Projektseminar

Projekt A

Prof. Dr.-Ing. Rainer Müller Ali Kanso M.Sc.

ZeMA gGmbH
Zentrum für Mechatronik und Automatisierungstechnik

Saarbrücken, 15.05.2020

Gliederung

Matlab in der Robotik und Vorstellung der Projekte

Gliederung

Matlab in der Robotik und Vorstellung der Projekte

Matlab in der Robotik

- Gegeben ist der Roboter UR 10
 - Bestimmen Sie die DH-Parameter des Roboters
 - Schreiben Sie das DH-Model in Matlab
 - Lösen Sie das kinematisches Problem in Matlab
 - Direktes kinematisches Problem
 - Inverses kinematisches Problem
 - Für Kontrolle:
 - Für die Konfiguration (in °):
 - $(q_1, ..., q_6)=(-109,30; -124,75; -100,81; -14,74; 76,24; -27,91)$
 - Ist der Roboter an Pose:
 - [mm]: x= -471; y= -782,73; z=201,03
 - [°]: rot(z)=-179,88; rot(y')=-24,48; rot(x'')=-158,00
 - Tip: eine Abweichung bis 3 mm und 3° ist akzeptable

Universal Robot UR 10

Universal Robot UR 10

Glied	Rot(z) [°]	trans(z) [mm]	trans(x) [mm]	Rot(x) [°]
1	0*			
2	0*			
3	0*			
4	0*			
5	0*			
6	0*			

*: Home position

