Problem R-84I ($C_9H_{14}O_2$). Shown below is the partial NMR spectrum (100 MHz, CS_2 solvent, deuterium decoupled) of a deuterated cyclohexene derivative (the CH_3 resonances are not shown). Source: *Org. Magn. Res.* **1973**, *5*, #10, Spect #0635 (digitized hard copy) g

(a) Provide a complete interpretation of the signals shown. Give chemical, shifts and coupling constants. Assume first order analysis.

H ¹	δ, J =	_Hz, coupled to:
H ²	δ, J =	_Hz, coupled to:
H ³	δ, J =	_Hz, coupled to:
H ⁴	δ, J =	_Hz, coupled to:
H ⁵	δ .l =	Hz coupled to:

(b) Using this information, draw a good representation of the conformation of compound **R-84I**. Label the hydrogens (1, 2, etc.) of your structure. Are the CH_3 and CO_2CH_3 groups cis or trans? (Hint: which group is larger in a cyclohexane?)

Problem R-84I ($C_9H_{14}O_2$). Shown below is the partial NMR spectrum (100 MHz, CS_2 solvent, deuterium decoupled) of a deuterated cyclohexene derivative (the CH_3 resonances are not shown). Source: *Org. Magn. Res.* **1973**, *5*, #10, Spect #0635 (digitized hard copy) g

(a) Provide a complete interpretation of the signals shown. Give chemical, shifts and coupling constants. Assume first order analysis.

$$H^1$$
 5.53 δ , $J = 10, 0.8$ Hz, coupled to: H_2, H_3 H^2 5.36 δ , $J = 10$ Hz, coupled to: H_1 H3 1.77 δ , $J = 13, 3, 0.8$ Hz, coupled to: H_4, H_5, H_2 H4 1.57 δ , $J = 13, 12$ Hz, coupled to: H_3, H_5 H5 1.98 δ , $J = 12, 3$ Hz, coupled to: H_4, H_3

(b) Using this information, draw a good representation of the conformation of compound **R-84I**. Label the hydrogens (1, 2, etc.) of your structure. Are the CH₃ and CO₂CH₃ groups cis or trans? (Hint: which group is larger in a cyclohexane?)

Coupling scheme:
$$H_1 = 0.8 \quad H_3 = 1.70$$

$$A_{Me} = 1.70$$

$$A_{COOMe} = 1.27$$

$$H_1 = 0.8 \quad H_3 = 1.77$$

$$1.07 = 1.98$$

$$H_2 = 1.98$$

$$H_5 = 1.98$$

We only know that H_5 must be axial, because of the large coupling to H_4 , thus the CO_2Me group is equatorial. Since Me is larger than CO_2Me in a cyclohexane, we assume that this is also the case for cyclohexene, thus placing the methyl equatorial. If the methyl were axial, the ring would flip, H_5 would be equatorial, and the NMR spectrum would not fit the structure. Thus the two substituents are *trans*.

$$CH_3$$
 $E = CO_2Me$

$$H_4$$

$$W'' coupling (0.8 Hz)$$

$$CH_3$$

$$CO_2Me$$

$$H_4$$

Problem R-84I

Treating this spectrum as first order (AMX analysis) leads to small errors in J_{35} (AMX: 3.0, actual 2.1 Hz) and J_{45} (AMX: 12.0, actual: 12.6 Hz). As is always the case, the first order couplings are in error in the direction of average of the two couplings involved.

