Mining Maximal Sequential Patterns without Candidate Maintenance

Artificial Intelligence Seminar 10 March 2016

Syméon Malengreau Mhd Ayad Aldayeh

Table of contents

Authors presentation

Reference

Authors

Concepts

Sequence database

Sequential pattern

Closed Sequential pattern

Maximal Sequential pattern

Algorithm

PrefixSpan

MaxSP

Measures

Reference: Pierre Schauss

Let's take a comparison for the article's authors

Pierre Schauss is a UCL professor, you might know him

H-index: 10

Citations: 283

Authors

Vincent S. Tseng

Cheng-Wei Wu

Authors: Vincent S. Tseng

Ph.D. in Computer Science

Professor, Dept. Computer Science, National Chiao Tung University, Taiwan

H-index: 32

3,2x more

Citations: 3308

11,7x more

Authors: Philippe Fournier-Viger

Ph.D. in Computer Science

Associate Professor, Harbin Institute of Technology, Shenzhen Graduate School

He created the SPMF library

H-index: 17

1,7x more

Citations: 712

2,5x more

Authors: Cheng-Wei Wu

H-index: 12

1,2x more

Citations: 518

1,83x more

First Concepts

Sequence Database

Sequential pattern

Closed sequential pattern

Maximal sequential pattern

Sequence Database

A sequence database consist of:

```
A set of items
{1, 2, 3, 4, ..., N}

Itemset (set of item, distinct and unordered)
{1, 2, 3, 5} or {4, 5} or {3, 7} or ...

Sequence (set of itemsets)
<{1,2}, {3}, {5}> or <{4}, {6}> or ...
```

The sequence database is a set of sequences What do theses concepts represents?

Sequence Database: Illustration

Let's take as an example a book

```
Set of item → The words
    {He, nice, the, is, a, guy, sun, shine, ...}
Itemset → A sentence (where words are distinct and unordered)
    {He, a, nice, guy, is}
    {The, sun, shine, in, the, sky}
Sequence → A chapter of the book
Sequence Database → The book
```

Sequential pattern

Synonyms are *sub-sequence* or *frequent sequence*

It is a sequence of item that appears a certain number of time, that number is the *minimum* support threshold (or *minsup*)

Sequence database

```
<{1,2},{3},{4},{6}>
<{2},{5},{6}>
<{1,3},{5},{6}>
```

With minsup = 2, some examples of sequential pattern

```
{5},{6}
```

{1}

{3},{6}

. . .

Closed sequential pattern

A closed sequential pattern is a sequential pattern not included in another closed pattern having the same frequency.

```
<{1},{1 2 3},{1 3},{4},{3 6}>
<{1 4},{3},{2 3},{1 5}>
<{5 6},{1 2},{4 6},{3},{2}>
<{5},{7},{1 6},{3},{2},{3}>
```

With support 2 (or 2/4 entry → 50 %), here are some closed sequential pattern

```
{1}, {3} 100 % (4/4)

{1}, {3}, {2} 75 % (3/4)

{5}, {1}, {3}, {2} 50% (2/4)

{5} 75 % (3/4)
```

And this one is **NOT**

{1} 100 % (4/4)

Maximal sequential pattern

The same as the closed sequential pattern, but if one sequence is in another one, it is not maximal.

Interesting property:

You can derive every closed sequential patterns from the maximal sequential patterns

MaxSP Algorithm

Find the maximal sequential pattern

It is build uppon the PrefixSpan Algorithm

Why the need for a new algorithm?

- → Less memory usage
- → Faster to find sequential pattern

PrefixSpan: Start

First let's explain the PrefixSpan Algorithm

We start with a sequence database

- <{1},{1 2 3},{1 3},{4},{3 6}>
- <{1 4},{3},{2 3},{1 5}>
- <{5 6},{1 2},{4 6},{3},{2}>
- <{5},{7},{1 6},{3},{2},{3}>

PrefixSpan: Pattern-growth

It works by pattern-growth, which does not generate any candidates (saving memory)

- 1. Scan: Calculate support for each item
- 2.

MinSup 75 % (3)

<{1},{1 2 3},{1 3},{4},{3 6}>

<{1 4},{3},{2 3},{1 5}>

<{5 6},{1 2},{4 6},{3},{2}>

<{5},{7},{16},{3},{2},{3}>

Item	Support
1	
2	
3	
4	
5	
6	
7	

MinSup 75 % (3)

<{1},{1 2 3},{1 3},{4},{3 6}>

<{1 4},{3},{2 3},{1 5}>

<{5 6},{1 2},{4 6},{3},{2}>

<{5},{7},{1 6},{3},{2},{3}>

Item	Support
1	100 % (4)
2	
3	
4	
5	
6	
7	

MinSup 75 % (3)

<{ },{ 23},{ 3},{4},{36}>

<{ 4},{3},{23},{ 5}>

<{5 6},{ 2},{4 6},{3},{2}>

<{5},{7},{ 6},{3},{2},{3}>

Item	Support
1	100 % (4)
2	100 % (4)
3	
4	
5	
6	
7	

Item	Support
1	100 % (4)
2	100 % (4)
3	100 % (4)
4	
5	
6	
7	

Item	Support
1	100 % (4)
2	100 % (4)
3	100 % (4)
4	75 % (3)
5	
6	
7	

Item	Support
1	100 % (4)
2	100 % (4)
3	100 % (4)
4	75 % (3)
5	75 % (3)
6	
7	

Item	Support
1	100 % (4)
2	100 % (4)
3	100 % (4)
4	75 % (3)
5	75 % (3)
6	75 % (3)
7	

Item	Support
1	100 % (4)
2	100 % (4)
3	100 % (4)
4	75 % (3)
5	75 % (3)
6	75 % (3)
7	25 % (1)

MinSup 75 % (3)

<{1},{1 2 3},{1 3},{4},{3 6}>

<{1 4},{3},{2 3},{1 5}>

<{5 6},{1 2},{4 6},{3},{2}>

<{5},{7},{16},{3},{2},{3}>

Item	Support
1	100 % (4)
2	100 % (4)
3	100 % (4)
4	75 % (3)
5	75 % (3)
6	75 % (3)
7	25 % (1)