

SDS 384 11: Theoretical Statistics

Lecture 14: Uniform Law of Large Numbers- Covering number

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

Definitions

• Recall that a metric space (\mathcal{T}, ρ) consists of a nonempty set \mathcal{T} and a mapping $\rho: \mathcal{T} \times \mathcal{T} \to \mathbb{R}$ that satisfies:

Definitions

- Recall that a metric space (\mathcal{T}, ρ) consists of a nonempty set \mathcal{T} and a mapping $\rho: \mathcal{T} \times \mathcal{T} \to \mathbb{R}$ that satisfies:
 - Non-negative: $\rho(\theta, \theta') \ge 0$ for all (θ, θ') with equality iff $\theta = \theta'$.
 - Symmetric: $\rho(\theta, \theta') = \rho(\theta', \theta)$ for all pairs (θ', θ) , and
 - Triangle ineq holds: $\rho(\theta, \theta') + \rho(\theta', \theta'') \ge \rho(\theta, \theta'')$
- Examples:
 - $\mathcal{T} = \mathbb{R}^d$, $\rho(\theta, \theta') = \|\theta \theta'\|_2$
 - $\mathcal{T} = \{0,1\}^d$ with $\rho(\theta,\theta') = \frac{1}{d} \sum_i \mathbb{1}(\theta_i \neq \theta_i')$

Covering numbers

Definition

A δ cover of a set \mathcal{T} w.r.t to a metric ρ is a set $\{\theta^1,\ldots,\theta^N\}$ such that for every $\theta\in\mathcal{T},\ \exists i\in[N],\ \text{s.t.}\ \rho(\theta,\textit{theta}^i)\leq\delta.$ The δ covering number $N(\delta;\mathcal{T},\rho)$ is the cardinality of the smallest δ cover.

- We will consider metric spaces which are totally bounded, i.e. $N(\delta; \mathcal{T}, \rho) < \infty$ for all $\delta > 0$.
- The covering number is non-increasing in δ , i.e. $N(\delta) \geq N(\delta')$ for all $\delta < \delta'$
- We are interested in something called Metric entropy, which is the logarithm of the covering number.

Picture

Figure 1: [courtesy: Martin Wainwright's book]

Picture

Figure 1: [courtesy: Martin Wainwright's book]

• A δ covering can be thought of as a union of balls with radius δ .

Covering number of a unit cube

Example

Consider the interval [-1,1] with $\rho(\theta,\theta')=|\theta-\theta'|$. We have $N(\delta;[-1,1],|.|)\leq rac{1}{\delta}+1$

Covering number of a unit cube

Example

Consider the interval [-1,1] with $\rho(\theta,\theta')=|\theta-\theta'|$. We have $N(\delta;[-1,1],|.|)\leq \frac{1}{\delta}+1$

- Divide the interval into L sub-intervals centered at $\theta^i := -1 + (2i 1)\delta$ for $i \in [L]$ and each of length at most 2δ .
- \bullet By construction this is a δ covering.
- So $L \le 1 + 1/\delta$

Covering the binary hypercube

Example

Consider a d dimensional binary hypercube $\mathcal{T} = \{0,1\}^d$ with the Hamming metric defined before.

$$\frac{\log \textit{N}(\delta; \mathcal{T}, \rho)}{\log 2} \leq \lceil \textit{d}(1 - \delta) \rceil$$

Covering the binary hypercube

Example

Consider a d dimensional binary hypercube $\mathcal{T} = \{0,1\}^d$ with the Hamming metric defined before.

$$\frac{\log \textit{N}(\delta; \mathcal{T}, \rho)}{\log 2} \leq \lceil \textit{d}(1 - \delta) \rceil$$

- Let $S = \{1, 2, ..., \lceil \delta d \rceil \}$
- Consider the set of binary vectors $S(\delta) := \{\theta \in \mathcal{T} : \theta_j = 0, j \in S\}.$
- By construction, for every binary vector $\theta' \in \mathcal{T}$, we can find a vector $\theta \in \mathcal{S}(\delta)$ such that $\rho(\theta, \theta') \leq \delta$
- $N(\delta; \mathcal{T}, \rho) \leq |\mathcal{S}(\delta)| = 2^{\lceil d(1-\delta) \rceil}$

5

Lower bound on Covering number of the binary hypercube

Example

Let $\delta \in (0, 1/2)$. Consider a d dimensional binary hypercube $\mathcal{T} = \{0, 1\}^d$ with the Hamming metric defined before.

$$N \ge \exp(\frac{d}{2}(1/2 - \delta)^2)$$

Lower bound on Covering number of the binary hypercube

Example

Let $\delta \in (0, 1/2)$. Consider a d dimensional binary hypercube $\mathcal{T} = \{0, 1\}^d$ with the Hamming metric defined before.

$$N \ge \exp(\frac{d}{2}(1/2 - \delta)^2)$$

- If $\{\theta^1, \dots, \theta^N\}$ is a δ covering, then the (unrescaled) Hamming balls of radius $s = \delta d$ around each θ^ℓ must contain all 2^d vectors.
- Let $s = \lfloor \delta d \rfloor$
- For each θ^i there are exactly $\sum_{j=0}^s \binom{d}{j}$ vectors within δd distance.
- So $N \sum_{j=0}^{d} {d \choose j} \ge 2^d$

Lower bound on Covering number of the binary hypercube

- Let $\delta \in (0, 1/2)$
- So $N\sum_{j=0}^{s} {d \choose j} \ge 2^d$
- Now take a Binomial (d, 1/2) random variable X.
- $P(X \le \delta d) = \sum_{j=0}^{s} {d \choose j} / 2^d$
- So $N \ge \frac{1}{P(X \le \delta d)}$
- Using the Hoeffding bound gives: $N \ge \exp(\frac{d}{2}(1/2 \delta)^2)$
- Using more refined analysis gives: $N \ge \exp(dKL(\delta||1/2))$

Packing numbers

Definition

An δ -packing of \mathcal{T} w.r.t a metric ρ is a set $\{\theta^1,\ldots,\theta^M\}$ such that $\rho(\theta^i,\theta^j)>\delta$ for every distinct pair $i,j\in[M]$. The δ packing number $M(\delta;\mathcal{T},\rho)$ is the cardinality of the largest δ packing.

Picture

Figure 2: [courtesy: Martin Wainwright's book]

• A 2δ covering can be thought of as a union of balls with radius δ such that no two balls touch.

Relationship between packing and covering numbers

Theorem

For all $\delta > 0$,

$$M(2\delta; \mathcal{T}, \rho) \leq N(\delta; \mathcal{T}, \rho) \leq M(\delta; \mathcal{T}, \rho)$$

• This is saying that packing and covering numbers exhibit the same scaling behavior as $\delta \to 0$.

Proof

- Upper bound: Let V = {x₁,...,x_N} be a δ packing of T. So for each y ∈ T \ V, ∃i, ||y x_i|| ≤ δ. Otherwise we could have added this point and increased the packing number. So, V is also a ε cover. But since the covering number is the size of the smallest δ covering, the lower bound holds.
- Lower bound: Say there is a 2δ packing $\{y_1,\ldots,y_M\}$ and a δ covering $\{v_1,\ldots,v_n\}$ with M>n. Now by pigeonhole, there must be two y_i,y_j who both are in the δ ball around some v_k . But using triangle, we will have $|y_i-y_j|\leq 2\delta$, which is a contradiction. So we must have $m\leq n$.

Covering and Packing numbers-example

Theorem

Let ρ be the Euclidean norm on \mathbb{R}^d . Let $B_1(0)$ be the unit ball centered at the origin (WLOG).

$$\frac{1}{\epsilon^d} \le N(\epsilon, B_1, \rho) \le (1 + 2/\epsilon)^d$$

Covering and Packing numbers-example

Theorem

Let ρ be the Euclidean norm on \mathbb{R}^d . Let $B_1(0)$ be the unit ball centered at the origin (WLOG).

$$\frac{1}{\epsilon^d} \le N(\epsilon, B_1, \rho) \le (1 + 2/\epsilon)^d$$

• Consider an ϵ cover $\{\theta^1, \dots, \theta^N\}$. Now,

$$B_1 \subseteq \bigcup_{i=1}^N B_{\epsilon}(\theta^i)$$
 $\operatorname{vol}(B_1) \le N \operatorname{vol}(B_{\epsilon}(\theta^i)) = N \epsilon^d \operatorname{vol}(B_1)$
 $N \ge 1/\epsilon^d$

Proof-upper bound

- Consider a ϵ packing $\{\theta^1, \dots, \theta^M\}$
- ullet This is an union of disjoint balls of radius $\epsilon/2$

$$\bigcup_{i} B_{\epsilon/2}(\theta^{i}) \subseteq B_{1+\epsilon/2}$$

$$M \text{vol}(B_{\epsilon/2}(\theta^{i})) \le (1+\epsilon/2) \text{vol}(B_{1+\epsilon/2})$$

$$M(\epsilon/2)^{d} \text{vol}(B_{1}) \le (1+\epsilon/2)^{d} \text{vol}(B_{1})$$

$$M \le (1+2/\epsilon)^{d}$$

Suprema over an infinite space

Theorem

Consider a d dimensional vector of independent $subG(\sigma^2)$ random variables. Let B_d be the unit ball in $\|.\|_2$ norm. Then the following holds:

$$E[\sup_{\theta \in B_d} \theta^T X] \le 4\sigma\sqrt{d}$$

Also, for $\delta \in (0,1)$, with probability $1-\delta$,

$$\sup_{\theta \in \mathcal{B}_d} \theta^T X \le 4\sigma \sqrt{d} + \sqrt{2\sigma \log(1/\delta)}.$$

Recall: Size of a function class \mathcal{F}

Theorem

Let ϵ denote a vector of iid Rademacher r.v.s. Let $A \subseteq \mathbb{R}^n$, $R = \max_{a \in A} \|a\|$,

$$E\sup_{a\in A}\langle \epsilon,a\rangle \leq \sqrt{2R^2\log|A|} \qquad E\sup_{a\in A}|\langle \epsilon,a\rangle| \leq \sqrt{2R^2\log|2A|}.$$

Recall: Size of a function class \mathcal{F}

Theorem

Let ϵ denote a vector of iid Rademacher r.v.s. Let $A \subseteq \mathbb{R}^n$, $R = \max_{a \in A} ||a||$,

$$E\sup_{a\in A}\langle \epsilon,a\rangle \leq \sqrt{2R^2\log|A|} \qquad E\sup_{a\in A}|\langle \epsilon,a\rangle| \leq \sqrt{2R^2\log|2A|}.$$

Theorem

Let X denote a vector of iid Subgaussian r.v.s. Let $A \subseteq \mathbb{R}^n$,

$$R = \max_{a \in A} \|a\|,$$

$$E\sup_{a\in A}\langle X,a\rangle \leq \sigma\sqrt{2R^2\log|A|} \qquad E\sup_{a\in A}|\langle \epsilon,a\rangle| \leq \sqrt{2R^2\log|2A|}.$$

Proof of first half

- Let $\mathcal{N}_{1/2}$ be a half covering of B_d . So $N(1/2, B_d, |||_2) \leq 5^d$
- ullet So for each $\theta \in \mathcal{B}_d$, $\exists z_\theta \in \mathcal{N}_{1/2}$ such that

$$\theta = z_{\theta} + x, \qquad ||x|| \le 1/2$$

So,

$$Y := \sup_{\theta \in \mathcal{B}_d} \theta^T X \le \max_{z_\theta \in \mathcal{N}_{1/2}} z_\theta^T X + \underbrace{\sup_{x \in 1/2B_d} x^T X}_{Y/2}$$

Thus, we have:

$$EY \leq 2E \left[\max_{z_{\theta} \in \mathcal{N}_{1/2}} z_{\theta}^{T} X \right] \leq 2\sigma \sqrt{2\log|\mathcal{N}_{1/2}|} \leq \sigma \sqrt{8d\log 5} \leq 4\sigma \sqrt{d}$$

• We used the same result as last time.

Proof of part 2

$$\begin{split} P\left(Y \geq t\right) &\leq P(\max_{z \in \mathcal{N}_{1/2}} z^T X \geq t/2) \\ &\leq |\mathcal{N}_{1/2} \| P(z^T X \geq t/2) \\ &\leq 5^d \exp(-t^2/8\sigma^2 \|z\|^2) \leq 5^d \exp(-t^2/4\sigma^2) \leq \delta \end{split}$$
 Solving for t gives, $P\left(Y \geq 2\sigma\sqrt{\log 5} + 2\sigma\sqrt{\log(1/\delta)}\right) \leq \delta$

Example-smoothly parametrized problems

• Consider the following function class parametrized by $\theta \in \Theta$.

$$\mathcal{F} := \{ f_{\theta}(.) : \theta \in \Theta \}$$

- Let $\|.\|_{\Theta}$ be the norm for θ and $\|.\|_{\mathcal{F}}$ be the norm for \mathcal{F} .
- Say $||f_{\theta}(.) f_{\theta'}(.)||_{\mathcal{F}} \le L||\theta \theta'||_{\Theta}$
- Then $N(\epsilon; \mathcal{F}, \|.\|_F) \leq N(\epsilon/L; \Theta, \|.\|_{\Theta})$

Example-smoothly parametrized problems

- A Lipschtiz parametrization allows us to go from cover of the Θ space to cover of the f_{θ} space with a loss of L.
- If $\mathcal F$ is parametrized by a compact set of d parameters then $N(\epsilon,\mathcal F)=O(1/\epsilon^d)$

A parametric class

Example

For any fixed θ , define the real-valued function $f_{\theta}(x) := \exp(-\theta|x|)$, and consider the function class

$$\mathcal{F} = \{ \mathit{f}_{\theta} : [0,1] \rightarrow \mathbb{R} | \theta \in [0,1] \}$$

Using the uniform norm as a metric, i.e.

$$\|f-g\|_{\infty}:=\sup_{x\in[0,1]}|f(x)-g(x)|.$$
 Prove that

$$\lfloor \frac{1-1/e}{2\delta} \rfloor + 1 \leq \textit{N}\big(\delta; \mathcal{F}, \|.\|_{\infty}\big) \leq \frac{1}{2\delta} + 2.$$

Proof-upper bound

- First note that $\|f_{\theta} f_{\theta'}\|_{\infty} \le |\theta \theta'|$
- $\bullet\,$ Now use this Lipschitz property to cover the θ space.

Proof-upper bound

- First note that $||f_{\theta} f_{\theta'}||_{\infty} \le |\theta \theta'|$
- For any $\delta \in (0,1)$, let $T = \lfloor \frac{1}{2\delta} \rfloor$
- Consider $S = \{\theta^0, \dots, \theta^{T+1}\}$ where $\theta^i = 2\delta i$ for $i \leq T$ and $\theta^{T+1} = 1$.
- $\{f_{\theta^i}: \theta^i \in S\}$ is a δ cover for \mathcal{F} .
- For any $\theta \in [0,1]$ we can find $\theta^i \in S$ such that $|\theta^i \theta| \leq \delta$
- Indeed we have,

$$\begin{split} \|f_{\theta^i} - f_{\theta}\|_{\infty} &= \sup_{x \in [0,1]} |\exp(-\theta^i |x|) - \exp(-\theta |x|)| \\ &\leq |\theta^i - \theta| \leq \delta \end{split}$$

So
$$N(\delta; \mathcal{F}, \|.\|_{\infty}) \le 2 + T \le 2 + \frac{1}{\delta}$$

Proof-lower bound

- Use a packing.
- Slightly trickier but remember infinity norm $||f_{\theta}(.) f_{\theta'}(.)||_{\infty}$ is lower bounded by $|f_{\theta}(x) f_{\theta'}(x')|$ for some $x \in [0, 1]$

Proof-lower bound

- We will do a δ packing.
- Let $\theta^i = -\log(1-i\delta)$ for i = 0, ..., T
- $-\log(1-T\delta)=1$, and so the largest integral value is $T=\lfloor \frac{1-1/e}{\delta} \rfloor$
- So $M(\delta; \mathcal{F}, \|.\|_{\infty}) \ge 1 + \lfloor \frac{1 1/e}{\delta} \rfloor$
- $N(\delta; \mathcal{F}, ||..||_{\infty}) \ge M(2\delta; \mathcal{F}, ||..||_{\infty}) \ge 1 + \lfloor \frac{1 1/e}{2\delta} \rfloor$

Example-Lipschitz functions on the unit interval

Example

$$\mathcal{F}_L = \{g: [0,1] \to \mathbb{R} | g(0) = 0, |g(x) - g(y)| \le L|x - x'|, \forall x, x' \in [0,1]\}$$

Metric entropy scales as $\log N(\delta; \mathcal{F}_L, \|.\|_{\infty}) \asymp L/\delta$ for small enough $\delta > 0$.

Proof

- ullet Its sufficient to consider a sufficiently large packing of \mathcal{F}_L
- For a given ϵ define $M = \lfloor \frac{1}{\epsilon} \rfloor$
- Let $x_i = (i-1)\epsilon$ for $i = 1, \dots, M+1$

•

$$\phi(x) := \begin{cases} 0 & x < 0 \\ x & x \in [0, 1] \\ 1 & x > 1 \end{cases}$$
 (1)

• Define $f_{\beta}(y) = \sum_{i=1}^{\infty} \beta_i L\epsilon \phi\left(\frac{y-x_i}{\epsilon}\right)$ for $\beta \in \{-1,1\}^M$

Picture

Figure 5-2. The function class $\{f_{\beta}, \beta \in \{-1, +1\}^M\}$ used to construct a packing of the Lipschitz class \mathscr{F}_L . Each function is piecewise linear over the intervals $[0, \epsilon], [\epsilon, 2\epsilon], \ldots, [(M-1)\epsilon, M\epsilon]$ with slope either +L or -L. There are 2^M functions in total, where $M = \lfloor 1/\epsilon \rfloor$.

example

- For any pair $\beta \neq \beta' \in \{-1,1\}^M$ there is at least one interval where they have the same starting point.
- So $||f_{\beta}(y) f_{\beta}'(y)||_{\infty} \ge 2L\epsilon$
- $f_{\beta} \in \mathcal{F}_L$ for all $\beta \in \{-1, 1\}^M$
- So f_{β} forms a $2L\epsilon$ packing.
- Making $\epsilon L = \delta$ we see

$$N(\delta; \mathcal{F}_L, ||.||_{\infty}) \ge M(2L\epsilon; \mathcal{F}_L, ||.||_{\infty}) = 2^{\lfloor \frac{L}{\epsilon} \rfloor} = 2^{\lfloor \frac{L}{\delta} \rfloor}$$

• Also the set f_{β} also form a suitable covering of the original functions, and this gives the upper bound.

example

• The last example can be extended to Lipschitz functions on the Unit cube in higher dimensions, i.e.

$$|f(x) - f(y)| \le ||x - y||_{\infty}$$
 for all $x, y \in [0, 1]^d$

• The same method can be used to show that the metric entropy for this class is the same order as $(L/\delta)^d$

• So, for a L Lipschitz continuous functions supported on [0,1] with f(0)=0, the metric entropy was L/δ

- So, for a L Lipschitz continuous functions supported on [0,1] with f(0)=0, the metric entropy was L/δ
- Also recall that for a L Lipschitz continuous functions supported on $[0,1]^d$ with f(0)=0, the metric entropy was $(L/\delta)^d$

- So, for a L Lipschitz continuous functions supported on [0,1] with f(0)=0, the metric entropy was L/δ
- Also recall that for a L Lipschitz continuous functions supported on $[0,1]^d$ with f(0)=0, the metric entropy was $(L/\delta)^d$
- However for a given function class like the last one the metric entropy is $\log(1/\delta)$

- So, for a L Lipschitz continuous functions supported on [0,1] with f(0)=0, the metric entropy was L/δ
- Also recall that for a L Lipschitz continuous functions supported on $[0,1]^d$ with f(0)=0, the metric entropy was $(L/\delta)^d$
- However for a given function class like the last one the metric entropy is $\log(1/\delta)$
- Recall that for Unit hypercubes in d dimensions the metric entropy is $d\log(1+1/\delta)$

- So, for a L Lipschitz continuous functions supported on [0,1] with f(0)=0, the metric entropy was L/δ
- Also recall that for a L Lipschitz continuous functions supported on $[0,1]^d$ with f(0)=0, the metric entropy was $(L/\delta)^d$
- However for a given function class like the last one the metric entropy is $\log(1/\delta)$
- Recall that for Unit hypercubes in d dimensions the metric entropy is $d \log(1+1/\delta)$
- Note that for Lipschitz continuous functions the dependence on d is exponential. This is a much richer class of functions, so the size is considerably larger and scales poorly with d.

Acknowledgment

This lecture was very much based on Martin Wainwright's book chapter 5.