A Comparative Study of Ridge and Lasso Regularization Based on MSE Performance on Real Estate Data

Simple example to understand how L1 (Lasso) and L2 (Ridge) regularization work in practice.

Scenario: Predicting House Prices Imagine you have a dataset with the following features: Size (sqft) Bedrooms Age (years) Distance to city (km) Noise Level Price (\$)

Let's say you're using linear regression to predict house prices based on these 4 features.

Simple example to understand how L1 (Lasso) and L2 (Ridge) regularization work in practice. Scenario: Predicting House Prices Imagine you have a dataset with the following features: Size (sqft) Bedrooms Age (years) Distance to city (km) Noise Level Price (\$)

Let's say you're using linear regression to predict house prices based on these 4 features.

Step 1: The Problem Without Regularization A linear model would look like this:

Price

w 1 · Size + w 2 · Bedrooms + w 3 · Age + w 4 · Distance + w 5 · Noise + b Price=w 1·Size+w 2·Bedrooms+w 3·Age+w 4·Distance+w 5·Noise+b When trained without regularization, the model might overfit — it memorizes the training data, including noise, and generalizes poorly to new data.

Step 2: L2 Regularization (Ridge) Let's say Ridge regression learns: • w1 = 250 • w2 = 10000 • w3 = -500 • w4 = -3000 • w5 = -50 Here, none of the weights are zero — Ridge shrinks them but keeps all features. Even less important features like "Noise Level" are kept with small weights. ✓ Good when all features have some relevance.

 \upomega Step 3: L1 Regularization (Lasso) Lasso regression might learn: • w1 = 300 • w2 = 0 • w3 = -600 • w4 = -3500 • w5 = 0 Here, some weights are exactly zero. Lasso eliminated "Bedrooms" and "Noise Level" — deciding they're not useful for predicting price. \upomega Good when you want automatic feature selection.

Step 2: L2 Regularization (Ridge) Let's say Ridge regression learns: • w1 = 250 • w2 = 10000 • w3 = -500 • w4 = -3000 • w5 = -50 Here, none of the weights are zero — Ridge shrinks them but keeps all features. Even less important features like "Noise Level" are kept with small weights. ✓ Good when all features have some relevance.

 \upomega Step 3: L1 Regularization (Lasso) Lasso regression might learn: • w1 = 300 • w2 = 0 • w3 = -600 • w4 = -3500 • w5 = 0 Here, some weights are exactly zero. Lasso eliminated "Bedrooms" and "Noise Level" — deciding they're not useful for predicting price. \upomega Good when you want automatic feature selection.

Intuition Recap • Ridge: "Keep all features, just shrink their impact." • Lasso: "Keep only the most important features; ignore the rest."

```
In [1]: import pandas as pd
In [6]: # Load the dataset
data = pd.read_csv("customer_satisfacation_vs_repeat_purchases.csv")
In [24]: data
```

Out[24]:		Product_Quality	Customer_Service	Delivery_Speed	Ease_of_Use	Value_fo
	0	7	4	8	5	
	1	4	8	5	7	
	2	8	5	8	7	
	3	7	3	10	9	
	4	3	7	3	9	
	5	3	7	2	4	
	6	1	5	1	1	
	7	9	8	4	7	
	8	10	10	4	2	
	9	7	3	9	6	
	10	8	9	7	10	
	11	8	8	8	7	
	12	10	9	10	10	
	13	6	1	7	9	
	14	2	8	8	5	
	15	4	9	7	9	
	16	9	9	10	10	
	17	6	6	6	6	
	18	7	10	8	8	
	19	4	9	2	10	
	20	5	6	2	4	
	21	1	4	2	3	
	22	9	10	10	10	
	23	9	10	10	10	
	24	6	8	6	9	
	25	5	7	4	5	
	26	8	6	8	9	
	27	10	4	7	8	
	28	9	2	9	3	
	29	6	2	10	5	
	30	6	7	8	10	
	31	4	3	2	2	
	32	9	10	7	10	

	Product_Quality	Customer_Service	Delivery_Speed	Ease_of_Use	Value_fo
33	9	9	9	10	
34	4	2	8	5	
35	9	4	6	8	
36	2	6	4	2	
37	9	6	3	7	
38	5	7	10	9	
39	4	8	2	6	
40	8	3	9	5	
41	10	3	4	10	
42	7	8	9	7	
43	7	2	2	4	
44	4	3	4	6	
45	9	3	10	10	
46	10	4	4	10	
47	4	7	7	3	
48	7	10	9	4	
49	5	2	5	10	

```
In [8]: data.columns
```

```
In [9]: import seaborn as sn
sn.pairplot(data)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x786f64af1b50>

from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)

```
Out[13]:
         LinearRegression
         LinearRegression()
In [14]: print("Linear Regression Coefficients:", lr.coef )
        Linear Regression Coefficients: [-0.51480574 -0.32930405 -0.20035858 -0.5734
        8732 1.299526731
In [15]: from sklearn.metrics import mean squared error
         y pred = lr.predict(X test)
         mse No regulation = mean_squared_error(y_test, y_pred)
         mse No regulation
Out[15]: 1.2194994717157444
In [16]: # Linear Regression (L1 regularization)
         from sklearn.linear model import Lasso
         lasso = Lasso(alpha=10000)
         lasso.fit(X train, y train)
Out[16]:
              Lasso
         Lasso(alpha=10000)
In [17]: print("Lasso Coefficients:", lasso.coef )
        Lasso Coefficients: [0. 0. 0. 0. 0.]
In [18]: from sklearn.metrics import mean squared error
         y pred = lasso.predict(X test)
         mse L1 regulation = mean squared error(y test, y pred)
         mse L1 regulation
Out[18]: 5.119727891156462
In [19]: # Linear Regression (L2 regularization)
         from sklearn.linear model import Ridge
         ridge = Ridge(alpha=1.0)
         ridge.fit(X train, y train)
Out[19]:
         ▼ Ridge 🔍 🤻
         Ridge()
In [20]: print("Lasso Coefficients:", ridge.coef )
        Lasso Coefficients: [-0.50487409 -0.3112752 -0.17493312 -0.54869774 1.2563
        7873]
```

```
In [21]: from sklearn.metrics import mean_squared_error
    y_pred = ridge.predict(X_test)
    mse_L2_regulation = mean_squared_error(y_test, y_pred)
    mse_L2_regulation
```

Out[21]: 1.2773266643700885

```
In [22]: import matplotlib.pyplot as plt

mse_values = {
    "No Regularization": mse_No_regulation,
    "L1 Regularization (Lasso)": mse_L1_regulation,
    "L2 Regularization (Ridge)": mse_L2_regulation
}

plt.figure(figsize=(8, 6))
plt.bar(mse_values.keys(), mse_values.values(), color=["skyblue", "salmon",
    plt.title("MSE Comparison")
    plt.ylabel("Mean Squared Error")
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.tight_layout()
    plt.show()
```


In [23]: # no regulation and l2 is same because the data is cleaned