Class Discussion

Unit 6 Topic 4 Part 2 Planar Vector (dot product)

Objective: students will understand unit vector and the connection to the projection of vectors

The unit vector of $u = \langle u_1, u_2 \rangle$

$$u = \frac{u}{\|u\|} \rightarrow \|u\| = 1$$

$$\theta_u = \tan^{-1} \left(\frac{u_2}{u_1} \right)$$
 [However, caution has to be exercised that $\theta_u \in [0, 2\pi)$

Ex 1: Find the direction and the unit vector v = <-2, -3>

Define: $\overrightarrow{Proj_{v}u} = (||\overrightarrow{u}|| \cos \theta)v$ as the projection of vector \overrightarrow{u} onto vector \overrightarrow{v} . After simplification

$$\operatorname{Proj}_{v}^{\rightarrow} u = \frac{\left(\overrightarrow{u \cdot v}\right)}{\|\overrightarrow{v}\|^{2}} \overrightarrow{v}$$

 $\operatorname{Proj}_{v}^{\rightarrow} u = \frac{\left(u \cdot v\right)}{\left\|v\right\|^{2}} v$ (This is the formula from text book, but students should not memorize it, but instead

Ex 2: Given u=<3,4> , v=<2,4> , if $u=u_1+u_2$ and u_1 is the projection of vector u onto vector ν ,

- (a) Show that $\stackrel{\square\!\!\!\square}{u_2}$ and $\stackrel{-}{v}$ are orthogonal.
- (b) find both $\begin{array}{ccc} & & & \coprod \\ u_1 & \text{and} & u_2 \end{array}$