Trabalho Laboratorial Radiação do Corpo Negro

João Figueirinhas e Raquel Crespo

Objetivos do trabalho

O objetivo deste trabalho consiste em estudar a **radiação emitida por um modelo do corpo negro** (i.e um objeto ideal que absorve toda a radiação que nele incide).

Concretamente, vamos:

- Estudar o espectro de emissão de um modelo do corpo negro, e verificar experimentalmente a lei de radiação de Planck e a lei de deslocamento de Wien, para vários valores da temperatura absoluta do corpo.
- 2) Estudar a **lei de Stefan**, isto é a intensidade da radiação emitida pelo corpo em função da sua temperatura.
- 3) Comparar a **emissividade** de diferentes superfícies para a mesma temperatura.

Descrição da montagem experimental-I

Para realizar o **estudo das leis de Planck e Wien**, dispomos da montagem apresentada na figura 1, que inclui o seguinte equipamento:

- 1-Lâmpada de filamento de tungsténio.
- 2-Fonte de alimentação.
- 3-Reóstato.
- 4-Voltímetro.
- 5-Amperimetro
- 6-Espectrómetro
- 7-Microvoltímetro.

Figura 1. Montagem experimental-I

Esquema elétrico e diagrama de blocos da montagem-I

- A **lâmpada de filamento de tungsténio** (1) representa o nosso modelo de corpo negro.
- A lâmpada é alimentada por uma fonte de alimentação (2).
- O **reóstatato** (3) colocado em série com a fonte de alimentação, impede a sobrecarga de tensão na lâmpada cujo máximo é de 13 V.
- O **Voltimetro** (4), em paralelo com a lâmpada, mede a tensão aos terminais da lâmpada.
- O **Amperímetro** (5), em série, mede a corrente que percorre o circuito da lâmpada.

O espectrómetro (6). é composto pelos seguintes elementos:

- Um braço de incidência (BI)
 (6a) que recebe e colima a
 radiação da fonte incidente
 (lâmpada de tungsténio).
- A luz colimada incide no prisma (6b) colocado no centro do goniómetro (6c).
- Um braço de refracção (BR)
 (6d) recebe e colima a luz refractada do prisma fazendo-a incidir num sensor de radiação termopilha (6e).

- O **prisma** (6b) é um prisma equilátero que está colocado em cima de uma **base movível** no topo do goniómetro.

- O **goniómetro** (6c) é constituído por um **disco circular** dividido em 360°, sendo que a menor divisão da escala é de 1/3°(20´), e um **nónio**.
- O nónio tem 20 divisões maiores que correspondem a 1' cada. A menor divisão da escala do nónio corresponde a 30".

A leitura do goniómetro é dada pelo ângulo θ para o qual os dois traços do disco circular e do nónio coincidem:

$$\theta = 228^{\circ} + 20 + 2'$$

Leitura feita na escala superior

Leitura feita no nónio

O sensor de radiação termopilha (6e) mede a
intensidade da radiação
convertendo-a num sinal de
tensão proporcional à
intensidade incidente.

 O sinal de tensão registado na termopilha (6e) é lido no microvoltimetro (7) .

- **Ligar a lâmpada** de filamento de Tungsténio assegurando uma tensão máxima de alimentação de V_{max}=**12 V**.
- Verificar que lâmpada está bem alinhada com o braço de incidência.
- Registar a tensão, V, aos terminais da lâmpada e a corrente, I, que a travessa.

- Proceder à medição do **ângulo de incidência** θ do prisma:
- * Escolher uma tensão de alimentação na lâmpada do fio de tungsténio, V=12V.
- * <u>Coloca-se</u> sobre a lente de saída do **braço de incidência** do espectrómetro uma máscara com um fenda vertical e verifica-se se se observa a imagem da lâmpada.
- * Roda-se a base movível do <u>prisma</u> no sentido <u>horário</u> até que a fenda vertical reflectida coincida com a incidente, registando-se θ_1 no goniómetro.
- * Retira-se a máscara e roda-se a base movível do prisma no sentido anti-horário fazendo incidir a radiação refractada num alvo temporário de modo a ser bem visível o espectro da radiação incidente. Determinar a nova posição angular do prisma θ_2 .

- Proceder à medição do **ângulo de incidência** θ do prisma:

- * Determinar $\theta = \theta_1 \theta_2$
- * Fixar a base movível do prisma, com o parafuso que se encontra debaixo da base.

$$\theta = \theta_1 - \theta_2$$

- Proceder à medição do **ângulo de refração** δ do prisma:

V=12 V

- * Retira-se a cobertura do detetor do BR (termopilha) e a cobertura entrada do BR. Roda-se o BR até observar a região verde do espetro visível a incidir na abertura do detetor e mede-se o ângulo correspondente à posição angular do braço BR, β.
- * <u>Colocam-se de novo as **duas** coberturas anteriormente</u> removidas e liga-se o microvoltímetro na escala mais sensível. Dado que o detetor é afetado pelo ruído térmico circundante, torna-se necessário fazer a sua compensação anulando a leitura do microvoltímetro pressionando o interruptor de ruído (IR).
- * Retira-se apenas a cobertura de entrada do BR e faz-se a leitura no microvoltímetro. Se ao colocar novamente a cobertura na entrada do BR, a leitura não for inferior a 3 μ V deverá se repetir o processo de leitura.

- Proceder à medição do **ângulo de refração** δ do prisma:

Interruptor ruido (IR)

Deteror do BR

V=12 V

- * Roda-se o BR no sentido horário fazendo-se medidas da tensão no microvoltímetro, VD(i) (traduz uma medida da emitância espectral) para cerca de 20 posições angulares do BR, separadas entre si de 1/3 de grau e efectuando 3 medidas válidas para cada posição angular, β_i (i=1,20), para a tensão no microvoltímetro
- * Determinar a posição angular do máximo de intensidade luminosa, γ , para esta tensão de alimentação da lâmpada, com o auxílio do microvoltímetro.
- * Repetir as medidas para as 20 posições angulares distintas e as tensões de alimentação da lâmpada de 8.5V e 5V.
- * Retirar o prisma e alinhar os braços do goniómetro de modo a maximizar a leitura do microvoltímetro, registar a posição angular de BR, ε.

Análise de dados I: leis de Planck, Wien

- 2) Determinação dos comprimento de onda, λ_i , correspondentes a cada posição angular de BR, β_i , para cada valor de temperatura T, da lâmpada.
- Fazer a correcção do ângulo de refracção:

$$\delta_i = \varepsilon - \beta_i$$

Determinação do índice de refracção :

$$n = \left\{ \sin^2(\theta) + \left[\sin(\delta - \theta + \alpha) + \cos(\alpha) \sin(\theta) \right]^2 / \sin(\alpha)^2 \right\}^{1/2}$$

- sendo θ o ângulo de incidência no prisma e alfa o ângulo entre as faces do prisma.
- Determinação do comprimento de onda λ_i através da Tabela 2

Tabela 2: Valores do índice de refração do prisma em função do comprimento de onda da luz incidente.

<i>')</i> .	,								
n	λ(nm)	n	λ(nm)	n	λ(nm)	n	λ(nm)	n	λ
1.62420	515.1	1.61470	612.4	1.60540	795.1	1.59600	1227.9	1.58670	2455.8
1.62390	517.1	1.61450	615.5	1.60510	801.8	1.59580	1245	1.58650	2508.8
1.62370	519.2	1.61430	618.7	1.60490	808.7	1.59560	1262.5	1.58630	2563.6
1.62350	521.2	1.61400	621.9	1.60470	815.7	1.59530	1280.5	1.58610	2620.1
1.62320	523.3	1.61380	625.2	1.60440	822.8	1.59510	1299	1.58580	2678.5
1.62300	525.3	1.61360	628.5	1.60420	830.1	1.59490	1317.9	1.58560	2738.8
1.62280	527.4	1.61330	631.9	1.60400	837.6	1.59460	1337.4	1.58540	2801
1.62250	529.5	1.61310	635.4	1.60370	845.2	1.59440	1357.4	1.58510	2865.3
1.62230	531.6	1.61290	638.9	1.60350	853	1.59420	1377.9	1.58490	2931.7
1.62210	533.8	1.61260	642.5	1.60330	861	1.59390	1398.9	1.58470	3000.4
1.62180	535.9	1.61240	646.1	1.60300	869.2	1.59370	1420.5	1.58440	3071.3
1.62160	538.1	1.61220	649.8	1.60280	877.5	1.59350	1442.7	1.58420	3144.7
1.62130	540.3	1.61190	653.6	1.60250	886.1	1.59320	1465.5	1.58400	3220.5
1.62110	542.5	1.61170	657.5	1.60230	894.8	1.59300	1489	1.58370	3298.9
1,62090	544.7	1.61140	661.4	1.60210	903.7	1.59280	1513.1	1.58350	3380
1.62060	546.9	1.61120	665.4	1.60180	912.8	1.59250	1537.8	1.58330	3463.9
1.62040	549.2	1.61100	669.4	1.60160	922.2	1.59230	1563.3	1.58310	3550.8
1.62020	551.4	1.61070	673.6	1.60140	931.7	1.59210	1589.4	1.58280	3640.7
1.61990	553.7	1.61050	677.8	1.60110	941.5	1.59180	1616.3	1.58260	3733.7
1.61970	556.1	1.61030	682.1	1.60090	951.5	1.59160	1643.9	1.58240	3830
1.61950	558.4	1.61000	686.5	1.60070	961.8	1.59140	1672.4	1.58210	3929.8
1.61920	560.8	1.60980	690.9	1.60040	972.3	1.59110	1701.6	1.58190	4033.1
1.61900	563.2	1.60960	695.5	1.60020	983	1.59090	1731.7	1.58170	4140.1
1.61870	565.6	1.60930	700.1	1.60000	994	1.59070	1762.6	1.58140	4251.1
1.61850	568.1	1.60910	704.8	1.59970	1005.2	1.59050	1794.5	1.58120	4366
1.61830	570.6	1.60890	709.7	1.59950	1016.8	1.59020	1827.2	1.58100	4485.2
1.61800	573.1	1.60860	714.6	1.59930	1028.6	1.59000	1861	1.58070	4608.8
1.61780	575.7	1.60840	719.6	1.59910	1040.6	1.58980	1895.7	1.58050	4737
1.61760	578.3	1.60820	724.7	1.59880	1053	1.58950	1931.5	1.58030	4869.9
1.61730	580.9	1.60790	730	1.59860	1065.7	1.58930	1968.3	1.58010	5007.9 5151.1
1.61710	583.5	1.60770	735.3	1.59840	1078.7	1.58910	2006.2	1.57980	5151.1 5299.7
1.61690	586.2	1.60750	740.7	1.59810	1092	1.58880	2045.3	1.57960	5299.7 5454
1.61660	589	1.60720	746.3	1.59790	1105.7	1.58860	2085.6	1.57940	5614.2
1.61640	591.7	1.60700	752	1.59770	1119.6	1.58840	2127.1	1.57910 1.57890	5780.6
1.61620	594.6	1.60680	757.7	1.59740	1134	1.58810	2169.8		5953.5
1.61590	597.4	1.60650	763.7	1.59720	1148.7	1.58790	2213.9	1.57870 1.57840	6133.2
1.61570	600.3	1.60630	769.7	1.59700	1163.7	1.58770	2259.3 2306.2	1.57820	6320
1.61540	603.3	1.60610	775.8	1.59670	1179.2	1.58740		1.57820	6514.2
1.61520	606.2	1.60580	782.1	1.59650	1195	1.58720	2354.5	1.57780	6716.1
1.61500	609.3	1.60560	788.6	1.59630	1211.2	1.58700	2404.3	1.57760	07 10.1

Análise de dados I: leis de Planck, Wien

- 1) Determinação da temperatura, T1, do filamento de Tungsténio da lâmpada usada como modelo do Corpo Negro.
 - é feita por interpolação dos dados representados na Tabela 1, sabendo que o valor de referência para a resistência do filamento com temperatura de T=292.35 K é $R(292.35)=0.4911~\Omega$.
- Tomando como exemplo de referência os resultados para a tensão de alimentação de 12V, para determinar a temperatura T1 da lâmpada, começa-se por fazer o cálculo da resistência do filamento da lâmpada a partir da tensão, V1, medida aos seus terminais, e da corrente, I1, que a percorre.

$$R(T1) = V1/I1$$

 $Y1 = R(T1)/R(292.35)$

- Determina-se o declive da recta, m, usando os pontos da tabela em redor de Y1.

$$Y(T) = m T + b$$

E determina-se T1

T/K	R(T)/R(292.35)
292,35	1
300	1,036625
400	1,522336
500	2,021194
600	2,533535
700	3,059699
800	3,600023
900	4,154845
1000	4,724503
1100	5,309336
1200	5,909679
1300	6,525873
1400	7,158254
1500	7,807161
1600	8,472932
1700	9,155904
1800	9,856415
1900	10,5748
2000	11,31141
2100	12,06657
2200	12,84061
2300	13,63389
2400	14,44674
2500	15,27949
2600	16,13248
2700	17,00605
2800	17,90054
2900	18,81629
3000	19,75363
3100	20,71291
3200	21,69445
3300	22,69861
3400	23,72571
3500	24,77609
3600	25,8501

Tabela 1:Valores da resistência relativa do filamento em função da temperatura

Análise de dados I: leis de Planck, Wien

2) Efectuar a representação gráfica da Imitância espectral experimental $I_{exp}(\lambda, T)$ (ou seja a intensidade da radiação emitida por unidade de área numa determinada direção) e comparar com a Imitância teórica dada pela lei de Planck, normalizando as duas curvas pelo valor correspondendo à intensidade máxima, isto é, nomeadamente $I_{exp}(\lambda, T)/I_{exp}(\lambda_{max}, T)$.

$$I(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{k\lambda T}\right) - 1}$$
 Lei de Planck

- Representar graficamente o comprimento de onda correspondente ao máximo da intensidade λ_{max} em função do inverso da temperatura, λ_{max} = B/T comparando o valor encontrado para B com a constante de Wien, ω .

$$\lambda_{max} = \omega/T$$
 $\omega = 2.8977729 \times 10^{-3} \text{ (m*K)}$

Descrição da montagem experimental-II

Para realizar o **estudo experimental da lei de Stefan**, dispomos da montagem apresentada na figura 3, que inclui o seguinte equipamento:

- 1- Lâmpada de filamento de tungsténio.
- 2- Termopilha.
- 3- Voltímetro
- 4- Circuito de alimentação da lâmpada

Figura 3. Montagem experimental-II

Esquema elétrico da montagem-I

Para realizar o **estudo das leis de Stefan**, o esquema elétrico e blocos de montagem está representado na figura 4:

Figura 2: Esquema elétrico de montagem

A **termopilha** (2) é um sensor de radiação que produz uma tensão lida por um **voltímetro** (3) que é proporcional à <u>intensidade da radiação incidente</u>.

A resposta da termopilha é essencialmente constante na região dos infravermelhos, variando a tensão de saída entre 0.002 e 100 mV:

Execução da experiência II: lei de Stephen

Colocar a termopilha a cerca de 8-15 cm da lâmpada

- 1) Colocar a tensão de alimentação da lâmpada a 5 V
- 2) Medir a Temperatura de trabalho de forma análoga a I
- 3) Medir a tensão no voltímetro
- 4) Variar unitariamente a tensão de alimentação até 12V e repetir 2 e 3

Análise de dados II: lei de Stephen

- 1) Representar graficamente o logaritmo da intensidade da radiação emitida versus o logaritmo da temperatura absoluta
- 2) Determinar o declive da reta
- 3) Comparar este valor com o previsto pela lei de Stephen
- 4) Relacionar com os resultados obtidos em I

$$F = e\sigma T^4$$

$$\sigma$$
=5.67 x 10⁻⁸ (W m⁻² K⁻⁴)

Descrição da montagem experimental-III

Para realizar o **estudo das emissividades de diferentes superfícies**, dispomos da montagem apresentada na figura 3, que inclui o seguinte

equipamento:

- 1- Cubo de Leslie.
- 2- Termómetro de termopar.
- 3-Sensor de radiação (Termopilha).
- 4- Voltímetro
- 5- Termómetro ótico

Figura 3. Montagem experimental-II

Para realizar o estudo das emissividades, a fonte de radiação a estudar é um cubo de metálico, **cubo de Leslie**, com quatro faces de superfícies distintas (10cmx10cm):

(1a)- Espelhada.

(1b)- Branca.

(1c)- Cinzenta.

(1d)- Preta

O fonte de calor colocada dentro do cubo de Leslie é uma lâmpada de incandescencia alimentada por uma **fonte de tensão regulável**.

A temperatura das faces do **cubo de Leslie**, é medida diretamente pelo termómetro de termopar (2):

A **termopilha** (3) produz uma tensão lida por um **voltímetro** (4) que é proporcional à <u>intensidade da radiação incidente</u>.

- A emissividade de cada superfície, **S**, do cubo de Leslie é determinada usando um **termómetro ótico no infravermelho** (5).
- Este termómetro ótico deverá ser colocado, sem contacto e perpendicularmente à superfície S do cubo de Leslie que está em equilíbrio térmico à temperatura T medida pelo termopar (2).

A radiação emitida pela superfície à temperatura T, é εI sendo ε emissividade.

(para o caso do corpo negro, objeto ideal que absorve toda a radiação que nele incide , $\epsilon=1$)

- O termómetro ótico permite medir temperaturas, **T**, sem contacto direto com o objeto. Este emite radiação no domínio do infravermelho, dependendo da emissividade, **E** do corpo que é analizada pelo dispositivo e convertida numa informação de temperatura.

Esquema de blocos da montagem-III

Para realizar o **estudo das emissividades**, o esquema de blocos de montagem está representado na figura 5:

Figura 5: Esquema de blocos de montagem III

Execução da experiência III: Estudo das emissividades

Medida usando termómetro otico:

- Colocar a ponta do **Termopar** dentro do cubo de Leslie
- I) Alimentar o **cubo de Leslie** com $V1 = V_{max}$ deixando estabilizar a temperatura no termopar.
- Colocar o termómetro ótico a um dedo da face i do cubo de Leslie. Carregar em SET e mudar a emissividade ε_i, de modo a que a temperatura registada, T_i, seja igual á temperatura medida pelo termopar.
- -Repetir este procedimento para cada face.

Obtem-se então o conjunto de medidas para cada face (i, \mathcal{E}_i, T_i) com i=1,4

Execução da experiência III: Estudo das emissividades

Obtém-se então o conjunto de medidas para cada face (i, V_i , T_i) com i=1,4

Medida usando termopilha:

- Colocar o fio do **termopar** dentro do cubo de Leslie
- I) Alimentar o **cubo de Leslie** com $V1=V_{max}$ deixando estabilizar a temperatura.
- Colocar o **termopilha** a cerca de 3 dedos da **face i do cubo de Leslie** e registar o sinal de tensão no Voltimetro, V_{i.}

Análise dados da experiência III: Estudo das emissividades

Análise dos resultados:

A tensão lida no Voltímetro ligado à termopilha é proporcional à intensidade da radiação I. Para cada face i tem-se:

$$I_i = \varepsilon_i \sigma T^4$$

A tensão lida no Voltímetro ligado à termopilha é proporcional à intensidade da radiação pelo que:

$$\frac{\varepsilon_i}{\varepsilon_j} = \frac{I_i}{I_j} = \frac{V_i}{V_j}$$

- -Comparar estas razões com os valores obtidos usando o termómetro ótico.
- -Discutir o princípio de funcionamento do termómetro ótico.

FIM