# Drones for Humanity

1.1

# **Milestone Three**

November 2020

By: Michael Mascari

### **Table of Contents**

#### 1 Team Information

- 1. Names and Emails of Project Members
- 2. Faculty Advisor
  - 1.2.1 Meetings with Faculty Advisor
- 3. Client
  - 1.3.1 Meetings with Client
  - 1.3.2 Client Feedback

### 2 Project Details

- 2.1 Progress of milestone 3
- 2.2 Discussion of tasks in milestone 3
- 2.3 Plan for next milestone 4

### 3 Faculty Advisor Tasks

- 3.1 Faculty advisor feedback
- 3.2 Faculty advisor grade and signature

# 1. Team Information

# 1.1. Names and Emails of Project Members

| Name             | Email                     | Position                              |  |
|------------------|---------------------------|---------------------------------------|--|
| Michael Mascari  | mmascari2017@my.fit.edu   | Programmer (Computer Vision/AI)       |  |
| Ballard Barker   | bbarker2017@my.fit.edu    | Project Manager/<br>Structures        |  |
| Matthew Backert  | mbackert2017@my.fit.edu   | Systems Engineer                      |  |
| Nicholas Davis   | davisn2017@my.fit.edu     | Avionics/ Propulsion/<br>Aerodynamics |  |
| Brendan Sanders  | bsanders2017@my.fit.edu   | Production/ Structures                |  |
| CJ Gagni         | cgagni2019@my.fit.edu     | Avionics                              |  |
| Justin Williams  | justin2017@my.fit.edu     | Propulsion                            |  |
| Hamdan Alblooshi | halblooshi2016@my.fit.edu | Propulsion                            |  |

# 1.2 Faculty Advisor

The CS faculty advisor for the project is Dr. Debasis Mitra. dmitra@cs.fit.edu

## 1. Faculty Advisor Meeting Dates

o Friday, November 20th

### 1.3 Client

The client is the project team ourselves

### 1.3.1 Client Meeting Dates

- o Friday, October 30th
- $\circ \quad \text{Friday, November } 6^{\text{th}}$

- o Friday, November 13th
- o Friday, November 20th

#### 1.3.2 Client Feedback

Client is very happy with the progress made developing a neural network.

# 2. Project Details

## 1. Progress of Milestone 3

| Task                          | Completion % | To do |
|-------------------------------|--------------|-------|
| 1. Upgrade NN                 | 100%         | none  |
| 2. Test Corsican database     | 100%         | none  |
| 3. Data Augmentation          | 100%         | none  |
| 4. Explore efficiency methods | N/A          | none  |

<sup>\*</sup>all tasks were done by Michael Mascari

### 2.2 Discussion of Tasks in Milestone 3

#### Task 1:

The dataset used for the CNN was the Corsican fire database, which is a collection of images of different environmental fires. Corsican images were classified as 0, and CIFAR10 images were used as a baseline. CIFAR10 was classified as 1.

#### LeNet Model:

- Layer 1: convolutional layer with 20 5x5 filters and a 2x2 max pooling layer
- Layer 2: convolutional layer with 50 5x5 filters and a 2x2 max pooling layer
- Layer 3: convolutional layer
- Layer 4: fully-connected layer
- Layer 5: softmax classifier

#### CNN went very well getting an accuracy of 99%:

| [1.]]                                 | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0.0<br>1.0                            | 0.99<br>1.00 | 1.00<br>0.99 | 0.99<br>0.99         | 1370<br>1354         |
| accuracy<br>macro avg<br>weighted avg | 0.99<br>0.99 | 0.99<br>0.99 | 0.99<br>0.99<br>0.99 | 2724<br>2724<br>2724 |



The skeleton of the CNN was programmed using Keras so it can be considered efficient. The accuracy does seem a bit high, I used CIFAR10 as the non-fire images in the example. In future milestones I will try to find a forest database to compare against.

Task 2: The Database was a bit smaller than anticipated, with only 1200 images of fire. It did come equipped with a subset of images that included people, and the database said they were labeled, but only 4 were labeled, and only ~20 existed. So, it does not seem that the database can be used to train the NN on identifying building, vehicles, or people.

Task 3: Data augmentation methods went well. There were 1200 images to start and using 3 augmentation methods of horizontal flip, horizontal shift, and vertical shift, there became 6800 usable images.

Task 4: Most of the computational power of a NN is in fitting the NN, not running it, so it should be fine to run as long as the image size and frame rate of the camera is low.

### 2. Plan for Milestone 4

Task 1: Ensemble methods. Build 2 more CNN and take the average result of an image as the classification. Increases accuracy.

Task 2: Find better dataset to compare against Corsican database. An accuracy of 99% sounds too high, so I need a more difficult (realistic) dataset to use as the other classification for future tests. This can be made.

# 3. Faculty Advisor Tasks

| 3.1. Faculty Advisor Feedback                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Task 1:                                                                                                                              |
| Task 2:                                                                                                                              |
| Task 3:                                                                                                                              |
| Task 4: Provide sample image of Corsican/other images for success/failure cases.                                                     |
| For future, you may like to take cell-phone pictures of small fires (from above)/no-fire of same place, and try those with your net. |
| Faculty Advisor Signature:Debasis Mitra Date: _12/02/20                                                                              |