Inducción Estructural

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

Algo 2

1 / 30

Contenido

- Introducción
- 2 Ejercicios
 - Ejercicio 1
 - Propiedades
 - Ejercicio 2
 - Ejercicio 3
- Conclusiones

¿Para qué?

Queremos demostrar propiedades que se cumplen en las operaciones de los TADs, estructuras que son construidas recursivamente.

Recursión

◄□▶◀∰▶◀불▶◀불▶ 불 쒸٩♡

Construcción de un TAD

- Constructor(es) Base (no reciben instancias del TAD)
- Constructor(es) recursivos (reciben instancias del mismo TAD)

5 / 30

Construcción de un TAD

- Constructor(es) Base (no reciben instancias del TAD)
- Constructor(es) recursivos (reciben instancias del mismo TAD)

Nat

- Único constructor base: 0
- Constructor recursivo: suc

Construcción de un TAD

- Constructor(es) Base (no reciben instancias del TAD)
- Constructor(es) recursivos (reciben instancias del mismo TAD)

Nat

- Único constructor base: 0
- Constructor recursivo: suc

SECUENCIA

- Único constructor base: <>
- Constructor recursivo: a s

5 / 30

¿Se acuerdan de Álgebra 1?

Probábamos que valía P(0), y asumiendo que valía P(n), probábamos P(n+1). Eso demostraba $(\forall n) \ P(n)$

¿Se acuerdan de Álgebra 1?

Probábamos que valía P(0), y asumiendo que valía P(n), probábamos P(n+1). Eso demostraba $(\forall n) \ P(n)$

Inducción en TAD NAT

- P(0)
- $(\forall n: nat) P(n) \Rightarrow P(suc(n)))$

6 / 30

¿Se acuerdan de Álgebra 1?

Probábamos que valía P(0), y asumiendo que valía P(n), probábamos P(n+1). Eso demostraba $(\forall n)$ P(n)

Inducción en TAD NAT

- P(0)
- $(\forall n: nat) P(n) \Rightarrow P(suc(n)))$

Para un TAD más general, llamémoslo ${ m T}$

- Para cada generador base $g_b : \to T$ probar que vale $P(g_b)$
- Para cada generador recursivo $g_r : T \times ... \times T \rightarrow T$

probar que vale
$$(\forall t_1 \dots t_k : T) \left(\begin{array}{c} (P(t_1) \wedge \dots \wedge P(t_k)) \Rightarrow \\ P(g_r(t_1, \dots, t_k)) \end{array} \right)$$

En palabras...

- Probar los constructores que NO reciben instancias del mismo TAD.
- Para cada constructor recursivo, suponer que vale para todas las instancias del mismo TAD que toma, y luego probar que vale para el constructor aplicado a ellas.

- Convencerse
- Escribir predicado unario

- Convencerse
- Escribir predicado unario
- 3 Plantear esquema de inducción

- Convencerse
- Escribir predicado unario
- 3 Plantear esquema de inducción
- Probar caso(s) base

- Convencerse
- Escribir predicado unario
- 3 Plantear esquema de inducción
- Probar caso(s) base
- Probar paso(s) inductivo

Ejercicio 1

Ejercicio

Dada la siguiente axiomatización:

```
duplicar : secu(\alpha) \longrightarrow secu(\alpha)
duplicar(<>) \equiv <>
duplicar(a \bullet s) \equiv a \bullet (a \bullet duplicar(s))
```

Probar que para toda secuencia 'S', la longitud de 'duplicar(s)' es el doble que la de 'S'

¿Y ahora?

Veamos

Formalmente...

Queremos ver que:

 $(\forall s: secu(\alpha)) (Long(duplicar(s)) \equiv 2*Long(s))$

Veamos

Formalmente...

Queremos ver que:

 $(\forall s: secu(\alpha)) (Long(duplicar(s)) \equiv 2*Long(s))$

Predicado unario

$$P(s) = (Long(duplicar(s)) \equiv 2*Long(s))$$

Veamos

Formalmente...

Queremos ver que:

 $(\forall s: secu(\alpha)) (Long(duplicar(s)) \equiv 2*Long(s))$

Predicado unario

$$P(s) = (Long(duplicar(s)) \equiv 2*Long(s))$$

Esquema de inducción

$$P(<>) \land (\forall s: secu(\alpha))(P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s))$$

Nos interesa distinguir ciertas cosas

Caso Base:

- Caso Base: P(<>)
- Paso inductivo:

- Caso Base: P(<>)
- Paso inductivo: $(\forall s: secu(\alpha)) (P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s))$
- Hipótesis Inductiva:

- Caso Base: P(<>)
- Paso inductivo: $(\forall s: secu(\alpha)) (P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s))$
- Hipótesis Inductiva: P(s)
- Tesis Inductiva:

- Caso Base: P(<>)
- Paso inductivo: $(\forall s: secu(\alpha)) (P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s))$
- Hipótesis Inductiva: P(s)
- Tesis Inductiva: $(\forall a: \alpha) P(a \bullet s)$

¿Estaría bien plantear así el paso inductivo?

$$((\forall s: secu(\alpha)) P(s)) \Rightarrow (\forall s: secu(\alpha)) (\forall a: \alpha) P(a \bullet s))$$

¿Estaría bien plantear así el paso inductivo?

 $((\forall s: secu(\alpha)) P(s)) \Rightarrow (\forall s: secu(\alpha)) (\forall a: \alpha) P(a \bullet s)) jjjNO!!!$

¿Cambia el esquema si la propiedad es otra?

¿Estaría bien plantear así el paso inductivo?

 $((\forall s: secu(\alpha)) P(s)) \Rightarrow (\forall s: secu(\alpha)) (\forall a: \alpha) P(a \bullet s)) jjjiNO!!!$

¿Cambia el esquema si la propiedad es otra?

iiiNO!!! El esquema se mantiene dentro del mismo TAD.

¿Estaría bien plantear así el paso inductivo?

 $((\forall s: \operatorname{secu}(\alpha)) \ \mathsf{P}(s)) \Rightarrow (\forall s: \operatorname{secu}(\alpha)) \ (\forall a: \alpha) \ \mathsf{P}(a \bullet s)) \ || \ \mathsf{P}(s) \ \mathsf$

¿Cambia el esquema si la propiedad es otra?

iiiNO!!! El esquema se mantiene dentro del mismo TAD.

¿Estaría bien agregar esto al esquema de inducción?

 $(\forall a: \alpha) (P(a \bullet <>)))$

¿Estaría bien plantear así el paso inductivo?

 $((\forall s: \operatorname{secu}(\alpha)) \ \mathsf{P}(s)) \Rightarrow (\forall s: \operatorname{secu}(\alpha)) \ (\forall a: \alpha) \ \mathsf{P}(a \bullet s)) \ || \ \mathsf{P}(s) \ \mathsf$

¿Cambia el esquema si la propiedad es otra?

iiiNO!!! El esquema se mantiene dentro del mismo TAD.

¿Estaría bien agregar esto al esquema de inducción?

 $(\forall a: \alpha) (P(a \bullet <>))) iiiNO!!!$

Caso base

¿Qué queremos probar?

$$P(s) = (Long(duplicar(s)) \equiv 2 * Long(s))$$

Caso base

¿Qué queremos probar?

$$P(s) = (Long(duplicar(s)) \equiv 2 * Long(s))$$

 $P(<>) = (Long(duplicar(<>)) \equiv 2 * Long(<>))$

Caso base

¿Qué queremos probar?

$$P(s) = (Long(duplicar(s)) \equiv 2 * Long(s))$$

 $P(<>) = (Long(duplicar(<>))) \equiv 2 * Long(<>))$

Duplicar

duplicar :
$$secu(\alpha) \longrightarrow secu(\alpha)$$

duplicar($<>$) $\equiv <>$
duplicar($a \cdot s$) $\equiv a \cdot (a \cdot duplicar(s))$

Longitud

$$\begin{array}{ll} \log : \sec \mathsf{u}(\alpha) & \longrightarrow \mathsf{nat} \\ \log(<>) & \equiv 0 \\ \log(a \bullet s) & \equiv 1 + long(s) \end{array}$$

¡Al pizarrón!

Paso inductivo

¿Qué queremos probar?

$$(\forall s: \operatorname{secu}(\alpha)) (P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s)).$$
 $HI: vale P(s) = (Long(duplicar(s)) \equiv 2 * Long(s))$
 $Probar P(a \bullet s) = (Long(duplicar(a \bullet s)) \equiv 2 * Long(a \bullet s))$

Paso inductivo

¿Qué queremos probar?

$$(\forall s: \, \mathsf{secu}(\alpha)) \; (\mathsf{P}(s) \Rightarrow (\forall a: \; \alpha) \; \mathsf{P}(a \bullet s)).$$

$$HI: \, \mathsf{vale} \; \mathsf{P}(s) \; = \; (\mathsf{Long}(\mathsf{duplicar}(s)) \; \equiv \; 2 * \mathsf{Long}(s))$$

$$\mathsf{Probar} \; \mathsf{P}(a \bullet s) \; = \; (\mathsf{Long}(\mathsf{duplicar}(a \bullet s)) \; \equiv \; 2 * \mathsf{Long}(a \bullet s))$$

Duplicar

duplicar :
$$secu(\alpha) \longrightarrow secu(\alpha)$$

duplicar($<>$) $\equiv <>$
duplicar($a \cdot s$) $\equiv a \cdot (a \cdot duplicar(s))$

Longitud

$$\begin{array}{ll} \mathsf{long} : \mathsf{secu}(\alpha) & \longrightarrow \mathsf{nat} \\ \mathsf{long}(<>) & \equiv 0 \\ \mathsf{long}(a \bullet s) & \equiv 1 + long(s) \end{array}$$

¡Al pizarrón!

if p then q else q fi \equiv

if p then q else q fi $\equiv q$

Si x es par entonces 2x es par y si no... también.

IF.

Propiedad 1

if p then q else q fi $\equiv q$

Si x es par entonces 2x es par y si no... también.

Propiedad 2

if p then (if p then q else r fi) else t fi \equiv

IF.

Propiedad 1

if p then q else q fi \equiv q

Si x es par entonces 2x es par y si no... también.

Propiedad 2

if p then (if p then q else r fi) else t fi \equiv

if p then q else t fi

if p then q else q fi \equiv q

Si x es par entonces 2x es par y si no... también.

Propiedad 2

if p then (if p then q else r fi) else t fi \equiv

if p then q else t fi

Propiedad 2 (bis)

if p then (if $\neg p$ then q else r fi) else t fi \equiv

```
if p then q else q fi \equiv q
```

Si x es par entonces 2x es par y si no... también.

Propiedad 2

```
if p then (if p then q else r fi) else t fi \equiv
if p then q else t fi
```

Propiedad 2 (bis)

```
if p then (if \neg p then q else r fi) else t fi \equiv
if p then r else t fi
```

Propiedad 3

$$F(if p then q else r fi) \equiv$$

```
if p then q else q fi \equiv q
```

Si x es par entonces 2x es par y si no... también.

Propiedad 2

```
if p then (if p then q else r fi) else t fi \equiv
if p then q else t fi
```

Propiedad 2 (bis)

```
if p then (if \neg p then q else r fi) else t fi \equiv
if p then r else t fi
```

Propiedad 3

 $F(if p then q else r fi) \equiv if p then F(q) else F(r) fi$

Ejercicio 2 (Más secuencias)

Enunciado

Se quiere probar por inducción estructural la siguiente propiedad:

 $(\forall s: secu(nat)) (\forall t: secu(nat)) [ord?(s\&t) \Rightarrow ord?(s)]$

Ejercicio 2 (Más secuencias)

Enunciado

Se quiere probar por inducción estructural la siguiente propiedad:

```
(\forall s: secu(nat)) (\forall t: secu(nat)) [ ord?(s\&t) \Rightarrow ord?(s) ]
```

ord

&

```
ord : secu(\alpha) \longrightarrow bool
ord(<>) \equiv true
\operatorname{ord}(a \bullet s) \equiv \operatorname{if} \operatorname{vac}(a?(s)) \operatorname{then} \operatorname{true} \operatorname{else} a < \operatorname{prim}(s) \wedge \operatorname{ord}(s) \operatorname{fi}
```

```
•&• : secu(\alpha) \times secu(\alpha) \longrightarrow secu(\alpha)
<> &t \equiv t
(a \bullet s) \& t \equiv a \bullet (s \& t)
```

Ejemplos

ord

• ord([2, 1, 3, 6, 17]) \equiv

Ejemplos

ord

- ord([2, 1, 3, 6, 17]) \equiv false
- ord([]) ≡

- ord([2, 1, 3, 6, 17]) \equiv false
- ord([]) $\equiv true$
- ord([5, 10, 14]) \equiv

Ejemplos

ord

- ord([2, 1, 3, 6, 17]) \equiv false
- ord([]) $\equiv true$
- ord([5, 10, 14]) $\equiv true$

- ord([2, 1, 3, 6, 17]) \equiv false
- ord([]) $\equiv true$
- ord([5, 10, 14]) $\equiv true$

&

[]&[1] ≡

- ord([2, 1, 3, 6, 17]) \equiv false
- ord([]) $\equiv true$
- ord([5, 10, 14]) $\equiv true$

&

- []&[1] ≡ [1]
- $[31, 8] \& [2, 6, 17] \equiv$

- ord([2, 1, 3, 6, 17]) \equiv false
- ord([]) $\equiv true$
- ord([5, 10, 14]) $\equiv true$

&

- []&[1] ≡ [1]
- $[31,8]&[2,6,17] \equiv [31,8,2,6,17]$

Predicado unario a demostrar

Predicado unario a demostrar

$$\mathsf{P}(s) = (\forall t: \mathsf{secu}(\mathit{nat})) \; [\; \mathsf{ord}?(s\&t) \Rightarrow \mathsf{ord}?(s) \;]$$

Predicado unario a demostrar

$$P(s) = (\forall t: secu(nat)) [ord?(s\&t) \Rightarrow ord?(s)]$$

Esquema de inducción

Predicado unario a demostrar

$$P(s) = (\forall t: secu(nat)) [ord?(s\&t) \Rightarrow ord?(s)]$$

Esquema de inducción

$$P(<>) \land (\forall s: secu(\alpha))(P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s))$$

Predicado unario a demostrar

$$P(s) = (\forall t: secu(nat)) [ord?(s\&t) \Rightarrow ord?(s)]$$

Esquema de inducción

$$P(<>) \land (\forall s: secu(\alpha))(P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s))$$

Es sospechosamente parecido al del ejercicio anterior... ¿Por qué?

Caso Base

$$P(<>) = (\forall t: secu(nat)) [ord?(<> \&t) \Rightarrow ord?(<>)]$$

Predicado unario a demostrar

$$P(s) = (\forall t: secu(nat)) [ord?(s\&t) \Rightarrow ord?(s)]$$

Esquema de inducción

$$P(<>) \land (\forall s: secu(\alpha))(P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s))$$

Es sospechosamente parecido al del ejercicio anterior... ¿Por qué?

Caso Base

$$P(<>) = (\forall t: secu(nat)) [ord?(<> \&t) \Rightarrow ord?(<>)]$$

• Uno podría ponerse a ver qué pasa con el antecedente, o... ?

(DC-FCEyN-UBA)

Predicado unario a demostrar

$$P(s) = (\forall t: secu(nat)) [ord?(s\&t) \Rightarrow ord?(s)]$$

Esquema de inducción

$$P(<>) \land (\forall s: secu(\alpha))(P(s) \Rightarrow (\forall a: \alpha) P(a \bullet s))$$

Es sospechosamente parecido al del ejercicio anterior...; Por qué?

Caso Base

$$\mathsf{P}(<>) = (\forall t: \, \mathsf{secu}(\mathit{nat})) \, [\, \mathsf{ord}?(<> \&t) \Rightarrow \mathsf{ord}?(<>) \,]$$

- Uno podría ponerse a ver qué pasa con el antecedente, o... ?
- Recordemos que $p \Rightarrow q = q \vee \neg p$. Ahora, qué pasa con ord?(<>)

Paso inductivo

¿ Qué queremos probar?

Dada una secuencia s : secu (α) arbitraria:

HI: vale $P(s) = (\forall t: secu(nat)) [ord?(s\&t) \Rightarrow ord?(s)]$

Probar $P(a \bullet s) = (\forall t: secu(nat)) [ord?((a \bullet s) \& t) \Rightarrow ord?(a \bullet s)]$

Paso inductivo

¿ Qué queremos probar?

Dada una secuencia s: secu(α) arbitraria:

HI: vale $P(s) = (\forall t: secu(nat)) [ord?(s\&t) \Rightarrow ord?(s)]$

Probar $P(a \bullet s) = (\forall t: secu(nat)) [ord?((a \bullet s) \& t) \Rightarrow ord?(a \bullet s)]$

ord

```
ord : secu(\alpha) \longrightarrow bool
ord(<>) \equiv true
```

 $ord(a \bullet s) \equiv if \ vac(a?(s)) \ then \ true \ else \ a < prim(s) \land ord?(s) \ fi$

&

•&• :
$$\operatorname{secu}(\alpha) \times \operatorname{secu}(\alpha) \longrightarrow \operatorname{secu}(\alpha)$$

<> &t $\equiv t$

$$(a \bullet s) \& t \equiv a \bullet (s \& t)$$

Lemas

Muchas veces necesitamos hacer uso de una propiedad que intuimos es cierta para poder avanzar en la demostración. En estos casos podemos enunciar lemas auxiliares, utilizarlos y dejar su demostración para el final... pero ¡OJO!, salvo que se diga lo contrario, HAY que demostrarlos.

Lemas

Muchas veces necesitamos hacer uso de una propiedad que intuimos es cierta para poder avanzar en la demostración. En estos casos podemos enunciar lemas auxiliares, utilizarlos y dejar su demostración para el final... pero ¡OJO!, salvo que se diga lo contrario, HAY que demostrarlos.

Lema 1

$$\neg$$
vacía?(s) $\Rightarrow \neg$ vacía?(s&t)

Lemas

Muchas veces necesitamos hacer uso de una propiedad que intuimos es cierta para poder avanzar en la demostración. En estos casos podemos enunciar lemas auxiliares, utilizarlos y dejar su demostración para el final... pero ¡OJO!, salvo que se diga lo contrario, HAY que demostrarlos.

Lema 1

$$\neg$$
vacía? $(s) \Rightarrow \neg$ vacía? $(s\&t)$

Lema 2

$$\neg \text{vac}(s) \Rightarrow_{\text{L}} \text{prim}(s) = \text{prim}(s\&t)$$

(DC-FCEyN-UBA)

Lemas

Muchas veces necesitamos hacer uso de una propiedad que intuimos es cierta para poder avanzar en la demostración. En estos casos podemos enunciar lemas auxiliares, utilizarlos y dejar su demostración para el final... pero ¡OJO!, salvo que se diga lo contrario, HAY que demostrarlos.

Lema 1

$$\neg$$
vacía? $(s) \Rightarrow \neg$ vacía? $(s\&t)$

Lema 2

$$\neg \mathsf{vac}(s) \Rightarrow_{\scriptscriptstyle \mathrm{L}} \mathsf{prim}(s) = \mathsf{prim}(s\&t)$$

La demostración les queda de tarea

(DC-FCEyN-UBA)

¿¿Intervalo??

Ejercicio 3

Enunciado

Llamaremos árbol binario estricto (ABE) a todo árbol binario donde cada nodo tiene 0 ó 2 hijos. En otras palabras, se trata de un árbol binario donde cada nodo ó bien está saturado ó bien es una hoja. Demostrar que en un árbol binario estricto las hojas son más de 50% de los nodos totales.

Ejercicio 3

Enunciado

Llamaremos árbol binario estricto (ABE) a todo árbol binario donde cada nodo tiene 0 ó 2 hijos. En otras palabras, se trata de un árbol binario donde cada nodo ó bien está saturado ó bien es una hoja. Demostrar que en un árbol binario estricto las hojas son más de 50% de los nodos totales.

Formalmente

```
(\forall a: ab(\alpha) ((\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \geq
cantNodos(a) + 1)
```

esEstricto

```
esEstricto : ab(\alpha) \longrightarrow bool
esEstricto(nil) \equiv true
esEstricto(bin(i, r, d)) \equiv (nil?(i) \land nil?(d)) \lor (\negnil?(i) \land \negnil?(d) \land
                                 esEstricto(i) \land esEstricto(d)
```

(DC-FCEyN-UBA) Inducción Estructural Algo 2 23 / 30

cantHojas

```
\begin{array}{lll} {\sf cantHojas: ab}(\alpha) & \longrightarrow {\sf nat} \\ {\sf cantHojas}(\mathit{nil}) & \equiv 0 \\ {\sf cantHojas}(\mathsf{bin}(i,\,r,\,d)) & \equiv \mathbf{if} \; \mathsf{nil?}(i) \land \mathsf{nil?}(d) \; \mathbf{then} \\ & 1 \\ & \mathbf{else} \\ & \mathsf{cantHojas}(i) + \mathsf{cantHojas}(d) \\ & \mathbf{fi} \end{array}
```

cantNodos

```
cantNodos : ab(\alpha) \longrightarrow nat

cantNodos(nil) \equiv 0

cantNodos(bin(i, r, d)) \equiv 1 + cantNodos(i) + cantNodos(d)
```

4 11 2 4 4 12 2 4 12 2 2 4 12 2 2 4 12 2

Algo 2

24 / 30

(DC-FCEyN-UBA) Inducción Estructural

Predicado unario a demostrar

$$P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \ge cantNodos(a) + 1)$$

Predicado unario a demostrar

$$P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \ge cantNodos(a) + 1)$$

Esquema de inducción

Ahora tenemos un generador (bin) que recibe más de una instancia del tipo... ¿Modifica en algo la situación? ¡Sobre qué hacemos H.I.?

Predicado unario a demostrar

$$P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \ge cantNodos(a) + 1)$$

Esquema de inducción

Ahora tenemos un generador (bin) que recibe más de una instancia del tipo...; Modifica en algo la situación? ¡Sobre qué hacemos H.I.?

$$P(nil) \land (\forall i, d : ab(\alpha))((P(i) \land P(d)) \Rightarrow (\forall r : \alpha) P(bin(i,r,d))$$

Planteo

Predicado unario a demostrar

$$P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \ge cantNodos(a) + 1)$$

Esquema de inducción

Ahora tenemos un generador (*bin*) que recibe más de una instancia del tipo... ¿Modifica en algo la situación? ¿Sobre qué hacemos H.I.?

$$P(nil) \land (\forall i, d : ab(\alpha))((P(i) \land P(d)) \Rightarrow (\forall r : \alpha) P(bin(i,r,d))$$

Caso Base

P(nil) . ¿Qué dice el predicado unario? ¿Qué pasa con una implicación cuando el antecedente es falso?

¿Qué queremos probar?

HI: $P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \ge cantNodos(a) + 1)$ vale para i y d.

¿ Qué queremos probar?

HI: $P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \ge cantNodos(a) + 1)$ vale para $i \vee d$.

Probar($\forall r : \alpha$) P(bin(i,r,d)), es decir que queremos probar que:

$$(\neg \mathsf{nil}?(\mathsf{bin}(i,r,d)) \land \mathsf{esEstricto}(\mathsf{bin}(i,r,d))) \Rightarrow (2 * \mathsf{cantHojas}(\mathsf{bin}(i,r,d)) \ge \mathsf{cantNodos}(\mathsf{bin}(i,r,d)) + 1)$$

¿Qué queremos probar?

HI: $P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) > cantNodos(a) + 1)$ vale para $i \vee d$.

Probar($\forall r : \alpha$) P(bin(i,r,d)), es decir que queremos probar que:

$$\begin{array}{l} (\neg \mathsf{nil}?(\mathsf{bin}(i,r,d)) \, \land \, \mathsf{esEstricto}(\mathsf{bin}(i,r,d))) \Rightarrow \\ (2 * \mathsf{cantHojas}(\mathsf{bin}(i,r,d)) \geq \mathsf{cantNodos}(\mathsf{bin}(i,r,d)) + 1) \end{array}$$

Preguntas...

• ¿Puede \neg nil?(bin(i,r,d)) ser falso?

¿ Qué queremos probar?

HI: $P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) > cantNodos(a) + 1)$ vale para $i \vee d$.

Probar($\forall r : \alpha$) P(bin(i,r,d)), es decir que queremos probar que:

```
(\neg nil?(bin(i,r,d)) \land esEstricto(bin(i,r,d))) \Rightarrow
   (2 * cantHojas(bin(i,r,d)) \ge cantNodos(bin(i,r,d)) + 1)
```

Preguntas...

- ¿Puede \neg nil?(bin(i,r,d)) ser falso?
- ¿Qué pasa si bin(i,r,d) no es estricto?

¿Qué queremos probar?

HI: $P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \ge cantNodos(a) + 1)$ vale para $i \ y \ d$.

Probar($\forall r : \alpha$) P(bin(i,r,d)), es decir que queremos probar que:

```
 \begin{array}{l} (\neg \mathsf{nil?}(\mathsf{bin}(i,r,d)) \, \land \, \mathsf{esEstricto}(\mathsf{bin}(i,r,d))) \Rightarrow \\ (2 \, * \, \mathsf{cantHojas}(\mathsf{bin}(i,r,d)) \geq \mathsf{cantNodos}(\mathsf{bin}(i,r,d)) + 1) \end{array}
```

Preguntas...

- ¿Puede \neg nil?(bin(i,r,d)) ser falso?
- ¿Qué pasa si bin(i,r,d) no es estricto? Para continuar la demostración podemos asumirlo también como hipótesis (si no, toda la expresión es verdadera trivialmente)

¿Qué queremos probar?

HI: $P(a) = (\neg nil?(a) \land esEstricto(a)) \Rightarrow (2 * cantHojas(a) \ge cantNodos(a) + 1)$ vale para $i \ y \ d$.

Probar($\forall r : \alpha$) P(bin(i,r,d)), es decir que queremos probar que:

```
(\neg \mathsf{nil}?(\mathsf{bin}(i,r,d)) \land \mathsf{esEstricto}(\mathsf{bin}(i,r,d))) \Rightarrow (2 * \mathsf{cantHojas}(\mathsf{bin}(i,r,d)) \ge \mathsf{cantNodos}(\mathsf{bin}(i,r,d)) + 1)
```

Preguntas...

- ¿Puede \neg nil?(bin(i,r,d)) ser falso?
- ¿Qué pasa si bin(i,r,d) no es estricto? Para continuar la demostración podemos asumirlo también como hipótesis (si no, toda la expresión es verdadera trivialmente)
- Nos queda ver que $(2 * cantHojas(bin(i,r,d)) \ge cantNodos(bin(i,r,d)) + 1)$

¡Al pizarrón!

Paso inductivo (cont.)

esEstricto

```
esEstricto : ab(\alpha) \longrightarrow bool
esEstricto(nil) \equiv true
esEstricto(bin(i, r, d)) \equiv (nil?(i) \land nil?(d)) \lor (\negnil?(i) \land \negnil?(d) \land esEstricto(i) \land
                                esEstricto(d)
```

cantHojas

```
cantHojas : ab(\alpha) \longrightarrow nat
cantHojas(nil) \equiv 0
cantHojas(bin(i, r, d)) \equiv if nil?(i) \land nil?(d) then
                              else
                                  cantHojas(i) + cantHojas(d)
                              fi
```

cantNodos

```
cantNodos : ab(\alpha) \longrightarrow nat
cantNodos(nil) \equiv 0
cantNodos(bin(i, r, d)) \equiv 1 + cantNodos(i) + cantNodos(d)
```

- Convencerse de que la propiedad vale y analizar por qué vale antes de encarar el ejercicio
- Seguir la estructura del esquema de inducción

- Convencerse de que la propiedad vale y analizar por qué vale antes de encarar el ejercicio
- Seguir la estructura del esquema de inducción
- Ser ordenado en la separación en casos

- Convencerse de que la propiedad vale y analizar por qué vale antes de encarar el ejercicio
- Seguir la estructura del esquema de inducción
- Ser ordenado en la separación en casos
- Si hay una implicación, probarla suponiendo que el antecedente es verdadero

- Convencerse de que la propiedad vale y analizar por qué vale antes de encarar el ejercicio
- Seguir la estructura del esquema de inducción
- Ser ordenado en la separación en casos
- Si hay una implicación, probarla suponiendo que el antecedente es verdadero

¿Preguntas?

¿¿Preguntas??

Eso es todo amigos

Algo 2