Variable transformations

Prof. Maria Tackett

ss: middle, center
lick here for PDF of slides
opics
• Log transformation on the response
• Log transformation on the predictor
espiratory Rate vs. Age
• A high respiratory rate can potentially indicate a respiratory infection in children. In order to determin what indicates a "high" rate, we first want to understand the relationship between a child's age an their respiratory rate.
\bullet The data contain the respiratory rate for 618 children ages 15 days to 3 years.
• Variables:
 Age: age in months Rate: respiratory rate (breaths per minute)

Rate vs. Age

Rate vs. Age

 $_{
m term}$

 ${\it estimate}$

 $\operatorname{std.error}$

statistic

p.value

conf.low

 ${\rm conf.high}$

(Intercept)

47.052

0.504

93.317

0

46.062

48.042

Age

-0.696

0.029

-23.684

0

-0.753

-0.638

class: middle, center

Log transformation on the response

Need to transform Y

- $\bullet\,$ Typically, a "fan-shaped" residual plot indicates the need for a transformation of the response variable y
 - .vocab[log(Y)] is the most straightforward to interpret

• When building a model:

- Choose a transformation and build the model on the transformed data
- Reassess the residual plots
- If the residuals plots did not sufficiently improve, try a new transformation!

Log transformation on Y

• If we apply a log transformation to the response variable, we want to estimate the parameters for the statistical model .alert[

$$\log(Y_i) = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \sim N(0, \sigma_{\epsilon}^2)$$

• The regression equation is

$$\widehat{\log(Y)} = \hat{\beta}_0 + \hat{\beta}_1 X$$

Log transformation on Y

• We want to interpret the model in terms of Y not $\log(Y)$, so we write all interpretations in terms of

```
.alert<br/>[\hat{Y}=\exp\{\hat{\beta}_0+\hat{\beta}_1X\}=\exp\{\hat{\beta}_0\}\exp\{\hat{\beta}_1X\}]
```

Mean and logs

Suppose we have a set of values

```
x <- c(3, 5, 6, 8, 10, 14, 19)
-
.pull-left[ Let's calculate log(x)
.small[
log_x <- log(x)
mean(log_x)

## [1] 2.066476

]]
-
.pull-right[ Let's calculate log(x̄)
.small[
xbar <- mean(x)
log(xbar)

## [1] 2.228477
]] —</pre>
```

Median and logs

```
x \leftarrow c(3, 5, 6, 8, 10, 14, 19)
.pull-left Let's calculate Median(log(x))
.small[
log_x \leftarrow log(x)
median(log_x)
## [1] 2.079442
] ] –
.pull-right
[ Let's calculate \log(\text{Median}(x))
.small[
median_x <- median(x)</pre>
log(median_x)
## [1] 2.079442
]]
Mean, Median, and log
                                                  \overline{\log(x)} \neq \log(\bar{x})
mean(log_x) == log(xbar)
## [1] FALSE
                                        \operatorname{Median}(\log(x)) = \log(\operatorname{Median}(x))
median(log_x) == log(median_x)
## [1] TRUE
```

Mean and median of log(Y)

- Recall that $y = \beta_0 + \beta_1 X_i$ is the **mean** value of the response at the given value of the predictor x_i . This doesn't hold when we log-transform the response variable.
- Mathematically, the mean of the logged values is ${f not}$ necessarily equal to the log of the mean value. Therefore at a given value of x

```
.alert[ \exp\{\operatorname{Mean}(\log(y))\} \neq \operatorname{Mean}(y) \Rightarrow \exp\{\beta_0 + \beta_1 x\} \neq \operatorname{Mean}(y) ]
```

Mean and median of log(y)

• However, the median of the logged values is equal to the log of the median value. Therefore,

```
.alert<br/>[\exp\{\operatorname{Median}(\log(y))\} = \operatorname{Median}(y)]
```

• If the distribution of log(y) is symmetric about the regression line, for a given value x_i , we can expect Mean(y) and Median(y) to be approximately equal.

Interpretation with log-transformed y

• Given the previous facts, if $\widehat{\log(Y)} = \hat{\beta}_0 + \hat{\beta}_1 X$, then .alert[

$$Median(\hat{Y}) = \exp{\{\hat{\beta}_0\}} \exp{\{\hat{\beta}_1 X\}}$$

• Intercept: When X=0, the median of Y is expected to be $\exp\{\hat{\beta}_0\}$

• Slope: For every one unit increase in X, the median of Y is expected to multiply by a factor of $\exp\{\hat{\beta}_1\}$

log(Rate) vs. Age

log(Rate) vs. Age

Residuals vs. Predicted

log(Rate) vs. Age

term	estimate	std.error	statistic	p.value	conf.low	conf.high
$\overline{ ext{(Intercept)}}$ Age	3.845 -0.019	0.013 0.001	304.500 -25.839	0	3.82 -0.02	3.870 -0.018

7

.vocab[Intercept]: The median respiratory rate for a new born child is expected to be 46.759 (exp $\{3.845\}$) breaths per minute.

.vocab[Slope]: For each additional month in a child's age, the respiratory rate is expected to multiply by a factor of 0.981 (exp $\{-0.019\}$).

Confidence interval for β_i

• The confidence interval for the coefficient of X describing its relationship with $\log(Y)$ is

$$\hat{\beta}_j \pm t^* SE(\hat{\beta}_j)$$

• The confidence interval for the coefficient of X describing its relationship with Y is

.alert
[$\exp\left\{\hat{\beta}_j \pm t^* SE(\hat{\beta}_j)\right\}$

• Note: t^* is calculated from the t disribution with n-p-1 df

Coefficient of Age

 term

estimate

std.error

statistic

p.value

conf.low

conf.high

(Intercept)

3.845

0.013

304.500

0

3.82

3.870

Age

-0.019

0.001

-25.839

0

-0.02

-0.018

.vocab[We are 95% confident that for each additional month in a child's age, the respiratory rate multiplies by a factor of 0.98 to 0.982 (exp $\{-0.02\}$ to exp $\{-0.018\}$).]

class: middle, center

Log transformation on the predictor

Log Transformation on X

Try a transformation on X if the scatter plot shows some curvature but the variance is constant for all values of X

Model with Transformation on X

Suppose we have the following regression equation:

$$.$$
alert[

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \log(X)$$

- Intercept: When X = 1 (log(X) = 0), Y is expected to be $\hat{\beta}_0$ (i.e. the mean of y is $\hat{\beta}_0$)
- Slope: When X is multiplied by a factor of C, the mean of Y is expected to increase by $\hat{\beta}_1 \log(\mathbf{C})$ units
 - Example: when X is multiplied by a factor of 2, Y is expected to increase by $\hat{\beta}_1 \log(2)$ units

Rate vs. log(Age)

Rate vs. log(Age)

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	50.135	0.632	79.330	0	48.893	51.376
\log age	-5.982	0.263	-22.781	0	-6.498	-5.467

.vocab[Intercept]: The expected (mean) respiratory rate for children who are 1 month old $(\log(1) = 0)$ is 50.135 breaths per minute.

.vocab[Slope]: If a child's age doubles, we expect their respiratory rate to decrease by $4.146~(5.982*\log(2))$ breaths per minute.

class: middle

See Log Transformations in Linear Regression for more details about interpreting regression models with log-transformed variables.

Recap

- Log transformation on the response
- $\bullet~$ Log transformation on the predictor