/3759
- plasma, assessment of dissolution techniques for anal. of geol. samples by, 92M/2469; in earth sciences, techniques, applications, future trends, 92M/2468
- -, thermal ionization MS, rapid, high-purity chem, separation of Mo from iron for isotopic anal. using, meteorites 92M/3766
- Sperrylite, rapid technique for detn. of precious metals in geol. samples, based on selective aqua regia leach, 92M/2459; Brazil, Goiás, Cavalcante, assoc. with Au, 92M/3905; Portugal, Bragança-Vinhais, from ultrabasic rocks, 92M/2047

Spessartine v garnet

Sphalerite, and hexagonal pyrrhotite geobarometer, correction in calibration, application, 92M/1423; assoc. wolframite, 92M/4649; defect sphalerite derivative, ZnGa₂S₄, struct., 92M/0250; geobarometer, Fe-Zn-S phase diagram, 92M/0504; in Zn-Pb deposit, S isotope

92M/2034; ore textures, interpn., problems, 92M/0268; solubility in aqueous sulphide solutions at T 25 to 240°C, comment, 92M/1603, reply, 92M/1604; sulphidation equilibria as guides to Au mineralization in volcanogenic massive sulphides, evidence from, 92M/3194; Australia, Queensland, Hodgkinson Au Field, assoc. with mélange-, sediment-hosted Au-bearing quartz veins, 92M/0370; Tasmania, Hellyer, volcanogenic massive sulphide deposit, Au grades, Fe content, 92M/0575; Western Australia, Boddington Au mine, in Archaean porphyry Cu-Au-Mo deposit, 92M/3920; Austria, Bleiberg, banded, thiosulphates as precursors of, 92M/4659; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Czech Republic, Chvaletice, assoc. with armenite in basic volcanic rocks, 92M/1962; Příbram, Bohutín, assoc, with krupkaite, min. data, 92M/2045; Dominican Republic, Pueblo Viejo, Monte Negro, in acid sulphate Au-Ag deposit, 92M/4023; England, N Pennine Orefield, banded, min. data, 92M/0863; W Shropshire orefield, genesis, evidence from fluid inclusions, sphalerite chem., S isotopic ratios, 92M/0544; Germany. Rhenish Schiefergebirge, Altenbüren, sulphide mineralization, 92M/1459; Saxony, Erzgebirge, -quartz-baryte-fluorite-hematite-galena veins, age of, 92M/2671; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Ireland, mins. of, Tara, occurrence, 92M/2708; Italy, Bolzano/Bozen, Terlan, in Pb-Zn veins, 92M/1232; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Norway, Høydal, volcanogenic massive sulphide deposit with sea-floor depositional features, 92M/0335; Poland, Zlaté Hory, metacolloidal, Silesia. occurrence, min. data, 92M/2035; Scotland, Mannoch Hill, occurrence, 92M/1221; Sweden, Nynäshamn, Stora Vika, assoc. with zincian helvite in pegmatite, 92M/2003: Switzerland, Lengenbach. morphol., 92M/1224; Ukraine, Voronezh crystalline massif, in ultramafic xenoliths from Ni-bearing norites, 92M/2033; USA, Colorado, Creede mining dist., reinterpn. of δD_{H₂O} of fluid inclusions in, 92M/2977; New Mexico, Central Mining Dist., Groundhog vein system, alteration, fluid inclusion study, 92M/4022; Tennessee, Elmwood, occurrence, 92M/3703; Tri-State Dist., Joplin, occurrence, 92M/3702; Upper Mississippi Valley, Zn-Pb deposit, Alleghenian age, Rb-Sr dating, 92M/3743 geobarometry, Korea, Yeonhwa I mine,

compn., 92M/0553; nature of chalcopyrite

inclusions in, exsolution, coprecipitation,

Taebaek, Pb-Zn(-Ag) deposit, 92M/2728

-greenockite solid solution, in system Cu₂SnS₃-ZnS-CdS, at 400°C, 101·3 MPa, 92M/1605

Sphene v. titanite

Spherocobaltite, hydrothermal decompn. curves, thermodynamic data, 92M/0509 Spilite-keratophyre, China, Zhejiang Province, Xiqiu, Nd, Sr, O isotopic study, 92M/4386.

Spinel, aluminate, vibrational spectroscopy at 1 atm, 92M/2631; Co₂SiO₄, study of polymorphic transformations in, 92M/1567; colour change in different light, gem trade lab notes, 92M/1632; elasticity, and seismic struct. of mantle transition zone, 92M/2343; exptl. studies, 92M/0490; exptl., theoretical constraints on Al substitution in magnesian chlorite, thermodynamic model for H2O in magnesian cordierite, 92M/2861; Fe³⁺, Mg order-disorder in heated MgFe₂O₄,XRD, ⁵⁷Fe Mössbauer study, 92M/2890; flux grown red, blue, props. of, 92M/4168; formation of, in cosmic objects during atmospheric entry, clue to Cretaceous-Tertiary boundary 92M/4598; high P exptl. calibration of olivine-orthopyroxene-spinel oxygen geobarometer, implications for oxidation state of upper mantle, 92M/0405; high-T electrical measurements, thermodynamic props., 92M/1203; high-T heat capacity. premelting of mins. in system MgO-CaO-Al₂O₃-SiO₂, 92M/2821; in metamorphic rocks, stability, 92M/0847; internally consistent solution models for Fe-Mg-Mn-Ti oxides, 92M/0406; macroscopic, microscopic thermodynamic props., 92M/0489; (Mg,Fe)2SiO4, back transformation, oxidation at high T, 92M/1566; T dependence of cation disorder in, using ²⁷Al, ¹⁷O magic-angle spinning NMR, 92M/3842; NiAl₂O₄, T dependence of cation distribn. in, XRD study, 92M/2632; phase chemographies in quaternary systems of seven phases, 92M/0414; solubility, partitioning of Ne, Ar. Kr. Xe in mins, and synthetic basaltic melts, 92M/4068; synthetic defect, cation, vacancy distribn. in, 92M/0242; synthetic, rough grinding pavilions for intentional light scattering, 92M/0517; texture, 92M/0851; Ti, REE distribn. between peridotite mins., 92M/4309; time-of-flight neutron powder diffraction study, at T up to 1273 K. 92M/2630; upper mantle oxide 92M/0850; mineralogy, Australia, Strangways Range, in granulite facies rocks, 92M/4948; Canada, Nova Scotia, Popes Harbour dyke, empirical sapphirine-spinel Mg-Fe exchange thermometer, application to high grade xenoliths, 92M/4956; Quebec, Mistastin batholith, in gneiss from contact aureoles, 92M/1188; Czech Republic, Bohemia, České Středohoří Mts, assoc. with perovskite, 92M/2017; France, Montagne Noire, Salsigne, Zr-, occurrence, 92M/3296; Germany, Saxony, Seuzergrundel, occurrence, 92M/2370; India, Eastern Ghats, Arakau, in granulites, petrogenetic grid for sapphirine-free rocks in system FMAS, 92M/1179; Russian Federation, Pamirs, Kukhilal deposit, from forsterite skarn, comparative crystal morphol., 92M/2020; Tanzania, pink, gem notes, 92M/1614; Tanzania, Morogoro, lamellar inclusions in, 92M/4167; Tunisia, El Kef, Ni-rich, stratigraphic distribn. of, in Cretaceous-Tertiary boundary rocks. 92M/4599; USA, Minnesota, Duluth Complex, Babbitt deposit, assoc. with Cu-Ni mineralization, 92M/0375; Montana,

Stillwater complex, unnamed Re-Mo-Cu sulphide, crystal chem. of its synthetic equivalent spinel type, 92M/3308; New Mexico, Roosevelt County, in chondrules, indicators of nebular and parent body processes, 92M/4576

chromite, as petrogenetic indicator, 92M/0853; crystallization of, and Cr solubility in basaltic melts, 92M/1593; in chondrule from Allende meteorite. 92M/1925; in metamorphic rocks, stability, 92M/0847; Albania, min. resources, 92M/3978: Australia, Tasmania, Heazlewood River Complex, occurrence, 92M/0371; Canadian Cordillera, in mesothermal Au-stibnite-quartz 92M/2735; Cyprus, Troodos Complex, evidence for role of fluid phase accompanying chromite formation. 92M/1464; Czech Republic, Bohemia, Staré Ransko ore deposit, Zn content of, 92M/2019; Greece, Evia, from ultramafic rocks, geotectonic significance, 92M/2025; India, Ladakh Himalaya, Indus ophiolite, podiform, in peridotite, 92M/3442; India, Sukinda, Fe³⁺-, from ultramafites, Mössbauer hyperfine parameters, petrogenetic implication, 92M/0856: Norway, donathite, intergrowth of magnetite, chromite, causing birefringence, 92M/2022; Oman, in ophiolites, 92M/3522; South Africa, Transkei, Mt Ayliff intrusion, Ti-rich, evidence for high Ti tholeiitic magma, 92M/1004; Spain, Ronda and Morocco, Beni Bousera, in magmatic ores in high-T alpine-type lherzolite massifs, 92M/0339; Spain, and Vértes Foreground Spain, significance in Cretaceous, 92M/4889; USA, Hawaii, Kilauea Iki, reequilibration in lava lake, 92M/0855; Zimbabwe, Great Dyke, in chromitite seam, 92M/4013

—, chromspinellid, in Pomozdino eucrite meteorite, chem. compn., 92M/1935

Cr-, as petrogenetic indicator, thermodynamics, petrol., 92M/0854; chem. of, in volcanic rocks as potential guide to magma chem., 92M/4640; Finland, in Svecofennian ultramafic intrusions. compositional evolution during fractional crystallization, cooling, regional metamorphism, alteration, 92M/3363; France, Montagne Noire, Salsigne, occurrence, 92M/3296; Japan, Kibi-kogen, in alkali basalt, 92M/2024; Pacific, Lau Basin, in volcanic rocks, 92M/2111

—, franklinite, USA, New Jersey, Sterling Hill, -magnetite-pyrophanite intergrowths in Zn deposit, 92M/4643; in metamorphosed Zn-Fe-Mn deposit, 92M/2974

—, gahnite, Czech Republic, Bohemia, České Středohoří Mts, assoc. with perovskite, 92M/2017

—, hercynite, in chondrule from Allende meteorite, 92M/1925; Czech Republic, Bohemia, Staré Ransko ore deposit, Zn content of, 92M/2019; USA, Minnesota, Duluth Complex, Babbitt deposit, assoc. with Cu-Ni mineralization, 92M/0375

-, maghemite, magnetic props., 92M/1205; Western Australia, Darling Range, in bauxite, 92M/0694; *Iceland*, in basalt, min. data, 92M/4642

-, magnetite, and biotite, intergrowth of, from granitic rocks, 92M/4774; -bearing nodules in CV3 chondritic meteorites, 92M/1924; compn. of intergrowths from, 92M/4641; crystals, magneto-optical Kerr effect on, with externally applied magnetic fields, 92M/4988; electromagnetic exploration for fluids in Earth's crust, 92M/4234; experimentally determined min.-melt partition coefficients for Sc. Y. REE for. 92M/4085; factors that control occurrence in crustal rocks, magnetic petrology, 92M/0852; from Allende meteorite. stacking faults in, 92M/3841; granulite facies, O isotope ratios in, ion microprobe anal., diffusive exchange as guide to cooling history, 92M/1698; in metamorphic rocks, stability, 92M/0847; internally consistent solution models for Fe-Mg-Mn-Ti oxides, 92M/0406; interplay of chemical, magnetic ordering, 92M/1204; magnetic props., 92M/1205; O isotope fractionation in. theoretical calculation, application to geothermometry of metamorphic iron formations, 92M/1681; O isotope thermometer calibrations, 92M/4195; Canada, British Columbia, Harris Creek, transport of, implications for exploration, 92M/3192; Quebec, Rouyn-Noranda, Ansil Cu-Zn mine, Si-bearing zoned crystals and evolution of hydrothermal fluids. 92M/2021: China, Handan-Xingtai, Hanxing, in skarn Fe deposits, alterationmineralization, 92M/0565; Czech Republic, Bohemia, Staré Ransko ore deposit, Zn content of, 92M/2019; East China Sea, marine min. resources, scientific, economic opportunities, 92M/3983; Germany, Eifel, Volksfeld, assoc. with sanidine, 92M/1227; Saxony, in tephrite, groundmass, grain sizes, 92M/4800; Iceland, in basalt, min. data, 92M/4642; India, West Bengal, Puruliya Dt, in amphibolites, 92M/2300; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Nigeria, Kakun, igneous cumulate, formation of, 92M/3437; Norway, donathite, intergrowth of magnetite, chromite, causing form birefringence, 92M/2022; South Africa, Bushveld Complex, unusual textures, structs., assoc. with, adcumulus growth of plagioclase, 92M/1005; Bushveld Complex, Upper Zone, PGE behaviour, implications for formation of, 92M/4328; Sweden, Kiruna, U-Pb dating, 92M/4008; Tanzania, Oldoinyo Lengai volcano, in lapilli of 1966 ash eruption, 92M/3488; USA, New Jersey, Sussex County, Beemerville, pyrophanite-ilmenite solid solution in, 92M/2015; New Jersey, Sterling Hill, -franklinite-pyrophanite intergrowths in Zn deposit, 92M/4643; Oregon and Washington, Columbia River, in beach placers at river mouth, 92M/4026

-, titanomagnetite, texture, 92M/0851; Brazil, Maicuru, alkaline-ultramafic-carbonatite complex, geochem. exploration, 92M/1894; India, Dharwar craton, Sargur terrain, new 'lode stone' band, 92M/2023; Italy, Sardinia, in coastal sand, 92M/0380;

- Pacific, Lau Basin, in volcanic rocks, 92M/2111
- type compounds, choice of free parameters, 92M/2629
- ulvöspinel, interplay of chemical, magnetic ordering, 92M/1204
- Spinellid, Czech Republic, Bohemia, Staré Ransko ore deposit, Zn contents of, 92M/2019
- Spinelloid phases, in Ni gallosilicate system, 92M/1595
- Spionkopite, *India, Malanjkhand*, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316

Spodumene v. pyroxene

- Spurrite, Japan, Okayama Pref., Fuka, assoc. with monoclinic tobermorite, 92M/2009; Tojo-cho, Kushiro, in skarn, assoc. with nepheline, 92M/2002
- Squawcreekite, USA, New Mexico, Catron County, Black Range Sn dist., new min., 92M/0878
- SRI LANKA, bronzite, descriptn., 92M/1634; danburite, kornerupine, blue sillimanite, gem notes, 92M/4194; history of gernmology, C.P. Thunberg, 18th century collector, 92M/1638; layered basic intrusion, deformed, metamorphosed in granulite facies, 92M/3443; linkage of Precambrian basement rocks to Africa, age, isotopic data, 92M/2419; metamictization of zircon, radiation dose-dependent structl. characteristics, 92M/0804; ruby, likely to be ruby spinel, 92M/2915; sapphire, inclusion in, 92M/2914; Ambagaspitiya, origin of myrmekite in granitic rocks, 92M/2179; Avissawella and Getahetta, corundum in gem pockets, 92M/4165; Highland, granulites, isotopic contrasts, chronol. of elem. transfers, high-grade metamorphism, 92M/3100; Metiyagoda, moonstone mining, 92M/2918
- Stannite, ZnGa₂S₄, defect struct. related to sphalerite, 92M/0250; SW England, status of, 92M/3307; Spain, Neves-Corvo, in volcanogenic massive sulphides, 92M/0341

—-sphalerite geothermometer, Italy, Tuscany, Boccheggiano-Campiano, polymetallic sulphide (Cu-Pb-Zn) assemblage from pyrite deposit, application of, 92M/2848

Stannoidite, Asia, assoc. with roquesite, 92M/4656; SW England, occurrence, min. data, 92M/3307; Spain, Neves-Corvo, in volcanogenic massive sulphides, 92M/0341; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336; Tunaberg Cu-Co deposit, assoc. with Mn, Cd-bearing tetrahedrite, 92M/3309

Statistical analysis, distribn. of mean squared weighted deviation, 92M/0084

Staurolite, buffering in assemblage staurolite–aluminium silicate–biotite–garnet–chlorite, 92M/1119; crystal chem., use of stoichiometric, chem. end-members for mole fraction model, 92M/2607; effects of Al, vacancies on Li substitution in, 92M/0452; evidence from min. assemblages for infiltration of pelitic schist by aqueous fluids during metamorphism, 92M/2267; porpyroblast textural sector zoning, matrix displacement, '92M/1123; synthetic and naturally occurring, Mössbauer

spectroscopy, 92M/0220; South Australia, Mount Lofty Ranges, phase relationships in Buchan facies series pelitic rocks, calculations with application to andalusitestaurolite parageneses, 92M/4949; Austria, E Alps, Tauern Window, in schist, 92M/0717; Brazil, Rio Grande do Sul, Feio, amphibolite Passo metamorphism, min. chem., 92M/2319; Czech Republic, Hohes Gesenke, Hrubý Jeseník, occurrence, 92M/3691; India, Dist., Sangrampur Banda differentiation of Semri group, Kaimur group on basis of heavy min. suites, 92M/1110; India, Singrauli coalfield, Moher-Subbasin, Barakar, in sandstone, 92M/1109; Italy, W Trentino, assoc. with margarite in Upper Austroalpine basement, 92M/3272; Poland, Carpathians, Rytro, Magura nappe, in flysch, 92M/1107; Poland, Stronie Śląskie, Krzyżnik Mt, in mica schists, 92M/1165; Spain, Cabo Ortegal, Mg-, Cr-rich, in high-P ultrabasic rocks, 92M/0809; USA, North Carolina and Virginia, heavy min. deposits in upper coastal plain, 92M/2772

 Al silicate-biotite-garnet, four-phase AFM assemblage, extra components, implications for staurolite-out isograds, 92M/3246

Steacyite, *Tadzhikistan*, *Dara-i-Pioz*, occurrence, 92M/2377

Steatite, natural, synthetic raw materials for technical ceramics, 92M/0376

— deposit, Italy, Central Alps, Val Lanterna, 92M/1497

Stephanite, China, Hebei, Caijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356

Sternbergite, Norway, Oslo, Akersberg mine, occurrence, 92M/4007

Stevensite v. clay minerals

Stibiconite, Germany, Siegerland, occurrence, 92M/1225

Stibiopalladinite, rapid technique for detn. of precious metals in geol. samples, based on selective aqua regia leach, 92M/2459; revised unit-cell dimensions, space group, chem. formula, 92M/2628; Australia, Northern Territory, Coronation Hill, assoc. with unconformity related Au, Pt, Pd prospect, 92M/1475; Brazil, Goiás, Cavalcante, assoc. with Au, 92M/3905

Stibnite, Tl, Au, exptl. contributions to mineralogy, geochem., crustal chem., 92M/2885; Canadian Cordillera, mesothermal Au-stibnite-quartz vein, 92M/2735; China, Sichuan Province, Dongbeizhai, assoc. with fine-disseminated Au deposit, 92M/2962; Slovakia, Cervenica-Dubnik, mins. assoc. with opal deposits, 92M/5001

— vein deposits, USA, Alaska, Kuskokwim river region, geochem. exploration, 92M/3189

Stilbite v. zeolite

Stillwellite, Tadzhikistan, Dara-i-Pioz, occurrence, 92M/2377

Stilpnomelane, Canada, British Columbia, Pinchi Lake, assoc. with howieite in blueschists, 92M/3265

Stishovite, bonding, elasticity at high P, linearized augmented plane wave

calculations, 92M/0480; first-principles studies of elasticity and post stishovite phase transitions in SiO₂, 92M/2874; South Africa, Vredefort Dome, assoc. with pseudotachylite, nature, distribn., genesis, 92M/1174

Stolzite, *Bulgaria*, in quartz-scheelite veins, 92M/0859

Stromatolites, Neoproterozoic, origins of carbonate in, identification of modern analogues, 92M/3072; Canada, Ontario, Wawa, Michipicoten group, Archaean, in siderite ore, 92M/2386

Stromeyerite, Czech Republic, Příbram, Vrančice, Pošepný vein, occurrence, min. data, 92M/2040

Strontianite, Czech Republic, Moravia, Trinec, calcian, min. data, 92M/2055; England, Cumbria, Nenthead, Brownley Hill mine, occurrence, 92M/2356; Poland, Tarnobrzeg, in S deposits, 92M/2050

Strontium cations, intraparticle diffusion into rock materials, 92M/0417

Structural geology, deformation textures in rocks, interpn., 92M/2265; determining contemporary stress directions neotectonic joint systems, 92M/2325; folds, cleavage-transected, nomenclature, geometric classification, 92M/0905: importance of small-scale faulting in regional extension, 92M/0909; influence of porosity on low-T brittle-ductile transition in siliciclastic rocks, 92M/0907; Antarctica, Vestfoeld Hills, Proterozoic geol. evolution, 92M/0958; Canada, Newfoundland. Appalachians, Humber Zone, tectonic history, post-Taconian deformation in Old Man's Pond area, 92M/0959; Canadian Shield, Southern Province, Sudbury Structure, structl. anal., 92M/0961; Indonesia, Timor, collision complex, structl. evolution, 92M/0956; Ireland, Central Donegal Slide, reversals in polarity of structl. facing across early ductile thrust, 92M/4697: Italy, Sondrio, structl. observations at border between Margna nappe and Malenco ultramafics, 92M/4699; Norway, Caledonides, Helgeland Nappe Complex, Velfjord-Tosen region, tectonostratigr., 92M/4695; Finnmark, Lebesby, contemporary small-scale thrust-fault, 92M/4694; Trøndelag, Fosen Peninsula, brittle deformation history of fault rocks, 92M/4696; Pakistan, Besham area, deformation, imbrication in footwall of Main Mantle Thrust, 92M/0948; Himalayas, N Indian plate, of Himalayas thrust stack, 92M/0947; Quetta, Bibai and Gogai nappes, emplacement, 92M/0950; South Africa, Kaapvaal craton, Namagua realm, structl. history, 92M/2095; Spain, Catalonian Coastal Ranges, Hercynian struct., 92M/0914; USA, Connecticut Valley region, nappe theory, 92M/0965

Stützite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Subduction zones, behaviour, influence of fluids in, (book), 92M/3768; elem. fluxes assoc. with magmatism, 92M/4970; fluid influence on tr. elem. compns. of subduction zone magma, 92M/4969; geochem., solubility of apatite, monazite, zircon, rutile

in supercritical aqueous fluids, implications for, 92M/4968; microstructl. evolution of fluid flow paths in semi-lithified sediments from, 92M/4961; numerical simulation of *P-T*-time paths, constraints on fluid production, are magmatism, 92M/4966; phys. model for vol., compn. of melt produced by hydrous fluxing above, 92M/4967; ultrafast subduction, poss. key to slab recycling efficiency, mantle differentiation, 92M/4690; upper mantle seismic discontinuities, thermal struct. of, 92M/4073

SUDAN, Jebel Moya, late Precambrian charnockite, enderbite, granite, link between Mozambique Belt and Arabian-Nubian Shield, 92M/1272; Kabus, ophiolitic mélange, bearing on W boundary of Nubian Shield, 92M/1090; Nubian Desert, Cretaceous-Tertiary basalts, K-Ar ages, Sr-isotopic compns., chem., 92M/3022; Red Sea Hills, evolution of Pan-African island arc assemblages, geochem., geochronol., 92M/2080

Sudoite, Japan, Honshu, Kamikita Kuroko, in hydrothermal aluminous clays, 92M/0179; Kagoshima Pref., Makurazaki volcanic area, mineralogy, genesis of, in postmagmatic alteration zones, 92M/3801

Sulphate, acid, alteration, stable isotope geochem., 92M/4316; new Fe(II)-Fe(III), synthesis, crystal struct., 92M/2643

 reduction, by dextrose under hydrothermal condns., anal. of isotope-transfer kinetics during, 92M/1606

Sulphide, TI+, Pb2+, Bi3+ bonding, ordering in, 92M/2641: Australia. Kambalda, immiscible, and komatiite melts, magmatic contacts between, implications for genesis of sulphide ores, 92M/1481; Western Australia, Canning Basin, Lennard Shelf, Mississippi Valley-type, age, CL cement stratigr., 92M/2423; Canada, Ontario, Cobalt, remobilization in Archaean volcano-sedimentary rocks, significance in Proterozoic Ag vein genesis, discussion, 92M/1486, reply, 92M/1487; Canada, Ontario, Coldwell Complex, Geordie Lake intrusion, Pd-Te-rich disseminated, from tholeiitic magma, 92M/1485; Germany, Bavaria, KTB pilot hole, S isotopes in, 92M/0713; USA, Missouri, Viburnum Trend Lead Dist., precipitation mechanisms, ore fluid migration, fluid inclusion evidence, 92M/2975

 alteration pipe, Morocco, Anti-Atlas, Sidi Flah, Proterozoic, geotectonic evolution of Pan-African belt, 92M/4011

metamorphism of oceanic layer 3, implications for sulphide parageneses, redistribn., 92M/0281; Australia, Broken Hill, exhalite assoc. with, tr. elem. compn., 92M/0574; Western Australia, Pilbara Block, Munni Munni layered intrusion, platiniferous, formation of, by crystal fractionation, magma mixing, 92M/2732; Canada, New Brunswick, Bathurst, Health Steele, base metal, struct., evolution, 92M/1488; Germany, Goslar Trough, Neues Lager, geol., 92M/1460; India, Sikkim, Bhotang, control of mineralization,

92M/2725: Oman, Zuha, ophiolite, geochem. study of fossil oceanic hydrothermal discharge zone, 92M/3526; Oman Mts, Pb isotope geochem., 92M/3527; central, S Peru, Pb isotope bearing on metallogenesis, 92M/2989; Sweden. Bergslagen, Boviksgruvan, Au-Bi-bearing, 92M/2707; USA, Alabama, Stone Hill dist., Fe-Zn-Cu, genesis of, and hydrothermal alteration of metavolcanic rocks, 92M/1491

-, massive, durchbewegung struct., piercement cusps, piercement veins in, formation, interpn., 92M/2656; recent, from sea-floor, hydrothermally precipitated mixed-layer illite-smectite in, 92M/2570; Australia, Queensland, Magpie. volcanogenic, geol., petrol., alteration geochem., 92M/1470; Tasmania, Hellyer, volcanogenic, Au grades, Fe content of sphalerite, 92M/0575; Canada, Kidd Creek, Archaean, postore mobilization of REE, 92M/1688; New Brunswick, Bathurst, volcanogenic, multidisciplinary exploration, 92M/1876; Ontario, Sturgeon Lake, relationships with Mattabi tuff, 92M/1440; Quebec, Abitibi greenstone belt, Dumagami mine, auriferous, progressive alteration assoc. with, 92M/0587; Appalachian ophiolite belt, Memphremagog, polymetallic, Ordovician rift envt., 92M/4019; Noranda area, Aldermac mine, geol., 92M/2739; Quebec, Noranda area, Horne mine, occurrence, 92M/1439; Finland. Hammaslahti Cu mine, sediment-hosted, geochem., struct., genesis, exploration tools for, 92M/3375; Kangasjärvi, geochem., wall rock alteration, 92M/3376; Iberian pyrite belt, mineralogy, paragenesis, 92M/1431; Caledonides, Lokken, ophiolite-hosted, feeder zone to, 92M/2706; Høydal, with sea-floor depositional features, 92M/0335; E Pacific Rise, geochem., 92M/0581; Pacific, Juan de Fuca ridge, hydrothermal, radial growth rates, ²¹⁰Pb ages, 92M/0582; Papua New Guinea, Bismarck Sea, Manus back-arc basin, and assoc. vent communities, formation of, modern hydrothermal activity, 92M/2681; Spain, Neves-Corvo, volcanogenic, ore textures, implications for ore beneficiation, 92M/0341; USA, Tennessee, Ducktown, metamorphosed, fluid inclusion constraints on uplift history, 92M/1490; postentrapment H diffusion into peak metamorphic fluid inclusions from, 92M/1700; Wisconsin, Ritchie Creek Main Zone, volcanogenic, Cu-Au, Proterozoic, 92M/4020

liquid, and basaltic melt, partitioning of Pd,
 Ir, Pt between, effects of melt compn.,
 concentration, O fugacity, 92M/1591

mineralization, Germany, Rhenish Schiefergebirge, Altenbüren, 92M/1459; Saxony, Niederbobritzsch granite, 92M/2711; Poland, Fore-Sudetic monocline, Kupferschiefer, primary, in Cu-Fe-S zones, 92M/3990; Switzerland, Aar massif, Mn-, hydrothermal, in Carboniferous volcanic rocks, 92M/2715

— minerals, electrochem. method for determining equilibration T for, 92M/1318; exptl. mobility of, along hydrothermal gradients, 92M/2894; laser fluorination of, with F₂ gas, 92M/2447; ¹⁸O incorporation into sulphate during bacterial oxidation of, potential for O isotope exchange between O₂, H₂O, oxidized S intermediates, 92M/2901; *Ukraine, Voronezh crystalline massif*, in ultramafic xenoliths from Ni-bearing norites, 92M/2033

 bearing rocks, Finland, Fennoscandian shield, petrophys. props., expression as geophysical anomalies, 92M/3379

Sulphosalt, Tl⁺, Pb²⁺, Bi³⁺ bonding, ordering in, 92M/2641; Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864

Sulphur, Scotland, Argyllshire, Craignish, native, occurrence, 92M/2354

 deposits, Spain, Almería, Benahadux and Las Balsas, geol., 92M/1496

Sulrhodite, min. nomenclature, discredited in favour of bowieite, 92M/3306

Sulvanite, arsenosulvanite, Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567

Sursassite, Switzerland, Grison Canton, Oberhalbstein, in Mn deposits, presence of Sr, evolution, parageneses, 92M/1663

Susannite, Germany, occurrence, 92M/1225

Suture zone, China, Tibet, Yarlung Zangbo, regional framework, tectonics, 92M/0934; India, Phanerozoic rocks along N boundary of Indian plate, stratigraphic setting, 92M/0939

SVALBARD, Draken fm., Riphaean, coastal lithofacies, biofacies assoc. with syndepositional dolomitization, silicification, 92M/3557

SWEDEN, programme for radioactive waste disposal, geol. aspects, 92M/1521; Proterozoic basic and composite basic-felsic dykes, geochem., 92M/4359; Proterozoic calc-alkaline granitic rocks, tr.-elem. variation in, 92M/1721; radioactive waste disposal, natural analogue studies, applications, 92M/1518; toxic waste disposal, rock block configuration, crustal deformation, 92M/1520; tr. elems. in K-feldspar, muscovite, as guide in prospecting for Li-, Sn-bearing pegmatites, 92M/4550; central, granite, structl. features, implications for tectonic subdivision, 92M/0888; well-preserved Cambrian impact, 92M/0802; S, central, Proterozoic basic dyke swarms, geochem., genesis, geotectonic setting, 92M/4785; Ale granite, Proterozoic, character, U-Pb dating, 92M/1247; Ammeberg, S isotope compns. in Zn-Pb deposits, genetic implications, 92M/2947; Bergslagen, chem., reaction mechanisms, micro-structs. retrograde metamorphism of gedritebearing biotite-plagioclase rocks, 92M/4918; high elem, mobility in 1900-1860 m.y. hydrothermal alteration zones, relationships with exhalative Fe-ore mineralizations, 92M/2948; metamorphism of Mg-altered felsic volcanic rocks,

transition from Mg-chlorite- to cordierite-92M/2262; Proterozoic rocks. tholeiites, geodynamic continental 92M/1719; Proterozoic inferences, continental tholeiites, Nd, Sr isotopic variations, implications from Sm-Nd Svecofennian subsystematics for continental mantle, 92M/1718; Proterozoic continental tholeiites, petrol., geochem. geotectonic setting, petrogenesis, 92M/1717; Bergslagen, Boviksgruvan, Au-Bi-bearing sulphide deposit, 92M/2707; mine, yttrian zirconolite, allanite-(Ce) and assoc. mins., occurrence, 92M/3297; Bergslagen, Tunaberg, Mn, Cd-bearing tetrahedrite from Cu-Co deposit, 92M/3309; tellurides, selenides and assoc. mins. in Cu deposits, 92M/0336; Bohus, post-kinematic Grenvillian granite, U-Pb dating, evidence of restitic zircon, 92M/0897; Caledonides, Sarek Mts, Seve Nappe Complex, basic dyke swarms of Baltica-Iapetus transition, 92M/4783; Dala, dolerite, palaeomagnetic signature, 92M/4784; Fennoscandia, Lansjärv area, late Quaternary faulting, palaeoseismicity, 92M/2089; Filipstad, Långban and Jakobsberg, crednerite, occurrence, min. chem., 92M/2353; Gruvåsen, tr. elem. zonation in marble hosting Cu-Zn-Fe-Pb-As sulphides, 92M/4460; Kalix River, geochem. of Mn, 92M/4473; Karlskoga, pyroxene charnockites, granulites, garnet-cordierite gneisses, at boundary between early Svecofennian rocks and Småland-Värmland granite, 92M/4917; Kinnekulle, interstratified illite/smectite from hydrothermally altered tuffs, IR spectra, 92M/0128; Kiruna, magnetite ore, U-Pb systematics, dating, 92M/4008; Luleå area, Degerberg, migmatite granite, occurrence, constraints geol. development, 92M/2142; Nynäshamn, Stora Vika, zincian helvite, pegmatite min., min. data, 92M/2003; Saxberget, Proterozoic Zn deposit, genesis high-grade metamorphic terrain, 92M/0337; Siljan Ring impact struct., Deep Gas Drilling Project, summary report, 92M/2090; Södermanland, dolerite dykes, geochem., 92M/4358; Tallberg, porphyry-type deposit. Proterozoic. lithogeochem., metal, alteration zoning in, 92M/4549; Ursand granite, chem. compn., 92M/1720

Swedenborgite, crystal struct., 92M/1391 Sweetite, *British Isles*, occurrence, 92M/4990

SWITZERLAND, crystalline basement, Hercynian granite, petrogr., 92M/4799; distribn. of exchangeable cations in Mesozoic, Permo-Carboniferous sediments, 92M/1790; Pre-Alpine basement, phase equilibria, O isotopes in evolution of metapelitic migmatite, 92M/4926; radioactive waste disposal, review, 92M/1522; Alps, meta-lamprophyres from Variscan massifs, contrasting REE characteristics, 92M/1727; Aar massif, hydrothermal Mn-sulphide assemblage in Carboniferous volcanic rocks, 92M/2715; Aar massif, Central Aar Granite, U-Pb dating, 92M/1257; Aar and Gotthard

massifs, Alpine thermo-tectonic evolution, dating, K-Ar dating, fission track massif, 92M/1258; Gothard K-feldspar from undeformed, deformed granite, influence of metamorphism, deformation on structl. state, 92M/1992; Schlieren flysch, Palaeocene bentonite, fission track and nannofossil ages, 92M/1260; Totalp, peridotite, radiometric age, thermobarometry, mode emplacement, 92M/3625; Central Alps, mineralogy, Alpine metamorphism of meta-lamprophyre, 92M/3622; Binntal, Lengenbach, brannerite, occurrence, min. data, 92M/2032; Glarus nappe, fluid-rock interactions during thrusting, evidence from geochem., stable isotope data, 92M/1803; Grimsel test site, sorption behaviour of 85Sr, ¹³¹I, ¹³⁷Cs on colloids, suspended particles, 92M/1523; Grisons, Falotta, manganoan occurrence, min. clinochlore, 92M/3275; Julier, volcanic suite, volcanic, tectonic evolution, 92M/1050; Grisons, Oberhalbstein, Mn deposits, presence of Sr in, evolution, parageneses, 92M/1663; Helvetic domain, Aar, Gotthard and Tavetsch massifs, basic-ultrabasic rocks, markers of ophiolitic pre-Variscan sutures. 92M/2291; Lake Emosson/Aiguilles Rouges, amphibolite, tholeiites of Palaeozoic rift zone, 92M/1808; Lengenbach, tennantite, sphalerite, morphol., 92M/1224; *Lepontine Alps*, white K- mica, ⁴⁰Ar/³⁹Ar, microprobe anals., relics of high *P* metamorphism, 92M/1981; Lugano, obsidian in Permian volcanics, geochem., 92M/1728; Morcles Nappe, metamorphism, illite crystallinity, 92M/2286; Silvretta, diabase dykes, geochem., 92M/1807; orthogneiss, genesis, geochem., 92M/1806; Silvretta, Mönchalp metalamprophyric dykes. geochem., origin, 92M/3011; Swiss/Italian border, Bergell pluton, basic dykes, shoshonite, calcalkaline-basaltic, mineralogy, geochem., products of magma mingling, 92M/3012; Ticino, Riveo, epidote occurrence, 92M/4993; Valais, Binntal, identification of naturally occurring TiO₂(B) by struct. detn., 92M/0881; Valais, Siviez-Mischabel massif, augen schist with porphyroblasts, albite 92M/3623; greenschist facies U mineralization, U-Pb. U-Xe, U-Kr systematics, 92M/0023; Siviez-Mischabel nappe, Minugrat, eclogite, petrol., 92M/3620; Wallis, in basement of eclogites in basement of Penninic Siviez-Mischabel 92M/1155; nappe, Cd-contents Weiach. natural of Permo-Carboniferous-Mesozoic sequence in drillhole, geochem. of Cd, 92M/3077

Syenite, Brazil, Bahia, Itiúba, min., geochem., petrol., relation to genesis of rapakivi magmatism, 92M/0895; Germany, Erzgebirge, Altenberg tin deposit, pericline twinning as criterion of albite origin in, 92M/1997; Portugal, Sintra, K-feldspar from, unit-cell parameters, structl. state, 92M/1994; USA, Arkansas, Magnet Cove, mineralogy, geochem., 92M/4830

xenoliths, chem. of zircon, variations within, between large crystals from, 92M/3237

Sylvine, Germany, Saxony, Erzgebirge, melt inclusions in quartz in granite, 92M/3425; Tanzania, Oldoinyo Lengai volcano, in lapilli of 1966 ash eruption, 92M/3488

Sylvinitic rocks, from potash seam, Zechstein, geochem., 92M/4440

Synchysite, petrogenetic grid for *REE* fluorcarbonates, assoc. mins., 92M/4148 Synchysite-(Nd), *Czech Republic, Bohemia*,

assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061

SYRIA, volcanic activity between Jurassic, Recent, 92M/4381

Systems,

Al--H-O, 92M/0497 Al₂O₃-SiO₂-H₂O, 92M/0184 CaO-FeO-Al₂O₃-SiO₂-TiO₂, 92M/1569 CaO-FeO-MgO-Al₂O₃-SiO₂, 92M/4072 CaSiO₃-MgSiO₃-Al₂O₃, 92M/4050 CdCO₃-CaCO₃-CO₂-H₂O, 92M/4141 CO2-H2O, 92M/2840 Fe-Ni-S. 92M/1592 FeO-MgO-Al₂O₃-SiO₂, 92M/1563 H₂O-CO₂- NaCl-calcite, 92M/1558 H₂O-NaCl-CO₂, 92M/2844 Li₂O-Al₂O₃-H₂O, 92M/1582 $MgO\!-\!Al_2O_3\!-\!B_2O_3\!-\!SiO_2,\,92M/2796$ MgO-Al₂O₃-SiO₂-H₂, 92M/0446 MgO-Al₂O₃-SiO₂-H₂O, 92M/2801 MgO-CaO-Al₂O₃-SiO₂, 92M/2821 MgO-FeO-SiO₂, 92M/2792 MgO-FeO-SiO₂, 92M/2818 Mg2SiO4-Fe2SiO4, 92M/2852 Mg₂SiO₄-SiO₂-H₂, 92M/2814 NaAlSi₃O₈-H₂O-H₂, 92M/1551 NaAlSiO4-SiO2, 92M/4109 NaCl-H₂O, 92M/1554 Na-K-Cl-OH-Al(OH)4, 92M/4131 PbO-H₂O-HCl, 92M/2911 PbSO₄-H₂SO₄-H₂O, 92M/4078 PbSO₄-Na₂SO₄-H₂O, 92M/4078 Q-Ab-Or, 92M/2793 SiO₂-Al₂O₃-FeO-Fe₂O₃196MgO-H₂O, 92M/4104 ZnS-CuInS₂, 92M/4137 anorthite-diopside, 92M/4048 diopside-anorthite, 92M/2836

haplogranite–H₂O–HF, 92M/2827 Szomolnokite, *USA*, *Georgia*, assoc. with kolbeckite, 92M/3326

granite-H2O ± NaCl ± KCl, 92M/4065

haplogranite-H2O-HCl, 92M/2827

Szymańskiite, new min., crystal struct., 92M/2642; USA, California, San Benito County, Clear Creek Claim, new min., 92M/3337

TADZHIKISTAN, Dara-i-Pioz, rare mins. of, 92M/2377; Yagnodsky metamorphic complex, Na-bearing amphiboles, 92M/1177 Tadzhikite, Ce-, Tadzhikistan, Dara-i-Pioz, occurrence, 92M/2377

TAIWAN, origin of clinopyroxene, amphibole megacrysts Taiwan, REE geochem., 92M/1972; river sediments, Nd-Sr isotopic study, 92M/1796; E, ophiolite, genetic model, implications for Dupal domains in N 92M/4870; Hemisphere, Chinghui geothermal area,, meteoric, thermal waters, H, O isotopic compns., 92M/1827; Peito, hokutolite from hot springs, chem. compn., lattice parameters, 92M/2049; Peito Hot Spring, hokutolite, occurrence, min. data, 92M/3313; Tananao schist, Yuantoushan gneiss, garnet, compositional zoning, 92M/1951

- Takanelite, Korea, Janggun mine, Mn analogue of ranciéte, characterization, 92M/2027
- Talc, ferroan, Mössbauer spectra, 92M/2619; solubility in H2O-MgCl2-NaCl-HCl fluids in range 500-700°C, 2 kbar, exptl. study, 92M/1583: thermodynamic props., corrections, discussion of calorimetric data. 92M/2863; use of soil anomalies to locate concealed talc bodies, 92M/0312; Canadian Cordillera, in mesothermal Au-stibnitequartz vein, 92M/2735; Italy, Bergell aureole, reaction antigorite → olivine + talc + H2O, 92M/1159; Italy, Central Alps, Val Lanterna, in steatite deposit, 92M/1497; Japan, Yanai, Ti endmember compn. of biotite from Ryoke metamorphic rocks, 92M/1987; USA, Montana, hydrothermal alteration haloes, soil anomalies over concealed talc bodies, 92M/0311; Montana, Ruby Range, petrogenesis, timing of formation, 92M/0386
- mines, Japan, Hokkaido, trioctahedral illite from, 92M/0133
- -amphibole rocks, *Japan, Katsunuma area, Kobotoke group*, geochem., 92M/0957
- ---calcite, reactions rims, zoning in, between quartz, dolomite, 92M/0705
- -like phase, incorporation of 'water' in high-P 2:1 layer silicate, high P differential thermal anal. of 10 Å phase, 92M/0464
- Tantalite, Western Australia, Greenbushes, in giant rare metal pegmatite, 92M/0372; Mozambique, Muiane, in Nb-Ta pegmatite, 92M/2722; USA, Virginia, occurrence, 92M/4000
- —, manganotantalite, Portugal, Minho, Arga, in aplite swarm, 92M/4647; USA, Virginia, occurrence, 92M/4000
- -- columbite, from rare-metal granite, compn., phys. props., 92M/2031
- TANZANIA, grossular, gem notes, 92M/4194; pink spinel, gem notes, 92M/1614; Jubilee Reef deposit, Au mineralization, geol., 92M/3934; Karagwe-Ankolean belt, stable isotope compns. of tourmaline from granite and related hydrothermal rocks, 92M/4329; Merelani, green zoisite, gem notes, 92M/1613; Morogoro, lamellar inclusions in spinel, 92M/4167; Morogoro, new rubies, anals., 92M/1616; Oldoinyo Lengai volcano, 1966 ash eruption, mineralogy of lapilli, mixing of silicate, carbonate magmas, 92M/3488; short-lived decay series disequilibria in natro-carbonatite lava, constraints on timing of magma genesis, 92M/1742; Olduvai Gorge, Bed 1, laser-fusion 40Ar/39Ar dating, 92M/1271
- Tanzanite, strongly pleochroic chatoyant gems, 92M/2917
- Taramite v. amphibole
- Taranakite, *Italy, Apulia*, from caves, new min. data, 92M/3324
- Tectonics, Precambrian, quasi-rigid premise in, 92M/4972; Antarctica, Scotia arc, tectonic development, 92M/4709; Germany, Odenwald, transtensional, emplacement of synkinematic plutons in Variscan controlled by, 92M/3423
- Teeth, Pakistan, fossil, 16-Ma record of palaeodiet using C, O isotopes in, 92M/4031

- Tellurium minerals, *Bulgaria*, *Ardino*, in polymetallic deposit, 92M/0866
- Tellurobismutite, Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336
- Tennantite, evaluation of thermodynamic data, phase equilibria, 92M/2899; Canada, Flin Flon greenstone belt, Laurel Lake, in Proterozoic Au-Ag deposit, 92M/0591; France, Var, Cap Garonne, assoc. with cobaltoan nickeloan-kténasite, 92M/2051; assoc. with new min., geminite, 92M/2070, Switzerland, Lengenbach, morphol., 92M/1224; Turkey, Pontides, Akarşen, assoc. with Cu deposits, 92M/3919
- -tetrahedrite, chem. compn., 92M/2044; Bulgaria, Zidarovo ore field, occurrence, 92M/0347
- Tephra, calculation of fallout volumes. 92M/3466; identification by chem. anals. of volcanic glass using ICP-AES, 92M/0653; Manitoba, Bear Canada. Lake. phreatomagmatically-generated, downslope, sub-aqueous mass transport of, 92M/1075; Japan, Pleistocene, dating by radioactive disequilibrium system between ²³⁸U, ²³⁰Th, 92M/0044; Honshu, Kanto, Quaternary, chem. compn., 92M/0655; New Zealand, Taupo Volcanic Zone, volatile contents of obsidian clasts in, implications for eruptive processes, 92M/4847; Tongariro Volcanic Centre, Mangamate, morphol., chem. of olivine phenocrysts, 92M/4849; Russian Federation, Kamchatka, Karymsky volcano, stratig., eruptive history, 92M/1055
- studies, New Zealand, historical review, 92M/4846
- Tephroite v. olivine
- Terrains, Western Australia, Pilbara craton, isotope, REE evidence for late Archaean terrain boundary, 92M/3044; Canada, British Columbia, Coast Mts and adjacent Intermontane Belt, Upper Triassic, distribn., tectonic significance, 92M/2121; USA, Alaska, Taku terrain, Alava sequence, Upper Palaeozoic, Lower Mesozoic, tectonic framework, 92M/2120
- Teschenite, *Czech Republic, Moravia*, datolite in hornstone assoc. with, 92M/1957
- Tetra-auricupride, revised unit-cell dimensions, space group, chem. formula, 92M/2628
- Tetradymite, Bulgaria, Ardino, in polymetallic deposit, 92M/0866; Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336; Turkey, Anatolia, in Pb-Zn deposits, 92M/2718
- group, crystal chem., crystallog., 92M/0867 Tetraferroplatinum, revised unit-cell dimensions, space group, chem. formula, 92M/2628; Portugal, Bragança-Vinhais, from ultrabasic rocks, 92M/2047
- Tetrahedrite, evaluation of thermodynamic data, phase equilibria, 92M/2899; Asia, assoc. with roquesite, 92M/4656; Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694; India, Rajpura-Dariba, from polymetallic deposit, min. chem., metal zoning, thermodynamic assessment, 92M/2042; Peru, Orcopampa, 92M/2042; Peru, Orcopampa

- compositional variation, and ore zoning, 92M/2759; Orcopampa, Calera, in epithermal Ag-Au vein system, 92M/2760; Sweden, Bergslagen, Tunaberg, Mn, Cd-bearing, from Cu-Co deposit, 92M/3309; Zimbabwe, Dalny mine, fluid-rock interaction, Au deposition in Archaean shear zone, 92M/3889
- —, freibergite, As-Ag incompatibility in fahlore, 92M/0505; China, Hebei, Caijiaying deposit, assoc. with Pb-Zn-Ag deposit, 92M/0356; Czech Republic, Příbram, Vrančice, Pošepný vein, occurrence, min. data, 92M/2040; Norway, Sulitjelma, in massive sulphides, 92M/4005; Sulitjelma ore field, occurrence, 92M/4006
- -goldfieldite, Japan, Iriki mine, coupled substitutions in, 92M/0865
- —tennantite series, As-Ag incompatibility in fahlore, 92M/0505; Bulgaria, E Rhodopes, Zvezdel-Pčelojad ore field, min. data, 92M/0864; England, Warwickshire, Judkins Quarry, occurrence, 92M/2358; Japan, Hokkaido, Jokoku-Katsuraoka mining area, occurrence, 92M/0567; Spain, Neves-Corvo, in volcanogenic massive sulphides, 92M/0341
- THAILAND, geochem. dispersion of Au assoc. with three Au prospects, implications for exploration, 92M/4554; geochem. dispersion of Au related to Cu-Au mineralization, 92M/1886; stabilization of dispersive soil by blending with fly ash, 92M/0169; Kanchanaburi, Boi Ploi, sapphire in weathered alkali basalt, 92M/4162; Phisanulok Basin, Sirikit Oilfield, oils, geochem., 92M/3140
- Thallium, crystallochem., geochem. aspects, 92M/4312; *Germany, Meggen*, in jarosite in flue dust of roasted pyrite, 92M/4030
- Theophrastite, Australia, Tasmania, Lord Brassey mine, min. data, 92M/4667
- Thermal analysis, application in min. technology, 92M/2517; applications in investigations of clays, 92M/2523; controlled transformation rate, kinetic study of min. reactions by, 92M/2514; detn. of hydrated sulphates in weathered crystalline rocks by, 92M/2512; development, geosciences in, 92M/2508; differential, organo-clay complexes, 92M/2524; in environmental studies, 92M/2525; in geosciences, (book), 92M/2505; internal thermal reactions of mins., 92M/2513; variable atmosphere, methods, gas atmospheres, applications to geoscience materials, 92M/2510
- derivatography, measurement of different water species in mins. by means of, 92M/2511
- Thermobarometry v. geothermobarometry
 Thermodynamic constants, confidence
 intervals for, 92M/4035
- Thermodynamics, density model for estimation of thermodynamic parameters of reactions at high *T*, *P*, 92M/0416; generalized, multivariable phase diagrams, algorithm, 92M/0413; thermodynamic framework of solutions, especially aqueous electrolyte solutions, 92M/0436
- Thermoluminescence dating v. age determination

Thermometry v. geothermometry

Thin sections, new bonding technique for sample prepn., 92M/2451; of rocks, mins., ceramics, prepn., (book), 92M/2502

Tholeiite v. basalt

Thomsonite v. zeolite

Thorite, structl. anal. of radiation damage in, X-ray absorption spectroscopic study, 92M/0213; Canada, Ontario, Atikokan, in fault zones of granitic pluton, implications for radioactive waste disposal, 92M/0671; India, Andhra Pradesh, in granitic soils, 92M/1499

Thorium, application of new reagent to detn. of, in rocks, 92M/2458

Tibet v. China

Tienshanite, Tadzhikistan, Dara-i-Pioz. occurrence, 92M/2377

Till, geochem., oblique rotation, new aspect to geochem. factor anal., 92M/3381; Canada, Ontario, Matheson, geochem., clast lithol., aid to classification, 92M/4453; Finland, statistical interpn. of regional geochem. mapping data based on heavy fraction of, 92M/3377

- geochemistry, similarity anal. using rank in, 92M/1783

Tin, behaviour of, in granitic magmas, 92M/4310; min. deposits related to granite, geol., 92M/0296; Bolivia, Andes, regional Sn distribn., 92M/2984; Brazil, Pitinga granite, geochem. -bearing mine. characteristics, 92M/1896; Czech Republic, Bohemia, in granitic rocks, geochem. specialization, 92M/1731; Germany, Erzgebirge, granite, breccia-related, metallogenesis, 92M/2659; Indonesia, Belitung, Tanjungpandan, large-scale Sn depletion in Sn granite, 92M/0368; Spain, Zamora, Ricobayo, -bearing batholith, Hercynian, lithogeochem. exploration, 92M/3179; USA, Alaska Range, Sheep Creek prospect, ore mineralogy, phys. characteristics, 92M/0309

- deposits, Australia, New South Wales, Mole Granite, sources of components for, tr., REE in cassiterite, 92M/1680; Bolivia, min. resource potential, 92M/1444; Canada, Nova Scotia, Yarmouth County, E Kemptville, S isotope study of main-stage Sn, base metal mineralization, evidence for magmatic origin of metals, S, 92M/1694; China, Dachang, skarn, O, H, S, C isotope study, 92M/2961; Jiangxi, Huichang, Yanbei, characteristics, 92M/0359; Yunnan, granitic rocks related to, 92M/0650; Yunnan, Ximeng county, Amo, hypothermal, geochem. characteristics, metallogenic model, 92M/2726; Indonesia, Kelapa Kampit, Nam Salu, strata-bound, mineralogy, 92M/0369; USA, Alaska, Seward Peninsula, lode, estimation of undiscovered resources, 92M/2669

mineralization, Australia, Queensland, Emuford. albite-rich, silica-depleted metasomatic rocks, min., geochem., fluid inclusion constraints on hydrothermal evolution and, 92M/2964; South Africa, Zaaiplaats mine, Bushveld, disseminated, in roof of granite pluton, implications for genesis of magmatic hydrothermal tin systems, 92M/2721; USA, New Mexico. Taylor Creek Rhyolite, rhyolite-hosted, origin, 92M/1442

minerals, secondary, stabilities of, 92M/4133

-polymetallic sulphide deposits, China, Dachang, evidence for exhalative origin, geol., geochem. characteristics, 92M/0358

-tungsten deposits, Indonesia, Belitung, greisenization, albitization, 92M/0367; Portugal, Góis and Vila Pouca de Aguiar-Vila Real, geol., lithogeochem. studies, 92M/0767; Yemen, geochem, of granite to assess Sn-W, rare metal potential, 92M/2946

- ore deposition, hydrothermal, chem.,

92M/0536

-molybdenum, Germany, Erzgebirge, volatile signatures of Hercynian postkinematic granite, implications for metallogenesis, 92M/4323

Tyrol, Brenner, Titanhematite, Austria, occurrence, 92M/3291

Titanite (sphene), alpha-decay damage in, 92M/0214; daughter-parent systematics in U-Th-bearing accessory min. assemblages as potential indices of metamorphic history, 92M/4226; geobarometers involving, estimation of P in quartz-absent assemblages, 92M/4042; high-Al, crystal chem., 92M/1950; kinetically induced compositional zoning in. accessory-phase implications for melt/partitioning of tr. elems., 92M/3241; oriented inclusions in sagenitic biotite, 92M/1986; Austria, Salzburg, Pinzgau, Felbertal, occurrence, 92M/3696; Canada, Ontario, Hemlo, in Au deposit, min. chem., geochem., 92M/4624; Hemlo Au deposit, assoc. with allanite, 92M/0813; Chile and Bolivia, -bearing dacites, magmatic processes in, 92M/1025; Czech Republic, Bohemia, České Středohoří Mts, assoc. with perovskite, 92M/2017; Greece, Sarti area, with Ca-rich scapolite amphibolites, 92M/2004; Indonesia, Kelapa Kampit, Nam Salu, assoc. with strata-bound Sn deposit, 92M/0369; Italy, Latium, Albano Lake crater, assoc. with guarinite in sanidinite ejecta of hydromagmatic unit, 92M/0816; Japan, Tojo-cho, Kushiro, assoc. with nepheline, 92M/2002; Poland, Strzegom, Y-Al-rich, from pegmatite, 92M/4617

-rutile barometry in eclogite, 92M/1532

Titanium mineralization, Brazil, Maicuru, alkaline-ultramafic-carbonatite complex, geochem. exploration, 92M/1894

minerals, Switzerland, Valais, Binntal, identification of naturally occurring TiO₂(B) by struct. detn., 92M/0881

Titanomagnetite v. spinel

Tobermorite, and other hydrothermal alteration products of synthetic glasses, 92M/2881: UO2+ uptake by, use for uranyl removal from radioactive waste, 92M/4028; Bosnia. in serpentine zone, min. data, 92M/2010; Germany, Bavaria, in metamorphosed carbonate xenolith, 92M/3681; Italy, Vicentino, occurrence, (book), 92M/2498; Japan, Okayama Pref., Fuka, monoclinic, min. data, 92M/2009

Todorokite, in marine hydrothermal sediments, scanning tunneling microscopy, 92M/3580; Germany, Hesse, Giessen, in Mn ore, 92M/3989; Thuringia, Ilmenau, Oehrenstock, occurrence, 92M/2365

Tolbachite, Russian Federation, Kamchatka, Tolbachik, assoc. with new

leningradite, 92M/2073

Tomichite, barian, Canada, Ontario, Hemlo Au deposit, assoc. with allanite, 92M/0813

Tonalite, amphibole compn. in, as function of P, exptl. calibration of Al-in-hornblende geobarometer, 92M/4102; Archaean, partial melting of amphibolite/eclogite, origin of, 40Ar/³⁹Ar 92M/0882; Alps, Bregaglia, dating, 92M/1259; Canada, Quebec, Taschereau stock, Archaean, Abitibi. two-stage evolution, 92M/0670; Italy, Upper Daone Valley, Adamello batholith, Re di Castello, microgranular mafic enclaves in, petrol., geochem., Sr isotope data, 92M/0632; South Africa, Barberton greenstone belt, Kaap Valley, 3200 m.y., O, C isotope geochem., 92M/1740; Spain, Hercynian belt, enclaves in granitic rocks, multistage crystallization, implications for magma mixing, 92M/0991; USA, Idaho, role of, in generation of Idaho batholith, 92M/2189; Wisconsin, crust-enriched, mantle-derived, in early Proterozoic Penokean orogen, 92M/1772

TONGA, -Lau region, insular, submarine ferromanganese mineralization, 92M/0329

Tonstein, Germany, Ibbenburen, kaolinite in, Westphalian B, 92M/1368

Tooeleite, USA, Utah, Tooele Country, U.S. mine, new min., 92M/3338

Topaz, 'Aqua Aura' enhanced fashioned gems, props. of, 92M/4164; energy calculations bearing on location of H, 92M/2606; Australia, Mole granite, fluid inclusions in, laser-ICP, synchrotron-XRF microprobe anal., compn. of hypersaline, Fe-rich granitic fluids, 92M/4250; Canada, Nova Scotia, East Kemptville, in leucogranite, 92M/3050; Finland, Ahvenisto complex, -bearing rapakivi granite and assoc. mineralized greisen, 92M/2140; Mongolia, Ongon Kharikhan, in ongonite, 92M/1011; South Africa, Bushmanland, -dumortieritewhite mica fels from peraluminous metamorphic suite, 92M/1175; Sri Lanka, history of gemmology, C.P. Thunberg, 18th century collector, 92M/1638; Sweden, Nynäshamn, Stora Vika, assoc. with zincian helvite in pegmatite, 92M/2003; Ukraine, Wolynia, occurrence, 92M/2376; USA, California, Ramona, Little Three mine pegmatite, assoc. with new boromuscovite, 92M/3328

Tosudite, Japan, Honshu, Kamikita Kuroko, in hydrothermal aluminous clays, 92M/0179; Kagoshima Pref., Makurazaki volcanic area, smectite, 92M/3801

Tourmaline, B isotope systematics of, 92M/2936; FeO/(FeO+MgO) ratio of, indicator of spatial variations in, 92M/4611; retrograde exchange of H isotopes between hydrous mins. and water at low T, 92M/4227; use of, in geochem. prospecting for Au, Cu mineralization, 92M/1903; Western Australia, Greenbushes, in giant

rare metal pegmatite, 92M/0372; Yilgarn block, from epigenetic Archaean Au deposits, Sr isotope systematics, 92M/0577; Canada, Nova Scotia, compn. as guide to min. exploration, reconnaissance study, discriminant function anal., 92M/3193; Germany, Saxony, in granulites, 92M/3684: peninsula. Chalkidiki pegmatite, chem. variations in, 92M/1963; Cyclades, and Spain, K/Ar ages, comparison with other radiometric dating systems in Alpine anatectic leucosomes, metamorphic rocks, 92M/0019; Italy, Trento-Alto Adige, Chiusa-Bressanone, crystallochem., structl. evolution in magmatic series, 92M/3252; Russian Federation, Altai-Sayan folded region, Batenevsky ridge, authigenic, from carbonatite, 92M/1964; South Africa, Barberton greenstone belt, Archaean metasomatism by evaporite-derived B, 92M/0720; Spain, Pyrenees, Cabo de Creus, in pegmatite, stable isotope constraints on origin of, 92M/4299; Sri Lanka, history of gemmology, C.P. Thunberg, 18th century 92M/1638: collector. Tanzania. Karagwe-Ankolean belt, from granites, stable isotope compns. of, 92M/4329; USA, New York, Johnsburg, in serendibite paragenesis, 92M/2808; North Carolina and Virginia, heavy min. deposits in upper coastal plain, 92M/2772

- —, dravite, Russian Federation, Altai-Sayan folded region, Batenevsky ridge, authigenic, from carbonatite, 92M/1964
- —, -schorl series, dark red, min. data, 92M/1965
- —, elbaite, Brazil, Paraíba, São José de Batalha, cuprian, origin of colour in, 92M/3253; Portugal, Minho, Arga, in aplite swarm, 92M/4647; USA, California, Ramona, Little Three mine pegmatite, assoc. with new min., boromuscovite, 92M/3328
- —, olenite, Russian Federation, Altai-Sayan folded region, Batenevsky ridge, authigenic, from carbonatite, 92M/1964
- —, schorl, USA, Nevada, Humboldt Range, zonally arranged in hydrothermal Ag-Au deposits, 92M/3254
- —, -dravite-ferridravite, *Italy, Larderello geothermal field*, deposited by hydrothermal magmatic fluids, 92M/3251
- —, uvite-schorl, Germany, Bayerischen Wald, occurrence, 92M/4997
- Tourmalinite, *Brazil*, Archaean, Proterozoic strata-bound, potential Au deposits, 92M/3886
- Toxic waste disposal, Sweden, rock block configuration, crustal deformation, 92M/1520
- Toyohaite, new min., Ag analogue of rhodostannite, 92M/4676
- Trachyandesite, France, Massif Central, Sancy volcano, genesis of, magma mixing vs xenocryst assimilation, 92M/0981
- Trachyte, USA, Colorado, San Juan volcanic field, Carpenter Ridge Tuff, min. constraints on petrogenesis, 92M/0678; Hawaii, Hualalai Volcano, Puu Waawaa, origin of xenoliths in, 92M/2185
- Transform faults, weak, state of stress, crustal deformation along, 92M/2333; Bullard fracture zone, unusual sea-floor fabric,

- GLORIA sidescan sonar, 92M/2383; Pacific, Garrett, ultrafast, volcanic activity, crust-mantle exposure, 92M/4873
- Travertine, Oman, from high pH waters, stable isotope disequilibria in, lab., field observations, 92M/4330
- Tree rings, seasonal stable C isotope variability in, poss. palaeoenvtl. signals, 92M/1515

Tremolite v. amphibole

- Tridymite, assoc. with new min., dmishteinbergite, 92M/2069; modifications, XRD patterns, phase relationship, 92M/0235; periodic Hartree-Fock study, 92M/0237; Israel, Golan Heights, Har Peres, from pyroclastics, 92M/2000; Pacific, Lau Basin, in volcanic rocks, 92M/2111
- Triple junction, *Pacific-Cocos East Pacific Rise*, Sea Beam survey, 92M/4874

Tristramite v. rhabdophane

Trondhjemite, Archaean, partial melting of amphibolite/eclogite, origin of, 92M/0882; Greenland, Nuk, Archaean, constraints on genesis from hydrous crystallization expts. on gneiss, 92M/2833; India, Karnataka, Hassan Dist., Sigegudda, geochem., 92M/0649; Italy, Calabria, evolution caused by compaction of crystal mush, 92M/0624; USA, California, Klamath Mts, Caribou Mt pluton, petrol., 92M/4422; New Jersey, New Jersey Highlands, generation from partial melting of dacite under granulite facies condns., 92M/0886

Tsavorite v. garnet

Tschermakite v. amphibole

Tschermigite, Slovakia, Cervenica-Dubnik, assoc. with opal deposits, 92M/5001

- Tuff, distinguishing strongly rheomorphic from extensive silicic lavas, 92M/3465; Canada, Ontario, Sturgeon Lake, Archaean submarine caldera, relationships with Mattahi massive sulphide deposit, 92M/1440; Indonesia, Sumatra, caldera complex, stratigr., 92M/1063; USA, Idaho, W Snake River Plain, in Miocene Chalk Hills fm., zeolitic diagenesis of, 92M/4860; Nevada, rhyolitic ash-flow, manganoan fayalite in, 92M/0803; Nevada, Timber Mountain/Oasis Valley Caldera Complex, ash-flow, metaluminous, Nd, Sr, O isotopic variations in, implications for origin, evolution of large-volume silicic magma bodies, 92M/1773; New Mexico, Bloodgood Canyon and Shelley Peak, implications magnetic fabrics, emplacement, alteration processes, 92M/1077
- cone, New Zealand, Major Is., Opo Bay, interaction between rising gas-poor pantelleritic magma and external water, 92M/4851
- -- breccia, Canada, Manitoba, Bear Lake,
 Proterozoic basaltic andesite, downslope,
 sub-aqueous mass transport of
 phreatomagmatically-generated tephra,
 92M/1075
- Tulameenite, revised unit-cell dimensions, space group, chem. formula, 92M/2628
- Tungsten deposits, use of fluid inclusion gas surveys for assessment of lode deposits, 92M/3172; China, characteristics, distribn.,

- 92M/0323; Jiangxi Province, Dajishan mine, quartz-vein type, stable isotope studies, 92M/4228; Peru, San Judas Tadeo, Permian lithophile mineralization, 92M/2762
- mineralization, France, Massif Central, Haut Allier, hydrothermal alteration, fluid circulation related to, 92M/2709; Germany, Schwarzwald, occurrence, 92M/2672; Korea, Dongmyeong mine, skarn evolution, 92M/4333
- -molybdenum deposits, Western Australia, Mt Mulgine, Trench, mineralogy, genesis, 92M/1479
- tin deposits, Portugal, Panasqueira, characterization, timing of different types of fluids present in barren and ore-veins, 92M/2714
- TUNISIA, El Kef, stratigraphic distribn. of Ni-rich spinel in Cretaceous-Tertiary boundary rocks, 92M/4599
- Tuperssuatsiaite, Namibia, Windhoek, Aris, from phonolite, 92M/4630
- Turbidites, erosion of stable density gradient by sedimentation-driven convection, 92M/2250; Australia, Lachlan fold belt, deformed quartz-rich, rock-buffered fluid-rock interaction in, 92M/2965; New Zealand, Torlesse accretionary prism, Rb-Sr isochrons, pseudo-isochrons from, 92M/1287; Wellington, Red Rocks, whole-rock, min. anal., 92M/1646
- crust-mantle interaction. implications from Sr, Nd isotope geochem. of Tertiary, Quaternary volcanic rocks, 92M/1733; erionite in tuffs, XRD detection of tr. amounts, 92M/2008; Anatolia, Pb-Zn deposits, mineralogy, 92M/2718; Divrigi region, rock geochem. of iron ore field, exploration model, 92M/1899; Anatolia, Sivas Basin, source rock, kerogen, organic geochem, study, 92M/3159; Mélange, characteristics of metamorphism, 92M/3646; Avnik, REE in apatite-rich iron deposits, 92M/2927; Beypazeri, distribn. of Ca, Mg, K, Rb in nahcolite, 92M/3319; Bitlis Massif, Cökekyazi-Gökay area, metamorphic rocks, petrol., metamorphism, genesis, 92M/3645; Göynük and Seyitomer, oil-shale, organic geochem., 92M/1866; Albanides, Jurassic volcanosedimentary sequences, petrol., 92M/3390; Kaman Kirsehir, Kirsehir Massif, and Yozgat Regions, magmatic rocks, petrol., geochem., 92M/3435; Kizildağ ophiolite, magmatic extension, tectonic denudation, implications for evolution of Neotethyan oceanic crust, 92M/3532; Koyulhisar-Sivas, Kursunlu, Pb-Zn-Cu deposits, inclusion, geothermometry studies, 92M/2955; Maden Complex, trend surface anal. of primary rock samples from region of Cu, Zn mineralization, 92M/2928; Menderes Massif, Gördes Submassif, Demirci-Borlu region, apatite, metamorphism, dating, fission-track 92M/2410; Ortaköy-Koyulhisar-Sivas, Kursunlu, vein type Pb-Zn-Cu deposits, S isotope study, 92M/2956; Pontides, granitic rocks, geochem., 92M/0637; Pontides, Akarsen, Au assoc. with copper deposits, 92M/3919; E Pontides, Trabzon, Lower

Volcanic Cycle, geochem. of hydrothermally altered rocks, 92M/1734; E Pontic metallotect, Murgul, volcanogenic Cu deposit, geochem. proximity indicators, 92M/3184; Sea of Marmara, heavy metal concentrations in surface sediments from two coastal inlets, 92M/1524; Thrace, Derekoy, porphyry Cu deposit, geol., mineralization, 92M/0348

Turquoise, 'emerald oiling', interpn. of Pliny's statement, 92M/2913

TUVALU, mins. of, 92M/0580; natural history, geol., 92M/2388; Ellice Is., phosphatic limestones, derivation, 92M/2770; outer islands, soil resources, 92M/0201

Tvedalite, Norway, Oslo Region, new min. from syenite pegmatite, 92M/4677

Tyrolite, Austria, Salzburg, Hüttau, Larzenbach, occurrence, 92M/3694

UKRAINE, Komsomolskoe, pyrite from Cu-pyrite deposit, crystal morphol., 92M/4655; Voronezh crystalline massif, sulphide mins. in ultramafic xenoliths from Ni-bearing norites, 92M/2033; min. inclusions in olivine megacrysts from Ni-bearing norite, 92M/0997; Wolynia, pegmatite, mineralogy, 92M/2376

Ullmannite, *Italy, Sardinia, Nurra, Argentiera*, assoc. with willyamite, 92M/4657

---, willyamite, *Italy, Sardinia, Nurra, Argentiera*, from Pb-Zn-Ag-Sb deposit, 92M/4657

Ultrabasic complexes, control of distribn. of Mn, Co, Zn, Ar, Ti, REE during evolution of lateritic covers above, 92M/1904; Spain, Ronda, Re—Os systematics, 92M/1725

 intrusion, Scotland, Rhum, O isotope evidence for major fluid flow along contact zone, 92M/4361

— nodules, Asia, cosmogenic Ne in, 92M/3046; Italy, Sicily, Mt Etna, from alkaline lava, melt-min.-fluid interactions in, 92M/3482

— rocks, H isotope heterogeneities in mantle from ion probe anal. of amphibole from, 92M/1657; Nigeria, Apomu and Ife-Ilesa, tr. elem. geochem., petrogenesis, 92M/0640; Russian Federation, Kola Peninsula, Monche Pluton, ³He/⁴He ratios frozen in, 92M/4278

- xenoliths, continental, isotopic relationships of volatile, lithophile tr. elems. in, 92M/4393; Japan, Shimane Pref., Masuda, Kawashimo, in Cainozoic alkali basalt. 92M/3445; Mexico, San Luis Potosí, upper mantle beneath young back-arc extensional zone, thermal history, 92M/4833; Spain, Canary Islands, Hierro, fluid, silicate glass inclusions in, implications for mantle metasomatism, 92M/0992; USA, Alaska, Aleutian Is., Adak, Adagdak Volcano, deformed igneous cumulates from Moho of island arc, 92M/2186; Hawaii, Hualalai Volcano. Kaupulehu, 1800 petrogenesis, 92M/4397

Ultramylonite, Finland, Suomusjärvi, Rb-Sr dating, evidence for post-Svecofennian deformation, 92M/1248

Ulvöspinel v. spinel

Umangite, Argentina, Sierra de Cacheuta, La Rioja, Condor mine, assoc. with schmiederite, 92M/3301

UNITED ARAB EMIRATES, Dibba zone, Semail ophiolite, metamorphosed volcanic rocks, isotopic, geochem. studies, 92M/1743; N Oman Mt, Asimah Window, min. equilibria in metagabbro, evidence for polymetamorphic evolution, 92M/3535; Uyaynah area, extrusive carbonatites, petrol., 92M/4841

UNITED KINGDOM (v. also England, Wales, Scotland, Ireland, Great Britain), hydrogeochem. prospecting for Au, 92M/0765; Windy Knoll, hydrocarbonbearing fluid inclusions in fluorite assoc.

with bitumen deposit, 92M/4256

UNITED STATES OF AMERICA, effects of silicate weathering on water chem. in forested, upland, felsic terrain, 92M/3125; fluid inclusion gas chem. as potential min. exploration tool, 92M/3168; K, U, Th geochem. maps, 92M/1915; lexicon of new formal geol. names, 1981-1985, 92M/5012; noble gases in Mesozoic cherts, 92M/0697; SE, Palaeozoic Au deposits, and Western Archaean, comparison of Australia. alteration assemblages assoc. with, 92M/0270; SW, Proterozoic diabase, isotopic constraints on petrogenesis of, 92M/4732; W interior, chalcophile elems., Ir in continental Cretaceous-Tertiary boundary clays, 92M/4602; Appalachians, Avalonian terrane, Proterozoic tectonostratigraphic evolution, 92M/2078; Proterozoic rift-related dykes, petrol., 92M/4731; Central Appalachian basin, Princess No. 6, Pennsylvanian volcanic ash, mineralogy, 92M/3501; Appalachians, hornblende chem. in granite, implications for thermobarometry, magmatic epidote stability, 92M/0824; Coeur d'Alene mines, precious metal deposits, production, 92M/1492; Columbia River Basalt group, Roza Member, feeder dyke system, compositional variation, emplacement, 92M/4759; Comstock Lode. fluid-min. relations, 92M/1494; Great Basin, Au deposits, geol. setting, 92M/3861; Gulf of California, Guaymas Basin, S, C, O isotope variations in submarine hydrothermal deposits, 92M/4346; NE Gulf Coast, Smackover fm., Oxfordian, origin of dolostone reservoir rocks, 92M/3582; Hartford, Deerfield, Newark Taylorsville basins, tectono-thermal history using fission track dating, 92M/2348; Hudson River, P chem., 92M/0398; Illinois basin, salt diffusion in interstitial waters. halite removal from sediments, 92M/0689; Joplin, Viburnum Trend, Elmwood and Rosiclare, fluorite, Pb, Zn, Mississippi Valley type, 92M/2702; Mississippi River Delta, tr. elems., behavior at high discharge, 92M/3124; New England, evidence for major Middle Proterozoic, post-Grenvillian igneous event, 92M/1301; fluid inclusion evidence for basement decompression Permo-Triassic 92M/2315; New England Appalachians, Phanerozoic denudation history deduced from P data, 92M/4718; New England, White Mountain, magma sources for Mesozoic anorogenic granites, 92M/3058; Tri-state Dist., Joplin, geol., mineralogy, fluorite, sphalerite, occurrence, 92M/3702; Upper Mississippi Valley, genetic relationship between Pb-Zn and base metal mineralization, 92M/2701; Zn-Pb deposit, Alleghenian age, Rb-Sr dating, sphalerite, 92M/3743

—, ALABAMA, Conecuh Embayment, Jay Field, Smackover fm., Jurassic, petrophys. characteristics, 92M/3581; Inner Piedmont, timing, characteristics of Palaeozoic deformation, metamorphism, Rb/Sr dating, 92M/1303; Stone Hill dist., hydrothermal alteration of mafic metavolcanic rocks and genesis of Fe-Zn-Cu sulphide deposits, 92M/1491

, ALASKA, Geol. Survey geochem. studies, 1989, 92M/0532; Akutan Is., igneous petrol., geochem., 92M/3499; Alaska Range, Sheep Creek prospect, ore mineralogy, phys. characteristics. 92M/0309; Aleutian Is., Adak, Adagdak Volcano, deformed igneous cumulates from Moho of island arc, 92M/2186; Seguam volcanic centre, mid-Pleistocene lava, closed-system fractional crystallization of basalt to rhyodacite eruptive suite, 92M/4400; Augustine volcano, pyroclastic eruption, stratigr., chronol., character, 92M/1074; anatomy of 1986 volcanic eruptions, multispectral image processing of digital AVHRR weather satellite data, 92M/1071; origin, speciation, fluxes of tr.-elem. gases, insights into magma degassing, fumarolic processes, 92M/4401; Blackburn Hills, volcanic field, isotopic, chem. constraints on petrogenesis, 92M/4403; Brooks Range, reconnaissance exploration geochem., implications for exploration of sediment-hosted Zn-Pb-Ag deposits, 92M/4556; Chugach Mts, geol., tectonic history, 92M/2119: Coast Mountains batholith, Nd, Sr isotopic constraints on petrogenesis, 92M/1763; thermobarometric constraints on structl. evolution, 92M/2308; Coast Plutonic Complex sill, emplacement, uplift, cooling, 40Ar/39Ar dating, 92M/2428; Cook Is., Mt St. Augustine volcano, cyclic formation of debris avalanches, 92M/4857; Goodnews Bay, transport, deposition of Au and PGM mins. in offshore placers, 92M/0313; Katmai, Valley of Ten Thousand Smokes, fumaroles, 92M/4402; Ketchikan, Coast Mts batholith, two pre-Tertiary plutons, U-Pb dating, 92M/1289; Kuskokwim river region, epithermal cinnabar, stibnite vein deposits, geochem. exploration, 92M/3189; Mt Estelle pluton, precious, base metal mineralization assoc. with high-salinity fluids, 92M/1482; Mt St. Augustine, fumarolic emissions, 1979-1984 degassing trends, volatile sources, poss. role in eruptive style, 92M/1072; N American Cordillera, distribn., characteristics of metamorphic belts, 92M/4954; Nome nearshore area, Cainozoic geol. history, Au deposits, 92M/1437; Revillagigedo Is., magma emplacement in convergent tectonic orogen, 92M/2187; magmatism, deformation, 92M/3398; Ruby geanticline and S Brooks Range, granite. granitic gneiss, U/Pb dating, 92M/1288; Russian Mission C-1 quadrangle, geol., min. resources, 92M/2118; Salt Chuck Intrusion, PGE-mineralization in low-T Cu sulphide-rich assemblages, hydrothermal origin, 92M/2733; Seward Peninsula, estimation of undiscovered lode tin resources, 92M/2669; Stikine River to Cape Fanshaw, Coast Mts batholith, structl., geochronol. relations, 92M/4717; Taku terrain, Alava sequence, Upper Palaeozoic, Lower Mesozoic, tectonic framework, 92M/2120; Tin Creek, Zn-Pb skarn mineralization, fluid inclusions and skarn-forming reactions, 92M/4253; Valley of Ten Thousand Smokes, fossil, active fumaroles in 1912 eruptive deposits, 92M/1073; fumarolic deposits, geochem., mineralogy, bulk chem., min. evolution of dacite-rich protolith, 92M/3049

ARIZONA, Cordilleran volcanic arc, Jurassic ash-flow sheets, calderas, related intrusions, implications for regional tectonics, ore deposits, 92M/4858: epithermal Au deposits, history, production, geol., 92M/0332; Proterozoic ophiolite, petrol., 92M/3554; Colorado Plateau, The Thumb, tr. elem. zonation in garnets, heating, melt infiltration, 92M/0805; Harquahala Mts. Hf. Nd. Sr isotopic study of mylonitized granite, behaviour of isotopic systematics during deformation, metamorphism, 92M/3106; Meteor Crater, age, geomorphic history from cosmogenic ³⁶Cl, ¹⁴C in rock varnish, 92M/1305; ¹⁰Be-²⁶Al exposure ages, 92M/1306; Meteor Crater, Cañon Diablo, U accumulation during weathering meteoritic iron, 92M/4574; Navajo Nation, maar-diatreme Hopi Buttes, phreatomagmatism, petrol., 92M/1078

—, ARKANSAS, Ozark plateau, heat flow, relationship to groundwater flow, 92M/3673; Ozark region, Mississippi Valley-type deposits, ore fluid geochem., 92M/0597; Saline County, Stand-on-your-head mine, cookeite assoc. with quartz, 92M/2380; Magnet Cove, syenite, mineralogy, geochem., 92M/4830

CALIFORNIA, solitary coral, U-series dating by MS, 92M/3745; test of TL dating with coastal sediments, 92M/1307; Big Pine volcanic field, alkali-olivine basalts, inverse modelling of, melting in lithospheric mantle, 92M/1776; Bishop Tuff, hourglass inclusions, theory, application, 92M/1023; melt inclusions, crystal-liquid separation in rhyolitic magma, 92M/4421; Bristol Lake region, geochem. evolution of diorites, role of assimilation, 92M/4424; Catalina schist, B, Be concentrations in subduction-related metamorphic rocks, implications for subduction-zone recycling, 92M/3109; stable isotope, tr. elem. indicators of devolatilization history in shales, metasandstone, 92M/3108; zoned allanite, petrogenetic significance in amphibolites from palaeo-subduction zone, 92M/0812; Clear Lake area, 129I, 36Cl concentrations in waters, residence times,

source ages of hydrothermal fluids, 92M/4504; Coast Ranges, Au-bearing hot spring systems, 92M/1443; Coast Range ophiolite, hydrothermal metamorphism in oceanic crust, fluid-rock interaction in rifted island arc, 92M/3528; Crestmore, domain struct. of low-symmetry vesuvianite, 92M/0215; Darwin, Pb-Zn-Ag skarn deposit, zoning, genesis, 92M/1495; Franciscan Complex, metamorphic evolution of two different eclogites, 92M/1198; microbanded Mn formations, protoliths, 92M/0602; sediment-derived fluids in subduction zones, isotopic evidence from veins in blueschist, eclogite, 92M/3110; Franciscan Complex and Monterey group, REE, major, tr. elems. in chert, assessing REE sources to fine-grained marine sediments, 92M/0703; Invo volcanic chain, Obsidian Dome, degassing of rhyolite, 92M/4223; Klamath Mts, geochem. variations in Permian volcanic arc, 92M/0679; metamorphism, geochem., origin of magnesian volcanic rocks, 92M/3065; tectonic implications of isotopic variation among Jurassic, early Cretaceous plutons, 92M/4423; Klamath Mts, Caribou Mt pluton, petrol., 92M/4422; Loma Prieta earthquake, shear-strain anomaly following, 92M/4977; Long Valley, stress modelling, borehole stability near magma chamber, 92M/1079; Long Valley caldera, new evidence on hydrothermal system from wells, fluid sampling, electrical geophysics, age determinations of hot-spring deposits. 92M/3127; O isotope evidence for past, present hydrothermal regimes, 92M/3131; thermal water, rocks and hydrothermal calcite, 92M/3128; Long Valley Caldera, Invo Craters, role of magma, groundwater, in phreatic eruptions, 92M/3504; Long Valley caldera, western moat, hydrothermal alteration, thermal regimes, 92M/3130; Long Valley hydrothermal system, chem. equilibrium, mass balance relationships assoc. with, 92M/3129; Medicine Lake volcano, high P phase relations of primitive high-alumina basalts, 92M/1538; Mesquite deposit, microbial method of min. exploration for Au, 92M/1879; Mojave Desert, Jurassic fossil hydrothermal systems, O isotope studies, 92M/4230; volume loss, fluid flow, state of strain in extensional mylonites, 92M/2318; Mojave Desert, Shumake, volcanic dome-hosted epithermal precious metal deposit, 92M/2748; Mono Lake, gaylussite formation in desrt basin, 92M/0871; Monterey fm., C isotopic compns. of 28,30-bisnorhopanes and other biol. markers in crude oil, 92M/4544; identification, origin of $\Delta^{8(14)}5\alpha$ -, $\Delta^{14}5\alpha$ -sterenes and related hydrocarbons in immature bitumen, 92M/4542; Miocene, isotopic compn., speciation of S, reevaluation of S reactions during early diagenesis in marine envts., 92M/4543; North Coles Levee, evidence for episodic cementation, diagenetic recording of seismic pumping events, 92M/1845; Old Woman Mts area, metamorphism, plutonism, tectonic denudation, 40 Ar/39 Ar thermochronol., thermobarometry

92M/4719; Owens River system, lucustrine sedimentation, ³⁶Cl dating, 92M/2436; Peninsula Ranges batholith, Bernasconi pluton, basic dykes basic enclaves, and host granitic rocks, 92M/4760; Point Sal ophiolite, mixed-layer chlorite-smectite. integrated TEM, XRD, electron microprobe investigation, 92M/2274; Salton Sea. geothermal field, heating duration, provenance age of rocks, 92M/2351; San Benito County, Clear Creek Claim, szymańskiite, new min., 92M/3337; San Bernardino County, Cima volcanic field, kaersutite megacrysts and assoc. crystal inclusions, 92M/3261; San Diego County, Ramona, Little Three mine pegmatite, boromuscovite, new member of mica group, 92M/3328; San Gabriel Mts, small scale heterogeneity of Phanerozoic lower crust, evidence from isotopic, geochem. systematics of mid-Cretaceous granite gneiss, 92M/3107; San Joaquin basin, basalt-rhyolite volcanism by MORB-continental crust interaction, Nd, Sr-isotopic, geochemi. evidence, 92M/3064; Santa Maria Basin, Monterey fm., organically bound metals, biomarkers, 92M/1849; Monterey fm., origin, diagenesis of clay mins., 92M/2590; Santa Maria and San Joaquin basins, Monterey fm., mineralization of organogenic ammonium in, 92M/4546; Santa Rosa, effects of progressive mylonitization on Ar retention in biotites from mylonite zone, thermochronol. implications, 92M/1308; Sierra Nevada, fluid-enhanced deformation. transformation of granitic rocks to banded mylonites, 92M/2305; garnet breakdown in deep seated garnetiferous xenoliths, petrol., tectonic implications, 92M/4958; Trinity ophiolite, chem. transfer between mantle xenoliths and basic magmas, evidence from oceanic magma chambers, 92M/1096; geochem. consequences of differentiation in multiple injection dyke, 92M/4419; origin, petrogenesis, REE, Nd isotope data, 92M/3353; Silurian, O isotope evidence for multi-stage hydrothermal alteration at fossil slow-spreading centre. 92M/1775; Turtle pluton, local equilibrium of mafic enclaves, granitic rocks, min., chem., isotopic evidence, 92M/1024

-, COLORADO, epithermal Au deposits, history, production, geol., 92M/0332; Colorado Plateau, Au occurrences, 92M/4002; guide to gems, mins., 92M/4191; Creede mining dist., quartz, sphalerite, reinterpn. of δD_{H2O} of fluid inclusions in, 92M/2977; Eureka Graben, Mineral Point area, O isotope, fluid inclusion study, 92M/1704; Front Range, magmatic epidote-bearing dykes. mineralogy, geothermobarometry, 92M/3460; Gold Brick dist., cordieritecummingtonite facies rocks, petrol., 92M/4957; Morrison fm., organic matter diagenesis, genesis of tabular V deposits, 92M/4541; Pennsylvanian Fountain fm., chem., min. comparison with sedimentary rocks from other tectonic envts., 92M/4455; Rangely Field, Weber sandstone, CO2 injection, resultant alteration, 92M/1800;

Rico, variations in δ¹⁸O values, water/rock ratios, water flux in palaeothermal anomaly, 92M/4231; Rosita Hills, tr.-elem. geochem., alteration facies assoc. with epithermal Au-Ag mineralization in evolving volcanic centre, 92M/0599; San Juan Mts, Sultan Mountain mine, fluid inclusion, stable isotope study, 92M/0600; San Juan volcanic field, Nd, Pb isotope variations in caldera cluster, multicyclic central implications for crustal hybridization, 92M/1774; Carpenter Ridge Tuff, min. constraints on petrogenesis of trachyte, 92M/0678; San Juan volcanic field, Huerto, andesite, petrol., geochem., 92M/0677; San Miguel County, metamunirite, new anhydrous Na metavanadate, 92M/0879; Slick Rock district, fluid inclusion, 818O, ⁸⁷Sr/⁸⁶Sr evidence for origin of fault-controlled Cu mineralization, 92M/1705; St. Kevin Gulch, mechanisms of iron photoreduction in metal-rich, acidic stream, 92M/4496; Wet Mts, San Isabel batholith, 1360 m.y. mid-crustal granite of anorogenic affinities, origin, chem. evolution, 92M/4416; Yampa area, alkaline hybrid mafic magmas, relationship to Yellowstone mantle plume, lithospheric mantle domains, 92M/0676

—, CONNECTICUT, Connecticut Valley region, Bronson Hill anticlinorium, nappe theory, 92M/0965

—, FLORIDA, Conecuh Embayment, Jay Field, Smackover fm., Jurassic, petrophys. characteristics, 92M/3581; Land-Pebble Phosphate Dist., drill hole samples, mineralogy, chem., 92M/4899

- —, GEORGIA, discovery of kolbeckite, two poss. lattices, 92M/3326; Appalachians, Ropes Creek assemblage, ophiolitic thrust sheet, petrol., geochem., tectonic setting, 92M/0964; Appalachians, Towaliga Fault, development of interlaced mylonites, cataclasites, breccias, 92M/1196; Blue Ridge, Soque River and Chunky Gal Mt thrust sheets, contrasting deformation, metamorphism, 92M/3660; Cumberland Is., mixing zone hydrochem. in confined aquifer system, 92M/3126; Piedmont, stable isotopic compn. of water in small watershed, 92M/4210
- HAWAII, basalt, indicators of differentiation, partial melting, 92M/3473; evolution of basalts, hotspot melting model, 92M/1068; global convection and upper mantle structs., 92M/3451; microspherules in aerosols of lava fountains, 92M/3498; picrite glass, geochem., 92M/1761; struct., origin by injection of lava under surface crust, of tumuli, 'lava rises', 'lava-rise pits', 'lava-inflation clefts', 92M/2229; tholeiite, petrogenesis, dynamic melt segregation, 92M/4824; tholeiite, petrogenesis, phase equilibria, 92M/4823; Hualalai Volcano, Kaupulehu, 1800 flow, ultrabasic xenoliths, petrogenesis, 92M/4397; Hualalai Volcano, Puu Waawaa, origin of xenoliths in trachyte, 92M/2185; Hualalai and Mauna Kea, volcanoes, rock varnish, 92M/4856; Kahoolawe Is., tholeiite, alkalic basalt, ages, REE enrichment, petrogenesis, 92M/4396; Kilauea Volcano, behaviour of U decay

- chain nuclides and Th during flank eruptions, 1983-1985, 92M/4398; Ni-Cu sulphides from 1959 eruption, contrasting compns., phase relations in pumice, lava lake, 92M/2039; Kilauea Iki, reequilibration of chromite in lava lake, 92M/0855: geol., Mahukona volcano. netrol.. 92M/1067: Mauna Kea volcano, postshield lavas, isotopic compn., 92M/0666; Mauna Loa volcano, isotopic evolution, 92M/0667; Mauna Loa and Kilauea, tholeiites with low 'ferromagnesian-fractionated' 100 Mg/(Mg + Fe²⁺) ratios, poss. primary liquids from upper mantle, 92M/1760; Mururoa volcano, evidence of early alteration process driven by magmatic fluid, 92M/1069; South Point, Puu Mahana, primary Surtseyan ash ring, 92M/4855; Uwekahuna laccolith, validity of Pearce elem. ratio anal. in petrology, 92M/1648
- -, IDAHO, role of tonalites and mafic dykes in generation of Idaho batholith, 92M/2189; ⁸⁷Sr/⁸⁶Sr, ¹⁸O/¹⁶O isotopic systematics, geochem. of granitic plutons across steeply-dipping boundary between contrasting lithospheric blocks, 92M/3061; Bayhorse metal dist., stable isotope study of water-rock interaction, ore formation, 92M/4340; Idaho batholith, prograde, retrograde fluid-rock interaction in calc-silicates, stable isotopic evidence, 92M/1814; Snake River plain, high-T rhyolite, mineralogy, geothermometry, 92M/3459; W Snake River Plain, zeolitic diagenesis of tuffs in Miocene Chalk Hills fm., 92M/4860
- --, ILLINOIS, Cave-in-Rock Fluorspar Dist., Denton mine, thermochem. changes in ore fluid during deposition, 92M/1699; Rosiclare, fluorite, occurrence, 92M/2381
- —, INDIANA, New Albany Shale, Henryville bed, geoporphyrins from bitumen of demineralised shale, mass spectrometry, 92M/1853; Allen County, chlorite vermiculitization, pyroxene etching, in aeolian periglacial sand dune, 92M/3803; New Albany Shale, Devonian-Mississippian, distribn., geochem. characteristics of metal enrichment, 92M/4341
- —, IOWA, stable isotopes in sulphate evaporites, indications of postdepositional change, 92M/0701
- —, KANSAS, sediment-hosted Cu mineralization, genesis, S/C, S isotope systematics, 92M/0598
- —, KENTUCKY, Lexington limestone, Point Pleasant fm., impure K-bentonites, 92M/2578
- —, MAINE, Cupsuptic aureole, conduction model for thermal evolution, 92M/1191; Gulf of Maine, fine-grained rutile, diagenetic origin, source rocks, depositional envt., 92M/0384; Rangeley area, chlorite-bearing metapelites, evidence for equilibrium assemblages, 92M/1192; Waterville limestone, chlorite zone rocks, C, O isotope geochem., 92M/0592
- —, MARYLAND, Rn-222 and parent radionuclides in groundwater, 92M/0742; Great Falls, Piedmont, biogeochem. prospecting for Au-bearing quartz veins, 92M/3195

- -, MASSACHUSETTS, compns., phase relations of calcic amphiboles in epidote-, clinopyroxene-bearing rocks of amphibolite, lower granulite facies, 92M/1975; prograde amphibole dehydration reactions during high-grade regional metamorphism, 92M/1194; Avalon terrain, Precambrian dykes, geochem., tectonic significance, 92M/4761; Buzzards Bay, C cycling in coastal sediments. estimating remineralization, 92M/1798; Hope Valley Shear Zone, differential response of zircon U-Pb isotopic systematics to metamorphism across lithologic boundary, 92M/2434
- MINNESOTA, Cd in envt. of five cities. 92M/0399; geochem, exploration for Cu-Ni deposits in cool-humid climate, 92M/4557; Duluth Complex, Cu-Ni mineralization, gravity, magnetic perspective, 92M/1489; gravity, magnetic data, interpn., 92M/0374; role of fluids in formation of PGM, textural, chem. evidence, 92M/1703; Duluth Complex, Babbitt area, Virginia fm., Cu-Ni sulphide mineralization, Se/S ratios, 92M/4342; Babbitt deposit, Cu-Ni mineralization, Pt-group elem. geochem., 92M/0375; Duluth Complex, Partridge River intrusion, geol., geochem., stratigr., 92M/4828; geol., struct., 92M/4829; Giants Range Granite, laser probe 40Ar-39Ar measurements of loss profiles within individual hornblende grains, 92M/4100

—, MISSISSIPPI, Porters Creek and Wilcox, discrimination of kaolinite varieties, 92M/0183

-, MISSOURI, organic maturation, ore precipitation, 92M/1701; Butler Hill caldera, Proterozoic ignimbrite-granite complex, petrol., 92M/0893; Ozark plateau, heat flow, relationship to groundwater flow, 92M/3673; Viburnum Trend, geol., mins. of, 92M/3704; organic matter, thermochem. sulphate reduction, 92M/0764; S-Pb isotope systematics, compn. of fluid inclusions in galena, 92M/2976; Viburnum Trend Pb-Zn dist., alteration of organic matter, 92M/4538; sulphide precipitation mechanisms, ore fluid migration, fluid inclusion evidence, 92M/2975; Viburnum Trend, West Fork mine, mineralogy, paragenesis, min. zoning, 92M/2744

MONTANA, burial diagenesis in two Tertiary basins, 92M/0191; epithermal Au deposits, history, production, geol., 92M/0332; heat-treated sapphire, gem notes, 92M/1614; hydrothermal alteration haloes, soil anomalies over concealed talc bodies, 92M/0311; Proterozoic Newland fm., Pb-Zn lead-zinc mineralization in pyritic shale, sandstone-hosted, origin, economic potential, 92M/1441; Bearpaw Mts, potassic mafic lavas, mineralogy, chem., origin, 92M/4413; Clark Fork valley, prediction of water-soluble concentrations in fluvially deposited tailings sediments, 92M/2787; Dry Cottonwood Creek, almandine inclusion in sapphire, 92M/1628; Ruby Range, petrogenesis, timing of talc formation, 92M/0386; Stillwater Complex, low-K granophyres, anals., origin, 92M/3062; Pb isotopic study, constraints on crustal contamination, source regions, 92M/0673; S isotope studies, 92M/0596; unnamed Re-Mo-Cu sulphide, crystal chem. of its synthetic equivalent spinel type, 92M/3308; anorthosite, genesis of compositional characteristics, 92M/4831

- -, NEVADA, evidence for supergene origin of alunite in sediment-hosted Au deposits, 92M/4343; homogenization, lowering of ¹⁸O/¹⁶O in mid-crustal rocks during extension-related magmatism, 92M/3063; manganoan fayalite in rhyolitic ash-flow tuff, 92M/0803; Alligator Ridge-Bald Mountain mining dist., Vantage, Au deposit, geol., geochem., 92M/0601; Carlin trend, disseminated Au deposits, 92M/3860; refractory ores, metallurgical, analytical, mineralogical features, 92M/0307; Carlin Trend, Goldstrike mine, Au deposits, geol., 92M/1493; Comstock Lode mining dist., fossil hydrothermal system. O isotope study. 92M/4229; Elko County, Hollister mine, hot spring deposit and related epithermal Au deposits, 92M/4021; Gold Quarry mine, Au deposit, geol., 92M/0305; Goldfield, Sandstorm and Kendall Au mines, ledge formation, 92M/2747; Great Basin, Las Vegas, isotopic evidence for lithospheric thinning during extension, 92M/4415; Humboldt County, McDermitt Hg deposit, radtkeite, new min., 92M/3336; Humboldt Range, schorl, dumortierite, zonally arranged in hydrothermal Ag-Au deposits, 92M/3254; Jerritt Canyon, Carlin-type Au deposits, geol., genesis, 92M/3862; Round Mountain, epithermal deposition of Au during transition from propylitic to potassic alteration, 92M/0595; Ruby Mts-E Humboldt Range core complex, O, H isotope study of high-grade metamorphism, anatexis, 92M/4225; Thirsty Canyon Tuff, limits to magma mixing based on chem., mineralogy of pumice erupted from chem. zoned magma body, 92M/2191; Timber Mountain/Oasis Valley Caldera Complex, Nd, Sr, O isotopic variations in metaluminous ash-flow tuffs, implications for origin, evolution of large-volume silicic magma bodies, 92M/1773; Yerrington, Ann-Mason, porphyry Cu deposit, hydrothermal alteration, O, H isotope characteristics, 92M/2978; Yucca Mountain, erionite in tuffs, XRD detection of tr. amounts, 92M/2008; eruptive probability calculation, statistical estimation of recurrence rates, 92M/3502
- -, NEW JERSEY, Rn-222 and parent radionuclides in groundwater, 92M/0742; tr. metals, dissolved organic C in estuaries, offshore water, 92M/4500; Franklin. cianciulliite, new min., 92M/3330; Lime Crest and Sterling Hill, Franklin Marble, Ba-rich micas, occurrence, 92M/3273; New generation Highlands, trondhjemite from partial melting of dacite under granulite facies condns., 92M/0886; Hill, franklinite-magnetite-Sterling pyrophanite intergrowths in Zn deposit, 92M/4643; metamorphosed Zn-Fe-Mn deposit, petrol., stable isotope geochem., 92M/2974; Sussex County, Beemerville, nepheline syenite, pyrophanite-ilmenite solid solution in magnetite, 92M/2015

- -, NEW MEXICO, Bloodgood Canyon and Shelley Peak, tuffs, magnetic fabrics, implications for emplacement, alteration processes, 92M/1077; Catron County, Black Range Sn dist., maxwellite, squawcreekite, new mins., min. data, 92M/0878; Central Mining Dist., Groundhog vein system, alteration, fluid inclusion study, 92M/4022; Chloride mining dist., St. Cloud and U.S. Treasury mines, geol., geochem. anal. of mineralizing fluids, 92M/3169; Delaware Basin, fossil meteoric groundwaters, 92M/4206; El Paso area, Eocene intrusive rocks and enclaves, mineralogy, geochem., 92M/1778; Lemitar Mts, altered rocks assoc. with carbonatites, mineralogy, geochem., 92M/4908; geol., regional implications of carbonatites, 92M/2192; Mogollon-Datil, volcanic rocks, Sr, Nd isotopic study, 92M/4417; Otero County, C, O isotopes in Pennsylvanian biogenic, abiogenic aragonite, laser microprobe study, 92M/1706; Rio Grande Rift, Cerros del Rio volcanic field, diverse mantle, crustal components in lavas, 92M/1777; Roosevelt County, spinel-bearing, Al-rich chondrules in chondrites, indicators of nebular and parent body processes, 92M/4576; Taylor Creek, compositional gradients in silicic magma reservoirs evidenced by ignimbrites vs rhyolite lava domes, 92M/4418; rhyolite, volatiles, lithophile elems. in, constraints from glass inclusion anal., 92M/3066; Taylor Creek Rhyolite, rhyolite-hosted Sn mineralization, origin, 92M/1442; Valles caldera, P, vol., T states within VC-2B corehole, 92M/2935; radical S isotope zonation of pyrite accompanying boiling, epithermal Au deposition, SHRIMP study, 92M/4344
- -, NEW YORK, anorogenic magmatic complex, early history, 92M/2809: Adirondack Mts, anorthosite, basic rocks, petrol., geochem., 92M/4409; basic dykes, geochem., implications for late Proterozoic continental riftings, 92M/4408; fluid inclusions in granulites, implications for retrograde P-T path, 92M/0723; steep O-isotope gradients at marble-metagranite contacts, products of fluid-hosted diffusion, 92M/3104; Adirondack Highlands, Benson mines, wagnerite with isokite, 92M/4671; Adirondack lowlands, Hyde School, gneiss, age, field, petrol. relationships, criteria for intrusive igneous origin, 92M/3457; Balmat, Proterozoic evaporite basin, isotopic geochem., 92M/0700; Fowler, Mn-rich silicic edenite in Grenville marble, 92M/1977; Hudson Highlands, monazitexenotime gneiss, U/Pb geochronol. constraints on origin of, 92M/0058; Johnsburg, paragenesis of serendibite, example of B enrichment in granulite facies, 92M/2808; Shawangunk Mts, Zn-Pb-Cu veins, chem., isotopic, fluid inclusion data, 92M/1696
- —, NORTH CAROLINA, geol. map, 92M/4001; heavy min. deposits in upper coastal plain, 92M/2772; N isotope tracers of atmospheric deposition in coastal shelf waters, 92M/2786; Ashe and Alligator Back fms., amphibolites, samples of late

- Proterozoic-early Palaeozoic oceanic crust, 92M/3105; Kings Mt, pegmatite, cation distribn. in partially ordered columbite, 92M/2648; Virgilina district, Cu-bearing vein deposits, post-Acadian metasomatic origin for, 92M/2741
- —, OHIO, authigenic K-feldspar in Precambrian basement, effect on tectonic discrimination of granitic rocks, 92M/3060; Albion Sandstone, formation waters from Silurian Clinton fm., geochem., 92M/1843
- —, OKLAHOMA, Arbuckle, Cambro-Ordovician limestone, geochem., implications for diagenetic δ¹⁸O alteration, secular δ¹³C, ⁸⁷Sr/⁸⁶Sr variation, 92M/1799; Paoli, Ag-Cu deposit, ore microscopy, 92M/0314
- -, OREGON, Abert Lake, sedimentary assemblage, weathering, diagenesis, AEM-TEM study, 92M/1371; volcanic rocks, weathering, diagenesis, AEM-TEM study, 92M/1370; Columbia River, beach placer deposits at river mouth, 92M/4026; Lake County, Rabbit Hills, labradorite, gem props., 92M/4176; Ponderosa mine, sunstone labradorite. gem quality, 92M/4177; Steens Mountain, basalt, laser probe 40Ar/39Ar dating, age of geomagnetic polarity transition, 92M/0059; Succor Creek, stepwise dehydration of heulanditeclinoptilolite, single-crystal X-ray study at 100 K. 92M/2877
- —, PENNSYLVANIA, Appalachians, Valley-and-Ridge province, CH₄-rich inclusions from quartz veins and anthracite fields, 92M/1195; Pennsylvania Piedmont, State-line, serpentinite, shear zone control on min. deposits, 92M/0310
- —, RHODE ISLAND, Narragansett Basin, detrital muscovite, ⁴⁰Ar/³⁹Ar dating, implications for rejuvenation during very low-grade metamorphism, 92M/3742
- —, SOUTH CAROLINA, Carolina Slate Belt, Haile Gold mine, controls on syntectonic replacement mineralization in parasitic antiforms, 92M/2742; Haile Gold mine, hydrothermal K-feldspar, occurrence, 92M/2743; Hammett Grove, meta-igneous suite, tr.-elem. geochem., oceanic origin for, 92M/3059; Lake Murray spillway, exhumation of high P pelitic schist, evidence for crustal extension during Alleghanian strike-slip faulting, 92M/2317; S Appalachian Piedmont, rodingite, petrol., 92M/3601; Santee River area, Middle Eocene, late Oligocene isotopic dates of glauconite, 92M/2435
- SOUTH DAKOTA, Black Hills, petrogenetic relationships between pegmatite, granite, based on geochem. of muscovite in pegmatite wall zones, 92M/4412; Proterozoic pelitic schists, petrogenesis, constraints on regional low-P metamorphism, 92M/3399; Black Hills, Harney Peak, Proterozoic leucogranite, generation, crystallization condns., petrol., geochem. constraints, 92M/4410; Proterozoic leucogranite, stable isotope evidence for petrogenesis, fluid evolution, 92M/4411
- -, TENNESSEE, Ducktown, fluid inclusion constraints on uplift history of

metamorphosed massive sulphide deposits, 92M/1490; postentrapment H diffusion into peak metamorphic fluid inclusions from massive sulphide deposits, 92M/1700; rotational fabrics in pyrite, 92M/3304; Elmwood, fine specimens of calcite, 92M/3703; Mississippi Valley-type districts, fluid inclusion gas chem., evidence for immiscibility, implications for depositional mechanisms, 92M/4255

-, TEXAS, El Paso area, Eocene intrusive rocks and enclaves, mineralogy, geochem., 92M/1778; Falls County, Brazos River, misconceptions concerning Cretaceous/Tertiary boundary, 92M/4603; Franklin Mts, Castner Marble, Proterozoic, metamorphism, contact progressive 92M/3602; Frio fm., regional variations in formation water chem., major, minor elems., 92M/4502; Gulf coast, Sr, Nd isotopic evidence for clay diagenesis, 92M/1304; Llano uplift, coronal reaction textures in garnet amphibolites, 92M/1197; Palo Duro Basin, REE in chloride-rich groundwater, 92M/4503; Travis Peak fm., Lower Cretaceous, evolution of porosity, permeability in, 92M/3671

—, UTAH, red beryl, genesis, growth, 92M/0817; Henry Basin, tabular-type V-U deposits, genesis, 92M/0593; V geochem. in epigenetic, sandstone-hosted V-U deposit, 92M/0594; Honeycomb Hills, rhyolite, eruptive pegmatite magma, 92M/2190; Lisbon Valley, fluid inclusion, δ¹⁸O, ⁸⁷Sr/⁸⁶Sr evidence for origin of fault-controlled Cu mineralization, 92M/1705; Mercur Au deposit, gillulyite, new Tl As sulphosalt, 92M/0876; Tooele Country, U.S. mine, tooeleite, new min., 92M/3338

-, VERMONT, relative scales of thermal-, fluid infiltration-driven metamorphism in fold nappes, 92M/1193; Waits River fm, highly aluminous hornblende from low-P metacarbonates, thermodynamic model for

Al content of calcic amphibole, 92M/0825

—, VIRGINIA, heavy min. deposits in upper coastal plain, 92M/2772; metapelite, allochem. retrograde metamorphism in shear zones, 92M/2316; reconnaissance exploration for heavy mins. on continental shelf, 92M/0385; relative Rn levels, 92M/2785; tantalian, niobian resources, 92M/4000; Blue Ridge province, lithofacies of Precambrian basement complex, 92M/3659

—, WASHINGTON, magmatic models, chem. cycles, revised hazards assessment, volcanic eruptions, decade after 1980 eruptions, 92M/3503; petrogenesis, geol. history of U source rock, 92M/2934; Cascades, Ca depletion haloes, Fe-Mn-Mg zoning around faceted plagioclase inclusions in garnet from high-grade pelitic gneiss, 92M/0806; Cascadian subduction zone, radiocarbon dating of coastal trees, test of earthquake magnitude, 92M/2124; Columbia River, beach placer deposits at river mouth, 92M/4026; Mt St. Helens, groundmass crystallization of dacite, 1980–1986, tool for interpreting shallow magmatic processes, 92M/4859; ²³⁸U–²³⁰Th–²²⁶Ra disequilibria

in volcanic rocks, time constraint for formation, crystallization, magma 92M/3744; Mt St. Helens, Loowit Canyon, tritium in thermal water, 92M/3123; Okanogan County, Buckhorn Mt, Au skarn deposit, geol., alteration, mineralization, 92M/2746; Olympic Peninsula, biomarkers in Tertiary mélange, 92M/3138; Wenatchee, aquifer-controlled. arkose-hosted, mineralization, epithermal Au-Ag 92M/2745

—, WISCONSIN, crust-enriched, mantlederived tonalite in early Proterozoic Penokean orogen, 92M/1772; Neda fm., ancient atmospheric CO₂ P inferred from natural goethites, 92M/4033; Ritchie Creek Main Zone, Proterozoic Cu-Au volcanogenic massive sulphide deposit, 92M/4020

, WYOMING, thermogravimetric study of desorption of cyclohexyl-amine, pyridine from acid-treated bentonite, 92M/2553; Leucite Hills, F-bearing phases in lamproites, 92M/0675; Maloin Ranch Pluton, Nd, Sr, Pb isotopes, implications for origin of evolved rocks at anorthosite margins, 92M/0674; Morton Pass, Laramie anorthosite, contact metamorphism, partial melting of pelitic rocks, 92M/1115; Rock Springs uplift, Fox Hills Sandstone, petrol., 92M/1112; Teapot Dome, palaeobotanical evidence for June 'impact winter' at Cretaceous/Tertiary boundary, 92M/0798; Yellowstone, biogeochem. of hot spring envts., lipid compns. of cyanobacterial, Chloroflexus mats, 92M/4534

URAL MTS., emeralds, anals., 92M/1620; garnet, gem notes, 92M/4194

Uraninite, Brazil, Bahia, Lagoa Real, metamorphism, metasomatism, mineralization, 92M/2751; Czech Republic, Bohemia, assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061; assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; France, Massif Central, Brame/Saint-Sylvestre/Saint-Goussaud, paragenesis, in granite, 92M/0618; Gabon, Oklo natural reactors, organic matter and containment of U and fissiogenic isotopes, 92M/4325

—, pitchblende, Czech Republic, Jachymov, partial replacement by pitchblende, 92M/1946; France, Gironde, Coutras deposit, in palaeodeltaic envt., 92M/1661

Uranium, detn. in groundwaters, highperformance liquid chromatography, 92M/0096; in ocean sediments, porewaters, 92M/0725; modelling solution equilibria for U ore processing, PbSO₄-H₂SO₄-H₂O₅ PbSO₄-Na₂SO₄-H₂O systems, 92M/4078; UO₂²⁺/U⁴⁺ redox potential, 92M/2820; France, Gironde, Coutras deposit, in palaeodeltaic envt., 92M/1661; Massif Central, Brame/Saint-Sylvestre/ Saint-Goussaud, granite, mapping, application to U prospecting, 92M/0618; Gabon, Oklo natural reactors, organic matter and containment of, 92M/4325; USA, Hawaii, Kilauea, behaviour of U decay chain nuclides and Th during flank eruptions, 1983-1985. 92M/4398; Washington, source rock. petrogenesis, geol. history, 92M/2934

deposits, comparison between Pb isotopes, ²³⁴U/²³⁸U activity ratio, saturation index in hydrogeochem, exploration for, 92M/1882; retrograde alteration of clay mins. in, radiation catalyzed or low-T exchange, 92M/0590; Australia, unconformity-related. fluid inclusion evidence on origin, 92M/1679; Brazil, Bahia, Lagoa Real, metamorphism, metasomatism. mineralization, 92M/2751; China, 633-2 U deposit, relationship of faulting to 92M/0364; mineralization, Gabon, Proterozoic), geol., 92M/2677; Germany, Schwarzwald, Krunkelbach, correlation of radiometric ages with min. stages, fluid 92M/1458; inclusions. Thuringia. Ronneburg, geol., mining, 92M/2710; E Germany, production, 92M/0319; Niger, Akouta, U-Pb, Sm-Nd, K-Ar systematics, 92M/1268; former USSR, occurrence, geol. prospecting, mining methods, 92M/1425

mineralization, Brazil, Paraiba, Espinharas, geochem., 92M/1902; China, relations between red beds and, 92M/0558; South Africa, Karoo Basin, anal. of termite hills to locate, 92M/3185; Switzerland, Valais, Siviez-Mischabel nappe, greenschist facies, U-Pb, U-Xe, U-Kr systematics,

92M/0023

— minerals, Germany, Thüringen, Ronneburg, occurrence, 92M/2363

— -series dating v. age determination URUGUAY, Depto Rivera, Zapucay, Au mine, geochem., structl. geol., 92M/3931

Urvantsevite, revised unit-cell dimensions, space group, chem. formula, 92M/2628 Uvarovite v. garnet

Uvite v. tourmaline

Vaesite, USA, Missouri, Viburnum Trend, occurrence, 92M/3704

Valentinite, Austria, Styria, Öblarn, occurrence, 92M/3695

Vanadinite, England, Warwickshire, Judkins Quarry, occurrence, 92M/2358

Vanadium, thermodynamics, kinetics of reactions involving V in natural systems, 92M/4080; Brazil, Bahia State, Iramaia sheet, geochem. prospecting, 92M/1877

 deposits, USA, Colorado Plateau, Morrison fm., tabular, genesis of, organic matter diagenesis, 92M/4541

 -- uranium deposits, USA, Utah, Henry Basin, epigenetic, sandstone-hosted, V geochem., 92M/0594; USA, Utah, Henry Basin, tabular-type, genesis, 92M/0593

VANUATU, magmatism of troughs behind island arc, K-Ar geochronol., petrol., 92M/0661; *Ambrym caldera*, pyroclastic deposits, petrol., 92M/3553

VENEZUELA, extra-heavy crude oil, organic geochem., molecular assessment of biodegradation, 92M/1871; Isla Margarita, La Rinconada and Juan Griego groups, eclogite-bearing series, geochem. of metabasic lithols., 92M/0724; Venezuela Basin, sediments, pyrolysis—MS, multivariate data anal., 92M/1870

Vermiculite v. clay minerals

Vesigniéite, Namibia, Gorob-Hope Cu deposit, new occurrence, min. data, 92M/3303

Vesuvianite v. idocrase

VIETNAM, laterite bauxite, weathering products of basalt, petrol., 92M/3579; ruby, found to be synthetic, gem notes, 92M/4194; ruby, sapphire, gemmology, 92M/1617; Dong Pao, bastnäsite-baryte-fluorite deposit,geol., 92M/2729

Viitaniemiite, Afghanistan, Pabrok, occurrence, 92M/3700; Russian Federation, Pamirs, from miarolitic pegmatites,

92M/2065

Vinogradovite, structl. refinement, positioning of Be, excess Na, 92M/3840

Violarite, Germany, KTB pilot hole, occurrence in metamorphic rocks, 92M/0302

Vitrinite v. coal

Vitrophyre, *Italy, Alps, Tisana* and *Ora*, petrol., 92M/3418

Vitusite, apatite derivative struct., 92M/3850 Vochtenite, *British Isles*, occurrence, 92M/4990

Volborthite, Japan, Gifu Pref., Unuma, in siliceous sedimentary rocks, min. data, 92M/3302

Volcanic arcs, Greece, Sithonia, geol., geochem., evolution of oceanic crustal rift, 92M/3542; Morocco, Anti-Atlas, Jbel Saghro, Panafrican, and wrench fault tectonics, evidence for, 92M/4802; New Zealand, Northland Peninsula, Miocene volcanic/plutonic complexes, petrol., 92M/4819; USA, California, Klamath Mts, Permian, geochem. variations, 92M/0679

— areas, Ethiopia, evolution of, 92M/4840; Canada, Slave Province, angular, Archaean, structl. development, discussion, 92M/0962, reply, 92M/0963; Spain, Pyrenees, Olot, geophys. constraints on crustal struct., 92M/2214; USA, Alaska, Blackburn Hills, isotopic, chem. constraints on petrogenesis, 92M/4403

ash, embryonic halloysites in paddy soil derived from, 92M/0196; TL dating, 92M/3707; use of glass for dating by TL, 92M/2437; Costa Rica, Cainozoic, weathering products of, 92M/3804; Japan, Niigata Pref., Uonuma group, Pliocene, Pleistocene, fission track dating, 92M/0046; Mexico, Volcán de Colima, pristine block-, ash-flow deposits, 1991, field observations, 92M/3506; New Zealand, Mayor Is., fused tree moulds in unwelded airfall deposit, 92M/4853; Pacific, Lau and North Fiji basins, calcareous ooze, metalliferous sediments in Quaternary, 92M/2103; in sediments, mineralogy, chem. compn., origin, 92M/2109; USA, Arizona, Jurassic ash-flow sheets, calderas, related intrusions, Cordilleran volcanic arc, implications for regional tectonics, ore deposits, 92M/4858; Central Appalachian basin, Princess No. 6, Pennsylvanian, mineralogy, 92M/3501

eruptions, buoyant, superbuoyant, collapsing eruption columns, 92M/1035; soil gas emanations as precursory indicators of, 92M/1028; thermal disequilibrium at top of volcanic clouds, effect on estimates of column height, 92M/4834; world, annual

report, 1988, 92M/2195; Chile, Andes, Volcán Quizapu, petrol., 92M/3509; Iceland, Lakagigar, 1783, geochem., CO2, S degassing, 92M/1032; Surtsey, 1965, high, low P phase equilibria of mildly alkalic lava, exptl. results, 92M/4070; Indonesia, Galunggung, amphibole in gabbroic cumulates assoc. with andesite, 92M/1012; Italy, Aeolian Is., La Fossa di Vulcano, role of magma mixing during recent activity, 92M/3478; Vesuvius, 1906 eruption, magmatic to phreatomagmatic activity through flashing of shallow depth hydrothermal system, 92M/2211; geol., failure condns., implications of seismogenic avalanches of 1944 eruption, 92M/3477; Japan, off E Izu Peninsula, 1989 submarine eruption, ejecta, eruption mechanisms, 92M/1057; New Zealand, Taupo Volcano, Waimihia, petrol., dynamics of mixed magma eruption, 92M/4850; New Zealand, White Is., 1976-1982 Strombolian, phreatomagmatic, eruptive, depositional mechanisms at 'wet' volcano, 92M/3495; Philippines, Luzon, Mt Pinatubo, 1991, basalt trigger for, 92M/4845; Spain, Canary Islands, Lanzarote, 1730, struct., petrol. evolution, 92M/2227; USA, Alaska, Augustine, 1986, multispectral image processing of digital AVHRR weather satellite data, 92M/1071; California, Long Valley Caldera, role of magma, groundwater, in phreatic eruptions, 92M/3504; Washington, magmatic models, chem. cycles, revised hazards assessment, decade after 1980 eruptions, 92M/3503

— exhalations, *Italy, Aeolian Is., Panerea*, submarine, geochem. study, 92M/1047

 front, Mexico, San Sabastian, potassic, lamprophyre lava, petrol., 92M/3505

gas, Cameroon, Lakes Nyos, Monoun, Germany, Laacher See, Indonesia, Dieng, Australia, Mt Gambier, CO2-rich, variations on common theme, 92M/1037; Indonesia, Sunda and Banda arcs, chem., isotopic compns., 92M/4392; Italy, Aeolian Is., Vulcano, continuous monitoring emanations, 92M/3483; Vulcano Is., fumarolic, chem. variations in, seasonal, volcanic effects, 92M/1048; Japan, meteoric interaction with magmatic discharges, significance for mineralization, 92M/3493; Japan, Mt Usu, and rock, partition of As, P between, 92M/1059; New Zealand, White Is., radioactive isotopes, tr. elems. in, 92M/4848; Russian Federation, Kamchatka, Klyuchevskoy volcano, from 1988 eruption, chem., isotopic compns., 92M/1056

— glass, critical role of T in natural zeolitization of, 92M/1038; submarine, effect of bulk compn. on speciation of water in, 92M/4350; Lau Basin, from two spreading centres, compns., 92M/2112

— hazard assessment, Ecuador, Guagua Pichincha, based on past behaviour, numerical models, 92M/4868; USA, Yucca Mountain, eruptive probability calculation, statistical estimation of recurrence rates, 92M/3502

— passive margin, Yemen, Aden, petrol., 92M/0999 — plumes, distribn. of metals between particulate, gaseous forms, 92M/1066; particle fallout, thermal disequilibrium, 92M/2197

- rocks, resetting of Rb-Sr agas by low-grade burial metamorphism, 92M/1245; young island arc, and oceanic sediments, Th, Pb, isotope variations, 92M/0665; Antarctica, Marie Byrd Land, relation to Cainozoic W Antarctic rift system, 92M/4710; South Shetland Is., King George Is., microcrystalline quartz in, geochem. study, 92M/2969; Atlantic, Inaccessible Is., geol., geochronol., 92M/3450; Tristan da Cunha, Inaccessible Island, geochem., 92M/1738; Bosnia, Doboj, basic, petrogr., 92M/2226; Canada, Ontario, volcanic rocks, Huronian continental, geochem. stratigr., contributions of two-stage crustal fusion, 92M/4405; Canada, Miramichi Highlands, Ordovician, geochem. variations in, tectonic significance, 92M/1768; China, Cainozoic, major elem., REE, Pb, Nd, Sr isotopic geochem., implications for origin from suboceanic-type mantle reservoirs, 92M/1751; Xinjiang, Junggar, Devonian bimodal assocn. of, 92M/4842; Yangtze Craton, Qinling Orogenic Belt. geochem., 92M/1750; post-Archaean, Colombia, Gorgona Is., Re-Os isotopic constraints on origin of, Os isotopic evidence for mantle heterogeneities, 92M/0681; Czech Republic, Chvaletice, armenite-feldspar veins in, 92M/1962; England, Cumbria, Lake District, Eycott Volcanic group, field, biostratigraphic evidence for unconformity at base, 92M/3382; Finland, Mustajärvi area, zircon U-Pb dating, 92M/3366; France, Corsica, Mt Cinto, Palaeozoic, petrol., 92M/3419; Germany, Bavaria, Bohemian Massif, petrol., 92M/4835; Kaiserstuhl, alkaline, isotope studies, 92M/4367; Saxony, Erzgebirge, Carboniferous to Permian, geochem., 92M/3009; Upper Rhine rift valley, Kaiserstuhl, alkaline, Pb systematics, 92M/3010; Greece, Hellenic Paranestion, Rhodope, geochem., 92M/0635; Peloponnesus, Pindos Nappe, petrol., 92M/4839; Greenland, Disko Is., metallic Fe-bearing, sediment-contaminated Tertiary, Nd, Sr isotope chem., 92M/4354; India, Garhwal Himalaya, geochem., petrogenesis, implications for evolution of lithosphere, 92M/0646; Jammu and Kashmir, Ladakh, Indus suture zone, Dras, Shyok, Khardung and Chushul, petrochem., tectonic envt., comparative study. 92M/0930; Singhbhum, Jagannathpur, nature, magma type, 92M/3026; Singhbhum craton, Dhanjori, geochem. evidence for volcanic arc tectonic setting, 92M/4385; Italy, alkaline potassic, B, Cs, Li distribn. in, 92M/3014; Italy, Alban Hills, Quaternary, ⁴⁰Ar/³⁹Ar dating, 92M/3722; Pontine Is., M. Ernici and Campania, comparisons of ¹⁸O/¹⁶O, ⁸⁷Sr/⁸⁶Sr in, 92M/4221; Roman volcanic province, excess Ar geochem. in, 92M/1729; Trentino, Permian, and Cima d'Asta plutonic rocks, geostatistical comparison

Vulsini Dist anal.. 92M/0628: Montefiascone Volcanic complex, structl. setting, magmatic evolution, 92M/1040; Japan, Hachijojima Is., Nishiyama volcano, major-elem. chem., 92M/3490; Hime-shima, Sr isotope compns., magma mixing, disequilibrium hornblende, 92M/3038; Kyushu, Hime-Shima, petrol., 92M/3489; Ryukyu, Aguni-jima Is., Higashi fm., petrol., 92M/0654; Shimane Pref., Oki Is., Dogo, temporal variations of Sr isotopic compns., 92M/3039; Japan arc, Pliocene, lateral variation of major, tr. elems, in, 92M/0652; New Zealand, Canterbury, Rakaia Gorge and Malvern Hills, mid-Cretaceous, petrol., 92M/4854; Egmont Volcano, young, Pb-Nd-Sr isotopic compns., tr. elem. characteristics, comparisons with Taupo Volcanic Zone, 92M/4274; Northland Allochthon, Tangihua, small volcanic masses, tectonic significance, 92M/4702; Northland, Purerua Peninsula, geol., Wellington, Red 92M/4701; Rocks. whole-rock, min. anal., 92M/1646; Nicaragua, La Libertad gold mining dist., mineralogic alteration patterns in, 92M/3461; Pacific, Lau Basin, petrol., 92M/2111; tr. elem., isotopic geochem., 92M/2113; Marquesas, Eiao Is., logging data, 92M/3676; Solomon Is, Bonin Is., island arc. Ce, Nd isotope geochem., existence of sources with concave REE patterns in mantle, 92M/4390; Pakistan, in Tethyan suture zone, origin of, 92M/3544; Papua New Guinea, marine, mid Cretaceous Palaeogene, distribn.. mineralization, 92M/3394; Spain, Canary Is., Fuerteventura, Sr-Nd-Pb isotope data, applications to magma genesis, evolution, 92M/1735; Gran Canaria, Sr-Nd-Pb isotopic evolution, evidence for shallow enriched mantle, 92M/3017; Lanzarote, crystal population density in, 92M/3436; Sweden, Bergslagen, Mg-altered felsic, metamorphism of, transition Mg-chlorite- to cordierite-rich rocks, 92M/2262; Switzerland, Grisons, Julier, volcanic, tectonic evolution, 92M/1050; Turkey, Tertiary, Quaternary, crust-mantle interaction, implications from Sr, Nd isotope geochem., 92M/1733; E Pontides, Lower Volcanic Cycle, geochem. of hydrothermally altered rocks, 92M/1734; United Arab Emirates, Dibba zone, Semail ophiolite, metamorphosed, geochem. studies, 92M/1743; USA, Alaska, Akutan Is., igneous petrol., geochem., 92M/3499; California, Klamath Mts, magnesian, metamorphism, geochem., origin, 92M/3065; Colorado, San Juan volcanic field, Nd, Pb isotope variations in multicyclic central caldera cluster. implications for crustal hybridization. 92M/1774; New Mexico, Mogollon-Datil, Sr, Nd isotopic study, 92M/4417; Oregon, Abert Lake, weathering, diagenesis, AEM-TEM study, 92M/1370; Washington, ²³⁸U-²³⁰Th-²²⁶Ra Helens, disequilibria in, time constraint for magma formation, crystallization, 92M/3744

— tremor, *Italy, Mt Etna*, 1984–1985, relationship to eruptive activity, modelling of summit feeding system, 92M/1043

Volcaniclastic deposits, hydrothermal mins. in, 92M/3464; Atlantic, Azores, Flores, lithol., envt. of formation, 92M/1054; Germany, Bavaria, Bohemian Massif, petrol., 92M/4835; Japan, Honshu, Kamikita, thermally metamorphosed, smectite to chlorite transformation in, 92M/0178; Pacific, Lau and North Fiji Basins, submarine, origin, alteration, 92M/2110; USA, Alaska, Cook Is., Mt St. Augustine volcano, cyclic formation of debris avalanches, 92M/4857

Volcanism, and plutonism, metallogenesis, in continental crust, relationships between, 92M/2657; explosive, subaqueous, intermediate to silicic, review, 92M/1036; oceanic islands and seamounts, 92M/2239; Africa, Karoo flood basalt, MORB-related dolerite assoc. with final phases of, 92M/4730; Antarctica, King George ls.,Fildes peninsula, island-arc, 92M/1757; Canada, characteristics, Ontario, Kirkland Lake, Larder Lake group, late Archaean, repetitive cyclical. implications of geochem. on magma genesis, 92M/3052; Chile, Andes, Tertiary Andean, in caldera-graben 92M/1084; Finland, Kiihtelysvaara-Tohmajärvi dist., Proterozoic, geochem., 92M/3002; Italy, Aeolian arc, Lipari, temporal evolution of three component system, 92M/0633; Neapolitan area, Tyrrhenian margin, phys. model for origin, 92M/2207; Pantelleria, explosive, recent, 92M/1049; Roman Volcanic Province, petrogenesis, tectonic setting, 92M/4836; Sicily, Calabrian-Peloritan arc, Devonian, Carboniferous, evolution of Palaeozoic basins, 92M/0634; Mt Etna, pattern recognition applied to, identification of precursory patterns to flank eruptions, rest periods, 92M/1044; Sila, Bocchigliero, Palaeozoic sequence, age of, 92M/1262; Tuscan magmatic province, Roccastrada and San Vincenzo centres, recent, geochem., 92M/0627; Japan, South Fossa Magna region, explosive, breccia pipes, linear arrangement, 92M/1060; Pacific, Society Is. and Austral Is., submarine intraplate, geol. setting, petrol., 92M/3047; Pakistan, Kohistan, Chalt volcanics, high-Mg tholeiitic. low-Mg calc-alkaline. Cretaceous island arc, 92M/0924; Spain. Pyrenees, Catalonia, Permo-Carboniferous, caldera-like structs. related to, 92M/1039; Syria and Lebanon, between Jurassic, Recent, 92M/4381; USA, California, San Joaquin basin, basalt-rhyolite, MORB-continental crust interaction, Nd. Sr-isotopic, geochem. evidence, 92M/3064; Yucca Mountain, basaltic, time trend anal... 92M/1076; Wales, Ordovician bimodal. geochem. evidence for petrogenesis of silicic rocks, 92M/0616; Snowdonia, marginal basin, Ordovocian, 92M/3476

Volcano monitoring, real-time seismic amplitude measurement, prediction tool, 92M/2196

— -sedimentary sequences, Brazil, Mara Rosa, and assoc. Au mineralization, 92M/3883; Italy, multi-method radiometric dating, age, duration of Priabonian stage, 92M/2408; South Africa, Witwatersrand triad, age, evolution, zircon ion microprobe studies, 92M/2411; Turkey, Inner Albanides, Jurassic, petrol., 92M/3390

Volcanoes, active, secular variations in He isotope ratios in, eruption, plug hypothesis, 92M/3494; basaltic, fractal anal. of eruptive activity, 92M/1029; global CO2 emission to atmosphere by, 92M/4294; IR monitoring by satellite, 92M/1027; monitoring by microgravity, energy budget anal., 92M/1026; nature of, (book), 92M/1331; silicic, gas content, eruption rate, instabilities of eruption regime in, 92M/1030; Chile, excessive SO2 emissions, 92M/1085; Costa Rica, Poás Volcano, new measurements of SO₂ flux, 92M/4867; Ecuador, Guagua Pichincha, geochem. in volcanic surveillance. 92M/1081; Greece, Aegean island arc, Nisyros, monitoring O fugacity condns. in pre-, syn-, postcaldera magma chamber, 92M/1052; Guadeloupe, La Soufrière, volcanic activity, structl., tectonic implications, 92M/4861; Iceland, subglacial, degassing, differentiation in, 92M/1034; Iceland, Hekla, 1991 eruption, 92M/3474; Krafla, elastic deformation models, 1975-1985, 92M/1033; geochem., isotopic evidence for crustal assimilation, 92M/1716; Indian Ocean, Macdonald seamount, gas-rich submarine exhalations during 1989 eruption, 92M/3552; Italy, Campi Flegrei caldera, history of earthquakes, vertical ground movement, comparison of precursory events, 92M/2201; stress pattern from focal mechanisms of 1982-1984 earthquakes, 92M/2204; tidal signal in recent dynamics, 92M/2202; vertical ground movements as chaotic dynamic phenomenon, 92M/2203; Naples, Campanian Plain, activity of, 92M/2198; Phlegrean Fields, 1980-1990, 10 yrs of geochem. investigation, 92M/2206; Roccamonfina, magmatic activity, petrol., geochem., relationships with Campanian volcanics, 92M/3484; Sicily, Mt Etna, eruptive, diffuse emissions CO₂ from, 92M/1045; ground deformation monitoring, evidence for dyke emplacement, slope instability, 92M/1046; importance of gravitational spreading in tectonic, volcanic evolution, 92M/4837; Japan, Izu-Oshima, isotropic source of volcanic tremor, observation with dense seismic network, 92M/3492; Izu peninsula, Higashi-Izu, monogenetic, implication of xenocrysts, time, spatial variation of ejecta, 92M/1014; Shiretoko peninsula, Pleistocene submarine, reconstruction of, radial dyke swarms, 92M/4722; Japan Sea, Shiribeshi volcano, Quaternary, geochem., 92M/3034; Mexico, Colima, monitoring using satellite data, 92M/2230; Fuego de Colima, eruptive, magmatic cycles, 92M/1080; New Zealand, Mayor Is., strombolian deposits, 92M/4852; Ruapehu Crater Lake, heat source,

deductions from energy, mass balances, 92M/1070; Ruapehu and Ngauruhoe, search for volcano-magnetic effect, 92M/1064; Tahaa, Pacific. French Polynesia, exceptional REE enrichments in, 92M/3048: Galapagos Is., Fernandina, Sept. 1988 intracaldera avalanche, eruption, 92M/1082; Fernandina and Isabela, pattern of circumferential, radial eruptive fissures, 92M/1083; Pacific, S Honshu and E Mariana ridges, submarine, growth rate, comment, 92M/1091, reply, 92M/1092; Russian Federation, Kamchatka, Karymsky, eruptive history, tephra stratig., 14C dating, 92M/1055; Snaefellsjökull, increased mantle melting beneath, during late Pleistocene deglaciation, 92M/0612; Tanzania, Oldoinyo Lengai, 1966 ash eruption, mineralogy of lapilli, mixing of silicate, carbonate magmas, 92M/3488; USA, Hawaii, Hualalai and Mauna Kea, rock varnish, 92M/4856; Mahukona volcano, geol., petrol., 92M/1067; Mauna Loa, isotopic evolution, 92M/0667; Mururoa, evidence of early alteration process driven by magmatic fluid, 92M/1069; South Point, Puu Mahana, primary Surtseyan ash ring, 92M/4855

Vyalsovite, new sulphide-hydroxide of Fe, Ca, Al, 92M/4678 Wad, Germany, Thuringia, Ilmenau. Oehrenstock, occurrence. 92M/2365

Wadeite, Murunsky complex, in alkaline metasomatites, 92M/1947

Wadsleyite, Fe-free, high-P crystal chem., 92M/2603; high-P phase, finite-strain anal. of relative compressibilities, 92M/3664

Wagnerite, USA, New York, Adirondack Highlands, Benson mines, with isokite, 92M/4671

Wairakite v. zeolite

Wairauite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

WALES, influence of acidic mine, spoil drainage on water quality, 92M/1507; Ordovician bimodal volcanism, geochem. evidence for petrogenesis of silicic rocks, 92M/0616; Berwyn Hills, white mica crystallinity study, 92M/2279; Ceredigion, Al, heavy metals in potable waters, 92M/1505; Clwyd, Glyn Ceiriog, Hendre quarry, mineralization, 92M/2360; Dinas Mawddwy, Ordovician, Silurian strata, relationships, depositional, tectonic 92M/4886; Dolgellau, exploration guide to black shale-hosted Au deposits, 92M/3167; Dyfed. Llanidloes, Pen-y-clun mine, harmotome, occurrence, 92M/2361; Gwynedd, Penrhyn Du mine, phosgenite, first Welsh occurrence, 92M/2362; River Ystwyth, chem., phys. partitioning in contaminated stream sediments, 92M/1508; Snowdonia, Ordovocian marginal basin volcanism, 92M/3476; Welsh Basin, Corris Slate Belt, influence of strain, lithol., stratigraphical depth on illite crystallinity in mudrocks, implications for timing of metamorphism, 92M/2284

Warwickite, Fe-, Cr-rich, crystal chem.,

92M/1415

Water, fossil, H, O isotope history of Silurian-Permian hydrosphere determined by direct measurement of, 92M/4203; in astromatal plants, relationship between stable O, H isotope ratios of, 92M/4216; in coupled systems, heavy isotope enrichment of, 92M/4207; in vegetation, use of stable isotopes to characterize source of, 92M/3113: millilitre-size samples, microextraction technique for measuring DIC, ¹³C_{DIC}, ¹⁸O_{H₂O} from, 92M/2442; retrograde exchange of H isotopes between hydrous mins. and, at low T, 92M/4227; USA, Georgia, Piedmont, in small watershed, stable isotopic compn., 92M/4210; Wales, influence of acidic mine, spoil drainage on quality, 92M/1507

, aquifer, Canada, Alberta, Milk River, radiocarbon, stable isotopes in, 92M/1832

-, formation, USA, Ohio, Albion Sandstone, from Silurian Clinton fm., geochem., 92M/1843; Texas, Frio fm., regional variations in chem., major, minor elems., 92M/4502

-, groundwater, and concrete, chem. reaction between, implications for commissioning of observation boreholes in chalk, 92M/0388; chem. and Balkan endemic nephropathy, 92M/1503; extraction of low-level sulphide from, for S isotope anal., 92M/1310; mixing of young, old, ³H-⁴He dating, 92M/1824; nitrate-contaminated, denitrification in, occurrence in steep vertical geochem. gradients, 92M/0397; riverborne, seasonal biogeochem. cycles, 92M/4476; U detn., high-performance liquid chromatography, 92M/0096; South Australia, contaminated by liquid effluent, importance of methanogenesis for organic C mineralization in, 92M/1526; Australia, Victoria, Lake Tyrrell, acid-saline, naturally-occurring radionuclides 92M/4489; acidic, saline, discharge zone, sedimentary biogeochem., 92M/4487; REE distribn. in, 92M/4488; source, distribn., economic significance of tr. elems. in, 92M/4491; -surface water interactions, stable isotope investigation, 92M/4485; Botswana, Okavango Delta swamp, evolution, chem. sedimentation, carbonate brine formation, 92M/3116; Canada, Alberta, Milk River aquifer, isotopic dating methods, 92M/1839; 81Kr, 85Kr in, 92M/1835; measurements, interpns. of 36Cl in, 92M/1837; Ontario, shallow, controls on transport, C isotopic compn. of dissolved organic C in, 92M/1868; Canadian Precambrian Shield, nature of flow in fractured rock, evidence from isotopic, chem. evolution of recrystallized calcites, 92M/4304: England, Cornwall. Carnmenellis, REE geochem., 92M/1821; Finland, deep, in crystalline basement, implications for radioactive waste disposal studies, 92M/1516; N Finland, geochem., correlation of cancer incidence with, 92M/1506: Great Hungarian Plain, deep circulating, He in, flow dynamics, crustal, mantle He fluxes, 92M/4477; India, shallow, stable O, H isotope ratios in, role of evapotranspiration in monsoon, 92M/4209; Norway, Romerike, aqueous

geochem., 92M/4472; Portugal, Chaves, geochem., 92M/4475; USA, California, Long Valley Caldera, role of, in phreatic eruptions, 92M/3504; Georgia, Cumberland Is., mixing zone hydrochem. in confined aquifer system, 92M/3126; New Jersey and Maryland, Rn-222 and parent radionuclides in, 92M/0742; New Mexico, Delaware Basin, fossil meteoric, 92M/4206; Texas, Palo Duro Basin, chloride-rich, REE in. 92M/4503

-, hot spring, Japan, Tamagawa, changes in chem. compn., crystal growth rate of hokutolite from, 92M/2048; Taiwan, Peito, hokutolite. chem. compn., lattice parameters, 92M/2049

-, inland sea, Black Sea, redox cycling of REE in suboxic zone, 92M/4478

-, lagoon, Spain, Guadalauivir Delta, Santa Olalla Lagoon, hypereutrophic alkaline, sedimentary lipid biogeochem., 92M/1864

-, lake, surface, subject to acidic deposition, ICP-MS detn. of tr. elems. in, 92M/0105; Australia, Victoria, Lake Tyrrell, deposition of tr. elems., radionuclides in spring zone, 92M/4492; Canada, Ontario, Clearwater lake, recovery of highly acidified watershed simulated with ILWAS model, 92M/2784; France, Massif Central, Pavin lake, ²¹⁰Pb, ²²⁶Ra, ³²Si, 92M/4474; Japan, Lake Biwa, geochem, study on specific distribn, of Ba in, 92M/4482; Japan, Lake Mashu, mantle He flux from lake bottom, 92M/4481

mineral spring, Germany, Saxony, Erzgebirge, geochem., genesis of gases in, 92M/3115

-, natural, automated two-column ion exchange systems for detn. of speciation of tr. metals in, 92M/0093; ICP-MS anal., evaluation of sampling techniques, 92M/1504; Mg-hydroxide precipitation as pre-enrichment procedure for ICP-AES anal. of, 92M/1322; prelim. investigation of alternative buffers for detn. of fluoride in, 92M/3765; Finland, E Africa, occurrence, geochem. of fluorides in, geomedical implications, 92M/1517

-, porewater, distribn. of dissolved Fe in, at submillimetre resolution, 92M/0109

-, potable, Wales, Ceredigion, Al, heavy metals in, 92M/1505

-, rain-water, Italy, Vulcano, isotopic compn. of, implications for volcanic surveillance. 92M/4838; Israel, chloride-rich, ³⁶Cl in, 92M/4479

resources, terrestrial, anthropogenic air pollution, contamination source, 92M/2775

, river, Be isotope geochem, in tropical basins, 92M/4506; controls over Sr isotope compn. of, 92M/4505; estuarine, Be isotopes in, and oceanic budgets, 92M/0740; USA, Hudson River, P chem., 92M/0398; Mississippi River Delta, tr. elems., behavior at high discharge, 92M/3124; New Jersey, estuarine, tr. metals, dissolved organic C in, 92M/4500

-, sea-water, assessing sea-water/basalt exchange of Sr isotopes in hydrothermal processes on flanks of mid-ocean ridges, 92M/0737; -basalt interactions, metamorphic, hydrothermal processes, 92M/2238; C isotope shifts in

Pennsylvanian seas, 92M/1844; deep-ocean. effect of surface reactions on relative tr. elem. abundances in, 92M/0726; detn. of Ba in, using V/Si modifier and direct injection graphite furnace AAS, 92M/3756; detn. of Cu in, by anodic stripping voltammetry using 92M/3760; ethylenediamine, dissolution of calcite in, from 40° to 90°C at atmospheric P, 35% salinity, 92M/4143; distribn. patterns of elems. in, 92M/3112; Eu anomaly, implications for fluvial vs hydrothermal REE inputs to oceans, 92M/1829; influence of major ions of, on sorption by manganese Cu(II) oxyhydroxides, model of polymetallic ore formations in recent basins, 92M/2893; Neoproterozoic, Sr isotopic variations, implications for crustal evolution, 92M/1649; ¹⁸O/¹⁶O, ¹³C/¹²C in Palaeozoic articulate brachiopods, implications for isotopic compn, 92M/4471; ocean, decompn. by 40K radiation 3800 m.y. ago as source of O, oxidizing species, 92M/1816; occurrence of small colloids in, 92M/1817; oxidation kinetics of sedimentary pyrite in, 92M/4134; porewater, U in, 92M/0725; potential source of dissolved Al from resuspended sediments to North Atlantic Deep Water, 92M/1842; rapid change in Sr isotopic compn. of, before Cretaceous/ Tertiary boundary, 92M/0728; S isotopic variations during evaporation 92M/0437; fractional crystallization, shipboard detn. of Al at nanomolar level by capture detection electron chromatography, 92M/0095; shipboard flow injection method for detn. of Mn in, using preconcentration, in-valve catalytic spectrophotometric detection, 92M/2462; sorption of REE from, onto synthetic min. particles, exptl. approach, 92M/4075; Sr isotope evolution of, role of tectonics, 92M/4470; Sr isotope variation over past 300 kyr, influence of global climate cycles, 92M/4483; Sr isotopes at Cretaceous/ Tertiary boundary, 92M/0727; surface, of oceans at low latitudes, glacial/interglacial T range, 92M/4213; timescales for boundary event changes in O isotope compn. of, 92M/4201; Antarctica, Weddell Sea, Cd, Cu, Co, Ni, Pb, Zn in, 92M/0735; Atlantic, Sargasso Sea, Ce anomalies, 92M/1847; Ce redox cycles, REE in, 92M/1846; NE Atlantic, relationship between δ^{13} C of organic matter and [CO₂(aq)], 92M/4519; Atlantic, Pacific, Southern Ocean, dissolved organic C in, 92M/4531; Brazil, comparison of dissolved humic substances from, with Amazon River counterparts by 13C-NMR spectrometry, 92M/4547; Germany, Zechstein age, Sr, S isotopic compn. in, 92M/0730; Jamaica, Hope Gate fm., dolomitization by, reassessment of mixing-zone dolomite, 92M/4205; Mediterranean, REE in, mixing in Mediterranean outflow, 92M/0731; Mediterranean and Atlantic, U concn., relationship with salinity, 92M/0732; *Pacific*, fluxes of ²²⁶Ra, Ba, importance of boundary processes, 92M/3122; central equatorial Pacific, large-scale lateral advection of, through oceanic crust,

92M/1647; Pacific, N Fiji Basin Ridge, 17°S active site, chem. of hydrothermal fluids, 92M/3121; N Pacific, REE behaviour in, detn. of variations in, 92M/4498; Pacific, Indian Ocean, ³²Si profiles, 92M/3120; Spain, Gulf of Cadiz, tr. metal enrichments in, 92M/0729; USA, North Carolina, coastal shelf, N isotope tracers of atmospheric deposition, 92M/2786

—, stream, USA, Colorado, Clear Creek, contaminated by acid mine drainage, metal distribn. between water and entrained sediment, 92M/0400; USA, Colorado, St. Kevin Gulch, metal-rich, acidic, mechanisms of iron photoreduction in, 92M/4496

—, surface, southern Africa, U isotopes in, 92M/1823; SW England, radon in, bearing on U distribn., fault, fracture systems, human health, 92M/0391; Finland, Karevansuo virgin bog, lipids in, 92M/3152; USA, effects of silicate weathering on water chem. in forested, upland, felsic terrain, 92M/3125

thermal, Israel, Dead Sea, and assoc. brines, B isotope geochem. as tracer for evolution, 92M/0733; Italy, Latium. circulation, evolution of fluids, geothermal potential, 92M/3480; Japan, hot spring, min. spring, Sr isotopic compn., 92M/1826; New Zealand, Wanganui River, chem. anals., 92M/4497; Portugal, Chaves, geochem., 92M/4475; Taiwan, Chinghui geothermal area,, H, O isotopic compns., 92M/1827; USA, California, Clear Lake area, 129 I, 36 Cl concentrations in, residence times, source ages of hydrothermal fluids, 92M/4504; California, Long Valley caldera, and rocks, hydrothermal calcite, Sr-isotopic comparison between, 92M/3128; new evidence on hydrothermal system from wells, fluid sampling, electrical geophysics, age determinations of hot-spring deposits, 92M/3127; Long Valley hydrothermal system, chem. equilibrium, mass balance relationships assoc. with, 92M/3129; Washington, Mt St. Helens, Loowit Canyon, tritium in, 92M/3123

vapour, transpired by plants, isotopic compn., 92M/3111

 --- rock interactions, adsorption, hydrolysis reactions, quantum mechanical calculations, 92M/0440; exptl., silica geothermometers in Trange 100-350°C, 92M/2841

Websterite, South Africa, Finsch and Kimberley Pool, inclusions in diamond, Nd, Sr isotope systematics, 92M/1270

Weissite, revised unit-cell dimensions, space group, chem. formula, 92M/2628

Well logging, detn. of lithol. using neural network, 92M/3751; Germany, KTB pilot hole, Urach 3, logging tools, 92M/3747 Wellsite v. zeolite

 $\label{eq:weighted_weighted_weighted} Werdingite, crystal struct., relationship to sillimanite, mullite, grandidierite, 92M/0219; new phase in system MgO-Al_2O_3-B_2O_3-SiO_2, stability, 92M/2796 synthesis, synthesis, stability, 92M/2796 synthesis, synth$

WEST INDIES, *Barbados*, U-series evidence on diagenesis, hydrol. in Pleistocene carbonates, 92M/3089 WESTERN SAMOA, Upolu, Laloanea Farm, soils, classification, 92M/3808

Whitlockite, evidence for metasomatism of lunar highlands, origin of, 92M/4566; *Tuvalu*, occurrence, 92M/0580

Willemite, Czech Republic, Bohemia, Příbram, Vrančice, assoc. with brandtite, chervetite, 92M/2028; USA, New Jersey, Sterling Hill, in metamorphosed Zn-Fe-Mn deposit, 92M/2974

Willyamite v. ullmannite Winchite v. amphibole

Witherite, Czech Republic, Moravia, Kunčice pod Ondřejníkem, in teschenitic rocks, 92M/2056; Egypt, Bahariya oases, in baryte deposits, 92M/0381; England, W Shropshire orefield, genesis, evidence from fluid inclusions, sphalerite chem., S isotopic ratios, 92M/0544; Wales, Dyfed, Llanidloes, Pen-y-clun mine, occurrence, 92M/2361

Wittichenite, Bulgaria, Zidarovo ore field, occurrence, 92M/0347; Czech Republic, Horní Slavkov, Huber stock, inclusions in bornite, min. data, 92M/2041; Sweden, Bergslagen, Tunaberg, in Cu deposits, 92M/0336; Turkey, Anatolia, in Pb-Zn deposits, 92M/2718

Wodginite, USA, Virginia, occurrence, 92M/4000

Wolframite, assoc. with tantalite-columbite, hübnerite, from rare-metal granite, 92M/2031; formation from gas phase, 92M/4151; Canada, New Brunswick, Mount Pleasant, fluid evolution, mineralization in subvolcanic granite stock, 92M/0373; Czech Republic, Horní Slavkov, Huber stock, min. data, 92M/2041; Germany, Erzgebirge, Zinnwald, occurrence. 92M/3690; Indonesia, Belitung, Tikus, in Sn-W deposit, 92M/0367; Korea, Gyeongchang W-Mo mine, progressive meteoric water inundation of magmatic hydrothermal 92M/0572; Peru, San Judas Tadeo, W(-Mo, deposit. Permian lithophile mineralization, 92M/2762; Portugal, Góis, prospecting for, soil sampling survey, 92M/0766; USA, Virginia, occurrence, 92M/4000

mineralization, chem. compn., 92M/4649
 Wollastonite, assoc. with new min., dmishteinbergite, 92M/2069; Brazil, Amazon craton, Cumaru, assoc. with Au mineralization, 92M/3933; Tanzania, Oldoinyo Lengai volcano, in lapilli of 1966 ash eruption, 92M/3488

Woodhouseite, Germany, Bavaria, Hirschau-Schnaittenbach, in kaolinized arkose, 92M/4669

Wulfenite, England, Leicestershire, Pb-Mo mineralization in ancient cave, 92M/2359

Wüstite, upper mantle oxide mineralogy, 92M/0850

Xenoliths (v. also basic, gabbroic, lherzolite, peraluminous, peridotite, syenite, ultrabasic xenoliths), Canada, Nova Scotia, Meguma Lithotectonic Zone, granulite facies, chem., isotopic compn. of lower crust, evidence from, 92M/1770; France, Massif Central, granulite facies, Pb, O isotope systematics in, implications for crustal processes,

- 92M/0524; Scotland, Lomondside, in lamprophyre dykes, nature of crust beneath southern Dalradian, 92M/3409
- —, crustal, Australia, lower crustal, thermobarometry, P-T-t paths, granulite to eclogite transition, 92M/1185; Canada, Newfoundland, Dunnage Zone, evidence for nature of sialic basement, 92M/2122
- —, mantle, Austria, Kapfenstein and Hungary, Transdanubian volcanic region, 92M/0994; USA, California, Trinity ophiolite, and basic magmas, chem. transfer between, evidence from oceanic magma chambers, 92M/1096
- Xenotime, India, Andhra Pradesh, in granitic soils, 92M/1499; Sweden, Bohus, post-kinematic Grenvillian granite, U-Pb dating, 92M/0897; Sweden, Nynäshamn, Stora Vika, assoc. with zincian helvite in pegmatite, 92M/2003

Xenotime-(Y), Wales, Clwyd, Glyn Ceiriog, Hendre quarry, occurrence, 92M/2360

- X-ray diffraction analysis, comparison of intensities from fixed and variable divergence expts., 92M/0089; detn. of allophane, synthetic alumina, iron oxide gels by, 92M/1321; expression of quantitative phase anal. for samples containing amorphous phase, 92M/0087; improved criterion method for indexing unknown powder diffraction patterns, 92M/0205; LCLSQ, lattice parameter refinement using correction terms for systematic errors, 92M/0081; Powder citation Diffraction, journal study. 92M/2382; spreadsheet to treat data, 92M/0078; structl., chem. anal. of materials, (book), 92M/0119; use of Rietveld method in studies of phase abundance in multiphase mixtures, 92M/0088
- X-ray emission, particle induced, and complementary nuclear methods for tr. elem. detn., 92M/3761
- X-ray fluorescence spectrometry, energy-dispersive, hybrid method for use in case of widely varying sample compns., 92M/2466; major elem. anal. of rock samples using Sc anode tube, 92M/0111; phys. correction, evaluation method for data, 92M/2465; thin specimen, of major elems. in silicate rocks, 92M/0097; total-reflection, application to elem. detns. in soil, sediment, sewage sludge samples, 92M/2464
- X-ray spectrometry, rapid method for detn. of major components of magnesite, dolomite, 92M/2463; recent advances, review, 92M/3753; nomenclature system for, 92M/0090
- Yarrowite, *India, Malanjkhand*, geochem. of secondary Cu mins. from Proterozoic porphyry Cu deposit, 92M/0316
- YEMEN, geochem. of granite to assess Sn-W, rare metal potential, 92M/2946; Habban-Al Mukalla, min. potential, 92M/2665; Hadramawt Province, Gayl Bawazir, bentonite, min. study, 92M/2595; Hajja, granitic pluton, petrol., 92M/4808; Red Sea-Aden, rifting, Tertiary magmatism, evolution of transitional magma by

- fractional crystallization, crustal contamination, 92M/1000
- Yoderite, min. with essential ferric iron, lack of occurrence in system MgO-Al₂O₃-SiO₂-H₂, 92M/0446
- Yttrium minerals, *India*, *Andhra Pradesh*, potential of granitic soils, 92M/1499
- YUGOSLAVIA, former, Alinci, U-rich metamict senaite, min. data, 92M/4650
- Yukonite, Germany, Schwarzwald, Clara mine, occurrence, 92M/1225
- ZAïRE, Marungu plateau, Proterozoic basic intrusions, dolerite dyke swarms, petrol., geochem., 92M/4746; Shaba, Cu mining area, geol., mineralogy, 92M/3699; Shaba, Mutoshi, agardite-(Y), min. data, 92M/0858
- ZAMBIA, mantle carbonatite eruptions, crustal context, implications, 92M/4807; Mwembeshi shear zone, Proterozoic, fluid-channelling, Au mineralization, 92M/3951
- Zektzerite, *Tadzhikistan*, *Dara-i-Pioz*, occurrence, 92M/2377
- Zeolite, and other hydrothermal alteration products of synthetic glasses, 92M/2881; diagenesis of rhyolite tuff, K-feldspar and SiO₂ min. in, 92M/1561; in situ investigation of solid state on exchange in, using Fourier transform IR spectra, natural. mineralogy. applications, 92M/0292; optical anomaly of mins., 92M/1199; sectoral struct., symmetry of, 92M/2627; synthesis of, from thermally activated kaolinite, observations on nucleation, growth, 92M/3784; timedependent function on diagenetic change, zeolitization in marine sediments. 92M/4894; Australia, New South Wales. Werris Creek, natural, prospecting for, 92M/0770; Brazil, Rio Grande Do Sul, Parana Basin, distribu, in lavas, 92M/2005: Indian Ocean, Kerguelen-Heard Plateau, hydrothermal mineralization, 92M/2958; Japan, Izu Peninsula, occurrence, distribn., genesis, 92M/3280; USA, Idaho, W Snake River Plain, zeolitic diagenesis of tuff in Miocene Chalk Hills fm., 92M/4860
- , analcite, and other hydrothermal alteration products of synthetic glasses, 92M/2881; O isotope studies, anal. techniques, 92M/4218; phenocrysts in igneous rocks, min. data, 92M/0840; Australia, New South Wales, in mugearite, megacryst assocn., implications high-P amphibole-dominated for fractionation of alkaline magmas, 92M/3447; Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005; Chile, Andes, characteristic authigenic phase of 92M/2260; alluvium, Germany, Bayerischen Wald, occurrence, 92M/4997; Italy, Vicentino, occurrence, (book), 92M/2498; Spain, Canary Is., Gomera, occurrence, 92M/5002
- —, -wairakite, synthesis of, 92M/2878; Japan, Hokkaido, Nishi-Iburi, min. data, 92M/3279
- —, chabazite, Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005; Italy, from pyroclastic rocks, stability diagrams, 92M/1590; Italy, Vicenze, Fara Vicentina.

- crystal chem., 92M/4636; Japan, Izu Peninsula, occurrence, distribn., genesis, 92M/3280; Spain, Canary Is., Gomera, occurrence, 92M/5002
- -, group, number of, 92M/0841
- —, clinoptilolite, in tuff, min. data, 92M/2006; natural, decomposition under hydrothermal condns., 92M/1589; O isotope studies, anal. techniques, 92M/4218; removal of ammonia from simulated, natural caffish pond waters, 92M/2788; Germany, Sachsen-Anhalt, Magdeburg, assoc. with glauconite in Eocene sediments, 92M/2582
- —, dachiardite, min. props., 92M/3283
- —, erionite, and other hydrothermal alteration products of synthetic glasses, 92M/2881; USA, Nevada, Yucca Mountain and Turkey, 92M/2008
- facies v. metamorphic facies
- —, ferrierite, Al,Fe-, solid solution, synthesis, 92M/0481; occurrence, genesis, min. props. of, 92M/3282; Moravia, Příbor, Hončova hůrka, in picrite, 92M/2007
- —, garronite, crystal struct., 92M/3838; *Italy, Vicenze, Fara Vicentina*, crystal chem., 92M/4636
- —, gonnardite, *Italy, Vicenze, Fara Vicentina*, crystal chem., 92M/4636
- —, H-ZSM-5, high-T (350 K) orthorhombic framework, 92M/1403
- —, harmotome, thermal, diffractometric behaviour after cationic exchange with K, Ba, 92M/2882; Czech Republic, Moravia, Příbor, Hončova hůrka, in picrite, 92M/2007; Germany, Nordpfalz, Rockenhausen, occurrence, 92M/2366; Saxony in greywackes, 92M/3686; Wales, Dyfed, Llanidloes, Pen-y-clun mine, occurrence, 92M/2361
- —, heulandite, O isotope studies, anal. techniques, 92M/4218; synthesis of, in NaK—Ca substitution systems, 92M/2879; Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005; Czech Republic, Moravia, Příbor, Hončova hůrka, in picrite, 92M/2007; Italy, Vicentino, occurrence, (book), 92M/2498; Japan, Izu Peninsula, occurrence, distribn., genesis, 92M/3280; Scotland, Skye, Sgurr nam Boc, occurrence, 92M/2355
- —, -clinoptilolite, synthesis of, 92M/2878; Japan, Fukuoka Pref., Munakata area, in Tertiary sedimentary rocks, thermal, chem. props., 92M/3281; USA, Oregon, Succor Creek, stepwise dehydration of, single-crystal X-ray study at 100 K, 92M/2877
- —, laumontite, Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005; Japan, Izu Peninsula, occurrence, distribn., genesis, 92M/3280; New Zealand, Hawkes Bay, Kairakau Rocks, assoc. with pillow lava, 92M/4820; Scotland, Skye, Sgurr nam Boc, occurrence, 92M/2355
- —, mesolite, Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005; Scotland, Skye, Sgurr nam Boc, occurrence, 92M/2355
- —, mordenite, Be,Al-, solid solutions, synthesis, 92M/0482; synthesis of, 92M/2878; thermodynamic studies, 92M/4123; Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005; Greece,

- Samos, K-rich, from Miocene rhyolitic tuff, 92M/0842
- —, natrolite, Germany, Bavaria, in metamorphosed carbonate xenolith, 92M/3681; Italy, Vicentino, occurrence, (book), 92M/2498; Spain, Canary Is., Gomera, occurrence, 92M/5002
- —, phillipsite, natural, and ion exchange forms, XRD study, 92M/0843; thermal, diffractometric behaviour after cationic exchange with K, Ba, 92M/2882; Germany, Nordpfalz, Rockenhausen, occurrence, 92M/2366; Italy, from pyroclastic rocks, stability diagrams, 92M/1590
- —, pollucite, in petalite Li-rich granitics, thermodynamic implications of experiments in Na-Li-Cs system, consequences for solute props., 92M/2839; pollucite analogue, Cs₂CuSi₅O₁₂, X-ray Rietveld struct. detn., 92M/0240
- rocks, Japan, Akita Pref., Omori-machi, Yokote and Yasawagi, exploitative history, 92M/2577
- —, scolecite, Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005
- stilbite, O isotope studies, anal. techniques, 92M/4218; Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005; Czech Republic, Hohes Gesenke, Hrubý Jeseník, occurrence, 92M/3691; Germany, Saxony, Geyer-Ehrenfriedersdorf area, occurrence, 92M/2371; Japan. Izu Peninsula, occurrence, distribn., genesis, 92M/3280; Poland, Strzegom, from pegmatite, 92M/4617; Scotland, Skye, Sgurr nam Boc, occurrence, 92M/2355
- —, thomsonite, Brazil, Rio Grande Do Sul, Parana Basin, in lavas, 92M/2005; Spain, Canary Is., Gomera, occurrence, 92M/5002
- —, type-A, formation process by treatment of allophane in sodium hydroxide solution, 92M/0483
- —, wairakite, *Japan, Izu Peninsula*, occurrence, distribn., genesis, 92M/3280
- —, wellsite, thermal, diffractometric behaviour after cationic exchange with K, Ba, 92M/2882
- Y, treated with NaOH solution, increment of unit cell parameter of, 92M/2880
- Zeolitic material, presenting MFI topology, prepared in fluoride medium, XRD chracterization, 92M/2876
- Zeolitization, of volcanic glass, critical role of Tin, 92M/1038
- Zeunerite, Czech Republic, Erzgebirge, Cinovec, crystallogr., 92M/2375
- ZIMBABWE, Archaean craton, Pb/Pb, Sm-Nd, Rb-Sr geochronol., 92M/1269; deformation, fluid-flow, Au precipitation in BIF, 92M/3903; Blanket mine, magnetic mapping of cryptic wall rock alteration assoc. with Au mineralization, 92M/3964; Bulawayo, How mine, structl. controls in distribn. of Au, 92M/4014; Dalny mine, fluid-rock interaction, Au deposition in Archaean shear zone, 92M/3889; Globe and Au deposit, multi-phase ductile-brittle deformation, role of Archaean thrust tectonics in evolution of, 92M/3950; Great Dyke, chromite in chromitite seam. 92M/4013; Darwendale subchamber, Pt-group elems., petrogenetic controls on

sulphide mineralization in pyroxenite, 92M/0349; Great Dyke, Zinca prospect, platinum-group elements mineralization, petrographic studies, 92M/2724; How mine, structurally controlled Archaean Au deposit, 92M/3943; Midlands greenstone belt, tectonic, magmatic framework of Archaean lode-Au mineralization, 92M/3902; Wankie concession, Matura Hill borehole core, clay mineralogy, 92M/3797; Zambezi Belt, deep-crustal granulites with migmatitic, mylonitic fabrics, 92M/1173

Zinc, enrichment in Upper Trias coaly clay, sandstone horizons, 92M/1662; Turkey, Maden Complex, trend surface anal. of primary rock samples from region of Cu, Zn mineralization, 92M/2928; USA, Alaska Range, Sheep Creek prospect, ore mineralogy, phys. characteristics, 92M/0309; USA, Joplin, Viburnum Trend, Elmwood and Rosiclare, Mississippi Valley type, 92M/2702

 acetate complexes, in aqueous solutions to 295°C, potentiometric detn. of stability constants. 92M/1611

 deposit, Sweden, Saxberget, Proterozoic, genesis in high-grade metamorphic terrain, 92M/0337

 sulphide mineralization, hydrothermalmetasomatic, in carbonate host rocks, cause, efficiency of geochem. barriers related to origin of, 92M/2943

 --iron-manganese deposits, USA, New Jersey, Sterling Hill, metamorphosed, petrol., stable isotope geochem., 92M/2974

- -lead deposits, S isotope compn. sulphides in pyrite sphalerite galena, 92M/0553; Canada, North West Territories, Baffin Island, Nanisivik, correlated Sr, C, O isotopes in carbonate gangue, 92M/1685; North West Territories, Nanisivik, hydrothermal fluids responsible for, stable isotopic compn., 92M/0586; Morocco, High Atlas, relative chronology, Hercynian deformation, 92M/2719; New Zealand, Cape Brett, Motukokako, and Tertiary limestone, mineralized skarn, 92M/3997; Peru, San Vicente, Mississippi Valley-type, genesis of, geol., isotopic evidence, 92M/2988; Sweden, Ammeberg, S isotope compns., genetic implications, 92M/2947
- —————baryte deposits, *Canadian Cordillera*, stratiform, deformation of, 92M/1438
- — manganese mineralization, South Africa, Genadendal, poss. early Proterozoic alkaline hydrothermal system, 92M/2720
- - -silver deposits, Canada, Northwest Territories, Baffin Island, Nanisivik, carbonate-hosted, internal zonation in, 92M/0585; USA, Alaska, Brooks Range, reconnaissance exploration geochem., implications for exploration of, 92M/4556
- Zincite, USA, New Jersey, Sterling Hill, in metamorphosed Zn-Fe-Mn deposit, 92M/2974

Zinckenite, Czech Republic, Bohemia, Slaný mining area, occurrence, 92M/3689 Zinnwaldite v. mica Zircon, alpha-decay event damage in, 92M/3239; behaviour in hydrothermal media under P, 92M/4093; chem. of, variations within, between large crystals from syenite, alkali basalt xenoliths, 92M/3237; hydrous species in, 92M/3238; in supercritical aqueous fluids, solubility of, implications for subduction zone geochem., 92M/4968; irradiated with thermal neutrons, y-rays, ESR signals, 92M/1949; long-term stability of fission tracks in, importance for knowledge of Alpine orogenesis. 92M/1256; natural, CL spectra of, interpn., 92M/3240; non-metamict, Pb migration in. 92M/4092; oldest in solar system, in meteorites, 92M/3705; oscillatory zoned, recrystallization of, geochronol., petrol. implications, 92M/4607; Pb diffusion using ion implantation, Rutherford backscattering technique, 92M/0510; placer deposits, economic potential, 92M/2769; radioactive metamict, gem trade lab notes, 92M/1632; structl. anal. of radiation damage in, X-ray absorption spectroscopic study, 92M/0213; technogeneous, from Chernobyl melts, investigation of, 92M/4608; central Asia, accessory, use of for granite correlation, 92M/4812; Western Australia, Mt Narryer and Jack Hills, 3900-4200 m.y.-old detrital, Earth's oldest known crust, geochronol., geochem. study, 92M/3735; Austria, Alps, Tauern window, from leucogranitic orthogneiss, magmatic origin, min. data, 92M/1948; Canada, Abitibi greenstone belt, Archaean hydrothermal, timing of Au mineralization, reply, 92M/3739; China, Yunnan, Xikang-Yunnan axis, Jinningian, in granite, fingerprint characteristics, SIMS study, 92M/2960; Czech Republic, Bohemia, České Středohoří Mts, assoc. with perovskite, 92M/2017; Germany, Eifel, Lancher-See, occurrence, 92M/4999; Germany, Saxony, Seuzergrundel, occurrence, 92M/2370; India, Malani igneous suite, from granitic rocks, morphol., chem., 92M/3236; India. Singrauli coalfield, Moher-Subbasin, Barakar, in sandstone, 92M/1109; Italy, Sardinia, in coastal sand, 92M/0380; Japan, Kyushu, Fukuoka City, in granitic rocks, crystal morphol., 92M/3235; Murunsky complex, mineralization of alkaline metasomatites, 92M/1947; New Zealand, Western Province gneiss, Torlesse greywacke, detrital, crustal evolution, evidence from age distribus. of, 92M/4272: Scandinavia, detrital, Proterozoic Svecofennian metasediments, U-Pb dating, 92M/3369; Sri Lanka, history of germology, C.P. Thunberg, 18th century collector, 92M/1638; Sri Lanka, metamictization of, dose-dependent structl. characteristics, 92M/0804: Sweden, Bohus, restitic, evidence from U-Pb dating of post-kinematic Grenvillian 92M/0897; USA, Central Appalachian basin, Princess No. 6, in Pennsylvanian volcanic ash, 92M/3501; USA, North Carolina and Virginia, heavy min. deposits in upper coastal plain, 92M/2772; USA, Virginia, reconnaissance exploration on continental shelf, 92M/0385

- deposit, Canada, Quebec/Labrador, Strange Lake, granite-hosted, role of hydrothermal processes in, fluid inclusion evidence, comment, 92M/3054, reply, 92M/3055
- —, hydrozircon, Czech Republic, Bohemia, assoc. with calkinsite-(Ce) from Cretaceous, 92M/2057; assoc. with florencite-(La) in U deposits in Cretaceous, 92M/2061
- Zirconia, relationship between cubic, monoclinic forms, 92M/1631; undoped, neutron powder investigation of monoclinic to tetragonal phase transformation in, 92M/1407; Russian Federation, nontransparent cubic, gem props., 92M/4171
- Zirconolite, yttrian, Sweden, Bergslagen, Koberg mine, occurrence, 92M/3297
- Zoisite v. epidote Zussmanite, coombsite, new Mn analogue of, 92M/3331
- Zykaite, Germany, Saxony, Czech Republic, mins. of mine dumps, 92M/3687