Deckblatt für die Abgabe der Übungsaufgaben IngMathC2

Name, Vorname:	Do, Van Anh
StudOn-Kennung:	hi97zaba
Blatt-Nummer:	2
Übungsgruppen-Nr:	7
Die folgenden Aufgaben g	gebe ich zur Korrektur frei:
4	
19/21 * 30=27	

Mathe Übung 2 SS2020

Aufgabe 4

a) Induktionsonfong (n=1): $a_1 = 1 \in (0,4)$

Induktionsschnit (n->n+1): Es geste ane (0,4) für aue n em (1V)

$$a_{n+1} = \frac{1}{2}a_n + \sqrt{a_n}$$
 $a_n \in (0,4) = \frac{1}{2}a_n \in (0,2)$ $\sqrt{a_n} \in (0,2) = \frac{1}{2}a_n + \sqrt{a_n} \in (0,4)$

b)
$$z.\overline{z} = \frac{a_{n+1}}{a_n} \ge 1$$
 $\frac{\frac{1}{2}a_n + \overline{1a_n}}{a_n} = \frac{1}{2} + \frac{1}{\overline{1a_n}} \ge 1$, $da = \overline{1a_n} = 2$

=> Folge ist monoton wach send

c) Tolge ist med a) need oben lund unter) beschrönlet und nach b) monoton wachund => Folge konvergiert gyan ihr Supremum

$$\lim_{n\to\infty} a_{n+1} - \lim_{n\to\infty} \left(\frac{1}{2}a_n + \overline{a_n}\right)$$

Aufgabe 5

a) Induktionsanfang (n=0):

$$a_0 : \frac{x_1^0 - x_2^0}{x_1 - x_2} = 0$$

Man braucht nicht nur a_0 sondern auch a_1,weil man später auch zwei mal die Inc

$$\frac{x_{1}^{n-1} \cdot \alpha x_{1} + x_{1}^{n-1} \beta - x_{1}^{n-1} \alpha x_{2} + x_{1}^{n-1} \cdot \beta}{x_{1} - x_{2}} = \frac{\alpha (x_{1}^{n} - x_{2}^{n}) + \beta (x_{1}^{n-1} - x_{2}^{n-1})}{x_{1} - x_{2}}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

- I) je, Folgerglieder waren in C, da unter der wurzel kine negative tahl stehen wird.
- I) pein | unter der Werzel würde 0 stehen und x112 ware demnach: -2 2 Allerdings wurde im Nenner O stehen => nicht möglich

$$\begin{array}{c} C) \perp \\ X_{11} = \frac{-1 \pm \sqrt{12 + 4 \cdot 1}}{-2} \\ X_{12} = \frac{-1 \pm \sqrt{12 + 4 \cdot 1}}{-2} \\ X_{13} = \frac{-1 \pm \sqrt{12 + 4 \cdot 1}}{-2} \\ X_{14} = \frac{-1 \pm \sqrt{12 + 4 \cdot 1}}{-2} \\ X_{15} = \frac{-1 \pm \sqrt{12 + 4 \cdot 1}}{-2}$$

$$a_{n} = \frac{(2+\sqrt{n})^{n} - (2-\sqrt{n})^{n}}{2\sqrt{n}!}$$

$$11) \quad \begin{array}{c} x_{1n} = \\ \hline \\ -2 \end{array} \qquad \begin{array}{c} x_{1} = \\ \hline \end{array} \qquad \begin{array}{c} x_{2} = i \end{array}$$

$$a_n = \frac{\left(-i\right)^n - \left(i\right)^n}{-z_i}$$

Fall i grade/ungerade:

Crerade:
$$\frac{-1-(-1)}{-2i}=0$$

ungerade:
$$\frac{i^{n}-i^{n}}{2i} = \int_{0}^{2i} f(x) = 1$$
, $x = 1$, x

