- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 giugno 2015

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0000
2	00000
3	00000
4	
5	
6	
7	
8	
9	
10	0000

1. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+\sqrt{3})(n+\sqrt{5})^{\alpha}}$$

converge per

A: $\alpha > 0$ B: N.A. C: $\alpha \ge 1$ D: $\alpha > 1$ E: $3 < \alpha < \pi$

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \cos(|x|)$ è

A: monotona crescente B: sempre non negativa C: N.A. D: iniettiva E: surgettiva

3. La funzione $f(x) = \begin{cases} x^2 + x - 1 & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: è derivabile, ma non continua. B: è continua, ma non derivabile. C: è continua e derivabile. D: non è né continua né derivabile. E: N.A.

4. Data $f(x) = \sin(2\pi x)$. Allora f'(1/3) è uguale a

A: N.A. B: $-\frac{\pi}{2}$ C: $\frac{\sqrt{3}}{2}$ D: $-\pi$ E: π

5. L'integrale

$$\int_{-1}^{2} |x^3| \, dx$$

vale

A:
$$\frac{\sqrt{\pi}^4}{2}$$
 B: $\frac{\pi^4 - 1}{4}$ C: N.A. D: 0 E: $\frac{17}{4}$

6. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge \frac{1}{e^2}\}$$

valgono

A: $\{e^{1/e^2}, N.E., +\infty, N.E.\}$ B: $\{\log(2), \log(2), +\infty, N.E.\}$ C: $\{2, 2, +\infty, N.E.\}$ D: N.A. E: $\{e^{1/e^2}, e^{1/e^2}, +\infty, N.E.\}$

7. Il polinomio di Taylor di grado 2 relativo al punto $x_0=0$ della funzione $f(x)=\mathrm{e}^{x^4}$ vale A: $1+x+x^2$ B: $1+\mathrm{e}\,x+\frac{\mathrm{e}^2}{2}x^2$ C: 1+x D: N.A. E: $1+x^2$

8. Modulo e argomento del numero complesso $z = \frac{i}{2} - \frac{\sqrt{3}}{2}$ sono

A: N.A. B: $(1, -\pi/6)$ C: $(1, 5\pi/6)$ D: $(1, 4\pi/3)$ E: $(2, 5\pi/3)$

9. Il limite

$$\lim_{x \to -\infty} \frac{x^{(11!)} e^{2x}}{e^{3x}}$$

vale

 $A: +\infty$ B: 1 C: 0 D: N.E. E: N.A.

10. Una primitiva della funzione $x(t) = t \log(t)$ è

A: N.A. B: $\log(\log(t) - t)$ C: $t^2(\log(t) - 1)$ D: $\sin(t) - t\cos(t) + \sqrt{\pi}$ E: $\frac{1}{2}t^2\log(t) - \frac{t^2}{4}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 giugno 2015

(Cognome)											-			(No	me)			=	ume	ro d	i ma	trice	ola)			

1	0000
2	00000
3	
4	
5	
6	0000
7	0000
8	
9	
10	

1. Modulo e argomento del numero complesso $z = \frac{i}{2} - \frac{\sqrt{3}}{2}$ sono A: $(1, -\pi/6)$ B: $(1, 5\pi/6)$ C: N.A. D: $(2, 5\pi/3)$ E: $(1, 4\pi/3)$

$$\int_{-1}^{2} |x^3| \, dx$$

vale

A: 0 B:
$$\frac{\sqrt{\pi^4}}{2}$$
 C: N.A. D: $\frac{\pi^4 - 1}{4}$ E: $\frac{17}{4}$

3. La funzione $f(x) = \begin{cases} x^2 + x - 1 & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua e derivabile. D: è continua, ma non derivabile. E: N.A.

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge \frac{1}{e^2}\}$$

valgono

A:
$$\{2, 2, +\infty, N.E.\}$$
 B: N.A. C: $\{e^{1/e^2}, e^{1/e^2}, +\infty, N.E.\}$ D: $\{e^{1/e^2}, N.E., +\infty, N.E.\}$ E: $\{\log(2), \log(2), +\infty, N.E.\}$

5. Il polinomio di Taylor di grado 2 relativo al punto $x_0=0$ della funzione $f(x)=\mathrm{e}^{x^4}$ vale A: $1+x^2$ B: $1+\mathrm{e}\,x+\frac{\mathrm{e}^2}{2}x^2$ C: 1+x D: $1+x+x^2$ E: N.A.

6. Data $f(x) = \sin(2\pi x)$. Allora f'(1/3) è uguale a

A:
$$-\frac{\pi}{2}$$
 B: N.A. C: π D: $\frac{\sqrt{3}}{2}$ E: $-\pi$

7. Una primitiva della funzione $x(t) = t \log(t)$ è

$$\text{A: N.A.} \quad \text{B: } \tfrac{1}{2}t^2\log(t) - \tfrac{t^2}{4} \quad \text{C: } t^2(\log(t) - 1) \quad \text{D: } \sin(t) - t\cos(t) + \sqrt{\pi} \quad \text{E: } \log(\log(t) - t) = t\cos(t) + t\cos$$

8. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+\sqrt{3})(n+\sqrt{5})^{\alpha}}$$

converge per

A:
$$\alpha \ge 1$$
 B: $\alpha > 0$ C: N.A. D: $3 < \alpha < \pi$ E: $\alpha > 1$

9. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \cos(|x|)$ è

A: surgettiva B: monotona crescente C: iniettiva D: N.A. E: sempre non negativa

10. Il limite

$$\lim_{x \to -\infty} \frac{x^{(11!)} e^{2x}}{e^{3x}}$$

vale

A: N.E. B: N.A. C: 1 D: 0 E:
$$+\infty$$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 giugno 2015

 (Cognome)														(No	me)			_	ume	i ma	trice	ola)		

1	0000
2	
3	
4	0000
5	0000
6	
7	
8	
9	
10	0000

1. Il limite

$$\lim_{x \to -\infty} \frac{x^{(11!)} e^{2x}}{e^{3x}}$$

vale

A: N.E. B: N.A. C: $+\infty$ D: 0 E: 1

2. Una primitiva della funzione $x(t) = t \log(t)$ è

$$\text{A: } t^2(\log(t)-1) \quad \text{B: } \tfrac{1}{2}t^2\log(t)-\tfrac{t^2}{4} \quad \text{C: N.A.} \quad \text{D: } \log(\log(t)-t) \quad \text{E: } \sin(t)-t\cos(t)+\sqrt{\pi}$$

3. Modulo e argomento del numero complesso $z=\frac{i}{2}-\frac{\sqrt{3}}{2}$ sono

A:
$$(1, 4\pi/3)$$
 B: $(2, 5\pi/3)$ C: $(1, 5\pi/6)$ D: N.A. E: $(1, -\pi/6)$

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge \frac{1}{e^2}\}$$

valgono

A:
$$\{2, 2, +\infty, N.E.\}$$
 B: N.A. C: $\{e^{1/e^2}, N.E., +\infty, N.E.\}$ D: $\{e^{1/e^2}, e^{1/e^2}, +\infty, N.E.\}$ E: $\{\log(2), \log(2), +\infty, N.E.\}$

5. L'integrale

$$\int_{-1}^{2} |x^3| \, dx$$

vale

A:
$$\frac{\sqrt{\pi^4}}{2}$$
 B: $\frac{\pi^4-1}{4}$ C: $\frac{17}{4}$ D: 0 E: N.A.

6. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+\sqrt{3})(n+\sqrt{5})^{\alpha}}$$

converge per

A: N.A. B:
$$3 < \alpha < \pi$$
 C: $\alpha > 1$ D: $\alpha \ge 1$ E: $\alpha > 0$

7. Il polinomio di Taylor di grado 2 relativo al punto $x_0=0$ della funzione $f(x)=\mathrm{e}^{x^4}$ vale A: $1+x+x^2$ B: 1+x C: $1+x^2$ D: $1+\mathrm{e}\,x+\frac{\mathrm{e}^2}{2}x^2$ E: N.A.

8. La funzione $f(x) = \begin{cases} x^2 + x - 1 & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: è derivabile, ma non continua. B: N.A. C: non è né continua né derivabile. D: è continua e derivabile. E: è continua, ma non derivabile.

9. Data $f(x) = \sin(2\pi x)$. Allora f'(1/3) è uguale a

A: N.A. B:
$$-\pi$$
 C: π D: $-\frac{\pi}{2}$ E: $\frac{\sqrt{3}}{2}$

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \cos(|x|)$ è

A: sempre non negativa B: monotona crescente C: surgettiva D: iniettiva E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 giugno 2015

(Cognome)											-			(No	me)			=	ume	ro d	i ma	trice	ola)			

1	0000
2	0000
3	0000
4	00000
5	00000
6	
7	
8	0000
9	0000
10	0000

1. Modulo e argomento del numero complesso $z = \frac{i}{2} - \frac{\sqrt{3}}{2}$ sono A: $(1, 4\pi/3)$ B: $(1, -\pi/6)$ C: $(2, 5\pi/3)$ D: N.A. E: $(1, 5\pi/6)$

2. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 0$ della funzione $f(x) = e^{x^4}$ vale A: $1 + x + x^2$ B: 1 + x C: $1 + x^2$ D: $1 + ex + \frac{e^2}{2}x^2$ E: N.A.

3. Una primitiva della funzione $x(t) = t \log(t)$ è

 $\text{A: N.A.} \quad \text{B: } \sin(t) - t\cos(t) + \sqrt{\pi} \quad \text{C: } t^2(\log(t) - 1) \quad \text{D: } \log(\log(t) - t) \quad \text{E: } \tfrac{1}{2}t^2\log(t) - \tfrac{t^2}{4}\log(t) - t = -t$

4. Il limite

$$\lim_{x \to -\infty} \frac{x^{(11!)} e^{2x}}{e^{3x}}$$

vale

B: N.E. C: 1 D: $+\infty$ E: 0 A: N.A.

5. L'integrale

$$\int_{-1}^{2} |x^3| \, dx$$

vale

A: 0 B: $\frac{\sqrt{\pi}^4}{2}$ C: N.A. D: $\frac{\pi^4-1}{4}$ E: $\frac{17}{4}$

6. Data $f(x) = \sin(2\pi x)$. Allora f'(1/3) è uguale a

A:
$$-\frac{\pi}{2}$$
 B: π C: $-\pi$ D: N.A. E: $\frac{\sqrt{3}}{2}$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge \frac{1}{e^2}\}$$

valgono

A: $\{2, 2, +\infty, N.E.\}$ B: $\{\log(2), \log(2), +\infty, N.E.\}$ C: N.A. D: $\{e^{1/e^2}, e^{1/e^2}, +\infty, N.E.\}$ E: $\{e^{1/e^2}, N.E., +\infty, N.E.\}$

8. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+\sqrt{3})(n+\sqrt{5})^{\alpha}}$$

converge per

A: $\alpha > 1$ B: $3 < \alpha < \pi$ C: N.A. D: $\alpha \ge 1$ E: $\alpha > 0$

9. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \cos(|x|)$ è

A: monotona crescente B: iniettiva C: sempre non negativa D: N.A. E: surgettiva

10. La funzione $f(x) = \begin{cases} x^2 + x - 1 & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: è continua, ma non derivabile. B: è continua e derivabile. C: N.A. D: è derivabile, ma non continua. E: non è né continua né derivabile.

30 giugno 2015

(Cognome)	(Nome)	(Numero di matricola)

$\bullet \circ \circ \circ \circ$

30 giugno 2015

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 giugno 2015

(Cognome)										(Nome)										(Numero di matricola)										

\bigcirc

30 giugno 2015

(Cognome)										(Nome)										(Numero di matricola)										

30 giugno 2015

PARTE B

1. Studiare il grafico della funzione

$$f(x) = e^{-x^2}(x+1)$$

Soluzione: Si vede facilmente che la funzione passa per i punti (0,1) e (-1,0). Inoltre si annulla nel solo punto x=-1 quindi è negativa per x<-1 e positiva per x>-1. Si ha anche che

$$\lim_{x \to +\infty} f(x) = 0$$

ed inoltre $f'(x) = e^{-x^2}(-2x^2 - 2x + 1)$. Dallo studio della derivata prima si evince che la funzione è decrescente per $\left\{x < \frac{-1-\sqrt{3}}{2}\right\} \cup \left\{x > \frac{-1+\sqrt{3}}{2}\right\}$ ed è crescente per $\frac{-1-\sqrt{3}}{2} < x < \frac{-1+\sqrt{3}}{2}$. Si ha quindi un punto di minimo (assoluto) in $x_m = \frac{-1-\sqrt{3}}{2}$ con $m = f(x_m) = -\frac{1}{2}\left(-1+\sqrt{3}\right)e^{-1-\frac{\sqrt{3}}{2}}$; si ha un punto di massimo (assoluto) in $x_M = \frac{-1+\sqrt{3}}{2}$ con $M = f(x_M) = \frac{1}{2}\left(1+\sqrt{3}\right)e^{-1+\frac{\sqrt{3}}{2}}$. Calcolando la derivata seconda si ha

$$f''(x) = e^{-x^2} (4x^3 + 4x^2 - 6x - 2),$$

che si annulla per x=1 e $x=\frac{1}{2}(-2\pm\sqrt{2})$. In tali punti la derivata seconda cambia segno e quindi abbiamo 3 punti di flesso.

2. Trovare l'integrale generale dell'equazione differenziale

$$y''(t) - 2y'(t) - 3y(t) = \cos(t)$$

Se y(0) = 0, esistono valori di y'(0) in modo che la soluzione sia limitata per tutti i t > 0?

Soluzione: L'integrale generale dell'omogenea è dato da

$$y(t) = a e^{3t} + b e^{-t}$$
 $a, b \in \mathbb{R}$

mentre una soluzione particolare della non-omogenea va cercata della forma $\alpha \cos(t) + \beta \sin(t)$. Sostituendo per determinare i valori dei parametri $\alpha \in \beta$ si trova

$$y_p(t) = -\frac{1}{10}\sin t - \frac{1}{5}\cos t$$

Figura 1: Andamento del grafico di f(x).

e quindi l'integrale generale è dato da

$$y(t) = a e^{3t} + b e^{-t} - \frac{1}{10} \sin t - \frac{1}{5} \cos t.$$

Per avere una soluzione limitata per t>0 bisogna imporre che a=0. Imponendo poi la condizione y(0)=0 si trova $a+b-\frac{1}{5}=0$ e quindi $b=\frac{1}{5}$. La soluzione risulta pertanto essere

$$y(t) = \frac{1}{5}e^{-t} - \frac{1}{10}\sin t - \frac{1}{5}\cos t$$

e quindi

$$y'(t)_{|t=0} = (-\frac{1}{5}e^{-t} - \frac{1}{10}\cos t + \frac{1}{5}\sin t)_{|t=0} = -\frac{1}{5} - \frac{1}{10} = -\frac{3}{10}.$$

3. Studiare, al variare del parametro reale $\alpha > -2$, la convergenza dell'integrale generalizzato

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}(1+x)^{\alpha^{2}-2}} dx$$

Soluzione: La funzione integranda è non-negativa per $x \ge 1$ e continua su tutta la semiretta $[1, +\infty[$. Risulta pertanto integrabile su ogni intervallo della forma [1, b], con $b \ge 1$. Essendo non-negativa possiamo usare i criteri per il confronto asintotico. Si ha

$$\frac{1}{x^{\alpha}(1+x)^{\alpha^2-2}}=\mathcal{O}\left(\frac{1}{x^{\alpha}x^{\alpha^2-2}}\right)=\mathcal{O}\left(\frac{1}{x^{\alpha^2+\alpha-2}}\right),$$

e quindi la funzione risulta integrabile in senso generalizzato se e solo se

$$\alpha^2 + \alpha - 2 > 1.$$

Risolvendo la disequazione di secondo grado otteniamo

$$\alpha^2 + \alpha - 2 > 1 \iff \alpha \in]-\infty, \frac{1}{2}(-1 - \sqrt{13})[\cup]\frac{1}{2}(-1 + \sqrt{13}), +\infty[.$$

Dato che ci interessano solo i valori di $\alpha > -2$, osserviamo ora che $3 = \sqrt{9} < \sqrt{13} < \sqrt{16} = 4$, quindi

$$-\frac{5}{2} = \frac{1}{2}(-1-4) < \frac{1}{2}(-1-\sqrt{13}) < \frac{1}{2}(-1-3) = -2,$$

e pertanto una delle radici dell'equazione di secondo grado non appartiene al dominio richiesto. Si conclude quindi che l'integrale converge se

$$\alpha^2 + \alpha - 2 > 1$$
 e $\alpha > -2 \iff \alpha \in]\frac{1}{2}(-1 + \sqrt{13}), +\infty[.$

4. Calcolare

$$\int_0^2 f(x) \, dx$$

dove la funzione $f:\mathbb{R}\to\mathbb{N}$ è definita da

 $f(x) = \{$ numero di volte in cui la funzione $\phi(t) = e^t - e$ cambia segno per t minori di $x \}$

Soluzione: La funzione $\phi(t)$ si annulla per t=1, ed è strettamente crescente dato che $\phi'(t)=\mathrm{e}^t>0$. Pertanto si ha un cambio di segno solo per t=1. Quindi f(x)=0 se x<1, dato che non ci sono cambi di segno di $\phi(t)$ per $t< x\leq 1$. Dato che c'è un unico cambio di segno f(x)=1 per $1< x\leq 2$. Otteniamo quindi

$$\int_0^2 f(x) \, dx = \int_0^1 0 \, dx + \int_1^2 1 \, dx = 1.$$