Created with an evaluation copy of Aspose. Words. To remove all limitations, you can use Free Temporary License https://products.aspose.com/words/temporary-license/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ДИСТАНЦИОННОГО ОБУЧЕНИЯ

Яретенко Н. И.

Математика (Исследование операций)

Курс лекций

для направления подготовки (специальности) 230105.65 «Прикладная информатика (Программное обеспечение ВТ и АС)», 080801.65 «Прикладная информатика (в экономике)»,080507.65 «Менеджмент организации»,080105.65 «Финансы и кредит», 080109.65 «Бухгалтерский учет, анализ и аудит».

(С применением элементов дистанционного обучения)

Мурманск 2010 г.

Автор - Н.И. Яретенко, к. воен. наук, доцент кафедры Информационных систем и прикладной математики МГТУ.

Курс лекций рассмотрен и одобрен кафедрой ИС и ПМ « » 2010 г.

Рецензенты: В.В. Ковальчук, д.т.н., профессор, зав.кафедрой ИС и ПМ МГТУ. Н. Н. Морозов зав. кафедрой Физики МГТУ.

ОГЛАВЛЕНИЕ

1. Лекция. Основы теории принятия решений

1.1.Общие положения6	
1.2.Основные понятия системного анализа	
1.3.Основные понятия исследования операций	
1.4.Постановка задач принятия оптимальных решений	
1.5. Методология и методы принятия решений	
Контрольные вопросы1	
2. Лекция. Экономико – математическое моделирование	
2.1.Основные понятия	
2.2.Классификация моделей19	
2.3.Классификация решаемых экономических задач21	
Контрольные вопросы22	
3.Лекция. Линейное программирование	
3.1.Общая постановка задачи	
3.2. Двойственность в задачах линейного программирования	
3.3. Теор <mark>емы двойс</mark> твенности	
3.4. Решение задач линейного программирования геометрическим	
методом	
3.5.Симплексный метод решения задач линейного программирования35	
Контрольные вопросы	
4.Лекция .Транспортная задача	
4.1.Постановка задачи41	
4.2.Алгоритм решения транспортных задач42	
4.3.Метод наименьшего элемента	
1.5.Метод потенциалов	
1.6.Примеры решения транспортных задач45	
Контрольные вопросы55	
5 .Лекция .Целочисленное программирование	
5.1.Постановка задачи целочисленного программирования57	
5.2.Графический метод решения задач целочисленног	0
трограммирования58	
5.3. Пример решения задачи целочисленного программирования59	
5.4.Задача о коммивояжере	Ĺ
5.5.Пример решения задачи о коммивояжере	2

Контрольные вопросы64
6. Лекция. Динамическое программирование
6.1. Постановка задачи65
6.2.Принцип оптимальности Беллмана66
6.3.Задача распределения средств на 1 год67
6.4. Задача распределения средств на 2 года
Контрольные вопросы
7. Лекция. Управление производством
7.1. Задача о замене оборудования
7.2 Управление запасами. Складская задача
Контрольные вопросы81
8. Лекция. Теория игр
8.1.Основные понятия
8.2. Антагонистические игры
8.3.Игры с «природой»
Контрольные вопросы93
9.Лекция. Системы массового облуживания
9.1. Формулировка задачи и характеристики СМО94
9.2.СМО с отказами96
9.3.СМО с неограниченным ожиданием96
9.4. СМО с ожиданием и с ограниченной длиной очереди97
9.5. Примеры решения задач98
Контрольные вопросы101
10. Лекция . Сетевое планирование
10.1. Основные понятия метода сетевого планирования101
10.2. Расчет сетевых графиков
Контрольные вопросы
11. Лекция. Нелинейное программирование
11.1. Основные понятия109
11.2. Безусловный экстремум
11.3. Условный экстремум
Контрольные вопросы112
Перечень задач для решения при усвоении материала112
Литература128

Вопросы для самопроверки	129
Припомение. Гренеский энфэрит	131

ВВЕДЕНИЕ

Курс « Математика. Исследование операций» занимает ключевую позицию в образовательных программах студентов большинства производственных и экономических специальностей. В процессе его усвоения у студентов должно сформироваться понимание принципов, математических моделей, формулируемых в рамках этих моделей задач и соответствующих методах поиска их решения .Все эти вопросы образуют фундамент, необходимый в современных условиях любому квалифицированному специалисту для решения задач управления различными организационными системами.

Начало развития исследования операций как науки связывают с сороковыми годами двадцатого столетия .Само название дисциплины связано с применением математических методов для управления военными операциями.

Одним из первых исследований является работа Л. В. Канторовича "Математические методы организации и планирования производства ", вышедшая в 1939 г., а в зарубежной литературе — вышедшая в 1947 г. работа Дж. Данцинга , посвященная решению экстремальных линейных задач. В 1975 г. Л. В. Канторович стал лауреатом Нобелевской премии за свои работы по оптимальному использованию ресурсов в экономике.

50-е и последующие годы были отмечены широким применением в практику полученных фундаментальных теоретических исследований и связанных с этим переосмыслением потенциальных возможностей теории исследования операций. Важный вклад в развитие новой науки также внесли такие видные ученные, как Дж. Фон. Нейман, Д. Гейл, К. Эрроу, Р. Беллман, Р. Гомори, Е. С. Вентцель, М. К. Гавурин и др. ученные.

Курс лекций разработан на основании рабочих программ для направления подготовки (специальности) 230105.65 «Прикладная информатика (Программное обеспечение ВТ и АС)»,080801.65 «Прикладная информатика (в экономике)»,080507.65 «Менеджмент о рганизации»,080105.65 «Финансы и кредит», 080109.65 «Бухгалтерский учет, анализ и аудит».

При изложении содержания тем лекций указываются наиболее важные их элементы с рассмотрением теоретических вопросов и примеров практических задач, а также вопросы для самоконтроля. В заключительной части приводятся многочисленные варианты задач по каждой теме, которые позволят студентам лучше усвоить материал при самостоятельном изучении дисциплины в процессе подготовки к сдаче экзамена или зачета.

В перечнях основной и дополнительной литературы указаны современные учебные и периодические издания, включающие задачи с решениями прикладной направленности.

1 Лекция. Основы теории принятия решений.

- 1.1. Общие положения
- 1.2. Основные понятия системного анализа
- 1.3. Основные понятия исследования операций
- 1.4. Постановка задач принятия оптимальных решений
- 1.5. Методология и методы принятия решений.

1.1. Общие положения

<u>Человек наделён сознанием</u>, существо свободное и обречено на выбор решений, стараясь сделать всё наилучшим образом.

Теория принятия оптимальных решений в наиболее общем смысле представляет собой совокупность математических и численных методов, ориентированных на нахождение наилучших вариантов из множества альтернатив и позволяющих избежать их полного перебора.

This document was truncated here because it was created in the Evaluation Mode.

Your File Format APIs