

Module: Graphes & Applications

Dernière mise à jour : 01/04/2022

Code ¹	HE ²	HNE ³	ECTS ⁴
MS-08	21h	30h	1,5

Responsable Module	Nehla DEBBABI
Enseignants – Intervenants	Sami SIFI - Asma GDHAMI – Nehla DEBBABI
Unité pédagogique	Mathématiques
Unité d'enseignement	Recherche Opérationnelle
Prérequis ⁵	AP-43
Niveaux et Options	4 ^{ème} années sous les départements Informatique et Télécommunication

Objectif du module⁶:

A la fin de ce module l'apprenant sera capable de résoudre des problèmes d'optimisation en faisant appel à des algorithmes de la théorie des graphes

Mode d'évaluation⁷:

La moyenne de ce module est calculée comme suit :

• Contrôle continu : 20% (sous forme de test)

• Examen final: 80%

Acquis d'apprentissage :

à la validation de ce module l'étudiant sera capable de:

¹ Le même code que celui dans le plan d'étude

² Heure Enseignée selon le plan d'étude

³ Heure Non Enseignée en respectant la formule suivante: Nombre d'ECTS*25< HE+HNE<Nombre d'ECTS*30

⁴ Voir le plan d'étude

⁵ Les noms des modules pré-requis pour les niveaux de 2 à 5. Pour le niveau 1, vous pouvez indiquer des compétences pré-requis.

⁶ Les objectifs généraux du module

⁷ On indique les pourcentages de CC/Examen/TD en spécifiant les modalités (test , activités synchrone , asynchrone, workshops)

AA	Acquis d'apprentissage ⁸	Niveau d'approfondissement (*)
AA1	Décrire un graphe numériquement	1-2
AA2	Identifier les problèmes qui reviennent à une modélisation sous forme d'un graphe	1-2-4
AA3	Choisir le modèle de graphe approprié pour représenter un problème réel	2-3-4-5
AA4	Choisir et appliquer l'algorithme adéquat pour résoudre un problème d'optimisation faisant appel à une modélisation par un graphe	3-4-5
AA5	Expliquer le fonctionnement des algorithmes étudiés	1-2-4
AA6	Tester et adapter les procédures d'optimisation sur des graphes pour des cas réels	3-5-6
AA7	Savoir comparer les algorithmes étudiés sur la base de leurs complexités	4-5

^{*: (1:} Mémoriser, 2: Comprendre, 3: Appliquer, 4: Analyser, 5: Evaluer, 6: Créer).

Contenu détaillé9

Introduction à la modélisation sous forme de graphes

- Exemples d'application
- Représentation numérique d'un graphe

	Situation(s) d'apprentissage ¹¹
1,5	Durée
5)	Rendu(s)

Coloration des sommets d'un graphe

- Propriétés et exemples d'applications

⁸ Les acquis doivent être exprimés en utilisant les verbes de la taxonomie de bloom d'une version à partager (pas de restriction sur le nombre des acquis)

⁹ A structurer par chapitre/objectif pour les modules et par séance pour les projets.

¹⁰ Les sous-acquis d'apprentissage doivent être détaillés sans pour autant mentionner les supports de cours utilisés. On peut plutôt mettre un lien vers classroom model.

¹¹ APP/cours de restructuration/cours /cours intégré / workshop/ TP / TP

- Algorithme Glouton
- Algorithme de Powell-Welsh

Situation(s) d'apprentissage	Cours et TD
Durée	3h
Rendu(s)	Homework

Recherche de plus court chemin

- Propriétés et exemples d'applications
- Le cas des poids positifs : Algorithme de Dijkstra
- Le cas des poids de signe quelconque : Algorithme de Ford-Bellman
- Le plus court chemin entre les différents couples de sommets : Algorithme de Floyd

Situation(s) d'apprentissage	Cours et TD
Durée	7h30
Rendu(s)	Homework

Flots sur les réseaux

- Propriétés et exemples d'applications
- Parcours en profondeur et en largeur d'un graphe
- Problème du flot maximal : Algorithme de Ford-Fulkerson
- Coupe minimale
- Flot max à coût minimum

Situation(s) d'apprentissage	Cours et TD
Durée	6h
Rendu(s)	Homework

Arbre couvrant à Poids minimal

- Propriétés et exemples d'applications
- Algorithme de KrusKal
- Algorithme de Prim

Situation(s) d'apprentissage	Cours et TD
Durée	3h
Rendu(s)	Homework

Evaluation¹²:

	Oral assess ment	Written exam/ MCQ	Report/ Homew ork	Presen tation	TP	Project
AA1 : Décrire un graphe numériquement		X	X			
AA2 : Identifier les problèmes qui reviennent à une modélisation sous forme d'un graphe	X	X	X			
AA3 : Choisir le modèle de graphe approprié pour représenter un problème réel	X	X	X			
AA4: Choisir et appliquer l'algorithme adéquat pour résoudre un problème d'optimisation faisant appel à une modélisation par un graphe		X	X			
AA5 : Expliquer le fonctionnement des algorithmes étudiés	X	X	X			
AA6 : Examiner la complexité des algorithmes étudiés	X	X				
AA7 : Tester et adapter les procédures d'optimisation sur des graphes pour des cas réels		X	X			

Références¹³:

Textbook :	Théorie des graphes et algorithmes, Jolle Cohen, Paris12, 2012.		
	Lien: http://lacl.fr/cohen/polyGraphes2012Sept07.pdf		
Références bibliographiques :	Graphs, Networks and Algorithms, 2010-third edition, Springer. Dieter Jungnickel. (ISBN-10: 3642091865)		

Pour les lignes, on met les acquis d'apprentissage et pour les colonnes tout type d'activité d'évaluation proposée durant le module.
l'examen final doit couvrir tous les acquis d'apprentissage d'un module.
Textbook, bibliographie, mooc, article de recherche, livre, white book, reference netographique