LAB REPORT 1

Introduction to DSO, Breadboard and RC Circuit

Sricharan Vinoth Kumar (2024112022), Saikiran S (2024112007)

M24EC2.102: Electronics Workshop-1

Team ID: 23

Due: 29th September 2024

Objective:

To measure the actual time constant of a given RC circuit using a Digital Storage Oscilloscope.

Equipment Needed:

- Breadboard
- Resistors (Various values)
- Capacitors(Various values)
- Digital Storage Oscilloscope (DSO)

Procedure:

- Connect the RC circuit on the breadboard as shown in the Ciruit Diagram given below.
- 2. Apply a square wave using the wave generator option in the DSO.
- 3. Observe the waveform across the capacitor on the DSO screen.
- 4. For each combination of R and C:
 - a. Calculate the theoretical time constant (τ) using: $\tau = R * C$
 - Measure the practical time constant from the DSO waveform and the cursors tool.
 - c. Calculate the theoretical cutoff frequency (fc) using: fc = 1 / $(2\pi * R * C)$
- 5. Record your results in an observation table.
- 6. Repeat steps 4-5 for three different combinations of R and C values.

Observation and Circuit Diagram:

Observation Table

·		+ 1°	•		
'S. No.	K (in Ohms)	((in HF)	Time Constant Cthoratica	Time Conton! (Aractical)	Cutoff Freque CHESSET
- le	380-12	0.01 nf (1031	3.8×10 5	43 plus	41.88
尹智	4.65 K-Q	0.114F (104)	4. 65 × 10 5	3.72 MS	342.3
- - 2 3·i	(13 KD	0 01 Juf (102)	10 % 10 %	1145	28145
. !					1
	ļ		1	₩ 19**	
		-		i	60

Circuit diragram

Calculations:

• For first combination of R and C:

$$\tau$$
 = R * C
$$\tau$$
 = (380 Ω) * (0.01μF)
$$\tau$$
 = 3.80 μs

• For second combination of R and C:

$$\tau$$
 = R * C
$$\tau$$
 = (4.65 KΩ) * (0.1μF)
$$\tau$$
 = 465 μs

• For third combination of R and C:

$$\tau$$
 = R * C
 τ = (1 KΩ) * (0.01μF)
 τ = 465 μs

Images of Experiment Performed:

• For the First Pair of R and C values:

• For the second Pair of R and C values:

• For the third Pair of R and C values:

An RC circuit Implemented on the breadboard

Sources of Error:

• Resistor Tolerance: Resistors can have a slightly different value based

on their Tolerance.

• Breadboard connections: Connections might be loose which might induce an

error in the actual value of time constant.

• Precision of Cursor tool: Using cursors to measure the time constant

introduces some human error due to their limited

precision.

Conclusion:

Thus the time constants for different RC circuits have been verified experimentally.