Linear Algebra Worksheet 2

Jonny Evans

Workshop 2

Here is a list \mathcal{V} of vectors

$$u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad w = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}, \qquad \xi = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Exercise 2.1. For every vector in \mathcal{V} , find its length and write down a vector orthogonal to it.

Exercise 2.2. Find the angle between u and v. Find the angle between w and ξ .

Here is a list \mathcal{M} of matrices.

$$A = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & \frac{1}{2}\sqrt{\frac{3}{2}} \\ \frac{1}{4} & \frac{3}{4} & -\frac{1}{2}\sqrt{\frac{3}{2}} \\ -\frac{1}{2}\sqrt{\frac{3}{2}} & \frac{1}{2}\sqrt{\frac{3}{2}} & \frac{1}{2} \end{pmatrix}, \quad C = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} + \frac{1}{\sqrt{3}} & -\frac{1}{3} + \frac{1}{\sqrt{3}} \\ \frac{1}{3} - \frac{1}{\sqrt{3}} & \frac{1}{3} & -\frac{1}{3} - \frac{1}{\sqrt{3}} \\ -\frac{1}{3} - \frac{1}{\sqrt{3}} & \frac{1}{3} + \frac{1}{\sqrt{3}} & \frac{1}{3} + \frac{1}{\sqrt{3}} \end{pmatrix}.$$

Exercise 2.3. Which matrices $M \in \mathcal{M}$ are orthogonal matrices? (Hint: There should be two!)

Exercise 2.4. The orthogonal matrices from \mathcal{M} are actually rotation matrices. In each case, find the axis and angle of rotation.

Here is a list \mathcal{N} of matrices

$$D = \begin{pmatrix} 1 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 & 1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad F = \begin{pmatrix} 2 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \qquad G = \begin{pmatrix} 1 & 0 & 8 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercise 2.5. Which of the matrices $N \in \mathcal{N}$ are in echelon form? Which are in reduced echelon form?

Exercise 2.6. For each $N \in \mathcal{N}$ which is in reduced echelon form, state (a) for which vectors b the equation Nv = b has a solution and (b) the dimension of the space of solutions to Nv = b, assuming that b is chosen so that there is a solution.

Exercise 2.7. For each system of simultaneous equations below, write it in matrix form, put the augmented matrix into reduced echelon form using row operations. Determine if the system has a solution and, if it does, give the general solution.

Exercise 2.8. Put the following matrices into reduced echelon form using row operations. In each case, what is the number of free indices?

$$X = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}, \quad Y = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}.$$

1

Exercise 2.9. Let A, B, C be m-by-n, n-by-p and p-by-q matrices respectively. Write out the matrix products A(BC) and (AB)C in index notation and check that they give the same answer (this shows that matrix multiplication is associative).

Exercise 2.10. Suppose that A is an n-by-n matrix whose columns are the vectors v_1, \ldots, v_n . Show that A is an orthogonal matrix (i.e. $A^T A = I$) if and only if

$$v_i \cdot v_j = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases} \text{ for all } i, j.$$

In other words, the columns of A are orthogonal to one another (this is where the name "orthogonal matrix" comes from).

Exercise 2.11. We say that a matrix M is symmetric if $M^T = M$ and antisymmetric if $M^T = -M$.

- 1. Show that if N is an m-by-n matrix then MM^T is a symmetric m-by-m matrix and M^TM is a symmetric n-by-n matrix.
- 2. Show that, given any *n*-by-*n* matrix C, the matrix $A = C + C^T$ is symmetric and the matrix $B = C C^T$ is antisymmetric. Deduce that C can be written as the sum of a symmetric and an antisymmetric matrix (called the *symmetric* and *antisymmetric* parts of C respectively).

Exercise 2.12. A system of m equations in n unknowns is called *underdetermined* if m < n and overdetermined if m > n. As rules of thumb, underdetermined equations tend to have general solutions with m-n free parameters, and overdetermined equations tend to have no solutions. Give counterexamples to these rules of thumb (e.g. an underdetermined system with no solutions and an overdetermined system with a solution).

3 Solutions

Solution 3.1. Any of the following are correct, but there are many possible answers (just check that the dot product with the original vector is zero):

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ -3 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

We have $|u| = \sqrt{2}$, $|v| = \sqrt{5}$, $|w| = \sqrt{14}$, $|\xi| = \sqrt{2}$.

Solution 3.2. We have $u \cdot v = 3$, $|u| = \sqrt{2}$, $|v| = \sqrt{5}$, so the angle between u and v is $\cos^{-1}(3/\sqrt{10}) \approx 0.321750554$ radians

We have $w \cdot \xi = 1$, $|w| = \sqrt{14}$ and $|\xi| = \sqrt{2}$, so the angle between w and ξ is $\cos^{-1}(1/\sqrt{28}) \approx 1.38067072$ radians.

Solution 3.3. The matrices B, C are orthogonal; A is not. You can check this explicitly: $A^T A = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, is not too hard; more of a pain is:

$$B^T B = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & -\frac{1}{2}\sqrt{\frac{3}{2}} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{2}\sqrt{\frac{3}{2}} \\ \frac{1}{2}\sqrt{\frac{3}{2}} & -\frac{1}{2}\sqrt{\frac{3}{2}} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & \frac{1}{2}\sqrt{\frac{3}{2}} \\ \frac{1}{4} & \frac{3}{4} & -\frac{1}{2}\sqrt{\frac{3}{2}} \\ -\frac{1}{2}\sqrt{\frac{3}{2}} & \frac{1}{2}\sqrt{\frac{3}{2}} & \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{9}{16} + \frac{1}{16} + \frac{3}{8} & \frac{3}{16} + \frac{3}{16} - \frac{3}{8} & (\frac{3}{8} - \frac{1}{8} + \frac{1}{4})\sqrt{\frac{3}{2}} \\ \frac{3}{16} + \frac{3}{16} - \frac{3}{8} & \frac{1}{16} + \frac{9}{16} + \frac{3}{8} & (\frac{1}{8} - \frac{3}{8} + \frac{1}{4})\sqrt{\frac{3}{2}} \\ (\frac{3}{8} - \frac{1}{8} + \frac{1}{4})\sqrt{\frac{3}{2}} & (\frac{1}{8} - \frac{3}{8} + \frac{1}{4})\sqrt{\frac{3}{2}} & \frac{3}{8} + \frac{3}{8} + \frac{1}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

and similarly $C^TC = I$.

Solution 3.4. For B: A vector $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ pointing along the axis solves Bv = v. This means

$$\begin{split} \frac{3x}{4} + \frac{y}{4} + \frac{1}{2}\sqrt{\frac{3}{2}}z &= x \\ \frac{x}{4} + \frac{3y}{4} - \frac{1}{2}\sqrt{\frac{3}{2}}z &= y \\ \frac{1}{2}\left(z - \sqrt{\frac{3}{2}}x + \sqrt{\frac{3}{2}}y\right) &= z, \end{split}$$

so $x-y=2z\sqrt{\frac{3}{2}}$ and $x-y=z\sqrt{\frac{2}{3}}$. This implies that z=0 and x=y. Therefore the axis is $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$. If

we pick $v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ (orthogonal to the axis), it goes to $Bv = \begin{pmatrix} \frac{1}{2}\sqrt{\frac{3}{2}} \\ -\frac{1}{2}\sqrt{\frac{3}{2}} \\ \frac{1}{2} \end{pmatrix}$, and $v \cdot Bv = \frac{1}{2}$, so the angle of rotation is $\pi/3 = \cos^{-1}(1/2)$.

For C: Similar arguments give axis $u=\begin{pmatrix}1\\1\\-1\end{pmatrix}$ and angle 90 degrees (e.g. if we pick $v=\begin{pmatrix}1\\-1\\0\end{pmatrix}$ orthogonal to the axis u, it goes to $w=\begin{pmatrix}-\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\-\frac{2}{\sqrt{3}}\end{pmatrix}$, and $v\cdot w=0$).

Solution 3.5. D, F, G are in echelon form, D, G are in reduced echelon form, E is in neither.

Solution 3.6. For D: there are no zero-rows, so there are no constraints on b for a solution to Dv = b to exist; are three free indices, so the space of solutions is 3-dimensional.

For G: the last row is zero, so we need $b_3 = 0$. There is one free index, so the space of solutions (assuming there are some solutions) is 1-dimensional.

Solution 3.7. The first system is

$$\begin{pmatrix} 1 & 1 & 2 & 3 & | & 0 \\ 0 & 1 & 4 & -1 & | & 1 \end{pmatrix},$$

which is almost in reduced echelon form already. The row operation $R_1 \mapsto R_1 - R_2$ gives

$$\begin{pmatrix} 1 & 0 & -2 & 4 & | & -1 \\ 0 & 1 & 4 & -1 & | & 1 \end{pmatrix}.$$

The general solution is therefore x = -1 + 2z - 4w, y = 1 + w - 4z, i.e. $\begin{pmatrix} -1 + 2z - 4w \\ 1 + w - 4z \\ z \\ w \end{pmatrix}$.

The second system is

$$\begin{pmatrix} 1 & -1 & | & -3 \\ 2 & 1 & | & 6 \\ -3 & 1 & | & 1 \end{pmatrix}$$

(be careful because I mixed up the order of the letters a little to trick you; systems of equations in real life rarely come in the nice form we've been studying them without any rearrangement). We perform the row operations $R_2 \mapsto R_2 - 2R_1$, $R_3 \mapsto R_3 + 3R_1$ to clear the first column:

$$\begin{pmatrix} 1 & -1 & | & -3 \\ 0 & 3 & | & 12 \\ 0 & -2 & | & -8 \end{pmatrix}.$$

Now $R_2 \mapsto \frac{1}{3}R_2$, $R_3 \mapsto -\frac{1}{2}R_3$ and $R_3 \mapsto R_3 - R_2$ gives

$$\begin{pmatrix} 1 & -1 & | & -3 \\ 0 & 1 & | & 4 \\ 0 & 0 & | & 0 \end{pmatrix}.$$

Finally, $R_1 \mapsto R_1 + R_2$ gives

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{pmatrix},$$

so the unique solution is x = 1, y = 4.

The third system is

$$\begin{pmatrix} 4 & 0 & 0 & -1 \\ 0 & 3 & -2 & 1 \\ 4 & -2 & 4 & -3 \\ 3 & 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 2 \end{pmatrix}.$$

The augmented matrix is

$$\begin{pmatrix} 4 & 0 & 0 & -1 & 0 \\ 0 & 3 & -2 & 1 & 4 \\ 4 & -2 & 4 & -3 & 0 \\ 3 & 1 & -1 & 0 & 2 \end{pmatrix}.$$

We use the row operations $R_3 \mapsto R_3 - R_1$, $R_4 \mapsto R_4 - \frac{3}{4}R_1$ to get

$$\begin{pmatrix} 4 & 0 & 0 & -1 & 0 \\ 0 & 3 & -2 & 1 & 4 \\ 0 & -2 & 4 & -2 & 0 \\ 0 & 1 & -1 & 3/4 & 2 \end{pmatrix}.$$

Now we use $R_3 \mapsto R_3 + \frac{2}{3}R_2$ and $R_4 \mapsto R_4 - \frac{1}{3}R_2$ to get

$$\begin{pmatrix} 4 & 0 & 0 & -1 & 0 \\ 0 & 3 & -2 & 1 & 4 \\ 0 & 0 & 8/3 & -4/3 & 8/3 \\ 0 & 0 & -1/3 & 5/12 & 2/3 \end{pmatrix}.$$

Now $R_4 \mapsto R_4 + \frac{1}{8}R_3$ gives

$$\begin{pmatrix} 4 & 0 & 0 & -1 & 0 \\ 0 & 3 & -2 & 1 & 4 \\ 0 & 0 & 8/3 & -4/3 & 8/3 \\ 0 & 0 & 0 & 1/4 & 1 \end{pmatrix}.$$

Let's tidy up a bit with $R_4 \mapsto 4R_4$, $R_3 \mapsto \frac{3}{8}R_3$, which gives

$$\begin{pmatrix} 4 & 0 & 0 & -1 & 0 \\ 0 & 3 & -2 & 1 & 4 \\ 0 & 0 & 1 & -1/2 & 1 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix}.$$

Now do $R_3 \mapsto R_3 + \frac{1}{2}R_4$, $R_2 \mapsto R_2 + 2R_3$ $R_2 \mapsto R_2 - R_4$, $R_1 \mapsto R_1 + R_4$ to get

$$\begin{pmatrix} 4 & 0 & 0 & 0 & | & 4 \\ 0 & 3 & 0 & 0 & | & 6 \\ 0 & 0 & 1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & 4 \end{pmatrix}$$

We finish with $R_1 \mapsto \frac{1}{4}R_1$ and $R_2 \mapsto \frac{1}{3}R_2$:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & 4 \end{pmatrix},$$

so
$$\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$$
 is the unique solution.

Solution 3.8. First, take

$$X = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

We can clear the first column just by subtracting R_1 from all the other rows:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Now clear column three by subtracting R_2 from R_3 and R_4 , and column four by further subtracting R_3 from R_4 :

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

This has one free index (the index 2).

Second, take

$$Y = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \end{pmatrix}.$$

Subtract $2R_1$ from R_3 and $3R_2$ from R_3 . This gives

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$$

Now $R_1 \mapsto \frac{1}{2}R_1$, $R_3 \mapsto -\frac{1}{3}R_3$ and $R_1 \mapsto R_1 - \frac{1}{2}R_3$ gives the identity matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

as the echelon form, so there are no free indices.

Finally, take

$$Z = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}.$$

 $R_2 \mapsto R_2 - 5R_1, R_3 \mapsto R_3 - 9R_1$ gives

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -4 & -8 & -12 \\ 0 & -8 & -16 & -24 \end{pmatrix}.$$

 $R_2 \mapsto -\frac{1}{4}R_2, R_3 \mapsto -\frac{1}{8}R_3$ gives

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix}.$$

 $R_3 \mapsto R_3 - R_2, R_1 \mapsto R_1 - 2R_2$ gives

$$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

There are therefore two free indices (3 and 4).

Solution 3.9. The two expressions are:

$$\sum_{j=1}^{n} A_{ij} \sum_{k=1}^{p} B_{jk} C_{k\ell} \qquad \sum_{k=1}^{p} \left(\sum_{j=1}^{n} A_{ij} B_{jk} \right) C_{k\ell},$$

and these are both equal to $\sum_{j=1}^{n} \sum_{k=1}^{p} A_{ij} B_{jk} C_{k\ell}$.

Solution 3.10. If the columns of A are v_1, \ldots, v_n then the rows of A^T are v_1^T, \ldots, v_n^T . The product A^TA has ij entry equal to $v_i^Tv_j$ (multiplying the ith row of A^T into the jth column of A) which is precisely $v_i \cdot v_j$. Since $A^TA = I$, this means $v_i \cdot v_j = \delta_{ij}$, as required.

Solution 3.11. 1. We have $(M^TM)^T=M^T(M^T)^T=M^TM$, so M^TM is symmetric. Similarly $(MM^T)^T=(M^T)^TM^T=MM^T$.

2. We have $(C+C^T)^T=C^T+(C^T)^T=C^T+C$, so $C+C^T$ is symmetric. Similarly, $(C-C^T)^T=C^T-(C^T)^T=C^T-C$, so $C-C^T$ is antisymmetric. Since

$$C = \frac{1}{2}(C + C^T) + \frac{1}{2}(C - C^T),$$

we see that C can be written as the sum of a symmetric and an antisymmetric matrix.

Solution 3.12.

$$x + y + z = 0$$
$$x + y + z = 1$$

is an underdetermined system (three variables, two equations) with no solutions.

$$x = 1$$
$$2x = 2$$

is an overdetermined system (one variable, two equations) with a solution.