Digital Design IE1204

F10 Tillståndsautomater del II

william@kth.se

IE1204 Digital Design

Föreläsningar och övningar bygger på varandra! Ta alltid igen det Du missat! Läs på i förväg – delta i undervisningen – arbeta igenom materialet efteråt!

Detta har hänt i kursen ...

Decimala, hexadecimala, oktala och binära talsystemen

AND OR NOT EXOR EXNOR Sanningstabell, mintermer Maxtermer PS-form

Booles algebra SP-form deMorgans lag Bubbelgrindar Fullständig logik

NAND NOR CMOS grindar, standardkretsar Minimering med Karnaugh-

diagram 2, 3, 4, 5, 6 variabler

Registeraritmetik tvåkomplementrepresentation av binära tal

Additionskretsar Multiplikationskrets Divisionskrets

Multiplexorer och Shannon dekomposition Dekoder/Demultiplexor Enkoder

Prioritetsenkoder Kodomvandlare

VHDL introduktion

Vippor och Låskretsar SR-latch D-latch D-vippa JK-vippa T-vippa Räknare Skiftregister Vippor i VHDL

Moore-automat Mealy-automat Tillståndskod

Sekvensnät

а tid -Som Du kommer ihåg ... Samma insignal kan ge olika utsignal Logiknät

Designmetodik

Grundläggande designmetodik för tillståndsmaskiner.

- 1. Analysera specifikationen för kretsen
- 2. Skapa tillståndsdiagram
- 3. Ställ upp tillståndstabellen
- 4. Minimera tillståndstabellen
- 5. Tilldela koder för tillstånden
- 6. Välj typ av vippor
- 7. Realisera kretsen mha Karnaugh-diagram.

Moore-automat

För Moore-automaten beror utsignalerna på det inre tillståndet.

Moore: input och output

Output syns efter att tillståndet (state) har ändrats

Mealy-automat

I en **Mealy**-Automat beror utgångssignalerna både på nuvarande tillstånd *och* ingångarna

Mealy: input och output

Output syns direkt efter att input har ändrats

Överblivna tillstånd?

• Ibland får man några states *över* när man väljer kod.

(Totala antalet states är alltid potenser av 2)

• Överblivna states måste tas om hand så att inte statemaskinen låser sig vid uppstart

Ett annat sätt är att man alltid (tex. automatiskt) gör RESET vid uppstart.

(RESET-generator chip)

Om matningsspänningen får problem, eller sjunker under viss nivå, så blir det **RESET**

Bättre än att behöva skaffa extra skydd, är att designa förebyggande och från början "ta hand om" alla tillstånd ...

Ex. räknare {0,1,2}

3 tillstånd \rightarrow 2 vippor \rightarrow 2² = 4 tillstånd. Ett tillstånd blir över ...

Räknaren som automat

Nextstate-funktion

	Nuv. värde	Utsignal	Nästa värde	D-vippa
	Q_1Q_0	f	$Q_1^+Q_0^+$	D_1D_0
S 0	0 0	0	0 1	0 1
S 1	0 1	0	1 0	1 0
S 2	1 0	1	0 0	0 0
	1 1	- [(ej 11)	
)

Vi kan specifiera vad som helst här – *utom* att "stanna kvar (dvs. ej 11)!

Karnaughdiagram

	Nuv. värde	Utsignal	Nästa värde	D-vippa
	Q_1Q_0	f	$Q_1^{\dagger}Q_0^{\dagger}$	D_1D_0
S0	0 0	0	0 1	0 1
S 1	0 1	0	1 0	1 0
S2	1 0	1	0 0	0 0
	1 1	_	(ej 11)	

$$Q_1^+ = D_1 = Q_0$$
 $Q_0^+ = D_0 = \overline{Q}_1 \overline{Q}_0$

• OK, 10 inte 11!

Minimerad kodad tillståndstabell

Nuv. värde	Utsignal	Nästa värde	D-vippa
Q_1Q_0	f	$Q_1^+Q_0^+$	D_1D_0
0 0	0	0 1	0 1
0 1	0	1 0	1 0
1 0	1	0 0	0 0
1 1	1	1 0 (ej 11)	1 0

Dvs, det extra tillståndet går in till S2 i huvudsekvensen...

Räknaren

Räknaren

Slutgiltigt tillståndsdiagram

Tillståndsminimering

När man konstruerar komplexa tillståndsmaskiner så kan det lätt hända att det finns **ekvivalenta** och därmed redundanta tillstånd *som kan tas bort* för att få en effektivare implementering.

Minimeringsmetod

- Följande exempel illustrerar en manuell minimeringsmetod
 - syftet är att förklara begreppet tillståndsminimering
- Observera att CAD-syntesverktyg använder andra (effektivare) algoritmer

Ex. Tillståndsminimering

William Sandqvist william@kth.se

Inte ekvivalenta tillstånd

Det är mycket enklare att skilja ut tillstånd som absolut inte kan vara ekvivalenta än att direkt leta reda på ekvivalenta tillstånd ...

Minimeringens grundidé

Två tillstånd är *inte* ekvivalenta om de har olika utgångsvärden, dvs. om:

1. de har olika utgångsvärden

Minimeringens grundidé

Två tillstånd är *inte* ekvivalenta om de har lika utgångsvärden, men

2. om *någon* av tillståndsövergångarna leder till *olika* efterföljande utgångsvärden

William Sandqvist william@kth.se

Tillståndstabell

Present	Next	state Output	
state	w = 0	w = 1	Z.
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	Е	D	0
G	F	G	0

Ursprungligt tillståndsdiagram

Ursprunglig tillståndstabell

Present	Next	state Output	
state	w = 0	w = 1	z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Partitioner. Grupper av tillstånd.

Start

 P_1 . Från början utgör *alla* tillstånd ett enda block, $P_1 = (ABCDEFG)$

$$P_1 = (ABDCDEFG)$$

Present	Next	xt state Output	
state	w = 0	w = 1	z
A	В	С	1
В	D	F	1
С	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Gruppera nu tillstånden i grupper efter samma utsignal

Vilka tillstånd har samma utsignal?

- ABD har utsignalen z = 1
- CEFG har utsignalen z = 0

$$\mathbf{P_2} = (ABD)(CEFG)$$

Tillstånden A, B, D kan därför **aldrig** vara ekvivalenta med något av tillstånden C, E, F, G eller tvärtom

$$\mathbf{P}_2 = (ABD)(CEFG)$$

Present	Next state		Output
state	w = 0	w = 1	z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Vilka **följdtillstånd** har tillstånden?

```
Block (ABD)
```

w = 0: "0-successor": $A \rightarrow (ABD), B \rightarrow (ABD), D \rightarrow (ABD)$

alla är övergångar till samma block (ABD)

w = 1: "1-successor": A \rightarrow (CEFG), B \rightarrow (CEFG), D \rightarrow (CEFG)

alla är övergångar till samma block (CEFG)

P= (ABD)(CEFG) ingen ändring av blocken

Block (CEFG)

w = 0: 0-successor : $C \rightarrow (CEFG)$, $E \rightarrow (CEFG)$, $F \rightarrow (CEFG)$,

 $G \rightarrow (CEFG)$ alla är övergångar till samma block (CEFG)

w = 1: 1-successor: $C \rightarrow (CEFG)$, $E \rightarrow (CEFG)$, $F \rightarrow (ABD)$,

 $G \rightarrow (CEFG)$ C E G går till samma block

F avviker, går till ett annat block

$$\mathbf{P_3} = (ABD)(CEG)(F)$$

$$\mathbf{P_3} = (ABD)(CEG)(F)$$

Present	Next	Next state	
state	w = 0	w = 1	Output z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Vilka **följdtillstånd** har tillstånden?

```
Block (ABD)
```

w = 0: "0-successor": $A \rightarrow (ABD), B \rightarrow (ABD), D \rightarrow (ABD)$

alla är övergångar till samma block ABD

w = 1: "1-successor": $A \rightarrow (CEG)$, $B \rightarrow (F)$, $D \rightarrow (CEG)$

 $A \rightarrow C$, $D \rightarrow G$ är övergångar till samma block

 $B \rightarrow F$ avviker, går till ett annat block

 $P_4 = (AD)(B)(CEG)(F)$ ny indelning av blocken

Block (CEG)

w = 0: "0-successor": $C \rightarrow (F)$, $E \rightarrow (F)$, $G \rightarrow (F)$

alla är övergångar till samma block (F)

w = 1: "1-successor": $C \rightarrow (CEG), E \rightarrow (CEG), G \rightarrow (CEG)$

alla är övergångar till samma block (CEG)

$$\mathbf{P_4} = (AD)(B)(CEG)(F)$$
 ingen ändring av blocken

Minimerat

Nästa partition P_5 blir densamma som P_4 . Processen är därför klar. AD respektive CEG är **ekvivalenta.**

A' blir en ny beteckning för AD, C' blir ny beteckning för CEG.

$$\mathbf{P_4} = (AD)(B)(CEG)(F) = (A')(B)(C')(F)$$

Minimerad tillståndstabell

$$P_4 = (AD)(B)(CEG)(F) = (A')(B)(C')(F)$$

A' är ny beteckning för AD, C' är ny för CEG.

Present	Next	Next state	
state	w = 0	w = 1	Output z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

Present	Nextstate		Output
state	w = 0	w = 1	Z
A'	В	C'	1
В	A'	F	1
C'	F	C'	0
F	C'	A'	0

Minimerat tillståndsdiagram

Present	Next	Nextstate Outpu	
state	w = 0	w = 1	z
A'	В	C,	1
В	A'	\mathbf{F}	1
C,	F	C'	0
F	C,	A'	0

4 tillstånd kräver 2 vippor $(2^2 = 4)$.

Jämförelse

Före minimering

Efter minimering

Värdet av tillståndsminimering?

• Det är *inte* säkert att färre tillstånd leder till ett *enklare* nät!

Fördelen med tillståndsminimering ligger i stället i att det blir enklare att skapa det ursprungliga tillståndsdiagrammet när man inte behöver anstränga sig för att det dessutom ska bli minimalt från början!

CAD-verktygen minimerar sedan det ursprungliga tillståndsdiagrammet till ett slutgiltigt.

Analys av sekvensnät

William Sandqvist william@kth.se

Tänk Moore-automat!

Analysera grindnäten

Fyll i Karnaughdiagram

Kan Du fylla i Karnaughdiagrammen med funktionerna?

Ifyllda Karnaughdiagram

Ifyllda Karnaughdiagram

Kodad tillståndstabell

Slå ihop Karnaughdiagrammen till en kodad tillståndstabell

Kodad tillståndstabell

Tillståndstabell

Kodad tillståndstabell

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	01	0
0 1	00	10	0
10	00	11	0
11	00	11	1

Tillståndstabell

Present	Next state		Output
state	w = 0	w = 1	Z
А	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Den okodade tillståndstabellen är utgångspunkt om man vill byta till en annan tillståndskodning.

Tillståndsdiagram

Present	Next state		Output
state	w = 0	w = 1	Z
Α	А	В	0
В	Α	С	0
C	Α	D	0
D	А	D	1

Rita färdigt tillståndsdiagrammet själv. (På övning 6 löser vi ett liknande problem – kretsen är en "tre i rad" krets).

Tillståndsdiagram

Present	Next state		Output
state	w = 0	w = 1	Z
А	А	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

Ibland kan man behöva ändra ordningen på tillstånden för att få ett tydligare diagram

Tillståndsdiagram

Present	Next state		Output
state	w = 0	w = 1	Z
Α	А	В	0
В	Α	С	0
C	Α	D	0
D	А	D	1

C och D har bytt plats – snyggare, inga korsande tillståndspilar

• Att kräva samma insignal "tre gånger i rad" är en ofta använd säkerhetsåtgärd.

William Sandqvist william@kth.se

ASM-charts

För att beskriva större tillståndsmaskiner används ofta ett annat diagram: Algorithmic State Machine (**ASM**) Charts

ASM-chart, tre byggstenar

Ett ASM-chart är ett flödesdiagram som byggs upp av tre olika byggstenar. 0 (False) 1 (True) **Condition** State name expression Output signals or actions (Moore type) (b) Decision box Conditional outputs or actions (Mealy type) (a) State box (c) Conditional output box

William Sandqvist william@kth.se

ASM-charts

Tillståndslåda (State Box)

Representerar ett tillstånd i ett FSM utgångsvärden för tillståndet anges här (Moore-outputs)

Beslutslåda (Decision Box)

Beroende på värden på insignaler bestäms övergången till nästa tillstånd

Villkorlig utgångslåda (Conditional outputs)

Här anges värden av utgångarna vid en tillståndsövergång (Mealy-outputs)

"två i rad" Moore

w = 1

"två i rad" Mealy

För att behandla tillståndsmaskiner matematiskt behöver man en formell modell

Följande modell kan beskriva både Moore- och Mealy-automaten

En tillståndsmaskin kan formellt definieras med

$$M = (W, Z, S, \varphi, \lambda)$$

W, Z, och S beskriver ingångarna (W), utgångarna (Z) och tillstånd (S)

- φ beskriver tillståndsövergångsfunktionen
- λ beskriver utgångsfunktion

$$M = (W, Z, S, \varphi, \lambda)$$

$$S(t + \Delta t) = \varphi(W(t), S(t))$$

$$\lambda_{Moore}(t) = \lambda(S(t)) \qquad \lambda_{Mealy}(t) = \lambda(W(t), S(t))$$

$$\begin{split} S(t + \Delta t) &= Y_k ... Y_1 = \varphi(w_n ... w_1, y_k ... y_1) \\ Z_{Moore} &= z_m ... z_1 = \lambda(y_k ... y_1) \qquad Z_{Mealy} = z_m ... z_1 = \lambda(w_n ... w_1, y_k ... y_1) \end{split}$$

Nu har Du sett hur man uttrycker detta i matematikämnet!

Exempel på automater

- Exemplet med dryckesautomaten
- Demo "tre i rad krets" är det tillräckligt säkert?