TOPOLOGY HOMEWORK 3

1. Let (X,d) be a metric space. For a nonempty subset $A \subseteq X$ we define a function $d_A : X \to \mathbb{R}$ by the formula

$$d_A(x) = \inf\{d(x, z) : z \in A\},\$$

- i.e. the function d_A measures distance from a point $x \in X$ to the set A. Show that $|d_A(x) d_A(y)| \le d(x, y)$. Conclude that d_A is continuous.
- 2. Let X and Y be topological spaces and let $A \subseteq X$, $B \subseteq Y$. Prove that:
 - (a) $Int(A \times B) = Int(A) \times Int(B)$. Show (give an example) that analogous equality fails for infinite products.
 - (b) $\operatorname{bd}(A \times B) = (\overline{A} \times \operatorname{bd}(B)) \cup (\operatorname{bd}(A) \times \overline{B})$
- 3. Let X_{α} be a (nonempty) topological space and $A_{\alpha} \subseteq X_{\alpha}$ for each $\alpha \in A$. Show that:
 - (a) $\prod_{\alpha \in A} A_{\alpha} = \prod_{\alpha \in A} \overline{A_{\alpha}}$
 - (b) $\prod_{\alpha \in A} A_{\alpha}$ is dense in $\prod_{\alpha \in A} X_{\alpha}$ iff A_{α} is dense in X_{α} for each $\alpha \in A$.
- 4. Let X be a topological space. Prove that if two sets of indexes I and J have the same cardinality, then the products X^I and X^J are homeomorphic $(X^A = \prod_{\alpha \in A} X_\alpha)$, where $X_\alpha = X$ for every $\alpha \in A$.
- 5. Give an example of a continuous map $f: \mathbb{R} \to \mathbb{R}$ which is not closed. Similarly, give an example of a continuous map $f: \mathbb{R} \to \mathbb{R}$ which is not open.
- 6. We say that a continuous map $f: X \to Y$ is \mathbb{R} -quotient if for every $g: Y \to \mathbb{R}$, the map g is continuous if $g \circ f$ is continuous. Prove that every quotient map is \mathbb{R} -quotient.
- 7. Show that the projection $p_1: \mathbb{R}^2 \to \mathbb{R}$ onto the first factor is not closed.
- 8. Prove that for any pair f, g of continuous mappings of a space X into a Hausdorff space Y, the set $\{x \in X : f(x) = g(x)\}$ is closed in X. Conclude that if f and g agree on a dense subset of X then f = g.
- 9. Let $f: X \to Y$ be a continuous map between topological spaces. Let $G(f) = \{(x, f(x) : x \in X)\} \subseteq X \times Y$ be the graph of f (considered as a subspace of the product $X \times Y$). Prove that:
 - (a) Spaces X and G(f) are homeomorphic.
 - (b) If Y is Hausdorff then G(f) is a closed subset of $X \times Y$.
- 10. Let X be an infinite set and let $\tau = \{U \subseteq X : X \setminus U \text{ is finite}\} \cup \{\emptyset\}$. Show that the family τ is a topology on X. Prove that (X, τ) is T_1 but not T_2 .
- 11. Prove that X is Hausdorff iff the diagonal $\Delta = \{(x, x) \in X \times X : x \in X\}$ is closed in $X \times X$.
- 12. Show that the Sorgenfrey line S is normal but its square $S \times S$ is not normal. Hint: To prove that S is normal, for any two disjoint closed sets A, B consider open sets $U(A) = \bigcup_{x \in A} [x, x + \delta(x))$, where $\delta(x) > 0$ and $[x, x + \delta(x)) \cap B = \emptyset$, the set U(B) is defined analogously. To prove that $S \times S$ is not normal apply Jones' lemma.