

- Complete Graph
- Regular Graph
- Walk, Path, Circuit
- o Bi-partite Graph

There are so many matrix representations of any graph, of which two are very important.

- Incidence Matrix Representation
- Adjacency Matrix Representation

☐ Incidence Matrix Representation of a Graph

• Let G be a graph with n vertices and m edges and let G contains no self loop. Now we define an n x m matrix I(G) given by $I = (a_{ij})_{nxm}$, where rows correspond vertices and columns correspond to the edges and aij's are selected as follows

$$a_{ij} = \begin{cases} 1, if \ j - th \ edge \ e_j \ incidents \ on \ the \ i - th \ vertex \ v_i \\ 0, otherwise \end{cases}$$

Note: In incidence matrix, every column will contain only two 1's.

☐ Example - Incidence Matrix

		$e_{_{1}}$	e,	e,	e,	e,	e,	e,	e,
Sitte	v,	1	1	0	0	1	0	0	0
	v,	0	1	1	1	0	0	0	0
I(G) =	v_3	0	0	1	1	0	0	0	0
	v,	1	0	0	0	0	1	0 0 0 0 0	1
	v _s	0	0	0	0	0	0	0	1
	v.	0	0	0	0	1	1	1	0
	v,	0	0	0	0	0	0	1	0

□ Example - Incidence Matrix

For a connected graph G, having no parallel edges (but there may be loops). Then the adjacency matrix A of G is defined as $A(G) = (a_{ij})_{n \times n}$ where

$$a_{ij} = \begin{cases} 1, when \ i-th \ and \ j-th \ vertices \ are \ connected \ by \ an \ edge \\ 0, when \ there \ is \ no \ edge \ between \ i-th \ and \ j-th \ vertex \end{cases}$$

Note: For a loop at the vertex v_i in a connected graph G, $a_{ii} = 1$.

Remark – In the case of simple graph G, i.e. having no loops and no parallel edges, the adjacency matrix of G is an n x n symmetric square matrix having all its diagonal elements '0' and $a_{ij} = a_{ji}$.

- ✓ In a simple connected matrix for any vertex the entries in row or column of v_i , the number of 1's is equal to the degree of the vertex.
- ✓ For any square matrix with entries '0' and '1' and in which all the diagonal elements are '0', there exists a simple connected graph, corresponding to this matrix.

□ Relation between Incidence matrix and Adjacency Matrix

- In case of a graph which contains no loop, its incidence matrix **I**(**G**) gives all the information about **G**.
- In case of a graph which contains no parallel edges, its adjacency matrix A(G) gives all the information about G.
- Therefore it is expected that in the case of simple graph G, one matrix can be obtained directly from the other.

A(G) =	A	B	C	D	
A	0	1	1	0	7
В	1	0	1	0	
С	1	1	0	1	
D	0	0	1	0	

□Adjacency Matrix of a Disconnected Graph -

If G be a disconnected graph with components G_1 and G_2 , then the adjacency matrix of G is given by a block diagram form as $\begin{bmatrix} A(G_1) & 0 \\ 0 & A(G_2) \end{bmatrix}$ where $A(G_1)$ and $A(G_2)$ are adjacency matrices of G_1 and G_2 respectively, and G_2 is a null matrix.

□ Example - Adjacency Matrix of a Disconnected Graph

$$A(G_2) = v_5 v_6$$

$$v_5 \begin{bmatrix} 0 & 1 \\ v_6 \end{bmatrix}$$

$$\begin{bmatrix} A(G_1) & 0 \\ 0 & A(G_2) \end{bmatrix}, \text{ i.e.}$$

$$A(G) = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\ v_1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ v_2 & 1 & 1 & 0 & 1 & 0 & 0 \\ v_3 & 1 & 1 & 0 & 1 & 0 & 0 \\ v_4 & 1 & 0 & 1 & 0 & 0 & 0 \\ v_5 & 0 & 0 & 0 & 0 & 0 & 1 \\ v_6 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

□ Incidence Matrix of Disconnected Graph -

If G be a disconnected graph with components G_1 and G_2 , then the incidence matrix of G is given by a block diagram form as $\begin{bmatrix} I(G_1) & 0 \\ 0 & I(G_2) \end{bmatrix}$ where $I(G_1)$ and $I(G_2)$ are the incidence matrices of G_1 and G_2 respectively, and [0] is a null matrix.

$$A(G_{2}) = \begin{array}{ccccc} e_{1} & e_{2} & e_{3} & e_{4} \\ v_{1} & 1 & 0 & 1 & 0 \\ v_{2} & 0 & 0 & 1 & 0 \\ v_{3} & 0 & 0 & 0 & 1 \\ v_{4} & 1 & 1 & 0 & 1 \end{array}$$

$$A(G_1) = \begin{array}{c|cccc} e_1 & e_2 & e_3 & e_4 \\ \hline & v_1 & 1 & 0 & 1 & 0 \\ \hline & v_2 & 1 & 1 & 0 & 0 \\ \hline & v_3 & 0 & 1 & 1 & 1 \\ \hline & v_4 & 0 & 0 & 0 & 1 \end{array}$$

Then,
$$A(G) = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A(G_1) & 0 \\ 0 & A(G_2) \end{bmatrix}$$

☐ Di-Graph or Directed Graph

• A digraph or directed graph is a graph in which each edge e joining the vertices v_i and v_j has a definite direction from its initial vertex v_i to its terminal vertex v_j .

✓ A graph having no direction is called an Undirected graph.

- The number of edges leaving any vertex is called its out degree
- The number of edges entering in any vertex is called its in degree.

	Out degree	In degree	Degree	
	degree		sum	
\mathbf{V}_1	2	1	3	
\mathbf{V}_2	1	1	3	
\mathbf{V}_3	2	1	3	
\mathbf{V}_4	0	3	3	
${ m V}_5$	2	1	3	

Let G be connected digraph with n vertices and m edges; let G contains no self-loop. Now we define incidence matrix $I(G) = (a_{ij})_{n \times m}$ as follows

$$a_{ij} = \begin{cases} 1, & \text{if } j-\text{th edge is incident out(coming out) of the } i-\text{th vertex} \\ -1, & \text{if } j-\text{th edge is incident into(coming into)} \text{the } i-\text{th vertex} \\ 0, & \text{if } j-\text{th edge is neither incident out nor incident into the } i-\text{th vertex} \end{cases}$$

	e_1	e_2	e_3	e_4	e_5	e_6	<i>e</i> ₇	$e_{_8}$	
v	1	0	0	0	1	1	0	-1	en en en
v,	-1	1	0	0	0	0	-1	0	
v_{3}	0	-1	-1	0	0	0	0	1	
$v_{_{4}}$	0	0	1	1	0	-1	1	0	
v_{5}	1 -1 0 0	0	0	-1	-1	0	0	0	

☐ Adjacency Matrix of a Digraph -

In the case of a digraph G, having no parallel edges (but there may be self loop), if $v_1, v_2, v_3, ..., v_n$ be the vertices, then its adjacency matrix A(G) is defined as $A = (a_{ij})_{n \times n}$ where

$$a_{ij} = \begin{cases} 1, when there is an edge directed from v_i to v_j \\ 0, & if there is no edge between v_i and v_j \end{cases}$$

Note -

- ✓ A self loop at the vertex v_i the corresponding entry $a_{ii} = 1$
- \checkmark For digraph adjacency matrix A(G) is not symmetric.

- ✓ If the adjacency matrix A(G) of any graph G is not symmetric, then for this A(G), there corresponds a digraph.
- ✓ The number of 1's in any row represents the number of out degree of the corresponding vertex.
- ✓ The number of 1's in ay column represents the number of in degree of the corresponding vertex.

