

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 271 983 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication of patent specification: 12.06.91 (51) Int. Cl.⁵: A61K 47/06, A61K 47/10
(21) Application number: 87309459.3
(22) Date of filing: 27.10.87

(54) Transdermal flux enhancing compositions.

- (30) Priority: 31.10.86 US 925641
(43) Date of publication of application:
22.06.88 Bulletin 88/25
(45) Publication of the grant of the patent:
12.06.91 Bulletin 91/24
(84) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE
(56) References cited:
EP-A- 0 127 426
EP-A- 0 127 468
EP-A- 0 129 285
US-A- 4 316 893

- (73) Proprietor: PFIZER INC.
235 East 42nd Street
New York, N.Y. 10017(US)
(72) Inventor: Francoeur, Michael Lee
6, Webster Street
East Lyme Connecticut(US)
Inventor: Potts, Russell Owen
73A, Fenwood Drive
Old Saybrook Connecticut(US)
(74) Representative: Moore, James William, Dr.
Pfizer Limited Ramsgate Road
Sandwich Kent CT13 9NJ(GB)

EP 0 271 983 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description**TRANSDERMAL FLUX ENHANCING COMPOSITIONS**

5 The invention relates to flux enhancing pharmaceutical compositions for transdermal administration to a human or lower animal subject and methods for their use in treatment of various illnesses.

The following patents to Rajadhyaksha issued from 1976 to 1984 disclose methods and compositions employing 1-alkylazacycloheptan-2-ones and homologs thereof for enhanced penetration of pharmacologically active agents through human and animal skin;

10 U.S. 3,989,816; U.S. 4,316,893; U.S. 4,405,616 and 4,444,762.

Stoughton, Arch. Derm., 118, 474-477 (1982) relates to 1-dodecylazacycloheptan-2-one, referred to herein as Azone, and its ability to enhance percutaneous penetration.

Cooper, U.S. 4,557,934 and 4,537,776, discloses topical compositions of nonsteroidal antiinflammatory compounds, antiviral agents, antitussives and other drugs containing ethanol, certain glycols, pyrrolidone, 1-(2-hydroxyethyl)-aza-cyclopentan-2-one and from 1-35% 1-dodecylazacycloheptan-2-one (Azone).

Cooper, J. Pharm. Sci., 73, 1153-1156 (1984) discloses a method for increased transport of nonpolar molecules like salicylic acid through skin by adding fatty alcohols or fatty acids to transdermal formulations in various glycol solvents.

Akhter and Barry, J. Pharm. Pharmacol., 36, 7P (1984), report that oleic acid and Azone enhance dermal penetration of flurbiprofen formulations in propylene glycol and other solvents.

EP43738 discloses a binary dermal penetration enhancing vehicle for antiinflammatory agents containing a C₃-C₄- diol, diol ester or diol ether and a cell envelope-disordering compound selected from the lower alkyl esters of C₁₂-C₁₄ fatty acids, lauryl acetate and myristyl acetate.

Patel, et al., Journ. Soc. Cosmetic Chem. 36, 303-311 (1985) has noted that propylene glycol, a common constituent of prior art pharmaceutical formulations for transdermal use, causes irritation and/or sensitization when its concentration exceeds ten percent.

EP 127 468 discloses a percutaneous pharmaceutical preparation comprising N- ethoxycarbonyl-3-morpholinosydonimine (molsidomine) and at least an absorption promoter selected from the group consisting of aliphatic monocarboxylic acids of 5 to 30 carbon atoms, aliphatic monohydric alcohols of 10 to 22 carbon atoms, aliphatic monoamides of 8 to 18 carbon atoms, and a process for the production thereof.

U.S. 4,572,909, issued February 25, 1986 discloses amlodipine, 2-[2- aminoethoxy] methyl]-4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1, 4-dihydropyridine and salts thereof, and their use as anti- ischaemic and antihypertensive agents.

U.S. 3,591,584 discloses piroxicam, 4- hydroxy-2- methyl-N-2-pyridinyl-2H-1,2-benzothiazine-3-carboxamide 1,1- dioxide, and its use as an antiinflammatory and analgesic agent.

Pertinent prodrug forms of piroxicam are disclosed in U.S. 4,309,427 and U.S. 4,563,452.

U.S. 4,188,390 discloses doxazosin, 4-amino-2-[4-(1, 4-benzodioxan-2-carbonyl) piperazin-1-yl]-6,7-dimethoxyquinazoline, and its use as a regulator of the cardiovascular system, particularly in treatment of hypertension.

40 Use of glipizide, 1- cyclohexyl-3-[p-[-(5-methylpyrazinecarboxamido)ethyl]-phenylsulfonyl]urea, as an antidiabetic agent is disclosed in U.S. 3,669,966.

The present invention provides novel advantageous transdermal flux enhancing pharmaceutical compositions for transdermal administration to humans or lower animal subjects. The compositions of the invention may incorporate any of a wide variety of pharmacologically active compounds or prodrugs thereof.

45 Thus, the instant compositions comprise a safe and effective amount of a pharmacologically active compound or a prodrug thereof, an aqueous ethanol solvent containing from 15 to 75% ethanol by volume and from 0.01 to 5% (w/v) of a penetration enhancer selected from a 1-alkylazacycloheptan-2-one wherein said alkyl has from 8 to 16 carbon atoms, and a cis-olefin compound of the formula

where R³ is CH₂OH, CH₂NH₂ or COR⁴ and R⁴ is OH or (C₁-C₄)alkoxy, x and y are each an integer from 3 to 13 and the sum of x and y is from 10 to 16. An especially surprising feature of the invention is that for a given pharmacologically active compound or prodrug there appears to be a certain concentration of ethanol within the above range at which the transdermal flux is optimal. Thus, a particularly preferred composition of the invention is one in which the ethanol concentration is within 10% of the concentration which gives optimum transdermal flux for that particular pharmacologically active compound or prodrug. While the entire range of 15 to 75% ethanol concentration, ordinarily gives markedly improved transdermal flux in

comparison with ethanol levels outside that range and with other solvents known in the art to be useful in transdermal formulations, the more limited range is a "window" within which transdermal flux is found to be most beneficial.

While the present invention is useful for compositions containing a wide variety of pharmacologically active compounds and prodrugs, it is especially useful for compositions used in treatment of humans or lower animals suffering from rheumatic or inflammatory conditions, ischaemic heart disease, especially angina, hypertension or diabetes.

Especially useful pharmacologically active compounds or prodrugs for the invention compositions include methyl salicylate, salicylic acid, ibuprofen, piroxicam and prodrugs of piroxicam, and pharmaceutically acceptable cationic and acid addition salts thereof, for treatment of rheumatic or inflammatory conditions. Especially useful prodrugs of piroxicam are those of the formula

15

20

25

and pharmaceutically acceptable acid addition salts thereof where R is C₁ to C₉ alkyl, which may be a straight chain or branched alkyl, CH(R¹)OCOR², R¹ is H or C₁ to C₃ alkyl and R² is C₁ to C₄ alkyl or C₁ to C₄ alkoxy.

Other preferred compositions of the invention, useful in treating ischaemic heart disease, especially angina, or hypertension in human or lower animals in need of such treatment, are those employing amlodipine, which is disclosed in U.S. 4,572,909, incorporated herein by reference.

Further preferred compositions of the invention are those incorporating a safe and effective amount of glipizide for treatment of diabetic conditions. This pharmacologically active compound and its use for treatment of diabetic conditions is known from U.S. 3,669,966 which is incorporated herein by reference. Yet further preferred compositions of the invention are those employing a safe and effective amount of doxazosin, useful in a preferred method of the invention for treatment of hypertension. The compound and its antihypertensive applications are disclosed in U.S. 4,188,390 which is also incorporated herein by reference.

Ester prodrugs of piroxicam are disclosed in U.S. 4,309,427. U.S. 4,563,452 discloses the above oxazino[5,6-c]1,2-benzothiazine prodrug forms of piroxicam. Each of the two preceding patents are also incorporated herein by reference.

A particularly preferred class of penetration enhancers useful in the invention compositions are the cis-monoenoic acids of the formula

wherein x and y are as defined above, and the above 1-alkylazacycloheptan-2-ones wherein said alkyl has from 10 to 14 carbon atoms. Especially preferred members within this class of penetration enhancers are cis-9-tetradecenoic acid, cis-6-pentadecenoic acid, cis-6-hexadecenoic acid, cis-9-hexadecenoic acid, oleic acid, cis-6-octadecenoic acid, cis-11-octadecenoic acid, cis-12-octadecenoic acid, cis-5-eicosenoic acid, cis-9-eicosenoic acid, cis-11-eicosenoic acid, cis-14-eicosenoic acid, 1-decytlazacycloheptan-2-one, 1-dodecylazacycloheptan-2-one and 1-tetradecylazacycloheptan-2-one.

Most particularly preferred penetration enhancers because of their efficacy and ease of availability are oleic acid, (cis-9-octadecenoic acid), cis-11-octadecenoic acid (cis-vaccenic acid), and 1-dodecylazacycloheptan-2-one, also referred to herein as Azone.

A preferred range of concentration of ethanol for providing optimum transdermal flux of physiologically

active compounds and prodrugs thereof in the invention compositions is from 20 to 60% by volume.

A particularly preferred range of concentration for the penetration enhancers of the invention is from 0.1 to 1% w/v and especially from 0.25 to 0.5% w/v for reasons of efficiency and lack of irritation.

As mentioned above the invention also provides methods of treating rheumatic or inflammatory conditions by employing the pharmaceutical compositions of the invention comprising a safe and effective amount of a pharmacologically active compound selected from methyl salicylate, salicylic acid, ibuprofen, piroxicam and prodrugs of piroxicam.

The invention further provides methods for treatment of ischaemic heart disease or hypertension employing the invention compositions containing a safe and effective amount of amlodipine, a method of 10 treating diabetes employing a safe and effective amount of glipizide and a method for treatment of hypertension employing doxazosin in like manner.

A safe and effective amount of a pharmacologically active compound or prodrug for use in the pharmaceutical compositions of the invention is understood herein to mean an amount that will provide therapeutically useful blood and/or local levels of the active compound by the transdermal route of 15 administration. The therapeutically useful levels for the individual pharmacologically active compounds and prodrugs are those known in the art to be useful for each of such compounds. Said pharmaceutical compositions can assume a variety of forms, e.g., a solution, gel or suspension of the active compound or prodrug.

A prodrug of a physiologically active compound herein means a structurally related compound or 20 derivative of an active compound which is absorbed into the human or lower animal body where it is converted to the desired physiologically active compound. The prodrug itself may have little or none of the desired activity.

Within the scope of sound medical judgement the amount of a given physiologically active compound or prodrug used will vary with the particular condition being treated, the severity of the condition, the 25 duration of the treatment, the nature of the compound employed, the condition of the patient and other factors within the specific knowledge and expertise of the attending physician.

While the pharmaceutical compositions of the invention can employ a wide variety of physiologically active compounds or prodrugs thereof, useful in treatment of, for example, fungal and bacterial infections, inflammatory conditions, pain, ischaemic heart disease including angina pectoris and hypertension, allergic 30 conditions and diabetes, a preferred group of physiologically active compounds includes methyl salicylate, salicylic acid, ibuprofen, piroxicam and the above described prodrugs of piroxicam, all of which are useful in treating rheumatic or inflammatory conditions; amlodipine for treatment of ischaemic heart disease, especially angina, or hypertension; glipizide for treatment of diabetes and doxazosin for treatment of hypertension.

Dosage forms for the pharmaceutical compositions of the invention may include solutions, lotions, ointments, creams, gels, suppositories, rate-limiting sustained release formulations and devices therefor.

In addition to the requisite ethanol, water and penetration enhancer for the compositions of the invention, typical dosage forms may include inert carriers such as gel-producing materials, mineral oil, emulsifying agents, benzyl alcohol and the like. Specific illustrations of several such formulations are set 40 forth in the examples, below.

The pharmaceutically acceptable salts of the above mentioned physiologically active compounds include both cationic salts of those compounds containing an acidic group such as a carboxylic acid, and acid addition salts of those compounds containing a basic nitrogen atom.

By pharmaceutically acceptable cationic salts is meant the salts formed by neutralization of the free 45 carboxylic acid group of the pharmacologically active compounds e.g., salicylic acid and ibuprofen. The neutralization is brought about by contacting said carboxylic acid containing compounds with a base of a pharmaceutically acceptable metal, ammonia or amine. Examples of such metals are sodium, potassium, calcium and magnesium. Examples of such amines are N-methylglucamine and ethanolamine.

By the term pharmaceutically acceptable acid addition salts is meant those salts formed between the 50 free amino group of the above physiologically active compounds (e.g. piroxicam, amlodipine and doxazosin) and a pharmaceutically acceptable acid. Examples of such acids are acetic, benzoic, hydrobromic, hydrochloric, citric, fumaric, maleic, succinic, tartaric, benzenesulfonic, p-toluenesulfonic and methanesulfonic acids.

55 Skin Samples for Penetration Studies

Male, hairless mice, 8 to 16 weeks of age, were sacrificed by cervical dislocation. A section of full-

thickness abdominal skin was surgically excised and mounted between two identical diffusion half-cells¹ having 1.0 cm² surface area. The skins were then hydrated for about 18 hours with Sorensen's isotonic buffer (0.067M sodium phosphate, pH 7.38) prior to conducting experiments. Human skin, taken in surgery or autopsy, was dermatomed to about 400 micrometers (μm) thickness and hydrated in the same manner.

- 5 Stratum corneum sheets were prepared from porcine or human skin by trypsin treatment. Thus, full thickness skin samples were dermatomed to a thickness of 350-400 μm , spread, stratum corneum side up, on filter paper saturated with 0.5% crude trypsin² in phosphate buffered saline, pH 7.4. After several hours at 37°C., the stratum corneum layer was peeled away from underlying layers, washed in soybean trypsin inhibitor and several changes of distilled water and spread on wire mesh to dry. Samples were stored desiccated at room temperature until used.
- 10

EXAMPLE 1

Amlodipine Transdermal Flux Studies

- 15 Hairless mouse skin which had been hydrated for 18 hours with Sorensen isotonic buffer (pH 7.38) was mounted in the diffusion cell. The appropriate donor and receiver phases were inserted to replace the hydration solution. Continuous mixing in each half-cell was provided by magnetic stirbars driven by a synchronous motor set at 300 RPM. The diffusion cells were jacketed and maintained at 37°C. with a 20 circulating water manifold system for the entire experiment. At 60 to 90 minute intervals the receiver, containing about 3.0 ml., was removed and assayed by HPLC for amlodipine. The receiver chamber was replenished with fresh solution to replace the material assayed. The amount of amlodipine transported per unit of time was calculated and reported as the steady-state flux.

25 Amlodipine Donor/Receiver Solutions

- Amlodipine benzenesulfonate, 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine benzenesulfonate, was used in all studies. Aqueous ethanol solutions containing 55%, 30% and 20% ethanol by volume in 0.01M acetate buffer, pH 5, were prepared. 30 To a portion of these solutions was added sufficient oleic acid to give a concentration of 0.25% v/v (0.224% w/v). To other portions Azone was added to a concentration of 0.5% v/v. The solubility of amlodipine benzenesulfonate at 25°C. was determined for each vehicle, such that an 80% saturated drug solution could be employed as the donor phase. The equivalent of the donor solution, without drug or penetration enhancer (oleic acid or Azone) was used in the receiver compartment.

35 Amlodipine Assay

- Analysis of amlodipine was achieved using high performance liquid chromatography (HPLC) with UV detection at 240 nanometers. The mobile phase was 6 mmolar 1-octane sodium sulfonate, 42% (v/v) 40 acetonitrile and 1% (v/v) tetrahydrofuran in a 0.1M sodium dihydrogen orthophosphate buffer adjusted to pH 3.0 with 85% (w/v) orthophosphoric acid. The flow rate was maintained at 1.0 ml/minute at 32°C. All samples and standards were diluted at least 1:1 with mobile phase prior to injection. Peak height calibration curves were linear, with a detection limit of approximately 0.05 $\mu\text{g}/\text{ml}$.

The results of the study are summarized in the table below.

45

50

55

¹Side-by-side cells obtained from Crown Glass Co., Somerville, New Jersey.

²Type II from Sigma Chemical, St. Louis, MO 63178, USA.

5
10
15
20
25
30
35
40
45
50

TABLE I
In Vitro Transport of Amlodipine (as the benzenesulfonate) Across Hairless
Mouse Skin with Aqueous Ethanol and Azone^x or Oleic Acid as
Penetration Enhancers

Amlodipine conc., mg/ml*	Azone ^x , % v/v	Oleic Acid, g v/v	Ethanol, % v/v	pH	Flux, mg/day/30 cm ²	Time lag, hours	Relative Flux **
97.2	0.5	--	55	5.2	28.5 (13.2)	3.2	1.7
94.0	--	0.25	55	4.9	58.0 (13.2)	4.2	3.4
97.5	--	--	55	5.0	7.5 (4.5)	4.1	4.4
10.0	0.5	--	30	5.2	148.1 (13.2)	1.5	87
9.9	--	0.25	30	4.9	99.5 (13.4)	3.4	56
10.3	--	--	30	5.1	1.7 (0.2)	4.2	1.0
3.6	0.5	--	20	5.4	59.2 (13.2)	1.9	35
3.3	--	0.25	20	4.9	37.9 (7.6)	5.0	22
3.7	--	--	20	4.9	2.2 (1.4)	3.2	1.3

* Concentration of amlodipine as the free base.

** Numbers in parentheses are the standard deviation from the mean.

^x Azone is 1-dodecylazacycloheptan-2-one.

^{xx} Flux relative to that obtained with 30% v/v ethanol with no penetration enhancer.

55 Discussion

Maximum flux of amlodipine was achieved with the 30% ethanol vehicle with either Azone or oleic acid as penetration enhancer. This was true in spite of the fact that the 30% ethanol vehicle contained roughly

ten times less drug than the 55% ethanol vehicle. The respective flux rates for the azone and oleic acid vehicles containing 30% ethanol were 87 and 58 times, over the same vehicle containing no penetration enhancer. The time to reach steady-state flux, i.e., the lag time, for amlodipine from the oleic acid vehicles ranged from 3.4 to 5.0 hours. The lag time for the azone vehicles was only 1.5 to 3.2 hours. The difference in lag time between the two groups of penetration enhancers was judged to be insignificant.

EXAMPLE 2

Piroxicam Transdermal Flux Studies

The in vitro flux of piroxicam was measured from ethanol/buffer vehicles containing 0.25% v/v (0.224% w/w) oleic acid. The buffer employed was Sorensen's Buffer, pH 7.3-7.4³, all experiments were carried out at 32° C. Samples of either hairless mouse skin or human skin were mounted between two halves of the same diffusion apparatus employed in amlodipine studies. Buffer only was introduced into the chamber (receiver) in contact with the internal side of the skin. The donor chamber, in contact with the outer side of the skin was filled with the appropriate ethanol/buffer vehicle containing 0.25% v/v oleic acid and an excess of piroxicam. The saturation concentration of piroxicam in each of the ethanol/buffer vehicles containing 0.25% v/v oleic acid as calculated by HPLC assay is set forth below.

<u>20 % v/v Ethanol/buffer Containing 0.25% v/v oleic acid</u>	<u>Saturation Concentration of Piroxicam, mg/ml.</u>
25 0/100	0.04
10/90	0.19
20/80	0.46
30/70	0.71
30 40/60	1.2
50/50	1.5
100/0	1.2

The quantity of piroxicam transported across the skin with each vehicle was determined by HPLC assay of samples taken from the receiver periodically over 72 hours. Results obtained with hairless mouse skin and human skin are summarized in Tables I and II, below.

40

45

50

55

³The buffer was prepared from 3.68 g. sodium dihydrogen phosphate monohydrate, 15.15 g. disodium hydrogen phosphate, 8.80 g. sodium chloride diluted to 2000 ml. with deionized water.

TABLE I

Piroxicam Flux Through Hairless Mouse Skin *in vitro*
 with various Ethanol/Buffer Vehicles (Each Containing
 0.25% v/v Oleic Acid) at 32°C.

<u>% v/v</u>	<u>Piroxicam Flux</u> <u>($\mu\text{g}/\text{cm}^2 \cdot \text{hr}$) (a)</u>	<u>Relative Flux</u> (b)
<u>Ethanol/Buffer</u>		
0/100	.0	--
10/90	1.7	1.1
20/80	7.7 (1.8)	5.1 (1.2)
30/70	16.0	10.7
40/60	24.0 (36)	16 (24)
50/50	20.0	13.3
100/0	1.5	1.0

(a) Average of triplicate runs. Numbers in parentheses are from replicate experiments.

(b) Flux relative to that with 100% ethanol/0.25% v/v oleic acid.

TABLE II

Piroxicam Flux Through Human Skin *in vitro* with Various Ethanol/Buffer Vehicles (Each Containing 0.25% v/v Oleic Acid) at 32°C.

<u>% v/v</u>	<u>Piroxicam Flux</u> <u>($\mu\text{g}/\text{cm}^2 \cdot \text{hr.}$)</u>	<u>Relative Flux</u> (b)
<u>Ethanol/Buffer</u>		
0/100	.02	0.3
20/80	0.18	3.0
40/60	0.43	7.2
100/0	0.06	1.0

(b) Flux relative to that with 100% ethanol/0.25% v/v oleic acid.

The High Performance Liquid Chromatography (HPLC) assay was carried out using a reverse phase C₁₈ μbondapack column (Waters Chromatography, Milton, MA 01757).

Mobile Phase: 40:40:15:15 v/v
 0.1M potassium dihydrogen phosphate (pH 3.0), methanol, acetonitrile, tetrahydrofuran; flow rate 1 ml/minute.

Detector: Ultraviolet 313 manometers wavelength LDC/Milton Roy Spectromonitor D.

Injector: Autosample/autoinject, 10 μ l. injections.

When the above procedure was repeated, but with saturated piroxicam solutions in ethanol, buffer and ethanol/buffer solutions containing 20, 30, 40 and 50% v/v ethanol, and each vehicle containing 0.25% v/v (0.23% w/v) 1-dodecylazacycloheptan-2-one (Azone), the flux rates through hairless mouse skin areas are as set forth in Table III.

TABLE III

Piroxicam Flux Through Hairless Mouse Skin *in vitro*
with Various Ethanol/Buffer Vehicles (Each containing
0.25% Azone) at 32°C.

% v/v <u>Ethanol/Buffer</u>	Piroxicam Flux (μ g/cm ² . hr.)	Relative Flux (c)
0/100	0.05	0.2
20/80	3.7	5.3
30/70	11.0	15.7
40/60	42.8	61
50/50	55.7	80
100/0	0.7	1

(c) Flux relative to that 100% ethanol/0.25% v/v Azone.

30

EXAMPLE 3Transdermal Flux of Prodrugs of Piroxicam

35

Two saturated solutions of 4-n-butyryloxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide (the n-butyric acid ester of piroxicam) in 55 Ethanol/45 Sorensen's pH 7.3 buffer, by volume, were prepared. One of the solutions was adjusted with oleic acid to 0.224% w/v (0.25% v/v). The flux rate through hairless mouse skin was measured for the two solutions by HPLC assay for piroxicam in the receiver cell by the same method employed above for piroxicam. The results are summarized below.

45

In Vitro Flux Through Hairless Mouse Skin of
55/45 v/v Ethanol/Buffer Vehicle With and
Without Oleic Acid, at 32°C.

55

% Oleic Acid	Piroxicam Flux (μ g/cm ² . hr.)	Relative Flux
0.224 w/v	4.10 ± 0.40	24
None	0.17 ± 0.02	1

When 4-n-pentanoyloxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide was employed in place of the above n-butyrate ester of piroxicam in the above procedure, the results obtained

were as follows:

	<u>Piroxicam Flux</u>	<u>Relative Flux</u>
	<u>($\mu\text{g}/\text{cm}^2 \cdot \text{hr.}$)</u>	
5 <u>% Oleic Acid</u>		
10 0.224 w/v	7.93 ± 0.62	14
15 None	0.56 ± 0.17	1

EXAMPLE 4

15 Correlation of Effects of Various Fatty Acids on Flux Enhancement of Salicylic Acid, Infrared Spectral Data and Differential Scanning Calorimetry with Porcine Stratum Corneum

Stratum corneum sheets were prepared from porcine skin by trypsin treatment. Thus, full thickness 20 porcine skin samples were dermatomed to 350 μm thickness and spread, stratum corneum side up, on filter paper saturated with 0.5% crude trypsin in phosphate buffered saline at pH 7.4 (Sorensen's buffer). After several hours at 37 °C. the stratum corneum was peeled away, washed in soybean trypsin inhibitor, water and air dried. Samples were stored desiccated at room temperature until used. Prior to use, dry skin samples of known weight were incubated for two hours in an 0.15M solution of the appropriate fatty acid in 25 ethanol, the samples were then washed for ten seconds in ethanol, spread on wire mesh, dried over a desiccant and the dry sample reweighed. The stratum corneum samples were then held for several days in a chamber at 22 °C., 95% relative humidity, during which the stratum corneum samples equilibrated to a water content of 30% (w/w).

30 Infrared Spectral Data

Infrared spectra were obtained with a Fourier Transform Infrared Spectrometer ⁴(FTIR) equipped with a liquid nitrogen cooled mercury-cadmium telluride detector. In order to prevent water loss, hydrated samples 35 were sealed between zinc sulfide windows while maintained at 20 °C., 95% relative humidity. Sealed samples were placed in the spectrometer where an average of 127 scans were obtained in about six minutes for each of the fatty acid treatments. The digitized data were transferred to a computer (Apple IIe) for determination of frequency and bandwidth of the C-H antisymmetric stretching absorbance. Due to the digital nature of the FTIR instrument, absorbance and frequency data exist only in discrete increments. With the instrument used, the exact value of any frequency point could only be determined with a precision not 40 greater than 2.7 cm^{-1} . The peak frequency was estimated with much greater precision, however, using a center of gravity algorithm for digitized data reported by Cameron et al., Applied Spectr., 36 245-250 (1982).

45 Differential Scanning Calorimetry (DSC)

The differential scanning calorimeter ⁵was used at a scan rate of 0.75 °C./minute. Duplicate samples from each of the above FTIR experiments were combined for DSC measurements. Alternately, stratum corneum samples of known weight (about 20 mg.) were treated with each fatty acid in the same manner described above. Treated samples were hydrated for several days at 95% R.H., 22 °C. and reweighed. 50 Results show approximately 30% (w/w) water uptake regardless of fatty acid employed.

Flux Method

55

⁴Analect model FX-6200, Laser Precision Corp., Irvine, California.

⁵Microcal model MC-1, Microcal Inc., Amherst, Massachusetts.

Sheets of excised porcine skin cut to 350 μm thickness were mounted between two halves of a diffusion cell with the stratum corneum side toward the donor compartment which contained 1.0 ml. of saturated salicylic acid in ethanol (0.31 grams/ml.) plus about $10^5 \text{dpm}/\text{ml}$. (*dpm = disintegration per minute,

5

$$\text{dpm} = \frac{\text{photons counts per minute}}{\text{efficiency of the counting}}$$

- 10 of ^{14}C -labeled salicylic acid. The appropriate fatty acid was then added to give a final concentration of 0.15M. The receiver compartment contained 1.0 ml. Sorensen's buffer, pH 7.4. Both compartments were stirred with a magnetic stirrer and maintained at 32°C.

15 Samples were removed periodically from the receiver side of the diffusion cell, mixed with a scintillation cocktail (Scintisol, Isolabs, Inc., Akron, OH) and counted for several minutes in a liquid scintillation counter (Model Mark III-6881, Tracor Analytical, Elk Grove Village, IL). Following an initial lag time of about 6 hours, the amount of salicylic acid appearing in the receiver side was linear with time for the duration of the experiment (routinely 24 to 48 hours). From a linear least squares analysis of these data the rate of appearance of salicylic acid in the receiver (dpm/hr.) was determined. This value, when divided by the specific acitivity of salicyclic acid in the saturated solution (approximately 300 dpm/mg.) and the area of exposed skin (0.2 cm^2), yielded the flux ($\text{mg}/\text{cm}^2/\text{hr}$). Samples removed from the donor side at the beginning and end of the experiment contained, within error, the same amount of salicylic acid. Thus, constant concentration of the permeant was maintained on the donor side throughout the experiment.

20 The results of all three studies are summarized in Table IV.

25

TABLE IV

30 A summary of spectral, thermal and flux changes following treatment of porcine stratum corneum with fatty acids of 18 carbon length. The IR and DSC results were obtained with samples hydrated to 30% (w/w) water content. For the monounsaturated acids, the form (cis vs. trans) and position along the carbon chain of each isomer is shown in parentheses. Each value represents the average of at least two samples.

35

40

45

50

55

		Peak IR Frequency	DSC T _m ^a	Flux of Salicyclic Acid
	Treatment	(cm ⁻¹)	(°C)	(mc/cm ² .hr)
5	Stearic	*2918 ± 0.4	*62.5 ± 1.0	1.21
10	Petroselenic (cis-6,7)	2919.0	60.5	0.79
	Petroseladic (trans-6,7)	2919.0	62.0	0.97
15	Oleic (cis-9,10)	*2920.0 ± 0.5	*59.0 ± 1.5	3.81
20	Elaidic (trans-9,10)	2919.4	61.5	2.35
25	cis-vaccenic (cis-11,12)	2920.1	57.0	5.53
	trans-vaccenic (trans-11,12)	2818.8	61.0	1.11
30	Ethanol	*2918.8 ± 0.4	*62.0 ± 1.0	1.31
	No Treatment	2918.8	62.0	---

35 * -Value represents the average ± SEM of three samples.

= Transition maximum.

40 Oleic and cis-vaccenic acids each gave a maximum infrared absorbance at 2920 cm⁻¹ while the saturated stearic acid and the two trans-acids gave lower values (about 2918-2919), as did the controls. While the differences between the groups of fatty acids is less than the digital resolution of the instrument (2.7 cm⁻¹), the center of gravity technique of peak frequency determination allows sufficient precision to 45 easily estimate differences of less than 1.0 cm⁻¹ from digitized data. Furthermore, several of the experiments were repeated in triplicate with a standard error of the mean of less than 0.5 cm⁻¹. Thus, while small, the peak frequency changes following treatment of stratum corneum with oleic and cis-vaccenic acid compared to the others, are significant.

From the DSC data it is also seen that the two cis-fatty acids show decreased transition maxima when 50 compared to stearic acid, the two trans-fatty acids and the controls. It was also noted that the cis-fatty acids gave a broader peak (ratio of peak width to peak height) than did others. The data also suggests that increasing the distance of the double bond from the carboxyl group gives rise to a larger decrease in T_m.

The flux data for oleic acid is also significantly greater than that of stearic acid, the ethanol control and elaidic acid. The difference in flux rates is even greater for cis-vaccenic acid relative to the controls and 55 trans-vaccenic acid. Thus, the above infrared and DSC results each show a high degree of correlation with flux rate.

EXAMPLE 5

Correlation of Lipid Melting Temperature by DSC with Ethanol Concentration of Aqueous Vehicles Containing Oleic Acid

Employing the above procedure for obtaining lipid transition temperature of porcine stratum corneum samples by differential scanning calorimetry, the melting temperature, T_m, for stratum corneum in various ethanol/Sorensen's buffer solutions, each containing 0.25% v/v oleic acid (0.22 w/w), were obtained. The results are summarized in the following table.

<u>10 % Ethanol (v/v) *</u>	<u>15 in Ethanol/Buffer</u>	<u>20 Vehicles Containing</u>	<u>25 0.25 v/v Oleic Acid</u>	<u>Porcine Stratum Corneum</u>	<u>Lipid Transition</u>	<u>Temperature, T_m,</u>	<u>°C.</u>
15	0/100					57.5	
	20/80					54.5	
	30/70					54.0	
20	40/60					53.2 ± 0.6	
	50/50					55.1	
	60/40					53.4	
25	70/30					58.8	
	100/0					66.4	

30 *Sorensen's Buffer, pH 7.3.

Under the same conditions, stratum corneum samples in Sorensen's buffer alone (no ethanol or oleic acid) gave a T_m of 64 °C. Stratum corneum in a vehicle containing 40/60 v/v ethanol/buffer with no oleic acid also had a T_m of 64 °C.

35 The above results, strongly suggest that the 20-70% v/v ethanol vehicles, and especially those having 30-60% ethanol, have a unique ability to disrupt the stratum corneum, a property which is indicative of enhancement of transdermal flux.

40 EXAMPLE 6

Employing the procedure of Example 2, but employing saturated solutions of methyl salicylate and ibuprofen, 2-(4-isobutylphenyl)propionic acid, in place of piroxicam, in ethanol/Sorensen's buffer solutions, each containing 0.25% v/v oleic acid, gave the following relative flux results through hairless mouse skin.

45

50

55

Relative Flux of Methyl Salicylate Through
Hairless Mouse Skin from Ethanol/Buffer Vehicles
Containing 0.25% v/v Oleic Acid

	% Ethanol/Buffer, v/v	Relative Flux*
5	0/100	1
10	20/80	6
	30/70	11.5
	40/60	80
15	50/50	200
	60/40	450
	70/30	300
20	100/0	4 (estimated)

* Flux relative to that with 0/100 ethanol buffer.

25

Relative Flux of Ibuprofen Through Hairless
Mouse Skin from Ethanol/Buffer Vehicles
Containing 0.25% v/v Oleic Acid

	% Ethanol/Buffer v/v	Relative Flux*
35	0/100	1.0
	20/80	1.5
	30/70	1.8
40	40/60	3.5
	50/50	5
	60/40	4.5
45	70/30	4.5
	100/0	4.5

50

*Flux relative to that with 0/100 ethanol buffer.

55

EXAMPLE 7

Transdermal Flux of Doxazosin Through Hairless Mouse Skin

Donor solutions were prepared by dissolving doxazosin free base in a 30 v/v ethanol buffer (0.1M

sodium acetate, pH 5) containing 0.5% v/v 1-dodecylazacycloheptan-2-one (Azone) and a specified amount of methanesulfonic acid (mesylate). Four different doxazosin concentrations ranging from 2.2 to 8.95 mg/ml. were employed in vehicles containing ether 1.3 or 2.2 mg/ml. mesylate. A control with no Azone was included at the highest donor concentration. Receiver solutions contained 30% v/v ethanol buffer only.

5 Analysis of doxazosin was accomplished using high pressure liquid chromatography, with UV detection at 246 nm. The mobile phase consisted of 6 mM 1-octane sodium sulphonate, 35% (v/v) acetonitrile and 1% (v/v) tetrahydrofuran in a 0.1M sodium dihydrogen orthophosphate buffer. The final pH was adjusted to 3.0 with 85% (w/v) orthophosphoric acid. During the analysis, the flow rate was maintained at 1.3 ml/minute through a Waters Nova-Pak (15 cm, 3 μ m particles) C18 column, thermostated at 38 °C. All samples (and 10 standards) were diluted at least 1:1 with mobile phase prior to injection. Peak height calibration curves were linear, with a detection limit of approximately 0.05 μ g/ml.

As in the following experiments with glipizide, flux rates were calculated from the HPLC data. The results are summarized in the table.

15

20

25

30

35

40

45

50

55

In Vitro Transport of Doxazosin Across Hairless Mouse
Skin Employing the Soluble Mesylate Salt in Vehicles
Containing 30% Ethanol and 1/2% Azone

5

<u>Concentration</u>						
	<u>Cdonor^a (mg/ml)</u>	<u>Mesylate (mg/ml)</u>	<u>Azone^d % v/v</u>	<u>pH^b</u>	<u>Flux^c (mg/day/30cm²)</u>	<u>Lag Time (hours)</u>
10	8.95	2.2	0.5	4.3	59.4 (7.5)	2.1
15	8.55	2.2	--	4.2	0.6 (0.1)	1.5
20	4.31	2.2	0.5	4.8	32.1 (15.2)	2.5
25	6.82	1.3	0.5	4.6	42.3 (9.7)	1.8
30	4.35	1.3	0.5	4.8	30.2 (4.4)	1.5
35	4.24	1.3	0.5	4.9	28.7	1.8
40	2.24	1.3	0.5	5.1	12.2 (5.6)	1.6
45	2.21	1.3	0.5	5.0	13.8 (6.4)	2.5

a) Concentration of doxazosin as the free base.

b) Final pH of the donor phase (initial pH was 5.0 in all cases).

c) Numbers in parentheses refer to the standard deviation of the mean.

d) 0.5% v/v corresponds to 0.46% w/v.

55 Discussion

The in vitro flux ranged from 12 to 59 mg/day/30 cm², depending on the particular donor concentration of doxazosin. The relationship between flux and donor concentration was apparently linear and independent

of mesylate. The highest concentration tested (i.e., 8.95 mg/ml.) represents the saturation solubility of doxazosin mesylate in 30% ethanol/buffer (0.1M acetate, pH 5) and limiting transport rate at 25° C. The control (no Azone) donor vehicle yielded a flux of 0.6 mg/day/30 cm², roughly 100x less than the corresponding vehicle with Azone.

Under the same conditions as above a donor solution of 2.40 mg/ml. doxazosin free base (no mesylate) in 55% v/v ethanol/buffer containing 3% v/v Azone gave a flux of 46.2 mg/day/30 cm².

EXAMPLE 8

10 Transdermal Flux of Glipizide Through Hairless Mouse Skin

The transdermal flux of glipizide, 1-cyclohexyl-3-[[p-[2-(5-methylpyrazinecarboxamido)ethyl]phenyl]-sulfonyl]urea, solutions in 20, 30 and 55% ethanol (v/v) employing Azone, N-dodecyl-1-azacycloheptan-2-one, as penetrant enhancer. Each vehicle was tested with and without 0.5% v/v Azone ⁷ at a pH of about 9 in 0.01M TRIS buffer. The equivalent of the donor solution without glipizide or Azone was used in the receiver compartment.

Analysis of glipizide was achieved using HPLC with a 228 nm Ultraviolet detector. The mobile phase consisted of 41% v/v acetonitrile in 0.1M sodium dihydrogen phosphate buffer. The final pH was adjusted to 4.0 with 85% w/v phosphoric acid. The flow rate of the mobile phase was maintained at 1.0 ml/minute through a Waters Novapak column (15 cm/ with 3 μm particle size) at 32° C. All samples were diluted at least 1:1 with mobile phase prior to injection. Peak height calibration curves were linear, detection limit about 0.05 μg/ml. From the results of the HPLC analysis, the amount of glipizide transported through hairless mouse skin per unit time was calculated and reported as steady-state flux. The results are summarized in the table below.

25

In Vitro Transport of Glipizide Across Hairless
Mouse Skin

Glipizide (mg/ml)	Azone (%v/v)	EtOH (%v/v)	pH	Flux ^a (mc/day/30cm ²)	Time Lag (hr)
17.5	0.5	55	8.8	30.8 (6.5)	3.6
17.9	--	55	9.1	2.7 (0.5)	4.6
8.1	0.5	30	8.8	101.4 (10.3)	1.7
8.2	--	30	8.9	0.6 (0.2)	0.4
6.8	0.5	20	8.8	55.9 (38.8)	3.3
6.7	--	20	8.9	0.4 (0.04)	0.5

45

a) Numbers in parentheses refer to the standard deviation of the mean.

50

Discussion

The in vitro transport of glipizide across hairless mouse skin ranged from 30.8 to 101.4 mg/day/30 cm². Increasing the concentration of the drug did not necessarily result in an increase flux. The highest flux was observed in 30% ethanol containing 0.5% v/v Azone. Although the drug concentration in this vehicle was

^aThe density of Azone at 25°C. is 0.912 g/ml. Thus, the Azone solutions are each 0.46% w/v.

EP 0 271 983 B1

only half that of the 55% ethanol vehicle, the transport rate was approximately 3.5 times greater. Similar behavior was noted in Example 1 with amlodipine.

EXAMPLE 9

- 5 Solution formulations are prepared as follows:
A. Oleic acid 0.25 g. or Azone 0.50 g.
Amlodipine
benzenesulfonate 1.0 g.
10 Ethanol 30.0 ml.
Water q.s. to make 100 ml.
Adjust to pH 5.0 with sodium hydroxide
B. Oleic acid 0.25 g. or Azone 0.50 g.
Doxazosin
15 mesylate 0.90 g.
ethanol 30.0 ml.
Water q.s. to make 100 ml.
NaOH q.s. to adjust to pH 5.0.
C. Oleic acid 0.25 g. or Azone 0.50 g. or cis-11-octadecenoic acid 0.75 g.
20 piroxicam 1.0 g.
Ethanol 40.0 ml.
Water q.s. to make 100 ml.
D. Oleic acid 0.25 g. or Azone 0.50 g.
Glipizide 0.80 g.
25 Ethanol 30.0
Water q.s. to 100 ml.
NaOH q.s. to pH 9
E. cis-9-tetradecenoic acid 2.0 g.
cis-6-pentadecenoic acid 5.0 g.
30 cis-6-hexadecenoic acid 1.5 g. or cis-9-hexadecenoic acid 0.1 g.
Active ingredient 1.0-3.0 g.
Ethanol 15-75 ml.
Water q.s. to make 100 ml.

35 EXAMPLE 10

- The following are illustrative formulations for gels of the invention compositions.
A. Oleic acid C.25 g. or Azone 0.50 g.
Carbopol 940 ⁸0.7 g.
40 Benzyl alcohol 1.0 g.
Diisopropanolamine 1.1 g.
Hydroxyethylcellulose 0.4 g.
piroxicam 1.0 g.
Ethanol 30.0 ml.
45 Water q.s. to make 100 ml.
The ingredients are combined, warmed while stirring to effect dispersion and allowed to cool to room temperature.
B. Oleic acid 0.25 g. or Azone 0.50 g.
Carbopol 940 0.7 g.
50 Benzyl alcohol 1.0 g.
Diisopropanolamine 1.1 g.
Hydroxyethylcellulose 0.4 g.
Amlodipine benzenesulfonate 1.0 g.
Ethanol 35 ml.
55 Water q.s. to make 100 ml.
The ingredients were treated as in A, above to form the desired gel.

⁸Carbopol 940 is a polyacrylic acid polymer available from B. F. Goodrich Co., Inc.

When 0.8 g. of glipizide or 1.0 g. ibuprofen, 3.0 g. salicylic acid 0.9 g. of doxazosin mesylate are used in place of amlodipine benzenesulfonate in the above formulation satisfactory gels are obtained in like manner.

- C. Penetration enhancer² 0.01 to 5.0 g. Carbopol 940 1.0 g.
 5 benzyl alcohol 1.0 g.
 diisopropanolamine 1.0 g.
 hydroxyethylcellulose 0.5 g.
 Ethanol 15 to 75 ml.
 10 Methyl salicylate 10 g.
 10 Water q.s. to make 100 ml.
 15 2. Penetration enhancers include oleic acid, cis-6-octadecenoic, cis-11-octadecenoic, cis-12-octadecenoic, cis-5-eicosenoic, cis-9-eicosenoic, cis-11-eicosenoic and cis-14-eicosenoic acids; 1-decylazacycloheptan-2-one, 1-dodecylazacycloheptan-2-one and 1-tetradecylazacycloheptan-2-one, cis-9-octadecenylamine, cis-11-octadecenylamine, cis-14-eicosenylamine, cis-9-tetradecenyl alcohol, cis-11-octadecenyl alcohol, ethyl oleate, ethyl cis-5-eicosenoate, methyl cis-12-octadecenoate, isopropyl cis-9-hexadecenoate and n-butyl cis-9-tetradecenoate.

EXAMPLE 11

- 20 The following formulations are illustrative of hydrophilic ointments as dosage forms of the compositions of the invention.

A. Oleic acid 0.25 g. or Azone 0.50 g.

25	PEG 4000 ¹	17.2 g.
	PEG 400 ¹	17.2 g.
30	Piroxicam-4-(1-ethoxycarbonylethyl)-carbonyl ester prodrug	1.2 g.
	Ethanol	30 ml.
	Water q.s. to make 100 ml.	

- 35 B. Oleic acid 0.25 g.
 active ingredient² 1-5 g.
 PEG 4000¹ 17.0 g.
 PEG 400¹ 17.0 g.
 40 Ethanol 15-55 ml.
 Water q.s. to make 100 ml.
 1. PEG 400 is commercial polyethylene glycol of molecular weight 380-420. PEG 4000 is commercial polyethylene glycol, M.W. 3000-3700.
 2. Active ingredients include methyl salicylate, salicylic acid, ibuprofen, piroxicam, amlodipine benzenesulfonate, doxazosin mesylate and glipizide.

Claims

1. A transdermal flux enhancing pharmaceutical composition for transdermal administration to a human or lower animal subject comprising
 50 (a) a safe and effective amount of a pharmacologically active compound or a prodrug thereof,
 (b) an aqueous alcohol solvent containing from 15 to 75% ethanol by volume, and
 (c) from 0.01 to 5% (w/v) of a penetration enhancer selected from a 1-alkylazacycloheptan-2-one, said alkyl having from 8 to 16 carbon atoms, and a cis-olefin compound of the formula
 55 $\text{CH}_3(\text{CH}_2)_x\text{CH}=\text{CH}(\text{CH}_2)_y\text{R}^3$
 where R³ is CH₂OH, CH₂NH₂ or COR⁴, and R⁴ is OH or (C₁-C₄)alkoxy, x and y are each an

integer from 3 to 13 and the sum of x and y is from 10 to 16;
 wherein in (b) the ethanol content is within 10% of that which gives optimum transdermal flux for said compound or prodrug.

- 5 2. A composition according to claim 1 wherein in (c) said penetration enhancer is a cis-monoenoic acid of the formula

10 wherein x and y are as previously defined, or a 1-alkylazacycloheptan-2-one, said alkyl having from 10 to 14 carbon atoms.

- 15 3. A transdermal flux enhancing pharmaceutical composition for transdermal administering to a human or animal subject comprising

(a) a safe and effective amount of a pharmacologically active compound selected from the group consisting of methyl salicylate, salicylic acid, ibuprofen, amlodipine, glipizide, doxazosin, piroxicam, a prodrug of piroxicam and pharmaceutically acceptable cationic and acid addition salts thereof;
 (b) an aqueous ethanol solvent containing from 15 to 75% ethanol by volume; and
 (c) from 0.01 to 5% (w/v) of a penetration enhancer selected from 1-alkylazacycloheptan-2-one, said alkyl having from 8 to 16 carbon atoms, and a cis-olefin compound of the formula

25 where R³ is CH₂OH, CH₂NH₂ or COR⁴ and R⁴ is OH or (C₁-C₄)alkoxy, x and y are each an integer from 3 to 13 and the sum of x and y is from 10 to 16.

4. A transdermal flux enhancing pharmaceutical composition according to claim 3 comprising

(a) a safe and effective amount of a pharmacologically active compound selected from the group consisting of methyl salicylate, salicylic acid, ibuprofen, amlodipine, glipizide, doxazosin, piroxicam, a prodrug of piroxicam of the formula

35

40

45

and pharmaceutically acceptable cationic and acid addition salts thereof;
 where R is C₁ to C₉ straight chain or branched alkyl, CH(R¹)OCOR² and R¹ is H or (C₁-C₃)alkyl, and R² is C₁-C₄ alkyl or C₁-C₄ alkoxy;

50 (b) an aqueous ethanol solvent containing from 15 to 75% ethanol by volume; and
 (c) from 0.01 to 5% (w/v) of a penetration enhancer selected from the group consisting of a 1-alkylazacycloheptan-2-one, said alkyl having from 8 to 16 carbon atoms, and a cis-olefin compound of the formula

55

where R³ is CH₂OH, CH₂NH₂ or COR⁴ and R⁴ is OH or (C₁-C₄)alkoxy, x and y are each an integer from 3 to 13 and the sum of x and y is from 10 to 16.

5. A composition according to claim 3 wherein in (b) said solvent contains from 20 to 60% by volume of ethanol and (c) said penetration enhancer is a cis-monoenoic acid of the formula

5 where x and y are as previously defined, or a 1-alkylazacycloheptan-2-one, said alkyl having from 10 to 14 carbon atoms.

10. 6. A composition according to claim 2 or 5 wherein said penetration enhancer is oleic acid, cis-11-octadecenoic acid or 1-dodecylazacycloheptan-2-one.

15. 7. A composition according to claim 4 comprising
 (a) a safe and effective amount of piroxicam, said prodrug of piroxicam, or an acid addition salt thereof;
 (b) aqueous ethanol solvent containing from 20 to 60% ethanol, and
 (c) 0.10 to 1.0% (w/v) oleic acid or 1-dodecylazacycloheptan-2-one enhancer.

20. 8. A composition according to claim 7 wherein said prodrug of piroxicam is of the formula

25. where R is C₄ to C₆ alkyl, CH₂OCOC(CH₃)₃ or CH(CH₃)OCOC(CH₃)₃.

30. 9. A composition according to claim 3 comprising
 (a) a safe and effective amount of amlodipine or an acid addition salt thereof,
 (b) aqueous ethanol solvent containing from 20 to 60% ethanol, and
 (c) 0.10 to 1.0% (w/v) oleic acid or 1-dodecylazacycloheptan-2-one as penetration enhancer.

35. 10. A composition according to claim 3 comprising
 (a) a safe and effective amount of methyl salicylate,
 (b) aqueous ethanol solvent containing from 30 to 75% ethanol, and
 (c) 0.10 to 1.0% (w/v) oleic acid as penetration enhancer.

40. 45. Claims for the following Contracting States: ES GR

1. A process for preparing a transdermal flux enhancing pharmaceutical composition for transdermal administration to a human or lower animal subject characterized by mixing
 50. (a) a safe and effective amount of a pharmacologically active compound of a prodrug thereof,
 (b) an aqueous alcohol solvent containing from 15 to 75% ethanol by volume, and
 (c) from 0.01 to 5% (w/v) of a penetration enhancer selected from a 1-alkylazacycloheptan-2-one, said alkyl having from 8 to 16 carbon atoms, and a cis-olefin compound of the formula

where R³ is CH₂OH, CH₂NH₂ or COR⁴, and R⁴ is OH or (C₁-C₄)alkoxy, x and y are each an integer from 3 to 13 and the sum of x and y is from 10 to 16;

wherein in (b) the ethanol content is within 10% of that which gives optimum transdermal flux for said compound or prodrug.

2. A process according to claim 1 wherein in (c) said penetration enhancer is a cis-monoenoic acid of the formula

wherein x and y are as previously defined, or a 1-alkylazacycloheptan-2-one, said alkyl having from 10 to 14 carbon atoms.

3. A process for preparing a transdermal flux enhancing pharmaceutical composition for transdermal administering to a human or animal subject characterized by mixing

(a) a safe and effective amount of a pharmacologically active compound selected from the group consisting of methyl salicylate, salicylic acid, ibuprofen, amlodipine, glipizide, doxazosin, piroxicam, a prodrug of piroxicam and pharmaceutically acceptable cationic and acid addition salts thereof;

(b) an aqueous ethanol solvent containing from 15 to 75% ethanol by volume; and

(c) from 0.01 to 5% (w/v) of a penetration enhancer selected from a 1-alkylazacycloheptan-2-one, said alkyl having from 8 to 16 carbon atoms, and a cis-olefin compound of the formula

where R³ is CH₂OH, CH₂NH₂ or COR⁴ and R⁴ is OH or (C₁-C₄)alkoxy, x and y are each an integer from 3 to 13 and the sum of x and y is from 10 to 16.

4. A process for preparing a transdermal flux enhancing pharmaceutical composition according to claim 3 characterized by mixing

(a) a safe and effective amount of a pharmacologically active compound selected from the group consisting of methyl salicylate, salicylic acid, ibuprofen, amlodipine, glipizide, doxazosin, piroxicam, a prodrug of piroxicam of the formula

45

and pharmaceutically acceptable cationic and acid addition salts thereof;

where R is C₁ to C₉ straight chain or branched alkyl, CH(R¹)OCOR² and R¹ is H or (C₁-C₃)alkyl, and R² is C₁-C₄ alkyl or C₁-C₄ alkoxy;

(b) an aqueous ethanol solvent containing from 15 to 75% ethanol by volume; and

(c) from 0.01 to 5% (w/v) of a penetration enhancer selected from the group consisting of a 1-alkylazacycloheptan-2-one, said alkyl having from 8 to 16 carbon atoms, and a cis-olefin compound of the formula

55

where R³ is CH₂OH, CH₂NH₂ or COR⁴ and R⁴ is OH or (C₁-C₄)alkoxy, x and y are each an integer from 3 to 13 and the sum of x and y is from 10 to 16.

5. A process according to claim 3 wherein in (b) said solvent contains from 20 to 60% by volume of ethanol and (c) said penetration enhancer is a cis-monoenoic acid of the formula

5 where x and y are as previously defined, or a 1-alkylazacycloheptan-2-one, said alkyl having from 10 to 14 carbon atoms.

10. 6. A process according to claim 2 or 5 wherein said penetration enhancer is oleic acid, cis-11-octadecenoic acid or 1-dodecylazacycloheptan-2-one.

15. 7. A process according to claim 4 characterized by mixing
 (a) a safe and effective amount of piroxicam, said prodrug of piroxicam, or an acid addition salt thereof;
 (b) aqueous ethanol solvent containing from 20 to 60% ethanol, and
 (c) 0.10 to 1.0% (w/v) oleic acid or 1-dodecylazacycloheptan-2-one enhancer.

8. A process according to claim 7 wherein said prodrug of piroxicam is of the formula

where R is C₄ to C₆ alkyl, CH₂OCOC(CH₃)₃ or CH(CH₃)OCOC(CH₃)₃.

35. 9. A process according to claim 3 characterized by mixing
 (a) a safe and effective amount of amlodipine or an acid addition salt thereof,
 (b) aqueous ethanol solvent containing from 20 to 60% ethanol, and
 (c) 0.10 to 1.0% (w/v) oleic acid or 1-dodecylazacycloheptan-2-one as penetration enhancer.
40. 10. A process according to claim 3 characterized by mixing
 (a) a safe and effective amount of methyl salicylate,
 (b) aqueous ethanol solvent containing from 30 to 75% ethanol, and
 (c) 0.10 to 1.0% (w/v) oleic acid as penetration enhancer.

Revendications

1. Composition pharmaceutique destinée à accroître le flux transdermique, pour l'administration transdermique à un sujet humain ou un animal inférieur, comprenant
 50 (a) une quantité, douée d'innocuité et efficace, d'un composé pharmacologique actif ou d'un précurseur médicamenteux d'un tel composé,
 (b) un solvant constitué d'une solution aqueuse d'un alcool, contenant 15 à 75% en volume d'éthanol, et
 (c) 0.01 à 5% (en poids/volume) d'un agent accroissant la pénétration, choisi entre une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 8 à 16 atomes de carbone, et un composé cis-oléfinique de formule
- 55

dans laquelle R³ représente un groupe CH₂OH, CH₂NH₂ ou COR⁴, et R⁴ représente un groupe OH ou alkoxy en C₁ à C₄, x et y représentent chacun un nombre entier de 3 à 13 et la somme de x et y a une valeur de 10 à 16 ;

5 composition dans laquelle, dans le paragraphe (b), la teneur en éthanol ne s'écarte pas de plus de 10% de celle qui provoque un flux transdermique optimal dudit composé ou précurseur médicamenteux.

2. Composition suivant la revendication 1, dans laquelle, dans le paragraphe (c), l'agent accroissant la pénétration est un acide cis-monoénoïque de formule

dans laquelle x et y répondent à la définition précitée, ou une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 10 à 14 atomes de carbone.

- 15 3. Composition pharmaceutique destinée à accroître le flux transdermique, pour l'administration transdermique à un sujet humain ou à un animal, comprenant

20 (a) une quantité, douée d'innocuité et efficace, d'un composé pharmacologiquement actif choisi dans le groupe comprenant le salicylate de méthyle, l'acide salicylique, l'ibuprofène, l'amiodipine, le glipizide, la doxazosine, le piroxicam, un précurseur médicamenteux du piroxicam et leurs sels cationiques et sels d'addition d'acides pharmaceutiquement acceptables ;
 (b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 15 à 75% en volume d'éthanol ; et
 25 (c) 0,01 à 5% (en poids/volume) d'un agent accroissant la pénétration, choisi entre une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 8 à 16 atomes de carbone, et un composé cis-oléfinique de formule

35 dans laquelle R³ représente un groupe CH₂OH, CH₂NH₂ ou COR⁴, et R⁴ représente un groupe OH ou alkoxy en C₁ à C₄, x et y représentent chacun un nombre entier de 3 à 13 et la somme de x et y a une valeur de 10 à 16.

- 40 4. Composition pharmaceutique destinée à accroître le flux transdermique suivant la revendication 3, comprenant

45 (a) une quantité, douée d'innocuité et efficace, d'un composé pharmacologiquement actif choisi dans le groupe comprenant le salicylate de méthyle, l'acide salicylique, l'ibuprofène, l'amiodipine, le glipizide, la doxazosine, le piroxicam, un précurseur médicamenteux du piroxicam de formule

et leurs sels cationiques et sels d'addition d'acides pharmaceutiquement acceptables ;

55 formule dans laquelle R représente un groupe alkyle en C₁ à C₉, à chaîne droite ou ramifiée, CH-(R¹)OCOR², R¹ représente H ou un groupe alkyle en C₁ à C₃ et R² représente un groupe alkyle en C₁ à C₄ ou alkoxy en C₁ à C₄ ;

(b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 15 à 75% en volume d'éthanol,

et

(c) 0,01 à 5% (en poids/volume) d'un agent accroissant la pénétration, choisi dans le groupe comprenant une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 8 à 16 atomes de carbone, et un composé cis-oléfinique de formule

5

dans laquelle R^3 représente un groupe CH_2OH , CH_2NH_2 ou COR^4 , et R^4 représente un groupe OH ou alkoxy en C_1 à C_4 , x et y représentent chacun un nombre entier de 3 à 13 et la somme de x et y a une valeur de 10 à 16.

- 10 5. Composition suivant la revendication 3, dans laquelle, dans le paragraphe (b), le solvant contient 20 à 60% en volume d'éthanol et, dans le paragraphe (c), l'agent accroissant la pénétration est un acide cis-monoénoïque de formule

15

dans laquelle x et y répondent à la définition précitée, ou une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 10 à 14 atomes de carbone.

20

6. Composition suivant la revendication 2 ou 5, dans laquelle l'agent accroissant la pénétration est l'acide oléique, l'acide cis-11-octadécenoïque ou la 1-dodécyiazacycloheptane-2-one.

25

7. Composition suivant la revendication 4, comprenant

(a) une quantité, douée d'innocuité et efficace, de piroxicam, du précurseur médicamenteux du piroxicam ou d'un de ses sels d'addition d'acides ;
 (b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 20 à 60% d'éthanol, et
 (c) 0,10 à 1,0% (en poids/volume) d'un agent accroissant la pénétration, constitué d'acide oléique ou de 1-dodécyiazacycloheptane-2-one.

30

8. Composition suivant la revendication 7, dans laquelle le précurseur médicamenteux du piroxicam répond à la formule

35

50

dans laquelle R représente un groupe alkyle en C_4 à C_6 , $\text{CH}_2\text{OCOC}(\text{CH}_3)_3$ ou $\text{CH}(\text{CH}_3)\text{OCOC}(\text{CH}_3)_3$.

55

9. Composition suivant la revendication 3, comprenant

(a) une quantité, douée d'innocuité et efficace, d'amiodipine ou d'un de ses sels d'addition d'acides,
 (b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 20 à 60% d'éthanol, et
 (c) 0,10 à 1,0% (en poids/volume) d'acide oléique ou de 1-dodécyiazacycloheptane-2-one servant d'agent accroissant la pénétration.

60

10. Composition suivant la revendication 3, comprenant

(a) une quantité, douée d'innocuité et efficace, de salicylate de méthyle,
 (b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 30 à 75% d'éthanol, et
 (c) 0,10 à 1,0% (en poids/volume) d'acide oléique servant d'agent accroissant la pénétration.

REVENDICATIONS pour les Etats Contractants : ES, GR

1. Procédé de préparation d'une composition pharmaceutique destinée à accroître le flux transdermique, pour l'administration transdermique à un sujet humain ou un animal inférieur, caractérisé en ce qu'il consiste à mélanger
- 5 (a) une quantité, douée d'innocuité et efficace, d'un composé pharmacologiquement actif ou d'un de ses précurseurs médicamenteux,
- (b) un solvant constitué d'une solution aqueuse d'un alcool, contenant 15 à 75% en volume d'éthanol, et
- 10 (c) 0,01 à 5% (en poids/volume) d'un agent accroissant la pénétration, choisi entre une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 8 à 16 atomes de carbone, et un composé cis-oléfinique de formule

15 dans laquelle R³ représente un groupe CH₂OH, CH₂NH₂ ou COR⁴, et R⁴ représente un groupe OH ou alkoxy en C₁ à C₄, x et y représentent chacun un nombre entier de 3 à 13 et la somme de x et y a une valeur de 10 à 16 ;

procédé dans lequel, dans le paragraphe (b), la teneur en éthanol ne s'écarte pas de plus de 10% de celle qui provoque un flux transdermique optimal dudit composé ou précurseur médicamenteux.

- 20 2. Procédé suivant la revendication 1, dans lequel, dans le paragraphe (c), l'agent accroissant la pénétration est un acide cis-monoénique de formule

dans laquelle x et y répondent à la définition précitée, ou une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 10 à 14 atomes de carbone.

- 30 3. Procédé de préparation d'une composition pharmaceutique destinée à accroître le flux transdermique, pour l'administration transdermique à un sujet humain ou un animal, caractérisé en ce qu'il consiste à mélanger

35 (a) une quantité, douée d'innocuité et efficace, d'un composé pharmacologiquement actif choisi dans le groupe comprenant le salicylate de méthyle, l'acide salicylique, l'ibuprofène, l'amiodipine, le glipizide, la doxazosine, le piroxicam, un précurseur médicamenteux du piroxicam et leurs sels cationiques et sels d'addition d'acides pharmaceutiquement acceptables ;

(b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 15 à 75% en volume d'éthanol ; et

40 (c) 0,01 à 5% (en poids/volume) d'un agent accroissant la pénétration, choisi entre une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 8 à 16 atomes de carbone, et un composé cis-oléfinique de formule

45 dans laquelle R³ représente un groupe CH₂OH, CH₂NH₂ ou COR⁴, et R⁴ représente un groupe OH ou alkoxy en C₁ à C₄, x et y représentent chacun un nombre entier de 3 à 13 et la somme de x et y a une valeur de 10 à 16.

- 50 4. Procédé de préparation d'une composition pharmaceutique destinée à accroître le flux transdermique suivant la revendication 3, caractérisé en ce qu'il consiste à mélanger

(a) une quantité, douée d'innocuité et efficace, d'un composé pharmacologiquement actif choisi dans le groupe comprenant le salicylate de méthyle, l'acide salicylique, l'ibuprofène, l'amiodipine, le glipizide, la doxazosine, le piroxicam, un précurseur médicamenteux du piroxicam de formule

et leurs sels cationiques et sels d'addition d'acides pharmaceutiquement acceptables ;
dans laquelle R représente un groupe alkyle en C₁ à C₉, à chaîne droite ou ramifié, CH(R¹)-OCOR², R¹ représente H ou un groupe alkyle en C₁ à C₃ et R² représente un groupe alkyle en C₁ à C₄ ou alkoxy en C₁ à C₄ ;
(b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 15 à 75% en volume d'éthanol ;
et
(c) 0,01 à 5% (en poids/volume) d'un agent accroissant la pénétration, choisi dans le groupe comprenant une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 8 à 16 atomes de carbone, et un composé cis-oléfinique de formule

$$25 \quad \text{CH}_3(\text{CH}_2)_x\text{CH} = \text{CH}(\text{CH}_2)_y\text{R}^3$$

dans laquelle R³ représente un groupe CH₂OH, CH₂NH₂ ou COR⁴, et R⁴ représente un groupe OH ou alkoxy en C₁ à C₄, x et y représentent chacun un nombre entier de 3 à 13 et la somme de x et y a une valeur de 10 à 16.

- 30 5. Procédé suivant la revendication 3, dans lequel, dans le paragraphe (b), le solvant contient 20 à 60% en volume d'éthanol et, dans le paragraphe (c), l'agent accroissant la pénétration est un acide cis-monoénioïque de formule

35 CH₃(CH₂)_xCH = CH(CH₂)_yCOOH dans laquelle x et y répondent à la définition précitée, ou une 1-alkylazacycloheptane-2-one, le groupe alkyle ayant 10 à 14 atomes de carbone.

40 6. Procédé suivant la revendication 2 ou 5, dans lequel l'agent accroissant la pénétration est l'acide oléique, l'acide cis-11-octadécénioïque ou la 1-dodécytlazacycloheptane-2-one.

45 7. Procédé suivant la revendication 4, caractérisé en ce qu'il consiste à mélanger
 (a) une quantité, douée d'innocuité et efficace, de piroxicam, du précurseur médicamenteux du piroxicam ou d'un de ses sels d'addition d'acides ;
 (b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 20 à 60% d'éthanol, et
 (c) 0,10 à 1,0% (en poids/volume) d'acide oléique ou de 1-dodécytlazacycloheptane-2-one servant d'agent accroissant la pénétration.

50 8. Procédé suivant la revendication 7, dans lequel le précurseur médicamenteux du piroxicam répond à la formule

dans laquelle R représente un groupe alkyle en C₄ à C₆, CH₂OCOC(CH₃)₃ ou CH(CH₃)OCOC(CH₃)₃.

9. Procédé suivant la revendication 3, caractérisé en ce qu'il consiste à mélanger
 (a) une quantité, douée d'innocuité et efficace, d'amiodipine ou d'un de ses sels d'addition d'acides,
 (b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 20 à 60% d'éthanol, et
 (c) 0,10 à 1,0% (en poids/volume) d'acide oléique ou de 1-dodécylazacycloheptane-2-one servant
 d'agent accroissant la pénétration.
10. Procédé suivant la revendication 3, caractérisé en ce qu'il consiste à mélanger
 (a) une quantité, douée d'innocuité et efficace, de salicylate de méthyle,
 (b) un solvant constitué d'une solution aqueuse d'éthanol, contenant 30 à 75% d'éthanol, et
 (c) 0,10 à 1,0% (en poids/volume) d'acide oléique servant d'agent accroissant la pénétration.

Ansprüche

1. Pharmazeutisches Präparat mit erhöhtem transdermalen Fluß für die transdermale Verabreichung an
 30 einen Menschen oder ein niedrigeres Lebewesen, welches Präparat
 (a) eine ungefährliche und wirksame Menge einer pharmakologisch wirksamen Verbindung oder
 einer Vorstufe derselben,
 (b) einen wässrigen Alkohol als Lösungsmittel mit 15 bis 75 Vol-% Ethanol und
 (c) 0,01 bis 5 % (Gew./Vol) eines Durchdringungsverstärkers ausgewählt aus einem 1-Alkyl-
 35 azacycloheptan-2-on, wobei das Alkyl 8 bis 16 Kohlenstoffatome aufweist, und einer cis-Olefin-
 Verbindung der Formel
 $\text{CH}_3(\text{CH}_2)_x\text{CH}=\text{CH}(\text{CH}_2)_y\text{R}^3,$
 worin R³ CH₂OH, CH₂NH₂ oder COR⁴ bedeutet, und R⁴ OH oder (C₁-C₄)-Alkoxy ist, x und y je eine
 40 ganze Zahl von 3 bis 13 sind und die Summe x und y 10 bis 16 ist,
 enthält; wobei in (b) der Ethanolgehalt innerhalb 10 % von jenem liegt, welcher einen optimalen
 transdermalen Fluß für die besagte Verbindung oder deren Vorstufe ergibt.
- 45 2. Präparat nach Anspruch 1, worin in (c) der Durchdringungsverstärker eine cis-Monoensäure der Formel
 $\text{CH}_3(\text{CH}_2)_x\text{CH}=\text{CH}(\text{CH}_2)_y\text{COOH},$
 worin x und y die obige Bedeutung haben, oder ein 1-Alkyl-azacycloheptan-2-on, worin das Alkyl 10 bis
 50 14 Kohlenstoffatome aufweist, ist.
3. Pharmazeutisches Präparat mit erhöhtem transdermalen Fluß für die transdermale Verabreichung an
 einen Menschen oder ein Tier, welches Präparat
 (a) eine ungefährliche und wirksame Menge einer pharmakologisch wirksamen Verbindung aus der
 55 Gruppe, die Methylsalicylat, Salicylsäure, Ibuprofen, Amlodipin, Glipizid, Doxazosin, Piroxicam, eine
 Vorstufe von Piroxicam und pharmazeutisch annehmbare kationische und Säureadditions-Salze
 davon umfaßt;
 (b) einen wässrigen Alkohol als Lösungsmittel enthaltend 15 bis 75 Vol-% Ethanol; und

(c) 0,01 bis 5 % (Gew./Vol) eines Durchdringungsverstärkers ausgewählt aus einem 1-Alkyl-azacycloheptan-2-on, wobei das Alkyl 8 bis 16 Kohlenstoffatome aufweist, und einer cis-Olefin-Verbindung der Formel

worin R^3 CH_2OH , CH_2NH_2 oder COR^4 bedeutet und R^4 OH oder ($\text{C}_1\text{-C}_4$)-Alkoxy ist, x und y je eine ganze Zahl von 3 bis 13 sind und die Summe von x und y 10 bis 16 ist, enthält.

- 10 4. Pharmazeutisches Präparat mit erhöhtem transdermalen Fluß nach Anspruch 3, welches

(a) eine ungefährliche und wirksame Menge einer pharmakologisch wirksamen Verbindung aus der Gruppe, die Methylsalicylat, Salicylsäure, Ibuprofen, Amlodipin, Glipizid, Doxazosin, Piroxicam, eine Vorstufe von Piroxicam der Formel

15

20

25

30

und pharmazeutisch annehmbare kationische und Säureadditions-Salze davon umfaßt; wobei R ein geradkettiges oder verzweigtes $\text{C}_1\text{-C}_9$ -Alkyl, $\text{CH}(\text{R}')\text{OCOR}^2$, und R' H oder ($\text{C}_1\text{-C}_3$)-Alkyl, und R^2 $\text{C}_1\text{-C}_4$ -Alkyl oder $\text{C}_1\text{-C}_4$ -Alkoxy ist;

(b) einen wässrigen Alkohol als Lösungsmittel enthaltend 15 bis 75 Vol% Ethanol, und

35

(c) 0,01 bis 5 % (Gew./Vol) eines Durchdringungsverstärkers ausgewählt aus der Gruppe, die ein 1-Alkylazacycloheptan-2-on, wobei das Alkyl 8 bis 16 Kohlenstoffatome aufweist, und eine cis-Olefin-Verbindung der Formel

40

worin R^3 CH_2OH , CH_2NH_2 oder COR^4 bedeutet und R^4 OH oder ($\text{C}_1\text{-C}_4$)-Alkoxy ist, x und y je eine ganze Zahl von 3 bis 13 sind und die Summe von x und y 10 bis 16 ist, umfaßt, enthält.

45

5. Präparat nach Anspruch 3, worin in (b) das Lösungsmittel 20 bis 60 Vol% Ethanol enthält und (c) der Durchdringungsverstärker eine cis-Monoensäure der Formel

55

worin x und y die obige Bedeutung haben, oder ein 1-Alkyl-azacycloheptan-2-on ist, wobei das Alkyl 10 bis 14 Kohlenstoffatome aufweist.

6. Präparat nach Anspruch 2 oder 5, worin der Durchdringungsverstärker Ölsäure, cis-11-Octadecensäure oder 1-Dodecylazacycloheptan-2-on ist.

- 55 7. Präparat nach Anspruch 4, welches

(a) eine ungefährliche und wirksame Menge Piroxicam, der Vorstufe von Piroxicam oder eines Säureadditionssalzes davon;

(b) wässrigen Alkohol als Lösungsmittel enthaltend 20 bis 60 % Ethanol, und

(c) 0,10 bis 1,0 % (Gew./Vol) Ölsäure oder 1-Dodecylazacycloheptan-2-on als Verstärker enthält.

8. Präparat nach Anspruch 7, worin die Vorstufe von Piroxicam der Formel

5

10

15

20

25

30

-
- entspricht, worin R C₄-C₆-Alkyl, CH₂OCOC(CH₃)₃ oder CH(CH₃)OCOC(CH₃)₃ ist.
9. Präparat nach Anspruch 3, welches
- (a) eine ungefährliche und wirksame Menge Amlodipin oder eines Säureadditionssalzes davon;
 - (b) wässrigen Ethanol als Lösungsmittel enthaltend 20 bis 60 % Ethanol, und
 - (c) 0,10 bis 1,0 % (Gew./Vol) Ölsäure oder 1-Dodecylazacycloheptan-2-on als Durchdringungsverstärker enthält.
10. Präparat nach Anspruch 3, welches
- (a) eine ungefährliche und wirksame Menge Methylsalicylat,
 - (b) wässrigen Ethanol als Lösungsmittel enthaltend 30 bis 75 % Ethanol, und
 - (c) 0,10 bis 1,0 % (Gew./Vol) Ölsäure als Durchdringungsverstärker enthält.

Patentansprüche für folgende Vertragsstaaten: ES, GR

1. Verfahren zur Herstellung eines pharmazeutischen Präparates mit erhöhtem transdermalen Fluß für die transdermale Verabreichung an einen Menschen oder ein niedrigeres Lebewesen, dadurch gekennzeichnet, daß
- (a) eine ungefährliche und wirksame Menge einer pharmakologisch wirksamen Verbindung oder einer Vorstufe derselben,
 - (b) ein wässriger Alkohol als Lösungsmittel mit 15 bis 75 Vol-% Ethanol und
 - (c) 0,01 bis 5 % (Gew./Vol) eines Durchdringungsverstärkers ausgewählt aus einem 1-Alkyl-azacycloheptan-2-on, wobei das Alkyl 8 bis 16 Kohlenstoffatome aufweist, und einer cis-Olefin-Verbindung der Formel
- CH₃(CH₂)_xCH = CH(CH₂)_yR³,
- worin R³ CH₂OH, CH₂NH₂ oder COR⁴ bedeutet, und R⁴ OH oder (C₁-C₄)-Alkoxy ist, x und y je eine ganze Zahl von 3 bis 13 sind und die Summe x und y 10 bis 16 ist, gewünscht werden; wobei in (b) der Ethanolgehalt innerhalb 10 % von jenem liegt, welcher einen optimalen transdermalen Fluß für die besagte Verbindung oder deren Vorstufe ergibt.
2. Verfahren nach Anspruch 1, worin in (c) der Durchdringungsverstärker eine cis-Monoensäure der Formel

45

50

55

3. Verfahren zur Herstellung eines pharmazeutischen Präparates mit erhöhtem transdermalen Fluß für die transdermale Verabreichung an einen Menschen oder ein Tier, dadurch gekennzeichnet, daß
- 5 (a) eine ungefährliche und wirksame Menge einer pharmakologisch wirksamen Verbindung aus der Gruppe, die Methylsalicylat, Salicylsäure, Ibuprofen, Amlodipin, Glipizid, Doxazosin, Piroxicam, eine Vorstufe von Piroxicam und pharmazeutisch annehmbare kationische und Säureadditions-Salze davon umfaßt;
- 10 (b) ein wässriger Alkohol als Lösungsmittel enthaltend 15 bis 75 Vol-% Ethanol; und
- (c) 0,01 bis 5 % (Gew./Vol) eines Durchdringungsverstärkers ausgewählt aus einem 1-Alkyl-azacycloheptan-2-on, wobei das Alkyl 8 bis 16 Kohlenstoffatome aufweist, und einer cis-Olefin-Verbindung der Formel

worin R^3 CH_2OH , CH_2NH_2 oder COR^4 bedeutet und R^4 OH oder ($\text{C}_1\text{-}\text{C}_4$)-Alkoxy ist, x und y je eine ganze Zahl von 3 bis 13 sind und die Summe von x und y 10 bis 16 ist, gemischt werden.

- 15 4. Verfahren zur Herstellung eines pharmazeutischen Präparates mit erhöhtem transdermalen Fluß nach Anspruch 3, dadurch gekennzeichnete, daß
- 20 (a) eine ungefährliche und wirksame Menge einer pharmakologisch wirksamen Verbindung aus der Gruppe, die Methylsalicylat, Salicylsäure, Ibuprofen, Amlodipin, Glipizid, Doxazosin, Piroxicam, eine Vorstufe von Piroxicam der Formel

25 und pharmazeutisch annehmbare kationische und Säureadditions-Salze davon umfaßt; wobei R ein geradketiges oder verzweigtes $\text{C}_1\text{-}\text{C}_9$ -Alkyl, $\text{CH}(\text{R}^1)\text{OCOR}^2$, und R^1 H oder ($\text{C}_1\text{-}\text{C}_3$)-Alkyl, und R^2 $\text{C}_1\text{-}\text{C}_4$ -Alkyl oder $\text{C}_1\text{-}\text{C}_4$ -Alkoxy ist;

30 (b) ein wässriger Alkohol als Lösungsmittel enthaltend 15 bis 75 Vol-% Ethanol, und

35 (c) 0,01 bis 5 % (Gew./Vol) eines Durchdringungsverstärkers ausgewählt aus der Gruppe, die ein 1-Alkylazacycloheptan-2-on, wobei das Alkyl 8 bis 16 Kohlenstoffatome aufweist, und eine cis-Olefin-Verbindung der Formel

worin R^3 CH_2OH , CH_2NH_2 oder COR^4 bedeutet und R^4 OH oder ($\text{C}_1\text{-}\text{C}_4$)-Alkoxy ist, x und y je eine ganze Zahl von 3 bis 13 sind und die Summe von x und y 10 bis 16 ist, umfaßt, gemischt werden.

- 45 5. Verfahren nach Anspruch 3, worin in (b) das Lösungsmittel 20 bis 60 Vol-% Ethanol enthält und (c) der Durchdringungsverstärker eine cis-Monoensäure der Formel
- 50 $\text{CH}_3(\text{CH}_2)_x\text{CH}=\text{CH}(\text{CH}_2)_y\text{COOH},$
- 55 worin x und y die obige Bedeutung haben, oder ein 1-Alkyl-azacycloheptan-2-on ist, wobei das Alkyl 10 bis 14 Kohlenstoffatome aufweist.

6. Verfahren nach Anspruch 2 oder 5, worin der Durchdringungsverstärker Ölsäure, cis-11-Octadecensäure oder 1-Dodecylazacycloheptan-2-on ist.

7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß
5 (a) eine ungefährliche und wirksame Menge Piroxicam, der Vorstufe von Piroxicam oder eines Säureadditionssalzes davon;

(b) wässriger Alkohol als Lösungsmittel enthaltend 20 bis 60 % Ethanol, und

(c) 0,10 bis 1,0 % (Gew./Vol) Ölsäure oder 1-Dodecylazacycloheptan-2-on als Verstärker
gemischt werden.

10 8. Verfahren nach Anspruch 7, worin die Vorstufe von Piroxicam der Formel

15

oder

25

entspricht, worin R C₄-C₆-Alkyl, CH₂OCOC(CH₃)₃ oder CH(CH₃)OCOC(CH₃)₃ ist.

9. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß

(a) eine ungefährliche und wirksame Menge Amlodipin oder eines Säureadditionssalzes davon;

30

(b) wässriger Ethanol als Lösungsmittel enthaltend 20 bis 60 % Ethanol, und

(c) 0,10 bis 1,0 % (Gew./Vol) Ölsäure oder 1-Dodecylazacycloheptan-2-on als Durchdringungsverstärker
gemischt werden.

35

10. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß

(a) eine ungefährliche und wirksame Menge Methylsalicylat,

(b) wässriger Ethanol als Lösungsmittel enthaltend 30 bis 75 % Ethanol, und

(c) 0,10 bis 1,0 % (Gew./Vol) Ölsäure als Durchdringungsverstärker gemischt werden.

40

45

50

55