# Image Segmentation CS828 Spring '12

## Angjoo Kanazawa

## February 1, 2012

## 1 January 25th First Lecture

 $\textbf{Definition} \colon \text{Segmentation (for this class):}$ 

- About low level vision in general
- Requires a lot of knowledge about th eworld, high level understanding, quite challenging.
- So we're going to focus on simpler segmentation that doesn't require that much knowledge about the world: Uniform surfaces, smooth shape. Still there will be varietion in intensity.
- Want to find uniform region in things (texture, color, motion, smoothness), not necessarily world property. Removed from true segmentation of objects but still useful.
- Image is an 2D geometric structure. Segmentation is clustering that takes advantage of this structure. Based on the assumption that near-by pixels have the same intensity.

•

We're going to look at

- 1. Diffusion
- 2. Anisotropic diffusion
- 3. Graph based algorithms: message passing, thinking of an image as a graph, every pixel is a node in a graph, edges to neighbors → Markov Random FIeld. Gives us a probablistic way to express the state of a node in relation to its neighbors. Usually NP-hard, but graph-cut and belief propagation algorithms still work. The biggest issue is when the number of labels is big.
- 4. Conditional Random Fields, a general version of MRF
- 5. Normalized Cut: form a graph
- 6. Wavelets

 $\begin{array}{cccc} \mathbf{Math} & \begin{array}{cccc} \mathbf{Fourier\ transforms} & \mathbf{Convolution} & & \mathbf{Diffusion} \\ \mathbf{Wavelets} & & \mathbf{Level\ sets} & \mathbf{Riemannian\ Geometry} \end{array}$ 

Current Research Bilateral filtering (by Morel) Texture Segmentation Affinity propagation

#### Workload

- 1. Reports (6 out of 8 papers):Be critical when reading papers, even if the paper is good, what is the really important. Learn to recognize, have a taste. (10%)
- 2. Presentations: 3 presentations per day, 15 min per paper 10 min each to discuss paper (15%)
- 3. a take home midterm, Final all on lecture material (50%)
- 4. Problem set/Project (25%)

## 2 January 30th Lecture 2

### 2.1 Perceptual Grouping

- Putting pieces to preceive as a whole.
- Depends on the prior knowledge/statistics about the world.

#### History

- Behaviorists dominated in early 20th century, wanted to make psychology scientific, focused on quantifyiable things.
- Rejected anything introspective or mind building internal representations.
- AI, computers, chomsky killed behaviorists.
- Gestalt movement claimed visual system perceived world as a objects and surfaces, as a whole and not as raw atomic stimulus/intensities.

### Classical principles/cues

- Knowing the role of edges is critical to how we perceive an image
- Similarity, Good continuation, Common Form, Connectivity, Symmetry (seems to jump out), Convexity, Closure, Common Fate, Paraallelism, Collinearity
- convexity beats symmetry? Connectivity also beats symmetry?

#### Theories

- We perceive shapes that are "good form": smooth curves,, pretty abstract
- Bayesian: organizator that's most likely to be true. Not computationally friendly. Rather than checking all possible options, maybe we look for a certain small set of possiblities. Still doesn't explain everything

•

## 3 February 1st Lecture 3: Fourier Transform

### 3.1 Mathematical representation

a point in a  $\mathbb{R}^2$  can be represented in a coordinate. If p = (7,3), we really mean p = 7(1,0) + 3(0,1). Any point can be represented by a linear combination of two vectors. The basis vectors are:

- 1. Span the entire space: every point in the space can be written by linear combinations of these vectors.
- 2. Orthogonal: If not, moving in one direction will mean you'll be moving in the another direction
- 3. Unit: if not, the distance from the origin will not be constant.

We can compute the bases by

1. Linear Projection (inner product with each basis)

$$p = (p \cdot (1,0))(1,0) + (p \cdot (0,1))(0,1) \tag{1}$$

2. Magnitude of a point  $||p||^2 = x^2 + y^2$ 

#### 3.2 Functions in $\mathbb{R}^1$

The domain of the function is  $[0, 2\pi]$ , and we'll deal with functions in  $\mathbf{R}^1$ . **Def:** a delta function:

$$\delta_s(t) = \begin{cases} 0 & s \neq t \\ \infty & s = t \end{cases}, \int_0^{2\pi} \delta_s(t)dt = 1$$

We'll write functions by using delta functions as a basis. In infinite dimensions,

$$f(t) = \int f_s(\delta_s(t)ds)$$

is the same as (??) but in infinite dimensions. Tw basis are orthogonal if their inner products are 0, in infinite dimensions, this is taking the integral. So delta functions are orthogonal.

This is a bad representation in some ways. It doesn't converge to the right representation (the function) quickly: using countable number of delta functions will not be a good representation of the function because it will only be correct in those places. We also need a lot of co-efficients.

**Differen Representation** Divide the interval  $[0,2\pi]$  into short k intervals with width  $\frac{2\pi}{k}$ . Use a rectangle in a interval as basis. They are orthogonal, so we can scale these rectangles and set it to a height that is equal to the average of the function in that interval. We have a piece-wise representation of a function using a finite basis. As  $k \to \infty$ , the approximation gets better. The *Reimann integral*. Here, we're stuck with a cetain level of accuracy as we fix k.

To get an arbitrary accuracy, we can reuse basis from multiple ks. i.e. if we divide the interval in 2, then 4, etc, then we'll get many rectangles or infinite bases that are *not* orthogonal, but can represent any function with finite pieces.

Functions are uncountable, but we're trying to represent it as a countable set of bases. But this is okay because we enforce the functions to be continuous.

#### 3.3 Fourier Series

The basis elements:

- Height of  $\sqrt{\frac{1}{2\pi}}$
- $\frac{\cos(t)}{\sqrt{n}}$  all are multiplied by a constant so when integrated it is 1.
- $\bullet \quad \frac{\sin(t)}{\sqrt{n}}$
- $\cos(2t)$ ,  $\sin(2t)$

They are unit vectors (normalized) and they are orthonormal i.e.  $\int \sin(t) \cos(t) dt = 0$ . But better, draw them around  $\pi$ , sin is symmetric around  $\pi$ , cos is negative symmetric. So if they are multiplied together, the signs are different so they cancel and gives you 0.

Now, we can write any function as an infinite sum of these basis elements:

$$f(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos kt + \sum_{k=1}^{\infty} b_k \sin kt$$
 (2)

If the sums were finite upto N, then  $\lim N \to \infty ||f(t)|| = 0$ . This is a better representation then the delta functions because if we use enough co-efficients we will get really good approximation to the function.

 $\cos^{2n}(t/2)$ : Look at waht  $\cos(t/2)$  look like, then raise it to a higher power. Really quicky, it will peak and look more like a delta function. By adding a constant in,  $\cos(t/2 + a)$ , we can shift the peaks.

Becasue we know that we can approximate any function with infinite delta functions, this means we can also do it with these basis. There are couple of identities by trigonometry to write higher power trig functions as a single power functions. i.e. trig functions with different frequences:  $sin^2(t/2) = \frac{1-\cos(t)}{2}$ ,  $sin^2(t) = \frac{1-\cos 2t}{2}$ 

**Intuition:** In practice, functions are smooth and with very small coefficients we can get a very good approximations.

#### Notation

$$\cos kt + i\sin kt = e^{ikt} \tag{3}$$

There are simple ways of computing these coefficients  $a_k, b_k$ . If we want  $a_k$ , we take the inner product of the function and  $\cos kt$  i.e.  $\int f(t) \cos kt dt$ .

#### Complex case Given

$$c_k = \langle f, e^{ikt}, \rangle = \langle f, \cos kt \rangle + i \langle f, \sin kt \rangle,$$

$$c_{-k} = \langle f, e^{i-kt}, \rangle = \langle f, \cos kt \rangle - i \langle f, \sin kt \rangle$$
  
Then
$$c_k e^{ikt} + c_{-k} e^{-ikt} = a_k \cos kt + b_k \sin kt$$

We get back to the fourier representation.

Following from  $a \sin t + b \cos t = c \cos(t + k)$ , k is the phase, or the shift of functions.

Parsevaal's Theorem: Same as the pythagorean theorem:

$$\int f^2(t)dt = \frac{\pi}{2}a_0^2 + \pi \sum (a_k^2 + b_k^2)$$

This is good to use to measure how good our approximation is. So We can do

$$||(\int f(t) - a_0 - \sum_{k=1}^{N} a_k \cos kt - \sum_{k=1}^{N} b_k)^2|| = ||(\sum_{N=1}^{\infty} a_k \cos kt - \sum_{N=1}^{\infty} b_k)^2||$$

### 3.4 Fourier Transform

Let f(t) is periodic going from  $[0, 2\pi l]$ . Then, we can represent f(t) by

$$f(t) = \sum c_k e^{ikt/l}$$

(By dividing with l, we're stretching the basis element in  $[0, 2\pi]$ .) As  $l \to \infty$ , this gives us every possible fraction, all of  $\mathbf{Q}$ . Which mean we write this as:

$$f(t) = \int_{-\infty}^{\infty} F(k)e^{ikt}dk \tag{5}$$

(4)

Remember:  $e^{ikt}$  carries the orthonormal basis, now extending to all of  $\mathbf{R}$ , this means the coefficients are now in the  $\infty$  domain so we write coefficients as F(k), and call this the **Fourier transform** of f(k).

(??) is the approximation of f(t), the inverse operation to get the fourier transform is;

$$F(k) = \int_{-\infty}^{\infty} f(k)e^{-ikt}dk \tag{6}$$

 $e^{-ikt}$  is negative because it's the complex conjugate of  $e^{ikt}$ , (square it we multiply it with the complex conjugate.)