Résolution d'une équation diophantienne

L'objectif de ce problème est la résolution de l'équation $a^2 - 2b^2 = \pm 1$.

On admettra l'irrationalité de $\sqrt{2}$.

On introduit l'ensemble $\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2}/(a,b) \in \mathbb{Z}^2\right\}$.

Partie I

- 1. Montrer que $\mathbb{Z}[\sqrt{2}]$ muni de l'addition et de la multiplication des réels est un anneau.
- 2.a Etablir $\forall x \in \mathbb{Z}\Big[\sqrt{2}\Big], \exists ! (a,b) \in \mathbb{Z}^2$ tel que $x=a+b\sqrt{2}$. On pose alors $\overline{x}=a-b\sqrt{2}$ appelé conjugué de x.
- 2.b Montrer que l'application de conjugaison $x \mapsto \overline{x}$ est un automorphisme de l'anneau $\mathbb{Z}\left[\sqrt{2}\right]$.
- 3. Pour $x \in \mathbb{Z}\left[\sqrt{2}\right]$, on pose $N(x) = x\overline{x}$.
- 3.a Justifier que $\forall x \in \mathbb{Z}\Big[\sqrt{2}\Big], N(x) \in \mathbb{Z}$, et $\forall x, x' \in \mathbb{Z}\Big[\sqrt{2}\Big], N(xx') = N(x)N(x') \ .$
- 3.b Montrer que $x \in \mathbb{Z}[\sqrt{2}]$ est inversible ssi $N(x) \in \{1, -1\}$.
- 3.c On forme $H = \left\{ x \in \mathbb{Z}\left[\sqrt{2}\right]/N(x) = \pm 1 \right\}$.

 Justifier par un argument rapide que H est un groupe pour la multiplication des réels.

Partie II

On se propose dans cette partie de décrire l'ensemble ${\cal H}$, ce qui correspond à la résolution de l'équation initialement proposée.

- 1. Soit $x = a + b\sqrt{2} \in H$. Montrer:
- 1.a $a \ge 0$ et $b \ge 0 \Rightarrow x \ge 1$.
- 1.b $a \le 0$ et $b \le 0 \Rightarrow x \le -1$.
- 1.c $ab \le 0 \Rightarrow |x| \le 1$.
- 2. On note $H^+ = \{x \in H / x > 1\}$.
- 2.a Montrer que si $x = a + b\sqrt{2} \in H^+$ alors a > 0 et b > 0.
- 2.b En déduire que $u = 1 + \sqrt{2}$ est le plus petit élément de H^+ .
- 3. Soit $x \in H^+$.
- 3.a Montrer qu'il existe un entier naturel n tel que $u^n \le x < u^{n+1}$.
- 3.b En déduire que $x = u^n$.
- 3.c Conclure que $H = \{\pm u^n / n \in \mathbb{Z}\}$.