MAT 310 HW 8, Carl Liu

6.A.8

Suppose $u,v\in V$ and ||u||=||v||=1 and $\langle u,v\rangle=1$. Then $\sqrt{\langle u,u\rangle}=||u||=1$ and $\sqrt{\langle v,v\rangle}=||v||=1$. Also $\langle u,v\rangle=\overline{\langle v,u\rangle}=1$ and so when applying another conjugate we have $\overline{\overline{\langle v,u\rangle}}=\overline{1}$. Since 1 is real and the conjugate of a conjugate is just the original, we end up with $\langle v,u\rangle=1$ So $\langle v,v\rangle=1$ and $\langle u,u\rangle=1$. That means $\langle u,u\rangle=\langle u,v\rangle=\langle v,u\rangle=\langle v,v\rangle$. Thus $\langle u,u\rangle-\langle u,v\rangle=0$ resulting in $\langle u,u-v\rangle=0$. Also we have $\langle v,u\rangle-\langle v,v\rangle=0$ resulting in $\langle v,u-v\rangle=0$. Thus $\langle u,u-v\rangle-\langle v,u-v\rangle=0$ which means $\langle u-v,u-v\rangle=0$. Therefore u-v=0 resulting in u=v as required.

6.A.10

A vector orthogonal to (1,3) will have the property $v_1 + 3v_2 = 0$. Thus resulting in $v_1 = -3v_2$. Since we also have (1,2) = u + v where $u = \lambda(1,3)$, we must have $1 = \lambda - 3v_2$ and $2 = 3\lambda + v_2$. Thus we have $7 = 10\lambda$, so $\lambda = 7/10$. That means $v_2 = -1/10$ resulting in vectors

$$(1,2) = \frac{7}{10}(1,3) + \frac{1}{10}(3,-1)$$

6.B.2

Suppose $e_1...e_m$ is an orthonormal list of vectors in V. Let $v \in V$. We can extend $e_1...e_m$ to an orthonormal basis of V which we will call $e_1...e_m$, $f_1...f_n$. Then $||v||^2 = |\langle v, e_1 \rangle|^2 + ... + |\langle v, e_m \rangle|^2 + |\langle v, f_1 \rangle|^2 + ... + |\langle v, f_n \rangle|^2$.

Suppose $||v||^2 = |\langle v, e_1 \rangle|^2 + ... + |\langle v, e_m \rangle|^2$. But from hypothesis we have $0 = |\langle v, f_1 \rangle|^2 - ||v||^2 = |\langle v, f_1 \rangle|^2 + ... + |\langle v, f_n \rangle|^2$ and so $\langle v, f_n \rangle = 0$. Since $v = \langle v, e_1 \rangle e_1 + ... + \langle v, e_m \rangle e_m + \langle v, f_1 \rangle f_1 + ... \langle v, f_n \rangle f_n$. We would then have $v = \langle v, e_1 \rangle e_1 + ... + \langle v, e_m \rangle e_m$. But this is a linear combination of $e_1...e_m$ meaning $v \in span(e_1...e_m)$ as required.

Suppose $v \in span(e_1...e_m)$. Since $span(e_1...e_m)$ is clearly a vector space and $e_1...e_m$ is an orthonormal basis of $span(e_1...e_m)$, we have $||v||^2 = |\langle v, e_1 \rangle|^2 + ... + |\langle v, e_m \rangle|^2$ as required.

6.B.5

We have as our first orthonormal vector

$$e_1 = \frac{\langle 1, 1 \rangle 1}{\sqrt{\langle 1, 1 \rangle}} = \frac{\int_0^1 1^2 dx}{\sqrt{\int_0^1 1^2 dx}} = 1$$

Then we have

$$e_2 = \frac{x - \langle x, 1 \rangle 1}{||x - \langle x, 1 \rangle 1||} = \frac{x - \int_0^1 x dx}{||x - \langle x, 1 \rangle 1||} = \frac{x - 0.5}{||x - 0.5||} = \frac{x - 0.5}{\sqrt{\int_0^1 (x - 0.5)^2}} = \frac{x - 0.5}{\sqrt{\int_0^1 (x - 0.5)^2}} = (x - 0.5)\sqrt{12}$$

Finally we have

$$e_{3} = \frac{x^{2} - \sqrt{12} \langle x^{2}, x - 0.5 \rangle (x - 0.5) - \langle x^{2}, 1 \rangle 1}{\|x^{2} - \sqrt{12} \langle x^{2}, x - 0.5 \rangle (x - 0.5) - \langle x^{2}, 1 \rangle 1\|} =$$

$$\frac{x^{2} - \sqrt{12} \int_{0}^{1} (x^{3} - 0.5x^{2}) dx (x - 0.5) - \int_{0}^{1} x^{2} dx}{\|x^{2} - \sqrt{12} \int_{0}^{1} (x^{3} - 0.5x^{2}) dx (x - 0.5) - \int_{0}^{1} x^{2} dx} =$$

$$\frac{x^{2} - \frac{\sqrt{12}}{12} (x - 0.5) - \frac{1}{3}}{\|x^{2} - \frac{\sqrt{12}}{12} (x - 0.5) - \frac{1}{3}\|} = \frac{x^{2} - \frac{\sqrt{12}}{12} x + \frac{\sqrt{12} - 8}{24}}{\|x^{2} - \frac{\sqrt{12}}{12} x + \frac{\sqrt{12} - 8}{24}\|} =$$

$$\frac{x^{2} - \frac{\sqrt{12}}{12} x + \frac{\sqrt{12} - 8}{24}}{\int_{0}^{1} (x^{2} - \frac{\sqrt{12}}{12} x + \frac{\sqrt{12} - 8}{24})^{2} dx} =$$

$$\frac{x^{2} - \frac{\sqrt{12}}{12} x + \frac{\sqrt{12} - 8}{24}}{\int_{0}^{1} (x^{4} - 2\frac{\sqrt{12}}{12} x^{3} + 2\frac{\sqrt{12} - 8}{24} x^{2} + \left(\frac{\sqrt{12}}{12}\right)^{2} x^{2} - 2\frac{\sqrt{12} - 8}{24} \frac{\sqrt{12}}{12} x + \left(\frac{\sqrt{12} - 8}{24}\right)^{2}) dx} =$$

$$\frac{x^{2} - \frac{\sqrt{12}}{12} x + \frac{\sqrt{12} - 8}{24}}{\frac{1}{5} - \frac{\sqrt{12}}{24} + 2\frac{\sqrt{12} - 8}{24 + 3} + \frac{1}{3} \left(\frac{\sqrt{12}}{12}\right)^{2} - \frac{\sqrt{12} - 8}{24} \frac{\sqrt{12}}{12} + \left(\frac{\sqrt{12} - 8}{24}\right)^{2}}{\frac{1}{2} - \frac{\sqrt{12}}{24} + 2\frac{\sqrt{12} - 8}{24 + 3}} + \frac{1}{3} \left(\frac{\sqrt{12}}{12}\right)^{2} - \frac{\sqrt{12} - 8}{24} \frac{\sqrt{12}}{12} + \left(\frac{\sqrt{12} - 8}{24}\right)^{2}}{\frac{1}{2} - \frac{\sqrt{12}}{24} + 2\frac{\sqrt{12} - 8}{24 + 3}} + \frac{1}{3} \left(\frac{\sqrt{12}}{12}\right)^{2} - \frac{\sqrt{12} - 8}{24} \frac{\sqrt{12}}{12} + \left(\frac{\sqrt{12} - 8}{24}\right)^{2}}{\frac{1}{2} - \frac{\sqrt{12}}{24} + 2\frac{\sqrt{12} - 8}{24 + 3}} + \frac{1}{3} \left(\frac{\sqrt{12}}{12}\right)^{2} - \frac{\sqrt{12} - 8}{24} \frac{\sqrt{12}}{12} + \left(\frac{\sqrt{12} - 8}{24}\right)^{2}}{\frac{1}{2} - \frac{\sqrt{12}}{24} + 2\frac{\sqrt{12} - 8}{24 + 3}} + \frac{1}{3} \left(\frac{\sqrt{12}}{12}\right)^{2} - \frac{\sqrt{12} - 8}{24} \frac{\sqrt{12}}{12} + \left(\frac{\sqrt{12} - 8}{24}\right)^{2}}{\frac{1}{2} - \frac{\sqrt{12}}{24} + 2\frac{\sqrt{12}}{24} + 2\frac{\sqrt{12}}{24} + 2\frac{\sqrt{12} - 8}{24 + 3} + \frac{\sqrt{12} - 8}{24}}{\frac{1}{2} - \frac{\sqrt{12}}{24} + 2\frac{\sqrt{12}}{24} + 2\frac{\sqrt{12$$

6.C.2

Suppose U is a finite dimensional subspace of V.

Suppose $U^{\perp} = \{0\}$. Let $v \in V$. Then $\langle v, 0 \rangle = 0$. Meaning $v \in (U^{\perp})^{\perp}$. Since $(U^{\perp})^{\perp} = U$. We can conclude $v \in U$ and so $V \subseteq U$. Now let $u \in U$. Then $u \in V$ by definition of subspace. Thus $U \subseteq V$. Therefore we can conclude U = V as required.

Suppose U=V. Let $u\in U$. Then $\langle U,0\rangle=0$ so $0\in U^{\perp}$. Thus $\{0\}\subseteq U^{\perp}$. Now let $u\in U^{\perp}$. Since we have $U^{\perp}\subseteq V$ and V=U, we have $u\in U$ thus. $\langle u,u\rangle=0$. But that means u=0 is a must. Therefore $U\subseteq\{0\}$ and so we have $U=\{0\}$ as required