

## Lois de Kirchhoff - Corrigé Exercice 1

## Circuit a)

On définit la tension  $U_{R1}$  aux bornes de la résistance  $R_1$  et la tension  $U_{R2}$  aux bornes de la résistance  $R_2$ . Le circuit est composé d'une maille parcourue par un courant noté I, à déterminer.



Equation de maille :  $\Sigma U = 0$ 

 $U - U_{R1} - U_{R2} = 0$  d'après le sens des vecteurs tensions choisi

Loi d'Ohm :  $U_{R1} = R_1 \cdot I$  d'après le sens des vecteurs tension et courant choisi

 $U_{R2} = R_2 \cdot I$  d'après le sens des vecteurs tension et courant choisi

On obtient donc :  $U = (R_1 + R_2) I$ 

D'où:  $I = \frac{U}{R_1 + R_2}$ 

Connaissant le courant I, les tensions  $U_{R1}$  et  $U_{R2}$  sont données par application de la loi d'Ohm.

Application numérique :

A. N.: I = 0.6 A  $U_{R1} = 3 \text{ V}$  $U_{R2} = 6 \text{ V}$ 

## Circuit b)

On définit la tension  $U_{R1}$  aux bornes de la résistance  $R_1$  et la tension  $U_{R2}$  aux bornes de la résistance  $R_2$ . On définit également le courant  $I_1$  traversant la résistance  $R_1$  et le courant  $I_2$  traversant la résistance  $R_2$ .



Les inconnues sont :  $I_1$  et  $I_2$ . Il faut donc deux équations linéairement indépendantes pour que le système soit soluble : une équation de maille et une équation de nœuds.

Equation de maille :  $\Sigma U = 0$  Maille M

 $R_1 I_1 - R_2 I_2 = 0$ 

Equation de nœuds :  $\Sigma I = 0$  Nœud A

 $I - I_1 - I_2 = 0$ 

De ces deux équations, on obtient :

 $R_1 (I - I_2) - R_2 I_2 = 0$ 

D'où:  $I_2 = I \frac{R_1}{R_1 + R_2}$ 

De la même manière:  $I_1 = I \frac{R_2}{R_1 + R_2}$ 

A. N.:  $I_1 = 1.33 \text{ A}$   $I_2 = 0.66 \text{ A}$   $U_{R1} = 6.6 \text{ V}$  $U_{R2} = 6.6 \text{ V}$