

Charles D. Milligan, Ph.D. April 6, 2023

Outline

Introduction and Background

Exploratory Data Analysis

Content-based Recommender System using Unsupervised Learning

Collaborative-filtering based Recommender System using Supervised learning

Conclusion

Appendix

Introduction

- The goal of this project is to develop a recommender system that will help students find new courses aligned with their interests and learning goals.
- The enhanced user experience will result in increased enrollments, new users and increased revenue for the company.
- <u>Hypothesis</u>: we can use data from user's previous enrollments and data on course characteristics to identify new courses that would be of interest to the user.

Technical Approach

Data Sources: Course Genres

course_genre.csv 307 courses 16 features

object
object
int64

robots are coming build o 0 0 0 0 0 0 0 iot apps with watson	0
accelerating 1 ML0122EN deep learning 0 1 0 0 0 1 with gpu	0
consuming restful O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
analyzing big data in r using apache spark	0

Data Sources: Course Ratings

ratings.csv

233306 enrollments

33901 users

0.0 – No interaction

1.0 – Browsed Course

2.0 - Audited Course

3.0 – Completed Course

	user	item	rating
0	1889878	CC0101EN	3.0
1	1342067	CL0101EN	3.0
2	1990814	ML0120ENv3	3.0
3	380098	BD0211EN	3.0
4	779563	DS0101EN	3.0

Exploratory DataAnalysis

Course counts per genre

Course enrollment distribution

20 Most Popular Courses

Top 20 Course	s by Enrollment
item	
PY0101EN	14936
DS0101EN	14477
BD0101EN	13291
BD0111EN	10599
DA0101EN	8303
DS0103EN	7719
ML0101ENv3	7644
BD0211EN	7551
DS0105EN	7199
BC0101EN	6719
DV0101EN	6709
ML0115EN	6323
CB0103EN	5512
RP0101EN	5237
ST0101EN	5015
CC0101EN	4983
C00101EN	4480
DB0101EN	3697
BD0115EN	3670
DS0301EN	3624

Word Cloud of Course Titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation
Results of User
Profile-Based
Recommender
System

5.7 Courses/User

	USER	COURSE_ID	SCORE
0	37465	RP0105EN	27.0
1	37465	GPXX06RFEN	12.0
2	37465	CC0271EN	15.0
3	37465	BD0145EN	24.0
4	37465	DE0205EN	15.0
53406	2087663	excourse88	15.0
53407	2087663	excourse89	15.0
53408	2087663	excourse90	15.0
53409	2087663	excourse92	15.0
53410	2087663	excourse93	15.0

Top 10 Recommended
BD0101EN
BD0211EN
DS0101EN
PY0101EN
BC0101EN
CB0103EN
LB0101ENv1
CC0101EN
RP0101EN
CO0101EN

Score Threshold = 10.0

Flowchart of Content-based Recommender System Using Course Similarity

Content-Based Recommender System Using Course Similarity

Course Similarity Matrix and Heatmap

Evaluation Results of Course Similarity Based Recommender System

5000 Recommendations (5/User)

	USER	COURSE_ID	SCORE
0	37465	excourse67	0.708214
1	37465	excourse72	0.652535
2	37465	excourse74	0.650071
3	37465	BD0145EN	0.623544
4	37465	excourse68	0.616759
4995	2087663	excourse67	0.708214
4996	2087663	excourse72	0.652535
4997	2087663	excourse74	0.650071
4998	2087663	BD0145EN	0.623544
4999	2087663	excourse68	0.616759

Most Frequently Recommended Courses

```
excourse67 1000
excourse72 1000
excourse74 1000
BD0145EN 1000
excourse68 1000
```

Name: COURSE_ID, dtype: int64

Flowchart of Clustering-Based Recommender System

Clustering-Based Recommender System

Number of Clusters

Covariance Matrix and Principal Components

Evaluation Results of Clustering-Based Recommender System

hyper-parameter settings; k=25, Number of Principal Components = 9

3 courses recommended per user

```
user in cluster 0 will be sugessted 3 courses as ['BD0101EN' 'BD0111EN' 'BD0211EN'
user in cluster 1 will be sugessted 3 courses as ['PY0101EN' 'DS0101EN' 'DA0101EN']
user in cluster 2 will be sugessted 3 courses as ['BC0101EN' 'BD0101EN' 'DS0101EN'
user in cluster 3 will be sugessted 3 courses as ['CO0201EN' 'CO0101EN' 'CO0301EN']
user in cluster 4 will be sugessted 3 courses as ['DS0101EN' 'RP0101EN' 'DS0103EN']
user in cluster 5 will be sugessted 3 courses as ['CB0103EN' 'C00101EN' 'BC0101EN']
user in cluster 6 will be sugessted 3 courses as ['LB0101ENv1' 'LB0105ENv1' 'LB0103ENv1']
user in cluster 7 will be sugessted 3 courses as ['BD0211EN' 'BD0101EN'
user in cluster 8 will be sugessted 3 courses as []
user in cluster 9 will be sugessted 3 courses as ['PY0101EN' 'DA0101EN'
user in cluster 10 will be sugessted 3 courses as ['BD0111EN' 'BD0211EN'
user in cluster 11 will be sugessted 3 courses as ['PY0101EN' 'DS0101EN'
                                                                         'ML0101ENv3'
user in cluster 12 will be sugessted 3 courses as ['DS0101EN' 'BD0101EN'
user in cluster 13 will be sugessted 3 courses as ['BC0101EN' 'BC0201EN'
                                                                         'PY0101EN'
user in cluster 14 will be sugessted 3 courses as ['BD0111EN' 'BD0101EN'
user in cluster 15 will be sugessted 3 courses as ['CB0103EN' 'DS0101EN'
                                                                          'BD0101EN'1
user in cluster 16 will be sugessted 3 courses as ['BD0111EN' 'PY0101EN'
user in cluster 17 will be sugessted 3 courses as ['RP0101EN' 'DS0101EN'
                                                                         'DS0103EN'
user in cluster 18 will be sugessted 3 courses as ['PY0101EN' 'CB0103EN'
                                                                          'DS0101EN']
user in cluster 19 will be sugessted 3 courses as ['CB0103EN' 'BC0101EN'
                                                                         'PY0101EN']
user in cluster 20 will be sugessted 3 courses as ['CB0103EN' 'PY0101EN'
user in cluster 21 will be sugessted 3 courses as ['BD0111EN' 'BD0101EN'
```

Top 10

Recommended

BD0101EN

BD0211EN

DS0101EN

PY0101EN

BC0101EN

CB0103EN

LB0101ENv1

CC0101EN

RP0101EN

CO0101EN

Collaborative-filtering
Recommender
System using
Supervised
Learning

Flowchart of KNN based recommender system

Flowchart of NMF Based Recommender System

Flowchart of Neural Network Embedding Based Recommender System

Flowchart of Classification-based Recommender Using Embedding Features

Comparison Collaborative-Filtering Model Performance

Model	RMSE
KNN	0.1924
NMF	0.1944
Neural Network	0.2062
Customized Neural Network	0.1700
Linear Regression w/Embedding	0.2077
ElasticNet w/Embedding	0.2084

Conclusions

- The data were ingested and analyzed using standard exploratory data analysis techniques
- Two classes (supervised and unsupervised) of machine learning methods were used to create recommender systems
- The unsupervised models used similarity metrics (Euclidean, Gaussian, Jaccard, ..) to identify similarities between new courses and previously enrolled courses. Similarity scores were computed and 3-6 courses were recommended for each user
- RMSE scores were computed for a variety of supervised learning-based recommenders. All produced RMSE around 0.20, but the approach that used a customized neural network produced RMSE=0.17
- The unsupervised approaches required more upfront feature engineering than did the supervised models
- The unsupervised approaches tended to be more explainable than the unsupervised methods

Future Work

- All of the models were based on item or user feature details, so they would recommend a course just because it was similar to others or to courses the user had already enrolled.
- This does not allow for consideration of progression where for example a user completed a beginner python course, and should not be recommended additional beginner courses, but rather the user should be recommended intermediate or advanced python courses.
- Hence, the models would be improved by removing all enrolled and similar courses to the enrolled from the candidate course dataset.

Appendix

- <u>chazzd24/MachineLearningCapstoneProject: This repository contains the Jupyter Notebooks Used to Complete the IBM Machine Learning Capstone Project (github.com)</u>
- Linkedin: (32) Charles Milligan | LinkedIn