

The Burrows-Wheeler Transform (BWT)

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

The Burrows-Wheeler Transform

Burrows and Wheeler, A block sorting lossless data compression algorithm, 1994

Applications of the BWT

Motivation

Modern DNA sequencers (Illumina NovaSeq 6000) produce more than 3Tbp per day.

- Compression of arbitrary text: bzip2
- Compression of sequenced read data sets (FASTQ files)
- At the core of popular read mappers (BWA, Bowtie)
- Overlap alignment in genome assembly (Simpson & Durbin, 2010)

Bottom line: BWT is essential for many string processing applications.

Definition via Suffix Array

Burrows-Wheeler Transform (BWT)

For a string s\$ of length n with unique sentinel and suffix array pos, the transformed string bwt[0, ..., n-1] is defined by

$$exttt{bwt}[i] := egin{cases} \$ & ext{if } exttt{pos}[i] = 0, \ S[exttt{pos}[i] - 1] & ext{if } exttt{pos}[i]
eq 0. \end{cases}$$

In other words: To construct the BWT...

... take each character before the lexicographically sorted suffixes

Note

The BWT is a function that (bijectively) **maps strings** (with unique sentinel) emphto strings of the same length.

BWT via Matrix of Cyclic Shifts

The encoding of bwt from S runs in 3 steps

- 1 Use conceptual matrix M' whose rows are cyclic shifts of S.
- **2** Compute the matrix M by sorting the rows of M' lexicographically.
- 3 Output the last column L of M.

BWT from pos

Create the BWT transform of a string s in O(n) time

```
def compute_bwt(s, pos):
    return ''.join(s[p-1] for p in pos) # s[-1] is s[len(s)-1]
```


BWT from pos

Create the BWT transform of a string s in O(n) time

```
def compute_bwt(s, pos):
    return ''.join(s[p-1] for p in pos) # s[-1] is s[len(s)-1]
```

Note

Constructing the SA first is **expensive** in terms of space;

defeats the space advantage of BWT over SA.

Better: direct construction of BWT (not discussed here).

BWT Decoding?

So far

For a given string s, compute the bwt(s).

Question

Given bwt(s), how to recover the original string s?

Last-to-First (LF) Mapping

Text: ctatatat\$, BWT: tttt\$aaac

```
$ ctatata t a t$ ctata t a tat$cta t a tatat$c t c tatatat $ t $ ctatat a t at$ctat a t atat$ct a t atat$ct a t atatat$ c a t atatat$ c
```

i	0	1	2	3	4	5	6	7	8
L[i]	t	t	t	t	\$	а	а	а	С
LF(i)	5	6	7	8	0	1	2	3	4
F[i]	\$	а	а	а	С	t	t	t	t

Definition of $LF: \{0, \ldots, n\} \rightarrow \{0, \ldots, n\}$

If L[i] = c is the k-th occurrence of character c in L (i.e., in the BWT), then LF(i) = j is the index j such that F[j] is the k-th occurrence of c in F (sorted).

F		L
\$	banan	a
a	\$bana	n
a	na\$ba	n
a	nana\$	b
b	anana	\$
n	a\$ban	a
n	ana\$b	a

LF mapping

- <u>F</u> <u>L</u>
- \$ banan a
- a \$bana n
- a na\$ba n
- a nana\$ b
- b anana \$
- n a\$ban a
- n ana\$b a

LF mapping

- F L
- \$ banan a
- a \$bana n
- a na\$ba n
- a nana\$ b
- b anana \$
- n a\$ban a
- n ana\$b a

LF mapping

- $\frac{F}{\$}$ banan a
- a \$bana n
- a na\$ba n
- a nana\$ b
- b anana \$
- n **a**\$ban a
- n ana\$b a

LF mapping

Code and Example: BWT Decoding

```
def decode_bwt(bwt, LF):
    n, r = len(bwt), 0
    s = ['$']
    while len(s) < n:
        s.append(bwt[r]) # build reverse
        r = LF[r]
    return ''.join(s[::-1]) # reverse</pre>
```

F		L
\$	banan	a
a	\$bana	n
a	na\$ba	n
a	nana\$	b
b	anana	\$
n	a\$ban	a
n	ana\$b	a

BWT Decoding

In order to construct the LF-mapping we need the C array, similar to the buckets for suffix array construction:

Definition

For an alphabet Σ let C[c], $c \in \Sigma$, be the number of occurrences of all characters c', c' < c, in S.

BWT Decoding

In order to construct the LF-mapping we need the C array, similar to the buckets for suffix array construction:

Definition

For an alphabet Σ let C[c], $c \in \Sigma$, be the number of occurrences of all characters c', c' < c, in S.

For the BWT string ttt\$aaac:

C [\$]	C [a]	C [c]	C [t]
0	1	4	5

BWT Decoding

In order to construct the LF-mapping we need the C array, similar to the buckets for suffix array construction:

Definition

For an alphabet Σ let C[c], $c \in \Sigma$, be the number of occurrences of all characters c', c' < c, in S.

For the BWT string ttt\$aaac:

C [\$]	C [a]	C [c]	C [t]
0	1	4	5

Observation:

First occurrence of c in F is at index C[c] k-th occurrence of c in F is at index C[c] + k - 1

Compute LF

Compute the LF-array from BWT and the C array in O(n) time

```
def compute_LF(bwt: str, C: dict|Counter):
    LF = []
    for a in bwt:
        LF.append(C[a])
        C[a] += 1
    return LF
```


Compute LF

Compute the LF-array from BWT and the C array in O(n) time

```
def compute_LF(bwt: str, C: dict|Counter):
   LF = []
   for a in bwt:
        LF.append(C[a])
        C[a] += 1
   return LF
```

Problem: LF-mapping uses O(n) space, as the suffix array does.

Compute LF

Compute the LF-array from BWT and the C array in O(n) time

```
def compute_LF(bwt: str, C: dict|Counter):
   LF = []
   for a in bwt:
       LF.append(C[a])
       C[a] += 1
   return LF
```

Problem: LF-mapping uses O(n) space, as the suffix array does. **Solution:** Do not store LF directly, but only C and a succinct data structure that supports O(1) time queries about the number of occurrences of any letter a in $bwt[\dots r]$, conceptually a table Occ(a, r).

FM-index: Backward Search with the BWT

Ferragina and Manzini, Opportunistic Data Structures with Applications 2000

Compressed full-text indexes

So far we have been **forward** searching characters from the pattern *P*.

A FM-index is a compressed full text index that supports backward search.

For a pattern of length m:

- forward search: P[0], P[0, 1], ..., P[0...m-1]
- backward search: P[m-1], P[m-2, m-1], ..., P[0...m-1]

Compressed full-text indexes

So far we have been **forward** searching characters from the pattern P.

A FM-index is a compressed full text index that supports backward search.

For a pattern of length m:

- forward search: P[0], P[0, 1], ..., P[0...m-1]
- backward search: P[m-1], P[m-2, m-1], ..., P[0...m-1]

Definition

Given a bwt string of length n on the alphabet Σ , let Dcc(c,i) return the number of occurrences of $c \in \Sigma$ in the prefix bwt[0...i].

Occ Table Example; Relation of LF to C and Occ

s = ctatatat and bwt = tttt aaac:

C [\$]	C [a]	C [c]	C [t]
0	1	4	5

	t	t	t	t	\$	а	а	а	С
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

Осс

 $\mathsf{Occ}(c,i)$ returns the number of occurrences of $c \in \Sigma$ in the prefix $\mathsf{bwt}[0 \dots i]$.

Observations

index	bwt	S[pos[i]]
0	t	\$
1	t	at\$
2	t	atat\$
3	t	atatat\$
4	\$	ctatatat\$
<i>⇒</i> 5	а	<i>t</i> \$
6	а	tat\$
7	а	tatat\$
→8	С	tatatat\$

Assume we are looking for pattern P = at. We have already found (via backward search) the interval for all suffixes that start with t: [5,8].

Observations

index	bwt	S[pos[i]]
0	t	\$
1	t	at\$
2	t	atat\$
3	t	atatat\$
4	\$	ctatatat\$
→ 5	а	t \$
6	а	tat\$
7	а	tatat\$
>> 8	С	tatatat\$

- Assume we are looking for pattern P = at.
 We have already found (via backward search)
 the interval for all suffixes that start with t: [5,8].
- Suffixes starting with at have to come from $S[pos[5] 1], \dots, S[pos[8] 1].$

Observations

index	bwt	S[pos[i]]
0	t	\$
1	t	at\$
2	t	atat\$
3	t	atatat\$
4	\$	ctatatat\$
\rightarrow 5	а	t \$
6	а	tat\$
7	а	tatat\$
→8	С	tatatat\$

- Assume we are looking for pattern P = at.
 We have already found (via backward search)
 the interval for all suffixes that start with t: [5,8].
- Suffixes starting with at have to come from $S[pos[5] 1], \dots, S[pos[8] 1].$
- These candidates can be found in the suffix array at ranks LF(5), ..., LF(8), because S[pos[r] 1] starts with at, iff bwt[r] = a and r belongs to the t-interval.

Observations continued

index	bwt	S[pos[i]]
0	t	\$
1	t	at\$
2	t	atat\$
3	t	atatat\$
4	\$	ctatatat\$
→ 5	а	<i>t</i> \$
6	а	tat\$
7	а	tatat\$
→8	С	tatatat\$

In fact we only need the first index p and the last index q such that 5 ≤ p ≤ q ≤ 8 and bwt[p]=bwt[q] = a (because of lexicographic sorting)

Observations continued

index	bwt	S[pos[i]]
0	t	\$
1	t	at\$
2	t	atat\$
3	t	atatat\$
4	\$	ctatatat\$
→ 5	а	t \$
6	а	tat\$
7	а	tatat\$
>8	С	tatatat\$

- In fact we only need the first index p and the last index q such that $5 \le p \le q \le 8$ and bwt[p]=bwt[q]=a (because of lexicographic sorting)
- So we have p = 5 and q = 7, and the at-interval can be found via LF(5) = 1 and LF(7) = 3.
- But how can we find p and q efficiently?

Observations (conclusion)

index	bwt	S[pos[i]]
0	t	\$
1	t	at\$
2	t	atat\$
3	t	atatat\$
4	\$	ctatatat\$
→ 5	а	t \$
6	а	tat\$
7	а	tatat\$
→8	С	tatatat\$

More generally

- Assume we have interval [i, ..., j] for suffix μ , find the interval [i', ..., j'] for suffix $c\mu$.
- If $c\mu$ exists in the text, then $[i', \ldots, j']$ is non-empty.
- We need the smallest p and largest q such that $i \le p \le q \le j$ and $\mathrm{bwt}[p] = \mathrm{bwt}[q] = c$. Then $c\mu$ -interval = $[LF(p), \ldots LF(q)]$.
- Obtain i' and j' via C and Occ:

$$i' = LF(p) = C[c] + Occ(c, i - 1)$$

 $j' = LF(q) = C[c] + Occ(c, j) - 1$

Backward Search (one step)

Given interval $[i, \ldots, j]$ for suffix μ , find the interval $[i', \ldots, j']$ for suffix $c\mu$:

```
def backward_step(c, i, j, occ, C):
    i = C[c] + occ.get(c, i-1)
    j = C[c] + occ.get(c, j-1)
    return (i,j) if i < j else None</pre>
```

Notes

- i and j specify a "pythonic" interval: j is **not** included (different indexing!)
- occ is an object implementing the Occ table.
- For i < 0 we define occ.get(c,i) := 0.

Backward Search (full)

```
def backward_search(fm, P):
    interval = (0, fm.n)
    for k in range(len(P)-1, -1, -1):
        c = P[k]
        i, j = interval
        interval = backward_step(c, *interval, fm.occ, fm.C)
        if interval is None: break
        #print(P[k:], interval) # debug
    return interval
```

Note

Object fm encapsulates the ingredients of an FM index: text, length n, bwt, C table, and Occ table.

Backward search example (P = ata)

5	Search	P= ata			index	bwt	S[pos[i]]
5	Step 1				→ 0	t	\$
	•	n-1=8		c=a	1	t	at\$
		Occ(a,	,		2	t	atat\$
j	=C[a]+	Occ(a,	8)-1=1+	-3-1=3	3	t	atatat\$
					4	\$	ctatatat\$
					5	а	<i>t</i> \$
	C [\$]	C [a]	C [c]	C [t]	6	а	tat\$
					7	а	tatat\$
	0	1	4	5	→8	С	tatatat\$

	t	t	t	t	\$	а	а	а	С
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

Backward search example (P = ata)

;	Search	P= ata			index	bwt	S[pos[i]]
	Step 2				0	t	\$
		3 k=1		-	→ 1	t	at\$
		Occ(t, 1-			2	t	atat\$
j	=C[t]+C	Occ(t,3))-1=5+ ₄	<i>1-1=8</i>	→ 3	t	atatat\$
					4	\$	ctatatat\$
					5	а	t\$
	C [\$]	C [a]	C [c]	C [t]	6	а	tat\$
		4			7	а	tatat\$
	0	1	4	5	8	С	tatatat\$

	t	t	t	t	\$	а	а	а	С
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

Backward search example ($P = \mathtt{ata}$)

,	Search	P= ata			index	bwt	S[pos[i]]
	Step 3				0	t	\$
	i=6 j=			-	1	t	at\$
	=C[a]+	•	,		2	t	atat\$
j	=C[a]+	Occ(a,	8)-1=1-	+3-1=3	3	t	atatat\$
					4	\$	ctatatat\$
					5	а	t \$
	C [\$]	C [a]	C [c]	C [t]	→ 6	а	tat\$
		4			7	а	tatat\$
	0	1	4	5	→ 8	С	tatatat\$

	t	t	t	t	\$	а	а	а	С
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

Backward search example (P = ata)

,	Search	P= ata			index	bwt	S[pos[i]]
1	Done				0	t	\$
	i=2 j=				1	t	at\$
	becaus				→ 2	t	atat\$
i	the valid	d interv	al [2,3]	a → 3	t	atatat\$	
					4	\$	ctatatat\$
					5	a	t\$
	C [\$]	C [a]	C [c]	C [t]	6	a	tat\$
		4	4	- [-]	7	a	tatat\$
	0	1	4	5	8	С	tatatat\$

	t	t	t	t	\$	а	а	а	С
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

Backward search example (P = tt)

,	Search	P= tt			index	bwt	S[pos[i]]
;	Step 1				→ 0	t	\$
	i=0 j=			c=t	1	t	at\$
	=C[t]+C				2	t	atat\$
j	=C[t]+C	Occ(t,8))-1=5+4	<i>4-1=8</i>	3	t	atatat\$
					4	\$	ctatatat\$
					5	а	t \$
	C [\$]	C [a]	C [c]	C [t]	6	а	tat\$
					7	а	tatat\$
	0	1	4	5	→8	С	tatatat\$

	t	t	t	t	\$	а	а	а	С
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

Backward search example (P = tt)

	Search	P= tt				inc	lex l	owt	S[p	os[i]]
,	Step 2						0	t	\$	
	=5 j=			c=t			1	t	at\$	
	=C[t]+C						2	t	atai	: \$
j	=C[t]+C	Occ(t,8	3)-1=5	+4-1	=8	3 t at			atai	tat\$
								\$	ctat	atat
						\rightarrow	5	а	t\$	
	C [\$]	C [a]	C [c	1 c	[t]	(6	а	tat\$;
		4					7	a	tata	t\$
	0	1	4		5	\rightarrow	8	С	tata	tat\$
		t	t	t	t	\$	а	а	а	С
				_	_	_	_		-	

	t	t	t	t	\$	а	а	а	С
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

Backward search example (P = tt)

,	Search	P= tt		inaex	DWL	Sįposįijj			
	Done			0	0 t \$				
	i=9 j=			1	1 t at\$				
i > j no interval found					2	t	atat\$		
					3	t	atatat\$		
					4	\$	ctatatat\$		
					5	a	t\$		
	C [\$]	C [a]	C [c]	C [t]	6	a	tat\$		
		4	4		7	a	tatat\$		
	0	1	4	5	8	С	tatatat\$		

	t	t	t	t	\$	а	а	а	С
	0	1	2	3	4	5	6	7	8
Occ [\$]	0	0	0	0	1	1	1	1	1
Occ [a]	0	0	0	0	0	1	2	3	3
Occ [c]	0	0	0	0	0	0	0	0	1
Occ [t]	1	2	3	4	4	4	4	4	4

Summary

- Burrows-Wheeler Transform (BWT)
 - Encoding: $s \rightarrow bwt(s)$,
 - The LF mapping for the bwt
 - Decoding: $bwt(s) \rightarrow s$, using LF mapping.
 - Fundamental property: The k-th occurrence of c in the BWT corresponds to the k-th occurrence of c in the first letters of the sorted suffixes.
- Pattern search with the FM-index
 - Replacing the LF mapping with C and Occ
 - Backward Search in the bwt with C and Occ
 - Next lecture: Compression of the Occ table

Possible Exam Questions

- Define the BWT.
- What is the relation of the BWT to the suffix array of the same string?
- Compute the BWT for a given string.
- Compute the original string from a given BWT.
- Define the Last-to-First (LF) mapping.
- Why is it useful?
- How can the LF-mapping be substituted by C and Occ?
- What is an FM-index?
- Explain backward pattern search with the FM-index.

