Problem Set

MA18Q1-N

mail@kenjisato.jp

2018/5/25

Discrete-time Ramsey model

To make the model simple, assume that there is no population growth (n=0) or technical growth (g=0). Assume further that $\delta=1$. We omit hat (\hat{s}) for simplicity.

The capital accumulation equation, under Cobb-Douglas production function, is

$$k_t = k_{t-1}^{\alpha} - c_t, \quad 0 < \alpha < 1$$

where k_t is the capital per capita for period t, c_t consumption per capita. The representative consumer solves

$$\max \sum_{t=1}^{\infty} \beta^{t-1} \ln (k_{t-1}^{\alpha} - k_t) =: V(k_0)$$

where $k_0 > 0$ is given and β (0 < β < 1) is the discount factor. The Bellman equation is expressed as

$$V(x) = \max_{y} \left[\ln \left(x^{\alpha} - y \right) + \beta V(y) \right]$$

Our goal here is to find a function for which the optimal trajectory $(k_t)_{t\geq 0}$ satisfies $k_t = h(k_{t-1})$ for all $t \geq 1$.

- 1. Suppose that the value function has the form $V(x) = a + b \ln x$. Derive the maximizer y as a function of x; y = h(x) is a candidate for the optimal policy $k_t = h(k_{t-1})$.
- 2. Find *a* and *b* such that $V(x) = \ln(x^{\alpha} h(x)) + \beta V(y)$ holds true.
- 3. Find optimal policy function h such that $k_t = h(k_{t-1})$ for optimal path k_0, k_1, k_2, \ldots and draw a staircase diagram to show that the optimal capital accumulation path converges to a finite limit k^* , from which you can be sure that you made a correct guess.