Diffeomorphisms and Change of Variables

Definition: Diffeomorphism

A, B 가 \mathbb{R}^n 의 open set 이고 $g: A \to B$ 가 bijection 이며 g, g^{-1} 이 C^r class 함수 일 때 g를 **diffeomorphism** (of class C^r) 이라 한다.

Lemma 1.

Let A be open in \mathbb{R}^n and $g:A\to\mathbb{R}^n$ be a C^1 class function. 만약 $E\subset A$ 가 measure 0 이면 g(E) 도 measure zero 이다.

 $Proof\ S \subset \mathbb{R}^n$ 이 measure 0 이면 전체 volume이 ε 보다 작고 개개의 width가 δ 보다 작은 closed cubes 로 cover 됨은 쉽게 보일 수 있다.

 $C \subset A$ 가 \mathbf{a} 를 중심으로 하는 width w 의 cube라 하자. $g \in C^1$ 이므로 $\exists M > 0$ s. t. $|Dg(\mathbf{x})| \leq M$ for all $\mathbf{x} \in C$ 이다. $|\mathbf{x} - \mathbf{a}| < w/2$ 고 \mathbf{x} 와 \mathbf{a} 를 잇는 line segments가 C 안에 존재하므로 mean value theorem을 쓰면 $g_i(\mathbf{x}) - g_i(\mathbf{a}) = Dg_i(\mathbf{c_i}) \cdot (\mathbf{x} - \mathbf{a})$ 를 만족하는 $\mathbf{c_i} \in C$ 이다. 따라서

$$|g_j(\mathbf{x}) - g_j(\mathbf{a})| \leq n|Dg_j(\mathbf{c}_j)||\mathbf{x} - \mathbf{a}| \leq nMrac{w}{2} \;.$$

for all $j \in \{1, 2, \ldots, n\}$ and $\mathbf{x} \in C$ 이며 따라서 모든 $\mathbf{x} \in C$ 에 대해 다음이 성립한다.

$$|g(\mathbf{x}) - g(\mathbf{a})| \le nM(w/2)$$
.

 $(|\mathbf{a}| = \sup\{|a_1|,\,|a_2|,\ldots,\,|a_n|\}$ 이며 $|\mathbf{A}| = \sup\{|A_{ij}|\}$ 임에 유의하라.)

이제 g(E)가 measure 0임을 보이자. $\{C_i\}$ 가 $C_i\subset \operatorname{int}(C_{i+1})$ 를 만족하며 $\bigcup_i\{C_i\}=A$ 를 만족하는 compact subset의 sequence라 하자(우리는 이런 sequence가 항상 존재함을 안다.). $E_k=C_k\cap E$ 라 하자. C_k 가 compact set 이므로 C_k 의 δ -neighborhood가 $\operatorname{int}(C_{k+1})$ 에 포함되도록 하는 $\delta>0$ 을 선택 할 수 있다. $g\in C^1$ 이므로 $|Dg(\mathbf{x})|\leq M$ for $\mathbf{x}\in C_{k+1}$ 이 되는 M을 선택 할 수 있다.

 $E_k \subset E$ 이므로 E_k 는 measure 0 이고 따라서, E_k 를 그 폭이 δ 보다 작고 총 부피가 $\varepsilon' = \varepsilon/(nM)^n$ 보다 작은 cube 로 cover 할 수 있음을 알고 있다. D_1, D_2, \ldots 를 E_k 와 intersect 하는 이 cubes라 하자. D_i 의 width는 δ 보다 작고 $D_i \subset \operatorname{int}(C_{k+1})$ 이므로 $|Dg(\mathbf{x})| \leq M$ for $\mathbf{x} \in D_i$ 이다. 따라서 $g(D_i)$ 는 width가 $nM \cdot (\operatorname{width} D_i)$ 인 cube D_i' 에 포함된다. D_i' 의 부피는 다음과 같다.

$$v(D_i') = (nM)^n (\mathrm{width}\ D_i)^n = (nM)^n v(D_i)\ .$$

Cubes $\{D_i'\}$ 가 $g(E_k)$ 를 cover 하므로 total volume of g(E) 는 $\varepsilon = \varepsilon'(nM)^n$ 보다 작다고 할 수 있다. \square .

Theorem 2.

 \mathbb{R}^n 에서의 open set A,B에 대해 $g:A\to B$ 가 diffeomorphism of class C^r 이라 하자. D가 compact subset of A 이고 E=g(D) 일 때 다음이 성립한다.

- 1. g(int(D)) = int(E) and g(Bd(D)) = Bd(E).
- 2. D가 rectifiable 이면 E도 rectifiable이다.

 $Proof\ g^{-1}$ 이 연속이므로 $g(\mathrm{int}(D))$ 는 open subset of E, i.e., $g(\mathrm{int}(D))\subset\mathrm{int}(E)$. 마찬가지로 $g(\mathrm{ext}(D)\cap A)$ 는 open in B and disjoint with E=g(D), i.e., $g(\mathrm{ext}(D)\cap A)\subset\mathrm{ext}(D)$. g가 bijection 이므로 $\mathrm{Bd}(E)\subset g(\mathrm{Bd}(D))$ 이다.

더 자세히 말하면, Let $\mathbf{y} \in \mathrm{Bd}(E)$ 라 하자. E = g(D), g is continuous and D is compact 이므로 E는 compact. 따라서 E is closed 이므로 $\mathbf{y} \in E$. Let $\mathbf{x} \in A$ s. t. $\mathbf{y} = g(\mathbf{x})$. $\mathbf{x} \in \mathrm{int}(D)$ 이면 $\mathbf{y} \in \mathrm{int}(E)$ 이고 $\mathbf{x} \in \mathrm{ext}(D)$ 이면 $\mathbf{y} \in \mathrm{ext}(E)$ 이어야 하므로 모순. 따라서 $\mathbf{x} \in \mathrm{Bd}(D)$ 이며 $\mathrm{Bd}(E) \subset g(\mathrm{Bd}(D))$ 이다.

위와 같은 이유료 g가 연속이므로 $g^{-1}(\mathrm{int}(E))\subset\mathrm{int}(D)$ 이고 $\mathrm{Bd}(D)\subset g^{-1}(\mathrm{Bd}(E))$ 이다.

$$\operatorname{int}(E) = g \circ g^{-1}(\operatorname{int}(E)) \subset g(\operatorname{int}(D)) \subset \operatorname{int}(E)$$
 이므로 $g(\operatorname{int}(D)) = \operatorname{int}(E)$ 이다. (1. 증명)

$$g(\mathrm{Bd}(D))\subset g\circ g^{-1}(\mathrm{Bd}(E))\subset \mathrm{Bd}(E)\subset g(\mathrm{Bd}(D))$$
 이므로 $\mathrm{Bd}(E)=g(\mathrm{Bd}(D))$ 이다. (2. 증명)

D가 rectifiable 이면 E도 rectifiable 임은 Lemma 1.에 의해 자명하다. \Box .

Definition: Primitive Diffeomorphism

Diffeomorphism $h:A\subset\mathbb{R}^n\to B\subset\mathbb{R}^n$ 가 $h(\mathbf{x})=(h_1(\mathbf{x}),\dots,h_n(\mathbf{x}))$ 로 주어졌고 하자. 어떤 i 에서 $h_i(\mathbf{x})=x_i$ 일 때 h는 i-th coordinate를 보존한다고 한다. h가 어떤 i-th coordinate를 보존한다면 h를 **primitive diffeomorphism** 이라 한다.

Theorem 3.

g:A o B가 diffeomorphism of open sets in \mathbb{R}^n 이라 하자. $\mathbf{a}\in A$ 이면 어떤 neighborhood of \mathbf{a} , $U_{\mathbf{a}}$ 가 존재하여 $g|_{U_{\mathbf{a}}}$ 가 composite of primitive diffeomorphism $h_k\circ h_{k-1}\circ\cdots\circ h_1$ 과 같다.

Proof (Step 1) Linear algebra로 부터 다음 두 사실을 알고 있다.

- 1. Non-singular linear transformation $T:\mathbb{R}^n \to \mathbb{R}^n$, $T(\mathbf{x}) = C \cdot \mathbf{x}$ 일 경우 행렬 C는 elementary row operation matrix의 product 이므로 C는 primitive diffeomorphism 의 composite 이다.
- 2. $t: \mathbb{R}^n \to \mathbb{R}^n$ 이 translation $t(\mathbf{x}) = \mathbf{x} + \mathbf{c}$ 일 경우 $t_1(\mathbf{x}) = (x_1 + c_1, x_2, \dots, x_n)$, $t_2 = (x_1, x_2 + c_2, \dots, x_n + c_n)$ 으로 정의하면 $t_1, t_2 \vdash$ primitive diffeomorphism 이며 $t = t_1 \circ t_2$.

 $\underline{(\text{Step 2})}$ $\mathbf{a}=0$, g(0)=0, $Dg(0)=I_n$ 인 경우 g 가 locally composite of two primitive diffeomorphism 임을 보이자. $g(\mathbf{x})=\sum_{i=1}^n g_i(\mathbf{x})\hat{e}_i$ 이며 $h(\mathbf{x})=\sum_{i=1}^{n-1} g_i(\mathbf{x})\hat{e}_i+x_n\hat{e}_n$ 이라 하자. h(0)=0 이며 $Dh(0)=I_n$ 임을 알 수 있다. Inverse function theorem에 의해 h는 0의 neighborhood V_0 , V_1 사이의 diffeomorphism임을 알 수 있다.

이제 $k(\mathbf{y})=(y_1,\,\ldots,\,y_{n-1},\,g_n(h^{-1}(\mathbf{y})))$ 라 정의하자. k(0)=0 이며

$$Dk(\mathbf{y}) = egin{bmatrix} I_{n-1} & 0 \ D(g_n \circ h^{-1})(\mathbf{y}) \end{bmatrix}$$

이다. Chain rule에 의해 $D(g_n\circ h^{-1})(\mathbf{y})=Dg_n(0)\cdot Dh^{-1}(0)=[0,\dots,0,1]\cdot I_n=[0,\dots,0,1]$. 따라서 $Dk(0)=I_n$ 이며 k는 0의 neighborhood $W_1,\ W_2$ 사이의 diffeomorphism이다. $k(W_1)=W_2$, $W_0=h^{-1}(W_1)$ 이라 하면 $k,\ h$ 는 primitive diffeomorphism 이며 $k\circ h=g|_{W_0}$ 임을 알 수 있다.

$$W_0 \stackrel{h}{\longrightarrow} W_1 \stackrel{k}{\longrightarrow} W_2$$

 $\underline{(\mathrm{Step\ 3})}$ 이제 일반적인 경우에 대해 생각해보자. 주어진 $g:A\to B$ 에 대해 $\mathbf{a}\in A$ 이고 $C=Dg(\mathbf{a})$ 라 하자. Diffeomorphism $t_1,\,t_2,T:\mathbb{R}^n\to\mathbb{R}^n$ 을 다음과 같이 정의한다.

$$egin{aligned} t_1(\mathbf{x}) &= \mathbf{x} + \mathbf{a} \;, \ t_2(\mathbf{x}) &= \mathbf{x} - g(\mathbf{a}) \;, \ T(\mathbf{x}) &= C^{-1} \cdot \mathbf{x} \;. \end{aligned}$$

 $ilde{g}=T\circ t_2\circ g\circ t_1$ 이라 하면 $ilde{g}$ 는 open sets $t_1^{-1}(A),\,T(t_2(B))$ 사이의 diffeomorphism 이다. 여기서 $ilde{g}(0)=0,\,D ilde{g}(0)=I_n$ 임은 쉽게 보일 수 있다. Step 2에서 보았듯이 0의 어떤 neighborhood $W_0\subset t_1^{-1}(A)$ 에 대해 $g|_{W_0}$ 는 two primitive diffeomorphism의 composite 이다. $W_2= ilde{g}(W_0),\,A_0=t_1(W_0),\,B_0=t_2^{-1}T^{-1}(W_2)$ 라 하면,

$$A_0 \xrightarrow{t_1^{-1}} W_0 \xrightarrow{\tilde{g}} W_2 \xrightarrow{T^{-1}} T^{-1}(W_2) \xrightarrow{t_2^{-1}} B_0$$
.

각각의 $t_1^{-1},\,t_2^{-1},\,T^{-1}$ 이 primitive transformation 이거나 primitive transformation으로 factorize 될 수 있으므로 증명 끝. \square

Definition

An open $A \subset \mathbb{R}^n$ 에 대해 C^r class injective function $g:A \to \mathbb{R}^n$ 이 $\det Dg \neq 0$ for all $\mathbf{x} \in A$ 이면 g를 **change of variables** in \mathbb{R}^n 이라 한다.

Theorem 4. (Change of Variables Theorem)

g:A o B는 \mathbb{R}^n 에서의 open sets에서의 diffeomorphism 이고 $f:B o\mathbf{R}$ 은 연속함수라 하자. 이 때 f가 integrable over B iff $(f\circ g)|\det Dg|$ is integrable 이며 이 경우

$$\int_B f = \int_A (f\circ g) |\det Dg|$$

이다.

Proof 우선 f is integrable $\implies (f\circ g)|\det Dg|$ is integrable을 보인다(Lemma 5). 이후 $(f\circ g)|\det Dg|$ is integrable $\implies f$ is integrable 을 보인다(Lemma 6).

Lemma 4.

 $g:A\subset\mathbb{R}^n o B$, $h:B\subset\mathbb{R}^n o\mathbb{R}^n$ 이 differentiable 일 때 $\det(D(h\circ g))(\mathbf{x})=\det(Dh(g(\mathbf{x})))\cdot\det(Dg)(\mathbf{x})$ 이다. 따라서 $|\det(D(h\circ g))|=|\det(Dh)\circ g|\cdot|\det(Dg)|$ 이다.

Proof is trivial

Lemma 5.

g:A o B가 open sets $A,\,B$ in \mathbb{R}^n 에 대한 diffeomorphism 이라 하자. B에서 integrable한 연속 함수 $f:B o\mathbb{R}$ 에 대해 $(f\circ g)|\det Dg|$ 는 integrable 하며,

$$\int_B f = \int_A (f\circ g) |\det Dg|$$

이다.

Proof (Step 1) 임의의 $\mathbf{x} \in A$ 에 대해 위의 Lemma가 성립하는 \mathbf{x} 의 neighborhood $U \subset A$ 가 존재함을 가정하자. 즉일단 locally 성립하면 globally 성립함을 보인다. 그리고 난 후 이러한 U가 항상 존재함을 induction을 통해 보이기로 하자.

 $(\underline{\text{Step 2}})$ Collection of open sets $\{U_{\alpha}\}$ s. t. $\bigcup_{\alpha} U_{\alpha} = A$ 이고, $V_{\alpha} = g(U_{\alpha})$ 이면 $B = \bigcup_{\alpha} V_{\alpha}$ 이다. B에 대한 partition of unity $\{\phi_i\}$ having compact support, that is dominated by $\{V_{\alpha}\}$ 를 생각하자. 우리는 $\{\phi_i \circ g\}$ 가 partition of unity on A having compact support 임을 보일것이다.

- 1. $\phi_i(g(\mathbf{x})) \geq 0$ for all $\mathbf{x} \in A$ 이다.
- 2. $T_i = \text{support } \phi_i$ 라 하자. $g(T_i)$ 는 compact 이며 $\phi_i \circ g(\mathbf{x}) = 0$ if $\mathbf{x} \notin g^{-1}(T_i)$ 이다. 따라서 $S_i = \text{support } (\phi_i \circ g) \subset g^{-1}(T_i)$ 이며 S_i 는 compact set 이다.
- 3. $\mathbf{x} \in A$, $\mathbf{y} = g(\mathbf{x})$ 라 하자. \mathbf{y} 는 finitly many T_i 와 intersect 하는 neighborhood $N_{\mathbf{y}}$ 를 가지며 $g^{-1}(N_{\mathbf{y}})$ 는 \mathbf{x} 의 neighborhood로 이 T_i 에 상응하는 S_i 와만 intersect 한다.
- 4. $\sum \phi_i(g(\mathbf{x})) = \sum \phi_i(\mathbf{y}) = 1$.

따라서 $\{\phi_i \circ g\}$ 는 partition of unity on A 이다.

이제 $f:B\to\mathbb{R}$ 이 연속함수이고 f가 B에서 integrable 이라 하자. 우리는 $\int_B f=\sum_{i=1}^\infty \left[\int_B \phi_i f\right]$ 임을 알고 있다. Given i에 대해 $T_i\subset V_\alpha$ 가 되도록 α 를 선택하자. $\phi_i f$ 는 B에서 연속이므로

$$\int_{B}\phi_{i}f=\int_{T_{i}}\phi_{i}f=\int_{V_{lpha}}\phi_{i}f\;,$$

이다. $g:U_{\alpha} \rightarrow V_{\alpha}$ 를 생각하면 다음이 성립한다.

$$\int_{V_lpha} \phi_i f = \int_{U_lpha} (\phi_i \circ g) (f \circ g) |\det Dg| \;\; .$$

우변의 적분은 S_i 밖에서 0 이므로 다음이 성립한다.

$$\int_B \phi_i f = \int_A (\phi_i \circ g) (f \circ g) |\det Dg| \;, \; ext{and} \ \int_B f = \sum_{i=1}^\infty \left[\int_B \phi_i f
ight] = \sum_{i=1}^\infty \left[\int_A (\phi_i \circ g) (f \circ g) |\det Dg|
ight] \;.$$

 $\phi_i\circ g$ 가 A의 partition of unity 이고 |f|가 integrable 이므로 $(f\circ g)|\det Dg|$ 도 integrable 하다. 따라서

$$\int_B f = \int_A (f\circ g) |\det Dg|$$

이다.

 $(\underline{Step\ 3})$ 임의의 $\mathbf{x}\in A$ 에 대해 위의 Lemma가 성립하는 \mathbf{x} 의 neighborhood $U\subset A$ 가 존재함을 induction을 통해 보인다. 일단 n=1 일 때 즉 \mathbb{R}^1 에서 보이자. $A,\ B$ 가 open in \mathbb{R} 이라 하자. $x\in A$ 에 대해 I는 $x\in \mathrm{int}(I)$ 인 closed interval 이며 J=g(I) 라 하자. g가 diffeomorphism 이므로 $g(x)\in\mathrm{int}(J)$ 이다.

이제 $\mathrm{int}(J)$ 에서 정의된 연속함수 f에 대해 $\int_{\mathrm{int}(J)} f = \int_{\mathrm{int}(I)} (f \circ g) |g'|$ 임을 보이면 되는데 I,J가 closed interval 이므로 자명하다.

 $(\underline{Step~4})$ 이제 n-1일때 성립함을 가정하고 n에서 성립함을 보이자. Lemma 4를 생각하면 우리는 primitive diffeomorphism에서 성립함을 보이면 된다. $h:U\to V$ 를 \mathbb{R}^n 의 open set U,V에서 정의된 primitive diffeomorphism 이라 하자. 편의를 위해 h를 마지막 components를 보존하는 primitive diffeomorphism 이라고 가정한다.

 $\mathbf{p} \in U, \ \mathbf{q} = h(\mathbf{p})$ 이며 Q는 \mathbf{q} 를 내부에 포함하는 V의 subset 이라 하고 $S = h^{-1}(\mathbf{q})$ 라 하자. h는 $\mathrm{int}(S)$ 와 $\mathrm{int}(Q)$ 사이의 diffeomorphism이다. 이제 h와 임의의 연속함수 $f:\mathrm{int}(Q) \to \mathbb{R}$ whose support is compact subset of $\mathrm{int}(Q)$ 에 대해 lemma가 성립함을 보이자.

 $(f \circ h) | \det Dh |$ 가 compact subset of $\operatorname{int}(S)$ 이므로 $(f \circ h) | \det Dh |$ 는 integrable over $\operatorname{int}(S)$ 이다. 이제 우리는 다음을 보여야 한다.

$$\int_{\mathrm{int}(Q)} f = \int_{\mathrm{int}(S)} (f \circ h) |\det Dh| \ .$$

이제 f를 확장시킨 $f_e:\mathbb{R}^n o \mathbb{R}$, $F:\mathbb{R}^n o \mathbb{R}$ 을 다음과 같이 정의하면 f_e 와 F는 \mathbb{R}^n 에서 연속이다.

$$f_e(\mathbf{x}) = egin{cases} f(\mathbf{x}) & ext{if } \mathbf{x} \in ext{int}(Q) \;, \ 0 & ext{otherwise}. \end{cases}$$

$$F(\mathbf{x}) = egin{cases} (f_e \circ h) |\det Dh| & ext{if } \mathbf{x} \in ext{int}(Q) \;, \ 0 & ext{oterwise} \;. \end{cases}$$

Q는 closed rectangle in \mathbb{R}^n 이므로 \mathbb{R}^{n-1} 에서의 closed rectangle D와 closed interval I 에 대해 $Q = D \times I$ 로 쓸 수 있다.