Math 523 HW8

Morgan Gribbins

Use the method of Examples 1 and 2 to compute these integrals.

$$1. \int_{-\infty}^{\infty} \frac{x^4}{1+x^8} dx$$

Let $f=z^4/(1+z^8)$. This function has isolated singularities where $z^8=-1$, i.e. at $z=e^{i(\pi/8+k\pi/4)}$, with integer k. The singularities that lie in the domain U are the points $e^{i\pi/8}$, $e^{3i\pi/8}$, $e^{5i\pi/8}$, $e^{7i\pi/8}$. By the Residue Theorem, this integral is equal to the sum of these residues multiplied by $2\pi i$.

By theorem, the residue at z_0 of a rational function F/G is equal to $F(z_0)/G'(z_0)$, so by letting $F = z^4$ and $G = 1 + z^8$, we may calculate our residues.

- $\operatorname{Res}(f; e^{i\pi/8}) = 1/8e^{3i\pi/8}$
- $\operatorname{Res}(f; e^{3i\pi/8}) = 1/8e^{9i\pi/8}$
- Res $(f; e^{5i\pi/8}) = 1/8e^{15i\pi/8}$
- $\operatorname{Res}(f; e^{7i\pi/8}) = 1/8e^{21i\pi/8}$

Summing and multiplying these gives us

$$\int_{-\infty}^{\infty} \frac{x^4}{1+x^8} dx = \frac{i\pi}{4} \left(e^{-3i\pi/8} + e^{-9i\pi/8} + e^{-15i\pi/8} + e^{-21i\pi/8} \right).$$

2.
$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 - 4x^2 + 5} dx$$

Let $f(z) = \frac{z^2}{z^4 - 4z^2 + 5}$. This function has isolated singularities at $z = \pm \sqrt{2 + i}$ and $z = \pm \sqrt{2 - i}$. The singularities that lie in U are $-\sqrt{2 - i}$ and $\sqrt{2 + i}$.

By theorem, the residue at z_0 of a rational function F/G is equal to $F(z_0)/G'(z_0)$, so by letting $F = z^2$ and $G = z^4 - 4z^2 + 5$, we may calculate our residues. This formula shows

that $\operatorname{Res}(f, \sqrt{2+i}) = \frac{\sqrt{2+i}}{4i}$ and $\operatorname{Res}(f, -\sqrt{2-i}) = \frac{\sqrt{2-i}}{4i}$. Summing and multiplying (by 2 πi) these values gives us

$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 - 4x^2 + 5} = 2i\pi \left(\frac{\sqrt{2+i} + \sqrt{2-i}}{4i}\right).$$

3.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+a^2)(x^2+b^2)}, \ a,b>0$$

Let $f(z) = 1/(z^2 + a^2)(z^2 + b^2)$. This function has isolated singularities at $z = \pm bi$ and $z = \pm ai$. As a, b are positive, ai and bi lie in U.

By theorem, the residue at z_0 of a rational function F/G is equal to $F(z_0)/G'(z_0)$, so by letting F=1 and $G=(z^2+a^2)(z^2+b^2)$, we may calculate our residues. This formula gives us $\operatorname{Res}(f,ai)=\frac{1}{2ai}\frac{1}{b^2-a^2}$ and $\operatorname{Res}(f,bi)=\frac{1}{2bi}\frac{1}{a^2-b^2}$. Summing and multiplying (by $2\pi i$) these values gives us

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{ab(a+b)}.$$

Use the method of Example 7 to compute these integrals.

9.
$$\int_0^{2\pi} \frac{d\theta}{(2-\sin\theta)^2}$$

With the substitution $z = e^{i\theta}$, it follows that $d\theta = dz/iz$ and $\sin \theta = \frac{1}{2i}(z - (1/z))$. This gives

$$\int_0^{2\pi} \frac{d\theta}{(2-\sin\theta)^2} = \int_{|z|=1} \frac{dz}{zi(2-\frac{z}{2i}+\frac{1}{2iz})^2}$$

$$= \frac{1}{i} \int_{|z|=1} \frac{dz}{\frac{9z}{2}-\frac{2z^2}{i}+\frac{2}{i}-\frac{z^3}{4}-\frac{1}{4z}} = 8i\pi \left\{ \frac{1}{2\pi i} \int_{|z|=1} \frac{zdz}{18iz^2-8z^3+8z-iz^4-i} \right\}.$$

The integrand (call it f) of this integral has one pole within |z| < 1, at $-i(\sqrt{3} - 2)$, so we have

$$\int_0^{2\pi} \frac{d\theta}{(2-\sin\theta)^2} = 8i\pi \text{Res}(f, -i(\sqrt{3}-2)) = 8i\pi \frac{-i}{6\sqrt{3}} = \frac{4\pi}{3\sqrt{3}}.$$

10.
$$\int_0^{2\pi} \frac{d\theta}{(1+\beta\cos\theta)^2}$$
, $-1 < \beta < 1$

With the substitution $z = e^{i\theta}$, it follows that $d\theta = dz/iz$ and $\cos \theta = \frac{1}{2}(z + (1/z))$. This gives

$$\int_{0}^{2\pi} \frac{d\theta}{(1+\beta\cos\theta)^{2}} = \int_{|z|=1} \frac{dz}{iz(1+\frac{\beta z}{2}+\frac{\beta}{2z})^{2}}$$

$$= \frac{1}{i} \int_{|z|=1} \frac{dz}{z+\beta z^{2}+\beta+\beta^{2}z/2+\beta^{2}z^{3}/4+\beta^{2}/4} = \frac{4}{i} \int_{|z|=1} \frac{zdz}{\beta^{2}z^{4}+4\beta z^{3}+(2\beta^{2}+4)z^{2}+4\beta z+\beta^{2}}$$

$$= 8\pi \left\{ \frac{1}{2\pi i} \int_{|z|=1} \frac{zdz}{(\beta z^{2}+2z+\beta)^{2}} \right\}.$$

The integrand f of this integral has isolated singularities in |z| < 1 at $z = \frac{-1}{\beta} \pm \sqrt{1/\beta^2 - 1}$, which are complex conjugates, so we have

$$\int_0^{2\pi} \frac{d\theta}{(1+\beta\cos\theta)^2} = 8\pi |\text{Res}(f, \frac{-1}{\beta} + \sqrt{1/\beta^2 - 1})| = \frac{8\pi(1/\beta^3)}{(1/\beta^2 - 1)^{3/2}}.$$

12.
$$\int_0^{2\pi} \sin^{2k} \theta d\theta$$

With the substitution $z = e^{i\theta}$, it follows that $d\theta = dz/iz$ and $\sin \theta = \frac{1}{2i}(z - (1/z))$. This gives

$$\int_0^{2\pi} \sin^{2k} \theta d\theta = \int_{|z|=1} \frac{1}{(2i)^{2k}} (z - 1/z)^{2k}$$
$$= \int_{|z|=1} \frac{1}{(2i)^k} \frac{z^{2k}}{z^{2k}} (z - 1/z)^{2k} = \int_{|z|=1} \frac{1}{(2i)^{2k}} \left(\frac{z^2 - 1}{z}\right)^{2k}.$$

This integrand (f) has an isolated singularity at z = 0, so we have

$$\int_0^{2\pi} \sin^{2k} \theta d\theta = 2\pi i \operatorname{Res}(f, 0) = \frac{(2k)!\pi}{(k!)^2 2^{2k-1}}.$$