Average Weight

71.2

			Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Now the **Predicted Weight** = $71.2 + (0.1 \times 16.8) = 72.9$

To review, the three ideas behind AdaBoost are...

- AdaBoost combines a lot of "weak learners" to make classifications. The weak learners are almost aways stumps.
 - 2) Some **stumps** get more say in the classification than others.
- Each stump is made by taking the previous stump's mistakes into account.

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

The **Total Error** for a stump is the sum of the weights associated with the *incorrectly* classified samples.

We use the **Total Error** to determine **Amount of Say** this stump has in the final classification with the following formula:

Amount of Say =
$$\frac{1}{2} \log(\frac{1 - \text{Total Error}}{\text{Total Error}})$$

Chest Pain			Heart Disease	Sample Weight	
Yes	Yes	205	Yes	1/8	
No	Yes	180	Yes	1/8	
Yes	No	210	Yes	1/8	
Yes	Yes	167	Yes	1/8	
No	Yes	156	No	1/8	
No	Yes	125	No	1/8	
Yes	No	168	No	1/8	
Yes	Yes	172	No	1/8	

	Ches	t Pain	
	1		
Yes Hear	t Disease	No Hear	t Disease
Correct	Incorrect	Correct	Incorrect
3	2	2	1

The sum of the weights

Total Error = for the incorrectly classified samples.

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

 $\begin{array}{l} \text{New Sample} = \text{sample weight} \times e^{\text{amount of say}} \\ \text{Weight} \end{array}$

This is the formula we will use to *increase* the **Sample Weight** for the sample that was *incorrectly* classified.

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

New Sample = sample weight $\times e^{-a}$ mount of say Weight

This is the formula we will use to decrease the Sample Weights.

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	New Weight	Norm. Weight
Yes	Yes	205	Yes	1/8	0.05	0.07
No	Yes	180	Yes	1/8	0.05	0.07
Yes	No	210	Yes	1/8	0.05	0.07
Yes	Yes	167	Yes	1/8	0.33	0.49
No	Yes	156	No	1/8	0.05	0.07
No	Yes	125	No	1/8	0.05	0.07
Yes	No	168	No	1/8	0.05	0.07
Yes	Yes	172	No	1/8	0.05	0.07

Now, when we add up the **New Sample** Weights, we get 1 (plus or minus a little rounding error).