

Ve370 Introduction to Computer Organization

Homework 6

Assigned: November 11, 2021

Due: 2:00pm on November 23, 2021

Submit a PDF file on Canvas

1. (10 points) The following code is written in C, where elements within the same row are stored contiguously. Assume each word is a 32-bit integer.

(1) Which variable references exhibit temporal locality? (5 points)

Answer: I, J, B[I][0]

(2) Which variable references exhibit spatial locality? (5 points)

Answer: A[I][J]

- 2. (40 points) Below is a list of 32-bit memory address references, given as word addresses: 0x03, 0xB4, 0x2B, 0x02, 0xBF, 0x58, 0xBE, 0x0E, 0xB5, 0x2C, 0xBA, 0xFD
 - (1) For each of these references, identify the tag and the cache index given a direct-mapped cache with 8 one-word blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. (10 points)

Word Address	Index	Tag (27 bits)	Hit or Miss
0x0000_0011	011	00000	M
0x1011_0100	100	10110	M
0x0010_1011	011	00101	M
0x0000_0010	010	00000	M
0x1011_1111	111	10111	M
0x0101_1000	000	01011	M
0x1011_1110	110	10111	M
0x0000_1110	110	00001	M
0x1011_0101	101	10110	M
0x0010_1100	100	00101	M
0x1011_1010	010	10111	M
0x1111_1101	101	11111	M

(For tag, either sign or zero extension is OK.

Index	Valid	Tag	Data
000	1	01011	
001	0		
010	1	10111	
011	1	00101	
100	1	00101	
101	1	11111	
110	1	00001	
111	1	10111	

(2) For each of these references, identify the tag and the cache index given a direct-mapped cache with two-word blocks and a total size of 4 blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. (10 pints)

Word Address	Index	Tag (27 bits)	Hit or Miss
0x0000_0011	01	00000	M
0x1011_0100	10	10110	M
0x0010_1011	01	00101	M
0x0000_0010	01	00000	M
0x1011_1111	11	10111	M
0x0101_1000	00	01011	M
0x1011_1110	11	10111	Н
0x0000_1110	11	00001	M
0x1011_0101	10	10110	Н
0x0010_1100	10	00101	M
0x1011_1010	01	10111	M
0x1111_1101	10	11111	M

Index	Valid	Tag	Word 0	Word 1
00	1	01011	0x58	0x59
01	1	10111	0x02	0x03
10	1	11111	0xFC	0xFD
11	1	00001	0x0E	0x0F

(3) You are asked to optimize a cache design for the given references. There are three direct-mapped cache designs possible, all with a total of 8 words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word blocks. In terms of miss rate, which cache design is the best? If the miss stall time is 35 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is the best cache design? (20 points)

Word Address	Index	Tag (27 bits)	Hit or Miss
0x0000_0011	0	00000	M
0x1011_0100	1	10110	M
0x0010_1011	0	00101	M
0x0000_0010	0	00000	M
0x1011_1111	1	10111	M
0x0101_1000	0	01011	M
0x1011_1110	1	10111	Н
0x0000_1110	1	00001	M
0x1011_0101	1	10110	M
0x0010_1100	1	00101	M
0x1011_1010	0	10111	M
0x1111 1101	1	11111	M

Index	Valid	Tag	Word 0	Word 1	Word 2	Word 3
0	1	01011	0xB8	0xB9	0xBA	0xBB
1	1	11111	0xFC	0xFD	0xFE	0xFF

In terms of miss rate, C1's miss rate is 100%, C2's miss rate is 83.3%, C3's miss rate is 91.7%. C2 is the best.

In terms of total time:

For C1: Total time = 12 * 2 cycles + 12 * 35 cycles = 444 cycles For C2: Total time = 12 * 3 cycles + 10 * 35 cycles = 386 cycles For C3: Total time = 12 * 5 cycles + 11 * 35 cycles = 445 cycles C2 is the best design.

3. (50 points) For a direct-mapped cache design with a 32-bit byte address, the following bits of the address are used to access the cache.

Tag	Index	Offset
31 - 10	9 - 5	4 - 0

(1) What is the cache block size (in words)? (5 points)

Answer: 8 words

(2) How many blocks does the cache have? (5 points)

Answer: 32 blocks

(3) What is the ratio between total bits required for such a cache implementation over the data storage bits? (5 points)

Answer: Assume only valid bit is implemented.

Each block has 1 valid and 21 bits of tag, total number of bits = 32 * (21 + 1) = 704 bits

Each block has 8 words of data, total bits = 32 * 8 * 32 = 8192 bits

Ratio = 704 / 8192 = 8.59%

Beginning from power on, the following byte addresses for cache references are recorded.

Address												
	0x00	0x04	0x10	0x84	0xE8	0xA0	0x400	0x1E	0x8C	0xC1C	0xB4	0x884

- (4) (20 points) For each reference, list
 - a) its tag, index, and offset
 - b) whether it is a hit or a miss, and
 - c) How many blocks were replaced (if any)?

Byte Address	Tag (21 bits)	Index	Offset	Hit or Miss	Blocks replaced
0x0000_0000	0	00000	00000	M	0
0x0000_0100	0	00000	00100	Н	0
0x0001_0000	0	00000	10000	Н	0
0x1000_0100	0	00100	00100	M	0
0x1110_1000	0	00111	01000	M	0
0x0100_0000_0000	001	00000	00000	M	1
0x0001_1110	0	00000	11110	M	1
0x1000_1100	0	00100	01100	Н	0
0x1100_0001_1100	0011	00000	11100	M	1
0x1011_0100	0	00101	10100	M	0
0x1000_1000_0100	0010	00100	00100	M	1

(5) What is the hit ratio? (5 points)

Answer: hit ratio = 3/11 = 27.3%

(6) Show the final state of the cache, with each valid line represented as <index, tag, data>. (10 points)

Index	Valid	Tag	W0	W1	W2	W3	W4	W5	W6	W7
00000	1	0011	0xC00	0xC04	0xC08	0xC0C	0xC10	0xC14	0xC18	0xC1C
00001	0									
00010	0									

00011	0									
00100	1	0010	0x880	0x884	0x888	0x88C	0x890	0x894	0x898	0x89C
00101	1	0	0xA0	0xA4	0xA8	0xAC	0xB0	0xB4	0xB8	0xBC
00110	0									
00111	1	0	0xE0	0xE4	0xE8	0xEC	0xF0	0xF4	0xF8	0xFC
01000	0									
01001	0									
01010	0									
01011	0									
01100	0									
01101	0									
01110	0									
01111	0									
10000	0									
10001	0									
10010	0									
10011	0									
10100	0									
10101	0									
10110	0									
10111	0									
11000	0									
11001	0									
11010	0									
11011	0									
11100	0									
11101	0									
11110	0									
11111	0									