

Deep Learning

Computer vision

Prof. Dr. Jan Kirenz HdM Stuttgart

Prof. Dr. Jan Kirenz

Source: Moroney (2019)

Source: Moroney (2019)

```
certiful() ("use at ide" "Newton" "apper (defination for a set to the the transmit of the proposed for "apper (defination to the test) to the test ("use and test ("use and
```

poyright (c) week-vell, A. Alsub, Sugl Licensed wheer the Air and ort licensel-

charact. "UT-S", animated (sebil sciention or tion is primated contributed animation (in facts) animation (in fact dcharset."UTF-8":.animated{-webkit-animation-duration;is;animation-duration;is;-webkit-animation-fill-mode;both;

Prof Dr Jan Kirenz

Data and Labels

Label = Rock

10010100111110101011 101010111010101111010 10101111010101011111 1110001111010101

Label = Scissors

Label = Paper

Example with fashion data

#####################################

Label	Class
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Fashion MNIST

- 70k greyscale Images
- 10 Categories
- Images are 28x28
- Can train a neural net

Import libraries

import tensorflow as tf from tensorflow import keras

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

Import data

import tensorflow as tf

from tensorflow import keras

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

Create training and test images and labels

import tensorflow as tf

from tensorflow import keras

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

9Class of type of clothing (ankle boot)

Neural network design

```
model = keras.Sequential)[
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])
```

Input shape equals size of our images (x)

```
model = keras.Sequential)[

keras.layers.Flatten(input_shape=(28, 28)),

keras.layers.Dense(128, activation=tf.nn.relu),

keras.layers.Dense(10, activation=tf.nn.softmax)
])
```

Number of different items in our dataset (labels)

```
model = keras.Sequential)[

keras.layers.Flatten(input_shape=(28, 28)),

keras.layers.Dense(128, activation=tf.nn.relu),

keras.layers.Dense(10, activation=tf.nn.softmax)
])
```

Number of functions

```
model = keras.Sequential)[
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])
```


Compile model with optimizer and loss

```
model = keras.Sequential)
     keras.layers.Flatten(input_shape=(28, 28)),
     keras.layers.Dense(128, activation=tf.nn.rel),
     keras.layers.Dense(10, activation=tf.nn.softmax)
model.compile optimizer=tf.train.AdamOptimizer(),
               loss='sparse_categorical_crossentropy')
```

Activation functions

```
model = keras.Sequential)[

keras.layers.Flatten(input_shape=(28, 28)),

keras.layers.Dense(128, activation=tf.nn.relu),

keras.layers.Dense(10, activation=tf.nn.softmax)
```

Rectified Linear Unit (ReLU) returns a value if it's greater than zero

Softmax is picking the biggest number in a set and sets it to 1. All other values become 0.

```
model = keras.Sequential)
     keras.layers.Flatten(input_shape=(28, 28)),
     keras.layers.Dense(128, activation=tf.nn.relu),
     keras.layers.Dense(10, activation=tf.nn.softmax)
     0.02 | 0.01 | 0.02 | 0.01 | 0.05 | 0.01 | 0.08 | 0.02 | 0.01 | 9.78
      0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00
```

Model training with 5 repetitions

model.fit(train_images, train_labels, epochs=5)

Test model performance with test data

test_loss, test_acc = model.evaluate(test_images, test_labels)

Model predictions with new images

predictions = model.predict(my_images)

Resources

The slides are based on the excellent video tutorial "Basic Computer Vision with ML (ML Zero to Hero - Part 2)" by Lawrence Moroney.

