Income Prediction. Classification Predictive Modeling

by Anupama r.k, Queenie, Crystal (Yunan) Zhu

12/02/2021

Modeling and Evaluation

Describe the data

Data Dictionary

 $\mbox{\tt \#\#}$ The dimension of the dataset is 32561 by 15 .

There are 32,561 records and 15 columns in the original data set.

There are 6 numeric and 9 categorical variables shown as follows:

Column Name	Data Type	Column Description		
age	Integer	The age of the adult (e.g., 39, 50, 38, etc.)		
workclass	Factor	The work class of the adult (e.g., Private, Self-emp-not-inc, Federal-go etc.)		
fnl_wgt	Integer	The weights on the Current Population Survey (CPS) files are controlled to independent estimates of the civilian noninstitutional population of the US (e.g., 77516, 83311, etc.)		
education	Factor	The education of the adult (e.g., Bachelors, Some-college, 10th, etc.)		
education_num	Integer	The number years of the adult's education (e.g., 13, 9, 7, etc.)		
marital_status	Factor	The marital status of the adult (e.g., Divorced, Never-married, Separated, etc.)		
occupation	Factor	The occupation of the adult (e.g., Tech-support, Craft-repair, Sales, etc.)		
relationship	Factor	The relationship of the adult in a family (e.g., Wife, Own-child, Husband, etc.)		
race	Factor	The race of the adult (e.g., White, Asian-Pac-Islander, Amer-Indian-Eskimo, etc.)		
sex	Factor	The gender of the adult.(Female, Male		
capital_gain	Integer	The capital gain of the adult (e.g., 0, 2174, 14084, etc.)		

Column Name	Data Type	Column Description
capital_loss	Integer	The capital loss of the adult (e.g., 0, 1408,2042, etc.)
hours_per_week	Integer	The number of working hours each week for the adult (e.g. 40, 13, 16, etc.)
native_country	Factor	The native country of the adult (e.g. Cambodia, Canada, Mexico, etc.)
income	Factor	The yearly income of the adult at 2 levels: <=50K and >50K.

Data Description

First, let's check whether there are duplicates in the dataset.

The number of duplicated records in the dataset is 24 .

Let's look at several examples of the duplicated records:

Let's look at a sample of duplicated records:

	age	workclass	fnl_wgt	education	education_num	$marital_status$	occupation	relationship
4768	21	Private	250051	Some-college	10	Never-married	Prof-specialty	Own-child
9172	21	Private	250051	Some-college	10	Never-married	Prof-specialty	Own-child
4326	25	Private	308144	Bachelors	13	Never-married	Craft-repair	Not-in-family
4882	25	Private	308144	Bachelors	13	Never-married	Craft-repair	Not-in-family

	race	sex	capital_gain	capital_loss	hours_per_week	native_country	income
4768	White	Female	0	0	10	United-States	<=50K
9172	White	Female	0	0	10	United-States	$\leq =50 \mathrm{K}$
4326	White	Male	0	0	40	Mexico	<=50 K
4882	White	Male	0	0	40	Mexico	$\leq =50 \mathrm{K}$

So we will exclude the 24 duplicated rows from all later analysis.

Then let's check whether there are any missing values in the dataset.

Warning in plot.aggr(res, \dots): not enough horizontal space to display

frequencies


```
##
##
    Variables sorted by number of missings:
          Variable
##
                         Count
        occupation 0.05664321
##
         workclass 0.05642807
##
##
    native_country 0.01788733
##
                age 0.00000000
           fnl_wgt 0.00000000
##
##
         education 0.00000000
     education_num 0.00000000
##
##
    marital_status 0.00000000
##
      relationship 0.00000000
##
              race 0.00000000
##
                sex 0.00000000
##
      capital_gain 0.00000000
      capital_loss 0.00000000
##
    hours_per_week 0.00000000
##
##
            income 0.00000000
```

From the above, there are missing values in the data and all the missing values are from categorical variables. Thus we decide to remove the records with missing values.

Now let's view the summary of the 6 numeric columns:

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
age	17.00	28.00	37.00	38.59	48.00	90.00
$\mathrm{fnl}_\mathrm{wgt}$	12285.00	117827.00	178356.00	189780.85	236993.00	1484705.00
education_num	1.00	9.00	10.00	10.08	12.00	16.00
$capital_gain$	0.00	0.00	0.00	1078.44	0.00	99999.00
$capital_loss$	0.00	0.00	0.00	87.37	0.00	4356.00
$hours_per_week$	1.00	40.00	40.00	40.44	45.00	99.00

Let's take a clearer look at the numeric values by visualizing their distributions using histograms, except for capital gain and capital loss.

Let's use boxplots to see whether there are outliers for each numeric variable.

Since there are large number of zeros in capital gain & capitalloss variables, let's check if there are outliers for non-zero values

We can see there are still outliers even excluding zeros for capital gain and capital loss variables.

Then let's look at the distributions of categorical variables by the target.

From the above bar chart we can see the majority of adults in the census were working in private sectors.

