

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-05, Eq. 7-2) $I_s =$ 1.00 $C_s =$ 0.73 $C_e =$ 0.90 $C_t =$ 1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53$ psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.150 (Procesure)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used
$T_a =$	0.06	$C_{d} = 1.25$	to calculate C _s .

SCHLETTER

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>316.08</u>	<u>6877.52</u>	k
<u>3012.60</u>	<u>4923.12</u>	k
<u>272.40</u>	4248.22	k
<u>0.51</u>	<u>0.16</u>	k
	3012.60 272.40	316.086877.523012.604923.12272.404248.22

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Weight of Concrete = 145 pcf
Compressive Strength = 2500 psi
Yield Strength = 60000 psi $\frac{Overturning Check}{M_O = 175233.7 in-lbs}$ Resisting Force Required = 2655.06 lbs S.F. = 1.67

Weight Required = 4425.09 lbs Minimum Width = 36 in in Weight Provided = 7177.50 lbs

Sliding
Force = 1021.30 lbs
Friction = 0.4
Weight Required = 2553.26 lbs

Resisting Weight = 7177.50 lbs Additional Weight Required = 0 lbs

Concrete Properties

 $\frac{\text{Cohesion}}{\text{Sliding Force}} = 1021.30 \text{ lbs}$ Cohesion = 130 psf $\text{Area} = 33.00 \text{ ft}^2$

 $\begin{array}{ccc} & \text{Resisting =} & 3588.75 \text{ lbs} \\ \text{Additional Weight Required =} & 0 \text{ lbs} \end{array}$

Shear Key
Additional Force = 0 lbs
Lateral Bearing Pressure = 200 psf/ft
Required Depth = 0.00 ft

 $f'_c = 2500 \text{ psi}$ Length = 8 in Footing Reinforcement

Use fiber reinforcing with (3) #5 rebar.

A minimum 132in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Use a 132in long x 36in wide x 18in tall ballast foundation to resist sliding. Friction is OK.

Use a 132in long x 36in wide x 18in tall ballast foundation. Cohesion is OK.

Shear key is not required.

Bearing Pressure

 $\frac{\text{Ballast Width}}{36 \text{ in}} \frac{37 \text{ in}}{37 \text{ sin}} \frac{38 \text{ in}}{39 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3 \text{ ft}) = \frac{7178 \text{ lbs}}{7377 \text{ lbs}} \frac{7576 \text{ lbs}}{7576 \text{ lbs}} \frac{7776 \text{ lbs}}{7776 \text{ lbs}}$

ASD LC	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	833 lbs	833 lbs	833 lbs	833 lbs	1291 lbs	1291 lbs	1291 lbs	1291 lbs	1502 lbs	1502 lbs	1502 lbs	1502 lbs	-147 lbs	-147 lbs	-147 lbs	-147 lbs
F _B	775 lbs	775 lbs	775 lbs	775 lbs	2219 lbs	2219 lbs	2219 lbs	2219 lbs	2161 lbs	2161 lbs	2161 lbs	2161 lbs	-3304 lbs	-3304 lbs	-3304 lbs	-3304 lbs
F _V	107 lbs	107 lbs	107 lbs	107 lbs	1828 lbs	1828 lbs	1828 lbs	1828 lbs	1441 lbs	1441 lbs	1441 lbs	1441 lbs	-2043 lbs	-2043 lbs	-2043 lbs	-2043 lbs
P _{total}	8786 lbs	8985 lbs	9185 lbs	9384 lbs	10687 lbs	10887 lbs	11086 lbs	11285 lbs	10840 lbs	11040 lbs	11239 lbs	11438 lbs	855 lbs	975 lbs	1095 lbs	1214 lbs
М	2349 lbs-ft	2349 lbs-ft	2349 lbs-ft	2349 lbs-ft	3704 lbs-ft	3704 lbs-ft	3704 lbs-ft	3704 lbs-ft	4285 lbs-ft	4285 lbs-ft	4285 lbs-ft	4285 lbs-ft	4097 lbs-ft	4097 lbs-ft	4097 lbs-ft	4097 lbs-ft
е	0.27 ft	0.26 ft	0.26 ft	0.25 ft	0.35 ft	0.34 ft	0.33 ft	0.33 ft	0.40 ft	0.39 ft	0.38 ft	0.37 ft	4.79 ft	4.20 ft	3.74 ft	3.37 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	227.4 psf	227.1 psf	226.9 psf	226.7 psf	262.6 psf	261.4 psf	260.3 psf	259.2 psf	257.7 psf	256.6 psf	255.6 psf	254.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	305.1 psf	302.7 psf	300.5 psf	298.3 psf	385.1 psf	380.6 psf	376.3 psf	372.2 psf	399.3 psf	394.4 psf	389.7 psf	385.3 psf	267.5 psf	162.4 psf	131.1 psf	117.2 psf

Maximum Bearing Pressure = 399 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

A minimum 132in long x 36in wide x 18in tall

Overturning Check

 $M_O = 1609.7 \text{ ft-lbs}$

Resisting Force Required = 1073.11 lbs

S.F. = 1.67

Weight Required = 1788.52 lbs Minimum Width = 36 in in ballast foundation is required to resist overturning.

Weight Provided = 7177.50 lbs

Bearing Pressure

	1									
ASD LC	1	.238D + 0.875	iE .	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		36 in		36 in			36 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	238 lbs	436 lbs	136 lbs	553 lbs	1357 lbs	475 lbs	106 lbs	127 lbs	4 lbs	
F_V	153 lbs	150 lbs	155 lbs	113 lbs	111 lbs	119 lbs	153 lbs	151 lbs	154 lbs	
P _{total}	9124 lbs	9321 lbs	9022 lbs	9011 lbs	9816 lbs	8934 lbs	2704 lbs	2726 lbs	2602 lbs	
М	574 lbs-ft	565 lbs-ft	579 lbs-ft	427 lbs-ft	27 lbs-ft 426 lbs-ft 445 lbs-ft		573 lbs-ft	564 lbs-ft	575 lbs-ft	
е	0.06 ft	0.06 ft	0.06 ft	0.05 ft	0.04 ft	0.05 ft	0.21 ft	0.21 ft	0.22 ft	
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	
f _{min}	241.7 psf	7 psf 248.2 psf 238.3 psf		247.2 psf	2 psf 271.6 psf 243.7 psf		47.2 psf	48.4 psf	44.0 psf	
f _{max}	311.3 psf	316.7 psf	308.5 psf	298.9 psf	323.3 psf	297.7 psf	116.7 psf	116.8 psf	113.7 psf	

Maximum Bearing Pressure = 323 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		<u>Rear Strut</u>
Maximum Axial Load =	2.317 k	Maximum Axial Load = 4.595 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>31%</u>	Utilization = 62%
Diagonal Strut		
Maximum Axial Load =	2.734 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>37%</u>	
0 0		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 48.27 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.965 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.391 \text{ in} \\ \end{array}$

<u>0.391 ≤ 0.965, OK.</u>

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 81 \text{ in}$$

$$J = 0.432$$

$$224.084$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

28.5 ksi

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Not Used

3.4.16

 $\phi F_L =$

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 81 \\ \mathsf{J} &= & 0.432 \\ & 142.504 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc}^* \sqrt{(\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2}))}] \end{split}$$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

23.1 ksi

3.4.16.1

 $\phi F_L =$

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

2.788 k-ft

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max} W k = 1.152 \text{ k-ft}$$

 $M_{max}St =$

SCHLETTER

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = **BF0**

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.3$$

$$k_1 B n$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.2$$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

 $M_{max}Wk =$

3.904 k-ft

Compression

 $M_{max}St =$

3.4.9

b/t = 16.2

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

3.363 k-ft

 $\phi F_L = 31.6 \text{ ksi}$

b/t = 7.4

S1 = 12.21

S2 = 32.70

 $\phi F_L = \phi y F c y$

 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc^*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_{L} = 28.0279 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S2 = 131.3$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 86.60 \text{ in}$$

$$J = 0.942$$

$$135.148$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = (\frac{1.6}{1.6})$$

 $S2 = 1701.56$

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.6 \text{ ksi}$$

Weak Axis:

$$L_b = 86.6$$
 $J = 0.942$
 135.148

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.6$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St =$ 28.2 ksi

$$1x = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $5x = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\phi F_L W k =$

28.2 ksi

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.0 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 70.83$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\varphi F_L =$

28.2 ksi

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

 $lx = 279836 \text{ mm}^4$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_1 St =$

3.4.7 $\lambda = 1.63853$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.80939$ $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$ $\varphi F_L = 10.5516 \text{ ksi}$

$\phi F_L = (\phi cc Fcy)/(\lambda^2)$ $\phi F_{L} = 10.5516 \text{ ksi}$ 3.4.9 b/t =24.5 12.21 (See 3.4.16 above for formula) S1 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi b/t =24.5 S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Y	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-85.097	-85.097	0	0
2	M14	٧	-85.097	-85.097	0	0
3	M15	V	-136.895	-136.895	0	0
4	M16	V	-136.895	-136.895	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	192.393	192.393	0	0
2	M14	٧	147.995	147.995	0	0
3	M15	V	81.397	81.397	0	0
4	M16	V	81 397	81 397	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	.Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Y		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Y		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Y		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Y		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Y		1	.362					6	.875											Π	

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	918.036	2	1238.258	2	.305	1	.001	1	0	1	0	1
2		min	-1083.115	3	-1696.22	3	-22.094	5	124	4	0	1	0	1
3	N7	max	.016	9	814.963	1	465	10	0	10	0	1	0	1
4		min	215	2	-64.44	5	-209.542	4	394	4	0	1	0	1
5	N15	max	.019	9	2317.385	2	0	3	0	3	0	1	0	1
6		min	-2.074	2	-243.142	3	-201.475	4	383	4	0	1	0	1
7	N16	max	2961.459	2	3787.017	2	0	11	0	2	0	1	0	1
8		min	-3267.864	3	-5290.4	3	-22.296	5	125	4	0	1	0	1
9	N23	max	.023	14	814.963	1	4.981	1	.01	1	0	1	0	1
10		min	215	2	-43.892	3	-205.22	5	388	4	0	1	0	1
11	N24	max	918.036	2	1238.258	2	029	10	0	10	0	1	0	1
12		min	-1083.115	3	-1696.22	3	-22.566	5	125	4	0	1	0	1
13	Totals:	max	4795.027	2	10166.322	2	0	1						
14		min	-5434.366	3	-9013.765	3	-680.809	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	51.045	4	403.795	2	-8.207	12	0	15	.12	4	0	4
2			min	3.822	10	-772.298	3	-119.589	1	013	2	.009	10	0	3
3		2	max	46.212	1	281.048	2	-6.868	12	0	15	.077	4	.494	3
4			min	3.822	10	-544.907	3	-91.246	1	013	2	0	10	257	2
5		3	max	46.212	1	158.302	2	-5.528	12	0	15	.046	5	.817	3
6			min	3.822	10	-317.516	3	-62.903	1	013	2	027	1	422	2
7		4	max	46.212	1	35.556	2	-2.833	10	0	15	.026	5	.97	3
8			min	3.822	10	-90.125	3	-34.877	4	013	2	064	1	494	2
9		5	max	46.212	1	137.266	3	.869	10	0	15	.007	5	.953	3
10			min	3.822	10	-87.191	2	-26.189	4	013	2	079	1	475	2
11		6	max	46.212	1	364.657	3	22.125	1	0	15	005	12	.764	3
12			min	.704	15	-209.937	2	-22.082	5	013	2	073	1	363	2
13		7	max	46.212	1	592.048	3	50.468	1	0	15	004	10	.406	3
14			min	-6.515	5	-332.683	2	-20.009	5	013	2	046	1	16	2
15		8	max	46.212	1	819.439	3	78.811	1	0	15	.006	2	.136	2
16			min	-14.214	5	-455.43	2	-17.936	5	013	2	041	4	124	3
17		9	max	46.212	1	1046.83	3	107.154	1	0	15	.072	1	.523	2
18	_		min	-21.913	5	-578.176	2	-15.864	5	013	2	053	5	824	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec	1	Axial[lb]		y Shear[lb]			LC				LC		LC
19		10	max	47.7	4	1274.221	3	135.497	1	.013	2	.163	1	1.003	2
20			min	3.822	10	-700.923	2	-85.728	14	003	3	003	3	<u>-1.694</u>	3
21		11	max	46.212	1	578.176	2	-2.51	12	.013	2	.079	4	.523	2
22			min	3.822	10	-1046.83	3	-107.154	1	0	15	006	3	824	3
23		12	max	46.212	1_	455.43	2	-1.17	12	.013	2	.04	4	.136	2
24			min	3.822	10	-819.439	3	-78.811	1	0	15	008	3	124	3
25		13	max	46.212	1	332.683	2	.497	3	.013	2	.019	5	.406	3
26			min	3.822	10	-592.048	3	-50.468	1	0	15	046	1	16	2
27		14	max	46.212	1	209.937	2	2.507	3	.013	2	0	15	.764	3
28			min	3.812	15	-364.657	3	-30.143	4	0	15	073	1	363	2
29		15	max	46.212	1	87.191	2	6.218	1	.013	2	003	12	.953	3
30			min	-1.922	5	-137.266	3	-23.025	5	0	15	079	1	475	2
31		16	max	46.212	1	90.125	3	34.56	1	.013	2	0	12	.97	3
32			min	-9.621	5	-35.556	2	-20.953	5	0	15	064	1	494	2
33		17	max	46.212	1	317.516	3	62.903	1	.013	2	.005	3	.817	3
34			min	-17.32	5	-158.302	2	-18.88	5	0	15	056	4	422	2
35		18	max	46.212	1	544.907	3	91.246	1	.013	2	.031	1	.494	3
36			min	-25.019	5	-281.048	2	-16.807	5	0	15	063	5	257	2
37		19	max	46.212	1	772.298	3	119.589	1	.013	2	.11	1	0	2
38			min	-32.718	5	-403.795	2	-14.735	5	0	15	075	5	0	3
39	M14	1	max	31.717	4	472.444	2	-8.506	12	.012	3	.176	4	0	2
40			min	2.615	10	-634.944	3	-124.63	1	013	2	.011	10	0	3
41		2	max	27.626	1	349.697	2	-7.166	12	.012	3	.121	4	.411	3
42			min	2.615	10	-460.831	3	-96.287	1	013	2	.002	10	308	2
43		3	max	27.626	1	226.951	2	-5.827	12	.012	3	.074	5	.691	3
44			min	2.615	10	-286.717	3	-67.944	1	013	2	012	1	525	2
45		4	max	27.626	1	104.205	2	-3.397	10	.012	3	.041	5	.841	3
46			min	1.352	15	-112.604	3	-51.794	4	013	2	053	1	649	2
47		5	max	27.626	1	61.51	3	.305	10	.012	3	.011	5	.86	3
48			min	-5.661	5	-18.542	2	-43.106	4	013	2	072	1	681	2
49		6	max	27.626	1	235.623	3	17.085	1	.012	3	004	12	.749	3
50			min	-13.36	5	-141.288	2	-37.637	5	013	2	07	1	621	2
51		7	max	27.626	1	409.736	3	45.428	1	.012	3	004	10	.507	3
52			min	-21.059	5	-264.035	2	-35.564	5	013	2	057	4	469	2
53		8	max	27.626	1	583.85	3	73.77	1	.012	3	.004	2	.134	3
54			min	-28.757	5	-386.781	2	-33.491	5	013	2	073	4	225	2
55		9	max	27.626	1	757.963	3	102.113	1	.012	3	.065	1	.111	2
56			min	-36.456	5	-509.527	2	-31.419	5	013	2	096	5	369	3
57		10	max	54.818	4	932.077	3	130.456	1	.013	2	.176	4	.539	2
58			min	2.615	10	-632.274	2	-90.737	14	012	3	003	3	-1.003	3
59		11	max	47.119	4	509.527			12	.013	2	.12	4	.111	2
60			min	2.615	10	-757.963		-102.113		012	3	007	3	369	3
61		12		39.42	4	386.781	2	872	12	.013	2	.071	5	.134	3
62			min	2.615	10	-583.85	3	-73.77	1	012	3	008	3	225	2
63		13	max	31.721	4	264.035	2	.95	3	.013	2	.039	5	.507	3
64			min	2.615	10	-409.736	3	-52.607	4	012	3	046	1	469	2
65		14		27.626	1	141.288	2	2.96	3	.013	2	.008	5	.749	3
66			min	2.615	10	-235.623		-43.92	4	012	3	07	1	621	2
67		15	max	27.626	1	18.542	2	11.258	1	.013	2	003	12	.86	3
68		.	min	2.615	10	-61.51	3	-37.831	5	012	3	072	1	681	2
69		16		27.626	1	112.604	3	39.601	1	.013	2	0	3	.841	3
70		10	min	1.231	15	-104.205	2	-35.759	5	012	3	061	4	649	2
71		17	max	27.626	1	286.717	3	67.944	1	.013	2	.007	3	.691	3
72		17	min	-5.821	5	-226.951	2	-33.686	5	012	3	078	4	525	2
73		18	max	27.626	1	460.831	3	96.287	1	.013	2	.049	1	.411	3
74		10	min	-13.52	5	-349.697	2	-31.613	5	012	3	099	5	308	2
75		10	max		1	634.944	3	124.63	1	.013	2	.132	1	0	2
10		13	шах	21.020		004.544	J	124.00	1	.013		.132		U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-21.219	5	-472.444	2	-29.54	5	012	3	122	5	0	3
77	M15	1	max	61.567	5	682.332	2	-8.301	12	.014	2	.222	4	0	2
78			min	-28.355	1	-365.768	3	-124.677	1	01	3	.012	10	0	3
79		2	max	53.868	5	497.428	2	-6.961	12	.014	2	.157	4	.239	3
80			min	-28.355	1	-271.572	3	-96.334	1	01	3	.002	10	442	2
81		3	max	46.169	5	312.524	2	-5.622	12	.014	2	.099	5	.407	3
82			min	-28.355	1	-177.376	3	-73.786	4	01	3	012	1	746	2
83		4	max	38.47	5	127.62	2	-3.502	10	.014	2	.057	5	.505	3
84			min	-28.355	1	-83.18	3	-65.099	4	01	3	053	1	911	2
85		5	max	30.771	5	11.015	3	.199	10	.014	2	.017	5	.532	3
86			min	-28.355	1	-57.284	2	-56.411	4	01	3	072	1	938	2
87		6	max	23.073	5	105.211	3	17.037	1	.014	2	004	12	.489	3
88			min	-28.355	1	-242.188	2	-50.909	5	01	3	07	1	825	2
89		7	max	15.374	5	199.407	3	45.38	1	.014	2	004	10	.374	3
90			min	-28.355	1	-427.092	2	-48.836	5	01	3	071	4	574	2
91		8	max	7.675	5	293.603	3	73.723	1	.014	2	.004	2	.189	3
92			min	-28.355	1	-611.996	2	-46.763	5	01	3	097	4	185	2
93		9	max	.065	15	387.799	3	102.066	1	.014	2	.064	1	.344	2
94			min	-28.355	1	-796.9	2	-44.691	5	01	3	13	5	066	3
95		10	max	-2.288	10	481.994	3	130.409	1	.01	3	.22	4	1.011	2
96			min	-28.355	1	-981.804	2	-97.5	14	014	2	002	3	392	3
97		11	max	-2.288	10	796.9	2	-2.416	12	.01	3	.154	4	.344	2
98			min	-28.355	1	-387.799	3	-102.066	1	014	2	006	3	066	3
99		12	max	-2.288	10	611.996	2	-1.077	12	.01	3	.095	5	.189	3
100			min	-28.355	1	-293.603	3	-74.623	4	014	2	007	3	185	2
101		13	max	-2.288	10	427.092	2	.623	3	.01	3	.053	5	.374	3
102			min	-28.355	1	-199.407	3	-65.936	4	014	2	046	1	574	2
103		14	max	-2.288	10	242.188	2	2.633	3	.01	3	.012	5	.489	3
104			min	-35.03	4	-105.211	3	-57.248	4	014	2	07	1	825	2
105		15	max	-2.288	10	57.284	2	11.306	1	.01	3	003	12	.532	3
106			min	-42.729	4	-11.015	3	-51.108	5	014	2	072	1	938	2
107		16	max	-2.288	10	83.18	3	39.648	1	.01	3	0	3	.505	3
108			min	-50.428	4	-127.62	2	-49.035	5	014	2	077	4	911	2
109		17	max	-2.288	10	177.376	3	67.991	1	.01	3	.006	3	.407	3
110			min	-58.127	4	-312.524	2	-46.962	5	014	2	104	4	746	2
111		18	max	-2.288	10	271.572	3	96.334	1	.01	3	.049	1	.239	3
112			min	-65.826	4	-497.428	2	-44.89	5	014	2	135	5	442	2
113		19	max	-2.288	10	365.768	3	124.677	1	.01	3	.132	1	0	2
114			min	-73.525	4	-682.332	2	-42.817	5	014	2	168	5	0	5
115	M16	1	max	59.243	5	617.07	2	-7.534	12	.007	2	.167	4	0	2
116	WITO			-50.159				-120.034		012	3	.01	10	0	3
117		2	max		5	432.166	2	-6.194	12	.007	2	.114	4	.195	3
118				-50.159	1	-212.944	3	-91.691	1	012	3	0	10	393	2
119		3	max		5	247.262	2	-4.854	12	.007	2	.073	5	.319	3
120			min	-50.159	1	-118.748	3	-63.348	1	012	3	026	1	648	2
121		4	max	36.146	5	62.358	2	-3.219	10	.007	2	.043	5	.373	3
122			min	-50.159	1	-24.553	3	-48.283	4	012	3	063	1	764	2
123		5	max	28.448	5	69.643	3	.482	10	.007	2	.014	5	.356	3
124		 	min		1	-122.546	2	-39.595	4	012	3	079	1	742	2
125		6	max	20.749	5	163.839	3	21.681	1	.007	2	005	12	.269	3
126			min		1	-307.45	2	-35.363	5	012	3	073	1	581	2
127		7	max	13.05	5	258.035	3	50.024	1	.007	2	004	10	.11	3
128			min		1	-492.354	2	-33.29	5	012	3	05	4	281	2
129		8	max	5.351	5	352.231	3	78.366	1	.007	2	.005	2	.158	2
130		0	min	-50.159	1	-677.258	2	-31.218	5	012	3	064	4	118	3
131		9	max	-30.139 -1.495	15	446.426	3	106.709	1	.007	2	.071	1	.735	2
132		3	min		1	-862.162	2	-29.145	5	012	3	086	5	418	3
132			1111111	30.108		-002.102		-23.143	J	012	J	000	J	410	J

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]			LC	z-z Mome	
133		10	max	-4.585	10	540.622	3	135.052	1	.007	12	.168	4	1.451	2
134			min	-50.159	1	-1047.066	2	-92.43	14	012	3	0	3	788	3
135		11	max	-3.465	15	862.162	2	-3.184	12	.012	3	.112	4	.735	2
136			min	-50.159	1	-446.426	3	-106.709	1	007	2	003	3	418	3
137		12	max	-4.585	10	677.258	2	-1.844	12	.012	3	.063	4	.158	2
138			min	-50.159	1	-352.231	3	-78.366	1	007	2	006	3	118	3
139		13	max	-4.585	10	492.354	2	504	12	.012	3	.032	5	.11	3
140			min	-50.159	1	-258.035	3	-52.148	4	007	2	046	1	281	2
141		14	max	-4.585	10	307.45	2	1.43	3	.012	3	.002	5	.269	3
142			min	-50.159	1	-163.839	3	-43.46	4	007	2	073	1	581	2
143		15	max	-4.585	10	122.546	2	6.662	1	.012	3	003	12	.356	3
144			min	-50.159	1	-69.643	3	-36.288	5	007	2	079	1	742	2
145		16	max	-4.585	10	24.553	3	35.005	1	.012	3	001	12	.373	3
146			min	-56.33	4	-62.358	2	-34.216	5	007	2	067	4	764	2
147		17	max	-4.585	10	118.748	3	63.348	1	.012	3	.003	3	.319	3
148			min	-64.029	4	-247.262	2	-32.143	5	007	2	083	4	648	2
149		18	max	-4.585	10	212.944	3	91.691	1	.012	3	.032	1	.195	3
150			min	-71.728	4	-432.166	2	-30.07	5	007	2	1	5	393	2
151		19	max	-4.585	10	307.14	3	120.034	1	.012	3	.111	1	0	2
152			min	-79.427	4	-617.07	2	-27.997	5	007	2	122	5	0	5
153	M2	1	max	1011.189	2	1.964	4	.212	1	0	3	0	3	0	1
154			min	-1469.824	3	.476	15	-18.666	4	0	4	0	2	0	1
155		2	max	1011.665	2	1.879	4	.212	1	0	3	0	1	0	15
156			min	-1469.467	3	.456	15	-19.082	4	0	4	006	4	0	4
157		3	max	1012.14	2	1.793	4	.212	1	0	3	0	1	0	15
158			min	-1469.11	3	.436	15	-19.498	4	0	4	012	4	001	4
159		4	max	1012.616	2	1.707	4	.212	1	0	3	0	1	0	15
160			min	-1468.754	3	.415	15	-19.915	4	0	4	019	4	002	4
161		5	max	1013.092	2	1.622	4	.212	1	0	3	0	1	0	15
162			min	-1468.397	3	.395	15	-20.331	4	0	4	025	4	002	4
163		6		1013.568	2	1.536	4	.212	1	0	3	0	1	0	15
164			min	-1468.04	3	.375	15	-20.747	4	0	4	032	4	003	4
165		7		1014.043	2	1.451	4	.212	1	0	3	0	1	0	15
166		-	min	-1467.683	3	.346	12	-21.164	4	0	4	039	4	003	4
167		8		1014.519	2	1.365	4	.212	1	0	3	0	1	0	15
168			min	-1467.326	3	.312	12	-21.58	4	0	4	046	4	004	4
169		9	max	1014.995	2	1.28	4	.212	1	0	3	0	1	001	15
170			min	-1466.969	3	.279	12	-21.997	4	0	4	053	4	004	4
171		10		1015.471	2	1.194	4	.212	1	0	3	0	1	001	15
172			min	-1466.613	3	.246	12	-22.413	4	0	4	06	4	005	4
173		11	max	1015.946		1.108	4	.212	1	0	3	0	1	001	15
174			min		3	.212	12	-22.829	4	0	4	067	4	005	4
175		12		1016.422	2	1.023	4	.212	1	0	3	0	1	001	12
176				-1465.899	3	.179	12	-23.246	4	0	4	075	4	005	4
177		13		1016.898	2	.951	2	.212	1	0	3	0	1	001	12
178			min		3	.146	12	-23.662	4	0	4	082	4	006	4
179		14		1017.374	2	.884	2	.212	1	0	3	0	1	001	12
180			min		3	.112	12	-24.078	4	0	4	09	4	006	4
181		15		1017.849	2	.818	2	.212	1	0	3	0	1	001	12
182			min	-1464.829	3	.079	12	-24.495	4	0	4	098	4	006	4
183		16		1018.325	2	.751	2	.212	1	0	3	.001	1	001	12
184			min		3	.045	12	-24.911	4	0	4	106	4	006	4
185		17		1018.801	2	.684	2	.212	1	0	3	.001	1	001	12
186		- 17		-1464.115	3	003	3	-25.327	4	0	4	114	4	007	4
187		18		1019.277	2	.618	2	.212	1	0	3	.001	1	001	12
188		10	min		3	053	3	-25.744	4	0	4	122	4	007	4
189		10		1019.752	2	.551	2	.212	1	0	3	.001	1	001	12
103		נו	IIIax	1018.732		.001		.८ ८	1	U	⊥ J	.001		001	14

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
190			min	-1463.401	3	103	3	-26.16	4	0	4	131	4	007	4
191	M3	1	max	808.959	2	7.806	4	3.638	4	0	3	0	1_	.007	4
192			min	-913.582	3	1.846	15	.011	10	0	4	019	4	.001	12
193		2	max	808.789	2	7.041	4	4.175	4	0	3	0	1	.004	2
194			min	-913.71	3	1.666	15	.011	10	0	4	017	4	0	12
195		3	max	808.618	2	6.277	4	4.712	4	0	3	0	1	.002	2
196			min	-913.838	3	1.486	15	.011	10	0	4	015	4	001	3
197		4	max	808.448	2	5.512	4	5.249	4	0	3	0	1	0	2
198			min	-913.965	3	1.307	15	.011	10	0	4	013	5	003	3
199		5	max	808.278	2	4.748	4	5.786	4	0	3	0	1	0	15
200			min	-914.093	3	1.127	15	.011	10	0	4	011	5	004	3
201		6	max	808.107	2	3.984	4	6.323	4	0	3	0	1	001	15
202			min	-914.221	3	.947	15	.011	10	0	4	009	5	005	6
203		7	max	807.937	2	3.219	4	6.86	4	0	3	0	1	002	15
204			min	-914.349	3	.768	15	.011	10	0	4	006	5	007	6
205		8	max	807.766	2	2.455	4	7.397	4	0	3	0	1	002	15
206			min	-914.476	3	.588	15	.011	10	0	4	003	5	008	6
207		9	max	807.596	2	1.69	4	7.934	4	0	3	0	1	002	15
208			min	-914.604	3	.408	15	.011	10	0	4	0	10	009	6
209		10	max	807.426	2	.926	4	8.471	4	0	3	.004	4	002	15
210			min	-914.732	3	.19	12	.011	10	0	4	0	10	009	6
211		11	max	807.255	2	.297	2	9.008	4	0	3	.008	4	002	15
212			min	-914.86	3	177	3	.011	10	0	4	0	10	01	6
213		12	max	807.085	2	131	15	9.545	4	0	3	.011	4	002	15
214			min	-914.987	3	624	3	.011	10	0	4	0	10	01	6
215		13	max	806.915	2	311	15	10.082	4	0	3	.016	4	002	15
216			min	-915.115	3	-1.369	6	.011	10	0	4	0	10	009	6
217		14	max	806.744	2	49	15	10.618	4	0	3	.02	4	002	15
218			min	-915.243	3	-2.133	6	.011	10	0	4	0	10	008	6
219		15	max	806.574	2	67	15	11.155	4	0	3	.024	4	002	15
220		'	min	-915.371	3	-2.897	6	.011	10	Ö	4	0	10	007	6
221		16	max		2	85	15	11.692	4	0	3	.029	4	001	15
222		1.0	min	-915.498	3	-3.662	6	.011	10	0	4	0	10	006	6
223		17	max		2	-1.029	15	12.229	4	0	3	.034	4	001	15
224			min	-915.626	3	-4.426	6	.011	10	0	4	0	10	004	6
225		18	max	806.063	2	-1.209	15	12.766	4	0	3	.039	4	0	15
226			min	-915.754	3	-5.191	6	.011	10	0	4	0	10	002	6
227		19	max	805.893	2	-1.389	15	13.303	4	0	3	.045	4	0	1
228			min	-915.882	3	-5.955	6	.011	10	0	4	0	10	0	1
229	M4	1	max		1	0	1	471	10	0	1	.037	4	0	1
230	171.1			-65.871	5	0	1	-207.297		0	1	0	10	0	1
231		2	max		1	0	1	471	10	0	1	.013	4	0	1
232		_	min	-65.792	5	0	1	-207.444		0	1	.013	10	0	1
233		3		812.238	1	0	1	471	10	0	1	0	12	0	1
234			min	-65.712	5	0	1	-207.592		0	1	01	4	0	1
235		4		812.408	1	0	1	471	10	0	1	0	12	0	1
236			min	-65.633	5	0	1	-207.74	4	0	1	034	4	0	1
237		5	_	812.578	1	0	1	471	10	0	1	0	12	0	1
238					5	0	1	-207.887		0	1	058	4	0	1
239		6		812.749	1	0	1	471	10	0	1	0	12	0	1
240		U			5	0	1	-208.035		0	1	082	4	0	1
241		7		812.919	1	0	1	471	10	0	1	0	12	0	1
241			min	-65.394	5	0	1	-208.183		0	1	106	4	0	1
243		8		813.089	<u> </u>	0	1	471	10	0	1	106 0	10	0	1
244		0		-65.315	5	0	1	-208.33	4	0	1	13	4	0	1
244		9	min		<u> </u>		1		10	0	1	13 0	10		1
		9	max			0	1	471 209 479						0	1
246			min	-65.235	5	0		-208.478	4	0	_1_	154	4	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		1 -			
247		10	max	813.43	_1_	0	1	471	10	0	1	0	10	0	1
248		4.4	min	-65.156	5	0	1_	-208.625	4	0	1_	178	4	0	1
249		11	max	813.6	<u>1</u> 5	0	1	471	10	0	<u>1</u> 1	202	10	0	1
250 251		12	min	-65.076 813.771	<u> </u>	0	1	-208.773 471	10	0	1	<u>202</u> 0	10	0	1
252		12	max min	-64.997	5	0	1	-208.921	4	0	1	226	4	0	1
253		13	max		1	0	1	471	10	0	1	0	10	0	1
254		13	min	-64.917	5	0	1	-209.068	4	0	1	25	4	0	1
255		14		814.111	1	0	1	471	10	0	1	0	10	0	1
256		17	min	-64.838	5	0	1	-209.216	4	0	1	274	4	0	1
257		15	max		1	0	1	471	10	0	1	0	10	0	1
258		-10	min	-64.758	5	0	1	-209.364	4	0	1	298	4	0	1
259		16	max		1	0	1	471	10	0	1	0	10	0	1
260			min	-64.679	5	0	1	-209.511	4	0	1	322	4	0	1
261		17	max	814.623	1	0	1	471	10	0	1	0	10	0	1
262			min	-64.599	5	0	1	-209.659	4	0	1	346	4	0	1
263		18	max		1	0	1	471	10	0	1	0	10	0	1
264			min	-64.52	5	0	1	-209.806	4	0	1	37	4	0	1
265		19	max	814.963	1	0	1	471	10	0	1	0	10	0	1
266			min	-64.44	5	0	1	-209.954	4	0	1	394	4	0	1
267	M6	1	max	3076.846	2	2.288	2	0	1	0	1	0	4	0	1
268			min	-4594.528	3	.119	3	-18.85	4	0	4	0	1	0	1
269		2		3077.321	2	2.222	2	0	1_	0	_1_	0	1	0	3
270				-4594.171	3	.069	3	-19.266	4	0	4	006	4	0	2
271		3	max	3077.797	2	2.155	2	0	1	0	1_	0	1	0	3
272			min	-4593.814	3	.019	3	-19.683	4	0	4	012	4	001	2
273		4	max	3078.273	2	2.088	2	0	1_	0	_1_	0	1_	0	3
274			min		3_	031	3	-20.099	4	0	4	019	4	002	2
275		5		3078.749	2	2.022	2	0	1	0	1_	0	1	0	3
276			min	-4593.101	3	081	3	-20.515	4	0	4_	025	4	003	2
277		6		3079.225	2	1.955	2	0	1	0	1	0	1	0	3
278		_	min	-4592.744	3	131	3	-20.932	4	0	4	032	4	003	2
279		7	max		2	1.888	2	0	11	0	1_	0	1	0	3
280		0	min	-4592.387	3	181	3	-21.348	4	0	4	039	4	004	2
281		8		3080.176	2	1.822	3	0	4	0	<u>1</u> 4	0	4	0	3
282		9		-4592.03 3080.652	3	231 1.755	2	-21.764 0	1	0	_ 4 _	046 0	1	005 0	3
283 284		9		-4591.674	3	281	3	-22.181	4	0	4	053	4	005	2
285		10		3081.128	2	1.688	2	0	1	0	1	0	1	0	3
286		10		-4591.317	3	331	3	-22.597	4	0	4	06	4	006	2
287		11		3081.603	2	1.621	2	0	1	0	1	0	1	0	3
288				-4590.96	3	381	3	-23.013	4	0	4	068	4	006	2
289		12		3082.079	2	1.555	2	0	1	0	1	0	1	0	3
290		12		-4590.603	3	431	3	-23.43	4	0	4	075	4	007	2
291		13		3082.555	2	1.488	2	0	1	0	1	0	1	0	3
292		-10		-4590.246	3	481	3	-23.846	4	0	4	083	4	007	2
293		14		3083.031	2	1.421	2	0	1	0	1	0	1	0	3
294				-4589.89	3	531	3	-24.262	4	0	4	091	4	008	2
295		15		3083.506	2	1.355	2	0	1	0	1	0	1	.001	3
296				-4589.533	3	581	3	-24.679	4	0	4	099	4	008	2
297		16		3083.982	2	1.288	2	0	1	0	1	0	1	.001	3
298			min	-4589.176	3	631	3	-25.095	4	0	4	107	4	009	2
299		17		3084.458	2	1.221	2	0	1	0	1	0	1	.001	3
300				-4588.819	3	681	3	-25.512	4	0	4	115	4	009	2
301		18		3084.934	2	1.155	2	0	1	0	1	0	1	.002	3
302				-4588.462	3	731	3	-25.928	4	0	4	123	4	009	2
303		19	max	3085.409	2	1.088	2	0	1	0	1	0	1	.002	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

204	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					
304	N 4 7	4	min	-4588.105	3	781	3	-26.344	4_	0	4_	132	4	01	2
305	<u>M7</u>	1		2636.866 -2731.491	2	7.8	6	3.414	4	0	1_1	0	1	.01	2
306		2	min		3	1.832	15	0	1_1	0	<u>4</u> 1	019	1	002	3
307		2		2636.695 -2731.618	2	7.036	6 1E	3.951	<u>4</u> 1	0		0		.007	2
308		2	min		3	1.652	15	1 100	•	0	<u>4</u> 1	017	1	003	3
309		3	max	2636.525 -2731.746	2	6.271 1.473	6 15	4.488	<u>4</u> 1	0	4	0		.005	3
310		4	min	2636.355	3			0 5.025	_	0	_ 4 _	016 0	1	005	_
311		4		-2731.874	2	5.507	6 15	0.025	_ <u>4</u> 1	0	4	_	4	.003	3
312		5	min		3	1.293 4.742		5.562	_	-	_ 4 _	014 0	1	006 0	2
313		5	max	2636.184 -2732.002	3	1.113	6 15	0.362	<u>4</u> 1	0	4	012	4	007	3
315		6		2636.014	2	3.978	6	6.099	4	0	1	012	1	00 <i>1</i>	2
316		0	min	-2732.129	3	.934	15	0.099	1	0	4	009	4	007	3
317		7		2635.844	2	3.213	6	6.636	4	0	1	009	1	007	15
318			min	-2732.257	3	.754	15	0.030	1	0	4	006	5	002	3
319		8	max		2	2.5	2	7.173	4	0	1	0	1	002	15
320		- 0	min	-2732.385	3	.457	12	0	1	0	4	004	5	002	3
321		9	_	2635.503	2	1.905	2	7.71	4	0	1	0	1	002	15
322		9	min	-2732.513	3	.159	12	0	1	0	4	0	5	002	4
323		10	_	2635.333	2	1.309	2	8.246	4	0	1	.003	4	002	15
324		10		-2732.64	3	257	3	0.240	1	0	4	.003	1	002	4
325		11		2635.162	2	.713	2	8.783	4	0	1	.006	4	002	15
326			min	-2732.768	3	703	3	0.703	1	0	4	0	1	01	4
327		12		2634.992	2	.118	2	9.32	4	0	1	.01	4	002	15
328		12	min	-2732.896	3	-1.15	3	0	1	0	4	.01	1	01	4
329		13		2634.822	2	324	15	9.857	4	0	1	.014	4	002	15
330		13	min	-2733.024	3	-1.597	3	0	1	0	4	0	1	002	4
331		14		2634.651	2	504	15	10.394	4	0	1	.018	4	003	15
332		17	min	-2733.151	3	-2.138	4	0	1	0	4	.010	1	008	4
333		15	max		2	684	15	10.931	4	0	1	.023	4	002	15
334		10	min	-2733.279	3	-2.902	4	0	1	0	4	0	1	007	4
335		16		2634.311	2	863	15	11.468	4	0	1	.028	4	001	15
336		10	min	-2733.407	3	-3.667	4	0	1	0	4	0	1	006	4
337		17	max		2	-1.043	15	12.005	4	0	1	.032	4	001	15
338			min	-2733.535	3	-4.431	4	0	1	0	4	0	1	004	4
339		18	max	2633.97	2	-1.223	15	12.542	4	Ö	1	.038	4	0	15
340			min	-2733.662	3	-5.195	4	0	1	0	4	0	1	002	4
341		19	max	2633.8	2	-1.402	15	13.079	4	0	1	.043	4	0	1
342				-2733.79	3	-5.96	4	0	1	0	4	0	1	0	1
343	M8	1		2314.318	2	0	1	0	1	0	1	.036	4	0	1
344				-245.442	3	0	1	-201.084	4	0	1	0	1	0	1
345		2		2314.489	2	0	1	0	1	0	1	.013	4	0	1
346				-245.314	3	0	1	-201.232	4	0	1	0	1	0	1
347		3		2314.659	2	0	1	0	1	0	1	0	1	0	1
348				-245.186	3	0	1	-201.379	4	0	1	011	4	0	1
349		4		2314.829	2	0	1	0	1	0	1	0	1	0	1
350				-245.059	3	0	1	-201.527	4	0	1	034	4	0	1
351		5	max		2	0	1	0	1	0	1	0	1	0	1
352				-244.931	3	0	1	-201.675	4	0	1	057	4	0	1
353		6		2315.17	2	0	1	0	1	0	1	0	1	0	1
354				-244.803	3	0	1	-201.822	4	0	1	08	4	0	1
355		7		2315.34	2	0	1	0	1	0	1	0	1	0	1
356				-244.675	3	0	1	-201.97	4	0	1	103	4	0	1
357		8		2315.511	2	0	1	0	1	0	1	0	1	0	1
358				-244.548	3	0	1	-202.118	4	0	1	126	4	0	1
359		9		2315.681	2	0	1	0	1	0	1	0	1	0	1
360				-244.42	3	0	1	-202.265	4	0	1	15	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
361		10		2315.852	2	0	1	0	11	0	1	0	1	0	1
362		4.4	min	-244.292	3	0	1	-202.413	4	0	1_	173	4	0	1
363		11		2316.022	2	0	1	0	11	0	1	0	1_4	0	1
364		12		-244.164	3	0	1	-202.561	1	0	1	196 0	1	0	1
365 366		12		2316.192 -244.037	3	0	1	0 -202.708	4	0	1	219	4	0	1
		12					1				1		1	0	1
367 368		13		2316.363	2	0	1	0 -202.856	<u>1</u> 4	0	1	243	4	0	1
		11		-243.909 2316.533	3	0	1	0	1	0	1	<u>243</u> 0	1	0	1
369		14			2		1	-203.003	4	0	1		4	0	1
370 371		15	min	<u>-243.781</u> 2316.703	<u>3</u> 2	0	1	0	1	0	1	266 0	1	0	1
372		13	min	-243.653	3	0	1	-203.151	4	0	1	289	4	0	1
373		16		2316.874	2	0	1	0	1	0	1	0	1	0	1
374		10		-243.526	3	0	1	-203.299	4	0	1	313	4	0	1
375		17		2317.044	2	0	1	0	1	0	1	0	1	0	1
376		17		-243.398	3	0	1	-203.446	4	0	1	336	4	0	1
377		18		2317.214	2	0	1	0	1	0	1	0	1	0	1
378		10	min	-243.27	3	0	1	-203.594	4	0	1	359	4	0	1
379		19		2317.385	2	0	1	0	1	0	1	0	1	0	1
380		13		-243.142	3	0	1	-203.742	4	0	1	383	4	0	1
381	M10	1		1011.189	2	1.901	6	018	10	0	1	0	4	0	1
382	IVITO		min	-1469.824	3	.433	15	-18.801	4	0	5	0	3	0	1
383		2		1011.665	2	1.816	6	018	10	0	1	0	10	0	15
384				-1469.467	3	.413	15	-19.218	4	0	5	006	4	0	6
385		3	max		2	1.73	6	018	10	0	1	0	10	0	15
386				-1469.11	3	.393	15	-19.634	4	0	5	012	4	001	6
387		4		1012.616	2	1.645	6	018	10	0	1	0	10	0	15
388			min		3	.373	15	-20.05	4	0	5	019	4	002	6
389		5		1013.092	2	1.559	6	018	10	0	1	0	10	0	15
390			min	-1468.397	3	.353	15	-20.467	4	0	5	025	4	002	6
391		6		1013.568	2	1.473	6	018	10	0	1	0	10	0	15
392			min	-1468.04	3	.333	15	-20.883	4	0	5	032	4	003	6
393		7	_	1014.043	2	1.388	6	018	10	0	1	0	10	0	15
394				-1467.683	3	.312	15	-21.299	4	0	5	039	4	003	6
395		8		1014.519	2	1.302	6	018	10	0	1	0	10	0	15
396			min	-1467.326	3	.292	15	-21.716	4	0	5	046	4	004	6
397		9		1014.995	2	1.218	2	018	10	0	1	0	10	0	15
398			min		3	.272	15	-22.132	4	0	5	053	4	004	6
399		10		1015.471	2	1.151	2	018	10	0	1	0	10	0	15
400				-1466.613	3	.246	12	-22.548	4	0	5	06	4	004	6
401		11		1015.946	2	1.084	2	018	10	0	1	0	10	001	15
402				-1466.256	3	.212	12	-22.965	4	0	5	068	4	005	6
403		12		1016.422	2	1.018	2	018	10	0	1	0	10	001	15
404				-1465.899	3	.179	12	-23.381	4	0	5	075	4	005	6
405		13		1016.898	2	.951	2	018	10	0	1	0	10	001	15
406				-1465.542	3	.146	12	-23.797	4	0	5	083	4	005	6
407		14	max	1017.374	2	.884	2	018	10	0	1	0	10	001	15
408				-1465.185	3	.112	12	-24.214	4	0	5	091	4	006	6
409		15		1017.849	2	.818	2	018	10	0	1	0	10	001	15
410				-1464.829	3	.079	12	-24.63	4	0	5	098	4	006	6
411		16		1018.325	2	.751	2	018	10	0	1	0	10	001	15
412			min	-1464.472	3	.045	12	-25.046	4	0	5	106	4	006	6
413		17	max	1018.801	2	.684	2	018	10	0	1	0	10	001	15
414				-1464.115	3	003	3	-25.463	4	0	5	115	4	006	2
415		18		1019.277	2	.618	2	018	10	0	1	0	10	001	15
416				-1463.758	3	053	3	-25.879	4	0	5	123	4	007	2
417		19	max	1019.752	2	.551	2	018	10	0	1	0	10	001	12

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
418			min	-1463.401	3	103	3	-26.296	4	0	5	131	4	007	2
419	M11	1	max	808.959	2	7.757	6	3.56	4	0	1	0	10	.007	2
420			min	-913.582	3	1.813	15	123	1	0	4	019	4	.001	12
421		2	max	808.789	2	6.993	6	4.097	4	0	1	0	10	.004	2
422			min	-913.71	3	1.633	15	123	1	0	4	017	4	0	12
423		3	max	808.618	2	6.228	6	4.634	4	0	1	0	10	.002	2
424			min	-913.838	3	1.453	15	123	1	0	4	016	4	001	3
425		4	max	808.448	2	5.464	6	5.171	4	0	1	0	10	0	2
426			min	-913.965	3	1.274	15	123	1	0	4	014	4	003	3
427		5	max	808.278	2	4.699	6	5.708	4	0	1	0	10	0	15
428			min	-914.093	3	1.094	15	123	1	0	4	011	4	004	4
429		6	max	808.107	2	3.935	6	6.245	4	0	1	0	10	001	15
430			min	-914.221	3	.914	15	123	1	0	4	009	4	006	4
431		7	max	807.937	2	3.17	6	6.782	4	0	1	0	10	002	15
432			min	-914.349	3	.735	15	123	1	0	4	006	4	007	4
433		8	max	807.766	2	2.406	6	7.319	4	0	1	0	10	002	15
434			min	-914.476	3	.555	15	123	1	0	4	003	4	008	4
435		9	max	807.596	2	1.641	6	7.856	4	0	1	0	5	002	15
436			min	-914.604	3	.375	15	123	1	0	4	0	1	009	4
437		10	max	807.426	2	.893	2	8.393	4	0	1	.004	5	002	15
438			min	-914.732	3	.19	12	123	1	0	4	0	1	01	4
439		11	max	807.255	2	.297	2	8.93	4	0	1	.007	5	002	15
440			min	-914.86	3	177	3	123	1	0	4	0	1	01	4
441		12	max	807.085	2	164	15	9.467	4	0	1	.011	5	002	15
442			min	-914.987	3	653	4	123	1	0	4	0	1	01	4
443		13	max	806.915	2	344	15	10.003	4	0	1	.015	4	002	15
444			min	-915.115	3	-1.417	4	123	1	0	4	0	1	009	4
445		14	max	806.744	2	523	15	10.54	4	0	1	.019	4	002	15
446			min	-915.243	3	-2.182	4	123	1	0	4	0	1	009	4
447		15	max	806.574	2	703	15	11.077	4	0	1	.024	4	002	15
448			min	-915.371	3	-2.946	4	123	1	0	4	0	1	007	4
449		16	max	806.404	2	883	15	11.614	4	0	1	.029	4	001	15
450			min	-915.498	3	-3.711	4	123	1	0	4	0	1	006	4
451		17	max	806.233	2	-1.062	15	12.151	4	0	1	.034	4	001	15
452			min	-915.626	3	-4.475	4	123	1	0	4	001	1	004	4
453		18	max	806.063	2	-1.242	15	12.688	4	0	1	.039	4	0	15
454			min	-915.754	3	-5.239	4	123	1	0	4	001	1	002	4
455		19	max	805.893	2	-1.422	15	13.225	4	0	1	.044	4	0	1
456			min	-915.882	3	-6.004	4	123	1	0	4	001	1	0	1
457	M12	1	max	811.897	1	0	1	5.095	1	0	1	.037	4	0	1
458			min	-46.191	3	0	1	-204.064	4	0	1	0	1	0	1
459		2	max	812.067	1	0	1	5.095	1	0	1	.013	4	0	1
460			min	-46.064	3	0	1	-204.212	4	0	1	0	1	0	1
461		3	max	812.238	1	0	1	5.095	1	0	1	0	1	0	1
462			min	-45.936	3	0	1	-204.36	4	0	1	01	4	0	1
463		4		812.408	1	0	1	5.095	1	0	1	0	1	0	1
464			min	-45.808	3	0	1	-204.507	4	0	1	034	4	0	1
465		5		812.578	1	0	1	5.095	1	0	1	.001	1	0	1
466			min	-45.68	3	0	1	-204.655	4	0	1	057	4	0	1
467		6	max		1	0	1	5.095	1	0	1	.002	1	0	1
468			min	-45.553	3	0	1	-204.803	4	Ö	1	081	4	0	1
469		7		812.919	1	0	1	5.095	1	0	1	.003	1	0	1
470			min	-45.425	3	0	1	-204.95	4	0	1	104	4	0	1
471		8	_	813.089	1	0	1	5.095	1	0	1	.003	1	0	1
472			min	-45.297	3	0	1	-205.098	4	0	1	128	4	0	1
473		9	max	813.26	1	0	1	5.095	1	0	1	.004	1	0	1
474			min	-45.169	3	0	1	-205.246		0	1	151	4	0	1
177			11/11/1	10.100				200.270		<u> </u>			T		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	813.43	1	0	1	5.095	1	0	1	.004	1	0	1
476			min	-45.042	3	0	1	-205.393	4	0	1	175	4	0	1
477		11	max	813.6	1	0	1	5.095	1	0	1	.005	1	0	1
478			min	-44.914	3	0	1	-205.541	4	0	1	199	4	0	1
479		12	max	813.771	1	0	1	5.095	1	0	1	.006	1	0	1
480			min	-44.786	3	0	1	-205.688	4	0	1	222	4	0	1
481		13		813.941	1	0	1	5.095	1	0	1	.006	1	0	1
482			min	-44.658	3	0	1	-205.836	4	0	1	246	4	0	1
483		14	max	814.111	1	0	1	5.095	1	0	1	.007	1	0	1
484			min	-44.531	3	0	1	-205.984	4	0	1	269	4	0	1
485		15	max	814.282	1	Ö	1	5.095	1	Ö	1	.007	1	0	1
486			min	-44.403	3	0	1	-206.131	4	0	1	293	4	0	1
487		16		814.452	1	0	1	5.095	1	0	1	.008	1	0	1
488			min	-44.275	3	0	1	-206.279	4	0	1	317	4	0	1
489		17	max	814.623	1	0	1	5.095	1	0	1	.008	1	0	1
490		- ' '	min	-44.147	3	0	1	-206.427	4	0	1	34	4	0	1
491		18	max		1	0	1	5.095	1	0	1	.009	1	0	1
492		-10	min	-44.019	3	0	1	-206.574	4	0	1	364	4	0	1
493		19	max	814.963	1	0	1	5.095	1	0	1	.01	1	0	1
494		13	min	-43.892	3	0	1	-206.722	4	0	1	388	4	0	1
495	M1	1	max	119.593		772.245	3	32.694	5	0	2	.11	1	0	15
496	IVII		min	-14.735	5	-403.295	2	-46.175	1	0	3	075	5	013	2
497		2	max		1	771.314	3	33.935	5	0	2	.085	1	013 .2	2
498			min	-14.4	5	-404.536	2	-46.175	1	0	3	058	5	411	3
		2				528.207			•				1		
499		3	max	565.17 -328.317	2	-596.353	3	16.821 -46.022	<u>5</u> 1	0	2	.061 04	5	.403 801	3
500		4	min						•	_				.124	_
501		4	max		3	526.966	2	18.062	5	0	3	.037	1		2
502				-327.601	2	-597.283	3	-46.022	1_	0	2	03	5	486	3
503		5	max	566.244	3_	525.725	2	19.303	5	0	3	.012	1	003	15
504				-326.885	2	-598.213	3	-46.022	1	0	2	021	5	171	3
505		6	max		3_	524.485	2	20.545	5	0	3_	001	10	.145	3
506				-326.168	2	-599.144	3	-46.022	1	0	2	013	4	43	2
507		7		567.318	3	523.244	2	21.786	5	0	3	.001	5	.462	3
508				-325.452	2	-600.074	3	-46.022	1_	0	2	036	1	707	2
509		8	max	567.855	3_	522.004	2	23.028	5	0	3_	.013	5	.779	3
510			min	-324.736	2	-601.005	3	-46.022	1_	0	2	061	1	983	2
511		9	max	581.399	3	51.923	2	45.406	5	0	9	.039	1	.905	3
512				-274.154	2	.374	15	-73.669	1_	0	3	09	5	-1.122	2
513		10	max	581.936	3	50.683	2	46.648	5	0	9	0	10	.886	3
514				-273.437	2	002	5	-73.669	1_	0	3	066	4	-1.149	2
515		11		582.474	3	49.442	2	47.889	5	0	9	003	10	.867	3
516				-272.721	2	-1.565	4	-73.669	1_	0	3	051	4	-1.175	2
517		12		595.692	3	405.231	3	115.246	5	0	2	.06	1	.76	3
518				-221.982	2	-631.796	2	-45.321	1	0	3	17	5	-1.044	2
519		13		596.229	3_	404.3	3	116.487	5	0	2	.036	1	.546	3
520				-221.266	2	-633.036	2	-45.321	1	0	3	108	5	711	2
521		14		596.767	3_	403.37	3	117.729	5	0	2	.012	1	.333	3
522				-220.55	2	-634.277	2	-45.321	1	0	3	047	5	376	2
523		15		597.304	3	402.439	3	118.97	5	0	2	.016	5	.121	3
524				-219.834	2	-635.517	2	-45.321	1	0	3	012	1	05	1
525		16		597.841	3_	401.509	3	120.212	5	0	2	.079	5	.294	2
526				-219.117	2	-636.758	2	-45.321	1	0	3	036	1	091	3
527		17		598.378	3	400.579	3	121.453	5	0	2	.143	5	.631	2
528			min	-218.401	2	-637.998	2	-45.321	1	0	3	059	1	303	3
529		18	max	27.663	5	618.747	2	-4.585	10	0	5	.158	5	.319	2
530				-120.746	1	-306.298	3	-80.67	4	0	2	085	1	15	3
531		19	max	27.997	5	617.507	2	-4.585	10	0	5	.122	5	.012	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
532			min	-120.03	1	-307.228	3	-79.429	4	0	2	111	1	007	2
533	<u>M5</u>	1	max	270.986	1	2548.41	3	66.213	5	0	1	0	1	.026	2
534			min	7.701	12	-1399.506	2	0	1	0	4	153	4	0	15
535		2	max	271.702	1	2547.479	3	67.455	5	0	1	0	1	.764	2
536			min	8.059	12	-1400.746	2	0	1	0	4	117	4	-1.338	3
537		3	max	1732.225	3	1423.773	2	51.551	4	0	4	0	1	1.47	2
538			min	-1032.688	2	-1744.942	3	0	1	0	1	082	4	-2.63	3
539		4	max	1732.762	3	1422.533	2	52.792	4	0	4	0	1	.719	2
540			min	-1031.971	2	-1745.872	3	0	1	0	1	054	4	-1.709	3
541		5	max	1733.299	3	1421.292	2	54.034	4	0	4	0	1	.02	9
542			min	-1031.255	2	-1746.803	3	0	1	0	1	026	4	788	3
543		6	max	1733.836	3	1420.052	2	55.275	4	0	4	.003	4	.134	3
544			min	-1030.539	2	-1747.733	3	0	1	0	1	0	1	781	2
545		7	max	1734.374	3	1418.811	2	56.517	4	0	4	.032	4	1.057	3
546			min	-1029.823	2	-1748.664	3	0	1	0	1	0	1	-1.53	2
547		8	max	1734.911	3	1417.571	2	57.758	4	0	4	.062	4	1.98	3
548			min	-1029.107	2	-1749.594	3	0	1	0	1	0	1	-2.278	2
549		9	max	1745.606	3	176.408	2	151.579	4	0	1	0	1	2.279	3
550			min	-913.729	2	.37	15	0	1	0	1	139	4	-2.607	2
551		10	max	1746.143	3	175.167	2	152.82	4	0	1	0	1	2.203	3
552			min	-913.013	2	004	15	0	1	0	1	058	4	-2.7	2
553		11	max	1746.68	3	173.927	2	154.062	4	0	1	.023	4	2.128	3
554			min	-912.297	2	-1.522	6	0	1	0	1	0	1	-2.792	2
555		12	max	1758.026	3	1139.755	3	165.78	4	0	1	0	1	1.864	3
556			min	-797.234	2	-1771.508	2	0	1	0	4	243	4	-2.501	2
557		13		1758.563	3	1138.825	3	167.022	4	0	1	0	1	1.262	3
558		1	min	-796.517	2	-1772.748	2	0	1	0	4	155	4	-1.566	2
559		14	max	1759.1	3	1137.895	3	168.263	4	0	1	0	1	.662	3
560			min	-795.801	2	-1773.989	2	0	1	0	4	067	4	63	2
561		15		1759.637	3	1136.964	3	169.505	4	0	1	.022	4	.306	2
562		10	min	-795.085	2	-1775.229	2	0	1	Ö	4	0	1	0	13
563		16	_	1760.174	3	1136.034	3	170.746	4	0	1	.112	4	1.243	2
564			min	-794.369	2	-1776.47	2	0	1	0	4	0	1	538	3
565		17		1760.711	3	1135.103	3	171.988	4	0	1	.203	4	2.181	2
566			min	-793.653	2	-1777.71	2	0	1	0	4	0	1	-1.137	3
567		18	max	-9.404	12	2097.153	2	0	1	Ö	4	.245	4	1.121	2
568		1.0	min	-270.827	1	-1080.55	3	-13.683	5	0	1	0	1	594	3
569		19	max	-9.045	12	2095.913	2	0	1	0	4	.239	4	.014	2
570		1.0	min	-270.111	1	-1081.481	3	-12.441	5	0	1	0	1	024	3
571	M9	1	max		1	772.245	3	51.142	4	0	3	009	10	0	15
572			min	8.207	12	-403.295	2	3.821	10	0	4	12	4	013	2
573		2	max		1	771.314	3	52.383	4	0	3	007	10	.2	2
574			min	8.565	12	-404.536		3.821	10	0	4	092	4	411	3
575		3	max		3	528.207	2	46.022	1	0	2	005	10	.403	2
576		Ť	min	-328.317	2	-596.353	3	3.804	10	0	3	064	4	801	3
577		4		565.707	3	526.966	2	46.022	1	0	2	003	10	.124	2
578			min		2	-597.283	3	3.804	10	0	3	045	4	486	3
579		5	max		3	525.725	2	46.022	1	0	2	0	10	003	15
580			min	-326.885	2	-598.213	3	3.804	10	0	3	026	4	171	3
581		6	max		3	524.485	2	46.022	1	0	2	.012	1	.145	3
582			min	-326.168	2	-599.144	3	3.804	10	0	3	008	5	43	2
583		7		567.318	3	523.244	2	46.022	1	0	2	.036	1	.462	3
584				-325.452	2	-600.074	3	3.804	10	0	3	.003	10	707	2
585		8	max		3	522.004	2	46.022	1	0	2	.061	1	.779	3
586			min	-324.736	2	-601.005	3	3.804	10	0	3	.005	10	983	2
587		9	max		3	51.923	2	74.893	4	0	3	003	10	.905	3
588		3		-274.154		.383	15	6.421	10	0	9	106	4	-1.122	2
200			111111	-214.104		.აია	10	0.4∠1	IU	U	9	100	4	-1.122	<u> </u>

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
589		10	max	581.936	3	50.683	2	76.135	4	0	3	0	1	.886	3
590			min	-273.437	2	.009	15	6.421	10	0	9	066	4	-1.149	2
591		11	max	582.474	3	49.442	2	77.376	4	0	3	.039	1	.867	3
592			min	-272.721	2	-1.511	6	6.421	10	0	9	035	5	-1.175	2
593		12	max	595.692	3	405.231	3	133.996	4	0	3	005	10	.76	3
594			min	-221.982	2	-631.796	2	4.131	10	0	2	194	4	-1.044	2
595		13	max	596.229	3	404.3	3	135.237	4	0	3	003	10	.546	3
596			min	-221.266	2	-633.036	2	4.131	10	0	2	123	4	711	2
597		14	max	596.767	3	403.37	3	136.478	4	0	3	001	10	.333	3
598			min	-220.55	2	-634.277	2	4.131	10	0	2	052	4	376	2
599		15	max	597.304	3	402.439	3	137.72	4	0	3	.021	4	.121	3
600			min	-219.834	2	-635.517	2	4.131	10	0	2	.001	12	05	1
601		16	max	597.841	3	401.509	3	138.961	4	0	3	.094	4	.294	2
602			min	-219.117	2	-636.758	2	4.131	10	0	2	.003	10	091	3
603		17	max	598.378	3	400.579	3	140.203	4	0	3	.167	4	.631	2
604			min	-218.401	2	-637.998	2	4.131	10	0	2	.005	10	303	3
605		18	max	-7.892	12	618.747	2	50.196	1	0	2	.192	4	.319	2
606			min	-120.746	1	-306.298	3	-60.606	5	0	3	.008	10	15	3
607		19	max	-7.534	12	617.507	2	50.196	1	0	2	.167	4	.012	3
608			min	-120.03	1	-307.228	3	-59.365	5	0	3	.01	10	007	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.123	2	.01	3	1.03e-2	2	NC	1	NC	1
2			min	407	4	033	3	006	2	-3.056e-3	3	NC	1	NC	1
3		2	max	0	1	.085	3	.012	3	1.115e-2	2	NC	4	NC	1
4			min	407	4	.002	15	006	5	-2.832e-3	3	1376.09	3	NC	1
5		3	max	0	1	.181	3	.021	1	1.2e-2	2	NC	4	NC	2
6			min	407	4	.001	15	009	5	-2.607e-3	3	756.883	3	7522.968	1
7		4	max	0	1	.242	3	.03	1	1.284e-2	2	NC	4	NC	2
8			min	407	4	002	9	007	5	-2.383e-3	3	590.171	3	5148.766	1
9		5	max	0	1	.259	3	.035	1	1.369e-2	2	NC	4	NC	2
10			min	407	4	001	9	003	10	-2.159e-3	3	554.254	3	4521.452	1
11		6	max	0	1	.235	3	.032	1	1.453e-2	2	NC	4	NC	2
12			min	407	4	.001	15	005	10	-1.934e-3	3	604.053	3	4870.921	1
13		7	max	0	1	.178	3	.027	3	1.538e-2	2	NC	4	NC	2
14			min	407	4	.002	15	007	10	-1.71e-3	3	769.197	3	6670.214	1
15		8	max	0	1	.15	2	.028	3	1.623e-2	2	NC	1	NC	1
16			min	407	4	.003	15	012	2	-1.485e-3	3	1195.028	3	8832.86	3
17		9	max	0	1	.192	2	.029	3	1.707e-2	2	NC	4	NC	1
18			min	407	4	.003	15	018	2	-1.261e-3	3	2353.643	2	8479.979	3
19		10	max	0	1	.211	2	.029	3	1.792e-2	2	NC	4	NC	1
20			min	407	4	.002	3	021	2	-1.036e-3	3	1846.09	2	8392.691	3
21		11	max	0	10	.192	2	.029	3	1.707e-2	2	NC	4	NC	1
22			min	407	4	.003	15	018	2	-1.261e-3	3	2353.643	2	8479.979	3
23		12	max	0	10	.15	2	.028	3	1.623e-2	2	NC	1	NC	1
24			min	407	4	.002	15	012	2	-1.485e-3	3	1195.028	3	8832.86	3
25		13	max	0	10	.178	3	.027	3	1.538e-2	2	NC	4	NC	2
26			min	407	4	.002	15	007	10	-1.71e-3	3	769.197	3	6670.214	1
27		14	max	0	10	.235	3	.032	1	1.453e-2	2	NC	4	NC	2
28			min	407	4	0	15	005	10	-1.934e-3	3	604.053	3	4870.921	1
29		15	max	0	10	.259	3	.035	1	1.369e-2	2	NC	4	NC	2
30			min	407	4	001	9	003	10	-2.159e-3	3	554.254	3	4521.452	1
31		16	max	0	10	.242	3	.03	1	1.284e-2	2	NC	4	NC	2
32			min	407	4	002	9	003	10	-2.383e-3	3	590.171	3	5148.766	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
33		17	max	0	10	.181	3	.021	1	1.2e-2	2	NC	4	NC	2
34			min	407	4	0	15	003	10	-2.607e-3	3	756.883	3	7522.968	1
35		18	max	0	10	.085	3	.012	3	1.115e-2	2	NC	4	NC	1
36			min	407	4	.001	15	003	10	-2.832e-3	3	1376.09	3	NC	1
37		19	max	0	10	.123	2	.01	3	1.03e-2	2	NC	1	NC	1
38			min	407	4	033	3	006	2	-3.056e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.279	3	.009	3	5.669e-3	2	NC	1	NC	1
40	IVIT		min	315	4	381	2	006	2	-4.779e-3	3	NC	1	NC	1
41		2		0	1	.428	3	.01	3	6.516e-3	2	NC	4	NC	1
42			max	•			2	011						NC	1
			min	315	4	<u>52</u>			5	-5.569e-3	3	1086.589	3		
43		3	max	0	1	<u>.56</u>	3	.016	1	7.362e-3	2	NC	5	NC Too	2
44			min	315	4	645	2	013	5	-6.36e-3	3	577.901	3	9953.763	
45		4	max	0	1	.66	3	.025	1	8.209e-3	2	NC	5	NC	2
46			min	315	4	747	2	01	5	-7.15e-3	3	424.985	3	6289.982	
47		5	max	0	1	.724	3	.03	1	9.056e-3	2	NC	5	NC	2
48			min	315	4	821	2	003	10	-7.941e-3	3	364.044	3	5281.733	1
49		6	max	0	1	.75	3	.029	1	9.903e-3	2	NC	5	NC	2
50			min	315	4	864	2	004	10		3	335.284	2	5526.335	1
51		7	max	0	1	.743	3	.023	3	1.075e-2	2	NC	_ <u></u>	NC	2
52		-	min	315	4	881	2	007	10		3	324.445	2	7404.524	
53		8	max	0	1	.714	3	.025	3	1.16e-2	2	NC	5	NC	1
		-					2			-1.031e-2				8342.604	
54			min	315	4	876		01	2		3	327.362	2		4
55		9	max	0	1	<u>.679</u>	3	.026	3	1.244e-2	2	NC	5_	NC 2500 407	1
56			min	315	4	862	2	016	2	-1.11e-2	3	336.993	2	9539.137	3
57		10	max	0	1	.662	3	.026	3	1.329e-2	2	NC	5_	NC	1
58			min	315	4	853	2	019	2	-1.189e-2	3	343.301	2	9420.361	3
59		11	max	0	10	.679	3	.026	3	1.244e-2	2	NC	5	NC	1
60			min	315	4	862	2	016	2	-1.11e-2	3	336.993	2	9539.137	3
61		12	max	0	10	.714	3	.025	3	1.16e-2	2	NC	5	NC	1
62			min	315	4	876	2	013	5	-1.031e-2	3	327.362	2	NC	1
63		13	max	0	10	.743	3	.023	3	1.075e-2	2	NC	5	NC	2
64		1.0	min	315	4	881	2	009	5	-9.522e-3	3	324.445	2	7404.524	
65		14	max	0	10	.75	3	.029	1	9.903e-3	2	NC	5	NC	2
66		14		315	4	864	2	004	10	-8.731e-3	3	335.284	2	5526.335	
		4.5	min												
67		15	max	0	10	.724	3	.03	1	9.056e-3	2	NC 004.044	5_	NC	2
68		10	min	315	4	821	2	003		-7.941e-3	3	364.044	3_	5281.733	
69		16	max	0	10	.66	3	.025	1	8.209e-3	2	NC	5_	NC	2
70			min	315	4	747	2	002	10	-7.15e-3	3	424.985	3	6289.982	
71		17	max	0	10	.56	3	.021	4	7.362e-3	2	NC	5	NC	2
72			min	315	4	645	2	003	10	-6.36e-3	3	577.901	3	7499.398	
73		18	max	0	10	.428	3	.014	4	6.516e-3	2	NC	4	NC	1
74			min	315	4	52	2	004	2	-5.569e-3	3	1086.589	3	NC	1
75		19	max	0	10	.279	3	.009	3	5.669e-3	2	NC	1	NC	1
76			min	315	4	381	2	006	2	-4.779e-3	3	NC	1	NC	1
77	M15	1	max	0	10	.284	3	.008	3	4.17e-3	3	NC	1	NC	1
78	IVITO	<u> </u>	min	264	4	38	2	005	2	-5.933e-3	2	NC	1	NC	1
		2		_	10	.395	3	.009	3	4.858e-3	3	NC	4	NC	_
79			max	0											1
80			min	264	4	549	2	<u>015</u>	5	-6.826e-3	2	957.454	2	9661.994	
81		3	max	0	10	.495	3	.016	1	5.546e-3	3_	NC	5	NC NC	2
82			min	264	4	699	2	019	5	-7.72e-3	2	507.573	2	7826.179	
83		4	max	0	10	.578	3	.025	1	6.233e-3	3	NC	5_	NC	2
84			min	264	4	816	2	015	5	-8.614e-3	2	371.268	2	6256.226	1
85		5	max	0	10	.638	3	.03	1	6.921e-3	3	NC	5	NC	2
86			min	264	4	894	2	005	5	-9.508e-3	2	315.566	2	5249.011	1
87		6	max	0	10	.675	3	.029	1	7.609e-3	3	NC	5	NC	2
88		Ť	min	264	4	929	2	004	10	-1.04e-2	2	295.056	2	5481.251	1
89		7	max	0	10	.69	3	.024		8.297e-3	3	NC	5	NC	2
LUJ			IIIIdX	U	ΙU	.03	J	.024	14	0.2316-3	J	INC	<u> </u>	INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
90			min	264	4	929	2	006	10 -1.13e-2	2	295.398	2	7309.151	1
91		8	max	0	10	.688	3	.025	4 8.984e-3	3	NC	5_	NC	1
92			min	264	4	903	2	01	2 -1.219e-2	2	309.954	2	6733.045	4
93		9	max	0	10	.679	3	.024	3 9.672e-3	3	NC	5	NC	1
94			min	264	4	869	2	015	2 -1.308e-2	2	331.167	2	9361.779	4
95		10	max	0	1	.673	3	.024	3 1.036e-2	3	NC	5	NC	1
96			min	264	4	852	2	018	2 -1.398e-2	2	343.543	2	NC	1
97		11	max	0	1	.679	3	.024	3 9.672e-3	3	NC	5	NC	1
98			min	264	4	869	2	015	2 -1.308e-2	2	331.167	2	NC	1
99		12	max	0	1	.688	3	.023	3 8.984e-3	3	NC	5	NC	1
100			min	264	4	903	2	018	5 -1.219e-2	2	309.954	2	9159.507	5
101		13	max	0	1	.69	3	.022	3 8.297e-3	3	NC	5	NC	2
102			min	264	4	929	2	012	5 -1.13e-2	2	295.398	2	7309.151	1
103		14	max	0	1	.675	3	.029	1 7.609e-3	3	NC	5	NC	2
104			min	264	4	929	2	004	10 -1.04e-2	2	295.056	2	5481.251	1
105		15	max	0	1	.638	3	.03	1 6.921e-3	3	NC	5	NC	2
106			min	264	4	894	2	003	10 -9.508e-3	2	315.566	2	5249.011	1
107		16	max	0	1	.578	3	.026	4 6.233e-3	3	NC	5	NC	2
108			min	264	4	816	2	002	10 -8.614e-3	2	371.268	2	6146.894	
109		17	max	0	1	.495	3	.027	4 5.546e-3	3	NC	5	NC	2
110			min	264	4	699	2	002	10 -7.72e-3	2	507.573	2	5905.131	4
111		18	max	0	1	.395	3	.019	4 4.858e-3	3	NC	4	NC	1
112		10	min	264	4	549	2	003	2 -6.826e-3	2	957.454	2	8415.28	4
113		19	max	0	1	.284	3	.008	3 4.17e-3	3	NC	1	NC	1
114		10	min	264	4	38	2	005	2 -5.933e-3	2	NC	1	NC	1
115	M16	1	max	0	10	<u></u> .11	2	.007	3 7.823e-3	3	NC	1	NC	1
116	IVITO	•	min	107	4	097	3	005	2 -8.601e-3	2	NC	1	NC	1
117		2	max	0	10	.032	1	.009	3 8.6e-3	3	NC	4	NC	1
118			min	107	4	065	3	012	5 -9.072e-3	2	2001.176	2	NC	1
119		3	max	0	10	.006	9	.021	1 9.378e-3	3	NC	4	NC	2
120		3	min	107	4	042	3	015	5 -9.543e-3	2	1118.338	2	7480.379	1
121		4	max	0	10	.003	4	.031	1 1.016e-2	3	NC	4	NC	2
122		4		107	4	071	2	013	5 -1.001e-2	2	898.286	2	5096.736	
123		5	min	0	10	.003	4	.036	1 1.093e-2	3	NC	4	NC	2
123		1 5	max	107			2					2		1
		6	min		10	073		006		2	889.003 NC	4	4450.47	2
125		6	max	0		.008	9	.033	1 1.171e-2	3			NC 4750 450	
126		-	min	107	4	064	3	003	10 -1.096e-2	2	1069.204	2	4750.452	
127		7	max	0	10	.03	1	.025	1 1.249e-2	3_	NC	3	NC 0070.005	2
128			min	107	4	098	3	005	10 -1.143e-2	2	1698.02	2	6379.385	
129		8	max	0	10	.082	2	.021	3 1.327e-2	3	NC	1_	NC	1
130			min		4	138	3	008	2 -1.19e-2	2	3964.947	3	NC	1
131		9	max	0	10	.143	2	.021	3 1.404e-2	3	NC	_4_	NC	1
132			min	107	4	172	3	014	2 -1.237e-2	2	2168.774	3	NC	1
133		10	max	0	1	.17	2	.021	3 1.482e-2	3_	NC	4	NC	1
134			min	107	4	187	3	016	2 -1.284e-2	2	1807.628	3	NC	1
135		11	max	0	1	.143	2	.021	3 1.404e-2	3	NC	_4_	NC	1
136			min	107	4	172	3	014	2 -1.237e-2	2	2168.774	3	NC	1
137		12	max	0	1	.082	2	.021	3 1.327e-2	3	NC	_1_	NC	1
138			min	107	4	138	3	009	5 -1.19e-2	2	3964.947	3	NC	1
139		13	max	0	1	.03	1	.025	1 1.249e-2	3	NC	3	NC	2
140			min	107	4	098	3	005	10 -1.143e-2	2	1698.02	2	6379.385	1
141		14	max	0	1	.008	9	.033	1 1.171e-2	3	NC	4	NC	2
142			min	107	4	064	3	003	10 -1.096e-2	2	1069.204	2	4750.452	1
143		15	max	0	1	.003	6	.036	1 1.093e-2	3	NC	4	NC	2
144			min	107	4	073	2	002	10 -1.048e-2	2	889.003	2	4450.47	1
145		16	max	0	1	.002	6	.031	1 1.016e-2	3	NC	4	NC	2
146			min	107	4	071	2	001	10 -1.001e-2	2	898.286	2	5096.736	

Model Name

Schletter, Inc.HCV

110 V

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC		LC
147		17	max	0	1	.006	9	.025	4	9.378e-3	3	NC	4	NC	2
148			min	107	4	042	3	002	10	-9.543e-3	2	1118.338	2	6379.915	4
149		18	max	0	1	.032	1	.016	4	8.6e-3	3	NC	4	NC	1
150			min	107	4	065	3	002	10	-9.072e-3	2	2001.176	2	9615.402	4
151		19	max	0	1	.11	2	.007	3	7.823e-3	3	NC	1	NC	1
152			min	107	4	097	3	005	2	-8.601e-3	2	NC	1	NC	1
153	M2	1	max	.007	2	.009	2	.004	1	1.228e-3	5	NC	1	NC	1
154			min	01	3	015	3	385	4	-9.326e-5	1	7417.831	2	181.671	4
155		2	max	.006	2	.008	2	.003	1	1.265e-3	5	NC	1	NC	1
156		_	min	009	3	014	3	354	4	-8.809e-5	1	8500.437	2	197.567	4
157		3	max	.006	2	.007	2	.003	1	1.302e-3	5	NC	1	NC	1
158		Ŭ	min	009	3	013	3	323	4	-8.292e-5	1	9932.061	2	216.403	4
159		4	max	.006	2	.006	2	.003	1	1.339e-3	5	NC	1	NC	1
160			min	008	3	013	3	293	4	-7.775e-5	1	NC	1	238.939	4
161		5	max	.005	2	.005	2	.002	1	1.376e-3	5	NC	1	NC	1
162			min	008	3	012	3	263	4	-7.258e-5	1	NC	1	266.204	4
163		6	max	.005	2	.004	2	.002	1	1.412e-3	5	NC	1	NC	1
164			min	007	3	012	3	233	4	-6.741e-5	1	NC	1	299.621	4
165		7		.005	2	.003	2	.002	1	1.449e-3	5	NC	1	NC	1
166			max		3	011	3	205	_	-6.224e-5	1	NC NC	1	341.206	
167		8	min	007 .004	2	.002	2	.002	1	1.486e-3	5	NC NC	1	NC	1
168		0	max	006	3	01	3	178			-	NC NC	1	393.881	
					2		2		4	-5.707e-5	1_	NC NC	1		1
169		9	max	.004 005	3	0 01	3	.001	4	1.523e-3	_ <u>5_</u> 1	NC NC	1	NC 462.031	4
170		40	min					1 <u>51</u>		-5.19e-5					
171 172		10	max	.003	3	0	3	.001	1 4	1.56e-3 -4.673e-5	5_1	NC NC	1	NC 552.473	4
		44	min	005		009		127			1_1		•		4
173		11	max	.003	2	0	2	0	1	1.597e-3	4_	NC	1_1	NC C7C 202	1
174		40	min	004	3	008	3	103	4	-4.156e-5	1_	NC NC	1_	676.293	4
175		12	max	.003	2	0	15	0	1	1.635e-3	4	NC	1	NC 050,500	1
176		40	min	004	3	007	3	082	4	-3.638e-5	1_1	NC NC		852.529	4
177		13	max	.002	2	0	15	0	1	1.674e-3	4_	NC	1_	NC	1
178		4.4	min	003	3	006	3	063	4	-3.121e-5	_1_	NC NC	1_	1116.207	4
179		14	max	.002	2	0	15	0	1	1.712e-3	4_	NC	1_	NC	1
180		45	min	003	3	006	3	045	4	-2.604e-5	1_	NC NC	1_	1537.772	4
181		15	max	.002	2	0	15	0	1	1.75e-3	4_	NC	1_	NC 0077.405	1
182		40	min	002	3	005	3	031	4	-2.087e-5	1_	NC	1_	2277.185	
183		16	max	.001	2	0	15	0	1	1.789e-3	4_	NC		NC NC	1
184			min	002	3	003	3	019	4	-1.57e-5	_1_	NC	1_	3767.26	4
185		17	max	0	2	0	15	0	1	1.827e-3	_4_	NC	1_	NC	1
186		1.0	min	001	3	002	3	009	4	-1.053e-5	_1_	NC	1_	7560.154	
187		18	max	0	2	0	15	0	1	1.866e-3	4	NC		NC	1
188			min	0	3	001	3	003	4	-5.364e-6	_1_	NC	1_	NC	1
189		19	max	0	1	0	1	0	1	1.904e-3	_4_	NC	_1_	NC	1
190			min	0	1	0	1	0	1	-7.962e-7	3	NC	1_	NC	1
191	<u>M3</u>	1_	max	0	1	0	1	0	1	1.305e-7	3_	NC	_1_	NC	1
192			min	0	1	0	1	0	1	-4.773e-4	4_	NC	1_	NC	1
193		2	max	0	3	0	15	.009	4	9.291e-6	_1_	NC	_1_	NC	1
194			min	0	2	002	6	0	3	-3.853e-5	5	NC	_1_	NC	1
195		3	max	0	3	0	15	.017	4	4.06e-4	4_	NC		NC	1
196			min	0	2	004	6	0	3	1.753e-6	10	NC	1_	5259.925	
197		4	max	.001	3	001	15	.025	4	8.476e-4	4_	NC	_1_	NC	1
198			min	001	2	006	6	0	3	2.677e-6	10	NC	1_	3658.394	4
199		5	max	.002	3	002	15	.032	4	1.289e-3	4	NC	1_	NC	1
200			min	002	2	007	6	0	3	3.6e-6	10	NC	1_	2857.011	4
201		6	max	.002	3	002	15	.038	4	1.731e-3	4	NC	1_	NC	1
202			min	002	2	009	6	0	12	4.523e-6	10	9801.613	6	2373.769	
203		7	max	.003	3	002	15	.044	4	2.173e-3	4	NC	_1_	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	002	2	011	6	0	12	5.447e-6		8431.008	6	2047.682	
205		8	max	.003	3	003	15	.05	4	2.614e-3	4	NC 7505.00	1_	NC 1000 510	1
206			min	003	2	012	6	0	12	6.37e-6	10	7585.96	6	1809.518	
207		9	max	.004	3	003	15	.056	4	3.056e-3	4	NC	2	NC	1
208		40	min	003	2	<u>013</u>	6	0001	12	7.294e-6	10	7088.311	6	1624.512	4
209		10	max	.004	3	003	15	.061	4	3.497e-3	4	NC	5	NC	1
210		11	min	004	3	013	6	0	12	8.217e-6		6851.792 NC	6	1473.304 NC	
211			max	.004	2	003	15	.067	4	3.939e-3 9.141e-6	4	6841.695	<u>5</u>	1344.347	1
212		12	min	004		013	6	072	12	4.381e-3					1
213 214		12	max	.005 004	3	003 013	15	<u>.073</u>	12	4.381e-3 1.006e-5	<u>4</u> 10	NC 7061.566	6	NC 1230.469	
215		13	min	.005	3	013	15	.08	4	4.822e-3	4	NC	1	NC	1
216		13	max		2			<u>.08</u>	12	1.099e-5		7556.291	6	1127.157	
		1.1	min	005		012	15	.087			<u>10</u>		1		1
217 218		14	max	.006	3	002			12	5.264e-3 1.191e-5	4	NC 8435.173	6	NC 1031.622	4
219		15	min	005 .006	3	011 002	15	<u> </u>	4	5.706e-3	<u>10</u> 4	NC	1	NC	1
220		15	max	005	2	002 009	6	<u>.096</u>	12	1.283e-5	10	9939.754	6	942.23	4
221		16	min	005 .007	3	009 001	15	.105	4	6.147e-3	4	NC	1	942.23 NC	1
222		10	max min	00 <i>7</i>	2	007	6	105 0	12	1.376e-5	10	NC NC	1	858.13	4
223		17		.007	3	007 0	15	.116	4	6.589e-3	4	NC NC	1	NC	1
224		17	max min	006	2	005	3	0	10	1.468e-5	10	NC NC	1	778.972	4
225		18	max	.007	3	<u>005</u> 0	15	.128	4	7.03e-3	4	NC	1	NC	1
226		10	min	007	2	004	3	0	10	1.56e-5	10	NC NC	1	704.706	4
227		19		.007	3	004 0	5	.142	4	7.472e-3	4	NC NC	1	NC	1
228		19	max		2		3			1.653e-5		NC NC	1	635.417	
229	M4	1	min	007 .002	1	002 .007	2	<u> </u>	10	8.092e-4	<u>10</u> 4	NC NC	1	NC	2
	IVI4		max	0	5	00 <i>7</i>	3	142	4	4.411e-6	10	NC NC	1	174.709	4
230		2	min				2					NC NC	1	NC	2
			max	.002	5	.006	3	0 131	10	8.092e-4 4.411e-6	<u>4</u> 10	NC NC	1		4
232		3	min	0	1	008			4	8.092e-4		NC NC	1	189.601 NC	
233		3	max	.002 0	5	.006 007	3	0 12	10	4.411e-6	<u>4</u> 10	NC NC	1	207.347	2
235		4	min	.002	1	.006	2	<u>12</u> 0	10	8.092e-4	4	NC NC	1	NC	2
236		4	max	<u>.002</u>	5	007	3	108	4	4.411e-6	10	NC NC	1	228.683	4
237		5		.002	1	.007	2	<u>108</u> 0	10	8.092e-4	4	NC NC	1	NC	1
238		5	max	<u>.002</u>	5	006	3	097	4	4.411e-6	10	NC NC	1	254.612	4
239		6	min max	.001	1	.005	2	<u>097</u> 0	10	8.092e-4	4	NC NC	1	NC	1
240		- 0	min	0	5	005	3	087	4	4.411e-6	10	NC NC	1	286.524	4
241		7	max	.001	1	.004	2	<u>087</u> 0	10	8.092e-4	4	NC	1	NC	1
242		-	min	0	5	005	3	076	4	4.411e-6	10	NC	1	326.39	4
243		8	max	.001	1	.003	2	<u>076</u> 0	10	8.092e-4	4	NC	1	NC	1
244		0	min	0	5	005	3	066		4.411e-6			1	377.087	4
245		9	max	.001	1	.003	2	_ 000 0	10		4	NC	1	NC	1
246		1 9	min	0	5	005	3	056	4	4.411e-6	10	NC	1	442.945	4
247		10	max	0	1	.003	2	030	10		4	NC	1	NC	1
248		10	min	0	5	004	3	047	4	4.411e-6	10	NC	1	530.728	4
249		11	max	0	1	.003	2	<u>047</u> 0	10	8.092e-4	4	NC	1	NC	1
250		- 1 1	min	0	5	004	3	038	4	4.411e-6	10	NC	1	651.501	4
251		12	max	0	1	.003	2	<u>038 </u>	10		4	NC	1	NC	1
252		12	min	0	5	003	3	03	4	4.411e-6	10	NC	1	824.397	4
253		13	max	0	1	.002	2	<u>05</u> 0	10	8.092e-4	4	NC	1	NC	1
254		13	min	0	5	003	3	023	4	4.411e-6	10	NC	1	1084.913	
255		14	max	0	1	.002	2	<u>023</u> 0	10	8.092e-4	4	NC NC	1	NC	1
256		14	min	0	5	002	3	016	4	4.411e-6	10	NC NC	1	1505.231	4
257		15	max	0	1	.002	2	<u>016</u> 0	10	8.092e-4	4	NC	1	NC	1
258		13	min	0	5	002	3	011	4	4.411e-6	10	NC	1	2251.649	4
259		16	max	0	1	.002	2	<u>011</u> 0	10	8.092e-4	4	NC NC	1	NC	1
260		10	min	0	5	001	3	007	4	4.411e-6	10	NC	1	3783.543	
200			THILL	U	J	001	J	007	+	7.7116-0	10	NO		0700.040	_+_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	10	8.092e-4	4	NC	_1_	NC	1
262			min	0	5	0	3	003	4	4.411e-6	10	NC	1_	7802.414	4
263		18	max	00	1	0	2	00	10	8.092e-4	_4_	NC	_1_	NC	1
264			min	0	5	0	3	0	4	4.411e-6	10	NC	1_	NC	1
265		19	max	0	1	00	1	0	1_	8.092e-4	_4_	NC	_1_	NC	1
266			min	0	1	0	1	0	1	4.411e-6	10	NC	1_	NC	1
267	M6	1	max	.021	2	.031	2	0	1	1.275e-3	4	NC	4	NC	1
268			min	031	3	044	3	388	4	0	1_	1593.993	3	180.143	4
269		2	max	.02	2	.028	2	0	1	1.311e-3	4	NC	4	NC	1
270			min	029	3	041	3	357	4	0	1	1689.787	3	195.908	4
271		3	max	.018	2	.026	2	0	1	1.346e-3	4	NC	4	NC	1
272			min	027	3	039	3	326	4	0	1	1797.867	3	214.589	4
273		4	max	.017	2	.023	2	0	1	1.382e-3	4	NC	4	NC	1
274			min	026	3	036	3	295	4	0	1	1920.779	3	236.939	4
275		5	max	.016	2	.02	2	0	1	1.418e-3	4	NC	4	NC	1
276			min	024	3	034	3	265	4	0	1	2061.798	3	263.98	4
277		6	max	.015	2	.018	2	0	1	1.453e-3	4	NC	4	NC	1
278			min	022	3	031	3	235	4	0	1	2225.209	3	297.125	4
279		7	max	.014	2	.016	2	0	1	1.489e-3	4	NC	1	NC	1
280			min	021	3	029	3	207	4	0	1	2416.727	3	338.37	4
281		8	max	.013	2	.013	2	0	1	1.525e-3	4	NC	1	NC	1
282			min	019	3	026	3	179	4	0	1	2644.151	3	390.617	4
283		9	max	.012	2	.011	2	0	1	1.56e-3	4	NC	1	NC	1
284		Ť	min	017	3	024	3	153	4	0	1	2918.408	3	458.213	4
285		10	max	.01	2	.009	2	0	1	1.596e-3	4	NC	1	NC	1
286		10	min	015	3	021	3	128	4	0	1	3255.284	3	547.922	4
287		11	max	.009	2	.007	2	0	1	1.632e-3	4	NC	1	NC	1
288			min	014	3	019	3	104	4	0	1	3678.474	3	670.741	4
289		12	max	.008	2	.006	2	104	1	1.667e-3	4	NC	1	NC	1
290		12	min	012	3	017	3	083	4	0	1	4225.224	3	845.558	4
291		13		.007	2	.004	2	063 0	1	1.703e-3	4	NC	<u> </u>	NC	1
292		13	max		3	014	3	063	4	0	1	4957.635	3	1107.119	4
		4.4	min	01											
293		14	max	.006	2	.003	2	0	1	1.739e-3	4_	NC F007 F40	1_	NC 4505.040	1
294		4.5	min	009	3	012	3	046	4	0	1_	5987.518	3	1525.316	4
295		15	max	.005	2	.002	2	0	1	1.774e-3	4	NC	1_	NC 0050,050	1
296		10	min	007	3	009	3	031	4	0	1_	7538.537	3	2258.852	4
297		16	max	.003	2	.001	2	0	1	1.81e-3	4	NC	1_	NC 0707.477	1
298			min	<u>005</u>	3	<u>007</u>	3	<u>019</u>	4	0	_1_	NC	1_	3737.177	4
299		17	max	.002	2	0	2	0	1	1.846e-3	4	NC	1_	NC	1
300			min	003	3	005	3	009	4	0	_1_	NC	_1_	7500.511	4
301		18	max	.001	2	0	2	0	1	1.881e-3		NC	1	NC	1
302			min	002	3	002	3	003	4	0	<u>1</u>	NC	1_	NC	1
303		19	max	0	1	0	1	0	1_	1.917e-3	_4_	NC	_1_	NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	_1_	NC	1_	NC	1
306			min	0	1	0	1	0	1	-4.805e-4	4	NC	1	NC	1
307		2	max	.001	3	0	2	.009	4	0	1	NC	1	NC	1
308			min	001	2	003	3	0	1	-4.96e-5	5	NC	1_	NC	1
309		3	max	.003	3	0	2	.017	4	3.823e-4	4	NC	1	NC	1
310			min	003	2	005	3	0	1	0	1	NC	1	5226.198	4
311		4	max	.004	3	001	15	.025	4	8.138e-4	4	NC	1	NC	1
312			min	004	2	008	3	0	1	0	1	NC	1	3636.971	4
313		5	max	.005	3	002	15	.032	4	1.245e-3	4	NC	1	NC	1
314		Ť	min	005	2	01	3	0	1	0	1	NC	1	2842.571	4
315		6	max	.007	3	002	15	.038	4	1.677e-3	4	NC	1	NC	1
316			min	006	2	012	3	0	1	0	1	8708.584	3	2364.315	_
317		7	max	.008	3	003	15	.044	4	2.108e-3	4	NC	1	NC	1
017			πιαλ	.000	J	.000	IU	.0-7	_ +	2.1006-0		110		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio		(n) L/z Ratio	LC
318			min	008	2	014	3	0	1	0	1	7782.419	3	2042.316	
319		8	max	.009	3	003	15	.05	4	2.539e-3	4	NC	1_	NC	1
320			min	009	2	01 <u>5</u>	3	0	1	0	1_	7235.03	3	1807.791	4
321		9	max	.011	3	003	15	.055	4	2.971e-3	4	NC	1_	NC	1
322		40	min	01	2	016	3	0	1	0	1_	6953.286	3	1626.169	4
323		10	max	.012	3	003	15	.061	4	3.402e-3	4	NC	1	NC	1
324		1.	min	011	2	016	3	0	1	0	1_	6835.194	4_	1478.158	4
325		11	max	.013	3	003	15	.067	4	3.834e-3	4	NC		NC 1050.000	1
326		40	min	013	2	016	3	0	1	0	1	6825.953	4_	1352.206	4
327		12	max	.014	3	003	15	.073	4	4.265e-3	4	NC 7040.044	1_	NC	1
328		40	min	014	2	016	3	0	1	0	1_	7046.044	4	1241.092	4
329		13	max	.016	3	003	15	.079	4	4.696e-3	4	NC		NC 4440	1
330			min	015	2	<u>015</u>	3	0	1	0	1_	7540.335	4_	1140.233	4
331		14	max	.017	3	003	15	.086	4	5.128e-3	4	NC	1_	NC	1
332		4.5	min	017	2	<u>014</u>	3	0	1	0	1_	8417.97	4_	1046.766	4
333		15	max	.018	3	002	15	.094	4	5.559e-3	4	NC		NC	1
334		40	min	018	2	013	3	0	1	0	1_	9920.068	4_	958.993	4
335		16	max	.02	3	002	15	.103	4	5.991e-3	4	NC		NC	1
336		4-	min	019	2	012	3	0	1	0	1	NC	1_	876.023	4
337		17	max	.021	3	001	15	.113	4	6.422e-3	4	NC	1_	NC 707.400	1
338		40	min	02	2	01	3	0	1	0	1	NC	1_	797.499	4
339		18	max	.022	3	0	10	.125	4	6.854e-3	4	NC	1	NC 700,005	1
340		40	min	022	2	008	3	0	1	0	1_	NC NC	1_	723.395	4
341		19	max	.024	3	0	10	.138	4	7.285e-3	4	NC		NC	1
342	140		min	023	2	006	3	0	1	0	1_	NC	1_	653.848	4
343	M8	1_	max	.006	2	.022	2	0	1	7.196e-4	4	NC	1	NC 470.770	1
344		_	min	0	3	025	3	<u>138</u>	4	0	1_	NC	1_	179.776	4
345		2	max	.005	2	.021	2	0	1	7.196e-4	4	NC	1	NC 105.11	1
346			min	0	3	023	3	127	4	0	1	NC	1_	195.11	4
347		3	max	.005	2	.02	2	0	1	7.196e-4	4	NC NC	1	NC 040,000	1
348		1	min	0	3	022	3	<u>116</u>	4	0	1	NC	1_	213.382	4
349		4	max	.005	2	.019	2	0	1	7.196e-4	4	NC	1	NC 005.05	1
350		-	min	0	3	02	3	105	4	0	1_	NC	1_	235.35	4
351		5	max	.004	2	.017	2	0	1	7.196e-4	4	NC	1_	NC 000.045	1
352			min	0	3	019	3	095	4	7.400= 4	1_	NC NC	1_	262.045	4
353		6	max	.004	2	.016	2	0	1	7.196e-4	4	NC NC	1_	NC 004.0	1
354		-	min	0	3	018	3	084	4	7.400= 4	1_	NC NC	1_	294.9	4
355		7	max	.004	2	.015	2	0	1	7.196e-4	4	NC	1	NC 005.044	1
356			min	0	3	016	3	074	4	0	1	NC	1_	335.944	4
357		8	max	.003	2	.014	2	0	1	7.196e-4	<u>4</u> 1	NC NC	1	NC 200,400	1
358			min		3	015	3	064	4	7.400- 4		NC NC	1	388.139	
359		9	max	.003	2	.012	2	0	1	7.196e-4	4	NC NC	1_	NC 455 044	1
360		40	min	0	3	<u>014</u>	3	054	4	7 1060 4	1_1	NC NC	1_1	455.941	4
361		10	max	.003	2	.011	2	0	1	7.196e-4	4	NC	1_	NC 540,047	1
362		44	min	0	3	012	3	045	4	7 4000 4	1	NC NC	1_	546.317	4
363		11	max	.002	2	.01	2	0	1	7.196e-4	4	NC NC	1_	NC C70 CF0	1
364		40	min	0	3	011	3	037	4	7.400= 4	1_	NC NC	1_	670.658	4
365		12	max	.002	2	.009	2	0	1	7.196e-4	4	NC NC	1_1	NC 040,000	1
366		40	min	0	3	01	3	029	4	7 4000 4	1	NC NC	1_1	848.662	4
367		13	max	.002	2	.007	2	0	1	7.196e-4	4	NC NC	1_1	NC	1
368		4.4	min	0	3	008	3	022	4	7 4000 4	1_4	NC NC	1_	1116.877	4
369		14	max	.002	2	.006	2	0	1	7.196e-4	4	NC NC	1	NC	1
370		4.5	min	0	3	007	3	016	4	7 4000 4	1_4	NC NC	1_	1549.621	4
371		15	max	.001	2	.005	2	0	1	7.196e-4	4	NC	1_1	NC	1
372		40	min	0	3	005	3	011	4	7 1060 4	1	NC NC	1_1	2318.115	
373		16	max	0	2	.004	2	0	1	7.196e-4	4	NC NC	1	NC	1
374			min	0	3	004	3	006	4	0	1	NC	1	3895.342	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

376		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		LC
1877	375		17	max		2	.002	2			7.196e-4	4	NC	1_	NC	
378														_		_
19			18													
1880			40								•	•				•
1881			19			-		•								-
1882		M40	4								•	_		_		
1883		MITO	1													
384			2													
386			-													
386			2													_
388			3													
388			1													_
389			4													
930			5													
391																-
392			6							_				_		
393			-													
395			7											_		
395																
396			8											1		_
397									179			10		1		4
398			9							10				1		1
400				min			01		152	4		10		1	459.376	4
400	399		10	max	.003	2	0	2	0	10	1.589e-3	4	NC	1	NC	1
Min -0.04 3 -0.08 3 -1.04 4 3.029e-6 10 NC 1 672.472 4 403 12 max 0.03 2 0 2 0 10 1.659e-3 4 NC 1 NC 1 404 Min -0.04 3 -0.07 3 -0.083 4 2.626e-6 10 NC 1 847.767 4 405 13 max 0.002 2 -0.001 2 0 10 1.694e-3 4 NC 1 NC 1 406 Min -0.003 3 -0.06 3 -0.63 4 2.223e-6 10 NC 1 1110.06 4 407 14 max 0.002 2 -0.01 15 0 10 1.729e-3 4 NC 1 NC 1 408 Min -0.03 3 -0.06 3 -0.06 4 1.82e-6 10 NC 1 1529.462 4 409 15 max 0.002 2 -0.01 15 0 10 1.764e-3 4 NC 1 NC 1 410 Min -0.002 3 -0.05 3 -0.31 4 1.47e-6 10 NC 1 2265.196 4 411 16 max 0.001 2 0 15 0 10 1.799e-3 4 NC 1 NC 1 412 Min -0.002 3 -0.005 3 -0.01 4 1.014e-6 10 NC 1 3748.208 4 413 17 max 0 2 0 15 0 10 1.834e-3 4 NC 1 NC 1 414 Min -0.001 3 -0.02 4 -0.09 4 6.112e-7 10 NC 1 3748.208 4 415 18 max 0 2 0 15 0 10 1.834e-3 4 NC 1 NC 1 416 Min -0.001 3 -0.02 4 -0.09 4 6.112e-7 10 NC 1 7524.557 4 415 18 max 0 2 0 15 0 10 1.834e-3 4 NC 1 NC 1 416 Min 0 3 -0.01 4 -0.03 4 2.085e-7 10 NC 1 NC 1 418 Min 0 1 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 0 1 -2.354e-7 2 NC 1 NC 1 422 Min 0 1 0 1 0 1 -2.354e-7 10 NC 1 NC 1 422 Min 0 1 0 1 0 1 -2.354e-7 10 NC 1 NC 1 422 Min 0 2 -0.002 4 0 2 -4.154e-5 4 NC 1 NC 1 424 Min 0 2 -0.004 4 0 1 -4.277e-4 NC 1 NC 1 424 Min 0 2 -0.004 4 0 1 -4.277e-4 NC 1 NC 1 425 Min 0 2 -0.004 4 0 1 -4.277e-5 4 NC 1 NC 1 426 Min -0.001 3 -0.001 15 -0.00					005	3	009	3	127	4		10	NC	1	549.323	4
12 max	401		11	max	.003		0	2	0	10	1.624e-3	4	NC	1		1
Mode	402			min		3	008		104	4		10		1	672.472	4
406			12							10		4		_1_		1
Mode Min 003 3 006 3 063 4 2.223e-6 10 NC 1 1110.06 4 407 14 max .002 2 001 15 0 10 1.729e-3 4 NC 1 NC 1 408 Min 003 3 006 3 046 4 1.82e-6 10 NC 1 1529.462 4 409 15 max .002 2 001 15 0 10 1.764e-3 4 NC 1 NC 1 410 Min 002 3 005 3 031 4 1.417e-6 10 NC 1 2265.196 4 411 16 max .001 2 0 15 0 10 1.799e-3 4 NC 1 NC 1 412 Min 002 3 003 3 019 4 1.014e-6 10 NC 1 3748.208 4 413 17 max 0 2 0 15 0 10 1.834e-3 4 NC 1 NC 1 414 Min 001 3 002 4 009 4 6.112e-7 10 NC 1 7524.557 4 415 18 max 0 2 0 15 0 10 1.869e-3 4 NC 1 NC 1 416 Min 0 3 001 4 003 4 2.083e-7 10 NC 1 NC 1 418 Max 0 1 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 0 1 -2.354e-7 2 NC 1 NC 1 420 Min 0 1 0 1 0 1 4.301e-7 1 NC 1 NC 1 422 Max 0 3 0 15 .009 4 8.297e-7 10 NC 1 NC 1 422 Max 0 3 0 15 .009 4 8.297e-7 10 NC 1 NC 1 423 3 max 0 3 0 15 .009 4 8.297e-7 10 NC 1 NC 1 424 Min 0 2 002 4 0 2 -4.154e-5 4 NC 1 NC 1 424 Min 0 2 004 4 0 1 -4.77e-4 4 NC 1 NC 1 426 Min 001 2 006 4 0 1 -2.873e-5 1 NC 1 5661.969 4 427 5 max .002 3 002 15 .032 4 1.265e-3 4 NC 1 NC 1 428 Min 002 2 008 4 0 1 -2.873e-5 1 NC 1 3661.969 4 429 6 max .002 3 002 15 .038 4 1.7e-3 4 NC 1 NC 1 430 Min 002 2 008 4 0 1 -4.817e-5 1 9487.649 4 2379.079 4 430 Min 002 2 014 4 0 1 -4.817e-5 1 9487.649 4 2379.079 4 430 Min 002 2									083					_		_
407			13													_
Most														•		_
409			14											_1_		- 1
410 min 002 3 005 3 031 4 1.417e-6 10 NC 1 2265.196 4 411 16 max .001 2 0 15 0 10 1.799e-3 4 NC 1 NC 1 412 min 002 3 003 3 019 4 1.014e-6 10 NC 1 3748.208 4 413 17 max 0 2 0 15 0 10 1.834e-3 4 NC 1 NC 1 <td></td> <td>1_</td> <td></td> <td></td>														1_		
411 16 max .001 2 0 15 0 10 1.799e-3 4 NC 1 NC 1 412 min 002 3 003 3 019 4 1.014e-6 10 NC 1 3748.208 4 413 17 max 0 2 0 15 0 10 1.834e-3 4 NC 1 NC 1 414 min 001 3 002 4 009 4 6.112e-7 10 NC 1 7524.557 4 415 18 max 0 2 0 15 0 10 1.869e-3 4 NC 1 NC 1 416 min 0 3 001 4 003 4 2.083e-7 10 NC 1 NC 1 417 19 max 0 1 0			15													_
412 min 002 3 003 3 019 4 1.014e-6 10 NC 1 3748.208 4 413 17 max 0 2 0 15 0 10 1.834e-3 4 NC 1 NC 1 414 min 001 3 002 4 009 4 6.112e-7 10 NC 1 7524.557 4 415 18 max 0 2 0 15 0 10 1.869e-3 4 NC 1 NC 1 416 min 0 3 001 4 003 4 2.083e-7 10 NC 1 NC 1 417 19 max 0 1 0 1 0 1 1 NC			40							_						
413 17 max 0 2 0 15 0 10 1.834e-3 4 NC 1 NC 1 414 min 001 3 002 4 009 4 6.112e-7 10 NC 1 7524.557 4 415 18 max 0 2 0 15 0 10 1.869e-3 4 NC 1 NC 1 416 min 0 3 001 4 003 4 2.083e-7 10 NC 1 NC 1 417 19 max 0 1 0 1 0 1 1.904e-3 4 NC 1 NC 1 418 min 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 -2.354e-7 2 NC 1			16													
414 min 001 3 002 4 009 4 6.112e-7 10 NC 1 7524.557 4 415 18 max 0 2 0 15 0 10 1.869e-3 4 NC 1 NC 1 416 min 0 3 001 4 003 4 2.083e-7 10 NC 1 NC 1 417 19 max 0 1 0 1 0 1 1.904e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 Min 0 1 0 1 -4.301e-7 1 <			47											_		
415 18 max 0 2 0 15 0 10 1.869e-3 4 NC 1 NC 1 416 min 0 3 001 4 003 4 2.083e-7 10 NC 1 NC 1 417 19 max 0 1 0 1 0 1 1.904e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 -4.77e-4 4 NC 1 NC 1 420 max 0 3 0 15 .009 4 -8.297e-7			17													
416 min 0 3 001 4 003 4 2.083e-7 10 NC 1 NC 1 417 19 max 0 1 0 1 0 1 1.904e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 4.301e-7 1 NC 1 NC 1 420 min 0 1 0 1 -4.77e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .009 4 -8.297e-7 10 NC 1 NC 1 422 min 0 2 002 4 0 2 -4.154e-5 4 NC	414		10	mov						10						_
417 19 max 0 1 0 1 1.904e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 4.301e-7 1 NC 1 NC 1 420 min 0 1 0 1 -4.77e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .009 4 -8.297e-7 10 NC 1 NC 1 422 min 0 2 002 4 0 2 -4.154e-5 4 NC 1 NC 1 423 3 max 0 3 0 15 .017 4 3.941e-4 5 NC 1 NC			10													
418 min 0 1 0 1 -2.354e-7 2 NC 1 NC 1 419 M11 1 max 0 1 0 1 4.301e-7 1 NC 1 NC 1 420 min 0 1 0 1 -4.77e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .009 4 -8.297e-7 10 NC 1 NC 1 422 min 0 2 002 4 0 2 -4.154e-5 4 NC 1 NC 1 423 3 max 0 3 0 15 .017 4 3.941e-4 5 NC 1 NC 1 424 min 0 2 004 4 0 1 -1.901e-5 1 NC 1 NC			10													
419 M11 1 max 0 1 0 1 4.301e-7 1 NC 1 NC 1 420 min 0 1 0 1 -4.77e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .009 4 -8.297e-7 10 NC 1 NC 1 422 min 0 2 002 4 0 2 -4.154e-5 4 NC 1 NC 1 423 3 max 0 3 0 15 .017 4 3.941e-4 5 NC 1 NC 1 423 3 max 0 3 004 4 0 1 -1.901e-5 1 NC 1 NC 1 424 4 min 001 3 001 15 .025 4 8.294e-			19													
420 min 0 1 0 1 -4.77e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .009 4 -8.297e-7 10 NC 1 NC 1 422 min 0 2 002 4 0 2 -4.154e-5 4 NC 1 NC 1 423 3 max 0 3 0 15 .017 4 3.941e-4 5 NC 1 NC 1 424 min 0 2 004 4 0 1 -1.901e-5 1 NC 1 5262.551 4 425 4 max .001 3 001 15 .025 4 8.294e-4 4 NC 1 NC 1 426 min 001 2 006 4 0 1 -2.873e-5		M11	1											_		
421 2 max 0 3 0 15 .009 4 -8.297e-7 10 NC 1 NC 1 422 min 0 2002 4 0 2 -4.154e-5 4 NC 1 NC 1 423 3 max 0 3 0 15 .017 4 3.941e-4 5 NC 1 NC 1 424 min 0 2004 4 0 1 -1.901e-5 1 NC 1 5262.551 4 425 4 max .001 3001 15 .025 4 8.294e-4 4 NC 1 NC 1 426 min 001 2006 4 0 1 -2.873e-5 1 NC 1 3661.969 4 427 5 max .002 3002 15 .032 4 1.265e-3 4 NC 1 NC 1 428 <t< td=""><td></td><td>IVIII</td><td> </td><td></td><td></td><td>_</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		IVIII				_		•								
422 min 0 2 002 4 0 2 -4.154e-5 4 NC 1 NC 1 423 3 max 0 3 0 15 .017 4 3.941e-4 5 NC 1 NC 1 424 min 0 2 004 4 0 1 -1.901e-5 1 NC 1 5262.551 4 425 4 max .001 3 001 15 .025 4 8.294e-4 4 NC 1 NC 1 426 min 001 2 006 4 0 1 -2.873e-5 1 NC 1 3661.969 4 427 5 max .002 3 002 15 .032 4 1.265e-3 4 NC 1 NC 1 428 min 002 2 008 4			2											•		
423 3 max 0 3 0 15 .017 4 3.941e-4 5 NC 1 NC 1 424 min 0 2 004 4 0 1 -1.901e-5 1 NC 1 5262.551 4 425 4 max .001 3 001 15 .025 4 8.294e-4 4 NC 1 NC 1 426 min 001 2 006 4 0 1 -2.873e-5 1 NC 1 3661.969 4 427 5 max .002 3 002 15 .032 4 1.265e-3 4 NC 1 NC 1 428 min 002 2 008 4 0 1 -3.845e-5 1 NC 1 2861.453 4 429 6 max .002 3 002 15 .038 4 1.7e-3 4 NC 1 NC 1 430 min 002 2 01 4 0 1 -4.817e-5 1 9487.649 4 2379.079 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
424 min 0 2 004 4 0 1 -1.901e-5 1 NC 1 5262.551 4 425 4 max .001 3 001 15 .025 4 8.294e-4 4 NC 1 NC 1 426 min 001 2 006 4 0 1 -2.873e-5 1 NC 1 3661.969 4 427 5 max .002 3 002 15 .032 4 1.265e-3 4 NC 1 NC 1 428 min 002 2 008 4 0 1 -3.845e-5 1 NC 1 2861.453 4 429 6 max .002 3 002 15 .038 4 1.7e-3 4 NC 1 NC 1 430 min 002 2 01			3											_		
425 4 max .001 3 001 15 .025 4 8.294e-4 4 NC 1 NC 1 426 min 001 2 006 4 0 1 -2.873e-5 1 NC 1 3661.969 4 427 5 max .002 3 002 15 .032 4 1.265e-3 4 NC 1 NC 1 428 min 002 2 008 4 0 1 -3.845e-5 1 NC 1 2861.453 4 429 6 max .002 3 002 15 .038 4 1.7e-3 4 NC 1 NC 1 430 min 002 2 01 4 0 1 -4.817e-5 1 9487.649 4 2379.079 4							-					1				
426 min 001 2 006 4 0 1 -2.873e-5 1 NC 1 3661.969 4 427 5 max .002 3 002 15 .032 4 1.265e-3 4 NC 1 NC 1 428 min 002 2 008 4 0 1 -3.845e-5 1 NC 1 2861.453 4 429 6 max .002 3 002 15 .038 4 1.7e-3 4 NC 1 NC 1 430 min 002 2 01 4 0 1 -4.817e-5 1 9487.649 4 2379.079 4			4	1 1						-		4		<u> </u>		1
427 5 max .002 3 002 15 .032 4 1.265e-3 4 NC 1 NC 1 428 min 002 2 008 4 0 1 -3.845e-5 1 NC 1 2861.453 4 429 6 max .002 3 002 15 .038 4 1.7e-3 4 NC 1 NC 1 430 min 002 2 01 4 0 1 -4.817e-5 1 9487.649 4 2379.079 4																4
428 min 002 2 008 4 0 1 -3.845e-5 1 NC 1 2861.453 4 429 6 max .002 3 002 15 .038 4 1.7e-3 4 NC 1 NC 1 430 min 002 2 01 4 0 1 -4.817e-5 1 9487.649 4 2379.079 4			5											•		
429 6 max .002 3 002 15 .038 4 1.7e-3 4 NC 1 NC 1 430 min 002 2 01 4 0 1 -4.817e-5 1 9487.649 4 2379.079 4												1		_		_
430 min002 201 4 0 1 -4.817e-5 1 9487.649 4 2379.079 4			6									4		1		
														4		-
431 7 max .003 3003 15 .044 4 2.136e-3 4 NC 1 NC 1	431		7	max	.003	3	003	15	.044	4	2.136e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
432			min	002	2	011	4	0	1	-5.79e-5	1_	8181.372	4	2053.882	
433		8	max	.003	3	003	15	.05	4	2.571e-3	4	NC	_1_	NC	1
434			min	003	2	013	4	0	1	-6.762e-5	1_	7376.595	4_	1816.621	4
435		9	max	.004	3	003	15	.055	4	3.007e-3	4	NC COOA COA	2	NC	1
436		40	min	003	2	<u>014</u>	4	0001	1	-7.734e-5	1_1	6904.624	4_	1632.511	4
437		10	max	.004	3	003	15	<u>.061</u> 0	4	3.442e-3	4	NC cco2 075	<u>5</u>	NC 1482.163	4
438 439		11	min	004 .004	3	014 004	15	.067	4	-8.706e-5	<u>1</u> 4	6683.975 NC	_ 4 _	NC	1
440			max	004	2	004 014	4	<u>.067</u>	1	3.878e-3 -9.678e-5	1	6682.362	4	1353.992	
441		12	max	.005	3	003	15	.073	4	4.313e-3	4	NC	2	NC	1
442		12	min	004	2	003 014	4	<u>.073</u>	1	-1.065e-4	1	6904.312	4	1240.785	
443		13	max	.005	3	003	15	.079	4	4.749e-3	4	NC	1	NC	1
444		13	min	005	2	013	4	001	1	-1.162e-4	1	7394.516	4	1137.995	
445		14	max	.006	3	003	15	.087	4	5.184e-3	4	NC	1	NC	1
446		17	min	005	2	012	4	001	1	-1.259e-4	1	8260.632	4	1042.8	4
447		15	max	.006	3	003	15	.095	4	5.62e-3	4	NC	1	NC	1
448		10	min	005	2	01	4	002	1	-1.357e-4	1	9739.911	4	953.549	4
449		16	max	.007	3	002	15	.104	4	6.055e-3	4	NC	1	NC	1
450			min	006	2	008	4	002	1	-1.454e-4	1	NC	1	869.385	4
451		17	max	.007	3	002	15	.114	4	6.491e-3	4	NC	1	NC	1
452			min	006	2	006	4	003	1	-1.551e-4	1	NC	1	789.971	4
453		18	max	.007	3	001	15	.126	4	6.926e-3	4	NC	1	NC	1
454			min	007	2	004	3	003	1	-1.648e-4	1	NC	1	715.278	4
455		19	max	.008	3	0	10	.14	4	7.362e-3	4	NC	1	NC	1
456			min	007	2	002	3	003	1	-1.745e-4	1	NC	1	645.425	4
457	M12	1	max	.002	1	.007	2	.003	1	7.791e-4	5	NC	1_	NC	2
458			min	0	3	008	3	14	4	-5.023e-5	1	NC	1_	177.461	4
459		2	max	.002	1	.006	2	.003	1	7.791e-4	5	NC	_1_	NC	2
460			min	0	3	008	3	129	4	-5.023e-5	1	NC	1_	192.587	4
461		3	max	.002	1	.006	2	.003	1	7.791e-4	_5_	NC	_1_	NC	2
462			min	0	3	007	3	118	4	-5.023e-5	<u>1</u>	NC	1_	210.612	4
463		4	max	.002	1	.006	2	.003	1	7.791e-4	5	NC	1	NC	2
464			min	0	3	007	3	<u>107</u>	4	-5.023e-5	1_	NC	1_	232.285	4
465		5	max	.002	1	.005	2	.002	1	7.791e-4	5_	NC	1_	NC	1
466			min	0	3	006	3	096	4	-5.023e-5	1_	NC NC	1_	258.622	4
467		6	max	.001	1	.005	2	.002	1	7.791e-4	5	NC NC	1	NC 204 02C	1
468		7	min	0	3	006	3	085	4	-5.023e-5	1_	NC NC	1	291.036 NC	4
469		/	max	.001	3	.004	3	.002	1	7.791e-4	5_1		1	331.529	1
470 471		8	min	.001	1	005 .004	2	075 .002	1	-5.023e-5 7.791e-4	5	NC NC	1	NC	1
471		0	max min		3	005	3	065		-5.023e-5		NC NC	1	383.024	
473		9	max	.001	1	.004	2	.001	1	7.791e-4	5	NC	1	NC	1
474		3	min	0	3	005	3	055	4	-5.023e-5	1	NC	1	449.918	4
475		10	max	0	1	.003	2	.001	1	7.791e-4	5	NC	1	NC	1
476		10	min	0	3	004	3	046	4	-5.023e-5	1	NC	1	539.082	4
477		11	max	0	1	.003	2	<u>.040</u>	1	7.791e-4	5	NC	1	NC	1
478			min	0	3	004	3	037	4	-5.023e-5	1	NC	1	661.755	4
479		12	max	0	1	.003	2	0	1	7.791e-4	5	NC	1	NC	1
480			min	0	3	003	3	03	4	-5.023e-5	1	NC	1	837.372	4
481		13	max	0	1	.002	2	0	1	7.791e-4	5	NC	1	NC	1
482			min	0	3	003	3	023	4	-5.023e-5	1	NC	1	1101.986	4
483		14	max	0	1	.002	2	0	1	7.791e-4	5	NC	1	NC	1
484			min	0	3	002	3	016	4	-5.023e-5	1	NC	1	1528.916	
485		15	max	0	1	.001	2	0	1	7.791e-4	5	NC	1	NC	1
486			min	0	3	002	3	011	4	-5.023e-5	1	NC	1	2287.076	4
487		16	max	0	1	.001	2	0	1	7.791e-4	5	NC	1	NC	1
488			min	0	3	001	3	006	4	-5.023e-5	1	NC	1	3843.067	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

492 min 0 3 0 3 0 4 -5.023e-5 1 NC 493 493 19 max 0 1 0 1 0 1 7.791e-4 5 NC 7 494 min 0 1 0 1 -5.023e-5 1 NC 7 495 M1 1 max .01 3 .123 2 .407 4 5.356e-3 2 NC 7 496 min 006 2 033 3 0 10 -1.358e-2 3 NC 7 497 2 max .01 3 .058 2 .396 4 4.318e-3 4 NC 4 498 min 006 2 013 3 003 1 -6.721e-3 3 1761.595 2 499 3 max .01 3 .015 <t< th=""><th>NC 1 NC 1 NC 1 NC 1</th></t<>	NC 1 NC 1 NC 1 NC 1
491 18 max 0 1 0 2 0 1 7.791e-4 5 NC 492 492 min 0 3 0 3 0 4 -5.023e-5 1 NC 493 493 19 max 0 1 0 1 0 1 7.791e-4 5 NC 494 494 min 0 1 0 1 0 1 -5.023e-5 1 NC 495 495 M1 1 max .01 3 .123 2 .407 4 5.356e-3 2 NC 496 496 min 006 2 033 3 0 10 -1.358e-2 3 NC 497 498 min 006 2 013 3 003 1 -6.721e-3 3 1761.595 499 499 3 max .01 3 .015 3 .385 4 7.821e-3 4 NC 8 500 min 006 2 012 2 004 </td <td>1 NC 1 1 NC 1 2 NC 1 2 NC 1 2 9551.734 5 NC 1 2 6945.499 5 NC 1 2 5632.809 5 NC 1 2 4825.868 5</td>	1 NC 1 2 NC 1 2 NC 1 2 9551.734 5 NC 1 2 6945.499 5 NC 1 2 5632.809 5 NC 1 2 4825.868 5
492 min 0 3 0 3 0 4 -5.023e-5 1 NC 493 493 19 max 0 1 0 1 0 1 7.791e-4 5 NC 6 494 min 0 1 0 1 -5.023e-5 1 NC 6 495 M1 1 max .01 3 .123 2 .407 4 5.356e-3 2 NC 7 496 min 006 2 033 3 0 10 -1.358e-2 3 NC 7 497 2 max .01 3 .058 2 .396 4 4.318e-3 4 NC 4 498 min 006 2 013 3 003 1 -6.721e-3 3 1761.595 2 499 3 max .01 3 .015 <t< td=""><td>1 NC 1 1 NC 1 2 NC 1 5 NC 1 2 9551.734 5 5 NC 1 2 6945.499 5 5 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5</td></t<>	1 NC 1 2 NC 1 5 NC 1 2 9551.734 5 5 NC 1 2 6945.499 5 5 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5
493 19 max 0 1 0 1 7.791e-4 5 NC 494 1 0 1 7.791e-4 5 NC 7 494 1 0 1 0 1 7.791e-4 5 NC 7 1 0 1 0 1 7.791e-4 5 NC 7 1 0 1 0 1 7.502g-5 1 NC 7 4 5.02g-5 1 NC 7 4 5.356e-3 2 NC 7 4 5.356e-3 2 NC 7 4 5.356e-3 2 NC 4 4 NC 4 <td>1 NC 1 1 NC 1 4 NC 1 2 NC 1 5 NC 1 2 9551.734 5 6 NC 1 2 6945.499 5 6 NC 1 2 5632.809 5 6 NC 1 2 4825.868 5</td>	1 NC 1 4 NC 1 2 NC 1 5 NC 1 2 9551.734 5 6 NC 1 2 6945.499 5 6 NC 1 2 5632.809 5 6 NC 1 2 4825.868 5
494 min 0 1 0 1 -5.023e-5 1 NC 495 495 M1 1 max .01 3 .123 2 .407 4 5.356e-3 2 NC 7 496 min 006 2 033 3 0 10 -1.358e-2 3 NC 7 497 2 max .01 3 .058 2 .396 4 4.318e-3 4 NC 4 498 min 006 2 013 3 003 1 -6.721e-3 3 1761.595 2 499 3 max .01 3 .015 3 .385 4 7.821e-3 4 NC 5 500 min 006 2 012 2 004 1 -9.274e-5 3 854.235 2 501 4 max .01 3	1 NC 1 1 NC 1 1 NC 1 1 NC 1 4 NC 1 2 NC 1 5 NC 1 2 9551.734 5 5 NC 1 2 6945.499 5 5 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5
495 M1 1 max .01 3 .123 2 .407 4 5.356e-3 2 NC 7 496 min 006 2 033 3 0 10 -1.358e-2 3 NC 7 497 2 max .01 3 .058 2 .396 4 4.318e-3 4 NC 4 498 min 006 2 013 3 003 1 -6.721e-3 3 1761.595 2 499 3 max .01 3 .015 3 .385 4 7.821e-3 4 NC 5 500 min 006 2 012 2 004 1 -9.274e-5 3 854.235 2 501 4 max .01 3 .059 3 .373 4 6.691e-3 4 NC 5 502 min	1 NC 1 1 NC 1 4 NC 1 2 NC 1 5 NC 1 2 9551.734 5 6 NC 1 2 6945.499 5 6 NC 1 2 5632.809 5 6 NC 1 2 4825.868 5
496 min 006 2 033 3 0 10 -1.358e-2 3 NC 7 497 2 max .01 3 .058 2 .396 4 4.318e-3 4 NC 4 498 min 006 2 013 3 003 1 -6.721e-3 3 1761.595 2 499 3 max .01 3 .015 3 .385 4 7.821e-3 4 NC 8 500 min 006 2 012 2 004 1 -9.274e-5 3 854.235 2 501 4 max .01 3 .059 3 .373 4 6.691e-3 4 NC 8 502 min 006 2 088 2 003 1 -3.218e-3 3 544.128 2 503 5 max .00	1 NC 1 4 NC 1 2 NC 1 5 NC 1 2 9551.734 5 6 NC 1 2 6945.499 5 6 NC 1 2 5632.809 5 NC 1 2 4825.868 5
497 2 max .01 3 .058 2 .396 4 4.318e-3 4 NC 4 498 min 006 2 013 3 003 1 -6.721e-3 3 1761.595 2 499 3 max .01 3 .015 3 .385 4 7.821e-3 4 NC 5 500 min 006 2 012 2 004 1 -9.274e-5 3 854.235 2 501 4 max .01 3 .059 3 .373 4 6.691e-3 4 NC 5 502 min 006 2 088 2 003 1 -3.218e-3 3 544.128 2 503 5 max .009 3 .112 3 .36 4 5.834e-3 2 NC 5	4 NC 1 2 NC 1 5 NC 1 2 9551.734 5 5 NC 1 2 6945.499 5 6 NC 1 2 5632.809 5 7 NC 1 2 4825.868 5
498 min 006 2 013 3 003 1 -6.721e-3 3 1761.595 2 499 3 max .01 3 .015 3 .385 4 7.821e-3 4 NC 8 500 min 006 2 012 2 004 1 -9.274e-5 3 854.235 2 501 4 max .01 3 .059 3 .373 4 6.691e-3 4 NC 5 502 min 006 2 088 2 003 1 -3.218e-3 3 544.128 2 503 5 max .009 3 .112 3 .36 4 5.834e-3 2 NC 8	2 NC 1 5 NC 1 2 9551.734 5 5 NC 1 2 6945.499 5 6 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5
499 3 max .01 3 .015 3 .385 4 7.821e-3 4 NC 8 500 min 006 2 012 2 004 1 -9.274e-5 3 854.235 2 501 4 max .01 3 .059 3 .373 4 6.691e-3 4 NC 8 502 min 006 2 088 2 003 1 -3.218e-3 3 544.128 2 503 5 max .009 3 .112 3 .36 4 5.834e-3 2 NC 8	5 NC 1 2 9551.734 5 5 NC 1 2 6945.499 5 5 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5
500 min 006 2 012 2 004 1 -9.274e-5 3 854.235 2 501 4 max .01 3 .059 3 .373 4 6.691e-3 4 NC 8 502 min 006 2 088 2 003 1 -3.218e-3 3 544.128 2 503 5 max .009 3 .112 3 .36 4 5.834e-3 2 NC 8	2 9551.734 5 5 NC 1 2 6945.499 5 5 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5
501 4 max .01 3 .059 3 .373 4 6.691e-3 4 NC 5 502 min 006 2 088 2 003 1 -3.218e-3 3 544.128 2 503 5 max .009 3 .112 3 .36 4 5.834e-3 2 NC 5	5 NC 1 2 6945.499 5 5 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5
502 min 006 2 088 2 003 1 -3.218e-3 3 544.128 2 503 5 max .009 3 .112 3 .36 4 5.834e-3 2 NC 8	2 6945.499 5 5 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5
503 5 max .009 3 .112 3 .36 4 5.834e-3 2 NC 5	5 NC 1 2 5632.809 5 5 NC 1 2 4825.868 5
	2 5632.809 5 5 NC 1 2 4825.868 5
	5 NC 1 2 4825.868 5
1 111111 000 2 100 2 002 1 -0.3426-3 3 393.730 2	5 NC 1 2 4825.868 5
	2 4825.868 5
	2 4237.527 4
	5 NC 1
	2 3776.694 4
	5 NC 1
	2 3446 4
	5 NC 1
	2 3315.7 4
	5 NC 1
	2 3327.691 4
	5 NC 1
	2 3476.323 4 5 NC 1
	5 NC 1
	2 5170.891 4
	5 NC 1
	2 7780.182 4
	5 NC 1
	2 NC 1
	5 NC 1
	2 NC 1
	4 NC 1
530 min005 2047 3 0 10 -1.813e-3 3 2046.665 2	
10 11101 1 1101 1 1101 1 1101 1 1 1101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 NC 1
111111 1000 2 1001 0 0 1 010000 0 0 110	1 NC 1
533 M5 1 max .029 3 .211 2 .407 4 0 1 NC	
00:	1 NC 1
	5 NC 1
	2 NC 1
	5 NC 1
538 min021 2034 2 0 1 0 1 473.582 2	2 7922.143 4
	5 NC 1
540 min02 2192 2 0 1 0 1 287.947 2	2 6145.161 4
	5 NC 1
	2 5290.747 4
	5 NC 1
	2 4753.128 4
545 7 max .027 3 .517 3 .334 4 2.043e-3 4 7277.96 1	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	019	2	69	2	0	1	0	1_	128.416	2	4304.915	
547		8	max	.026	3	.627	3	.32	4	5.783e-4	4	6385.023	15	NC	1
548			min	019	2	<u>815</u>	2	0	1	0	1_	112.815		3842.001	4
549		9	max	.026	3	.698	3	.307	4	0	1_	5928.21	15	NC 0.400.000	1
550		40	min	019	2	895	2	0	1	-6.477e-6	5	104.81	2	3436.368	
551		10	max	.025	3	.724 922	3	<u>.291</u> 0	4	0 -6.283e-6	1	5790.817 102.48	15	NC 3340.899	4
552		11	min	018 .024	3	<u>922</u> .705	3	<u> </u>	4	0	<u>5</u> 1	5928.747	2 15	NC	1
553 554			max	018	2	895	2	<u>.274</u> 0	1	-6.089e-6	5	105.243		3371.142	_
555		12	max	.024	3	<u>695</u> .643	3	.257	4	5.176e-4	4	6386.25	15	NC	1
556		12	min	018	2	811	2	<u>.237</u> 0	1	0.1766-4	1	114.263	2	3414.068	
557		13	max	.023	3	.544	3	.236	4	1.828e-3	4	7280.332	15	NC	1
558		13	min	018	2	678	2	0	1	0	1	132.243		3916.992	
559		14	max	.023	3	.42	3	.212	4	3.139e-3	4	8823.145	15	NC	1
560		17	min	017	2	513	2	.212	1	0.1000 0	1	164.003	2	5305.952	4
561		15	max	.022	3	.282	3	.186	4	4.449e-3	4	NC	15	NC	1
562			min	017	2	336	2	0	1	0	1	221.112	2	9167.542	4
563		16	max	.022	3	.143	3	.161	4	5.759e-3	4	NC	5	NC	1
564			min	017	2	165	2	0	1	0	1	333.187	2	NC	1
565		17	max	.021	3	.015	3	.138	4	7.07e-3	4	NC	5	NC	1
566			min	016	2	019	2	0	1	0	1	588.902	2	NC	1
567		18	max	.021	3	.087	2	.12	4	3.588e-3	4	NC	5	NC	1
568			min	016	2	091	3	0	1	0	1	1332.558	2	NC	1
569		19	max	.021	3	.17	2	.107	4	0	1	NC	1	NC	1
570			min	016	2	187	3	0	1	-5.256e-6	4	NC	1	NC	1
571	M9	1	max	.01	3	.123	2	.407	4	1.358e-2	3	NC	1	NC	1
572			min	006	2	033	3	0	1	-5.356e-3	2	NC	1	NC	1
573		2	max	.01	3	.058	2	.398	4	6.721e-3	3	NC	4	NC	1
574			min	006	2	013	3	0	10	-2.629e-3	2	1761.595	2	NC	1
575		3	max	.01	3	.015	3	.387	4	7.874e-3	4_	NC	5	NC	1
576			min	006	2	012	2	0	10	-3.017e-5	<u>10</u>	854.235		8423.851	4
577		4	max	.01	3	.059	3	.375	4	6.264e-3	5	NC	5	NC	1
578			min	006	2	088	2	0	10	-2.932e-3	2	544.128	2	6366.036	
579		5	max	.009	3	.112	3	.362	4	6.342e-3	3_	NC	5	NC 5050.00	1
580			min	006	2	1 <u>68</u>	2	0	10	-5.834e-3	2	395.756	2	5350.22	4
581		6	max	.009	3	.168	3	.348	4	9.467e-3	3	NC 242.504	5	NC	1
582		7	min	006	3	244	3	0	10	-8.736e-3	3	313.581 NC	2	4718.999	
583			max	.009		.221 312		.334	1	1.259e-2	2	264.851	15 2	NC 4238.71	1
584 585		8	min	006 .009	3	312 .266	3	0 .32	4	-1.164e-2 1.572e-2	3	NC	15	4236.71 NC	1
586		0	max min		2	365	2	<u>.32</u> 0		-1.454e-2		235.927		3803.644	
587		9	max	.009	3	.294	3	.307	4	1.613e-2	3	NC	15	NC	1
588		9	min	006	2	399	2	<u>.307</u> 0	10	-1.636e-2	2	220.831		3437.612	_
589		10	max	.008	3	.304	3	.291	4	1.475e-2	3	NC	15	NC	1
590		10	min	005	2	41	2	0	1	-1.746e-2	2	216.421		3316.705	4
591		11	max	.008	3	.297	3	.275	4	1.336e-2	3	NC	15	NC	1
592			min	005	2	398	2	0	1	-1.856e-2	2	221.653	2	3337.073	
593		12	max	.008	3	.272	3	.257	4	1.161e-2	3	NC	15	NC	1
594			min	005	2	363	2	0	10	-1.782e-2	2	238.367	2	3453.753	_
595		13	max	.008	3	.232	3	.236	4	9.29e-3	3	NC	15	NC	1
596			min	005	2	307	2	0	10	-1.428e-2	2	270.664	2	3995.593	4
597		14	max	.008	3	.181	3	.212	4	6.973e-3	3	NC	5	NC	1
598			min	005	2	236	2	0	1	-1.075e-2	2	325.789		5286.574	
599		15	max	.007	3	.124	3	.187	4	4.657e-3	3	NC	5	NC	1
600			min	005	2	158	2	002	1	-7.218e-3	2	420.454	2	8325.552	5
601		16	max	.007	3	.064	3	.163	4	5.757e-3	5	NC	5	NC	1
602															1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.007	3	.005	3	.14	4	7.174e-3	4	NC	5	NC	1
604			min	005	2	007	2	003	1	-2.532e-4	1	967.698	2	NC	1
605		18	max	.007	3	.055	2	.122	4	3.554e-3	5	NC	4	NC	1
606			min	005	2	047	3	002	1	-4.679e-3	2	2046.665	2	NC	1
607		19	max	.007	3	.11	2	.107	4	3.699e-3	3	NC	1	NC	1
608			min	005	2	097	3	0	10	-9.394e-3	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 36	Inch Wid	lth
Address:		•	
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2718.0	1678.0	0.0	1678.0	
2	2718.0	1678.0	0.0	1678.0	
Sum	5436.0	3356.0	0.0	3356.0	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5436 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ec}	$_{d,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	a) ^{0.2} √ d aλ√ f ′c C a1 ^{1.9}	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	vc/Avco) Yec, v Ye	$_{\text{ed,V}} \varPsi_{\text{c,V}} \varPsi_{\text{h,V}} V_{\text{bx}}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
648.00	648.00	1.000	0.961	1.000	1.000	15593	0.70	10490

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	15.66	23247		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
845.64	1103.56	1.000	1.000	1.000	23247	0.70	24939

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2718	6071	0.45	Pass
Concrete breakout	5436	10231	0.53	Pass
Adhesive	5436	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1678	3156	0.53	Pass (Governs)
T Concrete breakout x+	3356	10490	0.32	Pass
Concrete breakout y-	1678	24939	0.07	Pass
Pryout	3356	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 36 Inch Width				
Address:					
Phone:					
E-mail:					

	Sec. D.7.3	0.67	0.53	120.3 %	1.2	Pass
--	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.