

2n ESO

Rodrigo Alcaraz de la Osa. Traducció: Óscar Colomar (🛩 @ocolomar)

Definicions

Sistema de referència

Conjunt de punts respecte dels quals definim les posicions.

Posició

Lloc que ocupa un cos en l'espai.

Trajectòria

Línia imaginària formada pel conjunt de punts pels quals passa un cos en moure's.

Espai recorregut

Longitud del camí que realitza el mòbil Traduïda i adaptada de mesurat sobre la trajectòria.

Desplaçament

Diferència entre les posicions final i inicial.

https://commons.wikimedia.org/wiki/File: Distancedisplacement.svg.

Concepte de velocitat

La **velocitat** mesura com canvia la posició d'un mòbil respecte al temps. En el **SI** es mesura en m/s.

Velocitat mitjana

La **velocitat mitjana** d'un cos és la relació entre l'espai recorregut i el temps invertit:

$$v_{\rm m} = \frac{\Delta x}{\Delta t}$$

sent Δx l'espai recorregut i Δt el temps transcorregut.

Velocitat instantània

És la velocitat que té un mòbil en un determinat instant de temps. Es pot entendre com el límit de la velocitat mitjana quan l'interval de temps tendeix a zero.

Moviment rectilini uniforme [MRU]

Característiques

Les característiques del moviment rectilini uniforme (MRU) són:

- Trajectòria rectilínia.
- Velocitat v constant (acceleració a = 0).

Equació principal

L'equació principal (també anomenada equació del moviment o equació de la posició) del MRU és:

$$x(t) = x_0 + v \cdot \Delta t,$$

on x i x_0 són les posicions final i inicial, respectivament; v la velocitat i Δt el temps transcorregut.

Concepte d'acceleració

L'acceleració, a, mesura com canvia la velocitat d'un mòbil respecte al temps:

$$a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{\Delta t} \Longrightarrow v = v_0 + a \cdot \Delta t,$$

on v i v_0 són les velocitats final i inicial, respectivament; i Δt és el temps transcorregut. En el **SI** es mesura en m/s^2 .

Grafics

Encrevaments

Es tracta de situacions en les quals dos cossos comencen en posicions diferents i acaben trobant-se al cap d'un cert temps.

Seguim aquests **tres passos**:

- . Escriure les equacions de la posició de cada cos.
- 2. Imposar la condició de trobada, és a dir, que totes dues posicions coincideixen quan es troben.
- 3. Aillar la magnitud que em demanin.

Exemple

Un cotxe 🚗 i una moto 🦟 surten un cap a l'altre des de dues ciutats que disten 200 km, amb velocitats de 70 km/h i 90 km/h, respectivament. Calcula:

- a) Quant temps trigaran a trobar-se?
- b) Quina distància ha recorregut cadascun d'ells?

Solució

L'esquema següent representa la situació que tenim:

Exemple [cont.]

a) El primer que fem és escriure les equacions del moviment de cada mòbil:

(MRU):
$$x_{c} = x_{0_{c}} + v_{c} \cdot t$$

(MRU): $x_{m} = x_{0_{m}} + v_{m} \cdot t$

Particularitzem per al nostre cas, prenent l'origen on comença el cotxe i sentit positiu cap a la dreta:

$$x_{0_c} = 0;$$
 $x_{0_m} = 200 \text{ km}$
 $v_c = 70 \text{ km/h};$ $v_m = -90 \text{ km/h}$

(MRU):
$$x_c = 0 + 70t = 70t$$

(MRU): $x_m = 200 - 90t$

A continuació imposem la condició de trobada:

$$x_{c} = x_{m}$$

$$70t = 200 - 90t$$

$$160t = 200$$

Aïllem el **temps de trobada** t^* :

$$t^* = \frac{200 \,\text{km}}{160 \,\text{km/h}} = 1.25 \,\text{h}$$

Podem comprovar això representant el gràfic de posició enfront del temps (x - t)per a cada mòbil:

on es veu clarament com el cotxe i la moto es troben per a $t^* = 1.25 \text{ h}$.

b) Per calcular la distància recorreguda per cadascun d'ells, substituïm el temps de trobada, $t^* = 1.25$ h, en les equacions de posició del cotxe i de la moto, tenint en compte les posicions inicials de cadascun d'ells:

$$\Delta x_{\rm c}(t^*) = x_{\rm c}(t^*) - x_{\rm 0_c} = 70 \cdot 1.25 = 87.5 \,\mathrm{km}$$

$$\Delta x_{\rm m}(t^*) = x_{\rm m}(t^*) - x_{\rm 0_m} = 200 - 90 \cdot 1.25 - 200 = -112.5 \,\mathrm{km}$$

on el signe – indica que la moto ha recorregut aquella distància cap a l'esquerra.