

Input Modelling

Statistical Distributions and How to Find Them

Review of Common Statistical Distributions

The Uniform Distribution

Definition:

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Applications:

- Random number generation
- When only min. and max. information is available

The Triangular Distribution

Definition:

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & a \le x \le b \\ \frac{2(c-x)}{(c-b)(c-a)} & b \le x \le c \\ 0 & x \ge c \end{cases}$$

Application:

When only min., max. and most common values are known

The Exponential Distribution

Definition:

$$F(x) = 1 - e^{-\lambda x}$$

$$f(x) = \lambda e^{-\lambda x}$$

Applications:

- Independent arrivals from an infinite population
- Lifetimes of electronic components

The Normal Distribution

Definition:

$$F(x) = ?$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Applications:

- Shooting at a target
- Common attribute of a population
- Service times

The Lognormal Distribution

Lognormal density function:

$$F(x) = ?$$

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\ln(x)-\mu}{\sigma}\right)^2}$$

Applications: Many empirically determined distributions

- Household incomes
- Age at first marriage
- Resistance to poison in animals

The Weibull Distribution

Definition:

$$F(x) = 1 - e^{-\left(\frac{x}{\alpha}\right)^{\beta}}$$

$$f(x) = \frac{\beta}{\alpha} \left(\frac{x}{\alpha}\right)^{\beta - 1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}}$$

Application: lifetimes of different types of components:

- $\beta < 1$: "Infant mortality"
- $\beta = 1$: "Memoryless"
- $\beta > 1$: "Wear"

(manufacturing errors)

(degenerates to exponential dist.)

(mechanical parts)

Characteristics of Random Variables

Expected value
$$E(X) = \mu$$
: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$

Variance
$$Var(X)$$
: $Var(X) = \int (x - \mu)^2 f(x) dx$

Standard Deviation
$$\sigma(X)$$
: $\sigma(X) = \sqrt{Var(X)}$

Rule of Thumb for practical distributions:

- >75% of all values fall within $\mu \pm \sigma$
- >94% of all values fall within $\mu \pm 2\sigma$
- >97% of all values fall within $\mu \pm 3\sigma$

The Effect of Variance

What is Variance?

A measure of how much values spread, i.e. how far they lie away from their common mean.

Variance of random variables in a system has a strong influence on the system behavior!

The Effect of Variance – Experiments Setup

A simple queue:

- One server
- One queue with infinite capacity
- Simulation until t=100.000s

The Effect of Variance - On Distribution Shape

Varying standard deviation N(60,1) ... N(60,10):

The Effect of Variance - On Average Queue Length

The Effect of Variance due to Distribution Shapes

Service Times ~Deterministic(1.8)

Average Interarrival Time = 2

Applicability of Standard Distributions

Example

Patients treatment time in days and exp(1/34.55)

Example

Monthly change of German production index 2000-2009 and N(0,1.6)

Examples

Size of electoral districts for Bundestag election 2009 and N(207 000, 25 000)

Examples

Voter turnout in electoral districts for Bundestag election 2009 and W(72.7, 19.7)

Fitting a Distribution

The five steps involved in input data analysis are:

- 1. Collect data (measurement or guesswork)
- 2. Guess a distribution type for the data
- 3. Check the guess for distribution type
- 4. Find the specific parameters for the distribution
- 5. Check the quality of the distribution obtained

These steps require:

- 1. Use a stopwatch
- 2. Draw a histogram
- 3. Draw a quantile–quantile plot
- 4. Compute parameters from mean and variance
- 5. Do a chi–squared test

Exercise:

• Find a distribution function describing the age structure of patients suffering from dementia

The computations can be done with a spreadsheet ...

The measured data:

80 86 68 92 89 73 68 83 74 63 90 83 80 73 85 88 78 74 68 70 71 83 67 86 78 79 86 62 85 88 73 82 80 78 83 78 78 68 75 70 59 85 77 83 72 71 62 81 64 81 89 75 82 77 80 79 82 84 89 65 72 79 80 81 75 74 79 82 81 89 63 73 83 63 82 83 80 75 75 80 75 76 78 74 69 81 76 80 87 71 73 59 94 83 81 71 72 70 79 69 75 68 80 79 90 86 81 77 77 76 87 85 85 82 65 78 70 78 76 86 59 74 79 75 66 88 79 79 88 86 73 85 76 70 77 60 86 74 67 78 76 71 78 77 74 78 72 75 78 81 73 69 76 78 81 83 69 79 77 84 74 81 78 65 64 52 82 76 91 71 81 79 72 69 77 86 70 75 73 78 86 76 72 76 77 74 72 76 76 63 71 75 81 74 54 90 72 85 74 76 72 71 89 78 89 90 69 87 64 82 86 94 83 91 87 70 82 73 78 87 76 75 80 75 69 78 70 63 93 67 74 72 75 67 80 80 76 91 90 73 83 62 83 88 77 79 77 74 81 75 65 79 82 89 80 84 66 70 81 87 72 78 83 76 83 83 70 9 77 76 88 94 88 79 79 73 72 64 75 61 75 78 83 74 55 69 81 82 88 79 71 87 90 82 72 89 69 80 81 67 74 76 67 79 79 73 81 77 85 91 71 75 91 69 76 80 76 67 72 83 90 87 83 68 79 82 74 75 78 76 93 80 87 80 74 89 93 83 82 85 76 75 81 77 75 83 77 91 84 91 75 72 92 82 89 89 83 71 76 70 80 73 81 75 88 69 77 80 68 77 77 83 73 68 81 83 84 61 78 59 72 60 79 72 57 81 77 84 76 78 78 69 76 80 80 65 88 83 75 83 75 81 81 67 69 83 77 80 80 85 79 79 90 84 72 90 87 77 78 75 63 58 78 80 71 78 83 68 87 79 83 75 71 90 92 90 80 85 57 78 81 76 88 57 76 66 72 86 85 77 95 72 70 81 66 77 76 73 90 80 67 84 75 94 67 66 84 76 81 94 75 82 75 86 72 76 79 80 80 76 74 75 87 85 75 80 93 84 84 73 66 84 74 87 67 83 69 84 75 64 90 77 79 92 84 90 82 68 66 84 90 87 72 83 93 65 81 93 92 80 78 80 94 81 75 75 66 54 85 68 80 83 64 90 74 68 78 78 82 84 81 82 78 78 85 73 75 82 76 81 75 86 84 77 77 90 86 81 82 69 84 82 89 81 75 81 84 77 77 71 67 76 79 70 85 77 82 84 92 84 84 77 83 86 82 70 71 71 78 64 78 84 65 93 84 84 89 84 72 82 94 83 73 82 73 70 75 79 89 69 83 83 73 69 86 64 71 73 80 84 90 79 85 75 84 72 80 74 93 73 84 79 77 79 78 57 84 72 87 85 80 81 88 79 92 83 65 73 77 70 87 75 84 91 78 75 85 79 84 70 77 77 84 64 85 73 85 69 85 81 74 86 96 58 82 84 70 89 63 90 72 74 70 68 65 75 66 71 83 85 74 90 79 88 83 78 96 80 79 75 83 89 72 89 80 87 83 81 82 75 71 77 82 71 80 74 80 67 69 90 69 82 80 74 87 91 76 73 83 79 76 81 73 84 76 84 79 77 74 76 71 74 56 77 81 69 66 79 93 72 83 67 78 82 73 74 78 83 86 71 80 74 90 81 67 81 82 82 72 71 70 73 77 69 86 93 71 82 89 80 93 88 92 75 91 82 71 77 75 65 83 82 76 81 60 70 82 81 75 82 80 83 84 88 85 62 85 74 92 68 72 67 81 73 87 72 77 71 62 93 74 93 78 78 72 69 66 94 82 90 86 92 93 83 79 78 66 77 70 63 72 91 77 82 84 78 77 77 76 68 94 59 77 81 83 85 73 78 93 83 80 79 81 66 66 85 76 75 64 70 69 57 93 69 85 83 83 85 88 80 79 86 91 70 80 82 80 76 65 64 79 79 76 87 72 81 76 83 82 80 85 77 86 70 84 86 86 84 81 66 83 88 79 72 71 78 70 79 66 65 76 92 80 86 92 86 70 88 72 78 64 73 6 97 81 80 80 64 69 92 93 83 76 81 84 82 84 76 80 77 87 77 76 92 77 75 66 74 82 85 78 70 94 75 71 74 91 77 79 69 80 83 86 57 90 83 79 64 86 88 76 66 83 92 70 66 64 84 70 85 76 76 73 72 74 82 83 74 92 75 78 86 84 87 79 87 86 73 82 64 84 79 87 68 59 77 81 84 83 89 78 74 91 78 68 79 87 76 70 73 56 93 86 57 78 80 71 67 72 74 78 82 96 64 74 84 67 78 80 78 82 70 75 75 77 79 68 74 84 86 85 85 90 81 78 72 73 72 85 78 82 66 72 85 87 77 84 86 71 73 84 70 85 92 76 89 94 70 69 80 73 84 72 70 78 84 86 86 88 88 61 76 80 80 89 92 61 88 84 74 77 71 77 76 72 77 92 82 93 87 86 77 84 82 89 74 86 70 84 92 74 79 63 70 75 72 92 69 67 68 85 86 83 85 79 87 66 71 91 73 76 74 81 69 89 86 71 74 65 88 80 86 77 97 \$2 88 87

The histogram:

The Q–Q plot:

The Chi-squared test:

_		xmin	xmax	Expected	Observed	(Ei-Oi)^2/Ei
		50	57	4	6	1.38
f	18	57	65	41	52	2.76
alpha	0.05	65	68	47	53	0.79
chisq	28.869	68	70	47	51	0.26
Result	ACCEPT	70	72	63	71	1.14

96	98	15	6	5.40
		1147	1167	24.20

Learning Goals

STATION THE NEXT GENERATION

Unknown

- times for treating crew members
- employments duration of IT-consultants

List of samples from both

Draw the Q-Q plot for guessing a distribution type and do the Chi-squared test for the check

