FUN with Complexity: Walking through Doors is Hard, even without Staircases

Manuel Frohn

RWTH Aachen

2024

Content

Theory

PSPACE-Complexity 1-PlayerMotionPlaning Basic Door Device PSPACE-hardness of doors

PSPACE-Complexity

A given problem requires a polynomial amount of memory in relation to the input, to be solved \Leftrightarrow The problem is in PSPACE

SAT

Quantified SAT

$$x_1 \wedge x_2 \vee \neg x_3$$

$$\forall x_1 \exists x_2 : x_1 \land x_2 \lor \neg x_3$$

1-PlayerMotionPlaning

Given: Environment, Agent, Goal Question: Is the goal achivable

Basic Door Device

PSPACE-hardness of doors

Theorem

If a game features door devices which each are controlled by an open and a close preasure plate and the agent has to navigate from entrance to exit, then the game is PSPACE-hard

True Quantified SAT

$$\forall x \exists y \exists z : (\overline{x} \lor y \lor z) \land (\overline{x} \lor \overline{y} \lor z) \land (\lor x \lor y \lor \overline{z})$$

All-Quantor

 $\forall x$

Gadget

Door Device - Variants

PSpace-Hardness - Open optinal door

The Diode

PSpace-Hardness - Directed Door

Self closing doors

Self closing doors - Variants

