UNIVERSITÄT BERN	KURS	TYP	BLATT	AUSGABE
INFORMATIK	ME	UA	1	HS 10

Einführung in die Mustererkennung

Programmieraufgabe 2

1 Aufgabe

Gegeben ist eine Menge von Merkmalsvektoren \mathbf{X} (Datei train.txt). Jeder Merkmalsvektor $\mathbf{x}_i = (x_1, \dots, x_5)$ enthält 5 Merkmale. Die Wertebereiche der Merkmale sind auf dem Intervall [0..1[definiert.

Für jedes Objekt o_i , beschrieben durch den Merkmalsvektor \mathbf{x}_i , ist die Klassenzugehörigkeit zu Klassen c_1, \ldots, c_6 bekannt (Datei classes.txt). Des weiteren ist eine Testmenge von Objekten T gegeben, für die die Klassenzugehörigkeit der einzelnen Elemente nicht bekannt ist (Datei test.txt).

Alle diese Daten finden Sie auf der Übungs-Website.

- a) Implementieren Sie einen q-NN Klassifikator gemäss Kapitel 3.2.
- b) Wenden Sie den Klassifikator zur Klassifikation der Testmenge von Objekten T an. Wählen Sie dabei q=1.
- c) Wie verändern sich die Klassifikationsergebnisse für die einzelnen Elemente der Testmenge T, wenn q=3 oder q=5 gewählt wird?

Geben Sie die Klassifikationsergebnisse von Teilaufgaben b) und c) in Form von Tabellen an. Die Spalten sollen die unterschiedlichen Werte für q angeben und die Zeilen die einzelnen Objekte der Testmenge T.

2 Aufgabe

Zusätzlich zu den Angaben in Aufgabe 1 ist nun die Klasseneinteilung der Objekte der Testmenge T gegeben:

UNIVERSITÄT BERN	KURS	TYP	BLATT	AUSGABE
INFORMATIK	ME	UA	2	HS 10

Objekt	Klasse	Objekt	Klasse	Objekt	Klasse
1	5	8	3	15	1
2	4	9	4	16	4
3	2	10	1	17	1
4	6	11	3	18	5
5	6	12	3	19	5
6	6	13	3	20	5
7	2	14	4		

a) Bestimmen Sie für q=1,3 und 5 die Erkennungsrate

$$e = \frac{\text{Anzahl richtig klassifizierter Objekte}}{\text{Anzahl Objekte}}$$
 (1)

des q-NN Klassifikators aus Aufgabe 1.

Abgabe

Drucken Sie für beide Aufgaben Ihren Programmcode und Ihre Ergebnisse aus und schicken Sie Ihr Programm zusätzlich per E-Mail an den Hilfsassistenten (elias.gerber@students.unibe.ch).

Abgabe bis Di, 2. Nov