Speak the Language of AI: Essential Core concepts / Terminology / Buzzwords

Al Fields Breakdown

[T
What is Data Science?	Extracts knowledge from data. It involves collecting, cleaning, analyzing data, and using it to solve problems or make predictions. Data Science utilizes various tools, including Machine Learning . Data Science is like a big umbrella that covers the entire data journey, from collecting raw data to extracting meaningful insights and using them to solve problems.
Data Analysis	Focuses on understanding data and communicating its insights clearly. It involves cleaning, transforming data, and creating visualizations to reveal patterns and trends. Data Analysis is a core skill within Data Science. Data analysis is a crucial step within this journey. It focuses on exploring, understanding, and presenting data in a clear and informative way. Analysts use various techniques like visualization to reveal patterns and trends within the data
Al	Al is the overarching concept/field of artificial intelligence, where Machine Learning, Deep Learning, and Generative Al are all specific approaches/areas that fall under this umbrella.
ML	Allows computers to learn from data without explicit instructions for every situation. Machine learning algorithms can then make predictions or identify patterns based on the data they've learned from.
Deep Learning	Deep learning is a subfield of machine learning inspired by the structure and function of the human brain. It excels at handling complex data formats like images, videos, and natural language, analyzing and understanding patterns within this data. Some deep learning models can even generate new content based on the patterns they learn.

Generative AI	Generative AI is a subfield of artificial
Generative Ai	intelligence focused on creating new data, such as images, text, or music. It utilizes various techniques, including deep learning transformer models, to learn patterns from existing data. These learned patterns are then used to generate entirely new content that is similar to, but not identical to, the training data.
Computer Vision	Computer vision is a subfield of artificial intelligence that focuses on enabling computers to interpret and understand visual information from the real world, such as images and videos. It involves tasks like object detection, image classification, and pattern recognition. While some applications can generate new images or videos, this isn't the primary focus. Computer vision is widely used in self-driving cars, facial recognition, medical imaging analysis, and many other applications.
Natural Language Processing	NLP, which stands for Natural Language Processing, is a field within computer science (and often overlaps with Artificial Intelligence) that focuses on enabling computers to understand and process human language. It's not a single concept or algorithm, but rather a collection of techniques that allow machines to analyze, manipulate, and even generate human language.
Robotics	Robotics is a field of engineering focused on the design, construction, operation, and application of robots. While robots can function without AI, AI is increasingly used to enhance their capabilities, such as robot perception, decision-making, and movement control.
Explainable AI (XAI)	Explainable AI (XAI) is a subfield of artificial intelligence focused on making AI models more understandable. It aims to explain how AI models arrive at decisions or predictions. This helps developers

	understand how the model works and
	identify potential biases.
Al Ethics	Al Ethics is a field of study concerned with
	the ethical implications of developing and
	using artificial intelligence. This includes
	issues like potential biases in algorithms,
	fairness in decision-making, privacy
	concerns, and ensuring responsible
	development of AI.

Data Science Terminology:

Data	Raw information collected from various
	sources.
Dataset	Collection of related data's or data points for
	further analysis or exploration.
Data Wrangling	Data wrangling is the process of shaping raw
	data into a usable format for analysis. This
	involves tasks like data cleaning (removing
	errors and inconsistencies) and data
	transformation (formatting and manipulating
	the data)
Data Cleaning	The process of preparing data for analysis by
	removing the errors, inconsistencies and
	missing values in the data
Data Analysis	Data analysis is the process of inspecting,
	cleansing, transforming, and modeling data
	with the goal of discovering useful information,
	informing conclusions, and supporting
	decision-making.
Data Visualization	Creating visual representation to showcase the
	insights of data and its valuable relations
Pid Data	effectively
Big Data	Data visualization is the process of creating
	graphical representations of data to
	communicate information clearly and reveal patterns or trends.
Data Mining	Data mining is the process of extracting and
Data Pililling	uncovering hidden patterns and trends within
	large datasets using various techniques to
	build predictive models or enhance decision-
	making.
Data Modeling	Creating the representation of data to
_	understand its relationships and patterns.
Data Sources	Data sources are the origin points from which
	you obtain data for analysis or processing.

	These can be various formats, including
	Relational Databases, Data Warehouses , Data
	Lakes.
Relational Databases	Structured data organized in tables with rows
	and columns, following predefined schema
	(example – SQL databases)
Data Lakes	Data lakes are large-scale storage repositories
	designed to hold a variety of data, including
	structured, semi-structured, and unstructured
	data, in its native format. This flexibility allows
	for storing raw data without worrying about
	upfront schema definition. Data lakes are often
	used for big data analytics, exploration, and
	machine learning tasks where the specific data
	format may not be known beforehand.
	Example AWS-S3
Data Warehouses	Centralized repositories that store large
	amounts of integrated data from multiple
	sources, often used for data analysis and
	reporting.

<u>Understanding Data: A Machine Learning Perspective:</u>

Datasets or Inputs Data or Training Data or	In Machine Learning (ML), we use datasets,
Training Datasets	also referred to as training data, to train our
	models. These datasets are collections of data
	points that the model learns from to identify
	patterns and make predictions.
Column of the data set or attribute or	Within a dataset, individual pieces of
features or properties	information about each data point are called
	features. You might also encounter terms like
	attributes or properties used interchangeably.
Row of the data set or Record or observation	Each individual piece of information in a
or sample or data points	dataset is called a data point. Terms like
	record, observation, or sample all refer to the
	same concept in Machine Learning. These data
	points hold the specific values for each
	feature.
Corpus data	Corpus data is a specialized type of text data.
	Think of it as a large and organized collection of
	text, like a library of books on a specific topic.
Structured data (Well organized)	Structured data is highly organized and follows
	a predefined format, often called a schema.
	This schema defines the specific attributes
	(data points) and their data types (e.g.,
	number, text) included in the data. This
	organization makes structured data easy for

	computers to interpret and analyze. (Example –
	Relational databases – SQL databases)
Unstructured data (less or no organized)	Unlike structured data, unstructured data has
onstructured data (toss of no organized)	no predefined format or schema. This means it
	doesn't follow rigid organization. Examples of
	unstructured data include audio files, video
	files, PDFs, images, and social media posts.
Semi Structured data (Partially organized)	Semi-structured data falls between structured
,	and unstructured data. It has some internal
	organization but doesn't conform to a strict
	schema like relational databases. This internal
	organization often relies on tags or markers to
	identify data elements and establish a
	hierarchy. Examples of semi-structured data
	formats include XML, JSON, and CSV files
	(when they include headers).
Labeled Data	Imagine data with a label attached, like a sticky
	note! This label tells us exactly what the data
	represents. For example , an email might be
	labeled "spam" or "not spam," an image
	labeled "cat" or "dog," or a transaction labeled
	"fraudulent" or "legitimate." Labeled data is
	crucial for training machine learning models to
	recognize patterns and make predictions.
Unlabeled Data	Unlike labeled data with its handy sticky notes,
	unlabeled data is like a box of stuff without
	labels. It could be audio or video recordings,
	social media posts, or sensor data. This data
	lacks predefined labels or categories, making it
	more challenging for computers to directly
	interpret. However, unlabeled data can still be
	valuable for tasks like anomaly detection or
	exploratory analysis in machine learning.
Categorical Features	Categorical features are a type of feature in a
	dataset that represents data that can be
	classified into distinct categories or groups.
	These categories don't necessarily have a
	numerical order. Examples – Spam/Not Spam,
	Fraudulent transaction, Cat or Dog image
	classification.
Continuous Features	Continuous features represent numerical
	values that can theoretically take on any value
	within a specific range. Unlike categorical
	features with predefined categories,
	continuous features can have an infinite
	number of possible values within that range.

Examples – Predicting House Price – Features
like house size, no of bedrooms are continuous
features Weather Forecasting – Temperature ,
humidity features are continuous features.

Deep Learning

Deep Learning	Deep learning, a subset of machine learning, uses artificial neural networks inspired by the
	structure and function of the human brain. It
	excels at complex tasks like image
	classification, generation, and pattern
	analysis. The Transformer model, a prominent
	deep learning architecture, has become
	foundational for large language models and
	advanced NLP applications.
Artificial Neural Network (ANN)	The inspiration behind deep learning. It mimics
·	the structure and function of the human brain
	with interconnected layers of artificial neurons.
Activation Function	Activation functions act like guardians in a
	deep learning network, filtering out noise in the
	data as it flows between layers. This allows the
	network to focus on the essential patterns and
	not get bogged down by irrelevant details. By
	reducing noise, activation functions help the
	network learn more efficiently and extract the
	key features that distinguish, for example, a cat
	from a dog in an image.
Back propagation	The training algorithm used to adjust the
	weights in a neural network based on the
	difference between the predicted and actual
	output.
Loss function	A mathematical function used during training
	in machine learning models. It measures the
	difference between the model's predicted
	output and the desired outcome (ground truth).
	The goal is to minimize this loss function

Generative Al

Generative Al	Generative AI utilizes deep learning models to
000	analyze vast amounts of data. By
	understanding patterns and relationships, it
	can generate entirely new data formats like
	text, images, or videos based on prompts.
	Large Language Models (LLMs) often serve as a
	core component, providing the foundation for
	processing and comprehending the training
	data.
Model	A model is a computer-generated
110001	representation, often mathematical in nature,
	that learns from data. This representation is
	built for a specific purpose (your "use case") by
	analyzing a dataset to identify patterns and
	relationships. The model can then leverage
	these learned patterns to make predictions
	about new data or gain insights into the system
	it represents.
Large Language Models (LLMs)	Train a model on tons of text (billions of words),
	and you have got a Large Language Model
	(LLM). These super-powered language tools
	come in two flavors: general ones for many
	tasks, or specialized ones trained for a specific
	field / domain.
<u>Prompts</u>	Prompts are instructions that guide Generative
	Al models. They can be simple questions,
	keywords, or detailed descriptions with
	context. The quality of the prompt significantly
	influences the output of the Generative AI.
Retrieval-Augmented Generation(RAG)	Imagine we want a large language model (LLM)
	to be extra careful with its answers. That's
	where Retrieval-Augmented Generation (RAG)
	comes in. Instead of relying solely on LLM
	knowledge, RAG lets it consult external
	sources like your custom data, APIs, web
	searches, or databases. This retrieved
	information adds context to the prompt,
	allowing the LLM to generate a more refined
Hallusination	and accurate response.
Hallucination	This refers to a situation where a Generative Al
	model creates outputs that are significantly
	inaccurate, misleading, or entirely fabricated.
	While some level of creative freedom is
	expected, hallucinations can be problematic
	because they lack factual grounding.

Bias in LLM's	Larga Languago Modole (LLMa) con inharit
DIAS III LLI'I S	Large Language Models (LLMs) can inherit
	biases from the data they are trained on. This
	happens when the training data itself reflects
	real-world biases, leading the LLM to generate
	outputs that favor certain viewpoints or unfairly
	represent certain groups.
GANs (Generative Adversarial Networks)	GANs (Generative Adversarial Networks) are
	deep learning models using two neural
	networks Generator and
	Discriminator.Generator creates new data
	(text, images) mimicking the training data
	distribution whereas Discriminator analyzes
	both real and generated data, aiming to
	distinguish the fakes. This continuous
	competition refines both networks. The
	generator improves its ability to create realistic
	data, while the discriminator sharpens its fake
	detection skills. This leads to GANs generating
	highly creative and realistic outputs.
Overfitting	A common problem in machine learning
	models, including Generative AI models. It
	occurs when the model memorizes the training
	data too well, leading to struggles with unseen
	data (data it wasn't explicitly trained on).
	Techniques like regularization help prevent
	overfitting and improve the model's ability to
	generalize - perform well on new data.
Sampling	The process of selecting a single output from a
	set of possible outputs generated by the
	model. Different sampling techniques can
	influence the creativity and style of the
	generated content.

Generative AI - Popular buzz words

Langchain	LangChain simplifies the development of
	Generative AI applications. This open-source
	framework streamlines the integration of
	Generative AI clients and agents with Large
	Language Models (LLMs). It allows you to
	programmatically submit user prompts to
	LLMs and even build complex Retrieval-
	Augmented Generation (RAG) applications, all
	while hiding the complexities of LLM
	integration.

Ollama	Ollama provides a curated collection of pre-
Ottailia	1
	trained LLMs from various sources, allowing
	you to download and run them directly on your
	machine using convenient executables. Also
	lets you upload and experiment with your
	custom models. Ollama offers a user-friendly
	web interface for interacting with these LLMs.
	Additionally, you can provide contextual inputs
	like documents or information to enrich the
	outputs generated by the models.
LangChain Serve	LangChain Serve is an extension of the
	LangChain framework specifically designed to
	simplify the creation of APIs (Application
	Programming Interfaces) that interact with
	Large Language Models (LLMs)
LangChain Smith	LangChain Smith: Keeping an Eye on LLM
	Interactions. LangChain Smith is another
	extension of the LangChain framework. It
	focuses on monitoring user interactions with
	Large Language Models (LLMs) within
	LangChain Serve APIs.
Graphics Processing Units (GPU)	GPUs are powerful processors designed for
	parallel resource-consuming tasks like
	video/image rendering and efficiently running
	Deep Learning algorithms used in LLMs.
	NVIDIA is a major player in the GPU market and
	has been a key driver of innovation in the field.
Language Processing Units(LPU)	LPUs are powerful processors designed for
	parallel processing tasks specifically optimized
	for natural language processing (NLP)
	workloads, like the deep learning models used
	in LLMs. Groq is a major player in the LPU
	market. LPUs and GPUs can be
	complementary infrastructure options
	depending on the specific AI application and
	its processing needs.
	na processing needs.