Settimana 7

Appunti di Alessandro Salerno Lezioni 14-16 Prof. J. Seiler

Confronti di crescita

Date due successioni a_n e b_n divergenti a $+\infty$ per cui:

$$\lim_{n o +\infty} a_n = \lim_{n o +\infty} b_n = +\infty$$

Confrontando le due succesisoni mediante il rapporto $\frac{a_n}{b_n}$ si osserva che:

- Se $\lim_{n \to +\infty} rac{a_n}{b_n} = +\infty$ allora a tende a $+\infty$ più velocemente
- Se $\lim_{n o +\infty} rac{a_n}{b_n} = 0$ allora a tende a $+\infty$ più lentamente
- Se $\lim_{n o +\infty} rac{a_n}{b_n} = k$ allora le due funzioni crescono alla stessa velocità all'infinito

Gerarchia degli infiniti

$$egin{aligned} &\lim_{n o\infty}rac{\log_b n}{n^k}=0 \ \ orall k>0 orall b>0, b
eq 1 \ \\ &\lim_{n o+\infty}rac{n^j}{n^k}=\lim_{n o+\infty}n^{j-k}=egin{cases} +\infty & ext{se } j>k\geq 0 \ 0 & ext{se } 0\leq j< k \end{aligned} \ \\ &\lim_{n o+\infty}rac{n^k}{q^n}=0 \ \ orall k\geq 0 orall q>1 \end{aligned}$$

Simboli di Landau

- Si scrive $a_n=o(b_n)$ e si dice "la successione a_n è $o(b_n)$ " se il rapporto $rac{a_n}{b_n}$ tende a 0
- Si scrive $a_n = O(b_n)$ e si dice "la successione a_n è $O(b_n)$ " se il rapporto tende ad una costante k ed è limitato superiormente da k.
- Si scrive $a_n = \Theta(b_n)$ e si dice "la successione a_n è $\Theta(b_n)$ " se il rapporto tende ad una costante c ed è limitato inferiormente da c.
- Si scrive $a_n pprox b_n$ e si dice " a_n è equivalente a b_n " se il limite del rapporto è 1

Note

Se $a_n = o(b_n)$, allora b_n cresce più velocemente di a_n .

Se $a_n = O(b_n)$, allora a_n non cresce più velocemente di b_n .

Se $a_n = o(b_n)$, allora $a_n = O(b_n)$.

Se il limite:

$$\lim_{n o +\infty} \; rac{a_n}{b_n} \; = l$$

Esiste, allora $a_n = O(b_n) \leftrightarrow l \in \mathbb{R}$ (il limite è finito).

$$a_n = O(b_n) \ egin{aligned} egin{aligned} a_n &= O(b_n) \ b_n &= O(a_n) \ a_n &
eq o(b_n) \ b_n &
eq o(a_n) \ egin{aligned} egin{aligned} b_n &= \Theta(a_n) \ \end{pmatrix} \end{aligned}$$

Note

$$a_npprox b_n o a_n=\Theta(b_n)\,\,a_n,b_n ext{ semprepiùsimiliper }n o +\infty$$

// Extra

I simboli di Landau possono essere utilizzati anchep er funzioni generiche e non solo per le successioni.

Complessità di un algoritmo

La complessità temporale di un algoritmo descrive l'andamento del tmepo impiegato dall'algoritmo per completare in funzione del numero di elementi su cui esso deve lavorare. Sia n il numero di elementi del vettore di input. Si vuole stimare l'andamento della complessità per $n \to +\infty$

Successioni definite per ricorrenza

Data $g: \mathbb{R} \to \mathbb{R}$, consideriamo:

$$egin{cases} x_0 ext{ assegnato} \ x_{n+1} = g(x_n) \end{cases}$$

& Tip

Cambiando x_0 , cambiano tutti i valori delle istanze ricorsive successive.

Determinazione grafica

Dato:

$$\lim_{n\to +\infty} x_n$$

È possibile stimare il limite graficamente applicando i seguenti passaggi:

- 1. Disegnare il punto x_0 sull'asse X
- 2. Spostarsi verticalmente da x_0 fino ad intersecare il grafico della funzione disegnando un segmento che va da $(x_0,0)$ a $(x_0,x_1)=(x_0,g(x_0))$
- 3. Spostarsi orizzontalmente dal punto (x_0, x_1) fino ad incontrare il punto $x_1, x_1)$ ossia il punto di altezza x_1 sulla bisettrice primo-terzo quadrante
- 4. Ricorrere a punto 1 con $x_0 = x_1$

& Important

Se il grafico della funzione g interseca quello della bisettrice y=x, allora:

$$\exists x^{\star} \; : \; g(x^{\star}) = x^{\star}$$

La successione:

$$egin{cases} x_0 = x^\star \ x_{n+1} = g(x_n) \end{cases}$$

È costante e x^* si dice punto fisso di g oppure punto di equilibrio per il sistema dinamico.

Teorema 22

Sia $g: \mathbb{R} \to \mathbb{R}$ una funzione continua ed x_n sia soluzione del sistema dinamico. Supponiamo che esista il limite:

$$\lim_{n
ightarrow+\infty}x_n=x^\star$$

Allora, x^* è un punto di equilibrio.

Corollario

Il sistema può convergere solo ad un punto di equilibrio.

Dimostrazione

$$x^\star = \lim_{n o +\infty} x_n = \lim_{n o +\infty} x_{n+1} = \lim_{n o +\infty} g(x_n)$$

Essendo g una funzione continua, seguendo dalla riga precedente si ha:

$$\lim_{n o +\infty} g(x_n) = g(x^\star)$$

Per continuità, si conclude che:

$$g(x^\star) = x^\star$$

Ricorrenze lineari

Data una funzione:

$$g(x) = ax + b$$

Ossia:

$$()=egin{cases} x_0\ x_{n+1}=ax_n+b \end{cases}$$

Si prosegue per casi:

- Se b=0, allora $x_{n+1}=ax_n$ } e quindi si ha $x_n=a^n\cdot x_0$ ossia una successione geometrica
- Se $x_0 = 0$, $x_n = 0$
- Se $x_0 \neq 0$, si ha:

$$\lim_{n o +\infty} x_n = egin{cases} +\infty & ext{se } a > 1, x_0 > 0 \ -\infty & ext{se } a > 1, x_0 < 0 \ x_0 & ext{se } a = 1 \ 0 & ext{se } -1 < a < 1 \ ext{tse } a \le -1 \end{cases}$$

Ne consegue che:

$$x^\star = g(x^\star) = ax^\star \leftrightarrow egin{cases} x^\star = 0 ext{ se } a
eq 1 \ x^\star \in \mathbb{R} ext{ se } a = 1 \end{cases}$$

- Se $b \neq 0$
 - Se a=1, non ci osno punti di equilibrio

$$x^\star = q(x^\star) = ax^\star + b \leftrightarrow b = 0$$

$$x_n = x_0 + n \cdot b
ightarrow egin{cases} +\infty ext{ se } b > 0 \ -\infty ext{ se } b < 0 \end{cases}$$

- Se $a \neq 1$, g(x) = ax + b ha un unico punto fisso dato da:

$$x^\star = ax^\star + b \leftrightarrow x^\star = \frac{b}{1-a}$$

Poniamo:

$$y_n = x_n - x^\star$$

Troviamo che:

$$y_{n+1} = x_{n+1} - x^{\star}$$

Dunque:

$$egin{aligned} y_{n+1} &= g(x_n) - x^\star = ax_n + b - x^\star = a(y_n + x^\star) + b - x^\star = ay_n + ax^\star + b - x^\star = ay_n \ y_0 &= x_0 - x^\star \ y_n &= a^n \cdot y_0 = x_n = a^n \cdot (x_0 - x^\star) + \star \, orall n \end{aligned}$$

Quindi:

- Se $x_0 = x^\star$ allora $x_n = x^\star \ \forall n$
- Se $x_0 \neq x^*$, allora

$$\lim_{n o +\infty} x_n = \lim_{n o +\infty} y_n + x^\star = egin{cases} +\infty & ext{se } a>1, x_0>x^\star \ -\infty & ext{se } a>1, x_0< x^\star \ x^\star & ext{se } -1 < a < 1 \ ext{tse } a\leq -1 \end{cases}$$

Ricorrenze non lineari

In generale non è possibile stabilire qual è il comportamento di una soluzione $\{x_n\}$ del sistema dinamico. In molti casi però è possibile farlo se $x_0 \approx x^*$ (studio locale di SD). Il concetto chiave è quello di *stabilità*.

Sia x^* punto fisso di g, si dice

• x^* è un punto di equilibrio stabile se è vero:

$$\forall \epsilon > 0 \exists \delta > 0 \ : \ |x_0 - x^\star| < \delta \rightarrow |x_n - x^\star| < \epsilon \ \forall n$$

• x^* è un punto di equilibrio asintoticamente stabile se è stablstabile (come al punto precedente) e vale:

$$\exists \delta > 0 \ : \ |x_0 - x^\star| < \delta
ightarrow \lim_{n
ightarrow + \infty} x_n = x^\star$$

• x^* è un punto di equilibrio instabile se non è stabile (come al punto 1)

$$g(x) = ax + b \ \ a
eq 1
ightarrow \exists x^\star ext{ puntoisso } = rac{b}{1-a}$$

Asintoticamente stabile se -1 < a < 1 ed è stabile se |a| > 1.

$$g(x) = ax + b \ \ a = 1, b = 0
ightarrow orall x^\star \in \mathbb{R}$$

Sono punti di equilibrio stabili ma non asintoticamente.

Teorema 23

Sia $g \in C^1(\mathbb{R})$ e sia x^\star un punto fisso di g, allora:

- Se $|g'(x^\star)| < 1$, allora x^\star è un punto di equilibrio asintoticamente stabile
- Se $|g'(x^\star)| > 1$, allora x^\star è un punto di quilibrio instabile
- Se $|g'(x^\star)|=1$, allora non è possibile stabilire in generale delle caratteristiche

Il teorema è consistente con il caso lineare.