G2 de Álgebra Linear I – 2007.2

Data: 10 de outubro de 2007.

Questão	Valor	Nota	Revis.
1a	1.0		
1b	1.0		
1c	1.0		
1d	1.0		
2a	1.5		
2b	0.5		
2c	1.0		
2d	1.0		
3a	1.5		
3b	0.5		
Total	10.0		

1) Considere os vetores de \mathbb{R}^3

$$v_1 = (1, 2, 1), \quad v_2 = (1, -1, 2), \quad v_3 = (0, 3, -1).$$

- (a) Determine a equação cartesiana do subespaço \mathbb{W} de \mathbb{R}^3 gerado pelos vetores v_1, v_2 e v_3 .
- (b) Determine uma base γ do subespaço \mathbb{W} formada com vetores do conjunto $\{v_1, v_2, v_3\}$ e as coordenadas do vetor (2, 1, 3) na base γ .
- (c) Determine uma base $\beta = \{w_1, w_2, w_3\}$ de \mathbb{R}^3 tal que os vetores da base sejam unitários,
 - w_1 seja paralelo a v_1 ,
 - $\bullet \ w_2$ esteja no plano gerado por v_1 e v_2 e seja perpendicular a w_1 e
 - w_3 seja perpendicular a w_1 e w_2 .

(d) Considere o vetor $v_4 = (a, b, c)$. Determine $a, b \in c$ para que

$$\alpha = \{v_1, v_2, v_4\}$$

seja uma base de \mathbb{R}^3 tal que as coordenadas do vetor u=(4,3,1) na base α sejam $(u)_{\alpha}=(2,1,1)$.

2) Considere os vetores de \mathbb{R}^3 .

$$u_1 = (1, 1, 2), \quad u_2 = (2, 0, 1)$$

e a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \qquad T(v) = (v \cdot u_1) u_1 + (v \cdot u_2) u_2.$$

- (a) Determine a matriz de T na base canônica.
- (b) Determine o conjunto de vetores v tais que T(v) = v.
- (c) Determine a equação cartesiana da imagem de T.
- (d) Considere o plano

$$\mathbb{V} \colon x + y + 2 \, z = 0.$$

Determine uma base do subespaço $T(\mathbb{V}),$ a imagem do plano \mathbb{V} pela transformação linear T.

- 3)
- (a) Determine a inversa da matriz

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{array}\right).$$

(b) Sejam $B = A^2$ e C a matriz inversa de B, (isto é $C = B^{-1}$). Suponha que

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{pmatrix}.$$

Determine o coeficiente $c_{1,2}$ da matriz C.

Critério de correção:

- item (a) Um erro nos coeficientes da inversa nota 1.0, dois erros nota 0.5, três ou mais erros nota zero.
- item (b) Somente serão aceitas respostas totalmente corretas.