FOURIER ANALYSIS

HENRY JACOBS

1. Bell-ringer (5 minutes)

With your group come up with the most random sentence you possibly can.

Example: "She used her own hair in the soup to give it more flavor"

2. Introduction

So far we have looked at power series, which can be thought of as sums (possibly infinite) of multiples of x^k . Today we will consider Fourier series which are sums of multiples of $\sin(kx)$ and $\cos(kx)$. Explicitly, a Fourier series is a series of the form

$$S(x) = \sum_{k=0}^{\infty} c_k \cos(kx) + \sum_{k=1}^{\infty} s_k \sin(kx)$$
even component odd component

Where the c_k 's and s_k 's are coefficients.

3. Fourier Approximations

Consider the function

$$f(x) = \begin{cases} 1 & \text{for } 0 < x < \pi \\ -0.5 & \text{for } -\pi < x \le 0 \end{cases}$$

We are not able to approximate this function with a Maclauren series because it is discontinuous at x=0. We can not approximate it with a Taylor series very well either. The Taylor series centered at any c<0 is the constant function $P(x)=\frac{-1}{2}$ and for c>0 the Taylor approximation is the constant function P(x)=1.

However, we can approximate f as a Fourier series pretty well though

$$f(x) = \frac{1}{4} + \frac{3}{\pi} \sum_{n=0}^{\infty} \frac{\sin((2n+1)x)}{2n+1}$$

Date: April 2025.

FIGURE 1. 7th order Fourier approximation of a step function

The 20th order Fourier expansion is plotted against f(x) in figure ?? on page ??. The Desmos code can be accessed at https://www.desmos.com/calculator/rtnbrdojzh

3.1. **The Fourier Transform.** If you are given a piecewise continuous function, f(x), then how should you approximate f(x) as a Fourier series?

The answer is **the Fourier Transform**. Explicitly, you can compute the coefficients

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

(2)
$$c_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$

(3)
$$s_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

for $k = 1, 2, 3, \dots, N$ and you would find that

$$f_N(x) = \sum_{k=0}^{N} c_k \cos(kx) + \sum_{k=1}^{N} s_k \sin(kx)$$

is a good approximation of f(x) for large N. Formally, this means that

$$f(x) = \lim_{N \to \infty} f_N(x)$$

for all $x \in [-\pi, \pi]$ except at the discontinuities.

3

4. Homework Problems

- 4.1. **Problem 1.** Consider the function f(x) = x on the domain $[-\pi, \pi]$. Compute a 6th order Fourier approximation of this function. In other words: compute $c_0, c_1, c_2, \ldots c_6$ as well as s_1, s_2, \ldots, s_6 . BONUS: Compute the coefficient s_k and c_k for arbitrary k.
- 4.2. **Problem 2.** Assume we are given a Fourier series

$$q(x) = \sum_{k=0}^{\infty} c_k \cos(kx) + \sum_{k=1}^{\infty} s_k \sin(kx)$$

What is the Fourier series of $\frac{dq}{dx}$? What is the Fourier series of $\frac{d^2q}{dx^2}$?