USAF Academy Department of Electrical and Computer Engineering ECE 332 – Electrical Circuits and Systems II

Spring 2016

Bandpass and Band-Reject Filters - Prelab

(Due at beginning of class IAW syllabus. Make a copy for yourself)

Authorized Resources: 1) ECE332 course documents and 2) course text.

Collaboration Policy: This is **individual** effort. Attach your work on engineering paper.

(25 pts) Theory

1. Pick circuit topologies for both your broadband and high-Q designs. Include schematics labeling the input signal V_1 and output signal V_2 . Be sure to include the source resistance $R_{\rm sig}$ and load resistance $R_{\rm L}$.

2. Derive the transfer function for each design in terms of the parts R, C, and/or L. For example a bandpass, series RLC circuit would have the form

$$T(s) = \frac{\frac{R}{L}s}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

3. Derive the governing equations relating your specifications to parts R, C, and/or L. For a bandpass, series RLC circuit

$$B = \frac{R}{L}$$
 and $\omega_o = \frac{1}{\sqrt{LC}} = 2\pi f_o$

4. Express your transfer function for each design in terms of your given specs. This is your theoretical transfer function. For a bandpass, series RLC circuit with $B=100 \text{ rad s}^{-1}$ and $\omega_o=10^3 \text{ rad s}^{-1}$

$$T(s) = \frac{100s}{s^2 + 100s + 10^6}$$

Spring 2016 page 1 of 2

(25 pts) Design

Through hand calculations using the governing equations above, design your circuits for R, C, and/or L to meet specifications given in the lab handout. Ensure you use standard parts available in the lab as listed on the course website. Ensure you account for source resistance $R_{\rm sig}$ and load resistance $R_{\rm L}$.

(25 pts) Simulation

For both designs attach your MultiSim <u>simulations</u> (circuit schematics and graphs) along with Matlab <u>simulations</u> (graphs). Fill in the table below showing your errors. When calculating error for Passband Gain, first convert dB to volts/volt. Ensure to include overlay plots of Matlab and Multisim Bode plots.

Broadband Design					
Parameter	Specifications	Calculation	% Error	Simulation	% Error
B (kHz)					
f _{low} (kHz)					
Max Op Amps (-)					
Passband Gain (dB)					
$R_L(k\Omega)$					
High-Q Design					
Parameter	Specifications	Calculation	% Error	Simulation	% Error
Q (-)					
f _o (kHz)					
Max Op Amps (-)					
Passband Gain (dB)					
$R_{L}(k\Omega)$					

(25 pts) Procedure/Test Plan

Describe how will you measure, collect and analyze data. Describe the test equipment
you will use. Draw a schematic showing how your test equipment is connected to your
circuit. Describe how will determine if you meet specifications.

Documentation:

Spring 2016 page 2 of 2