Lecture 02 Recap

A strategy to solve linear systems using elementary row operations.

Definition of row-echelon form and reduced row-echelon form of a matrix.

Gaussian Elimination and Gauss-Jordan Elimination.

Lecture 03

Gaussian Elimination (continued)
Homogeneous Linear Systems

What can row-echelon form tell us?

Remember that any linear system has either

- (i) no solution (that is, inconsistent); or
- (ii) exactly one solution (that is, an unique solution); or
- (iii) infinitely many solutions.

By looking at a row-echelon form of the augmented matrix of the linear system, we can determine which of the above holds for the linear system.

How can we tell? (consistent vs. inconsistent)

If the augmented matrix of a linear system has a row-echelon form whose last column is a pivot column, then the linear system is inconsistent.

 \otimes : leading entry

In other words, there is a row where every entry is zero except the last entry, which is non zero.

How can we tell? (consistent vs. inconsistent)

If the augmented matrix of a linear system has a row-echelon form whose last column is a pivot column, then the linear system is inconsistent.

If the augmented matrix of a linear system has a row-echelon form whose last column is NOT

a pivot column, then the linear system is consistent.

Can we say more?

But a consistent linear system could still behave in two different ways right?

Yes you are right,
row-echelon forms can
also tell us how many
solutions a linear system
have!

How can we tell? (unique vs. infinitely many solutions)

If the augmented matrix of a <u>consistent</u> linear system has a row-echelon form where <u>every column</u> (<u>except the last</u>) is a pivot column, then the linear system has a unique (that is, exactly one) solution.

How can we tell? (unique vs. infinitely many solutions)

If the augmented matrix of a <u>consistent</u> linear system has a row-echelon form where <u>some column</u> (other than the last) is NOT a pivot column, then the linear system has infinitely many solutions.

Some examples

Linear system is inconsistent (last column is a pivot column)

$\left(-1\right)$	0	1	4	0 \
0	1	-1	3	1
0	0	0	2	-1
0	0	0	0	0
$\bigcup 0$	0	0	0	$\begin{bmatrix} 0 \end{bmatrix}$

Linear system is consistent and has infinitely many solutions (some column other than the last is a non pivot column)

Some examples

-1	0	1	4	0
0	1	-1	3	1
0 0 0	0	0	2	-1
0	0	0	0	0
0	0	0	0	0 /

Linear system is consistent and has infinitely many solutions
(some column other than the last is a non pivot column)

Linear system is consistent and has a <u>unique solution</u> (every column other than the last is a pivot column)

Notations to use

To ensure that we (your examiners) understand what you are doing, please use the following notations when performing elementary row operations:

1) When you want to multiply row i by a non zero constant c, write cR_i .

$$\begin{pmatrix}
1 & 0 & -1 & | & 2 \\
0 & -2 & 0 & | & 1 \\
0 & 0 & \frac{1}{2} & | & 0
\end{pmatrix}
\xrightarrow{-\frac{1}{2}R_2}
\begin{pmatrix}
1 & 0 & -1 & | & 2 \\
0 & 1 & 0 & | & -\frac{1}{2} \\
0 & 0 & 1 & | & 0
\end{pmatrix}$$

Notations to use

2) When you want interchange rows i and j, write $R_i \leftrightarrow R_i$.

$$\begin{pmatrix}
0 & 0 & -1 & | & 2 \\
1 & -2 & 0 & | & 1 \\
0 & 0 & \frac{1}{2} & | & 0
\end{pmatrix}
\xrightarrow{R_1 \leftrightarrow R_2}
\begin{pmatrix}
1 & -2 & 0 & | & 1 \\
0 & 0 & -1 & | & 2 \\
0 & 0 & \frac{1}{2} & | & 0
\end{pmatrix}$$

Notations to use

3) When you want add k times of row i to row j, write $R_i + kR_i$.

Remember that in this case,

[row j] changes but [row i] does not.

1	1	-1	2	$R_2 - R_1$	$\boxed{1}$	1	-1	2
1	-2	0	1	$\xrightarrow{2} \xrightarrow{1}$	0	-3	1	-1
$\boxed{-2}$	0	$\frac{1}{2}$	0	$R_3 + 2R_1$	0	2	$-\frac{3}{2}$	4

Can I 'combine' operations 'under one arrow'?

Answer: Only if there is no confusion or ambiguity.

$$\begin{array}{c}
R_2 - R_1 \\
\hline
R_3 + 2R_1
\end{array}$$
No ambiguity

$$\begin{pmatrix} & & \\ &$$

Can I 'combine' operations 'under one arrow'?

 $R_2 - R_1$ first then $R_3 + 2R_2$

What condition(s) must be satisfied by a,b,c such that the linear system

$$\begin{cases} x + 2y - 3z = a \\ 2x + 6y - 11z = b \\ x - 2y + 7z = c \end{cases}$$

has at least one solution?

For what values of a will the following linear system

$$\begin{cases} x + 2y - 3z = 4 \\ 3x - y + 5z = 2 \\ 4x + y + (a^2 - 14)z = a + 2 \end{cases}$$

have no solution? Exactly one solution? Infinitely many solutions?

For what values of a and b will the following linear system

$$\begin{cases} ax + y &= a \\ x + y + z &= 1 \\ y + az &= b \end{cases}$$

have no solution? Exactly one solution? Infinitely many solutions?

Example (quadric surface)

Find a formula for the quadric surface

$$ax^2 + by^2 + cz^2 = d$$

that passes through the points (1,1,-1), (1,3,3) and (-2,0,2).

Since the quadric surface

$$ax^2 + by^2 + cz^2 = d$$
 (*)

passes through (1,1,-1), (1,3,3) and (-2,0,2),

$$x = 1, y = 1, z = -1,$$

 $x = 1, y = 3, z = 3$ and
 $x = -2, y = 0, z = 2$

must satisfy equation (*).

$$ax^2 + by^2 + cz^2 = d (*)$$

$$x=1, y=1, z=-1,$$
 $\begin{cases} a + b + c = d \\ a + 9b + 9c = d \end{cases}$
 $x=1, y=3, z=3$ and $\begin{cases} a + 9b + 4c = d \end{cases}$

$$\begin{cases} a + b + c - d = 0 \\ a + 9b + 9c - d = 0 \\ 4a + 4c - d = 0 \end{cases}$$

$$\begin{cases} a + b + c - d = 0 \\ a + 9b + 9c - d = 0 \\ 4a + 4c - d = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1 & -1 & | & 0 \\ 1 & 9 & 9 & -1 & | & 0 \\ 4 & 0 & 4 & -1 & | & 0 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 1 & 1 & 1 & -1 & | & 0 \\ 0 & 8 & 8 & 0 & | & 0 \\ 0 & -4 & 0 & 3 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 & -1 & | & 0 \\
0 & 8 & 8 & 0 & | & 0 \\
0 & 0 & 4 & 3 & | & 0
\end{pmatrix}
\xrightarrow{\frac{1}{8}R_2}
\begin{pmatrix}
1 & 1 & 1 & -1 & | & 0 \\
0 & 1 & 1 & 0 & | & 0 \\
0 & 0 & 1 & \frac{3}{4} & | & 0
\end{pmatrix}$$

$$ax^2 + by^2 + cz^2 = d$$

$$\begin{pmatrix}
1 & 0 & 0 & -1 & | & 0 \\
0 & 1 & 0 & -\frac{3}{4} & | & 0 \\
0 & 0 & 1 & \frac{3}{4} & | & 0
\end{pmatrix}$$

$$\begin{cases}
a & = t \\
b & = \frac{3}{4}t \\
c & = -\frac{3}{4}t \\
d & = t, \quad t \in \mathbb{R}.$$

Let d=4, then a=4,b=3,c=-3,d=4 is a solution.

An equation of the quadric surface is

$$4x^2 + 3y^2 - 3z^2 = 4.$$

Think for a while...

$$ax^2 + by^2 + cz^2 = d$$

Let d=4, then a=4, b=3, c=-3, d=4 is a solution.

An equation of the quadric surface is

$$4x^2 + 3y^2 - 3z^2 = 4.$$

If I choose another value for d, does that mean I get another equation of another quadric surface?

Let d = 8, then a = 8, b = 6, c = -6, d = 8 is a solution.

$$8x^2 + 6y^2 - 6z^2 = 8 \iff 4x^2 + 3y^2 - 3z^2 = 4.$$

Discussion

Suppose we have a consistent linear system involving three unknowns x, y, z at most 3 leading entries

row-echelon form

inconsistent

- 1) if 3 non zero rows (that is, 3 leading entries)
- \Rightarrow unique solution
- ⇒ solution set is a point

Discussion

Suppose we have a consistent linear system involving three unknowns x, y, z

Discussion

Suppose we have a consistent linear system involving three unknowns x, y, z

$$R = \left(\begin{array}{c|c} \bullet \\ \end{array}\right) \left(\begin{array}{c|c} \bullet \\ \end{array}\right)$$

- 3) if 1 non zero row (that is, 1 leading entry)
- ⇒ infinitely many solutions
- ⇒ general solution has two parameters
 - ⇒ solution set is a plane

$$\begin{cases} x + y + 2z = 1 \\ x - y - z = 0 \end{cases}$$
 Three planes in xyz – space
$$\begin{cases} x + y - z = 2 \end{cases}$$

3 leading entries

$$x = \frac{2}{3}$$
, $y = 1$, $z = -\frac{1}{3}$ is the unique solution

$$\begin{cases} x + y + 2z = 1 \end{cases}$$

$$|2x + z| = 1$$

$$|3x - y| = 1$$

Four planes in xyz – space

$$\begin{cases} x + y + 2z = 1 \\ x - y - z = 0 \\ 2x + z = 1 \\ 3x - y = 1 \end{cases}$$
 Four planes in xyz -space
$$\begin{cases} x = \frac{1}{2} - \frac{1}{2}t \\ y = \frac{1}{2} - \frac{3}{2}t \\ z = t \end{cases}$$
 Four planes in xyz -space
$$\begin{cases} x = \frac{1}{2} - \frac{1}{2}t \\ z = t \end{cases}$$

2 leading entries

Solution is a straight line consisting of points:

$$(\frac{1}{2} - \frac{1}{2}t, \frac{1}{2} - \frac{3}{2}t, t)$$
 for all $t \in \mathbb{R}$

$$\begin{cases} x + y + 2z = 1 \\ 3x + 3y + 6z = 3 \end{cases}$$

$$x + y + 2z = 1$$

$$\begin{cases} x + y + 2z = 1 \\ 3x + 3y + 6z = 3 \end{cases}$$
Two planes in xyz -space
$$\begin{cases} x = 1 - s - 2t \\ y = s \\ z = t \end{cases}$$

$$x + y + 2z = 1$$

$$\begin{pmatrix}
1 & 1 & 2 & | & 1 \\
3 & 3 & 6 & | & 3
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 2 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

1 leading entry

Solution is a plane consisting of points:

$$(1-s-2t,s,t)$$
 for all $s,t \in \mathbb{R}$

Definition (Homogeneous Linear Systems)

A linear system is said to be homogeneous if it has the following form:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

 $a_{11}, a_{12}, \dots, a_{mn}$ are real constants.

Something special

Recall that any linear system behaves in exactly one of the following three ways:

Something special

no solutions (inconsistent) solution solutions

exactly one infinitely many

(consistent)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

What if we let $x_1 = 0, x_2 = 0, ..., x_n = 0$?

Something special

(inconsistent) solution solutions

no solutions exactly one infinitely many

(consistent)

$$\begin{cases} a_{11}0 + a_{12}0 + \dots + a_{1n}0 = 0 \\ a_{21}0 + a_{22}0 + \dots + a_{2n}0 = 0 \\ \vdots & \vdots & \vdots \\ a_{m1}0 + a_{m2}0 + \dots + a_{mn}0 = 0 \end{cases}$$

 $x_1 = 0, x_2 = 0, ..., x_n = 0$ is ALWAYS a solution!

Definition (Trivial and non-trivial solution)

A homogeneous linear system is always consistent.

 $x_1 = 0, x_2 = 0,..., x_n = 0$ is called the trivial solution of the homogeneous linear system.

Any other solution (if there exists) is called a non-trivial solution.

no solutions (inconsistent)

exactly one solution only trivial solution

infinitely many
solutions
trivial + non-trivial
solutions

How many solutions does the following homogeneous linear system have?

$$\begin{cases} 2x - y - 3z = 0 \\ -x + 2y - 3z = 0 \\ x + y + 4z = 0 \end{cases}$$

Note that the above linear system represents 3 planes in the three dimensional space, each plane contains the origin (that is, contains the point x = 0, y = 0, z = 0).

Example (2 variables)

 l_1 and l_2 are two lines in the xy plane passing through the origin.

$$\begin{cases} a_1 x + b_1 y = 0 & (l_1) \\ a_2 x + b_2 y = 0 & (l_2) \end{cases}$$

Example (2 variables)

$$\begin{cases} a_1 x + b_1 y = 0 & (l_1) \\ a_2 x + b_2 y = 0 & (l_2) \end{cases}$$

The linear system has only the trivial solution if and only if the two lines are not the same.

The linear system has non-trivial solutions if and only if the two lines are identical.

3 variables

$$\begin{cases} a_1 x + b_1 y + c_1 z = 0 & (p1) \\ a_2 x + b_2 y + c_2 z = 0 & (p2) \end{cases}$$

3 variables and 3 planes

 p_1 , p_2 and p_3 are three planes in the three dimensional space, each containing the origin (x = 0, y = 0, z = 0).

$$\begin{cases} a_1 x + b_1 y + c_1 z = 0 & (p_1) \\ a_2 x + b_2 y + c_2 z = 0 & (p_2) \\ a_3 x + b_3 y + c_3 z = 0 & (p_3) \end{cases}$$

Discuss the relative positions of the planes such that the linear system has (i) only the trivial solution; (ii) non-trivial solutions.

$$\begin{cases} x + y - 2z = 0 \\ 2x - 3y + 9z = 0 \end{cases} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 2 & -3 & 9 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & - & x_2 & + & 2x_3 & - & 4x_4 & = & 0 \\ 2x_1 & + & x_2 & - & 3x_3 & + & 5x_5 & = & 0 \\ 3x_1 & - & 2x_2 & + & x_3 & - & 3x_4 & + & x_5 & = & 0 \end{cases}$$

$$\begin{pmatrix}
1 & -1 & 2 & -4 & 0 & | & 0 \\
2 & 1 & -3 & 0 & 5 & | & 0 \\
3 & -2 & 1 & -3 & 1 & | & 0
\end{pmatrix}$$

What is the maximum number of leading entries in a row-echelon form of each of the following augmented matrices?

$$\begin{pmatrix}
1 & 1 & -2 & | & 0 \\
2 & -3 & 9 & | & 0
\end{pmatrix} \qquad \qquad \left(\qquad \qquad \right)$$

$$\begin{pmatrix}
1 & -1 & 2 & -4 & 0 & | & 0 \\
2 & 1 & -3 & 0 & 5 & | & 0 \\
3 & -2 & 1 & -3 & 1 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 & -4 & 0 & | & 0 \\
2 & 1 & -3 & 0 & 5 & | & 0 \\
3 & -2 & 1 & -3 & 1 & | & 0
\end{pmatrix}$$

If a homogeneous linear system has more unknowns than equations...

... there will ALWAYS be non-pivot columns in a row-echelon form of the augmented matrix (other than the last column).

 \Rightarrow infinitely many solutions \Rightarrow non-trivial solutions

$$\begin{cases} x + y - 2z = 0 \\ 2x - 3y + 9z = 0 \end{cases}$$

$$\begin{cases} x_1 & - & x_2 & + & 2x_3 & - & 4x_4 & = & 0 \\ 2x_1 & + & x_2 & - & 3x_3 & & + & 5x_5 & = & 0 \\ 3x_1 & - & 2x_2 & + & x_3 & - & 3x_4 & + & x_5 & = & 0 \end{cases}$$

Homogeneous linear systems with more unknowns than equations always has infinitely many solutions.

End of Lecture 03

Lecture 04

Introduction to matrices

Matrix operations (till Theorem 2.2.22)