Спайковые НС

Spike Responce Model. Spike Responce Model (SRM) - наиболее популярная модель спайкового нейрона. SRM своей популярностью обязана простотой математической интерпретации - вся динамика нейрона описывается одним уравнением вида u(t), которое описывает напряжение на мембране нейрона и, по сути, является решением дифференциального уравнения для моделей типа $Integrate\ and\ fire$. Динамику моделей $Integrate\ and\ fire$ можно описать так: нейрон суммирует входные сигналы и по достижению определенного порога, производит спайк, после чего нейрон переходит в состояние рефракторности, находясь в котором, вероятность нового спайка крайне мала.

Поведение описанное выше можно поэтапно собрать в одну формулу:

1. Функция описывающая напряжение на синапсах. В качестве такой функции можно взять альфа функцию с экспоненциальным подъёмом и спадом, причем подъем и спад наиболее натуральным будет взять быстрым и медленным соответственно. Типичный график подобной функции можно посмотреть на рисунке ниже:

Рис. 1: Потенциал на синапсах

Такая функция задается формулой:

$$\epsilon(t) = e_0(\exp(-t/t_m) - \exp(-t/t_s)),\tag{1}$$

где $e_0=1.3 {\rm mB}$ - контанста задающая масштаб потенциала, $t_m=0.7 {\rm mc}$ - константа отвечающая подъем, $t_s=10 {\rm mc}$ - константа отвечающая спад.

2. Функция описывающая рефракторность нейрона. Основное требования к такой функции в том, чтобы напряжение на нейроне резко падало вниз, и потом медленно восстанавливалось. График подобной функции можно увидеть на рисунке ниже:

Рис. 2: Рефракторность нейрона

Здесь используется данная функция:

$$\eta(t) = \eta_0(-\exp(-t/t_m)),\tag{2}$$

где $\eta_0=-150 {\rm mB}$ - констанста описывающая минимальное напряжение на мембране, от которого идёт медленное восстановление, t_m - скорость восстановления можно взять из функции синаптического потенциала, для простоты.

В итоге, используя эти функции, можно записать уравнение, которое будет описывать напряжение на мембране нейрона, причём:

- Пусть нейрон i имеет N синапсов и у каждого синапса есть вес w_i , тогда напряжение на мембране в данный момент времени t будет взвешенной суммой синаптических потенциалов: $\sum_{j=1}^{N} w_j \sum_{f_j} \epsilon_j (t-f_j)$, где f_j время спайка на синапсе j.
- Рефракторность нейрона будет простой суммой по всем спайкам, которые произвел нейрон i: $\sum_{f_i} \eta(t-f_i)$
- Нейрон имеет т.н. потенциал покоя. Биологические нейроны имеют разнообразные значения этого потенциала, как правило берут $u_{rest} = 70 \text{ MB}.$

Таким образом получаем формулу, которая объединяет все вышеописанные особенности:

$$u(t) = u_{rest} + \sum_{j=1}^{N} w_j \sum_{f_j} \epsilon_j (t - f_j) + \sum_{f_i} \eta(t - f_i),$$
 (3)

Типичный график иллюстрирующий работу функции 3 ниже:

Рис. 3: Потенциал нейрона

На рисунке представлен случай когда произошли спайки на двух синапсах во времена $f_1=\{10,16\}$ и $f_2=\{15,20\}$, которые заставили нейрон произвести спайк в $f_i=\{21\}$. Веса были выбраны большими, для наглядности графика.