

Dr. rer. nat. Johannes Riesterer

Kameraprojektion

Basis

Basis

Sind b_1, b_2, b_3 linear unabhängig, dann heisst das Tupel $B = (b_1, b_2, b_3)$ Basis des \mathbb{R}^3 .

Basisdarstellung

Für $v \in \mathbb{R}^3$ heisst

$$heta_B:\mathbb{R}^3 o\mathbb{R}^3$$
 $heta_B(v)=egin{pmatrix} \lambda_1 \ \lambda_2 \ \lambda_3 \end{pmatrix}$ mit $\lambda_1\cdot b_1+\lambda_2\cdot b_2+\lambda_3\cdot b_3=v$

Darstellung von v bezüglich der Basis B.

Basiswechsel

Basiswechsel berechnen

$$\theta_B(v) = M_B \cdot v$$
, $M_B := \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}^{-1}$ (column major)

Basiswechsel

Seien $B:=(b_1,b_2,b_3)$ und $B':=(b'_1,b'_2,b'_3)$ zwei Basen des \mathbb{R}^3 . Dann heißt $M_B^{B'}:=M_{B'}\cdot M_B^{-1}$ die Basiswechselmatrix von B nach B'. Wir haben also folgende Situation:

Skalarprodukt

Skalarproduktt

$$\langle v, w \rangle := v^t \cdot w = \sum_{i=1}^3 v_i \cdot w_i$$

Zwei vom Nullvektor verschiedene Vektoren $u, v \in \mathbb{R}^3$ heißen orthogonal, falls < u, v >= 0 ist.

Norm

$$||v|| := \sqrt{\langle v, v \rangle} := v^t \cdot v = \sqrt{\sum_{i=1}^3 v_i^2}$$

Ein Vektor v heißt normal, falls ||v||=1 ist. Ist w ein beliebiger Vektor, so heißt $\frac{1}{||w||}w$ die Normalisierung von w, denn er ist normal.

Satz

Für den von zwei Vektoren u, v eingeschlossenen Winkel φ gilt:

$$\cos(\varphi) = \frac{\langle u, v \rangle}{||u|| \cdot ||v||}$$

Kreuzprodukt

Kreuzprodukt

Für
$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 und $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ heißt

$$u \times v := \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

das Kreuzprodukt von u und v. Es gilt

- \bullet < $u \times v$, $u > = < u \times v$, v > = 0
- $u \times v = -(v \times u)$
- $u \times v = 0$ genau dann, wenn u und v linear abhängig sind.

Orthonormalbasis

Eine Basis $B := (b_1, b_2, b_3)$ heißt Orthonormalbasis (kurz ONB), falls

$$\langle b_i, b_j \rangle = \begin{cases} 1 \text{ falls } i = j \\ 0 \text{ sonst} \end{cases}$$

gilt. Insbesondere sind alle b_i normal.

Basis-Wechsel-Matrix

Ist $B := \{b_1, b_2, b_3\}$ eine ONB, so gilt

$$M_B^{-1} = M_B^t$$

Drehungen

Eine Matrix $O \in \mathbb{M}^{n \times n}$ heißt orthogonal, falls $O^{-1} = O^t$ ist. Sie ist genau dann orthogonal, falls

$$\det(O) \in \{-1, 1\}$$
.

Ist $\det(O) = 1$, so nennen wir O eine Drehung und $SO(n) := \{O \in \mathbb{M}^{n \times n} | \det(O) = 1\}$ die Drehgruppe (oder auch spezielle orthogonale Gruppe).

Basis-Wechsel-Matrix

Sei $O \in \mathbb{M}^{n \times n}$ eine orthogonale Matrix, dann gilt für alle $v, w \in \mathbb{R}^n$

$$< O \cdot v \; , \; O \cdot w > = < v \; , \; w >$$

und somit insbesondere

$$||O\cdot v|| = ||v||.$$

Eulerwinkel

Jede Drehung $O \in SO(3)$ lässt sich zerlegen in ein Produkt

$$O = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & \pm \sin(\phi) \\ 0 & \mp \sin(\phi) & \cos(\phi) \end{pmatrix} \cdot \begin{pmatrix} \cos(\psi) & 0 & \sin(\psi) \\ 0 & 1 & 0 \\ -\sin(\psi) & 0 & \cos(\psi) \end{pmatrix} \cdot \begin{pmatrix} \cos(\xi) & \sin(\xi) & 0 \\ -\sin(\xi) & \cos(\xi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Die Winkel ϕ, ψ, ξ heißen Eulerwinkel.

Eulerwinkel

Die Zerlegung $O \in SO(3)$ einer Drehung in obiges Produkt ist nicht eindeutig. Ein anschauliches Beispiel dafür liefert der sogenannte "Gimbal lock". SO(3) ist also nicht das Produkt von drei Intervallen sondern es ist $SO(3) = S^3/\{\pm 1\}$.

Affiner Raum

Der Affine Raum \mathbb{A}^3 ist ein Tupel $\left(\mathbb{R}^3, (\mathbb{R}^3, +, \cdot)\right)$ zusammen mit den Abbildung

$$-: \mathbb{R}^3 \times \mathbb{R}^3 \to (\mathbb{R}^3, +, \cdot)$$
$$\overline{PQ} := Q - P$$

und

$$\begin{split} +: \mathbb{R}^n \times \left(\mathbb{R}^3, +, \cdot\right) &\to \mathbb{R}^3 \\ \begin{pmatrix} P_1 \\ \vdots \\ P_3 \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_3 \end{pmatrix} &:= \begin{pmatrix} P_1 + v_1 \\ \vdots \\ P_3 + v_3 \end{pmatrix} \;. \end{split}$$

Affiner Raum

Die Elemente (Vektoren) aus \mathbb{R}^3 nennt man auch Punkte in Abgrenzung zu den Vektoren aus $(\mathbb{R}^3,+,\cdot)$. Für Punkte $P,Q\in\mathbb{R}^3$ ist also \overline{PQ} ein Vektor, auch Verbindungsvektor genannt.

Affine basis

Ist $B:=(b_1,b_2,b_3)$ eine Basis des Vektorraums $(\mathbb{R}^3,+,\cdot)$ und $P\in\mathbb{A}$ ein Punkt, so nennen wir das Tupel (P,B) eine affine Basis. Für jeden Punkt Q gibt es dann also Skalare $\lambda_1,\ldots,\lambda_n$ mit

$$Q = P + \sum_{i=1}^{3} \lambda_i \cdot b_i .$$

Der Punkt $\theta_{(P,B)}(Q) := \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$ heißt die Darstellung von Q bezüglich der affinen Basis (P,B).

Affine Abbildung

Abbildungen der Form

$$\phi: \mathbb{A}^3 \to \mathbb{A}^3$$
$$\phi(P) := A \cdot P + t$$

mit $A \in M^{3\times3}$ und $t \in (\mathbb{R}^3, +, \cdot)$ heißen affine Abbildungen. Insbesondere heißt eine affine Abbildung mit $A = I_3$ und $t \neq 0$ Translation.

Abstand

Der Abstand von $P, Q \in \mathbb{A}$ ist definiert durch

$$d: \mathbb{A}^3 \times \mathbb{A}^3 \to \mathbb{R}$$

$$d(P,Q) := ||\overline{PQ}||$$
.

Affiner Basiswechsel

Sind $(P, B := \{b_1, \dots, b_n\})$ und $(P', B' := \{b'_1, \dots, b'_n\})$ zwei affine Basen und definieren wir die Abbildung

$$heta_{(P,B)}: \mathbb{A}^n \to \mathbb{A}^n$$

$$heta_{(P,B)}(Q) := M_B \cdot Q - M_B \cdot P = M_B(Q - P),$$

so erhalten wir analog zu der Situation in Vektorräumen

$$\text{mit } \theta_{(P,B)}^{(P',B')}(Q) := \theta_{(P',B')}\bigg(\theta_{(P,B)}^{-1}(Q)\bigg).$$

