

ABC UNIVERSITY OF SCIENCE AND TECHNOLOGY

University Examination Nov-Dec 2023 Fifth Semester of B.Tech. (CE) Examination

DESIGN AND ANALYSIS OF ALGORITHMS [CE355]

Marks: 70 **Duration: 195 mins.** I Answer all the questions. Section Duration: 40 mins Given two algorithms, Algorithm X and Algorithm Y, with timecomplexities O(2^n) and O(n!), respectively, which of the followingstatements is true? Algorithm Y is more Algorithm X is more Algorithm X is Algorithm Y is efficient than Algorithm efficient than Algorithm (1) more efficient more efficient X for small input sizes, Y for small input sizes, 2) than Algorithm Y 3) than Algorithm X but Algorithm X becomes but Algorithm Y becomes for all input for all input more efficient for larger more efficient for larger sizes. sizes. input sizes. input sizes. Arrange the following functions in ascending order of their growth. 2 $F1(n)=2^n$, $F2(n)=n^{3/2}$, $F3(n)=n\log_2 n$, $F4(n)=n^{\log_2 n}$ (2) 1) F3, F2, F1, F4 2) F2, F3, F1, F4 3) F2, F3, F4, F1 4) F3, F2, F4, F1 What is the time complexity of the recursive implementation used to find the nth Fibonacci term? (1) 1) Linear 2) Polynomial 3) Exponential 4) None of the above Consider a minimization problem where finding the optimal solution s computationally infeasible. Which of the following statementsabout approximation algorithms is true? Approximation algorithms Approximation trade optimality for Approximation (1) Approximation algorithms provide a efficiency by providing a algorithms are only algorithms always solution that is solution that is guaranteed used for guarantee the arbitrarily close to to be within a certain maximization optimal solution. the optimal solution. factor of the optimal problems. solution. Which of the following is the correct equation for the matrix chainmultiplication problem where mat[i-1] * mat[i] gives the 5 dimensionof the ith matrix? (1) dp[i,j] = 1 if i=jdp[i,j] = 0 if i=jdp[i,j] = 0 if i=jdp[i,j] = 1 if i=j $dp[i,j] = min\{dp[i,k] +$ $dp[i,j] = min\{dp[i,k] +$ dp[i,j] =dp[i,j] =1) dp[k+1,j] + mat[idp[k+1,j] + mat[i $min\{dp[i,k] +$ $min\{dp[i,k] +$ 1]*mat[k]*mat[j]. 1]*mat[k]*mat[j] dp[k+1,j]dp[k+1,j]Suppose you have candidate set C with coins of different denominations and you want to find the change of an amount N. 6 Youhave an infinite supply of each of coins in C. According to greedy algorithm, which of the following options, with values of C and K, will NOT produce an optimal answer? (1) 2) C=(1,4,9) and N=10 3) C=(1,3,8) and N=12 4) C=(1,3,4) and N=100 1) C=(1,3,4) and N=6 State true or false: Kruskal's algorithm can work for undirectedgraph only for finding MST. (1) 1) true 2) false State True or false: The Bellman-Ford algorithm indicates whether there is a negative-weight cycle that is reachable from the source. If there is such a cycle, the algorithm indicates that no solution exists. (1) 1) true 2) false Choose the correct option for the following table: Algorithm Design approach (1) A. Huffman coding i. Dynamic Programming B.Bellman Ford ii. Backtracking

	Algorithm						sign approa	ch				
	C.N-Queen D. Strassen's matrix multiplication				iii. Divide and conquer iv. Greedy							
	1) A-iv, B-i, C-ii, D-ii			, C-ii, D-iii		A-iv, B-i,			-i, B-ii, C-		-	
10	Assume that the algorithms considered here sort the input sequences in ascending order. If the input is already in ascendin order, which of the following are TRUE?											
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										(1)	
11	Let X be a problem that belongs to the class NP. Then which one of the following is TRUE?											
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
12	State true or false: In	huffman	coding, Tl	he code lei	ngth does	notdepend	on the fre	quency of	occurrenc	e of characters		
	1) true 2) fals	se									(1)	
13	How many spanning	trees does	s the giver	n graph hav	ve?							
14	b C 1) 1 2) 2 3) 3 4) 4 How many comparisons are needed to sort an array of length 5 if astraight selection sort is used and array is already in the descending order? 1) 4 2) 5 3) 10 4) 20 Consider the below table for jobs given with profit and deadline. Find the maximum profit earned.										(2) in (1)	
	Job	11	J2	J3	J4	J5	J6	17	J8	J9		
		91	_					37				
	Profit	15	20	30	18	18	10	23	16	25		
	Deadlin e	7	2	5	3	4	5	2	7	3	(2)	
	1) 147 2) 135	3)	150	4) 145								
16	What is the basic prin				n?							
	1) Hashing 2) Sorting 3) Augmenting 4) Dynamic Programming										(1)	
17	What is recurrence and time complexity for worst case of QuickSort?											
	Recurrence is $T(n) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ Recurrence is $T(n) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$									(1) + T(1) + O(n) ne complexity is	(1)	

Answer 5 out of 7 questions.

18	State Master Theorem. Solve the following recurrence equations using Master Theorem. a. T (n) = 3T (n/2) + n ² b. T(n)= $\sqrt{2}$ T(n/2) + log n							
19	What is the smallest value of n such that an algorithm whoserunning time is $100n^2$ runs faster than an algorithmwhose running time is 2^n on the same machine? Which from the below functions take less time to solve any problem? Justifyyou answer: a. $f(n)=2$ $f(n-1)+1$ b. $f(n)=f(n-1)+n$							
20	What is rate of usingrecurrer	of the growth?		ficance of it in	analyzing an a	gorithm? Solve the following recurrence		
21	Define: P, NI		and NP-hard pro algorithm probler		theimportance	of approximation algorithms? Give two		
2	Suppose that branch and bo	we have 4 task	xs(T1,T2,T3,T4) assign the tasks	to be performe	d on 4(A,B,C,	D) machines (one task to one machine). Apply the amcost. Following is the table where cost of tasks		
	J.	T1	T2	Т3	T4			
	Α	90	12	50	51			
	В	70	10	58	80			
	C	16	85	8	70			
	D	11	37	80	21			
4	Derive at leas	st two solutions	s of 5-queen prob	olem.				
aswer 5 out of 7	questions.			III				
5	infollowing a	rrays, Weight	$w[] = \{1,4,5,6,7\}$	and values V	$[] = \{1,6,18,22\}$	ive items whose weights and values are given (28). Show equation and find out the optimal beselected only once.		
6	Find the comfor(int i=1; i<		following code of	f finding the po	wer ofany nur	ber,where n is the exponent.		
	power = pow	er * base;						
	Apply the ap	propriate metho	od to find 2 ¹⁶ wi	th complexity(O(logn).			
7		Also apply dyn	n of finding longo namic programmi			S) has overlapping subproblems for the following		
	***************************************	ation for the F	loyd-warshall alg	gorithm.Show t	he matrixD(k)	that results for each iteration on the given		
8	write the equ weighted,dire					the second for each result on the given		

29

Consider that ABC academy is offering eight courses during its summer session. The table shows with an X which pairs of courseshave one or more common students. Find the minimum number of timeslots required to schedule the lectures of all courses in oneday.

	Big data	loT	Blockchain	AI	Image processing	Machine Learning	Virtual reality	Cyber security
Big data		×		×	×	×	2000	×
loT	×				×	×		5
Blockchain						×	×	×
Al	×				33			×
Image processing	×	×			9	×		
Machine Learning	×	×	×		×		×	
Virtual reality			×			×		
Cyber security	×		×	×				

30

Define Minimum Spanning Tree(MST). Given graph has eight edges with unique integer edge weights. The MST of given graph consists of edges $\{(A,C), (B,C),(B,E),(E,F),(D,F)\}$ and has weight 36. Edgeweights are given in the graph of only those edges which are in MST. Find the minimum possible sum of weights of all eight edges of given graph. Mention the algorithm or method you can use to find the solution.

31

Differentiate Dynamic programming, greedy approach and divide and conquer with suitable examples.

(5)

----End-----