

Performance Of Trapezoidal Map

- Number Of Rays Trimmed

Junhui DENG

deng@tsinghua.edu.cn

$$(k(i) = K(i) + 4)$$

- *The insertion of s_i causes K(i) existing rays to be trimmed, and besides either endpoint of s_i shoots $\boxed{2}$ rays
- ❖ To insert s_i , we need to process altogether K(i) + 4 rays, each of which create

exactly 1 new trapezoid

in |O(1)| time (with DCEL)

- ❖ In our example,
 - 3 rays are trimmed and 3 + 4 = 7 trapezoids created

$$k(i) = K(i) + 4$$

- ❖ Therefore,
 - if the time for locating the left endpoint of s_i is ignored,
 - the ith insertion needs time of

$$= O(K(i) + 4)$$

$$= \mathcal{O}(k(i))$$

k(i) - Worst Cases

❖ In the worst case, k(i) can be $\Theta(i)$; and even worse, this can happen for $\Theta(n)$ times; and hence RIC algorithm creates $\Theta(n^2)$ trapezoids totally

k(i) - Expectation

Surprisingly, however,

the expectation of k(i) is

a constant ...

