ساختمان داده ها Deterministic Computation of Order Statistic

محاسبه قطعی آماره ترتیبی

مدرس: غیاثی شیرازی

دانشگاه فردوسی مشهد

T(n) $\in \Omega(n)$ D white $\int \Omega(n) = \int \Omega(n)$ $T(n) \in O(n)$ $T(n) \in \mathcal{S}(n)$ =j = Portition(A, n, pirot)B(n) $if i = -j T(n) \langle cn + T(n/5) + T(7n/10)$ return A(j) T(1) = 1T(710) Pelie Delect (Aprover, n-j, i-j)

T(1) (c1 + T(1/5) + T(7/10) 10C 1 1 T(1)=1 3 a>0 3 noc N Ha>n. T(n) < an ise T(n) < O(n) رتاب بالسول قوى فرفن اسرا، بای هر x ک K<n T(x) < akT(n) < an Suit $T(n) \leq Cn + T(1/5) + T(7n/10)$ $\langle cn + \frac{a_1}{5} + \frac{7}{10}an = cn + \frac{9}{10}an \langle an \rangle$ $\frac{2!0c \leq a}{10} = 10cn = an$ $T(n) \leq an \ll$ T(n) & an <=

$$n + (n-1) + (n-2) + ... + 1 \in \Theta(n^2)$$

$$= \frac{n^2}{K} - \frac{n^2}{2K} = \frac{n^2}{2K} \in \mathcal{B}(n^2)$$

$$0 < x < 1$$

$$0 + x^{2} + x^{2} + \dots = n (1 + x + x^{2} + \dots) = \frac{n}{1 - x}$$

Deterministic Selection 13 - 161) Jours 755 Tes, el Soul (1) الا دارو در و در و کرم 100 m 2/1/2 B 2/1/2 B 2/1/2 B 2/1/2 B Pivot = DSelect (B. [1/5], [1/10]) (F)

3	40	5	25	19	5	6	17	15
2	30	60	9	39	16	8	33	13
4	20	3	13	64	29	5	26	50
5	10	17	42	7	14	85	4	15
1	50	2	6	18	27	64	13	8

بی کزرتب مهری دستمار کاکی

,	5	50	60	42	64	29	85	73	50	
	4	40	17	25	39	27	64	26	15	
	ر س	30	5	13	19	16	8	17	15	•
	2	20	3	9	18	14	6	13	13	
	1	10	2	6	7	5	5	4	8	

- Dselect (B, 9, 5) 3, 5, 8, 13, 15, 16, 17, 19, 30 بی گزرتب کهری در تراری کارگ

	5	50	60	42	64	29	85	73	50
	4	40	17	25	39	27	64	26	15
(3	30	5	13	19	16	8	17	15
	2	20	3	9	18	14	6	13	13
	1	10	2	6	7	5	5	4	8

/ B

5 60 85 42 50 29 33 64 50 4 17 64 25 15 27 26 39 40 3 5 8 13 (15) 16 17 19 30 2 3 6 9 13 14 13 18 20 1 2 5 6 8 5 9 7 10

ررادار صرالی طرل آرای مرارح

مرغ و تخم مرغ

- برای آنکه الگوریتم محاسبه i امین آماره ترتیبی به خوبی عمل کند باید محور را به نحو مناسبی انتخاب کنیم که آرایه به دو بخش مناسب شکسته شود.
 - انتخاب بهینه محور این است که مقدار آن برابر میانه باشد که $\left|\frac{n+1}{2}\right|$ امین آماره ترتیبی است.
 - ایده:
 - محور را به نحو مناسبی (نه الزاما میانه) با استفاده از همان الگوریتم محاسبه i امین آماره ترتیبی به دست آوریم.

الگوريتم انتخاب محور

- آرایه A را به صورت n/5 آرایه ۵ تایی در نظر بگیر و هر آرایه را مرتب کن.
 - آرایه C را با مقادیر میانه آرایه های ۵ تایی پر کن.
 - میانه C را با استفاده از الگوریتم پیدا کردن i امین آماره ترتیبی محاسبه کن.
 - مقدار میانه C را به عنوان محور انتخاب کن

الگوريتم محاسبه i امين آماره

- DSelect(array A, length n, order statistic i)
- 1. p = ChoosePivot(A,n);
- 2. Partition A around p
- 3. If j = i return p
- 4. If j < i return DSelect(1st part of A, j-1, i)
- 5. [else if j > i] return DSelect(2nd part of A, n-j, i-j)

الگوريتم قطعى انتخاب محور

- ChoosePivot(array A, length n, order statistic i)
- 1. Break A into groups of 5, sort each group
- 2. C = the n/5 "middle elements"
- 3. p = DSelect(C, n/5, n/10)
- 4. return p

الگوریتم DSelect بدون فراخوانی تابع ChoosePivot

- DSelect(array A, length n, order statistic i)
- 1. Break A into groups of 5, sort each group
- 2. C = the n/5 "middle elements"
- 3. p = DSelect(C, n/5, n/10) [computes median of C]
- 4. Partition A around p
- 5. If j = i return p
- 6. If j < i return DSelect(1st part of A, j-1, i)
- 7. [else if j > i] return DSelect(2nd part of A, n-j, i-j)

زمان اجراى الگوريتم DSelect

- قضیه: برای هر آرایه ورودی با اندازه n زمان اجرای الگوریتم
 Dselect از مرتبه (n) است.
 - اخطار: در عمل الگوریتم Rselect بهتر است، زیرا 1. نیاز به حافظه اضافی ندارد.
 - 2. ضریب ثابت مرتبه زمانی آن کمتر است.

تحلیل زمان اجرای الگوریتم DSelect

- DSelect(array A, length n, order statistic i)
- θ(n) 1. Break A into groups of 5, sort each group
- $\Theta(n)$ 2. C = the n/5 "middle elements"
- T(n/5) 3. p = DSelect(C,n/5,n/10) [computes median of C]
 - θ(n) 4. Partition A around p
- $\Theta(1)$ 5. If j = i return p

T(?)

- 6. If j < i return DSelect(1st part of A, j-1, i)
- 7. [else if j > i] return DSelect(2nd part of A, n-j, i-j)

$$T(n) \le cn + T\left(\frac{n}{5}\right) + T(?)$$

لم کلیدی

• طول آرایه در فراخوانی بازگشتی دوم در خطوط ۶ یا ۷ حداکثر برابر $\frac{7}{10}$ است.

 فرض کنید داده های ۵ تایی مرتب شده در ستون های یک جدول قرار گرفته اند و این ستون ها بر اساس مقدار میانه (ردیف سوم) مرتب شده اند.

۸۰۰	٩٨	۲۳۰	۳۸۰	۴.,	11
19.	٧٢	۱۲۸	۱۴۵	۱۷۰	1
18	۳۵	۴٣	٧۶	۱۲۰	 ٨٠٠
۱۵	١٢	٩	89	٩٠	٨
Υ	١	۵	۴	۶٠	۲

- عنصر محور از تمام عناصر سمت چپ و پایین بزرگ تر است.
- عنصر محور از تمام عناصر سمت راست و بالا کوچک تر است.

۸۰۰	٩٨	۲۳٠	۳۸۰	۴۰۰	11
19.	٧٢	۱۲۸	140	۱۷۰	1
18	۳۵	۴٣	٧۶	۱۲۰	 ۸۰۰
۱۵	١٢	٩	99	٩.	٨
٧	١	۵	۴	۶.	۲

- ورض کنیم آرایه به $k pprox rac{n}{5}$ دسته ۵ تایی تقسیم شده است.
- عنصر محور در ستون $\frac{k}{2}$ قرار دارد و مقدار آن تقریبا از 3/5 عناصر سمت چپ جدول بزرگ تر یا مساوی است. همچنین مقدار آن تقریبا از 3/5 عناصر سمت راست جدول کوچک تر یا مساوی است.

۸۰۰	٩٨	۲۳٠	۳۸۰	۴۰۰	11
19.	٧٢	۱۲۸	140	۱۷۰	1
18	۳۵	۴۳	Y9	17.	 ٨٠٠
۱۵	١٢	٩	59	٩.	٨
٧	١	۵	۴	۶٠	۲

- بنابراین با توجه به اینکه عناصر سمت چپ آرایه تقریبا نصف عناصر کل آرایه را تشکیل می دهند، عنصر محور از 0.3 عناصر کل آرایه بزرگ تر است.
- به طور مشابه عنصر محور از 0.3 عناصر کل آرایه کوچکتر است.
- بنابراین طول آرایه مورد بررسی در فراخوانی تابع DSelect در خط ۶ یا ۷ حداکثر برابر $\frac{7}{10}$ می باشد.

تکمیل اثبات خطی بودن زمان اجرای DSelect

• طبق لم کلیدی، زمان اجرای الگوریتم در رابطه بازگشتی زیر صدق می کند:

$$T(1)=1$$

$$T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7}{10}n\right)$$

- $T(n) \leq an$ با استقرا نشان می دهیم که
 - که a مقداری ثابت است.

اثبات استقرایی

• ابتدای استقرا:

$$T(1) = 1 \le a.1$$

• فرض استقرا: برای هر k<n داریم:

$$T(k) \leq a.k$$

• حكم استقرا: بايد نشان دهيم:

$$T(n) \leq a.n$$

اثبات استقرایی

• اثبات: طبق تحليل الگوريتم داريم:

$$T(k) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7}{10}n\right)$$

$$\le cn + \frac{an}{5} + \frac{7an}{10} = \frac{(10c + 2a + 7a)n}{10}$$

• كافى است a را برابر 10c بگيريم تا داشته باشيم:

$$T(n) \le \frac{10a}{10}n = a.n$$