

CALCULUS

Prof. Liang ZHENG

Spring 2025

In this section we introduce a more convenient notation for working with sums that have a large number of terms. After describing this notation and its properties, we consider what happens as the number of terms approaches infinity.

Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_n.$$

The Greek letter Σ stands for "sum." The **index of summation** k tells us where the sum begins (at the number below the Σ symbol) and where it ends (at the number above Σ).

Thus, we can write the squares of the numbers 1 through 10 as

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + 6^{2} + 7^{2} + 8^{2} + 9^{2} + 10^{2} = \sum_{k=1}^{10} k^{2}.$$

and the sum of f(i) for integers i from 1 to 100 as

$$f(1)+f(2)+f(3)+\cdots+f(100)=\sum_{i=1}^{100}f(i).$$

Example 1 Express the following sums in sigma notation.

(a)
$$1+2+3+4+5$$
;

(b)
$$(-1)^1 1 + (-1)^2 2 + (-1)^3 3$$
;

(c)
$$\frac{1}{1+1} + \frac{2}{2+1}$$
;

(d)
$$\frac{4^2}{4-1} + \frac{5^2}{5-1}$$
.

A sum in sigma notation	The sum written out, one term for each value of <i>k</i>	The value of the sum
$\sum_{k=1}^{5} k$	1 + 2 + 3 + 4 + 5	15
$\sum_{k=1}^{3} (-1)^k k$	$(-1)^{1}(1) + (-1)^{2}(2) + (-1)^{3}(3)$	-1 + 2 - 3 = -2
$\sum_{k=1}^{2} \frac{k}{k+1}$	$\frac{1}{1+1} + \frac{2}{2+1}$	$\frac{1}{2} + \frac{2}{3} = \frac{7}{6}$
$\sum_{k=4}^{5} \frac{k^2}{k-1}$	$\frac{4^2}{4-1} + \frac{5^2}{5-1}$	$\frac{16}{3} + \frac{25}{4} = \frac{139}{12}$

Example 2 Express the sum 1 + 3 + 5 + 7 + 9 in sigma notation.

Algebra Rules for Finite Sums

Algebra Rules for Finite Sums

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

$$\sum_{k=1}^{n} c a_k = c \cdot \sum_{k=1}^{n} a_k \qquad \text{(Any number } c\text{)}$$

$$\sum_{k=1}^{n} c = n \cdot c \qquad (Any number c)$$

Example 3 Demonstrate the use of the algebra rules.

(a)
$$\sum_{k=1}^{n} (3k - k^2)$$
; (b) $\sum_{k=1}^{n} (-a_k)$; (c) $\sum_{k=1}^{3} (k+4)$; (d) $\sum_{k=1}^{n} \frac{1}{n}$.

Example 4 Show that the sum of the first *n* integers is:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

• The sums of the squares and cubes of the first *n* integers are:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

2 Limits of Finite Sums

Example 5

Find the area of the shaded region R that lies above the x-axis, below the graph of $y = 1-x^2$, and between the vertical lines x = 0 and x = 1, by using lower sum approximations.

Find
$$\lim_{n\to\infty} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n}$$
, where $f\left(\frac{k}{n}\right) = 1 - \left(\frac{k}{n}\right)^{2}$.

Example 6 Find the limit.

$$\lim_{n \to \infty} \left[\sum_{k=1}^{n} \frac{1}{k(k+1)} \right]$$

3 Riemann Sums

- The theory of limits of finite approximations was made precise by the German mathematician Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies the theory of the definite integral that will be presented in the next section.
- We begin with an arbitrary bounded function f defined on a closed interval [a, b] (shown in Fig. 5.8). Then we choose n-1 points $\{x_1, x_2, x_3, \dots, x_{n-1}\}$ between a and b that are in the increasing order, so that $a < x_1 < x_2 < \dots < x_{n-1} < b$.
- Let $x_0 = a$ and $x_n = b$, so that $a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$

FIGURE 5.8 A typical continuous function y = f(x) over a closed interval [a, b].

• The set of all of these points,

$$P = \{x_0, x_1, x_2, \dots, x_{n-1}, x_n\},\$$

is called a **partition** of [a, b].

• The partition P divides [a, b] into the n closed subintervals

$$[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n].$$

- The width of the first subinterval $[x_0, x_1]$ is denoted Δx_1 , the width of the second $[x_1, x_2]$ is denoted Δx_2 , and the width of the kth subinterval is $\Delta x_k = x_k x_{k-1}$. If all n subintervals have equal width, then their common width, which we call Δx , is equal to (b-a)/n.
- In each subinterval we select some point. The point chosen in the kth subinterval $[x_{k-1}, x_k]$ is called c_k .

• Then on each subinterval we stand a vertical rectangle that stretches from the x-axis to touch the curve at $(c_k, f(c_k))$. These rectangles can be above or below the x-axis, depending on whether $f(c_k)$ is positive or negative, or on the x-axis if $f(c_k) = 0$.

- On each subinterval we form the product $f(c_k) \cdot \Delta x_k$. When $f(c_k) > 0$, the product $f(c_k)\Delta x_k$ is the area of a rectangle with height $f(c_k)$ and width Δx_k . When $f(c_k) < 0$, the product $f(c_k)\Delta x_k$ is a negative number, the negative of the area of a rectangle of width Δx_k that drops from the x-axis to the negative number $f(c_k)$.
- Finally, we sum all these products to get

$$S_P = \sum_{k=1}^n f(c_k) \, \Delta x_k$$

The sum S_P is called a **Riemann sum for f on the interval** [a, b].

• There are many such sums, depending on the partition P we choose, and the choices of the points c_k in the subinterval.

Skill Practice 1

(a)
$$\sum_{k=8}^{88} k$$

(b)
$$\sum_{k=1}^{n} \left(\frac{1}{n} + 2n \right)$$

(c)
$$\sum_{k=1}^{100} \frac{1}{k(k+1)}$$

Skill Practice 2

Using mathematical induction to show that the sums of the squares and cubes of the first *n* integers are:

(a)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 (b)
$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$