Lecture Notes 2: Random Variables

Professor: Zhihua Zhang

2 Random Variables

Definition 2.1. A random variable X is a measure map $X : \Omega \to \mathbb{R}$ that assigns a real number $X(\omega)$ to each out come Ω and "measurable" means that for every X, $\{\omega : X(\omega) \le x\} \in \mathcal{A}$.

Example 2.1. Flip a coin ten times. Let $X(\omega)$ be a number of heads in the sequence ω . If w = HHHTTTHHTT, $X(\omega)=5$.

Example 2.2. Let $\Omega = \{(x,y)|x^2 + y^2 \le 1\}$. Consider drawing a point at random from Ω . $\omega = (x,y) \in \Omega$, $X(\omega) = x, X(\omega) = y, X(\omega) = x + y$ are possible random variables.

Definition 2.2. Let
$$A \subset \mathbb{R}$$
, $X^{-1} = \{\omega \in \Omega : X(\omega) \in A\} \in \mathcal{A}$. $P(X \in A) \triangleq P(X^{-1}(A)) = P(\{\omega \in \Omega | X(\omega) \in A\})$. $P(X = x) = P(X^{-1}(x)) = P(\{\omega \in \Omega | X(\omega) = x\})$

Note for simplicity, we will use $\{X>0\}$ to denote $\{\omega\in\Omega:X(\omega)>0\},\,P(X>0)$ to denote $P(\{X>0\})$.

Example 2.3. Flip a coin twice and let X be the number of heads.

. 1	- · · · I	
ω	$P(\{\omega\})$	$X(\omega)$
$\mid TT$	1/4	0
TH	1/4	1
$\mid HT$	1/4	1
HH	1/4	2
X	P(X)	
0	1/4	
1	1/2	
2	1/4	

2.1 Distribution Function

Cumulative distribution function (or distribution function). CDF is the function $F_X : \mathbb{R} \to [0, 1]$.

$$F_X(x) = P(X \le x).$$

Example 2.4. From example 1.3, we can get

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1/4 & 0 \le x < 1 \\ 3/4 & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

Theorem 2.1. Let X have CDF F, Y have CDF G. If F(x) = G(x) for all x, then $P(X \in A) = P(Y \in A)$ for all measurable A.

Theorem 2.2. A function F mapping $\mathbb{R} \to [0,1]$ is a CDF for probability iff

- 1. F is non-deceasing, $x_1 < x_2 \implies F(x_1) \le F(x_2)$.
- 2. F is normalized, i.e. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$.
- 3. F is right-continuous. $F(x) = F(x^+)$, where $F(x^+) = \lim_{y \to x, y > x} F(y)$.

Now we will get the proof of right-continuous.

Proof: Let $y_1 > y_2 > \cdots$, and $\lim_{n \to +\infty} y_n = x$.

Then $F(y_1) = P(Y \le y_1), F(y_2) = P(Y \le y_2), \dots$

Let $A_i = (-\infty, y_i]$ and $A = (-\infty, x]$.

Note that $A = \bigcap_{i=1}^{\infty} A_i$ and $A_1 \supset A_2 \supset \cdots$

 $\lim_{i\to\infty} P(A_i) = P(\cap_{i=1}^{\infty} A_i).$

 $F(x) = P(A) = P(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} P(A_i) = \lim_{i \to \infty} F(y_i) = F(x^+).$