biostatistical methods homework 5

```
library(knitr)
library(tidyverse)
library(faraway)
library(broom)
library(leaps)
library(boot)
```

R dataset 'state.x77' from library(faraway) contains information on 50 states from 1970s collected by US Census Bureau. The goal is to predict 'life expectancy' using a combination of remaining variables.

```
life_data = as.data.frame(state.x77) %>%
  janitor::clean_names()
```

1. Explore the dataset and generate appropriate descriptive statistics and relevant graphs

```
mean_and_sd = function(x) {
  if (!is.numeric(x)) {
   stop("Argument x should be numeric")
  } else if (length(x) == 1) {
   stop("Cannot be computed for length 1 vectors")
  mean_x = mean(x)
  sd_x = sd(x)
  tibble(
   mean = mean_x,
   sd = sd_x
  )
}
attach(life_data)
par(mfrow = c(2, 4))
boxplot(population, main = 'population')
boxplot(income, main = 'income')
boxplot(illiteracy, main = 'illiteracy')
boxplot(life_exp, main = 'life_exp')
boxplot(murder, main = 'murder')
boxplot(hs_grad, main = 'hs_grad')
boxplot(frost, main = 'frost')
boxplot(area, main = 'area')
```

population

20000

10000

frost

Population

summary(population)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 365 1080 2838 4246 4968 21198

Income

summary(income)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 3098 3993 4519 4436 4814 6315

Illiteracy

summary(illiteracy)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.500 0.625 0.950 1.170 1.575 2.800

Life Exp

summary(life_exp)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 67.96 70.12 70.67 70.88 71.89 73.60

Murder

summary(murder)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1.400 4.350 6.850 7.378 10.675 15.100

HS Grad

```
summary(hs_grad)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
    37.80 48.05
                   53.25
                            53.11
                                    59.15
                                            67.30
Frost
summary(frost)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
     0.00 66.25 114.50 104.46 139.75 188.00
Area
summary(area)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
            36985
                            70736
##
     1049
                   54277
                                    81162 566432
```

2. Use automatic procedures to find a 'best subset' of the full model. Present the results and comment on the following:

```
backward_fit <- lm(life_exp ~ ., data=life_data)</pre>
step(backward_fit, direction='backward') %>%
summary()
## Start: AIC=-22.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
##
      frost + area
##
##
                Df Sum of Sq
                                RSS
                                        AIC
## - area
                     0.0011 23.298 -24.182
                     0.0044 23.302 -24.175
## - income
                1
                     0.0047 23.302 -24.174
## - illiteracy 1
## <none>
                             23.297 -22.185
## - population 1
                     1.7472 25.044 -20.569
## - frost
                1
                     1.8466 25.144 -20.371
## - hs_grad
                     2.4413 25.738 -19.202
                1
                     23.1411 46.438 10.305
## - murder
                 1
##
## Step: AIC=-24.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
##
      frost
##
                Df Sum of Sq
                                RSS
                     0.0038 23.302 -26.174
## - illiteracy 1
## - income
                1
                     0.0059 23.304 -26.170
## <none>
                             23.298 -24.182
## - population 1
                    1.7599 25.058 -22.541
## - frost
                     2.0488 25.347 -21.968
                1
                1
                     2.9804 26.279 -20.163
## - hs_grad
                    26.2721 49.570 11.569
## - murder
                1
## Step: AIC=-26.17
## life_exp ~ population + income + murder + hs_grad + frost
```

```
##
##
               Df Sum of Sq
                               RSS
                                       ATC
## - income
               1 0.006 23.308 -28.161
## <none>
                            23.302 -26.174
## - population 1
                      1.887 25.189 -24.280
## - frost
                      3.037 26.339 -22.048
                1
## - hs grad
                      3.495 26.797 -21.187
                1
                     34.739 58.041 17.456
## - murder
                1
##
## Step: AIC=-28.16
## life_exp ~ population + murder + hs_grad + frost
##
               Df Sum of Sq
##
                               RSS
                                       AIC
## <none>
                            23.308 -28.161
## - population 1
                      2.064 25.372 -25.920
## - frost
                1
                      3.122 26.430 -23.877
## - hs_grad
                1
                      5.112 28.420 -20.246
## - murder
                1
                     34.816 58.124 15.528
##
## Call:
## lm(formula = life_exp ~ population + murder + hs_grad + frost,
##
       data = life_data)
##
## Residuals:
                 1Q Median
## -1.47095 -0.53464 -0.03701 0.57621 1.50683
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.103e+01 9.529e-01 74.542 < 2e-16 ***
              5.014e-05 2.512e-05
## population
                                      1.996 0.05201 .
## murder
              -3.001e-01 3.661e-02 -8.199 1.77e-10 ***
## hs_grad
               4.658e-02 1.483e-02 3.142 0.00297 **
## frost
              -5.943e-03 2.421e-03 -2.455 0.01802 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7197 on 45 degrees of freedom
## Multiple R-squared: 0.736, Adjusted R-squared: 0.7126
## F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12
forward_fit <- lm(life_exp ~ ., data=life_data)</pre>
step(forward_fit, direction='forward') %>%
summary()
## Start: AIC=-22.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
##
       frost + area
##
## Call:
## lm(formula = life_exp ~ population + income + illiteracy + murder +
       hs_grad + frost + area, data = life_data)
##
## Residuals:
```

```
1Q Median
                                   3Q
## -1.48895 -0.51232 -0.02747 0.57002 1.49447
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.094e+01 1.748e+00 40.586 < 2e-16 ***
              5.180e-05 2.919e-05
                                             0.0832 .
## population
                                     1.775
              -2.180e-05 2.444e-04 -0.089
## income
                                              0.9293
## illiteracy
              3.382e-02 3.663e-01
                                      0.092
                                              0.9269
## murder
              -3.011e-01 4.662e-02 -6.459 8.68e-08 ***
## hs_grad
               4.893e-02 2.332e-02
                                     2.098
                                              0.0420 *
## frost
              -5.735e-03 3.143e-03 -1.825
                                              0.0752 .
## area
              -7.383e-08 1.668e-06 -0.044
                                              0.9649
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7448 on 42 degrees of freedom
## Multiple R-squared: 0.7362, Adjusted R-squared: 0.6922
## F-statistic: 16.74 on 7 and 42 DF, p-value: 2.534e-10
stepwise_fit <- lm(life_exp ~ ., data=life_data)</pre>
step(stepwise_fit, direction='both') %>%
summary()
## Start: AIC=-22.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
##
      frost + area
##
               Df Sum of Sq
##
                               RSS
                                       ATC:
                     0.0011 23.298 -24.182
## - area
                1
                     0.0044 23.302 -24.175
## - income
                1
## - illiteracy 1
                     0.0047 23.302 -24.174
## <none>
                            23.297 -22.185
## - population 1
                     1.7472 25.044 -20.569
## - frost
                     1.8466 25.144 -20.371
                1
## - hs_grad
                     2.4413 25.738 -19.202
                1
## - murder
                    23.1411 46.438 10.305
                1
##
## Step: AIC=-24.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
##
      frost
##
               Df Sum of Sq
                               RSS
                                       AIC
## - illiteracy 1
                     0.0038 23.302 -26.174
                     0.0059 23.304 -26.170
## - income
                1
## <none>
                            23.298 -24.182
## - population 1
                     1.7599 25.058 -22.541
## + area
                     0.0011 23.297 -22.185
                1
## - frost
                1
                     2.0488 25.347 -21.968
## - hs_grad
                     2.9804 26.279 -20.163
                1
## - murder
                1
                    26.2721 49.570 11.569
##
## Step: AIC=-26.17
## life_exp ~ population + income + murder + hs_grad + frost
##
```

```
Df Sum of Sq
                                RSS
                                        AIC
                       0.006 23.308 -28.161
## - income
## <none>
                             23.302 -26.174
                       1.887 25.189 -24.280
## - population 1
                       0.004 23.298 -24.182
## + illiteracy
                1
## + area
                 1
                       0.000 23.302 -24.174
## - frost
                 1
                       3.037 26.339 -22.048
## - hs_grad
                 1
                       3.495 26.797 -21.187
## - murder
                 1
                      34.739 58.041 17.456
##
## Step: AIC=-28.16
## life_exp ~ population + murder + hs_grad + frost
##
                Df Sum of Sq
                                RSS
                                        AIC
## <none>
                             23.308 -28.161
## + income
                       0.006 23.302 -26.174
## + illiteracy
                       0.004 23.304 -26.170
                1
## + area
                       0.001 23.307 -26.163
                 1
## - population
                1
                       2.064 25.372 -25.920
## - frost
                 1
                       3.122 26.430 -23.877
## - hs_grad
                 1
                       5.112 28.420 -20.246
## - murder
                      34.816 58.124 15.528
##
## Call:
## lm(formula = life_exp ~ population + murder + hs_grad + frost,
##
       data = life_data)
##
## Residuals:
##
                       Median
                  1Q
  -1.47095 -0.53464 -0.03701
                                        1.50683
                               0.57621
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
               7.103e+01
                                     74.542 < 2e-16 ***
## (Intercept)
                          9.529e-01
## population
                5.014e-05
                           2.512e-05
                                       1.996
                                              0.05201 .
## murder
               -3.001e-01
                           3.661e-02
                                      -8.199 1.77e-10 ***
## hs_grad
                4.658e-02 1.483e-02
                                       3.142 0.00297 **
## frost
               -5.943e-03
                          2.421e-03
                                      -2.455
                                              0.01802 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7197 on 45 degrees of freedom
## Multiple R-squared: 0.736, Adjusted R-squared: 0.7126
## F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12
```

 X_{test}

a) Do the procedures generate the same model?

No. Using backward elimination, the model we obtained is: life_exp \sim population + murder + hs_grad + frost. Using forward elimination, the model we obtained is: life_exp \sim population + income + illiteracy + murder + hs_grad + frost + area. Using stepwise regression, the model we obtained is: life_exp \sim population

```
+ murder + hs grad + frost.
```

b) Is there any variable a close call? What was your decision: keep or discard? Provide arguments for your choice. (Note: this question might have more or less relevance depending on the 'subset' you choose).

Using backward elimination or stepwise regression, population is a close call variable with p-value of 0.05201.

```
bw_s = lm(life_exp ~ murder + hs_grad + frost, data = life_data)
bw_l = lm(life_exp ~ murder + hs_grad + frost + population, data = life_data)
summary(bw_s)
##
## Call:
## lm(formula = life_exp ~ murder + hs_grad + frost, data = life_data)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -1.5015 -0.5391 0.1014 0.5921
                                  1.2268
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                          0.983262 72.246 < 2e-16 ***
## (Intercept) 71.036379
              -0.283065
                          0.036731
                                    -7.706 8.04e-10 ***
## murder
                          0.015201
                                     3.286 0.00195 **
## hs_grad
               0.049949
## frost
              -0.006912
                          0.002447 -2.824 0.00699 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7427 on 46 degrees of freedom
## Multiple R-squared: 0.7127, Adjusted R-squared: 0.6939
## F-statistic: 38.03 on 3 and 46 DF, p-value: 1.634e-12
summary(bw 1)
##
## Call:
## lm(formula = life_exp ~ murder + hs_grad + frost + population,
##
      data = life_data)
##
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -1.47095 -0.53464 -0.03701 0.57621
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.103e+01 9.529e-01 74.542 < 2e-16 ***
## murder
              -3.001e-01 3.661e-02 -8.199 1.77e-10 ***
## hs_grad
               4.658e-02 1.483e-02
                                      3.142 0.00297 **
## frost
              -5.943e-03 2.421e-03 -2.455 0.01802 *
## population
              5.014e-05 2.512e-05
                                      1.996 0.05201 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7197 on 45 degrees of freedom
```

```
## Multiple R-squared: 0.736, Adjusted R-squared: 0.7126
## F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12
```

Judging from the Adjusted R-square, the differences between two models are less than 6%. So according to the principle of parsimony, I choose to discard population.

```
backward_fit = lm(life_exp ~ murder + hs_grad + frost, data = life_data)
```

c) Is there any association between 'Illiteracy' and 'HS graduation rate'? Does your 'subset'

contain both?

```
cor.test(illiteracy, hs_grad, method="pearson")

##

## Pearson's product-moment correlation

##

## data: illiteracy and hs_grad

## t = -6.0408, df = 48, p-value = 2.172e-07

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## -0.7908657 -0.4636561

## sample estimates:

## cor

## -0.6571886
```

Yes, there is association between illiteracy and hs_grad. The subset we got from forward elimination contains both.

3. Use criterion-based procedures studied in class to guide your selection of the 'best subset'. Summarize your results (tabular or graphical).

```
life_data = life_data %>%
 select(life_exp, everything())
# Printing the 1 best models of each size, using the Cp criterion:
leaps(x = life_data[,2:8], y = life_data[,1], nbest=1, method="Cp")
## $which
##
              2
                    3
        1
                               5
                                     6
## 1 FALSE FALSE FALSE TRUE FALSE FALSE
## 2 FALSE FALSE FALSE TRUE TRUE FALSE FALSE
## 3 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
     TRUE FALSE FALSE TRUE TRUE FALSE
## 5
     TRUE TRUE FALSE TRUE TRUE TRUE FALSE
## 6 TRUE TRUE TRUE TRUE TRUE TRUE FALSE
## 7
     TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##
## $label
## [1] "(Intercept)" "1"
                                  "2"
                                                "3"
                                                             "4"
                                  "7"
## [6] "5"
                    "6"
##
## $size
## [1] 2 3 4 5 6 7 8
```

```
##
## $Cp
## [1] 16.126760 9.669894 3.739878 2.019659 4.008737 6.001959 8.000000
# Printing the 1 best models of each size, using the adjusted R 2 criterion:
leaps(x = life_data[,2:8], y = life_data[,1], nbest=1, method="adjr2")
## $which
##
               2
                     3
                           4
                                 5
                                       6
         1
## 1 FALSE FALSE FALSE TRUE FALSE FALSE
## 2 FALSE FALSE FALSE TRUE TRUE FALSE FALSE
## 3 FALSE FALSE FALSE TRUE
                             TRUE
                                   TRUE FALSE
## 4 TRUE FALSE FALSE TRUE TRUE
                                   TRUE FALSE
## 5 TRUE
           TRUE FALSE TRUE
                            TRUE TRUE FALSE
## 6
     TRUE
            TRUE TRUE TRUE
                              TRUE
                                    TRUE FALSE
     TRUE
            TRUE TRUE TRUE TRUE TRUE TRUE
## 7
##
## $label
                                    "2"
## [1] "(Intercept)" "1"
                                                   "3"
                                                                 "4"
## [6] "5"
                      "6"
                                    "7"
##
## $size
## [1] 2 3 4 5 6 7 8
##
## $adjr2
## [1] 0.6015893 0.6484991 0.6939230 0.7125690 0.7061129 0.6993268 0.6921823
# Summary of models for each size (one model per size)
b<-regsubsets(life_exp ~ ., data=life_data)</pre>
   (rs<-summary(b))</pre>
## Subset selection object
## Call: regsubsets.formula(life_exp ~ ., data = life_data)
## 7 Variables (and intercept)
##
              Forced in Forced out
                  FALSE
                              FALSE
## population
## income
                  FALSE
                              FALSE
## illiteracy
                  FALSE
                              FALSE
## murder
                  FALSE
                              FALSE
## hs_grad
                  FALSE
                              FALSE
                  FALSE
                              FALSE
## frost
## area
                  FALSE
                              FALSE
## 1 subsets of each size up to 7
## Selection Algorithm: exhaustive
            population income illiteracy murder hs_grad frost area
## 1 (1)""
                                          11 * 11
                               11 11
## 2 (1)""
                        11 11
                                          "*"
                                                  "*"
## 3 (1)""
                                          11 * 11
                                                  11 * 11
                                                          11 * 11
## 4 ( 1 ) "*"
                        11 11
                               11 11
                                          "*"
                                                  "*"
                                                          "*"
                               11 11
                        11 * 11
                                                          11 * 11
## 5 (1)"*"
                                          "*"
                                                  11 * 11
                        "*"
                               "*"
                                          "*"
                                                          "*"
## 6 (1) "*"
                                                  "*"
     (1)"*"
                        "*"
                               "*"
                                          11 4 11
                                                  11 * 11
                                                          11 * 11
# Plots of Cp and Adj-R2 as functions of parameters
par(mar=c(4,4,1,1))
par(mfrow=c(1,2))
```

```
plot(2:8, rs$cp, xlab="No of parameters", ylab="Cp Statistic")
abline(0,1)
plot(2:8, rs$adjr2, xlab="No of parameters", ylab="Adj R2")
             0
                                                                                   0
                                                                                         0
                                                           0.70
                                                                                              0
      4
                                                                             0
                                                                                                    0
                                                           0.68
      12
Cp Statistic
      10
                                                     Adj R2
                                                           99.0
                   0
      \infty
                                                                       0
                                                           0.64
                                         0
      9
```

0.62

0.60

No of parameters

Judging from the Cp statistics and Adjusted R-square, models with 4~8 parameters are better.

No of parameters

 $^{\circ}$

[1] 127.2048

```
# AIC of the 3-predictor model:
pre_3 <- lm(life_exp ~ murder + hs_grad + frost, data = life_data)
AIC(pre_3)

## [1] 117.9743

# BIC
AIC(pre_3, k = log(length(life_exp)))

## [1] 127.5344

# AIC of the 4-predictor model:
pre_4 <- lm(life_exp ~ murder + hs_grad + frost + population, data = life_data)
AIC(pre_4)

## [1] 115.7326

# BIC
AIC(pre_4, k = log(length(life_exp)))</pre>
```

```
# AIC of the 5-predictor model:
pre_5 <- lm(life_exp ~ murder + hs_grad + frost + population + income, data = life_data)</pre>
AIC(pre 5)
## [1] 117.7196
# BTC
AIC(pre_5, k = log(length(life_data$life_exp)))
## [1] 131.1038
# AIC of the 6-predictor model:
pre_6 <- lm(life_exp ~ murder + hs_grad + frost + population + income + illiteracy, data = life_data)</pre>
AIC(pre_6)
## [1] 119.7116
# BIC
AIC(pre_6, k = log(length(life_data$life_exp)))
## [1] 135.0077
# AIC of the 7-predictor model:
pre_7 <- lm(life_exp ~ murder + hs_grad + frost + population + income + illiteracy + area, data = life_
AIC(pre_7)
## [1] 121.7092
# BIC
AIC(pre_7, k = log(length(life_data$life_exp)))
## [1] 138.9174
           No of parameter
                                         5
                                                                          8
           Adjusted R-square
                              0.6939230
                                        0.7125690
                                                   0.7061129
                                                              0.6993268
                                                                         0.6921823
           Ср
                              3.7399
                                         2.0197
                                                    4.0087
                                                               6.0020
                                                                          8.0000
```

The model with 5 parameters (4 predictors) has the highest Adjusted R-square and lowest AIC and BIC. So the best model is the one with 5 parameters.

117.720

131.104

119.712

135.008

121.709

138.917

115.733

127.205

4. Compare the two 'subsets' from parts 2 and 3 and recommend a 'final' model. Using this 'final' model do the following:

Comparing model with 3 perdictors with model with 4 perdictors, since the differences between Adjusted R-square, AIC and BIC are pretty small, according to the principle of parsimony, I choose model with 3 perdictors, which is life_exp \sim murder + hs_grad + frost.

a) Identify any leverage and/or influential points and take appropriate measures.

117.974

127.534

AIC

BIC

```
par(mfrow=c(2,2))
plot(pre_3)
```


According to the Residuals vs Leverage plot, there is no leverage or influential points.

b) Check the model assumptions.

Judging from the QQ plot, the residuals are almost normally distributed. Judging from the Residuals vs Fitted values plot and Scale-Location plot, the residuals have constant variance. There is no certain pattern in Residuals vs Fitted values plot, so the residuals are independent.

5. Using the 'final' model chosen in part 4, focus on MSE to test the model predictive ability:

a) Use a 10-fold cross-validation (10 repeats).

library(caret) ## Loading required package: lattice ## ## Attaching package: 'lattice' ## The following object is masked from 'package:boot': ## ## melanoma ## The following object is masked from 'package:faraway': ## ## melanoma

```
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
data_train<-trainControl(method="cv", number=10)</pre>
model_caret<-train(life_exp ~ murder + hs_grad + frost,</pre>
                   data=life_data,
                    trControl=data_train,
                   method='lm',
                   na.action=na.pass)
model_caret
## Linear Regression
##
## 50 samples
## 3 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 46, 42, 45, 46, 46, 46, ...
## Resampling results:
##
##
     RMSE
                Rsquared
                            MAE
##
     0.7447725  0.7462785  0.6363682
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
The RMSE is 0.7680415, which represents the model predictive ability.
```

b) Experiment a new, but simple bootstrap technique called "residual sampling".