Избранные теоремы и методы планиметрии

Плюнь тому в глаза, кто скажет, что можно обнять необъятное!

К. Прутков.

§ 1. Свойство биссектрисы угла треугольника

Теорема П1.1. Биссектриса внутреннего угла треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.

Приведём два доказательства этой теоремы.

Первое доказательство. Пусть в треугольнике ABC отрезок AA_1 — биссектриса внутреннего угла A; AB=c, AC=b, $BA_1=m$, $A_1C=n$. Докажем, что

$$\boxed{\frac{m}{n} = \frac{c}{b}.}$$
 (III.1)

Проведём через точку B прямую, параллельную прямой AA_1 , до пересечения с прямой AC в точке D (рис. $\Pi 1$). Заметим, что $\angle DBA = \angle BAA_1$ (как внутренние накрест лежащие при параллельных BD и AA_1 и секущей AB), $\angle BDA = \angle A_1AC$ (как соответственные при параллельных BD и AA_1 и секущей CD). По определению биссектрисы $\angle BAA_1 = \angle A_1AC$. Из полученных равенств вытекает, что $\angle DBA = \angle BDA$, поэтому треугольник ABD равнобед-

Рис. П1

ренный (AB = AD = c). По теореме о пропорциональных отрезках $\frac{BA_1}{A_1C} = \frac{AD}{AC}$, а это в наших обозначениях и есть равенство (П1.1).

B торое доказательство. В дополнение к обозначениям из первого доказательства положим $\angle A = 2\alpha$, $AA_1 = l$

(рис. П2). Так как у треугольников ABA_1 и AA_1C общая высота, опущенная из вершины A, их площади относятся как m:n; $S_{ABA_1}=\frac{1}{2}cl\sin\alpha$, $S_{AA_1C}=\frac{1}{2}bl\sin\alpha$, следовательно,

$$\frac{m}{n} = \frac{\frac{1}{2}cl\sin\alpha}{\frac{1}{2}bl\sin\alpha} = \frac{c}{b}.$$

- Упражнение П1.1. Пусть в $\triangle ABC \angle B \neq \angle C$, отрезок AA_1 биссектриса внешнего угла A (рис. П3); AB = c, AC = b, $BA_1 = m$, $A_1C = n$. Докажите справедливость равенства (П1.1).
- Упражнение П1.2. Сформулируйте и докажите теорему, обратную к теореме П1.1, а также утверждение, обратное к утверждению из предыдущего упражнения.

Задачи к § 1

- П1.1. Пусть в треугольнике $ABC\ BC = a,\ AC = b,\ AB = c,\ I$ центр вписанной окружности, AA_1 биссектриса угла A. Докажите, что $AI:IA_1=(b+c):a$.
- $\Pi 1.2.$ В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n. Найдите другой катет и гипотенузу.
- **П1.3.** Дан треугольник со сторонами 12, 15 и 18. Проведена окружность, касающаяся обеих меньших сторон и имеющая центр на большей стороне. Найдите отрезки, на которые центр окружности делит большую сторону треугольника.