3. Fundamentals of Deep Learning

Perceptron Feed-forward Neural Networks Architecture and Learning in Neural Networks

Perceptron are loosely based on neurons

Perceptron

$$h = w_{11}x_1 + w_{12}x_2 + b$$

 $g = \sigma(h)$

Neural Network

Building Neural Networks

- Frame the problem
 - What are you trying to predict?
 - What are the predictors ?
 - What known data do you have?
- Architect the network
- Train the network with known dataset (labeled data)
- Use the network to predict unseen data

How do you train a Neural Network?

- 1. **Prepare the data** as input to feed into the neural network
- 2. Feedforward the input through the network, to get the output
- 3. Compare against the "correct" output, backpropagate to update weights
- 4. Repeat

Preparing Data

Labeled Training Data

Encoding Non-numeric input data

What if the data has a column "Rainy Day"
- Y/N.

How would we feed this to the network?

Rainy Day	encoded_rainy_day	
Υ	1	
N	0	

Encoding Non-numeric input data

- What if the data has a column "Countries"
 - "Canada", "USA", "Mexico".

How would we feed this to the network?

Country	Country_Canada	Country_USA	Country_Mexico
Canada	1	0	0
USA	0	1	0
Mexico	0	0	1

This encoding is called One-hot encoding

Prepare the data

- Rules of thumb
 - Preserve existing relationship between features
 - Do not make nominal data into ordinal
 - Normalize data by scaling using mean/std-dev

Backpropagation & Training

Backpropagation

• Our objective is to reduce the error.

```
Assume some random weights
repeat
  calculate our model y=f(x)
  come up with a way to measure error
  adjust weights in order to minimize error
until error (accuracy level) is acceptable
```

Objective function

- Our approach to measuring error and minimizing it, is called the objective function.
- Error is measured in many ways.
 This is referred to as loss function or cost function
- There some common ones,
 - Mean Square Error (MSE)
 - Mean Absolute Error
 - Logistic Error
 - Cross Entropy

Minimizing Error

Classification

$$h = w_{11}x_1 + w_{12}x_2 + b$$

 $g = \sigma(h)$

Classification

$$h = Wx + b$$

$$g = \sigma(h)$$

$$\hat{y} = \sigma(Wx + b)$$

$$\hat{y} = \sigma(Wx + b)$$

$$\hat{y} = \sigma(Wx + b)$$

$$\hat{y} = \sigma(Wx + b)$$

Epochs

- Repeat the training exercise multiple times. Each cycle is called an epoch (pronounced 'epic')
- Each epoch runs a training cycle that runs in memory. But, the dataset might be too large to fit in memory, so we break each epics into multiple batches. This can be organized as,
 - Batched Gradient Descent
 - Run all the data in each epoch
 - Stochastic Gradient Descent
 - Run random subset of data in each epoch

Converting Discrete Errors into Continuous Errors

Discrete

Continuous

$$P(Yes) = 85\%$$

Common Error Functions

- Cross-entropy
 - Good of using with probabilities
 - Works well for classification problems
- Mean-Squared Error
 - Good for continuous predictions

Gradient Descent is a slow process

Adapting Learning Rate

- Make big jumps farther away from minima
- Make smaller (surgical) moves closer to a minima

Adapting with Momentum

 Adding momentum can help the function cross small dips

Common optimizers

- Some common optimizers include,
 - AdamOptimizer
 - RmsPropOptimizer
 - AdaGrad

Avoiding Local Minima

Activation - Sigmoid

- Sigmoid the original Activation function
- Makes the model nonlinear
- Vanishing Gradient with Sigmoid – Away from the mean, sigmoid tangents are nearly flat

Better activation functions

Hyperbolic Tangents (tanh)

$$tanh = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

Rectified Linear Unit (relu)

$$relu(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Regularization

- Penalize Large Weights
- Make the activation function shallow, so GD works better

L1:

ErrorFunction =
$$-\frac{1}{m} \sum_{i=1}^{n} [y_i p_i + (1 - y_i) (1 - p_i)] + \lambda(|w_1| + |w_2| + \dots + |w_n|)$$

L2:

ErrorFunction =
$$-\frac{1}{m} \sum_{i=1}^{n} [y_i p_i + (1 - y_i) (1 - p_i)] + \lambda (w_1^2 + w_2^2 + \dots + w_n^2)$$

Layers

Dense

Fully Connected Layer

Dropout

To reduce overfitting. Without dropout, it is likely that the dominant nodes train more than the non-dominant nodes. Dropout gives other nodes a chance. Each node has a probability it will be dropped in a particular epoch during training.

- Flatten
- Convolutional

Apply filters to convert large shallow datasets, into smaller deeper datasets.

Pooling

Reduce size of dataset, by reducing resolution across local cells

- Locally Connected Layers
- BasicRNNCell
- LSTM ...

Hands-on – Bike Rental Prediction

On workdays, most bikes are rented on warm mornings and evenings

