Estadística inferencial

Oromion

19 de agosto del 2019

Contents

I.	Teoría	4
1.	Ejercicios propuestos del capítulo <i>Estimación</i>	6
Η.	Práctica	10
2.	Marco de datos en R	11

Part I.

Teoría

Definición 1 (Estimador). Un estimador es una regla, a menudo expresada como una fórmula, que indica cómo calcular el valor de una estimación con base en las mediciones contenidas en una muestra.

Ejemplo 1 (Media muestral).

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

Definición 2 (Estimador insesgado e insesgado). Si $\hat{\theta}$ es un estimador puntual de un parámetro θ , entonces $\hat{\theta}$ es un estimador insesgado si $\mathbb{E}\left(\hat{\theta}\right) = \theta$. Si $\mathbb{E}\left(\hat{\theta}\right) \neq \theta$, se dice que $\hat{\theta}$ está sesgado.

Definición 3 (Sesgo). El sesgo de un estimador puntual $\hat{\theta}$ está dado por $B(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$.

Definición 4 (Error cuadrático medio). El error cuadrático medio de un estimador puntual $\hat{\theta}$ es

$$MSE\left(\hat{\theta}\right) = \mathbb{E}\left[\left(\hat{\theta} - \theta\right)^2\right].$$

Proposición 1.

$$\mathrm{MSE}\left(\hat{\theta}\right) = V\left(\hat{\theta}\right) + \left[B\left(\hat{\theta}\right)\right]^{2}.$$

1. Ejercicios propuestos del capítulo Estimación

1. Usando la identidad

$$\left(\hat{\theta} - \theta\right) = \left[\hat{\theta} - \mathbb{E}\left(\hat{\theta}\right) - \theta\right] = \left[\hat{\theta} - \mathbb{E}\left(\hat{\theta}\right)\right] + B\left(\hat{\theta}\right)$$

demuestre que

$$MSE\left(\hat{\theta}\right) = \mathbb{E}\left[\left(\hat{\theta} - \theta\right)^{2} 2\right] = V\left(\hat{\theta}\right) + B\left(\hat{\theta}\right)^{2}.$$

- 2. a) Si $\hat{\theta}$ es un estimador insesgado para θ , ¿cuál es $B(\hat{\theta})$?
 - b) Si $B(\hat{\theta}) = 5$, ¿cuál es $\mathbb{E}(\hat{\theta})$?
- 3. Suponga que $\hat{\theta}$ es un estimador para un parámetro θ y $\mathbb{E}\left(\hat{\theta}\right) = a\theta + b$ para algunas constantes diferentes de cero a y b.
 - a) En términos de a, b y θ , ¿cuál es $B(\hat{\theta})$?
 - b) Encuentre una función de $\hat{\theta}$, por ejemplo $\hat{\theta}^*$, que es un estimador insesgado para θ .
- 4. Del ejercicio (1)
 - a) Si $\hat{\theta}$ es un estimador insesgado para θ , ¿cómo se compara MSE $(\hat{\theta})$ con $V(\hat{\theta})$?
 - b) Si $\hat{\theta}$ es un estimador insesgado para θ , ¿cómo se compara MSE $(\hat{\theta})$ con $V(\hat{\theta})$?
- 5. Del ejercicio (1), considere el estimador insesgado $\hat{\theta}^*$ que usted propuso en el tercer ejercicio.
 - a) Exprese MSE $(\hat{\theta}^*)$ como función de $V(\hat{\theta})$.
 - b) Dé un ejemplo de un valor para a para el cual MSE $\left(\hat{\theta}^*\right) < \text{MSE}\left(\hat{\theta}\right)$.
 - c) Dé un ejemplo de un valor para a para el cual MSE $\left(\hat{\theta}^*\right) > \text{MSE}\left(\hat{\theta}\right)$.

- 6. Suponga que $\mathbb{E}\left(\hat{\theta}_1\right) = \mathbb{E}\left(\hat{\theta}_2\right) = \theta$, $V\left(\hat{\theta}_1\right) = \sigma_1^2$ y $V\left(\hat{\theta}_2\right) = \sigma_2^2$. Considere el estimador $\hat{\theta}_3 = a\hat{\theta}_1 + (1-a)\hat{\theta}_2$.
 - a) Demuestre que $\hat{\theta}_3$ es un estimador insesgado para θ .
 - b) Si $\hat{\theta}_1$ y $\hat{\theta}_2$ son independientes, ¿cómo debe escogerse la constante a para minimizar la varianza de $\hat{\theta}_3$?
- 7. Considere la situación descrita en el ejercicio (6). ¿Cómo debe elegirse la constante a para minimizar la varianza de $\hat{\theta}_3$, si $\hat{\theta}_1$ y θ_2 no son independientes pero son tales que Cov $(\hat{\theta}_1, \hat{\theta}_2) = c \neq 0$?
- 8. Suponga que Y_1 , Y_2 , Y_3 denotan una muestra aleatoria de una distribución exponencial con función de densidad

$$f\left(y\right) = \begin{cases} \left(\frac{1}{\theta}e^{-y/\theta}\right), & y > 0\\ 0, & \text{en cualquier otro punto.} \end{cases}$$

Considere los siguientes cinco estimadores de θ :

$$\hat{\theta}_1, \quad \hat{\theta}_2, \quad \hat{\theta}_3 = \frac{Y_1 + 2Y_2}{3}, \quad \theta_4 = \min(Y_1, Y_2, Y_3), \quad \theta_5 = \overline{Y}.$$

- a) ¿Cuáles de estos estimadores son insesgados?
- b) Entre los estimadores insesgados, ¿cuál tiene la varianza más pequeña?
- 9. Suponga que Y_1, Y_2, \ldots, Y_n constituyen una muestra aleatoria de una población con función de densidad de probabilidad

$$f\left(y\right) = \begin{cases} \left(\frac{1}{\theta+1}e^{-y/(\theta+1)}\right), & y > 0, \theta > -1\\ 0, & \text{en cualquier otro punto.} \end{cases}$$

Sugiera un estadístico apropiado para usarlo como estimador insesgado para θ .

- 10. El número de descomposturas por semana para un tipo de minicomputadora es una variable aleatoria Y con una distribución de Poisson y media λ . Existe una muestra aleatoria Y_1, Y_2, \ldots, Y_n de observaciones del número semanal de descomposturas.
 - a) Sugiera un estimador insesgado para λ .
 - b) El costo semanal de reparar estas descomposturas es $C=3Y+Y^2$. Demuestre que $E(C)=4\lambda+\lambda^2$.
 - c) Encuentre una función de Y_1, Y_2, \ldots, Y_n una muestra aleatoria de tamaño n de una población con media 3. Suponga que $\hat{\theta}_2$ es un estimador insesgado para el tercer momento central de la distribución subvacente.

- 11. La lectura en un voltímetro conectado a un circuito de prueba está distribuida uniformemente en el intervalo $(\theta, \theta + 1)$, donde θ es el valor desconocido del voltaje real del circuito. Suponga que Y_1, Y_2, \ldots, Y_n denota una muestra aleatoria de esas lecturas.
 - a) Demuestre que \overline{Y} es un estimador sesgado de θ y calcule el sesgo.
 - b) Encuentre una función de \overline{Y} que sea un estimador insesgado de θ .
 - c) Encuentre MSE (\overline{Y}) cuando \overline{Y} se use como estimador de θ .
- 12. Hemos visto que si Y tiene una distribución binomial con parámetros n y p, entonces Y/n es un estimador insesgado de p. Para calcular la varianza de Y, por lo general usamos n (Y/n) (1-Y/n).
 - a) Demuestre que el estimador sugerido es un estimador sesgado de V(Y).
 - b) Modifique ligeramente $n\left(Y/n\right)\left(1-Y/n\right)$ para formar un estimador insesgado de $V\left(Y\right)$.
- 13. Sea Y_1, Y_2, \dots, Y_n una muestra aleatoria de tamaño n de una población cuya densidad está dada por

$$f\left(y\right) = \begin{cases} \alpha y^{\alpha-1}/\theta^{\alpha}, & 0 \leq y \leq \theta, \\ 0, & \text{en cualquier otro punto,} \end{cases}$$

donde $\alpha > 0$ es un valor fijo conocido, pero θ no se conoce. Considere el estimador $\hat{\theta} = \max{(Y_1, Y_2, \dots, Y_n)}$.

- a) Demuestre que $\hat{\theta}$ es un estimador sesgado de $\hat{\theta}$.
- b) Determine un múltiplo de $\hat{\theta}$ que constituya un estimador de $\hat{\theta}$.
- c) Deduzca MSE $(\hat{\theta})$.
- 14. Sea Y_1, Y_2, \dots, Y_n una muestra aleatoria de tamaño n de una población cuya densidad está dada por

$$f(y) = \begin{cases} 3\beta^3 y^{-4}, & \beta \le y, \\ 0, & \text{en cualquier otro punto,} \end{cases}$$

donde $\beta > 0$ es desconocido. Considere el estimador $\hat{\beta} = \min(Y_1, Y_2, \dots, Y_n)$.

- a) Deduzca el sesgo del estimador $\hat{\beta}$.
- b) Deduzca MSE $(\hat{\beta})$.
- 15. Suponga que Y_1, Y_2, \dots, Y_n constituyen una muestra aleatoria de una distribución normal con parámetros μ y σ^2 .
 - a) Demuestre que $S = \sqrt{S^2}$ es un estimador sesgado de σ .
 - b) Ajuste S para formar un estimador insesgado de σ .

- c) Encuentre un estimador insesgado de $\mu z_{\alpha}\sigma$, el punto que corta un área de cola inferior de α bajo esta curva normal.
- 16. Si Y tiene otra distribución binomial con parámetros n y p. entonces $\hat{p}_1 = Y/n$ es un estimador insesgado de p. Otro estimador de p es $\hat{p}_2 = (Y+1)/(n+2)$.
 - a) Deduzca el sesgo de \hat{p}_2 .
 - b) Deduzca MSE (\hat{p}_1) y MSE (\hat{p}_2) .
 - c) ¿Para qué valores de p es $MSE(\hat{p}_1) < MSE(\hat{p}_2)$?
- 17. Si Y_1, Y_2, \ldots, Y_n representan una muestra aleatoria de tamaño n de una población con una distribución uniforme en el intervalo $(0, \theta)$, considere a $Y_{(1)} = \min (Y_1, Y_2, \ldots, Y_n)$ el estadístico de orden más bajo. Deduzca $\mathbb{E}(Y_{(1)})$. Encuentre un múltiplo de $Y_{(1)}$ que sea un estimador insesgado para θ .
- 18. Suponga que Y_1, Y_2, \dots, Y_n denotan una muestra aleatoria de tamaño n de una población con una distribución exponencial cuya densidad está dada por

$$f\left(y\right) = \begin{cases} \left(1/\theta\right)e^{-y/\theta}, & y > 0, \\ 0, & \text{en cualquier otro punto.} \end{cases}$$

Si $Y_{(1)} = \min(Y_1, Y_2, \dots, Y_n)$ denota el estadístico de orden más bajo, demuestre que $\hat{\theta} = nY_{(1)}$ es un estimador insesgado para θ y encuentre MSE $(\hat{\theta})$.

19. Suponga que Y_1, Y_2, Y_3, Y_4 denotan una muestra aleatoria de tamaño 4 de una población con una distribución exponencial cuya densidad está dada por

$$f(y) = \begin{cases} (1/\theta) e^{-y/\theta}, & y > 0, \\ 0, & \text{en cualquier otro punto.} \end{cases}$$

- a) Sea $X = \sqrt{Y_1 Y_2}$. Encuentre un múltiplo de X que sea un estimador insesgado para θ .
- b) Sea $W = \sqrt{Y_1, Y_2, Y_3, Y_4}$. Encuentre un múltiplo de W que sea un estimador insesgado para θ^2 .

Part II.

Práctica

2. Marco de datos en R