Data preprocessing and cleaning

- Delete all date-related columns in loan_default_data.xlsx; the remaining 27 features.
- Convert loan_default_data.xlsx to CSV format file and renamed to **data.csv** [total data **38480**: 25 features not including column id and repay_fail].

File: dataclean.jpynb

- R1 File data.csv imported to dataclean.jpynb.
- R2 take out all null rows [total data 37426].
- R3 check data types for all features to find which is not int/float
- R4 count all variables in features that is not numeric.
- R5 take out any string or symbol in features & change string variables to numeric variables & convert the features data type to int/float.

term: take	home_ownership:	verification_status:	loan_status:	purpose:	revolving_utillization:
out month	mortage = 0	Verified = 0	Charged Off = 0	small_business=0	take out "%"
	none = 1	Not Verified = 1	Current = 1	credit_card=1	
	other = 2	Source Verified = 2	Default = 2	other=2	
	own = 3		Does not meet the	home_improvement=3	
	rent = 4		credit policy. Status:	debt_consolidation=4	
			Charged Off = 3	house=5	
			Does not meet the	educational=6	
			credit policy. Status:	major_purchase=7	
			Fully Paid = 4	renewable_energy=8	
			Fully Paid = 5	moving=9	
			In Grace Period = 6	wedding=10	
			Late (16-30 days) = 7	vacation=11	
			Late (31-120 days) = 8	medical=12	
				car=13	

- R6 save data set as **cleanData.csv** [total data 37426].
- R7 randomly take out sample 0=2000 & 1=500 and save as **Book25features.csv** [total data **2500**: 25features not including column id and repay_fail] this will be used as sample to test the model prediction.
- R8 Save the remaining data (data sample) as **remainingdata.csv** [total data **34926**: 25features not including column id and repay_fail].

Training, testing and evaluation

File: RF25feature.jyp

- R1 import remainingdata.csv.
- R2 count how repay_fail variable (0 and 1) to see if the data balance or not imbalanced data.

- R3 use heatmap; to see relationships between two variables. Observe if there are any patterns in value for one or both variables.
- R4 split data to train and test with test size 0.2.
- R5 Train the model using the training data.
- R6 evaluates the performance of a classification model using a confusion matrix and calculates the accuracy score.

- R7 evaluates the performance of your classification model using a Receiver Operating Characteristic (ROC) curve.
- R8 Print a detailed classification report.

	precision	recall	f1-score	support
0	1.00	1.00	1.00	6011
1	1.00	0.98	0.99	975
accuracy			1.00	6986
macro avg	1.00	0.99	0.99	6986
weighted avg	1.00	1.00	1.00	6986

- R9 - save trained model named "modelDataInbalance_25features"

File: RF9feature.jyp

- R1 import remainingdata.csv.
- R2 count how repay_fail variable (0 and 1) to see if the data balance or not imbalanced data.

```
repay_fail
0 29836
1 5090
```

- R3 - Downsample the majority class to match the number of samples in the minority class - balance the data

```
repay_fail
1 5090
0 5090
```

- R4 drop features that is has low relationships between two variables: no linear relationship between the variables by referring to heatmap in R5 [9 remaining features].
- R5 use heatmap; to see relationships between two variables. Observe if there are any patterns in value for one or both variables.
- R6 split data to train and test with test size 0.2.
- R7 Train the model using the training data.
- R8 evaluates the performance of a classification model using a confusion matrix and calculates the accuracy score.

- R7 evaluates the performance of your classification model using a Receiver Operating Characteristic (ROC) curve.
- R8 Print a detailed classification report

	precision	recall	f1-score	support
0	1.00	1.00	1.00	987
1	1.00	1.00	1.00	1049
accuracy			1.00	2036
macro avg	1.00	1.00	1.00	2036
weighted avg	1.00	1.00	1.00	2036

- R9 - save trained model named "modelDataBalance_9features"

Gui 25 features

- Using **AutoEvaluation25features.py** to test the sample data **Book25features.csv** that consist 2500 with 25 features data that never been uses for train & test in model prediction.

Accuracy on new data: 0.9948						
Classification Report on new data:						
	precision	recall	f1-score	support		
	•					
0	0.99	1.00	1.00	2000		
1	1.00	0.97	0.99	500		
1	1.00	0.97	0.99	200		
accuracy			0.99	2500		
macro avg	1.00	0.99	0.99	2500		
weighted avg	0.99	0.99	0.99	2500		
0						

- The accuracy is 0.9948.

Gui 9 features

- Using **AutoEvaluation9features.py** to test the sample data **Book9features.csv** that consist 2500 with 9 features data that never been uses for train & test in model prediction.

- The accuracy is 0.9972.

Conclusion

The dataset used for this prediction is very sensitive, achieving a high accuracy of 99.62% even with imbalanced data, as shown in the file RF25features.ipynb. However, in the file RF9features.ipynb, after balancing the data and deleting many features, leaving only 9 features, the prediction accuracy increased to 99.85%. Not only that, using only 9 features allows for a more user-friendly GUI. Instead of requiring the user to input 25 data points, the user only needs to input 9 data points.