${\rm CV}$ hw3

Zheyao Zhu

$March\ 2019$

Q1.1

 $1.\frac{\delta W(x;p}{\delta p^T}$ is the jacobian of the image evaluated at (x;p)

$$2.A = \nabla I \frac{\delta W}{\delta p}$$
 , b=T(x) $- I(W(x,p))$

 $3.A^TA$ needs to be full rank

Q1.3

Frame 1

Frame 100

Frame 200

Frame 300

Frame 400

Q1.4

Frame 1

:

Frame 100

Frame 200

Frame 300

Frame 400

Q2.1

We are given the following equation
$$I_{t+1}(x) = I_t(x) + \textstyle\sum_{k=1}^k \omega_k B_k$$

$$=> I_{t+1}(x) - I_t(x) = \sum_{k=1}^k \omega_k B_k$$

For every $\omega iwhere i=1,2,....,K, we multiply B_i to both side of equation:$

$$B_i * (I_{t+1}(x) - I_t(x)) = B_i * \sum_{k=1}^k \omega_k B_k(x)$$

Since the bases are orthogonal to each other, $B_i*B_k=0$ for all i: $B_i(I_{t+1}(x)-I_t(x))=\omega_i*||B_i(x)||^2$

$$B_i(I_{t+1}(x) - I_t(x)) = \omega_i * ||B_i(x)||^2$$

$$=> \omega i = \frac{B_i(I_{t+1} - I_t(x))}{||B_i(x)||^2}, \forall i = 1, 2, \dots, K$$

Q2.3

Frame 1

:

Frame 100

Frame 200

Frame 300

Frame 400

Q3.3

Frame 30

:

Frame 60

Frame 90

Frame 120

Q4.1

Because the most time consuming tasks such as computing the gradient of the image, evaluating the jacobean, computing the steepest descent images and computing the Hessian could be pre-computed. So doing the gradient descent optimization iterations, the aforementioned computations wouldn't be repeated.