

Semester 2 Assessment, 2016

School of Mathematics and Statistics

MAST20018 Discrete Mathematics and Operations Research

Writing time: 3 hours

Reading time: 15 minutes

This is an OPEN BOOK exam

This paper consists of 8 pages (including this page)

Authorised materials:

- One double sided A4 page of handwritten notes.
- Hand-held calculator.

Instructions to Students

- You may remove this question paper at the conclusion of the examination
- This examination consists of 10 questions. You should attempt all questions.
- The total number of marks is 100. Marks for individual questions are shown.

Instructions to Invigilators

- Students may remove this question paper at the conclusion of the examination
- Each candidate should be issued with an examination booklet, and with further booklets as needed.

Question 1 (6 marks)

Consider the following LP:

$$\max z = \frac{1}{2}x + \frac{3}{2}y$$
$$x + 3y \le 6$$
$$x + y \ge 4$$

 $x,y \geq 0$

- (a) Sketch the set S of feasible solutions given by the constraints.
- (b) List the extreme points of S.
- (c) Find the optimal solution(s) for the LP.

Question 2 (8 marks)

(a) Convert the following LP to canonical form:

$$\begin{aligned}
 x_1 + 3x_2 - x_3 + x_4 & \leq 5 \\
 x_1 + 7x_2 + x_3 & \geq 4 \\
 4x_1 + 2x_2 & + x_4 & = 3 \\
 x_i & \geq 0, \quad i = 1, 2, 3, 4
 \end{aligned}$$

 $\max z = x_1 + 2x_2 + x_4$

(b) Set up, but do not solve, the initial Simplex tableau for the LP from (a) for the Two-phase Simplex method.

Question 3 (12 marks)

A local health food store packages three types of snack foods – Chewy, Crunchy, and Nutty – by mixing sunflower seeds, raisins and peanuts. The specifications for each mixture are given in the accompanying table.

Mixture	Sunflower seeds	Raisins	Peanuts	Selling price (per kg)
Chewy		At least 60%	At most 20%	\$2.00
Crunchy	At least 60%			\$1.60
Nutty	At most 20%		At least 60%	\$1.20

The suppliers of the ingredients can deliver each week at most 100 kg of sunflower seeds at \$1.00/kg, 80 kg of raisins at \$1.50/kg, and 60 kg of peanuts at \$0.80/kg. The store would like to determine a mixing scheme that maximises its profit. The store sets up the following decision variables:

Let $x_{ij} :=$ the amount of the *i*th ingredient in the *j*th mixture (in kg), where

Ingredient 1 = Sunflower seeds

Ingredient 2 = Raisins

Ingredient 3 = Peanuts

Mixture 1 = Chewy

Mixture 2 = Crunchy

Mixture 3 = Nutty

Therefore, in terms of the x_{ij} , the weekly amount paid by the store to the suppliers is

$$\sum_{j=1}^{3} x_{1j} + 1.5 \sum_{j=1}^{3} x_{2j} + 0.8 \sum_{j=1}^{3} x_{3j}$$

- (a) Write down an expression, in terms of the x_{ij} , for the profit (revenue minus costs) of the store.
- (b) Write down the three inequalities which specify the limitations on the amounts the suppliers can supply of each ingredient
- (c) Write down the five inequalities which specify the requirements on the mixing ratios, as given in the above table.

Do NOT solve the linear program.

Question 4 (10 marks)

Consider the following LP:

$$\max z = 5x_1 + 2x_2 + 3x_3$$

$$x_1 + 5x_2 + 2x_3 \le b_1$$

$$x_1 - 5x_2 - 6x_3 \le b_2$$

$$x_1, x_2, x_3 \geq 0$$

where b_1 and b_2 are constants. For specific values of b_1 and b_2 , the optimal tableau is

$\overline{~}\mathrm{BV}$	x_1	x_2	x_3	s_1	s_2	RHS
x_1	1	b	2	1	0	30
s_2	0	c	-8	-1	1	10
\overline{z}	0	\overline{a}	7	d	e	150

where a, b, c, d and e are constants. Using the algebra of the Simplex method, and showing all working, determine

- (a) The values of b_1 and b_2 .
- (b) The optimal dual solution.
- (c) The values of a, b, and c.

Question 5 (10 marks)

- (a) Suppose that some feasible linear programming problem has an unbounded solution. Explain why the dual of the program must be infeasible.
- (b) Show, without using the Simplex method, that x = (5/26, 5/2, 27/26) is an optimal solution to the following linear programming problem:

$$\min z = 9x_1 + 14x_2 + 7x_3$$

$$\begin{array}{rcl}
2x_1 + x_2 + 3x_3 & \leq & 6 \\
5x_1 + 4x_2 + x_3 & \leq & 12 \\
2x_2 & \leq & 5 \\
x_i & \in \mathbb{R}, \quad i = 1, 2, 3
\end{array}$$

Question 6 (5 marks)

Consider the following problem:

$$\max z = x_1 + 2x_2 + x_3 + x_4$$

$$\begin{array}{rclcrcl} 2x_1 + x_2 + 3x_3 + x_4 & \leq & 8 \\ 2x_1 + 3x_2 & + 4x_4 & \leq & 12 \\ 3x_1 + x_2 + 2x_3 & \leq & 18 \\ x_i & \geq & 0, & 1 \leq i \leq 4 \end{array}$$

After adding slack variables x_5, x_6 and x_7 and solving by the Simplex method, we obtain the final tableau below

BV	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
$\overline{x_3}$	4/9	0	1		1/3	-1/9	0	4/3
x_2	2/3	1	0	4/3	0	1/3	0	4
x_7	13/9	0	0	-10/9	-2/3	-1/9		34/3
\overline{z}	7/9	0	0	14/9	1/3	5/9	0	28/3

For cost coefficient c_2 , calculate the range of values for which the above solution remains optimal.

Question 7 (10 marks)

(a) Calculate the node-betweenness centrality for node 4 in the following network:

Page 5 of 8 pages

(b) Construct the dendogram for the following graph using the Girvan-Newman algorithm. Note: vertices have been labelled from 1 to 11. All steps of the algorithm must be shown, but explicit calculations of edge-betweenness centrality are not necessary.

Question 8 (25 marks)

- (a) Let G be any graph. A vertex v of G is called an odd vertex if the degree of v is odd. Otherwise, v is called an even vertex. Prove that any graph G has an even number of odd vertices.
- (b) Provide a formal definition of bipartite graphs, and then prove that bipartite graphs cannot contain cycles of odd length.

(c) Consider the following rooted tree

- i. Find an optimal vertex colouring of the tree.
- ii. Starting with the matching $M = \{(e, b)\}$ in the tree, extend M into a matching of size two by first finding an augmenting path. Repeat this process until you have found a maximum matching in the tree. Explicitly show each step. Note, an edge joining two exposed nodes is classified (trivially) as an augmenting path.
- (e) Sun City Hotel has received the following online bookings for the week of 26 December to 1 January.

Customer 1			Wed				
Customer 2	Mon			Thur			
Customer 3						Sat	Sun
Customer 4	Mon	Tue	Wed				
Customer 5					Fri	Sat	
Customer 6		Tue	Wed	Thur	Fri	Sat	Sun
Customer 7		Tue		Thur		Sat	

By using a vertex colouring model, find the minimum number of rooms the hotel needs to use for this week of bookings. Show all steps, including a drawing of the appropriate graph.

Question 9 (8 marks)

In June 1974, the United States and Panama agreed on a treaty after two rounds of negotiations. The following point allocations are taken from The Art and Science of Negotiation (1982) by Howard Raiffa:

Issue	United States	Panama
1 US defense rights	22	9
2 Use rights	22	15
3 Land and water	15	15
4 Expansion rights	14	3
5 Duration	11	15
6 Expansion routes	6	5
7 Compensation	4	11
8 Jurisdiction	2	7
9 Us military rights	2	7
10 Defense role of Panama	2	13

Use the Adjusted Winner method to determine which issue each party should be responsible for.

Question 10 (6 marks)

Suppose that in a survey 100 people are asked to rank their ice cream preferences with the results given below.

Flavour	33 Voters	3 Voters	10 Voters	20 Voters	7 Voters	27 Voters
Chocolate	1	1	2	3	2	3
Vanilla	2	3	1	1	3	2
Mocha	3	2	3	2	1	1

- (a) Calculate the winning flavour according to the Borda count method.
- (b) Calculate the winning flavour according to the Plurality criterion.