6장. 논리식의 간략화

- 01. 2변수 카르노 맵
- 02. 3변수 카르노 맵
- 03. 4변수 카르노 맵
- 04. 선택적 카르노 맵
- 05. 논리식의 카르노 맵 작성
- 07. NAND와 NOR 게이트로의 변환

01

01 2변수 카르노 맵

- □ 개요
 - 불 대수를 이용한 간소화하는 방법은 복잡하고 검증도 어렵다.
 - 카르노 맵(1953년 Maurice Karnaugh가 소개) 을 이용하면 논리식을 쉽게 간소화할 수 있다.

□ 2변수 카르노 맵 표현 방법

$$A = B = B$$
 $A = AB = AB$
 $A = AB = AB$

B^{A}	\overline{A}	\boldsymbol{A}
\overline{B}	m_0	m_2
В	m_1	m_3

- ❖ 무관항(don't care): 입력이 결과에 영향을 미치지 않는 민텀(minterm)항.
- ❖ x 로 표시하거나 d로 표시한다.

01 2

01 2변수 카르노 맵

□ 일반항과 무관항 표현

$$F(A, B) = \sum m(0,3) + \sum d(1)$$

- 출력이 1이거나 무관항만 표시한다.
- 출력 0을 표시하여도 되지만 일반적으로 생략한다.

01 2변=

01 2변수 카르노 맵

□ 카르노맵을 이용한 간소화 방법

- ① 출력이 같은 항을 1,2,4,8,16개로 그룹을 지어 묶을 수 있고,
- ② 바로 이웃한 항들끼리 묶을 수 있으며,
- ③ 반드시 직사각형이나 정사각형의 형태로 묶어야 하고,
- ④ 최대한 크게 묶는다.
- ⑤ 중복하여 묶어서 간소화된다면 중복하여 묶는다.
- ⑥ 무관항의 경우 간소화될 수 있으면 묶어 주고, 그렇지 않으면 묶지 않는다.

불 대수의 법칙으로 풀면

$$F = \overline{A} B + \overline{A} B$$

$$= A (B + B) = A \cdot 1 = A$$

A=0이므로 \overline{A} B=0 and 1이므로 제거 즉, 한 변수에서 서로 다른 값이 묶여지면 제거한다.

01 2변수 카르노 맵

□ 간소화 예

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

중복하역도 되므로 크게 묶는다.

$$F = \overline{A} + \overline{B}$$

불 대수의 법칙으로 풀면

$$F = \sum m(0,1,2) = AB + AB + AB$$

□ 3변수 카르노 맵 표현 방법

A	$C\overline{BC}$	$\overline{B}C$	ВС	$B\overline{C}$
\overline{A}	\overline{ABC}	\overline{ABC}	- ABC	\overline{ABC}
\boldsymbol{A}	$A\overline{BC}$	\overline{ABC}	ABC	$AB\overline{C}$

A	00	01	11	10
0	0	1	3	2
1	4	5	7	6

C^{AE}	\overline{AB}	$\overline{A}B$	AB	$A\overline{B}$
\overline{C}	\overline{ABC}	\overline{ABC}	$AB\overline{C}$	$A\overline{B}\overline{C}$
C	\overline{ABC}	- ABC	ABC	\overline{ABC}

C^{AE}	00	01	11	10
0	0	2	6	4
1	1	3	7	5

행과 열을 바꾸어도 상관없다. 설계자가 선호하는 방법을 선택하면 된다.

AB	\overline{C}	С
$\frac{1}{AB}$	\overline{ABC}	\overline{ABC}
$\overline{A}B$	ABC	- ABC
AB	ABC	ABC
$A\overline{B}$	$A\overline{B}\overline{C}$	$A\overline{B}C$

AB^{C}	0	1
00	0	1
01	2	3
11	6	7
10	4	5

고 간소화: $F(A, B, C) = \sum m(0, 1, 6, 7)$

$$F =$$

□ 간소화 : 양쪽 끝 묶음

□ 간소화: 4개 항 묶음

□ 간소화: 다른 묶음에 모두 포함되어 있는 경우는 묶지 않는다.

다른 묶음에 모두 포함되어 있으 므로 중복하여 묶지 않는다.

□ 간소화 : 최대한 크게 묶는다.

□ 간소화: 세번 중복하여 묶는 경우

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F = \sum m(3,5,6,7) =$$

□ 간소화 : 모두 0이거나 모두 1인 경우

모두 0이면 논리식은 F=0이다.

$$F = 0$$

모두 1이면 논리식은 F=1이다.

$$F = 1$$

□ 4변수 카르노 맵 표현 방법

AB	00	01	11	10
	\overline{ABCD}	ABCD	 ABCD	ABCD
01	 ABCD	 ABCD	_ ABCD	 ABCD
11	ABCD	ABCD	ABCD	ABCD
10	$A\overline{BCD}$	$A\overline{BCD}$	ABCD	ABCD

AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

CI AB	00	91	11	10
00	0	1	3	2
01	-4	5	7	6
11	12	13	15	14
10	8	9	11	10

상하 좌우는 연결되 어 있다.

Tip								
AB CD	00	01	11	10	_			
00	1	1	1	1				
01	1	1	1	1				
11	1	1	1	1				
10	1	1	1	1	F = 1			

에제 6-2 다음과 같은 다양한 4변수 카르노 맵에서 간소화된 논리식을 구하여라.

CI AB	00	01	11	10
00	1			
01				
11				
10	1			

$$F =$$

$$F =$$

$$F =$$

$$F =$$

예제 6-3 다음 식과 같이 무관항이 있을 경우, 카르노 맵을 이용하여 간소화하여라.

$$F(A, B, C, D) = \sum m(0, 2, 3, 4, 5, 11) + \sum d(1, 7, 9, 15)$$

$$F(A, B, C, D) = \sum_{i=1}^{n} m(1, 2, 3, 4, 6, 8, 10) + \sum_{i=1}^{n} d(0, 12, 14)$$

에제 6-4 다음 진리표로부터 카르노 맵을 작성하고 간소화하여라.

ABCD	F
0 0 0 0	×
0001	1
0 0 1 0	×
0 0 1 1	1
0 1 0 0	×
0 1 0 1	1
0 1 1 0	1
0 1 1 1	1
1000	0
1 0 0 1	0
1 0 1 0	0
1 0 1 1	0
1 1 0 0	0
1 1 0 1	1
1 1 1 0	1
1 1 1 1	0

풀이

$$F\left(A\,,B\,,C\,,D\,\right) =$$

□ 카르노 맵에서 선택적으로 묶을 수 있는 경우

$$F = AB + AB + AC$$

$$F = AB + ABD + BCD$$

2가지 답이 가능한 경우

❖ 논리식에서 생략된 부분을 찾아서 최소항(Minterm)으로 변경

$$F(A,B,C) = ABC + \overline{AB} + \overline{AB}$$

$$= ABC + \overline{AB}(C+C) + \overline{AB}(C+C)$$

$$= ABC + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \sum m(0,1,2,3,7)$$

05 논리식의 카르노 맵 작성

❖ 최소항식으로 전개하지 않고 직접 카르노 맵을 이용하는 방법

$$F = \overline{A} + \overline{B} + \overline{C}$$

- □ A set of universal gates = 모든 진리표를 나타낼 수 있는 게이트 집합에: { AND, OR, NOT }으로 모든 진리표(=논리 회로, 진리함수)를 표현 가능 = functionally complete
- □ Universal gates 집합의 예:

```
{ AND, OR, NOT }
{ AND, NOT }
{ OR, NOT }
{ NAND } -- minimal
{ NOR } -- minimal
{ AND, OR } \( \equiv \) universal ?
```


□ 기본 게이트의 NAND, NOR 식

NOT	$\overline{A} = \overline{A + A} = \overline{A \cdot A}$
AND	AB = AB = A + B
OR	
NAND	${AB} = {AB} = {A+B}$
NOR	${A + B} = {A + B} = {A \cdot B}$
XOR	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

universal gate

NAND와 NOR 게이트는 만능 게이트라고도 불린 다. 이 두 게이트는 다른 어떤 종류의 게이트라도 구성할 수 있기 때문이다.

□ 기본 게이트의 NAND, NOR 회로

기본 게이트	NAND 게이트로 표현	NOR 게이트로 표현
NOT	$A \longrightarrow \overline{A}$	$A \longrightarrow \overline{A}$
AND	$A \longrightarrow AB$	$A \longrightarrow AB$
OR	$A \longrightarrow A + B$	$A \longrightarrow A + B$
XOR	$A \oplus B$	$A \oplus B$

기본 게이트	NAND 게이트로 표현	NOR 게이트로 표현
NAND	$A - \overline{AB}$	$A \longrightarrow \overline{AB}$ $B \longrightarrow \overline{AB}$
NOR	$A \longrightarrow \overline{A + B}$	$A \longrightarrow A + B$

NAND 게이트만 이용한 회로

이 논리식을 이중부정을 하여 드모르간의 정리를 적용하여 변형

$$F = A\overline{B}\overline{C} + A\overline{C}\overline{D} + BD$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{C}\overline{D} + BD$$

$$= \overline{A}\overline{B}\overline{C} \cdot \overline{A}\overline{C}\overline{D} \cdot \overline{B}D$$

□ 다른 방법: AND 게이트 뒤에 OR 게이트가 있을 때 이중부정 적용

에제 6-9 다음 논리식을 NAND 게이트만 사용하여 설계하라.

$$F = \overline{CD} + ABC + \overline{AC} + \overline{BC}$$

풀이

NOR 게이트만 이용한 회로

0을 묶으면

$$F = BC + CD + ABD + ABD$$

부정을 하고 풀면 POS식이 된다.

$$F = \overline{BC} + C\overline{D} + \overline{ABD} + \overline{ABD}$$

$$= \overline{BC} \cdot \overline{CD} \cdot \overline{ABD} \cdot \overline{ABD}$$

$$= (B + C)(C + D)(A + B + D)(A + B + D)$$

다시 2중 부정을 하여 나타내면 NOR회로로 직접 나타낼 수 있다.

$$\overline{F} = F = (\overline{B} + \overline{C})(\overline{C} + D)(A + B + \overline{D})(\overline{A} + \overline{B} + D)$$

$$= (\overline{B} + \overline{C}) + (\overline{C} + D) + (\overline{A} + \overline{B} + D) + (\overline{A} + \overline{B} + D)$$

또는 OR 게이트 뒤에 NOT(bubble)을 2개 붙여서 나타내면

에제 6-10 다음 진리표를 만족하는 논리회로를 NOR 게이트만으로 설계하여라.

A	В	C	D	F	A	В	C	D	F
0	0	0	0	1	1	0	0	0	0
0	0	0	1	1	1	0	0	1	0
0	0	1	0	0	1	0	1	0	1
0	0	1	1	1	1	0	1	1	1
0	1	0	0	0	1	1	0	0	0
0	1	0	1	1	1	1	0	1	1
0	1	1	0	0	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1

End of Example