Propagação

- **Reflexão:** Ocorre quando a onda propagada se encontra com objetos muito grandes quando comparados com o comprimento de onda;
- Difração: Ocorre quando o caminho entre o transmissor e o receptor é obstruído por uma superfície que tem irregularidades pontiagudas, provocando uma curvatura na onda;
- **Espalhamento:** Ocorre quando o meio através do qual a onda se propaga consiste de objetos com dimensões muito pequenas quando comparadas com o comprimento de onda.

Modelos de Propagação

Modelos de larga escala:

- Modelos para a predição da potência média do sinal numa distância de separação arbitrária entre transmissor e receptor (perda de percurso);
- A distância entre transmissor e receptor pode ser da ordem de centenas ou milhares de metros;

Modelos de Propagação

• Modelos de pequena escala:

- Modelos que caracterizam as variações rápidas da potência do sinal em deslocamentos de distâncias ou durações de tempo muito curtos;
- As variações de distância são da ordem de poucos comprimentos de onda;
- As durações do tempo são da ordem de segundos.

Exemplo

Propagação em Larga Escala

Propagação no Espaço Livre

• É o modelo utilizado para predição da potência do sinal recebido quando não existe obstáculo entre a antena transmissora e receptora

Exemplo de Sistemas

- Sistemas de comunicação via satélite
- Enlaces de microondas

Propagação no Espaço Livre

Modelo de Friis

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$$

$$\lambda = \frac{c}{f} = \frac{3 \cdot 10^8}{f}$$

d= distância T-R

G= ganho da antena

 λ = comprimento de onda

 P_t = potência de transmissão

L = fator de perda do sistema

- Propagação no Espaço Livre
 - O modelo de Friis só é valido para valores de distância que são bem maiores que o comprimento de onda ou a dimensão física da antena

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L} \qquad d >> \lambda$$

- Propagação no Espaço Livre
 - L=1Perda de Percurso (Path Loss)

PL
$$(dB)=10 \log_{10} \frac{P_t}{P_r} = -10 \log_{10} \left[\frac{G_t G_r \lambda^2}{(4\pi)^2 d^2} \right]$$

PL $(dB)=-10 \log_{10} \left[\frac{\lambda^2}{(4\pi)^2 d^2} \right]$ $G_t = G_r = 1$

PL
$$|dB| = -10 \log_{10} \left[\frac{\lambda^2}{(4\pi)^2 d^2} \right]$$
 $G_t = G_r = 1$

$$P_r(d) = P_r(d_0) \left(\frac{d_0}{d}\right)^2$$

$$P_r(d)$$
 dBm= $P_r(d_0)$ dBm+20 $\log_{10}\left(\frac{d_0}{d}\right)$

- P_0 distância próxima ao transmissor P_0 potência próxima ao transmissor
- d distância entre transmissor e receptor

- Propagação no Espaço Livre
 - Distâncias de referência típicas para sistemas operando na faixa de 1-2 GHz
 - Sistemas indoor 1 m
 - Sistemas outdoor 100 m ou 1 km

Exercício

- Potência do transmissor $P_t = 50 W$
- Ganho das antenas $G_t = G_r = 1$
- Freqüência da portadora $f_c = 900 \text{ MHz}$

$$\lambda = \frac{c}{f} = \frac{3 \cdot 10^8}{900 \cdot 10^6} = \frac{1}{3} m$$

Determinar

- Potência do transmissor em dBm e dBW
- Potência recebida (dBm) para um distância entre transmissor e receptor de

$$d = 100 \, m$$

$$d=10 \text{ km}$$

- Solução
 - Potência do transmissor (dBm)

$$P_t (dBm) = 10 \log_{10} \left[\frac{P_t (mW)}{1 mW} \right]$$

$$P_t \text{ (dBm)} = 10 \log_{10} \left[\frac{50000 \cdot 10^{-3}}{10^{-3}} \right] \approx 47 \text{ dBm}$$

- Solução
 - Potência do transmissor (dBW)

$$P_{t} \left(dBW \right) = 10 \log_{10} \left[\frac{P_{t} \left(W \right)}{1 W} \right]$$

$$P_t (dBm) = 10 \log_{10} [50] \approx 17 dBW$$

- Solução
 - Potência recebida (dBm) para d=100 m

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$$

$$P_r = \frac{50 (1) (1) (1/3)^2}{(4\pi)^2 (100)^2 (1)} = 3,5 \cdot 10^{-6} W = 3,5 \cdot 10^{-3} \text{ mW}$$

- Solução
 - Potência recebida (dBm) para d=100 m

$$P_r \left(\text{dBm} \right) = 10 \log_{10} \left[\frac{P_r \left(\text{mW} \right)}{1 \text{ mW}} \right]$$

$$P_r (dBm) = 10 \log_{10} [3,5 \cdot 10^{-3}] \approx -24,5 dBm$$

- Solução
 - Potência recebida (dBm) para d=10 km

$$P_r (10 \text{ km}) = -24,5 \text{ dBm-40 dB}$$

$$P_r (10 \text{ km}) = -64,5 \text{ dBm}$$

Modelo de Reflexão no Solo (2 Raios)

$$\Delta = d'' - d' = \sqrt{(h_t + h_r)^2 + d^2} - \sqrt{(h_t - h_r)^2 + d^2}$$

$$\Delta = d'' - d' \approx \frac{2h_t h_r}{d}$$

Figure 4.8 The method of images is used to find the path difference between the line-of-sight and the ground reflected paths.

Modelo de Reflexão no Solo (2 Raios)

$$E_{TOT} = E_{LOS} + E_r$$

$$E_{TOT}(d) \approx \frac{2 E_0 d_0}{d} \frac{2\pi h_t h_r}{\lambda d}$$

$$P_r(d) = \frac{|E|^2}{120 \pi} \frac{G_r \lambda^2}{4 \pi}$$
 Watts

Modelo de Reflexão no Solo (2 Raios)

$$P_r(d) = P_t G_t G_r \frac{h_t^2 h_r^2}{d^4}$$

$$PL (dB) = 40 \log_{10}(d) - [10 \log_{10}(G_t) + 10 \log_{10}(G_r) + 20 \log_{10}(h_t) + 20 \log_{10}(h_r)]$$

Exercício

- Ganho da antena receptora $G_r = 2,55$ dB
- Comprimento da antena receptora $L=\lambda/4$
- Distância do móvel até a ERB d=5 km
- Freqüência da portadora $f_c = 900 \text{ MHz}$

- Exercício
 - O campo elétrico medido a uma distância d_0 =1 km do transmissor é

$$E_0 = 10^{-3} \ V/m$$

- Determinar
 - O comprimento da antena de recepção
 - A potência recebida pelo móvel usando o modelo de reflexão no solo
 - Considerar a altura das antenas como sendo

$$h_t = 50 \text{ m}$$
 $h_r = 1.5 \text{ m}$

- Solução
 - Comprimento e o ganho da antena de recepção

$$\lambda = \frac{c}{f} = \frac{3 \cdot 10^8}{900 \cdot 10^6} = \frac{1}{3} m$$

$$L=\lambda/4=\frac{4}{3}=0,0833 \text{ m}=8,33 \text{ cm}$$

- Solução
 - A potência recebida pelo móvel

$$E_{R}(d) \approx \frac{2 E_{0} d_{0}}{d} \frac{2\pi h_{t} h_{r}}{\lambda d}$$

$$E_{R}(d) = \frac{2 \cdot 10^{-3} \cdot 1000}{5 \cdot 10^{3}} \left[\frac{2\pi \cdot 50 \cdot 1,5}{0,333 \cdot (5 \cdot 10^{3})} \right]$$

$$E_R(d) = 113, 1 \cdot 10^{-6} \ V/m$$

- Solução
 - A potência recebida pelo móvel

$$P_{r}(d) = \frac{|E|^{2}}{120 \pi} \frac{G_{r} \lambda^{2}}{4 \pi}$$
 Watts

$$P_{r}(d) = \frac{|113,1 \cdot 10^{-6}|^{2}}{120 \pi} \frac{1,8 \cdot (0,333)^{2}}{4 \pi}$$

$$P_{r}(d=5 \text{ km}) = 5,4 \cdot 10^{-13} \text{ W} = -122,68 \text{ dBW}$$

(a) Knife-edge diffraction geometry. The point T denotes the transmitter and R denotes the receiver, with an infinite knife-edge obstruction blocking the line-of-sight path.

(b) Knife-edge diffraction geometry when the transmitter and receiver are not at the same height. Note that if α and β are small and $h << d_1$ and d_2 , then h and h' are virtually identical and the geometry may be redrawn as shown in Figure 4.10c.

(c) Equivalent knife-edge geometry where the smallest height (in this case h_r) is subtracted from all other heights.

Parâmetro de Difração de Fresnel

$$v = h \sqrt{\frac{2(d_1 + d_2)}{\lambda d_1 d_2}} = \alpha \sqrt{\frac{2 d_1 d_2}{\lambda (d_1 + d_2)}}$$

$$\alpha \approx h \cdot \frac{d_1 + d_2}{d_1 d_2}$$

Figure 4.11 Concentric circles which define the boundaries of successive Fresnel zones.

(b) α and ν are equal to zero, since h is equal to zero

(c) α and v are negative, since h is negative

Modelo Gume de Faca

Figure 4.13 Illustration of knife-edge diffraction geometry. The receiver *R* is located in the shadow region.

Solução aproximada - Gume de faca

Figure 4.14 Knife-edge diffraction gain as a function of Fresnel diffraction parameter v.

Difração com múltiplos gumes de faca – Modelo equivalente

Figure 4.15 Bullington's construction of an equivalent knife edge [from [Bul47] © IEEE].

Solução aproximada – Gume de faca

Parâmetro de Difração de Fresnel

$$G_d(\mathrm{dB}) = 0 \qquad v \le -1$$

$$G_d(dB) = 20 \log_{10}(0.5 - 0.62 \text{ v}) \qquad -1 \le v \le 0$$

$$G_d(dB) = 20 \log_{10} [0.5 \exp(-0.95 v)] \quad 0 \le v \le 1$$

Parâmetro de Difração de Fresnel

$$G_d(dB) = 20 \log_{10} \left[0,4 - \sqrt{0,1184 - (0,38 - 0,1 \text{ v})^2} \right]$$

 $1 \le v \le 2,4$

$$G_d(dB) = 20 \log_{10} \left(\frac{0,225}{v} \right)$$
 $v > 2,4$

Exercício

 Calcular a perda de difração para um obstáculo com alturas

$$h=25 \text{ m}$$
 $h=0 \text{ m}$ $h=-25 \text{ m}$

$$h=0$$
 m

Considere os seguintes parâmetros

$$\lambda = \frac{1}{3}$$
 m $d_1 = 1$ km $d_2 = 1$ km

$$d_1 = 1 \text{ km}$$

$$d_2 = 1 \text{ km}$$

- Solução
 - **Para** h = 25 m

$$v=h \sqrt{\frac{2(d_1+d_2)}{\lambda d_1 d_2}}$$

$$v=25 \sqrt{\frac{2(1000+1000)}{1/3\cdot1000\cdot1000}} = 2,74$$

$$G_d(dB) = -21,7 dB$$

- Solução
 - Para h=0 m

$$G_d(dB) = -6 dB$$

• **Para** h = -25 m

$$G_d(dB) = 0 dB$$

Modelos Práticos

• Modelo logaritmo de perdas (Log-Distância)

Os modelos de propagação baseados em medidas e os modelos teóricos, indicam que a potência do sinal recebido decresce logaritmicamente com a distância.

$$\bar{P}_L(d) = \bar{P}_L(d_0) + 10n \log_{10} \left(\frac{d_0}{d}\right)$$

Modelos Práticos

• Expoente – Log-Distância:

Table 4.2 Path Loss Exponents for Different Environments

Environment	Path Loss Exponent, n
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed urban cellular radio	3 to 5
In building line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

Exercícios

• Utilizando o modelo de propagação Log-Distância, determine o coeficiente de perda de percurso para os seguintes conjuntos de medidas.

(a)

d(m) RSSI (dBm)

100 0

200 -22

1000 -38

3000 -75

$$PL(d) dB = PL(d_0) + 10n \log_{10} \frac{d}{d_0}$$

$$J(n) = \sum_{i=1}^{k} (P_i - E_i)^2$$

$$E_i = P_0 - 10n \log_{10} (d_i/d_0)$$

 $P_0 = P_t - PL(d_0)$

d(m) **RSSI** (dBm) 2 -52 3 -55 5 -56 7 -67 -66 9 11 -78 13 -70 15 -80 17 -83

(b)

Sombreamento Log-normal

$$PL(d)[dB] = \overline{PL}(d) + X_{\sigma} = \overline{PL}(d_{\theta}) + 10n\log\left(\frac{d}{d_{\theta}}\right) + X_{\sigma}$$

$$Pr[P_r(d) > \gamma] = Q\left(\frac{\gamma - \overline{P_r(d)}}{\sigma}\right)$$

$$Pr[P_r(d) < \gamma] = Q\left(\frac{\overline{P_r(d)} - \gamma}{\sigma}\right)$$

Porcentagem de área de cobertura

Figure 4.18 Family of curves relating fraction of total area with signal above threshold, $U(\gamma)$ as a function of probability of signal above threshold on the cell boundary.

Exercício 4.9 – Cap 4. Rappaport

Exercício 4.9 – Cap 4. Rappaport, página 94

Modelo de Okumura:

Modelo Empírico, baseado em medições.

Casos em que se aplica:

- Faixa de Freqüência: entre 150MHz a 1920MHz (Pode ser estendida até 3GHz);
- Distâncias: 1Km a 100Km;
- Altura da antena da ERB: 30m a 1000m.

A partir dos dois pontos de interesse (Tx e Rx), as perdas no espaço livre são obtidas primeiro. Em seguida, diversos fatores são adicionados ou subtraídos, conforme o caso.

O modelo de Okumura é dado por:

$$L(dB) = L_F + A_{mu}(f,d) - G(h_{te}) - G(h_{re}) - G_{AREA}$$

Onde,

L(dB) = Perda média;

 L_F = Perda no espaço livre;

 A_{μ} = Atenuação mediana no espaço livre

G(ht) = Fator de ganho da altura da antena da ERB;

G(hr) = Fator de ganho da altura da antena da EM;

 $G_{\text{área}}$ = Ganho devido ao tipo de ambiênte

$$G(h_{te}) = 20\log\left(\frac{h_{te}}{200}\right)$$
 1000 m > h_{te} > 30 m

$$G(h_{re}) = 10\log\left(\frac{h_{re}}{3}\right) \qquad h_{re} \le 3 \text{ m}$$

$$G(h_{re}) = 20\log\left(\frac{h_{re}}{3}\right)$$
 10 m > h_{re} > 3 m

Modelo de Hata:

- O modelo de Okumura não pode ser facilmente implementado, pois envolve algumas curvas.
- O modelo de Hata é uma formulação empírica a partir das curvas de Okumura e é válida para:
 - freqüências entre 150 MHz a 1500 MHz;
 - Altura da antena transmissora entre 30m e 300m;
 - Distâncias entre Tx-Rx de 1Km a 20Km.

• <u>Fórmula padrão para o cálculo da perda</u> <u>média em ambiente urbano:</u>

$$L = 69.55 + 26.16 \log(f) - 13.82 \log(h_t) - A(h_r)$$
$$+ (44.9 - 6.55 \log(h_t)) \log(d) \quad dB$$

Onde $A(h_r)$ é um fator de correção para a altura efetiva da antena da EM.

O fator $A(h_r)$ é calcula da seguinte maneira:

Para cidades pequenas ou médias

$$A(h_r) = (1.1\log f - 0.7)h_r - (1.56\log f - 0.8)$$
 dB

Onde h_r tem que estar entre 1m e 10m

Para cidades grandes

$$A(h_r) = 8.29 \log^2(1.54h_r) - 1.1 \text{ dB} \quad (f \le 300 \text{MHz})$$

 $A(h_r) = 3.2 \log^2(11.75h_r) - 4.97 \text{ dB} \quad (f \ge 300 \text{MHz})$

Para áreas suburbanas a fórmula de Hata é modificada para:

$$L_{sub} = L - 20[\log(f_c/28)]^2 - 5.4 \text{ dB}$$

Para áreas rurais:

$$L_{rural} = L - 4.78 [\log(f_c)]^2 + 18.33 \log(f_c) - 40.94 \text{ dB}$$

Este modelo é útil para sistemas celulares de grande porte, mas não se aplica muita a sistemas de comunicação pessoal que têm células com raios em torno de 1Km

Outros Modelos

Modelo COST 231: Extensão do modelo de Hata para 2GHz

 Modelo de Walfisch e Bertoni: Considera o impacto dos telhados e a altura dos prédios

 Modelo de microcélula PCS de banda larga: Mostra que o modelo de 2 raios é uma boa estimativa para microcélulas com LOS e o modelo log-distância para ambientes NLOS

Perdas devido a divisórias (em um mesmo pavimento);

Perdas entre dois ou mais pavimentos

Table 4.3 Average Signal Loss Measurements Reported by Various Researchers for Radio Paths Obstructed by Common Building Material

Material Type	Loss (dB)	Frequency	Reference
All metal	26	815 MHz	[Cox83b]
Aluminum siding	20.4	815 MHz	[Cox83b]
Foil insulation	3.9	815 MHz	[Cox83b]
Concrete block wall	13	1300 MHz	[Rap91c]
Loss from one floor	20-30	1300 MHz	[Rap91c]
Loss from one floor and one wall	40-50	1300 MHz	[Rap91c]
Fade observed when transmitter turned a right angle corner in a corridor	10-15	1300 MHz	[Rap91c]
Light textile inventory	3-5	1300 MHz	[Rap91c]
Chain-like fenced in area 20 ft high containing tools, inventory, and people	5-12	1300 MHz	[Rap91c]
Metal blanket — 12 sq ft	4-7	1300 MHz	[Rap91c]
Metallic hoppers which hold scrap metal for recycling — 10 sq ft	3-6	1300 MHz	[Rap91c]
Small metal pole — 6" diameter	3	1300 MHz	[Rap91c]
Metal pulley system used to hoist metal inventory — 4 sq ft	6	1300 MHz	[Rap91c]
Light machinery < 10 sq ft	1-4	1300 MHz	[Rap91c]
General machinery — 10 - 20 sq ft	5-10	1300 MHz	[Rap91c]
Heavy machinery > 20 sq ft	10-12	1300 MHz	[Rap91c]
Metal catwalk/stairs	5	1300 MHz	[Rap91c]
Light textile	3-5	1300 MHz	[Rap91c]
Heavy textile inventory	8-11	1300 MHz	[Rep91c]
Area where workers inspect metal finished products for defects	3-12	1300 MHz	[Rap91c]
Metallic inventory	4-7	1300 MHz	[Rap91c]
Large 1-beam — 16 - 20"	8-10	1300 MHz	[Rap91c]
Metallic inventory racks — 8 sq ft	4-9	1300 MHz	[Rap91c]
Empty cardboard inventory boxes	3-6	1300 MHz	[Rap91c]
Concrete block wall	13-20	1300 MHz	[Rap91c]
Ceiling duct	1-8	1300 MHz	[Rap91c]
2.5 m storage rack with small metal parts (loosely packed)	4-6	1300 MHz	[Rap91c]
4 m metal box storage	10-12	1300 MHz	[Rap91c]

Table 4.3 Average Signal Loss Measurements Reported by Various Researchers for Radio Paths Obstructed by Common Building Material (Continued)

Material Type	Loss (dB)	Frequency	Reference
5 m storage rack with paper products (loosely packed)	2-4	1300 MHz	[Rap91c]
5 m storage rack with large paper products (tightly packed)	6	1300 MHz	[Rap91c]
5 m storage rack with large metal parts (tightly packed)	20	1300 MHz	[Rap91c]
Typical N/C machine	8-10	1300 MHz	[Rap91c]
Semi-automated assembly line	5-7	1300 MHz	[Rap91c]
0.6 m square reinforced concrete pillar	12-14	1300 MHz	[Rap91c]
Stainless steel piping for cook-cool process	15	1300 MHz	[Rap91c]
Concrete wall	8-15	1300 MHz	[Rap91c]
Concrete floor	10	1300 MHz	[Rap91c]
Commercial absorber	38	9.6 GHz	[Vio88]
Commercial absorber	51	28.8 GHz	[Vio88]
Commercial absorber	59	57.6 GHz	[Vio88]
Sheetrock (3/8 in) — 2 sheets	2	9.6 GHz	[Vio88]
Sheetrock (3/8 in) — 2 sheets	2	28.8 GHz	[Vio88]
Sheetrock (3/8 in) — 2 sheets	5	57.6 GHz	[Vio88]
Dry plywood (3/4 in) — 1 sheet	1	9.6 GHz	[Vio88]
Dry plywood (3/4 in) — 1 sheet	4	28.8 GHz	[Vio88]
Dry plywood (3/4 in) — 1 sheet	8	57.6 GHz	[Vio88]
Dry plywood (3/4 in) — 2 sheets	4	9.6 GHz	[Vio88]
Dry plywood (3/4 in) — 2 sheets	6	28.8 GHz	[Vio88]
Dry plywood (3/4 in) — 2 sheets	14	57.6 GHz	[Vio88]
Wet plywood (3/4 in) — 1 sheet	19	9.6 GHz	[Vio88]
Wet plywood (3/4 in) — 1 sheet	32	28.8 GHz	[Vio88]
Wet plywood (3/4 in) — 1 sheet	59	57.6 GHz	[Vio88]
Wet plywood (3/4 in) — 2 sheets	39	9.6 GHz	[Vio88]
Wet plywood (3/4 in) — 2 sheets	46	28.8 GHz	[Vio88]
Wet plywood (3/4 in) — 2 sheets	57	57.6 GHz	[Vio88]
Aluminum (1/8 in) — 1 sheet	47	9.6 GHz	[Vio88]
Aluminum (1/8 in) — 1 sheet	46	28.8 GHz	[Vio88]
Aluminum (1/8 in) — 1 sheet	53	57.6 GHz	[Vio88]

Table 4.4 Total Floor Attenuation Factor and Standard Deviation σ (dB) for Three Buildings. Each Point Represents the Average Path Loss Over a 20 λ Measurement Track [Sei92a]

	915 MHz FAF		Number of	1900 MHz		Number of
Building	(dB)	σ (dB)	locations	FAF (dB)	σ (dB)	locations
Walnut Creek						
One Floor	33.6	3.2	25	31.3	4.6	110
Two Floors	44.0	4.8	39	38.5	4.0	29
SF PacBell						
One Floor	13.2	9.2	16	26.2	10.5	21
Two Floors	18.1	8.0	10	33.4	9.9	21
Three Floors	24.0	5.6	10	35.2	5.9	20
Four Floors	27.0	6.8	10	38.4	3.4	20
Five Floors	27.1	6.3	10	46.4	3.9	17
San Ramon						
One Floor	29.1	5.8	93	35.4	6.4	74
Two Floors	36.6	6.0	81	35.6	5.9	41
Three Floors	39.6	6.0	70	35.2	3.9	27

Table 4.5 Average Floor Attenuation Factor in dB for One, Two, Three, and Four Floors in Two Office Buildings [Sei92b]

Building	FAF (dB)	σ (dB)	Number of locations
Office Building 1:			
Through One Floor	12.9	7.0	52
Through Two Floors	18.7	2.8	9
Through Three Floors	24.4	1.7	9
Through Four Floors	27.0	1.5	9
Office Building 2:			
Through One Floor	16.2	2.9	21
Through Two Floors	27.5	5.4	21
Through Three Floors	31.6	7.2	21

• Modelo de perda Log-distância;

$$PL(dB) = PL(d_0) + 10n\log\left(\frac{d}{d_0}\right) + X_{\sigma}$$

• Modelo de fator de atenuação

$$\widehat{PL}(d)[dB] = \widehat{PL}(d_0)[dB] + 10n_{SF}\log\left(\frac{d}{d_0}\right) + FAF[dB]$$

$$\overline{PL}(d)[dB] = \overline{PL}(d_0) + 10n_{MF}\log\left(\frac{d}{d_0}\right)$$

Log-distância

Table 3.6 Path loss exponent and standard deviation measured in different buildings [And94]

Building	Frequency (MHz)	n	σ (dB)
Retail Stores	914	2.2	8.7
Grocery Store	914	1.8	5.2
Office, hard partition	1500	3.0	7.0
Office, soft partition	900	2.4	9.6
Office, soft partition	1900	2.6	14.1
Factory LOS			
Textile/Chemical	1300	2.0	3.0
Textile/Chemical	4000	2.1	7.0
Paper/Cereals	1300	1.8	6.0
Metalworking	1300	1.6	5.8
Suburban Home			
Indoor Street	900	3.0	7.0
Factory OBS			
Textile/Chemical	4000	2.1	9.7
Metalworking	1300	3.3	6.8

Fator de atenuação

Figure 4.28 Scatter plot of path loss as a function of distance in Office Building 1 [from [Sei92b] © IEEE].

Fator de atenuação

Figure 4.29 Scatter plot of path loss as a function of distance in Office Building 2 [from [Sei92b] © IEEE].

Fator de atenuação

Table 4.7 Path Loss Exponent and Standard Deviation for Various Types of Buildings [Sei92b]

	n	σ (dB)	Number of locations
All Buildings:			
All locations	3.14	16.3	634
Same Floor	2.76	12.9	501
Through One Floor	4.19	5.1	73
Through Two Floors	5.04	6.5	30
Through Three Floors	5.22	6.7	30
Grocery Store	1.81	5.2	89
Retail Store	2.18	8.7	137
Office Building 1:			
Entire Building	3.54	12.8	320
Same Floor	3.27	11.2	238
West Wing 5th Floor	2.68	8.1	104
Central Wing 5th Floor	4.01	4.3	118
West Wing 4th Floor	3.18	4.4	120
Office Building 2:			
Entire Building	4.33	13.3	100
Same Floor	3.25	5.2	37