MAC 4722 - Linguagens, Autômatos e Computabilidade

Rodrigo Augusto Dias Faria - NUSP 9374992 Departamento de Ciência da Computação - IME/USP

30 de março de 2016

Lista 2

L2.1 (Sipser 1.16) Resolva o exercício 1.16.

a) Resposta: Seja N o AFN dado na questão e A a linguagem reconhecida por N, onde:

$$\begin{split} N &= \{Q, \Sigma, \delta, q_0, F\} \\ Q &= \{1, 2\} \\ \Sigma &= \{a, b\} \\ q_0 &= 1 \\ F &= \{1\} \\ \delta &= \end{split}$$

Agora, vamos construir um AFD $M = \{Q', \Sigma, \delta', q_{0'}, F'\}$, equivalente à N, que reconhece

A.

$$Q' = \{\{\}, \{1\}, \{2\}, \{1, 2\}\}\}$$

 $\Sigma = \{a, b\}$
 $q_{0'} = E(\{1\}) = \{1\}$
 $F' = \{\{1\}, \{1, 2\}\}$
 $\delta' =$

$$\begin{array}{c|ccccc} & a & b \\ \hline \{\} & \{\} & \{\} \\ \emptyset & \{1\} & \{1,2\} & \{2\} \\ \psi & \{2\} & \{\} & \{1\} \\ \hline \{1,2\} & \{1,2\} & \{1,2\} \end{array}$$

Figura 1: Diagrama de estados para o AFD M.

b) Resposta: Seja N o AFN dado na questão e A a linguagem reconhecida por N, onde:

$$\begin{split} N &= \{Q, \Sigma, \delta, q_0, F\} \\ Q &= \{1, 2, 3\} \\ \Sigma &= \{a, b\} \\ q_0 &= 1 \\ F &= \{2\} \\ \delta &= \end{split}$$

Agora, vamos construir um AFD $M=\{Q',\Sigma,\delta',q_{0'},F'\}$, equivalente à N, que reconhece A. $Q'=\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ $\Sigma=\{a,b\}$ $q_{0'}=E(\{1\})=\{1,2\}$ $F'=\{\{2\},\{1,2\},\{2,3\},\{1,2,3\}\}$

		a	b
Estados	{}	{}	{}
	{1}	{3}	{}
	{2}	$\{1,2\}$	{}
	$\{3\}$	{2}	$\{2,3\}$
	$\{1,2\}$	$\{1,2,3\}$	{}
	$\{1,3\}$	$\{2,3\}$	$\{2,3\}$
	$\{2,3\}$	$\{1,2\}$	$\{2,3\}$
	$\{1,2,3\}$	$\{1,2,3\}$	$\{2,3\}$

A figura 2 é o AFD simplificado que mostra apenas os estados que são alcançáveis a partir do estado inicial $\{1,2\}$.

Figura 2: Diagrama de estados para o AFD M.

L2.2 (Sipser 1.6c) Dê um DFA/AFD para $A=\{w|w \text{ possui }0101 \text{ por subcadeia}\}.$ Seja $M=\{Q,\Sigma,\delta,s,F\}$ o AFD da figura 3 que reconhece A, onde:

$$\mathbf{1} \ Q = \{q_0, q_1, q_2, q_3, q_4\}$$

2
$$\Sigma = \{0, 1\}$$

4
$$s = q_0$$

5
$$F = \{q_4\}$$

Figura 3: Diagrama de estados do AFD M que reconhece A.

L2.3 Dada uma linguagem L, seja $Pref(L) = \{x | \text{ existe palavra } y \text{ tal que } xy \text{ está em } L\}$, $Suf(L) = \{y | \text{ existe palavra } x \text{ tal que } xy \text{ está em } L\}$, $Fat(L) = \{y | \text{ existem palavras } x \text{ e } z \text{ tais que } xyz \text{ estão em } L\}$.

Demonstre que se L é regular, então Pref(L), Suf(L) e Fat(L) também o são. Sugestão: Observe que Fat(L) = Suf(Pref(L)).

L2.4 Complete a demonstração do teorema 1.25.

Resposta: Vale lembrar, resumidamente, da construção dada na prova do teorema 1.25.

Suponha que A_1 e A_2 são linguagens reconhecidas por M_1 e M_2 , respectivamente, onde $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construa M para reconhecer $A_1 \cup A_2$, onde $M = (Q, \Sigma, \delta, q_0, F)$.

- 1 $Q = Q_1 \times Q_2$.
- **2** Σ , o alfabeto, é o mesmo em M_1 e M_2 .
- **3** δ = para cada $(r_1, r_2) \in Q$ e cada $a \in \Sigma$, faça $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$.
- 4 $q_0 = (q_1, q_2)$.
- **5** $F = (F_1 \times Q_2) \cup (Q_1 \times F_2).$

Demonstração. Para demonstrar que M reconhece $A_1 \cup A_2$, devemos dividir a prova em duas partes.

AFIRMAÇÃO: Toda palavra pertencente à linguagem reconhecida por M está presente em $A_1 \cup A_2$.

Tome uma palavra w qualquer reconhecida pelo autômato M. Sabe-se que ao transitarmos através de δ por M, a partir do estado inicial q_0 , existe um passeio P no autômato M que leva a um estado final. Pela construção de M, cada estado nesse passeio é rotulado por um par ordenado (r_1, r_2) , onde $r_1 \in M_1$ e $r_2 \in M_2$. Se tomarmos o passeio P_1 , considerando de P apenas as coordenadas r_1 do par ordenado, este é equivalente ao passeio dado pelas transições δ_1 na tentativa de reconhecimento de w em M_1 . Analogamente, podemos tomar o passeio P_2 , a partir de P, considerando apenas as coordenadas r_2 , o que equivaleria à tentativa de reconhecimento da palavra w em M_2 . Pela construção de M, temos ainda que o estado final do passeio P é rotulado por um par ordenado (r_1, r_2) , onde $r_1 \in F_1$ ou $r_2 \in F_2$. Dessa forma, ou P_1 ou P_2 , ou ambos, terminam com um estado final, logo, $w \in A_1$, ou $w \in A_2$, ou $w \in A_1$ e $w \in A_2$, o que é equivalente a dizer que $w \in A_1 \cup A_2$.

AFIRMAÇÃO: Toda palavra pertencente à linguagem $A_1 \cup A_2$ é reconhecida por M. Tomemos agora w como sendo uma cadeia pertencente a $A_1 \cup A_2$, onde |w| = m. Logo, existe um passeio $P_1 = x_0, x_1, \ldots, x_m$ em M_1 , tal que $x_0 = q_1$ construído a partir de δ_1 , ou um passeio $P_2 = z_0, z_1, \ldots, z_m$, construído a partir de δ_2 em M_2 , tal que $z_0 = q_2$, e que x_m ou z_m , ou ambos, são estados finais. Como o conjunto de estados Q de M foi construído através do produto cartesiano de $Q_1 \times Q_2$ e a função de transição $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$, para cada par ordenado $(r_1, r_2) \in Q$ e cada $a \in \Sigma$, existe um caminho $P = (x_0, z_0), (x_1, z_1), \ldots, (x_m, z_m)$ em M, obtido a partir de w, e como x_m ou x_m , ou ambos, são estados finais, x_m, x_m também é um estado final e, portanto, x_m reconhece a palavra x_m .