Семинар 8. Линейная классификация

Даулбаев Талгат

15 марта 2016 г.

Линейная классификация: картинки

Пространство трёх признаков

Линейная классификация: картинки

d = 3

 $\mathbb{X}=\mathbb{R}^d$ — множество объектов, $\mathbb{Y}=\{-1,+1\}$ — множество ответов

$$X = \{(x_1, y_1), (x_2, y_2), \dots, (x_\ell, y_\ell)\}$$
 — обучающая выборка.

Вопрос: как выглядит формула линейного классификатора a(x)?

Линейная классификация: картинки

$$y_i \in \{-1, +1\}$$

$$a(x) = \operatorname{sign}\left(\langle w, x \rangle + w_0\right)$$

Далее будем считать, что добавлен константный признак, и $w_0=0$.

Kак найти вектор w?

Для каждого объекта обучающей выборки x_i введём понятие отступа (margin):

$$M_i(w) = y_i \langle w, x_i \rangle.$$

Так как $y_i \in \{-1, +1\}$, $a(x) = \operatorname{sign}\langle w, x \rangle$, то

- $M_i(w) < 0$ \Rightarrow классификатор выдал неверный ответ
- ullet $M_i(w)>0$ \Rightarrow классификатор выдал правильный ответ

Хотим минимизировать количество ошибок на обучающей выборке. Математически это записывается как:

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \to \min_{w}$$

Здесь квадратные скобки обозначают так называемую нотацию Айверсона.

Аппроксимация пороговой функции

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \to \min_{w}$$

— сложно решать, потому что Q(w) недифференцируемая.

Ограничим $[M_i(w) < 0]$ сверху некоторой более гладкой, невозрастающей, неотрицательной функцией $\mathscr{L}(M_i(w))$:

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leq \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \rightarrow \min_{w}$$

Получили задачу непрерывной оптимизации, которая решается градиентными методами!

Аппроксимация пороговой функции

$$Q(M) = (1-M)^2$$
 — квадратичная $V(M) = (1-M)_+$ — кусочно-линейная (SVM) $S(M) = 2(1+e^M)^{-1}$ — сигмоидная (нейросети) $L(M) = \log(1+e^{-M})$ — логарифмическая (Logistic Regression) $E(M) = e^{-M}$ — экспоненциальная (AdaBoost)

Данные

Сгенерируем данные из нормального распределения

```
Sigma = np.array([[3, 0.1], [0.5, 2]])
mu_1 = np.array([1, 1])
mu_2 = np.array([5, 4])
n = 500
X1 = np.random.multivariate_normal(mu_1, Sigma, n)
X2 = np.random.multivariate_normal(mu_2, Sigma, n)
X = np.vstack((X1, X2))
y = np.hstack((np.zeros(n), np.ones(n)))
volume = 2 * n
train volume = int(0.8 * volume)
idx = np.arange(volume)
np.random.shuffle(idx)
X_train, y_train = X[idx[:train_volume], :], y[idx[:train_volume]]
X_test, y_test = X[idx[train_volume:], :], y[idx[train_volume:]]
```

Данные

```
# Нарисуем картинки:
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, alpha=0.7)
plt.savefig('./normal.pdf')
```


Логистическая регрессия (logistic regression, logit regression)

$$\widetilde{Q}(w) = rac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\{-y_i \langle w, x_i
angle\}
ight)
ightarrow \min_{w}$$

Пусть $\pi(x)$ — вероятность того, что объект x принадлежит классу +1.

$$\log \frac{\pi(x)}{1 - \pi(x)} = \langle w, x \rangle \quad \Rightarrow \quad \pi(x) = \frac{1}{1 + \exp\{-\langle w, x \rangle\}}$$

Поэтому логистическая регрессия может выдавать оценки вероятности принадлежности объекта классу.

Логистическая регрессия

Логистическая регрессия — это метод для классификации, а не для регрессии!

Логистическая регрессия и регуляризация

L2-регуляризация:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\{-y_i \langle w, x_i \rangle\} \right) + \frac{1}{\ell} \|w\|_2^2 \to \min_{w}$$

L1-регуляризация:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + \exp\{-y_i \langle w, x_i \rangle\} \right) + \frac{1}{C} \|w\|_1 \to \min_{w}$$

C — гиперпараметр. Вопрос: как его выбирать?

Логистическая регрессия в sklearn

```
LogisticRegression(self, penalty='12', tol=0.0001,
    C=1.0,
    class_weight=None, # balanced
    max_iter=100,
    multi_class='ovr')
# Атрибуты:
.coef_
.intercept_
# Методы:
.fit(X, y)
.predict_proba(X)
.predict(X)
```

Логистическая регрессия в sklearn

```
lr = LogisticRegression()
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
print("accuracy:", np.mean(y_pred == y_test))
proba = lr.predict_proba(X_test)
print(proba.shape)
У меня получилась точность 0.935
```

Подбор гиперпараметра C

```
from sklearn.linear_model import LogisticRegressionCV

# Сs - это либо список значений, либо число

# Если число, то перебираем по сетке из Сs значений

lr = LogisticRegressionCV(Cs=100)

lr.fit(X_train, y_train)

# Оптимальное значение:

lr.C_
```

Матрица ошибок

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Доля правильный ответов (accuracy):

$$\mathsf{accuracy} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{FN} + \mathsf{FP} + \mathsf{TN}}$$

Точность:

$$precision = \frac{TP}{TP + FP}$$

Полнота:

$$\mathsf{recall} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

Слайд о том, почему иногда нужно выбирать разный порог

$$a(x) = [b(x) > t]$$

b(x) — оценка вероятностей принадлежности классу, t — порог.

Примеры из лекций:

- Кредитный скоринг
- Медицинская диагностика

ROC (Receiver Operating Curves)

False Positive Rate (FPR) и True Positive Rate (TPR):

$$\mathsf{FPR} = \frac{\mathsf{FP}}{\mathsf{FP} + \mathsf{TN}}, \quad \mathsf{TPR} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

$$a(x) = [b(x) > t]$$
, каждому t соответствует точка, а всего разных порогов $\ell+1$.

ROC и AUC

У хорошего алгоритма ROC проходит как можно «выше и правее». В идеале: график, похожий на букву « Γ ».

Поэтому оценивать качество алгоритма можно по площади под ROC-кривой, эта метрика называется AUC (area under curve).

ROC и AUC

- Продолжим говорить про метрики качества и их вычисление в sklearn
- Поговорим пр предобработку признаков: one-hot-encoding, tf-idf, ...
- Обсудим, как придумывать признаки

Вопросы?

