Eigenvalues and Eigenvectors

Zed

November 17, 2016

1 Preliminaries

1.1 Subspaces

- $\cdot \mathbb{R}$, \mathbb{C} field of real and complex numbers.
- · Colspace of $\mathbf{A}^{m \times n}$:

$$C(\mathbf{A}) := \operatorname{span} \left\{ \operatorname{Cols}(\mathbf{A}) \right\} \subseteq \mathbb{R}^n$$

And $Dim(\mathcal{C}(\mathbf{A})) = r$. r is rank of \mathbf{A} .

· Rowspace of $\mathbf{A}^{m \times n}$:

$$\mathcal{R}(\mathbf{A}) := \operatorname{span} \{ \operatorname{Rows}(\mathbf{A}) \} = \mathcal{C}(\mathbf{A}^{\top}) \subseteq \mathbb{R}^{m}$$

And $Dim(\mathcal{R}(\mathbf{A})) = r$.

· Nullspace of $\mathbf{A}^{m \times n}$:

$$\mathcal{N}(\mathbf{A}) := \{ \mathbf{x} : \mathbf{A}\mathbf{x} = 0 \} \subset \mathbb{R}^n$$

 $Dim(\mathcal{N}(\mathbf{A})) = n - r.$

 $\cdot \mathcal{N}(\mathbf{A}^{\top}) := \{ \mathbf{x} : \mathbf{A}^{\top} \mathbf{x} = 0 \} \subset \mathbb{R}^{m}. \operatorname{Dim}(\mathcal{N}(\mathbf{A}^{\top})) = m - r.$

2 Properties

2.1 Eigval

- · Eigval λ , eigvec \boldsymbol{v} such that: $\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v}$.
- \cdot cv is also an eigrec corresponding to λ , but only linearly indep. eigrecs are counted.

2.2 Characteristic Polynomial

· \mathbf{A} is $n \times n$ square, then the characteristic polynomial of \mathbf{A} is defined as.

$$P_{\boldsymbol{A}}(t) := \det(t\boldsymbol{I} - \boldsymbol{A})$$

- · λ is eigval of $\mathbf{A} \iff P_{\mathbf{A}}(\lambda) = 0 \iff \lambda$ is root of $P_{\mathbf{A}}(t) = 0$. Proof. (\Rightarrow) λ is eigval of \mathbf{A} : ($\lambda \mathbf{I} - \mathbf{A})\mathbf{v} = 0$. \mathbf{v} is an eigvec of \mathbf{A} , so $\mathbf{v} \neq 0 \Rightarrow \mathbf{v} \in \mathcal{N}(\mathbf{A})$. Hence $\operatorname{Dim}(\mathcal{N}(\mathbf{A})) > 0 \Rightarrow r < n$. \square
- · $P_{\mathbf{A}}(t)$ can be represented as, sence we know the roots,

$$P_{\mathbf{A}}(t) = \prod_{j=1}^{n} (t - \lambda_j)$$

2 PROPERTIES 2

· **D** being diagonal matrix, then $P_{\mathbf{D}} = \prod_{j=1}^{n} (t - d_j)$, which implies that $\lambda_j = d_j$, diagonal entries. Moreover, $\mathbf{D}\mathbf{e}_j = d_j\mathbf{e}_j$, so the *j*-th eigence is \mathbf{e}_j unit vec.

· \boldsymbol{L} being lower triangular, then $P_{\boldsymbol{L}} = \prod_{j=1}^{n} (t - L_{jj})$, which implies that $\lambda_j = d_j$. The last col of lower tri is $L_{nn}\boldsymbol{e}_n$, therefore $\boldsymbol{L}\boldsymbol{e}_n = L_{nn}\boldsymbol{e}_n$, i.e. the last eigence is \boldsymbol{e}_n unit vector. We can not tell about other eigences. Similar for \boldsymbol{U} . $\boldsymbol{U}\boldsymbol{e}_1 = U_{11}\boldsymbol{e}_1$, i.e. the first eigence of \boldsymbol{U} is \boldsymbol{e}_1 unit vector.

2.3 Multiplicity

- $\lambda(A)$ is the set of all eigvals of A, it is acturally the spectrum of A.
- · If $\lambda \in \lambda(\mathbf{A})$ is a root of multiplicity m_{λ} of $P_{\mathbf{A}}(t) = 0$, define m_{λ} as multiplicity of eigval λ .
- · Square matrix **A** has exactly n eigvals $(\lambda \in \mathbb{C})$, counted with multiplicity, i.e.

$$\sum_{\lambda \in \lambda(\mathbf{A})} m_{\lambda} = n$$

This is because, due to fundamental principal of algebra, $P_{\mathbf{A}}(t) = 0$ has exactly n roots, counted with multiplicity.

2.4 Eigspace

· Eigenspace (eigspace) of λ : $V_{\lambda} := \{ \boldsymbol{v} : \boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v} \}$, i.e. the set of all eigenspace corresponding to λ . Dim (V_{λ}) is the number of linearly indep. eigenspace corresponding to λ . We have

$$1 \leq \text{Dim}(V_{\lambda}) \leq m_{\lambda}$$

Thm. eigvecs corresponding to different eigvals of \mathbf{A} are linearly indep.

Proof. Let $v_1, ..., v_p$ correspond to different eigvals of $A: \lambda_1, ..., \lambda_p \ (p \le n)$. It suffices to show

$$c_1 v_1 + ... + c_n v_n = 0 \Rightarrow c_1 = ... = c_n = 0$$

Show by contradiction: suppose otherwise, i.e.

$$(\dagger): c_1 \mathbf{v}_1 + ... + c_{n-1} \mathbf{v}_{n-1} = \mathbf{v}_n$$

Apply \boldsymbol{A} both sides:

$$m{A}(c_1m{v}_1 + ... + c_{p-1}m{v}_{p-1}) = m{A}m{v}_p$$

 $c_1\lambda_1m{v}_1 + ... + c_{p-1}\lambda_{p-1}m{v}_{p-1} = \lambda_pm{v}_p$

 $(\dagger) \times \lambda_p$, substracted from last equation:

$$\sum_{j=1}^{p-1} c_j (\lambda_1 - \lambda_p) \boldsymbol{v}_j = \lambda_p \boldsymbol{v}_p - \lambda_p \boldsymbol{v}_p = 0$$

Which is not possible since $\exists c_j \neq 0$, and $(\lambda_j - \lambda_p) \neq 0 \ \forall j$. Contradiction. \Box

2.5 Miscellaneous

- · \mathbf{A} singular $\iff 0 \in \lambda(\mathbf{A})$. Proof. $\det(0\mathbf{I} - \mathbf{A}) = 0 \iff \mathbf{A}$ singular. \square
- · \boldsymbol{A} invertible. $\lambda \in \lambda(\boldsymbol{A}), \boldsymbol{v} \in V_{\lambda}(\boldsymbol{A})$. Then $\frac{1}{\lambda} \in \lambda(\boldsymbol{A}^{-1}), \boldsymbol{v} \in V_{\frac{1}{\lambda}}(\boldsymbol{A}^{-1})$. Proof. $\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v} \Rightarrow \boldsymbol{A}^{-1}\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{A}^{-1}\boldsymbol{v} \Rightarrow \frac{1}{\lambda}\boldsymbol{v} = \boldsymbol{A}^{-1}\boldsymbol{v}$.

3 DIAGONAL FORM 3

· \boldsymbol{A} has eigtuple $(\lambda, \boldsymbol{v})$, then \boldsymbol{A}^k with (λ^k, v) . $P(\boldsymbol{A})$ is a polynomial of \boldsymbol{A} , has eigtuple $(P(\lambda), \boldsymbol{v})$.

· \boldsymbol{A} and \boldsymbol{A}^{\top} have same eigvals. Proof. $P_{\boldsymbol{A}}(t) = \det(t\boldsymbol{I} - \boldsymbol{A}) = \det((t\boldsymbol{I} - \boldsymbol{A})^{\top}) = \det(t\boldsymbol{I} - \boldsymbol{A}^{\top}) = P_{\boldsymbol{A}^{\top}}(t)$. Thus have same roots.

· First, second and the last term of $P_{\mathbf{A}}(t)$:

$$P_{\mathbf{A}}(t) = t^n - \operatorname{tr}(\mathbf{A})t^{n-1} + \dots + (-1)^n \det(\mathbf{A})$$

Moreover, $\sum_{j=1}^{n} \lambda_j = \operatorname{tr}(\boldsymbol{A})$ and $\prod_{j=1}^{n} \lambda_j = \operatorname{det}(\boldsymbol{A})$.

Proof. $P_{\mathbf{A}}(t) = \det(t\mathbf{I} - \mathbf{A}).$

 $P_{\mathbf{A}}(0) = \det(-\mathbf{A}) = (-1)^n \det(\mathbf{A}).$

 t^n, t^{n-1} arises with prod term of diagonal entries:

$$\prod_{j=1}^{n} (t - A_{jj}) = t^{n} - t^{n-1} \sum_{j=1}^{n} A_{jj} + \dots$$

which have coefficients 1 and $-tr(\mathbf{A})$. Moreover

$$P_{\mathbf{A}}(t) = \prod_{j=1}^{n} (t - \lambda_j) = t^n - t^{n-1} \sum_{j=1}^{n} \lambda_j + \dots + (-1)^n \prod_{j=1}^{n} \lambda_j$$

Finished the proof. \Box

3 Diagonal Form

· A square, A is diagonalizable iff \exists diagonal Ω , invertible V, s.t.

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$

Entries of Λ are eigvals of A, and cols of V are corresponding eigvecs.

Proof. $AV = V\Lambda V^{-1}V = V\Lambda$.

 $AV = (Av_1|...|Av_n); V\Lambda = (V\lambda_1e_1|...|V\lambda_ne_n) = (v_1\lambda_1|...|v_n\lambda_n). \square$

Since V is nonsingular, $\{v_k\}$ must be linearly indep.

- \cdot **A** is diagonalizable iff it has *n* linearly indep. eigences.
- · If $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$, then $\mathbf{A}^p = \mathbf{V} \mathbf{\Lambda}^p \mathbf{V}^{-1}$. Proof. $\mathbf{A}^p = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} ... \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} = \mathbf{V} \mathbf{\Lambda}^p \mathbf{V}^{-1}$. \square Similarly, $\mathbf{A}^{-1} = \mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{V}^{-1}$, and $\mathbf{A}^{-p} = \mathbf{V} \mathbf{\Lambda}^{-p} \mathbf{V}^{-1}$.

4 Diagonally Dominant Matrices

· R_j defined as sum of absolute value of entries on j-th row except for the main diagonal one A_{jj} .

$$R_j := \sum_{k=1, k \neq j}^n |A_{jk}|$$

- · **A** is a weakly diagonal dominant matrix iff $|A_{jj}| \ge R_j$ for all j = 1, ..., n.
- · **A** is a strictly diagonal dominant matrix iff $|A_{jj}| > R_j$ for all j = 1, ..., n.

Thm. (Gershgorin) $A^{n\times n}$, for any eigval λ , there exists index j, s.t.

$$|\lambda - A_{jj}| \le R_j$$

Alternative statement:

$$\lambda(\mathbf{A}) \subseteq \bigcup_{j=1}^{n} D(A_{jj}, R_{j})$$

Where $D(A_{jj}, R_j) := \{z \in \mathbb{C} : |z - A_{jj}| \leq R_j\}$ being disc in complex field, centerred at A_{jj} , with radius R_j . Let \boldsymbol{v} be eigval corresponding to λ , index j is acturally the index of entry in \boldsymbol{v} who has biggest absolute value.

Proof. $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}, \mathbf{v} = (v_1, ..., v_n)^{\top}. \ j = \operatorname{argmax} |v_j|.$

 $\langle \boldsymbol{a}_{j}, \boldsymbol{v} \rangle = \lambda v_{j}$, angle stands for inner product, \boldsymbol{a}_{j} is j-th row of \boldsymbol{A} . I.e.

$$\lambda v_{j} = \sum_{i=1}^{n} A_{ji} v_{i} = A_{jj} v_{j} + \sum_{i=1, i \neq j}^{n} A_{ji} v_{i}$$

$$\lambda - A_{jj} = \frac{1}{v_{j}} \sum_{i=1, i \neq j}^{n} A_{ji} v_{i}$$

$$|\lambda - A_{jj}| \le \frac{1}{|v_{j}|} \sum_{i=1, i \neq j}^{n} |A_{ji}| |v_{i}| = \sum_{i=1, i \neq j}^{n} |A_{ji}| \frac{|v_{i}|}{|v_{j}|}$$

$$\le \sum_{i=1, i \neq j}^{n} |A_{ji}| = R_{j}$$

1