Section 1: Cartesian Products

The result of a Cartesian Product is an ordered pair, such as (a, b) – like what you would see in Algebra.

For some sets of numbers A and B, the result of $A \times B$ will be a combination of all of each set's elements together. $A \times B = \{(a,b) : a \in A, b \in B\}$

For example, for $A = \{ 1, 2 \}$ and $B = \{ 4, 5, 6 \}$, The elements of $A \times B$ are:

B → A ↓	4	5	6
1	(1,4)	(1,5)	(1,6)
2	(2,4)	(2,5)	(2,6)

So $A \times B = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6)\}$

1. Given the following sets, calculate each Cartesian Product. Write it out as a table, like above. $A = \{1, 2\}$ $B = \{3, 4\}$

a. $A \times B$ (___/2)

$\begin{array}{ccc} B & \rightarrow \\ A & \downarrow \end{array}$	3	4
1		
2		

b. $B \times A$ (___/2)

$\begin{array}{ccc} A & \rightarrow \\ B & \downarrow \end{array}$	1	2
3		
4		

2. Calculate the Cartesian Product. Write it out as a table.

$$A = \{ 2, 4, 6 \}$$
 $B = \{ 1, 3 \}$

a.
$$A \times B$$
 (__/2)

$\begin{array}{ccc} B & \rightarrow & \\ A & \downarrow & \end{array}$	1	3
2		
4		
6		

b.
$$B \times A$$
 (___/2)

$\begin{array}{c} A \rightarrow \\ B \downarrow \end{array}$	2	4	6
1			
3			

3. Calculate the Cartesian Products. Write it out as a set of coordinate pairs.

$$A = \{ 2, 4 \}$$

$$B = \{ 1, 3 \}$$

$$C = \{3, 4, 5, 6\}$$

a.
$$A \times B$$
 (___/2)

d.
$$C \times B$$
 (___/2)

e.
$$A^2$$
 (aka $A \times A$) (___/2)

4. For the given sets, find the intersections, unions, and differences.

$$A = \{1\}$$
 $B = \{3,5,7\}$ $C = \{3,5,9,11\}$ $A \times B = \{(1,3),(1,5),(1,7)\}$ $A \times C = \{(1,3),(1,5),(1,9),(1,11)\}$

a. $(A \times B) - (A \times C)$ remember, the result is the first set's elements, but none of the elements that are shared by the second set. (___/2)

b.
$$(A \times C) - (A \times B)$$

c.
$$A \times (B \cup C)$$

d.
$$A \times (B \cup C) \cap (A \times B)$$

e.
$$(A \times B) \cup (A \times C)$$

Section 2: Partitions

The Partition of a so together, form the o		a set of subsets that, when combined	d
Definition: For a set A, a partition called a part of S), s		S_{3} , } of subsets of A (each set S_{i}	is
	,	nonempty. $S_j = \mathcal{O}$. That is, different parts hav	e
3. $S_1 \cup S_2 \cup S_3 \cup =$	A . That is, every element	t in A is in some part.	
So if we have the set Partition version 1: Partition version 3:	{ {1}, {2}, {3}, {4} }	form various partitions, such as: Partition version 2: { {1, 2}, {3, 4} } Partition version 4: { {1, 2, 3, 4 } }	
Essentially, it can be of A are represented	•	ets of whatever size, so long as all ele	ments
5. For the given set, wr	ite out all possible partitio	ns. A = {1, 2}	(/1)
Partition 1:	Parti	tion 2:	
•		ns. B = { 1, 2, 3 }. Remember that }} and {{1}, {2, 3}} is the same)	(/2)
Partition 1:	Parti	tion 2:	
Partition 3:	Parti	tion 4:	
Partition 5:			

(___/2)

7. For the given set, find partitions that meet the requirements. (There could be more than answer). $A = \{1, 2, 3, 4, 5, 6\}$	n one
a. Find a partition where each part has the same size.	(/1)
b. Find a partition where no two parts have the same size.	(/1)
c. Write out the partition that has as many parts as possible.	(/1)
d. Write out the partition that has as few parts as possible.	(/1)
8. Which of the following are partitions of the set $A = \{1, 2, 4, 8, 16, 32, 64, 128\}$? For tho are not, explain why.	se that
a. { 1, 2, { 4, 8, 16 }, { 32, 64, 128 } }	(/2)
b. { { 1, 16 }, { 32, 64, 2 }, { 8, 4, 16 }, { 128 } }	(/2)
c. { {1, 128}, { 8, 4, 16 }, { 64, 2 } }	(/2)

d. { {8, 2, 4}, {16, 1, 128}, {32, 64} }

Section 3: Power Sets

The Power Set of A is defined as $\wp(A) = \{S : S \subseteq A\}$. For example, A = $\{1, 2, 3, 4\}$, $\wp(A)$

Essentially, all the possible subsets of A.

 $\{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$

As a simpler example, the Power Set $\wp(\{1\}) = \{ \emptyset, \{1\} \}$

9. Find the Power Set for each set.

a.
$$\wp(\{1,2\})$$

b.
$$\wp({3,4})$$

c.
$$\wp(\{1,2,3\})$$