Group Assignment 1

Simon Yu

2025-10-01

Table of contents

1. Visualise the number of tickers on each exchange that have had at least one trading	
day with a volume of more than 100000	3
2. Visualize on one line plot the close prices of each ticker (SBUX, WEN, PBPB,	
CMG), over the period.	4
Finally, considering only the ticker you analysed with the highest mean daily return	
over the period:	6
3. Visualise on one line plot the high and low prices, in the year 2021	6
4. Visualise volume using a bar plot, over the entire period	8
5. Visualise, using a scatter (point) plot, the relationship between simple daily returns	
and volume, in the year 2021	9

List of Figures

List of Tables

```
library(dplyr)
library(ggplot2)
library(PerformanceAnalytics)
library(lubridate)
library(scales)
```

```
data <- read.csv("compustat_food_bev.csv")

# filter data for Starbucks (SBUX)
sbux_data <- filter(data, tic == "SBUX")
# filter data for Wendy's (WEN)
wen_data <- filter(data, tic == "WEN")
# filter data for Potbelly (PBPB)
pbpb_data <- filter(data, tic == "PBPB")
# filter data for Chipotle (SMG)
cmg_data <- filter(data, tic == "CMG")</pre>
```

1. Visualise the number of tickers on each exchange that have had at least one trading day with a volume of more than 100000.

```
# A tibble: 4 × 2
  exchg tic_num
  <int> <int>
1    11    16
2    12    1
3    14    36
```

4 19 1

2. Visualize on one line plot the close prices of each ticker (SBUX, WEN, PBPB, CMG), over the period.

Close Price Trends

Finally, considering only the ticker you analysed with the highest mean daily return over the period:

3. Visualise on one line plot the high and low prices, in the year 2021.

```
sbux_data <- mutate(sbux_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
sbux_data <- filter(sbux_data, !is.na(daily_return))

wen_data <- mutate(wen_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
wen_data <- filter(wen_data, !is.na(daily_return))

pbpb_data <- mutate(pbpb_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
pbpb_data <- filter(pbpb_data, !is.na(daily_return))

cmg_data <- mutate(cmg_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
cmg_data <- filter(cmg_data, !is.na(daily_return))</pre>
```

```
# observe mean daily return for the tickers we analyzed
sbux_mean_daily_return <- mean(sbux_data$daily_return)
wen_mean_daily_return <- mean(wen_data$daily_return)
pbpb_mean_daily_return <- mean(pbpb_data$daily_return)
cmg_mean_daily_return <- mean(cmg_data$daily_return)

print(paste("Mean Daily Returns for SBUX:", sbux_mean_daily_return))
print(paste("Mean Daily Returns for WEN:", wen_mean_daily_return))
print(paste("Mean Daily Returns for PBPB:", pbpb_mean_daily_return))
print(paste("Mean Daily Returns for CMG:", cmg_mean_daily_return))</pre>
```

```
[1] "Mean Daily Returns for SBUX: 0.000291046723931376"
```

- [1] "Mean Daily Returns for WEN: 0.000116474712706267"
- [1] "Mean Daily Returns for PBPB: 0.00127986776777774"
- [1] "Mean Daily Returns for CMG: 0.000674687634951914"

Apparnetly, PBPB has the highest mean daily return among the four tickers.

4. Visualise volume using a bar plot, over the entire period.

5. Visualise, using a scatter (point) plot, the relationship between simple daily returns and volume, in the year 2021.

```
lm_return_volume <- lm(formula = daily_return ~ cshtrd, data = pbpb_data_2021)
pbpb_data_2021$model <- predict(lm_return_volume)</pre>
```

Daily Return vs Volume in 2021

