

Yifei Shi, Kai Xu, Matthias Niessner, Szymon Rusinkiewicz, **Thomas Funkhouser**

Princeton University (National University of Defense Technology

Technical University of Munich

RGB-D Reconstruction

Microsoft Kinect

Structure Sensor

Xtion

RGB-D Reconstruction

Bundle Fusion [Dai et al. 1⁻

RGB-D Reconstruction

KinectFusion [Newcombe/Izadi et al. 2011]

VoxelHashing [Niessner et al. 2013]

Robust Recon. [Choi et al. 2015]

ElasticFusion [Whelan et al. 2016]

BundleFusion [Dai et al. 2017]

Loop Closure

Tracking Failure

Loop Closure -> Feature Descriptor

RGB Features:

- SIFT, SURF, ORB, Freak, ...
- LIFT, MatchNet, ...

Geometric Features:

- SHOT, FPFH, SpinImages, ...
- 3DMatch, ...

Keypoint-based

Are there additional primitives?

Our Idea: Planar Feature Descriptors

Existing Planar Matching is Local

Online Structure Analysis [Zhang et al. 2015]

Fine-to-Coarse Registration [Halber and Funkhouser 2017]

Long-Range Constraints for SLAM

Task: Co-planarity Matching?

PlaneMatch: Learning Co-planarity Features

- **≻**Color
- **≻**Depth
- **➢** Normals
- ➤ Plane Segmentation (Mask)
- **>...**

Learn from 3D data!

.

Step 1: Extract Planar Patches

RGB

Depth

Planar Patches

Step 2: Extract Global Rep. / Patch

Step 3: Extract Local Rep. / Patch

Local / Global Representations

Local Representation Global Representation

Training: Self-Supervised Learning

ScanNet [Dai et al. 2017]

10 million triplets

Triplets for Training

Anchor Positive Negative

Benchmark for Task of Co-planarity Matching

Positive pair (6k)

Negative pair (6k)

By patch size

COP-S	S 1	S2	S 3
patch size	0.25 ~ $10~{\rm m}^2$	$0.05 \sim 0.25 \text{ m}^2$	$0 \sim 0.05 \text{ m}^2$

By pair distance

COP-D	D1	D2	D3
pair distance	0~0.3 m	0.3~1 m	1~5 m

PlaneMatch Evaluation

PlaneMatch Ablation Study

$$E(T,s) = E_{\text{data-cop}}(T,s) + E_{\text{reg-cop}}(s) + E_{\text{data-kp}}(T,s) + E_{\text{reg-kp}}(s)$$

T: transformation matrix S: indicator variables (\in [0,1])

$$E(T,s) = E_{\rm data-cop}(T,s) + E_{\rm reg-cop}(s) + E_{\rm data-kp}(T,s) + E_{\rm reg-kp}(s)$$

$$T : {\rm transformation\ matrix} \quad \mathcal{S} : {\rm indicator\ variables\ (\in [0,1])}$$

$$E_{\text{data-cop}}(T,s) = \sum_{\pi \in \Pi_{\text{cop}}} w_{\pi} \, s_{\pi} \, d_{\text{cop}}^{2}(T,\pi)$$

Pairs predicted by coplanarity network $\Pi_{
m cop}$ plane pair set $d_{
m cop}$ plane-to-plane distance w_{π} : confidence weight

$$E(T,s) = E_{\text{data-cop}}(T,s) + E_{\text{reg-cop}}(s) + E_{\text{data-kp}}(T,s) + E_{\text{reg-kp}}(s)$$

$$T : \text{transformation matrix} \quad \mathcal{S} : \text{indicator variables (} \in \texttt{[0,1]} \texttt{)}$$

$$E_{\text{data-kp}}(T,s) = \sum_{\pi \in \Pi} w_{\pi} s_{\pi} d^{2}(T,\pi)$$

Pairs $\Pi_{\rm kp}$: point pair set $d_{\rm kp}$: point-to-point distance w_{π} : confidence weight

keypoints

$$E(T,s) = E_{\rm data\text{-}cop}(T,s) + E_{\rm reg\text{-}cop}(s) + E_{\rm data\text{-}kp}(T,s) + E_{\rm reg\text{-}kp}(s)$$

$$T : {\rm transformation\ matrix} \quad {\it S} : {\rm indicator\ variables\ (\in [0,1])}$$

$$E_{\text{reg-cop}}(s) = \sum_{\pi \in \Pi} \mu \left(\sqrt{s_{\pi}} - 1 \right)^{2}$$

 μ : threshold for error (0.01 m)

If
$$d^2 > \mu$$
, $S_{\pi} = 0$
If $d^2 < \mu$, $S_{\pi} = 1$

PlaneMatch Registration Results

PlaneMatch Registration Results

BundleFusion [Dai et al.17]

PlaneMatch (Ours)

PlaneMatch Registration Results

BundleFusion [Dai et al.17]

PlaneMatch (Ours)

Evaluation on TUM-RGBD

Method	fr1/desk	fr2/xyz	fr3/office	fr3/nst
RGB-D SLAM	2.3	0.8	3.2	1.7
VoxelHashing	2.3	2.2	2.3	8.7
Elastic Fusion	2.0	1.1	1.7	1.6
Redwood	2.7	9.1	3.0	192.9
Fine-to-Coarse	5.0	3.0	3.9	3.0
BundleFusion	1.6	1.1	2.2	1.2
Ours	1.4	1.1	1.6	1.5
BundleFuison+Ours	1.3	0.8	1.5	0.9

RMSE in cm (lower is better)

Ablation on TUM-RGBD

Method	fr1/desk	fr2/xyz	fr3/office	fr3/nst
Key-point Only	5.6	4.4	5.2	2.6
Coplanarity Only	2.5	2.1	3.7	_
Ours	1.4	1.1	1.7	1.5

RMSE in cm (lower is better)

Effect of Long-range Co-planar Pairs

0% deduction

Effect of Long-range Co-planar Pairs

0% deduction

50% deduction

Effect of Long-range Co-planar Pairs

0% deduction

50% deduction

100% deduction

Conclusion

- 1. New task: co-planarity matching
- 2. Feature learning using self-supervision
- 3. Integration with robust optimization into SLAM

Thank You!

Yifei Shi

Kai Xu

Szymon Rusinkiewicz

Tom Funkhouser