Exam 1

Elliott Pryor

 $03~{\rm March}~2021$

True or False

- (a) if f(x) on a finite interval [a, b] is Riemann integrable, then f(x) can only have jump discontinuities
- (b) If |f(x)| is Riemann integrable on [a, b] then f(x) is also Riemann integrable on [a, b]
- (c) if $\sum_{k=1}^{\infty} a_k$ converges conditionally and $\sum_{k=1}^{\infty} b_k$ converges absolutely, then $\sum_{k=1}^{\infty} a_k \cdot b_k$ converges absolutely
- (d) If $\sum_{k=1}^{\infty} a_k$ converges conditionally, then the sum of all positive terms of this series diverges
- (e) Let f_n be a sequence of C^1 functions defined on (a,b) if $f'_n(x)$ converges uniformly to g(x) on (a,b). Then there exists a C^1 function f on (a,b) such that $f_n(x)$ converge uniformly to f(x) and f'(x) = g(x)

Give the statement (using quantifiers) that a sequence of functions $f_n(x)$ on a common domain $\mathbb D$ does **NOT** converge uniformly to a function f(x) on $\mathbb D$

Compute the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{4n^5 - 7n + 2}{3^n} x^n$$

Prove the first part of the linearity of Riemann Integral. Namely, if both f(x) and g(x) are Riemann integrable on [a, b], then f + g is Riemann integrable on [a, b], and

$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Here
$$(f + g)(x) = f(x) + g(x)$$

Hint: Use part (e) of Theorem 6.2.1 and linear property of Cauchy sum

Let $b_1, b_2, ...$ be a sequence of postiive numbers convergint monotonically to zero: $b_1 \ge b_2 \ge b_3...$ and $\lim_{n\to\infty} b_n = 0$. If $|a_n| \le b_n - b_{n+1}$ for all n. Prove: $\sum_{n=1}^{\infty} a_n$ converges absolutely.

Problem 6a

Let $f_n(x) \to f(x)$ uniformly on a finite interval [a,b] and all $f_n(x)$ are Riemann integrable on [a,b]. Define $F_n(x) = \int_a^x f_n(t)dt$. Prove that $F_n \to F$ uniformly on [a,b] for some F(x), and give the expression of the limit function F(x).

Problem 6b

Is the same true on the whole line? Namely, let $f_n(x) \to f(x)$ uniformly on the entire real line \mathbb{R} , and all $f_n(x)$ are Riemann integrable on any finite interval. Define $F_n(x) = \int_0^x f_n(t)dt$. Is it always true that $F_n(x) \to F(x)$ uniformly on \mathbb{R} for some F? Prove it if your answer is Yes, or give a counter example if your answer is No.