Circuitos Digitais

Engenharia Elétrica/Engenharia de Automação/ Engenharia de Computação/Sistemas de Informação/ Ciência da Computação/Tecnologia de Redes

Prof. VICTOR MARQUES MIRANDA

CONTEÚDOS

- I. Conceitos Básicos de Sistemas Digitais
- II. Sistemas de Numeração
 - II.1. Conversões entre Bases
 - II.2. Operações Aritméticas
- III. Portas Lógicas e Formas de Representação de uma Função Lógica
- IV. Álgebra Booleana e Simplificação de Circuitos
- V. Redes Combinacionais e Minimização Lógica
- VI. Projeto Lógico Combinacional
- VII. Módulos-Padrão Combinacionais e Aritméticos
- VIII. Sistemas Sequenciais Parte 1: Máquinas de Estados, Elementos de Memória e Análise e Projeto de Redes Sequenciais Canônicas
- IX. Sistemas Sequenciais Parte 2: Módulos-Padrão Contadores
- X. Revisão dos Conteúdos e Aplicação da N2

Módulos-Padrão Combinacionais e Artiméticos

Módulos-Padrão e Aritméticos Combinacionais

Hardware Digital

- Somadores, Subtratores
- Codificadores, Decodificadores
- Multiplexadores
- Comparadores
- Deslocadores
- Verificadores de Paridade

Circuitos Lógicos

Circuitos combinatórios

suas saídas dependem unicamente de suas entradas

Circuitos sequenciais

estado lógico atual depende das entradas atuais e do estado lógico anterior

Circuitos Lógicos

Combinatórios

- A saída de depende apenas da entrada atual
- Não existe temporização, a não ser o retardo de propagação do sinal pelas portas
- Não incluem informação de estado

Sequenciais

- A saída depende não apenas da entrada atual, mas também do estado anterior do circuito
- Incluem informação de estado
- Serão discutidos mais tarde

2 Cenários

Campainha de casa

 A campainha tocará sempre que pressionada

Campainha de avião

 Mesmo após o passageiro soltar o botão de chamar, a luz indicadora "lembra" de ficar acesa.

Módulos Padrão Combinacionais

MÓDULOS ARITMÉTICOS:

SOMADORES

Somadores

- Um somador de N bits é um componente de bloco operacional que:
 - Adiciona dois vetores de N bits, A e B, gerando uma soma S de N bits e

Um transporte (o "vai um") C de 1 bit

	Inputs			Outputs		Inputs			Outputs				
a1	а0	b1	b0	С	s1	s0	a1	a0	b1	b0	С	s1	s0
0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	1	0	0	1	1	0	0	1	0	1	1
0	0	1	0	0	1	0	1	0	1	0	1	0	0
0	0	1	1	0	1	1	1	0	1	1	1	0	1
0	1	0	0	0	0	1	1	1	0	0	0	1	1
0	1	0	1	0	1	0	1	1	0	1	1	0	0
0	1	1	0	0	1	1	1	1	1	0	1	0	1
0	1	1	1	1	0	0	1	1	1	1	1	1	0

Somadores

- Para somadores com um maior número de dígitos, a tabela verdade passa a ser de difícil construção (somador de 16 bits tem mais de 4 bilhões de linhas).
- Por esta razão, somadores não são construídos usando a lógica de 2 níveis.

Meio Somador ou Somador Parcial

Um meio-somador (*Half Adder - HA*) é um componente combinacional que:

Adiciona dois bits (a e b) e gera uma soma (S) e um bit de transporte de "vai um"

(ou carry out).

Inp	uts	Outputs		
а	b	со	s	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	
	out = ai 1 =	soma = a'b+		

- Observando a tabela verdade abaixo, note que podemos implementar:
 - O bit carry-out com uma porta AND.
 - O bit de soma com uma porta XOR.

Meio Somador de 1 Bit

Inpu	ts	Output		
Α	В	s c		
0	0	0 0		
0	1	1 0		
0	1	1 0		
1	1	0 1		

Somador Completo (Full Adder)

Modo 1:

- Um somador completo é um componente combinacional que
 - Adiciona três bits (a, b e o carry-in ou "vem-1" ou ci) e gera uma soma
 (s) e
 - Um bit de transporte de "vai um" (ou carry out).

$$-$$
 co = a'bc + abc' + abc' + abc

$$- co = \underline{a'bc} + \underline{abc} + \underline{abc} + \underline{abc} + \underline{abc}' + \underline{abc}'$$

$$- co = (a'+a)bc + (b'+b)ac + (c'+c)ab$$

$$-$$
 co = bc + ac + ab

$$-$$
 s = a'b'c + a'bc' + ab'c' + abc

$$- s = a'(b'c + bc') + a(b'c' + bc)$$

$$- s = a'(b xor c) + a(b xor c)'$$

$$- s = a xor b xor c$$

- 1	nput	Outputs		
а	b	ci	со	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Modo 1:

1 5	Inputs	Output		
Α	В	Cin	S Co	
0	0	0	0 0	
0	0	1	1 0	
0	1	0	1 0	
0	1	1	0 1	
1	0	0	1 0	
1	0	1	0 1	
1	1	0	0 1	
1	1	1	1 1	

Modo 2: OU podemos implementar a partir de 2 Half Adders:

Vejamos como a seguir...

Modo 2:

 $\Sigma = \overline{AB}C_{in} + \overline{AB}\overline{C_{in}} + AB\overline{C_{in}} + ABC_{in}$

$$C_{out} = \bar{A}BC_{in} + A\bar{B}C_{in} + AB\overline{C_{in}} + ABC_{in}$$

$$C_{out} = C_{in} \cdot (\bar{A}B + A\bar{B}) + AB(\overline{C_{in}} + C_{in})$$

$$C_{out} = C_{in} \cdot (A \oplus B) + AB$$

$$\Sigma = \overline{ABC_{in}} + \overline{ABC_{in}} + A\overline{BC_{in}} + ABC_{in}$$

$$\Sigma = C_{in} \cdot (\bar{A}\bar{B} + AB) + \overline{C_{in}} \cdot (\bar{A}B + A\bar{B})$$

$$\Sigma = C_{in} \cdot (\overline{A \oplus B}) + \overline{C_{in}} \cdot (A \oplus B)$$

$$X = C_{in}$$
$$Y = (A \oplus B)$$

$$\Sigma = X \oplus Y$$

$$\Sigma = C_{in} \oplus (A \oplus B)$$

Somador Propagado de 2 bits

Somador Propagado de 4 bits

Diagrama de Blocos (Nível Lógico)

Somador Propagado de N bits

- O somador parcial só pode ser usado na coluna menos significativa da operação (posição 0)
- O somador parcial é insuficiente para as colunas mais significativas, pois não leva em consideração o transporte (vem um) oriundo da posição anterior.

Somador, desconsiderando o vem-1 inicial.

Somador Propagado com Vem-1 Inicial Nulo

Diagrama de Blocos (Nível Lógico): versão 2

Símbolo no Nível RT

A ideia empregada nesta versão pode ser generalizada para um somador de N bits.

Somador Propagado com Vem-1 Inicial Não-Nulo

Diagrama de Blocos (Nível Lógico): versão 3

Símbolo no Nível RT

A ideia empregada nesta versão pode ser generalizada para um somador de N bits.

MÓDULOS ARITMÉTICOS:

SUBTRATORES

Subtrator Parcial (ou Meio Subtrator)

Um subtrator de N bits é um componente de bloco operacional que toma duas entradas binárias A e B e produz um resultado S na saída

Α	В	S	Ts
Ð	0	0.	. 0 .
0	1	1	. 1
1	0	1	0
1	1	0	0

Subtrator Completo

Subtrator (via Complemento de 2)

Subtrator de N bits (via Complemento de 2)

Somador e Subtrator Combinados

sel ₂	sel_1	operação	descrição
0	0	S = A + B + 0	adiciona $A \in B (S = A + B)$
0	1	S = A + B + 1	adiciona A e B incrementado $(S = A + B + 1)$
1	0	$S = A + \overline{B} + 0$	subtrai B decrementado de A $(S = A - B - 1)$
1	1	$S = A + \overline{B} + 1$	subtrai B de A (S = A - B)

$$A - B = A + \overline{B} + 1$$

Somador/subtrator de 4 bits.

Somador e Subtrator Combinados

- A subtração em complemento 2 pode ser convertida em adição.
- Exemplo com 4 bits:

$$A_{3}A_{2}A_{1}A_{0} - B_{3}B_{2}B_{1}B_{0}$$

$$A_{3}A_{2}A_{1}A_{0} + (-B_{3}B_{2}B_{1}B_{0})$$

$$A_{3}A_{2}A_{1}A_{0} + (\overline{B_{3}} \overline{B_{2}} \overline{B_{1}} \overline{B_{0}} + 1)$$

É desejável projetar um único circuito que some ou subtraia conforme um seletor seja ativado ou desativado.

seletor ativado para soma (S=1)

- Entradas B_i
 permanecem as
 mesmas
- Na posição LSB, C_{in} = 0

seletor ativado para subtração (S=0)

- Entradas B_i devem ser negadas
- Na posição LSB, C_{in} = 1

Somador e Subtrator

Combinados

1 bit

4 bits

MÓDULOS PADRÃO-COMBINACIONAIS

DECODIFICADORES (DECODERS) **CODIFICADORES** (ENCODERS)

Decodificadores

- Um decodificador é um circuito que recebe um conjunto de entradas que representam um número binário e ativa apenas a saída correspondente ao valor recebido.
- Para cada configuração de bits que aparece na entrada, haverá uma e somente uma linha de saída ativa.
- Geralmente, o circuito tem n vias de entrada e 2ⁿ vias de saída.

Decodificadores

DECO (n x 2ⁿ) → Decodifica um número binário de n bits na entrada colocando somente uma das 2ⁿ saídas em 1

DECO (2 X 4)

Como são as equações para d0, d1, d2, d3?

Entrada Enable

- Habilita o funcionamento de um circuito.
- No caso do decodificador:

Circuito Lógico

Exemplo de Circuito de Decodificador com 2 entradas e 4 saídas :
 (2×4)

Exemplos de Decodificadores (Decoders)

- Conversores de Códigos.
- Conversores de BCD para Displays de 7 Segmentos

Decodificadores: Outro Exemplo

Exemplo: Decodificador de 3 para 8 bits

Decodificadores em Árvore

Decodificadores (DECODERS)

RESUMO:

Inputs			Output					
Α	В	D _o	D:	D:	D:			
0	0	1	0	0	0			
0	1	0	1	0	0			
0	1	0	0	1	0			
1	1	0	0	0	1			

Codificadores

São circuitos combinatórios que têm um certo número de linhas de entrada, em que somente uma linha é ativada por vez, produzindo um código de saída de N bits, a depender de qual entrada for ativada.

E	x_7	x_6	x_5	x_4	x_3	x_2	x_1	x_0	y	y_2	y_1	y_0	A
1	0	0	0	0	0	0	0	1	0	0	0	0	1
1	0	0	0	0	0	0	1	0	1	0	0	1	1
1	0	0	0	0	0	1	0	0	2	0	1	0	1
1	0	0	0	0	1	0	0	0	3	0	1	1	1
1	0	0	0	1	0	0	0	0	4	1	0	0	1
1	0	0	1	0	0	0	0	0	5	1	0	1	1
1	0	1	0	0	0	0	0	0	6	1	1	0	1
1	1	0	0	0	0	0	0	0	7	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	-	-	-	-	-	-	-	-	0	0	0	0	0

Codificadores

L.										21			1
E	x_7	x_6	x_5	x_4	x_3	x_2	x_1	x_0	y	y_2	y_1	y_0	А
1	0	0	0	0	0	0	0	1	0	0	0	0	1
1	0	0	0	0	0	0	1	0	1	0	0	1	1
1	0	0	0	0	0	1	0	0	2	0	1	0	1
1	0	0	0	0	1	0	0	0	3	0	1	1	1
1	0	0	0	1	0	0	0	0	4	1	0	0	1
1	0	0	1	0	0	0	0	0	5	1	0	1	1
1	0	1	0	0	0	0	0	0	6	1	1	0	1
1	1	0	0	0	0	0	0	0	7	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	-	-	-	-	-	-	-	-	0	0	0	0	0

$$y_0 = E \cdot (x_1 + x_3 + x_5 + x_7)$$

$$y_1 = E \cdot (x_2 + x_3 + x_6 + x_7)$$

$$y_2 = E \cdot (x_4 + x_5 + x_6 + x_7)$$

$$A = E \cdot (x_0 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7)$$

Exemplos de Codificadores (ENCODERS)

- Codificadores de Prioridades
- Codificador Decimal para BCD
- Codificador Decimal para Binário
- Codificador de Binário para Gray
- Codificador de Binário para BCD...

Codificadores: Exemplo

• Exemplo de uso: Determinação da direção de vento.

Exemplo Codificador Decimal/BCD

CODIFICADOR (Decimal → BCD)

Uso em Conjunto (ENCODER / DECODER)

Codificadores de Prioridade

E	x_7	x_6	x_5	x_4	x_3	x_2	x_1	x_0	y_2	y_1	y_0	A
1	0	0	0	0	0	0	0	1	0	0	0	1
1	0	0	0	0	0	0	1	-	0	0	1	1
1	0	0	0	0	0	1	-	-	0	1	0	1
1	0	0	0	0	1	-	-	-	0	1	1	1
1	0	0	0	1	-	-	-	-	1	0	0	1
1	0	0	1	-	-	-	-	-	1	0	1	1
1	0	1	-	-	-	-	-	-	1	1	0	1
1	1	-	-	-	-	-	-	-	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0
0	-	-	-	-	-	-	-	-	0	0	0	0

Codificador de Prioridade (4 x 2) (Priority Encoder)

Highest	Inp	uts	Lowest	Outputs	
D:	D:	D.	D _o	Y.	Υ.
0	0	0	0	x	X
0	0	0	1	0	0
0	0	1	×	0	1
0	1	х	×	1	0
1	x	x	x	1	1

Codificador de Prioridade (4 x 2) (Priority Encoder)

Codificadores de Prioridade: Exemplo de Aplicação

• Exemplo de uso: Pedido de Interrupção em um μP (microprocessador).

SELETORES:

MULTIPLEXADORES
(MUXes)

/
DEMULTIPLEXADORES
(DEMUXes)

Multiplexadores (MUXes)

- Um multiplexador Mx1 tem M entradas de dados e 1 saída
- Permite que apenas 1 das entradas seja passada para a saída → MUX = seletores

Multiplexadores (MUXes)

- Um multiplexador (MUX) é circuito lógico que recebe diversos dados digitais de entrada e seleciona um, em determinado instante, para transferi-lo para a saída.
- O envio do dado para a saída é controlado por seletores.

Para 2ⁿ linhas de entradas, são necessárias n linhas de seleção.

(Ir	nput 0
Lilliaua	nput 1 Saída de
de dados	Saída de Dados
Ir	nput 3
	S ₁ S ₀
	Seletor de dados

bits (enti		saída	
S ₁	S ₀	Υ	
0	0	D ₀	
0	1	D_{1}	dado de
1	0	D_2	entrada
1	1	D_3	

MUX 2x1

Enable	Select	Output
Е	S	Υ
0	×	0
1	0	Do
1	1	Dı .

x = Don't care

MUX 2x1

endereço	l	eis de ção	saída
	S_1	S_0	Y
0	0	0	A_0
1	0	1	A_1
2	1	0	A_2
3	1	1	A_3

MUX 4x1

$$Y = \overline{S_0} \cdot \overline{S_1} \cdot A_0 + \overline{S_0} \cdot S_1 \cdot A_1 + S_0 \cdot \overline{S_1} \cdot A_2 + S_0 \cdot S_1 \cdot A_3$$

MUX 8x1

Multiplexadores (Generalizando...)

MUX 2x1 de N bits

Cascateamento de MUXes

MUXes com pequeno número de entradas podem ser cascateados para compor um MUX com maior

número de entradas:

MUX 4×1 a partir de MUX 2×1

Cascateamento de MUXes

Implementação de Funções com MUX

Um MUX de 2ⁿ entradas de dados pode ser usado para implementar qualquer função de n variáveis

MUX - módulo universal

Implementação de Funções com MUX

Um MUX de 2ⁿ entradas de dados pode ser usado para implementar qualquer função de n variáveis

MUX - módulo universal

♦ FAESA

- Três entradas binárias X, Y e C_{in} (Carry in)
- Duas saídas S (Sum) e C_{out} (Carry out)

Tabela de verdade:

	ENTRAD	AS	S	AÍDAS
X	Y	CARRY IN	SUM	CARRY OUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1 –
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Implementando um Somador com MUXes

$$SUM = \overline{X}.\overline{Y}.C_{in} + \overline{X}.Y.\overline{C_{in}} + X.\overline{Y}.\overline{C_{in}} + X.Y.C_{in}$$

$$C_{\text{out}} = \overline{X}.Y.C_{\text{in}} + X.\overline{Y}.C_{\text{in}} + X.Y.\overline{C_{\text{in}}} + X.Y.C_{\text{in}}$$

Demultiplexadores (DEMUXes)

- Um multiplexador 1xM tem 1 entrada de dados e M saídas
- Permite que apenas que a saída selecionada receba a entrada

DEMUX 1:2

DEMUX 1:4

DEMUX 1:8

DEMUX 1:16

Demultiplexador (DEMUX)

Enable	Select	Output	
E	S	YO	Y1
0	x	0	0
1	0	0	Din
1	1	Din	0

x = Don't care

DEMUX 1:2

Demultiplexadores (DEMUXes)

Executa a tarefa inversa do multiplexador.

Direciona a informação de sua única entrada para uma de

suas 2ⁿ saídas, por meio de n variáveis de seleção.

E	s_1	s_0	s	y_3	y_2	y_1	y_0	
1	0	0	0	0	0	0	x	
1	0	1	1	0	0	\boldsymbol{x}	0	
1	1	0	2	0	\boldsymbol{x}	0	0	
1	1	1	3	0 0 0 x	0	0	0	
0	-	-	-	0	0	0	0	

Aplicação (CODE-DECODE / MUX-DEMUX)

ALGUNS EXERCÍCIOS

vide Capítulo 5 do Livro "Elementos da Eletrônica Digital", IDOETA & CAPUANO

Exercícios

(IDOETA & CAPUANO Cap 5 – Pág. 229 em diante)

- 1 Desenhe um sistema somador para 2 números de 2 bits apenas com blocos de Somadores Completos.
- 5.6.16 Utilizando blocos de Somadores Completos, elabore um sistema subtrator para 2 números de 2 bits.
- 5.6.17 Utilizando blocos de Somadores Completos, elabore um sistema para 2 números de 2 bits que faça soma ou subtração, conforme o nível aplicado a uma entrada de controle M (M = 0 → soma e M = 1 → subtração).

Dúvidas??

OBRIGADO PELA ATENÇÃO

Prof. Victor M. Miranda