CS 519: Scientific Visualization

Vector Field Visualization:
Flowlines
Texture-Based Techniques

Eric Shaffer

Some slides adapted Alexandru Telea, Data Visualization Principles and Practice

Numerical Integration: Euler

- Generating a streamline can be done by numerically integrating a differential equation
- In his textbook Institutionum Calculi Integralis, Leonhard Euler proposed:

$$\mathbf{p}_{k+1} = \mathbf{p}_k + h \mathbf{v}(p_k)$$

- In this formulation, p is a point in d-dimensional space
- v is a vector-valued function that gives the velocity at a point
 - remember velocity = first derivative of a function specifying position
- h is a step-size
 - may be determined be the grid for sampled data

Numerical Integration: Euler

$$\mathbf{p}_{k+1} = \mathbf{p}_k + h \mathbf{v}(p_k)$$

Generates points along a solution curve to the differential equation

But there's error....

The error in each step moves you to different solution curve

Step-size controls the error

Error is on the order of O(h)

Runge Kutta Methods

- Used to solve Ordinary Differential Equations
- 4th-order Runge Kutta (RK4) preferred
- Second Order Runge-Kutta (Heun's Method)

$$\mathbf{p}_{n+1} = \mathbf{p}_n + \frac{1}{2}\mathbf{k}_1 + \frac{1}{2}\mathbf{k}_2$$
$$\mathbf{k}_1 = h \mathbf{v}(\mathbf{p}_n)$$
$$\mathbf{k}_2 = h \mathbf{v}(\mathbf{p}_n + \mathbf{k}_1)$$

•Error is O(h²)

Fourth Order Runge-Kutta

Error O(h⁴). The general form of the equations:

$$\mathbf{p}_{n+1} = \mathbf{p}_n + \frac{h}{6} [\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4]$$

$$\mathbf{k}_1 = \mathbf{v}(\mathbf{p}_n)$$

$$\mathbf{k}_2 = \mathbf{v} \left(\mathbf{p}_n + \frac{h}{2} \mathbf{k}_1 \right)$$

$$\mathbf{k}_3 = \mathbf{v} \left(\mathbf{p}_n + \frac{h}{2} \mathbf{k}_2 \right)$$

$$\mathbf{k}_4 = \mathbf{v}(\mathbf{p}_n + h\mathbf{k}_3)$$

Fourth-Order Runge-Kutta

Streamlines versus Streaklines

- For steady-state vector fields, they are the same
- For unsteady flows (i.e. vector field changes over time):
 - Streamline: curve instantaneously tangent to the vector field
 - Pathline: the set of points a particle travels through as the field evolves
 - Streakline: imagine continuously injecting particles at a fixed point.
 Streakline is formed by the positions of the particles
 - Next slide:
 Streamlines are dashed
 Pathline is red
 Streakline is blue

Pathlines and Streaklines

Texture-based Methods

So far

mostly discrete visualizations (glyphs, streamlines, stream ribbons)

Goal

a dense, pixel-filling, continuous, vector field visualization
 Principle

$$T(p) = \frac{\int_{-L}^{L} N(S(p,s))k(s)ds}{\int_{-L}^{L} k(s)ds}$$

gray value at pixel pN = noise texture

- take each pixel p of the screen image
- trace a streamline from p upstream and downstream (as usual)
- blend all streamlines, pixel-wise
 - multiplied by a random-grayscale value at p
 - with opacity decreasing (exponentially) on distance-alongstreamline from p
- identical to blurring noise along the streamlines of v

S(p,s)
$$T(p) = \frac{\int_{-L}^{L} N(S(p,s))k(s)ds}{\int_{-L}^{L} k(s)ds}$$

$$k(s) = e^{-s^2}$$

N:noise texture

LIC: Line Integral Convolution

S(p,s): streamline of seed point P k(s): weighting or blurring function

L: width of blurring function

Texture-based Methods

noise texture

line integral convolution (LIC)

Line integral convolution

- highly coherent images along streamlines (why?
- highly contrasting images across streamlines (why?

Vector magnitude: Color

Vector direction: Graininess

LIC Animation

Main idea

- extend LIC with animation
- dynamics help seeing orientation and speed (not shown by LIC)

Algorithm

- consider a time-and-space dependent property $I:D\times \mathbf{R}_{+}\to \mathbf{R}_{+}$ (e.g. gray value)
- advect I in time over D

$$I(x + \mathbf{v}(x, t)\Delta t, t + \Delta t) = I(x, t)$$

...and also inject some noise at each point of D

LIC Animation

Animation

- now, make N(x,t) a
 - periodic signal in time
 - but spatially random signal

Think of

- N as the phase of the noise
- f as the time-period of the noise

Image-Based Flow Visualization (IBFV)

IBFV, velocity color-coded

IBFV, with user-placed colored ink seeds and luminance-coded velocity magnitude

Implementation

- sounds complex, but it's really easy@ (200 LOC C with OpenGL, see Listing 6.2)
 - see next slide for details
- real-time (hundreds of frames per second) even for modest graphics cards
- naturally handles time-dependent vector fields

Image-Based Flow Visualization (IBFV)

- define grid on 2D flow domain D
- warp grid D along ${f v}$ into $D_{
 m warp}$
- forever
 - read current frame buffer into I
 - draw D_{warp} textured with I (advection) with opacity 1-lpha
 - blend noise texture N atop of I (injection) with opacity α

Image-Based Flow Visualization (IBFV)

Variants on 3D curved surfaces and 3D volumes

IBFV on curved surfaces

IBFV in 3D volumes

Curved surfaces

basically same as in planar 2D, just some implementation details different

3D volumes

- must do something to 'see through' the volume
- use an 'opacity noise' (similarly injected as grayvalue noise)
- effect: similar to snowflakes drifting in wind on a black background

Multiscale IBFV

- apply IBFV, but use vector-field-aligned noise patterns on multiple scales
 - build such patterns upfront by vector field decomposition (see prev. slide

Results

- like IBFV, but user can choose scale (coarseness) of patterns
- shows animated flow in a simplified way