Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo

Haoyang Zheng*, Wei Deng†, Christian Moya*, Guang Lin* *Purdue University, West Lafayette, IN 47906, USA [†]Morgan Stanley, New York, NY 10036, USA

1. Introduction

Questions

- Can we avoid using Gaussian approximations for the posterior?
- ► How can we improve the performance of approximate Thompson Sampling?

Problem Formulations

- Time horizon N and indices $n \in \{1, 2, ..., N\}$
- ▶ The agent plays arm $A_n \in \mathcal{A} = \{1, 2, ..., K\}$ and receives rewards \mathcal{R}_n
- ▶ Update the posterior μ of arm A_n according to reward \mathcal{R}_n
- ► Total expected regret $\mathbb{E}[\Re(N)] = N \max_a \mathbb{E}[\mu_a] \mathbb{E}\left[\sum_{n=1}^N \mathcal{R}_n\right]$
- ► Goal: find the optimal policy (arm) to minimize the regret

Contributions

- ► We proposed a computationally efficient **Thompson Sampling** algorithm with underdamped Langevin Monte Carlo
- ► We derive novel **posterior concentration** with a designed potential function
- ▶ With the novel posterior concentration rates, we prove it achieves $\tilde{O}\left(\frac{\log N}{\Lambda_s}\right)$ regrets with $\tilde{O}(\sqrt{d})$ samples (previously with $\tilde{O}(d)$ samples)
- ► Both theoretical analysis and experimental results are provided

Assumptions

- ► Lipschitz Smooth and Strongly Convex on the log-likelihood functions $\log \mathbb{P}_a(\mathcal{R}|x), x \in \mathbb{R}^d, \mathcal{R} \in \mathbb{R}$.
- ► Lipschitz Smooth and Strongly Convex on the reward distributions.
- ▶ Lipschitz Smooth on the priors $\pi_a(x)$.

Stochastic Differential Equations (SDEs)

► Joint Lipschitz Smooth on the log-likelihood functions (for Approximate Thompson Sampling).

2. Proposed Algorithms

Thompson Sampling Algorithm

- 1: **Input** Posteriors $\mu_a[\rho_a]$ and feature vectors α_a for $\forall a \in \mathcal{A}$.
- 2: **for** n=1 to N **do**
- Sample $(x_{a,n}, v_{a,n}) \sim \mu_a [\rho_a]$ for $\forall a \in \mathcal{A}$.
- Choose arm $A_n = \operatorname{argmax}_{a \in \mathcal{A}} \langle \alpha_a, x_{a,n} \rangle$.
- Play arm A_n and receive reward \mathcal{R}_n .
- Update posterior distribution of arm A_n : $\mu_{A_n}[\rho_{A_n}]$.
- Calculate regret at round $n: \Re_n$.
- 8: end for
- 9: **Output** Total regrets $\Re(N) = \sum_{n=1}^{N} \Re_n$.

Discretization Scheme

 $\rightarrow dx_t = v_t dt.$

► Sample $\begin{vmatrix} x_{i+1} \\ v_{i+1} \end{vmatrix} \sim \mathcal{N} \begin{pmatrix} \mathbb{E}[x_{i+1}] \\ \mathbb{E}[v_{i+1}] \end{vmatrix}, \begin{vmatrix} \mathbb{V}(x_{i+1}) & \mathbb{K}(x_{i+1}, v_{i+1}) \\ \mathbb{K}(v_{i+1}, x_{i+1}) & \mathbb{V}(v_{i+1}) \end{vmatrix}$ as follows:

Notes: $x_t \in \mathbb{R}^d$ are positions, and $v_t \in \mathbb{R}^d$ are velocities.

- $\mathbb{E}\left[v_{i+1}\right] = v_i e^{-\gamma h} \frac{u}{\gamma} (1 e^{-\gamma h}) \nabla U(x_i)$
- $\mathbb{E}[x_{i+1}] = x_i + \frac{1}{\gamma}(1 e^{-\gamma h})v_i \frac{u}{\gamma}(h \frac{1}{\gamma}(1 e^{-\gamma h}))\nabla U(x_i)$
- $\mathbb{V}(x_{i+1}) = \frac{2u}{v} \left[h \frac{1}{2v} e^{-2\gamma h} \frac{3}{2v} + \frac{2}{v} e^{-\gamma h} \right] \cdot \mathbf{I}_{d \times d}$
- $\mathbb{V}(v_{i+1}) = u(1 e^{-2\gamma h}) \cdot \mathbf{I}_{d \times d}$
- $\mathbb{K}\left(x_{i+1}, v_{i+1}\right) = \frac{u}{v} \left[1 + e^{-2\gamma h} 2e^{-\gamma h}\right] \cdot \mathbf{I}_{d \times d}$

(Stochastic Gradient) Underdamped Langevin Monte Carlo

- 1: **Input** Data $\{\mathcal{R}_{a,1}, \dots, \mathcal{R}_{a,\mathcal{L}_a(n-1)}\}$ and Sample $(x_{a,Ih^{(n-1)}}, v_{a,Ih^{(n-1)}})$.
- 2: Initialize $x_0 = x_{a.Ih^{(n-1)}}$ and $v_0 = v_{a.Ih^{(n-1)}}$.
- 3: **for** $i = 0, 1, \dots, I$ **do**
- Uniformly subsample $S \subseteq \{\mathcal{R}_{a,1}, \cdots, \mathcal{R}_{a,k}\}$.
- Compute (stochastic) gradient $\nabla U(x_i)$.
- Sample (x_{i+1}, v_{i+1}) based on $\nabla U(x_i)$.
- 7: end for
- 8: $x_{a,Ih^{(n)}} \sim \mathcal{N}\left(x_I, \frac{1}{nI_{uo}O_a}\mathbf{I}_{d\times d}\right)$ and $v_{a,Ih^{(n)}} = v_I$
- 9: **Output** Sample $(x_{a,Ih^{(n)}}, v_{a,Ih^{(n)}})$ from current round.

Gradient Estimation

- ► Exact gradient: $\nabla U(x_i) = -\sum_i \nabla \log \mathbb{P}_a (\mathcal{R}_j | x_i) \nabla \log \pi_a(x_i)$
- ► Stochastic gradient: $\nabla \tilde{U}(x_i) = -\frac{\mathcal{L}_a(n)}{|\mathcal{S}|} \sum_{\mathcal{O} \in \mathcal{S}} \nabla \log \mathbb{P}_a \left(\mathcal{R}_k | x_i \right) \nabla \log \pi_a(x_i)$

3. Theoretical Analysis

Posterior Concentration

For $x \in \mathbb{R}^d$ and $\delta_1 \in (0, e^{-\frac{1}{2}})$, the posterior distribution of SDEs satisfies:

$$\mathbb{P}_{x \sim \mu_a[\rho_a]} \left[||x - x_*||_2 \ge \sqrt{\frac{2e}{mn}} \left(D + 2\Omega \log \frac{1}{\delta_1} \right) \right] \le \delta_1,$$

where $D = 8d/\rho + 2 \log B$, $\Omega = 256/\rho + 16\kappa^2 d$.

Regrets of Exact Thompson Sampling

With $\rho_a = \kappa_a^{-3} (8d)^{-1}$, constants C_1 and C_a can upper-bound the expected regret after *N* rounds of exact Thompson Sampling:

$$\mathbb{E}[\Re(N)] \leq \sum_{a \geq 1} \left[\frac{C_1}{\Delta_a} \sqrt{B_1} \left(\log B_1 + d^2 \right) + \frac{C_a}{\Delta_a} \left(\log B_a + d^2 + d \log N \right) + 2\Delta_a \right].$$

(Approximate) Posterior Concentration

With the choice of step size $h^{(n)} = \tilde{O}\left(1/\sqrt{d}\right)$ and number of steps $N = \tilde{O}\left(\sqrt{d}\right)$ in ULMC, the following inequality holds when $x_{a,t} \in \mathbb{R}^d$ and $\delta_2 \in (0, e^{-\frac{1}{2}})$:

$$\mathbb{P}_{x_{a,t} \sim \bar{\mu}_a^{(n)}[\bar{\rho}_a]} \left[||x_{a,t} - x_*||_2 \ge 6 \sqrt{\frac{e}{m_a n}} \left(D_a + 2\Omega_a \log \frac{1}{\delta_1} + 2\tilde{\Omega}_a \log \frac{1}{\delta_2} \right) \right] \le \delta_2,$$

where $D_a=2\log B_a+8d$, $\Omega_a=256+16d\kappa_a^2$, and $\tilde{\Omega}_a=256+16d\kappa_a^2+d/18\kappa_a\bar{\rho}_a$.

Regrets of Approximate Thompson Sampling

Given $\hat{\rho}_a = (8\kappa_a\Omega_a)^{-1}$, the total expected regrets after N rounds of approximate Thompson sampling are capped by constants \tilde{C}_1 and \tilde{C}_a :

$$\mathbb{E}[\Re(N)] \leq \sum_{a>1} \left[\frac{\tilde{C}_1 \sqrt{B_1}}{\Delta_a} \left(\log B_1 + d^2 \kappa_1^2 \log N \right) + \frac{\tilde{C}_a}{\Delta_a} \left(\log B_a + d^2 \kappa_a^2 \log N \right) + 4\Delta_a \right].$$

4. Experimental Results

(a) Regrets with full or stochastic gradients.

(d) Regrets with different momentums γ .

(e) Regrets with flat priors.

Take-away

- ► With the proper choice of batch size, approximate Thompson Sampling can achieve sub-linear regrets with stochastic gradients.
- ► Thompson Sampling with underdamped Langevin algorithms attains sub-linear regrets at $\tilde{O}\left(\sqrt{d}\right)$ samples, while previous requires $\tilde{O}\left(d\right)$ samples.
- ▶ Selecting $\gamma = 2.0$ achieves the lowest regrets (consistent with our analysis).
- The improvements become prominent as d increases.

5. Related Works

- ► Cheng, Xiang, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan. *Underdamped* Langevin MCMC: A non-asymptotic analysis, Conference on learning theory, pp. 300-323. PMLR, 2018.
- ► Mazumdar, Eric, Aldo Pacchiano, Yian Ma, Michael Jordan, and Peter Bartlett. On approximate Thompson sampling with Langevin algorithms, International Conference on Machine Learning, pp. 6797-6807. PMLR, 2020.