Introduction to Optimization: Homework #5

Due on December 28, 2020

Professor Andre Milzarek

Peng Deng

Assignment A5.1

Consider the nonlinear optimization problem

$$\min_{x \in \mathbb{R}^2} f(x) := (x_1 + 1)^3 + 2(x_2 - x_1) + (x_2 + 1)^2 \quad \text{s.t.} \quad g(x) \le 0$$

where the constraint function $g: \mathbb{R}^2 \to \mathbb{R}^3$ is given by

$$g_1(x) := (x_1 + 1)^2 + x_2^2 - 4, \quad g_2(x) := x_1 + 1, \quad g_3(x) := x_2$$

Let us further set $\bar{x} := (-1, -2)^{\top}$.

- a) Sketch the feasible set $X := \{x \in \mathbb{R}^2 : g(x) \le 0\}.$
- b) Determine the active set $\mathcal{A}(\bar{x})$ and show that \bar{x} is a regular point.
- c) Investigate whether \bar{x} is a KKT point of problem (1) and calculate a corresponding Lagrange multiplier $\bar{\lambda} \in \mathbb{R}^3$
- d) Compute the associated critical cone $C(\bar{x})$ and simplify as far as possible.
- e) Investigate whether \bar{x} is a local solution of problem (1) and explain your answer.

Solution

Subproblem (a)

As we can see from Figure 1, the yellow area is corresponded to $g_1(x) \leq 0$, the purple area is corresponded to $g_2(x) \leq 0$, the green area is corresponded to $g_3(x) \leq 0$. Thus, the intersection of the three areas is corresponded to $g(x) \leq 0$.

Figure 1 The feasible set X

Subproblem (b)

 $\circ \bar{x} := (-1, -2)^{\top}$, so we have

$$g_1(\bar{x}) = (-1+1)^2 + (-2)^2 - 4 = 0$$

$$g_2(\bar{x}) = x_1 + 1 = -1 + 1 = 0$$

$$g_3(\bar{x}) = x_2 = -2$$
(1)

Thus, we can get $\mathcal{A}(\bar{x}) = \{1, 2\}.$

 \circ In order to show that \bar{x} is a regular point, we have to show that \bar{x} is a feasible set and satisfy the LICQ. Firstly, it is easy to find that \bar{x} is a feasible point. Then, we have to prove that it satisfies the LICQ. We have

$$(\nabla g_1(\bar{x}) \quad \nabla g_2(\bar{x})) = (\nabla g_1(\bar{x}) \quad \nabla g_2(\bar{x}))$$

$$= \begin{pmatrix} 2(x_1 + 1) & 1\\ 2x_2 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1\\ -4 & 0 \end{pmatrix}$$
(2)

We can see the rank of this matrix is 2, which means the matrix has full rank, so $\nabla g_1(\bar{x})$ and $\nabla g_2(\bar{x})$ are linear independent. Thus, we have proved that \bar{x} satisfies the LICQ. In all, we have showed that \bar{x} is a regular point.

Subproblem (c)

Firstly, we derive the gradients and Hessian as follow:

$$\nabla f(x) = \begin{pmatrix} 3(x_1+1)^2 - 2\\ 2x_2 + 4 \end{pmatrix} \qquad \nabla^2 f(x) = \begin{pmatrix} 6x_1 + 6 & 0\\ 0 & 2 \end{pmatrix}$$

$$\nabla g_1(x) = \begin{pmatrix} 2(x_1+1)\\ 2x_2 \end{pmatrix} \qquad \nabla^2 g_1(x) = \begin{pmatrix} 2 & 0\\ 0 & 2 \end{pmatrix}$$

$$\nabla g_2(x) = \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad \nabla^2 g_2(x) = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}$$

$$\nabla g_3(x) = \begin{pmatrix} 0\\ 1 \end{pmatrix} \qquad \nabla^2 g_3(x) = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}$$
(3)

Let's check the KKT-conditions. Due to $\mathcal{I}(\bar{x}) = \{3\}$, we know $\bar{\lambda}_3 = 0$. \circ Main Cond:

$$\nabla f(\bar{x}) + \bar{\lambda}_1 \nabla g_1(\bar{x}) + \bar{\lambda}_2 \nabla g_2(\bar{x}) = 0$$

$$\Longrightarrow \begin{pmatrix} -2\\0 \end{pmatrix} + \bar{\lambda}_1 \begin{pmatrix} 0\\-4 \end{pmatrix} + \bar{\lambda}_2 \begin{pmatrix} 1\\0 \end{pmatrix} = 0$$

$$\Longrightarrow \bar{\lambda}_1 = 0, \quad \bar{\lambda}_2 = 2$$

$$(4)$$

o Dual Feasibility

$$\bar{\lambda}_1 = 0 \ge 0$$

$$\bar{\lambda}_2 = 2 \ge 0$$

$$\bar{\lambda}_3 = 0 \ge 0$$
(5)

• Complementarity

$$\bar{\lambda}_1 \cdot g_1(\bar{x}) = 0$$

$$\bar{\lambda}_2 \cdot g_2(\bar{x}) = 2 \cdot (-1+1) = 0$$

$$\bar{\lambda}_3 \cdot g_3(\bar{x}) = 0$$
(6)

o Primal Feasibility

$$g_1(\bar{x}) = 0 \le 0$$

 $g_2(\bar{x}) = 0 \le 0$
 $g_3(\bar{x}) = -2 \le 0$ (7)

Thus, \bar{x} is a KKT point. The corresponding Lagrange multiplier $\bar{\lambda} = (\bar{\lambda}_1, \bar{\lambda}_2, \bar{\lambda_3})^{\top} = (0, 2, 0)^{\top}$.

Subproblem (d)

$$C(\bar{x}) = \left\{ d \in \mathbb{R}^2 : \nabla f(\bar{x})^\top d = 0, \nabla g_i(\bar{x})^\top d \le 0, \forall i \in \mathcal{A}(\bar{x}) \right\}$$

$$= \left\{ d \in \mathbb{R}^2 : (-2, 0) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0; \ (0, -4) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \le 0; \ (1, 0) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \le 0 \right\}$$

$$= \left\{ d \in \mathbb{R}^2 : d_1 = 0, d_2 \ge 0 \right\}$$

$$= \left\{ (0, t)^\top, t \ge 0 \right\}$$
(8)

Subproblem (e)

In order to investigate whether \bar{x} is a local solution, we need to check whether $\nabla^2_{xx}L\left(\bar{x},\bar{\lambda}\right)$ is positive definite. We have

$$\nabla_{xx}^{2}L(\bar{x},\bar{\lambda}) = \nabla^{2}f(\bar{x}) + \sum_{i=1}^{3} \lambda_{i}\nabla^{2}g_{i}(\bar{x})$$

$$= \nabla^{2}f(\bar{x}) + \bar{\lambda}_{2}\nabla^{2}g_{2}(\bar{x})$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

$$(9)$$

Then we can get

$$d^{\top} \nabla_{xx}^{2} L\left(\bar{x}, \bar{\lambda}\right) d = (0, t) \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ t \end{pmatrix} = 2t^{2}$$

$$\tag{10}$$

So we have $d^{\top}\nabla_{xx}^{2}L(\bar{x},\bar{\lambda}) d > 0$ for all $d \in \mathcal{C}(\bar{x}) \setminus \{0\}$. $\nabla_{xx}^{2}L(\bar{x},\bar{\lambda})$ is positive definite on $\mathcal{C}(\bar{x})$. Thus, we can conclude that \bar{x} is a local solution.

Assignment A5.2

Let $n \in \mathbb{N}$ be given. Let us consider the problem

$$\min_{x \in \mathbb{R}^n} f(x) = \sum_{j=1}^n x_j^j \quad \text{s.t.} \quad g(x) = 1 - ||x||_2^2 \le 0$$

and let $X := \{x \in \mathbb{R}^n : g(x) \leq 0\}$ denote the corresponding feasible set.

- a) Show that the LICQ is satisfied at every feasible point of (2) .
- b) Verify that the point $\bar{x} = (1, 0, 0, \dots, 0)^{\top} \in \mathbb{R}^n$ and the multiplier $\bar{\lambda} = \frac{1}{2}$ form a KKT pair of problem (2)
- c) Compute the critical cone $C(\bar{x})$ and simplify as far as possible.
- d) Apply the second-order necessary and sufficient conditions and show that \bar{x} is a local solution of problem (2) if and only if $n \leq 2$.

Subproblem (a)

In order to show that LICQ satisfied at every point, we have to show that the vector set $\{\nabla g_i(\bar{x}) : i \in \mathcal{A}(\bar{x})\}$ is linearly independent. We have

$$\nabla g(\bar{x}) = (-2\bar{x}_1, -2\bar{x}_2, \dots, -2\bar{x}_n)^{\top}$$
(11)

When $g(\bar{x}) < 0$, the active set $\mathcal{A}(\bar{x})$ is empty, so the LICQ is satisfied automatically at this point. When $g(\bar{x}) = 0$, the active set $\mathcal{A}(\bar{x}) = \{1\}$. So we have to prove $\{\nabla g_1(\bar{x})\}$ is linearly independent. We have

$$g(\bar{x}) = 0$$

$$\Longrightarrow ||\bar{x}||_2^2 = 1$$
(12)

Thus, $\bar{x} \neq 0$, which means $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n$ can not equal 0 simultaneously. So we can derive that $\nabla g_1(\bar{x}) \neq 0$, so the vector set $\{\nabla g_1(\bar{x})\}$ is linearly independent.

Above all, we have showed that LICQ is satisfied at every feasible point.

Subproblem (b)

Firstly, we derive the gradients and Hessian as follow:

$$\nabla f(x) = \begin{pmatrix} 1 \\ 2x_2 \\ 3x_3^2 \\ \vdots \\ nx_n^{n-1} \end{pmatrix} \qquad \nabla^2 f(x) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 6x_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n(n-1)x_n^{n-2} \end{pmatrix}$$

$$\nabla g(x) = \begin{pmatrix} -2x_1 \\ -2x_2 \\ -2x_3 \\ \vdots \\ -2x_n \end{pmatrix} \qquad \nabla^2 g(x) = \begin{pmatrix} -2 & 0 & 0 & \cdots & 0 \\ 0 & -2 & 0 & \cdots & 0 \\ 0 & 0 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -2 \end{pmatrix}$$

$$(13)$$

Let's check the KKT-conditions. We have $g(\bar{x}) = 0$, so $\mathcal{A}(x) = \{1\}$.

o Main Cond:

$$\nabla f(\bar{x}) + \bar{\lambda} \nabla g(\bar{x}) = \begin{pmatrix} 1\\0\\0\\\vdots\\0 \end{pmatrix} + \bar{\lambda} \cdot \begin{pmatrix} -2\\0\\0\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\\vdots\\0 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} -2\\0\\0\\\vdots\\0 \end{pmatrix} = 0 \tag{14}$$

o Dual Feasibility

$$\bar{\lambda} = \frac{1}{2} \ge 0 \tag{15}$$

• Complementarity

$$\bar{\lambda} \cdot g(\bar{x}) = \frac{1}{2} \cdot 0 = 0 \tag{16}$$

o Primal Feasibility

$$g(\bar{x}) = 0 \le 0 \tag{17}$$

Thus, the point \bar{x} satisfied the KKT conditions with $\bar{\lambda} = \frac{1}{2}$, and it is easy to find that \bar{x} is a feasible point. Above all, we have verified that the point \bar{x} and the multiploer $\bar{\lambda}$ from a KKT pair.

Subproblem (c)

$$\mathcal{C}(\bar{x}) = \left\{ d \in \mathbb{R}^n : \nabla f(\bar{x})^\top d = 0, \nabla g_i(\bar{x})^\top d \le 0, \forall i \in \mathcal{A}(\bar{x}) \right\} \\
= \left\{ d \in \mathbb{R}^n : (1, 0, 0, \dots, 0) \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{pmatrix} = 0; \ (-2, 0, 0, \dots, 0) \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{pmatrix} \le 0 \right\} \\
= \left\{ d \in \mathbb{R}^n : d_1 = 0 \right\} \tag{18}$$

Subproblem (d)

In order to investigate whether \bar{x} is a local solution, we need to check whether $\nabla^2_{xx}L\left(\bar{x},\bar{\lambda}\right)$ is positive definite. We have

$$\nabla_{xx}^{2}L\left(\bar{x},\bar{\lambda}\right) = \nabla^{2}f(\bar{x}) + \bar{\lambda}\nabla^{2}g(\bar{x})$$

$$= \begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
0 & 2 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix}
-2 & 0 & 0 & \cdots & 0 \\
0 & -2 & 0 & \cdots & 0 \\
0 & 0 & -2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -2
\end{pmatrix}$$

$$= \begin{pmatrix}
-1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -1
\end{pmatrix}$$
(19)

 \circ When n=1, we have

$$d^{\top} \nabla_{xx}^{2} L\left(\bar{x}, \bar{\lambda}\right) d = (0) \left(-1\right) \left(0\right) = 0 \tag{20}$$

We can see $C(\bar{x}) = \{(0)\}$ in this situation. Thus, $\nabla_{xx}^2 L(\bar{x}, \bar{\lambda})$ is positive definite on $C(\bar{x})$. Thus, \bar{x} is a local solution.

 \circ When n=2, we have $\mathcal{C}(\bar{x})=\{(0,d_2)^{\top}\}$

$$d^{\top} \nabla_{xx}^{2} L\left(\bar{x}, \bar{\lambda}\right) d = (0, d_{2}) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ d_{2} \end{pmatrix} = d_{2}^{2}$$

$$(21)$$

So we have $d^{\top}\nabla_{xx}^{2}L(\bar{x},\bar{\lambda})d > 0$ for all $d \in \mathcal{C}(\bar{x}) \setminus \{0\}$. $\nabla_{xx}^{2}L(\bar{x},\bar{\lambda})$ is positive definite on $\mathcal{C}(\bar{x})$. Thus, \bar{x} is a local solution.

 \circ When $n \geq 3$, we have $\mathcal{C}(\bar{x}) = \{(0, d_2, d_3, \cdots, d_n)^{\top}\}\$

$$d^{\top} \nabla_{xx}^{2} L\left(\bar{x}, \bar{\lambda}\right) d = (0, d_{2}, d_{3}, \cdots, d_{n}) \begin{pmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{pmatrix} \begin{pmatrix} 0 \\ d_{2} \\ d_{3} \\ \cdots \\ d_{n} \end{pmatrix} = d_{2}^{2} - \sum_{i=3}^{n} d_{i}^{2}$$
 (22)

Because d_i is arbitrary for all $i \geq 2$, so we do not have $d^{\top} \nabla^2_{xx} L(\bar{x}, \bar{\lambda}) d > 0$ for all $d \in \mathcal{A}(\bar{x}) \setminus \{0\}$, which means $\nabla^2_{xx} L(\bar{x}, \bar{\lambda})$ is not positive definite on $\mathcal{C}(\bar{x})$. Thus, \bar{x} is not local solution.

Assignment A5.3

Let $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$ be given and define the set $C := \{x \in \mathbb{R}^n : a^\top x \leq b\}$. Compute the projection $\mathcal{P}_C(x)$ for $x \in \mathbb{R}^n$, i.e., solve the optimization problem

$$\min_{y \in \mathbb{R}^n} \frac{1}{2} ||y - x||^2 \quad \text{s.t.} \quad a^\top y \le b$$

We have

$$f(y) = \frac{1}{2} ||y - x||^2 \qquad \nabla f(y) = y - x$$

$$g(y) = a^{\top} y - b \le 0 \qquad \nabla g(y) = a$$
(23)

We apply KKT condition as follow, suppose y^* is the solution.

o Main Cond

$$\nabla f(y^*) + \lambda \nabla g(y^*) = y^* - x + \lambda \cdot a = 0 \tag{24}$$

o Dual Feasibility

$$\lambda \ge 0 \tag{25}$$

Complementarity

$$\lambda \cdot g(y^*) = 0 \tag{26}$$

o Primal Feasibility

$$g(y^*) \le 0 \tag{27}$$

• Case 1: $a^{\top}y^* < b$, which means $g(y^*) < 0$

Due to equation 26, we can have $\lambda = 0$. Due to equation 24, we can have $y^* = x$. Due to $a^{\top}y^* < b$ and $y^* = x$, we can get $a^{\top}x < b$. Thus, when $a^{\top}x < b$, we have $y^* = x$.

• Case 2: $a^{\top}y^* = b$, which means $g(y^*) = 0$

In this situation, Complementarity is satisfied. And we have

$$g(y^*) = 0$$

$$\Longrightarrow a^{\top} y^* = b$$
(28)

Combine the equation 24 and equation 28, we can get

$$\lambda = \frac{a^{\top} x - b}{a^{\top} a}$$

$$y^* = x - \frac{a^{\top} x - b}{a^{\top} a} \cdot a$$
(29)

In this situation, the λ should satisfy $\lambda \geq 0$. So

$$\lambda = \frac{a^{\top} x - b}{a^{\top} a} \ge 0$$

$$\Longrightarrow a^{\top} x > b$$
(30)

Thus, when $a^{\top}x \geq b$, we have $y^* = x - (a^{\top}x - b) \cdot (a^{\top}a)^{-1} \cdot a$.

It is easy to show that the function f(y) is convex. Because $g(x) = x^2, (x \in \mathbb{R})$ is convex and non-decreasing. Besides, $h(x) = ||x||, (x \in \mathbb{R}^n)$ is convex. So the composition g(h(x)) is convex, so f(y) is convex. On the other hand, the set $\{y \in \mathbb{R}^n : a^\top y \leq b\}$ is a half space, so it is convex. Overall, the problem is a convex optimization problem. So the KKT-point y^* is a global solution.

Thus we have derived the projection

$$\mathcal{P}_C(x) = \begin{cases} x & (a^\top x < b) \\ x - (a^\top x - b) \cdot (a^\top a)^{-1} \cdot a & (a^\top x \ge b) \end{cases}$$
(31)