Physical Computing

Agenda

- What's Physical Computing
- Electricity
- Circuits
- Components
- Physical Computing with the Arduino

Physical Computing

A creative framework for understanding human beings' relationship to the <u>digital</u> world

Sensors Interactive Interaction **Real World System Actuators**

Physical Computing

- Break away from conventional input/output peripherals:
 - Keyboard, mouse, screen
- Think about how human/environment signals can be captured and changed into electronic signals that can be interpreted by a computing device.
- Physical computing applications tend to depend on people for input (and sometimes output), and transform that input into another form, like an animation, a sound, or motion.
- Sometimes powerfully fuses art and technology.

Electricity

- **Electricity** is the flow of electrical energy through some conductive material.
- **Sensors** are components that convert other forms of energy into electrical energy so we can read the changes in those other forms.
 - Transduction (e.g. microphone)
- **Voltage** is a measure of the difference in electrical potential energy between two points in a circuit. It is measured in **Volts**.
- Current is a measure of the magnitude of the flow of electrons through a particular point in a circuit. It is measured in Amperes, or Amps.
- **Resistance** is a measure of a material's ability to oppose the flow of electricity. It is measured in **Ohms**.

Electricity: Relationship

• Voltage (V), Current (I), and Resistance (R) are all related, by the following formula:

$$V = I \times R$$

• electrical power (P) (measured in watts), as follows:

Circuit

- Physical Computing usually involves interfacing a computing device with electrical circuit(s).
- A circuit needs a:
 - Electrical Energy Source (e.g. battery)
 - Load (Converts elec energy to something else)

Circuit 2

- Electricity needs to flow to do anything useful.
 - Needs a path to flow through, which must be an electrical conductor(like copper)
- Electricity will flow from a higher voltage(+) to a lower voltage(-) or ground.

Electronics: Breadboard

Used for prototyping electronic solutions

LEDs

- Emits light when current passes through
- Typical LED requires 2V at 20mA
- RGB LEDs, LED strips, IR LEDs, Ultrabright

Resistors

 Reduce current and voltage to components

Ohm Law: I=V/R

Push Button

• pushbuttons control the flow of current through a junction in a circuit

Thermistor

- Thermistors are used as temperature sensors.
- They can be found in every day appliances such as fire alarms, ovens and refrigerators.
- They are also used in digital thermometers and in many automotive applications to measure temperature.
- Resistance is dependent on temperature
 - · combination of "thermal" and "resistor".

PhotoResistor

- also known as a light-dependent resistor, LDR, or photo-conductive cel
- Decreases resistance with respect to receiving luminosity (light) on the component's sensitive surface
- measure the light intensity

Circuit Schematics

- Circuit Schematic illustrate you how components are connected in a circuit.
- For more info follow this link

Electrical Flow

- Components can be arranged in series/parallel
- Current tends to follow the path of least resistance to the ground
- In any given circuit, the total voltage around the path of the circuit is zero
- The amount of current going into any point in a circuit is the same as the amount coming out of that point.

Analogue / Digital

- We live in Analogue world
 - Infinte number of colours/sounds/smells
- Technology is Digital
 - Finite, "discrete"
- Realworld -> Digital World often requires Analogue
 -> Digital conversion.
- Example, Photoresistor:
 - Analogue Voltage measured across
 Photoresistor is converted to digital value (a number) by Arduino

Fig. 7: Analogue Signal [Lindblom, 2015]

Fig. 8: Digital Signal [Lindblom, 2015]

Physical Computing with Arduino

Programming with Arduino: Basics

- Programs called Arduino "Sketch"
- setup() function
 - Used to initialise stuff
- loop() function
 - After setup(), loop() runs continuously, getting input from sensors etc.

```
void setup() {
   // put your setup code here, to run once:
}

void loop() {
   // put your main code here, to run repeatedly:
}
```