ECE537

Random Processes

Problem Set 2

Sept 17, 2024

Elvino S. Sousa

- 1. Consider an experiment where we draw a card at random from a deck of 52 cards.
 - a) Specify the sample space Ω .
 - b) Consider the following set of events $S = \{\text{diamonds, a queen, a red 6, clubs}\}$.
 - c) Find the probability of each of these events.
 - d) Find the smallest σ -field of events that contain S, i.e. find $\sigma(S)$. How many events are there?
 - e) Specify the largest σ -field that contains S. How many events are there?
- 2. Consider an experiment where $\Omega = [0,2]$. The probability law is the uniform probability law. A random variable is defined as follows: $X = (\omega^2 2)u(\omega 1)$, where $u(\cdot)$ is the step function.
 - i) Determine the CDF and PDF for the random variable *X*?
 - ii) Determine the expected value of X.
 - iii) Determine the variance of X.
- 3. Consider an experiment where we draw a number at random from the interval [0, 1] with uniform probability law. Express the number as a decimal expansion, i.e. 0.345. Define a random variable *X* as the sum of the first 3 digits after the decimal.
 - i) Find the CDF for X?
 - ii) Find the PDF for X?
- 4. An experiments consists in the flipping of a fair coin 10 times.
 - i) Specify the sample space Ω .
 - ii) Specify the largest σ -field that we can define in this space. How many events are there?
 - iii) What is the probability that the first 3 flips or the last 3 flips result in the same value (i.e. Heads or Tails)?
 - iv) Let *X* be a random variable that is equal to the number of heads. Determine the CDF and PDF (using delta functions) for *X*.
 - v) Determine the mean and variance of X.

- 5. Prove rigorously the following properties of the CDF
 - i) $0 \leq F_X(x) \leq 1$
 - $F_X(x)$ is right continuous and monotone increasing. ii)
 - iii)
 - iv)
 - $\lim_{x \to -\infty} F_X(x) = 0$ $\lim_{x \to \infty} F_X(x) = 1$ If $x_1 \le x_2$ then $F_X(x_1) \le F_X(x_2)$ (definition of "monotone increasing"). v)