

Fen Fakültesi İstatistik ve Bilgisayar Bilimleri Bölümü

Çok Değişkenli İstatistiksel Yöntemler

BÖLÜM 2 - Çok Değişkenli Analizde Veri Matrisi ve Tanımlayıcı İstatistikler

Dr. Öğr. Üyesi Uğur ŞEVİK

Ders İçeriği

- Varyans Kovaryans Matrisi, Korelasyon Matrisi
- Açıklayıcılık Katsayısı
- Saçılım Grafikleri
- Genelleştirilmiş Varyans
- Gruplara İlişkin Çözümlemeler

Ders Hedefleri

- Varyans Kovaryans Matrisi, Korelasyon Matrisi
- Açıklayıcılık Katsayısı
- Saçılım Grafikleri
- Çok değişkenli analizdeki tanımlayıcı istatistiklerden biri olan Genelleştirilmiş Varyans'ın tanımı ve saplanması
- Çok değişkenli problemlerde benzer özellikli değişkenlerin gruplandırılması, bu grupların grup içi analizlerini yapılması ve gruplar arası ilişkilerin araştırılması

	# Tonmay	cı istatist	rkler #	
dar degizkeni.	aralisae d	neðízkevlet	kůmesiní	tormonak
icum ortalama	vektórű (x), kovor	you deg	eri, voyons-kov,
motrisi , vorelos	yon votsoi	4131 Ye K	orelosyon	mortrisman
toplanlin.			VALUE OF STREET	
a) ortalisma ve	ktorů! qok	aegiskenii	adlight	tec or ortopina
degil p tone	ortoloma	verterü	radir	· asserimi
ortalismo viektor	a hadiwin	la yapılır		

Burodo	paydori	i fodere düzeltilmiş rorder toplom: centr.
Yukoridaki	esituicte	stildigi gibi voyos, ortokoraya stre
all times	degaterin	korelemm toplonmosi (pay) ve serbestirle
		(poyda) ile resoponir artalomaya gore
adlections	degenerin	koreteri toplomi kisoco koreter toplomi
No.		under.
Acrosia	n que de	gistanii onoliadaki korsiligi ise pxp boyutku
ametrik .	voyons - roug	oryons motifisation. S = (sig)ptp 11e genterillin.
		oni i=j elemonlori degiskenere riiskin voryonsi
verinter,	sij yon i 7	es elemantari da kalamans degerins verir-

omer: F	Asoglober to	06/00/0	verien ve	en od	br conli
doğum	Yopmis kodi	nlora 1	liskin ver	f mortri	ishr ele alarak
ortalamo	vektora,	S, R VE	e arger	matrisler	i bulalım.
Kodin	Xı	X2	X3	X4	1,443
1	13,0	1	20	40	XI: Kodinin
2	14,0	1	25	50	hemoglobin du sey
3	12,5	(40	40	bkds -
4	12,0	2	22	60	X2: conll dogum
5	12,5	2	33	60	SOMISI
6	12,0	3	35	55	
7	11,0	4	21	50 1	X3: Kadının yası
8	10,0	5	25	70	
9	1010	6	42	50	X4: GOCULE LOOKIM
10	1210	4	30	75	billar puoni
11	10,5	3	35	60	
12	1010 -	4	28	70	25 365 75
13	11,0	5	25	65	
14	8,0	6	40	45	24-0 3
15	11,5	2	33	65	

				-12		
Kodin	Xı	X2	X3	X4	3040	* \(\frac{1}{2} \times (\times 2) = 530
1	13,0	1	20	40	XI: Kodinin	
2	14,0	1	25	50	hemoglobin duseyi	* Zixxu = 28
3	12,5	(40	40	2465	* 21 224 = 20
4	12,0	2	22	60	X2: conll dogum	
5	12,5	2	33	60	SOYISI	
6	12,0	3	35	55		$*\sum x_2x_3 = 1529$
7	11,0	4	21	50 '	X3: Kodinin yosi	
8	10,0	5	25	70		
9	1010	6	42	50	X4! Gocule bolem	*\(\sum_{\text{X}}\) \(\text{X}\) \(\text{X}\) \(\text{Y}\) = 8697/
10	1210	4	30	75	bilgi puoni	
(1	10,5	3	35	60		
12	1010 -	4	28	70	200-5-1	* \(\int \text{X} \text{IX} \text{X} = 5128,
13	11,0	5	25	65		, , , , , , , , , , , , , , , , , , , ,
14	8,0	6	40	45	3.94.3	A SECULIA
15	11,5	2	33	65		,*\(\sum_1 \times_3 \times_4 = 256\)
	-	10 Stoll	ALE THE	CHIZ		
Σχ	174,0	48,000	4541000	855/0	000	
∑'X²	1875,00	203,000	14476,000	5042	5,000	11,400
×	11400	3,267	30,267	57/0	000	_ 3,267
S ²	1,829	3,067	52,485	120,	714	X = 30,267
8	1/352	1,751	7,245	10,	987	57,00

omek:	×ı	Xa	
	10	7	
	30	15	117
	30	17	
	30	19	
	30	21	

	$\sum_{i=1}^{n} x_{ii}^{2}$	$\sum_{i=1}^{n} x_{i1} x_{i2}$) \(\sum_{i=1}^{1} \times_{i} \ti) X11X14
	ν Σ. Χι2Χὶι Î=1	∩ ∑1 X(2 1=1	∩ ∑ X12X13	D X12X14
x'x=vqT=	↑ ∑ X13X11	n \(\sum_{i=1}^{1} \times 13 \times 12 \)	∑ X13	∩ ∑ X12X14
	Λ Σιχι μ χτι) X14X12) > X14X13	∩ 2 ∑ X14 i=

Genelleştirilmiş Varyans

- pxp boyutlu bir S matrisi, p tane varyans ve p(p-1)/2 tane kovaryans değeri içerir. Eğer S matrisinin determinantı alınırsa bu sayısal değere genelleştirilmiş varyans denir ve |S| ile gösterilir.
- Önceki örnek için genelleştirilmiş varyans |S|=6712 bulunur.
- Genelleştirilmiş varyans S matrisine ilişkin öz değerler yardımıyla da hesaplanabilir.

$$S = \lambda_1 \times \lambda_2 \times \dots \times \lambda_p$$

Önceki örnek için,

 $|S| = 124,491 \times 49,731 \times 3,577 \times 0,303 = 6712$ bulunur.

- Birçok çok değişkenli çözümleme (Diskriminant analizi, MANOVA, iki ve daha fazla grubun incelenmesini gerektirir.
- Korelasyon ve Kovaryans uygulaması örneğinde, veriyi ilk 7 gözlem kentsel, son 8 gözlem kırsal bölge kadınlarına ait veri grupları olarak ayıralım. Dolayısıyla veri 2 gruptan oluşacaktır.
- Araştırıcı, incelenen 4 değişken açısından her bir gruptaki kadınların birbirine ne derece benzer olduğunu ve de iki gruptaki kadınların incelenen değişkenler açısından ne derece farklı olduğunu belirlemek isteyebilir. Bu amaç için:
- 1. Veri, her bir grup içindeki benzerlikleri belirlemek amacıyla ayrı ayrı özetlenir ise bu işleme grup içi analiz (within-group analysis) adı verilir.
- 2. Veri, incelenen değişkenler açısından gruplar arasındaki farklılıkları belirlemek için özetlenir ise bu işleme gruplar arası analiz (between-group analysis) adı verilir.

- Önceki örnekteki ilk iki değişken (X₁ ve X₂) dikkate alınarak ve veriyi kentsel ve kırsal olarak iki gruba ayırarak elde edilen tanımlayıcı istatistikler aşağıdaki tabloda verilmiştir.
- Tabloda ortalamaya göre düzeltilmiş (her bir gözlemin dağılım ortalamasından çıkartılarak düzeltildiği) değerler de yer almakta ve hesaplamalarda bu değerlerden de yararlanılmaktadır.
- Tabloda görüldüğü gibi, ham verilerin varyansı ile ortalamaya göre düzeltilmiş verilerin varyansı aynıdır.

Kodin	Xı	X2	XI: Kodinin
1	13,0	1	hempolobin a
2	14,0	(3
3	12,5	(
4	12,0	2	X2: conll dos
5	12,5	2	
6	12,0	3	X2: con 1 dos
7	11,0	4	
7 8 9 10	10,0	4 5	
9	1010	6	
10	12,0	4	
11	10,5	3	
12	1010 -	4	
13	11,0	5	
14	8,0	6	
15	11,5	2	

Tablo a. Ez Az Bir Çocuklu Kadınlara İlişkin Bulgular (Kentsel)

			Ortalamaya Göre Düzeltil	
Sıra No	X,	<u>X</u> 2	X,	X 2
1	13,0	1	0,572	-1
2	14,0	1	1,572	-1
3	12,5	1	0,072	-1
4	12,0	2	-0,428	0
5	.12,5	2	0,072	0
6	12,0	3	-0,428	1
7	11,0	4	-1,428	2
\overline{X}	12,428	2	0,000	0,000
KT			5,214	8
S ²	0,869	1,333	0,869	1,333

Tablo b. Ez Az Bir Çocuklu Kadınlara İlişkin Bulgular (Kırsal)

			Ortalamaya Göre Düzeltilmiş		
Sıra No	X1	X2	X1	X2	
8	10,0	5	-0,500	0,625	
9	10,0	6	-0,500	1,625	
10	12,0	4	1,500	-0,375	
11	10,5	3	0,000	-1,375	
12	10,0	4	-0,500	-0,375	
13	11,0	5	0,500	0,625	
14	9,0	6	-1,500	1,625	
15	11,5	2	1,000	-2,375	
\overline{X}	10,5	4,375	0,000	0,000	
KT			6,500	13,875	
S^2	0,929	1,982	0,929	1,982	

A) Grup İçi Analiz

- Grup içi analiz için gerekli olabilen ortak (pooled) grup içi düzeltilmiş KÇT, ortak varyans-kovaryans ve ortak R matrislerini elde etmek amacıyla gruplara göre düzeltilmiş KÇT, varyans-kovaryans ve korelasyon matrisleri aşağıda verilmiştir.
- Aşağıda verilen Düz.KÇT1 matrisindeki (1,1) elemanı olan 5.214 ve (2,2) elemanı olan 8,000 doğrudan Tablo a'dan alınırken (ki bunlar düzeltilmiş değerlerin kareleri toplamlarıdır), (1,2) ya da (2,1) elemanı olan -5,500 (ki bu düzeltilmiş değerlerin çarpımlar toplamıdır), (0,572)(-1)+... +(-1,428)(2) ile de bulunabilir.

ile de bulunabilir.
$$\sum_{x^2 - (\sum x)^2 / n} \sum_{x_1 x_2 - \sum x_1 \sum x_2 / n} \sum_{x_2 / n} \sum_{x_3 = 1,000} \sum_{x_4 =$$

$$D\ddot{u}z.K\zeta T_2 = \begin{vmatrix} 6,500 & -6,000 \\ -6,000 & 13,875 \end{vmatrix} S_2 = \begin{vmatrix} 0,929 & -0,857 \\ -0,857 & 1,982 \end{vmatrix} R_2 = \begin{vmatrix} 1,000 & -0,632 \\ -0,632 & 1,000 \end{vmatrix}$$

A) Grup İçi Analiz

• İki grubun grup içi düzeltilmiş KÇT matrislerini toplarsak, ortak (pooled) grup içi düz. KÇT matrisi elde edilir (sadece W ile de gösterilebilir):

• Ortak Grup İçi Düz. KÇT Matrisi = W =
$$\begin{bmatrix} 11,714 & -11,500 \\ -11,500 & 21,875 \end{bmatrix}$$

• Ortak varyans-kovaryans matrisi (Sw), ortak grup içi düz. KÇT matrisinin (W) serbestlik derecesi olan $\sum_{i=1}^{k} n_i - k$ 'ya bölünmesi ile bulunabilir (burada k: grup sayısıdır). Örneğimiz için serbestlik derecesi (n1 + n2)-2 = 7+8-2=13 olarak bulunur ve Sw aşağıdaki gibi elde edilir.

$$S_{w} = \begin{bmatrix} 0,901 & -0,885 \\ -0,885 & 1,683 \end{bmatrix}$$

• Benzer şekilde grup içi ortak korelasyon matrisi (Rw), Sw yardımıyla aşağıdaki gibi bulunur.

$$R_{w} = \begin{bmatrix} 1,000 & -0.718 \\ -0.718 & 1.000 \end{bmatrix}$$

B) Gruplar Arası Analiz

 Gruplar arası kareler toplamı, gruplardaki ortalamaların genel ortalamalardan ne derece farklı olduğu konusunda bilgi verir.

$$KT_{j} = \sum_{i=1}^{k} n_{i} (\bar{x}_{ji} - \bar{x}_{j.})^{2} \quad \text{in } = \text{crup soyisi}$$

$$n_{i} = \text{i. } \text{gruptaki gastem soyisi}$$

$$x_{j} = \text{i. } \text{gruptaki } \text{j. } \text{degiskenin } \text{ortalamosi}$$

$$x_{j} = \text{Topian gastem soyisi } \text{rain } \text{j. } \text{degiskenin } \text{ortalamosi}$$

• Örneğimizdeki X1ve X2 değişkenleri için düzeltilmiş gruplar arası kareler toplamları,

$$KT_1 = 7(12,428-11,40)^2 + 8(10,5-11,40)^2 = 13,886$$

 $KT_2 = 7(2,000-3,267)^2 + 8(4,375-3,267)^2 = 21,058$

B) Gruplar Arası Analiz

• Bu matrisin çarpımlar toplamı (matrisin (1,2) ya da (2,1) elemanı) ise aşağıdaki gibi bulunabilir.

$$\zeta T_{12} = 7(12,428-11,4)(2-3,267) + 8(10,5-11,4)(4,375-3,267) = 17,100$$

• Buradan, gruplar arası için düzeltilmiş KÇT matrisi, (B)

Gruplar Arası İçin Düz. KÇT Matrisi =
$$SSCP_B = \begin{bmatrix} 13,886 & -17,100 \\ -17,100 & 21,058 \end{bmatrix}$$

- W ve B matrislerinin toplanması ile toplam için düzeltilmiş kareler ve çarpımlar toplamı matrisi (T) elde edilir. Diğer bir deyişle, bu üç kareler toplamı arasında bir ilişki vardır. Bu ilişki,
- Düz. T = Düz. B + Düz. W ile verilir.

$$D\ddot{u}z. SSCP_{T} = \begin{bmatrix} 13,886 & -17,100 \\ -17,100 & 21,058 \end{bmatrix} + \begin{bmatrix} 11,714 & -11,500 \\ -11,500 & 21,875 \end{bmatrix} = \begin{bmatrix} 25,600 & -28,500 \\ -28,500 & 42,933 \end{bmatrix}$$

Sunum hazırlanırken aşağıdaki kaynaktan yararlanılmıştır.

