Musterlösung Übungsblatt 1

Schaltalgebra und Schaltfunktionen

Vorlesung *Technische Grundlagen der Informatik 1*, Sommeresemester 2020 Erstellt von Dr.-Ing. Kristian Ehlers

Aufgabe 1 Normalformen

Gegeben sei die in Abbildung 1.1 dargestellte Gatterschaltung.

Abbildung 1.1: Schaltfunktion in Form einer Gatterschaltung.

(a) Wahrheitstafel

Stellen Sie die Wahrheitstafel für f auf. Gehen Sie schrittweise vor, indem Sie sequentiell die Zwischenfunktionen x_1 bis x_5 und zum Schluss f bestimmen.

a	b	С	d	x_1	x_2	x_3	x_4	x_5	f
0	0	0	0	1	0	0	1	1	1
0	0	0	1	1	1	0	1	1	0
0	0	1	0	1	0	0	0	0	0
0	0	1	1	1	1	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0
1	0	0	0	1	0	1	1	1	1
1	0	0	1	1	1	1	1	1	0
1	0	1	0	1	0	1	0	1	1
1	0	1	1	1	1	1	0	1	0
1	1	0	0	1	0	0	0	0	0
1	1	0	1	1	1	0	0	0	0
1	1	1	0	1	0	0	0	0	0
1	1	1	1	1	1	0	0	0	0

1

(b) Disjunktive Kanonische Normalform

Geben Sie f in disjunktiver kanonischer Normalform (**DKN**) an.

$$f_{DKN}(a,b,c,d) = \overline{abcd} + a\overline{bcd} + a\overline{bcd}$$

(c) Konjunktive Kanonische Normalform

Geben Sie f in konjunktiver kanonischer Normalform (KKN) an.

$$f_{KKN}(a,b,c,d) = (a+b+c+\overline{d})(a+b+\overline{c}+d)(a+b+\overline{c}+\overline{d})(a+\overline{b}+c+d)(a+\overline{b}+c+\overline{d})$$

$$(a+\overline{b}+\overline{c}+d)(a+\overline{b}+\overline{c}+\overline{d})(\overline{a}+b+c+\overline{d})(\overline{a}+b+\overline{c}+\overline{d})(\overline{a}+\overline{b}+c+\overline{d})$$

$$(\overline{a}+\overline{b}+c+\overline{d})(\overline{a}+\overline{b}+\overline{c}+d)(\overline{a}+\overline{b}+\overline{c}+\overline{d})$$

Aufgabe 2 Schaltfunktion, Schaltalgebra

Gegeben sei die in Abbildung 2.2 dargestellte Schaltfunktion.

Abbildung 2.2: Schaltfunktion in Form einer Realisierung mit Schaltern.

(a) Schaltfunktion

Geben Sie die von dieser Schaltung realisierte Schaltfunktion f in Form eines Booleschen Ausdrucks an.

$$f(a,b,c,d) = \overline{a} * (b + (\overline{c} * d))$$

(b) NAND-Form

Formen Sie f so um, dass sich die Schaltfunktion ausschließlich aus NAND-Ausdrücken über jeweils zwei Termen zusammensetzt.

$$f(a,b,c,d) = \overline{a} * (\overline{b} + (\overline{c} * d))$$

$$= \overline{a} * (\overline{b} + (\overline{c} * d)) = \overline{a} * (\overline{b} * (\overline{c} * d)) = \overline{a} * (\overline{b} | (\overline{c} | d))$$

$$= \overline{\overline{a} * (\overline{b} | (\overline{c} | d))} = \overline{a} | (\overline{b} | (\overline{c} | d))$$

$$= (\overline{a} | (\overline{b} | (\overline{c} | d))) | (\overline{a} | (\overline{b} | (\overline{c} | d)))$$

$$= ((a|a)|((b|b)|((c|c)|d))) | ((a|a)|((b|b)|((c|c)|d)))$$

(c) Schaltskizze

Zeichnen Sie den Schaltplan der Gatterschaltung für f unter Verwendung von Schaltsymbolen nach neuer DIN-Norm. Setzen Sie dabei den eben bestimmten Ausdruck in NAND-Form unter der ausschließlichen Verwendung von NAND-Gattern um. Negationen einzelner Variablen oder Terme dürfen mit Hilfe negierter Eingänge der NAND-Gatter realisiert werden.

Aufgabe 3 Beweis auf Basis der Axiome

Beweisen Sie das Idempotenzgesetz der Booleschen Algebra. Nutzen Sie dafür die aus der Vorlesung bekannten Axiome.

(a) Konjunktion

a * a = a

$$a \stackrel{3}{=} a \times 1$$

$$\stackrel{4}{=} a \times (a + \overline{a})$$

$$\stackrel{2}{=} (a \times a) + (a \times \overline{a})$$

$$\stackrel{4}{=} (a \times a) + 0$$

$$\stackrel{3}{=} (a \times a)$$

(b) Disjunktion

a + a = a

Folgt mithilfe des Dualitätsprinzips direkt aus der Lösung von (a).

Aufgabe 4 Verknüpfungsbasen

(a) NOR

NAND ist eine vollständige Verknüpfungsbasis. Zeigen Sie, dass auch NOR eine vollständige Verknüpfungsbasis ist.

Da NAND eine gegebene vollständige Verknüpfungsbasis ist, muss man nur ein NAND mittels NOR darstellen:

$$a|b = \overline{\overline{a} \downarrow \overline{b}}$$
$$\overline{a} = a \downarrow a$$

Oder man zeigt es für NOT, AND und OR nochmal individuell analog zum Skript.

(b) XOR

XOR alleine ist keine vollständige Verknüpfungsbasis. Für welche $g \in \{\lor, \land, NOT\}$ {XOR, g} eine vollständige Verknüpfungsbasis?

 \oplus , NOT

$$\overline{a} = a \oplus 1$$

Es lassen sich jedoch nicht OR oder AND abbilden.

- ⇒ keine vollständige Verknüpfungsbasis
- \oplus , OR

$$\overline{a} = a \oplus 1$$

$$a \wedge b = \overline{a \vee \overline{b}} = ((a \oplus 1) \vee (b \oplus 1)) \oplus 1$$

- \Rightarrow vollständige Verknüpfungsbasis
- ⊕, AND

$$\overline{a} = a \oplus 1$$

$$a \lor b = \overline{\overline{a} \land \overline{b}} = ((a \oplus 1) \land (b \oplus 1)) \oplus 1$$

 \Rightarrow vollständige Verknüpfungsbasis