

Scalable Data Science

Lecture 10: Frequent Elements: CountSketch

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Streaming model revisited

- Data is seen as incoming sequence
 - can be just element-ids, or (id, frequency update) tuple

Arrival only streams

- Arrival + departure
 - Negative updates to frequencies possible
 - Can represent fluctuating quantities, e.g.

Review: Frequency Estimation in one pass

- Given input stream, length m, want a sketch that can answer frequency queries at the end
 - For give item x, return an estimate of the frequency
- Algorithms seen
 - Deterministic counter based algorithms: Misra-Gries, SpaceSaving
 - Count-Min sketch

Recall: Count-min sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow [1, d]$

Count-sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, $h_i: U \to [1, d]$
- w sign hash function, each maps $g_i: U \to \{-1, +1\}$

Count Min Sketch

<u>Initialize</u>

- Choose $h_1, ..., h_w$, A[w, d] ← 0

Process(x, c):

- For each $i \in [w]$, $A[i, h_i(x)] += c \times g_i(x)$

Query(q):

- Return median $\{g_i(x)A[i,h_i(x)]\}$

Example

h1		
h2		

	h1,g1	h2,g2
	2,+	1,+
0	3,-	2,+
	1,+	3,-
	2,-	3,+

Guarantees

Space =
$$O(wd)$$

Update time = $O(w)$

Each item is mapped to one bucket per row

Guarantees

•
$$w = \frac{2}{\epsilon^2}$$
 $d = \log\left(\frac{1}{\delta}\right)$

 $Y_1 \dots Y_w$ be the w estimates, i.e. $Y_i = g_i(x)A[i,h_i(x)], \quad \widehat{f}_x = \underset{i}{\text{median }} Y_i$

$$E[Y_i] = E[g_i(x) A[i, h_i(x)]] = E\left[g_i(x) \sum_{h_i(y) = h_i(x)} f_y g_i(y)\right]$$

Guarantees

$$E[Y_i] = E[g_i(x) A[i, h_i(x)]] = E[g_i(x) \sum_{h_i(y) = h_i(x)} f_y g_i(y)]$$

Notice that for $x \neq y$, $E[g_i(x) g_i(y)] = 0$!

$$E[Y_i] = g_i(x)^2 f_x = f_x$$

We analyse the variance in order to bound the error For simplicity assume hash functions all independent

Variance analysis

$$|f|_2^2 = \sum_{x} f_x^2$$

Using simple algebra, as well as independence of hash functions,

$$var(Y_i) = \frac{\left(\sum_{y} f_y^2 - f_x^2\right)}{d} \le \frac{|f|_2^2}{d}$$

Using Chebyshev's inequality

$$\Pr[|Y_i - f_x| > \epsilon |f|_2] \le \frac{1}{d\epsilon^2} \le \frac{1}{3} \qquad d = \frac{3}{\epsilon^2}$$

Finally, use analysis of median-trick with $w = \log\left(\frac{1}{\delta}\right)$

Final Guarantees

• Using space $O\left(\frac{1}{\epsilon^2}\log\left(\frac{1}{\delta}\right)\log(n)\right)$, for any query x, we get an estimate, with prob $1-\delta$

$$|f_{x}| - \epsilon |f|_{2} \le f_{x} \le f_{x} + \epsilon |f|_{2}$$

Comparisons

Algorithm	$\widehat{f_x} - f_x$	$Space \times log(n)$	Error prob	Model
Misra-Gries	$[-\epsilon f _1,0]$	$1/\epsilon$	0	Insert Only
SpaceSaving	$[0,\epsilon f _1]$	$1/\epsilon$	0	Insert Only
CountMin	$[0,\epsilon f _1]$	$\log\left(\frac{1}{\delta}\right)/\epsilon$	δ	Insert
CountSketch	$[-\epsilon f _2,\epsilon f _2]$	$\log\left(\frac{1}{\delta}\right)/\epsilon^2$	δ	Insert+Delete

Summary

- CM and Count Sketch to answer point queries about frequencies
 - two user-defined parameters, ϵ and δ
 - Linear sketch, hence can be combined across distributed streams
- Count Sketch handle departures naturally
 - As long as –ve frequencies are not present
 - For CM, we need to consider median instead of minm
- Extensions to handle range queries and others...
- Actual performance much better than theoretical bound

References:

- Primary references for this lecture
 - Lecture slides by Graham Cormode http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
 - Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
 - Sketch techniques for approximate query processing, Graham Cormode. http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

Thank You!!

