

Patent Abstracts of Japan

PUBLICATION NUMBER

01309549

PUBLICATION DATE

13-12-89

APPLICATION DATE

08-06-88

APPLICATION NUMBER

63141077

APPLICANT

MATSUSHITA ELECTRIC IND CO LTD;

INVENTOR:

IKETANI AKIRA;

INT.CL.

H04L 25/08 G11B 20/10

TITLE

DIGITAL SIGNAL REPRODUCING

DEVICE

ABSTRACT :

PURPOSE: To improve recording density and to reduce a decoding error rate by providing a specific product sum means, a subtraction means and a decoding means decoding a digital signal based on the output of the subtraction means.

CONSTITUTION: The title device is provided with a product sum means 2 which calculates products $mi=C_i.y_{k-1}$ (i=1...Q) between Q sets of consecutive reception signal series y_{k-1} (i=1...Q) from a time (k-Q)T till a time (k-1)T and prediction coefficients C_i (i=1...Q) with respect to Q set of consecutive noise and calculating the sum (s) of the Q sets of products (T is a sample time interval of the reception signal), a subtraction means 1 subtracting the output of the product sum means 2 from the reception signal y_k at a time kT and a signal means decoding the digital signal based on the output of the subtraction means 1. Thus, the noise prediction coefficient is multiplied with the past equalizing signal and the result is added to eliminate noise correlation and to minimize the noise. Thus, the decoding error rate is reduced and the recording density is improved.

COPYRIGHT: (C)1989,JPO&Japio College C