SDSC 5001: Statistical Machine Learning I

Topic 2. Exploring Data

What Is Data?

- Collection of data objects and their attributes
- Object is also known as record, point, case, sample, entity, or instance
- > An attribute is a property or characteristic of an object
 - > Examples: age, height, weight, education of a person
 - > Attribute is also known as variable, field, characteristic or feature
- > A collection of attributes that describe an object

A Toy Model

ID	Refund	Marital Status	Taxable Income	• • •
1	Yes	Single	125K	
2	No	Married	100K	
3	No	Single	70K	
4	Yes	Married	120K	
5	No	Divorced	95K	
:				

Types of Variables

- > Continuous variable
 - > Example: length, time, count, weight, height
- > Nominal (categorical) variable
 - > Example: race, sex, marital status, eye color
- > Ordinal variable
 - Example: age group (children, youth, adults, seniors), letter grade, satisfaction rating ("dislike", "neutral", "like")
- > Interval variable
 - > Example: temperature, salary range

Types of Data

- > Data matrix
- > Text data, image data, audio data, video data
- > Transactions data
- > Graph data

Data Matrix

- ➤ If data objects have the same fixed set of numeric variables, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct variable.
- > Such a data set can be represented by an $n \times p$ matrix, where there are n rows, one for each object, and p columns, one for each variable.

Patient index	Sex	Age	Smoker (Y/N)	Alcohol (Y/N)
1	F	28	N	Υ
2	M	35	N	N
3	M	60	Υ	Y

Text Data

- Each textual document becomes a vector of terms
- > Each term corresponds to a word or phrase
- The element of the vector is the number of times the corresponding term appears in the textual document.
- > Example:
 - Doc 1: I love dogs.
 - Doc 2: I hate dogs and knitting.
 - Doc 3: Knitting is my hobby and passion.

	I	love	dogs	hate	and	knitting	is	my	hobby	passion
Doc 1	1	1	1	0	0	0	0	0	0	0
Doc 2	1	0	1	1	1	1	0	0	0	0
Doc 3	0	0	0	0	1	1	1	1	1	1

Transaction Data

- > A special type of record data
- > Each record (transaction) involves a set of items
- Example: In a grocery store, the set of products purchased by a customer during one shopping trip constitute a transaction

ID	Products
1	Masks, Bread, Coke, Milk Masks, Beer, Bread, Diapers Masks, Beer, Diapers Masks, Beer, Bread, Milk
2	Masks, Beer, Bread, Diapers
3	Masks, Beer, Diapers
4	Masks, Beer, Bread, Milk
5	Masks, Beer, Coke, Diapers, Milk

Graph Data

- > Social network
- Molecular structures

Data Quality

- Quality of data is a very important factor for success of subsequent analysis.
- Possible data quality issues
 - Noise and outliers
 - Missing values
 - Sampling bias

Noise and Outliers

Noise refers to perturbation of original values.

Outliers are observations that are considerably different from others.

Missing Values

> Reasons for missing values

- Information is not collected (e.g., people decline to give their age and weight)
- Variables may not be applicable to all cases (e.g., annual income is not applicable to children)

> Handling missing values

- > Eliminate all data objects with missing value
- Impute missing values
- Incorporate partial information of the missing values in data analysis

Sampling Bias

- Sample distortion arises from a mismatch between the random sample and the population of interest.
- > Causes of sampling bias
 - Convenience sampling
 - > Class imbalance (e.g., anomaly detection, disease prediction)
- > Avoiding and correcting sampling bias

What Is Data Exploration?

- Preliminary exploration of the data to better understand its characteristics
 - Key motivations of data exploration include
 - Helping select the right tool for preprocessing or formal analysis
 - Making use of human's abilities to recognize patterns
 - Exploratory data analysis (EDA)
 - Created by statistician John Turkey; see his seminal book on EDA

Data Exploration Techniques

- > In EDA, as originally defined by Tukey,
 - The focus was on visualization
 - Clustering and anomaly detection were viewed as exploratory techniques
 - In data mining, clustering and anomaly detection are major areas of interest
- > We will focus on
 - > Summary statistics
 - Visualization

Summary Statistics

- Summary statistics are numbers that summarize properties of the data.
- > Examples
 - Frequency: the percentage of time a given value appears in the data set
 - Mode: the value that appears most frequently
 - > Location: mean, median, trimmed mean, percentile
 - > Spread: range, variance, standard deviation
 - > Skewness

Visualization

- Visualization is the conversion of data into a visual format so that the characteristics of the data and the relationships among data objects or variables can be analyzed or reported.
- Visualization of data is one of the most powerful and appealing techniques for data exploration.
 - Humans have a well developed ability to analyze large amounts of information that is presented visually.
 - > It can detect general patterns and trends.
 - It can detect outliers and unusual patterns.

Sea Surface Temperature

- > Sea surface temperature for July 1982
- Tens of thousands of data points are summarized in one single figure

Iris Data

- > A classical dataset
- > Three iris types (classes): Setosa, Versicolor, Virginica
- > Four explanatory variables
 - > Sepal width and length
 - Petal width and length
- > Sample size: 50 samples for each type

Histogram

2D Histogram

Boxplot

Scatter Plot

Matrix Plot

- > Plot the data matrix
- > This can be useful when objects are sorted according to class.
- > Typically, the variables are normalized to prevent one variable from dominating the plot.
- Plots of similarity or distance matrices can also be useful for visualizing the relationships between objects.

Iris Matrix Plot

Iris Similarity Matrix

Parallel Coordinates Plot

- Use a set of parallel axes
- The variable values of each object are plotted as a point on each corresponding coordinate axis and the points are connected by a line.
- > Thus, each object is represented by a line.
- Often, the lines representing a distinct class of objects group together, at least for some variables.
- Ordering of variables can be important.

Example

Other Visualization Techniques

- > Star plots
 - > Axes radiate from a central point
 - Each object becomes a polygon
- > Chernoff faces
 - > Associate each variable with a characteristic of a face
 - The values of each variable determine the appearance of the corresponding facial characteristic
 - > Each object becomes a separate face

Example

