5.41. Какое число молекул n содержит единица объема сосуда при температуре $t = 10^{\circ}$ С и давлении $p = 1.33 \cdot 10^{-9}$ Па?

Решение:

Число молекул N, содержащееся во всем сосуде, можно найти из соотношения: $N=\frac{m}{\mu}N_{\rm A}$. Тогда число молекул в единице объема $n=\frac{N}{V}$ или $n=\frac{mN_{\rm A}}{\mu V}$. Согласно уравнению Менделеева — Клапейрона, $pV=\frac{m}{\mu}RT$, откуда $\frac{m}{\mu}=\frac{pV}{RT}$. Тогда $n=\frac{pN_{\rm A}}{RT}$; $n=3,4\cdot 10^{11}\,{\rm m}^{-3}$.

5.42. Для получения хорошего вакуума в стеклянном сосуде необходимо подогревать стенки сосуда при откачке для удаления адсорбированного газа. На сколько может повыситься давление в сферическом сосуде радиусом r=10 см, если адсорбированные молекулы перейдут со стенок в сосуд? Площадь поперечного сечения молекул $s_0=10^{-19}\,\mathrm{m}^2$. Температура газа в сосуде $t=300^{\circ}$ С. Слой молекул на стенках считать мономолекулярным.

Решение:

Давление p газа в сосуде связано с числом молекул n в единице объема сосуда соотношением p=nkT или $p=\frac{NkT}{V}$ — (1), где N — число молекул в объеме $V=4\pi r^3/3$ — (2). По условию эти N молекул образуют мономолекулярный слой, следовательно, $N=\frac{S}{S_0}$, где

$$S = 4\pi r^2$$
 — (3). Подставляя (2) и (3) в (1), получим $p = \frac{3kT}{s_0 r}$; $p = 2.4 \, \Pi a$.

5.43. Какое число частиц находится в единице массы парообразного йода (I_2) , степень диссоциации которого $\alpha = 0.5$? Молярная масса молекулярного йода $\mu = 0.254$ кг/мэль.

Решение:

Имеем $v_1 = \frac{2\alpha m}{\mu}$ атомарного йода и $v_2 = \frac{(\alpha-1)m}{\mu}$ молекулярного йода (см. задачу 5.30). В единице массы $v_1 = \frac{2\alpha}{\mu}$; $v_2 = \frac{\alpha-1}{\mu}$. Число частиц в единице массы парообразного йода $n = N_A \left(\frac{2\alpha}{\mu} + \frac{1-\alpha}{\mu}\right)$; $n = 3,56 \cdot 10^{24} \, \mathrm{kr}^{-1}$.

5.44. Какое число частиц N находится в массе m=16 г кислорода, степень диссоциации которого $\alpha=0.5$?

Решение:

Количество атомарного кислорода, находящегося в данной массе, $v_1 = \frac{2\alpha m}{\mu}$, количество молекулярного кислорода $v_2 = \frac{(1-\alpha)\cdot m}{\mu}$. Общее количество кислорода $v = \frac{2\alpha m}{\mu} + \frac{(1-\alpha)\cdot m}{\mu}$. Число частиц в массе m кислорода $N = N_{\rm A} v$. После несложных преобразований получим $N = N_{\rm A} \times \frac{m\cdot(\alpha+1)}{\mu}$; $N = 4,5\cdot 10^{23}$.

5.45. В сосуде находится количество $v_1 = 10^{-7}$ молей кислорода и масса $m_2 = 10^{-6}$ г азота. Температура смеси $t = 100^{\circ}$ С, давление в сосуде p = 133 мПа. Найти объем V сосуда, парциальные давления p_1 и p_2 кислорода и азота и число молекул n в единице объема сосуда.

Решение:

По закону Дальтона $p=p_1+p_2$ — (1). Согласно уравнению Менделеева — Клапейрона, $p_1V=\frac{m_1}{\mu_1}RT$ — (2) и $p_2V=\frac{m_2}{\mu_2}RT$ — (3), где μ_1 — молярная масса кислорода, μ_2 — молярная масса азота. Решая (1) — (3), получим $pV=RT\left(\frac{m_1}{\mu_1}+\frac{m_2}{\mu_2}\right)$ или $pV=RT\left(v_1+\frac{m_2}{\mu_2}\right)$, откуда $V=\frac{RT}{p}\left(v_1+\frac{m_2}{\mu_2}\right)$; V=3,2 л. Парциальное давление кислорода p_1 найдем из уравнения Менделеева — Клапейрона $p_1V=v_1RT$, откуда $p_1=v_1RT/V$; $p_1=98$ МПа. Парциальное давление азота $p_2=\frac{m_2RT}{\mu_2V}$; $p_2=35$ МПа. Для нахождения числа молекул $p_2=\frac{m_2RT}{\mu_2V}$ — $p_2=35$ МПа. Для нахождения числа молекул $p_2=\frac{m_2RT}{\mu_2V}$ — $p_2=35$ МПа. Для нахождения числа молекул $p_2=\frac{m_2RT}{\mu_2V}$ — $p_2=35$ МПа. $p_2=\frac{m_2RT}{\mu_2V}$ — $p_2=35$ МПа. Выведенной в задаче $p_2=\frac{m_2RT}{\mu_2V}$ — $p_2=35$ МПа.

5.46. Найти среднюю квадратичную скорость $\sqrt{v^2}$ молек ул воздуха при температуре $t = 17^{\circ}$ С. Молярная масса воздуха $\mu = 0.029$ кг/моль.

Средняя квадратичная скорость молекул $\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}}$. Для молекул воздуха $\sqrt{\overline{v^2}} = \sqrt{\frac{3 \cdot 8.31 \cdot 290}{0.029}} = 500$ м/с.

5.47. Найти отношение средних квадратичных скоростей молекул гелия и азота при одинаковых температурах.

Решение:

Средняя квадратичная скорость молекул гелия $\sqrt{\overline{v_1^2}}=\sqrt{\frac{3RT}{\mu_1}}$, молекул азота — $\sqrt{\overline{v_2^2}}=\sqrt{\frac{3RT}{\mu_2}}$. Отсюда отношение $\frac{\sqrt{\overline{v_1^2}}}{\sqrt{\overline{v_2^2}}}=\sqrt{\frac{\mu_2}{\mu_1}}$. Молярная масса гелия $\mu_1=0,004$ кг/моль.

Молярная масса азота $\mu_2 = 0.028\,\mathrm{kr/моль}.$ Тогда $\sqrt{\overline{v_1^2}}\,/\,\sqrt{\overline{v_2^2}} = 2.65\,.$

5.48. В момент взрыва атомной бомбы развивается температура $T \approx 10^7$ К. Считая, что при такой температуре все молекулы полностью диссоциированы на атомы, а атомы ионизированы, найти среднюю квадратичную скорость $\sqrt{v^2}$ иона водорода.

Решение:

Средняя квадратичная скорость иона водорода $\sqrt{v^2} = \sqrt{\frac{3RT}{\mu}}$, где молярная масса иона водорода $\mu = 0.001\,\mathrm{kr/monb}$. Отсюда $\sqrt{v^2} = 5\cdot 10^5\,\mathrm{m/c}$.

5.49. Найти число молекул n водорода в единице объема сосуда при давлении $p=266,6\,\Pi a$, если средняя квадратичная скорость его молекул $\sqrt{\overline{v^2}}=2,4\,\mathrm{km/c}$.

Решение:

В задаче 5.41 была получена формула, выражающая число молекул газа в единице объема $n=\frac{pN_A}{RT}$. Средняя квадратичная скорость молекул водорода $\sqrt{\overline{v^2}}=\sqrt{\frac{3RT}{\mu}}$, отсюда $RT=\left(\sqrt{\overline{v^2}}\right)^2\cdot \mu/3$. Тогда $n=\frac{3pN_A}{\mu\left(\sqrt{\overline{v^2}}\right)^2}$; $n=4.2\cdot 10^{24}\,\mathrm{m}^{-3}$.

5.50. Плотность некоторого газа $\rho = 0.06$ кг, средняя квадратичная скорость его молекул $\sqrt{\overline{v}^2} = 500$ м/с. Найти давление ρ , которое газ оказывает на стенки сосуда.

Решение:

Давление газа определяется основным уравнением молекулярно-кинетической теории (МКТ): $p=\frac{2}{3}n\frac{m_0\overline{v^2}}{2}$ — (1), где n — число молекул в единице объема, m_0 — масса молекулы. Кроме того, n и m_0 связаны соотношением: $n=\frac{\rho}{m_0}$. Тогда уравнение (1) можно записать следующим образом: $p=\frac{\rho\overline{v^2}}{3}$: p=5 кПа. **5.51.** Во сколько раз средняя квадратичная скорость пылинки, взвешенной в воздухе, меньше средней квадратичной скорости молекул воздуха? Масса пылинки $m = 10^{-8}$ г. Воздух считать однородным газом, молярная масса которого $\mu = 0.029$ кг/моль.

Решение:

Среднюю квадратичную скорость можно выразить с помощью следующих соотношений: $\sqrt{\overline{v}^2} = \sqrt{\frac{3RT}{\mu}} = \sqrt{\frac{3kT}{m}}$. Для воздуха $\sqrt{\overline{v_2^2}} = \sqrt{\frac{3RT}{\mu}}$; $\frac{\sqrt{\overline{v_2^2}}}{\sqrt{\overline{v_1^2}}} = \sqrt{\frac{Rm}{\mu k}}$; $\frac{\sqrt{\overline{v_2^2}}}{\sqrt{\overline{v_1^2}}} = 1,44\cdot 10^7$.

5.52. Найти импульс mv молекулы водорода при температуре $t = 20^{\circ}$ С. Скорость молекулы считать равной средней квадратичной скорости.

Решение:

Масса молекулы водорода $m = \frac{\mu}{N_A}$. Ее средняя квадратичная скорость $\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}}$. Тогда $mv = \frac{\mu}{N_A} \sqrt{\frac{3RT}{\mu}} = \frac{\sqrt{3RT\mu}}{N_A}$; $mv = 6.3 \cdot 10^{-24} \, \mathrm{kr \cdot m/c}$.

5.53. В сосуде объемом V=2 л находится масса m=10 г кислорода при давлении p=90,6 кПа. Найти среднюю 220

К. п. д. двигателя $\eta = \frac{A}{O} = \frac{Pt}{ma}$ — (1), откуда $m = \frac{Pt}{na}$. С другой стороны, $\eta = 1 - \frac{\beta \gamma - 1}{\gamma \varepsilon^{\gamma - 1} (\beta - 1)}$ — (2) (см. задачу

2.214). В условиях данной задачи
$$\beta = \frac{\varepsilon}{\delta} = \frac{16}{6.4} = 2.5$$
; $\gamma = 1.3$; $\beta \gamma = 3.29$; $\beta^{\gamma} - 1 = 2.29$; $\varepsilon^{\gamma-1} = 2.30$; $\beta - 1 = 1.5$. Подставляя эти данные в (2), получим $\eta = 0.49 = 49\%$. Тогда $m = 5.9$ кг.

5.216. Найти изменение ΔS энтропии при превращении массы m = 10 г льда ($t = -20^{\circ}$ C) в пар ($t_n = 100^{\circ}$ C).

Решение:

Изменение энтропии при переходе вещества из состояния 1 в состояние 2 $\Delta S = \int_{-T}^{2} \frac{dQ}{T}$, где, согласно первому началу

термодинамики, $dQ = dU + dA = \frac{m}{u}C_V dT + pdV$. Т. к. из уравнения Менделеева — Клапейрона давление $p = \frac{m}{U} \frac{RT}{V}$,

то $dQ = \frac{m}{U}C_V dT + \frac{m}{U}\frac{RT}{V}dV$. При переходе из одного агрегатного состояния в другое, общее изменение энтропии складывается из изменений ее в отдельных процессах. При нагревании льда от T до T_0 (T_0 — температура плав-

ления) $\Delta S_1 = \int\limits_{-\infty}^{T_0} \frac{mc_\pi dT}{T} = mc_\pi \ln \frac{T_0}{T}$, где $c_\pi = 2.1 \, \mathrm{кДж/(кг·K)} - 10.0 \, \mathrm{kg}$ удельная При плавлении теплоемкость льда. льда 11-3268

321

Тогда масса частицы
$$m = \rho V = \frac{\pi \rho \sigma^3}{6}$$
. Отсюда $\sqrt{\overline{v^2}} = \sqrt{\frac{3kT \cdot 6}{\pi \rho \sigma^3}}$; $\sqrt{\overline{v^2}} = 4,65 \cdot 10^{-3}$ м/с.

5.55. Средняя квадратичная скорость молекул некоторого газа $\sqrt{\overline{v^2}}=450\,\mathrm{m/c}$. Давление газа $p=50\,\mathrm{k\Pi a}$. Найти плотность ρ газа при этих условиях.

Решение:

Давление газа определяется основным уравнением МКТ: $p = \frac{2}{3}n\frac{m_0\overline{v^2}}{2}$ — (1), где n— число молекул в единице объема, m_0 — масса молекулы. Кроме того, n и m_0 связаны соотношением: $n = \frac{\rho}{m_0}$. Тогда уравнение (1)

можно записать следующим образом: $p = \frac{\rho \overline{v^2}}{3}$, откуда $\rho = \frac{3p}{\overline{v^2}}$; $\rho = 0.74$ кг/м³.

5.56. Плотность некоторого газа $\rho = 0.082 \, \text{кг/м}^3$ при давлении $p = 100 \, \text{кП}$ а и температуре $t = 17^\circ \, \text{C}$. Найти среднюю квадратичную скорость $\sqrt{\overline{v^2}}$ молекул газа. Какова молярная масса μ этого газа?

Решение:

Из предыдущей задачи
$$p=\frac{\rho\overline{v^2}}{3}$$
, откуда $\sqrt{\overline{v^2}}=\sqrt{\frac{3\,p}{\rho}}$; $\sqrt{\overline{v^2}}=1,9$ км/с. Молярную массу μ этого газа можно найти 222

5.218. Найти изменение ΔS энтропии при плавлении массы m=1 кг льда (t=0 ° C).

Решение:

При, плавлении массы m льда при температуре T имеем $\Delta S = \frac{m \lambda}{T}$, где $\lambda = 0.33\,\mathrm{M}$ Дж/кг — удельная теплота плавления. $\Delta S = 1209\,\mathrm{Д}$ ж/кг.

5.219. Массу $m = 640 \, \mathrm{r}$ расплавленного свинца при температуре плавления $t_{\mathrm{n},\mathrm{n}}$ вылили на лед ($t = 0^{\circ} \, \mathrm{C}$). Найти изменение ΔS энтропии при этом процессе.

Предположим, что система «свинец — лед» замкнута, т.е.

Решение:

потерь тепла во внешнюю среду не происходит и весь образовавшийся пар сконденсировался и остался внутри системы в виде воды. Тогда изменение энтропии системы ΔS будет складываться из изменения энтропии свинца ΔS_1 при затвердевании, изменения энтропии свинца ΔS_2 при охлаждении до $t=0^{\circ}$ С и изменения энтропии льда при таянии ΔS_3 . Т. е. $\Delta S = \Delta S_1 + \Delta S_2 + \Delta S_3$. Задачу рассматриваем при условии, что льда имеется достаточное количество для поддержания температуры $t=0^{\circ}$ С. Обозначим $T_1=600$ К — температура плавления свинца, $T_2=273$ К — температура льда. Имеем $dS_1=dQ_1/T$ или

 $\Delta S_1 = -\int_1^2 \frac{dQ_1}{T_1} = -\frac{m\lambda}{T_1}$, где $\lambda = 22.6$ кДж/кг — удельная те-

плота плавления (кристаллизации) свинца. $dS_2 = \frac{dQ_2}{T}$, от-

Внутренняя энергия газа $W = \frac{i}{2} \frac{m}{\mu} RT$. Воздух можно считать (в процентном соотношении) двухатомным газом, т.е. число степеней свободы i=5. Тогда $W = \frac{5}{2} \frac{m}{\mu} RT$; $W = 210 \, \text{Дж}$.

5.60. Найти энергию $W_{\rm вр}$ вращательного движения молекул. содержащихся в массе m=1 кг азота при температуре $t=7^{\circ}$ С.

Решение:

Внутренняя энергия газа $W=\frac{i}{2}\frac{m}{\mu}RT$. Поскольку молекула азота состоит из двух атомов, то для нее количество степеней свободы вращательного движения i=2. Тогда $W_{\rm Bp}=\frac{m}{\mu}RT$; $W_{\rm Bp}=83\,{\rm KJ}$ ж.

5.61. Найти внутреннюю энергию W двухатомного газа, находящегося в сосуде объемом V=2 л под давлением p=150 кПа.

Решение:

Согласно уравнению состояния идеального газа $pV = \frac{m}{\mu}RT$ — (1). Внутренняя энергия газа $W = \frac{i}{2}\frac{m}{\mu}RT$ или, с учетом (1), $W = \frac{i}{2}\,pV$. Для двухатомного газа количество степеней свободы i=5, тогда $W = \frac{5}{2}\,pV$; W = 750 Дж.

5.62. Энергия поступательного движения молекул азота, находящегося в баллоне объем $V=20\,\mathrm{n},~W=5\,\mathrm{кДж},~\mathrm{a}$ средняя квадратичная скорость его молекул $\sqrt{v^2}=2\cdot 10^3\,\mathrm{m/c}.$ Найти массу m азота в баллоне и давление p, под которым он таходится.

Решение:

Энергия поступательного движения молекул азота $W=\frac{m\overline{v^2}}{2}$, откуда $m=\frac{2W}{\overline{v^2}}$; m=2.5 г. Согласно основному уравнению МКТ $p=\frac{2}{3}n\frac{m_0\overline{v^2}}{2}$ — (1), где n — число молекул в единице объема, m_0 — масса одной молекулы. Очевидно, что произведение $nm_0=\rho$ — плотности азота. Тогда $nm_0V=\rho V=m$ — массе всего азота, находящегося в баллоне. Умножив правую и левую части уравнения (1) на V , получим $pV=\frac{2}{3}nm_0V\frac{\overline{v^2}}{2}=\frac{2}{3}m\frac{\overline{v^2}}{2}$. Но $\frac{m\overline{v^2}}{2}=W$, следовательно, $pV=\frac{2}{3}W$, откуда $p=\frac{2W}{3v}$; p=167 кПа.

5.63. При какой температуре T энергия теплового движения атомов гелия будет достаточна для того, чтобы атомы гелия преодолели земное тяго сние и навсегда покинули земную атмосферу? Решить аналогичную задачу для Луны.

Решение:

Согласно условию задачи средняя квадратичная скорость атомов гелия должна быть равна второй космической 8-3268 225

скорости, т.е.
$$\sqrt{\overline{v^2}}=11.2~\text{км/c}.$$
 $\sqrt{\overline{v^2}}=\sqrt{\frac{3RT}{\mu}}$, откуда $T=\frac{\mu\overline{v^2}}{3R}$; $T\approx 2\cdot 10^4~\text{K}.$ Для Луны $\sqrt{\overline{v^2}}=2.4~\text{км/c},$ тогда $T=900~\text{K}.$

5.64. Масса $m=1\,\mathrm{kr}$ двухатомного газа находится под давлением $p=80\,\mathrm{k\Pi a}$ и имсет плотность $\rho=4\,\mathrm{kr/m}^3$. Найти энергию теплового движения W молекул газа при этих условиях.

Решение:

Энергия теплового движения двухатомного газа $W=\frac{i}{2}\nu RT=\frac{5}{2}\frac{m}{\mu}RT$. Согласно уравнению Менделеева — Клапейрона $pV=\frac{m}{\mu}RT$, тогда $W=\frac{5}{2}\,pV$. Так как $V=\frac{m}{p}$, то окончательно имеем $W=\frac{5}{2}\,\frac{pm}{\rho}$; W=50 кДж.

5.65. Какое число молекул N двухатомного газа содержит объем $V = 10 \text{ cm}^3$ при давлении p = 5.3 кПа и температуре $t = 27^{\circ} \text{ C}$? Какой энергией теплового движения W обладают эти молекулы?

Решение:

Согласно уравнению Менделеева — Клапейрона $pV = \frac{m}{\mu}RT = vRT$. Количество вещества $v = \frac{N}{N_A}$, где N — число молекул в данном объеме вещества, N_A — число 226

Авогадро. Тогда $pV = \frac{N}{N_{\rm A}}RT$. Но $\frac{R}{N_{\rm A}} = k$ — постоянной Больцмана. Отсюда окончательно имеем pV = NkT, откуда $N = \frac{pV}{kT}$; $N = 1.3 \cdot 10^{19}$. Энергия теплового движения двухатомного газа $W = \frac{5}{2} \frac{m}{\mu} RT$, где $\frac{m}{\mu} = v = \frac{N}{N_{\rm A}}$, тогда $W = \frac{5}{2} \frac{N}{N_{\rm A}}RT$; $W = 0.133~{\rm Дж}$.

5.66. Найти удельную теплоемкость c кислорода для: **a)** V = const; **б)** p = const.

Решение:

Молярная теплоемкость C и удельная теплоемкость c связаны соотношением $C = \mu c$. Отсюда $c = \frac{C}{\mu}$. а) При V = const $c_V = \frac{C_U}{\mu}$, где $C_V = \frac{i}{2}R$. Для кислорода i = 5, следовательно, $C_V = \frac{5}{2}R$. Тогда удельная теплоемкость кислорода при пострянном объеме $c_V = \frac{5R}{2\mu}$; $c_V = 650$ Дж/(кг·К). б) При P = const $C_p = C_V + R = \frac{7}{2}R$. Отсюда $c_p = \frac{7R}{2\mu}$; $c_p = 910$ Дж/(кг·К).

5.67. Найти удельную теп. оемкость c_p : а) хлористого водорода; б) неона; в) окиси азота; ¬) окиси углерода; д) паров ртути.

Удельная теплоемкость $c_p = \frac{C_p}{\mu}$, где молярная теплоемкость $C_p = C_{\Gamma} + R$. Поскольку $C_{\Gamma} = \frac{v}{2}R$, то $C_p = \frac{R(i+2)}{2}$. Для одноатомных газов $C_p = 20.8$ Дж/(моль·К), для двухатомных газов $C_p = 29.1$ Дж/(моль·К), для многоатомных $C_p = 33.2$ Дж/(моль·К).

- а) $\mu_{HCI} = 0.0365 \,\mathrm{kr/moль}, \ c_p \approx 800 \,\mathrm{Дж/(kr\cdot K)};$
- б) $\mu_{N_c} = 0.02 \text{ кг/моль}, \ c_p = 1040 \ Дж/(кг·К);$
- в) $\mu_{NO} = 0.03$ кг/моль, $c_n = 970$ Дж/(кг-К);
- г) $\mu_{CO} = 0.028$ кг/моль, $c_p = 1040$ Дж/(кг·К);
- д) $\mu_{Hg} = 0.201 \,\mathrm{kg/mojh}, \ c_p = 103 \,\mathrm{Дж/(kg\cdot K)}.$

5.68. Найти отношение удельных теплоемкостей $c_p/c_{\rm I}$. для кислорода.

Решение:

Для кислорода $c_p=910\,$ Дж/(кг·К), $c_V=650\,$ Дж/(кг·К) (см. задачу 5.66); $\frac{c_p}{c_V}=1.4\,$.

5.69. Удельная теплоемкость некоторого двухатомного газа $c_p = 14.7 \; \mathrm{кДж'(кг \cdot K)}.$ Найти молярную массу μ этого газа.

Решение:

Молярная теплоемкость C_p и удельная теплоемкость c_p газов связаны соотношением $C_p = c_p \mu$, откуда 228

 $\mu = \frac{C_p}{c_p}$ — (1). $C_p = C_V + R$ — (2), где молярная теплоемкость при постоянном объеме $C_V = \frac{i}{2}R$. Для двухатомного газа i=5, тогда из (2) $C_p = \frac{7}{2}R$ — (3). Подставив (3) в (1), получим $\mu \frac{7R}{2c_p}$; $\mu = 0{,}002$ кг/моль.

5.70. Плотность некоторого двухатомного газа при нормальных условиях $\rho = 1,43 \text{ кг/м}^3$. Найти удельные теплоемкости c_i . н c_n этого газа.

Решение:

Молярная теплоемкость C и удельная теплоемкость c связаны соотношением $C = \mu c$. Отсюда $c = C/\mu$. При V = const $c_{V} = \frac{C_{V}}{\mu}$, где $C_{V} = \frac{i}{2}R$. Для двухатомного газа i = 5, следовательно, $C_{V} = \frac{5}{2}R$. Тогда удельная теплоемкость двухатомного газа при постоянном объеме $c_{V} = \frac{5R}{2\mu}$ — (1). При P = const $C_{p} = \frac{7}{2}R$. Отсюда $c_{p} = \frac{7R}{2\mu}$ — (2). Согласно уравнению Менделеева — Клапсйрона $c_{V} = \frac{m}{\mu}RT$ или $c_{V} = \frac{m}{\mu}RT$. Но $c_{V} = \frac{m}{\mu}RT$, откуда $c_{V} = \frac{\rho RT}{\mu}RT$. Но $c_{V} = \frac{\rho}{\mu}RT$, откуда $c_{V} = \frac{5\rho}{2\rho T}$; $c_{D} = \frac{7\rho}{2\rho T}$. При нормальных услови-

ях $p=1,013\cdot 10^5$ Па, $T=273\,\mathrm{K}$. Тогда $C_V=650\,\mathrm{Дж/(кг\cdot K)}$, $c_p=910\,\mathrm{\,\,\,\,\,\,\,\,}$ Дж/(кг·К).

5.71. Молярная масса некоторого газа $\mu = 0.03$ кг/моль, отношение $c_p / c_{l'} = 1.4$. Найти удельные теплоемкости $c_{l'}$ и c_p этого газа.

Решение:

Удельные теплоемкости $c_{l'}$ и c_p выражаются следующим образом $c_{l'} = \frac{C_{l'}}{\mu}$ — (1); $c_p = \frac{C_p}{\mu}$ — (2), где молярная теплоемкость $C_p = C_{l'} + R = \frac{i}{2}R + R$ — (3). По условию $\frac{c_p}{c_{l'}} = 1,4$ или $c_p = 1,4c_{l'}$, тогда из (3) $1,4C_{l'} = c_{l'} + R$, $C_{l'} = \frac{5}{2}R$ — (4), $C_p = \frac{7}{2}R$ — (5). Подставив (4) в (1) и (5) в (2), получим $c_{l'} = \frac{5R}{2\mu}$; $c_{l'} = 693 \, \text{Дж/(кг·К)}$; $c_p = \frac{7R}{2\mu}$; $c_p = 970 \, \text{Дж/(кг·К)}$.

5.72. Во сколько раз молярная теплоемкость C' гремучего газа больше молярной теплоемкости C'' водяного нара, получившегося при его сгорании? Задачу решить для: a) V = const; б) p = const.

Решение:

Запишем уравнение реакции $2H_2 + O_2 = 2H_2O$. Таким образом из количества $v_1 = 3$ моль двухатомного газа полу-

чается количество $v_2=2$ моль трехатомного газа, т.е. до сгорания $C_{V1}=3\frac{5R}{2}$ и $C_{p1}=3\frac{7R}{2}$; после сгорания $C_{V2}=2\frac{6R}{2}$ и $C_{p2}=2\frac{8R}{2}$. Тогда а) $\frac{C_{V1}}{C_{V2}}=1,25$; б) $\frac{C_{p1}}{C_{p2}}=1,31$.

5.73. Найти степень диссоциации α кислорода, если его удельная теплоемкость при постоянном давлении $c_p = 1,05 \text{ кДж/(кг K)}.$

Решение:

Пусть *т* — полная масса кислорода. Тогда *т* — масса диссоциированного кислорода, а $(1-\alpha) \cdot m$ — масса недиссоциированного кислорода. Количество тепла, необходимое для нагревания газа на некоторую температуру $\Delta T: Q = c_p m \Delta T$ или $Q = \left[c_p^H (1-\alpha)m + c_p^g \alpha m\right] \cdot \Delta T$, где c_p^H и c_n^g — соответственно теплоемкости при постоянном давлении диссоциированного и не диссоциированного **газ**ов. Тогда $c_p m \Delta T = \left[c_p^H (1 - \alpha) m + c_p^g \alpha m \right] \cdot \Delta T$, $c_p = c_p^H (1 - \alpha) + c_p^g \alpha$. Т.к. $c_p = \frac{i+2}{i} \frac{R}{u}$, то $c_p^H = \frac{7}{2} \frac{R}{u}$ и $c_p^g = \frac{5}{2} \frac{2R}{u}$, поскольку для недиссоциированного газа i = 5, **а** для диссоциированного i=3. Тогда $c_p = \frac{1}{2} \frac{K}{\mu} (1-\alpha) +$ $+5\frac{R}{\mu}\alpha = \frac{R}{2\mu}(7(1-\alpha)+10\alpha) = \frac{R}{2\mu}(7+3\alpha); \quad 7+3\alpha = \frac{2\mu c_p}{R};$ $\alpha = \frac{2\mu c_p - 7R}{3R}$; $\alpha = 0.362$.