

Chapter 5

Digital transmission through the AWGN channel

— by Prof. XIAOFENG LI SICE, UESTC

- Introduction
- Geometric rep. of the sig waveforms
- Pulse amplitude modulation
- 2-d signal waveforms
- M-d signal waveforms
- Opt. reception for the sig. In AWGN
- Optimal receivers and probs of err

5.5 Opt. reception for the sig. In AWGN

In the nth interval, the process is as follows,

2) **Detector**: estimate the sym from the observation

A **Matched Filter (MF)** to s(t) is defined as a LTI filter whose impulse response is as h(t) = Cs(T-t), where **C** is any non-zero constant and **T** is a given sample-time.

Consider a signal s(t) being corrupted as r(t)=s(t)+n(t), where n(t) is AWGN. Suppose that r(t) is measured as follows.

The filter h(t) is to reduce the noise and sampling is to obtain a measurement.

We design the filter h(t) to obtain max-SNR in y(T), so that a GOOD measurement is obtained.

A **Matched Filter (MF)** to s(t) is defined as a LTI filter whose impulse response is as h(t) = Cs(T-t), where **C** is any non-zero constant and **T** is a given sample-time.

Consider a signal s(t) being corrupted as r(t)=s(t)+n(t), where n(t) is AWGN. Suppose that r(t) is measured as follows.

Properties of MF:

If a given signal is corrupted by AWGN, a matched filter to the signal maximizes the output SNR.

Simply, MF is the optimal filter for this case

A **Matched Filter (MF)** to s(t) is defined as a LTI filter whose impulse response is as h(t) = Cs(T-t), where **C** is any non-zero constant and **T** is

a given sample-time.

Consider a signal s(t) b AWGN. Suppose that r(t)

The SNR is defined as,
$$\left(\frac{S}{N} \right)_0 = \frac{\left(\int_{-\infty}^{\infty} h(\tau) s(T - \tau) d\tau \right)^2}{E\left(\int_{-\infty}^{\infty} h(\tau) n(T - \tau) d\tau \right)^2}$$
Sampling

$$r(t)$$
 $h(t)$
 $y(t)$
 T
 $y(T)$

Compute,

$$y(T) = h(t) * r(t) \Big|_{t=T} = \int_{-\infty}^{\infty} h(\tau) r(t-\tau) d\tau \Big|_{t=T} = \int_{-\infty}^{\infty} h(\tau) r(T-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau) s(T-\tau) d\tau + \int_{-\infty}^{\infty} h(\tau) n(T-\tau) d\tau$$

A Matched Filter (MF) to s(t) is defined as a LTI filter whose impulse response is as $h(t) = C_{\mathcal{S}}(T-t)$, where \mathbb{C} is any non-zero constant and \mathbb{T} is The SNR is defined as,

a given sample-time.

Consider a signal s(t) b AWGN. Suppose that r(t)

n(t) is

Sampling
$$y(t)$$

$$h(t)$$

$$T$$

MF is the optimal filter!

when
$$h(t) = Cs(T - t)$$

Compute,

$$y(T) = h(t) * r(t) \Big|_{t=T} = \int_{-\infty}^{\infty} h(\tau) r(t-\tau) d\tau \Big|_{t=T} = \int_{-\infty}^{\infty} h(\tau) r(T-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau) s(T-\tau) d\tau + \int_{-\infty}^{\infty} h(\tau) n(T-\tau) d\tau$$

A **Matched Filter (MF)** to s(t) is defined as a LTI filter whose impulse response is as $h(t) = C_S(T - t)$, where **C** is any non-zero constant and **T** is

Compute,

$$y(T) = h(t) * r(t) \Big|_{t=T} = \int_{-\infty}^{\infty} h(\tau) r(t-\tau) d\tau \Big|_{t=T} = \int_{-\infty}^{\infty} h(\tau) r(T-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau) s(T-\tau) d\tau + \int_{-\infty}^{\infty} h(\tau) n(T-\tau) d\tau$$

A **Matched Filter (MF)** to s(t) is defined as a LTI filter whose impulse response is as h(t) = Cs(T-t), where **C** is any non-zero constant and **T** is a given sample-time.

A **Matched Filter (MF)** to s(t) is defined as a LTI filter whose impulse response is as h(t) = Cs(T-t), where **C** is any non-zero constant and **T** is a given sample-time.

MF is the optimal filter!

A matched filter is equivalent to a correlator. An alternate demodulator is as Fig 5.35 on page 276.

A **Matched Filter (MF)** to s(t) is defined as a LTI filter whose impulse response is as h(t) = Cs(T-t), where **C** is any non-zero constant and **T** is a given sample-time.

A matched filter is equivalent to a correlator. An alternate demodulator is as Fig 5.35 on page 276.