PAPER :- 3 COMPUTER -ORIENTED NUMERICAL METHODS

Note: Q. No. 1 is compulsory. In addition to that attempt four more questions, selecting one question from each unit.

All questions carry equal marks.

(Compulsory Question)

- Perform following operations with normalized floating point numbers:
 - (i) Add 0.2315E2 to 0.9543E2
 - (ii) Subtract 0.29×10^3 from 0.4925×10^5
 - (iii) Multiply 0.5543E2 and 0.4111E7.
 - (b) With reference to solution of a system of equation, discuss various possibilities of solutions.
 - (c) Design the tables for forward differences and backward differences.
 - (d) Write the formula for Simpson's 1/3 Rule. Also write the error in the rule.
 - (e) Write the formula for approximation of function by Taylor Series. Also find the truncation error.
 - (f) What do you understand by Illconditioned equations? 6×3
 UNIT-I
 - (a) Discuss various measures of errors in numerical methods.
 - (b) Calculate the value of (x²-y²)/(x+y) with x=0.4845 any y = 0.4800, using normalized floating point arithmetic.
 Compare with value of (x-y). Determine the relative error of the former.
 - (c) Write a short note on significant figures. 4
 - (a) What is bisection method? Find a root of the equation x³-x²-x-3=0 using bisection method correct to three decimal places.
 - (b) Find the order of convergence of Regula-Falsi method. Also find a real root of the equation x³-4x+1=0 by the False Position method, correct to three decimal places.

4. Write down the algorithm for Gauss-Seidel method. Solve the following system of equations using Gauss-Seidel method.

$$27x + 6y - z = 85$$

 $6x + 15y + 2z = 72$
 $x + y + 54z = 110$

18

- 5. (a) Derive the formula for Euler's Method. Solve the differential equation $\frac{dy}{dx} = -y$ with the initial condition y (0) = 1 by Euler's Method. Find y (0.04) where n = 0.01.
 - (b) Given that $\frac{dy}{dx} = x + y$, x = 0 when y = 1. Find the value of y when x = 0.1 and x = 0.2 by Runge Kutta forth order method.

UNIT-III

6. (a) Derive the formula for Newton's Divided Difference Formula. By using this formula, find the values of f(8) from the following table:

X	4	5	7	10	11	13
f (x)	48	100	294	900	1210	2028

(b) Given the following table:

X	30	35	40	45	50	
у	15.9	14.9	14.1	13.3	12.5	

Use the Lagrange's formula (inversly) to find the value of x for y = 13.6.

 What do you mean by Chebyshev Polynomial? Find first five Chebyshev Polynomial. State and Prove the properties of Chebyshev Polynomials.

UNIT-IV

8. Find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 2.03 from the following data:

 x
 1.96
 1.98
 2.00
 2.02
 2.04

 y
 0.7825
 0.7739
 0.7651
 0.7563
 0.7473

- 9. (a) Evaluate by $\int_{A}^{5.2} \log x \, dx \, by$
 - (i) Simpson's $\frac{1}{3}$ Rule.
 - (ii) Simpson's $\frac{3}{8}$ Rule

(b) Evaluate $\int_{-2}^{4} (2x^3 - 3x^2 + 1) dx$ by Gaussian Quadrature formula.