Visualização de Dados Multidimensionais

- Caracterização de dados multidimensionais
- Técnicas selecionadas

Dados univariados

I-D: Fácil

• b = f(a)

- $a \rightarrow x$
- $b \rightarrow y$

2-D: Fácil

• c = f(a, b)

Campo de altitude:

$$-a \rightarrow x$$

$$-b \rightarrow y$$

$$-c \rightarrow z$$

2-D: Fácil

•
$$c = f(a, b)$$

Mapa de temperatura

$$-a \rightarrow x$$

$$-b \rightarrow y$$

$$-c \rightarrow cor$$

b

a

3-D: Difícil

- d = f(a, b, c)
- Volume de cores:

$$-a \rightarrow x$$

$$-b \rightarrow y$$

$$-c \rightarrow z$$

$$- d \rightarrow color$$

≥4D: Muito difícil

- y = f(x₁, x₂, x₃, x₄, ..., x_n)
 Espaço 5D??
- Exemplos de abordagens:
 - Eixos hierárquicos (Mihalisin)
 - Coordenadas aninhadas (Worlds within Worlds)

Dados multivariados

• Utilizar multiplos gráficos univariados

	A	В	С	D	日
1	4	1	8	3	5
2 3	6	3	4	2	1
3		7	2	4	3
4	2	6	3	1	5

Eixos hierárquicos

Visão 1D de uma função 3D (Mihalisin et al.)

Sistemas de coordenadas aninhados

• Feiner & Beshers. Worlds within worlds: metaphors for exploring n-dimensional virtual worlds. UIST 90, pp. 76-83.

Worlds Within Worlds

Visualização de funções reais 5D

$$f(x_1,x_2,x_3,x_4,x_5)$$

• Em pontos discretos

$$x_3 = c_3, x_4 = c_4, x_5 = c_5$$

- Plota a função

$$f(x_1,x_2,c_3,c_4,c_5)$$

Caracterização

Dados multidimensionais

- Cada atributo corresponde a uma dimensão
- n-D indica que temos n atributos associados a cada elemento ou entidade

Número pequeno de atributos insert format loois data Window Help

facilita a representação

facilita o mapeamento

Table Lens

Rao, R. and Card, S. The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information. In *Proceedings of the SIGCHI conference on Human factors in computing systems: celebrating interdependence* (CHI '94). ACM, New York, NY, USA, 318-322

https://www.youtube.com/watch?v=ZDY9YCYv7z8

Implementação fornecida por NComVA:

http://www.ncomva.se/guide/index.php?chapter=Visualizations§ion=Table%20Lens# General

Especificação formal (Healey, 2001)

- Dataset $D = \{e_1, ..., e_n\}$ containing n elements e_i
- D represents m data attributes $A = \{A_1, ..., A_m\}$
- Each e_i encodes m attribute values $e_i = \{ a_{i,1}, ..., a_{i,m} \}$
- Visual features V = { V₁, ..., V_m } used to represent A
- Function ϕ_j : $A_j \rightarrow V_j$ maps domain of A_j to range of displayable values in V_j
- Data-feature mapping $M(V, \Phi)$, a visual representation of D
- Visualization: Selection of M and viewers interpretation of images produced by M

Healey, C. G. "Formalizing Artistic Techniques and Scientific Visualization for Painted Renditions of Complex Information Spaces." In *Proceedings International Joint Conference on Artifical Intelligence* 2001 (Seattle, Washington, 2001), pp. 371-376.

Separate Displays

Function $\Phi j: Aj \rightarrow Vj$ maps domain of Aj to range of displayable values in Vj

n = 42,224 elements m = 4

 A_1 = temperature

 $A_2 = windspeed$

 A_3 = precipitation

 A_4 = pressure

V = colour

 Φ = dark blue ... bright pink

Integrated Display

Function $\Phi j: Aj \to Vj$ maps domain of Aj to range of displayable values in Vj

n = 42,224 elements

m = 4

 A_1 = temperature

 $A_2 = windspeed$

 A_3 = precipitation

 A_4 = pressure

 $V_1 =$ colour

 $V_2 = \text{size}$

 V_3 = orientation

 V_4 = density

 Φ_1 = dark blue ... bright pink

 $\Phi_2 = 0.25 \dots 1.15$

 $\Phi_3 = 0^{\circ} \dots 90^{\circ}$

 $\Phi_4 = 1x1 ... 3x3$

Healey, 2001

Mapeamento

- Mapear o espaço nD para o espaço 2D da imagem
 - Projeção
- Abordagens diferentes (Keim, 1996)
 - Técnicas iconográficas
 - Baseadas em ícones e glifos
 - Técnicas orientadas a pixel
 - Mapeamento direto para pixels na imagem
 - Técnicas de projeção geométrica
 - Projeção para coordenadas num domínio espacial

Técnicas iconográficas Eyebrow slope.

- Faces de Chernoff (1973)
- Parâmetros
 - Formato da cabeça
 - Espaço entre-olhos
 - Formato do olho
 - Tamanho do olho
 - Tamanho da pupila
 - Inclinação da sobrancelha
 - Tamanho do nariz
 - Posição da boca
 - Largura da boca
 - Abertura da boca

Estrelas (Star icons, sun rays)

- Comprimento dos segmentos corresponde aos valores das variáveis
- Distribuição radial, uniforme dos segmentos ao redor de um núcleo

Estrelas (Star Plots ou Radar Plots)

Star/radar plots

City Profile

Porto Alegre

	Rank / 120	Score / 100	Average
OVERALL SCORE	103	39.0	49.9
ECONOMIC STRENGTH	109	28.9	37.1
PHYSICAL CAPITAL	=105	50.9	74.9
FINANCIAL MATURITY	=93	16.7	47.8
INSTITUTIONAL EFFECTIVENESS	61	63.2	61.2
SOCIAL AND CULTURAL CHARACTER	=76	51.7	60.6
HUMAN CAPITAL	110	51.4	63.9
ENVIRONMENT AND NATURAL HAZARDS	=43	70.8	66.9
GLOBAL APPEAL	100	2.2	13.2
-			

Fonte: The Economist Intelligence Unit Limited 2012 (jan 2012)

Star/radar plots

Ícones codificados por cor

schematic representation of 6-dim. data

- Ícones como arrays de células coloridas
- Cada célula representa um atributo
- Disposição dos ícones é dependente da consulta
- (Levkowitz, 1991) (Keim, 1994)

Técnicas orientadas a pixel

visualization of six-dim. data

- Uma janela para cada atributo, com um elemento por pixel
- Cor correspondente ao valor do atributo

Técnicas orientadas a pixel Categorias relativas à consulta sendo realizada

- Independentes da consulta
 - Técnicas de preenchimento em curvas
 - Técnicas de padrão recursivo
- Dependentes da consulta
 - Espiral
 - Orientada pelos eixos
 - Segmentos de círculo

Preenchimento em curvas

Peano-Hilbert curve (6 iterations)

Morton (Z) Curve (4 iterations)

Técnicas dependentes da consulta

- Preenchimento baseado na distância entre as tuplas retornadas e uma tupla de consulta (chave de busca)
 - Tupla = (a I, a2, a3, ..., an)
 - Chave de busca = (q1, q2, q3, ..., qn)
 - Distância tupla-chave = (d1, d2, d3, ..., dn)
 - Mapear as distâncias para cores
 - Cada valor de distância (de um elemento) é mapeado para um pixel, numa janela diferente
 - Cada janela mostra um atributo

VisDB

Keim, 1994 Espiral

d2 d1 d3

arrangement in spiral form according to the overall distance

result of a complex query

VisDB

Keim, 1994

Espiral

UFRGS

Segmentos de círculo

Arrangement of Attributes on the Segments of a Circle

Arrangement of 8-dim. Data

Arrangement of 15-dim. Data

Segmentos de círculo

Técnicas de projeção geométricas

- Os dados são mapeados para representações visuais, através de algum tipo de projeção geométrica
 - Gráficos 2D tradicionais
 - Matriz de scatter plots
 - Coordenadas paralelas
 - Coordenadas radiais
 - Projeções multidimensionais

Matriz de gráficos tipo scatterplot

- Simples de obter
- Todos os pares de gráficos possíveis
- Relacionam um atributo a cada um dos outros

https://mbostock.github.io/d3/talk/20111116/iris-splom.html

ScatterDice (Elmqvist et al., 2008)

Matriz de gráficos (small multiples)

Stacked bar chart

Bar chart

Petrillo, Fabio et al. Interactive Analysis of Likert Scale Data using a Multichart Visualization Tool. In: 10th Brazilian Symposium on Human Factors in Computing Systems and the 5th Latin American Conference on Human-Computer Interaction (IHC+CLIHC 2011). Porto de Galinhas, Recife, PE, 2011. p. 358-365.

Stacked x grouped bar chats

http://bl.ocks.org/mbostock/3943967

Coordenadas paralelas

- Alfred Inselberg, 1985, 1990
- Cada atributo é representado por um eixo vertical
- Cada elemento no conjunto de dados corresponde a uma linha conectando os valores dos atributos nos diferentes eixos

Coordenadas paralelas

(0,1,-1,2)

- Pontos a considerar:
 - Ordem dos eixos
 - Escala de cada eixo

Coordenadas paralelas

- Densidade elevada para múltiplos atributos, grandes conjuntos de dados
- Exemplo:
 - Função 5D amostrada fixando as variáveis independentes

http://www.xdat.org/

Implementação com o Protovis: http://mbostock.github.com/protovis/ex/cars.html

Na D3: https://mbostock.github.io/d3/talk/20111116/iris-parallel.html

Parallel Sets: dados categóricos

Star coordinates (Kandogan, 2001)

Cartesianas

Star coordinates

P=(v1,v2,v3,v4,v5,v6,v7,v8)

Mapeamento:

- itens \rightarrow pontos
- Σ vetores de atributos \rightarrow (x,y)

Coordenadas radiais: RadViz

Cada elemento é representado por um ponto no espaço do círculo.

Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E. **DNA visual and analytic data mining**. In Visualization'97. pp. 437-441

Coordenadas radiais: RadViz

Cada elemento é representado por um ponto no espaço do círculo.

A posição de um ponto depende da posição das dimensões ao redor do círculo:

- Âncoras dimensionais
- Molas conectam cada ponto às "âncoras dimensionais"

Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E. **DNA visual and analytic data mining**. In Visualization'97. pp. 437-441

- Constantes das molas são dadas pelos valores das coordenadas
 - Os valores são previamente normalizados, localmente

 Valores maiores dos atributos (ou dimensões) atraem o ponto projetado para regiões próximas aos eixos associados a esses atributos.

 Pontos com valores de atributos aproximadamente iguais são posicionados próximos ao centro do círculo

 Pontos com valores similares associados a dimensões em eixos opostos ficam, também, próximos ao centro.

- Cálculo simples:
 - Para todas as dimensões x_{i,i} de um dado elemento de dado

$$\mathbf{X}_{j}$$

- $fx = x_{i,j} * x \hat{a} n cora_i$
- fy = $x_{i,i}$ * yâncora_i
- soma $+= x_{i,i}$
- Ponto $(x_i, y_i) = (fx / soma, fy/soma)$
- Transformar segundo a escala e reposicionar ponto de acordo com tamanho e posição do círculo
- Uma implementação encontrada na web ...
 - http://www.cs.middlebury.edu/~bwbrown/cs465/radviz/ implementation.html

Técnicas iconográficas X projeções

