

Théorie des Probabilités ¹ ISE1 Mathématiques & Economie EXAMEN : Documents non autorisés Durée : 3 heures

Exercice 1 : Soit $p \in]0,1[$, et soit (X,Y) un couple de v.a à valeurs dans $\mathbb{N} \times \mathbb{N}$ dont la loi conjointe est donnée par :

$$\forall (n,k) \in \mathbb{N} \times \mathbb{N}, \quad \mathbb{P}(X=n,Y=k) = \begin{cases} \lambda (1-p)^k & \text{si } k \ge n \\ 0 & \text{sinon.} \end{cases}$$

1) Déterminer la valeur de λ.

2) Déterminer les lois marginales du couple (X,Y). Quelle est la loi de X+1? En déduire $\mathbb{E}(X)$ et $\mathbb{V}ar(X)$.

3) Montrer que X et Y - X suivent la même loi.

Exercice 2 : On considère le couple aléatoire (X,Y) de densité la fonction f définie sur \mathbb{R}^2 par :

$$f(x,y) = \alpha(1-x^2)\mathbf{1}_{[0,1]}(x)ye^{-3y}\mathbf{1}_{[0,+\infty]}(y)$$
, où α est un réel.

1) Préciser la valeur du réel α . 2) Déterminer les lois marginales du couple (X,Y).

3) Les variables X et Y sont-elles indépendantes? 4) Calculer $\mathbb{P}(0 < X \le 2, Y \ge 1)$.

5) Expliciter la matrice de dispersion de (X,Y).

Exercice 3 : Soient X, Y et Z trois variables aléatoires réelles indépendantes de même loi $\mathcal{N}(0,1)$.

1) Déterminer la loi de la variable aléatoire U = X + Y + Z.

2) Montrer que les variables aléatoires X - Y, Y - Z et Z - X sont chacune indépendantes de U.

3) Montrer que la famille des trois variables aléatoires (X + Y + Z, 2X - Y - Z, Y + Z) est indépendante.

4) On note ϕ la fonction caractéristique de la variable aléatoire X^2 [on rappelle que pour tout $t \in \mathbb{R}$,

$$\phi(t) = (1 - 2it)^{-1/2}$$

et on pose

$$V = (X - Y)^{2} + (Y - Z)^{2} + (Z - X)^{2}.$$

a. Vérifier, pour tout $(x, y, z) \in \mathbb{R}^3$, l'égalité

$$(x-y)^2 + (y - z)^2 + (z - x)^2 = 2\left(x - \frac{1}{2}(y+z)\right)^2 + \frac{3}{2}(y-z)^2.$$

b. Exprimer la fonction caractéristique $\Phi_{(U,V)}$ du vecteur aléatoire (U,V) à l'aide de ϕ . En déduire, pour tout couple de réels (u,v), l'expression de $\Phi_{(U,V)}(u,v)$ en fonction de u et de v.

Exercice 4: Soit X une variable aléatoire à valeurs dans $[1, +\infty]$. On suppose qu'il existe un réel $\lambda > 0$ tel que

$$\forall x \ge 1, \quad \mathbb{P}(X > x) = \frac{1}{x^{\lambda}}.$$

1) Montrer que les variables aléatoires X et $Y = \ln(X)$ sont absolument continues et déterminer leurs densités.

2) Soit $(X_n)_{n\geq 1}$ une suite de variable aléatoire i.i.d de même loi que X. On pose

$$U_n = (X_1 \times X_2 \times \cdots \times X_n)^{1/n}.$$

a) Montrer que les suites de variables aléatoires $(\ln(U_n))_{n\geq 1}$ et $(U_n)_{n\geq 1}$ convergent en probabilité.

b) Les suites de variables aléatoires $(\ln(U_n))_{n\geq 1}$ et $(U_n)_{n\geq 1}$ convergent-elles en L^1 et presque sûrement?

1. Cours : Dr. Ibrahima DRAMÉ

Théorie des Probabilités ¹ ISEI Mathématiques & Economie Contrôle Continu : Documents non autorisés Durée : 3 heures

Exercice 1 : Soit (U, V) un couple indépendant de variables aléatoires réelles dont la loi de chaque composante est la loi uniforme $\mathcal{U}[0, 1]$. On définit les variables aléatoires

$$X := \sqrt{-2 \ln U \cos(2\pi V)}$$
 et $Y := \sqrt{-2 \ln U \sin(2\pi V)}$.

Montrer que les variables aléatoires réelles X et Y sont de même loi $\mathcal{N}(0,1)$ et indépendantes.

Exercice 2 : On considère un couple de variables aléatoires aléatoires (X,Y) de densité conjointe

$$f(x,y) = \beta e^{-(x+y)} \mathbf{1}_{\Lambda}(x,y),$$

où β est une constante positive et le domaine Δ est défini par $\Delta = \{(x,y) \in \mathbb{R}^2, : 0 \le y \le x\}$.

- 1) Déterminer la constante β .
- 2) Déterminer les lois marginales puis calculer $\mathbb{E}[X]$ et $\mathbb{E}[Y]$.
- 3) Les variables X et Y sont-elles indépendantes?
- 4) Calculer les lois conditionnelles f(y|x) et f(x|y). En déduire $\mathbb{E}(X/Y)$ et $\mathbb{E}(Y/X)$.
- 5) Déterminer la loi de la variable aléatoire S définie par : S = X + Y.

Exercice 3: Soient X, Y et Z trois variables gaussiennes centrées réduites et indépendantes. On pose U := X + Y - Z et V = aX + bY, où a et b sont dans \mathbb{R} .

- 1) Quelle est la loi de (U,V)? Déterminer la loi de U et la loi de V.
- 2) Déterminer les lois de U + V et U V. A quelle condition U + V et U V sont-elles indépendantes?
- 3) Pent-on avoir U et V indépendantes ainsi que U + V et U V?

Exercice 4 : Soit X une variable aléatoire de densité

$$f_{a,b}(x) = \frac{1}{b}e^{-\frac{x-d}{b}}\mathbf{1}_{\{x>a\}}, \quad x \in \mathbb{R}, \quad a \ge 1, \quad b > 0.$$

- 1) Déterminer $\mathbb{E}(X)$ et $\mathbb{V}ar(X)$.
- 2) Calculer $F_{a,b}(x) = \mathbb{P}(X \le x)$ la fonction de répartition de X.
- 3) Soit X_1, \dots, X_n une suite de variable aléatoire i.i.d de même loi que X.
 - (a) Quelle est la loi de $Y_n = \inf(X_1, \dots, X_n)$
 - (b) Calculer $\mathbb{E}(Y_n)$ et $\mathbb{V}ar(Y_n)$.
 - (c) Après avoir démontrer que

$$\forall \varepsilon > 0, \quad \mathbb{P}(|Y_n - a| > \varepsilon) \leq \mathbb{P}\left(|Y_n - \mathbb{E}(Y_n)| > \frac{\varepsilon}{2}\right) + \mathbb{P}\left(|\mathbb{E}(Y_n) - a| > \frac{\varepsilon}{2}\right),$$

en déduire que Y_n converge vers a en probabilité lorsque $n \to +\infty$. On pose

$$U_i = X_1 + \cdots + X_i$$
.

(d) On pose $Z_n = \frac{U_n}{n} - Y_n$. Calculer $\mathbb{E}(Z_n)$ et $\mathbb{V}ar(Z_n)$ et démontrer que Z_n tend en probabilité vers b lorsque $n \to +\infty$.

^{1.} Cours : Dr. Ibrahima DRAMÉ