Introduction aux langages réguliers, aux automates à états finis et aux expressions régulières, et leurs applications en machine learning

Pierre-François Gimenez

"Papers please", 15 décembre 2022

Théorie des langages formels

Histoire

- L'étude des langages intéressent les linguistes depuis longtemps.
- Noam Chomsky a proposé le formalisme actuel en 1956
- Parseur LR (largement utilisé pour les langages informatiques) par Knuth en 1965
- Beaucoup de travaux dans la seconde moitié du XXe siècle
- Liens forts avec la théorie de la complexité (qui s'intéressent aux automates)

Objectifs

- Pouvoir décrire formellement des langages humains complexes (linguistique)
- Pouvoir analyser formellement les langages: savoir parser des phrases, en générer, avec des algos efficaces (ou démontrer qu'il n'existe aucun algorithme...)

S CentraleSupélec

Notions de bases

Définitions

- Un alphabet Σ est un ensemble fini de symboles.
- Ces symboles sont quelconques: il peut s'agir de lettres, de paquets réseaux, d'appels systèmes... la seule contrainte est qu'ils soient en nombre fini.
- Dans la suite, je vais utiliser les lettres a, b, c...
- Une phrase est une séquence (finie) de lettres. Par exemple "patate" est une phrase utilisant l'alphabet $\{a, e, p, t\}$. "mot" est un synonyme de "phrase".
- La phrase vide est notée ϵ
- Un langage est un ensemble (potentiellement infini) de phrases. Par exemple,
 {patate, raclette} est un langage fini et {a, aa, aaa, aaaa, ...} est un langage infini

Comment représenter et utiliser des langages infinis ?

Description mathématique

Intuition

On peut utiliser des notations mathématiques pour désigner des ensembles infinies. Par exemple :

- $\{a^n \mid n \ge 1\}$
- { w | chaque lettre apparaît autant de fois dans w}
- $\{a^p \mid p \text{ premier}\}$
- $\{w \mid w \text{ est un programme C valide}\}$
- $\{w \mid w \text{ est une solution optimale au voyageur de commerce pour un certain graphe}\}$

Mais ceci ne nous aide pas vraiment pour connaître la forme des solutions, etc. De plus, il n'existe pas forcément de notation finies pour des langages infinies complexes!

Expression régulière

Définition

Une expression régulière est la description d'un langage à l'aide de trois opérateurs :

- la concaténation (noté ·, mais souvent implicite)
- la conjonction (noté +)
- l'étoile de Kleene (*) qui indique qu'un groupe peut être répété 0, 1 ou plusieurs fois

Remarque: en pratique, il y a des extensions avec plus d'opérateurs (négation, lookahead, etc.). En théorie des langages, on ne se base que sur ces trois opérations.

Exemple

- abc = {abc}
- ab(c+dd) = {abc, abdd}
- a*(b+ccc)* = {abb, aaabcccb, b, ...}

Notions de base

Grammaire

 Une grammaire est une description finie d'un langage (fini ou non), constituée d'un ensemble de règles de réécriture

Exemple

```
\Sigma = \{ "Le", "La", "L'", "dort", "tue", "rédige", "doctorant", "article", "Moloch", "Toto"\}
```

- \blacksquare <Phrase> \to <Groupe nominal> <Verbe> | <Groupe nominal> <Verbe> <Groupe nominal>
- ullet <Groupe nominal> o <Déterminant> <Nom commun> | <Nom propre>
- ullet <Déterminant> ightarrow "Le" | "La" | "L'"
- ullet <Verbe> o "dort" | "tue" | "rédige"
- ullet <Nom commun> o "doctorant" | "article"
- lacktriangledown <nom propre> ightarrow "Moloch" | "Toto"

Exemple

- <Phrase> → <Groupe nominal> <Verbe> <Groupe nominal>
- ightarrow < *Déterminant>* < *Nom commun>* < *Verbe>* < *Nom propre>*
- → "Le" "doctorant" "tue" "Moloch"

Les phrases suivantes sont-elles générables par cette grammaire ?

- Le doctorant doctorant doctorant
- La doctorant dort l'article
- Moloch rédigea le doctorant

Remarques

- On commence toujours par le même symbole, appelé "axiome"
- Il y a deux types de symboles : les symboles terminaux (qui font partie de l'alphabet) et les symboles non-terminaux (symboles intermédiaires, entre <>)
- Les grammaires sont par nature des modèles génératifs

Grammaire régulière

Grammaire formelle

- On note toujours *S* l'axiome
- On note avec a, b, c, ... les terminaux (symboles de l'alphabet)
- On note avec A, B, C, \ldots les non-terminaux

Grammaire régulière

- Une grammaire est dite régulière si ses règles sont de la forme $A \to bC$ et $A \to \epsilon$
- À chaque étape de la dérivation, il y a au plus un non-terminal, et il est en dernière position
- Exemple : $S \rightarrow aA$, $S \rightarrow aB$, $A \rightarrow aB$, $B \rightarrow bS$, $S \rightarrow \epsilon$
- De quel langage s'agit-il ?

Automate: définition

Définition

Un automate fini est décrit par:

- Un ensemble d'état
- Un état initial
- Un ensemble d'état finaux
- Une fonction de transition, qui est un ensemble de triplets (état de départ, lettre, ensemble d'états d'arrivée)

Automate déterministe et non-déterministe

- Un automate est dit déterministe si chaque transition arrive dans un seul état
- On peut transformer tout automate en automate déterministe en rajoutant des états (état dans l'automate déterministe = ensemble d'états dans l'automate non-déterministe)

Automate: exemple

Exemple

S est l'état initial, X l'état final. Cet automate est-il déterministe ?

Lesquels de ces mots sont reconnus par cet automate?

- aa
- aaaaaba
- ab
- aaabbaabaa

Langage régulier

Equivalence

On a présenté trois manières de décrire des langages infinies:

- les expressions régulières (faciles à lire/écrire pour un humain)
- les grammaires régulières (pratique pour générer des mots)
- les automates à états finis (pratique pour reconnaître des mots)

Ils décrivent la même classe de langage: on peut passer de l'un à l'autre selon les besoins.

Proprités

- Ces langages sont stables par concaténation, étoile de Kleene, union, intersection, complémentarité, image miroir...
- À peu près toutes les propriétés sont décidables

Equivalence automate \Leftrightarrow grammaire régulière

On peut transformer un automate en grammaire régulière facilement

- Chaque état devient un non-terminal
- L'état initial est l'axiome de la grammaire
- Pour chaque transition (A, a, B) on ajoute la règle $A \rightarrow aB$
- ${\color{red}\bullet}$ Si A est un état final, on rajoute la règle $A \rightarrow \epsilon$

Inversement, on peut transformer une grammaire régulière en automate. L'équivalence avec les expressions régulières est légèrement plus complexe: cf. le théorème de Kleene

Comment reconnaître un langage régulier?

Lemme d'itération / lemme de l'étoile

Soit L un langage régulier. Il existe un entier N tel que, pour tout mot $w \in L$ tel que $|w| \ge N$, il existe une factorisation w = xyz (avec y non vide) tel que:

- $0 < |xy| \le N$
- $xy^nz \in L$

Intuition: dans un automate à états finis, on change d'état à chaque nouvelle lettre. Avec un mot qui a plus de lettres qu'il y a d'états, alors forcément on va passer deux fois par le même état, ce qui veut dire qu'il y a une boucle dans l'automate. y correspond au mot qui réalise cette boucle. On peut faire autant de tours de boucle que l'on veut en ajoutant des y.

Exercice!

Langage régulier ou pas ?

- $\{a^n b^n \mid n \ge 0\}$
- Un langage fini quelconque
- Langage des palindromes: {ww^r}
- L'ensemble des mots sur $\{a, b, c\}$ avec un nombre pair de a
- Langage des parenthèses équilibrées: $\{(),()(),(()),()()(),\ldots\}$

Comment faire ?

- Si c'est régulier, proposer une expression régulière, une grammaire régulière ou un automate à états finis
- Si ce n'est pas régulier, utiliser le lemme de l'étoile

Attention: respecter le lemme de l'étoile n'implique pas être régulier !

Au-delà des langages réguliers

Et si on veut utiliser ces langages plus complexes?

- Il y a des langages plus complexes: algébriques, LR, LL, linéaire, déterministe, etc.
- Il n'y a pas vraiment d'équivalent aux expressions régulières pour ces langages-là
- Ils n'ont pas autant de propriétés que les langages réguliers

Lien avec le machine learning

Modèle en machine learning

- En machine learning, un modèle est une description succincte d'une réalité
- En apprentissage supervisé d'animaux, on représente de manière succincte des classes d'objets (des types d'animaux)
- En apprentissage binaire, on représente de manière succincte une ou deux classes d'objets
- Une classe d'objets est simplement un ensemble d'objets (par exemple, la classe "chien" parmi tous les animaux, etc.)
- Un langage est un ensemble d'éléments... un langage est un modèle!
- \rightarrow apprendre un langage revient à apprendre une classe! Utile pour la détection d'anomalies ou pour la génération. . .

% CentraleSupélec

Apprendre quoi ?

Grammaire, automate ou expression régulière ?

- On peut facilement passer de l'un à l'autre, mais la taille peut exploser (par exemple, un automate peut mener à une expression régulière exponentiellement plus complexe)
- L'état de l'art fait principalement de l'apprentissage d'automate
- En pratique, les automates appris ne sont pas lisibles par un humain

À partir de quelles données ?

- L'algorithme le plus répandu est L* et apprend à partir d'exemples positifs et négatifs en active learning (il pose des questions à un oracle)
- Des algorithmes supervisés qui ne sont pas en active learning existent
- Un algorithme one-class d'expression régulière existe ^a

^aAlgorithms for learning regular expression from positive data, Henning Fernau

Applications

Application à la génération de trafic réseau

- Une communication réseau est une succession de paquets entre A et B
- On peut modéliser un paquet par un tuple (direction, flags TCP) ightarrow c'est l'alphabet
- On apprendrait une expression régulière par protocole, vérifiable par un expert
- Exemple potentiel d'expression régulière apprise:
 (F,Syn) (B,SynAck) (F, Ack) [(F,Push) (B,no flag)]* (F,Fin) (B,Ack)
 (B,Fin) (F, Ack)

Avantages et limites des langages réguliers

Avantages

- Intersection possible avec d'autres langages régulier, par exemple "pas plus de trois Forward de suite", "au plus X forward et Y backward", etc.
- On peut générer des séquences de longueur quelconque

Limites

- Pas de probabilités d'apparition. Les chaînes de Markov sont une version probabiliste des automates finis
- Les expressions régulières ne peuvent pas exprimer tous les langages possibles. . .
- Les algos d'apprentissage ont tendance à trop généraliser

Ce sur quoi on peut travailler

Ce qui manque à l'état de l'art

- L'expression régulière apprise explique tous les mots vus jusque là → y compris les cas exceptionnels / pas représentatif / etc.
- Il n'est pas possible d'apprendre l'expression régulière (ab)* → ce serait très utile pour modéliser des communications
- \Rightarrow on peut potentiellement faire mieux avec d'autres méthodes d'apprentissage, utilisant par exemple MDL (minimum description length)