# Slowly Changing Dimension (SCD)

How to Implement SCD Type 2



## Hello! I'm...

in mahsasalimi

Data Enthusiast | BI Developer | Insight Creator

Come view my profile to learn more about my journey and how I can help your organization thrive!



**578** 



1K



K.



### Introduction

One of the most common methods in the realm of data warehousing is SCD Type 2.

This technique, unlike the conventional normalized approach which demands that a single update must be made whenever any change in the attribute of a particular dimension occurs, follows the history of changes in a dimension table through time.

In other words, it retains historical data rather than updating the already existing record by creating another record.

This way, changes in an entity such as a customer, product, or employee may be tracked; hence, one will be able to perform historical analysis effectively.

## Concept

The whole concept of SCD Type 2 is that for every change, a new record is created. And each of these carries an identity -a surrogate key that would differentiate them from the past and present records.

Along with these, there are date fields and status flags like *is\_active* to represent the time period where that particular version is valid.

## Implementing SCD Type 2

#### **Surrogate Key**

An auto-incremented field that uniquely identifies each record version.

#### **Natural Key**

A field that links back to the original source system, such as *employee\_id*.

#### **Effective Date Range**

Two fields (start\_date and end\_date) that define the validity period of each record.

#### **Active Status**

A Boolean field (is\_active) that indicates whether the record is the current one.

Creating the dim\_employee Table

```
CREATE TABLE dim_employee (
    employee_key INT PRIMARY KEY IDENTITY(1,1),
    employee_id INT,
    employee_name VARCHAR(100),
    employee_role VARCHAR(100),
    effective_start_date DATETIME,
    effective_end_date DATETIME NULL,
    is_active BIT

-- Surrogate key (unique for each record version)

-- Natural key from OLTP system

-- When this version became valid

-- When this version was replaced (NULL if active)

-- Indicates if the record is current (1) or historical (0)

);
```

When a new employee is added to the system, a record is inserted into the dimension table with the *effective\_start\_date* set to the current timestamp and *is\_active* set to 1 to indicate that the record is current.



When an employee's role changes, we mark the current record as inactive by updating the *effective\_end\_date* and setting *is\_active* to 0. Then, we insert a new record with the updated information.

```
-- Step 1: Mark the old record as inactive
UPDATE dim_employee
SET effective_end_date = GETDATE(), is_active = 0
WHERE employee_id = 101 AND is_active = 1;

-- Step 2: Insert the new record with updated information
INSERT INTO dim_employee (employee_id, employee_name, employee_role, effective_start_date, is_active)
VALUES (101, 'John Doe', 'Senior Developer', GETDATE(), 1);
```

In this structure, the fact\_sales table references the *employee\_key* from the *dim\_employee* table. This ensures that when you perform historical analysis, the fact table can connect to the correct version of the employee's record based on when the sale occurred

## Historical Analysis with SCD Type 2

In SCD Type 2, the relationship between the fact and dimension tables is established using the surrogate key from the dimension table and a corresponding foreign key in the fact table. This ensures that the fact table refers to the correct version of the dimension record at the time the fact data (e.g., a sale) was recorded.

In the previous example: dim\_employee.employee\_key (surrogate key) is related to fact\_sales.employee\_key (foreign key).

 In the dim\_employee table, the column employee\_key (the surrogate key) uniquely identifies each version of an employee record.  In the fact\_sales table, the column employee\_key acts as a foreign key that connects to the employee\_key in dim\_employee.