Appunti di Calcolo Numerico 1

Vittorio Romeo

http://vittorioromeo.info

Contents

Rappresentazione in base		4
Teorema di rappresentazione in base		4
Forma normalizzata		4
Range rappresentabile		4
Overflow e underflow		5
Troncamento ed arrotondamento		5
Errori	 	6
Errore assoluto e relativo	 	6
Precisione di macchina	 	6
Amplificazione degli errori	 	6
Errore inerente	 	6
Errore aritmetico		7
Norme		7
Norme vettoriali	 	7
Tre proprietà	 	7
Formule	 	8
Equivalenza topologica	 	8
Norme matriciali	 	8
Quattro proprietà		8
Norma indotta	 	8
Formule		9
Sistemi lineari		9
Relazione tra rango e soluzioni	 	9
Metodi di risoluzione		10
Metodi diretti		
Metodi indiretti		10

Condizionamento	. 10
Fattorizzazione LU	11
Stabilità	. 11
Formula generale	. 11
Metodo compatto	
Metodo di Cholesky	. 12
Procedimento	. 13
Formule	. 13
Metodo di eliminazione di Gauss	. 13
Tre operazioni	. 13
Algorithmo	. 13
Formule	. 14
Metodo di Gauss-Jordan	. 14
Forward/backward substitution	14
Formule	
Forward substitution	
Backward substitution	
Disclarity of the set to see the	1 5
Risoluzione sistemi tridiagonali	15
Procedimento	. 15
Metodi iterativi	16
Tecnica iterativa generale	. 16
Teorema convergenza metodo iterativo	. 16
Ipotesi	. 16
Dimostrazione	. 16
Condizione necessaria e sufficiente di convergenza	
Metodo di Jacobi	. 17
Metodo di Gauss-Seidel	. 17
Criteri di arresto	. 18
Interpolazione	18
Interpolazione Interpolazione polinomiale	
Base dei monomi	
Polinomio finale	
Interpolazione di Lagrange	
•	
Base di Lagrange	
Polinomio finale	
Interpolazione di Newton	
Base delle potenze traslate	
Tabella delle differenze divise	. 20
ronnonno di newlon	. ZU

Dimostrazione errori con punti equidistanti									20
Ipotesi							 		20
Dimostrazione							 		21
Fenomeno di Runge							 		21
Nodi di Chebyshev							 		21
Interpolazione spline							 		21
Integrazione numerica									21
Integrazione numerica Formule di quadratura	•	 •	 •				 		
									21
Formule di quadratura									21 22
Formule di quadratura							 		21 22 22

Rappresentazione in base

• Vogliamo rappresentare il numero reale x.

Teorema di rappresentazione in base

- Sia B >= 2 un numero intero e x un numero reale non nullo.
- Allora esistono e sono unici un intero p ed una succesione $\{d_i\}_{i=1,2,...}$ di interi, $0 <= d_i < B, d_1! = 0$, non tutti uguali a B-1 da un certo indice in poi, tali che:

$$x = sgn(x)B^p \sum d_i B^{-i}$$

- Le quantità $B, p, d_i, \sum d_i B^{-i}$ vengono dette:
 - B: base della rappresentazione.
 - − p: caratteristica.
 - $-d_i$: cifre della rappresentazione.
 - $-\sum d_i B^{-i}$: mantissa.
- La rappresentazione in base viene indicata con:

$$x = \pm (.d_1 d_2 ...) B^p$$

Forma normalizzata

- Se $d_1! = 0$ e se la mantissa $\in [0, 1]$, la rappresentazione in base é **normalizzata**.
 - La normalizzazione fornisce un'approssimazione migliore.

Range rappresentabile

- Siano B, t, m, M, numeri interi tali che $B \ge 2, t \ge 1, m > 0, M > 0$.
- Si definisce l'insieme dei **numeri di macchina** in base B con t cifre significative l'insieme:

$$F(B,t,m,M) = \{0\} \cup \{x \in R : x = sgn(x)B^p \sum_{i=1}^t d_i B^{-i}, 0 \le d_i < B, i = 1,2,...,t, d_1 \ne 0, -m \le p \le M\}$$

- Dato che lo zero non è rappresentabile, deve essere aggiunto esplicitamente.
 - Lo zero viene rappresentato con mantissa nulla e caratteristica p = -m.
- Un numero di macchina $x \neq 0$ viene denotato con:

$$x = \pm (.d_1 d_2 ... d_t) B^p$$

Figure 1: Rappresentazione numeri reali

- Se x non appartiene a F(B, t, m, M), si pone il problema di associare un x' adeguato a x. Si presentano due casi:
 - $-p \notin [-m, M]$: overflow ed underflow.
 - $-p \in [-m, M], p \notin F$: troncamento ed arrotondamento.

Overflow e underflow

- L'**overflow** si verifica quando p > M.
 - In tal caso, x non è definita. (NaN)
- L'underflow si verifica quando p < -m.
 - In tal caso, x è uguale a zero.

Troncamento ed arrotondamento

- Troncamento di x alla t-esima cifra: $x' = trn(x) = B^p \sum_{i=1}^t d_i B^{-i}$.
- Arrotondamento di x alla t-esima cifra: $x' = arr(x) = B^p trn(\sum_{i=1}^{t+1} d_i B^{-i} + \frac{1}{2} B^{-t}).$
 - Può verificarsi **overflow**.

Errori

Definizioni

- La quantità u, è detta **precisione di macchina**.
- L'errore x' x è detto errore di rappresentazione.

Errore assoluto e relativo

- Errore commesso nel rappresentare $x \neq 0$:
 - -x'-x: errore assoluto.
 - $-\frac{x'-x}{x}$: errore relativo.

Precisione di macchina

- Condizioni:
 - Non si presenta overflow.
 - $-x = B^p \sum_{i=1}^{\infty} d_i B^{-i}.$
- Maggiorazione errore relativo:
 - $u > \left| \frac{x' x}{x} \right|.$
 - $u > \left| \frac{x' x}{x'} \right|.$
- Quantità u:
 - Se $x' = trn(x), u = B^{1-t}$.
 - Se $x' = arr(x), u = \frac{1}{2}B^{1-t}$.

Amplificazione degli errori

• Avendo $x_1, x_2, ..., x_n$, volendo calcolare $y_1, y_2, ..., y_n$ tramite $f(x), f: D \to \mathbb{R}^n$, ci sono due tipi di errori.

Errore inerente

- Causato dal condizionamento delle x.
- $x_p = x$ perturbate, $x_r = x$ reali.

• Errori $\varepsilon x \in \varepsilon y$.

$$-\varepsilon x = \frac{x_p - x_r}{x_r}$$
.

$$- \varepsilon y = \frac{|f(x_p)| - |f(x_r)|}{|f(x_r)|}.$$

– Se $\varepsilon x >> \varepsilon y$ allora i dati sono malcondizionati.

Errore aritmetico

- Riguarda le operazioni +, -, *, /.
- Definiamo $x = x(1 + \varepsilon x)$ e $y = y(1 + \varepsilon y)$.
- Moltiplicazione:

$$-xy = x(1+\varepsilon x)y(1+\varepsilon y).$$
$$xy \simeq 1 + \varepsilon x + \varepsilon y.$$

• Divisione:

$$-x/y \simeq 1 + \varepsilon x - \varepsilon y$$
.

• Somma:

$$-x+y \simeq (x+y)(1+\frac{x\varepsilon x}{x+y}+\frac{y\varepsilon y}{x+y}).$$

• Sottrazione:

$$-x-y \simeq (x-y)(1+\frac{x\varepsilon x}{x+y}-\frac{y\varepsilon y}{x+y}).$$

Norme

• "Misura della grandezza" di una matrice o vettore.

Norme vettoriali

• $||.||: \mathbb{C}^n \to \mathbb{R}$.

Tre proprietà

1. ||x|| > 0 per $\forall x \in \mathbb{C}^n$, ||x|| = 0 solo per x = 0.

2.
$$||\alpha x|| = |\alpha|||x||$$
 per $\alpha \in \mathbb{R}, \alpha \neq 0$.

3. $||x+y|| \le ||x|| + ||y||$. (Disuguaglianza triangolare.)

Formule

- $||x||_1 = \sum_{i=1}^n |x_i|$.
- $||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n (x_i)^2}$.
- $||x||_{\infty} = max_{i=1}^n |x_i|$.

Equivalenza topologica

- $\forall ||.||_*, ||.||_{**} \exists \alpha, \beta \in \mathbb{R}, 0 \leq \alpha \leq \beta : \forall x \in \mathbb{C}^n \text{ allora } \alpha ||x||_* \leq ||x||_{**} \leq \beta ||x||_*.$
 - Le norme si limitano a vicenda.

Norme matriciali

• $||.||: \mathbb{C}^{n\times m} \to \mathbb{R}.$

Quattro proprietà

- 1. ||A|| > 0 per $\forall A \in \mathbb{C}^{n \times m}$, ||A|| = 0 solo per A = 0.
- 2. $||\alpha A|| = |\alpha|||A||$ per $\alpha \in \mathbb{R}, \alpha \neq 0$.
- 3. $||A + B|| \le ||A|| + ||B||$.
- 4. $||AB|| \le ||A||||B||$.

Norma indotta

- Dato che la norma vettoriale è una funzione continua...
 - \dots allora $\{x \in \mathbb{R}^n : ||x|| = 0\}$ è un insieme chiuso.
 - * Insieme chiuso: il bordo dell'insieme appartiene all'insieme stesso.
- Dato che $\exists \alpha : ||x||_{\infty} \leq \alpha ||x||$ (per l'equivalenza topologica)...
 - $-\ldots$ cioè $\max_{i=1,\ldots,n}|x_i|\leq \alpha\ldots$
 - ...allora l'insieme è anche limitato.
- In un insieme chiuso e limitato è possibile trovare un minimo ed un massimo.

- Quindi $\exists max_{||x||=1} ||Ax||$.
- Dato $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n$ e data una norma ||.||...
 - $-\dots$ allora $\exists ||A|| = \max_{||x||=1} ||Ax||$ ed è detta **norma indotta**.

Formule

- $||A||_1 = \max_{j \in [1,n]} \sum_{i=1}^n |a_{ij}|.$
- $||A||_2 = \sqrt{\rho(A^T A)}$. (Calcolo molto oneroso.)
- $||A||_F = \sqrt{\sum_{i=1}^n (\sum_{j=1}^n (a_{ij})^2)}$. (Approssima la norma 2.)
- $||A||_{\infty} = \max_{i \in [1,n]} \sum_{j=1}^{n} |a_{ij}|.$

Sistemi lineari

• $Ax = b, A \in \mathbb{R}^{m \times n}$.

$$\begin{bmatrix} a_{11}x_1 & a_{12}x_2 & \dots & a_{1n}x_n \\ a_{21}x_1 & a_{22}x_2 & \dots & a_{2n}x_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 & a_{m2}x_2 & \dots & a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Relazione tra rango e soluzioni

- Se $r(A) \neq r(A|b) \rightarrow$ non ci sono soluzioni.
- Se $r(A) = r(A|b) \rightarrow \dots$
 - $-\ldots$ e $n=r\to$ una sola soluzione.
 - ...e $n > r \to \infty^{(n-r)}$ soluzioni.
 - (Teorema di Rouche-Capelli.)

Metodi di risoluzione

Metodi diretti

- Risolvono i sistemi tramite una fattorizzazione LU e la backward/forward substitution.
- Metodi per la fattorizzazione LU:
 - Metodo di Gauss, metodo di Cholesky.

Metodi indiretti

- Risolvono i sistemi partendo da un x arbitraria, avvicinandosi alla soluzione reale con ogni iterazione.
 - Metodo di **Jacobi**, metodo di **Gauss-Seidel**.

Condizionamento

- 1. Perturbiamo b, ottenendo δb . Avremo quindi una perturbazione δx .
- 2. Da Ax = b, otteniamo $A(x + \delta x) = b + \delta b$.
- 3. $Ax + A\delta x = b + \delta b$.
- 4. Ax = b, quindi $A\delta x = \delta b$.
- 5. Esplicitiamo δx : $\delta x = A^{-1}\delta b$.
- 6. (1) Applichiamo la norma ed una delle sue proprietà: $||\delta x|| = ||A^{-1}\delta b|| \le ||A^{-1}|| ||\delta b||$.
- 7. (2) Applichiamo la norma a Ax = b: $||b|| = ||Ax|| \le ||A||||x||$.
- 8. Mettiamo in relazione 1 e 2: $\frac{||\delta x||}{||x||} \le ||A|| ||A^{-1}|| \frac{||\delta b||}{||b||}$.
- $\frac{||\delta x||}{||x||} = \varepsilon x$ è la perturbazione indotta sul vettore x.
- $\frac{||\delta b||}{||b||} = \varepsilon b$ è la perturbazione di b.
- $||A||||A^{-1}|| = \mu(A)$ è detto indice di condizionamento.
- Quindi: $\varepsilon x \leq \mu(A)\varepsilon b$.

Fattorizzazione LU

- Con $A = \mathbb{R}^{n \times n}$, vogliamo A = LU.
 - -L è una matrice **triangolare inferiore** i valori sulla diagonale sono tutti 1.
 - -U è una matrice **triangolare superiore** i valori sulla diagonale sono $\neq 0$.

Stabilità

• Un algoritmo per la fattorizzazione LU si dice **stabile** se: $\exists \alpha, \beta \ (indipendenti \ da \ n, \ a_{ij})$: $|l_{ij}| < \alpha \land |u_{ij}| < \beta$.

Formula generale

• $a_{ij} = \sum_{k=1}^{\min(i,j)} l_{ik} u_{kj}$.

Metodo compatto

• Procedendo per righe, si ha:

(3) $a_{ij} = \sum_{k=1}^{i-1} l_{ik} u_{kj} + u_{ij}, (j = i, ..., n), (i = 1, ..., n)$

(4) $a_{ij} = \sum_{k=1}^{j-1} l_{ik} u_{kj} + l_{ij} u_{jj}, (j = 1, ..., i-1), (i = 2, ..., n)$

• Dalle (3) e (4) si ha:

(5) $u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, (j = i, ..., n), (i = 1, ..., n)$

(6) $l_{ij} = \frac{1}{u_{jj}} [a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}], (j = 1, ..., i-1), (i = 2, ..., n)$

• Il calcolo procede così:

– Per i = 1, dalla (5) si ha $u_{1j} = a_{1j}, (j = 1, ..., n);$

- Per i = 2, dalla (6) si ha $l_{21} = a_{21}/u_{11}$ e dalla (5) $u_{2j} = a_{2j} l_{21}u_{1j}$, (j = 2, ..., n);
- Per i = n, dalla (6) si possono calcolare gli l_{n1} , (j = 1, ..., n 1), utilizzando gli l_{nk} , (k < j) della stessa riga già calcolati e gli u_{kj} calcolati precedentemente. Dala (5) si può calcolare u_{nn} .

Figure 2: Calcolo tecnica compatta.

Figure 3: Calcolo tecnica di Crout.

Metodo di Cholesky

- Complessità: $n^3/6 = O(n^3)$.
- Ci fornisce la matrice L.
- Funziona solo se:
 - A è quadrata.
 - A è simmetrica.
 - -A è definita positiva.
 - * Una matrice è **definita positiva** quando soddisfa il **criterio di Sylvester**: tutte le sottomatrici quadrate superiori sinistre hanno determinante positivo (i minori principali secondo l'ordine da 1 a n).

Procedimento

1. Dato che A è simmetrica, $DD^{-1} = I$.

2.
$$A = LU = LIU = LD D^{-1} U$$
.

3. Definiamo $D^{-1}U = Y$. Quindi, A = LDY.

4. Dato che A è simmetrica, $L^T = Y$ e $L = Y^T$.

5. $L^T = Y = D^{-1}U$. Esplicitiamo U: $U = DL^T$.

6. $A = LU \rightarrow A = LL^T$.

Formule

$$l_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} (l_{jk})^2}$$

$$l_{ij} = \frac{1}{l_{jj}} (a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk})$$

Metodo di eliminazione di Gauss

• Complessità: $n^3/3 = O(n^3)$.

• Ci fornisce la matrice U.

Tre operazioni

1. Scambio di righe.

2. Operazioni elementari sulle equazioni.

3. Combinazione lineare. (Somma riga a multiplo di altra riga.)

Algorithmo

1. Portare alla prima riga quella che ha il minor numero di zeri.

2. Far diventare zero gli elementi delle colonne sottostanti il primo elemento $\neq 0$ della riga precedente (pivot).

3. Continuare finchè non si ottiene una matrice a scalini.

Formule

- Con $k \in [1, n]$ e $i \in [k + 1, n]$.
- Fattore di annullamento: $m_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$.

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)}, & \text{se } i \le k \\ a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)}, & \text{se } i > k \end{cases}$$

$$b_i^{(k+1)} = \begin{cases} b_i^{(k)}, & \text{se } i \le k \\ b_i^{(k)} - m_{ik} b_k^{(k)}, & \text{se } i > k \end{cases}$$

Metodo di Gauss-Jordan

- Complessità: $2/3n^3 = O(n^3)$.
- Serve a calcolare A^{-1} .

Algoritmo

- 1. Orlare A con I.
- 2. Usare le operazioni di Gauss per annullare la sottodiagonale di A.
- 3. Annulliamo la sopradiagonale di A.
- 4. Dividiamo ogni riga per il pivot (valore della diagonale principale).
- 5. Avremo a sinistra I ed a destra $E = A^{-1}$.

Gauss con perno massimo

- Per ogni riga, prende sempre il **valore massimo**.
- La stabilità comporta che $\beta = 2^{n-1} \max_{i,j \in [1,n]} |a_{ij}|$. Dato che questa formula dipende da n, questa versione di Gauss è **stabile in senso debole**.

Forward/backward substitution

• Dopo aver scomposto una matrice in LU, per risolvere il sistema lineare ed ottenere x dobbiamo applicare la **forward** (nel caso della L) o **backward** (nel caso della U) substitution.

Formule

• L'unica cosa che varia tra le due formule è l'indice della sommatoria.

Forward substitution

$$x_i = \frac{1}{a_{ii}}(b_i - \sum_{j=1}^{i-1} (a_{ij}x_j))$$

Backward substitution

$$x_i = \frac{1}{a_{ii}}(b_i - \sum_{j=i+1}^n (a_{ij}x_j))$$

Risoluzione sistemi tridiagonali

- Ax = b.
- I sistemi tridiagonali possono essere risolti più rapidamente.
- Il vettore b è la diagonale principale. I vettori a e c lo circondano.

$$\begin{bmatrix} b_1 & c_1 & 0 & 0 & 0 \\ a_1 & b_2 & c_2 & 0 & 0 \\ 0 & a_2 & b_3 & c_3 & 0 \\ 0 & 0 & a_3 & b_4 & c_4 \\ 0 & 0 & 0 & a_4 & b_5 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \end{bmatrix}$$

Procedimento

- Definiamo p come vettore della diagonale temporanea.
- Definiamo s come vettore della soluzione temporanea.
- Con $p_1 = b_1$, $s_1 = d_1$, e i = 2, ..., n.
- Utilizziamo una specializzazione del metodo di Gauss:

$$-m_{ik}=q=a_i/p_{i-1}.$$

$$- p_i = b_i - qc_i.$$

$$- s_i = d_i - qs_{i-1}.$$

• Terminiamo con la backward substitution:

$$-x_i = (s_i - c_i x_{i+1})/p_i.$$

Metodi iterativi

- Dato Ax = b, esprimiamo A = M N con $det M \neq 0$. Quindi, (M N)x = b.
- Esplicitiamo x: $x = M^{-1}(Nx + b) = M^{-1}Nx + M^{-1}b$.

Tecnica iterativa generale

- Si comincia con un $x^{(0)}$ arbitrario. (Stima iniziale.)
- $x^{(k)} = M^{-1}Nx^{(k-1)} + M^{-1}b$.
- Definiamo la matrice di iterazione $T = M^{-1}N$.

$$-x^{(k)} = Tx^{(k-1)} + M^{-1}b.$$

Teorema convergenza metodo iterativo

Ipotesi

- Dati A = M N, $P = M^{-1}N$, e ||P|| < 1.
- $\lim_{k\to\infty} x^k = x^*$.
 - Dove x^* è la soluzione esatta.

Dimostrazione

- 1. Ax = b, A = M n, $P = M^{-1}N$, e $Q = M^{-1}b$.
- 2. Esplicitiamo x: $x = M^{-1}(Nx + b) = M^{-1}Nx + M^{-1}b$.
- 3. Sostituiamo con $P \in Q$: x = Px + Q.
- 4. (7) Usiamo la tecnica iterativa: $x^{(k)} = Px^{(k-1)} + Q$.
- 5. Se (per ipotesi) $\lim_{k\to\infty} x^k = x^*$, allora (@dim_itr_1) $x^* = Px^* + Q$.
- 6. Definiamo l'errore $e^{(k)} = x^* x^{(k)}$.
- 7. Mettiamo l'errore in relazione con 7 e @dim_itr_1: $e^{(k)} = x^* x^{(k)} = P(x^* x^{(k)})$.

- 8. $e^{(k)} = P^1(e^{(k-1)}).$
- 9. In generale: $e^{(k)} = P^k(e^{(0)}) = P^1(e^{(k-1)}) = P^2(e^{(k-2)}) = \dots$
- 10. Applichiamo la norma: $||e^{(k)}|| = ||P^k(e^{(0)})|| \le ||P^k||||e^{(0)}||$ (per ipotesi ||P|| < 1).
- 11. Dato che e e P sono in relazione, analizziamo i limiti. Se $\lim_{k\to\infty} ||P||^k = 0$, allora $\lim_{k\to\infty} ||e^{(k)}|| = 0$, allora $\lim_{k\to\infty} e^k = 0$.
- 12. Se $\lim_{k\to\infty} e^k = 0$, allora l'errore converge a 0.

Condizione necessaria e sufficiente di convergenza

- Se A è diagonale strettamente dominante (tutti gli elementi sulla diagonale sono maggiori di quella sulla riga), allora sia Gauss-Seidel che Jacobi convergono.
- \bullet Se A è definita positiva, Gauss-Seidel converge su Jacobi non si può dire nulla.

Metodo di Jacobi

- Complessità: $2n^2 = O(n^2)$.
- A = M N, M = D, N = -(E + F), A = D + E + F.
- $x^{(k)} = M^{-1}Nx^{(k-1)} + M^{-1}b$.
- $x^{(k)} = -D^{-1}(E F)x^{(k-1)} + D^{-1}b$.
 - $-D^{-1}(E+F)$ è detta matrice di iterazione T_j .
- $x_i^{(k)} = \frac{1}{a_{ii}} (\sum_{j=1, j \neq i}^n -a_{ij} x_j^{(k-1)} + b_i).$

Metodo di Gauss-Seidel

- Complessità: $2n^2 = O(n^2)$. Usa meno memoria del metodo di Jacobi (conserva solo la metà delle soluzioni precedenti).
- A = M N, M = E + D, N = -F.
- $x^{(k)} = -(E+D)^{-1}Fx^{(k-1)} + (E+D)^{-1}b$.
 - Dove $-(E+D)^{-1}F$ è la matrice di iterazione.
- $x^{(k)} = \frac{1}{a_{ij}} (\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} \sum_{j=i+1}^n a_{ij}^{(k-1)} + b_i)$

Criteri di arresto

- Due possibili scelte, fissato un valore ε .
 - 1. $||x^{(k)} x^{(k-1)}|| \le \varepsilon$.
 - $2. \ \frac{||x^{(k)} x^{(k-1)}||}{||x^{(k)}||} \le \varepsilon.$

Interpolazione

- Data una funzione f(x) ed n nodi o $punti\ base\ f(x_1)=y_1, f(x_2)=y_2,...,f(x_n)=y_n,$ vogliamo approssimare f con g.
- Fissiamo uno spazio di infinite funzioni appartenenti alla classe n+1, definite dalla seguente base:
 - $-\Phi_j(x), j = 0, ..., n.$
 - Tali funzioni sono definite su [a, b] e sono **linearmente indipendenti**.
- Formula generatrice dello spazio di funzioni:
 - $-\sum_{j=0}^{n} c_j \Phi_j(x).$
- Bisogna determinare $g(x) = \sum_{j=0}^{n} \alpha_j \Phi_j(x)$, dove $g(x) = f(x), \forall x \in x_1, ..., x_n$.
- Tramite g determineremo un *polinomio di interpolazione** della forma: $p(x) = a_0 x^n + a_1 x^{(n-1)} + ... + a_{n-1} x + a_n$.

Interpolazione polinomiale

Base dei monomi

• $\Phi_j(x) = x^j$.

Polinomio finale

- $g(x) = \sum_{j=0}^{n} f(x_j)x^j$.
- $P_n(x) = c_0 + c_1 x_1 + c_2 x_2^2 + \dots + c_n x_n^n$.

$$\begin{cases} c_0 + c_1 x_1 + c_2 x_1^2 + \dots + c_n x_1^n = y_1 \\ c_0 + c_1 x_2 + c_2 x_2^2 + \dots + c_n x_2^n = y_2 \\ \vdots \\ c_0 + c_1 x_n + c_2 x_n^2 + \dots + c_n x_n^n = y_n \end{cases}$$

• I coefficienti del sistema lineare ottenuto tramite l'interpolazione polinomiale sono quelli della matrice di Vandermonde.

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$

Interpolazione di Lagrange

• Ha complessità $O(n^2)$, ma l'aggiunta di un punto comporta la ricalcolazione totale della produttoria.

Base di Lagrange

•
$$L_j(x) = \prod_{i=0, i=j}^n \frac{x-x_i}{x_i-x_i}, j=0,...,n.$$

Polinomio finale

•
$$P_n(x) = \sum_{j=0}^n f(x_j) L_j(x_j)$$
.

Interpolazione di Newton

• Ha complessità $O(n^2)$, ma l'aggiunta di un punto comporta poche operazioni in O(n).

Base delle potenze traslate

•
$$\pi_n(x) = 1, (x - x_0), (x - x_0)(x - x_1), (x - x_0)...(x - x_{n-1}).$$

Tabella delle differenze divise

• Differenza divisa di ordine k.

- Per
$$k = 0$$
, $f[x_0] = f(x)$.
- Per $k = 1$, $f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0}$.
- Per $k = 2, ..., n + 1$, $f[x_0, x_1, ..., x_{k-2}, x_{k-1}, x] = \frac{f[x_0, x_1, ..., x_{k-2}, x_{k-1}] - f[x_1, x_2, ..., x_{k-1}, x]}{x - x k - 1}$.

				$f[x_0, x_1, x_2, x]$	
x_0	$f[x_0]$	2 1		$f[x_0, x_1, x_2, x_3]$	
x_1	$f[x_1]$	$f[x_0, x_1]$			
x_2	$f[x_2]$	$f[x_0,x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f[x_3]$	$f[x_0, x_3]$	$f[x_0, x_1, x_3]$	$f[x_0, x_1, x_2, x_3]$	
	٠.				
x_n	$f[x_n]$	$f[x_0,x_n]$	$f[x_0, x_1, x_n]$		$f[x_0,x_1,\ldots,x_{n-1},x_n]$

Figure 4: Tabella delle differenze divise.

Polinomio di Newton

•
$$p(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2].$$

Dimostrazione errori con punti equidistanti

• Definiamo l'errore come r(x) = f(x) - p(x).

$$- r(x_i) = 0, \forall x_i \in x_1, ..., x_n.$$

Ipotesi

• Se f(x) è derivabile n+1 volte in [a,b], dove a è il minimo x_i e b è il massimo x_i ...

- ...allora
$$r(x) = \pi_n(x) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$
.

- Inoltre,
$$s(x) = \frac{r(x)}{\pi_n(x)}$$
.

 $\ast\,\,s$ è la superficie.

Dimostrazione

- Con a < x < b e $x \neq x_i$, definiamo $v(y) = r(y) s(x)\pi_n(y)$.
 - -vè derivabile n+1 volte.
 - -v si annulla negli x_n .
- Allora, $v^{(n+1)}$ si annulla in ξ .
- $0 = v^{(n+1)}(\xi) = r^{(n+1)}(\xi) (n+1)!s(x) = f^{(n+1)}(\xi) (n+1)!s(x).$

Fenomeno di Runge

• Se si verifica un errore molto grande agli estremi dell'intervallo [a,b] (fenomeno di Runge) che oscilla tra i punti, esso si può limitare usando due tecniche.

Nodi di Chebyshev

- Nell'intervallo [-1, 1]:
 - $-x_i = \cos(\frac{2i-1}{2n}\pi).$
- Nell'intervallo [a, b]:

$$-x_i = \frac{a+b}{2} + \frac{b-a}{2}x_i.$$

${\bf Interpolazione\ spline}$

• Divide gli intervalli in sottointervalli più piccoli con ognuno il suo polinomio interpolatore.

Integrazione numerica

• Vogliamo approssimare $S = \int_a^b f(x)dx = F(b) - F(a)$.

Formule di quadratura

- $S_n = \sum_{i=0}^n w_i f(x_i)$.
- $r_n = S S_n$ (errore di quadratura).

Tecnica per ricavare formule di quadratura

- $\int_a^b p(x)dx$.
- $r_n = \int_a^b f(x)dx \int_a^b p(x)dx = \int_a^b [f(x) p(x)]dx$.
- Ricaviamo p(x) con Lagrange: $p(x) = \sum_{i=0}^n L_i(x) f(x_i) = \sum_{i=0}^n L_i(x) y_i = \sum_{i=0}^n (\int_a^b L_i(x) dx) y_i$.
 - Con w_i indichiamo i pesi.
- Se i nodi sono equidistanti, allora $x = x_0 + th$.
 - Definiamo l'incremento con h.

Metodo di Newton-Cotes

• Per risolvere l'integrale cambiamo variabile. Parliamo di metodo di Newton-Cotes.

$$-dx = hdt, x_i = x_0 + jh, x_i = x_0 + ih.$$

$$-\sum_{i=0}^{n} y_i \int_a^b (\prod_{j=1, j\neq i}^n \frac{x_0 + th - x_0 - jh}{x_0 + ih - x_0 - jh} h dt).$$

$$-\sum_{i=0}^{n} y_i h \int_a^b \left(\prod_{j=1, j\neq i}^n \frac{t+h}{i-j} dt\right).$$

•
$$S_n = h \sum_{i=0}^n \alpha_i f(x_i)$$
.

– Dove
$$\alpha = \prod_{j=1, j \neq i}^{n} \frac{t+h}{i-j} dt$$
.

Regola dei Trapezi

•
$$\int_a^b f(x)dx = \frac{b-a}{2}(f(a) + f(b)).$$

Versione composita

•
$$\int_a^b f(x)dx = \frac{b-a}{2n}(f(a) + \sum_{i=1}^{2n} f(x_i) + f(b)).$$

Regola di Cavalieri-Simpson

•
$$\int_a^b f(x)dx = \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b)).$$

Versione composita

•
$$\int_a^b f(x)dx = \frac{b-a}{6n}(f(a) + 4\sum_{i=1}^{2n,2} f(x_i) + 2\sum_{i=2}^{2n-1,2} f(b)).$$

Errore quadratura

- $f(x) \in C^S$.
- $r_n = S_n \int_a^b f(x) dx = \Upsilon_n h^{(s+1)} \frac{f^S(\xi)}{s!}$.
 - Se n è pari, S = n + 2 e $\Upsilon_n = \int_0^n t \pi_n(t) dt$.
 - Se n è dispari, S = n + 1 e $\Upsilon_n = \int_0^n t \pi_n(t) dt$.