Работа 2.3.1

Получение и измерение вакуума

Андрей Киркича, Б01-202

Цель работы: измерить объёмы форвакуумной и высоковакуумной частей установки, определить скорость откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

Теоретичские сведения

- Классы вакуумных установок:
 - 1. Низковакуумные $(p \sim 10^{-2} 10^{-3} \text{ торр})$
 - 2. Высоковакуумные $(p \sim 10^{-4} 10^{-7} \text{ торр})$
 - 3. Сверхвысокого вакуума $(p \sim 10^{-8} 10^{-11} \text{ торр})$
- Низкий вакуум переходит в высокий, когда длина свободного пробега молекул становится сравнима с размерами установки, сверхвысокий вакуум характеризуется крайней важностью процесса адсорбции и десорбции частиц на поверхности вакуумной камеры.

Экспериментальная установка

Установка изготовлена из стекла и состоит форвакуумного баллона (ΦB), высоковакуумного дифузионного насоса (BH), высоковакуумного баллона (BB), маслянного (M) и ионизационного (M) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (ΦH) и соединительных кранов. Также в состав установки входят вариатор (автотрансформатор с регулируемым выходным напряжением) или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рисунок 1: схема экспериментальной установки

Краны:

- ullet K заполнение форвакуумного насоса и вакуумной установки воздухом
- ullet K_2 соединение форвакуумного насоса с установкой или атмосферой
- ullet K_3 отделение высоковакуумной части установки от форвакуумной
- К₄ соединение между собой колен масляного манометра
- K_5 и K_6 соединение капилляра с форвакуумной и высоковакуумной частями установки. Суммарный объём обоих кранов 50 см³. Диаметр капилляра 0.9 мм, длина 300 мм.

Форвакуумный насос:

Рисунок 2: схема работы форвакуумного насоса

В цилиндрической полости размещён ротор так, что он постоянно соприкасается своей верхней частью с корпусом. В диаметральный разрез ротора вставлены две пластины, раздвигаемые пружиной и плотно прижимаемые к поверхности полости.

Диффузионный насос:

Рисунок 3: схема работы диффузионного насоса

Действие основано на диффузии молекул разреженного воздуха в струю паров масла. Наиболее эффективно работает при давлении, когда длина свободного пробега молекул воздуха примерно равна ширине кольцевого зазора между соплом и стенками трубы. В нашей установки диффузионный насос имеет две ступени и соответственно два сопла. Одно сопло вертикальное, другое горизонтальное.

Масляный манометр:

Это U-образная трубка, до половины наполненная вязким маслом. Плотность масла $\rho=0.9~{\rm r/cm}^3$ мала, поэтому с помощью этого манометра можно измерить лишь небольшие разности давлений.

Термопарный манометр:

Рисунок 4: схема термопарного манометра

Чувствительным элементом является платинородиевая термопара.

Ионизационный манометр:

Рисунок 5: схема ионизационного манометра

Представляет собой трёхэлектродную лампу. Ионный ток в цепи коллектора пропорционален плотности газа и может служить мерой давления.

Процесс откачки

Производительность насоса определяется скоростью откачки W (π/c) - объёмом газа, удаляемого из сосуда при данном давлении за единицу времени.

Разделим систему на две части: откачанный объём (в состав которого включим используемые для работы части установки) и насос, к которому, кроме самого насоса, отнесём трубопроводы и краны, через которые производится откачка нашего объёма.

- $Q_{\rm Д}$ количество газа, десорбирующегося с поверхности откачиваемого объёма в единицу времени
- ullet $Q_{
 m M}$ количество газа, проникающего в единицу времени в этот объём извне через течи
- ullet W скорость откачки насоса, будем считать при этом, что насос сам является источником газа
- ullet $Q_{
 m H}$ поток газа, поступающего из насоса назад в откачиваемую систему

$$-VdP = (PW - Q_{\Pi} - Q_{H} - Q_{U})dt$$

При достижении предельного вакуума (P_{np}) :

$$\frac{dP}{dt} = 0$$

$$P_{\rm np}W = Q_{\rm Д} + Q_{\rm H} + Q_{\rm W}$$

Тогда

$$Q = \frac{\Sigma Q_i}{P_{\text{np}}}$$

В наших условиях все члено можно считать постоянными. Проинтегрируем первое уравнение:

$$P - P_{\pi p} = (P_0 - P_{\pi p})e^{-\frac{W}{V}t}$$

где P_0 - начальное давление

 P_0 велико по сравнению с $P_{\rm np}$, поэтому можно записать, что:

$$P - C_{\rm Tp} = P_0 e^{-\frac{W}{V}t}$$

Закон сложения пропускных способностей при последовательном соединении элементов:

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

где W - скорость откачки системы, $W_{\rm H}$ - скорость откачки насоса, $_i$ - пропускные способности элементов системы

Течение газа через трубу

Для газа, протекающего через трубу в кнудсеновском режиме (в условиях высокого вакуума) справедливы формулы:

$$\frac{d\left(PV\right)}{dt} = \frac{4}{3}r^{3}\sqrt{\frac{2\pi RT}{\mu}}\frac{P_{2} - P_{1}}{L}$$

$$C_{\text{\tiny TP}} = \frac{4}{3}\frac{r^{3}}{L}\sqrt{\frac{2\pi RT}{\mu}}$$

$$C_{\text{\tiny OTB}} = S\frac{\overline{\upsilon}}{4}$$

Результаты измерений и обработка данных

1. Определение объёма форвакуумной и высоковакуумной частей установки

 $p_0=2\cdot 10^{-2}$ мм.рт.ст = 2,67 Па - начальное давление, полученное в установке $p_{\text{атм}}=100.15$ кПа - атмосферное давление $V_{\text{зап}}=50~\text{см}^3$ - объём запертого в установке атмосферного воздуха

Ниже приведены высоты столбов масла в масляном манометре при разделении высоковакуумной и форвакуумной частей установки.

- $h_1 = (38.5 \pm 0.1) \text{ cm}$
- $h_2 = (12.0 \pm 0.1) \text{ cm}$

Отсюда можно найти разность давлений, полученную в результате высвобождения запертого атмосферного воздуха в форвакуумную часть установки:

$$\Delta p = \rho g \Delta h = (2301 \pm 18) \; \Pi a$$

Тогда

$$p_{\Phi B} = p_0 + \Delta p = (2303 \pm 18) \text{ }\Pi a$$

Затем используем закон Бойля-Мариотта для нахождения объёма форвакуумной части:

$$V_{\Phi^{\mathrm{B}}} = rac{p_{\mathrm{atm}} V_{\mathrm{3aff}}}{p_{\Phi^{\mathrm{B}}}} = (2.174 \pm 0.017) \cdot 10^{-3} \; \mathrm{m}^3$$

Аналогично после соединения форвакуумной и высоковакуумной частей с помощью трубки:

- $h_3 = (34.0 \pm 0.1) \text{ cm}$
- $h_4 = (17.0 \pm 0.1) \text{ cm}$

$$\Delta p = (1476 \pm 18) \; \Pi a$$

$$p_{\text{\tiny BB}} = (1479 \pm 18) \; \Pi \text{a}$$

$$V_{\scriptscriptstyle
m BB} = rac{p_{\scriptscriptstyle
m ATM} V_{\scriptscriptstyle
m 3AII}}{p_{\scriptscriptstyle
m BB}} - V_{\,
m \varphi \scriptscriptstyle
m B} = (1.21 \pm 0.05) \cdot 10^{-3} \; {\scriptscriptstyle
m M}^3$$

2. Получение высокого вакуума и измерение скорости откачки

Установка откачивалась форвакуумным насосом. Были включены термопарные вакууметры.

 $I = 0.6 \; {
m A}$ - ток в лампах $p = 3 \cdot 10^{-4} \; {
m mm} \; {
m pt.ct.}$ - давление в высоковакуумном баллоне

Затем был закрыт кран K_6 , началась высоковакуумная откачка, включён ионизационный манометр, достигнуто предельное давление.

$$p_{\rm пр} = (4.2 \pm 0.1) \cdot 10^{-5}$$
 мм рт.ст.

предельное давление в высоковакуумной части установки после работы ионизационного манометра и дегазации

После измерения предельного давления были проведены опыты по нахождению скорости откачки. Вакуум был ухудшен, а затем восстанавливался. Данные для построения графиков и сами графики зависимости давления от времени представлены ниже.

№1		№2	
t, c	р, 10^{-5} мм рт.ст.	t, c	р, 10^{-5} мм рт.ст.
0	58.0	0	44.0
1	54.0	1	37.0
2	44.0	2	30.0
3	37.0	3	25.0
4	31.0	4	23.0
5	28.0	5	20.0
6	24.0	6	17.0
7	18.0	7	14.0
8	16.0	8	12.0
9	14.0	9	10.0
10	12.0	10	9.4
11	11.0	11	8.9
12	9.7	12	7.9
13	8.8	13	7.3
14	8.1	14	7.1
15	7.6	15	6.7
16	7.1	16	6.4
17	6.8	17	6.1
18	6.5	18	5.9
19	6.2	19	5.7
20	6.0	20	5.5
21	5.9	21	5.5
22	5.7	22	5.3

 Таблица 1: данные, показывающие зависимость давления от времени при улучшении вакуума

Масштаб по оси ординат - логарифмический, чтобы можно было найти по-казатель степени в формуле для давления $-\frac{W}{V}$ как коэффициент наклона k аппроксимирующей прямой. Аппроксимация производилась программно по методу наименьших квадратов только по части значений, так как наблюдалась тенденция к изменению характера зависимости при низких значениях давления.

Рисунок 6: график зависимости давления от температуры в логарифмическом масштабе по оси ординат

$$W = -k \cdot V_{\scriptscriptstyle \mathrm{BB}}$$

$$k_1 = (-0.157 \pm 0.004) \rightarrow W_1 = (1.90 \pm 0.15) \cdot 10^{-4} \text{ m}^3/\text{c}$$

 $k_2 = (-0.150 \pm 0.005) \rightarrow W_2 = (1.82 \pm 0.14) \cdot 10^{-4} \text{ m}^3/\text{c}$

Таким образом,

$$W = (1.86 \pm 0.15) \cdot 10^{-4} \text{ m}^3/\text{c}$$

Рисунок 7: график зависимости давления от температуры в логарифмическом масштабе по оси ординат

Затем была найдена величина потока $Q_{\rm H}$: был перекрыт кран K_3 и при помощи ионизационного вакууметра и секундомера снимались значения далвения с течением времени. Данные для построения графиков и сами графики зависимости давления от времени представлены ниже.

Зависимость давления от температуры при ухудшении вакуума - прямая пропорциональная.

$$\Delta p_1 = (40.0 \pm 0.2) \cdot 10^{-5}$$
 мм рт.ст. $\Delta p_2 = (39.1 \pm 0.2) \cdot 10^{-5}$ мм рт.ст. $\Delta t_1 = 84$ с $\Delta t_2 = 84$ с

Nº 1		№2	
t, c	р, 10^{-5} мм рт.ст.	t, c	$p, 10^{-5}$ mm pt.ct.
21	15.0	0	5.9
24	17.0	3	7.3
27	18.0	6	8.7
30	19.0	9	10.0
33	21.0	12	11.0
36	22.0	15	13.0
39	23.0	18	14.0
42	25.0	21	15.0
45	26.0	24	16.0
48	28.0	27	18.0
51	29.0	30	19.0
54	30.0	33	21.0
57	32.0	36	22.0
60	33.0	39	24.0
63	35.0	42	25.0
66	36.0	45	26.0
69	37.0	48	28.0
72	39.0	51	29.0
75	40.0	53	30.0
78	41.0	57	32.0
81	43.0	60	33.0
84	44.0	63	35.0
87	46.0	66	36.0
90	47.0	69	37.0
93	49.0	72	39.0
96	50.0	75	40.0
99	52.0	78	42.0
102	53.0	81	43.0
105	55.0	84	45.0

Таблица 2: данные, показывающие зависимость давления от времени при ухудшении вакуума

$$V_{\scriptscriptstyle \rm BB}\Delta p = (Q_{\rm Д} + Q_{\rm W})\Delta t$$

$$Q_{\rm Д} + Q_{\rm W} = \frac{V_{\scriptscriptstyle \rm BB}\Delta p}{\Delta t}$$

Рисунок 8: график зависимости давления от температуры

$$Q_{
m H} = p_{
m np} W - (Q_{
m I\!I} + Q_{
m I\!I}) = p_{
m np} W - rac{V_{
m \tiny BB} \Delta p}{\Delta t}$$

$$Q_{\rm H_1} = (2.7 \pm 1.7) \cdot 10^{-7} \; \Pi \rm a \cdot m^3/c$$

 $Q_{\rm H_2} = (2.9 \pm 1.7) \cdot 10^{-7} \; \Pi \rm a \cdot m^3/c$

Тогда

$$Q_{\rm H} = (2.8 \pm 1.7) \cdot 10^{-7} \; {\rm \Pi a \cdot m^3/c}$$

Рисунок 9: график зависимости давления от температуры

Для расчёта пропускной способности трубки используются следующие величины:

 $L=10.8~{
m cm}$ - длина трубки $r=0.4~{
m cm}$ - радиус трубки $T=(298\pm1)~{
m K}$ - температура в комнате

$$C_{\rm Tp} = (5.80 \pm 0.03) \cdot 10^{-4} \; {\rm m}^3/{\rm c}$$

Скорость откачки составляет 32% от полученной пропускной способности трубки.

Последней задачей работы стало определение производительности насоса. Бы-

ла создана искусственная течь (открыт кран K_6), и вакуум ухудшился.

 $p_{
m yct}=1.1\cdot 10^{-4}$ мм рт.ст. - установившееся давление $p_{
m \phi B}=3.0\cdot 10^{-4}$ мм рт.ст. - давление со стороны форвакуумной части

$$p_{\text{пр}}W = Q_1, \qquad p_{\text{уст}}W = Q_1 + \frac{d(pV)}{dt}$$

Учитывая приведённое выше соотношение, получим:

$$W = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}} \frac{p_{\Phi B} - p_{ycT}}{p_{ycT} - p_{\pi p}} = (1.6 \pm 0.3) \cdot 10^{-3} \text{ m}^3/\text{c}$$

3. Расчёт погрешностей

Следующие величины считаем константами без погрешности:

- $p_0 = 2 \cdot 10^{-2}$ mm pt.ct.
- $p_{\text{atm}} = 100.15 \text{ k}\Pi \text{a}$
- $V_{\text{зап}} = 50 \text{ cm}^3$
- $g = 9.81 \text{ m/c}^2$
- $\pi = 3.14$
- $R = 8.31 \; \text{Дж/K} \cdot \text{моль}$
- $\mu = 29 \ г/моль$
- r = 0.4 cm
- L = 10.8 cm
- $\rho = 885 \text{ kg/m}^3$

$$σ(T) = 1 \text{ K}$$
 $σ(h) = 0.1 \text{ cm}$
 $σ(\Delta h) = 0.2 \text{ cm}$
 $σ(\Delta p) = ρg · σ(\Delta h) = 18 \text{ Πa}$

$$\begin{split} &\sigma(p_{\Phi^{\rm B}}) = \sigma(p_{\rm BB}) = \sigma(\Delta p) = 18 \,\, \Pi{\rm a} \\ &\sigma(V_{\Phi^{\rm B}}) = \frac{p_{\rm atm} V_{\rm sat}}{p_{\Phi^{\rm B}}^2} \cdot \sigma(p_{\Phi^{\rm B}}) = 0.017 \cdot 10^{-3} \,\, {\rm m}^3 \\ &\sigma(V_{\rm BB}) = \sigma(V_{\Phi^{\rm B}}) + \frac{p_{\rm atm} V_{\rm sat}}{p_{\rm BB}^2} \cdot \sigma(p_{\rm BB}) = 0.05 \cdot 10^{-3} \\ &\sigma(p_{\rm пp}) = \sigma(p_{\rm yct}) = \sigma({\rm прибора}) = 0.1 \cdot 10^{-5} \,\, {\rm mm} \,\, {\rm pt.ct.} \\ &\sigma(k) \cdot {\rm no} \,\, {\rm metody} \,\, {\rm haumehshiux} \,\, {\rm kbadpatob} \,\, {\rm cyutaetch} \,\, {\rm программно} \\ &\sigma(W) = \sigma(k) \cdot V_{\rm BB} - k \cdot \sigma(V_{\rm BB}) \\ &\sigma(\Delta p({\rm при} \,\, {\rm yxydhiehum} \,\, {\rm bakyyma})) = 0.2 \cdot 10^{-5} \,\, {\rm mm} \,\, {\rm pt.ct.} \\ &\Delta t = 2 \,\, {\rm c} \\ &\Delta Q_{\rm H} = \sigma(p_{\rm np}) \cdot W + \sigma(W) \cdot p_{\rm np} + \frac{\Delta p}{\Delta t} \cdot \sigma(V_{\rm BB}) + \frac{V_{\rm BB}}{\Delta t} \cdot \sigma(\Delta p) + \frac{V_{\rm BB} \cdot \Delta p}{\Delta t^2} \cdot \sigma(\Delta t) \\ &C_{\rm Tp} = \frac{4}{3} \cdot \frac{r^3}{L} \cdot \sqrt{\frac{2\pi R}{\mu}} \cdot \frac{\sigma(T)}{2\sqrt{T}} \\ &\sigma(W({\rm Btopon} \,\, {\rm cnocof})) = \frac{4}{3} \cdot \frac{r^3}{L} \cdot \sqrt{\frac{2\pi R}{\mu}} \cdot \frac{p_{\Phi^{\rm B}} - p_{\rm yct}}}{p_{\rm yct} - p_{\rm np}} \cdot \frac{\sigma(T)}{2\sqrt{T}} + \frac{4}{3} \cdot \frac{r^3}{L} \cdot \sqrt{\frac{2\pi RT}{\mu}} \cdot \frac{1}{p_{\rm yct} - p_{\rm np}} \cdot 2\sigma(p_{\rm np}) \\ &\sigma(p_{\rm np}) + \frac{4}{3} \cdot \frac{r^3}{L} \cdot \sqrt{\frac{2\pi RT}{\mu}} \cdot \frac{p_{\Phi^{\rm B}} - p_{\rm yct}}}{(p_{\rm yct} - p_{\rm np})^2} \cdot 2\sigma(p_{\rm np}) \end{split}$$

Погрешность среднего арифметического считается как среднее арифметическое погрешностей

Вывод

Объём форвакуумной части установки - $(2.174\pm0.017)\cdot10^{-3}$ м³ Объём высоковакуумной части установки - $(1.21\pm0.05)\cdot10^{-3}$ м³ Предельное давление, полученное в установке - $(4.2\pm0.1)\cdot10^{-5}$ мм рт.ст Скорость откачки системы - $(1.86\pm0.15)\cdot10^{-4}$ м³/с. Это значение не совпадает со скоростью откачки, полученной теоретически ($(1.6\pm0.2)\cdot10^{-3}$ м³/с). Это может быть связано с изменениями температуры внутри установки, вызванными работой приборов, а также плохой герметичностью установки. Возможна также некорректная работа манометров.