

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

Duration: 3 Hrs.

Branch: M.C.A.

Semester: IV

End Semester Examination

May 2018

Max. Marks: 100

Class: S.Y. Course Code: MCA43

Name of the Course: Design and Analysis of Algorithms

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q. No.		Max. Marks	CO
Q.1 a)	Discuss the Role of Algorithms in Computing.	5	CO1
b)	What is the time complexity of following function fun ()? Explain int fun(int n) { for (int i = 1; i <= n; i++)	7	COI
c)	Draw the recurrence tree for $T(n) = T(n/3) + T(2n/3) + n$ up to first 3 levels. OR Compare P, NP, NP-complete problems.	8	CO1
Q. 2 a)	Find the LCS of string 1: BACBAD string2: ABAZDC	6	CO2
b)	Find minimum Spanning Tree for following graph using Kauskal's algorithm.	8	CO2

	1) 10 2 50 30 45 40 3 4 25 55 15		
c)	Given a chain of four matrices ,A1, A2, A3, A4 (5,4,6,2,7). Find the		
	Describe the Dynamic 0/1 Knapsack Problem. Find an optimal solution for the dynamic programming 0/1 knapsack instance for n=3, m=6, profits are (p1, p2, p3) = (1,2,5), weights are (w1,w2,w3)=(2,3,4).	6	CO2
Q. 3 a)	Discuss the 8-Queen Problem. What technique is used to solve the problem? Write the algorithm to solve above problem. OR "Least cost Branch and Bound reduces the state space search"	7	CO3
b)	Discuss the Hamiltonian Cycles Problem. What technique is used to	7	CO3
c)	Find the time complexity of "the subset sum problem" OR Define the 15-puzzle problem. Suggest the technique to solve the problem. According to you does it give the optimal solution? Justify	6	CO3

0.4			
Q. 4 a)	Find the single-source shortest paths from A to every other vertex using Dijkstra's algorithm.	7	CO4
	2 G 12 7 D 1 A 1 9 3 E 2 F		
b)	Write Floyd Warshalls algorithm for all pair shortest path	6	CO4
c)	Derive the complexity of Knuth Morris Pratt string matching algorithm. OR Derive the complexity of Rabin Carp string matching algorithm.	7	CO4
Q. 5 a)	Derive the Best, Worst and Average time complexities of Quick sorting technique. OR Consider "Vertex cover Problem". According to you what type of problem it is P or NP or NP-complete, Justify.	5	CO1
b)	Apply Dynamic programming method to generate Optimal Binary Search Tree for the following values: Index: 0 1 2 3 Key: 10 12 16 21 Frequency: 4 2 6 3	5	CO2
c)	Compare Backtracking and Branch and Bound techniques (Definition, Working, Performance, Analysis, Example)	5	CO3
d)	For following deterministic finite automaton obtain 5 –tuple DFA Generate 3 strings which are accepted by this DFA 1 0 1 1 1 1 1 1 1 1 1 1 1	5	CO4