Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2017-2018

Prova scritta - 27 giugno 2018

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7	7
							SI	NO

Leggere le tracce con attenzione!

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning.

- 1. (15 punti)
 - (1) (7 punti)

Fornire le definizioni di funzione di transizione estesa e di linguaggio riconosciuto da un automa finito non deterministico.

(2) (8 punti)

Si consideri l'automa finito non deterministico $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, dove $Q=\{q_0,q_1,q_2\},\ \Sigma=\{a,b,c\},\ F=\{q_2\}$ e la cui funzione di transizione δ è definita dalla tabella seguente.

	a	b	c	ϵ
q_0	Ø	$\{q_1\}$	$\{q_2\}$ $\{q_0, q_1\}$	$\{q_1,q_2\}$
q_1	$\{q_0\}$	$\{q_2\}$	$\{q_0, q_1\}$	Ø
q_2	Ø	Ø	Ø	Ø

È vero che \mathcal{A} accetta ogni stringa di lunghezza due che inizia per a? Motivare la risposta, utilizzando la funzione di transizione estesa o la definizione formale di computazione di un automa. Risposte non motivate non saranno valutate.

- 2. (15 punti)
 - (1) (7 punti)

Fornire la definizione ricorsiva di espressione regolare, indicando con chiarezza il linguaggio associato.

(2) (8 punti)

Mostrare che l'espressione $E = (aa)^*b \cup (ab)^*a$ è ottenuta mediante la definizione fornita al punto precedente. Descrivere il linguaggio denotato da $E = (aa)^*b \cup (ab)^*a$.

3. (15 punti)

Dimostrare formalmente che ogni linguaggio regolare è decidibile. Dato un DFA \mathcal{A} , occorre definire ogni termine della settupla del decider che riconosce lo stesso linguaggio di \mathcal{A} .

Prova scritta 2

- 4. (15 punti)
 - (1) (7 punti)

Si consideri la seguente MdT $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, dove $Q = \{q_0, q_1, q_2, q_3, q_{accept}, q_{reject})$, $\Sigma = \{a, b\}, \Gamma = \{a, b, \sqcup\}$ e la funzione $\delta : (Q \setminus \{q_{accept}, q_{reject}\}) \times \Gamma \to Q \times \Gamma \times \{L, R\}$ è definita come segue

$$\begin{array}{lll} \delta(q_0,a) & = & (q_0,b,R), & \delta(q_0,b) = (q_1,b,R), & \delta(q_0,\sqcup) = (q_{reject},\sqcup,R), \\ \delta(q_1,a) & = & (q_1,a,R), & \delta(q_1,b) = (q_1,b,R), & \delta(q_1,\sqcup) = (q_2,\sqcup,L), \\ \delta(q_2,a) & = & (q_3,a,R), & \delta(q_2,b) = (q_3,b,L), & \delta(q_2,\sqcup) = (q_{reject},\sqcup,R) \\ \delta(q_3,a) & = & (q_{accept},b,R), & \delta(q_3,b) = (q_{reject},b,R), & \delta(q_3,\sqcup) = (q_{accept},\sqcup,R) \end{array}$$

Descrivere il diagramma di stato di M e la sua computazione, dalla configurazione iniziale a una configurazione di arresto, sull'input abba. Occorre specificare tutti i passi della computazione e tutte le configurazioni intermedie che intervengono nella computazione.

(2) (8 punti)

Fornire la definizione di linguaggio riconosciuto da una macchina di Turing.

5. (15 punti)

Sia G = (V, E) un grafo non orientato, con insieme V di nodi e insieme E di archi. Un sottoinsieme V' di nodi di G è un *independent set* in G se per ogni u, v in V', la coppia (u, v) non è un arco, cioè u e v non sono adiacenti.

(a) (5 punti)

Definire il linguaggio INDEPENDENT-SET associato al seguente problema di decisione: Sia G un grafo non orientato e k un intero positivo. G ha un independent set di cardinalità k?

(b) (10 punti)

Provare che il linguaggio INDEPENDENT-SET è in NP.

- 6. (15 punti)
 - (a) (8 punti)

Dato un grafo non orientato G = (V, E), si consideri il grafo non orientato G' = (V, E'), con

$$E' = \{(u, v) \in V \times V \mid u \neq v \in (u, v) \notin E\}.$$

Provare formalmente che la funzione f che associa alla stringa $\langle G, k \rangle$ la stringa $\langle G', k \rangle$, è una riduzione polinomiale da CLIQUE a INDEPENDENT-SET.

(b) (7 punti)

Utilizzando (a) e (b) del precedente esercizio, possiamo concludere che INDEPENDENT-SET è NP-completo? Motivare la risposta. Risposte non motivate non saranno valutate.

7. Un'espressione booleana ϕ è detta essere in forma normale disgiuntiva o espressione booleana **DNF** se è un OR di AND di letterali. Cioè ϕ è della forma $\bigvee_{1 \leqslant i \leqslant n} C_i = C_1 \lor \ldots \lor C_n$, dove i disgiunti hanno la forma $C_i = \bigwedge_{1 \leqslant i \leqslant k_i} l_{i,j}$, con $l_{i,j}$ letterali:

$$\phi = (l_{1,1} \wedge \ldots \wedge l_{1,k_1}) \vee \ldots \vee (l_{n,1} \wedge \ldots \wedge l_{n,k_n}).$$

Ad esempio $(x_1 \wedge \overline{x}_2 \wedge x_3) \vee (\overline{x}_1 \wedge x_2) \vee (x_1 \wedge x_2 \wedge \overline{x}_3 \wedge x_3) \vee (\overline{x}_1 \wedge x_2 \wedge \overline{x}_3)$ è un'espressione booleana in forma normale disgiuntiva. Si consideri il linguaggio SAT_{DNF} , così definito:

 $SAT_{DNF} = \{ \langle \phi \rangle \mid \phi \text{ è un'espressione booleana in forma normale disgiuntiva e } \phi \text{ è soddisfacibile} \}.$

Dimostrare che SAT_{DNF} appartiene alla classe P.