Metodi Matematici per l'Informatica - Esercizi 2 (a.a. 22/23, I canale)

Docente: Lorenzo Carlucci (lorenzo.carlucci@uniroma1.it)

1 Funzioni

Esercizio 1 Se esiste una funzione $f: X \to Y$ suriettiva allora esiste una funzione $g: Y \to X$ iniettiva. Vero o falso? Se si risponde "vero", dare una dimostrazione; se si risponde "falso" dare un controesempio.

Esercizio 2 Se esiste una funzione $f: X \to Y$ iniettiva allora esiste una funzione $g: Y \to X$ suriettiva. Vero o falso? Se si risponde "vero", dare una dimostrazione; se si risponde "falso" dare un controesempio.

Esercizio 3 Ogni funzione può scriversi come composizione di una funzione iniettiva e di una funzione suriettiva: per ogni $f: X \to Y$ esiste un insieme Z tale che esiste una funzione $h: Z \to Y$ iniettiva ed esiste una funzione $g: X \to Z$ tali che $f = h \circ g$. Dimostrare.

(Suggerimento: se considero f come funzione da X alla sua immagine via f, ossia f(X), che funzione ottengo?)

Esercizio 4 In molti testi di Matematica per il Liceo e di Analisi Matematica si dimostra che una funzione è invertibile se è iniettiva. Perché in base alle nostre definizioni questo è falso? Come deve essere modificata la definizione di funzione affinché questo sia vero?

Esercizio 5 L'insieme $\{(x,y): x \in \mathbb{Z}, y \in \mathbb{Z}, 3x + y = 4\}$ è una funzione da \mathbb{Z} in \mathbb{Z} ?

Esercizio 6 Dimostrare che la funzione $f : \mathbb{R} - \{0\} \to \mathbb{R}$ definita da $f(x) = \frac{1}{x} + 1$ è iniettiva. La funzione è anche suriettiva?

Esercizio 7 Dimostrare che la funzione $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definita da f(a,b) = (a+b,a+2b) è una biiezione.

Esercizio 8 Quante sono le funzioni f da $\{a,b,c,d,e\}$ a $\{1,2,3,4\}$? Quante sono suriettive, quante iniettive e quante biiettive?

Esercizio 9 Quante sono le funzioni f da $\{a,b,c,d\}$ a $\{1,2,3,4\}$? Quante sono suriettive, quante iniettive e quante biiettive?

Esercizio 10 Se la composta $(g \circ f)$ è iniettiva, cosa posso dire di f e di g?

Esercizio 11 Se la composta $(g \circ f)$ è suriettiva, cosa posso dire di f e di g?

Esercizio 12 Sia $f: X \to Y$ e $A, B \subseteq Y$. Dimostrare che $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Esercizio 13 Sia $f: A \to B$ e $X, Y \subseteq A$. Dimostrare che $f(X \cap Y) \subseteq f(X) \cup f(Y)$.

Esercizio 14 Sia $f: X \to Y$ e $A \subseteq X$. Che posso dire delle relazioni tra $f(X \setminus A)$ e $f(X) \setminus f(A)$?

Esercizio 15 Sia $f: X \to Y$ biiettiva. Dimostrare che i seguenti punti sono tutti equivalenti tra loro, per una funzione $g: Y \to X$:

- 1. $g = f^{-1}$
- 2. $g \circ f$ è l'identità su X
- 3. $f \circ g \ e \ l'identit \ au \ Y$

(Suggerimento: Dimostrare che due punti qui sopra sono equivalenti significa dimostrare che uno implica l'altro e viceversa. Si possono prendere i punti due a due e dimostrare che si implicano a vicenda; in questo modo devo dimostrare $\binom{3}{2}$ equivalenze. Altrimenti posso creare un circolo di implicazioni, dimostrando: 1 implica 2, 2 implica 3 e 3 implica 1. Per dimostrare una implicazione dal punto i al punto j: assumo che sia vero i, e con una serie di passi di ragionamento o equivalenze algebriche deduco j; altrimenti assumo i e assumo che j sia falso e raggiungo una contraddizione.)

Esercizio 16 Siano $f: X \to Y$ e e $g: Z \to W$ dove $Z \subseteq X$ e $W \subseteq Y$. Indicare se le seguenti affermazioni sono vere o false.

- 1. Se f è suriettiva allora g è suriettiva.
- 2. f(X Z) = f(X) g(Z).
- 3. $Y = f(X) \cup g(Z)$.

Esercizio 17 Si possono trovare insiemi X,Y,Z e funzioni $f:X\to Z$ e $g:Y\to Z$ tali che $X\cap Y=\emptyset$, f e g sono iniettive ma la funzione $h:(X\cup Y)\to Z$ definita come segue non è iniettiva? h(w)=f(w) se $w\in X$ e h(w)=g(w) se $w\in Y$. Se si risponde sì dare un esempio esplicito, se si risponde no argomentare.

Esercizio 18 Sia $f: X \to Y$ e siano A e B due sottinsiemi del dominio X. Indicare se le seguenti affermazioni sono vere o false. (NB: per un qualunque $S \subseteq X$ con f(S) si indica l'insieme $\{y \in Y : per qualche s \in S \ vale \ f(s) = y\}$).

- 1. $f(A \cup B) = f(A) \cup f(B)$.
- 2. $f(A \cap B) = f(A) \cap f(B)$.
- 3. $f(A \cap B) \subset f(A) \cup f(B)$.

Esercizio 19 Si possono trovare insiemi X,Y,Z e funzioni $f:X\to Y$ e $g:Y\to Z$ tali che f è iniettiva, g è suriettiva ma la funzione composta $(g\circ f):X\to Z$ non è né iniettiva né suriettiva? Se si risponde sì dare un esempio esplicito, se si risponde no argomentare. Si ricorda che la funzione composta $(g\circ f)$ è definita come la funzione che mappa $x\in X$ in $g(f(x))\in Z$.

Esercizio 20 Siano X, Y due insiemi. Consideriamo la funzione

$$f: \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathcal{P}(X \times Y)$$

che manda un elemento $A \times B$ (con $A \subseteq X$ e $B \subseteq Y$) nell'elemento $A \times B \subseteq X \times Y$.

- 1. f è iniettiva?
- 2. Dimostrare con un esempio che f non è necessariamente suriettiva.

(NB: Si ricorda che se X è un insieme con $\mathcal{P}(X)$ si denota l'insieme dei sottinsiemi di X.)

2 Domande d'esame

Esercizio 21 Siano $f: X \to Y$ e $g: Z \to W$. Indicare se le seguenti affermazioni sono vere o false.

- 1. $f \cup g \ e$ una funzione con dominio $X \cup Z$ e codominio $Y \cup W$. vero
- 2. Se $X \cap Z \neq \emptyset$ allora $f \cap g$ è una funzione con dominio $X \cap Z$ e codominio $Y \cap W$. falso
- 3. Se $Z \subseteq X$ e f è iniettiva allora g è iniettiva. falso

Esercizio 22 Siano $f: \mathbb{N} \to \mathbb{N}$ e $g: \mathbb{N} \setminus \{2\} \to \mathbb{N}$ due funzioni. Indicare se le seguenti affermazioni sono vere o false.

- 1. Se f è suriettiva allora g non è la sua inversa. vero
- 2. È possibile che per ogni $n \in \mathbb{N}$, $(g \circ f)(n) = n$. falso
- 3. Se $g \ \grave{e} \ la \ funzione \ identit\grave{a} \ allora \ lo \ \grave{e} \ anche \ (g \circ f)$. falso, sarebbe vero solo se anche f fosse la funzione identit\grave{a}

Esercizio 23 Siano $f: X \to Y$ e $g: Z \to W$ dove $Z \subseteq X$ e $W \subseteq Y$. Indicare se le seguenti affermazioni sono vere o false. NB: per un qualunque $S \subseteq X$ con f(S) si denota l'insieme $\{y \in Y : per qualche s \in S \ vale \ f(s) = y\}$. Analogamente per g(S).

- 1. Se f è iniettiva allora g è iniettiva. falso
- 2. f(X Z) = f(X) f(Z). falso
- 3. $Y = f(X) \cup g(Z)$. falso

Esercizio 24 Siano $A = \{1, 2, 3, 4, 5\}$ e $B = \{a, b, c, d\}$, $f : A \to B$ e $g : B \to A$. Indicare se le seguenti affermazioni sono vere o false.

- 1. $Se\ f\ e\ g\ sono\ suriettive\ allora\ (g\circ f)\ \grave{e}\ suriettiva.$ vero, ma secondo i vincoli stabiliti nel testo, g non può essere suriettiva
- 2. È possibile che $(f \circ g)$ sia l'identità su B. vero
- 3. Se $g \ \dot{e} \ la \ funzione \ costante \ che \ manda \ tutti \ gli \ elementi \ in 1 \ allora \ lo \ \dot{e} \ anche \ (g \circ f)$. vero

Esercizio 25 Siano $A = \{1, 2, 3, 4\}$ e $B = \{a, b, c\}$, $f : A \rightarrow B$ e $g : B \rightarrow A$. Indicare se le seguenti affermazioni sono vere o false.

- 1. $Se\ f\ e\ g\ sono\ iniettive\ allora\ (g\circ f)\ e\ iniettiva.$ vero, ma secondo i vincoli stabiliti nel testo, f non può essere iniettiva
- 2. È impossibile che $(g \circ f)$ sia l'identità su A. vero
- 3. Se $g \in la$ funzione costante che manda tutti gli elementi in 1 allora lo è anche $(g \circ f)$. vero

Esercizio 26 Siano $f: X \to Y$ e $g: Z \to W$ dove $Z \subseteq X$ e $W \subseteq Y$. Indicare se le seguenti affermazioni sono vere o false. NB: per un qualunque $S \subseteq X$ con f(S) si denota l'insieme $\{y \in Y : per qualche s \in S \ vale \ f(s) = y\}$. Analogamente per g(S).

- 1. Se f è suriettiva allora g è suriettiva. falso
- 2. Se $Z \subseteq X$ allora $f(X Z) \subseteq f(X) f(Z)$. falso
- 3. Se $Z \subseteq X$ allora $Y = f(X) \cup g(Z)$. falso

Esercizio 27 Si possono trovare insiemi X,Y,Z e funzioni $f:X\to Z$ e $g:Y\to Z$ tali che $X\cap Y=\emptyset$, f e g sono iniettive ma la funzione $h:(X\cup Y)\to Z$ definita come segue non è iniettiva? h(w)=f(w) se $w\in X$ e h(w)=g(w) se $w\in Y$. Se si risponde sì dare un esempio esplicito, se si risponde no argomentare. Vero

Esercizio 28 Sia $f: X \to Y$ e siano A e B due sottinsiemi del dominio X (ossia $A \subseteq X$ e $B \subseteq X$). Indicare se le seguenti affermazioni sono vere o false. (NB: per un qualunque $S \subseteq X$ con f(S) si indica l'insieme $\{y \in Y : \text{ per qualche } s \in S \text{ vale } f(s) = y\}$).

- 1. $f(A \cup B) = f(A) \cup f(B)$. vera sempre
- 2. $f(A \cap B) = f(A) \cap f(B)$. falso, sarebbe vero a prescindere solo se f fosse iniettiva
- 3. $f(A \cap B) \subseteq f(A) \cup f(B)$. vero