Proof of Slutsky's Theorem

Kacper Budnik

Wrocław University of Science and Technology

20 marca 2023

Rodzaje zbieżności

Zbieżność według prawdopodobieństwa

Ciąg zmiennych losowych (X_n) jest zbieżny według prawdopodobieństwa do X, jeśli

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0.$$

Oznaczamy $X_n \xrightarrow{\mathbb{P}} X$.

Rodzaje zbieżności

Zbieżność według rozkładu

Ciąg zmiennych losowych (X_n) jest zbieżny według rozkładu do X, jeśli

$$\forall f \in C_b(\mathbb{R}) \quad \lim_{n \to \infty} \mathbb{E}f(X_n) = \mathbb{E}f(X),$$

gdzie $C_b(\Omega)$ jest to zbiór funkcji ciągłych i ograniczonych na Ω .

Oznaczamy $X_n \xrightarrow{d} X$.

Rodzaje zbieżności

Zbieżność według rozkładu

Ciąg zmiennych losowych (X_n) jest zbieżny według rozkładu do X, jeśli

$$\forall f \in C_b(\mathbb{R}) \quad \lim_{n \to \infty} \mathbb{E}f(X_n) = \mathbb{E}f(X),$$

gdzie $C_b(\Omega)$ jest to zbiór funkcji ciągłych i ograniczonych na Ω . Oznaczamy $X_n \stackrel{d}{\longrightarrow} X$.

Równoważny warunek

Niech X_n – ciąg o dystrybuantach F_n oraz X – zmienna losowa o dystrybuancie F, wtedy

$$X_n \xrightarrow{d} X \iff F_n(x) \to F(x)$$

dla każdego punktu x ciągłości dystrybuanty F.

Slutsky's Theorem

Twierdzienie Słuckiego

Niech X_n i Y_n będą ciągami zmiennych losowych, takich, że

$$X_n \xrightarrow{d} X$$
 oraz $Y_n \xrightarrow{\mathbb{P}} c$

dla pewnej zmiennej losowej X i stałej c. Wtedy

- $\bullet X_n + Y_n \xrightarrow{d} X + c$
- $\bullet \ Y_n X_n \xrightarrow{d} c X$

Dowód dla sumy

Niech x-c będzie punktem ciągłości dystrybuanty F zmiennej losowej X, wtedy dla dowolnego $\varepsilon>0$

Dowód dla sumy

Niech x-c będzie punktem ciągłości dystrybuanty F zmiennej losowej X, wtedy dla dowolnego $\varepsilon>0$

$$\mathbb{P}(X_n + Y_n < x) = \mathbb{P}(X_n + Y_n < x, |Y_n - c| < \varepsilon) + \mathbb{P}(X_n + Y_n < x, |Y_n - c| \ge \varepsilon)$$

Dowód dla sumy

Niech x-c będzie punktem ciągłości dystrybuanty F zmiennej losowej X, wtedy dla dowolnego $\varepsilon>0$

$$\mathbb{P}(X_n + Y_n < x) = \mathbb{P}(X_n + Y_n < x, |Y_n - c| < \varepsilon) + \mathbb{P}(X_n + Y_n < x, |Y_n - c| \ge \varepsilon)$$

Ponieważ $Y_n \stackrel{\mathbb{P}}{\longrightarrow} c$, to

$$0 \leqslant \mathbb{P}(X_n + Y_n < x, |Y_n - c| \geqslant \varepsilon) \leqslant \mathbb{P}(|Y_n - c| \geqslant \varepsilon) \to 0.$$

Dodatkowo

$$|Y_n - c| < \varepsilon \iff c - \varepsilon < Y_n < c + \varepsilon,$$

Dodatkowo

$$|Y_n - c| < \varepsilon \iff c - \varepsilon < Y_n < c + \varepsilon,$$

zatem

$$X_n + c - \varepsilon < X_n + Y_n < X_n + c + \varepsilon,$$

Dodatkowo

$$|Y_n - c| < \varepsilon \iff c - \varepsilon < Y_n < c + \varepsilon,$$

zatem

$$X_n + c - \varepsilon < X_n + Y_n < X_n + c + \varepsilon,$$

a więc

$$\mathbb{P}(X_n + Y_n < x, |Y_n - c| < \varepsilon) \leq \mathbb{P}(X_n + c - \varepsilon < x, |Y_n - c| < \varepsilon)$$
$$\leq \mathbb{P}(X_n + c - \varepsilon < x)$$

Z drugiej strony, korzystając z nierówności

$$\mathbb{P}\left(\bigcap_{k=1}^{n}A_{k}\right)\geqslant\left(\sum_{k=1}^{n}\mathbb{P}\left(A_{n}\right)\right)-\left(n-1\right)$$

dla n=2

Z drugiej strony, korzystając z nierówności

$$\mathbb{P}\left(\bigcap_{k=1}^{n}A_{k}\right)\geqslant\left(\sum_{k=1}^{n}\mathbb{P}\left(A_{n}\right)\right)-\left(n-1\right)$$

dla n=2 otrzymujemy oszacowanie dolne postaci

$$\mathbb{P}(X_n + Y_n < x, |Y_n - c| < \varepsilon) \geqslant \mathbb{P}(X_n + c + \varepsilon < x, |Y_n - c| < \varepsilon)$$
$$\geqslant \mathbb{P}(X_n + c + \varepsilon < x) + \mathbb{P}(|Y_n - c| < \varepsilon) - 1.$$

Z drugiej strony, korzystając z nierówności

$$\mathbb{P}\left(\bigcap_{k=1}^{n}A_{k}\right)\geqslant\left(\sum_{k=1}^{n}\mathbb{P}\left(A_{n}\right)\right)-\left(n-1\right)$$

dla n=2 otrzymujemy oszacowanie dolne postaci

$$\mathbb{P}(X_n + Y_n < x, |Y_n - c| < \varepsilon) \ge \mathbb{P}(X_n + c + \varepsilon < x, |Y_n - c| < \varepsilon)$$
$$\ge \mathbb{P}(X_n + c + \varepsilon < x) + \mathbb{P}(|Y_n - c| < \varepsilon) - 1.$$

Dodatkowo, ponieważ $Y_n \xrightarrow{\mathbb{P}} c$, to

$$\lim_{n\to\infty}\mathbb{P}\left(|Y_n-c|<\varepsilon\right)-1=0$$

Więc zbierając wszystko razem i dobierając tak epsilona, by F była ciągła na $[x-c-\varepsilon,x-c+\varepsilon]$, otrzymujemy

$$\limsup_{n \to \infty} \mathbb{P}(X_n + Y_n < x) \leq \limsup_{n \to \infty} \mathbb{P}(X_n + c - \varepsilon < x) + \limsup_{n \to \infty} \mathbb{P}(X_n + Y_n < x, |Y_n - c| \ge \varepsilon)$$
$$= \mathbb{P}(X + c - \varepsilon < x) + 0.$$

Więc zbierając wszystko razem i dobierając tak epsilona, by F była ciągła na $[x-c-\varepsilon,x-c+\varepsilon]$, otrzymujemy

$$\limsup_{n \to \infty} \mathbb{P}(X_n + Y_n < x) \leq \limsup_{n \to \infty} \mathbb{P}(X_n + c - \varepsilon < x) + \limsup_{n \to \infty} \mathbb{P}(X_n + Y_n < x, |Y_n - c| \ge \varepsilon)$$
$$= \mathbb{P}(X + c - \varepsilon < x) + 0.$$

Analogicznie

$$\liminf_{n \to \infty} \mathbb{P}(X_n + Y_n < x) \geqslant \liminf_{n \to \infty} \mathbb{P}(X_n + c + \varepsilon < x) \\
+ \liminf_{n \to \infty} \mathbb{P}(X_n + Y_n < x, |Y_n - c| \geqslant \varepsilon) \\
+ \liminf_{n \to \infty} \mathbb{P}(|Y_n - c| < \varepsilon) - 1 \\
= \mathbb{P}(X + c - \varepsilon < x) + 0 + 0.$$

Mamy więc oszacowanie górne i dolne na szukaną granicę

$$\mathbb{P}(X + c < x - \varepsilon) \leqslant \lim_{n \to \infty} \mathbb{P}(X_n + Y_n < x) \leqslant \mathbb{P}(X + c < x + \varepsilon).$$

Mamy więc oszacowanie górne i dolne na szukaną granicę

$$\mathbb{P}(X + c < x - \varepsilon) \leqslant \lim_{n \to \infty} \mathbb{P}(X_n + Y_n < x) \leqslant \mathbb{P}(X + c < x + \varepsilon).$$

Korzystając teraz z ciągłości drystrybuanty w x-c przechodzimy z $\varepsilon \to 0^+$ otrzymując

$$\lim_{n\to\infty} \mathbb{P}(X_n + Y_n < x) = \mathbb{P}(X + c < x),$$

 $zatem X_n + Y_n \xrightarrow{d} X + c.$

Dowód dla iloczynu

Dla dowolnego $\varepsilon>0$ doieramy $\delta>0$ taką, by punkty $\pm\varepsilon/\delta$ były punktami ciągłości dystrybuanty F zmiennej losowej X, BSO załóżmy, że $Y_n \stackrel{\mathbb{P}}{\longrightarrow} 0$, wtedy

Dowód dla iloczynu

Dla dowolnego $\varepsilon>0$ doieramy $\delta>0$ taką, by punkty $\pm\varepsilon/\delta$ były punktami ciągłości dystrybuanty F zmiennej losowej X, BSO załóżmy, że $Y_n \stackrel{\mathbb{P}}{\to} 0$, wtedy

$$\mathbb{P}(|X_nY_n| > \varepsilon) = \mathbb{P}(|X_nY_n| > \varepsilon, |Y_n| < \delta) + \mathbb{P}(|X_nY_n| > \varepsilon, |Y_n| \ge \delta)$$

Dowód dla iloczynu

Dla dowolnego $\varepsilon>0$ doieramy $\delta>0$ taką, by punkty $\pm\varepsilon/\delta$ były punktami ciągłości dystrybuanty F zmiennej losowej X, BSO załóżmy, że $Y_n \stackrel{\mathbb{P}}{\longrightarrow} 0$, wtedy

$$\mathbb{P}(|X_nY_n| > \varepsilon) = \mathbb{P}(|X_nY_n| > \varepsilon, |Y_n| < \delta) + \mathbb{P}(|X_nY_n| > \varepsilon, |Y_n| \ge \delta)$$

Analogicznie jak wcześniej, ponieważ $Y_n \stackrel{\mathbb{P}}{\to} 0$, to

$$\mathbb{P}\left(|X_nY_n|>\varepsilon,|Y_n-0|\geqslant\delta\right)\to 0.$$

Dodatkowo dla pierwszego zdarzenia $\{|X_nY_n|>\varepsilon, |Y_n|<\delta\}$ zachodzi ciąg wynikań

$$|Y_n| < \delta \implies \frac{1}{|Y_n|} > \frac{1}{\delta} \implies \frac{|X_n Y_n|}{|Y_n|} > \frac{\varepsilon}{\delta} \implies |X_n| > \frac{\varepsilon}{\delta}$$

Dodatkowo dla pierwszego zdarzenia $\{|X_nY_n|>\varepsilon, |Y_n|<\delta\}$ zachodzi ciąg wynikań

$$|Y_n| < \delta \implies \frac{1}{|Y_n|} > \frac{1}{\delta} \implies \frac{|X_n Y_n|}{|Y_n|} > \frac{\varepsilon}{\delta} \implies |X_n| > \frac{\varepsilon}{\delta}$$

Zatem

$$\mathbb{P}(|X_nY_n| > \varepsilon, |Y_n| \geqslant \delta) \leqslant \mathbb{P}\left(|X_n| > \frac{\epsilon}{\delta}, |Y_n| \geqslant \delta\right) \leqslant \mathbb{P}\left(|X_n| > \frac{\epsilon}{\delta}\right)$$

Zbierając teraz wszystkie nierówności razem otrzymujemy

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n Y_n| > \varepsilon\right) \leqslant \lim_{n \to \infty} \mathbb{P}\left(|Y_n| \geqslant \delta\right) \\
+ \lim_{n \to \infty} \mathbb{P}\left(|X_n| > \frac{\varepsilon}{\delta}\right) = 0 + \mathbb{P}\left(|X| > \frac{\varepsilon}{\delta}\right).$$

Zbierając teraz wszystkie nierówności razem otrzymujemy

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n Y_n| > \varepsilon\right) \leqslant \lim_{n \to \infty} \mathbb{P}\left(|Y_n| \geqslant \delta\right) \\
+ \lim_{n \to \infty} \mathbb{P}\left(|X_n| > \frac{\varepsilon}{\delta}\right) = 0 + \mathbb{P}\left(|X| > \frac{\varepsilon}{\delta}\right).$$

Zmniejszając teraz $\delta \to 0^+$ otrzymujemy

$$\lim_{n\to\infty}\mathbb{P}\left(|X_nY_n|>\varepsilon\right)\leqslant\mathbb{P}\left(|X|=\infty\right)=0$$

Więc $X_n Y_n \xrightarrow{\mathbb{P}} 0$, czyli w szczególności $X_n Y_n \xrightarrow{d} 0 \cdot X$.

Zbierając teraz wszystkie nierówności razem otrzymujemy

$$\lim_{n\to\infty} \mathbb{P}\left(|X_n Y_n| > \varepsilon\right) \leqslant \lim_{n\to\infty} \mathbb{P}\left(|Y_n| \geqslant \delta\right) + \lim_{n\to\infty} \mathbb{P}\left(|X_n| > \frac{\varepsilon}{\delta}\right) = 0 + \mathbb{P}\left(|X| > \frac{\varepsilon}{\delta}\right).$$

Zmniejszając teraz $\delta \to 0^+$ otrzymujemy

$$\lim_{n\to\infty}\mathbb{P}\left(\left|X_{n}Y_{n}\right|>\varepsilon\right)\leqslant\mathbb{P}\left(\left|X\right|=\infty\right)=0$$

Więc $X_nY_n \stackrel{\mathbb{P}}{\to} 0$, czyli w szczególności $X_nY_n \stackrel{d}{\to} 0 \cdot X$. W ogólnym przypadku, gdy $Y_n \stackrel{\mathbb{P}}{\to} c$ rozpatrujemy Z_n takie, że $Y_n = Z_n + c$ i wtedy $X_nY_n = X_nZ_n + cX_n$. Zmienna $X_nZ_n \stackrel{\mathbb{P}}{\to} 0$, a $cX_n \stackrel{d}{\to} cX$ i stosujemy udowodnione już twierdzienie Słuckiego dla sumy.

Przykłady zastosowania

Rozpatrzmy szereg stacjonarny X_t dany wzorem

$$X_t - \mu = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}, \quad \text{gdzie} \quad Z_t \sim IID(0, \sigma^2),$$

gdzie $\sum_{j=-\infty}^{\infty} \psi_j^2 j < \infty$. Wówczas dla $h \in \{1,2,\dots\}$

$$\hat{\boldsymbol{\rho}}(h) \sim AN(\boldsymbol{\rho}(h), n^{-1}W),$$

gdzie

- $\hat{\rho}(h) = [\hat{\rho}(1), \hat{\rho}(2), \dots, \hat{\rho}(h)], \ \hat{\rho}(h)$ estymator funkcji autokorelacji
- $\rho(h) = [\rho(1), \rho(2), \dots, \rho(h)], \ \rho(h)$ funkcja autokorelacji
- W- macierz kowariancji, której element (i, j) określa tzw. wzór Bartletta.

Przykłady zastosowania cd.

Dodatkowo niech $\hat{\gamma}(h)$ będzie estymatorem funkcji autokowariancji oraz $\hat{\sigma}^2 = \hat{\gamma}(0)$ będzie zbieżna wg. \mathbb{P} do wariancji σ^2 szeregu X_t . Przekształcając wzór

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$$

możemy otrzymać wzór na $\hat{\gamma}(h)$ w postaci

$$\hat{\gamma}(h) = \hat{\sigma}^2 \hat{\rho}(h)$$

Przykłady zastosowania cd.

Korzystając teraz z twierdzenia słuckiego dla iloczynu ciągów otrzymujemy

$$\hat{\gamma}(h) \sim \sigma^2 \hat{\rho}(h) \sim AN\left(\sigma^2 \rho(h), \frac{\sigma^4}{n}W\right) \sim AN\left(\gamma(h), \frac{\sigma^4}{n}W\right).$$

Przykłady zastosowania cd.

Korzystając teraz z twierdzenia słuckiego dla iloczynu ciągów otrzymujemy

$$\hat{\gamma}(h) \sim \sigma^2 \hat{\rho}(h) \sim AN\left(\sigma^2 \rho(h), \frac{\sigma^4}{n}W\right) \sim AN\left(\gamma(h), \frac{\sigma^4}{n}W\right).$$

W szczególnym przypadku, gdy X_t są niezależne, to

$$\gamma(h) \sim AN\left(0, \frac{\sigma^4}{n}\right).$$