Devoir surveillé n°05: corrigé

Problème 1 – D'après Petites Mines 2009

Partie I - Etude d'une fonction

- **1.** Puisque \mathbb{R}^* est symétrique par rapport à 0 et que sh est impaire, f est paire.
- 2. a. On sait que sh $X \underset{X \to 0}{\sim} X$. On en déduit que sh $\frac{1}{x} \underset{x \to +\infty}{\sim} \frac{1}{x}$ puis que $\lim_{x \to \infty} f = 1$.
 - **b.** Puisque pour tout $X \in \mathbb{R}$, $\operatorname{sh} X = \frac{e^X + e^{-X}}{2}$, $\operatorname{sh} X \underset{x \to +\infty}{\sim} \frac{e^X}{2}$. Ainsi $\frac{\operatorname{sh} X}{X} \underset{x \to +\infty}{\sim} \frac{e^X}{2X}$. Par croissances comparées, $\lim_{X \to +\infty} \frac{\operatorname{sh} X}{X} = +\infty$. Via le changement de variables $X = \frac{1}{x}$, on obtient donc $\lim_{x \to 0^+} f(x) = +\infty$. Par parité de f, $\lim x \to 0^- f(x) = +\infty$ et donc $\lim_{x \to 0} f(x) = +\infty$.
- 3. Comme $x\mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* et sh est dérivable sur \mathbb{R} , $x\mapsto \sinh\frac{1}{x}$ est dérivable sur \mathbb{R}^* par composition. Ainsi f est également dérivable sur \mathbb{R}^* . Pour tout $x\in\mathbb{R}^*$,

$$f'(x) = \operatorname{sh} \frac{1}{x} - x \times \left(-\frac{1}{x^2} \right) \operatorname{ch} \frac{1}{x} = \left(\operatorname{th} \frac{1}{x} - \frac{1}{x} \right) \operatorname{ch} \frac{1}{x}$$

- **4.** Soit $g: X \mapsto \operatorname{th} X X$. g est dérivable sur \mathbb{R} et pour tout $X \in \mathbb{R}$, $g'(X) = \operatorname{th}^2 X$. Ainsi g' est positive sur \mathbb{R} et ne s'annule qu'en 0: g est donc strictement croissante sur \mathbb{R} . Puisque g(0) = 0, g(X) > 0 i.e. $\operatorname{th} X < X$ pour tout $X \in \mathbb{R}_+^*$.
- 5. On sait que ch est strictement positive sur \mathbb{R} et la question précédente nous apprend que th $\frac{1}{x} < \frac{1}{x}$ pour tout $x \in \mathbb{R}_+^*$. f' est donc strictement négative sur \mathbb{R}_+^* . Ainsi f est strictement décroissante sur \mathbb{R}_+^* . Par parité de f, on obtient le tableau de variations suivant.

x	$-\infty$	0 +∞
f'(x)	+	_
f	+∞	+∞

6. On sait que

$$\operatorname{sh} X = X + \frac{X^3}{6} + \frac{X^5}{120} + o(X^5)$$

On en déduit

$$\frac{\sinh X}{X} = 1 + \frac{X^2}{6} + \frac{X^4}{120} + o(X^4)$$

7. En effectuant le changement de variable $x = \frac{1}{x}$, on obtient

$$f(x) = 1 + \frac{1}{6x^2} + \frac{1}{120x^4} + o\left(\frac{1}{x^4}\right)$$

Autrement dit

$$a_0 = 1$$
 $a_1 = 0$ $a_2 = \frac{1}{6}$ $a_3 = 0$ $a_4 = \frac{1}{120}$

8. D'après la question précédente,

$$g(x) = 1 + o(x)$$

On en déduit que $\lim_0 g = 1$. Ainsi g est prolongeable par continuité en 0. Comme g est déjà continue sur \mathbb{R}^* , son prolongement G est continu sur \mathbb{R} .

Par ailleurs G(0) = 1. Or, pour $x \in \mathbb{R}^*$

$$\frac{G(x) - G(0)}{x - 0} = \frac{g(x) - 1}{x} = o(1)$$

Ainsi $\lim_{x\to 0} \frac{G(x)-G(0)}{x-0}=0$ de sorte que G est dérivable en 0 (et G'(0)=0). Comme g est clairement dérivable sur \mathbb{R}^* , G l'est également. Finalement, G est dérivable sur \mathbb{R} .

Partie II – Une équation différentielle

9. Sur \mathbb{R}_{+}^{*} , l'équation différentielle (E) équivaut à

$$y' + \frac{1}{x}y = \frac{\operatorname{ch} x}{x}$$

L'équation différentielle homogène associée est

$$y' + \frac{1}{x}y = 0$$

Les solutions de cette équation sont les fonctions $x \in \mathbb{R}_+^* \mapsto \frac{\lambda}{x}$ avec $\lambda \in \mathbb{R}$. On recherche une solution particulière de l'équation différentielle

$$y' + \frac{1}{x}y = \frac{\operatorname{ch} x}{x}$$

sous la forme $x\mapsto \frac{\lambda(x)}{x}$ avec λ dérivable sur \mathbb{R}_+^* . La fonction $x\mapsto \frac{\lambda(x)}{x}$ est solution si et seulement si $\lambda'=ch$. Il suffit donc de choisir $\lambda=sh$. Une solution particulière de

$$y' + \frac{1}{x}y = \frac{\operatorname{ch} x}{x}$$

est donc $x \in \mathbb{R}_+^* \mapsto \frac{\sinh x}{x}$.

Les solutions de cette équation différentielle et donc de (E) sur \mathbb{R}_+^* sont donc les fonctions $x \in \mathbb{R}_+^* \mapsto \frac{\sinh x + \lambda}{x}$ avec $\lambda \in \mathbb{R}$.

- 10. Les solution de (E) sur \mathbb{R}_-^* sont les fonctions $x \in \mathbb{R}_-^* \mapsto \frac{\sinh x + \mu}{x}$ avec $\mu \in \mathbb{R}$.
- 11. Soit y une fonction solution de (E) sur \mathbb{R} . D'après les deux questions précédentes, il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall x \in \mathbb{R}_+^*, \ y(x) = \frac{\sinh x + \lambda}{x}$$

et

$$\forall x \in \mathbb{R}_{-}^{*}, \ y(x) = \frac{\sinh x + \mu}{x}$$

y doit être dérivable sur $\mathbb R$ donc, a fortiori, continue sur $\mathbb R$ et en particulier en 0. Ceci impose que les limites à gauche et à droite de y en 0 doivent être finies. Puisque $\lim_{x\to 0}\frac{\sinh x}{x}=1$, ceci impose $\lambda=\mu=0$ et donc y(x)=G(x)

pour tout $x \in \mathbb{R}^*$. Par ailleurs, y est dérivable en 0 donc continue en 0 donc $y(0) = \lim_{x \to 0} \frac{\sinh x}{x} = 1 = G(0)$. Finalement, y = G.

Réciproquement, G est bien solution de (E) sur \mathbb{R}_+^* et sur \mathbb{R}_-^* . De plus, d'après la question **I.8**, G(0) = 1 et G'(0) = 0 donc G est solution de (E) sur \mathbb{R} .

Remarque. On aurait également pu montrer que G était de classe \mathcal{C}^1 par le théorème de prolongement \mathcal{C}^1 . Ainsi l'identité $xG'(x)+G(x)=\operatorname{ch}(x)$ valable pour tout $x\in\mathbb{R}^*$ aurait pu être étendu à tout $x\in\mathbb{R}$ par continuité de $x\mapsto xG'(x)+G(x)$ et $\operatorname{ch} x$ en 0.

Partie III - Une fonction définie par une intégrale

12. Fixons $x \in \mathbb{R}^*$. En effectuant le changement de variable $t \mapsto -t$, on obtient via la parité de f

$$J(x) = -\int_{-\frac{x}{2}}^{-x} f(-t) dt = -\int_{-\frac{x}{2}}^{-x} f(t) dt = -J(-x)$$

Ainsi J est impaire.

13. Soit $x \in \mathbb{R}$.

$$2\operatorname{ch} x \operatorname{sh} x = 2\left(\frac{e^x + e^{-x}}{2}\right)\left(\frac{e^x - e^{-x}}{2}\right) = \frac{(e^x)^2 - (e^{-x})^2}{2} = \frac{e^{2x} + e^{-2x}}{2} = \operatorname{sh} 2x$$

14. f est coninue sur \mathbb{R}_+^* donc admet une primitive F sur \mathbb{R}_+^* . On a alors pour tout $x \in \mathbb{R}_+^*$, $J(x) = F(x) - F\left(\frac{x}{2}\right)$. F est dérivable en tant que primitive et $x \mapsto F\left(\frac{x}{2}\right)$ est dérivable car $x \mapsto \frac{x}{2}$ est dérivable sur \mathbb{R}_+^* à valeurs dans \mathbb{R}_+^* et F est dérivable sur \mathbb{R}_+^* . Ainsi J est dérivable comme différence de fonctions dérivables. Pour tout $x \in \mathbb{R}_+^*$,

$$\begin{split} J'(x) &= F'(x) - \frac{1}{2}F'\left(\frac{x}{2}\right) \\ &= f(x) - \frac{1}{2}f\left(\frac{x}{2}\right) \\ &= f(x) - \frac{x}{4}\operatorname{sh}\frac{2}{x} \\ &= f(x) - \frac{x}{2}\operatorname{sh}\frac{1}{x}\operatorname{ch}\frac{1}{x} \quad \text{d'après la question III.13} \\ &= f(x)\left(1 - \frac{1}{2}\operatorname{ch}\frac{1}{x}\right) \end{split}$$

15. f est strictement positive sur \mathbb{R}_+^* car sh l'est.

$$1 - \frac{1}{2} \operatorname{ch} \frac{1}{x} = 0 \iff \operatorname{ch} \frac{1}{x} = 2$$

$$\iff e^{\frac{1}{x}} + e^{-\frac{1}{x}} = 4$$

$$\iff X + \frac{1}{X} = 4 \quad \text{en posant } X = e^{\frac{1}{x}}$$

$$\iff X^2 - 4X + 1 = 0$$

$$\iff X = 2 + \sqrt{3} \text{ ou } X = 2 - \sqrt{3}$$

$$\iff x = \frac{1}{\ln(2 + \sqrt{3})} \text{ ou } x = \frac{1}{\ln(2 - \sqrt{3})}$$

Or $2-\sqrt{3}<1$ donc $\frac{1}{\ln(2-\sqrt{3})}<0$. On en déduit que $\varphi\colon x\mapsto 1-\frac{1}{2}$ ch $\frac{1}{x}$ ne s'annule sur \mathbb{R}_+^* qu'en $\alpha=\frac{1}{\ln(2+\sqrt{3})}$.

La fonction $x\mapsto \frac{1}{x}$ est strictement décroissante sur \mathbb{R}_+^* à valeurs dans \mathbb{R}_+^* et la fonction ch est strictement croissante sur \mathbb{R}_+^* donc la fonction $x\mapsto \operatorname{ch}\left(\frac{1}{x}\right)$ est strictement décroissante sur \mathbb{R}_+^* . Il vient ensuite que ϕ est strictement croissante sur \mathbb{R}_+^* .

Ainsi φ est strictement négative sur]0, α [, nulle en α et strictement positive sur] α , $+\infty$ [.

Puisque $J' = f \varphi$, J' est également strictement négative sur $]0, \alpha[$, nulle en α et strictement positive sur $]\alpha, +\infty[$.

16. a. Posons pour $t \in \mathbb{R}_+$,

$$\psi(t) = \operatorname{sh} t - t - \frac{t^3}{6}$$

 ψ est clairement de classe \mathcal{C}^{∞} et pour $t \in \mathbb{R}_+$,

$$\psi'(t) = ch t - 1 - \frac{t^2}{2}$$

$$\psi''(t) = sh t - t\psi'''(t) = ch t - 1$$

Les variations de ch nous enseignent que ψ''' est positive sur \mathbb{R}_+ . Ainsi ψ'' est croissante sur \mathbb{R}_+ . Comme $\psi''(0)=0$, ψ'' est positive sur \mathbb{R}_+ . A nouveau, ψ' est croissante sur \mathbb{R}_+ est nulle en 0 donc positive sur \mathbb{R}_+ . Enfin, on peut affirmer que ψ est croissante sur \mathbb{R}_+ est nulle en 0 donc positive sur \mathbb{R}_+ .

b. Soit $x \in \mathbb{R}_+^*$. D'après la question précédente, pour tout $t \in \left[\frac{x}{2}, x\right]$, $f(t) \geqslant 1 + \frac{1}{6t^2}$. Par positivité de l'intégrale

$$J(x)\geqslant \int_{\frac{x}{2}}^{x}\left(1+\frac{1}{6t^2}\right)\,dt=\frac{x}{2}+\frac{1}{6x}$$

Puisque $\lim_{x\to 0^+}\frac{x}{2}+\frac{1}{6x}=+\infty$ et $\lim_{x\to +\infty}\frac{x}{2}+\frac{1}{6x}=+\infty$, il vient $\lim_{x\to 0^+}J(x)=+\infty$ et $\lim_{x\to +\infty}J(x)=+\infty$ par théorème de minoration.

17. D'après les questions III.15 et III.16.b, on a le tableau de variations suivant.

χ	0	α	$+\infty$
J'(x)		- o +	
J		$+\infty$ $J(\alpha)$	+∞

- **18.** a. Comme sh $x = x + \frac{x^3}{6} + o(x^3)$, $h(x) = \frac{1}{6} + o(1)$. Ainsi $\lim_0 h = \frac{1}{6}$ et h est prolongeable par continuité en 0.
 - **b.** Soit $x \in \mathbb{R}_+^*$. Remarquons que

$$J(x) - \frac{x}{2} = \int_{\frac{x}{2}}^{x} (f(t) - 1) dt$$

A l'aide du changement de variable $u = \frac{1}{t}$,

$$J(x) - \frac{x}{2} = -\int_{\frac{2}{x}}^{\frac{1}{x}} (f(1/u) - 1) \frac{du}{u^2} = \int_{\frac{1}{x}}^{\frac{2}{x}} h(u) \ du$$

c. Comme h est continue sur \mathbb{R} , elle admet une primitive H sur \mathbb{R} dont on peut supposer qu'elle s'annule en 0. En «primitivant» le dévéloppement limité de h obtenu précédemment, on obtient

$$H(x) = \frac{x}{6} + o(x)$$

Par changement de variable,

$$H(1/x) \underset{x \to +\infty}{=} \frac{1}{6x} + o(1/x)$$

$$H(2/x) = \frac{1}{3x} + o(1/x)$$

puis

$$J(x) - \frac{x}{2} = H(2/x) - H(1/x) = \frac{1}{6x} + o(1/x)$$

19. Puisque $J(x) - \frac{x}{2} \sim \frac{1}{6x}$, $\lim_{x \to +\infty} J(x) - \frac{x}{2} = 0$. Ainsi la courbe de J admet une asymptote oblique d'équation $y = \frac{x}{2}$ en $+\infty$.

De plus, on a vu à la question III.16.b que

$$\forall x \in \mathbb{R}_+^*, \ J(x) \geqslant \frac{x}{2} + \frac{1}{6x} > \frac{x}{2}$$

Ainsi la courbe de J est-elle au-dessus de son asymptote dans le demi-plan d'équation x>0. Comme J est impaire, la courbe de J admet cette même asymptote en $-\infty$ mais la courbe de J est au-dessous de cette asymptote dans le demi-plan d'équation x<0.

20.

SOLUTION 1.

1. On a notamment

$$f(0+0) + f(0-0) = 2f(0)f(0)$$

donc $f(0) = f(0)^2$ de sorte que f(0) = 0 ou f(0) = 1.

2. Si f(0) = 0, alors pour tout $x \in \mathbb{R}$,

$$2f(x) = f(x+0) + f(x-0) = 2f(x)f(0) = 0$$

donc f est la fonction nulle.

3. Soit $x \in \mathbb{R}$. Les fonctions $y \mapsto f(x+y), y \mapsto f(x-y)$ et $y \mapsto f(x)f(y)$ sont toutes dérivables de dérivées respectives $y \mapsto f'(x+y), y \mapsto -f'(x-y)$ et $y \mapsto f(x)f'(y)$. En dérivant par rapport à y la relation (E), on obtient donc

$$\forall (x,y) \in \mathbb{R}^2, \ f'(x+y) - f'(x-y) = 2f(x)f'(y)$$

En choisissant x = y = 0, on obtient f'(0) - f'(0) = 2f(0)f'(0) et donc f'(0) = 0 car $f(0) = 1 \neq 0$.

4. A nouveau, on fixe $x \in \mathbb{R}$ et on remarque que les fonctions $y \mapsto f'(x+y), y \mapsto f'(x-y)$ et $y \mapsto f(x)f'(y)$ sont encore dérivables de dérivées respectives $y \mapsto f''(x+y), y \mapsto -f''(x-y)$ et $y \mapsto f(x)f''(y)$. En dérivant par rapport à y la relation de la question précédente, on obtient donc

$$\forall (x, y) \in \mathbb{R}^2, \ f''(x + y) + f''(x - y) = 2f(x)f''(y)$$

En choisissant y = 0, on obtient alors

$$\forall x \in \mathbb{R}, f''(x) = f(x)f''(0) = rf(x)$$

Ainsi f est solution de l'équation différentielle y'' - ry = 0.

• Si r = 0, alors il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall x \in \mathbb{R}, \ f(x) = \lambda x + \mu$$

Or f(0) = 1 et f'(0) = 0 donc $\mu = 1$ et $\lambda = 0$. Ainsi f est-elle constante égale à 1.

- Si r>0, alors il existe $(\lambda,\mu)\in\mathbb{R}^2$ tel que

$$\forall x \in \mathbb{R}, \ f(x) = \lambda e^{x\sqrt{r}} + \mu e^{-x\sqrt{r}}$$

Or f(0) = 1 et f'(0) = 0 donc $\lambda = \mu = \frac{1}{2}$. Ainsi f est-elle la fonction $x \mapsto ch(x\sqrt{r})$.

• Si r < 0, alors il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall x \in \mathbb{R}, \ f(x) = \lambda \cos(x\sqrt{-r}) + \mu \sin(x\sqrt{-r})$$

Or
$$f(0) = 1$$
 et $f'(0) = 0$ donc $\lambda = 1$ et $\mu = 0$. Ainsi f est-elle la fonction $x \mapsto \cos(x\sqrt{-r})$.

5. Il suffit de montrer que la fonction nulle, les fonctions $x \mapsto ch(rx)$ et $x \mapsto cos(rx)$ pour $r \in \mathbb{R}$ sont bien de classe \mathcal{C}^2 et vérifient bien la relation (E). On laisse le soin au lecteur de le vérifier.

Les fonctions recherchées sont donc la fonction nulle, les fonctions $x \mapsto ch(rx)$ et $x \mapsto cos(rx)$ pour $r \in \mathbb{R}$.

SOLUTION 2.

- **1.** Faux. \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .
- **2.** Faux. $]0,1[\cap \mathbb{Q}=\varnothing.$
- **3.** Vrai. Soit $(a, b) \in \mathbb{R}^2$ tel que a < b. Comme \mathcal{A} est dense dans \mathbb{R} , $]a, b[\cap \mathcal{A} \neq \emptyset$. Mais $]a, b[\cap \mathcal{A} \subset]a, b[\cap \mathcal{B}$ donc $]a, b[\cap \mathcal{B} \neq \emptyset$.
- **4.** Faux. Supposons qu'il existe une partie $\mathcal A$ de $\mathbb R$ bornée et dense dans $\mathbb R$. Notons M un majorant de $\mathcal A$ (il en existe un car $\mathcal A$ est majorée). Alors $]M, M+1[\cap \mathcal A\neq \varnothing]$. Il existe donc $x\in \mathcal A$ tel que x>M, ce qui contredit le fait que M est un majorant de $\mathcal A$.