Combinatorics: Homework 3

Jack Shi - A92122910

February 2, 2018

1. For each positive integer n, prove that there exists a $2^n \times 2^n$ Hadamard matrix.

Proof. Show $m \times m$ Hadamard matrices exist for all $m = 2^n$.

Let $X = \{x \in \mathbb{N} \mid x \leq n\}$. Since |X| = n, $|P(X)| = 2^n$. Let C be subsets of X indexed as $\{C_1, C_2, \dots, C_{2^n}\}$.

Let matrix $A = (a_{ij})$ defined as follows:

$$a_{ij} = (-1)^{|C_i \cap C_j|}$$

To claim that A is a Hadamard matrix, $\langle r_i, r_j \rangle = 0$ for $i \neq j$ must be true. From definition of A, the following holds:

$$\langle r_i, r_j \rangle = \sum_k (-1)^{|C_i \cap C_k| + |C_j \cap C_k|}$$

Since $C_i \neq C_j$, there exists an element $x \in X$ such that $x \in C_i \setminus C_j$ or $x \in C_j \setminus C_i$. Let $x \in C_i \setminus C_j$. Since x is a arbituary element in X, half of the subsets contain x, the other half does not. Let C_x be all the subsets that contain x, $C_{\bar{x}}$ be all the subsets that does not contain x.

all the subsets that contain x, $C_{\bar{x}}$ be all the subsets that does not contain x. Given $\langle r_i, r_j \rangle = \sum_k (-1)^{|C_i \cap C_k| + |C_j \cap C_k|}$, for half of the sum $C_k \in C_x$, for the other half $C_k \in C_{\bar{x}}$. These two halves have different parity because x is in half of the C_k of the sum and not in C_k for the other half. Since half of the sum has $(-1)^{odd}$, the other half have $(-1)^{even}$, this result in (-1)+(1) which is 0.

Hence shown for any number n, there is a $m \times m$ Hadamard matrix such that $m = 2^n$

2. Proof. Wants to show:

$$min\{a_1, a_2, \dots a_n\} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le max\{a_1, a_2, \dots a_n\}$$

let a_{min} be the minimum element in series $\{a_1, a_2, \dots a_n\}$, a_{max} be the maximum element in series $\{a_1, a_2, \dots a_n\}$.

$$a_{min} \cdot n \le a_1 + a_2 + \dots + a_n \le a_{max} \cdot n$$

$$\frac{a_{min} \cdot n}{n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le \frac{a_{max} \cdot n}{n}$$

$$a_{min} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le a_{max}$$

$$min\{a_1, a_2, \dots a_n\} \le \frac{a_1 + a_2 + \dots + a_n}{n} \le max\{a_1, a_2, \dots a_n\}$$

3. For each positive integer n, prove that there exists an $n \times n$ matrix A with ± 1 entries such that $|det A| \ge \sqrt{n!}$

Proof. There are 2^{n^2} matrices with ± 1 entries. Let D_n be the mean square average:

$$D_n = \sqrt{\frac{\sum_A (\det A)^2}{2^{n^2}}}$$

$$\Rightarrow max_A \ det \ A \ge D_n$$

This is true as we have shown in previous proof that average is in between min and max. By squaring both sides of D and substituting the definition of determinant, the following is true:

$$D_n = \sqrt{\frac{\sum_A (\det A)^2}{2^{n^2}}} D_n^2 = \frac{1}{2^{n^2}} \sum_A \left(\sum_{\pi} (sign \ \pi) a_{1\pi(1)} a_{2\pi(2)} \dots a_{n\pi(n)} \right)^2$$

By expanding the squared summation, splitting π into σ and τ , the following holds:

$$D_n^2 = \frac{1}{2^{n^2}} \sum_{A} \left(\sum_{\sigma} \sum_{\tau} (sign \ \sigma)(sign \ \tau) a_{1\sigma(1)} a_{1\tau(1)} \dots a_{n\sigma(n)} a_{n\tau(n)} \right)$$

By applying interchage of summation, we have:

$$D_n^2 = \frac{1}{2^{n^2}} \sum_{\sigma, \tau} (sign \ \sigma)(sign \ \tau) \left(\sum_A a_{1\sigma(1)} a_{1\tau(1)} \dots a_{n\sigma(n)} a_{n\tau(n)} \right)$$

Since $\sum_{A} X$ is equivalent as the following:

$$\sum_{a_{11}, a_{12}, \dots a_{nn}} X$$

$$\sum_{a_{11} = \pm 1} \sum_{a_{12} = \pm 1} \dots \sum_{a_{nn} = \pm 1} X$$

Let $X = a_{1\sigma(1)}a_{1\tau(1)}\dots a_{n\sigma(n)}a_{n\tau(n)}$ we have the following:

$$\sum_{a_{11}=\pm 1} \sum_{a_{12}=\pm 1} \cdots \sum_{a_{nn}=\pm 1} a_{1\sigma(1)} a_{1\tau(1)} \dots a_{n\sigma(n)} a_{n\tau(n)}$$

Suppose $\sigma(i) = k \neq \tau(i)$. Every sum contains a_{ik} . This implies that the entire sum has the factor $\sum_{a_{ik}=\pm 1} a_{ik} = 0$. If $\sigma = \tau$ the sum is no longer 0. The long product in this case converges to 1, $(sign \ \sigma)^2$ also converges to 1. Hence we have the following:

$$\sum_{a_{11}=\pm 1} \cdots \sum_{a_{nn}=\pm 1} 1 = 2^{n^2}$$

$$D_n^2 = \frac{1}{2^{n^2}} \sum_{\sigma} 2^{n^2} = n! D_n = \sqrt{n!}$$

Hence shown there exists an $n \times n$ matrix A with entries ± 1 such that $|\det A| \ge \sqrt{n!}$