Химические реакции, стохастическое горение

Этап №2

Саргсян А. Г. Тасыбаева Н. С. Алхатиб Осама Саинт-Амур Исмаэль Тазаева А. А. Юсупов Ш. Ф.

2023 год

Российский университет дружбы народов, Москва, Россия

Цели и задачи

Цель проекта: на основе построения ансамбля частиц, в которых возможна мономолекулярная экзотермическая реакция, изучить принципы математического моделирования.

Цели и задачи

Задачи проекта:

- 1. Изучить теоретическую информацию об экзотермитеских реакциях;
- 2. Ознакомиться с алгоритмом расчета количества непрореагировавших молекул при нулевой теплопроводности вещества;
- 3. Ознакомиться с алгоритмом расчета количества непрореагировавших молекул при бесконечной теплопроводности вещества;

Реакция при нулевой теплопроводности вещества

При нулевой теплопроводности вещества:

- 1. тепло остается там, где произошла реакция, и никак не влияет на реакцию других молекул;
- 2. реакция происходит при постоянной температуре непрореагировавших молекул T_0 , следовотельно изменение со временем их числа задается уравнением:

$$\frac{dN}{dt} = \frac{-N}{\tau} * exp(\frac{-E_a}{kT_0}) = -uN$$

Реакция при нулевой теплопроводности вещества

- Скорость химической реакции, приведенная к одной молекуле $u=\frac{-1}{\tau}*exp(\frac{-E_a}{kT_0})$ не зависит от времени;
- В этом случае решение уравнения хорошо известно $N=N_0 exp(-ut)$;
- Аналогичная ситуация происходит, если теплопроводность среды бесконечна, температура стенок постоянна и равна T_0 ;

Реакция при бесконечной теплопроводности вещества

Когда процесс адиабатический, и вещество имеет бесконечную теплопроводность, при реакции одной молекулы температура среды увеличивается на $\Delta T = \frac{q}{N_0 c}$ При этом случае решение сводится к системе уравнений:

$$\begin{cases} \frac{dN}{dt} = \frac{-N}{\tau} * exp(\frac{-E_a}{kT_0}) \\ \frac{dT}{dt} = \frac{-q}{N_0 c} * \frac{dN}{dt} \end{cases}$$

Реакция при бесконечной теплопроводности вещества

- Повышение температуры приводит к увелечению вероятности перехода для следующих молекул;
- При некоторых соотношениях E_a , c, q возможно явление теплового взрыва;
- При конечном числе частиц результаты моделирования могут отличаться от опыта к опыту;
- Отклонения средних значений от решения дифференциальных уравнений уменьшаются с ростом числа опытов n как $\frac{1}{\sqrt{n}}$

Выводы

На данном этапе нашего проекта мы рассмотрели алгоритмы решения задачи при случаях, когда вещество имеет нулевую теплопроводность, и при случае, когда теплопроводность бесконечная, а процесс адиабатический.