Bangabandhu Sheikh Mujibur Rahman Science and Technology University,Gopalganj

Department of Computer Science and Engineering 3rd Year 1st Semester B.Sc. (Engg.) Examination 2014 Course No.: MAT304 Title:(Linear Algebra)

Full Marks: 70

Time: 04 Hours

N.B.

- 1) Answer SIX questions taking any THREE from each sections.
- 2) All questions are of equal values.
- 3) Use separate answer script for each section.

Section A

1.	(a)	Define consistent and inconsistent. Solve the following system of linear	T
1,	(a)	equations using Gaussian elimination:	2/2
	- -	X+2¥-5 2 −1,-3x+y-2z=-7, 5x+3y-4z=2	5 ^{2/3}
	(b)	Define matrix. Find the inverse of the matrix	
		[2 -1 3]	
		$A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 5 & -1 \\ 3 & 3 & 2 \end{bmatrix}$	
		[3 3 2]	
	-		6
2.	(a)	Let V be a vector space over an arbitrary field F. Then prove that	
		$\alpha \in F \text{ and } v \in V, (-\alpha)v = \alpha(-v) = -\alpha v$ For any scalar	
	(b)	Tor diff Scalar	3
	(b)	Define linear combination. The non-zero vectors $v_1, v_2, \dots v_n$ in a vector	
		space V are linearly dependent if and only if the vectors v_k is a linear	
		combination of the preceding vectors $v_1, v_2 \cdot \dots \cdot v_{k-1}$.	5
	(c)	Find a basis and the dimension of the subspace W generated by $(1,4,-1,3)$, $(2,1,-3,-1)$ and $(0,2,1,-5)$.	3 ^{2/3}
3.	(a)	Show that the functions $f(t) = \sin t$, $g(t) = \cos t$, $h(t) = t$, from R into R are	
	(1)	linearly independent.	4
	(b)	Let u and w be subspaces of a vector space V. Show that u+w is a vector space of V.	2 ^{2/3}
	(c)	Define Basis and Dimension. Prove that the vectors (1,2,0),(0,5,7),(-1,1,3)	
		form a basis for R^3	_
4.	(a)	Define linear transformation. If $T:U \rightarrow V$ linear transformation then	5
		(i) The kernel of T is a subspace U	
	(b)	(ii) The image of T is a subspace of V. Define Rank and Nullity. Show that the following transformation defined a	6
	(-)	linear operator on \mathbb{R}^3 such that $T(x,y,z) = (x+y,-x-y,z)$. 5 ^{2/3}
			Ġ.
			11

Bangabandhu Sheikh Mujibur Rahman Science and Technology University,Gopalganj Department of Computer Science and Engineering

Department of Computer Science and Engineering 3rd Year 1st Semester B.Sc. (Engg.) Examination 2014 Course No.: MAT304 Title: Linear Algebra

Full Marks: 70 Time: 04 Hours

Lui	1 IVIa	rks: 70 Time: 04 Hours	
		Section ' B	
5.	(a)	Let $\mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator defined by $T(x,y) = (5x + 7y, -3x - y)$ and	
		S(x,y) = (5x + 7y, -3x - y). Find the formula defining properties, S+T, ST,	
		TS, S^2, T^2	$6^{2/3}$
	(b)	Let $R^2 \to R^2$ be the linear operator defined by $T(x,y) = (5x + 7y, -3x + y)$. Find	
		the matrix of T with respect to the basis $F = (e_1, e_2) = \{(1,0), (0,1)\}$ and	
		$S = (u_1, u_2) = \{(2,1), (3,5)\}$	
			5
6.	(a)	Define linear functional and the dual space of a vector space.	3
	(b)	Define an annihilator of a subset of a vector space . Prove that the set of all	<u>-</u>
		annihilators of is a subspace of W is a subspace of V'.	4
	(c) ₂	Let <i>W</i> be the subspace of \mathbb{R}^4 spanned by $(1,2,-3,4)$, $(1,3,-2,6)$ and $(1,4,-1,8)$. Find a basis of all annihilators of <i>W</i> .	4 ^{2/3}
7.	(a)	Define a norm and an inner product in a vector space. Prove that	
		$ \langle u,v\rangle \le u v $ for any vectors $u,v \in V$	5
	(b)	Let R^2 have the Eucliden inner product use the Gram-Schmidt	
		Orthogonalization process to transform the basis $S = \{u_1, u_2\}$ in to a	
		orthonormal basis $u_1 = (1,-2), u_2 = (2,3)$	6 ^{2/3}
8.	(a)	Define adjoint operator. Let f and g be polynomials. For any square matrix A	
		and scalar k prove that $(fg)(A) = f(A)g(A)$	5
		Define minimal Polynomial. Find the minimal polynomial $m(\lambda)$ of the	$6^{2/3}$
		matrix	
		$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$	
	(b)	$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$	
The second second			