Coordinate Geometry

10^{th} Maths - Chapter 7

This is Problem-4 from Exercise 7.3

1. Find the area of quadrilateral whose vertices, taken in order, are $\begin{pmatrix} -4 \\ -2 \end{pmatrix}$, $\begin{pmatrix} -3 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Solution: The input parameters for this problem are available in Table (1)

Symbol	Value	Description
A	$\begin{pmatrix} -4 \\ -2 \end{pmatrix}$	First point
В	$\begin{pmatrix} -3 \\ -5 \end{pmatrix}$	Second point
C	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	Third point
D	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$	Fourth point

Table 1

By joining **B** to **D**, you will get two triangles **ABD** and **BCD**. In general, the ar(ABD) can be expressed as

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{D}) \| \tag{1}$$

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} -4 \\ -2 \end{pmatrix} - \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \tag{2}$$

$$\mathbf{A} - \mathbf{D} = \begin{pmatrix} -4 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -6 \\ -5 \end{pmatrix} \tag{3}$$

Substituting the values of (2) and (3) in (1),

$$\frac{1}{2} \begin{vmatrix} -1 & 3 \\ -6 & -5 \end{vmatrix} = \frac{23}{2} \tag{4}$$

Also, the ar(BCD) can be expressed as

$$\frac{1}{2} \| (\mathbf{B} - \mathbf{C}) \times (\mathbf{B} - \mathbf{D}) \| \tag{5}$$

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -6 \\ -5 \end{pmatrix} \tag{6}$$

$$\mathbf{B} - \mathbf{D} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \\ -8 \end{pmatrix} \tag{7}$$

Substituting the values of (6) and (7) in (5),

$$\frac{1}{2} \begin{vmatrix} -6 & -3 \\ -5 & -8 \end{vmatrix} = \frac{33}{2} \tag{8}$$

Area of Quadrilateral ABCD = ar(ABD) + ar(BCD),

$$\frac{23}{2} + \frac{33}{2} = 28\tag{9}$$

Figure 1