Instrucciones:	a) Duración: 1 hora y 30 minutos.
	b) Debe desarrollar tres problemas y dos cuestiones
	c) Puede utilizar calculadora no programable, ni gráfica ni con capacidad para almacenar o transmitir datos
	d) Cada cuestión se calificará con hasta 1,25 puntos, mientras que cada problema con hasta 2,5 puntos.
	e) Para obtener la máxima puntuación debe realizar un esquema del problema y explicar los pasos que se dan.

Problemas:

- P1.- La carga de una esfera metálica A es de $0.066~\mu$ C, y una segunda esfera B tiene una carga de $-0.026~\mu$ C. Las dos esferas, consideradas puntuales, se ponen un momento en contacto. ¿Cuál es la fuerza que actúa entre ellas cuando se separan nuevamente una distancia de 30~cm? (La Rioja 2010)
- P.2.- Tres cargas eléctricas de $+1 \mu C$ están en los puntos A(-1,0), B(0,2) y C(0,-2) metros. Calcula en D(0,0) y F(2,0):
- a) El campo eléctrico
- b) El potencial eléctrico
- c) Si en D(0,0) se coloca una cuarta carga q' de $+1~\mu C$ y de 10~g de masa, sometido solo a la acción electrostática de las otras tres, calcula la velocidad con la que lleva al punto F(0,2).

Datos: $K=9\cdot10^9\ N\cdot m^2\cdot C^{-2}$ (Galicia 2010)

- P3.- Un electrón se mueve en el seno de un campo magnético uniforme \vec{B} con una velocidad perpendicular a dicho campo y da valor v=20000km/s, describiendo un arco de circunferencia de radio R=0,5 m.
- a) Determina el valor del campo.
- b) Si la velocidad del electrón formara un ángulo de 45° con \vec{B} , ¿Cómo sería la trayectoria? (Castilla y león 2010)
- P4.- Una espira cuadrada de lado 30 cm, está situada en una región donde existe un campo magnético uniforme B=0,5 T perpendicular al plano de la espira, y con sentido saliente.
 - a) Calcula la f.e.m. media inducida inducida en la espira cuando esta gira 90° en torno a un lado en un $\Delta t = 0.2$ s.
 - b) Si la espira permanece fija, pero el campo magnético se duplica en el mismo intervalo de tiempo, ¿cuál es la f.e.m. inducida? Razona en qué sentido tiende a circular la corriente inducida. (Euskadi 2010)
- P5.- Un haz de protones de energía 208 eV entra en una región donde hay un campo magnético uniforme de 0,08 T perpendicular a su trayectoria. Se pide:
 - a) Determinar la velocidad y el radio de curvatura de la trayectoria que los protones describirán dentro del campo magnético. Indicar si el haz se desviará hacia la derecha o hacia la izquierda (suponemos que el haz viaja en sentido del eje X positivo y que el campo magnético es perpendicular al plano XZ)
 - b) Calcular el tiempo que los protones tardan en describir una órbita completa alrededor de las líneas de campo magnético.

Datos: masa del protón: 1,67·10⁻²⁷ kg; Carga del protón: 1,602·10⁻¹⁹C; 1eV=1,602·10⁻¹⁹ J (Castilla la Mancha 2010)

- P6.- Un electrón se mueve en línea recta con velocidad constante $\vec{v} = 5\hat{i} \ m s^{-1}$ bajo la acción de un campo eléctrico y un campo magnético uniformes. El campo magnético es $\vec{B} = 0, 1\hat{j} \ T$:
- a) Calcula el valor y la dirección de la fuerza magnética que actúa sobre el electrón.
- b) Calcula el valor y la dirección del campo eléctrico.

Datos: Carga del electrón 1,6·10⁻¹⁹ C (Cantabria 2010)

Cuestiones:

- $\hbox{\it C1.-Seg\'un la Ley de Faraday-Lenz, un campo magn\'etico B induce una f.e.m. en una espira plana:}$
 - a) Si un B constante atraviesa el plano de la espira en reposo.
 - b) Si un B variable es paralelo al plano de la espira
 - c) Si un B variable atraviesa el plano de la espira en reposo. (Galicia 2010)
- C2.- Determina el valor de la fuerza por unidad de longitud de dos conductores rectilíneos y paralelos si están recorridos por intensidades de corrientes en el mismo sentido de 2 amperios y están separados una distancia d=1 m. Datos: $\mu_0 = 4 \cdot \pi \cdot 10^{-7} \text{ T·m·A}^1$ (Canarias 2010)
- C3.- a) Enuncia y expresa matemáticamente el Teorema de Gauss.
- b) Deduce la expresión del módulo del campo eléctrico creado por una lámina plana infinita y uniforme cargada con una densidad superficial de carga $\,\sigma$. (Madrid 2010)
- C4.- Un electrón y un protón que viajan a la misma velocidad se inyectan en una región de un campo magnético uniforme, entrando con un ángulo de 90° con respecto a la dirección del campo magnético. ¿Cómo son las fuerzas magnéticas a las que inicialmente se ven sometidas ambas partículas? (La Rioja 2010)