# Computability and Complexity

Richard Baron

Year 2017-2018

#### NOTION

General notion: A Problem

## **Definition 1**

(Decision problem) : A decision problem is defined by a set of instances I, and a subset  $P \subseteq I$  called positive.

Intuitively, positive instances are "yes" answer to a given question

# Example 1

```
Prime numbers : I = \mathbb{N}, P = \{n \in \mathbb{N} | n \text{ is prime}\}

Connected graphs : I = \{G = (V, E) | G \text{ is a finite graph}\},

P = \{G = (V, E) | G \text{ is connected}\}

Automata acceptance : I = \{(A, w) | A \text{ automaton}, w \text{ word}\},

P = \{(A, w) | A \text{ accepts } w\}
```

### Notion

# Numerous Real Problems are Optimization Problems

## **OPTIMIZATION PROBLEM**

**DATA**: set X, objective function  $f: X \mapsto \mathbb{R}$ 

**QUESTION**: maximize/minimize f on X  $(\max_{x \in X} f(x) \text{ or } \min_{x \in X} f(x))$ 

# (Associated) DECISION PROBLEM

**DATA**: set X, objective function  $f: X \mapsto \mathbb{R}, \ K \in \mathbb{R}$ 

**QUESTION**: Is there  $x \in X$  such that  $f(x) \ge K$ ? (or  $f(x) \le K$ 

for the minimization prob.)

## OPTIMIZATION is at least as difficult as DECISION

## **Proof:**

Assume not: DECISION more difficult than OPTIMIZATION e.g. algorithme  $A_{DEC}$  to solve DECISION in  $O(n^5)$  and algorithm  $A_{OPT}$  to solve OPTIMIZATION in  $O(n^3)$ 

then: apply  $A_{OPT}$  and compare the result with  $K\left(O(n^3)\right)$  In other word:

solve OPTIMIZATION  $\Longrightarrow$  answer to DECISION Converse: NO (e.g. TSP)

ENCODING

# From Problems to Languages

## **Definition 2**

Let  $\Sigma$  be an alphabet. A encoding (or encoding scheme) is a one-to-one function from I to  $\Sigma^*$ . The encoding of  $x \in I$  is denoted  $\langle x \rangle$ . The language associated with P is  $L_P = \{\langle x \rangle | x \in P\}$ .

## Example 2

Numbers :  $\langle n \rangle$  = decimal or binary encoding of n. Graphs (...)

TURING MACHINE

Two elements : (a finite control + a infinite tape) linked by a read/write head Tape divided into squares, or cells. Cell's elements indexed by  $\mathbb N$ 

A Turing machine is defined by the sextuplet  $(Q, \Sigma, \Gamma, E, q_0, F, \#)$ :

- a non empty set of states Q;
- an input alphabet  $\Sigma$  with  $\# \not\in \Sigma$  ;
- a tape alphabet  $\Gamma$  containing all the symbols that can be written on the tape. Of course,  $\Sigma \subseteq \Gamma$  and  $\# \in \Gamma$ ;
- an set of transitions E of the form (p, a, q, b, x), with  $p \in Q, q \in Q, a \in \Gamma, b \in \Gamma, x \in \{ \lhd, \rhd \}$ . The transition may be represented by  $p, a \rightarrow q, b, x$ ;
- an initial state  $p_0$ ,  $p_0 \in Q$ ;
- a set of final or accepting states F ⊂ Q;
- a blank symbol # that appears in all but a finite number of cells of the tape, those that hold input symbols.

Transitions sometimes denoted by  $p, a \rightarrow q, b, x$ 

Deterministic Turing Machine : at most **one** transition for each couple (p, a)

Non-deterministic Turing Machine: several possible transitions

# Example 3

 $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, \#\}, \delta, q_0, \{q_4\}, \#)$  with  $\delta$  defined by: 7

|            |                |                | Symbol         |                |               |
|------------|----------------|----------------|----------------|----------------|---------------|
| State      | 0              | 1              | X              | Y              | #             |
|            | $q_1, X, \rhd$ | _              | _              | $q_3, Y, \rhd$ | _             |
| $q_1$      | $q_1, 0, \rhd$ | $q_2, Y, \lhd$ |                | $q_1, Y, \rhd$ | _             |
| $q_2$      | $q_2, 0, \lhd$ | _              | $q_0, X, \rhd$ | $q_2, Y, \lhd$ | _             |
| <b>q</b> 3 | <del></del>    |                |                | $q_3, Y, \rhd$ | $q_4,\#,\rhd$ |
| $q_4$      |                | _              |                |                | _             |

# A configuration defined by :

- **1.** state of the machine (element of Q);
- 2. symbols of the tape;
- 3. position of the read/write head.

Configuration uqv: Machine in state q, u word on the tape (before head), v word beginning at the position of the head. One step (move) of a computation:

- 1. change the state;
- 2. write a new symbol on the tape;
- 3. move the read/write head of one position.

A step of a computation is a pair (C, C') denoted  $C \to C'$  such that :

- either C = ucpav and C' = uqcbv and the transition is  $p, a \rightarrow q, b, \triangleleft$
- either C = upav and C' = ubqv and the transition is  $p, a \rightarrow q, b, \triangleright$

## **Definition 5**

A computation is a serie of successives configurations  $C_0 \to C_1 \to \ldots \to C_k$ . A computation is accepting if  $C_0$  is an initial configuration, that is  $C_0 = q_0 w$  with  $w \in \Sigma^*$  and  $C_k$  is final, that is  $C_k = uqv$  with  $q \in F$ .

# Turing Machine :

- Accepting. input = word, output = Yes/No
- Computing. input = word, output : word(s)

## **Definition 6**

 $w \in \Sigma^*$  is accepted by a Turing machine  $\mathcal{M}$  if there is an accepting computation with initial configuration  $q_0w$ . The set of accepted words of  $\mathcal{M}$  is denoted  $L(\mathcal{M})$ .

**Note:** Alternatively, F may be partitioned into  $F_Y$  and  $F_N$ 

TURING MACHINE

## **Definition 7**

A two-way infinite tape machine is formally identical to the preceding model but with cell's tape indexed by  $\mathbb{Z}$  (not  $\mathbb{N}$ )

# **Proposition 2.1**

A two-way infinite tape machine is equivalent to a one-way infinite tape machine. Reciprocally, A one-way infinite tape machine is equivalent to a two-way infinite tape machine.

## **Proof:**

Initial tape (bi-infinite) for M:

|       |   |   |   |   |   |   |   |   |   |   | 6 |  |
|-------|---|---|---|---|---|---|---|---|---|---|---|--|
| <br># | # | Х | а | b | Υ | Α | b | а | # | # | # |  |

Simulated by M':

| 0  | 1 | 2 | 3 | 4 | 5 | 6 |  |
|----|---|---|---|---|---|---|--|
| Y  | Α | b | а | # | # | # |  |
| \$ | b | а | Χ | # | # | # |  |

and:

- $\Gamma' = \Gamma \times (\Gamma \cup \{\$\})$  (head read both symbols of new cells)
- $\Sigma' = \Sigma \times \{\$, \#\}$  (input is encoded on **upper part** of cells)
- #' = (#, #)
- $Q' = Q \times \{\uparrow,\downarrow\}$
- $q_0' = (q_0, \uparrow)$
- $F' = F \times \{\uparrow, \downarrow\}$

Initial tape (bi-infinite) for M:

| -5    | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |  |
|-------|----|----|----|----|---|---|---|---|---|---|---|--|
| <br># | #  | Χ  | a  | b  | Υ | Α | b | а | # | # | # |  |

Simulated by M':

|    | l . | l |   | 4 |   | l . |  |
|----|-----|---|---|---|---|-----|--|
|    |     |   |   | # |   |     |  |
| \$ | b   | a | Χ | # | # | #   |  |

New transitions in E'?

Assume  $(p, a, q, b, \triangleright) \in E$ 

Then we create:

$$((p,\uparrow),(a,.),(q,\uparrow),(b,.),\rhd)$$
 and  $((p,\downarrow),(.,a),(q,\downarrow),(.,b),\lhd)$  in  $F'$ 

Initial tape (bi-infinite) for M:

|       | -4 | 1 |   | 1 | l |   | l . |   | ı | ı |   |  |
|-------|----|---|---|---|---|---|-----|---|---|---|---|--|
| <br># | #  | Х | а | b | Υ | Α | b   | а | # | # | # |  |

Simulated by M':

|   |         | l |   |   | 5 | l . |  |
|---|---------|---|---|---|---|-----|--|
| : |         |   |   |   | # |     |  |
|   | \$<br>b | a | Χ | # | # | #   |  |

New transitions in E'?

Assume  $(p, a, q, b, \triangleleft) \in E$ 

Then we create (if  $. \neq \$$  (see Special cases below)):

 $((p,\uparrow),(a,.),(q,\uparrow),(b,.),\lhd)$  and  $((p,\downarrow),(.,a),(q,\downarrow),(.,b),\triangleright)$  in F'

Initial tape (bi-infinite) for M:

| -5    |   |   |   | l . | l |   | l . |   | l |   |   |  |
|-------|---|---|---|-----|---|---|-----|---|---|---|---|--|
| <br># | # | Х | а | b   | Υ | Α | b   | а | # | # | # |  |

Simulated by M':

| 0  | 1 | 2 | 3 | 4 | 5 | 6 |  |
|----|---|---|---|---|---|---|--|
| Υ  | Α | b | а | # | # | # |  |
| \$ | b | а | Χ | # | # | # |  |

**Problem:** Special cases for cell 0

- Assume  $(p,a,q,b,\lhd)\in E$  and head of M' is positioned onto this cell
  - Create  $((p,\uparrow),(a,\$),(q,\downarrow),(b,\$),\triangleright) \in E'$
- Plus  $((p,\downarrow),(.,\$),(p,\uparrow),(.,\$),\nabla) \in E' (\nabla = \rhd + \lhd)$

A multitape machine has k tapes, with k corresponding read/write head. A transition is an element of the set

$$Q \times \Gamma^k \times Q \times \Gamma^k \times \{\triangleright, \triangleleft, \triangledown\}^k$$

# **Proposition 2.2**

Every multitape Turing machine  $\mathcal{M}$  is equivalent to one-tape Turing machine  $\mathcal{M}'$  that accepts the same inputs.

- **solution 1:** M' stores contents of k tapes separated by new symbol  $\$ \not\in \Gamma$ 
  - to keep track of heads locations, M' inserts a symbol ↓ before every symbols located under one head
  - M' scans the whole content
  - M' applies the required transition of state
  - M' makes second pass to update (k) contents
- solution 2: instead of ↓, new "dotted" symbols are added to Γ and indicate location of one head
- solution 3: k tapes are replaced by one, where each cell contains a symbol of  $\Gamma^k$  (same idea as the bi-infinite machine). Additionally, k symbols 0/1 are added to keep track of heads locations



| Tape 1 | 0 | 1 | 2      | 3 | ↓<br>4 | 5 | 6 |  |
|--------|---|---|--------|---|--------|---|---|--|
|        | Υ | Α | b      | а | #      | # | # |  |
| Tape 2 | 0 | 1 | ↓<br>2 | 3 | 4      | 5 | 6 |  |
|        | Χ | а | Χ      | b | #      | # | # |  |

# Simulated by

|   | ↓ |   |   |   |   |   |  |
|---|---|---|---|---|---|---|--|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |  |
| Υ | Α | b | а | # | # | # |  |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |
| Χ | а | Χ | b | # | # | # |  |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |

(M' reads symbol A0a0)

# **TURING MACHINE**

Posted on July 2, 2014 by bytesoftheday

Question #12: Following is a transition table of non-deterministic TM:

Which all of the ID's can be reached after third transitions, when the initial ID is  $q_0011$ ?

### Options:

- 1. 100q<sub>1</sub>, 1q<sub>0</sub>01
- 2. 11q<sub>0</sub>1
- 3. 101q<sub>1</sub>, 1q<sub>0</sub>01
- 4. 111q<sub>1</sub>

# **Proposition 2.3**

For every Turing machine  $\mathcal{M}$  there exists a Turing machine  $\mathcal{M}'$  such that :

- **1.**  $L(\mathcal{M})=L(\mathcal{M}')$  and  $\mathcal{M}$  halts if and only if  $\mathcal{M}'$  halts;
- **2.**  $\mathcal{M}'$  has two states  $q_+$  and  $q_-$  such that :
  - $F' = \{q_+\}$
  - $\mathcal{M}'$  always halts in  $q_+$  and  $q_-$
  - $\mathcal{M}'$  halts only in either  $q_+$  or  $q_-$

A Non-deterministic Turing machine is defined by the sextuplet  $(Q, \Sigma, \Gamma, \Delta, q_0, F, \#)$ :

- a non empty set of states Q;
- an input alphabet  $\Sigma$  with  $\# \notin \Sigma$  ;
- a tape alphabet Γ containing all the symbols that can be written on the tape. Of course, Σ ⊆ Γ and # ∈ Γ;
- an transition relation  $\Delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{ \lhd, \rhd \}$
- an initial state  $p_0$ ,  $p_0 \in Q$ ;
- a set of final or accepting states F ⊂ Q;
- a blank symbol # that appears in all but a finite number of cells of the tape, those that hold input symbols.

Non-deterministic : accepting if at least one accepting computation

# **Proposition 2.4**

Every non-deterministic Turing machine  $\mathcal{M}$  is equivalent to a deterministic Turing machine  $\mathcal{M}'$ . If  $\mathcal{M}$  has no infinite computation, then  $\mathcal{M}'$  has no infinite computation.

## **Proof:**

Idea:  $\mathcal{M}'$  will simulate all possible computations of  $\mathcal{M}$  BUT must not get trapped into infinite ones (if any)  $\mathcal{M}'$  has 3 tapes:

- **1.** store input word *x*
- 2. encode the choices made during simulation
- 3. working tape

Define  $r = \max_{q \in Q, a \in \Sigma} |\{(q, a, q', z, Z) \in \Delta\}|$ r is the greatest number of possible transitions of the NDTM  $\mathcal{M}$ , for all combinations of state q and symbol a on the tape (for all cells of transition table)

# Step t of DTM $\mathcal{M}'$ :

- erase content of 3rd tape, then copy input word x on this tape
- generate the string  $y \in \{1,\ldots,r\}^*$  numbered t (in lexicographic order)  $y=m_{i_1}m_{i_2}\ldots m_{i_l}$  and write it on 2nd tape
- simulate the computation of NDTM  $\mathcal{M}$  for at most l steps (recall l=|y|). At step j  $(1 \leq j \leq l)$  of this simulation, use  $m_{i_j}$  to select which transition (of NDTM  $\mathcal{M}$ ) is to be applied. If less than  $m_{i_j}$  possible transitions, then skip to t+1
- if simulation of NDTM  $\mathcal M$  is such that  $\mathcal M$  reaches an accepting state, then DTM  $\mathcal M'$  accepts x. Else,  $\mathcal M'$  skips to step t+1.

Comment:  $\{1, \ldots, r\}^*$  is the (infinite) set of all strings written with symbols of  $\{1, \ldots, r\}$ . Lexicographic ordering of  $\{1, \ldots, 4\}^*$  is

$$\{1, 2, 3, 4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, \dots 
\dots, 43, 44, 111, 112, 113, 114, 121, 122, \dots\}$$
(1)

Number of operations of this simulation ? Assume executions  $\mathcal{M}$  is finite, bounded by  $\overline{l}$  (number of steps) Time for simulation by  $\mathcal{M}'$  ? A string  $y = m_{i_1} m_{i_2} \dots m_{i_l}$  (thus |y| = l) encodes an execution (of  $\mathcal{M}$ ) in **at most** l steps Thus, total time for this simulation by  $\mathcal{M}'$  is bounded by  $T = \sum_{l=1}^{\overline{l}} lr^l$  Rewrite  $T = r \sum_{l=1}^{\overline{l}} lr^{l-1}$  Let  $f_n(r) = \sum_{l=1}^{n} lr^{l-1}$ .

#### TURING MACHINE

$$(1-r)f_n(r) = \sum_{l=1}^n lr^{l-1} - \sum_{l=1}^n lr^l$$

$$= \sum_{j=0}^{n-1} (j+1)r^j - \sum_{j=1}^n jr^j$$

$$= r^0 + \sum_{j=1}^{n-1} \left( (j+1)r^j - jr^j \right) - nr^n$$

$$= r^0 + \sum_{j=1}^{n-1} r^j - nr^n$$

$$= \sum_{j=0}^{n-1} r^j - nr^n$$

$$= r^0 \frac{1-r^n}{1-r} - nr^n$$

#### TURING MACHINE

Then

$$f_n(r) = \frac{1 - r^n}{(1 - r)^2} - n \frac{r^n}{1 - r}$$

and

$$T = r \left[ \frac{1 - r^{\overline{l}}}{(1 - r)^2} - \overline{l} \frac{r^{\overline{l}}}{1 - r} \right]$$

That is  $T = O(r^{\bar{l}})$ Recalling:

$$r^{\alpha} = \exp(\alpha \log(r))$$
  
=  $\exp(\alpha \log_2(r) \log(2))$   
=  $2^{\alpha \log_2(r)}$ 

we have

$$T = O(r^{\bar{l}}) = O(2^{\bar{l}\log_2(r)}) = O(2^{\bar{l}})$$

A language  $L \subseteq \Sigma^*$  is recursively enumerable if there exists a Turing machine  $\mathcal{M}$  such that  $L = L(\mathcal{M})$ . Equivalently, a problem P is recursively enumerable if  $L_P$  is recursively enumerable.

## **Definition 11**

An enumerator is a deterministic Turing machine that writes some words of  $\Sigma^*$  on an output tape. These words are separated by a symbol  $\$ \notin \Sigma$ .

# **Proposition 3.1**

A language  $L \subseteq \Sigma^*$  is recursively enumerable if and only if L is the set of words enumerated by an enumerator.

# **Proposition 3.2**

If languages L and L' are recursively enumerable, then languages  $L \cup L'$  and  $L \cap L'$  are recursively enumerable.

A language  $L \subseteq \Sigma^*$  is decidable if there exists a Turing machine  $\mathcal{M}$  without infinite computation and such that  $L = L(\mathcal{M})$ .  $\mathcal{M}$  decides L.

Finite computation!

## **Proposition 4.1**

If two languages  $L, L' \in \Sigma^*$  are decidable, then  $L \cup L'$ ,  $L \cap L'$  and  $\Sigma^* \setminus L$  are decidable.

# **Proposition 4.2**

Let  $L \subseteq \Sigma^*$  . If L and its complement set  $\Sigma^* \setminus L$  are recursively enumerable, then they are decidable.

 ${\cal M}$  a machine, w a word Recall that  $\langle x \rangle$  denotes an encoding of x

## **Definition 13**

Let  $L_{\in} = \{\langle M, w \rangle | w \in L(\mathcal{M})\}$ .  $L_{\in}$  is recursively enumerable. A Turing machine  $\mathcal{M}_U$  such that  $L(\mathcal{M}_U) = L_{\in}$  is called universal.

# **Proposition 4.3**

 $L_{\in}$  is not decidable.

## Corollaire 1

 $\overline{L}_{\in}$  is not recursively enumerable.

A function  $f: \Sigma^* \to \Gamma^*$  is computable if there exists a machine that for each word  $w \in \Sigma^*$  halts with the word  $f(w) \in \Gamma^*$  written on the tape.

## **Definition 15**

Let A et B two problems with alphabets  $\Sigma_A$  and  $\Sigma_B$  respectively and languages  $L_A$  and  $L_B$  respectively. A reduction from A to B is a function  $f: \Sigma_A^* \to \Sigma_B^*$  computable and such that  $w \in L_A \Leftrightarrow f(w) \in L_B$ . We denote  $A \leq_m B$ .

# **Proposition 4.4**

If  $A \leq_m B$  and if B is decidable, then A is decidable.

## Corollaire 2

If  $A \leq_m B$  and if A is undecidable, then B is undecidable.

# **Definition 16 (Complexity)**

Let  $\gamma = q_0 w \to C_0 \to C_1 \to \ldots \to C_m$  be a computation of a Turing machine  $\mathcal M$  on an input word w.

- **1.** the time  $t_{\mathcal{M}}(\gamma)$  of this computation is m
- 2. the space  $s_{\mathcal{M}}(\gamma)$  is the number of cells visited by the head during the computation

Complexity for an input w:

$$t_{\mathcal{M}}(w) = \max_{\gamma} t_{\mathcal{M}}(\gamma)$$
 et  $s_{\mathcal{M}}(w) = \max_{\gamma} s_{\mathcal{M}}(\gamma)$ 

Complexity (at worst case):

$$t_{\mathcal{M}}(n) = \max_{|w|=n} t_{\mathcal{M}}(w)$$
 et  $s_{\mathcal{M}}(n) = \max_{|w|=n} s_{\mathcal{M}}(w)$ 

## Lemma 1

For every one tape Turing machine  $\mathcal{M}$ , there exists a constant K s.t.

$$s_{\mathcal{M}}(n) \leq t_{\mathcal{M}}(n)$$
 et  $t_{\mathcal{M}}(n) \leq 2^{Ks_{\mathcal{M}}(n)}$ 

**Proof:** For a computation with input word w, any configuration  $C_i$  composed of symbols of  $\Gamma$  and Q (only one state), that is  $C_i \in (\Gamma \cup Q)^*$ 

We assume here that  $s_{\mathcal{M}}(w) > |w|$ 

We have  $|C_i| \leq s_{\mathcal{M}}(w) + 1$  thus

$$|\{C_i, 0 \le i \le t_{\mathcal{M}}(w)\}| \le |\Gamma \cup Q|^{s_{\mathcal{M}}(w)+1} \le |\Gamma \cup Q|^{k.s_{\mathcal{M}}(w)}$$

with k a large enough integer

Note that all configurations are different from each other then  $|\{C_i, 0 \le i \le t_{\mathcal{M}}(w)\}| = t_{\mathcal{M}}(w) + 1$ 

Thus 
$$t_{\mathcal{M}}(w) \leq t_{\mathcal{M}}(w) + 1 \leq |\Gamma \cup Q|^{k.s_{\mathcal{M}}(w)} \leq 2^{Ks_{\mathcal{M}}(w)}$$

for a constant K

**Proof:** If  $s_{\mathcal{M}}(w) \leq |w|$  then  $|C_i| \leq |w| + 1$  We can choose k large enough such that  $k.s_{\mathcal{M}}(w) \geq |w|$  We have  $|\{C_i, 0 \leq i \leq t_{\mathcal{M}}(w)\}| \leq |\Gamma \cup Q|^{|w|+1}$  Note that all configurations are different from each other then  $|\{C_i, 0 \leq i \leq t_{\mathcal{M}}(w)\}| = t_{\mathcal{M}}(w) + 1$  Thus  $t_{\mathcal{M}}(w) \leq t_{\mathcal{M}}(w) + 1 \leq |\Gamma \cup Q|^{|w|+1} \leq |\Gamma \cup Q|^{k.s_{\mathcal{M}}(w)} \leq 2^{Ks_{\mathcal{M}}(w)}$  for K large enough

**Bi-infinite tape TM:** one transition of the bi-infinite tape TM = one transition for the simulating TM **Multi-tape TM:** 

# **Proposition 5.1**

Every k-tape Turing machine  $\mathcal{M}$  is equivalent to a one-tape Turing machine  $\mathcal{M}'$  s.t.

$$t_{\mathcal{M}'}(n) = \mathcal{O}(t_{\mathcal{M}}^2(n))$$

**Non-deterministic TM:** r maximal cardinality of the sets  $\delta(p,a) = \{(q,b,x)|p,a \rightarrow q,b,x \in E\}, \forall p \in Q, a \in \Gamma$ 

# **Proposition 5.2**

Every (non-deterministic) Turing machine  $\mathcal{M}$  is equivalent to a determistic Turing machine  $\mathcal{M}'$  s.t.

$$t_{\mathcal{M}'}(n) = 2^{\mathcal{O}(t_{\mathcal{M}}(n))}$$

## **Definition 17**

Given  $f: \mathbb{N} \to \mathbb{R}^+$ , we define :

- TIME(f(n)) the set of problems decided by a deterministic Turing machine in time  $\mathcal{O}(f(n))$
- NTIME(f(n)) the set of problems decided by a non-deterministic Turing machine in time  $\mathcal{O}(f(n))$

## Definition of classes:

$$P = \bigcup_{k \ge 0} TIME(n^k)$$

$$NP = \bigcup_{k > 0} NTIME(n^k)$$

# **Proposition 5.3**

$$P \subseteq NP$$

## **Definition 18**

A polynomial-time verifier for a language L is a deterministic Turing machine  $\mathcal M$  which accepts input  $\langle w,c\rangle$  in polynomial time in |w| such that  $L=\{w|\exists c,\langle w,c\rangle\in L(\mathcal M)\}$ 

Polynomial time in  $|w| \Rightarrow$  size of c is polynomial c = certificate/witness Algorithmically more intuitive

# **Proposition 5.4**

Language L is in NP if and only if there exists a polynomial-time verifier for L.

#### Alternative view

## **Proof:**

First, assume  $L \in NP$ . There is non-deterministic machine  $\mathcal{M}$  which accepts L in polynomial time.

Then verifier  $\mathcal V$  has input w, and c can be an encoding of the transitions of  $\mathcal M$  when  $\mathcal M$  accepts w.

 ${\mathcal V}$  accepts w if  ${\mathcal M}$  accepts w

Second, assume there is a verifier V for L Given w, a machine  $\mathcal{M}$ :

- ullet picks a random c which size is polynomially bounded in |w|
- simulates  ${\cal V}$  with input < w,c>

 ${\cal M}$  accepts w if  ${\cal V}$  accepts < w,c>

As  ${\mathcal V}$  computes in polynomial time,  ${\mathcal M}$  computes in polynomial time

#### POLYNOMIAL REDUCTION

Question :  $NP \subseteq P$ .

If so : P = NP

1 M\$ question, see Millennium problem at Clay Mathematics

Institute

Prove that  $\exists L \in NP$  with  $L \notin P$ ? Not until today.

Instead: L NP-complete?

# **Definition 19 (Polynomial reduction)**

Let A and B be problems, with respective languages  $L_A$  and  $L_B$  on alphabets  $\Sigma_A$  and  $\Sigma_B$ . A polynomial reduction (transformation) from A to B is a polynomial-time computable function  $f: \Sigma_A^* \to \Sigma_B^*$  such that :

$$w \in L_A \iff f(w) \in L_B;$$

This is denoted  $A \leq_P B$ .

 $\leq_P$ : transitive and reflexive

#### Completeness

<\_P is transitive

## **Proof:**

assume  $L_1 \leq_P L_2$  and  $L_2 \leq_P L_3$ , then

$$\exists$$
 a DTM  $\mathcal{M}, \forall x \in \Sigma_1^*, \mathcal{M}(x) \in L_2 \iff x \in L_1$ 

with polynom p, s.t.  $t_{\mathcal{M}}(x) \leq p(|x|)$ .

$$\exists$$
 a DTM  $\mathcal{M}', \forall x \in \Sigma_2^*, \mathcal{M}'(x) \in L_3 \iff x \in L_2$ 

with polynom p', s.t.  $t_{\mathcal{M}'}(x) \leq p'(|x|)$ Let  $x \in \Sigma_1^*$ ,

$$\mathcal{M}'(\mathcal{M}(x)) \in L_3 \iff \mathcal{M}(x) \in L_2 \iff x \in L_1$$

and 
$$t_{\mathcal{M}'}(\mathcal{M}(x)) \le p'(|\mathcal{M}(x)|) \le p'(p(|x|)) = p''(|x|)$$
  
using  $|\mathcal{M}(x)| \le t_{\mathcal{M}}(x) \le p(|x|)$  and  $p'$  is increasing

#### Completeness

## **Proposition 6.1**

If  $A \leq_P B$  and  $B \in P$ , then  $A \in P$ .

## Proof:

if  $A \leq_P B$  then:

$$\exists$$
 a DTM  $\mathcal{M}, \forall x \in \Sigma_1^*, \mathcal{M}(x) \in L_B \iff x \in L_A$ 

and polynom p, s.t.  $t_{\mathcal{M}}(x) \leq p(|x|)$ 

Furthermore, if 
$$B \in P$$
 then

$$\exists$$
 a DTM  $\mathcal{M}', \forall x \in \Sigma_2^*, \mathcal{M}'(x) = \mathsf{YES} \iff x \in L_B$ 

and polynom p', s.t.  $t_{\mathcal{M}'}(x) \leq p'(|x|)$ .

Let  $x \in L_A$ . Then  $\mathcal{M}(x) \in L_B$ . Converse is also true, and

$$|\mathcal{M}(x)| \le t_{\mathcal{M}}(x) \le p(|x|) \tag{2}$$

$$\mathcal{M}'(\mathcal{M}(x)) = \text{YES} \iff \mathcal{M}(x) \in L_B \iff x \in L_A$$
. and  $t_{\mathcal{M}'}(\mathcal{M}(x)) \le p'(|\mathcal{M}(x)|) \le p'(p(|x|)) = p''(|x|)$ .

## **Definition 20**

A problem A is NP-hard if for every problem  $B \in NP$ ,  $B \leq_P A$  (every B is reducible to A). If additionally  $A \in NP$  then A is NP-complete.

# Proposition 6.2

If A is NP-hard and  $A \leq_P B$  then B is NP-hard

## Proof:

If A is NP-hard then  $\forall L' \in NP, \ L' \leq_P A$ By transitivity of  $\leq_P$ ,  $A \leq_P B$  implies  $\forall L' \in NP, \ L' \leq_P B$  EXAMPLE

 $HC <_P TSP$ 

Proof:

Standard formulation for Decision Problems

# TRAVELING SALESMAN PROBLEM (TSP)

**INSTANCE**: a finite set  $C = \{c_1, c_2, \dots, c_m\}$  of cities, distances  $d(c_i, c_i) \in \mathbb{N}$  for every  $(c_i, c_i) \in C \times C$ , a bound  $B \in \mathbb{N}$ .

**QUESTION**: is there a tour of all the cities of C having a length

of at most B, that is, a permutation  $\pi$  de  $\{1, \ldots, m\}$  s.t.

$$\sum_{i=1}^{m-1} d(c_{\pi(i)}, c_{\pi(i+1)}) + d(c_{\pi(m)}, c_{\pi(1)}) \leq B$$

# **HAMILTONIAN CIRCUIT (HC)**

**INSTANCE**: a graph G = (V, E) with |V| = n (vertices are denoted  $v_i$ )

**QUESTION:** is there an hamiltonian circuit in G, that is, a permutation  $\pi$  of  $\{1,\ldots,n\}$  s.t.

$$\forall i \in \{1, \dots, n-1\}, (v_{\pi(i)}, v_{\pi(i+1)}) \in E \text{ and } (v_{\pi(n)}, v_{\pi(1)}) \in E$$

Methodology: **for any instance** of **HC** define ONE peculiar instance of **TSP** 

Set C = V and  $\forall v_i, v_j \in V \times V$ ,

$$d(v_i, v_j) = \begin{cases} 1 & \text{si } (v_i, v_j) \in E \\ 2 & \text{sinon} \end{cases}$$

Finally B = |V|.

#### EXAMPLE

**Step 1**: Check that the construction is polynomial.

Here:  $O(|V|^2)$ **Step 2**: Recall

# **Definition 21 (Polynomial reduction)**

Let A and B be problems, with respective languages  $L_A$  and  $L_B$  on alphabets  $\Sigma_A$  and  $\Sigma_B$ . A polynomial reduction (transformation) from A to B is a polynomial-time computable function  $f: \Sigma_A^* \to \Sigma_B^*$  such that :

$$w \in L_A \Longleftrightarrow f(w) \in L_B$$

This is denoted  $A \leq_P B$ .

EXAMPLE

# **Step 2.1**:

# Assume the instance of HC is positive

That is, there is a permutation  $\pi$  of the vertices of G which defines an hamiltonian circuit.

Let us take the same permutation  $\pi$  on THE **TSP** instance.

Circuit = only existing edges of G

Distance is |V| = B.

# TSP instance is positive

## Step 2.2:

# Assume the instance of TSP is positive

The there is a permutation  $\pi$  de  $\{1, \ldots, |V|\}$  such that

$$\sum_{i=1}^{|V|-1} d(c_{\pi(i)}, c_{\pi(i+1)}) + d(c_{\pi(|V|)}, c_{\pi(1)}) \leq B = |V|$$

Prove it uses only distances of 1.

We denote the preceding equation:  $\sum_{j=1}^{|V|} d_j \leq |V|$ 

Assume there is a distance different from 1

Thus, it exists  $j_0 \in \{1, \dots, |V|\}$  s.t.  $d_{j_0} = 2$  and

$$\sum_{j=1}^{|V|} d_j = d_{j_0} + \sum_{j=1, j \neq j_0}^{|V|} d_j \leq |V|$$
, thus  $\sum_{j=1, j \neq j_0}^{|V|} d_j \leq |V| - 2$ 

But 
$$\forall j, j \neq j_0 \ d_j \geq 1$$
 implies  $\sum_{j=1, j \neq j_0}^{|V|} d_j \geq |V| - 1$ 

A contradiction

Thus, the tour uses only distances of 1, which correspond to existing edges of G

This defines a hamiltonian circuit in G

# HC instance is positive

EXAMPLE

Steps 1, 2.1, 2.2  $\implies$  polynomial transformation from **HC** to **TSP** 

## TSP is NP-hard

Step 3: is **TSP** in NP? certificate? complexity of checking phase?

TSP is NP-complete

#### METHODOLOGY

Assuming A is NP-complete Proving NP-completeness of B by  $A \leq_P B$ 

**Step 1** Prove that the construction (of instance of *B*) is polynomial **Step 2** Prove

**Step 2.1** Positive instance of  $A \implies$  Positive instance of B

**Step 2.2** Positive instance of  $B \implies$  Positive instance of A

Now, as A is NP-hard, then B is NP-hard (Proposition 6.2)

**Step 3** Prove *B* is in NP

#### Another Example: CLIQUE

# **CLIQUE**

**INSTANCE**: a graph G = (V, E) and an integer  $J \leq |V|$ 

**QUESTION**: is there a subset  $V' \subseteq V$  with  $|V'| \ge J$  and such

that  $\forall u \in V', v \in V', (u, v) \in E$ 

From **3-SAT** (NP-complete)

# 3-SAT

**INSTANCE**: a set C of k clauses (denoted  $C_j$ ,  $j \in \{1, ..., k\}$ ) each of which is a disjunction of 3 literals (denoted  $C_{j1}$ ,  $C_{j2}$ ,  $C_{j3}$ ), a set U of boolean variables denoted  $x_i$ . Each literal can be either a boolean variable  $x_i$  or its negation  $\bar{x_i}$  (also written  $\neg x_i$ ).

**QUESTION**: is there a truth assignment for U, that is a function  $f: U \mapsto \{True, False\}$  such that the k clauses of C are True.

## CLIQUE

## Redution:

**CLIQUE** is fully defined by G = (V, E) and J

- definition of V: if literal  $C_{jl}$  is  $x_i$  (resp.  $\neg x_i$ ), add a vertex labelled with the literal  $x_i$  (resp.  $\neg x_i$ ) in V
- definition of E: add an edge from a vertex corresponding to literal  $C_{jl}$  to another vertex corresponding to literal  $C_{hg}$  if
  - h ≠ j. No edge between any two vertices corresponding to literals from a same clause
  - literals  $C_{jl}$  and  $C_{hg}$  are not negations of one another (e.g. if  $C_{jl}$  is  $x_i$  and  $C_{hg}$  is  $\neg x_i$  then no edge)
- definition of J: J = k

CLIQUE

# $\textbf{Step 1}: \ \mathsf{reduction} \ \mathsf{is} \ \mathsf{polynomial}$

$$|V| = 3k$$
 (done!)

Note :  $|E| \le 3k.3(k-1)/2$ 

 ${\rm CLIQUE}$ 

**Step 2**: **3SAT**  $\geq 0 \iff$  **CLIQUE**  $\geq 0$ 

**Step 2.1**: Assume instance of **3SAT** is positive Then, there is a truth assignment which makes all clauses True Thus, at least ONE literal per clause has a value True V' = Pick one vertex per group of 3 corresponding to literals with value True

Let us show that V' is a CLIQUE of size J:

- clearly |V'| = J, as we picked exactly one literal per clause
- there is no edge between any two of them, as the corresponding literals can not be negation one from another (all of them has a value True)

#### CLIQUE

**Step 2.2**: Assume THE instance (the one we built) of **CLIQUE** is positive

There is  $V' \subseteq V$  with  $|V'| \ge J$  s.t.  $\forall u \in V', v \in V', (u, v) \in E$ Set corresponding literals to a value True

Remark: a CLIQUE (in this graph) has **at most** J=k vertices, every vertex picked inside a group of 3 (corresponding to one clause) (proof by contradiction: assume k+1 vertices, pigeon-hole principle...)

Thus 
$$|V'| = J$$

Let us show this defines a truth assignment s.t. all clauses are True

- can not assign value True to  $x_i$  and  $\neg x_i$  at the same time: no edge between corresponding vertices  $\Rightarrow$  truth assignment
- as **exactly** one vertex per group is in V', the corresponding literal being True, every clause is True

## **QED**

#### CLIQUE

From steps 1 and 2: **3SAT**  $\leq_P$  **CLIQUE** As **3SAT** is NP-complete (thus NP-hard), **CLIQUE** is NP-hard

**Step 3**: Show **CLIQUE**  $\in$  **NP** certificate  $= V' \subseteq V$ 

- check  $|V'| \geq J$ : O(|V|)
- check  $\forall u \in V', v \in V', (u, v) \in E: O(|V|^2)$

**CLIQUE** ∈ **NP** 

From steps 1, 2 and 3: **CLIQUE** is **NP-complete** 

# VERTEX COVER

**INSTANCE**: a graph G = (V, E) and an integer  $J \le |V|$ **QUESTION**: is there a subset  $V' \subseteq V$  with  $|V'| \le J$  and such

that  $\forall u \in V', v \in V', u \in V'$  or  $v \in V'$ 

From...

3-SAT

**INSTANCE**: a set C of k clauses (denoted  $C_j, j \in \{1, ..., k\}$ ) each of which is a disjunction of 3 literals (denoted  $C_{j1}, C_{j2}, C_{j3}$ ), a set U of I boolean variables denoted  $x_i$ . Each literal can be either a boolean variable  $x_i$  or its negation  $\neg x_i$  (sometimes written  $\bar{x}_i$ ). **QUESTION**: is there a truth assignment for U, that is a function  $f: U \mapsto \{True, False\}$  such that the k clauses of C are True.

Given an instance of **3-SAT** (C the set of clauses), instance of **VERTEX COVER** (G = (V, E) and J) is defined by:

- **1.** *V* is composed of:
  - **1.1** two vertices  $x_i$  et  $\neg x_i$  for all  $x_i \in U$ ;
  - **1.2** three vertices  $c_{j1}$ ,  $c_{j2}$ ,  $c_{j3}$  corresponding to  $C_{j1}$ ,  $C_{j2}$ ,  $C_{j3}$  for every clause  $C_j$ ;
- **2.** *E* is composed of:
  - **2.1** an edge  $(x_i, \neg x_i)$  for every couple  $x_i, \neg x_i$ ;
  - **2.2** three edges  $(c_{j1}, c_{j2})$ ,  $(c_{j1}, c_{j3})$ ,  $(c_{j2}, c_{j3})$  for every triplet  $c_{j1}, c_{j2}, c_{j3}$ ;
  - **2.3** an edge between vertex  $c_{ji}$  and vertex  $x_r$  (resp.  $\neg x_r$ ) if literal  $C_{ji}$  is  $x_r$  (resp.  $\neg x_r$ );
- 3. J = I + 2k (recall I = |U|).

Example: assume  $C = (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee x_2 \vee \neg x_4)$ 

**Step 1**: reduction is polynomial Recall I = |U| and k = |C| |V| = 2l + 3k (done!) Note:  $|E| \le (2l + 3k) \cdot (2l + 3k - 1)/2$  More precisely, here: |E| = l + 3k + 3k Computation of J is also O(l + k)

Step 2.1: Assume the instance of 3-SAT is positive

There is a truth assignment such that the k clauses of C are True. We define a Vertex Cover V' of G by choosing the following vertices:

- **1.** if variable  $x_i$  (resp.  $\neg x_i$ ) is True, then choose vertex  $x_i$  (resp.  $\neg x_i$ ) of G;
- 2. among the three vertices  $c_{j1}$ ,  $c_{j2}$ ,  $c_{j3}$ , choose two of them, s.t. the one **which is not chosen** shares an edge with a vertex chosen at the first step.

Is it a Vertex Cover?

- **1.** every edge  $(x_i, \neg x_i)$  has exactly one vertex in V';
- 2. every one of the edges  $(c_{j1}, c_{j2}), (c_{j1}, c_{j3}), (c_{j2}, c_{j3})$  have at least one vertex in V' by the second step of the picking procedure
- 3. concerning edges between  $c_{ii}$  and  $x_r$ , two possibilities:
  - **3.1**  $c_{ii} \in V'$ ;
  - **3.2** if not, then it shares an edge with a vertex  $x_r \in V'$

Finally, note that we have picked exactly l+2k vertices in V' (i.e. J vertices)

Step 2.2: Assume the instance of VERTEX COVER is positive

There is a set  $V' \subseteq V$  with  $|V'| \le J = I + 2k$ 

First note that l + 2k is the minimal size for a **VERTEX COVER** thus |V'| = l + 2k (structure?)

If vertex  $x_i \in V'$  (resp.  $\neg x_i \in V'$ ) set variable  $x_i$  (resp.  $\neg x_i$ ) to value True

Now for every triangle  $(c_{j1}, c_{j2}, c_{j3})$ , consider THE vertex (say  $c_{jh}$ ) which is not in V'

Then consider edge  $(c_{jh}, x_i)$  (resp.  $(c_{jh}, \neg x_i)$ ). As  $c_{jh} \notin V'$  we must have  $x_i \in V'$  (resp.  $\neg x_i \in V'$ )

As variable  $x_i$  (resp.  $\neg x_i$ ) has then a value True, clause  $C_j$  is True Instance of **3-SAT** 

# **Step 3**: **VERTEX COVER** is in NP ? certificate ? V'! checking that $\forall (u, v) \in E$ we have $u \in V'$ or $v \in V'$ is $O(|V|^2)$

#### COOK'S THEOREM

## Theorem 1

**SAT** is NP-complete

**Proof:** we must show that  $\forall A \in NP, A \leq_P SAT$ 

Let w a positive instance of A. As  $A \in NP$  there is a

Non-Deterministic Turing Machine accepts w in polynomial time Encode this computation into a propositional formula True if and only if w is positive

Denote  $w = w_1 \dots w_n$ 

Let  $M = (Q, \Sigma, \Gamma, E, q_0, F, \#)$  the Non-Deterministic Turing Machine

p a polynomial such that  $t_M(n) \leq p(n)$ .

An accepting computation of w is composed of at most p(n)+1 configurations

Configuration = state + tape's content + head's position

## Store information in:

- **1.** table R of dimension  $(p(n) + 1) \times (p(n) + 1)$  for symbols of the tape. R(i,j) = symbol in cell j at step i
- **2.** a vector Q of dimension p(n) + 1. Q(i) = state of M at step i
- 3. a vector P of dimension p(n) + 1. P(i) = position of the head at step <math>i

Must be encoded in a propositional formula with boolean variables:

- **1.**  $r_{ij\alpha}$  with  $0 \le i, j \le p(n)$  et  $\alpha \in \Gamma$ ;
- **2.**  $q_{i\kappa}$  with  $0 \le i \le p(n)$  et  $\kappa \in Q$ ;
- **3.**  $p_{ij}$  with  $0 \le i, j \le p(n)$ .

Number of variables:  $O(p^2(n))$ 

#### COOK'S THEOREM

- **1.**  $r_{ij\alpha}$  is True if R(i,j) contains symbol  $\alpha$ ;
- **2.**  $q_{i\kappa}$  is True if Q(i) is  $\kappa$ ;
- **3.**  $p_{ij}$  is True if P(i) is j.

#### COOK'S THEOREM

Computation = set of logical constraints on these variables, which must all be True

e.g. only one  $\alpha$  such that  $r_{ij\alpha}$  is True, only one  $\kappa$  such that  $q_{i\kappa}$  is True...

$$\bigwedge_{0 \le i, j \le p(n)} \left[ \left( \bigvee_{\alpha \in \Sigma} r_{ij\alpha} \right) \land \bigwedge_{\alpha' \ne \alpha \in \Sigma} \left( \neg r_{ij\alpha} \lor \neg r_{ij\alpha'} \right) \right]$$
(3)

Example: Set  $\Sigma = \{a, b, c\}$ .

Formula is

$$(r_{ija} \vee r_{ijb} \vee r_{ijc}) \wedge ((\neg r_{ija} \vee \neg r_{ijb}) \wedge (\neg r_{ija} \vee \neg r_{ijc}) \wedge (\neg r_{ijb} \vee \neg r_{ijc}))$$

Verify that only  $r_{ii\alpha}$  must be True