Definición de topología. Ejemplos de topologías.

- 1. Sean X un conjunto infinito y \mathcal{T} una topología sobre X en la que todos los subconjuntos infinitos son abiertos. Demuestra que \mathcal{T} es la topología discreta de X.
- $\mathbf{2}$. Sea X un conjunto con más de dos elementos.
 - (i) Define dos topologías \mathcal{T}_1 , \mathcal{T}_2 sobre X de modo que $\mathcal{T}_1 \cup \mathcal{T}_2$ no sea una topología.
- (ii) Sea \mathcal{T}_j , $j \in J$ una familia de topologías sobre X. Prueba que $\bigcap_{j \in J} \mathcal{T}_j$ es también una topología sobre X.
- **3.** En el plano \mathbb{R}^2 se considera la familia \mathcal{T} de todos los subconjuntos U tales que para cada (a,b) de U existe un $\varepsilon > 0$ tal que

$$((a - \varepsilon, a + \varepsilon) \times \{b\}) \cup (\{a\} \times (b - \varepsilon, b + \varepsilon)) \subset U.$$

Estudia si \mathcal{T} es una topología en \mathbb{R}^2 .

- **4.** Sean X un conjunto y a un elemento de X. Se considera la familia \mathcal{T}_a de los subconjuntos U de X tales que o bien U es vacío, o bien $a \in U$. Estudia si \mathcal{T}_a es una topología en X.
- 5. Sea (X, d) es un espacio métrico. Para cualesquiera x, y, x' e y' elementos de X, prueba que

$$|d(x,y) - d(x',y')| \le d(x,x') + d(y,y').$$

Deduce de ello que $\lim_{n\to\infty} d(x_n,y_n) = d(x,y)$ cuando $\lim_{n\to\infty} d(x_n,x) = 0 = \lim_{n\to\infty} d(y_n,y)$.

I.2 Bases y entornos.

6. Se consideran las siguientes familias de subconjuntos de \mathbb{R} .

$$\mathcal{B}_{\leftarrow} = \{(-\infty, b) \colon b \in \mathbb{R}\} \quad \text{y} \quad \mathcal{B}_{\rightarrow} = \{(a, \infty) \colon a \in \mathbb{R}\}.$$

- (i) Demuestra que cada familia es una base de una topología sobre R;
- (ii) compara estas topologías, y
- (iii) demuestra que la topología generada por $\mathcal{B}_{\leftarrow} \cup \mathcal{B}_{\rightarrow}$ es la usual.
- 7. Prueba que si \mathcal{B} es una base para una topología sobre X, entonces la topología $\mathcal{T}_{\mathcal{B}}$ generada por \mathcal{B} es igual a la intersección de todas las topologías sobre X que contienen a \mathcal{B} .
- 8. Sea \mathcal{T}_j , $j \in J$ una familia de topologías sobre X. Demuestra que existe una topología que contiene a todas las \mathcal{T}_j , para $j \in J$ y además es la menos fina de todas las que verifican esta propiedad.
- **9.** Para cada punto (x,y) de \mathbb{R}^2 y cada $r \in \mathbb{R}$ con r > 0 se considera el siguiente conjunto B((x,y);r): el cuadrado con lados paralelos a los ejes, centrado en (x,y) y de lado 2r, del que se ha excluido los lados y los puntos de las diagonales que no sean el punto (x,y). Haz un dibujo que te ayude a demostrar que

$$\mathcal{B} = \{B((x,y);r) \colon (x,y) \in \mathbb{R}, r > 0\}$$

es una base para una topología en \mathbb{R}^2 .