Math 118C HW4

Zih-Yu Hsieh

May 16, 2025

1

Question 1 Rudin Pg. 242 Problem 27:

Put f(0,0) = 0, and

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

if $(x,y) \neq (0,0)$. Prove that

- (a) f, $D_1 f$, $D_2 f$ are continuous in \mathbb{R}^2 .
- (b) $D_{12}f$ and $D_{21}f$ exist at every point of \mathbb{R}^2 , and are continuous except at (0,0).
- (c) $D_{12}f(0,0) = 1$, and $D_{21}f(0,0) = -1$.

2

Question 2 Rudin Pg. 242 Problem 28:

For $t \geq 0$, put

$$\varphi(x,t) = \begin{cases} x & 0 \le x \le \sqrt{t} \\ -x + 2\sqrt{t} & \sqrt{t} \le x \le 2\sqrt{t} \\ 0 & otherwise \end{cases}$$

and put $\varphi(x,t) = -\varphi(x,|t|)$ if t < 0.

Show that φ is continuous on \mathbb{R}^2 , and $D_2\varphi(x,0)=0$ for all x. Define

$$f(t) = \int_{-1}^{1} \varphi(x, t) dx$$

Show that f(t) = t if $|t| < \frac{1}{4}$. Hence

$$f'(0) \neq \int_{-1}^{1} D_2 \varphi(x,0) dx$$

3

Question 3 Rudin Pg. 243 Problem 30:

Let $f \in \mathcal{C}^{(m)}(E)$, where E is an open subset of \mathbb{R}^n . Fix $a \in E$, and suppose $x \in \mathbb{R}^n$ is so close to 0 that the points p(t) = a + tx lie in E whenever $0 \le t \le 1$. Define h(t) = f(p(t)) for all $t \in \mathbb{R}$ for which $p(t) \in E$.

(a) For $1 \le k \le m$, show (by repeated application of the chain rule) that

$$h^{(k)}(t) = \sum (D_{l_1...l_k}f)(p(t))x_{l_1}...x_{l_k}$$

The sum extends over all order k-tuples $(l_1,...,l_k)$ in which each l_j is one of the integers 1,...,n.

4

Question 4 Rudin Pg. 288 Problem 2:

For i=1,2,3,..., let $\varphi_i\in\mathcal{C}(\mathbb{R})$ have support in $(2^{-i},2^{1-i})$, such that $\int \varphi_i=1$. Put

$$f(x,y) = \sum_{i=1}^{\infty} (\varphi_i(x) - \varphi_{i+1}(x))\varphi_i(y)$$

Then f has compact support in \mathbb{R}^2 , f is cotinuous except at (0,0), and

$$\int dy \int f(x,y)dx = 0, \quad but \int dx \int f(x,y)dy = 1$$

Observe that f is unbounded in every neighborhood of (0,0).