Hierarchical spatial modelling for applied population and community ecology

Jeffrey W. Doser, Marc Kéry, Gesa von Hirschheydt 24-27 June 2024

Multi-season spatial occupancy models

Jeffrey W. Doser 24-27 June 2024

 Understand how species distributions are shifting over space and time

- Understand how species distributions are shifting over space and time
- Assess occupancy trends over time
 - Detection-nondetection data are easier to collect than count data
 - Occupancy-abundance relationship
 - Exact interpretation of occupancy trends depends on how data are collected (see Steenweg et al. 2018 Ecology)

- Understand how species distributions are shifting over space and time
- Assess occupancy trends over time
 - Detection-nondetection data are easier to collect than count data
 - Occupancy-abundance relationship
 - Exact interpretation of occupancy trends depends on how data are collected (see Steenweg et al. 2018 Ecology)
- From a statistical perspective, having multiple seasons of data can improve our ability to estimate spatial random effects.

Data follow the robust design

- Data follow the robust design
- A set of J sites are sampled across a set of T seasons (e.g., years)

- Data follow the robust design
- A set of J sites are sampled across a set of T seasons (e.g., years)
- Within each season t, each site j is sampled K_{it} times.

- Data follow the robust design
- A set of J sites are sampled across a set of T seasons (e.g., years)
- Within each season t, each site j is sampled K_{it} times.
- Multi-season occupancy models can easily handle "imbalanced" data sets
 - Each site may not be sampled each season
 - Each sampled site may not be sampled the same number of times within a season

- Data follow the robust design
- A set of J sites are sampled across a set of T seasons (e.g., years)
- Within each season t, each site j is sampled K_{jt} times.
- Multi-season occupancy models can easily handle "imbalanced" data sets
 - Each site may not be sampled each season
 - Each sampled site may not be sampled the same number of times within a season
- Seasons are sometimes referred to as **primary replicates** and repeat visits within a season as **secondary replicates**

- Recall the closure assumption.
- For multi-season models, we assume closure within a primary time period (i.e., season), but do not assume closure across primary time periods (i.e., across seasons)
- In other words, we assume the occupancy status does not change within a season, but that sites can change from occupied to unoccupied across seasons.

• Example: 6 sites, 2 seasons, 3 surveys within a season

Season 1

Site	Survey 1	Survey 2	Survey 3
1	1	0	0
2	0	0	0
3	1	1	0
4	1	NA	0
5	0	1	1
6	0	0	0

Season 2

Site	Survey 1	Survey 2	Survey 3
1	0	1	NA
2	1	0	0
3	1	1	0
4	1	1	0
5	NA	NA	NA
6	0	0	1

Lots of interesting design questions in multiseason occupancy models

RESEARCH PAPER

"Mixed" occupancy designs: When do additional single-visit data improve the inferences from standard multi-visit models?

Gesa von Hirschheydt^{a,*}, Silvia Stofer^a, Marc Kéry^b

^aSwiss Federal Research Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland ^bSwiss Ornithological Institute, 6204 Sempach, Switzerland

Received 27 May 2022; accepted 29 January 2023 Available online 31 January 2023

Methods in Ecology and Evolution

RESEARCH ARTICLE 🙃 Open Access 💿 🚯

"Fractional replication" in single-visit multi-season occupancy models: Impacts of spatiotemporal autocorrelation on identifiability

Jeffrey W. Doser X Sara Stoudt

First published: 26 December 2023 | https://doi.org/10.1111/2041-210X.14275

Jeffrey W. Doser and Sara Stoudt contributed equally to this work. Handling Editor: Xingfeng Si

Terminology

Multi-season occupancy model

Dynamic occupancy model

Stacked occupancy model

Spatio-temporal occupancy model

Dynamic occupancy models

- MacKenzie et al. (2003)
- Explicitly estimates colonization and extinction (or survival)
- Arguably the most mechanistic form of multi-season occupancy model
- More data hungry and often harder to fit
- Can fit in unmarked (frequentist) and ubms (Bayesian)

Stacked occupancy models

- Fit a single-season occupancy model, but now your "sites" are really "site-seasons" (e.g., "site-years", combinations of site and year).
- Less mechanistic, but far less data hungry than dynamic models.
- Often a season trend is of interest and included in the model.
- Can account for pseudoreplication by including a random site effect.
- Can fit stacked models in spoccupancy

Spatio-temporal occupancy models

- A form of stacked occupancy model, but now includes explicit components to account for spatial and/or temporal autocorrelation.
- Less mechanistic than dynamic models.
- Better at predicting distributions (and changes) than basic stacked models
- Lots of different flavors.
- Some nice examples:
 - o Rushing et al. (2019) Scientific Reports
 - o Wright et al. (2021) Ecology and Evolution
 - o Hepler et al. (2023) R Journal (the multiocc package)

Terminology

Multi-season occupancy model

Dynamic occupancy model

Stacked occupancy model

Spatio-temporal occupancy model

Occupancy (ecological) sub-model

$$j = 1, ..., J$$
 (site)
 $t = 1, ..., T$ (season)
 $k = 1, ..., K_{j,t}$ (replicate)

$$z_{j,t} \sim \text{Bernoulli}(\psi_{j,t})$$

 $\text{logit}(\psi_{j,t}) = \boldsymbol{x}_{j,t}\boldsymbol{\beta} + \mathbf{w}_j + \eta_t$

 $z_{j,t}$ True occurrence of the species at site j in season t

 $\psi_{j,t}$ Occurrence probability at site j in season t

 $oldsymbol{x}_{j,t}$ Site and/or season-varying covariates

 W_{j} Site-level random effect

 η_t Season-level (temporal) random effect

Occupancy (ecological) sub-model

$$j = 1, ..., J$$
 (site)
 $t = 1, ..., T$ (season)
 $k = 1, ..., K_{j,t}$ (replicate)

$$z_{j,t} \sim \text{Bernoulli}(\psi_{j,t})$$

 $\text{logit}(\psi_{j,t}) = \boldsymbol{x}_{j,t}\boldsymbol{\beta} + \boxed{\mathbf{w}_j + \eta_t}$

 $z_{j,t}$ True occurrence of the species at site j in season t

 $\psi_{j,t}$ Occurrence probability at site j in season t

 $oldsymbol{x}_{j,t}$ Site and/or season-varying covariates

 W_i Site-level random effect

 η_t Season-level (temporal) random effect

Site-level random effects w_j

Two types:

1. Unstructured -> a typical random intercept with the form:

$$\mathbf{w}_j \sim \text{Normal}(0, \sigma^2)$$

2. Spatial NNGP -> same as before. This is a "spatial multi-season occupancy model" or "spatio-temporal occupancy model".

Unstructured site-level random effects

- This is the standard approach in stacked occupancy models.
- Random site effect accounts for non-independence between occupancy probability at a site over the T seasons (i.e., pseudoreplication).
- Does not explicitly account for spatial autocorrelation
- Often reasonable when focus is on inference, but spatial effects are often much better for prediction.

$$\mathbf{w}_j \sim \text{Normal}(0, \sigma^2)$$

Spatial NNGP site-level random effects

- Account for spatial autocorrelation in occupancy probability.
- Nothing new here from previous spatial models.

$$\mathbf{w} \sim \text{Normal}(\mathbf{0}, \tilde{\mathbf{C}}(d, \phi, \sigma^2))$$

Account for correlation in occupancy probability over time

- Account for correlation in occupancy probability over time
- Alternative view: account for non-linear variation in occupancy probability when estimating a trend

- Account for correlation in occupancy probability over time
- Alternative view: account for non-linear variation in occupancy probability when estimating a trend
- Two types:
 - 1. Unstructured -> a typical random intercept with the form:

$$\eta_t \sim \text{Normal}(0, \sigma_T^2)$$

- Account for correlation in occupancy probability over time
- Alternative view: account for non-linear variation in occupancy probability when estimating a trend
- Two types:
 - 1. Unstructured -> a typical random intercept with the form:

$$\eta_t \sim \text{Normal}(0, \sigma_T^2)$$

2. AR(1) -> random temporal effects follow an autoregressive structure. Covariance between two time points is:

$$\sigma_T^2 \rho^{|t-t'|}$$

$$z_{j,t} \sim \text{Bernoulli}(\psi_{j,t})$$

 $\text{logit}(\psi_{j,t}) = \boldsymbol{x}_{j,t}\boldsymbol{\beta} + \boxed{\mathbf{w}_j + \eta_t}$

• In the statistics literature, this is known as a **separable** model, because the spatial random effects are independent from the temporal random effects.

$$z_{j,t} \sim \text{Bernoulli}(\psi_{j,t})$$

 $\text{logit}(\psi_{j,t}) = \boldsymbol{x}_{j,t}\boldsymbol{\beta} + \boxed{\mathbf{w}_j + \eta_t}$

- In the statistics literature, this is known as a **separable** model, because the spatial random effects are independent from the temporal random effects.
- Nonseparable models allow different types of interactions between the spatial and temporal effects.
 - Examples include Wright et al. (2021) and Hepler et al. (2021).

$$z_{j,t} \sim \text{Bernoulli}(\psi_{j,t})$$

 $\text{logit}(\psi_{j,t}) = \boldsymbol{x}_{j,t}\boldsymbol{\beta} + \boxed{\mathbf{w}_j + \eta_t}$

- In the statistics literature, this is known as a **separable** model, because the spatial random effects are independent from the temporal random effects.
- Nonseparable models allow different types of interactions between the spatial and temporal effects.
 - Examples include Wright et al. (2021) and Hepler et al. (2021).
- We will shortly discuss applications of spatially-varying coefficient models in spoccupancy for looking at spatial variation in occupancy trends over time.

$$j = 1, \dots, J \text{ (site)}$$

 $t = 1, \dots, T \text{ (season)}$

 $k = 1, \dots, K_{i,t}$ (replicate)

Detection (observation) sub-model

$$y_{j,t,k} \sim \text{Bernoulli}(p_{j,t,k} \cdot z_{j,t})$$

 $\text{logit}(p_{j,t,k}) = \boldsymbol{v}_{j,t,k} \cdot \boldsymbol{\alpha}$

 $y_{j,t,k}$ Detection-nondetection data at site j during replicate k and season t

 $p_{j,t,k}$ Detection probability at site \emph{j} during replicate \emph{k} and season \emph{t}

 $oldsymbol{v}_{j,t,k}$ Covariates affecting detection at site j during replicate k and season t

Fitting multi-season occupancy models in spoccupancy

- tPGOcc (): non-spatial multi-season occupancy models (temporal Pólya-Gamma occupancy model)
- stPGOcc (): spatio-temporal Pólya-Gamma occupancy models
- All multi-season models require the use of an adaptive Metropolis-Hastings sampler, and so we specify the number of batches and batch length as with previous spatial models.
- tMsPGOcc() and stMsPGOcc() for multi-species models.

Fitting multi-season occupancy models in spoccupancy

Site Effect	Temporal Effect	sp0ccupancy
None	None	tPGOcc()
None	Unstructured	tPGOcc() with random time intercept
None	AR(1)	tPGOcc() with ar1 = TRUE
Unstructured	None	tPGOcc() with random site intercept
Unstructured	Unstructured	tPGOcc() with random time and site intercept
Unstructured	AR(1)	tPGOcc() with random site intercept and ar1 = TRUE
Spatial (NNGP)	None	stPGOcc()
Spatial (NNGP)	Unstructured	stPGOcc() with random time intercept
Spatial (NNGP)	AR(1)	stPGOcc() with ar1 = TRUE

Different ways to model the site-level and temporal random effects in multi-season occupancy models in **sp0ccupancy**.

Exercise: Estimating bat distributions in the Western USA

08-bat-multi-season-occ.R

