# CRAYFISH DISTRIBUTION AND SPECIES COMPOSITION IN MUSKOKA AND HALIBURTON LAKES

DR 90/1

**MARCH 1990** 



Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at <a href="mailto:copyright@ontario.ca">copyright@ontario.ca</a>

## CRAYFISH DISTRIBUTION AND SPECIES COMPOSITION IN MUSKOKA AND HALILBURTON LAKES

DR 90/1

Report prepared by: R. A. Reid

S. M. David

MARCH 1990



Copyright: Queen's Printer for Ontario, 1990
This publication may be reproduced for non-commercial purposes with appropriate attribution.

ALOW

#### **ABSTRACT**

In 1988, the Biological Studies Unit of the Limnology Section initiated a monitoring programme to assess long-term trends in the composition of benthic invertebrate communities in acid-stressed soft water lakes. One of the objectives of this programme is to determine the occurrence of crayfish species, especially Orconectids, in these lakes in relation to lake chemistry particularly lake pH. This data report summarizes the biological and chemical data collected for the 12 study lakes. A detailed description of the methods of crayfish collection is also included.

#### **SOMMAIRE**

En 1988, l'Unité des études biologiques dans la Section de limnologie a commencé un programme de surveillance pour évaluer les tendances à longue échéance dans la composition de la population des invertébrés benthiques dans les lacs à eau douce qui sont affectés par les pluies acides. Ce programme a pour un de ses objectifs la détermination de la présence de l'espèce d'écrevisse, en particulier l'Orconectide, dans ces lacs en corrélation avec la chimie aquatique, surtout le pH du lac. Le présent rapport résume les données biologiques et chimiques recueillies pour les 12 lacs sous étude. On a inclu aussi une description détaillée des méthodes de collecte utilisées pour l'écrevisse.

### TABLE OF CONTENTS

|      |                                   | Page |
|------|-----------------------------------|------|
| List | of Tables, Figures and Appendices | iii  |
| 1.   | Introduction                      | 1    |
| 2.   | Methods                           | 1    |
| 3.   | Results                           | 8    |
| 4.   | References                        | 15   |

| LIST OF TA  | ARI FS            |                      |                     | Page |
|-------------|-------------------|----------------------|---------------------|------|
| LIOT OF IT  | <u>IDLLO</u>      |                      |                     |      |
| Table 1.    | Substrate types   | of site locations in | the 12 study lakes. | 3    |
| Table 2.    | Chemical data     | for the 12 study la  | ces.                | 9    |
| Table 3.    | Number of cray    | fish collected (all  | species) in the 12  |      |
|             | study lakes.      |                      |                     | 10   |
|             |                   |                      |                     |      |
| LIST OF FI  | <u>GURES</u>      |                      |                     |      |
| Figure 1.   | Location of the   | study area showin    | g the 12 lakes.     | 2    |
| Figure 2.   | Dorsal view of    | crayfish indicating  | carapace length     |      |
|             | measurement.      |                      |                     | 7    |
| Figure 3.   | Female/male ca    | atch comparison.     |                     | 11   |
| Figure 4.   | Catch per unit    | effort.              |                     | 12   |
| Figure 5.   | Areal compariso   | on traps vs. diving. |                     | 14   |
|             |                   |                      |                     |      |
| LIST OF AL  | PPENDICES         |                      |                     |      |
| Appendix 1. | Lake Morpholog    | gy and Trap Site L   | ocations            | 16   |
|             | Blue Chalk        | Delano               | Pincher             |      |
|             | Clear<br>Cradle   | Hamer<br>Harp        | Skidway<br>Westward |      |
|             | Crosson           | Plastic              | Young               |      |
| Appendix 2. | Catch Per Trap    |                      |                     | 40   |
|             | Blue Chalk        | Delano               | Pincher             |      |
|             | Clear             | Hamer                | Skidway             |      |
|             | Cradle<br>Crosson | Harp<br>Plastic      | Westward<br>Young   |      |

| Appendix 3. | Length - Frequency                        | y Histograms                        |                                         | 51 |
|-------------|-------------------------------------------|-------------------------------------|-----------------------------------------|----|
|             | Blue Chalk<br>Clear<br>Cradle<br>Crosson  | Delano<br>Hamer<br>Harp<br>Plastic  | Pincher<br>Skidway<br>Westward<br>Young |    |
| Appendix 4. | Length - Weight R                         | elationships                        |                                         | 62 |
|             | Blue Chalk<br>Cradle<br>Crosson<br>Delano | Hamer<br>Harp<br>Pincher<br>Skidway | Westward<br>Young                       |    |

#### INTRODUCTION

A monitoring program was initiated in 1988 by the Biological Studies Unit to assess the affects on benthic organisms of changes in water chemistry due to acidic deposition. Crayfish have been reported to be extremely sensitive to low pH (Malley 1980; France 1987; Berrill et al. 1985) and consequently a subcomponent of the monitoring programme was designed to assess changes in crayfish populations over time. This subcomponent was initiated with a trapping study which was designed to assess the proposed monitoring techniques and to provide an initial description of the species composition and relative abundance of the crayfish in the study lakes.

#### **METHODS**

#### Study Lakes

Six of the study lakes are located in the old Lake Algonquin basin, formed after the Wisconsin glaciation (Blue Chalk, Crosson, Hamer, Harp, Skidway, Young). The other six are in the Algonquin-Haliburton Highlands (> 340 m above sea level) (Clear, Cradle, Delano, Pincher, Plastic, Westward) (Figure 1). All of the lakes are small headwater lakes (18 to 106 ha) (Appendix 2), and all of the study lakes are located on the Precambrian Shield area of south-central Ontario where sulphate deposition is high (0.75-1.25 g m<sup>-2</sup> yr<sup>-1</sup>) (Neary, Dillon 1988).

#### Site Selection

A preliminary survey of the shallow areas of the littoral zone of each lake was conducted to locate suitable sampling sites. These sites represented three major habitat types characteristic of lakes in the region (i.e. detritus,macrophyte, and rocky) (Appendix 1). A detailed description of substrate type for each site was compiled by the divers, who divided each site into three sections according to depth (i.e. 0-2, 2-4, and 4-6 metres) (Table 1).



Table 1: Substrate types of site locations in the 12 study lakes.

|            | -                                | Site #1                       | -                               |                           | Site #2                      |                            |                                       | Site #3                    |              |
|------------|----------------------------------|-------------------------------|---------------------------------|---------------------------|------------------------------|----------------------------|---------------------------------------|----------------------------|--------------|
| Lake       | 0-2                              | Metres<br>2-4                 | 4-6                             | 0-2                       | Metres<br>2-4                | 4-6                        | 0-2                                   | Metres<br>2-4              | 4-6          |
| Blue Chalk |                                  | macrophytes'                  |                                 |                           | rocky¹                       |                            |                                       | detritus'                  |              |
|            | macrophytes<br>logs              | sand<br>mud<br>leaves<br>logs | sand<br>mud                     | sticks<br>rocks           | rocks<br>boulders            | rocks                      | silt<br>leaves<br>sticks<br>rocks     | boulders<br>logs<br>sticks | rocks        |
| Clear      |                                  | macrophytes'                  |                                 |                           | rocky'                       |                            |                                       | detritus'                  |              |
|            | sand<br>mud                      | sand<br>mud                   |                                 | rocks                     | rocks                        | rocks                      | rocks<br>mud                          | mud                        | mud          |
| Cradle     |                                  | rocky'                        |                                 |                           | macrophytes'                 |                            |                                       | detritus'                  |              |
|            | sand<br>mud<br>ledge             | rocks                         | rocks                           | sand<br>rocks             | sand<br>macrophytes<br>rocks | rocks<br>sand<br>mud       | ledge<br>rocks                        | boulders                   | boulders     |
| Crosson    |                                  | rocky'                        |                                 |                           | macrophytes <sup>1</sup>     | ****                       |                                       | detritus'                  |              |
|            | stones<br>ledges                 | boulder<br>pile               | mud<br>a few boulders<br>stones | sticks<br>rocks           | scattered rocks              | mud<br>sand<br>a few rocks | sticks<br>leave litter<br>small rocks | soft<br>silt covered       |              |
| Delano     |                                  | macrophytes'                  |                                 |                           | detritus                     |                            |                                       | rocky'                     |              |
|            | macrophytes                      | sandy<br>mud                  |                                 | logs<br>ledge             | ledge<br>sand<br>rocks       | mud                        | logs<br>rocks                         | boulders<br>rocks<br>sand  | sandy<br>mud |
| lamer      |                                  | macrophytes'                  |                                 |                           | rocky                        |                            |                                       | detritus'                  |              |
|            | rocks<br>logs<br>detritus<br>mud | mud                           | deep mud                        | sticks<br>detritus<br>mud | mud                          | mud                        | ledge<br>stones<br>mud                | mud                        | mud          |

<sup>&#</sup>x27; Substrate types assigned by the trapping crew.

|                       |                                              | Site #1                            |                    | -                                             | Site #2                          |                    |                                               | Site #3             |                    |
|-----------------------|----------------------------------------------|------------------------------------|--------------------|-----------------------------------------------|----------------------------------|--------------------|-----------------------------------------------|---------------------|--------------------|
| Lake                  | 0-2                                          | Metres<br>2-4                      | 4-6                | 0-2                                           | Metres<br>2-4                    | 4-6                | 0-2                                           | Metres<br>2-4       | 4-6                |
| Harp                  |                                              | macrophytes'                       |                    |                                               | rocky¹                           |                    |                                               | detritus¹           |                    |
|                       | lily pads<br>leaves<br>sticks<br>sand<br>mud | sand<br>mud                        | mud<br>silt        | rocks<br>boulders                             | sand<br>mud                      |                    | logs<br>sticks<br>leaves<br>rocks<br>boulders | rocks<br>boulders   | rocks<br>boulders  |
| Pincher<br>(no dive)² |                                              | detritus'                          |                    |                                               | macrophytes'                     |                    |                                               | rocky¹              |                    |
| Skidway               |                                              | macrophytes'                       |                    |                                               | rocky¹                           |                    |                                               | detritus'           |                    |
|                       | sticks<br>log<br>detritus<br>macrophytes     | mud<br>sand<br>macrophytes         | mud<br>macrophytes | sand<br>silt<br>logs<br>slime                 | mud<br>sand<br>macrophytes       | mud<br>macrophytes | macrophytes                                   | sand<br>macrophytes | mud<br>macrophytes |
| Westward              |                                              | macrophytes'                       |                    |                                               | rocky¹                           |                    |                                               | detritus'           |                    |
|                       | macrophytes<br>scattered<br>rocks on<br>sand | scattered<br>rocks<br>sandy<br>mud | sandy<br>mud       | sand<br>logs<br>boulders<br>on sand           | boulders                         | ledge<br>boulders  | sand<br>macrophytes<br>a few rocks            | sand<br>a few rocks | sandy<br>mud       |
| Young                 |                                              | rocky'                             |                    |                                               | macrophytes'                     |                    |                                               | detritus'           |                    |
|                       | cobbles<br>rocks<br>covering<br>sand         | sand                               | rocks on<br>sand   | short<br>macrophytes<br>rocks on sand<br>sand | rocks and<br>boulders<br>on sand | sandy<br>mud       | sticks<br>detritus<br>and logs                | ledge<br>(no rocks) | ledge<br>few rocks |
|                       |                                              |                                    |                    |                                               | on sand                          |                    | and logs                                      |                     |                    |

Detailed descriptions (0-2, 2-4, 4-6 m) compiled by divers.

<sup>&</sup>lt;sup>1</sup> Substrate types assigned by the trapping crew.
<sup>2</sup> Due to adverse weather conditions, flights were unavailable to the divers.

#### Water Sample Collection

Water samples were taken for chemical analysis at each of the three trap sites. In addition, a mid-lake sample was collected. A composite sample (surface - 1 m) was taken at the trap site, and a composite sample (surface - 5 m) at the mid-lake locations.

Samples were collected with a peristaltic pump through tygon tubing. Composites were obtained by pumping the water into an 8 L polyethylene carboy, while the tubing was lowered to the desired depth and returned to the surface. The water was filtered through  $400 \mu m$  mesh. Composite water was then poured into appropriate bottles for analysis (Table 2).

#### Crayfish Survey

Crayfish were trapped in standard wire-mesh minnow traps with openings enlarged to 5 cm. Traps were baited with a small (2 cm x 5 cm) perforated plastic vial filled with fish flavoured canned cat food (Somers 1986). Traps were set in the late afternoon and retrieved early the following morning. The sequence in which the sites were set and pulled was randomized to prevent bias in the trapping period. Traps were marked with 2 L plastic bottles attached to a measured length of rope. At each of the three sites 10 trap lines were set perpendicular to the shore, with a trap set at 1 m depth intervals from 1 to 6 m. Each of the 10 trap lines were set 5 m apart.

Each of the 12 study lakes was surveyed one night during July or August, 1988.

Analysis group as outlined in the Handbook for Sample Submission, Dorset Research Centre.

#### Crayfish Measurements

For each trap the species, number of individuals of each species and the sex, dorsal carapace length and live wet-weight of each individual was measured and recorded. The sex of each individual was categorized into three main groups - sexually active males (form I), sexually inactive males (form II) and females. The dorsal carapace lengths measured with calipers is the distance from the tip of the acumen to the posterior margin of the cephalothorax (Figure 2). The live weight data was determined with a battery operated portable scales (Ohaus; Port-O-Gram). Weights were not recorded for crayfish missing chelae, or for any crayfish caught in Clear Lake (equipment malfunction). Weights and lengths were recorded for only 526, 299 and 507 crayfish in Blue Chalk, Cradle and Westward respectively.

#### Site Assessment by Divers

Two scuba divers dove each of the three sites in the 11 lakes and consisted of two transects from 0.5 m to 6.5 m on each of the three sites. The search time was adjusted depending on the lake bottom, but the average transect took 30 minutes. The animals caught within each 2 m depth interval were recorded separately. The animals caught were identified to species, sexed and carapace length measured.



Figure 2: Dorsal view of the crayfish, indicating the measurement used for carapace length.

#### RESULTS

#### Lake Chemistry

The chemistry data (Table 2) represents a mid-lake 0-5 m composite sample taken during the trapping survey. The survey lakes have a range for pH (5.33 to 6.82); Ca (1.43 to 3.08 mg.L<sup>-1</sup>); alkalinity (-0.21 to 4.00 mg.L<sup>-1</sup> as CaCO<sub>3</sub>).

#### Crayfish Trap Catch Data

Three species of crayfish were present in the twelve study lakes: <u>Cambarus bartoni</u>, <u>Orconectes propinquus</u> and <u>Orconectes virilis</u> (Table 3). Crayfish were found in all lakes with the exception of Plastic Lake. No crayfish have been found in Plastic Lake since 1981 (Nick Collins, per. com.). Two lakes had all three species (Blue Chalk and Delano), four had two species and five had one species.

Several crayfish researchers have reported a sex bias in trap catch data. Capelli (1975, 1982) and Davies (1989) found the catch of males to exceed that of females.

Overall, this study indicated the greatest male bias for the species  $\underline{O}$ . virilis (58%  $\sigma$ : 42%  $\circ$ ), and a lesser bias, on average, for  $\underline{C}$ . bartoni (51%  $\sigma$ : 49%  $\circ$ ). For  $\underline{O}$ . propinguus there was a slight bias towards females (51%  $\circ$ : 49%  $\sigma$ ) (Figure 3).

The mean number of crayfish caught per traps per night ranged from 0 (Plastic Lake) to 12.7 (Cradle Lake) (Figure 4).

The catch per trap data of total number of crayfish caught and species composition varied both among the sites on each lake and among all of the lakes surveyed. Two factors which may contribute to the variation were the substrate type (rocks, macrophyte or detritus) and trap depth (1-6 m) (Appendix 2).

Table 2: Chemical and physical data for the twelve study lakes.

| Parameter                              |            | Blue<br>Chalk | Clear  | Cradle | Crosson | Delano | Hamer  | Harp   | Pincher | Plastic | Skidway | Westward | Young |
|----------------------------------------|------------|---------------|--------|--------|---------|--------|--------|--------|---------|---------|---------|----------|-------|
| Latitude                               |            | 45*12'        | 45*11' | 45*28' | 45°05'  | 45*31' | 45°14' | 45*231 | 45*341  | 45*11'  | 45*121  | 45*291   | 45*13 |
| Long i tude                            |            | 78*561        | 78*431 | 78*35  | 79°02'  | 78*361 | 79°48' | 79°07' | 78*51'  | 78*501  | 79°52'  | 78°47'   | 79°33 |
| Area                                   | (ha)       | 52.4          | 88.4   | 17.9   | 56.7    | 23.9   | 35.2   | 71.4   | 42.1    | 32.1    | 18.5    | 63.3     | 105.9 |
| Elevation                              | (m)        | 336           | 369    | 472.4  | 312     | 442    | 221    | 328.6  | 510.5   | 376.4   | 221.0   | 429.0    | 251.5 |
| Mean Depth                             | (m)        | 8.5           | 12.4   | 12.44  | 9.2     | 7.1    | 3.3    | 13.32  | 6.06    | 7.9     | 2.89    | 20.5     | 12.0  |
| Maximum Depth                          | (m)        | 23.0          | 33.0   | 33.3   | 25.0    | 18.6   | 8.5    | 37.5   | 15.5    | 16.3    | 7.8     | 44.0     | 21.1  |
| Alkalinity                             | (as CaCO,) | 4.00          | 0.077  | 0.24   | 0.52    | 2.43   | 0.63   | 3.66   | -0.13   | 0.14    | -0.21   | 1.79     | 4.69  |
| Ca mg/L                                |            | 2.75          | 2.42   | 1.62   | 2.35    | 2.48   | 3.08   | 3.00   | 1.48    | 1.88    | 1.43    | 1.88     | 2.60  |
| Cl mg/L                                |            | 0.60          | 0.46   | 0.34   | 0.50    | 0.30   | 1.70   | 0.93   | 0.30    | 0.75    | 0.30    | 0.21     | 0.36  |
| COND25 µmhos/cm                        |            | 29.2          | 25.8   | 21.9   | 30.2    | 30.8   | 31.1   | 34.2   | 21.5    | 21.8    | 20.3    | 23.6     | 30.6  |
| DIC mg/L                               |            | 1.12          | 0.25   | 0.25   | 0.32    | 0.66   | 0.34   | 0.99   | 0.16    | 1.16    | 0.36    | 0.58     | 0.52  |
| DOC mg/L                               | (as C)     | 1.90          | 1.77   | 1.67   | 4.03    | 4.60   | 7.23   | 3.67   | 2.17    | 2.18    | 3.17    | 1.87     | 3.47  |
| F μg/L                                 |            | 28.1          | 50.8   | 41.0   | 41.9    | 44.2   | 43.8   | 31.1   | 43.5    | 50.7    | 52.2    | 37.0     | 39.8  |
| K mg/L                                 |            | 0.46          | 0.36   | 0.30   | 0.32    | 0.42   | 0.45   | 0.56   | 0.35    | 0.21    | 0.22    | 0.35     | 0.58  |
| Mg mg/L                                |            | 0.86          | 0.57   | 0.47   | 0.67    | 0.90   | 0.69   | 0.95   | 0.44    | 0.49    | 0.46    | 0.55     | 0.74  |
| Na mg/L                                |            | 0.88          | 0.50   | 0.45   | 0.66    | 0.78   | 0.87   | 1.28   | 0.55    | 0.51    | 0.58    | 0.52     | 0.93  |
| NH <sub>4</sub> μg/L                   | (as N)     | 9.0           | 6.3    | 10.0   | 28.3    | 11.0   | 4.3    | 2.3    | 7.3     | 9.5     | 8.3     | 7.3      | 9.0   |
| NO <sub>2</sub> + NO <sub>3</sub> μg/L | (as N)     | 1.5           | 1.7    | 4.3    | 2.0     | 6.0    | 2.3    | 2.0    | 20.7    | 5.8     | 3.3     | 4.0      | 5.7   |
| TKN μg/L                               | (as N)     | 210           | 150    | 167    | 305     | 260    | 317    | 223    | 177     | 187     | 277     | 155      | 277   |
| рН                                     |            | 6.82          | 5.84   | 5.95   | 5.95    | 6.50   | 5.59   | 6.79   | 5.55    | 5.86    | 5.33    | 6.64     | 6.80  |
| Phosphorus µg/L                        |            | 5.0           | 3.8    | 4.0    | 9.4     | 6.1    | 12.2   | 7.5    | 5.6     | 4.7     | 8.5     | 3.9      | 8.3   |
| SO <sub>4</sub> mg/L                   | (as SO,    | 6.6           | 8.2    | 6.9    | 7.6     | 8.1    | 7.2    | 6.9    | 6.9     | 6.5     | 5.5     | 6.0      | 6.7   |

Table 3: Number of crayfish collected (all species) in the 12 study lakes.

|            |              |                 | Number C | ollected1 | Specie     | S <sup>2</sup> |
|------------|--------------|-----------------|----------|-----------|------------|----------------|
| Lake       | Date Sampled | Number of Traps | Trap     | Dive      | Trap       | Dive           |
| Blue Chalk | 21-22 July   | 178             | 1,125    | 45        | CP, OP, OV | CB, OP, O      |
| Clear      | 24-25 July   | 154             | 469      | 33        | CB, OP     | CB, Op         |
| Cradle     | 29-30 August | 180             | 2,282    | 58        | СВ         | СВ             |
| Crosson    | 19-20 July   | 155             | 473      | 23        | CB, OV     | CB, OV         |
| Delano     | 10-11 August | 180             | 163      | 10        | CB, OP, OV | OP             |
| Hamer      | 3-4 August   | 160             | 66       | 6         | OV         | OV             |
| Harp       | 27-28 July   | 180             | 30       | 3         | CB, OP     | OP             |
| Plastic    | 17-18 July   | 180             | 0        | 0         |            |                |
| Pincher    | 24-28 August | 180             | 487      | 0         | СВ         | ,3             |
| Skidway    | 2-3 August   | 160             | 54       | 1         | OV         | ov             |
| Westward   | 16-17 August | 179             | 1,144    | 70        | CB, OP     | CB, OP         |
| Young      | 8-9 August   | 180             | 4,343    | 26        | OP         | OP, CB         |

<sup>&#</sup>x27; Actual numbers caught by traps and divers.

<sup>&</sup>lt;sup>2</sup> CB - Cambarus bartoni

OP - Orconectes propinquus

OV - Orconectes virilis

<sup>3</sup> No dive

Figure 3 : Female Male Catch Comparison



| % Catch by                                    | / Species                            |
|-----------------------------------------------|--------------------------------------|
| Female                                        | Male                                 |
| CB 49% (2001)<br>OP 51% (750)<br>OV 42% (300) | 51% (2115)<br>49% (720)<br>58% (419) |

<sup>1.</sup> Delano Lake — 1 Cambarus bartoni (female) and 2 Orconectes virilis (male) were caught in the traps.



Divers assessed the population on portion (approximately 16%) of the trapped area. The number of crayfish caught by the divers and in the traps are compared in Figure 5.

The carapace length data for the trapped crayfish appears to be normally distributed (Appendix 3). Mean values for <u>C</u>. <u>bartoni</u> ranged from 22.2 mm to 36.3 mm; for <u>0</u>. <u>propinguus</u> from 19.8 mm to 28.4 mm and for <u>0</u>. <u>virilis</u> from 26.1 mm and 38.0 mm (Appendix 3).

The carapace length: wet weight relationships (Appendix 4) include all of the data collected except Blue Chalk, Cradle and Westward Lakes where only 526, 299 and 507 crayfish respectively were measured (Appendix 4).

#### **ACKNOWLEDGEMENTS**

The authors would like to thank Mike Berrill and Graeme Taylor for their expertise in carrying out the SCUBA diving portion of the field sampling programme in 1988. We are also thankful to Shelley Zeran and Cheryl Partridge for their field assistance, and Sheryl Gleave for the typing of this manuscript.

Figure 5: Comparison of Trap and Dive Data



#### **REFERENCES**

- Berrill, M., L. Hollett, A. Margosian and J. Hudson. 1985. Variation in tolerance to low environmental pH by the crayfish <u>Orconectes rusticus</u>, <u>O. propinquus</u> and <u>C. robustus</u>. Can. J. Zool. 63: 2586-2589.
- Capelli, G.M. 1975. Distribution, life history, and ecology of the crayfish in northern Wisconsin, with emphasis on Orconectes propirquus (Giard) Ph.D. thesis, University of Wisconsin, Madison, WI. 214 p.
- Capelli, G.M. 1982. Displacement of northern Wisconsin crayfish by <u>Orconectes rusticus</u> (Giard). Limnol. Oceanogr. 27: 741-745.
- Davies, I.J. and D.J. Ramsey. 1989. Population collapse of the crayfish Orconectes virilis (Hazen) in response to experimental whole lake acidification. Can. J. Fish. Aquat. Sci. Vol. (in press).
- Dillon, P.J., N.D. Yan and H.H. Harvey. 1984. CRC Crit. Rev. Environ. Control 13 167.
- France, R.L. 1987. Reproductive impairment of the crayfish Orconectes virilis in response to acidification of Lake 223. Can. J. Fish. Aquat. Sci. Vol. 44: 97-106.
- Malley, D.F. 1980. Decreased survival and calcium uptake by the crayfish, Orconectes virilis, in low pH. Can. J. Fish. Aquat. Sci. 37: 364-372.
- Neary, B.P. and P.J. Dillon. 1988. Effects of sulphur deposition on lake-water chemistry in Ontario, Canada. Nature. Vol. 333: 340-343.
- Somers, K.M. and D.P.M. Stechey. 1986. Variable trappability of crayfish associated with bait type, water temperature and lunar phase. Am. Midl. Nat. 116: 36-44.

## Blue Chalk Lake



| Area<br>(ha) | Volume<br>(m³x10⁵) | Mean Depth<br>(m) | Maximum<br>(m)   | Depth Sh        | oreline Length<br>(km)      |
|--------------|--------------------|-------------------|------------------|-----------------|-----------------------------|
| 52.35        | 44.68              | 8.5               | 23               | 5               | 4.67                        |
|              | Contour<br>(m)     | Depth Cont        | our Area<br>(ha) | Stratum<br>(m³x | Volume<br>10 <sup>5</sup> ) |
|              | 0                  |                   | 52.35            |                 |                             |
|              | 2                  |                   | 42.08            |                 | 9.42                        |
|              | 4                  |                   | 36.28            |                 | 7.83                        |
|              | 6                  |                   | 31.14            |                 | 6.74                        |
|              |                    |                   |                  |                 | 5.55                        |
|              | 8                  |                   | 24.52            |                 | 4.19                        |
|              | 10                 |                   | 17.56            |                 | 3.29                        |
|              | 12                 |                   | 15.34            |                 |                             |
|              | 14                 |                   | 12.64            |                 | 2.79                        |
|              | 16                 |                   | 10.22            |                 | 2.28                        |
|              | 18                 |                   | 5.02             |                 | 1.49                        |
|              | 20                 |                   | 2.93             |                 | 0.79                        |
|              |                    |                   |                  |                 | 0.29                        |
|              | 22                 |                   | 0.38             |                 | 0.01                        |
|              | 23                 |                   | 0                |                 |                             |

## Blue Chalk Lake — trap site locations



## Clear Lake



| Area<br>(ha) | Volume<br>(m3*105) | Mean Depth<br>(m) | Maximum Dept<br>(m) | th Shoreline Length (km)   |
|--------------|--------------------|-------------------|---------------------|----------------------------|
| 88.4         | 109.1              | 12.4              | 33.0                | 6.73                       |
|              | Contour<br>(m)     | Depth Con         | itour Area<br>(ha)  | Stratum Volume<br>(m3*105) |
|              | 0                  |                   | 88.40               | 16.50                      |
|              | 2                  |                   | 77.00               |                            |
|              | 4                  |                   | 66.40               | 14.30                      |
|              | 6                  |                   | 58.40               | 12.50                      |
|              | 8                  |                   | 52.70               | 11.10                      |
|              | 10                 |                   | 47.30               | 10.00                      |
|              | 12                 |                   | 41.60               | 8.89                       |
|              | 14                 |                   | 36.30               | 7.79                       |
|              | 16                 |                   | 31.10               | 6.73                       |
|              | 18                 |                   | 26.00               | 5.70                       |
|              | 20                 |                   | 21.30               | 4.72                       |
|              | 22                 |                   | 16.40               | 3.76                       |
|              | 24                 |                   | 12.10               | 2.84                       |
|              | 26                 |                   |                     | 2.03                       |
|              | 28                 |                   | 8.28                | 1.32                       |
|              |                    |                   | 5.04                | 0.75                       |
|              | 30                 |                   | 2.60                | 0.25                       |
|              | 33                 |                   | 0.30<br>18          |                            |

## Clear Lake — trap site locations





|       | 20.5                |            |                    |                            |
|-------|---------------------|------------|--------------------|----------------------------|
| Area  | Volume              | Mean Depth | Maximum            | Depth Shoreline Length     |
| (ha)  | $(m^3 \times 10^5)$ | (m)        | (m)                | (km)                       |
| 17.89 | 22.25               | 12.44      | 33.3               | 2.44                       |
|       | Contour<br>(m)      | Depth Cor  | tour Area<br>(ha). | Stratum Volume<br>(m³x10⁵) |
|       | 0                   |            | 17.89              |                            |
|       | 2                   |            | 16.34              | 3.42                       |
|       | 4                   |            | 14.74              | 3.11                       |
|       | 6                   |            | 12.78              | 2.77                       |
|       | 8                   |            | 10.86              | 2.35                       |
|       | 10                  |            |                    | 2.00                       |
|       |                     |            | 9.04               | 1.63                       |
|       | 12                  |            | 7.50               | 1.38                       |
|       | 14                  |            | 6.24               | 1.13                       |
|       | 16                  |            | 5.25               | 0.99                       |
|       | 18                  |            | 4.56               |                            |
|       | 20                  |            | 3.96               | 0.85                       |
|       | 22                  |            | 3.42               | 0.74                       |
|       | 24                  |            | 2.87               | 0.63                       |
|       | 26                  |            | 2.39               | 0.52                       |
|       | 28                  |            | 1.42               | 0.41                       |
|       | 30                  |            |                    | 0.19                       |
|       |                     |            | 0.65               | 0.10                       |
|       | 32                  |            | 0.40               | 0.04                       |
|       | 33.3                |            | 0                  |                            |
|       |                     |            | 20                 |                            |

## Cradle Lake — trap site locations



## Crosson Lake



| Area  | Volume              | Mean Depth | Maximum         | Depth | Shoreline Length                                |
|-------|---------------------|------------|-----------------|-------|-------------------------------------------------|
| (ha)  | $(m^3 \times 10^5)$ | (m)        | (m              | 1)    | (km)                                            |
| 56.74 | 52.16               | 9.2        | 25.             | 0     | 4.40                                            |
|       | Contour<br>(m)      | 53         | ur Area<br>(ha) | Strat | tum Volume<br>( <sup>3</sup> x10 <sup>5</sup> ) |
|       | 0                   |            | 56.74           |       |                                                 |
|       | 2                   |            | 50.28           |       | 10.70                                           |
|       | 4                   |            | 42.80           |       | 9.30                                            |
|       | 6                   |            | 34.75           |       | 7.74                                            |
|       | 8                   |            | 26.83           |       | 6.14                                            |
|       | 10                  |            | 22.13           |       | 4.89                                            |
|       | 12                  |            | 17.77           |       | 3.98                                            |
|       | 14                  |            | 13.75           |       | 3.14                                            |
|       | 16                  |            | 9.92            |       | 2.36                                            |
|       | 18                  |            | 7.48            |       | 1.73                                            |
|       | 20                  |            | 5.15            |       | 1.26                                            |
|       | 22                  |            | 1.83            |       | 0.67                                            |
|       | 24                  |            | 0.58            |       | 0.23                                            |
|       | 25                  |            | 0               |       | 0.02                                            |
|       | 25                  |            | 22              |       |                                                 |

.7.

## Crosson Lake — trap site locations





## Delano Lake



| Area<br>(ha) | Volume<br>(m3+105) | Mean Depth<br>(m) | Maximum (m)         |    | horeline Length<br>(km) |  |
|--------------|--------------------|-------------------|---------------------|----|-------------------------|--|
| 23.9         | 17.0               | 7.1               | 18.                 | .6 | 1.99                    |  |
|              | Contour<br>(m)     | Depth Co          | ontour Area<br>(ha) |    | m Volume<br>i+105)      |  |
|              | 0                  |                   | 23.9                |    | 4.07                    |  |
|              | 2                  |                   | 18.9                |    | 4.27                    |  |
|              | 4                  |                   | 13.7                |    | 3.25                    |  |
|              |                    |                   |                     |    | 2.45                    |  |
|              | 6                  |                   | 10.8                |    | 1.98                    |  |
|              | 8                  |                   | 9.01                |    | 1.61                    |  |
|              | 10                 |                   | 7.13                |    |                         |  |
|              | 12                 |                   | 5.79                |    | 1.29                    |  |
|              | 14                 |                   | 4.36                |    | 1.01                    |  |
|              |                    |                   |                     |    | 0.710                   |  |
|              | 16                 |                   | 2.80                |    | 0.432                   |  |
|              | 18                 |                   | 1.58                |    |                         |  |
|              | 18.6               |                   | 0                   |    | 0.032                   |  |

## Delano Lake — trap site locations







Nipissing Dist. Canisbay Tp. Lat.45°31' Long.78°36'



| Area  | Volume              | Mean Depth | Maximum         | Depth Sho                   | oreline Length              |  |
|-------|---------------------|------------|-----------------|-----------------------------|-----------------------------|--|
| (ha)  | $(m^3 \times 10^5)$ | (m)        | (m              | )                           | (km)                        |  |
| 35.21 | 11.63               | 3.30       | 8.5             | 50                          | 4.01                        |  |
|       | Contour D<br>(m)    |            | ur Area<br>(ha) | Stratum<br>( <sup>3</sup> x | Volume<br>10 <sup>5</sup> ) |  |
|       | 0                   |            | 35.21           |                             | 6.00                        |  |
|       | 2                   | :          | 26.84           |                             | 6.20                        |  |
|       | 4                   | ý          | 11.19           |                             | 3.93                        |  |
|       | 6                   |            | 3.11<br>0       |                             | 1.12<br>0.39                |  |
|       | 8.5                 |            |                 |                             |                             |  |



# Harp Lake



| Area<br>(ha) | Volume<br>(m <sup>3</sup> x10 <sup>5</sup> ) | Mean Depth<br>(m) | Maximum<br>(m)     | Depth Shoreline Leng (km)                            | th |
|--------------|----------------------------------------------|-------------------|--------------------|------------------------------------------------------|----|
| 71.38        | 95.07                                        | 13.32             | 37                 | 7.5 4.75                                             |    |
|              | Contour<br>(m)                               | Depth Cor         | ntour Area<br>(ha) | Stratum Volume<br>(m <sup>3</sup> x10 <sup>5</sup> ) |    |
|              | 0                                            |                   | 71.38              | 17.75                                                |    |
|              | 2                                            |                   | 66.10              | 13.75                                                |    |
|              | 4                                            |                   | 58.64              | 12.43                                                |    |
|              | 6                                            |                   | 51.73              | 11.06                                                |    |
|              | 8                                            |                   | 44.77              | 9.64                                                 |    |
|              | 10                                           |                   | 38.13              | 8.29                                                 |    |
|              | 12                                           |                   | 32.47              | 7.02                                                 |    |
|              | 14                                           |                   | 27.85              | 6.02                                                 |    |
|              | 16                                           |                   | 23.93              | 5.16                                                 |    |
|              | 18                                           |                   | 20.61              | 4.45                                                 |    |
|              | 20                                           |                   | 17.69              | 3.82                                                 |    |
|              | 22                                           |                   | 15.20              | 3.28                                                 |    |
|              | 24                                           |                   | 12.43              | 2.79                                                 |    |
|              | 26                                           |                   | 9.69               | 2.19                                                 |    |
|              | 28                                           |                   | 7.42               | 1.71                                                 |    |
|              | 30                                           |                   | 5.62               | 1.29                                                 |    |
|              | 32                                           |                   | 3.99               | 0.97                                                 |    |
|              | 34                                           |                   | 2.64               | 0.65                                                 |    |
|              | 36                                           |                   | 1.48               | 0.42                                                 |    |
|              | 37.5                                         | 14                | 0 28               | 0.14                                                 |    |

## Harp Lake — trap site locations





| Dist.       |
|-------------|
| Tp.         |
| Long.78°51' |
|             |

| Area  | Volume           | Mean Depth  | Maximum          | Depth | Shoreline Length                                |
|-------|------------------|-------------|------------------|-------|-------------------------------------------------|
| (ha)  | $(m^3x10^5)$     | (m)         | (m               | 1)    | (km)                                            |
| 42.06 | 25.48            | 6.06        | 15.5             |       |                                                 |
|       | Contour [<br>(m) | Depth Conto | our Area<br>(ha) | Stra  | tum Volume<br>( <sup>3</sup> x10 <sup>5</sup> ) |
|       | 0                |             | 42.06            |       | 7.44                                            |
|       | 2                |             | 33.39            |       | 7.44                                            |
|       | 4                |             | 26.38            |       | 6.01                                            |
|       | 6                |             | 18.97            |       | 4.54                                            |
|       | 8                |             | 12.47            |       | 3.11                                            |
|       | 10               |             | 8.31             |       | 2.01                                            |
|       | 12               |             | 5.57             |       | 1.39                                            |
|       | 14               |             | 2.22             |       | 0.82                                            |
|       | 15               |             | 0                |       | 0.16                                            |

# Pincher Lake — trap site locations



Nipissing Dist. McCraney Tp. Lat.45°34' Long.78°51'



| Area  | Volume           | Mean I | Depth        | Maximum       | Depth | Shoreline Length                                 |
|-------|------------------|--------|--------------|---------------|-------|--------------------------------------------------|
| (ha)  | $(m^3x10^5)$     | (m     | 1)           | (m            | 1)    | (km)                                             |
| 32.14 | 25.24            | 7.     | .9           | 16.3          |       | 3.14                                             |
|       | Contour [<br>(m) | Depth  | Contou<br>(1 | r Area<br>na) |       | atum Volume<br>n <sup>3</sup> x10 <sup>5</sup> ) |
|       | 0                |        | 3            | 2.14          |       | 644                                              |
|       | 2                |        | 2            | 8.97          |       | 6.11                                             |
|       | 4                |        | 2            | 4.84          |       | 5.37                                             |
|       | 6                |        | 1            | 9.65          |       | 4.47                                             |
|       | 8                |        |              | 4.95          |       | 3.46                                             |
|       | 10               |        |              | 1.23          |       | 2.60                                             |
|       | 12               |        |              | 7.29          |       | 1.88                                             |
|       |                  |        |              |               |       | 1.06                                             |
|       | 14               |        |              | 3.35          |       | 0.30                                             |
|       | 16.3             |        |              | o<br>32       |       | 10.000                                           |

## Plastic Lake — trap site locations



## Skidway Lake



| Area<br>(ha) | Volume<br>(m3+105)    | Mean Depth<br>(m) | Maximum<br>(m)       | Depth | Shoreline Length (km)      |
|--------------|-----------------------|-------------------|----------------------|-------|----------------------------|
| 18.48        | 5.35                  | 2.89              | 7.80                 |       | 2.84                       |
|              | Contour Dep<br>(m)    | oth C             | Contour Area<br>(ha) |       | Stratum Volume<br>(m3*105) |
|              | 0<br>2<br>4<br>6<br>8 |                   | 18.48                |       | 0.86                       |
|              |                       |                   | 11.75                |       | 2.86                       |
|              |                       |                   | 6.09                 |       | 1.89                       |
|              |                       |                   | 1.06                 |       | 0.50                       |
|              |                       |                   | 0                    |       | 0.10                       |

## Skidway Lake — trap site locations



#### Westward Lake



| Area<br>(ha) | Volume<br>(m3*105) | Mean Depth<br>(m) | Maximum Dep<br>(m)  | th Shoreline Length (km)   |
|--------------|--------------------|-------------------|---------------------|----------------------------|
| 63.3         | 129.5              | 20.5              | 44.0                | 3.52                       |
|              | Contour<br>(m)     | Depth Cont        | our Area<br>(ha)    | Stratum Volume<br>(m3+105) |
|              | 0                  |                   | 63.3                | 10.1                       |
|              | 2                  |                   | 58.4                | 12.1                       |
|              | 4                  |                   | 55.0                | 11.3                       |
|              | 6                  |                   | 53.1                | 10.8                       |
|              | 8                  |                   | 49.7                | 10.3                       |
|              | 10                 |                   | 46.1                | 9.57                       |
|              | 12                 |                   | 40.5                | 8.65                       |
|              |                    |                   |                     | 14.9                       |
|              | 16                 |                   | 34.0                | 12.9                       |
|              | 20                 |                   | 30.6                | 13.8                       |
|              | 25                 |                   | 24.8                | 10.9                       |
|              | 30                 |                   | 18.8                | 7.97                       |
|              | 35                 |                   | 13.2                |                            |
|              | 40                 |                   | 7.22                | 5.04                       |
|              | 44                 |                   | 0 <b>.383</b><br>36 | 1.24                       |

# Westward Lake — trap site locations



# Young Lake



| Area  | Valuese            | Mana Danti        |                   |                              |
|-------|--------------------|-------------------|-------------------|------------------------------|
| (ha)  | Volume<br>(m3+105) | Mean Depth<br>(m) | Maximum De<br>(m) | pth Shoreline Length<br>(km) |
| 105.9 | 127.4              | 12.03             | 21.1              | 5.40                         |
|       | Contour<br>(m)     | Depth Con         | tour Area<br>(ha) | Stratum Volume<br>(m3+105)   |
|       | 0                  |                   | 105.91            |                              |
|       | 2                  |                   | 98.72             | 20.46                        |
|       | 4                  |                   | 90.82             | 18.97                        |
|       | 6                  |                   |                   | 17.27                        |
|       |                    |                   | 80.82             | 15.07                        |
|       | 8                  |                   | 70.06             | 13.07                        |
|       | 10                 |                   | 60.75             | 11.34                        |
|       | 12                 |                   | 52.72             |                              |
|       | 14                 |                   | 45.60             | 9.814                        |
|       | 16                 |                   | 38.13             | 8.413                        |
|       | 18                 |                   | 29.21             | 6.812                        |
|       |                    |                   |                   | 4.721                        |
|       | 20                 |                   | 18.42             | 1.457                        |
|       | 21.1               |                   | 0                 |                              |

## Young Lake — trap site locations



## Blue Chalk Lake — Catch Per Trap

Cambarus bartoni Orconectes propinquus Orconectes virilis Site #1 Macrophyte 2 Mean catch per Trap Site #2 Rocky Site #3 Detritus 2 Depth (m)

### Clear Lake — Catch per Trap



## Cradle Lake — Catch per trap



## Crosson Lake — Catch per Trap



### Delano Lake — Catch per Trap



Harp Lake Catch per Trap Cambarus bartoni Orconectes propinquus Site #1 Macrophyte Site #1 Macrophyte 1 .5 Mean catch per Trap Site #2 Rocky Site #2 Rocky Site #3 Detritus Site #3 Detritus 1 .5 6 0 6 Depth (m)

## Hamer Lake — Catch per Trap



# Pincher Lake — Catch per Trap





## Skidway Lake — Catch per trap



#### Westward Lake — Catch per Trap



### Young Lake — Catch per Trap





### Clear Lake Length Distribution



Cradle Lake Length Distribution



#### Crosson Lake Length Distribution



Delano Lake Length Distribution



#### Hamer Lake Length Distribution



## Harp Lake Length Distribution



----g... (.....

SEPT 6, 1986 · 2:52 PM

Pincher Lake Length Distribution



Skidway Lake





#### Westward Lake

#### Length Distribution



Young Lake Length Distribution



Blue Chalk Lake

Length — Weight Relationship



Cradle Lake

Length — Weight Relationship



#### Crosson Lake



Delano Lake Length — Weight Relationship



Hamer Lake
Length — Weight Relationship



Harp Lake
Length — Weight Relationship



Pincher Lake Length — Weight Relationship



Skidway Lake

### Length — Weight Relationship



Westward Lake
Length — Weight Relationship



Young Lake Length — Weight Relationship





MOE/CRA/ALOW Reid, R.A. Crayfish distribution and

c.1 a aa

1990

alow