南京大学数学课程试卷 (商学院12级)

<u>2013/2014</u> 学年 第<u>一</u> 学期 考试形式 闭卷 课程名称 概率统计 (A卷)

考试时间 2014.1.2 系别 _____ 学号 _____ 姓名_____

题号	-36	二10	三 10	四 12	五 10	六 12	七10	合计
得分								

 $\Phi (1.0) = 0.8413$, $\Phi (1.28) = 0.90$, $\Phi (1.64) = 0.95$, $\Phi (1.96) = 0.975$, $\Phi (2) = 0.977$ $\Phi (2.33) = 0.99$, $t_{0.025}(48) = 2.0$, $t_{0.025}(49) = 1.98$, $t_{0.05}(48) = 1.66$, $t_{0.05}(49) = 1.64$

一. (6分×6=36分)

1. 将7本中文书和3本外文书随机地排列在书架上,求3本外文书相邻排列在一起的概率.

$$P = \frac{8! \times 3!}{10!} = \frac{1}{15}$$

2. 有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有2个黑球3个白球,第三个箱子中有3个黑球2个白球,现随机地取一个箱子,再从这个箱子中取出一个球,试求这球为白球的概率.

3. 设 X_1, X_2, \dots, X_{10} 和 $Y_1, Y_2, \dots Y_{15}$ 相互独立且都是总体 $\xi \sim N$ (20, 3)的样本,求 $P(|\bar{X} - \bar{Y}| > \sqrt{2})$.

4. 设 $X_1, X_2, \dots X_n$ 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的样本 (n>2) , \overline{X} 是样本均值,

$$7 = t^2 = \frac{n(\bar{x} - \mu)^2}{s^2} \sim F(1, n-1)$$

5. 设总体 X 的方差 DX=1,根据来自 X 的容量为 100 的样本,测得样本均值 x=5, 求 X 的 数学期望 $\mu=EX$ 的置信度为 95%的置信区间.

$$n = 100$$
, $\sigma = 1$, $\bar{\chi} = 5$. $1 - \alpha = 0.95$, $\alpha = 0.05$. $u_{\underline{\alpha}} = 1.96$
 $(\bar{\chi} - \frac{\sigma}{\ln u_{\underline{\alpha}}}, \bar{\chi} + \frac{\sigma}{\ln u_{\underline{\alpha}}}) = (5 - \frac{1}{10} \times 1.96)$, $5 + \frac{1}{10} \times 1.96) = (4.804, 5.196)$

6 设总体 X 的概率密度为 $p(x) = \begin{cases} 2e^{-2(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$, 其中 $\theta > 0$ 为未知参数,又设 X_1, X_2, \dots

 X_n 是 X 的一组样本,求参数 θ 的极大似然估计量.

二. (10 分)设两个随机变量 X, Y 相互独立,且都服从正态分布 N (0, $\frac{1}{2}$), 求方差 D[X-Y].

三. (10 分)设随机变量 ξ 与 η 相互独立、且 ξ \sim E(3) , η \sim E(4),求 **Z=3** ξ +4 η 的概率密度.

展(x)= 3e^{-3x}, x>o 所(y)= 4e^{-4y}, y>o
(x)=3e^{-3x}, x=3e^{-3y}, x=^{-3y}, xy=^{-3y}
故 及(y)=3e^{-3(-3y)}-1=1e^{-y}, y>o アヌ~E(1) -----5!
同理,
$$y=4\eta$$
 个E(1) 又 $z=z+y$
· 及(3)= $f_{z}(x)$ $f_{y}(8-x)$ $dx=$ $f_{z}(x)$ $f_{y}(8-x)$ $dx=$ $f_{z}(x)$ $f_{z}(x)$

四. (12 分)一生产线生产的产品成箱包装,每箱的重量 X 是随机的,假设 EX=50 kg,标准差 $\sqrt{DX}=5$ kg,若用最大载重量为 5 吨的汽车承运,试求: (1) 若每辆车装 99 箱,汽车不超载的概率; (2) 每辆车最多可装多少箱,才能保证不超载的概率大于 0.977?

(1)
$$7 \in X_i = | \hat{h}_i \hat{h}_i \hat{h}_j \hat{h}$$

五. (10 分)设总体 $X \sim N(\mu, \sigma^2)$, 从中抽取容量为 2n 的样本 $X_1, X_2, \cdots X_{2n}$,其样本均值为 $\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$,求统计量 $Y = \sum_{i=1}^{n} (X_i + X_{n+i} - 2\overline{X})^2$ 的数学期望.

「他
$$Z_i = Z_i + Z_{n+i}$$
, $i=1,2\cdots,n$. $M_i Z_i$, Z_i ,

六. (12 分)设总体 $\mathbf{X} \sim \begin{pmatrix} 0 & 1 & 2 & 3 \\ \theta^2, & 2\theta(1-\theta), & \theta^2, & 1-2\theta \end{pmatrix}$, 其中 $\mathbf{0} < \theta < \frac{1}{2}$ 是未知参数, 现有总体 \mathbf{X} 的容量为 $\mathbf{8}$ 的样本值如下: $\mathbf{3}$, $\mathbf{1}$, $\mathbf{3}$, $\mathbf{0}$, $\mathbf{3}$, $\mathbf{1}$, $\mathbf{2}$, $\mathbf{3}$, 试求:(1) θ 的矩估计量和矩估计值;(2) θ 的极大似然估计值;(3) θ 的矩估计量是否为 θ 的无偏估计和一致估计?(须说明理由).

(1)
$$EX = 2\theta(1-\theta) + 2\theta^2 + 3(1-2\theta) = 3-4\theta$$
 $\Rightarrow 3-4\theta = \overline{X}$
 $\Rightarrow 0$ $\Rightarrow 1 + 2\theta^2 + 3(1-2\theta) = 3-4\theta$ $\Rightarrow 3-4\theta = \overline{X}$
 $\Rightarrow 0$ $\Rightarrow 1 + 2\theta^2 + 3(1-2\theta) = 3-4\theta$ $\Rightarrow 2 + 2\theta^2 = 2\theta^2$
 $\Rightarrow 0$ $\Rightarrow 1 + 2\theta^2 + 3(1-2\theta) = 3-4\theta$ $\Rightarrow 2 + 2\theta^2 = 2\theta^2$
 $\Rightarrow 0$ $\Rightarrow 1 + 2\theta^2 = 2\theta^2$
 $\Rightarrow 0$ $\Rightarrow 1 + 2\theta^2 = 2\theta^2$
 $\Rightarrow 1 + 2\theta^2 = 2\theta^2$

七. (10 分)某市居民的月伙食费 $\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2)$,已知 $\mathbf{E}\mathbf{X} = \mathbf{235.5}$,现随机抽取 49 个居民,他们本月的伙食费平均值为 $\overline{x} = \mathbf{236.5}$ 元,样本标准差 $\mathbf{s} = \sqrt{\frac{1}{48}\sum_{i=1}^{49}(x_i - \overline{x})^2} = \mathbf{3.5}$ 元,(1) 试问是否可以认为本月居民平均伙食费有显著上升?($\alpha = \mathbf{0.05}$)(2)求 $\mu = \mathbf{E}\mathbf{X}$ 的置信度为 95%的置信区间.

(1)
$$H_0: M \leq 235.5$$
, $H_1: M > 235.5$
 $1 = 49 \times = 236.5$, $S = 3.5$
 $1 = \frac{136.5 - 235.5}{\sqrt{49}} = \frac{236.5 - 235.5}{3.5/7} = 2$.
 $1 = \frac{1.66}{\sqrt{49}} = \frac{1.66}{3.5/7} = 2$.
 $1 = \frac{1.66}{\sqrt{49}} = \frac{1.66}{\sqrt{19}} = \frac{1.66}{\sqrt$