ML-ИНЖЕНЕР

ОБУЧЕНИЕ МОДЕЛИ НА ДАННЫХ С САЙТА «СБЕРАВТОПОДПИСКА»

Итоговая работа Жураева Абду Саида Курс "Введение в Data Science"

Задача: Обучить ML модель прогнозировать Conversion Rate

<u>Разведочный анализ и</u> <u>обработка данных</u>

Анализ предоставленых данных из Google Analytics по сайту «СберАвтоподписка» в виде 2 таблиц GA Sessions и GA Hits.

<u>Обучение ML модель</u>

На основе обработанных данных подобрать и обучить модель для предсказыния совершения целевого действие пользователем сайта. Метрика для оценки модели ROC-AUC

<u>Развернуть сервис в виде API</u>

Упаковать получившуюся модель в сервис, который будет брать на вход все атрибуты, типа utm_*, device_*, geo_*, и отдавать на выход 0/1.

Ключевые тезисы и действия с данными в ga_hits

!

15 726 470 записей 11 колонок

!

ga_hits содержит информацию о всех событиях связанных с сессиями по session_id

!

На основе данных из ga_hits можно определить совершено ли целевое действие

!

Необходимо создать новую колонку Target Action со значение 1 если данное действие целевое и 0 если нет

!

Имея колонку Target Action в ga_hits мы создадим целевую переменную Conversion Rate в Датафрейме ga_sessions

Ключевые тезисы разведочного анализа данных ga_session

!

1 860 042 записей **1**8 колонок

!

DataFrame содержит информацию о всех уникальных сессиях

!

Содержит важные для задачи признаки utm_*, device_*, geo_* !

Не содержит данных о целевом действии

!

На основе ga_session будет создан датафрей с данными из технического задания

GA_Session Dataframe

Heoбходимые преоброзования данных в ga_session

Отбор только нужных нам колонок согласно поставленной задачи в ТЗ (utm*, device*, geo*)

П

Стандартизация пустых значений, приравниваем '(not set)' и " к пр.nan

Ш

Для балансировки данных применим даунсэмплинг. Сократим количество записей с cr=0

IV

Ha основе данных из device_*, заполнение пустот в колонках device_brand и device_os

V

Заполнить
оставшиеся пустоты и
стандартизировать
все значения
(OnehoteEncode,
StandartScaler)

GA_Session Dataframe

Данные которые будут использованы

Признаки которые будет обрабатвать наш сервис. Все признаки являются категориальными

Целевая переменная, которую мы будем предсказывать utm_source
utm_medium
utm_campaign
utm_adcontent
utm_keyword
device_category
device_os
device_brand
device_model
device_screen_resolution
device_browser
geo_country
geo_city
conversion_rate

Feature Engineering

Первоначальный список новых фитч предположительно положительно влияющих на метрику ROC-AUC

При проверке корреляции никакие из созданных признаков не показали достойных показателей. Было решено протестировать влияние фитч после выбора модели обучения

- is_organic_visit
- device_screen_width и device_screen_height
- is_socialmedia_advert
- device_display_megapixel
- device_orientation_vertical
- from_russia
- from_moscow
- 'Population', 'Timezone', 'km_to_moscow' по имени города из внешних источников

Основные моменты при выборе модели

Необходимо предсказывать пренадлежность классу CR= 1 или 0.

Задача предпологает выявление фитч влияющих на CR=1 и CR=0 по отедльности.

Метрика оценки: ROC-AUC

Время предсказания по АРІ: 3 секунды

Pecypcы: MacBook Air M1 16GB DDR

Выбор ML модели

Показатели метрики тестируемых классификаторов

ROC-AUC: 0.6104

Случайный лес

RandomForestClassifier

Модель работает очень медленно, на обучение затрачивается 10-15 минут.

ROC-AUC: 0.6733

Многослойный пресептрон

MLPClassifier

Поддерживает частичное обучение, что позволяет ускорить процесс обучения. Потенциально можно улучшиь показатель метрики.

ROC-AUC: 0.6864

Стохастический градиентный спуск с log_loss

SGDClassifier(loss='log_loss')

Поддерживает частичное обучение, показала лучшие результаты по скорости. Данный алгоритм позволит вычленить фитчи влияющие на CR=1

Выбранный покемон:

Стохастический градиентный спуск с логистической регрессией

SGDClassifier

- Алгоритм обучается значительно быстрее и не нагружает железо
- Метрика удовлетворяет задачу
- Есть возможность **замерить влияние фитч на классы** целевой переменной по отдельности
- Скорость предсказаний быстрее других классификаторов.

Тюнинг гипер-параметров

Был использован RandomizedSearchCV

Этот способ больше подходит при маленьких вычеслительных мощностях и большом количестве параметров

Изменения Feature Engineering

После развертывания сервиса в пайплайнах, была проведена оптимизация и замеры влияния сгенерированных фитч.

- is_organic_visit
- device_screen_width и device_screen_height
- is_socialmedia_advert
- device_display_megapixel
- device_orientation_vertical
- from_russia (и удаление geo_country)
- from_moscow (удалив geo_city)
- 'Population', 'Timezone', 'km_to_moscow' по имени города из внешних источников
- Так же был удален пайп с изменением редких значений

Доступ к модели по REST API

@GET
(/get_test_json)

Получает: ?cr=0/1 (по умолчанию 1) Возвращает: случайную сессию с учетом CR в виде JSON

JSON достается из файла "data_to_test_api.pkl" который создается при обучение модели.

@POST
(/predict)

Получает: json с данными о сессии Возвращает: прогноз Conversion Rate

Пример отправляемого JSON можно получить GET методом get_test_json @GET (/all_feature_name)

Возвращает: Список всех признаков которые получает модель

Список входных фитч может быть полезен чтобы использовать точное название фитчи при использование GET метода /get_feature_imp

@GET
(/get_feature_imp)

Возвращает список топ20 фитч с коэфициентами влияния на положительный класс CR

Метод может принимать наименование фитч в виде строки

@GET
(/get_test_json)

@POST
(/predict)

@GET
(/all_feature_name)

@GET
(/get_feature_imp)

Возвращает список топ20 фитч с коэфициентами влияния на положительный класс CR

Спасибо!

Telegram accaunt

@SaidPlatonov

Электронный адрес

saidplatonov@gmail.com

Github

https://github.com/saidplatonov/sber
avto_sklrn_ML