Física I – 2021 – FaMAF - UNC Guía Nº 6

Problema 1: Un bloque de 15kg. que cae por un plano inclinado experimenta una fuerza de rozamiento de 30N. El coeficiente de roce dinámico es $\mu_d = 0.25$.

- a) Calcular la aceleración con la que cae el bloque.
- b) Calcular la fuerza normal.
- c) ¿Cuánto valdrá la fuerza de rozamiento si la aceleración es la mitad de la calculada en a)?

Problema 2: En el sistema de la figura $m_1 = m_2 = m_3 = 40$ kg. La fuerza actuante de módulo F = 360N

acelera al sistema, siendo el coeficiente de rozamiento cinético entre los bloques y el plano de apoyo $\mu_c=0,2.$ Calcular:

- a) La aceleración del sistema.
- b) La tensión en las cuerdas (T₁ y T₂).

Problema 3: Del techo de un vagón cuelga un hilo con una pesa de masa m (ver figura). El vagón viaja con una aceleración \mathbf{a} , y el ángulo α se mide desde la vertical.

- a) ¿Cuánto vale α en función del módulo del vector **a**?
- b) El mismo vagón está subiendo, con aceleración \mathbf{a} , por una pendiente que forma un ángulo θ con la horizontal. ¿Cuál es el ángulo que forma el hilo con la normal a la superficie del techo del vagón?

Problema 4: Suponiendo conocidas m_1 y m_2 , encontrar los valores de T_1 , T_2 y el de la reacción del plano sobre la masa m_1 . Considere conocido el ángulo α y despreciable

todo tipo de rozamiento.

Problema 5: Dos bloques *A* y *B*, de masas 8 kg y 16 kg respectivamente, están unidos por una cuerda y deslizan hacia abajo por un plano inclinado (ver figura). El coeficiente de rozamiento dinámico entre *A* y el plano es 0.25 y entre *B* y el plano 0.5.

- a) Calcule la aceleración de los bloques.
- b) Calcule la tensión en la cuerda.
- c) ¿Qué ocurrirá si se intercambian los bloques?

Problema 6: El bloque *B* pesa 80 N y el *A*, 40 N (ver figura). El coeficiente de rozamiento dinámico entre superficies es 0.25. Calcular la fuerza **P** necesaria para arrastrar el bloque *B*, hacia la izquierda, con velocidad constante (despreciar el rozamiento en la polea), mientras ambos bloques están en contacto.

- a) Suponga primero que sólo existe roce entre los bloques.
- b) Resuelva nuevamente considerando también la existencia de roce con el suelo.

Problema 7: Como se muestra en la figura, una esfera está amarrada a un extremo de un cordel de longitud R en tanto que el otro extremo se encuentra sujeto a un punto fijo. La esfera se mueve en un círculo horizontal como se muestra. Encontrar la velocidad lineal de la pelota en su trayectoria circular si el cordel forma un ángulo θ con la vertical.

Problema 8: Dos esferas están unidas a los extremos de dos cuerdas en la forma indicada en la figura. Cuando las esferas están cargadas eléctricamente, se repelen con una fuerza $F = 9 \times 10^9 q_1 q_2/r^2$ newton, donde r está dada en metros y q en coulomb.

Si la masa de cada bola es de 1g, l=100 cm, y el ángulo de desviación es $\theta=30^{\circ}$, ¿cuánto valen las cargas (supuestas iguales) de las esferas?

Problema 9: Un hilo de longitud l une dos pesos w_1 y w_2 colocados sobre un cilindro liso, en la forma indicada en la figura.

- (a) Determinar la relación existente entre ϕ_1 y ϕ_2 en el equilibrio.
- (b) ¿Cuáles son, en tal caso, la tensión del hilo y las fuerzas que se ejercen sobre el cilindro?

- a) Escriba la ecuación de movimiento para este cuerpo (2ª ley de Newton).
- b) Determine velocidad terminal de la partícula (¿existe un valor de v tal que a=0?)
- c) Sabiendo que la derivada de una función exponencial es proporcional a sí misma, proponga una solución para v(t) suponiendo que la partícula parte del reposo.
- d) A partir de los resultados obtenidos del deber 2, estime el tiempo de decaimiento en la función de velocidad.

