中科大《数据结构及其算法》往年题 v1.2

最后更新时间: 2023 年 8 月 28 日

本合集包含了 4 份往年试卷,按考试年份升序排列。我对少数题目的表述做了修改,使其更加通顺。如果您发现录入错误、愿意提供其他年份的试题或愿意帮忙将试卷整理成 LaTeX 格式,请与我联系。

我的邮箱: chenjingzhou AT mail DOT ustc DOT edu DOT cn

获取最新版文件: https://icourse.club/course/20697/#review-59146

2008-2009 学年第一学期考试试卷

一、选择和填空(选择每题1分,填空每题2分,共26分)

1.	按增长率升序排列	函数 2 ¹⁰⁰ , (2/3) ⁿ , n ⁿ ,	, n, n ^{3/2} , log ₂ n, nlog:	n:
2.	n 个结点的完全二	叉树中,叶子结点	数是。	
3.	如果进站的车厢序	列为 123,则可能	得到的出站车厢序	列是。
4.	对 n 个结点的单链点。	表查找值为 x 的结	i点,在查找成功的	情况下,平均需比较个组
5.	树高为 h 的二叉树	上只有度为0和2	的结点,则它所包	1含的结点数至少为 。
6.	已知一个图的邻阶	·矩阵表示,计算第	i 个结点的入度方	。 法是。
7.	有一个长度为 12 的	的有序表,按二分数	查找法对该表进行	查找,在表内各元素等概率情况
	下, 查找成功所需	的平均比较次数为	·o	
8.	已知 5 个字符的权度(WPL)为		,7,5,构造相应	的 Huffman 树,其带权路径长
9.	按照二叉树的定义	.,具有3个结点的]二叉树有()和	1.
	A. 3	B. 4	C. 5	D. 6
10.		访问顺序是 ()。)	逼历结点访问顺序是 dgbaechf, D. gdbehfca
11.	图的深度优先遍历 A. 先序遍历			D. 层序遍历
12.				方法外,还可以利用()。 法 D.深度优先遍历法
13.	线性表若采取链式 A. 必须是连续的			·元的地址()。 是不连续的 D.连续与否都行
14.	设有 1000 个无序	元素,希望用最快	的速度挑选出其中	前3个最大的元素,最好采用
	A. 起泡排序	B. 快速排序	C. 堆排序	D. 归并排序
15.	在待排序的元素序 A. 插入排序			
16.	以下关于 n 个结点 A. 含 n-1 条边			h h-1 条边 D. 含 n 个结点

- 17. 设有两个串 p 和 q, 求 q 在 p 中首次出现的位置的运算称作()。
 - A. 连接
- B. 模式匹配
- C. 求子串
- D. 求串长
- 18. 在具有 n 个单元的循环队列中,队满时共有 () 个元素。

A. n/2

B. n-1

C. log₂n

D. n²

二、应用题(共五题,50分)

- 1. 给定一组关键字(14, 3, 17, 32, 9, 31, 6, 12, 24, 7, 20), 写出用下列算法从小到大排序时 第一趟结束时的序列: (9分)
 - (1)起泡排序 (2)归并排序
- (3)基数排序
- 2. 按照低下标优先存储的原则存储整数数组 A[8][7][6][5],每个整数占用 4 个字节。假设 第一个元素的地址是 100, 试计算下列几个元素的存储地址: a₀₀₀₀、a₁₁₁₁、a₁₂₃₄。(6 分)
- 3. 已知后缀表达式为"abcde+f*/-g*+h-", 其中所有运算符都是双目运算符。(10分)
 - (1) 画出等价的表达式二叉树;
 - (2) 写出等价的、包含括号的中缀表达式;
 - (3) 用表达式二叉树的树根的一个空栈 S 为实参, 调用下面算法, 写出算法执行后全 局变量 m 的值。

```
int m = 0;//全局变量
void cal(BiTree* T, Stack& S) {
     if (!T) return;
     push(S, T);
     if (m < StackLength(S))m = StackLength(S);</pre>
     cal(T->lchild, S);
     cal(T->rchild, S);
     pop(S);
}
```

4. AOE 网 G 及其存储结构如图 1 所示, 其存储类型定义如下: (14 分)

#define N 20

```
typedef struct {
```

int arcs[N][N]; //邻接矩阵

char vexs[N]; //存放顶点的数组

int vexnum, arcnum, kind;//顶点数、边数、图的类型

}MGraph;

int visited[N] = { 0 };//全局数组

G.arcs	0	1	2	3	4	5	6	7
0	ω	6	5	30	ω	ω	ω	ω
1	ω	ω	11	ω	43	6	ω	ω
2	ω	ω	ω	ω	ω	12	ω	ω
3	ω	ω	8	ω	ω	18	12	ω
4	œ	œ	œ	8	œ	œ	œ	8
5	ω	ω	ω	8	38	ω	24	ω
6	ω	ω	ω	8	ω	ω	ω	22
7	ω	ω	ω	ω	ω	ω	ω	ω

求解下列问题:

(1) 用 G 和 int v=0 做实参,执行算法调用 DFS1(G, v); 。写出算法的输出序列

```
void DFS1(MGraph G, int v) {
    int i;
    printf(G.vexs[v]);
    visited[v] = 1;
    for (i = 0; i < G.vexnum; i++)
        if (!visited[i] && G.arcs[v][i] != ∞)DFS1(G, i);</pre>
```

}//DFS1

(2) 用 G 和 int v=0 做实参,执行算法调用 DFS2(G, v); 。写出算法的输出序列

```
int visited[N] = { 0 };//全局数组

void DFS2(MGraph G, int v) {
    int i;
    visited[v] = 1;
    for (i = 0; i < G.vexnum; i++)
        if (!visited[i] && G.arcs[v][i] != ∞)DFS2(G, i);
    printf(G.vexs[v]);
```

}//DFS2

(3) 写出 AOE 网中每个顶点的最早发生时间和最迟发生时间、每个活动的最早开始时间和最迟开始时间;写出 AOE 网的关键路径;哪些活动提前一天完成将导致整个工程提前一天完成。

每个顶点的最早发生时间 ve 和最迟发生时间 vl

顶点	V1	V2	V3	V4	V5	V6	V7	V8
ve								
VI								

每个活动的最早开始时间 e(i)和最迟开始时间 l(i)

活动	a1	a2	аЗ	a4	а5	а6	a7	a8	а9	a10	a11	a12	a13	a14
e(i)														
l(i)														

5. 有 10 个元素欲形成二叉检索树,元素值和概率的对应关系如下表,按照某种次序插 入二叉检索树后形成图 2。(11 分)

元素的值	26	14	23	1	66	20	55	5	18	9
概率	0.25	0.1	0.08	0.02	0.1	0.14	0.12	0.06	0.08	0.05

- (1) 请将这 10 个元素填写到下图所示的二叉检索树中。
- (2) 求这棵二叉检索树在查找成功情况下的平均查找长度 ASL。
- (3) 现要删除值为 18 的元素,画出删除操作后二叉检索树的形状。

三、算法设计(共24分)

- 1. 利用两个栈 S1 和 S2 来模拟一个队列。若不存在栈溢出问题,则请写出用栈的操作来实现队列的入队列 EnQueue 和出队列 DeQueue 的算法。(8分)
- 2. 现有一个单链表(每个结点包含 data 域和 next 域,不带头结点),其头指针为 pHead,假设其内容已从小到大排好序。(12 分)
 - (1) 完成一个折半查找算法 BiSearch(pHead, key, low, high), 若找到则返回相应的序号, 否则返回-1。要求空间复杂度为 O(1)。(8 分)
 - (2) 若找不到,则将 key 插入到其中适当位置,使得该链表仍然有序。(4分)
- 3. 编写一个算法,判断一个二叉树是否是完全二叉树。设二叉树的根为 T,每个结点的三个域分别是 data、lchild 和 rchild。(4 分)

2009-2010 学年第一学期考试试卷

一、判断题(每题1分,共10分)

19.	米用顺序仔储结构表示的线性表可以随机地访问任一个数据元素。()
20.	栈和队列都是限制存取位置的线性结构。()
21.	不管原始数据的初始排列状态如何,快速排序都是速度最快的一种排序方法。()
22.	若输入序列为 1,2,3,4,5,6,则通过一个栈可以输出序列 1,3,2,5,6,4。()
23.	当要求时间复杂度为 O(nlog2n)的稳定排序算法时,可以采用堆排序或归并排序。
	()
24.	在二叉树的先序序列中,若结点 A 在结点 B 之前,则结点 A 一定是结点 B 的祖先。
	()
25.	如果一个完全二叉树的按层次遍历序列是大顶堆(最大堆),则在该二叉树中每个结点
	的值均≥其所有子孙的值。()
26.	图 G 有 n 个顶点和 e 条边。用邻接矩阵表示法存储图 G 时,存储空间的大小只取决于
	n, 与 e 无关。()
27.	散列表的基本思想是用记录的关键码的值来确定记录的存储地址。()
28.	哈希表的存储空间越大,查找效率越高。()

二、选择和填空(1-6题每题1分,7-10题每题2分,共20分)

1.	设有一个带头结点的非空双向循环链表,指针域 prior 指向结点的直接前驱,指针域 next 指向直接后继。设指针 P 指向链表中的一个结点,指针 Q 指向一个待插入的新结点,能正确将*Q 插入到*P 之前的语句是()。 A. Q->prior=P->prior; Q->next=P; P->prior=Q; P->prior->next=Q; B. P->prior=Q; Q->next=P; P->prior->next=Q; Q->prior=P; C. Q->prior=P->prior; Q->prior->next=Q; P->prior=Q; Q->next=P; D. 前三者都不正确
2.	对由 n(n>0)中不同字符组成的电文采用二进制 Huffman 编码,每个字符编码的长度最长可达到() 个二进制位。 A. n-1 B. n/2 C. n+1 D. n
3.	若串 S1="ABCDEFG", S2="123", 则执行以下操作的结果是()。 concat(replace(S1.substring(S1.index(S1, 'E', 1, 3), S2, "XY") A. ABCD123XY B. XYABC123G C. ABC123GXY D. ABCXY123
4.	下列算法中经一趟排序未必能选出一个元素放在其最终位置的是()。 A. 选择 B. 起泡 C. 堆 D. 归并
5.	以数组 A[0m-1]实现的循环队列中,其头尾指针分别为 front 和 rear,队列中最多存放 m-1 个元素,则队列中的元素个数为()。 A. (rear-front+m)%m B. rear-front+1 C. (front-rear+m)%m D. (rear-front)%m
6.	对稀疏矩阵进行压缩存储的目的是()。 A. 便于运算 B. 便于输入和输出 C. 节省存储空间 D. 降低运算的时间复杂度
7.	如果二叉排序树上包含了关键字值分别为(16, 28, 40, 37, 19, 30)等多个结点,则下列序列中()不可能是在二叉排序树上查找关键字值等于 37 的结点而得到的比较序列。A. 16, 40, 28, 37 B. 19, 28, 40, 37 C. 40, 30, 28, 37 D. 40, 16, 30, 37
8.	若以(2, 3, 6, 7, 10)作为叶子结点的权值构造 Huffman 树,则其带权路径长度是()。
9.	已知函数如下: int f(int x){return ((x!=0)?x*f(x-1):2);}。则 f(f(1))的返回值是。
10.	对有 890 个结点的完全二叉树 T 按自上而下、自左而右的次序编号,树根的编号为1, 111 号结点位于 T 的第层,是 T子树上的结点;以 111 号结点为根的子树上有个结点;中序遍历以 111 号结点为根的子树时,最后被访问的结点的编号是。

三、应用题(共5题,50分)

1. 利用 Prim 算法和 Kruskal 算法,分别求出下图的最小生成树,把生成过程在右侧图中表示出来(画出生成树的边,并标出边生成的先后顺序 1、2、3·····)。(10 分)

- 2. 已知如下 AOE 图 (图中权值为天数), 请回答以下问题: (12分)
 - (1) 列表给出每项活动 ai 的最早开始时间 e(ai)和最迟开始时间 l(ai);
 - (2) 完成此项工程至少需要多少时间;
 - (3) 哪些活动是关键活动;
 - (4) 是否存在某项活动,当其提高速度后,可以缩短整个工程的工期。

- 3. 依次读入给定的整数序列{7, 16, 4, 8, 20, 9, 6}, 完成下列操作: (10 分)
 - (1) 构造一棵二叉排序树, 计算在等概率情况下该二叉排序树的平均查找长度 ASL;
 - (2) 若变更序列中元素的排列,可构造出平均查找长度达到最小的二叉排序树,列出满足上述要求的序列中的第一个元素。

4. 现有一有向图如下图所示,求从顶点 V1 到顶点 V4 顶点最短路径及其长度,要求给出求解过程。(10 分)

- 5. 以二叉链表作为二叉树的存储结构,阅读算法 f5,并回答问题: (8分)
 - (1) 设二叉树 T 如图所示, 写出执行 f5(T)的返回值;
 - (2) 简述算法 f5 的功能

```
int f5(BiTree* T){
    int m, n;
    if (!T)return 0;
    else {
        m = f5(T->lchild);
        n = f5(T->rchild);
        if (m > n)return m + 1;
        else return n + 1;
    }
}
```


四、算法设计(共20分)

- 1. 设一棵二叉树以二叉链表为存储结构,结点结构为(lchild, data, rchild),设计一个算法求二叉树中层次数为 L 的结点数。(9 分)
- 2. 已知不带头结点的单链表 L,链表中结点结构为(data, next),其中 data 为数据域, next 为指针域。请编写一算法,将该链表按结点数据域值的大小重新链接。要求处理 过程中不得开辟任何结点空间。(11 分)

2017-2018 学年第一学期考试试卷 (A 卷) 2017.12.17

		.017 -2	010 7-4	47 J	쓰1/2 W(W	CO IT	당) ZUII	.12.11	
-,	选择题	(共 20	分,1-6年	每题 1	分,其余	等题 2	分)		
1.		构、静态	据结构分分 S结构 线性结构	В. Д	顶序结构、				
2.	利用 ()	存储方	式最节省的	讨间。				行插入和删除 D. 单循³	
3.	若允许表达 选用的辅助 A. 栈	助结构是	: ()。				括号是否正 D. 二叉排	E确配对的算 序树	法,通常
4.]时间复杂原 D. O(1), O(度为()。 (1)	
5.		在端点如	点是() 上插入和删		B. 都是先 D. 没有却				
6.	设有 6 个约 A. 5	吉点的无	:向连通图, B. 6	该图至	E少应有(C. 7)条边	<u>1</u> 。 D. 8		
7.	在关键字序的比较次数A. 3	数分别为		6,67,78,	.89,91)中 C. 5	二分查找	t关键字为。 D. 6	45 结点时,/	所需进行
8.	_	b,de,bb]	是执行第 ff[ha,gc] ff[da,ha]	В. [е	ed,eb,ax,da	a]ff[ha,gc,	,bb]		

- 9. 一个有 500 个顶点、500 条边的有向图的邻接矩阵有()个非零元素? A. 500 B. 400 C. 300 D. 200
- 10. 算术表达式 a + b * (c + d / e) 转为后缀表达式后为()。
- 11. 在一棵三叉树中度为3的结点数为2个,度为2的结点数为1个,度为1的结点数为2个,则度为0的结点数为())个。

	A. 4 B. 5	C. 6	D. 7	
12.	下面的序列中能构成最小堆(小木A.10、60、20、50、30、26、35 C.20、60、50、40、30、10、8、	、40 B.70、	40、36、30、20	
13.	下列各种排序算法中平均时间复杂A. 快速排序 B. 堆排序			序
14.	设有向无环图 G 中的有向边集合 环图 G 的一种拓扑排序序列是(A. 1,2,3,4 B. 2,3,4,1)。		则下列属于该有向无
二、	填空题(共 20 分, 1-4 每题	1分,其余	每空 2 分)	
1. 2.	L 是一个带有头结点的单链表的乡 在希尔、快速、归并、堆、基数技 序方法是。			
3.	设字符串 S="Tree & Graph",贝	川字符串 S 的存	存储长度为 。	
4.	求无向图的最小生成树的两种算法	法中,更	适合稀疏图。	
5.	程序段 j=2; while(j+2 < n) + + j;		· · · · · · · · · · · · · · · · · · ·	
6.	设有一个按行优先次序存储的三级的地址为 1000, 元素 A [1] [2] 存储地址为 1342 的数组元素的下	[1] 的地址;		
7.	写出 ReplaceAll ("ababababa", "al		果串。	
8.	若对有向图执行拓扑排序算法,是	•		
9.	二叉树中两个结点 m 和 n 互为兄		· · · · · · · · · · · · · · · · · · ·	之后,则先序遍历时
	m 在 n。			
10.	对一个长度为9的有序表进行二次	分查找,查找,	成功时的最多比较	次数是次。
11	—个循环队列存放在长度为 n 的	数组中 不加	1队 空武队 满的标记	1 日只记录队头指针

front 和队列长度 length,则循环队列的长度最大为____。

三、应用题(共40分)

- 1. 由 2017 个结点构成的完全二叉树 T, 从根结点开始, 自上而下, 从左向右连续编号 0, 1···, 其左、右子树分别为 TL、TR, 结点 S 编号为 2016。回答下面问题: (3*3=9 分)
 - (1) S在TL还是TR上?
 - (2) S 在其所在的子树上, 位于其左侧的叶子结点有多少个?
 - (3) 若 S 在 Tx 子树上, 且 Tx 的层次数为 4, 画出 Tx 子树。

- 2. 已知关键字序列(11, 41, 31, 22, 46, 30, 13, 01, 70),哈希函数 H(key)=key mod 11,表长 m=11,试用线性探测法解决冲突,构建哈希表。(3*3=9 分)
 - (1) 画出构建的哈希表 HT 示意图。
 - (2) 若在 HT 中删除关键字 22, 求此时哈希表 HT 的关键字查找成功的平均查找长度 (假设所有关键字等概率)。
 - (3) 求删除关键字 22 后哈希表查找不成功的平均查找长度。

	0	1	2	3	4	5	6	7	8	9	10
HT											

- 3. 对序列(34, 85, 43, 72, 95, 40, 49, 58, 65, 20)进行下列排序算法: (3*3=9 分)
 - (1) 堆排序, 排出一个最大值后重新调整为堆的状态;
 - (2) 2路归并排序两趟以后的结果;
 - (3) 增量为3的希尔排序一趟以后的结果。

4. 一特殊矩阵 A[n][n]如下,将其进行压缩存储到 B[0. .2n-2]中,若 A[i][j]存储在 B[k]中,试 写出 k 与(l,j)的函数关系。 $(7\, \%)$

5. 已知某图的存储如下, 从顶点 V0 出发, 使用 Dijkstra 算法求解从 V0 到其他顶点的最短路径。当求出 V0 到 V2 的最短路轻后,请写出此时 S, D 和 P 数组相应的状态。(6 分)

G.vexs 0 1 2 3 4 5 V0 V1 V2 V3 V4 V5

G.arcs	0	1	2	3	4	5
0	ω	28	30	10	ω	ω
1	ω	ω	10	ω	ω	ω
2	ω	ω	ω	ω	ω	ω
3	ω	15	8	8	7	8
4	ω	3	2	8	8	8
5	ω	8	œ	6	ω	ω

D

四、算法设计(共 20 分)

- 1. 现有一个带有头结点的单链表, 该链表的头结点指针为 pHead (每个结点两个分量: val 值和 next 指针), 编写一个函数完成以下任务: (3 分和 5 分)
 - (1) 利用数组 A, n 个整数, 建立数组的链表。
 - (2) 完成该链表内容的颠倒。(如: 4,3,5→5,3,4)
- 2. 现有一个二叉树根结点指针 pBTree, 编程完成以下任务: (5 分和 7 分)
 - (1) 判断该二叉树是否为一个二叉检索树。
 - (2) 计算该二叉检索树关键字等概率情况下的 ASL。

2018-2019 学年第一学期考试试卷 (A 卷) 2018.12.16

一、	选择题(共 15 分	分,1-11 每题 1	分,其余 2 分)	
1.	若长度为 n 的线性 复杂度为()(1 <		吉构,在其第 i 个位	置插入一个新元素的算法的时间
	A. O(0)	B. O(1)	C. O(n)	D. O(n ²)
2.	林F对应的二叉标	时根结点的右子树」	二的结点个数是()	
	A. M1	B. M1+M2	C. M3	D. M2+M3
3.	将有关二叉树的相A. 4			点的完全三叉树的高度()。 D. 7
4.	C. 堆排序的时间:			最小
5.		「向图含有边的数目 B. n (n+1)	` '	D. n*(n-1)
6.	A. 求关键路径是 B. 一个事件的最-	迟开始时间为以该	的 事件为尾的弧的活:	动最早开始时间相同 动最迟开始时间与该活动的持续
7.		『接矩阵是对称矩》 B. 无向图	` '	D. AOE 网
8.		图时,拓扑排序算》 B. O(n+e)	_ ` ')。 D. O(n³)
9.	若串 S="software A. 16	",其子串的数目为 B. 26	I()。 C. 36	D. 46

10. 下列基于排序码比较的排序算法中,()算法的最坏情况下的时间复杂度不高于 O(n

logn)。

	A. 起泡排序 B. 希尔排序 C. 归并排序 D. 快速排序
11.	以下方法中,平均查找长度与表长无关的方法是()。
	A. 顺序查找 B. 折半查找 C. 哈希查找 D. 二叉平衡树查找
12.	已知一棵二叉树的前序遍历序列为 ABCDEF,中序遍历序列为 CBAEDF,则后序遍历的结果为()。
	A. CBEFDA B. FEDCBA C. CBEDFA D. 不定
13.	下列序列中, ()是执行第一趟快速排序后得到的序列。 A. [da, ax, eb, de, bb]ff[ha, gc] B. [cd, eb, ax, da]ff[ha, gC, bb] C. [gc, ax, eb, cd, bb]ff[da, ha] D. [ax, bb, cd, da]ff[eb, gc, ha]
二、	填空题(共 15 分, 1-5 每题 1 分, 其余 2 分)
1. 2.	S 是一个不带头结点的链栈的栈项指针,判断栈为空的条件是。 在希尔、快速、归并、堆、基数排序中, 平均时间复杂度为的排序方法是基数排序。
3. 4.	设一个无向图有 n 个项点和 e 条边,则用邻接矩阵存储该无向图的空间复杂度是。一棵二叉树有 n 个结点,用普通二叉链表表示时,链表中有个空指针,用中序线索二叉链表表示时,链表中有
5.	系二又挺衣衣小的,挺衣中有
6.	一棵度为4的树中,如果度为4的结点有2个,度为3的结点有1个,没有度为2的结点,度为1的结点有5个,则度为0的结点有 个。
7.	一棵完全二叉树有 2018 个结点,则根的右子树有个结点。
8.	有 10 个顶点的有向图,它不是强连通的,则图中最多有条边。
9.	如果一棵深度为 5 的二叉树的先序遍历序列与中序遍历序列相同,则该二叉树的结点数为。
10.	在关键字序列(13, 35, 57, 79, 91, 123, 234, 345, 456)中二分查找关键字 123 时,进行了次比较。

三、应用题(共50分)

- 1. 设有数组 a[5][4][x], 按行优先次序存储。已知 a[0][0][0]的地址是 000 a[1][2][3]的地址是 1180, a[2][3][4]的地址是 1324, 求: (4+2+3-9 分)
 - (1) 数组 a 的第三维长度 x;
 - (2) 每个数组元素的长度;
 - (3) 如果采用列优先次序存储,给出元素 a[2][3][4]的地址。

2. 已知关键字序列(3, 19, 20.11, 35, 30, 13, 01, 48), 取哈希函数 H(key)=key mod 11, 表长 m=11, 试用线性探测法 p(i, k)=i 解决冲突, 填写构建后的哈希表, 并计算删除关键字 35 以后的关键字查找成功的平均查找长度(3+3=6 分)

_	0	1	2	3	4	5	6	7	8	9	10	

- 3. 已知一个完全二叉树 T 有 2018 个结点,从根节点开始自上往下自左向右,从 1 开始编号, 考虑编号为 2018 的结点 S1,编号为 1013 的结点 S2: (2+3+4 =9 分)
 - (1) 求 S1 和 S2 结点共同的最近的祖先结点 S3 的编号是多少?
 - (2) 由 S1 到 S3、S2 到 S3 两条路径及经过的结点(含首尾结点)构成的二叉树记作 T1, 结点编号作为 data 域,对 T1 进行中序遍历,写出中序遍历序列;
 - (3) 将(2)中中序遍历序列依次插入一颗新的空二叉树查找树 T2, 在插入过程中使用旋转平衡, 保持 T2 是颗平衡二叉树, 画出二叉树 T2 的最终状态。

- 4. AOE网G如题图,求:(3+4+4+3=14分)
 - (1) 写出从 V1 出发的 DFS 序列, 并画出相应的 DFS 生成树:
 - (2) 计算每个顶点的最早发生时间和最迟发生时间:
 - (3) 计算每条边的最早开始时间和最迟开始时间:
 - (4) 给出 G 的所有关键路径。

题(1)和题(2)答题要求:当有若干个顶点同时可选时, 优先选取序号最小的顶点。

顶点最迟发生时间 VL

a1	a2	а3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13	a14

活动最早开始时间 e(i) 活动最迟开始时间 I(i)

5. 数组 A 中存放了 12 个关键字,对 A 按升序进行堆排序,求: (6 分)

Α	38	23	31	41	17	40	25	53	47	35	27	56
	0	1	2	3	4	5	6	7	8	9	10	11

(1) 用筛选算法将 A 建成大顶堆, 写出 A 的数据状态。

(2) 现将 A 中堆项元素排序到位,并将其他元素调整成大项堆,写出 A 的数据状态。

6. 读下列一段代码,写出实参调用 func(list, 0, 4)的输出结果。(6 分)

```
int list[4] = \{1,2,3,4\};
void Swap(int& a, int& b) { int t = a; a = b; b = t; }
void func(int a[], int k, int n) {
     int i, state;
     if (k == n - 1) {
            state = 0;
            for (i = 0; i < n; i++)
                 if (a[i] % 2 != (i + 1) % 2) { state = 1; break; };
            if (!state) {
                 for (i = 0; i < n; i++) printf("%d", list[i]);
                 printf("\n");
           };
            return;
     }
     for (i = k; i < n; i++) {
           Swap(a[k], a[i]);
           func(a, k + 1, n);
           Swap(a[k], a[i]);
     }
}
```

四、算法设计(共 20 分)

- 1. 现有一个带有头结点的单链表,该链表的头结点指针为 pHead (每个结点两个分量: val 值和 next 指针),编写一个函数完成以下任务: (3+7=10 分)
 - (1) 编写一个函数 GetMinVal (NODE *plHead, int &minx), 获取该链表当前最小值, 放到 minx 中;
 - (2) 编写一个链表排序函数 SortLinkedList (NODE *pHead),使用选择法完成链表内容的排序。
- 2. 现有一个二叉树根结点指针 pBTree, 编程完成以下任务: (4+6=10 分)
 - (1) 判断该二叉树是否为一个二叉检索树
 - (2) 计算该二叉检索树查找成功的平均查找长度。(提示: 每个结点层次值之和除以结点总数)