EM65101

128COM/160SEG 16 Gray Scale Level LCD Driver

Product Specification

Doc. Version 0.4

ELAN MICROELECTRONICS CORP.
August 2005

Trademark Acknowledgments:

IBM is a registered trademark and PS/2 is a trademark of IBM.

Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2005 by ELAN Microelectronics Corporation **All Rights Reserved**

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation Road 1 Hsinchu Science Park Hsinchu, Taiwan 30077 Tel: +886 3 563-9977 Fax: +886 3 563-9966

http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd.

Rm. 1005B, 10/F Empire

Centre

68 Mody Road, Tsimshatsui Kowloon, HONG KONG

Tel: +852 2723-3376 Fax: +852 2723-7780 elanhk@emc.com.hk

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

SSMEC Bldg., 3F, Gaoxin S.

Ave.

Shenzhen Hi-Tech Industrial Park Shanghai, CHINA Shenzhen, Guandong,

CHINA

Tel: +86 755 2601-0565 Fax: +86 755 2601-0500

USA:

Elan Information Technology Group

1821 Saratoga Ave., Suite 250

Saratoga, CA 95070

USA

Tel: +1 408 366-8223 Fax: +1 408 366-8220

Shanghai:

Elan Microelectronics Shanghai Corporation, Ltd.

23/Bldg. #115 Lane 572, Bibo Road

Zhangjiang Hi-Tech Park

Tel: +86 021 5080-3866 Fax: +86 021 5080-4600

8050 Zurich, SWITZERLAND Tel: +41 43 299-4060

(Europe)

Siewerdtstrasse 105

Elan Microelectronics Corp.

Fax: +41 43 299-4079 http://www.elan-europe.com

Contents

1	General Description1						
2	Fea	ture	1				
3		olications					
4	Pin	Configurations	2				
	4.1	Alignment Key	2				
	4.2	Pin Dimensions					
	4.3	Recommended COG ITO Traces Resistor					
	4.3	PAD Coordinates Table	4				
5	Fun	ctional Block Diagram	9				
6	Pin	Description	10				
	6.1	Power Supply Pins	10				
	6.2	LCD Power Supply Circuit Pins	10				
	6.3	System Bus Pins	11				
	6.4	LCD Driver Circuit Signals					
	6.5	Oscillating Circuit Pins					
	6.6	EEPROM Power Pins					
7	Fun	ctional Description	13				
	7.1	MPU Interface					
		7.1.1 Reset Pin Description (RESB)	13				
		7.1.2 Selection of Interface Type					
		7.1.3 Parallel Input					
		7.1.4 Read/Write Functions of the Register and Display RAM					
		7.1.5 Serial Interface					
		7.1.5.1 4-Wire Serial Interface					
<	7.2	Writing Data to Display RAM and Control Register					
		7.2.1 Writing Data Operation					
		7.2.2 Writing Data to Display RAM Data					
	7.3	Y and X Address Circuits	16				
		7.3.1 Y Address Circuit	16				
		7.3.2 X Address Circuit	16				
		7.3.3 EM65101 Display RAM Mapping					
	7.4	Internal Register Read					
		7.4.1 Read Display RAM Operation					
		7.4.2 Register Read Operation					
	7.4	Display RAM Access Using Window Function					
	7.5	Display RAM Data and LCD	20				

	7.6	Displa	y Timing Circuit	21
		7.6.1	Signal Generation for the Display Line Counter and the Display Data Latching Circuit	21
		7.6.2	Generation of the Alternate Signal M (Internal) and the Synchronous Signal FLM (Internal)	21
		7.6.3	Display Data Latching Circuit	21
	7.7		Driver Output Timing	22
		7.7.1	LCD Drive Circuit	22
		7.7.2	Oscillator Circuit	
	7.8	Power	r Supply Circuit	23
	7.9	Boost	er Circuit	23
	7.10	Electro	onic Volume	24
	7.11	Voltag	ge Regulator	
	7.12	Voltag	ge Generation Circuit	25
	7.13	EEPR	OM Function	27
			EEPROM Program, Read, and Erase Flow Charts	
			Vop Calibration Offset Examples	
	7.14		I Display Function	
	7.15	Discha	arge Circuit	34
			Function	
			Values	
			/ Measures when Switching Power ON and OFF	
	7.10	-	When Using the External Power Supply	
			When Using the Built-in Power Supply	
			Power Supply Rising Time	
	7.19		ter Setting Examples	
			Initialization	
		7.19.2	Display Data	40
		7.19.3	Power OFF	40
8	Con	trol R	egister	41
	8.1		o Registers	
	0.1	8.1.1	Control Register (Bank 0)	
		8.1.2	Control Register (Bank 1)	
		8.1.3	Control Register (Bank 2)	
	8.2	Functi	ions of the Control Registers	44
		8.2.1	X Address Register (AX)	
		8.2.2	Y Address Register (AY)	44
		8.2.3	n Line Alternated Register (N)	45
		8.2.4	Display Control Display (1) Register	46
		8.2.5	Display Control (2) Register	46
		8.2.6	Increment Control Register Set	47
		8.2.7	Power Control Register	
		8.2.8	LCD Duty (DS)	
		8.2.9	Booster Setup (VU)	52

	8.2.10	Bias Setting Register (B)	52
	8.2.11	Display Start Common	53
	8.2.12	Temperature Compensation Set	53
	8.2.13	Electronic Volume Register	54
		Internal Register Read Address	
		Resistance Ratio of the CR Oscillator	
		Extended Power Control	
		Regulator Multiple Ratio Control	
		Line Reverse Start Address	
		Line Reverse End Address	
		Line Reverse Control.	
		Window End X Address	
		Window End Y Address	
		EEPROM Mode Select Register	
		Vop Calibration Offset Register	
	8.2.25	EEPROM Address Select Register	61
		Scroll Top Address	
		Scroll Bottom Address Scroll Specified Address	
		Scroll Start Address	
		Scroll Mode Select	
9		Maximum Ratings	
9		nmended Operating Conditions	
10		cteristics	
11	AC Charac	cteristic	67
	11.1 80-Fa	amily MCU Write Timing	67
	11.2 80-Fa	amily MCU Read Timing	68
	11.3 68-Fa	amily MCU Write Timing	69
		amily MCU Read Timing	
		I Interface Timing Diagram	
<	/	Input Timing	
		t Timing	
12		n Circuit	
	/		
13	iray imori	mation	/b

Specification Revision History

Doc. Version	Revision Description	Date
0.1	Initial version	January 10, 2005
	Add pin related information Modify reset time Modify write timing	
0.2	4. Add V0 specification 5. Modify application circuit on CK and VBA pins 6. Remove Nline reverse figure	February 22, 2005
0.3	Modify Extending command Modify read EEPROM sequence	March 08, 2005
0.4	 Modify Nline settingvalue Modify the EEPROM programming voltage Modify AXI, AIM function description Remove the CF and VTC description Modify the write timing on 68-family and SPI mode The V4 voltage limit when setting bias=1/4 and 1/5 Modify the read address on RF register Modify the DC spec with dynamic current and Fosc Modify the contrast value setting Modify the SC description Add tray information Modify application circuit and description on VREF and VBA pins 	August 15, 2005

1 General Description

The EM65101 is an LCD controller for 16-level gray scale graphic dot-matrix liquid crystal display system. It is a (160×128) for segment and common driver circuit. It has a built-in display RAM, a power supply circuit for LCD driver. It also supports EEPROM function for programming information to tune the V_{LCD} offset voltage to get the best contrast which helps in compacting system design. Its "partial display" function realizes results in low power consumption.

2 Feature

16-level gray scale display with the PWM method

■ LCD output circuit: 160 segment / 128 common outputs

■ Display RAM capacity: 128 x 160 x 4 = 81920 bits

■ Built-in display RAM and power supply circuit:

Booster: 2 to 6 times

On-chip electronic contrast function (65 steps) Voltage follower (LCD bias: 1/4 to 1/13)

Partial display function

Microprocessor interface:

8-bit parallel bi-direction interface with the 6800-series or 8080-series

4-line Serial Peripheral Interface (4-line SPI)

3-line Serial Peripheral Interface (3-line SPI)

Operating voltage range:

Logical power supply voltage: 2.2 to 3.3 V Analog power supply voltage: 2.4 to 3.3 V

■ Screen scrolling function

EEPROM function to change the tuning LCD operating voltage Vop

Write cycle time: 200 ns

Package:

Part Number	Package
EM65101AH*	Bare chip (aluminum pad without bump, see Figure 4-1 below)
EM65101AGH*	Gold bumped chip
EM65101AF*	COF chip
EM65101AT*	TAB (TCP) chip

^{*} EM65101=ELAN base P/N; A=package type version; H/GH/F/T=packaging category

¹ A function that utilizes only part of the screen, thus reducing power consumption.

3 Applications

- Mobile phone
- Small PDA

4 Pin Configurations

Figure 4-1 EM65101AH Pin Configuration (Sample)

NOTE

The ELAN logo is at the left side end and Pin1 is at the bottom-left corner.

4.1 Alignment Key

Mark Coordinates (X,Y)		Mark	Coordinates (X,Y)
U-Left	-5019.95, 273.5	U-Right	5020.75, 273.5
D-Left	-5019.95, -321.65	D-Right	5020.75, -321.65

D-Left and D-Right:

U-Left and U-Right:

Figure 4-2 Pin Alignment Key

4.2 Pin Dimensions

Item	Pad No.	Bump Size		Unit
item	Pau No.	Х	Υ	Unit
Chip size	-	10850	1380	
	1 ~ 3 ; 144 ~ 146	88	38	
	4 ~ 51 ; 99 ~ 143	35	78	
Bump Size	52 ~ 98	50	61	
	147 ~ 169 ; 418 ~ 440	96	28	
	170 ~ 417	28	96	
	1 ~ 3 ; 144 ~ 146	10	μm	
	4 ~ 51 ; 99 ~ 143	50		
Pad Pitch	52 ~ 98	65 43 43		
1 ad 1 iton	147 ~ 169 ; 418 ~ 440			
	170 ~ 417			
	Min pitch	4	3	
Die thickness (excluding bumps)	20 ± 1 mil (500 ± 25 um)			
Bump Height	17±3 um			
Minimum Bump Gap	15 um			
Coordinate Origin	Chip cente	er		

4.3 Recommended COG ITO Traces Resistor

Interface	ITO Traces Resistances
V0~V4 CAP1+, CAP1-, CAP2+, CAP2-, CAP3+, CAP3- CAP4+, CAP5+, VOUT, V2X VDD, VEE, VSS	Max=50Ω
WRB,RDB,CSB,, D0~D7	Max=3KΩ
RESB	Max=5~10KΩ

4.3 PAD Coordinates Table

Pin No.	Pad Name	Coordinate	Pin No.	Pad Name	Coordinate
FIII NO.	rau Name	(X,Y)	FIII NO.	rau Name	(X,Y)
1	DUMMY	-5305.0, -595.0	51	VSS	-2598.2, -579.0
2	DUMMY	-5202.0, -595.0	52	VOUT	-2515.6, -587.5
3	DUMMY	-5099.0, -595.0	53	VOUT	-2450.6, -587.5
4	DUMMY	-5004.6, -579.0	54	VOUT	-2385.6, -587.5
5	VSS	-4954.6, -579.0	55	VOUT	-2320.6, -587.5
6	TEST	-4904.6, -579.0	56	VOUT	-2255.6, -587.5
7	P/S	-4854.6, -579.0	57	VOUT /	-2190.6, -587.5
8	VDD	-4804.6, -579.0	58	CAP5+	-2125.6, -587.5
9	M86	-4754.6, -579.0	59	CAP5+	-1780.1, -587.5
10	VSS	-4704.6, -579.0	60	CAP3+	-1715.1, -587.5
11	CSB	-4654.6, -579.0	61	CAP3+	-1369.3, -587.5
12	CSB	-4604.6, -579.0	62	CAP3-	-1304.3, -587.5
13	RESB	-4554.6, -579.0	63	CAP3-	-1239.3, -587.5
14	RS	-4504.6, -579.0	64 /	CAP3-	-932.3, -587.5
15	RS	-4454.6, -579.0	65	CAP3-	-867.3, -587.5
16	CK	-4404.6, -579.0	66	CAP2-	-802.3, -587.5
17	CK	-4354.6, -579.0	67	CAP2-	-737.3, -587.5
18	WRB	-4304.6, -579.0	68	CAP2-	-672.3, -587.5
19	WRB	-4254.6, -579.0	69	CAP2-	-430.3, -587.5
20	RDB	-4204.6, -579.0	70	CAP2-	-365.3, -587.5
21	RDB	-4154.6, -579.0	71	CAP2+	-300.3, -587.5
22	D0	-4104.6, -579.0	72	CAP2+	-235.3, -587.5
23	D0	-4054.6, -579.0	73	CAP2+	-170.3, -587.5
24	D1	-4004.6, -579.0	74	CAP2+	-105.3, -587.5
25	D1	-3954.6, -579.0	75	CAP2+	-40.3, -587.5
26	D2	-3904.6, -579.0	76	CAP2+	24.7, -587.5
27	D2	-3854.6, -579.0	777	CAP2+	89.7, -587.5
28	D3 /	\ \ \	78	CAP4+	· · · · · · · · · · · · · · · · · · ·
	(-3804.6, -579.0	V		154.7, -587.5
29	D3	-3754.6, -579.0	79	CAP4+	219.7, -587.5
30	D4/	-3704.6, -579.0	80	CAP4+	284.7, -587.5
31	D4	-3654.6, -579.0	81	CAP4+	349.7, -587.5
32	D5	-3604.6, -579.0	82	CAP4+	414.7, -587.5
33	D5	-3554.6, -579.0	83	VEE	479.7, -587.5
34	D6	-3504.6, -579.0	84	VEE	951.7, -587.5
35	D6	-3454.6, -579.0	85	VEE	1016.7, -587.5
36/	D7	-3404.6, -579.0	86	CAP1-	1081.7, -587.5
37	D7	-3354.6, -579.0	87	CAP1-	1146.7, -587.5
38	VSS	-3304.6, -579.0	88	CAP1-	1518.7, -587.5
39	CKS	-3254.6, -579.0	89	CAP1+	1583.7, -587.5
40	VDD	-3204.6, -579.0	90	CAP1+	1648.7, -587.5
41	VDD	-3154.6, -579.0	91	CAP1+	1948.7, -587.5
42	VDD	-3104.6, -579.0	92	CAP1+	2013.7, -587.5
43	VDD	-3054.6, -579.0	93	V2X	2078.7, -587.5
44	VBA	-3004.6, -579.0	94	V2X	2143.7, -587.5
45	VREF	-2954.6, -579.0	95	V2X	2515.7, -587.5
46	VPP	-2848.2, -579.0	96	VSS	2580.7, -587.5
47	VPP	-2798.2, -579.0	97	VSS	2645.7, -587.5
48	VPP	-2748.2, -579.0	98	VSS	2710.7, -587.5
49	VSS	-2698.2, -579.0	99	VSS	2804.6, -579.0
50	VSS	-2648.2, -579.0	100	VSS	2854.6, -579.0

Pin No.	Pad Name	Coordinate (X,Y)	Pin No.	Pad Name	Coordinate (X,Y)
101	VSS	2904.6, -579.0	151	COM60	5305.0, -328.0
102	VSS	2954.6, -579.0	152	COM59	5305.0, -285.0
103	VSS	3004.6, -579.0	153	COM58	5305.0, -242.0
104	VSS	3054.6, -579.0	154	COM57	5305.0, -199.0
105	V4	3104.6, -579.0	155	COM56	5305.0, -156.0
106	V4	3154.6, -579.0	156	COM55	5305.0, -113.0
107	V4	3204.6, -579.0	157	COM54	5305.0, -70.0
108	V4	3254.6, -579.0	158	COM53	5305.0, -27.0
109	V4	3304.6, -579.0	159	COM52	5305.0, 16.0
110	V4	3354.6, -579.0	160	COM51	5305.0, 59.0
111	V4	3404.6, -579.0	161	ÇOM50	5305.0, 102.0
112	V3	3454.6, -579.0	162	COM49	5305.0, 145.0
113	V3	3504.6, -579.0	163	COM48	5305.0, 188.0
114	V3	3554.6, -579.0	164	COM47	5305.0, 231.0
115	V3	3604.6, -579.0	165	COM46	5305.0, 274.0
116	V3	3654.6, -579.0	166	COM45	5305.0, 317.0
117	V3	3704.6, -579.0	167	COM44	5305.0, 360.0
118	V3	3754.6, -579.0	168	COM43	5305.0, 403.0
119	V2	3804.6, -579.0	169	DUMMY	5305.0, 446.0
120	V2	3854.6, -579.0	170	DUMMY	5310.5, 570.0
121	V2	3904.6, -579.0	171	COM42	5267.5, 570.0
122	V2	3954.6, -579.0	172	COM41	5224.5, 570.0
123	V2	4004.6, -579.0	173	COM40	5181.5, 570.0
124	V2	4054,6, -579.0	174	COM39	5138.5, 570.0
125	V2	4104.6, -579.0	175	COM38	5095.5, 570.0
126	V1	4154.6, -579.0	176	COM37	5052.5, 570.0
127	V1	4204.6, -579.0	177	COM36	5009.5, 570.0
128	V1	4254.6, -579.0	178	COM35	4966.5, 570.0
129	V1	4304.6, -579.0	179	COM34	4923.5, 570.0
130	V1	4354.6, -579.0	180	COM33	4880.5, 570.0
131	V1 /	4404.6, -579.0	181	COM32	4837.5, 570.0
132	V1 V1	4454.6, -579.0	182	COM31	4794.5, 570.0
133	V1 V	/ / /	183	COM30	4751.5, 570.0
134	VI	4504.6, -579.0 4554.6, -579.0	184	COM29	4708.5, 570.0
135	VO	4604.6579.0	185	COM28	4665.5, 570.0
136	VO	/	186	COM27	,
137	VO	4654.6, -579.0	187		4622.5, 570.0
138	VO	4704.6, -579.0		COM26	4579.5, 570.0
139	VO	4754.6, -579.0	188	COM25	4536.5, 570.0
		4804.6, -579.0	189	COM24	4493.5, 570.0
140	V0	4854.6, -579.0	190	COM23	4450.5, 570.0
141	V0	4904.6, -579.0	191	COM22	4407.5, 570.0
142	V0	4954.6, -579.0	192	COM21	4364.5, 570.0
143	DUMMY	5004.6, -579.0	193	COM20	4321.5, 570.0
144	DUMMY	5099.0, -595.0	194	COM19	4278.5, 570.0
145	DUMMY	5202.0, -595.0	195	COM18	4235.5, 570.0
146	DUMMY	5305.0, -595.0	196	COM17	4192.5, 570.0
147	DUMMY	5305.0, -500.0	197	COM16	4149.5, 570.0
148	COM63	5305.0, -457.0	198	COM15	4106.5, 570.0
149	COM62	5305.0, -414.0	199	COM14	4063.5, 570.0
150	COM61	5305.0, -371.0	200	COM13	4020.5, 570.0

Pin No.	Pad Name	Coordinate (X,Y)	Pin No.	Pad Name	Coordinate (X,Y)
201	COM12	3977.5, 570.0	251	SEG37	1827.5, 570.0
202	COM11	3934.5, 570.0	252	SEG38	1784.5, 570.0
203	COM10	3891.5, 570.0	253	SEG39	1741.5, 570.0
204	COM9	3848.5, 570.0	254	SEG40	1698.5, 570.0
205	COM8	3805.5, 570.0	255	SEG41	1655.5, 570.0
206	COM7	3762.5, 570.0	256	SEG42	1612.5, 570.0
207	COM6	3719.5, 570.0	257	SEG43	1569.5, 570.0
208	COM5	3676.5, 570.0	258	SEG44	1526.5, 570.0
209	COM4	3633.5, 570.0	259	SEG45	1483.5, 570.0
210	COM3	3590.5, 570.0	260	SEG46	1440.5, 570.0
211	COM2	3547.5, 570.0	261	SEG47	1397.5, 570.0
212	COM1	3504.5, 570.0	262	SEG48	1354.5, 570.0
213	COM0	3461.5, 570.0	263	SEG49	1311.5, 570.0
214	SEG0	3418.5, 570.0	264	SEG50	1268.5, 570.0
215	SEG1	3375.5, 570.0	265	SEG51	1225.5, 570.0
216	SEG2	3332.5, 570.0	266	SEG52	1182.5, 570.0
217	SEG3	3289.5, 570.0	267	SEG53	1139.5, 570.0
218	SEG4	3246.5, 570.0	268	SEG54	1096.5, 570.0
219	SEG5	3203.5, 570.0	269	SEG55	1053.5, 570.0
220	SEG6	3160.5, 570.0	270	SEG56	1010.5, 570.0
221	SEG7	3117.5, 570.0	271	SEG57	967.5, 570.0
222	SEG8	3074.5, 570.0	272	SEG58	924.5, 570.0
223	SEG9	3031.5, 570.0	273	SEG59	881.5, 570.0
224	SEG10	2988.5, 570.0	274	SEG60	838.5, 570.0
225	SEG11	2945.5, 570.0	275	SEG61	795.5, 570.0
226	SEG12	2902.5, 570.0	276	SEG62	752.5, 570.0
227	SEG13	2859.5, 570.0	277	SEG63	709.5, 570.0
228	SEG14	2816.5, 570.0	278	SEG64	666.5, 570.0
229	SEG15	2773.5, 570.0	279	SEG65	623.5, 570.0
230	SEG16	2730.5, 570.0	280	SEG66	580.5, 570.0
231	SEG17	2687.5, 570.0	281	SEG67	537.5, 570.0
232	SEG18	2644.5, 570.0	282	SEG68	494.5, 570.0
233	SEG19	2601.5, 570.0	283	SEG69	451.5, 570.0
234	SEG20	2558.5, 570.0	284	SEG70	408.5, 570.0
235	SEG21	2515.5, 570.0	285	SEG71	365.5, 570.0
236	SEG22	2472.5, 570.0	286	SEG72	322.5, 570.0
237	SEG23	2429.5, 570.0	287	SEG73	279.5, 570.0
238	SEG24	2386.5, 570.0	288	SEG74	236.5, 570.0
239	SEG25	2343.5, 570.0	289	SEG75	193.5, 570.0
240	SEG26	2300.5, 570.0	290	SEG76	150.5, 570.0
241	SEG27	2257.5, 570.0	291	SEG77	107.5, 570.0
242	SEG28	2214.5, 570.0	292	SEG78	64.5, 570.0
243	SEG29	2171.5, 570.0	293	SEG79	21.5, 570.0
244	SEG30	2128.5, 570.0	294	SEG80	-21.5, 570.0
245	SEG31	2085.5, 570.0	295	SEG81	-64.5, 570.0
246	SEG32	2042.5, 570.0	296	SEG82	-107.5, 570.0
247	SEG33	1999.5, 570.0	297	SEG83	-150.5, 570.0
248	SEG34	1956.5, 570.0	298	SEG84	-193.5, 570.0
249	SEG35	1913.5, 570.0	299	SEG85	-236.5, 570.0
250	SEG36	1870.5, 570.0	300	SEG86	-279.5, 570.0

Pin No.	Pad Name	Coordinate	Pin No.	Pad Name	Coordinate
		(X,Y)			(X,Y)
301	SEG87	-322.5, 570.0	351	SEG137	-2472.5, 570.0
302	SEG88	-365.5, 570.0	352	SEG138	-2515.5, 570.0
303	SEG89	-408.5, 570.0	353	SEG139	-2558.5, 570.0
304	SEG90	-451.5, 570.0	354	SEG140	-2601.5, 570.0
305	SEG91	-494.5, 570.0	355	SEG141	-2644.5, 570.0
306	SEG92	-537.5, 570.0	356	SEG142	-2687.5, 570.0
307	SEG93	-580.5, 570.0	357	SEG143	-2730.5, 570.0
308	SEG94	-623.5, 570.0	358	SEG144	-2773.5, 570.0
309	SEG95	-666.5, 570.0	359	SEG145	-2816.5, 570.0
310	SEG96	-709.5, 570.0	360	SEG146	-2859.5, 570.0
311	SEG97	-752.5, 570.0	361	SEG147	-2902.5, 570.0
312	SEG98	-795.5, 570.0	362	SEG148	-2945.5, 570.0
313	SEG99	-838.5, 570.0	363	SEG149	-2988.5, 570.0
314	SEG100	-881.5, 570.0	364 _	SEG150	-3031.5, 570.0
315	SEG101	-924.5, 570.0	365	SEG151	-3074.5, 570.0
316	SEG102	-967.5, 570.0	366	SEG152	-3117.5, 570.0
317	SEG103	-1010.5, 570.0	367	SEG153	-3160.5, 570.0
318	SEG104	-1053.5, 570.0	368	SEG154	-3203.5, 570.0
319	SEG105	-1096.5, 570.0	369	SEG155	-3246.5, 570.0
320	SEG106	-1139.5, 570.0	370	SEG156	-3289.5, 570.0
321	SEG107	-1182.5, 570.0	371	SEG157	-3332.5, 570.0
322	SEG108	-1225.5, 570.0	372	SEG158	-3375.5, 570.0
323	SEG109	-1268.5, 570.0	373	SEG159	-3418.5, 570.0
324	SEG110	-1311.5, 570.0	374	COM64	-3461.5, 570.0
325	SEG111	-1354.5, 570.0	375	COM65	-3504.5, 570.0
326	SEG112	-1397.5, 570.0	376	COM66	-3547.5, 570.0
327	SEG113	-1440.5, 570.0	377	COM67	-3590.5, 570.0
328	SEG114	-1483.5, 570.0	378	COM68	-3633.5, 570.0
329	SEG115	-1526.5, 570.0	379	COM69	-3676.5, 570.0
330	SEG116	-1569.5, 570.0	380	COM70	-3719.5, 570.0
331	SEG117	-1612.5, 570.0	381	COM71	-3762.5, 570.0
332	SEG118	-1655.5, 570.0	382	COM71	
333	SEG119	-1698.5, 570.0	383	COM72 COM73	-3805.5, 570.0 -3848.5, 570.0
334	SEG120	-1741.5, 570.0	384	COM74	
		/ '			-3891.5, 570.0
335	SEG121	-1784.5, 570.0	385	COM75	-3934.5, 570.0
336	SEG122	-1827.5, 570.0	386	COM76	-3977.5, 570.0
337	SEG123	-1870.5, 570.0	387	COM77	-4020.5, 570.0
338	SEG124	-1913.5, 570.0	388	COM78	-4063.5, 570.0
339	SEG125	-1956.5, 570.0	389	COM79	-4106.5, 570.0
340	SEG126	-1999.5, 570.0	390	COM80	-4149.5, 570.0
341	SEG127	-2042.5, 570.0	391	COM81	-4192.5, 570.0
342	SEG128	-2085.5, 570.0	392	COM82	-4235.5, 570.0
343	SEG129	-2128.5, 570.0	393	COM83	-4278.5, 570.0
344	SEG130	-2171.5, 570.0	394	COM84	-4321.5, 570.0
345	SEG131	-2214.5, 570.0	395	COM85	-4364.5, 570.0
346	SEG132	-2257.5, 570.0	396	COM86	-4407.5, 570.0
347	SEG133	-2300.5, 570.0	397	COM87	-4450.5, 570.0
348	SEG134	-2343.5, 570.0	398	COM88	-4493.5, 570.0
349	SEG135	-2386.5, 570.0	399	COM89	-4536.5, 570.0
350	SEG136	-2429.5, 570.0	400	COM90	-4579.5, 570.0

		Coordinate	
Pin No.	Pad Name	(X,Y)	
401	COM91	-4622.5, 570.0	
402	COM92	-4665.5, 570.0	
403	COM93	-4708.5, 570.0	
404	COM94	-4751.5, 570.0	
405	COM95	-4794.5, 570.0	
406	COM96	-4837.5, 570.0	
407	COM97	-4880.5, 570.0	
408	COM98	-4923.5, 570.0	
409	COM99	-4966.5, 570.0	
410	COM100	-5009.5, 570.0	
411	COM101	-5052.5, 570.0	
412	COM102	-5095.5, 570.0	
413	COM103	-5138.5, 570.0	
414	COM104	-5181.5, 570.0	
415	COM105	-5224.5, 570.0	
416	COM106	-5267.5, 570.0	
417	DUMMY	-5310.5, 570.0	
418	DUMMY	-5305.0, 446.0	
419	COM107	-5305.0, 403.0	
420	COM108	-5305.0, 360.0	
421	COM109	-5305.0, 317.0	
422	COM110	-5305.0, 274.0	
423	COM111	-5305.0, 231.0	
424	COM112	-5305.0, 188.0	
425	COM113	-5305.0, 145.0	
426	COM114	-5305.0, 102.0	
427	COM115	-5305.0, 59.0	
428	COM116	-5305.0, 16.0	
429	COM117	-5305.0, -27.0	
430	COM118	-5305.0, -70.0	
431	COM119	-5305.0, -113.0	
432	COM120	-5305.0, -156.0	
433	COM121	-5305.0, -199.0	
434	COM122	-5305.0, -242.0	
435	COM123	-5305.0, -285.0	
436	COM124	-5305.0, -328.0	
437	COM125	-5305.0, -371.0	
438	COM126	-5305.0, -414.0	
439	COM127	-5305.0, -457.0	
440	DUMMY	-5305.0, -500.0	
440	DOMINIT	-5505.0, -500.0	
	<u> </u>		

5 Functional Block Diagram

Product Specification (V0.4) 08.15.2005

6 Pin Description

6.1 Power Supply Pins

Symbol	I/O	Description
VDD	Power Supply	Power supply pin for logic circuit to +2.2 to 3.3V
VSS	Power Supply	Ground pin, connect to 0V
V0 V1 V2 V3 V4	Power Supply	Bias power supply pin for LCD drive voltage When using an external power supply, convert the impedance by using the resistance-division of the LCD drive power supply or operation amplifier before adding the voltage to the pins. These voltages should have the following relationship: VSS <v4<v3<v2<v1<v0 active,="" and="" are="" booster="" built-in="" by="" capacitor="" circuit="" connect="" converter.="" each="" generated="" internal="" is="" must="" power="" supply="" td="" the="" then,="" these="" to="" voltage="" voltages="" vss.<="" when="" you=""></v4<v3<v2<v1<v0>

6.2 LCD Power Supply Circuit Pins

Symbol	I/O	Description
CAP1+	0	Connecting pin for the built-in booster's capacitor + side. The capacitor is connected between CAP1- and CAP1+.
CAP1-	0	Connecting pin for the built-in booster's capacitor – side. The capacitor is connected between CAP1- and CAP1+.
CAP2+	0	Connecting pin for the built-in booster's capacitor + side. The capacitor is connected between CAP2- and CAP2+.
CAP2-	0	Connecting pin for the built-in booster's capacitor – side. The capacitor is connected between CAP2- and CAP2+.
CAP3+	0 /	Connecting pin for the built-in booster's capacitor + side. The capacitor is connected between CAP3- and CAP3+.
CAP3-	Ø	Connecting pin for the built-in booster's capacitor – side. The capacitor is connected between CAP3- and CAP3+.
CAP4+ O		Connecting pin for the built-in booster's capacitor + side. The capacitor is connected between CAP2- and CAP4+.
CAP5+	0	Connecting pin for the built-in booster's capacitor + side. The capacitor is connected between CAP3- and CAP5+.
VEE	Power Supply	Voltage supply pin for the booster circuit. Usually this has the same voltage level as VDD.
VOUT	0	Output pin of the boosted voltage in the built-in booster. The capacitor must be connected between this pin and VSS.
V2X	O	Output pin which is equal to 2 x VEE. The capacitor must be connected between this pin and VSS.
VBA	0	Output pin for the regulator voltage of VBA AMP.
VREF	0	Output pin for temperature compensation output voltage The capacitor must be connected between this pin and VSS.

6.3 System Bus Pins

Symbol	I/O	Description					
RESB	I	Reset input pin. When RESB is "L," initialization is executed.					
D0/SCL D1/SDA D2 D3/SMODE D4.SPOL D5-D7	I/O	Data bus/ Signal interface related pins. When the parallel interface is selected (P/S = "H"), the D7-D0 are 8-bit bi-directional data bus connecting to the MPU data bus. When the serial interface is selected (P/S = "L"), D0 and D1 (SCL, SDA) are us as serial interface pins. SCL: Input pin for data transfer clock SDA: Serial data input pin SMODE: Serial transfer mode select pin SPOL: RS pole select pin when the 3-wire serial interface is selected. SDA data is latched at the rising edge of SCL, Internal serial/parallel conversion into 8-bit data occurs at the rising edge of the clock of SCL. After data transfer is complete or when making no access, you m set SCL to "L."					
CSB	I	Chip select input pin CSB = "L": accepts access from MPU CSB = "H": denies access from MPU					
RS	ı	RAM/Register select input pin RS = "0": D7-D0 to display RAM data RS = "1": D7-D0 to control register data					
RDB (E)	ı	Read/Write control pin Select 80-family MPU type (M86 = "L") The RDB is a data read signal. When RDB is "L", D7-D0 are in an output status. Select 68-family MPU type (M86 = "H") R/WB = "H": When E is "H," D7-D0 are in an output status. R/WB = "L": Data on D7-D0 are latched at the falling edge for the E signal.					
WRB (R/WB)		Read/Write control pin Select 80-family MPU type (M86 = "L") The WRB is a data write signal. Data on D7-D0 are latched at the rising edge of the WRB signal. Select 68-family MPU type (M86 = "H") Read/Write control input pin. R/W = "H": Read R/W = "L": Write					
M86		MPU interface type select input pin. M86 = "H": 68-family interface M86 = "L": 80-family interface Fixed at either "H" or "L"					
TEST	ı	For testing. Fix to "L."					
P/S	I	Parallel/Serial interface select pin P/S Chip Select Data Identification Data Read/Write Serial Clock H CSB RS D0-D7 RDB, WRB - L CSB RS SDA Write only SCL P/S = "H": For parallel interface P/S = "L": For serial interface. Fixed D15-D5 pins are Hi-Z, RDB and WRB pins to either "H" or "L."					

6.4 LCD Driver Circuit Signals

Symbol	I/O	Description						
SEG0 to SEG159	0	Segment output pins for LCD drives. According to the Display RAM data, not lighted at "0", lighted at "1" (Normal Mode). Not lighted at "1", lighted at "0" (Reverse Mode) and, by a combination of the M signal and display data, one signal level among V0,V2,V3 and VSS signal levels are selected. M Signal (internal) Display RAM Data Normal Mode V2 V3 VSS Reverse Mode V0 V2 VSS V3						
COM0 to COM127	0	Common output pins for the LCD drivers. By combining the scanned data and M signal, one signal level among V0, V1, V4 and VSS signal level is selected. Data						

6.5 Oscillating Circuit Pins

Symbol	I/O	Description
CKS	1	Display timing clock source select input pin. CKS = "H": Use external clock from CK pin. CKS = "L": Use internal oscillated clock. In the case of TCP, draw it as a separate terminal.
СК	1/0	External clock input pin for displaying the timing (CKS=1) or internal clock output pin for displaying the timing (CKS=0). When using the internal oscillated clock, CK must be floating.

6.6 EEPROM Power Pins

Symbol	I/O	Description
VPP		External power-forcing pin for programming or erasing EEPROM, 17~18V.

7 Functional Description

7.1 MPU Interface

7.1.1 Reset Pin Description (RESB)

Hold the RESB at low for at least 40us after which the EM65101 accepts this reset command.

Figure 7-1 RESB Timing

7.1.2 Selection of Interface Type

The EM65101 transfers data through the 8-bit parallel I/O (D7-D0) or serial data input (SDA, SCL). You can use the P/S pin to select the parallel or serial interface. When the serial interface is selected, you are allowed to write data but data reading is not allowed.

P/S	I/F Type	CSB	RS	RDB	WRB	M86	SDA	SCL	Data
Н	Parallel	CSB	RS	RDB	WRB	M86	-	-	D7~D0
L	Serial	CSB	RS	1 -1	\\	-	SDA	SCL	-

7.1.3 Parallel Input

When the parallel interface is selected with the P/S pin, the EM65101 allows data to be transferred in parallel to an 8-bit MPU through the data bus. For the 8-bit MPU, you can use the M86 pin to select either the 80-family or the 68-family MPU interface.

/	M86	MPU Type	CSB	RS	RDB	WRB	Data
	$\langle H \rangle$	68-family MPU	CSB	RS	Е	R/WB	D7~D0
\	L	80-family MPU	CSB	RS	RDB	WRB	D7~D0

7.1.4 Read/Write Functions of the Register and Display RAM

The EM65101 have four read/write functions in parallel interface mode. Each read/write function is selected by combinations of RS, RDB, and WRB signals.

RS 68-family		80-fa	amily	Function	
N3	R/WB	RDB	WRB	Tunction	
1	1	0	1	Read internal Register	
1	0	1	0	Write internal Register	
0	1	0	1	Read display data	
0	0	1	0	Write display data	

7.1.5 Serial Interface

The EM65101 has two types of serial interfaces, i.e., 3-wire or 4-wire serial interface. Use the SMODE pin to select the serial interface type.

SMODE = "L": 4-wire serial interface

SMODE = "H": 3-wire serial interface

7.1.5.1 4-Wire Serial Interface

When chip select is active (CSB = "L"), 4-wires type serial interface works through the SDA and SCL input pins. When chip select is inactive (CSB = "H"), the internal shift register and counter are reset to the initial condition. Serial data SDA are input sequentially in the order of D7 to D0 at the rising edge of the serial clock (SCL). The RS pin determines whether serial data input (SDA) is used as display RAM data or as control register data.

RS = "L": display RAM data

RS = "H": register control data

After completing the 8-bit data transfer, or when making no access, be sure to set the serial clock input (SCL) to "L." Care should be taken during PCB layout to avoid external noise from contaminating the SDA and SCL signals. To prevent any transfer error due to external noise, release chip select (CSB = "H") after every complete 8-bit data transfer.

Figure 7-2 4-Wire Serial Interface

7.1.5.2 3-Wire Serial Interface

When chip select is active (CSB = "L"), 3-wire serial interface works through the SDA and SCL input pins. When chip select is inactive (CSB = "H"), the internal shift register and counter are reset to the initial condition. Serial data SDA are input sequentially in the order of RS, D7 to D0 at the rising edge of the serial clock (SCL). The first serial input data (RS) and the SPOL pin determine whether serial data input (SDA) is used as display RAM data or as control register data.

	SPOL = "0"		SPOL = "1"
RS	Display RAM/Register	RS	Display RAM/Register
0	Display RAM Data	0	Control Register Data
1	Control Register Data	1	Display RAM Data

After completing the 9-bit data transfer, or when making no access, be sure to set the serial clock input (SCL) to "L." Care should be taken during PCB layout to avoid external noise from contaminating the SDA and SCL signals. To prevent any transfer error due to external noise, release chip select (CSB = "H") after every complete 9-bit data transfer.

Figure 7-3 3-Wire Serial Interface

7.2 Writing Data to Display RAM and Control Register

The procedure to write data to the display RAM and Control Register is similar except for the RS selection to select the accessed object.

RS = "L": Display RAM data

RS = "H": Control register data

In the case of the 80-family MPU, data is written at the rising edge of WRB. In the case of the 68-family MPU, data is written at the falling edge of signal E.

7.2.1 Writing Data Operation

Figure 7-4 Writing Data Operation

7.2.2 Writing Data to Display RAM Data

The EM65101 is a 128-row by 160-column addressable array. Each pixel can be accessed when the X and Y addresses are specified. The 128 rows are divided into 16 Y addresses of 8 lines. Data is read from or written to the 8 lines of X address directly through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines. The microcomputer can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM and displayed at the same time without causing any LCD flicker.

7.3 Y and X Address Circuits

7.3.1 Y Address Circuit

This circuit incorporates 4-bit Y address register which can only be changed by the "Y address" instruction. The Y address is set from 0 to 15.

7.3.2 X Address Circuit

This circuit assigns display RAM a line address corresponding to the first line (COM0) of the display. Therefore, by setting the X address repeatedly, it is possible to scroll the screen and switch the Y address without changing the contents of the on-chip RAM. It incorporates the 7-bit Y address register which can only be changed by the initial display line instruction and the 7-bit counter circuit. At the beginning of each LCD frame, the contents of the register are copied to the X address counter which is incremented by the FLM signal. Thus generating the X address for transferring the 128-bit RAM data to the display latch circuit.

The REF select instruction makes it possible to invert the relationship between the X address and the segment outputs. It is necessary to rewrite the display data on the built-in RAM after issuing a REF select instruction. See and refer the following Figures 7-5 and 7-6.

Figure 7-5 REF Control of the Relationship between the X Address and the Segment Outputs

7.3.3 EM65101 Display RAM Mapping

Figure 7-6 Display RAM Mapping Diagram

7.4 Internal Register Read

When reading data from the display RAM, a dummy read is initially required. The designated address data is not output to the read operation immediately after the address is set to the AX or AY register. It is output when the second data is read. Dummy read is always initially required after address is set and the write cycle is started.

7.4.1 Read Display RAM Operation

Figure 7-7 Read Display RAM Operation

The EM65101 can read the control registers. When issuing a control register read operation, the upper data bus nibble (D7-D4) is used for the register address (0 to FH). Up to 16 registers can be accessed directly. However, more than 16 registers are provided. To solve this over supply problem, the EM65101 uses the register bank control to access the RE register with a bank number. You can access the RE register through any bank. The following lists the steps to be taken when accessing the specific register using the bank access control.

- Write 01H to the RE register for accessing the RA register.
- 2. Write the specific register address to the RA register.
- Write the specific register bank to the RE register.
- 4. Read the specific register contents.

7.4.2 Register Read Operation

Figure 7-8 Register Read Operation

7.4 Display RAM Access Using Window Function

The EM65101 has a window area setting command for accessing a specified display RAM area. To use the window function, you need to set up the X & Y address positions. In addition, you also need to enable the auto-increment mode (AXI="1", AYI="1"). These two positions represent the window start position and window end position. Set the X address (AX) and Y address (AY) registers to specify the window start position of X and Y respectively. Set the Window X End address (EX) and Window Y End address (AY) to specify the window end positions of X and Y respectively. When accessing the window function, you can set AIM to "1" to modify write access. You should set the following registers before accessing RAM when you use the window function. Note that the Window Y End address setting can be set only as COM8, COM16..., COM127.

WIN = "1," AXI="1," AYI="1"

X address, Y address, Window X End address, Window Y End address

Moreover, these addresses should be kept in the following conditions:

- Window End X address(EX) Window Start X address (AX)
- Window End Y address(EY) Window Start Y address (AY)

7.5 Display RAM Data and LCD

One bit of display RAM data corresponds to one dot of LCD. Normal display and reverse display by the REV register are set up as follows:

- Normal display (REV=0): RAM data = "0," not lit
 - RAM data = "1," lit
- Reverse display (REV=1): RAM data = "0," lit

RAM data = "1" not lit

7.6 Display Timing Circuit

The display timing circuit generates internal signals and timing pulses (internal LP, FLM, and M) by the clock.

Symbol	Description				
LP (internal)	The LP is a latch clock signal. At the raising edge, count the display line counter. At the falling edge, output the LCD drive signal.				
FLM (internal)	The signal for the LCD display synchronous signals. When FLM is set to "H," the display start-line address is present.				
M (internal)	The signal for alternate signals of LCD drive output				

7.6.1 Signal Generation for the Display Line Counter and the Display Data Latching Circuit

Clock frequencies are generated to the line counter and the display data latching circuit from the display clock (internal LP). Synchronized with the display clock (internal LP), the line addresses of Display RAM are generated and the 160-segement bits display data are latched to display data latching circuit to output to the LCD drive circuit (Segment outputs). Display data read out of to the LCD drive circuit is completely independent of MPU. Thus, MPU has no relationship to the read-out operation which accesses the display data.

7.6.2 Generation of the Alternate Signal M (Internal) and the Synchronous Signal FLM (Internal)

LCD alternate signal M (internal) and synchronous signal FLM (internal) are generated by the display clock LP (internal). FLM generates alternated drive waveform to the LCD drive circuit. Normally, FLM generates alternate drive waveform every frame (M-signal level is reversed every single frame). However, by setting up data in an n-line reverse register and n-line alternate control bit (NLIN), an n-line reverse waveform is generated at "1." These control bits are NLIN and EOR.

When NLIN = "H":

EOR=0 M always reverses on the nth raster row regardless of whether the end of a frame is reached.

EOR=1 M reverses at the nth raster row and restarts the raster row count at the start of every frame.

7.6.3 Display Data Latching Circuit

Display data latching Circuit temporally latches display data that outputs display data to the LCD driver circuit from display RAM every one common period. Normal display/reverse display, display ON/OFF, and display all on functions are operated by controlling data in the display data latch. Therefore, no data within display RAM changes.

7.7 LCD Driver Output Timing

Display timing at Normal (not reverse mode), 1/128 Duty.

Figure 7-10 Normal Mode Display Timing Diagram

7.7.1 LCD Drive Circuit

This drive circuit generates four levels of LCD drive voltages. The circuit has 160-segment outputs and 128-common outputs and the outputs combine the display data and internal signal M. The common drive circuit that contains a shift register sequentially outputs common scan signals.

7.7.2 Oscillator Circuit

The EM65101 provides a CR oscillator. The output from this oscillator is used as the timing source for display signal and clock source for the clock booster.

When the external clock is used, the clock source is fed to the CK pin. The duty cycle of the external clock must be 50%.

The ratio of the resistance at the CR oscillator is programmable. When you change this ratio, the frame frequency display is also changed.

7.8 Power Supply Circuit

This power circuit supplies the voltages necessary to drive an LCD. The circuit consists of a booster and a voltage converter.

Boosted voltage from the booster is fed to the voltage converter that converts this input voltage into V0, V1, V2, V3, and V4 that are used to drive the LCD. This internal power supply should not be used to drive a large LCD panel containing many pixels. Otherwise, the display quality will be degraded considerably. Instead, use an external power supply. When using external power supply, turn off the internal power supply (AMPON, DCON="00"), disconnect pins CAP1-, CAP1+, CAP2+, CAP2-, CAP3+, CAP3-, CAP4+, CAP5+,V2X, VOUT, and VEE. Then, feed the external LCD drive voltages to Pins V0, V1, V2, V3, and V4. The power circuit can be controlled by power circuit related registers.

DCON	AMPON	Booster Circuit	Voltage Conversion Circuit
0	0	Disable	Disable ¹
0	1	Disable	Enable ²
1	1	Enable	Enable

¹Because the booster and the voltage converter are not operating, disconnect Pins CAP1+, CAP1-, CAP2+, CAP2-, CAP3+, CAP3-, CAP4+, CAP5+,V2X, VOUT and VEE.

Apply external LCD drive voltages to the corresponding pins.

7.9 Booster Circuit

Placing capacitor C1 across CAP1+ and CAP1-, across CAP2+ and CAP2-, across CAP3+ and CAP3-, across CAP4+ and CAP2-, across CAP5+ and CAP3-, and across VOUT/V2X and VSS, will boost the voltage coming from VEE and VSS n-times and output the boost up voltage to the VOUT pin. Voltages that are boost-up twice, three times, four times, and five times are output to the VOUT pin by the boost step register set. You can set the boost step registers.

- (1) In cases where the twice boost-up voltage is used, place C1 across CAP1+ and CAP1-, across V2X and VSS; and open CAP2+, CAP2-, CAP3+, CAP3-, CAP4+, CAP2-, CAP5+, and CAP3-.
- (2) In cases where the voltage that is boosted three times is used, place C1 only across CAP1+ and CAP1-, across CAP2+ and CAP2-, across V2X and VSS; and open CAP3+, CAP3-, CAP4+, CAP2-, CAP5+, and CAP3-

² Because the booster is not operating, disconnect Pins CAP1+, CAP1-, CAP2+, CPA2-, CAP3+, CAP3-, CAP4+, CAP5+, and VEE.

Derive the voltage source to be supplied to the voltage converter from VOUT and the V2X pins.

- (3) In cases where the four times boosted voltage is used, place C1 only across CAP1+ and CAP1-, across CAP2+ and CAP2-, across CAP3+ and CAP3-, across V2X and VSS; and open CAP4+, CAP2-, CAP5+, and CAP3-
- (4) In cases where the voltage that is boosted five times is used, place C1 only across CAP1+ and CAP1-, across CAP2+ and CAP2-, across CAP3+ and CAP3- across CAP4+ and CAP2-, across V2X and VSS; and open CAP5+ and CAP3-
- (5) In cases where the voltage that is boosted six times is used, place C1 only across CAP1+ and CAP1-, across CAP2+ and CAP2-, across CAP3+ and CAP3-, across CAP4+ and CAP2-, across CAP5+ and CAP3-, and across V2X and VSS

When you use the built-in booster circuit, make sure the output voltage (VOUT) is less than the recommended operating voltage (18.0 Volt). If the output voltage (VOUT) is more than the recommended operating voltage, correct chip operation can NOT be guaranteed.

Figure 7-11 Correlation Between VEE and VOUT Boost-up Voltages

NOTE

The maximum voltage VOUT of 18V is automatically limited by hardware to avoid damage to the IC.

7.10 Electronic Volume

The voltage conversion circuit has a built-in electronic volume control, which allows VBA to be controlled by DV register settings. The DV registers are 7 bits providing 65 voltage values for the VBA. The relationship between VBA and DV is summarized in the following equation:

Where:

M = DV register setting (offsets CV5 ~ CV0 setting on EEPROM)

N = RM register setting

VREF = Internal temperature compensation output voltage

7.11 Voltage Regulator

The EM65101 has a built-in reference voltage regulator, which regulates the amplified voltage from the internal temperature compensation output (VREF pin) to generate the LCD drive voltage (V0). Even if the boost-up voltage level fluctuates, V0 remains stable as long as VOUT is higher than V0. Stable power supply can be obtained by using this constant voltage, even if the load fluctuates. The EM65101 uses the generated LCD drive voltage (V0) level as the reference level for the electronic volume.

7.12 Voltage Generation Circuit

The voltage converter contains the voltage generation circuit. The LCD drive voltages other than V0, that is; V1, V2, V3, and V4 are obtained by dividing V0 through a resistor network. The LCD drive voltage from EM65101 is biased at 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, & 1/13. When using the internal power supply, connect a stabilizing capacitor to each of Pins V0 to V4. The capacitor should be determined while selecting the LCD panel to be used. When using the external power supply, apply external LCD drive voltages to V0, V1, V2, V3, & V4. Disconnect Pins CAP1+, CAP1-, CAP2+, CAP3-, CAP3-, CAP4+, CAP5+,V2X, VOUT, & VEE. When using only the voltage conversion circuit, turn off the internal booster circuit, disconnect Pins CAP1+, CAP1-, CAP2+, CAP2-, CAP3-, CAP3-, CAP4+, CAP5+ and VEE. Get the voltage source to be supplied to the voltage converter from VOUT and V2X pins.

The following figure shows an application circuit on capacitor connections when using the internal power circuit (with the voltage boosted several times as shown).

Figure 7-12a Internal Power Capacitor Connections Application Circuits (Voltage Boosted 6, 5 and 4 Times)

Figure 7-12b Internal Power Capacitor Connections Application Circuits (Voltage Boosted 3 and 2 Times)

NOTE

- 1. Recommended values for C1 is 1uF, and for CVREF is 0.1uF.
- 2. To attain a stable voltage, it is recommended that you use VREF to connect a capacitor across CVREF and VSS.
- 4. Use of capacitor type X5R is recommended for C1 and CVREF.

7.13 EEPROM Function

The EM65101 supports EEPROM function that allows you to change the LCD operating voltage Vop. It can also select EEPROM operating mode and set to use internal or external power supply for EEPROM. In the EEPROM select register (Bank2 [0H]), then use (M1, M0) to select the operating mode for EEPROM:

(M1, M0)	EEPROM Operating Mode	Delay Time
00	Read	> 10 uS
01	Program	> 4 mS
10	Erase	> 4 mS
11	Reserve	-

NOTE

When using the EEPROM function, VDD must be larger than 2.8V (VDD 2.8V)

You can get the Vop calibration offset voltage by setting the Vop calibration offset register (Bank 2[1H & 2H]).

CV5~CV0	Calibration Offset
011111	+31
011110	+30
000001	+1
000000	0
100000	-32
100001	-31
111111	-1

7.13.1 EEPROM Program, Read, and Erase Flow Charts

The following are the EEPROM Program, Read and Erase flow charts for achieving correct Vop offset voltage.

Figure 7-13 Program Flow Chart

Figure 7-14 Read Flow Chart

Figure 7-15 Erase Flow Chart

7.13.2 Vop Calibration Offset Examples

1) Program

Vop calibration offset is +30, CV5~CV0 is set to 011110 // set RE FLAG 010 \rightarrow INSTRUCTION Bank 2 WRITE #F2H WRITE #11H // set CV5~CV4=01 WRITE #2EH // set CV3~CV0=1110 // set NIB1~NIB0=01 → program CV5~CV4 WRITE #51H // set EEPROM operating mode → WRITE #02H programming; EEPROM power is from internal VO DELAY > 4 MS // wait > 4 ms to finish programming WRITE #06H // set EEPROM mode → reserve (finish programming) WRITE #50H // set NIB1~NIB0=00 → program CV3~CV0 WRITE #02H // set EEPROM operating mode > programming; EEPROM power is from internal VO DELAY > 4 MS // wait > 4 ms to finish programming // set EEPROM mode → reserve (finish programming) WRITE #06H // set RE FLAG 000 → INSTRUCTION Bank 0 WRITE #F0H #81H // EM65101 reset WRITE // set RE FLAG 010 → INSTRUCTION Bank 2 WRITE #F2H // set NIB1~NIB0=01 → read CV5~CV4 WRITE #51H WRITE #00H // set EEPROM operating mode \rightarrow reading; read data from EEPROM to the CV5~CV4 registers >10 us DELAY // wait >10 uS to finish reading #06H // set EEPROM mode → reserve (finish reading data WRITE / from EEPROM to the CV5~CV4 registers) WRITE #50H //set NIB1~NIB0=00 \rightarrow read CV3~CV0 #00H /// set EEPROM operating mode ightarrow reading; read data WRITE from EEPROM to the CV3~CV0 registers DELAY >10 us // wait >10 uS to finish reading #06H // set EEPROM mode → reserve (finish reading data WRITE from EEPROM to the CV3~CV0 registers)

NOTE

- When setting CV5~CV0, you must set CV5~CV4 (upper nibble registers) first, then set CV3~CV0 (lower nibble registers), and then start to program.
- The programming sequence of CV5~CV4 and CV3~CV0 is not restricted.

2) Read

```
// set RE FLAG 010 \rightarrow INSTRUCTION Bank 2
WRITE
       #F2H
       #53H
                 // set NIB1~NIB0=11 → read Extension Command
WRITE
                 // set EEPROM operating mode → reading;
WRITE
       #00H
                    read data from EEPROM
                 // wait >10 uS to finish reading
DELAY
      >10 uS
      #06H
                 // set EEPROM mode → reserve (finish reading data
WRITE
                    from EEPROM
                 // set NIB1~NIB0=10 → read Extension Command
WRITE
      #52H
WRITE
       #00H
                 // set EEPROM operating mode → reading;
                    read data from EEPROM
                 // wait >10 uS to finish reading
DELAY >10 uS
WRITE
      #06H
                 // set EEPROM mode > reserve (finish reading data
                    from EEPROM
      #51H
                 //set NIB1~NIB0=01 → read CV5~CV4
WRTTE
WRITE
      #00H
                 // set EEPROM operating mode → reading;
                    read data from EEPROM to the CV5~CV4 registers
                 // wait >10 uS to finish reading
DELAY >10 uS
                 // set EEPROM mode → reserve (finish reading data
WRITE
      #06H
                    from EEPROM to the CV5~CV4 registers)
                 //set NIB1~NIB0=00 → read CV3~CV0
WRITE
      #50H
       #00H
                 // set EEPROM operating mode → reading; read data
WRITE
                    from EEPROM to the CV3~CV0 registers
                 // wait >10 uS to finish reading
DELAY
       >10 uS
WRITE
       #06H
                // set EEPROM mode \rightarrow reserve (finish reading data
                    from EEPROM to the CV3~CV0 registers)
```

NOTE

When reading from CV5~CV0, you must read the EEPROM data to CV5~CV4 (upper nibble register) first, then read the EEPROM data to CV3~CV0 (lower nibble registers).

3) Erase

```
#F2H
                 // set RE FLAG 010 \rightarrow INSTRUCTION Bank 2
WRITE
       #51H
                 // set NIB1~NIB0=01 → erase CV5~CV4
WRITE
                 // set EEPROM operating mode → erasing;
WRITE
       #04H
                    EEPROM power is from internal VO
                 // wait > 4 ms to finish erasing
DELAY > 4 MS
WRITE
      #06H
                 // set EEPROM mode → reserve (finish erasing)
                 // set NIB1~NIB0=00 → erase CV3~CV0
       #50H
WRITE
                 // set EEPROM operating mode → erasing;
WRITE
      #04H
                    EEPROM power is from internal VO
                 // wait > 4 ms to finish erasing
DELAY > 4 MS
WRITE
       #06H
                 // set EEPROM mode \rightarrow reserve (finish erasing)
WRITE
       #F0H
                 // set RE FLAG 000 → INSTRUCTION Bank 0
WRITE
      #81H
                 // EM65101 reset
WRITE
                 // set RE FLAG 010 → INSTRUCTION Bank 2
      #F2H
                 // set NIB1~NIB0=01 → read CV5~CV4
WRITE
      #51H
      #00H
                 // set EEPROM operating mode → reading;
WRITE
                    read data from EEPROM to the CV5~CV4 registers
DELAY >10 uS
                 // wait >10 uS to finish reading
WRITE
       #06H
                 // set EEPROM mode > reserve (finish reading data
                    from EEPROM to CV5~CV4 register)
                 // set NIB1~NIB0=00 → read CV3~CV0
WRITE
      #50H
       #00H
                 // set EEPROM operating mode \rightarrow reading; read data
WRITE
                    from EEPROM to the CV3~CV0 registers
DELAY >10 us
                 // wait >10 uS to finish reading
      #06H
                 // set EEPROM mode → reserve (finish reading data
WRITE
                    from EEPROM to CV3~CV0 register)
```

NOTE

CV5~CV0 should be equal to 1111 after erasing

7.14 Partial Display Function

The EM65101 has a partial display function, which can display a part of graphic display area. This function is used to set lower bias ratio, lower boost step, and lower LCD drive voltage. When setting the partial display function, the EM65101 consumes less power. The Partial display function is suitable for clock indication or calendar indication when portable equipment is on stand-by.

Figure 7-16 Partial Display Block Diagram

When using the partial display function, it is necessary to follow the sequence shown below.

Figure 7-17 Partial Display Function Sequential Flow

Select a display duty ratio for the partial display from 1/8 to 1/128 using the DS (LCD duty ratio) register.

Set the most suitable values for LCD drive bias ratio, LCD drive voltage, electronic volume, the number of boosting steps, and others according to the actual LCD panel and selected duty ratio in use.

7.15 Discharge Circuit

The EM65101 has a built-in the discharge circuit, which discharges electricity from the capacitors to provide stable power sources (V0~V4). The discharge circuit is valid when the DIS register is set to "1." When the built-in power supply is used, be sure to set DIS="1" after the power source is turned off (DCON, AMPON)=(0, 0).

CAUTION!!!

Do NOT turn on both the built-in power source and the external power source (V0~V4, VOUT) while DIS ="1."

7.16 Scroll Function

This function specifies a portion of screen for scrolling. It sets the scroll top address, scroll bottom address, scroll specified address, scroll mode of the scrolling area, and scroll start address. Note that the scroll top address should be smaller than the scroll bottom address, i.e.,

0 <= scroll top address, scroll bottom address, scroll specified address <= 127; scroll top address <= scroll start address <= scroll bottom address.

Figure 7-18 Example on Scroll Function Display vs. Address Values

Set the scroll top address and scroll bottom address to define the area of scrolling data in RAM

Example:

Figure 7-19 Setting the Scrolling Data Area in RAM

Set the scroll specified address according to the panel size and duty selection to specify the address to which to jump relative to the scroll bottom address. Then display the fixed bottom data area. Note that scroll specified address = scroll top address + panel scroll area -1

Example: (160 x 128 Line panel; 1/32 duty, partial display)

Figure 7-20 Setting the Scroll Bottom Address of a Scrolling Area

NOTE

You must set the scroll top address, the scroll bottom address, the scroll specified address, and the scroll start address carefully when using the scroll function. If there is any error, the scrolling result will be inaccurate. Follow the rules shown below:

Scroll top address <= Scroll bottom address

Scroll specified address = Scroll top address + panel scroll area - 1

Scroll top address <= Scroll start address <= Scroll bottom address

7.17 Initial Values

ITEM	Initial Value
Display RAM	Not fixed
X Address	00H set
Y Address	00H set
Display starting common	Set at the first common(0H)
Display ON/OFF	Display OFF
Display Normal/Reverse	Normal
Display duty	1/128
n-line alternated	Every frame unit
(BF1,BF0)	(0,0)
Common shift direction	COM0 COM127
Increment mode	Increment OFF
Register in electronic volume	(0,0,0,0,0,0,0)
Power Supply	OFF
Bias ratio	1/12 bias
Booster	6 times
Discharge Register	Disabled
RM value	8.9 times
Windows function	Disabled
Scrolling function	Disabled

7.18 Safety Measures when Switching Power ON and OFF

The high current that may occur when a voltage is supplied to the LCD driver power supply while the system power supply is floating, could permanently damage the LSI. Hence, the precautionary actions as detailed below should be taken into considerations seriously when switching power on and off.

7.18.1 When Using the External Power Supply

Power ON Proper Sequence:

- 1) Logic system (VDD) power ON, perform a reset operation
- 2) Supply the external LCD drive voltage to the corresponding pins (V0, V1, V2, V3 and V4)

Power OFF Proper Sequence:

- 1) Set the HALT register to "1" or perform a reset operation
- 2) Cut off external LCD drive voltage
- 3) Logic system (VDD) power OFF

NOTE

Connect the serial resistor (50 to 100) or fuse to the LCD drive power V0 or VOUT (when using the internal voltage conversion circuit) of the system as a current limiter. In addition, set a suitable resister value of the resistor depending on the quality of the LCD display.

7.18.2 When Using the Built-in Power Supply

Power ON Proper Sequence:

- 1) Logic system (VDD) power ON
- 2) Booster circuit system (VEE) power ON
- 3) Perform a reset operation and enable the booster and voltage conversion circuit.

NOTE

If the VDD and VEE voltages do NOT have the same potential, the logic system (VDD) is automatically powered on first.

Power OFF Proper Sequence:

- 1) Set the HALT register to "1" or perform a reset operation
- 2) Booster circuit system (VEE) power OFF
- 3) Logic system (VDD) power OFF

If VDD and VEE do NOT have the same potential, cut off VEE first. After the VEE, VOUT, V0, V1, V2, V3, and V4 voltages are below the LCD ON voltage (threshold voltage when the Liquid Crystal is turned on), power off the logic system (VDD).

7.18.3 Power Supply Rising Time

Although there is no constraint on the rising time of the power supply, the Tr (rising time) as illustrated below is recommended for practical applications.

Item	Recommended Rising Time (Tr)	Applicable Power
Tr	30μS ~ 10ms*	VDD, VEE

^{*} The rising time is the time between 10% adnd 90% of VDD, VEE

Figure 7-21 Recommended Rising Time (Tr) for Practical Application

7.19 Register Setting Examples

7.19.1 Initialization

Figure 7-22 Initialization Register Setting Sequential Flow

7.19.2 Display Data

Figure 7-23 Display Data Register Setting Sequential Flow

7.19.3 Power OFF

Figure 7-24 Power Off Register Setting Sequential Flow

8 Control Register

8.1 Control Registers

8.1.1 Control Register (Bank 0)

Control Book		P	ins (1	or 80	-Fami	ly) & l	Bank				Ado	dress	& Cod	de			E.m. dia
Control Registe	er	CSB	RS	WRB	RDB	RE2	RE1	RE0	D7	D6	D5	D4	D3	D2	D1	D0	Function
X Address (Lower nibble)	[0H]	0	1	0	1	0	0	0	0	0	0	0	AX3	AX2	AX1	AX0	Set of X direction Address in display RAM
X Address (Upper nibble)	[1H]	0	1	0	1	0	0	0	0	0	0	1	AX7	AX6	AX5	AX4	Set of X direction Address in display RAM
Y Address	[2H]	0	1	0	1	0	0	0	0	0	1	0	AY3	AY2	AY1	AY0	Set of Y direction Address in display RAM
n-line altemation (Lower nibble)	[3H]	0	1	0	1	0	0	0	0	0	1	1	N3	N2	N1	N0	Set the number of alternate reverse line
n-line alternation (Upper nibble)	[4H]	0	1	0	1	0	0	0	0	1	0	0	*	N6	N5	N4	Set the number of alternate reverse line
Display control (1)	[5H]	0	1	0	1	0	0	0	0	1	\ <u>\</u>	1	SHI FT	*	ALL ON	ON/ OFF	SHIFT: Select common shift direction ALLON All display ON ON/OFF: Display ON/OFF control
Display control (2)	[6H]	0	1	0	1	0	0	0	0	1	7	0	REV	NLIN	EOR	REF	REV: Display normal/reverse NLIN: n line reverse control EOR: Exclusive OR-ing the AC waveform REF: segment normal/reverse
Increment control	[7H]	0	1	0	1	0	0	0	//6/	7	1	1	WIN	AIM	AYI	AXI	WIN: Select window. AIM: Select increment mode AYI: Y increment, AXI: X increment
Power control	[8H]	0	1/	0	1	0	0	0	1	0	0	0	AMP ON	HA LT	DC ON	ACL	AMPON: Internal AMP. ON HALT: Power saving DCON: Boosting circuit ON ACL: Resetting
LCD Duty ratio (Lower nibble)	[9H]	0	1	0	1	0	0	0	1	0	0	1	DS3	DS2	DS1	DS0	Set LCD drive duty ratio
LCD Duty ratio (Upper nibble)	[AH]	0	1	0	1/	0	0	0	1	0	1	0	DS3	DS2	DS1	DS0	Set LCD drive duty ratio
Booster	[BH]	0	1	0	1	0	0	0	1	0	1	1	*	VU2	VU1	VU0	Set number of boosting step for booster circuit
Bias ratio control	[CH]	0	1	0	1	0	0	0	1	1	0	0	В3	B2	B1	В0	Set bias ratio for LCD driving voltage
Register access control	[EH]	0	1	0	1	0	0	0	1	1	1	0	SC3	SC2	SC1	SC0	Set common driver start line
Display start common	[FH]	0	1	0	1	0/1	0/1	0/1	1	1	1	1		RE2	RE1	RE0	RE: set register bank number

 $\textbf{NOTE:} \ \mathsf{Address} \ \mathsf{for} \ \mathsf{the} \ \mathsf{control} \ \mathsf{register} \ \mathsf{are} \ \mathsf{enclosed} \ \mathsf{in} \ \mathsf{brackets} \ [\].$

^{* =} Don't Care

8.1.2 Control Register (Bank 1)

			Pin <u>s (</u>	for 80	-Fam <u>i</u> l	y) & E	ank				Add	dre <u>ss</u>	& Cod	le			
Control Register		CSB	RS	WRB	RDB	RE2	RE1	RE0	D7	D6	D5	D4	D3	D2	D1	D0	Function
Temperature compensation	[0H]	0	1	0	1	0	0	1	0	0	0	0	*	*	TCS1	TCS0	Temperature compensation set
Electronic Volume (Low nibble)	[1H]	0	1	0	1	0	0	1	0	0	0	1	DV3	DV2	DV1	DV0	Set electronic
Electronic Volume (Upper nibble)	[2H]	0	1	0	1	0	0	1	0	0	1	0	*	DV6	DV5	DV4	volume register
Register read control	[3H]	0	1	0	1	0	0	1	0	0	1	1	RA3	RA2	RA1	RA0	Set register address for read
Set RF	[4H]	0	1	0	1	0	0	1	0	1	0	0	RF3	RF2	RF1	RF0	Select RF ratio of OSC circuit
Extend Power Control	[5H]	0	1	0	1	0	0	1	0	1	0	1	BF1	BF0	*	DIS	Set booster frequency Discharge V0~V4 capacitors
Regulator multiple ratio Control	[6H]	0	1	0	1	0	0	1	0	1	1	0	*	RM2	RM1	RM0	Set regulator multiple ratio
Start address for line reverse (Low nibble)	[7H]	0	1	0	1	0	0	1	0	1 <	1	1	LS3	LS2	LS1	LS0	Set start line for
Start address for line reverse (Upper nibble)	[8H]	0	1	0	1	0	0	1	1	0	0	0	*	LS6	LS5	LS4	line reverse display
End address for line reverse (Low nibble)	[9H]	0	1	0	1	0	0	1	1	0	0	1	LE3	LE2	LE1	LE0	Set end line for
End address for line reverse (Upper nibble)	[AH]	0	1	0	1	0	0	1	1	0	1	0	*	LE6	LE5	LE4	line reverse display
Line reverse	[BH]	0	1	0	1		0	1	1	0	1	1	*	*	ВТ	LREV	BT Reverse type select LREV: Line reverse control
Window X end address (Low nibble)	[CH]	0	1	0	1	9	0	1	1	1	0	0	EX3	EX2	EX1	EX0	Set X end address for
Window X end address (Upper nibble)	[DH]	0	1	0	1	O	0	1	1	1	0	1	EX7	EX6	EX5	EX4	window function access
Window Y end Address	[EH]	0	1	0	1	0	0	1	1	1	1	0	EY3	EY2	EY1	EY0	Set Y end address for window function
Register Access Control	[FH]	0	1	0	1	0/1	0/1	0/1	1	1	1	1	*	RE2	RE1	RE0	RE: Set register bank number

NOTE: Address for the control register are enclosed in brackets [].

^{* =} Don't Care

8.1.3 Control Register (Bank 2)

O. a. I.B. diagon			Pins	(for 80)-Fami	ily) & E	Bank				Ad	ldress	& Co	de			- continu
Control Register		CSB	RS	WRB	RDB	RE2	RE1	RE0	D7	D6	D5	D4	D3	D2	D1	D0	Function
EEPROM mode select	[0H]	0	1	0	1	0	1	0	0	0	0	0	*	M1	М0	VPP_ EXT	EEPROM mode select
Vop calibration offset select (Low nibble)	[1H]	0	1	0	1	0	1	0	0	0	0	1	CV3	CV2	CV1	CV0	Vop calibration
Vop calibration offset select (Upper nibble)	[2H]	0	1	0	1	0	1	0	0	0	1	0	*	*	CV5	CV4	offset select
EEPROM address select	[5H]	0	1	0	1	0	1	0	0	1	0	1	*	* (NIB1	NIB0	Select EEPROM address
Scroll top address (Low nibble)	[6H]	0	1	0	1	0	1	0	0	1	1	0	STA3	STA2	STA1	STA0	Set scroll top
Scroll top address (Upper nibble)	[7H]	0	1	0	1	0	1	0	0	1	1	1	*	STA6	STA5	STA4	address
Scroll bottom address (Low nibble)	[8H]	0	1	0	1	0	1	0	1	0	0	0	SBA3	SBA2	SBA1	SBA0	Set scroll
Scroll bottom address (Upper nibble)	[9H]	0	1	0	1	0	1	0	1	0	0 /	1	*	SBA6	SBA5	SBA4	bottom address
Scroll specified address (Low nibble)	[AH]	0	1	0	1	0	1	0	1	0	1	0	SSA3	SSA2	SSA1	SSA0	Set scroll
Scroll specified address (Upper nibble)	[BH]	0	1	0	1	0	1	0	1	0	1	1	*	SSA6	SSA5	SSA4	specified address
Scroll start address (Low nibble)	[CH]	0	1	0	1	0	1	0	1	1	0	0	SAY3	SAY2	SAY1	SAY0	Set scroll start
Scroll start address (Upper nibble)	[DH]	0	1	0	1	0	1	0	1	1	0	1	*	SAY6	SAY5	SAY4	address
Scroll mode select	[EH]	0	1	0	1	0	1	0	<u>)</u> 1	1	1	0	*	*	SM1	SM0	Scroll mode select
Register Access Control	[FH]	0	1	0	1	0/1	0/1	0/1	1	1	1	1	*	RE2	RE1	RE0	RE: set register bank number

NOTE: Address for the control register are enclosed in brackets [].

^{*=} Don't Care

8.2 Functions of the Control Registers

The EM65101 has many control registers. When accessing the control registers, the upper nibble of the data bus (D7~D4) represent the register address while the lower nibble of the data bus (D3~D0) represent data. The following figure shows an access example. The Pins CSB, RS, RDB, & WRB) settings are for the 80-family MPU interface. Only the setting of the terminals RDB & WRB are different when it is accessed by the 68-family MPU.

(Example) X Address:

When writing to the control register, it is used directly by addressing D7~D4 of the data bus. When reading, you must first set the RA register for the specific register address before you can read specific register. Therefore, a 2-step procedure is required to perform a read register operation. After reading, the specific register will output to D3~D0 of the data bus. All nibbles, except D3~D0, of the data bus are all "H." Access to undefined register address area is prohibited. When RS is "L," all read/write operations are accessed to display RAM. Then the data bus does not include the register address. When writing, D3~D0 data is written to the register designated at D7~D4 on the rising edge of the WRB signal. When reading, the register can output to data bus during RDB active period. The control register and display RAM have equal access sequence

8.2.1 X Address Register (AX)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	/0,`	0	AY3	AX2	AY1	AY0

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	0

(At the time of reset: {AX3, AX2, AX1, AX0} = 0H, read address: 0H)

D7	D6			D3			
0	0	0	1	AX7	AX6	AX5	AX4

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	0

(At the time of reset: {AX7, AX6, AX5, AX4} = 0H, read address: 1H)

The AX register is set to X-direction address of display RAM. In data setting, command is divided into lower and upper sections at 4-bit of data each in order to accommodate the required 8-bit of total data.

8.2.2 Y Address Register (AY)

D7	D6				D2		
0	0	1	0	AY3	AX2	AY1	AY0

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	0

(At the time of reset: {AY3, AY2, AY1, AY0} =0H, read address: 2H)

The AY register is set to Y-direction address of display RAM. 00H to 0FH are applicable to the values for AY3 to AY0.

8.2.3 n Line Alternated Register (N)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	N3	N2	N1	N0

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	0

(At the time of reset: {N3, N2, N1, N0}=3H, read address: 3H)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	*	N6	N5	N4

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	0

(At the time of reset: {N7, N6, N5, N4}=0H, read address: 4H)

The EM65101 supports not only the LCD reversed AC drive in one-frame unit, but also the n-line reversed AC drive which alternates in an n-line unit from 2 to 128 lines. The reversed AC drive is controlled by the "NLIN" and "EOR" control bits. The values set up by the alternating register become enabled when the NLIN control bit is "1." When the NLIN control bit is "0," the alternate drive waveform is generated reserving each frame. When a problem affecting display quality occurs, the n-line reversed AC drive can improve the quality. Determine the number of the n-line reverse for alternating after confirming the display quality with the actual LCD panel.

However, if the number of AC reversed lines are reduced, the LCD alternating frequency becomes high. As a result, the charge or discharge current is increased in the LCD cells.

N6	N5	N4	N3	N2	N1	N0	EOR=0 N Line Number	EOR=1 N Line Number
0	0	0	0	0	0	0	No operation	No operation
0	0	0	0	0	0	/ 1	2	2
0	0	0	0	0	1	0	3	3
0	0	0	0	<u></u>	/ 1	1	4	4
0	0	0	0	1	0	0	5	5
		/. ,	\.\.\	/ :		:	:	
0	1	1/	1	1	1	1	64	64
	L:	\: /	/ :	:	:	:	:	
1 <	1	0	0	0	1	1	100	
1	1	0	0	1	0	0	101	Prohibited Code
) :		:	:	:	:	:	:	
1	1	1	1	1	1	1	128	

8.2.4 Display Control Display (1) Register

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	SHIFT	*	ALL ON	ON/ OFF

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	0

(At the time of reset: {SHIFT, ALLON, ON/OFF}=0H, read address: 5H)

ON/OFF: Control display ON/OFF

ON/OFF = "0": Display OFF ON/OFF = "1": Display ON

ALLON: Regardless of the data for display, all is ON.

This control has priority over display normal/reverse commands.

ALLON = "0": Normal display
ALLON = "1": All display lighted

SHIFT

The shift direction of display scanning data in the common driver output is selected.

SHIFT = "0": COM0→COM127 shift-scan SHIFT = "1": COM127→COM0 shift-scan

8.2.5 Display Control (2) Register

D7	D6	D5	D4	D3	D2	D1	D0	
0	1	1	0 _	REV	NLIN	EOR	REF	

\	CSB	RS	RDB	WRB	RE2	RE1	RE0
/	0	1	1	0	0	0	0

(At the time of reset: {REV, NLIN, EOR, REF} = 0H, read address: 6H)

REV: To the corresponding display RAM data, the lighting or non-lighting control of the display is set.

REV ="0". When RAM data is "H," and LCD at ON voltage (normal)

REV ="1": When RAM data is "L," and LCD at ON voltage (reverse)

NLIN: The n-line alternate drive NLIN control.

NLIN = "0": n-line alternate drive is OFF. In each frame, the alternate signals (M) are reversed.

NLIN ="1": n-line alternated drive is ON. Depending on data set up in the n-line alternated register, alternation is made.

EOR: The n-line alternate drive EOR control.

EOR=0: M always reverses at the nth raster row regardless of whether the end of a frame is reached.

EOR=1: M reverses at the nth raster row and restarts the raster row count at the start of every frame.

REF: When MPU accesses display RAM, address X and data are switched. The following figure shows the action of the REF.

Figure 8-1 REF Register Function

8.2.6 Increment Control Register Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	1	WIN	AIM	AYI	AXI	0	\1 \	1	0	0	0	0

(At the tine of reset: {WIN, AIM, AYI, AXI} = 0H, read address: 7H)

This register controls the increment mode and the window function when accessing display RAM. The increment operation of the AXI and AYI registers are controlled by the settings at the AIM, AYI, and AXI registers, and every write or read access to display RAM. The AYI register directly connects to display RAM as Y address. The AXI register connects to the address converter, and then outputs to display RAM as X address in auto increment mode. The AXI and AYI registers are incremented, but do not directly increment the X and Y addresses.

When setting this control register, the address increment operation can be made without setting successive addresses for writing or reading data to display RAM from MPU.

The WIN register is used for window function control.

WIN="0": Normal RAM access

WIN="1": Window function access

When using the window function to access RAM, be sure to set the following register first.

WIN="1," AXI="1," AYI="1"

X Address, Y Address, Window X End Address, Window Y End Address

In addition, the following condition must be met.

Window end X address
Window start X address
Window end Y address
Window start Y address

The increment control of X and Y addresses by AIM, AYI, and AXI registers are listed as follows.

AIM	Address Increment Timing							
0	When writing to Display RAM or reading from Display RAM This is effective when accessing successive address area							
1	Only when writing to Display RAM This is effective in the case of "Read Modify Write"							

Figure 8-2 Read Modify Write Flow Chart

AYI	AXI	Select Address Increment Operation	Remark
0	0	Address is not incremented	*1
0	1	X-Address is incremented	*2
1	0	Y-Address is incremented	*3
1	1	X and Y both are incremented	*4

- *1 Regardless of AIM, no increment for the AX and AY registers.
- *2 Depending on the setting of AIM, address X automatically changes.

*maxH: The maximum internal X-address value in each access mode

*3 Depending on the setting of AIM, address Y automatically changes.

Transition of AY Register	Transition of Y Address
→00H→01H→→0FH	Same as AY register

*4 Depending on the setting of AIM, addresses X and Y also change. When the X address exceeds maxH, Y address is incremented.

*maxH: The maximum internal X-address value in each access mode

The following shows how address is incremented when using the window function.

In each operation mode, the following increment operation is performed:

When gradation display mode and 8-bit access are selected

Address is incremented as described above.

8.2.7 Power Control Register

D7	D6	D5	D4	D3	D2	D1	D0	,	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	0	0	0	AMPON	HALT	DCON	ACL	1	0	1	1	0	0	0	0

(At the tine of reset: {AMPON, HALT, DCON, ACL} = 0H, read address: 8H)

AMPON: This command sets the internal OP-AMP circuit block (voltage regulator, electronic volume, and voltage conversion circuit) ON or OFF.

AMPON = "0": The internal OP-AMP circuit is OFF

AMPON = "1": The internal OP-AMP circuit is ON

HALT: This command sets power saving ON or OFF.

HALT = "0": Normal operation

HALT="1": Power-saving operation

When power-saving is ON, the consumed current can be reduced to a value near to the standby current.

The internal condition at power saving are as follows.

- (1) The oscillating circuit and the power supply circuit are OFF.
- (2) The LCD drive is OFF, and the output of the segment driver and common driver is at the VSS level.
- (3) The clock input from the CK pin is prohibited.
- (4) The contents of Display RAM data are stored.
- (5) The operational mode stores the state of command executed before the power saving command is performed.

DCON: This command sets the internal booster circuit ON or OFF.

DCON = "0": Booster circuit OFF DCON="1": Booster circuit ON

ACL: This command initializes the internal circuit.

ACL = "0": Normal operation
ACL = "1": Initialization ON

When the reset operation begins internally after the ACL register is set to "1," the ACL register is automatically cleared to "0." The internal reset signal is generated with a clock (built-in oscillation circuit or CK input) for display. Therefore, set the WAIT period to at least two display clock cycles. After the WAIT period, the subsequent operation is then executed.

8.2.8 LCD Duty (DS)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	DS3	DS2	DS1	DS0

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	_1 /	0	0	0	0

(At the time of reset: {DS3, DS2, DS1, DS0} = 0H, read address: 9H)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	DS7	DS6	DS5	DS4

	CSB	RS	RDB	WRB	RE2	RE1	RE0
/	0	1	1	0	0	0	0

(At the time of reset: {DS7, DS6, DS5, DS4} = 8H, read address: AH)

The DS register set to LCD display duty.

DS7	DS6	DS5	DS4	DS3	DS2	DS1	DS0	Selectable Duty ratio
0 /	0	0	0	0	0	0	0	
	(;/)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		:	:	:	:	No operation
0	0 /	0	0	0	1	1	1	
0	0	0	0	1	0	0	0	1/8
Ø	0	0	0	1	0	0	1	1/9
\\: <	/\ ''/	•••	:	• •	• •	• •	:	:
0		1	0	0	1	0	0	1/100
: `	> ::	• •	:	• •	• •	• •	:	:
0	1	1	1	1	1	1	1	1/127
1	0	0	0	0	0	0	0	1/128
1	0	0	0	0	0	0	1	
:	:		:	:	:	:	:	No operation
1	1	1	1	1	1	1	1	

Partial display can be made possible by setting an arbitrary duty ratio.

8.2.9 Booster Setup (VU)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	1	*	VU2	VU1	VU0

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	0

(At the time of reset: {VU2, VU1, VU0} = 5H, read address: BH)

The booster steps are set to the VU register

VU2	VU1	VU0	Booster Operation	
0	0	0	Booster disable (No operation)	
0	0	1	2 times voltage output	
0	1	0	3 times voltage output	
0	1	1	4 times voltage output	
1	0	0	5 times voltage output	
1	0	1	6 times voltage output	
1	1	0	Prohibited code	
1	1	1	Profilbited code	

8.2.10 Bias Setting Register (B)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	В3	B2	B1	B0

//	CSB	RS	RDB	WRB	RE2	RE1	RE0
/	0	$\sqrt{1}$	1	0	0	0	0

(At the time of reset: {B3, B2, B1, B0} = 8H, read address: CH)

This register is used to set a bias ratio. A bias ratio can be selected from 1/4 to 1/13 through B3, B2, B1, and B0 set up.

В3	B2	B1	В0	Bias
0	0	0	0	1/4 Bias
0 ^	0	0	\	1/5 Bias
0 /	0	1\\	0	1/6 Bias
_0 /		Y 1 /	1	1/7 Bias
0	/ 1	0	0	1/8 Bias
0	(1/	0	1	1/9 Bias
\bigcirc 0	\ Y /	/ 1	0	1/10 Bias
0	1 /	1	1	1/11 Bias
1_	0	0	0	1/12 Bias
1	V 0	0	1	1/13 Bias
1	0	1	0	
$: \bigvee$:	:	:	Prohibited code
1	1	1	1	

NOTE

When setting bias=1/4 and 1/5, V4 must be less than the VDD voltage

8.2.11 Display Start Common

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	0	SC3	SC2	SC1	SC0

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	0

(At the time of reset: {SC3, SC2, SC1, SC0} = 0H, read address: EH)

The SC register sets the scanning start output of the common driver.

SC3	SC2	SC1	SC0	Display Start	ing Common
303	302	301	300	When SHIFT=0	When SHIFT=1
0	0	0	0	COM0	ÇOM127
0	0	0	1	COM8	COM119
0	0	1	0	COM16	COM111
0	0	1	1	COM24	COM103
0	1	0	0	COM32	COM95
0	1	0	1	COM40	COM87
0	1	1	0	COM48	COM79
0	1	1	1	COM56	COM71
1	0	0	0	COM64	COM63
1	0	0	1	COM72	COM55
1	0	1	0	COM80	COM47
1	0	1	1	COM88	COM39
1	1	0	0 <	COM96	COM31
1	1	0	1	COM104	COM23
1	1	1	0	COM112	COM15
1	1	1 /	\ \ \ \	COM120	COM7

8.2.12 Temperature Compensation Set

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	*	*	TCS1	TCS0

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

(At the time of reset: { TCS1, TCS0 } = 0H, read address: 0H)

TCS1	TCS0	Temperature Compensation Slope
0	0	-0.05% per °C
0	1	-0.1% per °C
1	0	-0.15% per °C
1	1	-0.2% per °C

 $V_{\text{REF}}\left(T\right)$ (Temperature compensation output voltage) is controlled by TCS1, TCS0 and the previous environment temperature T.

$$V_{REF}(T) = V_{REF0}[(1 + TCS(T - 25^{\circ}C))]$$

- TCS is selected by TCS1 and TCS0
- V_{REF0} = 1.5V at 25°C

^{* =} Don't Care

Figure 8-3 Temperature Compensation Slope

8.2.13 Electronic Volume Register

I	D7	D6	D5	D4	D3	D2	D1	D0		CSB	RS	RDB	WRB	RE2	RE1	RE0
	0	0	0	1	DV3	DV2	DV1	DV0	1	0	1	1	0	0	0	1

(At the time of reset:{ DV3~DV0} = 0H, read address: 1H)

(At the time of reset:{ DV6~DV4} = 0H, read address: 2H)

The DV register controls the VBA voltage. This 7-bit register provides up to 65 levels of voltage selections.

	DV6	DV5	DV4	DV3	DV2	DV1	DV0	Output Voltage
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	1	Prohibit code
	V.		/:		:	:	:	Fioribit code
	0) 0	1	1	1	1	1	
	0	\ \\ \	0	0	0	0	0	32
) : \	> :	:		:	:	:	:
<	1	1	0	0	0	0	0	96
	1	1	0	0	0	0	1	
	<u>></u> :	:	• •		:	• •	:	Prohibited code
	1	1	1	1	1	1	1	

VBA = (1+(M + offset)/381)*VREF

V0 = VBA * N

M: DV register setting; offset: CV0~CV5 set on EEPROM function

N: RM register setting

VREF: internal temperature compensation output voltage

In order to prevent the transient voltage from generating when an electronic volume code is set, the circuit design is such that the set value is not reflected as a level immediately. The value is reflected after the upper bits(DV6-DV4) of the electronic code have been set. The set value becomes valid when the lower bits (DV3-DV0) of the electronic control volume code have also been set.

NOTE

When writing code to set the electronic volume register, you must set DV6~DV4 first before setting DV3~DV0.

8.2.14 Internal Register Read Address

	D6	D5	D4	D3	D2 D	D0
Ī	0	1	1	RA3	RA2 RA	R

(At the time of reset: {RA3, RA2, RA1, RA0} = 7H, read address: 3H)

The RA register specifies the address for register read operation. The EM65101 has many registers and one register bank. Therefore, the following 4-step procedure is required to read the specific register.

- (1) Write 01H to the RE register for accessing the RA register
- (2) Writes the specific register address to the RA register
- (3) Write the specific register bank to the RE register
- (4) Read specific contents

8.2.15 Resistance Ratio of the CR Oscillator

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	(0)	1	RF3	RF2	RF1	RF0	0	1	1	0	0	0	1

(At the time of reset: {RF3, RF2, RF1, RF0} = 0H, read address: 8H)

The RF registers can control the resistance ratio of the CR oscillator. Therefore the frame frequency can change the settings at the RF registers.

When changing the RF registers, make sure to check the LCD display quality.

RF3	RF2	RF1	RF0	Operation					
0	0	0	0	Initial Resistance Ratio					
0	0	0	1	0.52 times of initial Resistance Ratio					
0	0	1	0	0.60 times of initial Resistance Ratio					
0	0	1	1	0.68 times of initial Resistance Ratio					
0	1	0	0	0.74 times of initial Resistance Ratio					
0	1	0	1	0.80 times of initial Resistance Ratio					
0	1	1	0	0.88 times of initial Resistance Ratio					
0	1	1	1	0.94 times of initial Resistance Ratio					
1	0	0	0	1.06 times of initial Resistance Ratio					
1	0	0	1	1.12 times of initial Resistance Ratio					
1	0	1	0	1.20 times of initial Resistance Ratio					
1	0	1	1	1.28 times of initial Resistance Ratio					
1	1	0	0	1.36 times of initial Resistance Ratio					
1	1	0	1	1.44 times of initial Resistance Ratio					
1	1	1	0	1.52 times of initial Resistance Ratio					
1	1	1	1	1.60 times of initial Resistance Ratio					

8.2.16 Extended Power Control

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	BF1	BF0	*	DIS

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

* = Don't Care

(At the time of reset: {BF1, BF0, DIS} = 0H; read address: 5H)

DIS: is the register that controls the capacitors (connected between the power supply V0-V4 for the LCD drive voltage and VSS) voltage discharged to VSS.

DIS = "0": Disable
DIS = "1": Enable

BF1~BF0: The operating frequency in the booster is selected. When the boosting frequency is high, the driving ability of the booster become high, but the current consumption is increased. You must take the external capacitors and the current consumption into consideration when adjusting the boosting frequency.

BF1	BF0	Operating Clock Frequency in the Booster
0	0	3K Hz * 8
0	1	3K Hz * 4
1	0	3K Hz * 2
1	1	3 K Hz

8.2.17 Regulator Multiple Ratio Control

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE
0	1	1	0	*	RM2	RM1	RM0	0	1	1	0	0

^{* =} Don't Care

(At the time of reset: {RM2, RM1, RM0} = 6H, read address: 6H)

The V0 modified range setting for RM register

	RM2	RM1	RM0	Regulator Multiple Ratio Control
	0	0	0	3.0 times voltage output
	0	0	1	4.0 times voltage output
/	0	1/	0	5.0 times voltage output
	V 0 /		1	6.5 times voltage output
	1	0	0	8.0 times voltage output
	1	0	1	8.5 times voltage output
	1	1	0	8.9 times voltage output
	1	1	1	Prohibited code

Vref=1.5V, V0 modified range is shown in the following figure:

Figure 8-4 V0 Modified Range

8.2.18 Line Reverse Start Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	1	LS3	LS2	LS1	LS0	0	1	1	0	0	0	1

(At the time of reset: {LS3, LS2, LS1, LS0} = 0H, read address: 7H)

(At the time of reset: { LS6, LS5, LS4} = 0H, read address: 8H)

When setting the line reverse range, the panel on the defined range will be reversed.

NOTE The RAM data is not changed.

	LS6	LS5	LS4	LS3	LS2	LS1	LS0	Start Common Number
Ţ	0	0	0	0	0	0	0	COM0
	0	0	0	0	0	0	1	COM1
I	:	:	:	:	:	:	:	:
ſ	1	1	1	1	1	1	0	COM126
Ī	1	1	1	1	1	1	1	COM127

8.2.19 Line Reverse End Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2
1	0	0	1	LE3	LE2	LE1	LE0	0	1	1	0	0

(At the time of reset: {LE3, LE2, LE1, LE0} = 0H, read address: 9H)

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	0	1	0	*	LE6	LE5	LE4	0	1	1	0	0	0	1

^{* =} Don't Care

(At the time of reset: { LE6, LE5, LE4} = 0H, read address: AH)

The LE registers sets the line reverse end address.

LE6	LE5	LE4	LE3	LE2	LE1	LE0	End Common Number
0	0	0	0	0	0	0	COM0
0	0	0	0	0	0	1/	COM1
:	:	:	:	:	:		
1	1	1	1	1	1	0	COM126
1	1	1	1	1	1 /	1	COM127

8.2.20 Line Reverse Control

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	REC
1	0	1	1	*	*	ВТ	LREV	0	7) 1	0	0	0	1

^{* =} Don't Care

(At the time of reset: {BT, LREV} = 0H, read address: BH)

LREV: is the register that sets the line reverse display function.

LREV = "0": Normal display (Not reverse).

LREV = "1": Line reverse display enable.

The area specified by the Line Reverse Start/End register reverses the display.

BT: is the register that selects the reverse type.

When using the Line Reverse Display function, the LS and LE registers must meet the following condition.

LS LE

The BT register control line reverse type is an option of the line reverse display function. This BTs setting is only available when LREV="1"

BT = "0": Reverse display

BT = "1": Reverse display at each 32 frame.

Figure 8-5 Blink Example (LREV="1," BT="1")

8.2.21 Window End X Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	R
1	1	0	0	EX3	EX2	EX1	EX0	0	1	1	0	0	

(At the time of reset: {EX3, EX2, EX1, EX0} = 1H, read address: CH)

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	0	1	EX7	EX6	EX5	EX4	0	1	1	0	0	0	1

(At the time of reset: {EX7, EX6, EX5, EX4} = 0H, read address: DH)

The EX registers set the X direction end address of the window function.

EX7	EX6	EX5	EX4	EX3	EX2	EX1	EX0	Window Column Address
0	0	0	0	0	0	0	0	Prohibited Code
0	0	0	0	0	0	0	\1 \	1 1
:	:	:	:	:	:	/:\		/ :
0	1	1	1	1	1	\ 1	0	126
0	1	1	1	1	1	1	1	127
:	:	:	:	:	· \	(: \	\ : .	· :
1	0	0	1	1 /	1_	1	0	158
1	0	0	1	1 <	1	\ 1\	\ 1	159

8.2.22 Window End Y Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	1	0	EY3	EY2	EY1	EY0	0	1	1	0	0	0	1

(At the time of reset: {EY3, EY2, EY1, EY0} = 0H, read address: EH)

The EY registers set the Y direction end address of the window function.

EY3	EY2	EY1	EY0	Window Y Address
0	0	0	0	COM7
(0 (0	0	1	COM15
0	0	_ / 1	0	COM23
0	0	, 1	1	COM31
0	1	0	0	COM39
0	1/	0	1	COM47
0	<u> </u>	1	0	COM55
0	1	1	1	COM63
) 1	0	0	0	COM71
1	0	0	1	COM79
1	0	1	0	COM87
1	0	1	1	COM95
1	1	0	0	COM103
1	1	0	1	COM111
1	1	1	0	COM119
1	1	1	1	COM127

8.2.23 EEPROM Mode Select Register

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	*	M1	M0	VPP_ EXT

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(At the time of reset: {M1, M0, VPP_EXT } = 6H, read address: 0H)

The (M1,M0) register controls the EEPROM mode

(M1,M0)	EEPROM Operating Mode	Delay Time
00	Read	
01	Program	> 4 mS
10	Erase	> 4 mS
11	Reserve	/ \ \ -

The VPP_EXT register controls the EEPROM power selection.

VPP EXT=0 → Program or Erase EEPROM voltage from internal power.

VPP_EXT=1 → Program or Erase EEPROM voltage from external power. Forces 17~18V from the VPP pin externally.

8.2.24 Vop Calibration Offset Register

D7	D6	D5	D4	D3	D2	D1	D0	CSB	
0	0	0	1	CV3	CV2	CV1	CV0	0	

CS	В	RS	RDB	WRB	RE2	RE1	RE0
0		\	1	0	0	1	0

(At the time of reset: {CV3, CV2, CV1, CV0} = 0H, read address: 1H)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	*	*	CV5	CV4

/	CSB	RS	RDB	WRB	RE2	RE1	RE0	
	0	1	1	0	0	1	0	

(At the time of reset: {CV5, CV4} = 0H, read address: 2H)

The CV5~CV0 registers control the Vop calibration offset voltage selection

VBA= (1+ (M + offset) / 381)* VREF

M: DV register setting; offset: CV5~CV0 setting

CV5~CV0	Calibration Offset
011111	+31
011110	+30
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
000001	+1
000000	0
100000	-32
100001	-31
111111	-1

^{* =} Don't Care

^{* =} Don't Care

8.2.25 EEPROM Address Select Register

D 7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RI
0	1	0	1	*	*	NIB1	NIB0	0	1	1	0	0	1	(

^{* =} Don't Care

(At the time of reset: {NIB1, NIB0} = 0H, read address: 5H)

The NIB register selects whether to access the low nibble or high nibble data of EEPROM.

NIB1	NIB0	EEPROM Address
0	0	Bank 2[1H] (CV3~CV0)
0	1	Bank 2[2H] (CV5~CV4)

NOTE

- When settings CV5~CV0, you must set CV5~CV4 (upper nibble registers) first, then set CV3~CV0 (lower nibble registers), and then start program execution.
- The programming sequence of CV5~CV4 and CV3~CV0 has no restriction.
- When reading from CV5~CV0, you must read EEPROM data to CV5~CV4 (upper nibble registers) first, then read EEPROM data to CV3~CV 0(lower nibble registers).

8.2.26 Scroll Top Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	STA3	STA2	STA1	STA0	0	1	1	0	0	1	0

(At the time of reset: {STA3, STA2, STA1, STA0} = 0H, read address: 6H)

D7	D6	D5	D4	D3	D2	D1	D0		CSB	RS	RDB	WRB	RE2	RE'
0	1^	1	1	*	STA6	STA5	STA4		0	1	1	0	0	1
* = [on't Ca	re					•	-		•	•			•

⁽At the time of reset: {STA6, STA5, STA4} = 0H, read address: 7H)

Set the top address of scroll data area in RAM. 0 <= Scroll top address <= 127; Scroll top address *must be less than* the Scroll bottom address

STA6	STA5	STA4	STA3	STA2	STA1	STA0	Top Common Line
0	0	0	0	0	0	0	COM0
0) 0	0	0	0	0	1	COM1
· : \	:	:	:	:	:	:	:
1	1	0	0	0	1	1	COM99
\ :	:	:	:	:	:	:	:
√ 1	1	1	1	1	1	1	COM127

RE0

8.2.27 Scroll Bottom Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	
1	0	0	0	SBA3	SBA2	SBA1	SBA0	0	1	1	0	0	1	ĺ

(At the time of reset: {SBA3, SBA2, SBA1, SBA0} = FH, read address: 8H)

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	0	0	1	*	SBA6	SBA5	SBA4	0	1	1	0	0	1	0

^{* =} Don't Care

(At the time of reset: {SBA6, SBA5, SBA4} = 7H, read address: 9H)

Set the bottom address of scroll data area in RAM. 0 <= Scroll bottom address <= 127; The Scroll top address *must be less than* the scroll bottom address

SBA6	SBA5	SBA4	SBA3	SBA2	SBA1	SBA0	bottom common line Mode0
0	0	0	0	0	0	0	COM0
0	0	0	0	0	0	1	COM1
:	:	:	:	:	/: /	· /	:
1	1	0	0	0 /	1\	\\1\	COM99
:	:	:	:	: \	\:\	V: _	· :
1	1	1	1	/1_	\ <u>1</u> \ \	1/	COM127

8.2.28 Scroll Specified Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	0	1	0	SSA3	SSA2	SSA1	SSA0	0	1	1	0	0	1	0

(At the time of reset: {SSA3, SSA2, SSA1, SSA0} = 0H, read address: AH)

^{* =} Don't Care

(At the time of reset: {SSA6, SSA5, SSA4} = 0H, read address: BH)

Depending on the display panel size or the duty ratio selection, set the specified address in RAM to jump to the scroll bottom address and display the fixed data area.

Scroll specified address = scroll top address + panel scroll area - 1

SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSA0	Specified Common Line Mode0
0	0	0	0	0	0	0	COM0
0	0	0	0	0	0	1	COM1
\ :	:	:	:	:	:	:	:
1	1	0	0	1	0	0	COM99
:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	COM127

8.2.29 Scroll Start Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	0	0	SAY3	SAY2	SAY1	SAY0	0	1	1	0	0	1	0

(At the time of reset: {SAY3, SAY2, SAY1, SAY0} = 0H, read address: CH)

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	REC
1	1	0	1	*	SAY6	SAY5	SAY4	0	1	1	0	0	1	0

^{* =} Don't Care

(At the time of reset: { SAY6, SAY5, SAY4} = 0H, read address: DH)

Set the starting address of the area scrolling and then execute the area scrolling operation. The scroll start address must be in the scrolling area.

Scroll top address <= Scroll start address <= Scroll bottom address

NOTE

You must set the scroll start address registers in the sequence: SAY[6:4] (Bank 2[DH]) first, then SAY[3:0] (Bank 2[CH]), to avoid any error.

8.2.30 Scroll Mode Select

D7	D6	D5	D4	D3	D2	D1	D0	\	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	1	0	*	*	SM1	SM0		0	1	1	0	0	1	0

^{* =} Don't Care

(At the time of reset: {SM1, SM0} = 0H, read address: EH)

SM1	SM0	Type of Area Scroll
0	0	Center screen scroll
0 ^	1	Top screen scroll
1/	> 0	Bottom screen scroll
1 /		Whole screen scroll

9 Absolute Maximum Ratings

Absolute maximum ratings

ltem	Symbol	Condition	Pin Used	Rating	Unit
Supply voltage (1)	V_{DD}		V_{DD}	-0.3 ~ + 4.0	V
Supply voltage (2)	V_{EE}		V _{EE}	-0.3 ~ + 4.0	V
Supply voltage (3)	V_{OUT}		V _{OUT}	0.3 ~ + 19	V
Supply voltage (4)	V ₀	Ta=25	V ₀	-0.3 ~ + 18.5	V
Supply voltage (5)	V_1, V_2, V_3, V_4		V_1, V_2, V_3, V_4	-0.3 ~ V ₀ + 0.3	V
Input voltage	Vı		*1	-0.3 ~ V _{DD} + 0.3	V
Storage temperature	Tstg			-45 ~ +125	

9.1 Recommended Operating Conditions

Item	Symbol	Pin	Min.	Тур.	Max.	Unit	Remarks
	V_{DD1}	V_{DD}	2.2		3.3	V	*1
Supply voltage	V_{DD2}	V_{DD}	2.4		3.3	V	*2
	V _{EE}	V_{EE}	2.4		3.3	V	*3
	V ₀	V_0	4.5		18.5	V	*4
Operating voltage	V _{OUT}	V_{OUT}			19	V	
	V_{REF}	V_{REF}		1.5	,	V	*5
Operating temperature	Topr		-30		85		

- * 1 Power supply for the logic circuit.
- * 2 Power supply for the analog circuit.
- * 3 Power supply for the internal boosting circuit. If applied the same voltage as V_{DD} , connect to V_{DD} .
- * 4 Voltage V₀>V₁>V₂>V₃>V₄>V_{SS} must always be satisfied.
- * 5 Voltage V_{OUT} > V₀ must always be satisfied.

10 DC Characteristics

VSS=0V , $VDD = 2.2 \sim 3.3V$, $Ta = -30 \sim 85$

Item	Symbol	C	ondition	Min.	Тур.	Max.	Unit	Pin Used
High level input voltage	VIH			0.8VDD	0.9VDD	VDD	٧	*1
Low level input voltage	VIL			0	0.1VDD	0.2VDD	٧	*1
High level output current	IOH1	VOH = VD	D-0.4V	-2.7	-3.2	-3.5	mA	*2
Low level output current	IOL1	VOL= 0.4V		2.7	3.2	3.5	mA	*2
High level output current	IOH2	VOH = VD	D-0.4V	-0.8	-1.0	-1.2	mA	*3
Low level output current	IOL2	VOL= 0.4V	/	0.8	1.0	1.2	mA	*3
Input leakage current	ILI1	VI = VSS o	or VDD	-2	0	2	μA	*4
Output leakage current	ILO	VI = VSS o	or VDD	-2	0	2	μA	*5
LCD driver output	RON	Δ Von =	V0=10V	1.0	1.3	1.6	ΚΩ	*6
resistance	KON	0.5V	V0=6V	1.2	1.7	2.2	K12	O
Standby current through VDD pin	ISTB	CK=0, CSI VDD=3V	CK=0, CSB=VDD, Ta=25 , VDD=3V		5	15	μA	*7
Oscillator frequency (16 gradation mode)	Fosc	VDD=3V, 1 Rf setting =	Га=25 , = (Rf2,Rf1,Rf0)=(000)	330	340	350	KHz	*8

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
	VOUT1	Six times boosting RL = 500KΩ (VOUT-VSS)	6*VEE *0.95	6*VEE *0.98	6*VEE *0.99	٧	*9
	VOUT2	Five times boosting RL = 500KΩ (VOUT-VSS)	5*VEE *0.95	5*VEE *0.98	5*VEE *0.99	>	* 10
Booster output voltage on VOUT pin	VOUT3	Four times boosting RL = 500KΩ (VOUT-VSS)	4*VEE *0.95	4*VEE *0.98	4*VEE *0.99	٧	*11
	VOUT4	Three times boosting RL = 500KΩ (VOUT-VSS)	3*VEE *0.95	3*VEE *0.98	3*VEE *0.99	V	* 12
	VOUT5	Two times boosting RL = 500 K Ω (VOUT-VSS)	2*VEE *0.95	2*VEE *0.98	2*VEE *0.99	V	* 13
Current	IDD1	VDD = 3V, 6 times booster All ON pattern		270		μΑ	* 14
consumption	IDD2	VDD = 3V, 6 times booster Checker pattern		380		μΑ	* 15
VBA output voltage	VBA	VDD =2.4V~3.3V	1.5		2.0	٧	* 16
VREF output voltage	VREF	VDD = 2.4 ~ 3.3V		1.5		V	* 17
V0 output voltage	V0	VDD = 2.4 ~ 3.3V	0.99*V0	V0	1.01*V0	٧	

- *1 D0-D7, CSB, RS, M86, RDB, WRB, CK, CKS, P/S, RESB, TEST pins
- *2 D0~D7 pins
- *3 CLK pins
- *4 CSB, RS, M86, RDB, WRB, CK, CKS, P/S, RESB, TEST pins
- *5 Applied when D0~D7 are in high impedance state
- *6 SEG0~SEGA159, COM0~COM127 pins Resistance when applied 0.5V between each output pin and each power supply (V0, V1, V2, V3, V4) and when applied 1/12 bias
- *7 VDD pin, VDD pin current without loading when the internal oscillating clock stops and CSB=VDD
- *8 Oscillating frequency when the built-in oscillating circuit (16 gray scale level display mode) is used
- *9 VOUT pin. When the built-in oscillating circuit, the built-in power supply, and the voltage (boosted 6 times) are used, this pin is applied. When VEE = $2.4 \sim 3.3$ V, the electronic control is set to code ("1 1 1 1 1 1 1"). Measuring conditions: bias= $1/4 \sim 1/13$, 1/128 duty, without loading. RL=500 K Ω (between VOUT and VSS), C1=C2= 1.0μ F, C3= 0.1μ F, DCON=AMPON="1," BF="11"
- *10 VOUT pin. When the built-in oscillating circuit, the built-in power supply, and the voltage (boosted 5 times) are used, this pin is applied. When VEE = 2.4 ~ 3.3V, the electronic control is set to code ("1 1 1 1 1 1 1"). Measuring conditions: bias=1/4~1/13, 1/128 duty, without loading. RL=500 KΩ (between VOUT and VSS), C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1," BF="11"
- *11 VOUT pin. When the built-in oscillating circuit, the built-in power supply, and the voltage (boosted 4 times) are used, this pin is applied. When VEE = 2.4 ~ 3.3V, the electronic control is set to code ("1 1 1 1 1 1 1"). Measuring conditions: bias=1/4~1/13, 1/128 duty, without loading. RL=500 KΩ (between VOUT and VSS), C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1," BF="11"

- *12 VOUT pin. When the built-in oscillating circuit, the built-in power supply, and the voltage (boosted 3 times) are used, this pin is applied. When VEE = 2.4 ~ 3.3V, the electronic control is set to code ("1 1 1 1 1 1 1"). Measuring conditions: bias=1/4~1/13, 1/128 duty, without loading. RL=500 KΩ (between VOUT and VSS), C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1," BF="11"
- *13 VOUT pin. When the built-in oscillating circuit, the built-in power supply, and the voltage (boosted 2 times) are used, this pin is applied. When VEE = 2.4 ~ 3.3V, the electronic control is set to code ("1 1 1 1 1 1 1"). Measuring conditions: bias=1/4~1/13, 1/128 duty, without loading. RL=500 KΩ (between VOUT and VSS), C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1," BF="11"
- *14 VDD, VEE pin. When the built-in oscillating circuit and the built-in power supply are used and there is no access from MPU, this pin is applied. Display ALL ON pattern {Rf3, Rf2, Rf1, Rf0 = ("0 0 0 0 ")} and the LCD driver pin has no loading. Measuring conditions: VDD=VEE=3V, V0=15V, C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1," NLIN="0," 1/128 duty, 1/12 bias
- *15 VDD, VEE pin. When the built-in oscillating circuit and the built-in power supply are used and there is no access from MPU, this pin is applied. Voltage which is boosted 6 times is used and the electronic control is set to code. Display a checkered pattern, {Rf3, Rf2, Rf1, Rf0 = ("0 0 0 0")} and the LCD driver pin has no loading. Measuring conditions: VDD=VEE=3V, V0=15V, C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1", NLIN="0," 1/128 duty, 1/12 bias
- *16 VBA pin. Measuring conditions: N times boosting (N=2~6), electronic control = "1 1 1 1 1 1 1," display a checkered pattern, DCON=AMPON="1," NLIN="0," 1/128 duty, VDD=VEE, C1=C2=1.0μF, C3=0.1μF, no loading
- *17 VREF pin. Measuring conditions: VDD = 3 volt, N times boosting (N=2 ~ 6), electronic control = "1 1 1 1 1 1 1," DCON=AMPON="1," NLIN="0," 1/128 duty.

The relationship of oscillating frequency (fosc) and external clock frequency (fCK) with LCD frame frequency (fFLM) in each display mode is shown below:

Original Oscillating	Display Mode	Ratio of Display Duty Cycle (1/D)							
Clock	Display Mode	1/128 to 1/89	1/88 to 1/44	1/43 to 1/22	1/21 to 1/11	1/10~1/8			
When using the built-in oscillating circuit (fosc)	Simple 16 gray scale levels	fosc/(2*16*D)	fosc/(4*16*D)	fosc/(8*16*D)	fosc/(16*16*D)	fosc/(32*16*D)			
When using the external clock from CK pin (fCK)	Simple 16 gray scale levels	fCK/(2*16*D)	fCK/(4*16*D)	fCK/(8*16*D)	fCK/(16*16*D)	fCK/(32*16*D)			

11 AC Characteristic

NOTE

All the timings must be specified relative to 20% and 80% of the VDD voltage.

11.1 80-Family MCU Write Timing

Figure 11-1 80-Family MCU Write Timing Diagram

VSS=0V, VDD = 2.7~3.3V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in write	tCYCWR8		200			ns	WRB
Write pulse "L" width	tWRLW8		30			ns	(R/WB)
Write pulse "H" width	tWRHW8		135			ns	
Data setup time	tDS8		60			ns	D0~D7
Data hold time	tDH8		5			ns	וטייטטו

VSS=0V, VDD = 2.4~2.7V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in write	tCYCWR8		250			ns	WRB
Write pulse "L" width	tWRLW8		50			ns	(R/WB)
Write pulse "H" width	tWRHW8		160			ns	
Data setup time	tDS8		80			ns	D0~D7
Data hold time	tDH8		10			ns	וטייטטו

VSS=0V, VDD = 2.2~2.4V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in write	tCYCWR8		500			ns	WRB
Write pulse "L" width	tWRLW8		100			ns	(R/WB)
Write pulse "H" width	tWRHW8		350			ns	
Data setup time	tDS8		100			ns	D0~D7
Data hold time	tDH8		20	/		ns	וט~טט

11.2 80-Family MCU Read Timing

Figure 11-2 80-Family MCU Read Timing Diagram

VSS=0V, VDD = 2.7~3.3V, Ta = -30~+85

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in read	tCYCRD8		380			ns	
Read pulse "L" width	tRDLW8		200			ns	RDB(E)
Read pulse "H" width	tRDHW8		170			ns	
Data setup time	tRDD8	CL = 80 pF			210	ns	D0~D7
Data hold time	tRDH8		10			ns	וטייטט

VSS=0V, VDD = $2.4\sim2.7V$, Ta = $-30\sim+85$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in read	tCYCRD8		540			ns	
Read pulse "L" width	tRDLW8		290			ns	RDB(E)
Read pulse "H" width	tRDHW8		230			ns	
Data setup time	tRDD8	CL = 80 pF			300	ns	D0~D7
Data hold time	tRDH8		10			ns	וטייטט

VSS=0V, VDD = $2.2 \sim 2.4 \text{V}$, Ta = $-30 \sim +85$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in read	tCYCRD8		840		<u> </u>	ns	
Read pulse "L" width	tRDLW8		440			ns	RDB(E)
Read pulse "H" width	tRDHW8		380			ns	
Data setup time	tRDD8	CL = 80 pF			450	ns	D0~D7
Data hold time	tRDH8		10			ns	וטייטטו

11.3 68-Family MCU Write Timing

Figure 11-3 68-Family MCU Write Timing Diagram

VSS=0V, VDD = $2.7 \sim 3.3$ V, Ta = $-30 \sim +85$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in write	tCYCWR6		200			ns	
Write pulse "L" width	tELW6		135			ns	RDB(E)
Write pulse "H" width	tEHW6		30		^	ns	
Data setup time	tDS6		60			ns	D0~D7
Data hold time	tDH6		5	/		ns	וט~טען

VSS=0V, VDD = $2.4 \sim 2.7$ V, Ta = $-30 \sim +85$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in write	tCYCWR6		250			ns	
Write pulse "L" width	tELW6		160			ns	RDB(E)
Write pulse "H" width	tEHW6		50			ns	
Data setup time	tDS6		80			ns	D0~D7
Data hold time	tDH6		10			ns	וטייטטן

VSS=0V, VDD = 2.2 ~2.4V, Ta = -30~+85

	Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Addre	ess hold time	tAH6		0			ns	CSB
Addre	ess setup time	tAS6	\	0			ns	RS
Syste in wri	em cycle time te	tCYCWR6		500			ns	
Write	pulse "L" width	tELW6		350			ns	RDB(E)
Write width	pulse "H"	tEHW6		100			ns	
Data	setup time	tDS6		100			ns	D0~D7
Data	hold time	tDH6		20			ns	וט~טט

11.4 68-Family MCU Read Timing

Figure 11-4 68-Family MCU Read Timing Diagram

VSS=0V, VDD = 2.7~3.3V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in read	tCYCRD6		380			ns	
Write pulse "L" width	tELW6		200			ns	RDB(E)
Write pulse "H" width	tEHW6		170			ns	
Data setup time	tRDD6	CI =50pE			210	ns	D0~D7
Data hold time	tRDH6	CL=50pF	10			ns	וט~ט

VSS=0V, VDD = 2.4~2.7V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in read	tCYCRD6		540			ns	
Write pulse "L" width	tELW6		290			ns	RDB(E)
Write pulse "H" width	tEHW6		230			ns	
Data setup time	tRDD6	CL=50pF			300	ns	D0~D7
Data hold time	tRDH6	CL=30pi	10			ns	וטייטטו

VSS=0V, VDD = 2.2~2.4V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in read	tCYCRD6		1000			ns	
Write pulse "L" width	tELW6		450			ns	RDB(E)
Write pulse "H" width	tEHW6		500			ns	
Data setup time	tRDD6	CI =505E			650	ns	D0~D7
Data hold time	tRDH6	CL=50pF	10			ns	ן לט~טע

11.5 Serial Interface Timing Diagram

Figure 11-5 Serial Interface Timing Diagram

VSS=0V, VDD = 2.7~3.3V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Serial clock period	tCYCS		200			ns	
SCL pulse "H" width	tSHW		80			ns	SCL
SCL pulse "L" width	tSLW		80			ns	
Address setup time	tASS		40			ns	RS
Address hold time	tAHS		40			ns	INO
Data setup time	tDSS		80			ns	SDA
Data hold time	tDHS		80			ns	
CSB-SCL time	tCSS		40			ns	CSB
CSB hold time	tCSH		40			ns	COB

VSS=0V, VDD = $2.4 \sim 2.7 \text{V}$, Ta = $-30 \sim +85$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Serial clock period	tCYCS		200			ns	
SCL pulse "H" width	tSHW		80			ns	SCL
SCL pulse "L" width	tSLW		80			ns	
Address setup time	tASS		50		^	ns	RS
Address hold time	tAHS		50			ns	INO
Data setup time	tDSS		80			ns	SDA
Data hold time	tDHS		80			ns	
CSB-SCL time	tCSS		50			ns	CSB
CSB hold time	tCSH		60			ns	COB

VSS=0V, VDD = 2.2~2.4V, Ta = -30~+85

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Serial clock period	tCYCS		230		~	ns	
SCL pulse "H" width	tSHW		100			ns	SCL
SCL pulse "L" width	tSLW		100			ns	
Address setup time	tASS		80			ns	RS
Address hold time	tAHS		80			ns	11.0
Data setup time	tDSS		100			ns	SDA
Data hold time	tDHS		100			ns	
CSB-SCL time	tCSS		80			ns	CSB
CSB hold time	tCSH		100			ns	COB

11.6 Clock Input Timing

Figure 11-6 Clock Input Timing Diagram

VSS=0V, VDD = $2.4 \sim 3.3$ V, Ta = $-30 \sim +85$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
CK pulse "H" width	tTCKHW2		5.4		6.5	μs	СК
CK pulse "L" width	tCKLW2		5.4		6.5	μs	1

VSS=0V, VDD = 2.2~2.4V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
CK pulse "H" width	tCKHW2		5.4		6.5	μs	*
CK pulse "L" width	tCKLW2		5.4		6.5	μs	

^{*} CK pin. Applied when using the 16 gray scale gradation display mode

11.7 Reset Timing

Figure 11-7 Reset Timing Diagram

VSS=0V, VDD = 2.4~3.3V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Reset time	tR				1	μs	
Reset pulse "L" width	tRW		40			μs	RESB

VSS=0V, VDD = 2.2~2.4V, Ta = -30~+85

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin Used
Reset time	tR				1.5	μs	
Reset pulse "L" width	tRW		40			μs	RESB

12 Application Circuit

Figure 12-1 EM65101 Application Circuit

NOTE

To obtain a stable voltage, it is recommended that you use VREF to connect a 0.1uF capacitor CVREF to VSS.

13 Tray Information

Figure 13-1 EM65101 Tray Diagram

Tray Dimensions (Unit: mm):

Symbol	Dimensions (mm)	Symbol	Dimensions (mm)
L1	50.80	Z	0.61 ± 0.05
L2	45.50	Px	11.97
L3	45.80	Ру	2.18
Т	4.00	Nx	3
Sx	13.43	Ny	20
Sy	4.69	N	60
S	14.22	P1	1.76
Х	10.97 ± 0.05	P2	1.60
Y	1.48 ± 0.05		

