

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_

### Winter 2014 Examination

Subject & Code: Basic Maths (17104) Model Answer Page No: 1/34

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                     | Marks | Total<br>Mark |
|-------------|--------------|-----------------------------------------------------------------------------------|-------|---------------|
|             |              | Important Instructions to the Examiners:                                          |       |               |
|             |              | 1) The Answers should be examined by key words and not as                         |       |               |
|             |              | word-to-word as given in the model answer scheme.                                 |       |               |
|             |              | 2) The model answer and the answer written by candidate may                       |       |               |
|             |              | vary but the examiner may try to assess the understanding level of the candidate. |       |               |
|             |              | 3) The language errors such as grammatical, spelling errors                       |       |               |
|             |              | should not be given more importance. (Not applicable for                          |       |               |
|             |              | subject English and Communication Skills.)                                        |       |               |
|             |              | 4) While assessing figures, examiner may give credit for                          |       |               |
|             |              | principal components indicated in the figure. The figures                         |       |               |
|             |              | drawn by the candidate and those in the model answer may                          |       |               |
|             |              | vary. The examiner may give credit for any equivalent                             |       |               |
|             |              | figure drawn.                                                                     |       |               |
|             |              | 5) Credits may be given step wise for numerical problems. In                      |       |               |
|             |              | some cases, the assumed constant values may vary and there                        |       |               |
|             |              | may be some difference in the candidate's Answers and the model answer.           |       |               |
|             |              | 6) In case of some questions credit may be given by judgment                      |       |               |
|             |              | on part of examiner of relevant answer based on candidate's understanding.        |       |               |
|             |              | 7) For programming language papers, credit may be given to                        |       |               |
|             |              | any other program based on equivalent concept.                                    |       |               |
|             |              |                                                                                   |       |               |
|             |              |                                                                                   |       |               |
|             |              |                                                                                   |       |               |



**Page No:** 2/34

| Subje | ct & | Code: | <b>Basic</b> | Maths | (17104) |
|-------|------|-------|--------------|-------|---------|
|-------|------|-------|--------------|-------|---------|

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                       | Marks                           | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|
| 1)          | Que.         | Attempt any TEN of the following:                                                                                                   |                                 | Marks          |
|             | 2)           | Find the value of   2   3   5   1   4   2   3   1   6                                                                               |                                 |                |
|             | a)           | Find the value of $\begin{vmatrix} 1 & 4 & 2 \\ 2 & 1 & 6 \end{vmatrix}$                                                            |                                 |                |
|             | Ans.         | · · ·                                                                                                                               |                                 |                |
|             |              | $\begin{vmatrix} 2 & 3 & 5 \\ 1 & 4 & 2 \\ 3 & 1 & 6 \end{vmatrix} = 2(24-2)-3(6-6)+5(1-12)$                                        | 1                               |                |
|             |              |                                                                                                                                     | 1                               |                |
|             |              | =-11                                                                                                                                | 1                               | 2              |
|             | b)           | If $A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$ , find the matrix B such that $2A + 3B = 0$                                  |                                 |                |
|             | Ans.         |                                                                                                                                     |                                 |                |
|             |              | $ 2A = 2\begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ 4 & 8 \end{bmatrix} $                             | 1                               |                |
|             |              | $\therefore 3B = -2A = \begin{bmatrix} -6 & 2 \\ -4 & -8 \end{bmatrix}$                                                             | 1/2                             |                |
|             |              |                                                                                                                                     |                                 |                |
|             |              | $\therefore B = \frac{1}{3} \begin{bmatrix} -6 & 2 \\ -4 & -8 \end{bmatrix}$                                                        | 1/2                             | 2              |
|             |              | OR                                                                                                                                  |                                 |                |
|             |              | $2A + 3B = 0$ $\therefore 3B = -2A$                                                                                                 |                                 |                |
|             |              |                                                                                                                                     |                                 |                |
|             |              | $=-2\begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$                                                                                  | 1/2                             |                |
|             |              | $= \begin{bmatrix} -6 & 2 \\ -4 & -8 \end{bmatrix}$                                                                                 | 1                               |                |
|             |              | $\therefore B = \frac{1}{3} \begin{bmatrix} -6 & 2 \\ -4 & -8 \end{bmatrix}$                                                        | 1/2                             | 2              |
|             |              |                                                                                                                                     |                                 |                |
|             | c)           | Find the value of a and b, if $\begin{bmatrix} a-4b & 5 \\ 6 & -a+b \end{bmatrix} = \begin{bmatrix} 11 & 5 \\ 6 & -5 \end{bmatrix}$ |                                 |                |
|             | Ans.         |                                                                                                                                     |                                 |                |
|             |              | $\begin{bmatrix} a-4b & 5 \\ 6 & -a+b \end{bmatrix} = \begin{bmatrix} 11 & 5 \\ 6 & -5 \end{bmatrix}$                               |                                 |                |
|             |              | $\therefore a - 4b = 11$ $-a + b = -5$                                                                                              | 1/2                             |                |
|             |              | $\frac{-a+b=-5}{\therefore -3b=6}$                                                                                                  | 1/2                             |                |
|             |              | $\therefore \boxed{b = -2}$                                                                                                         |                                 |                |
|             |              | $\therefore \boxed{a=3}$                                                                                                            | 1/ <sub>2</sub> 1/ <sub>2</sub> | 2              |

Subject & Code: Basic Maths (17104)

**Page No:** 3/34

| Que. | Sub. |                                                                                            |       | Total |
|------|------|--------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model Answers                                                                              | Marks | Marks |
| 1)   | d)   | Find the adjoint of matrix $\begin{bmatrix} 4 & -6 \\ 1 & 7 \end{bmatrix}$                 |       |       |
|      | Ans. | $Let A = \begin{bmatrix} 4 & -6 \\ 1 & 7 \end{bmatrix}$                                    |       |       |
|      |      | $\therefore C(A) = \begin{bmatrix} 7 & -1 \\ 6 & 4 \end{bmatrix}$                          | 1     |       |
|      |      | $\therefore adj(A) = \begin{bmatrix} 7 & 6 \\ -1 & 4 \end{bmatrix}$                        | 1     | 2     |
|      |      | OR                                                                                         |       |       |
|      |      | $Let A = \begin{bmatrix} 4 & -6 \\ 1 & 7 \end{bmatrix}$                                    |       |       |
|      |      | $\therefore A_{11} = 7 \qquad A_{12} = -1$ $A_{21} = 6 \qquad A_{22} = 4$                  | 1/2   |       |
|      |      | $\therefore C(A) = \begin{bmatrix} 7 & -1 \\ 6 & 4 \end{bmatrix}$                          | 1/2   |       |
|      |      | $\therefore adj(A) = \begin{bmatrix} 7 & 6 \\ -1 & 4 \end{bmatrix}$                        | 1     | 2     |
|      | e)   | Resolve into partial fractions: $\frac{x}{x^2 - x - 2}$                                    |       |       |
|      | ,    | $\frac{x}{x^2 - x - 2} = \frac{x}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1}$     |       |       |
|      |      | $\therefore \boxed{x = (x+1)A + (x-2)B}$ Put $x-2=0$ i.e., $x=2$                           |       |       |
|      |      | $\therefore 2 = (2+1)A + 0$                                                                |       |       |
|      |      | $\therefore 2 = 3A$                                                                        | 1     |       |
|      |      | $\therefore \boxed{\frac{2}{3} = A}$                                                       |       |       |
|      |      | Put $x+1=0$ i.e., $x=-1$<br>∴ $-1=0+(-1-2)B$                                               |       |       |
|      |      | $\therefore -1 = -3B$                                                                      |       |       |
|      |      | $\therefore \boxed{\frac{1}{2} = B}$                                                       | 1/2   |       |
|      |      | 2 1                                                                                        |       |       |
|      |      | $\therefore \frac{x}{x^2 - x - 2} = \frac{\frac{2}{3}}{x - 2} + \frac{\frac{1}{3}}{x + 1}$ | 1/2   | 2     |
|      |      |                                                                                            |       |       |



Subject & Code: Basic Maths (17104) **Page No:** 4/34

| Que. | Sub. |                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Total |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks | Marks |
| 1)   |      | $\frac{x}{x^2 - x - 2} = \frac{x}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2}$ $\therefore \boxed{x = (x-2)A + (x+1)B}$ $\therefore \boxed{\frac{1}{3} = A}$ $\therefore \boxed{\frac{2}{3} = B}$ $\therefore \boxed{\frac{x}{x^2 - x - 2} = \frac{\frac{1}{3}}{x+1} + \frac{\frac{2}{3}}{x-2}}$                                                                                                                                              | 1 1/2 |       |
|      |      | Note for partial fraction problems: The problems of partial fractions could also be solved by the method of "equating equal power coefficients". This method is also applicable. Give appropriate marks in accordance with the scheme of marking in the later problems as the solution by this method is not discussed. For the sake of convenience, the solution of the above problem with the help of this method is illustrated hereunder. |       | 2     |
|      |      | $\frac{x}{x^2 - x - 2} = \frac{x}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1}$ $\therefore x = (x + 1)A + (x - 2)B$ $\therefore x = xA + A + xB - 2B$ $\therefore 1 \cdot x + 0 = x(A + B) + (A - 2B)$ $\therefore A + B = 1$ $A - 2B = 0$ $\therefore 2A + 2B = 2$ $\frac{A - 2B = 0}{\therefore 3A = 2}$                                                                                                                            |       |       |
|      |      | $\therefore \boxed{A = \frac{2}{3}}$ $\therefore B = 1 - A = 1 - \frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                 | 1     |       |
|      |      | $\therefore B = \frac{1}{3}$ $x \qquad \frac{2}{3} \qquad \frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                        | 1/2   | 2     |
|      |      | $\therefore \frac{x}{x^2 - x - 2} = \frac{3}{x - 2} + \frac{3}{x + 1}$                                                                                                                                                                                                                                                                                                                                                                        |       | 2     |



**Page No:** 5/34

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                 | Marks                           | Total<br>Marks |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|
| 1)          | f)           | Show that $\tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 + \tan \theta}$                                                 |                                 | WICHKS         |
|             | Ans.         | $\tan\left(\frac{\pi}{4} - \theta\right) = \frac{\tan\left(\frac{\pi}{4}\right) - \tan\theta}{1 + \tan\left(\frac{\pi}{4}\right) \tan\theta}$ | 1                               |                |
|             |              | $=\frac{1-\tan\theta}{1+\tan\theta}$                                                                                                          | 1                               | 2              |
|             | g)           | Prove that $\cos 2A = 2\cos^2 A - 1$                                                                                                          |                                 |                |
|             | Ans.         | $\cos 2A = \cos \left( A + A \right)$                                                                                                         | 1/2                             |                |
|             |              | $= \cos A \cos A - \sin A \sin A$ $= \cos^2 A - \sin^2 A$                                                                                     | 1/2                             |                |
|             |              | $=\cos^2 A - \left(1 - \cos^2 A\right)$                                                                                                       | 1/2                             |                |
|             |              | $= \cos^2 A - 1 + \cos^2 A$ $= 2\cos^2 A - 1$                                                                                                 |                                 |                |
|             |              | OR                                                                                                                                            | 1/2                             | 2              |
|             |              | $\cos 2A = \cos^2 A - \sin^2 A$ $= \cos^2 A - \left(1 - \cos^2 A\right)$                                                                      | 1 1/2                           |                |
|             |              | $=2\cos^2 A - 1$                                                                                                                              | 1/2                             | 2              |
|             | h)           | If $\sin A = 0.4$ , find the value of $\sin 3A$ .                                                                                             |                                 |                |
|             | Ans.         | $\sin 3A = 3\sin A - 4\sin^3 A$                                                                                                               | 1                               |                |
|             |              | $=3(0.4)-4(0.4)^{3}$                                                                                                                          | 1/ <sub>2</sub> 1/ <sub>2</sub> | 2              |
|             |              | = 0.944(*)                                                                                                                                    | /2                              | _              |
|             |              | Note (*): Due to the use of advance scientific calculator, writing directly the step (*) is allowed. No marks to be deducted.                 |                                 |                |
|             |              | OR                                                                                                                                            |                                 |                |
|             |              | Given that $\sin A = 0.4$ .<br>$\therefore A = \sin^{-1}(0.4) = 23.578^{\circ}$                                                               | 1                               |                |
|             |              | $\therefore \sin 3A = \sin (3 \times 23.578^{\circ})$                                                                                         | 1/2                             |                |
|             |              | =0.944                                                                                                                                        | 1/2                             | 2              |

### Subject & Code: Basic Maths (17104)

**Page No:** 6/34

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                           | Marks                           | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|
| 1)          | i)           | Prove that $\frac{\cos 3\theta}{\cos \theta} + \frac{\sin 3\theta}{\sin \theta} = 4\cos 2\theta$                                                                                                                        |                                 |                |
|             | Ans.         | $\frac{\cos 3\theta}{\cos \theta} + \frac{\sin 3\theta}{\sin \theta} = \frac{\sin \theta \cos 3\theta + \cos \theta \sin 3\theta}{\cos \theta \sin \theta}$ $= \frac{\sin (\theta + 3\theta)}{\cos \theta \sin \theta}$ | 1/2                             |                |
|             |              | $= \frac{\sin(\theta + \theta)}{\cos\theta\sin\theta}$ $= \frac{\sin 4\theta}{\cos\theta\sin\theta}$                                                                                                                    | 1/2                             |                |
|             |              | $= \frac{\sin 2(2\theta)}{\cos \theta \sin \theta}$ $= \frac{2\sin 2\theta \cos 2\theta}{\cos \theta \cos \theta}$                                                                                                      | 1/2                             |                |
|             |              | $ \cos \theta \sin \theta \\ = \frac{2 \cdot 2 \sin \theta \cos \theta \cdot \cos 2\theta}{\cos \theta \sin \theta} \\ = 4 \cos 2\theta $                                                                               | 1/2                             | 2              |
|             |              | OR                                                                                                                                                                                                                      |                                 |                |
|             |              | $\frac{\cos 3\theta}{\cos \theta} + \frac{\sin 3\theta}{\sin \theta} = \frac{4\cos^3 \theta - 3\cos \theta}{\cos \theta} + \frac{3\sin \theta - 4\sin^3 \theta}{\sin \theta}$                                           | 1/2                             |                |
|             |              | $= 4\cos^2\theta - 3 + 3 - 4\sin^2\theta$ $= 4\cos^2\theta - 4\sin^2\theta$                                                                                                                                             | 1/ <sub>2</sub> 1/ <sub>2</sub> |                |
|             |              | $=4(\cos^2\theta - \sin^2\theta)$ $=4\cos 2\theta$                                                                                                                                                                      | 1/2                             | 2              |
|             | j)           | Evaluate without using calculator $\frac{\tan 66^{\circ} + \tan 69^{\circ}}{1 - \tan 66^{\circ} \tan 69^{\circ}}$                                                                                                       | 72                              | 2              |
|             | Ans.         | $\frac{\tan 66^{\circ} + \tan 69^{\circ}}{1 - \tan 66^{\circ} \tan 69^{\circ}} = \tan \left( 66^{\circ} + 69^{\circ} \right)$                                                                                           | 1/2                             |                |
|             |              | $= \tan 135^{\circ}$ $= \tan (90^{\circ} + 45^{\circ}) \qquad OR \qquad \tan (180^{\circ} - 45^{\circ})$                                                                                                                | 1/2                             |                |
|             |              | $= -\cot 45^{\circ} \qquad OR \qquad -\tan (45^{\circ})$ $= -1$                                                                                                                                                         | 1/2                             | 2              |
|             |              |                                                                                                                                                                                                                         | , 2                             |                |

### Subject & Code: Basic Maths (17104)

**Page No:** 7/34

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| 1)          | k)           | Find the slope and y-intercept of the line $\frac{x}{4} - \frac{y}{3} = 2$                                                   |       |                |
|             |              | $\frac{x}{4} - \frac{y}{3} - 2 = 0$                                                                                          |       |                |
|             |              | $\therefore a = \frac{1}{4} \qquad b = -\frac{1}{3} \qquad c = -2$                                                           |       |                |
|             |              | $\therefore slope \ m = -\frac{a}{b} = -\frac{\frac{1}{4}}{-\frac{1}{3}} = \frac{3}{4} \ or \ 0.75$                          | 1     |                |
|             |              | $y - \text{int} = -\frac{c}{b} = -\frac{-2}{-\frac{1}{3}} = -6$                                                              | 1     | 2              |
|             |              | OR                                                                                                                           |       |                |
|             |              | $\frac{x}{4} - \frac{y}{3} = 2$ $\therefore 3x - 4y - 24 = 0$                                                                |       |                |
|             |              | $\therefore a = 3 \qquad b = -4 \qquad c = -24$ $\therefore slope  m = -\frac{a}{b} = -\frac{3}{-4} = \frac{3}{4}  or  0.75$ | 1     |                |
|             |              | $y - \text{int} = -\frac{c}{b} = -\frac{-24}{-4} = -6$                                                                       | 1     | 2              |
|             |              | OR                                                                                                                           |       |                |
|             |              | $\frac{x}{4} - \frac{y}{3} = 2$ $\therefore y = \frac{3}{4}x - 6$                                                            |       |                |
|             |              | $\therefore slope \ m = \frac{3}{4}  or  0.75$                                                                               | 1     |                |
|             |              | y - int = -6                                                                                                                 | 1     | 2              |
|             | <i>l</i> )   | Find the range of the following: 2, 3, 1, 10, 6, 31, 17, 20, 24                                                              |       |                |
|             | Ans.         | L=31 $S=1$                                                                                                                   |       |                |
|             |              | $\therefore Range = L - S$ $= 31 - 1$                                                                                        | 1     |                |
|             |              | = 30                                                                                                                         | 1     | 2              |



Subject & Code: Basic Maths (17104)

**Page No:** 8/34

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| 2)          |              | Attempt any FOUR of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                |
|             | a)           | Solve the equations for y and z $\frac{x}{4} - \frac{y}{3} + \frac{z}{2} = 5,  \frac{x}{3} + \frac{y}{2} - \frac{z}{5} = 11,  \frac{x}{7} - \frac{y}{9} + \frac{z}{6} = -2$ by using Cramer's rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                |
|             |              | $\begin{vmatrix} \frac{x}{4} - \frac{y}{3} + \frac{z}{2} = 5 \\ \frac{x}{3} + \frac{y}{2} - \frac{z}{5} = 11 \\ \frac{x}{7} - \frac{y}{9} + \frac{z}{6} = -2 \\ \begin{vmatrix} \frac{1}{4} & -\frac{1}{3} & \frac{1}{2} \\ 1 & 1 & 1 \end{vmatrix} = 1 (1 & 1) 1 (1 & 1) 1 (1 & 1)$                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                |
|             |              | $\therefore D = \begin{vmatrix} \frac{1}{4} & -\frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & -\frac{1}{5} \\ \frac{1}{7} & -\frac{1}{9} & \frac{1}{6} \end{vmatrix} = \frac{1}{4} \left( \frac{1}{12} - \frac{1}{45} \right) + \frac{1}{3} \left( \frac{1}{18} + \frac{1}{35} \right) + \frac{1}{2} \left( -\frac{1}{27} - \frac{1}{14} \right)$ $= -\frac{11}{1008}  or  -0.0109$ $D_{y} = \begin{vmatrix} \frac{1}{4} & 5 & \frac{1}{2} \\ \frac{1}{3} & 11 & -\frac{1}{5} \\ \frac{1}{7} & -2 & \frac{1}{6} \end{vmatrix} = \frac{1}{4} \left( \frac{11}{6} - \frac{2}{5} \right) - 5 \left( \frac{1}{18} + \frac{1}{35} \right) + \frac{1}{2} \left( -\frac{2}{3} - \frac{11}{7} \right)$ | 1     |                |
|             |              | $= -\frac{2977}{2520}  or  -1.181$ $D_z = \begin{vmatrix} \frac{1}{4} & -\frac{1}{3} & 5\\ \frac{1}{3} & \frac{1}{2} & 11\\ \frac{1}{7} & -\frac{1}{9} & -2 \end{vmatrix} = \frac{1}{4} \left( -1 + \frac{11}{9} \right) + \frac{1}{3} \left( -\frac{2}{3} - \frac{11}{7} \right) + 5 \left( -\frac{1}{27} - \frac{1}{14} \right)$                                                                                                                                                                                                                                                                                                                                                                       | 1     |                |
|             |              | $= -\frac{233}{189}  or  -1.233$ $\therefore y = \frac{D_y}{D} = \frac{-1.181}{-0.0109} = 108.254$ $z = \frac{D_z}{D} = \frac{-1.233}{-0.0109} = 112.970$ (Please refer note on the next page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2   | 4              |



Subject & Code: Basic Maths (17104) **Page No:** 9/34

| Que. | Sub. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks   | Total |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IVIAIKS | Marks |
| 2)   |      | <b>Note:</b> As the use of the advance scientific calculator is permissible, calculating directly the values of fractional quantities e.g., $\frac{1}{4} \left( \frac{1}{12} - \frac{1}{45} \right) + \frac{1}{3} \left( \frac{1}{18} + \frac{1}{35} \right) + \frac{1}{2} \left( -\frac{1}{27} - \frac{1}{14} \right)$ is allowed. The same is also applicable in the next alternative method. No marks to be deducted for such direct calculations. |         |       |
|      |      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |
|      |      | 3x-4y+6z=60 $10x+15y-6z=330$                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |
|      |      | 18x - 14y + 21z = -252                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |
|      |      | $\therefore D = \begin{vmatrix} 3 & -4 & 6 \\ 10 & 15 & -6 \\ 18 & -14 & 21 \end{vmatrix} = 3(315 - 84) + 4(210 + 108) + 6(-140 - 270)$                                                                                                                                                                                                                                                                                                               |         |       |
|      |      | =-495                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1       |       |
|      |      | $D_{y} = \begin{vmatrix} 3 & 60 & 6 \\ 10 & 330 & -6 \\ 18 & -252 & 21 \end{vmatrix} = 3(6930 - 1512) - 60(210 + 108) + 6(-2520 - 5940)$                                                                                                                                                                                                                                                                                                              |         |       |
|      |      | =-53586<br>3 -4 60                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1       |       |
|      |      | $D_z = \begin{vmatrix} 3 & -4 & 60 \\ 10 & 15 & 330 \\ 18 & -14 & -252 \end{vmatrix} = 3(-3780 + 4620) + 4(-2520 - 5940) + 60(-140 - 270)$                                                                                                                                                                                                                                                                                                            | 1       |       |
|      |      | $= -55920$ $\therefore y = \frac{D_y}{D} = \frac{-53586}{-495} = 108.255$                                                                                                                                                                                                                                                                                                                                                                             | 1/2     |       |
|      |      | $z = \frac{D_z}{D} = \frac{-55920}{-495} = 112.970$                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2     | 4     |
|      | b)   | If $A = \begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$ , find $A^2$ .                                                                                                                                                                                                                                                                                                                                                        |         |       |
|      | Ans. | $A^{2} = A \cdot A = \begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$                                                                                                                                                                                                                                                                                   |         |       |
|      |      | $= \begin{bmatrix} 4+2-4 & -2-3+4 & 2+2-3 \\ -4-6+8 & 2+9-8 & -2-6+6 \\ -8-8+12 & 4+12-12 & -4-8+9 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                     | 2       |       |
|      |      | $= \begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$ (Please check note on next page)                                                                                                                                                                                                                                                                                                                                           | 2       | 4     |



Subject & Code: Basic Maths (17104) **Page No:** 10/34

| Que. | Sub. | Ma Jal Amanana                                                                                                                                                                                                      | M1    | Total |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model Answers                                                                                                                                                                                                       | Marks | Marks |
| 2)   |      | Note: In the answer matrix of A <sup>2</sup> , if 1 to 3 elements are wrong either in sign or value, deduct ½ marks; if 4 to 6 elements are wrong, you may deduct 1 mark; other deduct all 2 marks.                 |       |       |
|      | c)   | If $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$ , $B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ , $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ , verify that $A(B+C) = AB + AC$ .                |       |       |
|      | Ans. | $B+C = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ $= \begin{bmatrix} -1 & 2 \\ 4 & 3 \end{bmatrix}$                                                              | 1     |       |
|      |      | $\therefore A(B+C) = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & 3 \end{bmatrix}$ $= \begin{bmatrix} -1+8 & 2+6 \\ 2+12 & -4+9 \end{bmatrix}$ $\begin{bmatrix} 7 & 8 \end{bmatrix}$ |       |       |
|      |      | $= \begin{bmatrix} 7 & 8 \\ 14 & 5 \end{bmatrix}$ $AB = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 2+4 & 1+6 \\ -4+6 & -2+9 \end{bmatrix}$      | 1     |       |
|      |      | $= \begin{bmatrix} 6 & 7 \\ 2 & 7 \end{bmatrix}$ $AC = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ $= \begin{bmatrix} -3+4 & 1+0 \\ 6+6 & -2+0 \end{bmatrix}$      | 1/2   |       |
|      |      | $= \begin{bmatrix} 1 & 1 \\ 12 & -2 \end{bmatrix}$ $\therefore AB + AC = \begin{bmatrix} 6 & 7 \\ 2 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 12 & -2 \end{bmatrix}$                                             | 1/2   |       |
|      |      | $= \begin{bmatrix} 7 & 8 \\ 14 & 5 \end{bmatrix}$ $\therefore A(B+C) = AB + AC$                                                                                                                                     | 1/2   | 4     |
|      |      |                                                                                                                                                                                                                     |       |       |

Subject & Code: Basic Maths (17104) **Page No:** 11/34

| Que. | Sub. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks   | Total |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. | WIOGEI AIISWEIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IVIAINS | Marks |
| 2)   | d)   | If $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$ , find $A^2 - 3A + 9I$ , where I is the unit matrix                                                                                                                                                                                                                                                                                                                                                 |         |       |
|      | Ans. | $A^{2} = A \cdot A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                   |         |       |
|      |      | $= \begin{bmatrix} 1-4-9 & -2-6+3 & 3+2+6 \\ 2+6+3 & -4+9-1 & 6-3-2 \\ -3+2-6 & 6+3+2 & -9-1+4 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                     | 1       |       |
|      |      | $= \begin{bmatrix} -12 & -5 & 11 \\ 11 & 4 & 1 \\ -7 & 11 & -6 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                     | 1       |       |
|      |      | $\begin{vmatrix} 3A = 3 \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -6 & 9 \\ 6 & 9 & -3 \\ -9 & 3 & 6 \end{bmatrix}$                                                                                                                                                                                                                                                                                                              | 1/2     |       |
|      |      | $ 9I = 9 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                  | 1/2     |       |
|      |      | $\therefore A^{2} - 3A + 9I = \begin{bmatrix} -12 & -5 & 11 \\ 11 & 4 & 1 \\ -7 & 11 & -6 \end{bmatrix} - \begin{bmatrix} 3 & -6 & 9 \\ 6 & 9 & -3 \\ -9 & 3 & 6 \end{bmatrix} + \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$ $= \begin{bmatrix} -12 - 3 + 9 & -5 + 6 + 0 & 11 - 9 + 0 \\ 11 - 6 + 0 & 4 - 9 + 9 & 1 + 3 + 0 \\ -7 + 9 + 0 & 11 - 3 + 0 & -6 - 6 + 9 \end{bmatrix}$ $= \begin{bmatrix} -6 & 1 & 2 \\ 5 & 4 & 4 \\ 2 & 8 & -3 \end{bmatrix}$ | 1       | 4     |
|      |      | Note: The above problem could also be solved by taking all the terms simultaneously as follows: $A^{2} - 3A + 9I$ $= \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix} - 3 \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix} + 9 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                    |         |       |

**Page No:** 12/34

| Que. | Sub. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks       | Total |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|
| No.  | Que. | WIOGEL / MISWELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IVIAINS     | Marks |
| 2)   |      | $ \begin{bmatrix} 1-4-9 & -2-6+3 & 3+2+6 \\ 2+6+3 & -4+9-1 & 6-3-2 \\ -3+2-6 & 6+3+2 & -9-1+4 \end{bmatrix} - \begin{bmatrix} 3 & -6 & 9 \\ 6 & 9 & -3 \\ -9 & 3 & 6 \end{bmatrix} + \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} $ $ \begin{bmatrix} -12 & -5 & 11 \\ 11 & 4 & 1 \\ -7 & 11 & -6 \end{bmatrix} - \begin{bmatrix} 3 & -6 & 9 \\ 6 & 9 & -3 \\ -9 & 3 & 6 \end{bmatrix} + \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} $ $ \begin{bmatrix} -12-3+9 & -5+6+0 & 11-9+0 \\ 11-6+0 & 4-9+9 & 1+3+0 \\ -7+9+0 & 11-3+0 & -6-6+9 \end{bmatrix} $ | 1+½+1/2+1/2 |       |
|      |      | $\begin{bmatrix} -6 & 1 & 2 \\ 5 & 4 & 4 \\ 2 & 8 & -3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           | 4     |
|      | e)   | Resolve into partial fractions: $\frac{x^2 + 1}{2x^4 + 5x^2 + 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |       |
|      | Ans. | $\frac{x^2 + 1}{2x^4 + 5x^2 + 2} \qquad (Put \ x^2 = y)$ $= \frac{y + 1}{2y^2 + 5y + 2}$ $= \frac{y + 1}{(2y + 1)(y + 2)} = \frac{A}{2y + 1} + \frac{B}{y + 2}$ $\therefore \boxed{y + 1 = (y + 2)A + (2y + 1)B}$ $Put \ 2y + 1 = 0  or  y = -\frac{1}{2}$ $\therefore -\frac{1}{2} + 1 = \left(-\frac{1}{2} + 2\right)A + 0$                                                                                                                                                                                                                                                                       | 1           |       |
|      |      | $\therefore \frac{1}{2} = \frac{3}{2}A$ $\therefore \boxed{\frac{1}{3} = A}$ $Put  y + 2 = 0  or  y = -2$ $\therefore -2 + 1 = 0 + (-4 + 1)B$ $\therefore -1 = -3B$                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |       |
|      |      | $\therefore \boxed{\frac{1}{3} = B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |       |

### OF THE PARTY OF TH

### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104)

Page No: 13/34

| Subject | ubject & Code: Basic Maths (17104) Page N |                                                                                                                                                                                                                                        | ge No: 13/ | <b>No:</b> 13/34 |  |
|---------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|--|
| -       | Sub.<br>Que.                              | Model Answers                                                                                                                                                                                                                          | Marks      | Total<br>Marks   |  |
| 2)      | Que.                                      | $\therefore \frac{y+1}{2y^2 + 5y + 2} = \frac{\frac{1}{3}}{2y+1} + \frac{\frac{1}{3}}{y+2}$ $\therefore \frac{x^2 + 1}{2x^4 + 5x^2 + 2} = \frac{\frac{1}{3}}{2x^2 + 1} + \frac{\frac{1}{3}}{x^2 + 2}$                                  | 1/2        |                  |  |
| f       | ·)                                        | Resolve into partial fractions: $\frac{x^3 + x}{x^2 - 9}$                                                                                                                                                                              | -          | 4                |  |
|         | Ans.                                      | $\frac{x^3 + x}{x^2 - 9} = x + \frac{10x}{x^2 - 9}$ $\therefore \frac{10x}{x^2 - 9} = \frac{10x}{(x - 3)(x + 3)} = \frac{A}{x - 3} + \frac{B}{x + 3}$ $\therefore \boxed{10x = (x + 3)A + (x - 3)B}$ $Put \ x - 3 = 0 \ i.e., \ x = 3$ | 1          |                  |  |
|         |                                           | $\therefore 30 = 6A + 0$ $\therefore \boxed{5 = A}$ $Put  x + 3 = 0  i.e.,  x = -3$ $\therefore -30 = 0 - 6B$                                                                                                                          | 1          |                  |  |
|         |                                           | $\therefore \boxed{5 = B}$                                                                                                                                                                                                             | 1          |                  |  |
|         |                                           | $\therefore \frac{10x}{x^2 - 9} = \frac{5}{x - 3} + \frac{5}{x + 3}$                                                                                                                                                                   | 1/2        |                  |  |
|         |                                           | $\therefore \frac{x^3 + x}{x^2 - 9} = x + \frac{5}{x - 3} + \frac{5}{x + 3}$                                                                                                                                                           | 1/2        | 4                |  |
| 3)      |                                           | Attempt any FOUR of the following:                                                                                                                                                                                                     |            |                  |  |
| a       | a)                                        | Solve the equations $x+2y+3z=1$ , $2x+3y+2z=2$ , $3x+2y+4z=1$ by using matrix inversion method.                                                                                                                                        |            |                  |  |
| A       | Ans.                                      | x+2y+3z=1 $2x+3y+2z=2$ $3x+2y+4z=1$                                                                                                                                                                                                    |            |                  |  |



**Page No:** 14/34

| <b>Subject &amp; Code: Basic Maths</b> | (17104) |
|----------------------------------------|---------|
|----------------------------------------|---------|

| Que.          | Sub. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks | Total |
|---------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No. <b>3)</b> | Que. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Marks |
|               |      | $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 4 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad K = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ $\therefore  A  = 1(12 - 4) - 2(8 - 6) + 3(2 - 9) = -11$                                                                                                                                                                                                                                            | 1     |       |
|               |      | $C(A) = \begin{bmatrix} \begin{vmatrix} 3 & 2 \\ 2 & 4 \end{vmatrix} & - \begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} \\ - \begin{vmatrix} 2 & 3 \\ 2 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 3 & 4 \end{vmatrix} & - \begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} & - \begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} \end{bmatrix}$ | 1     |       |
|               |      | $= \begin{bmatrix} 8 & -2 & -5 \\ -2 & -5 & 4 \\ -5 & 4 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2   |       |
|               |      | OR The miner matrix of A is                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OR    |       |
|               |      | The minor matrix of A is $M(A) = \begin{bmatrix} 3 & 2 & 2 & 2 & 2 & 3 \\ 2 & 4 & 3 & 4 & 3 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 1 & 3 & 1 & 2 \\ 2 & 4 & 3 & 4 & 3 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 1 & 3 & 1 & 2 \\ 2 & 3 & 1 & 3 & 1 & 2 \\ 3 & 2 & 2 & 2 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 8 & 2 & -5 \end{bmatrix}$                                                                                                                                      | 1/2   |       |
|               |      | $= \begin{bmatrix} 8 & 2 & -5 \\ 2 & -5 & -4 \\ -5 & -4 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2   |       |
|               |      | $\begin{bmatrix} -5 & -4 & -1 \end{bmatrix}$ $\therefore \text{ the matix of cofactors is,}$ $\therefore C(A) = \begin{bmatrix} 8 & -2 & -5 \\ -2 & -5 & 4 \\ -5 & 4 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                              | 1/2   |       |
|               |      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OR    |       |
|               |      | The minors of matrix A are $\begin{vmatrix} A_{11} = \begin{vmatrix} 3 & 2 \\ 2 & 4 \end{vmatrix} = 8 \qquad A_{12} = -\begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = -2 \qquad A_{13} = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = -5$                                                                                                                                                                                                                                           |       |       |
|               |      | $\begin{vmatrix} A_{21} = -\begin{vmatrix} 2 & 3 \\ 2 & 4 \end{vmatrix} = -2 \qquad A_{22} = \begin{vmatrix} 1 & 3 \\ 3 & 4 \end{vmatrix} = -5 \qquad A_{23} = -\begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix} = 4$                                                                                                                                                                                                                                                                     | 1     |       |
|               |      | $\begin{vmatrix} A_{31} = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = -5 \qquad A_{32} = -\begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} = 4 \qquad A_{33} = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$                                                                                                                                                                                                                                                                      |       |       |



Subject & Code: Basic Maths (17104) **Page No:** 15/34

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                        | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| 3)          |              | ∴ the matix of cofactors is,<br>$∴ C(A) = \begin{bmatrix} 8 & -2 & -5 \\ -2 & -5 & 4 \\ -5 & 4 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                   | 1/2   |                |
|             |              | $\therefore adj(A) = \begin{bmatrix} 8 & -2 & -5 \\ -2 & -5 & 4 \\ -5 & 4 & -1 \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{-11} \begin{bmatrix} 8 & -2 & -5 \\ -2 & -5 & 4 \\ -5 & 4 & -1 \end{bmatrix}$ $\therefore X = A^{-1}K = \frac{1}{-11} \begin{bmatrix} 8 & -2 & -5 \\ -2 & -5 & 4 \\ -5 & 4 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ | 1/2   |                |
|             |              | $= \frac{1}{-11} \begin{bmatrix} -1\\ -8\\ 2 \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{11}\\ \frac{8}{11}\\ -\frac{2}{11} \end{bmatrix}$ $\therefore x = \frac{1}{11} \qquad y = \frac{8}{11} \qquad z = -\frac{2}{11}$                                                                                                                                             | 1/2   | 4              |
|             | b)           | Resolve into partial fractions: $\frac{x^2 + 23x}{(x-3)(x^2+1)}$                                                                                                                                                                                                                                                                                                     |       |                |
|             | Ans.         | $\frac{x^2 + 23x}{(x-3)(x^2+1)} = \frac{A}{x-3} + \frac{Bx+C}{x^2+1}$ $\therefore x^2 + 23x = (x-3)(x^2+1) \left[ \frac{A}{x-3} + \frac{Bx+C}{x^2+1} \right]$ $\therefore x^2 + 23x = (x^2+1)A + (x-3)(Bx+C)$                                                                                                                                                        |       |                |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104) Page No: 16/34

| Que. | Sub. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                   | Marks   | Total |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. |                                                                                                                                                                                                                                                                                                                                                                                                 | Iviaiks | Marks |
| 3)   |      | Put x = 3                                                                                                                                                                                                                                                                                                                                                                                       |         |       |
|      |      | $\therefore (3)^2 + 23(3) = ((3)^2 + 1)A + 0$                                                                                                                                                                                                                                                                                                                                                   |         |       |
|      |      | $\therefore 78 = 10A$                                                                                                                                                                                                                                                                                                                                                                           |         |       |
|      |      | $\therefore \boxed{\frac{39}{5} = A}$                                                                                                                                                                                                                                                                                                                                                           | 1       |       |
|      |      | $Put \ x = 0$                                                                                                                                                                                                                                                                                                                                                                                   |         |       |
|      |      | $\therefore 0^2 + 23(0) = (0^2 + 1)A + (0 - 3)(0 + C)$                                                                                                                                                                                                                                                                                                                                          |         |       |
|      |      | $\therefore 0 = A - 3C$                                                                                                                                                                                                                                                                                                                                                                         |         |       |
|      |      | $\therefore 0 = \frac{39}{5} - 3C$                                                                                                                                                                                                                                                                                                                                                              |         |       |
|      |      | $\therefore 3C = \frac{39}{5}$                                                                                                                                                                                                                                                                                                                                                                  |         |       |
|      |      | $\therefore C = \frac{13}{5}$                                                                                                                                                                                                                                                                                                                                                                   | 1       |       |
|      |      | Put x = 1                                                                                                                                                                                                                                                                                                                                                                                       |         |       |
|      |      | $\therefore 1^2 + 23(1) = (1^2 + 1)A + (1 - 3)(B + C)$                                                                                                                                                                                                                                                                                                                                          |         |       |
|      |      | $\therefore 24 = 2A - 2B - 2C$                                                                                                                                                                                                                                                                                                                                                                  |         |       |
|      |      | $\therefore 24 = 2\left(\frac{39}{5}\right) - 2B - 2\left(\frac{13}{5}\right)$                                                                                                                                                                                                                                                                                                                  |         |       |
|      |      | $\therefore 2B = 2\left(\frac{39}{5}\right) - 2\left(\frac{13}{5}\right) - 24$                                                                                                                                                                                                                                                                                                                  |         |       |
|      |      | $\therefore 2B = -\frac{68}{5}$                                                                                                                                                                                                                                                                                                                                                                 |         |       |
|      |      | $\therefore B = -\frac{34}{5}$                                                                                                                                                                                                                                                                                                                                                                  | 1       |       |
|      |      | $\therefore \frac{x^2 + 23x}{(x-3)(x^2+1)} = \frac{\frac{39}{5}}{x-3} + \frac{-\frac{34}{5}x + \frac{13}{5}}{x^2+1}$                                                                                                                                                                                                                                                                            | 1       | 4     |
|      |      | Note for Partial Fraction Methods: The above Q. 2 (e) & (f)                                                                                                                                                                                                                                                                                                                                     |         |       |
|      |      | problems of partial fractions could be solved by the method of "equating equal power coefficients" also. This method, illustrated in the solution of Q. 1 (e), is also applicable. Give appropriate marks in accordance with the scheme of marking. As this method is very tedious and complicated, hardly someone use this method in such cases. So such solution methods for partial fraction |         |       |



Subject & Code: Basic Maths (17104) **Page No:** 17/34

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                          | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------|-------|----------------|
| 3)          | Que.         |                                                                        |       | iviaiks        |
|             | c)           | Resolve into partial fractions: $\frac{e^x + 1}{2e^{2x} + 7e^x + 5}$   |       |                |
|             |              |                                                                        |       |                |
|             | Ans.         | $\frac{e^x + 1}{2e^{2x} + 7e^x + 5} \qquad \left(Put \ e^x = y\right)$ |       |                |
|             |              | $= \frac{y+1}{2y^2 + 7y + 5}$                                          | 1     |                |
|             |              | $=\frac{y+1}{(2y+5)(y+1)}$                                             |       |                |
|             |              |                                                                        | 1     |                |
|             |              | $=\frac{1}{2y+5}$                                                      | 1     |                |
|             |              | $=\frac{1}{2e^x+5}$                                                    | 1     |                |
|             |              | OR                                                                     |       | 4              |
|             |              | $\frac{e^x + 1}{2e^{2x} + 7e^x + 5} \qquad \left(Put \ e^x = y\right)$ |       |                |
|             |              | $= \frac{y+1}{2y^2 + 7y + 5}$                                          | 1     |                |
|             |              | $= \frac{y+1}{(2y+5)(y+1)} = \frac{A}{2y+5} + \frac{B}{y+1}$           |       |                |
|             |              | $\therefore y+1=(y+1)A+(2y+5)B$                                        |       |                |
|             |              | $Put 2y + 5 = 0 \qquad \therefore y = -\frac{5}{2}$                    |       |                |
|             |              | $\therefore -\frac{5}{2} + 1 = \left(-\frac{5}{2} + 1\right)A + 0$     |       |                |
|             |              | $\therefore -\frac{3}{2} = -\frac{3}{2}A$                              |       |                |
|             |              | $\therefore \boxed{1=A}$                                               | 1     |                |
|             |              | $Put  y+1=0 \qquad \therefore y=-1$                                    |       |                |
|             |              | $\therefore -1+1=0+(-2+5)B$                                            |       |                |
|             |              | $\therefore 0 = 3B$ $\therefore \boxed{0 = B}$                         | 1     |                |
|             |              | $\therefore \frac{y+1}{2y^2+7y+5} = \frac{1}{2y+5} + \frac{0}{y+1}$    | 1/2   |                |
|             |              |                                                                        |       |                |
|             |              | $\therefore \frac{e^x + 1}{2e^{2x} + 7e^x + 5} = \frac{1}{2e^x + 5}$   | 1/2   | 4              |



**Page No:** 18/34

### Subject & Code: Basic Maths (17104)

| Que. | Sub. | Madal Amazirana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mau1  | Total |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks | Marks |
| 3)   | d)   | Prove that $sin(A+B) = sin A.cos B + cos A.sin B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |
|      | Ans. | $\bigcap_{Q} A+B$ $R$ $R$ $N$ $M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |       |
|      |      | $\sin(A+B) = \frac{QN}{OQ}$ $= \frac{QR + RN}{OQ}$ $= \frac{QR + PM}{OQ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1     |       |
|      |      | $= \frac{QR}{OQ}$ $= \frac{QR}{OQ} + \frac{PM}{OQ}$ $= \frac{QR}{PQ} \times \frac{PQ}{OQ} + \frac{PM}{OP} \times \frac{OP}{OQ}$ $= \cos A \cdot \sin B + \sin A \cdot \cos B$                                                                                                                                                                                                                                                                                                                                                                                 | 1     | 4     |
|      |      | Note: The above is proved by different ways in several books.  Consider all these proof but check whether the method is falling within the scope of curriculum and give appropriate marks in accordance with the scheme of marking. In accordance with the Teacher's Manual published by MSBTE, the result is treated as Fundamental Result which is not proved by the help of any another result. If the above result is proved by students using any another result, suppose using cos (A+B), then this result i.e., cos (A+B) must have been proved first. |       |       |
|      | e)   | Prove that $2\cot^{-1}(3) + \cos ec^{-1}(\frac{5}{4}) = \frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |
|      | Ans. | $2\cot^{-1}(3) = 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{2\cdot\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}\right) = \tan^{-1}\left(\frac{3}{4}\right)$                                                                                                                                                                                                                                                                                                                                                                                       | 1+1   |       |



Subject & Code: Basic Maths (17104) **Page No:** 19/34

| Que. | Sub. | Model Answers                                                                                                                                        | Marks   | Total |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. | WIOUCI ATISWEIS                                                                                                                                      | IVIAINS | Marks |
| 3)   |      | OR                                                                                                                                                   | OR      |       |
|      |      | $2\cot^{-1}(3) = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{3}\right)$                                                              |         |       |
|      |      | $= \tan^{-1} \left( \frac{\frac{1}{3} + \frac{1}{3}}{1 - \left(\frac{1}{3}\right)\left(\frac{1}{3}\right)} \right)$                                  | 1       |       |
|      |      | $= \tan^{-1} \left( \frac{3}{4} \right)$                                                                                                             | 1       |       |
|      |      | Let $A = \cos ec^{-1}\left(\frac{5}{4}\right)$                                                                                                       |         |       |
|      |      | $\therefore \cos ecA = \frac{5}{4}$                                                                                                                  |         |       |
|      |      | 5<br>A<br>3                                                                                                                                          |         |       |
|      |      | $\therefore 2\cot^{-1}\left(3\right) + \cos ec^{-1}\left(\frac{5}{4}\right) = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{4}{3}\right)$ |         |       |
|      |      | $= \tan^{-1} \left( \frac{\frac{3}{4} + \frac{4}{3}}{1 - \left(\frac{3}{4}\right)\left(\frac{4}{3}\right)} \right)$ $= \tan^{-1} \left(\cos\right)$  | 1       |       |
|      |      | $= \tan^{-1}(\infty)$                                                                                                                                |         |       |
|      |      | $=\frac{\pi}{2}$                                                                                                                                     | 1       |       |
|      |      | OR                                                                                                                                                   | OR      |       |
|      |      | $\therefore 2\cot^{-1}(3) + \cos ec^{-1}\left(\frac{5}{4}\right) = \tan^{-1}\left(\frac{3}{4}\right) + \cot^{-1}\left(\frac{3}{4}\right)$            | 1       |       |
|      |      | $=\frac{\pi}{2}$                                                                                                                                     | 1       | 4     |
|      |      | Note that the result $\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}$ can be used directly                                                              |         |       |

Subject & Code: Basic Maths (17104) **Page No:** 20/34

| Que. | Sub. |                                                                                                                                  |       | Total |
|------|------|----------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model Answers                                                                                                                    | Marks | Marks |
| 3)   | f)   | Prove that $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$                                                                    |       |       |
|      | Ans. | $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \frac{\pi}{4} + \tan^{-1}(2) + \tan^{-1}(3)$                                       | 1     |       |
|      |      | $= \frac{\pi}{4} + \pi + \tan^{-1} \left( \frac{2+3}{1-2\cdot 3} \right)$                                                        | 1     |       |
|      |      | $=\frac{\pi}{4}+\pi+\tan^{-1}\left(-1\right)$                                                                                    | 1     |       |
|      |      | $=\frac{\pi}{4}+\pi-\frac{\pi}{4}$                                                                                               | 1/2   | 4     |
|      |      | $=\pi$                                                                                                                           | 1/2   |       |
|      |      | OR                                                                                                                               |       |       |
|      |      | $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi + \tan^{-1}\left(\frac{1+2}{1-1\cdot 2}\right) + \tan^{-1}(3)$                 | 1     |       |
|      |      | $= \pi + \tan^{-1}(-3) + \tan^{-1}(3)$                                                                                           | 1     |       |
|      |      | $= \pi - \tan^{-1}(3) + \tan^{-1}(3)$                                                                                            | 1     |       |
|      |      | $=\pi$                                                                                                                           | 1     | 4     |
|      |      | OR                                                                                                                               |       |       |
|      |      | $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \tan^{-1}(1) + \pi + \tan^{-1}\left(\frac{2+3}{1-2\cdot 3}\right)$                 | 1     |       |
|      |      | $= \tan^{-1}(1) + \pi + \tan^{-1}(-1)$                                                                                           | 1     |       |
|      |      | $= \tan^{-1}(1) + \pi - \tan^{-1}(1)$                                                                                            | 1     |       |
|      |      | $=\pi$                                                                                                                           | 1     | 4     |
| 4)   |      | Attempt any FOUR of the following.                                                                                               |       |       |
|      |      | Without using the calculator, find the value of                                                                                  |       |       |
|      | a)   | $\frac{4}{3\tan^2 30^{\circ}} + 3\sin^2 120^{\circ} - \cos ec^2 30^{\circ} - \frac{3}{4\cot^2 120^{\circ}} + \cos^2 270^{\circ}$ |       |       |
|      | Ans. | $\tan^2 30^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}$                                                              | 1/2   |       |
|      |      | $\sin 120^{\circ} = \sin (90^{\circ} + 30^{\circ}) = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$                                       | 1/2   |       |
|      |      |                                                                                                                                  |       |       |

**Page No:** 21/34

### Subject & Code: Basic Maths (17104)

| Que.   | Sub.    | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks                   | Total   |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| No. 4) | Que.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2 1/2 1/2 1/2 1/2 1/2 | Marks 4 |
|        | b) Ans. | Prove that $\frac{\cos 3A + 2\cos 5A + \cos 7A}{\cos A + 2\cos 3A + \cos 5A} = \cos 2A - \sin 2A \tan 3A$ $\frac{\cos 3A + 2\cos 5A + \cos 7A}{\cos A + 2\cos 3A + \cos 5A} = \frac{\cos 3A + \cos 7A + 2\cos 5A}{\cos A + \cos 5A + 2\cos 3A}$ $= \frac{2\cos 5A\cos(-2A) + 2\cos 5A}{2\cos 3A\cos(-2A) + 2\cos 3A}$ $= \frac{\cos 5A\left[2\cos(-2A) + 2\right]}{\cos 3A\left[2\cos(-2A) + 2\right]}$ $= \frac{\cos 5A}{\cos 3A}$ $= \frac{\cos 5A}{\cos 3A}$ $= \frac{\cos 5A}{\cos 3A}$ | 1 1 1/2                 |         |

Subject & Code: Basic Maths (17104)

**Page No:** 22/34

| Que. | Sub. |                                                                                                                                                                                                                                                                                                                  |       | Total |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model Answers                                                                                                                                                                                                                                                                                                    | Marks | Marks |
| 4)   |      | $= \frac{\cos 2A \cos 3A - \sin 2A \sin 3A}{\cos 3A}$ $= \cos 2A - \sin 2A \tan 3A$                                                                                                                                                                                                                              | 1 1/2 | 4     |
|      | c)   | Prove that (in $\triangle ABC$ ), $\tan A + \tan B + \tan C = \tan A \tan B \tan C$                                                                                                                                                                                                                              |       |       |
|      | Ans. | We have, $A+B+C=180^{\circ}$ or $\pi$<br>$\therefore A+B=180^{\circ}-C$ $\therefore \tan(A+B) = \tan(180^{\circ}-C)$ $\tan A + \tan B$                                                                                                                                                                           | 1     |       |
|      |      | $\therefore \frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C$ $\therefore \tan A + \tan B = -\tan C \left[ 1 - \tan A \tan B \right]$ $\therefore \tan A + \tan B = -\tan C + \tan A \tan B \tan C$                                                                                                           | 1     |       |
|      | d)   | $\therefore \tan A + \tan B + \tan C = \tan A \tan B \tan C$ Prove that $\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$                                                                                                                                                               | 1     | 4     |
|      | Ans. | $\tan 3\theta = \tan (\theta + 2\theta)$ $= \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta}$ $= \frac{\tan \theta + \frac{2 \tan \theta}{1 - \tan^2 \theta}}{1 - \tan \theta \left(\frac{2 \tan \theta}{1 - \tan^2 \theta}\right)}$ $\tan \theta \left(1 - \tan^2 \theta\right) + 2 \tan \theta$ | 1     |       |
|      |      | $= \frac{\frac{1 - \tan^2 \theta}{1 - \tan^2 \theta - \tan \theta (2 \tan \theta)}}{1 - \tan^2 \theta}$ $= \frac{\tan \theta - \tan^3 \theta + 2 \tan \theta}{1 - \tan^2 \theta - 2 \tan^2 \theta}$ $= \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$                                                | 1     | 4     |



Subject & Code: Basic Maths (17104) **Page No:** 23/34

| Que. | Sub. |                                                                                                                                                        |       | Total |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model Answers                                                                                                                                          | Marks | Marks |
| 4)   | e)   | Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$                             |       |       |
|      | Ans. | $A = \cos^{-1}\left(\frac{4}{5}\right) \qquad B = \cos^{-1}\left(\frac{12}{13}\right)$ $\therefore \cos A = \frac{4}{5} \qquad \cos B = \frac{12}{13}$ |       |       |
|      |      | 5<br>A<br>4<br>13<br>5<br>12                                                                                                                           |       |       |
|      |      | $\cos(A+B) = \cos A \cos B - \sin A \sin B$                                                                                                            | 1     |       |
|      |      | $=\frac{4}{5} \times \frac{12}{13} - \frac{3}{5} \times \frac{5}{13}$                                                                                  | 1     |       |
|      |      | $=\frac{33}{65}$                                                                                                                                       | 1     |       |
|      |      | $\therefore A + B = \cos^{-1}\left(\frac{33}{65}\right)$                                                                                               | 1/2   |       |
|      |      | $\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$                             | 1/2   | 4     |
|      | f)   | If $\tan x = \frac{5}{6}$ , $\tan y = \frac{1}{11}$ , show that $x + y = \frac{\pi}{4}$                                                                |       |       |
|      | Ans. | $\tan x = \frac{5}{6}$ , $\tan y = \frac{1}{11}$                                                                                                       |       |       |
|      |      | $\therefore x = \tan^{-1}\left(\frac{5}{6}\right),  y = \tan^{-1}\left(\frac{1}{11}\right)$                                                            |       |       |
|      |      | $\therefore x + y = \tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right)$                                                            | 1     |       |
|      |      | $= \tan^{-1} \left( \frac{\frac{5}{6} + \frac{1}{11}}{1 - \left(\frac{5}{6}\right) \left(\frac{1}{11}\right)} \right)$                                 | 1     |       |
|      |      | $=\tan^{-1}\left(1\right)$                                                                                                                             | 1     |       |
|      |      | $=\frac{\pi}{4}$                                                                                                                                       | 1     | 4     |

**Page No:** 24/34

| Subject & Code: Basic Maths | (17104) | į |
|-----------------------------|---------|---|
|-----------------------------|---------|---|

| Que. | Sub. | Model Answers                                                                                                                                                                                                                      | Marks   | Total |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. | Wiodel / Miswers                                                                                                                                                                                                                   | IVIAINS | Marks |
| 4)   |      | $\tan x = \frac{5}{6}, \ \tan y = \frac{1}{11}$ $\therefore \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$ $= \frac{\frac{5}{6} + \frac{1}{11}}{1 - \left(\frac{5}{6}\right)\left(\frac{1}{11}\right)}$                    | 1       |       |
|      |      | $= 1$ $\therefore x + y = \tan^{-1}(1) = \frac{\pi}{4}$                                                                                                                                                                            | 1       | 4     |
| 5)   |      | Attempt any FOUR of the following.                                                                                                                                                                                                 |         |       |
|      | a)   | Without using calculator prove that                                                                                                                                                                                                |         |       |
|      |      | $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$                                                                                                                                                   |         |       |
|      | Ans. | $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \cos 20^{\circ} \cos 40^{\circ} \left(\frac{1}{2}\right) \cos 80^{\circ}$ $= \frac{1}{2} \cdot \frac{1}{2} (2 \cos 20^{\circ} \cos 40^{\circ}) \cos 80^{\circ}$ | 1/2     |       |
|      |      | $= \frac{1}{4} (\cos 60^{\circ} + \cos 20^{\circ}) \cos 80^{\circ}$                                                                                                                                                                | 1/2     |       |
|      |      | $= \frac{1}{4} \left( \frac{1}{2} + \cos 20^{\circ} \right) \cos 80^{\circ}$ $= \frac{1}{4} \left( \frac{1}{2} \cos 80^{\circ} + \cos 80^{\circ} \cos 20^{\circ} \right)$                                                          | 1/2     |       |
|      |      | $= \frac{1}{4} \left( \frac{1}{2} \cos 80^{\circ} + \cos 80^{\circ} \cos 20^{\circ} \right)$ $= \frac{1}{4} \left( \frac{1}{2} \cos 80^{\circ} + \frac{1}{2} \cdot 2 \cos 80^{\circ} \cos 20^{\circ} \right)$                      |         |       |
|      |      | $= \frac{1}{4} \cdot \frac{1}{2} \left[ \cos 80^{\circ} + (\cos 100^{\circ} + \cos 60^{\circ}) \right]$                                                                                                                            | 1/2     |       |
|      |      | $= \frac{1}{8} \left[ \cos 80^{\circ} + \cos 100^{\circ} + \frac{1}{2} \right]$                                                                                                                                                    | 1/2     |       |
|      |      | $= \frac{1}{8} \left[ 2 \cos 90^{\circ} \cos \left( -10^{\circ} \right) + \frac{1}{2} \right]$                                                                                                                                     | 1/2     |       |
|      |      | $=\frac{1}{8}\left\lfloor 0+\frac{1}{2}\right\rfloor$                                                                                                                                                                              | 1/2     |       |
|      |      | $=\frac{1}{16}$                                                                                                                                                                                                                    | 1/2     | 4     |

Subject & Code: Basic Maths (17104) **Page No:** 25/34

| Que. | Sub. | Model Answers                                                                                                                                                                                                                                                                                                          | Marks   | Total |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. | Wiodel Thoweld                                                                                                                                                                                                                                                                                                         | IVIAINS | Marks |
| 5)   |      | Note The above problem may also be solved by making various combinations of cosine ratios. Consequently the solutions vary in accordance with the combinations. Please give the appropriate marks in accordance with the scheme of marking. For the sake of convenience one of the solutions is illustrated hereunder. |         |       |
|      |      | $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \cos 20^{\circ} \cos 40^{\circ} \left(\frac{1}{2}\right) \cos 80^{\circ}$                                                                                                                                                                           | 1/2     |       |
|      |      | $= \frac{1}{2} \cdot \frac{1}{2} (2\cos 40^{\circ} \cos 80^{\circ}) \cos 20^{\circ}$                                                                                                                                                                                                                                   |         |       |
|      |      | $= \frac{1}{4} (\cos 120^{\circ} + \cos 40^{\circ}) \cos 20^{\circ}$ $= \frac{1}{4} (\cos 120^{\circ} + \cos 40^{\circ}) \cos 20^{\circ}$                                                                                                                                                                              | 1/2     |       |
|      |      | $= \frac{1}{4} (\cos(90^{\circ} + 30^{\circ}) + \cos 40^{\circ}) \cos 20^{\circ}$ $= \frac{1}{4} (-\sin 30^{\circ} + \cos 40^{\circ}) \cos 20^{\circ}$                                                                                                                                                                 |         |       |
|      |      | $= \frac{1}{4} \left( -\frac{1}{2} + \cos 40^{\circ} \right) \cos 20^{\circ}$                                                                                                                                                                                                                                          | 1/2     |       |
|      |      | $= \frac{1}{4} \left( -\frac{1}{2} \cos 20^{\circ} + \cos 20^{\circ} \cos 40^{\circ} \right)$                                                                                                                                                                                                                          | /2      |       |
|      |      | $= \frac{1}{4} \left( -\frac{1}{2} \cos 20^{\circ} + \frac{1}{2} \cdot 2 \cos 20^{\circ} \cos 40^{\circ} \right)$                                                                                                                                                                                                      |         |       |
|      |      | $= \frac{1}{4} \cdot \frac{1}{2} \left[ -\cos 20^{\circ} + \cos 60^{\circ} + \cos \left( -20^{\circ} \right) \right]$                                                                                                                                                                                                  | 1/2     |       |
|      |      | $= \frac{1}{8} \left[ -\cos 20^{\circ} + \frac{1}{2} + \cos 20^{\circ} \right]$                                                                                                                                                                                                                                        | 1/2     |       |
|      |      | $=\frac{1}{8} \left\lfloor \frac{1}{2} \right\rfloor$                                                                                                                                                                                                                                                                  | 1/2     |       |
|      |      | $=\frac{1}{16}$                                                                                                                                                                                                                                                                                                        | 1/2     | 4     |
|      |      |                                                                                                                                                                                                                                                                                                                        |         |       |
|      |      |                                                                                                                                                                                                                                                                                                                        |         |       |
|      |      |                                                                                                                                                                                                                                                                                                                        |         |       |
|      |      |                                                                                                                                                                                                                                                                                                                        |         |       |

**Page No:** 26/34

| Subject & Code: Basic Maths | (17104) |
|-----------------------------|---------|
|-----------------------------|---------|

| Que. | Sub. | Model Answers                                                                                                                                                                                                                                                                             | Marks | Total |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Wiodel Miswers                                                                                                                                                                                                                                                                            | Walks | Marks |
| 5)   | b)   | Prove that $\frac{\sin 4x + \sin 5x + \sin 6x}{\cos 4x + \cos 5x + \cos 6x} = \tan 5x$                                                                                                                                                                                                    |       |       |
|      | Ans. | $\frac{\sin 4x + \sin 5x + \sin 6x}{\cos 4x + \cos 5x + \cos 6x} = \frac{\sin 4x + \sin 6x + \sin 5x}{\cos 4x + \cos 6x + \cos 5x}$ $= \frac{2\sin 5x \cos(-x) + \sin 5x}{2\cos 5x \cos(-x) + \cos 5x}$ $= \frac{\sin 5x \left[2\cos(-x) + 1\right]}{\cos 5x \left[2\cos(-x) + 1\right]}$ | 1+1   |       |
|      |      | $= \tan 5x$                                                                                                                                                                                                                                                                               | 1     | 4     |
|      | c)   | Prove that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right)$ , $x > 0$ , $y > 0$ , $xy < 1$                                                                                                                                                                         |       |       |
|      | Ans. | $Put \tan^{-1} x = A  and  \tan^{-1} y = B$                                                                                                                                                                                                                                               |       |       |
|      |      | $\therefore x = \tan A \qquad and \qquad y = \tan B$                                                                                                                                                                                                                                      |       |       |
|      |      | $\therefore \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$                                                                                                                                                                                                                        | 1     |       |
|      |      | $=\frac{x+y}{1-xy}$                                                                                                                                                                                                                                                                       | 1     |       |
|      |      | $\therefore A + B = \tan^{-1} \left( \frac{x + y}{1 - xy} \right)$                                                                                                                                                                                                                        | 1     |       |
|      |      | $\therefore \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right)$                                                                                                                                                                                                        | 1     | 4     |
|      | d)   | Find the equation of a straight line passing through (2, 5) and the point of intersection of the lines $x + y = 0$ , $2x - y = 9$ .                                                                                                                                                       |       |       |
|      | Ans. | x + y = 0                                                                                                                                                                                                                                                                                 |       |       |
|      |      | 2x - y = 9                                                                                                                                                                                                                                                                                |       |       |
|      |      | $\therefore 3x = 9$                                                                                                                                                                                                                                                                       |       |       |
|      |      | $\therefore x = 3$                                                                                                                                                                                                                                                                        | 1     |       |
|      |      | y = -3                                                                                                                                                                                                                                                                                    | 1     |       |
|      |      | $\therefore Point of intersection = (3, -3)$                                                                                                                                                                                                                                              |       |       |
|      |      |                                                                                                                                                                                                                                                                                           |       |       |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Subject & Code: Basic Maths (17104) | Page No: 27/34 |
|-------------------------------------|----------------|
| ·                                   | •              |

| Que. | Sub. | 26.114                                                                                            | 3.6.1   | Total |
|------|------|---------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. | Model Answers                                                                                     | Marks   | Marks |
| 5)   |      | ∴ equation is,                                                                                    |         |       |
|      |      |                                                                                                   |         |       |
|      |      | $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$                                           |         |       |
|      |      | $\therefore \frac{y-5}{-3-5} = \frac{x-2}{3-2}$                                                   | 1       |       |
|      |      |                                                                                                   | 1       |       |
|      |      | $\therefore 8x + y - 21 = 0$                                                                      | 1       |       |
|      |      | OR                                                                                                | OR      |       |
|      |      | $\therefore \text{ Point of intersection} = (3, -3)$                                              |         |       |
|      |      | $\therefore Slope  m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 5}{3 - 2} = -8$                   | 1       |       |
|      |      | ∴ equation is,                                                                                    |         |       |
|      |      | $y - y_1 = m(x - x_1)$                                                                            |         |       |
|      |      | $\therefore y - 5 = -8(x - 2)$                                                                    | 1/2     |       |
|      |      | $\therefore 8x + y - 21 = 0$                                                                      | 1/2     | 4     |
|      | e)   | Find the equation of the straight line passing through (-3, 10) and sum of their intercepts is 8. |         |       |
|      | Ans. | Let $x-int = a$ $y-int = b$                                                                       |         |       |
|      |      | $\therefore a+b=8$                                                                                |         |       |
|      |      | ∴ equation is                                                                                     |         |       |
|      |      | $\frac{x}{a} + \frac{y}{b} = 1 \qquad or \qquad \frac{x}{a} + \frac{y}{8-a} = 1$                  |         |       |
|      |      | $\therefore bx + ay = ab$                                                                         |         |       |
|      |      | $\therefore (8-a)x + ay = a(8-a)$                                                                 | 1       |       |
|      |      | But passing through $(-3, 10)$                                                                    |         |       |
|      |      | $\therefore -3(8-a)+10a=a(8-a)$                                                                   | 1       |       |
|      |      | $\therefore -24 + 3a + 10a = 8a - a^2$                                                            |         |       |
|      |      | $\therefore a^2 + 5a - 24 = 0$                                                                    | 1/ . 1/ |       |
|      |      | $\therefore a = 3, -8$                                                                            | 1/2+1/2 |       |
|      |      | $\therefore \frac{x}{3} + \frac{y}{5} = 1$ or $\frac{x}{-8} + \frac{y}{16} = 1$                   | 1/2+1/2 | 4     |
|      |      |                                                                                                   |         |       |
|      |      |                                                                                                   |         |       |
|      |      |                                                                                                   |         |       |

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Subject & Code: Basic Maths (17104) | <b>Page No:</b> 28/34 |
|-------------------------------------|-----------------------|
|-------------------------------------|-----------------------|

| Que. | Sub. | Model Answers                                                                                              | Marks | Total |
|------|------|------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | WIOUCI / HISWCIS                                                                                           | Marks | Marks |
| 5)   | f)   | Find the acute angle between the lines $2x+3y=13$ , $2x-5y+7=0$                                            |       |       |
|      | Ans. | For $2x + 3y = 13$ ,                                                                                       |       |       |
|      |      | $slope \ m_1 = -\frac{a}{b} = -\frac{2}{3}$                                                                | 1     |       |
|      |      | For $2x - 5y + 7 = 0$ ,                                                                                    |       |       |
|      |      | slope $m_1 = -\frac{a}{b} = -\frac{2}{-5} = \frac{2}{5}$                                                   | 1     |       |
|      |      | $\therefore \tan \theta = \left  \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $                              |       |       |
|      |      | $= \frac{-\frac{2}{3} - \frac{2}{5}}{1 + \left(-\frac{2}{3}\right) \cdot \left(\frac{2}{5}\right)}$        | 1     |       |
|      |      | $=\frac{16}{11}$ or 1.455                                                                                  | 1/2   |       |
|      |      | $\therefore \theta = \tan^{-1} \left( \frac{16}{11} \right)  or  \tan^{-1} \left( 1.455 \right)$           | 1/2   | 4     |
| 6)   |      | Attempt any FOUR of the following.                                                                         |       |       |
|      | a)   | Find the equation of straight line passing through $(5, 6)$ and making an angle $150^{\circ}$ with x-axis. |       |       |
|      | Ans. | Given $\theta = 150^{\circ}$                                                                               |       |       |
|      |      | $\therefore slope \ m = \tan \theta = \tan 150^{\circ}$                                                    | 1     |       |
|      |      | $=-\frac{1}{\sqrt{3}}$                                                                                     | 1     |       |
|      |      | $\therefore equation is$ $y - y_1 = m(x - x_1)$                                                            |       |       |
|      |      | $\therefore y - 6 = -\frac{1}{\sqrt{3}}(x - 5)$                                                            | 1     |       |
|      |      | $\therefore \sqrt{3}y - 6\sqrt{3} = -x + 5$                                                                |       |       |
|      |      | $\therefore x + \sqrt{3}y - 6\sqrt{3} - 5 = 0$                                                             | 1     | 4     |

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104) Page No: 29/34

| Que.          | Sub. | Model Answers                                                                                                                                                                                                                                                                              | Marks                                                   | Total |
|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------|
| No. <b>6)</b> | Que. |                                                                                                                                                                                                                                                                                            |                                                         | Marks |
| 0)            |      | $ \begin{array}{l} \therefore equation \ is \\ y - y_1 = \tan \theta (x - x_1) \\ \therefore y - 6 = \tan 150^{\circ} (x - 5) \\ \therefore y - 6 = -\frac{1}{\sqrt{3}} (x - 5) \\ \therefore \sqrt{3}y - 6\sqrt{3} = -x + 5 \\ \therefore x + \sqrt{3}y - 6\sqrt{3} - 5 = 0 \end{array} $ | 1 2                                                     | 4     |
|               |      |                                                                                                                                                                                                                                                                                            |                                                         | 4     |
|               | b)   | If the length of perpendicular from (5, 4) on the straight line $2x + y + k = 0$ is $4\sqrt{5}$ units. Find the value of k.                                                                                                                                                                |                                                         |       |
|               | Ans. | $p = \left  \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $                                                                                                                                                                                                                              |                                                         |       |
|               |      | $\therefore 4\sqrt{5} = \left  \frac{2(5) + 4 + k}{\sqrt{2^2 + 1^2}} \right $ $\therefore 4\sqrt{5} = \left  \frac{14 + k}{\sqrt{5}} \right $ $\therefore 4\sqrt{5} \cdot \sqrt{5} =  14 + k $                                                                                             | 1                                                       |       |
|               |      | $\therefore 20 =  14 + k $                                                                                                                                                                                                                                                                 | 1                                                       |       |
|               |      | $\therefore 20 = 14 + k \qquad or \qquad -20 = 14 + k$                                                                                                                                                                                                                                     | $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$ |       |
|               |      | $\therefore \boxed{6=k} \qquad or \qquad \boxed{-34=k}$                                                                                                                                                                                                                                    | 1/2 + 1/2                                               | 4     |
|               | c)   | The scores of two batsmen A and B in ten innings during a certain season are as under:    A   32   28   47   63   71   39   10   60   96   14       B   19   31   48   53   67   90   10   62   40   80     Find which of the two between in more consisting in certains.                  |                                                         |       |
|               |      | Find which of the two batsmen is more consisting in scoring (use coefficient of variance).                                                                                                                                                                                                 |                                                         |       |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104) Page No: 30/34

| Que. | Sub. | M - J - 1 A                                                                                                                                                                                                                                                                                                                                                                                        | M1                                              | Total |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------|
| No.  | Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                      | Marks                                           | Marks |
| 6)   |      | For Batsman A:                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |       |
|      |      | $ \begin{array}{c cccc} x_i & x_i^2 \\ 32 & 1024 \\ 28 & 784 \\ 47 & 2209 \\ 63 & 3969 \\ \hline 71 & 5041 \\ 39 & 1521 \\ \hline 10 & 100 \\ 60 & 3600 \\ 96 & 9216 \\ \hline 14 & 196 \\ \hline 460 & 27660 \end{array} $ $ \overline{x} = \frac{460}{10} = 46 $ $ \sigma = \sqrt{\frac{27660}{10} - \left(\frac{460}{10}\right)^2} = 25.495 $ $ CV(A) = \frac{25.495}{46} \times 100 = 55.424 $ | 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> |       |
|      |      | $CV(A) = \frac{25.495}{46} \times 100 = 55.424$<br>For Batsman B:                                                                                                                                                                                                                                                                                                                                  | ,-                                              |       |
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |       |
|      |      | $\frac{1}{x} = \frac{500}{10} = 50$                                                                                                                                                                                                                                                                                                                                                                | 1/2                                             |       |
|      |      | $\sigma = \sqrt{\frac{30968}{10} - \left(\frac{500}{10}\right)^2} = 24.429$ $CV(B) = \frac{24.429}{50} \times 100 = 48.858$                                                                                                                                                                                                                                                                        | 1/2                                             |       |
|      |      | $CV(B) = \frac{24.429}{50} \times 100 = 48.858$                                                                                                                                                                                                                                                                                                                                                    | 1/2                                             |       |



### Subject & Code: Basic Maths (17104) **Page No:** 31/34

| Out         | Sub. |                                                                       |                    |                  |          |                  |          |          |          |          |       | Total |
|-------------|------|-----------------------------------------------------------------------|--------------------|------------------|----------|------------------|----------|----------|----------|----------|-------|-------|
| Que.<br>No. | Que. |                                                                       |                    | Mod              | del Aı   | nswer            | S        |          |          |          | Marks | Marks |
| 6)          |      | $\cdot CV(D) \cdot CV(A)$                                             | 1/2                |                  |          |                  |          |          |          |          |       |       |
|             |      | $\therefore CV(B) < CV(A)$ $\therefore B \text{ is more consistent.}$ |                    |                  |          |                  |          |          |          |          |       | 4     |
|             |      | B is more consis                                                      | 1/2                | 4                |          |                  |          |          |          |          |       |       |
|             |      |                                                                       |                    |                  |          |                  |          |          |          |          |       |       |
|             | d)   | Find the range an                                                     |                    |                  |          |                  |          |          |          |          |       |       |
|             |      | Mada                                                                  | 20-                | 30-              | 40-      | 50-              | 60-      | 70-      | 80-      | 90-      |       |       |
|             |      | Marks No. of Students                                                 | 29<br>10           | 39<br>15         | 49<br>16 | 59<br>20         | 69<br>21 | 79<br>22 | 89<br>09 | 99<br>08 |       |       |
|             |      | No. of Students                                                       | 10                 | 13               | 16       | 20               | 21       | 22       | 09       | 06       |       |       |
|             | Ans. | $L = 99 \qquad S = 20$                                                |                    |                  |          |                  |          |          |          |          |       |       |
|             |      | Difference between                                                    | ı two              | sets =           | D = 1    |                  |          |          |          |          |       |       |
|             |      | $\therefore Range = L - S + R$                                        |                    |                  |          |                  |          |          |          |          |       |       |
|             |      | =99-20+                                                               | 1                  |                  |          |                  |          |          |          |          | 1 1   |       |
|             |      | = 80                                                                  | 7                  | C + D            |          |                  |          |          |          |          |       |       |
|             |      | Coeff. of Range =                                                     | $\frac{L-c}{I}$    | $\frac{S+D}{+S}$ |          |                  |          |          |          |          |       |       |
|             |      |                                                                       |                    |                  |          |                  |          |          |          |          | 1     |       |
|             |      | $=\frac{99-20+1}{99+20}$                                              |                    |                  |          |                  |          |          |          |          |       |       |
|             |      | $=\frac{80}{119}$ or 0.672                                            |                    |                  |          |                  |          |          |          |          | 1     | 4     |
|             |      | 11                                                                    | 19                 |                  |          |                  |          |          |          |          |       |       |
|             |      |                                                                       |                    |                  | OR       |                  |          |          |          |          |       |       |
|             |      |                                                                       |                    | Class            |          | nt. Cl           |          |          |          |          |       |       |
|             |      |                                                                       |                    | 20-29<br>30-39   |          | 9.5-29<br>9.5-39 |          |          |          |          |       |       |
|             |      |                                                                       |                    | 40-49            |          | 9.5-49           |          |          |          |          |       |       |
|             |      |                                                                       |                    | 50-59            | _        | 9.5-59           |          |          |          |          |       |       |
|             |      |                                                                       |                    | 60-69            |          | 9.5-69           |          |          |          |          |       |       |
|             |      |                                                                       |                    | 70-79<br>80-89   | _        | 9.5-79<br>9.5-89 |          |          |          |          |       |       |
|             |      |                                                                       |                    | 90-99            |          | 9.5 <b>-</b> 99  |          |          |          |          |       |       |
|             |      | L = 99.5                                                              | = 19               | 0.5              |          |                  |          |          |          |          |       |       |
|             |      | $\therefore Range = L - S$                                            |                    |                  |          |                  |          |          |          |          |       |       |
|             |      | = 99.5 – 19.                                                          | 5                  |                  |          |                  |          |          |          |          | 1     |       |
|             |      | = 80                                                                  | 7                  | a                |          |                  |          |          |          |          | 1     |       |
|             |      | Coeff. of Range = $\frac{L-S}{L+S}$                                   |                    |                  |          |                  |          |          |          |          |       |       |
|             |      |                                                                       | $\frac{L+1}{9.5-}$ |                  |          |                  |          |          |          |          | 1     |       |
|             |      | $=\frac{3}{99}$                                                       | 9.5+               | 19.5             |          |                  |          |          |          |          |       |       |
|             |      | $=\frac{8}{11}$                                                       | 0                  | or (             | 0.672    |                  |          |          |          |          | 1     | 4     |
|             |      | 11                                                                    | 19                 | · · ·            |          |                  |          |          |          |          | 1     |       |

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104) Page No: 32/34

| Que.          | Sub. | Model Answers                                                                                                                                                              |                      |       |                                               |              |       |          |                    |                  |                  |                 |         | Total |
|---------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-----------------------------------------------|--------------|-------|----------|--------------------|------------------|------------------|-----------------|---------|-------|
| No. <b>6)</b> | Que. |                                                                                                                                                                            |                      |       |                                               |              |       |          |                    |                  |                  |                 |         | Marks |
|               | e)   | Calculate th                                                                                                                                                               | ne mea               | n dev | ziatio                                        | on for tl    | ne fo | ollov    | ving               | data             |                  |                 |         |       |
|               |      | Class inte                                                                                                                                                                 | rvals                | 40-5  | 59                                            | 60-79        | 80-   | -99      | 100                | )-119            | 120-             | 139             |         |       |
|               |      | No. of far                                                                                                                                                                 | nilies               | 50    | )                                             | 300          | 50    | 00       | 2                  | .00              | 60               | )               |         |       |
|               | Ans. |                                                                                                                                                                            |                      |       |                                               | _            |       |          |                    |                  |                  |                 |         |       |
|               |      | Class                                                                                                                                                                      | xi                   |       | $f_{i}$                                       | $f_i x_i$    |       | $D_i$ =  | $=  x_i $          | $-\frac{1}{x}$   | $f_i L$          | $\mathbf{O}_i$  |         |       |
|               |      | 40-59                                                                                                                                                                      | 49.5                 |       | 50                                            | 2475         | ;     | 38       | 3.559              | )                | 1927             | .95             |         |       |
|               |      | 60-79                                                                                                                                                                      | 69.5                 | 3     | 300                                           | 2085         | 0     | 18       | 3.559              | )                | 5567             | 7.7             |         |       |
|               |      | 80-99                                                                                                                                                                      | 89.5                 | 5     | 500                                           | 4475         | 0     | 1        | .441               |                  | 720              | .5              | 1+1     |       |
|               |      | 100-119                                                                                                                                                                    | 109.5                | 5 2   | 200                                           | 2190         | 0     | 21       | 1.441              |                  | 4288             | 3.2             |         |       |
|               |      | 120-139                                                                                                                                                                    | 129.5                | 5     | 60                                            | 7770         | )     | 41       | 1.441              |                  | 2486             | .46             |         |       |
|               |      |                                                                                                                                                                            |                      | 1     | 110                                           | 9774         | 5     |          |                    |                  | 14990            | ).81            |         |       |
|               | f)   | $ \frac{1}{x} = \frac{\sum f_i x_i}{N} = \frac{1499}{11} $ $ = \frac{1499}{11} $ $ = 13.50 $ Find the varidistribution $ \frac{\text{Class}}{\text{Intervals}} $ Frequency | 0.81<br>10<br>05<br> |       |                                               |              | f va: | - 4<br>5 | ce fo<br>45-<br>50 | r the  50- 55 35 | 55-<br>60<br>25  | 60-<br>65<br>15 | 1/2 1/2 | 4     |
|               |      | Frequency                                                                                                                                                                  | 23                   | 30    | 30                                            | 90           | 73    | (        | 30                 | 33               | 23               | 13              |         |       |
|               | Ans. | Class                                                                                                                                                                      | xi                   |       | $f_i$                                         | $f_i x_i$    | į     |          | $x_i^2$            |                  | $f_i x_i^2$      |                 |         |       |
|               |      | 20-25                                                                                                                                                                      | 22.5                 | 5     | 25                                            | 562.         |       | 50       | 6.25               | 1                | 2656.3           |                 |         |       |
|               |      | 25-30                                                                                                                                                                      | 27.5                 |       | 30                                            | 825          | ,     | 75       | 6.25               | 2                | 2687.5           |                 |         |       |
|               |      | 30-35                                                                                                                                                                      | 32.5                 |       | 50                                            | 162          |       | 10       | 56.25              | 5 5              | 2812.5           |                 |         |       |
|               |      | 35-40                                                                                                                                                                      | 37.5                 |       | 90                                            | 337          |       |          | +                  |                  | 126563           |                 | 1       |       |
|               |      | 40-45                                                                                                                                                                      | 42.5                 |       | 75                                            | 3187         |       |          | 06.25              |                  | 35469            |                 | 1       |       |
|               |      | 45-50                                                                                                                                                                      | 47.5                 |       | 60<br>25                                      | 2850         |       |          | 56.25              |                  | 35375            |                 |         |       |
|               |      | 50-55<br>55-60                                                                                                                                                             | 52.5<br>57.5         |       | 35<br>25                                      | 1837<br>1437 |       |          | 56.25<br>06.25     |                  | 6468.8<br>2656.3 |                 |         |       |
|               |      | 60-65                                                                                                                                                                      | 62.5                 |       | <u>25                                    </u> | 937.         |       |          | 06.25<br>06.25     |                  | 2636.3<br>8593.8 |                 |         |       |
|               |      | 00 05                                                                                                                                                                      | 02.0                 |       | 405                                           | 16637        |       | 57       | J J C              |                  | <b>23281</b>     |                 |         |       |
|               |      |                                                                                                                                                                            | 1                    |       |                                               | 1            |       | <u> </u> |                    |                  |                  |                 |         |       |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Basic Maths (17104) Page No: 33/34

|    | Sub.<br>Que.                                                           | $S.D. = \sqrt{\frac{1}{2}}$ $= \sqrt{\frac{1}{2}}$ $= 9.9$ $\therefore Varian$                                                          | $ \frac{N}{723281} - \left(\frac{723281}{405} - \left(\frac{1}{100}\right)^{1}\right) = 9.914 $ $= 98.28$                       | $\frac{\left(\frac{\sum f_i x_i}{N}\right)^2}{\frac{16637.5}{405}}$ | 08                    | el An                   | swers                                        |             |                    |   | Marks  1 | Total<br>Marks |  |  |  |  |
|----|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|-------------------------|----------------------------------------------|-------------|--------------------|---|----------|----------------|--|--|--|--|
| 6) |                                                                        | $S.D. = \sqrt{\frac{1}{2}}$ $= \sqrt{\frac{1}{2}}$ $= 9.9$ $\therefore Varian$                                                          | $\frac{\sum f_i x_i^2}{N} - \frac{1}{N}$ $\frac{723281}{405} - \frac{1}{N}$ $914$ $1000 = (S.D.)$ $1000 = 9.914$ $1000 = 98.28$ | $\frac{\left(\frac{\sum f_i x_i}{N}\right)^2}{\frac{16637.5}{405}}$ | $\overline{\bigg)^2}$ |                         |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        | $= \sqrt{-}$ $= 9.9$ $\therefore Varian$                                                                                                | $ \frac{N}{723281} - \left(\frac{723281}{405} - \left(\frac{1}{100}\right)^{1}\right) = 9.914 $ $= 98.28$                       | (N) $(16637.5)$ $(405)$ $(16637.5)$ $(16637.5)$                     | )                     |                         |                                              |             |                    |   | 1/2      |                |  |  |  |  |
|    |                                                                        | =9.9<br>∴Varian                                                                                                                         | 914 $ace = (S.D.$ $= 9.914$ $= 98.28$                                                                                           | .)2                                                                 |                       |                         |                                              |             |                    |   | 1/2      |                |  |  |  |  |
|    |                                                                        | ∴Varian                                                                                                                                 | ace = (S.D.)<br>= 9.914<br>= 98.28                                                                                              | 2                                                                   |                       |                         |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | = 9.914<br>= 98.28                                                                                                              | 2                                                                   |                       |                         |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        | Coeff . c                                                                                                                               | = 98.28                                                                                                                         |                                                                     |                       |                         | $\therefore Variance = (S.D.)^2$ $= 9.914^2$ |             |                    |   |          |                |  |  |  |  |
|    |                                                                        | Coeff. o                                                                                                                                | of Variana                                                                                                                      |                                                                     |                       | $=9.914^{2}$<br>=98.287 |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | Coeff. of Variance = $\frac{S.D.}{\overline{x}} \times 100$                                                                     |                                                                     |                       |                         |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         |                                                                                                                                 | $=\frac{9.91}{41.0}$                                                |                       | )                       |                                              |             |                    |   | 1        |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         |                                                                                                                                 | = 24.1                                                              | 33                    | OR                      |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | OR                                                                                                                              |                                                                     |                       |                         |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        | $\therefore Variance = \frac{\sum f_i x_i^2}{N} - \left(\frac{\sum f_i x_i}{N}\right)^2$                                                |                                                                                                                                 |                                                                     |                       |                         |                                              |             |                    |   |          |                |  |  |  |  |
|    | $= \frac{723281}{405} - \left(\frac{16637.5}{405}\right)^2$ $= 98.287$ |                                                                                                                                         |                                                                                                                                 |                                                                     |                       |                         |                                              |             |                    | 1 |          |                |  |  |  |  |
|    |                                                                        | Coeff. of Variance = $\frac{\sqrt{\text{variance}}}{\overline{x}} \times 100$<br>= $\frac{\sqrt{98.287}}{41.08} \times 100$<br>= 24.133 |                                                                                                                                 |                                                                     |                       |                         |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         |                                                                                                                                 |                                                                     |                       |                         |                                              |             |                    |   |          | 4              |  |  |  |  |
|    |                                                                        |                                                                                                                                         |                                                                                                                                 |                                                                     |                       |                         |                                              |             |                    |   |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | Class                                                                                                                           | xi                                                                  | $f_{i}$               | $d_{i}$                 | $f_i d_i$                                    | $d_i^{\ 2}$ | $f_i d_i^{\ 2}$    |   |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | 20-25                                                                                                                           | 22.5                                                                | 25                    | -4                      | -100                                         | 16          | 400                | - |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | 25-30                                                                                                                           | 27.5                                                                | 30                    | -3                      | -90                                          | 9           | 270                | ] |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | 30-35                                                                                                                           | 32.5                                                                | 50                    | -2                      | -100                                         | 4           | 200                |   |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | 35-40                                                                                                                           | 37.5                                                                | 90                    | -1                      | -90                                          | 1           | 90                 | _ |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | 40-45                                                                                                                           | 42.5                                                                | 75                    | 0                       | 0                                            | 0           | 0                  | - | 1        |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | 45-50                                                                                                                           | 47.5                                                                | 60                    | 1                       | 60                                           | 1           | 140                | - |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | 50-55                                                                                                                           | 52.5<br>57.5                                                        | 35                    | 2                       | 70                                           | 4           | 140                | - |          |                |  |  |  |  |
|    |                                                                        | ŀ                                                                                                                                       | 55-60                                                                                                                           | 57.5                                                                | 25                    | 3                       | 75                                           | 9           | 225                | - |          |                |  |  |  |  |
|    |                                                                        |                                                                                                                                         | 60-65                                                                                                                           | 62.5                                                                | 15<br><b>405</b>      | 4                       | 60<br>-115                                   | 16          | 240<br><b>1625</b> | - |          |                |  |  |  |  |
|    |                                                                        | l                                                                                                                                       |                                                                                                                                 |                                                                     | <b>40</b> 0           |                         | -113                                         |             | 1023               | J |          |                |  |  |  |  |

Subject & Code: Basic Maths (17104) **Page No:** 34/34

| Que. | Sub. |                                                                                                                                                                                                                                                                                               |         | Total |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. | Model Answers                                                                                                                                                                                                                                                                                 | Marks   | Marks |
| 6)   |      | $A = 42.5, 	 h = 5, 	 d_i = \frac{x_i - A}{h}$ $\therefore \overline{x} = A + \frac{\sum f_i d_i}{N} \times h$                                                                                                                                                                                |         |       |
|      |      | $= 42.5 + \frac{-115}{405} \times 5$ $= 41.08$ $S.D. = h \times \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2}$                                                                                                                                                      | 1       |       |
|      |      | $= 5 \times \sqrt{\frac{1625}{405} - \left(\frac{-115}{405}\right)^2}$ $= 9.914$                                                                                                                                                                                                              | 1/2     |       |
|      |      | $\therefore Variance = (S.D.)^{2}$ $= 9.914^{2}$ $= 98.287$ $Coeff. of Variance = \frac{S.D.}{\overline{x}} \times 100$                                                                                                                                                                       | 1/2     |       |
|      |      | $= \frac{9.914}{41.08} \times 100$ $= 24.133$ OR                                                                                                                                                                                                                                              | 1<br>OR |       |
|      |      | $\therefore Variance = h^2 \left[ \frac{\sum f_i d_i^2}{N} - \left( \frac{\sum f_i d_i}{N} \right)^2 \right]$ $= 5^2 \left[ \frac{1625}{405} - \left( \frac{-115}{405} \right)^2 \right]$                                                                                                     | OK      |       |
|      |      | $= 98.287$ $Coeff. of Variance = \frac{\sqrt{\text{variance}}}{\overline{x}} \times 100$ $= \frac{\sqrt{98.287}}{41.08} \times 100$                                                                                                                                                           | 1       | 4     |
|      |      | = 24.133  Important Note  In the solution of the question paper, wherever possible all the possible alternative                                                                                                                                                                               | 1       | 4     |
|      |      | methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking. |         |       |