, RE	PORT DOC	CUMENTATIO	N PAGE		OMB No. 0704-0188
maintaining the data needed, and including suggestions for reducin	d completing and reviewing to g this burden to Department	of Defense, Washington Headqua	arters Services, Directorate for Info	ormation Operations and	ing existing data sources, gathering and spect of this collection of information, d Reports (0704-0188), 1215 Jefferson Davis ject to any penalty for failing to comply with a ESS.
Highway, Suite 1204, Arlington, collection of information if it does 1. REPORT DATE (DD-)	MM-YYYY)	OMB control number. PLEASE D 2. REPORT TYPE Technical Papers	O NOT RÉTURN YOUR FORM T		ATES COVERED (From - To)
4. TITLE AND SUBTITL				5a. (CONTRACT NUMBER
				5b.	GRANT NUMBER
	Dlow	rce s	rel)	PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		olfac	hod	2	PROJECT NUMBER 308 TASK NUMBER
					198 VORK UNIT NUMBER
7. PERFORMING ORGA	ANIZATION NAME(S	AND ADDRESS(ES)		8, P	46058 ERFORMING ORGANIZATION
	•				PORT
Air Force Research L AFRL/PRS	aboratory (AFMC)		·		·.
5 Pollux Drive Edwards AFB CA 93	3524-7048				
9. SPONSORING / MON	NITORING AGENCY	NAME(S) AND ADDRES	S(ES)		SPONSOR/MONITOR'S RONYM(S)
Air Force Research L AFRL/PRS	aboratory (AFMC)		* .	11.	SPONSOR/MONITOR'S
5 Pollux Drive			•	~	NUMBER(S)
Edwards AFB CA 93				Ple	ose see attached
12. DISTRIBUTION / AV	AILABILITY STATE	MENI			
Approved for public	release; distribution	unlimited.			
13. SUPPLEMENTARY	NOTES				
14. ABSTRACT					
			·		
			2	NNZN	205 291
			۷	טכטט	LUJ L7
15. SUBJECT TERMS					
16. SECURITY CLASSI	FICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Leilani Richardson
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include area code)
Unclassified	Unclassified	Unclassified	A		(661) 275-5015
<u> </u>					Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Form Approved

2308 m1 9B

MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO)

06 May 2002

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2002-096
Andrew Ketsdever (PRSA), "Free Molecule Micro-Resistojet: Current Status"

ESA Micropropulsion Workshop (29-30 May 2002, La Spazia, Italy) (<u>Deadline: 29 May 2002</u>)

(Statement A)

b.) military/national critical technod.) appropriateness for release to a	by the Foreign Disclosure Office for: a.) appropriateness of distribution stated (logy, c.) export controls or distribution restrictions, foreign nation, and e.) technical sensitivity and/or economic sensitivity.
11-78-141-141-1	
Signature	Date
2. This request has been reviewed and/or b) possible higher headquar Comments:	
Signature	
b) appropriateness of references, if Comments:	y the STINFO for: a.) changes if approved as amended, applicable; and c.) format and completion of meeting clearance form if requ
Signature	Date
4. This request has been reviewed by appropriateness of distribution state national critical technology, and f.) Comments:	
	APPROVED/APPROVED AS AMENDED/DISAPPRO
•	PHILIP A. KESSEL Date Technical Advisor Space and Missile Propulsion Division

Resistojet: Current Status Free Molecule Micro-

DISTAIGHTION STATEMENT A Approved for Public Release Distribution Unlimited

Introduction

Collaboration

- AFRL, Edwards

Hardware + Testing facility

Microdevices Lab, JPL

Fabrication of FMMR heater chips

Arizona State University

Characterization of FMMR heater chips (ground & space)+ Spacecraft bus

Hardware delivery

— Instrument(2 units)

July, 2001

- 3CS Constellation (3 S/C)

December, 2001

Target 2003 flight on Shuttle

Flight-Test

- 2 FMMR chips in a Teflon housing
- 80grams, 5 x 7 x 2 cm
- ~600K max.
- 2W nom., 5W max. per chip

Flight-Test

- Chip survivability
- Launch
- LEO environment
- Thermal Cycling
- Operation characteristics
- Power consumption

Operation

- Min. 10-min per orbit
- Voltage and current consumed
- Min. 1Hz frequency

FMMR Characteristics

- 13 x 42mm, 400 μ m-thick LSN wafer
- Heater
- Cr (300Å) + Pt (600Å) + Au (8000Å)
- $400\mu m$ wide, 0.45m total length
- **Expansion slots**
- 50 slots
- 100 μ m wide, 3 to 5mm long

5000Å Si₃N₄, ε~0.5

8000Å Gold, ϵ ~0.02

FMMR Concept

Heating Element

> Expansion Slots

· FMMR Heater Chip

Free molecular flow at ice vapor pressure

Propellant Molecule, To

Plenum

To Feed System and Propellant Tank

- Optimal Tw ≈600K
- $-\mu N$ to 10's mN thrust

Plenum

Propellant Tank Feed System

$$Thrust = \frac{n_p k}{2} \sqrt{T_w T_o} A_s$$

Heat Transfer Theory

$$\left(I^{2}R_{element} - \mathcal{E}\sigma(T_{element}^{4} - T_{env}^{4})A_{element}\right) \frac{1}{\Delta Vol} + \kappa \nabla^{2}T_{element} = \left(\rho c_{p} \frac{\partial T_{element}}{\partial t}\right)$$

FMMR Experiment

Background pressure sensitivity

Chip

Nitride

Pressure

1e-4 to 1e-6Torr

Power Supply

15VDC

Environment T°

Room

Surface temperature and power consumption

Chip

Pressure

Power Supply 15VDC

Environment T°

5, 7.5, 10, 12, 13.5, 1e-6Torr

Nitride, Gold

Room, LN2-cooling

FMMR Experiment Setup

⇔ Nitride chip test setup Vacuum chamber ⇒

FMMR Experiment Results Typical Temperature Profile

FMMR Experiment Results Background Pressure Sensitivity

Nitride Chip Surface Temperaure vs. Background Pressure

FMMR Experiment Results High Vacuum Power Variation

FMMR Experiment Results High Vacuum Power Variation

FMMR Experiment Results High Vacuum Power Variation

FMMR Experiment Results Summary

- Flight Experiment will collect FMMR heater chip surface temperature as a function of input power
- Predicted heat transfer environment
- Vacuum chamber pressure < 1e-4Torr to eliminate convective heat transfer
- Liquid nitrogen shroud for proper radiative prediction
- Longitudinal temperature distribution
- Gradient is more pronounced on the nitride chip
- Gold chip is more power efficient
- To reach Tmax~600K
- Nitride: 2.90W
- Gold: 2.95W

Chronology

- Measured thrusts from 1 mN to 5 µN in CHAFF-II facility. (2000)
- environmental noise and background pressures.) Moved thrust stand to CHAFF-IV (Lower
- Measured thrusts down to 500 nN. (Early 2001)
- Extended thrust stand arms for increased deflection. (Mid 2001)
- Thrusts measured down to 90 nN. (Mid 2001)

nNTS Arm Extensions

Orifice

 Mass balancing and symmetry appear to have a significant impact upon the environmental noise of the system

300

extensions

using nitrogen at $P_0=0.007$ Torr.

µN Level nNTS Trace

8 µN trace for nitrogen gas.

Noise Contributions

Majority of noise is from the data acquisition system.

system.

noise from the LVDT connected to the nNTS.

Deflection Measurements

Deflection versus stagnation pressure for nitrogen, helium, and argon

- Direct Simulation Monte Carlo technique for high Knudsen numbers.
- Experimentally determined Helium data used for stagnation pressure, temperature, and mass flow boundary conditions
- To approach free molecule conditions, data used had large Kn.
- DSMC calculations performed by A. Alexeenko and Prof. D. Levin at Penn State University.

Analytical

Uses equations based on free molecular theory to verify available DSMC results.

Orifice Flow Theory

Analytical equations for free molecule (collisionless) flow:

$$S_{fm} = \alpha \frac{p_o}{2} A_o$$

$$\dot{M}_{fm} = \alpha m \frac{n_o \vec{C}}{4} A_o = \alpha m n_o \frac{\sqrt{\pi m}}{4} A_o$$

$$Sp_{fm} = \frac{\sqrt{\frac{\pi}{2}} \frac{k}{m} T_o}{g}$$

Plenum and orifice design contribute to departures from the analytical model. Three primary contributors:

Effect of Drift Velocity

Incident number flux with bulk flow, c_0

$$\dot{N}_{Act} = \left(\frac{n\beta^3}{\pi^{3/2}}\right) \int_{-\infty}^{\infty} \exp(-\beta^2 \omega'^2) d\omega' \int_{-\infty}^{\infty} \exp(-\beta^2 v'^2) dv' \int_{-c_0\cos\theta}^{\infty} (u' + c_0\cos\theta) \exp(-\beta^2 u'^2) du'$$

Solution of the integral

$$\dot{N}_{Act} = \left(\frac{n}{2\beta\pi^{1/2}}\right) \left(\exp(-S^2 \cos^2 \theta) + \pi^{1/2} S \cos \theta (1 + erf(S \cos \theta)), S = \beta c_0 = \frac{c_0}{\left(\frac{1}{2} k_{T}\right)^{1/2}}\right)$$

• For this case during calibrations, $S = 3.11x10^{-3}$, $\theta = 49^{\circ}$

$$\dot{N}_{Act} = \dot{N}_i (1.0036)$$

Where
$$\dot{N}_i = \frac{n_0 \overline{c}'}{4}$$

is the number flux with no bulk flow

Velocity drift increases thrust by a maximum of 0.36%.

Effect of Unknown Gas Temperature

The average number of wall collisions.

$$N_c = \frac{A_{plenum}}{A_{orifice}} = 780$$

Assuming an accommodation coefficient of 0.5 and an initial temperature ratio of 2, a molecule has a temperature of 0.999 T_w after nine collisions

Effect of Finite Orifice Thickness

Using the equation for number flux an approximation for the effect of the finite orifice thickness upon the thrust can be found. For this case t = 0.015 mm, d = 1 mm.

$$\dot{N}_i = \frac{n\bar{c}'}{4}(1 - t/2d) = 0.9925 \left(\frac{n\bar{c}'}{4}\right)$$

Assuming a scenario where reflection is fully diffuse, half of the molecules that hit the wall will reflect back into the plenum, decreasing thrust by 0.75%.

DSMC versus Analytical

3 (nN) (analytical)	88.98	144.4	214.6	354.9	539.1	725.5
3 (nN) (DSMC)	88.88	145.1	216.2	358.4	545.2	734.1
Kn	167.1	102.9	69.3	41.9	. 27.6	20.5
P _o (mTorr)	0.85	1.38	2.05	3.39	5.15	6.93

- solutions shows a match to within 0.2% for helium with Kn = 167.1 and less than 2% for Kn = 20.5. Comparison between DSMC and analytical
- Small, anticipated effects of collisions are indicated at Kn = 20.5.

Calibration Errors

Experimental Error	Thrust $\pm \sigma_{\Im}$ (%)	10.7	2.0
	Deflection $\pm \sigma_{\rm D} (\%)$	9.5	1.1
ion error	Error in d _o (mm)	1 ± 0.025	1 ± 0.025
DSMC calibration error	Error in α	0.993 ± 0.0007	0.993 ± 0.0007
S (nN)	,	88.8	734

experimental error contribute to the calibrated thrust error. (transmission probability, orifice diameter) and Errors associated with the calibration methods

Thrust Calibration Line

- Thrust determined from DSMC results.
- Calibration line determined [2] 410⁷ from the most accurate (low 310⁷ std. dev.) helium data at 210⁷ high Kn

Helium Thrust Results

Calibration Application

Helium (large Kn) derived calibration line plotted against the results for argon and nitrogen gases.

• Thrust at high Knudsen numbers is shown to be reasonably independent of the type of gas used (expected from free molecule theory).

Deflection (Arb. units)

Facility Effects

- Measured deflection asymptotes at lower facility background pressures.
- For the range of stagnation pressures investigated in this study, facility background pressure remained below 1.5 x 10⁻⁵ Torr.

Normalized Deflection

Background Pressure (Torr)

Normalized deflection for nitrogen as a function of facility background pressure

Conclusions

- Thrust stand calibration using near collisionless orifice flow is accurate in the nano-Newton thrust range.
- Care must be taken when using a free molecular orifice as a calibrator.
- Small t/d required
- Plenum design
- Free molecular plenum relatively high Kn.
- Free molecule orifice very high Kn
- Plenum inlet area must be large compared to orifice area to minimize thrust contributions from the inlet average flow speed.
- Average number of wall collisions must be great enough to ensure a known T₀.
- A minimum thrust of 88.8 nN \pm 10.7% has been measured.
- nNTS represents a significant improvement in thrust measurements over currently published results.
- nNTS is expected to be an important diagnostic tool for micropropulsion system testing.
- Resolution
- Versatility
- Facility effects from changing background pressure cannot be ignored in typical micropropulsion vacuum facilities.