अध्याय 7

प्राणियों में संरचनात्मक संगठन

- 7.1 प्राणी ऊतक
- 7.2 अंग एवं अंग तंत्र
- 7.3 केंचुआ
- 7.4 कॉकरोच
- 7.5 मेंढक

आपने पिछले अध्याय में प्राणि जगत के अनेक एक कोशिकीय (unicellular) व बहुकोशिकीय (multicellular) जीवों का अध्ययन किया। एक कोशिकीय प्राणियों में जीवन की समस्त जैविक क्रियाएं जैसे- पाचन, श्वसन तथा जनन, एक ही कोशिका द्वारा संपन्न होती हैं। बहुकोशिकीय प्राणियों के जिटल शरीर में उपर्युक्त आधारभूत क्रियाएं भिन्न-भिन्न कोशिका समूहों द्वारा व्यवस्थित रूप से संपन्न की जाती हैं। सरल प्राणी हाइड्रा का शरीर विभिन्न प्रकार की कोशिकाओं का बना हुआ है, जिनमें प्रत्येक कोशिका की संख्या हजारों में होती है। मानव का शरीर अरबों कोशिकाओं का बना हुआ है, जो विविध कार्य संपन्न करता है। ये कोशिकाणं शरीर में एक साथ कैसे काम करती हैं? बहुकोशिकीय प्राणियों में समान कोशिकाओं का समूह, अंतरकोशिकीय पदार्थों सिहत एक विशेष कार्य करता है, कोशिकाओं का ऐसा संगठन करतक (tissue) कहलाता है।

आपको आश्चर्य हो सकता है कि सभी जटिल प्राणियों का शरीर केवल चार प्रकार के आधारभूत ऊतकों का बना हुआ है। ये सब ऊतक एक विशेष अनुपात एवं प्रतिरूप से संगठित होकर अंगों का निर्माण करते हैं, जैसे- आमाशय, फुप्फुस (lungs), हृदय और वृक्क (kidney)। जब दो या दो से अधिक अंग अपनी भौतिक एवं रासायनिक पारस्परिक-क्रिया से एक निश्चित कार्य को संपन्न कर अंग-तंत्र का निर्माण करते हैं जैसे-पाचन तंत्र, श्वसन तंत्र इत्यादि। समस्त शरीर की जैविक क्रियाएं, कोशिका, ऊतक, अंग तथा अंग तंत्र में श्रम विभाजन के द्वारा संपन्न होती हैं और पूरे शरीर को जीवित रखने के लिए योगदान देती हैं।

7.1 प्राणि ऊतक

कोशिका की संरचना उसके कार्य के अनुसार बदलती रहती है। इस प्रकार ऊतक भिन्न-भिन्न होते हैं और उन्हें मोटे तौर पर निम्नलिखित से चार प्रकारों में वर्गीकृत किया

गया है- (1) उपकला ऊतक (2) संयोजी ऊतक (3) पेशी ऊतक (4) तंत्रिका ऊतक

7.1.1 उपकला ऊतक

हम उपकला ऊतक को सामान्यत: उपकला ही कहते हैं। इस ऊतक में एक मुक्त स्तर होता है जो एक ओर तो देह-तरल (body fluid) और दूसरी ओर बाह्य वातावरण के संपर्क में रहता है और इस प्रकार देह का आवरण अथवा आस्तर (lining) का निर्माण करता है। कोशिकाएं अंतराकोशिकीय आधात्री (intercellular matrix) द्वारा दृढतापूर्वक जुड़ी रहती हैं। उपकला ऊतक दो प्रकार के होते हैं - 1. सरल उपकला तथा संयुक्त उपकला। सरल उपकला एक ही स्तर का बना होता है तथा यह देहगुहाओं, वाहिनियों, और निलका का आस्तर है। संयुक्त उपकला कोशिकाओं की दो या दो से अधिक स्तरों की बनी होती है और इसका कार्य रक्षात्मक है जैसे कि हमारी त्वचा। कोशिका के सरंचनात्मक रूपांतरण के आधार पर सरल उपकला ऊतक तीन प्रकार के हैं-

शल्की (squamous) उपकला, घनाकार (cuboid) उपकला तथा स्तंभाकार (columnar) (चित्र 7.1)

चित्र 7.1 सरल उपकला (अ) शल्की (ब) घनाकार (स) स्तंभाकार (द) पक्ष्माभ धारी स्तंभाकार कोशिकाएं

शाल्की उपकला ऊतक यह एक चपटी कोशिकाओं के पतले स्तर से बनता है जिसके किनारे अनियमित होते हैं। यह ऊतक रक्त वाहिकाओं की भित्ति में तथा फेफड़े के वायु कोश (air sac) में पाया जाता है और यह विसरण सीमा का कार्य करती है। घनाकार उपकला यह ऊतक एक स्तरीय घन जैसी कोशिकाओं से बना होता है। यह सामान्यत: वृक्कों के वृक्ककों (nephrons) के निलकाकार भागों तथा ग्रंथियों की वाहिनियों में पाया जाता है। इनका मुख्य कार्य स्रवण और अवशोषण है। वृक्क में वृक्ककों की समीपस्थ वलयित (concoluted) सूक्ष्म निलका की उपकला में सूक्ष्मांकुर (microvilli) होते हैं। स्तंभाकर उपकला लंबी एवं पतली कोशिकाओं के एक स्तर का बना होता है। केंद्रक प्राय: कोशिका के आधारी भाग में होता है। मुक्त सतह पर प्राय: सूक्ष्मांकुर पाए जाते हैं। सूक्ष्मांकुर आमाशय, आंत्र तथा आंतरिक आस्तर में पाए जाते हैं और यह स्रवण ओर अवशोषण में सहायक देते हैं। यदि इन स्तंभाकार या घनाकार कोशिकाओं की मुक्त सतह पर पक्ष्माभ होते हैं तो इसे पक्ष्माभी (ciliated) उपकला (चित्र 7.1घ) कहते हैं। इनका कार्य कणों अथवा श्लेष्मा को उपकला की सतह पर एक निश्चित दिशा में ले जाना है। यह मुख्यत: श्वसनिका (broncheol) तथा डिंबवाहिनी

चित्र 7.2 ग्रंथिल उपकला (अ) एककोशिक (ब) बहुकोशिक

चित्र 7.3 संयुक्त उपकला

निलकाओं (fallopiam tubes) जैसे खोखले अंगों की भीतरी सतह में पाए जाते है।

कुछ स्तंभाकार या घनाकार कोशिकाओं में स्रवण की विशेषता होती है और ऐसी उपकला को उपकला ग्रंथिल (glandular epithrlium) कहते हैं (चित्र 7.2)। इसे दो समूहों में वर्गीकृत किया जा सकता है- एक कोशिक जो पृथक ग्रंथिल कोशिकाओं का बना होता है, जैसे आहार नाल की कलश कोशिका (goblet cell) तथा बहुकोशिक जो कोशिकाओं के पुंज (उदाहरण -लार ग्रंथि) का बना होता है। स्नावी कोशिका में स्नाव के निष्कासन के आधार पर ग्रंथियों को दो भागों में विभाजित किया जाता है, जिन्हें बहि:स्रावी (eocrine) ग्रंथि तथा अंतः स्रावी ग्रंथि (endocrine) कहते हैं। बहि:स्रावी ग्रंथि से श्लेष्मा. लार, कर्ण मोम (earwax) तेल, दुग्ध, आमाशय एंजाइम तथा अन्य कोशिका उत्पाद स्नावित होते हैं। ये सब वाहिनियों अथवा निलकाओं के माध्यम से निर्मुक्त होते हैं। इसके विपरीत अंत:स्रावी ग्रंथियों में नलिकाएं नहीं होती हैं। इसके उत्पाद हार्मोन हैं जो

सीधे उस तरल में छोड़े जाते हैं, जिसमें ग्रंथि स्थित होती है।

संयुक्त उपकला एक से ज्यादा कोशिका स्तरों (बहु-स्तरित) की बनी होती है और इस प्रकार स्रवण और अवशोषण में इसकी भूमिका सीमित है (चित्र 7.3)। इसका मुख्य कार्य रासायनिक व यांत्रिक प्रतिबलों (stresses) से रक्षा करना है। यह त्वचा की शुष्क सतह, मुख गुहा की नम सतह पर, ग्रसनी, लार ग्रंथियों और अग्नाशयी की वाहिनियों के भीतरी आस्तर को ढकता है।

उपकला की सभी कोशिकाएं एक दूसरे से अंतरकोशिकीय पदार्थों से जुड़ी रहती हैं। लगभग सभी प्राणि ऊतकों में कोशिकाओं के विशेष जोड़ व्यक्तिगत (individual) कोशिकाओं को संरचनात्मक एवं कार्यात्मक संधि प्रदान करते हैं। उपकला और अन्य ऊतकों में तीन प्रकार की संधि (junctions) पाई जाती हैं। ये हैं-दृढ़, आंसजी एवं अंतराली संधि। दृढ़ संधि पदार्थों को ऊतक से बाहर निकलने से रोकती है। आंसजी संधियों पड़ोसी कोशिकाओं के कोशिका द्रव्य को एक दूसरे से जोड़ने का काम करती हैं। अंतराली संधियों आयनों तथा छोटे अणुओं एवं कभी-कभी बड़े अणुओं के तुरंत स्थांतरित करने में सहायता करती हैं। वे ऐसा संलग्न कोशिकाओं के कोशिकाद्रव को आपस में जोड़कर करती हैं।

7.1.2 संयोजी ऊतक

जटिल प्राणियों के शरीर में संयोजी ऊतक बहुतायत एवं विस्तृत रूप से फैला हुआ पाया जाता है। संयोजी ऊतक नाम शरीर के अन्य ऊतकों एवं अंग को एक दूसरे से जोड़ने तथा

चित्र 7.4 ढीला संयोजी ऊतक (अ) ऐरियोलर ऊतक (ब) वसा ऊतक

आलंबन के आधार पर दिया गया है। संयोजी ऊतक में कोमल ऊतक से लेकर विशेष प्रकार के ऊतक जैसे– उपास्थि, अस्थि, वसीय ऊतक तथा रक्त सम्मिलत हैं। रक्त को छोड़कर सभी संयोजी ऊतकों में कोशिका संरचनात्मक प्रोटीन का तंतु स्नावित करती हैं, जिसे कोलेजन या इलास्टिन कहते हैं। ये ऊतक को शक्ति, प्रत्यास्थता एवं लचीलापन प्रदान करते हैं। ये कोशिका रूपांतरित पॉलिसेकेराइड भी स्नावित करती है, जो कोशिका और तंतु के बीच में जमा होकर आधात्री का कार्य करता है। संयोजी ऊतक को तीन प्रकारों में विभक्त किया गया है (i) लचीले संयोजी ऊतक, (ii) संघन संयोजी ऊतक एवं (iii) विशिष्टकृत संयोजी ऊतक।

शिथिल संयोजी ऊतक में कोशिका एवं तंतु एक दूसरे से अर्धतरल आधारीय पदार्थ में शिथिलता से जुड़े रहते हैं, उदाहरण-त्वचा गिर्तिका ऊतक जो त्वचा के नीचे पाया जाता है (चित्र 7.4)। यह प्राय: उपकला के लिए आधारीय ढाँचे का कार्य करता है। इस संयोजी ऊतक में प्राय: तंतु कोरक (जो तंतु को जन्म देता है), महाभक्षकाणु एवं मास्ट कोशिकाएं होती हैं। वसा ऊतक दूसरा शिथिल संयोजी ऊतक है जो मुख्यतया त्वचा के नीचे स्थित होता है। इस ऊतक की कोशिकाएं वसा संग्रहण के लिए विशिष्ट होती हैं। भोजन के जो पदार्थ प्रयोग में नहीं आते, वे वसा के रूप में परिवर्तित कर इस ऊतक में संग्रहित कर लिए जाते हैं।

सघन संयोजी ऊतकों में तंतु एवं तंतु कोशिकाएं दृढ़ता से व्यवस्थित रहती हैं। अभिविन्यास के आधार पर तंतु तथा तंतुकोरक सघन संयोजी ऊतक को नियमित संयोजी ऊतक तथा अनियमित संयोजी ऊतक तथा अनियमित संयोजी ऊतक में विभाजित किया गया है। सघन नियमित ऊतक में तंतु कोरक समानांतर तंतु के गुच्छों के बीच में कतार में उपस्थित होते हैं। कंडराएं जो कंकाल पेशी को अस्थि से जोड़ती हैं तथा स्नायु, जो एक अस्थि को दूसरी अस्थि से जोड़ती हैं इसका उदाहरण है। कोलैजन तंतु का गुच्छा कंडराओं को प्रतिरोधी क्षमता प्रदान करता है

चित्र 7.5 घना संयोजी ऊतक (अ) घना नियमित (ब) घना अनियमित

चित्र 7.6 विशिष्टीकृत संयोजी ऊतक

और इसे टूटने से बचाता है। सघन नियमित संयोजी ऊतक लचीली स्नायु (ligament) में पाया जाता है। सघन अनियमित ऊतक में तंतु तथा तंतुकोरक होते हैं (तंतु में अधिकांश कोलेजन होता है) (चित्र 7.5) जिनका अभिविन्यास अलग होता है। यह ऊतक त्वचा में पाया जाता है। उपास्थि, अस्थि एवं रक्त विशेष प्रकार के संयोजी ऊतक हैं।

उपास्थि का अंतराकोशिक पदार्थ ठोस, विशिष्ट आनम्य एवं संपीडन रोधी होता है। इस ऊतक को बनाने वाली कोशिकाएं (उपास्थि अणु) स्वयं द्वारा स्नावित आधात्री में छोटी छोटी गुहिकाओं में बंद हो जाती है। (चित्र 7.6 अ)। कशेरुकी भ्रूण में विद्यमान अधिकांश उपास्थियां, वयस्क अवस्था में अस्थि द्वारा प्रतिस्थापित हो जाती हैं। वयस्क में कुछ उपास्थि नाक की नोंक, बाह्य कान संधियों, मेरुदंड की आस पास की अस्थियों के मध्य तथा पैर और हाथ में पाई जाती है।

अस्थि खनिज युक्त ठोस संयोजी ऊतक है, इसका आनम्य आधात्री कॉलेजन तंतु एवं कैल्सियम लवण युक्त होता है जो अस्थि को मजबूती प्रदान करता है (चित्र 7.6 ब)। यह शरीर का मुख्य ऊतक है जो कि शरीर के कोमल अंगों का संरचनात्मक ढाँचा बनाता है तथा ऊतकों को सहारा एवं सुरक्षा देता है। अस्थि कोशिकाएं आधात्री के अंदर रिक्तिकाओं में उपस्थित रहती हैं। पैर की अस्थि जैसे आपकी लंबी अस्थि भार वहन का कार्य करती है। अस्थि कंकाल पेशी से जुड़कर परस्पर क्रिया द्वारा गित प्रदान करती है। कुछ अस्थियों में अस्थि मज्जा, रक्त कोशिकाओं का उत्पादन करती है।

रक्त तरल: संयोजी ऊतक होता है जिसमें जीवद्रव्य, लाल रुधिर कणिकाएं, सफेद रुधिर कणिकाएं और पट्टिकाणु (platlets) पाए जाते

हैं (चित्र 7.6 स) रक्त मुख्य परिसंचारी तरल है जो कि विभिन्न पदार्थों के परिवहन में सहायता करता है। इसके बारे में आप विस्तृत रूप से अध्याय 17 और 18 में पढ़ेंगे।

7.1.3 पेशी ऊतक

पेशी ऊतक अनेक लंबे, बेलनाकार तंतुओं (रेशों) से बना होता है जो समानांतर-पंक्ति में सजे रहते हैं। यह तंतु कई सूक्ष्म तंतुकों से बना होता है जिसे **पेशी तंतुक** (myofibril) कहते हैं। समस्त पेशी तंतु समन्वित रूप से उद्दीपन के कारण संकुचित हो जाते हैं तथा पुन: लंबा होकर अपनी असंकुचित अवस्था में आ जाते हैं। पेशीय ऊतक की क्रिया से शरीर वातावरण में होने वाले परिवर्तनों के अनुसार गित करता है तथा शरीर के विभिन्न अंगों की स्थिति को संभाले रखता है। सामान्यतया शरीर की सभी गितयों में पेशियां प्रमुख भूमिका निभाती हैं। पेशीय ऊतक तीन प्रकार के होते हैं– (1) कंकाल पेशी (2) चिकनी पेशी (3) हृदय पेशी

कंकाल पेशी मुख्य रूप से कंकाली अस्थि से जुड़ी रहती है। प्रारूप (typical) पेशी जैसे द्विशिरस्का (biceps) (दो सिर वाली) पेशी में रेखीय कंकाल पेशी तंतु एक

चित्र 7.7 पेशी ऊतक (अ) कंकालीय (रेखित) पेशी ऊतक (ब) चिकनी पेशी ऊतक (स) हृद-पेशी ऊतक

समूह में एक साथ समानांतर रूप में पाए जाते हैं। पेशी ऊतक के समूह के चारों ओर कठोर संयोजी ऊतक का आवरण होता है। (चित्र 7.7 अ) (इसके बारे में आप अध्याय 20 में विस्तार से पढ़ेंगे)।

चिकनी पेशी-चिकनी पेशीय ऊतक की संकुचनशील कोशिका के दोनों किनारे पतले होते हैं तथा इनमें रेखा या धारियाँ नहीं होती हैं (चित्र 7.7 ब)। कोशिका संधियां उन्हें एक साथ बाँधें रखती हैं तथा ये संयोजी ऊतक के आवरण से ढके समूह रहते हैं। आंतरिक अंगों जैसे- रक्त निलका, अग्नाशय तथा आँत की भित्त में इस प्रकार का पेशी ऊतक पाया जाता है। चिकनी पेशी का संकुचन "अनैच्छिक" होता है; क्योंकि इनकी क्रियाविधि पर सीधा नियंत्रण नहीं होता है। जैसा कि हम कंकाल पेशियों के बारे में कर सकते हैं, चिकनी पेशी को मात्र सोचने भर से हम संकुचित नहीं कर सकते हैं।

हृदय पेशी- संकुचनशील ऊतक है जो केवल हृदय में ही पाई जाती है। हृदय पेशी

की कोशिकाएं कोशिका संधियों द्वारा द्रव्य कला से एकरूप होकर चिपकी रहती हैं (चित्र 7.7 स)। संचार संधियों अथवा अंतर्विष्ट डिस्क (intercalated disc) के कुछ संगलन बिंदुओं पर कोशिका एक इकाई रूप में संकुचित होती है। जैसे कि जब एक कोशिका संकुचन के लिए संकेत ग्रहण करती है तब दूसरी पास की कोशिका भी संकुचन के लिए उद्दीपित होती है।

7.1.4 तंत्रिका ऊतक

तंत्रिका ऊतक मुख्य रूप से परिवर्तित अवस्थाओं के प्रति शरीर की अनुक्रियाशीला (responsiveness) के नियंत्रण के लिए उत्तरदायी होता है। तंत्रिका कोशिकाएं उत्तेजनशील कोशिकाएं हैं, जो

चित्र 7.8 तंत्रिकी-ऊतक (तंत्रिकोशिका)

तांत्रिका तंत्र की संचार इकाई है (चित्र 7.8)। तांत्रिबंध (Neuroglial) कोशिका बाकी तांत्रिका तंत्र को संरचना प्रदान करती है तथा तांत्रिका कोशिकाओं को सहारा तथा सुरक्षा देती है। हमारे शरीर में तांत्रिबंध कोशिकाएं तांत्रिका ऊतक का आयतन के अनुसार आधा से ज्यादा हिस्से बनाता है।

जब एक तंत्रिका कोशिका को उपयुक्त रूप से उद्दीपित किया जाता है या वह स्वयं होती है तो विभिन्न वैद्युत परिवर्तन उत्पन्न होता है, जो बहुत तेजी से कोशिका झिल्ली पर गमन करता है। तंत्रिका कोशिका जब उत्तेजित होती है तब विभव परिवर्तन तंत्रिका कोशिका के अंतिम छोर पर पहुँचता है तथा आस-पास की तंत्रिकोशिका (neuron) एवं अन्य कोशिकाओं को या तो उद्दीपित करता है अथवा उन्हें उद्दीपित होने से रोकता है। (आप इसके बारे में अध्याय 21 में विस्तार से पढ़ेंगे)।

7.2 अंग और अंगतंत्र

बहुकोशीय प्राणियों में उपर्युक्त वर्णित ऊतक संगठित होकर अंग और अंगतंत्र की रचना करते हैं। इस तरह का संगठन लाखों कोशिकाओं द्वारा निर्मित जीव की सभी क्रियाओं को अधिक दक्षतापूर्वक एवं समन्वित रूप से चलाने के लिए आवश्यक होता है। शरीर के प्रत्येक अंग एक या एक से अधिक प्रकार के ऊतकों से बना होता हैं। उदाहरणार्थ, हृदय में चारों तरह के ऊतक होते हैं, उपकला, संयोजी, पेशीय तथा तंत्रकीय ऊतक। ध्यान पूर्वक अध्ययन के बाद हम यह देखते हैं कि अंग और अंगतंत्र की जटिलता एक निश्चित इंद्रियगोचर प्रवृत्ति को प्रदर्शित करती है। यह इंद्रियगोचर प्रवृत्ति एक विकासीय प्रवृत्ति कहलाती है। (इसके बारे में आप कक्षा 12 में विस्तार से पढेंगे)।

यहाँ पर आपको तीन जीवों के विभिन्न विकासीय स्तर के बारे में बताया जा रहा है, जिसमें आपको शारीर (anatomy) और आकारिकी (mortphologyu) के संगठन एवं क्रियाविधि के बारे में जानकारी प्राप्त होगी। आकारिकी आपको जीवों की बाह्य संरचना या बाह्य दिखने वाले आकार का अध्ययन कराती है। पौधों या सूक्ष्म जीवों के संदर्भ में, आकारिकी शब्द का वस्तुत: मतलब यही है। प्राणियों के संबंध में आकारिकी का मतलब शरीर के बाह्य अंगों की बनावट या शरीर के बाह्य भागों का अध्ययन है। प्राणियों में शारीर का पारंपरिक मतलब आंतरिक अंगों की संरचना के अध्ययन से है। अब आप केंचुए, कॉकरोच तथा मेंढक के आकारिकी एवं शारीरकी का अध्ययन करेंगे। जो अकशेरुकी तथा कशेरुकी का क्रमश: प्रतिनिधित्व करते हैं।

7.3 केंचुआ

केंचुए लाल भूरे रंग के स्थलीय अकशेरुकी प्राणी होते हैं, जो कि नम मिट्टी की ऊपरी सतह में निवास करते हैं। दिन के समय ये जमीन के अंदर स्थित बिलों में रहते हैं, जो कि ये मिट्टी को छेदकर और निगलकर बनाते हैं। बगीचों में ये अपने द्वारा एकत्रित उत्सर्जी मल पदार्थों के बीच ढूँढ़े जा सकते हैं। इन उत्सर्जी मल पदार्थ को कृमि क्षिप्ति (worm casting) कहते हैं। फेरेटिमा व लिम्ब्रिकस (Pheretrima and Lumbricus) सामान्य भारतीय केंचुए हैं।

चित्र 7.9 केंचुए का शरीर (अ) पृष्ठ दृश्य (ब) अधर दृश्य (स) मुख द्वार दर्शाते हुए पार्श्व दृश्य

7.3.1 आकारिकी

इनका शरीर लंबा, और लगभग 100 - 120 समान समखंडों (metameres) में बँटा होता है। पृष्ठ तल पर एक गहरी मध्यरेखा (पृष्ठ रक्त वाहिका) दिखाई देती है। अधरतल पर जनन छिद्र पाए जाते हैं, जिसकी वजह से यह पृष्ठ तल से विभेदित किया जा सकता है। शरीर के अग्र भाग पर मुख एवं पुरोमुख (Prossomium) होते हैं। पुरोमुख एक पालि (lobe) है जो मुख को ढकने वाली एक फाननुमा संरचना है। यह फान मृदा दरारों को खोलकर कृमि को उसमें रेंग कर जाने में मदद करती है। पुरोमुख एक संवेदी संरचना है। शरीर का पहला खंड परितुंड (peristomium) या मुखखंड होता है, जिसमें मुख उपस्थित होता है। एक परिपक्व कृमि में एक चौड़ी ग्रंथिल गोलाकार पट्टी चौदहवें से सोलहवें खंड को घेरे रहती है। इन ग्रंथिल ऊतक वाले खंडों को **पर्याणिक** (clitellum) कहते हैं। इस प्रकार शरीर तीन प्रमुख भागों-अग्र-पर्याणिका, पर्याणिक और पश्च पर्याणिक खंडों में विभक्त होता है (चित्र 7.9)।

5-9 खंडों में अंतरखंडीय खांचों के अधर-पार्श्वीय भाग में चार जोड़ी शुक्रग्रहिका रंध्र (spermathecal apertures) स्थित होते हैं। एकल मादा जनन छिद्र चौदहवें खंड की मध्य अधर रेखा पर स्थित होता है। एक जोड़ा नर जनन छिद्र अठारवें खंड के अधर-पार्श्व में स्थित होते हैं। बहुत से छोटे छिद्र जिन्हें वृक्कक रंध्र कहते हैं, अधर तल

चित्र 7.10 केंचुए की आहार नाल

पर लगभग संपूर्ण शरीर पर पाए जाते हैं। इन छिद्रों के द्वारा उत्सर्गिकाएं शरीर के बाहर की ओर खुलती हैं। शरीर के प्रथम, अंतिम एवं पर्याणिका खंडों को छोड़कर समस्त देहखंडों में S आकार के शूक (setae) पाए जाते हैं, जो प्रत्येक खंड के मध्य में स्थित उपकला गर्त में धँसे रहते हैं। शूक छोटी बाल के समान संरचना होती है, जो कि फैल तथा सिकुड़ सकती है तथा गित में महत्वपूर्ण भूमिका अदा निभाती है।

7.3.2 आंतरिक आकारिकी

केंचुए का शरीर एक पतली अकोशिकीय परत से ढका रहता है जिसे उपत्वचा कहते हैं। इसके नीचे अधिचर्म, दो पेशीय (गोलाकार व लंबवत्) परतें तथा सबसे अंदर की ओर देहगुहीय उपकला पाई जाती है। अधिचर्म स्तंभाकार उपकला कोशिकाओं की एक स्तर की बनी हुई होती है, जिसमें अन्य प्रकार की कोशिकाएं जैसे स्नावी ग्रंथि कोशिकाएं भी सम्मिलत हैं।

आहारनाल शरीर के प्रथम से अंतिम खंड तक एक लंबी. सीधी नली के रूप में उपस्थित होती है (चित्र 7.10)। प्रथम खंड पर उपस्थित मुख, प्रथम से तृतीय खंड में फैली मुखगुहा में खुलता है, जो ग्रसनी की ओर अग्रसर होती है और चौथे खंड में खुलती है। ग्रसनी एक छोटी संकरी नलिका में खुलती है, जिसे ग्रसिका कहते हैं. यह पाँचवे से सातवें खंड तक पाई जाती है, तथा एक पेशीय पेषणी (gizzard) आठवें और नवें खंड तक चलती है। यह सडी पत्तियों और मिट्टी आदि के कणों को पीसने में मदद करती है। आमाशय नौ से चौदह खंड तक स्थित होता है। केंचुए का भोजन सडी-गली पत्तियाँ और मिट्टी में मिश्रित कार्बनिक पदार्थ होते हैं। आमाशय में स्थित केल्सीफेरस ग्रंथियाँ ह्यूमस में उपस्थित- ह्यूमिक अम्लों को उदासीन बना देती है। आंत्र पंद्रहवें खंड से प्रारंभ होकर अंतिम खंड तक एक लंबवत नलिका के रूप में मिलती है। छब्बीसवें खंड में आंत्र से एक जोडी छोटी और शंक्वाकार आंत्रिक अंधनाल निकलती हैं। आंत्र का विशिष्ट गुण 26 से 35 खंड में आंत्र की पृष्ठ सतह में आंतरिक वलन. भित्तिभंज का पाया जाता है, जिसे **आंत्रवलन** (typhlosole) कहते हैं। यह वलन आंत्र में अवशोषण के प्रभावी क्षेत्र में वृद्धि कर देता है। आहार नाल, शरीर के अंतिम खंड पर एक छोटे छिद्र के रूप में खुलती है। जिसे गुदा (anus) कहते हैं। केंचुआ कार्बनिक पदार्थों से भरपूर मृदा को भोजन के रूप में निगलता है, आहारनाल से गुजरते समय,

चित्र 7.11 संवृत परिसंचरण तंत्र

चित्र 7.12 केंचुए का वृक्कक-तंत्र

पाचक रस एंजाइमों का स्नाव होता है जो कि पदार्थों के साथ घुल-मिल जाता है। ये एंजाइम जटिल भोज्य कणों को सूक्ष्म अवशोषण योग्य कणों में बदल देते हैं ये सरल अणु (molecules) आहारनाल-झिल्ली द्वारा अवशोषित करके उपयोग में लाए जाते हैं।

फेरिटिमा (केंचुए) का रुधिर परिसंचरण तंत्र बंद प्रकार का होता है, जिसमें रुधिर वाहिकाएं, केशिकाएं, हृदय होता है (चित्र 7.11)। बंद रुधिर परिसंचरण तंत्र के कारण रुधिर का (vessels) हृदय तथा रक्त वाहिनियों तक ही सीमित रहता है। संकुचन रक्त परिसंचरण को एक दिशा में रखता है। सूक्ष्म रुधिर वाहिकाएं रक्त को आहारनाल, तंत्रिका रुजु और शरीर भित्ति तक पहुँचाती हैं। रुधिर ग्रंथियाँ चौथे, पाँचवें और छठे देह खंड पर पाई जाती हैं। ये ग्रंथियाँ हीमोग्लोबिन तथा रुधिर कोशिकाओं का निर्माण करती हैं जो रुधिर प्लाज्मा में घुल जाती हैं। इनकी प्रकृति भक्षकाण्विक होती है। केंचुए में विशिष्ट श्वसन तंत्र नहीं होता। श्वसन (गैस) विनिमय शरीर की आर्द्र सतह से उनकी रुधिर धारा में संपन्न होता है।

उत्सर्जी अंग खंडों में व्यवस्थित और वलियत निलकाओं के बने होते हैं, जिन्हें वृक्कक (nephridia) कहते हैं। ये वृक्कक तीन प्रकार के होते हैं। (i) पटीय (septal) वृक्कक 15 वें खंड से अंतिम खंड के दोनों ओर अंतर खंडीय पटों पर पाए जाते हैं तथा ये आंत्र में खुलते हैं। (ii) अध्यावरणी वृक्कक जो शरीर की देह भित्ति के आंतिरक आस्तर पर तीसरे खंड से अंतिम खंड तक चिपके रहते हैं तथा शरीर की सतह पर खुलते हैं। (iii) ग्रसनीय वृक्कक चौथे, पाँचवें एवं छठे खंड में तीन युग्मित गुच्छों के रूप में पाए जाते हैं, (चित्र 7.12)। ये विभिन्न प्रकार के वृक्कक संरचना में मूलत: समान होते हैं।

चित्र 7.13 केंचुए का जनन तंत्र

वृक्कक शरीर तरल के आयतन एवं संगठन का नियमन करते हैं। वृक्कक कीपनुमा सिरे से प्रारंभ होता है, जो गुहीय कक्ष से अतिरिक्त द्रव को संचित करता है। कीप वृक्कक के निलकीय भाग से जुड़ा रहता है, जो उत्सर्जी पदार्थों को छिद्र द्वारा शरीर से एकत्र कर आहार नाल में बाहर डालता है।

तंत्रिका तंत्र मूलत: खंडीय गुच्छिकाओं (gamglia) के रूप में दोहरी अधर तंत्रिका रज्जु पर व्यवस्थित होते हैं। बहुत सी तंत्रिका कोशिकाएं इकट्ठी होकर गुच्छिका का निर्माण करती हैं। अग्र सिरे पर (तीसरे व चौथे खंड में) तंत्रिका रज्जु दो सिरों में विभक्त होकर पार्श्वत: ग्रसिका को घेरते हुए पृष्ठ सतह पर प्रमस्तिष्क-गुच्छिका (cerebral ganglia) से मिलती है। इस प्रकार तंत्रिका वलय बन जाता है। तंत्रिका वलय, प्रमस्तिष्क गुच्छिका के साथ मिलकर मस्तिष्क का निर्माण करती है। प्रमस्तिष्क गुच्छिका, वलय की अन्य तंत्रिकाओं के साथ मिलकर संवेदी आवेगों और पेशीय अनुक्रियाओं (responses) को समाकालित करती है।

संवेदी तंत्र में आँखों का अभाव होता है; लेकिन इसमें कुछ प्रकाश और स्पर्श संवेदी अंग (ग्राही कोशिकाएं) विकसित होते हैं, जो प्रकाश की तीव्रता के अंतर को महसूस कर सकते हैं तथा पृथ्वी के कंपन को भी महसूस कर लेते हैं। केंचुए में विशेष प्रकार के रसायन संवेदी अंग, स्वादग्राही (tasterceptor) होते हैं, जो कि रासायनिक उद्दीपनों के लिए प्रतिक्रिया करते हैं। ये संवेदी अंग कृमि के अग्र भाग में पाए जाते हैं।

केंचुए उभयलिंगी (heremophrodite) होते हैं अर्थात् एक ही प्राणी में वृषण (नर) एवं अंडाशय (मादा) दोनों जनन अंग मिलते हैं। इनमें 10वें व 11वें खंड में 2 जोडी वृषण (testes) होते हैं (चित्र 7.13)। इनकी शुक्र-वाहिकाएं अठारहवें (vasa deferentia) खंड तक जाती हैं जहाँ ये प्रोस्टेट वाहिनी (duct) से जुड जाती हैं। दो जोडी सहायक अतिरिक्त ग्रंथियाँ, सत्रहवें तथा उन्नीसवें खंड में पाई जाती हैं। संयुक्त प्रोस्टेट (spermatic) और शुक्राण वाहिनी अठारहवें खंड के अधरपार्श्व में एक जोडा नर जनन छिद्र द्वारा बाहर खुलती है। साथ ही छठे से नौवें खंड तक प्रत्येक खंड में एक छोटे थैलेनुमा संरचनाएं चार जोडे शुक्राण -धानियाँ पाई जाती हैं। यह मैथुन के दौरान शुक्राणुओं को प्राप्त कर संग्रहित करती हैं। एक जोडी अंडाशय बारहवें और तेरहवें खंड के आंतरखंडीय पट पर स्थित होते है। अंडाशय के नीचे अंडवाहिनी मुखिका पाई जाती है, जो अंडवाहिनी तक होती है। ये आपस में जुड कर चौदहवें खंड के अधरतल पर मात्र एक मादा जनन -छिद्र के रूप में बाहर खुलती है।

शुक्राणुओं के आपस में आदान-प्रदान की प्रक्रिया मैथुन के द्वारा होती है। जब एक कृमि दूसरे कृमि को पाता है तथा उनके जनद द्वार (gonadal opening) एक दूसरे के सानिध्य में आते हैं तो वे अपने शुक्राणुओं से भरे थैलों को जिन्हों शुक्राणुधर कहते हैं बदल लेते हैं। पर्याणिका की ग्रंथि कोशिकाओं द्वारा (ककून) उत्पन्न कोकूनों में परिपक्व शुक्राणु व अंड कोशिकाओं तथा तरल जमा किया जाता है। निषेचन एवं परिवर्धन कोकून के अंदर होता है जिसे कृमि मृदा में छोड़ देता है। अंड व शुक्राणु कोशिकाओं का कोकून के अंदर ही निषेचन हो जाता है। कृमि इन्हें अपने शरीर से अलग कर देता है व मृदा (नम स्थान) के ऊपर या अंदर छोड़ देता है। कृमि भ्रूण कोकून में रहते हैं। लगभग तीन सप्ताह के बाद लगभग चार की औसत से कोकून 2-20 शिशु कृमि का निर्माण करता है। कृमि में परिवर्धन प्रत्यक्ष होता है अर्थात् लार्वा अवस्था नहीं होती है।

केंचुआ किसानों का मित्र कहलाता है। यह मिट्टी में छोटे-छोटे बिल बनाता है, जिससे मिट्टी छिद्रित हो जाती है और बढ़ते पौधों की जड़ों के लिए वायु की उपलब्धता और उनका नीचे की ओर बढ़ना सुगम हो जाता है। इस प्रकार केंचुओं द्वारा मिट्टी को उपजाऊ बनाने की विधि या मिट्टी की उर्वर शिक्त बढ़ाने की विधि को कृमि कंपोस्ट खाद निर्माण कहते हैं। केंचुए मछली पकड़ने के लिए प्रलोभक के रूप में प्रयोग में भी लिए जाते हैं।

7.4 कॉकरोच (तिलचट्टा)

कॉकरोच चमकदार भूरे अथवा काले रंग के सपाट शरीर वाले प्राणी हैं; जिन्हें कि संघ (फाइलम) आर्थोपोडा (संधिपाद) की वर्ग इन्सेक्टा (कीटवर्ग) में सिम्मिलत किया गया है। उष्णकिटबंधीय भाग में चमकीले पीले, लाल तथा हरे रंग के कॉकरोच अक्सर दिखाई दे जाते हैं। इनका आकार 1/4-3 इंच (0.6-7.6 सेमी.) होता है। इनमें लंबी शृंगिका (antenna) पैर तथा ऊपरी शरीर भित्ति में चपटी वृद्धि होती है जो कि सिर को ढके

चित्र 7.14 तिलचट्टे का बाह्य चित्र

रहती है। समस्त संसार में ये रात्रिचर, सर्वभक्षी प्राणी हैं तथा नम जगह पर मिलते हैं। ये मनुष्यों के घर में रहकर गंभीर पीड़क एवं अनेक प्रकार के रोगों के वाहक हैं।

7.4.1 बाह्य आकारिकी

सामान्य वयस्क कॉकरोच, जाति *पेरिप्लेनेटा अमेरिकाना* का 34-53 मिमी. लंबा तथा पंखों वाला होता है, पंख नर में उदर के आखिरी छोर से भी आगे बढ़े होते हैं।

कॉकरोच का शरीर मुख्य रूप से खंडों में बँटा होता है, तथा इसके तीन मुख्य भाग होते हैं। सिर, वक्ष तथा उदर (चित्र 7.14)। इसका पूरा शरीर मजबूत काईटिन युक्त बाह्य कंकाल (भूरे रंग का) का बना होता है। प्रत्येक खंड में, बाह्य कंकाल में मजबूत पट्टिकाएं होती हैं जिन्हें कठक (sclerites) (पृष्ठवाली-पृष्ठकांश और अधरवाली-अधरकांश) कहते हैं, ये खंड आपस में एक पतली (महीन) व लचीली झिल्ली से जुड़े होते हैं, जिसे संधिकारी-झिल्ली या संधि झिल्ली कहते हैं।

शरीर के अग्र भाग में स्थित सिर त्रिकोणीय होता है। शरीर के अनुदैर्घ्य अक्ष के साथ लगभग समकोण बनाता है। यह छ: खंडों के मिलने से बनता है तथा अपनी लचीली गर्दन के कारण सभी दिशाओं में घूम सकता है। सिर संपुटिका पर एक जोड़ी संयुक्त नेत्र होते हैं। आँखों के आगे झिल्लीयुक्त सॉकेट से धागे जैसी एक जोड़ी शृंगिका निकलती है। शृंगिका में संवेदी ग्राही उपस्थित होते हैं, जो वातावरणीय दशाओं को मापने का काम करते हैं। सिर के आगे वाले छोर पर उपांग लगे होते हैं, जिनसे काटने व चबाने वाले मुखांग बनते हैं। मुखांग में एक जोड़ी ऊर्ध्वाष्ठ ऊपरी जबड़ा, एक जोड़ी चिबुकास्थि, एक जोड़ी जंभिका, एक अधारोष्ठ होता है। एक मध्य लचीली पालि जिसे अधोग्रसनी (hypophyanx) कहते हैं जिह्वा का कार्य करती है जो कि मुखांगों से घिरी गुहा में उपस्थित होती है (चित्र 7.15)। वक्ष मुख्यत: तीन भागों में बँटा होता है। अग्रवक्ष, मध्यवक्ष व पश्चवक्ष। सिरवक्ष से अग्रवक्षक एक छोटे प्रसार द्वारा जुड़ा रहता है जिसे गर्दन

चित्र 7.15 तिलचट्टा के सिर का क्षेत्र (अ) सिर क्षेत्र को दर्शांते हुए (ब) मुख भाग

कहते हैं। प्रत्येक वक्षीय खंड में एक जोड़ी टांगें पाई जाती हैं कक्षांग (coxa), शिखरक (trochanter) ऊर्विका (femur), अंतर्जिघका (tibia) व गुल्फ (tarsus)। पंखों का प्रथम जोड़ा मध्यवक्ष से निकलता है तथा दूसरा पश्चवक्ष से। अग्र पंख (मध्यवक्षीय) जिन्हें प्रवार (tegmen) आच्छद कहते हैं। अपारदर्शी, गहरे रंग के होते हैं तथा विश्राम अवस्था में पश्चवक्ष पंखों से ढके रहते हैं। पश्चपंख पारदर्शी झिल्लीनुमा होते हैं तथा यह उडने में मदद करते हैं।

नर व मादा दोनों में उदर दस खंडीय होता है। सातवाँ अधरक नौकाकार होता है। तथा आठवां व नवां अधरक के साथ मिलकर एक जनन-कोष्ठ या जनिक कोष्ठ बनाता है जिसके अग्र भाग में मादा जनन छिद्र, स्पर्मेथिकल छिद्र व संपार्श्विक ग्रंथियाँ होती हैं। नर में केवल आठवाँ पृष्ठिक ही सातवें खंड द्वारा ढका रहता है। नर-मादा दोनों में दसवें खंड पर एक जोड़ी संधियुक्त तंतुमय गुदीय लूम (cerci) होते हैं। इन लूमों के नीचे की ओर नर के नवें खंड में एक जोड़ी छोटे व धागे के समान गुदा शूक (anal stylels) होते हैं। मादा में शुक अनुपस्थित होते हैं।

7.4.2 आंतरिक आकारिकी

देहगृहा में स्थित आहारनाल तीन भागों-अग्रांत्र, मध्यांत्र एवं पश्चांत्र में बँटी होती है (चित्र 7.16)। मुख एक छोटी निलकाकार ग्रसनी में खलता है. जिससे एक सीधी और संकरी नली ग्रसिका निकलती है। ग्रसिका एक पतले भित्ती वाले कोष में खुलती है. जिसे अन्नप्ट कहते हैं. जिसमें भोजन संग्रहीत रहता है। इसके पीछे ग्रंथिल जठर (proventriculus) अथवा पेषणी होती है। इसमें बाहर एक मोटा वर्तुल पेशी स्तर होता है तथा स्तर की उपत्वचा छ: स्थानों पर मोटी होकर उपत्वचीय दांत बनाती है। ये दांत भोजन के मोटे कणों को पीसने में सहायक होते हैं। पुरा अग्रांत्र अंदर से उपत्वचा (क्युटिकल) से आस्तरित रहता है। मध्यांत्र एक संकरी एवं समान व्यास की निलका होती है, जिसमें उपत्वचा का आस्तर नहीं होता है। अग्रांत्र व मध्यांत्र के संधिस्थल पर अंगुली के समान छह से आठ अंध-नलिकाएं लगी रहती हैं, जिनके सिरे बंद रहते हैं। इनको यकतीय या जठरीय अंधनाल कहते हैं. ये पाचकरस बनाती हैं। मध्यांत्र व पश्चांत्र के संधि स्थल पर लगभग 100-150 पतली पीले रंग की नलिकाएं होती है। जिन्हें

चित्र 7.16 तिलचट्टा की आहारनाल

चित्र 7.17 तिलचट्टे का खुला परिसंचरण तंत्र

मैलपीगी निलकाएं कहते हैं। ये हीमोलिंफ से उत्सर्जी पदार्थों के उत्सर्जन में सहायक होती हैं। पश्चांत्र, मध्यांत्र से थोड़ा चौड़ा होता है तथा क्षुदांत्र, वृहदांत्र एवं मूत्राशय में विभक्त रहता है। मलाशय बाहर की ओर गुदा द्वारा खुलता है।

तिलचट्टे में खुले प्रकार का परिसंचरण तंत्र होता है (चित्र 7.17) इसकी रुधिर वाहिनियाँ अल्पविकसित होती हैं और रुधिरगुहा में खुलती हैं तथा उसी में सभी अंतरंग अंग डूबे रहते हैं, जिसे रुधिरलसीका कहते हैं। रुधिरलसीका (हीमोलिंफ) रंगहीन प्लाज्मा व रुधिराणुओं से बना होता है। कॉकरोच का हृदय एक लंबी पेशीय नली होती है जो रुधि रगुहा में वक्ष और अधर की मध्य-पृष्ठीय रेखा के साथ-साथ स्थित है। हृदय कीपाकार कोष्ठकों में विभेदित होता है और दोनों तरफ आस्य (ostia) होते हैं।

श्वसन तंत्र शाखित श्वास नालों (trachea) के जाल का बना होता है। श्वासनाल, श्वास छिद्रों द्वारा खुलती हैं। हवा 10 जोड़ी श्वास छिद्रों द्वारा अंदर प्रवेश करती है जो कि शरीर की पार्श्व सतह पर व्यवस्थित होते हैं। श्वासनाल पुन: विभाजित होकर श्वासनिलकाएं बनाती हैं। यह हवा को श्वास निलकाओं द्वारा शरीर के सभी भागों तक पहुँचाती हैं। श्वास छिद्रों का खुलना अवरोधनी द्वारा नियमित होता है। श्वासनिलकाओं पर गैसों का आदान प्रदान विसरण विधि द्वारा होता है।

तिलचट्टे में उत्सर्जन मैलपीगी निलकाओं द्वारा होता है। प्रत्येक निलका ग्रंथिल एवं रोमयुक्त उपकला द्वारा आस्तरित रहती है। ये नाइट्रोजनी-अपशिष्ट पदार्थों का अवशोषण करके उन्हें जैव रासायनिक क्रिया द्वारा यूरिक अम्ल में परिवर्तित कर देती है। यूरिक अम्ल पश्चांत्र द्वारा उत्सर्जित कर दिया जाता है। अत: यह कीट यूरिकाम्ल उत्सर्गी कहलाता है। इनके साथ-साथ वसापिंड वृक्काणु उपत्वचा और यूरेकोस ग्रंथियां भी उत्सर्जन में सहायक होती हैं।

तिलचट्टा में तंत्रिका तंत्र एक श्रेणी बद्ध खंडीय व्यवस्थित गुच्छिकाओं का बना होता है, जो अधर तल पर युग्मित (paired) अनुदैर्घ्य संयोजक से जुड़ी रहती हैं। तीन गुच्छिकाएं वक्ष में और छ: उदर में स्थित होती हैं। कॉकरोच का तंत्रिका तंत्र पूरे शरीर में फैला रहता है। सिर मे तंत्रिका तंत्र का थोड़ा सा हिस्सा रहता है। जबिक बाकी भाग शरीर के दूसरे भागों के अधर तल में उपस्थित रहता है, अब तक आप यह जान चुके होंगे कि कॉकरोच का सिर काटने के बाद भी एक सप्ताह तक जीवित क्यों रहता है? सिर में मस्तिष्क अधिग्रसिका गुच्छिका द्वारा निरूपितत (represent) किया जाता है, जो कि शृंगिकाओं एवं संयुक्त नेत्र को तंत्रिकाएं भेजता है। तिलचट्टे में संवेदन अंग, शृंगिका, आँख, मैक्सिलरी स्पर्शक, लेबियल स्पर्शक तथा गुदा रोमक इत्यादि होते हैं। शृंगिका, स्पर्शक ओर रोमक स्पर्श संवेदी होते हैं। सिर के पृष्ठ सतह पर एक जोड़ी संयुक्त नेत्र पाए जाते हैं। प्रत्येक संयुक्त नेत्र में लगभग 2000 षटकोणीय नेत्राशंक (ommatia) होते हैं। कई नेत्रांशकों की मदद से तिलचट्टा एक ही वस्तु की कई प्रतिछायाएं देख सकता है। इस प्रकार की दृष्टि को मोजेक दृष्टि कहते हैं, जिसकी सुग्राहिता अधिक परंतु विभेदन कम होता है, यह सामान्यतया रात के समय होती है, अत: इसे रात्रि दृष्टि कहा जाता है।

तिलचट्टा द्विलिंगी होता है तथा दोनों लिंगों में पूर्ण विकसित जनन अंग होते हैं (चित्र 7.18)। नर जननांग एक जोडी वृषण के रूप में विद्यमान होते हैं, जो चौथे से छठे उदरीय

चित्र 7,18 तिलचट्टे का जनन तंत्र (अ) नर (य) मादा

खंड के पार्श्व में व्यवस्थित होते हैं। प्रत्येक वृषण से एक पतली निलका जिसे शुक्रवाहिनी कहते हैं, शुक्राशय से होते हुए स्खलनीय वाहिनी में खुलती है। ये स्खलनीय वाहिनी नर-जनन छिद्र में खुलती है जो गुदा के अधर में होता है। एक विशिष्ट छन्नक रूपों ग्रीथ उदर के छठे एवं सातवें खंड में होती है, जो सहायक जनन-ग्रीथ का कार्य करती है। बाह्य जननेन्द्रिय नर गोनोफोफिसस (युग्मनप्रवर्ध) अथवा शिश्नखंड के रूप में होती है जननरंश्च के चारों ओर काइटिनी असमितीय संस्वना है। शुक्राणु, शुक्राशय में संग्रहित रहते हैं और पुंज के रूप में आपस में चिपके रहते हैं। इन पुंजों को शुक्राणुधर कहते हैं। मैथुन के समय ये विसर्जित कर दिए जाते हैं। मादा जनन तंत्र में दो बृहद् आकार के अंडाशय होते हैं, जो उदर के दो से छठे खंड के पार्श्व में स्थित होते हैं। प्रत्येक अंडाशय आठ अंडाशयों निलका अथवा अंडाशयकों का बना होता है, जिसमें परिवर्धित हो रहे

> अंडों की एक शृंखला होती है। दोनों तरफ के अंडाशयों की अंडवाहिनियां मिलकर एक मध्य अंडवाहिनी का निर्माण करती है, जिसे योनि कहते हैं जो जनन कोष्ठ में खुलती है। छठे खंड में एक जोडी शुक्राणुधानी होती है, जो जनन कक्ष में खुलती है।

> शुक्राण, शुक्राणुधर के द्वारा स्थानांतरित होते हैं। इनके निषेचित अंडें एक संपुट में संकोशित होते हैं, जिसे अंडकवच कहते हैं। अंडकवच गहरे लाल रंग से काले भूरे रंग का 3/8 इंच (8 मिमी.) लंबा संपुट (केप्स्यूल) होता है। ये संपुट दरारों एवं आईता युक्त तथा भोजन वाले स्थानों पर चिपका दिए जाते हैं। औसतन एक मादा 9-10 अंडकवच उत्पन्न करती है और प्रत्येक में 14-16 अंडे होते हैं। *पी.अमेरिकाना (P. americana)* का परिवर्धन में पौरोमेटाबोलस प्रकार का होता हैं अर्थात् इनके परिवर्धन में अर्भक (निंफ्स) अवस्था मुख्य रूप से पाई जाती है। अर्भक वयस्क के समान दिखते हैं। अर्भक में विद्ध कायांतरण के द्वारा होती है तथा लगभग तेरह निर्मोचन के बाद यह वयस्क में बदल जाता है। अंतिम अर्भक अवस्था से पहली अवस्था में पक्षतल्प (wing pad) पाए

> तिलचट्टों की बहुत सी जंगली जातिया पाई जाती हैं। तथा इनका कोई आर्थिक महत्व नहीं है। कुछ जातियां मनुष्य के वास-स्थान में अथवा उसके आस-पास फलती-फूलती होती हैं। ये पीडक के रूप में कार्य करते हैं; क्योंकि ये खाद्य पदार्थों को नष्ट कर देते हैं तथा अपने दुर्गंधयुक्त उत्सर्ग द्वारा संदूषित कर देते हैं। भोज्य पदार्थों को संदूषित कर अनेक जीवाष्पीय बीमारियों को फैलाते हैं।

7.5 मेंढक

मेंढक वह प्राणी है जो मीठे जल तथा धरती दोनों पर निवास करता है तथा कशेरुकी संघ के एंफीबिया वर्ग से संबंधित होता है। भारत में पाई जाने वाली मेंढक की सामान्य जाति राना टिग्रीना है।

इसके शरीर का ताप स्थिर नहीं होता है। शरीर का ताप वातावरण के ताप के अनुसार परिवर्तित होता रहता है। इस प्रकार के प्राणियों को असमतापी या अनियततापी कहते हैं। मेंढक के रंग को परिवर्तित होते हुए आपने अवश्य देखा होगा, जिस समय ये घास तथा नम जमीन पर होते हैं। क्या आप बता सकते हो, ऐसा क्यों होता है? उनमें अपने शत्रुओं से छिपने के लिए रंग परिवर्तन की क्षमता होती है, जिसे छद्मावरण कहा जाता है। इस रक्षात्मक रंग परिवर्तन क्रिया को अनुहरण (minimicry) कहते हैं। आपने यह

भी देखा होगा कि मेंढक शीत व ग्रीष्म ऋतु में नहीं दिखते। इस अंतराल में ये सर्दी तथा गर्मी से अपनी रक्षा करने के लिए गहरे गड्ढों में चले जाते हैं। इस प्रक्रिया को क्रमश: शीत निष्क्रियता (hibernation) व ग्रीष्म निष्क्रियता (aestivation) कहते हैं।

7.5.1 बाह्य आकारिकी

क्या आपने कभी मेंढक की त्वचा को छुआ है? मेंढक की त्वचा श्लेषमा (म्युकस) से ढकी होने के कारण चिकनी तथा फिसलनी होती है। इसकी त्वचा सदैव आर्द्र रहती है। मेंढक की ऊपरी सतह धानी हरे रंग की होती है. जिसमें अनियमित धब्बे होते हैं. जबकि नीचे की सतह हल्की पीली होती है। मेंढक कभी पानी नहीं पीता:

धड़ पश्चपाद चित्र 7.19 मेंढक का बाह्य चित्र

बल्कि त्वचा द्वारा इसका अवशोषण करता है।

मेंढक का शरीर सिर व धड़ में विभाजित रहता है। (चित्र 7.19) पूंछ व गर्दन का अभाव होता है। मुख के ऊपर एक जोड़ी नासिका द्वार खुलते हैं। आँखें बाहर की ओर निकली व निमेषकपटल से ढकी होती हैं तािक जल के अंदर आँखों का बचाव हो सके। आँखों के दोनों ओर (कान) टिम्पैनम या कर्ण पटह उपस्थित होते हैं, जो ध्विन संकेतों को ग्रहण करने का कार्य करते हैं। अग्र व पश्चपाद चलने, फिरने, टहलने व गड्ढा बनाने का काम करते हैं। अग्र पाद में चार अंगुलियाँ होती हैं; जबिक पश्चपाद में पाँच होती हैं। तथा पश्चपाद लंबें व मांसल होते हैं। पश्च पाद की झिल्लीयुक्त अंगुलि जल में तैरने में महत्वपूर्ण भूमिका निभाती है। मेंढक में लैंगिक द्विरूपता देखी जाती है। नर मेंढक में आवाज उत्पन्न करने वाले वाक् कोष (vocal sacs) के साथ-साथ अग्रपाद की पहली अंगुलि में मैथुनांग होते हैं। ये अंग मादा मेंढक में नहीं मिलते हैं।

7.5.2 आंतरिक आकारिकी

मेंढक की देह गुहा में पाचन तंत्र, श्वसन तंत्र, तंत्रिका तंत्र, संचरण तंत्र, जनन तंत्र पूर्ण अच्छी तरह परिवर्धित संरचनाओं एवं कार्यों युक्त होते हैं। मेंढक का पाचन तंत्र आहार नाल तथा आहर ग्रंथि का बना होता है (चित्र 7.20)। मेंढक मांसाहारी है, अत: इसकी

चित्र 7.20 मेंढक की आंतरिक संरचना जो पूर्ण आहार तंत्र दर्शाती है।

आहारनाल लंबाई में छोटी होती है। इसका मुख, मुखगुहिका में खुलता है जो ग्रसनी से होते हुए ग्रिसका तक जाती है। ग्रिसका एक छोटी नली है जो आमाशय में खुलती है। आमाशय आगे चलकर आंत्र, मलाशय और अंत में अवस्कर (cloaca) द्वारा बाहर खुलता है। इसका मुँह मुखगुहिका द्वारा ग्रसनी में खुला है जो ग्रिसका तक जाती है।

यकृत पित्त रस स्रावित करता है जो पित्ताशय में एकत्रित रहता है। अग्नाश्य जो एक पाचक ग्रंथि है, जो अग्नाशयी रस स्रवित करता है जिसमें पाचक एंजाइम होते हैं। मेंढक अपनी द्विपालित जीभ से भोजन का शिकार पकड़ता है। इसके भोजन का पाचन आमाशय की दीवारों द्वारा स्रवित हाइड्रोक्लोरिक अम्ल तथा पाचक रसों द्वारा होता है। अर्धपाचित भोजन काइम कहलाता है जो आमाशय से ग्रहणी में जाता है। ग्रहणी पित्ताशय से पित्त और अग्नाशय से अग्नाशयी रस मूल पित्त वाहिनी द्वारा प्राप्त करती है। पित्तरस वसा तथा अग्नाशयी रस कार्बोहाइड्रेटों तथा प्रोटीन का पाचन करता है। पाचन की अंतिम प्रक्रिया आँत में होती है। पाचित भोजन आँत के अंदर अंकुर और सूक्ष्मांकुरों द्वारा अवशोषित होते हैं। अपाचित भोजन अवस्कर द्वार से बाहर निष्कासित कर दिया जाता है।

मेंढक जल व थल दोनों स्थानों पर दो विभिन्न विधियों द्वारा श्वसन कर सकते हैं। इसकी त्वचा एक जलीय श्वसनांग का कार्य करती है। इसे त्वचीय श्वसन कहते हैं। विसरण द्वारा पानी में घुली हुई ऑक्सीजन का विनिमय होता है। जल के बाहर त्वचा, मुख गुहा और फेफड़े वायवीय श्वसन अंगों का कार्य करते हैं। फेफड़ों के द्वारा श्वसन फुप्फसीय श्वसन कहलाता है। फेफेड़े एक लंबें अंडाकार गुलाबी रंग की थैलीनुमा संरचनाएं होती हैं, जो देहगुहा के विधीय भाग में पाई जाती हैं। वायु नासा छिद्रों से होकर मुख गुहा तथा फेफड़ों में पहुँचती है। ग्रीष्म निष्क्रियता व शीत निष्क्रियता के दौरान मेंढक त्वचा से श्वसन करते हैं।

मेंढक का पिरसंचरण तंत्र, सुविकिसत बंद प्रकार का होता है। इसमें लसीका पिरसंचरण भी पाया जाता है। अर्थात् ऑक्सीजिनत अथवा विऑक्सीजिनित रक्त हृदय में मिश्रित हो जाते हैं। रुधिर पिरसंचरण तंत्र हृदय, रक्त वाहिकाओं और रुधिर से मिलकर बनता है। लसीका तंत्र लसीका, लसीका निलकाओं और लसीका ग्रंथियों का बना होता है। हृदय एक त्रिकोष्टीय मांसल संरचना है, जो िक देह गृहा के ऊपरी भाग में स्थित है। यह पतली पारदर्शी झिल्ली, हृदय–आवरण (पेरीकार्डियम) द्वारा ढका रहता है। एक त्रिकोष्टीय संरचना, जिसे शिराकोटर (साइनस वेनोसस) कहते हैं, हृदय के दाहिने अलिंद से जुड़ा रहता है तथा महाशिराओं से रक्त प्राप्त करता है। हृदय की अधर सतह पर दाएं अलिंद के ऊपर एक थैलानुमा रचना धमनी शंकु होता है, जिसमें निलय (ventricle) खुलता है। हृदय से रक्त धमनियों द्वारा शरीर के सभी भागों में भेजा जाता है। इसे धमनी तंत्र कहते हैं। शिराएं शरीर के विभिन्न भागों से रक्त एकत्रित कर हृदय में पहुँचाती हैं, यह शिरा–तंत्र कहलाता है। मेंढक में विशेष संयोजी शिराएं यकृत तथा आँतों के मध्य वृक्क तथा शरीर के निचले भागों के मध्य पाई जाती है। इन्हें क्रमश: यकृत निवाहिका तंत्र एवं वृक्कीय निवाहिका तंत्र कहते हैं। रक्त प्लेज्मा तथा रक्त–कणिकाओं से मिलकर बना है। रक्त कणिकाएं हैं– लाल रुधर कणिकाएं (रक्ताण्)) एवं श्वेत रुधर कणिकाएं

(श्वेताणु) एवं पट्टिकाणु (प्लेटलेट)। लाल रुधिर कणिकाओं में लाल रंग का श्वसन रंजक हीमोग्लोबिन पाया जाता है। इन कणिकाओं में केंद्रक पाया जाता है। लसीका रुधिर से भिन्न होता है; क्योंिक इसमें कुछ प्रोटीन व लाल रुधिर कणिकाएं अनुपस्थित होती हैं। परिसंचरण के दौरान रक्त पोषकों गैसों व जल को नियत स्थानों तक ले जाता है। रुधिर परिसंचरण मांसल हृदय की पंपन क्रिया द्वारा होता है।

नाइट्रोजनी अपशिष्ट को शरीर से बाहर निकालने के लिए मेंढक में पूर्ण विकसित उत्सर्जी तंत्र होता है। उत्सर्जी अंग में मुख्यतः एक जोड़ी वृक्क, मूत्रवाहिनी, अवस्कर द्वार तथा मूत्राशय होते हैं। ये गहरे लाल रंग के सेम के आकार के होते हैं। और देहगुहा में थोड़ा सा पीछे की ओर केशेरुक दंड के दोनों ओर स्थित होते हैं। प्रत्येक वृक्क कई सरंचनात्मक व क्रियात्मक इकाइयों, मूत्रजन निलकाओं या वृक्काओं का बना होता है। नर मेंढक में मूत्र निलका वृक्क से मूत्र जनन निलका के रूप में बाहर आती है। मूत्रवाहिनी अवस्कर द्वार में खुलती है। मादा मेंढक में मूत्र वाहिनी एवं अंडवाहिनी अवस्कर द्वार में अलग–अलग खुलती हैं। एक पतली दीवार वाला मूत्राशय भी मलाशय के अधर भाग पर स्थित होता है, जो कि अवस्कर में खुलता है। मेंढक यूरिया का उत्सर्जन करता है इसलिए यूरिया–उत्सर्जी प्राणी कहलाता है। उत्सर्जी अपशिष्ट रक्त द्वारा वृक्क में पहुँचते हैं, जहाँ पर ये अलग कर दिए जाते हैं और उनका उत्सर्जन कर दिया जाता है।

नियंत्रण व समन्वय तंत्र मेंढक में पूर्ण विकसित होता है। इनमें अंत: म्रावी ग्रंथियाँ (endocrine system) व तंत्रिका तंत्र दोनों पाए जाते हैं। विभिन्न अंगों में आपसी समन्वयन कुछ रसायनों द्वारा होता है जिन्हें हॉर्मोन कहते हैं। ये अंत:म्रावी ग्रंथियों द्वारा म्रावित होते हैं। मेंढक की मुख्य अंत:म्रावी ग्रंथियाँ हैं - पीयूष (पिट्यूटरी), अवटु (थॉइराइड), परावटु (पैराथाइँराइड), थाइमस, पीनियल काय, अग्नाशयी द्वीपकाएं, अधि वृक्क (adrenal) और जनद (gonad)। तंत्रिका तंत्र (मिस्तष्क तथा मेरु रज्जु) केंद्रीय तंत्रिका तंत्र, पिरधीय तंत्रिका तंत्र (कपालीय व मेरु तंत्र) और स्वायत तंत्रिका तंत्र (ओटोनोमिक नर्वस सिस्टम) अनुकंपी और परानुकंपी (सिंपेथेटिक व पैरासिंपेथिटक) तंत्र का बना होता है। मिस्तष्क से 10 जोड़ी कपाल तंत्रिकाएं निकलती है। मिस्तष्क, हड्डियों से निर्मित मिस्तष्क बॉक्स अथवा कपाल के अंदर बंद रहता है। यह अग्र मिस्तष्क, मध्य मिस्तष्क और पश्च मिस्तष्क में विभाजित होता है। अग्र मिस्तष्क में घ्राण पालियाँ, जुड़वाँ, युग्मित, प्रमिस्तष्क एक जोड़ा दृक पालियों का बना होता है। पश्च मिस्तष्क, अनुमिस्तष्क एवं मेडूला ऑब्लांगेटा का बना होता है। मेडूला ऑब्लांगेटा महारंध्र से निकलकर मेरुदंड में स्थित मेरुरज्ज से जुडा रहता है।

मेंढक में भिन्न प्रकार के संवेदी अंग पाए जाते हैं। जैसे- स्पर्श अंग (संवेदी पिप्पल) स्वाद अंग (स्वाद कलिकाएं) गंध (नासिका उपकला) दृष्टि (नेत्र) व श्रवण (कर्ण पटह और आंतरिक कर्ण)। इन सब में आँखें और आंतरिक कर्ण सुव्यवस्थित होते हैं और बचे हुए दूसरे संवेदी अंग केवल तंत्रिका सिरों पर कोशिकाओं के गुच्छे होते हैं। मेंढक में एक जोडी गोलाकार नेत्र गड़ढों में स्थित होते हैं। ये साधारण नेत्र होते हैं। मेंढक में बाह्य कर्ण

ाचत्र 7.21 नर जनन तत्र

चित्र 7.22 मादा जनन तंत्र

अनुपस्थिति होता है केवल कर्णपट ही बाहर से दिखाई देता है। कर्ण एक ऐसा अंग है जो सुनने के साथ-साथ संतुलन का काम भी करता है।

मेंढक में मादा व नर जनन तंत्र अलग एवं पूर्ण सुव्यवस्थित होते हैं। नर जननांग एक जोड़ी पीले अंडाकार वृषण होते हैं जो, वृक्क के ऊपरी भाग से पेरिटोनियम के दोहरीवलय, मेजोर्कियम नामक झिल्ली द्वारा चिपके रहते हैं। (चित्र 7.21)। शुक्र वाहिकाएं संख्या में 10-12 होती हैं जो वृषण से निकलने के बाद अपनी ओर के वृक्क में धंस जाती हैं। वृक्क में ये विडर नाल में खुलती हैं, जो अंत में मूत्रवाहिनी में खुलती है। अब मूत्रवाहिनी मूत्र-जनन वाहिनी कहलाती है, जो वृक्क से बाहर आकर अवस्कर में खुलती है। अवस्कर एक छोटा मध्यकक्ष होता है, जो कि उत्सर्जी पदार्थ, मूत्र तथा शुक्राणुओं को बाहर भेजने का कार्य करता है।

मादा में वृक्क के पास एक जोड़ी अंडाशय उपस्थित होते हैं (चित्र 7.22) लेकिन इनका वृक्क से कोई क्रियात्मक संबंध नहीं होता है। एक जोड़ी अंडवाहिनियाँ अवस्कर में अलग-अलग खुलती हैं। एक परिपक्व मादा एक बार में 2,500 से 3,000 अंडे दे सकती है। इनमें बाह्य निषेचन पानी में होता है। भ्रूण परिवर्धन लार्वा के माध्यम से होता है, लार्वा टैडपोल कहलाता है।

मेंढक मनुष्य के लिए लाभदायक प्राणी है। यह कीटों को खाता है और इस तरह फसलों की रक्षा करता है। मेंढक वातावरण संतुलन बनाए रखते हैं; क्योंकि यह पारिस्थितिकी तंत्र की एक महत्वपूर्ण भोजन शृंखला की एक कड़ी है। कुछ देशों में मांसल पाद मनुष्यों द्वारा भोजन के रूप में इस्तेमाल किए जाते हैं।

सारांश

कोशिका ऊतक, अंग और अंग तंत्र कार्य को इस प्रकार विभक्त कर लेते हैं कि शरीर का बना रहना सुनिश्चित रहे और इस तरह वे श्रम विभाजन प्रदर्शित करते हैं। कोशिकाओं का ऐसा समूह जो अंतराकोशीय पदार्थों से बना होता है तथा एक या अधिक कार्य करता है, ऊतक कहलाता है। उपकला शरीर के चादर जैसे ऊतक होते हैं बाह्य सतह और गुहिकाओं, वाहिनियों और निलकाओं का आस्तर है। उपकलाओं की एक मुक्त सतह होती है जिसके एक तरफ शरीर तरह तथा दूसरी तरफ बाह्य वातावरण होता है। इनकी कोशिकाएं संरचनात्मक एवं क्रियात्मक रूप से संधियों से जुड़ी रहती हैं।

विभिन्न प्रकार के संयोजी ऊतक एक साथ मिलकर शरीर के अन्य ऊतकों को आलंब, शिक्त, सुरक्षा और रोधन (insulation) प्रदान करते हैं। कोमल संयोजी ऊतक आधारीय पदार्थ में प्रोटीन रेशों तथा कई तरह की कोशिकाओं से मिलकर बना होता है। उपास्थि, अस्थि, रक्त तथा वसामय ऊतक एक विशेष प्रकार के संयोजी ऊतक होते हैं। उपास्थि एवं अस्थि दोनों एक तरह के संरचनात्मक पदार्थ होते हैं। रुधिर एक तरल ऊतक है जिसका कार्य परिवहन है। वसामय ऊतक ऊर्जा को संचित करने का काम करता है। पेशीय ऊतक जो किसी उद्दीपन पर अनुक्रिया के फलस्वरूप संकुचित (छोटा) होता है और शरीर व शरीर के भाग को गितशील बनाता है। कंकाल पेशी, वह पेशी ऊतक है, जो अस्थियों से जुड़ी रहती है। चिकनी पेशी आंतरिक अंगों का एक घटक है। हृदय पेशी, हृदय की संकुचनशील भित्तियों का निर्माण करती है। संयोजी ऊतक में सभी तीनों तरह के ऊतक होते हैं। तंत्रीय तंत्र शरीर की सभी क्रियाओं की अनुक्रिया पर नियंत्रण रखता है। तंत्रिका ऊतक की एक इकाई न्यूरान अथवा तंत्रि कोशिका है।

केंचुआ, कॉकरोच व मेंढक एक विशेष प्रकार की शरीर संरचना को प्रदर्शित करते हैं। फेरेटिमा पोस्थुमा (केंचुआ) का शरीर उपचर्म से ढका रहता है। शरीर के सभी खंड 14, 15, व 16 को छोड़कर एक जैसे होते हैं। 14, 15, व 16 खंड मोटे, गहरे, ग्रंथिल होते हैं व क्लाइटेलम (पर्याणिका) का निर्माण करते हैं। शरीर के प्रत्येक खंड में एक एस (S) आकार का काइटिन युक्त शूक का वलय होता है। यह चलन में सहायता करता है। अधरीय भाग के 5 और 6, 6 और 7, 7 और 8 तथा 8 और 9 खंडों के बीच स्थित खांचों में शुक्रवाहिका द्वार होते हैं। मादा जनन छिद्र 14 वें खंड तथा नर जनन छिद्र 18वें खंड में होता है। आहारनाल एक पतली निलका होती हैं जो मुख, मुख गुहा, ग्रसिका, पेषणी, आमाशय, आंत्र और गुदा तक होती हैं। रुधिर परिसंचरण तंत्र बंद प्रकार का होता है जो हृदय तथा कपाट (वाल्व) का बना होता है। तंत्रिका तंत्र अधर तंत्रिका रज्जु का प्रतिनिधित्व करता है। केंचुआ द्विलिंगी प्राणी है। इसमें दो जोड़े वृषण क्रमश: 10वें व 11वें खंड में पाए जाते हैं। एक जोड़ा अंडाशय 12वें – 13वें अंतिखंड के बीच स्थित होते हैं। यह एक पुंपूर्वी प्राणी है, जिसमें निषेचन पाया जाता है। निषेचन और परिवर्धन पर्याणिका की ग्रंथियों द्वारा स्नावित कोकून के अंदर होता है।

कॉकरोच (पेरिप्लैनेटो अमेरिकाना) का शरीर कायाटिन निर्मित, बाह्य कंकाल से ढका रहता है। यह सिर, वक्ष और उदर में विभाजित रहता है। खंडों पर संधियुक्त उपांग पाए जाते हैं। वक्ष के तीन खंड होते हैं, जिसमें दो जोड़ी चलन पाद पाए जाते हैं। दो जोड़े पंख पाए जाते हैं, जो क्रमश: दूसरे व तीसरे खंड में होते हैं। उदर में 10 खंड होते हैं। आहार नाल सुपरिवर्धित होता है जिसमें मुखांगों से घिरा मुख ग्रसनी, ग्रसिका, अन्नपुट (क्रॉप), पेषणी, मध्यांत्र, पश्चांत्र और गुदा शामिल है। अग्रांत्र एवं मध्यांत्र के संधि स्थल पर यकृतीय अधनाल उपस्थित होते हैं। मध्यांत्र एवं पश्चांत्र के मध्य मैलपीगी निलकाएं उपस्थित होती है और उत्सर्जन में सहायता करती है। अन्नपुट (क्राप) के निकट एक जोड़ी लार ग्रंथियाँ उपस्थित होती हैं। रुधिर परिसंचरण तंत्र खुले प्रकार का होता है। श्वसन, श्वास निलकाओं के जाल द्वारा होता है। श्वासनिलकाएं (श्वासरंध्र) द्वारा बाहर की ओर खुलती हैं। तंत्रिका तंत्र अधर तंत्रिका रज्जु और खंडीय गुच्छिकाओं द्वारा निरूपित किया जाता है। निषेचन आंतरिक होता है। मादा 10-40 अंडकवच उत्पन्न करती है, जिसमें परिवर्धित भ्रूण पाया जाता है। एक अंडकवच के फटने से 16 नवजात शिश बाहर आते हैं. जिन्हें अर्भक (निम्फ) कहते हैं।

भारतीय बुलफ्राग, राना टिग्रीना भारत में पाया जाने वाला सामान्य मेंढक है। इसका शरीर त्वचा से ढका रहता है। त्वचा पर श्लेष्म ग्रंथियाँ पाई जाती है जो अत्यधिक संवहनी होती है तथा श्वसन (जल तथा थल) में सहायता करती है। शरीर, सिर और धड़ में विभक्त रहता है। एक पेशीय जिह्वा उपस्थित रहती है जो िकनार से कटी हुई ओर द्विपालित (वाईलोब्ड) होती है। यह शिकार को पकड़ने में मदद करती है। आहारनाल, ग्रिसका, आमाशय, आंत्र और मलाशय की बनी होती है, जो अवस्कर द्वारा बाहर की ओर खुलती है। मुख्य पाचन ग्रंथियाँ, यकृत और अग्नाशय हैं। यह पानी में त्वचा द्वारा तथा जमीन पर फेफड़ों द्वारा श्वसन करता है। रुधिर परिसंचरण तंत्र बंद और एकल प्रकार का होता है। लाल रुधिर किणकाएं केंद्रक युक्त होती हैं तंत्रिका तंत्र, केंद्रीय, परिधीय और स्वायत्त प्रकार का होता है। जनन तंत्र के मूल अंग वृक्क एवं मूत्र जनन निलकाएं हैं, जो अवस्कर में खुलती है। नर जननांग एक जोड़ी वृषण तथा मादा जननांग एक जोड़ी अंडाशय होते है। एक मादा एक बार में 2500 से 3000 अंडे देती है। निषेचन और परिवर्धन बाह्य होता है। अंडों से टेडपोल निकलता है, जो मेंढक में कायांतरित हो जाता है।

अभ्यास

- एक शब्द या एक पंक्ति में उत्तर दीजिए:
 - (i) *पेरिप्लेनेटा अमेरिकाना* का सामान्य नाम लिखिए।
 - (ii) केंचुए में कितनी शुक्राणुधानियां पाई जाती हैं?
 - (iii) तिलचट्टे में अंडाशय की स्थिति क्या है?
 - (iv) तिलचट्टे के उदर में कितने खंड होते हैं?
 - (v) मैलपीगी नलिकाएं कहाँ पाई जाती हैं?
- 2. निम्न प्रश्नों के उत्तर दीजिए।
 - (i) वुक्कक का क्या कार्य है?
 - (ii) अपनी स्थिति के अनुसार केंचुए में कितने प्रकार के वृक्कक पाए जाते हैं?
- 3. केंचुए के जननांगों का नामांकित चित्र बनाइए।
- 4. तिलचट्टे की आहारनाल का नामांकित चित्र बताइए।
- 5. निम्न में विभेद करें:
 - (अ) पुरोमुख एवं परितुंड (ब) पटीय (septal) वृक्कक और ग्रसनीय वृक्कक
- रुधिर के कणीय अवयव क्या है?
- 7. निम्न क्या हैं तथा प्राणियों के शरीर में कहाँ मिलते हैं?
 - (अ) अपास्थि-अणु (कोंड्रोसाइट) (ब) त्रिकाक्ष ऐक्सॉन (स) पक्ष्माभ उपकला
- रेखांकित चित्र की सहायता से विभिन्न उपकला ऊतकों का वर्णन कीजिए।
- 9. निम्न में विभेद कीजिए।
 - (अ) सरल उपकला तथा संयुक्त उपकला ऊतक
- (ब) हृदय पेशी तथा रेखित पेशी
- (स) सघन नियमित एवं सघन अनियमित संयोजी ऊतक (द) वसामय तथा रुधिर ऊतक

- (व) सामान्य तथा संयुक्त ग्रंथि
- निम्न शृंखलाओं में सुमेलित न होने वाले अंशों को इंगित कीजिए:
 - (अ) एरिओल ऊतक; रुधिर, तंत्रिकोशिका न्यूरॉन, कंडरा (टेंडन)
 - (ब) लाल रुधिर कणिकाएं, सफेद रुधिर कणिकाएं, प्लेटलेस्ट, उपास्थि
 - (स) बाह्यस्रावी, अंतस्रावी, लारग्रंथि, स्नायु (लिगामेंट)
 - (द) मैक्सिला, मैंडिबल, लेब्रय,शृंगिका (एंटिना)
 - (व) प्रोटोनेमा, मध्यवक्ष, पश्चवक्ष तथा कक्षांग (कॉक्स)
- 11. स्तंभ-I और स्तंभ-II को सुमेलित कीजिए:

स्तंभ-1 स्तंभ-॥ (क) संयुक्त उपकला (i) आहारनाल (ख) संयुक्त नेत्र (ii) तिलचट्टे (ग) पट्टीय वृक्कक (iii) त्वचा (iv) किमीर दुष्टि (घ) खुला परिसंचरण तंत्र (ड.) आंत्रवलन (v) केंचुआ (च) अस्थि अणु (vi) शिश्न खंड (vii) अस्थि (छ) जननेन्द्रिय

- 12. केंच्ए के परिसंचरण तंत्र का संक्षेप में वर्णन करें।
- 13. मेंढक के पाचन तंत्र का नामांकित चित्र बनाइए।
- 14. निम्न के कार्य बताइए:
 - (अ) मेंढक की मूत्रवाहिनी (ब) मैलपिगी नलिका (स) केंचुए की देहभित्ति