Models of Computation Revision Notes

James Brown April 4, 2017

Contents

1	Introduction	1
2	66	1 1 1
3	Finite State Automata	2
4	Bisimulation and Minimisation	2
5	The Halting Problem	2
6	Properties of Code	2
7	Turing Machines	2
8	Church's Thesis	2
9	Complexity and P	2
10	NP	2
11	Lambda-calculus	2

1 Introduction

These are notes I have written in preparation for the upcoming 2017 Models of Computation exam. This year the module was run by Paul Levy (P.B.Levy@cs.bham.ac.uk). This module is about problems and *computers*. We ask ourselves:

- What problems can be solved on a computer?
- What problems can be solved on a computer with finitely many states?
- What problems can be solved on a computer with only finitely many states, but also a stack of unlimited size?
- What problems can be solved on a computer with only finitely many states, but also a tape of unlimited size that it can read and write to?
- What problems can be solved *fast* on a computer?
- What does "fast" mean anyway?
- What does *computer* mean anyway?

2 Language Membership Problems and Regular Expressions

2.1 Language Membership Problems

Suppose we have a set of characters Σ , which we will call the *alphabet*. A word is a finite sequence of characters, and we write Σ^* for the set of all words. We can concatenate words. A language is a set of words and a subset of Σ^* . Given a word, we want to know is it in the language or not? If we take an example alphabet a, b, c, here are some languages:

- All words which contain exactly 3 b's
- All words whose length is prime
- All words that have more b's than a's
- \bullet The words abc, bac and cb
- No words at all
- The empty word

These examples are largely pretty useless, but this problem does have real world applications such as

- Java has rules about what you can call a variable. Is the word read by the compiler a valid variable name?
- A user makes an account and enters a password, is it valid?
- A student has submitted code for an assignment, is it correct?
- Will this code crash when it's run?

In each one of these examples, we are provided with a word and we want to know whether it is an acceptable word. We want to make a computer tell us the answer.

2.2 Regex

Regular Expressions are a useful notation for describing languages.

- 3 Finite State Automata
- 4 Bisimulation and Minimisation
- 5 The Halting Problem
- 6 Properties of Code
- 7 Turing Machines
- 8 Church's Thesis
- 9 Complexity and P
- 10 NP
- 11 Lambda-calculus