Horizontal Privilege Escalation in Trusted Applications

Darius Suciu

Stephen McLaughlin

Laurent Simon

Radu Sion

Background: Bugs over time

Linux lines of code over time

Source: https://commons.wikimedia.org/wiki/File:Lines_of_Code_Linux_Kernel.svg

Linux vulnerabilities over time

Source: Meng, Dan, et al. "Security-first architecture: deploying physically isolated active security processors for safeguarding the future of computing."

Background: TrustZone

Background: TrustZone Attacks

Background: Boomerang^[1] attack

[1] Machiry, Aravind, et al. "BOOMERANG: Exploiting the Semantic Gap in Trusted Execution Environments." NDSS. 2017.

Background: Privilege escalation

National Security Institute

HPE attack using TA

Storing data in Secure World

Global data attack examples

Data leakage

Data compromise

Decryption oracle

Stored data attack examples

Decryption oracle

Storage

HPE manual analysis

95 TA binaries analyzed

3 major TrustZone environments investigated (Kinibi, QSEE, Teegris)

HPE enabling vulnerabilities discovered (3 types)

Findings: vulnerable TAs

Findings: vulnerable TAs

HPE vulnerability impact

Data leakage

Example: Encryption key leaked to attacker

Data compromise

Example: Encryption key replaced with attacker data

Decryption oracle

Example: DRM content decrypted for malicious app

Encryption oracle

Example: Encrypted keys replaced with attacker data

Signing oracle

Example: TA signs forged attestation data

Findings: HPE attack vectors

Findings: HPE attack vectors

HPE attack vectors

Hooper: Automatic HPE detection

Hooper: Cross-invocation tracking

Automatic analysis results

Automatic analysis results

Vulnerabilities found in 24 hours vs 4 weeks of manual analysis

Mitigations

Resolve TA multi-tenant interference

Introduce session management inside all multi-tenant TAs

Standardized TA session management

Introduce a library for managing sessions inside TAs

Fine-grained access to Secure World storage

Partition Secure World storage and enforce fine-grained access control

Minimize access to TAs

Use fine-grained access policies to prevent unauthorized access to TAs

Conclusion

Some TAs store data from multiple applications across invocations

Insufficient access control exposes TA-managed data to attackers

Three type of HPE-enabling vulnerabilities found in 23 TAs

Automatic binary analysis can help identify HPE vulnerabilities

Platform-wide fine-grained access control would help mitigate HPE

Thank you!

Contact information:

Stephen McLaughlin ⇒s.mclaughlin@samsung.com

Laurent Simon → cam.lmrs2@gmail.com

Radu Sion → sion@cs.stonybrook.edu

Questions?