

Réseaux

ASR3 Réseaux

Novembre 2013

Patrick FELIX

patrick.felix@iut.u-bordeaux1.fr

Dhouha GRISSA

dgrissa@isima.fr

Département INFO – IUT Bordeaux 1

Planning prévisionnel

1. Mercredi 6 novembre

Cours "Architecture de réseaux - Modèle OSI - Architecture TCP/IP"

2. Semaine du 11 novembre.
TD "Analyse de trace Ethernet/IP/TCP"

Semaine du 18 novembre TD "Routage IP"

4. Semaine du 25 novembre TD-Machine "Routage IP - mise en œuvre avec UML »

Mercredi 4 décembre.

Cours "Interface Socket"

6. Semaine du 9 décembre.

Machine "Client pop3" [Distribuer TM, à rendre le samedi ?? janvier 2013]

 Semaine du 9 décembre Machine "Exemples de protocoles 'application': FTP »

8. Mercredi 18 décembre.
Cours « Protocoles 'application' »

DS ASR3 Réseaux :
10/01/2014 à 14h

9. Semaine du 6 janvier Durée : 1h30

Machine "Exemples de protocoles 'application': FTP"

COURS 1: ARCHITECTURE DE RÉSEAUX

- 1. Logiciel de réseau
- 2. Modèle OSI
- 3. Architecture TCP/IP

ARCHITECTURE DE RÉSEAUX

- 1. Logiciel de réseau
- 2. Modèle OSI
- 3. Architecture TCP/IP

Fonctions d'un logiciel de réseau

- · Le dialogue entre processus distant,
- Le choix d'un chemin pour l'acheminement de l'information,
- L'utilisation d'un réseau local,
- Détection d'erreur,
- Les reprises en cas d'erreur,
- etc.

Découpage en couches

- Créer des couches distinctes pour traiter les fonctions différentes
- Créer une couche lorsque le traitement se fait à un niveau d'abstraction différent
- Permettre des changements dans une couche sans affecter les autres couches.

Couches, protocoles & interfaces

Service - Entité - Protocole

SDU(N):

unité de données spécifique au service(N).

• PDU(N):

unité de données spécifique au protocole(N), adaptée à la transmission, constituée par les informations de contrôle du protocole (PCI(N)) et éventuellement par des données issues du SDU(N) (Exemple : une trame, un paquet, etc.)

ARCHITECTURE DE RÉSEAUX

- 1. Logiciel de réseau
- 2. Modèle OSI
- 3. Architecture TCP/IP

Objectifs du modèle OSI* de l'ISO**

- Permettre l'interconnexion de systèmes hétérogènes (systèmes ouverts)
- Définir une norme
- Faciliter l'implémentation
- Fournir une Spécification

(un ensemble de spécifications)

- (*): Open Systems Interconnection
- (**): International Standard Organization

Résultats: 7 couches

Echange d'informations entre entités

Dialecte du modèle OSI...

- T = Transport (couche transport),
- N = Network (couche réseau),
- L = Link (couche liaison),
- Exemples
 - N_SDU (paquet pour X25.3)
 - L_SDU (trame pour HDLC)
 - P_SDU (suite de bits)

Principe d'encapsulation

Les Couches Physique, Liaison et Réseau

- Physique : transmission de séquences de bits
- Liaison : transfert sans erreur de trames
- Réseau : acheminement et routage de paquets à travers différents réseaux

La Couche Transport

Offre un réel service bout-en-bout avec :

- Détection d'erreurs
- Reprise sur erreur
- Contrôle de flux
- Multiplexage/Démultiplexage:
- •

La Couche Session

- Etablissement et maintien des connexions entre processus,
- Synchronisation,
- Gestion du droit de parole,
- Pas de contrôle d'erreur,
- Etc.

La Couche Présentation

Syntaxe et sémantique des informations.

- le code utilisé (EBCDIC, ASCII, ...)
- la taille des mots : (16, 32, ...)
- la représentation des valeurs négatives (complément à 1, complément à 2).
- la numérotation des bits
- cryptage / compression des données

La Couche Application

Des services utiles aux utilisateurs avec des protocoles précis.

- Les messageries (X400).
- Le transfert de fichiers (FTAM).
- Le terminal virtuel (VTS: Virtual Terminal Service).
- Etc.

Deux caractéristiques des protocoles OSI

- Mode connecté
- Transfert fiable

ARCHITECTURE DE RÉSEAUX

- 1. Logiciel de réseau
- 2. Modèle OSI
- 3. Architecture TCP/IP

Protocoles TCP/IP

- Historique
 - 1972: spécifications de TCP/IP.
 - 1980: TCP/IP fait partie d'UNIX BSD 4.1.
- Internet/Intranet/etc.
- Couches 3 et 4 du modèle OSI
 - TCP : couche Transport
 - IP : couche Réseau

Correspondance OSI et TCP/IP

Application		Application
Présentation		
Session		
Transport		TCP
Réseau		IP
Liaison		2
Physique		1
	Support d'interconnexion matériel	

Les protocoles TCP et IP

Protocole IP

- protocole réseau
- remise non fiable
- mode non connecté

protocole TCP

- protocole de transfert fiable en mode connecté
- utile car IP est un protocole de remise non fiable
- du style de la couche transport ISO (classe 4)

IP: INTERCONNECTION PROTOCOL

Protocole routé et protocole de routage

- Un protocole routé <u>transporte les données</u> d'une source vers une destination
 - Exemple : IP (Internet Protocol), IPX (Internetwork Packet Exchange) de Novell, AppleTalk, etc.
- Un protocole de routage partage dynamiquement des informations entre routeurs pour <u>maintenir les tables de routage</u> de ces routeurs. La table de routage va permettre de choisir un chemin optimum pour l'acheminement de données
 - Exemples de protocoles de routage prenant en charge IP : RIP (Routing Information Protocol), IGRP (Interior Gateway Routing Protocol), EIGRP (Enhanced Interior Gateway Routing Protocol) et OSPF (Open Shortest Path First)

Protocoles de routage dynamique

Système autonome : ensemble « homogène » de réseaux sous la responsabilité d'une autorité administrative.

2 catégories de protocoles de routage dynamique

- Protocoles IGP (Interior Gateway Routing): utilisés <u>pour router</u>
 <u>à l'intérieur d'un système autonome</u> (RIP, EIGRP Protocole de routage propriétaire Cisco, OSPF)
 - Protocoles de routage à états de lien (algorithme de Dijkstra)
 - Protocoles de routage à vecteur de distance,
- Protocoles EGP (Exterior Routing Protocols): utilisés <u>pour</u> <u>échanger les informations entre les systèmes autonomes</u> (BGPv4).

Adressage IP

- IP V4 : Adressage sur 4 octets (147.210.94.1)
- Différentes parties d'une adresse IP
 - Partie réseau (avec une partie sous-réseau optionnelle)
 - Partie hôte
- Classes de réseau (Classful)

```
• A: 0.0.0.0 → 127.255.255.255 (grand)
```

[0 ld. Réseau (7bits) ld. Machine (24bits)]

```
• B: 128.0.0.0 → 191.255.255.255 (moyen)
```

• [1 0 ld. Réseau (14bits) ld. Machine (16bits)]

```
• C: 192.0.0.0 → 223.255.255.255 (petit)
```

[1 1 0 ld. Réseau (21bits) ld. Machine (8bits)]

```
• D: 224.0.0.0 → 239.255.255.255 (diffusion)
```

• E: 240.0.0.0 → 255.255.255.255 (divers)

Adressage IP

- Masque de sous-réseau
 - Permet de connaître les 2 parties d'une adresse IP
 - En particulier : le réseau associé à une adresse
 - Exemple: 147.210.94.100
 - Classe B : 128.0.0.0 → 191.255.255.255 (moyen)
 - [1 0 ld. Réseau (14bits) ld. Machine (16bits)]
 - Masque 255.255.0.0
 - 11111111111111111100000000.00000000
 - 16 bits pour l'adresse du réseau (et 16 bits pour l'adresse de l'hôte)
 - 147.210.94.100/16
- But : Subdivision d'un réseau en plusieurs sousréseaux

Adressage IP

- Depuis 1990 : pénurie des adresses IP d'où :
 - Abolition du découpage en « classe » :
 - Classless Inter-Domain Routing (CIDR): le découpage ne peut plus être déduit de l'adresse IP
 - Découpage plus fin de l'espace d'adressage Classless par rapport à l'adressage Classful
 - Adresses privées
 - 10.0.0.0/8 : 10.0.0.1 à 10.255.255.254 (16 777 216 adresses)
 - 172.16.0.0/12 : 172.16.0.1 à 172.31.255.254 (1 048 576 adresses)
 - 192.168.0.0/16 : 192.168.0.1 à 192.168.255.254 (65 536 adresses)
 - Traduction d'adresse réseau (NAT)
 - Attribution dynamique des adresses
 - IP V6 (128 (16x8) bits au lieu de 32 (4x8) bits)

Schéma d'une interconnexion

Gram

192.168.20.128

255.255.255.128

Résolution d'adresse

- Chaque machine a :
 - Une adresse physique (MAC) dans son réseau
 - Une adresse IP au niveau interconnexion

- Correspondance entre les 2 adresses
 - protocole ARP
 - Address Resolution Protocol
 - Adresse physique ->Adresse IP
 - protocole RARP
 - Reverse Address Resolution Protocol
 - Adresse IP ->Adresse physique

Résolution d'adresse

Protocole IP Datagramme IP

0 4	8	16		24	31	
VERS. LGEN	T TYPE SERVICE	LGR TOTALE				
IDE NTIFIC ATION		DRAP	DEPL-FRAG			
DUREE DE VI	E PROTOCOLE	TOTAL DE CONTROLE EN-TETE				
ADRESSE IP SOURCE						
ADRESSE IP DESTINATION						
OPTIONS IP EVENTUELLES BOURRA			AGE			
DONNEES						
* * *						

Datagramme IP

- VERS
 - numéro de version du protocole utilisé (4)
- LGENT
 - longueur de l'entête du datagramme
- TYPE SERVICE
 - définit comment le datagramme doit être acheminé
 - priorité (0 à 7)
 - priorité au délai
 - priorité au débit
 - priorité à la fiabilité
- LGR
 - longueur total

Datagramme IP

- IDENTIFICATION, DRAP, DEPL-FRAG
 - contrôle la fragmentation
 - IDENTIFICATION permet de connaître le datagramme auquel appartient le fragment.
 - DEPL-FRAG donne la position du fragment courant dans le datagramme initial en multiples de 8 octets.
 - DRAP indique si le fragment est le dernier du datagramme.
- DUREE DE VIE
 - décrémenté à chaque traversée, détruit si égal à 0.
- PROTOCOLE
 - protocole de la couche supérieure qui a créé le datagramme,

Numéros de protocole

\$ more /etc/protocols

```
# The form for each entry is:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 #
<official protocol name>official 
Internet (IP) protocols
                                                                                                                                                                                                                 # internet control message protocol
                                                                1
icmp
                                                                                                                                 ICMP
                                                                  6
                                                                                                                                 TCP
                                                                                                                                                                                                                 # transmission control protocol
tcp
                                                                17
                                                                                                                                 UDP
                                                                                                                                                                                                                 # user datagram protocol
udp
```


TCP:TRANSMISSION CONTROL PROTOCOL

Protocole TCP

Principes

- message est un flot de octets (UNIX !)
 - Connexion non structurée : les applications connaissent la 'structure' du flot.
 - Numéros de séquence
- mode bidirectionnel simultané (technique dite de superposition : piggybacking)
- mécanisme d'anticipation (fenêtre glissante):mise en œuvre complexe.
 - taille de la fenêtre d'émission variable (contrôle de flux)
 - on acquitte sur le dernier octet d'une "séquence sans trou"
 - · retransmission si temporisateur expire
- port et circuit virtuel
 - Numéros réservés : 20/ftp-data, 21/ftp, 23/telnet...
- ouverture passive/active
- segment et taille maximale de segment
- gestion de la congestion
- Pour en savoir plus : rfc793, rfc1122...

0 4	8	16	24	31	
PORT	TCP SOURCE	PORT DESTINATION			
NUMERO DE SEQUENCE					
NUMERO D'ACCUSE DE RECEPTION					
LGR ENT. RESER	RVE BITS CODE	FENETRE			
TOTAL DE CONTROLE POINTE			UR D'URGENCE		
OPTIONS EVENTUELLE			BOURRAGE		
DONNEES					
* * *					

- PORT SOURCE, PORT DESTINATION
 - indiquent les numéros de port qui identifient les programmes d'application aux deux extrémités.
- NUMERO D'ACCUSE DE RECEPTION
 - indique le numéro du prochain octet attendu par le récepteur.
- NUMERO DE SEQUENCE
 - est celui du premier octet du segment.
- LGR ENT.
 - contient la longueur de l'en-tête en multiple de 32 bits.
- FENETRE
 - permet d'interagir sur la taille de la fenêtre émission de l'autre extrémité.

- champ BITS CODE
 - permet de préciser la ou les fonctions du segment:
 - URG: Le pointeur de données urgentes est valide
 - ACK: Le champ accusé de réception est valide
 - RST: Réinitialise la connexion.
 - SYN: Synchronise le numéro de séquence
 - FIN: L'émetteur a atteint la fin de son flot de données
 - PSH: oblige TCP-émetteur à envoyer toutes les données même si le tampon n'est pas plein et TCPrécepteur à donner immédiatement les données à l'application
 - · exemple:
 - lors de la connexion (bit SYN), les extrémités déterminent les numéros de séquence initiaux

POINTEUR D'URGENCE

 permet de repérer dans le flot de données la position de données urgentes (qui doivent "doubler" les autres données) lorsque le bit URG est positionné.

OPTION

• permet entre autres la négociation de la taille de segment à la connexion.

44