Tecnologias Utilizadas:

- Python
- SageMath

El Gammal (PKE)

Public Key Encryption é um tipo de criptografia assimétrica que utiliza um par de chaves: uma chave pública para cifrar mensagens e uma chave privada para decifrá-las. A principal característica do PKE é que a chave pública pode ser compartilhada abertamente, enquanto a chave privada deve ser mantida em segredo.

Com PKEs deixa de ser necessário um canal para partilhar chaves, já que basta cifrar algo com a chave publica do destinatário, o que garante que este será o único a conseguir decifrá-la.

1ª Etapa

Começamos por gerar os parametros que seguem as restrições estabelecidas no enunciado:

Parameteros

Parametro de segurança (λ) = 128

```
_lambda = 128
lambda_bits = _lambda.nbits() # 128 in binary is 10000000 -> 8 bits
```

Quanto maior lambda, mais seguro o sistema, mas em aplicações modernas lambda = 128 é o mais usual.

• p : numero primo que define o grupo multiplicativo \mathbb{Z}_p

```
while True:
    k = randint(min_k, max_k)
    p_candidate = k * q + 1
    if is_prime(p_candidate) and p_candidate.nbits() >= min_p_bits:
        p = p_candidate
        break
    k += 1
```

Isto significa que teremos um grupo com numeros de 1 a p-1, sendo este ultimo divisivel por q. Segundo o enunciado este terá $|p| \ge \lambda \times |\lambda|$ que neste caso serão 1024 bits.

• q: numero primo que define a ordem do subgrupo

```
lower_bound = 2^(_lambda - 1)
    upper_bound = 2^_lambda - 1
    q_candidate = randint(lower_bound, upper_bound)
    q = next_prime(q_candidate)
```

Garante a existencia do subgrupo e afeta diretamente a segurança do sistema: pois quanto maior lambda, maior q e maior é a resistencia do sistema contra ataques de logaritmo discreto.

• g : gerador do subgrupo de ordem g

while True:

```
a = randint(2, p - 2)
g = power_mod(a, (p - 1) // q, p)
if g != 1:
    break
```

O conjunto $\{g^1, g^2, g^3, ..., g^q\}$ gera todos os elementos do subgrupo

Par de Chaves

• s : chave privada

```
s = randint(1, q-1)
```

Numero aleatório entre 1 e q-1 que é mantido em segredo pelo proprietário e só usado para decifrar

• h : chave publica

```
h = power_mod(g, s, p)
```

Esta chave é usada para cifrar as mensagens. É muito dificil chegar a s a partir de h (problema do logaritmo discreto)

Após gerar os parametros podemos cifrar o texto. Este processo é probabilistico, o que significa que para a mesma mensagem podemos obter cifras diferentes, o que aumenta significativamente a segurança do sistema.

```
Começamos por gerar
```

```
omega = randint(0, q-1)
```

De seguida usamos omega para gerar gamma e kappa.

gamma faz parte do texto cifrado e é necessário para decifrar o ciphertext.

```
ciphertext = (mapped plaintext * kappa) % p
```

Como vemos kappa é usado para cifrar o texto que será depois enviado ao recetor na forma (gamma,ciphertext)

```
return gamma,ciphertext
```

3ª Etapa

Para decifrar o ciphertext o receiver vai usar a chave privada s e o gamma.

Começamos por fazer a operação reversa e obter kappa e o seu inverso.

Como é normal em esquemas PKE, a chave privada é então usada para decifrar o texto:

```
m = (ciphertext * kappa_inv) % p
```

El Gammal + Fujisaki-Okamoto (PKE)

A transformação de Fujisaki-Okamoto é um método que fortalece esquemas de encriptação probabilística, como o ElGamal que são IND-CPA. Esta transformação permite converter um esquema de cifra IND-CPA seguro para IND-CCA o que significa que o adversário não consegue distinguir entre duas mensagens cifradas, nem descobrir o nosso texto mesmo tendo acesso ao oráculo de decifrar.

Isto é alcançado da seguinte forma:

- é incluído um parametro **r** que adiciona **aleatoriedade** ao cifrar os dados
- é incluido um **hash** no ciphertext que nos permite verificar a **autenticidade** dos mesmos

Os parametros gerados pelo EL Gammal são os mesmos e esse processo é descrito a cima, por isso vamos nos focar nas diferenças que a transformação acrescenta

1ª Etapa

Começamos por gerar \$r\$

```
r = randint(1, q - 1)
```

Este parametro substitui omega nos calculos de gamma e kappa, sendo depois combinado com o plaintext e cifrado com o mesmo. Isto vai nos permitir recuperar este valor mais tarde, o que possibilita a decifração do mesmo. Este passo é também das maiores valências da transformação, já que adiciona segurança ao fazer uso de um valor aleatório que é misturado com os dados.

```
combined = (r \ll 128) + m int
```

A transformação acaba com o cáculo do Hash deste r e com o seu posterior envio, assim o que é enviado para o receiver é o tuplo (Hash(r), gamma, ciphertext).

```
c_2 = H(r)
c_1 = (gamma, ciphertext)

return c 1, c 2
```

2ª Etapa

Para decifrar o processo é mais uma vez análogo ao do El Gammal: começamos por calcular kappa e o seu inverso e apartir daí deciframos o texto.

```
combined = (encrypted_message * kappa_inv) % p
```

No entanto, como vimos ao cifrar, o r é combinado com o plaintext, por isso este tem que ser extraído

```
r = combined >> 128
```

Com r retirado, podemos agora ver se os dados foram comprometidos calculado o hash do mesmo e comparando com o que nos foi enviado, algo que com o simples El Gammal não podia ser feito.

Com isto calculado temos a certeza que os nossos dados nao foram adulterados, obtendo assim o nosso plaintext

Diferenças Principais entre IND-CPA e IND-CCA

Característica	IND-CPA	IND-CCA
Segurança contra ataques de texto plano escolhido	Sim	Sim
Segurança contra ataques de texto cifrado escolhido	Não	Sim
Verificação de integridade	Não	Sim
Deteção de manipulação	Não	Sim
Complexidade da implementação	Menor	Maior
Tamanho da cifra	Menor	Maior
Overhead de processamento	Menor	Maior

El Gammal + Fujisaki-Okamoto (KEM)

O objetivo era fazer um KEM que fosse IND-CCA seguro.

Para isso foi usada a implementação feita em 1(b)

O Key Encapsulation Mechanism (KEM) é um esquema criptográfico projetado especificamente para gerar e proteger chaves simétricas de forma segura. O KEM é utilizado para gerar uma chave simétrica aleatória e encapsulá-la de forma segura, permitindo que ela seja transmitida através de canais inseguros.

1ª Etapa

Como feito anteriormente, começamos por gerar as chaves públicas e privadas a partir do El Gammal:

2ª Etapa - Encapsulamento

Num esquema normal pegamos num texto, uma mensagem de um user por exemplo, e ciframos esse texto, num KEM, geramos um chave aleatória e encapsulamos essa chave

Começamos por gerar uma chave de 128 bits

```
key bytes = os.urandom(16)
```

De seguida esta key é tratada como se fosse o plaintext do El Gammal + Fujisaki Okamoto (IND-CCA) e é então encapsulada, usando r e kappa .

O encapsulamento é depois enviado para o receiver.

```
encapsulation = (gamma, ciphertext, r_hash)
```

2ª Etapa - Cifrar o texto

A par do encapsulamento, temos que enviar ainda o texto cifrado. No nosso caso, escolhemos cifrar o texto fazendo um xor do plaintext com a key gerada:

Notar que aqui foi usado __xor__ em vez de ^ para a operação de xor por causa de um bug na tradução de operações

3ª Etapa - Desencapsular

O receiver tem agora que desencapsular a key.

Isto é análogo a decifrar um texto no El Gammal + Fujisaki Okamoto, em que calculamos kappa usando a chave privada, usamos r para verificar a integridade da key (key foi cifrada como r + key) e então concluímos se esta é a key que queremos

```
r = combined >> 128
    key_int = combined & ((1 << 128) - 1)

if r_hash_calculated != r_hash:
    raise ValueError("Encapsulation integrity check failed")

return key bytes</pre>
```

3ª Etapa - Decifrar

Tendo a key desencapsulada e o ciphertext recebido, só temos que fazer um xor entre o ciphertext e a key e obtemos o plaintext:

κ-out-of-n OBLIVIOUS TRANSFER (OT)

O OT é um protocolo que envolve dois agentes - Provider e Receiver.

Neste protocolo o **Provider** tem um **conjunto de mensagens**, **n**, e o **receiver** quer receber um **subgrupo dessas mensagens**, **k**.

A magia deste esquema está no facto de o **Provider não saber que mensagens o Receiver recebeu** e ainda o **Receiver conhece apenas as mensagens que escolheu**, nem mais nem menos.

1ª Etapa - Gerar Oblivious Criterion (Provider)

Começamos por gerar os parametros necessários

De seguida é criado Oblivious Criterion que é composto pela matriz A de tamanho [n, n-k] e o vetor u de tamanho [n-k]. Antes disto é gerado o grupo Zq, em que q é primo

```
def generate_oblivious_criterion(n,kappa,q):
                Zq = GF(q)
                 rho1 = os.urandom(16).hex()
                rho2 = os.urandom(16).hex()
                A = matrixA(Zq, n, n-kappa, rho1)
                u = vectorU(Zq, n-kappa, rho2)
                 return A, u, (rho1, rho2)
A e u são construídos usando construtores do sage e seeds rho1 e rho2 que são numeros aleatórios
def matrixA(Gf, lines, cols, seed):
                A = matrix(Gf, lines, cols)
                for i in range(lines):
                        for j in range(cols):
                        A[i,j] = Gf(H(str(seed) + str(i) + str(j), length=q.nbits()))
                 return A
        def vectorU(Gf, cols, seed):
                u = vector(Gf, cols)
                for i in range(cols):
                        u[i] = Gf(H(str(seed) + str(i), length=q.nbits()))
                 return u
2ª Etapa - Gerar vetor de consulta (Receiver)
```

```
O vetor de consulta é a estrutura criada pelo receiver para comprovar ao provider que está a fazer uma escolha justa,
isto é, não está a pedir mais mensagens com que as que se comprometeu inicialmente.
 def generate query vector(A, u, selected indices, q,p):
                       n, n minus kappa = A.dimensions()
                       kappa = n - n minus kappa
                       if len(selected indices) != kappa:
                                  raise ValueError(f"O receiver não escolheu {kappa} indices")
                       good_keys, tag, p_vector, secret = compute_goodKeys(selected_indices, n,elgamal params)
                       p vector = complete p vector(GF(p), A, u, selected indices, p vector)
                       return p vector, tag, good keys
Primeiramente o vetor p é inicializado com as chaves ditas "boas", ou seja, correspondentes aos indices das mensagens
que são realmente para entregar ao receiver.
 def compute goodKeys (selected indices, n, elgamal params):
                       p vector = [None] * n
                       good_keys = {}
                       p, q, g, h, master_private_key = elgamal_params
                       for i in selected_indices:
                                  private_key = randint(1, q - 1)
                                  public_key = power_mod(g, private_key, p)
                                  good_keys[i] = (public_key, private_key)
                                  p_vector[i] = public_key
                       secret = os.urandom( lambda // 8)
                       indices bytes = b"".join([i.to bytes(4, 'big') for i in selected indices])
                       tag = hashlib.sha256(indices bytes + secret).digest()
                       return good_keys, tag, p_vector, secret
Para cada índice ( i ) selecionado, gera-se um par de chaves ElGamal:
\star \left( \frac{y_i}{i} = \text{key}_i = \text{key}_i \right) = g^{\star}(y_i) = 
O vetor ( p ) é inicializado com estas chaves públicas:
$$p[i] = \text{public\ key} i, \quad \forall i \in \text{selected\ indices}$$
Além disso, gera-se um tag:
$$\text{tag} = H\left(\sum_{i \in \text{selected\_indices}} i + \text{secret}\right)$$
```

onde (H) é uma função de hash (SHA-256) e secret é um valor aleatório.

```
def complete_p_vector(Zq, A, u, selected_indices,p_vector):
                                       n = A.nrows()
                                       all indices = set(range(n))
                                       unselected_indices = sorted(list(all_indices - set(selected_indices)))
                                       R = vector(Zq, u)
                                        for i in selected_indices:
                                                          if p vector[i] is not None:
                                                                            row = vector(Zq, A[i])
                                                                           R -= p vector[i] * row
                                       B rows = [vector(Zq, A[j]) for j in unselected indices]
                                       B = matrix(Zq, B_rows)
                                       B inv = B.inverse()
                                       X = R * B inv
                                       for idx, j in enumerate(unselected indices):
                                                          p_vector[j] = int(X[idx])
                                       return p vector
Primeiro, calcula-se o vetor (R):
R = u - \sum_{i \in A[i]} p[i] \cdot 
onde ( A[i] ) são as linhas da matriz ( A ) correspondentes aos índices selecionados.
Define-se a matriz ( B ) composta pelas linhas não selecionadas:
B = \left[ A[j_1] \setminus A[j_2] \setminus A[j_{n-k}] \right] 
Calcula-se (X):
$$X = B^{-1} R$$
Finalmente, os valores de ( p ) para os índices não selecionados são definidos como:
p[j] = X[j], \quad forall j \quad \text{text}{selected\_indices}$
```

3ª Etapa - Verificar critério (Provider)

O Provider verifica então se o vetor satisfaz a equação , garantindo que o Receiver não está a tentar recuperar mais do que k mensagens:

```
def verify_criterion(p_vector, A, u, p):
    Zq = GF(p)
    n = len(p_vector)
    d = len(u)

total = vector(Zq, [0] * d)
    for i in range(n):
        row = vector(Zq, A[i])
        total += (p_vector[i] % p) * row

u_vec = vector(Zq, u)
    return total == u_vec

$$\sum_{i=0}^{n-1} p[i]A[i]=u$$
```

4ª Etapa - Cifrar mensagens (Provider)

Nesta etapa, o Provider cifra as mensagens com as chaves públicas correspondentes aos índices selecionados pelo Receiver. A cifra é semelhante ao esquema ElGamal + Fujisaki-Okamoto, onde a mensagem é cifrada com uma chave pública e um valor aleatório "randomizada" com o r.

```
else:
            m bytes = messages[i]
        m int = int.from bytes(m bytes, byteorder='big')
        r = randint(1, q - 1)
        print(f"Parameter r : {r}")
        gamma = power_mod(g, r, p_elgamal)
        kappa = power_mod(public_key_h, r, p_elgamal)
        combined = (r \ll 128) + m int
        encrypted message = (combined * kappa) % p elgamal
        c 2 = H(str(r) + str(tag.hex()))
        c_1 = (gamma, encrypted_message)
        encrypted messages.append({
             'index': i,
            'ciphertext': (c_1, c_2)
        })
    except Exception as e:
        print(f"Erro ao cifrar mensagem {i}: {e}")
return encrypted messages
```

5ª Etapa - Decifrar mensagens (Receiver)

Nesta etapa, o Receiver decifra as mensagens que escolheu, usando as chaves privadas correspondentes aos índices selecionados. Decifrar envolve a recuperação do valor r e a verificação da integridade da mensagem calculando o hash do mesmo.

```
def decrypt_messages(encrypted_messages, selected_indices, good_keys, tag, elgamal_params):
    p elgamal, q, g, h, s = elgamal params
    decrypted messages = {}
    for message_data in encrypted_messages:
        i = message_data['index']
        try:
            ciphertext = message_data['ciphertext']
            c 1, c 2 = ciphertext
            gamma, encrypted_message = c_1
            private_key = good_keys[i][1]
            kappa = power mod(gamma, private key, p elgamal)
            kappa_inv = power_mod(kappa, -1, p_elgamal)
            combined = (encrypted_message * kappa_inv) % p_elgamal
            r = combined >> 128
            m int = combined & ((1 << 128) - 1)
            r_hash_calculated = H(str(r) + str(tag.hex()))
            if r_hash_calculated != c_2:
                print(f" Mensagem {i}: falha na verificação de integridade")
                continue
            print(f" Mensagem {i}: verificação bem-sucedida!")
            m_bytes = m_int.to_bytes((m_int.bit_length() + 7) // 8, byteorder='big')
            plaintext = m_bytes.decode('utf-8')
            decrypted messages[i] = plaintext
            print(f" Mensagem {i} decifrada: {plaintext}")
        except Exception as e:
            print(f"Não foi possível decifrar mensagem {i}: {e}")
    return decrypted messages
```