2. Entscheidbarkeit, Halteproblem

Wir wollen nun zeigen, dass es keinen Algorithmus geben kann, der als Eingabe ein (beliebiges) Programm P und Daten x für P erhält und (für jedes solches Paar (P,x)!) entscheidet, ob P hält, wenn es mit Eingabe x gestartet wird.

Wir erinnern uns:

- Eine Sprache A ist rekursiv gdw die charakteristische Funktion χ_A berechenbar ist.
- Eine Sprache A ist rekursiv aufzählbar (r.a.) gdw die semi-charakteristische Funktion χ'_A berechenbar ist.

2.1 Rekursive Aufzählbarkeit

Definition 152

Eine Sprache $A\subseteq \Sigma^*$ heißt rekursiv auflistbar, falls es eine berechenbare Funktion $f:\mathbb{N}_0\to \Sigma^*$ gibt, so dass

$$A = \{f(0), f(1), f(2), \ldots\}.$$

Bemerkung: Es ist nicht verlangt, dass die Auflistung in einer gewissen Reihenfolge (z.B. lexikalisch) erfolgt!

Beispiel 153

 Σ^* (mit $\Sigma=\{0,1\}$) ist rekursiv auflistbar. Wir betrachten dazu etwa folgende Funktion:

alle nullstelligen Wörter
$$f(0) = \epsilon$$
 alle einstelligen Wörter
$$\begin{cases} f(1) = 0 \\ f(2) = 1 \end{cases}$$
 alle zweistelligen Wörter
$$\begin{cases} f(3) = 00 \\ f(4) = 01 \\ f(5) = 10 \\ f(6) = 11 \end{cases}$$
 alle dreistelligen Wörter
$$\begin{cases} f(7) = 000 \\ \vdots \end{cases}$$

Beispiel 153

Eine weitere Möglichkeit, eine Funktion f anzugeben, die alle Wörter $\in \{0,1\}^*$ auflistet, ist:

$$f(n) = \text{Binärkodierung von } n+1 \text{ ohne die führende } 1$$

Also:

$$f(0) = 1\epsilon$$

 $f(1) = 10$
 $f(2) = 11$
 $f(3) = 100$
 \vdots \vdots

Beispiel 153

 $L_{TM} = \{w \in \{0,1\}^*; w \text{ ist Codierung einer TM}\}\$ ist rekursiv auflistbar:

Wir listen $\{0,1\}^*$ rekursiv auf, prüfen jedes erzeugte Wort, ob es eine syntaktisch korrekte Codierung einer Turing-Maschine ist, und verwerfen es, falls nicht.

Wir wählen stattdessen die kanonische Auflistung von $\{0,1\}^*$ und ersetzen jedes dabei erzeugte Wort, das keine korrekte Codierung darstellt, durch den Code einer Standard-TM, die \emptyset akzeptiert.

Eine Sprache A ist genau dann rekursiv auflistbar, wenn sie rekursiv aufzählbar (semi-entscheidbar) ist.

Beweis:

Wir zeigen zunächst " \Rightarrow ". Sei $f:\mathbb{N}_0 \to \Sigma^*$ eine berechenbare Funktion, die A auflistet. Betrachte folgenden Algorithmus: lies die Eingabe $w \in \Sigma^*$ x:=0 while true do if w=f(x) then return ("ja"); halt fi x:=x+1

od

Beweis:

Wir zeigen nun " \Leftarrow ".

Sei P eine WHILE-Programm, das die semi-charakteristische Funktion χ'_A berechnet, und sei f eine berechenbare Funktion, die Σ^* auflistet.

Betrachte folgenden Algorithmus:

```
lies die Eingabe n \in \mathbb{N}_0
count := -1: k := -1
repeat
  k := k + 1
  w := f(c_1(k)); m := c_2(k)
  if P hält bei Eingabe w in genau m Schritten then
    count := count + 1
until count = n
return w
```

Hier sind c_1 und c_2 die Umkehrfunktionen einer Paarfunktion.

2.2 Halteproblem

Definition 155

Unter dem speziellen Halteproblem H_s versteht man die folgende Sprache:

$$H_s = \{w \in \{0,1\}^*; \ M_w \text{ angesetzt auf } w \text{ h\"alt}\}$$

Hierbei ist $(M_{\epsilon}, M_0, M_1, \ldots)$ eine berechenbare Auflistung der Turing-Maschinen.

Wir definieren weiter

Definition 156

$$L_d = \{ w \in \Sigma^*; M_w \text{ akzeptiert } w \text{ nicht} \}$$

 L_d ist nicht rekursiv aufzählbar.

Beweis:

Wäre L_d r.a., dann gäbe es ein w, so dass $L_d = L(M_w)$.

Dann gilt:

$$\begin{array}{lll} M_w \text{ akzeptiert } w \text{ nicht} & \Leftrightarrow & w \in L_d \\ & \Leftrightarrow & w \in L(M_w) \\ & \Leftrightarrow & M_w \text{ akzeptiert } w \end{array}$$

 \Longrightarrow Widerspruch!

Korollar 158

 L_d ist nicht entscheidbar.

 H_s ist nicht entscheidbar.

Beweis:

Angenommen, es gäbe eine Turing-Maschine M, die H_s entscheidet. Indem man i.W. die Antworten von M umdreht, erhält man eine TM, die L_d entscheidet. Widerspruch!

2.3 Unentscheidbarkeit

Definition 160

Unter dem (allgemeinen) Halteproblem H versteht man die Sprache

$$H = \{\langle x, w \rangle \in \{0, 1\}^*; M_x \text{ angesetzt auf } w \text{ hält}\}$$

Satz 161

Das Halteproblem H ist nicht entscheidbar.

Beweis:

Eine TM, die H entscheidet, könnten wir benutzen, um eine TM zu konstruieren, die H_s entscheidet.

Bemerkung: H und H_s sind beide rekursiv aufzählbar!

Definition 162

Seien $A, B \subseteq \Sigma^*$. Dann heißt A (effektiv) reduzierbar auf B gdw $\exists f : \Sigma^* \to \Sigma^*, f$ total und berechenbar mit

$$(\forall w \in \Sigma^*)[w \in A \Leftrightarrow f(w) \in B].$$

Wir schreiben auch

$$A \hookrightarrow_f B$$
 bzw. $A \hookrightarrow B$.

bzw. manchmal

$$A \leq B$$
 oder auch $A \leq_f B$.

Ist A mittels f auf B reduzierbar, so gilt insbesondere

$$f(A)\subseteq B$$
 und $f(\bar{A})\subseteq \bar{B}$.

Sei $A \hookrightarrow_f B$.

- (i) $B \text{ rekursiv} \Rightarrow A \text{ rekursiv}.$
- (ii) B rekursiv aufzählbar $\Rightarrow A$ rekursiv aufzählbar.

Beweis:

- (i) $\chi_A = \chi_B \circ f$.
- (ii) $\chi'_A = \chi'_B \circ f$.

Definition 164

Das Halteproblem auf leerem Band H_0 ist

$$H_0 = \{w \in \{0,1\}^*; M_w \text{ hält auf leerem Band}\}.$$

Satz 165

 H_0 ist unentscheidbar (nicht rekursiv).

Beweis:

Betrachte die Abbildung f, die definiert ist durch:

$$\{0,1\}^* \ni w \mapsto f(w),$$

f(w) ist die Gödelnummer einer TM, die, auf leerem Band angesetzt, zunächst $c_2(w)$ auf das Band schreibt und sich dann wie $M_{c_1(w)}$ (angesetzt auf $c_2(w)$) verhält. Falls das Band nicht leer ist, ist es unerheblich, wie sich $M_{f(w)}$ verhält.

f ist total und berechenbar.

Es gilt:
$$w \in H$$
 $\Leftrightarrow M_{c_1(w)}$ angesetzt auf $c_2(w)$ hält $\Leftrightarrow M_{f(w)}$ hält auf leerem Band $\Leftrightarrow f(w) \in H_0$

also $H \hookrightarrow_f H_0$ und damit H_0 unentscheidbar.

Bemerkung

Es gibt also keine allgemeine algorithmische Methode, um zu entscheiden, ob ein Programm anhält.

