1-1.4-2

AI24BTECH11011 - Gourishetty Himani

1) Find the coordinates of the point **R** on the line segment joining the points P(-1,3) and Q(2,5) such that $\frac{PR}{PQ}$.

Solution: The coordinate and the ratio of $\frac{PR}{PQ}$ is given by,

$$\mathbf{P} = \begin{pmatrix} -1\\3 \end{pmatrix} \mathbf{Q} = \begin{pmatrix} 2\\5 \end{pmatrix} \frac{PR}{PQ} = \frac{3}{5}$$

R lies on the line joining the points **P** AND **Q** so,

$$PR + RQ = PQ$$

then,
$$\frac{PR}{PR+PQ} = \frac{3}{5}$$

$$5PR = 3PR + 3RQ$$

$$\frac{PR}{PO} = \frac{3}{2}$$
, $n = \frac{3}{2}$

then, $\frac{PR}{PR+PQ} = \frac{3}{5}$ 5PR = 3PR + 3RQ $\frac{PR}{PQ} = \frac{3}{2}$, $n = \frac{3}{2}$ By section formula, $\mathbf{R} = \frac{nQ+P}{1+n}$

$$\mathbf{R} = \frac{n\mathbf{Q} + \mathbf{P}}{1 + n}$$

$$\mathbf{R} = \frac{1}{1+\frac{3}{2}} \left(\binom{2}{5} + \frac{3}{2} \binom{-1}{3} \right)$$

$$\mathbf{R} = \begin{pmatrix} \frac{4}{5} \\ \frac{21}{5} \end{pmatrix}$$

Therefore the coordinates of point **R** is $\left(\frac{4}{5}, \frac{21}{5}\right)$

