Portada

Nombre del curso: Curso Básico de Introducción al Big Data

Título de la tarea: Proyecto Final

Nombre del docente: Prof. Ing. Richard D. Jiménez-R.

Nombre de los estudiantes: Orlando Semidei, Néstor Morel, María Luján

Ibarra Benegas

Identificador de grupo: 9

Fecha de entrega: 09 de mayo de 2025

1. Introducción

Este proyecto tiene como objetivo analizar la distribución y cobertura de las vacunas aplicadas a la población, utilizando un conjunto de datos público con aproximadamente 1.000.000 de registros de personas vacunadas. A través de un análisis detallado, se busca responder preguntas claves como: ¿Cuáles son los establecimientos con mayor actividad de vacunación? ¿Qué tipos de vacunas fueron administradas con mayor frecuencia? ¿Cómo ha evolucionado la tasa de vacunación a lo largo del tiempo, tanto a nivel diario como mensual? Además, se analizarán métricas clave como la cantidad de personas vacunadas por dosis, la distribución de vacunas por establecimiento, y el número de personas que han recibido refuerzos. Este análisis proporcionará una visión completa de la situación de la vacunación y permitirá identificar tendencias y áreas de oportunidad para mejorar la cobertura

2. Arquitectura del Sistema y Modelo de Datos

Para el almacenamiento y manejo de los datos, se utilizó **PostgreSQL** como sistema de gestión de base de datos. Se creó una base de datos denominada **bigdatafinal**, dentro de la cual se configuró un esquema llamado **final** para organizar las tablas y procesos relacionados.

Inicialmente, se diseñó la tabla **vacunados_temporal** con los siguientes campos: nombre, apellido, cédula, establecimiento, fecha de aplicación, dosis, descripción de la vacuna y la fecha de última actualización. A continuación, se presenta el código SQL para la creación de esta tabla:

```
create table vacunados_temporal (
nombre TEXT,
apellido TEXT,
establecimiento TEXT,
fecha_aplicacion DATE,
```

```
cedula VARCHAR(25),
dosis INTEGER,
descripcion_vacuna TEXT,
actualizado_al TIMESTAMP
);
```

Luego, se creó una segunda tabla denominada **vacunados_datos_limpios** que tiene una estructura similar, pero con la finalidad de almacenar los datos ya filtrados y transformados para su posterior análisis.

```
CREATE TABLE vacunados_datos_limpios (
    nombre TEXT,
    apellido TEXT,
    establecimiento TEXT,
    fecha_aplicacion DATE,
    cedula VARCHAR(25),
    dosis INTEGER,
    descripcion_vacuna TEXT,
    actualizado_al TIMESTAMP
);
```

A medida que avanzaba el proceso, se identificó una oportunidad para optimizar la estructura de las tablas y mejorar la normalización de los datos. En este sentido, se decidió dividir los datos en tablas adicionales para representar mejor las relaciones, creando las tablas **establecimientos** y **vacunas**, que se vinculan a través de claves foráneas en la tabla principal. Las nuevas tablas fueron diseñadas de la siguiente manera:

```
CREATE table establecimientos (
id SERIAL PRIMARY KEY,
descripcion TEXT UNIQUE
);
```

```
CREATE TABLE vacunas (
  id SERIAL PRIMARY KEY,
  descripcion TEXT UNIQUE
);
```

Finalmente, se diseñó la tabla principal **vacunados_oficial**, que incluye relaciones con las tablas de **establecimientos** y **vacunas**, reemplazando las descripciones de estos campos por sus respectivos **id** (clave foránea). Esto mejora la eficiencia y flexibilidad de la base de datos, optimizando la integridad de los datos.

```
CREATE TABLE vacunados_oficial (
   id SERIAL PRIMARY KEY,
   nombre TEXT,
   apellido TEXT,
   establecimiento_id INTEGER REFERENCES establecimientos(id),
   fecha_aplicacion DATE,
   cedula VARCHAR(25),
   dosis INTEGER,
   vacuna_id INTEGER REFERENCES vacunas(id),
   actualizado_al TIMESTAMP
);
```

3. Proceso ETL (Extracción, Transformación y Carga)

Se utilizó Pentaho Kettle para el proceso ETL, extrayendo datos desde un archivo CSV. Se aplicaron transformaciones como limpieza de datos, normalización de nombres de vacunas, conversión de fechas y eliminación de duplicados. Finalmente, los datos se cargaron en las tablas de referencia y en la tabla principal 'vacunados_oficial'.

4. Análisis y KPIs

A continuación, se presentan las principales consultas SQL utilizadas para el análisis de los datos de vacunación, junto con su propósito:

4.1. Total, de personas vacunadas (cédulas únicas)

```
SELECT COUNT(DISTINCT cedula) AS total_personas_vacunadas FROM final.vacunados_oficial; -- Resultado: 980.697
```

Esta consulta calcula el total de personas únicas que recibieron al menos una dosis de vacuna.

4.2. Personas con más de una dosis aplicada

```
SELECT cedula,

COUNT(*) AS total_dosis_registradas

FROM final.vacunados_oficial

GROUP BY cedula

HAVING COUNT(*) > 1

ORDER BY total_dosis_registradas DESC;
```

Identifica personas que figuran con más de una dosis registrada.

4.3. Detalle por cédula, nombre y apellido para personas con múltiples dosis

```
SELECT cedula,
nombre,
apellido,
COUNT(*) AS total_dosis_registradas
FROM final.vacunados_oficial
GROUP BY cedula, nombre, apellido
HAVING COUNT(*) > 1
ORDER BY total_dosis_registradas DESC;
```

Complementa la consulta anterior con información personal para un análisis más detallado.

4.4. Dosis aplicadas por tipo de vacuna

Muestra la distribución de dosis aplicadas según el tipo de vacuna.

4.5. Dosis aplicadas por establecimiento de salud

SELECT est.descripcion AS establecimiento,

COUNT(*) AS total_dosis_aplicadas

FROM final.vacunados_oficial vo

JOIN final.establecimientos est ON vo.establecimiento_id = est.id

GROUP BY est.descripcion

ORDER BY total_dosis_aplicadas DESC;

Indica qué establecimientos aplicaron más dosis.

4.6. Dosis aplicadas por mes y año

SELECT

EXTRACT(YEAR FROM fecha_aplicacion) AS anho,
EXTRACT(MONTH FROM fecha_aplicacion) AS mes_num,
TO_CHAR(fecha_aplicacion, 'TMMonth') AS mes_nombre,
COUNT(*) AS total_dosis_aplicadas
FROM final.vacunados oficial

```
GROUP BY anho, mes_num, mes_nombre ORDER BY anho, mes_num;
```

Analiza la evolución mensual de la vacunación para detectar campañas intensivas.

4.7. Distribución de cantidad de dosis por persona

```
SELECT total_dosis_registradas, COUNT(*) AS cantidad_personas
FROM (
    SELECT cedula, COUNT(*) AS total_dosis_registradas
    FROM final.vacunados_oficial
    GROUP BY cedula
) sub
GROUP BY total_dosis_registradas
ORDER BY total_dosis_registradas;
```

Muestra cuántas personas recibieron determinada cantidad de dosis (1, 2, 3, 4.).

5. Conclusiones

- Se vacunaron 980.697 personas únicas según los registros de cédula.
- Alrededor de 200 personas recibieron más de una dosis, lo que indica una baja adherencia a esquemas completos en el conjunto de datos analizado.
- Las vacunas más aplicadas, en orden descendente, fueron:
 - 1. Pfizer 578.044 dosis aplicadas
 - 2. AstraZeneca 261.643
 - 3. **Sputnik V** 124.989
 - 4. Moderna 23.553
 - 5. **Coronavac** 7.488
 - 6. **Hayat Vax** 2.302
 - 7. Covaxin 1.390

8. **Sinopharm** – 392

- Se observaron picos mensuales de vacunación, posiblemente vinculados a campañas intensivas o aumentos en la disponibilidad de vacunas.
- Algunos establecimientos fueron responsables de un volumen significativamente mayor de dosis aplicadas, lo que podría reflejar su capacidad operativa o su ubicación estratégica.
- Este análisis podría complementarse con datos geográficos y de población para estimar mejor la tasa de cobertura vacunal.
- Se recomienda avanzar hacia el desarrollo de modelos predictivos que ayuden a planificar campañas de vacunación más eficientes en el futuro.