VE281

Data Structures and Algorithms

Quick Sort

Outline

• Quick Sort

• Comparison Sort Summary

Algorithm

Another divide-and-conquer approach to sort

partition()

- Choose an array element as **pivot**.
- Put all elements < pivot to the left of pivot.
- Put all elements \geq pivot to the right of pivot.
- Move pivot to its correct place in the array.
- Sort left and right subarrays recursively (not including pivot).

```
void quicksort(int *a, int left,
  int right) {
   int pivotat; // index of the pivot
   if(left >= right) return;
   pivotat = partition(a, left, right);
   quicksort(a, left, pivotat-1);
   quicksort(a, pivotat+1, right);
}
```

Choice of Pivot

- If your input is random, you can choose the **first** element.
 - But this is very bad for presorted input.
- A better strategy: **randomly** pick an element from the array as pivot.
 - Claim: for any input, the average running time is $O(n \log n)$.
 - <u>Note</u>: average is over random choice of pivots made by the algorithm, **not** on the input.

Partitioning the Array

- Once pivot is chosen, swap pivot to the beginning of the array.
- When another array B is available, scan original array A from left to right.
 - Put elements < pivot at the left end of B.
 - Put elements \geq pivot at the right end of B.
 - The pivot is put at the remaining position of B.
 - Copy B back to A.
 - A 6 2 8 5 11 10 4 1 9 7 3
 - B 2 5 4 1 3 6 7 9 10 11 8

In-Place Partitioning the Array

- 1. Once pivot is chosen, swap pivot to the beginning of the array.
- 2. Start counters i=1 and j=N-1.
- 3. Increment i until we find element A[i]>=pivot.
 - **A**[i] is the leftmost item \geq pivot.
- 4. Decrement j until we find element A[j]<pivot.
 - **A**[j] is the rightmost item < pivot.
- 5. If i<j, swap A[i] with A[j]. Go back to step 3.
- 6. Otherwise, swap the first element (pivot) with **A[j]**.

In-Place Partitioning the Array

Example

• Now, j < i, swap the first element (pivot) with A[j].

A 4 2 3 5 1 6 10 11 9 7 8

In-Place Partitioning the Array

Time Complexity

- 1. Once pivot is chosen, swap pivot to the beginning of the array.
- 2. Start counters i=1 and j=N-1.
- 3. Increment i until we find element A[i]>=pivot.
- 4. Decrement j until we find element A[j]<pivot.
- 5. If i<j, swap A[i] with A[j]. Go back to step 3.
- 6. Otherwise, swap the first element (pivot) with A[j].
- Scan the entire array no more than twice.
- Time complexity is O(N), where N is the size of the array.

Time Complexity

```
void quicksort(int *a, int left,
  int right) {
   int pivotat; // index of the pivot
   if(left >= right) return;
   pivotat = partition(a, left, right); O(N)
   quicksort(a, left, pivotat-1); T(LeftSz)
   quicksort(a, pivotat+1, right); T(RightSz)
}
```

- Let T(N) be the time needed to sort N elements.
 - T(0) = c, where c is a constant.
- Recursive relation:

$$T(N) = T(LeftSz) + T(RightSz) + O(N)$$

• LeftSz + RightSz = N - 1

Worst Case Time Complexity

• Recursive relation:

$$T(N) = T(LeftSz) + T(RightSz) + O(N)$$

• Worst case happens when each time the pivot is the smallest item or the largest item

•
$$T(N) = T(N-1) + T(0) + O(N)$$

 $\leq T(N-1) + T(0) + dN$
 $\leq T(N-2) + 2T(0) + d(N-1) + dN$
...
 $\leq T(0) + NT(0) + d + 2d + \dots + d(N-1) + dN$
 $= O(N^2)$

Best Case Time Complexity

• Recursive realtaion:

$$T(N) = T(LeftSz) + T(RightSz) + O(N)$$

- Best case happens when each time the pivot divides the array into two equal-sized ones.
 - T(N) = T((N-1)/2) + T((N-1)/2) + O(N)
 - The recursive relation is similar to that of merge sort.
 - $\bullet \ T(N) = O(N \log N)$

Average Case Time Complexity

- Average case time complexity of quick sort can be proved to be $O(N \log N)$.
 - Assume **randomly** pick an element from the array as pivot.
 - <u>Note</u>: average is over random choice of pivots made by the algorithm, **not** on the input.
 - The claim holds for any input.

Other Characteristics

- In-place?
 - In-place partitioning.
 - Worst case needs O(N) stack space.
 - Average case needs $O(\log N)$ stack space.
 - "Weekly" in-place.
- Not stable.

Summary

- Like merge sort, quick sort is a divide-and-conquer algorithm.
- Merge sort: easy division, complex combination.
- Quick sort: complex division (partition with pivot step), easy combination.

- Insertion sort is faster than quick sort for small arrays.
 - Terminate quick sort when array size is below a threshold. Do insertion sort on subarrays.

Outline

• Quick Sort

• Comparison Sort Summary

Comparison Sorts Summary

	Worst Case Time	Average Case Time	In Place	Stable
Insertion	$O(N^2)$	$O(N^2)$	Yes	Yes
Selection	$O(N^2)$	$O(N^2)$	Yes	No
Bubble	$O(N^2)$	$O(N^2)$	Yes	Yes
Merge Sort	$O(N \log N)$	$O(N \log N)$	No	Yes
Quick Sort	$O(N^2)$	$O(N \log N)$	Weakly	No

Comparison Sorts

Worst Case Time Complexity

• For comparison sort, is $O(N \log N)$ the best we can do in the worst case?

• Theorem: A sorting algorithm that is based on pairwise comparisons must use $\Omega(N \log N)$ operations to sort in the worst case.