8 Days of EchoKey — Day 6: Diagonality (XZ) Layout–Aware ZYZ Euler Synthesis

EchoKey Team (CC0)

September 11, 2025

Abstract

This Day 6 note introduces the *Diagonality (XZ)* generator in the EchoKey 7-operator frame and derives a layout-aware compiler rewrite to native ZYZ Euler rotations. The symbolic gate $\operatorname{ek_diagxz}(\theta) = e^{-i\theta(\mathbf{a}_6 \cdot \boldsymbol{\sigma})}$ rotates by physical angle 2θ about the XZ-diagonal axis $\mathbf{a}_6 \propto (1,0,1)$. We state the rule, argue correctness up to global phase, and record the fidelity metric used in verification.

1 Background and Notation

Let $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ be the Pauli vector and let $\mathbf{A} \in \mathbb{R}^{7 \times 3}$ be the EchoKey frame whose unit–norm rows are \mathbf{a}_k^{\top} . As before, define traceless local generators

$$E_k^{\circ} := \mathbf{a}_k \cdot \boldsymbol{\sigma}, \qquad k = 1, \dots, 7.$$
 (1)

We use 1-based indexing in the prose (\mathbf{a}_6 here corresponds to code index 5).

Day 6 choice (Diagonality XZ). Select the XZ diagonal

$$\mathbf{a}_6 \propto (1, 0, 1), \qquad \|\mathbf{a}_6\| = 1.$$
 (2)

The Day 6 gate is

$$ek_diagxz(\theta) \stackrel{\text{def}}{=} e^{-i\theta (\mathbf{a}_6 \cdot \boldsymbol{\sigma})}. \tag{3}$$

2 Axis–Angle Form

Every $U \in SU(2)$ admits the axis–angle representation

$$U(\varphi, \hat{\mathbf{n}}) = \cos \frac{\varphi}{2} \mathbb{I} - i \sin \frac{\varphi}{2} (\hat{\mathbf{n}} \cdot \boldsymbol{\sigma}), \qquad \hat{\mathbf{n}} \in \mathbb{S}^2.$$
 (4)

Matching (3) to (4) yields

$$\hat{\mathbf{n}} = \mathbf{a}_6, \qquad \varphi = 2\theta.$$
 (5)

Thus $\operatorname{ek_diagxz}(\theta)$ is a Bloch rotation about an XZ-plane axis.

3 ZYZ Euler Decomposition

Any single-qubit unitary is (up to a global phase) a ZYZ product,

$$U \doteq RZ(\alpha) RY(\beta) RZ(\gamma). \tag{6}$$

We form the exact 2×2 matrix $U(2\theta, \mathbf{a}_6)$ via (4) and decompose it to obtain Euler angles (α, β, γ) , giving the substitution

$$ek_diagxz(\theta) \doteq RZ(\alpha(\theta))RY(\beta(\theta))RZ(\gamma(\theta)). \tag{7}$$

(Unlike Day 3 on a pure Z axis, there is no dedicated one–gate fast path here.)

4 Layout–Aware Axis Resolution

Let phys: {logical wires} \rightarrow {0,..., n-1} be the placement mapping. Each physical wire p has a local frame $\mathbf{A}^{(p)}$. When rewriting a gate on logical wire q, use

$$\hat{\mathbf{n}} = \mathbf{a}_6^{(\text{phys}(q))}, \qquad \varphi = 2\theta.$$
 (8)

Run the pass after placement, or provide the final layout in the pass property set.

5 Correctness

For each gate occurrence, compute $U(2\theta, \hat{\mathbf{n}})$ from (8) and factor it as in (6). ZYZ covers all of SU(2) up to a phase, so the substitution (7) preserves the circuit unitary up to a global phase. Composing locally over the DAG preserves the total unitary.

6 Validation Metric

We compare the materialized input unitary (symbolic echo gates replaced by exact 2×2 matrices) and the output unitary (after the pass) using the phase–insensitive overlap

$$\mathcal{F}(U_{\rm in}, U_{\rm out}) = \frac{\left| \text{Tr}\left(U_{\rm in}^{\dagger} U_{\rm out}\right) \right|}{2^n} \in [0, 1]. \tag{9}$$

Exact synthesis yields $\mathcal{F} \approx 1.000\,000\,000\,000$ across the included examples.

7 Worked Examples

Ex 1: 1q simple: ek_diagxz(0.40) then H. With $\mathbf{a}_6 = (1,0,1)/\sqrt{2}$ the pass emits a native ZYZ triple.

Ex 2: 1q sequence: RX(0.11) ek_diagxz(-0.42) RY(0.23) ek_diagxz(0.80) RZ(-0.31). Each echo gate rewrites independently.

Ex 3: 2q with entangler: H_0 ek_diagxz⁽⁰⁾(0.50) CX_{0→1} ek_diagxz⁽¹⁾(-0.25) RY⁽¹⁾(0.40). Perwire frames may tilt the XZ diagonal; the pass uses (8).

Ex 4: Multi-qubit per-site frames: assign distinct $\mathbf{A}^{(p)}$ and tilt every second $\mathbf{a}_6^{(p)}$ slightly toward +Y to ensure the general path is exercised; add nearest-neighbor CNOTs.

Edge Cases and Numerics 8

- Degenerate/NaN axis: if $\|\mathbf{a}_6\| \approx 0$ or contains NaNs, reject the gate.
- Branch cuts: Euler angles are not unique; any consistent branch yields phase-equivalent unitaries.
- Ordering: run the rewrite after placement so (8) uses physical indices.

Complexity. Linear in the number of ek_diagxz gates; each ZYZ synthesis is $\mathcal{O}(1)$ for 2×2 matrices.

9 Repro Checklist

- 1. Choose per—wire frames $\{\mathbf{A}^{(p)}\}_{p=0}^{n-1}$ with unit rows; set $\mathbf{a}_{6}^{(p)}$. 2. Build the circuit with symbolic ek_diagxz(θ) gates.
- 3. Resolve $\hat{\mathbf{n}} = \mathbf{a}_6^{(\operatorname{phys}(q))}$ and $\varphi = 2\theta$ for each gate.
- 4. Materialize $U(2\theta, \hat{\mathbf{n}})$ and decompose to ZYZ; replace each echo gate by RZRYRZ.
- 5. Validate with the fidelity metric; expect $\mathcal{F} \approx 1$.

License. This document and the associated code are released under CC0-1.0 (Public Domain).