Final Exam 2021

Instructors: Brian M. Kurkoski and Lei Liu $\label{eq:June 7} \text{June 7, 2021 } 13\text{:}30\text{--}15\text{:}10$

Name:			
Student Number:			

Exam policy:

- You may not connect to the internet, except to use the LMS.
- $\bullet\,$ You may not communicate with anyone during the exam, except the instructor.
- This is an open-book exam. You may use only
 - Information Theory Lecture Notes by the instructor,
 - Elements of Information Theory by Cover and Thomas,
 - anything written in your own hand.
 - You can also use any material on the LMS on your device. Your device screen should not display pages other than the LMS.
- Not following the above rules could result in failing the course.

In addition:

- Calculators are not allowed and not needed. Numerical answers such as 5^7 and $1 + 2 \log 3$ are acceptable, but simplify as much as reasonably possible.
- You can write on the back of the paper.
- Students should wear a mask during the exam.

Question	Points	Score	
1	25		
2	20		
3	25		
4	30		
Total:	100		

This exam has 9 pages.

- 1. Information theory concepts State the key ideas from information theory. (Do not write too much.)
 - (a) (5 points) Does compressing over blocks of length n and letting $n \to \infty$ make the "performance" of a source code *strictly* better? If so, state why. If not, show why not.
 - (b) (5 points) Your friend has a 16 pixel-by-16 pixel image, in which each pixel is either black or white with probability 0.5, and all pixels are independent. He wants to losslessly compress this to an 8 pixel-by-8 pixel image, again with black and white pixels. If this is possible, find a code or describe the procedure you would use to do so. If this is not possible, state the reason.
 - (c) (5 points) If possible, find a prefix code over an alphabet of size D=3 with codeword lengths (1,1,2,3). If not possible, explain the reason.
 - (d) (5 points) Let X and Y be independent and discrete. Find H(2X, -2Y) in terms of the entropies H(X), H(Y) and H(X, Y).
 - (e) (5 points) Consider a channel with capacity C = 0.5. Suppose a code with length $n = 10^6$ is used for this channel. What can you say about the number of message bits that can be reliably transmitted over this channel?

 $Continue\ your\ answer\ here.$

2. Source coding-channel coding An information source consists of n_1 bits V_1, \ldots, V_{n_1} , i.i.d. distributed as $p_V(v) = [1 - p, p]$, $v \in \{0, 1\}$. A source encoder of rate $R_1 < 1$ compresses to a **binary** index $\mathbf{w} = (w_1, w_2, \ldots, w_{n_2})$.

(a) (5 points) How many bits n_2 are in the sequence **w**? In terms of n_1 and p, what is a lower bound on n_2 ?

Now, to reliably transmit this index \mathbf{w} over a binary symmetric channel with error probability α , a channel encoder of rate $R_2 < 1$ encodes \mathbf{w} to a codeword \mathbf{x} .

(b) (5 points) How many bits n_3 are in the sequence \mathbf{x} ? In terms of n_2 and α , what is a lower bound on n_3 ?

At the destination, a decoder estimates $\hat{\mathbf{w}}$, which is decompressed to $\hat{\mathbf{v}}$.

(c) (10 points) Let the total rate be $R = R_1/R_2$. In terms of p and α , find a condition on R such that the probability of error $\Pr[V \neq \widehat{V}]$ can go to 0 as $n \to \infty$.

 $Continue\ your\ answer\ here.$

3. Multiple access channel (MAC) Consider the following multiple access channel (MAC):

$$Y = X_1 \oplus X_2 \oplus N,$$

where \oplus denotes xor, $X_1, X_2 \in \{0, 1\}$ are two binary inputs, and $N \in \{0, 1\}$ is a binary noise with $p_N(0) = p$.

- (a) (5 points) For fixed $X_1 = 0$, find the maximum achievable rate between X_2 and Y. Find the optimal distribution of X_2 which achieves this rate.
- (b) (10 points) Let R_1 be the achievable rate of X_1 and R_2 be the achievable rate of X_2 . Draw the capacity region (R_1, R_2) and label the rates on it.
- (c) (10 points) Give a scheme to achieve the whole capacity region in (b)?

 $Continue\ your\ answer\ here.$

4. Multiple input and multiple output channel (MIMO) Channel Consider a MIMO channel:

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n},\tag{1}$$

where $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ is a 3×1 noise vector, $\mathbf{x} = [x_1, x_2, x_3]^{\mathrm{T}}$ is a message vector with power constraint $\sum_{i=1}^{3} \mathrm{E}\{x_i^2\} = 1$, and \mathbf{A} is a channel matrix given by

$$\mathbf{A} = \left[\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{array} \right].$$

Assume that A is known at transmitter. The singular value decomposition (SVD) of A is given by

$$\mathbf{A} = \underbrace{\begin{bmatrix} 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}}_{\mathbf{V}^{\mathrm{T}}} \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}}_{\mathbf{V}},$$

where V is an orthogonal matrix.

- (a) (5 points) Find the equivalent parallel AWGN channels for the MIMO channel.
- (b) (10 points) Find the optimal power allocation for the parallel AWGN channels in (a).
- (c) (10 points) Based on the result in (b), find the capacity of the MIMO channel in (1).
- (d) (2 points) Let $\sigma^2 = 6$. Calculate the optimal power allocation in (b) and the capacity in (c).
- (e) (3 points) Let $\sigma^2 = 2$. Calculate the optimal power allocation in (b) and the capacity in (c).

Continue your answer here.