### **CS2040C Tut 2**

Sorting (Part 2)
ADT

# Mini Experiment

Yes we start with Q2 first.

### **Q2** Answer (for checking)

| Input type $\rightarrow$ |               | Sorted        |               | Nearly Sorted |               |
|--------------------------|---------------|---------------|---------------|---------------|---------------|
| $\downarrow$ Algorithm   | Random        | Ascending     | Descending    | Ascending     | Descending    |
| (Opt) Bubble Sort        | $O(N^2)$      | O(N) - best   | $O(N^2)$      | O(N)          | $O(N^2)$      |
| (Min) Selection Sort     | $O(N^2)$      | $O(N^2)$      | $O(N^2)$      | $O(N^2)$      | $O(N^2)$      |
| Insertion Sort           | $O(N^2)$      | O(N) - best   | $O(N^2)$      | O(N)          | $O(N^2)$      |
| Merge Sort               | $O(N \log N)$ |
| Quick Sort               | $O(N \log N)$ | $O(N^2)$      | $O(N^2)$      | $O(N^2)$      | $O(N^2)$      |
| (Rand) Quick Sort        | $O(N \log N)$ |
| Counting Sort            | O(N)          | O(N)          | O(N)          | O(N)          | O(N)          |
| Radix Sort               | O(N)          | O(N)          | O(N)          | O(N)          | O(N)          |

#### Huhh??

**Q:** If counting/radix sort has a 'better time complexity', why don't we always just use these sorts?

Merge Sort: O(N log N)

(Rand) Quick Sort: O(N log N)

Counting Sort: O(N)

Radix Sort: O(N)

#### Ahh

Time complexity only denotes how runtime is *related* to **input size**. (i.e. value of **N**)

Radix sort is proportional to **number of digits** of the values *as well*, i.e. O(dN).

Counting sort requires time <u>and memory</u> proportional to the **maximum value** in the array *as well*.

#### **Constant time differences**

Between same time complexities, there are also differences in constant time.

In real world, *benchmarking* and understanding your data is important.

- Select the best algorithm for your use case.
- Justify why

#### Can I haz sort?

Sort an array of **N** numbers, between 0 and **K** inclusive. Merge Sort / Counting Sort / Radix Sort

1. 
$$N = 10^7$$
,  $K = 31$ 

2.  $N = 10^{15}$ ,  $K = 10^{12}$ 

3.  $N = 10^6$ ,  $K = 10^{18}$ 

(Days of the month)

(Big data, memory issue?)

(Generic)

#### Can I haz sort? (Answers)

Sort an array of **N** numbers, between 0 and **K** inclusive. Merge Sort / Counting Sort / Radix Sort

1. 
$$N = 10^7$$
,  $K = 31$ 

2. 
$$N = 10^{15}$$
,  $K = 10^{12}$ 

3. 
$$N = 10^6$$
,  $K = 10^{18}$ 

**Counting Sort** 

**Radix Sort** 

**Merge Sort** 

### Challenge

Find out what sorting algorithm C++ STL **sort** uses *now*.

What sorting algorithm does C++ STL stable\_sort use?

What about other languages? Java, Python?

Why do you think they implemented it this way?

# Sorting (Part 2)

Applications
Mini Experiment
Quick Select

### **Applications of Sorted Array**

- 5. Set intersection/union between two sorted arrays **A** and **B**.
- 6. Finding a target pair **x** and **y** such that **x+y** equals to a target **z**, etc. (in the same array)

#### **Brute Force - 5**

For each number **x** in array A, loop through array B to see if it exists in array B.

Do the inverse for union.

Append to array **C** accordingly (union/intersection).

Complexity: O(**NM**)

Edge cases:

Duplicates in array A

#### **Brute Force - 6**

For each number **x** in array, loop through to find **z-x**.

Complexity:  $O(N^2)$ 

### Binary Search - 5

#### **Observation**

Array A and B are sorted!

Instead of looping through for **x**, we can binary search instead.

Set intersection: O(N log M)\*\*

Set union: O(N log M + M log N)

### Binary Search - 6

Array is sorted!

Instead of looping through for **z** - **x**, we can binary search instead.

Complexity: O(N log N)

#### **Better?**

Is that the best we can do?

#### **Observation**

The value that we are binary searching for (**x**), always increases\* (App. 5) or decreases\* (App. 6).

\*Technically non-decreasing/non-increasing

#### **Better?**

#### **Observation**

The value that we are binary searching for, always increases\* (App. 5) or decreases\* (App. 6).

This implies that the result of the binary search (index) will always be **increasing\*** (App. 5) or **decreasing\*** (App. 6).

#### An *improved* brute force

For each number **x** in array A, loop through array B to see if it exists in array B.

Since B is sorted,

1. We can prune once it exceeds **x**.

#### An *improved* brute force

We observed that **x** is *increasing*\*.

Since B is sorted,

- 1. We can prune once it exceeds **x**.
- 2. We can start from the index of the previous **x**.



Search for  $\mathbf{x} = 3$ .



Search for  $\mathbf{x} = 3$ . Does not exist.



Search for  $\mathbf{x} = 3$ . Does not exist.

Search for  $\mathbf{x} = 5$ . Continue from current pointer position



Search for  $\mathbf{x} = 3$ . Does not exist.

Search for  $\mathbf{x} = 5$ . Found.

Notice we don't reset the pointer.

Why can we do this?



Search for  $\mathbf{x} = 5$ .

Search for  $\mathbf{x} = 6$ .

We can use this technique to solve Application 5 & 6.

Since the provided array is already sorted,

Application 5: O(N + M)

Application 6: **O(N)** 

Will be demonstrated in lab 2.

# **Quick Select**

http://en.cppreference.com/w/cpp/algorithm/nth\_element

### **Summary**

- 1. Randomly pick a number as **pivot**
- 2. Compute its rank
  - a. If k == rank, we are done
  - b. If k < rank, our target is to the left
  - c. If k > rank, our target is to the right
- 3. Repeat step 1-2 but limiting the pivot to possible ranges

Expected **O(N)** 

[Explanation in CS3230]

#### **Discussion**

- 1. What is the best case for this Partition algorithm?
  - a. Non-randomized?
  - b. Randomized?

2. What happens if we do not randomize the pivot of partition?

#### **Discussion**

- 1. What is the best case for this Partition algorithm?
  - a. Non-randomized?
  - b. Randomized?

#### Both O(N),

if we 'luckily' selected the answer on the first try.

#### **Discussion**

2. What happens if we do not randomize the pivot of partition?

Easy to hit near-worse case behaviour.

(Unless the array itself is randomized)

### **ADT**

# Introduction to ADT List ADT

### **Abstract Data Type (ADT)**

An *abstract* data type that is defined by the **operations** you can perform on it.

Implementations of the same ADT can vary

Some are better than others in different ways

### **Abstract Data Type (ADT)**

Since ADTs are defined by operations:

- Implementation can be changed without affecting functionality of existing code
  - STL Libraries
- Usually implemented in OOP fashion
  - Encapsulation

### **Common List Array ADT operations**

**get(i):** Gets the *i*-th element from the front. (0-indexed)

**search(v):** Return the first index which contains *v*, or returns -1/NULL (to indicate failure).

insert(i, v): Insert element v at index i.

**remove(i):** Remove the element at index *i*.

## PS1 again

Continuous <del>Torture</del> Median

### **PS1 Tips**

#### PS<sub>1</sub>B

Is your array to sort *special*?

- Eg: *almost* sorted? Only last number is not sorted?

Do you need **O(N log N)** to sort this *special* array?

- Refer to Tut 02 Qn 2
- No, I don't mean counting/radix sort :<</p>

### **PS1C Tip**

How will the *sorted array* look like?

1, 1, 1, ...., 1, 3, 3, 3, ...., 3, 5, 5, 5, ..., 5
[0 or more 1s][0 or more 3s][0 or more 5s]

We can use some *counters* to track how many of each number there is.

How do you check what number is at index **K**?

# Questions?