

Introducción Simuladores Físicos

Fundamentos de Computación Gráfica

Tabla de contenido

Introducción

Fluidos y cuerpos suaves

Cuerpos rígidos Hitbox Scene graph

Bibliografía

Introducción

Objetivo

Simulación aproximada de un sistema físico:

- ► Fluidos
- Cuerpos suaves
- Cuerpos rígidos

Fluidos

Simulación de fluidos

- Producir animaciones
- ► Visualmente aceptables
- Líquidos o gases
- No conservación de la forma

Render de fluido. Tomado de blenderguru.com

Fluidos

Simulación de fluidos

- Representación en elementos discretos
- Resolver en el tiempo el desplazamiento de cada elemento

Introducción a FEA por Carlos Eduardo López

Fluidos

Simulación de fluidos

- Conservando energía, masa y momentos
- Ensamblar y resolver todas las ecuaciones

Malla de animación de fluido. Tomado de cgstudio.com

Cuerpos Suaves

Simulación de Cuerpos Suaves

- ► Mismo concepto que fluidos
- Hay una preservación de la forma
- detección de colisiones

Malla de animación de tela. Tomado de aras-p.info

Cuerpos Suaves

Aplicaciones

- Simulación de tela
- Simulación de músculos
- ► Cabello
- Grasa

Soft body Jelly Simulation - YouTube

Cuerpos Suaves

Discretizado de mallas

- Malla actual representa los límites
- Discretizarlo en elementos volumétricos
- Condiciones:
 - Malla cerrada
 - Coherencia normales
 - Sin auto-intercesiones

Malla de CFD. Tomado de symscape.com

Cuerpos Rígidos

- Objetos no deformables con masa
- Sujetos a fuerzas externas
- Detección de colisiones

Simulación de cuerpos rígidos. Tomado de blendswap.com

Transformaciones de cuerpo rígido

- Traslaciones
- Rotaciones

Descripción del movimiento

- Cinemática
- ► Leyes de Newton

Simulación de cuerpos rígidos. Tomado de hlendernation com

Colisiones

- Simplificar la representación de los objetos
 - Convex hull
 - Bounding box
 - ► Bounding sphere
 - ▶ Otros...
- Detección de interceptación (anticipada o posterior)

3D Convex hull. Tomado de doc.cgal.com

Hitbox

- Representar los objetos por dimensiones máximas y mínimas
- Revisar por dimensión si un punto se encuentra en el rango

Hitbox. Tomado de gamua.com

Scene graph

Scene graph

- Representación de relaciones de los objetos
- Orientada a objetos
- Forma jerárquica de organizar los objetos
- ► Padres influencian a los hijos

Scene graph. Tomado de gamedev.stackexchange.com

Scene graph

Scene graph

- Relaciones lógicas y espaciales
- Eficiente Operaciones en árboles
- Heredar transformaciones espaciales

Scene graph. Tomado de akmac.itcarlow.ie

Scene graph

Forma de expresar relaciones complejas con funciones simples

Tomado de archive.gamedev.net y edu.workbencheducation.com

Bibliografía

Referencias

- Computer Graphics Using OpenGL por F S. Hill Jr
- ► Stanford Course CS231A Notes 1: Camera Models por Kenji Hata y Silvio Savarese