TMA4320 Cheat Sheet

v1.0 (TeX source @ GitHub.com/JakobGM/)

Solving equations

Definition. The function f(x) has a **root** at x = r if f(r) = 0.

The Bisection Method

```
Given initial interval [a,b] such that f(a) f(b) < 0

while (b-a)/2 > \text{TOL}

c = (a+b)/2

if f(c) = 0, stop, end

if f(a) f(c) < 0

b = c

else

a = c

end
```

end

The final interval [a, b] contains a root. The approximate root is (a + b)/2.

The bisection method's efficiency:

Solution error =
$$|x_c - r| < \frac{b - a}{2^{n+1}}$$

Function evaluations = n + 2

Fixed point iteration

$$x_0 = \text{initial guess}$$

 $x_{i+1} = g(x_i)$ for $i = 0, 1, 2, ...$

```
% Function handle g
% Starting guess x0
% Number of iteration steps k
function xc = fpi(g, x0, k)
x(1) = x0;

for i = 1:k
    x(i+1) = g(x(i));
end

xc = x(k+1);
```

Theorem. Assume that g is continously differentiable, that g(r) = r, and that S = |f'(r)| < 1. The Fixed-Point Iteration converges linearly with the rate S to the fixed point r for initial guesses sufficiently close to r.

Newton's method

$$x_0$$
 = initial guess
 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$, for $i = 0, 1, 2, ...$

Theorem. Let f be twice continuously differentiable and f(r) = 0. If $f'(r) \neq 0$, then Newton's method is locally and quadratically convergent to r. The error e_i at step i satisfies **quadratic convergence**

$$\lim_{i \to \infty} \frac{e_{i+1}}{e_i^2} = M,$$

where

$$M = \frac{f''(r)}{2f'(r)}.$$

Theorem. Assume that the (m+1)-times continuously differentiable function f on [a, b] has a multiplicity m at root r. Then Newton's Method is locally convergent to r, and the error e_i at step i satisfies

$$\lim_{i \to \infty} \frac{e_{i+1}}{e_i} = S,$$

where S = (m-1)/m.

Theorem. If f is (m+1)-times continuously differentiable on [a,b], which contains a root r of multiplicity m>1, the the **Modified Newton's Method**

$$x_{i+1} = x_i - \frac{mf(x_i)}{f'(x_i)}$$

converges locally and quadratically to r.

Interpolation

Lagrange interpolation

The unique degree n-1 polynomial that interpolates the n datapoints $(x_1, y_1), ..., (x_n, y_n)$ is given by

$$P_{n-1}(x) = y_1 L_1(x) + \dots + y_n L_n(x)$$

where L_k is given by

$$L_k(x) = \frac{(x - x_1)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_1)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$

Netwon's divided differences

Definition. Denote by $f[x_1...x_n]$ the coefficient of the x^{n-1} term in the (unique) polynomial that interpolates $(x_1, f(x_1)), ..., (x_n, f(x_n))$.

Given $x = [x_1, ..., x_n], y = [y_1, ..., y_n]$

for
$$j = 1, ..., n$$

 $f[x_j] = y_j$
end

for
$$i=2,\ldots,n$$

for $j=1,\ldots,n+1-i$
 $f[x_j\ldots x_{j+i-1}]=(f[x_{j+1}\ldots x_{j+i-1}]-f[x_j\ldots x_{j+i-2}])/(x_{j+i-1}-x_j)$

end

The interpolating polynomial is

$$P(x) = \sum_{i=1}^{n} f[x_1 \dots x_i](x - x_1) \dots (x - x_{i-1})$$

A recursive table in the form

can be made, and the top row gives the coefficients of the Newton's divided difference polynomial.

Interpolation error

Theorem. Assume that P(x) is the (degree n-1 or less) interpolating polynomial fitting the n points $(x_1, y_1), ..., (x_n, y_n)$. The interpolation error is

$$f(x) - P(x) = \frac{(x - x_1)(x - x_2)...(x - x_n)}{n!} f^{(n)}(c),$$

where $c \in [\max(x_1, ..., x_n), \min(x_1, ..., x_n)].$

Runge's phenomenon

Runge's phenomenon is the consequence of the magnitude of the derivatives of the interpolation function grows quickly when n increases. This causes a "wiggle" effect at the ends of the interval and is solved by redistributing the interpolation nodes towards the ends. Speaking of which...

Chebyshev Interpolation Nodes

Theorem. On the interval [a, b],

$$x_i = \frac{b+a}{2} + \frac{b-a}{2} \cos \frac{(2i-1)\pi}{2n}$$

for i = 1, ..., n. The inequality

$$|(x-x_1)...(x-x_n)| \le \frac{(\frac{b-a}{2})^n}{2^{n-1}}$$

holds on [a, b]. The use of these nodes will minimize the interpolation error.

Numerical quadratures

Methods for integrating f(x) on the interval [a, b], using m points. The used variable c is always contained in this interval.

Composite Trapezoid Rule

$$\int_{a}^{b} f(x) dx = \frac{h}{2} (y_0 + y_m + 2 \sum_{i=1}^{m-1} y_i) - \frac{(b-a)h^2}{12} f''(c),$$

where h = (b - a)/m.

Composite Midpoint Rule

Functions with removable singularities at an interval endpoint can be handled with

$$\int_{a}^{b} f(x) dx = h \sum_{i=1}^{m} f(w_i) + \frac{(b-a)h^2}{24} f''(c),$$

where h = (b - a)/m. The w_i are the midpoints of m equal subintervals of [a, b].

Higher order quadratures

To find the Newton-Cotes quadrature of the nth degree, use the Lagrange polynomial of the nth degree with its interpolation error term given above

$$\int_{x_0}^{x_n} f(x) \, \mathrm{d}x = \int_{x_0}^{x_n} P_n + E_n(x) \, \mathrm{d}x,$$

where

$$\int_{x_0}^{x_n} P_n = \sum_{i=0}^n f(x_i) \int_{x_0}^{x_n} L_k(x) \, \mathrm{d}x.$$

The degree of precision is n (for n odd) and n+1 (for n even), with n+1 function evaluations.

Gaussian quadrature

Definition. The set of nonzero functions $\{p_0, ..., p_n\}$ on the interval [a, b] is **orthogonal** on [a, b] if

$$\int_{a}^{b} p_{j}(x)p_{k}(x)dx = \begin{cases} 0 & j \neq k \\ \neq 0 & j = k \end{cases}$$

Theorem. These orthogonal polynomials, where deg $p_i = i$, form a basis for the vector space of degree at most n polynomials on [a, b]. p_i then has i distinct roots in the interval (a, b).

The set of Legendre polynomials

$$p_i(x) = \frac{1}{2i!} \frac{d^i}{dx} [(x^2 - 1)^i], \text{ for } 0 \le i \le n$$

is orthogonal on [-1,1].

Gaussian quadrature of the *n*th degree is derived from integrating an interpolating polynomial of f(x) whose nodes are the Legendre roots of p_n .

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} c_i f(x_i),$$

where

$$c_i = \int_{-1}^{1} L_i(x) dx, \ i = 1, ..., n.$$

For a general interval [a, b], use the substitution t = (2x - a - b)/(b - a) to translate back to [-1, 1]. Gaussian quadrature of degree n has a degree of precision of 2n + 1.

Adaptive quadrature

Denote the error estimation of the non-composite quadrature method $S_{[a,b]}$ on the interval [a,b] as $E_S(a,b)$. For the trapezoid rule for instance, we have $E_{\text{trap}}(a,b) = -h^3 f''(c_0)/12$. The factor of error estimation reduction, r_s , when halving the interval length, $h \to h/2$, is equal to

$$r_S = \left| \frac{E_S(a,b) - (E_S(a,c) + E_S(c,b))}{E_S(a,c) + E_S(c,b)} \right|,$$

where c = (a+b)/2. For the trapezoid rule, r_{trap} is equal to 3. When calculating $S_{[a,b]}$, the error bound can be compared with the specified tolerance, TOL, by evaluating

$$|E_S(a,b) - (E_S(a,c) + E_S(c,b))| < r_S \cdot \frac{\text{TOL}}{2^n},$$

where n is equal to how many times the original interval has been halved. An example for the trapezoid rule is given:

To approximate $\int_a^b f(x) dx$ within tolerance TOL:

$$c = \frac{a+b}{2}$$

$$S_{[a,b]} = (b-a)\frac{f(a)+f(b)}{2}$$

$$\mathbf{if} |S_{[a,b]} - S_{[a,c]} - S_{[c,b]}| < 3 \cdot \text{TOL} \cdot \left(\frac{b-a}{b_{\text{orig}} - a_{\text{orig}}}\right)$$

$$\text{accept } S_{[a,c]} + S_{[c,b]} \text{ as approximation over } [a,b]$$

$$\mathbf{else}$$

$$\text{repeat above recursively for } [a,c] \text{ and } [c,b]$$

$$\mathbf{end}$$

Error estimation

Integrate the interpolation error (see "Interpolation Error") or perform a Taylor series expansion and integrate the error term (see "Taylor Method of order k").

ODEs

Solving the initial value problem

$$\begin{cases} y' = f(t, y) \\ y(a) = y_a \\ t \in [a, b] \end{cases}$$

with...

Euler's method

$$w_0 = y_0$$

$$w_{i+1} = w_i + h f(t_i, w_i)$$

Backwards Euler Method

Use this method when the differential equation is **stiff**, i.e. attracting solutions are surrounded with fast-changing nearby solutions, i.e. when the linear part of y on the r.h.s. is large and negative.

$$w_0 = y_0$$

 $w_{i+1} = w_i + h f(t_i, w_{i+1})$

Solving this implicit equation for w_{i+1} might require | with a safety factor of 0.8. the iterative use of Newton's method.

Explicit Trapezoid Method

$$w_0 = y_0$$

$$w_{i+1} = w_i + \frac{h}{2} (f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i)))$$

Local and global error

Definition. A function f(t,y) is Lipschitz continu**ous** in the variable y on the rectangle $S = [a, b] \times [\alpha, \beta]$ if there exists a constant L (called the **Lipschitz constant**) satisfying

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$$

for each $(t, y_1), (t, y_2)$ in S.

Definition. The global truncation error is defined as $g_i = |w_i - y_i|$, and the local truncation error is defined as $e_{i+1} = |w_{i+1} - z(t_{i+1})|$, where z is the correct solution of the one-step IVT with $y_0 = w_i$.

Theorem. If f(t,y) has a Lipschitz constant L, and the ODE solver has a local truncation error $e_i < Ch^{k+1}$. then the solver (which is of order k) has a global truncation error

$$g_i = |w_i - y_i| \le \frac{Ch^k}{L} (e^{L(t_i - a)} - 1).$$

Taylor Method of order k

$$w_0 = y_0$$

 $w_{i+1} = w_i + hf(t_i, w_i) + \frac{h^2}{2} + \dots + \frac{h^k}{k!} f^{(k-1)}(t_i, w_i)$

with the corresponding error term

$$y_{i+1} - w_{i+1} = \frac{h^{k+1}}{(k+1)!} y^{(k+1)}(c) = \mathcal{O}(h^{k+1}),$$

where $c \in [t, t+h]$.

Adaptive methods

Compare e_i or $e_i/\max(|w_i|, \theta)$ with the error tolerance, and change h_i as needed. If $e_i \approx ch_i^{p+1}$, the relative tolerance TOL is satisfied when TOL $\leq ch^{p+1}/|w_i|$. Solving for h gives the new step size

$$h_{i+1} = 0.8 \left(\frac{\text{TOL} \cdot |w_i|}{e_i}\right)^{\frac{1}{p+1}} h_i,$$

Embedded pairs

The error in going from t_i to t_{i+1} can be estimated as $e_{i+1} \approx |z_{i+1} - w_{i+1}|$, where z is a higher order estimate. This is often done with an embedded Runge-Kutta pair that shares much of the needed computations. An example is the order 2/order 3 embedded pair:

$$w_{i+1} = w_i + h \frac{s_1 + s_2}{2}$$
$$z_{i+1} = w_i + h \frac{s_1 + 4s_3 + s_2}{6}$$

where

$$s_1 = f(t_i, w_i)$$

$$s_2 = f(t_i + h, w_i + hs_1)$$

$$s_3 = f(t_i + \frac{h}{2}, w_i + \frac{h}{2} \frac{s_1 + s_2}{2})$$

with an error estimation of

$$e_{i+1} \approx |w_{i+1} - z_{i+1}| = \left| h \frac{s_1 - 2s_3 + s_2}{3} \right|.$$

It's of course better to use z_{i+1} to advance the step (local extrapolation).

DFT/FFT

Definition. The Discrete Fourier Transform of $x=[x_0,...,x_{n-1}]^T$ is the n-dimensional vector $y=[y_0,...,y_{n-1}]^T$, where $w=e^{-i2\pi/n}$ and

$$y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j w^{jk}.$$

Or in matrix terms

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} a_0 + ib_0 \\ a_0 + ib_1 \\ a_0 + ib_2 \\ \vdots \\ a_{n-1} + ib_{n-1} \end{bmatrix} = F_n \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

where the **Fourier matrix**, F_n , is equal to

$$F_{n} = \frac{1}{\sqrt{n}} \begin{bmatrix} w^{0} & w^{0} & w^{0} & \dots & w^{0} \\ w^{0} & w^{1} & w^{2} & \dots & w^{n-1} \\ w^{0} & w^{2} & w^{4} & \dots & w^{2(n-1)} \\ w^{0} & w^{3} & w^{6} & \dots & w^{3(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ w^{0} & w^{n-1} & w^{2(n-1)} & \dots & w^{(n-1)^{2}} \end{bmatrix}$$

The inverse Discrete Fourier Transform is then given by $x = F_n^{-1}y$ or

$$x_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} y_j w^{-jk}.$$

Useful properties of the DFT

- The inverse of the Fourier matrix is the matrix consisting of the complex conjugates of the entries of F_n : $F_n^{-1} = \overline{F}_n$.
- The Fourier matrix is **unitary**, that is $\overline{F}_n^T F_n = I$.
- The magnitude of a complex vector is: $||\vec{v}|| =$ $\sqrt{\bar{v}}^T \vec{v}$.
- There is no change in magnitude after a unitary matrix multiplication: $||Fv||^2 = \overline{v}^T \overline{F}^T F v =$ $\overline{v}^T v = ||v||^2$.
- If \vec{x} is real, then y_0 is real, and $y_{n-k} = \overline{y_k}$.
- $\vec{x_1} \cdot \vec{x_2} = \vec{x_2}^T \vec{x_1}$ and $[F_n \vec{x}]^T = \vec{x}^T F_n^{-1}$.

The Fast Fourier Transform

The FFT uses the following property in order to split DFT(N) into two DFT(N/2)s plus 2N-1 extra operations

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} a_0 + ib_0 \\ a_0 + ib_1 \\ a_0 + ib_2 \\ \vdots \\ a_{n-1} + ib_{n-1} \end{bmatrix} = F_n \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{n-1} \end{bmatrix}, \qquad \begin{bmatrix} \sum_{n=0}^{N-1} x_n e^{-2\pi i nk/N} \\ \sum_{n=0}^{N/2-1} x_n e^{-2\pi i nk/N} \\ \sum_{n=0}^{N/$$

Trigonometric interpolation

Given the interval [c,d] and positive integer n, let $t_j = c + j(d-c)/n$ for j = 0,...,n-1, and let $\vec{x} = (x_0,...,x_{n-1})$ denote a vector of n numbers. Define $\vec{a} + \vec{b}i = F_n\vec{x}$. Then the complex function

$$Q(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} (a_k + ib_k) e^{i2\pi k(t-c)/(d-c)}$$

satisfies $Q(t_j) = x_j$ for j = 0, ..., n - 1. Furthermore, if the x_j are real, the function

$$P(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(a_k \cos \frac{2\pi k(t-c)}{d-c} - b_k \sin \frac{2\pi k(t-c)}{d-c} \right)$$

satisfies $P(t_j) = x_j$ for j = 0,...,n-1, assuming n is even. Using the cosine and sine addition formulas together with the fact that $y_{n-k} = \overline{y_k}$, P(t) can be simplified to

$$P_n(t) = \frac{a_0}{\sqrt{n}} + \frac{2}{\sqrt{n}} \sum_{k=1}^{n/2-1} \left(a_k \cos \frac{2\pi k(t-c)}{d-c} - b_k \sin \frac{2\pi k(t-c)}{d-c} \right) + \frac{a_{n/2}}{\sqrt{n}} \cos \frac{n\pi(t-c)}{d-c}$$

Fourier filtering/compression relevant to the project

- MATLAB uses a non-unitary normalization for its Fourier transformation, such that F_nx is computed by fft(x)/sqrt(n), and $F_n^{-1}y$ by ifft(y)*sqrt(n).
- Given n data points, the best least squares trigonometric function with m < n terms can be found by interpolating with n terms, and then only keep the first m terms (dropping the higher frequencies, called a **low pass filter**).
- A high pass filter can be made by dropping the lower frequency components.