Review for Exam 1

Fundamentals

- (Sec 2 & See 3)
- Logical connectives ¬ , ∧ , ∨ , ⇒ , ⇔
- Tautologies
- Proof techniques
- Quantifiers \forall , \exists , free Vs. bound var.
- De Morgan's Laws and Distributive Laws

order matters

> (Conditional)

JP => QAR

 $(\neg P) \Rightarrow (Q \land R)$

· Courds - "Vacuously true"

S cond. proof
o proof by contradiction
o proof by contraposition

See the summary at the end of Sec 4.

Definitions (Sec. 4)

Write down the definitions of the following sentences exactly as provided in the textbook. Write down preambles whenever needed, such as "Let $a, b, m \in \mathbb{Z}$.".

- x is even.
- x is odd.
- x is rational.
- x is irrational.
- d divides x.
- x is a prime number.
- a is congruent to b modulo m.

Tautologies (Cond's proof exercise)

Example 1

Use the method of conditional proof to explain in words why the sentence

$$\underbrace{[P\Rightarrow (Q\Rightarrow R)]}_{\text{A_{1}}} \Rightarrow \underbrace{[(P\Rightarrow Q)}_{\text{A_{2}}} \Rightarrow \underbrace{(P,\Rightarrow R)}_{\text{A_{3}}} \underbrace{(P,\Rightarrow R)}_{\text{A_{4}}} \underbrace{(P,\Rightarrow R)}_{\text{A_{5}}} \underbrace{(P,\Rightarrow R)}_$$

is a tautology. Be explicit about discharging assumptions.

A1: Suppose
$$A_1: P \Rightarrow (Q \Rightarrow R)$$
 is true. (WTS: $G: (P \Rightarrow Q) \Rightarrow (P \Rightarrow R)$ is true.)

A2: Suppose $A_2: P \Rightarrow Q$ is true. (WTS: $G: P \Rightarrow R$ is true.)

A3: Suppose $A_3: P$ is true. (WTS: $G: R$ is true.)

from $ A1:Suppose A_1:P\Rightarrow (Q\Rightarrow R)$ is true. (WTS: G: (P \Rightarrow Q) \Rightarrow (P \Rightarrow R) is true.)	Proof
A2: Suppose $A_2: P \Rightarrow Q$ is time. (WTS: $G_2: P \Rightarrow R$ is time.)	·
A3: Suppose A3: P is true. (WTS: C3: R is true.)	
From AZ and A3, we see Q is true, by modus ponens.	
From A1 and A3, we see $Q \Rightarrow R$ is true, by modus ponens.	
From this and the fact that Q is true, we see R is true, by	
modus ponens.	
We have shown Cz is true under A1. A2, and A3.	
Discharging A3, Cz is true under A1 and Az.	
Discharging A2, C, is true under A1 alone. tautology.	
Finally discharging A1, $A_1 \Rightarrow C_1$ is true under no assumption. Hence it is a \square	

Dichotomies and the Universe of Discourse

Let $x \in \mathbb{Z}$.

- If x is odd, then x is not even.
- If x is not even, then x is odd.

Let $x \in \mathbb{R}$.

- If x is odd, then x is not even.
- If x is not even, then x is odd.

Let $x \in \mathbb{R}$.

- If x is rational, then x is not irrational. \top
- If x is not irrational, then x is rational. \top

Let $x \in \mathbb{C}$.

- If x is rational, then x is not irrational.
- If x is not irrational, then x is rational.

Irrational Number

Example 2 (Cf. S04E12.)

It is known that π is an irrational number. From this, prove that $\underline{\pi + 2e}$ is irrational or $\pi - 3e$ is irrational.

Proof (by contradiction) Suppose TU+20 is not irrational and TI-3e is not irrational Since both tt+2e and Tt-3e are real, Tt + 2e is rational and Tc - 3e is rational. Since the product of two notional numbers is national, $\frac{3}{5}(\pi+2e)$ is notional and $\frac{2}{5}(\pi-3e)$ is notional. Since the sum of two notional numbers π notional, $\frac{3}{5}(\pi+2e)+\frac{2}{5}(\pi-3e)=\frac{3\pi+be+2\pi-be}{5}=\frac{5\pi}{5}$ is national. But since It is real and It is irrational, It is not national. This is a contradiction.

WTS: P V QProof by contradiction. $\neg (P V Q)$ $\equiv (\neg P) \land (\neg Q)$

Classical Showcases of Proof by Contradiction

- $\sqrt{2}$ is irrational. Quiz 4: $\sqrt{3}$ is irrational.
- There are infinitely many prime numbers. (SMEIb)

$$N < q \leq n! + 1$$

When Prime Divides Product

Euclid's Lemma (Remark 4.50)

Let p be a prime number and let $x, y \in \mathbb{Z}$. If $p \mid xy$, then $p \mid x$ or $p \mid y$.

In general, we have:

Let $d \in \mathbb{N}$ and let $x, y \in \mathbb{Z}$. If $d \mid xy$, then there exist $d_1, d_2 \in \mathbb{N}$ such that $d_1 \mid x, d_2 \mid y$, and $d = d_1d_2$.

The converse of Remark 4.50 is also true.

Congruence

Example 3 (S04E26(b))

Let m, a_1, b_1, a_2 , and b_2 be integers. Suppose that

$$a_1 \equiv b_1 \mod m$$
 and $a_2 \equiv b_2 \mod m$.

Prove that $a_1a_2 \equiv b_1b_2 \mod m$.

Induction

- Principle of mathematical induction.
- Declaration, base case, induction step, and conclusion.
- Inductive hypothesis.
- Proving $(\forall x \in \mathbb{Z})P(x)$.

Induction Examples

For each $n \in \mathbb{N}$,

•
$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

•
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

For each $n \in \mathbb{N}$,

• 3 divides $4^n - 1$.

For each $x \in \mathbb{Z}$,

x is even or x is odd.

Prove by induction that for each $n \in \mathbb{N}$, E divides $8^n - 3^n$.

Prove by induction that for each
$$n \in \mathbb{N}$$
,
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$