Assignment 1 Due: September 25, 2018

Question1 (1 points)

Consider the following set

$$\mathcal{A} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{N}_1, m < n \right\}$$

Show \mathcal{A} has no minimum or maximum element in spite of having $\sup(\mathcal{A}) = 1$ and $\inf(\mathcal{A}) = 0$.

Question2 (1 points)

Let \mathcal{F} be the collection of sets

$$S_r = \{x \mid r < x \le 1 + r\}, \qquad 0 < r \le \frac{1}{2}$$

Find the union $\bigcup \{S_r \mid S_r \in \mathcal{F}\}\$ and the intersection $\bigcap \{S_r \mid S_r \in \mathcal{F}\}\$.

Question3 (3 points)

Suppose \mathcal{A} is a nonempty proper subset of \mathbb{R} . Determine whether each of the following statements is true. If not, briefly explain why it is false.

- (a) (1 point) The set A is either open or closed.
- (b) (1 point) The interior points and boundary points of A are limit points.
- (c) (1 point) If every element of \mathcal{A} is an isolated point, then \mathcal{A} is closed.

Question4 (5 points)

Let
$$\mathcal{D} = (-\infty, -5] \cup (3, 4) \cup \{7\}.$$

- (a) (1 point) Find the interior of \mathcal{D} , that is, the set of all interior points of \mathcal{D} .
- (b) (1 point) Find the boundary of \mathcal{D} , that is, the set of boundary points of \mathcal{D} , which is often denoted by $\partial \mathcal{D}$. The closure of \mathcal{D} , often denoted by $\overline{\mathcal{D}}$, is the union of \mathcal{D} and $\partial \mathcal{D}$.
- (c) (1 point) Find the exterior of \mathcal{D} .
- (d) (1 point) Find all limit points of \mathcal{D} .
- (e) (1 point) Find all isolated points of \mathcal{D} .

Question5 (0 points)

- (a) (1 point (bonus)) Let \mathcal{A} and \mathcal{B} be two subsets of \mathbb{R} . Find the difference of $\mathcal{A} \mathcal{B}$, where \mathcal{A} is the closed interval between 0 and 1, and \mathcal{B} is the singleton $\{0\}$. The set $\mathcal{A} \mathcal{B}$ is also known as the complement of \mathcal{B} relative to \mathcal{A} .
- (b) A set of real number $\mathcal{S} \subset \mathbb{R}$ is disconnected if there are open sets $\mathcal{U}, \mathcal{V} \subset \mathbb{R}$ such that $\mathcal{U} \cap \mathcal{V}$ are empty, and $\mathcal{S} \cap \mathcal{U}$ and $\mathcal{S} \cap \mathcal{V}$ are nonempty and

$$S = (S \cap U) \cup (S \cap V)$$

A set is connected if it is not disconnected.

- i. (1 point (bonus)) Show the set {0,1} is disconnected.
- ii. (1 point (bonus)) Let $S \subset \mathbb{R}$, show S is connected if and only if it is an interval.
- (c) (1 point (bonus)) Show a point x^* is a limit point of a set S if and only if there is a sequence $\{x_n\}$ of points in S such that $x_n \neq x^*$ for $n \geq 1$, and $x_n \to x^*$ as $n \to \infty$.