

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2000-137528
 (43)Date of publication of application : 16.05.2000

(51)Int.Cl. G05D 7/06

G01F 1/42

G05D 16/20

(21)Application number : 11-213633

(71)Applicant : OMI TADAHIRO
 TOKYO ELECTRON LTD
 FUJIKIN INC

(22)Date of filing : 28.07.1999

(72)Inventor : OMI TADAHIRO
 IIDA SEIICHI
 KAGATSUME SATORU
 HIROSE JUN
 UNO TOMIO
 NISHINO KOJI
 IKEDA SHINICHI
 YAMAJI MICHIO
 DOI RYOSUKE
 IDETA EIJI
 HIROSE TAKASHI
 YOSHIKAWA KAZUHIRO
 KOGAI MUTSUNORI

(30)Priority

Priority number : 10236653 Priority date : 24.08.1998 Priority country : JP

(54) METHOD AND DEVICE FOR DETECTING ORIFICE CLOGGING IN PRESSURE-TYPE FLOW RATE CONTROLLER

(57)Abstract:

PROBLEM TO BE SOLVED: To judge clogging with simple operation without disassembling piping by comparing reference pressure attenuation data when an orifice is not clogged with pressure attenuation data at the time of an actual operation and judging the propriety of clogging according to whether or not they are dissociated for not less than a prescribed degree.

1 of 2
Sect.
Sect.

SOLUTION: A setting flow rate is held to a high setting flow rate. The high setting flow rate is switched to a low setting flow rate and it is kept. Upper stream side pressure is measured and pressure attenuation data is obtained. Reference pressure attenuation data measured when an orifice is not clogged and pressure attenuation data obtained by measurement are compared with same conditions. When pressure attenuation data is dissociated from reference pressure attenuation data for not less than a prescribed degree, clogging is reported. The clogging detector is constituted of a central processing unit CPU, a memory device for data storage M, a communication part PT 42 with outside, the outer circuit 4 of a trigger circuit, an alarm circuit 46 at the time of clogging, a power source circuit SC 48 and the outer power source 50 of ± 15 V, for example.

LEGAL STATUS

[Date of request for examination]	29.10.2001
[Date of sending the examiner's decision of rejection]	
[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]	
[Date of final disposal for application]	
[Patent number]	3546153
[Date of registration]	16.04.2004
[Number of appeal against examiner's decision of rejection]	
[Date of requesting appeal against examiner's decision of rejection]	
[Date of extinction of right]	

(19)日本国特許庁 (J P)

(12) 公開特許公報(A)

(11)特許出願公開番号
特開2000-137528
(P2000-137528A)

(43)公開日 平成12年5月16日(2000.5.16)

(51) Int.Cl.⁷
G 0 5 D 7/06
G 0 1 F 1/42
G 0 5 D 16/20

識別記号

F I
G 0 5 D 7/06
G 0 1 F 1/42
G 0 5 D 16/20

テーマコード[®](参考)

審査請求 未請求 請求項の数10 O L (全 21 頁)

(21)出願番号	特願平11-213633	(71)出願人	000205041 大見 忠弘 宮城県仙台市青葉区米ヶ袋2-1-17-301
(22)出願日	平成11年7月28日(1999.7.28)	(71)出願人	000219967 東京エレクトロン株式会社 東京都港区赤坂5丁目3番6号
(31)優先権主張番号	特願平10-236653	(71)出願人	390033857 株式会社フジキン 大阪府大阪市西区立売堀2丁目3番2号
(32)優先日	平成10年8月24日(1998.8.24)	(74)代理人	100082474 弁理士 杉本 丈夫 (外1名)
(33)優先権主張国	日本 (JP)		

(54) 【発明の名称】 壓力式流量制御装置におけるオリフィス目詰検出方法およびその検出装置

(57) 【要約】

【課題】オリフィスを利用した流量制御装置において、オリフィスの目詰まりを配管を分解することなく上流側圧力の検出によって行い、流量制御装置の長寿命化と安全性を高める。

【解決手段】上流側圧力 P_1 を下流側圧力 P_2 の約2倍以上に保持して下流側の流量 Q_c を $Q_c = K P_1$ (K :定数)で演算し、この演算流量 Q_c と設定流量 Q_s との差信号 Q_d によりコントロール弁CVを開閉制御する流量制御装置FCSにおいて、オリフィス2に目詰まりがない条件下で高設定流量 Q_{sh} から低設定流量 Q_{sl} に切換えて測定された上流側圧力 P_1 の基準圧力減衰データY(t)を記憶したメモリ装置Mと、オリフィス2の実際条件下で高設定流量 Q_{sh} から低設定流量 Q_{sl} に切換えて上流側圧力 P_1 の圧力減衰データP(t)を測定する圧力検出器14と、圧力減衰データP(t)と基準圧力減衰データY(t)とを対比演算する中央演算処理装置CPUと、圧力減衰データP(t)が基準圧力減衰データY(t)より所定度以上開離したときに目詰まりを報知するアラーム回路46から目詰検出装置を構成する。

【特許請求の範囲】

【請求項1】 コントロール弁(CV)とオリフィス(2)とこれらの間の上流側圧力P₁を検出する圧力検出器(14)と流量設定回路(32)からなり、上流側圧力P₁を下流側圧力P₂の約2倍以上に保持して下流側の流量Q_cをQ_c = K P₁ (K:定数)で演算し、この演算流量Q_cと設定流量Q_sとの差信号Q_vによりコントロール弁(CV)を開閉制御する流量制御装置において、設定流量Q_sを高設定流量Q_{sH}に保持する第1工程と、この高設定流量Q_{sH}を低設定流量Q_{sL}に切換えて保持し上流側圧力P₁を測定して圧力減衰データP(t)を得る第2工程と、同条件でオリフィスに目詰りがないときに測定された基準圧力減衰データY(t)と前記圧力減衰データP(t)とを対比する第3工程と、圧力減衰データP(t)が基準圧力減衰データY(t)より所定度以上開離したときに目詰まりを報知する第4工程からなる圧力式流量制御装置におけるオリフィス目詰検出方法。

【請求項2】 前記高設定流量Q_{sH}は100%流量(フルスケール流量)であり、低設定流量Q_{sL}は0%流量(コントロール弁を完全閉鎖)であり、低設定流量に切換えてから所定時間後の圧力減衰データP(t)が基準圧力減衰データY(t)よりも基準値以上開離している場合に目詰まりを報知する請求項1記載の圧力式流量制御装置におけるオリフィス目詰検出方法。

【請求項3】 基準圧力減衰データY(t)及び圧力減衰データP(t)を、Y(t) = exp(-k t) (但し、kは減衰パラメータである)の形で表すようにした請求項1又は請求項2に記載のオリフィス目詰検出方法。

【請求項4】 コントロール弁(CV)とオリフィス(2)とこれらの間の上流側圧力P₁を検出する圧力検出器(14)と流量設定回路(32)からなり、上流側圧力P₁を下流側圧力P₂の約2倍以上に保持して下流側の流量Q_cをQ_c = K P₁ (K:定数)で演算し、この演算流量Q_cと設定流量Q_sとの差信号Q_vによりコントロール弁を開閉制御する流量制御装置において、設定流量Q_sを高設定流量Q_{sH}に保持する第1工程と、この高設定流量Q_{sH}を低設定流量Q_{sL}に切換えて保持し、上流側圧力P₁及び上流側温度T_tを測定すると共にこの測定値を用いて圧力減衰データP(t)を演算する第2工程と、同条件で、オリフィスに目詰りがないときに測定した上流側圧力P_t及び上流側温度T_tを用いて演算した基準圧力減衰データY(t)と、前記圧力減衰データP(t)とを対比する第3工程と、圧力減衰データP(t)が基準圧力減衰データY(t)より所定度以上開離したときに目詰まりを報知する第4工程からなる圧力式流量制御装置におけるオリフィス目詰検出方法。

【請求項5】 前記高設定流量Q_{sH}は100%流量(フ

ルスケール流量)であり、低設定流量Q_{sL}は0%流量(コントロール弁を完全閉鎖)であり、低設定流量に切換えてから所定時間後の圧力減衰データP(t)が基準圧力減衰データY(t)よりも基準値以上開離している場合に目詰まりを報知する請求項4記載の圧力式流量制御装置におけるオリフィス目詰検出方法。

【請求項6】 基準圧力減衰データY(t)及び圧力減衰データP(t)を、

【数1】

$$Y(t)(\text{又は} P(t)) = \frac{C_0 \sqrt{R_0 \cdot T_0}}{C_t \sqrt{R_t \cdot T_t}} \times \ln \frac{P_t}{P_0}$$

(但し、P₀・C₀・R₀・T₀は基準時のガスの上流側圧力・ガス比熱比の定数・ガス定数・ガス温度、P_t・C_t・R_t・T_tは到達時のガスの上流側圧力・ガス比熱比の定数・ガス定数・ガス温度である。)として演算するようにした請求項4又は請求項5に記載のオリフィス目詰検出方法。

【請求項7】 コントロール弁(CV)とオリフィス(2)とこれらの間の上流側圧力P₁を検出する圧力検出器(14)と流量設定回路(32)からなり、上流側圧力P₁を下流側圧力P₂の約2倍以上に保持して下流側の流量Q_cをQ_c = K P₁ (K:定数)で演算し、この演算流量Q_cと設定流量Q_sとの差信号Q_vによりコントロール弁を開閉制御する流量制御装置において、オリフィス(2)に目詰りがない条件下で高設定流量Q_{sH}から低設定流量Q_{sL}に切換えて測定された上流側圧力P₁の基準圧力減衰データY(t)を記憶したメモリ装置Mと、オリフィス(2)の実際条件下で高設定流量Q_{sH}から低設定流量Q_{sL}に切換えて上流側圧力P₁の圧力減衰データP(t)を測定する前記圧力検出器(14)と、圧力減衰データP(t)と基準圧力減衰データY(t)とを対比演算する中央演算処理装置CPUと、圧力減衰データP(t)が基準圧力減衰データY(t)より所定度以上開離すると目詰まりを報知するアラーム回路(46)からなる圧力式流量制御装置におけるオリフィス目詰検出装置。

【請求項8】 基準圧力減衰データY(t)及び圧力減衰データP(t)を、Y(t)(又はP(t)) = exp(-k t) (但し、kは減衰パラメータである)の形で表すようにした請求項7に記載のオリフィス目詰検出装置。

【請求項9】 コントロール弁(CV)とオリフィス(2)とこれらの間の上流側圧力P₁を検出する圧力検出器(14)と流量設定回路(32)からなり、上流側圧力P₁を下流側圧力P₂の約2倍以上に保持して下流側の流量Q_cをQ_c = K P₁ (K:定数)で演算し、この演算流量Q_cと設定流量Q_sとの差信号Q_vによりコントロール弁を開閉制御する流量制御装置において、オリフィス上流側圧力Pを測定する圧力検出器(14)

と、オリフィス上流側温度 T_1 を検出する温度検出器(2)と、オリフィス(2)に目詰まりがない条件下で高設定流量 Q_{s1} から低設定流量 Q_{s2} に切換えて測定した上流側圧力 P_1 及び上流側温度 T_1 を用いて演算した上流側圧力 P_1 の基準圧力減衰データ $Y(t)$ を記憶したメモリ装置Mと、前記基準圧力減衰データ $Y(t)$ を演算すると共に、オリフィス(2)の実際条件下で高設定流量 Q_{s1} から低設定流量 Q_{s2} に切換えて測定した上流側圧力 P_1 及び上流側温度 T_1 を用いて上流側圧力 P_1 の圧力減衰データ $P(t)$ を演算し、更に当該圧力減衰データ $P(t)$ と前記基準圧力減衰データ $Y(t)$ とを対比演算する中央演算処理装置CPUと、圧力減衰データ $P(t)$ が基準圧力減衰データ $Y(t)$ より所定度以上開離すると目詰まりを報知するアラーム回路(46)からなる圧力式流量制御装置におけるオリフィス目詰り検出装置。

【請求項10】 基準圧力減衰データ $Y(t)$ 及び圧力減衰データ $P(t)$ を、

【数2】

$$Y(t)(\text{又は } P(t)) = \frac{C_o \sqrt{R_o \cdot T_o}}{C_t \sqrt{R_t \cdot T_t}} \times \frac{P_t}{P_o}$$

(但し、 $P_o \cdot C_o \cdot R_o \cdot T_o$ は基準時のガスの上流側圧力・ガス比熱比の定数・ガス定数・ガス温度、 $P_t \cdot C_t \cdot R_t \cdot T_t$ は到達時のガスの上流側圧力・ガス比熱比の定数・ガス定数・ガス温度である)として演算するようにした請求項9に記載のオリフィス目詰り検出装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は半導体や化学品、薬品、精密機械部品等の製造に用いるガス等の各種流体の圧力式流量制御装置に関し、更に詳細には、オリフィス孔が目詰まりを生じた際にその目詰まりを検出する方法およびその検出装置に関する。

【0002】

【従来の技術】従来、半導体製造施設や化学薬品製造施設の流体供給装置であって高精度な流量制御を必要とするものは、その殆んどがマスフローコントローラを用いてきた。

【0003】しかし、マスフローコントローラには、①熱式流量センサの場合応答速度が比較的遅いこと、②低流量域における制御精度が悪いうえ製品毎に精度のバラツキがあること、③作動上トラブルが多くて安定性に欠けること、④製品価格が高い上、交換用部品も高価であってランニングコストが高くつくこと、等の様々な不都合が存在した。

【0004】そこで、本発明者等はこれらの欠点を改善すべく鋭意研究した結果、特開平8-338546号公報に示すオリフィスを用いた圧力式流量制御装置を開発

するに至った。

【0005】この圧力式流量制御装置の特徴は次の点にある。オリフィス前後の気体の圧力比 P_1/P_2 （ P_1 ：上流側圧力、 P_2 ：下流側圧力）が気体の臨界圧力比（空気や窒素等の場合は約0.5）以下になると、オリフィスを通る気体の流速が音速となって、オリフィス下流側の圧力変動が上流側に伝達しなくなり、オリフィス上流側の状態に相応した安定な質量流量を得ることができる。

10 【0006】即ち、オリフィス径が一定の場合、上流側圧力 P_1 を下流側圧力 P_2 の約2倍以上に設定すると、オリフィスを流通する下流側流量 Q_c は上流側圧力 P_1 にのみ依存し、 $Q_c = K P_1$ （K：定数）という直線関係が高精度に成立している。即ち、オリフィス径が同一なら、この定数Kも一定となる。

【0007】図12を用いてこの圧力式流量制御装置の構成を説明する。オリフィス2の上流側流路4は駆動部8により開閉されるコントロール弁CVに連結され、下流側流路6はガス取出用継手12を介して流体反応装置

20 (図示せず)に接続されている。

【0008】オリフィス上流側圧力 P_1 は圧力検出器14により検出され、增幅回路16を介して圧力表示器22に表示される。また、その出力はA/D変換器18を通してデジタル化され、演算回路20によりオリフィスの下流側流量 Q が $Q = K P_1$ （K：定数）により算出される。

【0009】一方、温度検出器24により検出された上流側温度 T_1 は增幅回路26、A/D変換器28を介して温度補正回路30に出力され、前記流量 Q が温度補正

30 されて、演算流量 Q_c が比較回路36に出力される。ここでは、演算回路20と温度補正回路30と比較回路36をまとめて演算制御回路38と呼ぶ。

【0010】流量設定回路32からはA/D変換器34を介して設定流量 Q_s が出力され、比較回路36に送信される。比較回路36では演算流量 Q_c と設定流量 Q_s の差信号 Q_d が $Q_d = Q_c - Q_s$ によって算出され、增幅回路40を介して駆動部8に出力される。この駆動部8は差信号 Q_d が零になる方向にコントロール弁CVを開閉制御して、下流側流量が設定流量に等しくなるように制御するものである。

【0011】

【発明が解決しようとする課題】この圧力式流量制御装置は上流側圧力 P_1 を検出するだけで下流側流量を高精度に制御できる点で優れているが、オリフィスを使用するためにその微細孔が目詰りするという弱点を有している。オリフィスはミクロンオーダーのオリフィス孔であり、このオリフィス孔がゴミ等で目詰りし、流量制御が不可能になることがある。

【0012】流量制御される配管の内部は高度に清浄化されていなければならないが、配管時のキリコ、ゴミ等

が残留する可能性がある。オリフィスが目詰まりを生じた場合には、流量制御ができないためにプラント全体が不安定になり、大量の不良品を発生することになる。またガス流体の種類によっては化学反応が暴走して爆発事故が起こる危険性もあった。これを防止するために、配管内にガスケットフィルタを内蔵することも検討されたが、配管のコンダクタンスに影響を与える欠点を有する。

【0013】図13にはオリフィスに目詰まりが発生した場合の流量特性が示されている。バージ後流量特性とは目詰まりがない場合の特性であり、例えば、図13に於いて設定値を100%と指示した場合には、目詰まりがなければN₂ガスは563.1 SCCM(印)流れることはある。後続の反応系は全て期待通りの流量で設計されている。ところが目詰まりがあると、この場合には485SCCM(印)しか流れず、設計通りの反応が期待できなくなる。但し、SCCMは標準状態の下に於ける1分間当たりのガスの流量(cc)を表わすものである。

【0014】このように、オリフィスに目詰まりが生じると、流量が設定値よりも低下する現象が出現する。半導体や化学プラントでは、原料ガスに過不足が生じた場合には爆発が発生したり、製品に大量の損害が生じ、オリフィスの目詰まりをどのように検出するかが大きな課題とされていた。

【0015】

【課題を解決するための手段】本発明は上記欠点を改善するためになされたものであり、請求項1に記載の圧力式流量制御装置におけるオリフィス目詰検出方法は、コントロール弁とオリフィスとこれらの間の上流側圧力を検出する圧力検出器と流量設定回路からなり、上流側圧力P₁を下流側圧力P₂の約2倍以上に保持して下流側の流量Q_cをQ_c = K P₁(K:定数)で演算し、この演算流量Q_cと設定流量Q_sとの差信号Q_vによりコントロール弁を開閉制御する流量制御装置において、設定流量Q_sを高設定流量Q_{sH}に保持する第1工程と、この高設定流量Q_{sH}を低設定流量Q_{sL}に切換えて保持し上流側圧力P₁を測定して圧力減衰データP(t)を得る第2工程と、同条件でオリフィスに目詰まりがないときに測定された基準圧力減衰データY(t)と前記圧力減衰データP(t)とを対比する第3工程と、圧力減衰データP(t)が基準圧力減衰データY(t)より所定度以上開離したときに目詰まりを報知する第4工程から構成されている。

【0016】請求項4に記載の圧力式流量制御装置における目詰検出方法は、コントロール弁CVとオリフィス2とこれらの間の上流側圧力P₁を検出する圧力検出器14と流量設定回路32からなり、上流側圧力P₁を下流側圧力P₂の約2倍以上に保持して下流側の流量Q_cをQ_c = K P₁(K:定数)で演算し、この演算流量Q_c

と設定流量Q_sとの差信号Q_vによりコントロール弁CVを開閉制御する流量制御装置において、設定流量Q_sを高設定流量Q_{sH}に保持する第1工程と、この高設定流量Q_{sH}を低設定流量Q_{sL}に切換えて保持し、上流側圧力P₁及び上流側温度T₁を測定すると共にこの測定値を用いて圧力減衰データP(t)を演算する第2工程と、同条件で、オリフィスに目詰まりがないときに測定した上流側圧力P₁及び上流側温度T₁を用いて演算した基準圧力減衰データY(t)と、前記圧力減衰データP(t)とを対比する第3工程と、圧力減衰データP(t)が基準圧力減衰データY(t)より所定度以上開離したときに目詰まりを報知する第4工程から構成されている。

【0017】また、請求項7に記載の圧力式流量制御装置におけるオリフィス目詰検出装置は、コントロール弁とオリフィスとこれらの間の上流側圧力を検出する圧力検出器と流量設定回路からなり、上流側圧力P₁を下流側圧力P₂の約2倍以上に保持して下流側の流量Q_cをQ_c = K P₁(K:定数)で演算し、この演算流量Q_cと設定流量Q_sとの差信号Q_vによりコントロール弁を開閉制御する流量制御装置において、オリフィスに目詰まりがない条件下で高設定流量Q_{sH}から低設定流量Q_{sL}に切換えて測定された上流側圧力P₁の基準圧力減衰データY(t)を記憶したメモリ装置と、オリフィスの実際条件下で高設定流量Q_{sH}から低設定流量Q_{sL}に切換えて、上流側圧力P₁の圧力減衰データP(t)を測定する前記圧力検出器と、圧力減衰データP(t)と基準圧力減衰データY(t)とを対比演算する中央演算処理装置と、圧力減衰データP(t)が基準圧力減衰データY(t)より所定度以上開離すると目詰まりを報知するアラーム回路から構成されている。

【0018】請求項9に記載の圧力式流量制御装置に於けるオリフィス目詰検出装置は、コントロール弁CVとオリフィス2とこれらの間の上流側圧力P₁を検出する圧力検出器14と流量設定回路32からなり、上流側圧力P₁を下流側圧力P₂の約2倍以上に保持して下流側の流量Q_cをQ_c = K P₁(K:定数)で演算し、この演算流量Q_cと設定流量Q_sとの差信号Q_vによりコントロール弁を開閉制御する流量制御装置において、オリフィス上流側圧力P₁を測定する圧力検出器14と、オリフィス上流側温度T₁を検出する温度検出器24と、オリフィス2に目詰まりがない条件下で高設定流量Q_{sH}から低設定流量Q_{sL}に切換えて測定した上流側圧力P₁及び上流側温度T₁を用いて演算した上流側圧力P₁の基準圧力減衰データY(t)を記憶したメモリ装置と、前記基準圧力減衰データY(t)を演算すると共に、オリフィス2の実際条件下で高設定流量Q_{sH}から低設定流量Q_{sL}に切換えて測定した上流側圧力P₁及び上流側温度T₁を用いて上流側圧力P₁の圧力減衰データP(t)を演算し、更に当該圧力減衰データP(t)と前記基準

圧力減衰データY(t)とを対比演算する中央演算処理装置CPUと、圧力減衰データP(t)が基準圧力減衰データY(t)より所定度以上離隔すると目詰まりを報知するアラーム回路46から構成されている。

【0019】

【発明の実施の形態】本発明は、図12と同様の圧力式流量制御装置に用いるオリフィス目詰検出方法と目詰検出装置に関するものであり、圧力式流量制御装置が動作する前提条件は同一である。即ち、上流側圧力P₁を下流側圧力P₂の約2倍以上に設定した場合には、オリフィスの下流側流量Q_cは上流側圧力P₁にのみ依存し、 $Q_c = K P_1$ という線形条件が高精度に成立している。オリフィスが同一の場合には比例定数Kは一定となり、オリフィス孔の異なるオリフィスに変換する場合にのみ定数Kを変更すればよい。

【0020】従って、特定の流体を一定の流量Q_sに制御するには、上流側圧力P₁を $P_1 = Q_s / K$ の値になるようにコントロール弁CVを開閉制御すればよいことになる。即ち、上流側圧力P₁を常時測定しながら、それに一対一の対応の関係でコントロール弁CVを開閉すればよいのである。

【0021】

【実施例】図1は本発明に係る流量制御装置における目詰検出装置の一例を示している。本装置は図12の装置と機能的に同等であるが、マイクロコンピュータ制御である点で異なる。従って、図12と同一部分には同一番号を付してその説明を省略し、異なる符号および詳細点を以下に説明する。

【0022】CPUは中央演算処理装置で、図12の演算制御回路38に相当し、Mはデータ記憶用のメモリ装置、42は外部との通信ポートPT、44はトリガー回路等の外部回路、46は目詰まり時のアラーム回路、48は電源回路SC、50は±15Vの外部電源である。AMPは増幅回路、A/DはA/D変換器を表わしている。

【0023】コントロール弁CVとしては、所謂ダイレクトタッチ型のメタルダイヤフラム弁が使用されており、またその駆動部8には、圧電素子型駆動装置が使用されている。尚、コントロール弁CVの駆動部8にはこの他に、磁歪素子型駆動装置やソレノイド型駆動装置、モータ型駆動装置、空気圧型駆動装置、熱膨張型駆動装置が用いられる。

【0024】圧力検出器14には半導体歪型圧力センサが使用されているが、この他に、金属箔歪型圧力センサや静電容量型圧力センサ、磁気抵抗型圧力センサ等の使用も可能である。

【0025】温度検出器24には熱電対型温度センサが使用されているが、測温抵抗型温度センサー等の公知の各種温度センサが使用できる。

【0026】

製ガスケットに切削加工によって孔部を設けたオリフィスが使用されているが、この他に極細パイプやエッティング及び放電加工により金属膜に孔を形成したオリフィス等、公知のオリフィスを使用することもできる。

【0027】オリフィスを用いた流量制御装置をFCSと略称するが、図1に示した流量制御装置FCSは、本発明に係るオリフィス目詰検出装置を組込んだものである。次に、図1に示す流量制御装置FCSの通常の流量制御モードを図2のフローチャートにより説明する。

【0028】図2はプラント運転時における流量制御のフローチャートであり、メモリ装置Mに記憶されたプログラムに従って中央演算処理装置CPUにより実行される。ステップn1で流量制御モードであることが確認(Y)されると、流量設定回路32から流量設定信号(設定流量)Q_sが入力される(n2)。圧力検出器14により上流側圧力P₁が測定され(n3)、増幅回路16およびA/D変換器18を介して中央演算処理装置CPUにより下流側流量Qが $Q = K P_1$ (K:定数)を通して演算される(n4)。

【0029】同時に、上流側温度T₁が温度検出器24により検出され(n5)、増幅回路26およびA/D変換器28を介して前記装置CPUに入力され、このデータに基づいて流量の温度補正が行なわれ、流量Qが演算流量Q_cへと変換される(n6)。装置CPUの中では、演算流量Q_cと設定流量Q_sの差Q_vが $Q_v = Q_c - Q_s$ により算出される(n7)。

【0030】この流量差信号Q_vが零になるように、コントロール弁CVを以下のステップで制御する。まずQ_v < 0の場合(n8)にはコントロール弁CVを開方向に駆動部8により制御し(n9)、またQ_v > 0の場合(n10)コントロール弁CVを閉方向に駆動(n11)して、ステップn3に戻る。Q_v = 0の場合には、流量制御が完成したものとしてコントロール弁CVを現在の開度で固定する(n12)。流量差Q_vを完全に零にすることは難かしいから、ステップn8およびn10には多少の余裕度を設定することもできる。

【0031】流量設定回路32の設定流量Q_sについて説明しておく。この設定流量(流量設定信号)Q_sは通常電圧値で与えられ、しかも上流側圧力の設定値P₁と $P_1 = Q_s / K$ の関係が成立している。例えば流量を0~5(V)で表示すると、圧力範囲0~3(kgf/cm²abs)に対応しているという訳である。この範囲をパーセント表示して0~100(%)で表わすと、フルスケール100(%)は流量Q_sでは5(V)、上流側圧力P₁では3(kgf/cm²abs)に対応している。例えば、設定値が50(%)なら流量Q_sは2.5(V)、圧力P₁は1.5(kgf/cm²abs)に相当している。以下の説明では上記を前提とする。

【0032】次に、オリフィスの目詰まりを検出するために、基礎データとなる基準圧力減衰データY(t)を40 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 362 364 366 368 370 372 374 376 378 380 382 384 386 388 390 392 394 396 398 400 402 404 406 408 410 412 414 416 418 420 422 424 426 428 430 432 434 436 438 440 442 444 446 448 450 452 454 456 458 460 462 464 466 468 470 472 474 476 478 480 482 484 486 488 490 492 494 496 498 500 502 504 506 508 510 512 514 516 518 520 522 524 526 528 530 532 534 536 538 540 542 544 546 548 550 552 554 556 558 560 562 564 566 568 570 572 574 576 578 580 582 584 586 588 590 592 594 596 598 600 602 604 606 608 610 612 614 616 618 620 622 624 626 628 630 632 634 636 638 640 642 644 646 648 650 652 654 656 658 660 662 664 666 668 670 672 674 676 678 680 682 684 686 688 690 692 694 696 698 700 702 704 706 708 710 712 714 716 718 720 722 724 726 728 730 732 734 736 738 740 742 744 746 748 750 752 754 756 758 760 762 764 766 768 770 772 774 776 778 780 782 784 786 788 790 792 794 796 798 800 802 804 806 808 810 812 814 816 818 820 822 824 826 828 830 832 834 836 838 840 842 844 846 848 850 852 854 856 858 860 862 864 866 868 870 872 874 876 878 880 882 884 886 888 890 892 894 896 898 900 902 904 906 908 910 912 914 916 918 920 922 924 926 928 930 932 934 936 938 940 942 944 946 948 950 952 954 956 958 960 962 964 966 968 970 972 974 976 978 980 982 984 986 988 990 992 994 996 998 1000 1002 1004 1006 1008 1010 1012 1014 1016 1018 1020 1022 1024 1026 1028 1030 1032 1034 1036 1038 1040 1042 1044 1046 1048 1050 1052 1054 1056 1058 1060 1062 1064 1066 1068 1070 1072 1074 1076 1078 1080 1082 1084 1086 1088 1090 1092 1094 1096 1098 1100 1102 1104 1106 1108 1110 1112 1114 1116 1118 1120 1122 1124 1126 1128 1130 1132 1134 1136 1138 1140 1142 1144 1146 1148 1150 1152 1154 1156 1158 1160 1162 1164 1166 1168 1170 1172 1174 1176 1178 1180 1182 1184 1186 1188 1190 1192 1194 1196 1198 1200 1202 1204 1206 1208 1210 1212 1214 1216 1218 1220 1222 1224 1226 1228 1230 1232 1234 1236 1238 1240 1242 1244 1246 1248 1250 1252 1254 1256 1258 1260 1262 1264 1266 1268 1270 1272 1274 1276 1278 1280 1282 1284 1286 1288 1290 1292 1294 1296 1298 1300 1302 1304 1306 1308 1310 1312 1314 1316 1318 1320 1322 1324 1326 1328 1330 1332 1334 1336 1338 1340 1342 1344 1346 1348 1350 1352 1354 1356 1358 1360 1362 1364 1366 1368 1370 1372 1374 1376 1378 1380 1382 1384 1386 1388 1390 1392 1394 1396 1398 1400 1402 1404 1406 1408 1410 1412 1414 1416 1418 1420 1422 1424 1426 1428 1430 1432 1434 1436 1438 1440 1442 1444 1446 1448 1450 1452 1454 1456 1458 1460 1462 1464 1466 1468 1470 1472 1474 1476 1478 1480 1482 1484 1486 1488 1490 1492 1494 1496 1498 1500 1502 1504 1506 1508 1510 1512 1514 1516 1518 1520 1522 1524 1526 1528 1530 1532 1534 1536 1538 1540 1542 1544 1546 1548 1550 1552 1554 1556 1558 1560 1562 1564 1566 1568 1570 1572 1574 1576 1578 1580 1582 1584 1586 1588 1590 1592 1594 1596 1598 1600 1602 1604 1606 1608 1610 1612 1614 1616 1618 1620 1622 1624 1626 1628 1630 1632 1634 1636 1638 1640 1642 1644 1646 1648 1650 1652 1654 1656 1658 1660 1662 1664 1666 1668 1670 1672 1674 1676 1678 1680 1682 1684 1686 1688 1690 1692 1694 1696 1698 1700 1702 1704 1706 1708 1710 1712 1714 1716 1718 1720 1722 1724 1726 1728 1730 1732 1734 1736 1738 1740 1742 1744 1746 1748 1750 1752 1754 1756 1758 1760 1762 1764 1766 1768 1770 1772 1774 1776 1778 1780 1782 1784 1786 1788 1790 1792 1794 1796 1798 1800 1802 1804 1806 1808 1810 1812 1814 1816 1818 1820 1822 1824 1826 1828 1830 1832 1834 1836 1838 1840 1842 1844 1846 1848 1850 1852 1854 1856 1858 1860 1862 1864 1866 1868 1870 1872 1874 1876 1878 1880 1882 1884 1886 1888 1890 1892 1894 1896 1898 1900 1902 1904 1906 1908 1910 1912 1914 1916 1918 1920 1922 1924 1926 1928 1930 1932 1934 1936 1938 1940 1942 1944 1946 1948 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050 2052 2054 2056 2058 2060 2062 2064 2066 2068 2070 2072 2074 2076 2078 2080 2082 2084 2086 2088 2090 2092 2094 2096 2098 2100 2102 2104 2106 2108 2110 2112 2114 2116 2118 2120 2122 2124 2126 2128 2130 2132 2134 2136 2138 2140 2142 2144 2146 2148 2150 2152 2154 2156 2158 2160 2162 2164 2166 2168 2170 2172 2174 2176 2178 2180 2182 2184 2186 2188 2190 2192 2194 2196 2198 2200 2202 2204 2206 2208 2210 2212 2214 2216 2218 2220 2222 2224 2226 2228 2230 2232 2234 2236 2238 2240 2242 2244 2246 2248 2250 2252 2254 2256 2258 2260 2262 2264 2266 2268 2270 2272 2274 2276 2278 2280 2282 2284 2286 2288 2290 2292 2294 2296 2298 2300 2302 2304 2306 2308 2310 2312 2314 2316 2318 2320 2322 2324 2326 2328 2330 2332 2334 2336 2338 2340 2342 2344 2346 2348 2350 2352 2354 2356 2358 2360 2362 2364 2366 2368 2370 2372 2374 2376 2378 2380 2382 2384 2386 2388 2390 2392 2394 2396 2398 2400 2402 2404 2406 2408 2410 2412 2414 2416 2418 2420 2422 2424 2426 2428 2430 2432 2434 2436 2438 2440 2442 2444 2446 2448 2450 2452 2454 2456 2458 2460 2462 2464 2466 2468 2470 2472 2474 2476 2478 2480 2482 2484 2486 2488 2490 2492 2494 2496 2498 2500 2502 2504 2506 2508 2510 2512 2514 2516 2518 2520 2522 2524 2526 2528 2530 2532 2534 2536 2538 2540 2542 2544 2546 2548 2550 2552 2554 2556 2558 2560 2562 2564 2566 2568 2570 2572 2574 2576 2578 2580 2582 2584 2586 2588 2590 2592 2594 2596 2598 2600 2602 2604 2606 2608 2610 2612 2614 2616 2618 2620 2622 2624 2626 2628 2630 2632 2634 2636 2638 2640 2642 2644 2646 2648 2650 2652 2654 2656 2658 2660 2662 2664 2666 2668 2670 2672 2674 2676 2678 2680 2682 2684 2686 2688 2690 2692 2694 2696 2698 2700 2702 2704 2706 2708 2710 2712 2714 2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778 2780 2782 2784 2786 2788 2790 2792 2794 2796 2798 2800 2802 2804 2806 2808 2810 2812 2814 2816 2818 2820 2822 2824 2826 2828 2830 2832 2834 2836 2838 2840 2842 2844 2846 2848 2850 2852 2854 2856 2858 2860 2862 2864 2866 2868 2870 2872 2874 2876 2878 2880 2882 2884 2886 2888 2890 2892 2894 2896 2898 2900 2902 2904 2906 2908 2910 2912 2914 2916 2918 2920 2922 2924 2926 2928 2930 2932 2934 2936 2938 2940 2942 2944 2946 2948 2950 2952 2954 2956 2958 2960 2962 2964 2966 2968 2970 2972 2974 2976 2978 2980 2982 2984 2986 2988 2990 2992 2994 2996 2998 3000 3002 3004 3006 3008 3010 3012 3014 3016 3018 3020 3022 3024 3026 3028 3030 3032 3034 3036 3038 3040 3042 3044 3046 3048 3050 3052 3054 3056 3058 3060 3062 3064 3066 3068 3070 3072 3074 3076 3078 3080 3082 3084 3086 3088 3090 3092 3094 3096 3098 3100 3102 3104 3106 3108 3110 3112 3114 3116 3118 3120 3122 3124 3126 3128 3130 3132 3134 3136 3138 3140 3142 3144 3146 3148 3150 3152 3154 3156 3158 3160 3162 3164 3166 3168 3170 3172 3174 3176 3178 3180 3182 3184 3186 3188 3190 3192 3194 3196 3198 3200 3202 3204 3206 3208 3210 3212 3214 3216 3218 3220 3222 3224 3226 3228 3230 3232 3234 3236 3238 3240 3242 3244 3246 3248 3250 3252 3254 3256 3258 3260 3262 3264 3266 3268 3270 3272 3274 3276 3278 3280 3282 3284 3286 3288 3290 3292 3294 3296 3298 3300 3302 3304 3306 3308 3310 3312 3314 3316 3318 3320 3322 3324 3326 3328 3330 3332 3334 3336 3338 3340 3342 3344 3346 3348 3350 3352 3354 3356 3358 3360 3362 3364 3366 3368 3370 3372 3374 3376 3378 3380 3382 3384 3386 3388 3390 3392 3394 3396 3398 3400 3402 3404 3406 3408 3410 3412 3414 3416 3418 3420 3422 3424 3426 3428 3430 3432 3434 3436 3438 3440 3442 3444 3446 3448 3450 3452 3454 3456 3458 3460 3462 3464 3466 3468 3470 3472 3474 3476 3478 3480 3482 3484 3486 3488 3490 3492 3494 3496 3498 3500 3502 3504 3506 3508 3510 3512 3514 3516 3518 3520 3522 3524 3526 3528 3530 3532 3534 3536 3538 3540 3542 3544 3546 3548 3550 3552 3554 3556 3558 3560 3562 3564 3566 3568 3570 3572 3574 3576 3578 3580 3582 3584 3586 3588 3590 3592 3594 3596 3598 3600 3602 3604 3606 3608 3610 3612 3614 3616 3618 3620 3622 3624 3626 3628 3630 3632 3634 3636 3638 3640 3642 3644 3646 3648 3650 3652 3654 3656 3658 3660 3662 3664 3666 3668 3670 3672 3674 3676 3678 3680 3682 3684 3686 3688 3690 3692 3694 3696 3698 3700 3702 3704 3706 3708 3710 3712 3714 3716 3718 3720 3722 3724 372

測定する基準減衰モードを説明する。この基準減衰モードは、オリフィスの目詰まりが全く無い状態のとき、コントロール弁を大きく開放（全開状態）した状態から閉鎖（全閉状態）したときに上流側圧力 P_1 がどのように減衰するかを調べるもので、目詰まりがある場合と対比するための基準データとなるものである。

【0033】図3は基準減衰モードの第1実施例を示すフローチャートであり、外部回路44からの信号によりメモリ装置Mに記憶されたプログラムが始動実行される。

【0034】基準減衰モードであることが確認されると（n20）、設定流量 Q_s として高設定流量 Q_{sh} がCPUにセットされる（n21）。この高設定流量 Q_{sh} としてはフルスケールの100%が一般的である。この状態で上流側圧力 P_1 が測定され、このレンジでの最大値として最大圧力 P_m で表わす（n22）。次に外部回路44からのトリガー信号により、設定流量 Q_s として低設定流量 Q_{sl} がセットされ、この時点を時刻 $t = 0$ （s）とする（n23）。低設定流量 Q_{sl} としては0%が一般的である。即ち、上流側圧力 P_1 を最大値から零（コントロール弁を全閉）にしてから上流側圧力 P_1 の減衰を計測するのである。

【0035】 $t = 0$ から上流側圧力 P_1 を測定し（n24）、時刻と圧力データ（ t 、 P_1/P_m ）をメモリ装置Mに記憶させる（n25）。 P_1/P_m にしたのは圧力を規格化しただけであって、全く規格化しなくてもよいし、他の方法をとってもよい。時刻を微小時間 Δt だけ進ませ（n26）、測定時間 t_m になるまで（27）、データ（ t 、 P_1/P_m ）を測定しながらメモリ装置Mに蓄えるのである。ここで測定時間 t_m はデータを蓄積できる時間であればよく、例えば5（s）、20（s）等である。次に得られた多数のデータ（ t 、 P_1/P_m ）に、 $Y(t) = \exp(-kt)$ を最小二乗法によりフィッティングし（n28）、減衰パラメータ k を算出する（n29）。尚、現実の具体的な測定に於いては、前記測定時間 t_m を1s～10sに亘って8段階に切換えて設定できるようにしており、また、内径が150μmのオリフィスの場合には、この間に50点の上流側圧力 P_1 を測定している。

【0036】このようにして、基準圧力減衰データ $Y(t)$ が理論式 $Y(t) = \exp(-kt)$ として与えられる。目詰まりのない同一のオリフィス孔に対しては、減衰パラメータ k は一定値となる。この基準圧力減衰データ $Y(t)$ がメモリ装置Mに記憶される。

【0037】基準圧力減衰データ $Y(t)$ は図4に細実線で示され、最大値は1に規格化されている。もちろん規格化せずに圧力 P_1 の値を減衰データとしてもよい。上記の方法では、 $Q_{sh} \rightarrow Q_{sl}$ の変化を100%→0%、即ちコントロール弁CVでは全開→全閉としたが、これに限られるものではない。例えば $Q_{sh} = 50\%$ とするこ

ともでき、また $Q_{sl} = 20\%$ とすることも可能である。その中でも減衰曲線が最も顕著なカーブを示すものとして100%→0%が選択されたに過ぎないものである。

【0038】基準圧力減衰データ $Y(t)$ は、オリフィスに目詰まりがない最良条件下で測定されたものであり、一般的な意味で目詰りがない状態はこの最良条件を意味するものではない。例えば、小量の目詰まりがあつても目詰まりなしと判定する場合もあり、本実施例ではフルスケール値で±0.2%、従って規格化が1の場合には±0.002を目詰まりなしの誤差範囲とする。この誤差範囲は状況に応じて種々変更することができる。

【0039】次に、フローファクタFFについて説明しておく。本発明に係る流量制御装置は、同一のオリフィスで複数のガス種を制御できる利点を有する。前述したように、同一のオリフィス径のオリフィスでは、下流側流量 Q_c は $Q_c = K P_1$ （K：定数）で与えられることが分っている。この場合、定数Kはガス種が変わると変化することが知られている。

【0040】例えば、N₂ガス、Arガス、O₂ガスに対応して、定数Kを K_N 、 K_A 、 K_O と表わそう。通常、N₂ガスを基準にしたフローファクタFFで表わすことが行なわれている。従って、N₂ガス、Arガス、O₂ガスのフローファクタFFを FF_N 、 FF_A 、 FF_O で表わすと、 $FF_N = K_N / K_N = 1$ 、 $FF_A = K_A / K_N$ 、 $FF_O = K_O / K_N$ で与えられる。つまり、フローファクタFFとは実際のガスの流量とN₂換算流量との比率であり、 $FF = \text{実ガス流量} / N_2 \text{換算流量}$ で定義されるファクタである。表1にガス種毎のフローファクタの値が掲載されている。

【0041】
【表1】

ガス種	F.F.
N ₂	1.0000
C ₄ F ₈	0.3523
Ar	0.8878
CO	0.9999
O ₂	0.9352

フローファクター F.F.	
ガス種	F.F.
N ₂	1.0000
C ₄ F ₈	0.3523
Ar	0.8878
CO	0.9999
O ₂	0.9352

$$FF = \frac{\text{実ガスの流量}}{N_2 \text{換算流量}}$$

【0042】発明者等は、基準圧力減衰データ $Y(t) = \exp(-kt)$ の減衰パラメータ k がフローファクタFFと密接な関係を有していることを究明するに到った。その関係式は流量と同様に、実ガス減衰パラメータ $= FF \times N_2$ ガス減衰パラメータである。従って、N₂ガスの減衰パラメータ k_N さえ測定しておけば、任意ガスの減衰パラメータ k は $k = FF \times k_N$ によって決めることができる。

【0043】図5は、実際に使用しているオリフィスに

に対する目詰検出モードのフローチャートである。目詰検出は実際のプラント運転時は困難であるから、プロセス終了後、設定流量が規定値（即ち、設定流量値が1Vを越える任意の値・しきい値）になると、その減少方向をトリガ信号として目詰検出モードに入る。

【0044】本実施例では設定流量値が1Vになれば、トリガ信号 T_{r1} が中央演算処理装置CPUに入力される。この信号により目詰検出モードであることを確認し（n30）、メモリ装置Mから基準圧力減衰データ $Y(t)$ をCPUに送信する（n31）。このデータとしては実際に測定対象としている実ガスに対する $Y(t)$ でもよいし、 N_2 に対する減衰パラメータkとフローファクタFFでもよい。後者の場合には $Y(t) = \exp(-k t \times FF)$ によって実ガスに対する基準圧力減衰データ $Y(t)$ を算出することができる。本実施例では、初期設定時に前記 $Y(f)$ として、メモリ装置Mに下表のようなテーブルをメモリしておき、当該テーブルとの比較により目詰まり検出を行なうようにしている。

【表2】

時間 (msec)	圧力センサ出力 (v)
0	5.00
20	4.20
40	3.80
60	3.50
⋮	⋮
⋮	⋮
1000	0.00

【0045】次に、高設定流量 Q_{s1} を入力し、この時点を $t=0$ (s) として時間計測を行ない（n32）、上流側圧力 P_1 を測定し、その値を最大圧力 P_m とする（n33）。微小時間 Δt を多数回繰返しながら（n34）、高設定時間 t_1 になると（n35）、低設定流量 Q_{s2} に切換え、この時点を再び $t=0$ (s) とする（n36）。本実施例では、前述した通り高設定流量 $Q_{s1}=100\%$ 、低設定流量 $Q_{s2}=0\%$ とし、高設定時間 $t_1=1$ (s) とする。この高設定時間 t_1 は上流側圧力 P_1 が安定する時間であれば任意に採ることができる。

【0046】更に、微小時間 Δt を多数回繰返しながら（n37）、時間が低設定時間 t_1 になると（n38）、上流側圧力 $P_1(t_1)$ を検出する（n39）。最大圧力 P_m で規格化した圧力減衰データ $P(t_1)=P_1(t_1)/P_m$ が、基準圧力減衰データ $Y(t_1)$ から誤差 m の範囲内に存在すれば（n40）、目詰なしを表示し、アラーム信号ALをオフにする（n42）。もし誤差範囲外であれば（n40）、目詰を表示し、アラーム信号ALをオンにする（n41）。

【0047】前記の低設定時間 t_1 は対比時間であり、0.6 (s) でも1.6 (s) でもよく、対比が容易な時間を選定すればよい。また、圧力減衰データ $P(t)$

は上流側圧力 $P_1(t)$ を最大圧力 P_m により規格化したもの用いたが、別段規格化しなくてもよい。規格化しない場合には、基準圧力減衰データ $Y(t)$ も規格化しないで用いた方がよい。この場合、ステップn40は $|P_1(t_1) - Y(t_1)| / P_m < n$ の計算式になる。即ち、規格化した場合は $P(t) = P_1(t) / P_m$ となるが、規格化しない場合は $P(t) = P_1(t)$ とすればよいのである。この他にも圧力減衰データ $P(t)$ の定数があり、重要なことは $P(t)$ と $Y(t)$ の定数をオリフィスの目詰まり以外は同一条件に設定しておくことである。

【0048】本実施例では、誤差 m は0.2%F.S.、即ち $m=0.002$ を設定している。しかし、この誤差範囲は仮に目詰まりがないとする範囲を与えるにすぎないから、0.5%F.S.、即ち $m=0.005$ と設定してもよく、精度に応じた任意性を有している。

【0049】また、図5の本実施例では $t=t_1$ の1点のデータで目詰判断をしたが、複数時点の判断でもよく、更に多数の点を利用し、圧力減衰曲線全体での対比判断を行ってもよい。尚、現実の実施に於いては、 $t=t_1 \sim t=t_1 + \Delta t$ の4～5点について連続的に上述の如き目詰判断をし、各点に於ける初期基準値と測定値の差データの積算平均でもって最終的な目詰判断を行っている。

【0050】圧力減衰曲線を示す図4から判るように、目詰まりがない場合の細実線に対して±0.2%F.S.の誤差範囲を点線により与えている。この点線範囲内に含まれた場合には、目詰まりなしである。太実線は規格化された圧力減衰データであり、約1.6秒後の実測値が点線範囲外にあるため、目詰表示がなされ、アラームが報知される。

【0051】図6は、図5の実施例に於ける信号のタイムチャートである。トリガ信号 T_{r1} の立上りにより高設定流量 Q_{s1} が入力され、 t_1 秒後に低設定流量 Q_{s2} に設定された後、 t_1 秒後の圧力減衰データ $P(t)$ を実測する。誤差範囲外であればアラーム信号ALがオンになる。

【0052】本発明においては、基準圧力減衰データ $Y(t)$ と圧力減衰データ $P(t)$ は規格化されていてもいなくてもどちらでもよい。また、本発明は上記実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更等をその技術的範囲内に包含するものである。

【0053】図7は、オリフィスの目詰まりを検出するために、基礎データとなる基準圧力減衰データ $Y(t)$ を得るための基準減衰モードの第2実施例のフローチャートを示すものであり、前記第1実施例の図3に相当するものである。

【0054】前記図3の第1実施例に於いては、基準圧力減衰データ $Y(t)$ を得る際に、オリフィス上流側の

流体の温度 T が、圧力減衰に及ぼす影響を全く考慮に入れていない。また、このことは、前記図5に示した目詰検出モードに於ける圧力減衰データ $P(t)$ を測定する際にも同じである。

【0055】一方、現実の目詰まり検出に於いては、基準圧力減衰データ $Y(t)$ を得たときの流体の温度 T と、目詰まり検出を行なう際の流体の温度 T とが、等しいと云うことはほとんどなく、両者の間に温度差のあるのが通常である。

【0056】ところで、前記第1実施例に示した方法により目詰まりを検出した場合に、基準圧力減衰データ $Y(t)$ を測定したときのオリフィス上流側の流体温度と、圧力減衰データ $P(t)$ を測定したときのオリフィス上流側の流体温度に差があると、目詰まり検出の精度が悪くなる。具体的には、温度差が約10°C程度になると、目詰まり面積の検出値に約3%の誤差を生ずることが、実験により確認されている。

【0057】前記図7及び後述する図8に示す第2実施例は、オリフィス上流側の温度が異なることによる目詰まり検出の精度の低下を防止するために開発されたものであり、基準圧力減衰データ $Y(t)$ と圧力減衰データ $P(t)$ の検出時にオリフィス上流側の流体温度に差があつても、目詰まり検出精度が低下しないようにするため、前記基準圧力減衰データ $Y(t)$ 及び圧力減衰データ $P(t)$ を、検出した流体の温度及び圧力を用いて、流体の流れの理論式から演算により求めるようにしたものである。

【0058】先ず、基準圧力減衰データ $Y(t)$ を得る方法について説明する。尚、この基準圧力減衰データ $Y(t)$ は図1のオリフィス2に全く目詰まりがない場合のオリフィス上流側の圧力減衰状態を示すものである。図1及び図7を参照して、外部回路44からのトリガー信号により、メモリ装置Mに記憶されたプログラムが始動実行される。基準減衰モードであることが確認されると(n20a)、設定流量 Q_s として高設定流量 Q_{sH} がCPUにセットされる(n21a)。この高設定流量 Q_{sH} としてはフルスケールの100%が一般的である。この状態で上流側圧力 P_1 が測定され、このレンジでの最大値として最大圧力 $P_m = P_1$ で表わす(n22a)。

前記外部回路44からのトリガー信号により、設定流量 Q_s として高設定流量 Q_{sH} がセットされると、(n21a)、この状態が2秒間保持され、2秒後には設定流量 Q_s として低設定流量 Q_{sL} がセットされる。この時点を時刻 $t = 0$ (s) とする(n23a)。低設定流量 Q_{sL} としては0%が一般的である。即ち、上流側圧力 P_1 を最大値から零(コントロール弁を全閉)にしてから上流側圧力 P_1 の減衰を計測するのである。

【0059】 $t = 0$ から上流側圧力 $P_1 = P_t$ 及び上流側温度 $T_1 = T_t$ 測定し(n43a)、時刻と圧力データと温度データ(t, P_t, T_t)をメモリ装置Mに記憶させる(n43a)。このデータの測定は、時刻を微小時間 Δt だけ進ませ(n26a)、測定時間 t_m になるまで(n27a)まで測定をし乍ら、メモリ装置Mに蓄えるのである。ここで、測定時間 t_m はデータを蓄積できる時間であればよく、例えば5(s)、20(s)等である。尚、現実の具体的な測定に於いては、前記測定時間 t_m を1, ~10, に亘って8段階に切換え設定できるようにしており、また、内径が150μmのオリフィスの場合には、この間に50点の上流側圧力 P_1 、上流側温度 T_1 を測定している。

【0060】また、前記上流側圧力 P_1 、上流側温度 T_1 の測定と並行して、これらの読み取りデータを用いて、CPUに於いて基準圧力減衰データ $Y(t) = Z_s(t)$ の演算が行なわれる(n45a)。そして、演算された基準圧力減衰データ $Y(t) = Z_s(t)$ はメモリ装置Mに蓄えられる。

【0061】本第2実施例に於いては、前記基準圧力減衰データ $Y(t) = Z_s(t)$ は、上流側圧力 P_1 の降下が、所謂「流体の理論式」に基づいて演算され、「上流側圧力 P_1 の降下の度合を対数で表示した値 $Z_s(t)$ 」がCPUに於いて演算される。

【0062】また、本実施例では、前記「流体の理論式」として下記の①式を用いている。

【数3】

$$\ln \frac{P_t}{P_0} = - \frac{SC_t \sqrt{R_t T_t}}{V} t n \quad \dots \quad ①$$

但し、ここで、 $P_0 = P_m$ は初期時(標準時)の上流側圧力、 P_t は時間 t 経過後の上流側圧力、 S はオリフィス2の断面積、 C_t は時間 t に於けるガス比熱比の定数、 R_t は時間 t に於けるガス定数、 T_t は時間 t に於ける上流側温度、 V はFC S装置の内容積、 t は測定開始からの経過時間(単位時間 × n番目)である。また、上記ガス比熱比の定数 C_t は、次の式で与えられるものである。

【数4】

$$C_t = \left(\frac{2}{k+1} \right)^{1/(k-1)} \cdot \sqrt{\frac{k}{k+1}} \quad \dots \quad ②$$

但し、 k はガスの比熱比である。

【0063】また、上流側圧力 P_0 の圧力降下した度合を対数で表現した値 $Z_s(t)$ は、次の③式で与えられるものである。

【数5】

15

$$\begin{aligned} Z_s(t) &= \frac{C_o \sqrt{R_o} \cdot T_o}{C_t \sqrt{R_t} \cdot T_t} \times \ln \frac{P_t}{P_o} \\ &= \frac{C_o \sqrt{R_o} \cdot T_o}{C_t \sqrt{R_t} \cdot T_t} \times -\frac{S C_o \sqrt{R_t} \cdot T_t}{V} t_n \quad \dots \quad (3) \end{aligned}$$

但し、 $C_o \cdot R_o \cdot T_o$ は初期時（基準時）に於けるガス比熱比の定数、ガス定数、上流側温度であり、また、 $C_t \cdot R_t \cdot T_t$ は測定開始から時間 t の時点（n番目）に於けるガス比熱比の定数、ガス定数、上流側温度である。

【0064】測定開始時 $t = 0$ から各時間 t_1, t_2, \dots, t_n 每に前記③式を用いて基準圧力減衰データ $Y(t) = Z_s(t)$ がCPUで演算され、その結果がメモリ装置Mに順次蓄えられて行く。

【0065】次に、実際に使用をしているオリフィスに対する目詰まりの検出について説明する。図8は、第2実施例に於けるオリフィス検出モードのフローチャートを示すものである。目詰検出は実際のプラント運転時は困難であるから、プロセス終了後、設定流量が規定値（即ち、設定流量値が1Vを越える任意の値・しきい値）になると、その減少方向をトリガ信号として目詰検出モードに入る。

【0066】本実施例では設定流量値が1Vになれば、トリガ信号が中央演算処理装置CPUに入力される。この信号により目詰検出モードであることを確認し、(n30a)、メモリ装置Mから基準圧力減衰データ $Y(t) = Z_s(t)$ をCPUに送信する(n31a)。このデータとしては、実際に測定対象としている実ガスに対する $Y(t) = Z_s(t)$ でもよいし、 N_2 に対する基準圧力減衰データ $Z_s(t)$ に、ガス種に応じて予かじめ定めたフローファクタFFに対する定数Aを乗じたものでもよい。

【0067】次に、高設定流量 Q_{sh} を入力し、この時点を $t = 0$ (s) として時間計測を行ない(n32a)、上流側圧力 P_1 を測定し、その値を最大圧力 P_m とする(n33)。微小時間 Δt を多数回繰返しながら(n34a)、高設定時間 t_h になると(n35a)、低設定流量 Q_{sl} に切換え、この時点を再び $t = 0$ (s) とする(n36a)。本実施例では、前述した通り高設定流量 $Q_{sh} = 100\%$ 、低設定流量 $Q_{sl} = 0\%$ とし、高設定時間 $t_h = 2$ (s) とする。この高設定時間 t_h は上流側圧力 P_1 が安定する時間であれば任意に採ることができる。

【0068】更に、微小時間 Δt を多数回繰返しながら(n37a)、時間が低設定時間 t_l になると(n38a)、上流側圧力 P_{t_l} 及び上流側温度 T_{t_l} を検出する(n39a)。検出された上流側圧力 P_{t_l} 、上流側温度 T_{t_l} は必要に応じてメモリ装置Mに蓄えられ、次に、中央演算装置CPUに於いて、一次側圧力 P_{t_l} の

16

圧力降下度合を対数で表示した値（即ち、圧力減衰データ $P(t_1) = Z(t_1)$ ）が演算される(n48)。

【0069】演算された圧力減衰データ $P(t_1) = Z(t_1)$ は、先にメモリ装置Mへ入力されている基準圧力減衰データ $Y(t_1)$ と比較され(n49)、 $|Y(t_1) - P(t_1)|$ が許容される誤差の範囲m外にあれば(n49)、目詰まりを表示し、アラームALをonにする。(n41a)。また、 $|Y(t_1) - P(t_1)|$ が許容される誤差範囲内にあれば、時間の加算が行なわれ(n50)、第2単位時間 $t = t_2$ に於ける測定、演算及び対比が繰り返され、 $t = t_n$ に至れば(n51)、最終的に目詰まりなしの表示及びアラームALのオフが行なわれる(n42a)。

【0070】尚、図8の第2実施例の目詰検出モードに於いては、ステップn48で圧力減衰データ $P(t_1) = Z(t_1)$ を演算し、この演算値に基づいてステップn49で目詰まりの判定を行なったあと、目詰まりがなければ、ステップ51で時間の加算をして、次の上流側圧力 P_t 及び温度 T_t の検出を行なうようにしている。しかし、このような方式に代えて、ステップn46に於いて上流側圧力 P_t 及び温度 T_t の検出を単位時間毎に連続的に行なうと共にこれと並行して、ステップn48に於いて、各単位時間毎の圧力減衰データ $P(t_1)$ を演算し、当該演算値を用いて各単位時間毎に目詰まりの判定を行なうようとしてもよい。

【0071】図9、図10及び図11は、本発明の第2実施例によりオリフィスの目詰検出を行なった場合の試験結果を示すものであり、オリフィス内径 $160\mu\text{m}$ 、単位時間 $t = 0.012\text{ sec}$ 、基準温度 25°C 、温度変動 $+10^\circ$ 及び -10° 、とした場合の、圧力降下特性(図9)、 $Z(t)$ の計算結果(図10)及び基準時の演算値(25°C) $Z_s(t)$ と目詰まり検査時の演算値 $Z(t)$ との差(図11)を示すものである。

【0072】第2実施例の場合には、図9及び図10からも明らかのように、目詰まりの検査時の上流側ガス温度 $T(t)$ が基準時の温度(25°C)より $\pm 10^\circ\text{C}$ 異なったとしても、圧力降下特性(図8)及び $Z(t)$ の計算値は、基準温度(25°C)の場合と殆んど同一となり、上流側ガス温度の変化による誤差がほぼ完全に補正されることになる。その結果、上流側ガス温度が基準減衰データを得た時のガス温度よりも相当に変化している場合であっても、高精度な安定した目詰まり検出を行なうことができる。

50 【0073】

【発明の効果】本発明は以上詳述したように、オリフィスに目詰まりがない場合の基準圧力減衰データ $Y(t)$ と実際運転時の圧力減衰データ $P(t)$ を比較し、 $P(t)$ が $Y(t)$ より所定度以上開離したかどうかで目詰まりの当否を判断するものである。従って配管を分解することなく、極めて簡単な操作で目詰まりを判断でき、その結果爆発等の非常事態を回避できると共にプラントの安定性を保証できる。即ち、本発明は低価格で信頼性の高いオリフィス目詰検出方法およびその装置を提供するものであって、オリフィスを利用した圧力式流量制御装置の広範な普及に寄与するものである。

【0074】特に、本発明の第2実施例によれば、目詰検出時の上流側ガス温度 $T(t)$ が、基準圧力減衰データ $Y(t)$ を得たときの上流側ガス温度と相当に異なっている場合でも、温度変化による誤差を除いた高精度な目詰まり検出を行なうことができる。

【図面の簡単な説明】

【図1】本発明に係る流量制御装置における目詰検出装置の一例のブロック構成図である。

【図2】プラント運転時における流量制御のフローチャートである。

【図3】本発明の第1実施例に係る目詰検出方法で用いる基準圧力減衰データ $Y(t)$ を求めるフローチャートである。

【図4】目詰まりのない基準圧力減衰データ $Y(t)$ と目詰まりのある圧力減衰データ $P(t)$ のグラフを示す。

【図5】本発明の第1実施例に係る目詰検出方法を実行するフローチャートである。

【図6】各種信号のタイムチャートを示す。

* 【図7】本発明の第2実施例に係る目詰検出方法で用いる基準圧力減衰データ $Y(t)$ を求めるフローチャートである。

【図8】本発明の第2実施例に係る目詰検出方法を実行するフローチャートである。

【図9】本発明の第2実施例に於いて、温度を変化させた場合の圧力降下特性を示すグラフである。

【図10】本発明の第2実施例に於いて、温度を変化させた場合の圧力減衰データ $Z(t)$ の演算値を示すグラフである。

【図11】本発明の第2実施例に於いて、温度が変化した場合の基準時の圧力減衰データ(25°C) $Z_s(t)$ と圧力減衰データの演算値との差を示すものである。

【図12】従来例である圧力式流量制御装置のブロック構成図である。

【図13】オリフィスに目詰まりが生じた場合の設定値流量特性図である。

【符号の説明】

2はオリフィス、4は上流側流路、6は下流側流路、8は駆動部、12はガス取出用継手、14は圧力検出器、16は增幅回路、18はA/D変換器、20は演算回路、22は圧力表示器、24は温度検出器、26は増幅回路、28はA/D変換器、30は温度補正回路、32は流量設定回路、34はA/D変換器、36は比較回路、38は演算制御回路、40は増幅回路、42は通信ポート、44は外部回路、46はアラーム回路、48は電源回路、50は外部電源、AMPは増幅回路、A/DはA/D変換器、ALはアラーム回路、CPUは中央演算処理装置、CVはコントロール弁、ESは外部電源、Mはメモリ装置、SCは電源回路である。

【図1】

【図6】

【図2】

【図3】

【図4】

【図9】

【図10】

【図11】

【図13】

【図5】

【図7】

【図8】

【図12】

【手続補正書】

【提出日】平成11年8月12日(1999.8.1)
2)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

【0016】請求項4に記載の圧力式流量制御装置における目詰検出方法は、コントロール弁CVとオリフィス2とこれらの間の上流側圧力 P_1 を検出する圧力検出器14と流量設定回路32からなり、上流側圧力 P_1 を下流側圧力 P_2 の約2倍以上に保持して下流側の流量 Q_c を $Q_c = K P_1$ (K:定数)で演算し、この演算流量 Q_c と設定流量 Q_s との差信号 Q_y によりコントロール弁CVを開閉制御する流量制御装置において、設定流量 Q_s を高設定流量 Q_{sH} に保持する第1工程と、この高設定流量 Q_{sH} を低設定流量 Q_{sL} に切換えて保持し、上流側圧力 P_1 及び上流側温度 T_1 を測定すると共にこの測定値を用いて圧力減衰データ $P(t)$ を演算する第2工程と、同条件で、オリフィスに目詰まりがないときに測定した上流側圧力 P_1 及び上流側温度 T_1 を用いて演算した基準圧力減衰データ $Y(t)$ と、前記圧力衰データ $P(t)$ とを対比する第3工程と、圧力減衰データ $P(t)$ が基準圧力減衰データ $Y(t)$ より所定度以上離れたときに目詰まりを報知する第4工程から構成されている。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0059

【補正方法】変更

【補正内容】

【0059】 $t=0$ から上流側圧力 $P_1 = P_t$ 及び上流側温度 $T_1 = T_t$ を測定し(n43a)、時刻と圧力データと温度データ(t, P_t, T_t)をメモリ装置Mに記憶させる(n44a)。このデータの測定は、時刻を微小時間 Δt だけ進ませ(n26a)、測定時間 t_m になるまで(n27a)まで測定をし乍ら、メモリ装置Mに蓄えるのである。ここで、測定時間 t_m はデータを蓄積できる時間であればよく、例えば5(s)、20(s)等である。尚、現実の具体的な測定に於いては、前記測定時間 t_m を $1_s \sim 10_s$ に亘って8段階に切換え設定できるようにしております、また、内径が $150\mu m$ のオリフィスの場合には、この間に50点の上流側圧力 P_1 、上流側温度 T_1 を測定している。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0067

【補正方法】変更

【補正内容】

【0067】次に、高設定流量 Q_{sH} を入力し、この時点を $t=0(s)$ として時間計測を行ない(n32a)、上流側圧力 P_1 を測定し、その値を最大圧力 P_u とする(n33a)。微小時間 Δt を多数回繰返しながら(n34a)、高設定時間 t_h になると(n35a)、低設定流量 Q_{sL} に切換え、この時点を再び $t=0(s)$ とする(n36a)。本実施例では、前述した通り高設定流量 $Q_{sH} = 100\%$ 、低設定流量 $Q_{sL} = 0\%$ とし、高設定時間 $t_h = 2(s)$ とする。この高設定時間 t_h は上流

側圧力 P_{t_1} が安定する時間であれば任意に採ることができる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0068

【補正方法】変更

【補正内容】

【0068】更に、微小時間 Δt を多数回繰返しながら(n37a)、時間が低設定時間 t_1 になると(n38a)、上流側圧力 P_{t_1} 及び上流側温度 T_{t_1} を検出する(n39a)。検出された上流側圧力 P_{t_1} 、上流側温度 T_{t_1} は必要に応じてメモリ装置Mに蓄えられ(n47)、次に、中央演算装置CPUに於いて、一次側圧力 P_{t_1} の圧力降下度合を対数で表示した値(即ち、圧力減衰データ $P(t_1) = Z(t_1)$)が演算される(n48)。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0069

【補正方法】変更

【補正内容】

【0069】演算された圧力減衰データ $P(t_1) = Z(t_1)$ は、先にメモリ装置Mへ入力されている基準圧力減衰データ $Y(t_1)$ と比較され(n49)、 $|Y(t_1) - P(t_1)|$ が許容される誤差の範囲m外にあれば、目詰まりを表示し、アラームALをonにする。(n41a)。また、 $|Y(t_1) - P(t_1)|$ が許容される誤差範囲内にあれば、時間の加算が行なわ

れ(n=50)、第2単位時間 $t = t_1$ に於ける測定、演算及び対比が繰り返され、 $t = t_n$ に至れば(n=51)、最終的に目詰まりなしの表示及びアラームALのオフが行なわれる(n42a)。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0070

【補正方法】変更

【補正内容】

【0070】尚、図8の第2実施例の目詰検出モードに於いては、ステップn48で圧力減衰データ $P(t_1) = Z(t_1)$ を演算し、この演算値に基づいてステップn49で目詰まりの判定を行なったあと、目詰まりがなければ、ステップn51で時間の加算をして、次の上流側圧力 P_t 及び温度 T_t の検出を行なうようにしている。しかし、このような方式に代えて、ステップn39aに於いて上流側圧力 P_t 及び温度 T_t の検出を単位時間毎に連続的に行なうと共にこれと並行して、ステップn48に於いて、各単位時間毎の圧力減衰データ $P(t_1)$ を演算し、当該演算値を用いて各単位時間毎に目詰まりの判定を行なうようにしてもよい。

【手続補正7】

【補正対象書類名】図面

【補正対象項目名】図7

【補正方法】変更

【補正内容】

【図7】

【手続補正8】

【補正対象書類名】図面

【補正対象項目名】図8

【補正方法】変更

【補正内容】

【図8】

フロントページの続き

(72)発明者 大見 忠弘
 宮城県仙台市青葉区米ヶ袋2丁目1番17-
 301号

(72)発明者 飯田 精一
 兵庫県神戸市東灘区住吉山手1丁目5番3
 号

(72)発明者 加賀爪 哲 山梨県韮崎市藤井町北下条2381番地の1 東京エレクトロン山梨株式会社内	(72)発明者 山路 道雄 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内
(72)発明者 廣瀬 潤 山梨県韮崎市藤井町北下条2381番地の1 東京エレクトロン山梨株式会社内	(72)発明者 土肥 亮介 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内
(72)発明者 宇野 富雄 山梨県韮崎市藤井町北下条2381番地の1 東京エレクトロン山梨株式会社内	(72)発明者 出田 英二 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内
(72)発明者 西野 功二 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内	(72)発明者 廣瀬 隆 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内
(72)発明者 池田 信一 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内	(72)発明者 吉川 和博 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内
	(72)発明者 小艾 瞳典 大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内