

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin maturalny	
Przedmiot:	Matematyka	
Poziom:	Poziom podstawowy	
Formy arkusza:	EMAP-P0-100-2206, EMAP-P0-200-2206, EMAP-P0-300-2206, EMAP-P0-400-2206, EMAP-P0-600-2206, EMAP-P0-700-2206, EMAP-P0-Q00-2206	
Termin egzaminu:	2 czerwca 2022 r.	
Data publikacji dokumentu:	28 czerwca 2022 r.	

Uwaga:

Gdy wymaganie egzaminacyjne dotyczy treści z III etapu edukacyjnego – dopisano "G".

ZADANIA ZAMKNIĘTE

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2022¹	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.3) posługuje się w obliczeniach pierwiastkami dowolnego stopnia i stosuje prawa działań na pierwiastkach.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.4) oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

¹ Załącznik nr 2 do rozporządzenia Ministra Edukacji Narodowej z dnia 20 marca 2020 r. w sprawie szczególnych rozwiązań w okresie czasowego ograniczenia funkcjonowania jednostek systemu oświaty w związku z zapobieganiem, przeciwdziałaniem i zwalczaniem COVID-19 (Dz.U. poz. 493, z późn. zm.).

Zadanie 3. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.6) wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 1.8) wykonuje obliczenia procentowe [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 5. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 2.1) używa wzorów skróconego mnożenia na $(a\pm b)^2$ oraz a^2-b^2 .

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 3.1) sprawdza, czy dana liczba rzeczywista jest rozwiązaniem równania lub nierówności.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 \mathbf{C}

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 4.3) odczytuje z wykresu własności funkcji [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne Wymagania szczegółowe	
I. Wykorzystanie i tworzenie informacji.	Zdający: 4.4) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(-x).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Zadanie 9. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 3.6) korzysta z własności iloczynu przy rozwiazywaniu równań typu x(x+1)(x-7)=0.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 10. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	4.2) oblicza ze wzoru wartość funkcji dla
	danego argumentu [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 \mathcal{C}

Zadanie 11. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne Wymaganie szczegółowe	
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 4.6) wyznacza wzór funkcji liniowej na podstawie informacji o funkcji lub o jej wykresie.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Zadanie 12. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 4.10) interpretuje współczynniki występujące we wzorze funkcji kwadratowej [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 13. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	Zdający:
	G8.3) odczytuje z wykresu funkcji: [] argumenty dla danej wartości funkcji [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

_

Zadanie 14. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	5.1) wyznacza wyrazy ciągu określonego wzorem ogólnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

R

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	5.3) stosuje wzór na n -ty wyraz i na sumę
	n początkowych wyrazów ciągu
	arytmetycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 D

Zadanie 16. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 6.3) stosuje proste zależności między funkcjami trygonometrycznymi [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

 \mathbf{C}

Zadanie 17. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający:
	7.1) stosuje zależności między kątem
	środkowym i kątem wpisanym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

R

Zadanie 18. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 7.3) rozpoznaje trójkąty podobne i wykorzystuje cechy podobieństwa trójkątów.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 19. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne Wymaganie szczegółowe	
IV. Użycie i tworzenie strategii.	Zdający:
	7.4) korzysta z własności funkcji
	trygonometrycznych w łatwych
	obliczeniach geometrycznych [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 20. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	G7.3) rozwiązuje równania stopnia
	pierwszego z jedną niewiadomą.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 21. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający:
	G10.8) korzysta z własności kątów
	i przekątnych w [] trapezach.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 22. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 8.2) bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 23. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 8.4) oblicza współrzędne punktu przecięcia dwóch prostych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Zadanie 24. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	G11.1) rozpoznaje graniastosłupy [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 25. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	G11.2) oblicza pole powierzchni []
	ostrosłupa.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 26. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający: 10.1) zlicza obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych, stosuje regułę mnożenia i regułę dodawania.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Zadanie 27. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: 10.2) oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 28. (0-1)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający:
	G9.3) wyznacza [] medianę zestawu
	danych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

ZADANIA OTWARTE

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 29. (0-2)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 3.5) rozwiązuje nierówności kwadratowe z jedną niewiadomą.

Zasady oceniania

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap to wyznaczenie pierwiastków trójmianu kwadratowego $-3x^2 - 10x + 8$. **Drugi etap** to zapisanie zbioru rozwiązań nierówności kwadratowej $-3x^2 - 10x + 8 \ge 0$.

• poda zbiór rozwiązań nierówności: $\langle -4, \frac{2}{3} \rangle$ lub $x \in \langle -4, \frac{2}{3} \rangle$

ALBO

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi:

- 1. Jeżeli zdający, realizując pierwszy etap rozwiązania zadania, popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności, to otrzymuje **1 punkt** za całe rozwiązanie.
- 2. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy błędnie obliczony przez zdającego wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Jeżeli zdający, rozpoczynając realizację pierwszego etapu rozwiązania, rozpatruje inny niż podany w zadaniu trójmian kwadratowy, który nie wynika z błędu przekształcenia (np. $-3x^2+8$) i w konsekwencji rozpatruje inną nierówność (np. $-3x^2+8\geq 0$), to oznacza, że nie podjął realizacji 1. etapu rozwiązania i otrzymuje **0 punktów** za całe rozwiązanie.
- 4. Akceptowane jest zapisanie pierwiastków trójmianu w postaci $a+b\sqrt{c}$, gdzie a,b,c są liczbami wymiernymi.
- 5. Jeżeli zdający poda zbiór rozwiązań w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów oraz zapisze: $x \in (-4, \frac{2}{3})$, to otrzymuje **1 punkt** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(\frac{2}{3}, -4)$, to przyznajemy **2 punkty**.

Przykładowe pełne rozwiązanie

Pierwszy etap rozwiazania

Zapisujemy nierówność w postaci $-3x^2 - 10x + 8 \ge 0$ i obliczamy pierwiastki trójmianu $-3x^2 - 10x + 8$.

Obliczamy wyróżnik tego trójmianu: $\Delta=196\,$ i stąd $x_1=-4\,$ oraz $x_2=\frac{2}{3}\,$,

ALBO

zauważamy, że liczba (-4) jest pierwiastkiem trójmianu $-3x^2-10x+8$ i stosujemy wzory Viète'a:

$$x_1 + x_2 = -\frac{10}{3}$$
 oraz $x_1 \cdot x_2 = -\frac{8}{3}$, więc $x_1 = -4$ oraz $x_2 = \frac{2}{3}$,

ALBO

podajemy pierwiastki trójmianu $-3x^2-10x+8$ bezpośrednio, zapisując je lub zaznaczając je na wykresie: $x_1=-4$ oraz $x_2=\frac{2}{3}$.

Egzamin maturalny z matematyki. Poziom podstawowy – termin dodatkowy 2022 r.

Drugi etap rozwiązania

Podajemy zbiór rozwiązań nierówności: $\langle -4,\frac{2}{3} \rangle$ lub $x \in \langle -4,\frac{2}{3} \rangle$ lub zaznaczamy zbiór rozwiązań na osi liczbowej

Zadanie 30. (0-2)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
V. Rozumowanie i argumentacja.	Zdający: 2.1) używa wzorów skróconego mnożenia na $(a \pm b)^2$ oraz $a^2 - b^2$.

Zasady oceniania

Uwaga:

Jeśli zdający sprawdza prawdziwość nierówności tylko dla wybranych wartości x i y, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Przekształcamy równoważnie nierówność $\left(\frac{1}{5}x+\frac{4}{5}y\right)^2<\frac{x^2+4y^2}{5}$:

$$\left(\frac{1}{5}x + \frac{4}{5}y\right)^2 < \frac{x^2 + 4y^2}{5}$$

$$\frac{1}{25}x^2 + \frac{8}{25}xy + \frac{16}{25}y^2 < \frac{x^2 + 4y^2}{5}$$

$$x^2 + 8xy + 16y^2 < 5x^2 + 20y^2$$

$$-4x^2 + 8xy - 4y^2 < 0$$

$$x^2 - 2xy + y^2 > 0$$

$$(x - y)^2 > 0$$

Z założenia wiadomo, że $x \neq y$, więc $(x-y)^2$ jest liczbą dodatnią jako kwadrat liczby rzeczywistej x-y różnej od zera. Ponieważ nierówność $(x-y)^2>0$ jest prawdziwa, więc nierówność $\left(\frac{1}{5}x+\frac{4}{5}y\right)^2<\frac{x^2+4y^2}{5}$ również jest prawdziwa. To należało pokazać.

Zadanie 31. (0-2)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: 4.9) wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o tej funkcji lub o jej wykresie.

Zasady oceniania

Zdający otrzymuje 1 p. gdy:

• zapisze wzór funkcji f w postaci iloczynowej/kanonicznej z uwzględnieniem informacji, że liczba 2 jest jedynym miejscem zerowym funkcji: $f(x) = a(x-2)^2$

ALBO

• skorzysta z własności funkcji kwadratowej i zapisze wartość wyrazu wolnego funkcji f, np. c = 8, $f(x) = ax^2 + bx + 8$,

ALBO

• zapisze równanie $b^2 - 4ac = 0$ lub $-\frac{b}{2a} = 2$.

Przykładowe pełne rozwiązania

Sposób 1.

Zapisujemy wzór funkcji f w postaci iloczynowej/kanonicznej: $f(x) = a(x-2)^2$, gdzie $a \neq 0$. Ponieważ f(0) = 8, więc $8 = a(0-2)^2$, skąd a = 2. Zatem $f(x) = 2(x-2)^2$.

Sposób 2.

Zapisujemy wzór funkcji f w postaci ogólnej: $f(x) = ax^2 + bx + c$, gdzie $a \neq 0$ oraz $b, c \in \mathbb{R}$. Ponieważ f(0) = 8, więc c = 8. Funkcja f ma dokładnie jedno miejsce zerowe równe 2, więc

$$\Delta = b^2 - 4ac = 0$$
 i $x_0 = -\frac{b}{2a} = 2$.

Zatem $b^2 - 4a \cdot 8 = 0$ i b = -4a. Stąd otrzymujemy $(-4a)^2 - 4a \cdot 8 = 0$. Rozwiązujemy równanie $(-4a)^2 - 4a \cdot 8 = 0$:

$$(-4a)^{2} - 4a \cdot 8 = 0$$
$$16a^{2} - 32a = 0$$
$$16a(a - 2) = 0$$

$$a = 0$$
 lub $a = 2$

Funkcja f jest kwadratowa, więc a=2 i wówczas b=-4a=-8. Zapisujemy wzór funkcji f w postaci ogólnej: $f(x)=2x^2-8x+8$.

Zadanie 32. (0-2)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	Zdający: 3.7) rozwiązuje proste równania wymierne, prowadzące do równań liniowych lub kwadratowych [].

Zasady oceniania

Zdający otrzymuje 1 p. gdy:

• zapisze równanie z niewiadomą x, wynikające z zastosowania definicji/własności ciągu geometrycznego, np. $(3x + 2)^2 = x \cdot (9x + 16)$

ALBO

• zapisze dwa równania z dwiema niewiadomymi (z których jedną jest x), wynikające z treści zadania, np. $3x + 2 = x \cdot q$ oraz $9x + 16 = x \cdot q^2$.

Uwaga:

Jeżeli zdający zapisze tylko x = 1, to otrzymuje **0 punktów**.

Przykładowe pełne rozwiązania

Sposób 1.

Ponieważ ciąg (0,2,16) nie jest geometryczny, więc $x \neq 0$. Ciąg $\left(-\frac{2}{3},0,10\right)$ nie jest geometryczny, więc $x \neq -\frac{2}{3}$. Korzystamy z definicji/własności ciągu geometrycznego i zapisujemy równanie

$$\frac{3x+2}{x} = \frac{9x+16}{3x+2}$$

Stad dalej otrzymujemy

$$(9x + 16)x = (3x + 2)^{2}$$

$$9x^{2} + 16x = 9x^{2} + 12x + 4$$

$$4x = 4$$

$$x = 1$$

Sposób 2.

Korzystamy z własności ciągu geometrycznego i zapisujemy równanie

$$x \cdot (9x + 16) = (3x + 2)^2$$

Stąd otrzymujemy dalej

$$9x^{2} + 16x = 9x^{2} + 12x + 4$$
$$4x = 4$$
$$x = 1$$

Ciąg (1, 5, 25) jest geometryczny, więc x = 1.

Sposób 3.

Niech $\,q\,$ oznacza iloraz ciągu geometrycznego. Stosujemy wzór na $\,n\!$ –ty wyraz ciągu i otrzymujemy równania

$$3x + 2 = x \cdot q$$
 oraz $9x + 16 = x \cdot q^2$

Liczba x=0 nie spełnia żadnego z tych dwóch równań, więc $x \neq 0$. Zatem

$$q = \frac{3x+2}{x} \quad \text{oraz} \quad 9x + 16 = x \cdot q^2$$

Stąd dalej otrzymujemy

$$9x + 16 = x \cdot \left(\frac{3x + 2}{x}\right)^{2}$$

$$(9x + 16)x = (3x + 2)^{2}$$

$$9x^{2} + 16x = 9x^{2} + 12x + 4$$

$$4x = 4$$

$$x = 1$$

Ciąg (1, 5, 25) jest geometryczny, więc x = 1.

Zadanie 33. (0-2)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	Zdający: 7.3) rozpoznaje trójkąty podobne i wykorzystuje cechy podobieństwa trójkątów.

Zasady oceniania

• obliczy długość przekątnej AC: |AC| = 10

ALBO

• zapisze, że trójkąty *DCA* i *CAB* są podobne,

ALBO

• zapisze związek między długościami odpowiednich boków trójkątów DCA i CBA wynikający z podobieństwa tych trójkątów, np. $\frac{|AD|}{|AC|} = \frac{|BC|}{|BA|}$.

Przykładowe pełne rozwiązania

Korzystamy z twierdzenia Pitagorasa i obliczamy długość przekątnej AC trapezu:

$$|AC|^2 + |BC|^2 = |AB|^2$$

 $|AC|^2 + 24^2 = 26^2$
 $|AC| = \sqrt{100} = 10$

Ponieważ AB oraz CD są równoległe, więc kąty naprzemianległe CAB oraz DCA mają równe miary. Z równości $| \not \triangle CAB | = | \not \triangle DCA |$ oraz $| \not \triangle ACB | = | \not \triangle CDA | = 90^\circ$ otrzymujemy $| \not \triangle CBA | = | \not \triangle DAC |$. Zatem trójkąty DCA i CAB są podobne na podstawie cechy kkk podobieństwa trójkątów. Stąd

$$\frac{|AD|}{|AC|} = \frac{|BC|}{|BA|}$$
$$\frac{|AD|}{10} = \frac{24}{26}$$
$$|AD| = \frac{120}{13}$$

Zadanie 34. (0-2)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	Zdający: 10.2) oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa.

Zasady oceniania

- wypisze wszystkie zdarzenia elementarne lub poda ich liczbę: $|\Omega|=46$ ALBO
 - wypisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu A i nie wypisze żadnego niewłaściwego: 56, 63, 70, 77, 84, 91, 98,

ALBO

- zapisze liczbę wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=7, ALBO
- sporządzi fragment drzewa doświadczenia składający się jedynie z 7 istotnych gałęzi,
 ALBO
 - zapisze tylko $P(A) = \frac{7}{46}$.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{7}{46} .$$

Uwagi:

- 1. Jeżeli zdający zapisuje tylko liczby 46 lub 7 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający rozpatruje inne niż podane w treści zadania doświadczenie losowe, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1. (klasyczna definicja prawdopodobieństwa)

Zdarzeniami elementarnymi są wszystkie liczby naturalne dwucyfrowe większe od 53.

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 99 - 53 = 46$.

Zdarzeniu A sprzyjają następujące zdarzenia elementarne: 56, 63, 70, 77, 84, 91, 98, więc |A| = 7.

Prawdopodobieństwo zdarzenia A jest równe: $P(A) = \frac{|A|}{|\Omega|} = \frac{7}{46}$.

Sposób 2. (drzewo stochastyczne)

Zdarzeniami elementarnymi są wszystkie liczby naturalne dwucyfrowe większe od 53. Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 99 - 53 = 46$. Rysujemy fragment drzewa stochastycznego rozważanego doświadczenia, które zawiera 7 istotnych gałęzi, które odpowiadają zdarzeniom elementarnym sprzyjającym zdarzeniu A.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{1}{46} + \frac{1}{46} + \frac{1}{46} + \frac{1}{46} + \frac{1}{46} + \frac{1}{46} + \frac{1}{46} = \frac{7}{46}$$

Zadanie 35. (0-5)

Wymagania egzaminacyjne 2022	
Wymaganie ogólne	Wymagania szczegółowe
IV. Użycie i tworzenie strategii.	Zdający:
	8.1) wyznacza równanie prostej
	przechodzącej przez dane dwa punkty
	(w postaci kierunkowej lub ogólnej);
	8.3) wyznacza równanie prostej, która jest
	równoległa lub prostopadła do prostej
	danej w postaci kierunkowej i przechodzi
	przez dany punkt;
	8.4) oblicza współrzędne punktu przecięcia
	dwóch prostych.

Zasady oceniania

- 1) obliczy lub poda współrzędne wierzchołka B: B = (9, 1)
- 2) obliczy współczynnik kierunkowy prostej *AB* (*AS*): $a_{AB} = a_{AS} = \frac{1}{2}$
- 3) zapisze współrzędne wierzchołka \mathcal{C} w zależności od jednej zmiennej, np. $\mathcal{C}=(x,x+10)$.

• obliczy współrzędne wierzchołka B i wyznaczy równanie prostej CS : B=(9,1) , y=-2(x-5)-1

ALBO

• obliczy współrzędne wierzchołka B i zapisze równanie z dwiema niewiadomymi (współrzędnymi wierzchołka C): B=(9,1) oraz

$$\left(\sqrt{(x-1)^2 + \left(y - (-3)\right)^2}\right)^2 = \left(\sqrt{(x-9)^2 + (y-1)^2}\right)^2,$$

ALBO

• zapisze C = (x, x + 10) oraz

$$\left(\sqrt{(1-5)^2 + \left(-3 - (-1)\right)^2}\right)^2 + \left(\sqrt{(x-5)^2 + \left(y - (-1)\right)^2}\right)^2$$
$$= \left(\sqrt{(x-1)^2 + (y - (-3)^2)^2}\right)^2$$

• obliczy współrzędne wierzchołka B i zapisze równanie z jedną niewiadomą (współrzędną wierzchołka C): B=(9,1) oraz -2x+9=x+10 lub

$$\left(\sqrt{(x-1)^2 + \left(x+10-(-3)\right)^2}\right)^2 = \left(\sqrt{(x-9)^2 + (x+10-1)^2}\right)^2, \text{ lub}$$

$$\left(\sqrt{(1-5)^2 + \left(-3-(-1)\right)^2}\right)^2 + \left(\sqrt{(x-5)^2 + \left(x+10-(-1)\right)^2}\right)^2$$

$$= \left(\sqrt{(x-1)^2 + (x+10-(-3)^2}\right)^2$$

ALBO

• obliczy współrzędne wierzchołka C i nie obliczy poprawnie współrzędnych wierzchołka $B: C = \left(-\frac{1}{3}, \frac{29}{3}\right)$.

Uwaga:

Jeśli zdający błędnie obliczy współczynnik kierunkowy prostej prostopadłej do AB i konsekwentnie rozwiąże zadanie do końca, to za całe rozwiązanie może otrzymać co najwyżej **2 punkty**.

Przykładowe pełne rozwiązania

Sposób 1. (symetralna odcinka)

Korzystamy ze wzorów na współrzędne środka odcinka i obliczamy współrzędne punktu $B = (x_B, y_B)$:

$$\frac{x_A + x_B}{2} = x_S \quad i \quad \frac{y_A + y_B}{2} = y_S$$

$$\frac{1 + x_B}{2} = 5 \quad i \quad \frac{-3 + y_B}{2} = -1$$

$$x_B = 9 \quad i \quad y_B = 1$$

Zatem B = (9, 1).

Ponieważ |AC| = |BC|, więc wierzchołek C leży na prostej prostopadłej do AB (do AS) i jednocześnie przechodzącej przez punkt S.

Wyznaczamy współczynnik kierunkowy prostej AB (AS):

$$a_{AB} = a_{AS} = \frac{-1 - (-3)}{5 - 1} = \frac{1}{2}$$

Stąd współczynnik kierunkowy prostej *CS* jest równy $a_{CS} = -\frac{1}{a_{AB}} = -2$. Zapisujemy równanie prostej *CS*: y = -2(x-5) - 1, czyli y = -2x + 9.

Punkt C jest punktem przecięcia prostej CS z prostą o równaniu y=x+10, więc współrzędne punktu $C=(x_C,y_C)$ spełniają równania

$$y_C = x_C + 10$$
 oraz $y_C = -2x_C + 9$

Stad otrzymujemy

$$x_C + 10 = -2x_C + 9$$
 oraz $y_C = x_C + 10$
 $x_C = -\frac{1}{3}$ oraz $y_C = -\frac{1}{3} + 10 = \frac{29}{3}$

Zatem $C = \left(-\frac{1}{3}, \frac{29}{3}\right)$.

Sposób 2. (równość długości ramion)

Współrzędne punktu *B* wyznaczamy tak, jak w sposobie 1.

Wierzchołek $C = (x_C, y_C)$ leży na prostej o równaniu y = x + 10, więc $C = (x_C, x_C + 10)$. Ponieważ |AC| = |BC|, więc

$$\left(\sqrt{(x_C - 1)^2 + (y_C - (-3))^2}\right)^2 = \left(\sqrt{(x_C - 9)^2 + (y_C - 1)^2}\right)^2$$

Stąd otrzymujemy dalej

$$\left(\sqrt{(x_C - 1)^2 + (x_C + 10 - (-3))^2}\right)^2 = \left(\sqrt{(x_C - 9)^2 + (x_C + 10 - 1)^2}\right)^2$$

$$(x_C - 1)^2 + (x_C + 10 - (-3))^2 = (x_C - 9)^2 + (x_C + 10 - 1)^2$$

$$(x_C - 1)^2 + (x_C + 13)^2 = (x_C - 9)^2 + (x_C + 9)^2$$

$$x_C^2 - 2x_C + 1 + x_C^2 + 26x_C + 169 = x_C^2 - 18x_C + 81 + x_C^2 + 18x_C + 81$$

$$24x_C = -8$$

$$x_C = -\frac{1}{3}$$

Sposób 3. (twierdzenie Pitagorasa)

Współrzędne wierzchołka B obliczamy tak, jak w sposobie 1.

Zatem $x_C + 10 = -\frac{1}{3} + 10 = \frac{29}{3}$ i $C = \left(-\frac{1}{3}, \frac{29}{3}\right)$.

Wierzchołek $C=(x_C,y_C)$ leży na prostej o równaniu y=x+10, więc $C=(x_C,x_C+10)$. Ponieważ |AC|=|BC|, więc kąt ASC jest prosty. Stosujemy twierdzenie Pitagorasa do trójkąta ASC i otrzymujemy

$$|AS|^2 + |CS|^2 = |CA|^2$$

Egzamin maturalny z matematyki. Poziom podstawowy – termin dodatkowy 2022 r.

Zatem $x_C + 10 = -\frac{1}{3} + 10 = \frac{29}{3}$ i $C = \left(-\frac{1}{3}, \frac{29}{3}\right)$.

$$\sqrt{20}^2 + \left(\sqrt{(x_C - 5)^2 + (y_C - (-1))^2}\right)^2 = \left(\sqrt{(x_C - 1)^2 + (y_C - (-3))^2}\right)^2$$

Stąd otrzymujemy dalej

$$20 + (x_C - 5)^2 + (y_C + 1)^2 = (x_C - 1)^2 + (y_C + 3)^2$$

$$20 + (x_C - 5)^2 + (x_C + 10 + 1)^2 = (x_C - 1)^2 + (x_C + 10 + 3)^2$$

$$20 + (x_C - 5)^2 + (x_C + 11)^2 = (x_C - 1)^2 + (x_C + 13)^2$$

$$20 + x_C^2 - 10x_C + 25 + x_C^2 + 22x_C + 121 = x_C^2 - 2x_C + 1 + x_C^2 + 26x_C + 169$$

$$-12x_C = 4$$

$$x_C = -\frac{1}{3}$$

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. ogólnych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.)
- II. dodatkowych szczegółowych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią matura z matematyki, poziom podstawowy, termin dodatkowy 2022.

I. Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzona dyskalkulia

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania,
 - przestawienia cyfr,
 - zapisania innej cyfry, ale o podobnym wyglądzie,
 - przestawienia położenia przecinka.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.
- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.

- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.

II. <u>Dodatkowe szczegółowe zasady oceniania zadań otwartych w przypadku</u> <u>arkuszy osób ze stwierdzoną dyskalkulią</u>

Zadanie 29.

Zdający otrzymuje 1 pkt, jeżeli:

• stosuje poprawną metodę obliczenia pierwiastków trójmianu kwadratowego $-3x^2-10x+8$, tzn. stosuje wzory na pierwiastki trójmianu kwadratowego i oblicza te pierwiastki, popełniając błędy o charakterze dyskalkulicznym

ALBO

w wyniku obliczeń otrzyma wyróżnik ujemny, ale konsekwentnie narysuje parabolę,

ALBO

• poprawnie rozwiązuje nierówność $-3x^2+8\geq 0$ (tzn. stosuje się punkt 6. ogólnych zasad oceniania),

ALBO

 dla wyznaczonych przez siebie pierwiastków oraz rozpatrywanego trójmianu i nierówności konsekwentnie wyznaczy zbiór rozwiązań tej nierówności.

Uwagi:

- 1. Jeżeli zdający zapisze zbiór rozwiązań nierówności w postaci przedziału otwartego, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.
- 2. Jeżeli zdający, rozwiązując nierówność, pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $\langle \frac{2}{3}, -4 \rangle$, to może otrzymać **2 punkty** za całe rozwiązanie.
- 3. Nie stosuje się uwag 2. i 3. z zasad oceniania arkusza standardowego.

Zadanie 30.

Zdający otrzymuje 1 pkt, jeżeli:

przekształcając nierówność $\left(\frac{1}{5}x+\frac{4}{5}y\right)^2<\frac{x^2+4y^2}{5}$, zastosuje wzór skróconego mnożenia na kwadrat sumy, popełniając błędy dyskalkuliczne.

Zadanie 31.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 32.

Zdający otrzymuje 1 pkt, jeżeli:

zapisze jedno równanie z dwiema niewiadomymi (z których jedną jest x), wynikające z treści zadania, np.: $3x + 2 = x \cdot q$ lub $9x + 16 = x \cdot q^2$.

Zadanie 33.

Zdający otrzymuje 1 pkt, jeżeli:

zapisze równanie wynikające z zastosowania do trójkąta ABC twierdzenia Pitagorasa, np. $|AC|^2 + 24^2 = 26^2$.

Zadanie 34.

Zdający otrzymuje 1 pkt, jeżeli:

zapisze jedynie liczbę 46 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych).

Uwaga:

W ocenie rozwiązania zadania 34. (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi 1. do zadania ze standardowych zasad oceniania.

Zadanie 35.

Zdający otrzymuje 1 pkt, jeżeli:

zastosuje poprawną metodę obliczenia współczynnika kierunkowego równania prostej AB.