本文件是 SolusMan-LADR4e 的二进制版本,同时也是一份文档

- 针对程序源码: Copyright (C) 2024 Songbingzhi628. Email: 13012057210@163.com. Under GNU Affero General Public License. SolusMan-LADR4e is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see https://www.gnu.org/licenses/>.
- 针对本文档: Copyright (C) 2024 Songbingzhi628. Email: 13012057210@163.com. Under GNU Free Documentation License. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the file named "COPYING".

简介

这是我个人用于复习的「Linear Algebra Done Right 3E/4E, by Sheldon Axler」笔记,一本习题选答与课文补注。因为使用中文会给我编撰这份笔记带来额外的中英文输入法切换的工作成本,况且对于专业学习者,直接使用英文不会造成任何困扰。但英文词句的冗长性拖慢我复习的效率,所以我对许多常用术语作了简写。这份笔记的内容范围和标识说明,我已经在自述中写得很清楚,不再赘述。这份笔记尚处于缓慢的编撰进度中。

我目前还没有能力和资格评论原书好坏以及线性代数课程教材选用的问题。但作为原书的学习者,我可以说,这本书作为初学线性代数的第一教材,虽然不需要其他辅助教材,但要求学习者有足够的耐心和毅力:课文一次看不懂就多看几遍,一天看不懂就分三天看;习题一个小时做不出来,隔六个小时再尝试,一天做不出来,就隔天再尝试。我虽然没有学过除此以外的其他任何线性代数教材,但我认为这样钻研原书是值得的。

Goto									
1	2	3	4	5	6	7	8	9	10
A	A	A		A	A	A	A	A	Α
В	В	В		B^{I}	В	В	В	В	В
				\mathbf{B}^{II}					
C	C	C		C	C	C	C		
		D			D	D	D		
		E		E*					
		F				F*			

ABBREVIATION TABLE

def	definition	vec	vector
vecsp	vector space	subsp	subspace
add	addition/additive	multi	multiplication/multiplicative/multiple
assoc	associative/associativity	distr	distributive properties/property
inv	inverse	existns	existence
uniqnes	uniqueness	linely inde	linearly independent/independence
linely dep	linearly dependent/dependence	dim	dimension(al)
req	require(d)	B_V	basis of <i>V</i>
inje	injective	surj	surjective
col	column	with resp	with respect
standard basis	std basis	iso	isomorphism/isomorphic
correspd	correspond(ing)	poly	polynomial
eigval	eigenvalue	eigvec	eigenvector
mini poly	minimal polynomial	char poly	characteristic polynomial

1 Prove that $\forall v \in V, -(-v) = v$.

SOLUTION:

$$-(-v)+(-v)=0$$
 $v+(-v)=0$ \Rightarrow By the uniques of add inv, we are done.

Or.
$$-(-v) = (-1)((-1)v) = ((-1)(-1))v = 1 \cdot v = v$$
.

2 Suppose $a \in \mathbf{F}, v \in V$, and av = 0. Prove that a = 0 or v = 0.

SOLUTION:

Suppose
$$a \neq 0$$
, $\exists a^{-1} \in \mathbf{F}$, $a^{-1}a = 1$, hence $v = 1 \cdot v = (a^{-1}a)v = a^{-1}(av) = a^{-1} \cdot 0 = 0$.

3 Suppose $v, w \in V$. Explain why $\exists ! x \in V, v + 3x = w$.

SOLUTION:

[Existns] Let
$$x = \frac{1}{3}(w - v)$$
.

[*Uniques*] Suppose
$$v + 3x_1 = w$$
,(I) $v + 3x_2 = w$ (II). Then (I) $-$ (II) $: 3(x_1 - x_2) = 0 \Rightarrow x_1 = x_2$.

Or.
$$v + 3x = w \Leftrightarrow 3x = w - v \Leftrightarrow x = \frac{1}{3}(w - v)$$
.

5 *Show that in the def of a vecsp, the add inv condition can be replaced by* [1.29].

Hint: Suppose V satisfies all conds in the def, except we've replaced the add inv cond with [1.29]. Prove that the add inv is true.

Using [1.31].
$$0v = 0$$
 for all $v \in V \iff (1 + (-1))v = 1 \cdot v + (-1)v = v + (-v) = 0$.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in R.

Define an add and scalar multi on $\mathbb{R} \cup \{\infty, -\infty\}$ *as you could guess.*

The operations of real numbers is as usual. While for $t \in \mathbb{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} -\infty & \text{if } t > 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t < 0, \end{cases}$$

(I)
$$t + \infty = \infty + t = \infty + \infty = \infty$$
,

(II)
$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty$$
,

(III)
$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of add and scalar multi, is $R \cup \{\infty, -\infty\}$ a vecsp over R? Explain.

SOLUTION:

Not a vecpsp, since the add and scalar mult is not assoc and distr.

By Assoc:
$$(a + \infty) + (-\infty) \neq a + (\infty + (-\infty))$$
.

Or. By Distr:
$$\infty = (2 + (-1))\infty \neq 2\infty + (-\infty) = \infty + (-\infty) = 0$$
.

• Tips: About the Field F: Many choices.

Example:
$$\mathbf{F} = \mathbf{Z}_m = \{K_0, K_1, ..., K_{m-1}\}, \forall m-1 \in \mathbf{N}^+$$
. (See Euler's Theorem.)

7 Give a nonempty $U \subseteq \mathbb{R}^2$,

U is closed under taking add invs and under add, but is not a subsp of \mathbb{R}^2 .

SOLUTION: $(0 \in U; v \in U \Rightarrow -v \in U)$. And operations on U are the same as \mathbb{R}^2 . Let \mathbb{Z}^2 , \mathbb{Q}^2 .

8 Give a nonempty $U \subseteq \mathbb{R}^2$, U is closed under scalar multi, but is not a subsp of \mathbb{R}^2 .

SOLUTION: Let $U = \{(x, y) \in \mathbb{R}^2 : x = 0 \lor y = 0\}$.

9 A function $f: \mathbf{R} \to \mathbf{R}$ is called periodic if $\exists p \in \mathbf{N}^+$, f(x) = f(x+p) for all $x \in \mathbf{R}$. Is the set of periodic functions $\mathbf{R} \to \mathbf{R}$ a subsp of $\mathbf{R}^{\mathbf{R}}$? Explain.

SOLUTION: Denote the set by S.

Suppose $h(x) = \cos x + \sin \sqrt{2}x \in S$, since $\cos x$, $\sin \sqrt{2}x \in S$.

Assume $\exists p \in \mathbb{N}^+$ such that h(x) = h(x+p), $\forall x \in \mathbb{R}$. Let $x = 0 \Rightarrow h(0) = h(\pm p) = 1$.

Thus $1 = \cos p + \sin \sqrt{2}p = \cos p - \sin \sqrt{2}p$

$$\Rightarrow \sin \sqrt{2}p = 0$$
, $\cos p = 1 \Rightarrow p = 2k\pi$, $k \in \mathbb{Z}$, while $p = \frac{m\pi}{\sqrt{2}}$, $m \in \mathbb{Z}$.

Hence $2k = \frac{m}{\sqrt{2}} \Rightarrow \sqrt{2} = \frac{m}{2k} \in \mathbb{Q}$. Contradiction!

OR. Because [I] : $\cos x + \sin \sqrt{2}x = \cos (x + p) + \sin (\sqrt{2}x + \sqrt{2}p)$. By differentiating twice, [II] : $\cos x + 2\sin \sqrt{2}x = \cos (x + p) + 2\sin (\sqrt{2}x + \sqrt{2}p)$.

$$[II] - [I] : \sin \sqrt{2}x = \sin \left(\sqrt{2}x + \sqrt{2}p\right)$$

$$2[I] - [II] : \cos x = \cos (x + p)$$

$$\Rightarrow \text{Let } x = 0, \ p = \frac{m\pi}{\sqrt{2}} = 2k\pi. \text{ Contradicts.}$$

ullet Suppose U, W, V_1, V_2, V_3 are subsps of V.

15
$$U + U \ni u + w \in U$$
. **16** $U + W \ni u + w = w + u \in W + U$.

17
$$(V_1 + V_2) + V_3 \ni (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3) \in V_1 + (V_2 + V_3).$$

•
$$(U+W)_{\mathcal{C}} \ni (u_1+w_1) + \mathrm{i}(u_2+w_2) = (u_1+\mathrm{i}u_2) + (w_1+\mathrm{i}w_2) \in U_{\mathcal{C}} + W_{\mathcal{C}}.$$

18 Does the add on the subsps of V have an add identity? Which subsps have add invs? **SOLUTION**: Suppose Ω is the unique add identity.

(a) For any subsp U of V. $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$.

(b) Now suppose *W* is an add inv of $U \Rightarrow U + W = \Omega$.

Note that $U + W \supseteq U, W \Rightarrow \Omega \supseteq U, W$. Thus $U = W = \Omega = \{0\}$.

11 Prove that the intersection of every collection of subsps of V is a subsp of V.

SOLUTION: Suppose $\{U_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of subsps of V; here Γ is an arbitrary index set.

We show that $\bigcap_{\alpha \in \Gamma} U_{\alpha}$, which equals the set of vecs that are in U_{α} for each $\alpha \in \Gamma$, is a subsp of V.

- (-) $0 \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Nonempty.
- $(\underline{\hspace{0.1cm}})\ u,v\in\bigcap_{\alpha\in\Gamma}U_{\alpha}\Rightarrow u+v\in U_{\alpha},\ \forall \alpha\in\Gamma\Rightarrow u+v\in\bigcap_{\alpha\in\Gamma}U_{\alpha}.$ Closed under add.
- $(\equiv) \ u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}, \lambda \in \mathbb{F} \Rightarrow \lambda u \in U_{\alpha}, \ \forall \alpha \in \Gamma \Rightarrow \lambda u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}.$ Closed under scalar multi.

Thus $\bigcap_{\alpha \in \Gamma} U_{\alpha}$ is nonempty subset of V that is closed under add and scalar multi.

12 Suppose U, W are subsps of V. Prove that $U \cup W$ is a subsp of $V \iff U \subseteq W$ or $W \subseteq U$. **SOLUTION**: (a) Suppose $U \subseteq W$. Then $U \cup W = W$ is a subsp of V. (b) Suppose $U \cup W$ is a subsp of V. Assume that $U \subseteq W$, $U \supseteq W$ ($U \cup W \neq U$ and W). Then $\forall a \in U \land a \notin W$, $\forall b \in W \land b \notin U$, we have $a + b \in U \cup W$. $a + b \in U \Rightarrow b = (a + b) + (-a) \in U$, contradicts $\Rightarrow W \subseteq U$. | Contradicts the $a + b \in W \Rightarrow a = (a + b) + (-b) \in W$, contradicts $\Rightarrow U \subseteq W$. assumption. **13** *Prove that the union of three subsps of V is a subsp of V* if and only if one of the subsps contains the other two. This exercise is not true if we replace **F** with a field containing only two elements. **SOLUTION:** Suppose U_1 , U_2 , U_3 are subsps of V. Denote $U_1 \cup U_2 \cup U_3$ by \mathcal{U} . (a) Suppose that one of the subsps contains the other two. Then $\mathcal{U} = U_1, U_2$ or U_3 is a subsp of V. (b) Suppose that $U_1 \cup U_2 \cup U_3$ is a subsp of V. Distinctively notice that $A \cup B \cup C = (A \cup B) \cup (B \cup C) = (A \cup C) \cup (B \cup C) = (A \cup B) \cup (A \cup C)$. Also note that, if $U \cup W = V$ is a vecsp, then in general U and W are not subsps of V. Hence this literal trick is invalid. (I) If any U_i is contained in the union of the other two, say $U_1 \subseteq U_2 \cup U_3$, then $\mathcal{U} = U_2 \cup U_3$. By applying Problem (12) we conclude that one U_i contains the other two. Thus we are done. (II) Assume that no U_i is contained in the union of the other two, and no U_j contains the union of the other two. Say $U_1 \not\subseteq U_2 \cup U_3$ and $U_1 \not\supseteq U_2 \cup U_3$. $\exists\,u\in U_1\wedge u\notin U_2\cup U_3;\ v\in U_2\cup U_3\wedge v\notin U_1.\,\mathrm{Let}\,W=\big\{v+\lambda u:\lambda\in\mathbf{F}\big\}\subseteq\mathcal{U}.$ Note that $W \cap U_1 = \emptyset$, for if any $v + \lambda u \in W \cap U_1$ then $v + \lambda u - \lambda u = v \in U_1$. Now $W \subseteq U_1 \cup U_2 \cup U_3 \Rightarrow W \subseteq U_2 \cup U_3$. $\forall v + \lambda u \in W, v + \lambda u \in U_i, i = 2,3$. If $U_2 \subseteq U_3$ or $U_2 \supseteq U_3$, then $\mathcal{U} = U_1 \cup U_i$, i = 2, 3. By Problem (12) we are done. Otherwise, both U_2 , $U_3 \neq \{0\}$. Because $W \subseteq U_2 \cup U_3$ has at least three elements. There must be some U_i that contains at least two elements of W. \exists distinct $\lambda_1, \lambda_2 \in \mathbb{F}, v + \lambda_1 u, v + \lambda_2 u \in U_i, i \in \{2,3\}.$ Then $u \in U_i$ while $u \notin U_2 \cup U_3$. Contradicts. **EXAMPLE:** Let $\mathbf{F} = \mathbf{Z}_2$. $U_1 = \{u, 0\}$, $U_2 = \{v, 0\}$, $U_3 = \{v + u, 0\}$. While $\mathcal{U} = \{0, u, v, v + u\}$ is a subsp. • Example: Suppose $U = \{(x, x, y, y) \in \mathbb{F}^4\}, W = \{(x, x, x, y) \in \mathbb{F}^4\}.$ Prove that $U + W = \{(x, x, y, z) \in \mathbb{F}^4\}.$

21 Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbf{F}^5\}$. Find a W such that $\mathbf{F}^5 = U \oplus W$. Solution: Let $W = \{(0, 0, z, w, u) \in \mathbf{F}^5\}$. Then $U \cap W = \{0\}$. And $\mathbf{F}^5 \ni (x, y, z, w, u) \Rightarrow (x, y, x + y, x - y, 2x) + (0, 0, z - x - y, w - x - y, u - 2x) \in U + W$.

And $T \ni (x, x, y, z) \Rightarrow (0, 0, y - x, y - x) + (x, x, x, -y + x + z) \in U + W$. Hence $T \subseteq U + W$.

Let T denote $\{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}$. By def, $U + W \subseteq T$.

23 Give an example of vecsps V_1, V_2, U such that $V_1 \oplus U = V_2 \oplus U$, but $V_1 \neq V_2$. S OLUTION: $V = \mathbb{F}^2, U = \{(x, x) \in \mathbb{F}^2\}, V_1 = \{(x, 0) \in \mathbb{F}^2\}, V_2 = \{(0, x) \in \mathbb{F}^2\}.$	
• Tips: Suppose $V_1 \subseteq V_2$ in Exercise (23). Prove or give a counterexample: $V_1 = V_2$. Solution: Because the subset V_1 of vecsp V_2 is closed under add and scalar multi, V_1 is a subspace of V_2 . Suppose W is such that $V_2 = V_1 \oplus W$. Now $V_2 \oplus U = (V_1 \oplus W) \oplus U = (V_1 \oplus U) \oplus W = V_1 \oplus U$. If $W \neq \{0\}$, then $V_1 \oplus U \subsetneq (V_1 \oplus U) \oplus W$, contradicts. Hence $W = \{0\}$, $V_1 = V_2$.	
• Suppose V_1, V_2, U_1, U_2 are vecsps, $V_1 \oplus U_1 = V_2 \oplus U_2, V_1 \subseteq V_2, U_2 \subseteq U_1$. Prove or give a counterexample: $V_1 = V_2, U_1 = U_2$. Solution: A counterexample: $V_1 = V_2, U_1 = U_2$. Let $V = F^3, B_V = (e_1, e_2, e_3), V_1 = \operatorname{span}(e_1), U_1 = \operatorname{span}(e_2, e_3), V_2 = \operatorname{span}(e_1, e_2), U_2 = \operatorname{span}(e_3)$ Now $V_1 \subseteq V_2, U_2 \subseteq U_1$ and $V_1 \oplus U_1 = V_2 \oplus U_2$. But $V_1 \neq V_2, U_1 \neq U_2$.	
24 Let $V_E = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is even} \}, V_O = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is odd} \}.$ Show that $V_E \oplus V_O = \mathbb{R}^{\mathbb{R}}$.	
SOLUTION: (a) $V_E \cap V_O = \{ f \in \mathbb{R}^R : f(x) = f(-x) = -f(-x) \} = \{ 0 \}.$	
(b) $ \left \begin{array}{l} \operatorname{Let} f_{e}(x) = \frac{1}{2} \big[g(x) + g(-x) \big] \Longrightarrow f_{e} \in V_{E} \\ \operatorname{Let} f_{o}(x) = \frac{1}{2} \big[g(x) - g(-x) \big] \Longrightarrow f_{o} \in V_{O} \end{array} \right \Rightarrow \forall g \in \mathbb{R}^{\mathbb{R}}, g(x) = f_{e}(x) + f_{o}(x). $	
End	ED
2·A 1 2 6 10 11 14 16 17 4E: 3,14	
	Q] O1
Solution:	∠]
(a) $Q \stackrel{1}{\Rightarrow} P : v \neq 0 \Rightarrow \text{if } av = 0 \text{ then } a = 0 \Rightarrow (v) \text{ linely inde.}$	
$P \stackrel{2}{\Rightarrow} Q : (v)$ linely inde $\Rightarrow v \neq 0$, for if $v = 0$, then $av = 0 \Rightarrow a = 0$.	
OR. $ \begin{vmatrix} \neg Q \stackrel{3}{\Rightarrow} \neg P : v = 0 \Rightarrow av = 0 \text{ while we can let } a \neq 0 \Rightarrow (v) \text{ is linely dep.} \\ \neg P \stackrel{4}{\Rightarrow} \neg Q : (v) \text{ linely dep} \Rightarrow av = 0 \text{ while } a \neq 0 \Rightarrow v = 0. $	
$P \stackrel{4}{\Rightarrow} Q : (v) \text{ linely dep} \Rightarrow av = 0 \text{ while } a \neq 0 \Rightarrow v = 0.$	
COMMENT: (1) with (3) and (2) with (4) will do as well.	
(b) $P \stackrel{1}{\Rightarrow} Q : (v, w)$ linely inde \Rightarrow if $av + bw = 0$, then $a = b = 0 \Rightarrow$ no scalar multi.	
$Q \stackrel{2}{\Rightarrow} P$: no scalar multi \Rightarrow if $av + bw = 0$, then $a = b = 0 \Rightarrow (v, w)$ linely inde.	
$P \Rightarrow C : (v, w)$ linely dep \Rightarrow if $av + bw = 0$, then a or $b \neq 0 \Rightarrow$ scalar multi	
O_{R}	
OR. $P \stackrel{3}{\Rightarrow} Q : (v, w)$ linely dep \Rightarrow if $av + bw = 0$, then a or $b \neq 0 \Rightarrow$ scalar multi $Q \stackrel{4}{\Rightarrow} P :$ scalar multi $A = 0$, then $A = 0$ or $A = 0$ linely dep. Comment: (1) with (3) and (2) with (4) will do as well.	

SOLUTION: Notice that $V = \text{span}(v_1, \dots, v_n) \iff \forall v \in V, \exists a_1, \dots, a_n \in F, v = a_1v_1 + \dots + a_nv_n$. Assume that $\forall v \in V, \exists a_1, \dots, a_4, b_1, \dots, b_4 \in F$, (that is, if $\exists a_i$, then we are to find b_i , vice versa) $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$ $= b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4$ $=b_1v_1+(b_2-b_1)v_2+(b_3-b_2)v_3+(b_4-b_3)v_4.$ Now we can let $b_i = \sum_{r=1}^{i} a_r$ if we are to prove Q with P already assumed; or let $a_i = b_i - b_{i-1}$ with $b_0 = 0$, if we are to prove P with Q already assumed. **6** Prove that [P] (v_1, v_2, v_3, v_4) is linely inde \iff $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ is linely inde. [Q] **SOLUTION:** $P \Rightarrow Q : a_1(v_1 - v_2) + a_2(v_2 - v_3) + a_3(v_3 - v_4) + a_4v_4 = 0$ $\Rightarrow a_1v_1 + (a_2 - a_1)v_2 + (a_3 - a_2)v_3 + (a_4 - a_3)v_4 = 0 \Rightarrow a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0$ $Q \Rightarrow P : a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$ $\Rightarrow a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_3 - v_4) + (a_1 + \dots + a_4)v_4 = 0$ \Box $\Rightarrow a_1 = a_1 + a_2 = a_1 + a_2 + a_3 = a_1 + \dots + a_4 = 0.$ • Suppose (v_1, \ldots, v_m) is a list of vecs in V. For each k, let $w_k = v_1 + \cdots + v_k$. (a) Show that span $(v_1, ..., v_m) = \text{span}(w_1, ..., w_m)$. (b) Show that $[P](v_1,...,v_m)$ is linely inde $\iff (w_1,...,w_m)$ is linely inde [Q]. **SOLUTION:** (a) Assume $a_1v_1 + \dots + a_mv_m = b_1w_1 + \dots + b_mw_m = b_1v_1 + \dots + b_k(v_1 + \dots + v_k) + \dots + b_m(v_1 + \dots + v_m)$. Then $a_k = b_k + \dots + b_m$; $a_{k+1} = b_{k+1} + \dots + b_m \Rightarrow b_k = a_k - a_{k+1}$; $b_m = a_m$. Similar to Problem (1). (b) $P \Rightarrow Q: b_1 w_1 + \dots + b_m w_m = 0 = a_1 v_1 + \dots + a_m v_m$, where $0 = a_k = b_k + \dots + b_m$. $Q \Rightarrow P: \ a_1v_1 + \dots + a_mv_m = 0 = b_1w_1 + \dots + b_mw_m = 0, \text{ where } 0 = b_m = a_m, \ 0 = b_k = a_k - a_{k+1}.$ Or. Because $W = \operatorname{span}(v_1, \dots, v_m) = \operatorname{span}(w_1, \dots, w_m)$. By [2.21](b), a list of length (m-1) spans W, then by [2.23], (w_1, \dots, w_m) linely dep $\Longrightarrow (v_1, \dots, v_m)$ linely dep. Conversely it is true as well. **10** Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. *Prove that if* $(v_1 + w, ..., v_m + w)$ *is linely depe, then* $w \in \text{span}(v_1, ..., v_m)$. **SOLUTION:** Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0$, $\exists a_i \neq 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = -(a_1 + \cdots + a_m)w$. Then $a_1 + \cdots + a_m \neq 0$, for if not, $a_1v_1 + \cdots + a_mv_m = 0$ while $a_i \neq 0$ for some i, contradicts. OR. By contrapositive: Prove that $w \notin \text{span}(v_1, \dots, v_m) \Longrightarrow (v_1 + w, \dots, v_m + w)$ is linely inde. Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = -(a_1 + \cdots + a_m)w$. Now by assumption, $a_1 + \cdots + a_m = 0$. Then $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow a_1 = \cdots = a_m = 0$. Or. $\exists j \in \{1, ..., m\}, v_i + w \in \text{span}(v_1 + w, ..., v_{i-1} + w)$. If j = 1 then $v_1 + w = 0$ and we are done. If $j \ge 2$, then $\exists a_i \in F$, $v_i + w = a_1(v_1 + w) + \dots + a_{i-1}(v_{i-1} + w) \iff v_i + \lambda w = a_1v_1 + \dots + a_{i-1}v_{i-1}$. Where $\lambda = 1 - (a_1 + \dots + a_{i-1})$. Note that $\lambda \neq 0$, for if not, $v_i + \lambda w = v_i \in \text{span}(v_1, \dots, v_{i-1})$, contradicts. Now $w = \lambda^{-1}(a_1v_1 + \dots + a_{j-1}v_{j-1} - v_j) \Rightarrow w \in \text{span}(v_1, \dots, v_m).$

1 Prove that $[P](v_1, v_2, v_3, v_4)$ spans $V \iff (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V[Q].

11 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Show that $[P](v_1, ..., v_m, w)$ is linely inde $\iff w \notin \text{span}(v_1, ..., v_m)[Q]$. **14** Prove that [P] V is infinite-dim \iff [Q] there is a sequence (v_1, v_2, \dots) in V such that (v_1, \dots, v_m) is linely inde for each $m \in \mathbb{N}^+$. **SOLUTION:** $P \Rightarrow Q$: Suppose *V* is infinite-dim, so that no list spans *V*. Step 1 Pick a $v_1 \neq 0$, (v_1) linely inde. Step m Pick a $v_m \notin \text{span}(v_1, ..., v_{m-1})$, by Problem (11), $(v_1, ..., v_m)$ is linely inde. This process recursively defines the desired sequence $(v_1, v_2, ...)$. $\neg P \Rightarrow \neg Q$: Suppose *V* is finite-dim and $V = \text{span}(w_1, ..., w_m)$. Let $(v_1, v_2, ...)$ be a sequence in V, then $(v_1, v_2, ..., v_{m+1})$ must be linely dep. Or. $Q \Rightarrow P$: Suppose there is such a sequence. Choose an m. Suppose a linely inde list $(v_1, ..., v_m)$ spans V. Similar to [2.16]. $\exists v_{m+1} \in V \setminus \text{span}(v_1, \dots, v_m)$. Hence no list spans V. **16** Prove that the vecsp of all continuous functions in $\mathbf{R}^{[0,1]}$ is infinite-dim. **SOLUTION**: Denote the vecsp by U. Choose one $m \in \mathbb{N}^+$. Suppose $a_0, \dots, a_m \in \mathbb{R}$ are such that $p(x) = a_0 + a_1 x + \dots + a_m x^m = 0$, $\forall x \in [0, 1]$. Then *p* has infinitely many roots and hence each $a_k = 0$, otherwise deg $p \ge 0$, contradicts [4.12]. Thus $(1, x, ..., x^m)$ is linely inde in $\mathbb{R}^{[0,1]}$. Similar to [2.16], U is infinite-dim. Or. Note that $\frac{1}{1} > \frac{1}{2} > \dots > \frac{1}{m}$, $\forall m \in \mathbb{N}^+$. Suppose $f_m = \begin{cases} x - \frac{1}{m}, & x \in \left(\frac{1}{m}, 1\right) \\ 0, & x \in \left[0, \frac{1}{m}\right] \end{cases}$ Then $f_1\left(\frac{1}{m}\right) = \dots = f_m\left(\frac{1}{m}\right) = 0 \neq f_{m+1}\left(\frac{1}{m}\right)$. Hence $f_{m+1} \notin \operatorname{span}(f_1, \dots, f_m)$. By Problem (14). **17** Suppose $p_0, p_1, ..., p_m \in \mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0, ..., m\}$. *Prove that* $(p_0, p_1, ..., p_m)$ *is not linely inde in* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION:** Suppose $(p_0, p_1, ..., p_m)$ is linely inde. Define $p \in \mathcal{P}_m(\mathbf{F})$ by p(z) = z. NOTICE that $\forall a_i \in \mathbb{F}, z \neq a_0 p_0(z) + \dots + a_m p_m(z)$, for if not, let z = 2. Thus $z \notin \text{span}(p_0, p_1, \dots, p_m)$. Then span $(p_0, p_1, ..., p_m) \subseteq \mathcal{P}_m(\mathbf{F})$ while the list $(p_0, p_1, ..., p_m)$ has length (m + 1). Hence $(p_0, p_1, ..., p_m)$ is linely depe in $\mathcal{P}_m(\mathbf{F})$. For if not, then because $(1, z, ..., z^m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$, by the steps in [2.23] trivially, $(p_0, p_1, ..., p_m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$. Contradicts. OR. Note that $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(\underbrace{1, z, \ldots, z^m}_{\text{of length }(m+1)})$. Then $(p_0, p_1, \ldots, p_m, z)$ of length (m+2) is linely dep. As shown above, $z \notin \text{span}(p_0, p_1, \dots, p_m)$. And hence by [2.21](a), (p_0, p_1, \dots, p_m) is linely dep.

7 Prove or give a counterexample: If (v_1, v_2, v_3, v_4) is a basis of V and U is a subsp of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then (v_1, v_2) is a basis of U.

SOLUTION: A counterexample:

Let $V = \mathbb{R}^4$ and e_j be the j^{th} std basis.

Let $v_1 = e_1, v_2 = e_2, v_3 = e_3 + e_4, v_4 = e_4$. Then (v_1, \dots, v_4) is a basis of \mathbb{R}^4 .

Let $U = \operatorname{span}(e_1, e_2, e_3) = \operatorname{span}(v_1, v_2, v_3 - v_4)$. Then $v_3 \notin U$ and (v_1, v_2) is not a basis of U.

• Note For " $\mathbf{C}_V U \cup \{0\}$ ": " $\mathbf{C}_V U \cup \{0\}$ " is supposed to be a subsp W such that $V = U \oplus W$.

But if we let $u \in U \setminus \{0\}$ and $w \in W \setminus \{0\}$, then $\begin{cases} w \in C_V U \cup \{0\} \\ u \pm w \in C_V U \cup \{0\} \end{cases} \} \Rightarrow u \in C_V U \cup \{0\}$. Contradicts.

To fix this, denote the set $\{W_1, W_2, \cdots\}$ by $\mathcal{S}_V U$, where for each $W_i, V = U \oplus W_i$. See also in (1.C.23).

• Tips: Suppose V is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, ..., v_n)$ such that each $v_k \notin U$.

Note that $U \neq V \Rightarrow n \geqslant 1$. We will construct B_V via the following process.

Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop.

Step k. Suppose $(v_1, ..., v_{k-1})$ is linely inde in V, each of which belongs to $V \setminus U$.

Note that $\operatorname{span}(v_1, \dots, v_{k-1}) \neq V$. And if $\operatorname{span}(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12),

[because span $(v_1, \dots, v_{k-1}) \nsubseteq U$,] $U \subseteq \text{span}(v_1, \dots, v_{k-1}) \Rightarrow \text{span}(v_1, \dots, v_{k-1}) = V$.

Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$.

Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span}(v_1, \dots, v_{k-1})$.

By (2.A.11), $(v_1, ..., v_k)$ is linely inde in V. If span $(v_1, ..., v_k) = V$, then we stop.

Because V is finite-dim, this process will stop after n steps.

OR. Suppose $U \neq \{0\}$. Let $B_U = (u_1, \dots, u_m)$. Extend to a basis (u_1, \dots, u_n) of V.

Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.

1 Find all vecsps on whatever **F** that have exactly one basis.

Solution: The trivial vecsp $\{0\}$ will do. Indeed, the only basis of $\{0\}$ is the empty list ().

Now consider a field containing only the add identity 0 and the multi identity 1,

and 1 + 1 = 0. Hence the vecsp $\{0, 1\}$ will do, the list (1) is the unique basis. **COMMENT**: All vecsp on such **F** of dim 1 will do.

And more generally, consider $\mathbf{F} = \mathbf{Z}_m$, $\forall m - 1 \in \mathbf{N}^+$. For each $s, t \in \{1, ..., m\}$,

 $\mathbf{F} = \mathrm{span}(K_s) = \mathrm{span}(K_t)$. More than one basis. So are \mathbf{Q} , \mathbf{R} , \mathbf{C} and all vecsps on such \mathbf{F} .

Consider other F. Note that this F contains at least and strictly more than 0 and 1. Failed. \Box

• (4E 9) Suppose (v_1, \ldots, v_m) is a list of vecs in V. For $k \in \{1, \ldots, m\}$, let $w_k = v_1 + \cdots + v_k$. Show that [P] $B_V = (v_1, \ldots, v_m) \iff B_W = (w_1, \ldots, w_m)$. [Q]

SOLUTION:

Notice that $B_U = (u_1, ..., u_n) \iff \forall u \in U, \exists ! a_i \in F, u = a_1 u_1 + \cdots + a_n u_n$.

 $P\Rightarrow Q: \forall v\in V, \exists !\, a_i\in \mathbb{F},\ v=a_1v_1+\cdots+a_mv_m\Rightarrow v=b_1w_1+\cdots+b_mv_m, \exists !\, b_k=a_k-a_{k+1}, b_m=a_m.$

 $Q \Rightarrow P: \forall v \in V, \exists ! b_i \in \mathbf{F}, \ v = b_1 w_1 + \dots + b_m w_m \Rightarrow v = a_1 v_1 + \dots + a_m v_m, \exists ! a_k = \sum_{j=k}^m b_j.$

• (4E 5) Suppose U, W are finite-dim, V = U + W, $B_U = (u_1, ..., u_m)$, $B_W = (w_1, ..., w_n)$. *Prove that* $\exists B_V$ *consisting of vecs in* $U \cup W$. **SOLUTION:** Because $V = \operatorname{span}(u_1, \dots, u_m) + \operatorname{span}(w_1, \dots, w_n) = \operatorname{span}(u_1, \dots, u_m, w_1, \dots, w_n)$. By [2.31], B_V can be reduced from $(u_1, ..., u_m, w_1, ..., w_n)$. **8** Suppose $V = U \oplus W$, $B_{II} = (u_1, ..., u_m)$, $B_W = (w_1, ..., w_n)$. *Prove that* $B_V = (u_1, ..., u_m, w_1, ..., w_n).$ **SOLUTION**: $\forall v \in V, \exists ! u \in U, w \in W \Rightarrow \exists ! a_i, b_i \in F, v = u + w = (a_1u_1 + \dots + a_mu_m) + (b_1w_1 + \dots + b_nw_n).$ Or. $V = \text{span}(u_1, ..., u_m) \oplus \text{span}(w_1, ..., w_n) = \text{span}(u_1, ..., u_m, w_1, ..., w_n)$. Note that $\sum_{i=1}^{m} a_i u_i + \sum_{i=1}^{n} b_i w_i = 0 \Rightarrow \sum_{i=1}^{m} a_i u_i = -\sum_{i=1}^{n} b_i w_i \in U \cap W = \{0\}.$ • (9.A.2,3 Or 4E 11) Suppose V is on R, and $v_1, ..., v_n \in V$. Let $B = (v_1, ..., v_n)$. (a) Show that [P] B is linely inde in $V \iff B$ is linely inde in V_C . [Q] (b) Show that [P] B spans $V \iff B$ spans V_C . [Q] **SOLUTION**: (a) Note that each $v_k \in V_C$. Thus $P \Rightarrow Q$. And $\neg P \Rightarrow \neg Q : \exists v_i = a_{i-1}v_{i-1} + \cdots + a_1v_1 \in V_C$. (b) $P \Rightarrow Q$: $\forall u + iv \in V_C, u, v \in V \Rightarrow \exists a_i, b_i \in \mathbb{R}, u = \sum_{i=1}^n a_i v_i, v = \sum_{i=1}^n b_i v_i$ $\Rightarrow \exists a_i + ib_i \in C, u + iv = \sum_{i=1}^n (a_i + ib_i)v_i.$ $\neg P \Rightarrow \neg Q : \exists u + iv \in V_C, u + iv \notin \operatorname{span}(B) \Rightarrow u \text{ or } v \notin \operatorname{span}(B). \text{ Note that } u, v \in V. \square$ • Note For *linely inde sequence and* [2.34]: " $V = \text{span}(v_1, ..., v_n, ...)$ " is an invalid expression. If we allow using "infinite list", then we must guarantee that (v_1, \dots, v_n, \dots) is a spanning "list" such that $\forall v \in V$, \exists smallest $n \in \mathbb{N}^+$, $v = a_1v_1 + \cdots + a_nv_n$. Moreover, given a list $(w_1, \cdots, w_n, \cdots)$ in W, we can prove that $\exists ! T \in \mathcal{L}(V, W)$ with each $Tv_k = w_k$, which has less restrictions than [3.5]. But the key point is, how can we guarantee that such a "list" exists. TODO: More details. **ENDED** 2·C 1 7 9 10 14,16 15 17 | 4E: 10 14,15 16 **15** Suppose V is finite-dim and dim $V = n \ge 1$. Prove that \exists one-dim subsps V_1, \ldots, V_n of V such that $V = V_1 \oplus \cdots \oplus V_n$. **SOLUTION**: Suppose $B_V = (v_1, ..., v_n)$. Define V_i by $V_i = \text{span}(v_i)$ for each $i \in \{1, ..., n\}$. Then $\forall v \in V, \exists ! a_i \in F, v = a_1 v_1 + \dots + a_n v_n \Rightarrow \exists ! u_i \in V_i, v = u_1 + \dots + u_n$ • NOTE FOR Problem (15): Suppose $v \in V \setminus \{0\}$, and dim $V = n \ge 1$. Prove that $\exists B_V = (v_1, \dots, v_n), v = v_1 + \dots + v_n$. **SOLUTION**: If n = 1 then let $v_1 = v$ and we are done. Suppose n > 1. Extend (v) to a basis (v, v_1, \dots, v_{n-1}) of V. Let $v_n = v - v_1 - \dots - v_{n-1}$. \mathbb{Z} span (v, v_1, \dots, v_{n-1}) = span (v_1, \dots, v_n) . Hence (v_1, \dots, v_n) is also a basis of V. **COMMENT:** Let $B_V = (v_1, ..., v_n)$ and suppose $v = u_1 + ... + u_n$, where each $u_i = a_i v_i \in V_i$. But $(u_1, ..., u_n)$ might not be a basis, because there might be some $u_i = 0$.

```
• Let v_1, \ldots, v_n \in V and dim span(v_1, \ldots, v_n) = n. Then (v_1, \ldots, v_n) is a basis of span(v_1, \ldots, v_n).
  Notice that (v_1, ..., v_n) is a spanning list of \operatorname{span}(v_1, ..., v_n) of length n = \dim \operatorname{span}(v_1, ..., v_n).
7 (a) Let U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}. Find a basis of U.
   (b) Extend the basis in (b) to a basis of \mathcal{P}_{4}(\mathbf{F}).
   (c) Find a subsp W of \mathcal{P}_4(\mathbf{F}) such that \mathcal{P}_4(\mathbf{F}) = U \oplus W.
SOLUTION: Using Problem (10).
   NOTICE that \nexists p \in \mathcal{P}(\mathbf{F}) of deg 1 and 2, while p \in U. Thus dim U \leq \dim \mathcal{P}_4(\mathbf{F}) - 2 = 3.
   (a) Consider B = (1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)).

Let a_0 + a_3(z-2)(z-5)(z-6) + a_4z(z-2)(z-5)(z-6) = 0 \Rightarrow a_0 = a_3 = a_4 = 0.
        Thus the list B is linely inde in U. Now dim U \ge 3 \Rightarrow \dim U = 3. Thus B_U = B.
   (b) Extend to a basis of \mathcal{P}_4(\mathbf{F}) as (1, z, z^2, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)).
   (c) Let W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbb{F}\}, so that \mathcal{P}_4(\mathbb{F}) = U \oplus W.
                                                                                                                                        9 Suppose (v_1, ..., v_m) is linely inde in V and w \in V.
   Prove that dim span(v_1 + w, ..., v_m + w) \ge m - 1.
SOLUTION: Using the result of (2.A.10, 11).
   Note that v_i - v_1 = (v_i + w) - (v_1 + w) \in \text{span}(v_1 + w, ..., v_n + w), for each i = 1, ..., m.
   (v_1, \dots, v_m) linely inde \Rightarrow (v_1, v_2 - v_1, \dots, v_m - v_1) linely inde \Rightarrow (v_2 - v_1, \dots, v_m - v_1) linely inde.
   \mathbb{Z} If w \notin \operatorname{span}(v_1, \dots, v_m). Then (v_1 + w, \dots, v_m + w) is linely inde.
   Hence m \ge \dim \operatorname{span}(v_1 + w, \dots, v_m + w) \ge m - 1.
                                                                                                                                        • (4E 16) Suppose V is finite-dim, U is a subsp of V with U \neq V. Let n = \dim V, m = \dim U.
  Prove that \exists (n-m) subsps U_1, \ldots, U_{n-m}, each of dim (n-1), such that \bigcap_{i=1}^{n-m} U_i = U.
SOLUTION: Let B_U = (v_1, ..., v_m), B_V = (v_1, ..., v_m, u_1, ..., v_{n-m}).
                Define U_i = \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_{n-m}) for each i. Then U \subseteq U_i for each i.
                And because \forall v \in \bigcap_{i=1}^{n-m} U_i, v = v_0 + b_1 u_1 + \dots + b_{n-m} u_{n-m} \in U_i \Rightarrow b_i = 0 for each i \Rightarrow v \in U.
                Hence \bigcap^{n-m} U_i \subseteq U.
                                                                                                                                        • Note For Problem 10: Each nonconst p \in \text{span}(1, z, ..., z^m), \exists \text{ smallest } m \in \mathbb{N}^+, which is \deg p.
  (a) If p_0, p_1, \dots, p_m are such that each
       p_k = a_{0,k} + a_{1,k}z + \dots + a_{k,k}z^k, with a_k \neq 0.
       Then \mathcal{M}\left(\xi, (p_0, p_1, \dots, p_m), (1, z, \dots, z^m)\right) = \begin{pmatrix} 0 & a_{1,1} & \cdots & a_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{m,m} \end{pmatrix}, which is upper-trig.
```

 $p_k = a_{k,k}x^k + \dots + a_{m,k}x^m, \text{ with } a_{k,k} \neq 0.$ Then $\mathcal{M}\left(\xi, \left(p_0, p_1, \dots, p_m\right), \left(1, z, \dots, z^m\right)\right) = \begin{pmatrix} a_{0,0} & 0 & \cdots & 0 \\ a_{1,0} & a_{1,1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$, which is lower-trig.

(b) If p_0, p_1, \dots, p_m are such that each

 $p_k = a_{k,k} x^k + \dots + a_{m,k} x^m$, with $a_{k,k} \neq 0$.

1 [Corollary for [2.38,39]] Suppose U is a subsp of V such that $\dim V = \dim U$. Then V = U.

10 Suppose $m \in \mathbb{N}^+$, $p_0, p_1, \dots, p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k. *Prove that* $(p_0, p_1, ..., p_m)$ *is a basis of* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION**: Using mathematical induction on *m*. (i) k = 0, 1. $\deg p_0 = 0$; $\deg p_1 = 1 \Rightarrow \operatorname{span}(p_0, p_1) = \operatorname{span}(1, x)$. (ii) $k \in \{1, ..., m-1\}$. Assume that span $(p_0, p_1, ..., p_k) = \text{span}(1, x, ..., x^k)$. Then span $(p_0, p_1, ..., p_k, p_{k+1}) \subseteq \text{span}(1, x, ..., x^k, x^{k+1})$. $\mathbb{Z} \operatorname{deg} p_{k+1} = k+1, \ p_{k+1}(x) = a_{k+1}x^{k+1} + r_{k+1}(x); \ a_{k+1} \neq 0, \ \operatorname{deg} r_{k+1} \leqslant k.$ $\Rightarrow x^{k+1} = \frac{1}{a_{k+1}} \Big(p_{k+1}(x) - r_{k+1}(x) \Big) \in \text{span}(1, x, \dots, x^k, p_{k+1}) = \text{span}(p_0, p_1, \dots, p_k, p_{k+1}).$ $\therefore x^{k+1} \in \text{span}(p_0, p_1, ..., p_k, p_{k+1}) \Rightarrow \text{span}(1, x, ..., x^k, x^{k+1}) \subseteq \text{span}(p_0, p_1, ..., p_k, p_{k+1}).$ Thus $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m).$ Or. 用比较系数法. Denote the coefficient of x^k in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_k(p)$. Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$ We show that $a_m = \cdots = a_0 = 0$ via the following process. So that (p_0, p_1, \dots, p_m) is linely inde. **Step 1.** For k = m, $\xi_m(L) = a_m \xi_m(p_m) = \xi_m(R) = 0 \ \, \text{\mathbb{Z} deg $p_m = m$, $\xi_m(p_m) \neq 0 \Rightarrow a_m = 0$.}$ Now $L = a_{m-1}p_{m-1}(x) + \dots + a_0p_0(x)$. **Step k.** For $0 \le k \le m$, we have $a_m = \cdots = a_{k+1} = 0$. Now $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \mathbb{Z} \deg p_k = k$, $\xi_k(p_k) \neq 0 \Rightarrow a_k = 0$. Now if k = 0, then we are done. Otherwise, we have $L = a_{k-1}p_{k-1}(x) + \cdots + a_0p_0(x)$. • Tips: Suppose $m \in \mathbb{N}^+$, $p_0, p_1, \dots, p_m \in \mathcal{P}_m(\mathbb{F})$ are such that the lowest term of each p_k is of deg k. Prove that $(p_0, p_1, ..., p_m)$ is a basis of $\mathcal{P}_m(\mathbf{F})$. **SOLUTION**: Using mathematical induction on *m*. Let each p_k be defined by $p_k(x) = a_{k,k}x^k + \cdots + a_{m,k}x^m$, where $a_{k,k} \neq 0$. (i) k = 0, 1. $p_m(x) = a_{m,m}x^m$; $p_{m-1}(x) = a_{m-1,m-1}x^{m-1} + a_{m,m-1}x^m \Longrightarrow \operatorname{span}(x^m, x^{m-1}) = \operatorname{span}(p_m, p_{m-1})$. (ii) $k \in \{1, ..., m-1\}$. Assume that span $(x^m, ..., x^{m-k}) = \text{span}(p_m, ..., p_{m-k})$. Then span $(p_m, \dots, p_{m-(k+1)}) \subseteq \operatorname{span}(x^m, \dots, x^{m-(k+1)})$. $\mathbb{Z} p_{m-(k+1)}$ has the form $a_{m-(k+1),m-(k+1)} x^{m-(k+1)} + r_{m-(k+1)}(x)$; where the lowest term of $r_{m-(k+1)} \in \mathcal{P}_m(\mathbf{F})$ is of deg (m-k). $\Rightarrow x^{m-(k+1)} = \frac{1}{a_{m-(k+1),m-(k+1)}} \Big(p_{m-(k+1)}(x) - r_{m-(k+1)}(x) \Big) \in \operatorname{span}(x^m, \dots, x^{m-k}, p_{m-(k+1)}) \\ = \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)}).$ $\therefore x^{m-(k+1)} \in \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)})$ $\Rightarrow \operatorname{span}(x^m, \dots, x^{m-k}, x^{m-(k+1)}) \subseteq \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)}).$ Thus $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(x^m, \dots, x, 1) = \operatorname{span}(p_m, \dots, p_1, p_0).$ Or. 用比较系数法. Denote the coefficient of x^k in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_k(p)$. Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$ We show that $a_m = \cdots = a_0 = 0$ via the following process. So that (p_0, p_1, \dots, p_m) is linely inde. **Step 1.** For k = 0, $\xi_0(L) = a_0 \xi_0(p_0) = \xi_0(R) = 0 \ \ \ \deg p_0 = 0$, $\xi_0(p_0) \neq 0 \Rightarrow a_0 = 0$. Now $L = a_1 p_1(x) + \dots + a_m p_m(x)$. **Step k.** For $0 \le k \le m$, we have $a_{k-1} = \cdots = a_0 = 0$. Now $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \ensuremath{\mathbb{Z}} \deg p_k = k, \ \xi_k(p_k) \neq 0 \Rightarrow a_k = 0.$

Now if k = m, then we are done. Otherwise, we have $L = a_{k+1}p_{k+1}(x) + \cdots + a_mp_m(x)$.

- Note For [2.11]: Good definition for a general term always aviods undefined behaviours. If deg p=0, then $p(z)=a_0\neq 0$, but not literally a_0z^0 , by which if p is defined, then it comes to 0^0 . To make it clear, we specify that $in \mathcal{P}(\mathbf{F})$, $a_0z^0=a_0$, where z^0 appears just for notational convenience. Because by definition, the term a_0z^0 in a poly only represents the const term of the poly, which is a_0 . So z^0 doesn't make sense at all.
- (4E 10) Suppose m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k(1-x)^{m-k}$. Show that (p_0, \ldots, p_m) is a basis of $\mathcal{P}_m(\mathbf{F})$.

SOLUTION: (We may see that 0 is not a zero of p_0 , and that $p_m(x) = x^m$, by the expansion below, and by the NOTE FOR [2.11] above.)

Note that each
$$p_k(x) = \sum_{j=0}^{m-k} C^j_{m-k}(-1)^j \cdot x^{j+k} \cdot 1^j = \underbrace{(-1)^0 \cdot x^k \cdot 1^0}_{\text{of deg k}} + \underbrace{\sum_{j=1}^{m-k} C^j_{m-k}(-1)^j \cdot x^{j+k} \cdot 1^j}_{\text{of deg m; denote it by } q_k(x)}$$

Or. Similar to the Tips above. We will recursively prove that each $x^{m-k} \in \text{span}(p_m, ..., p_{m-k})$.

(i)
$$k = 0, 1$$
. $p_m(x) = x^m$; $p_{m-1}(x) = x^{m-1} - x^m \Longrightarrow x^{m-1}$. Now $x^m \in \text{span}(p_m)$, $x^{m-1} \in \text{span}(p_{m-1}, p_m)$.

(ii)
$$k \in \{1, \dots, m-1\}$$
. Suppose for each $k \in \{0, \dots, k\}$, we have $x^{m-k} \in \text{span}(p_{m-k}, \dots, p_m)$, $\exists ! a_m \in \mathbf{F}$. Note that $x^{m-(k+1)} = p_{m-(k+1)}(x) + \sum_{j=1}^{k+1} C_{k+1}^j (-1)^{j+1} x^{m-(k+1)+j} \in \text{span}(p_{m-(k+1)}, x^{m-k}, \dots, x^m)$. Thus $x^{m-(k+1)} \in \text{span}(p_{m-(k+1)}, p_{m-k}, \dots, p_m)$.

COMMENT: The base step and the inductive step can be independent.

OR. For any $m,k \in \mathbb{N}^+$ such that $k \leq m$. Define $p_{k,m}$ by $p_{k,m}(x) = x^k (1-x)^{m-k}$. Define the statement S(m) by $S(m):(p_{0,m},\ldots,p_{m,m})$ is linely inde (and therefore is a basis). We use induction on to show that S(m) holds for all $m \in \mathbb{N}^+$.

(i)
$$m = 1$$
. Let $a_0(1-x) + a_1x = 0$, $\forall x \in \mathbf{F}$. Then take $x = 1$, $x = 0 \Rightarrow a_1 = a_0 = 0$. $m = 2$. Let $a_0(1-x)^2 + a_1(1-x)x + a_2x^2$, $\forall x \in \mathbf{F}$. Then
$$\begin{cases} x = 0 \Rightarrow a_0 + a_1 = 0; \\ x = 1 \Rightarrow a_2 = 0; \\ x = 2 \Rightarrow a_0 + 2a_1 = 0. \end{cases}$$

(ii) $2 \le m$. Assume that S(m) holds.

Suppose
$$\sum_{k=0}^{m+2} a_k p_{k,m+2}(x) = \sum_{k=0}^{m+2} a_k [x^k (1-x)^{m+2-k}] = 0, \forall x \in \mathbf{F}.$$

Now
$$a_0(1-x)^{m+2} + \sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k} + a_{m+2} x^{m+2} = 0, \forall x \in \mathbf{F}.$$

While
$$\underline{x} = 0 \Rightarrow a_0 = 0$$
; $x = 1 \Rightarrow a_{m+2} = 0$. Then $\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k} = 0$;

And note that
$$\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k}$$

$$= x(1-x) \sum_{k=1}^{m+1} a_k x^{k-1} (1-x)^{m+1-k}$$

= $x(1-x) \sum_{k=0}^{m} a_{k+1} x^k (1-x)^{m-k} = x(1-x) \sum_{k=0}^{m} a_{k+1} p_{k,m}(x).$

Hence
$$x(1-x)\sum_{k=0}^{m} a_{k+1}p_{k,m}(x) = 0, \forall x \in \mathbb{F} \Rightarrow \sum_{k=0}^{m} a_{k+1}p_{k,m}(x) = 0, \forall x \in \mathbb{F} \setminus \{0,1\}.$$

Because $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x)$ has infinitely many zeros. We have $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0$, $\forall x \in \mathbb{F}$.

By assumption, $a_1 = \dots = a_m = a_{m+1} = 0$, while $a_0 = a_{m+2} = 0$,

Thus $(p_{0,m+2},...,p_{m+2,m+2})$ is linely inde and S(m+2) holds.

Since
$$\forall m \in \mathbb{N}^+, S(m) \Rightarrow S(m+2)$$
. We have $\begin{cases} \forall k \in \mathbb{N}, S(2k+1) \text{ holds} \\ \forall k \in \mathbb{N}^+, S(2k) \text{ holds} \end{cases} \Rightarrow S(m) \text{ holds.}$

17 Suppose V_1 , V_2 , V_3 are subsps of a finite-dim vecsp, then $\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$ $-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$ Explain why you might think and prove the formula above or give a counterexample. **SOLUTION:** [*Similar to*] Given three sets *A*, *B* and *C*. Because $|X + Y| = |X| + |Y| - |X \cap Y|$; $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$. Now $|(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|$. And $|(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |A \cap B \cap C|$. Hence $|(A \cup B) \cup C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cap B| - |A \cap C| - |B \cap C|$. Because $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$. $\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$ (1) $= \dim(V_2 + V_3) + \dim(V_1) - \dim((V_2 + V_3) \cap V_1)$ (2) $= \dim(V_1 + V_3) + \dim(V_2) - \dim((V_1 + V_3) \cap V_2)$ (3)Notice that in general, $(X + Y) \cap Z \neq X \cap Z + Y \cap Z$. For example, $X = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}, Y = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}, Z = \{(z,z) \in \mathbb{R}^2 : z \in \mathbb{R}\}.$ • Corollary: Suppose V_1 , V_2 and V_3 are finite-dim vecsps, then $\frac{(1)+(2)+(3)}{2}$: $\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$ $\frac{\dim(V_1 \cap V_2) + \dim(V_1 \cap V_3) + \dim(V_2 \cap V_3)}{2}$ $-\frac{\dim \left(\left(V_1+V_2\right)\cap V_3\right)+\dim \left(\left(V_1+V_3\right)\cap V_2\right)+\dim \left(\left(V_2+V_3\right)\cap V_1\right)}{3}.$ • TIPS: Because dim $(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim(V_2 \cap V_3) - \dim(V_1 + (V_2 \cap V_3))$. And $\dim(V_2 \cap V_3) = \dim V_2 + \dim V_3 - \dim(V_2 + V_3)$. We have (1), and (2), (3) similarly. $(1) \dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)).$ (2) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 + V_3) - \dim(V_2 + (V_1 \cap V_3)).$ (3) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 + V_2) - \dim(V_3 + (V_1 \cap V_2)).$ • Suppose V is a 10-dim vecsp and V_1, V_2, V_3 are subsps of V with (a) dim $V_1 = \dim V_2 = \dim V_3 = 7$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$. By Tips, $\dim(V_1 \cap V_2 \cap V_3) \ge \dim V_1 + \dim V_2 + \dim V_3 - 2\dim V > 0$. (b) dim V_1 + dim V_2 + dim V_3 > 2 dim V. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$. By Tips, $\dim(V_1 \cap V_2 \cap V_3) \ge 2\dim V - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)) \ge 0$. **14** Suppose V_1, \ldots, V_m are finite-dim. Prove that $\dim(V_1 + \cdots + V_m) \leq \dim V_1 + \cdots + \dim V_m$. **SOLUTION**: Choose a basis \mathcal{E}_i of $V_i \Rightarrow V_1 + \dots + V_m = \operatorname{span}(\mathcal{E}_1 \cup \dots \cup \mathcal{E}_m)$; dim $V_i = \operatorname{card} \mathcal{E}_i$. Now dim $(V_1 + \cdots + V_m)$ = dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m)$. **COROLLARY:** $V_1 + \cdots + V_m$ is direct \iff For each k, $(V_1 + \cdots + V_k) \cap V_{k+1} = \{0\}$, $(\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{k-1}) \cap \mathcal{E}_k = \emptyset$ \iff dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m$

 \iff dim $(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m$.

```
• TIPS 1: T: V \to W is linear \iff \begin{vmatrix} (-) \ \forall v, u \in V, T(v+u) = Tv + Tu; \\ (-) \ \forall v, u \in V, \lambda \in F, T(\lambda v) = \lambda(Tv). \end{vmatrix} \iff T(v+\lambda u) = Tv + \lambda Tu.
```

• (9.A.2,6 Or 4E 3.B.33) Suppose that V, W are on R, and $T \in \mathcal{L}(V, W)$. Show that

(a)
$$T_{\rm C} \in \mathcal{L}(V_{\rm C}, W_{\rm C})$$
. (b) $\operatorname{null}(T_{\rm C}) = (\operatorname{null} T)_{\rm C}$, $\operatorname{range}(T_{\rm C}) = (\operatorname{range} T)_{\rm C}$. (c) $T_{\rm C}$ is $\operatorname{inv} \iff T$ is inv .

SOLUTION: (a)
$$T_{\mathbf{C}}((u_1 + \mathrm{i}v_1) + (x + \mathrm{i}y)(u_2 + \mathrm{i}v_2)) = T(u_1 + xu_2 - yv_2) + \mathrm{i}T(v_1 + xv_2 + yu_2)$$

= $T_{\mathbf{C}}(u_1 + \mathrm{i}v_1) + (x + \mathrm{i}y)T_{\mathbf{C}}(u_2 + \mathrm{i}v_2)$.

(b)
$$u + iv \in \text{null } (T_{\mathbf{C}}) \iff u, v \in \text{null } T \iff u + iv \in (\text{null } T)_{\mathbf{C}}.$$

 $w + ix \in \text{range } (T_{\mathbf{C}}) \iff w, x \in \text{range } T \iff w + ix \in (\text{range } T)_{\mathbf{C}}.$

(c)
$$\forall w, x \in W, \exists ! u, v \in V, T_{\mathcal{C}}(u + iv) = w + ix \iff Tu = w, Tv = x$$
. Or. By (b).

• (9.A.5) Suppose V is on R, and S, $T \in \mathcal{L}(V, W)$. Prove that $(S + \lambda T)_C = S_C + \lambda T_C$.

SOLUTION:
$$(S + \lambda T)_{\mathbf{C}}(u + iv) = (S + \lambda T)(u) + i(S + \lambda T)(v)$$

= $Su + iSv + \lambda(Tu + iTv) = (S_{\mathbf{C}} + \lambda T_{\mathbf{C}})(u + iv)$.

- (4E 1.B.7) Suppose $V \neq \emptyset$ and W is a vecsp. Let $W^V = \{f : V \rightarrow W\}$.
 - (a) Define a natural add and scalar multi on W^V .
 - (b) Prove that W^V is a vecsp with these definitions.

SOLUTION:

(a)
$$W^V \ni f + g : x \to f(x) + g(x)$$
; where $f(x) + g(x)$ is the vec add on W . $W^V \ni \lambda f : x \to \lambda f(x)$; where $\lambda f(x)$ is the scalar multi on W .

(b) Commutativity:
$$(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)$$
.

Associativity:
$$((f+g)+h)(x) = (f(x)+g(x))+h(x)$$

$$= f(x) + (g(x) + h(x)) = (f + (g + h))(x).$$

Additive Identity: (f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x).

Additive Inverse:
$$(f + g)(x) = f(x) + g(x) = f(x) + (-f(x)) = 0 = 0(x)$$
.

Distributive Properties:

$$(a(f+g))(x) = a(f+g)(x) = a(f(x) + g(x))$$

= $af(x) + ag(x) = (af)(x) + (ag)(x) = (af + ag)(x).$

Similarly,
$$((a+b)f)(x) = (af+bf)(x)$$
.

So far, we have used the same properties in W.

Which means that *if* W^V *is a vecsp, then* W *must be a vecsp.*

Multiplication Identity: (1f)(x) = 1f(x) = f(x). (Notice that the smallest **F** is $\{0,1\}$.)

```
• TIPS 2: T \in \mathcal{L}(V, W) \iff T \in \mathcal{L}(V, \text{range } T) \iff T \in \mathcal{L}(V, U), if range T is a subsp of U.
             COROLLARY: \{T \in \mathcal{L}(V, W) : \text{range } T \subseteq U\} = \{T \in \mathcal{L}(V, U)\} = \mathcal{L}(V, U).
5 Because \mathcal{L}(V, W) = \{T : V \to W \mid T \text{ is linear}\}\ is a subsp of W^V, \mathcal{L}(V, W) is a vecsp.
3 Suppose T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m). Prove that \exists A_{j,k} \in \mathbf{F} such that for any (x_1, \dots, x_n) \in \mathbf{F}^n,
                                 T(x_1, \dots, x_n) = \begin{pmatrix} A_{1,1}x_1 + \dots + A_{1,n}x_n, \\ \vdots & \ddots & \vdots \\ A_{m,1}x_1 + \dots + A_{m,n}x_n \end{pmatrix}
SOLUTION:
   Let T(1,0,0,\ldots,0,0)=(A_{1,1},\ldots,A_{m,1}), Note that (1,0,\ldots,0,0),\cdots,(0,0,\ldots,0,1) is a basis of \mathbf{F}^n.
        T(0,1,0,\dots,0,0)=\big(A_{1,2},\dots,A_{m,2}\big),
                                                         Then by [3.5], we are done.
                                                                                                                                      T(0,0,0,\dots,0,1) = (A_{1,n},\dots,A_{m,n}).
4 Suppose T \in \mathcal{L}(V, W), and v_1, \dots, v_m \in V such that (Tv_1, \dots, Tv_m) is linely inde in W.
   Prove that (v_1, ..., v_m) is linely inde.
SOLUTION: Suppose a_1v_1 + \cdots + a_mv_m = 0. Then a_1Tv_1 + \cdots + a_mTv_m = 0. Thus a_1 = \cdots = a_m = 0.
                                                                                                                                      7 Show that every linear map from a one-dim vecsp to itself is a multi by some scalar.
   More precisely, prove that if dim V = 1 and T \in \mathcal{L}(V), then \exists \lambda \in \mathbf{F}, Tv = \lambda v, \forall v \in V.
SOLUTION: Let u be a nonzero vec in V \Rightarrow V = \operatorname{span}(u). Because Tu \in V \Rightarrow Tu = \lambda u for some \lambda.
                Suppose v \in V \Rightarrow v = au, \exists ! a \in F. Then Tv = T(au) = \lambda au = \lambda v.
                                                                                                                                      8 Give a map \varphi: \mathbb{R}^2 \to \mathbb{R} such that \forall a \in \mathbb{R}, v \in \mathbb{R}^2, \varphi(av) = a\varphi(v) but \varphi is not linear.
SOLUTION: Define T(x,y) = \begin{cases} x+y, & \text{if } (x,y) \in \text{span}(3,1), \\ 0, & \text{otherwise.} \end{cases}
                                                                                   Or. Define T(x,y) = \sqrt[3]{(x^3 + y^3)}.
                                                                                                                                      9 Give a map \varphi: \mathbb{C} \to \mathbb{C} such that \forall w, z \in \mathbb{C}, \varphi(w+z) = \varphi(w) + \varphi(z) but \varphi is not linear.
SOLUTION: Define \varphi(u+iv) = u = \text{Re}(u+iv) OR. Define \varphi(u+iv) = v = \text{Im}(u+iv).
                                                                                                                                      • Prove that if q \in \mathcal{P}(R) and T : \mathcal{P}(R) \to \mathcal{P}(R) is defined by Tp = q \circ p, then T is not linear.
                                                                                             composition
SOLUTION: Composition and product are not the same in \mathcal{P}(F).
   NOTICE that (p \circ q)(x) = p(q(x)), while (pq)(x) = p(x)q(x) = q(x)p(x).
   Because in general, \left[q\circ (p_1+\lambda p_2)\right](x)=q\left(p_1(x)+\lambda p_2(x)\right)\neq (qp_1)(x)+\lambda (qp_2)(x).
   EXAMPLE: Let q be defined by q(x) = x^2, then q \circ (1 + (-1)) = 0 \neq q(1) + q(-1) = 2.
                                                                                                                                      10 Suppose U is a subsp of V with U \neq V. Suppose S \in \mathcal{L}(U, W) with S \neq 0
     (which means that \exists u \in U, Su \neq 0). Define T: V \to W by Tv = \begin{cases} Sv, \text{ if } v \in U, \\ 0, \text{ if } v \in V \setminus U. \end{cases}
    Prove that T is not a linear map on V.
SOLUTION: Suppose T is a linear map. And v \in V \setminus U, u \in U such that Su \neq 0.
                Then v + u \in V \setminus U, for if not, v = (v + u) - u \in U;
                while T(v + u) = 0 = Tv + Tu = 0 + Su \Rightarrow Su = 0. Contradicts.
```

In other words, every linear map on a subsp of V and $S \in \mathcal{L}(U,W)$. In other words, every linear map on a subsp of V can be extended to a linear map on the entire V . Solution: Suppose W is such that $V = U \oplus W$. Then $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $T \in \mathcal{L}(V,W)$ by $T(u_v + w_v) = Su_v$. Or. $[Finite-dim\ Req\]$ Define by $T\left(\sum_{i=1}^m a_i u_i\right) = \sum_{i=1}^n a_i Su_i$. Let $B_V = \left(\overbrace{u_1, \dots, u_n}, \dots, u_m\right)$. \square
12 Suppose nonzero V is finite-dim and W is infinite-dim. Prove that $\mathcal{L}(V,W)$ is infinite-dim.
SOLUTION: Using (2.A.14).
Let $B_V = (v_1,, v_n)$ be a basis of V . Let $(w_1,, w_m)$ be linely inde in W for any $m \in \mathbb{N}^+$.
Define $T_{x,y}: V \to W$ by $T_{x,y}(v_z) = \delta_{z,x} w_y$, $\forall x \in \{1,, n\}, y \in \{1,, m\}$, where $\delta_{z,x} = \begin{cases} 0, & z \neq x, \\ 1, & z = x. \end{cases}$ $\forall v = \sum_{i=1}^n a_i v_i, \ u = \sum_{i=1}^n b_i v_i, \ \lambda \in F, T_{x,y}(v + \lambda u) = (a_x + \lambda b_x) w_y = T_{x,y}(v) + \lambda T_{x,y}(u).$
Linearity checked. Now suppose $a_1T_{x,1} + \cdots + a_mT_{x,m} = 0$.
Then $(a_1T_{x,1} + \cdots + a_mT_{x,m})(v_x) = 0 = a_1w_1 + \cdots + a_mw_m \Rightarrow a_1 = \cdots = a_m = 0$. \mathbb{Z} m arbitrary. Thus $(T_{x,1}, \dots, T_{x,m})$ is a linely inde list in $\mathcal{L}(V, W)$ for any x and length m . Hence by (2.A.14).
13 Suppose $(v_1,, v_m)$ is linely depe in V and $W \neq \{0\}$. Prove that $\exists w_1,, w_m \in W, \nexists T \in \mathcal{L}(V, W)$ such that $Tv_k = w_k, \forall k = 1,, m$.
FOLUTION: We prove by contradiction. By linear dependence lemma, $\exists j \in \{1,, m\}, v_j \in \operatorname{span}(v_1,, v_{j-1}).$ Fix j . Let $w_j \neq 0$, while $w_1 = \cdots = w_{j-1} = w_{j+1} = w_m = 0$. Define $T \in \mathcal{L}(V, W)$ by $Tv_k = w_k$ for each k . Suppose $a_1v_1 + \cdots + a_mv_m = 0$, where $a_j \neq 0$.
Then $T(a_1v_1 + \dots + a_mv_m) = 0 = a_1w_1 + \dots + a_mw_m = a_jw_j$ while $a_j \neq 0$ and $w_j \neq 0$. Contradicts. \square
OR. We prove the contrapositive: Suppose $\forall w_1, \dots, w_m \in W, \exists T \in \mathcal{L}(V, W), Tv_k = w_k$ for each w_k . Now we show that (v_1, \dots, v_n) is linely inde. Suppose $\exists a_i \in F, a_1v_1 + \dots + a_nv_n = 0$. Choose one $w \in W \setminus \{0\}$. By assumption, for $(\overline{a_1}w, \dots, \overline{a_m}w), \exists T \in \mathcal{L}(V, W), Tv_k = \overline{a_k}w$ for each v_k .
Now we have $0 = T\left(\sum_{k=1}^{m} a_k v_k\right) = \sum_{k=1}^{m} a_k T v_k = \sum_{k=1}^{m} a_k \overline{a_k} w = \left(\sum_{k=1}^{m} a_k ^2\right) w$.
Then $\sum_{k=1}^{m} a_k ^2 = 0 \Longrightarrow \operatorname{each} a_k = 0$. Hence (v_1, \dots, v_n) is linely inde.
• (4E 3.A.17) Suppose V is finite-dim. Show that all two-sided ideals of $\mathcal{L}(V)$ are $\left\{0\right\}$ and $\mathcal{L}(V)$.
A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}, ET \in \mathcal{E}, \ \forall E \in \mathcal{E}, T \in \mathcal{L}(V)$.
SOLUTION: Let $B_V = (v_1,, v_n)$. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Let $S \in \mathcal{E} \setminus \{0\}$. Suppose $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \cdots + a_nv_n$, where $a_k \neq 0$.
Define $R_{x,y} \in \mathcal{L}(V)$ by $R_{x,y}: v_x \mapsto v_y, v_z \mapsto 0$ ($z \neq x$). Or. $R_{x,y}v_z = \delta_{z,x}v_y$.
Then $(R_{1,1} + \cdots + R_{n,n})v_j = v_j \Rightarrow \sum_{r=1}^n R_{r,r} = I$. Assume that each $R_{x,y} \in \mathcal{E}$.
Hence $\forall T \in \mathcal{L}(V), I \circ T = T \circ I = T \in \mathcal{E} \Rightarrow \mathcal{E} = \mathcal{L}(V)$. Now we prove the assumption.
Notice that $\forall x, y \in \mathbf{N}^+$, $(R_{k,y}S)(v_i) = a_k v_y \Rightarrow ((R_{k,y}S) \circ R_{x,i})(v_z) = \delta_{z,x}(a_k v_y)$.
Thus $R_{k,y}SR_{x,i} = a_kR_{x,y}$. Now $S \in \mathcal{E} \Rightarrow R_{k,y}S \in \mathcal{E} \Rightarrow R_{x,y} \in \mathcal{E}$.

Show that if $\varphi : \mathcal{L}(V) \to \mathbf{F}$ is linear and $\forall S, T \in \mathcal{L}(V), \varphi(ST) = \varphi(S) \cdot \varphi(T)$, then $\varphi = 0$. **SOLUTION:** Using notations in (4E 3.A.17). Using the result in NOTE FOR [3.60]. Suppose $\varphi \neq 0 \Rightarrow \exists i, j \in \{1, ..., n\}, \ \varphi(R_{i,j}) \neq 0$. Because $R_{i,j} = R_{x,j} \circ R_{i,x}, \ \forall x = 1, ..., n$ $\Rightarrow \varphi(R_{i,i}) = \varphi(R_{x,i}) \cdot \varphi(R_{i,x}) \neq 0 \Rightarrow \varphi(R_{x,i}) \neq 0 \text{ and } \varphi(R_{i,x}) \neq 0.$ Again, because $R_{i,x} = R_{y,x} \circ R_{i,y}$, $\forall y = 1, ..., n$. Thus $\varphi(R_{y,x}) \neq 0$, $\forall x, y = 1, ..., n$. Let $k \neq i, j \neq l$ and then $\varphi(R_{i,j} \circ R_{l,k}) = \varphi(R_{l,k} \circ R_{i,j}) = \varphi(0) = 0 = \varphi(R_{l,k}) \cdot \varphi(R_{i,j})$ $\Rightarrow \varphi(R_{l,k}) = 0 \text{ or } \varphi(R_{i,i}) = 0.$ Contradicts. Or. Note that by (4E 3.A.17), $\exists S, T \in \mathcal{L}(V), ST - TS \neq 0$. Then $\varphi(ST - TS) = \varphi(S)\varphi(T) - \varphi(T)\varphi(S) = 0 \Rightarrow ST - TS \in \text{null } \varphi \neq \{0\}.$ Note that $\forall E \in \operatorname{null} \varphi, T \in \mathcal{L}(V), \varphi(ET) = \varphi(TE) = 0 \Rightarrow ET, TE \in \operatorname{null} \varphi$. Hence null φ is a nonzero two-sided ideal of $\mathcal{L}(V)$. • Suppose V is finite-dim. $T \in \mathcal{L}(V)$ is such that $\forall S \in \mathcal{L}(V), ST = TS$. *Prove that* $\exists \lambda \in \mathbf{F}, T = \lambda I$. **SOLUTION**: If $V = \{0\}$, then we are done. Now suppose $V \neq \{0\}$. Assume that $\forall v \in V, (v, Tv)$ is linely depe, then by (2.A.2.(b)), $\exists \lambda_v \in F, Tv = \lambda_v v$. To prove that λ_v is independent of v, we discuss in two cases: $(-) \text{ If } (v,w) \text{ is linely inde, } \lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \\ \Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0 \\ \Rightarrow \lambda_w = \lambda_v.$ (=) Otherwise, suppose w=cv, $\lambda_w w=Tw=cTv=c\lambda_v v=\lambda_v w\Rightarrow (\lambda_w-\lambda_v)w$ Now we prove the assumption. Assume that $\exists v \in V, (v, Tv)$ is linely inde. Let $B_V = (v, Tv, u_1, \dots, u_n)$. Define $S \in \mathcal{L}(V)$ by $S(av + bTv + c_1u_1 + \cdots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Contradicts. \square Or. Let $B_V = (v_1, ..., v_m)$. Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_1) = \cdots = \varphi(v_m) = 1$. Let $\lambda = \varphi(Tv_1) \in \mathbf{F}$. For any $v \in V$, define $S_v \in \mathcal{L}(V)$ by $S_v u = \varphi(u)v$. Then $Tv = T(\varphi(v_1)v) = T(S_v v_1) = S_v(Tv_1) = \varphi(Tv_1)v = \lambda v$. Or. For each $k \in \{1, \dots, n\}$, define $S_k \in \mathcal{L}(V)$ by $S_k v_j = \left\{ \begin{array}{l} v_k, \, j = k, \\ 0, \, \, j \neq k. \end{array} \right.$ Or. $S_k v_j = \delta_{j,k} v_k$ Note that $S_k\left(\sum_{i=1}^n a_i v_i\right) = a_k v_k$. Then $S_k v = v \iff \exists ! a_k \in \mathbf{F}, v = a_k v_k$. Hence $S_k(Tv_k) = T(S_kv_k) = Tv_k \Rightarrow Tv_k = a_kv_k$. Define $A^{(j,k)} \in \mathcal{L}(V)$ by $A^{(j,k)}v_j = v_k$, $A^{(j,k)}v_k = v_j$, $A^{(j,k)}v_x = 0$, $x \neq j$, k. Then $\begin{vmatrix} A^{(j,k)}Tv_j = TA^{(j,k)}v_j = Tv_k = a_kv_k \\ A^{(j,k)}Tv_j = A^{(j,k)}a_jv_j = a_jA^{(j,k)}v_j = a_jv_k \end{vmatrix} \Rightarrow a_k = a_j. \text{ Hence } a_k \text{ is inde of } v_k.$ • Tips 3: Suppose $T \in \mathcal{L}(V, W)$. Prove that $Tv \neq 0 \Rightarrow v \neq 0$.

SOLUTION: Assume that v = 0. Then $Tv = T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$.

Or. $T(0) = T(0+0) = T(0) + T(0) \Rightarrow T(0) = 0$. Contradicts.

• (4E 3.B.32) Suppose V is finite-dim with $n = \dim V > 1$.

• Given the fact that $\mathcal{L}(V, W)$ is a vecsp. Prove or give a counterexample: V, W are vecsps. We can guarantee that $\{0\} \subseteq \mathcal{L}(V,W), \{0\} \subseteq V, \{0\} \subseteq W$. And by [3.2], the additivity and homogeneity imply that V is closed under add and scalar multi. (We cannot even guarantee that W^V is a vecsp.) SOLUTION: TODO: Too tricky to be answered by AI. (I) If $W^V = \{0\}$. Then $\mathcal{L}(V, W) = \{0\}$. And $W = \{0\}$, for if not, $\exists w \in W \setminus \{0\}$, define a map f by f(x) = w, $\forall x \in V$. And *V* might not be a vecsp. Example: ??? (II) If W^V is a nonzero vecsp. Then W is a vecsp. (a) If $\mathcal{L}(V, W) = \{0\}$, then we cannot guarantee that V is a vecsp. Example: ??? (b) If not, then $\exists T \in \mathcal{L}(V, W)$, $T \neq 0$. Which means $\exists v \in V, Tv \neq 0 \Rightarrow v \neq 0$. Then both *W* and *V* have a nonzero element. (i) If \exists inje $T \in \mathcal{L}(V, W)$, then $T(u + v) = T(v + u) \Rightarrow u + v = v + u$. etc. Hence V is a vecsp. (ii) If not, then we cannot guarantee that *V* is a vecsp. Example: ??? (III) If W^V is not a vecsp, then W is not a vecsp. Example: ??? **ENDED** 3.B 3 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 25 26 28 29 30 4E: 21 24 27 32 33 **3** Suppose (v_1, \ldots, v_m) in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m$. (a) The surj of T correspds to $(v_1, ..., v_m)$ spanning V. (b) The inje of T correspds to $(v_1, ..., v_m)$ being linely inde. **COMMENT:** Let $(e_1, ..., e_m)$ be the std basis of \mathbf{F}^m . Then $Te_k = v_k$. (a) range $T = \text{span}(v_1, ..., v_m) = V$; (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje. **7** Suppose V is finite-dim with $2 \le \dim V$. And $\dim V \le \dim W = m$, if W is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{null } T \neq \{0\} \}$ is not a subsp of $\mathcal{L}(V, W)$. **SOLUTION**: The set of all inje $T \in \mathcal{L}(V, W)$ is a not subsp either. Let (v_1, \ldots, v_n) be a basis of V, (w_1, \ldots, w_m) be linely inde in W. $[2 \le n \le m]$ Define $T_1 \in \mathcal{L}(V, W)$ as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$.

Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1$, $v_2 \mapsto 0$, $v_i \mapsto w_i$, i = 3, ..., n.

Thus $T_1 + T_2 \notin U$. \square **C**OMMENT: If dim V = 0, then $V = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T \text{ is inje. Hence } U = \emptyset$. If dim V = 1, then $V = \text{span}(v_0)$. Thus $U = \text{span}(T_0)$, where $\forall v \in V, T_0 v = 0 \Rightarrow T_0 = 0$. **8** Suppose W is finite-dim with dim $W \ge 2$. And $n = \dim V \ge \dim W$, if V is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{range } T \neq W \}$ is not a subsp of $\mathcal{L}(V, W)$. **SOLUTION**: The set of all surj $T \in \mathcal{L}(V, W)$ is not a subsp either. **Using the generalized version of** [3.5]. Let (v_1, \ldots, v_n) be linely inde in V, (w_1, \ldots, w_m) be a basis of W. $n \in \{m, m+1, \ldots\}$; $2 \le m \le n$. Define $T_1 \in \mathcal{L}(V, W)$ as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$, $v_{m+i} \mapsto 0$. Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1, v_2 \mapsto 0, v_i \mapsto w_i, v_{m+i} \mapsto 0.$ (For each $j=2,\ldots,m;\ i=1,\ldots,n-m,$ if V is finite, otherwise let $i\in\mathbb{N}^+$.) Thus $T_1+T_2\notin U$. **COMMENT:** If dim W = 0, then $W = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T \text{ is surj. Hence } U = \emptyset$. If dim W = 1, then $W = \text{span}(w_0)$. Thus $U = \text{span}(T_0)$, where each $T_0v_i = 0 \Rightarrow T_0 = 0$.

```
9 Suppose (v_1, ..., v_n) is linely inde. Prove that \forall inje T, (Tv_1, ..., Tv_n) is linely inde.
SOLUTION: a_1Tv_1 + \cdots + a_nTv_n = 0 = T\left(\sum_{i=1}^n a_iv_i\right) \iff \sum_{i=1}^n a_iv_i = 0 \iff a_1 = \cdots = a_n = 0.
                                                                                                                                                 10 Suppose span(v_1, ..., v_n) = V. Show that span(Tv_1, ..., Tv_n) = \text{range } T.
SOLUTION: (a) range T = \{Tv : v \in \text{span}(v_1, ..., v_n)\} \Rightarrow Tv_1, ..., Tv_n \in \text{range } T. By [2.7].
                      Or. span(Tv_1, \dots, Tv_n) \ni a_1Tv_1 + \dots + a_nTv_n = T(a_1v_1 + \dots + a_nv_n) \in \text{range } T.
                 (b) \forall w \in \text{range } T, w = Tv, \exists v \in V \Rightarrow \exists a_i \in F, v = \sum_{i=1}^n a_i v_i, w = a_1 T v_1 + \dots + a_n T v_n.
11 Suppose S_1, ..., S_n \in \mathcal{L}(V) and S = S_1 S_2 ... S_n makes sense. Then using induction:
     (a) range S_1 \supseteq \text{range } (S_1 S_2) \supseteq \cdots \supseteq \text{range } (S); (b) null S_n \subseteq \text{null } (S_{n-1} S_n) \subseteq \cdots \subseteq \text{null } (S).
• Define X_p = \{T \in \mathcal{L}(V) : p(T) \text{ holds}\}; P_p : X_p \text{ is closed under vec multi; } Q_p : X_p \text{ is a group.}
  (1) S \operatorname{surj} \iff \operatorname{each} S_k \operatorname{surj}. P_{surj} holds. (2) S \operatorname{inje} \iff \operatorname{each} S_k \operatorname{inje}. P_{inje} holds.
  (3) P_{inv} and Q_{inv} hold. Q_p in (1) and (2) holds \iff V is finite-dim.
  (4) P_{inje\ or\ surj} holds \iff V is finite-dim \iff Q_{inje\ or\ surj} holds.
• Suppose S, T \in \mathcal{L}(V). Prove or give a counterexample:
  (a) \operatorname{null} S \subseteq \operatorname{null} T \Rightarrow \operatorname{range} T \subseteq \operatorname{range} S; (b) \operatorname{range} T \subseteq \operatorname{range} S \Rightarrow \operatorname{null} S \subseteq \operatorname{null} T.
SOLUTION: Let B_V = (v_1, v_2, v_3). Counterexamples:
   (a) Let S: v_1 \mapsto 0; v_2 \mapsto 0; v_3 \mapsto v_2.
                                                              Then \operatorname{null} S = \operatorname{null} T, but
                T: v_1 \mapsto 0; \ v_2 \mapsto 0; \ v_3 \mapsto v_3. range T = \operatorname{span}(v_3) \not\subseteq \operatorname{span}(v_2) = \operatorname{null} T.
   (b) Let S: v_1 \mapsto v_2; v_2 \mapsto v_2; v_3 \mapsto v_2. Then range T = \text{range } S, but
                T: v_1 \mapsto 0; \ v_2 \mapsto 0; \ v_3 \mapsto v_2. \text{null } S = \text{span}(v_1 - v_2, v_2 - v_3, v_3 - v_1) \not\subseteq \text{span}(v_1, v_2) = \text{null } T.
16 Suppose T \in \mathcal{L}(V) such that null T, range T are finite-dim. Prove that V is finite-dim.
SOLUTION: Let B_{\text{range }T} = (Tv_1, \dots, Tv_n), B_{\text{null }T} = (u_1, \dots, u_m).
                 \forall v \in V, \exists ! a_i \in \mathbf{F}, T(v - a_1v_1 - \dots - a_nv_n) = 0 \Rightarrow \exists ! b_i \in \mathbf{F}, v - \sum_{i=1}^n a_iv_i = \sum_{i=1}^m b_iu_i.
                                                                                                                                                 17 Suppose V, W are finite-dim. Prove that \exists inje T \in \mathcal{L}(V, W) \iff \dim V \leqslant \dim W.
SOLUTION: (a) Suppose \exists inje T. Then dim V = \dim \operatorname{range} T \leqslant \dim W.
                 (b) Suppose dim V \leq \dim W. Let B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).
                       Define T \in \mathcal{L}(V, W) by Tv_i = w_i, i = 1, ..., n ( = dim V ).
                                                                                                                                                 18 Suppose V, W are finite-dim. Prove that \exists surj T \in \mathcal{L}(V, W) \iff \dim V \geqslant \dim W.
SOLUTION: (a) Suppose \exists surj T. Then dim V = \dim W + \dim \operatorname{null} T \Rightarrow \dim W \leqslant \dim V.
                 (b) Suppose dim V \ge \dim W. Let B_V = (v_1, \dots, v_n), B_W = (w_1, \dots, w_m).
                      Define T \in \mathcal{L}(V, W) by T(a_1v_1 + \dots + a_mv_m + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m.
                                                                                                                                                 19 Suppose V, W are finite-dim, U is a subsp of V.
     Prove that \exists T \in \mathcal{L}(V, W), \text{null } T = U \iff \underline{\dim U} \geqslant \underline{\dim V} - \underline{\dim W}.
SOLUTION:
   (a) Suppose \exists T \in \mathcal{L}(V, W), null T = U. Then dim U + \dim \operatorname{range} T = \dim V \leq \dim U + \dim W.
   (b) Let B_U = (u_1, ..., u_m), B_V = (u_1, ..., u_m, v_1, ..., v_n), B_W = (w_1, ..., w_p). Suppose that p \ge n.
        Define T \in \mathcal{L}(V, W) by T(a_1v_1 + \dots + a_nv_n + b_1u_1 + \dots + b_mu_m) = a_1w_1 + \dots + a_nw_n.
```

• Tips 1: Suppose U is a subsp of V . Prove that $\forall T \in \mathcal{L}(V,W), U \cap \operatorname{null} T = \operatorname{null} T _{U}$. Solution: Note that $U \cap \operatorname{null} T \subseteq \operatorname{null} T _{U}$. On the other hand, suppose $u \in \operatorname{null} T _{U} \subseteq U$. Then $T _{U}(u) = 0$ makes sense and equals Tu . Now $Tu = 0 \Rightarrow u \in \operatorname{null} T$.	
· · · · · · · · · · · · · · · · · · ·	
• Tips 2: Suppose $T \in \mathcal{L}(V, W)$ and $T _U : U \to \text{range } T$ is an iso. Let $U = X + Y$. (a) Show that range $T = \text{range } T _X + \text{range } T _Y$.	
(b) Show that if $X \cap Y = \{0\}$, then range $T _X \cap \text{range } T _Y = \{0\}$.	
SOLUTION: (a) Because $\forall v \in V, \exists ! u \in U, u_0 \in \text{null } T \Rightarrow \exists x \in X, y \in Y, v = (x + y) + u_0.$	
Now $Tv = Tx + Ty \Rightarrow \text{range } T = \text{range } T _X + \text{range } T _Y$.	
(b) Assume that for some $v \in V$, there exist two distinct pairs $(x_1, y_1), (x_2, y_2)$ in $X \times Y$ such that $Tv = Tx_1 + Ty_1 = Tx_2 + Ty_2$. Because $\forall v \in X \oplus Y, \exists ! (x, y) \in X \times Y, v = x$	
Now $T(x_1 + y_1) = T(x_2 + y_2) \Rightarrow x_1 + y_1 = x_2 + y_2 \Rightarrow x_1 = x_2, y_1 = y_2$. Contradicts.	
Thus $\forall Tv \in \text{range } T, \exists ! Tx \in \text{range } T _X, Ty \in \text{range } T _Y, Tv = Tx + Ty.$	
12 Prove that $\forall T \in \mathcal{L}(V, W), \exists subsp U of V such that$	
$U \cap \text{null } T = \text{null } T _U = \{0\}, \text{ range } T = \{Tu : u \in U\} = \text{range } T _U.$	
Which is equivalent to $T _U: U \to \text{range } T$ being an iso.	
SOLUTION: By [2.34] (note that V can be infinite-dim), \exists subsp U of V such that $V = U \oplus \text{null } T$. $\forall v \in V, \exists ! w \in \text{null } T, u \in U, v = w + u$. Then $Tv = T(w + u) = Tu \in \{Tu : u \in U\}$.	
COROLLARY: $[P]$ $T _U: U \to \text{range } T \text{ is an iso} \iff U \oplus \text{null } T = V.$ $[Q]$	
We have shown $Q \Rightarrow P$. Now we show that $\neg Q \Rightarrow \neg P$ to complete the proof.	
Because $U \oplus \text{null } T \subsetneq V$. We show range $T \neq \text{range } T _U$ by contradiction.	
Let $X \oplus (U \oplus \text{null } T) = V$. Now range $T = \text{range } T _X \oplus \text{range } T _U$. And X is nonzero.	
Assume that range $T = \text{range } T _U$. Then range $T _X = \{0\}$. While $T _X$ is inje. Contradic	_
Or. range $T _X \subseteq \text{range } T _U \Rightarrow \forall x \in X, Tx \in \text{range } T _U, \exists u \in U, Tu = Tx \Rightarrow x = 0.$	
• Tips 3: Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp such that $V = U \oplus \text{null } T$.	
Now $\forall v \in V, \exists ! u_v \in U, w_v \in \text{null } T, v = u_v + w_v.$ Define $i \in \mathcal{L}(V, U)$ by $i(v) = u_v.$	
Then $T = T \circ i$. Because $\forall v \in V, T(v) = T(u_v + w_v) = T(u_v) = T(i(v)) = (T \circ i)(v)$.	
• TIPS 4: Suppose $T \in \mathcal{L}(V, W), T \neq 0$. Let $B_{\text{range }T} = (Tv_1,, Tv_n)$.	
By (3.A.4), $R = (v_1,, v_n)$ is linely inde in V . Let span $R = U$. We will prove that $U \oplus \text{null } T = V$	•
(a) $T\left(\sum_{i=1}^{n} a_i v_i\right) = 0 \Rightarrow \sum_{i=1}^{n} a_i T v_i = 0 \Rightarrow a_1 = \dots = a_n = 0 \Rightarrow U \cap \text{null } T = \{0\}.$	
(b) $\forall v \in V, Tv = \sum_{i=1}^{n} a_i Tv_i \Rightarrow Tv - \sum_{i=1}^{n} a_i Tv_i = T(v - \sum_{i=1}^{n} a_i v_i) = 0$	
$\Rightarrow v - \sum_{i=1}^{n} a_i v_i \in \operatorname{null} T \Rightarrow v = \left(v - \sum_{i=1}^{n} a_i v_i\right) + \left(\sum_{i=1}^{n} a_i v_i\right) \Rightarrow U + \operatorname{null} T = V.$	
Or. range $T = \{Tu : u \in U\} = \text{range } T _{U}$. Then by the Corollary in Problem (12).	
• Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, $B_{\text{range }T} = (Tv_1, \dots, Tv_n)$, $B_V = (v_1, \dots, v_n, u_1, \dots)$ Prove or give a counterexample: (u_1, \dots, u_m) is a basis of null T .	.,u _m).
SOLUTION : Always notice that \mathcal{S}_V span $(v_1, \dots, v_n) = \{U_1, \dots, \text{null } T, \dots, U_n, \dots\}$.	
A counterexample: Let dim $V=3$, $Tv_1=Tv_2=Tv_3=w_1$. Then span $(Tv_1,Tv_2,Tv_3)=\operatorname{span}(w_1)$	•
Extend (v_i) to (v_1, v_2, v_3) for each i . But none of (v_1, v_2) , (v_1, v_3) , (v_2, v_3) is a basis of null T .	

- Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, Y is a subsp of W. Let $\mathcal{K}_Y = \{v \in V : Tv \in Y\}$.
 - (a) Prove that \mathcal{K}_{Y} is a subsp of V.
 - (b) *Prove that* dim $\mathcal{K}_Y = \dim \text{null } T + \dim(Y \cap \text{range } T)$.

SOLUTION:

- (a) $\forall u, w \in \mathcal{K}_Y$, $[Tu, Tw \in Y], \lambda \in F, T(u + \lambda w) = Tu + \lambda Tw \in Y \Longrightarrow \mathcal{K}_Y$ is a subsp of V.
- (b) Define the range-restricted map R of T as Rv = Tv for all $v \in \mathcal{K}_{\gamma}$.

Obviously $R = T|_{\mathcal{K}_Y} : \mathcal{K}_Y \to Y$ is linear. Now range $R = Y \cap \text{range } T$.

And $v \in \operatorname{null} T \iff Tv = 0 \in Y \iff Rv = 0 \in \operatorname{range} T \iff v \in \operatorname{null} R$. By [3.22].

COMMENT: Now span $(v_1, ..., v_m) \oplus \text{null } T = \mathcal{K}_Y$. Where $B_{Y \cap \text{range } T} = (Tv_1, ..., Tv_m)$.

In particular, $\dim \mathcal{K}_{\operatorname{range} T} = \dim \operatorname{null} T + \dim \operatorname{range} T \Rightarrow \mathcal{K}_{\operatorname{range} T} = V$.

28 Suppose $T \in \mathcal{L}(V, W)$. Let $B_{\text{range } T} = (w_1, \dots, w_m)$.

Prove that $\exists \varphi_1, \dots, \varphi_m \in \mathcal{L}(V, \mathbf{F})$ such that $\forall v \in V, Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$.

SOLUTION: Suppose $v_1, ..., v_m \in V$ such that $Tv_i = w_i$ for each v_i . Then $(v_1, ..., v_m)$ is linely inde.

Then span $(v_1, \dots, v_m) \oplus \text{null } T = V$. And $\forall v \in V, v = \sum_{i=1}^m a_i v_i + u, \exists ! a_i \in F, u \in \text{null } T$.

Define $\varphi_i \in \mathcal{L}(V, \mathbf{F})$ by $\varphi_i(v_i) = \delta_{i,i}$, $\varphi_i(u) = 0$ for all $u \in \text{null } T$.

Linearity: $\forall v, w \in V \ [\exists ! a_i, b_i \in F], \lambda \in F, \varphi_i(v + \lambda w) = a_i + \lambda b_i = \varphi(v) + \lambda \varphi(w).$

29 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F})$. Suppose $\varphi(u) \neq 0$. Prove that $V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}$.

SOLUTION: Let $B_{\text{range }\varphi} = (\varphi(u))$. Then by TIPS (4), $\text{span}(u) \oplus \text{null } \varphi = V$.

Or. (a) $v = cu \in \text{null } \varphi \cap \text{span}(u) \Rightarrow c\varphi(u) = 0 \Rightarrow v = 0$. Now $\text{null } \varphi \cap \text{span}(u) = \{0\}$.

(b) $\forall v \in V, v = \underbrace{\left(v - \frac{\varphi(v)}{\varphi(u)}u\right)}_{\in \text{null } \varphi} + \frac{\varphi(v)}{\varphi(u)}u \Longrightarrow V = \text{null } \varphi + \text{span}(u).$

30 Suppose $\varphi_1, \varphi_2 \in \mathcal{L}(V, \mathbf{F})$ and $\text{null } \varphi_1 = \text{null } \varphi_2 = \text{null } \varphi$. Prove that $\exists c \in \mathbf{F}, \varphi_1 = c\varphi_2$ Solution:

If null $\varphi = V$, then $\varphi_1 = \varphi_2 = 0$, we are done. Suppose $\varphi(u) \neq 0 \Rightarrow \varphi_1(u), \varphi_2(u) \neq 0$.

By Problem (29), $V = \text{null } \varphi \oplus \text{span}(u)$. Hence $\forall v \in V, \exists ! w \in \text{null } \varphi, a \in F, v = w + a_v u$.

Now $\varphi_1(v) = a\varphi_1(u)$, $\varphi_2(v) = a\varphi_2(u) \Rightarrow a = \frac{\varphi_1(v)}{\varphi_1(u)} = \frac{\varphi_2(v)}{\varphi_2(u)} \Longrightarrow \frac{\varphi_1(u)}{\varphi_2(u)} = \frac{\varphi_1(v)}{\varphi_2(v)} = c \in \mathbb{F}.$

• Suppose V is finite-dim, X is a subsp of V, and Y is a finite-dim subsp of W. Prove that if $\dim X + \dim Y = \dim V$, then $\exists T \in \mathcal{L}(V, W)$, $\operatorname{null} T = X$, range T = Y.

SOLUTION:

Let $V = U \oplus X$, $B_U = (v_1, ..., v_m)$, $B_Y = (w_1, ..., w_m)$.

Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i, Tx = 0$ for each v_i and all $x \in X$.

Because $\forall v \in V, \exists ! a_i \in F, x \in X, v = \sum_{i=1}^m a_i v_i + x$.

Now $v \in \operatorname{null} T \Longleftrightarrow Tv = a_1w_1 + \dots + a_mw_m = 0 \Longleftrightarrow v = x \in X$. Hence $\operatorname{null} T = X$.

And $Y \ni w = a_1w_1 + \dots + a_mw_m = a_1Tv_1 + \dots + a_mTv_m \in \text{range } T$. Hence range T = Y.

OR. NOTICE that $V = U \oplus \text{null } T$. By the COROLLARY in Problem (12), range $T = \text{range } T|_U$.

 \mathbb{X} dim range $T|_U = \dim U = \dim Y$; range $T \subseteq Y$.

OR. Let $B_X = (x_1, \dots, x_n)$. Now range $T = \operatorname{span}(Tv_1, \dots, Tv_m, Tx_1, \dots, Tx_n) = \operatorname{span}(w_1, \dots, w_m) = Y. \square$

• OR (5.B.4) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$. **SOLUTION:** (a) If $v \in \text{null } P \cap \text{range } P \Rightarrow Pv = 0$ and $\exists u \in V, v = Pu$. Then $v = Pu = P^2u = Pv = 0$. (b) Note that $\forall v \in V, v = Pv + (v - Pv)$ and $P(v - Pv) = 0 \Rightarrow v - Pv \in \text{null } P$. Or. [Only in Finite-dim] Let $B_{\text{range }P^2}=(P^2v_1,\ldots,P^2v_n)$. Then (Pv_1,\ldots,Pv_n) is linely inde. Let $U = \operatorname{span}(Pv_1, \dots, Pv_n) \Rightarrow V = U \oplus \operatorname{null} P^2$. While $U = \operatorname{range} P = \operatorname{range} P^2$; $\operatorname{null} P = \operatorname{null} P^2$. \square **20, 21** (a) Prove that if $ST = I \in \mathcal{L}(V)$, then T is inje and S is surj. (b) Suppose $T \in \mathcal{L}(V, W)$. Prove that if T is inje, then $\exists S \in \mathcal{L}(W, V)$, ST = I. (c) Suppose $S \in \mathcal{L}(W, V)$. Prove that if S is surj, then $\exists T \in \mathcal{L}(V, W)$, ST = I. **SOLUTION:** (a) $Tv = 0 \Rightarrow S(Tv) = 0 = v$. Or. null $T \subseteq \text{null } ST = \{0\}$. $\forall v \in V, ST(v) = v \in \text{range } S \Rightarrow \text{range } S = V. \text{ Or. } V = \text{range } ST \subseteq \text{range } S.$ (b) $\lceil Req \text{ range } T \text{ } OR \text{ } V \text{ } Finite\text{-}dim \text{ } \rceil \text{ } Let B_{\text{range } T} = (Tv_1, \dots, Tv_n).$ Then span $(v_1, \dots, v_n) \oplus \text{null } T = V \Rightarrow B_V = (v_1, \dots, v_n)$. Let $U \oplus \text{range } T = W$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$, Su = 0 for each v_i and all $u \in U$. Thus ST = I. OR. Define $S \in \mathcal{L}(\text{range } T, V)$ by $Sw = T^{-1}w$, where T^{-1} is the inv of $T \in \mathcal{L}(V, \text{range } T)$. Then extend it to $S \in \mathcal{L}(W, V)$ by (3.A.11). Now $\forall v \in V, STv = T^{-1}Tv = v$. (c) $\lceil Req \ V \ Finite-dim \rceil$ Let $B_{range \ S} = B_V = (Sw_1, \dots, Sw_n)$. Then $span(w_1, \dots, w_n) \oplus null \ S = W$. Define $T \in \mathcal{L}(V, W)$ by $T(Sw_i) = w_i$. Now $ST(a_1Sw_1 + \cdots + a_nSw_n) = (a_1Sw_1 + \cdots + a_nSw_n)$. OR. By Problem (12), \exists subsp U of W, $W = U \oplus \text{null } S$, range $S = \text{range } S|_{U} = V$. Note that $S|_U: U \to V$ is an iso. Define $T = (S|_U)^{-1}$, where $(S|_U)^{-1}: V \to U$. Then $ST = S \circ (S|_{U})^{-1} = S|_{U} \circ (S|_{U})^{-1} = I_{V}$. **COROLLARY:** For (b), if *T* is inje and $\exists S$, ST = I, then by (a), this *S* is surj. Similar for (c). **24** Suppose $S, T \in \mathcal{L}(V, W)$, and null $S \subseteq \text{null } T$. Prove that $\exists E \in \mathcal{L}(W), T = ES$. **SOLUTION:** Define $E : \text{range } S \to W \text{ by } E(Sv) = Tv \text{ for all } Sv.$ Linearity: $E(Sv + \lambda Su) = E(S(v + \lambda u)) = T(v + \lambda u) = Tv + \lambda Tu = E(Sv) + \lambda E(Su)$. Checked. Then extend $E \in \mathcal{L}(\text{range } S, W)$ to $E \in \mathcal{L}(W)$. Or. Let $V = U \oplus \text{null } S \Rightarrow S|_U : U \to \text{range } S \text{ is an iso. Extend } T(S|_U)^{-1} \in \mathcal{L}(\text{range } S, W) \text{ to } E \in \mathcal{L}(W).$ **COROLLARY:** If null S = null T. Then by (3.D.3), we can extend $T(S|_U)^{-1}$ to inv $E \in \mathcal{L}(W)$. OR. [Req range S Finite-dim] Let $B_{\text{range }S} = (Sv_1, ..., Sv_n)$. Then $\underline{V} = \text{span}(v_1, ..., v_n) \oplus \text{null } S$. Define $E \in \mathcal{L}(W)$ by $E(Sv_i) = Tv_i$, Eu = 0 for all $u \in \text{null } S$ and each v_i . Hence $\forall v \in V$, $(\exists! a_i \in F, u \in \text{null } S)$, $Tv = a_1Tv_1 + \dots + a_nTv_n = E(a_1Sv_1 + \dots + a_nSv_n) \Rightarrow T = ES$. Notice that $\forall v \in V, \exists ! a_i \in F, v - (a_1v_1 + \dots + a_nv_n) \in \text{null } S \subseteq \text{null } T \Rightarrow Tv = a_1Tv_1 + \dots + a_nTv_n \square$ **COROLLARY:** $\lceil Req\ W\ Finite-dim\ \rceil$ Suppose null $S=\operatorname{null} T.$ We show that $\exists \operatorname{inv} E\in \mathcal{L}(W), T=ES.$ Define $E \in \mathcal{L}(W)$ by $E(Tv_i) = Sv_i$, $E(w_i) = x_i$, for each Tv_i and w_i . Where: Let $B_{\text{range }T} = (Tv_1, ..., Tv_m), B_W = (Tv_1, ..., Tv_m, w_1, ..., w_n), B_U = (v_1, ..., v_m).$ Now null $S = \text{null } T \Rightarrow V = U \oplus \text{null } T = U \oplus \text{null } S \Rightarrow \text{span}(Sv_1, \dots, Sv_m) = \text{range } S$. \mathbb{Z} dim range $T = \dim \operatorname{range} S = m$. Let $B_{\operatorname{range} S} = (Sv_1, \dots, Sv_m), B'_W = (Sv_1, \dots, Sv_m, x_1, \dots, x_n)$.

```
25 Suppose S, T \in \mathcal{L}(V, W), and range T \subseteq \text{range } S. Prove that \exists E \in \mathcal{L}(V), T = SE.
SOLUTION:
   Let V = U \oplus \text{null } S \Rightarrow S|_U : U \rightarrow \text{range } S \text{ is an iso. Because } (S|_U)^{-1} : \text{range } S \rightarrow U.
   Define E = (S|_{U})^{-1}T \in \mathcal{L}(V, U). Then write E \in \mathcal{L}(V).
                                                                                                                                                                      Or. [ Req range T Finite-dim ] Let B_{\text{range }T} = (Tv_1, ..., Tv_n). Then V = \text{span}(v_1, ..., v_n) \oplus \text{null } T.
   Let S(u_i) = Tv_i for each Tv_i. Define E by Ev_i = u_i, Ex = 0 for all x \in \text{null } T and each v_i.
   COROLLARY: [Req\ V\ Finite-dim\ ] If range T=\text{range}\ S, then dim null T=\text{dim}\ \text{null}\ S=p.
                         Let B_{\text{null }T}=(x_1,\ldots,x_p), B_{\text{null }S}=(y_1,\ldots,y_p). Note that (u_1,\ldots,u_n) is linely inde.
                         Define E by Ev_i = u_i, Ex_i = y_i for each v_i and x_i. Then E \in \mathcal{L}(V) is inv.
   Hence \forall v \in V, (\exists ! a_i \in \mathbb{F}, x \in \text{null } T), Tv = a_1 T v_1 + \dots + a_n T v_n = S(E(a_1 v_1 + \dots + a_n v_n + x)). \square
22 Suppose U and V are finite-dim vecsps and S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V).
      Prove that dim null ST \leq \dim \text{null } S + \dim \text{null } T.
SOLUTION: Define R \in \mathcal{L}(\text{null } ST, V) by Ru = Tu for all u \in \text{null } ST \subseteq U.
                     S(Tu) = 0 = S(Ru) \Rightarrow \operatorname{range} R \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} R \leqslant \operatorname{dim} \operatorname{null} S

Tu = 0 = Ru \Rightarrow \operatorname{null} R \supseteq \operatorname{null} T \Rightarrow \operatorname{dim} \operatorname{null} R = \operatorname{dim} \operatorname{null} T \Rightarrow By [3.22].
                                                                                                                                                                      OR. NOTICE that \forall u \in U, u \in \text{null } ST \iff S(Tu) = 0 \iff Tu \in \text{null } S.
                   Thus null ST = \mathcal{K}_{\text{null } S \cap \text{range } T} = \{ u \in U : Tu \in \text{null } S \}. By Problem (4E 21),
                   \dim \operatorname{null} ST = \dim \operatorname{null} T + \dim (\operatorname{null} S \cap \operatorname{range} T) \leq \dim \operatorname{null} T + \dim \operatorname{null} S.
                                                                                                                                                                      COROLLARY: (1) T \text{ surj} \Rightarrow \text{range } R = \text{null } S \Rightarrow \text{dim null } ST = \text{dim null } S + \text{dim null } T.
                      (2) T \text{ inv} \Rightarrow \dim \text{null } ST = \dim \text{null } S \Rightarrow \text{null } ST = \text{null } T.
                     (3) S \text{ inje} \Rightarrow \text{range } R = \{0\} \Rightarrow \dim \text{null } ST = \dim \text{null } R = \dim \text{null } T.
23 Suppose U and V are finite-dim vecsps and S \in \mathcal{L}(V, W) and T \in \mathcal{L}(U, V).
      Prove that dim range ST \leq \min \{ \dim \text{ range } S, \dim \text{ range } T \}.
SOLUTION: NOTICE that range ST = \{Sv : v \in \text{range } T\} = \text{range } S|_{\text{range } T}.
                   Let range ST = \text{span}(Su_1, ..., Su_{\dim \text{range } T}), where B_{\text{range } T} = (u_1, ..., u_{\dim \text{range } T}).
                   \dim \operatorname{range} ST \leqslant \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leqslant \dim \operatorname{range} S.
                                                                                                                                                                      OR. dim range ST = \dim \operatorname{range} S|_{\operatorname{range} T} = \dim \operatorname{range} T - \dim \operatorname{null} S|_{\operatorname{range} T} \leqslant \operatorname{range} T.
                                                                                                                                                                      COROLLARY: (1) S inje \Rightarrow dim range ST = \dim \operatorname{range} T; (2) T surj \Rightarrow dim range ST = \dim \operatorname{range} S.
• (a) Suppose dim V = 5, and ST = 0 where S, T \in \mathcal{L}(V). Prove that dim range TS \leq 2.
   (b) Suppose dim V = n. Prove that in (a), dim range TS \leq \left\lceil \frac{n}{2} \right\rceil.
SOLUTION:
                                                                             5 - \dim \text{null } T 5 - \dim \text{null } S
   (a) By Problem (23), dim range TS \leq \min \{ \overline{\dim \operatorname{range} S}, \overline{\dim \operatorname{range} T} \}.
          We show that dim range TS \leq 2 by contradiction. Assume that dim range TS \geq 3.
          Then \min\{5 - \dim \operatorname{null} T, 5 - \dim \operatorname{null} S\} \ge 3 \Rightarrow \max\{\dim \operatorname{null} T, \dim \operatorname{null} S\} \le 2.
          \dim \operatorname{null} S = 5 - \dim \operatorname{range} S \\ \dim \operatorname{range} TS \leqslant \dim \operatorname{range} S \end{cases} \Rightarrow \dim \operatorname{null} S \leqslant 5 - \dim \operatorname{range} TS.
          And ST = 0 \Rightarrow \text{range } T \subseteq \text{null } S \Rightarrow \text{dim range } T \leqslant \text{dim range } T \leqslant \text{dim null } S.
```

```
(b) By Problem (23), dim range TS \leq \min\{\underbrace{\frac{n-\dim \operatorname{null} T}{\dim \operatorname{range} S}}, \underbrace{\frac{n-\dim \operatorname{null} S}{\dim \operatorname{range} T}\}. We prove by contradiction.
          Assume that dim range TS \geqslant \left| \frac{n}{2} \right| + 1. Then
          \min\{n - \dim \operatorname{null} T, n - \dim \operatorname{null} S\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor + 1 \Longrightarrow \max\{\dim \operatorname{null} T, \dim \operatorname{null} S\} \leqslant n - \left\lfloor \frac{n}{2} \right\rfloor - 1.
          \mathbb{Z} dim null ST = n \leq \dim \operatorname{null} S + \dim \operatorname{null} T \leq 2\left(n - \left|\frac{n}{2}\right| - 1\right) \Rightarrow \left|\frac{n}{2}\right| + 1 \leq \frac{n}{2}. Contradicts. \square
          OR. dim null S = n - \dim \operatorname{range} S \leq n - \dim \operatorname{range} TS.
          And ST = 0 \Rightarrow \dim \operatorname{range} TS \leqslant \dim \operatorname{range} T \leqslant \dim \operatorname{null} S \leqslant n - \dim \operatorname{range} TS
                               \implies 2 dim range TS \leqslant n. Thus dim range TS \leqslant \frac{n}{2} \Rightarrow dim range TS \leqslant \left| \frac{n}{2} \right|.
                                                                                                                                                                          26 Suppose D \in \mathcal{L}(\mathcal{P}(\mathbf{R})) and \forall p, \deg(Dp) = (\deg p) - 1. Prove that D \in \mathcal{P}(\mathbf{R}) is surj.
SOLUTION: [D \text{ might not be } D: p \mapsto p'.] Notice that the following proof is wrong:
                    Because span(Dx, Dx^2, Dx^3, \dots) \subseteq \text{range } D, and \deg Dx^n = n - 1.
                    \nabla By (2.C.10), span(Dx, Dx^2, Dx^3, ...) = span(1, x, x^2, ...) = \mathcal{P}(\mathbf{R}).
   Let D(C) = 0, Dx^k = p_k of deg (k-1), for all C \in \mathbf{R} = \mathcal{P}_0(\mathbf{R}) and for each k \in \mathbf{N}^+.
   Because B_{\mathcal{P}_m(\mathbf{R})} = (p_1, \dots, p_m, p_{m+1}). And for all p \in \mathcal{P}(\mathbf{R}), \exists ! m = \deg p \in \mathbf{N}^+.
   So that \exists ! a_i \in \mathbb{R}, p = \sum_{i=1}^{m+1} a_i p_i \Rightarrow \exists q = \sum_{i=1}^{m+1} a_i x^i, Dq = p.
                                                                                                                                                                           OR. We will recursively define a sequence of polys (p_k)_{k=0}^{\infty} where Dp_0 = 1, Dp_k = x^k for each k \in \mathbb{N}^+.
   So that \forall p = \sum_{k=0}^{\deg p} a_k x^k \in \mathcal{P}(\mathbf{R}), Dq = p, \exists q = \sum_{k=0}^{\deg p} a_k p_k.
    (i) Because \deg Dx = (\deg x) - 1 = 0, Dx = C \in \mathbb{F} \setminus \{0\}. Let p_0 = C^{-1}x \Rightarrow Dp_0 = C^{-1}Dx = 1.
    (ii) Suppose we have defined p_0, \dots, p_n such that Dp_0 = 1, Dp_k = x^k for each k \in \{1, \dots, n\}.
          Because deg D(x^{n+2}) = n + 1. Let D(x^{n+2}) = a_{n+1}x^{n+1} + a_nx^n + \dots + a_1x + a_0, with a_{n+1} \neq 0.
          Then a_{n+1}^{-1}D(x^{n+2}) = x^{n+1} + a_{n+1}^{-1}(a_nDp_n + \dots + a_1Dp_1 + a_0Dp_0)
          \Rightarrow x^{n+1} = D[a_{n+1}^{-1}(x^{n+2} - a_np_n - \dots - a_1p_1 - a_0p_0)]. Thus defining p_{n+1}, so that Dp_{n+1} = x^{n+1}.
```

Now we have $(p_k)_{k=0}^{\infty}$ by recursion.

ENDED

• Note For [3.47]:
$$(AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,r})_{1,r} (C_{\cdot,k})_{r,1} = (A_{j,r} C_{\cdot,k})_{1,1} = A_{j,r} C_{\cdot,k}.$$

• Note For [3.49]:
$$[(AC)_{.,k}]_{i,1} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} A_{j,r} (C_{.,k})_{r,1} = (AC_{.,k})_{j,1}$$

• Exercise 10:
$$\left[\left(AC \right)_{j,\cdot} \right]_{1,k} = \left(AC \right)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} \left(A_{j,\cdot} \right)_{1,r} C_{r,k} = \left(A_{j,\cdot} C \right)_{1,k}$$

• Note For [3.52]: $A \in \mathbf{F}^{m,n}, c \in \mathbf{F}^{n,1} \Rightarrow Ac \in \mathbf{F}^{m,1}$

• Exercise 11: $a \in \mathbf{F}^{1,n}, C \in \mathbf{F}^{n,p} \Rightarrow aC \in \mathbf{F}^{1,p}$

• [4E 3.51] Suppose $C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,p}$.

(a) For
$$k = 1, ..., p$$
, $(CR)_{.,k} = CR_{.,k} = C_{.,.}R_{.,k} = \sum_{r=1}^{c} C_{.,r}R_{r,k} = R_{1,k}C_{.,1} + \cdots + R_{c,k}C_{.,c}$

(b) For
$$j = 1, ..., m$$
, $(CR)_{j,\cdot} = C_{j,\cdot}R = C_{j,\cdot}R_{\cdot,\cdot} = \sum_{r=1}^{c} C_{j,r}R_{r,\cdot} = C_{j,1}R_{1,\cdot} + \cdots + C_{j,c}R_{c,\cdot}$

• **EXAMPLE**: m = 2, c = 2, p = 3.

$$(AB)_{.,2} = AB_{.,2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} = A_{.,1}B_{1,2} + A_{.,2}B_{2,2} = 6 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 9 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 24 \\ 54 \end{pmatrix};$$

$$(AB)_{1,.} = A_{1,.}B = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = A_{1,1}B_{1,.} + A_{1,2}B_{2,.} = 1 \begin{pmatrix} 5 & 6 & 7 \end{pmatrix} + 2 \begin{pmatrix} 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} 21 & 24 & 27 \end{pmatrix};$$

• COLUMN-ROW FACTORIZATION (CR Factorization) Suppose $A \in \mathbf{F}^{m,n}$, $A \neq 0$. Prove, with p specified below, that $\exists C \in \mathbf{F}^{m,p}$, $R \in \mathbf{F}^{p,n}$, A = CR.

(a) Suppose
$$S_c = \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) \subseteq \mathbf{F}^{m,1}$$
, dim $S_c = c$, the col rank. Let $p = c$.

(b) Suppose
$$S_r = \text{span}(A_{1,r}, ..., A_{m,r}) \subseteq \mathbf{F}^{1,n}$$
, dim $S_r = r$, the row rank. Let $p = r$.

SOLUTION: Using [4E 3.51]. Notice that $A \neq 0 \Rightarrow c, r \geqslant 1$.

(a) Let
$$(C_{\cdot,1},\ldots,C_{\cdot,c})$$
 be a basis of S_c , forming $C \in \mathbb{F}^{m,c}$. Then $\forall k \in \{1,\ldots,n\}$, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$, $\exists \,!\, R_{1,k},\ldots,R_{c,k} \in \mathbb{F}$, forming $R \in \mathbb{F}^{c,n}$. Thus $A = CR$.

(b) Let (R_1, \dots, R_r) be a basis of S_r , forming $R \in \mathbf{F}^{r,n}$. Then $\forall j \in \{1, \dots, m\}$,

$$A_{j,\cdot} = C_{j,1}R_{1,\cdot} + \dots + C_{j,r}R_{r,\cdot} = (CR)_{j,\cdot}, \exists ! C_{j,1}, \dots, C_{j,r} \in \mathbf{F}, \text{ forming } C \in \mathbf{F}^{m,r}. \text{ Thus } A = CR. \qquad \Box$$

Example:
$$A = \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \xrightarrow{\underline{(I)}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \xrightarrow{\underline{(II)}} \begin{pmatrix} 7 & 4 \\ 19 & 12 \\ 33 & 20 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}$$

$$\text{(I)} \ \left(46\ 33\ 20\ 7 \right) = 2 \left(10\ 7\ 4\ 1 \right) + \left(26\ 19\ 12\ 5 \right) = \left(2\ 1 \right) \left(\begin{matrix} 10\ 7\ 4\ 1 \\ 26\ 19\ 12\ 5 \end{matrix} \right) \text{, using } \left[4\text{E } 3.51(\text{b}) \right].$$

$$\left(46\ 33\ 20\ 7 \right) \in \text{span} \left(A_{1,\cdot}, A_{2,\cdot} \right) \text{, and } \left(A_{1,\cdot}, A_{2,\cdot} \right) \text{ is linely inde. Thus } B_{S_r} = \left(A_{1,\cdot}, A_{2,\cdot} \right).$$

(II)
$$\begin{pmatrix} 10\\26\\46 \end{pmatrix} = 2 \begin{pmatrix} 7\\19\\33 \end{pmatrix} - \begin{pmatrix} 4\\12\\20 \end{pmatrix}; \quad \begin{pmatrix} 1\\5\\7 \end{pmatrix} = -\begin{pmatrix} 7\\19\\33 \end{pmatrix} + 2 \begin{pmatrix} 4\\12\\20 \end{pmatrix}. \text{ Thus } B_{S_c} = (A_{\cdot,2}, A_{\cdot,3}).$$

For each $A_{i,.} \in S_r$, $A_{i,.} = (CR)_{i,.} = C_{i,.}R = C_{i,1}R_{1,.} + \cdots + C_{i,c}R_{c,.}$ For each $A_{.k} \in S_{c}$, $A_{.k} = (CR)_{.k} = CR_{.k} = R_{1,k}C_{.1} + \cdots + R_{c,k}C_{.c}$ \Rightarrow span $(A_{1,r}, \dots, A_{n,r}) = S_r = \text{span}(R_{1,r}, \dots, R_{c,r}) \Rightarrow \dim S_r = r \leqslant c = \dim S_c$. \Rightarrow span $(A_{\cdot,1}, \dots, A_{\cdot,m}) = S_r = \text{span}(C_{\cdot,1}, \dots, C_{\cdot,r}) \Rightarrow \dim S_c = c \leqslant r = \dim S_r$. OR. Apply the result to $A^t \in \mathbf{F}^{n,m} \Rightarrow \dim S_r^t = \dim S_c = c \leqslant r = \dim S_r = \dim S_c^t$. • Suppose $A \in \mathbb{F}^{m,n} \setminus \{0\}$. Prove that [P] rank $A = 1 \iff \exists c_i, d_k \in \mathbb{F}$, each $A_{i,k} = c_i \cdot d_k$. [Q]**SOLUTION**: [*Using CR Factorization*] $P \Rightarrow Q : \text{ Immediately.}$ $Q \Rightarrow P : \text{ Because } A = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \begin{pmatrix} d_1 \cdots d_n \end{pmatrix} = \begin{pmatrix} c_1 d_1 \cdots c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 \cdots c_m d_n \end{pmatrix} \Longrightarrow S_r = \text{span} \left\{ \begin{pmatrix} c_1 d_1 \cdots c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 \cdots c_m d_n \end{pmatrix}, \begin{pmatrix} c_2 d_1 \cdots c_2 d_n \\ \vdots & \vdots \\ c_m d_1 \cdots c_m d_n \end{pmatrix} \right\}.$ Or. $S_c = \operatorname{span}\left\{ \begin{pmatrix} c_1 d_1 \\ \vdots \\ c_r d_r \end{pmatrix}, \begin{pmatrix} c_1 d_2 \\ \vdots \\ c_r d_r \end{pmatrix}, \dots, \begin{pmatrix} c_1 d_n \\ \vdots \\ c_r d_r \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} c_1 \\ \vdots \\ c_r \end{pmatrix} \right\}.$ [*Not Using CR Factorization*] $Q \Rightarrow P$: Using [4E 3.51(a)]. Each $A_{\cdot,k} \in \text{span} \left\{ \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \right\}$. Then rank $A = \dim S_c \leqslant 1$. $X \land A \neq 0 \Rightarrow \dim S_c \geqslant 1$. $P \Rightarrow Q$: Because dim $S_c = \dim S_r = 1$. Let $c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \dots = \frac{A_{j,n}}{A_{1,n}}, \quad d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \dots = \frac{A_{m,k}}{A_{m,1}}.$ $\Rightarrow A_{i,k} = d'_k A_{i,1} = c_i A_{1,k} = c_i d'_k A_{1,1} = c_i d_k$, where $d_k = d'_k A_{1,1}$. • [4E 17, OR 3.F.32] Suppose $T \in \mathcal{L}(V)$ and $(u_1, \dots, u_n), (v_1, \dots, v_n)$ are bases of V. Prove that the following are equi. Here $A = \mathcal{M}(T) = \mathcal{M}(T, (u_1, ..., u_n), (v_1, ..., v_n))$. (a) T is inje; (b) $(A_{\cdot,1},\ldots,A_{\cdot,n})$ is a basis of $\mathbf{F}^{n,1}$; (c) $(A_{1,\cdot},\ldots,A_{n,\cdot})$ is a basis of $\mathbf{F}^{1,n}$. **SOLUTION:** T is inje \iff dim $V = \dim \operatorname{range} T = n$ $\Delta \left\{ \begin{array}{l} \Longleftrightarrow \big(Tu_1,\ldots,Tu_n\big) \text{ is a basis of } V; \ \dim \operatorname{span}\big(\mathcal{M}\big(Tu_1\big),\ldots,\mathcal{M}\big(Tu_n\big)\big) = n \\ \Longleftrightarrow \big(\mathcal{M}\big(Tu_1\big),\ldots,\mathcal{M}\big(Tu_n\big)\big) \text{ is a basis of } \mathbf{F}^{n,1}, \text{ as well as } \big(A_{\cdot,1},\ldots,A_{\cdot,n}\big) \end{array} \right.$ NOTICE that dim $S_c = \dim \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) = \dim \operatorname{span}(A_{1,\cdot}, \dots, A_{n,\cdot}) = \dim S_r = n.$ **TIPS 1:** $b_1 T u_1 + \dots + b_n T u_n = b_1 (A_{11} v_1 + \dots + A_{n1} v_n) + \dots + b_n (A_{1n} v_1 + \dots + A_{nn} v_n)$ $= (b_1 A_{1,1} + \dots + b_n A_{1,n}) v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n}) v_n$ **TIPS 2:** $b_1 \mathcal{M}(Tu_1) + \cdots + b_n \mathcal{M}(Tu_n) = b_1 A_{...} + \cdots + b_n A_{...}$ $=b_1\binom{A_{1,1}}{\vdots}+\cdots+b_n\binom{A_{1,n}}{\vdots}=\binom{b_1A_{1,1}+\cdots+b_nA_{1,n}}{\vdots}\\b_1A_{n,1}+\cdots+b_nA_{n,n}\end{pmatrix}.$ Now we show $\Delta : [P](Tu_1, ..., Tu_n)$ linely inde $\iff (\mathcal{M}(Tu_1), ..., \mathcal{M}(Tu_n))$ linely inde. [Q] $P \Rightarrow Q$: Suppose $b_1 A_{\cdot,1} + \dots + b_n A_{\cdot,n} = 0$. Let $u = b_1 u_1 + \dots + b_n u_n$. Then $Tu = (b_1 A_{1,1} + \dots + b_n A_{1,n})v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n})v_n = 0v_1 + \dots + 0v_n$. Now $b_1 T u_1 + \cdots + b_n T u_n = 0$. Then each $b_k = 0$. Thus $(A_{.1}, \dots, A_{.n})$ is linely inde. $Q\Rightarrow P: \text{ Because } b_1Tu_1+\cdots+b_nTu_n=0 \Rightarrow b_1A_{1,1}+\cdots+b_nA_{1,n}=\cdots=b_1A_{n,1}+\cdots+b_nA_{n,n}=0.$ Which is equi to $b_1A_{\cdot,1} + \cdots + b_nA_{\cdot,n} = 0$. Thus each $b_k = 0 \Rightarrow \text{null } T = \{0\}$.

• COLUMN RANK EQUALS ROW RANK Using the notation and result above.

1 Suppose $T \in \mathcal{L}(V,W)$. Show that for each pair of B_V and B_W , $A = \mathcal{M}(T,B_V,B_W)$ has at least $n = \dim \operatorname{range} T$ nonzero entries. Solution: Using $[3.B \operatorname{Tips}(4)]$. Let $U \oplus \operatorname{null} T = V$; $B_U = (v_1,\ldots,v_n)$, $B_V = (v_1,\ldots,v_m)$. For each $k \in \{1,\ldots,n\}$, $Tv_k \neq 0 \Longleftrightarrow A_{\cdot,k} \neq 0$. Hence every such $A_{\cdot,k}$ has at least one nonzero entry. Or. We prove by contradiction. Suppose A has at most $(n-1)$ nonzero entries. Then by Pigeon Hole Principle, at least one of $A_{\cdot,1},\ldots,A_{\cdot,n}$ equals 0 . Thus there are at most $(n-1)$ nonzero vecs in Tv_1,\ldots,Tv_n . \mathbb{X} range $T = \operatorname{span}(Tv_1,\ldots,Tv_n) \Rightarrow \dim \operatorname{range} T = \dim \operatorname{span}(Tv_1,\ldots,Tv_n) \leqslant n-1$. Contradicts.	
3 Suppose V and W are finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $\exists B_V, B_W$ such that $[letting A = \mathcal{M}(T, B_V, B_W)] A_{k,k} = 1, A_{i,j} = 0$, where $1 \leqslant k \leqslant \dim \operatorname{range} T, i \neq j$. Solution: Using $[3.B \operatorname{Tips}(4)]$. Let $B_{\operatorname{range} T} = (Tv_1, \ldots, Tv_n), B_V = (v_1, \ldots, v_n, u_1, \ldots, u_m)$. Comment: Let each $Tv_k = w_k$. Extend $B_{\operatorname{range} T}$ to $B_W = (w_1, \ldots, w_n, \ldots, w_p)$. See $[3.D \operatorname{NOTE} \operatorname{For} [3.60]]$.	
4 Suppose $B_V = (v_1,, v_m)$ and W is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that $\exists B_W = (w_1,, w_n)$, $\mathcal{M}(T, B_V, B_W)_{\cdot, 1}^t = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}$. Solution: If $Tv_1 = 0$, then we are done. If not then extend (Tv_1) to B_W .	
5 Suppose $B_W=(w_1,\ldots,w_n)$ and V is finite-dim. Suppose $T\in\mathcal{L}(V,W)$. Prove that $\exists B_V=(v_1,\ldots,v_m),\mathcal{M}\big(T,B_V,B_W\big)_{1,\cdot}=\left(0\ \cdots\ 0\right)$ or $\left(1\ 0\ \cdots\ 0\right).$ Solution: See also in (3.F). Let (u_1,\ldots,u_n) be a basis of V . Denote $\mathcal{M}\big(T,(u_1,\ldots,u_n),B_W\big)$ by A . If $A_{1,\cdot}=0$, then $B_V=(u_1,\ldots,u_n)$ and we are done. Otherwise, suppose $A_{1,k}\neq 0$. Let $v_1=\frac{u_k}{A_{1,k}}$, so that $Tv_1=1w_1+\frac{A_{2,k}}{A_{1,k}}w_2+\cdots+\frac{A_{n,k}}{A_{1,k}}w_n.$ Let $v_j=u_{j-1}-A_{1,j-1}v_1$ for each $j\in\{2,\ldots,k\}$. Let $v_i=u_i-A_{1,i}v_1$ for $i\in\{k+1,\ldots,n\}$. Notice that $Tu_i=A_{1,i}w_1+\cdots+A_{n,i}w_n.$	
6 Suppose V and W are finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $\dim \operatorname{range} T = 1 \iff \exists B_V, B_W, all \ entries \ of \ A = \mathcal{M}\left(T, B_V, B_W\right) \ equal \ 1.$ Solution: (a) Suppose $B_V = (v_1, \dots, v_n), B_W = (w_1, \dots, w_m)$ are the bases such that all entries of A equal 1 . Then $Tv_i = w_1 + \dots + w_m$ for all $i = 1, \dots, n$. Because w_1, \dots, w_n is linely inde, $w_1 + \dots + w_n \neq 0$. (b) Suppose $\dim \operatorname{range} T = 1$. Then $\dim \operatorname{null} T = \dim V - 1$. Let $B_{\operatorname{null} T} = (u_2, \dots, u_n)$. Extend to a basis (u_1, u_2, \dots, u_n) of V . Let $w_1 = Tv_1 - w_2 - \dots - w_m$. Extend to B_W . Let $v_1 = u_1, v_i = u_1 + u_i$. Extend to B_V .	
OR. Suppose range T has a basis (w) . By $[2.C \text{ NOTE FOR } (15)]$, $\exists B_W = (w_1, \dots, w_m)$ such that $w = w_1 + \dots + w_m$. By $[2.C \text{ TIPS}]$, \exists a basis (u_1, \dots, u_n) of V such that each $u_k \notin \text{null } T$. Now each $Tu_k \in \text{range } T = \text{span}(w) \Rightarrow Tu_k = \lambda_k w$, $\exists \lambda_k \in F \setminus \{0\}$. Let $v_k = \lambda_k^{-1} u_k \neq 0$, so that each $Tv_k = w = w_1 + \dots + w_m$. Thus $B_V = (v_1, \dots, v_n)$ will do.	

• Tips: Suppose p is a poly of n variables in \mathbf{F} .

Prove that $\mathcal{M}\left(p(T_1,\ldots,T_n)\right)=p\left(\mathcal{M}(T_1),\ldots,\mathcal{M}(T_n)\right)$.

Where the linear maps T_1,\ldots,T_n are such that $p(T_1,\ldots,T_n)$ makes sense. See [5.16,17,20].

Solution: Suppose the poly p is defined by $p(x_1,\ldots,x_n)=\sum_{k_1,\ldots,k_n}\alpha_{k_1,\ldots,k_n}\prod_{i=1}^n x_i^{k_i}$.

Note that $\mathcal{M}(T^xS^y)=\mathcal{M}(T)^x\mathcal{M}(S)^y; \ \mathcal{M}(T^x+S^y)=\mathcal{M}(T)^x+\mathcal{M}(S)^y$.

Then $\mathcal{M}\left(p(T_1,\ldots,T_n)\right)=\mathcal{M}\left(\sum_{k_1,\ldots,k_n}\alpha_{k_1,\ldots,k_n}\prod_{i=1}^n T_i^{k_i}\right)$ $=\sum_{k_1,\ldots,k_n}\alpha_{k_1,\ldots,k_n}\prod_{i=1}^n \mathcal{M}\left(T_i^{k_i}\right)=p\left(\mathcal{M}(T_1),\ldots,\mathcal{M}(T_n)\right)$.

• Corollary: Suppose τ is an algebraic property.

Then τ holds for matrices $\iff \tau$ holds for linear maps.

13 *Prove that the distr holds for matrix add and matrix multi.*

Suppose A, B, C are matrices such that A(B+C) make sense, we prove the left distr.

SOLUTION: Suppose $A \in \mathbb{F}^{m,n}$ and $B, C \in \mathbb{F}^{n,p}$.

Note that
$$[A(B+C)]_{j,k} = \sum_{r=1}^{n} A_{j,r}(B+C)_{r,k} = \sum_{r=1}^{n} (A_{j,r}B_{r,k} + A_{j,r}C_{r,k}) = (AB+AC)_{j,k}\Box$$

OR. Define T, S, R such that $\mathcal{M}(T) = A, \mathcal{M}(S) = B, \mathcal{M}(R) = C$.

$$A(B+C) = \mathcal{M}(T(S+R)) \stackrel{[3.9]}{=} \mathcal{M}(TS+TR) = AB + AC.$$

Or
$$T(S+R) = TS + TR \Rightarrow \mathcal{M}(T(S+R)) = \mathcal{M}(TS+TR) \Rightarrow A(B+C) = AB + AC$$
.

14 *Prove that matrix multi is associ.*

Suppose A, B, C are matrices such that (AB)C makes sense, we prove that (AB)C = A(BC).

SOLUTION: Suppose
$$A \in \mathbf{F}^{m,n}$$
 and $B, C \in \mathbf{F}^{n,p}$. We show that $LHS = [(AB)C]_{j,k} = [A(BC)]_{j,k} = RHS$. $LHS = (AB)_{j,\cdot}C_{\cdot,k} = \sum_{s=1}^{n} (A_{j,s}B_{s,\cdot})C_{\cdot,k} = \sum_{s=1}^{n} A_{j,s}(B_{s,\cdot}C_{\cdot,k}) = \sum_{s=1}^{n} A_{j,s}(BC)_{s,k} = RHS$. \square

OR. Define T, S, R such that $\mathcal{M}(T) = A$, $\mathcal{M}(S) = B$, $\mathcal{M}(R) = C$.

$$(AB)C = \mathcal{M}(T(SR)) \xrightarrow{\underline{[3.9]}} \mathcal{M}(TSR) \xrightarrow{\underline{[3.9]}} \mathcal{M}((TS)R) = A(BC).$$

Or.
$$(TS)R = T(SR) \Rightarrow \mathcal{M}((TS)R) = \mathcal{M}(T(SR)) \Rightarrow (AB)C = A(BC)$$
.

15 Suppose $A \in \mathbf{F}^{n,n}$, $j,k \in \{1,\ldots,n\}$. Show that $(A^3)_{j,k} = \sum_{p=1}^n \sum_{r=1}^n A_{j,p} A_{p,r} A_{r,k}$.

SOLUTION:
$$(AAA)_{j,k} = (AA)_{j,k} A_{\cdot,k} = \sum_{p=1}^{n} (A_{j,p}A_{p,\cdot})A_{\cdot,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p}A_{p,r}A_{r,k}$$

OR.
$$(AAA)_{j,k} = \sum_{r=1}^{n} (AA)_{j,r} A_{r,k} = \sum_{r=1}^{n} \left(\sum_{p=1}^{n} A_{j,p} A_{p,r} \right) A_{r,k}$$

$$= \underbrace{\sum_{r=1}^{n} \left[A_{j,1} (A_{1,r} A_{r,k}) + \dots + A_{j,n} (A_{n,r} A_{r,k}) \right]}_{= A_{j,1} \sum_{r=1}^{n} A_{1,r} A_{r,k} + \dots + A_{j,n} \sum_{r=1}^{n} A_{n,r} A_{r,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}}.$$

• Prove that the commutativity does not hold in
$$\mathbf{F}^{m,n}$$
.

SOLUTION: Suppose dim V = n, dim W = m and the commutativity holds in $\mathbf{F}^{n,m}$.

$$\forall T \in \mathcal{L}(V,W), S \in \mathcal{L}(W,V), \mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(ST).$$

Hence
$$ST = TS$$
. Which in general does not hold.

2 *Suppose V is finite-dim and* dim V > 1.

Prove that the set U of non-inv operators on V is not a subsp of $\mathcal{L}(V)$ *.*

The set of inv operators is not either. Although multi identity/inv, and commutativity for vec multi hold.

SOLUTION: Let $B_V = (v_1, ..., v_n)$. [If dim V = 1, then $U = \{0\}$ is a subsp of $\mathcal{L}(V)$.]

Define $S, T \in \mathcal{L}(V)$ by $S(a_1v_1 + \dots + a_nv_n) = a_1v_1$, $T(a_1v_1 + \dots + a_nv_n) = a_2v_1 + \dots + a_nv_n$.

Hence $S, T \in U$ while $S + T \notin U$.

3 Suppose V is finite-dim, U is a subsp of V, and $S \in \mathcal{L}(U, V)$.

Prove that \exists *inv* $T \in \mathcal{L}(V)$, Tu = Su, $\forall u \in U \iff S$ *is inje.* [Compare this with (3.A.11).]

SOLUTION: (a) $\forall u \in U, u = T^{-1}Su \Rightarrow T^{-1}S = I \in \mathcal{L}(U) \Longrightarrow S$ is inje, by (3.B.20). Or. null $S = \text{null } T|_{U} = \text{null } T \cap U = \{0\}.$

Ok. $\operatorname{null} S = \operatorname{null} T|_{U} = \operatorname{null} T \cap U = \{0\}.$

(b) Let $B_U = (u_1, ..., u_m)$. Then S inje $\Longrightarrow (Su_1, ..., Su_m)$ linely inde. Extend these to bases of V as $(u_1, ..., u_m, v_1, ..., v_n)$ and $(Su_1, ..., Su_m, w_1, ..., w_n)$.

Define $T \in \mathcal{L}(V)$ by $T(u_i) = Su_i$; $Tv_j = w_j$, for each u_i and v_j .

- Suppose $S, T \in \mathcal{L}(V, W)$. [For Problem (4) and (5), see the Corollary in (3.B.24, 25).]
- **6** Suppose V and W are finite-dim. dim null $S = \dim \text{null } T = n$. Prove that $S = E_2TE_1$, $\exists inv E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W)$.

SOLUTION: Define $E_1: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Define $E_2: Tv_i \mapsto Sr_i$; $x_j \mapsto y_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where:

Let
$$B_{\text{range }T} = (Tv_1, ..., Tv_m); \ B_{\text{range }S} = (Sr_1, ..., Sr_m).$$

Let $B_W = (Tv_1, ..., Tv_m, x_1, ..., x_p); \ B'_W = (Sr_1, ..., Sr_m, y_1, ..., y_p).$
Let $B_{\text{null }T} = (u_1, ..., u_n); \ B_{\text{null }S} = (s_1, ..., s_n).$
Thus $B_V = (v_1, ..., v_m, u_1, ..., u_n); \ B'_V = (r_1, ..., r_m, s_1, ..., s_n).$ $\therefore E_1, E_2 \text{ are inv}$
and $S = E_2 T E_1.$

- (a) Suppose T = ES and $E \in \mathcal{L}(W)$ is inv. Prove that null S = null T.
 - (b) Suppose T = SE and $E \in \mathcal{L}(V)$ is inv. Prove that range $S = \operatorname{range} T$.
 - (c) Suppose $T = E_2SE_1$ and $E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W)$ are inv. Prove that dim null $S = \dim \text{null } T$.

SOLUTION: (a) $v \in \text{null } T \iff Tv = 0 = E(Sv) \iff Sv = 0 \iff v \in \text{null } S$.

- (b) $w \in \operatorname{range} T \iff \exists v \in V, Tv = S(Ev) \iff \exists u \in V, w = Su \iff w \in \operatorname{range} S.$
- (c) Using (3.B.22). dim null $E_2SE_1 = \frac{E_2}{\text{inv}} \dim \text{null } SE_1 = \frac{E_1}{\text{inv}} \dim \text{null } S = \dim \text{null } T$.

8 Suppose V is finite-dim and $T \in \mathcal{L}(V, W)$ is **surj**.

Prove that there is a subsp U *of* V *such that* $T|_{U}$ *is an iso of* U *onto* W.

SOLUTION: Let $B_{\text{range }T} = B_W = (Tv_1, \dots, Tv_m), B_U = (v_1, \dots, v_m).$

Then dim $U = \dim W$. Thus $T|_U$ is an iso of U onto W.

OR. By (3.B.12), there is a subsp U of V such that

 $U \cap \text{null } T = \{0\} = \text{null } T|_{U}, W = \text{range } T = \{Tu : u \in U\} = \text{range } T|_{U}.$

COMMENT: See (3.B.12), (4E 3.B.21), (3.B TIPS).

• Note For [3.69]: Suppose V, W are finite-dim, $T \in \mathcal{L}(V, W)$. And dim $W = \dim V = \dim \operatorname{range} T + \dim \operatorname{null} T$. Then T is inv $\iff T$ is inje $\iff T$ is surj. **9** [OR 1] Suppose U, V, W are iso and finite-dim, $S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$. *Prove that ST is inv* \iff *S*, *T are inv*. **COMMENT**: If any two of U, V, W are not iso or finite-dim, then S, T are inv $\Longrightarrow ST$ is inv. **SOLUTION**: Suppose S, T are inv. Then $(ST)(T^{-1}S^{-1}) = I_W$, $(T^{-1}S^{-1})(ST) = I_U$. Hence ST is inv. Suppose ST is inv. Let $R = (ST)^{-1} \Rightarrow R(ST) = I_U, (ST)R = I_W$. $Tv = 0 \Rightarrow v = R(ST)v = RS(Tv) = 0.$ T is inje, S is surj. $\forall v \in V, v = (ST)Rv = S(TRv) \in \text{range } S. \mid \mathbb{X} \dim U = \dim V = \dim W.$ OR. By (3.B.23), dim $W = \dim \operatorname{range} ST \leq \min \{\operatorname{range} S, \operatorname{range} T\} \Rightarrow S, T \text{ are surj.}$ **13** Suppose U, V, W, X are iso and finite-dim, $R \in \mathcal{L}(W, X), S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$. Suppose RST is surj. Prove that S is inje. **SOLUTION**: Using Problem (9). Notice that *U*, *X* are finite-dim, so that *RST* is inv. Let $X = (RST)^{-1} \mid Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.}$ $\forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{cases} \Rightarrow S = R^{-1}(RST)T^{-1}.$ Or. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. **10** Suppose V is finite-dim and $S,T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$. **SOLUTION**: (a) Suppose ST = I. By $(3.B\ 20, 21)(a)$, $ST = I \Rightarrow T$ is inje and S is surj. X V is finite-dim. S, T are inv. OR. By Problem (9), V is finite-dim and ST = I is inv $\Rightarrow S$, T are inv. Then $\forall v \in V, S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow TS = I$. Or. $S^{-1} = T \ \ \ \ \ S = S \Rightarrow TS = S^{-1}S = I$. (b) Reversing the roles of *S* and *T*, we conclude that $TS = I \Rightarrow ST = I$. **11** Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and STU = I. Show that T is inv and $T^{-1} = US$. **SOLUTION**: Using Problem (9) and (10). This result can fail without the hypothesis that *V* is finite-dim. $(ST)U = U(ST) = (US)T = I \Rightarrow T^{-1} = US.$ Or. $(ST)U = S(TU) = I \Rightarrow U, S$ are inv $\Rightarrow TU = S^{-1}$. $\not \subseteq U^{-1} = U^{-1} \Rightarrow T = S^{-1}U^{-1}$. **EXAMPLE:** $V = \mathbb{R}^{\infty}$, $S(a_1, a_2, ...) = (a_2, ...)$; $T(a_1, ...) = (0, a_1, ...)$; $U = I \Rightarrow STU = I$ but T is not inv. • (4E 3) $T \in \mathcal{L}(V) \mid (Tv_1, ..., Tv_n)$ is a basis of V for some basis $(v_1, ..., v_n)$ of $V \Longleftrightarrow T$ is surj V is finite-dim $V \Leftrightarrow T$ is a basis of V for every basis $(v_1, ..., v_n)$ of $V \Leftrightarrow T$ is inje • (4E 15) Suppose $T \in \mathcal{L}(V)$ and $V = \text{span}(Tv_1, ..., Tv_m)$. Prove that $V = \text{span}(v_1, ..., v_m)$. **SOLUTION**: Because $V = \text{span}(Tv_1, ..., Tv_m) \Rightarrow T$ is surj, and therefore is inv $\Rightarrow T^{-1}$ is inv. $\forall v \in V, \exists a_i \in \mathbf{F}, v = \sum_{i=1}^m a_i T v_i \Rightarrow T^{-1} v = \sum_{i=1}^m a_i v_i \Rightarrow \operatorname{range} T^{-1} \subseteq \operatorname{span}(v_1, \dots, v_m).$ OR. Reduce the spanning list $(Tv_1, ..., Tv_m)$ of V to a basis $(Tv_{\alpha_1}, ..., Tv_{\alpha_k})$ of V. Where $k = \dim V$ and each $\alpha_i \in \{1, ..., k\}$. Then by Problem (4E 3), $(v_{\alpha_1}, \dots, v_{\alpha_k})$ is also a basis of V, contained in the list (v_1, \dots, v_m) .

```
In other words, prove that if T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1}), then \exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}.
SOLUTION: Let B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m) be the std bases of \mathbf{F}^{n,1} and \mathbf{F}^{m,1}.
                    \forall k = 1, ..., n, suppose T(E_k) = A_{1,k}R_1 + ... + A_{m,k}R_m, \exists A_{i,k} \in \mathbb{F}, forming A =
                   OR. Let A = \mathcal{M}(T, B_1, B_2). Note that \mathcal{M}(x, B_1) = x, \mathcal{M}(Tx, B_2) = Tx.
                    Hence Tx = \mathcal{M}(Tx, B_2) = \mathcal{M}(T, B_1, B_2)\mathcal{M}(x, B_1) = Ax, by [3.65].
                                                                                                                                                                         • NOTE FOR [3.62]: \mathcal{M}(v) = \mathcal{M}(I, (v), B_V).
• Note For [3.65]: \mathcal{M}(Tv) = \mathcal{M}(I, (Tv), B_W) = \mathcal{M}(T, B_V, B_W) \mathcal{M}(I, (v), B_V) = \mathcal{M}(T, (v), B_W).
                                 If v = 0, then span(v) = \text{span}(), we replace (v) by B = (); similar for Tv = 0.
• (4E 23, Or 10.A.4) Suppose that (\beta_1, ..., \beta_n) and (\alpha_1, ..., \alpha_n) are bases of V.
  Let T \in \mathcal{L}(V) be such that T\alpha_k = \beta_k, \forall k. Prove that \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha)
  For ease of notation, let \mathcal{M}(T, \alpha \to \beta) = \mathcal{M}(T, (\alpha_1, ..., \alpha_n), (\beta_1, ..., \beta_n)), \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(T, (\alpha_1, ..., \alpha_n)).
SOLUTION:
    Denote \mathcal{M}(T, \alpha \to \alpha) by A and \mathcal{M}(I, \beta \to \alpha) by B.
    \forall k \in \{1, \dots, n\}, Iu_k = u_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n = Tv_k = A_{1,k}\alpha_1 + \dots + A_{n,k}\alpha_n \Rightarrow A = B.
                                                                                                                                                                         OR. Note that \mathcal{M}(T, \alpha \to \beta) = I. Hence \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha) \underbrace{\mathcal{M}(T, \alpha \to \beta)}_{=\mathcal{M}(I, \beta \to \beta)} = \mathcal{M}(I, \beta \to \alpha).
                                                                                                                                                                         Or. Note that \mathcal{M}(T, \beta \to \beta)\mathcal{M}(I, \alpha \to \beta) = \mathcal{M}(T, \alpha \to \beta) = I.
   \mathcal{M}(T,\alpha \to \alpha) = \mathcal{M}(I,\alpha \to \beta)^{-1} \Big( \underbrace{\mathcal{M}(T,\beta \to \beta)\mathcal{M}(I,\alpha \to \beta)}_{=\mathcal{M}(T,\alpha \to \beta)} \Big) = \mathcal{M}(I,\beta \to \alpha).
                                                                                                                                                                         COMMENT: Let A' = \mathcal{M}(T, \beta \to \beta).
    u_k = Iu_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n, \ \forall \ k \in \{1,\dots,n\}.
    \nabla Tu_k = T(B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n) = B_{1,k}\beta_1 + \dots + B_{n,k}\beta_n = A'_{1,k}\beta_1 + \dots + A'_{n,k}\beta_n \Rightarrow A' = B.
   Or. \mathcal{M}(T, \beta \to \beta) = \mathcal{M}(T, \alpha \to \beta)\mathcal{M}(I, \beta \to \alpha) = B.
• TIPS: When using \mathcal{M}^{-1}, you must first declare bases and the purpose for using \mathcal{M}^{-1}.
            That is, to declare B_{II}, B_{V}, B_{W}, \mathcal{M} : \mathcal{L}(V, W) \mapsto \mathbf{F}^{m,n}, or \mathcal{M} : v \mapsto \mathbf{F}^{n,1}.
            So that \mathcal{M}^{-1}(AC, B_{II}, B_{W}) = \mathcal{M}^{-1}(A, B_{V}, B_{W}) \mathcal{M}^{-1}(C, B_{II}, B_{V});
            Or \mathcal{M}^{-1}(Ax, B_W) = \mathcal{M}^{-1}(A, B_V, B_W) \mathcal{M}^{-1}(x, B_V). Where everything is well-defined.
• (4E 22, OR 10.A.1) Suppose T \in \mathcal{L}(V). Prove that \mathcal{M}(T, B_V) is inv \iff T itself is inv.
SOLUTION: Notice that \mathcal{M}: T \mapsto \mathcal{M}(T, B_V) is an iso. And that \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(TS).
    (a) T^{-1}T = TT^{-1} = I \Rightarrow \mathcal{M}(T^{-1})\mathcal{M}(T) = \mathcal{M}(I) = \mathcal{M}(T)\mathcal{M}(T^{-1}) \Rightarrow \mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}.
    (b) \mathcal{M}(T)\mathcal{M}(T)^{-1} = \mathcal{M}(T)^{-1}\mathcal{M}(T) = I, \exists ! S \in \mathcal{L}(V) such that \mathcal{M}(T)^{-1} = \mathcal{M}(S)
          \Rightarrow \mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S) = I = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(ST)
          \Rightarrow \mathcal{M}^{-1}\mathcal{M}(TS) = \mathcal{M}^{-1}\mathcal{M}(ST) = I = TS = ST \Rightarrow S = T^{-1}.
                                                                                                                                                                         • (4E 24, OR 10.A.2) Suppose A, B \in \mathbf{F}^{n,n}. Prove that AB = I \iff BA = I.
                                                                                                                                        [Using Problem (10, 15).]
SOLUTION: Define T, S \in \mathcal{L}(\mathbf{F}^{n,1}) by Tx = Ax, Sx = Bx for all x \in \mathbf{F}^{n,1}. Now \mathcal{M}(T) = A, \mathcal{M}(S) = B.
```

 $AB = I \Leftrightarrow A(Bx) = x \Leftrightarrow T(Sx) = x \Leftrightarrow TS = I \Leftrightarrow ST = I \Leftrightarrow \mathcal{M}(S)\mathcal{M}(T) = BA = I.$ Or. Because $\mathcal{M} : \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{n,1}) \to \mathbf{F}^{n,n}$ is an iso. $\mathcal{M}^{-1}(AB) = TS = ST = \mathcal{M}^{-1}(BA) = I.$

15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi.

• Note For [3.60]: Suppose $B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).$

Define $E_{i,j} \in \mathcal{L}(V,W)$ by $E_{i,j}(v_x) = \delta_{i,x}w_j$. Corollary: $E_{l,k}E_{i,j} = \delta_{j,l}E_{i,k}$.

Denote
$$\mathcal{M}(E_{i,j})$$
 by $\mathcal{E}^{(j,i)}$. And $(\mathcal{E}^{(j,i)})_{l,k} = \begin{cases} 1, & \text{if } (i,j) = (l,k); \\ 0, & \text{otherwise.} \end{cases}$

NOTICE that $\mathcal{M}: \mathcal{L}(V, W) \to \mathbf{F}^{m,n}$ is an iso. And $E_{i,j} = \mathcal{M}^{-1}\mathcal{E}^{(j,i)}$.

$$\text{Thus } A = \begin{pmatrix} A_{1,1} \mathcal{E}^{(1,1)} \ + \ \cdots \ + \ A_{1,n} \mathcal{E}^{(1,n)} \\ + \ \cdots \ + \\ \vdots \ \ddots \ \vdots \\ + \ \cdots \ + \\ A_{m,1} \mathcal{E}^{(m,1)} \ + \cdots + A_{m,n} \mathcal{E}^{(m,n)} \end{pmatrix} \Longleftrightarrow \begin{pmatrix} A_{1,1} E_{1,1} \ + \ \cdots \ + \ A_{1,n} E_{n,1} \\ + \ \cdots \ + \\ A_{m,1} E_{1,m} \ + \cdots + A_{m,n} E_{n,m} \end{pmatrix} = T.$$

By [2.42] and [3.61],
$$B_{\mathcal{L}(V,W)} = \begin{pmatrix} E_{1,1}, & \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots, E_{n,m} \end{pmatrix}; B_{\mathbf{F}^{m,n}} = \begin{pmatrix} \mathcal{E}^{(1,1)}, & \cdots, \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots, \mathcal{E}^{(m,n)} \end{pmatrix}.$$

17 Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $ET \in \mathcal{E}$, $ET \in \mathcal{E}$, $ET \in \mathcal{L}(V)$.

SOLUTION: [See also in (3.A).] Using Note For [3.60].

Let $B_V = (v_1, ..., v_n)$. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$.

Then $\forall E_{i,j} \in \mathcal{E}$, by assumption, $\forall x,y \in \{1,\ldots,n\}$, $E_{j,x}E_{i,j} = E_{i,x} \in \mathcal{E}$, $E_{i,j}E_{y,i} = E_{y,j} \in \mathcal{E}$.

Again,
$$\forall x, x', y, y' \in \{1, \dots, n\}, E_{y,x'}, E_{y',x} \in \mathcal{E}$$
. Thus $\mathcal{E} = \mathcal{L}(V)$.

• (4E 10) Suppose V, W are finite-dim, U is a subsp of V.

Let
$$\mathcal{E} = \{ T \in \mathcal{L}(V, W) : U \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V, W) : T|_U = 0 \}.$$

- (a) Show that \mathcal{E} is a subsp of $\mathcal{L}(V, W)$.
- (b) Find a formula for dim \mathcal{E} in terms of dim V, dim W and dim U.

Hint: Define $\Phi : \mathcal{L}(V, W) \to \mathcal{L}(U, W)$ by $\Phi(T) = T|_U$. What is null Φ ? What is range Φ ?

SOLUTION:

- (a) $\forall S, T \in \mathcal{E}, \lambda \in \mathbb{F}, \forall u \in U, Su = \lambda Tu = (S + \lambda T)u = 0 \Rightarrow (S + \lambda T) \in \mathcal{E}.$
- (b) Define Φ as in the hint. Φ is linear because $(T + \lambda S)|_U = T|_U + \lambda S|_U$.

$$\forall T \in \text{null } \Phi, \Phi(T) = 0 \iff \forall u \in U, Tu = 0 \iff T \in \mathcal{E}. \text{ Thus null } \Phi = \mathcal{E}.$$

$$\forall S \in \mathcal{L}(U, W)$$
, extend to $T \in \mathcal{L}(V, W)$, then $\Phi(T) = S \in \text{range } \Phi$. Thus range $\Phi = \mathcal{L}(U, W)$.

Thus dim null
$$\Phi = \dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim \operatorname{range} \Phi = (\dim V - \dim U) \dim W$$
.

Or. Let
$$B_U = (u_1, ..., u_m)$$
, $B_V = (u_1, ..., u_m, v_1, ..., v_n)$. Let $p = \dim W$. [See Note for [3.60].]

$$\forall \ T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{matrix} E_{1,1}, \cdots, E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, \cdots, E_{m,p} \end{matrix} \right\} \cap \mathcal{E} = \{0\}.$$

$$\not\boxtimes W = \operatorname{span} \left\{ \begin{matrix} E_{m+1,1}, \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{m+1,p}, \cdots, E_{n,p} \end{matrix} \right\} \subseteq \mathcal{E}. \quad \overrightarrow{Denote it by R}$$

$$Where \mathcal{L}(V, W) = R \oplus W \Rightarrow \mathcal{L}(V, W) = R + \mathcal{E}.$$

Then
$$\dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim R - \dim(R \cap \mathcal{E}) = (\dim V - \dim U) \dim W$$
. \square

- (4E 17) Suppose V is finite-dim and $S \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(T) = ST$.
 - (a) Show that dim null $A = (\dim V)(\dim \operatorname{null} S)$.
 - (b) *Show that* dim range $A = (\dim V)(\dim \operatorname{range} S)$.

SOLUTION: (a) $\forall T \in \mathcal{L}(V)$, $ST = 0 \iff \text{range } T \subseteq \text{null } S$.

Thus null $\mathcal{A} = \{ T \in \mathcal{L}(V) : \text{range } T \subseteq \text{null } S \} = \mathcal{L}(V, \text{null } S).$

(b) $\forall R \in \mathcal{L}(V)$, range $R \subseteq \text{range } S \iff \exists T \in \mathcal{L}(V), R = ST$, by (3.B 25).

Thus range $\mathcal{A} = \{R \in \mathcal{L}(V) : \text{range } R \subseteq \text{range } S\} = \mathcal{L}(V, \text{range } S).$

OR. Using Note For [3.60]. Let
$$B_{\text{range }S} = (\overline{w_1, ..., w_m}), B_U = (v_1, ..., v_m).$$
Let $(w_1, ..., w_n), (v_1, ..., v_n)$ be bases of V . Then $\mathcal{M}(S, (v_1, ..., v_n), (w_1, ..., w_n)) = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$
Define $E_{j,k}R_{i,j} = Q_{i,k}$ by $Q_{i,k} : w_x \mapsto \delta_{i,x}w_k$.

$$\begin{pmatrix} A_{1,1}R_{1,1} + \cdots + A_{1,m}R_{m,1} + \cdots + A_{1,n}R_{m,1} \end{pmatrix}$$

Define
$$E_{j,k}R_{i,j} = Q_{i,k}$$
 by $Q_{i,k} : w_x \mapsto \delta_{i,x}w_k$.

Define
$$R_{j,k}E_{i,j} = G_{i,k}$$
 by $G_{i,k} : v_x \mapsto \delta_{i,x}v_k$.

Now
$$S = E_{1,1} + \dots + E_{m,m}$$
. Define $R_{i,j} \in \mathcal{L}(V)$ by $R_{i,j}(w_x) = \delta_{i,x}v_i$. $(0 \dots 0 \dots 0)$

Define $E_{j,k}R_{i,j} = Q_{i,k}$ by $Q_{i,k} : w_x \mapsto \delta_{i,x}w_k$.

Define $R_{j,k}E_{i,j} = G_{i,k}$ by $G_{i,k} : v_x \mapsto \delta_{i,x}v_k$.

Because for each $T \in \mathcal{L}(V)$, $\exists ! A_{i,j} \in \mathbf{F}$, $T = A_{m,m}R_{m,m} + \dots + A_{m,m}R_{m,m} + \dots +$

$$\begin{pmatrix} A_{1,1}R_{1,1} + \cdots + A_{1,m}R_{m,1} + \cdots + A_{1,n}R_{n,1} \\ + & \cdots & + & \cdots & + \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & + \\ A_{m,1}R_{1,m} + \cdots + A_{m,m}R_{m,m} + \cdots + A_{m,n}R_{n,m} \\ + & \cdots & + & \cdots & + \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & + \end{pmatrix}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j} Q_{j,i}.$$

range
$$\mathcal{A} = \operatorname{span} \left\{ \begin{matrix} Q_{1,1}, & \cdots, Q_{n,1}, \\ \vdots & \ddots & \vdots \\ Q_{1,m}, & \cdots, Q_{n,m} \end{matrix} \right\}, \operatorname{null} \mathcal{A} = \operatorname{span} \left\{ \begin{matrix} Q_{1,1}, & \cdots, Q_{n,m}, \\ \vdots & \ddots & \vdots \\ Q_{n,m}, & \cdots, Q_{n,m} \end{matrix} \right\}$$

$$n
\begin{cases}
R_{1,m+1}, \dots, R_{n,m+1}, \\
\vdots & \ddots & \vdots \\
R_{1,n}, \dots, R_{n,n}
\end{cases}$$

- Note For Problem (4E 17): Define $\mathcal{B} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{B}(T) = TS$.
 - (a) Show that dim null $\mathcal{B} = (\dim V)(\dim \operatorname{null} S)$.
 - (b) *Show that* dim range $\mathcal{B} = (\dim V)(\dim \operatorname{range} S)$.

SOLUTION:

(a) $\forall T \in \mathcal{L}(V), TS = 0 \iff \text{range } S \subseteq \text{null } T.$

Thus null $\mathcal{B} = \{ T \in \mathcal{L}(V) : \text{range } S \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V) : T|_{\text{range } S} = 0 \}.$

(b) $\forall R \in \mathcal{L}(V)$, null $S \subseteq \text{null } R \iff \exists T \in \mathcal{L}(V)$, R = TS, by (3.B.24).

Thus range $\mathcal{B} = \{R \in \mathcal{L}(V) : \text{null } S \subseteq \text{null } R\} = \{R \in \mathcal{L}(V) : R|_{\text{null } S} = 0\}.$

Now dim null $\mathcal{B} = (\dim V - \dim \operatorname{range} S)(\dim V)$, dim range $\mathcal{B} = (\dim V - \dim \operatorname{null} S)(\dim V)$. \square

$$\mathcal{B}(T) = TS = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} R_{j,i}\right) \left(\sum_{r=1}^{m} E_{r,r}\right)$$

$$\operatorname{null} \mathcal{B} = \operatorname{span} \begin{pmatrix} R_{m+1,1}, \cdots, R_{n,1}, \\ \vdots & \ddots & \vdots \\ R_{m+1,n}, \cdots, R_{n,n} \end{pmatrix}$$

range
$$\mathcal{B} = \operatorname{span} \begin{pmatrix} G_{1,1}, \cdots, G_{m,1}, \\ \vdots & \ddots & \vdots \\ G_{1,n}, \cdots, G_{m,n} \end{pmatrix}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} A_{i,j} G_{j,i} =$$

OR. Using Note For [3.60] and Problem (4E 17).
$$\mathcal{B}(T) = TS = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} R_{j,i}\right) \left(\sum_{r=1}^{m} E_{r,r}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + \cdots + A_{1,m} G_{m,1} \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} G_{1,m} + \cdots + A_{m,m} G_{m,m} \end{pmatrix}.$$

$$\text{range } \mathcal{B} = \text{span} \begin{pmatrix} G_{1,1}, \cdots, G_{m,1} \\ \vdots & \ddots & \vdots \\ G_{1,n}, \cdots, G_{m,n} \end{pmatrix}.$$

$$\text{(a) dim null } \mathcal{B} = n \times (n-m);$$

$$\text{(b) dim range } \mathcal{B} = n \times m.$$

Prove that $\exists \lambda \in \mathbf{F}, S = \lambda I$. **SOLUTION:** Using Problem (4E 17). Suppose ST = TS for every $T \in \mathcal{L}(V)$. If S = 0, we are done. Now suppose $S \neq 0$. Let $S = E_{1,1} + \cdots + E_{m,m} \Rightarrow \mathcal{M}(S, B_U) = \mathcal{M}(I, B_{\text{range } S}, B_U)$. Note that $R_{k,1} : w_x \mapsto \delta_{k,x} v_1$. Then $\forall k \in \{1, ..., n\}, 0 \neq SR_{k,1} = R_{k,1}S$. Hence dim null S = 0, dim range S = m = n. Notice that $G_{i,j} = R_{i,j}S = SR_{i,j} = Q_{i,j}$. Where $G_{i,j}: v_x \mapsto \delta_{i,x}v_j$, $Q_{i,j}: w_x \mapsto \delta_{i,x}w_j$. For each w_i , $\exists ! a_{k,i} \in F$, $w_i = a_{1,i}v_1 + \dots + a_{n,i}v_n$. Where $a_{k,i} = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n))_{k,i}$. Then fix one *i*. Now for each $j \in \{1, ..., n\}$, $Q_{i,j}(w_i) = w_j = a_{i,i}v_j = G_{i,j}(\sum_{k=1}^n a_{k,i}v_k)$. Let $\lambda = a_{i,i}$. Hence each $w_i = \lambda v_i$. Now fix one j, we have $a_{1,1}v_i = \cdots = a_{n,n}v_i$, then all $a_{i,i}$ are equal. Thus each $w_i = \lambda v_i \Longrightarrow \mathcal{M}(S, B_U) = \mathcal{M}(\lambda I)$. • (10.A.3, Or 4E 3.D.19) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that $\forall B_V \neq B_V'$, $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V') \Longrightarrow T = \lambda I, \exists \lambda \in \mathbf{F}$. **SOLUTION:** $\begin{bmatrix} \text{Compare with the first solution of } (3.D.16) \text{ in } (3.A) \end{bmatrix}$ Suppose $\forall B_V \neq B_V'$, $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V')$. If T = 0, then we are done. Suppose $T \neq 0$, and $v \in V \setminus \{0\}$. Assume that (v, Tv) is linely inde. Extend (v, Tv) to $B_V = (v, Tv, u_3, ..., u_n)$. Let $B = \mathcal{M}(T, B_V)$. $\Rightarrow Tv = B_{1,1}v + B_{2,1}(Tv) + B_{3,1}u_3 + \dots + B_{n,1}u_n \Rightarrow B_{2,1} = 1, B_{i,1} = 0, \forall i \neq 2.$ By assumption, $A = \mathcal{M}(T, B'_V) = B, \forall B'_V = (v, w_2, ..., w_n)$. Then $A_{2,1} = 1, A_{i,1} = 0, \forall i \neq 2$. $\Rightarrow Tv = w_2$, which is not true if we let $w_2 = u_3$, $w_3 = Tv$, $w_i = u_i$, $\forall i \in \{4, ..., n\}$. Contradicts. Hence (v, Tv) is linely depe $\Rightarrow \forall v \in V, \exists \lambda_v \in F, Tv = \lambda_v v$. Now we show that λ_v is independent of v, that is, to show that for all $v \neq w \in V \setminus \{0\}, \lambda_v = \lambda_w$. (v, w) is linely inde $\Rightarrow T(v+w) = \lambda_{v+w}(v+w) = \lambda_v v + \lambda_w w = Tv + Tw$ $\Rightarrow T = \lambda I, \exists \lambda \in \mathbf{F}.$ (v, w) is linely depe, $w = cv \Rightarrow Tw = \lambda_w w = \lambda_w cv = c\lambda_v v = T(cv)$ Or. Let $A = \mathcal{M}(T, B_V)$, where $B_V = (u_1, ..., u_m)$ is arbitrary. Fix one $B_V = (v_1, \dots, v_m)$ and then $(v_1, \dots, \frac{1}{2}v_k, \dots, v_m)$ is also a basis for any given $k \in \{1, \dots, m\}$. Fix one *k*. Now we have $T(\frac{1}{2}v_k) = A_{1k}v_1 + \dots + A_{kk}(\frac{1}{2}v_k) + \dots + A_{mk}v_m$ $\Rightarrow Tv_k = 2A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + 2A_{m,k}v_m = A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + A_{m,k}v_m.$ Then $A_{j,k} = 2A_{j,k} \Rightarrow A_{j,k} = 0$ for all $j \neq k$. Thus $Tv_k = A_{k,k}v_k$, $\forall k \in \{1, ..., m\}$. Now we show that $A_{k,k} = A_{j,j}$ for all $j \neq k$. Choose j,k such that $j \neq k$. Consider the basis $B'_V = (v'_1, \dots, v'_i, \dots, v'_k, \dots, v')$, where $v_i' = v_k$, $v_k' = v_i$ and $v_i' = v_i$ for all $i \in \{1, ..., m\} \setminus \{j, k\}$. Remember that $\mathcal{M}(T, B'_V) = \mathcal{M}(T, B_V) = A$. Hence $T(v'_k) = A_{1,k}v'_1 + \dots + A_{k,k}v'_k + \dots + A_{m,k}v'_m = A_{k,k}v'_k = A_{k,k}v_i$, while $T(v'_k) = T(v_i) = A_{i,i}v_i$. Thus $A_{k,k} = A_{i,i}$. OR. ??? [There must be another solution using theorems and facts given in (3.D).]

16 Suppose V is finite-dim and $S \in \mathcal{L}(V)$ such that $\forall T \in \mathcal{L}(V)$, ST = TS.

18 Show that V and $\mathcal{L}(\mathbf{F}, V)$ are iso vecsps. **SOLUTION:** Define $\Psi \in \mathcal{L}(V, \mathcal{L}(F, V))$ by $\Psi(v) = \Psi_v$; where $\Psi_v \in \mathcal{L}(F, V)$ and $\Psi_v(\lambda) = \lambda v$. (a) $\Psi(v) = \Psi_v = 0 \Rightarrow \forall \lambda \in \mathbb{F}, \Psi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0$. Hence Ψ is inje. (b) $\forall T \in \mathcal{L}(\mathbf{F}, V)$, let $v = T(1) \Rightarrow T(\lambda) = \lambda v = \Psi_v(\lambda)$, $\forall \lambda \in \mathbf{F} \Rightarrow T = \Psi(T(1))$. Hence Ψ is surj. \square Or. Define $\Phi \in \mathcal{L}(\mathcal{L}(\mathbf{F}, V), V)$ by $\Phi(T) = T(1)$. (a) Suppose $\Phi(T) = 0 = T(1) = \lambda T(1) = T(\lambda)$, $\forall \lambda \in \mathbb{F} \Rightarrow T = 0$. Thus Φ is inje. (b) For any $v \in V$, define $T \in \mathcal{L}(\mathbf{F}, V)$ by $T(\lambda) = \lambda v$. Then $\Phi(T) = T(1) = v$. Thus Φ is surj. Comment: $\Phi = \Psi^{-1}$. • (4E 20) Suppose $q \in \mathcal{P}(\mathbf{R})$. Prove that $\exists p \in \mathcal{P}(\mathbf{R}), q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. **SOLUTION:** Note that $\deg[(x^2 + x)p''(x) + 2xp'(x) + p(3)] = \deg p$. Define $T_n \in \mathcal{L}(\mathcal{P}_n(\mathbf{R}))$ by $T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. And note that $T_n(p) = 0 \Rightarrow \deg T_n(p) = -\infty = \deg p \Rightarrow p = 0$. Thus T_n is inv. $\forall q \in \mathcal{P}(\mathbf{R})$, if q = 0, let n = 0; if $q \neq 0$, let $n = \deg q$, we have $q \in \mathcal{P}_n(\mathbf{R})$. Now $\exists p \in \mathcal{P}_n(\mathbf{R}), q(x) = T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$ for all $x \in \mathbf{R}$. **19** Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is inje. And deg $Tp \leq \deg p$ for every nonzero $p \in \mathcal{P}(\mathbf{R})$. (b) Prove that for every nonzero p, $\deg Tp = \deg p$. (a) *Prove that T is surj;* **SOLUTION**: (a) T is inje $\iff \forall n \in \mathbb{N}^+, T|_{\mathcal{P}_{-}(\mathbb{R})} \in \mathcal{L}(\mathcal{P}_n(\mathbb{R}))$ is inje, so is inv $\iff T$ is surj.

- (b) Using mathematical induction.
- (i) $\deg p = -\infty \geqslant \deg Tp \iff p = 0 = Tp$. And $\deg p = 0 \geqslant \deg Tp \iff p = C \neq 0$.
- (ii) Assume that $\forall s \in \mathcal{P}_n(\mathbf{R})$, $\deg s = \deg Ts$.

Suppose $\exists r \in \mathcal{P}_{n+1}(\mathbf{R})$, $\deg Tr \leq n < n+1 = \deg r$.

Then by (a), $\exists s \in \mathcal{P}_n(\mathbf{R})$, T(s) = (Tr).

 \not T is inje $\Rightarrow s = r$. While $\deg s = \deg Ts = \deg Tr < \deg r$.

Contradicts. Thus $\forall p \in \mathcal{P}_{n+1}(\mathbf{R}), \deg Tp = \deg p$.

ENDED

1 A function $T: V \to W$ is linear \iff The graph of T is a subspace of $V \times W$.

2 Suppose $V_1 \times \cdots \times V_m$ is finite-dim. Prove that each V_i is finite-dim.

SOLUTION:

For any
$$k \in \{1, ..., m\}$$
, define $S_k \in \mathcal{L}(V_1 \times \cdots \times V_m, V_k)$ by $S_k(v_1, ..., v_m) = v_k$.
Then S_k is linear map. By [3.22], range $S_k = V_k$ is finite-dim.

OR. Denote $V_1 \times \cdots \times V_m$ by U. Denote $\{0\} \times \cdots \{0\} \times V_i \times \{0\} \cdots \times \{0\}$ by U_i .

We show that each U_i and V_i are iso. Then U is finite-dim \Longrightarrow its subsp U_i is finite-dim, so is V_i .

$$\operatorname{Let} B_U = (v_1, \dots, v_M) \mid \operatorname{Define} R_i \in \mathcal{L}(V_i, U_i) \text{ by } R_i(u_i) = (0, \dots, 0, u_i, 0, \dots, 0) \\ \operatorname{Define} S_i \in \mathcal{L}(U, V_i) \text{ by } S_i(u_1, \dots, u_i, \dots, u_m) = u_i \end{cases} \Rightarrow \left\{ \begin{array}{l} R_i S_j|_{U_j} = \delta_{i,j} I_{U_j}, \\ S_i R_j = \delta_{i,j} I_{V_j}. \end{array} \right. \square$$

3 Give an example of a vecsp V and its two subsps U_1 , U_2 such that $U_1 \times U_2$ and $U_1 + U_2$ are iso but $U_1 + U_2$ is not a direct sum.

SOLUTION: V must be infinite-dim. For if not, both U_1 and U_2 are finite-dim subsps. By [3.76, 3.78].

NOTE that at least one of U_1 , U_2 must be infinite-dim. And at least one must be finite-dim??? TODO

For if not, $U_1 \times U_2$ is finite-dim and $\dim(U_1 \times U_2) = \dim(U_1 + U_2) = \dim U_1 + \dim U_2$.

Let $V = \mathbb{F}^{\infty} = U_1$, $U_2 = \{(x, 0, \dots) \in \mathbb{F}^{\infty} : x \in \mathbb{F}\}$. Then $V = U_1 + U_2$ is not a direct sum.

Define
$$T \in \mathcal{L}(U_1 \times U_2, U_1 + U_2)$$
 by $T((x_1, x_2, \dots), (x, 0, \dots)) = (x, x_1, x_2, \dots)$
Define $S \in \mathcal{L}(U_1 + U_2, U_1 \times U_2)$ by $S(x, x_1, x_2, \dots) = ((x_1, x_2, \dots), (x, 0, \dots))$ $\Rightarrow S = T^{-1}$.

4 Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are iso.

SOLUTION: Using the notation in Problem (2): $R_i: u_i \mapsto (0, \dots, u_i, \dots, 0); S_i: (u_1, \dots, u_m) \mapsto u_i$.

Note that $T(u_1, ..., u_m) = T(u_1, 0, ..., 0) + ... + T(0, ..., u_m)$.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (TR_1, \dots, TR_m)$.
Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1S_1 + \dots + T_mS_m$. $\} \Rightarrow \psi = \varphi^{-1}$.

5 Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are iso.

SOLUTION: Using the notation in Problem (2): $R_i: u_i \mapsto (0, \dots, u_i, \dots, 0); S_i: (u_1, \dots, u_m) \mapsto u_i$.

Note that
$$T_i: v \mapsto w_i$$
, Define $\varphi: T \mapsto (T_1, \dots, T_m)$ by $\varphi(T) = (S_1 T, \dots, S_m T)$.
 $T: v \mapsto (w_1, \dots, w_m)$. Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = R_1 T_1 + \dots + R_m T_m$.

6 For $m \in \mathbb{N}^+$, define V^m by $\underbrace{V \times \cdots \times V}_{m \text{ times}}$. Prove that V^m and $\mathcal{L}(\mathbf{F}^m, V)$ are iso.

SOLUTION:

Define $T:(v_1,\ldots,v_m)\to \varphi$, where $\varphi:(a_1,\ldots,a_m)\mapsto v$ is defined by $\varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m$.

- (a) Suppose $T(v_1, \dots, v_m) = 0$. Then $\forall (a_1, \dots, a_n) \in \mathbb{F}^m$, $\varphi(a_1, \dots, a_m) = a_1v_1 + \dots + a_mv_m = 0$ For each k, let $a_k = 1$, $a_j = 0$ for all $j \neq k$. Then each $v_k = 0 \Rightarrow (v_1, \dots, v_m) = 0$. Thus T is inje.
- (b) Suppose $\psi \in \mathcal{L}(\mathbf{F}^m, V)$. Let (e_1, \dots, e_m) be the std basis of \mathbf{F}^m . Then $\forall (b_1, \dots, b_n) \in \mathbf{F}^m$, $\left[T \left(\psi(e_1), \dots, \psi(e_m) \right) \right] (b_1, \dots, b_m) = b_1 \psi(e_1) + \dots + b_m \psi(e_m) = \psi \left(b_1 e_1 + \dots + b_m e_m \right) = \psi(b_1, \dots, b_m).$ Thus $T(\psi(e_1), \dots, \psi(e_m)) = \psi$. Hence T is surj. \square

- **14** Suppose $U = \{(x_1, x_2, \dots) \in \mathbb{F}^{\infty} : x_k \neq 0 \text{ for only finitely many } k\}.$
 - (a) Show that U is a subsp of \mathbf{F}^{∞} . [Do it in your mind]
 - (b) Prove that \mathbf{F}^{∞}/U is infinite-dim.

SOLUTION: For ease of notation, denote the p^{th} term of $u = (x_1, \dots, x_n, \dots) \in \mathbb{F}^{\infty}$ by u[p].

$$\text{For each } r \in \mathbb{N}^+, \text{let } e_r\big[p\big] = \left\{ \begin{array}{l} 1 \text{, } (p-1) \equiv 0 \text{ } (\text{mod } r) \\ 0 \text{, otherwise} \end{array} \right| \quad \text{simply } e_r = \big(1, \underbrace{0, \ \cdots, \ 0}_{(p-1) \text{ } times}, 1, \underbrace{0, \ \cdots, \ 0}_{(p-1) \text{ } times}, 1, \cdots \big).$$

Choose one $m \in \mathbb{N}^+$. Let $a_1(e_1 + U) + \cdots + a_m(e_m + U) = 0 + U \Rightarrow \exists u \in U, a_1e_1 + \cdots + a_me_m = u$.

Suppose $u = (x_1, \dots, x_L, 0, \dots)$, where L is the largest such that $u[L] \neq 0$.

Let $s \in \mathbb{N}^+$ be such that $h = s \cdot m! + 1 > L$ and $e_1[h] = \cdots = e_m[h] = 1$.

Note that by definition, $e_r[s \cdot m! + 1 + p] = e_r[p + 1] = 1 \iff p \equiv 0 \pmod{r} \iff r \mid p$.

Now for any
$$p \in \{1, ..., m\}$$
, $u[h+p] = \left(\sum_{r=1}^{m} a_r e_r\right)[p+1] = \sum_{k=1}^{\tau(p)} a_{p_k} = 0$ (Δ)

where $1 = p_1 \leqslant \cdots \leqslant p_{\tau(p)} = p$ are all the distinct factors of p.

Let $q = p_{\tau(p)-1}$. Notice that $\tau(q) = \tau(p) - 1$ and $q_k = p_k, \forall k \in \{1, \dots, \tau(q)\}$.

Again by (
$$\Delta$$
), $\left(\sum_{r=1}^{m} a_r e_r\right) [h+q] = \sum_{k=1}^{\tau(p)-1} a_{p_k} = 0$. Thus $a_{p_{\tau(p)}} = a_p = 0$ for any $p \in \{1, ..., m\}$.

Hence $\forall m \in \mathbb{N}^+, (e_1, \dots, e_m)$ is linely inde in \mathbb{F}^{∞} , so is $(e_1 + U, \dots, e_m + U)$ in \mathbb{F}^{∞}/U . By (2.A.14). \square

Or. For each
$$r \in \mathbb{N}^+$$
, let $e_r[p] = \begin{cases} 1, & \text{if } 2^r | p \\ 0, & \text{otherwise} \end{cases}$

Similarly, let $m \in \mathbb{N}^+$ and $a_1(e_1 + U) + \cdots + a_m(e_m + U) = 0 \Rightarrow a_1e_1 + \cdots + a_me_m = u \in U$.

Suppose *L* is the largest such that $u[L] \neq 0$. And *l* is such that $2^{ml} > L$.

Then
$$\forall k \in \{1, ..., m\}, u[2^{ml} + 2^k] = \left(\sum_{r=1}^m a_r e_r\right)[2^k] = a_1 + \dots + a_k = 0.$$

Thus $a_1 = \cdots = a_m = 0$ and (e_1, \ldots, e_m) is linely inde. Similarly.

7 Suppose $v, x \in V$ and U and W are subsps of V. Prove that $v + U = x + W \Rightarrow U = W$.

SOLUTION:

- (a) $\forall u_1 \in U, \exists w_1 \in W, v + u_1 = x + w_1, \text{ let } u_1 = 0, \text{ now } v = x + w_1' \Rightarrow v x \in W.$

(b)
$$\forall w_2 \in W, \exists u_2 \in U, v + u_2 = x + w_2, \text{ let } w_2 = 0, \text{ now } x = v + u_2' \Rightarrow x - v \in U.$$
Thus $\pm (v - x) \in U \cap W \Rightarrow \begin{cases} u_1 = (x - v) + w_1 \in W \Rightarrow U \subseteq W \\ w_2 = (v - x) + u_2 \in U \Rightarrow W \subseteq U \end{cases} \Rightarrow U = W.$

• Let $U = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = 0\}$. Suppose $A \subseteq \mathbb{R}^3$.

Then *A* is a translate of $U \iff \exists c \in \mathbb{R}, A = \{(x,y,z) \in \mathbb{R}^3 : 2x + 3y + 5z = c\}.$

• Suppose $T \in \mathcal{L}(V, W)$ and $c \in W$. Prove that $U = \{x \in V : Tx = c\}$ is either \emptyset *or is a translate of* null *T*.

SOLUTION:

If $c \in W$ but $c \notin \text{range } T$, then $U = \emptyset$, we are done. Now suppose $c \in \text{range } T$ and $x \in U$.

 $\forall x + y \in x + \text{null } T \ (\forall y \in \text{null } T), x + y \in U. \text{ Hence } x + \text{null } T \subseteq U.$

$$\forall u \in U, u - x \in \text{null } T \Rightarrow u = x + (u - x)x + \text{null } T. \text{ Hence } U \subseteq x + \text{null } T.$$

COROLLARY: The set of solutions to a system of linear equations such as [3.28] is either \emptyset or a translate.

8 Suppose A is a nonempty subset of V.

Prove that A is a translate of some subsp of $V \iff \lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A, \lambda \in F$.

SOLUTION:

Suppose A = a + U. Then $\forall a + u_1, a + u_2 \in A, \lambda \in \mathbf{F}$,

$$\lambda(a + u_1) + (1 - \lambda)(a + u_2) = a + (\lambda(u_1 - u_2) + u_2) \in A.$$

Suppose $\lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A$, $\lambda \in F$. Suppose $a \in A$ and let $A' = \{x - a : x \in A\}$.

Then $0 \in A'$ and $\forall x - a, y - a \in A'$, $(\forall x, y \in A)$, $\lambda \in F$,

(I)
$$\lambda(x-a) = [\lambda x + (1-\lambda)a] - a \in A'$$
.

(II)
$$\lambda(x-a) + (1-\lambda)(y-a) = \frac{1}{2}(x-a) + \frac{1}{2}(y-a) = \frac{1}{2}x + (1-\frac{1}{2})y - a \in A'$$
.

Or. By (I),
$$2 \times \left[\frac{1}{2}(x-a) + \frac{1}{2}(y-a)\right] = (x-a) + (y-a) \in A'$$
.

Thus A' is a subsp of V. Hence $a + A' = \{(x - a) + a : x \in A\} = A$ is a translate.

OR. Suppose $x - a, y - a \in A', \lambda \in F$.

Note that $x, a \in A \Rightarrow \lambda x + (1 - \lambda)a = 2x - a \in A$. Similarly $2y - a \in A$.

(I)
$$(x - \frac{1}{2}a) + (y - \frac{1}{2}a) = x + y - a \in A \Rightarrow x + y - 2a = (x - a) + (y - a) \in A'$$
.

(II)
$$\lambda(x-a) = (\lambda x + (1-\lambda)a) - a \in A'$$
.

Thus -x + A is a subsp of V. Hence A = x + (-x + A) is a translate of the subsp (-x + A).

9 Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subsps U_1, U_2 of V. Prove that the intersection $A_1 \cap A_2$ is either a translate of some subsp of V or is \emptyset .

SOLUTION:

Suppose $v + u_1, w + u_2 \in A_1 \cap A_2 \neq \emptyset$. By Problem (8),

$$\forall \lambda \in \mathbf{F}, \lambda(v+u_1)+(1-\lambda)(w+u_2) \in A_1 \cap A_2$$
. Thus $A_1 \cap A_2$ is a translate of some subsp of V . \square

Or. Let $A_1 = v + U_1, A_2 = w + U_2$. Suppose $x \in (v + U_1) \cap (w + U_2) \neq \emptyset$.

Then $\exists u_1 \in U_1, x = v + u_1 \Rightarrow x - v \in U_1, \ \exists u_2 \in U_2, x = w + u_2 \Rightarrow x - w \in U_2.$

Note that by [3.85], $A_1 = v + U_1 = x + U_1$, $A_2 = w + U_2 = x + U_2$. We show that $A_1 \cap A_2 = x + (U_1 \cap U_2)$.

(a)
$$y \in A_1 \cap A_2 \Rightarrow \exists u_1 \in U_1, u_2 \in U_2, y = x + u_1 = x + u_2 \Rightarrow u_1 = u_2 \in U_1 \cap U_2 \Rightarrow y \in x + (U_1 \cap U_2).$$

(b)
$$y = x + u \in x + (U_1 \cap U_2) = (x + U_1) \cap (x + U_2) \Rightarrow y \in A_1 \cap A_2.$$

10 Prove that the intersection of any collection of translates of subsps of V is either a translate of some subsp or \emptyset .

SOLUTION:

Suppose $\{A_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of translates of subsps of V, where Γ is an arbitrary index set.

Suppose $x, y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset$, then by Problem (8), $\forall \lambda \in \mathbf{F}, \lambda x + (1 - \lambda)y \in A_{\alpha}$ for every $\alpha \in \Gamma$.

Thus $\bigcap_{\alpha \in \Gamma} A_{\alpha}$ is a translate of some subsp of V.

Or. Let $A_{\alpha} = w_{\alpha} + V_{\alpha}$ for each $\alpha \in \Gamma$. Suppose $x \in \bigcap_{\alpha \in \Gamma} (w_{\alpha} + V_{\alpha}) \neq \emptyset$.

Then for each A_{α} , $\exists v_{\alpha} \in V_{\alpha}$, $x = w_{\alpha} + v_{\alpha} \Rightarrow x - w_{\alpha} \in V_{\alpha} \Rightarrow A_{\alpha} = w_{\alpha} + V_{\alpha} = x + V_{\alpha}$.

(a)
$$y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \Rightarrow \forall \alpha \in \Gamma, \exists v_{\alpha}, y = x + v_{\alpha} \Rightarrow \forall \alpha, \beta \in \Gamma, v_{\alpha} = v_{\beta} \Rightarrow y \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$$
.

(b)
$$y = x + v \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha} = \bigcap_{\alpha \in \Gamma} (x + V_{\alpha}) \Rightarrow y \in \bigcap_{\alpha \in \Gamma} A_{\alpha}$$
. Hence $\bigcap_{\alpha \in \Gamma} A_{\alpha} = x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$.

• Note For [3.79, 3.83]: If $U = \{0\}$, then $v + U = v + \{0\} = \{v\}$, $V/U = V/\{0\} = \{\{v\} : v \in V\}$.

- **11** Suppose $A = \{\lambda_1 v_1 + \dots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1\}$, where each $v_i \in V, \lambda_i \in F$.
 - (a) Prove that A is a translate of some subsp of V
 - (b) Prove that if B is a translate of some subsp of V and $\{v_1, ..., v_m\} \subseteq B$, then $A \subseteq B$.
 - (c) Prove that A is a translate of some subsp of V of dim less than m.

SOLUTION:

(a) By Problem (8),
$$\forall u, w \in A, \lambda \in \mathbf{F}, \exists a_i, b_i \mathbf{F},$$

$$\lambda u + (1 - \lambda)w = \left(\lambda \sum_{i=1}^m a_i + (1 - \lambda) \sum_{i=1}^m b_i\right) v_i \in A.$$

(b) Suppose B = v + U, where $v \in V$ and U is a subsp of V. Suppose $\exists ! u_k \in U, v_k = v + u_k \in B$. Then for all $v = \sum_{i=1}^m \lambda_i v_i \in A$, $v = \sum_{i=1}^m \lambda_i (v + u_i) = v + \sum_{i=1}^m \lambda_i u_i \in v + U = B$.

Or. Let $v = \lambda_1 v_1 + \dots + \lambda_m v_m \in A$. To show that $v \in B$, use induction on m by k.

- (i) $k=1, v=\lambda_1v_1\Rightarrow \lambda_1=1$. $\not \subset v_1\in B$. Hence $v\in B$. $k=2, v=\lambda_1v_1+\lambda_2v_2\Rightarrow \lambda_2=1-\lambda_1. \not \subset v_1, v_2\in B. \text{ By Problem (8)}, v\in B.$
- (ii) $2 \le k \le m$, we assume that $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $(\forall \lambda_i \text{ such that } \sum_{i=1}^k \lambda_i = 1)$

For $u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$. $\forall i = 1, \dots, k, \exists \mu_i \neq 1$, fix one such i by ι .

Then
$$\sum_{i=1}^{k+1} \mu_i - \mu_i = 1 - \mu_i \Rightarrow \left(\sum_{i=1}^{k+1} \frac{\mu_i}{1 - \mu_i}\right) - \frac{\mu_i}{1 - \mu_i} = 1.$$

$$\text{Let } w = \underbrace{\frac{\mu_1}{1 - \mu_i} v_1 + \dots + \frac{\mu_{i-1}}{1 - \mu_i} v_{i-1} + \frac{\mu_{i+1}}{1 - \mu_i} v_{i+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_i} v_{k+1}}_{k \, terms}.$$

Let
$$\lambda_i = \frac{\mu_i}{1 - \mu_i}$$
 for $i = 1, \dots, i - 1$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_i}$ for $j = i, \dots, k$. Then,

$$\sum_{i=1}^{k} \lambda_i = 1 \Rightarrow w \in B$$
$$v_i \in B \Rightarrow u' = \lambda w + (1 - \lambda)v_i \in B$$
$$\Rightarrow \text{Let } \lambda = 1 - \mu_i. \text{ Thus } u' = u \in B \Rightarrow A \subseteq B.$$

(c) If m = 1, then let $A = v_1 + \{0\}$ and we are done.

Choose one $k \in \{1, ..., m\}$. Given $\lambda_i \in \mathbb{F}$, where $i \in \{1, ..., k-1, k+1, ..., m\}$.

Let
$$\lambda_k = 1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m$$

Then
$$\lambda_1 v_1 + \dots + \lambda_k v_k + \dots + \lambda_m v_m = v_k + \sum_{i=1}^m \lambda_i (v_i - v_k)$$
.

Thus
$$A = v_k + \text{span}(v_1 - v_k, \dots, v_{k-1} - v_k, v_{k+1} - v_k, \dots, v_m - v_k).$$

18 Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp of V. Let π denote the quotient map. Prove that $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi \iff U \subseteq \text{null } T$.

SOLUTION:

(a) Suppose $U \subseteq \text{null } T$. Define $S \in \mathcal{L}(V/U, W)$ by S(v + U) = Tv. Then $S \circ \pi = T$. Now we show that this map is *well-defined*.

$$v_1 + U = v_2 + U \Longleftrightarrow (v_1 - v_2) \in U \Longleftrightarrow S((v_1 - v_2) + U) = T(v_1 - v_2) = 0 \Longleftrightarrow Tv_1 = Tv_2.$$

- (b) Suppose $\exists S, T = S \circ \pi$. Then $\forall u \in U, Tu = S \circ \pi(u) = S(0 + U) = 0 \Rightarrow U \subseteq \text{null } T$.
- **20** Define $\Gamma : \mathcal{L}(V/U, W) \to \mathcal{L}(V, W)$ by $\Gamma(S) = S \circ \pi$. Prove that:
 - (a) Γ *is linear*: By [3.9] distr and [3.6].
 - (b) Γ is inje: $\Gamma(S) = 0 = S \circ \pi \iff \forall v \in V, S(\pi(v)) = 0 \iff \forall v + U \in V/U, S(v + U) = 0 \iff S = 0$.
 - (c) range $\Gamma = \{T \in \mathcal{L}(V, W) : U \subseteq \text{null } T\}$: By Problem (18).

```
Because \forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v. Define T \in \mathcal{L}(V) by T(v) = w_v.
  Hence null T = U, range T = W, range T \oplus \text{null } T = V.
  Then \tilde{T} \in \mathcal{L}(V/\text{null } T, V) is defined by \tilde{T}(v + U) = Tw_v = w_v.
  Now \pi \circ \tilde{T} = I_{V/U}, \tilde{T} \circ \pi = I_W = T|_W. Hence \tilde{T} is an iso of V/U onto W.
• COMMENT: Note that v = u_v + w_v = (u_v - u') + (w'_v + u'), where w'_v \notin W \iff u' \neq 0.
  Define S \in \mathcal{L}(V/U, V) by S(v + U) = v. Hence null S = \{0\}, range S \in \mathcal{S}_V U, range S \oplus U = V.
  Let E = S \circ \pi. Now null E = \text{null } \pi = U. Because \pi is surj. range E = \text{range } S.
  Then range E \oplus \text{null } E = V. Notice that E: V \to \text{range } S is a pure eraser. Now we explain why:
  EXAMPLE: Suppose B_V = (v_1, v_2, v_3), U = \text{span}(v_1). Then it is uniquely fixed that range S = \text{span}(v_2, v_3).
  While we might have range T = \text{span}(v_2 - 2v_1, v_3) = W, depending on the choice of W.
  Now E: v_2 \mapsto v_2; v_2 - 2v_1 \mapsto v_2. While T: v_2 \mapsto v_2 - 2v_1; v_2 - 2v_1 \mapsto v_2 - 2v_1.
12 Suppose U is a subsp of V such that V/U is finite-dim. Prove that is V is iso to U \times (V/U).
SOLUTION:
   Let (v_1 + U, ..., v_n + U) be a basis of V/U.
  Note that \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^n a_i (v_i + U) = \left(\sum_{i=1}^n a_i v_i\right) + U
   \Rightarrow (v - a_1 v_1 - \dots - a_n v_n) \in U \Rightarrow \exists ! u \in U, v = \sum_{i=1}^n a_i v_i + u.
  Thus define \varphi \in \mathcal{L}(V, U \times (V/U)) by \varphi(v) = (u, v + U),
             and \psi \in \mathcal{L}(U \times (V/U), V) by \psi(u, v + U) = v + u, where \exists ! a_i \in F, v = \sum_{i=1}^n a_i v_i + U.
                                                                                                                                   Or. \lceil V/U, U \text{ and } V \text{ can be infinite-dim } \rceil Define S \in \mathcal{L}(V/U, V) by S(v + U) = v.
   By the Note For [3.88,3.90,3.91], range S \oplus U = V. Thus \forall v \in V, \exists ! u \in U, w \in \text{range } S, v = u + w.
  Define T \in \mathcal{L}(U \times (V/U), V) by T(u, v + U) = u + S(v + U) = u + w = v. Then T is surj.
  And T(u, v + U) = u + S(v + U) = 0 \Longrightarrow \pi(T(u, v + U)) = v + U = 0, and u = -S(v + U) = 0.
  Or. Define R \in \mathcal{L}(V, U \times (V/U)) by R(v) = (u, (w + U)). Now R \circ T = I_{U \times (V/U)}, T \circ R = I_V.
                                                                                                                                   • (4E 3.E.14) Suppose V = U \oplus W, (w_1, ..., w_m) is a basis of W.
  Prove that (w_1 + U, ..., w_m + U) is a basis of V/U.
SOLUTION: \forall v \in V, \exists ! u \in U, w \in W, v = u + w. \ \exists ! c_i \in F, w = \sum_{i=1}^m c_i w_i \Rightarrow v = \sum_{i=1}^m c_i w_i + u.
               Hence \forall v + U \in V/U, \exists ! c_i \in F, v + U = \sum_{i=1}^m c_i w_i + U.
                                                                                                                                    13 Suppose (v_1 + U, ..., v_m + U) is a basis of V/U and (u_1, ..., u_n) is a basis of U.
    Prove that (v_1, ..., v_m, u_1, ..., u_n) is a basis of V.
SOLUTION: Notice that (v_1, ..., v_m) is linely inde.
  By Problem (12), U and V/U are finite-dim \Longrightarrow U \times (V/U) is finite-dim, so is V.
  \dim V = \dim(U \times (V/U)) = m + n. \mathbb{Z} Each v_i = S(v_i + U), where we define S(v + U) = v.
  Note that \sum_{i=1}^{m} a_i v_i \in U \iff \left(\sum_{i=1}^{m} a_i v_i\right) + U = 0 + U \iff a_1 = \dots = a_m = 0.
  Hence span(v_1, ..., v_m) \cap U = \{0\} \Rightarrow \text{span}(v_1, ..., v_m) \oplus U = V. By (2.B.8), we are done.
                                                                                                                                   Or. Note that \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^m a_i v_i + U \Rightarrow \exists ! b_i \in F, v - \sum_{i=1}^m a_i v_i = \sum_{i=1}^m b_i u_i \in U
                     \Rightarrow \forall v \in V, \exists ! a_i, b_i \in F, v = \sum_{i=1}^m a_i v_i + \sum_{i=1}^m b_i u_i.
```

• Note For [3.88, 3.90, 3.91]: Suppose $W \in \mathcal{S}_V U$. Then V/U and W are iso.

15 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Prove that dim $V/(\text{null }\varphi) = 1$. **SOLUTION:** By (3.B.29), $\exists u \in V, V = \text{null } \varphi \oplus \{au : a \in F\}$. By (4E 3.E.14), $(u + \text{null } \varphi)$ is a basis of $V/\text{null } \varphi$. Or. By [3.91] (d), dim range $\varphi = 1 = \dim V / (\operatorname{null} \varphi)$. **16** Suppose dim V/U=1. Prove that $\exists \varphi \in \mathcal{L}(V, \mathbf{F})$ such that null $\varphi=U$. **SOLUTION:** Suppose V_0 is a subsp of V such that $V = U \oplus V_0$. Then V_0 and V/U are iso. dim $V_0 = 1$. Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_0) = 1$, $\varphi(u) = 0$, where $v_0 \in V_0$, $u \in U$. Or. Let (w + U) be a basis of V/U. Then $\forall v \in V, \exists ! a \in F, v + U = aw + U$. Define $\varphi: V \to \mathbf{F}$ by $\varphi(v) = a$. Assume that φ is linear. Then $u \in U \iff u + U = 0w + U \iff \varphi(u) = 0 \iff u \in \text{null } \varphi$. Thus $U = \text{null } \varphi$. Now we prove the assumption. $\forall x, y \in V, \lambda \in \mathbf{F}, \exists ! a, b \in \mathbf{F}, x + U = aw + U, \lambda y + U = \lambda bw + U \Rightarrow (x + \lambda y) + U = (a + \lambda b)w + U.$ Then $\varphi(x + \lambda y) = a + \lambda b = \varphi(x) + \lambda \varphi(y)$. **17** Suppose V/U is finite-dim. W is a subsp of V. (a) Show that if V = U + W, then dim $W \ge \dim V/U$. (b) Find a W such that dim $W = \dim V/U$ and $V = U \oplus W$. **SOLUTION:** Let $(w_1, ..., w_n)$ be a basis of W(a) $\forall v \in V, \exists u \in U, w \in W \text{ such that } v = u + w \Rightarrow v + U = w + U$ And $\exists ! a_i \in \mathbb{F}, v + U = (a_1 w_1 + \dots + a_n w_n) + U$. Then $V/U \subseteq \operatorname{span}(w_1 + U, \dots, w_n + U)$. Hence dim $V/U = \dim \operatorname{span}(w_1 + U, \dots, w_n + U) \leq \dim W$. (b) Let $W \in \mathcal{S}_V U$. In other words, reduce $(w_1 + U, ..., w_n + U)$ to a basis $(w_1 + U, ..., w_m + U)$ of V/U and let $W = \text{span}(w_1, ..., w_m)$. OR. Let $(v_1 + U, ..., v_m + U)$ be a basis of V/U and define $\tilde{T} \in \mathcal{L}(V/U, V)$ by $\tilde{T}(v_k + U) = v_k$. Note that $\pi \circ \tilde{T} = I$. By (3.B.20), \tilde{T} is inje. And (v_1, \dots, v_m) is linely inde. Let $W = \operatorname{range} \tilde{T} = \operatorname{span}(v_1, \dots, v_m)$. Then $\tilde{T} \in \mathcal{L}(V/U, W)$ is an iso. Thus dim $W = \dim V/U$. And $\forall v \in V, \exists ! a_i \in F, v + U = a_1 v_1 + \dots + a_m v_m + U$ $\Rightarrow v - (a_1v_1 + \dots + a_mv_m) \in U \Rightarrow \exists ! w \in W, u \in U, v = w + u.$

ENDED

3.F 4 5 6 7 8 9 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 | 4E: 5 6 8 17 23 24 25

20, 21 Suppose U and W are subsets of V. Prove that $U \subseteq W \iff W^0 \subseteq U^0$.

SOLUTION:

- (a) Suppose $U \subseteq W$. Then $\forall \varphi \in W^0, u \in U \subseteq W, \varphi(w) = 0 \Rightarrow \varphi \in U^0$. Thus $W^0 \subseteq U^0$.
- (b) Suppose $W^0 \subseteq U^0$. Then $\varphi \in W^0 \Rightarrow \varphi \in U^0$. Hence $\text{null } \varphi \supseteq W \Rightarrow \text{null } \varphi \supseteq U$. Thus $W \supseteq U$.

OR. For a subsp U of V, let $A_U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = U$, by Problem (25).

Suppose $W^0 \subseteq U^0$. Then $\forall \varphi \in W^0, v \in A_U, \varphi(v) = 0 \Rightarrow v \in A_W$. Thus $A_U \subseteq A_W$.

Corollary: $W^0 = U^0 \iff U = W$.

22 Suppose U and W are subsps of V. Prove that $(U + W)^0 = U^0 \cap W^0$. **SOLUTION:** (a) $U \subseteq U + W \ W \subseteq U + W$ $\Rightarrow (U + W)^0 \subseteq U^0 \ (U + W)^0 \subseteq W^0$ $\Rightarrow (U + W)^0 \subseteq U^0 \cap W^0.$ Or. Suppose $\varphi \in (U+W)^0$. Then $\forall u \in U, w \in W, \varphi(u) = \varphi(w) = 0 \Rightarrow \varphi \in U^0 \cap W^0$. (b) Suppose $\varphi \in U^0 \cap W^0 \subseteq V'$. Then $\forall u \in U, w \in W, \varphi(u+w) = 0 \Rightarrow \varphi \in (U+W)^0$. **23** Suppose U and W are subsets of V. Prove that $(U \cap W)^0 = U^0 + W^0$. **SOLUTION:** $\begin{array}{c} U \cap W \subseteq U \\ U \cap W \subseteq W \end{array} \right\} \Rightarrow \begin{array}{c} (U \cap W)^0 \supseteq U^0 \\ (U \cap W)^0 \supseteq W^0 \end{array} \right\} \Rightarrow (U \cap W)^0 \supseteq U^0 + W^0 \ \big[\supseteq U^0 \cap W^0 = (U + W)^0. \big]$ Or. Suppose $\varphi = \psi + \beta \in U^0 + W^0$. Then $\forall v \in U \cap W$, $\varphi(v) = (\psi + \beta)(v) = 0 \Rightarrow \varphi \in (U \cap W)^0$. (b) [*Only in Finite-dim; Req U, W are subsps*] Using Problem (22). $\dim(U^0 + W^0) = \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$ $= 2\dim V - \dim U - \dim W - (\dim V - \dim(U+W)) = \dim V - \dim(U\cap W).$ Or. Suppose $\varphi \in (U \cap W)^0$. Let X, Y be such that $V = U \oplus X = W \oplus Y$. Define $\psi \in U^0, \beta \in W^0$ by $\psi(u + x) = \frac{1}{2}\varphi(x), \beta(w + y) = \frac{1}{2}\varphi(y)$. $\forall v = u + x = w + y \in V, \varphi(v) = \varphi(x) = \varphi(y). \text{ Now } \varphi(v) = \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(y) = \psi(v) + \beta(v).$ Hence $\varphi \in U^0 + W^0$. Now $(U \cap W)^0 \subseteq U^0 + W^0$. • COROLLARY: (a) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsets of V. Then $(\bigcap_{\alpha_i \in \Gamma} V_{\alpha_i})^0 = \sum_{\alpha_i \in \Gamma} (V_{\alpha_i}^0)$. (b) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsps of V. Then $\Big(\sum_{\alpha_i \in \Gamma} V_{\alpha_i}\Big)^0 = \bigcap_{\alpha_i \in \Gamma} (V_{\alpha_i}^0)$. (c) Suppose $V=U\oplus W.$ Then $V'=U^0\oplus W^0.$ And $U_V^{'}=W^0,\ W_V^{'}=U^0.$ Where $U_V' = \{ \varphi \in V' : \varphi = \varphi \circ \iota \}$. And $\iota \in \mathcal{L}(V, U)$ is defined by $\iota(u_v + w_v) = u_v$. • (4E 3.F.23) Suppose $\varphi_1, \ldots, \varphi_m \in V'$. Prove that the following sets are the same. (a) span($\varphi_1, \dots, \varphi_m$) (b) $((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0 \stackrel{(c)}{=} \{ \varphi \in V' : (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \subseteq \operatorname{null} \varphi \}$ **SOLUTION:** By Problem (17), (c) holds. By Problem (26) [May req Finite-dim] and the COROLLARY in Problem (23), Or. Note that by Corollary in Problem (4E 6), for each φ_i , we have $\forall c \in \mathbb{F} \setminus \{0\}, \psi = c\varphi_i \in \operatorname{span}(\varphi_i) \iff \operatorname{null} \psi = \operatorname{null} \varphi_i \iff \psi \in (\operatorname{null} \psi)^0 = (\operatorname{null} \varphi_i)^0.$ And $0 \in \text{span}(\varphi_i)$, $0 \in (\text{null } \varphi_i)^0$. Hence $\text{span}(\varphi_i) = (\text{null } \varphi_i)^0$. Similarly.

OR. [Only in Finite-dim] Suppose $\varphi \in V'$. Note that dim(null φ)⁰ = dim range φ = dim span(φ).

And because $\forall c \in \mathbf{F}, v \in \text{null } \varphi, c\varphi(v) = 0 \Rightarrow \text{span}(\varphi) \subseteq (\text{null } \varphi)^0$. Similarly.

Then $\dim((\operatorname{null}\varphi_1) \cap \cdots \cap (\operatorname{null}\varphi_m)) = (\dim V) - m$.

COROLLARY: 30 Suppose *V* is finite-dim and $\varphi_1, \dots, \varphi_m$ is a linely inde list in *V'*.

31 Suppose V is finite-dim and $B_{V'} = (\varphi_1, ..., \varphi_n)$. Show that the correspond B_V exists. **SOLUTION:** Using (3.B.29). Let $\varphi_i(u_i) = 1$ and then $V = \text{null } \varphi_i \oplus \text{span}(u_i)$ for each φ_i . Suppose $a_1u_1 + \cdots + a_nu_n = 0$. Then $0 = \varphi_i(a_1u_1 + \cdots + a_nu_n) = a_i$ for each i. Thus $B_V = (\varphi_1, \dots, \varphi_n)$. And $\varphi_i(u_x) = \delta_{i,x}$. Or. For each $k \in \{1, ..., n\}$, define $\Gamma_k = \{1, ..., k-1, k+1, ..., n\}$ and $U_k = \bigcap_{j \in \Gamma_k} \operatorname{null} \varphi_j$. By Problem (30) OR (4E 2.C.16), dim $U_k = 1$. Thus $\exists u_k \in V, U_k = \operatorname{span}(u_k) \neq 0$. \mathbb{X} By Problem (30), (null φ_1) $\cap \cdots \cap$ (null φ_n) = $\{0\} = U \cap \text{null } \varphi_k$. Then if $\varphi_k(u_k) = 0 \Rightarrow u_k \in \text{null } \varphi_k \text{ while } u_k \in U \Rightarrow u_k \in \{0\}, \text{ contradicts.}$ Thus $\varphi_k(u_k) \neq 0$. Let $v_k = (\varphi_k(u_k))^{-1}u_k \Rightarrow \varphi_k(v_k) = 1$. Now for $j \neq k$, $u_k \in \text{null } \varphi_j \Rightarrow \varphi_j(v_k) = 0$. Similarly, suppose $a_1v_1 + \cdots + a_nv_n = 0 \Rightarrow a_1 = \cdots = a_n = 0$. $B_V = (v_1, \dots, v_n)$. And $\varphi_i(v_k) = \delta_{i,k}$. **25** Suppose U is a subsp of V. Explain why $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}$. **SOLUTION**: Note that $U = \{v \in V : v \in U\}$ is a subsp of V; And $v \in U \iff \varphi(v) = 0, \forall \varphi \in U^0$. COROLLARY: $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. **COMMENT:** $\{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = ((\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) \cap \cdots), \text{ where } \varphi_k \in U^0,$ always remains a subsp, whether the subset *U* is a subsp or not. **26** Suppose Ω is a subsp of V'. Prove that $\Omega = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. **SOLUTION:** Suppose $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}$, which is the set of vecs that each $\varphi \in \Omega$ sends to zero in common. Then $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. $X U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. Immediately by the Corollary in Problem (20,21), we may conclude that $\Omega = U^0$. Or. $\lceil Req \Omega \text{ finite-dim} \rceil$ Let $(\varphi_1, ..., \varphi_m)$ be a basis of Ω . Then by def, $U \subseteq (\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m)$. $\forall \varphi \in \Omega, \exists ! a_i \in \mathbb{F}, \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m \Rightarrow \forall v \in (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m), \varphi(v) = 0 \Rightarrow v \in U.$ Hence $(\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = U$. $\mathbb{X} \operatorname{span}(\varphi_1, \dots, \varphi_m) = \Omega$. By Problem (23), we are done. **Corollary:** For every subsp Ω of V', \exists ! subsp U of V such that $\Omega = U^0$. **COMMENT**: [Only in Finite-dim] Using Problem (31) and the COROLLARY(c) in Problem (22, 23). Let $B_{\Omega} = (\varphi_1, ..., \varphi_m), B_{V'} = (\varphi_1, ..., \varphi_m, ..., \varphi_n), B_{V} = (v_1, ..., v_m, ..., v_n).$ $V' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \stackrel{\text{(I)}}{=\!\!\!=} \operatorname{span}(v_{m+1}, \dots, v_n)^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0.$ $\Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m) \xrightarrow{\text{(II)}} \operatorname{span}(v_{m+1}, \dots, v_n)^0 = U^0; \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \xrightarrow{\text{(III)}} \operatorname{span}(v_1, \dots, v_m)^0.$ $\iff U = \operatorname{span} \big(v_{m+1}, \dots, v_n \big) = \big(\operatorname{null} \varphi_1 \big) \cap \dots \cap \big(\operatorname{null} \varphi_m \big). \ \big[\ \textit{Another proof of } [\textbf{3.106}] \ \text{Or. Problem (24)} \ \big]$ (I) Using the COROLLARY(c), immediately. (II) Notice that each null $\varphi_k = \operatorname{span}(v_1, \dots, v_{k-1}, v_{k+1}, \dots, v_n) = U_k$; dim $U_k = \dim V - 1$. By (4E 2.C.16), $U = (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = \bigcap_{k=1}^m U_k = \operatorname{span}(v_{m+1}, \dots, v_n).$ Hence span $(v_{m+1}, \dots, v_n)^0 = U^0 = \Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m)$. (III) Notice that $V' = \Omega \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) = U^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0$. And that span($\varphi_{m+1}, \dots, \varphi_n$) \subseteq span(v_1, \dots, v_m)⁰. By (1.C TIPS), span($\varphi_{m+1}, \dots, \varphi_n$) = span(v_1, \dots, v_m). OR. Similar to (II), let $\Omega = \text{span}(\varphi_{m+1}, ..., \varphi_n)$, immediately.

```
• Suppose T \in \mathcal{L}(V, W), \varphi_k \in V', \psi_k \in W'.
28 Prove that null T' = \operatorname{span}(\psi_1, \dots, \psi_m) \iff \operatorname{range} T = (\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m).
29 Prove that range T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m).
SOLUTION: Using [3.107], [3.109], Problem (23) and the COROLLARY in Problem (20, 21).
    (28) (range T)^0 = \operatorname{null} T' = \operatorname{span}(\psi_1, \dots, \psi_m) = ((\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m))^0.
    (29) (\operatorname{null} T)^0 = \operatorname{range} T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) = ((\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m))^0.
                                                                                                                                                                                        COROLLARY: Using the COMMENT in Problem (26).
    \operatorname{null} T = \operatorname{span}(v_1, \dots, v_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_{m+1}) \cap \dots \cap (\operatorname{null} \varphi_n) \iff \operatorname{range} T' = \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n).
           -Where B_V = (v_1, \dots, v_m, \dots, v_n) \iff B_{V'} = (\varphi_1, \dots, \varphi_m, \dots, \varphi_n).
    \operatorname{range} T = \operatorname{span}(w_1, \dots, w_m) \Longleftrightarrow \operatorname{range} T = (\operatorname{null} \psi_{m+1}) \cap \dots \cap (\operatorname{null} \psi_n) \Longleftrightarrow \operatorname{null} T' = \operatorname{span}(\psi_{m+1}, \dots, \psi_n).
            Where B_W = (w_1, \dots, w_m, \dots, w_n) \iff B_{W_i} = (\psi_1, \dots, \psi_m, \dots, \psi_n).
9 Let B_V = (v_1, ..., v_n), B_{V'} = (\varphi_1, ..., \varphi_n). Then \forall \psi \in V', \psi = \psi(v_1)\varphi_1 + ... + \psi(v_n)\varphi_n.
    COROLLARY: For other B'_V = (u_1, \dots, u_n), B'_{V'} = (\rho_1, \dots, \rho_n), \forall \psi \in V', \psi = \psi(u_1)\rho_1 + \dots + \psi(u_n)\rho_n.
SOLUTION:
    \psi(v) = \psi\left(\sum_{i=1}^{n} a_{i} v_{i}\right) = \sum_{i=1}^{n} a_{i} \psi(v_{i}) = \sum_{i=1}^{n} \psi(v_{i}) \varphi_{i}(v) = \left[\psi(v_{1}) \varphi_{1} + \dots + \psi(v_{n}) \varphi_{n}\right](v).
    Or. \left[\psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n\right]\left(\sum_{i=1}^n a_i v_i\right) = \psi(v_1)\varphi_1\left(\sum_{i=1}^n a_i v_i\right) + \dots + \psi(v_n)\varphi_n\left(\sum_{i=1}^n a_i v_i\right).
13 Define T: \mathbb{R}^3 \to \mathbb{R}^2 by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z).
      Let (\varphi_1, \varphi_2), (\psi_1, \psi_2, \psi_3) denote the dual basis of the std basis of \mathbb{R}^2 and \mathbb{R}^3.
       (a) Describe the linear functionals T'(\varphi_1), T'(\varphi_2) \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})
             For any (x, y, z) \in \mathbb{R}^3, (T'(\varphi_1))(x, y, z) = 4x + 5y + 6z, (T'(\varphi_2))(x, y, z) = 7x + 8y + 9z.
       (b) Write T'(\varphi_1) and T'(\varphi_2) as linear combinations of \psi_1, \psi_2, \psi_3.
              T'(\varphi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, \ T'(\varphi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3.
       (c) What is null T'? What is range T'?
             T(x,y,z) = 0 \Longleftrightarrow \begin{cases} 4x + 5y + 6z = 0 \\ 7x + 8y + 9z = 0 \end{cases} \Longleftrightarrow \begin{cases} x + y + z = 0 \\ y = 2z = 0 \end{cases} \Longleftrightarrow (x,y,z) \in \operatorname{span}(e_1 - 2e_2 + e_3).
             Where (e_1, e_2, e_3) is std basis of \mathbb{R}^3.
             Let (e_1 - 2e_2 + e_3, -2e_2, e_3) be a basis, with the correspd dual basis (\varepsilon_1, \varepsilon_2, \varepsilon_3).
             Thus span(e_1 - 2e_2 + e_3) = \text{null } T \Rightarrow \text{span}(e_1 - 2e_2 + e_3)^0 = \text{span}(\varepsilon_2, \varepsilon_3) = \text{range } T'.
             Note that \varepsilon_k = \varepsilon_k(e_1)\psi_1 + \varepsilon_k(e_2)\psi_2 + \varepsilon_k(e_3)\psi_3.
             And \begin{vmatrix} \varepsilon_{2}(e_{2}) = -\frac{1}{2}, \varepsilon_{2}(e_{1}) = \varepsilon_{2}(e_{1} - 2e_{2} + e_{3}) + \varepsilon_{2}(2e_{2}) - \varepsilon_{2}(e_{3}) = 1, \\ \varepsilon_{3}(e_{2}) = 0, \varepsilon_{3}(e_{3}) = \varepsilon_{3}(e_{1} - 2e_{2} + e_{3}) + \varepsilon_{3}(2e_{2}) - \varepsilon_{3}(e_{3}) = -1. \end{vmatrix}
             Hence \varepsilon_2 = \psi_1 - \frac{1}{2}\psi_2, \varepsilon_3 = -\psi_1 + \psi_3. Now range T' = \text{span}(\psi_1 - \frac{1}{2}\psi_2, -\psi_1 + \psi_3).
             OR. range T' = \text{span}(T'(\varphi_1), T'(\varphi_2)) = \text{span}(4\psi_1 + 5\psi_2 + 6\psi_3, 7\psi_1 + 8\psi_2 + 9\psi_3).
             Suppose T'(x\varphi_1 + y\varphi_2) = (4x + 7y)\varphi_1 + (5x + 8y)\varphi_2 + (6x + 9y)\varphi_3 = 0.
             Then x + y = 4x + 7y = x = y = 0. Hence null T' = \{0\}.
             OR. null T = \operatorname{span}(e_1 - 2e_2 + e_3) \Rightarrow V = \operatorname{span}(-2e_2, e_3) \oplus \operatorname{null} T.
             \Rightarrow range T = \{Tx : x \in \text{span}(-2e_2, e_3)\} = \text{span}(T(-2e_2), T(e_3))
             = \operatorname{span}(-10f_1 - 16f_2, 6f_1 + 9f_2) = \operatorname{span}(f_1, f_2) = \mathbb{R}^2. Now null T' = (\operatorname{range} T)^0 = \{0\}.
```

24 Suppose V is finite-dim and U is a subsp of V . Prove, using the pattern of $[3.104]$, that $\dim U + \dim U^0 = \dim V$.	
Solution: By Problem (31) and the Comment in Problem (26), $B_U = (v_1, \dots, v_m) \iff B_{U^0} = (\varphi_{m+1}, \dots, \varphi_n)$. 🗆
37 Suppose U is a subsp of V and π is the quotient map. Thus $\pi' \in \mathcal{L}((V/U)', V')$. (a) Show that π' is inje: Because π is surj. Use [3.108]. (b) Show that range $\pi' = U^0$: By [3.109](b), range $\pi' = (\text{null } \pi)^0 = U^0$. (c) Conclude that π' is an iso from $(V/U)'$ onto U^0 : Immediately. SOLUTION: OR Using (3.E.18), also see (3.E.20).	
(a) $\pi'(\varphi) = 0 \iff \forall v \in V (\forall v + U \in V), \varphi(\pi(v)) = \varphi(v + U) = 0 \iff \varphi = 0.$ (b) $\psi \in \text{range } \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \text{null } \psi \supseteq U \iff \psi \in U^0. \text{ Hence range } \pi' = 0$	U^0 . \square
• Suppose U is a subsp of V . Prove that $(V/U)'$ and U^0 are iso. [Another proof of [3.1] Solution:	.06]]
Define $\xi: U^0 \to (V/U)'$ by $\xi(\varphi) = \tilde{\varphi}$, where $\tilde{\varphi} \in (V/U)'$ is defined by $\tilde{\varphi}(v+U) = \varphi(v)$.	
We show that ξ is inje and surj. Inje: $\xi(\varphi) = 0 = \widetilde{\varphi} \Rightarrow \forall v \in V \ (\forall v + U \in V/U \), \widetilde{\varphi}(v + U) = \varphi(v) = 0 \Rightarrow \varphi = 0.$ Surj: $\Phi \in (V/U)' \Rightarrow \forall u \in U, \Phi(u + U) = \Phi(0 + U) = 0 \Rightarrow U \subseteq \text{null} \ (\Phi \circ \pi) \Rightarrow \xi(\Phi \circ \pi) = \Phi.$	
Or. Define $\nu:(V/U)'\to U^0$ by $\nu(\Phi)=\Phi\circ\pi.$ Now $\nu\circ\xi=I_{U^0},\ \xi\circ\nu=I_{(V/U)'}\Rightarrow\xi=\nu^{-1}.$	
4 Suppose U is a subsp of V and $U \neq V$. Prove that $\exists \varphi \in V' \setminus \{0\}, \varphi(u) = 0$ for all $u \in V'$	Ξ U.
SOLUTION: $\Leftrightarrow U_V^0 \neq \{0\}$. Let X be such that $V = U \oplus X$. Then $X \neq \{0\}$. Suppose $s \in X$ and $x \neq 0$. Let Y be such that $X = \operatorname{span}(s) \oplus Y$. Now $V = U \oplus (\operatorname{span}(s) \oplus Y)$. Define $\varphi \in V'$ by $\varphi(u + \lambda s + y) = \lambda$. Hence $\varphi \neq 0$ and $\varphi(u) = 0$ for all $u \in U$.	
Or. [Req V Finite-dim] By [3.106], dim $U^0 = \dim V - \dim U > 0$. Then $U^0 \neq \{0\}$. Or. Let $B_V = (\underbrace{u_1, \dots, u_m}_{B_U}, v_1, \dots, v_n)$ with $n \geqslant 1$. Let $B_V = (\psi_1, \dots, \psi_m, \varphi_1, \dots, \varphi_n)$. Let $\varphi = \varphi_i$	
OR. Define $\varphi \in V'$ by $\varphi(u_1) = \cdots = \varphi(u_m) = 0$ and $\varphi(v_1) = \cdots = \varphi(v_n) = 1$. COMMENT: Another proof of [3.108]: T is surj $\iff T'$ is inje. (a) Suppose T' is inje. Note that $T'(\psi) = 0 \Rightarrow \psi = 0$. Then $\nexists \psi \in W' \setminus \{0\}, (T'(\psi))(v) = \psi(Tv) = 0$ for all $w \in \operatorname{range} T \ (\forall v \in V)$. Thus if we assume that $\operatorname{range} T \neq W$ then contradicts. Hence $\operatorname{range} T = W$. (b) Suppose T is surj. Then $(\operatorname{range} T)^0 = W_W^0 = \{0\} = \operatorname{null} T'$.	
• Suppose V is a vecsp and U is a subsp of V . 17 $U^0 = \{ \varphi \in V' : U \subseteq null \varphi \}$. Noticing $\varphi \in V'$, $U \subseteq null \varphi \iff \forall u \in U, \varphi(u) = $ 18 $U^0 = V' \iff \forall \varphi \in V', U \subseteq null \varphi \iff U = \{0\}$. [Which means $\{0\}_V^0 = V'$.]	0.

19 $U_V^0 = \{0\} = V_V^0 \iff U = V$. By the inverse and contrapositive of Problem (4). Or. By [3.106].

• Suppose $V = U \oplus W$. Define $\iota : V \to U$ by $\iota(u+w) = u$. Thus $\iota' \in \mathcal{L}(U',V')$. (a) Show that $\operatorname{null} \iota' = U_U^0 = \{0\}$: $\operatorname{null} \iota' = (\operatorname{range} \iota)_U^0 = U_U^0 = \{0\}$. (b) Prove that $\operatorname{range} \iota' = W_V^0$: $\operatorname{range} \iota' = (\operatorname{null} \iota)_V^0 = W_V^0$. (c) Prove that $\widetilde{\iota}'$ is an iso from $U'/\{0\}$ onto W^0 : By (a), (b) and [3.91](d). Solution: (a) $\iota'(\psi) = \psi \circ \iota = 0 \iff U \subseteq \operatorname{null} \psi$. (b) Note that $W = \operatorname{null}(\iota) \subseteq \operatorname{null}(\psi \circ \iota)$. Then $\psi \circ \iota \in W^0 \Rightarrow \operatorname{range} \iota' \in W^0$.	
Suppose $\varphi \in W^0$. Because null $\iota = W \subseteq \text{null } \varphi$. By $[3.B \text{ Tips } (3)]$, $\varphi = \varphi \circ \iota = \iota'(\varphi)$.	
36 Suppose U is a subsp of V . Define $i: U \to V$ by $i(u) = u$. Thus $i' \in \mathcal{L}(V', U')$. (a) Show that $\operatorname{null} i' = U^0$: $\operatorname{null} i' = (\operatorname{range} i)^0 = U^0 \Leftarrow \operatorname{range} i = U$. (b) Prove that $\operatorname{range} i' = U'$: $\operatorname{range} i' = (\operatorname{null} i)^0_U = \{0\}^0_U = U'$. (c) Prove that $\widetilde{i'}$ is an iso from V'/U^0 onto U' : By (a), (b) and [3.91](d).	
Solution: (a) $\forall \varphi \in V', i'(\varphi) = \varphi \circ i = \varphi _U$. Thus $i'(\varphi) = 0 \iff \forall u \in U, \varphi(u) = 0 \iff \varphi \in U^0$. (b) Suppose $\psi \in U'$. By (3.A.11), $\exists \varphi \in V', \varphi _U = \psi$. Then $i'(\varphi) = \psi$.	
• Suppose $T \in \mathcal{L}(V,W)$. Prove that range $T' = (\operatorname{null} T)^0$. $\left[\operatorname{Another proof of} \left[3.109 \right] (\mathbf{b}) \right]$ Solution: Suppose $\Phi \in (\operatorname{null} T)^0$. Because by $(3.B.12)$, $T _U : U \to \operatorname{range} T$ is an iso; $V = U \oplus \operatorname{null} T$. And $\forall v \in V, \exists ! u_v \in U, w_v \in \operatorname{null} T, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V,U)$ by $\iota(v) = u_v$. Let $\psi = \Phi \circ \left(T _{\operatorname{range} T}^{-1}\right)$. Then $T'(\psi) = \psi \circ T = \Phi \circ \left(T^{-1} _{\operatorname{range} T} \circ T _V\right)$. Where $T^{-1} _{\operatorname{range} T} : \operatorname{range} T \to U$; $T : V \to \operatorname{range} T$. Note that $T^{-1} _{\operatorname{range} T} \circ T _V = \iota$. By $\left[3.B \operatorname{Tips} (3) \right]$, $\Phi = \Phi \circ \iota$. Thus $T'(\psi) = \psi \circ T = \Phi \circ \iota = \Phi$.	
• Suppose $T \in \mathcal{L}(V, W)$. Using [3.108], [3.110]. Now T is $inv \iff \begin{cases} \text{null } T = \{0\} \iff (\text{null } T)^0 = V' = \text{range } T' \\ \text{range } T = W \iff (\text{range } T)^0 = \{0\} = \text{null } T' \end{cases} \iff T'$ is inv .	
15 Suppose $T \in \mathcal{L}(V, W)$. Prove that $T' = 0 \iff T = 0$. Solution: Suppose $T = 0$. Then $\forall \varphi \in W', T'(\varphi) = \varphi \circ T = 0$. Hence $T' = 0$. Suppose $T' = 0$. Then null $T' = W' = (\operatorname{range} T)^0$, by $[3.107](a)$. [W can be infinite-dim] By Problem (25), range $T = \{w \in W : \varphi(w) = 0, \forall \varphi \in (\operatorname{range} T)^0\} = \{w \in W : \varphi(w) = 0, \forall \varphi \in W'\}$. Now we prove that if $\forall \varphi \in W', \varphi(w) = 0$, then $w = 0$. So that range $T = \{0\}$ and we are done. Assume that $w \neq 0$. Then let U be such that $W = U \oplus \operatorname{span}(w)$. Define $\psi \in W'$ by $\psi(u + \lambda w) = \lambda$. So that $\psi(w) = 1 \neq 0$. Or. [Only if W is finite-dim] By $[3.106]$, dim range $T = \dim W - \dim(\operatorname{range} T)^0 = 0$.]
12 Notice that $I_{V'}: V' \to V'$. Now $\forall \varphi \in V', I_{V'}(\varphi) = \varphi = \varphi \circ I_{V} = I_{V'}(\varphi)$. Thus $I_{V'} = I_{V'}$.	

```
16 Suppose V, W are finite-dim. Define \Gamma by \Gamma(T) = T' for any T \in \mathcal{L}(V, W).
      Prove that \Gamma is an iso of \mathcal{L}(V, W) onto \mathcal{L}(W', V').
SOLUTION: By [3.101], \Gamma is linear.
    Suppose \Gamma(T) = T' = 0. By Problem (15), T = 0. Thus \Gamma is inje.
    Because V, W are finite-dim. dim \mathcal{L}(V,W) = \dim \mathcal{L}(W',V'). Now Γ inje \Rightarrow inv.
                                                                                                                                                                             COMMENT: Let X = \{T \in \mathcal{L}(V, W) : \text{range } T \text{ is finite-dim} \}.
                   Let Y = \{ \mathcal{T} \in \mathcal{L}(W', V') : \text{range } \mathcal{T} \text{ is finite-dim} \}.
                   Then \Gamma|_X is an iso of X onto Y, even if V and W are infinite-dim.
    The inje of \Gamma|_X is equiv to the inje of \Gamma, as shown before.
    Now we show that \Gamma|_X is surj without the cond that V or W is finite-dim.
   Suppose \mathcal{T} \in \mathcal{Y}. Let B_{\text{range }\mathcal{T}} = (\varphi_1, \dots, \varphi_m), with the correspond (v_1, \dots, v_m). Let \varphi_k = \mathcal{T}(\psi_k).
   Let \mathcal{K} be such that W' = \mathcal{K} \oplus \text{null } \mathcal{T}. Let B_{\mathcal{K}} = (\psi_1, \dots, \psi_m), with the correspond (w_1, \dots, w_m).
   Define T \in \mathcal{L}(V, W) by Tv_k = w_k, Tu = 0; k \in \{1, ..., m\}, u \in U.
    \forall \psi \in \operatorname{null} \mathcal{T}, \left[ T'(\psi) \right](v) = \psi(Tv) = \psi(a_1 w_1 + \dots + a_n w_n) = 0 = \left[ \mathcal{T}(\psi) \right](v).
    \forall k \in \{1, \dots, m\}, \lceil T'(\psi_k) \rceil(v) = \psi_k(Tv) = \psi_k(a_1w_1 + \dots + a_mw_m) = a_k = \varphi_k(v) = \lceil \mathcal{T}(\psi) \rceil(v).
                                                                                                                                                                             COMMENT: This is another proof of [3.109(a)]: dim range T = \dim \operatorname{range} T'.
• (4E 3.F.6) Suppose \varphi, \beta \in V'. Prove that \text{null } \varphi \subseteq \text{null } \beta \Longleftrightarrow \beta = c\varphi, \exists c \in \mathbf{F}.
  COROLLARY: null \varphi = null \beta \iff \beta = c\varphi, \exists c \in \mathbb{F} \setminus \{0\}.
SOLUTION:
    Using (3.B.29, 30).
    (a) Suppose \operatorname{null} \varphi \subseteq \operatorname{null} \beta. Suppose u \notin \operatorname{null} \beta, then u \notin \operatorname{null} \varphi.
          Now V = \text{null } \beta \oplus \text{span}(u) = \text{null } \varphi \oplus \text{span}(u). By (1.C Tips), \text{null } \beta = \text{null } \varphi. Let c = \frac{\beta(u)}{\varphi(u)}.
          OR. We discuss in two cases. If \operatorname{null} \varphi = \operatorname{null} \beta, then we are done.
          Otherwise, \operatorname{null} \beta \neq \operatorname{null} \varphi. Then \exists u' \in \operatorname{null} \beta \setminus \operatorname{null} \varphi.
          Now V = \operatorname{null} \varphi \oplus \operatorname{span}(u') = \operatorname{null} \varphi \oplus \operatorname{span}(u). \forall v \in V, v = w + au = w' + bu', \exists ! w, w' \in \operatorname{null} \varphi.
          Thus \beta(v) = a\beta(u), \varphi(v) = b\varphi(u'). Let c = \frac{a\beta(u)}{b\varphi(u')}. We are done.
          Notice that by (b) below, we have null \beta \subseteq \text{null } \varphi, u = u'. Thus contradicts the assumption.
    (b) Suppose \beta = c\varphi for some c \in \mathbb{F}. If c = 0, then null \beta = V \supseteq \text{null } \varphi, we are done.
          Otherwise,  \begin{cases} \forall v \in \operatorname{null} \varphi, \varphi(v) = 0 = \beta(v) \Rightarrow \operatorname{null} \varphi \subseteq \operatorname{null} \beta \\ \forall v \in \operatorname{null} \beta, \beta(v) = 0 = \varphi(v) \Rightarrow \operatorname{null} \beta \subseteq \operatorname{null} \varphi \end{cases} \Rightarrow \operatorname{null} \varphi = \operatorname{null} \beta. 
                                                                                                                                                                             OR. By (3.B.24), null \varphi \subseteq \text{null } \beta \iff \exists E \in \mathcal{L}(\mathbf{F}), \beta = E \circ \varphi. ( if E is inv, then null \varphi = \text{null } \beta)
    Now we show that [P] \exists E \in \mathcal{L}(F), \beta = E \circ \varphi \iff \exists c \in F, \beta = c\varphi. [Q].
   [P] \Rightarrow [Q]: Let c = E(1). Then \forall v \in V, \beta(v) = E(\varphi(v)) = \varphi(v)E(1) = c\varphi(v). (E(1) \neq 0)
    [Q] \Rightarrow [P]: Define E \in \mathcal{L}(\mathbf{F}) by E(x) = cx. Then \forall v \in V, \beta(v) = c\varphi(v) = E(\varphi(v)). (c \neq 0)
                                                                                                                                                                             5 Prove that (V_1 \times \cdots \times V_m)' and V'_1 \times \cdots \times V'_m are iso.
                                                                                                                              Using notations in (3.E.2).
  Define \varphi: (V_1 \times \cdots \times V_m)' \to V'_1 \times \cdots \times V'_m
          by \varphi(T) = (T \circ R_1, ..., T \circ R_m) = (R'_1(T), ..., R'_m(T)).
  Define \psi: {V'}_1 \times \cdots \times {V'}_m \to (V_1 \times \cdots \times V_m)'
          by \psi(T_1, ..., T_m) = T_1 S_1 + \cdots + T_m S_m = S'_1(T_1) + \cdots + S'_m(T_m)
```

SOLUTION: $[P] \Rightarrow [Q]$: Notice that φ is inje and by (3.B.9). Or. Suppose $\theta \in \text{span}(\varphi(v_1), \dots, \varphi(v_m))$. Let $\theta = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m)$. Then $\vartheta(1) = 0 = a_1 v_1 + \dots + a_m v_m \Rightarrow a_1 = \dots = a_m = 0.$ $[Q] \Rightarrow [P]$: Suppose $v \in \text{span}(v_1, \dots, v_m)$. Let $v = 0 = a_1v_1 + \dots + a_mv_m$. Then $\varphi(v) = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m) \Rightarrow a_1 = \dots = a_m = 0.$ **32** Let $B_{\alpha} = (\alpha_1, ..., \alpha_m), B_{\alpha}' = (\varphi_1, ..., \varphi_m), B_{\beta} = (v_1, ..., v_m), B_{\beta}' = (\psi_1, ..., \psi_m).$ Prove that $\forall T \in \mathcal{L}(V)$, T is inv \iff the rows of $A = \mathcal{M}(T, B_{\alpha}, B_{\beta})$ form a basis of $\mathbf{F}^{1,n}$. **SOLUTION**: Note that *T* is invertible \iff *T'* is inv. And $A^t = \mathcal{M}(T', B_{\beta}', B_{\alpha}')$. (a) Suppose *T* is inv, so is *T'*. Because $(T'(\varphi_1), ..., T'(\varphi_m))$ is linely inde. Notice that $T'(\varphi_i) = A_{1,i}^t \psi_1 + \dots + A_{m,i}^t \psi_m$. By the (Δ) part in (4E 3.C.17), the cols of A^t , namely the rows of A, are linely inde. (b) Suppose the rows of A are linely inde, so are the cols of A^t . NOTICE that A^t has dim V' cols. Then $B_{\text{range }T'} = B_{V'} = \left(T'(\varphi_1), \dots, T'(\varphi_m)\right)$. Thus T' is surj. Hence T' is inv, so is T. **33** Suppose $A \in \mathbb{F}^{m,n}$. Define $T: A \to A^t$. Prove that T is an iso of $\mathbb{F}^{m,n}$ onto $\mathbb{F}^{n,m}$ **SOLUTION**: By [3.111], T is linear. Note that $(A^t)^t = A$, $T \circ T = I$. • Define $T \in \mathcal{L}(\mathbf{F}^{1,n})$ by Tx = xA, where $A \in \mathbf{F}^{n,n}$, for all $x \in \mathbf{F}^{1,n}$. Let $B_e = (e_1, \dots, e_n)$ be the std basis of $\mathbf{F}^{1,n}$, with the dual basis $B_{\varphi} = (\varphi_1, \dots, \varphi_n)$. What is $\mathcal{M}(T)$? Because $Te_k = e_k A = \sum_{j=1}^n A_{k,j} e_j = \sum_{j=1}^n A_{j,k}^t e_j$. Now $\mathcal{M}(T) = A^t$. Note that $A = \mathcal{M}(A, B_e) \in \mathbf{F}^{n,n}$, $\mathcal{M}(Te_k) = \mathcal{M}(Te_k, B_e) \in \mathbf{F}^{n,1}$, $\mathcal{M}(e_k) = \mathcal{M}(e_k, B_e) \in \mathbf{F}^{n,1}, \ \mathcal{M}(e_k A) = \mathcal{M}(e_k A, B_e) \in \mathbf{F}^{n,1}.$ Now $\mathcal{M}(Te_k) = \mathcal{M}(T)_{\cdot,k} = \mathcal{M}(e_k A) = A^t_{\cdot,k} \Longrightarrow \mathcal{M}(T)\mathcal{M}(e_k) = \mathcal{M}(T)_{\cdot,k} = \mathcal{M}(e_k)\mathcal{M}(A).$ Then $\mathcal{M}(e_k)\mathcal{M}(A)$ does not make sense. And now??? FIXME: BASIS NOT AGREED • (4E 3.F.8) Suppose $B_V = (v_1, ..., v_n), B_{V'} = (\varphi_1, ..., \varphi_n).$ $\begin{array}{l} \textit{Define } \Gamma: V \to \mathbf{F}^n \; \textit{by } \Gamma(v) = (\varphi_1(v), \ldots, \varphi_n(v)). \\ \textit{Define } \Lambda: \mathbf{F}^n \to V \; \textit{by } \Lambda(a_1, \ldots, a_n) = a_1 v_1 + \cdots + a_n v_n. \end{array} \right\} \Rightarrow \Lambda = \Gamma^{-1}.$ • (4E 3.F.5) Suppose $T \in \mathcal{L}(V, W)$. $B_{\text{range }T} = (w_1, \dots, w_m)$. Hence $\forall v \in V$, $Tv = \varphi_1(v)w_1 + \cdots + \varphi_m(v)w_m$, $\exists ! \varphi_1(v), \ldots, \varphi_m(v)$, thus defining $\varphi_i: V \to \mathbf{F}$ for each $i \in \{1, ..., m\}$. Show that each $\varphi_i \in V'$. **SOLUTION:** $\forall u, v \in V, \lambda \in \mathbf{F}, T(u + \lambda v) = \sum_{i=1}^{m} \varphi_i(u + \lambda v) w_i$ $= Tu + \lambda Tv = \left(\sum_{i=1}^{m} \varphi_i(u)w_i\right) + \lambda \left(\sum_{i=1}^{m} \varphi_i(v)w_i\right) = \sum_{i=1}^{m} \left(\varphi_i(u) + \lambda \varphi_i(v)\right)w_i.$ OR. For each w_i , $\exists v_i \in V$, $Tv_i = w_i$, then $(v_1, ..., v_m)$ is linely inde. Now we have $Tv = a_1 Tv_1 + \dots + a_m Tv_m$, $\forall v \in V$, $\exists ! a_i \in F$. Let $B_{(\text{range } T)} = (\psi_1, \dots, \psi_m)$. Then $(T'(\psi_i))(v) = \psi_i \circ T(v) = a_i$. Where $T: V \to \text{range } T$; $T': (\text{range } T)' \to V'$. Thus for each $i \in \{1, ..., m\}$, $\varphi_i = \psi_i \circ T = T'(\psi_i) \in V'$.

• In (3.D.18), $\varphi: V \to \mathcal{L}(\mathbf{F}, V)$ is an iso. Now we prove that

 $[P](v_1,\ldots,v_m)$ is linely inde $\iff (\varphi(v_1),\ldots,\varphi(v_m))$ is linely inde. [Q]

6 Define $\Gamma: V' \to \mathbf{F}^m$ by $\Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m))$, where $v_1, \dots, v_m \in V$. (a) Show that span $(v_1, ..., v_m) = V \iff \Gamma$ is inje. (b) Show that $(v_1, ..., v_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (a) Notice that $\Gamma(\varphi) = 0 \iff \varphi(v_1) = \dots = \varphi(v_m) = 0 \iff \text{null } \varphi = \text{span}(v_1, \dots, v_m).$ If Γ is inje, then $\Gamma(\varphi) = 0 \iff V = \text{null } \varphi = \text{span}(v_1, \dots, v_m)$. If $V = \operatorname{span}(v_1, \dots, v_m)$, then $\Gamma(\varphi) = 0 \iff \operatorname{null} \varphi = \operatorname{span}(v_1, \dots, v_m)$, thus Γ is inje. (b) Suppose Γ is surj. Then let $\Gamma(\varphi_i) = e_i$ for each i, where $(e_1, ..., e_m)$ is the std basis of \mathbf{F}^m . Then by (3.A.4), $(\varphi_1, \dots, \varphi_m)$ is linely inde. Now $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow 0 = \varphi_i(a_1v_1 + \cdots + a_mv_m) = a_i$ for each i. Suppose $(v_1, ..., v_m)$ is linely inde. Let $U = \text{span}(\varphi_1, ..., \varphi_m)$, $B_{U'} = (\varphi_1, ..., \varphi_m)$. Thus $\forall (a_1, \dots, a_m) \in \mathbf{F}^m, \exists ! \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m$. Let W be such that $V = U \oplus W$. Now $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V, U)$ by $\iota(v) = u_v$. So that $\Gamma(\varphi \circ i -) = (a_1, \dots, a_m)$. OR. Let (e_1, \dots, e_m) be the std basis of \mathbf{F}^m and let (ψ_1, \dots, ψ_m) be the corresponding basis. Define $\Psi : \mathbf{F}^m \to (\mathbf{F}^m)'$ by $\Psi(e_k) = \psi_k$. Then Ψ is an iso. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $Te_k = v_k$. Now $T(x_1, \dots, x_m) = T(x_1e_1 + \dots + x_me_m) = x_1v_1 + \dots + x_mv_m$. $\forall \varphi \in V', k \in \{1, \dots, m\}, \lceil T'(\varphi) \rceil(e_k) = \varphi(Te_k) = \varphi(v_k) = \lceil \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m \rceil(e_k)$ Now $T'(\varphi) = \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m = \Psi(\varphi(v_1), \dots, \varphi(v_m)) = \Psi(\Gamma(\varphi))$. Hence $T' = \Psi \circ \Gamma$. By (3.B.3), (a) range $T = \operatorname{span}(v_1, \dots, v_m) = V \iff T' = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje. (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje $\iff T' = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj. • (4E 3.F.25) Define $\Gamma: V \to \mathbf{F}^m$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v))$, where $\varphi_1, \dots, \varphi_m \in V'$. (c) Show that span($\varphi_1, ..., \varphi_m$) = $V' \iff \Gamma$ is inje. (d) Show that $(\varphi_1, ..., \varphi_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (c) Notice that $\Gamma(v) = 0 \Longleftrightarrow \varphi_1(v) = \cdots = \varphi_m(v) = 0 \Longleftrightarrow v \in (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m).$ By Problem (4E 23) and (18), $\operatorname{span}(\varphi_1, \dots, \varphi_m) = V' \iff (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m) = \{0\}.$ And $\operatorname{null} \Gamma = (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)$. Hence Γ inje \iff $\operatorname{null} \Gamma = \{0\} \iff \operatorname{span}(\varphi_1, \dots, \varphi_m) = V'$. (d) Suppose $(\varphi_1, ..., \varphi_m)$ is linely inde. Then by Problem (31), $(v_1, ..., v_m)$ is linely inde. Thus $\forall (a_1, \dots, a_m) \in \mathbf{F}, \exists ! v = \sum_{i=1}^m a_i v_i \in V \Rightarrow \varphi_i(v) = a_i, \Gamma(v) = (a_1, \dots, a_m)$. Hence Γ is surj. Suppose Γ is surj. Let (e_1, \dots, e_m) be the std basis of \mathbf{F}^m . Suppose $v_i \in V$ such that $\Gamma(v_i) = (\varphi_1(v_i), \dots, \varphi_m(v_i)) = e_i$, for each i. Then $(v_1, ..., v_m)$ is linely inde. And $\varphi_i(v_k) = \delta_{i,k}$. Now $a_1 \varphi_1 + \dots + a_m \varphi_m = 0 \Rightarrow 0(v_i) = a_i$ for each i. Hence $(\varphi_1, \dots, \varphi_m)$ is linely inde. Or. Let $\operatorname{span}(v_1,\ldots,v_m)=U$. Then $B_{U'}=(\varphi_1|_U,\ldots,\varphi_m|_U)$. Hence $(\varphi_1,\ldots,\varphi_m)$ is linely inde. OR. Similar to Problem (6), we get (e_1, \dots, e_m) , (ψ_1, \dots, ψ_m) and the iso Ψ . $\forall (x_1,\ldots,x_m) \in \mathbf{F}^m, \Gamma'(\Psi(x_1,\ldots,x_m)) = \Gamma'(\Psi(x_1e_1+\cdots+x_me_m)) = (x_1\psi_1+\cdots+x_m\psi_m) \circ \Gamma.$ $\forall v \in V, \left[\Gamma'\big(\Psi\big(x_1,\ldots,x_m\big)\big)\right]\big(v\big) = \left[x_1\psi_1 + \cdots + x_m\psi_m\right]\big(\Gamma(v)\big) = \left[x_1\varphi_1 + \cdots + x_m\varphi_m\right]\big(v\big).$ Now $\Gamma'(\Psi(x_1,\ldots,x_m)) = x_1\varphi_1 + \cdots + x_m\varphi_m$. Define $\Phi: \mathbf{F}^m \to (\mathbf{F}^m)'$ by $\Phi = \Psi \circ \Gamma$. $\Phi(x_1, \dots, x_m) = x_1 \varphi_1 + \dots + x_m \varphi_m$. Thus by (4E 3.B.3), (c) the inje of Φ correspds to $(\varphi_1, \dots, \varphi_m)$ spanning V'; $\nabla \Phi = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje. (d) the surj of Φ corresponds to $(\varphi_1, \dots, \varphi_m)$ being linely inde; $\chi \Phi = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj.

35 Prove that $(\mathcal{P}(F))'$ and F^{∞} are iso.

SOLUTION:

Define
$$\theta \in \mathcal{L}((\mathcal{P}(\mathbf{F}))', \mathbf{F}^{\infty})$$
 by $\theta(\varphi) = (\varphi(1), \varphi(z), \dots, \varphi(z^n), \dots)$.

Inje:
$$\theta(\varphi) = 0 \Rightarrow \forall z^k$$
 in the basis $(1, z, \dots, z^n)$ of $\mathcal{P}_n(\mathbf{F})$ $(\forall n)$, $\varphi(z^k) = 0 \Rightarrow \varphi = 0$.

[Notice that
$$\forall p \in \mathcal{P}(\mathbf{R}), \exists ! a_i \in \mathbf{F}, m = \deg p, \ p = a_0 z + a_1 z + \dots + a_m z^m \in \mathcal{P}_m(\mathbf{F}).$$
]

Surj:
$$\forall (a_k)_{k=1}^{\infty} \in \mathbf{F}^{\infty}$$
, let ψ be such that $\forall k, \psi(z^k) = a_k$ [by [3.5]] and thus $\theta(\psi) = (a_k)_{k=1}^{\infty}$.

COMMENT: Notice that $\mathcal{P}(\mathbf{F})$ and \mathbf{F}^{∞} are not iso, so are $\mathcal{P}(\mathbf{F})$ and $(\mathcal{P}(\mathbf{F}))'$

But if we let
$$\mathbf{F}^{\infty} = \{(a_1, \dots, a_n, \underbrace{0, \dots, 0, \dots}_{\text{all zero}}) \in \mathbf{F}^{\infty} \mid \exists ! n \in \mathbf{N}^+ \}$$
. Then $\mathcal{P}(\mathbf{F})$ and \mathbf{F}^{∞} are iso.

7 Show that the dual basis of $(1, x, ..., x^m)$ of $\mathcal{P}_m(\mathbf{R})$ is $(\varphi_0, \varphi_1, ..., \varphi_m)$, where $\varphi_k(p) = \frac{p^{(k)}(0)}{k!}$. Here $p^{(k)}$ denotes the k^{th} derivative of p, with the understanding that the 0^{th} derivative of p is p.

SOLUTION:

$$\forall j, k \in \mathbf{N}, \ (x^{j})^{(k)} = \begin{cases} j(j-1) \dots (j-k+1) \cdot x^{(j-k)}, & j \ge k. \\ j(j-1) \dots (j-j+1) = j! & j = k. \\ 0, & j \le k. \end{cases}$$
Then $(x^{j})^{(k)}(0) = \begin{cases} 0, \ j \ne k. \\ k!, \ j = k. \end{cases}$

OR. Because
$$\forall j, k \in \{1, ..., m\}$$
 such that $j \neq k$, $\varphi_k(x^j) = \frac{(x^j)^{(k)}(0)}{k!} = \frac{0}{k!} = 0$; $\varphi_k(x^k) = \frac{(x^k)^{(k)}(0)}{k!} = 1$.

Thus $\frac{p^{(k)}(0)}{k!}$ act exactly the same as φ_k on the same basis $(1,\ldots,x^m)$, hence is just another def of φ_k .

EXAMPLE: Suppose $m \in \mathbb{N}^+$. By [2.C.10], $B = (1, x - 5, ..., (x - 5)^m)$ is a basis of $\mathcal{P}_m(\mathbb{R})$.

Let
$$\varphi_k = \frac{p^{(k)}(5)}{k!}$$
 for each $k = 0, 1, ..., m$. Then $(\varphi_0, \varphi_1, ..., \varphi_m)$ is the dual basis of B .

- **34** The double dual space of V, denoted by V'', is defined to be the dual space of V'. In other words, $V'' = \mathcal{L}(V', \mathbf{F})$. Define $\Lambda : V \to V''$ by $(\Lambda v)(\varphi) = \varphi(v)$.
 - (a) Show that Λ is a linear map from V to V''.
 - (b) Show that if $T \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$, where T'' = (T')'.
 - (c) Show that if V is finite-dim, then Λ is an iso from V onto V''.

Suppose V is finite-dim. Then V and V' are iso, and finding an iso from V onto V' generally requires choosing a basis of V. In contrast, the iso Λ from V onto V'' does not require a choice of basis and thus is considered more natural.

SOLUTION:

(a)
$$\forall \varphi \in V', v, w \in V, a \in F, (\Lambda(v+aw))(\varphi) = \varphi(v+aw) = \varphi(v) + a\varphi(w) = (\Lambda v)(\varphi) + a(\Lambda w)(\varphi).$$

Thus $\Lambda(v+aw) = \Lambda v + a\Lambda w$. Hence Λ is linear.

(b)
$$(T''(\Lambda v))(\varphi) = ((\Lambda v) \circ T')(\varphi) = (\Lambda v)(T'(\varphi))$$

= $(T'(\varphi))(v) = (\varphi \circ T)(v) = \varphi(Tv) = (\Lambda(Tv))(\varphi).$

Hence
$$T''(\Lambda v) = (\Lambda(Tv)) \Rightarrow T'' \circ \Lambda = \Lambda \circ T$$
.

(c) Suppose
$$\Lambda v = 0$$
. Then $\forall \varphi \in V'$, $(\Lambda v)(\varphi) = \varphi(v) = 0 \Rightarrow v = 0$. Thus Λ is inje. \mathbb{X} Because V is finite-dim. dim $V = \dim V' = \dim V''$. Hence Λ is an iso.

• TIPS: Suppose $p \in \mathcal{P}(\mathbf{F})$, $\deg p \leqslant m$ and p has at least (m+1) distinct zeros. Then by the contrapositive of [4.12], $\mathbb{Z} \deg p = m$, we conclude that m < 0. Hence p = 0.

OR. We show that if p has at least m distinct zeros, then either p = 0 or $\deg p \ge m$.

If p = 0 then we are done. If not, then suppose p has exactly n distinct zeros $\lambda_1, \dots, \lambda_n$.

Because $\exists ! \alpha_i \ge 1, q \in \mathcal{P}(\mathbf{F})$, and $q \ne 0$, such that $p(z) = [(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_n)^{\alpha_n}]q(z)$.

- **COMMENT**: NOTICE that by [4.17], some term of the poly factorization might not be in the form $(x \lambda_k)^{\alpha_k}$.
- **Note For [4.7]:** the uniquess of coeffs of polys

[Another proof]

If a poly had two different sets of coeffs, then subtracting the two representations would give a poly with some nonzero coeffs but infinitely many zeros. By TIPS.

• **Note For [4.8]:** division algorithm for polys

[Another proof]

Suppose $\deg p \geqslant \deg s$. Then $\left(\underbrace{1,z,\ldots,z^{\deg s-1}}_{\text{of length deg }s},\underbrace{s,zs,\cdots,z^{\deg p-\deg s}s}_{\text{of length }\left(\deg p-\deg s+1\right)}\right)$ is a basis of $\mathcal{P}_{\deg p}(\mathbf{F})$.

Because $q \in \mathcal{P}(\mathbf{F})$, $\exists ! a_i, b_i \in \mathbf{F}$,

$$q = a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1} + b_0 s + b_1 z s + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s} s$$

$$= \underbrace{a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1}}_{r} + s \underbrace{\left(b_0 + b_1 z + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s}\right)}_{q}. \text{ Note that } r, q \text{ are unique.}$$

• **Note For [4.11]:** each zero of a poly corresponds to a degree-one factor;

[Another proof]

First suppose $p(\lambda) = 0$. Write $p(z) = a_0 + a_1 z + \dots + a_m z^m$, $\exists ! a_0, a_1, \dots, a_m \in \mathbb{F}$ for all $z \in \mathbb{F}$.

Then $p(z) = p(z) - p(\lambda) = a_1(z - \lambda) + \dots + a_m(z^m - \lambda^m)$ for all $z \in F$.

Hence $\forall k \in \{1, ..., m\}, z^k - \lambda^k = (z - \lambda)(z^{k-1}\lambda^0 + z^{k-2}\lambda^1 + ... + z^{k-(j+1)}\lambda^j + ... + z\lambda^{k-2} + z^0\lambda^{k-1}).$

Thus
$$p(z) = \sum_{j=1}^{m} a_j(z-\lambda) \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) \sum_{j=1}^{m} a_j \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) q(z).$$

• **Note For [4.13]:** Every nonconst poly with complex coefficients has a zero in C. [Another proof]

For any $w \in C$, $k \in \mathbb{N}^+$, by polar coordinates, $\exists r \ge 0, \theta \in \mathbb{R}$, $r(\cos \theta + i \sin \theta) = w$.

By De Moivre' theorem, $w^k = [r(\cos \theta + i \sin \theta)]^k = r^k(\cos k\theta + i \sin k\theta)$.

Hence $\left(r^{1/k}\left(\cos\frac{\theta}{k} + i\sin\frac{\theta}{k}\right)\right)^k = w$. Thus every complex number has a k^{th} root.

Suppose a nonconst $p \in \mathcal{P}(\mathbf{C})$ with highest-order nonzero term $c_m z_m$.

Then
$$|p(z)| \to \infty$$
 as $|z| \to \infty$ (because $\frac{|p(z)|}{|z_m|} \to |c_m|$ as $|z| \to \infty$).

Thus the continuous function $z \to |p(z)|$ has a global minimum at some point $\zeta \in \mathbb{C}$.

To show that $p(\zeta) = 0$, assume $p(\zeta) \neq 0$. Define $q \in \mathcal{P}(C)$ by $q(z) = \frac{p(z + \zeta)}{p(\zeta)}$.

The function $z \to |q(z)|$ has a global minimum value of 1 at z = 0.

Write $q(z) = 1 + a_k z^k + \dots + a_m z^m$, where $k \in \mathbb{N}^+$ is the smallest such that $a_k \neq 0$.

Let $\beta \in \mathbb{C}$ be such that $\beta^k = -\frac{1}{a_k}$.

There is a const c > 1 so that if $t \in (0,1)$, then $|q(t\beta)| \le |1 + a_k t^k \beta^k| + t^{k+1} c = 1 - t^k (1 - tc)$.

Now letting t = 1/(2c), we get $|q(t\beta)| < 1$. Contradicts. Hence $p(\zeta) = 0$, as desired.

• (4E 4.2) Prove that if $w, z \in \mathbb{C}$, then $||w| - |z|| \leq |w - z|$.

SOLUTION:

$$|w-z|^2 = (w-z)(\overline{w}-\overline{z})$$

$$= |w|^2 + |z|^2 - (w\overline{z} + \overline{w}z)$$

$$= |w|^2 + |z|^2 - (\overline{w}z + \overline{w}z)$$

$$= |w|^2 + |z|^2 - 2Re(\overline{w}z)$$

$$\geqslant |w|^2 + |z|^2 - 2|\overline{w}z|$$

Or.
$$|w| = |w - z + z| \le |w - z| + |z| \Rightarrow |w| - |z| \le |w - z|$$

 $|z| = |z - w + w| \le |z - w| + |w| \Rightarrow |z| - |w| \le |w - z|$

Geometric interpretation: The length of each side of a triangle is greater than or equal to the difference of the lengths of the two other sides.

$$= |w|^2 + |z|^2 - 2|w||z| = ||w| - |z||^2.$$

• (4E 4.3) Suppose $\mathbf{F} = \mathbf{C}$, $\varphi \in V'$. Define $\sigma : V \to \mathbf{R}$ by $\sigma(v) = \mathrm{Re} \, \varphi(v)$ for each $v \in V$. Show that $\varphi(v) = \sigma(v) - \mathrm{i}\sigma(\mathrm{i}v)$ for all $v \in V$.

SOLUTION: Notice that $\varphi(v) = \operatorname{Re} \varphi(v) + i \operatorname{Im} \varphi(v) = \sigma(v) + i \operatorname{Im} \varphi(v)$. $\operatorname{X} \operatorname{Re} \varphi(iv) = \operatorname{Re}(i\varphi(v)) = -\operatorname{Im} \varphi(v) = \sigma(iv)$. Hence $\varphi(v) = \sigma(v) - i\sigma(iv)$.

4 Suppose $m, n \in \mathbb{N}^+$ with $m \leq n, \lambda_1, ..., \lambda_m \in \mathbb{F}$. Prove that $\exists p \in \mathcal{P}(\mathbb{F}), \deg p = n$, the zeros of p are $\lambda_1, ..., \lambda_m$.

SOLUTION: Let
$$p(z) = (z - \lambda_1)^{n - (m-1)} (z - \lambda_2) \cdots (z - \lambda_m)$$
.

5 Suppose $m \in \mathbb{N}$, and z_1, \ldots, z_{m+1} are distinct in \mathbb{F} , and $w_1, \ldots, w_{m+1} \in \mathbb{F}$. Prove that $\exists ! p \in \mathcal{P}_m(\mathbb{F}), p(z_k) = w_k$ for each $k \in \{1, \ldots, m+1\}$.

SOLUTION:

Define $T: \mathcal{P}_m(\mathbf{F}) \to \mathbf{F}^{m+1}$ by $Tq = (q(z_1), \dots, q(z_m), q(z_{m+1}))$. Moreover, T is linear.

We now show that T is surj, so that such p exists; and that T is inje, so that such p is unique.

Inje: $Tq = 0 \iff q(z_1) = \dots = q(z_m) = q(z_{m+1}) = 0 \iff q = 0$, by Tips.

Surj: $\dim \operatorname{range} T = \dim \mathcal{P}_m(\mathbf{F}) - \dim \operatorname{null} T = m+1 = \dim \mathbf{F}^{m+1} \not \subset \mathbf{F}^{m+1} \Rightarrow T \text{ is surj. } \Box$

Or. Let $p_1 = 1$, $p_k(z) = \prod_{i=1}^{k-1} (z - z_i) = (z - z_1) \cdots (z - z_{k-1})$ for each $k \in \{2, \dots, m+1\}$.

By (2.C.10), $B_p = (p_1, \dots, p_{m+1})$ is a basis of $\mathcal{P}_m(\mathbf{F})$. Let $B_e = (e_1, \dots, e_{m+1})$ be the std basis of \mathbf{F}^{m+1} .

Notice that
$$Tp_1 = (1, ..., 1)$$
, $Tp_k = \left(\prod_{i=1}^{k-1} (z_1 - z_i), ..., \underbrace{\prod_{i=1}^{k-1} (z_j - z_i)}_{j^{th} \text{ entry}}, ..., \prod_{i=1}^{k-1} (z_{m+1} - z_i)\right)$.

And that $\prod_{i=1}^{k-1} (z_i - z_i) = 0 \iff j \leqslant k-1$, because z_1, \dots, z_{m+1} are distinct.

Thus
$$\mathcal{M}(T, B_p, B_e) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & A_{2,2} & 0 & \cdots & 0 \\ 1 & A_{3,2} & A_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & A_{m+1,2} & A_{m+1,3} & \cdots & A_{m+1,m+1} \end{pmatrix}.$$

Where $A_{j,k} = \prod_{i=1}^{k-1} (z_j - z_i) \neq 0$ for all $j > k-1 \ge 1$. The rows of $\mathcal{M}(T)$ is linely inde.

By (4E 3.C.17)
$$\mathbb X$$
 dim $\mathcal P_m(\mathbf F)=\dim \mathbf F^{m+1}$; Or By (3.F.32); T is inv.

2 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbf{F}) : \deg p = m\}$ a subsp of $\mathcal{P}(\mathbf{F})$?

SOLUTION:
$$x^m, x^m + x^{m-1} \in U$$
 but $\deg[(x^m + x^{m-1}) - (x^m)] \neq m \Rightarrow (x^m + x^{m-1}) - (x^m) \notin U$.

3 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) : 2 \mid \deg p\}$ a subsp of $\mathcal{P}(\mathbb{F})$? **SOLUTION**: $x^2, x^2 + x \in U$ but $deg[(x^2 + x) - (x^2)]$ is odd and hence $(x^2 + x) - (x^2) \notin U$. **6** Suppose nonzero $p \in \mathcal{P}_m(\mathbf{F})$ has degree m. Prove that [P] p has m distinct zeros \iff p and its derivative p' have no zeros in common [Q]. **SOLUTION:** (a) Suppose p has m distinct zeros. And deg p=m. By [4.14], $\exists ! c, \lambda_i \in \mathbb{R}, p(z)=c(z-\lambda_1)\cdots(z-\lambda_m)$. If m = 0, then $p = c \neq 0 \Rightarrow p$ has no zeros, and p' = 0, we are done. If m = 1, then $p(z) = c(z - \lambda_1)$, and p' = c has no zeros, we are done. For each $j \in \{1, ..., m\}$, let $q_j \in \mathcal{P}_{m-1}(\mathbf{F})$ be such that $p(z) = (z - \lambda_j)q_j \Rightarrow q_j(\lambda_j) \neq 0$. Now $p'(z) = (z - \lambda_i)q_i'(z) + q_i(z) \Rightarrow p'(\lambda_i) = q_i(\lambda_i) \neq 0$, as desired. Or. To prove $[P] \Rightarrow [Q]$, we prove $\neg [Q] \Rightarrow \neg [P]$: Now $p'(\lambda) = q(\lambda) = 0 \Rightarrow q(z) = (z - \lambda)s(z), p(z) = (z - \lambda)^2s(z).$ Hence *p* has strictly less than *m* distinct zeros. (b) To prove $[Q] \Rightarrow [P]$, we prove $\neg [P] \Rightarrow \neg [Q]$: Because nonzero $p \in \mathcal{P}_m(\mathbf{F})$, we suppose $\lambda_1, \dots, \lambda_M$ are all the distinct zeros of p, where M < m. By Pigeon Hole Principle, $\exists \lambda_k$ such that $p(z) = (z - \lambda_k)^2 q(z)$ for some $q \in \mathcal{P}(\mathbf{F})$. Hence $p'(z) = 2(z - \lambda_k)q(z) + (z - \lambda_k)^2q'(z) \Rightarrow p'(\lambda_k) = 0 = p(\lambda_k)$. **7** Prove that every $p \in \mathcal{P}(\mathbf{R})$ of odd degree has a zero. **SOLUTION:** Using the notation and proof of [4.17]. $\deg p = 2M + m$ is odd $\Rightarrow m$ is odd. Hence λ_1 exists. Or. Using calculus only. Suppose $p \in \mathcal{P}_m(\mathbf{F})$, $\deg p = m$, m is odd. Let $p(x) = a_0 + a_1 x + \dots + a_m x^m$. Then $a_m \neq 0$. Denote $|a_m|^{-1} a_m$ by δ . Write $p(x) = x^m \left(\frac{a_0}{x^m} + \frac{a_1}{x^{m-1}} + \dots + \frac{a_{m-1}}{x} + a_m \right)$. Thus p(x) is continuous, and $\lim_{x \to -\infty} p(x) = -\delta \infty$; $\lim_{x \to \infty} p(x) = \delta \infty$. Hence we conclude that p has at least one real zero. **9** Suppose $p \in \mathcal{P}(\mathbf{C})$. Define $q: \mathbf{C} \to \mathbf{C}$ by $q(z) = p(z)\overline{p(\overline{z})}$. Prove that $q \in \mathcal{P}(\mathbf{R})$. **SOLUTION:** Notice that by [4.5], $\overline{z}^n = \overline{z^n}$. Suppose $q(z) = a_n z^n + \dots + a_1 z + a_0 \Rightarrow q(\overline{z}) = a_n \overline{z}^n + \dots + a_1 \overline{z} + a_0 \Rightarrow \overline{q(\overline{z})} = \overline{a_n} z^n + \dots + \overline{a_1} z + \overline{a_0}.$ Note that $q(z) = p(z)\overline{p(\overline{z})} = \overline{p(\overline{z})}p(z) = p(\overline{z})\overline{\overline{p(\overline{z})}} = \overline{q(\overline{z})}$. Hence for each $a_k, \overline{a_k} = a_k \Rightarrow a_k \in \mathbb{R}$. Or. Suppose $p(z) = a_m z^m + \dots + a_1 z + a_0$. Now $\overline{p(\overline{z})} = \overline{a_m} z^m + \dots + \overline{a_1} z + \overline{a_0}$. Notice that $q(z) = p(z)\overline{p(\overline{z})} = \sum_{k=0}^{2} m\left(\sum_{i+j=k} a_i \overline{a_j}\right) z^k$. Notice that by [4.5], $z - \overline{z} = 2(\operatorname{Im} z) \Rightarrow z = \overline{z} + 2(\operatorname{Im} z)$. So that $z = \overline{z} \iff \operatorname{Im} z = 0 \iff z \in \mathbb{R}$. Now for each $k \in \{0, ..., 2m\}$, $\overline{\sum_{i+j=k} a_i \overline{a_j}} = \sum_{i+j=k} \overline{a_i \overline{a_j}} = \sum_{i+j=k} a_j \overline{a_i} = \sum_{i+j=k} a_i \overline{a_j} \in \mathbb{R}$.

8 For
$$p \in \mathcal{P}(\mathbf{R})$$
, define $Tp : \mathbf{R} \to \mathbf{R}$ by $(Tp)(x) = \begin{cases} \frac{p(x) - p(3)}{x - 3} & \text{if } x \neq 3, \\ p'(3) & \text{if } x = 3. \end{cases}$

Show that (a) $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$ and that (b) $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is linear.

SOLUTION:

(a) For
$$x \neq 3$$
, $T(x^n) = \frac{x^n - 3^n}{x - 3} = \sum_{i=1}^n 3^{i-1} x^{n-i}$. For $x = 3$, $T(x^n) = 3^{n-1} \cdot n$.
Note that if $x = 3$, then $\sum_{i=1}^n 3^{i-1} x^{n-i} = \sum_{i=1}^n 3^{n-1} = 3^{n-1} \cdot n$.
Hence $T(x^n) = \sum_{i=1}^n 3^{i-1} x^{n-i} \Rightarrow T(x^n) \in \mathcal{P}(\mathbf{R})$.

(b) Now we show that *T* is linear: $\forall p, q \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}$,

$$T(p+\lambda q)(x) = \begin{cases} \frac{(p+\lambda q)(x) - (p+\lambda q)(3)}{x-3}, & \text{if } x \neq 3, \\ (p+\lambda q)'(3), & \text{if } x = 3 \end{cases} = [T(p) + \lambda T(q)](x) \text{ for all } x \in \mathbb{R}.$$

OR. (a) Note that
$$\exists ! q \in \mathcal{P}(\mathbf{R}), p(x) - p(3) = (x - 3)q(z) \Rightarrow q(x) = \frac{p(x) - p(3)}{x - 3}.$$

 $p'(x) = (p(x) - p(3))' = ((x - 3)q(x))' = q(x) + (x - 3)q'(x).$
Hence $p'(3) = q(3)$. Now $Tp = q \in \mathcal{P}(\mathbf{R})$.

(b)
$$\forall p_1, p_2 \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}, \exists ! q_1, q_2 \in \mathcal{P}(\mathbf{R}),$$

 $p_1(x) - p_1(3) = (x - 3)q_1(x) \text{ and } p_2(x) - p_2(3) = (x - 3)q_2(x).$
By (a), $Tp_1 = q_1, Tp_2 = q_2$. Note that $(p_1 + \lambda p_2)(x) - (p_1 + \lambda p_2)(3) = (x - 3)(q_1 + \lambda q_2)(x).$
Hence by the uniques of $q_1 + \lambda q_2$ for $p_1 + \lambda p_2$, we must have $T(p_1 + \lambda p_2) = q_1 + \lambda q_2.$

- **11** Suppose $p \in \mathcal{P}(\mathbf{F})$ with $p \neq 0$. Let $U = \{pq : q \in \mathcal{P}(\mathbf{F})\}$.
 - (a) Show that dim $\mathcal{P}(\mathbf{F})/U = \deg p$.
 - (b) Find a basis of $\mathcal{P}(\mathbf{F})/U$.

SOLUTION: NOTICE that $pq \neq p \circ q$, see (4E 3.A.10).

U is a subsp of $\mathcal{P}(\mathbf{F})$ because $\forall s_1, s_2 \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, ps_1 + \lambda ps_2 = p(s_1 + \lambda s_2) \in U$.

If deg p = 0, then $U = \mathcal{P}(\mathbf{F})$, $\mathcal{P}(\mathbf{F})/U = \{0\}$, with the unique basis (). Suppose deg $p \ge 1$.

(a) By [4.8],
$$\forall s \in \mathcal{P}(\mathbf{F}), \exists ! r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), q \in \mathcal{P}(\mathbf{F}) \ [\exists ! pq \in U], s = (p)q + (r).$$

Thus $\mathcal{P}(\mathbf{F}) = U \oplus \mathcal{P}_{\deg p-1}(\mathbf{F})$. By the Note for [3.91] in (3.E), $\mathcal{P}(\mathbf{F})/U$ and $\mathcal{P}_{\deg p-1}(\mathbf{F})$ are iso.

OR. Define $R: \mathcal{P}(\mathbf{F}) \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ by R(s) = r for all $s \in \mathcal{P}_{\cdot}(\mathbf{F})$ We show that R is linear.

$$\forall s_1, s_2 \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, \exists ! r_1, r_2 \in \mathcal{P}_{\deg p-1}(\mathbf{F}), q_1, q_2 \in \mathcal{P}(\mathbf{F}), s_1 = (p)q_1 + (r_1); \ s_2 = (p)q_2 + (r_2).$$

$$\mathbb{Z} \exists ! r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), q \in \mathcal{P}(\mathbf{F}), (s_1 + \lambda s_2) = (p)q + (r) = (p)(q_1 + \lambda q_2) + (r_1 + \lambda r_2).$$

Note that $r_1, r_2 \in \mathcal{P}_{\deg p-1}(\mathbf{F}) \Rightarrow r_1 + \lambda r_2 \in \mathcal{P}_{\deg p-1}(\mathbf{F})$.

OR Note that $\deg(r_1 + \lambda r_2) \leqslant \max\{\deg r_1, \deg(\lambda r_2)\} \leqslant \max\{\deg r_1, \deg r_2\} < \deg p$.

By the uniques part of [4.8], $s = s_1 + \lambda s_2$; $r = r_1 + \lambda r_2$. Thus $R(s_1 + \lambda s_2) = R(s_1) + \lambda R(s_2)$.

Because $Rs = 0 \iff s = pq$, $\exists ! q \in \mathcal{P}(\mathbf{F}) \iff s \in U$. And $\forall r \in \mathcal{P}_{\deg p-1}(\mathbf{F})$, Rr = r.

Now null R = U, range $R = \mathcal{P}_{\deg p-1}(\mathbf{F})$.

Hence $\tilde{R}: \mathcal{P}(\mathbf{F})/U \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ is defined by $\tilde{R}(s+U) = Rs$. By [3.91(d)], \tilde{R} is an iso.

(b) For each
$$k \in \{0, 1, ..., \deg p - 1\}$$
, $\tilde{R}(z^k + U) = R(z^k) = z^k \Rightarrow \tilde{R}^{-1}(z^k) = z^k + U$.
Thus $(1 + U, z + U, ..., z^{\deg p - 1} + U)$ can be a basis of $\mathcal{P}(\mathbf{F})/U$.

10 Suppose $m \in \mathbb{N}$, $p \in \mathcal{P}_m(\mathbb{C})$ is such that $p(x_k) \in \mathbb{R}$ for each of distinct $x_0, x_1, \dots, x_m \in \mathbb{R}$. Prove that $p \in \mathcal{P}(\mathbb{R})$.

SOLUTION:

By Tips and Problem (5),
$$\exists ! q \in \mathcal{P}_m(\mathbf{R})$$
 such that $q(x_k) = p(x_k)$. Hence $p = q$.

OR. Using the Lagrange Interpolating Polynomial.

Define
$$q(x) = \sum_{j=0}^{m} \frac{(x-x_0)(x-x_1)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_m)}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_m)} p(x_j).$$

 \mathbb{X} Each x_j , $p(x_j) \in \mathbb{R} \Rightarrow q \in \mathcal{P}_m(\mathbb{R})$. Notice that $q(x_k) = 1 \cdot p(x_k) \Rightarrow (q - p)(x_k) = 0$ for each x_k . Then (q - p) has (m + 1) zeros, while $(q - p) \in \mathcal{P}_m(\mathbb{C})$. By Tips, $q - p = 0 \Rightarrow p = q \in \mathcal{P}(\mathbb{R})$.

• (4E 4 13) Suppose nonconst $p, q \in \mathcal{P}(\mathbf{C})$ have no zeros in common. Let $m = \deg p, n = \deg q$. Define $T: \mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C}) \to \mathcal{P}_{m+n-1}(\mathbf{C})$ by T(r,s) = rp + sq. Prove that T is an iso. Corollary: $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that rp + sq = 1.

SOLUTION:

T is linear because $\forall r_1, r_2 \in \mathcal{P}_{n-1}(\mathbf{C}), s_1, s_2 \in \mathcal{P}_{m-1}(\mathbf{C}), \lambda \in \mathbf{F}$,

$$T\big(\big(r_1,s_1\big) + \lambda\big(r_2,s_2\big)\big) = T\big(r_1 + \lambda r_2, s_1 + \lambda s_2\big) = \big(r_1 + \lambda r_2\big)p + \big(s_1 + \lambda s_2\big)q = T\big(r_1,s_1\big) + \lambda T\big(r_2,s_2\big).$$

Let $\lambda_1, \dots, \lambda_M$ and μ_1, \dots, μ_N be the distinct zeros of p and q respectively. Notice that $M \leq m, N \leq n$.

Note that the contrapositive of [4.13], $M = 0 \iff m = 0 \Rightarrow s = 0 \iff r = 0 \iff n = 0 \iff N = 0$.

Now suppose $M, N \ge 1$. We show that s = 0. Showing r = 0 is almost the same.

Write
$$p(z) = a(z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_M)^{\alpha_M}$$
. $(\exists! \alpha_i \ge 1, a \in \mathbf{F}.)$ Let $\max\{\alpha_1, \ldots, \alpha_M\} = A$.

For each
$$D \in \{0,1,\ldots,A-1\}$$
, let $I_{D,\alpha} = \{\gamma_{D,1},\ldots,\gamma_{D,J}\}$ be such that each $\alpha_{\gamma_{D,J}} \geqslant D+1$.

Note that
$$I_{A-1,\alpha} \subseteq \cdots \subseteq I_{0,\alpha} = \{1,\ldots,M\}$$
. Because $rp + sq = 0 \Rightarrow (rp + sq)^{(k)} = 0$ for all $k \in \mathbb{N}^+$.

We use induction by D to show that $s^{(D)}(\lambda_{\gamma_{D,i}}) = 0$ for each $D \in \{0, \dots, A-1\}$.

Notice that
$$p^{(D)}(\lambda_{\gamma}) = 0$$
 for each $D \in \{0, ..., A - 1\}$ and each $\lambda_{\gamma} \in I_{D,\alpha}$. (Δ)

(i)
$$D = 0$$
. $(rp + sq)(\lambda_{\gamma_{0,i}}) = (sq)(\lambda_{\gamma_{0,i}}) = s(\lambda_{\gamma_{0,i}}) = 0$.

$$D = 1. \; (rp + sq)'(\lambda_{\gamma_{1,j}}) = \big(r'p + rp'\big)(\lambda_{\gamma_{1,j}}\big) + \big(s'q + sq'\big)(\lambda_{\gamma_{1,j}}) = \big(s'q\big)(\lambda_{\gamma_{1,j}}\big) = s'(\lambda_{\gamma_{1,j}}) = 0.$$

(ii)
$$2 \leqslant D \leqslant A-1$$
. Assume that $s^{(d)}(\lambda_{\gamma_{d,i}})=0$ for each $d \in \{1,\ldots,D-1\}$ and each $\lambda_{\gamma_{d,i}} \in I_{d,\alpha}$.

(Because
$$\forall p, q \in \mathcal{P}(\mathbf{F}), k \in \mathbf{N}^+, (pq)^{(k)} = C_k^k p^{(k)} q^{(0)} + \dots + C_k^j p^{(j)} q^{(k-j)} + \dots + C_k^0 p^{(0)} q^{(k)}.$$
) (Δ)

$$\begin{split} \text{Now} \ \big[rp + sq \big]^{(D)} \big(\lambda_{\gamma_{D,j}} \big) &= \big[C_D^D r^{(D)} p^{(0)} + \dots + C_D^d r^{(d)} p^{(D-d)} + \dots + C_D^0 r^{(0)} p^{(D)} \big] \big(\lambda_{\gamma_{D,j}} \big) \\ &+ \big[C_D^D s^{(D)} q^{(0)} + \dots + C_D^d s^{(d)} q^{(D-d)} + \dots + C_D^0 s^{(0)} q^{(D)} \big] \big(\lambda_{\gamma_{D,j}} \big) \\ &= \big[C_D^D s^{(D)} q^{(0)} \big] \big(\lambda_{\gamma_{D,j}} \big). \ \ \text{Where each} \ \lambda_{\gamma_{D,j}} \in I_{D,\alpha} \subseteq I_{D-1,\alpha}. \end{split}$$

Hence $s^{(D)}(\lambda_{\gamma_{D,i}}) = 0$. The assumption holds for all $D \in \{0, \dots, A-1\}$.

Notice that $\forall k = \{0, \dots, A-2\}, s^{(k)} \text{ and } s^{(k+1)} \text{ have zeros } \{\lambda_{\gamma_{k+1,1}}, \dots, \lambda_{\gamma_{k+1,l}}\} \text{ in common.}$

Now $\forall D \in \{1, A-1\}, s = s^{(0)}, \dots, s^{(D)}$ have zeros $\{\lambda_{\gamma_{D,1}}, \dots, \lambda_{\gamma_{D,l}}\}$ in common.

Thus
$$\forall D \in \{0, A-1\}$$
, $s(z)$ is divisible by $(z-\lambda_{\gamma_{D,1}})^{\alpha_{\gamma_{D,1}}} \cdots (z-\lambda_{\gamma_{D,l}})^{\alpha_{\gamma_{D,l}}}$.

Hence we write $s(z) = \left((z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_M)^{\alpha_M} \right) s_0(z)$, while $\deg s \leqslant m - 1 < m = \alpha_1 + \cdots + \alpha_M$.

Thus by Tips, s=0. Following the same pattern, we conclude that r=0.

Hence T is inje. And $\dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) = \dim\mathcal{P}_{m+n-1}(\mathbf{C}) \Rightarrow T$ is surj. Thus T is an iso. \square

COMMENT: We now prove the statement that marked by (Δ) above.

L1: Prove that $\forall p, q \in \mathcal{P}(\mathbf{F}), k \in \mathbf{N}^+, (pq)^{(k)} = C_k^k p^{(k)} q^{(0)} + \dots + C_k^j p^{(j)} q^{(k-j)} + \dots + C_k^0 p^{(0)} q^{(k)}.$ Solution:

We use induction by $k \in \mathbb{N}^+$.

(i)
$$k = 1$$
. $(pq)^{(1)} = pq = C_1^1 p^{(1)} q^{(0)} + C_1^0 p^{(0)} q^{(1)}$.

(ii)
$$k \ge 2$$
. Assume that for $(pq)^{(k-1)} = C_{k-1}^{k-1} p^{(k-1)} q^{(0)} + \dots + C_{k-1}^{j} p^{(j)} q^{(k-1-j)} + \dots + C_{k-1}^{0} p^{(0)} q^{(k-1)}$.
Now $(pq)^{(k)} = ((pq)^{(k-1)})' = \left(\sum_{j=0}^{k-1} C_{k-1}^{j} p^{(j)} q^{(k-j-1)}\right)' = \sum_{j=0}^{k-1} \left[C_{k-1}^{j} \left(p^{(j+1)} q^{(k-j-1)} + p^{(j)} q^{(k-j)}\right)\right]$.

$$= \left[C_{k-1}^{0} \left(p^{(1)} q^{(k-1)} + p^{(0)} q^{(k)}\right)\right] + \left[C_{k-1}^{1} \left(p^{(2)} q^{(k-2)} + p^{(1)} q^{(k-1)}\right)\right]$$

$$+ \dots + \left[C_{k-1}^{j-2} \left(p^{(j-1)} q^{(k-j+1)} + p^{(j-2)} q^{(k-j+2)}\right)\right] + \left[C_{k-1}^{j-1} \left(p^{(j)} q^{(k-j)} + p^{(j-1)} q^{(k-j+1)}\right)\right]$$

$$+ \left[C_{k-1}^{j} \left(p^{(j+1)} q^{(k-j-1)} + p^{(j)} q^{(k-j)}\right)\right] + \left[C_{k-1}^{j-1} \left(p^{(j+2)} q^{(k-j-2)} + p^{(j+1)} q^{(k-j-1)}\right)\right]$$

$$+ \dots + \left[C_{k-1}^{k-2} \left(p^{(k-1)} q^{(1)} + p^{(k-2)} q^{(2)}\right)\right] + \left[C_{k-1}^{k-1} \left(p^{(k)} q^{(0)} + p^{(k-1)} q^{(1)}\right)\right].$$
Hence $(pq)^{(k)} = C_k^0 p^{(0)} q^{(k)} + \dots + \left[C_{k-1}^{j} + C_{k-1}^{j-1} \left(p^{(j)} q^{(k-j)}\right) + \dots + C_k^k p^{(k)} q^{(0)}\right].$

L2: Suppose $p(z) = (z - \lambda)^{\alpha} q(z)$ and $\alpha \in \mathbb{N}^+$. Prove that $p^{(\alpha - 1)}(\lambda) = 0$.

SOLUTION:

Suppose $p \in \mathcal{P}(\mathbf{F})$. Write $p(z) = (z - \lambda)^A q(z)$, where $A \in \mathbf{N}^+, q(\lambda) \neq 0$.

We use induction to show that for all $\alpha \in \{1, ..., A\}$, $p^{(\alpha-1)}(\lambda) = 0$.

(i)
$$\alpha = 1. p^{(0)}(\lambda) = 0.$$

(ii)
$$2 \le \alpha \le A$$
. Assume that $p^{(a-2)}(\lambda) = 0$ for all $a \in \{1, ..., \alpha\}$.

Notice that
$$p(z)=(z-\lambda)^{\alpha-1}q_{\alpha-1}(z)=(z-\lambda)^{\alpha}q_{\alpha}(z)$$
, where $q_{\alpha}(z)=(z-\lambda)q_{\alpha-1}(z)$.

Because
$$p^{(\alpha-1)}(z) = \left[C_{\alpha-1}^{\alpha-1}(z-\lambda)^0 q_{\alpha-1}(z) + \dots + C_{\alpha-1}^k(z-\lambda)^{\alpha-1-k} q_{\alpha-1-k}(z) \right]$$

$$+\cdots + C_{\alpha-1}^{0}(z-\lambda)^{\alpha-1}q_{\alpha-1}^{(\alpha-1)}(z)$$
. Now $p^{(\alpha-1)}(\lambda) = C_{\alpha-1}^{\alpha-1}q_{\alpha-1}(\lambda) = 0$.

ENDED

5.A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | 2E: Ch5.20 | 4E: 8 11 15 16 17 36 37 38 39

• Note For [5.6]:

More generally, suppose we do not know whether V is finite-dim. We show that $(a) \iff (b)$.

Suppose (a) λ is an eigval of T with an eigvec v. Then $(T - \lambda I)v = 0$.

Hence we get (b), $(T - \lambda I)$ is not inje. And then (d), $(T - \lambda I)$ is not inv.

But $(d) \Rightarrow (b)$ fails, because S is not inv $\iff S$ is not inje Or S is not surj.

- TIPS: For $T_1, \ldots, T_m \in \mathcal{L}(V)$:
 - (a) Suppose T_1, \dots, T_m are all inje. Then $(T_1 \circ \dots \circ T_m)$ is inje.
 - (b) Suppose $(T_1 \circ \cdots \circ T_m)$ is not inje. Then at least one of T_1, \ldots, T_m is not inje.
 - (c) At least one of T_1, \dots, T_m is not inje $\Rightarrow (T_1 \circ \dots \circ T_m)$ is not inje.

EXAMPLE: In infinite-dim only. Let $V = \mathbf{F}^{\infty}$.

Let S be the backward shift (surj but not inje) Let T be the forward shift (inje but not surj) \Rightarrow Then ST = I.

- Note For [5.2]: Suppose $T \in \mathcal{L}(V)$. Then U is an invar subsp of V under $T \iff \text{range } T|_U \subseteq U$.
- Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T. Prove that there exists an invar subsp W of dimension dim V dimU.

SOLUTION:

Using the Note For [3.88,90,91]. Define the eraser S. Now $V = \operatorname{range} S \oplus U$.

Define E_1 by $E_1(u+w)=u$. Define E_2 by $E_2(u+w)=w$. ($E_2=S\circ\pi$.)

Note that $T - TE_1 = T(I - E_1) = TE_2$. And null $TE_2 = \text{null } T \oplus U$, range $T = \text{range } TE_2 \oplus U$.

Because dim null $TE_2 \geqslant \dim U \iff \dim \operatorname{range} TE_2 \leqslant \dim V - \dim U$.

Let
$$B_U = (u_1, ..., u_n)$$
, $B_{\text{range } TE_2} = (v_1, ..., v_m) \Rightarrow B_V = (v_1, ..., v_m, u_1, ..., u_n, ..., u_p)$.

Let $X = \operatorname{span}(v_1, \dots, v_m, u_{\alpha_1}, \dots, u_{\alpha_{p-\dim U}})$. Where $\alpha_1, \dots, \alpha_{p-\dim U} \in \{1, \dots, p\}$ are distinct.

Then dim $X = \dim V - \dim U$. [range $TE_2 \subseteq X$] X is invar under TE_2 , by Problem (1)(b).

We have
$$x \in X \Rightarrow TE_2(x) \in X \Rightarrow Tx - TE_1(x) \in X \Rightarrow Tx \in X$$
. Hence X is invar under T .

(Note that $E_1(x) \in \text{span}(u_{\beta_1}, \dots, u_{\beta_t})$, where $\beta_1, \dots, \beta_t \in \{\alpha_1, \dots, \alpha_{p-\dim U}\}$ and each $u_{\beta_t} \in U$.)

COMMENT: Conversely, by reversing the roles of *U* and *W*, we conclude that it is true as well.

- Suppose $T \in \mathcal{L}(V)$ and U is an invar subsp of V under T. Suppose $\lambda_1, \ldots, \lambda_m$ are the distinct eigenst of T correspt eigens v_1, \ldots, v_m .
- Tips 1: Prove that $v_1 + \cdots + v_m \in U \iff each \ v_k \in U$.

SOLUTION:

Suppose each $v_k \in U$. Then because U is a subsp, $v_1 + \cdots + v_m \in U$.

Define the statement P(k): if $v_1 + \cdots + v_k \in U$, then each $v_j \in U$. We use induction on m.

- (i) For $k = 1, v_1 \in U$.
- (ii) For $2 \leqslant k \leqslant m$. Assume that P(k-1) holds. Suppose $v=v_1+\cdots+v_k \in U$. Then $Tv=\lambda_1v_1+\cdots+\lambda_kv_k \in U \Longrightarrow Tv-\lambda_kv=(\lambda_1-\lambda_k)v_1+\cdots+(\lambda_{k-1}-\lambda_k)v_{k-1} \in U$. For each $j \in \{1,\ldots,k-1\}, \lambda_j-\lambda_k\neq 0 \Rightarrow (\lambda_j-\lambda_k)v_j=v_j'$ is an eigerc of T correspond t_j . By assumption, each $t_j' \in U$. Thus $t_j' \in U$. So that $t_j' \in U$. So that $t_j' \in U$.
- Tips 2: If dim V = m. Prove that $U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m)$, where $E_k = \operatorname{span}(v_k)$.

SOLUTION:

Because $V = E_1 \oplus \cdots \oplus E_m$. $\forall u \in U, \exists ! e_j \in E_j, u = e_1 + \cdots + e_m$.

If $e_j \neq 0$, then e_j is an eigvec correspond λ_j . Otherwise $e_j = 0 \in U$. By Tips (1), each nonzero $e_j \in U$.

Thus $u \in (U \cap E_1) + \cdots + (U \cap E_m) = U$. Because each $(U \cap E_j) \subseteq E_j$.

For each $k \in \{2, ..., n\}$, $((U \cap E_1) + ... + (U \cap E_{k-1})) \cap (U \cap E_k) \subseteq (E_1 + ... + E_{k-1}) \cap E_k = \{0\}$. \square

• Tips 3: Suppose W is a nonzero invar subsp of V under T. If $\dim V = m \geqslant 1$. Prove that $W = \operatorname{span}(v_{\alpha_1}, \dots, v_{\alpha_A})$ for some distinct $\alpha_1, \dots, \alpha_A \in \{1, \dots, m\}$.

SOLUTION:

Each span($v_{\alpha_1}, \dots, v_{\alpha_A}$) is invar under T.

By Tips (2), $U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m)$. Because each dim $E_k = 1$, $U \cap E_k = \{0\}$ or E_k .

There must be at least one k such that $E_k = U \cap E_k$, for if not, $U = \{0\}$ since $V = E_1 \oplus \cdots \oplus E_m$.

Let $\alpha_1, ..., \alpha_A \in \{1, ..., m\}$ be all the distinct indices for which $E_k = U \cap E_k$.

Thus $U = (U \cap E_1) \oplus \cdots \oplus (U \cap E_m) = E_{\alpha_1} \oplus \cdots E_{\alpha_A} = \operatorname{span}(v_{\alpha_1}, \ldots, v_{\alpha_A}).$

(a) If $U \subseteq nu$	$\mathcal{L}(V)$ and U is a subsp of V . $11T$, then U is invar under T . $\forall u \in U \subseteq \text{null } T$, $Tu = 0 \in U$. $\subseteq U$, then U is invar under T . $\forall u \in U$, $Tu \in \text{range } T \subseteq U$.	
(a) <i>Prove that</i>	$\exists \ \mathcal{L}(V)$ are such that $ST = TS$. $\text{null } (T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$. $\text{range } (T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$.	
(a) $(T - \lambda I)(v)$	$TS \Rightarrow (T - \lambda I)S = S(T - \lambda I).$ $(T - \lambda I)(Sv) = (S(T - \lambda I))(v) = 0.$ $(T - \lambda I)(Sv) = (S(T - \lambda I))(v) = (T - \lambda I)(Su) \in \text{range}(T - \lambda I).$. 🗆
• Suppose S, T e	$\equiv \mathcal{L}(V)$ are such that $ST = TS$.	
2 Show that W	= $\operatorname{null} T$ is invar under S . $\forall u \in W, Tu = 0 \Rightarrow STu = 0 = TSu \Rightarrow Su \in W$.	
3 Show that U :	= range T is invar under S . $\forall w \in U, \exists v \in V, Tv = w, TSv = STv = Sw \in U$.	
• •	$\mathcal{L}(V) \ and \ V_1, \dots, V_m \ are \ invar \ subsps \ of \ V \ under \ T.$ $V_i \Rightarrow \forall v = v_1 + \dots + v_m \in V_1 + \dots + V_m, Tv = Tv_1 + \dots + Tv_m \in V_1 + \dots + V_m.$	
$5 \ \forall v \in \bigcap_{i=1}^{m} V_i, Tv$	$\in V_i, \forall i \in \{1,, m\} \Rightarrow Tv \in \bigcap_{i=1}^m V_i. \text{ Thus } \bigcap_{i=1}^m V_i \text{ is invar under } T.$	
SOLUTION: If $V = Suppose $	an invar subsp of V under each $T \in \mathcal{L}(V)$. Show that $U = \{0\}$ or $U = V$ = $\{0\}$. Then we are done. Suppose $V \neq \{0\}$. We show the contrapositive: see $U \neq \{0\}$ and $U \neq V$. Prove that $\exists T \in \mathcal{L}(V)$ such that U is not invar under T . V be such that $V = U \oplus W$. Define $T \in \mathcal{L}(V)$ by $T(u + w) = w$.	_
Define $\mathcal{C} \in \mathcal{L}(\mathbf{I})$ Then $(\cos \theta + \mathbf{i})$ Hence $T(a,b) = \mathbf{EXAMPLE}$: Or 7 Notice that \mathcal{M} Or. Suppose λ is	$T \in \mathcal{L}(\mathbf{R}^2)$ is the counterclockwise rotation by the angle $\theta \in \mathbf{R}$. \mathbf{R}^2, \mathbf{C}) by $\mathcal{C}(a, b) = a + \mathrm{i}b = r(\cos \alpha + \mathrm{i}\sin \alpha) \Rightarrow a = r\cos \alpha, b = r\sin \alpha$, where $r = a^2 + \sin \theta$ ($a + \mathrm{i}b$) = $r(\cos(\alpha + \theta) + \mathrm{i}\sin(\alpha + \theta)) = \mathcal{C}^{-1}T(a, b)$. = $(a\cos\theta - b\sin\theta, a\sin\theta + b\cos\theta)$. Now $\mathcal{M}(T) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$. Y Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is defined by $T(x, y) = (-3y, x)$. Find all eigvals of T . $T(T) = \begin{pmatrix} \cos 90^\circ & -3\sin 90^\circ \\ \sin 90^\circ & \cos 90^\circ \end{pmatrix}$. By $[5.8](a)$, we conclude that T has no eigvals. It is an eigval with an eigvec (x, y) . Then $(\lambda x, \lambda y) = (-3y, x) \Rightarrow -3y = \lambda^2 y \Rightarrow \lambda^2 = -3\cos\theta$.	-3.
	the possibility of $y = 0$, because $x = 0 \Leftrightarrow y = 0$.	
•	(\mathbf{F}^2) by $T(w,z)=(z,w)$. Find all eigenstand eigenstances.	
Thus Hence	ose λ is an eigval with an eigvec (w,z) . Then $z=\lambda w$ and $w=\lambda z$. $z=\lambda^2 z\Rightarrow \lambda^2=1$, ignoring the possibility of $z=0$ ($z=0\Longleftrightarrow w=0$). Let $\lambda_1=-1$ and $\lambda_2=1$ are all the eigvals of T . And $T(z,z)=(z,z)$, $T(z,-z)=(-z,z)$ in $F^2=2$. Thus the set of all eigvecs is $\{(z,z),(z,-z):z\neq 0\}$.	z).

For $\lambda = 0$, $z_2 = z_3 = 0$ and z_1 can be arbitrary ($z_1 \neq 0$). For $\lambda \neq 0$, $z_2 = 0 = z_1$, and z_3 can be arbitrary ($z_3 \neq 0$), then $\lambda = 5$. The set of all eigvecs is $\{(0,0,w), (w,0,0) : w \neq 0\}$. **10** Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, ..., x_n) = (x_1, 2x_2, 3x_3, ..., nx_n)$ (a) Find all eigvals and eigvecs; (b) Find all invar subsps of V under T. **SOLUTION:** (a) Suppose $x = (x_1, x_2, x_3, ..., x_n)$ is an eigeec with an eigeal λ . Then $Tx = \lambda v = (x_1, 2x_2, 3x_3, ..., nx_n) = (\lambda x_1, \lambda x_2, \lambda x_3, ..., \lambda x_n)$. Hence 1, ..., n of length dim \mathbf{F}^n are all the eigvals. And $\{(0,...,0,x_k,0,...,0) \in \mathbf{F}^n : x_k \neq 0, k = 1,...,n\}$ is the set of all eigvecs. (b) Let $(e_1, ..., e_n)$ be the standard basis of \mathbf{F}^n . Let $V_k = \operatorname{span}(e_k)$. Then $V_1, ..., V_n$ are invar under T. Hence by Tips (3), every sum of V_1, \dots, V_n is a invar subsp of V under T. **18** Define the forward shift operator $T \in \mathcal{L}(\mathbf{F}^{\infty})$ by $T(z_1, z_2, ...) = (0, z_1, z_2, ...)$. Show that T has no eigvals. **SOLUTION:** Suppose λ is an eigval of T with an eigvec $(z_1, z_2, ...)$. Then $T(z_1, z_2, ...) = (\lambda z_1, \lambda z_2, ...) = (0, z_1, z_2, ...)$. Thus $\lambda z_1 = 0, \lambda z_k = z_{k-1}$. If $\lambda = 0$, then $\lambda z_2 = z_1 = 0 = \dots = z_k \Rightarrow (z_1, z_2, \dots) = 0 \Longrightarrow 0$ is not an eigval. If $\lambda \neq 0$, then $\lambda z_1 = 0 \Rightarrow z_1 = \dots = z_k = 0 \Longrightarrow \lambda$ is not an eigval. Now no $\lambda \in \mathbf{F}$ is an eigval. **19** Suppose $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T(x_1, ..., x_n) = (x_1 + ... + x_n, ..., x_1 + ... + x_n)$. *In other words, the entries of* $\mathcal{M}(T)$ *with resp to the standard basis are all* 1's. *Find all eigvals and eigvecs of T.* **SOLUTION:** Suppose λ is an eigval of T with an eigvec (x_1, \dots, x_n) . Then $T(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n) = (x_1 + ... + x_n,...,x_1 + ... + x_n).$ Thus $\lambda x_1 = \dots = \lambda x_n = x_1 + \dots + x_n$. For $\lambda = 0$, $x_1 + \dots + x_n = 0$ For $\lambda \neq 0$, $x_1 = \dots = x_n \Longrightarrow \lambda x_k = nx_k$ $\} \Rightarrow 0$, n are the eigvals of T. And the set of all eigences of T is $\{(x_1, \dots, x_n) \in \mathbb{F}^n \setminus \{0\} : x_1 + \dots + x_n = 0 \lor x_1 = \dots = x_n\}$. **20** Define the backward shift operator $S \in \mathcal{L}(\mathbf{F}^{\infty})$ by $S(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots)$. (a) Show that every element of F is an eigval of S; (b) Find all eigvecs of S. **SOLUTION:** Suppose λ is an eigval of S with an eigvec $(z_1, z_2, ...)$. Then $S(z_1, z_2, ...) = (\lambda z_1, \lambda z_2, ...) = (z_2, z_3, ...)$. Thus for each $k \in \mathbb{N}^+, \lambda z_k = z_{k+1}$. If $\lambda=0$, then $\lambda z_1=z_2=\cdots=z_k=0$ for all k, while z_1 can be nonzero. Thus 0 is an eigval. If $\lambda \neq 0$, then $\lambda^k z_1 = \lambda^{k-1} z_2 = \cdots = \lambda z_k = z_{k+1}$, let $z_1 \neq 0 \Longrightarrow (1, \lambda, \lambda^2, \dots, \lambda^k, \dots)$ is an eigvec. Now each $\lambda \in \mathbf{F}$ is an eigval of T, with the correspd eigvecs in span $((1, \lambda, \lambda^2, ..., \lambda^k, ...))$.

9 Define $T \in \mathcal{L}(\mathbf{F}^3)$ by $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$. Find all eigenst and eigenst.

Then $(2z_2, 0, 5z_3) = \lambda(z_1, z_2, z_3)$. We discuss in two cases:

SOLUTION: Suppose λ is an eigval with an eigvec (z_1, z_2, z_3) .

11 Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $Tp = p'$. Find all eigends and eigends.
SOLUTION:
Note that $\forall p \in \mathcal{P}(\mathbf{R}) \setminus \{0\}$, $\deg p' < \deg p$. And $\deg 0 = -\infty$. Suppose λ is an eigval with an eigvec p .
Assume that $\lambda \neq 0$. Then $\deg \lambda p > \deg p'$ while $\lambda p = p'$. Contradicts. Thus $\lambda = 0$.
Therefore $\deg \lambda p = -\infty = \deg p' \Rightarrow p \in \mathcal{P}_0(\mathbf{R})$. Hence the eigences are all the nonzero consts. \square
12 Define $T \in \mathcal{L}(\mathcal{P}_n(\mathbf{R}))$ by $(Tp)(x) = xp'(x)$ for all $x \in \mathbf{R}$. Find all eigenstand eigenstances.
Solution:
Suppose λ is an eigval of T with an eigvec p , then $(Tp)(x) = xp'(x) = \lambda p(x)$.
Let $p = a_0 + a_1 x + \dots + a_n x^n$. Then $xp'(x) = a_1 x + 2a_2 x^2 + \dots + na_n x^n = \lambda a_0 + \lambda a_1 x + \lambda a_2 x^2 + \dots + \lambda a_n x^n$. Define $S \in \mathcal{L}(\mathbf{F}^{n+1}, \mathcal{P}_n(\mathbf{R}))$ by $S(a_0, a_1, \dots, a_n) = a_0 + a_1 x + \dots + a_n x^n$.
Then $(S^{-1}TS)(a_0, a_1,, a_n) = (0 \cdot a_0, 1 \cdot a_1, 2 \cdot a_2,, n \cdot a_n)$. Thus $0, 1,, n$ are the eigvals of $S^{-1}TS$.
By Problem (15), 0, 1,, n are the eigvals of T . The set of all eigvecs is $\{cx^{\lambda}: c \neq 0, \lambda = 0, 1,, n\}$.
• Suppose V is finite-dim, $T \in \mathcal{L}(V), \lambda \in \mathbf{F}$.
13 Prove that $\forall \lambda \in \mathbf{F}, \exists \alpha \in \mathbf{F}, \alpha - \lambda < \frac{1}{1000}, (T - \alpha I)$ is inv.
Solution:
Let $\alpha_k \in \mathbf{F}$ be such that $ \alpha_k - \lambda = \frac{1}{1000+k}$ for each $k = 1,, \dim V + 1$.
Note that each $T \in \mathcal{L}(V)$ has at most dim V distinct eigenls.
Hence $\exists k = 1,, \dim V + 1$ such that α_k is not an eigval of T and therefore $(T - \alpha_k I)$ is inv.
• (4E 5.A.11) Prove that $\exists \delta > 0$ such that $(T - \alpha I)$ is inv for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$.
SOLUTION:
If T has no eigvals, then $(T - \alpha I)$ is inje for all $\alpha \in \mathbf{F}$ and we are done.
Suppose $\lambda_1, \dots, \lambda_m$ are all the distinct eigvals of T . Let $\delta > 0$ be such that, for each eigval $\lambda_k, \lambda_k \notin (\lambda - \delta, \lambda) \cup (\lambda, \lambda + \delta)$.
So that for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$, $(T - \alpha I)$ is not inje.
Or. Let $\delta = \min\{ \lambda - \lambda_k : k \in \{1,, m\}, \lambda_k \neq \lambda\}.$
Then $\delta > 0$ and each $\lambda_k \neq \alpha$ [\iff ($T - \alpha I$) is inv] for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$.
• (5.B.4 Or 4E 3.B.27) Suppose λ is an eigral of $P \in \mathcal{L}(V)$, $P^2 = P$. Prove that $\lambda = 0$ or $\lambda = 1$.
S OLUTION: Suppose λ is an eigval with an eigvec v . Then $P(Pv) = Pv \Rightarrow \lambda^2 v = \lambda v$. Thus $\lambda = 1$ or 0 . \square
14 Suppose $V = U \oplus W$, where U and W are nonzero subsps of V . Define $P \in \mathcal{L}(V)$ by $P(u + w) = u$ for each $u \in U$ and each $w \in W$.
Find all eigvals and eigvecs of P.
SOLUTION:
Suppose λ is an eigval of P with an eigvec $(u + w)$.
Then $P(u+w) = u = \lambda u + \lambda w \Rightarrow (\lambda - 1)u + \lambda w = 0.$
OR. Note that $P _{\text{range }P} = I _{\text{range }P} \iff P^2 = P$. By (4E 5.A.8), 1 and 0 are the eigenstance of the second of the se
By $[1.44]$, $(\lambda - 1)u = \lambda w = 0$, hence $\lambda = 0 \Leftrightarrow u = 0$, and $\lambda = 1 \Leftrightarrow w = 0$.
Thus $Pu = u$, $Pw = 0$. Hence the eigvals are 0 and 1, the set of all eigvecs of P is $U \cup W$.

15 Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is inv.

- (a) Prove that T and $S^{-1}TS$ have the same eigvals.
- (b) What is the relationship between the eigvecs of T and the eigvecs of $S^{-1}TS$?

SOLUTION:

(a) λ is an eigval of T with an eigvec $v \Rightarrow S^{-1}TS(\underline{S^{-1}v}) = S^{-1}Tv = S^{-1}(\lambda v) = \underline{\lambda S^{-1}v}$.

 λ is an eigval of $S^{-1}TS$ with an eigvec $v \Rightarrow S(S^{-1}TS)v = TSv = \lambda Sv$.

OR. Note that $S(S^{-1}TS)S^{-1} = T$. Hence every eigval of $S^{-1}TS$ is an eigval of $S(S^{-1}TS)S^{-1} = T$.

Or.
$$Tv = \lambda v \iff (TS)(u) = \lambda Su \iff (S^{-1}TS)(u) = \lambda u$$
. Where $v = Su$. $(S^{-1}TS)(u) = \lambda u \iff (S^{-1}T)(v) = \lambda S^{-1}v \iff Tv = \lambda v$. Where $u = S^{-1}v$.

(b) Because λ is an eigval of $T \iff \lambda$ is an eigval of $S^{-1}TS$.

(See [5.36].) Now
$$E(\lambda, T) = \{Su : u \in E(\lambda, S^{-1}TS)\}; E(\lambda, S^{-1}TS) = \{S^{-1}v : v \in E(\lambda, T)\}.$$

17 Give an example of an operator on \mathbb{R}^4 that has no real eigenls.

SOLUTION:

Let (e_1, e_2, e_3, e_4) be the standard basis of \mathbb{R}^4

Let
$$(e_1,e_2,e_3,e_4)$$
 be the standard basis of \mathbb{R}^4 . Define $T\in\mathcal{L}(\mathbb{R}^4)$ by $\mathcal{M}\big(T,\big(e_1,e_2,e_3,e_4\big)\big)=\begin{pmatrix}1&1&1&1\\-1&1&-1&-1\\3&8&11&5\\3&-8&-11&5\end{pmatrix}$. Suppose λ is an eigval of T with an eigvec (x,y,z,w) . Then we get
$$\begin{cases} (1-\lambda)x+y+z+w=0,\\-x+\big(1-\lambda\big)y-z-w=0,\\3x+8y+\big(11-\lambda\big)z+5w=0,\\3x-8y-11z+\big(5-\lambda\big)w=0. \end{cases}$$

$$(1 - \lambda)x + y + z + w = 0,$$

-x + (1 - \lambda)y - z - w = 0,
$$3x + 8y + (11 - \lambda)z + 5w = 0,$$

$$3x - 8y - 11z + (5 - \lambda)w = 0.$$

This set of linear equations has no solutions.

You can type it on https://zh.numberempire.com/equationsolver.php to check.

Or. Define $T \in \mathcal{L}(\mathbb{R}^4)$ by $T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$.

Suppose λ is an eigval of T with an eigvec (x, y, z, w).

Then
$$T(x,y,z,w) = (\lambda x, \lambda y, \lambda z, \lambda w) = (-y, x, -w, z) \implies \begin{cases} -y = \lambda x, x = \lambda y \implies -xy = \lambda^2 xy \\ -w = \lambda z, z = \lambda w \implies -zw = \lambda^2 zw \end{cases}$$

If $xy \neq 0$ or $zw \neq 0$, then $\lambda^2 = -1$, we fail.

Otherwise, $xy = 0 \Rightarrow x = y = 0$, for if $x \neq 0$, then $\lambda = 0 \Rightarrow x = 0$, contradicts.

Similarly, y = z = w = 0. Then we fail. Thus *T* has no eigvals.

• (4E 5.A.16) Suppose $B_V = (v_1, ..., v_n), T \in \mathcal{L}(V), \mathcal{M}(T, (v_1, ..., v_n)) = A.$ *Prove that if* λ *is an eigval of* T*, then* $|\lambda| \leq n \max\{|A_{j,k}| : 1 \leq j, k \leq n\}$.

SOLUTION:

Suppose v is an eigval of T correspd to λ . Let $v = c_1 v_1 + \cdots + c_n v_n$.

Because
$$\lambda c_1 v_1 + \dots + \lambda c_n v_n = c_1 T v_1 + \dots + c_n T v_n = \sum_{k=0}^n c_k \left(\sum_{j=0}^n A_{j,k} v_j\right)$$
.

We have
$$\lambda c_j = \sum_{k=1}^n c_k A_{j,k} \Longrightarrow |\lambda| |c_j| = \sum_{k=1}^n |c_k| |A_{j,k}|$$
 for each $j \in \{1, \dots, n\}$

Let $|c_1| = \max\{|c_1|, \dots, |c_n|\}$. Note that $|c_1| \neq 0$, for if not, $c_1 = \dots = c_n = 0 \Rightarrow v = 0$, contradicts.

Let $M = \max\{|A_{j,k}| : 1 \le j, k \le n\}$. Note that for each j, $\sum_{k=1}^{n} |A_{j,k}| \le \sum_{k=1}^{n} M = nM$.

Thus
$$|\lambda||c_j| = \sum_{k=1}^n |c_k||A_{j,k}| \Longrightarrow |\lambda| \leqslant \sum_{k=1}^n |A_{j,k}| \frac{|c_k|}{|c_j|} \leqslant \sum_{k=1}^n |A_{j,k}| \leqslant nM.$$

• (4E 5.A.15) Suppose $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$. Show that λ is an eigval of $T \iff \lambda$ is an eigval of the dual operator $T' \in \mathcal{L}(V')$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v.

Let *U* be invar such that $V = \text{span}(v) \oplus U$ [by (4E 5.A.39)].

Define $\psi \in V'$ by $\psi(cv + u) = c$.

Now $[T'(\psi)](cv + u) = \psi(cv + Tu) = \lambda cv = \lambda \psi(cv + u)$. Hence $T'(\psi) = \lambda \psi$.

(b) Suppose λ is an eigval T' with an eigvec ψ . Then $T'(\psi) = \psi \circ T = \lambda \psi$.

Note that
$$\psi \neq 0$$
, $\psi(Tv) = \lambda \psi(v)$ Thus $\exists v \in V \setminus \{0\}$, $Tv = \frac{\psi(Tv)}{\psi(v)}v = \lambda v$.

OR. [Only in Finite-dim] Using [5.6], (4E 3.F.17), [3.101] and (3.F.12).

 λ is an eigval of $T \iff (T - \lambda I_V)$ is not inv

$$\iff$$
 $(T - \lambda I_V)' = T' - \lambda I_V$, is not inv \iff λ is an eigval of T' .

24 Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^{n,1})$ by Tx = Ax.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.
- (b) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

Suppose
$$\lambda$$
 is an eigval of T with an eigvec x . Then $Tx = Ax = \begin{pmatrix} \sum_{k=1}^{n} A_{1,k} x_k \\ \vdots \\ \sum_{k=1}^{n} A_{n,k} x_k \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

(a) Suppose $\sum_{r=1}^{n} A_{R,c} = 1$ for each $R \in \{1, ..., n\}$.

Then if we let $x_1 = \cdots = x_n$, then $\lambda = 1$, and hence is an eigval of T.

(b) Suppose $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C \in \{1, ..., n\}$.

Then
$$\sum_{r=1}^{n} (Ax)_{r,r} = \sum_{r=1}^{n} (Ax)_{r,1} = \sum_{c=1}^{n} (A_{1,c} + \dots + A_{n,c}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$

Hence $\lambda = 1$ for all $x \in \mathbb{F}^{n,1}$ such that $\sum_{c=1}^{n} x_{c,1} \neq 0$.

OR. We show that (T - I) is not inv, so that $\lambda = 1$ is an eigval.

Because
$$(T-I)x = (A-I)x = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r}x_r - x_1 \\ \vdots \\ \sum_{r=1}^{n} A_{n,r}x_r - x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Then
$$y_1 + \dots + y_n = \sum_{r=1}^n \sum_{c=1}^n (A_{r,c} x_c - x_r) = \sum_{c=1}^n x_c \sum_{r=1}^n A_{r,c} - \sum_{r=1}^n x_r = 0.$$

Thus range
$$(T-I) \subseteq \{ (y_1 \quad \cdots \quad y_n)^t \in \mathbb{F}^{n,1} : y_1 + \cdots + y_n = 0 \}$$
. Hence $(T-I)$ is not surj. \square

Or. Let (e_1, \dots, e_n) be the standard basis of $\mathbf{F}^{n,1}$. Define $\psi \in (\mathbf{F}^{n,1})'$ by $\psi(e_k) = 1$.

Thus
$$(\psi \circ (T-I))(e_k) = \psi((\sum_{j=1}^n A_{j,k}e_j) - e_k) = (\sum_{j=1}^n A_{j,k}) - 1 = 0.$$

Which means that
$$\psi \circ (T - I) = 0$$
. $\mathbb{X} \psi \neq 0$. Hence $(T - I)$ is not inje.

OR. Define $S \in \mathcal{L}(\mathbf{F}^{n,1})$ by $Sx = A^tx$. Because the rows of A^t are the cols of A.

Now by (a), 1 is an eigval of *S*. Let $(\varphi_1, ..., \varphi_n)$ be the dual basis of $(e_1, ..., e_n)$.

Define
$$\Phi \in \mathcal{L}(\mathbf{F}^{n,1}, (\mathbf{F}^{1,n})')$$
 by $\Phi(e_k) = \varphi_k$. Note that $\mathcal{M}(T') = A^t$.

Now
$$(\Phi^{-1}T'\Phi)(e_k) = (\Phi^{-1}T')(\varphi_k) = \Phi^{-1}(\sum_{j=1}^n A_{k,j}\varphi_j) = \sum_{j=1}^n A_{k,j}e_j = A^te_k = Se_k.$$

Thus 1 is an eigval of
$$S = \Phi^{-1}T'\Phi$$
, so of T' , [by Problem (15)], so of T , [by (4E 5.A.15)].

- Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^{1,n})$ by Tx = xA.
 - (a) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.
 - (b) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

Suppose λ is an eigval with an eigvec x. Then $\left(\sum_{r=1}^{n} x_r A_{r,1} \cdots \sum_{r=1}^{n} x_r A_{r,n}\right) = \lambda \left(x_1 \cdots x_n\right)$.

(a) Suppose $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C \in \{1, ..., n\}$.

Thus if $x_1 = \cdots = x_n$, then $\lambda = 1$, hence is an eigval of T.

(b) Suppose $\sum_{c=1}^{n} A_{R,c} = 1$ for each $R \in \{1, ..., n\}$.

Thus
$$\sum_{c=1}^{n} (xA)_{.,c} = \sum_{c=1}^{n} (A_{c,1} + \dots + A_{c,n}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$

Hence $\lambda = 1$, for all x such that $\sum_{r=1}^{n} x_{1,r} \neq 0$.

OR. We show that (T - I) is not inv, so that $\lambda = 1$ is an eigval.

Because
$$(T-I)x = x(A-\mathcal{M}(I)) = (\sum_{c=1}^{n} x_c A_{c,1} - x_1 \cdots \sum_{c=1}^{n} x_c A_{c,n} - x_n) = (y_1 \cdots y_n).$$

Then
$$y_1 + \dots + y_n = \sum_{c=1}^n \sum_{r=1}^n (x_r A_{r,c} - x_c) = \sum_{r=1}^n x_r \sum_{c=1}^n A_{r,c} - \sum_{c=1}^n x_c = 0.$$

Thus range
$$(T-I) \subseteq \{ (y_1 \quad \cdots \quad y_n) \in \mathbf{F}^{1,n} : y_1 + \cdots + y_n = 0 \}$$
. Hence $(T-I)$ is not surj. \square

OR. Let (e_1, \dots, e_n) be the standard basis of $\mathbf{F}^{1,n}$. Define $\psi \in (\mathbf{F}^{n,1})'$ by $\psi(e_k) = 1$.

Because
$$Te_k = e_k A = \begin{pmatrix} A_{k,1} & \cdots & A_{k,n} \end{pmatrix} = \sum_{i=1}^n A_{k,i} e_i$$
. Corollary: $\mathcal{M}(T) = A^t$.

$$(\psi \circ (T-I))(e_k) = (\sum_{i=1}^n A_{k,i}) - 1 = 0$$
. Then $\psi \circ (T-I) = 0$. $\not \subset \psi \neq 0$. $(T-I)$ is not inje. \Box

Or. Define $S \in \mathcal{L}(\mathbf{F}^{1,n})$ by $Sx = xA^t$. Because the rows of A are the cols of A^t .

Now by (a), 1 is an eigval of *S*. Let $(\varphi_1, ..., \varphi_n)$ be the dual basis of $(e_1, ..., e_n)$.

Define
$$\Phi \in \mathcal{L}\left(\mathbf{F}^{1,n}, (\mathbf{F}^{1,n})'\right)$$
 by $\Phi(e_k) = \varphi_k$. Because $\left[T'(\varphi_k)\right](e_j) = \varphi_k\left(\sum_{i=1}^n A_{j,i}e_i\right) = A_{j,k}$.

By (3.F.9),
$$T'(\varphi_k) = \sum_{j=1}^n A_{j,k} \varphi_j$$
. Corollary: $\mathcal{M}(T') = A = \mathcal{M}(T)^t$. FIXME: $\mathcal{M}(T)e_k = A^t e_k = e_k A$

Now
$$(\Phi^{-1}T'\Phi)(e_k) = (\Phi^{-1}T')(\varphi_k) = \Phi^{-1}(\sum_{j=1}^n A_{j,k}\varphi_j) = \sum_{j=1}^n A_{j,k}e_j = e_kA^t = Se_k.$$

Thus 1 is an eigval of $S = \Phi^{-1}T'\Phi$, so of T', [by Problem (15)], so of T, [by (4E 5.A.15)]. \square

- Suppose F = R, $T \in \mathcal{L}(V)$.
 - (a) [OR (9.11)] $\lambda \in \mathbf{R}$. Prove that λ is an eigval of $T \iff \lambda$ is an eigval of $T_{\mathbf{C}}$.
 - (b) [Or **16** Or [9.16]] $\lambda \in \mathbb{C}$. Prove that λ is an eigend of $T_{\mathbb{C}} \iff \overline{\lambda}$ is an eigend of $T_{\mathbb{C}}$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v.

Then
$$Tv = \lambda v \Longrightarrow T_{\rm C}(v + i0) = Tv + iT0 = \lambda v$$
. Thus λ is an eigval of $T_{\rm C}$.

Suppose λ is an eigval of $T_{\rm C}$ with an eigvec v + iu.

Then $T_{\rm C}(v+{\rm i}u)=\lambda v+{\rm i}\lambda u\Longrightarrow Tv=\lambda v, Tu=\lambda u$. Thus λ is an eigval of T.

(Note that v + iu is nonzero \iff at least one of v, u is nonzero).

(b) Suppose λ is an eigval of $T_{\rm C}$ with an eigvec $v+{\rm i}u$. Then $T_{\rm C}(v+{\rm i}u)=Tv+{\rm i}Tu=\lambda(v+{\rm i}u)$.

Note that
$$\overline{T_{\rm C}(v+{\rm i}u)}=\overline{Tv+{\rm i}Tu}=Tv-{\rm i}Tu=T_{\rm C}(v-{\rm i}u)=T_{\rm C}(\overline{v+{\rm i}u}).$$

And that
$$\overline{\lambda(v+iu)} = \overline{\lambda}v - i\overline{\lambda}u = \overline{\lambda}(v-iu) = \overline{\lambda}(\overline{v+iu}).$$

Hence
$$\overline{\lambda}$$
 is an eigval of $T_{\rm C}$. To prove the other direction, notice that $\overline{\overline{\lambda}} = \lambda$.

Or. Suppose $\lambda = a + ib$ is an eigval of $T_{\rm C}$ with an eigvec v + iu.

Because
$$T_{\mathbf{C}}(v+\mathrm{i}u) = \lambda(v+\mathrm{i}u) = (av-bu)+\mathrm{i}(au+bv) = Tv+\mathrm{i}Tu \Longrightarrow Tv = av-bu$$
, $Tu = au+bv$.

Now
$$T_{\mathbf{C}}(\overline{v+\mathrm{i}u}) = Tv - \mathrm{i}Tu = (av - bu) - \mathrm{i}(au + bv) = (a - \mathrm{i}b)(v - \mathrm{i}u) = \overline{\lambda}(\overline{v-\mathrm{i}u})$$
. Similarly

21 Suppose $T \in \mathcal{L}(V)$ is inv. (a) Suppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$. Prove that λ is an eigval of $T \iff \lambda^{-1}$ is an eigval of T^{-1} . (b) Prove that T and T^{-1} have the same eigvecs.
SOLUTION: (a) $Tv = \lambda v \iff v = \lambda T^{-1}v \iff \lambda^{-1}v = T^{-1}v$. Where $v \neq 0$.
(b) Notice that T is inv \Longrightarrow 0 is not an eigval of T or T^{-1} . By (a), immediately. \square
22 Suppose $T \in \mathcal{L}(V)$ and \exists nonzero vecs u, w in V such that $Tu = 3w$, $Tw = 3u$. Prove that 3 or -3 is an eigval of T .
SOLUTION: $T(u+w) = 3(u+w)$, $T(u-w) = 3(w-u) = -3(u-w)$. Note that $u-w \neq 0$ or $u+w \neq 0$. OR. $T(Tu) = 9u \Rightarrow T^2 - 9 = (T-3I)(T+3I)$ is not injective \Rightarrow 3 or -3 is an eigval.
23 Suppose $S, T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigvals.
SOLUTION: Suppose λ is an eigval of ST with an eigvec v . Then $T(STv) = \lambda Tv = TS(Tv)$. If $Tv = 0$ (while $v \neq 0$), then T is not inje $\Rightarrow (TS - 0I)$ and $(ST - 0I)$ are not inje. Thus $\lambda = 0$ is an eigval of ST and TS with the same eigvec v .
Otherwise, $Tv \neq 0$, then λ is an eigval of TS . Reversing the roles of T and S .
• (2E 20) Suppose $T \in \mathcal{L}(V)$ has dim V distinct eigenstand $S \in \mathcal{L}(V)$ has the same eigences (but might not with the same eigens). Prove that $ST = TS$.
SOLUTION: Let $n = \dim V$. For each $j \in \{1,, n\}$, let v_j be an eigeve with eigeval λ_j of T and α_j of S . Then $B_V = (v_1,, v_n)$. Because $(ST)v_j = \alpha_j\lambda_jv_j = (TS)v_j$ for each j . Hence $ST = TS$.
• (4E 5.A.37) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of A .
SOLUTION:
(a) Suppose λ is an eigval of T with an eigvec $v=v_1$. Let $B_V=(v_1,\ldots,v_m,\ldots,v_n)$. Note that $\mathrm{span}(v)\subseteq \mathrm{null}(T-\lambda I)$. Define $S\in\mathcal{L}(V)$ by $S(v_j)=v$ for each $j\in\{1,\ldots,n\}$. Or. Define $S\in\mathcal{L}(V)$ by $Sv_1=v_1$, $Sv_j=0$ for $j\geqslant 2$. Then $(T-\lambda I)Sv_1=0=(T-\lambda I)Sv_k=0$. Then $(T-\lambda I)S=0$. Thus $\mathcal{A}(S)=TS=\lambda S$ while $S\neq 0$. Hence λ is an eigval of \mathcal{A} .
(b) Suppose λ is an eigval of \mathcal{A} with an eigvec S . Then $\exists v \in V, 0 \neq u = S(v) \in V \Rightarrow Tu = (TS)v = (\lambda S)v = \lambda u$. Thus λ is an eigval T . Or. Because $TS - \lambda S = (T - \lambda I)S = 0 \Rightarrow \{0\} \subsetneq \operatorname{range} S \subseteq \operatorname{null}(T - \lambda I)$. $(T - \lambda I)$ is not inje. \square
Comment: If $\mathcal{A}(S) = ST, \forall S \in \mathcal{L}(V)$. Then the eigends of \mathcal{A} are not the eigends of T .
25 Suppose $T \in \mathcal{L}(V)$ and u, w are eigences of T such that $u + w$ is also an eigence of T . Prove that u and w correspond to the same eigenal.
SOLUTION: Suppose $\lambda_1, \lambda_2, \lambda_0$ are eigvals of T with eigvecs to $u, w, u + w$ respectively. Then $T(u+w) = \lambda_0(u+w) = Tu + Tw = \lambda_1 u + \lambda_2 w \Rightarrow (\lambda_0 - \lambda_1)u = (\lambda_2 - \lambda_0)w$. If (u,w) is linely depe, then let $w = cu$, therefore $\lambda_2 cu = Tw = cTu = \lambda_1 cu \Rightarrow \lambda_2 = \lambda_1$. Otherwise, (u,w) is linely inde. Then $\lambda_0 - \lambda_1 = \lambda_2 - \lambda_0 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_0$. \square OR. Assume that $\lambda_1 \neq \lambda_2$. Then (u,w) is linely inde. Thus $\lambda_0 - \lambda_1 = \lambda_0 - \lambda_2$. Contradicts. \square

26 Suppose $T \in \mathcal{L}(V)$ is such that every nonzero vec in V is an eigvec of T. *Prove that T is a scalar multi of the identity operator.* **SOLUTION**: If dim V = 0, 1 then we are done. Suppose dim $V \ge 2$. Because $\forall v \in V, \exists ! \lambda_v \in \mathbf{F}, Tv = \lambda_v v$. For any two distinct nonzero vecs $v, w \in V$, $T(v+w) = \lambda_{v+w}(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \Rightarrow (\lambda_{v+w} - \lambda_v)v = (\lambda_w - \lambda_{v+w})w.$ Or. For any two nonzero vecs $u, v \in V$, u, v are eigvecs. If $u + v \neq 0$, then u + v is also an eigvec. Otherwise, u + v = 0, then $Tu = -Tv = \lambda u = -\lambda v$. Thus by Problem (25), $\forall u, v \in V$, $Tu = \lambda u$, $Tv = \lambda v \Rightarrow \forall v \in V$, $Tv = \lambda v$. **27, 28** Suppose V is finite-dim and $k \in \{1, ..., \dim V - 1\}$. Suppose $T \in \mathcal{L}(V)$ is such that every subsp of V of dim k is invar under T. *Prove that T is a scalar multi of the identity operator.* **SOLUTION**: If dim $V \le 1$ then we are done. Suppose dim $V \ge 2$. We prove the contrapositive: If T is not a scalar multi of I. Then \exists subsp U of dim k not invar under T. By Problem (26), $\exists v \in V$ and $v \neq 0$ such that v is not an eigeec of T. Thus (v, Tv) is linely inde. Extend to $B_V = (v, Tv, u_1, \dots, u_n)$. Let $U = \text{span}(v, u_1, ..., u_{k-1}) \Rightarrow U$ is not an invar subsp of V under T. Or. Suppose $0 \neq v = v_1 \in V$. Extend to $B_V = (v_1, \dots, v_n)$. Suppose $Tv_1 = c_1v_1 + \dots + c_nv_n$, $\exists ! c_i \in F$. Consider a k-dim subsp $U = \text{span}(v_1, v_{\alpha_1}, \dots, v_{\alpha_{k-1}})$. Where $\alpha_1, \dots, \alpha_{k-1} \in \{2, \dots, n\}$ are distinct. Because every subsp such U is invar. $Tv_1 = c_1v_1 + \cdots + c_nv_n \in U \Longrightarrow c_2 = \cdots = c_n = 0$. For if not, $\exists c_i \neq 0$, let $W = \text{span}(v_1, v_{\beta_1}, ..., v_{\beta_{k-1}})$, where each $\beta_i \in \{2, ..., i-1, i+1, ..., n\}$. Hence $Tv_1 = c_1v_1$. Because $v_1 = v \in V$ is arbitrary. We conclude that $T = \lambda I$ for some $\lambda \in F$. Or. For each $k \in \{1, ..., \dim V - 1\}$, define P(k): if every subsp of dim k is invar, then $T = \lambda I$. (i) If every subsp of dim 1 is invar, then by Problem (26), $T = \lambda I$. Thus P(1) holds. (ii) Assume that P(k) holds for $k \in \{1, ..., \dim V - 1\}$. And every subsp of dim k + 1 is invar. Let *U* be a subsp of dim *k*. If dim $U = \dim V - 1$ then extend B_U to B_V and we are done. Suppose dim *U* ∈ $\{1, ..., \dim V - 2\}$. Choose two linely inde vecs $v, w \notin U$. Because $U \oplus \text{span}(v)$ and $U \oplus \text{span}(w)$ of dim k + 1 are invar. Suppose $u \in U$. Let $Tu = a_1u_1 + bv = a_2u_2 + cw$, $\exists ! u_1, u_2 \in U$, $a_1, a_2, b, c \in F$. Now $a_1u_1 - a_2u_2 = cw - bv \in U \cap \text{span}(v) = \{0\} \Rightarrow b = c = 0$. Thus $Tu \in U$. Because P(k) holds, we conclude that $T = \lambda I$. Thus P(k + 1) holds. **29** Suppose $T \in \mathcal{L}(V)$ and range T is finite-dim. *Prove that T has at most* $1 + \dim range T$ *distinct eigvals.* **SOLUTION:** Let $\lambda_1, \dots, \lambda_m$ be the distinct eigvals of T with corresponding eigvecs v_1, \dots, v_m . (Because range T is finite-dim. The correspd eigvals are finite.) Then $(v_1, ..., v_m)$ linely inde $\Longrightarrow (\lambda_1 v_1, ..., \lambda_m v_m)$ linely inde, if each $\lambda_k \neq 0$. Otherwise, $\exists ! \lambda_k = 0$. Now $(\lambda_1 v_1, \dots, \lambda_{k-1} v_{k-1}, \lambda_{k+1} v_{k+1}, \dots, \lambda_m v_m)$ is linely inde. Hence, by [2.23], $m-1 \leq \dim \operatorname{range} T$. **30** Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ and $-4, 5, \sqrt{7}$ are eigvals. Prove that $\exists x, Tx - 9x = (-4, 5, \sqrt{7})$.

SOLUTION: *T* has dim R³ eigvals not including $9 \Rightarrow (T - 9I)$ is inv. $x = (T - 9I)^{-1}(-4, 5, \sqrt{7})$.

31 Suppose V is finite-dim, and $v_1, \ldots, v_m \in V$. Prove that (v_1, \ldots, v_m) is linely inde $\iff v_1, \ldots, v_m$ are eigences of some T correspond to distinct eigensless. **SOLUTION:** Suppose $(v_1, ..., v_m)$ is linely inde. Let $B_V = (v_1, ..., v_m, ..., v_n)$. Define $T \in \mathcal{L}(V)$ by $Tv_k = k \cdot v_k$ for each $k \in \{1, ..., m, ..., n\}$. Conversely by [5.10]. • Suppose $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ are distinct. (a) **32** Prove that $(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$ is linely inde in \mathbb{R}^R . **HINT**: Let $V = \text{span}(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$. Define $D \in \mathcal{L}(V)$ by Df = f'. Find eigenstand eigenstands of D. (b) [4E 36] Show that $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ is linely inde in \mathbb{R}^R . **SOLUTION:** (a) Define V and $D \in \mathcal{L}(V)$ as in HINT. Then because for each k, $D(e^{\lambda_k x}) = \lambda_k e^{\lambda_k x}$. Thus $\lambda_1, \dots, \lambda_n$ are distinct eigvals of D. By [5.10], $(e^{\lambda_1 x}, \dots, e^{\lambda_n x})$ is linely inde in \mathbb{R}^R . (b) Let $V = \text{span}(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$. Define $D \in \mathcal{L}(V)$ by Df = f'. Then because $D(\cos(\lambda_k x)) = -\lambda_k \sin(\lambda_k x)$. $\not Z D(\sin(\lambda_k x)) = \lambda_k \cos(\lambda_k x)$. Thus $D^2(\cos(\lambda_k x)) = -\lambda_k^2 \cos(\lambda_k x)$. Notice that $\lambda_1, \dots, \lambda_n$ are distinct $\Longrightarrow -\lambda_1^2, \dots, -\lambda_n^2$ are distinct. And dim V = n. Hence $-\lambda_1^2, \dots, -\lambda_n^2$ are all the eigvals of D^2 with correspd eigvecs $\cos(\lambda_1 x), \dots, \cos(\lambda_n x)$. And then $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ is linely inde in $\mathbb{R}^{\mathbb{R}}$. **33** Suppose $T \in \mathcal{L}(V)$. Prove that T/(range T) = 0. **SOLUTION**: $v + \text{range } T \in V/\text{range } T \Longrightarrow v + \text{range } T \in \text{null } (T/(\text{range } T))$. Hence T/(range T) = 0. \square **34** Suppose $T \in \mathcal{L}(V)$. Prove that T/(null T) is inje \iff $(\text{null } T) \cap (\text{range } T) = \{0\}$. **SOLUTION:** NOTICE that $(T/(\text{null }T))(u + \text{null }T) = Tu + \text{null }T = 0 \iff Tu \in (\text{null }T) \cap (\text{range }T)$. Now $T/(\operatorname{null} T)$ is inje $\iff u + \operatorname{null} T = 0 \iff Tu = 0 \iff (\operatorname{null} T) \cap (\operatorname{range} T) = \{0\}.$ • Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T. Define $T/U: V/U \rightarrow V/U$ by (T/U)(v+U) = Tv + U for each $v \in V$. (a) Show that T/U is well-defined and is linear. Requires that U is invarunder T. (b) [Or **35**] Show that each eigral of T/U is an eigral of T. **SOLUTION:** (a) $v + U = w + U \iff v - w \in U \implies T(v - w) \in U \iff Tv + U = Tw + U$. Hence T/U is well-defined. Now we show that T/U is linear. $(T/U)((v+U) + \lambda(w+U)) = T(v+\lambda w) + U = (T/U)(v+U) + \lambda(T/U)(w)$. Checked. (b) Suppose λ is an eigval of T/U with an eigvec v+U. Then $Tv+U=\lambda v+U\Rightarrow (T-\lambda I)v=u\in U$. If $u = 0 \Rightarrow Tv = \lambda v$, then we are done. Otherwise, we discuss in two cases. If $(T - \lambda I)|_U$ is inv. Then $\exists ! w \in U$, $(T - \lambda I)(w) = u = (T - \lambda I)v \Rightarrow T(v + w) = \lambda(v + w)$. Note that $v + w \neq 0$, for if not, $v \in U \Rightarrow v + U = 0$, contradicts. Thus λ is an eigval of T. If $(T - \lambda I)|_U$ is not inv. Then because V is finite-dim, $(T - \lambda I)|_U$ is not inje, so that $\exists w \in \text{null } (T - \lambda I)|_{U}, w \neq 0, (T - \lambda I)w = 0 \Rightarrow Tw = \lambda w.$ Or. Let $B_U = (u_1, ..., u_m)$. Then $((T - \lambda I)v, (T - \lambda I)u_1, ..., (T - \lambda I)u_m)$ is linely inde in U. So that $a_0(T - \lambda I)v + a_1(T - \lambda I)u_1 + \dots + a_m(T - \lambda I)u_m = 0, \exists a_0, a_1, \dots, a_m \in \mathbf{F}$ with some $a_i \neq 0$. Let $w = a_0v + a_1u_1 + \cdots + a_mu_m \Longrightarrow Tw = \lambda w$. Note that $w \neq 0$, for if not, $a_0v \in U$, each $a_i = 0$. \square

Solution: A counterexample:	
Consider $V = \{ f \in \mathbb{R}^{\mathbb{R}} : \exists ! m \in \mathbb{N}, f \in \text{span}(1, e^x,, e^{mx}) \}$. Note that V is infinite-dim.	
And a subsp $U = \{ f \in \mathbb{R}^{\mathbb{R}} : \exists ! m \in \mathbb{N}^+, f \in \operatorname{span}(e^x, \dots, e^{mx}) \}.$	
Define $T \in \mathcal{L}(V)$ by $Tf = e^x f$. Then range $T = U$ is invar under T .	
Consider $(T/U)(1+U) = e^x + U = 0 \Longrightarrow 0$ is an eigval of T/U but is not an eigval of T .	
[null $T = \{0\}$, for if not, $\exists f \in V \setminus \{0\}$, $(Tf)(x) = e^x f(x) = 0$, $\forall x \in \mathbb{R} \Rightarrow f = 0$, contradicts.]	
• (4E 5.A.39) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that T has an eigval $\iff \exists$ an invar subsp U under T of dimension $\dim V - 1$.	
SOLUTION:	
(a) Suppose λ is an eigval of T with an eigvec v . (If dim $V=1$, then $U=\{0\}$ and we are done.)
Extend $v_1 = v$ to $B_V = (v_1, v_2, v_n)$.	,
Step 1. If $\exists w_1 \in \text{span}(v_2, \dots, v_n)$ such that $0 \neq Tw_1 \in \text{span}(v_1)$.	
Then extend $w_1 = \alpha_{1,2}$ to a basis of span (v_2, \dots, v_n) as $(\alpha_{1,2}, \dots, \alpha_{1,n})$.	
Otherwise, we stop at step 1.	
Step 2. If $\exists w_2 \in \text{span}(\alpha_{1,3}, \dots, \alpha_{1,n})$ such that $0 \neq Tw_2 \in \text{span}(v_1, w_1)$.	
Then extend $w_2 = \alpha_{2,3}$ to a basis of span $(\alpha_{1,3}, \dots, \alpha_{1,n})$ as $(\alpha_{2,3}, \dots, \alpha_{2,n})$.	
Otherwise, we stop at step 2.	
Step k. If $\exists w_k \in \text{span}(\alpha_{k-1,k+1},,\alpha_{k-1,n})$ such that $0 \neq Tw_k \in \text{span}(v_1,w_1,,w_{k-1})$,	
Then extend $w_k = \alpha_{k,k+1}$ to a basis of span $(\alpha_{k-1,k+1}, \dots, \alpha_{k-1,n})$ as $(\alpha_{k,k+1}, \dots, \alpha_{k,n})$.	
Otherwise, we stop at step k .	
Finally, we stop at step m , thus we get $(v_1, w_1, \dots, w_{m-1})$ and $(\alpha_{m-1,m}, \dots, \alpha_{m-1,n})$,	
range $T _{\text{span}(w_1,,w_{m-1})} = \text{span}(v_1, w_1,, w_{m-2}) \Rightarrow \dim \text{null } T _{\text{span}(w_1,,w_{m-1})} = 0,$	
$\operatorname{span}(w_1, \dots, w_{m-1}) = \operatorname{respan}(w_1, \dots, w_{m-1})$ $\operatorname{span}(v_1, w_1, \dots, w_{m-1}) = \operatorname{respan}(w_1, \dots, w_{m-1})$ $\operatorname{span}(w_1, \dots, w_{m-1}) = \operatorname{respan}(w_1, \dots, w_{m-1})$	
$\frac{1}{\dim m} \frac{1}{\dim (n-m)}$	
Let $U = \operatorname{span}(\alpha_{m-1,m}, \dots, \alpha_{m-1,n}) \oplus \operatorname{span}(v_1, w_1, \dots, w_{m-2})$ and we are done.	
COMMENT: Both span $(v_2,,v_n)$ and $U \oplus \text{span}(w_{m-1})$ are in $\mathcal{S}_V \text{span}(v_1)$.	
If $T _U$ is inv, then by the similar algorithm, we can extend U to an invar subsp.	
Or. Note that dim null $(T - \lambda I) \ge 1$. And dim range $(T - \lambda I) \le \dim V - 1$.	
Let $B_{\text{range }(T-\lambda I)} = (w_1,, w_m), \ B_V = (w_1,, w_m, u_1,, u_n).$	
If $m = \dim V - 1$. $\left[\iff n = 0$. Then range $(T - \lambda I)$ is an invar subsp of dim dim $V - 1$.	
Otherwise, choose $k \in \{1,, n\}$ and then let $U = \text{span}(w_1,, w_m, u_1,, u_{k-1}, u_{k+1},, u_n)$.	
By Problem (1)(b), U is invar under $(T - \lambda I)$. Now $u \in U \Rightarrow (T - \lambda I)(u) \in U \Rightarrow Tu \in U$.	
(b) Suppose U is an invar subsp under T of dim $m = \dim V - 1$. (If $m = 0$, then we are done.)	
Let $B_U = (u_1,, u_m), B_V = (u_0, u_1,, u_m)$. We discuss in cases:	
(I) If $Tu_0 \in U$, then range $T = U$ so that T is not surj \iff null $T \neq \{0\} \iff 0$ is an eigval of T	•
(II) If $Tu_0 \notin U$, then $Tu_0 = a_0 u_0 + a_1 u_1 + \dots + a_m u_m$.	
If range $T _U = U \iff a_1 = \dots = a_m = 0 \iff Tu_0 \in \operatorname{span}(u_0)$ then we are done.	_
Otherwise, $T _U: U \to U$ is not surj, so is not inje. Thus 0 is an eigval of $T _U$, so of T .	
Or. Consider $T/U \in \mathcal{L}(V/U)$. Because dim $V/U = 1$. $\exists \lambda \in \mathbb{F}$, $T/U = \lambda I$. By Problem (35).	

36 Prove or give a counterexample: The result in Exercise 35 is still true if V is infinite-dim.

5.B: I [See 5.B: II below.]

COMMENT: 下面,为了照顾原书 5.B 节两版过大的差距,特别将此节补注分成 I 和 II 两部分。 又考虑到第4版中5.B节的「本征值与极小多项式」与「奇维度实向量空间的本征值」 (相当一部分是从原第3版8.C节挪过来的)是对原第3版[多项式作用于算子]与 [本征值的存在性](也即第3版5.B前半部分)的极大扩充,这一扩充也大大改变了 原第3版后半部分的[上三角矩阵]这一小节,故而将第4版5.B节放在第3版前面。

> I 部分除了覆盖第 4 版 5.B 节全部和第 3 版 5.B 节前半部分与之相关的所有习题, 还会覆盖第4版5.A节末。

II 部分除了覆盖第 3 版 5.B 节后半部分 [上三角矩阵] 这一小节,还会覆盖第 4 版 5.C 节; 并且,下面 5.C 还会覆盖第 4 版 5.D 节。

```
[注: [8.40]
                 Or (4E 5.22)
      [8.44,8.45] OR (4E 5.25,5.26) — how to find the mini poly;
                 OR (4E 5.27) — eigvals are the zeros of the mini poly;
      [8.49]
      [8.46]
                 Or (4E 5.29)
                                  ---q(T) = 0 \Leftrightarrow q \text{ is a poly multi of the mini poly.}
```

1 2 3 5 6 7 8 10 11 12 13 18 19 | 2E: Ch5.24 4E: 5.A.32 5.A.33 3 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

- (4E 5.A.33) Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.
 - (a) Prove that T is inje \iff T^m is inje.
 - (b) Prove that T is surj \iff T^m is surj.

SOLUTION:

- (a) Suppose T^m is inje. Then $Tv = 0 \Rightarrow T^{m-1}Tv = T^mv = 0 \Rightarrow v = 0$. Suppose *T* is inje. Then $T^mv = T^{m-1}v = \cdots = T^2v = Tv = v = 0$.
- (b) Suppose T^m is surj. $\forall u \in V, \exists v \in V, T^m v = u = Tw$, let $w = T^{m-1}v$. Suppose T is surj. Then $\forall u \in V, \exists v_1, \dots, v_m \in V, T(v_1) = T^2v_2 = \dots = T^mv_m = u$.

• Note For [5.17]:

Suppose $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(F)$. Prove that $\operatorname{null} p(T)$ and range p(T) are invar under T. **SOLUTION**: Using the commutativity in [5.10].

(a) Suppose $u \in \text{null } p(T)$. Then p(T)u = 0.

Thus
$$p(T)(Tu) = (p(T)T)u(Tp(T))u = T(p(T)u) = 0$$
. Hence $Tu \in \text{null } p(T)$.

(b) Suppose $u \in \text{range } p(T)$. Then $\exists v \in V$ such that u = p(T)v.

Thus
$$Tu = T(p(T)v) = p(T)(Tv) \in \text{range } p(T)$$
.

• **Note For [5.21]:** Every operator on a finite-dim nonzero complex vecsp has an eigval.

Suppose *V* is a finite-dim complex vecsp of dim n > 0 and $T \in \mathcal{L}(V)$.

Choose a nonzero $v \in V$. $(v, Tv, T^2v, ..., T^nv)$ of length n+1 is linely depe.

Suppose $a_0I + a_1T + \cdots + a_nT^n = 0$. Then $\exists a_i \neq 0$.

Thus \exists nonconst p of smallest degree ($\deg p > 0$) such that p(T)v = 0.

Because $\exists \lambda \in \mathbb{C}$ such that $p(\lambda) = 0 \Rightarrow \exists q \in \mathcal{P}(\mathbb{C}), p(z) = (z - \lambda)q(z), \forall z \in \mathbb{C}$.

Thus $0 = p(T)v = (T - \lambda I)(q(T)v)$. By the minimality of deg p and deg $q < \deg p$, $q(T)v \neq 0$.

Then $(T - \lambda I)$ is not inje. Thus λ is an eigval of T with eigvec q(T)v.

• **Example**: an operator on a complex vecsp with no eigvals

Define $T \in \mathcal{L}(\mathcal{P}(\mathbf{C}))$ by (Tp)(z) = zp(z).

Suppose $p \in \mathcal{P}(\mathbb{C})$ is a nonzero poly. Then deg $Tp = \deg p + 1$, and thus $Tp \neq \lambda p$, $\forall \lambda \in \mathbb{C}$. Hence *T* has no eigvals. **13** Suppose V is a complex vecsp and $T \in \mathcal{L}(V)$ has no eigvals. *Prove that every subsp of V invar under T is either* $\{0\}$ *or infinite-dim.* **SOLUTION**: Suppose *U* is a finite-dim nonzero invar subsp on C. Then by [5.21], $T|_U$ has an eigval. \Box **16** Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}(\mathcal{P}_{\dim V}(\mathbf{C}), V)$ by S(p) = p(T)v. Prove [5.21]. **SOLUTION:** Because dim $\mathcal{P}_{\dim V}(\mathbf{C}) = \dim V + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{\dim V}(\mathbf{C}), p(T)v = 0$. Using [4.14], write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Apply T to both sides: $p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$. Thus at least one of $(T - \lambda_i I)$ is not inje (because p(T) is not inje). **17** Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}(\mathcal{P}_{(\dim V)^2}(\mathbf{C}), \mathcal{L}(V))$ by S(p) = p(T). Prove [5.21]. **SOLUTION:** Because dim $\mathcal{P}_{(\dim V)^2}(\mathbf{C}) = (\dim V)^2 + 1$. Then *S* is not inje. Hence $\exists p \in \mathcal{P}_{(\dim V)^2}(\mathbf{C}) \setminus \{0\}, 0 = S(p) = p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$, where $c \neq 0$. Thus $(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0 \Longrightarrow \exists j, (T - \lambda_j)$ is not inje. **COMMENT:** \exists monic $q \in \text{null } S \neq \{0\}$ of smallest degree, S(q) = q(T) = 0, then q is the *mini poly*. • **Note For** [8.40]: *def for mini poly* Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Suppose $M_T^0 = \{p_i\}_{i \in \Gamma}$ is the set of all monic poly that give 0 whenever T is applied. Prove that $\exists ! p_k \in M_T^0$, $\deg p_k = \min \{ \deg p_i \}_{i \in \Gamma} \leqslant \dim V$. **SOLUTION:** OR. Another Proof: $\mid Existns \ Part \mid We \ use induction on dim \ V.$ (i) If dim V = 0, then $I = 0 \in \mathcal{L}(V)$ and let p = 1, we are done. (ii) Suppose dim $V \ge 1$. Assume that dim V > 0 and that the desired result is true for all operators on all vecsps of smaller dim. Let $u \in V$, $u \neq 0$. The list $(u, Tu, ..., T^{\dim V}u)$ of length $(1 + \dim V)$ is linely depe. Then $\exists ! T^m$ of smallest degree such that $T^m u \in \text{span}(u, Tu, ..., T^{m-1}u)$. Thus $\exists c_i \in \mathbf{F}, c_0 u + c_1 T u + \dots + c_{m-1} T^{m-1} u + T^m u = 0.$ Define q by $q(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m$. Then $0 = T^k(q(T)u) = q(T)(T^ku), \forall k \in \{1, ..., m-1\} \subseteq \mathbb{N}.$ Because $(u, Tu, ..., T^{m-1}u)$ is linely inde. Thus dim null $q(T) \ge m \Rightarrow \dim \operatorname{range} q(T) = \dim V - \dim \operatorname{null} q(T) \le \dim V - m$. Let $W = \operatorname{range} q(T)$. By assumption, $\exists s \in M_T^0$ of smallest degree (and deg $s \leq \dim W$,) so that $s(T|_W) = 0$. Hence $\forall v \in V$, ((sq)(T))(v) = s(T)(q(T)v) = 0. Thus $sq \in M_T^0$ and $\deg sq \leqslant \dim V$. | Uniques Part | Suppose $p, q \in M_T^0$ are of the smallest degree. Then (p-q)(T) = 0. $\mathbb{Z} \deg(p-q) = m < \min \{\deg p_i\}_{i \in \Gamma}$. Hence p - q = 0, for if not, $\exists ! c \in \mathbf{F}, c(p - q) \in M_T^0$. Contradicts.

 (4E 5.31, 4E 5.B.25 and 26) mini poly of restriction operator and mini poly of quotient operator Suppose V is finite-dim, T ∈ L(V), and U is an invar subsp of V under T. Let p be the mini poly of T. (a) Prove that p is a poly multi of the mini poly of T _U. (b) Prove that p is a poly multi of the mini poly of T/U. (c) Prove that (mini poly of T _U) × (mini poly of T/U) is a poly multi of p. (d) Prove that the set of eigvals of T equals the union of the set of eigvals of T _U and the set of eigvals of T/U. 	
SOLUTION: (a) $p(T) = 0 \Rightarrow \forall u \in U, p(T)u = 0 \Rightarrow p(T _{U}) = 0 \Rightarrow \text{By } [8.46].$ (b) $p(T) = 0 \Rightarrow \forall v \in V, p(T)v = 0 \Rightarrow p(T/U)(v + U) = p(T)v + U = 0.$ (c) Suppose r is the mini poly of $T _{U}$, s is the mini poly of T/U . Because $\forall v \in V, s(T/U)(v + U) = s(T)v + U = 0$. So that $\forall v \in V$ but $v \notin U, s(T)v \in U$. $\forall u \in U, r(T _{U})u = r(T)u = 0.$	
Thus $\forall v \in V$ but $v \notin U$, $(rs)(T)v = r(s(T)v) = 0$. And $\forall u \in U$, $(rs)(T)u = r(s(T)u) = 0$ (because $s(T)u = s(T _U)u \in U$). Hence $\forall v \in V$, $(rs)(T)v = 0 \Rightarrow (rs)(T) = 0$. (d) By [8.49], immediately.	
• (4E 5.B.27) Suppose $\mathbf{F} = \mathbf{R}$, V is finite-dim, and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T_{\mathbf{C}}$ equals the mini poly q of T . Solution: (a) $\forall u + \mathbf{i}0 \in V_{\mathbf{C}}, p(T_{\mathbf{C}})(u) = p(T)u = 0 \Rightarrow \forall u \in V, p(T)u = 0 \Rightarrow p$ is a poly multi of q . (b) $q(T) = 0 \Rightarrow \forall u + \mathbf{i}v \in V_{\mathbf{C}}, q(T_{\mathbf{C}})(u + \mathbf{i}v) = q(T)u + \mathbf{i}q(T)v = 0 \Rightarrow q$ is a poly multi of p .	
• (4E 5.B.28) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T' \in \mathcal{L}(V')$ equals the mini poly q of T . SOLUTION: (a) $\forall \varphi \in V', p(T')\varphi = \varphi \circ (p(T)) = 0 \Rightarrow \forall \varphi \in V', p(T) \in \text{null } \varphi \Rightarrow p(T) = 0, p \text{ is a poly multi of } p$. (b) $q(T) = 0 \Rightarrow \forall \varphi \in V', \varphi \circ (q(T)) = q(T')\varphi = 0 \Rightarrow q(T) = 0, q \text{ is a poly multi of } p$.	of q.
• (4E 5.32) Suppose $T \in \mathcal{L}(V)$ and p is the mini poly. Prove that T is not inje \iff the const term of p is 0 . Solution: T is not inje \iff 0 is an eigval of $T \iff$ 0 is a zero of $n \iff$ the const term of n is 0 .	
T is not inje \iff 0 is an eigval of T \iff 0 is a zero of p \iff the const term of p is 0. OR. Because $p(0) = (z-0)(z-\lambda_1)\cdots(z-\lambda_m) = 0 \Rightarrow T(T-\lambda_1 I)\cdots(T-\lambda_m I) = 0$ $\not \subset p$ is the mini poly $\Rightarrow q$ define by $q(z) = (z-\lambda_1)\cdots(z-\lambda_m)$ is such that $q(T) \neq 0$. Hence $0 = p(T) = Tq(T) \Rightarrow T$ is not inje. Conversely, suppose $(T-0I)$ is not inje, then 0 is a zero of p , so that the const term is 0.	
• (4E 5.B.22) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Prove that T is inv $\iff I \in \operatorname{span}(T, T^2, \dots, T^{\dim V})$).

SOLUTION: Denote the mini poly by p, where for all $z \in \mathbb{F}$, $p(z) = a_0 + a_1 z + \cdots + z^m$.

Notice that V is finite-dim. T is inv \iff T is inje \iff $p(0) \neq 0$.

Hence $p(T) = 0 = a_0I + a_1T + \dots + T^m$, where $a_0 \neq 0$ and $m \leq \dim V$.	
Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V invar under T . Prove that U is invar under $p(T)$ for every poly $p \in \mathcal{P}(\mathbf{F})$. Solution:	
$\forall u \in U, Tu \in U \Rightarrow Iu, Tu, T(Tu), \dots, T^m u \in U \Longrightarrow \forall a_k \in \mathbb{F}, (a_0 I + a_1 T + \dots + a_m T^m) u \in U. \qquad \Box$	
Suppose V is finite-dim, $T \in \mathcal{L}(V)$ and p is the mini poly with degree m . Suppose $v \in V$. (a) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{j-1}v)$ for some $j \leqslant m$. (b) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{m-1}v, \dots, T^nv)$.	
COMMENT: By Note For [8.40], j has an upper bound $m-1$, m has an upper bound dim V . Write $p(z) = a_0 + a_1 z + \dots + z^m$ ($m \le \dim V$). If $v = 0$, then we are done. Suppose $v \ne 0$. (a) Suppose $j \in \mathbb{N}^+$ is the smallest such that $T^j v \in \operatorname{span}(v, Tv, \dots, T^{j-1}v) = U_0$. Then $j \le m$. Write $T^j v = c_0 v + c_1 Tv + \dots + c_{j-1} T^{j-1}v$. And because $T(T^k v) = T^{k+1} \in U_0$. U_0 is invar under T . By Problem (6), $\forall k \in \mathbb{N}$, $T^{j+k} v = T^k(T^j v) \in U_0$. Thus $U_0 = \operatorname{span}(v, Tv, \dots, T^{j-1}v, \dots, T^n v)$ for all $n \ge j-1$. Let $n = m-1$ and we are done. (b) Let $U = \operatorname{span}(v, Tv, \dots, T^{m-1}v)$.	
By (a), $U = U_0 = \text{span}(v, Tv,, T^{j-1},, T^{m-1},, T^n)$ for all $n \ge m - 1$.	
Prove that the mini poly p has degree at most $1+\dim \operatorname{range} T$. If $\dim \operatorname{range} T<\dim V-1$, then this result gives a better upper bound for the degree of mini poly. Solution: If T is inje, then $\operatorname{range} T=V$ and we are done. Now choose $0\neq v\in\operatorname{null} T$, then $Tv+0\cdot v=0$. 1 is the smallest positive integer such that $T^1v\in\operatorname{span}(v,\ldots,T^0v)$. Define q by $q(z)=z\Rightarrow q(T)v=0$. Let $W=\operatorname{range} q(T)=\operatorname{range} T$. \exists monic $s\in\mathcal{P}(F)$ of smallest degree $(\deg s\leqslant\dim W)$, $s(T _W)=0$. Hence sq is the mini poly $(\operatorname{see}\operatorname{Note} For[8.40])$ and $\deg(sq)=\deg s+\deg q\leqslant\dim \operatorname{range} T+1$. \square	
19 Suppose V is finite-dim, dim $V > 1$, $T \in \mathcal{L}(V)$. Prove that $\{p(T) : p \in \mathcal{P}(\mathbf{F})\} \neq \mathcal{L}(V)$. Solution: If $\forall S \in \mathcal{L}(V)$, $\exists p \in \mathcal{P}(\mathbf{F})$, $S = p(T)$. Then by $[5.20]$, $\forall S_1, S_2 \in \mathcal{L}(V)$, $S_1S_2 = S_2S_1$. Note that dim $\geqslant 2$. By $(3.A.14)$, $\exists S_1, S_2 \in \mathcal{L}(V)$, $S_1S_2 \neq S_2S_1$. Contradicts. \square	
Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Let $\mathcal{E} = \left\{q(T): q \in \mathcal{P}(\mathbf{F})\right\}$. Prove that $\dim \mathcal{E}$ equals the degree of the mini poly of T . Solution: Because the list $(I,T,\ldots,T^{\left(\dim V\right)^2})$ of length $\dim \mathcal{L}(V)+1$ is linely depe in $\dim \mathcal{L}(V)$. Suppose $m \in \mathbb{N}^+$ is the smallest such that $T^m = a_0I + \cdots + a_{m-1}T^{m-1}$. Then q defined by $q(z) = z^m - a_{m-1}z^{m-1} - \cdots - a_0$ is the mini poly (see [8.40]). For any $k \in \mathbb{N}^+$, $T^{m+k} = T^k(T^m) \in \operatorname{span}(I,T,\ldots,T^{m-1}) = U$. Hence $\operatorname{span}(I,T,\ldots,T^{\left(\dim V\right)^2}) = \operatorname{span}(I,T,\ldots,T^{\left(\dim V\right)^2-1}) = U$. Note that by the minimality of m , (I,T,\ldots,T^{m-1}) is linely inde.	

Define $\varphi \in \mathcal{L}(\mathcal{P}_{m-1}(\mathbf{F}), \mathcal{E})$ by $\varphi(p) = p(T)$. (a) Suppose p(T) = 0. $\mathbb{Z} \deg p \leq m - 1 \Rightarrow p = 0$. Then φ is inje. (b) $\forall S = a_0 I + a_1 T + \dots + a_{m-1} T^{m-1} \in \mathcal{E}$, define $p \in \mathcal{P}_{m-1}(\mathbf{F})$ by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} \Rightarrow \varphi(p) = S$. Then φ is surj. Hence \mathcal{E} and $\mathcal{P}_{m-1}(\mathbf{F})$ are iso. \mathbf{X} dim $\mathcal{P}_{m-1}(\mathbf{F}) = m = \dim U$. • (4E 5.B.13) Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbf{F})$ is defined by $q(z) = a_0 + a_1 z + \dots + a_n z^n$, where $a_n \neq 0$, for all $z \in \mathbf{F}$. Denote the mini poly of T by p defined by $p(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m \text{ for all } z \in \mathbf{F}.$ *Prove that* $\exists ! r \in \mathcal{P}(\mathbf{F})$ *such that* q(T) = r(T), $\deg r < \deg p$. **SOLUTION:** If $\deg q < \deg p$, then we are done. If deg $q = \deg p$, notice that $p(T) = 0 = c_0 I + c_1 T + \dots + c_{m-1} T^{m-1} + T^m$ $\Rightarrow T^m = -c_0 I - c_1 T - \dots - c_{m-1} T^{m-1}$ define r by $r(z) = q(z) + [-a_m z^m + a_m (-c_0 - c_1 z - \dots - c_{m-1} z^{m-1})]$ $= (a_0 - a_m c_0) + (a_1 - a_m c_1)z + \dots + (a_{m-1} - a_m c_{m-1})z^{m-1},$ hence r(T) = 0, deg r < m and we are done. Now suppose $\deg q \geqslant \deg p$. We use induction on $\deg q$. (i) $\deg q = \deg p$, then the desired result is true, as shown above. (ii) $\deg q > \deg p$, assume that the desired result is true for $\deg q = n$. Suppose $f \in \mathcal{P}(\mathbf{F})$ such that $f(z) = b_0 + b_1 z + \dots + b_n z^n + b_{n+1} z^{n+1}$. Apply the assumption to g defined by $g(z) = b_0 + b_1 z + \cdots + b_n z^n$, getting s defined by $s(z) = d_0 + d_1 z + \cdots + d_{m-1} z^{m-1}$. Thus $g(T) = s(T) \Rightarrow f(T) = g(T) + b_{n+1}T^{n+1} = s(T) + b_{n+1}T^{n+1}$. Apply the assumption to t defined by $t(z) = z^n$, getting δ defined by $\delta(z) = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1}$. Thus $t(T) = T^n = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1} = \delta(T)$. \mathbb{X} span $(v, Tv, \dots, T^{m-1}v)$ is invar under T. Hence $\exists ! k_j \in \mathbf{F}, T^{n+1} = T(T^n) = k_0 + k_1 z + \dots + k_{m-1} z^{m-1}$. And $f(T) = s(T) + b_{n+1}(k_0 + k_1T + \dots + k_{m-1}T^{m-1})$

Thus dim $U = m = \dim \operatorname{span}(I, T, \dots, T^{\left(\dim V\right)^2 - 1}) = \dim \operatorname{span}(I, T, \dots, T^n)$ for all $m < n \in \mathbb{N}^+$.

• (4E 5.B.14) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has mini poly p defined by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + z^m$, $a_0 \neq 0$. Find the mini poly of T^{-1} .

SOLUTION:

Notice that *V* is finite-dim. Then $p(0) = a_0 \neq 0 \Rightarrow 0$ is not a zero of $p \Rightarrow T - 0I = T$ is inv. Then $p(T) = a_0 I + a_1 T + \dots + T^m = 0$. Apply T^{-m} to both sides, $a_0(T^{-1})^m + a_1(T^{-1})^{m-1} + \dots + a_{m-1}T^{-1} + I = 0.$

 $\Rightarrow f(T) = (d_0 + k_0) + (d_1 + k_1)z + \dots + (d_{m-1} + k_{m-1})z^{m-1} = h(T)$, thus defining h.

Define
$$a$$
 by $a(z) = z^m + \frac{a_1}{2}z^{m-1} + \dots + \frac{a_{m-1}}{2}z + \frac{1}{2}$ for

Define q by $q(z) = z^m + \frac{a_1}{a_0} z^{m-1} + \dots + \frac{a_{m-1}}{a_0} z + \frac{1}{a_0}$ for all $z \in \mathbf{F}$.

We now show that $(T^{-1})^k \notin \operatorname{span}(I, T^{-1}, \dots, (T^{-1})^{k-1})$

```
for every k \in \{1, ..., m-1\} by contradiction, so that q is exactly the mini poly of T^{-1}.
  Suppose (T^{-1})^k \in \text{span}(I, T^{-1}, ..., (T^{-1})^{k-1}).
  Then let (T^{-1})^k = b_0 I + b_1 T^{-1} + \dots + b_{k-1} T^{k-1}. Apply T^k to both sides,
           getting I = b_0 T^k + b_1 T^{k-1} + \dots + b_{k-1} T, hence T^k \in \text{span}(I, T, \dots, T^{k-1}).
  Thus f defined by f(z) = z^k + \frac{b_1}{h_0} z^{k-1} + \dots + \frac{b_{k-1}}{h_0} z - \frac{1}{h_0} is a poly multi of p.
  While \deg f < \deg p. Contradicts.
                                                                                                                                   • Note For [8.49]:
  Suppose V is a finite-dim complex vecsp and T \in \mathcal{L}(V).
  By [4.14], the mini poly has the form (z - \lambda_1) \cdots (z - \lambda_m),
  where \lambda_1, \dots, \lambda_m are all the eigenst of T, possibly with repetitions.
• COMMENT:
  A nonzero poly has at most as many distinct zeros as its degree (see [4.12]).
  Thus by the upper bound for the deg of mini poly given in Note For [8.40], and by [8.49,]
  we can give an alternative proof of [5.13].
• NOTICE ( See also 4E 5.B.20,24 )
  Suppose \alpha_1, \dots, \alpha_n are all the distinct eigvals of T,
  and therefore are all the distinct zeros of the mini poly.
  Also, the mini poly of T is a poly multi of, but not equal to, (z - \alpha_1) \cdots (z - \alpha_n).
  If we define q by q(z) = (z - \alpha_1)^{\dim V - (n-1)} \cdots (z - \alpha_n)^{\dim V - (n-1)},
  then q is a poly multi of the char poly (see [8.34] and [8.26])
  (Because dim V > n and n - 1 > 0, n \lceil \dim V - (n - 1) \rceil > \dim V.)
  The char poly has the form (z - \alpha_1)^{\gamma_1} \cdots (z - \alpha_n)^{\gamma_n}, where \gamma_1 + \cdots + \gamma_n = \dim V.
  The mini poly has the form (z - \alpha_1)^{\delta_1} \cdots (z - \alpha_n)^{\delta_n}, where 0 \leq \delta_1 + \cdots + \delta_n \leq \dim V.
10 Suppose T \in \mathcal{L}(V), \lambda is an eigral of T with an eigrec v.
    Prove that for any p \in \mathcal{P}(\mathbf{F}), p(T)v = p(\lambda)v.
SOLUTION:
  Suppose p is defined by p(z) = a_0 + a_1 z + \dots + a_m z^m for all z \in \mathbb{F}. Because for any n \in \mathbb{N}^+, T^n v = \lambda^n v.
  Thus p(T)v = a_0v + a_1Tv + \dots + a_mT^mv = a_0v + a_1\lambda v + \dots + a_m\lambda^mv = p(\lambda)v.
                                                                                                                                   COMMENT: For any p \in \mathcal{P}(\mathbf{F}) such that p(z) = (z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_m)^{\alpha_m}, the result is true as well.
  Now we prove that (T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v = (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m} v.
  Define q_i by q_i(z) = (z - \lambda_i)^{\alpha_i} for all z \in \mathbf{F}.
  Because (a + b)^n = a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n.
   Let a = z, b = \lambda_i, n = \alpha_i, so we can write q_i(z) in the form a_0 + a_1 z + \cdots + a_m z^m.
  Hence q_i(T)v = q_i(\lambda)v \Rightarrow (T - \lambda_i I)^{\alpha_i}v = (\lambda - \lambda_i)^{\alpha_i}v.
  Then for each k \in \{2, ..., m\}, (T - \lambda_{k-1}I)^{\alpha_{k-1}} (T - \lambda_k I)^{\alpha_k} v
                                     = q_{k-1}(T)(q_k(T)v)
                                     = q_{k-1}(T)(q_k(\lambda)v)
                                     = q_{k-1}(\lambda)(q_k(\lambda)v)
```

 $= (\lambda - \lambda_{k-1})^{\alpha_{k-1}} (\lambda - \lambda_k)^{\alpha_k} v.$

So that $(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v$

$$= q_1(T) \Big(q_2(T) \Big(\dots \Big(q_m(T)v \Big) \dots \Big) \Big)$$

$$= q_1(\lambda) \Big(q_2(\lambda) \Big(\dots \Big(q_m(\lambda)v \Big) \dots \Big) \Big)$$

$$= (\lambda - \lambda_1)^{\alpha_1} \dots \Big(\lambda - \lambda_m \Big)^{\alpha_m} v.$$

1 Suppose $T \in \mathcal{L}(V)$ and $\exists n \in \mathbb{N}^+$ such that $T^n = 0$. Prove that $(I - T)$ is inv and $(I - T)^{-1} = I + T + \dots + T^{n-1}$.	
SOLUTION: Note that $1 - x^n = (1 - x)(1 + x + \dots + x^{n-1})$. $ (I - T)(1 + T + \dots + T^{n-1}) = I - T^n = I $ $ (1 + T + \dots + T^{n-1})(I - T) = I - T^n = I $ $ \Rightarrow (I - T)^{-1} = 1 + T + \dots + T^{n-1}. $	
2 Suppose $T \in \mathcal{L}(V)$ and $(T-2I)(T-3I)(T-4I)=0$. Suppose λ is an eigval of T . Prove that $\lambda=2$ or $\lambda=3$ or $\lambda=4$.	
Solution: Suppose v is an eigeec correspond to λ . Then for any $p \in \mathcal{P}(\mathbf{F})$, $p(T)v = p(\lambda)v$. Hence $0 = (T - 2I)(T - 3I)(T - 4I)v = (\lambda - 2)(\lambda - 3)(\lambda - 4)v$ while $v \neq 0 \Rightarrow \lambda = 2,3$ or 4.	
Comment: Note that $(T - 2I)(T - 3I)(T - 4I) = 0$ is not inje, so that 2, 3, 4 are eigvals of T . But it doesn't mean that all the eigvals of T are exactly 2, 3, 4.	
7 [See 5.A.22] Suppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigend of $T^2 \iff 3$ or -3 is an eigend of Solution:	of T.
(a) Suppose λ is an eigval of T with an eigvec v . Then $(T-3I)(T+3I)v=(\lambda-3)(\lambda+3)v=0\Rightarrow \lambda=\pm 3$. (b) Suppose 3 or -3 is an eigval of T with an eigvec v . Then $Tv=\pm 3v\Rightarrow T^2v=T(Tv)=9v$	П
Or. 9 is an eigval of $T^2 \Leftrightarrow (T^2 - 9I) = (T - 3I)(T + 3I)$ is not inje $\Leftrightarrow \pm 3$ is an eigval.	
3 Suppose $T \in \mathcal{L}(V)$, $T^2 = I$ and -1 is not an eigral of T . Prove that $T = I$. SOLUTION :	
$T^2 - I = (T + I)(T - I)$ is not inje, \mathbb{X} –1 is not an eigval of $T \Longrightarrow By$ TIPS.	
OR. Note that $\forall v \in V, v = \left[\frac{1}{2}(I-T)v\right] + \left[\frac{1}{2}(I+T)v\right].$ $(I+T)((I-T)v) = 0 \Longrightarrow (I-T)v \in \text{null}(I+T)$ $(I-T)((I+T)v) = 0 \Longrightarrow (I+T)v \in \text{null}(I-T)$ $\Rightarrow V = \text{null}(I+T) + \text{null}(I-T).$	
\mathbb{X} -1 is not an eigval of $T \iff (I+T)$ is inje \iff null $(I+T) = \{0\}$. Hence $V = \text{null } (I-T) \Rightarrow \text{range } (I-T) = \{0\}$. Thus $I-T = 0 \in \mathcal{L}(V) \Rightarrow T = I$.	
• (4E 5.A.32) Suppose $T \in \mathcal{L}(V)$ has no eigenst and $T^4 = I$. Prove that $T^2 = -I$.	
Solution: Because $T^4 - I = (T^2 - I)(T^2 + I) = 0$ is not inje $\Rightarrow (T^2 - I)$ or $(T^2 + I)$ is not inje. \not T has no eigvals $\Rightarrow (T^2 - I) = (T - I)(T + I)$ is inje. Hence $T^2 + I = 0 \in \mathcal{L}(V)$, for if not, $\exists v \in V, (T^2 + I)v \neq 0$ while $(T^2 - I)((T^2 + I)v) = 0$ but $(T^2 - I)$ is inje. Contradicts. Or. $\forall v \in V, 0 = (T^2 - I)(T^2 + I)v \Leftrightarrow 0 = (T^2 + I)v$. Hence $T^2 + I = 0$.	
OR. Note that $\forall v \in V, v = \left[\frac{1}{2}(I - T^2)v\right] + \left[\frac{1}{2}(I + T^2)v\right].$ $(I + T^2)((I - T^2)v) = 0 \Longrightarrow (I - T^2)v \in \text{null}(I + T^2)$ $(I - T^2)((I + T^2)v) = 0 \Longrightarrow (I + T^2)v \in \text{null}(I - T^2)$ $\Rightarrow V = \text{null}(I + T^2) + \text{null}(I - T^2).$	
\not T has no eigvals \iff $(I - T^2)$ is inje \iff null $(I - T^2) = \{0\}$. Hence $V = \text{null}(I + T^2) \Rightarrow \text{range}(I + T^2) = \{0\}$. Thus $I + T^2 = 0 \in \mathcal{L}(V) \Rightarrow T^2 = -I$.	

8 [OR (4E 5.A.31)] Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

SOLUTION:

Define $i \in \mathcal{L}(\mathbb{R}^2)$ by i(x,y) = (-y,x). Just like $i : \mathbb{C} \to \mathbb{C}$ defined by i(x+iy) = -y + ix.

Define
$$i^n \in \mathcal{L}(\mathbb{R}^2)$$
 by $i(x,y) = (\operatorname{Re}(i^n x + i^{n+1} y), \operatorname{Im}(i^n x + i^{n+1} y)).$

$$T^4 + I = (T^2 + iI)(T^2 - iI) = (T + i^{1/2}I)(T - i^{1/2}I)(T - (-i)^{1/2}I)(T + (-i)^{1/2}I).$$

Note that
$$i^{1/2} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
, $(-i)^{1/2} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$. Hence $T = \pm (\pm i)^{1/2}I$.

Let
$$T = i^{1/2}I$$
 defined by $i^{1/2}(x,y) = \left(\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y, \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)$.

Or. Because
$$\mathcal{M}\left(T^4\right) = \begin{pmatrix} \cos\left(-\pi\right) & \sin\left(-\pi\right) \\ -\sin\left(-\pi\right) & \cos\left(-\pi\right) \end{pmatrix}$$
. Using $\begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix}^n = \begin{pmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{pmatrix}$. We define $T \in \mathcal{L}\left(\mathbf{R}^2\right)$ such that $\mathcal{M}\left(T\right) = \begin{pmatrix} \cos\left(-\pi/4\right) & \sin\left(-\pi/4\right) \\ -\sin\left(-\pi/4\right) & \cos\left(-\pi/4\right) \end{pmatrix}$.

We define
$$T \in \mathcal{L}(\mathbb{R}^2)$$
 such that $\mathcal{M}(T) = \begin{pmatrix} \cos(-\pi/4) & \sin(-\pi/4) \\ -\sin(-\pi/4) & \cos(-\pi/4) \end{pmatrix}$.

• (4E 5.B.12) Find the mini poly of T defined in (5.A.10).

SOLUTION: By (5.A.9) and [8.40, 8.49], 1, 2, ...,
$$n$$
 are all the zeros of the mini poly of T .

• (4E 5.B.3) Find the mini poly of T defined in (5.A.19).

SOLUTION:

If n = 1 then 1 is the only eigval of T, and (z - 1) is the mini poly.

Because n and 0 are all the eigvals of T, X $\forall k \in \{1, ..., n\}$, $Te_k = e_1 + \cdots + e_n$; $T^2e_k = n(e_1 + \cdots + e_n)$.

Hence
$$T^2e_k = n(Te_k) \Rightarrow T^2 = nT \Rightarrow T^2 - nT = T(T-n) = 0$$
. Thus $(z(z-n))$ is the mini poly.

• (4E 5.B.8) Find the mini poly of T. Where $T \in \mathcal{L}(\mathbf{R}^2)$ is the operator of counterclockwise rotation by θ , where $\theta \in \mathbb{R}^+$.

SOLUTION:

If $\theta = \pi + 2k\pi$, then T(w,z) = (-w,-z), $T^2 = I$ and the mini poly is z + 1.

If $\theta = 2k\pi$, then T = I and the mini poly is z - 1.

Otherwise (v, Tv) is linely inde. Then span $(v, Tv) = \mathbb{R}^2$. Note that $\nexists b \in \mathbb{F}, T - bI = 0$.

Thus suppose the mini poly p is defined by $p(z) = z^2 + bz + c$ for all $z \in \mathbb{R}$.

Hence
$$p(T) = T^2 - 2\cos\theta T + I = 0$$
 and $z^2 - 2\cos\theta z + 1$ is the mini poly of T .

OR. Let (e_1, e_2) be the standard basis of \mathbb{R}^2 . We use the pattern shown in [8.44].

Because $Te_1 = \cos\theta \ e_1 + \sin\theta \ e_2$, $T^2e_1 = \cos2\theta \ e_1 + \sin2\theta \ e_2$.

Thus
$$ce_1 + bTe_1 = -T^2e_1 \iff \begin{pmatrix} 1 & \cos\theta \\ 0 & \sin\theta \end{pmatrix} \begin{pmatrix} c \\ b \end{pmatrix} = \begin{pmatrix} -\cos 2\theta \\ -\sin 2\theta \end{pmatrix}$$
. Now $\det = \sin\theta \neq 0, c = 1, b = 2\cos\theta$.

Or.
$$\mathcal{M}\left(T,\left(e_{1},e_{2}\right)\right)=\begin{pmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{pmatrix}$$
. By (4E 5.B.11), the mini poly is $\left(z\pm1\right)$ or $\left(z^{2}-2\cos\theta\,z+1\right)$. \square

- (4E 5.B.11) Suppose V is a two-dim vecsp, $T \in \mathcal{L}(V)$, and the matrix of T with resp to some basis of V is $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$.
 - (a) Show that $T^2 (a + d)T + (ad bc)I = 0$.
 - (b) Show that the mini poly of T equals

$$\begin{cases} z - a & \text{if } b = c = 0 \text{ and } a = d, \\ z^2 - (a + d)z + (ad - bc) & \text{otherwise.} \end{cases}$$

SOLUTION:

- (a) Suppose the basis is (v, w). Because $\begin{cases} Tv = av + bw \Rightarrow (T aI)v = bw, \text{ then apply } (T dI) \text{ to both sides} \\ Tw = cv + dw \Rightarrow (T dI)w = cv, \text{ then apply } (T aI) \text{ to both sides} \end{cases}$ Hence $(T aI)(T dI) = bcI \Rightarrow T^2 (a + d)T + (ad bc)I = 0.$
- (b) If b = c = 0 and a = d. Then $\mathcal{M}(T) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = a\mathcal{M}(I)$. Thus T = aI. Hence the mini poly is z a. Otherwise, by (a), $z^2 (a + d)z + (ad bc)$ is a poly multi of the mini poly. Now we prove that $T \notin \operatorname{span}(I)$, so that then the mini poly of T has exactly degree 2. (At least one of the assumption of (I),(II) below is true.)
 - (I) Suppose a = d, then $Tv = av + bw \notin \text{span}(v)$, $Tw = cv + aw \notin \text{span}(w)$.
 - (II) Suppose at most one of b, c is not 0. If b = 0, then $Tw \notin \text{span}(w)$; If c = 0, then $Tv \notin \text{span}(v)$
- Suppose $S, T \in \mathcal{L}(V)$, S is inv, and $p \in \mathcal{P}(\mathbf{F})$. Prove that Sp(TS) = p(ST)S.

SOLUTION:

We prove $S(TS)^m = (ST)^m S$ for each $m \in \mathbb{N}$ by induction.

- (i) If m = 0, 1. Then $S(TS)^0 = I = (ST)^0 S$; $S(TS)^1 = (ST) S$.
- (ii) If m > 1. Assume that $S(TS)^m = (ST)^m S$.

Then $S(TS)^{m+1} = S(TS)^m(TS) = (ST)^m STS = (ST)^{m+1} S$.

Hence $\forall p \in \mathcal{P}(\mathbf{F}), Sp(TS) = \sum_{k=1}^{m} a_k S(TS)^k = \sum_{k=1}^{m} a_k p(ST)^k S = \left[\sum_{k=1}^{m} a_k (TS)^k\right] S.$

COMMENT: $p(TS) = S^{-1}p(ST)S$, $p(ST) = Sp(TS)S^{-1}$.

COROLLARY: 5 Because *S* is inv, $T \in \mathcal{L}(V)$ is arbitrary $\iff R = ST$ is arbitrary.

Hence $\forall R \in \mathcal{L}(V)$, inv $S \in \mathcal{L}(V)$, $p(S^{-1}RS) = S^{-1}p(R)S$.

- (4E 5.B.7) Suppose $S, T \in \mathcal{L}(V)$. Let p, q be the mini polys of ST, TS respectively.
 - (a) If $V = \mathbf{F}^2$. Give an example such that $p \neq q$; (b) If S or T is inv. Prove that p = q.

SOLUTION:

(a) Define S by S(x,y)=(x,x). Define T by T(x,y)=(0,y). Then ST(x,y)=0, TS(x,y)=(0,x) for all $(x,y)\in \mathbb{F}^2$. Thus $ST=0\neq TS$ and $(TS)^2=0$. Hence the mini poly of ST does not equal to the mini poly of TS.

(b) Suppose S is inv. Because p,q are monic.

$$p(ST) = 0 = Sp(TS)S^{-1} \Rightarrow p(TS) = 0, p \text{ is a poly multi of } q$$

$$q(TS) = 0 = S^{-1}q(ST)S \Rightarrow q(ST) = 0, q \text{ is a poly multi of } p$$

$$\Rightarrow p = q.$$

Reversing the roles of *S* and *T*, we conclude that if *T* is inv, then p = q as well.

11 Suppose F = C, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(C)$, and $\alpha \in C$.

Prove that α *is an eigral of* $p(T) \iff \alpha = p(\lambda)$ *for some eigral* λ *of* T.

SOLUTION:

(a) Suppose α is an eigval of $p(T) \Leftrightarrow (p(T) - \alpha I)$ is not inje.

```
Write p(z) - \alpha = c(z - \lambda_1) \cdots (z - \lambda_m) \Rightarrow p(T) - \alpha I = c(T - \lambda_1 I) \cdots (T - \lambda_m I).
        By Tips, \exists (T - \lambda_i I) not inje. Thus p(\lambda_i) - \alpha = 0.
   (b) Suppose \alpha = p(\lambda) and \lambda is an eigval of T with an eigvec v. Then p(T)v = p(\lambda)v = \alpha v.
                                                                                                                                       Or. Define q by q(z) = p(z) - \alpha. \lambda is a zero of q.
        Because q(T)v = (p(T) - \alpha I)v = q(\lambda)v = (p(\lambda) - \alpha)v = 0.
        Hence q(T) is not inje \Rightarrow (p(T) - \alpha I) is not inje.
                                                                                                                                       12 [OR (4E.5.B.6)] Give an example of an operator on \mathbb{R}^2
    that shows the result above does not hold if C is replaced with R.
SOLUTION:
   Define T \in \mathcal{L}(\mathbb{R}^2) by T(w,z) = (-z,w).
   By Problem (4E 5.B.11), \mathcal{M}(T, ((1,0), (0,1))) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow the mini poly of T is z^2 + 1.
   Define p by p(z) = z^2. Then p(T) = T^2 = -I. Thus p(T) has eigval -1.
   While \nexists \lambda \in \mathbf{R} such that -1 = p(\lambda) = \lambda^2.
                                                                                                                                       • (4E 5.B.17) Suppose V is finite-dim, T \in \mathcal{L}(V), \lambda \in \mathbf{F}, and p is the mini poly of T.
  Show that the mini poly of (T - \lambda I) is the poly q defined by q(z) = p(z + \lambda).
SOLUTION:
   q(T - \lambda I) = 0 \Rightarrow q is poly multi of the mini poly of (T - \lambda I).
   Suppose the degree of the mini poly of (T - \lambda I) is n, and the degree of the mini poly of T is m.
   By definition of mini poly,
   n is the smallest such that (T - \lambda I)^n \in \text{span}(I, (T - \lambda I), ..., (T - \lambda I)^{n-1});
   m is the smallest such that T^m \in \text{span}(I, T, ..., T^{m-1}).
   \not\subset T^k \in \operatorname{span}(I, T, \dots, T^{k-1}) \iff (T - \lambda)^k \in \operatorname{span}(I, (T - \lambda I), \dots, (T - \lambda I)^{k-1}).
   Thus n = m. \mathbb{Z} q is monic. By the uniques of mini poly.
                                                                                                                                       • (4E 5.B.18) Suppose V is finite-dim, T \in \mathcal{L}(V), \lambda \in \mathbb{F} \setminus \{0\}, and p is the mini poly of T.
  Show that the mini poly of \lambda T is the poly q defined by q(z) = \lambda^{\deg p} p(\frac{z}{\lambda}).
SOLUTION:
   q(\lambda T) = \lambda^{\deg p} p(T) = 0 \Rightarrow q is a poly multi of the mini poly of \lambda T.
   Suppose the degree of the mini poly of \lambda T is n, and the degree of the mini poly of T is m.
   By definition of mini poly,
   n is the smallest such that (\lambda T)^n \in \text{span}(\lambda I, \lambda T, ..., (\lambda T)^{n-1});
   m is the smallest such that T^m \in \text{span}(I, T, ..., T^{m-1}).
   \mathbb{Z}(\lambda T)^k \in \operatorname{span}(\lambda I, \lambda T, \dots, (\lambda T)^{k-1}) \iff T^k \in \operatorname{span}(I, T, \dots, T^{k-1}).
   Thus n = m. \mathbb{Z} q is monic. By the uniques of mini poly.
                                                                                                                                       18 [OR (4E 5.B.15)] Suppose V is a finite-dim complex vecsp with dim V > 0 and T \in \mathcal{L}(V).
    Define f: \mathbb{C} \to \mathbb{R} by f(\lambda) = \dim \operatorname{range} (T - \lambda I).
    Prove that f is not a continuous function.
```

Let λ_0 be an eigval of T. Then $(T - \lambda_0 I)$ is not surj. Hence dim range $(T - \lambda_0 I) < \dim V$.

Because T has finitely many eigvals. There exist a sequence of number $\{\lambda_n\}$ such that $\lim_{n\to\infty}\lambda_n=\lambda_0$.

SOLUTION: Note that V is finite-dim.

And λ_n is not an eigval of T for each $n \Rightarrow \dim \operatorname{range}(T - \lambda_n I) = \dim V \neq \dim \operatorname{range}(T - \lambda_0 I)$. Thus $f(\lambda_0) \neq \lim_{n \to \infty} f(\lambda_n)$.

• (4E 5.B.9) Suppose $T \in \mathcal{L}(V)$ is such that with resp to some basis of V, all entries of the matrix of T are rational numbers. Explain why all coefficients of the mini poly of T are rational numbers.

SOLUTION:

Let (v_1,\ldots,v_n) denote the basis such that $\mathcal{M}\big(T,(v_1,\ldots,v_n)\big)_{j,k}=A_{j,k}\in\mathbf{Q}$ for all $j,k=1,\ldots,n$. Denote $\mathcal{M}(v_i, (v_1, ..., v_n))$ by x_i for each v_i .

Suppose p is the mini poly of T and $p(z) = z^m + \cdots + c_1 z + c_0$. Now we show that each $c_j \in \mathbb{Q}$.

Note that $\forall s \in \mathbf{N}^+$, $\mathcal{M}\big(T^s\big) = \mathcal{M}\big(T\big)^s = A^s \in \mathbf{Q}^{n,n}$ and $T^sv_k = A^s_{1,k}v_1 + \dots + A^s_{n,k}v_n$ for all $k \in \{1,\dots,n\}$.

Thus
$$\begin{cases} \mathcal{M}(p(T)v_1) = (A^m + \dots + c_1 A + c_0 I)x_1 = \sum_{j=1}^n \left(A^m + \dots + c_1 A + c_0 I\right)_{j,1} x_j = 0; \\ \vdots \\ \mathcal{M}(p(T)v_n) = (A^m + \dots + c_1 A + c_0 I)x_n = \sum_{j=1}^n \left(A^m + \dots + c_1 A + c_0 I\right)_{j,n} x_j = 0; \\ \end{bmatrix} \\ \text{More clearly,} \\ \begin{cases} \left(A^m + \dots + c_1 A + c_0 I\right)_{1,1} = \dots = \left(A^m + \dots + c_1 A + c_0 I\right)_{n,1} = 0; \\ \vdots & \ddots & \vdots \\ \left(A^m + \dots + c_1 A + c_0 I\right)_{1,n} = \dots = \left(A^m + \dots + c_1 A + c_0 I\right)_{n,n} = 0; \\ \text{Hence we get a system of } n^2 \text{ linear equations in } m \text{ unknowns } c_0, c_1, \dots, c_{m-1}. \end{cases}$$

We conclude that $c_0, c_1, \dots, c_{m-1} \in \mathbb{Q}$.

• [OR (4E 5.B.16), OR (8.C.18)] Suppose $a_0,\ldots,a_{n-1}\in \mathbf{F}.$ Let T be the operator on \mathbf{F}^n such that

$$\mathcal{M}(T) = \begin{pmatrix} 0 & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & & \vdots \\ & \ddots & 0 & -a_{n-2} \\ 0 & & 1 & -a_{n-1} \end{pmatrix}, with resp to the standard basis (e_1, \dots, e_n) .$$

Show that the mini poly of T is p defined by $p(z) = a_0 + a_1 z + \cdots + a_{n-1} z^{n-1} + z^n$.

 $\mathcal{M}(T)$ is called the **companion matrix** of the poly above. This exercise shows that every monic poly is the mini poly of some operator. Hence a formula or an algorithm that could produce exact eigvals for each operator on each \mathbf{F}^n could then produce exact zeros for each poly [by 8.36(b)]. Thus there is no such formula or algorithm. However, efficient numeric methods exist for obtaining very good approximations for the eigvals of an operator.

SOLUTION: Note that $(e_1, Te_1, ..., T^{n-1}e_1)$ is linely inde. \mathbb{X} The deg of mini poly is at most n.

$$T^{n}e_{1} = \dots = T^{n-k}e_{1+k} = \dots = Te_{n} = -a_{0}e_{1} - a_{1}e_{2} - a_{2}e_{3} - \dots - a_{n-1}e_{n}$$

$$= (-a_{0}I - a_{1}T - a_{2}T^{2} - \dots - a_{n-1}T^{n-1})e_{1}. \text{ Thus } p(T)e_{1} = 0 = p(T)e_{j} \text{ for each } e_{j} = T^{j-1}e_{1}.$$

- EIGENVALUES ON ODD-DIMENSIONAL REAL VECTOR SPACES
- Even-Dimensional Null Space Suppose F = R, V is finite-dim, $T \in \mathcal{L}(V)$ and $b, c \in R$ with $b^2 < 4c$. *Prove that* dim null $(T^2 + bT + cI)$ *is an even number.*

SOLUTION:

Denote null $(T^2 + bT + cI)$ by R. Then $T|_R + bT|_R + cI_R = (T + bT + cI)|_R = 0 \in \mathcal{L}(R)$. Suppose λ is an eigval of T_R with an eigvec $v \in R$.

Then
$$0 = (T|_R^2 + bT|_R + cI_R)(v) = (\lambda^2 + \lambda b + c)v = ((\lambda + b)^2 + c - \frac{b^2}{4})v$$
.

Because $c - \frac{b^2}{4} > 0$ and we have v = 0. Thus T_R has no eigvals. Let *U* be an invar subsp of *R* that has the largest, even dim among all invar subsps. Assume that $U \neq R$. Then $\exists w \in R$ but $w \notin U$. Let W be such that $(w, T|_R w)$ is a basis of W. Because $T|_R^2 w = -bT|_R w - cw \in W$. Hence W is an invar subsp of dim 2. Thus dim $(U + W) = \dim U + 2 - \dim(U \cap W)$, where $U \cap W = \{0\}$, for if not, because $w \notin U$, $T|_R w \in U$, $U \cap W$ is invar under $T|_R$ of one dim (impossible because $T|_R$ has no eigvecs). Hence U + W is even-dim invar subsp under $T|_R$, contradicting the maximality of dim U. Thus the assumption was incorrect. Hence $R = \text{null}(T^2 + bT + cI) = U$ has even dim. • OPERATORS ON ODD-DIMENSIONAL VECTOR SPACES HAVE EIGENVALUES (a) Suppose $\mathbf{F} = \mathbf{C}$. Then by [5.21], we are done. (b) Suppose F = R, V is finite-dim, and dim V = n is an odd number. Let $T \in \mathcal{L}(V)$ and the mini poly is p. Prove that T has an eigval. **SOLUTION:** (i) If n = 1, then we are done. (ii) Suppose $n \ge 3$. Assume that every operator, on odd-dim vecsps of dim less than n, has an eigval. If p is a poly multi of $(x - \lambda)$ for some $\lambda \in \mathbb{R}$, then by [8.49] λ is an eigval of T and we are done. Now suppose $b, c \in \mathbb{R}$ such that $b^2 < 4c$ and p is a poly multi of $x^2 + bx + c$ (see [4.17]). Then $\exists q \in \mathcal{P}(\mathbf{R})$ such that $p(x) = q(x)(x^2 + bx + c)$ for all $x \in \mathbf{R}$. Now $0 = p(T) = (q(T))(T^2 + bT + cI)$, which means that $q(T)|_{\text{range}(T^2 + bT + cI)} = 0$. Because deg $q < \deg p$ and p is the mini poly of T, hence range $(T^2 + bT + cI) \neq V$. \mathbb{X} dim V is odd and dim null $(T^2 + bT + cI)$ is even (by our previous result). Thus dim V – dim null $(T^2 + bT + cI)$ = dim range $(T^2 + bT + cI)$ is odd. By [5.18], range $(T^2 + bT + cI)$ is an invar subsp of V under T that has odd dim less than n. Our induction hypothesis now implies that $T|_{\text{range}(T^2+bT+cI)}$ has an eigval. By mathematical induction. • (2E Ch5.24) Suppose $\mathbf{F} = \mathbf{R}, T \in \mathcal{L}(V)$ has no eigvals. *Prove that every invar subsp of V under T is even-dim.* **SOLUTION:** Suppose *U* is such a subsp. Then $T|_U \in \mathcal{L}(U)$. We prove by contradiction. If dim *U* is odd, then $T|_U$ has an eigval and so is *T*, so that \exists invar subsp of 1 dim, contradicts. • (4E 5.B.29) Show that every operator on a finite-dim vecsp of dim ≥ 2 has a 2-dim invar subsp. **SOLUTION:** Using induction on dim *V*. (i) dim V = 2, we are done. (ii) dim V > 2. Assume that the desired result is true for vecsp of smaller dim. Suppose p is the mini poly of degree m and $p(z) = (z - \lambda_1) \cdots (z - \lambda_m)$. If $T = \lambda I$ ($\Leftrightarrow m = 1 \lor m = -\infty$), then we are done. ($m \ne 0$ because dim $V \ne 0$.) Now define a q by $q(z) = (z - \lambda_1)(z - \lambda_2)$. By assumption, $T|_{\text{null }q(T)}$ has an invar subsp of dim 2.

5.B: II 9 14 15 20 | 4E: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14

• (4E 5.C.1) Prove or give a counterexample: If $T \in \mathcal{L}(V)$ and T^2 has an upper-trig matrix, then T has an upper-trig matrix.

SOLUTION:

- (4E 5.C.2) Suppose A and B are upper-trig matrices of the same size, with $\alpha_1, \ldots, \alpha_n$ on the diag of A and β_1, \ldots, β_n on the diag of B.
 - (a) Show that A + B is an upper-trig matrix with $\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n$ on the diag.
 - (b) Show that AB is an upper-trig matrix with $\alpha_1\beta_1, ..., \alpha_n\beta_n$ on the diag.

SOLUTION:

• (4E 5.C.3)

Suppose $T \in \mathcal{L}(V)$ is inv and $B = (v_1, ..., v_n)$ is a basis of V such that $\mathcal{M}(T,B) = A$ is upper trig, with $\lambda_1, ..., \lambda_n$ on the diag. Show that the matrix of $\mathcal{M}(T^{-1},B) = A^{-1}$ is also upper trig, with $\frac{1}{\lambda_1}, ..., \frac{1}{\lambda_n}$ on the diag.

SOLUTION:

- **9** [4E 5.C.7] Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $v \in V$.
 - (a) Prove that \exists ! monic poly p_v of smallest degree such that $p_v(T)v = 0$.
 - (b) Prove that the mini poly of T is a poly multi of p_v .

SOLUTION:

14 [OR (4E 5.C.4)] Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} = 0$ for each k, while T is inv.

SOLUTION:

15 [OR (4E 5.C.5)] Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} \neq 0$ for each k, while T is not inv.

SOLUTION:

20 [OR (OR 4E 5.C.6)]

Suppose $\mathbf{F} = \mathbf{C}$, V is finite-dim, and $T \in \mathcal{L}(V)$. Prove that if $k \in \{1, ..., \dim V\}$, then V has a k dim subsp invar under T.

SOLUTION:

- (4E 5.C.8) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\exists v \in V \setminus \{0\}$ such that $T^2v + 2Tv = -2v$.
 - (a) Prove that if F = R, then $\not\exists$ a basis of V with resp to which T has an upper-trig matrix.
 - (b) Prove that if $\mathbf{F} = \mathbf{C}$ and A is an upper-trig matrix that equals the matrix of T with resp to some basis of V, then -1 + i or -1 i appears on the diag of A.

SOLUTION:

• (4E 5.C.9) Suppose $B \in \mathbf{F}^{n,n}$ with complex entries.

ENDED

5.C

XXXX

ENDED

5.E* (4E) 1 2 3 4 5 6 7 8 9 10

1 Give an example of two commuting operators $S, T \in \mathbf{F}^4$ such that there is an invar subsp of \mathbf{F}^4 under S but not under T and an invar subsp of \mathbf{F}^4 under T but not under S.

SOLUTION:

2 Suppose \mathcal{E} is a subset of $\mathcal{L}(V)$ and every element of \mathcal{E} is diagable. Prove that \exists a basis of V with resp to which

every element of \mathcal{E} has a diag matrix \iff every pair of elements of \mathcal{E} commutes.

This exercise extends [5.76], *which considers the case in which* \mathcal{E} *contains only two elements.*

For this exercise, \mathcal{E} may contain any number of elements, and \mathcal{E} may even be an infinite set.

SOLUTION:

- **3** Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Suppose $p \in \mathcal{P}(\mathbf{F})$.
 - (a) Prove that $\operatorname{null} p(S)$ is invar under T.
 - (b) Prove that range p(S) is invar under T.
 - See Note For [5.17] for the special case S = T.

SOLUTION:

4 *Prove or give a counterexample:*

A diag matrix A and an upper-trig matrix B of the same size commute.

SOLUTION:

5 Prove that a pair of operators on a finite-dim vecsp commute \iff their dual operators commute.

SOLUTION:

6 Suppose V is a finite-dim complex vecsp and $S, T \in \mathcal{L}(V)$ commute. Prove that $\exists \alpha, \lambda \in \mathbb{C}$ such that range $(S - \alpha I) + \text{range}(T - \lambda I) \neq V$.

SOLUTION:

7 Suppose V is a complex vecsp, $S \in \mathcal{L}(V)$ is diagable, and T commutes with S. Prove that \exists basis B of V such that S has a diag matrix with resp to B and T has an upper-trig matrix with resp to B.

SOLUTION:

8 Suppose m = 3 in Example [5.72] and D_x , D_y are the commuting partial differentiation operators on $\mathcal{P}_3(\mathbf{R}^2)$ from that example. Find a basis of $\mathcal{P}_3(\mathbf{R}^2)$ with resp to which D_x and D_y each have an upper-trig matrix.

SOLUTION:

- **9** Suppose V is a finite-dim nonzero complex vecsp. Suppose that $\mathcal{E} \subseteq \mathcal{L}(V)$ is such that S and T commute for all $S, T \in \mathcal{E}$.
 - (a) Prove that $\exists v \in V$ is an eigrec for every element of \mathcal{E} .
 - (b) Prove that \exists a basis of V with resp to which every element of \mathcal{E} has an upper-trig matrix.

SOLUTION:

10 Give an example of two commuting operators S, T on a finite-dim real vecsp such that S+T has a eigval that does not equal an eigval of S plus an eigval of T and ST has a eigval that does not equal an eigval of S times an eigval of S.

SOLUTION: