

IMPLEMENTATION OF ELECTRIC BUSES IN CHINA - KEY LESSONS

INDIA

Paul Bromley - Phoenix Business Consulting

11th May 2018

E-VEHICLE HISTORY

- In 1900 38% of vehicles sold in the US were electric powered
- Commercial vehicles used a model of battery swapping with the vehicle owner / operator owning sets of leadacid batteries
- Road building encouraged longer distance travel
- Speed of gasoline refuelling an advantage
- Mass production of the Model-T Ford cost \$650 versus \$1,750 for the equivalent electric vehicle
- 1912 invention of the electric starter motor

CURRENT CHINA MARKET

- 90,000 e-buses sold last year bringing the total e-bus fleet up to over 316,000
- Represents around 92% of the global e-bus fleet
- 9 out of top 10 suppliers are local Chinese
- The major suppliers are BYD, Yutong, Nanjing Golden Dragon, Foton, Zhongtong and Yinlong
- Historically there has been up to 1,000,000 RMB available in subsidy in China but this creates it's own problems
- Shenzhen has a full electric fleet of 16,359 e-buses with 510 charging stations and a total of over 8000 charging points

UITP - DIMTS Bus Seminar 11-12 May 2018, Delhi

BARRIERS TO EV ADOPTION

316,978 E-BUSES IN CHINA

"SUBSIDY IS THE ENEMY OF INNOVATION"

- Up until last year the Beijing government offered RMB500k (USD 80k) subsidy per e-bus and a similar amount was matched by the local government to give a total subsidy of RMB 1 million (USD 160k)
- Bus price is approximately RMB 2 million (USD 320k)
- Battery costs are approximately RMB 1 million (USD 160k)
- Subsidy (paid to OEM) was being abused and engendered lower quality product
- Central government gradually reducing subsidy over coming years
- Hence a peak of sales in December 2017

SHENZHEN EXPERIENCE (1)

- Shenzhen, a city of 12 million+ citizens was chosen by the China government to be 1 of 13 cities to trial new energy vehicles in 2009
- In 2017 RMB 3.3m (USD 520k) was given out as subsidies for vehicles and infrastructure
- Mixed fleet with major supplier BYD
- Buses can achieve around 200km per charge so some need to be recharged during the day. Flat topography
- Buses running 60,000km per year which attracts an extra government incentive of 500,000RMB (USD 80k)

SHENZHEN EXPERIENCE (2)

- Battery risk is borne by the supplier with an 8 year warranty. Whilst the majority of buses are around 3 years old nearly all are on their first life batteries
- Battery charging is sub-contracted and charged back at RMB 0.6/kWh (USD 10c)which is a lower cost than diesel. The sub-contractor is responsible for the infrastructure
- Less maintenance required than a diesel bus
- Availability up at around 95%
- Operations are profitable

COST OF OPERATION MODEL

Assumptions

- Zero Inflation
- Values are USD
- No tax on fuel

Assumptions					DERV		BEV	
			Capital Purchase Cost	\$	200,000	\$	300,000	
Bus operating Day	14	hours						
Average Speed	16.0	kph	Operating Costs					
Annual mileage	75,628	km	Annual Energy Consumption (litres/kWh)		37,814		60,502	
			Fuel Cost per Annum	\$	23,823	\$	5,748	
DERV fuel conspumption	2.0	km/l	Annual Urea Cost	\$	2,269	\$	-	
BEV Energy Consumption	0.8	kWh/km	Total Annual Fuel Running Cost	\$	26,092	\$	5,748	
Diesel Fuel Cost	0.63	\$/litre	Mean Annual Maintenance Costs	\$	19,513	\$	17,995	
Urea consumption by fuel	6	%						
Urea Price	1	\$/litre	Mean Annual Total Running Costs	\$	45,605	\$	23,743	
Labour Hourly Rate	350	\$						
Electricity Cost	0.10	\$	15 Year Cost of Ownership	\$8	84,073.37	\$ 6	56,140.02	

GRAPHICAL COMPARISON

BLOOMBERG STUDY

Figure 1: Total cost of bus ownership comparison with different annual distance

Source: Bloomberg New Energy Finance, AFLEET, Advanced Clean Transit Notes: Diesel price at \$0.66/liter (\$2.5/gallon), electricity price at \$0.10/kWh, annual kilometers traveled – variable. Bus route length will not always correspond with city size.

HONG KONG EXPERIENCE

- Government has provided subsidy for the trial of 36 e-buses to be operated over a 2 year trial basis
- The charging infrastructure issues have been left up to the operator and OEM to resolve
- Vehicles have been operated as 'orphans'
- Perceived reliability has been an issue as well as the lack of being able to operate full days
- No conclusion at present and no follow up proposed

ELEMENTS OF E-BUS

BATTERIES

Selection Criteria

- Weight per kWh
- Space per kWh
- Cost per kWh
- Cycles to deterioration
- Chemical and mech safety
 - Impact
 - Isolation
 - Water

CHARGING

Plug-In Recharge

- Low cost
- Trailing cables
- One vehicle for several hours
- Typically depot based
- Any substantial numbers require sub stations

Opportunity Recharge

- Overhead or Inductive
- Infrastructure shared
- Typically en-route although can be depot based similar to fuel pump arrangement
- Higher Charge rates available

UITP - DIMTS Bus Seminar 11-12 May 2018, Delhi

LESSONS ON E-BUS ADOPTION

Concerns

Battery Life (

Recharging Infrastructure

High Capital Cost

Operational Costs

Reliability Concerns

Solutions

Warranty or leasing

Infrastructure

the problem?

Policy

Greater efficiency will reduce battery requirement and cost Electricity \$0.1 per kWh Battery – motor what's

E-BUS EVOLUTION -STEP 1

China

- Government has directed e-bus adoption through policy and heavy subsidy. This is also driven through a desire for non-reliance on fossil fuels
- Policy has ensured that there are no obstacles to infrastructure issues which hamper e-bus growth
- China now has the largest fleet of e-buses in the world with over 90% of the world's e-bus fleet
- One third of buses sold in China are now e-bus
- Product quality threshold is compromised by previous subsidies – "subsidy is the enemy of innovation". Incentives are more effective
- China is a command economy rather than a demand economy

E-BUS EVOLUTION STEP 2

Rest of World

- Slow uptake on e-bus due to infrastructure and political issues. Policy and possible subsidy on infrastructure will still be required
- Major OEM's reluctant to go into e-bus business as it is a substitute business and need to prove reliability meet's their customer expected standards
- Future products will need to justify themselves commercially on cost of ownership
- Recent Bloomberg report predicts 50% of buses will be electric by 2025
- New models of bus ownership and operation will evolve

SUMMARY

- China has lead the way in e-bus introduction and is improving in quality but the lessons must be learnt
- The successful implementation of e-bus requires strong backing of government policy to facilitate a planned infrastructure implementation
- Products need to be developed to compete in a commercially stable environment that offer competitive advantage
- Incentives not subsidy (ref. Norwegian model)
- New technology risk and fear is removed from the operator
- E-buses will dominate the market within the next 10 years driven by increased urbanisation

THANK YOU

paulbromley99@gmail.com

