Satz und Del:	
Sei Vein K-Vertorraum und sei Us Vein Unterraum.	
Für alle a, b & V def. wir: a ~ b:=> a-l & U	
Dann gilt:	
~ ist eine Aquivalenerelation and V and für alle a EV gilt [a] = a+ u = {a+u ueu}	
V/U := { [a] a e U}	
Bew.:	
Seien a, &, c & V. Dann gilt:	
(i) a ~ a (=> a-a ∈ U (=> D ∈ U (w) da U ein Unterrann ist.	
=> ~ ist ceflexiv.	
(ii) a~b=> a-beb => -(a-b)eb => b-aeb => b~a	
⇒ ~ ist symmetrisch	
a anterraum.	
=> a-ceU => a~c	
⇒ ~ ist fransitiv.	
(i) - (iii) => ~ ist eine Aquivalenzrelation auf V	
[a] = { leV l~a} = { leV l-aeu} = { leV Dueu: l-a=u}	
$= \{ \mathcal{L} \in V \mid \exists u \in u : \mathcal{L} = a + u \} = \{ a + u \mid u \in u \} = a + u.$	
Satz and Def.:	
Sei Vein K-Vertorraum und sei USV ein Unterraum.	
V/W ist mit den Verknüpfunzen	
+: V/u × V/u -> V/u, [a]+ [b] = [a+ b]	
· · K × V/u → V/u , 1·[a] = [1·a]	
ein K-Vertorranm. V/U heißt Quotientenvertorranm. [D] = O+L = L ist das Nullelement	

Die Alb.: T. V -> V/U, T(U) = [v] ist linear and surjentiv und es gilt Kern(T) = U. lustes. gilt: dim(U) = dim(U) + dim(V/U) Bew (für den letzten Teil) Ti ist linear (Klar) TI ist surjektiv: Sei [U] & V/4. Dann silt Ti(u) = [U] / Kern (T) = { U & U | T(U) = 0) = { U & U | [U] = (0) } = { U & U | U ~ 0 } = { u e U | u - 0 e u } = u / Nach der Dimensionsformel für lineare Abbildungen zilt: dim(U) = dim Kern(II) + dim(Bild(II)) = dim(u) + dim(U/u)

Satz (Homomorphiesatz)

Seien V und W K-Vertorrähme sei U = V ein Unterrahm und sei V = V/U.

Sei T. V -> V def. durch T(v) = [v).

Sei f: V -> W linear mit U = Kern(f).

Dann gilt:

Es ex. eine eindentiz bestimmte lineare ABB. $\overline{f}: \overline{V} \rightarrow W$ mit $f = \overline{f} \circ \pi$.

Für diese All. zilt:

(2)
$$Bild(\bar{f}) = Bild(f)$$

Kor. (Isomorphiesatz)

Seien V und W K-Vertorrähme und sei f: V -> W linear.

Dann gilt:

Es ex. ein | somorphismus $\bar{f}: \bigvee / \text{Kern}(f) \rightarrow \text{Bild}(f)$.

Instes. gilt:

 $V \xrightarrow{f} W$ V / Kern(f)

1st f surjectiv, so ex. ein Isomorphismus $\bar{f}: V/Kern(f) \rightarrow W$.