多模式交织器实现

1. 实验目的

本实验目的是设计一款阵列交织器,可以按照行写入列读出的方式,支持 904, 920, 1848, 2712, 数据长度 8bit 四种模式的交织。

图 1 实验指导图

2. 代码功能介绍

2.1 设计思路

存储单元设计: 在本设计中,由于数据块最大为 2712,因此采用 8 位,深度为 2712 的寄存器堆作为存储单元,寻址方式为一维线性寻址。由于四种模式的最大公约数为 8,因此设计寄存器列宽为 8,行宽依次为对应块大小除以 8。

读写逻辑:写入时,按照线性寻址的方式写指针逐渐加1写入。读出时,由于行宽为8,因此需要先从0开始每次加8位读取,读到列尾时再重复从1开始每次加8位读取,直到从7开始每次加8位读取直到列尾读出所有的数。

2.2 代码分析

输入输出端口分析:

信号	功能
clk	全局时钟
reset	全局复位
data_in	数据输入8位
Data_valid	输入有效
length	块长度 12 位 (904, 920, 1848, 2712)
Data_out	数据输出 8 位
Data_out_valid	输出有效

关键变量分析: 当堆不满时按照写入逻辑输入, 堆满后按照读出逻辑输出。

Buffer_full	寄存器堆满
Read_count	行计数(0-length/8-1)
Read_count_row	列计数 (0-7)
Write_ptr	写指针
Read_ptr	读指针
interleaver_mem	寄存器堆

2.3 仿真结果分析

使用 integer i 变量每次时钟反转时自增 1 作为输入。因此堆之间每个数相差 2,每行直接相差 16。

图 2 不同模式下的总体仿真波形,大致可以看到不同模式下的读写时间差异。

图 3 904 模式下的仿真波形,可以看到读指针最终指向 903,每个输出相隔 16,符合设计要求。

图 4 920 模式下的仿真波形,可以看到读指针最终指向 919,每个输出相隔 16,符合设计要求。

图 5 1848 模式下的仿真波形,可以看到读指针最终指向 1847,每个输出相隔 16,符合设计要求。

图 6 2712 模式下的仿真波形,可以看到读指针最终指向 2711,每个输出相隔 16,符合设计要求。

图 7 读完该列后读下一列,列计数加 1, 行计数由从 0 开始加 8 到从 1 开始加 8

3. 电路性能分析

3.1 资源分析

LUT	FF	BRAM	DSP
8931	21873	0	0

由于使用寄存器堆作为存储单元,因此没有消耗 BRAM,消耗了较多的 Flip-Flop。

3.2 功耗分析

Summary Power estimation from Synthesized netlist. Activity On-Chip Power derived from constraints files, simulation files or 0.059 W (36%) Dynamic: vectorless analysis. Note: these early estimates can 36% change after implementation. 0.038 W (65%) Clocks: 65% 0.164 W Total On-Chip Power: Signals: 0.008 W (14%) **Not Specified** Design Power Budget: 14% Logic: 0.009 W (15%) 64% 15% N/A Power Budget Margin: **I/O**: 0.004 W (6%) 26.9°C Junction Temperature: Device Static: 0.105 W (64%) Thermal Margin: 73.1°C (6.0 W) 11.5°C/W Effective 9JA: Power supplied to off-chip devices: 0 W - Canfidopos lavel -----

Vivado 参考功耗较低符合低功耗设计理念。

3.3 时序分析

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.431 ns	Worst Hold Slack (WHS):	0.173 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	22049	Total Number of Endpoints:	22049	Total Number of Endpoints:	21874

在 100Mhz 时钟的条件下最糟糕的延迟为 5.431ns, 预计频率最高可达到约 184Mhz