Metaheurísticas

Práctica 2.a: Técnicas de trayectorias para el problema de asignación cuadrática

Curso 2016-2017. Grado en Ingeniería Informática

Alumno:

Sergio Carrasco Márquez DNI:76590869h

Contenido

1.	Descripción del problema	3
2.	Descripción de la aplicación de los algoritmos	3
	2.1 Función de evaluación	3
	2.2 Soluciones aleatorias para ILS, BMB y BL	3
3.	Descripción de los algoritmos implementados	4
	3.1 Búsqueda local	4
	3.2 Enfriamiento Simulado	5
	3.3 GRASP	7
	3.4 ILS	9
	3.4.1 ILS-BL	9
	3.4.2 ILS-ES	9
	3.5 BMB	10
4.	Análisis de los resultados	10
	4.1 Búsqueda local	11
	4.2 Enfriamiento Simulado	12
	4.3 ILS ILS-ES	13
	4.4 BMB	14
	4.5 GRASP	15
	4.6 Vistazo general	. 16

1. Descripción del problema

El problema consiste en la asignación de unidades que tiene un flujo asociado entre ellas a localizaciones con un valor de distancia que las separa, de forma que las unidades con más flujo entre ellas estén separadas por distancias más cortas. Expresado de forma matemática el problema consiste en reducir el resultado de la función $\sum_{i=1}^n \sum_{j=1}^n (f_{ij} \ d_{\pi(i)\pi(j)})$. De tal forma que f_{ij} Simboliza el flujo entre las unidades i y j y $d_{\pi(i)\pi(j)}$ la distancia entre la localización a la que se asignan dichas unidades.

2. Descripción de la aplicación de los algoritmos

2.1 Función de evaluación

La solución al problema se representa como un vector en el que cada casilla indica la unidad a la que se hace referencia y el contenido de dicha casilla es la localización de dicha unidad. Para evaluar una solución se llama a una función que calcula el valor de la función explicada en el apartado anterior, $\sum_{i=1}^{n} \sum_{j=1}^{n} (f_{ij} \ d_{\pi(i)\pi(j)})$, dependiendo de los valores asignados a cada posición del vector. La función se implementa de la siguiente manera:

```
Evaluación = 0

para i=0 hasta tamaño_del_vector

para j=0 hasta tamaño_del_vector

//v es el vector que almacena la solución

evaluación += FlujoEntre(i,j)*Distancia(v[i],v[j])

return evaluación
```

2.2 Soluciones aleatorias para ILS, BMB y BL

La generación de soluciones aleatorias se realiza de forma simple, pero cumpliendo la restricción del problema sobre las soluciones, que no se asigne la misma localización a dos unidades distintas. En nuestro caso esa restricción implica que el en vector solución no pueden aparecer dos valores repetidos. Para generar vectores que cumplan esta restricción se crea un vector ordenado con todos los valores posibles, es decir desde 0 hasta el tamaño del vector y luego se baraja.

```
Para i = 0 hasta tamaño_del_vector

V[i] = i

//Barajar el vector

Para i = 0 hasta tamaño_del_vector

position = rand(i,tamaño_del_vector-1)//aleatorio entre i el el tamaño del vector -1

swap = v[i]

v[i] = v[posicion]

v[posicion] = swap
```

3. Descripción de los algoritmos implementados

3.1 Búsqueda local

La búsqueda local se basa en generar vecinos de una solución de partida aleatoria y en este caso escoger el primer vecino mejor que dicha solución. Una vez escogido un vecino se repite el proceso de generar vecinos hasta que o bien no existan vecinos mejores, lo que hace que encontremos un óptimo local o global, o bien hasta que se realizen un número de iteraciones o evaluaciones concretos. La generación de vecinos se realiza intercambiando una posición por otra en el vector. En este caso se usa una máscara don't look bits que indica si intercambiar una posición es o no prometedor, lo que ahorrara evaluaciones poco prometedoras y permite una menor exploración del vecindario de una solución.

El proceso de encontrar al primer vecino mejor se realiza de la siguiente forma:

```
Procedure Encuentra Mejor Vecino
para i = 0 hasta tamaño_vector && encontrado == false
        posi = orden[i]
        si(DLB[posi] == true)
               para j = 0 hasta tamaño_vector && encontrado == false
                       posj = orden[j]
                       si(i j= j)
                               swap = v[posi]
                                v[posi] = v[posj]
                                v[posj] = swap
                                evaluacion = FactorizacionVector(v,solucion_actual,posi,posj)
                                iteraciones++
                       fin si
                       si evaluacion < solucion_actual
                                encontrado = true
                                DLB[posi] = true
                                DLB[posj] = true
                       sino
                                swap = v[posi]
                                v[posi] = v[posj]
                                v[posj] = swap
               fin para
        fin si
        si(found == false)
               DLB[posi] = false
        fin si
fin para
return found
```

La búsqueda local hace llamadas a esta función de manera reiterada mientras no se cumpla la condición de parada

```
Procedure BusquedaLocal
DLB = true //Dont look bits inicializado a true en todas las posiciones
mientras(iteraciones < max_iters and encontrado)
        encontrado = EncuentraMejorVecino(v,iteraciones,DLB)
return v
Por último queda explicar cómo se evalúa la solución vecina usando factorización.
//Primero se invierte el cambio realizado en el vector
Swap = v[p1]
V[p1] = v[p2]
v[p2] = swap
incremento = 0
para i = 0 hasta tamaño_del_vector
        si(i != p1 and i != p2)
               incremento += flujo(p1,i)*(distancia(v[p1],i) - distancia(v[p2],v[i])) +
               flujo(p1,i)*(distancia(v[p2],v[i]) - distancia(v[p1],v[i])) +
               flujo(i,p2)*(distancia(v[i],v[p1])-distancia(v[i],v[p2]))+
               flujo(i,p1)*( distancia(v[i],v[p2])-distancia(v[i],v[p1]) )
       fin si
fin para
//Deshacer el cambio en el vector
Swap = v[p1]
V[p1] = v[p2]
v[p2] = swap
eval+=incremento
```

3.2 Enfriamiento Simulado

return eval

El algoritmo de enfriamiento simulado se basa en una búsqueda local que es capaz de escapar de óptimos locales escogiendo soluciones peores que la mejor encontrada. La probabilidad de escoger una peor solución depende de un parámetro que indica la temperatura del sistema. En cada iteración la temperatura disminuye otorgando al algoritmo una mayor convergencia en las etapas finales.

La implementación es pseudocódigo es la siguiente:

```
solucion_actual = Solucion_Aleatoria
evaluacion_actual = evaluar(solucion_actual)
mejor_solucion = solucion_actual
mejor_evaluacion = evaluacion_actual
//Esquema de enfriamiento
t0 = mu*evaluacion_actual/-log(fi)
```

```
tf = 10^{-3}
temperatura = t0
m = max evaluaciones/max vecinos
b = (t0-tf)/(m*t0*tf)
Mientras(n_evals < max_evals && exito)
       Mientras(vecinos_generados < max_vecinos && exitos < max_exitos)
              exitos = 0
              //Generación de vecino
              p1 = aleatorio(0,n)
              p2 = aleatorio(0,n)
              swap = soluicon\_actual[p1]
              solucion_actual[p1] = solucion_actual[p2]
              solution \ actual[p2] = swap
              //Evaluación del vecino
              evaluacion_nueva = evaluar(solucion_actual)
              si(evaluacion_nueva < evaluacion_actual)</pre>
                     exitos++
                     si(evaluacion_nueva < mejor_evaluacion)</pre>
                            mejor_solucion = solucion_actual
                            mejor evaluacion = evaluacion actual
                     evaluacion_actual = evaluacion_nueva
              sino
                     //Se puede aceptar esta solución aunque sea peor
                     si(exp((-1 * (evaluacion_nueva - evaluacion_actual)) /
                            (iteracion * t))
                            exitos++
                            si(evaluacion_nueva < mejor_evaluacion)
                                   mejor_solucion = solucion_actual
                                   mejor_evaluacion = evaluacion_actual
                            evaluacion_actual = evaluacion_nueva
                            sino
                            //Si la solucion no se escoge, se restarua la solución
                            //actual
                                   p1 = aleatorio(0,n)
                                   p2 = aleatorio(0,n)
                                   swap = soluicon_actual[p1]
                                   solucion_actual[p1] = solucion_actual[p2]
                                   solucion\_actual[p2] = swap
              vecinos_generados++
       Fin Mientras
       si(exitos == 0)
              exito = false
       //Actualización de la temperatura y de la iteración
       iteracion++
       temperatura = temperatura/(1+(b*temperatura));
Fin Mientras
return mejor solucion
```

3.3 GRASP

El algoritmo GRASP se basa en una búsquela local multiarranque en la que se lanza una búsqueda local para un conjunto de soluciones iniciales generadas por un algoritmo voraz con una componente aleatoria. El algoritmo voraz hace que la solución de partida sea mejor que una generada aleatoriamente, por lo que la exploración de las búsquedas locales se realiza en zonas más prometedoras.

El pseudocódigo de dicho algoritmo consta de dos partes, la primera que sería la generación de las soluciones voraces aleatorias y la segunda que consta de la búsqueda local multiarranque. Para la generación de soluciones voraces se usa un umbral de calidad que determina si una localización puede ser asignada a una unidad concreta. Si la asignación cumple con el umbral establecido entonces dicha asignación entra dentro de las asignaciones candidatas para ser escogida de forma aleatoria. En este caso particular se han establecido las dos primeras asignaciones de la misma forma que lo haría un algoritmo voraz determinista .

Procedure RandomGredy

```
para i = 0 hasta n
       val = 0
       para j = 0 hasta n
              val += flujoEntre(i,j)
       flujos[i].unidad = unidad
       flujos[i].flujo = val
fin para
ordenaMayorMeno(flujos)
para i = 0 hasta n
       val = 0
       para j = 0 hasta n
              val+=DistanciaEntre(i,j)
       distancias[i].unidad = unidad
       distancias[i].flujo = val
fin para
ordenaMenorMayor(distancias)
para i = 0 hasta n
       solucion[i] = -1
fin para
solucion[flujos[0].unidad] = distancias[0].unidad
solucion[flujos[1].unidad] = distancias[1].unidad
localizaciones_usadas[distancias[0].unidad] = false
localizaciones_usadas[distancias[1].unidad] = false
localizaciones\_usadas = 2
coste = flujoEntre(flujos[0].unidad,flujos[1].unidad)*
DistanciaEntre(distancias[0].unidad,distancias[1].unidad)
para i = 2 hasta n
```

```
unidad = flujos[i].unidad
       indice\_localizaciones = 0
       para j = 0 hasta n
              localizacion = distancias[j].unidad
              si(localizaciones_usadas[localizacion] == false)
                     //Si la localización no ha sido usada, se prueba como candidata
                     coste unidad = coste
                     //Calculo del coste de localización
                     para k = 0 hasta n
                            s = solucion[k]
                            si(s != -1)
                                   distancia =
                                   DistanciaEntre(solucion[k],localizacion)
                                   flujo = flujoEntre(k,unidad)
                                   coste unidad = distancia*flujo
                            fin si
                     fin para
                     ucs.cost = coste unidad
                     ucs.unidad = localuzacion
                     localizaciones_candidatas[indice_localizaciones] = ucs
                     indice_localizaciones++
             fin si
       fin para
       ordenaMenorMayor(localizaciones_candidatas)
       //Calculo del umbral
       coste_mejor = localizaciones_candidatas[0].cost
       coste peor = localizaciones candidatas[n-1-n localizaciones usadas].cost
       umbral = coste_mejor + umbral_calidad*(coste_peor-coste_mejor)
       indice\_corte = 0
       encontrado = false
       para j = 0 hasta n-n\_localizaciones\_usadas and found == false
              si(localizaciones_candidatas[j].coste > umbral)
                     indice\_corte = j-1
                     encontrado = true
             fin si
       fin para
       asignacion = Aleatorio(0,indice corte)
       solucion[unidad] = localizaciones_candidatas[asignacion].unidad
       n_localizaciones_usadas++
       cost += localizaciones_candidatas[asignacion].cost
fin para
Procedure GRASP
solucion_actual = RandomGreedy
evaluacion_actual = EvaluarSolucion(solucion_actual)
mejor_solucion = solucion_actual
mejor_evaluacion = evaluacion_actual
para i = 0 hasta n_iteraciones
       BusquedaLocal(solucion actual)
       si(evaluacion_actual < mejor_Evaluacion)
```

```
mejor_solucion = solucion_actual
mejor_evaluacion = evaluacion_actual
fin si
solucion_actual = RandomGreedy
fin para
return mejor_solucion
```

3.4 ILS

El algoritmo ILS se basa en una búsqueda que escapa de óptimos locales usando un operador de mutación sobre dicho óptimo para relanzar la búsqueda. Se han implementado dos esquemas distintos de ILS, uno que utiliza la búsqueda local y otro que utiliza el enfriamiento simulado. El operador de mutación usado en ambos esquemas consiste en escoger una sección de la solución y realizar un reordenamiento aleatorio de dicha sección.

3.4.1 ILS-BL

```
solucion_actual = Solucion_aleatoria()
evaluacion_actual = EvaluarSolucion(solucion_actual)
mejor solucion = solucion actual
para i = 0 hasta n_iteraciones
       //mutación de la solución
       inicio_sublista = Aleatorio(0,tamaño-tamaño_sublista-1)
       posiciones = GeneraVectorAleatorio()
       para j = 0 hasta tamaño_sublista
              swap = solucion_actual[j+inicio_sublista]
              solucion_actual[j+inicio_sublista] = solucion_actual[j+posiciones[j]]
              solucion_actual[j+posiciones[j]] = swap
       fin para
       BusquedaLocal(solucion_actual)
       evaluacion_actual = EvaluarSolucion(solucion_actual)
       si(evaluacion actual < mejor evaluacion)
              mejor_solucion = solucion_actual
              mejor_evaluacion = evaluacion_actual
       sino
              solucion_actual = mejor_solucion
              evalaucion_actual = mejor_evalaucion
fin para
return mejor solucion
3.4.2 ILS-ES
solucion_actual = Solucion_aleatoria()
evaluacion_actual = EvaluarSolucion(solucion_actual)
mejor_solucion = solucion_actual
para i = 0 hasta n_iteraciones
       //mutación de la solución
       inicio sublista = Aleatorio(0,tamaño-tamaño sublista-1)
       posiciones = GeneraVectorAleatorio()
       para j = 0 hasta tamaño_sublista
```

```
swap = solucion_actual[j+inicio_sublista]
solucion_actual[j+inicio_sublista] = solucion_actual[j+posiciones[j]]
solucion_actual[j+posiciones[j]] = swap
fin para
EnfriamientoSimulado(solucion_actual)
evaluacion_actual = EvaluarSolucion(solucion_actual)
si(evaluacion_actual < mejor_evaluacion)
mejor_solucion = solucion_actual
mejor_evaluacion = evaluacion_actual
sino
solucion_actual = mejor_solucion
evalaucion_actual = mejor_evalaucion
fin para
return mejor_solucion
```

3.5 **BMB**

El algoritmo BMB consiste en una búsqueda multiarranque simple, se generan un conjunto de soluciones iniciales y se lanza una búsqueda local sobre dichas soluciones.

```
solucion_actual = SolucionAleatoria()
evaluacion_actual = EvaluarSolucion(solucion_actual)
mejor_solucion = solucion_actual
mejor_evalaucion = evaluacion_actual
para i = 0 hasta n_soluciones
BusquedaLocal(solucion_actual)
si(evalaucion_actual < mejor_evaluacion)
mejor_solucion = solucion_actual
mejor_evaluacion = evaluacion_actual
fin si
solucion_actual = SolucionAleatoria()
fin para
return mejor_solucion
```

4. Análisis de los resultados

Se han realizado una serie de experimentos para evaluar la calidad de los algoritmos descritos anteriormente. Para replicar los experimentos se indica que se ha usado como semilla aleatoria 3. Para compilar el archivo basta con usar el compilador g++ de Linux con la opción de optimización –O2. La ejecución del programa recibe como primer parámetro el nombre del archivo que se usa como conjunto de datos y como segundo parámetro recibe la semilla.

4.1 Búsqueda local

	Bl		
Caso	Coste	Desv	Tiempo
	obtenido		
Chr20b	3270	42,30	0,00056
Chr22a	7050	14,52	0,000828
Els19	23688500	37,62	0,000641
Esc32b	228	35,71	0,002231
Kra30b	98480	7,72	0,002641
Lipa90b	15250729	22,10	0,067116
Nug25	3828	2,24	0,001493
Sko56	35348	2,58	0,018648
Sko64	49766	2,61	0,027731
Sko72	68668	3,64	0,036686
Sko100a	155542	2,33	0,138898
Sko100b	156922	1,97	0,146787
Sko100c	150352	1,68	0,136182
Sko100d	152214	1,76	0,114925
Sko100e	153946	3,22	0,087816
Tai30b	816324715	28,13	0,002339
Tai50b	479142881	4,43	0,019607
Tai60a	7531464	4,52	0,02222
Tai256c	45274196	3,25	0,90116
Tho150	8315108	9,11	0,50296
		11,57	0,11

Los resultados son buenos si nos fijamos en la relación desviación/tiempo, aunque estos resultados serán peores que los que ofrecen algunos de los algoritmos que se estudiarán a continuación. Algunos conjuntos de datos dan malas soluciones por el hecho de que la solución de partida no es prometedora o simplemente porque está cerca de un mal óptimo local. La velocidad que consigue este algoritmo se debe a la rápida convergencia del mismo, por lo que para obtener soluciones con un coste temporal bajo la búsqueda local se presenta como una buena alternativa.

4.2 Enfriamiento Simulado

	ES				
Caso	Coste	Desv	Tiempo		
	obtenido				
Chr20b	3336	45,17	0,049464		
Chr22a	7398	20,18	0,054491		
Els19	29647820	72,25	0,049384		
Esc32b	188	11,90	0,080671		
Kra30b	96790	5,87	0,07565		
Lipa90b	15208189	21,76	0,240817		
Nug25	3850	2,83	0,060564		
Sko56	35350	2,59	0,118894		
Sko64	49162	1,37	0,16402		
Sko72	67448	1,80	0,188965		
Sko100a	155582	2,36	0,265453		
Sko100b	156738	1,85	0,260535		
Sko100c	150414	1,73	0,262196		
Sko100d	152402	1,89	0,259672		
Sko100e	151906	1,85	0,274095		
Tai30b	729792335	14,55	0,08039		
Tai50b	514682584	12,17	0,132855		
Tai60a	7548822	4,76	0,159019		
Tai256c	45130716	2,92	0,68441		
Tho150	8329318	9,30	0,291804		
		11,95	0,19		

En cuanto al algoritmo de enfriamiento simulado el concepto es similar al de la búsqueda local, pero se le permite escapar de óptimos locales. Los resultados obtenidos son en primera instancia peores que los obtenidos por la búsqueda local, pero hay que tener en cuenta que la implementación de la búsqueda local hace que no se generen vecinos repetidos y usa una máscara don't look bits, que focaliza la búsqueda hacia zonas prometedoras a cambio de una convergencia más rápida. La implementación del enfriamiento simulado no tiene elementos que focalizan la búsqueda ni se ahorra generar soluciones repetidas, por que acercarse tanto a la búsqueda local hace que en general este algoritmo sea bastante bueno. La superioridad de este algoritmo destaca más en los algoritmos ILS, dónde como se analizará posteriormente la técnica de enfriamiento simulado consigue mejores resultados.

4.3 ILS ILS-ES

ILS				ILS-ES			
Caso	Coste	Desv	Tiempo	Caso	Coste	Desv	Tiempo
	obtenido				obtenido		
Chr20b	2658	15,67	0,01125	Chr20b	2726	18,62	1,11571
Chr22a	6630	7,70	0,016832	Chr22a	6608	7,34	1,05438
Els19	23246770	35,06	0,006123	Els19	19278506	12,00	1,15977
Esc32b	192	14,29	0,029606	Esc32b	168	0,00	1,58931
Kra30b	93990	2,81	0,027664	Kra30b	93060	1,79	1,22167
Lipa90b	15125059	21,09	1,31073	Lipa90b	15144976	21,25	3,57088
Nug25	3758	0,37	0,024675	Nug25	3750	0,16	0,963254
Sko56	34646	0,55	0,396271	Sko56	34964	1,47	2,12292
Sko64	49102	1,25	0,61314	Sko64	49138	1,32	2,4263
Sko72	66924	1,01	0,82951	Sko72	66898	0,97	2,99657
Sko100a	152754	0,49	2,61422	Sko100a	153526	1,00	3,9636
Sko100b	154716	0,54	2,36375	Sko100b	155362	0,96	3,9501
Sko100c	149784	1,30	2,07401	Sko100c	149684	1,23	4,18402
Sko100d	151044	0,98	1,8798	Sko100d	151142	1,05	3,9899
Sko100e	150462	0,88	1,8836	Sko100e	150950	1,21	3,91789
Tai30b	650220622	2,06	0,038961	Tai30b	640177356	0,48	1,11134
Tai50b	469418762	2,31	0,240321	Tai50b	466996345	1,78	1,88288
Tai60a	7473572	3,71	0,270538	Tai60a	7444460	3,31	2,32724
Tai256c	44964364	2,54	15,1103	Tai256c	44955820	2,52	12,7318
Tho150	8188406	7,45	7,29499	Tho150	8287164	8,75	6,12592
		6,10	1,85			4,36	3,12

El algoritmo ILS ofrece mejores resultados que una búsqueda local sola, ya que consigue una gran diversidad de soluciones y consigue una mejor combinación de exploración y exploración. Pero es la versión combinada con el enfriamiento simulado la que consigue una mejora notable con respecto a la implementación con búsqueda local. Esta diferencia hace que el algoritmo de enfriamiento simulado sea una mejor opción para combinarlo con algoritmos basados en poblaciones para potenciar dichas poblaciones, que en media serán mejores si se usa este modelo. Dónde el modelo ILS-ES pierde frente al modelo ILS con búsqueda local es en el tiempo de ejecución, aunque en relación desviación/tiempo el modelo ILS-ES sigue siendo superior.

4.4 BMB

BMB				
Caso	Coste	Desv	Tiempo	
	obtenido			
Chr20b	2856	24,28	0,015107	
Chr22a	6750	9,65	0,02261	
Els19	18054452	4,89	0,018736	
Esc32b	188	11,90	0,061266	
Kra30b	94370	3,23	0,062008	
Lipa90b	15167916	21,44	1,50617	
Nug25	3790	1,23	0,037309	
Sko56	35154	2,02	0,496925	
Sko64	49194	1,44	0,760261	
Sko72	67578	2,00	0,878613	
Sko100a	154506	1,65	2,28245	
Sko100b	156100	1,44	2,29263	
Sko100c	150138	1,54	2,16033	
Sko100d	151036	0,98	2,2295	
Sko100e	151456	1,55	2,35183	
Tai30b	640376356	0,51	0,051918	
Tai50b	460114081	0,28	0,322851	
Tai60a	7517526	4,32	0,416034	
Tai256c	45014408	2,66	16,6855	
Tho150	8269744	8,52	8,95915	
		5,28	2,08	

El algoritmo de búsqueda local multiarranque básico ofrece unos resultados muy buenos, debido a la explotación del entorno producida. Esta explotación es mayor que en el resto de algoritmos, ya que ILS usa mutaciones de una solución, mientras que BMB usa un conjunto de soluciones aleatorias que pueden ser muy distintas entre si, y por lo tanto tiene más probabilidades de llevarnos a una solución buena y explorar un mayor número de óptimos locales. Los algoritmos ILS al realizar mutaciones no se alejan lo suficiente del entorno de una solución inicial de forma que tras el proceso de mutación podemos dirigirnos al mismo óptimo local. Los algoritmos BMB pierden capacidad de explotación frente a los ILS, pero la ganancia de exploración hace que los resultados ofrecidos sean algo mejores. En cuanto al tiempo empleado en las sucesivas búsquedas la diferencia no es significativa, por lo que no pude decirse que este algoritmo sea pero en tiempo que un ILS.

4.5 GRASP

GRASP				
Caso	Coste	Desv	Tiempo	
	obtenido			
Chr20b	2878	25,24	0,016023	
Chr22a	6510	5,75	0,022762	
Els19	20508428	19,15	0,016737	
Esc32b	192	14,29	0,060056	
Kra30b	94790	3,69	0,055414	
Lipa90b	15192741	21,63	1,58311	
Nug25	3796	1,39	0,018871	
Sko56	35252	2,30	0,335205	
Sko64	49478	2,02	0,534702	
Sko72	67448	1,80	0,776497	
Sko100a	153402	0,92	2,37938	
Sko100b	156150	1,47	2,09187	
Sko100c	149752	1,28	2,4741	
Sko100d	151818	1,50	2,18745	
Sko100e	151698	1,71	2,32265	
Tai30b	648240842	1,75	0,078126	
Tai50b	473661857	3,23	0,379174	
Tai60a	7465446	3,60	0,326893	
Tai256c	44985852	2,59	16,4935	
Tho150	8268908	8,51	8,29995	
		6,19	2,02	

El modelo GRASP sigue una filosofía muy similar a la del modelo BMB, pero intentando perder algo de exploración generando soluciones iniciales a partir de una solución voraz con componentes aleatorias. Sin embargo esa pérdida de exploración produce que las soluciones iniciales estén más orientadas a soluciones buenas, por lo que es ahí donde reside la potencia de este algoritmo. La diferencia en desviación media entre uno y otro es de algo más de un 1%, por lo que no se pueden sacar conclusiones claras sobre si uno es mejor que otro, o sobre si la focalización está justificada o no. También debe tenerse en cuenta cómo reacciona el problema ante soluciones voraces. A continuación se muestra una tabla con el resultado del algoritmo voraz descrito en secciones anteriores.

GREEDY				
Caso	Coste	Desv	Tiempo	
	obtenido			
Chr20b	10036	336,73	1,00E-05	
Chr22a	12420	101,75	1,00E-05	
Els19	38627698	124,42	9,00E-06	
Esc32b	336	100,00	1,30E-05	
Kra30b	118550	29,68	1,40E-05	
Lipa90b	16183718	29,57	5,40E-05	
Nug25	4446	18,75	1,10E-05	
Sko56	40164	16,56	2,70E-05	
Sko64	57350	18,25	3,20E-05	
Sko72	76936	16,12	4,10E-05	
Sko100a	172224	13,30	7,10E-05	
Sko100b	174384	13,32	7,20E-05	
Sko100c	167584	13,34	6,20E-05	
Sko100d	170776	14,17	6,10E-05	
Sko100e	171646	15,08	6,10E-05	
Tai30b	1387185541	117,73	1,30E-05	
Tai50b	788404422	71,83	2,30E-05	
Tai60a	8393560	16,48	3,00E-05	
Tai256c	83407180	90,21	0,000337	
Tho150	9448176	23,98	0,000124	
		59,06	0,00	

Con estos resultados podemos concluir que las soluciones voraces generadas no son exesivamente malas para tratarse de algoritmos voraces y que un proceso de búsqueda sobre dichas soluciones podría dar buen resultado. De hecho los mejores resultados del algoritmo GRASP aparecen en los mismos conjuntos de datos dónde aparecen las mejores soluciones aleatorias, por lo que la eficacia del GRASP se debe a la eficacia de las soluciones voraces y dependerá de la naturaleza del problema. Un estudio previo del problema usando soluciones voraces, que se obtienen en poco tiempo puede arrojar un poco de luz sobre si usar un GRASP o si usar un BMB.

4.6 Vistazo general

Si comparamos todos los algoritmos estudiados obtenemos la siguiente tabla.

Algoritmo	desviacón	tiempo
BL	11,57	0,11
ILS	6,1	1,85
ILS-ES	4,36	3,12
BMB	5,28	2,08
GREEDY	59,06	tiende a 0
GRASP	6,19	2,02
ES	11,95	0,19

En la tabla se muestra como el mejor algoritmo presentado es el ILS-ES en cuanto a calidad de resultado se refiere, pero no dista mucho del resto de soluciones basadas en búsquedas multiarranque. Estos algoritmos mejoran notablemente a las búsquedas simples como la búsqueda local o el enfriamiento simulado, por lo que podemos concluir que añadir algo de exploración a las técnicas básicas de explotación produce buenos resultados. Esta conclusión demuestra que la mejor utilidad que tienen los algoritmos de explotación es acercar a un conjunto de soluciones a soluciones mejores y potenciar los resultados obtenidos en un tiempo más que razonable, ya que la tabla de tiempos muestra que los algoritmos no son computacionalmente muy pesados.