UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE SOFTWARE

Informe - Monitoreo del consumo de energía

ASIGNATURA: Internet de las cosas

DOCENTE: Herrera Jose

Alumnos:

Chiara Arcos, Bryan Miguel

Tambillo Borja, Leoncio Josue

Tambillo Borja, Mauro Junior

Lima - 2024

Proyecto: Monitoreo del consumo de energía del hogar

1. Introducción

El proyecto "Monitoreo del consumo de energía del hogar" es una solución innovadora que permite a los usuarios tomar el control de su consumo eléctrico y adoptar hábitos más sostenibles. Este proyecto se basa en un dispositivo inteligente que utiliza sensores de corriente y voltaje para registrar el consumo energético de electrodomésticos individuales o de toda la vivienda. Los datos recopilados se envían de forma inalámbrica a una aplicación móvil o web. Esto con la finalidad de procesar y analizar estos datos para generar información detallada sobre el consumo energético. Los componentes necesarios para este proyecto incluyen sensores de corriente (como SCT-013 o ACS712), sensores de voltaje (como ZMPT101B), un microcontrolador(Arduino o ESP32), un módulo de comunicación, una fuente de alimentación, una carcasa para el dispositivo y componentes electrónicos básicos. El proyecto de monitoreo del consumo de energía del hogar utiliza sensores de corriente y voltaje para rastrear y analizar el uso de electricidad de electrodomésticos individuales o de toda la casa. Estos sensores se conectan a los cables de alimentación o al cuadro eléctrico principal, midiendo continuamente la corriente, el voltaje y calculando la potencia y el consumo de energía en tiempo real. Los datos recopilados se envían a un microcontrolador, como en este caso sería Arduino o ESP32, para su procesamiento, para su envío a la nube a través de Wi-Fi. Una aplicación móvil que permitirá acceder a los datos y mostrar gráficos, estadísticas y recomendaciones para ahorrar energía

1.1. Problemática

En los hogares actuales, no existen sistemas accesibles que permitan a los usuarios monitorear su consumo energético. La falta de información y control sobre el uso de energía conduce a hábitos de consumo ineficientes y mayores costos en las facturas eléctricas. Además, el uso excesivo de energía tiene un impacto negativo en el medio ambiente.

1.2. Motivación

El consumo de energía eléctrica en los hogares es una preocupación creciente debido al impacto ambiental y los costos asociados. Existe una necesidad urgente de fomentar una cultura de sostenibilidad y responsabilidad entre los usuarios para reducir el consumo energético y mitigar sus efectos negativos.

1.3. Objetivos

1.3.1. Objetivo General

Desarrollar un sistema de monitoreo del consumo de energía eléctrica para hogares que permita a los usuarios visualizar su consumo en tiempo real y recibir recomendaciones para optimizar su uso energético.

1.3.2. Objetivos Específicos

- Implementar correctamente los sensores de corriente y voltaje para obtener la medición del consumo eléctrico.
- Desarrollar una aplicación web que permita recopilar los datos junto con ciertas recomendaciones.
- Realizar las validaciones con pruebas en entornos reales.

1.4. Propuesta

El proyecto "Monitoreo del consumo de energía del hogar" es una solución que permite a los usuarios controlar y optimizar su consumo eléctrico. Se planea implementar y probar este sistema en una vivienda típica, monitoreando el consumo general. El dispositivo se pondrá a prueba con diversos electrodomésticos comunes, como refrigeradores, lavadoras, televisores y sistemas de iluminación, para obtener datos precisos sobre su consumo individual y patrones de uso. Esto permitirá a los usuarios identificar los mayores consumidores de energía en su hogar y tomar decisiones mucho más informadas.

1.5. Requerimientos

1.5.1. Requerimientos Funcionales

- Medición continua de corriente y voltaje.
- Envío de datos a la nube para posterior análisis.
- Visualización de datos en tiempo real en una aplicación web.
- Generar recomendaciones para el ahorro energético.
- Alta precisión y fiabilidad en las mediciones del sistema.

1.5.2. Requerimientos No funcionales

- Interfaz de usuario intuitiva.
- Seguridad en la transmisión y almacenamiento de datos.
- Escalabilidad para soportar múltiples dispositivos y usuarios.

2. Diseño

2.1. Componentes:

ARDUINO UNO: Servirá como una alternativa al ESP32 para las etapas iniciales de prueba y desarrollo del proyecto. Puede utilizarse para verificar el funcionamiento de los sensores y el código básico antes de implementar la conectividad Wi-Fi

Capacitores: Se utilizarán para la estabilidad y protección de nuestros circuitos eléctricos. Están diseñados principalmente para filtrar ruidos eléctricos y mantener el suministro eléctrico estable.

Cables jumper macho-macho, macho-hembra: Se utilizarán para las conexiones entre los diversos sensores y módulos.

Resistencias de 100, 220, 10K y 100K OHM: Se utilizarán para limitar la corriente que fluye a través de ciertos componentes específicos, asegurando que funcionen dentro de sus límites seguros de operación.

ESP32: Se utilizará como el controlador principal del sistema. Procesará los datos de los sensores de corriente y voltaje, realizará los cálculos de consumo energético y enviará la información a través de Wi-Fi a una aplicación o servidor para su visualización y análisis.

Sensor de voltaje SCT013: Es un sensor no invasivo de núcleo dividido que se puede abrir y cerrar alrededor del cable principal sin necesidad de cortar nada.

Transformador de voltaje ZMPT101B: Se empleará para medir el voltaje de la red eléctrica doméstica de 220V AC. Reducirá el voltaje a un nivel seguro que pueda ser leído por el ESP32 o Arduino, permitiendo monitorear las fluctuaciones de voltaje en tiempo real.

3. Resultados

Imagenes

4. Conclusiones

4.1. Recomendaciones

- El sistema permite a los usuarios monitorear y gestionar su consumo energético en tiempo real, facilitando el control del consumo y siendo de ayuda para los usuarios para tomar decisiones informadas.
- La aplicación web proporciona datos detallados y recomendaciones para el ahorro energético, así promoviendo hábitos más sostenibles y reduciendo el pago por consumo eléctrico.

4.2. Lecciones Aprendidas

• Es importante tener una alta precisión de los datos para evitar conclusiones erróneas. La implementación de los sensores debe ser la correcta para asegurar mediciones exactas y recomendaciones eficaces.

4.3. Perspectivas y Trabajos Futuros

- Poder expandir el sistema para incluir más sensores y otros dispositivos,
 permitiendo una automatización más avanzada y personalizada del hogar.
- Integrarlo junto a otros sistemas de automatización en el hogar, para dar un mayor control al usuario para gestionar todos los aspectos desde una única plataforma y asi mejorar su experiencia.

5. Referencias Bibliográficas

Espressif Systems. "ESP-IDF Programming Guide." Espressif Systems, https://docs.espressif.com/projects/esp-idf/en/stable/esp32/index.html.

Arduino. "Arduino Uno Rev3." Arduino Documentation, https://docs.arduino.cc/hardware/uno-rev3/.

Arduino. "Sensors - Libraries." Arduino Reference, https://www.arduino.cc/reference/en/libraries/category/sensors/.