Редактирование свойств блока и тестирование

программы

5

Что описывает

После того как Вы создали и запрограммировали блоки данных и эта глава? кодовые блоки, Вы проверяете и редактируете свойства блока. Они позволяют впоследствии произвести точную идентификацию блока и сделать вывод о его возникновении. Свойства блока могут быть полезными при устранении ошибок.

В редакторе КОР можно тестировать отдельные блоки, которые обрабатываются в прикладной программе центральным модулем. При этом Вы можете визуально наблюдать течение сигналов внутри сети. Эта возможность тестирования, называемая статусом программы, окажет Вам поддержку при пуске программы в эксплуатацию, при проверке важных процессов, а также при устранении ошибок.

Обзор главы

В разделе	Вы найдете	на стр.
5.1	Редактирование свойств блока	5–2
5.2	Тестирование программы КОР. Обзор	5–5
5.3	Установка отображения для статуса программы	5–6
5.4	Установка условий запуска	5–7
5.5	Выбор среды тестирования и запуск/остановка статуса программы	5–8

5.1. Редактирование свойств блока

Обзор

В свойствах блока хранится дополнительная информация о блоке.

Здесь Вы при необходимости можете задать имя, принадлежность к семейству, версию и автора блока. Кроме того, здесь будут отражаться дополнительная информация и статистические данные, которые предоставляются системой и которые Вы не можете редактировать (см. рис. 5.1).

Данные блока дают Вам важную информацию о виде блока, необходимой памяти и времени последнего изменения. Эти данные помогут Вам при поиске ошибок, если, например, не хватает памяти или произошел конфликт меток времени.

Способ действия

Свойства блока Вы можете увидеть и редактировать в диалоговом окне

- В SIMATIC Manager выделите блок и выберите команду меню Bearbeiten ➤ Objekteigenschaften (Редактирование ➤ Свойства объекта).
- При открытом блоке в редакторе КОР выберите команду меню **Datei** ► **Eigenschaften** (Файл ► Свойства).

Рис. 5-1. Диалог "Свойства" для блоков в редакторе КОР

В четырех текстовых полях Вы можете вводить теперь данные об имени, семействе, версии и авторе.

Имя и семейство блока

Задание имени и семейства для блока дает Вам возможность классифицировать созданные Вами блоки. Так, например, Вы можете разместить в семействе "Регуляторы" все блоки, в которых запрограммированы регуляторы.

При последующем вызове блока в операторной части другого блока в КОР обнаруживается польза этих данных: в диалоге "КОР-Element einfügen" ("Вставка элемента КОР") при выборе этого блока отображается семейство и имя блока, так что Вы можете легко распознать его задачу.

Версия блока

Из этого атрибута Вы можете сделать вывод о том, в какой версии STEP 7 был создан блок. Блоки, созданные в первой версии, Вы должны конвертировать, чтобы встроить их в программу второй версии. Сделать это Вы можете в SIMATIC Manager с помощью команды меню **Datei** ▶ **Version 1– Projekt öffnen...** (Файл ▶ Открыть проект версии 1).

Блоки, созданные в первой версии, Вы не можете использовать в связи с многоэкземплярными моделями. Вы должны генерировать из блоков первой версии исходный файл, который потом компилируется в блоки второй версии. Дальнейшую информацию Вы можете найти в Руководстве пользователя /231/.

Атрибуты блока

Среди атрибутов блока Вы можете найти следующие записи:

- Атрибут блока "KNOW HOW Schutz" ("Защита НОУ ХАУ") указывает, что блок защищен и оказывает следующие воздействия:
 - Операторная часть блока является недоступной для просмотра.
 - Таблица описания переменных не отображает временные или статические переменные.
 - Из блока не может быть генерирован исходный AWL-файл.
 - Вы не можете редактировать свойства блока.
- Если установлен атрибут "Standardbaustein" ("Стандартный блок"), то это означает, что это стандартный блок Siemens. Это указывается с помощью соответствующей записи внизу слева.
- Атрибут "READ_ONLY" ("Только чтение") означает, что блок защищен от записи. Это целесообразно для блоков данных, значения которых постоянны и не могут изменяться (константы).
- Атрибут "Unlinked" ("Несвязан") может быть установлен лишь для блоков данных. Это означает, что блок данных не загружается из загрузочной памяти в рабочую память процессора. Обращение к блокам данных в загрузочной памяти происходит с помощью SFC, которые копируют в рабочую память только содержимое блоков данных. Этим достигается лучшее использование рабочей памяти, которая, таким образом, содержит во время выполнения программы, только относящиеся к делу данные.

Указание

Вы можете задать атрибуты защиты блока, защиты от записи и несвязанности только при программировании исходного файла на AWL. Если Вы свой блок создали в КОР, перейдите командой меню **Ansicht ▶ AWL** (Вид ▶ AWL) в язык программирования AWL. Конвертируйте блок в исходный файл, где Вы можете вводить атрибуты. После компиляции исходного файла в блок, блок становится соответствующим образом защищенным. Дальнейшую информацию Вы получите в Руководстве по AWL /232/.

5.2. Тестирование программы КОР. Обзор

Возможность тестирования актуализируется.

Вы можете тестировать Вашу КОР - программу, отображая поток сигнала внутри сетей блока. Отображение состояния программы циклически

Предпосылки Для того чтобы можно было отображать состояние программы, должны быть выполнены следующие предпосылки:

- Вы должны сохранить блок без ошибок и затем загрузить в процессор.
- Процессор включен, прикладная программа выполняется.
- Вы открыли блок в режиме online.

Принципиальная На рис. 5.2 показан принципиальный способ действия для **последовательность**наблюдения за состоянием программы. **действий**

Рис. 5-2. Последовательность действий при тестировании кодовых блоков в KOP

5.3. Установка отображения для статуса программы

Способ действия

Прежде чем Вы запустите статус программы для блока в КОР, установите, как бы Вы хотели получить отображение потока сигналов. Откройте для этого вкладку "КОР" с помощью команды меню Extras ▶ Einstellungen... (Дополнительные функции ▶ Настройка...).

Рис. 5-3. Установка отображения статуса программы в КОР

На этой вкладке Вы изменяете только цвет и толщину линий для двух возможных случаев:

- "Status nicht erfüllt" ("Статус не выполняется"). Условия на пути протекания тока не выполнены. Ток не течет (прерывистая линия).
- "Status erfüllt" ("Статус выполняется". Условия на пути протекания тока выполнены. Ток течет (сплошная линия).

5.4. Установка условий запуска

Фон

С помощью условий запуска Вы можете установить среду вызова тестируемого блока. Тестирование выполняется только тогда, когда выполнены установленные условия запуска.

Способ действия

Условия запуска Вы можете установить с помощью команды меню **Test** ▶ **Aufrufumgebung...** (Тест ▶ Среда вызова...).

Рис. 5-4. Установка условия запуска

Значение условий запуска

Три возможных установки имеют следующие значение:

- Отсутствие условий запуска: Среда вызова для тестируемого блока не играет роли. Однако, если Вы один и тот же блок вызываете из различных мест программы, то Вы не можете различить, для какого вызова отображается состояние.
- Путь вызова: Здесь может указываться путь вызова, по которому должен вызываться тестируемый блок, чтобы вызвать запись состояния. Вы можете ввести три последних уровня вызова до достижения тестируемого блока.
- Открытые блоки данных: Здесь задается среда вызова путем указания одного или двух блоков данных. Запись состояния происходит, если блок, который нужно протестировать, был вызван с теми или иными заданными блоками данных.

5.5. Выбор среды тестирования и запуск/остановка статуса программы

Выбор среды Различаются две ситуации в режиме online, в которых Вы можете **тестирования** тестировать Вашу программу:

- В среде тестирования "Prozeß" ("Процесс") Вы тестируете Вашу программу в режиме online при условиях процесса. При этом в программных циклах статус команд, которые в цикле многократно повторяются, устанавливается только при первом проходе программного цикла. Этот режим обеспечивает самую малую загрузку цикла.
- В среде тестирования "Labor" ("Лаборатория") Вы также тестируете Вашу программу в режиме online при лабораторных условиях. Однако статус команд, которые в цикле многократно повторяются, устанавливается при каждом проходе программного цикла. В этом режиме Вы можете получить значительную нагрузку на время цикла, так как продолжительность времени цикла зависит от числа проходов и числа наблюдаемых команд.

Среду тестирования Вы выбираете с помощью команды меню **Test** ▶ **Testumgebung** ▶ **Labor/Prozeß** (Тест ▶ Среда тестирования ▶ Процесс/Лаборатория).

Запуск и останов статуса программы Статус программы запускается и останавливается командой **Test** ▶ **Beobachten** (Тест ▶ Наблюдение). Статус программы выводится только для непосредственно видимых в редакторе областей.

Рис. 5-5. Статус программы в КОР (пример)

Проверка времени цикла Активизация режима тестирования увеличивает время цикла. При

превышении установленного времени цикла процессор останавливается, если только Вы не запрограммировали OB80.

Установленное и текущее время цикла Вы можете вывести и перепроверить с помощью команды меню **Zielsystem** ▶ **Baugruppenzustand** (Контроллер ▶ Состояние модуля). Максимальное время цикла, в случае необходимости для целей тестирования, можно изменить при настройке аппаратной части в свойствах процессора.