Name:	Exercise Typ	pe (Cost):
J#:	In-Class ((1AP)
Date: 2017 July 05		
Standard: This student is able to	N	Aark:
C04: IntParts. Use integration by parts.		
Extra1 * rea	ttempt due on:	

Find $\int x^2 \cos(x) dx$.

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 05		
Standard: This student is able to		
C07: WashShell. Use the washer or cylindrical shell method to express a volume of revolution as a definite inte-		Mark:
gral.	tempt due on:	

Find a definite integral equal to the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}$ and y=x around the y-axis.

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 05		
		I
Standard: This student is able to		Mark:
C09: Param. Parametrize planar curves and sketch		
parametrized curves.		
4/4	\star reattempt due on:	

Consider the circle of radius 3 and center (1,1). Parametrize the clockwise-oriented circular arc starting at (1,4) and ending at (4,1).

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 05		
Standard: This student is able to So8: ParamAppl. Parametrize a curve to find arclengths,		Mark:
surface areas, and slopes.		
3/3 * reat	tempt due on:	

The surface area obtained by rotating the curve parametrized by x(t) and $y(t) \ge 0$ where $a \le t \le b$ around the x-axis is given by $2\pi \int_a^b y(t) \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \, dt$. Give a definite integral equal to the conical surface area obtained by rotating the line segment connecting (1,0) and (6,2) around the x-axis.

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 05		
Standard: This student is able to		Mark:
C10: Polar. Convert and sketch polar and Cartesian coord	i-	
nates and equations.		
2/4 * read	tempt due on:	

Convert the Cartesian coordinates $(3, -3\sqrt{3})$ to polar.

Name:	Exercise Type (Cost):	
J#:	In-Class	s (1AP)
Date: 2017 July 05		
Standard: This student is able to S09: PolarAppl. Use polar coordinates to express an arclength or area as a definite integral.		Mark:
1/4 * reat	tempt due on:	

The area bounded by an outside curve with polar equation $r=R(\theta)$ and inside curve with polar equation $r=r(\theta)$ where $\alpha \leq \theta \leq \beta$ is given by $\frac{1}{2} \int_{\alpha}^{\beta} ((R(\theta))^2 - (r(\theta))^2) \, d\theta$. Give a definite integral equal to the area inside the cardioid $r=2+2\cos\theta$ but outside the circle r=2.