CHƯƠNG 6

Một số ứng dụng

GV: TS. Nguyễn Thị Phương Trâm

Tài liệu tham khảo

- Slide bài giảng ThS. Trần Quốc Việt
- Slide bài giảng ThS. Lê Phi Hùng
- Nguyễn Cam -Chu Đức Khánh, Lý thuyết đô thị
 NXB Trẻ Tp. HCM, 1998.
- Kenneth H. Rosen: Discrete Mathematics and its Applications, 7 Edition, McGraw Hill, 2010.

Bài toán luồng cực đại (Max flow problem)

■ Mạng (network) là một đồ thị có hướng có trọng số G = (V,E) trên đó ta chọn một đỉnh gọi là đỉnh phát (source vertex) và 1 đỉnh gọi là đỉnh thu (sink vertex).

□ Một mạng G = (V,E) với đỉnh phát là a, đỉnh thu là $z, c(e) \in N$ là trọng số của cung e. Với mỗi đỉnh x, ta đặt:

In(x) =
$$\{e \in E \mid e \text{ t\'oi trong } x\}$$

Out(x) = $\{e \in E \mid e \text{ t\'oi ngo\`ai } x\}$

$$In(c) = {\overrightarrow{ac}, \overrightarrow{bc}}$$

Out(c)=
$$\{\overrightarrow{cd}, \overrightarrow{ce}\}$$

☐ Một hàm tải (*flow function*) trên G được định nghĩa bởi ánh xạ:

$$\varphi: E \to N$$

thỏa các điều kiện

(i)
$$\varphi(e) \le c(e), \forall e \in E$$

(ii)
$$\varphi(e) = 0$$
, $\forall e \in In(a) \cup Out(z)$

Ví dụ về hàm tải a:source, z:sink

$$\varphi(\overrightarrow{fa}) = 0$$

$$\varphi(\overrightarrow{gz}) = 0$$

$$\varphi(\overrightarrow{ab}) = 4$$

$$\varphi(\overrightarrow{ac}) = 1$$

$$\varphi(\overrightarrow{fc}) = 0$$

$$\varphi(\overrightarrow{bc}) = 0$$

$$\varphi(\overrightarrow{bd}) = 1$$

$$\varphi(\overrightarrow{bc}) = 2$$

$$\varphi(\overrightarrow{cd}) = 2$$

$$\varphi(\overrightarrow{cd}) = 2$$

$$\varphi(\overrightarrow{cd}) = 1$$

$$\varphi(\overrightarrow{ez}) = 1$$

$$\varphi(\overrightarrow{ed}) = 1$$

■ Một phép cắt (cut) xác định bởi 1 tập hợp con P của V, ký hiệu (P, P) là tập hợp:

$$(P, \overline{P}) = \{ \overrightarrow{xy} \mid x \in P \text{ và } y \in \overline{P} \}$$

Trong đó $P = V \setminus P$

- □Phép cắt (P, \overline{P}) gọi là 1 phép cắt a-z nếu $a \in P$ và $z \in \overline{P}$
- Trọng số (*capacity*) của một phép cắt được định nghĩa là: $c(P, \overline{P}) = \sum c(e)$

Ví dụ:

- P={a,b, c}
- $\overrightarrow{P} = \{d, e, z\}$
- $(P,\overline{P})=\{\overrightarrow{bd},\overrightarrow{be},\overrightarrow{cd},\overrightarrow{ce}\}$
- c(P,P) = 16

Định lý 6.1

Gọi ϕ là một hàm tải trên mạng G và $P \subset V \setminus \{a,z\}$ thì:

$$\sum_{e \in (P, \overline{P})} \varphi(e) = \sum_{e \in (\overline{P}, P)} \varphi(e)$$

Ví dụ:

$$P=\{b,c,d\}$$

$$\sum_{e\in(P,\overline{P})} \varphi(e) = ?$$

$$\sum_{e\in(\overline{P},P)} \varphi(e) = ?$$

$$\sum_{e\in(P,\overline{P})} \varphi(e) = \sum_{e\in(\overline{P},P)} \varphi(e) ?$$

Định lý 6.2

- Với mọi hàm tải φ trên mạng G, lượng tải khỏi a bằng lượng tải vào z, nghĩa là: $\sum_{e \in \text{Out(a)}} \varphi(e) = \sum_{e \in \text{In}(z)} \varphi(e) = |\varphi|$
- Kí hiệu: |φ| gọi là tải trọng của hàm tải φ

Chứng minh định lý 6.2

Không mất tính tổng quát, giả sử G không chứa cung (a,z). Đặt P = V \ {a,z}, khi đó:

$$\sum_{e \in Out(a)} \varphi(e) = \sum_{e \in (\overline{P}, P)} \varphi(e) = \sum_{e \in (P, \overline{P})} \varphi(e) = \sum_{e \in In(z)} \varphi(e)$$

Định lý 6.3

Với mọi hàm tải φ và với mọi phép cắt a-z trong mạng G, ta có:

$$|\varphi| \le c(P, \overline{P})$$

Hệ quả

Với mọi h<u>à</u>m tải φ và mọi phép cắt a-z trong mạng G. $|\varphi| = c(P, \overline{P})$ nếu và chỉ nếu thỏa 2 điều kiện:

(i)
$$\forall e \in (P, P), \varphi(e) = 0$$

(ii)
$$\forall e \in (P, \overline{P}), \varphi(e) = c(e)$$

Khi $|\varphi|=c(P,P)$ thì φ là hàm tải có tải trọng lớn nhất và (P,\overline{P}) là phép cắt a-z có trọng số nhỏ nhất

- Cho một mạng G, đỉnh phát a và đỉnh thu z, φ là một hàm tải trên G, (P, \overline{P}) :một phép căt a-z
- Một chuyền a-z K là một đường đi vô hướng nối a với z
- Độ lệch tải của cung e: $s(e) = c(e) \phi(e)$
- Xem:

$$\phi_K(e) = \begin{cases} 0 : e \not\in K \\ 1 : e \in K \text{ và có hướng từ a đến z} \\ -1 : e \in K \text{ và e có hướng từ z đến a} \end{cases}$$

Thuật toán Ford-Fulkerson (Tìm một phép cắt a-z tối thiểu)

Input: Mạng G, đỉnh phát a và đỉnh thu z

Output: Tập P của phép cắt a-z tối thiểu (P, \overline{P})

Bắt đầu bằng 1 hàm tải φ bất kỳ trên G

- 1. Đánh dấu mọi đỉnh đều chưa xét, gán nhãn cho a là (-, $\Delta(a)$) với $\Delta(a)=\infty$. Đặt $p_0=a$.
- 2. Xét p_0 .
 - a. Cạnh $e=\overrightarrow{p_0q}$ với q chưa có nhãn và s(e)>0 thì gán nhãn cho q là $(p_0^+, \min(\Delta(p_0), s(e)))$
 - b. Cạnh $e=\overrightarrow{qp_0}$ với q chưa có nhãn và $\varphi(e)>0$ thì gán nhãn cho q là $(p_0^-, \min(\Delta(p_0), \varphi(e)))$
- 3. Nếu đỉnh z đã được gán nhãn \rightarrow 4, ngược lại \rightarrow 5.
- 4. Xác định một dây chuyền (vô hướng) từ a đến z dựa vào thành phần thứ 1 của nhãn. Cập nhật lại φ như sau:

$$\varphi(e) = \varphi(e) + \Delta(z) \times \varphi_K(e)$$
. Về bước 1.

Tìm 1 đỉnh p đã có nhãn nhưng chưa xét. Nếu tồn tại p,
 đặt p₀ = p, → bước 2. Ngược lại dừng.

Thuật toán Ford-Fulkerson

Sau khi thuật toán kết thúc. P là tập hợp các đỉnh đã có nhãn và đã xét.

Ví dụ: Tìm một hàm tại cực đại trên mạng G

►G với hàm tải ban đầu:

ELăp lân 1:

- ► Gán nhãn cho đỉnh a là $(-,\Delta(a))$, với $\Delta(a)=\infty$
- \rightarrow Đặt p₀=a

Xét các đỉnh kề với p_0 :

- ightharpoonup Cạnh $e_1 = (\overline{a,b})$ có $s(e_1) = 0$ nên không xét
- Cạnh $e_2 = (\overline{a,c})$ có $s(e_2) = 3 > 0$ nên gán nhãn cho đỉnh

c là: $(a^+,min\{\Delta(p_0),s(e_2)\}) = (a^+,3)$

 \rightarrow Đỉnh z chưa được gán nhãn, đỉnh c đã gán nhãn nhưng chưa xét, đặt p₀=c

Xét các đỉnh kề với p_0 :

- ightharpoonup Cạnh $e_3 = (\overrightarrow{c,e})$ có $s(e_3) = 0$ nên không xét
- ightharpoonup Cạnh $e_4 = (\overline{c}, \overline{d})$ có $s(e_4) = 2 > 0$ nên gán nhãn cho đỉnh d là: $(c^+, \min\{\Delta(p_0), s(e_4)\}) = (c^+, 2)$

 \rightarrow Đỉnh z chưa được gán nhãn, đỉnh d đã gán nhãn nhưng chưa xét, đặt p_0 =d

 $p_0 = d$:

ightharpoonup Cạnh $e_5 = (\overrightarrow{d}, \overrightarrow{z})$ có $s(e_5) = 0$ nên không xét

 \triangleright Cạnh $e_6=(b,d)$ có $\varphi(e_6)=6>0$ nên gán nhãn cho đỉnh

b là: $(d^-,min{\Delta(p_0), \varphi(e_6)}) = (d^-,2)$

 \triangleright Đỉnh z chưa được gán nhãn, đỉnh b đã gán nhãn nhưng chưa xét, đặt p₀=b

 $p_0 = b$:

ightharpoonup Cạnh $e_7 = (\overline{b,e})$ có $s(e_7) = 3 > 0$ nên gán nhãn cho đỉnh e là: $(b^+, min\{\Delta(p_0), s(e_7)\}) = (b^+, 2)$

 \triangleright Đỉnh z chưa được gán nhãn, đỉnh e đã gán nhãn nhưng chưa xét, đặt p₀=e

 $p_0=e$:

>Cạnh $e_8 = (\overrightarrow{e,z})$ có $s(e_8) = 5 > 0$ nên gán nhãn cho đỉnh z là: $(e^+, min{\Delta(p_0), s(e_8)}) = (e^+, 2)$

Dinh z đã được gán nhãn, tìm chuyền a-z K: acdbez

ightharpoonup Cập nhật lại hàm tải: $\varphi = \varphi + \Delta(z)\varphi_K$

$$\phi_{K}(e) = \begin{cases} 0 & : e \not\in K \\ 1 & : e \in K \text{ và có hướng từ a đến z} \\ -1 & : e \in K \text{ và e có hướng từ z đến a} \end{cases}$$

FLăp lân 2:

- ► Gán nhãn cho đỉnh a là $(-,\Delta(a))$, với $\Delta(a)=\infty$
- \rightarrow Đặt $p_0=a$

☞ Lăp lần 2:

- ► Gán nhãn cho đỉnh a là $(-,\Delta(a))$, với $\Delta(a)=\infty$
- \rightarrow Đặt $p_0=a$

 \rightarrow Đỉnh z chưa gán nhãn, đỉnh c đã gán nhãn nhưng chưa được xét, đặt p_0 =c

☞ Lăp lân 2:

- $\rightarrow p_0 = c$
- Không có đỉnh nào được gán nhãn thêm

 \triangleright Đỉnh z chưa gán nhãn, , không tìm được đỉnh p_0 khác. Dừng. Tập $P=\{a,c\}$ là tập tương ứng với phép cắt tới thiểu (P,\overline{P})

Định lý 6.4

Khi kết thúc thuật toán Ford-Fulkerson thì φ là 1 hàm tải tối đại và (P,P) là 1 phép cắt a-z tối tiểu.

Định lý 6.5

Trong một mạng G, tải trọng của 1 hàm tải tối đại bằng trọng số của một phép cắt a-z tối tiểu.

Bài tập: Tìm một phép cắt a-z tối thiểu trên các mạng sau:

Đỉnh phát: a

Đỉnh thu: z

Bài tập: Tìm một phép cắt a-t tối thiểu trên các mạng sau:

Định phát: a

Đỉnh thu: t