Mobile Wireless Communications 101

CSCI3310 Mobile Computing & Application Development

Question

- Why Carrier Signal is needed?
- Which frequencies are for our mobile?
- What affects the propagation of signal?
- (Optional) How multiple access in the "same air" is handled?

Wireless Communications

- Communications at any Time and Anywhere
- Brief history
 - Ancient Systems: Carrier Pigeons, Smoke Signals
 - Radio invented in the 1880s by Marconi
 - Many sophisticated military radio systems were developed during and after WW2

Electromagnetic Spectrum

Frequency and wave length:

$$\lambda = c/f$$

wave length λ , speed of light $c \cong 3x10^8 \text{m/s}$, frequency f

Radio Waves

- The radio spectrum is the part of the electromagnetic spectrum from 3Hz to 3THz
- Band: a small section of the radio communication frequencies

Signal propagation ranges

Transmission range

- communication possible
- low error rate

Detection range

- detection of the signal possible
- no communication possible

Interference range

- signal may not be detected
- signal adds to the background noise

Signal propagation

- Propagation in free space always like light (straight line)
- Receiving power proportional to 1/d² in vacuum much more in real environments (d = distance between sender and receiver)
- Path loss (attenuation)
- Fundamental propagation behaviors:
 - ground wave (<2MHz): follow earth's surface, long distances (submarine communication, AM radio)
 - **sky wave (2-30MHz):** reflected at ionosphere, around the world (intl. broadcasts, amateur radio)
 - line-of-sight (>30MHz): LOS, straight line, waves are bent by atmosphere due to refraction (mobile phones, satellite, cordless)
- Most systems we will discuss work with >100MHz: LOS (question: why and how do mobile phones work then???)

Antenna Size

- An **antenna** usually 1/2 wavelength long split at the exact center for connection to a feed line.
 - Dipoles are the most common wire **antenna**. **Length** is equal to 1/2 of the wavelength (λ) for the frequency of operation.
 - Monopole one half of a dipole antenna (i.e. = $\lambda/4$), almost always mounted above some sort of ground plane.

Frequencies for Mobile Communication

- Low Frequencies:
 - low data rates
 - travel long distances
 - follow Earth's surface
 - penetrate objects and water (submarine communication)
- High Frequencies:
 - high data rates
 - short distances
 - straight lines
 - cannot penetrate objects ("Line of Sight")?

Frequencies and Regulations

• ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

Examples	Europe	USA	Japan
Cellular phones	GSM 880-915, 925-960, 1710-1785, 1805-1880 UMTS 1920-1980, 2110-2170	AMPS, TDMA, CDMA, GSM 824-849, 869-894 TDMA, CDMA, GSM, UMTS 1850-1910, 1930-	PDC, FOMA 810-888, 893-958 PDC 1429-1453, 1477- 1501
	2170	1990	FOMA 1920-1980, 2110- 2170
Cordless phones	CT1+ 885-887, 930-932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930- 1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 245-380
Wireless LANs	802.11b/g 2412-2472	802.11b/g 2412-2462	802.11b 2412-2484 802.11g 2412-2472
Other RF systems	27, 128, 418, 433, 868	315, 915	426, 868

Current Wireless for Mobile

- Satellite Systems
- Cellular systems
- Wireless LANs
- Bluetooth
- Zigbee
- NFC
- NB-IoT

•

Wireless in Android

- GPS/GNSS
- GSM/3G/4G
- WiFi
- Bluetooth
- NFC

Other propagation effects

- Receiving power additionally influenced by
 - shadowing
 - reflection at large obstacles
 - refraction depending on the density of a medium
 - scattering at small obstacles
 - diffraction at edges

Propagation across Obstacles

The general rule of thumb to keep in mind:

- Attenuation on obstacles
 - greater than signal wavelength (>3 λ)
- Scattering on obstacles
 - Comparable but smaller than wavelength ($< \lambda$)
- Reflection on surface
 - Much greater than signal wavelength ($>>\lambda$, e.g. $>30\lambda$)

Multipath propagation

 Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

- Time dispersion: signal is dispersed over time
 - interference with "neighbor" symbols, Inter Symbol Interference (ISI)
- The signal reaches a receiver directly and phase shifted
 - distorted signal depending on the phases of the different parts

Effects of Mobility

- Channel characteristics change over time and location
 - signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts
 - → quick changes in the power received (short term fading)
- Additional changes in
 - distance to sender
 - obstacles further away
 - → slow changes in the average power received (long term fading)

Exercise

Given the operating frequency of GPS is 1.2GHz. What types of real world objects tends be significantly introduce the multi-path degradation for positioning system? and why?

Wireless Communications

- The air-interface is shared by many different users & services
- Each service has a certain allocated frequency
- Carrier modulation is needed to occupy only the given spectrum

Examples:

FM Radio: 88 – 108 MHz WLAN – 2.4 or 5 GHz

Cellular Radio: 806-890 MHz

GPS: 1215 – 1240 MHz

18

Modulation and demodulation

 Modulation is the process of varying one or more properties of a periodic <u>waveform</u>, called the <u>carrier signal</u>, with a modulating signal that typically contains information to be transmitted.

Analog Modulation

 Analog Modulation can vary amplitude, frequency of other properties of the <u>carrier signal</u> in transmission.

Digital Modulation

Modulation of digital signals known as Shift Keying

0

1

- Amplitude Shift Keying (ASK):
 - very simple
 - low bandwidth requirements
 - very susceptible to interference
- Frequency Shift Keying (FSK):
 - needs larger bandwidth
- Phase Shift Keying (PSK):
 - more complex
 - robust against interference

Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM)
 - combines amplitude and phase modulation
 - it is possible to code n bits using one symbol
 - 2ⁿ discrete levels, n=2 identical to QPSK
- Bit error rate increases with n, but less errors compared to comparable PSK schemes

 Q↑
 - Example: 16-QAM (4 bits = 1 symbol)
 - Symbols 0011 and 0001 have the same phase φ, but different amplitude a. 0000 and 1000 have different phase, but same amplitude.

Cellular Network

- Base stations transmit to and receive from mobiles at the assigned spectrum
 - Multiple base stations use the same spectrum (spectral reuse)
 - The service area of each base station is called a cell
- Each mobile terminal is typically served by the 'closest' base stations
 - Handoff when terminals move

The Multiple Access Problem

- The base stations need to serve many mobile terminals at the same time (both downlink and uplink)
- All mobiles in the cell need to transmit to the base station
- Interference among different senders and receivers
- So we need multiple access (also named multiplexing) scheme

Multiplexing Schemes

- Multiplexing in 4 dimensions
 - space (s_i)
 - time (t)
 - frequency (f)
 - code (c)
- Goal: multiple use of a shared medium
- Important: guard spaces needed!

channels k_i

Frequency division multiplexing (FDM)

- Separation of the whole spectrum into smaller frequency bands
- A channel gets a certain band of the spectrum for the whole time

Time division multiplexing (TDM)

 A channel gets the whole spectrum for a certain amount of time

Code Division Multiplexing (CDM)

- Each channel has unique code
- All channels use the same spectrum at the same time
- Advantages
 - bandwidth efficient
 - no coordination and synchronization necessary
 - good protection against interference and tapping
- Disadvantages
 - varying user data rates
 - more complex signal regeneration
- Implemented using spread technology

References

Suggested Reading

• Chapter 11. Ubiquitous Communication, Smart Devices, Environments and Interactions, Stefan Poslad, Wiley

 Chapter 1. Mobile Computing, Raj Kamal, Oxford Higher Education, Second Edition

https://en.wikipedia.org/wiki/Wireless