Problem A. Who Says a Pun?

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

Given is a string S of length N.

Find the maximum length of a non-empty string that occurs twice or more in S as contiguous substrings without overlapping.

More formally, find the maximum positive integer len such that there exist integers l_1 and l_2 ($1 \le l_1, l_2 \le N - len + 1$) that satisfy the following:

- $l_1 + len \leq l_2$
- $S[l_1+i] = S[l_2+i](i=0,1,...,len-1)$

If there is no such integer len, print 0.

Constraints

- $2 < N < 5 \times 10^3$
- |S|=N
- ullet S consists of lowercase English letters.

Input

Input is given from Standard Input in the following format:

 $egin{array}{c} N \ S \end{array}$

Output

Print the maximum length of a non-empty string that occurs twice or more in S as contiguous substrings without overlapping. If there is no such non-empty string, print 0 instead.

Sample 1

Input	Output
5 ababa	2

The strings satisfying the conditions are: a , b , ab , and ba . The maximum length among them is 2, which is the answer. Note that aba occurs twice in S as contiguous substrings, but there is no pair of integers l_1 and l_2 mentioned in the statement such that $l_1 + len \leq l_2$.

Sample 2

Input	Output
2 xy	0

No non-empty string satisfies the conditions.

Sample 3

Input	Output
13 strangeorange	5