Appunti lezione – Capitolo 11 Strutture di dati e progettazione di algoritmi

Alberto Montresor

03 Giugno, 2016

1 Cammini minimi da singola sorgente

1.1 Archi di peso negativo

In alcuni casi, gli archi possono avere peso negativo. Questo influisce (i) sul problema (se è ben definito oppure no) e sulla soluzione (in assenza di archi negativi si devono utilizzare tecniche diverse).

- · Algoritmo di Dijkstra/Johnson/Fredman-Tarjan: si suppone che tutti gli archi abbiano peso positivo.
- Algoritmo di Bellman-Ford: gli archi possono avere peso negativo, ma non possono esistere cicli di peso negativo.

1.2 Cicli di peso negativi

Se esiste un ciclo di peso negativo raggiungibile dalla sorgente, non esistono cammini finiti di peso minimo; per qualunque cammino, basterà passare per un ciclo negativo più volte per ottenere un ciclo di costo inferiore.

1.3 Cicli di peso positivo o nullo

Ovviamente, in un cammino minimo non è possibile sia presente un ciclo di peso positivo. I cicli di peso nullo possono essere banalmente eliminati dal cammino minimo, in quanto inutili e ridondanti.

1.4 Rappresentazione dei cammini minimi

Per rappresentare un cammino, utilizziamo una notazione ad albero basata sui padri. È possibile utilizzare la procedura stampaCammino() vista per le visite in ampiezza.

```
\begin{aligned} & \operatorname{stampaCammino}(\operatorname{GRAPH} G, \, \operatorname{NODE} r, \, \operatorname{NODE} s, \, \operatorname{NODE}[\,] \, T) \\ & \operatorname{if} \, r = s \, \operatorname{then} \, \operatorname{print} \, s \\ & \operatorname{else} \, \operatorname{if} \, T[s] = \operatorname{nil} \, \operatorname{then} \\ & \, \lfloor \, \operatorname{print} \, \text{``nessun cammino da} \, r \, \operatorname{a} \, s \text{'`} \\ & \operatorname{else} \, & \, \\ & \, \operatorname{stampaCammino}(G, r, T[s], T) \\ & \, \lfloor \, \operatorname{print} \, s \end{matrix} \end{aligned}
```

Durante la visita, non è detto che il sottografo indotto dai campi T sia un sottoinsieme della soluzione finale; possono essere fatti diversi "aggiustamenti" prima di giungere alla soluzione.

I cammini minimi non sono necessariamente unici, nè lo sono gli alberi dei cammini.

1.5 Teorema di Bellman

Teorema 0.1 (Bellman). Una soluzione ammissibile T è ottima se e solo se valgono le seguenti condizioni: $d_v = d_u + w(u, v)$ per ogni arco $(u, v) \in T$, e $d_u + w(u, v) \ge d_v$ per ogni arco $(u, v) \in E$.

Dimostrazione. (1) Sia T una soluzione ottima. Consideriamo un generico arco $(u, v) \in E$ e sia w(u, v)la sua lunghezza. Ovviamente, se $(u, v) \in T$, allora $d_v = d_u + w(u, v)$. Se invece $(u, v) \notin T$, allora, poiché T è ottimo, deve risultare $d_u + w(u, v) \geq d_v$, poiché altrimenti esisterebbe nel grafo G un cammino tra $r \in v$ più corto di quello in T, e precisamente il cammino tra $r \in u$ in T seguito dell'arco (u,v).

(2) Viceversa, sia $d_u + w(u, v) = d_v$ per ogni $(u, v) \in T$, e $d_u + w(u, v) \geq d_v$, per ogni arco $(u,v) \notin T$. Se, per assurdo, il cammino da r a u in T non fosse ottimo, allora esisterebbe un altro cammino in G da r a u tale che la distanza d'_u di u da r sarebbe minore di d_u . Sia d'_v la distanza da r ad un generico nodo v che appare in tale cammino. Poiché $d_r' = d_r = 0$, ma $d'_u < d_u$, esiste un arco (h,k) in questo cammino per cui $d'_h \ge d_h$ e $d'_k < d_k$. Per costruzione $d'_h + w(h,k) = d'_k$, mentre per ipotesi $d_h + w(h,k) \ge d_k$. Combinando queste due relazioni, si ottiene: $d'_k = d'_h + w(h,k) \ge d_h + w(h,k) \ge d_k$, e quindi $d'_k \ge d_k$, che contraddice l'ipotesi.

Figura 1: Esempio di funzionamento di Dijkstra

1.6 Algoritmo di Bellman-Ford

Risolve il problema nel caso generale in cui i pesi degli archi possono essere negativi. Inoltre, è in grado di dire se esiste un ciclo negativo - nel qual caso, il problema non è ben formulato.

Qual è l'idea generale dell'algoritmo di Bellman? Supponiamo che esista un cammino minimo ignoto fra r e $v: \langle v_1, v_2, \dots, v_k \rangle$, con $r \equiv v_1$ e $v_k \equiv v$.

Supponiamo di voler calcolare il costo di tale cammino; in base al Teorema di Bellman, sappiamo che $d_{v_i} = d_{v_{i-1}} + w(v_{i-1}, v_i)$ (per tutti i valori i > 1).

Supponiamo quindi di essere in grado di "fare sempre la scelta giusta", ovvero di calcolare i valori d in quest'ordine:

0.
$$d[r] = 0$$

1. $d[v_2] \leftarrow d[r] + w(r, v_2)$
2. $d[v_3] \leftarrow d[v_2] + w(v_1, v_3)$
3. $d[v_4] \leftarrow d[v_3] + w(v_2, v_4)$
...
 k . $d[v_k] \leftarrow d[v_{k-1}] + w(v_{k-1}, v_k)$

Ovviamente, noi non conosciamo questo cammino. Non sapendo qual è il passo giusto da fare, li facciamo tutti: ovvero applichiamo il passo di rilassamento a tutti gli archi del sistema. In questo modo, sicuramente avremo completato anche il passo 1.

Poi ri-applichiamo nuovamente il rilassamento, ottenendo anche il passo 2. E così via, per n-1 iterazioni. Un modo alternativo per vedere l'algoritmo di Bellman è il seguente. Al primo passo, ottengo tutti i migliori cammini di un passo. Al secondo passo, ottengo tutti i migliori cammini di due passi. Così via, fino a quando non raggiungo n-1 passi.

1.7 Cammini minimi in un DAG

In un DAG, i cammini minimi sono sempre ben definiti. Anche in presenza di archi negativi, non possono esistere cicli negativi (perché non esistono cicli).

Nel caso di un DAG, è possibile rilassare gli archi in ordine topologico, una volta sola. Il motivo è semplice: non essendoci cicli, non c'è modo di ritornare ad un nodo già visitato e abbassare il valore del suo campo d. Sfruttando il nostro algoritmo prototipo, si possono sostituire le seguenti righe.

- (1) QUEUE $S \leftarrow \text{Queue}()$; S.enqueue(r)
- (2) $u \leftarrow S$.dequeue()
- (3) Sezione non necessaria
- (4) Sezione non necessaria

Correttezza: Dimostriamo formalmente la correttezza di questo algoritmo.

Vogliamo dimostrare che al termine dell'algoritmo, $v.d = \delta(s, v)$ per ogni nodo v. Banalmente, i nodi non raggiungibili da s iniziano con e mantengono un valore infinito nel campo d, che è la stima corretta della distanza.

Sia v un nodo raggiungibile; esiste quindi un cammino $p = \langle v_1, v_2, \dots, v_k \rangle$, con $s \equiv v_1$ e $v \equiv v_k$. Prima di rilassare gli archi uscenti da v_i , tutti i possibili cammini che arrivano al nodo v_i sono stati percorsi (questo perchè non esistono archi (v_i, v_i) , con j > i. Quindi v_i . d corrisponde al valore finale.

Complessità: L'ordinamento topologico può essere realizzato in tempo O(m+n).

Figura 2: Esempio di funzionamento cammini minimi su DAG