

Des bonnes pratiques

- Data on the Web Best Practices
 - W3C Recommendation31 January 2017
 - https://www.w3.org/TR/dwbp/

Best Practice 1: Provide metadata
Best Practice 2: Provide descriptive metadata
Best Practice 3: Provide structural metadata
Best Practice 4: Provide data license information
Best Practice 5: Provide data provenance information
Best Practice 6: Provide data quality information
Best Practice 7: Provide a version indicator
Best Practice 8: Provide version history
Best Practice 9: Use persistent URIs as identifiers of
datasets
Best Practice 10: Use persistent URIs as identifiers
within datasets
Best Practice 11: Assign URIs to dataset versions and
series
Best Practice 12: Use machine-readable standardized
data formats
Best Practice 13: Use locale-neutral data
representations
Best Practice 14: Provide data in multiple formats
Best Practice 15: Reuse vocabularies, preferably
standardized ones
Best Practice 16: Choose the right formalization level
Best Practice 17: Provide bulk download

Best Practice 18: Provide Subsets for Large Datasets

```
Best Practice 19: Use content negotiation for serving
data available in multiple formats
Best Practice 20: Provide real-time access
Best Practice 21: Provide data up to date
Best Practice 22: Provide an explanation for data that
is not available
Best Practice 23: Make data available through an API
Best Practice 24: Use Web Standards as the
foundation of APIs
Best Practice 25: Provide complete documentation for
your API
Best Practice 26: Avoid Breaking Changes to Your API
Best Practice 27: Preserve identifiers
Best Practice 28: Assess dataset coverage
Best Practice 29: Gather feedback from data
consumers
Best Practice 30: Make feedback available
Best Practice 31: Enrich data by generating new data
Best Practice 32: Provide Complementary
Presentations
Best Practice 33: Provide Feedback to the Original
Publisher
Best Practice 34: Follow Licensing Terms
```

Best Practice 35: Cite the Original Publication

Des bonnes pratiques

- Spatial Data on the Web Best Practices
 - Travail W3C/OGC
 - W3C Working Group Note
 - 28 September 2017
 - https://www.w3.org/TR/sdw-bp/

Best Practice 1: Use globally unique persistent HTTP URIs for Spatial Things	Best Practice 8: State how coordinate values are encoded
Best Practice 2: Make your spatial data indexable by	Best Practice 9: Describe relative positioning
search engines	Best Practice 10: Use appropriate relation types to link
Best Practice 3: Link resources together to create the	Spatial Things
Web of data	Best Practice 11: Provide information on the changing
Best Practice 4: Use spatial data encodings that match	nature of spatial things
your target audience	Best Practice 12: Expose spatial data through
Best Practice 5: Provide geometries on the Web in a	'convenience APIs'
usable way	Best Practice 13: Include spatial metadata in dataset
Best Practice 6: Provide geometries at the right level of	metadata
accuracy, precision, and size	Best Practice 14: Describe the positional accuracy of
Best Practice 7: Choose coordinate reference systems	spatial data
to suit your user's applications	

Dynamique du web des données de R&D -> production

Une « appropriation » / reprise de ces logiques par la sphère commerciale

- 2011 : schema.org
 - Bing, Google, Yahoo, Yandex
 - → Amélioration indexation pages web par les crawler (sémantisation du contenu des pages).
 - Depuis, support puis recommandation usage JSON-LD appelant entre autre des vocabulaires issus de Schema.org
 - Nombreux test tools / validators fournis
- => De nombreuses fournisseurs de données / agences environnementales s'y mettent
- => côté sphère INSPIRE
 - 2018 INSPIRE conference Google Dataset Search workshop
 - 2019 "Workshop on making spatial data discoverable through mainstream search engines"

Un changement de paradigme en cours

Une URI vers plusieurs représentations de la même donnée

- Négociation de contenu par profil
 - W3C Working Draft 26 November 2019
 - https://www.w3.org/TR/dx-prof-conneg/
 - https://github.com/w3c/dx-connegp

Figure 1 A diagram of the Alternate Profiles data model implemented in OWL [OWL2-OVERVIEW].

Un changement de paradigme en cours

Une URI vers plusieurs représentations de la même donnée

Négociation de contenu par profil

```
EXAMPLE 8: Server returns a Link header to indicate available profiles
HEAD /resource/a HTTP/1.1
Accept: text/turtle
[more request headers]
HTTP/1.1 200 OK
Content-Type: text/turtle
Content-Profile: <urn:example:profile:x>
Link:
  <http://example.org/resource/a>;
          rel="canonical";
          type="text/turtle";
          profile="urn:example:profile:x",
  <http://example.org/resource/a>;
          rel="alternate";
          type="text/turtle";
          profile="urn:example:profile:y",
  <http://example.org/resource/a>;
          rel="alternate";
          type="application/xml";
          profile="urn:example:profile:x",
  <http://example.org/resource/a>;
          rel="alternate";
          type="application/xml";
          profile="urn:example:profile:y",
  <http://example.org/resource/a>;
          rel="alternate";
          type="text/html"
[more response headers]
```

Ajout de champs dans l'en-tête http

In <u>Example 8</u>, for each of the different Media Type / Profile combinations, the URI of the resource remains unchanged and it is the <u>Accept and Accept-Profile</u> headers for Media Type and Profile respectively that alter the returned response.

Un changement de paradigme en cours

Une URI vers plusieurs représentations de la même donnée

- Test d'interopérabilité OGC SELFIE (Second Environmental Linked Features Interoperability Experiment (SELFIE))
 - https://github.com/opengeospatial/SELFIE
 - https://docs.ogc.org/per/20-067.html

De plus en plus de sémantiques sur les données

Les communautés métiers s'approprient le WebSémantique

- Data Catalog Vocabulary (DCAT) Version 2
 - W3C Recommendation 04 February 2020
 https://www.w3.org/TR/vocab-dcat-2/
 - Description données, service, catalogue -> cf logique 'à la ISO 19115/19139, à la Geonetwork'
- Observations & Measurements (O&M)
 - W3C SSN/SOSA: travail conjoint W3C/OGC sur O&M V2 https://www.w3.org/TR/vocab-ssn/
 - Sera mis à jour suite évolution O&M en V3

De plus en plus de sémantiques sur les données

Les communautés métiers s'approprient le WebSémantique

- Ex d'ontologies en cours côté OGC

 Basées sur le travail historique de maïeutique des groupes mais pas une conversion UML -> OWL

 (cf rapport test interopérabilité OGC ELFIE Annexe A : https://docs.ogc.org/per/18-097.html#ontology_from_uml)
 - Hydrographie -> HY_Features
 - OGC / Organisation Météorologique Mondiale (WMO Chy)
 - Équivalence vers INSPIRE Hy et, ex : Carthage/Topage en France
 - Hydrogéologie -> GroundWaterML 2.0
 - OGC / Organisation Météorologique Mondiale (WMO Chy)
 - Géologie -> GeoscienceML
 - OGC / IUGS CGI

De plus en plus de sémantiques sur les données

Les communautés métiers s'approprient le WebSémantique

- Monde de la recherche -> Research Data Alliance (RDA)
 - Vocabulary Services Interest Group : https://www.rd-alliance.org/groups/vocabulary-services-interest-group.html
 - Data Discovery Paradigms Interest Group: https://www.rd-alliance.org/groups/data-discovery-paradigms-ig
 - + lien avec ESIP Federation (NASA, NOAA, USGS)
 - ⇒ https://github.com/ESIPFed/science-on-schema.org

- BioSchema
 - -> presentation Franck

Spécifications d'API

Les spécifications considèrent maintenant le WebSémantique et les logiques de données liées

Un tournant : début collaboration W3C/OGC dans les années 2014

- OGC API Records (revision CSW): travail en cours
 - "Basic information model: strongly considers using DCAT"
 - "Linked data: Wherever possible, provisions will be made to include "links" sections to accommodate the use of such hypermedia or linking elements."
- OGC API Feature (revision WFS) Core
 - Links section pour les aspects hypermedia (et aussi pour lier elements/collection)
 - + logique de LinkedData selon déploiement (cf présentation pôle INSIDE)
- OGC SensorThings API (revision SOS) Part 1
 - 100% hypermedia driven (HATEOAS), logique de LinkedData selon déploiement (cf présentation pôle INSIDE)

WebSémantique et pile d'outils open source

Des implémentation OpenSource disponibles non réservées aux 'sachants' du domaine

- Registres de codeList/vocabulaire
 - Epimorphics LDRegistry :
 - Utilisation par de nombreuses "grandes" organisations
 - Lien vers fédérations registre EU
- Cataloguage : Geonetwork
 - Intégration JSON-LD dans réponse
 - Migration DCAT -> DCAT V2 à faire
- Exposition d'objets métiers (WFS 2, OGC API Features) : Geoserver
 - Négociation de contenu (pas par profil encore)
 - Feature templating plugin -> JSON-LD
- Exposition d'observation (SensorThings API) : Fraunhofer FROST
 - Selon SOSA/SSN prototype dans le cadre de (S)ELFIE.
 - Note : par design SensorThings API est déjà conforme Observations & Measurements (Q&M)

Conclusion

De nombreux fondements ont maturés et sont utilisés en production

- La pile/séquence catalogue > services > données a vécu
 - toutes les ressources sont au même niveau,
 - o prêtes à être indexées par des moteurs de recherche
 - o certains implémentant des vocabulaires plus riches (ex : Google et DCAT)
- Passage en production dans tous les secteurs
 - Autorité publique : De nombreux fournisseurs de données / agences environnementales s'y mettent à l'échelle mondiale
 - Recherche (via RDA et CODATA) movement de fond pour exposer les données de la recherche avec de la sémantique ET en les liant
 - Secteur privé
 - De nombreuses sociétés de services se montent sur le sujet (France, EU, International)
 - Point "Godwin": certains acteurs s'interrogent de savoir pourquoi leurs données ne sont pas dans le Google DataSet search

Conclusion

De nombreux fondements ont maturés et sont utilisés en production

- 2 grands pans pour le WebSémantique : LinkedData / Reasoning
 - La majorité des implémentations en cours de mise en place dans les organismes publiques vise les aspects LinkedData
 - Le reasoning (les inférences) arrive ensuite

- Par la standardisation internationale également (ex : ISO TC 211 -> série ISO 191xx)
 - ISO/OsGeo: GeoLexica
 - 2020/2021 : Groupe informel en cours : 'considering the impact of non-relational technologies on TC211 standards' (lire : utilisation de plus de méthodes du WebSémantique)

Merci

a.feliachi@brgm.fr s.grellet@brgm.fr

