Problem 1. Let A be a ring. Prove:

(1.1) If $x \in A$ is nilpotent, then 1 - x is invertible.

Solution. Proof. Suppose that $x^n = 0$ for some $n \in \mathbb{N}$. Then,

$$(1-x)(1+x+x^2+\cdots+x^{n-1})=1-x^n=1$$

(1.2) The nilradical $N(A) = \{x \in A \mid x \text{ nilpotent}\}\$ is an ideal of A.

Solution. Proof. Let $x, y \in N(A)$, then $x^n = 0$ and $y^m = 0$ for some $n, m \in \mathbb{N}$. Then,

$$(x-y)^{n+m} = \sum_{k=0}^{n+m} (-1)^k \binom{n+m}{k} x^{n+m-k} y^k = 0$$

since $k \ge n$ or $n+m-k \ge m$ for all k. Thus, $x-y \in N(A)$. We have that N(A) is an additive subgroup of A. Now, let $a \in A$. Then,

$$(ax)^n = a^n x^n = 0a = 0$$

so $ax \in N(A)$. Thus, N(A) is an ideal of A.

(1.3) N(A) is contained in all prime ideals of A.

Solution. Proof. Let $I \subset A$ be a prime ideal. Let $x \in N(A)$. Then, $x^n = 0 \in I$ for some $n \in \mathbb{N}$. Let us show by induction on n that this implies $x \in I$:

- If n = 1, then $x = 0 \in I$.
- Suppose that the statement is true for n-1: $x^{n-1}=0 \Rightarrow x \in I$. If $0=x^n=x\cdot x^{n-1}$, since I is prime, $x\in I$ or $x^{n-1}\in I$. In the first case, we are done. The second case is just the inductive hypothesis.

(1.4) N(A) is the intersection of all prime ideals of A.

Solution.

Claim. Given $x \notin N(A)$, let Σ_x be the set of all ideals that do not contain any power of x. Then, Σ_x has a maximal element.

Proof. We will use Zorn's lemma. Let us check the conditions:

Claim. Σ_x is a partially ordered set with respect to inclusion.

Claim. Σ_x is not empty.

Proof. Since $x \notin N(A)$, $0 \in \Sigma_x$.

Claim. Every chain in Σ_x has an upper bound.

Proof. Let $\{I_{\alpha}\}_{{\alpha}\in S}$ be a chain in Σ_x . Then, $I=\bigcup_{{\alpha}\in S}I_{\alpha}$ is an ideal of A (One can check that if $x,y\in I$, then $x,y\in I_{\alpha}$ for some $\alpha\in S$, and then check the axioms from there). Let $x^n\in I$ for some $n\in\mathbb{N}$. Then, $x^n\in I_{\alpha}$ for some $\alpha\in A$. Since I_{α} is an ideal, $x\in I_{\alpha}$. Thus, $I\in\Sigma_x$.

Now that we have verified the conditions of Zorn's lemma, we can conclude that Σ_x has a maximal element.

Claim. Let $x \notin N(A)$. Then the maximal element K(x) of Σ_x is prime.

Proof. Let $a, b \in A$ such that $ab \in K(x)$. By way of contradiction, suppose that $a \notin K(x)$ and $b \notin K(x)$. Then, $x^n \in (a)$ and $x^m \in (b)$ for some $m, n \in \mathbb{N}$, but $x^{n+m} \notin (ab) = (a)(b)$. Contradiction.

Finally, we can prove the statement.

Claim. N(A) is the intersection of all prime ideals of A.

Proof. Let J be the intersection of all prime ideals of A. By 1.3, we know that $N(A) \subset J$. We want to prove that if $x \notin N(A)$, then $x \notin J$. Indeed, $J \subset K(x)$ because K(x) is prime and $x \notin K(x)$ because K(x) does not contain any power of x.

Problem 2. Let A be a ring. Let $a_i \in A$ and $f = a_0 + a_1T + \cdots + a_nT^n \in A[T]$ be a polynomial. Prove:

(2.1) f is a unit in $A[T] \iff a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent.

Solution. *Proof.* We will show both implications separately.

(\Leftarrow) Let $a_i^{n_i} = 0$ for all $1 \le i \le n$. Consider $s = \sum_{i=1}^n n_i$. Let $h = -a_1 T - \dots - a_n T^n$ be the negative of the polynomial without the constant term. Then,

$$h^{s} = \left(-\sum_{i=1}^{n} a_{i} T^{i}\right)^{s} = (-1)^{s} \sum_{j_{1} + \dots + j_{n} = s} a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} T^{j_{1} + 2 \cdot j_{2} \cdots + n \cdot j_{n}}$$

By the pigeonhole principle, in each term of the sum, there is at least one $j_k \ge n_k$ so $a_k^{j_k} = 0$, and thus $h^s = 0$. Then, h is nilpotent, so is $a_0^{-1} \cdot h$ and, by 1.1, $1 - a_0^{-1} \cdot h$ is invertible. Multiplying by a_0 , we get that $f = a_0 - h$ is also invertible.

(\Rightarrow) Suppose, there exists $g = b_0 + b_1 T + \cdots + b_m T^m \in A[T]$ such that $1 = fg = \sum_{i=0}^{n+m} s_i T^i$, where $s_i = \sum_{j=0}^n a_j b_{i-j}$ and $b_k = 0$ for k > m or k < 0. We first note that $1 = s_0 = a_0 b_0 \Rightarrow a_0, b_0 \in A^*$. Next, suppose n > 0 (Otherwise, there is nothing to show).

Claim. Let $0 \le k \le m$. $a_n^{k+1}b_{m-k} = 0$

Proof. By total induction on k:

- If k = 0, then $0 = s_{n+m} = a_n b_m = (a_n)^{0+1} b_{m-0}$.
- Suppose that the statement is true for $0, \ldots, k-1$. Then, $s_{n+m-k}=0$ as $n+m-k \ge n > 0$. Therefore:

$$0 = a_n^k s_{n+m-k} = \sum_{j=0}^n a_n^k a_j b_{n+m-k-j} = a_n^{k+1} b_{m-k} + \sum_{j=0}^{n-1} a_n^k a_j b_{n+m-k-j}$$

Now, the terms in the sum are zero by the inductive hypothesis, as $j < n \Rightarrow -(n-k-j) < k \Rightarrow (n-k-j)+1 \leq k$. Therefore, $a_n^{k+1}b_{m-k} = 0$ as we wanted to show.

Now, by setting k = m, we get that $a_n^{m+1}b_0 = 0$. Since b_0 is a unit, $a_n^{m+1} = 0$ and a_n is nilpotent. We are almost done if we realize the following:

Claim. Let $p = c_0 + c_1 T + \cdots + c_l T^l \in A[T]$ be an invertible polynomial such that c_l is nilpotent. Then, $q = c_0 + c_1 T + \cdots + c_{l-1} T^{l-1}$ is also invertible.

Proof. Note that c_lT^l is nilpotent and so is $c_lT^lp^{-1}$. Then, $1-c_lT^lp^{-1}$ is invertible by 1.1. Finally, because p is invertible, so is $q=p-c_lT^l=p(1-c_lT^lp^{-1})$.

We will prove that for $0 < k \le n$, $a_0 + \cdots + a_k T^k$ is invertible and a_k is nilpotent by (reverse) induction on k.

- $-a_n$ has already been done.
- If 0 < k < n, by hypothesis a_{k+1} is nilpotent and $a_0 + \cdots + a_{k+1}T^{k+1}$ is invertible. Then, $a_0 + \cdots + a_kT^k = (a_0 + \cdots + a_{k+1}T^{k+1}) a_{k+1}T^{k+1}$ is invertible by the claim. Therefore, a_k is nilpotent.
- (\Rightarrow) (Faster Version) Let f be a unit in A[T].

Claim. Let $\mathfrak{p} \in Spec(A)$. Then, $a_i \in \mathfrak{p}$ for all $i \in \{1, \dots n\}$.

Proof. $\mathfrak{p} \in Spec(A)$ implies that A/\mathfrak{p} is an integral domain. Consider the reduction $\pi: A[T] \to A/\mathfrak{p}[T]$ that takes each element $a \in A[T]$ to the class $\overline{a} \in A/\mathfrak{p}[T]$. Since A/\mathfrak{p} is an integral domain,

$$0 = \deg \bar{1} = \deg \bar{f} \cdot \overline{f^{-1}} = \deg \bar{f} + \deg \overline{f^{-1}}$$

In particular, $\deg \overline{f} = 0$ so, for all $i \in \{1, \dots n\}$, $\overline{a_i} = \overline{0} \Rightarrow a_i \in \mathfrak{p}$.

Since this holds for all $\mathfrak{p} \in Spec(A)$, we have that $\forall i \in \{1, \dots n\}, a_i \in \bigcap_{\mathfrak{p} \in Spec(A)} \mathfrak{p} = N(A)$ (by 1.4). Finally, suppose that $f^{-1} = b_0 + b_1 T + \dots + b_m T^m$. Given that $ff^{-1} = 1$ we have that $a_0b_0 = 1$, and thus a_0 is invertible.

(2.2) f is nilpotent $\iff a_0, \ldots, a_n$ are nilpotent.

Solution. *Proof.* We will show both implications separately.

- (\Leftarrow) Just use the same argument as in the previous part of the exercise, but directly on f, not on $h = a_0 f$.
- (⇒) If f is nilpotent, then 1 f is invertible by 1.1. Thus, by the previous part, $-a_1, \ldots, -a_n$ are nilpotent. Because $-a_i$ is nilpotent, a_i is nilpotent. We only have to prove that a_0 is nilpotent. By the other implication, h is nilpotent. Then, by 1.2, $a_0 = f + h$ is nilpotent.
- (2.3) f is a zero divisor \iff there exists $a \in A$, $a \neq 0$ such that af = 0.

Solution. Proof. The backward implication is trivial because of the inclusion $A \subset A[T]$. For the forward implication, suppose that f is a zero divisor. Then, there exists $g \in A[T]$, $g \neq 0$ such that fg = 0. Let $g = b_0 + \cdots + b_m T^m$ be the minimum degree polynomial satisfying the condition fg = 0. Suppose that m > 0.

Claim. $\exists i \in \{1, \dots, n\} \ s.t. \ a_i g \neq 0$

Proof. Suppose not. Then, $a_ig = 0$ for all $i \in \{1, ..., n\}$. Then, $a_ib_m = 0$ for all $i \in \{1, ..., n\}$. But then we have $b_m f = 0$ with $b_m \in A$, in contradiction with g being a polynomial with minimum degree.

Take *i* maximal such that $a_ig \neq 0$. Then, $0 = fg = (a_0 + \cdots + a_iT^i)(b_0 + \cdots + b_mT^m) + \sum_{j=i+1}^n T^j a_j g = (a_0 + \cdots + a_iT^i)(b_0 + \cdots + b_mT^m)$, and $a_ib_m = 0$. Thus, we have a polynomial $g' = a_ig \neq 0$ with degree m-1 satisfying $f(a_ig) = a_i(fg) = 0$, in contradiction with g being of minimal degree.

Problem 3. Let A be a ring. We define the Jacobson radical $\mathcal{J}(A)$ as the intersection of all maximal ideals of A. Prove:

(3.1) $x \in \mathcal{J}(A) \Leftrightarrow 1 - xy$ is invertible for all $y \in A$.

Solution. *Proof.* We will prove the two implications separately:

- (\Leftarrow) Suppose $x \notin \mathcal{J}(A)$. This means that there exists $\mathfrak{m} \in Max(A)$ such that $x \notin \mathfrak{m}$. Since \mathfrak{m} is a maximal ideal, $(x) + \mathfrak{m} = A$. Then, there exist $y' \in A$ and $m' \in \mathfrak{m}$ such that $xy' + m' = 1 \in A$. But this means that $1 xy' = m' \in \mathfrak{m}$, which invertible. Contradiction with \mathfrak{m} being an ideal. Thus, $x\mathcal{J}(A)$.
- (\Rightarrow) Suppose that $\exists y \in A$ such that 1 xy is not a unit in A. Notice that:
 - There exists a maximal ideal \mathfrak{M} such that $1 xy \in \mathfrak{m}$.
 - Since $x \in \mathfrak{m} \subseteq \mathcal{J}(A)$, we have that $xy \in \mathfrak{m}$.

Finally, $1 - xy + xy = 1 \in \mathfrak{m}$, in contradiction with \mathfrak{m} being an ideal. Thus, $\forall y \in A$ we have that 1 - xy is a unit in A.

(3.2) $\mathcal{J}(A) = A \setminus A* \Leftrightarrow A$ has only one maximal ideal.

Solution. Proof. This comes directly from the fact that an ideal $I \subset A$ cannot contain a unit x, else $xx^{-1} = 1 \in I$ and thus I = A.

$$\mathcal{J}(A) = A \setminus A^* \Leftrightarrow \forall \mathfrak{m} \in Max(A), \mathfrak{m} \supseteq \{\text{non-units of } A\} = A \setminus A^* \Leftrightarrow \Leftrightarrow \forall \mathfrak{m} \in Max(A), \mathfrak{m} = \{\text{non-units of } A\} \Leftrightarrow (A, \mathfrak{m}) \text{local}$$

 $(3.3) \mathcal{J}(A[T]) = \mathcal{N}(A[T]).$

Solution. *Proof.* We will prove the two inclusions separately:

 (\supseteq)

$$\mathcal{N}(A[T]) = \bigcap Spec(A[T]) \subseteq \bigcap Max(A[T]) = \mathcal{J}(A[T])$$

The first equality follows 1.4, while the inclusion is a consequence of $Max(A[T]) \subseteq Spec(A[T])$.

(\subseteq) Take $f = a_0 + a_1T + \cdots + a_nT^n \in \mathcal{J}(A[T])$. Using 3.1 with y = T we know that $1 - fT = 1 - a_0T - a_1T^2 \cdots - a_nT^{n+1}$ is invertible in A[t]. But then, from 2.1 we get that $-a_0, \cdots, -a_n$ nilponents, and finally $a_0, \cdots a_n$ are nilponents. We conclude from 2.2 we get that f is nilponent in A[T]

Problem 4. Let A be a ring such that every ideal not contained in the nilradical $\mathcal{N}(A)$ has a non-zero idempotent element (i.e. an element $e \neq 0$ such that $e^2 = e$). Prove that the nilradical and the Jacobson radical $\mathcal{J}(A)$ are equal.

Solution. *Proof.* We will prove the two inclusions separately:

 (\supseteq) (Same as in 3.3)

$$\mathcal{N}(A) = \bigcap Spec(A) \subseteq \bigcap Max(A) = \mathcal{J}(A)$$

The first equality follows 1.4, while the inclusion is a consequence of $Max(A) \subseteq Spec(A)$.

(\subseteq) Suppose that $\mathcal{J}(A) \nsubseteq \mathcal{N}(A)$. Then, since $\mathcal{J}(A)$ is an intersection of ideals and thus an ideal itself, we have that $\exists e \in \mathcal{J}(A)$ such that $e^2 = e \neq 0$. By 3.1, we have that 1 - e1 is invertible, so

$$(1+e) = (1-e)^{-1}(1-e)(1+e) = (1-e)^{-1}(1-e^2) = (1-e)^{-1}(1-e) = 1$$

Finally, we get that e = 0, in contradiction with the definition of e. Thus, we conclude that $\mathcal{J}(A) \subseteq \mathcal{N}(A)$.

¿should we write a proof of this or is it overkill?

Problem 5. Let A be an integral domain. Prove that the ideal $I = (x^2 - y^3, y^2 - z^3) \subseteq A[x, y, z]$ is prime.

(Hint: Let $f: R \to B$ be a ring homomorphism and $I \subseteq R$ be an ideal such that $I \subseteq \ker f$. Then f factorizes through R/I. Consider a parametrization $f: A[x, y, z] \to A[T]$.)

Solution. Proof.

Problem 6. • Let $f(T) \in K[T]$ be irreducible where K is a field. Prove that the ideal (f(T)) is maximal.

Solution. Proof. Consider I = (f(T)) and J such that $I \subseteq J \neq K[T]$.

Claim. If K is a field, then K[T] is a P.I.D.

Proof. Take I ideal in K[T] and the polynomial of minimal degree $p(T) \neq 0$ in I. Then, d(p(T)) > 0, otherwise $p(T) \in K$ and $pp^{-1} = 1 \in I$ (in contradiction with $I \neq K[T]$). Now, consider $g(T) \in I$. By the division algorithm, $\exists q(T), r(T) \in K[T]$ such that g(T) = p(T)q(T) + r(T) with d(r(T)) < d(p(T)). Then $r(T) = g(T) - p(T)q(T) \in I$ since $g(T), p(T) \in I$. By minimality of $p(T) \neq 0$, we have that r(T) = 0. Thus, g(T) = p(T)q(T), and I = (p(T)).

For the claim we know that K[T] is a P.I.D., thus $\exists h(T) \in K(T)$ such that J = (h(T)). Then

$$f(T) \in (f(T)) \subseteq J = (h(T))$$

This implies that f(T) = h(T)g(T), but since f(T) is irreducible, either h(T) or g(T) is an element of K. $h(T) \notin K$, otherwise J = K[T] which is not a field. Then $g(T) \in K$ and $h(T) = f(T)a^{-1}$. We conclude that $J \subset I$, so I is maximal.

• Describe the spectrum of $\mathbb{R}[T]$, $\mathbb{C}[T]$, $\mathbb{R}[T]/(T^2+9)$, $\mathbb{C}[T]/(T^2+9)$

Solution. Proof.

Problem 7. Describe $spec(\mathbb{Z}[T])$

Solution. Suppose that $\mathfrak{p} \subset \mathbb{Z}[T]$ is an ideal. We will distinguish three cases:

- 1. $\mathfrak{p} = (0)$. (0) is a prime ideal of $\mathbb{Z}[T]$ since $\mathbb{Z}[T]$ is an integral domain.
- 2. $\mathfrak{p}=(f)$ is a principal ideal generated by a non-zero polynomial $f\in\mathbb{Z}[T]$. There are two possibilities:
 - deg $f = 0 \Leftrightarrow f = n \in \mathbb{Z}$. Suppose (n) is a prime ideal. In this case, it is clear by the inclusion $\varphi : \mathbb{Z} \to \mathbb{Z}[T]$ that $(n) = (n)^c$ is prime in \mathbb{Z} . Conversely, let $p \in \mathbb{Z}$ be a prime number. $\mathbb{Z}[T]/(p) \cong \mathbb{Z}/(p)[T]$ is an integral domain since $\mathbb{Z}/(p)$ is a field (in particular, an integral domain). We obtain the ideals (p) where $p \in \mathbb{Z}$ is prime.
 - $\deg f > 0$.

Claim. (f) is prime \Rightarrow f is primitive.

Proof. Otherwise, there is some non-unit $p \in \mathbb{Z}$ that divides all coefficients of f. Then f = pg for some $g \in \mathbb{Z}[T]$, which is a non-trivial factorization of f. f is not irreducible, so it is not prime (since \mathbb{Z} is a domain).

Claim. (f) is prime \Rightarrow f is irreducible in $\mathbb{Q}[T]$.

Proof. Suppose f = gh is a non-trivial factorization, for some $g, h \in \mathbb{Q}[T]$ (in particular, since all non-zero elements of \mathbb{Q} are units, $\deg g, \deg h > 0 \Rightarrow \deg g, \deg h < \deg f$). Taking a common denominator n and multiplying by it, we obtain $nf = \tilde{g}\tilde{h}$ in $\mathbb{Z}[T]$. By the left side, this belongs to (f), but \tilde{g}, \tilde{h} do not belong to (f) since they have strictly smaller degree than f.

Claim. These conditions are also sufficient: if f is irreducible in $\mathbb{Q}[T]$ and primitive, then (f) is prime.

Proof. Consider the natural inclusion $\phi : \mathbb{Z}[T] \to \mathbb{Q}[T]$. We will extend and then contract the ideal (f) of $\mathbb{Z}[T]$. By taking a common denominator and factors:

$$(f)^{ec} = \mathbb{Z} \cap (f)_{\mathbb{Q}} = \mathbb{Z}[T] \cap \left\{ \frac{n}{m} fh \mid n, m \in \mathbb{Z}, h \in \mathbb{Z}[T] \text{ primitive} \right\}$$

We know that $(f) \subset (f)^{ec}$. We will prove the other inclusion and therefore equality. Indeed, take $g = \frac{n}{m}fh \in (f)^{ec}$ of the form described above. For any prime $p \mid m$, we have shown that (p) is prime in $\mathbb{Z}[T]$. Furthermore, f, h are primitive, so p does not divide them $\Rightarrow p \mid n$. We can cancel p in the fraction, and repeat the process for all prime factors of m. Therefore, $g \in (f)_{\mathbb{Z}}$. Now, as f is irreducible in $\mathbb{Q}[T]$, which is a PID, $(f)_{\mathbb{Q}} = (f)_{\mathbb{Z}}^{e}$ is prime in $\mathbb{Q}[T]$. Therefore, so is $(f) = (f)^{ec} \subset \mathbb{Z}[T]$.

With all these claims, this case yields ideals of the form (f) where $f \in \mathbb{Z}[T]$ is irreducible and primitive.

3. \mathfrak{p} is not principal. I don't know how to do this case. Idea: Consider the gcd of all the generators in $\mathbb{Q}[T]$, we have bezont coefficients, so we can write it as a linear combination of them with rational coefficients.