Testul 1

Problema 1 Utilizați metoda lui Romberg și o cuadratură adaptivă pentru a aproxima cu o precize de 10^{-9} integrala

$$\int_0^{48} \sqrt{1 - \cos^2 x} \, \mathrm{d}x$$

Explicați de ce pot să apară dificultăți și reformulați problema astfel încât să se poată obține mai ușor o aproximație precisă.

Testul 2

Problema 2 Determinați lungimea arcului de curba parametrică

$$x(t) = (1 - \cos(t))\cos(t)$$

$$y(t) = (1 - \cos(t))\sin(t), \quad t \in [0, 2\pi].$$

folosind o cuadratură adaptivă și metoda lui Romberg. Indicație: formula este

$$\ell = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

Testul 3

Problema 3 Evaluaţi $\int\limits_0^1 \frac{\exp(x)}{\sqrt{x}} \mathrm{d}\,x$ utilizând o cuadratură adaptivă și metoda lui Romberg

- (a) rezolvând problema așa cum este enunțată;
- (b) utilizând o schimbare de variabilă;
- (c) utilizând o tehnică de dezvoltare în serie.

 $Comparați\ rezultatele.$

Testul 4

Problema 4 Funcția $y(x) = e^{-x^2} \int_0^x e^{t^2} dt$ se numește integrala lui Dawson.

Tabelați această funcție pentru $x=0, 0.1, \ldots, 0.5$. Pentru a evita evaluările de funcții nenecesare, descompuneți integrala într-o sumă de integrale pe subintervale.