Homework #12

1. Consider the least squares problem,

$$\min_{x \in \mathbb{R}^p} \|y - Ax\|_2^2,\tag{1}$$

where A is an $n \times p$ matrix and $y \in \mathbb{R}^n$. Let x^* be a solution of this problem. (We do not assume that x^* is a unique solution.)

(a) Consider the problem,

$$\min_{x \in \mathbb{R}^p} ||x||^2$$
subject to $||y - Ax||_2^2 = ||y - Ax^*||^2$. (2)

Let $A = USV^T$ be the svd decomposition of A. Let s_i be the ith singular value of A, so that $S_{ii} = s_i$. Let S^+ be the $p \times n$ diagonal matrix defined by,

$$S_{ii}^{+} = \begin{cases} \frac{1}{s_i} & \text{if } s_i \neq 0\\ 0 & \text{if } s_i = 0 \end{cases}$$
 (3)

Show that the solution x^+ of (2) satisfies $x^+ = VS^+U^Ty$. The matrix US^+V^T is called the pseudoinverse of A. (Hint: You won't need KKT here. Instead, expand x in the V basis and y in the U basis. You'll be able to determine Ax and derive an expression for $||y-Ax||^2$. Then you'll be able to show that x^+ satisfies the constraint and has minimal norm.)

(b) Consider the penalized least squares problem,

$$\min_{x \in \mathbb{R}^p} \|y - Ax\|_2^2 + \lambda \|x\|^2. \tag{4}$$

with $\lambda \geq 0$. Let x_{λ} be the solution to the penalized problem. We know that for $\lambda > 0$, the solution is unique. Show that $||x_{\lambda}||$ is decreasing in λ and that $\lim_{\lambda \to 0} x_{\lambda} = x^+$. (Hint: You know $x_{\lambda} = (A^T A + \lambda I)^{-1} A^T y$. Plug in the svd for A, write y in the U basis and then show $x_{\lambda} \cdot v_i = x^+ \cdot v_i$.

(c) Go back to homework 10 and redo 3(a) using x^+ . You should be able to determine whether the Lagrange multiplier satisfies $\nu = 0$ based on $||x^+||$. (In my solutions to hw

- 10, I had a lemma which noted $||x_{\lambda}|| \to x_0$ or $||x_{\lambda}|| \to \infty$ as $\lambda \to 0$. This is true, with $x_0 = x^+$, but you can now show that the $||x_{\lambda}|| \to \infty$ case doesn't happen.)
- (d) Go back to homework 10 and redo 3(c), but do not assume the existence of $(A^TA)^{-1}$.
- 2. The file dataset_separable.csv provides separable data (x_i, y_i) for i = 1, 2, ..., 1000. $x_i \in \mathbb{R}^2$ and $y_i \in \{-1, 1\}$. Recall the SVM for separable data.

$$\min_{a \in \mathbb{R}^2, b \in \mathbb{R}} ||a||^2$$

subject to $y_i(a^T x_i + b) \ge 1$.

- (a) Derive the dual problem. (I did this in class. I want you to go through it yourself.)
- (b) Use the Python package qpsolvers to solve the dual problem for the dual variable ν (following our class notation). See the link below for installation and implementation instructions.

https://pypi.org/project/qpsolvers/

- (Note: On my 2024 mac, I had some problem installing some of the qp solvers used in the package. The default solver is quadprog and seems to install without difficult. To use it set solver="quadprog" in your call to solve_qp. However, quadprog requires a positive definite quadratic term. The dual involves the term of the form $\nu^T A \nu$ with A positive semidefinite. You can shift by $A+10^{-6}I$ to make the term positive definite.)
- (c) Use ν to compute a, b and identify the support vectors (i.e. the x_i for which $\nu_i \neq 0$. Plot the data colored by the y_i with the support vectors plotted a different color. On top of the data, plot the SVM hyperplane. Verify that your accuracy is 100%. (There is no need to split into training and test here.)
- 3. (In this problem, we will develop the theory for kernel, non-separable SVM. To keep things manageable, you don't need to fit the SVM to a dataset. We will do that next week.)

Consider a dataset (x_i, y_i) for i = 1, 2, ..., n with $x_i \in \mathbb{R}^p$ and $y_i \in \{-1, 1\}$. Recall the SVM for non-separable data.

$$\min_{a \in \mathbb{R}^p, b \in \mathbb{R}} ||a||^2 + C \sum_{i=1}^n \xi_i$$

subject to $y_i(a^T x_i + b) \ge 1 - \xi_i, \xi_i \ge 0$.

We will consider a kernel version of this problem. Let k(x, y) be a reproducing kernel. Define $z_i = k(x, x_i)$ and consider the new dataset (z_i, y_i) and the kernel version of the primal problem,

$$\min_{a \in H, b \in \mathbb{R}} ||a||^2 + C \sum_{i=1}^n \xi_i$$
subject to $y_i(a^T z_i + b) \ge 1 - \xi_i, \xi_i \ge 0$.

Note that $a \in H$ and $z_i \in H$ where H is the RKHS associated with the kernel. Properly, H could be an infinite dimensional space, but for this problem we will treat H as a finite dimensional Euclidean space. The analysis for an infinite dimensional space is essentially the same. So you can take $H = \mathbb{R}^q$.

- (a) Derive the dual problem for the kernel problem. (I essentially did this in class.)
- (b) For $x \in \mathbb{R}$, show that the SVM predicts $y = \text{sign}(\sum_{i=1}^{n} \nu_i y_i k(x_i, x))$. (Note a feature of the SVM: prediction requires the use of the training data.)