Vector Representation of Text

Deep Learning for NLP

To compare pieces of text

- We need effective representation of :
 - Words
 - Sentences
 - Text
- Approach 1: Use existing thesauri or ontologies like WordNet and Snomed CT (for medical). Drawbacks:
 - Manual
 - Not context specific
- Approach 2: Use co-occurrences for word similarity. Drawbacks:
 - Quadratic space needed
 - Relative position and order of words not considered

Approach 3: low dimensional vectors

- Store only "important" information in fixed, low dimensional vector.
- Singular Value Decomposition (SVD) on co-occurrence matrix
 - is the best rank *k* approximation to *X*, in terms of least squares
 - Motel = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349, 0.271]
- m = n = size of vocabulary

• is the same matrix as S except that it contains only the top largest

singular values

Approach 3: low dimensional vectors

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

Problems with SVD

- Computational cost scales quadratically for n x m matrix: O(mn²) flops (when n<m)
- Hard to incorporate new words or documents
- Does not consider order of words

word2vec approach to represent the meaning of word

- Represent each word with a low-dimensional vector
- Word similarity = vector similarity
- Key idea: Predict surrounding words of every word
- Faster and can easily incorporate a new sentence/document or add a word to the vocabulary

Represent the meaning of word word2vec

- 2 basic neural network models:
 - Continuous Bag of Word (CBOW): use a window of word to predict the middle word
 - Skip-gram (SG): use a word to predict the surrounding ones in window.

Word2vec - Continuous Bag of Word

- E.g. "The cat sat on floor"
 - Window size = 2

We can consider either W or W' as the word's representation. Or even take the average.

Some interesting results Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

Word analogies

Represent the meaning of sentence/text

- Simple approach: take avg of the word2vecs of its words
- Another approach: Paragraph vector (2014, Quoc Le, Mikolov)
 - Extend word2vec to text level
 - Also two models: add paragraph vector as the input

Applications

- Search, e.g., query expansion
- Sentiment analysis
- Classification
- Clustering

Resources

- Stanford CS224d: Deep Learning for NLP
 - http://cs224d.stanford.edu/index.html
 - The best
- "word2vec Parameter Learning Explained", Xin Rong
 - https://ronxin.github.io/wevi/
- Word2Vec Tutorial The Skip-Gram Model
 - http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-mode/l/
- Improvements and pre-trained models for word2vec:
 - https://nlp.stanford.edu/projects/glove/
 - https://fasttext.cc/ (by Facebook)