\mathcal{JVML}_{00}

 \mathcal{JVML}_{00} formalizes a subset of the possible instructions of a method in a class A, with argument types t_1 , ... t_l , result type t, and $Stack = I_1$, Locals = I_2 , ArgsSize = I_3 .

Syntax

instruction ::= inc | pop | store x | load x | if L | halt

where x is the number of a local variable, L is the label of some instruction.

Operational Semantics

P: $0..k \rightarrow instruction$ stands for the program.

The value of k is .

pc is the program counter

 $f: 0..j \rightarrow integer$ describes the contents of local variables, and integer represents both integers and addresses.

The value of j is .

s is a list of values, and stands for the operand stack. The symbol \cdot represents concatenation.

The maximal length of the list is

Execution has the format
$$P \vdash pc, f, s \rightsquigarrow pc', f', s'$$

$$\begin{array}{c|c} & P[\mathit{pc}] = \mathsf{inc} \\ \hline P \vdash \mathit{pc}, \mathit{f}, \mathit{n} \cdot \mathit{s} \leadsto \mathit{pc} + 1, \mathit{f}, (\mathit{n} + 1) \cdot \mathit{s} \\ \hline \\ P[\mathit{pc}] = \mathsf{load} \; \mathit{x} \\ \hline P \vdash \mathit{pc}, \mathit{f}, \mathit{s} \leadsto \mathit{pc} + 1, \mathit{f}, \mathit{f}(\mathit{x}) \cdot \mathit{s} \\ \hline \\ P[\mathit{pc}] = \mathsf{if} \; \mathit{L} \\ \hline \\ P \vdash \mathit{pc}, \mathit{f}, \mathit{O} \cdot \mathit{s} \leadsto \mathit{pc} + 1, \mathit{f}, \mathit{s} \\ \hline \end{array}$$

$$\begin{array}{c} P[\mathit{pc}] = \mathsf{store} \; \mathit{x} \\ \hline P \vdash \mathit{pc}, \mathit{f}, \mathit{v} \cdot \mathit{s} \leadsto \mathit{pc} + 1, \mathit{f}[\mathit{x} \mapsto \mathit{v}], \mathit{s} \\ \hline \\ P[\mathit{pc}] = \mathsf{if} \; \mathit{L} \\ \hline \\ P \vdash \mathit{pc}, \mathit{f}, \mathit{O} \cdot \mathit{s} \leadsto \mathit{pc} + 1, \mathit{f}, \mathit{s} \\ \hline \end{array}$$

$$\begin{array}{c} P[\mathit{pc}] = \mathsf{if} \; \mathit{L}, \; \mathit{n} \neq 0 \\ \hline P \vdash \mathit{pc}, \mathit{f}, \mathit{n} \cdot \mathit{s} \leadsto \mathit{L}, \mathit{f}, \mathit{s} \\ \hline \end{array}$$

Question: Why is there no operational semantics rule for halt?

The Type System

```
t \in Type = \{ int \} \cup \{ A \mid A the name of a class \}
```

We introduce type vectors $(Type)^*$, where the symbol \cdot indicates concatenation, e.g. int-A-int is such a type vector. We have F_i , S_i :

 F_i : $(\textit{Type})^n$ stands for types of local variables as at instruction i. For example, $F_3[2]$ is the type of the 2nd local variable at instruction 3. The value of n is

 S_i : $(\textit{Type})^m$ stands for types of stack operands as at instruction i. For example, $S_3[2]$ is the type of the 2nd operand at instruction 3. The value of m is

The range of i is \cdot .

The judgment

$$F, S, \mathsf{i} \vdash \mathsf{P}$$

asserts that the *i*-th instruction of P is well-formed with respect to F and S. The judgment is defined on next slide.

The judgment

$$F, S \vdash P$$

guarantees that program P is well-formed with respect to F and S, i.e. that all its instructions are well-formed with respect to F and S, i.e.:

$$\frac{\forall i \in Dom(\mathsf{P}): F, S, \mathsf{i} \vdash \mathsf{P}}{F, S \vdash \mathsf{P}}$$

$$\begin{array}{c} \mathsf{P}[i] \!\!=\!\! \mathsf{inc} \\ F_{i+1} \!\!=\!\! F_i \\ S_{i+1} \!\!=\!\! S_i \!\!=\!\! \mathsf{int} \!\cdot\! \alpha \\ i+1 \in Dom(\mathsf{P}) \\ \hline F,S,\mathsf{i} \vdash \mathsf{P} \\ \end{array} \qquad \begin{array}{c} \mathsf{P}[i] \!\!=\!\! \mathsf{if} \ L \\ F_{i+1} \!\!=\!\! F_L \!\!=\!\! F_i \\ \mathsf{t} \!\cdot\! S_{i+1} \!\!=\!\! \mathsf{t} \!\cdot\! S_L \!\!=\!\! S_i \\ i+1 \in Dom(\mathsf{P}), \ L \in Dom(\mathsf{P}) \\ \hline F,S,\mathsf{i} \vdash \mathsf{P} \\ \end{array} \qquad \begin{array}{c} \mathsf{P}[i] \!\!=\!\! \mathsf{load} \ x \\ x \in Dom(\mathsf{F}_i) \\ F_{i+1} \!\!=\!\! F_i \\ S_{i+1} \!\!=\!\! F_i [x] \!\cdot\! S_i \\ i+1 \in Dom(\mathsf{P}) \\ \hline F,S,\mathsf{i} \vdash \mathsf{P} \\ \end{array} \qquad \begin{array}{c} \mathsf{P}[i] \!\!=\!\! \mathsf{load} \ x \\ x \in Dom(F_i) \\ F_{i+1} \!\!=\!\! F_i [x] \!\cdot\! S_i \\ i+1 \in Dom(\mathsf{P}) \\ \hline F,S,\mathsf{i} \vdash \mathsf{P} \\ \end{array} \qquad \begin{array}{c} \mathsf{P}[i] \!\!=\!\! \mathsf{store} \ x \\ x \in Dom(F_i) \\ F_{i+1} \!\!=\!\! F_i [x \mapsto \mathsf{t}] \\ \mathsf{t} \!\cdot\! S_{i+1} \!\!=\!\! S_i \end{array}$$

 $\frac{i+1 \in Dom(\mathsf{P})}{F,S,\mathsf{i} \vdash \mathsf{P}}$

$$\frac{\mathsf{P}[i] = \mathsf{halt}}{F, S, \mathsf{i} \vdash \mathsf{P}}$$

Note that

- F_{i+1} in general depends on F_i .
- S_{i+1} in general depends on S_i .
- All instructions, except for halt, expect the next instruction to be defined in P.
- ullet All instructions, except for store, leave F_i unmodified.

Also, note that type rules define both *type checking* and *type inference* (or combinations):

A *type checker* is given a program with type declarations, and checks whether it is type correct. E.g., Java compilers so type checking. In this case, a type checker would be given F, S and P, and would check whether F, $S \vdash P$ holds.

A *type inference* system is given a program without type declarations, and tries to find type declarations that would make the program type correct. E.g., Haskell compilers do type inference.

In this case, a type inference system would be given P, and would try to find F and S such that F, $S \vdash P$ holds.

The Java verifier is something in between, because it is given and tries to construct so that $F, S \vdash P$ holds.

Guarantees given by the type system

Theorem If $F, S \vdash P$ and $i \in Dom(P)$, and f, and s, then:

ullet Type preservation If $\mathsf{P} \vdash i, f, s \ \leadsto \ i', f', s'$ then , and , and

• **Progress** If there do not exist i', f', s', such that $P \vdash i, f, s \rightsquigarrow i', f', s'$, then .

Type rules with subtypes

We extend types to contain a type \top , which denotes *any* type:

$$t \in Type = \{ \text{ int } \} \cup \{ \top \} \cup \{ A \mid A \text{ the name of a class } \}$$

We extend the subtype relationship for classes

$$\begin{array}{c|c} t \text{ a subclass of } t' \text{ in } P \\ \hline P \vdash t \leq t' \end{array} \qquad \begin{array}{c} t \text{ is a type in } P \\ \hline P \vdash t \leq \top \end{array}$$

We extend the subtype relationship to type vectors

$$\frac{\mathsf{P}\vdash \mathsf{t}_j \leq \mathsf{t}_j' \quad \forall \mathsf{j} \in \mathsf{1}, ..., \mathsf{m}}{\mathsf{P}\vdash \mathsf{t}_1 \cdot ... \cdot \mathsf{t}_m \leq \mathsf{t}_1' \cdot ... \cdot \mathsf{t}_m'}$$

$$\begin{array}{c} \mathsf{P}[i] \!\!=\!\! \mathsf{inc} \\ \mathsf{P} \!\!\vdash\!\! F_i \!\!\leq\!\! F_{i+1} \\ \mathsf{P} \!\!\vdash\!\! S_i \!\!\leq\!\! S_{i+1}, \quad \exists S : with S_i = \mathsf{int} \!\!\cdot\!\! S \\ i+1 \in Dom(\mathsf{P}) \\ \hline F,S,\mathsf{i} \vdash_{\mathcal{S}} \mathsf{P} \end{array}$$

$$\begin{array}{c} \mathsf{P}[i] \!\!=\!\! \mathsf{if}\ L \\ \mathsf{P} \!\!\vdash\!\! F_i \!\!\leq\!\! F_{i+1}, \; \mathsf{P} \!\!\vdash\!\! F_i \!\!\leq\!\! F_L \\ \mathsf{P} \!\!\vdash\!\! S_i \!\!\leq\!\! \mathsf{t} \!\!\cdot\!\! S_{i+1}, \; \mathsf{P} \!\!\vdash\!\! S_i \!\!\leq\!\! \mathsf{t} \!\!\cdot\!\! S_L \\ i+1 \in Dom(\mathsf{P}), \; L \in Dom(\mathsf{P}) \\ \hline F, S, \mathsf{i} \vdash_{\mathcal{S}} \mathsf{P} \end{array}$$

$$\begin{array}{c} \mathsf{P}[i] = \mathsf{pop} \\ \mathsf{P} \vdash F_i \leq F_{i+1} \\ \mathsf{P} \vdash S_i \leq \mathsf{t} \cdot S_{i+1} \\ i+1 \in Dom(\mathsf{P}) \\ \hline F, S, \mathsf{i} \vdash_{\mathcal{S}} \mathsf{P} \end{array}$$

$$P[i] = \text{load } x$$

$$x \in Dom(F_i)$$

$$P \vdash F_i \leq F_{i+1}$$

$$P \vdash F_i[x] \cdot S_i \leq S_{i+1}$$

$$i+1 \in Dom(P)$$

$$F, S, i \vdash_s P$$

$$P[i] = \text{store } x$$

$$x \in Dom(F_i)$$

$$P \vdash F_i[x \mapsto t] \leq F_{i+1}$$

$$P \vdash S_i \leq t \cdot S_{i+1}$$

$$i+1 \in Dom(P)$$

$$F, S, i \vdash_{S} P$$

$$\frac{\mathsf{P}[i] \!=\! \mathsf{halt}}{F,S,\mathsf{i} \vdash_{\mathcal{S}} \mathsf{P}} \quad \text{11}$$

As before, the judgement $F, S \vdash_S P$ guarantees that program P is well-formed with respect to F and S, and is defined as follows:

$$\frac{\forall i \in Dom(\mathsf{P}) : F, S, \mathsf{i} \vdash_{s} \mathsf{P}}{F, S \vdash_{s} \mathsf{P}}$$

- In general, $P \vdash F_i \leq F_{i+1}$, *i.e.* the types of local variables may be less precise at next instruction.
- In general, $P \vdash S_i \leq S_{i+1}$, *i.e.* the types of stack may be less precise at next instruction.
- The task of the verifier can be understood as the search for appropriate F and S, for given P and F_1 , S_1 , so that $F, S \vdash_S P$.