Appel à projet "Rendre vos données de santé plus accessibles"

Analyse du jeu de données Open Food pour l'Agence Santé publique France

Bailly DIOUNOU - 21/09/2020

Contexte & périmètre du projet

exploitables pour le

personnel de

l'agence

- de santé plus accessibles • Fournir des résultats
- pertinentesConfirmer/infirmer des hypothèses

• Réperer des variables

Analyse de Données

- Nettoyage des données
- Analyse univariée
- Analyse multivariée

Présentation générale du jeu de données

Présentation générale du jeu de données Données statistiques de base-Données brutes

- Taille de la population N = 1 437 214 individus
- Nombre de variables: 180 + 1
- Variables quantitatives q = 115

Counts acc. to variables types

Présentation générale du jeu de données

	carbohydrates_ 100g	energy_100g	fat_100g	proteins_100g	salt_100g	saturated- fat_100g	sugars_100g
count	1148942	1158319	1149482	1150748	1129792	1102551	1127905
mean	28,55185991	5,75451E+36	13,92499591	8,511698902	2,177489684	123350308,5	13,88769009
std	30,33881954	6,19331E+39	182,3046013	36,80307148	142,6501191	1,29521E+11	20,66323889
min	0	0	0	-500	C	0	-1
25%	3,57	420	0,6	1,2	0,06	0,1	0,7
50%	15,71	1095	6,9	5,8	0,535	1,9	3,9
75%	53,57	1674	21,43	12	1,35382	7,27	20
max	6670	6,66556E+42	153679,4643	31000	105000	1,36E+14	4800

Présentation générale du jeu de données

	carbohydrates_ 100g	energy_100g	fat_100g	proteins_100g	salt 100g	saturated- fat_100g	sugars_100g
count	1148942	1158319	1149482	1150748	1129792	1102551	1127905
mean	28,55185991	5,75451E+36	13,92499591	8,511698902	2,177489684	123350308,5	13,88769009
std	30,33881954	6,19331E+39	182,3046013	36,80307148	142,6501191	1,29521E+11	20,66323889
min	0	0	0	-500		0	-1
25%	3,57	420	0,6	1,2	0,06	0,1	0,7
50%	15,71	1095	6,9	5,8	0,535	1,9	3,9
75%	53,57	1674	21,43	12	1,35382	7,27	20
max	6670	6,66556E+42	153679,4643	31000	105000	1,36E+14	4800

Valeurs très aberrantes !!!

Traitement des valeurs manquantes

Tracé du nombre de colonnes ayant au plus tel taux de remplissage.

Traitement des valeurs manquantes

Tracé du nombre de colonnes ayant au plus tel taux de remplissage.

Cap 10%: 147

Traitement des valeurs manquantes

Tracé du nombre de colonnes ayant au plus tel taux de remplissage.

Cap 10%: 147

Cap 40%: 161

Traitement des valeurs manquantes

Tracé du nombre de colonnes ayant au plus tel taux de remplissage.

Cap 10%: 147

Cap 40%: 161

Cap 60%: 167

Traitement des valeurs manquantes

- Plancher de suppression inconditionnelle:
 Cap 10%
 - Majorité {*nutrition facts*}
- Plage intermédiaire: suppression conditionnelle --> Critère de pertinence
 - 33% {nutrition facts, **misc. data, tags**}

Traitement des variables nonpertinentes

Variables =

Métadonnées &

Données nutritionnelles qualitatives

Traitement des variables nonpertinentes

Variables =

Métadonnées &

Données nutritionnelles qualitatives

Traitement des variables nonpertinentes

Variables =

Métadonnées & Données nutritionnelles qualitatives

Corrélation sur les valeurs nutritionnelles moyennes

{(energy-kcal, energy), (salt, sodium)}

Traitement des variables nonpertinentes

Variables =

Métadonnées & Données nutritionnelles qualitatives

Corrélation sur les valeurs nutritionnelles moyennes

```
{(energy-kcal, energy), (salt, sodium)}
```


Traitement des valeurs aberrantes

Traitement des doublons

Traitement des valeurs aberrantes

- Sur les valeurs nutritionnelles moyennes: '_100g'
 - Critères généraux
 - Valeur inférieure: non-négative
 - Valeur supérieure: "< 100 g"
 - Critère spécifique sur l'énergie
 - Valeur supérieure: [donnée stat+métier]: IQR + Apport de Référence pour un adulte 8400 kJ

Traitement des doublons

Traitement des valeurs aberrantes

- Sur les valeurs nutritionnelles moyennes: '_100g'
 - Critères généraux
 - Valeur inférieure: non-négative
 - Valeur supérieure: "< 100 g"
 - Critère spécifique sur l'énergie
 - Valeur supérieure: [donnée stat=métier]: IQR + Apport de Référence pour un adulte 8400 k.

Traitement des doublons

- Prétraitement du tableau de données
 - Génération d'une colonne avec taux de remplissage des lignes
 - Tri du tableau suivant ce taux de remplissage
- Suppression des doublons
 - Rétention de la première occurrence dans le tableau trié
- Restauration de la forme et de l'ordre avant traitement.

Imputation statistique

Imputation Statistique

- Iterative imputer
- Sur les valeurs nutritionnelles moyennes uniquement
 - Risque de génération de biais sur les autres variables
- Suppression pure et simple des autres lignes

Imputation Statistique

- Iterative imputer
- Sur les valeurs nutritionnelles moyennes uniquement
 - Risque de génération de biais sur les autres variables
- Suppression pure et simple des autres lignes

Synthèse du nettoyage des données

Jeu de données des "Open Food Facts" sur les produits alimentaires

N = 1 437 214 individus, 181 caractéristiques (115 quantitatives)

<u>Démarche de nettoyage</u>

(1) Nettoyage

- Filtre "passe-haut" à taux de remplissage 10%, "passe-bande" conditionnel –pertinence- sur 10-40%.
- Filtre de non-pertinence: Suppression des variables de type métadonnées (date, tags, url, traductions, etc.) et de n-1 variables redondantes dans les n-uplets de variables fortement corrélées.
- Filtre sur valeurs aberrantes de valeurs nutritionnelles moyennes '_100g' : critères basés sur combinaison de données métier et quantiles de distribution
 - Bilan: Suppression: 88% de lignes, 79% des colonnes

(2) Imputation

- *Iterative imputer* portant sur les valeurs nutritionnelles moyennes
- Gains sur valeurs manquantes: 0%
- Pas d'imputation sur les autres données car risque de biais statistique

Synthèse du nettoyage des données

Variables pertinentes pour les analyse descriptive et explicative

- Valeurs nutritionnelles moyennes (ou Nutrifacts: '*_100g')
- Pnns_groups*
- Nutriscore_*

Pays de revente du produit

- Liste des pays de reventes, plus précisém.
 - Indicateur de la provenance du contributeur ? -> croisement avec métadonnées
- 622 pays: donnée basée sur l'état actuel (~2% de croissance depuis)
- France: pays principal, sur différentes listes -> Base de données pertinente pour l'agence de Santé Publique France

Valeur énergétique

Classifications diverses

Food products counts acc. to their nutriscore grade

- Distributions quasi equimodales
- Intérêt pour des études inclusives

Analyse Multivariée

Kernel density estimates

- Différences quantitatives nettes (forme, tendances centrales)
- Asymétrie claire de densité de population 'a' vs 'e' pour les valeurs énergétiques
- Creux de densité de population plus important pour les hautes valeurs de nutrigrade 'a', 'b' pour les protéines

Analyse Bivariée Grouped boxplot

- Médianes bien distinctes
- Influence des valeurs moyennes nutritionnelles sur le nutrigrade.

Classe d'aliments & Nutrigrade

- Différence bien marquée entre:
 - •les catégories à grandes proportions de score 'd' et 'e' : Biscuits & cakes, cheese, sweets, et
 - •celles à score élevés en 'a' et 'b': cereals, milk & yogurt.
- La catégorie 'processed meat' n'a pas de produit classé 'a' ou 'b'!
- La catégorie 'bread' se disperse assez sur tout le spectre de score.

Analyse desriptive

Methode ACP

Méthode ACP

Eboulis des valeurs propres

- Les 2 premiers axes principaux d'inertie absorbent 2/3 de l'inertie totale du nuage d'individus.
- Il y a un très léger coude entre le 2nd et le 3e rang.

Méthode ACP

Cercles de corrélation, plans factoriels

- (F1,F2): 66%, (F3,F4): 25%.
- Représentation moyennement bonne de 5/6 variables dans (F1,F2).
- Représentation très bonne de 2/6, et très faible du reste, dans (F3, F4).

Méthode ACP

Projection des individus sur (F1,F2)

- Echantillonnage aléatoire de 2000 individus.
- Séparation bien disctincte des produits en fonction de leurs nutrigrades.
- Quid de la représentativité des individus par le plan ?

Analyse explicative

Test de Kruskal Wallis

Test de Kruskal-Wallis

Données initiales

- Variable aléatoire: valeur nutritionnelle moyenne d'un produit.
- Variable illustrative: **nutrigrade**.
- Hypothèse h0: Pour une valeur nutritionnelle donnée, les médianes des distributions par nutrigrade sont toutes égales.

nutrifact	tstat	pvalue
carbohydrates_100g	11902,75429	0,000
energy_100g	86345,68756	0,000
fat_100g	76882,34626	0,000
proteins_100g	5646,813472	0,000
salt_100g	37006,04175	0,000
saturated-fat_100g	89258,44105	0,000
sugars_100g	40356,20629	0,000

Test de Kruskal-Wallis

Résultats

- 7 nutrifacts testés
- P-value <=0.001

--> Hypothèse nulle rejetée: Les médianes des distributions par nutrigrade sont différentes, et ce quelque soit le nutrifact.

Ce résultat quantifie bien ce que nous avions déjà observé graphiquement:

La quantité de la valeur nutritionnelle moyenne influence le nutrigrade du produit alimentaire.

nutrifact	tstat	pvalue	
carbohydrates_100g	1190	2,75429	0,000
energy_100g	8634	5,68756	0,000
fat_100g	7688	2,34626	0,000
proteins_100g	5646	,813472	0,000
salt_100g	3700	6,04175	0,000
saturated-fat_100g	8925	8,44105	0,000
sugars_100g	4035	6,20629	0,000
			\ /

Synthèse de l'analyse multivariée

Jeu de données des "Open Food Facts" sur les produits alimentaires

6 variables quantitatives sélectionnées, Hypothèse d'influence de la valeur moyenne nutritionnelle sur le nutrigrade

<u>Démarche d'analyse</u>

(1) Analyse bivariée

• Mise en évidence de l'influence du nutrigrade sur les valeurs nutritionnelles à travers des kdeplot, grouped boxplot, et countplot.

(2) Analyse descriptive: Méthode ACP

- 66% de l'inertie absorbée par le premier plan factoriel.
- Bonne représentation de la majorité des variables dans les 2 premiers plans factoriels.

(2) Analyse explicative: Test de Kruskal Wallis

• Hypothèse d'égalité des médianes des distribution par nutrigrade rejetée sur toutes les valeurs nutritionnelles avec un p-value < 0.001.

Merci pour votre attention

Temps de questions/réponses