บทที่ 2 เอเยนต์ฉลาด

(Intelligent Agents)

จากบทที่ 1 จะเห็นว่าแนวคิดในการสร้างเอเยนต์ที่มีเหตุผล (Rational agents) เป็นงานชิ้นสำคัญของปัญญาประดิษฐ์ ในบทนี้จะได้นำแนวคิดนี้มาขยายให้เห็นเป็นรูปธรรมมาก ขึ้นว่าจะนำแนวคิดของความมีเหตุผลมาพัฒนาอย่างไร จึงจะทำให้สามารถออกแบบเอเยนต์ที่มี เหตุผลได้สำเร็จ และทำให้เกิดระบบที่เฉลียวฉลาดขึ้นได้

2.1 เอเยนต์และสภาพแวดล้อม

เอเยนต์ คือสิ่งใด ๆ ก็ตามที่สามารถรับรู้สภาพแวดล้อมของตนเองได้โดยใช้เซ็นเซอร์ (Sensors) และมีการกระทำต่อสภาพแวดล้อมโดยใช้แอคชูเอเตอร์ (Actuators) แสดงภาพของ เอเยนต์ได้ดังรูปที่ 2.1 แอคชูเอเตอร์

รูปที่ 2.1 เอเยนต์ติดต่อกับสภาพแวดล้อมโดยผ่านเซ็นเซอร์ และแอคชูเอเตอร์

ตัวอย่างเช่นถ้าเอเยนต์เป็นมนุษย์ เซ็นเซอร์ที่เอเยนต์ใช้ ได้แก่ ตา หู และอวัยวะอื่น ๆ ที่ใช้ใน การรับรู้ ส่วนแอคชูเอเตอร์ได้แก่ มือ เท้า แขน ขา ปาก และอวัยวะส่วนอื่น ๆ ของร่างกายที่ใช้แสดง อากัปกิริยา ถ้าเอเยนต์เป็นหุ่นยนต์ เซ็นเซอร์ที่เอเยนต์ใช้อาจจะเป็นกล้องถ่ายรูป หรือเครื่องมือ ตรวจหาโดยอินฟราเรด และใช้มอเตอร์ต่าง ๆ เป็นแอคชูเอเตอร์ ส่วนเอเยนต์ที่เป็นโปรแกรมจะใช้ อินพุตที่เกิดจากการเคาะคีย์บอร์ด ข้อมูลที่เก็บในแฟ้มข้อมูล และข้อมูลที่ส่งมาทางเน็ตเวิร์คเป็น อินพุตหรือเซ็นเซอร์ที่รับรู้ได้ และมีการแสดงออกเพื่อตอบรับต่อสภาพแวดล้อมได้โดยการแสดงผล บนหน้าจอ หรือส่งข่าวสารออกไปทางเน็ตเวิร์ค ซึ่งถือว่าเป็นแอคซูเอเตอร์

สิ่งที่เอเยนต์รับรู้จากทางเซ็นเซอร์ต่าง ๆ เหล่านี้เรียกโดยทั่วไปว่าเพอร์เซ็พ (Percept) เอเยนต์จะรับเพอร์เซ็พจำนวนมากเข้ามาเป็นชุดที่ต่อเนื่องกัน เรียกว่าลำดับเพอร์เซ็พ (Percept sequence) การกระทำใด ๆ ของเอเยนต์ในขณะใดขณะหนึ่งขึ้นอยู่กับลำดับเพอร์เซ็พที่เอเยนต์นั้น รับเข้ามา เอเยนต์จะพิจารณาจากลำดับเพอร์เซ็พว่าเกิดเหตุการณ์อะไรขึ้นบ้างภายใน สภาพแวดล้อมที่เอเยนต์กำลังเป็นอยู่ แล้วตัดสินใจว่าในสถานการณ์เช่นนั้น เอเยนต์ควรตัดสินใจทำอย่างไร แล้วจึงมีการกระทำตอบรับเหตุการณ์นั้นอย่างสมเหตุสมผล กล่าวได้อีกอย่างหนึ่งว่า การกระทำของเอเยนต์นั้นเป็นไปตามฟังก์ชันที่จับคู่ (Mapping) ระหว่างลำดับเพอร์เซ็พ กับการ กระทำ (Action)

ตัวอย่างง่าย ๆ ที่แสดงภาพของเอเยนต์ดังกล่าวได้แก่เครื่องดูดฝุ่นที่แสดงในรูปที่ 2.2

รูปที่ 2.2 โลกของเครื่องดูดฝุ่นซึ่งมีเพียง 2 แบบเท่านั้น

ตัวอย่างของเอเยนต์ต่าง ๆ ในเรื่องของ AI นั้นนิยมเรียกว่าโลกของเอเยนต์นั้น ๆ เพื่อจำลอง รูปแบบของสิ่งนั้นขึ้นมาพร้อมกับสภาพแวดล้อมของเอเยนต์ เช่นตัวอย่างโลกของเครื่องดูดฝุ่น โลกดังกล่าวเป็นเพียงโลกจำลองขนาดเล็กเท่านั้น แสดงถึงเอเยนต์เครื่องดูดฝุ่นแบบง่ายเพื่อให้ สามารถบรรยายทุกสิ่งที่เกี่ยวข้องได้ และเป็นโลกที่สร้างขึ้นมาเอง ดังนั้นเอเยนต์จะถูกประดิษฐ์ ขึ้นให้มีรูปแบบหลากหลายเช่นใดก็ได้ โลกเฉพาะของเครื่องดูดฝุ่นนี้มีลักษณะ 2 แบบ ตามที่เห็น ในรูปที่ 2.2 คือช่อง A และช่อง B เอเยนต์ในที่นี้คือเครื่องดูดฝุ่น มีการรับรู้ว่าตัวอยู่ในช่องไหน และ ช่องนั้นมีฝุ่นสกปรกหรือไม่ สามารถเลือกการกระทำว่าจะขยับไปทางซ้าย (Left) ขยับไปทางขวา (Right) ดูดฝุ่น (Suck) ฟังก์ชันการทำงานง่าย ๆ เป็นดังนี้คือ ถ้าช่องที่เอเยนต์อยู่ขณะนั้นสกปรก เอเยนต์ต้องดูดฝุ่น ไม่เช่นนั้นก็เลื่อนไปอีกช่องหนึ่ง ฟังก์ชันการทำงานของเอเยนต์แสดงได้ดังนี้

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck

2.2 ความมีเหตุผลที่ก่อให้เกิดพฤติกรรมฉลาด

เอเยนต์ที่มีเหตุผล หรือ Rational agent คือเอเยนต์ที่ทำในสิ่งที่ถูกต้อง เช่น ถ้าให้ลำดับ เพอร์เซ็พมาแล้วถามว่าจะต้องใช้การกระทำใด เอเยนต์จะสามารถเลือกการกระทำที่ควรทำได้ ถูกต้อง คำถามที่มักจะพบเสมอ ๆ คือ อย่างไรเรียกว่าการทำสิ่งที่ถูกต้อง ความหมายโดยคร่าว ๆ ของการทำสิ่งที่ถูกต้องหมายถึงการกระทำที่ทำให้เอเยนต์ประสบความสำเร็จมากที่สุด ความสำเร็จต้องสามารถวัดได้ และเมื่อนำมารวมกันกับสภาพแวดล้อม เซ็นเซอร์ และแอคชูเอเตอร์ ของเอเยนต์แล้ว ทั้งหมดนี้จะเป็นตัวบรรยายลักษณะงานที่เอเยนต์ต้องกระทำ และนำไปสู่ ความหมายของคำว่ามีเหตุผลหรือ Rational ที่ชัดเจนมากขึ้น

2.2.1 การวัดสมรรถนะ (Performance measures)

เกณฑ์ที่ใช้เป็นมาตรวัดความสำเร็จของการกระทำของเอเยนต์เรียกว่า การวัด สมรรถนะ (Performance measure) เมื่อเอเยนต์เข้ามาอยู่ภายในสภาพแวดล้อมแล้ว เอเยนต์จะ สร้างลำดับของการกระทำขึ้นมาชุดหนึ่งซึ่งขึ้นอยู่กับเพอร์เซ็พทั้งหลายที่เอเยนต์ได้รับมา ลำดับของ การกระทำชุดนี้ทำให้สภาพแวดล้อมเปลี่ยนแปลงไปสู่สถานะ (State) ต่าง ๆ ตามแต่ว่าการกระทำ นั้นจะเป็นอะไรและก่อให้เกิดผลอย่างไร ถ้าสถานะเหล่านั้นเป็นที่น่าพึงพอใจ แสดงว่า

เอเยนต์ทำได้ดีแล้ว เกณฑ์วัดนี้ไม่เหมือนกันสำหรับแต่ละเอเยนต์ การถามว่าเอเยนต์พอใจกับ ความสามารถของตนแล้วหรือไม่อาจจะเป็นสิ่งที่ทำไม่ได้ เพราะบางเอเยนต์ตอบไม่ได้ บาง เอเยนต์อาจไม่ตอบตรงกับความสามารถของตัวเอง เช่นเอเยนต์ที่เป็นมนุษย์อาจจะเป็นพวก "องุ่น เปรี้ยว" แต่เดิมเห็นว่าการได้รับรางวัลที่ 1 เป็นเกณฑ์ที่บอกความสำเร็จของตน แต่เมื่อทำไม่ได้ เพราะมีความสามารถไม่เพียงพอ ก็กลับบอกว่าการได้รางวัลนั้นไม่ใช่สิ่งที่ตนพึงพอใจเลย ดังนั้น การกำหนดเกณฑ์วัดจึงควรเป็นไปตามที่ผู้ออกแบบการสร้างเอเยนต์เป็นผู้กำหนดให้เป็นไปตาม วัตถุประสงค์ของการสร้างเอเยนต์นั้น

จากตัวอย่างเครื่องดูดฝุ่นที่กล่าวมาแล้ว อาจจะทดลองออกแบบให้เกณฑ์วัดเป็น จำนวนฝุ่นหรือสิ่งสกปรกที่เครื่องดูดฝุ่นรวบรวมมาได้ภายในระยะเวลาการทำงานกะหนึ่ง จำนวน สิ่งสกปรกยิ่งมากก็ยิ่งดี แต่สำหรับเอเยนต์ที่มีเหตุผล อาจจะพยายามเพิ่มจำนวนฝุ่นโดยดูดฝุ่นนับ ได้จำนวนหนึ่ง แล้วเทกลับลงบนพื้น แล้วดูดฝุ่นอีก นับจำนวน แล้วเทกลับลงพื้นใหม่ ทำเช่นนี้ หลายครั้งก็จะได้จำนวนสิ่งสกปรกมาก แต่ไม่เป็นตามวัตถุประสงค์ ถ้าเปลี่ยนเกณฑ์วัดให้ดีขึ้นกว่า นี้ โดยให้รางวัลกับเอเยนต์แทน เช่นแบ่งพื้นที่เป็นส่วนแล้วให้คะแนนแก่เอเยนต์ตามจำนวนส่วนที่ สะอาดในขณะเวลาหนึ่ง ๆ น่าจะดีกว่า สรุปคือ การตั้งเกณฑ์วัดไม่ควรเป็นไปตามที่คิดว่าเอเยนต์ ควรทำอะไร แต่ควรขึ้นอยู่กับว่าเราต้องการให้สภาพแวดล้อมเป็นอย่างไรมากกว่า

การที่มีเหตุผลได้ตลอดเวลาขึ้นอยู่กับปัจจัยต่าง ๆ 4 ประการคือ

- 1. เกณฑ์การวัดสมรรถนะที่ใช้กำหนดระดับของความสำเร็จ
- 2. ความรู้ที่เอเยนต์รู้เกี่ยวกับสภาพแวดล้อม
- 3. การกระทำที่เอเยนต์สามารถกระทำได้
- 4. ลำดับเพอร์เซ็พของเอเยนต์ที่มีตั้งแต่แรกจนถึงขณะเวลานั้น จากที่กล่าวมาแล้วจึงขอให้นิยามคำว่าเอเยนต์ที่มีเหตุผลอีกครั้งหนึ่งดังนี้

เอเยนต์ที่มีเหตุผล (Rational agent) หมายถึง เอเยนต์ที่สามารถเลือกการกระทำที่ จะทำให้การวัดสมรรถนะมีค่าสูงสุด โดยใช้ลำดับเพอร์เซ็พทั้งหมดที่เกิดขึ้น รวมกับความรู้เดิมของ เอเยนต์มาช่วยพิจารณา

พิจารณาตัวอย่างของเครื่องดูดฝุ่นแบบง่ายที่จะทำความสะอาดในช่องที่สกปรก และขยับไปยังอีกช่องหนึ่งถ้าช่องเดิมนั้นไม่สกปรก เอเยนต์ตัวนี้จะเป็นเอเยนต์ที่มีเหตุผลหรือไม่ ขึ้นอยู่กับองค์ประกอบอีกหลายอย่าง เช่น ต้องรู้ว่าเกณฑ์การวัดสมรรถนะที่ตั้งไว้คืออะไร สภาพแวดล้อมมีลักษณะอย่างไร เอเยนต์มีเซ็นเซอร์ และแอคชูเอเตอร์อะไรบ้างหรือไม่ สมมุติว่า กำหนดให้มีสิ่งต่อไปนี้คือ

- 1. เกณฑ์การวัดสมรรถนะ ให้คะแนนหนึ่งคะแนนเมื่อมีช่องสะอาด 1 ช่องในแต่ละ ช่วงเวลา
- 2. รู้ลักษณะของสภาพแวดล้อมตามแบบในรูปที่ 2.2 แต่ไม่รู้ว่ามีฝุ่นกระจายอยู่ใน ช่องใดบ้าง และไม่รู้ว่าช่องเริ่มต้นอยู่ที่ช่องใด แต่รู้ว่าช่องที่สะอาดแล้วจะไม่กลับมาสกปรกอีก และ รู้ว่าถ้ามีการดูดฝุ่นที่ช่องใดจะทำให้ช่องนั้นสะอาด การกระทำ Left, Right ทำให้เอเยนต์เลื่อนไป ยังช่องซ้าย ขวา ยกเว้นถ้าการกระทำนั้นจะทำให้เอเยนต์หลุดออกไปนอกสภาพแวดล้อม ในกรณี นั้นเอเยนต์จะหยุดอยู่กับที่
- 3. การกระทำที่เอเยนต์สามารถทำได้มีเพียง Left, Right, Suck, และ NoOp (ไม่ ทำอะไรเลย) เท่านั้น
- 4. เอเยนต์รับทราบตำแหน่งที่อยู่ของตนอย่างแน่ชัด และรู้ว่าช่องตำแหน่งนั้น สกปรกหรือไม่

ภายใต้สภาพเหตุการณ์ที่กำหนดให้เช่นนี้ เอเยนต์เครื่องดูดฝุ่นถือว่าเป็นเอเยนต์ที่มี เหตุผล เนื่องจากมีปัจจัยครบทั้ง 4 ข้อสำหรับการเป็นเอเยนต์ที่มีเหตุผล

2.3 ลักษณะของสภาพแวดล้อม

สภาพแวดล้อมเป็นที่อยู่ของเอเยนต์ เป็นสิ่งที่ก่อปัญหาให้เอเยนต์ต้องหาหนทางแก้ไข และ มีผลต่อการออกแบบเอเยนต์ที่เหมาะสม

2.3.1 การกำหนดสภาพแวดล้อมของงาน (Task environment)

จากตัวอย่างเอเยนต์เครื่องดูดฝุ่นแบบง่าย สิ่งที่ต้องกำหนดได้แก่ เกณฑ์การวัด สมรรถนะ สภาพแวดล้อม (Environment) แอคชูเอเตอร์ และเซ็นเซอร์ของเอเยนต์ ทั้งหมดนี้ รวมกันคือสภาพแวดล้อมในงาน (Task environment) การบรรยายสภาพแวดล้อมของงานโดย อ้างอิงข้อกำหนดต่าง ๆ เหล่านี้ เรียกเป็นคำย่อว่า PEAS (Performance measure, Environment, Actuators, Sensors)

สมมติตัวอย่างเป็นรถแท็กซี่อัตโนมัติ (เป็นเทคโนโลยีที่สมมติขึ้น) การบรรยาย PEAS สำหรับสภาพแวดล้อมในงานของรถแท็กซี่ได้แก่

เกณฑ์การวัดสมรรถนะ ได้แก่ ความปลอดภัย ความรวดเร็ว การกระทำถูกกฎหมาย (กฎจราจร) ความสะดวกสบายในการเดินทาง การทำรายได้สูงสุด

> สภาพแวดล้อม ได้แก่ ถนน รถคันอื่น คนเดินเท้า ลูกค้า แอคชูเอเตอร์ ได้แก่ พวงมาลัย คันเร่ง เบรก แตร จอแสดงผล

เซ็นเซอร์ ได้แก่ กล้องถ่ายรูป โซนาร์ มิเตอร์วัดความเร็ว GPS มาตรวัดต่าง ๆ คีย์บอร์ด

การบรรยาย PEAS เริ่มจากเกณฑ์การวัดสมรรถนะ ซึ่งเป็นสิ่งที่ใช้วัดว่าต้องการให้ เอเยนต์มีวัตถุประสงค์ที่ตรงตามความปรารถนาอย่างไร คุณภาพของรถแท็กซี่ที่ต้องการนั้นคือการ ไปถึงที่หมายอย่างถูกต้องไม่หลงทาง ประหยัดเชื้อเพลิงให้มากที่สุด ใช้ระยะเวลาเดินทางน้อย รวมถึงค่าใช้จ่ายต้องน้อยที่สุดด้วย ไม่ผิดกฎจราจร และไม่รบกวนผู้ขับขี่ยวดยานอื่น การขับขี่และ การโดยสารยานพาหนะมีความปลอดภัย ผู้โดยสารได้รับความสะดวกสบาย ทำรายได้ให้มากที่สุด จะเห็นว่าสิ่งที่ต้องการเหล่านี้บางข้อขัดแย้งกัน จึงต้องเลือกได้อย่างเสียอย่าง

สภาพแวดล้อมในการขับรถที่รถแท็กซี่ต้องเผชิญคือความหลากหลายของถนน เส้นทางที่ใช้ (การบังคับเดินรถทางเดียว หรือตรอกซอกซอยต่าง ๆ ในถนน) ในถนนมีทั้งคนเดินเท้า สุนัข หรือแมวที่วิ่งอยู่ข้างถนน หรือแม้แต่บนถนน งานสร้างซ่อมแซมถนน รถตำรวจ อาจพิจารณา สภาพเฉพาะหากต้องการความอ่อนตัวสูง เช่น ถ้านำไปใช้ในเมืองหนาว อาจมีหิมะตก ถ้าอยู่ใน ประเทศสหรัฐอเมริกาหรือประเทศสาธารณรัฐประชาธิปไตยประชาชนลาว รถวิ่งถนนด้านขวา ดังนั้นจะเห็นว่าถ้าจำกัดลักษณะของสภาพแวดล้อมให้มากขึ้นเท่าใด การออกแบบเอเยนต์ก็ง่าย ขึ้นเท่านั้น

แอคชูเอเตอร์ เครื่องมือที่ใช้เพื่อการทำงานของรถแท็กซี่อัตโนมัติเป็นเช่นเดียวกันกับ คนขับแท็กซีที่เป็นมนุษย์ กล่าวคือ ควบคุมเครื่องยนต์ผ่านคันเร่ง เบรก และพวงมาลัย นอกจากนั้นยังต้องมีการควบคุมผ่านจอแสดงผล และเครื่องสังเคราะห์เสียง เพื่อให้สามารถ ติดต่อสื่อสารกับผู้โดยสาร และอาจจะสื่อสารกับพาหนะคันอื่นอีกก็ได้

เซ็นเซอร์ เรื่องพื้นฐานที่รถแท็กซี่จำเป็นต้องมีคือเครื่องมือสำหรับบอกตำแหน่งให้รถ รู้ว่าตนเองกำลังวิ่งอยู่ที่ใดบนถนน และใช้ความเร็วเท่าไร จึงควรมีกล้องบันทึกภาพ และมาตรวัด ต่าง ๆ เพื่อควบคุมพาหนะได้อย่างเหมาะสม เทคโนโลยีที่ทันสมัยในปัจจุบันใช้ GPS (Global positioning system) เพื่อบอกตำแหน่งรถได้อย่างถูกต้อง โดยใช้พร้อมกับแผนที่อิเล็กทรอนิกส์ มี อินฟราเรดหรือโซนาร์จับสัญญาณรถหรือสิ่งกีดขวางในระยะไกล รวมถึงมีคีย์บอร์ดหรือไมโครโฟน เพื่อติดต่อถามจุดหมายปลายทางกับผู้โดยสารด้วย

ตัวอย่างเอเยนต์และการบรรยาย PEAS พื้นฐานแสดงได้ในตารางที่ 2.1

ตารางที่ 2.1 ตัวอย่างของเอเยนต์และการบรรยาย PEAS ของเอเยนต์

เอเยนต์	การวัด	สภาพแวดล้อม	แอคชูเอเตอร์	เซ็นเซอร์
	สมรรถนะ		(ในเทอมของ	(ในเทอมของ
			กา ร ทำงาน)	กา ร ทำงาน)
ระบบวินิจฉัยโรค	คนไข้มีสุขภาพ	คนไข้	จอแสดงคำถาม	ป้อนข้อมูล
	แข็งแรง	โรงพยาบาล	การตรวจสอบ	เกี่ยวกับอาการ
	ค่าใช้จ่ายต่ำสุด	เจ้าหน้าที่	การวินิจฉัย	คนไข้ สิ่งที่ค้นพบ
	ถูกกฎหมาย		การรักษา	เพิ่มเติม คำตอบ
				ของคนไข้ (ผ่าน
				คีย์บอร์ด)
ระบบวิเคราะห์	การแยกประเภท	การเชื่อมต่อที่ส่ง	แสดงประเภท	จุดภาพของสี
ภาพถ่ายจาก	ของภาพที่	มาจากดาวเทียม	ของภาพ	(Color pixel
ดาวเทียม	ถูกต้อง	ในวงโคจร		arrays)
หุ่นยนต์หยิบ	เปอร์เซ็นต์ของ	สายพานลำเลี้ยง	มือกล แขนกล	กล้องถ่ายรูป
ชิ้นส่วนอะไหล่	ชิ้นส่วนอะไหล่ใน	อะไหล่		เต็นเซอร์วัด
	ถาดที่ถูกต้อง	ถาดใส่อะไหล่		
เครื่องควบคุม	ความบริสุทธิ์	โรงกลั่น	วาล์ว ปั้ม	อุณหภูมิ
การกลั่น	จำนวนผลผลิต	การดำเนินการ	เครื่องทำความ	ความดัน
	ความปลอดภัย		ร้อน	เซ็นเซอร์ทางเคมี
			จอแสดงภาพ	
ติวเตอร์วิชา	คะแนนสอบของ	กลุ่มนักเรียน	จอแสดงผล	คีย์บอร์ดรับ
ภาษาอังกฤษ	นักเรียนได้มาก	คณะกรรมการ	สำหรับ	ข้อมูลเข้า
	ที่สุด	สอบ	แบบฝึกหัด	
			ข้อเสนอแนะ	
			แก้ไขที่ผิด	

2.3.2 คุณสมบัติของสภาพแวดล้อมในงาน (Task environment) สภาพแวดล้อมในงานมีคุณสมบัติหลากหลายที่สามารถแบ่งแยกเป็นหมวดหมู่ได้ ดังนี้

2.3.2.1 Fully observable กับ Partially observable

สภาพแวดล้อมของงานจะมีลักษณะเป็น Fully observable ถ้าเอเยนต์มี เซ็นเซอร์ที่ทำให้เอเยนต์รับรู้สถานะของสภาพแวดล้อมที่ตัวเองอยู่ที่ขณะใดขณะหนึ่งได้ การเห็น สภาพแวดล้อมเช่นนี้สะดวกสบายต่อเอเยนต์เพราะเอเยนต์ไม่ต้องคอยติดตามดูหรือจับตามองการ เปลี่ยนแปลงในโลก สภาพแวดล้อมอาจมีลักษณะ Partial observable ได้เนื่องจากเซ็นเซอร์ไม่มี ความแม่นยำ หรือเพราะมีบางส่วนของสถานะขาดหายไปจากการรับข้อมูลของเซ็นเซอร์ ตัวอย่างเช่น เอเยนต์เครื่องดูดฝุ่นที่มีเฉพาะเซ็นเซอร์จับสิ่งสกปรกในช่องที่ตัวเองอยู่เท่านั้น แต่ไม่ สามารถบอกได้ว่ามีฝุ่นสิ่งสกปรกอยู่ในช่องอื่นหรือไม่ หรือรถแท็กซีอัตโนมัติที่ไม่รู้ว่าคนขับแท็กซี คันอื่นคิดอะไรอยู่

2.3.2.2 Deterministic กับ Stochastic

ถ้าเอเยนต์รู้สถานะต่อไปของสภาพแวดล้อมได้โดยดูจากสถานะปัจจุบัน และตัดสินได้จากการกระทำของเอเยนต์ (Action ที่เอเยนต์กระทำลงไป) สภาพแวดล้อมจะเป็น แบบ Deterministic ถ้าไม่เช่นนั้นจะเป็น Stochastic สภาพแวดล้อมที่เป็นแบบ Partial observable มักจะเป็น Stochastic โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่ซับซ้อนมาก ๆ ซึ่งไม่ สามารถคอยจับตามองความเปลี่ยนแปลงได้ทุกเรื่อง ดังนั้นการตัดสินใจว่าจะเป็น Deterministic หรือ Stochastic ให้พิจารณาจากมุมมองของเอเยนต์ผู้เดียวว่าเห็นเป็นอย่างไร รถแท็กซีอัตโนมัติ จึงเป็นแบบ Stochastic เพราะไม่สามารถทำนายลักษณะความเป็นไปของการจราจรได้ถูกต้อง ถ่องแท้ การที่ขับรถไปแล้วเกิดยางล้อระเบิด หรือเครื่องยนต์เสียก็ไม่มีการเตือนล่วงหน้า แต่โลก ของเครื่องดูดฝุ่นตามที่บรรยายเอาไว้เป็นแบบ Deterministic

2.3.2.3 Episodic กับ Sequential

ในสภาพแวดล้อมของงานแบบ Episodic ประสบการณ์ของเอเยนต์จะแบ่ง ออกเป็นภาคหรือส่วน (Episode) เล็ก ๆ แต่ละส่วนประกอบด้วยเพอร์เซ็พของเอเยนต์และการ กระทำของเอเยนต์หนึ่งแอคชัน ส่วนต่อไปของเอเยนต์ไม่มีความเกี่ยวข้องใด ๆ กับส่วนก่อนหน้านี้ การเลือกแอคชันของเอเยนต์ในแต่ละส่วนขึ้นอยู่กับเรื่องในส่วนนั้น ๆ เท่านั้น ตัวอย่างเช่นเอเยนต์ที่ มีหน้าที่หาชิ้นส่วนที่เสียในสายการผลิต (ชิ้นส่วนเคลื่อนมาตามสายพานทีละชิ้น) จะมีการ ตัดสินใจกับชิ้นส่วนในขณะนั้นเท่านั้น ไม่สนใจผลการตัดสินใจของชิ้นส่วนก่อนหน้า นอกจากนี้ การตัดสินใจในปัจจุบันไม่มีผลต่อการตัดสินใจกับชิ้นส่วนที่จะเลื่อนมาให้ดูเป็นอันดับต่อไปอีกด้วย สำหรับสภาพแวดล้อมแบบ Sequential มีลักษณะตรงกันข้าม นั่นคือการตัดสินใจในปัจจุบันมี ผลต่อการตัดสินใจในอนาคตด้วย เช่นหมากรุก แท็กซีอัตโนมัติ ซึ่งจะเห็นว่าทั้งสองกรณีนี้การ กระทำที่เกิดขึ้นช่วงเวลาสั้น ๆ สามารถมีผลต่อเนื่องไปอีกเป็นระยะยาวได้ สภาพแวดล้อมแบบ Episodic จึงเป็นสภาพแวดล้อมที่ง่ายกว่าแบบ Sequential เพราะเอเยนต์ไม่จำเป็นต้องคิด ล่วงหน้า

2.3.2.4 Static กับ Dynamic

ถ้าขณะที่เอเยนต์กำลังพิจารณาดูสภาพแวดล้อมอยู่ แล้วสภาพแวดล้อม นั้นเปลี่ยนแปลงได้ เรียกว่าสภาพแวดล้อมเป็น Dynamic สำหรับเอเยนต์นั้น แต่ถ้าสภาพแวดล้อม ไม่เปลี่ยน จะเป็นแบบ Static แบบนี้จะง่ายเพราะเอเยนต์ไม่ต้องคอยสังเกตการเปลี่ยนแปลงของ โลกในขณะที่ตัดสินใจเลือกการกระทำ ตรงกันข้าม สภาพแวดล้อมที่เปลี่ยนแปลงเสมอแบบ Dynamic จะต้องคอยถามเอเยนต์ตลอดเวลาว่าเอเยนต์ต้องการทำอะไรตราบเท่าที่เอเยนต์ยังไม่ ตัดสินใจทำการกระทำใด ๆ แต่ถ้าสภาพแวดล้อมไม่มีการเปลี่ยนแปลง แต่เอเยนต์เปลี่ยน สมรรถนะ (Performance) ของตัวเอง อย่างนี้เรียกว่า Semidynamic ตัวอย่างรถแท็กซีอัตในมัติ เป็นแบบ Dynamic เพราะรถแท็กซีรวมถึงรถอื่นในถนนยังคงขับรถไปเรื่อย ในขณะที่อัลกอริทึมของ การขับรถเปลี่ยนไปตามสถานการณ์ หมากรุกที่เล่นแบบจับเวลาเป็น Semidynamic ส่วนเกมปริศนา อักษรไขว้เป็นแบบ Static

2.3.2.5 Discrete กับ Continuous

คำว่า Discrete และ Continuous นำมาประยุกต์ใช้กับสถานะของ สภาพแวดล้อม โดยตัดสินจากการจัดการด้านเวลา และยังนำมาใช้กับเพอร์เซ็พและการกระทำ ของเอเยนต์ได้อีกด้วย เช่นเกมหมากรุกมีสถานะที่แตกต่างกันเป็นจำนวนจำกัด จึงเป็น สภาพแวดล้อมที่มีสถานะแบบ Discrete นอกจากนี้หมากรุกยังมีเพอร์เซ็พและการกระทำเป็นเซ็ต จำนวนจำกัดอีกด้วย การขับรถแท็กซีมีสถานะ Continuous เพราะความเร็วและตำแหน่งของรถ เปลี่ยนแปลงไปในลักษณะที่เป็นค่าต่อเนื่อง การกระทำของเอเยนต์ก็เช่นกัน เช่นการเปลี่ยนมุม ของพวงมาลัยรถเป็นแบบต่อเนื่อง

ตัวอย่างของสภาพแวดล้อมของงานและคุณสมบัติของเอเยนต์ประเภทต่าง ๆ แสดง ได้ตามตารางที่ 2.2

ตารางที่ 2.2 แสดงสภาพแวดล้อมในงานของเอเยนต์ต่าง ๆ

Task	Observable	Deterministic	Episodic	Static	Discrete
Environment					
Crossword	Fully	Deterministic	Sequential	Static	Discrete
puzzle					
Backgammon	Fully	Stochastic	Sequential	Static	Discrete
Refinery	Partially	Stochastic	Sequential	Dynamic	Continuous
controller					
Interactive	Partially	Stochastic	Sequential	Dynamic	Discrete
English tutor					
Taxi driving	Partially	Stochastic	Sequential	Dynamic	Continuous
Medical	Partially	Stochastic	Sequential	Dynamic	Continuous
diagnosis					
Image-	Fully	Deterministic	Episodic	Semi-	Continuous
analysis				dynamic	
Part-picking	Partially	Stochastic	Episodic	Dynamic	Continuous
robot					

2.4 โครงสร้างของเอเยนต์

จากที่แล้วมาเราได้พิจารณาเอเยนต์โดยดูจากพฤติกรรมที่เอเยนต์แสดงออกหลังจากได้รับ เพอร์เซ็พแล้ว ต่อไปจะพิจารณาการออกแบบภายในบ้าง งานของ AI คือการออกแบบโปรแกรม เอเยนต์ที่ใช้ในการจับคู่ระหว่างเพอร์เซ็พ กับการกระทำ โปรแกรมเช่นนี้ทำงานกับเครื่องจักร คำนวณที่ประกอบด้วยเซ็นเซอร์และแอคซูเอเตอร์ (ตัวเซ็นเซอร์และแอคซูเอเตอร์ ถือว่าเป็นส่วน ของสถาปัตยกรรมของ AI) โปรแกรมของเอเยนต์ในที่นี้มีโครงสร้างง่าย ๆ คือรับอินพุตเป็น เพอร์เซ็พจากเซ็นเซอร์เท่าที่มีหรือหาได้ในขณะนั้น แล้วคืนค่าเอาท์พุตให้เป็น Action เพื่อให้ แอคซูเอเตอร์กระทำ ระบบที่ฉลาดแทบทั้งหมดในปัจจุบันมีโปรแกรมรูปแบบพื้นฐานอยู่ 5 แบบ ดังนี้คือ

2.4.1 Simple reflex agents

Simple reflex agents เป็นเอเยนต์ชนิดที่เรียบง่ายที่สุด เอเยนต์เช่นนี้เลือกการ กระทำโดยดูจากเพอร์เซ็พในขณะนั้น ไม่สนใจเพอร์เซ็พที่ผ่านมาแล้วในอดีต เช่นเครื่องดูดฝุ่นที่ บรรยายมาแล้วเป็นเอเยนต์ประเภทนี้เพราะมีการตัดสินใจขึ้นอยู่กับพื้นฐานว่าขณะนั้นอยู่ใน ตำแหน่งช่องใด (ซ้ายหรือขวา) แล้วช่องนั้นมีสิ่งสกปรกหรือไม่ หรือตัวอย่างรถแท็กซีอัตโนมัติ เมื่อ รถคันหน้าเบรก จะมองเห็นไฟเบรกของรถคันหน้าแดงวาบขึ้น รถแท็กซีอัตโนมัติก็จะเริ่มเบรกตาม เกิดเป็นความสัมพันธ์ว่า "รถคันหน้าเบรก เราต้องเริ่มเบรกด้วย" ความสัมพันธ์เช่นนี้นำมาใช้เป็น กฎเรียกว่า กฎเงื่อนไข-การกระทำ (Condition-action rule) เขียนได้ว่า

If car-in-front-is-braking then initiate-braking.

คุณสมบัติที่ดีของ Simple reflex agent คือความเรียบง่ายในการเลือกการกระทำ แต่เมื่อเป็นเช่นนี้เอเยนต์ก็มีความฉลาดจำกัดไปด้วย เอเยนต์จะทำงานเฉพาะเมื่อมีเพอร์เซ็พตามที่ กำหนดไว้แล้ว นั่นคือ สภาพแวดล้อมต้องเป็นแบบ Fully observable ดูตัวอย่างในรูปที่ 2.3

รูปที่ 2.3 แผนภาพของ Simple reflex agent

2.4.2 Model-based reflex agents

ถ้าสภาพแวดล้อมเป็นแบบ Partial observable วิธีที่มีประสิทธิภาพที่สุดในการ จัดการของเอเยนต์คือให้เอเยนต์คอยจับตามองความเปลี่ยนแปลงของโลก (สภาพแวดล้อม) ตลอดเวลา นั่นคือ เอเยนต์จะคอยมองดูสถานะที่เรียกว่า Internal state ซึ่งเกิดจากสถานะที่ ต่อเนื่องมาจากอดีต สถานะเหล่านี้จะช่วยสะท้อนให้เห็นภาพของสถานะในปัจจุบันได้ชัดเจนขึ้น เช่นตัวอย่างที่รถคันหน้าเบรก เอเยนต์อาจจะไม่สามารถบอกได้ว่ารถเบรก เพราะไฟรถปัจจุบันมี ทั้งไฟเบรกกลางรถ ไฟท้าย ไฟเลี้ยว ซึ่งทำให้เอเยนต์จำแนกไม่ถูกว่านั่นคืออะไร ในกรณีนี้ internal state ได้แก่ภาพที่บันทึกโดยกล้องมาอย่างต่อเนื่องหลายเฟรม ทำให้เอเยนต์ตัดสินใจได้ว่านั่นเป็น ไฟประเภทใด หรือในการเปลี่ยนช่องทางเดินรถ เอเยนต์ต้องคอยมองตำแหน่งของรถคันอื่นอยู่ เรื่อย ๆ เพราะไม่สามารถมองเห็นได้หมดในเวลาเดียว

การที่ข้อมูลที่เป็น Internal state จะได้รับการปรับปรุง (Update) อย่างสม่ำเสมอได้ นั้น โปรแกรมของเอเยนต์ต้องมีความรู้อยู่ 2 เรื่องคือ เรื่องแรก ต้องรู้ว่าโลกมีความเกี่ยวข้องกับ เอเยนต์อย่างไร เช่นรู้ว่าการที่รถคันหนึ่งอยู่ใกล้กับเอเยนต์มากขึ้นกว่าเมื่อครู่นี้ แปลว่ารถนั้นกำลัง วิ่งเข้ามาหา เรื่องที่สองคือ รู้ว่าการกระทำของเอเยนต์ก่อให้เกิดผลอย่างไร เช่นรู้ว่าเมื่อเอเยนต์ หมุนพวงมาลัยรถไปตามเข็มนาฬิกา หมายความว่าเอเยนต์กำลังเลี้ยวขวา หรือถ้าเอเยนต์ขับรถ ขึ้นไปทางทิศเหนือด้วยความเร็ว 60 กม./ชม.เป็นเวลา 5 นาที หมายความว่าเอเยนต์อยู่ห่างจากจุด เดิมเมื่อ 5 นาทีก่อนขึ้นไปทางทิศเหนือเป็นระยะทาง 5 กม. ความรู้เกี่ยวกับโลกเช่นนี้เรียกว่าโมเดล ของโลก เอเยนต์ที่ใช้โมเดลเช่นนี้ในการตัดสินใจเรียกว่า Model-based reflex agent ดูตัวอย่าง ในรูปที่ 2.4

รูปที่ 2.4 แผนภาพของ Model-based reflex agent

2.4.3 Goal-based agents

การรู้แต่เพียงสถานะปัจจุบันของสภาพแวดล้อมยังไม่พอให้เอเยนต์ใช้ตัดสินใจว่า จะทำอะไร เช่นบนถนนตรงทางแยก เอเยนต์แท็กชื่อัตโนมัติมีการกระทำให้เลือกทั้งเลี้ยวซ้าย ขวา ตรงไป การตัดสินใจที่ถูกต้องขึ้นอยู่กับสถานที่ที่ต้องการไป กล่าวได้ว่า นอกเหนือจาก สถานะปัจจุบัน (สถานที่อยู่ขณะนั้น) แล้ว เอเยนต์ยังต้องการใช้ข้อมูลเรื่องเป้าหมาย (Goal) มา

ประกอบการตัดสินใจอีกด้วย ในที่นี้เป้าหมายคือจุดหมายปลายทางของผู้โดยสาร โปรแกรมต้อง รวบรวมข้อมูลดูว่าผลจากการเลือกการกระทำแต่ละทางจะมีทางใดทำให้รถเคลื่อนเข้าใกล้ เป้าหมายได้ แล้วจึงเลือกกระทำทางนั้น ดูตัวอย่างในรูปที่ 2.5

รูปที่ 2.5 แผนภาพของ Goal-based agent

2.4.4 Utility-based agents

บางครั้งเป้าหมายเพียงอย่างเดียวยังไม่พอให้เอเยนต์ใช้ตัดสินใจเพื่อให้เกิด พฤติกรรมที่ดีที่สุด เช่นการที่เอเยนต์แท็กชี่อัตโนมัติจะขับรถไปถึงจุดหมายได้ อาจมีการกระทำได้ หลายวิธี ซึ่งต่างก็ทำให้ไปถึงจุดหมายทั้งสิ้น แต่บางวิธีถึงเร็วกว่า (เช่นไปทางลัด หรือขึ้นทางด่วน) บางวิธีปลอดภัยกว่า (เช่นไปตามถนนใหญ่ หรือไปเส้นทางที่จราจรไม่คับคั่ง ไม่มีรถบรรทุกวิ่ง) บาง วิธีค่าโดยสารถูก หรืออาจจะได้รับความสะดวกสบายในการเดินทาง สิ่งเหล่านี้เป็นตัวบอกว่าการ บรรลุเป้าหมายจะทำให้เอเยนต์พอใจเพิ่มมากขึ้นหรือไม่ ถ้าสถานะใดทำให้เอเยนต์พอใจได้ มากกว่า สถานะนั้นมียูติลิตี้ (Utility) สูงกว่าสถานะอื่น

ยูติลิตี้พังก์ชัน (Utility function) เป็นพังก์ชันที่ให้ค่าตัวเลขกับยูติลิตี้ เกณฑ์วัดข้อใด ที่ทำให้เอเยนต์พอใจมากจะมีค่านี้สูงเพื่อใช้ประกอบการพิจารณาตัดสินใจ ในกรณีที่บางครั้ง เป้าหมายหลายอย่างขัดแย้งกัน เช่นความปลอดภัยกับความรวดเร็วเป็นเรื่องที่ไปด้วยกันไม่ได้ ก็ใช้ ค่ายูติลิตี้มาช่วย หรือบางครั้งเอเยนต์มีหลายเป้าหมาย แต่ไม่มีเป้าหมายใดที่รับประกันว่าจะบรรลุ ได้แน่นอน ยูติลิตี้จะช่วยถ่วงน้ำหนักให้กับเป้าหมายที่เอเยนต์จะพึงพอใจมากกว่า เพื่อให้เอเยนต์ ตัดสินใจในทางที่จะบรรลุเป้าหมายนั้น ดูตัวอย่างในรูปที่ 2.6

รูปที่ 2.6 แผนภาพของ Utility-based agent

2.4.5 Learning agents

เอเยนต์ที่สามารถเรียนรู้ได้เป็นแนวคิดที่ดีที่สุดสำหรับงานหลายด้านของ AI การ เรียนรู้มีข้อดีเพราะทำให้เอเยนต์สามารถทำงานได้ในสภาพแวดล้อมที่ตนไม่รู้มาก่อน ดูแผนภาพ ของ Learning agent ได้ดังรูปที่ 2.7 แนวคิดของ Learning agent ประกอบด้วยองค์ประกอบ 4 ข้อดังนี้

- 1. Learning element มีหน้าที่ทำให้มีการพัฒนา
- 2. Performance element มีหน้าที่เลือกการกระทำ ถ้าเป็นเอเยนต์แบบก่อน ๆ ส่วนนี้ก็คือเอเยนต์ทั้งเอเยนต์ ซึ่งจะรับเพอร์เซ็พแล้วตัดสินใจเลือกการกระทำ
- 3. Critic เป็นส่วนที่ให้ผลย้อนกลับ (Feedback) กับเอเยนต์ว่าเอเยนต์มีการ กระทำดีแล้วหรือไม่ และหาว่า Performance element ควรจะทำอย่างไรเพื่อให้สามารถปรับปรุง พฤติกรรมให้ดีขึ้นในครั้งหน้า
- 4. Problem generator มีหน้าที่เสนอแนะการกระทำใหม่ ๆ ที่ยังไม่เคยทำมาก่อน เหมือนกับการสำรวจหนทางใหม่ ซึ่งอาจจะเป็นการกระทำที่ไม่ใช่หนทางที่ดีที่สุด แต่อาจจะค้นพบ ในภายหลังว่าเป็นวิธีที่ดีกว่าทำการกระทำอื่นเมื่อดำเนินไปในระยะยาว

การออกแบบ Learning element ขึ้นอยู่กับการออกแบบ Performance element เป็นอย่างมาก เพราะปัญหาแรกของการสร้าง Learning agent ที่มีความสำคัญที่สุดไม่ใช่คำถาม ว่า จะทำให้เอเยนต์เรียนรู้ได้อย่างไร แต่เป็นคำถามที่ว่า เอเยนต์ต้องมี Performance element แบบไหน จึงจะสามารถทำงานได้หลังจากที่เกิดการเรียนรู้แล้ว เมื่อออกแบบเอเยนต์ได้แล้ว กลไก ของการเรียนรู้จะถูกสร้างขึ้นเพื่อปรับปรุงทุก ๆ ส่วนของเอเยนต์ได้

ส่วน Critic เป็นส่วนที่บอกกับเอเยนต์ว่าเอเยนต์ทำงานดีแล้วหรือไม่เมื่อเทียบกับ สมรรถนะมาตรฐาน ส่วนนี้มีความจำเป็นเพราะว่าเพอร์เซ็พเพียงอย่างเดียวไม่สามารถเป็นตัวชี้วัด ความสำเร็จของเอเยนต์ได้ ตัวอย่างเช่นโปรแกรมหมากรุกสามารถรับเพอร์เซ็พบอกได้ว่าตัวเอง กำลังรุกฆาตคู่ต่อสู้ แต่เรื่องนี้ต้องมีตัววัดสมรรถนะมาตรฐานที่บอกว่าเรื่องนี้เป็นการกระทำที่ดี ตัวเพอร์เซ็พเพียงอย่างเดียวไม่สามารถบอกเรื่องนี้ได้ จึงต้องมีการปรับปรุงสมรรถนะเพิ่มขึ้น

ตัวอย่างของแท็กซี่อัตโนมัติที่เป็น Learning agent องค์ประกอบส่วนที่เป็น Performance element จะประกอบด้วยความรู้ต่าง ๆ และกระบวนการในการขับรถ เมื่อแท็กซี่ขับ ออกไปบนถนน ก็ใช้ความรู้เหล่านี้เป็น Performance element ของตัวเอง ส่วน Critic สังเกตโลก และสภาพแวดล้อมและส่งข้อมูลกลับมาให้กับ Learning element เช่น หลังจากที่แท็กซี่เลี้ยวซ้าย ตัดผ่าน 3 เลนด้วยความรวดเร็ว Critic ก็รับข้อมูลได้ว่ามีคำด่ามาจากรถคันอื่น ๆ จาก ประสบการณ์เช่นนี้ Learning element สามารถสร้างกฎว่าการกระทำเช่นนี้ไม่ดี และมีการ ปรับปรุง Performance element โดยเพิ่มกฎใหม่ข้อนี้เข้าไป ส่วน Problem generator อาจจะ จำแนกแยกแยะพฤติกรรมในครั้งต่อ ๆ มา เพื่อปรับปรุงให้ดีขึ้นและเสนอแนวทางอื่นให้ทดลอง นำมาใช้ เช่นทดลองเบรกเมื่ออยู่บนถนนอื่นและเมื่อพบเงื่อนไขอื่นที่ต่างออกไป ดูตัวอย่างในรูป ที่ 2.7

รูปที่ 2.7 แผนภาพของ Learning agent

แบบฝึกหัดบทที่ 2

- 1. เกณฑ์การวัดสมรรถนะ และยูติลิตี้ฟังก์ชัน มีส่วนที่เหมือนกันคือ ต่างก็เป็นตัววัดว่าเอเยนต์ ทำงานได้ดีเพียงใด แต่ทั้งสองก็มีข้อแตกต่างกัน จงอธิบายว่าข้อแตกต่างนี้คืออะไร
- 2. จากตัวอย่างเอเยนต์เครื่องดูดฝุ่นที่ใช้ในบทนี้ จงแสดงว่าเอเยนต์นี้มีลักษณะเป็นเอเยนต์ที่มี เหตุผล (Rational agent) โดยอ้างอิงข้อสมมติฐานของเอเยนต์ที่มีเหตุผล
- 3. จงบรรยายการออกแบบ PEAS ของเอเยนต์ต่อไปนี้
 - 3.1 หุ่นยนต์เก็บตัวอย่างหินบนดาวอังคาร
 - 3.2 เอเยนต์ร้านหนังสือในอินเทอร์เน็ต (Internet book-shopping agent)
 - 3.3 หุ่นยนต์นักล่ากระต่าย จากเรื่องบั๊กส์บันนี่ กระต่ายแสนกล (จากแบบฝึกหัดบทที่ 1)
- 4. สภาพแวดล้อมของเอเยนต์ในข้อ 3 มีลักษณะเป็นแบบใด เพราะเหตุใด
- 5. จงอธิบายว่าเพราะเหตุใดหมากรุกจึงมีลักษณะของสภาพแวดล้อมในงานเป็นแบบ
 - 5.1 Observable
 - 5.2 Deterministic
 - 5.3 Episodic
 - 5.4 Static
 - 5.5 Discrete
- 6. จงบรรยายสภาพแวดล้อมในงานของเกม Sudoku (เกมเติมตัวเลขลงในช่อง โดยมีตาราง ขนาด 9x9 ช่อง แต่ละแถวแนวนอน และแนวตั้งจะใส่ตัวเลขไม่ซ้ำกันตั้งแต่ 1-9 สำหรับใน ตารางย่อยขนาด 3x3 ก ็มีเลข 1-9 ไม่ซ้ำเช่นเดียวกัน นนอ.สามารถหาข้อมูลเพิ่มเติมได้จาก อินเทอร์เน็ต)