LibKet: Cross-Platform Library for Running Quantum Algorithms on NISQ processors

Variational Quantum Algorithms

IEEE Quantum Week 2022 September 18-23, 2022

Matthias Möller¹ and Carmen G. Almudever²

¹Delft University of Technical (m.moller@tudelft.nl) ²Technical University of Valencia (cargara2@disca.upv.es)

Working principle

Examples of variational algorithms

- Variational Quantum Eigensolver (VQE)
 - Peruzzo et at. 2014, McClean et al. 2015
- Quantum Approximate Optimization Algorithm (QAOA)
 - Farhi et al. 2014
- Quantum Alternating Operator Ansatz (QAOA)
 - Hadfield et al. 2019
- Variational Quantum Linear Solver (VQLS)
 - Bravo-Prieto et al. 2019, Xu et al. 2019

• ...

Parameterized rotation gates

$$R_{x}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}, \qquad R_{y}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}, \qquad R_{z}(\theta) = \begin{bmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{bmatrix}$$

Valid substitutions of the Hadamard gate

$$H \mapsto R_{\chi}(\pi)R_{\gamma}(\pi/2), \qquad H \mapsto R_{\gamma}(-\pi/2)R_{\chi}(\pi)$$

 $H \mapsto R_{\gamma}(\pi/2)R_{\gamma}(\pi), \qquad H \mapsto R_{\gamma}(\pi)R_{\gamma}(-\pi/2)$

Exercise 1

Check the above substitution rules with the QuEST simulator

Exercise 2

Try to find the correct rotation angles by grid search

https://tinyurl.com/3vw4zdc8

Tutorial at IEEE QCE22, September 18-23, 2022

LibKet: A Cross-Platform Library for Running Quantum Algorithms on NISQ Processors

Organizers: Carmen G. Almudever, Matthias Möller

Session 1: Sunday, September 18, 10:00 AM - 11:30 AM MDT (UTC-6)

Time	Content	Lecturer	Slides	Binder
10:00-11:00 am	Hands-on Introduction to Quantum Computing	Carmen	slides	tutorial 01
11:00-11:30 am	Libket - The Basics	Matthias	slides	tutorial 02

Session 2: Sunday, September 18, 12:00 AM – 1:30 PM MDT (UTC-6)

Time	Content	Lecturer	Slides	Binder
1:00-1:45 pm	LibKet - Advanced Features	Matthias	slides	tutorial 03
1:45-2:30 pm	Variational Quantum Algorithms	Carmen/Matthias	slides	line 104 de la companya de la compan

Reference solution

```
QVar\ t<0> var0(0.0);\ QVar\ t<1> var1(0.0);
auto\ expr = rx(var0, ry(var1, init()));
QDevice<QDeviceType::quest, 1> device; device(expr);
for (int i = 0; i < 11; i++) {
  for (int i = 0; i < 11; i++) {
    var0 = 3.14159265358979323846/10*i;
     var1 = 1.57079632679489661923/10*i;
    device.eval(1);
    std::cout << "i=" << i << " j=" << j << "\n"
              << device.reg() << std::endl;
```


The eigenvalue problem

Given the Hamiltonian

$$H = c_0 X \otimes I + c_1 I \otimes X, \qquad c_0, c_1 \in \mathbb{R}$$

find the *smallest* eigenvalue of H, that is

$$H\psi_{\min} = \lambda_{\min}\psi_{\min}$$

Example

$$H = 0.5 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 0.6 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0.6 & 0.5 & 0 \\ 0.6 & 0 & 0 & 0.5 \\ 0.5 & 0 & 0 & 0.6 \\ 0 & 0.5 & 0.6 & 0 \end{bmatrix} \Rightarrow \lambda_i \in \{-1.1, -0.1, 0.1, 1.1\}$$

Variational Quantum Eigensolver

VQE – state preparation

All possible 1-qubit states can be created from $|0\rangle$ with the **U3 ansatz**

$$U_{3}(\theta, \varphi, \lambda)|0\rangle = \begin{bmatrix} \cos(\theta/2) & -e^{i\lambda}\sin(\theta/2) \\ e^{i\varphi}\sin(\theta/2) & e^{i(\varphi+\lambda)}\cos(\theta/2) \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \cos(\theta/2)|0\rangle + e^{i\varphi}\sin(\theta/2)$$

The U3 ansatz can be represented as parameterized quantum circuit

$$U_3(\theta, \varphi, \lambda) = R_z(\varphi)R_x(-\pi/2)R_z(\theta)R_x(\pi/2)R_z(\lambda)$$

VQE – state preparation

Shende et al. 2003 has extended the U3 ansatz to two qubits

So we need to find the optimal value of 24 parameters.

VQE – expectation estimation

$$\langle \psi_{\Theta} | H | \psi_{\Theta} \rangle = \langle \psi_{\Theta} | c_0 X \otimes I + c_1 I \otimes X | \psi_{\Theta} \rangle$$

Due to the properties of the inner product this can be decomposed into

$$\langle \psi_{\Theta} | H | \psi_{\Theta} \rangle = c_0 \langle \psi_{\Theta} | X \otimes I | \psi_{\Theta} \rangle + c_1 \langle \psi_{\Theta} | I \otimes X | \psi_{\Theta} \rangle$$

Measurement of q_0 in the X basis

Measurement of q_1 in the X basis

Can be mimicked by

$$\mathrm{meas}_{\mathrm{z}}(H|\psi_{\Theta}\rangle)$$

VQE – classical optimizer

VQE – classical optimizer

- Global optimizer
 - Genetic algorithm
 - Particle swarm optimization

• ...

- Local optimizer
 - Gradient-free
 - Nelder-Mead Simplex
 - COBYLA
 - •

- Gradient-based
 - Stochastic gradient descent
 - BFGS / L-BFGS
 - Newton-type
 - ...

LibKet integrates the NLopt package https://nlopt.readthedocs.io

Parameters and expectation value

At the end of the tutorial

- Hands-on introduction into quantum computing
- LibKet The basics and some of the advanced features
- Variational quantum algorithms VQE as an example

Feedback, bug reports, and feature requests are welcome.

Thank you very much!

