#### 1

# **ASSIGNMENT-7**

### **R.YAMINI**

## 1 QUESTION No-2.72(k) (QUADRATIC FORMS)

Find the equation of the ellipse, with major axis on x-axis and passing through the points  $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$  and  $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$ 

### 2 Solution

Given,

$$\mathbf{p} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \mathbf{q} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} \tag{2.0.1}$$

are the points on the ellipse. The general form of the conic is given by

$$\mathbf{x}^{\mathsf{T}}\mathbf{D}\mathbf{x} = 1, \quad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \lambda_1, \lambda_2 > 0 \quad (2.0.2)$$

The points  $\mathbf{p}$  and  $\mathbf{q}$  satisfy (2.0.2), and thus we have

$$\mathbf{p}^{\mathsf{T}}\mathbf{D}\mathbf{p} = 1,\tag{2.0.3}$$

$$\mathbf{q}^{\mathsf{T}}\mathbf{D}\mathbf{q} = 1 \tag{2.0.4}$$

which can be further expressed as,

$$\mathbf{p}^{\mathsf{T}}\mathbf{P}\mathbf{d} = 1,$$
  
$$\mathbf{q}^{\mathsf{T}}\mathbf{Q}\mathbf{d} = 1$$
 (2.0.5)

where,

$$\mathbf{d} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}. \tag{2.0.6}$$

(2.0.5) can then be expressed as,

$$\begin{pmatrix} \mathbf{p}^{\mathsf{T}} \mathbf{P} \\ \mathbf{q}^{\mathsf{T}} \mathbf{Q} \end{pmatrix} \mathbf{d} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (2.0.7)

$$\begin{pmatrix} 16 & 9 \\ 36 & 4 \end{pmatrix} \mathbf{d} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{2.0.8}$$

The augmented matrix is

$$\begin{pmatrix} 16 & 9 & 1 \\ 36 & 4 & 1 \end{pmatrix} \tag{2.0.9}$$

and we perform row reduction,

$$\begin{pmatrix} 16 & 9 & 1 \\ 1 & 16 & 1 \end{pmatrix} \xrightarrow{R_1 \to \frac{R_1}{16}} \begin{pmatrix} 1 & \frac{9}{16} & \frac{1}{16} \\ 36 & 4 & 1 \end{pmatrix} \tag{2.0.10}$$

$$\stackrel{R_2 \to R_2 - 36R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{9}{16} & \frac{1}{16} \\ 0 & \frac{-65}{4} & \frac{-3}{4} \end{pmatrix} \tag{2.0.11}$$

$$\stackrel{R_2 \to \frac{-4}{65}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{9}{16} & \frac{1}{16} \\ 0 & 1 & \frac{1}{13} \end{pmatrix} \qquad (2.0.12)$$

$$\stackrel{R_1 \to R_1 - \frac{9}{16}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{1}{52} \\ 0 & 1 & \frac{1}{13} \end{pmatrix} \tag{2.0.13}$$

$$\implies \mathbf{d} = \begin{pmatrix} \frac{1}{52} \\ \frac{1}{13} \end{pmatrix}. \tag{2.0.14}$$

Thus we have,

$$\mathbf{D} = \begin{pmatrix} \frac{1}{52} & 0\\ 0 & \frac{1}{13} \end{pmatrix} \tag{2.0.15}$$

Hence equation of ellipse is given by,

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} \frac{1}{52} & 0\\ 0 & \frac{1}{13} \end{pmatrix} \mathbf{x} = 1 \tag{2.0.16}$$

The plot of the ellipse is given below



Fig. 2.1: Plot of standard ellipse

The center and axes of the ellipse is given as

$$\mathbf{c} = \mathbf{0}; \frac{1}{\sqrt{\lambda_1}} = \sqrt{52}, \frac{1}{\sqrt{\lambda_2}} = \sqrt{13}.$$
 (2.0.17)

Now let us consider the case when the ellipse is not in the standard form then we have the center to be  $\mathbf{c} = \begin{pmatrix} \beta \\ 0 \end{pmatrix}$ . The equation is given by:

$$(\mathbf{x} - \mathbf{c})^{\mathsf{T}} \mathbf{D} (\mathbf{x} - \mathbf{c}) = 1 \tag{2.0.18}$$

where **D** is a diagonal matrix.

 $\therefore$  **p**, **q** satisfy (2.0.18), we have

$$(\mathbf{p} - \mathbf{c})^{\mathsf{T}} \mathbf{D} (\mathbf{p} - \mathbf{c}) = 1, \tag{2.0.19}$$

$$(\mathbf{q} - \mathbf{c})^{\mathsf{T}} \mathbf{D} (\mathbf{q} - \mathbf{c}) = 1, \tag{2.0.20}$$

which can be simplified as

$$2(\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{D} \mathbf{c} = \mathbf{p}^{\mathsf{T}} \mathbf{D} \mathbf{p} - \mathbf{q}^{\mathsf{T}} \mathbf{D} \mathbf{q}$$
 (2.0.21)

Using the identity,

$$(\mathbf{p}^{\mathsf{T}} - \mathbf{q}^{\mathsf{T}})\mathbf{D}(\mathbf{p} + \mathbf{q}) = \mathbf{p}^{\mathsf{T}}\mathbf{D}\mathbf{p} - \mathbf{q}^{\mathsf{T}}\mathbf{D}\mathbf{q}$$
 (2.0.22)

in the equation (2.0.21)

$$2(\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{D} \mathbf{c} = (\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{D} (\mathbf{p} + \mathbf{q})$$
 (2.0.23)

$$\implies (\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{D} (2\mathbf{c} - (\mathbf{p} + \mathbf{q})) \qquad (2.0.24)$$

Thus c can be expressed in parametric form as

$$\mathbf{c} = \frac{1}{2}((\mathbf{p} + \mathbf{q}) + k\mathbf{D}^{-1}\mathbf{m})$$
 (2.0.25)

where,

$$(\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{m} = 0 \tag{2.0.26}$$

and k is a constant. Substituting numerical values in (2.0.26),

$$\mathbf{p} - \mathbf{q} = \begin{pmatrix} -2\\1 \end{pmatrix} \implies \mathbf{m} = \begin{pmatrix} -1\\-2 \end{pmatrix}$$
 (2.0.27)

and

$$\mathbf{p} + \mathbf{q} = \begin{pmatrix} 10 \\ 5 \end{pmatrix} \tag{2.0.28}$$

substituting in (2.0.25), we get

$$\begin{pmatrix} \beta \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 10 \\ 5 \end{pmatrix} + k \begin{pmatrix} \frac{1}{\lambda_1} & 0 \\ 0 & \frac{1}{\lambda_2} \end{pmatrix} \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
 (2.0.29)

From the given information, the X-axis is the major axis. Hence,

$$\frac{\lambda_2}{\lambda_1} > 1 \implies \frac{20 - 4\beta}{5} > 1 \tag{2.0.30}$$

$$\beta < 3.75$$
 (2.0.31)

The possible ellipse satisfying the above conditions

are plotted below



Fig. 2.2: Ellipses passing through the two points with X axis as major axis