

Analyse des données de santé : épidémiologie et aide à la décision

PROJET : Effet de la musique sur la santé mentale BEN JEMAA Yosr, DRIRA Yosr

SOMMAIRE

1. EXPLORATION DES DONNÉES

- 1.1 Contexte
- 1.2 Problématique
- 1.3 Démographie & comportements
- 1.4 Santé mentale
- 1.5 Exploration des relations

2. ANALYSES SUPERVISÉES

- 2.1 Régression
- 2.2 Classification

3. CONCLUSION

1.1 Contexte

- La thérapie musicale utilise la musique pour améliorer le stress, l'humeur et la santé mentale.
- Le jeu de données cherche à trouver des liens entre les préférences musicales et la santé mentale.
- Les résultats pourraient guider l'application de la thérapie musicale ou offrir des perspectives sur le fonctionnement de l'esprit.

1.1 Contexte

Jeu de données: 700 responses (Music x Mental Health Traits) - 33 columns

Variables Quantitatives	Variables Qualitatives	
Timestamp	Primary streaming service	
Age	While working	
Hours per day	Instrumentalist	
BPM	Composer	
Frequency [genre]	Fav genre	
	Exploratory	
Anxiety/ Depression/ Insomnia/ OCD	Foreign Language	
	Music effects	

Source: https://www.kaggle.com/datasets/catherinerasgaitis/mxmh-survey-results

1.2 Problématique

Comment la préférence musicale et les habitudes d'écoute peuvent-elles influencer les niveaux d'anxiété, de dépression, d'insomnie et les troubles obsessionnels-compulsifs (TOC) chez les individus ?

1.3 Démographie & comportements

1.3 Démographie & comportements

1.3 Démographie & comportements

1.3 Démographie & comportements

Diagrammes en BoxPlot de l'âge en fonction du service de streaming

1.4 Santé mentale

Histogrammes de répartition de fréquence des degré des indicateurs

1.4 Santé mentale

Distribution de la répartition de l'effet de la musique

Distribution of Music effects

Music effect

1.5 Exploration des relations

1.5 Exploration des relations

Impact du nombre d'heures d'écoute de musique sur les indicateurs

1.5 Exploration des relations

1.5 Exploration des relations

1.5 Exploration des relations

Histogramme de Anxiety, Depression et Insomnia

1.5 Exploration des relations

1.5 Exploration des relations

Boxplots des mesures de santé mentale selon les effets de la musique

1.5 Exploration des relations

Relation entre les Indicateurs de santé mentale et effet de la musique

Le test de **Kruskal-Wallis** est une méthode non paramétrique utilisée pour comparer les valeurs médianes de trois groupes indépendants ou plus.

Hypothèse nulle (H0):

L'OCD n'a pas d'impact significatif sur la perception de l'effet de la musique

1.5 Exploration des relations

Résultats du test Kruskal-Wallis Test

```
data: Music.effects by OCD
Kruskal-Wallis chi-squared = 15.329, df = 12, p-value = 0.2239

    Kruskal-Wallis rank sum test

data: Music.effects by Anxiety
Kruskal-Wallis chi-squared = 16.879, df = 11, p-value = 0.1115

    Kruskal-Wallis rank sum test

data: Music.effects by Depression
Kruskal-Wallis chi-squared = 30.829, df = 11, p-value = 0.001173
```

- → Le COD / l'anxiété n'ont pas un impact significatif sur la perception de l'effet de la musique.
- → La dépression et l'effet de la musique sont liés.

II. ANALYSES SUPERVISÉES

Régression

Objectif: Prédire les scores de santé mentale (MH Rankings) en fonction des caractéristiques disponibles.

Approches de modélisation :

Régression linéaire

Random Forest

XGBoost.

ANALYSES SUPERVISÉES

- Entraînement : Nous avons entraîné le modèle en utilisant 80 % de l'ensemble de données, en réservant les 20 % restants pour les tests.
- Évaluation :

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

 $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ are predicted values y_1, y_2, \dots, y_n are observed values n is the number of observations

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$

Where:

 $\hat{y_i}$ = Predicted value for the ith data point y_i = Actual value for the ith data point n = number of observations

Evaluation des modèles

Target = Dépression

Métrique	Linear Regression	Random Forest	XGBoost
RMSE	3.09	3.08	3.16
MAE	2.62	2.64	2.65

ANALYSES SUPERVISÉES

Optimisation du Modèle XGBoost

Méthodes d'Optimisation :

- **Recherche de Grille**: Exploration d'un ensemble prédéfini de hyperparamètres pour trouver la combinaison optimale.
- Validation Croisée : Évaluation des performances du modèle sur plusieurs sous-ensembles des données pour estimer sa capacité de généralisation

```
RMSE was used to select the optimal model using the smallest value. The final values used for the model were nrounds = 50, max_depth = 3, eta = 0.1, gamma = 0, colsample_bytree = 1, min_child_weight = 1 and subsample = 1.

XGBoost Model Evaluation for Depression:

RMSE: 3.129314

MAE: 2.680435
```

⇒ Il n'y a pas une grande différence

Normalization de la target: Score de dépression

Métrique	Random Forest	XGBoost
RMSE	0.30	0.34
MAE	0.26	0.28

Classification

Objectif:

Prédire l'effet de la musique à partir des indicateurs (Dépression, Anxiété, Insomnie, TOC/OCD).

Approches de modélisation :

Arbre de décision

Random Forest

Multinomial Logistic Regression

Prédiction de l'effet de la musique sur la santé mentale

1. Arbre de décision

Modèle : Arbre de décision

Bibliothèque utilisée: caret

 $tree_model < -rpart(Music.effects \sim OCD + Anxiety + Depression + Insomnia, data = train_data, method = "class")$

Matrice de confusion:

predicted_music_effect	Improve No	effect	Worsen
Improve	105	31	3
No effect	2	2	0
Worsen	0	0	0

Prédiction de l'effet de la musique sur la santé mentale

1. Arbre de décision

Métriques d'évaluations:

	'Improve' Class	'No effect' Class	'Worsen' Class
Accuracy (overall)	0.74		
Prévalence	0.74	0.23	0.02
Sensibilité	0.98	0.06	0
Spécificité	0.05	0.98	1
Balanced Accuracy	0.51	0.52	0.5

L'accuracy de ce modèle semble être d'environ 74%, mais cela peut être trompeur vu que le déséquilibre de classe n'est pas pris en compte.

Le taux de précision équilibré, offre une représentation plus précise de la performance du modèle

1. Arbre de décision

$$\text{Balanced Accuracy} = \frac{Sensitivity + Specificity}{2}$$

Where:

- Sensitivity (True Positive Rate) = $\frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}$
- Specificity (True Negative Rate) = $\frac{\text{True Negatives}}{\text{True Negatives} + \text{False Positives}}$

Comment manipuler les jeu de données déséquilibrés?

1 - Méthodes d' oversampling & Undersampling

2 – Attribuer des poids plus élevés aux échantillons de classes minoritaires.

Prédiction de l'effet de la musique sur la santé mentale

2. Random Forest

Modèle: Random Forest (avec des classes pondérées)

Bibliothèque utilisée: randomForest

```
rf\_model <- randomForest(factor(Music.effects) \sim OCD + Anxiety + Depression + Insomnia, data = train\_data, classwt = list(Improve = 1, `No effect` = 2, Worsen = 10))
```

Matrice de confusion:

```
predicted_music_effect Improve No effect Worsen
Improve 94 28 2
No effect 13 5 1
Worsen 0 0 0
```

Métrique d'évaluation:

"Accuracy: 0.692307692307692"

"Balanced Accuracy: 0.510611205432937"

Prédiction de l'effet de la musique sur la santé mentale 3. Multinomial Logistic Regression

Modèle: Multinomial Logistic Regression

La régression logistique multinomial: prédire une variable catégorielle avec plusieurs niveaux.

Matrice de confusion:

ţ	prediction	ons		
	Improve	No	effect	Worsen
Improve	204		17	0
No effect	51		12	0
Worsen	6		0	0

Métriques d'évaluation:

[&]quot;Accuracy: 0.744827586206897"

[&]quot;Balanced Accuracy: 0.371184371184371"

Portfolio

- En global, il y'a des relations assez logiques dans notre étude.
- Certains facteurs (comme le BPM) ne jouent pas un rôle significatif.
- Jeu de données déséquilibré conduit à des conclusions biaisées du modèle.
- Pistes d'améliorations: plus d'instances pour une analyse plus robuste / ajout de questions sur les données démographiques telles que le pays, le sexe, etc.

Portfolio

README.md		5746a0b · 2 hours ago
Music&Health_v1.Rmd	version 1	15 hours ago
Music&Health_v1.nb.html	version 1 version html	15 hours ago
Music&Health_v2.Rmd	Version 2 du notebook	2 hours ago
README.md	Create README.md	2 hours ago
□ README		0
Musique et Santé Mentale (MxMH	ii) 🚜 🥥	
and the second of the second	sultats de l'enquête sur la Musique et la Santé Mentale Térents genres musicaux et les conditions de santé mer	

Conclusion

- En global, il y'a des relations assez logiques dans notre étude.
- Certains facteurs (comme le BPM) ne jouent pas un rôle significatif.
- Jeu de données déséquilibré conduit à des conclusions biaisées du modèle.
- Pistes d'améliorations: plus d'instances pour une analyse plus robuste / ajout de questions sur les données démographiques telles que le pays, le sexe, etc.

Merci pour votre attention

