

LOS NÚMEROS REALES: Axiomas de Orden

Coordinación de Cálculo I

Primera versión - Agosto 2020

Profesor:

Patricio Cerda Lovola

LOS NÚMEROS REALES: Axiomas de Orden

Coordinación de Cálculo I

Primera versión - Agosto 2020

Colaboradores:

Mery Choque Valdez Rodolfo Viera

Julio Rincón

Solange Aranzubia

Aldo Zambrano

Carolina Martínez

Pablo García

Manuel Galaz

Karina Matamala

Daniel Saa

Profesor:

Patricio Cerda Loyola

Axiomas de Orden

Los axiomas de orden establecen una relación de tamaño entre los números reales, así se puede decidir si un número real es menor o mayor que otro.

Los axiomas de orden son un conjunto de reglas que utilizan el concepto de positivo para definir los conceptos de "mayor que" y "menor que".

Axiomas de Orden

Supondremos que existe $\mathbb{R}^+ \subset \mathbb{R}$ que satisface los dos axiomas de orden y que llamaremos conjunto de los *números reales positivos*.

Clausura:

- Para todo $a, b \in \mathbb{R}^+$ se tiene que $a + b \in \mathbb{R}^+$.
- Para todo $a, b \in \mathbb{R}^+$ se tiene que $ab \in \mathbb{R}^+$.

Tricotomía:

• Para todo $a\in\mathbb{R}$ se cumple una y solo una de las afirmaciones: $a\in\mathbb{R}^+$, $-a\in\mathbb{R}^+$ ó a=0

Observación

Si $a \in \mathbb{R}^+$ diremos que a es positivo.

Definiciones:

Ahora podemos definir

- a) a > b si y solo si $a b \in \mathbb{R}^+$.
- b) a < b si y solo si $b a \in \mathbb{R}^+$

Definiciones:

Ahora podemos definir

- c) $a \ge b$ si y solo si a > b ó a = b.
- d) a < b equivale a b > a.

Observación

Por tanto a>0 equivale decir que a es positivo, si a<0 diremos que a es negativo y si $a\geq0$ entonces diremos que a es no negativo.

Propiedades que se despreden de los axiomas de Orden:

1) Si $a, b \in \mathbb{R}$ se cumple exactamente una de las siguientes afirmaciones a < b, b < a ó a = b

Propiedades que se despreden de los axiomas de Orden:

Transitividad: Para todo a, b y c reales se tiene que si a < b e b < c entonces a < c.

Geométricamente, si a está a la izquierda de b e b a la izquierda de c entonces a está a la izquierda de c.

- 3) Para todo a, b y c reales se tiene que si a < b entonces a + c < b + c.
- Para todo a, b y c reales se tiene que si a < b y c > 0 entonces ac < bc.
- Para todo a, b y c reales se tiene que si a < b y c < 0 entonces ac > bc.
- 6) si $a \neq 0$ entonces $a^2 > 0$.
- Si ab > 0 entonces son ambos positivos o ambos negativos.
- 8) Para todo a, b, c y d tal que a < b y c < d se tiene a + c < b + d.

Demostraremos la propiedad dos y ocho. La demostración del resto quedará como ejercicio.

Demostración propiedad 2, transitividad

Para la transitividad tenemos que las hipótesis equivalen a que b-a>0 y c-b>0.

Utilizando el axioma de Clausura, conmutatividad y asociatividad se tiene que (b-a) + (c-b) = c-a > 0. Así a < c.

Demostración de la propiedad 8

Si a < b y c < d, equivalentemente 0 < b - a y 0 < d - c ahora utilizando la clausura de la adición se tiene que (b-a)+(d-c)=(b+d)-(a+c)>0, equivalentemente b+d>a+c.

Ahora veremos algunos ejemplos en los cuales usaremos las propiedades anteriores para resolver inecuaciones.

Ejemplo 1

Resolver la inecuación 4x + 7 > 0.

Solución: Notar que 4x+7>0 es equivalentemente a 4x>-7 y por tanto x>-7/4, es decir $x\in \left(-7/4,\infty\right)$ y gráficamente

Ejemplo 2

Resolver la siguiente inecuación cuadrática $x^2 + 7x + 12 > 0$.

Solución: La ecuación $x^2+7x+12>0$, es equivalente a (x+3)(x+4)>0 y por tanto x<-4 ó x>-3, así $x\in (-\infty,-4)\cup (-3,\infty)$, y gráficamente

Ejemplo 3

Resolver la inecuación

$$\frac{1}{x-1} + \frac{1}{x} + \frac{1}{x+1} > 0$$

Solución:

$$\frac{1}{x-1} + \frac{1}{x} + \frac{1}{x+1} = \frac{x(x+1) + (x-1)(x+1) + (x-1)x}{(x-1)x(x+1)}$$
$$= \frac{3x^2 - 1}{(x-1)x(x+1)} > 0$$

Luego

$$\frac{3x^2 - 1}{(x - 1)x(x + 1)} = \frac{(\sqrt{3}x - 1)(\sqrt{3}x + 1)}{(x - 1)x(x + 1)}$$
$$= 3\frac{(x - 1/\sqrt{3})(x + 1/\sqrt{3})}{(x - 1)x(x + 1)} = R(x)$$

Se necesita saber para que valor de $x \in \mathbb{R}$ si la expresión dada es positiva, para eso estudiamos los signos de cada paréntesis en el numerador y denominador. Usamos la siguiente tabla que dará esa información.

Continuación Ejemplo 3

$-1 \frac{-1}{\sqrt{3}} 0 1 \frac{1}{\sqrt{3}}$						
x-1	_	+	+	+	+	+
$x-1/\sqrt{3}$	_	_	+	+	+	+
x	_	_	_	+	+	+
$x + 1/\sqrt{3}$	_	_	_	_	+	+
x+1	_	_	_	_	_	+
R(x)	_	+	_	+	_	+

Así $x \in (-1, \frac{1}{\sqrt{3}}) \cup (0, \frac{1}{\sqrt{3}}) \cup (1, \infty).$

Ejercicios Propuestos:

Resolver las siguientes inecuaciones.

$$1/(x-\pi) + 1/(x+3) > -2.$$

$$x^2 - 197 < -1$$
.

$$4x^4 - 12x^2 + 9 < 0$$

$$(1+x)+(2+x)+...+(15+x)>121.$$

1
$$x^3 > 1$$

$$\frac{2}{x} + \frac{2-x}{x-1} \le 1$$

$$2 x^2 + 10x + 27 < 0.$$

LOS NÚMEROS REALES: Axiomas de Orden

Coordinación de Cálculo I

Primera versión - Agosto 2020

Profesor:

Patricio Cerda Loyola

