

CSCE 590-1: Trusted Al

Lecture 4: Al: Supervised Machine Learning

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 31ST AUG 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 4

- Introduction Segment
 - Recap from Lecture 3
 - Project discussion
 - Coding guidelines
- Main Segment
 - Introduction to Machine Learning
 - Methods and tools
 - Data preparation
- Concluding Segment
 - About next lecture Lecture 5
 - Ask me anything

Introductory Segment

Recap of Lecture 3

- Explored data in detail
 - By structure: structured, semi—structured, unstructured
 - By source: enterprise, social, open, sensor; our focus will be open
 - By types: text, audio, image, video
- Discussed 5-star data open standard
- Looked at data access via APIs
- Discussed internal data representation spectrum glossary to knowledge graph

Project Discussion

- Information to be shared by students
 - Go to Google sheet: https://docs.google.com/spreadsheets/d/1VAX8ntb5zBQ-vOdsMHMhvEdwoaCZtuBaO4kJdkSA4eQ/edit?usp=sharing
 - Create a Google drive called "CSCE 590-1 Trusted AI (<YourName>)" and share with instructor: firstname.lastname@gmail.com
 - Put shared url in Column E
 - Put project title in column G
 - Create a folder in shared directory call project. Under it, have a Google doc called "Project Description". In it, have the following as bullets with associated details: Problem, User, AI Method, Data, Reliability: Testing, Holding Human Values, Human-AI interaction. See next slide for framework and guidance on what to put.
 - Put Github location for your code in F
 - · Create one repository
 - For each quiz, project, etc, create a sub-folder

Course Project

Framework

- 1. (Problem) Think of a problem whose solution may benefit people (e.g., health, water, air, traffic, safety)
- 2. (User) Consider how the primary user (e.g., patient, traveler) may be solving the problem today
- 3. (Al Method) Think of what the solution will do to help the primary user
- 4. (Data) Explore the data for a solution to work
- 5. (Reliability:Testing) Think of the evaluation metric we should employ to establish that the solution will works? (e.g., 20% reduction in patient deaths)
- 6. (Holding Human Values) Discuss if there are fairness/bias, privacy issues?
- 7. (Human-AI) Finally, elaborate how you will explain the primary user that your solution is trustable to be used by them

Minimum Coding Guidelines

UoSC (Gamecocks Coding Guidelines!)

- Have a project plan with details of tasks, deadlines and status
- Code should have:
 - Documentation
 - Report: specification of what it does, a test plan to how to see it works
 - Comments before every function of what it does
 - Organization: doc (documentation), data and code should in separate folders
 - Version control: the code and report should be in version control or git/ bitbucket, and be replicable
 - Test program: a stand-along program to demonstrate the code works
- A report or presentation should be created that is shared with instructor.

Good to have

Follow language-specific coding convention.

- General: https://en.wikipedia.org/wiki/Codingconv
 entions
- Python PEP8, Java -<u>https://www.python.org/dev/peps/pep-0008/</u>

Main Segment

Nomenclature

Types of Attributes/ Columns

 Numeric: has number as value in computational sense; all mathematical functions are valid.

• Example: SQ FT

Categorical: has distinct values

Nominal: each value is incomparable with other

• Example: OWN_OCCUPIED, ST_NAME

• Ordinal: the values can be ordered

• Example: ST_NUM, NUM_BEDS

• Comment:

• Q: what type is a binary variable?

• A: depends on the semantics – nominal (gender), ordinal (number basements).

PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
100001000	104	PUTNAM	Υ	3	1	1000
100002000	197	LEXINGTON	N	3	1.5	
100003000		LEXINGTON	N	n/a	1	850
100004000	201	BERKELEY	12	1	NaN	700
	203	BERKELEY	Υ	3	2	1600
100006000	207	BERKELEY	Υ	NA	1	800
100007000	NA	WASHINGTON		2	HURLEY	950
100008000	213	TREMONT	Υ	1	1	
100009000	215	TREMONT	Υ	na	2	1800

Why is Type of Variable Important

- Handling of missing values
- Distance between
 - Values
 - Data items
- Used for measuring accuracy, error
- Guiding the learning process
 - Selection of algorithms

Common Problem: Missing Value

- Occurrence
 - Missing completely at random
 - Missing at random (a group not wanting to participate)
 - Missing not at random (a group not able to participate)
- What does it mean?
 - The value was not provided
 - The value does not exist or has no practical interpretation
 - The value is being hidden (redaction)
 - Others: The value is not reliable, ...

• By checking for specific values: NA, Not applicable, out-of-range value, 0, -1, "".

Missing Value – Handling

- Ignoring missing value (Omission)
 - Reduces available data
- Impute new value (Imputation)
 - Mean or median
 - Default value
- Analysis techniques which are robust against missing value
 - Expectation maximization

Code Examples

- Basic concepts: **DataPreparation-Numeric.ipynb**
- An illustration: Clean-RealSample.ipynb
- Code: https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/I5-dataprep/Clean-RealSample.ipynb

Code Examples

- COVID-19 data exploration
 - New York Times collected data for US
 - Focus on South Carolina as well as Richland county
 - Aggregate as well as daily counts of cases and deaths
 - https://github.com/biplav-s/course-tai/blob/main/sample-code/l4-l5-supervised-ml/CovidExploration.ipynb

Concepts

- Input data: data available
 - Training data: used for training a learning algorithm and get a model
 - [Optional] Validation data: used to tune parameters
 - **Test data**: used to test a learning model

- Prediction problem
 - Learning value of a continuous variable
- Classification problem
 - Separating data into classes (also called labels, categorical types)
 - One of the attributes is the class label we are trying to learn
 - Class label is the supervision
- Clustering problem
 - We are trying to learn grouping of data
 - There is no attribute indicating membership in the groups (hence, unsupervised)

Reference: https://machinelearningmastery.com/difference-test-validation-datasets/
https://www2.seas.gwu.edu/~bell/csci243/lectures/classification.pdf

Methods for Classification

Distance Based

Source: https://www2.seas.gwu.edu/~bell/csci243/lectures/classification.pdf

Linear Methods

Assumption: target value (y) is expected to be a linear combination of the features (Xj).

Function estimate (linear)

W: weight, b: bias

$$f(X_j) = X_j W + b$$

Error Term (mean squared error)

$$MSE = \frac{1}{n} \sum_{j=1}^{n} [f(X_{j\cdot}) - y_j]^2$$

Many variants depending on the nature of error being minimized: overfitting (Ridge), number of non-zero coefficients (Lasso), ...

• Reference: https://scikit-learn.org/stable/modules/linear_model.html

Metric Types

- Effectiveness: what the <u>user</u> of a system sees, primarily cares about
- Efficiency: what the <u>executor</u> in a system sees, primarily cares about

Efficiency Metrics

Example: Predicting COVID cases

- •Effectiveness: what the user of a system sees, primarily cares about
 - How accurate (high) is the prediction?
 - How low is the error?
- Efficiency: what the <u>executor</u> in a system sees, primarily cares about
 - How low is the error?
 - How fast was prediction made?
 - How stable is the prediction to change in data?

Metrics: Accuracy, Precision, Recall

	Predicted class				
A-to-al Glass		Class = Yes	Class = No		
Actual Class	Class = Yes	True Positive	False Negative		
	Class = No	False Positive	True Negative		

Accuracy = (TP+TN)/ (TP+FP+FN+TN)

$$1/F1 = 1/Precision + 1/Recall$$

Comparing Classification Methods

- Predictive accuracy
- Interpretability: providing insight
- Robustness: handling noisy data
- Speed
- Scalability: large volume of data

Source: Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber

Linear Regression

Notebook: https://github.com/biplav-s/course-tai/blob/main/sample-code/l4-l5-supervised-ml/Supervised-Regression-Classification.ipynb

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification, clustering, dimensionality reduction, anomaly detection, neural methods
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Sample Learning Task

COVID-19 data

• Notebook: https://github.com/biplav-s/course-tai/blob/main/sample-code/l4-l5-supervised-ml/Supervised-Regression-Classification.ipynb

Reference and Demo

- Data: UCI Datasets https://archive.ics.uci.edu/ml/datasets.php
- Tools:
 - Weka https://www.cs.waikato.ac.nz/ml/weka/

References

- •Blogs: https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
- Google: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
- Insead:
 - Description: <u>https://inseaddataanalytics.github.io/INSEADAnalytics/CourseSessions/Sessions67/ClassificationAnalysisReading.html</u>
 - Data analytics for Business: https://inseaddataanalytics.github.io/INSEADAnalytics/

Lecture 4: Concluding Comments

- Did an overview of Machine learning
- Looked at data processing and cleaning
- Looked at supervised learning problem
- Worked with COVID data

Concluding Segment

About Next Lecture – Lecture 5

Lecture 5: Supervised ML Continued

- More Classification Methods: Linear, Decision Tree, Random Forest
- Choosing between methods
- Tools: weka
- Problems beyond COVID-19