Лабораторная работа №5

Оптимизация многомерных функций с помощью

эволюционной стратегии

5.1 Теоретическая часть

Цель работы: оптимизация функций многих переменных модификация методом эволюционной стратегии. Графическое отображение результатов оптимизации.

При выполнении лабораторной работы можно использовать следующие источники из прилагаемого списка литературы [1,3,7,11].

Общие сведения

Эволюционные стратегии (ЭС), также как и предыдущие парадигмы, основаны на эволюции популяции потенциальных решений, но, в отличие от них, здесь используется генетические операторы на уровне фенотипа, а не генотипа, как это делается в ГА. Разница в том, что ГА работают в пространстве генотипа – кодов решений, в то время как ЭС производят поиск в пространстве фенотипа – векторном пространстве вещественных чисел. В ЭС учитываются свойства хромосомы «в целом», в отличие от ГА, где при поиске решений исследуются отдельные гены. В природе один ген может одновременно влиять на несколько свойств организма. С другой стороны одно свойство особи может определяться несколькими генами. Естественная эволюция основана на исследовании совокупности генов, а не отдельного (изолированного) гена.

В эволюционных стратегиях целью является движение особей популяции по направлению к лучшей области ландшафта фитнесс-функции. ЭС изначально разработаны для решения многомерных оптимизационных задач, где пространство поиска — многомерное пространство вещественных чисел. Иногда при решении задачи накладываются некоторые ограничения, например, вида $g_i(x) > 0$.

Ранние эволюционные стратегии (ЭС) основывались на популяции, состоящей из одной особи, и в них использовался только один генетический оператор — мутация. Здесь для представления особи (потенциального решения) была использована идея, не представленная в классическом генетическом алгоритме, которая заключается в следующем.

Здесь особь представляется парой действительных векторов

$$v = (\bar{x}, \bar{\sigma}), \tag{5.1}$$

где \bar{x} - точка в пространстве решений и $\bar{\sigma}$ - вектор стандартных отклонений (вариабельность) от решения. В общем случае особь популяции определяется вектором потенциального решения и вектором «стратегических параметров» эволюции. Обычно это вектор стандартных отклонений (дисперсия), хотя допускаются (и иногда используются) и другие статистики.

Единственным генетическим оператором в классической ЭС [1] является оператор мутации, который выполняется путем сложения координат вектора-родителя со случайными числами, подчиняющимися закону нормального распределения, следующим образом:

$$\overline{\mathbf{x}}^{t+1} = \overline{\mathbf{x}}^t + \mathbf{N}(0, \overline{\mathbf{\sigma}}), \qquad (5.2)$$

где $N(0,\overline{\sigma})$ - вектор независимых случайных чисел, генерируемых согласно распределению Гаусса (например, табличным способом) с нулевым средним значением и стандартным отклонением σ . Как видно из приведенной формулы величина мутации управляется нетрадиционным способом. Иногда эволюционный процесс используется для изменения и самих стратегических параметров σ , в этом случае величина мутации эволюционирует вместе с искомым потенциальным решением. Это соответствует адаптивному ГА с изменяемым шагом мутации.

Интуитивно ясно, что увеличение отклонения подобно увеличению шага поиска на поверхности ландшафта. Высокая вариабельность способствует расширению пространства поиска и эффективна при нахождении

потенциальных зон (суб)оптимальных решений и соответствует высоким значениям коэффициента мутации. В тоже время малые значения вариабельности позволяют сфокусироваться на поиске решения в перспективной области. В данном случае стратегические параметры стохастически определяют величину шага поиска: большая вариабельность ведет к большим шагам. Отметим, что поскольку отклонения генерируются стохастически (по нормальному закону), то большая вариабельность может давать маленький шаг и наоборот. Известно, что 68,26% случайных чисел при нормальном распределении попадают в интервал, определяемый стандартным отклонением σ ; 95% чисел попадают в интервал 1,96 σ и т.д.

5.1. Двукратная эволюционная (1+1)- стратегия

Здесь потомок принимается в качестве нового члена популяции (он заменяет своего родителя), если значение фитнесс функции (ЦФ) на нем лучше, чем у его родителя и выполняются все ограничения. Иначе, (если значение фитнесс-функции на нем хуже, чем у родителей), потомок уничтожается и популяция остается неизменной.

Рассмотрим выполнение оператора мутации на конкретном примере следующей функции [2]

$$f(x_1, x_2) = 21.5 + x_1 \cdot \sin(4\pi x_1) + x_2 \cdot \sin(20\pi x_2)$$

$$-3.0 \le x_1 \le 12.1 \qquad \overline{x} = (x_1, x_2)$$

$$4.1 \le x_2 \le 5.8 \qquad \overline{\sigma} = (\sigma_1, \sigma_2),$$
(5.3)

в предположении поиска максимума.

Для определенности предположим, что в t-поколении текущая особь имеет вид:

$$(\bar{x}^t, \sigma) = ((5.3; 4.9), (1.0; 1.0))$$
 (5.4)

Тогда потомок определяется следующим образом:

$$x_1^{t+1} = x_1^t + N(0;1.0) = 5.3 + 0.4 = 5.7$$

$$x_2^{t+1} = x_2^t + N(0;1.0) = 4.9 - 0.3 = 4.6$$
nomomor , (5.5)

где числа 0.4 и 0.3 получены случайным образом в соответствии с распределением Гаусса.

Поскольку $f(x^t) = f(5.3;4.9) = 18.383705 < 24.849532 = f(5.7;4.6) = f(x^{t+1})$ (значение ЦФ потомка лучше, чем у родителя), то полученный потомок заменяет родителя.

В целом алгоритм процесса эволюции двукратной (1+1)- эволюционной стратегии можно сформулировать следующим образом.

1. Выбрать множество Р параметров X, необходимых для представления решения данной проблемы, и определить диапазон допустимых изменений каждого параметра:

$$\{X_{1\min}, X_{1\max}\}, \{X_{2\min}, X_{2\max}\}, \dots, \{X_{P\min}, X_{P\max}\},$$

установить номер поколения (итерации) t=0;

задать стандартное отклонение σ_i для каждого параметра, функцию f, для которой необходимо найти оптимум, и максимальное число поколений k.

- 2. Для каждого параметра случайным образом выбрать начальное значение из допустимого диапазона: множество этих значений составляет начальную популяцию (из одной особи) $X = (x_1, x_2, ..., x_P)$.
- 3. Вычислить значение оптимизируемой функции f для родительской особи $F^p=f(X^t)$.
- 4. Создать новую особь-потомка в соответствии с (5.2)

$$\overline{x}^* = \overline{x}^t + N(0, \overline{\sigma}).$$

- 5. Вычислить значение f для особи-потомка $F^{\circ} = f(X^*)$.
- 6. Сравнить значения функций f для родителя и потомка; если значение потомка F° лучше, чем у родительской особи, то заменить родителя на потомка

$$\bar{x}^t = \bar{x}^*$$

иначе оставить в популяции родителя.

- 7. Увеличить номер поколения t=t+1;
- 8. Если не достигнуто максимальное число поколений t < k, то переход на шаг 4, иначе выдать найденное решение X^t .

Несмотря на то, что фактически здесь популяция состоит из одной особи, рассмотренная стратегия называется двукратной ЭС. Причина в том, что здесь фактически происходит конкуренция потомка и родителя. Обычно вектор стандартных отклонений σ остается неизменным в течении всего процесса эволюции.

Поэтому, чтобы оптимизировать скорость сходимости этого процесса, И. Решенберг (основоположник ЭС) предложил правило успеха «1/5».

Смысл его заключается в следующем - правило применяется после каждых k поколений процесса (где k – параметр этого метода):

$$\sigma^{t+1} = \begin{cases} c_d \cdot \sigma^t, ecnu\varphi(k) < 1/5 \\ c_i \cdot \sigma^t, ecnu\varphi(k) > 1/5 \\ \sigma^t, ecnu\varphi(k) = 1/5 \end{cases}, \tag{5.6}$$

где $\varphi(k)$ - отношение числа успешных мутаций к общему числу произведенных мутаций k (число успехов, деленное на k), которое называется коэффициентом успеха для оператора мутации в течении k последних поколений; величина $c_i > 1$, $c_d < 1$ — регулирует увеличение/уменьшение отклонения мутации.

Обычно на практике оптимальные значения полагают равными следующим величинам: c_d =0.82; c_i =1/0.82=1.22. Смысл этого правила в следующем:

- если коэффициент успеха $\varphi(k) > 1/5$, то отклонение σ^{t+1} увеличивается (мы идем более крупными шагами);
- если коэффициент успеха $\varphi(k) < 1/5$, то отклонение σ^{t+1} уменьшается (шаг поиска уменьшается).

Иногда рекомендуется устанавливать коэффициент мутации обратно пропорционально числу переменных в потенциальном решении (особи) и прямо пропорционально расстоянию от точки оптимального решения. Конечно, в реальных приложениях точное расположение оптимума неизвестно. Однако иногда может быть известна априорная информация об оптимуме (например, порядок величины). Даже ограниченная информация может быть полезна в процессе поиска в ЭС.

Многократная эволюционная стратегия

По сравнению с двукратной многократная эволюция отличается не только размером популяции (N > 2), но и имеет некоторые дополнительные отличия:

- все особи в поколении имеют одинаковую вероятность выбора для мутации;
- имеется возможность введения оператора рекомбинации (например, однородного ОК в ГА, рассмотренного в разделе 4), где два случайно выбранных родителя производят потомка по следующей схеме:

$$(\bar{x}^{1}, \bar{\sigma}^{1}) = ((x_{1}^{1}, ..., x_{n}^{1}), (\sigma_{1}^{1}, ..., \sigma_{n}^{1}))$$

$$(\bar{x}^{2}, \bar{\sigma}^{2}) = ((x_{1}^{2}, ..., x_{n}^{2}), (\sigma_{1}^{2}, ..., \sigma_{n}^{2}))^{'}$$

$$(\bar{x}, \bar{\sigma}) = ((x_{1}^{q_{1}}, ..., x_{n}^{q_{n}}), (\sigma_{1}^{q_{1}}, ..., \sigma_{n}^{q_{n}}))$$
(5.7)

где q_i =1 или q_i =2, i=1,...,n (т.е. каждая компонента потомка копируется из первого или второго родителя).

Имеется еще одно сходство между двукратными и многократными эволюционными стратегиями. При обоих видах ЭС производится только один потомок. В двукратных стратегиях потомок соревнуется со своим родителем. В многократной стратегии самая слабая особь уничтожается.

В современной литературе используются следующие обозначения:

(1+1)-ЭС – двукратная стратегия (1 родитель производит 1 потомка);

 $(\mu+1)$ -ЭС — многократная стратегия (μ родителей производят 1 потомка);

 $(\mu + \lambda)$ -ЭС, где μ -родителей производят λ -потомков и отбор μ лучших представителей производится среди объединенного множества $((\mu + \lambda)$ особей) родителей и потомков;

 (μ,λ) -ЭС, где μ особей родителей порождает λ - μ и процесс выбора лучших производится только на множестве потомков.

Следует подчеркнуть, что в обоих последних видах ЭС обычно число потомков существенно больше числа родителей $\lambda > \mu$ (иногда полагают $\lambda / \mu = 7$).

Укрупненный алгоритм решения задачи с помощью ЭС можно представить следующим образом.

Установка счетчика поколений t=0;

Инициализация параметров;

Инициализация популяции С(0) из μ особей;

for каждой особи $x_i(t) \in C(t)$ do

оценка значения фитнесс-функции $f(x_i(t))$;

end

while условие останова не выполнено do

for
$$i=1,...,\lambda$$
 do

случайный выбор $\rho \ge 2$ родительских особей;

построение особи-потомка путем кроссинговера на генотипе и параметрах родительских особей;

мутация генотипа и параметров особи-потомка;

оценка значения фитнесс-функции потомка;

end

Отбор следующего поколения популяции C(t+1);

end

Здесь на этапе инициализации генерируются особи начальной популяции со значениями в пределах ограничений и задаются начальные значения параметров. Для оценки качества особи используется абсолютное значение фитнесс-функции. Далее выполняются генетические операторы отбора, кроссинговера и мутации, наиболее распространенные варианты которых представлены ниже. В качестве критерия останова может быть использован любой из рассмотренных ранее.

Тестовые примеры

Для данного вида задачи существует большое число тестовых примеров – Benchmark-ов. С некоторыми из них можно познакомиться, например, в приложении 1. Для данных тестов произведено большое число исследований на скорость алгоритма, количество эпох для достижения результата и пр. С результатами этих исследований можно ознакомиться в научной литературе, доступной в Internet.

Многочисленные исследования доказывают, что ЭС не менее эффективно, а часто гораздо лучше справляются с задачами оптимизации в многомерных пространствах, при этом более просты в реализации из-за отсутствия процедур кодирования и декодирования хромосом.

5.2 Практическая часть

Порядок выполнения лабораторной работы

1. Выбрать свой вариант задания согласно таблице приложения 1.

- 1. Создать программу, использующую ЭС для нахождения оптимума функции согласно таблице вариантов, приведенной в приложении А. Для всех Benchmark-ов оптимумом является минимум. Программу выполнить на встроенном языке пакета Matlab (или любом, доступным вам, языке программирования).
- 2. Для n=2 вывести на экран график данной функции с указанием найденного экстремума, точек популяции. Для вывода графиков использовать стандартные возможности пакета Matlab. Предусмотреть возможность пошагового просмотра процесса поиска решения.
- 3. Исследовать зависимость времени поиска, числа поколений (генераций), точности нахождения решения от основных параметров генетического алгоритма:
 - число особей в популяции
 - вероятность мутации.

Критерий остановки вычислений — повторение лучшего результата заданное количество раз или достижение популяцией определенного возраста (например, 100 эпох).

4. Повторить процесс поиска решения для n=3, сравнить результаты, скорость работы программы.

Содержание отчета.

- 1. Титульный лист установленной формы.
- 2. Условие задания с вариантом.
- 3. Распечатанный листинг программы.
- 4. Распечатка результатов выполнения программы (графиков).
- 5. Диаграммы исследованных зависимостей.

Контрольные вопросы

1. Как представляется потенциальное решение в ЭС?

- 2. Какой генетический оператор применяется в ЭС?
- 3. Как выполняется мутация в ЭС?
- 4. Опишите двукратную ЭС.
- 5. Сформулируйте правило успеха в ЭС.
- 6. Что такое двукратная ЭС?
- 7. Что такое многократная ЭС?
- 8. Приведите основные параметры ЭС.
- 9. Что такое самоадаптация в ЭС?
- 10. Какие параметры, кроме отклонений, можно использовать в ЭС?
- 11. Как можно использовать углы вращения в ЭС?
- 12. Приведите основные стратегии самоадаптации.
- 13. Приведите основные типы операторов отбора в ЭС.
- 14. Что такое локальный и глобальный оператор кроссинговера?
- 15. Какие операторы рекомбинации могут быть использованы в ЭС?
- 16.Сформулируйте общий алгоритм решения задачи с использованием ЭС.
- 17. Как выполняется оператор мутации в ЭС?
- 18. Что такое направленная мутация?
- 19. Что общего между ГА и ЭС?
- 20. Каковы различия между ГА и ЭС?

Приложение 1.

Индивидуальные задания на лабораторную работу №<mark>5.</mark>

No॒	Название	Оптимум	Вид функции	График функции
BB.				
1	De Jong's function 1	global minimum $f(x)=0; x(i)=0,$ I=1:n.	$f_1(x) = \sum_{i=1}^{n} x_i^2 -5.12 \le x_i \le 5.12$ $f_1(x) = \text{sum}(x(i)^2),$ $i=1:n;$	DE JONGs function 1 × 10 ⁵ 4 9 9 9 10 variable 2 -500 -500 variable 1
2	Axis parallel hyper-ellipsoid function	global minimum $f(x)=0$; $x(i)=0$, $i=1:n$.	$f_{la}(x) = \sum_{i=1}^{n} i \cdot x_i^2 -5.12 \le x_i \le 5.12$ $fla(x) = sum(i \cdot x(i)^2),$ $i=1:n;$	Axis parallal hyper-elipsoxi is 80 960 960 960 970 970 970 970 97

3	Rotated hyper-	global minimum	* (i) ²	Rotated hyper-elipsoid 16
	ellipsoid	f(x)=0; x(i)=0,	$f_{\text{lb}}(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{i} x_j \right)^2 - 65.536 \le x_i \le 65.536$	
	function	i=1:n	,	15000
			$f1b(x) = sum(sum(x(j)^2),$	
			j=1:i), i=1:n;	3 1000D -
				10000 - 100000
				8
				50
				50
				variable 2 -50 -50 yearsis 1
				variable 2 -30 -50 vandale 1
4	Moved axis	global	$f(x) = \sum_{i=1}^{N} f(x_i)^2 = -5.10 \ (x_i = 1.5.10)$	Moved axes parallel hyper-altpsoxid 1c
	parallel hyper-	minimum	$f_{ik}(x) = \sum_{i=1}^{n} 5i \cdot x_i^2$ $-5.12 \le x_i \le 5.12$	× 10 ⁴
	ellipsoid		$flc(x)=sum(5*i\cdot x(i)^2),$	2
	function	f(x)=0; x(i)=	i=1:n;	15-
		5*i, i=1:n		1
		J 1, 1–1.11		1.5. approx 1 a
				a ost
				40
				20 50

5	Rosenbrock's	global minimum	$f_2(x) = \sum_{i=1}^{n-1} 100 \cdot (x_{i+1} - x_i^2)^2 + (1 - x_i)^2 - 2.048 \le x_i \le 2.048$	ROSENEROCKs function 2
	valley (De	f(x)=0; x(i)=1,	i=1	
	Jong's function	i=1:n.	$f2(x)=sum(100\cdot(x(i+1)-x(i)^2)^2+(1-x(i))^2),$	4000
	2)			3000 ag 2000 a
6	Rastrigin's	global minimum	x () x (2 (2)	RASTRIONs function 6
	function 6	f(x)=0; x(i)=0,	$f_6(x) = 10 \cdot n + \sum_{i=1}^{n} (x_i^2 - 10 \cdot \cos(2 \cdot \pi \cdot x_i)) - 5.12 \le x_i \le 5.12$	
		i=1:n.	$f6(x)=10 \cdot n + sum(x(i)^2-10 \cdot cos(2 \cdot pi \cdot x(i))),$ i=1:n;	wariable 2 -1 -1 variable 1

7	Schwefel's function 7	global minimum f(x)=n·418.9829;	$f_7(x) = \sum_{i=1}^n -x_i \cdot \sin\left(\sqrt{ x_i }\right) \qquad -500 \le x_i \le 500$	SCHARFBLs function 7
		x(i)=420.9687, i=1:n.	$f7(x)=sum(-x(i)\cdot sin(sqrt(abs(x(i))))),$ $i=1:n;$	1000 1000
8	Griewangk's function 8	global minimum $f(x)=0; x(i)=0,$ $i=1:n$	$f_8(x) = \sum_{i=1}^{n} \frac{x_i^2}{4000} - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1 - 600 \le x_i \le 600$ $f_8(x) = \sup(x(i)^2/4000) - \operatorname{prod}(\cos(x(i)/\operatorname{sqrt}(i))) + 1,$ $i = 1 : n;$	GRIEVANOKS function 8 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.

9	Sum of different	global minimum	$\frac{n}{n}$ $\frac{n}{n}$ $\frac{n}{n}$	Sum of different power function 9
	power function 9	f(x)=0; x(i)=0,	$f_9(x) = \sum_{i=1}^{n} x_i ^{(i+1)} - 1 \le x_i \le 1$	<u> </u>
		i=1:n.	$f9(x)=sum(abs(x(i))^{(i+1)}),$	2
			i=1:n;	verieble 2
10	Ackley's Path	global minimum	$\frac{\mathbb{Z}x^2}{\mathbb{Z}} = \mathbb{Z}\cos(\sigma x_i)$	ACKLEYs PATH function 10
	function 10	f(x)=0; x(i)=0,	$f_{10}(x) = -a \cdot e^{-b \cdot \sqrt{\frac{x}{n}}} - e^{-\frac{x}{n}} + a + e^{1}$ $-1 \le x_i \le 1$	
		i=1:n.	$f10(x) = -a \cdot \exp(-b \cdot \operatorname{sqrt}(1/n \cdot \operatorname{sum}(x(i)^2))) -$	²⁵
			$\exp(1/n\cdot \sup(\cos(c\cdot x(i)))) + a + \exp(1);$	20 - V
			a=20; b=0.2; c=2·pi; i=1:n;	verieble 2 verieble 1

11	Langermann's	global minimum	$m = \left(\frac{\left[x - A(z)\right]^2}{2}\right)$	EANOERMANNs function 11
	function 11	f(x)=-1.4 (for m=5); x(i)=???, i=1:n.	$f_{11}(x) = -\sum_{i=1}^{m} c_{i} \left(e^{-\frac{ x-A(i) ^{2}}{x}} \cdot \cos(\pi \cdot \ \overline{x} - A(i)\ ^{2}) \right) \qquad i = 1: m, 2 \le m \le 10, 0 \le x_{i} \le 10$ $f_{11}(x) = -\sup(c(i) \cdot (\exp(-1/pi \cdot \operatorname{sum}((x-A(i))^{2})) \cdot \cos(pi \cdot \operatorname{sum}((x-A(i))^{2})))),$ $i = 1: m, m = 5; A(i), C(i) <>0, m = 5$	ook Edwardus 10 10 10 10 10 10 10 10 10 10 10 10 10
12	Michalewicz's function 12	global minimum f(x)=-4.687 (n=5); x(i)=???, i=1:n. f(x)=-9.66 (n=10); x(i)=???, i=1:n.	$f_{12}(x) = -\sum_{i=1}^{n} \sin(x_i) \cdot \left(\sin\left(\frac{i \cdot x_i^2}{\pi}\right)\right)^{2 \cdot m} \qquad i = 1: n, m = 10, 0 \le x_i \le \pi$ f12(x)=-sum(sin(x(i))·(sin(i·x(i)^2/pi))^(2·m)), i=1:n, m=10; проверить для n=5,10	variable 2 MCH4. EMCZs function 12 MCH4. EMCZs function 12 variable 2 variable 2 variable 2 variable 1

13	Branins's rcos	global minimum	$f_{Brax}(x_1, x_2) = a \cdot (x_2 - b \cdot x_1^2 + c \cdot x_1 - d)^2 + e \cdot (1 - f) \cdot \cos(x_1) + e \qquad -5 \le x_1 \le 10, \ 0 \le x_2 \le 15$	9RAMNs RCCS function
	function	f(x1,x2)=0.3978 87; (x1,x2)=(- pi,12.275), (pi,2.275), (9.42478,2.475).	$a = 1, b = \frac{5.1}{4 \cdot \pi^2}, c = \frac{5}{\pi}, d = 6, e = 10, f = \frac{1}{8 \cdot \pi}$ $fBran(x1,x2) = a \cdot (x2-b \cdot x1^2 + c \cdot x1-d)^2 + e \cdot (1-f) \cdot cos(x1) + e;$ $a = 1, b = 5.1/(4 \cdot pi^2), c = 5/pi, d = 6, e = 10, f = 1/(8 \cdot pi);$	400 900 900 200 100 Verieble 2 0 5 variable 1
14	Easom's function	global minimum $f(x1,x2)=-1;$ $(x1,x2)=(pi,pi).$	$f_{\text{Baso}}(x_1, x_2) = -\cos(x_1) \cdot \cos(x_2) \cdot e^{-((x_1 - x)^2 + (x_2 - x)^2)} \qquad -100 \le x_i \le 100, \ i = 1:2$ $fEaso(x_1, x_2) = -\cos(x_1) \cdot \cos(x_2) \cdot \exp(-((x_1 - y_1)^2 + (x_2 - y_1)^2));$	eASOMs function O5 Ingo evipugo Verieble 2 verieble 2 verieble 1

15	Goldstein-Price's function	global minimum $f(x1,x2)=3;$ $(x1,x2)=(0,-1).$	$\begin{split} f_{Gold}(x_1,x_2) &= \left(1 + (x_1 + x_2 + 1)^2 \cdot \left(19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2\right)\right) \\ & \cdot \left(30 + (2x_1 - 3x_2)^2 \cdot \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2\right)\right) \\ & - 2 \le x_i \le 2, i = 1:2 \end{split}$ $\begin{aligned} &\text{fGold}(x_1,x_2) &= \left[1 + (x_1 + x_2 + 1)^2 \cdot (19 - 14 \cdot x_1 + 3 \cdot x_1^2 - 14 \cdot x_2 + 6 \cdot x_1 \cdot x_2 + 3 \cdot x_2^2\right)\right] \cdot \left[30 + (2 \cdot x_1 - 3 \cdot x_2)^2 \cdot (18 - 32 \cdot x_1 + 12 \cdot x_1^2 + 48 \cdot x_2 - 36 \cdot x_1 \cdot x_2 + 27 \cdot x_2^2\right)\right] \\ & 36 \cdot x_1 \cdot x_2 + 27 \cdot x_2^2) \end{bmatrix} \end{split}$	OOLDSTEIN-PROS turction x 10 ⁶ 90 o o o o o o o o o o o o o o o o o o o
16	Six-hump camel	global minimum	$f_{SSW}(x_1, x_2) = \left(4 - 2.1x_1^2 + x_1^{4/3}\right) \cdot x_1^2 + x_1x_2 + \left(-4 + 4x_2^2\right) \cdot x_2^2 \qquad -3 \le x_1 \le 3, \ -2 \le x_1 \le 2$	veriable 2 variable 1 Set-hump canalleack function
	back function	f(x1,x2)=- 1.0316; (x1,x2)=(- 0.0898,0.7126), (0.0898,-0.7126).	fSixh(x1,x2)=(4-2.1·x1^2+x1^4/3)·x1^2+x1·x2+(-4+4·x2^2)·x2^2;	20 15 10 10 10 10 10 10 10 10 10 10

Для остальных вариантов берется строчка, соответствующая остатку от деления номера варианта на 16 (для 17-1, 18-2 и т.д.)