

Königswinkel 10 32825 Blomberg Germany Phone +49 5235 9500-0 Fax +49 5235 9500-10

TEST REPORT

Test Report Reference: R70753_A second version

Equipment under Test: Lightweight Tracker

FCC ID: U92-2

IC: 4919D-2

Serial Number: None

Applicant: Stryker Leibinger GmbH & Co. KG

Manufacturer: Stryker Leibinger GmbH & Co. KG

Test Laboratory
(CAB)
accredited by
DATech GmbH
in compliance with DIN EN ISO/IEC 17025
under the
Reg. No. DAT-P-105/99-21,
FCC Test site registration number 90877
and
Industry Canada Test site registration IC3469

Contents:	Page
1 IDENTIFICATION	3
1.1 APPLICANT	3
1.2 MANUFACTURER	3
1.3 DATES	3
1.4 TEST LABORATORY	4
1.5 RESERVATION	4
1.6 NORMATIVE REFERENCES	4
1.7 TEST RESULTS	4
2 TECHNICAL DATA OF EQUIPMENT	5
2.1 DEVICE UNDER TEST	5
2.2 PERIPHERY DEVICES	5
2.3 SPECIAL EMC MEASURES	5
3 OPERATIONAL STATES AND PHYSICAL BOUNDARIES	6
4 ADDITIONAL INFORMATION	7
5 APPLICATION OVERVIEW	
6 METHOD OF MEASUREMENT	
6.1 RADIATED EMISSIONS 9 kHz to 30 MHz	8
6.2 RADIATED EMISSIONS 30 MHz to 1 GHz	
7 TEST RESULTS EMISSION TEST	
7.1 PRELIMINARY RADIATED EMISSION TEST (9 kHz to 30 MHz)	
7.2 PRELIMINARY RADIATED EMISSION TEST (30 MHz to 1 GHz)	
7.3 FINAL RADIATED EMISSION TEST (9 kHz to 30 MHz)	
8 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	_
9 LIST OF ANNEXES	22

1 IDENTIFICATION

1.1 APPLICANT

Name:	Stryker Leibinger GmbH & Co. KG
Address:	Bötzinger Strasse 41
	79111 Freiburg
Country:	Germany
Name for contact purposes:	Mr. Hans-Paul ARNDT
Tel:	+ 49 761 45 12-464
Fax:	+ 49 761 45 12-44 94 64
e-mail address:	Hanspaul.arndt@stryker.com

1.2 MANUFACTURER

Name:	Stryker Leibinger GmbH & Co. KG
Address:	Bötzinger Strasse 41
	79111 Freiburg
Country:	Germany
Name for contact purposes:	Mr. Hans-Paul ARNDT
Tel:	+ 49 761 45 12-464
Fax:	+ 49 761 45 12-44 94 64
e-mail address:	Hanspaul.arndt@stryker.com

1.3 DATES

Date of receipt of test sample:	23 May 2007
Start of test:	23 May 2007
Finish of test:	15 June 2007

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 3 of 22

1.4 TEST LABORATORY

The tests were carried out at: PHOENIX TESTLAB GmbH

Königswinkel 10

D-32825 Blomberg Phone: +49 (0) 52 35 / 95 00-0 Germany Fax: +49 (0) 52 35 / 95 00-10

accredited by DATech GmbH in compliance with DIN EN ISO/IEC 17025 under Reg. No. DAT-P-105/99-21, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469

Test engineer:

Thomas KÜHN

Name

. .

07 December 2007

Date

Test report checked: Frank EIKERMANN

Name

7 Elp weum

07 December 2007

Date

PHOENIX TESTLAB GmbH Königswinkel 10 32825 Blomberg Tel. 0 52 35 / 95 00-0 Fax 0 52 35 / 95 00-10

Stamp

1.5 RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT REFERENCE.

1.6 NORMATIVE REFERENCES

- [1] **ANSI C63.4-2003** American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC 47 CFR Part 15 (May 2007) Radio Frequency Devices
- [3] **RSS-210 Issue 7 (June 2007)** Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
- [4] **RSS-Gen Issue 2 (June 2007)** General Requirements and Information for the Certification of Radiocommunication Equipment

1.7 TEST RESULTS

The requirements of this test document are fulfilled by the equipment under test. The complete test results are presented in the following.

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 4 of 22

2 TECHNICAL DATA OF EQUIPMENT

2.1 DEVICE UNDER TEST

Type of equipment:	125 kHz RFID transponder reader device
Type designation:	Lightweight Tracker
FCC ID:	U92-2
IC:	4919D-2
Serial No.:	None
Modulation:	100 % AM (OOK) by passive transponder
Lowest internal frequency:	125 kHz
Highest internal frequency:	12 MHz
Antenna type:	Integral
Supply Voltage:	3 V DC by internal lithium battery type CR2

The following external I/O cables were used:

Cable		Length	Shielding	Connector
-		ı	ı	-
-	No cables are connectable to the EUT		-	
-				-
-		-	-	-
-		-	-	-

^{*:} Length during the test

2.2 PERIPHERY DEVICES

The following equipment was used as control unit and ancillary equipment:

During all measurements a 125 kHz transponder type GLASS TAG Hitag S – 2.12 x 12.0 mm was used.

2.3 SPECIAL EMC MEASURES

The following EMC measures were necessary to reach the documented results:

None.

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 5 of 22

3 OPERATIONAL STATES AND PHYSICAL BOUNDARIES

All tests were carried out with an unmodified test sample. During all tests, the EUT was powered by the internal battery and equipped with a transponder.

If a variation of the supply voltage was necessary, it was done in the range 3.0 V DC to 2.55 V DC. This range was declared by the applicant as extreme supply voltage range.

The EUT was set in operation with the help of a Stryker Navigation system camera. This camera initiates the EUT to flash its IR-LEDs and transmit the transponder information via IR back to the camera. The received information was transferred to a laptop PC with a Stryker Navigation-software. The Laptop displays the position of the EUT in relation to the camera and the transponder data. After receiving the correct information, the system requests the next data from the EUT.

For the whole frequency range a preliminary measurement in a fully anechoic chamber with a measuring distance of 3 m was carried out to determine the frequencies, which were radiated by the EUT.

The final measurements on the detected frequencies were carried out on an outdoor test site without ground plane (for the frequency range 9 kHz to 30 MHz) and on an open area test site with ground plane (for the frequency range 30 MHz to 1 GHz).

No spurious emissions measurement of the receiver was carried out, because the co located transmitter transmits continuously.

Because all actions of the EUT were initiated by the Stryker Navigation camera and the laptop PC via an optical path (IR), the camera and the PC have to be placed inside the test site. To minimize the influence of this system, most components were placed inside a shielded box, and the camera on top of the shielded box.

The physical boundaries of the EUT are shown below.

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 6 of 22

4 ADDITIONAL INFORMATION

EUT's transponder reader is intended for reading transponder data over distances below 1 mm. The antenna is build in a metal housing, with a hole, where the transponder (also with metal housing) is intended to be placed inside. For details of the antenna and transponder construction refer also the photographs in annex B and C of this test report. This construction is the reason for the low 125 kHz output signal during the radiated measurements.

5 APPLICATION OVERVIEW

Application	Frequency range [MHz]	FCC 47 CFR Part 15 section	RSS 210, Issue 7 [3] or	Status	Refer page
			RSS-Gen, Issue 2 [4]		
Conducted emissions on supply line	0.15 – 30	15.207 (a)	7.2.2 [4]	Not applicable	-
Radiated emissions (transmitter)	0.009 - 1,000	15.205 (a) 15.209 (a)	A8.5 [3], 4.7 [4]	Passed	13 et seq.
Radiated emissions (receiver)	0.009 - 1,000	-	2.6 [3], 7.2.3 [4]	Not applicable	6
Antenna requirement	General	15.203	7.1.4 [4]	Passed	5

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 7 of 22

6 METHOD OF MEASUREMENT

6.1 RADIATED EMISSIONS 9 kHz to 30 MHz

The radiated emission measurement is divided into two stages.

Preliminary measurement:

In the first stage a preliminary measurement will be performed in a shielded room with a measuring distance of 3 meters. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

The frequency range 9 kHz to 30 MHz will be monitored with a spectrum analyser while the system and its cables will be manipulated to find out the configuration with the maximum emission levels if applicable. The EMI Receiver will be set to MAX Hold mode. The EUT and the measuring antenna will be rotated around their vertical axis to found the maximum emissions.

The resolution bandwidth of the spectrum analyser will be set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	10 kHz

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 8 of 22

Preliminary measurement procedure:

Prescans were performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2) Manipulate the system cables within the range to produce the maximum level of emission.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.
- 4) Make a hardcopy of the spectrum.
- 5) Measure the frequencies of highest detected emission with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6) Repeat steps 1) to 4) with the other orthogonal axes of the EUT.
- 7) Rotate the measuring antenna and repeat steps 1) to 5).

Final measurement:

In the second stage a final measurement will be performed on an open area test site with no conducting ground plane in a measuring distances of 3 m, 10 m and 30 m. In the case where larger measuring distances are required the results will be extrapolated based on the values measured on the closer distances according to Section 15.31 (f) (2) [2]. The final measurement will be performed with a EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an average detector will be used according Section 15.209 (d) [2].

On the during the preliminary measurement detected frequencies the final measurement will be performed while rotating the EUT and the measuring antenna in the range of 0 $^{\circ}$ to 360 $^{\circ}$ around their vertical axis until the maximum value is found.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 9 of 22

Final measurement procedure:

The following procedure will be used:

- 1) Monitor the frequency range with the measuring antenna at vertical orientation parallel to the EUT at an azimuth of 0 $^{\circ}$.
- 2) Rotate the EUT by 360 ° to maximize the detected signals and note the azimuth and orientation.
- 3) Rotate the measuring antenna to find the maximum and note the value.
- 4) Rotate the measuring antenna and repeat steps 1) to 3) until the maximum value is found.
- 5) Repeat steps 1) to 4) with the other orthogonal axes of the EUT if applicable (handheld equipment).

6.2 RADIATED EMISSIONS 30 MHz to 1 GHz

The radiated emission measurement is divided into two stages.

Preliminary measurement:

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 10 of 22

Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:

- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Make a hardcopy of the spectrum.
- 5. Measure the frequency of 3 highest detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6. Repeat steps 1) to 4) with the other orthogonal axes of the EUT.
- 7. Repeat steps 1) to 5) with the vertical polarisation of the measuring antenna.

Final Measurement:

In the second stage a final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of

0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

Resolution bandwidth

120 kHz

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range

30 MHz to 1 GHz

EMI

00 111112 10 1 01 12	120 11112	
	measuring distance	
		→
	m to 4 m	
	→ =	EUT
1.	0.8 m	
	Ground plane	

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 11 of 22

Procedure final measurement:

The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP or AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT if handheld equipment.

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 12 of 22

7 TEST RESULTS EMISSION TEST

7.1 PRELIMINARY RADIATED EMISSION TEST (9 kHz to 30 MHz)

Ambient temperature:	21 °C	Relative humidity:	43 %
----------------------	-------	--------------------	------

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance

between EUT and antenna was 3 m.

Cable guide: No cables were connectable to the EUT. For further information refer to the pictures in

annex A of this test report.

Test record: The test was carried out in normal operation mode of the EUT (reading a TAG). All

results are shown in the following.

Remark: The emissions found at 31 kHz, 42 kHz and 53 kHz caused by the measuring system

and not by the EUT.

70573_1.wmf: Spurious emissions from 9 kHz to 150 kHz:

29, 31 - 33, 54, 56

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 13 of 22

70573_2.wmf: Spurious emissions from 150 kHz to 1 MHz:

70573 3.wmf: Spurious emissions from 1 MHz to 30 MHz:

The following emission was found according to FCC 47 CFR Part 15 section 15.209 (a). 125.000 kHz.

This frequency has to be measured on the outdoor test site. The result of this final measurement is shown in subclause 6.3 of this test report.

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 14 of 22

7.2 PRELIMINARY RADIATED EMISSION TEST (30 MHz to 1 GHz)

Ambient temperature:	20 °C	Relative humidity:	45 %
----------------------	-------	--------------------	------

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance

between EUT and antenna was 3 m.

Cable guide: No cables were connectable to the EUT. For further information refer to the pictures in

annex A of this test report.

Test record: The test was carried out in normal operation mode of the EUT (reading a TAG). All

results are shown in the following.

Supply voltage: The EUT was supplied with 3.0 V DC, because no difference was noticeable with

supply voltages from 3.0 V DC to 2.55 V DC.

70573_6.wmf: Spurious emissions from 30 MHz to 230 MHz:

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 15 of 22

70573_7.wmf: Spurious emissions from 230 MHz to 1 GHz:

The following frequencies were found during the preliminary radiated emission test:

64.000 MHz, 82.000 MHz, 90.000 MHz, 108.376 MHz and 432.000 MHz

These frequencies were caused by the camera system and not by the EUT. So no final emission measurement on the open area test site were carried out.

'EST EQUIPMENT USED FOR THE TEST:
29, 31 – 35, 43, 54

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 16 of 22

7.3 FINAL RADIATED EMISSION TEST (9 kHz to 30 MHz)

Ambient temperature: 21 °C Relative humidity: 52
--

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance

between EUT and antenna was 3 m.

Cable guide: No cables were connectable to the EUT. For further information refer to the pictures in

annex A of this test report.

Test record: The test was carried out in normal operation mode of the EUT (reading a TAG). All

results are shown in the following.

Supply voltage: The EUT was supplied with 3.0 V DC, because no difference was noticeable with

supply voltages from 3.0 V DC to 2.55 V DC.

Remark: It was not possible to measure the transmitter output power on the outdoor testsite

either at 10 m nor at 3 m measuring distance, because the output signal was below

the noise floor of the system. The given level was calculated with the level measured during the preliminary measurement inside a fully anechoic chamber. Because the level of the signal measured during the preliminary measurement is measured with a peak detector, the level with the required average detector will be

lower.

Results with measuring distance of 3 m inside fully anechoic chamber							
Frequency	Frequency Result Limit Margin Detector Readings Antenna factor *						
	dBµV/m	dBµV/m	dB		dΒμV	dB/m	
125.0 kHz	<32.0	105.6	>73.4	PK	<12.0	20.0	
Measurement uncertainty				+;	2.2 dB / -3.6 dB		

^{*:} Cable loss included

Test: Passed

'EST EQUIPMENT USED FOR THE TEST:	
54 – 57	

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 17 of 22

TEST REPORT REFER	ENCE: R70573_A second version
	8 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 18 of 22

Emission measurement at AC mains and DC in / out ports at M4					
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No
1	Shielded chamber M4	-	Siemens	B83117S1-X158	480088
2	Measuring receiver	ESAI	Rohde & Schwarz	831953/001 833181/018	480025 480026
3	LISN	NSLK8128	Schwarzbeck	8128155	480058
4	LISN	NSLK 8128-	Schwarzbeck	8128161	480138
5	AC-filter	B84299-D87- E3	Siemens	930262292	480097
6	EMI-Software	ES-K1	Rohde & Schwarz	-	480111

Radia	Radiated emission measurement at M5					
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No	
7	Fully anechoic chamber M5	-	Siemens	B83177-S1-X156	480073	
8	Measuring receiver	ESVS30	Rohde & Schwarz	829673/012	480024	
9	Controller	HD100	Deisel	100/324	480067	
10	Antenna support	MA240	Deisel	228/314	480069	
11	Turntable	DS412	Deisel	412/317	480070	
12	Antenna	CBL6112C	Chase	2689	480327	
13	EMI Software	ES-K1	Rohde & Schwarz	-	480111	

Radiated emission measurement at M6					
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No
14	Open area test site	-	Phoenix Test-Lab	-	480085
15	Measuring receiver	ESVS30	Rohde & Schwarz	829673/012	480024
16	Controller	HD100	Deisel	100/670	480139
17	Turntable	DS420HE	Deisel	420/620/80	480087
18	Antenna support	AS615P	Deisel	615/310	480086
19	Antenna	CBL6111 A	Chase	1643	480147
20	EMI Software	ES-K1	Rohde & Schwarz	-	480111

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 19 of 22

Radia	Radiated emission measurement at M8					
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No	
21	Fully anechoic chamber M8	-	Siemens	B83117-E7019- T231	480190	
22	Measuring receiver	ESMI	Rohde & Schwarz	843977/001 843530/018	480179 480180	
23	Measuring receiver	ESCS 30	Rohde & Schwarz	828985/014	480270	
24	Controller	HD100	Deisel	100/427	480181	
25	Turntable	DS420	Deisel	420/435/97	480186	
26	Antenna support	AS615P	Deisel	615/310	480187	
27	Antenna	CBL6112 A	Chase	2034	480185	
28	EMI Software	ES-K1	Rohde & Schwarz	-	480111	

Radiated emission measurement at M20					
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No
29	Fully anechoic chamber M20	1	Albatross Projects	B83107-E2439- T232	480303
30	Measuring receiver	ESMI	Rohde & Schwarz	843977/001 843530/018	480179 480180
31	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355
32	Controller	HD100	Deisel	100/670	480326
33	Turntable	DS420HE	Deisel	420/620/80	480315
34	Antenna support	AS615P	Deisel	615/310	480187
35	Antenna	CBL6112 B	Chase	2688	480328
36	Antenna	3115 A	EMCO	9609-4918	480183
37	Standard Gain Horn 11.9 GHz – 18 GHz	18240-20	Flann Microwave	483	480294
38	Standard Gain Horn 11.9 GHz – 18 GHz	18240-20	Flann Microwave	482	480295
39	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	411	480297
40	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	410	480296
41	Standard Gain Horn 26.4 GHz – 40.1 GHz	22240-20	Flann Microwave	469	480299

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 20 of 22

No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No
42	Standard Gain Horn 26.4 GHz – 40.1 GHz	22240-20	Flann Microwave	468	480298
43	RF-cable No. 30	RTK 081	Rosenberger	-	410141
44	RF-cable No. 31	RTK 081	Rosenberger	ı	410142
45	RF-cable 1m	KPS-1533- 400-KPS	Insulated Wire	-	480300
46	RF-cable 1m	KPS-1533- 400-KPS	Insulated Wire	-	480301
47	RF-cable 2m	KPS-1533- 400-KPS	Insulated Wire	-	480302
48	RF-cable No. 5	RTK 081	Rosenberger		410097
49	Preamplifier	JS3- 00101200- 23-5A	Miteq	681851	480337
50	Preamplifier	JS3- 12001800- 16-5A	Miteq	571667	480343
51	Preamplifier	JS3- 18002600- 20-5A	Miteq	658697	480342
52	Preamplifier	JS3- 26004000- 25-5A	Miteq	563593	480344
53	EMI Software	ES-K1	Rohde & Schwarz	-	480111

Ancilla	Ancillary equipment used for testing					
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No	
54	Power supply	TOE 8852	Toellner	51712	480233	
55	Outdoor test site	-	Phoenix Test-Lab	-	480293	
56	Loop antenna	HFH2-Z2	Rohde & Schwarz	832609/014	480059	
57	EMI test receiver	ESPC	Rohde & Schwarz	843756/006	480150	
58	Loop Antenna Ø = 225 mm	-	Phoenix Test-Lab	-	410085	
59	RF-cable No. 10	RG223	Phoenix-Test-Lab	-	410102	
60	AC power source / analyser	6813A	Hewlett Packard	3524A-00484	480155	
61	Climatic chamber	MK 240	BINDER	05-79022	480462	

All used measurement equipment was calibrated (if necessary). The calibration intervals and the calibration history will be given out on request.

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 21 of 22

9 LIST OF ANNEXES

ANNEX A	PHOTOGRAPHS OF THE TEST SET-UPS:	3 pages
	Lightweight Tracker, test set-up fully anechoic chamber Lightweight Tracker, test set-up fully anechoic chamber Lightweight Tracker, test set-up fully anechoic chamber	70573_k.jpg 70573_j.jpg 70573_g.jpg
ANNEX B	EXTERNAL PHOTOGRAPHS OF THE TEST SAMPLE:	3 pages
	Lightweight Tracker, 3-D-view 1 Lightweight Tracker, 3-D-view 2 Lightweight Tracker, transponder	70573_6.jpg 70573_7.jpg 70573_5.jpg
ANNEX C	INTERNAL PHOTOGRAPHS OF THE TEST SAMPLE:	4 pages
	Lightweight Tracker, internal view Lightweight Tracker, detail view to battery housing / antenna Lightweight Tracker, PCB, top view * Lightweight Tracker, PCB, bottom view *	70573_2.jpg 70573_4.jpg 70573_3.jpg 70572_3.jpg

^{*} PHOTOGRAPHS SUPPLIED BY THE APPLICANT

Examiner: Thomas KÜHN Date of issue: 07 December 2007 Page 22 of 22