Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

23 de octubre de 2024

Agenda

- Momento Angular de un cuerpo rígido
- $oldsymbol{2}$ Generalidades para $oldsymbol{\mathsf{L}}$ y $oldsymbol{\Omega}$
- 3 Ecuaciones de movimiento para cuerpos rígidos
- 🐠 Ejemplo: Cilindro de masa M y radio \emph{a} , rodando sin deslizar
 - Angulos y velocidades
 - Ecuaciones de movimiento

• Escogemos el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa para definir el momento angular del cuerpo.

- Escogemos el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa para definir el momento angular del cuerpo.
- Si \mathbf{r}_j es el vector de posición de la particula j en (x_1, x_2, x_3) , tenemos $\mathbf{I} = \sum_i \mathbf{r}_j \times \mathbf{p}_j = \sum_i m_j (\mathbf{r}_j \times \mathbf{v}_j)$, con $\mathbf{v}_j = \mathbf{\Omega} \times \mathbf{r}_j$.

- Escogemos el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa para definir el momento angular del cuerpo.
- Si \mathbf{r}_j es el vector de posición de la particula j en (x_1, x_2, x_3) , tenemos $\mathbf{I} = \sum_j \mathbf{r}_j \times \mathbf{p}_j = \sum_j m_j (\mathbf{r}_j \times \mathbf{v}_j)$, con $\mathbf{v}_j = \mathbf{\Omega} \times \mathbf{r}_j$.
- Entonces $\mathbf{L} = \sum_{j} m_{j} \mathbf{r}_{j} \times (\mathbf{\Omega} \times \mathbf{r}_{j}) \equiv \sum_{j} m_{j} \left[r_{j}^{2} \mathbf{\Omega} (\mathbf{r}_{j} \cdot \mathbf{\Omega}) \mathbf{r}_{j} \right]$. Hemos usado $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$

- Escogemos el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa para definir el momento angular del cuerpo.
- Si \mathbf{r}_j es el vector de posición de la particula j en (x_1, x_2, x_3) , tenemos $\mathbf{I} = \sum_i \mathbf{r}_j \times \mathbf{p}_j = \sum_i m_j (\mathbf{r}_j \times \mathbf{v}_j)$, con $\mathbf{v}_j = \mathbf{\Omega} \times \mathbf{r}_j$.
- Entonces $\mathbf{L} = \sum_{j} m_{j} \mathbf{r}_{j} \times (\mathbf{\Omega} \times \mathbf{r}_{j}) \equiv \sum_{j} m_{j} \left[r_{j}^{2} \mathbf{\Omega} (\mathbf{r}_{j} \cdot \mathbf{\Omega}) \mathbf{r}_{j} \right]$. Hemos usado $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$
- Las componentes del momento angular serán:

$$L_{i} = \sum_{j} m_{j} \left[r_{j}^{2} \Omega_{i} - x_{ij} \sum_{k} x_{kj} \Omega_{k} \right]$$

$$L_{i} = \sum_{j} m_{j} \left[\sum_{k} \Omega_{k} r_{j}^{2} \delta_{ik} - \sum_{k} x_{ij} x_{kj} \Omega_{k} \right]$$

$$L_{i} = \sum_{j} m_{j} \sum_{k} \Omega_{k} \left[r_{j}^{2} \delta_{ik} - x_{ij} x_{kj} \right] = \sum_{k} \Omega_{k} \sum_{j} m_{j} \left[r_{j}^{2} \delta_{ik} - x_{ij} x_{kj} \right]$$

- Escogemos el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa para definir el momento angular del cuerpo.
- Si \mathbf{r}_j es el vector de posición de la particula j en (x_1, x_2, x_3) , tenemos $\mathbf{I} = \sum_j \mathbf{r}_j \times \mathbf{p}_j = \sum_j m_j (\mathbf{r}_j \times \mathbf{v}_j)$, con $\mathbf{v}_j = \mathbf{\Omega} \times \mathbf{r}_j$.
- Entonces $\mathbf{L} = \sum_{j} m_{j} \mathbf{r}_{j} \times (\mathbf{\Omega} \times \mathbf{r}_{j}) \equiv \sum_{j} m_{j} \left[r_{j}^{2} \mathbf{\Omega} (\mathbf{r}_{j} \cdot \mathbf{\Omega}) \mathbf{r}_{j} \right]$. Hemos usado $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$
- Las componentes del momento angular serán:

$$L_{i} = \sum_{j} m_{j} \left[r_{j}^{2} \Omega_{i} - x_{ij} \sum_{k} x_{kj} \Omega_{k} \right]$$

$$L_{i} = \sum_{j} m_{j} \left[\sum_{k} \Omega_{k} r_{j}^{2} \delta_{ik} - \sum_{k} x_{ij} x_{kj} \Omega_{k} \right]$$

$$L_{i} = \sum_{j} m_{j} \sum_{k} \Omega_{k} \left[r_{j}^{2} \delta_{ik} - x_{ij} x_{kj} \right] = \sum_{k} \Omega_{k} \sum_{j} m_{j} \left[r_{j}^{2} \delta_{ik} - x_{ij} x_{kj} \right]$$

• Finalmente $L_i = \sum_{k=1}^3 I_{ik} \Omega_k \Leftrightarrow \mathbf{L} = I \mathbf{\Omega}$ ya que el tensor de inercia es $I_{ik} = \sum_j m_j \left[r_j^2 \delta_{ik} - x_{ij} x_{kj} \right]$

LyΩ

ullet Hay casos particulares en los cuales podremos escribir $oldsymbol{\mathsf{I}}=I\Omega$

LyΩ

- ullet Hay casos particulares en los cuales podremos escribir $oldsymbol{\mathsf{I}}=Ioldsymbol{\Omega}$
- El momento angular y la velocidad angular apuntan en una misma dirección y sentido. Entonces $L_1=I_{11}\Omega_1$, $L_2=I_{22}\Omega_2$, y $L_3=I_{33}\Omega_3$

L y Ω

- ullet Hay casos particulares en los cuales podremos escribir $oldsymbol{\mathsf{I}} = I oldsymbol{\Omega}$
- El momento angular y la velocidad angular apuntan en una misma dirección y sentido. Entonces $L_1=I_{11}\Omega_1$, $L_2=I_{22}\Omega_2$, y $L_3=I_{33}\Omega_3$
- Pero en general, el momento angular L no es paralelo a la dirección de la velocidad angular Ω y L es paralelo a Ω

4/7

- ullet Hay casos particulares en los cuales podremos escribir $oldsymbol{\mathsf{I}} = I oldsymbol{\Omega}$
- El momento angular y la velocidad angular apuntan en una misma dirección y sentido. Entonces $L_1=I_{11}\Omega_1$, $L_2=I_{22}\Omega_2$, y $L_3=I_{33}\Omega_3$
- Pero en general, el momento angular L no es paralelo a la dirección de la velocidad angular Ω y L es paralelo a Ω

• Si el vector Ω posee solamente una componente sobre un eje x_k , tenemos $\Omega = \Omega \hat{\mathbf{x}}_k$ y por lo tanto $\mathbf{L} = I_{kk} \Omega \hat{\mathbf{x}}_k$.

- ullet Hay casos particulares en los cuales podremos escribir $oldsymbol{\mathsf{I}} = I oldsymbol{\Omega}$
- El momento angular y la velocidad angular apuntan en una misma dirección y sentido. Entonces $L_1=I_{11}\Omega_1$, $L_2=I_{22}\Omega_2$, y $L_3=I_{33}\Omega_3$
- Pero en general, el momento angular L no es paralelo a la dirección de la velocidad angular Ω y L es paralelo a Ω

- Si el vector Ω posee solamente una componente sobre un eje x_k , tenemos $\Omega = \Omega \hat{\mathbf{x}}_k$ y por lo tanto $\mathbf{L} = I_{kk} \Omega \hat{\mathbf{x}}_k$.
- ullet Para cuerpos esféricos, $I_{11}=I_{22}=I_{33}$, y ${f L}=I_{11}{f \Omega}$: ${f L}$ es paralelo a ${f \Omega}$

 Las ecuaciones de Lagrange para cuerpos rígidos se plantean en términos de los ángulos de Euler.

- Las ecuaciones de Lagrange para cuerpos rígidos se plantean en términos de los ángulos de Euler.
- La energía cinética de rotación de un cuerpo rígido es $T_{\mathrm{rot}} = \frac{1}{2} \sum_{i,k} I_{ik} \Omega_i \Omega_k$

- Las ecuaciones de Lagrange para cuerpos rígidos se plantean en términos de los ángulos de Euler.
- La energía cinética de rotación de un cuerpo rígido es $T_{\rm rot} = \frac{1}{2} \sum_{i,k} I_{ik} \Omega_i \Omega_k$
- Las componentes Ω_i de la velocidad angular pueden expresarse en función de los ángulos de Euler (θ, ϕ, ψ) y de sus velocidades

- Las ecuaciones de Lagrange para cuerpos rígidos se plantean en términos de los ángulos de Euler.
- La energía cinética de rotación de un cuerpo rígido es $T_{\mathrm{rot}} = \frac{1}{2} \sum_{i,k} I_{ik} \Omega_i \Omega_k$
- Las componentes Ω_i de la velocidad angular pueden expresarse en función de los ángulos de Euler (θ, ϕ, ψ) y de sus velocidades
- La energía potencial del cuerpo corresponde a la energía potencial de su centro de masa, y se expresa en términos de los ángulos de Euler

- Las ecuaciones de Lagrange para cuerpos rígidos se plantean en términos de los ángulos de Euler.
- La energía cinética de rotación de un cuerpo rígido es $T_{\rm rot} = \frac{1}{2} \sum_{i,k} I_{ik} \Omega_i \Omega_k$
- Las componentes Ω_i de la velocidad angular pueden expresarse en función de los ángulos de Euler (θ, ϕ, ψ) y de sus velocidades
- La energía potencial del cuerpo corresponde a la energía potencial de su centro de masa, y se expresa en términos de los ángulos de Euler
- El Lagrangiano queda como $\mathcal{L} = T V = \mathit{L}(\theta, \phi, \psi, \dot{\theta}, \dot{\phi}, \dot{\psi}, t)$

- Las ecuaciones de Lagrange para cuerpos rígidos se plantean en términos de los ángulos de Euler.
- La energía cinética de rotación de un cuerpo rígido es $T_{\mathrm{rot}} = \frac{1}{2} \sum_{i,k} I_{ik} \Omega_i \Omega_k$
- Las componentes Ω_i de la velocidad angular pueden expresarse en función de los ángulos de Euler (θ, ϕ, ψ) y de sus velocidades
- La energía potencial del cuerpo corresponde a la energía potencial de su centro de masa, y se expresa en términos de los ángulos de Euler
- El Lagrangiano queda como $\mathcal{L} = T V = \mathit{L}(\theta, \phi, \psi, \dot{\theta}, \dot{\phi}, \dot{\psi}, t)$
- Las ecuaciones de Lagrange para cuerpos rígidos son complicadas

- Las ecuaciones de Lagrange para cuerpos rígidos se plantean en términos de los ángulos de Euler.
- La energía cinética de rotación de un cuerpo rígido es $T_{\mathrm{rot}} = \frac{1}{2} \sum_{i,k} I_{ik} \Omega_i \Omega_k$
- Las componentes Ω_i de la velocidad angular pueden expresarse en función de los ángulos de Euler (θ, ϕ, ψ) y de sus velocidades
- La energía potencial del cuerpo corresponde a la energía potencial de su centro de masa, y se expresa en términos de los ángulos de Euler
- El Lagrangiano queda como $\mathcal{L} = T V = L(\theta, \phi, \psi, \dot{\theta}, \dot{\phi}, \dot{\psi}, t)$
- Las ecuaciones de Lagrange para cuerpos rígidos son complicadas
- Los casos más simples son los que presentan simetrías: axial (trompos) o esférica

• Consideremos un cilindro de masa M y radio a, rodando sin deslizar dentro de una superficie cilíndrica fija de radio R > a.

• Sea z el eje del cilindro fijo de radio R y x_3 el del rodante de radio a.

- Sea z el eje del cilindro fijo de radio R y x_3 el del rodante de radio a.
- El ángulo de nutación entre los ejes x_3 y z es $\theta = 0$.

- Sea z el eje del cilindro fijo de radio R y x_3 el del rodante de radio a.
- El ángulo de nutación entre los ejes x_3 y z es $\theta = 0$.
- El ángulo de precesión alrededor de z es ϕ .

- Sea z el eje del cilindro fijo de radio R y x_3 el del rodante de radio a.
- El ángulo de nutación entre los ejes x_3 y z es $\theta = 0$.
- El ángulo de precesión alrededor de z es ϕ .
- ullet La energía cinética respecto al sistema fijo es $T=T_{
 m cm}+T_{
 m rot}$.

- Sea z el eje del cilindro fijo de radio R y x_3 el del rodante de radio a.
- El ángulo de nutación entre los ejes x_3 y z es $\theta = 0$.
- El ángulo de precesión alrededor de z es ϕ .
- ullet La energía cinética respecto al sistema fijo es $T=T_{
 m cm}+T_{
 m rot}$.
- La energía cinética del centro de masa es $T_{\rm cm}=rac{1}{2}Mv_{\rm cm}^2$, con $v_{\rm cm}=(R-a)\dot{\phi}$

- Sea z el eje del cilindro fijo de radio R y x_3 el del rodante de radio a.
- El ángulo de nutación entre los ejes x_3 y z es $\theta = 0$.
- El ángulo de precesión alrededor de z es ϕ .
- ullet La energía cinética respecto al sistema fijo es $T=T_{
 m cm}+T_{
 m rot}$.
- La energía cinética del centro de masa es $T_{
 m cm}=rac{1}{2}Mv_{
 m cm}^2$, con $v_{
 m cm}=(R-a)\dot{\phi}$
- La energía cinética de rotación es $T_{\rm rot} = \frac{1}{2} J_{33} \Omega_3^2$

• Rodar sin deslizar implica $v_{\rm cm}=a\Omega_3\Rightarrow\Omega_3=rac{v_{\rm cm}}{a}=rac{(R-a)\dot{\phi}}{a}$

- Rodar sin deslizar implica $v_{
 m cm}=a\Omega_3\Rightarrow\Omega_3=rac{v_{
 m cm}}{a}=rac{(R-a)\dot\phi}{a}$
- El momento de inercia del cilindro rodante es $I_{33} = \frac{1}{2}Ma^2$.

- Rodar sin deslizar implica $v_{\rm cm}=a\Omega_3\Rightarrow\Omega_3=rac{v_{\rm cm}}{a}=rac{(R-a)\phi}{a}$
- El momento de inercia del cilindro rodante es $I_{33} = \frac{1}{2}Ma^2$.
- Entonces $T = \frac{1}{2}M(R-a)^2\dot{\phi}^2 + \frac{1}{2}I_{33}\frac{(R-a)^2}{a^2}\dot{\phi}^2 = \frac{3}{4}M(R-a)^2\dot{\phi}^2$

- Rodar sin deslizar implica $v_{\rm cm}=a\Omega_3\Rightarrow\Omega_3=rac{v_{\rm cm}}{a}=rac{(R-a)\phi}{a}$
- El momento de inercia del cilindro rodante es $I_{33} = \frac{1}{2}Ma^2$.
- Entonces $T = \frac{1}{2}M(R-a)^2\dot{\phi}^2 + \frac{1}{2}I_{33}\frac{(R-a)^2}{a^2}\dot{\phi}^2 = \frac{3}{4}M(R-a)^2\dot{\phi}^2$
- La energía potencial del centro de masa es $V = -Mg(R a)\cos\phi$.

- Rodar sin deslizar implica $v_{
 m cm}=a\Omega_3\Rightarrow\Omega_3=rac{v_{
 m cm}}{a}=rac{(R-a)\dot\phi}{a}$
- El momento de inercia del cilindro rodante es $I_{33} = \frac{1}{2}Ma^2$.
- Entonces $T = \frac{1}{2}M(R-a)^2\dot{\phi}^2 + \frac{1}{2}I_{33}\frac{(R-a)^2}{a^2}\dot{\phi}^2 = \frac{3}{4}M(R-a)^2\dot{\phi}^2$
- La energía potencial del centro de masa es $V = -Mg(R a)\cos\phi$.
- El Lagrangiano es $\mathcal{L} = T V = \frac{3}{4}M(R-a)^2\dot{\phi}^2 + Mg(R-a)\cos\phi$

- Rodar sin deslizar implica $v_{
 m cm}=a\Omega_3\Rightarrow\Omega_3=rac{v_{
 m cm}}{a}=rac{(R-a)\dot\phi}{a}$
- El momento de inercia del cilindro rodante es $I_{33} = \frac{1}{2}Ma^2$.
- Entonces $T = \frac{1}{2}M(R-a)^2\dot{\phi}^2 + \frac{1}{2}I_{33}\frac{(R-a)^2}{a^2}\dot{\phi}^2 = \frac{3}{4}M(R-a)^2\dot{\phi}^2$
- La energía potencial del centro de masa es $V = -Mg(R a)\cos\phi$.
- El Lagrangiano es $\mathcal{L} = T V = \frac{3}{4}M(R a)^2\dot{\phi}^2 + Mg(R a)\cos\phi$
- La ecuación de movimiento queda $\frac{3}{2}\ddot{\phi} + \frac{g}{(R-a)} \operatorname{sen} \phi = 0$.

- Rodar sin deslizar implica $v_{\rm cm}=a\Omega_3\Rightarrow\Omega_3=rac{v_{\rm cm}}{a}=rac{(R-a)\dot{\phi}}{a}$
- El momento de inercia del cilindro rodante es $I_{33} = \frac{1}{2}Ma^2$.
- Entonces $T = \frac{1}{2}M(R-a)^2\dot{\phi}^2 + \frac{1}{2}I_{33}\frac{(R-a)^2}{a^2}\dot{\phi}^2 = \frac{3}{4}M(R-a)^2\dot{\phi}^2$
- La energía potencial del centro de masa es $V = -Mg(R-a)\cos\phi$.
- El Lagrangiano es $\mathcal{L} = T V = \frac{3}{4}M(R a)^2\dot{\phi}^2 + Mg(R a)\cos\phi$
- La ecuación de movimiento queda $\frac{3}{2}\ddot{\phi} + \frac{g}{(R-a)} \sin \phi = 0$.
- Para pequeñas oscilaciones tenemos $\ddot{\phi} + \frac{2g}{3(R-a)}\phi = 0$.

- Rodar sin deslizar implica $v_{\rm cm}=a\Omega_3\Rightarrow\Omega_3=rac{v_{\rm cm}}{a}=rac{(R-a)\dot{\phi}}{a}$
- El momento de inercia del cilindro rodante es $I_{33} = \frac{1}{2}Ma^2$.
- Entonces $T = \frac{1}{2}M(R-a)^2\dot{\phi}^2 + \frac{1}{2}I_{33}\frac{(R-a)^2}{a^2}\dot{\phi}^2 = \frac{3}{4}M(R-a)^2\dot{\phi}^2$
- La energía potencial del centro de masa es $V = -Mg(R-a)\cos\phi$.
- El Lagrangiano es $\mathcal{L} = T V = \frac{3}{4}M(R a)^2\dot{\phi}^2 + Mg(R a)\cos\phi$
- La ecuación de movimiento queda $\frac{3}{2}\ddot{\phi} + \frac{g}{(R-a)} \sin \phi = 0$.
- Para pequeñas oscilaciones tenemos $\ddot{\phi} + \frac{2g}{3(R-a)}\phi = 0$.
- La ecuación de movimiento de un oscilador armónico simple con frecuencia $\omega^2 = \frac{2g}{3(R-a)}$.