

Collaborative Metric Learning

2023 Winter DSAIL Internship 한재민

Contents

- Introduction
- Background
- Method
- Experiments
- Conclusion
- Implementation

Metric

- (a) d(p,q) > 0 if $p \neq q$; d(p,p) = 0;
- $(b) \ d(p,q) = d(q,p)$
- (c) $d(p,q) \le d(p,r) + d(r,q)$ Triangle Inequality

metric = distance function

e.g. Manhattan Distance, Euclidean distance

Similarity

Similarity

If we make a similarity metric, we can say that (previous slide) the pictures are also similar due to triangle inequality.

$$\therefore d(pic_2, pic_3) \le d(pic_1, pic_2) + d(pic_1, pic_3)$$

→ Similarity propagation

Matrix Factorization

Does not meet triangle inequality(dot product)

→ **suboptimal** performance

Metric Learning

Distance is mostly used for representing relationship in ML field.

Metric Learning is an algorithm of achieving a suitable distance function which represents relationships between data well as we intended.

Metric Learning

Label-specified Data

$$S = \{(x_i, x_j) | x_i \text{ and } x_j \text{ are considered similar}\}$$

$$D = \{(x_i, x_j) | x_i \text{ and } x_j \text{ are considered dissimilar}\}$$

$$d_A(x_i, x_j) = \sqrt{(x_i - x_j)^T A(x_i - x_j)}$$
Mahalanobis distance

Goal

$$\min_{A} \sum_{(x_i, x_j) \in \mathcal{S}} d_A(x_i, x_j)^2$$

s.t.
$$\sum_{(x_i,x_j)\in\mathcal{D}} d_A(x_i,x_j)^2 \ge 1$$
 and $A \succeq 0$. Find such A

Metric Learning for kNN

Pulling all similar pairs and pushing dissimilar pairs is not always feasible.

Make each object's k-nearest neighbors be the objects that share the same class label with that object.

Terminology

Target neighbors of x : Data points we desire to be the closest to x

Impostors: The differently labeled inputs that invade the perimeter

LMNN(Large Margin Nearest Neighbor)

Two Loss functions

$$\mathcal{L}_{pull}(d) = \sum_{j \leadsto i} d(x_i, x_j)^2$$

$$\mathcal{L}_{push}(d) = \sum_{i, j \leadsto i} \sum_{k} (1 - y_{ik}) [1 + d(x_i, x_j)^2 - d(x_i, x_k)^2]_{+}$$

 $i \sim i : j$ is input i's target neighbor

 y_{ik} : indicator function(whether i and k are of the same class)

 $[z]_+$: standard **hinge** loss

Collaborative Filtering – Implicit Feedback

Original MF model

$$\min_{\mathbf{u}_*, \mathbf{v}_*} \sum_{r_{ij} \in \mathcal{K}} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2 + \lambda_u \|\mathbf{u}_i\|^2 + \lambda_v \|\mathbf{v}_i\|^2$$

- Observing only positive feedback
- Cannot regard unobserved interactions as negative

Weighted Regularized Matrix Factorization(WRMF)

$$\min_{\mathbf{u}_*, \mathbf{v}_*} \sum_{r_{ij} \in \mathcal{K}} c_{ij} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2 + \lambda_u ||\mathbf{u}_i||^2 + \lambda_v ||\mathbf{v}_i||^2$$

Bayesian Personalized Ranking(BPR)

The notion of "ratings" become less precise in implicit feedback.

→ Modeling the relative preferences between different items

BPR

$$\min_{\mathbf{u}_*, \mathbf{v}_*} \sum_{i \in \mathcal{I}} \sum_{(j,k) \in \mathcal{D}_i} -log \ \sigma(\mathbf{u}_i^T \mathbf{v}_j - \mathbf{u}_i^T \mathbf{v}_k) + \lambda_u \|\mathbf{u}_i\|^2 + \lambda_v \|\mathbf{v}_j\|^2$$

 D_i : set of item pairs (j, k) with following

i has interacted with j but not with item k

 \rightarrow (Assume) user *i* might be more interested in *j* than item k

Bayesian Personalized Ranking(BPR)

BPR does not sufficiently penalize the items that are at a lower rank.

It produces suboptimal results for Top-K recommendation tasks.

Model Formulation

 $d(i,j) = \|u_i - v_j\|$ **Euclidean distance**

 u_i : user vector, v_i : item vector

$$\mathcal{L}_{m}(d) = \sum_{(i,j)\in\mathcal{S}} \sum_{(i,k)\notin\mathcal{S}} w_{ij} [m + d(i,j)^{2} - d(i,k)^{2}]_{+}$$

j: an item user i liked, k: did **not** like

 w_{ij} : ranking loss weight

m: safety margin size

Model Formulation

Difference with LMNN

- User's target neighbors are the items he liked
 - No target neighbor for items
- No pull loss term
 - An item can be liked by many users
 - Push loss pulls positive items (when there are impostors)
- Adopting Weighted ranking loss
 - Improving Top-K recommendations

Approximated Ranking Weight

Weighted Approximate-Rank Pairwise(WARP)

```
w_{ij} = \log(rank_d(i,j) + 1)

d: given metric

J: total number of items

rank_d(i,j): rank of item j in user i's recommendation
```

- → It penalizes a positive item at a lower rank heavily.
- \rightarrow However, computing $rank_d(i,j)$ at each step is expensive.

Approximated Ranking Weight

Weighted Approximate-Rank Pairwise(WARP)

Estimate $rank_d(i,j)$ through negative sampling

N times of sampling to find an impostor k

$$\rightarrow$$
 approximate $rank_d(i,j)$ as $\left\lfloor \frac{J}{N} \right\rfloor$

For *U* samples and *M* impostors, approximate $rank_d(i,j)$ as $\left|\frac{J\times M}{II}\right|$

It follows Geometric distribution.

As it took N times, we can regard it as the mean of this distribution.

Thus, the probability is $\frac{1}{N'}$, which implies the number of negatives (\leftrightarrow positive) would be around $\frac{J}{N}$.

We can accept that there are $\frac{J}{N}$ items behind j.

Therefore, the rank can be approximated as $\left| \frac{J}{N} \right|$

Integrating Item Features

In metric learning, we obtained a matrix A.

We can regard it a transformation function projecting raw input into Euclidean space. (Fundamental Theorem of Linear Algebra)

→ We can integrate item features into recommendation system.

Integrating Item Features

$$\mathcal{L}_f(\theta, \mathbf{v}_*) = \sum_j \|f(\mathbf{x}_j, \theta) - \mathbf{v}_j\|^2$$

For a raw feature vector x_j of item j, we learn a transformation function f projecting x_j to the joint user-item space.

We treat $f(x_j)$ as a Gaussian prior to v_j and penalize j when v deviates from $f(x_j)$ with L2 loss function.

We choose Multi-Layer Perceptron(MLP) with dropout as a transformation function f

Regularization

kNN-based model is ineffective in a high-dimensional space if the data points spread too widely(the curse of dimensionality)

→ Bound all the user, item with in a unit sphere.

i.e.
$$||u_*||^2 \le 1$$
, $||v_*||^2 \le 1$

Not regularizing L^2 -norm, because origin has no specific meaning.

Regularization

Covariance Regularization

To reduce the correlation between activations in a deep neural network

$$C_{ij} = \frac{1}{N} \sum_{n} (y_i^n - \mu_i)(y_j^n - \mu_j)$$

 y^n : object's latent vector, n: batch index, N: batch size, $\mu_i = \frac{1}{N} \sum_n y_i^n$

$$\mathcal{L}_c = \frac{1}{N}(\|C\|_f - \|diag(C)\|_2^2)$$
 $\|\cdot\|$: Frobenius norm

Training Procedure

Objective

$$\min_{\theta, \mathbf{u}_*, \mathbf{v}_*} \mathcal{L}_m + \lambda_f \mathcal{L}_f + \lambda_c \mathcal{L}_c \quad \text{s.t.} \quad \|\mathbf{u}_*\|^2 \le 1 \text{ and } \|\mathbf{v}_*\|^2 \le 1$$

- λ_f , λ_c are hyperparameters that control the weight of each loss term
- Minimize objective function with Mini-Batch SGD
- Control the learning rate using AdaGrad

Training Procedure

- Sample N positive pairs from S
- For each pair, sample U negative items and approximate $rank_d(i,j)$
- For each pair, keep the negative item k that maximizes the hinge loss and form a mini-batch of size N.
- Compute gradients and update parameters with a learning rate controlled by AdaGrad.
- Censor the norm of u_* and v_* by $y' = \frac{y}{max(\|y\|,1)}$
- Repeat this procedure until convergence.

Datasets

Table 1: Dataset Statistics.

	CiteULike	\mathbf{BookCX}	Flickr	Medium	MovieLens20M	EchoNest
Domain	Paper	Book	Photography	News	Movie	Song
# Users	7,947	$22,\!816$	43,758	61,909	129,797	766,882
# Items	25,975	43,765	100,000	80,234	20,709	260,417
# Ratings	142,794	$623,\!405$	1,372,621	2,047,908	9,939,873	7,261,443
Concentration ^a	33.47%	33.10%	13.48%	55.38%	72.52%	65.88%
Features Type	Tags	Subjects	Image Features	Tags	Genres, Keywords	NA
# Feature Dim.	10,399	7,923	2,048	2,313	10,399	NA

6 different domains with varying sizes and difficulties

Evaluation Methodology

- Training 60%, validation 20%, test 20%
- Users with < 5 ratings are only in the training set.
- Ranking is evaluated on recall rates for Top-K recommendations.
- CML
 - WRMF, BPR, WARP
- CML+F(CML with item features)
 - FM, VBPR, CDL

Recommendation Accuracy

Table 2: Recall@50 and Recall@100 on the test set. (# dimensions r = 100) The best performing method is boldfaced. *, **, * * * indicate $p \le 0.05$, $p \le 0.01$, and $p \le 0.001$ based on the Wilcoxon signed rank test suggested in [41].

	WRMF	BPR	WARP	CML	$ours\ vs. \ best$	FM	VBPR	CDL	CML+F	$ours\ vs. \ best$		
Recall@50												
CiteULike	0.2437	0.2489	0.1916	0.2714***	9.03%	0.1668	0.2807	0.3375**	0.3312	-1.86%		
BookCX	0.0910	0.0812	0.0801	0.1037***	13.95%	0.1016	0.1004	0.0984	0.1147***	12.89%		
Flickr	0.0667	0.0496	0.0576	0.0711***	6.59%	NA	0.0612	0.0679	0.0753***	10.89%		
Medium	0.1457	0.1407	0.1619	0.1730***	6.41%	0.1298	0.1656	0.1682	0.1780***	5.82%		
MovieLens	0.4317	0.3236	0.4649	0.4665	0.34%	0.4384	0.4521	0.4573	0.4617*	0.96%		
EchoNest	0.2285	0.1246	0.2433	0.2460	1.10%	NA	NA	NA	NA	NA		
Recall@100												
CiteULike	0.3112	0.3296	0.2526	0.3411***	3.37%	0.2166	0.3437	0.4173	0.4255**	1.96%		
BookCX	0.1286	0.1230	0.1227	0.1436***	11.66%	0.1440	0.1455	0.1428	0.1712***	17.66%		
Flickr	0.0821	0.0790	0.0797	0.0922***	12.30%	NA	0.0880	0.0909	0.1048***	15.29%		
Medium	0.2112	0.2078	0.2336	0.2480***	6.16%	0.1900	0.2349	0.2408	0.2531***	5.10%		
MovieLens	0.5649	0.4455	0.5989	0.6022	0.55%	0.5561	0.5712	0.5943	0.5976	0.55%		
EchoNest	0.2891	0.1655	0.3021	0.3022	0.00%	NA	NA	NA	NA	NA		

Top-K Recommendations with LSH

CML Brute-force search: slowest

CML + LSH : fastest

Metric Visualization

Conclusion

- Improvement of accuracy in recommendation domain
- CML uncovers users' fine-grained preferences and the underlying preference spectrum.
- CML captures such relationships in a more intuitive way an can better propagate such information through user-item pairs.

Implementation

Data: MovieLens 100K

update하는 부분에서 구현 실패

```
def train_all(self):
        while not self.converged:
           self.CML_train()
    def CML train(self):
        self.sample positive()
                                   # Sample N positive pairs from S
        self.sample negative()
                                   # Sample Negative and approximate
        self.mini_batch()
                                   # form a mini-batch
        self.update()
                                   # gradient computing, update parameters
        self.censor()
                                   # Censoring
        self.check_converged()
                                   # check convergence
```

Implementation

- 논문 내 수식 이해, 증명하려고 노력
- ▶ 구현 중 실패
 - Update 부분을 제대로 구현하지 못함 -> 해당 부분에서 계속 이상한 값이 나옴.