Homework 2 — Due: Tuesday, September 13, 2022

Please submit your work on Brightspace, in PDF format only.

- 1. (a) Prove that, if $f:A\to B$ and $g:B\to C$ are injective, then $g\circ f:A\to C$ is also injective.
 - (b) Prove that, if $f:A\to B$ and $g:B\to C$ are surjective, then $g\circ f:A\to C$ is also surjective.
 - (c) Use the previous two facts to prove a similar result about bijective functions.

These results may be summarized by saying that the classes of injective, surjective, and bijective functions are closed under function composition.

2. If R is a binary relation on a set A, then the *transitive closure* of R is the binary relation R^* on A defined as follows:

For all $a, b \in A$, $(a, b) \in R^*$ if and only if there exists $n \ge 0$ and a sequence $a_0, a_1, a_2, \ldots a_n$ of elements of A such that $a_0 = a$, $a_n = b$, and $(a_k, a_{k+1}) \in R$ for all $k \in \{0, 1, \ldots, n-1\}$.

Let R be a binary relation on A.

- (a) Prove that R^* is a transitive relation.
- (b) Prove that, if T is any transitive relation on A that contains R (i.e. $R \subseteq T$), then T contains R^* ; i.e. R^* is the \subseteq -smallest transitive relation on A that contains R.
- (c) Prove that, if \mathcal{T} is the set of all transitive relations on A that contain R,
 - i. $\cap \mathcal{T}$ is a transitive relation that contains R.
 - ii. R^* contains $\cap \mathcal{T}$.

Conclude that $\cap \mathcal{T} = R^*$.

3. Let $\Sigma = a_1, a_2, \ldots, a_k$ be an alphabet. The Parikh vector of $w \in \Sigma^*$ is the vector

$$\psi_w = (\#_{a_1}(w), \#_{a_2}(w), \dots, \#_{a_k}(w))$$

where $\#_{a_i}(w)$ denotes the number of occurrences of a_i in w. Let R be the binary relation on Σ^* such that $(w, x) \in R$ if and only if either w = x or else there exist $u, v \in \Sigma^*$ and $a, b \in \Sigma$, such that w = uabv and x = ubav; that is, w can be transformed into x by the interchange of two adjacent letters.

(a) Prove that $(w, x) \in R^*$ if and only if $\psi_w = \psi_x$.