Divide-&-Conquer Maxwell-Ehrenfest-Surface Hopping (DC-MESH)

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Goal: To describe multiscale light-matter interaction ranging from atto-to-nano seconds & pico-to-micro meters

Linker et al., Science Adv. 8, eabk2625 ('22) Razakh et al., PDSEC (IEEE, '24)

Dawn of Attosecond Physics

The Nobel Prize in Physics 2023

© Nobel Prize Outreach. Photo: Clément Morin

Pierre Agostini

Prize share: 1/3

© Nobel Prize Outreach. Photo: Clément Morin

Ferenc Krausz

Prize share: 1/3

© Nobel Prize Outreach. Photo: Clément Morin

Anne L'Huillier

Prize share: 1/3

The Nobel Prize in Physics 2023 was awarded to Pierre Agostini, Ferenc Krausz and Anne L'Huillier "for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter"

It's light-matter interaction!

Ultrastrong coupling (USC)

cf. "Strongly correlated electron-photon systems," J. Bloch et al., Nature 606, 41 ('22)

Nonadiabatic Quantum MD: DC-MESH

- DC-MESH (divide-&-conquer Maxwell + Ehrenfest + surface-hopping): O(N) algorithm to simulate photo-induced quantum materials dynamics
- LFD (local field dynamics): Maxwell equations for light & real-time time-dependent density functional theory equations for electrons to describe light-matter interaction
- QXMD (quantum molecular dynamics with excitation): Nonadiabatic coupling of excited electrons & ionic motions based on surface-hopping approach
- "Shadow" LFD (GPU)-QXMD (CPU) handshaking via electronic occupation numbers with minimal CPU-GPU data transfer
- GSLD: Globally sparse (interdomain Hartree coupling *via* multigrid) & locally dense (intradomain nonlocal exchange-correlation computation *via* BLAS) solver

Linker et al., Science Adv. 8, eabk2625 (2022); Razakh et al., PDSEC (IEEE, '24)

DC-MESH Physics

• MESH (Maxwell + Ehrenfest + surface-hopping): Maxwell equations for light & realtime time-dependent density functional theory equations for electrons (short-time Ehrenfest dynamics & long-time surface-hopping dynamics)

Surface-hopping John Tully (1942-)

James Clark Maxwell (1831-1879)

Paul Ehrenfest (1880-1933)

Divide-Conquer-Recombine (DCR)

- Treat multi-physics at appropriate scales & levels of approximation
- Hartree potential & electromagnetic field are computed globally using the scalable O(N) multigrid method & macroscopic grid, respectively
- Higher-order correlations represented by the exchange-correlation (XC) kernel in time-dependent density functional theory (TDDFT) are treated locally within each divide-&-conquer (DC) domain since they are known to be short-ranged [Nakano & Ichimaru, *Phys. Rev. B* **39**, 4930 ('89)]
- See notes on <u>dynamic correlation</u>, <u>DCR-NAQMD</u>, <u>embedded TDDFT</u>, and <u>Ehrenfest-hopping dynamics (EHD)</u>.

cf. electron-nuclei operator splitting & Kohn-Sham orbital remapping

LFD Algorithm

Hamiltonian in the α-th domain [Yabana, Phys. Rev. B 85, 045134 ('12); Jestadt, Adv. Phys. 68, 225 ('19)]

$$\hat{h}(t, \mathbf{R}(t)) = \frac{1}{2} \left(\frac{\nabla}{i} + \frac{1}{c} \mathbf{A}(\mathbf{r}_{\alpha}, t) \right)^{2} - \phi(\mathbf{r}_{\alpha}, t) + \hat{v}_{xc} + v_{ion}(\mathbf{r}, \mathbf{R}) + \Delta \dot{\mathbf{R}} \cdot \frac{\partial}{\partial \mathbf{R}} v_{ion}$$

Electromagnetic vector & scalar potentials at the α -th domain

Nonadiabatic coupling

Trotter expansion of time propagator

exp
$$\left(-i\hat{h}\Delta_{\mathrm{MD}}\right) \cong \exp\left(-i\hat{h}_{\mathrm{el-ion}}\Delta_{\mathrm{MD}}/2\right)\mathcal{T}\exp\left(-i\int_{t}^{t+\Delta_{\mathrm{MD}}}dt\hat{h}_{\mathrm{el}}(t)dt\right)\exp\left(-i\hat{h}_{\mathrm{el-ion}}\Delta_{\mathrm{MD}}/2\right)$$
QXMD

QXMD

QXMD

Self-consistent propagator [Sato, J. Chem. Phys. 143, 224116 ('15); Lian, Adv. Theo. Sim. 1, 1800055 ('18)]

$$\mathcal{T}\exp\left(-i\int_{t}^{t+\Delta_{\mathrm{MD}}}dt\hat{h}_{\mathrm{el}}(t)\right) \cong \prod_{n=1}^{N_{\mathrm{QD}}=\Delta_{\mathrm{MD}}/\Delta_{\mathrm{QD}}}\exp\left(-i\Delta_{\mathrm{QD}}\hat{h}_{\mathrm{el}}\left(t+\left(n-\frac{1}{2}\right)\Delta_{\mathrm{QD}}\right)\right)$$

Nonlocal exchange-correlation propagator [Vicek, J. Chem. Phys. 150, 184118 ('19)]

See note on self-consistent time propagator

Reduced-Communication Shadow Dynamics

- Fundamental physics equations are local at the finest spatiotemporal scales, i.e., simple partial differential equations with differential operators acting locally in a data-parallel fashion LFD fits naturally to GPU; on the other hand, coarsegrained schemes to approximately describe complex chemical interactions often come with an excessive computational cost of nonlocal operations in space and time QXMD takes advantage of complex instruction sets in CPU
- At each molecular-dynamics (MD) step, LFD informs QXMD of occupation-number change due to light-electron & electron-electron interactions
- QXMD performs excited-state quantum molecular dynamics & informs LFD of local-potential change for the next $N_{\rm QD}$ (= $\Delta_{\rm MD}/\Delta_{\rm QD}$) quantum-dynamics (QD) steps
- "Shadow" electronic wave functions in LFD are resident on GPU, while QXMD wave functions on CPU, to minimize CPU-GPU data transfers

Shadow dynamics: real-time time-dependent density functional theory (RT-TDDFT)

See note on shadow EHD

Pseudopotentials: projector augmented wave (PAW), ultrasoft (Vanderbilt)

Exchange-correlation functionals: metaGGA (SCAN), hybrid exact-exchange (HSE etc.), DFT+U, DFT-D, nonlocal vdW

Data-Parallel & BLASified LFD

- Data-parallel local LFD: Auxiliary-field electronic time propagator for local potential [Car & Parrinello, Solid State Commun. 62, 403 ('87); Nakano et al., Comput. Phys. Commun. 83, 181 ('94)] on real-space mesh achieves high performance on GPU
- BLASified nonlocal LFD: Operation of nonlocal potential is projected onto a vector space spanned by Kohn-Sham orbitals at time 0 within the real-time scissor approximation [Wang et al., J. Phys. Condens. Mat. 31, 214002 ('19)], making it dense matrix operations implemented with highly optimized level3 (or matrix-matrix) BLAS (basic linear algebra subprogram) library on GPU

$$\hat{v}_{\rm nl}|\psi_n(t)\rangle \cong \Delta_{\rm sci} \sum_{m\geq {
m LUMO}} |\psi_m\rangle\langle\psi_m|\psi_n(t)\rangle$$

Razakh et al., PDSEC (IEEE, '24); Piroozan et al., PMBS (IEEE, '24)

See notes on <u>auxiliary-field electron propagator</u> and <u>real-time scissor</u> (see also <u>nonlocal computation via matrix multiplication</u>)

Global Maxwell's Equations

• Global Maxwell's equations are solved on a macroscopic grid

Yabana, Phys. Rev. B 85, 045134 ('12); cf. Gabay, Phys. Rev. B 101, 235101 ('20)

$$\mathbf{A} = \mathbf{A}_{\text{ext}} + \mathbf{A}_{\text{ind}} + \mathbf{A}_{\text{xc}}$$

$$\left\{ \begin{pmatrix} \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial \mathbf{R}^2} \end{pmatrix} \mathbf{A}_{\text{ind}} = \frac{4\pi}{c} \mathbf{J} & \text{Induced vector potential} \\ \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial \mathbf{R}^2} \right) \phi = \frac{4\pi}{c} \rho & \text{Scalar potential} \end{cases}$$

• Local domain-averaged current & charge densities

$$\mathbf{J}(\mathbf{R}_{\alpha},t) = \frac{1}{\Omega_{\alpha}} \int_{\Omega_{\alpha}} d\mathbf{r} \mathbf{j}(\mathbf{r},t)
\rho(\mathbf{R}_{\alpha},t) = -\frac{1}{\Omega_{\alpha}} \int_{\Omega_{\alpha}} d\mathbf{r} n(\mathbf{r},t)
\mathbf{j}(\mathbf{r},t) = -\sum_{n\sigma} \operatorname{Re} \left[\psi_{n\sigma}^{*}(\mathbf{r},t) \frac{\nabla}{i} \psi_{n\sigma}(\mathbf{r},t) \right] f_{n\sigma} - \frac{1}{c} \mathbf{A}(\mathbf{r},t) n(\mathbf{r},t)
n(\mathbf{r},t) = \sum_{n\sigma} \left| \psi_{n\sigma}(\mathbf{r},t) \right|^{2} f_{n\sigma}$$

• Long-range correction in time-dependent current density functional theory (TDCDFT) [Vignale, *Phys. Rev. Lett.* 77, 2037 ('96); Maitra, *Phys. Rev. B* 68, 045109 ('03); Sun, *Phys. Rev. Lett.* 127, 077401 ('21)]

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial \mathbf{R}^2}\right)\mathbf{A}_{xc} = -\frac{\alpha}{c}\mathbf{J}$$
 Exchange—correlation vector potential

• See note on Maxwell solver, poor man's Maxwell-TDDFT, and exciton dynamics

Application: Ferroelectric Opto-Topotronics

 Quantized ferroelectric topology is protected against thermal noise → ultralow-power opto-electronics

• Ehrenfest NAQMD simulation of photoexcited PbTiO₃ shows rapid thermalization of electron excitation energy into Fermi distribution within a few femtoseconds

Linker et al., Science Adv. 8, eabk2625 ('22)

Photo-induced Matter

• Surface-hopping & Fermi-temperature NAQMD simulations show the disappearance of a ferroelectric order parameter & emergence of a new rotational order parameter due to the excited-state energy landscape

Surface-hopping John Tully (1942-)

Ground State

Excited State

Enrico Fermi (1901-1954)

Ground State

Excited State

Multiscale Ferroelectric Opto-Topotronics

System size simulated with NAQMD

Large-scale structure simulated with NNQMD

ML for large scale!

- Billion-atom neural-network quantum molecular dynamics (NNQMD) trained by NAQMD revealed photo-induced topological phase-transition dynamics (cf. Kibble-Zurek mechanism in cosmology)
- Symmetry-controlled skyrmion-to-skyrmionium* switching *Composite of skyrmions with opposite topological charges

Symmetry
Breaking

Symmetry
Preserving
Symmetry

Linker et al., Science Adv. 8, eabk2625 ('22); JPCL 13, 11335 ('22); Nano Lett. 23, 7456 ('23)