Survival Analysis

1 Introduction

Definition: A failure time (survival time, lifetime), T, is a nonnegative-valued random variable.

For most of the applications, the value of T is the time from a certain event to a failure event. For example,

- in a clinical trial, time from start of treatment to a failure event
- Time from birth to death = age at death
- to study an infectious disease, time from onset of infection to onset of disease
- to study a genetic disease, time from birth to onset of a disease = onset age

Definition: Cumulative distribution function

$$F(t) = P(T < t)$$

Definition: Survial function S(t).

$$S(t) = Pr(T > t) = 1 - P(T \le t)$$

Characteristics of S(t):

- S(t) = 1 if t < 0
- $S(\infty) = \lim_{t \to \infty} S(t) = 0$
- S(t) is non-increasing in t

Density: density function f(t)

- if T is discrete then f(t) = P(T = t).
- ullet b) If T is (absolutely) continuous, the density function is

$$f(t) = \frac{dF(t)}{dt} = -\frac{dS(t)}{dt}$$

Definition. Hazard function $\lambda(t)$ is

• If Tis discrete

$$\lambda(t) = P(T = t | T \ge t) = \frac{P(T = t)}{P(T \ge t)}$$
$$= \frac{f(t)}{S(t-)}$$

If $x_1 < x_2 < x_3 < \dots$ are the possible values of T and $x_i \le t < t$, then

$$S(t) = \prod_{i=1}^{j} (1 - \lambda(x_i))$$

this because

$$S(t) = P(T \ge t)$$

$$= P(T \ge x_{j+1})$$

$$= \frac{P(T \ge x_2)}{P(T \ge x_1)} \frac{P(T \ge x_3)}{P(T \ge x_2)} \dots \frac{P(T \ge x_{j+1})}{P(T \ge x_{j-1})}$$

$$= \left(1 - \frac{P(T = x_1)}{P(T \ge x_1)}\right) \left(1 - \frac{P(T = x_2)}{P(T \ge x_2)}\right) \dots \left(1 - \frac{P(T = x_j)}{P(T \ge x_j)}\right)$$

$$= \prod_{i=1}^{j} (1 - \lambda(x_i))$$

• If T is (absolutely) continuous

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$
= Instantaneous failure rate at t given survival up to t
$$= \frac{f(t)}{S(t)}$$

Definition: Cumulative hazard function (chf) $\Lambda(t)$

• If T is discrete

$$\Lambda(t) = \sum_{x_i \le t} \lambda(x_i)$$

• It T is (absolutely) continuous

$$\Lambda(t) = \int_0^t \lambda(u) du$$

therefore

$$\lambda(t) = \frac{d\Lambda(t)}{dt}.$$

Also

$$\Lambda(t) = \int_0^t \lambda(u)du$$
$$= \int_0^t \frac{-dS(u)/du}{S(u)}$$
$$= -\log(S(t))$$

This implies that

$$S(t) = e^{-\Lambda(t)} = e^{-\int_0^t \lambda(u)du}.$$

in addition, since $S(\infty) = 0$,

$$\int_0^t \lambda(u)du = \infty.$$

Type I censoring: Let T_1, T_2, \ldots, T_n be independent, identically distributed random variables. Assume that t_c is some fixed time. Instead of observing T_1, T_2, \ldots, T_n , we only observe

$$X_i = \min(T_i, t_c) = \begin{cases} X_i, & \text{if } T_i \le t_c \\ t_c, & \text{if } T_i > t_c \end{cases}$$

Type II Censoring: Let r < n and lt $T_{(1)} < T_{(2)} < T_{(2)} < \ldots < T_{(n)}$ be the order statistics of T_1, T_2, \ldots, T_n . Suppose observations cease after the rth failure and we only observe $T_{(1)}, T_{(2)}, T_{(2)}, \ldots, T_{(r)}$

In Type II Censoring model we have instead t_c the random time $T_{(r)}$ Both the Type I and the Type II censoring arise in engineering applications.

Random Censoring: Let C_1, C_2, \ldots, C_n be iid random variables with cdf G. Here C_i is the censoring time associated with T_i . We observe the pairs

$$(X_1, \delta_1), (X_2, \delta_2), \ldots, (X_n, \delta_n)$$

where

$$X_i = \min(T_i, C_i) = \begin{cases} X_i, & \text{if } T_i \le C_i \\ C_i, & \text{if } T_i > C_i \end{cases}.$$

and

$$\delta_i = \left\{ \begin{array}{ll} 1, & \text{if } T_i \le C_i \\ 0, & \text{if } T_i > C_i \end{array} \right..$$

Example: A set of observed survival data is

The data can also be presented as

$$25 18^+ 17 22^+ 27$$

Notice that

$$S_X(x) = P(X > x) = P(\min(T, C) > x)$$

$$= P(T > x, C > x)$$

$$= P(T > x)P(C > x)$$

$$= S(x)\bar{G}(x) \le S(x)$$

where $\bar{G} = 1 - G$ is the survival function corresponding to C.

2 Estimation of S:

• Complete Failure Times: Nonparametric Models Recall that

$$S(t) = P(T > t)$$

= population fraction surviving beyond t

The set of the complete data t_1, t_2, \ldots, t_n reflects the structure of population failure times. Thus, we estimate S(t) by the sample fraction surviving beyond t:

$$\hat{S}(t) = \frac{\#t_i > t}{n} = \frac{1}{n} \sum_{i=1}^n I(t_i > t).$$

 \hat{S} is also called the empirical survival distribution. How to derive confidence interval for S(t)?

We have

$$\frac{\sqrt{n}[\hat{S}(t) - S(t)]}{\sqrt{\hat{S}(t)(1 - \hat{S}(t))}} \xrightarrow{d} N(0, 1)$$

that is

$$\frac{\sqrt{n}[\hat{S}(t) - S(t)]}{\sqrt{\hat{S}(t)(1 - \hat{S}(t))}} \stackrel{App}{\sim} N(0, 1)$$

or

$$\lim_{n \to \infty} P\left(\frac{\sqrt{n}[\hat{S}(t) - S(t)]}{\sqrt{\hat{S}(t)(1 - \hat{S}(t))}} \le x\right) = \Phi(x).$$

An approximate $100(1-\alpha)\%$ confidence interval for S(t) is

$$\hat{S}(t) \pm z_{\alpha/2} \sqrt{\hat{S}(t)(1 - \hat{S}(t))/n}$$

What do we do when we have right censoring?

Kaplan-Meier Estimator: The Kaplan-Meier estimator is a nonparametric estimator for the survival function S. Consider now either random censoring or type I censoring. The data are

$$(x_1,\delta_1),(x_2,\delta_2),\ldots,(x_n,\delta_n)$$

Let $y_{(1)} < y_{(2)} < \ldots < y_{(k)}, k \leq n$, be the distinct, uncensored and ordered failure times.

Example. Data: $3, 2, 0, 1, 5^+, 3, 5$ then

$$(y_{(1)}, y_{(2)}, y_{(3)}, y_{(4)}, y_{(5)}) = (0, 1, 2, 3, 5)$$

Suppose $y_{(i-1)} \leq t < y_{(i)}$. A principle of nonparametric estimation of S is to assign positive probability to and only to uncensored failure time. Therefore, we try to estimate

$$S(t) \approx \frac{P(T \ge y_{(2)})}{P(T \ge y_{(1)})} \frac{P(T \ge y_{(3)})}{P(T \ge y_{(2)})} \dots \frac{P(T \ge y_{(i)})}{P(T \ge y_{(i-1)})}$$

How to estimate S(t)? Define

$$R_{(j)} = \{y_k : y_k \ge y_{(j)}\}$$

 $d_{(j)} = \#$ of failures at $y_{(j)}$
 $N_{(j)} = \#$ of individuals at risk at $y_{(j)} = \text{cardinal of } R_{(j)}$

Example: Using the previous data, we have

$$N_{(1)} = 7, N_{(2)} = 6, N_{(3)} = 4, N_{(4)} = 2$$

 $d_{(1)} = 1, d_{(2)} = 1, d_{(3)} = 2, d_{(4)} = 1$

We estimate

$$\frac{P(T \ge y_{(j+1)})}{P(T \ge y_{(j)})}$$

by

$$\frac{N_{(j)} - d_{(j)}}{N_{(j)}} = 1 - \frac{d_{(j)}}{N_{(j)}}$$

 $j = 1, 2, \dots, i - 1$. The Kaplan-Meier estimator of S(t) is that

$$\begin{split} \hat{S}(t) &= \left(1 - \frac{d_{(1)}}{N_{(1)}}\right) \left(1 - \frac{d_{(2)}}{N_{(2)}}\right) \dots \left(1 - \frac{d_{(i-1)}}{N_{(i-1)}}\right) \\ &= \prod_{y_{(j)} \le t} \left(1 - \frac{d_{(j)}}{N_{(j)}}\right) \end{split}$$

Example:

$$\hat{S}(0) = \left(1 - \frac{1}{7}\right) = \frac{6}{7} = 0.86$$

$$\hat{S}(1) = \left(1 - \frac{1}{7}\right) \left(1 - \frac{1}{6}\right) = \frac{5}{7} = 0.71$$

$$\hat{S}(3) = \left(1 - \frac{1}{7}\right) \left(1 - \frac{1}{6}\right) \left(1 - \frac{2}{4}\right) = \frac{5}{14} = 0.36$$

$$\hat{S}(5) = \left(1 - \frac{1}{7}\right) \left(1 - \frac{1}{6}\right) \left(1 - \frac{2}{4}\right) \left(1 - \frac{1}{2}\right) = \frac{5}{28} = 0.18$$

```
> library(survival)
> time<-c(3, 2,0, 1,5, 3, 5)
> delta<-c(1,0,1, 1, 0, 1, 1)
> library(survival)
> km<-survfit(Surv(time, delta)~1,type="kaplan-meier")
> km$surv
[1] 0.8571429 0.7142857 0.7142857 0.3571429 0.1785714
> plot(km$time,km$surv, type="s",xlab="Time",ylab="Survival")
```


It turns out that

$$\sqrt{n}[\hat{S}(t) - S(t)] \stackrel{d}{\to} N(0, \sigma^2(t))$$

where

$$\sigma^{2}(t) = S(t)^{2} \int_{0}^{t} \frac{d\Lambda(t)}{\pi(u)}$$

where $\pi(u) = S(u)\bar{G}(u)$

Un estimate of $\sigma^2(t)$ is

$$\hat{\sigma}^2(t) = \hat{S}(t) \sum_{y_{(j)} \le t} \frac{d_{(j)}}{N_{(j)}(N_{(j)} - d_{(j)})}$$

An approximate $100(1-\alpha)\%$ confidence interval for S(t) is

$$\hat{S}(t) \pm z_{\alpha/2} \hat{\sigma}(t)$$

> summary(km)

Call: survfit(formula = Surv(time, delta) ~ 1, type = "kaplan-meier")

time n.risk n.event survival std.err lower 95% CI upper 95% CI

					''' 11	
0	7	1	0.857	0.132	0.6334	1
1	6	1	0.714	0.171	0.4471	1
3	4	2	0.357	0.198	0.1205	1
5	2	1	0.179	0.160	0.0307	1

Comparing two survival distributions: the logrank statistic

Let $T_1^0 < T_2^0 < \ldots < T_L^0$ denote the odered observed distinct failure times in the sample made by combining the two groups. Let d_{ik} and N_{ik} , $k = 1, 2, \ldots, L$ denote the number of failures and the number at risk, respectively, in the ith sample at time T_k^0 . Let d_k and N_k the corresponding values in the combined sample. The data at T_k^0 can be summarized as follows

Sample					
Failure	Group 1	Group 2	Total		
Yes	d_{1k}	d_{2k}	d_k		
No	$N_{1k} - d_{1k}$	$N_{2k} - d_{2k}$	$N_k - d_k$		
Total	N_{1k}	N_{2k}	$\overline{N_k}$		

Given N_{ik} , d_{ik} has a binomial distribution with the number of trials N_{ik} and under the hypothesis of common failure rate λ is the two groups, approximate probability

Under H_0, d_{1k} given d_k has a hypergeometric with mean and variance

$$E_{1k} = d_k \frac{N_{1k}}{N_k}$$

$$V_{1k} = d_k \frac{N_{1k}N_{2k}}{N_k^2} \frac{N_k - d_k}{N_k - 1}$$

Given the margins in each of the L tables at the observed death time

$$\{d_{11}-E_{11},d_{12}-E_{12},\ldots,d_{1L}-E_{1L}\}$$

is a vector of observed-minus-conditionally-expected number of failures across the observed failure times, and if we assume these difference are independent

$$Q = \frac{\sum_{k=1}^{L} (d_{1k} - E_{1k})}{\sqrt{\sum_{k=1}^{L} V_{1k}}}$$

has approximately a standard normal distribution. So Q^2 has approximately χ_1^2 .

Example: The data below shows remission times, in weeks, for leukemia patients given two types of treatments. In the study 20 patients were given treatment A and 20 treatment B. Starred observation are censoring time.

```
\begin{array}{lll} \text{Treatment A} &:& 1,3,3,6,7,7,10,12,14,15,18,19,22,26,18+,29,34,40,48+,49. \\ \text{Treatment B} &:& 1,1,2,2,3,4,5,8,8,9,11,12,14,16,18,21,27+,31,38+,44. \end{array}
```

First we create estimate the survival functions. To do this in R we use the package survival

> head(data)

```
time status group
1
       1
                1
                       1
2
       3
                1
                       1
3
                1
       3
                       1
4
       6
                1
                       1
       7
                1
                       1
```

- >library(survival)
- > fit<-survfit(Surv(time,status)~group)</pre>
- > plot(fit,lty=1:2)

To implement the test we use

surdiff(Surv(time,status) ~ group, rho=0)

> survdiff(Surv(time,status)~group, rho=0)

Call:
survdiff(formula = Surv(time, status) ~ group, rho = 0)

N Observed Expected $(O-E)^2/E (O-E)^2/V$

Chisq= 1.2 on 1 degrees of freedom, p= 0.265

The p-value is 0.265, we fail to reject the null hypothesis that the two survival functions are equal.

Example (in detail)

Treatment A : 3, 5, 7, 9+, 18

Treatment B : 12, 19, 20, 20+, 33+

Here k=7 and $T_1^0=2, T_2^0=5, T_3^0=7, T_4^0=12, T_5^0=18, T_6^0=19, T_7^0=19.$ at $T_1^0=3$, we need to look at the table

Sample					
Failure	Group 1	Group 2	Total		
Yes	1	0	1		
No	4	5	9		
Total	5	5	10		

 $d_1=1, N_{11}=5$ and $N_1=10$. this gives $E_{11}=1/2$ and $V_{11}=1/4$ At $T_1^0=5$, we need to look at the table

Sample					
Failure	Group 1	Group 2	Total		
Yes	1	0	1		
No	3	5	8		
Total	4	5	9		

 $d_2 = 1, N_{12} = 4$ and $N_2 = 9$. this gives $E_{12} = 4/9$ and $V_{12} = 20/81$ at $T_3^0 = 7$, we need to look at the table

Sample					
Failure	Group 1	Group 2	Total		
Yes	1	0	1		
No	2	5	7		
Total	3	5	8		

 $d_3 = 1, N_{13} = 3$ and $N_3 = 8$. this gives $E_{13} = 3/8$ and $V_{13} = 15/64$ at $T_4^0 = 12$, we need to look at the table

Sample					
Failure	Group 1	Group 2	Total		
Yes	0	1	1		
No	1	4	5		
Total	1	5	6		

 $d_4=1, N_{14}=1$ and $N_4=6$. this gives $E_{14}=1/6$ and $V_{14}=5/36$ at $T_5^0=18$, we need to look at the table

Sample					
Failure	Group 1	Group 2	Total		
Yes	1	0	1		
No	0	4	4		
Total	1	4	5		

 $d_5=1, N_{15}=1$ and $N_5=5$. this gives $E_{15}=1/5$ and $V_{15}=4/25$ at $T_6^0=19$, we need to look at the table

Sample					
Failure	Group 1	Group 2	Total		
Yes	0	1	1		
No	0	3	3		
Total	0	4	4		

 $d_6=1, N_{16}=0$ and $N_6=4$. this gives $E_{16}=0$ and $V_{16}=0$ at $T_7^0=20$, we need to look at the table

Sample					
Failure	Group 1	Group 2	Total		
Yes	0	1	1		
No	0	2	2		
Total	0	3	3		

 $d_7 = 1, N_{17} = 0$ and $N_6 = 3$. this gives $E_{17} = 0$ and $V_{17} = 0$ The log-rank statistics is

$$Q = \frac{\sum_{k=1}^{L} (d_{1k} - E_{1k})}{\sqrt{\sum_{k=1}^{L} V_{1k}}}$$

$$= \frac{(1 - 1/2) + (1 - 4/8) + (1 - 3/8) + (0 - 1/6) + (1 - 1/5) + (0 - 0) + (0 - 0)}{\sqrt{1/4 + 20/81 + 15/64 + 5/36 + 4/25}} = 2.26$$

and $Q^2 = 5.108$ the p-value = 1 - pchisq(5.108, 1) = 0.02381576. **Generalizations** Use a weighted sum with weights w_1, w_2, \ldots, w_k . The test statistic is

$$Q^{2}(w_{1}, w_{2}, \dots, w_{k}) = \frac{\left[\sum_{\ell=1}^{k} w_{\ell}(d_{1\ell} - E_{1\ell})\right]^{2}}{\sum_{\ell=1}^{k} w_{\ell}^{2} V_{\ell}}$$

Note that if

- $w_1 = w_2 = \ldots = w_k = 1$ we get the logrank test
- $w_{\ell} = n_{\ell}, \ell = 1, 2, \dots, \ell$, we get the Gehan test statistics
- $w_{\ell} = (n_{\ell})^{\alpha}, \ell = 1, 2, \dots, \ell, \alpha \in [0, 1]$, we get the Tarone-Ware test statistics

Regression Approach to Survival Analysis

In the presence of covariates, the standard linear regression model formulation is not appropriate for survival time, due to censoring and the skewed nature of the distributions. Before we present the model, we review some results on the types of test that we use in this part.

Cox Proportional Hazard Model (phm)

Let $\mathbf{x} = (x_1, x_2, \dots, x_p)$ be a vector of covariates and let T be time until failure (failure time)

Define the hazard function for a given individual by

$$\lambda(t, \mathbf{x}) = \lambda_0(t)e^{\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}$$

- $\lambda_0(t)$ is some baseline hazard function.
- $\beta_1, \beta_2, \ldots, \beta_p$ are coefficients and they do not include the intercept (the intercept is absorbed in $\lambda_0(t)$)
- $\lambda_0(t)$ does not need to be specified in order to carry out the analysis
- The exponential guarantees that $\lambda(t)$ is positive for any $\beta_1, \beta_2, \dots, \beta_p$
- The beauty of this model, as observed by Cox, is that if you use a model of this form, and you are interested in the effects of the covariates on survival, then you do not need to specify the form of $\lambda_0(t)$.
- Even without doings o you may estimate β
- The Cox phm is thus called a semi-parametric model, as some assumptions are made but no form is pre-specified for $\lambda_0(t)$.
- To see why it is called the phm, suppose p = 1 and consider two individuals with covariates x_1 and x_2 Then the ratio of their failure rates (or hazard rates) at time t is

$$\frac{\lambda(t, x_1)}{\lambda(t, x_2)} = \frac{e^{\beta_1 x_1}}{e^{\beta_1 x_1}} = e^{\beta_1(x_1 - x_2)}$$

that is

$$\lambda(t, x_1) \propto \lambda(t, x_2)$$

- The hazards are proportional to each other and do not depend on time. In particular, the hazard for the individual with covariate x_1 is $e^{\beta_1(x_1-x_2)}$ times that of the individual with covariate x_2
- The term $e^{\beta_1(x_1-x_2)}$ is called the hazard ratio comparing x_1 to x_2 .
- If $\beta_1 = 0$ then the hazard ratio for that covariate is equal to 1, i.e. that covariate doesn?t affect survival. Thus we can use the notion of hazard ratios to test if covariates influence survival.

- The hazard ratio also tells us how much more likely one individual is to die than another at any particular point in time.
- If the hazard ratio comparing men to women were 2, say, it would mean that, at any instant in time, men are twice as likely to die than women.

We need to estimate the beta's in order to assess the effect of the covariates on the survival time.

Let t_1, t_2, \ldots, t_n be the survival time for n individuals and $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ be the corresponding covariates. Let

$$Y_i(t) = \begin{cases} 1, & \text{if the ith person is alive at time t} \\ 0, & \text{otherwise} \end{cases}$$

Suppose a death is observed at time t, the conditional probability that it is subject j is

$$L_{j}(\beta_{1}, \beta_{2}, \dots, \beta_{p}) = \frac{\sum_{\lambda_{0}(t)}^{p} \sum_{\ell=1}^{p} x_{\ell j} \beta_{j}}{\sum_{i=1}^{n} Y_{i}(t) \lambda_{0}(t) e^{\ell=1}}$$

$$= \frac{\sum_{i=1}^{p} x_{\ell j} \beta_{j}}{\sum_{i=1}^{p} Y_{i}(t) e^{\ell=1}}$$

and this does not depend on $\lambda_0(t)$.

Notice that

- The model depends only on the ranks of the survival times. Therefore, it is nonparamteric in nature
- The parameters my be sensitive to outliers in the covariates

The partial likelihood is defined as

$$L(\beta_1, \beta_2, \dots, \beta_p) = \prod_{i=1}^n L_j(\beta_1, \beta_2, \dots, \beta_p)$$

The estimates of $\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_p$ of $\beta_1, \beta_2, \dots, \beta_p$ are obtained by maximizing $L(\beta_1, \beta_2, \dots, \beta_p)$

To test $H_0: \beta_{\ell} = \beta_{\ell 0}, \ell = 1, 2, \dots, p$ we can use one of the following test statistics

1. Likelihood ratio test

$$LR = -2 \ln \frac{L(\beta_{10}, \beta_{20}, \dots, \beta_{p0})}{L(\hat{\beta}_{1}, \hat{\beta}_{2}, \dots, \hat{\beta}_{p})}$$

and we reject H_0 is $LR > \chi_p^2(\alpha)$

2. Wald Statistic

$$W = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T \hat{\Sigma}^{-1} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

where $\hat{\Sigma}$ is an estimate of the covariance of $\hat{\boldsymbol{\beta}}$ and is given by

$$\hat{\Sigma} = I^{-1}(\hat{\beta})$$

where

$$I(\hat{\boldsymbol{\beta}}) = -\frac{\partial^2}{\partial \boldsymbol{\beta}^2} \ln L(\boldsymbol{\beta})$$

Under H_0 , W has approximately χ_p^2 and we reject H_0 if $W > \chi_p^2(\alpha)$. For individual hypotheses, say we want to test $H_0: \beta_\ell = \beta_{\ell 0}$ against $H_a: \beta_\ell \neq \beta_{\ell 0}$, we use

$$Z = \frac{\hat{\beta}_{\ell} - \beta_{\ell 0}}{SE(\hat{\beta}_{\ell})}$$

and reject H_0 if $|Z| > Z_{\alpha/2}$.

3. Rao's Score Test

$$RS = U'(\boldsymbol{\beta}_0)I(\boldsymbol{\beta}_0)U(\boldsymbol{\beta}_0)$$

where

$$U(\boldsymbol{\beta}_0) = \frac{\partial}{\partial \boldsymbol{\beta}} \ln L(\boldsymbol{\beta}_0)$$

Under H_0 , RS has approximately χ_p^2 and we reject H_0 if $S > \chi_p^2(\alpha)$.

```
Example (cont)
x < -c(rep("1",20),rep("2",20))
> fitphm<-coxph(Surv(time,status)~factor(x))</pre>
> fitphm
Call:
coxph(formula = Surv(time, status) ~ factor(x))
            coef exp(coef) se(coef)
factor(x)2 0.377
                     1.458
                              0.340 1.11 0.27
Likelihood ratio test=1.22 on 1 df, p=0.269
n= 40, number of events= 35
> summary(fitphm)
Call:
coxph(formula = Surv(time, status) ~ factor(x))
 n= 40, number of events= 35
             coef exp(coef) se(coef)
                                         z Pr(>|z|)
                              0.3403 1.107
factor(x)2 0.3769
                     1.4577
                                               0.268
           exp(coef) exp(-coef) lower .95 upper .95
               1.458
                          0.686
                                   0.7482
factor(x)2
                                                2.84
Concordance= 0.563 (se = 0.05)
Rsquare= 0.03
                (max possible= 0.994)
Likelihood ratio test= 1.22 on 1 df,
                                        p=0.2686
Wald test
                     = 1.23 on 1 df,
                                        p=0.2681
Score (logrank) test = 1.24 on 1 df,
                                        p=0.2654
```

Example: The data contains information from an experimental study of recidivism of 432 male prisoners, who were observed for a year after being released from prison The following variables are included in the data; the variable names are those used by Allison (1995), from whom this example and variable descriptions are adapted:

• week: week of first arrest after release, or censoring time.

- arrest: the event indicator, equal to 1 for those arrested during the period of the study and 0 for those who were not arrested.
- fin: a factor, with levels yes if the individual received financial aid after release from prison, and no if he did not; financial aid was a randomly assigned factor manipulated by the researchers.
- age: in years at the time of release.
- race: a factor with levels black and other
- wexp: a factor with levels yes if the individual had full-time work experience prior to incarceration and no if he did not. mar: a factor with levels married if the individual was married at the time of release and not married if he was not.
- paro: a factor coded yes if the individual was released on parole and no if he was not.
- prio : number of prior convictions.
- educ: education, a categorical variable coded numerically, with codes 2 (grade 6 or less), 3 (grades 6 through 9), 4 (grades 10 and 11), 5 (grade 12), or 6 (some post-secondary).

> head(data)

```
week arrest fin age race wexp
                                           mar paro prio educ
    20
                   27 black
                                                       3
                                                             3
1
               no
                               no not married
                                                yes
2
    17
                                                             4
            1
               no
                   18 black
                               no not married
                                                yes
                                                       8
3
                                                             3
    25
               no
                   19 other yes not married
                                                yes
                                                      13
4
    52
                                                             5
            0 yes
                   23 black yes
                                                       1
                                      married
                                                yes
5
    52
                   19 other yes not married
                                                       3
                                                             3
               no
                                                yes
                                                       2
6
    52
                   24 black yes not married
                                                 no
                                                             4
               no
```

```
> fit<-coxph(Surv(week, arrest) ~ fin + age + race + wexp + mar + paro + prio,data
> summary(fit)
```

Call:

```
coxph(formula = Surv(week, arrest) ~ +fin + age + race + wexp +
    mar + paro + prio, data = data)
```

n= 432, number of events= 114

```
coef exp(coef) se(coef)
                                                z Pr(>|z|)
finyes
               -0.37942
                          0.68426
                                   0.19138 -1.983 0.04742 *
                          0.94418
                                   0.02200 -2.611
                                                   0.00903 **
age
               -0.05744
               -0.31390
                          0.73059
                                   0.30799 - 1.019
                                                   0.30812
raceother
wexpyes
               -0.14980
                          0.86088
                                   0.21222 - 0.706
                                                   0.48029
marnot married 0.43370
                          1.54296
                                   0.38187 1.136
                                                   0.25606
               -0.08487
                          0.91863
                                   0.19576 - 0.434
                                                   0.66461
paroyes
prio
                0.09150
                          1.09581
                                   0.02865
                                           3.194
                                                   0.00140 **
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
               exp(coef) exp(-coef) lower .95 upper .95
                  0.6843
                             1.4614
                                       0.4702
                                                  0.9957
finyes
                  0.9442
                             1.0591
                                       0.9043
                                                  0.9858
age
                  0.7306
                             1.3688
                                       0.3995
                                                  1.3361
raceother
                             1.1616
                                                  1.3049
wexpyes
                  0.8609
                                       0.5679
marnot married
                  1.5430
                             0.6481
                                       0.7300
                                                  3.2614
paroyes
                  0.9186
                             1.0886
                                       0.6259
                                                  1.3482
prio
                  1.0958
                             0.9126
                                       1.0360
                                                  1.1591
Concordance= 0.64 (se = 0.027)
                 (max possible= 0.956)
Rsquare= 0.074
Likelihood ratio test= 33.27
                              on 7 df,
                                         p=2.362e-05
Wald test
                     = 32.11
                              on 7 df,
                                         p=3.871e-05
Score (logrank) test = 33.53
                              on 7 df,
                                         p=2.11e-05
```