

Basic Electrical Technology

Source Transformation & Star-Delta Transformation

Source Transformation

Practical Voltage Source

converted to

Practical Current Source

Source Transformation

Practical Voltage source

Practical Current source

Source Transformation

Practical Voltage source

V_s + R

Practical Current source

Star & Delta Connections

Star-Delta Transformation

Delta to Star Transformation

$$R_{a} = \frac{R_{ab} R_{ca}}{R_{ab} + R_{bc} + R_{ca}} = \frac{R_{ab} R_{ca}}{\sum R_{ab}}$$

$$R_{b} = \frac{R_{bc} R_{ab}}{R_{ab} + R_{bc} + R_{ca}} = \frac{R_{bc} R_{ab}}{\sum R_{ab}}$$

$$R_{c} = \frac{R_{ca} R_{bc}}{R_{ab} + R_{bc} + R_{ca}} = \frac{R_{ca} R_{bc}}{\sum R_{ab}}$$

Star-Delta Transformation

Star to Delta Transformation

$$R_{ab} = \frac{R_a R_b + R_b R_c + R_c R_a}{R_c} = \frac{\sum R_a R_b}{R_c}$$

$$R_{bc} = \frac{R_a R_b + R_b R_c + R_c R_a}{R_a} = \frac{\sum R_b R_c}{R_a}$$

$$R_{ca} = \frac{R_a R_b + R_b R_c + R_c R_a}{R_b} = \frac{\sum R_c R_a}{R_b}$$

Illustration 1

Find the current through 8 Ω resistor by source transformation method.

Ans: 1 A

Illustration 2

For the circuit shown, determine the total power supplied by the source using star-delta transformation

Ans: P_{supplied} = 223.12 W

Illustration 3

Determine the equivalent resistance between the terminals A and B.

Ans: 3.85Ω

Homework 1

Find the power dissipated in 1Ω resistor and the power delivered by 10V source using network reduction technique

Ans: $P_{1\Omega} = 11.65 \text{ W}, P_{10V} = 34.2 \text{ W}$