

<u>תמורות</u>

X כאשר X (תמורה/פרמוטציה): תמורה היא העתקה חד-חד-ערכית ועל מ-X ל-X (תמורה/פרמוטציה) קבוצה לא ריקה.

<u>סימון</u>: נסמן תמורה בצורת טבלה בעלת שתי שורות- השורה העליונה היא איברי הקבוצה המקורית לפי הסדר (התחום), והשורה השנייה היא האיברים אליהם מועתקים איברי הקבוצה בסדר כלשהו (הטווח).

:2 דוגמה

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

 $\,$.3 משמעו שהאיבר $\,$ 1 מומר לאיבר $\,$ 2, האיבר $\,$ 2 מומר לאיבר $\,$ 3 מומר לאיבר מומר לאיבר $\,$ 3 משמעו שהאיבר $\,$ 3 מומר לאיבר $\,$ 4 מומר לאיבר $\,$ 5 מומר לאיבר $\,$ 5 מומר לאיבר $\,$ 6 מומר לאיבר $\,$ 7 מומר לאיבר $\,$ 8 מומר לאיבר $\,$ 9 מומר לאיבר

X נסמן ב- S_n את אוסף כל התמורות מעל $X=[1\dots n]$ נסמן ב-ל התמורות מעל:

<u>:4 דוגמה</u>

$$S_{3} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}$$

.4! מה תמורות יש ב-.5? תשובה: .4!

פעולת הרכבה, דוגמה:

יהיו

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

אזי

$$\sigma\tau = \sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
$$\tau\sigma = \tau \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

מפעילים את התמורה הימנית, ועל התוצאה מפעילים את התמורה השמאלית)

הרכבה של שתי תמורות יוצרת תמורה חדשה.

 $.\sigma au = au \sigma$ שתי תמורות $\sigma, au \in S_n$ נקראות מתחלפות שם:

. שראינו לעיל אינן מתחלפות σ, τ שראינו לעיל אינן מתחלפות <u>6</u>

מתקיים
$$\sigma$$
 מתקיים לכל תמורה $1_{S_n}=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}$ (תמורת הזהות) מתקיים

$$1_{S_n}\sigma=\sigma=\sigma 1_{S_n}$$

דוגמה 8: תהי

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

אזי

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

אבחנה 9: תמורת הזהות מתחלפת עם כל תמורה.

כך $\sigma^{-1} \in S_n$ תמורה הופכית (תמורה הופכית) קיימת מורה לכל תמורה לכל תמורה לכל שמתקיים

$$\sigma\sigma^{-1}=1_{S_n}=\sigma^{-1}\sigma$$

<u>דוגמה 11</u>: תהי

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

אזי

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

ואכן מתקיים

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \sigma^{-1}\sigma$$

 $lpha,eta,\gamma\in S_n$ חוק הצמצום לתמורות 12: יהיו

(צמצום משמאל)
$$\beta = \gamma$$
 אזי $\alpha \beta = \alpha \gamma$ אם .1

(צמצום מימין)
$$\beta = \gamma$$
 אזי $\beta = \gamma \alpha$ אם 2.

הוכחה:

נניח $\beta(i)=\gamma(i)$ מתקיים $1\leq i\leq n$ נניח עלינו להראות כי לכל $\beta=\gamma$ עלינו להראות כי לכל $\beta(i)\neq \alpha(\gamma(i))$ מתקיים $\beta(i)\neq \alpha(\gamma(i))$ כלומר בשלילה כי קיים $\beta(i)\neq \gamma(i)$ עבורו $\beta(i)\neq \alpha(\gamma(i))$ סתירה להנחה. (ההוכחה של 2 באופן סימטרי.)

<u>חבורות</u>

הגדרה * המקבלת * חבורה היא זוג (G,*) של קבוצה G ופעולה בינארית המקבלת זוג איברים (חבורה): חבורה היא זוג G,* המקיימת:

- $(\forall a,b \in G: a*b \in G)$ א. סגירות (G סגורה תחת א, כלומר, א.
- (a*b)*c = a*(b*c) מתקיים $a,b,c \in G$ ב. * אסוציאטיבית: לכל
- .ea=ae=a מתקיים $a\in G$ כך שלכל $e\in G$:e ג. קיים איבר ניטרלי
- $a*a^{-1}=a^{-1}*a=e$ שנסמנו a^{-1} , כך ש $a\in G$ קיים איבר ב-a שנסמנו $a\in G$ ד. קיום הופכי:

(Z,+) : דוגמה

בדיקה:

- $a+b\in Z$ אכן $a,b\in Z$ א. סגירות- לכל
- $a, b, c \in Z$ ב. אסוציאטיביות: לכל $a, b, c \in Z$ מתקיים
 - a+0=0+a=a , $a\in Z$ מקיים לכל $0\in Z$:ג. קיום ניטרלי
- a+(-a)=(-a)+a=0 שכן $a+(-a)=a\in Z$ ד. קיום הופכי: a+(-a)=a+(-a)=a

<u>שאלות:</u>

- . האם (N, +) היא חבורה? לא, כי אין ניטרלי והופכי.
- . האם (Z,\cdot) היא חבורה? לא, כי אמנם יש ניטרלי אבל אין הופכי.
 - . האם (Q,\cdot) היא חבורה? לא, כי לאיבר (Q,\cdot) אין הופכי.
- $\frac{b}{a}$ האיבר $Q\setminus\{0\},\cdot$ היא חבורה? כן (ניטרלי 1, לכל $Q\setminus\{0\}\setminus\{0\}$ קיים ב- $\frac{a}{b}\in Q\setminus\{0\}$ האיבר . $\frac{a}{b}\cdot\frac{b}{a}=1$
 - 5. תנו דוגמה נוספת לחבורה.

טענה 3: לכל $n \in \mathbb{N}$ מתקיים (S_n, \circ) היא חבורה.

<u>הוכחה</u>:

א. סגירות: ראינו כי לכל $\sigma, \tau \in S_n$ מתקיים $\sigma, \tau \in S_n$ מתקיים סגירות: ראינו כי לכל פונקציות חח"ע ועל פונקציה חח"ע ועל

ב. אסוציאטיביות: לכל לכל $\sigma, au, lpha \in S_n$ מתקיים

$$(\sigma \circ \tau) \circ \alpha = \sigma \circ (\tau \circ \alpha)$$

 $1 \le i \le n$ כי לכל

$$(\sigma \circ \tau) \circ \alpha(i) = (\sigma \circ \tau) \big(\alpha(i)\big) = \sigma \left(\tau \big(\alpha(i)\big)\right)$$

$$\sigma \circ (\tau \circ \alpha)(i) = \sigma((\tau \circ \alpha)(i)) = \sigma(\tau(\alpha(i)))$$

ג. קיום ניטרלי: ראינו כי לכל $\sigma \in S_n$ מתקיים כי הפרמוטציה $\sigma \in S_n$ מקיימת ג. קיום ניטרלי: ראינו כי לכל $1_{S_n} \circ \sigma = \sigma \circ 1_{S_n} = \sigma$

 $\sigma \circ \sigma^{-1} = \sigma^{-1}\sigma = 1_{S_n}$ כך ש כך $\sigma^{-1} \in S_n$ קיימת $\sigma \in S_n$ ד. קיום הופכי: ראינו כי לכל

ונסמן n ונסמן: נאמר כי השלמים מתחלקים למחלקות שקילות מודולו

$$Z_n = \{[0]_n, [1]_n \dots [n-1]_n\}$$

כעת נראה שתי דוגמות חשובות במיוחד לחבורות הקשורות לחשבון המודולורי:

- $(Z_n, +)$ החבורה החיבורית.
 - (Z_n^*, \cdot) . החבורה הכפלית
- .($[n-k]_n$ ההופכי הוא $[k]_n$ לכל לראות את קיום הגדרת החבורה (איבר ניטרלי ($[0]_n$ לכל לראות את קיום הגדרת החבורה (איבר ניטרלי ($[0]_n$

$$k+(n-k)=n\equiv 0\ (mod\ n)$$
 בדוע זה ההופכי? כי

 $[-k]_n$ יש לשים לב כי בחבורה חיבורית ההופכי הוא הנגדי, ולפעמים נסמנו

אין עבור (Z_n,\cdot) חבורה? אמנם יש ניטרלי $[1]_n$ אך מה לגבי הופכי? לדוגמה, עבור (Z_n,\cdot) אין $a\cdot x\equiv 1\ (mod\ n)$ אף איבר שבו נכפיל ונקבל את $[1]_n$ למדנו שלשקילות (a,m)=1. זוהי המוטיבציה להגדרת החבורה הכפלית (Z_n^*,\cdot) .

 $Z_n^* = \{[a]_n \in Z_n \mid (a,n) = 1\}$ כאשר (Z_n^*, \cdot) כאשר .2

לדוגמה:

$$Z_6^* = \{[1]_6, [5]_6\}$$

(a,6)=1 שכן שאר האיברים 0,2,3,4 אינם מקיימים

?מיהו האיבר הניטרלי? $_{6}[1]_{6}$ מיהו האיבר ההופכי

$$1 \cdot 1 = 1$$
, $5 \cdot 5 = 25 = 24 + 1 \equiv [1]_6$

ולכן כל איבר הוא ההופכי של עצמו.

נוודא שזוהי חבורה:

 $[ab]_n\in[ab]_n$, ולכן גם (ab,n)=1, ולכן אזי (a,n)=(b,n)=1, אזי גירות: אם (ab,n)=1, אזי (ab,n)=1, אזי (ab,n)=1

- ב. אסוציאטיביות: נובע מאסוציאטיביות של כפל מודולרי.
 - . איבר ניטרלי: $Z_n^* \in \mathbb{Z}_n^*$ איבר ניטרלי.
- ד. קיום הופכי: לכל $[a]\in Z_n^*$ מתקיים $[a]\in A$, ולכן (כפי שלמדנו בהרצאת "הופכי ,(a',n)=1 מודולרי") ל- $a\cdot a'\equiv 1\ (mod\ n)$ מודולרי" ל- $a\cdot a'\equiv 1\ (mod\ n)$ מודולרי", ומתקיים $[a]_n=[a']$, ומתקיים $[a']_n=[a']$

?חבורה (N,*) האם $n*m=n^m$ ע"י $*:NXN\to N$ חבורה:

<u>פתרון</u>: נבדוק לפי ההגדרות.

- $a^b \in N$ א. סגירות: עבור $a,b \in N$ א. סגירות:
- $(2*3)*2=^?2*(3*2)$ ב. אסוציאטיביות: יהיו 2,3,2 $\in \mathbb{N}$

$$(2^3)^2 = 8^2 = 64$$
, $2^{(3^2)} = 2^9 = 512$

. מצאנו דוגמה נגדית ולכן (N,*) אינה מקיימת אסוציאטיביות. לכן לא חבורה מצאנו דוגמה מדית ולכן