Rigid Body Dynamics

Libin Liu

CFCS, Peking University

Rigid Bodies

• They are rigid....

Outline

- Equations of Rigid Bodies
 - Rigid Body Kinematics
 - Newton-Euler equations
- Articulated Rigid Bodies
 - Joints and constraints
- Contact Models
 - Penalty-based contact
 - Constraint-based contact
- Control of rigid-body characters?

https://www.cs.cmu.edu/~baraff/sigcourse/

Position and Orientation

Position and Orientation

$$x' = x + Rr_0$$

Position and Orientation

$$x' = x + Rr_0 = x + r$$

Linear and Angular Velocity

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

Linear and Angular Velocity

$$x' = x + Rr_0 = x + r$$
$$v' = v + \omega \times r$$

Linear and Angular Velocity

$$\omega = \dot{R}$$
?

$$x' = x + Rr_0 = x + r$$
$$v' = v + \omega \times r$$

Numerical Integration

Numerical Integration

$$\dot{x} = v$$

$$\dot{R} = [\omega]_{\times} R$$

Numerical Integration

$$\dot{x} = v$$

$$\dot{R} = [\omega]_{\times} R$$

$$x' = x + \delta t \cdot v$$

$$R' = R + \delta t \cdot [\omega]_{\times} R$$

Need orthogonalization!

Numerical Integration: Quaternion

$$\dot{x} = v$$

$$\dot{q} = ?$$

$$x' = x + \delta t \cdot v$$

$$q' = q + \delta t \cdot \dot{q}$$

Numerical Integration: Quaternion

$$\dot{x} = v$$

$$\dot{q} = \frac{1}{2}\overline{\omega}q$$

$$\overline{\omega} = (0, \omega)$$

$$x' = x + \delta t \cdot v$$

$$q' = q + \delta t \cdot \dot{q}$$

Need Normalization!

Numerical Integration: Quaternion

$$\dot{x} = v$$

$$\dot{q} = \frac{1}{2}\overline{\omega}q$$

$$q' = q + \delta t \cdot \dot{q}$$

https://arxiv.org/abs/0811.2889

Need Normalization!

Kinematics vs. Dynamics

Kinematics

m, I

p, L

 v, ω

x, R

 α , α

 $\ddot{x}, \ddot{\omega}$

F, τ

. . .

Dynamics

Linear and Angular Momentum of a Particle

$$p = m v$$

Linear momentum of x

$$L = m r \times v$$

Angular momentum of x w.r.t. o

Force and Torque

$$\tau = r \times F$$

Torque and Angular Momentum

https://en.wikipedia.org/wiki/Torque

Rigid Body as a Collection of Particles

$$M = \sum_{i} m_{i}$$

$$x_c = \frac{\sum_i m_i x_i}{\sum_i m_i}$$

$$v_c = \frac{\sum_i m_i v_i}{\sum_i m_i}$$

Moments of a Rigid Body

$$p = \sum_{i} m_{i} v_{i} \qquad L = \sum_{i} m_{i} r_{i}' \times v_{i}$$

Angular Moment of a Rigid Body

$$L = \sum_{i} m_{i} r_{i}' \times v_{i} = M r_{c} \times v_{c} + \sum_{i} m_{i} r_{i} \times v_{i}$$

Angular Moment of a Rigid Body

$$L = \sum_{i} m_{i} r_{i}' \times v_{i} = M r_{c} \times v_{c} + \sum_{i} m_{i} r_{i} \times v_{i}$$

Angular Moment of a Rigid Body

$$L = Mr_c \times v_c + \sum_{i} -m_i [r_i]_{\times}^2 \omega$$

$$[a]_{\times} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

Moment of Inertia

$$L = Mr_c \times v_c + I\omega$$

Moment of Inertia:
$$I = \sum_{i} -m_{i}[r_{i}]_{\times}^{2}$$

Moment of Inertia

Moment of Inertia

https://en.wikipedia.org/wiki/Moment_of_inertia

Rotation of Moment of Inertia

$$M = M_0$$

$$I = RI_0R^T$$

$$(Rr) \times x = R \left(r \times (R^T x) \right)$$
$$[Rr]_{\times} = R[r]_{\times} R^T$$
$$[Rr]_{\times}^2 = R[r]_{\times}^2 R^T$$

Principal Axes of Moment of Inertia

Eigendecomposition
$$\Rightarrow I = RI_0R^T$$

$$I_0 = \begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{bmatrix} = \operatorname{diag}(I_1, I_2, I_3)$$

Center of Momentum (CoM) Frame

$$p = Mv_c$$

$$L = I\omega$$

Force on a Rigid Body

Force on a Rigid Body

$$\tau = r \times f$$

Torque on a Rigid Body

$$\tau = ???$$

Torque on a Rigid Body

$$\tau = ???$$

Equation of Motion of Rigid Body

Kinematics

x, R v, ω

m, I

Dynamics

p, L f, τ

Equation of Motion of Rigid Body

$$x_c, R, v_c, \omega$$

$$p = M v_c$$

$$L = I\omega$$

Newton's Second Law: f = Ma

Equation of Motion of Rigid Body

$$x_c, R, v_c, \omega$$

$$p = M v_c$$

$$L = I\omega$$

$$\frac{dp}{dt} = f$$

Equation of Motion of Rigid Body

$$x_c, R, v_c, \omega$$

$$p = M v_c$$

$$L = I\omega$$

Newton's Second Law:
$$\frac{\alpha p}{dt}$$

Euler's laws of motion:
$$\frac{dL}{dt} = \tau$$

Newton-Euler Equations

$$x, R, v, \omega$$

$$p = mv_c$$

$$L = I\omega$$

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

Numerical Integration

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

$$\frac{1}{h} \begin{bmatrix} m \mathbf{I}_3 & 0 \\ 0 & I_n \end{bmatrix} \begin{bmatrix} v_{n+1} - v_n \\ \omega_{n+1} - \omega_n \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_n \times I_n \omega_n \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

Rigid Body Simulation

$$I_n = R_n I_0 R_n^T$$

$$\frac{1}{h} \begin{bmatrix} m \mathbf{I}_3 & 0 \\ 0 & I_n \end{bmatrix} \begin{bmatrix} v_{n+1} - v_n \\ \omega_{n+1} - \omega_n \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_n \times I_n \omega_n \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

$$x_{n+1} = x_n + hv_{n+1}$$

$$q_{n+1} = q_n + \frac{1}{2}h\overline{\omega}_{n+1}q$$

A System with Two Links

A System with Two Links

$$\begin{bmatrix} m_1 \mathbf{I}_3 & & \\ & I_1 & \\ & & m_2 \mathbf{I}_3 \end{bmatrix} \begin{bmatrix} \dot{v}_1 \\ \dot{\omega}_1 \\ \dot{v}_2 \\ \dot{\omega}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_1 \times I_1 \omega_1 \\ 0 \\ \omega_2 \times I_2 \omega_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ \tau_1 \\ f_2 \\ \tau_2 \end{bmatrix}$$

A System with Two Links

$$M\dot{v} + C(v) = f$$

A System with Two Links and a Joint

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{v}) = \boldsymbol{f}$$

A System with Two Links and a Joint

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{v}) = \boldsymbol{f} + \boldsymbol{f}_{I}$$

Constraints

Constraints

$$g(x) = C$$

$$\frac{d}{dt}g(x) = 0$$

$$Jv = 0$$

$$J = [\nabla g]^T$$

Constraint Force

Constraint Force

Equation of Motion with Constraints

$$M\dot{v} = f + J^T \lambda$$
$$Jv = 0$$

$$M \frac{v_{n+1} - v_n}{h} = f + J^T \lambda$$
$$J v_{n+1} = 0$$

Numerical Solution

$$M \frac{v_{n+1} - v_n}{h} = f + J^T \lambda$$
$$J v_{n+1} = 0$$

Numerical Solution

$$M \frac{v_{n+1} - v_n}{h} = f + J^T \lambda$$

$$J v_{n+1} = \mathbf{0}$$

$$\mathbf{J}$$

$$J v_{n+1} = \alpha \frac{C - g(x_n)}{h}$$

Correction of numerical errors α : error reduction parameter (ERP)

Numerical Solution

$$M\frac{v_{n+1} - v_n}{h} = f + J^T \lambda$$

 $Jv_{n+1} = b_n$

$$JM^{-1}J^T\lambda = c_n$$

$$(JM^{-1}J^T + \beta \mathbf{I})\lambda = c_n$$

 β : constraint force mixing (CFM)

Joint Constraint

$$x_{1} + R_{1}r_{1} = x_{J} = x_{2} + R_{2}r_{2}$$

$$d/dt$$

$$v_{1} + \omega_{1} \times r_{1} = v_{2} + \omega_{2} \times r_{2}$$

Joint Constraint

$$[I_3 \quad -[r_1]_{\times} \quad -I_3 \quad [r_2]_{\times}] \begin{bmatrix} v_1 \\ w_1 \\ v_2 \\ w_2 \end{bmatrix} = 0$$

$$Jv = 0$$

A System with Two Links and a Joint

$$M\dot{v} + C(v) = f + J^T \lambda$$

$$Jv = 0$$

A System with Two Links and a Joint

$$\begin{bmatrix} m_1 \mathbf{I}_3 & & \\ & I_1 & \\ & & m_2 \mathbf{I}_3 \end{bmatrix} \begin{bmatrix} \dot{v}_1 \\ \dot{\omega}_1 \\ \dot{v}_2 \\ \dot{\omega}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_1 \times I_1 \omega_1 \\ 0 \\ \omega_2 \times I_2 \omega_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ \tau_1 \\ f_2 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} I_3 \\ [r_1]_{\times} \\ -I_3 \\ -[r_2]_{\times} \end{bmatrix} \lambda$$

$$Jv = 0$$

Different Types of Joints

Hinge joint Revolute joint

Universal joint

Ball-and-socket

$$\begin{bmatrix} I_3 & -[r_1]_{\times} & -I_3 & [r_2]_{\times} \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} v_1 \\ w_1 \\ v_2 \\ w_2 \end{bmatrix} = 0$$

A System with Many Links Joints

$$m_i, I_i, x_i, R_i, v_i, \omega_i$$

Contacts

Contact Detection

Contact Detection

Penalty-based Contact Model

$$f_n = -k_p d - k_d v_{c,\perp}$$

Frictional Contact

Coulomb's law of friction: $|f_t| = \mu f_n$

Frictional Contact

$$f_n = -k_p d - k_d v_{c,\perp}$$

$$f_t = -\mu f_n \frac{v_{c,\parallel}}{\|v_{c,\parallel}\|}$$

Frictional Contact

Coulomb's law of friction: $|f_t| \le \mu f_n$

How to model static friction???

Contact as a Constraint

$$x_c = x + r_c$$

$$v_c = v + \omega \times r_c = J_c \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$v_{c,\perp} = v + \omega \times r_c = J_{c,\perp} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

Contact as a Constraint

$$\begin{bmatrix} m\mathbf{I_3} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix} + J_c^T \lambda$$

$$v_c = J_c \begin{bmatrix} v \\ \omega \end{bmatrix} \ge 0$$
$$\lambda \ge 0$$

Contact as a Constraint

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix} + J_c^T \lambda$$

$$v_c = J_c \begin{bmatrix} v \\ \omega \end{bmatrix} \ge 0$$

$$\lambda \geq 0$$

$$v_c > 0 \Rightarrow \lambda = 0$$

$$\lambda > 0 \Rightarrow v_c = 0$$

Contact as a Linear Complementary Problem

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix} + J_c^T \lambda$$

$$v_c = J_c \begin{bmatrix} v \\ \omega \end{bmatrix} \ge 0$$

$$\lambda \geq 0$$

$$v_c \perp \lambda = 0$$

(Mixed) Linear Complementary Problem (LCP)

To solve an LCP: Lemke's algorithm – a simplex algorithm

Contact as a Linear Complementary Problem

How to deal the friction?

David Baraff. SIGGRAPH '94 Fast contact force computation for nonpenetrating rigid bodies.

Simulation of a Rigid Body System

$$I_n = R_n I_0 R_n^T$$
 $f_c = \text{Penalty}$

$$f_c = Penalty$$

$$M_n(v_{n+1} - v_n)/h + C_n(v_n) = f_c + J_n^T \lambda$$

 $J_n v_{n+1} = c_n$

$$x_{n+1} = x_n + hv_{n+1}$$
$$q_{n+1} = q_n + \frac{h}{2}\overline{\omega}_{n+1}q$$

Any Questions?

Physics-based Characters

An Articulated Character

$$M\dot{v} + C(v) = f + J^T \lambda$$

$$Jv \ge 0$$

Ragdoll Simulation

Spider-Man: No Way Home - ragdoll simulation https://www.youtube.com/watch?v=Yi56zagzDHY

Ragdoll Simulation

- <u>Demo</u>
 - https://schteppe.github.io/p2.js/demos/ragdoll.html
- Stiff vs. loose ragdoll
- Perturbed/controlled Ragdoll
 - Many-Worlds Browsing for Control of Multibody Dynamics (2:36)

Behavior Control

- hard for live and intelligent creatures
- needs full-body coordination consistent with physics constraints and achieves tasks

NaturalMotion Demos: Euphoria; Clumsy Ninja

how about something as "simple" as walking?

walking is hard too!

- Underactuated
- Inherently unstable
- High dimensional state and action space

Actuating a Joint

Actuating a Joint

Proportional Derivative Controllers

$$f = k_p(\bar{x} - x) - k_d v$$

Proportional-Derivative (PD) Control

Handcrafted Motion Control

Pre-DeepRL era Walking Balance Control

- walking: series of controlled falls
- critical component: foot placement strategy
 - Simbicon (SIGGRAPH07): Linear Feedbacks
 - Generalized walking control (SIGGRAPH 10): Inverted Pendulum Models
 - Contact-aware Nonlinear Control of Dynamic Characters (SIGGRAPH 2009): Nonlinear Optimal Control

SIMBICON (SIMple Blped Locomotion CONtrol)

- Step 1: develop a cyclical base motion
 - PD controllers track target angles
 - FSM (Finite State Machine) or mocap

SIMBICON

- Step 2
 - control torso and swing-hip wrt world frame

SIMBICON

Step 3: COM feedback

SIMBICON

Step 3: COM feedback

2D skills

Generalized walking control

Inverted Pendulum Models

Generalized walking control

[Coros et al. 2010]

Branches of Machine Learning

Reinforcement Learning

Deep Reinforcement Learning

Deep Reinforcement Learning

Example DRL-based Animation Research

- DeepLoco (Siggraph 2017)
- DeepMimic (Siggraph 2018)
- SFV: Reinforcement Learning of Physical Skills from Videos (Siggraph Asia 2018)
- Symmetric and Low-Energy Locomotion (Siggraph 2018)
- Learning Basketball Dribbling Skills Using Trajectory Optimization and Deep Reinforcement Learning (Siggraph 2018)
- AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control (Siggraph 2021)
- Discovering Diverse Athletic Jumping Strategies (Siggraph 2021)

DeepMimic

DeepMimic

Combined Control Policy

Basketball Dribbling Controllers

[Liu et al. 2018 (SIGGRAPH 2018)]

DeepLoco: Overview

dynamic locomotion skills using

hierarchical DRL (Actor-Critic)

DeepLoco: LLC

$$|| | | | - | ||^2 + || | | | ||^2$$

DeepLoco: HLC

DeepLoco: Results

Pillars

Scheduling of Control Fragments using Deep RL

[Liu et al. 2017 (SIGGRAPH 2017)]

Generative Adversarial Imitation Learning (GAIL)

Generative Adversarial Imitation Learning (GAIL)

AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control

Xue Bin Peng¹, Ze Ma², Pieter Abbeel¹, Sergey Levine¹, Angjoo Kanazawa¹

Questions?