Random variable	Probability density function $f_x(x)$	Mean	Variance	Characteristic function $\Phi_x(\omega)$
Normal or Gaussian $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2},$ $-\infty < x < \infty$	μ	σ^2	$e^{j\mu\omega-\sigma^2\omega^2/2}$
In Log-normal	$\frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\ln x - \mu)^2/2\sigma^2},$ $x \ge 0$	-	n	_
Exponential $E(\lambda)$	$\lambda e^{-\lambda x}, x \ge 0, \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$(1-j\omega/\lambda)^{-1}$
Gamma $G(\alpha, \beta)$	$\frac{x^{\alpha-1}}{\Gamma(\alpha)\beta^{\alpha}}e^{-x/\beta},$ $x \ge 0, \alpha > 0, \beta > 0$	$\alpha \beta$	$lphaeta^2$	$(1-j\omega\beta)^{-\alpha}$
Erlang-k	$\frac{(k\lambda)^k}{(k-1)!}x^{k-1}e^{-k\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{k\lambda^2}$	$(1-j\omega/k\lambda)^{-k}$
Chi-square $\chi^2(n)$	$\frac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)}e^{-x/2}, x \ge 0$	n	2n	$(1-j2\omega)^{-n/2}$
Veibull	$\alpha x^{\beta-1} e^{-\alpha x^{\beta}/\beta},$ $x \ge 0, \alpha > 0, \beta > 0$	$\left(\frac{\beta}{\alpha}\right)^{1/\beta}\Gamma\left(1+\frac{1}{\beta}\right)$	$\left(\frac{\beta}{\alpha}\right)^{2/\beta} \left[\Gamma\left(1 + \frac{2}{\beta}\right) - \left\{\Gamma\left(1 + \frac{1}{\beta}\right)\right\}^{2}\right]$	
ayleigh	$\frac{x}{\sigma^2}e^{-x^2/2\sigma^2}, x \ge 0$	$\sqrt{\frac{\pi}{2}}\sigma$	$(2-\pi/2)\sigma^2$	$\left(1+j\sqrt{\frac{\pi}{2}}\sigma\omega\right)e^{-\sigma^2\omega^2}$
Iniform $U(a,b)$	$\frac{1}{b-a}, a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{jb\omega} - e^{-ja\omega}}{j\omega(b-a)}$
eta $\beta(\alpha,\beta)$	$\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1},$ $0 < x < 1, \alpha > 0, \beta > 0$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
auchy $C(\alpha, \mu)$	$\frac{\alpha/\pi}{(x-\mu)^2 + \alpha^2},$ $-\infty < x < \infty, \alpha > 0$	-	∞	$e^{j\mu\omega}e^{-lpha \omega }$
ician	$\frac{x}{\sigma^2} e^{-(x^2 + a^2)/2\sigma^2} I_0\left(\frac{ax}{\sigma^2}\right),$ $-\infty < x < \infty, a > 0$	$\sigma \frac{\sqrt{\pi}}{2} [(1+r)I_0(r/2) + rI_1(r/2)]e^{-r/2},$ $r = a^2/2\sigma^2$	<u>—</u> e,	
akagami- <i>m</i>	$\frac{2}{\Gamma(m)} \left(\frac{m}{\Omega}\right)^m x^{2m-1} e^{-(m/\Omega)x^2},$ $x > 0$	$\frac{\Gamma(m+1/2)}{\Gamma(m)}\sqrt{\frac{\Omega}{m}}$	$\Omega\left\{1-\frac{1}{m}\left(\frac{\Gamma(m+1/2)}{\Gamma(m)}\right)^2\right\}$	

. .

Random variable	Probability density function $f_x(x)$	Mean	Variance	Characteristic function $\Phi_x(\omega)$
Students' $t(n)$	$\frac{\Gamma((n+1)/2)}{\sqrt{\pi n} \Gamma(n/2)} (1+x^2/n)^{-(n+1)/2},$ $-\infty < x < \infty$	0	$\frac{n}{n-2}, n>2$	_
F distribution	$\frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} \left(\frac{m}{n}\right)^{m/2} x^{m/2-1}$ $\times \left(1 + \frac{mx}{n}\right)^{-(m+n)/2}, x > 0$	$\frac{n}{n-2}, n>2$	$\frac{n^2(2m+2n-4)}{m(n-2)^2(n-4)}, n > 4$	<u>—</u> ;
Bernoulli	$P(\mathbf{x} = 1) = p, P(\mathbf{x} = 0) = 1 - p = q$	p	p(1-p)	$pe^{j\omega}+q$
Binomial $B(n, p)$	$\binom{n}{k} p^k q^{n-k},$ $k = 0, 1, 2, \dots, n, p+q = 1$	np	npq	$(pe^{j\omega}+q)^n$
Poisson $P(\lambda)$	$e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots, \infty$	λ	λ	$e^{-\lambda(1-e^{j\omega})}$
Hypergeometric	$\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$ $\max (0, M+n-N) \le k \le \min (M, n)$	$\frac{nM}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\left(1-\frac{n-1}{N-1}\right)$	-
Geometric	$\begin{cases} pq^k, \\ k = 0, 1, 2, \dots, \infty \end{cases}$ or $pq^{k-1}, \\ k = 1, 2, \dots, \infty, p+q = 1$	$\frac{q}{p}$ $\frac{1}{p}$	$\frac{q}{p^2}$ $\frac{q}{p^2}$	$\frac{p}{1 - qe^{j\omega}}$ $\frac{p}{e^{-j\omega} - q}$
ascal or negative inomial $NB(r, p)$	$\begin{cases} \binom{r+k-1}{k} p^r q^k, \\ k = 0, 1, 2, \dots, \infty \end{cases}$ or	$\frac{rq}{p}$	$\frac{rq}{p^2}$	$\left(\frac{p}{1-qe^{j\omega}}\right)^r$
	$\begin{cases} k = 0, 1, 2, \dots, \infty \\ \text{or} \\ \binom{k-1}{r-1} p^r q^{k-r}, \\ k = r, r+1, \dots, \infty, p+q = 1 \end{cases}$	$\frac{r}{p}$	$\frac{rq}{p^2}$	$\left(\frac{p}{e^{-j\omega}-q}\right)^r$
iscrete uniform	$k = 1, 2, \dots, N$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	$e^{j(N+1)\omega/2}\frac{\sin(N\omega/2)}{\sin(\omega/2)}$
fultivariate Gaussian $= (x_1, x_2, \dots, x_n)$ $= (m_1, m_2, \dots, m_n)$ $= (u_1, u_2, \dots, u_n)$ $= (C_{ik}),$ $i, k = 1, 2, \dots, n$	$\frac{1}{(2\pi)^{n/2}\det C}e^{-\{(X-m)C^{-1}(X-m)^t/2\}}$ $C_{ik} = E[(\mathbf{x}_i - m_i)(\mathbf{x}_k - m_k)^*]$	m	C (Covariance matrix)	$e^{\{jmu^t-uCu^t/2\}}$