Problem 7.25. Let $CNF_H = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable cnf-formula where each clause contains any number of literals, but at most one negated literal}. Show that <math>CNF_H \in P$.

Proof. Consider a cnf-formula ϕ where each clause contains any number of literals, but at most one negated literal. ϕ can only contains follow four types of clauses.

$$\phi = (\overline{a_1}) \land (a_2) \land (\overline{a_3} \lor b_3 \lor \cdots) \land (a_4 \lor b_4 \lor \cdots) \land \cdots$$

If ϕ is satisfiable, then at least one literal in every clause must be true. We can test satisfiability of ϕ as follows:

- 1. Assign false value to any variable that appears negated in a single variable clause.
- 2. Assign *true* value to all other variables.
- 3. Test assignment for satisfiability.

Stages 1 to 3 are easily implemented in polynomial time on any reasonable deterministic model. \Box