Data Sheet: Technical Data

MCX C44X Microcontroller

ARM® Cortex®-M0+ 48MHz 32-bit MCU, 128/256KB Flash, 16/32KB SRAM, USB, LCD

Features

- ARM® Cortex®-M0+ 48MHz with low power
- Up to 256KB Flash, up to 32KB SRAM, 16KB Boot ROM
- USB FS 2.0 device without requiring an external crystal
- Segment LCD supporting up to 24x8 or 28x4 segments
- Embedded ROM with boot loader for flexible program upgrade
- FlexIO to support any standard and customized serial peripheral emulation
- Down to 54uA/MHz in very low power run mode and 1.96uA in deep sleep mode (RAM + RTC retained)
- - 40 °C to + 125 °C (Tj) temperature range

MCXC4x4(R) MCXC4x3(R) MCXC2x4(R) MCXC2x3(R) MCXC1x4(R) MCXC1x3(R)

Core Processor

• ARM® 32-bit Cortex®-M0+ core up to 48 MHz

Memories

- 128/256 KB program flash memory
- 16/32 KB SRAM
- 16 KB ROM with build-in bootloader
- 32-byte backup register

Security

- 80-bit unique identification number per chip
- · Advanced flash security

System and clocks

- · 4-channel asynchronous DMA controller
- COP Software watchdog
- · SWD debug interface and Micro Trace Buffer
- · Bit manipulation engine
- Interrupt controller
- 48 MHz high accuracy internal reference clock
- 8/2 MHz low-power internal reference clock
- 32-40 kHz and 3-32 MHz crystal oscillator
- 1 KHz reference clock active under all low-power modes (except VLLS0)

Communication interfaces for connectivity

• Segment LCD supporting up to 24x8 or 28x4 segments

- USB full-speed 2.0 device controller supporting crystal-less operation
- One UART module supporting ISO7816, operating up to 1.5 Mbit/s
- Two low-power UART modules supporting asynchronous operation in low-power modes
- Two I2C modules and I2C0 supporting up to 1 Mbit/s
- Two 16-bit SPI modules supporting up to 24 Mbit/s
- One FlexIO module supporting emulation of additional UART, SPI, I2C, I2S, PWM and other serial modules, and so on
- · One serial audio interface I2S

Analog

- · One 16-bit 818 ksps ADC module with high accuracy internal voltage reference (Vref) and up to 18 channels
- · High-speed analog comparator containing a 6-bit DAC for programmable reference input
- · One 12-bit DAC
- 1.2 V internal voltage reference

Timers

- One 6-channel Timer/PWM module
- Two 2-channel Timer/PWM modules
- One low-power timer
- Periodic interrupt timer
- · Real time clock

General-purpose input/outputs

• Up to 50 general-purpose input/output

Power management

- Down to 54 uA/MHz in very low power run mode
- Down to 1.96 uA in VLLS3 mode (RAM + RTC retained)
- Six flexible static modes
- · Low-leakage wakeup unit
- Voltage range: 1.71 to 3.6 V
- Flash write voltage range: 1.71 to 3.6 V
 Temperature range: -40 to 125°C(Tj)

Target applications

- Small to medium appliances
- Home security and surveillance
- · Smart lighting
- · Smart power socket
- DC fan

Ordering information

Part number	Marking (Line1/ Line2)	Core Speed (MHz)	Flash (KB)	SRAM (KB)	GPIOs	USB/LCD	Package	Packing
(P)MCXC143VFM(R)	(P)MC143M	48	128	16	28	-/-	32QFN	Tray and Reel
(P)MCXC143VFT	(P)MC143T	48	128	16	40	-/-	48QFN	Tray
(P)MCXC243VFT	(P)MC243T	48	128	16	36	USB/-	48QFN	Tray

Ordering information (continued)

Part number	Marking (Line1/ Line2)	Core Speed (MHz)	Flash (KB)	SRAM (KB)	GPIOs	USB/LCD	Package	Packing
(P)MCXC443VMP	(P)MC443P	48	128	16	50	USB/LCD	64BGA	Tray
(P)MCXC443VLH	(P)MCXC443/VLH	48	128	16	50	USB/LCD	64LQFP	Tray
(P)MCXC144VFM(R)	(P)MC144M	48	256	32	28	-/-	32QFN	Tray and Reel
(P)MCXC244VFM(R)	(P)MC244M	48	256	32	23	USB/-	32QFN	Tray and Reel
(P)MCXC144VFT	(P)MC144T	48	256	32	40	-/-	48QFN	Tray
(P)MCXC244VFT	(P)MC244T	48	256	32	36	USB/-	48QFN	Tray
(P)MCXC444VMP	(P)MC444P	48	256	32	50	USB/LCD	64BGA	Tray
(P)MCXC444VLH	(P)MCXC444/VLH	48	256	32	50	USB/LCD	64LQFP	Tray

The following figure shows the block diagram of this device:

Figure 1. Block diagram

The following figure shows the architecture diagram of this device:

Figure 2. Architecture diagram

Table of Contents

1 Ra	tings6	3.7 Timers	43
1.1	Thermal handling ratings	3.8 Communication interfaces	43
1.2	Moisture handling ratings6	3.8.1 USB electrical specifications	43
1.3	ESD handling ratings6	3.8.2 USB VREG electrical specifications	44
1.4	Voltage and current operating ratings6	3.8.3 SPI switching specifications	44
2 Ge	neral	3.8.4 I2C	49
2.1	AC electrical characteristics7	3.8.5 UART	51
2.2	Nonswitching electrical specifications8	3.8.6 I2S/SAI switching specifications	51
	2.2.1 Voltage and current operating requirements8	3.9 Human-machine interfaces (HMI)	55
	2.2.2 LVD and POR operating requirements8	3.9.1 LCD electrical characteristics	55
	2.2.3 Voltage and current operating behaviors9	4 Dimensions	56
	2.2.4 Power mode transition operating behaviors10	4.1 Obtaining package dimensions	57
	2.2.5 Power consumption operating behaviors11	5 Pinouts and Packaging	57
	2.2.6 EMC radiated emissions operating behaviors 21	5.1 Signal Multiplexing and Pin Assignments	57
	2.2.7 Designing with radiated emissions in mind22	5.1.1 MCX C44x Pin Assignments	57
	2.2.8 Capacitance attributes22	5.1.2 MCX C24x Pin Assignments	60
2.3	Switching specifications22	5.1.3 MCX C14x Pin Assignments	62
	2.3.1 Device clock specifications	5.2 MCX C44X Family Pinouts	64
	2.3.2 General switching specifications23	5.2.1 MCX C44x Pinouts	64
2.4	Thermal specifications	5.2.2 MCX C24x Pinouts	66
	2.4.1 Thermal operating requirements23	5.2.3 MCX C14x Pinouts	68
	2.4.2 Thermal attributes24	6 Ordering parts	70
3 Pe	ripheral operating requirements and behaviors25	6.1 Determining valid orderable parts	70
3.1	Core modules	7 Part identification	70
	3.1.1 SWD electricals25	7.1 Description	70
3.2	System modules	7.2 Format	71
3.3	Clock modules	7.3 Fields	71
	3.3.1 MCG-Lite specifications26	7.4 Example	72
	3.3.2 Oscillator electrical specifications	8 Terminology and guidelines	
3.4	Memories and memory interfaces	8.1 Definitions	72
	3.4.1 Flash electrical specifications	8.2 Examples	72
3.5	Security and integrity modules32	8.3 Typical-value conditions	73
3.6	Analog32	8.4 Relationship between ratings and operating	
	3.6.1 ADC electrical specifications32	requirements	73
	3.6.2 Voltage reference electrical specifications37	8.5 Guidelines for ratings and operating requirements	74
	3.6.3 CMP and 6-bit DAC electrical specifications38	9 Revision History	74
	3.6.4 12-bit DAC electrical characteristics		

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

	Symbol	Description	Min.	Max.	Unit	Notes
Γ	MSL	Moisture sensitivity level		3	_	1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V_{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} - 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

Figure 3. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30 pF loads$
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V_{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
V _{SS} – V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	$0.7 \times V_{DD}$	_	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V ≤ V _{DD} ≤ 3.6 V	_	$0.35 \times V_{DD}$	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
l _{ICIO}	IO pin negative DC injection current — single pin • V _{IN} < V _{SS} -0.3V	-3	_	mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins	-25	_	mA	
	Negative current injection				
V _{ODPU}	Open drain pullup voltage level	V_{DD}	V_{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	

^{1.} All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD} . If V_{IN} greater than V_{IO_MIN} (= V_{SS} -0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as $R = (V_{IO_MIN} - V_{IN})/|I_{ICIO}|$.

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	_

^{2.} Open drain outputs must be pulled to V_{DD} .

Table 6. V_{DD} supply LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	• Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V _{LVW2H}	• Level 2 falling (LVWV = 01)	2.72	2.80	2.88	V	
V _{LVW3H}	• Level 3 falling (LVWV = 10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	• Level 1 falling (LVWV = 00)	1.74	1.80	1.86	V	
V _{LVW2L}	• Level 2 falling (LVWV = 01)	1.84	1.90	1.96	V	
V _{LVW3L}	• Level 3 falling (LVWV = 10)	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV = 11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	_
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	_
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	_

^{1.} Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — normal drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -5 \text{ mA}$	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -1.5 mA	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — high drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -18 \text{ mA}$	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -6 mA	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — normal drive pad	_	0.5	V	1

Table 7. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit	Notes
	 2.7 V ≤ V_{DD} ≤ 3.6 V, I_{OL} = 5 mA 1.71 V ≤ V_{DD} ≤ 2.7 V, I_{OL} = 1.5 mA 	_	0.5	V	
V _{OL}	Output low voltage — high drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 18 \text{ mA}$	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 6 mA	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μА	2
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μΑ	2
I _{IN}	Input leakage current (total all pins) for full temperature range	_	64	μА	2
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μΑ	
R _{PU}	Internal pullup resistors	20	50	kΩ	3

^{1.} PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

Table 8. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN	_	152	166	μs	
	• VLLS1 → RUN	_	152	166	μs	
	• VLLS3 → RUN	_	93	104	μs	

^{2.} Measured at V_{DD} = 3.6 V

^{3.} Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

Table 8. Power mode transition operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• LLS → RUN					
		_	7.5	8	μs	
	VLPS → RUN					
		_	7.5	8	μs	
	• STOP → RUN					
		_	7.5	8	μs	

^{1.} Normal boot (FTFA_FOPT[LPBOOT]=11)

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while (1) test is executed with flash cache enabled.

Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	5.76	6.40	mA	
	• at 105 °C		6.04	6.68		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	3.21	3.85	mA	
	• at 105 °C		3.49	4.13		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	6.45	7.09	mA	
	• at 105 °C	_	6.75	7.39		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					2

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 25 °C	_	3.95	4.59	mA	
	• at 105 °C	_	4.23	4.87		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, V _{DD} = 3.0 V				_	2
	• at 25 °C	_	2.68	3.32	mA	
	• at 105 °C		2.96	3.60		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	8.08	8.72	mA	
	• at 105 °C		8.39	9.03		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V		0.00	4.54		
	• at 25 °C		3.90	4.54	mA	
	• at 105 °C		4.21	4.85		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	2.66	3.30	mA	
	• at 105 °C		2.94	3.58		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	2.03	2.67	mA	
	• at 105 °C		2.31	2.95		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	5.52	6.16	mA	
	• at 105 °C		5.83	6.47		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	5.29	5.93	mA	
	• at 105 °C		5.56	6.20		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V				m A	
					mA	

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 25 °C	_	6.91	7.55		
	• at 105 °C		7.19	7.91		
I _{DD_VLPRC} O	Very Low Power Run Core Mark in Flash in Compute Operation mode: Core@4MHz, Flash @1MHz, V _{DD} = 3.0 V • at 25 °C	_	826	907	μА	
I _{DD_VLPRC} O	Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	405	486	μА	
I _{DD_VLPRC} O	Very-low-power run While(1) loop in SRAM in compute operation mode:—2 MHz LIRC mode, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	154	235	μА	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	108	189	μА	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	39	120	μА	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	249	330	μА	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	337	418	μА	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	416	497	μА	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	494	575	μА	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	166	247	μА	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock					

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	50	131	μΑ	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	208	289	μA	
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.81	1.89	mA	
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V	_	1.22	1.39	mA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V	_	172	182	μΑ	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V	_	69	76	μА	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, $V_{DD} = 3.0 \text{ V}$		36	40	μΑ	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, $V_{DD} = 3.0 \text{ V}$					
		_	1.81	2.06	mA	
I _{DD_PSTOP2}	Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, $V_{DD} = 3.0 \text{ V}$					
		_	1.00	1.25	mA	
I _{DD_STOP}	Stop mode current at 3.0 V • at 25 °C and below	_	161.93	171.82		
	• at 50 °C	_	181.45	191.96		
	• at 85 °C	_	236.29	271.17	μA	
	• at 105 °C	_	390.33	465.58		
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• at 25 °C and below	_	3.31	5.14		
	• at 50 °C	_	10.43	17.68		
	• at 85 °C	_	34.14	61.06	μΑ	
	• at 105 °C	_	104.38	164.44		
I _{DD_VLPS}	Very-low-power stop mode current at 1.8 V • at 25 °C and below	_	3.21	5.22		

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 50 °C	_	10.26	17.62		
	• at 85 °C	_	33.49	60.19	μA	
	• at 105 °C	_	102.92	162.20		
I _{DD_LLS}	Low-leakage stop mode current, all peripheral					
	disable, at 3.0 V • at 25 °C and below	_	2.06	3.33	μA	
	• at 50 °C	_	4.72	6.85		
	• at 70 °C	_	8.13	13.30		
	• at 85 °C	_	13.34	24.70		
		_	41.08	52.43		
	• at 105 °C					
I _{DD_LLS}	Low-leakage stop mode current with RTC					
	current, at 3.0 V • at 25 °C and below	_	2.46	3.73	μA	
	• at 50 °C	_	5.12	7.25		
	• at 70 °C	_	8.53	11.78		
	• at 85 °C	_	13.74	18.91		
		_	41.48	52.83		
	• at 105 °C					
I _{DD_LLS}	Low-leakage stop mode current with RTC					3
	current, at 1.8 V • at 25 °C and below	_	2.35	2.70	μA	
	• at 50 °C	_	4.91	6.75		
	• at 70 °C	_	8.32	11.78		
	• at 85 °C	_	13.44	18.21		
	• at 105 °C	_	40.47	51.85		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V					
	at 25 °C and below	_	1.45	1.85	μA	
	• at 50 °C	_	3.37	4.39		
	• at 70 °C	_	5.76	8.48		
	• at 85 °C	_	9.72	14.30		
	• at 105 °C	_	30.41	37.50		
I	Very-low-leakage stop mode 3 current with RTC					3
I _{DD_VLLS3}	current, at 3.0 V		0.05	0.45	μΑ	٥
	at 25 °C and below	_	2.05	2.45		
	• at 50 °C	_	3.97	4.99		
	• at 70 °C	_	6.36	9.08		
	• at 85 °C	_	10.32	14.73		
	• at 105 °C	_	31.01	38.10		

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current with RTC					3
	current, at 1.8 V • at 25 °C and below	_	1.96	2.36	μA	
	• at 50 °C	_	3.86	5.67		
		_	6.23	8.53		
	• at 70 °C	_	10.21	13.37		
	• at 85 °C	_	30.25	37.02		
	• at 105 °C					
I_{DD_VLLS1}	Very-low-leakage stop mode 1 current all					
	peripheral disabled at 3.0 V • at 25 °C and below	_	0.66	0.80		
	• at 50°C		1.78	3.87		
	• at 70°C	_	2.55	4.26	μA	
	• at 85°C	_	4.83	6.64		
	• at 105 °C	_	16.42	20.49		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC enabled at 3.0 V					3
	at 25 °C and below	_	1.26	1.40		
	• at 50°C	_	2.38	4.47		
	• at 70°C	_	3.15	4.86	μA	
	• at 85°C	_	5.43	7.24		
	• at 105 °C	_	17.02	21.09		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current RTC					3
55_12261	enabled at 1.8 V	_	1.16	1.30		
	at 25 °C and below	_	1.96	2.28		
	• at 50°C	_	2.78	3.37	μA	
	• at 70°C	_	4.85	6.88	Par 1	
	• at 85°C	_	15.78	18.81		
	• at 105 °C		13.70	10.01		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO]					
	= 0) at 3.0 V					
	at 25 °C and below		0.35	0.47	μA	
	• at 50 °C	_	1.25	1.44		
	• at 70 °C	_	2.53	3.24		
	• at 85 °C	_	4.40	5.24		
	• at 105 °C	_	16.09	19.29		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 1) at 3 V					

Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	at 25 °C and below	_	0.18	0.28		
	• at 50 °C	_	1.09	1.31	μA	
	• at 70 °C	_	2.25	2.94		
	• at 85 °C	_	4.25	5.10		
	• at 105 °C	_	15.95	19.10		

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR with optimization level high, optimized for balanced.
- 3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.

Table 10. Low power mode peripheral adders — typical value

Symbol	Description		7	Tempera	ature (°C	C)		Unit
		-40	25	50	70	85	105	
I _{IRC8MHz}	8 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 8 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	93	93	93	93	93	93	μА
I _{IRC2MHz}	2 MHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 2 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b.	29	29	29	29	29	29	μА
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	224	230	238	245	253	μΑ
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. • VLLS1 • VLLS3 • LLS • VLPS • STOP	440 440 490 510	490 490 490 560	540 540 540 560	560 560 560 560	570 570 570 610	580 580 680 680	nA
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO.	30	30	30	85	100	200	

Table 10. Low power mode peripheral adders — typical value (continued)

Symbol	Description		1	Tempera	ature (°	C)		Unit
		-40	25	50	70	85	105	
								nA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μА
l _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock)	114 34	114 34	114 34	114 34	114 34	114 34	μА
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock)	147 42	147 42	147 42	147 42	147 42	147 42	μА
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	330	330	330	330	330	330	μА
I _{LCD}	LCD peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the OSC0_CR[EREFSTEN, EREFSTEN] bits. VIREG disabled, resistor bias network enabled, 1/8 duty cycle, 8 x 36 configuration for driving 288 Segments, 32 Hz frame rate, no LCD glass connected. Includes ERCLK32K (32 kHz external crystal) power consumption.	4.5	4.5	4.5	4.5	4.5	4.5	μА

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 4. Run mode supply current vs. core frequency

General

Figure 5. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	11	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	12	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	10	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	6	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	N	_	2, 3

Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic

application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = IRC48M, f_{SYS} = 48 MHz, f_{BUS} = 24 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.nxp.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode			•
f _{SYS}	System and core clock ¹	_	48	MHz
f _{BUS}	Bus clock ¹	_	24	MHz
f _{FLASH}	Flash clock ¹	_	24	MHz
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ²			
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	1	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{LPTMR}	LPTMR clock ³	_	24	MHz

Table 13. Device clock specifications (continued)

Symbol	Description	Min.	Max.	Unit
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz
000_111_2	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	_	16	MHz
f _{TPM}	TPM asynchronous clock	_	8	MHz
f _{LPUART0/1}	LPUART0/1 asynchronous clock	_	8	MHz

- 1. The maximum value of system clock, core clock, bus clock, and flash clock under normal run mode can be 3% higher than the specified maximum frequency when IRC 48MHz is used as the clock source.
- 2. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.
- 3. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Table 14. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time	_	36	ns	3

- 1. The synchronous and asynchronous timing must be met.
- 2. This is the shortest pulse that is guaranteed to be recognized.
- 3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements

	Symbol	Description	Min.	Max.	Unit	Notes
Ī	T_J	Die junction temperature	-40	125	°C	
	T _A	Ambient temperature		125	°C	1, 2

- Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: T_J = T_A + R_{θJA} × chip power dissipation.
- 2. The device operating specification is not guaranteed beyond 125 °C TJ.

2.4.2 Thermal attributes

Table 16. Thermal attributes

Board type	Symbol	Description	48 QFN	32 QFN	64 LQFP	64 MAPBG A	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	86	101	70	50.3	°C/W	1
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	29	33	51	42.9	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	71	84	58	41.4	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	24	28	45	38.0	°C/W	
_	$R_{\theta JB}$	Thermal resistance, junction to board	12	13	33	39.6	°C/W	2
_	R _{0JC}	Thermal resistance, junction to case	1.7	1.7	20	27.3	°C/W	3
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	2	3	4	0.4	°C/W	4
_	Ψ_{JB}	Thermal characterization parameter, junction to package bottom (natural convection)	-	-	-	12.6	°C/W	5

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
- 5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Figure 6. Serial wire clock input timing

Figure 7. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG-Lite specifications

Table 18. IRC48M specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD}	Supply current	_	400	500	μA	_
f _{IRC}	Output frequency	_	48	_	MHz	_
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature	_	± 0.5	± 1.5	%f _{irc48m}	1
Δf _{irc48m_ol_hv}	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature	_	± 0.5	± 1.0	%f _{irc48m}	1

Table 18. IRC48M specification (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Tj	Period jitter (RMS)	_	35	150	ps	_
T _{su}	Startup time	_	2	3	μs	_

1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard deviation (mean +/-3sigma).

Table 19. IRC8M/2M specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_2M}	Supply current in 2 MHz mode	_	14	17	μA	_
I _{DD_8M}	Supply current in 8 MHz mode	_	30	35	μΑ	_
f _{IRC_2M}	Output frequency	_	2	_	MHz	_
f _{IRC_8M}	Output frequency	_	8	_	MHz	_
f _{IRC_T_2M}	Output frequency range (trimmed)	_	_	±3	%f _{IRC}	_
f _{IRC_T_8M}	Output frequency range (trimmed)	_	_	±3	%f _{IRC}	_
T _{su_2M}	Startup time	_	_	12.5	μs	_
T _{su_8M}	Startup time	_	_	12.5	μs	_

Figure 8. IRC8M Frequency Drift vs Temperature curve

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 20. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μΑ	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
		_	1.2	_	mA	

Table 20. Oscillator DC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 24 MHz	_	1.5	_	mA	
	• 32 MHz					
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μΑ	
	• 4 MHz	_	400	_	μΑ	
	• 8 MHz (RANGE=01)	_	500	_	μΑ	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance	_	_	_		2, 3
C _y	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	ΜΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	ΜΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

V_{DD}=3.3 V, Temperature =25 °C
 See crystal or resonator manufacturer's recommendation

Peripheral operating requirements and behaviors

- C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 21. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)		_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 22. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time		7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversblk128k}	Erase Block high-voltage time for 128 KB		52	452	ms	1

^{1.} Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 23. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					1
t _{rd1blk128k}	128 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
	Erase Flash Block execution time					2
t _{ersblk128k}	128 KB program flash	_	88	600	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	1
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	_	μs	_
t _{ersall}	Erase All Blocks execution time	_	175	1300	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1
t _{ersallu}	Erase All Blocks Unsecure execution time		175	1300	ms	2

^{1.} Assumes 25 MHz flash clock frequency.

^{2.} Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 24. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
Program			-			
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	_
t _{nvmretp1k}	k Data retention after up to 1 K cycles		100	_	years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

Using differential inputs can achieve better system accuracy than using single-end inputs.

^{2.} Cycling endurance represents number of program/erase cycles at −40 °C ≤ T_i ≤ 125 °C.

3.6.1.1 16-bit ADC operating conditions Table 26. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V_{REFH}	ADC reference voltage high		1.13	V_{DDA}	V_{DDA}	V	3
V_{REFL}	ADC reference voltage low		V_{SSA}	V _{SSA}	V _{SSA}	V	3
V_{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 × VREFH	V	_
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	_
	capacitance	8-bit / 10-bit / 12-bit modes	_	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	24	MHz	5
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	5
C _{rate}	ADC conversion	≤ 13-bit modes					6
	rate	No ADC hardware averaging	20.000	_	1200	ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					6
	rate	No ADC hardware averaging	37.037	_	461.467	ksps	
		Continuous conversions enabled, subsequent conversion time					

- 1. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. VREFH can act as VREF_OUT when VREFV1 module is enabled.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 9. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

Table 27. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes		
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3		
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} =		
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	1/f _{ADACK}		
f _{ADACK}	olook oodloo	• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz			
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz			
	Sample Time	See Reference Manual chapter for	See Reference Manual chapter for sample times						
TUE	Total	12-bit modes	_	±4	±6.8	LSB ⁴	5		
	unadjusted error	• <12-bit modes	_	±1.4	±2.1				
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5		
	linearity	• <12-bit modes	_	±0.2	-0.3 to 0.5				
INL	Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5		
		<12-bit modes	_	±0.5					

Table 27. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
					-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		• <12-bit modes	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes		-1 to 0	_	LSB ⁴	
	error	• ≤13-bit modes	_	_	±0.5		
ENOB	Effective	16-bit differential mode				bits	6
	number of bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_		
		10 hit single anded made				bits	
		16-bit single-ended mode	12.2			bits	
		• Avg = 32	11.4	13.9	_		
		• Avg = 4		13.1	_		
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic distortion	16-bit differential mode				dB	7
		• Avg = 32	_	-94	_		
		16-bit single-ended mode				dB	
		• Avg = 32	_	-85	_		
SFDR	Spurious free	16-bit differential mode				dB	7
	dynamic range	• Avg = 32	82	95		-	
					_	dB	
		16-bit single-ended mode	78	90			
		• Avg = 32					
E _{IL}	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

^{1.} All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

Peripheral operating requirements and behaviors

- 2. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Figure 10. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Figure 11. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 Voltage reference electrical specifications

Table 28. VREF full-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage		3.6	V	_
T _A	Temperature	Operating t range of t	emperature he device	°C	_
C _L	Output load capacitance	100		nF	1, 2

- 1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- 2. The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 29 is tested under the condition of setting VREF_TRM[CHOPEN], VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.

Table 29. VREF full-range operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	_	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	_	1.197	V	1
V _{step}	Voltage reference trim step	_	0.5	_	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range: 0 to 70°C)	_	_	50	mV	1
I _{bg}	Bandgap only current	_	_	80	μA	1
I _{lp}	Low-power buffer current	_	_	360	uA	1
I _{hp}	High-power buffer current	_	_	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time	_	_	100	μs	_
T _{chop_osc_st}	Internal bandgap start-up delay with chop oscillator enabled	_	_	35	ms	_
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2	_	mV	1

^{1.} See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

^{2.} Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 30. VREF limited-range operating requirements

Symbo	I Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	_

Table 31. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

3.6.3 CMP and 6-bit DAC electrical specifications

Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μΑ
V _{AIN}	Analog input voltage	V _{SS} - 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μΑ
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

^{2.} Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

^{3.} $1 LSB = V_{reference}/64$

Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.4 12-bit DAC electrical characteristics

3.6.4.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage		3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
C _L	C _L Output load capacitance		100	pF	2
IL	Output load current	1	1	mA	

^{1.} The DAC reference can be selected to be V_{DDA} or V_{REFH} .

^{2.} A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.6.4.2 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	_	250	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	_	900	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	_	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	_	V_{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	_	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	_	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	_	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, V _{DDA} ≥ 2.4 V	60	_	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	_	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	High power (SP _{HP})	1.2	1.7	_		
	Low power (SP _{LP})	0.05	0.12	_		
BW	3dB bandwidth				kHz	
	High power (SP _{HP})	550	_	_		
	Low power (SP _{LP})	40	_	_		

- 1. Settling within ±1 LSB
- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with $V_{DDA} > 2.4 \ V$
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- 6. $V_{DDA} = 3.0 \text{ V}$, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 14. Typical INL error vs. digital code

Figure 15. Offset at half scale vs. temperature

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org .

NOTE

The IRC48M do not meet the USB jitter specifications for certification for Host mode operation.

This device cannot support Host mode operation.

3.8.2 USB VREG electrical specifications Table 35. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	_	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	125	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	1	1.1	10	μA	
I _{DDoff}	Quiescent current — Shutdown mode • VREGIN = 5.0 V and temperature=25 °C	_	650	_	nA	
	Across operating voltage and temperature	_	_	4	μΑ	
I _{LOADrun}	Maximum load current — Run mode	_	_	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	_	_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	v	
	Standby mode	2.1	2.8	3.6	V	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	_	3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1		100	mΩ	
I _{LIM}	Short circuit current	_	290	_	mA	

^{1.} Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.

^{2.} Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

3.8.3 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Table 36. SPI master mode timing on slew rate disabled pads

| Symbol | Description | Min. | Max. |

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x	ns	2
				t _{periph}		
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x	ns	_
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	18	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	15	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

Table 37. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_

^{2.} $t_{periph} = 1/f_{periph}$

Table 37. SPI master mode timing on slew rate enabled pads (continued)

Num.	Symbol	Description	Min.	Max.	Unit	Note
8	t _v	Data valid (after SPSCK edge)	_	52	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- 2. $t_{periph} = 1/f_{periph}$

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 16. SPI master mode timing (CPHA = 0)

^{1.}If configured as output

Figure 17. SPI master mode timing (CPHA = 1)

Table 38. SPI slave mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2.5	_	ns	_
7	t _{HI}	Data hold time (inputs)	3.5	_	ns	_
8	t _a	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	31	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

 ^{2.} t_{periph} = 1/f_{periph}
 3. Time to data active from high-impedance state

^{4.} Hold time to high-impedance state

Table 39. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	t _a	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).
- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Figure 18. SPI slave mode timing (CPHA = 0)

Figure 19. SPI slave mode timing (CPHA = 1)

3.8.4 I²C

3.8.4.1 Inter-Integrated Circuit Interface (I2C) timing Table 40. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Unit	
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.25	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	_	100 ³ , ⁶	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

Peripheral operating requirements and behaviors

- 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V.
- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I^2C bus device can be used in a Standard mode I^2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I^2C bus specification) before the SCL line is released.
- 7. $C_b = total$ capacitance of the one bus line in pF.

To achieve 1MHz I2C clock rates, consider the following recommendations:

- To counter the effects of clock stretching, the I2C baud Rate select bits can be configured for faster than desired baud rate.
- Use high drive pad and DSE bit should be set in PORTx_PCRn register.
- Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the SCL line to avoid clock stretching.
- Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.

		•		
Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	μs
LOW period of the SCL clock	t _{LOW}	0.5	_	μs
HIGH period of the SCL clock	t _{HIGH}	0.26	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	_	μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	_	μs
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	_	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

Table 41. I ²C 1Mbit/s timing

2. $C_b = total$ capacitance of the one bus line in pF.

^{1.} The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins across the full voltage range.

Figure 20. Timing definition for devices on the I²C bus

3.8.5 **UART**

See General switching specifications.

3.8.6 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

3.8.6.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK (as an input) pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15.5	ns

Table 42. I2S/SAI master mode timing

Table 42. I2S/SAI master mode timing (continued)

Num.	Characteristic	Min.	Max.	Unit
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	19	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	26	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 21. I2S/SAI timing — master modes

Table 43. I2S/SAI slave mode timing

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	33	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	_	ns

Table 43. I2S/SAI slave mode timing (continued)

Num.	Characteristic	Min.	Max.	Unit
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid1	_	28	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 22. I2S/SAI timing — slave modes

3.8.6.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 44. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns

Table 44. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK		_	ns
	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 23. I2S/SAI timing — master modes

Table 45. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	87	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	72	ns

^{1.} Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 24. I2S/SAI timing — slave modes

3.9 Human-machine interfaces (HMI)

3.9.1 LCD electrical characteristics

Table 46. LCD electricals

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency					
	• GCR[FFR]=0	23.3	_	73.1	Hz	
	GCR[FFR]=1	46.6	_	146.2	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value	_	100	_	nF	
C _{BYLCD}	LCD bypass capacitance — nominal value	_	100	_	nF	1
C _{Glass}	LCD glass capacitance	_	2000	8000	pF	2
V _{IREG}	V _{IREG}				V	3
	RVTRIM=0000	_	0.91	_		
	• RVTRIM=1000	_	0.92	_		
	• RVTRIM=0100	_	0.93	_		
	• RVTRIM=1100	_	0.94	_		
	• RVTRIM=0010	_	0.96	_		
	• RVTRIM=1010	_	0.97	_		
	• RVTRIM=0110	_	0.98	_		
	• RVTRIM=1110	_	0.99	_		
	• RVTRIM=0001	_	1.01	_		

Table 46. LCD electricals (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• RVTRIM=1001	_	1.02	_		
	• RVTRIM=0101	_	1.03	_		
	• RVTRIM=1101	_	1.05	_		
	• RVTRIM=0011	_	1.06	_		
	• RVTRIM=1011	_	1.07	_		
	• RVTRIM=0111	_	1.08	_		
	• RVTRIM=1111	_	1.09	_		
Δ_{RTRIM}	V _{IREG} TRIM resolution	_	_	3.0	% V _{IREG}	
I _{VIREG}	V _{IREG} current adder — RVEN = 1	_	1	_	μΑ	
I _{RBIAS}	RBIAS current adder					
	• LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF)	_	10	_	μΑ	
	• LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF)	_	1	_	μΑ	
R _{RBIAS}	RBIAS resistor values					
	• LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF)	_	0.28	_	МΩ	
	• LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF)	_	2.98	_	ΜΩ	
VLL1	VLL1 voltage	_	_	V _{IREG}	V	4
VLL2	VLL2 voltage	_	_	2 x V _{IREG}	V	4
VLL3	VLL3 voltage	_	_	3 x V _{IREG}	V	4
VLL1	VLL1 voltage			V _{DDA} / 3	V	5
VLL2	VLL2 voltage			V _{DDA} / 1.5	V	5
VLL3	VLL3 voltage	_		V_{DDA}	V	5

- 1. The actual value used could vary with tolerance.
- 2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.
- 3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} 0.15 V
- 4. VLL1, VLL2 and VLL3 are a function of V_{IREG} only when the regulator is enabled (GCR[RVEN]=1) and the charge pump is enabled (GCR[CPSEL]=1).
- 5. VLL1, VLL2 and VLL3 are a function of V_{DDA} only under either of the following conditions:
 - The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = V_{DDA} through the internal power switch (GCR[VSUPPLY]=0).
 - The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is connected to V_{DDA} externally (GCR[VSUPPLY]=1).

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ASA00615D
48-pin QFN	98ASA00616D
64-pin LQFP	98ASS23234W
64-pin MAPBGA	98ASA00420D

5 Pinouts and Packaging

5.1 Signal Multiplexing and Pin Assignments

5.1.1 MCX C44x Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

VREFH can act as VREF_OUT when VREFV1 module is enabled.

64 MAP BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
A1	1	PTE0	DISABLED	LCD_P48	PTE0/ CLKOUT32K	SPI1_MISO	LPUART1_TX	RTC_CLKOUT	CMP0_OUT	I2C1_SDA	LCD_P48
B1	2	PTE1	DISABLED	LCD_P49	PTE1	SPI1_MOSI	LPUART1_RX		SPI1_MISO	I2C1_SCL	LCD_P49
_	3	VDD	VDD	VDD							
C4	4	VSS	VSS	VSS							

Pinouts and Packaging

64 MAP BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
E1	5	USB0_DP	USB0_DP	USB0_DP							
D1	6	USB0_DM	USB0_DM	USB0_DM							
E2	7	VOUT33	VOUT33	VOUT33							
D2	8	VREGIN	VREGIN	VREGIN							
G1	9	PTE20	ADC0_DP0/ ADC0_SE0	LCD_P59/ ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	LPUARTO_TX		FXI00_D4	LCD_P59
F1	10	PTE21	ADC0_DM0/ ADC0_SE4a	LCD_P60/ ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	LPUARTO_RX		FXIO0_D5	LCD_P60
G2	11	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22		TPM2_CH0	UART2_TX		FXIO0_D6	
F2	12	PTE23	ADC0_DM3/ ADC0_SE7a	ADC0_DM3/ ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX		FXIO0_D7	
F4	13	VDDA	VDDA	VDDA							
G4	14	VREFH	VREFH	VREFH							
G3	15	VREFL	VREFL	VREFL							
F3	16	VSSA	VSSA	VSSA							
H1	17	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_CLKIN0			
H2	18	PTE30	DACO_OUT/ ADCO_SE23/ CMPO_IN4	DACO_OUT/ ADCO_SE23/ CMPO_IN4	PTE30		TPM0_CH3	TPM_CLKIN1	LPUART1_TX	LPTMR0_ ALT1	
НЗ	19	PTE31	DISABLED		PTE31		TPM0_CH4				
H4	20	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
H5	21	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
D3	22	PTA0	SWD_CLK		PTA0		TPM0_CH5				SWD_CLK
D4	23	PTA1	DISABLED		PTA1	LPUARTO_RX	TPM2_CH0				
E5	24	PTA2	DISABLED		PTA2	LPUART0_TX	TPM2_CH1				
D5	25	PTA3	SWD_DIO		PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
G5	26	PTA4	NMI_b		PTA4	I2C1_SDA	TPM0_CH1				NMI_b
F5	27	PTA5	DISABLED		PTA5	USB_CLKIN	TPM0_CH2			I2S0_TX_ BCLK	
H6	28	PTA12	DISABLED		PTA12		TPM1_CH0			12S0_TXD0	
G6	29	PTA13	DISABLED		PTA13		TPM1_CH1			I2S0_TX_FS	
G7	30	VDD	VDD	VDD							
H7	31	VSS	VSS	VSS							
Н8	32	PTA18	EXTAL0	EXTAL0	PTA18		LPUART1_RX	TPM_CLKIN0			
G8	33	PTA19	XTAL0	XTAL0	PTA19		LPUART1_TX	TPM_CLKIN1		LPTMR0_ ALT1	
F8	34	PTA20	RESET_b		PTA20						RESET_b

64 MAP BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
F7	35	PTB0/ LLWU_P5	LCD_P0/ ADC0_SE8	LCD_P0/ ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0				LCD_P0
F6	36	PTB1	LCD_P1/ ADC0_SE9	LCD_P1/ ADC0_SE9	PTB1	I2C0_SDA	TPM1_CH1				LCD_P1
E7	37	PTB2	LCD_P2/ ADC0_SE12	LCD_P2/ ADC0_SE12	PTB2	I2C0_SCL	TPM2_CH0				LCD_P2
E8	38	PTB3	LCD_P3/ ADC0_SE13	LCD_P3/ ADC0_SE13	PTB3	I2CO_SDA	TPM2_CH1				LCD_P3
E6	39	PTB16	LCD_P12	LCD_P12	PTB16	SPI1_MOSI	LPUARTO_RX	TPM_CLKIN0	SPI1_MISO		LCD_P12
D7	40	PTB17	LCD_P13	LCD_P13	PTB17	SPI1_MISO	LPUARTO_TX	TPM_CLKIN1	SPI1_MOSI		LCD_P13
D6	41	PTB18	LCD_P14	LCD_P14	PTB18		TPM2_CH0	I2S0_TX_ BCLK			LCD_P14
C7	42	PTB19	LCD_P15	LCD_P15	PTB19		TPM2_CH1	I2S0_TX_FS			LCD_P15
D8	43	PTC0	LCD_P20/ ADC0_SE14	LCD_P20/ ADC0_SE14	PTC0		EXTRG_IN	audioUSB_ SOF_OUT	CMP0_OUT	I2S0_TXD0	LCD_P20
C6	44	PTC1/ LLWU_P6/ RTC_CLKIN	LCD_P21/ ADC0_SE15	LCD_P21/ ADC0_SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0		12S0_TXD0	LCD_P21
B7	45	PTC2	LCD_P22/ ADC0_SE11	LCD_P22/ ADC0_SE11	PTC2	I2C1_SDA		TPM0_CH1		I2S0_TX_FS	LCD_P22
C8	46	PTC3/ LLWU_P7	LCD_P23	LCD_P23	PTC3/ LLWU_P7	SPI1_SCK	LPUART1_RX	TPM0_CH2	CLKOUT	I2S0_TX_ BCLK	LCD_P23
E3	47	VSS	VSS	VSS							
E4	_	VDD	VDD	VDD							
C5	48	VLL3	VLL3	VLL3							
A6	49	VLL2	VLL2	VLL2/ LCD_P4	PTC20						LCD_P4
B5	50	VLL1	VLL1	VLL1/ LCD_P5	PTC21						LCD_P5
B4	51	VCAP2	VCAP2	VCAP2/ LCD_P6	PTC22						LCD_P6
A5	52	VCAP1	VCAP1	VCAP1/ LCD_P39	PTC23						LCD_P39
B8	53	PTC4/ LLWU_P8	LCD_P24	LCD_P24	PTC4/ LLWU_P8	SPI0_SS	LPUART1_TX	TPM0_CH3	I2S0_MCLK		LCD_P24
A8	54	PTC5/ LLWU_P9	LCD_P25	LCD_P25	PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0		CMP0_OUT	LCD_P25
A7	55	PTC6/ LLWU_P10	LCD_P26/ CMP0_IN0	LCD_P26/ CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN	I2S0_RX_ BCLK	SPI0_MISO	I2S0_MCLK	LCD_P26
В6	56	PTC7	LCD_P27/ CMP0_IN1	LCD_P27/ CMP0_IN1	PTC7	SPI0_MISO	audioUSB_ SOF_OUT	I2S0_RX_FS	SPI0_MOSI		LCD_P27
C3	57	PTD0	LCD_P40	LCD_P40	PTD0	SPI0_SS		TPM0_CH0		FXI00_D0	LCD_P40
A4	58	PTD1	LCD_P41/ ADC0_SE5b	LCD_P41/ ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	LCD_P41

64 MAP BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
C2	59	PTD2	LCD_P42	LCD_P42	PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	LCD_P42
В3	60	PTD3	LCD_P43	LCD_P43	PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	LCD_P43
A3	61	PTD4/ LLWU_P14	LCD_P44	LCD_P44	PTD4/ LLWU_P14	SPI1_SS	UART2_RX	TPM0_CH4		FXI00_D4	LCD_P44
C1	62	PTD5	LCD_P45/ ADC0_SE6b	LCD_P45/ ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	LCD_P45
B2	63	PTD6/ LLWU_P15	LCD_P46/ ADC0_SE7b	LCD_P46/ ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_RX		SPI1_MISO	FXIO0_D6	LCD_P46
A2	64	PTD7	LCD_P47	LCD_P47	PTD7	SPI1_MISO	LPUARTO_TX		SPI1_MOSI	FXIO0_D7	LCD_P47

5.1.2 MCX C24x Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

VREFH can act as VREF_OUT when VREFV1 module is enabled.

NOTE

It is prohibited to set VREFEN in 32 QFN pin package as 1.2 V on-chip voltage is not available in this package.

32 QFN	48 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
_	1	VDD	VDD	VDD							
_	7	PTE20	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	LPUART0_TX		FXI00_D4	
-	8	PTE21	ADC0_DM0/ ADC0_SE4a	ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	LPUARTO_RX		FXIO0_D5	
_	10	VREFH	VREFH	VREFH							
_	11	VREFL	VREFL	VREFL							
-	13	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_CLKIN0			
_	15	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
_	16	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
_	29	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	TPM2_CH0				
_	30	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	TPM2_CH1				
_	31	PTB16	Disabled		PTB16	SPI1_MOSI	LPUART0_RX	TPM_CLKIN0	SPI1_MISO		
_	32	PTB17	Disabled		PTB17	SPI1_MISO	LPUART0_TX	TPM_CLKIN1	SPI1_MOSI		

32 QFN	48 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
-	33	PTC0	ADC0_SE14	ADC0_SE14	PTC0		EXTRG_IN	audioUSB_ SOF_OUT	CMP0_OUT	I2S0_TXD0	
_	41	PTD0	DISABLED		PTD0	SPI0_SS		TPM0_CH0		FXI00_D0	
_	42	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	
_	43	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	
_	44	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	
1	_	PTE0	DISABLED		PTE0/ CLKOUT32K	SPI1_MISO	LPUART1_TX	RTC_CLKOUT	CMP0_OUT	I2C1_SDA	
2	2	VSS	VSS	VSS							
3	3	USB0_DP	USB0_DP	USB0_DP							
4	4	USB0_DM	USB0_DM	USB0_DM							
5	5	VOUT33	VOUT33	VOUT33							
6	6	VREGIN	VREGIN	VREGIN							
7	9	VDDA	VDDA	VDDA							
8	12	VSSA	VSSA	VSSA							
9	14	PTE30	DACO_OUT/ ADCO_SE23/ CMPO_IN4	DACO_OUT/ ADCO_SE23/ CMPO_IN4	PTE30		TPM0_CH3	TPM_CLKIN1	LPUART1_TX	LPTMR0_ ALT1	
10	17	PTA0	SWD_CLK		PTA0		TPM0_CH5				SWD_CLK
11	18	PTA1	DISABLED		PTA1	LPUART0_RX	TPM2_CH0				
12	19	PTA2	DISABLED		PTA2	LPUART0_TX	TPM2_CH1				
13	20	PTA3	SWD_DIO		PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
14	21	PTA4	NMI_b		PTA4	I2C1_SDA	TPM0_CH1				NMI_b
15	22	VDD	VDD	VDD							
16	23	VSS	VSS	VSS							
17	24	PTA18	EXTAL0	EXTAL0	PTA18		LPUART1_RX	TPM_CLKIN0			
18	25	PTA19	XTAL0	XTAL0	PTA19		LPUART1_TX	TPM_CLKIN1		LPTMR0_ ALT1	
19	26	PTA20	RESET_b		PTA20						RESET_b
20	27	PTB0/ LLWU_P5	ADC0_SE8	ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0				
21	28	PTB1	ADC0_SE9	ADC0_SE9	PTB1	I2C0_SDA	TPM1_CH1				
22	34	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0		I2S0_TXD0	
23	35	PTC2	ADC0_SE11	ADC0_SE11	PTC2	I2C1_SDA		TPM0_CH1		I2S0_TX_FS	
24	36	PTC3/ LLWU_P7	DISABLED		PTC3/ LLWU_P7	SPI1_SCK	LPUART1_RX	TPM0_CH2	CLKOUT	I2S0_TX_ BCLK	
25	37	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_SS	LPUART1_TX	TPM0_CH3	I2S0_MCLK		
26	38	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0		CMP0_OUT	

Pinouts and Packaging

32 QFN	48 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
27	39	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN	I2S0_RX_ BCLK	SPI0_MISO	I2S0_MCLK	
28	40	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO	audioUSB_ SOF_OUT	I2S0_RX_FS	SPI0_MOSI		
29	45	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_SS	UART2_RX	TPM0_CH4		FXI00_D4	
30	46	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	
31	47	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_RX		SPI1_MISO	FXIO0_D6	
32	48	PTD7	DISABLED		PTD7	SPI1_MISO	LPUARTO_TX		SPI1_MOSI	FXIO0_D7	

5.1.3 MCX C14x Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTEVREFH can act as VREF_OUT when VREFV1 module is enabled.

32 QFN	48 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
_	1	VDD	VDD	VDD							
_	2	VSS	VSS	VSS							
-	7	PTE20	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	LPUART0_TX		FXI00_D4	
ı	8	PTE21	ADC0_DM0/ ADC0_SE4a	ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	LPUARTO_RX		FXIO0_D5	
_	10	VREFH	VREFH	VREFH							
_	11	VREFL	VREFL	VREFL							
1	13	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_CLKIN0			
_	15	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
_	16	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
_	29	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	TPM2_CH0				
_	30	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	TPM2_CH1				
_	31	PTB16	DISABLED		PTB16	SPI1_MOSI	LPUARTO_RX	TPM_CLKIN0	SPI1_MISO		
_	32	PTB17	DISABLED		PTB17	SPI1_MISO	LPUART0_TX	TPM_CLKIN1	SPI1_MOSI		
-	33	PTC0	ADC0_SE14	ADC0_SE14	PTC0		EXTRG_IN	audioUSB_ SOF_OUT	CMP0_OUT	I2S0_TXD0	
_	41	PTD0	DISABLED		PTD0	SPI0_PCS0		TPM0_CH0		FXI00_D0	
_	42	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	

32 QFN	48 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
_	43	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	
_	44	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	
_	_	Reserved	Reserved	Reserved							
_	-	Reserved	Reserved	Reserved							
_	_	Reserved	Reserved	Reserved							
_	_	Reserved	Reserved	Reserved							
1	-	PTE0	DISABLED		PTE0/ CLKOUT32K	SPI1_MISO	LPUART1_TX	RTC_CLKOUT	CMP0_OUT	I2C1_SDA	
2	-	PTE1	DISABLED		PTE1	SPI1_MOSI	LPUART1_RX		SPI1_MISO	I2C1_SCL	
3	3	PTE16	ADC0_DP1/ ADC0_SE1	ADC0_DP1/ ADC0_SE1	PTE16	SPI0_PCS0	UART2_TX	TPM_CLKIN0		FXI00_D0	
4	4	PTE17	ADC0_DM1/ ADC0_SE5a	ADC0_DM1/ ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	TPM_CLKIN1	LPTMR0_ ALT3	FXI00_D1	
5	5	PTE18	ADC0_DP2/ ADC0_SE2	ADC0_DP2/ ADC0_SE2	PTE18	SPI0_MOSI		I2CO_SDA	SPI0_MISO	FXI00_D2	
6	6	PTE19	ADC0_DM2/ ADC0_SE6a	ADC0_DM2/ ADC0_SE6a	PTE19	SPI0_MISO		I2C0_SCL	SPI0_MOSI	FXI00_D3	
7	9	VDDA	VDDA	VDDA							
8	12	VSSA	VSSA	VSSA							
9	14	PTE30	DAC0_OUT/ ADC0_SE23/ CMP0_IN4	DACO_OUT/ ADCO_SE23/ CMPO_IN4	PTE30		TPM0_CH3	TPM_CLKIN1	LPUART1_TX	LPTMR0_ ALT1	
10	17	PTA0	SWD_CLK		PTA0		TPM0_CH5				SWD_CLK
11	18	PTA1	DISABLED		PTA1	LPUART0_RX	TPM2_CH0				
12	19	PTA2	DISABLED		PTA2	LPUART0_TX	TPM2_CH1				
13	20	PTA3	SWD_DIO		PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
14	21	PTA4	NMI_b		PTA4	I2C1_SDA	TPM0_CH1				NMI_b
15	22	VDD	VDD	VDD							
16	23	VSS	VSS	VSS							
17	24	PTA18	EXTAL0	EXTAL0	PTA18		LPUART1_RX	TPM_CLKIN0			
18	25	PTA19	XTAL0	XTAL0	PTA19		LPUART1_TX	TPM_CLKIN1		LPTMR0_ ALT1	
19	26	PTA20	RESET_b		PTA20						RESET_b
20	27	PTB0/ LLWU_P5	ADC0_SE8	ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0				
21	28	PTB1	ADC0_SE9	ADC0_SE9	PTB1	I2C0_SDA	TPM1_CH1				
22	34	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0		I2S0_TXD0	
23	35	PTC2	ADC0_SE11	ADC0_SE11	PTC2	I2C1_SDA		TPM0_CH1		12S0_TX_FS	
24	36	PTC3/ LLWU_P7	DISABLED		PTC3/ LLWU_P7	SPI1_SCK	LPUART1_RX	TPM0_CH2	CLKOUT	I2S0_TX_ BCLK	

Pinouts and Packaging

32 QFN	48 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
25	37	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	LPUART1_TX	TPM0_CH3	I2S0_MCLK		
26	38	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0		CMP0_OUT	
27	39	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN	I2S0_RX_ BCLK	SPI0_MISO	I2S0_MCLK	
28	40	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO	audioUSB_ SOF_OUT	I2S0_RX_FS	SPI0_MOSI		
29	45	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4		FXI00_D4	
30	46	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	
31	47	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_RX		SPI1_MISO	FXIO0_D6	
32	48	PTD7	DISABLED		PTD7	SPI1_MISO	LPUART0_TX		SPI1_MOSI	FXIO0_D7	

5.2 MCX C44X Family Pinouts

5.2.1 MCX C44x Pinouts

Figure below shows the 64 LQFP pinouts

Figure 25. 64 LQFP Pinout diagram

Figure below shows the 64 MAPBGA pinouts

Figure 26. 64 MAPBGA Pinout diagram

5.2.2 MCX C24x Pinouts

Figure below shows the 32 QFN pinouts:

Figure 27. 32 QFN Pinout diagram

Figure below shows the 48 QFN pinouts:

Figure 28. 48 QFN Pinout diagram

5.2.3 MCX C14x Pinouts

Figure below shows the 32 QFN pinouts

Figure 29. 32 QFN Pinout diagram

Figure below shows the 48 QFN pinouts

Figure 30. 48 QFN Pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the Web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers:

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

B PS F C FS T PG SR PT

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Table 47. Part number fields descriptions

Field	Description	Values
В	Brand	• MCX
PS	Product series name	• C
F	Family	 0 = Entry 1 = Baseline 2 = Baseline Enhance 3 = Reserved 4 = HMI
С	Core feature	• 4 = 48MHz
FS	Flash size	 1 = 32 KB 2 = 64 KB 3 = 128 KB 4 = 256 KB
Т	Temperature range (°C)	• V = -40 to 125
PG	Package	 FG = 16QFN: 3x3x0.65 mm FK = 24QFN: 4x4x0.65 mm FM = 32QFN: 5x5x0.9 mm FT = 48QFN: 7x7x0.9 mm LH = 64LQFP: 10x10x1.6mm MP = 64MAPBGA: 5x5x1.23mm
SR	Silicon revision	A = Initial Mask setB = 1st Major spin
PT	Packaging type	R = Tape and reelT = Tray

7.4 Example

This is an example part number:

MCXC444VLH

8 Terminology and guidelines

8.1 Definitions

Key terms are defined in the following table:

Term	Definition		
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:		
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 		
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.		
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip		
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions		
Typical value	A specified value for a technical characteristic that:		
 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the conditions or other specified conditions 			
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.		

8.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3 IRM	1.2	V

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V_{DD}	1.0 V core supply voltage	0.9	1.1	V

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10 tank	70	130	μΑ

8.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V_{DD}	3.3 V supply voltage	3.3	V

8.4 Relationship between ratings and operating requirements

8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9 Revision History

The following table provides a revision history for this document.

Table 48. Revision History

Rev. No.	Date	Substantial Changes
2	07/2024	Initial release

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- 2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

AEC unqualified products — This product has not been qualified to the appropriate Automotive Electronics Council (AEC) standard Q100 or Q101 and should not be used in automotive applications, including but not limited to applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

ESD protection devices — These products are only intended for protection against ElectroStatic Discharge (ESD) pulses and are not intended for any other usage including, without limitation, voltage regulation applications. NXP Semiconductors accepts no liability for use in such applications and therefore such use is at the customer's own risk.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile— are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade

12C-bus — logo is a trademark of NXP B.V.

MCX — is a trademark of NXP B.V.

secrets. All rights reserved.

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2024.

All rights reserved.

For more information, please visit: http://www.nxp.com