

LABORATORY WORK SHEET

Name of the Student MADK(SA! CHARANI Class CSM-C Semester ISt				Ro	II N	lumi	ber	-		
	2	3	9	5	1	A	6	6	F	2
Course Code AEEOO3 Course Name Ekchical and sectionity Engineers of the Course Faculty MS M. VARALAKSHMI	ine	eri	ng	(a.	60	y ID	tors tf	y.	E	no
Exercise Number 08 Week Number 08										no c

DAY TO DAY EVALUATION:

Marks	Aim /	Algorithm / Procedure	Source Code	Program Execution	Viva -	
mang	Preparation	Performance in the Lab	Calculations and Hesults and Error Graphs Analysis		Viva	Total
Max. Marks	4	4	4	4	4	20
Obtained	4	4	4	4	4	20

Signature of Faculty

A 199 WITH IN CO.

START WRITING FROM HERE:

SWIMBURNE'S TEST ON DC SHUNT MOTOR.

Aim: Pre determine the efficiency and constant losses of a pc shurt machine by swimburne's method.

Apparatus:

s. No	Items	Type	Range	Quantity
1.	Ammeter	mc	0-20A	t
2.	voltmeter	MC	0-300V	1
3.	Ammeter	MC	0-2A	1
ч.	Rheostat	where wound	1-7A	ı
5.	Connecting	<i>J-</i>	-	-

Name	Plate	details:	Mo	tormilles
, ct 1969	Manage .	(19) 12	vol-lage	230
			curent	199
			output	5 HP
			Speed.	1500 YPM

procedure: O choose the proper ranges of meters after noting the name plate details of the given machine and make the connections as per the circuit diagram.

ARLERS AL

(a) Keep the motor field theostat (Rf) in the minimum start the motor by closing the Switch and operating the Starter slowly.

(3) Run the motor at rated speed by adjusting the motor field rheostat.

@ Note down the vollages no load current and field current colculation for swinburn's test:

from the no load test results

Supply voltages = VL volts.

No load line current = IL Amperes.

Field current = If Amperes

Therefore No load cultures = Ia 0 = IL - It Amperes.

armature resistance = Ra; Ra = 1-25 Ohms

no load copper losses are = I ao Ra.

No load power inpid = VLIL

constant 60 35 es = (no load power input - no load.

Copper tosses).

All DE - Wal allabout

Tabular column:

5. NO	v (vott)	JLO(A)	I. (A)	speed (rpmg
1 50	230	Lau.	0.7	1500

4748479 5 11

Petrolin

As a motor Rated voltage VL= 250 V

5-N0	vollage (v)	I _L	(V)	input power (1°:) Viave watt	constant loss co w const watt	Coppel Losses Wey=ILa (w)	Total Lasses (without + war) (w)	power (t/p Total (osses) cw>	2%.
01	230	7,6	0.H	322	321-4	0.610	311	0	- 010
02	230	2_	0.7	460	321.4	2.11 000	813.51	136.44	29.67
03	150	Le	0.7	920	321-4	13.61	335.61	564.19	63-8
04	230	5	0-7	1150	311.4	23.11	344.51	805.44	70.04
05	250	9	F + O	(610	321.6	49-61	891-01	n.3811	76,92

As a generator rated voltage VL = 230 V.

5-NO	uoltage (v)	IL (A)	(4)	power [VL IL)	constant losses, w const	topper losses wa=Ja*Ra	Total losses (w _{torst} + way	Input, power (output power losses	2
10	230	1.4	0.7	320	32.1-4	5.51	346.91	BURNESS CONTRACTOR	49.6
3	230	2	0-7	460	321.4	9.11	330-51	790.51	58.19
3	230	4	0.7	910	32114	29.61	349.01	1269.01	72.49
4	2.30	5	0.7	1156	32114 .	40161	362.01	1511401	76.05
5	230	7	0.7	1610	324, 4	74.11	395.31	12-2005	80:3

efficiency as motor:

efficiency = output = linput-total lossey/input.

where; total losses = constant losses + variable losses constant losses are known value from the equation. ① variable loss = Ia^*Ra where Ia = IL - If.

Input = V, IL; VL is raded voltage at the machine.

Assume line cultudes (IL) as 2,4,6,-- 20th and

find corresponding efficiency.

efficiency as Generator:

efficiency = output/input = output/contput total (osses)

where cossed= constant lossest variable losses.

* constant losses are same for both motor and

Armature current, Ia = IL+If.

variable loss - Ia Ra

output power = V_ IL, VL is rated witage

of the machine. Assume load current (I) as

2, 4, 6, ---, 2 OA and find efficiencies.

Calculations: Vin = 230 V; ILo= 1-4; IJ=0.7; Speed = 1500 xpm

NO-100d Input = Vin ILO = 230 X 1.4

· Ja = IL - St = 1.4 - 0.7 = 0.7

Live anthrong 1 Ra = 1-25-24 more and him of B

Variable (0556) = Ia" Ra = (0.7) × 1.25 = 0.61

NO- load input - constant losses + variable losses (cu)

We = Vin I to - Iao la

We = 322-0.6

We = 321.4

Rated current = 11A; Assuming J. = 1.4 V= 230 ; J. = 10A If = (0-1)-A a cold to the state of the state of

In = I, - I, - 1.4-0.7= 0.74

Total input = VI = 230 x1.4 = 521 A We salisting the same and a second

Copper losses = In Par = 0.7 x 1.25 = 0.61

n = output Input losses VIL - [wc+ Ja Pa] Input

> 1 = 311 + 311 = 0 1/4 AT - STATE THE TOWN

(365(4) 2076 |

Precautions: @ Run the motor at rated speed and rated voltage-

@ Avoid loose connections and parallax errors.

Result: Hence, verified the efficiency and constant losses of DC shunt machine by swinburners tut-

Swinburne's Test on DC Shunt Motor. Un x- oxis CHARGE ST On y axis 1505 - 20 yans 10D Generatur E AT CRANCY Moter 60 50 40 30 20 0 0 10 Xaxis (Block Bired)

LABORATORY WORK SHEET

- V #33017176

Name of the Student				Roll Number								
Class Course Code		rse Name	2	3	9	5	1	A	6	6	F	2
Name of the Course F	aculty		···				200					
Exercise Number	08	Week Numb	er 08			Da	de :	2.	1 [Dec	emi	64 20

DAY TO DAY EVALUATION:

Marks p	Aim /	Algorithm / Procedure Source Code Program Execution		Viva -	Total	
	Preparation	Performance in the Lab	Calculations and Graphs	Results and Error Analysis	Voce	IOIai
Max. Marks	4	4	4	4	4	20
Obtained						

Signature of Faculty

START WRITING FROM HERE:

Speed control of a Dc shunt motor.

Aim: To vary the speed of the given de shunt motor by armature control and field control methods and to predeturine the efficiency of a ps shunt motor by swim burne's (test) method.

Name plate details:

Motor.					
voltage	220V				
current	II fi				
output	34 P				
speed	ISOOTPM				

Apparatus:

s.No	Item	Туре	Range	Quantity
1.	Ammeter	Mc	0-2A 0-20A	1
2 -	voltmeta	Me	0 -300~)
3-	Rheastat	Wite wound	870-11-7A	1
4.	Tachometer,	Digital	-	

procedure of speed control:

Asmatuse control method: [below rated speed].

TARREST TO SE

- 1 Choose the proper ranges of meter after nothing the name plate details of the given mochine and the name plate details of the given machine and make the connections or per the circuit diagram.
- @ keep the motor field rheastat (Rr) in the minimum position and the almatuse rheostat (Ras) in the maximum position. . Start the MG set.
- 3 Give supply and accelerate the motor using 3-point starter.
- @ Decrease the armature rneostat value and note down speed and included emt. in motor
- @ Tabulate these readings and plot the graph Eb vs N.
- Field control method: [above rated speeds] Past - B. 1) Maintain the asmatule sheostat in maximum position and vary the field current (It) by varying the field rheostat · Notedown the speeds (N) at different values of field current. Take care that the speed doesn't exceed 2000 mp. note down the armature voltage also.
- @ Tabulate these reactings and plot the N vs It describes the field control of motor speed on no load.

Tabular column:

Armature control method

SNO	Eb (vott)	Speed (rpm)
1	210	1500
2	140	1023
3	qs do	653
VI2008	TOWN II	1 1103

Field control method.

-14avarzhry

Procedure and Great Compacts

5.NO	I4(A)	speed (rmp)
15 19	0-56	1500
10	0.5	1566
131	10-445	1642
T.N.	Transfer of the same	-1

Model graph:

maximum positions . The role sel

- media sportion academy to cost

43 mal

Field current 34 ->

bless mitoro and assist &

Precautions: 1) Avoid Loose connections and parallax essols.

@ Take care while using the starter.

266

- 3 keep the armouture and field theostal at proper C. Michigano ages obligations in positions.
- (4) The greed should be adjusted to rated went for the talker to the Speed. material impressed diseases the sale lange wet

