Examen Final de Análisis Numérico

03/07/2024

Parte Práctica

1. Considere la siguiente tabla de datos:

\boldsymbol{x}	-2	-1	0	1	2
y	1	4	11	16	13

- (a) Muestre que el polinomio interpolante de Newton tiene grado exactamente 3.
- b) Supongamos que se agrega como nuevo dato a $x_6 = 3$ con $y_6 = -4$. ¿Cuál es el nuevo grado del polinomio interpolante para la nueva tabla de datos? Justifique.
- 2. Se desea aproximar la integral de $f(x) = x \cos(x)$ en el intervalo [-2, 2] utilizando la regla de Simpson compuesta. Determine la cantidad de subintervalos n que se deben usar para que se obtenga una aproximación con un error menor a 10^{-4} .
- 3. Se desea aproximar la función $f(x) = x^2 3x + 1$ por una función lineal en el intervalo I = [0, 1].
 - (a) Escriba la fórmula del error cuadrático para este problema.
 - (b) Calcule los coeficientes del polinomio que mejor aproxima en el sentido de cuadrados mínimos.
 - (c) Dé el valor del error para el polinomio obtenido en el inciso anterior.
- 4. Un ceramista fabrica tazas y platos para vender. Por cada kilo de arcilla puede fabricar tres tazas o cinco platos. Cada taza se vende por \$5000 y cada plato se vende por \$3500. El costo de la arcilla es de \$10000 el kilo, y puede comprar a lo sumo 16 kg. Si desea fabricar al menos tantas tazas como platos, ¿cuántas tazas y cuántos platos debe buscar para maximizar su ganancia? ¿Cuántos kilos de arcilla debe comprar?
- 5. (Sólo alumnos libres) Sea $f(x) = (x^2 9)(x^2 3)(x 5)$. Para cada intervalo, determine a qué raíz de f converge el método de bisección, justificando adecuadamente su respuesta.
 - (a) [-2, 4]
 - (b) [-0.5, 5.5]
 - (c) [-6, 6]

Parte Teórica

- (a) ¿A qué llamamos norma matricial inducida? Dé ejemplos de ellas.
- (b) Dé las definiciones de los métodos de Jacobi y Gauss-Seidel para resolver el sistema lineal Ax = b.
- (a) Dado un conjunto de datos (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) , ¿cuál es la diferencia en general entre interpolarlos y aproximarlos?
- Si una regla gaussiana es exacta para polinomios de grado 9 en el intervalo (a, b), con peso w(x), ¿cómo se eligen los nodos x_i para construirla?

1. Co	onsidere la si	iguiente tabia (de datos:							
			$\begin{array}{c cccc} x & -2 & -1 \\ \hline y & 1 & 4 & 1 \\ \end{array}$	0 1 2 11 16 13						
`) Supongar	nos que se agr	io interpolante d rega como nuevo nio interpolante	dato a $x_6 =$	$3 \operatorname{con} y_6 = $	−4. ¿Cuál e				
Polin	omio inter	polante de	Newton							
cime	ro planteo	las diferen	cros dividido	s con los	datos da	dos:				
¥;	4[x.]	\$[xi, xi,] \$[xxi.	,, X _{i+z}]	\$[xi, xi+1]	[E+1X,54;X,	¥.	[4, , , , , , , ,	+2, 43,	(i+4)
-2	1	3	2			1			0	
-1	4	7	- 1			1				
0	11	2	u	1						
1	16	-3								
2	13									
2)/4	veon, al c	olinomin	nterpolante	en la for	mo de N	ewton e	53			
							G2 6×0C.	tomonte		
	() ()	1,,01,01		4 (, , , ,) (;		3 (COOI	C3 (, 13	7(10(1)-		
P	(x)= 1+3	(x+2)+2((x+2)(x+1)	- 1 (x+2) (×+ 1) x	طو محرور				
s) C	rondo sc		n nuevo dat			مو گار مار	% 3		abla d	le
s) Co	renclas a	agrege ve	n nuevo dat	-o (X6, \$((3, xol) = (3,	de grac	o rederi	nir la t		
x;	renclas a	agrege ve	n nuevo dat	-o (X6, \$((3, xol) = (3,	de grac	o rederi	nir la t		
x;	renclas a	agrege ve	a avevo dat	-o (X6, \$((3, xol) = (3,	de grac	o rederi	nir la t	X;, Z, X;, X;,	
x; -1	renclas a	agrega vo druididas f[xi, xii]	a avevo dat	-o (X6, \$((3, xol) = (3,	de grac	o rederi	nir la t	X;, Z, X;, X;,	
>) Co	renclos a f[x.] 1	agrega vo druididas f[xi, xii]	a avevo dat	-o (X6, \$((3, xol) = (3,	de grac	o rederi	nir la t	X;, Z, X;, X;,	
) Co xife x; -2 -1	renclos a f[x.] 1	agrega va divididas f[xi, xiii] 3	1 avevo dat 2 -1	-o (X6, \$((3, xol) = (3,	de grac	o rederi	nir la t	X;, Z, X;, X;,	
2 2 2 2	1000 sc renclos (12)	agrega va divididas f[xi, xiii] 3	1 avevo dat 2 -1	-o (X6, \$((3, xol) = (3,	de grac	o rederi	nir la t	X;, Z, X;, X;,	
2 3	11 16 13	28, (20 v) A (v) d) dQs 7 5 -3 -17	1 avevo dat 2 -1	- (X6, \$()	(3, 1) = (3, 1) $(3, 1) = (3, 1)$ $(3, 1) = (3, 1)$ $(3, 1) = (3, 1)$ $(3, 1) = (3, 1)$ $(3, 1) = (3, 1)$ $(4, 1) = (3$	de grac	o rederi	nir la t	X;, Z, X;, X;,	
2 3 -1 -2 -1 -2	10000 sc cencios o f[x.] 1 1 16 13 -4 Olinomio	agricga vidads P[xi, xin] 3 -17 sigue siende	1 avevo dat 2 -1 - 7	e grado 3	x ₃ = (3, x ₁ + 3) \$ 1 1	de grac	o rederi	nir la t	X;, Z, X;, X;,	
2 3 -1 -2	10000 sc cencios o f[x.] 1 1 16 13 -4 Olinomio	agricga vidads P[xi, xin] 3 -17 sigue siende	a avevo dat P[x,x,,x,+z] 2 -1 -y -7	e grado 3	x ₃ = (3, x ₁ + 3) \$ 1 1	de grac	o rederi	nir la t	X;, Z, X;, X;,	
2 3 1 P	10000 sc cencios o f[x.] 1 1 16 13 -4 Olinomio	agricga vidads P[xi, xin] 3 -17 sigue siende	a avevo dat P[x,x,,x,+z] 2 -1 -y -7	e grado 3	x ₃ = (3, x ₁ + 3) \$ 1 1	de grac	o rederi	nir la t	X;, Z, X;, X;,	
2 3 -1 -2 -1 -2	10000 sc cencios o f[x.] 1 1 16 13 -4 Olinomio	agricga vidads P[xi, xin] 3 -17 sigue siende	a avevo dat P[x,x,,x,+z] 2 -1 -y -7	e grado 3	x ₃ = (3, x ₁ + 3) \$ 1 1	de grac	o rederi	nir la t	X;, Z, X;, X;,	

2. Se desea aproximar la integral de $f(x) = x \cos(x)$ en el integral de Simpson compuesta. Determine la cantidad de subinter que se obtenga una aproximación con un error menor a 10	rvalos n que se deben usar para
error de la regla de Simpson compuesta esta	2 dado per:
- (b-a) . hy . p(4)(5) = - (b-a) 5 . p(4)(5)	
nora bien, sc tiene que:	
	$(x) = -2\cos(x) - \cos(x) + x scn(x)$
f'(x) = cos(x) - x scn(x)	$= -3\cos(x) + x s c n(x)$
$f^{(z)}(x) = -sen(x) - sen(x) - xcos(x) \cdot f^{(u)}(x)$	(x) = 3 s c n(x) + s c n(x) + x c o s(x)
$=-2scn(y)-x\cdot cos(x)$	= 4scu(x) + x cos(x)
(b-a)=2+2=4 Se busca lo siguiente	
$-\frac{(b-a)^{5}}{180\cdot 0^{4}}\cdot + (4)(\xi) \leq 10$	$\frac{1}{4504} \cdot 4560(5) + x \cdot (05(5) \leq 10^{-4}$
omo 15 scn(x) < 1, entonces -4 < 4. scn(E) < 4, l	vego se tiene x une función imper y cos(x)
r, por lo que x.cos(x) es imper, luego pera ence	ontrar el máximo y mínimo absoluto en el
ervalo [-2,2] no bosta con tomor los extremos,	
cos(+), poro ello onelizo la derivada: (x.cos(,	$(x)'=\cos(x)-x\sin(x)$, pera encontror los
os de la Función, ejecuto el alpontmo de bisecc	
mo h(x) = x·cos(x1) Bosto tomar lo mitad, yo	que la
poridad está definida.	7 como 0,875 es aproximadamente la
h'(0)=1, $h'(2)=-2,23$, $h'(1)=-0,3$	roiz, los extrenos de h(x) en [-7,z] son:
h'(0) = 1 , h'(1) = -0,3 , h'(0,5) = 0,64	h(0,875) = 0,56
h'(1)=-0.3, $h'(0.5)=0.64$, $h'(0.75)=0.72$	h(-0,875)=-0,56
h'(1)=-0,3, h'(0,75)=0,72, h'(0,875)=-0,03	h(-z) = 0,83
1000 0,875 como 1013 aproximada	h(2) = -0.83
a acta cata acta a da	U 0 (-2) Y
on esto entronces: $\frac{1}{45.9}$. $4sen(s)+x(0s(s) \leq \frac{1}{45.9}$	$\frac{1}{1}$
⇒ n≥ √ (10-4+2cos(-z)).45 / tomondo 2 s	ubintervalos na es exacta.
1 - V (10 + 2 cos 1-2) · 4 3 / 1 oc (0 cos 2 cos	

3. Se desea aproximar la función $f(x) = x^2 - 3x + 1$ por una función lineal en el intervalo $I = [0, 1].$	
(a) Escriba la fórmula del error cuadrático para este problema. (b) Calcule los coeficientes del polinomio que mejor aproxima en el sentido de cuadrados	
mínimos. (c) Dé el valor del error para el polinomio obtenido en el inciso anterior.	
a) La Formula del error cuadraclo para este problema esta dada por: $E(a_0,a_1) = \int_{a}^{b} [f(x) - p(x)]^2 dx$	
b) Aproximación per cuadrados mínimos: p(x)=a, x +ao	
$Q_{0} \int_{0}^{1} dx + \int_{0}^{1} x dx = \int_{0}^{1} (x^{2} - 3x + 1) dx$ $Q_{0} \cdot 1 + Q_{1} \cdot \frac{1}{2} = -\frac{1}{6}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
[1/2 1/3 -1/4	
El polinomio obtenido es: 1) (x)=-2x+5/6	
1.5	
2 -1.5 -1 -0.5 0 0.5 1 1.5	
-1.5	
c) $E(Q_0, Q_1) = \int_0^1 (x^2 - 3x + 1) - (-2x + 5/6)^2 dx = \int_0^1 (x^2 - x + 1/6)^2 dx = \int_0^1 (x^2 - x + 1/6)(x^2 - x + 1/6) dx$	
$= \int_{0}^{1} (x^{4} - x^{3} + \frac{1}{6}x^{2} - x^{3} + x^{2} - \frac{1}{6}x + \frac{1}{6}x^{2} - \frac{1}{6}x + \frac{1}{3}6) dx = \int_{0}^{1} (x^{4} - 2x^{3} + \frac{4}{3}x^{2} - \frac{1}{3}x + \frac{1}{3}6) dx = \frac{1}{180}$	
Jo Jo 180	
	Pedro Villaı

Parte Teórica
(a) ¿A qué llamamos norma matricial inducida? Dé ejemplos de ellas.
(b) Dé las definiciones de los métodos de Jacobi y Gauss-Seidel para resolver el sistema lineal $Ax = b$.
(a) Dado un conjunto de datos $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n),$ ¿cuál es la diferencia en general entre interpolarlos y aproximarlos?
(b) Si una regla gaussiana es exacta para polinomios de grado 9 en el intervalo (a,b) , con peso $w(x)$, ¿cómo se eligen los nodos x_i para construirla?
a) Norma matricial inducida: sea 11.11 una norma vectorial en 12º y A una matriz cuadrada en 18
o) Para hallar soluciones de sistemas de ecuaciones lineales estudiamos dos métodos, directos e iterativos
en este coso Jacobi y Gauss-Seidel son métodos iterativos, es decir generon una sucesión de vectores
IXXX a portir de Xo, que bajo cierlos hipótesis, convergen a la solución de un sistema lineal. Basicomente,
embos métodos se bosen en seperor de un sistema Ax=b, a A en (M-N) con M no singular y se tiene:
Ax = 6
(M-N)X = 0
Mx-Nx=b A Donde (M-1-N) es nuestra matriz de iteración.
Mx = Nx + b
$X = H_{-1}(Nx+p) = (H_{-1}N)X + H_{-1}p$
$\Rightarrow X_{U+1} = (W_1 \cdot N) X_U + W_{-1} P$
a diferencia entre embos métodos, ve a estar en la forma en la que se toman M y N. En el método de
acobi, se tomara M=D (D=diagonal, L=triangular inferior, U=triangular superior, con A=L+D+J) y luego
)=M-A = D-(L+D+J) = - (L+D), a diferencia de Gauss-Seidel, donde se toma M=L+D y N=-U.
) Si scinterpolan los n puntos dados, se exige que una función de prodo ≤n pase exactamente por
inches puntos, pero no siempre esto es conveniente, por ejemplo, si se tienen o puntos colocodos de for-
a pur sugioren que la relación es similar a la lineal, se podição obtener con interpolación el polinomia de
rado menor o igual a n, o bien buscor oproximer un modelo lineal que pase lo mos cerco posible de dichos
untos, a esto se le lloma aproximarios.
) Si es exacta para polinomios de grado 9=2.5-1, se buscon las 5 raices del polinomio Os(x) pertenecient
ca la familia de polinomios ortogonales definida en el intervalo y peso buscado, esco raices será los
rodos a utilizar.
Pedro