

Vaccination in Epidemic Modeling

Jacob Kang^{1, 2} Feifan Li¹ Amy Wang¹

¹Department of Mathematics ²Department of Computer Science

Introduction

In the case of COVID-19, large-scale vaccination campaigns were estimated to have **reduced mortality by more than 50%** in the United States, preventing millions of deaths worldwide [1].

Similarly, during the measles outbreak in Texas in January 2025, there have been 762 confirmed cases, 99 hospitalizations, and two fatalities, all among unvaccinated people [2].

And so, vaccination is effective in controlling the spread of infectious diseases, and absence of it results in a large outbreak.

Earlier studies conducted stochastic simulation of SIR model with vital dynamics, and observed epidemic outcomes: burnout, fizzle, and persist [3]. Our work explores the effect of vaccination using the SIRV model in epidemic progression and outcomes.

To understand how vaccination affects epidemic dynamics, it is important to consider the **basic reproduction number** (R_0), showing the **strength** of the infectious disease.

$$R_0 = \frac{\beta}{\gamma}$$

• The average number of new infections caused by a single infectious individual in an otherwise susceptible population.

Methods

Figure 1. R_0 Visualization

We provided the SIRV model respecting the full protection vaccination is given to the susceptible population.

Figure 2. **SIRV** Model - Susceptible (S): likely to be infected, Infectious (I): is currently infected and can spread the disease, Recovered (R): recovered from the disease

$$\frac{dS}{dt} = -\beta SI - \upsilon S$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I + \upsilon S$$

 β : Transmission Rate

 γ : Recovery Rate

 υ : Vaccination Rate

S, I, R: the **proportion** of susceptible, infectious, recovered

- **Deterministic Simulation** Figure 4a: is represented by a system of differential equations, producing a single, predictable trajectory for the epidemic under given parameters.
- Stochastic Simulation Figure 4b: incorporates randomness in infection and recovery events.
- Gillespie Algorithm (Figure 3)
- results in two epidemic outcomes (Figure 5a, 5b) [3]:
- Burnout, a large outbreak occurs
- Fizzle, disease fails to spread widely and dies quickly

Figure 3. Gillespie Algorithm Flowchart

Figure 4. Two Simulation Approaches

Results

Figure 5. Infectious Curve based on Deterministic and Stochastic (showing Fizzle and Burnout Cases) simulation for two Vaccination rates: 0.05, 0.5 when R_0 = 4

Figure 6. Peak Infection Proportion (left) and Peak Infection Time (right) for combinations of Vaccination rate (0.0-0.9) and R_0 (1.5-5.0)

Figure 5 shows Fizzle increases as v increases

Figure 6 shows:

- Peak Infectious Proportion Decreases
- as R_0 decreases and v increases
- Peak Infection Time gets Sooner
- as R_0 and v increases
- a clear threshold, beyond which the marginal cost of vaccination decreases.

Discussion/Conclusion

- Stochastic simulation on SIRV model show that higher vaccination rates lower peak infection and increases fizzle cases.
- Results reveal a **threshold effect** where vaccination rate beyond a certain point has diminishing benefits.
- Vaccination plays a critical role in epidemic control, emphasizing the need for optimized strategies.

In the future, we plan to:

- Experiment with extended SIRV model that accounts for susceptible replenishment via waning immunity or birth & death process.
- Investigate the effects of **time-dependent vaccination strategies** on epidemic dynamics, especially regarding their ability to suppress disease transmission.

References

- [1] Effect of COVID-19 vaccination on mortality by COVID-19 and on mortality by other causes, the Netherlands, January 2021–January 2022 pmc.ncbi.nlm.nih.gov.
- [2] Measles Outbreak &x2013; August 12, 2025 | Texas DSHS dshs.texas.gov.
- [3] Todd L. Parsons, Benjamin M. Bolker, Jonathan Dushoff, and David J. D. Earn. The probability of epidemic burnout in the stochastic SIR model with vital dynamics. *Proceedings of the National Academy of Sciences*, 121(5):e2313708120, 2024.