

SÍÍLABO CONCRETO ARMADO I

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VIII SEMESTRE ACADÉMICO 2018-I

I. CÓDIGO DEL CURSO : 09027508040

II. CRÉDITOS : 04

III. REQUISITOS : 09027107040 Análisis Estructural I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Concreto Armado I pertenece al área curricular de Tecnología y es de naturaleza teórico-práctica y experimental. Le permite al estudiante de ingeniería civil desarrollar la capacidad para analizar y diseñar estructuras elementales –vigas, losas y columnas- aplicando los conceptos y principios básicos y las especificaciones estipuladas en los reglamentos de construcciones. El desarrollo del curso comprende las unidades de aprendizaje siguientes: I. Análisis y diseño de secciones por flexión. II. Diseño por cortante. III. Adherencia y longitud de desarrollo. IV. Análisis y diseño de columnas

VI. FUENTES DE CONSULTA

- American Concrete Institute (2011). ACI-318M-11. Reglamento Para Concreto Estructural.
- Limbrunner, G. F. Reinforced Concrete Design. (7th Edition). United States of America
- McGregor. y Wight J. (2012). Reinforced Concrete, Mechanics and Design. United States of America: Pearson Prentice Hall,

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: ANÁLISIS Y DISEÑO DE SECCIONES POR FLEXIÓN.

OBJETIVOS DE APRENDIZAJE

- Emplear fórmulas para el diseño de vigas de sección rectangular.
- Aplicar los conceptos teóricos para resolver los problemas.
- Utilizar las especificaciones del reglamento correspondiente a esta unidad.

PRIMERA SEMANA

Primera sesión:

El proceso del diseño. Métodos de diseño del reglamento ACI. Ventajas y desventajas del concreto.

Segunda sesión:

Concreto simple y armado. Propiedades del acero. Comportamiento del concreto en la falla.

SEGUNDA SEMANA

Primera sesión:

Resolución de problemas: concreto simple y armado.

Segunda sesión:

Análisis de secciones rectangulares simplemente reforzadas. Momento de diseño, cuantías de acero.

TERCERA SEMANA

Primera sesión:

Resolución de problemas: análisis y diseño de secciones rectangulares simplemente reforzadas.

Segunda sesión:

Práctica calificada 1.

CUARTA SEMANA

Primera sesión:

Losas macizas en una dirección. Requerimientos de Diseño. Diseño de Losas 1D.

Segunda sesión:

Resolución de problemas: losas macizas. Resolución de problemas: losas macizas.

QUINTA SEMANA

Primera sesión:

Secciones rectangulares doblemente reforzadas. Cuantías de acero.

Segunda sesión:

Análisis de secciones doblemente reforzadas.

SEXTA SEMANA

Primera sesión:

Diseño de vigas doblemente reforzadas.

Segunda sesión:

Práctica calificada 2.

SÉPTIMA SEMANA

Primera sesión:

Secciones no rectangulares. Cuantías de Acero.

Segunda sesión:

Análisis de sección. Análisis y diseño.

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión:

Losas aligeradas.

Segunda sesión:

Problemas de diseño de losas macizas.

UNIDAD II: DISEÑO POR CORTANTE

OBJETIVOS DE APRENDIZAJE

- Analizar y diseñar vigas por cortante.
- Diseñar estribos verticales
- Utilizar las especificaciones del reglamento correspondiente.

DÉCIMA SEMANA

Primera sesión:

Secciones sometidas a fuerza cortante.

Segunda sesión:

Resolución de problemas.

UNIDAD III: ADHERENCIA Y LONGITUD DE DESARROLLO

OBJETIVOS DE APRENDIZAJE

- Analizar y diseñar vigas por adherencia.
- Calcular las longitudes de desarrollo.
- Determinar los puntos de corte teórico y práctico de varillas.
- Diseñar vigas en forma global.
- Utilizar las especificaciones del reglamento correspondiente.

UNDÉCIMA SEMANA

Primera sesión:

Adherencia y anclaje del refuerzo. Longitudes de desarrollo por tracción.

Segunda sesión:

Práctica calificada 3.

DUODÉCIMA SEMANA

Primera sesión:

Resolución de problemas: longitudes de desarrollo por tracción.

Segunda sesión:

Longitud de desarrollo por compresión y flexión. Traslapes por tensión y compresión.

DECIMOTERCERA SEMANA

Primera sesión:

Resolución de problemas: Longitudes de desarrollo por compresión y flexión.

Segunda sesión:

Puntos de corte de las varillas por flexión. Diseño integral de vigas.

UNIDAD IV: ANÁLISIS Y DISEÑO DE COLUMNAS

OBJETIVOS DE APRENDIZAJE

- Analizar y diseñar columnas cortas y esbeltas.
- Dibujar los diagramas de interacción P-M.
- Diseñar los estribos de una columna.
- Utilizar las especificaciones del reglamento correspondiente.

DECIMOCUARTA SEMANA

Primera sesión:

Columnas cortas: Análisis y diseño.

Segunda sesión: Práctica calificada 4.

DECIMOQUINTA SEMANA

Primera sesión:

Análisis de columnas esbeltas.

Segunda sesión:

Resolución de problemas: análisis de columnas esbeltas.

DECIMASEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

•	Matemáticas y Ciencias Básicas	0
•	Tópicos de Ingeniería	4
•	Educación general	0

IX. PROCEDIMIENTOS DIDÁCTICOS

Método expositivo-interactivo. Disertación docente y exposición del estudiante.

Método de discusión guiada. Conducción de grupo para abordar situaciones y arribar a conclusiones y recomendaciones.

Método de demostración-ejecución. El docente ejecuta para demostrar cómo y con qué se hace, y el estudiante ejecuta para demostrar qué aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor una para cada estudiante del curso<ecran, proyector de multimedia.

Materiales: Manual universitario. Programa CAD (AutoCAD 2009). Aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= 0.30*PE+0.30*EP+0.40*EF

PE= (P1+P2+P3+P4)/4

EP = Examen parcial

Donde:

PF = Promedio final.

PE = Promedio de evaluaciones

EF= Examen final P1,..., P4 = Prácticas Calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes) para la carrera Profesional de Ingeniería Civil, se establece en la siguiente tabla:

	Siendo K =clave R =relacionado vacío = no aplica			
(a)	Habilidad para aplicar conocimientos de matemática, ciencias, computación e ingeniería			
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos			
(c)	Habilidad para analizar problemas y definir los requerimientos apropiados para la solución			
(d)	Habilidad para diseñar, implementar y evaluar sistemas de información, componentes o procesos que satisfagan las necesidades requeridas			
(e)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario			
(f)	Comprensión de lo que es la responsabilidad profesional y temas éticos, legales, seguridad y sociales			
(g)	Habilidad para comunicarse con efectividad			
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de sistemas de información dentro de un contexto social y global			
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R		
(j)	Conocimiento de los principales temas contemporáneos			
(k)	Habilidad para usar técnicas y herramientas modernas necesarias en el desarrollo de sistemas de información	R		
(I)	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico			

XIII. HORARIO, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
3	2	0

- b) Número de sesiones por semana: Dos sesiones
- c) **Duración**: 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Armando Navarro Peña

XV. FECHA:

La Molina, marzo de 2018.