Keys

TABLE OF CONTENTS

- 1. Candidate Key
- 2. Primary Key
- 3. Composite Key
- 4. Foreign Key
- 5. SQL
 - 5.1 Create Ada
 - 5.2 **R**ead
 - 5.3 **U**pdate
 - 5.4 **D**elete

3rd Hard day challenge:		
- Assignment questr - Additional questr	→ MCQs	
- Additional quest		
- Backley		

2. Candidate Key

Students

name	email	phone. no	psp	b_id
Rahul	Rahul@	829376769	89	1
Naman	Naman@.	956453789	91	2
Rahul	Rahul@	806122348	98	1
		ļ		
		ique umns		

How many of them are super key?

Column Name	Super Key
name	X
email	
phone number	
psp, batch	X
name, batch, psp	X
name, phone number	
email, phone number, name	
email, phone number	

Definition:	Minimum (non - redundant) columns which are required to uniquely
	identify a row is called Candidate Key.

-> Minimal Super Ke

- A candidate is a super key from which no column can be removed and still have property
- if anymore column can be removed from a candidate key, it will no longer be able to identify a unique row

Now let's remove columns that weren't necessary from above example.

Column Name	SK	Candidate Key	
name	Χ	X	
email	\checkmark		
phone number	\checkmark		
psp, batch	X	X	
name, batch, psp	X	X	
name, phone number	\checkmark	X	
email, phone number, name	/	X	
email, phone number		X	

students_attendance

s_id	class_id	attendance
1	2	80
2	2	75
1	3	80

Question-1: Is s_id unique here? X

Why?

Question-2: Is class_id unique here? X

Same students can attend multiple classes like Joins-1, Joins-2 etc.

Column Name	SK	СК	
s_id	X	X	
class_id	X	X	
attendance	X	X	
s_id, class_id			
s_id, class_id, attendance	√	X	

Quiz-1: Is a ck always a super key?

Quiz-2: Is a super key always a candidate key? No

Quiz-3:

	SK	CK
i. Employee Id, department	\checkmark	X
ii. Emai \	\checkmark	V
iii. f_name, l_name	X	X
iv. l_name, department	Х	×

3. Primary Key

Among all candidate keys we will choose a primary key. There is only 1 PK in a table.

Students

name	email	phone. no	psp	b_id
Rahul	Rahul@	829376769	89	1
Naman	Naman@.	956453789	91	2
Rahul	Rahul@	806122348	98	1

G CK2

Party Workers

Candidates

Prime Minister

(Super key)

(Candidate key)

(Primay key)

Internally

- 1. Database sorts the data by primary key
- 2. Database outputs the results of every query sorted by a primary key.
- 3. Database creates an index as well on primary key.

A good primary should :

- 1. Be fast to sort on.
- 2. Have smaller size (to reduce the space required for behind the scenes indexing.
- 3. Not get changed.

In above table which column should become PK?

name	email	phone number	psp	b_id	
X	/	/	X	X	

Question-1: What if student updates the email? Yes

Question-2: What if student went abroad and updated phone number? Yes

Note: Have you noticed Scaler provides this feature?

Therefore we sometimes add one more column having unique integer value.

Ex: s_id and roll_no

Students

s_id	name	email	phone. no	psp	b_id
1	Rahul	Rahul@	829376769	89	1
2	Naman	Naman@.	956453789	91	2
3	Rahul	Rahul@	806122348	98	1

Primary Key

sk
pk ck

4. Composite Keys	
A key using more than one column to uniquely identify a row.	
A sk, ck and a pk can be a composite key as well.	

Introduction to SQL

- SQL stands for Structured Query Language
- It is a language used to interact with relational databases.
- It allows you to create tables, fetch data from them, update data, manage user permissions.
- · It helps us to do the following:

Create

Read

Update

Delete

Coal Mine

MySQL

Mine Management

SQL

Workers

Note: SQL is case insensitive.

Create			Students			
			name	psp	attendance	b_id
			Himanshu	80	85	2
			Rahul	92	85	2
 Used to create new DB. 			Krish	95	95	1
			Rohit	80	88	1
 Used to create new table 	Rahul	92	85	2	\rightarrow	
>Syntax						
7 Cr	cete DB					
Create database database_name;				<i>> C</i>	reete to	able
Create table table_name (column_nam	e datatyp	e cor	nstraint))		
ote : We have added content on datatype in your type	d notes. P	lease	go throu	gh		
ote: We have added content on datatype in your type them before next session.	d notes. P	lease	go throu	gh		

Student-id int auto_increment Primary Key, first_name varchar (50) not null,

last_name varchar (50) not null);

5. Foreign Keys

Students Batch

s_id	name	psp
1	Himanshu	85
2	Rahul	85
3	Rohit	88

b_id	name
1	А
2	В
3	С

Question: Is there any link in these tables?

Relationship

Students

•	Jedaciie	3		FK
_	s_id	name	psp	b_id
	1	Himanshu	85	1
	2	Rahul	85	2
	3	Rohit	88	1

Batch PK

b_id	name
1	А
2	В
3	С

Definition: A foreign key is a column in a table that references a column in another table. · It has nothing to do with primary, super and candidate keys. • It can be any column in one table that refers to any column in another table. • In our case, batch_id is a foreign key in students table that references the id column in the batches table • This ensures that the batch id we're storing in the students table is a valid id. · If we try to insert any value in the batch id column of students table that isn't present in id column of batches table, it will fail. · In general we keep them as PK. • If not a PK it should be column with unique constraints. • If not a PK it should be column with unique constraints else there will be a ambiguity.

• In case of Deletion or Updation data we might need to take care of them.

How?

1. Cascade

If the referenced data is deleted or updated all rows containing that foreign key are also deleted or updated.

Students	•				Batch	
s_id	name	psp	b_id		b_id	name
1	Himanshu	85	1		1	А
2	Rahul	85	2	 Delete / Update	 2	В
3	Rohit	88	1		 3	С

2. Set Null

If the referenced data is deleted or updated, all rows containing

that foreign key is set to null. This assumes that the foreign key column

is not set to NOT NULL.

3. No Action

If the referenced data is deleted or updated, MySQL will not execute the update or delete operation on present table. This is the default action.

4. Set Default

If the referenced data is deleted or updated, the foreign key in all the referencing rows is set to its default values. This is only functional with tables that use the InnoDB engine and where the foreign key column(s) have not been defined to have a NOT NULL attribute

Student	S				Batch	
s_id	name	psp	b_id		b_id	name
1	Himanshu	85	1		1	А
2	Rahul	85	2	← Delete / Update —	2	В
3	Rohit	88	1		3	С

https://drive.google.com/file/d/16ChEp-YmvKpPhQtRqFvxH-YGIYzondvV/view

Announcement

- What NEXT?
- 1. Assignment / Homework

MCQ's again !

- 2. Read Notes
- 3. Download MySQL workbench if not done so far.

