

华为 LTE 初级面试题与答案汇总

1. LTE 帧结构, 上下行配比和特殊子帧配比

无线帧长为 10ms, 分为 2 个半帧(5ms) 一个半帧有 5 个子帧(1ms) 子帧又分为一般子帧和特殊子帧, 一般子帧有 2 个时隙(0.5ms), 特殊子帧有 3 个特殊时隙(上行导频时隙, 保护间隔。下行导频时隙)

3GPP 中共规范了 7 种上下行配比,目前为止只支持配置 1(2:2) 和配置 2(1:3),默认值为配置 1 。

3GPP 中共规范了 9 种特殊子帧配比,前为止只支持配置 5 (3:9:2)和配置 7 (10:2:2),默认值为配置 7.配置 5 的特点是保护间隔时间长,决定了小区半径大,配置 7 的特点是下行导频时隙上,并且即可在该时隙上传同步消息,又可传数据信息,即增加了下行数据业务传输的信道,提高了下行的吞吐量。

2. MIMO 技术及功能

MIMO 技术是多输入多输出天线技术,多输入是指基站天线的输入,多输出是指手机天线的输出。

MIMO 有 2 种模式: 空分复用,, 2 根天线收发不同的数据,提高吞吐量,理论上翻倍。发射分集,2 根天线收发相同的数据,并通过最大比合并,提高传输的可靠性。

3. TD 中 RRC 建立失败原因

1.UE 通过 RACH 信道发送 RRC Connection Request 消息》

2.RNC 通过 FACH 信道发送 RRC Connection Setup 消息(RNC 向 Node B 发 Radio Link Setup Request 消息,请求 Node B 分配 RRC 连接所需的特定无线链路资源; Node B 资源准备成功后,向 SRNC 应答 Radio Link Setup Response 消息)》3.UE 在建立下行专用信道并同步后通过上行专用信道发送 RRC Connection Setup CMP 消息。

上行 RACH 的问题 下行 FACH 功率配比问题 小区重选参数问题 下行专用初始发射功率偏低 上行初始功控问题 拥塞问题 设备异常问题等

4. 一个 RB 等于多少子载波, 频域上, 时域上怎样

一个 RB 有 12 个子载波,一个子载波 15KHZ, 所以在频域上共 180KHZ 的带宽,时域上是一个时隙, 0.5ms, 共 7 个符号。

5. 网元架构和接口

ENB, MME, HSS, EAC-GW (S-GW, PDN-GW)

UE 与 ENB 之间的接口 UU 口, ENB 与 ENB 之间的接口是 X2, ENB 与 MME 之间的接口是 S1-C, ENB 与 MME 之间的接口是 S1-U, HSS 与 MME 之间的接口是 S6, S-GW 与 PDN-GW 之间的接口是 S5/S8, S-GW 与 MME 之间的接口是 S11.

5. e-NodeB 的主要功能:

无线资源管理功能,即实现无线承载控制、无线许可控制和连接移动性控制,在上下行链路上完成 UE 上的动态资源分配(调度):

用户数据流的 IP 报头压缩和加密:

UE 附着状态时 MME 的选择;

实现 S-GW 用户面数据的路由选择;

执行由 MME 发起的寻呼信息和广播信息的调度和传输;

完成有关移动性配置和调度的测量和测量报告。

6. 核心网由哪些组成及其各项的功能

MME:空闲状态下的移动性管理,信令的控制

HSS:存储用户的 imsi 和位置信息,用于鉴权和加密

S-GW:上下行数据的路由转发,数据的缓存以及计费功能

PDN-GW: 上下行数据的路由转发, 防火墙的功能, 为每个用户分配 IP 地址

8. RSRP RSRQ SINR 是什么,有什么作用

RSRP 参考信号的接受功率,作用:主要小区的选择与重选,功率控制; RSRQ 参考信号的接受质量,作用:主要用于切换,反应了小区的负载量。 SINR 信号与干扰噪声比,信噪比,作用:用于功率控制,对信号质量的反馈, 当信号质量大于大的门限,且信号强度大于小的门限则降 1DB 功率; 当信号强度大于大的门限,且信号质量大于小的门限则降 1DB 功率; 当信号强度小于小的门限,或者信号质量小于小的门限,则加 1、3DB 功率。

9. LTE 由哪些构成

ENB, MME, HSS, EAC-GW (S-GW, PDN-GW)

11. 上下行物理信道有哪些

上行信道有: PUSCH, PUCCH, PRACH

下行信道有: PDSCH, PDCCH, PHICH, PCFICH, PBCH, PMCH, SCH.

PUSCH 用来承载上行用户数据, PUCCH 用来承载上行控制信令,

如: HARQ/CQI 反馈信息, PRACH 用于承载随机接入请求信息。

PDSCH 用于承载下行用户数据,PDCCH 用于承载上下行调度、功控等信令,PHICH 用于上行数据传输的 ACK/NACK 的反馈,PCFICH 用于指示 PDCCH 的长度信息,PBCH 用于承载广播消息,PMCH 用于传输多播业务,SCH 用于时隙同步与小区搜索。

12. 单站验证的流程

第一,基站安装问题检测;第二,系统参数核查;第三,基站状况与告警信息核查;第四,覆盖测试验证;第五,基站功能性验证;第六,切换测试验证。

13. RRC 随机接入

手机向 ENB 发送一个 preamble 请求接入消息

ENB 收到消息后向手机发送随机接入确认

手机向ENB发送RRCconnectionrequest消息,包含有用户的IMSI EDB收到消息后则想手机发送RRCconnectionsetup消息

手机向 ENB 发送 RRCconnectioncomplete 消息

14. LTE 关键技术和功能等

OFDM:正交频分多址技术。每个子载波间相互正交,无干扰,所以各个子载波的频谱可以按照一定规律的重叠,即提高了频谱效

率,同时各个符号间加入了保护间隔,能更好的克服 ISI, ICI 干扰。

MIMO:多输入多输出天线技术。多输入是指基站天线的输入,多输出是指手机天线的输出。通过增加收发天线通道,从而提高信道容量。MIMO有2中模式,第一是空分复用,2根天线接收不同的数据流,从而提高了收发端的吞吐量;第二是发射分集,2根天线接收相同的数据流,再用最大比合并数据,提高了数据的可靠性。

HARQ:快速混合重传技术。主要在 MAC 层中实现,要求 eNB 对数据快速的调度,当未接收到手机的反馈信息,eNB 则快速重传,提高传输效率。

64QAM: 只有在下行才有 64QAM 调制方式,在上行最高只有 16QAM 调制方式,因为现在的手机还不支持 64QAM 调制,只有 CLASS5 才支持 64QAM。64QAM 相对 16QAM 的调制方式提高了 1.5 倍的调制速率。

多天线技术: 主要用于提高信道容量

15. RF 常见方法

天线调整(调整倾角和方位角),参数调整(功控参数,切换参数),升降功率调整覆盖范围,更换天线等

16. 怎样解决乒乓切换

3GPP 中定义了 7 中切换事件, 分为 A1-A5, B1-B2。切换事件是触发测量报告,而不是触发切换的。目前主要是基于 A3、A5 的 切换。

A3 叫做更好小区的切换, 当邻小区的信号强度比服务小区的信号强度高出一定值时(默认 3DB), 并且在一段时间内(定时器超时)仍满足上述要求, 手机则触发测量报告, 并周期的发送, 直到基站作出切记决定。

A5 叫做基于覆盖的切换, 当服务小区的信号强度小区低于某个切换门限, 邻小区的信号强度高于某个切换门限, 并且一段时间内(定时器超时)仍达到上述要求, 则触发测量报告, 并周期的发送, 直到基站作出切换决定。

这里面的 2 个计时器就是为了避免乒乓切换而设定的,设置的时间越长,越不容易导致乒乓切换,但可能会导致切换不及时。设置的时间越短,越容易导致乒乓切换,但切换更及时。在设置参数时应权衡考虑。

增强 RSRP 值最高的小区,降低 RSRP 值第二高小区的电平值。

17. LTE 常用的频段,各有什么特点

试验网的频段:室内 E 频段 2300-2400,室外 D 频段 2570-2620 商用网的频段:F 频段 1880-1920.这频段有 20M 做 TDS 的频点,之所以 TDL 也使用这频段是为了更好地与 TDS 共模,与 TDS 共站,而共站的前提就是射频单元必须在相同的频段工作。继而可以共

用射频单元,共用天馈线系统,从而节省开支。

18. TA 的中文名是什么? 其规划原则是?

LA的中文名为跟踪区,其含义与 2G 网络中的 LA 一样,其规划原则也类似.第一, TA 不能规划太大,也不能规划太小,因为 TA 是寻呼和位置更新的区域,TA 过大,则 eNB 下发的寻呼信息就越大,占用下行信道的资源就越大;TA 过小,则位置更新就越频繁,控制消息的信令就越多,占用系统开销。第二,TA 边界不能跨 MME。第三 TA 尽量不要在业务量高的地方。第四,根据河流、交通要道、山形地貌合理规划。

19. GP 是什么?说说它的作用

GP 是特殊子帧里的保护间隔时隙, GP 是天线首发转换的间隔时间, GP 决定了小区半径, GP 越大, 小区半径就越大。

20. LTE 测试关注哪些指标

PCI, RSRP, RSRQ, SINR, 传输模式 TM3, 上下行速率, 手机发射功率, 掉线率, 连接成功率, 切换成功率。

21. 怎样增强覆盖?

第一,调整天线的倾角和方位角;第二,增强发射功率;第三,对于网络盲区则增加直放站,室分等。

22. 单站验证中下载速率低有哪些原因

第一,处于小区边缘,占用 TM2/TM7 的传输模式;

第二,RSRP,SINR的值比较差,无线环境差,导致没有占用更高的调制方式;

第三, 手机的发射功率较低;

覆盖情况、干扰情况、调度、调制方式,传输模式,带宽、下载服务器、电脑等。

23. AMC 什么意思? 有多少种调制方式?

自适应编码方式,共有的调整方式上行有: QPSK,16QAM,下行有: QPSK,16QAM,64QAM

接受端根据上下行反馈的 CQI/SINK 信息自适应的调整编码方式,对于小区边缘,无线链路质量较差的用户则采用 QPSK,对于小区中心,无线链路质量较好的用户则采用 16QAM 或者 64QAM.

24. CQI 什么意思? 有什么功能?

CQI 是信道质量指示,反应的是无线链路质量。接收端通过接收的 CQI 指示信息来调整编码方式。

25. 传输模式有哪几种以及意思

TM1: 单天线端口, 信息通过单天线进行发送。

TM2: 发射分集,2根天线发射相同数据量,接收端通过最大比

合并信息,降低了误码率,提高了传输的可靠性。

TM3: 开环空分复用,终端不反馈信息,发射端通过预定义的信道信息来发送信息

TM4: 闭环空分复用,终端反馈信息,发射端通过反馈信息来计算通过什么调制方式发送。

TM5: 多用户 MIMO, 基站使用相同的频域资源将多个数据流发送给不同的用户,接收端根据多根天线对数据流进行取消和零陷。 TM6: 单层闭环空分复用,当终端反馈 RI=1 时,发射端采用单层预编码,以适应当前信道。

TM7: 单流波束赋型,具有8天线阵子,发射端利用上行信号来估计下行信道的特性,在下行发送信号时,每根天线上乘以相应的特征权值,使发射信号具有波束赋型特性

TM8: 双流波束赋型

26. PCI 的规划原则

第一,邻区不能同PCI,同一个站点的PCI分配在用一个PCI组内;第二,相邻小区PCI mo13结果不同;第三,相邻小区PCI mo16结果不同;第四,相邻小区PCI mo130结果不同;

27.64QAM 比 16QAM 提高多少?

16QAM 一个符号可以携带 4bit 的信息量,64QAM 一个符号可以携带 6bit 的信息量,它的效率提升了 1.5 倍。

28. PRACH 是怎么规划的

PRACH 主要规划参数有 prachconfindex PRACH 配置索引号,其中定义了 PRACH 类型、发送周期、version 号

Rootsegindex, prachCS

其中主要根据小区半径来进行规划,

29. MOD3 干扰的影响以及为什么会有 MOD3 干扰

MOD3 是被3整除取余,邻站小区 PCI 要求 mod3 值不同,因为基站向手机发送下行同步信号,在 3GPP 规范中规定了三种主同步信号 (0、1、2),具体用哪种同步信号是 PCI mod 3 的值决定的,当 PCI mod 3 的值是 0,则使用第 0 种同步信号,以此类推。不同的同步信号是相互正交的,相互之间是没有干扰的。手机就可以根据同步信号区分小区,如果邻小区 PCI mod 3 的相同,则他们会用相同的同步信号,同步信号之间就会相互干扰,对导致 SINR值降低。

30. ICIC 是什么? 原理是什么? 有什么作用

ICIC— Inter-Cell Interference Coordination, 异小区干扰协同, TD-LTE 采用同频组网,容易引入同频干扰,尤其边缘用户。相邻小区通过频带划分,错开各自边缘用户的资源,达到降低同频干扰的目的。传统 ICIC 方式: 一般为静态 ICIC 方案,通过手动划分边缘频点,但是分配固定,频谱利用率低。华为采

用自适应 ICIC 方案: 自适应 ICIC 由 OSS 自动控制,可提高 40% 的小区边缘吞吐率

- a) 自适应 ICIC 通过 M2000 集中管理和制定整网小区边缘模式,可靠性高,人为干涉少
- b)有效提升静态 ICIC对网络话务量分布不均的场景下频率利用 率的效果
- c) 可以修正动态 ICIC 对整网的干扰优化收敛慢的情况

31. 什么事非竞争接入

非竞争接入是在随机接入过程不会产生接入冲突,主要用于切换的随机接入。因为随机接入需要用到 preamble,基站为每个用户分配 64个 preamble,其中 40个用于竞争接入,24个用于非竞争接入,只要用户是用与切换的,基站直接根据用户的优先级分配 preamble。

34. 随机接入的过程

第一,UE 在 PRACH 信道向 eNB 发送一个 preamble 请求接入消息,

第二,eNB确认收到请求,向UE发送 random access response

消息,并指示 UE 上行同步

第三,UE则向eNB发送RRC connection request 消息,其中包含有UE的IMSI

第四,确认收到请求,并向 UE 发送 RRC connection setup 消息。

第五, UE 想 ENB 发送 RRC connection complete 消息

35. RB, REG, CCE, RE

RB 表示调度的最小单元, RB 在时域有一个时隙 7 个符号, 在频域上有 12 子载波, 180KHZ, 1RB=84RE
RE 表示资源的最小单元, 占用一个符号和一个子载波
REG=4RE, CCE=9REG

36. 电平和功率的换算

功率*2,表示电平加 3db,功率/2,表示电平减 3db,功率*10,表示电平加 10db,功率/10,表示电平减 10db,同时记住 1W=30dbm

38. SIB 有几种? 功能是什么?

SIB 总共有 12 种, SIB1 包含调度信息和其他小区的接入相关信息。

SIB2 携带所有 UE 无线资源配置信息

SIB3 携带同频、异频和异系统的小区重选信息。

SIB4 携带相邻小区相关的仅同频邻小区的重选信息

SIB5 携带异频 E-UTRAN 网络重选信息

SIB6 携带异系统 UTRAN 网络重选信息

SIB7 携带异系统 GSM 网络重选信息

SIB8 携带异系统 CDMA2000 网络重选信息

剩下的4中SIB包含了家庭基站的信息、一些辅通知的信息。

40. OFDM 与 MIMO 的缺陷

OFDM 的缺点主要有: 频率的同步要求较高, 峰均比较高。

MIMO 的缺点主要有:对 SINR 要求较高,适用于基站附近,对于

小区边缘不适用

41. 物理层与 ERRC 之间有哪些层

主要有 PDCP, RLC, MAC 层。 PDCP 的 功能是对数据的加密,对数据包头的压缩与解压缩,一个数据包头有 20 个字节,通过压缩后只有 2 个字节,节省了数据的开销。

RLC 层的功能是对数据的分段,并对每个数据段加上标签,便于数据的合成,

MAC 层的 功能是调度与 HARQ 快速混合重传。

42. 什么是干扰?如何消除干扰?

干扰分为内部干扰和外部干扰:内部干扰即系统内干扰,由于目前为同频组网,存在同频邻区干扰,PCI模三干扰;外部干扰即系统外的干扰,有噪声干扰,饱和干扰,其他随机干扰等,目前主要由 DCS 干扰和其他外部无线设备、器件发射的无线信号频率落在 LTE 在用频段上产生的干扰;

内部干扰主要通过加CP, ICIC 干扰抑制技术来解决, 外部干扰需要通过扫屏仪扫屏。

43. 模 6 干扰什么意思

Mod6 的干扰只要是下行参考信号的干扰,因为参考信号在一个RB中,时域上是固定在第 0、4 个符号上发送,在频域是不固定,是每个 6 个子载波上发送,具体在哪个子载波上发送就要要根据PCI mod6 的值来定,如果 PCI mod 6 的值是 0,则在第 0 个符号上的第 0、6 个子载波上发送和第 4 个符号上的第 3、9 个子载波上发送,如果 PCI mod 6 的值是 1,则在第 0 个符号上的第 1、7 个子载波上发送和第 4 个符号上的第 4、10 个子载波上发送,以此类推。这样就可以知道不同子载波发送的参考信号对于着不同PCI。如果邻小区 PCI mod6 相同,则会在相同的子载波上发送参考信号,这样参考信号就会有干扰。

1. 请简述终端(UE)开机入网流程(10分)

首先 UE 开机后会先在上次驻留的小区上尝试;如果没有,就要在划分给 LTE 系统的频带范围内做全频段扫描,发现信号较强的频点去尝试,找到中心频点开始接受收 PSS (主同步信号),通过接受收 PSS 可以判断出事是 FDD 还是 TDD,以及组内 cell ID,之

后继续接受收 SSS (辅同步信号),通过接受收 SSS 可以得到小

区组 ID (可以得出小区 ID) 以及 10ms 的边界 (好像是需要接受收两

个 SSS 才能判断出边界)进而实现帧同步,下边开始读取 PBCH 上的信息了,首先是接受 CRS,这样可以实现时域和频域的精确同步,还有就是在 PBCH 上传输的 MIB,但是 MIB 里携带的信息是有限的,所以还需要再接收 PDSCH 上传输的 SIB

3.影响 LTE 单用户下行和上行吞吐率的因素主要有哪些,请列举并简单叙述(10分)

- 1. 天线的收发模式,MIMO 天线数量和模式,beamforing 波東赋形的天线阵增益(包括天线数量)
- 2. 空间信道的质量,包括信号强度,以及干扰的情况,空间信道的相关性,UE 的移动速度,UE 接收机的性能。
- 3. TDD 还和上下行子帧配比, FDDTDD 中信道配置情况有关系(例如 cfi 的多少, 是否有 MBMS 支持)
- 4. 和用户的数量也有关系。

PS 数据传输性能影响因素

终端: 手机的能力 (class1-5), 终端软件的配置

空口: RSRP/SINR 比较低,编码方式,rank值,空口资源(RB

数),空口的时延,调度的频率

ENB: 基站的硬件故障, 基站的处理能力,

国	中	频段范围	频点号	使用频段	适用	带
际	国				场景	宽
频	频					
段	段					
38	D	2570~	37750~	2580~	室外	40M
		2620MHz	38249	2620MHz	新建	
39	F	1880~	38250~	1880~	共模	20M
		1920MHz	38649	1900MHz	升级	
40	Е	2300~	38650~	2350~	室分	20M
		2400MHz	39649	2370MHz		

影响下行速率的原因和解决方法:

- 1、弱覆盖,可以通过天馈调整和功率调整以及新建站来解决。
- 2、信号质量差,SINR低,可以通过天馈调整,功率调整,邻区优化,参数优化。
- 3、信号质量很好但调度数不满,可能是因为多用户,设备故障,传输故障,空口质量导致,需要后台配合定位,目前主要通过灌包来定位。
 - 4, 硬件告警, 提交工程解决。
 - 5, 传输故障, 提交工程解决。

- 6,测试设备和软件问题,通过设备和软件重启,或者更换设备解决。
 - 7、上下行链路不平衡,暂时没遇到,可以提话统定位。
- 1. 子帧配比和特殊子帧配比相关问题,调度数的计算方法。

特殊子帧配比方式有 9 种,常用的有 5(3:9:2)、6(9:3:2)、7(10:2:2),常规子帧配比方式有 7 种,常用的有 1(2:2)和 2(1:3)。

上下行时域调度数的算法:一个无线帧是 10ms,一秒就有 100个无线帧,按 5ms 的转换周期,常规子帧上下行配比 1:3,特殊子帧 3:9:2来计算,每秒下行满调度数=3*100*2=600。每秒上行满调度数=1*100*2=200.

按 5ms 转换周期,常规子帧上下行配比 1:3,特殊子帧 10:2:2 来计算,每秒下行满调度数=(3+1)*100*2=800。每秒上行满调度数=1*100*2=200.

2. PCI 规划原则

PCI 规划的原则:

- 1. 对主小区有强干扰的其它同频小区,不能使用与主小区相同的 PCI
 - 2. 邻小区导频符号 V-shift 错开最优化原则;
- 3. 同一站点的 PCI 分配在同一个 PCI 组内,相邻站点的 PCI 在不同的 PCI 组内。

- 4. 邻区不能同 PCI, 邻区的邻区也不能采用相同的 PCI; PCI 共有 504 个, PCI 规划主要需尽量避免 PCI 模三干扰
 - 5. 4 层复用距离 5 倍小区半径

3. 上下行信道分别是哪几个

信道类型	信道名称	TD-S类 似信道	功能简介	
	PBCH(物理广播信道)	PCCPCH	MIB	
	PDCCH(下行物理控制信道)	HS-SCCH	•传输上下行数据调度信令 •上行功控命令 •寻呼消息调度授权信令 •RACH响应调度授权信令	
控制信道	PHICH(HARQ指示信道)	HS-SICH	用于Node B向UE反馈与PUSCH相关的ACK/NACK信息	
	PCFICH(控制格式指示信道)	N/A	指示PDCCH长度的信息	
	PRACH (随机接入信道)	PRACH	Preamble、SRS	
	PUCCH(上行物理控制信道)	ADPCH	传输上行用户的控制信息,包括CQI, ACK/NAK反馈,调度请求等。	
业务信道。	PDSCH(下行物理共享信道)	PDSCH	下行用户数据、RRC相关信令、SIB、 paging消息	
工力记述	PUSCH(上行物理控制信道)	PUSCH	上行用户数据、RRC相关信令、以及 PUCCH需要传送的信息	

4. LTE 的关键技术

- 1. 采用 OFDM 技术 2. 采用 MIMO(Multiple-Input Multiple Output)技术 3. 调度和链路自适应(AMC) 4. HARQ5. 高阶调制
- (1) MME是一个信令实体,主要负责移动性管理、承载管理、用户的鉴权认证、SGW和P的选择等功能;
 - (2) S-GW终结和E-UTRAN的接口,主要负责用户面处理,负责数据包的路由和转发等功能支持3GPP不同接入技术的切换,发生切换时作为用户面的锚点;
- (3) P-GW终结和外面数据网络(如互联网、IMS等)的SGi接口, 是EPS锚点,即是3GPP与non-3GPP网络间的用户面数据链路的锚 点,负责管理3GPP和non-3GPP间的数据路由,管理3GPP接入和

non-3GPP接入(如WLAN、WiMAX等)间的移动,还负责DHCP、策略执行、计费等功能。

5. RB, RE 的概念

- 1. RB(Resource Block): 频率上连续12个子载波,时域上一个slot,称为1个RB。根据一个子载波带宽是15kHz,可以得出1个RB的带宽为180kHz。
- 2. RE(Resource Element): 频率上一个子载波及时域上一个 symbol, 称为一个RE.

6. PA, PB 的关系

Pb取值越大,ReferenceSignalPwr在原来的基础上抬升得越高,能获得更好的信道估计性能,增强PDSCH的解调性能,同时减少了PDSCH(Type B)的发射功率,可以改善边缘用户速率。

RS功率一定时,增大PA,增加了小区所有用户的功率,提高小区所有用户的MCS,但会造成功率受限,影响吞吐率;反之,降低小区所有用户的功率和MCS,降低小区吞吐率。

- 7. LTE 哪三种切换类型。
- 1. 根据切换触发的原因,LTE的切换可分为: 基于覆盖的切换、基于负载的切换 基于业务的切换
- 2. 根据切换间小区频点不同与小区系统属性不同,可以分为: 同频切换、异频切换、异系统切换
 - 3. eNb站内切换 X2口切换 S1口切换

- 1. 事件 A1,服务小区好于绝对门限;这个事件可以用来关闭某些小区间的测量。
- 2. 事件 A2, 服务小区差于绝对门限; 这个事件可以用来开启某些小区间的测量, 因为这个 事件发生后可能发生切换等操作。
- 3. 事件 A3, 邻居小区好于服务小区; 这个事件发生可以用来 决定 UE 是否切换到邻居小区。
- 4. 事件 A4, 邻居小区好于绝对门限;
- 5. 事件 A5, 服务小区差于一个绝对门限并且邻居小区好于一个绝对门限; 这个事件也可以 用来支持切换.
- 8. LTE 与 TD-S 接收功率差多少个 dB。

覆盖差异大概是 15dB, LTE 接收功率是 RS 的功率, 是 RE 的功率。 TDS 是计算码道功率, 算法不同。

9. 速率计算

100(20M 带宽下的 RB 数目)×12(每个 RB 有 12 个子载波)×14 (0FDM 符号)×6(每个子载波携带 6BIT 信息量)×1000(转换成 W)÷1000(转换成 W)×2(MIMO2)×75%(除去 25%开销)=151.2(下行峰值,前提 TDD,常规 CP,64QAM)

速率=
$$\frac{1200 \times 14 \times 6 \times 2}{1 \times 10^{-3}} \times \frac{3}{5} \times 75\% = 90$$
Mbps

10. 特殊时隙功能:

DwPTS: 最多 12 个 symbol, 最少 3 个 symbol, 可用于传送下行数据和信令

UpPTS: UpPTS 上不发任何控制信令或数据, UpPTS 长度为 2 个或 1 个 symbol, 2 个符号时用于短 RACH 或 Sounding RS, 1 个符号时 只用于 sounding

GP:保证距离天线远近不同的UE的上行信号在 eNB的天线空口对齐;提供上下行转化时间(eNB的上行到下行的转换实际也有一个很小转换时间 Tud,小于 20us); GP 大小决定了支持小区半径的大小,LTE TDD 最大可以支持 100km; 避免相邻基站间上下行干扰

11. 小区搜索过程

- 1) UE 解调 PSS, 取 5ms 定时, 获取小区组内 ID;
- 2) UE 解调 SSS, 取 10ms 定时, 获得小区 ID 组;
- 3) 检测下行参考信号, 获取 BCH 的天线配置;

UE 读取 PBCH 的系统消息 (PCH 配置、RACH 配置、邻区列表等)。

4) 其中 PBCH 主要关注 MIB(主系统信息块)和 SIB(系统信息块):

12.随机接入过程

基于竞争的随机接入过程:

第一步:在上行 RACH 上发送随机接入的 Preamble。第二步:在 DL SCH 信道上发送随机接入指示。第三步:在 UL SCH 信

道上发送随机接入请求。第四步:在 DL_SCH 信道上发送随机接入响应

基于非竞争的随机接入过程

第一步: 在下行的专用信令中分配随机接入的 Preamble。第二步: 在上行 RACH 上发送随机接入的 Preamble。第三步: 在 DL_SCH 信道上接收随机接入响应消息