CSC236 tutorial exercises, Week #7 sample solution

These exercises are intended to give you practice proving facts about a recurrence.

1. Examine the recurrence R(n) below.

$$R(n) = egin{cases} 0 & ext{if } n=1 \ n+3R(\lceil n/3
ceil) & ext{if } n>1 \end{cases}$$

Last week we conjectured that if $n=3^k$ for some natural number k, then $R(n)=n\log_3 n$.

(a) Use induction to prove this conjecture.

sample solution: Define $P(k): R(3^k) = k3^k$. Note that when $n = 3^k$ this is equivalent to $R(n) = n \log_3 n$. I will prove this by simple induction on k:

base case: $R(3^0) = R(1) = 0 = 0 \times 3^0$, so P(0) holds.

induction step: Let $k \in \mathbb{N}$. Assume P(k), that is $R(3^k) = k3^k$. I will show that P(k+1) follows, that is $R(3^{k+1}) = (k+1)3^{k+1}$. Since k+1>0, $3^{k+1}>1$, so by definition:

$$R(3^{k+1}) = 3^{k+1} + 3R(3^k)$$
 # by function definition
= $3^{k+1} + 3(k3^k)$ # by IH $P(k)$
= $3^{k+1} + k3^{k+1} = (k+1)3^{k+1}$

(b) Emulate the lemma 3.6 on page 84 of the CSC236 notes, to prove that R is nondecreasing on natural numbers greater than, or equal to, 1.

sample solution: Define:

$$P(n): \bigwedge_{m=1}^{m=n} R(m) \leq R(n)$$

I will prove $\forall n \in \mathbb{N}^+$, P(n) using complete induction. I will assume, without proof, that if n is a natural number greater than 1, then $n > \lceil n/3 \rceil \ge 1$.

inductive step: Let $n \in \mathbb{N}^+$. Assume $\wedge_{i=1}^{i=n-1} P(i)$. I will show that P(n) follows.

base case n < 3: R(1) = 0, which is no smaller than the value of R on any smaller positive natural number — since there are no smaller natural numbers — so P(1) holds. $R(1) = 0 \le 2 = R(2)$, so P(2) holds since 1 is the only positive natural number less than 2.

case $n \ge 3$: Since n > 2 we know that n > n - 1 > 1 so by our IH we know that P(n - 1) holds and (by transitivity of \le) we need only show that $R(n - 1) \le R(n)$. Since n - 1 > 1 we have

$$R(n-1) = (n-1) + 3R(\lceil (n-1)/3 \rceil)$$
 # by definition of R, since $n-1 > 1$
 $\leq n + 3R(\lceil n/3 \rceil)$ # by $P(\lceil n/3 \rceil), 1 \leq \lceil (n-1)/3 \rceil \leq \lceil n/3 \rceil < n$
 $= R(n)$