ON LOCAL AND BOUNDARY BEHAVIOR OF MAPPINGS IN METRIC SPACES

E. SEVOST'YANOV

January 6, 2016

Abstract

Open discrete mappings with a modulus condition in metric spaces are considered. Some results related to local behavior of mappings as well as theorems about continuous extension to a boundary are proved.

2010 Mathematics Subject Classification: Primary 30L10; Secondary 30C65

1 Introduction

The paper is devoted to the study of quasiregular mappings and their natural generalizations investigated long time, see e.g. [AC], $[Cr_1]-[Cr_2]$, $[Gol_1]-[Gol_2]$, [GRSY], [IM], [MRSY], $[MRV_1]-[MRV_3]$, [Re], [Ri], [Vu] and further references therein. We also refer to work of Novosibirsk mathematical school, see $[Vo_1]-[UV]$.

As known, boundary and local behavior of quasiregular mappings in \mathbb{R}^n are the main subjects of investigation in many works, see [Ge], [Na], [MRV₂], [Ri], [Va₁], [Va₂] etc. It should also be noted a large number of works by mapping with finite distortion in this context, see e.g. [Cr₁]–[Cr₂], [Gol₁]–[Gol₂], [GRSY], [IM], [HK], [MRSY] and [Ra]. Besides that, we refer to works, where mappings obeying modular inequalities are studied, see [IR₁]–[IR₂], [RS], [Sm] and [Sev₁]–[Sev₃]. Mappings mentioned above are called Q-mappings, and were introduced by O. Martio together with V. Ryazanov, U. Srebro and E. Yakubov, see [MRSY].

Now we return to $[Sev_1]$ – $[Sev_3]$. Local behavior of mappings satisfying modular inequalities is studied in $[Sev_1]$. In particular, we have proved here that a family of mappings mentioned above is equicontinuous provided that characteristic of quasiconformality Q(x) has a finite mean oscillation at the corresponding point. In $[Sev_2]$, we have proved that sets of zero modulus with weight Q (in particular, isolated singularities) are removable for discrete open Q-mappings if the function Q(x) has finite mean oscillation or a logarithmic

singularity of order not exceeding n-1 on the corresponding set. The problem of extension of mappings $f: D \to \mathbb{R}^n$ with modular condition to the boundary of a domain D has been investigated in [Sev₃]. Under certain conditions imposed on a measurable function Q(x) and the boundaries of the domains D and D' = f(D) we show that an open discrete mapping $f: D \to \mathbb{R}^n$ with quasiconformality characteristic Q(x) can be extended to the boundary ∂D by continuity.

Now we continue studying mappings satisfying modular conditions. In the present paper we show that some results from $[Sev_1]-[Sev_3]$ holds not only in \mathbb{R}^n , but in metric spaces, also. Here we assume that mapping f is not injective, as rule, however, f is open and discrete. In addition, we need require the existence of maximal liftings of curves under mapping f. Note that the openness and discreteness of f in \mathbb{R}^n implies the existence of maximal liftings of curves (see [Ri, Ch. 3.II]).

2 On equicontinuity of homeomorphisms between metric spaces

Let us give some definitions. Recall, for a given continuous path $\gamma:[a,b]\to X$ in a metric space (X,d), that its length is the supremum of the sums

$$\sum_{i=1}^{k} d(\gamma(t_i), \gamma(t_{i-1}))$$

over all partitions $a=t_0\leqslant t_1\leqslant\ldots\leqslant t_k=b$ of the interval [a,b]. The path γ is called rectifiable if its length is finite.

Given a family of paths Γ in X, a Borel function $\varrho: X \to [0, \infty]$ is called *admissible* for Γ , abbr. $\varrho \in \operatorname{adm} \Gamma$, if

$$\int_{\gamma} \varrho \, ds \, \geqslant \, 1 \tag{2.1}$$

for all (locally rectifiable) $\gamma \in \Gamma$. Everywhere further, for any sets E, F, and G in X, we denote by $\Gamma(E, F, G)$ the family of all continuous curves $\gamma : [0, 1] \to X$ such that $\gamma(0) \in E$, $\gamma(1) \in F$, and $\gamma(t) \in G$ for all $t \in (0, 1)$. For $x_0 \in X$ and r > 0, the ball $\{x \in X : d(x, x_0) < r\}$ is denoted by $B(x_0, r)$. Everywhere further (X, d, μ) and (X', d', μ') are metric spaces with metrics d and d' and locally finite Borel measures μ and μ' , correspondingly.

An open set any two points of which can be connected by a curve is called a domain in X. The modulus of a family of curves Γ in a domain G of finite Hausdorff dimension $\alpha \geq 2$ from X is defined by the equality

$$M_{\alpha}(\Gamma) = \inf_{\rho \in \text{adm } \Gamma} \int_{G} \varrho^{\alpha}(x) d\mu(x).$$
 (2.2)

In the case of the path family $\Gamma' = f(\Gamma)$ we take the Hausdorff dimension α' of the domain G'.

A family of paths Γ_1 in X is said to be *minorized* by a family of paths Γ_2 in X, abbr. $\Gamma_1 > \Gamma_2$, if, for every path $\gamma_1 \in \Gamma_1$, there is a path $\gamma_2 \in \Gamma_2$ such that γ_2 is a restriction of γ_1 . In this case

$$\Gamma_1 > \Gamma_2 \quad \Rightarrow \quad M_{\alpha}(\Gamma_1) \le M_{\alpha}(\Gamma_2)$$
(2.3)

(see [Fu, Theorem 1]).

Let G and G' be domains with finite Hausdorff dimensions α and $\alpha' \geq 2$ in spaces (X, d, μ) and (X', d', μ') , and let $Q: G \to [0, \infty]$ be a measurable function. Set $S(x_0, r_i) = \{x \in X: d(x_0, x) = r_i\}, i = 1, 2, 0 < r_1 < r_2 < \infty$. Following to [MRSY, Ch. 7], we say that a mapping $f: G \to G'$ is a ring Q-mapping at a point $x_0 \in G$ if the inequality

$$M_{\alpha'}(f(\Gamma(S_1, S_2, A))) \leqslant \int_{A \cap G} Q(x) \eta^{\alpha}(d(x, x_0)) d\mu(x)$$
(2.4)

holds for any ring

$$A = A(x_0, r_1, r_2) = \{ x \in X : r_1 < d(x, x_0) < r_2 \}, \quad 0 < r_1 < r_2 < \infty,$$
(2.5)

and any measurable function $\eta:(r_1,r_2)\to[0,\infty]$ such that

$$\int_{r_1}^{r_2} \eta(r)dr \geqslant 1. \tag{2.6}$$

A family \mathcal{F} of continuous functions f defined on some metric space (X,d) with values in another metric space (Y,d') is called equicontinuous at a point $x_0 \in X$ if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $d'(f(x_0), f(x)) < \varepsilon$ for all $f \in \mathcal{F}$ and all x such that $d(x_0, x) < \delta$. The family is equicontinuous if it is equicontinuous at each point of X. Thus, by the well-known Ascoli theorem, normality is equivalent to equicontinuity on compact sets of the mappings in \mathcal{F} .

Let G be a domain in a space (X, d, μ) . Similarly to $[IR_1]$, we say that a function $\varphi : G \to \mathbb{R}$ has finite mean oscillation at a point $x_0 \in \overline{G}$, abbr. $\varphi \in FMO(x_0)$, if

$$\overline{\lim_{\varepsilon \to 0}} \ \frac{1}{\mu(B(x_0, \varepsilon))} \int_{B(x_0, \varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}| \ d\mu(x) < \infty \tag{2.7}$$

where

$$\overline{\varphi}_{\varepsilon} = \frac{1}{\mu(B(x_0, \varepsilon))} \int_{B(x_0, \varepsilon)} \varphi(x) \ d\mu(x)$$

is the mean value of the function $\varphi(x)$ over the set

$$B(x_0, \varepsilon) = \{ x \in G : d(x, x_0) < \varepsilon \}$$

with respect to the measure μ . Here the condition (2.7) includes the assumption that φ is integrable with respect to the measure μ over the set $B(x_0, \varepsilon)$ for some $\varepsilon > 0$.

Following [He, section 7.22], given a real-valued function u in a metric space X, a Borel function $\rho: X \to [0, \infty]$ is said to be an *upper gradient* of a function $u: X \to \mathbb{R}$ if $|u(x) - u(y)| \leq \int_{\gamma} \rho |dx|$ for each rectifiable curve γ joining x and y in X. Let (X, μ) be a metric measure space and let $1 \leq p < \infty$. We say that X admits a (1; p)-Poincare inequality if there is a constant $C \geq 1$ such that

$$\frac{1}{\mu(B)} \int_{B} |u - u_B| d\mu(x) \leqslant C \cdot (\operatorname{diam} B) \left(\frac{1}{\mu(B)} \int_{B} \rho^p d\mu(x) \right)^{1/p}$$

for all balls B in X, for all bounded continuous functions u on B, and for all upper gradients ρ of u. Metric measure spaces where the inequalities

$$\frac{1}{C}R^n \leqslant \mu(B(x_0, R)) \leqslant CR^n$$

hold for a constant $C \ge 1$, every $x_0 \in X$ and all R < diam X, are called Ahlfors n-regular. As known, Ahlfors n-regular spaces have Hausdorff dimension α (see e.g. [He, p. 61–62]). A domain G in a topological space T is called locally connected at a point $x_0 \in \partial G$ if, for every neighborhood U of the point x_0 , there is its neighborhood $V \subset U$ such that $V \cap G$ is connected (see [Ku, I.6, § 49]).

Theorem 2.1. Let G be a domain in a locally connected and a locally compact metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, and let (X', d', μ') be an Ahlfors α' -regular metric space which supports $(1; \alpha')$ -Poincare inequality. Let $B_R \subset X'$ is a fixed ball of a radius R. Denote $\mathfrak{R}_{x_0,Q,B_R,\delta}(G)$ a family of ring Q-homeomorphisms $f: G \to B_R \setminus K_f$ at $x_0 \in G$ with $\sup_{x,y \in K_f} d'(x,y) \geq \delta > 0$, where $K_f \subset B_R$ is some continuum. Then $\mathfrak{R}_{x_0,Q,B_R,\delta}(G)$ is equicontinuous at $x_0 \in G$ whenever $Q \in FMO(x_0)$.

The following lemma can be useful under investigations related to equicontinuity of families of mappings.

Lemma 2.1. Let G be a domain in a metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, and let (X', d', μ') be a metric space with a finite Hausdorff dimension $\alpha' \geq 2$. Let $f: G \to X'$ be a ring Q-mapping at $x_0 \in G$, and let $\varepsilon_0 > 0$ be such that $\overline{B(x_0, \varepsilon_0)} \subset G$. Assume that

$$\int_{\varepsilon < d(x,x_0) < \varepsilon_0} Q(x) \cdot \psi_{\varepsilon}^{\alpha}(d(x,x_0)) d\mu(x) \leqslant F(\varepsilon,\varepsilon_0) \qquad \forall \ \varepsilon \in (0,\varepsilon_0'), \tag{2.8}$$

for some $\varepsilon_0' \in (0, \varepsilon_0)$ and some family of nonnegative Lebesgue measurable functions $\{\psi_{\varepsilon}(t)\}$, $\psi_{\varepsilon}: (\varepsilon, \varepsilon_0) \to [0, \infty], \ \varepsilon \in (0, \varepsilon_0')$, where $r \neq F(\varepsilon, \varepsilon_0)$ is some function, and

$$0 < I(\varepsilon, \varepsilon_0) := \int_{\varepsilon}^{\varepsilon_0} \psi_{\varepsilon}(t)dt < \infty \qquad \forall \ \varepsilon \in (0, \varepsilon_0').$$
 (2.9)

Denote $S_1 = S(x_0, \varepsilon)$, $S_2 = S(x_0, \varepsilon_0)$ and $A = \{x \in G : \varepsilon < d(x, x_0) < \varepsilon_0\}$. Then

$$M_{\alpha'}(f(\Gamma(S_1, S_2, A))) \leqslant F(\varepsilon, \varepsilon_0) / I^{\alpha}(\varepsilon, \varepsilon_0) \quad \forall \ \varepsilon \in (0, \varepsilon_0') \ .$$
 (2.10)

Proof. Set $\eta_{\varepsilon}(t) = \psi_{\varepsilon}(t)/I(\varepsilon, \varepsilon_0)$, $t \in (\varepsilon, \varepsilon_0)$. We observe that $\int_{\varepsilon}^{\varepsilon_0} \eta_{\varepsilon}(t) dt = 1$ for $\varepsilon \in (0, \varepsilon'_0)$. Now, from the definition of ring Q-mapping at x_0 , and from (2.8), we obtain (2.10). \square

The following statement holds (see [AS, Proposition 4.7]).

Proposition 2.1. Let X be a α -Ahlfors regular metric measure space that supports $(1; \alpha)$ -Poincare inequality for some $\alpha > 1$. Let E and F be continua contained in a ball $B(x_0, R)$. Then

$$M_{\alpha}(\Gamma(E, F, X)) \geqslant \frac{1}{C} \cdot \frac{\min\{\operatorname{diam} E, \operatorname{diam} F\}}{R}$$

for some constant C > 0.

The following lemma provides the main tool for establishing equicontinuity in the most general situation.

Lemma 2.2. Let G be a domain in a locally connected and locally compact metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, and let (X', d', μ') be an Ahlfors α' -regular metric space which supports $(1; \alpha')$ -Poincare inequality. Let $r_0 > 0$ be such that $\overline{B(x_0, \varepsilon_0)} \subset G$ and $0 < \varepsilon_0 < r_0$. Assume that, (2.8) holds for some $\varepsilon'_0 \in (0, \varepsilon_0)$, and for some family of nonnegative Lebesgue measurable function $\{\psi_{\varepsilon}(t)\}, \psi_{\varepsilon} : (\varepsilon, \varepsilon_0) \to [0, \infty], \varepsilon \in (0, \varepsilon'_0)$, where $F(\varepsilon, \varepsilon_0)$ is some function for which $F(\varepsilon, \varepsilon_0) = o(I^{\alpha}(\varepsilon, \varepsilon_0))$, and $I(\varepsilon, \varepsilon_0)$ is defined in (2.9).

Let $B_R \subset X'$ be a fixed ball of a radius R. Denote $\mathfrak{R}_{x_0,Q,B_R,\delta}(G)$ a family of all ring Q-homeomorphisms $f: G \to B_R \setminus K_f$ at $x_0 \in G$ with $\sup_{x,y \in K_f} d'(x,y) \geqslant \delta > 0$, where $K_f \subset B_R$ is a fixed continuum. Now, $\mathfrak{R}_{Q,x_0,B_R,\delta}(G)$ is equicontinuous at x_0 .

Proof. Fix $x_0 \in G$, $f \in \mathfrak{R}_{x_0,Q,B_R,\delta}(G)$. Since X is locally connected and locally compact space, we can find a sequence $B(x_0,\varepsilon_k)$, $k=0,1,2,\ldots,\varepsilon_k\to 0$ as $k\to\infty$, such that $V_{k+1}\subset \overline{B(x_0,\varepsilon_k)}\subset V_k$, where V_k are continua in G. Observe that $f(V_k)$ are K_f continua in B_R , in fact, $f(V_k)$ is a continuum as continuous image of a continuum (see e.g. [Ku, Theorem 1.III.41 and Theorem 3.I.46]). Now, by Proposition 2.1 we obtain that

$$M_{\alpha'}(K_f, f(V_k), X')) \geqslant \frac{1}{C} \cdot \frac{\min\{\operatorname{diam} K_f, \operatorname{diam} f(V_k)\}}{R}$$
 (2.11)

at some C > 0. Note that $\gamma \in \Gamma(K_f, f(V_k), X')$ does not fully belong to $f(B(x_0, \varepsilon_0))$ as well as $X' \setminus f(B(x_0, \varepsilon_0))$, so there exists $y_1 \in |\gamma| \cap f(S(x_0, \varepsilon_0))$ (see [Ku, Theorem 1, § 46, section. I]). Let $\gamma : [0, 1] \to X'$ and $t_1 \in (0, 1)$ be such that $\gamma(t_1) = y_1$. Without loss of generalization, we can consider that $|\gamma|_{[0,t_1)}| \in f(B(x_0, \varepsilon_0))$. Denote $\gamma_1 := \gamma|_{[0,t_1)}$, and set $\alpha_1 = f^{-1}(\gamma_1)$. Observe that $|\alpha_1| \in B(x_0, \varepsilon_0)$. Moreover, note that α_1 does not wholly belong to $\overline{B(x_0, \varepsilon_{k-1})}$ as well as to $X \setminus \overline{B(x_0, \varepsilon_{k-1})}$. Thus, there exists $t_2 \in (0, t_1)$ with

 $\alpha_1(t_2) \in S(x_0, \varepsilon_{k-1})$ (see [Ku, Theorem 1, § 46, Section. I]). Without loss of generality, we can consider that $|\alpha_{[t_2,t_1]}| \in X \setminus \overline{B(x_0,\varepsilon_{k-1})}$. Set $\alpha_2 = \alpha_1|_{[t_2,t_1]}$. Observe that $\gamma_2 := f(\alpha_2)$ is a subcurve of γ . From saying above,

$$\Gamma(K_f, f(V_k), X') > \Gamma(f(S(x_0, \varepsilon_{k-1})), f(S(x_0, \varepsilon_0)), f(A))),$$

where $A = \{x \in X : \varepsilon_{k-1} < d(x, x_0) < \varepsilon_0\}$, whence by (2.3)

$$M_{\alpha'}(\Gamma(K_f, f(V_k), X')) \leqslant M_{\alpha'}(\Gamma(f(S(x_0, \varepsilon_{k-1})), f(S(x_0, \varepsilon_0)), f(A))). \tag{2.12}$$

By (2.11) and (2.12), we conclude that

$$M_{\alpha'}(\Gamma(f(S(x_0, \varepsilon_{k-1})), f(S(x_0, \varepsilon_0)), f(A))) \geqslant \frac{1}{C} \cdot \frac{\min\{\operatorname{diam} K_f, \operatorname{diam} f(V_k)\}}{R}.$$
 (2.13)

From other hand, by Lemma 2.1 and by $F(\varepsilon, \varepsilon_0) = o(I^{\alpha}(\varepsilon, \varepsilon_0))$, it follows that

$$M_{\alpha'}(\Gamma(f(S(x_0,\varepsilon_{k-1})),f(S(x_0,\varepsilon_0)),f(A)))\to 0$$

as $k \to \infty$. Therefore, for every $\sigma > 0$ there exists $k_0 \in \mathbb{N} = k_0(\sigma)$ such that

$$M_{\alpha'}(\Gamma(f(S(x_0, \varepsilon_{k-1})), f(S(x_0, \varepsilon_0)), f(A))) < \sigma$$

for every $k \ge k_0$. Now, by (2.13), it follows that

$$\min\{\operatorname{diam} K_f, \operatorname{diam} f(V_k)\} < \sigma \tag{2.14}$$

for $k \ge k_0$. Since diam $K_f \ge \delta > 0$ for every f, we obtain that

$$\min\{\operatorname{diam} K_f, \operatorname{diam} f(V_k)\} = \operatorname{diam} f(V_k)$$

for every $k \ge k_1(\sigma)$. Now, by (2.14)

$$\operatorname{diam} f(V_k) < \sigma \tag{2.15}$$

for every $k \geq k_1(\sigma)$. Since $V_{k+1} \subset \overline{B(x_0, \varepsilon_k)} \subset V_k$, the inequality (2.15) holds in $\overline{B(x_0, \varepsilon_k)}$ as $k \geq k_1(\sigma)$. Set $\varepsilon(\sigma) := \varepsilon_{k_1}$. Finally, given $\sigma > 0$ there exists $\varepsilon(\sigma) > 0$ such that $d'(f(x), f(x_0)) < \sigma$ as $d(x, x_0) < \varepsilon(\sigma)$. So, $\mathfrak{R}_{Q, x_0, B_R, \delta}(G)$ is equicontinuous at x_0 . \square

The following statement can be found in [RS, Lemma 4.1].

Proposition 2.2. Let G be a domain Ahlfors α -regular metric space (X, d, μ) at $\alpha \geqslant 2$. Assume that $x_0 \in \overline{G}$ and $Q: G \to [0, \infty]$ belongs to $FMO(x_0)$. If

$$\mu(G \cap B(x_0, 2r)) \leqslant \gamma \cdot \log^{\alpha - 2} \frac{1}{r} \cdot \mu(G \cap B(x_0, r)) \tag{2.16}$$

for some $r_0 > 0$ and every $r \in (0, r_0)$, then Q satisfies (2.8), where $G(\varepsilon) := F(\varepsilon, \varepsilon_0)/I^n(\varepsilon, \varepsilon_0)$ obeying: $G(\varepsilon) \to 0$ as $\varepsilon \to 0$, and $\psi_{\varepsilon}(t) \equiv \psi(t) := \frac{1}{t \log \frac{1}{t}}$.

Proof of the Theorem 2.1 follows from Lemma 2.2 and Proposition 2.2. \Box

Taking into account [RS, Corollary 4.1], by Lemma 2.2, we obtain the following.

Corollary 2.1. A conclusion of Theorem 2.1 holds, if instead of condition $Q \in FMO(x_0)$ we require that

$$\limsup_{\varepsilon \to 0} \frac{1}{\mu(B(x_0, \varepsilon))} \int_{B(x_0, \varepsilon)} Q(x) d\mu(x) < \infty.$$

3 Equicontinuity of open discrete mappings

In this section we prove a result similar to Theorem 2.1, where instead of homeomorphisms are considered open discrete mappings. However, in this case we have to require the following additional condition: the mapping should have a maximal lifting relative to an arbitrary curve. To give a definition.

Let $D \subset X$, $f: D \to X'$ be a discrete open mapping, $\beta: [a, b) \to X'$ be a curve, and $x \in f^{-1}(\beta(a))$. A curve $\alpha: [a, c) \to D$ is called a maximal f-lifting of β starting at x, if (1) $\alpha(a) = x$; (2) $f \circ \alpha = \beta|_{[a,c)}$; (3) for $c < c' \le b$, there is no curves $\alpha': [a, c') \to D$ such that $\alpha = \alpha'|_{[a,c)}$ and $f \circ \alpha' = \beta|_{[a,c')}$. In the case $X = X' = \mathbb{R}^n$, the assumption on f yields that every curve β with $x \in f^{-1}(\beta(a))$ has a maximal f-lifting starting at x (see [Ri, Corollary II.3.3], [MRV₃, Lemma 3.12]).

Consider the condition

A : for all β : $[a, b) \to X'$ and $x \in f^{-1}(\beta(a))$, a mapping f has a maximal f-lifting starting at x.

Given $x_0 \in D$ and $0 < \varepsilon < \varepsilon_0$, let $A = A(x_0, \varepsilon, \varepsilon_0)$ be defined in (2.5), let $S_i = S(x_0, r_i)$ be sphere centered at x_0 of a radius r, and let $Q: D \to [0, \infty]$ be a measurable function. The following lemma holds.

Lemma 3.1. Let G be a domain in a metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, and let (X', d', μ') be a metric space which has a finite Hausdorff dimension $\alpha' \geq 2$. Let $f: G \to X'$ be a ring Q-mapping at $x_0 \in G$, and let $0 < \varepsilon_0 < \text{dist}(x_0, \partial D)$ be such that $\overline{B(x_0, \varepsilon_0)}$ is compactum in D.

Assume that

$$\int_{\varepsilon < d(x,x_0) < \varepsilon_0} Q(x) \cdot \psi_{\varepsilon}^{\alpha}(d(x,x_0)) \ d\mu(x) \leqslant F(\varepsilon,\varepsilon_0) \qquad \forall \ \varepsilon \in (0,\varepsilon_0')$$
(3.1)

holds for some $\varepsilon'_0 \in (0, \varepsilon_0)$, and some family of nonnegative Lebesgue measurable functions $\{\psi_{\varepsilon}(t)\}, \psi_{\varepsilon} \colon (\varepsilon, \varepsilon_0) \to [0, \infty], \varepsilon \in (0, \varepsilon'_0)$, where $F(\varepsilon, \varepsilon_0)$ is some function, and (2.9) holds. If f satisfies the condition \mathbf{A} , then

$$M_{\alpha'}(\Gamma(f(\overline{B(x_0,\varepsilon)}), \partial f(B(x_0,\varepsilon_0)), X')) \leqslant F(\varepsilon, \varepsilon_0)/I^{\alpha}(\varepsilon, \varepsilon_0) \quad \forall \ \varepsilon \in (0, \varepsilon_0') \ .$$
 (3.2)

Proof. We can assume that $\Gamma := \Gamma(f(\overline{B(x_0, \varepsilon)}), \partial f(B(x_0, \varepsilon_0)), X') \neq \emptyset$.

Now $\partial f(B(x_0, \varepsilon_0)) \neq \emptyset$. Let Γ^* be a family of maximal f-liftings of Γ started at $\overline{B(x_0, \varepsilon)}$. Given a curve $\beta : [0, 1) \to X'$, $\beta \in \Gamma$, we show that it's maximal lifting $\alpha : [0, c) \to X$ satisfies the condition: $d(\alpha(t), S(x_0, \varepsilon_0)) \to 0$ as $t \to c - 0$.

Assume the contrary, i.e., there exists $\beta \colon [a, b) \to X'$ from Γ for which it's maximal lifting $\alpha \colon [a, c) \to B(x_0, \varepsilon_0)$ satisfies the condition $d(|\alpha|, \partial B(x_0, \varepsilon_0)) = \delta_0 > 0$. Consider

$$G = \left\{ x \in X : x = \lim_{k \to \infty} \alpha(t_k) \right\}, \quad t_k \in [a, c), \quad \lim_{k \to \infty} t_k = c.$$

Note that $c \neq b$. In fact, assume that c = b, then $|\beta| = f(|\alpha|)$ is compactum in $B(x_0, \varepsilon_0)$, and we obtain a contradiction.

Now, let $c \neq b$. Letting to subsequences, if it is need, we can restrict us by monotone sequences t_k . For $x \in G$, by continuity of f, $f(\alpha(t_k)) \to f(x)$ as $k \to \infty$, where $t_k \in [a, c), t_k \to c$ as $k \to \infty$. However, $f(\alpha(t_k)) = \beta(t_k) \to \beta(c)$ as $k \to \infty$. Thus, f is a constant on G in $B(x_0, \varepsilon_0)$. From other hand, $\overline{\alpha}$ is a compact set, because $\overline{\alpha}$ is a closed subset of the compact space $\overline{B(x_0, \varepsilon_0)}$ (see [Ku, Theorem 2.II.4, §41]). Now, by Cantor condition on the compact $\overline{\alpha}$, by monotonicity of $\alpha([t_k, c))$,

$$G = \bigcap_{k=1}^{\infty} \overline{\alpha([t_k, c))} \neq \varnothing,$$

see [Ku, 1.II.4, § 41]. Now, by [Ku, Theorem 5.II.5, § 47], $\overline{\alpha}$ is connected. By discreteness of f, G is a single-point set, and $\alpha \colon [a, c) \to B(x_0, \varepsilon_0)$ extends to a closed curve $\alpha \colon [a, c] \to K \subset B(x_0, \varepsilon_0)$, and $f(\alpha(c)) = \beta(c)$. By condition \mathbf{A} , there exists a new maximal lifting α' of $\beta|_{[c,b)}$ starting in $\alpha(c)$. Uniting α and α' , we obtain a new lifting α'' of β , which is defined in [a, c'), $c' \in (c, b)$, that contradicts to "maximality" of α . Thus, $d(\alpha(t), S(x_0, \varepsilon_0)) \to 0$ as $t \to c - 0$.

Observe that $\Gamma(f(\overline{B(x_0,\varepsilon)}), \partial f(B(x_0,\varepsilon_0)), X') > f(\Gamma^*)$, and, consequently, by (2.3)

$$M_{\alpha'}\left(\Gamma(f(\overline{B(x_0,\varepsilon)}),\partial f(B(x_0,\varepsilon_0)),X'))\right) \leqslant M_{\alpha'}\left(f(\Gamma^*)\right).$$
 (3.3)

Consider

$$S_{\varepsilon} = S(x_0, \varepsilon), \quad S_{\varepsilon_0} = S(x_0, \varepsilon_0),$$

where ε_0 is from conditions of the lemma, and $\varepsilon \in (0, \varepsilon_0')$. Since every curve $\alpha \in \Gamma^*$ satisfies the condition $d(\alpha(t), S(x_0, \varepsilon_0)) \to 0$ as $t \to c-0$, we obtain that $\Gamma(S_{\varepsilon}, S_{\varepsilon_0 - \delta}, A(x_0, \varepsilon, \varepsilon_0 - \delta)) < \Gamma^*$ at sufficiently small $\delta > 0$ and, consequently, $f(\Gamma(S_{\varepsilon}, S_{\varepsilon_0 - \delta}, A(x_0, \varepsilon, \varepsilon_0 - \delta))) < f(\Gamma^*)$. Now

$$M_{\alpha'}(f(\Gamma^*)) \leqslant M_{\alpha'}(f(\Gamma(S_{\varepsilon}, S_{\varepsilon_0 - \delta}, A(x_0, \varepsilon, \varepsilon_0 - \delta))))$$
 (3.4)

By (3.3) and (3.4),

$$M_{\alpha'}(\Gamma(f(\overline{B(x_0,\varepsilon)}), \partial f(B(x_0,\varepsilon_0)), X')) \leqslant M_{\alpha'}(f(\Gamma(S_\varepsilon, S_{\varepsilon_0-\delta}, A(x_0, \varepsilon, \varepsilon_0 - \delta))))$$
. (3.5)

Let $\eta(t)$ be an arbitrary nonnegative Lebesgue measurable function with the condition $\int_{\varepsilon}^{\varepsilon_0} \eta(t)dt = 1$. Consider the family of function $\eta_{\delta}(t) = \frac{\eta(t)}{\varepsilon_0 - \delta}$. (Since $\int_{\varepsilon}^{\varepsilon_0} \eta(t)dt = 1$, we can

choose $\delta > 0$ such that $\int_{\varepsilon}^{\varepsilon_0 - \delta} \eta(t) dt > 0$). Since $\int_{\varepsilon}^{\varepsilon_0 - \delta} \eta_{\delta}(t) dt = 1$,

$$M_{\alpha'}\left(f\left(\Gamma\left(S_{\varepsilon},S_{\varepsilon_{0}-\delta},A(x_{0},\varepsilon,\varepsilon_{0}-\delta)\right)\right)\right)\leqslant$$

$$\leqslant \frac{1}{\left(\int\limits_{\varepsilon}^{\varepsilon_0 - \delta} \eta(t) dt\right)^{\alpha}} \int\limits_{\varepsilon < d(x, x_0) < \varepsilon_0} Q(x) \cdot \eta^{\alpha}(d(x, x_0)) d\mu(x).$$
(3.6)

Letting to the limit as $\delta \to 0$, by (3.5), we obtain that

$$M_{\alpha'}(f(\Gamma(S_{\varepsilon}, S_{\varepsilon_0}, A(x_0, \varepsilon, \varepsilon_0)))) \leqslant \int_{\varepsilon < d(x, x_0) < \varepsilon_0} Q(x) \cdot \eta^{\alpha}(d(x, x_0)) d\mu(x)$$

for every nonnegative Lebesgue measurable function $\eta(t)$ with $\int_{\varepsilon}^{\varepsilon_0} \eta(t) dt = 1$. The desired conclusion follows now from the lemma 2.1. \square

Denote $\mathfrak{L}_{x_0,Q,B_R,\delta,\mathbf{A}}(D)$ a family of all open discrete ring Q-mappings $f: D \to B_R \setminus K_f$ at $x_0 \in D$ with \mathbf{A} -condition, where $B_R \subset X'$ is some fixed ball of a radius R, and K_f is some nondegenerate continuum in B_R with $\sup_{x,y\in K_f} d'(x,y) \geqslant \delta > 0$. A following statement is a main tool for a proof of equicontinuity result in a general situation.

Lemma 3.2. Let D be a domain in a locally compact and locally connected metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \ge 2$, and let (X', d', μ') be an Ahlfors α' -regular metric space which supports $(1; \alpha')$ -Poincare inequality.

Assume also that, (3.1) holds for some $\varepsilon'_0 \in (0, \varepsilon_0)$ and some family of nonnegative Lebesgue measurable functions $\{\psi_{\varepsilon}(t)\}$, $\psi_{\varepsilon}: (\varepsilon, \varepsilon_0) \to (0, \infty)$, $\varepsilon \in (0, \varepsilon'_0)$, where $F(\varepsilon, \varepsilon_0)$ satisfies the condition $F(\varepsilon, \varepsilon_0) = o(I^n(\varepsilon, \varepsilon_0))$ as $\varepsilon \to 0$, and $I(\varepsilon, \varepsilon_0)$ is defined by (2.9).

Now, $\mathfrak{L}_{x_0,Q,B_R,\delta,\mathbf{A}}(D)$ is equicontinuous at x_0 .

Proof. Fix $f \in \mathfrak{L}_{x_0,Q,B_R,\delta,\mathbf{A}}(D)$. Set $A := B(x_0,\varepsilon_0) \subset D$. Since X is locally connected and locally compact space, we can find a sequence $B(x_0,\varepsilon_k)$, $k=0,1,2,\ldots,\varepsilon_k\to 0$ as $k\to\infty$, such that $V_{k+1}\subset \overline{B(x_0,\varepsilon_k)}\subset V_k$, where V_k are continua in G. Observe that $f(V_k)$ are K_f continua in B_R , in fact, $f(V_k)$ is a continuum as continuous image of a continuum (see e.g. [Ku, Theorem 1.III.41 and Theorem 3.I.46]).

Note that $\Gamma(K_f, f(V_k), X') > \Gamma(f(V_k), \partial f(A), X')$ (see [Ku, Theorem 1.I.5, § 46]), so, by (2.3)

$$M_{\alpha'}(\Gamma(f(V_k), \partial f(A), X')) \geqslant M_{\alpha'}(\Gamma(K_f, f(V_k), X')).$$
 (3.7)

By Proposition 2.1

$$M_{\alpha'}(\Gamma(K_f, f(V_k), X') \geqslant \frac{1}{C_1} \cdot \frac{\min\{\operatorname{diam} f(V_k), \operatorname{diam} K_f\}}{R}.$$
 (3.8)

By Lemma 3.1, $M_{\alpha'}(\Gamma(K_f, f(V_k), X') \to 0$ as $k \to \infty$ and, therefore, by (3.1) and (3.8) we obtain that

$$\min\{\operatorname{diam} f(V_k), \operatorname{diam} K_f\} = \operatorname{diam} f(V_k)$$

as $k \to \infty$. By (3.1) and (3.8) it follows that, for every $\sigma > 0$ there exists $k_0 = k_0(\sigma)$ such that

$$\operatorname{diam} f(C) \leqslant \sigma \tag{3.9}$$

for every $k \geq k_0(\sigma)$. Since $V_{k+1} \subset \overline{B(x_0, \varepsilon_k)} \subset V_k$, the inequality (3.9) holds in $\overline{B(x_0, \varepsilon_k)}$ as $k \geq k_0(\sigma)$. Set $\varepsilon(\sigma) := \varepsilon_{k_0}$. Finally, given $\sigma > 0$ there exists $\varepsilon(\sigma) > 0$ such that $d'(f(x), f(x_0)) < \sigma$ as $d(x, x_0) < \varepsilon(\sigma)$ for every $f \in \mathfrak{L}_{x_0, Q, B_R, \delta, \mathbf{A}}(D)$. So, $\mathfrak{L}_{x_0, Q, B_R, \delta, \mathbf{A}}(D)$ is equicontinuous at x_0 . \square

Denote $\mathfrak{L}_{x_0,Q,B_R,\delta,\mathbf{A}}(D)$ a family of all open discrete ring Q-mappings $f: D \to B_R \setminus K_f$ at $x_0 \in D$ with \mathbf{A} -condition, where $B_R \subset X'$ is some fixed ball of a radius R, and K_f is some nondegenerate continuum in B_R with $\sup_{x,y\in K_f} d'(x,y) \geqslant \delta > 0$. Now, from Lemma 3.2 and Proposition 2.2, we obtain the following statement.

Theorem 3.1. Let D be a domain in a locally compact and locally connected metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \ge 2$, and let (X', d', μ') be an Ahlfors α' -regular metric space which supports $(1; \alpha')$ -Poincare inequality.

If $Q \in FMO(x_0)$, then $\mathfrak{L}_{x_0,Q,B_R,\delta,\mathbf{A}}(D)$ is equicontinuous at x_0 .

Taking into account [RS, Corollary 4.1], by Lemma 3.2, we obtain the following.

Corollary 3.1. A conclusion of Theorem 3.1 holds, if instead of condition $Q \in FMO(x_0)$ we require that

$$\limsup_{\varepsilon \to 0} \frac{1}{\mu(B(x_0, \varepsilon))} \int_{B(x_0, \varepsilon)} Q(x) d\mu(x) < \infty.$$

4 Removability of isolated singularities

A proof of the following lemma can be given by analogy with [RS, Lemma 8.1].

Lemma 4.1. Let D be a domain in a metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, and let (X', d', μ') be an Ahlfors α' -regular metric space which supports $(1; \alpha')$ -Poincare inequality. Assume that, there exists $\varepsilon_0 > 0$ and a Lebesgue measurable function $\psi(t): (0, \varepsilon_0) \to [0, \infty]$ with the following property: for every $\varepsilon_2 \in (0, \varepsilon_0]$ there exists $\varepsilon_1 \in (0, \varepsilon_2]$, such that

$$0 < I(\varepsilon, \varepsilon_2) := \int_{\varepsilon}^{\varepsilon_2} \psi(t)dt < \infty$$
 (4.1)

for every $\varepsilon \in (0, \varepsilon_1)$. Suppose also, that

$$\int_{\varepsilon < d(x,x_0) < \varepsilon_0} Q(x) \cdot \psi^{\alpha}(d(x,x_0)) \ dv(x) = o\left(I^{\alpha}(\varepsilon,\varepsilon_0)\right)$$
(4.2)

holds as $\varepsilon \to 0$.

Let Γ be a family of all curves $\gamma(t)$: $(0,1) \to D \setminus \{x_0\}$ obeying $\gamma(t_k) \to x_0$ for some $t_k \to 0$, $\gamma(t) \not\equiv x_0$. Then $M_{\alpha'}(f(\Gamma)) = 0$.

In particular, (4.1) holds provided that $\psi \in L^1_{loc}(0, \varepsilon_0)$ satisfies the condition $\psi(t) > 0$ for almost every $t \in (0, \varepsilon_0)$.

Proof. Note that

$$\Gamma > \bigcup_{i=1}^{\infty} \Gamma_i, \tag{4.3}$$

where Γ_i is a family of curves $\alpha_i(t)$: $(0,1) \to D \setminus \{x_0\}$ such that $\alpha_i(1) \in \{0 < d(x,x_0) = r_i < \varepsilon_0\}$, and r_i is some sequence with $r_i \to 0$ as $i \to \infty$, and $\alpha_i(t_k) \to x_0$ as $k \to \infty$ for the same sequence $t_k \to 0$ as $k \to \infty$. Fix $i \ge 1$. By (4.1), $I(\varepsilon, r_i) > 0$ for some $\varepsilon_1 \in (0, r_i]$ and every $\varepsilon \in (0, \varepsilon_1)$. Now, observe that, for specified $\varepsilon > 0$, the function

$$\eta(t) = \begin{cases} \psi(t)/I(\varepsilon, r_i), & t \in (\varepsilon, r_i), \\ 0, & t \in \mathbb{R} \setminus (\varepsilon, r_i) \end{cases}$$

satisfies (2.6) in $A(x_0, \varepsilon, r_i) = \{x \in X : \varepsilon < d(x, x_0) < r_i\}$. Since f is a ring Q-mapping at x_0 , we obtain that

$$M_{\alpha'}\left(f\left(\Gamma\left(S(x_0,\varepsilon),\,S(x_0,r_i),\,A(x_0,\varepsilon,r_i)\right)\right)\right) \leqslant \left(\int\limits_{A(x_0,\varepsilon,r_i)}Q(x)\cdot\eta^{\alpha}(d(x,x_0))\,d\mu(x)\right) \leqslant \mathfrak{F}_i(\varepsilon),\quad(4.4)$$

where $\mathfrak{F}_i(\varepsilon) = \frac{1}{(I(\varepsilon,r_i))^{\alpha}} \int_{\varepsilon < d(x,x_0) < \varepsilon_0} Q(x) \, \psi^{\alpha}(d(x,x_0)) \, d\mu(x)$. By (4.2), $\mathfrak{F}_i(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Observe that

$$\Gamma_i > \Gamma(S(x_0, \varepsilon), S(x_0, r_i), A(x_0, \varepsilon, r_i))$$
 (4.5)

for every $\varepsilon \in (0, \varepsilon_1)$. Thus, by (4.4) and (4.5), we obtain that

$$M_{\alpha'}(f(\Gamma_i)) \leqslant \mathfrak{F}_i(\varepsilon) \to 0$$
 (4.6)

for every fixed i = 1, 2, ..., as $\varepsilon \to 0$. However, the left-hand side of (4.6) does not depend on ε , that implies that $M_{\alpha'}(f(\Gamma_i)) = 0$. Finally, by (4.3) and subadditivity of modulus ([Fu, Theorem 1(b)]), we obtain that $M_{\alpha'}(f(\Gamma)) = 0$. \square

A domain D is called a locally linearly connected at $x_0 \in \partial D$, if for every neighborhood U of x_0 there exists a ball $B(x_0, r)$ centered at x_0 of some radius r in U such that $B(x_0, r) \cap D$ is linearly connected. The above definition slightly differs from the standard (see [Ku, I.6, § 49]). The following lemma provides the main tool for establishing equicontinuity in the most general situation.

Lemma 4.2. Let $G := D \setminus \{x_0\}$ be a domain in a locally compact metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, where G is locally linearly connected at $x_0 \in D$, and let (X', d', μ') be an Ahlfors α' -regular metric space which supports $(1; \alpha')$ -Poincare inequality.

Assume that, there exists $\varepsilon_0 > 0$ and a Lebesgue measurable function $\psi(t): (0, \varepsilon_0) \to [0, \infty]$ with the following property: for every $\varepsilon_2 \in (0, \varepsilon_0]$ there exists $\varepsilon_1 \in (0, \varepsilon_2]$, such that (4.1) holds for every $\varepsilon \in (0, \varepsilon_1)$. Suppose also that, (4.2) holds as $\varepsilon \to 0$.

Let B_R be a fixed ball in X' such that $\overline{B_R}$ is compactum, and let K be a continuum in B_R . If an open discrete ring Q-mapping $f: D \setminus \{x_0\} \to B_R \setminus K$ at x_0 satisfies A-condition, then f has a continuous extension to x_0 .

Proof. Since $G = D \setminus \{x_0\}$ is locally linearly connected at $x_0 \in D$, we can consider that $B(x_0, \varepsilon_0) \setminus \{x_0\}$ is connected. Assume the contrary, namely that the map has no limit at x_0 . Since $\overline{B_R}$ is compactum, the limit set $C(f, x_0)$ is not empty. Thus, there exist two sequences x_j and x_j' in $B(x_0, \varepsilon_0) \setminus \{x_0\}$, $x_j \to x_0$, $x_j' \to x_0$, such that $d'(f(x_j), f(x_j')) \geqslant a > 0$ for all $j \in \mathbb{N}$. Set $r_j = \max\{d(x_j, x_0), d(x_j', x_0)\}$. By locally linearly connectedness of G at x_0 , we can consider that $\overline{B(x_0, r_j)} \setminus \{x_0\}$ is linearly connected. Now, x_j and x_j' can be joined by a closed curve C_j in $\overline{B(x_0, r_j)} \setminus \{x_0\}$.

Set $\Gamma_{f(E_j)} := \Gamma(f(C_j), K, B_R)$. By Proposition 2.1, $\Gamma_{f(E_j)} \neq \emptyset$. Let Γ_j^* be the family of all maximal f-liftings of $\Gamma_{f(E_j)}$ starting at C_j , and lying in $B(x_0, \varepsilon_0) \setminus \{x_0\}$. Such the family is well-defined because **A** is satisfied.

Arguing as in the proof of Lemma 3.1, we can show that

$$\Gamma_j^* = \Gamma_{E_{j_1}} \cup \Gamma_{E_{j_2}}, \tag{4.7}$$

where $\Gamma_{E_{j_1}}$ is a family of all curves $\alpha(t)$: $[a, c) \to B(x_0, \varepsilon_0) \setminus \{x_0\}$ started at C_j for which $\alpha(t_k) \to x_0$ as $t_k \to c - 0$ and some sequence $t_k \in [a, c)$, and $\Gamma_{E_{j_2}}$ is a family of all curves $\alpha(t)$: $[a, c) \to B(x_0, \varepsilon_0) \setminus \{x_0\}$ started at C_j for which dist $(\alpha(t_k), \partial B(x_0, \varepsilon_0)) \to 0$ as $t_k \to c - 0$ and some sequence $t_k \in [a, c)$.

By (4.7),

$$M_{\alpha'}\left(\Gamma_{f(E_{j_1})}\right) \leqslant M_{\alpha'}(f(\Gamma_{E_{j_1}})) + M_{\alpha'}(f(\Gamma_{E_{j_2}})). \tag{4.8}$$

By Lemma 4.1, $M_{\alpha'}(f(\Gamma_{E_{j_1}})) = 0$.

From other hand, we observe that $\Gamma_{E_{j_2}} > \Gamma(S(x_0, r_j), S(x_0, \varepsilon_0 - \frac{1}{m}), A(x_0, r_j, \varepsilon_0 - \frac{1}{m}))$ for sufficiently large $m \in \mathbb{N}$. Set $A_j = \{x \in X : r_j < d(x, x_0) < \varepsilon_0 - \frac{1}{m}\}$ and

$$\eta_j(t) = \begin{cases} \psi(t)/I(r_j, \varepsilon_0 - \frac{1}{m}), & t \in (r_j, \varepsilon_0 - \frac{1}{m}), \\ 0, & t \in \mathbb{R} \setminus (r_j, \varepsilon_0 - \frac{1}{m}). \end{cases}$$

Now, we have that $\int_{r_j}^{\varepsilon_0 - \frac{1}{m}} \eta_j(t) dt = \frac{1}{I(r_j, \varepsilon_0 - \frac{1}{m})} \int_{r_j}^{\varepsilon_0 - \frac{1}{m}} \psi(t) dt = 1$. Now, by definition of the ring Q-mapping at x_0 and by (4.8), we obtain that

$$M_{\alpha'}(f(\Gamma_{E_j})) \leqslant \frac{1}{I(r_j, \varepsilon_0 - \frac{1}{m})^{\alpha}} \int_{\substack{r_j < d(x, x_0) < \varepsilon_0}} Q(x) \, \psi^{\alpha}(d(x, x_0)) \, d\mu(x) \, .$$

Letting to the limit at $m \to \infty$ here, we obtain that

$$M_{\alpha'}(f(\Gamma_{E_j})) \leqslant \mathcal{S}(r_j) := \frac{1}{I(r_j, \varepsilon_0)^{\alpha}} \int_{r_j < d(x, x_0) < \varepsilon_0} Q(x) \, \psi^{\alpha}(d(x, x_0)) \, d\mu(x).$$

By (4.2), $S(r_j) \to 0$ as $j \to \infty$, and by (4.8) we obtain that

$$M_{\alpha'}\left(\Gamma_{f(E_j)}\right) \to 0, \qquad j \to \infty.$$
 (4.9)

From other hand, by Proposition 2.1, we obtain that

$$M_{\alpha'}(\Gamma_{f(E_j)}) \geqslant \frac{1}{C} \cdot \frac{\min\{\operatorname{diam} f(C_j), \operatorname{diam} K\}}{R} \geqslant \delta > 0$$
 (4.10)

because $d'(f(x_j), f(x_j')) \ge a > 0$ for all $j \in \mathbb{N}$ assumption made above. However, (4.10) contradicts with (4.9). The contradiction obtained above proves the theorem. \square

The following statements can be obtained from Lemma 4.2 and Proposition 2.2.

Theorem 4.1. Let $G := D \setminus \{x_0\}$ be a domain in a locally compact metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, where G is locally linearly connected at $x_0 \in D$, and let (X', d', μ') be an Ahlfors α' -regular metric space which supports $(1; \alpha')$ -Poincare inequality.

Let B_R be a fixed ball in X' such that $\overline{B_R}$ is compactum, and let K be a continuum in B_R . If an open discrete ring Q-mapping $f: D \setminus \{x_0\} \to B_R \setminus K$ at x_0 satisfies A-condition, and $Q: D \to (0, \infty)$ has FMO at x_0 , then f has a continuous extension to x_0 .

Taking into account [RS, Corollary 4.1], by Lemma 3.2, we obtain the following.

Corollary 4.1. A conclusion of Theorem 4.1 holds, if instead of condition $Q \in FMO(x_0)$ we require that

$$\limsup_{\varepsilon \to 0} \frac{1}{\mu(B(x_0, \varepsilon))} \int_{B(x_0, \varepsilon)} Q(x) d\mu(x) < \infty.$$

The following results complement [RS, Theorem 10.2].

Theorem 4.2. Let $G := D \setminus \{x_0\}$ be a domain in a locally compact metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, where G is locally linearly connected at $x_0 \in D$, and let (X', d', μ') be an Ahlfors α' -regular metric space which supports $(1; \alpha')$ -Poincare inequality.

Let B_R be a fixed ball in X' such that $\overline{B_R}$ is compactum, and let K be a continuum in B_R . If $f: D \setminus \{x_0\} \to B_R \setminus K$ is a ring Q-homeomorphism at x_0 , and $Q: D \to (0, \infty)$ has FMO at x_0 , or $\limsup_{\varepsilon \to 0} \frac{1}{\mu(B(x_0,\varepsilon))} \int_{B(x_0,\varepsilon)} Q(x) d\mu(x) < \infty$, then f has a continuous extension to x_0 .

5 Boundary behavior

Let G and G' be domains with finite Hausdorff dimensions α and $\alpha' \ge 1$ in spaces (X, d, μ) and (X', d', μ') , and let $Q: G \to [0, \infty]$ be a measurable function. Following to [Sm], we

say that a mapping $f: G \to G'$ is a ring Q-mapping at a point $x_0 \in \partial G$ if the inequality

$$M_{\alpha'}(f(\Gamma(C_1, C_0, A))) \leqslant \int_{A \cap G} Q(x) \eta^{\alpha}(d(x, x_0)) d\mu(x)$$

holds for any ring

$$A = A(x_0, r_1, r_2) = \{x \in X : r_1 < d(x, x_0) < r_2\}, \quad 0 < r_1 < r_2 < \infty,$$

and any two continua $C_0 \subset \overline{B(x_0, r_1)}$, $C_1 \subset X \setminus B(x_0, r_2)$, and any measurable function $\eta: (r_1, r_2) \to [0, \infty]$ such that (2.6) holds.

We say that the boundary of the domain G is strongly accessible at a point $x_0 \in \partial G$, if, for every neighborhood U of the point x_0 , there is a compact set $E \subset G$, a neighborhood $V \subset U$ of the point x_0 and a number $\delta > 0$ such that

$$M_{\alpha}(\Gamma(E, F, G)) \geqslant \delta$$

for every continuum F in G intersecting ∂U and ∂V . We say that the boundary ∂G is strongly accessible, if the corresponding property holds at every point of the boundary. The following lemma holds.

Lemma 5.1. Let D be a domain in a metric space (X, d, μ) with a finite Hausdorff dimension $\alpha \geq 2$, \overline{D} is a compact, and let (X', d', μ') be a metric space with a finite Hausdorff dimension $\alpha' \geq 2$. Let $f: D \to X'$ be an open discrete ring Q-mapping at $b \in \partial D$, f(D) = D', D is locally linearly connected at b, $C(f, \partial D) \subset \partial D'$, and D' is strongly accessible at least at one point $y \in C(f, b)$. Assume that

$$0 < I(\varepsilon, \varepsilon_0) = \int_{\varepsilon}^{\varepsilon_0} \psi(t)dt < \infty$$
 (5.1)

for every $\varepsilon \in (0, \varepsilon_0)$, for some $\varepsilon_0 > 0$, and for some nonnegative Lebesgue measurable function $\psi(t), \psi: (0, \varepsilon_0) \to (0, \infty)$. Assume that

$$\int_{A(b,\varepsilon,\varepsilon_0)} Q(x) \cdot \psi^{\alpha}(d(x,b)) \ d\mu(x) = o(I^{\alpha}(\varepsilon,\varepsilon_0)), \qquad (5.2)$$

where $A := A(b, \varepsilon, \varepsilon_0)$ is define in (2.5). If f satisfies \mathbf{A} -condition, then $C(f, b) = \{y\}$.

Proof. Assume the contrary. Now, there exist two sequences $x_i, x_i' \in D$, i = 1, 2, ..., obeying $x_i \to b$, $x_i' \to b$ as $i \to \infty$, $f(x_i) \to y$, $f(x_i') \to y'$ as $i \to \infty$ if $y' \neq y$. Observe that y and $y' \in \partial D'$, because $C(f, \partial D) \subset \partial D'$ by assumption of Lemma. By a definition of strong accessibility of a boundary at $y \in \partial D'$, for every neighborhood U of y, there exists a compact $C_0' \subset D'$, a neighborhood V of y, $V \subset U$, and $\delta > 0$ such that

$$M_{\alpha'}(\Gamma(C_0', F, D')) \ge \delta > 0 \tag{5.3}$$

for every compact F, intersecting ∂U and ∂V . By the assumption $C(f, \partial D) \subset \partial D'$, $C_0 \cap \partial D = \emptyset$ for $C_0 := f^{-1}(C_0')$. Without loss of generalization, $C_0 \cap \overline{B(b, \varepsilon_0)} = \emptyset$. Since D is locally linearly connected at b, we can join x_i and x_i' by a curve γ_i , which lies in $\overline{B(b, 2^{-i})} \cap D$. Since $f(x_i) \in V$ and $f(x_i') \in D \setminus \overline{U}$ for sufficiently large $i \in \mathbb{N}$, by (5.3), there exists $i_0 \in \mathbb{N}$ such that

$$M_{\alpha'}(\Gamma(C_0', f(\gamma_i), D')) \ge \delta > 0 \tag{5.4}$$

for every $i \geq i_0 \in \mathbb{N}$. Given $i \in \mathbb{N}$, $i \geq i_0$, consider a family Γ_i' of maximal f-liftings $\alpha_i(t) : [a,c) \to D$ of $\Gamma(C_0', f(\gamma_i), D')$ started at γ_i . (Such a family exists by condition \mathbf{A}). Since $C(f, \partial D) \subset \partial D'$, we conclude that $\alpha_i(t) \in \Gamma_i'$, $\gamma_i : [a,c) \to D$, does not tend to the boundary of D as $t \to c - 0$. Now $C(\alpha_i(t), c) \subset D$. Since \overline{D} is a compact, $C(\alpha_i(t), c) \neq \emptyset$.

Assume that $\alpha_i(t)$ has no limit at $t \to c - 0$. We show that $C(\alpha_i(t), c)$ is a continuum in D. In fact, $C(\alpha_i(t), c) = \bigcap_{k=1}^{\infty} \overline{\alpha([t_k, c))}$, where t_k is increasing. By Cantor condition on the compact $\overline{\alpha}$, by monotonicity of $\alpha([t_k, c))$,

$$G = \bigcap_{k=1}^{\infty} \overline{\alpha([t_k, c))} \neq \varnothing,$$

see [Ku, 1.II.4, $\S 41$]. Now, G is connected as an intersection of countable collection of decreasing continua (see [Ku, Theorem 5, $\S 47(II)$]).

So, $C(\alpha_i(t), c)$ is a continuum in D. By continuity of f, we obtain that $f \equiv const$ on $C(\alpha_i(t), c)$, which contradicts with discreteness of f.

Now, $\exists \lim_{t\to c-0} \alpha_i(t) = A_i \in D$, and c = b. Now, we have that $\lim_{t\to b-0} \alpha_i(t) := A_i$, and, simultaneously, by continuity of f in D,

$$f(A_i) = \lim_{t \to b-0} f(\alpha_i(t)) = \lim_{t \to b-0} \beta_i(t) = B_i \in C_0'.$$

It follows from the definition of C_0 that $A_i \in C_0$. We can immerse C_0 into some continuum $C_1 \subset D$, see [Sm, Lemma 1]. We can consider that $C_1 \cap \overline{B(b, \varepsilon_0)} = \emptyset$ by decreasing of $\varepsilon_0 > 0$. Putting $I(\varepsilon, \varepsilon_0) := \int_{\varepsilon}^{\varepsilon_0} \psi(t) dt$ we observe that the function

$$\eta(t) = \begin{cases} \psi(t)/I(2^{-i}, \varepsilon_0), & t \in (2^{-i}, \varepsilon_0), \\ 0, & t \in \mathbb{R} \setminus (2^{-i}, \varepsilon_0), \end{cases}$$

satisfies (2.6) at $r_1 := 2^{-i}$, $r_2 := \varepsilon_0$. Now, by (5.1)–(5.2) and definition of the ring Q-mapping at the boundary point,

$$M_{\alpha'}\left(f\left(\Gamma_i'\right)\right) \le \Delta(i)\,,$$
 (5.5)

where $\Delta(i) \to 0$ as $i \to \infty$. However, $\Gamma(C'_0, F, D') = f(\Gamma'_i)$, and by (5.5) we obtain that

$$M_{\alpha'}(\Gamma(C_0', F, D')) = M_{\alpha'}(f(\Gamma_i')) \le \Delta(i) \to 0$$

$$(5.6)$$

as $i \to \infty$. However, (5.6) contradicts with (5.4). Lemma is proved. \square

The following statements can be obtained from Lemma 5.1, Proposition 2.2 and [RS, Corollary 4.1].

Theorem 5.1. Let D be a domain in a metric space (X, d, μ) with locally finite Borel measure μ and finite Hausdorff dimension $\alpha \geq 2$, \overline{D} is a compact, and let (X', d', μ') be a metric space with locally finite Borel measure μ' and finite Hausdorff dimension $\alpha' \geq 2$. Let $f: D \to X'$ be an open discrete ring Q-mapping at $b \in \partial D$, f(D) = D', D is locally linearly connected at b, $C(f, \partial D) \subset \partial D'$, and D' is strongly accessible at least at one point $y \in C(f, b)$. Assume that $Q \in FMO(b)$ and, simultaneously, Q obeying (2.16) at b. If f satisfies A-condition, then $C(f, b) = \{y\}$.

Theorem 5.2. Let D be a domain in a metric space (X, d, μ) with locally finite Borel measure μ and finite Hausdorff dimension $\alpha \geq 2$, \overline{D} is a compact, and let (X', d', μ') be a metric space with locally finite Borel measure μ' and finite Hausdorff dimension $\alpha' \geq 2$. Let $f: D \to X'$ be an open discrete ring Q-mapping at $b \in \partial D$, f(D) = D', D is locally linearly connected at b, $C(f, \partial D) \subset \partial D'$, and D' is strongly accessible at least at one point $y \in C(f, b)$. Assume that $\limsup_{\varepsilon \to 0} \frac{1}{\mu(B(x_0, \varepsilon))} \int_{B(b, \varepsilon)} Q(x) d\mu(x) < \infty$ and, simultaneously, Q obeying (2.16) at b. If f satisfies A-condition, then $C(f, b) = \{y\}$.

6 Examples and open problems

Example 1. Now, let us to show that, the FMO condition can not be replaced by a weaker requirement $Q \in L^p$, $p \ge 1$, in Theorem 4.1 (see [MRSY, Proposition 6.3]). For simplicity, we consider a case $X = X' = \mathbb{R}^n$.

Theorem 6.1. Given p > 1, there exists $Q \in L^p(\mathbb{B}^n)$, $n \geq 2$, and bounded ring Q-homeomorphism $f : \mathbb{B}^n \setminus \{0\} \to \mathbb{R}^n$ at 0, for which $x_0 = 0$ is essential singularity.

Proof. Set

$$f(x) = \frac{1 + |x|^{\alpha}}{|x|} \cdot x,$$

where $\alpha \in (0, n/p(n-1))$. Without loss of generality, we can consider that $\alpha < 1$. Observe that, f maps $\mathbb{B}^n \setminus \{0\}$ onto $\{1 < |y| < 2\}$ in \mathbb{R}^n , and $C(0, f) = \mathbb{S}^{n-1}$. Thus, $x_0 = 0$ is essential singularity.

Now, we show that f is a ring Q-homeomorphism at 0 and some $Q \in L^p(\mathbb{B}^n)$. Note that, f is a homeomorphism in $\mathbb{B}^n \setminus \{0\}$, and $f \in C^1(\mathbb{B}^n \setminus \{0\})$. Now $f \in W^{1,n}_{loc}(\mathbb{B}^n \setminus \{0\})$. Set

$$J(x,f) = \det f'(x), \quad l(f'(x)) = \min_{h \in \mathbb{R}^n \setminus \{0\}} \frac{|f'(x)h|}{|h|}$$
(6.1)

and

$$K_{I}(x,f) = \begin{cases} \frac{|J(x,f)|}{l(f'(x))^{n}}, & J(x,f) \neq 0, \\ 1, & f'(x) = 0, \\ \infty, & \text{otherwise} \end{cases}$$

$$(6.2)$$

Then there exist systems of vectors e_1, \ldots, e_n and $\widetilde{e}_1, \ldots, \widetilde{e}_n$, and nonnegative numbers $\lambda_1(x_0), \ldots, \lambda_n(x_0), \lambda_1(x_0) \leqslant \ldots \leqslant \lambda_n(x_0)$, such that $f'(x_0)e_i = \lambda_i(x_0)\widetilde{e}_i$ (see. [Re, 4.1.I]), and

$$|J(x_0, f)| = \lambda_1(x_0) \dots \lambda_n(x_0), \quad l(f'(x_0)) = \lambda_1(x_0),$$

$$K_I(x_0, f) = \frac{\lambda_1(x_0) \dots \lambda_n(x_0)}{\lambda_1^n(x_0)}.$$

Since f has a type $f(x) = \frac{x}{|x|}\rho(|x|)$, it is not difficult to show that, the "main vectors" e_{i_1}, \ldots, e_{i_n} and $\widetilde{e_{i_1}}, \ldots, \widetilde{e_{i_n}}$ are (n-1) linearly independent tangent vectors to S(0,r) at x_0 , where $|x_0| = r$, and one radial vector, which is orthogonal to them. We also can show that, in this case, the corresponding "stretchings", denoted as $\lambda_{\tau}(x_0)$ and λ_r , are $\lambda_{\tau}(x_0) := \lambda_{i_1}(x_0) = \ldots = \lambda_{i_{n-1}}(x_0) = \frac{\rho(r)}{r}$ if $\lambda_r(x_0) := \lambda_{i_n} = \rho'(r)$, correspondingly. From other hand, it is known that f is a ring Q-homeomorphism at $x_0 = 0$ under $Q = K_I(x, f)$ (see [MRSY, Theorem 8.6]).

Given $e \in \mathbb{S}^{n-1}$, observe that, $\frac{\partial f}{\partial e}(x_0) = \lim_{t \to +0} \frac{f(x_0+te)-f(x_0)}{t} = \frac{\partial f}{\partial e}(x_0) = f'(x_0)e$ whenever x_0 is differentiability point of f. Let $\lambda_{\tau}(x_0)$ is a stretching, corresponding to a tangent direction at $x_0 \in \mathbb{B}^n \setminus \{0\}$, and $\lambda_r(x_0)$ is a stretching, corresponding to a radial direction at x_0 . Now

$$\lambda_{\tau}(x_0) = (1 + |x_0|^{\alpha})/|x_0|, \qquad \lambda_{\tau}(x_0) = \alpha |x_0|^{\alpha - 1}.$$

Since $\lambda_{\tau}(x_0) \geq \lambda_{\tau}(x_0)$, we obtain that $l(f'(x_0)) = \lambda_{\tau}(x_0)$. By (5.3), we have that

$$Q(x) := K_I(x_0, f) = \left(\frac{1}{\alpha}\right)^{n-1} \cdot \frac{(1 + |x_0|^{\alpha})^{n-1}}{|x_0|^{\alpha(n-1)}}.$$
 (6.3)

For r < 1,

$$Q(x) \le \frac{C}{|x|^{\alpha(n-1)}}, \quad C := \left(\frac{2}{\alpha}\right)^{n-1}.$$

Thus, we obtain that

$$\int_{\mathbb{B}^{n}} (Q(x))^{p} dm(x) \leq C^{p} \int_{\mathbb{B}^{n}} \frac{dm(x)}{|x|^{p\alpha(n-1)}} =$$

$$= C^{p} \int_{0}^{1} \int_{S(0,r)} \frac{d\mathcal{A}}{|x|^{p\alpha(n-1)}} dr = \omega_{n-1} C^{p} \int_{0}^{1} \frac{dr}{r^{(n-1)(p\alpha-1)}}.$$
(6.4)

Since $I := \int_{0}^{1} \frac{dr}{r^{\beta}}$ is convergent at $\beta < 1$, the integral in right-hand side of (6.4) is convergent, because $\beta := (n-1)(p\alpha-1)$ satisfies $\beta < 1$ at $\alpha \in (0, n/p(n-1))$.

Now, $Q(x) \in L^p(\mathbb{B}^n)$. \square

Example 2. Now we show that the FMO condition can not be replaced by a weaker requirement $Q \in L^p$, $p \ge 1$, in Theorems 2.1 and 3.1. We consider the case $X = X' = \mathbb{R}^n$, also.

Set $D := \mathbb{B}^n \setminus \{0\} \subset \mathbb{R}^n$, $D' := B(0,2) \setminus \{0\} \subset \mathbb{R}^n$. Denote \mathfrak{A}_Q a family of all ring Q-homeomorphisms $g : \mathbb{B}^n \setminus \{0\} \to \mathbb{R}^n$ at 0. The following statement holds.

Theorem 6.2. Given $p \ge 1$, there exist $Q : \mathbb{B}^n \to [1, \infty], Q(x) \in L^p(\mathbb{B}^n)$ and $g_m \in \mathfrak{A}_Q$ for which g_m has a continuous extension to $x_0 = 0$, however, $\{g_m(x)\}_{m=1}^{\infty}$ is not equicontinuous at $x_0 = 0$.

Proof. Given $p \geq 1$ and $\alpha \in (0, n/p(n-1)), \alpha < 1$, we define $g_m : \mathbb{B}^n \setminus \{0\} \to \mathbb{R}^n$ as

$$g_m(x) = \begin{cases} \frac{\frac{1+|x|^{\alpha}}{|x|} \cdot x, & 1/m \le |x| \le 1, \\ \frac{1+(1/m)^{\alpha}}{(1/m)} \cdot x, & 0 < |x| < 1/m. \end{cases}$$

Observe that, g_m maps $D = \mathbb{B}^n \setminus \{0\}$ onto $D' = B(0,2) \setminus \{0\}$, and that $x_0 = 0$ is removable singularity for g_m , $m \in \mathbb{N}$. Moreover, $\lim_{x\to 0} g_m(x) = 0$, and g_m is a constant as $|x| \ge 1/m$. In fact, $g_m(x) \equiv g(x)$ for $x : \frac{1}{m} < |x| < 1$, $m = 1, 2 \dots$, where $g(x) = \frac{1+|x|^{\alpha}}{|x|} \cdot x$.

Observe $g_m \in ACL(\mathbb{B}^n)$. In fact, $g_m^{(1)}(x) = \frac{1+(1/m)^{\alpha}}{(1/m)} \cdot x$, $m = 1, 2, \ldots$, belongs to C^1 in $B(0, 1/m + \varepsilon)$ at sufficiently small $\varepsilon > 0$. From other hand, $g_m^{(2)}(x) = \frac{1+|x|^{\alpha}}{|x|} \cdot x$ are C^1 -mappings in

$$A(1/m - \varepsilon, 1, 0) = \{x \in \mathbb{R}^n : 1/m - \varepsilon < |x| < 1\}$$

at small $\varepsilon > 0$. Thus g_m are lipschitzian in \mathbb{B}^n and, consequently, $g_m \in ACL(\mathbb{B}^n)$ (see, e.g., [Va₁, sect. 5, p. 12]). As above, we obtain

$$K_I(x, g_m) = \begin{cases} \left(\frac{1+|x|^{\alpha}}{\alpha|x|^{\alpha}}\right)^{n-1}, & 1/m \le |x| \le 1, \\ 1, & 0 < |x| < 1/m. \end{cases}$$

Observe that $K_I(x, g_m) \leq c_m$ for every $m \in \mathbb{N}$ and some constant. Now, $g_m \in W^{1,n}_{loc}(\mathbb{B}^n)$ and $g_m^{-1} \in W^{1,n}_{loc}(B(0,2))$, because g_m and g_m^{-1} are quasiconformal (see, e.g., [Va₁, Corollary 13.3 and Theorem 34.6]). By [MRSY, Theorem 8.6], g_m are ring Q-homeomorphisms in $D = \mathbb{B}^n \setminus \{0\}$ at $Q = Q_m(x) := K_I(x, g_m)$. Moreover, g_m are Q-homeomorphisms with $Q = \left(\frac{1+|x|^{\alpha}}{\alpha|x|^{\alpha}}\right)^{n-1}$. Since $\alpha p(n-1) < n$, we have $Q \in L^p(\mathbb{B}^n)$, see proof of the theorem 6.1. From another hand, we have that

$$\lim_{x \to 0} |g(x)| = 1, \tag{6.5}$$

and g maps $\mathbb{B}^n \setminus \{0\}$ onto 1 < |y| < 2. By (6.5), we obtain that

$$|g_m(x)| = |g(x)| \ge 1$$
 $\forall x : |x| \ge 1/m, m = 1, 2, ...,$

i.e. $\{g_m\}_{m=1}^{\infty}$ is not equicontinuous a the origin. \square

Open problem 1. If $X = X' = \mathbb{R}^n$, for all $\beta : [a, b) \to X'$ and $x \in f^{-1}(\beta(a))$, an open discrete mapping f has a maximal f-lifting starting at x. To describe properties of the metric spaces (X, d, μ) and (X', d', μ') , for which, for every curve $\beta : [a, b) \to X'$ and $x \in f^{-1}(\beta(a))$, there exists a maximal f-lifting starting at x under every open discrete mapping $f: X \to X'$.

Open problem 2. We say that the path connected space (X, d, μ) is weakly flat at a point $x_0 \in X$ if, for every neighborhood U of the point x_0 and every number P > 0, there

is a neighborhood $V \subseteq U$ of x_0 such that $M_{\alpha}(\Gamma(E, F, X)) \geqslant P$ for any continua E and F in X intersecting ∂V and ∂U . We say that a space (X, d, μ) is weakly flat, if it is weakly flat at every point. To find relationship between weakly flat spaces and spaces, which are Ahlfors α -regular and support $(1; \alpha)$ -Poincare inequality.

References

- [AS] T. Adamowicz and N. Shanmugalingam, "Non-conformal Loewner type estimates for modulus of curve families", Ann. Acad. Sci. Fenn. Math., 35 (2010), 609—626.
- [AC] C. Andreian Cazacu, "On the length-area dilatation", Complex Var. Theory Appl., 50(2005), 765–776.
- [Cr₁] M. Cristea, "Local homeomorphisms having local ACL^n inverses", Complex Variables and Elliptic Equations, **53**:1 (2008), 77–99.
- [Cr₂] M. Cristea, "Open discrete mappings having local ACL^n inverses", Complex Variables and Elliptic Equations, 55:1–3 (2010), 61–90.
- [Ge] F.W. Gehring, "The definitions and exceptional sets for quasiconformal mappings", Ann. Acad. Sci. Fenn. Ser. A., 281 (1960), 1–28.
- [Gol₁] A. Golberg, "Homeomorphisms with finite mean dilatations", *Contemporary Math.*, **382** (2005), 177–186.
- [Gol₂] A. Golberg, "Differential properties of (α, Q) -homeomorphisms", Further Progress in Analysis, World Scientific Publ., (2009), 218–228.
- [Fu] B. Fuglede, "Extremal length and functional completion", Acta Math., 98 (1957), 171–219.
- [GRSY] V. Ya. Gutlyanskii, V. I. Ryazanov, U. Srebro, E. Yakubov, *The Beltrami Equation: A Geometric Approach*. Developments in Mathematics, vol. 26, New York etc.: Springer, 2012.
- [He] J. Heinonen, Lectures on Analysis on metric spaces, New York: Springer Science+Business Media, 2001.
- [HK] S. Hencl, P. Koskela, *Lectures on mappings of finite distortion*, Lecture Notes in Mathematics, 2096, Cham: Springer, 2014.
- [HW] W. Hurewicz and H. Wallman, Dimension Theory, Princeton: Princeton Univ. Press, 1948.
- [IM] T. Iwaniec and G. Martin, Geometric Function Theory and Non-Linear Analysis, Oxford: Clarendon Press, 2001.
- [IR₁] A. Ignat'ev and V. Ryazanov, "Finite mean oscillation in mapping theory" (Russian), *Ukr. Mat. Visn.*, 2 (2005), no. 3, 395–417, translation in *Ukr. Math. Bull.*, 2 (2005), no. 3, 403–424.

- [IR₂] A. Ignat'ev and V. Ryazanov, "On the theory of the boundary behavior of spatial mappings" (Russian), *Ukr. Mat. Visn.*, 3 (2006), no. 2, 199–211, translation in *Ukr. Math. Bull.*, 3 (2006), no. 2, 189–201.
- [Ku] K. Kuratowski, Topology, v. 2, New York-London: Academic Press, 1968.
- [MRSY] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, *Moduli in Modern Mapping Theory*, New York: Springer Science + Business Media, LLC, 2009.
- [MRV₁] O. Martio, S. Rickman, J. Väisälä, "Definitions for quasiregular mappings", Ann. Acad. Sci. Fenn. Ser. A I. Math., 448 (1969), 1–40.
- [MRV₂] O. Martio, S. Rickman, J. Väisälä, "Distortion and singularities of quasiregular mappings", Ann. Acad. Sci. Fenn. Ser. A1, 465 (1970), 1–13.
- [MRV₃] O. Martio, S. Rickman, J. Väisälä, "Topological and metric properties of quasiregular mappings", Ann. Acad. Sci. Fenn. Ser. A1., 488 (1971), 1–31.
- [Na] R. Näkki, "Boundary behavior pf quasiconformal mappings in n-space", Ann. Acad. Sci. Fenn. Ser. A1. Math., 484 (1970), 1–50.
- [NP] R. Näkki and B. Palka, "Uniform equicontinuity of quasiconformal mappings", *Proc. Amer. Math. Soc.*, 37 (1973), no. 2, 427–433.
- [Ra] K. Rajala, "Mappings of finite distortion: removable singularities for locally homeomorphic mappings", *Proc. Amer. Math. Soc.*, 132 (2004), no. 11, 3251–3258.
- [Re] Yu.G. Reshetnyak, Space mappings with bounded distortion, English transl.: Amer. Math. Soc., Providence, RI, 1989.
- [Ri] S. Rickman, Quasiregular mappings, Berlin etc.: Springer-Verlag, 1993.
- [RS] V. Ryazanov, R. Salimov, "Weakly planar spaces and boundaries in the theory of mappings" (Russian), Ukr. Mat. Visn., 4 (2007), no. 2, 199–234, translation in Ukr. Math. Bull., 4 (2007), no. 2, 199–234
- [Sev₁] E.A. Sevost'yanov, "Theory of moduli, capacities and normal families of mappings admitting a branching" (in Russian), *Ukr. Mat. Visnyk*, 4 (2007), no. 4, 582–604; translation in *Ukr. Math. Bull.*, 4 (2007), no. 4, 573–593.
- [Sev₂] E.A. Sevost'yanov, "On the theory of the removal of singularities for mappings with an unbounded characteristic of quasiconformality" (Russian), *Izv. AN Rossii*, *Ser. Mat.*, 74 (2010), no. 1, 159–174, translation in *Izv. Math.*, 74 (2010), no. 1, 151–165.
- [Sev₃] E.A. Sevost'yanov, "On boundary behavior of the open discrete mappings with unbounded characteristics" (in Russian), *Ukrainian Math. Zh.*, 64 (2012), no. 6, 855–859, translation in *Ukrainian Math. J.*, 64 (2012), no. 6, 979-984.

- [Sm] E.S. Smolovaya, "Boundary behavior of ring Q-homeomorphisms in metric spaces", *Ukrainian Math. J.*, 62 (2010), no. 5, 785—793.
- [Va₁] J. Väisälä, Lectures on n Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Berlin etc.: Springer–Verlag, 1971.
- [Va₂] J. Väisälä, "Modulus and capacity inequalities for quasiregular mappings", Ann. Acad. Sci. Fenn. Ser. A 1 Math., 509 (1972), p. 1–14.
- [Vo₁] S.K. Vodop'yanov, "Closedness of classes of mappings with bounded distortion on Carnot groups" (Russian), *Mat. Tr.*, 5 (2002), no. 2, p. 92–137.
- [Vo₂] S.K. Vodopyanov, "Foundations of the Theory of Mappings with Bounded Distortion on Carnot Groups, in book "The Interaction of Analysis and Geometry", Contemporary Mathematics, AMS, 424 (2007), p. 303—344.
- [VG] S.K. Vodop'yanov, V.M. Gol'dtshein, *Prostranstva Soboleva i spetsial'nye klassy otobrazhenii* (Russian) [Sobolev spaces and special classes of mappings], Novosibirsk: Novosibirsk. Gos. Univ., 1981.
- [VGR₁] S.K. Vodop'yanov, V.M. Gol'dshtein, Yu.G. Reshetnyak, "The geometric properties of functions with generalized first derivatives" (Russian), *Uspekhi Mat. Nauk*, 34 (1979), no. 1(205), p. 17–65.
- [VGR₂] S.K. Vodop'yanov, A.V. Greshnov, "Analytic properties of quasiconformal mappings on Carnot groups", *Siberian Mathematical Journal*, 36 (1995), no. 6, p. 1142–1151.
- [UV] S.K. Vodop'yanov, A.D. Ukhlov, "Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups", Sibirsk. Mat. Zh., 39 (1998), no. 4, p. 776-795.
- [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., 1319, Berlin etc.: Springer-Verlag, 1988.

Evgeny Sevost'yanov

Zhitomir Ivan Franko State University,

40 Bol'shaya Berdichevskaya Str., 10 008 Zhitomir, UKRAINE

Phone: +38 - (066) - 959 50 34, Email: esevostyanov2009@mail.ru