

IN THE CLAIMS:

Please cancel claim 6 and amend claims 1, 5, 7, 11, 17, 36, and 38, as set forth below.

1 1. (Currently Amended) A method comprising:
2 forming a sacrificial layer on a substrate;
3 forming a metal layer on the sacrificial layer;
4 anodizing the metal layer to form a layer of a porous metal oxide; and
5 forming carbon nanotubes in pores of the porous metal oxide layer; and
6 separating the porous metal oxide layer and carbon nanotubes from the sacrificial layer
7 and the substrate to form a free-standing composite carbon nanotube (CNT)
8 structure.

1 2. (Original) The method of claim 1, further comprising removing excess
2 metal oxide material from the pores of the porous metal oxide layer prior to forming the
3 carbon nanotubes.

1 3. (Original) The method of claim 2, wherein the pores extend through the
2 porous metal oxide layer into the sacrificial layer.

1 4. (Original) The method of claim 1, further comprising depositing a catalyst
2 in the pores of the porous metal oxide layer prior to forming the carbon nanotubes.

1 5. (Currently Amended) The method of ~~claim 5~~ claim 4, wherein the catalyst
2 comprises iron, nickel, cobalt, rhodium, platinum, or yttrium.

1 6. (Canceled)

1 7. (Currently Amended) The method of ~~claim 6~~ claim 1, wherein separating
2 the porous metal oxide layer and carbon nanotubes from the sacrificial layer and substrate
3 comprises dissolving the sacrificial layer.

1 8. (Original) The method of claim 7, wherein the sacrificial layer is
2 dissolved in a solution including an acid.

1 9. (Original) The method of claim 8, wherein the acid comprises phosphoric
2 acid, succinic acid, or sulfuric acid.

1 10. (Original) The method of claim 8, wherein the sacrificial layer is
2 dissolved under application of an anodic potential.

1 11. (Currently Amended) The method of ~~claim 6~~ claim 1, further comprising
2 attaching the composite CNT structure to a component.

1 12. (Original) The method of claim 11, wherein the component comprises a
2 semiconductor wafer, an integrated circuit die, a heat spreader, or a heat sink.

1 13. (Original) The method of claim 11, wherein attaching the composite CNT
2 structure to the component comprises attaching the composite CNT structure to the
3 component using a low melting point metal alloy.

1 14. (Original) The method of claim 13, wherein the low melting point metal
2 alloy comprises a solder.

1 15. (Original) The method of claim 11, wherein attaching the composite CNT
2 structure to the component comprises compressing the composite CNT structure against
3 the component.

1 16. (Original) The method of claim 15, wherein the composite CNT structure
2 is compressed against the component under a pressure in a range up to approximately 10
3 Kg/cm².

1 17. (Currently Amended) The method of ~~claim 6~~ claim 1, wherein the
2 composite CNT structure has a thickness in a range of approximately 2 μ m to 20 μ m.

1 18. (Original) The method of claim 1, wherein the carbon nanotubes are
2 formed to a height extending above an upper surface of the porous metal oxide layer.

1 19. (Original) The method of claim 1, wherein the carbon nanotubes are
2 formed by chemical vapor deposition (CVD) or plasma enhanced CVD.

1 20. (Original) The method of claim 1, wherein the metal layer comprises
2 aluminum and the porous metal oxide layer comprises aluminum oxide.

1 21. (Original) The method of claim 1, wherein the sacrificial layer comprises
2 vanadium, titanium, or tungsten.

1 22. (Original) The method of claim 1, wherein the metal layer is anodized
2 under a positive voltage and in the presence of a solution including an acid.

1 23. (Original) The method of claim 22, wherein the acid comprises one of
2 phosphoric acid, succinic acid, sulfuric acid, and oxalic acid.

1 24. (Original) The method of claim 22, wherein the positive voltage
2 comprises a voltage in a range of approximately 1 to 60 volts.

1 25. (Withdrawn) A device comprising:
2 a porous metal oxide layer; and
3 a number of carbon nanotubes disposed in pores of the porous metal oxide layer.

1 26. (Withdrawn) The device of claim 25, wherein the metal oxide layer
2 comprises aluminum oxide.

1 27. (Withdrawn) The device of claim 25, wherein at least some of the carbon
2 nanotubes extend above a surface of the porous metal oxide layer.

1 28. (Withdrawn) A device comprising:
2 an integrated circuit die; and
3 a thermal interface device coupled with a surface of the die, the thermal interface device
4 comprising a layer of a porous metal oxide and a number of carbon nanotubes
5 disposed in pores of the porous metal oxide layer.

1 29. (Withdrawn) The device of claim 28, further comprising a heat spreader
2 coupled with the thermal interface device.

1 30. (Withdrawn) The device of claim 29, further comprising:
2 a second thermal interface device coupled with the heat spreader, the second thermal
3 interface device comprising a layer of a porous metal oxide and a number of
4 carbon nanotubes disposed in pores of the porous metal oxide layer; and
5 a heat sink coupled with the second thermal interface device.

1 31. (Withdrawn) A system comprising:
2 a bus; and
3 a device coupled with the bus, the device including
4 an integrated circuit die, and
5 a thermal interface device coupled with a surface of the die, the thermal
6 interface device comprising a layer of a porous metal oxide and a
7 number of carbon nanotubes disposed in pores of the porous metal
8 oxide layer.

1 32. (Withdrawn) The system of claim 31, wherein the device further includes
2 a heat spreader coupled with the thermal interface device.

1 33. (Withdrawn) The system of claim 32, wherein the device further includes:
2 a second thermal interface device coupled with the heat spreader, the second thermal
3 interface device comprising a layer of a porous metal oxide and a number of
4 carbon nanotubes disposed in pores of the porous metal oxide layer; and
5 a heat sink coupled with the second thermal interface device.

1 34. (Withdrawn) The system of claim 31, wherein the device comprises a
2 processing device.

1 35. (Withdrawn) The system of claim 34, further comprising a memory
2 coupled with the bus.

1 36. (Currently Amended) A method comprising:
2 forming a sacrificial layer on a substrate;
3 forming a layer of a porous material on the sacrificial layer; and
4 forming carbon nanotubes in pores of the layer of porous material; and
5 separating the porous material layer and carbon nanotubes from the sacrificial layer and
6 the substrate to form a free-standing composite carbon nanotube structure.

1 37. (Original) The method of claim 36, further comprising depositing a
2 catalyst in the pores of the layer of porous material prior to forming the carbon
3 nanotubes.

1 38. (Currently Amended) The method of claim 36, ~~further comprising~~
2 wherein separating the porous material layer and carbon nanotubes from the sacrificial
3 layer and the substrate comprises dissolving the sacrificial layer ~~to separate the layer of~~
4 ~~porous material and carbon nanotubes from the sacrificial layer and the substrate.~~

1 39. (Withdrawn) A method comprising:
2 disposing a substrate in a plating bath including a plating solution, the plating solution
3 including ions of a metal and carbon nanotubes; and
4 forming a layer of the metal on the substrate, the metal layer including a number of the
5 carbon nanotubes.

1 40. (Withdrawn) The method of claim 39, wherein the metal comprises one
2 of tin, indium, copper, nickel, cobalt, iron, cadmium, chromium, ruthenium, rhodium,
3 rhenium, antimony, bismuth, platinum, gold, silver, zinc, palladium, and manganese.

1 41. (Withdrawn) The method of claim 39, wherein the carbon nanotubes
2 comprise up to approximately 20 percent by weight of the plating solution.

1 42. (Withdrawn) The method of claim 39, wherein the metal layer is formed
2 by electroplating.

1 43. (Withdrawn) The method of claim 42, wherein the plating solution further
2 comprises a complexing agent.

1 44. (Withdrawn) The method of claim 42, wherein the plating solution further
2 comprises an additive to regulate a property of the metal layer.

1 45. (Withdrawn) The method of claim 44, wherein the additive comprises
2 polyethylene glycol or a di-sulfide.

1 46. (Withdrawn) The method of claim 42, further comprising depositing a
2 seed layer on the substrate prior to forming the metal layer.

1 47. (Withdrawn) The method of claim 39, wherein the metal layer is formed
2 by electroless plating.

1 48. (Withdrawn) The method of claim 47, wherein the plating solution further
2 comprises a complexing agent and a reducing agent.

1 49. (Withdrawn) The method of claim 48, wherein the reducing agent
2 comprises one of formaldehyde, hypophosphite, dimethyl amine borane, and hydrazine
3 hydrate.

1 50. (Withdrawn) The method of claim 47, wherein the plating solution further
2 comprises a substance to adjust a pH of the plating solution.

1 51. (Withdrawn) The method of claim 47, wherein the plating solution further
2 comprises an additive to regulate a property of the metal layer.

1 52. (Withdrawn) The method of claim 51, wherein the additive comprises one
2 of polyethylene glycol and a di-sulfide.

1 53. (Withdrawn) The method of claim 47, further comprising depositing a
2 catalyst on the substrate prior to forming the metal layer.

1 54. (Withdrawn) The method of claim 47, further comprising heating the
2 plating solution in the plating bath.

1 55. (Withdrawn) The method of claim 39, further comprising applying an
2 electric field across the metal layer to align the carbon nanotubes in the metal layer.

1 56. (Withdrawn) The method of claim 55, wherein the carbon nanotubes are
2 aligned substantially perpendicular to a surface of the substrate.

1 57. (Withdrawn) The method of claim 39, wherein the substrate comprises a
2 semiconductor wafer, an integrated circuit die, a heat spreader, or a heat sink.

1 58. (Withdrawn) The method of claim 39, further comprising separating the
2 metal layer including the carbon nanotubes from the substrate to form a free-standing
3 composite carbon nanotube (CNT) structure.

1 59. (Withdrawn) The method of claim 58, further comprising attaching the
2 composite CNT structure to a component.

1 60. (Withdrawn) The method of claim 59, wherein the component comprises
2 a semiconductor wafer, an integrated circuit die, a heat spreader, or a heat sink.

1 61. (Withdrawn) The method of claim 59, wherein attaching the composite
2 CNT structure to the component comprises:
3 depositing a layer of a low melting point metal alloy on a surface of the composite CNT
4 structure; and
5 attaching the composite CNT structure to the component using the layer of low melting
6 point metal alloy.

1 62. (Withdrawn) The method of claim 61, wherein the low melting point
2 metal alloy comprises a solder.

1 63. (Withdrawn) The method of claim 58, wherein the composite CNT
2 structure has a thickness in a range of approximately 2 μm to 20 μm .

1 64. (Withdrawn) A device comprising:
2 a substrate; and
3 a layer of metal disposed over a surface of the substrate, the metal layer having a number
4 of carbon nanotubes dispersed therein.

1 65. (Withdrawn) The device of claim 64, wherein each of the carbon
2 nanotubes has a primary axis substantially aligned in a direction perpendicular to the
3 surface of the substrate.

1 66. (Withdrawn) The device of claim 64, wherein the substrate comprises a
2 semiconductor wafer, an integrated circuit die, a heat spreader, or a heat sink.

1 67. (Withdrawn) The device of claim 64, wherein the substrate comprises a
2 sacrificial substrate and the layer of metal having the carbon nanotubes is separable from
3 the sacrificial substrate.

1 68. (Withdrawn) The device of claim 64, wherein the metal comprises one of
2 tin, indium, copper, nickel, cobalt, iron, cadmium, chromium, ruthenium, rhodium,
3 rhenium, antimony, bismuth, platinum, gold, silver, zinc, palladium, and manganese.

1 69. (Withdrawn) A device comprising:
2 an integrated circuit die; and
3 a thermal interface device coupled with a surface of the die, the thermal interface device
4 comprising a metal layer having a number of carbon nanotubes dispersed therein.

1 70. (Withdrawn) The device of claim 69, further comprising a heat spreader
2 coupled with the thermal interface device.

1 71. (Withdrawn) The device of claim 70, further comprising:
2 a second thermal interface device coupled with the heat spreader, the second thermal
3 interface device comprising a metal layer having a number of carbon nanotubes
4 dispersed therein; and
5 a heat sink coupled with the second thermal interface device.

1 72. (Withdrawn) A system comprising:
2 a bus; and
3 a device coupled with the bus, the device including
4 an integrated circuit die, and
5 a thermal interface device coupled with a surface of the die, the thermal
6 interface device comprising a metal layer having a number of
7 carbon nanotubes dispersed therein.

1 73. (Withdrawn) The system of claim 72, wherein the device further includes
2 a heat spreader coupled with the thermal interface device.

1 74. (Withdrawn) The system of claim 73, wherein the device further includes:
2 a second thermal interface device coupled with the heat spreader, the second thermal
3 interface device comprising a metal layer having a number of carbon nanotubes
4 dispersed therein; and
5 a heat sink coupled with the second thermal interface device.

1 75. (Withdrawn) The system of claim 72, wherein the device comprises a
2 processing device.

1 76. (Withdrawn) The system of claim 75, further comprising a memory
2 coupled with the bus.