Phase 3: Model Planning

In Phase 3, the data science team identifies candidate models to apply to the data for clustering, classifying, or finding relationships in the data depending on the goal of the project, as shown in Figure 2-5. It is during this phase that the team refers to the hypotheses developed in Phase 1, when they first became acquainted with the data and understanding the business problems or domain area. These hypotheses help the team frame the analytics to execute in Phase 4 and select the right methods to achieve its objectives. Some of the activities to consider in this phase include the following: • Assess the structure of the datasets. The structure of the datasets is one factor that dictates the tools and analytical techniques for the next phase. Depending on whether the team plans to analyze textual data or transactional data, for example, different tools and approaches are required. • Ensure that the analytical techniques enable the team to meet the business objectives and accept or reject the working hypotheses. Determine if the situation warrants a single model or a series of techniques as part of a larger analytic workflow. A few example models include association rules (Chapter 5, "Advanced Analytical Theory and Methods: Association Rules") and logistic regression (Chapter 6, "Advanced Analytical Theory and Methods: Regression"). Other tools, such as Alpine Miner, enable users to set up a series of steps and analyses and can serve as a front-end user interface (UI) for manipulating Big Data sources in PostgreSQL. In addition to the considerations just listed, it is useful to research and understand how other analysts generally approach a specific kind of problem. Given the kind of data and resources that are available, evaluate whether similar, existing approaches will work or if the team will need to create something new. Many times teams can get ideas from analogous problems that other people have solved in different industry verticals or domain areas. Table 2-2 summarizes the results of an exercise of this type, involving several domain areas and the types of models previously used in a classification type of problem after conducting research on churn models in multiple industry verticals. Performing this sort of diligence gives the team ideas of how others have solved similar problems and presents the team with a list of candidate models to try as part of the model planning phase.

2.4.1 Data Exploration and Variable Selection

Although some data exploration takes place in the data preparation phase, those activities focus mainly on data hygiene and on assessing the quality of the data itself. In Phase 3, the objective of the data exploration is to understand the relationships among the variables to inform selection of the variables and methods and to understand the problem domain. As with earlier phases of the Data Analytics Lifecycle, it is important to spend time and focus attention on this preparatory work to make the subsequent phases of model selection and execution easier and more efficient. A common way to conduct this step involves using tools to perform data visualizations. Approaching the data exploration in this way aids the team in previewing the data and assessing relationships between variables at a high level. In many cases, stakeholders and subject matter experts have instincts and hunches about what the data science team should be considering and analyzing. Likely, this group had some hypothesis that led to the genesis of the project. Often, stakeholders have a good grasp of the problem and domain, although they may not be aware of the subtleties within the data or the model needed to accept or reject a hypothesis. Other times, stakeholders may be correct, but for the wrong reasons (for instance, they may be correct about a correlation that exists but infer an incorrect reason for the correlation). Meanwhile, data scientists have to approach problems with an unbiased mind-set and be ready to question all assumptions. As the team begins to question the incoming assumptions and test initial ideas of the project sponsors and stakeholders, it needs to consider the inputs and data that will be needed, and then it must examine whether these inputs are actually correlated with the outcomes that the team plans to predict or analyze. Some methods and types of models will handle correlated variables better than others. Depending on what the team is attempting to solve, it may need to consider an alternate method, reduce the number of data inputs, or transform the inputs to allow the team to use the best method for a given business problem. Some of these techniques will be explored further in Chapter 3 and Chapter 6. The key to this approach is to aim for capturing the most essential predictors and variables rather than considering every possible variable that people think may influence the outcome. Approaching the problem in this manner requires iterations and testing to identify the most essential variables for the intended analyses. The team should plan to test a range of variables to include in the model and then focus on the most important and influential variables. If the team plans to run regression analyses, identify the candidate predictors and outcome variables of the model. Plan to create variables that determine outcomes but demonstrate a strong relationship to the outcome rather than to the other input variables. This includes remaining vigilant for problems such as serial correlation, multicollinearity, and other typical data modeling challenges that interfere with the validity of these models. Sometimes these issues can be avoided simply by looking at ways to reframe a given problem. In addition, sometimes determining correlation is all that is needed ("black box prediction"), and in other cases, the objective of the project is to understand the causal relationship better. In the latter case, the team wants the model to have explanatory power and needs to forecast or stress test the model under a variety of situations and with different datasets.

2.4.2 Model Selection

In the model selection subphase, the team's main goal is to choose an analytical technique, or a short list of candidate techniques, based on the end goal of the project. For the context of this book, a *model* is discussed in general terms. In this case, a model simply refers to an abstraction from reality. One observes events happening in a real-world situation or with live data and attempts to construct models that emulate this behavior with a set of rules and conditions. In the case of

machine learning and data mining, these rules and conditions are grouped into several general sets of techniques, such as classification, association rules, and clustering. When reviewing this list of types of potential models, the team can winnow down the list to several viable models to try to address a given problem. More details on matching the right models to common types of business problems are provided in Chapter 3 and Chapter 4, "Advanced Analytical Theory and Methods: Clustering." An additional consideration in this area for dealing with Big Data involves determining if the team will be using techniques that are best suited for structured data, unstructured data, or a hybrid approach. For instance, the team can leverage MapReduce to analyze unstructured data, as highlighted in Chapter 10. Lastly, the team should take care to identify and document the modeling assumptions it is making as it chooses and constructs preliminary models. Typically, teams create the initial models using a statistical software package such as R, SAS, or Matlab. Although these tools are designed for data mining and machine learning algorithms, they may have limitations when applying the models to very large datasets, as is common with Big Data. As such, the team may consider redesigning these algorithms to run in the database itself during the pilot phase mentioned in Phase 6. The team can move to the model building phase once it has a good idea about the type of model to try and the team has gained enough knowledge to refine the analytics plan. Advancing from this phase requires a general methodology for the analytical model, a solid understanding of the variables and techniques to use, and a description or diagram of the analytic workflow.

2.4.3 Common Tools for the Model Planning Phase

Many tools are available to assist in this phase. Here are several of the more common ones: • R [14] has a complete set of modeling capabilities and provides a good environment for building interpretive models with high-quality code. In addition, it has the ability to interface with databases via an ODBC connection and execute statistical tests and analyses against Big Data via an open source connection. These two factors make R well suited to performing statistical tests and analytics on Big Data. As of this writing, R contains nearly 5,000 packages for data analysis and graphical representation. New packages are posted frequently, and many companies are providing value-add services for R (such as training, instruction, and best practices), as well as packaging it in ways to make it easier to use and more robust. This phenomenon is similar to what happened with Linux in the late 1980s and early 1990s, when companies appeared to package and make Linux easier for companies to consume and deploy. Use R with file extracts for offline analysis and optimal performance, and use RODBC connections for dynamic queries and faster development.

- SQL Analysis services [15] can perform in-database analytics of common data mining functions, involved aggregations, and basic predictive models.
- SAS/ACCESS [16] provides integration between SAS and the analytics sandbox via multiple data connectors such as OBDC, JDBC, and OLE DB. SAS itself is generally used on file extracts, but with SAS/ACCESS, users can connect to relational databases (such as Oracle or Teradata) and data warehouse appliances (such as Greenplum or Aster), files, and enterprise applications (such as SAP and Salesforce.com).