# CSCE 4114 Embedded Systems Class website:

http://hthreads.csce.uark.edu/wiki/4114

David Andrews

dandrews@uark.edu



#### Welcome!

 Today we will just cover programmatics and gee-whiz introduction

Office Hours: MWF 3:30 - 4:30

Default Remote Via Blackboard:

F2F per request

-TA: TBD



## Programmatics (on wiki)

#### Grade Breakdown

2 exams (Mid/Final) := 20% each.
 2 Exam builds on earlier material but is NOT comprehensive.

2. Homework := 20%

3. Laboratories := 40%

Midterm Tentative Oct 15 will confirm 2 weeks before.

- 1. Class = Lecture + Lab
  - Lectures: Concepts and theory
     3:1 rule applies (Three hours study for every hour lecture)
  - 2. Labs: Application of the Theory Frustrating but satisfying and fun! You get to build stuff!

- Homework: Assignments given in class
   Usual due date is 1 week later.
  - Gives you a chance to read, try and then ask questions in next class.
  - Due at Beginning of class thru Blackboard.
    - Each late day costs 25%
    - Will waive for valid reason presented before due date



#### Labs

- TBD but probably ~6 Labs during semester.
- Will use Xilinx Arty Boards. You need to pick them up this week.
- Week #1: Prelab you do at home.
- Lab writeups + Grading explained in more detail in lab (Week 2)



Textbook:

"Programming Embedded Systems" Vahid, Givargis, Miller

1. Sign in or create an account at:

learn.zybooks.com

2. Enter zyBook code:

UARKCSCE4114AndrewsFall2021

Subscribe
 \$58 Open August 10<sup>th</sup> -> Dec 23<sup>rd</sup>

- · Lectures:
  - 1. From Textbook
  - 2. Lecture slides and additional materials posted on blackboard and webpage.
  - 3. Reading assignments will be posted the weekend before prior to coverage. You should read and familiarize yourself with materials before lecture.

- Academic Honesty: Very important. You are required to do your own work.
  - Labs can be done by partners. It's ok to work together, get together after to discuss. However, you need to write up your own report in your own words.
  - TA will give you formats and expectations for reports.
  - Dishonesty will be dealt with swifty!
  - See the Universities Procedure at: http://provost.uark.edu/245.php

- What you will study:
  - Embedded Systems interfacing and design
  - · Where Hardware and Software co-exist
    - Hardware Organization:
      - CPU: Basic components (how to build in CSCE 2214)
      - Bus Interfacing: Signals and protocols for communication between CPU & all other components
      - Memory: Decoding and hooking up to Bus
      - Peripherals
        - I/O getting data in and out
        - Priority Interrupt Controller: How things get the CPU's attention
        - Custom Components: Accelerators and additions



- What you will study:
  - Embedded Systems interfacing and design
  - · Where Hardware and Software co-exist
    - Software Organization:
      - Assembler := CPU's language.
        - Internal CPU Arithmetic and Boolean Instructions
        - Data Movement into and out of CPU: How to communicate with other system components
        - Protocol Stacks (How C/Java Functions & Subroutines actually get implemented)
      - Interrupt Routines:
        - Special Instructions that allows external devices to request service

1. What is an Embedded System?







From Koopman http://www.ece.cmu.edu/~ece649/lectures/01\_intro.pdf

1. What is an Embedded System?

2. Why are Embedded Systems Important?



#### **Small Computers Rule The Marketplace**

- ~80 Million PCs vs. ~3 Billion Embedded CPUs Annually in 1995
  - 150 Million PCs and 7.5 Billion embedded CPUs + in 2000



From Koopman http://www.ece.cmu.edu/~ece649/lectures/01\_intro.pdf

> 99% of CPU's sold go into Embedded Systems

#### **There Are Many Application Areas**

#### Primary End Product of Embedded Subscribers

Source: ESP Dec. 1998 BPA Audit



#### Which one will you be working in?

From Koopman http://www.ece.cmu.edu/~ece649/lectures/01\_intro.pdf



1. What is an Embedded System?

2. Why are Embedded Systems Important?

3. What do You Need to Know?

#### Generic Embedded System Designer Skill Set

#### Appreciation for multi-disciplinary nature of design

- System skills; system = HW + SW + ...
- Understanding of engineering beyond digital logic
- Ability to take a project from specification through production

#### Communication & teamwork skills

- Work with other disciplines, manufacturing, marketing
- Work with customers to understand the real problem being solved
- Make a good presentation; even better -- write "trade rag" articles

#### And, by the way, technical skills too...

- Low level: Microcontrollers, FPGA/ASIC, assembly language, A/D, D/A
- High level: Object-oriented Design, C/C++, Real Time Operating Systems, Critical System design
- Meta level: Creative solutions to highly constrained problems
- Likely in the future: Unified Modeling Language, embedded networks
- Uncertain future: Java, Windows CE



#### Summary

- This course will give you appreciation for the fun and difficulty of designing and building and embedded system
  - If you are a "Software Person": you will learn how your software is being implemented. You will learn how to write embedded software
  - If you are a "Hardware Person": you will learn how your hardware is being used and controlled. You will learn how to create hardware that is usable by software.