Уравнение в полных дифференциалах. Интегрирующий множитель

(08.02.2021)

1. Вспомним основные определения и утверждения по теме занятия.

Определение 1. Отображение $\gamma(t) = (x(t), y(t)) \colon [a, b] \to \mathbb{R}^2$ называется гладкой (параметризованной) кривой, если x и y — непрерывно дифференцируемые функции на отрезке [a, b] такие, что $|\dot{x}(t)| + |\dot{y}(t)| \neq 0$ при всех $t \in [a, b]$.

Определение 2. Две гладкие кривые $\gamma_1: I_1 \to \mathbb{R}^2$ и $\gamma_2: I_2 \to \mathbb{R}^2$ называют эквивалентными и пишут $\gamma_1 \sim \gamma_2$, если существует такая замена параметра $\sigma: I_1 \to I_2$, что σ непрерывно дифференцируемая функция, производная которой отличная от нуля в каждой точке отрезка I_1 , и $\gamma_1(t) \equiv \gamma_2(\sigma(t))$ при всех $t \in I_1$.

Несложно видеть, что

- 1. $\gamma \sim \gamma$ (рефлексивность);
- 2. если $\gamma_1 \sim \gamma_2$, то $\gamma_2 \sim \gamma_1$ (симметричность);
- 3. если $\gamma_1 \sim \gamma_2$ и $\gamma_2 \sim \gamma_3$, то $\gamma_1 \sim \gamma_3$ (транзитивность).

Другими словами, введённое отношение действительно является отношением эквивалентности на множестве гладких кривых. Классы эквивалентности по этому отношению называют непараметризованными гладкими кривыми. Для удобства будем отождествлять непараметризованную кривую и множество её точек на плоскости.

Определение 3. Касательной в точке (x_0, y_0) непараметрической кривой Γ называется прямая

$$\ell = \{ (x_0 + \tau \dot{x}(x_0), y_0 + \tau \dot{y}(t_0)) | \tau \in \mathbb{R} \},\,$$

 $\partial e \gamma(t) = (x(t), y(t))$ — некоторая параметризация кривой Γ и $\gamma(t_0) = (x_0, y_0)$.

Несложно видеть, что касательная корректно определена, т.е. не зависит от выбора параметризации γ .

Пусть $D \subset \mathbb{R}^2$ — область и $P,Q \colon D \to \mathbb{R}$ — заданные функции. Рассмотрим задачу нахождения всех непараметрических кривых $\Gamma \subset D$ таких, что в каждой точке $(x,y) \in \Gamma$ касательная к кривой перпендикулярна вектору $\big(P(x,y),Q(x,y)\big)$. Если $\gamma(t)=\big(x(t),y(t)\big)\colon I \to D$ — какая-либо параметризация кривой Γ , то условие перпендикулярности равносильно равенству

$$P(x(t), y(t))\dot{x}(t) + Q(x(t), y(t))\dot{y}(t) \equiv 0.$$

Сформулированную задачу записывают в виде

$$P(x,y) dx + Q(x,y) dy = 0$$
(1)

и называют эту запись уравнением первого порядка в нормальной дифференциальной форме. Если $Q(x,y) \neq 0$ в каждой точке области D и $\gamma(t) = (x(t),y(t)), t \in I$, — параметризация произвольного решения уравнения (1), то $\dot{x}(t) \neq 0$ при всех $t \in I$. Следовательно,

$$\frac{\dot{y}}{\dot{x}} = -\frac{P(x(t), y(t))}{Q(x(t), y(t))}$$
 при всех $t \in I$,

а значит, искомая кривая является графиком решения уравнения $y' = -\frac{P(x,y)}{Q(x,y)}$.

Если существует такая непрерывно дифференцируемая функция $u\colon D \to \mathbb{R},$ что

$$du(x,y) = P(x,y) dx + Q(x,y) dy,$$

т.е. $u_x' = P(x,y)$ и $u_y' = Q(x,y)$, то уравнение (1) называется уравнением в полных дифференциалах. В этом случае гладкая кривая $\gamma(t) = \big(x(t),y(t)\big)\colon I\to D$ — параметризация решения уравнения (1) тогда и только тогда, когда $u\big(x(t),y(t)\big)\equiv C$, где C— некоторая постоянная.

Пусть P(x,y) и Q(x,y) непрерывно дифференцируемые функции. Необходимым и достаточным условием того, что уравнение в нормальной дифференциальной форме есть уравнение в полных дифференциалах, является выполнение условия Эйлера

$$\frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x}$$
 при всех $(x,y) \in D$. (2)

Если выполнено условие (2), то функцию u(x,y) можно найти по формуле

$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P(x,y) \, dx + Q(x,y) \, dy, \quad (x_0,y_0) \in D,$$

или из равенств $u_x'(x,y)=P(x,y)$ и $u_y'(x,y)=Q(x,y)$, интегрируя соответствующим образом. Решение начальной задачи (задачи Коши), т.е. кривая, проходящая через заданную точку $(s,\xi)\in D$, определяется формулой

$$\int_{(s,\xi)}^{(x,y)} P(x,y) dx + Q(x,y) dy = 0.$$

Определение 4. Функция $\mu(x,y)$, отличная от нуля во всех точках некоторой подобласти $G \subset D$, называется интегрирующим множителем уравнения (1), если уравнение

$$\mu(x,y)P(x,y) dx + \mu(x,y)Q(x,y) dy = 0$$

является уравнением в полных дифференциалах на G.

Теорема 1. *Если* $\omega = \omega(x,y) - заданная функция и$

$$\frac{P_y' - Q_x'}{Q\omega_x' - P\omega_y'} \equiv \Psi(\omega),$$

 $mo\ \mu(\omega) = \exp\left(\int \Psi(\omega) d\omega\right).$

ightharpoonupДействительно, так как $\frac{\partial \mu(\omega)}{\partial x} = \mu(\omega)\Psi(\omega)\omega_x'$ и $\frac{\partial \mu(\omega)}{\partial y} = \mu(\omega)\Psi(\omega)\omega_y'$, то

$$(\mu(\omega)P)'_{y} - (\mu(\omega)Q)'_{x} = \mu(\omega)\Psi(\omega)(P\omega'_{y} - Q\omega'_{x}) + \mu(\omega)(P'_{y} - Q'_{x}) =$$

$$= \mu(\omega)(-\Psi(\omega)(Q\omega'_{x} - P\omega'_{y}) + P'_{y} - Q'_{x}) = 0. \quad \triangleleft$$

- **2.** Решите следующие номера 637, 640, 642, 647, 650, 653, 658, 664, при этом решения задач 640, 653 и 664 сфотографируйте и вышлите для проверки до конца занятия.
 - 3. Домашнее задание: 639, 648, 656, 660, 668.
- **4.** Задача повышенной сложности (срок сдачи следующее занятие): Φ ункция $f: \mathbb{R} \to \mathbb{R}$ называется однородной порядка $\alpha \in \mathbb{R}$, если для любых $x \in \mathbb{R}^n$ и $t \in \mathbb{R}$ верно равенство $f(tx) = t^{\alpha}f(x)$.
 - а) Пусть F(x,y) непрерывно дифференцируемая однородная функция порядка α . Докажите тождество $xF'_x(x,y) + yF'_y(x,y) = \alpha F(x,y)$.
 - b) Пусть $P(x,y),\ Q(x,y)$ непрерывно дифференцируемые однородные функции одного и того же порядка. Докажите, что $\mu(x,y)=\frac{1}{xP(x,y)+yQ(x,y)}$ интегрирующий множитель уравнения $P(x,y)\,\mathrm{d} x+Q(x,y)\,\mathrm{d} y=0.$