MATH 587 - ADVANCED PROBABILITY THEORY 1

GREG TAM

Contents

1 C + 1 C+1 0010	0
1. September 6th, 2012	3
1.1. Random Walk (Symmetric, Simple)	3
1.2. Branching Processes1.3. Fatou's Lemma	4
	5 5
2. September 18th, 2012	5 5
2.1. What is a probability space?2.2. Measures:	6 6
	7
v	8
3. September 20th, 2012	
4. September 25th, 2012	10
5. September 27th, 2012	12
5.1. Dynkin's Uniqueness Lemma	13
5.2. Difference Set	14
6. October 2nd, 2012	15
6.1. Completion	15
6.2. Events and Probability Spaces	15
6.3. Reverse Fatou's Lemma	16
6.4. (First) Borel-Cantelli Lemma	17
6.5. Random Variables	17
7. October 4th, 2012	18
7.1. Measurable Maps, Random Variables	18
8. October 9th, 2012	20
8.1. Generated σ -algebras	20
8.2. Distribution Functions $(\Omega, \mathcal{F}, \mathbb{P})$, X a random variable	22
8.3. Properties of Distribution Functions	22
8.4. Skorokhod Representation of F	22
9. October 11th, 2012	23
9.1. Independence	23
9.2. π -System Lemma	24
9.3. Borel-Cantelli 2	25
10. October 16th, 2012	26
10.1. Independence	26
10.2. St. Petersburg Paradox	27
10.3. Strengthening of Borel-Cantelli 2	28
10.4. Kolmogorov 0-1 Law	28
11. October 18th, 2012	29
11.1. Integration and Expectation	29
12. October 23rd, 2012	33
12.1. Assignment Stuff	33
12.2. Monotone Convergence Theorem	34
12.3. Proof of Monotone Convergence Theorem	34
12.4. Fatou's Lemma for Functions	35
12.5. Reverse Fatou	36
13. October 30th, 2012	36
13.1. General Integral and L^1	36
13.2. Dominated Convergence Theorem	37

13.3. Moving Bump	38
13.4. Integrals Over Subsets	39
14. November 1st, 2012	39
14.1. Change of Measure	40
14.2. Expectation	41
14.3. Jensen's Inequality	41
15. November 6th, 2012	43
15.1. Bounding L^p -norm of X, Y given norm bound on X, Y	44
15.2. Computations with Random Variables	46
16. November 8th, 2012 (Makeup)	47
16.1. Chebyshev for Sums	47
16.2. Weak Law of Large Numbers for Finite Variance	47
16.3. Weierstrass approximation	48
17. November 8th, 2012	50
18. November 13th, 2012	53
18.1. Product Spaces	54
18.2. Product σ -algebras	55
19. November 15th, 2012 (Makeup)	57
20. November 15th, 2012	60
20.1. Infinite Product Spaces	63
20.2. Stochastic Processes	64
21. November 20th, 2012	64
21.1. Poisson Processes	64
21.2. Kolmogorov Extension Theorem	65
22. November 22nd, 2012	65
22.1. Conditional Expectation	65
22.2. Uniqueness of Conditional Expectation	67
22.3. Existence of Conditional Expectation	68
23. November 27th, 2012	68
23.1. Conditional Expectation	68
24. November 29th, 2012	71
24.1. Conditional Expectation	71
24.2. Conditional Jensen's Inequality	73
24.3. Conditional Hölder	73
25. December 4th, 2012	74
25.1. Changes of Variables	74
25.2. Joint Law	76
25.3. Differentiation Under the Integral Sign	78

1. September 6th, 2012

Course Webpage: http://www.math.mcgill.ca/louigi/ and click on "Teaching".

1.1. Random Walk (Symmetric, Simple). Let $X_n, n \ge 1$ be independent random variables,

$$X_i = \begin{cases} +1 & \text{with prob } 1/2\\ -1 & \text{with prob } 1/2 \end{cases}$$
 for all i

Set $S_0=0,\ S_i=X_1+\ldots+X_i$ for $i\geq 1.$ Question: Is there a n>0 s.t. $S_n=0$? What is $\mathbb{P}(\exists n>0:S_n=0)$?

$$\mathbb{P}(\exists n>0:S_n=0) \begin{cases} =1 & \text{means random walk is recurrent} \\ <1 & \text{means random walk is transient} \end{cases}$$

We may also consider

$$X_i = \begin{cases} +1 & \text{ with prob } p \\ -1 & \text{ with prob } 1-p \end{cases} \quad \text{for all } i, 0$$

Theorem 1. We have

$$\mathbb{P}(\exists n > 0 \ s.t. \ S_n = 0) = 1 - |2p - 1|$$

$$= \begin{cases} 1 & \text{if } p = 1/2 \\ < 1 & \text{if } p \neq 1/2 \end{cases}$$

Proof. Summing up $z_n = \mathbb{P}(S_n = 0)$ doesn't work since they are not disjoint. Instead summing up $f_n = \mathbb{P}(S_1 \neq 0, \dots, S_{n-1} \neq 0, S_n = 0)$ yields $\mathbb{P}(\exists n > 0 \text{ s.t. } S_n = 0)$.

$$F(s) = \sum_{n>1} f_n s^n \qquad P(s) = \sum_{n>0} z_n s^n$$

Claim. P(s) = 1 + P(s)F(s)

Proof.

$$z_n = \sum_{k=1}^n f_k z_{n-k}$$

$$z_n = \mathbb{P}(S_n = 0)$$

$$= \mathbb{P}\left(\bigcup_{k=1}^n \{S_n = 0 \text{ and first return at time } k\}\right)$$

$$= \sum_{k=1}^n P(S_n = 0, \text{ first return at time } k)$$

Then

$$z_n s^n = \sum_{k=1}^n (f_k s^k)(z_{n-k} s^{n-k})$$

Sum over n > 0

$$P(S) = \sum_{n\geq 0} z_n s^n = 1 + \sum_{n\geq 1} \sum_{k=1}^n (z_{n-k} s^{n-k}) (f_k s^k)$$
$$= 1 + F(s)P(s)$$

Since the n=0 term is 1.

Corollary.

$$P(s) = \frac{1}{\sqrt{1 - 4p(1 - p)s^2}} \qquad F(s) = 1 - \sqrt{1 - 4p(1 - p)s^2}$$

Proof Sketch:

$$z_{2n} = {2n \choose n} p^n (1-p)^n$$
$$P(s) = \sum_{m>0} {2m \choose m} p^m (1-p)^m s^{2m}$$

Then we look at F(1)

$$F(1) = 1 - \sqrt{1 - 4p(1 - p)}$$
$$= 1 - \sqrt{(2p - 1)^2}$$

Meta-Question: Is $\mathbb{P}(\exists n > 0 : S_n = 0)$ well-defined?

 $\{-1,1\}^{\mathbb{N}} := \text{All sequences of } +1\text{'s and } -1\text{'s}$

 (x_1, x_2, \ldots) with $x_i \in \{-1, +1\}$ Then there is $A \subset \{-1, 1\}^{\mathbb{N}}$ s.t. $\exists n > 0 : S_n = 0 \Leftrightarrow (X_1, X_2, \ldots) \subset A$

Theorem 2. Assuming the axiom of choice, there is no way to assign probabilities to all subsets of $\{-1,+1\}^{\mathbb{N}}$ in such a way that the axioms of probability are satisfied.

Supplemental reading: "A non-measurable set from coin flips"

1.2. Branching Processes. Start from a single individual (the root). The root has some random number B of children where B has some distribution μ . Independently, each child has a random number of children with distribution μ , and so on.

Let Z_n be the size of generation n. The family $(Z_n, n \ge 0)$ is some sequence of random variables.

$$E[Z_1] = E[B]$$

$$E[Z_2|Z_1 = 3] = 3E[B]$$

$$E[Z_2|Z_1] = Z_1E[B] \leftarrow \text{ conditional expectation}$$

 $\mathbb{E}[Z_2|Z_1=\pi]$ doesn't make much sense since $\mathbb{P}(Z_1=\pi)=0$.

$$\mathbb{E}[Z_2] = \sum_{i \ge 0} \underbrace{\mathbb{E}[Z_2 | Z_1 = i]}_{i \mathbb{E}[B]} \mathbb{P}(B = i) = (\mathbb{E}[B])^2$$

and so we have

$$\mathbb{E}[Z_n] = (\mathbb{E}[B])^n$$

by induction. Let $W_n = \frac{Z_n}{(\mathbb{E}[B])^n}$ such that $\mathbb{E}[W_n] = 1 \ \forall n$.

Definition 1 (Martingale Property).

$$\mathbb{E}[W_n|W_0,\ldots,W_{n-1}]=W_{n-1}$$

Theorem 3 (Non-negative martingale convergence theorem). There is some random variable W such that $W_n \to W$ almost surely.

Question: Is $\mathbb{E}[W] = 1$?

1.3. Fatou's Lemma. For any sequence $(X_n, n \ge 1)$ of random variables,

$$\mathbb{E}\left[\liminf_{n\to\infty}X_n\right] \leq \liminf_{n\to\infty}\mathbb{E}[X_n]$$

$$\mathbb{E}[W] \leq \liminf_{n\to\infty}\mathbb{E}[W_n] = 1$$

Theorem 4 (Fundamental theorem of branching processes).

$$\mathbb{P}(\exists n : Z_n = 0) \begin{cases} = 1 & \text{if } \mathbb{E}[B] \le 1 \Rightarrow \mathbb{P}(W = 0) = 1 \\ < 1 & \text{otherwise} \end{cases}$$

Now suppose

$$B = \begin{cases} 2 & \text{with prob. } p \\ 0 & \text{with prob. } 1 - p \end{cases}$$

 S_n = number of unexplored individuals at step m

$$\mathbb{P}(\text{Extinction}) = \mathbb{P}(\text{Exploration stops}) = \mathbb{P}(\exists n > 0 : S_n = 0) = 1 - |1 - 2p|$$

2. September 18th, 2012

2.1. What is a probability space? Last Class: We can't assign probabilities to every possible event without contradiction.

Definition 2. An algebra over a set S is a collection \mathcal{F} of subsets of S such that

- (1) $\emptyset \in \mathcal{F}, S \in \mathcal{F}$
- (2) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- (3) If $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$

Remark:

• $A \cap B = (A^c \cup B^c)^c$ so \mathcal{F} is closed under intersection

• If
$$A_1, A_2, \dots, A_n \in \mathcal{F}$$
 then $\bigcap_{i=1}^n A_i \in \mathcal{F} \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{F}$

• This does not imply $A_i \in \mathcal{F}, i \geq 1 \not\Rightarrow \bigcup_{i=1}^{\infty} \in \mathcal{F} (\star)$

Example 1 (Algebras over a set S).

- $2^S = set \ of \ all \ subsets$
- $\mathcal{F} = \{A \subset S : |A| < \infty \text{ or } |A^c| < \infty\}$ is an algebra but does not satisfy property \star

Definition 3. An algebra \mathcal{F} over S is called a σ -algebra if \star holds. A measurable space is a pair (S, \mathcal{F}) , where \mathcal{F} is a σ -algebra over S.

Definition 4. Given a set S and $\mathcal{F}_0 \subset 2^S$, then the σ -algebra generated by \mathcal{F}_0 is

$$\sigma(\mathcal{F}_0) := \bigcap_{\substack{\mathcal{F} \supset \mathcal{F}_0 \\ \mathcal{F} \ a \ \sigma-algebra}} \mathcal{F} \subseteq 2^S$$

Easy Fact: If $\mathcal{F} \supset \mathcal{F}_0$ is a σ -algebra, then $\sigma(\mathcal{F}_0) \subset \mathcal{F}$

Prop. $\sigma(\mathcal{F}_0)$ is a σ -algebra

Proof. If $A_i \in \bigcap \mathcal{F}$ for each $i \geq 1$ then fix any \mathcal{F} in the intersection. Then $A_i \in \mathcal{F}_0$, $i \geq 1$. So by \star , $\bigcup_{i>1} A_i \in \mathcal{F}$. so

$$\bigcup_{i>1} A_i \in \bigcap \mathcal{F} = \sigma(\mathcal{F}_0)$$

Note: If \mathcal{F}_0 is a σ -algebra, then $\sigma(\mathcal{F}_0) = \mathcal{F}_0$

Example 2. $\mathcal{F}_0 = \{ all \ sets \ of \ size \ 1 \ in \ S \}$ $\sigma(\mathcal{F}_0) = 2^S \ if \ S \ is \ countable$

 $\sigma(\mathcal{F}_0) = \{A \subset S : A \text{ is countable or } A^c \text{ is countable}\}$

S is a metric space.

 $\mathcal{F}_0 = \{open \ sets \ in \ S\}$

 $\sigma(\mathcal{F}_0)$ is called the Borel sets of S and denoted B(S).

Prop. $\mathfrak{B}(\mathbb{R}) = \sigma(\{(-\infty, x], x \in \mathbb{R}\})$

Proof. " \supseteq ":

$$(-\infty, x] = \bigcap_{n=1}^{\infty} \left(-\infty, x + \frac{1}{n}\right) \in \mathfrak{B}(\mathbb{R})$$

So

$$\{(-\infty, x], x \in \mathbb{R}\} \subset \mathfrak{B}(\mathbb{R})$$

So

$$\sigma(\{(-\infty, x], x \in \mathbb{R}\}) \subset \mathfrak{B}(\mathbb{R})$$

" \subseteq ": Fact: Any open set in \mathbb{R} can be written as

$$\bigcup_{i\geq 1}(a_i,b_i)$$

where the intervals (a_i, b_i) are disjoint. So it suffices to show that any interval (a, b) is a member of $\sigma(\{(-\infty,x],x\in\mathbb{R}\})$. To see this, write

$$(a,b) = \bigcup_{n\geq 1} \left(a, b - \frac{1}{n} \right]$$
$$= \bigcup_{n\geq 1} \left(-\infty, b - \frac{1}{n} \right] \cap ((-\infty, a]^c)$$

2.2. Measures: A measure μ on a measurable space (S, \mathcal{F}) is a function

$$\mu: \mathcal{F} \to [0, \infty]$$

such that

- $\mu(\emptyset) = 0$
- If A_i , $i \geq 1$ are disjoint elements of \mathcal{F} , then

$$\mu\left(\bigcup_{i\geq 1} A_i\right) = \sum_{i\geq 1} \mu(A_i)$$

(Less important) definitions:

Given an algebra \mathcal{F}_0 over S, a function $\mu: \mathcal{F}_0 \to [0, \infty]$ is additive if

- $\mu(\emptyset) = 0$
- If $A, B \in \mathcal{F}_0$, $A \cap B = \emptyset$ then $\mu(A \cup B) = \mu(A) + \mu(B)$

We say μ is a pre-measure if for any sequence A_i , $i \ge 1$ of disjoint elements of \mathcal{F}_0 if $\bigcup_{i>1} A_i \in \mathcal{F}_0$, then

$$\mu\left(\bigcup_{i\geq 1} A_i\right) = \sum_{i\geq 1} \mu(A_i)$$

Example 3.

(1) If S is any set, $\mathcal{F} = 2^S$,

$$\mu(A) = |A| = \begin{cases} i & \text{if } |A| = i < \infty \\ \infty & \text{otherwise} \end{cases}$$

(2) $S = \mathbb{R}$, $\mathcal{F} = B(\mathbb{R})$, $\mu = Lebesgue measure defined by$

$$\mu((a,b]) = b - a$$

Question: is this a measure?

We write $\lambda = \mu$ for Lebesgue measure. Take

$$\mathcal{F}_0 = \left\{ \bigcup_{i=1}^n (a_i, b_i] : -\infty \le a_1 \le b_1 \le a_2 \le b_2 \dots a_n \le b_n \le \infty \right\}$$

Need to check that this is an algebra first. We want to show: λ is a pre-measure on \mathcal{F}_0 .

- $\lambda(\emptyset) = b b = 0$
- $A, B \in \mathcal{F}_0, A \cap B = \emptyset$, then $\lambda(A \cup B) = \lambda(A) + \lambda(B)$

Check: λ is a pre-measure

2.3. Carathéodory Extension Theorem.

Theorem 5 (Carathéodory Extension Theorem). Given an algebra \mathcal{F}_0 over a set S and a pre-measure μ_0 on (S, \mathcal{F}_0) , then there exists a unique measure μ on $(S, \sigma(\mathcal{F}_0))$ such that $\mu(A) = \mu_0(A)$ for all $A \in \mathcal{F}_0$.

Prop. If A_i , $i \geq 1$ are disjoint elements of \mathcal{F}_0 , $A_i \subset [0,1]$ for all i and $\bigcup_{i \geq 1} A_i \in \mathcal{F}_0$ then

$$\lambda\left(\bigcup_{i\geq 1}A_i\right) = \sum_{i\geq 1}\lambda(A_i)$$

Assuming the proposition, we now prove that λ is a pre-measure. Fix A_i , $i \geq 1$, disjoint elements of \mathcal{F}_0 such that $\bigcup_{i\geq 1} A_i \in \mathcal{F}_0$. If $\bigcup_{i\geq 1} A_i$ is unbounded, we need to show that $\sum_{i\geq 1} \lambda(A_i) = \infty$. If $\bigcup_{i\geq 1} A_i$ is bounded, then for $n \in \mathbb{Z}$, let $A_{i,n} = A_i \cap (n, n+1] \in \mathcal{F}_0$, so

$$\bigcup_{i\geq 1} A_i = \bigcup_{\substack{i\geq 1\\n\in\mathbb{Z}}} A_{i,n}$$

Then

$$\lambda\left(\bigcup_{i\geq 1} A_i\right) = \lambda\left(\bigcup_{i\geq 1} \bigcup_{n\in\mathbb{Z}} A_{i,n}\right)$$

$$\begin{split} &= \lambda \left(\bigcup_{n \in \mathbb{Z}} \bigcup_{i \geq 1} A_{i,n} \right) \text{ finite disjoint union} \\ &= \sum_{n \in \mathbb{Z}} \lambda \left(\bigcup_{i \geq 1} A_{i,n} \right) \\ &= \sum_{n \in \mathbb{Z}} \sum_{i \geq 1} \lambda \left(A_{i,n} \right) \\ &= \sum_{i \geq 1} \sum_{n \in \mathbb{Z}} \lambda \left(A_{i,n} \right) \\ &= \sum_{i \geq 1} \lambda \left(\bigcup_{n \in \mathbb{Z}} A_{i,n} \right) \\ &= \sum_{i \geq 1} \lambda \left(A_{i,n} \right) \end{split}$$

3. September 20th, 2012

Note: Write $B_n = \bigcup_{i=1}^n A_i$. Then $B_n \subset B_{n+1} \subset \ldots$ and

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i = \lim_{n \to \infty} B_n = B_{\infty}$$

If

$$\lambda(B_{\infty}) = \lim_{n \to \infty} \lambda(B_n)$$

then

$$\lambda\left(\bigcup_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} \lambda\left(\bigcup_{i=1}^{n} A_i\right)$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} \lambda(A_i)$$
$$= \sum_{i=1}^{\infty} \lambda(A_i)$$

So to prove the proposition, it suffices to show:

If B_n , $n \ge 1$ are an increasing sequence of elements of \mathcal{F}_0 and $B_\infty = \lim_{n \to \infty} B_n \in \mathcal{F}_0$, then

$$\lambda(B_{\infty}) = \lim_{n \to \infty} B_n$$

Prop. If $H_i \subset [0,1]$, $i \geq 1$ is a decreasing sequence of elements of \mathcal{F}_0 , and $\lambda(H_n) \geq 2\varepsilon > 0$ for all n, then

$$\bigcap_{n\geq 1} H_n \neq \emptyset$$

Assume this proposition holds. Then write $H_n = B_{\infty} \setminus B_n$. Then H_n is decreasing and decreases to \emptyset , so by the proposition, $\forall \varepsilon > 0$, $\exists n$ such that $\lambda(H_n) < \varepsilon$

$$\lambda(H_n) = \lambda(B_{\infty} \setminus B_n)$$

$$= \lambda(B_{\infty}) - \lambda(B_n)$$

$$< \varepsilon$$

So $\lambda(B_{\infty}) \leq \lim_{n \to \infty} \lambda(B_n)$. On the other hand, $\lambda(B_{\infty}) \geq \lambda(B_n)$ for all n since $B_n \subset B_{\infty}$, so $\lambda(B_{\infty}) = 0$ $\lim_{n\to\infty}\lambda(B_n).$

Proof. For $k \geq 1$, pick $J_k \subset H_k$ with $\overline{J_k} \subset H_k$, with

$$\lambda(H_k \setminus J_k) \le \frac{\varepsilon}{2^k}$$

and so

$$\lambda\left(H_n\setminus\bigcap_{k\leq n}J_k\right)\leq \lambda\left\{H_n\cap\left(\bigcup_{k\leq n}J_k^c\right)\right\}\leq \sum_{k\leq n}\lambda(H_k\setminus J_k)\leq \sum_{k\leq n}\frac{\varepsilon}{2^k}<\varepsilon$$

and since we have

$$2\varepsilon - \lambda \left(\bigcap_{k \le n} J_k\right) < \lambda(H_n) - \lambda \left(\bigcap_{k \le n} J_k\right) < \varepsilon$$

then

$$\lambda\left(\bigcap_{k\leq n}J_k\right)>\varepsilon$$

Let $K_n = \bigcap_{k \leq n} \overline{J_k} \neq \emptyset$, so we can choose $x_n \in K_n$. The sequence $\{x_n\}_{n \geq 1} \subset [0,1]$, so it has a convergent subsequence $\{x_{n_j}\}_{n \geq 1}$ where $x_{n_j} \to x$ as $j \to \infty$. For $n_j > n$, $x_{n_j} \to x$ inside K_n which is closed, so $x \in K_n$. But n was arbitrary so

$$x \in \bigcap_{n \ge 1} K_n \subset \bigcap_{n \ge 1} H_n$$

Definition 5. Given an algebra \mathcal{F}_0 over S and $\mu: \mathcal{F}_0 \to [0,\infty]$, $\mu(\emptyset) = 0$, the λ -sets of \mathcal{F}_0 are those sets $L \in \mathcal{F}_0$, for which

$$\mu(F) = \mu(L \cap F) + \mu(L^c \cap F)$$
 for all $F \in \mathcal{F}_0$

Let

$$\mathcal{L} = \{\lambda \text{-sets in } \mathcal{F}_0\} \subset \mathcal{F}_0$$

Lemma. \mathcal{L} is an algebra and μ is additive on \mathcal{L} .

Proof.

$$\mu(\emptyset) = \mu(\emptyset \cap F) + \mu(\emptyset \cap F^c) \quad \forall F \in \mathcal{F}_0$$
$$= \mu(\emptyset) + \mu(\emptyset)$$
$$= 0$$

If $A, B \subset \mathcal{L}$, we want that $A \cup B \in \mathcal{L}$. Let $C = A \cap B \subset \mathcal{F}$.

$$\mu(C^c \cap F) = \mu(A \cap C^c \cap F) + \mu(A^c \cap C^c \cap F)$$

$$\mu(F) = \mu(A \cap F) + \mu(A^c \cap F)$$

$$\mu(A \cap F) = \mu(B \cap A \cap F) + \mu(B^c \cap A \cap F)$$

The first two lines use that A is a λ -set and the third line uses that B is a λ -set.

$$\mu(F) = \mu((A \cup B) \cap F) + \mu(A^c \cap B^c \cap F)$$

If $L \in \mathcal{L}$,

$$\mu(F) = \mu(L \cap F) + \mu(L^c \cap F)$$
$$= \mu(L^c \cap F) + \mu((L^c)^c \cap F)$$

Lemma. For all $L_1, \ldots, L_n \in \mathcal{L}_0$ disjoint,

$$\mu(L_1 \cap F) + \mu(L_2 \cap F) + \ldots + \mu(L_n \cap F) = \mu\left(\bigcup_{i=1}^n L_i \cap F\right)$$

for all $F \in \mathcal{F}_0$.

Definition 6 (λ -sets). $S, \mathcal{F} \subset 2^S, \mu : \mathcal{F} \to [0, \infty], \mu(\emptyset) = 0.$ $L \in \mathcal{F} \text{ is a } \lambda\text{-set if } \forall F \in \mathcal{F}$

$$\mu(F) = \mu(L \cap F) + \mu(L^c \cap F)$$

Idea for extension: (motivated by Riemann integral)

Definition 7. For any $A \subset S$, let

$$\mu(A) = \inf \sum_{B_1, B_2, \dots} \mu_0(B_i)$$

where the B_i are a countable covering of A by elements of \mathcal{F}_0 . (The collection $\{B_i\}_{i\geq 1}$ covers A if $A \subset \bigcup_{i\geq 1} B_i$)

The function μ is defined on 2^S .

Fact: If $T \subset U$, $T, U \subset S$, then

$$\mu(T) \le \mu(U)$$

 $(\mu \text{ is increasing})$

Prop. μ is countable sub-additive: $\forall T_i, i \geq 1$ subsets of S, then

$$\mu\left(\bigcup_{i\geq 1}T_i\right)\leq \sum_{i\geq 1}\mu(T_i)$$

Proof. Idea: Cover T_i using sets from \mathcal{F}_0 , to a tolerance of $\frac{\varepsilon}{2^i}$. We know that

$$\mu(T_i) = \inf_{\text{coverings}} \sum_{B_{i,1}, B_{i,2}, \dots} \mu(B_{i,j})$$

choose a particular $B_{i,1}, B_{i,2}, \ldots$ that cover T_i so that

$$\sum_{j\geq 1} \mu(B_{i,j}) \leq \mu(T_i) + \frac{\varepsilon}{2^i}$$

Then $\{B_{i,j}, i, j \geq 1\}$ is a countable cover of $\bigcup_{i>1} T_i$ and

$$\sum_{i\geq 1} \underbrace{\sum_{j\geq 1} \mu(B_{i,j})}_{\leq \mu(T_i) + \frac{\varepsilon}{2^i}} \leq \underbrace{\sum_{i\geq 1} \left\{ \mu(T_i) + \frac{\varepsilon}{2^i} \right\}}_{i>1}$$

So

$$\mu\left(\bigcup_{i\geq 1} T_i\right) = \inf_{\text{coverings}} \sum_{i\geq 1} \mu(C_i) \leq \left\{\sum_{i\geq 1} \mu(T_i)\right\} + \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, this proves the proposition

 2^S is too big to prove more nice properties about μ , so we restrict our attention to $\mathcal{L} \subset 2^S$, $\mathcal{L} = \{\lambda \text{-sets in } 2^S\}$

Lemma. $\forall F, \forall L_1, \ldots, L_n \in \mathcal{L}$ where the L's are disjoint, then

$$\mu\left(F \cap \bigcup_{i=1}^{n} L_{i}\right) = \sum_{i=1}^{n} \mu(F \cap L_{i})$$

Proof.

$$\mu((L_1 \cup L_2) \cap F)$$

$$= \mu(L_1 \cap ((L_1 \cup L_2) \cap F))$$

$$+ \mu(L_1^c \cap ((L_1 \cup L_2) \cap F)) \text{ since } L_1 \text{ is a } \lambda\text{-set}$$

$$= \mu(L_1 \cap F) + \mu(L_2 \cap F)$$

This is the case n=2, then use induction on L_1 and $L_2'=\bigcup_{i=2}^n L_i$

We should really check that μ extends μ_0 .

Claim: If $F \in \mathcal{F}_0$, then $\mu_0(F) = \mu(F)$.

Proof. F is itself a covering of F, so $\mu(F) \leq \mu_0(F)$. To prove $\mu(F) \geq \mu_0(F)$, fix any covering T_i , $i \geq 1$ of F with elements of \mathcal{F}_0 . It suffices to show that

$$\sum_{i>1} \mu_0(T_i) \ge \mu_0(F)$$

For $n \geq 1$, let $U_n = T_n \setminus (\bigcup_{i \leq n} T_i) \subset T_n \in \mathcal{F}_0$ and $U_i, i \geq 1$ covers F. We have

$$\sum_{i\geq 1} \mu_0(T_i) \geq \sum_{i\geq 1} \mu_0(U_i)$$

$$\geq \sum_{i\geq 1} \mu_0(\underbrace{U_i \cap F}_{\in \mathcal{F}_0})$$

$$= \mu_0 \left(\sum_{i\geq 1} (U_i \cap F)\right)$$

$$= \mu_0(F)$$

since the $U_i \cap F$ partition F and μ_0 is a pre-measure and not just an additive function.

Claim: $\mathcal{F}_0 \subset \mathcal{L}$

Proof. Want: $\forall L \subset \mathcal{F}_0, \ \forall \ A \subset S,$

$$\mu(A) = \mu(L \cap A) + \mu(L^c \cap A)$$

We have $\mu(A) \leq \mu(L \cap A) + \mu(L^c \cap A)$ by sub-additivity. For the other direction, fix $\varepsilon > 0$ and a covering T_i , $i \geq 1$ of A from \mathcal{F}_0 , with

$$\sum_{i>1} \mu_0(T_i) \le \mu(A) + \varepsilon$$

The family $T_i \cap L, i \geq 1$ covers $A \cap L$, so

$$\mu(A \cap L) \le \sum_{i>1} \mu_0(T_i \cap L)$$

Likewise,

$$\mu(A \cap L^c) \le \sum_{i>1} \mu_0(T_i \cap L^c)$$

and so

$$\mu(A \cap L) + \mu(A \cap L^c) \le \sum_{i \ge 1} \mu_0(T_i \cap L) + \mu_0(T_i \cap L^c)$$
$$= \sum_{i \ge 1} \mu_0(T_i)$$
$$\le \mu(A) + \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, this proves the claim.

Claim: \mathcal{L} is a σ -algebra

Proof. We just need to show that if L_i , $i \geq 1$ are elements of \mathcal{L} , then $L = \bigcup_{i \geq 1} L_i \in \mathcal{L}$. Assume the L_i are disjoint, by the same argument as before since we are in an algebra. Fix $T \subset S$: we need that $\mu(T) = \mu(T \cap L) + \mu(T \cap L^c)$. The left hand side is less than the larger by sub-additivity.

It remains to prove " \geq ". For $n \in \mathbb{N}$, let

$$M_n = \bigcup_{i=1}^n L_i$$

 \mathcal{L} is an algebra, so $M_n \in \mathcal{L}$, so

$$\mu(T) = \mu(M_n \cap T) + \mu(M_n^c \cap T)$$

$$\geq \mu(M_n \cap T) + \mu(L^c \cap T) \quad \text{since } \mu \text{ is increasing and } M_n^c \supset L^c$$

$$= \sum_{i=1}^{n} \mu(L_i \cap T) + \mu(L^c \cap T)$$

Let $n \to \infty$.

$$\mu(T) \geq \sum_{i=1}^{\infty} \mu(L^c \cap T) + \mu(L_i^c \cap T)$$

$$\geq \mu(L \cap T) + \mu(L^c \cap T) \quad \text{by countable subadditivity}$$

5. September 27th, 2012

We prove: $\forall F \subset S, \forall \text{ disjoint elements } L_1, L_2, \dots \text{ of } \mathcal{L}$

$$\mu(F \cap L) = \sum_{i>1} \mu(F \cap L_i)$$
 $L = \bigcup_{i>1} L_i$

Proof.

$$\mu(F \cap L) \le \sum_{i>1} \mu(F \cap L_i)$$
 is subadditivity

For any $n \geq 1$,

$$\bigcup_{i=1}^{n} F \cap L_i \subset F \cap L$$

so

$$\mu(F \cap L) \ge \mu\left(\bigcup_{i=1}^{n} F \cap L_i\right)$$
$$= \sum_{i=1}^{n} \mu(F \cap L_i)$$

Let $n \to \infty$, to obtain

$$\mu(F \cap L) \ge \sum_{i \ge 1} \mu(F \cap L_i)$$

Example 4. $\mu_0 \to \mu(F) = \inf_{A_i \ cover \ F} \sum_{i>1} \mu_0(A_i)$

We can call this function the Carathéodory extension of μ_0 .

Fact: μ is a measure on $\sigma(\mathcal{F}_0)$.

Let $S = \mathbb{R}$, \mathcal{F}_0 = "Finite disjoint unions $(a_i, b_i] \cup \ldots \cup (a_r, b_r]$

$$\mu_0(\underbrace{F}_{\in \mathcal{F}_0}) = \begin{cases} 0 & \text{if } F = \emptyset \\ \infty & \text{if } F \neq \emptyset \end{cases}$$

So the Carathéodory extension is

$$\mu(F) = \begin{cases} 0 & \text{if } F = \emptyset \\ \infty & \text{if } F \neq \emptyset \end{cases}$$

Let $\widehat{\mu}: 2^S \to [0,\infty]$ be $\widehat{\mu}(F) = |F|$. Then we have a contradiction since it is not unique!

5.1. Dynkin's Uniqueness Lemma.

Theorem 6 (Dynkin's Uniqueness Lemma). The Carathéodory extension is the only extension, if

$$\mu_0(S) < \infty$$

Definition 8. A measure space (S, \mathcal{F}, μ) is σ -finite if you can write $S = \bigcup_{i \geq 1} L_i$, $L_i \in \mathcal{F}$ disjoint with

$$\mu(L_i) < \infty \quad \forall i$$

If the Carathéodory extension μ is σ -finite, then it is the only σ -finite extension of μ_0 .

Want to show: If μ_1 and μ_2 are two extensions of μ_0 to $\sigma(\mathcal{F}_0)$, then $\mu_1 \equiv \mu_2$. Let $\mathcal{D} = \{ F \in \sigma(\mathcal{F}_0) : \mu_1(F) = \mu_2(F) \}$. We know that $\mathcal{F}_0 \subset \mathcal{D}$.

5.2. **Difference Set.** If we have the following 2 claims, then we say \mathcal{D} is a difference set **Claim 1:** If $F_n \in \mathcal{D}, n \geq 1, F_n \uparrow F \in \sigma(\mathcal{F}_0)$, then $F \in \mathcal{D}$. $(F \in \sigma(\mathcal{F}_0))$ is automatic.)

Proof.

$$\mu_1(F) \underbrace{=}_{\mu_1} \lim_{n \to \infty} \mu_1(F_n) \underbrace{=}_{F_n \in \mathcal{D}} \lim_{n \to \infty} \mu_2(F_n) \underbrace{=}_{\mu_2} \mu_2(F)$$

Claim 2: If $A, B \in \mathcal{D}$, $A \subset B$, then $B \setminus A \in \mathcal{D}$

Proof.

$$\mu_1(B \setminus A) = \mu_1(B) - \mu_1(A) = \mu_2(B) - \mu_2(A) = \mu_2(B \setminus A)$$

A consequence of this is that this is true for complements. If we take B = S, then $B \setminus A = A^c$. What about \cup or \cap ? This turns out to be harder.

Key Idea: Build up from \mathcal{F}_0 .

(1) Which sets are "closed under \cap with \mathcal{F}_0 "

$$\mathcal{D}_1 = \{ A \in \mathcal{D} : \ \forall \ B \in \mathcal{F}_0, \ \mu_1(A \cap B) = \mu_2(A \cap B) \}$$

An easy consequence from this is that $\mathcal{F}_0 \subset \mathcal{D}$.

Claim: \mathcal{D}_1 is a difference set

Proof. If $A \in \mathcal{D}_1$, $B \in \mathcal{D}_1$, $A \subset B$, we need that $\forall F \in \mathcal{F}_0$,

$$\mu_1((B \setminus A) \cap F) = \mu_2((B \setminus A) \cap F)$$

We have

$$\mu_1((B \setminus A) \cap F) = \mu_1(B \cap F) - \mu_1(A \cap F)$$
$$= \mu_2(B \cap F) - \mu_2(A \cap F)$$
$$= \mu_2((B \setminus A) \cap F)$$

So $B \setminus A \in \mathcal{D}_1$.

Similarly, $A_n \uparrow A$, $A_n \in \mathcal{D}_1$, then $\forall F \in \mathcal{F}_0$

$$\mu_1(A \cap F) = \lim_{n \to \infty} \mu_1(A_n \cap F)$$
$$= \lim_{n \to \infty} \mu_2(A_n \cap F)$$
$$= \mu_2(A \cap F)$$

Now play the same game starting from \mathcal{D}_1 instead of \mathcal{F}_0 .

More precisely: $\mathcal{D}_2 = \{A \in \mathcal{D} : \forall B \in \mathcal{D}_1, \mu_1(A \cap B) = \mu_2(A \cap B)\}$

Exercise: Check \mathcal{D}_2 is a difference set.

So \mathcal{D}_2 is closed under intersections and a difference set, so it is a σ -field. We have that

$$\mathcal{D}_2 \subset \mathcal{D}_1 \subset \mathcal{D} \subset \sigma(\mathcal{F}_0)$$

But $\mathcal{D}_2 = \sigma(\mathcal{F}_0)$ since \mathcal{D}_2 is a σ -algebra, so the entire thing collapses on itself and

$$\mathcal{D}_2 = \mathcal{D}_1 = \mathcal{D} = \sigma(\mathcal{F}_0)$$

Finally, for any $A \in \sigma(\mathcal{F}_0) = \mathcal{D} = \mathcal{D}_1 = \mathcal{D}_2$,

$$\mu_1(A) = \mu_1(A \cap S) = \mu_2(A \cap S) = \mu_2(A)$$

so $\mu_1 \equiv \mu_2$ on $\sigma(\mathcal{F}_0)$.

Example 5.

- One-dimensional Lebesgue measure
- Lebesgue measure on \mathbb{R}^d

Pre-measure:
$$\mu_0((a_1, b_1] \times ... \times (a_d, b_d]) = \prod_{i=1}^{d} (b_i - a_i)$$

Let
$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-x^2/2} dx$$
. Let $\mu_0((a_i, b_i] \cup \ldots \cup (a_r, b_r]) = \sum_{i=1}^{r} (F(b_i) - F(a_i))$

 $\mu_0 \to \mu_1 \leftarrow \text{Law of standard Normal random variable.}$

Exercise: Think about the measure corresponding to a non-decreasing function $F: \mathbb{R} \to [0, \infty)$ which may have discontinuities.

Hint: An increasing function has at most countably many discontinuities.

Example 6. $([0,1],\mathfrak{B}([0,1]),\lambda)$ where λ is the Lebesgue measure. Fix $A \in B([0,1])$, $\lambda(A) = 0$. Let $B \subset A$. What is the measure of B?

6.1. Completion. Given measure space (S, \mathcal{F}, μ) , if $B \subset A \in \mathcal{F}$ and $\mu(A) = 0$, then we should have $\mu(B) = 0$. Define a new measure μ^* on a new σ -algebra \mathcal{F}^* .

$$\mathcal{F}^* = \{F : \exists E, G \in \mathcal{F}, E \subset F \subset G, \mu(E) = \mu(G)\}\$$

and as expected we should have that $\mu^*(F) = \mu(E) = \mu(G)$ for $F \in \mathcal{F}$.

6.2. Events and Probability Spaces. A measure space (S, \mathcal{F}, μ) is a probability space if $\mu(S) = 1$. Standard notation is to write $(\Omega, \mathcal{F}, \mathbb{P})$

Example 7.

- (1) Die Roll: $\Omega = \{1, 2, 3, 4, 5, 6\}, \ \mathcal{F} = 2^{\Omega}, \ \mathbb{P}(A) = \frac{|A|}{6}$
- (2) $\Omega = [0,1], \mathcal{F} = \mathfrak{B}([0,1]), \mathbb{P} = Lebesgue measure$ We have a point $\omega \in [0,1]$,

$$\omega = 0.\omega_1\omega_2\omega_3...$$

$$\omega^{(1)} = 0.\omega_1\omega_3\omega_5...$$

$$\omega^{(2)} = 0.\omega_2\omega_4\omega_6...$$

What is $\mathbb{P}(\{\omega : \omega_1 = 1\})$. This is just equal to $\mathbb{P}(\left[\frac{1}{2}, 1\right])$. Similarly, $\mathbb{P}(\{\omega : \omega_3 = 1\}) = \frac{1}{2}$ since we are looking at 4 subintervals of length $\frac{1}{8}$.

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

$$\mathbb{P}(\omega_w = 1 | \omega_1 = 1) = \frac{1/4}{1/2} = \frac{1}{2}$$

(3) Infinite sequence of coin tosses.

$$\Omega = \{H, T\}^{\mathbb{N}}, \ \omega \in \Omega, \ \omega = \omega_1 \omega_2 \omega_3 \dots \text{ where each } \omega_i \in \{H, T\}$$

$$\mathcal{F} = \sigma(\{\underbrace{\{\omega : \omega_i = H\}}_{event \ that \ ith \ coin \ is \ heads}, \ i \in \mathbb{N}\})$$

This is the σ -algebra generated by the cylinder sets.

$$\mathbb{P}_{1/2}(\{\omega_1 = H\} \cap \{\omega_5 = T\} \cap \{\omega_8 = H\}) = \frac{1}{8}$$

$$\mathbb{P}_p(\{\omega_1 = H\} \cap \{\omega_5 = T\} \cap \{\omega_8 = H\}) = p^2(1-p)$$

$$\mathbb{P}_p(10 \text{ heads}, 8 \text{ tails}) = p^{10}(1-p)^8$$

Events: $\{H,T\}^{\mathbb{N}}$, $\mathcal{F} = \sigma(cylinder\ sets)$, $\mathbb{P} = \mathbb{P}_{1/2}$.

$$E = \{Only \ heads\} = \{H, H, H, H, H, H, \dots\} \quad \mathbb{P}(E) = 0$$

 $E = \{Infinitely many heads\}$

 $E_i = \{\omega_i = H\}$, and we can write it as $E = \bigcap_{m \ge 1} \bigcup_{n > m} E_n =: \limsup E_n$

Recall: $x_n, n \ge 1$ sequence of numbers.

$$\limsup_{n} x_n = \lim_{n \to \infty} \sup_{n \ge m} x_n$$

 $\limsup x_n \ge x \Leftrightarrow sequence \ exceeds \ x \ infinitely \ many \ times$

We also write " E_n occurs infinitely often" or just " E_n i.o" instead of $\limsup E_n$.

Definition 9. Given a sequence of events E_n ,

$$\liminf_{n \to \infty} E_n = \bigcup_{m \ge 1} \bigcap_{n \ge m} E_n$$

This is the same as saying " E_n occurs all but finitely many times."

Observation:

$$\left(\limsup_{n\to\infty} E_n\right)^c = \liminf_{n\to\infty} (E_n)^c$$

Now let

$$E = \left\{ \omega : \lim_{n \to \infty} \underbrace{\frac{\#\{i \le n : \omega_i = H\}}{n}}_{\frac{S_n}{n} \to \mathbb{E}[X_1]} = \frac{1}{2} \right\}$$

This is the event that the proportion of the number of tosses tends to a half. We should have that $\mathbb{P}(E) = 1$, but is $E \in \mathcal{F}$?

Definition 10. We say an event $E \in \mathcal{F}$ occurs almost surely if $\mathbb{P}(E) = 1$.

6.3. Reverse Fatou's Lemma. $\mathbb{P}(\limsup_{n\to\infty} E_n) \geq \limsup_{n\to\infty} \mathbb{P}(E_n)$ Fatou's Lemma: $\mathbb{P}(\liminf_{n\to\infty} E_n) \leq \liminf_{n\to\infty} \mathbb{P}(E_n)$

Proof of Reverse Fatou's Lemma.

$$\underbrace{\limsup_{n \to \infty} E_n}_{E} = \bigcap_{m \ge 1} \underbrace{\bigcup_{n \ge m} E_n}_{G_{m}}$$

We have $G_m \supset G_{m+1} \supset \dots$ and

$$\lim_{m \to \infty} G_m = \bigcap_{m > 1} G_m = E$$

Thus

$$\begin{split} \mathbb{P}(E) &= \mathbb{P} \Big(\lim_{m \to \infty} G_m \Big) \\ &= \lim_{m \to \infty} \mathbb{P}(G_m) \quad \text{by monotonicity} \\ &= \lim_{m \to \infty} \mathbb{P} \Bigg(\bigcup_{n \ge m} E_n \Bigg) \\ &\geq \lim_{m \to \infty} \sup_{n \ge m} \mathbb{P}(E_n) \\ &= \limsup_{n \to \infty} \mathbb{P}(E_n) \end{split}$$

Note: $\mathbb{P}(E_n) \to 0$ does not mean that $\mathbb{P}(E_n \text{ i.o.}) = 0$

Basic Fact: If $\mathbb{P}(E_n) \to 0$ sufficiently quickly, then $\mathbb{P}(E_n \text{ i.o.}) = 0$.

Example 8. Consider $\mathbb{P}(E_n) = \frac{1}{3^n}$.

6.4. (First) Borel-Cantelli Lemma. If

$$\sum_{n>1} \mathbb{P}(E_n) < \infty$$

then $\mathbb{P}(E_n \text{ i.o.}) = 0$

Proof.

$$\sum_{n\geq 1} \mathbb{P}(E_n) < \infty \Leftrightarrow \forall \varepsilon \; \exists k : \sum_{n\geq k} \mathbb{P}(E_n) < \varepsilon$$

Then

$$\mathbb{P}(E_n \text{ i.o.}) = \mathbb{P}\left(\bigcap_{n\geq 1} \bigcup_{n\geq m} E_n\right)$$

$$\leq \min_{m\geq 1} \mathbb{P}\left(\bigcup_{n\geq m} E_n\right)$$

$$< \varepsilon$$

for any $\varepsilon > 0$

Now consider

$$E_n = \left\{ \ge \frac{n}{2} \text{ heads in the first } n \text{ tosses} \right\}$$
$$= \left\{ S_n \ge \frac{n}{2} \right\}$$
$$= \left\{ S_n \ge \mathbb{E}[S_n] \right\}$$

so $\liminf_{n\to\infty} E_n = \{S_n \text{ stays above its expected values "for all time"}\}$

6.5. Random Variables. Given measurable spaces (Ω, \mathcal{F}) and (S, G), a measurable map from Ω to S is a function $f: \Omega \to S$ such that

$$\forall E \in G, \ f^{-1}(E) \in \mathcal{F}$$

If $(S,G) = (\mathbb{R}, \mathfrak{B}(\mathbb{R}))$, then f is called a <u>random variable</u>. If $(S,G) = (\mathbb{R}^*, \mathfrak{B}(\mathbb{R}))$, then f is called an extended real random variable.

$$\mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$$

7. October 4th, 2012

If $\sum_{n\geq 1} \mathbb{P}(E_n) < \infty$, then $\mathbb{P}(E_n \text{ i.o.}) = 0$. However, it is not necessarily true that if $\sum_{n\geq 1} \mathbb{P}(E_n) = \infty$, then $\mathbb{P}(E_n \text{ i.o.}) > 0$. To see this, let $E_n = [0, 1/n]$.

E occurs almost surely if $\mathbb{P}(E) = 1$. If E_n , $n \ge 1$ each occuring almost surely, then $\bigcap_{n \ge 1} E_n$ occurs almost surely. If $E_x = [0,1] \setminus \{x\}$, then $\mathbb{P}(E_x) = 1$, but $\mathbb{P}\left(\bigcap_{x \in [0,1]} E_x\right) = 0$.

7.1. Measurable Maps, Random Variables. $(\Omega, \mathcal{F}) = ([0, 1), \mathfrak{B}([0, 1)))$

We take $\omega \in \Omega$ and define $X(\omega) = \#$ of ones in the binary expansion of ω before the first zero.

$$X^{-1}(1) = \left[\frac{1}{2}, \frac{3}{4}\right) \qquad X^{-1}(2) = \left[\frac{3}{4}, \frac{7}{8}\right)$$

More generally, for $S \in \mathfrak{B}(\mathbb{R})$,

$$X^{-1}(S) = \bigcup_{n \in S \cap \mathbb{N}} \left[1 - \frac{1}{2^n}, 1 - \frac{1}{2^{n+1}} \right) \in \mathfrak{B}([0, 1]) = \mathcal{F}$$

So

$$\begin{split} \mathbb{P}(X \in S) &:= \mathbb{P}(\{\omega : X(\omega) \in S\}) \\ &= \mathbb{P}\big(X^{-1}(S)\big) \\ &= \sum_{n \in S \cap \mathbb{N}} \frac{1}{2^{n+1}} \end{split}$$

Definition 11. $X: \Omega \to T$ is (Ω, \mathcal{F}) - (T, τ) measurable if $\forall F \in \tau$, $X^{-1}(F) \in \mathcal{F}$

We will typically use

$$X: \begin{array}{cc} \Omega \to & \mathbb{R} \\ \mathcal{F} & \mathfrak{B}(\mathbb{R}) \end{array}$$
Random variable

Theorem 7. Given (Ω, \mathcal{F}) and (S, \mathcal{S}) measurable spaces and $X : \Omega \to S$, and $A \subset \mathcal{S}$, if $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{A}$ and $\sigma(A) = \mathcal{S}$ then X is measurable.

Proof. We show that $G := \{E \subset S : X^{-1}(E) \in \mathcal{F}\}$ is a σ -algebra. Assuming this, then we know that since $A \subset G$, so $\sigma(A) \subset G$. However, $\sigma(A) = \mathcal{S}$, so X is measurable.

- $S \in G$ since $X^{-1}(S) = \Omega \in \mathcal{F}$.
- $A \in G$, then $X^{-1}(A) \in \mathcal{F}$ and $X^{-1}(A^c) = (X^{-1}(A))^c \in \mathcal{F}$.
- For countable unions, $X^{-1}\left(\bigcup_{n\geq 1}A_n\right)=\bigcup_{n\geq 1}X^{-1}(A_n)$ so if $A_n\in G\ \forall\ n\geq 1$, then the RHS $\in\mathcal{F}$

Example 9. $X:\Omega\to\mathbb{R}$

 $\mathcal{A} = \{(-\infty, x] : x \in \mathbb{R}\}$ generates $\mathfrak{B}(\mathbb{R})$. So to prove X is a random variable we just need to show that $\forall x \in \mathbb{R}$, " $\{X \le x\}$ " $\in \mathcal{F}$. Formally, we mean $\{\omega : X(\omega) \le x\} = X^{-1}((-\infty, x])$.

Similarly, $X : \Omega \to \mathbb{R}^d$, to prove that X is a random vector, it suffices to show that " $\{X \in [a_1, b_1] \times \ldots \times [a_d, b_d]\}$ " $\in \mathcal{F}$ for any $a_1 < b_1, \ldots, a_d < b_d$.

Example 10.

$$E = \left\{ \omega : \frac{\#\{k \le n : \omega_k = 1\}}{n} \right\} \to \frac{1}{2}$$

 $\Omega = \{0,1\}^{\mathbb{N}}$. Let $X_n(\omega) = \sum_{i=1}^n \omega_i/n$. Now we can rewrite E as

$$E = \left\{ \lim_{n \to \infty} X_n \text{ exists and equals } \frac{1}{2} \right\}$$

Theorem 8 (Composition of measurable maps). Given three measurable spaces, $(\Omega, \mathcal{F}), (S, \mathcal{S}),$ and $(T, \mathcal{T}).$

If $f: \Omega \to S$ is measurable and $g: S \to T$ is measurable, then

$$g \circ f : \Omega \to T$$

is measurable.

Proof. If
$$E \in \mathcal{T}$$
 then $g^{-1}(E) \in \mathcal{S}$. So $f^{-1}(g^{-1}(E)) = (g \circ f)^{-1}(E) \in \mathcal{F}$.

Corollary. If $f: \Omega \to \mathbb{R}^n$ is a random vector and $g: \mathbb{R}^n \to \mathbb{R}$ is continuous, then $X = g \circ f: \Omega \to \mathbb{R}$ is a random variable

Proof. We just need to check that g is measurable. We know that if

$$\mathcal{A} = \{ \text{Open sets in } \mathbb{R} \}$$

then $\forall A \in \mathcal{A}$,

$$q^{-1}(A) \in \mathfrak{B}(\mathbb{R}^n)$$

But $\sigma(\mathcal{A}) = \mathfrak{B}(\mathbb{R})$ so we are done by an earlier theorem.

Corollary. If $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ are random variables, then

$$\overrightarrow{X}: \Omega \to \mathbb{R}^n$$
 $\omega \to (X_1(\omega), \dots, X_n(\omega))$

is a random vector

Proof. It suffices to consider rectangles $\prod_{i=1}^{n} [a_i, b_i] \subset \mathbb{R}^n$.

$$\{\overrightarrow{X} \in [a_1, b_1] \times \ldots \times [a_n, b_n]\} = \bigcap_{i=1}^n \{X_i \in [a_i, b_i]\}$$
$$= \bigcap_{i=1}^n X_i^{-1}([a_i, b_i]) \in \mathcal{F}$$

Corollary. If X_1, \ldots, X_n are random variables, then the following are also random variables

- -X¹
- $X_1 + X_2 + \ldots + X_n$
- $X_1X_2\ldots X_n$
- $\max_{i \in [1,n]} X_i$

Note: In all the corollaries, we could have used \mathbb{R}^* and $(\mathbb{R}^*)^n$ instead. (Then we get extended real random variables and extended real random vectors.)

Theorem 9. If X_n , $n \ge 1$ are extended real random variables, then $\inf_{n \ge 1} X_n$, $\sup_{n \ge 1} X_n$, $\limsup_{n \ge 1} X_n$, $\lim \inf_{n \ge 1} X_n$ are too. These are all functions from Ω to \mathbb{R}^* defined pointwise.

Proof. Consider $\inf_{n\geq 1} X_n(\omega)$. For $a\in \mathbb{R}^*$, this is at most a iff $\exists n\geq 1$ such that $X_n(\omega)\leq a$. So

$$\left\{\inf_{n\geq 1} X_n \leq a\right\} = \bigcup_{n\geq 1} \underbrace{\left\{X_n \leq a\right\}}_{X_n^{-1}((-\infty, a])} \in \mathcal{F}$$

Likewise, the same proof holds for $\sup_{n\geq 1} X_n = \inf_{n\geq 1} (-X_n)$ is a random variable.

$$\limsup_{n \to \infty} X_n = \lim_{m \to \infty} \sup_{n \ge m} X_n = \inf_{m \ge 1} \sup_{n \ge m} X_n$$

is also a random variable and so is $\liminf_{n\to\infty} X_n$.

Back to Example: $I_n(\omega) = \omega_n$. $\Omega = \{0,1\}^{\mathbb{N}}$. $\mathcal{F} = \sigma(\{\omega_n = 1\}, n \geq 1)$ Exercise: $I_n : \Omega \to \mathbb{R}$ is a random variable.

$$X_n = \frac{1}{n} \sum_{k=1}^n I_k$$

Let $L^+ = \limsup_{n \to \infty} X_n$ and $L^- = \liminf_{n \to \infty} X_n$ and $L = L^+ - L^-$. Then

$$E = \{L = 0\} \cap \left\{L^{+} \le \frac{1}{2}\right\} \cap \left\{L^{-} \ge \frac{1}{2}\right\}$$

We believe that $\mathbb{P}(E) = 1$. (Strong law of large numbers)

Definition 12. Ω , (S, \mathcal{S})

Given a function $X: \Omega \to S$, let

$$\sigma(X) = \bigcap_{\mathcal{F}} \mathcal{F}$$

$$\mathcal{F}, \sigma-algebra \ over \ \Omega$$
which make X measurable

What is clear is that $\forall E \in \mathcal{S}$, $X^{-1}(E) \in \sigma(X)$. Check that $\sigma(X)$ is a σ -algebra, called the σ -algebra generated by X.

More generally, $\sigma(X_i, i \in I)$ is the smallest σ -algebra which makes all the X_i measurable.

Example 11.

- $\Omega = \{0,1\}^{\mathbb{N}}$, then $\sigma(I_1) = \{\emptyset, \{\omega_1 = 1\}, \{\omega_1 = 0\}, \Omega\}$
- $\sigma(I_n, n \ge 1) = \mathcal{F}$ which is the σ -algebra generated by cylinder sets.

Exercise: If $X:(0,1)\to\mathbb{R}$ is increasing and continuous and $X(\omega)\to-\infty$ as $\omega\downarrow 0,\ X(\omega)\to\infty$ as $X(\omega)\uparrow 1$, then $\sigma(X)=\mathfrak{B}([0,1])$.

8. October 9th, 2012

8.1. Generated σ -algebras. Suppose we had a measurable map $f: \Omega \to S$ where (Ω, \mathcal{F}) and (S, \mathcal{S}) are measurable spaces, then

$$\begin{split} \sigma(f) &= \bigcap \mathcal{G} \\ \mathcal{G} &\subset 2^{\Omega}, \mathcal{G} \text{ a σ-alg} \\ f \text{ is } (\Omega, \mathcal{G}) &\to (S, \mathcal{S}) \text{ measurable} \end{split}$$

If $X: \Omega \to \mathbb{R}$, then

$$\sigma(X) = \{X^{-1}(B) : B \in \mathfrak{B}(\mathbb{R})\}\$$

Clearly,

$$\{X^{-1}(B): B \in \mathfrak{B}(\mathbb{R})\} \subset \sigma(X)$$

and the LHS is a σ -algebra. This is true more generally but not all the time.

Now let us imagine that we have a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$.

Theorem 10. The value $X(\omega)$ is equivalent to the collection of values

$$\{I_F(\omega): F \in \sigma(X)\}$$

in that either can be deduced from the other. Here we have

$$I_F(\omega) = \begin{cases} 1 & \text{if } \omega \in F \\ 0 & \text{otherwise} \end{cases}$$

Proof. Fix $x \in \mathbb{R}$. Then if $X(\omega) = x$, then $\omega \in X^{-1}(x)$. For any $F \in \sigma(X)$, we have $F = X^{-1}(B)$, for some $B \in \mathfrak{B}(\mathbb{R})$. If $x \in B$, then $X^{-1}(x) \in F$, so $I_F(\omega) = 1$. Conversely, if $x \notin B$, then $\omega \notin F = X^{-1}(B)$ so $I_F(\omega) = 0$.

Conversely, for a given $\{I_F(\omega), F \in \sigma(X)\}\$. Then

$$X(\omega) = \inf\{x \in \mathbb{R} : I_{(-\infty,x]}(\omega) = 1\}$$

We can think of $\{I_F(\omega): F \in \sigma(X)\}$ as a function $f_\omega: \sigma(X) \to \{0,1\}$. More generally, given a collection $\{X_i, i \in I\}$:

Theorem 11. The collection $\{X_i(\omega): i \in I\}$ can be deduced from

$$\{I_F(\omega), F \in \sigma(X_i, i \in I)\}$$

and vice-versa. Let

$$A = \{X_i(\omega) : i \in I\}$$

$$B = \{I_F(\omega), F \in \sigma(X_i, i \in I)\}$$

 $B \Rightarrow A$ is easy. $I_{[X_i \leq x]}$ is in the collection.

 $A \Rightarrow B$. Idea: Let $E = \bigcap_{i \in I} X_i^{-1}(x_i)$. This does not work if I is uncountable.

Prop. Given a random variable $X : \Omega \to \mathbb{R}$, a random variable $Y : \Omega \to \mathbb{R}$ is $\sigma(X)$ -measurable iff \exists measurable $f : \mathbb{R} \to \mathbb{R}$ such that Y = f(X).

Proof. (\Leftarrow) Easy: composition of measurable maps

$$(\Omega, \sigma(X)) \stackrel{X}{\to} (\mathbb{R}, \mathfrak{B}(\mathbb{R})) \stackrel{f}{\to} (\mathbb{R}, \mathfrak{B}(\mathbb{R}))$$

 (\Rightarrow)

Step 1. If we can do it for bounded functions, we can do it for general functions since if we took $Z = \tan^{-1}(T)$, this is bounded on $[-\pi/2, \pi/2]$ and Y is our general function. Then we have Z is $\sigma(X)$ - $\mathfrak{B}(\mathbb{R})$ measurable, so $\exists g: \mathbb{R} \to \mathbb{R}$ measurable such that Z = g(X). Let $f = \tan(g): \mathbb{R} \to \mathbb{R}$. Then

$$Y = \tan Z$$
$$= \tan(g(X))$$
$$= f(X)$$

Step 2. Assume $|Y(\omega)| \le \pi/2$ for all ω . Fix $q \in \mathbb{Q} \cap [-\pi/2, \pi/2]$. Let $E_q = Y^{-1}((q, \infty])) \in \sigma(X)$. Then we know that $\exists B_q \in \mathfrak{B}(\mathbb{R})$ such that $E_q = X^{-1}(B_q)$. Now let

$$f_q(x) = \begin{cases} \frac{\pi}{2} & \text{if } x \in B_q \\ q & \text{otherwise} \end{cases}$$

Then $f_q(X) \geq Y$. Let $f = \inf_{q \in \mathbb{Q}} f_q$. Then $f : \mathbb{R} \to \mathbb{R}$ is measurable and f(X) = Y.

8.2. Distribution Functions $(\Omega, \mathcal{F}, \mathbb{P})$, X a random variable. The distribution function of X is

$$F_X : \mathbb{R} \to [0, 1]$$

 $x \to \mathbb{P}(X \le x)$

Example 12. $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathfrak{B}([0, 1]), \mathbb{P})$ where \mathbb{P} is the Lebesgue measure.

• X is uniform on [0,1]:

$$F_X(x) = x$$

But we could have $X(\omega) = \omega$ or $X(\omega) = 1 - \omega$.

• X is normally distributed:

$$F_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-y^2/2} \, \mathrm{d}y$$

Let $X(\omega) = F_X^{-1}(\omega)$.

$$\mathbb{P}(X \le x) = \mathbb{P}(\{\omega : X(\omega) \le x\})$$
$$= \mathbb{P}(\{\omega : F^{-1}(\omega) \le x\})$$
$$= F_X(x)$$

- 8.3. Properties of Distribution Functions. F_x is the distribution function of some random variable X.
 - F_X is increasing/non-decreasing
 - $\lim_{y\to\infty} F_X(y) = 1$, $\lim_{y\to-\infty} F_X(y) = 0$
 - F_X is right-continuous:

$$\mathbb{P}(X \le y) = \lim_{z \downarrow y} \mathbb{P}(X \le z)$$

This follows from monotonicity.

8.4. Skorokhod Representation of F. This gives a random variable on $([0,1],\mathfrak{B}([0,1]),\mathbb{P})$ with distribution F.

Formally,

$$X^{+}(\omega) = \sup\{x : F(x) \le \omega\}$$

$$X^-(\omega) = \sup\{x: F(x) < \omega\}$$

Note: $\mathbb{P}(X^- = X^+) = 1$, since $\{\omega : X^-(\omega) \neq X^+(\omega)\}$ is in bijection with the flats of F and the latter is countable.

Definition 13 (Law of a random variable). If we have a space $(\Omega, \mathcal{F}, \mathbb{P})$, $X : \Omega \to \mathbb{R}$ is a random variable. The law of X is a measure μ_X on $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$.

$$\underbrace{\mu_X}_{\mathbb{P}(X)}(B) = \mathbb{P}(X \in B) = \mathbb{P}(X^{-1}(B))$$

Remarks:

- We should check that μ_X is indeed a probability measure.
- $(\mathbb{R}, \mathfrak{B}(\mathbb{R}), \mu_X)$ and we consider $f : \mathbb{R} \to \mathbb{R}$ which takes r to r (aka the identity map). f has the same distribution as X.

$$\mu_X(f \in B) = \mu_X(B) = \mathbb{P}(X \in B)$$

- μ_X is determined by F_X and vice-versa.
 - \Rightarrow is obvious.
 - \Leftarrow is because $\{(-\infty, x], x \in \mathbb{R}\}$ generates $\mathfrak{B}(\mathbb{R})$

9.1. Independence. $(\Omega, \mathcal{F}, \mathbb{P})$

• Events $E, F \in \mathcal{F}$ are independent if

$$\mathbb{P}(E \cap F) = \mathbb{P}(E)\,\mathbb{P}(F)$$

• Random variables $X: \Omega \to \mathbb{R}, Y: \Omega \to \mathbb{R}$ are independent if

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \, \mathbb{P}(Y \in B) \quad \forall A, B \in \mathfrak{B}(\mathbb{R})$$

• Equivalently, X, Y are independent if $\forall E \in \sigma(X), \forall F \in \sigma(Y)$,

$$\mathbb{P}(E \cap F) = \mathbb{P}(E)\,\mathbb{P}(F)$$

More generally, sub- σ -algebras \mathcal{G}, \mathcal{H} of \mathcal{F} are independent if $\forall G \in \mathcal{G}, H \in \mathcal{H}$

$$\mathbb{P}(G \cap H) = \mathbb{P}(G)\,\mathbb{P}(H)$$

Note: If $F \in \mathcal{G} \cap \mathcal{H}$, then

$$\mathbb{P}(F) = {\{\mathbb{P}(F)\}}^2$$

so $\mathbb{P}(F) = 0$ or $\mathbb{P}(F) = 1$

Example 13. $([0,1),\mathfrak{B}([0,1)),\mathbb{P})$

• Let X be the number of zeroes before the first 1 and Y be the number of ones in the first run of ones.

$$\mathbb{P}(X=i) = \frac{1}{2^{i+1}} \qquad \mathbb{P}(Y=j) = \frac{1}{2^j}$$

$$\mathbb{P}(X=i,Y=j) = \frac{1}{2^{i+j+1}}$$

we write $X \perp \!\!\!\perp Y$.

• Now let X be Bernoulli with p = 1/2 and Y be Bernoulli with p = 1/2, where $X \perp \!\!\! \perp Y$. If

$$Z = X + Y \mod 2$$

then $X \perp\!\!\!\perp Z$, $Y \perp\!\!\!\perp Z$. But knowing two of these determines the third, so X,Y,Z are pairwise but not mutually independent.

Definition 14. $(\Omega, \mathcal{F}, \mathcal{P})$, sub- σ -algebras $(\mathcal{F}, n \geq 1)$ of \mathcal{F} are (mutually) independent if $\forall n \geq 1, \forall E_i \in \mathcal{F}_i, 1 \leq i \leq n$,

$$\mathbb{P}\left(\bigcap_{i=1}^{n} E_{i}\right) = \prod_{i=1}^{n} \mathbb{P}(E_{i})$$

i.e. E_1, \ldots, E_n are mutually independent.

Example 14. If E_1, \ldots, E_n are independent, then $E_1, \ldots, E_{n-1}, E_n^c$ are also independent.

Exercise: Given $1 \le n_1 < n_2 < ..., E_1 \in \mathcal{F}_{n_1}, E_2 \in \mathcal{F}_{n_2}, ...$

$$\mathbb{P}\left(\bigcap_{i\geq 1} E_i\right) = \lim_{n\to\infty} \mathbb{P}\left(\bigcap_{i=1}^n E_n\right)$$
$$= \lim_{n\to\infty} \mathbb{P}(E_i)$$
$$= \prod_{i=1}^n \mathbb{P}(E_i)$$

Definition 15. $(\Omega, \mathcal{F}, \mathbb{P}), X_i : \Omega \to \mathbb{R}, i \geq 1$ random variables are independent if $(\sigma(X_i), i \geq 1)$ are independent.

9.2. π -System Lemma. Given Ω , a π -system \mathcal{P} over Ω is a subset of 2^{Ω} that is closed under finite intersections.

Uniqueness Lemma: Given \mathcal{P} a π system over Ω , $\mathcal{F} = \sigma(\mathcal{P})$. If μ_1, μ_2 are measures on (Ω, \mathcal{F}) , $\mu_1(\Omega) = \mu_2(\Omega) < \infty$, and $\mu_1|_{\mathcal{P}} \equiv \mu_2|_{\mathcal{P}}$ then $\mu_1 \equiv \mu_2$.

Recall: $\mathcal{D} = \{A \in \mathcal{F}, \mu_1(A) = \mu_2(A)\} \subset \mathcal{F}$. We showed eventually that $\mathcal{D} = \mathcal{F}$.

Lemma (π -system lemma). If \mathcal{G}_n , $n \geq 1$ are σ -algebras over Ω , $\mathcal{P}_n \subset \mathcal{G}_n$ is a π -system for each $n \geq 1$, with $\sigma(\mathcal{P}_n) = \mathcal{G}_n$, and $(\mathcal{P}_n, n \geq 1)$ are independent, then $(\mathcal{G}_n, n \geq 1)$ are independent.

Example 15. To show $(X_n, n \ge 1)$ are independent, it suffices to prove

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n \mathbb{P}(X_i \le x_i)$$

for all $x_1, \ldots, x_n \in \mathbb{R}$.

Proof. (n=2)

Let \mathcal{G}, \mathcal{H} be σ -algebras and $\mathcal{P} \subset \mathcal{G}, \mathcal{Q} \subset \mathcal{H}$ be π -systems.

$$\forall E \in \mathcal{P}, F \in \mathcal{Q}, \mathbb{P}(E \cap F) = \mathbb{P}(E) \mathbb{P}(F)$$

Fix $E \in \mathcal{P}$ and define measures μ, ν on \mathcal{H} by

$$\mu(F) = \mathbb{P}(E \cap F)$$

and

$$\nu(F) = \mathbb{P}(E)\,\mathbb{P}(F)$$

Note: $\mu|_{\mathcal{Q}} = \nu|_{\mathcal{Q}}$ and $\mu(\Omega) = \nu(\Omega)$ so $\mu \equiv \nu$. This means that $\forall E \in \mathcal{P}, F \in \mathcal{H}$

$$\mathbb{P}(E \cap F) = \mathbb{P}(E)\,\mathbb{P}(F) \quad (\star)$$

Once again, fix $F \in \mathcal{H}$. Let $\widehat{\mu}(E) = \mathbb{P}(E \cap F)$ for $E \in \mathcal{G}$ and let $\widehat{\nu}(E) = \mathbb{P}(E) \mathbb{P}(F)$ for $E \in \mathcal{G}$. By \star , $\widehat{\mu}|_{\mathcal{P}} = \widehat{\nu}|_{\mathcal{P}}$, so $\widehat{\mu} \equiv \widehat{\nu}$. So $\forall E \in \mathcal{G}, F \in \mathcal{H}$,

$$\mathbb{P}(E \cap F) = \mathbb{P}(E)\,\mathbb{P}(F)$$

Exercise: If $\mathcal{G}_i, i \geq 1$ are independent σ -algebras and $N_i, i \geq 1$ partitions of \mathbb{N} , then letting $\mathcal{H}_i = \sigma\left(\bigcup_{j \in N_i} \mathcal{G}_j\right)$, we have that $\mathcal{H}_i, i \geq 1$) are independent. (Hint: Intersections of the form $\bigcap_{j \in N_i} E_j$, where $E_j \in \mathcal{G}_j$ for each j, is a π system that generates \mathcal{H}_i .)

Corollary. $X_{i,j}$, $i,j \ge 1$ are independent and $f_i : \mathbb{R}^n \to \mathbb{R}$, $i \ge 1$ are random vectors, then by setting

$$Y_i = f_i(X_{i,1}, \dots, X_{i,n}) : \Omega \to \mathbb{R}$$

we have that $(Y_i, i \geq 1)$ are independent.

Now suppose I want a sequence of iid $\mathcal{N}(0,1)$ random variables.

(1) Consider $([0,1),\mathfrak{B}((0,1]),\mathcal{P}),$

$$U_1(\underbrace{\omega}_{0.\omega_1\omega_2\omega_3\omega_4\dots}) = 0.\omega_2\omega_4\omega_8\omega_{16}\omega_{32}\dots$$

(Exercise: $U_1(\omega)$ is uniform on [0,1))

$$U_2(\omega) = 0.\omega_3\omega_9\omega_{27}\dots$$

and in general

$$U_n(\omega) = 0.\omega_{p_n}\omega_{p_n^2}\omega_{p_n^3}\dots$$

where p_n is the *n*th prime.

(Exercise: $(U_n, n \ge 1)$ are independent)

(2) Let $X_i = F^{-1}(U_i)$, where F is the cumulative distribution function of a $\mathcal{N}(0,1)$ random variable. By the corollary these $(X_i, i \geq 1)$ are independent. We saw last class that they are normally distributed.

9.3. Borel-Cantelli 2. If $E_i, i \geq 1$ are independent events and $\sum_{i\geq 1} \mathbb{P}(E_i) = \infty$, then $\mathbb{P}(E_i \text{ i.o.}) = 1$. (This is equal to $\mathbb{P}(\bigcap_{m>1}\bigcup_{n>m}E_n)$)

Proof. We will show that the complement $\mathbb{P}\left(\bigcup_{m\geq 1}\bigcap_{n\geq m}E_n^c\right)=0$. It suffices to show that $\forall m\geq 1$, $\mathbb{P}(\bigcap_{n>m} E_n^c) = 0$. Well,

$$\mathbb{P}\left(\bigcap_{n\geq m} E_n^c\right) = \prod_{n\geq m} \mathbb{P}(E_n^c)$$

$$= \prod_{n\geq m} \{1 - \mathbb{P}(E_n)\}$$

$$\leq \prod_{n\geq m} e^{-\mathbb{P}(E_n)} \quad \text{since } 1 - x \leq e^{-x}$$

$$= \exp\left\{-\sum_{n\geq m} \mathbb{P}(E_n)\right\}$$

$$= 0 \quad \text{since the sum is infinite}$$

10. October 16th, 2012

10.1. Independence. Recall: $\mathcal{F}, \mathcal{G}, \sigma$ -algebras are independent if $\forall F \in \mathcal{F}, G \in \mathcal{G}$, we have $\mathbb{P}(F \cap G) =$ $\mathbb{P}(F)\,\mathbb{P}(G)$.

To check $\mathcal{F} \perp \!\!\! \perp \mathcal{G}$ independent, it suffices to check that $P \perp \!\!\! \perp Q$ where P,Q are π -systems and

$$\sigma(P)\supset \mathcal{F} \qquad \sigma(Q)\supset \mathcal{F}$$

Borel-Cantelli II: If $(E_n, n \ge 1)$ are independent events, with

$$\sum_{n>1} \mathbb{P}(E_n) = \infty$$

then $\mathbb{P}(E_n \text{ i.o}) = 1$.

Example 16. $(X_n, n \ge 1)$ *iid* $\exp(1)$. $\mathbb{P}(X_1 \ge t) = e^{-t}, t \ge 0$. How does $M_n = \max_{1 \le i \le n} X_i$ grow?

$$\mathbb{P}(M_n > t) = \mathbb{P}\left(\bigcup_{i=1}^n \{X_i > t\}\right) \le \sum_{i=1}^n \mathbb{P}(X_i > t) = ne^{-t}$$

If $t < \log n$, then this bound is useless. If $t \ge (1 + \varepsilon) \log n$, we get $e^{-t} \le \frac{1}{n^{1+\varepsilon}}$, so

$$\mathbb{P}(M_n > t) \le \frac{1}{n^{\varepsilon}}$$

If $X_n \ge \log n$ infinitely often, then $M_n \ge \log n$ infinitely often.

$$\mathbb{P}(M_n \ge \log n \ i.o.) \ge \mathbb{P}(X_n \ge \log n \ i.o.)$$

$$\sum_{n\geq 1} \mathbb{P}(E_n) = \sum_{n\geq 1} \frac{1}{n} = \infty$$

so by Borel Cantelli 2, $\mathbb{P}(X_n \geq \log n \ i.o.) = 1$.

To prove a corresponding upper bound, note:

Given a non-decreasing function $f: \mathbb{N} \to \mathbb{R}$ with $f(n) \to \infty$ as $n \to \infty$. Then a sequence $(a_n, n \ge 1)$ has $a_n > f(n)$ infinitely often iff $m_n = \max_{1 \le i \le n} > f(n)$ infinitely often.

Proof. \Rightarrow is obvious.

 \Leftarrow happens if there exists a subsequence $n_1, n_2, \ldots \to \infty$ such that $m_{n_k} > f(n_k)$ for all k. Choose the sequence n_1, n_2, \ldots such that for all k,

$$f(n_{k+1}) > m_{n_k}$$

This can be done since $f(n) \to \infty$. We have $m_{n_{k+1}} > f(n_{k+1}) > m_{n_k}$. So there is p_k , with $n_k < p_k \le n_{k+1}$ such that

$$a_{p_{k+1}} = m_{n_{k+1}} > f(n_{k+1}) \ge f(p_{k+1})$$

Then $a_{p_i} \geq f(p_i)$ for all i.

 $M_n = \max(X_1, \dots X_n), \qquad X_i \sim \exp(1)$

then

$$\limsup_{n \to \infty} \frac{M_n}{\log n} \ge 1$$

Now fix $\varepsilon > 0$. The note says that

$$M_n \ge (1+\varepsilon)\log n$$
 i.o. $\Leftrightarrow X_n \ge (1+\varepsilon)\log n$ i.o.

so

$$\mathbb{P}(M_n \ge (1+\varepsilon)\log n \text{ i.o.}) = \mathbb{P}\left(\underbrace{X_n \ge (1+\varepsilon)\log n}_{E_n} \text{ i.o.}\right)$$

and we have

$$\mathbb{P}(E_n) = \frac{1}{n^{1+\varepsilon}}$$

SO

$$\sum_{n\geq 1}\mathbb{P}(E_n)=\sum_{n\geq 1}\frac{1}{n^{1+\varepsilon}}<\infty$$

so $\mathbb{P}(M_n \geq (1+\varepsilon)\log n \text{ i.o.}) = 0$ by Borel-Cantelli.

$$\begin{split} \mathbb{P}\bigg(\limsup_{n\to\infty}\frac{M_n}{\log n}\geq 1\bigg) &= 1\\ \mathbb{P}\bigg(\limsup_{n\to\infty}\frac{M_n}{\log n}\leq 1+\varepsilon\bigg) &= 1\\ \mathbb{P}\bigg(\limsup_{n\to\infty}\frac{M_n}{\log n}< 1-\varepsilon\bigg) &= 0 \end{split}$$

10.2. St. Petersburg Paradox.

 $X=2^{\text{\#heads before first tail}}$. We have $B_1,B_2,\ldots \stackrel{iid}{\sim} \mathrm{Ber}(\frac{1}{2})$, so

$$X = 2^{\min\{i:B_i = 0\} - 1}$$

We have that

winnings if
$$B_{k+1}$$
 is the first 0
$$\mathbb{E}[X] = \sum_{k \geq 0} \frac{1}{2^{k+1}} \cdot \underbrace{2^k}_{2^k}$$

$$= \sum_{k \geq 0} \frac{1}{2}$$

$$= \infty$$

Let X_i , $i \ge 1$ be iid as before.

$$M_n = \max_{1 \le i \le n} X_i$$

and so

$$\mathbb{P}(M_n \ge t) = \mathbb{P}\left(\bigcup_{i=1}^n X_i > t\right)$$

We have

$$\mathbb{P}(X_i > t) = \frac{1}{2^{\lceil \log_2 t \rceil}} \in \left(\frac{1}{2t}, \frac{1}{t}\right]$$

So we get

$$\mathbb{P}(M_n \ge n \log n \text{ i.o.}) = 1$$

and

$$\mathbb{P}(M_n \ge n(\log n)^{1+\varepsilon} \text{ i.o.}) = 0$$

10.3. Strengthening of Borel-Cantelli 2.

Theorem 12. If E_i , $i \ge 1$ are events, (not necessarily independent), and $\sum_{i>1} \mathbb{P}(E_i) = \infty$, then

$$\mathbb{P}(E_i \ i.o.) \ge \limsup_{n \to \infty} \frac{\left(\sum_{i=1}^n \mathbb{P}(E_i)\right)^2}{\sum_{i \le i, j \le n} \mathbb{P}(E_i \cap E_j)}$$

This is typically referred to as the Chung-Erdős inequality.

10.4. Kolmogorov 0-1 Law. $(X_n, n \ge 1)$ independent random variables. Let our tail,

$$\mathcal{T}_n = \sigma(X_n, X_{n+1}, \ldots)$$

then let

$$\mathcal{T} = \bigcap_{n \geq 1} \mathcal{T}_n$$

This is a σ -algebra and we call it the tail σ -algebra.

Exercises: The following events are all in τ

- $\lim_{n\to\infty} X_n$ exists
- $\sum_{k\geq 1} X_k$ converges $(\lim_{h\to\infty} \sum_{j=1}^h X_j$ exists) $\lim_{k\to\infty} \frac{X_1 + \ldots + X_k}{k}$ exists

Theorem 13 (Kolmogorov's 0-1 Law). For any $E \in \mathcal{T}$, $\mathbb{P}(E) \in \{0, 1\}$.

Proof. We'll show that \mathcal{T} is independent of \mathcal{T} . Let

$$\mathcal{F}_n = \sigma(X_1, \dots, X_n)$$

Then \mathcal{F}_n and \mathcal{T}_{n+1} are independent. So \mathcal{F}_n and \mathcal{T} are independent. Let

$$\mathcal{P} = \lim_{n \to \infty} \mathcal{F}_n = \bigcup_{n \ge 1} \mathcal{F}_n$$

Then \mathcal{P} and \mathcal{T} are independent. \mathcal{P} is closed under intersections, so it is a π -system. So by the π -system lemma, $\sigma(\mathcal{P})$ and \mathcal{T} are independent.

We are done since

$$\sigma(\mathcal{P}) = \sigma\left(\bigcup_{n\geq 1} \sigma(X_1, \dots, X_n)\right)$$

$$\supset \sigma\left(\bigcup_{n\geq 1} \sigma(X_n)\right)$$

$$= \sigma(\{X_n\}_{n>1})$$

So $\sigma(\{X_n\}_{n\geq 1})$ and \mathcal{T} are independent, but $\mathcal{T}_n \subset \sigma(\{X_k\}_{k\geq 1})$ for all n, so

$$\bigcap_{n\geq 1} \mathcal{T}_n = \mathcal{T} \subset \sigma(\{X_k\}_{k\geq 1})$$

so \mathcal{T} and \mathcal{T} are independent.

Corollary. If Y is a random variable with $\sigma(Y) \subset \mathcal{T}$ then $\exists c \in [-\infty, \infty]$ such that $\mathbb{P}(Y = c) = 1$.

Proof. Let
$$x = \sup\{y : \mathbb{P}(Y \le y) = 0\}$$
. For any $z > x$, $\mathbb{P}(Y \le z) = 1$ since we are in the tail. So $\mathbb{P}(Y = x) = 1$.

In our branching process example, then

$$\frac{Z_n}{(\mathbb{E}[B])^n} \xrightarrow{\text{a.s.}} W$$

where W is not a constant.

(1) Kolmogorov Extension Theorem If $(X_n, n \ge 1)$ are iid random variables and

$$S_n = X_1 + \dots X_n \qquad (S_n, n \ge 1)$$

with

$$M_n = \max\{S_i, \ 1 \le i \le n\}$$
 $(M_n, n \ge 1)$

11.1. Integration and Expectation.

DIAGRAM

When looking at integration, let us start simple, by looking at constant functions. Say we have

$$f(\omega) = 7 \ \forall \omega$$

Then we have

$$\{\omega: f(\omega) \in B\} = \begin{cases} \emptyset & B \in 7\\ \Omega & B \notin 7 \end{cases}$$

So we have

$$\sigma(f) = \{\emptyset, \Omega\}$$

We also have

$$\sigma(\mathbb{1}_E) = \{\emptyset, \Omega, E, E^c\}$$

Definition 16. Given a measure space (S, \mathcal{F}, μ) , for $E \in \mathcal{F}$ and a constant c > 0, let

$$\int c \mathbb{1}_E \, \mathrm{d}\mu = c\mu(E)$$

More generally, given $E_1, \ldots, E_k \in \mathcal{F}$ and $c_1, \ldots, c_k > 0$, let

$$\int \sum_{i=1}^{k} c_i \mathbb{1}_{E_i} d\mu = \sum_{i=1}^{k} \int c_i \mathbb{1}_{E_i} d\mu$$
$$= \sum_{i=1}^{k} c_i \mu(E_i)$$

where a linear combination of indicators

$$\sum_{i=1}^k c_i \mathbb{1}_{E_i}$$

is called a simple function. We allow sets of size infinity, so according to this, we make it convention that $0 \cdot \infty = 0$.

Exercise: If

$$f = \sum_{i=1}^{k} c_i \mathbb{1}_{E_i} = \sum_{i=1}^{l} b_i \mathbb{1}_{D_i} = g$$

then

$$\int f \, \mathrm{d}\mu = \int g \, \mathrm{d}\mu$$

i.e.

$$\sum_{i=1}^{k} c_i \mu(E_i) = \sum_{j=1}^{l} b_j \mu(D_j)$$

We show this by writing

$$E_i = E_i \cap \left(\bigcup_{j=1}^l D_j\right)$$

Prop. If f, g are simple functions, then

(1) If $\mu(f \neq g) = 0$ then

$$\int f \, \mathrm{d}\mu = \int g \, \mathrm{d}\mu$$

(2) If $c \geq 0$, then

$$\int (cf + g) d\mu = c \int f d\mu + \int g d\mu$$

This can also be written as $\mu(cf+g)$

(3) If $f \leq g$, then

$$\int f \, \mathrm{d}\mu \le \int g \, \mathrm{d}\mu$$

(4) $f \vee g$, and $f \wedge g$ are again simple.

$$f \lor g = \max\{f, g\}$$
$$f \land g = \min\{f, g\}$$

Definition 17. If $f: S \to \mathbb{R}$ is non-negative and measurable then let

$$\int f \, \mathrm{d}\mu = \sup \left\{ \int g \, \mathrm{d}\mu, \ g \ \mathit{simple}, g \le f \right\}$$

We note that we could take functions g such that $\mu(g > f) = 0$ insetad.

Theorem 14 (Monotone Convergence Theorem). If f_n , f are non-negative measurable functions and $f_n \uparrow f$ as $n \to \infty$, then

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

Lemma: For each function, we will have a change of increasing simple functions. We have $f_1, f_2, \ldots, f_n, f_{n+1}, \ldots, f$ and $f_n^{(1)}, f_n^{(2)}, \ldots f_n^{(k)}, \ldots f_n$ to approximate f_n .

Lemma (1). If $(a_n^{(k)})_{n,k\geq 1}$ is increasing in n and in k., then

$$\lim_{n \to \infty} \lim_{k \to \infty} a_n^{(k)} = \lim_{k \to \infty} \lim_{n \to \infty} a_n^{(k)}$$

Fix an n.

$$\begin{array}{cccc}
 & a_n^{(k)} & \dots & a_n^{(\infty)} \\
 & a_{n+1}^{(k)} & & \vdots \\
 & a_{\infty}^{(k)} & & & \\
\end{array}$$

For each k, all n, $a_{\infty}^{(k)} \geq a_n^{(k)}$, so

$$\lim_{k \to \infty} \underbrace{a_{\infty}^{(k)}}_{n \to \infty} \ge \lim_{n \to \infty} \lim_{k \to \infty} a_n^{(k)}$$

$$\lim_{n \to \infty} a_n^{(k)}$$

By symmetry the reverse inequality holds and this completes the proof.

Lemma (2). If $E \in \mathcal{F}$, f_n are simple functions, and $f_n \uparrow \mathbb{1}_E$, then

$$\int f_n \, \mathrm{d}\mu \uparrow \int \mathbb{1}_E \, \mathrm{d}\mu = \mu(E)$$

Proof. \Leftarrow is proven by property (iii).

Now fix $\varepsilon > 0$ and let $E_n = \mathbb{1}\{f_n > 1 - \varepsilon\}$. Since $f_n \uparrow f$, $E_n \uparrow E$. Then

$$f_n \ge (1 - \varepsilon) \mathbb{1}_{E_n}$$

so

$$\lim_{n \to \infty} \int f_n \, d\mu \ge (1 - \varepsilon) \lim_{n \to \infty} \int \mathbb{1}_{E_n} \, d\mu$$
$$= (1 - \varepsilon) \lim_{n \to \infty} \mu(E_n)$$
$$= (1 - \varepsilon)\mu(E)$$

 $\varepsilon > 0$ was arbitrary so we are done.

Lemma (3). If g is a simple function, and $f_n \uparrow g$, then

$$\int f_n \, \mathrm{d}\mu \uparrow \int g \, \mathrm{d}\mu$$

Proof. Write

$$g = \sum_{i=1}^{k} c_i \mathbb{1}_{E_i}, E_1, \dots, E_k \text{ disjoint } \bigcup_{i=1}^{k} E_i = S$$

Then

$$f_n = \sum_{i=1}^n f_n \cdot \mathbb{1}_{E_i}$$

so

$$\int f_n \, \mathrm{d}\mu = \sum_{i=1}^k \int f_n \, \mathbb{1}_{E_i} \, \mathrm{d}\mu$$

Then we have

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \sum_{i=1}^k \int f_n \mathbb{1}_{E_i} \, \mathrm{d}\mu$$

$$= \sum_{i=1}^k \lim_{n \to \infty} \int f_n \mathbb{1}_{E_i} \, \mathrm{d}\mu$$

$$= \sum_{i=1}^k \lim_{n \to \infty} c_i \int \underbrace{\frac{1}{c_i} f_n \mathbb{1}_{E_i}}_{\text{simple } \uparrow \mathbb{1}_{E_i}} \, \mathrm{d}\mu$$

$$= \sum_{i=1}^\infty c_i \mu(E_i) \qquad \text{by Lemma 2}$$

$$= \int g \, \mathrm{d}\mu$$

Lemma (4). If $f \geq 0$ is measurable, f_n , g_n are simple, and $f_n \uparrow f$, $g_n \uparrow f$, then

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

Proof. Let $h_n^{(k)} = \min(f_n, g_k)$. We know that $h_n^{(k)}$ is simple and increasing in n and in k.

$$\lim_{n \to \infty} h_n^{(k)} = g_k$$

so by Lemma 3,

$$\int g_k \, \mathrm{d}\mu = \int \lim_{n \to \infty} h_n^{(k)} \, \mathrm{d}\mu$$

Similarly,

$$\lim_{k \to \infty} h_n^{(k)} = f_n$$

so

$$\int f_n \, \mathrm{d}\mu = \int \lim_{k \to \infty} h_n^{(k)} \, \mathrm{d}\mu$$

Finally,

$$\lim_{k \to \infty} \int g_k \, \mathrm{d}\mu = \lim_{k \to \infty} \int \lim_{n \to \infty} h_n^{(k)} \, \mathrm{d}\mu$$

$$= \lim_{k \to \infty} \lim_{n \to \infty} \int h_n^{(k)} \, \mathrm{d}\mu$$

$$= \lim_{n \to \infty} \lim_{k \to \infty} \int h_n^{(k)} \, \mathrm{d}\mu \qquad \text{by Lemma 1}$$

$$= \lim_{n \to \infty} \int \lim_{k \to \infty} h_n^{(k)} \, \mathrm{d}\mu \qquad \text{by Lemma 3}$$

$$= \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu$$

Lemma (5). If f_n are simple and $f_n \uparrow f$, where f is measurable, then

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

 \Leftarrow is obvious

 \Rightarrow Pick a sequence g_n of simple functions such that

$$\lim_{n \to \infty} \int g_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

Let $h_n = \max(g_1, \dots, g_n, f_1, \dots, f_n) \ge g_n$ but it is also still $\le f$. Then

$$\lim_{n \to \infty} \int h_n \, \mathrm{d}\mu \ge \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu$$

12. October 23rd, 2012

12.1. Assignment Stuff. Question 2.16

$$\mathcal{F}_3 = \sigma(\{\omega_1 = 1\}, \{\omega_2 = 1\}, \{\omega_3 = 1\})$$

If we have disjoint cylinders

$$A_1,\ldots,A_r$$

then

$$\mathbb{P}(A_1 \cup \ldots \cup A_r) = \sum_{i=1}^r \frac{1}{2^{\operatorname{rank}(A_i)}}$$

$$\bigcup \mathcal{F}_i = \sigma(\text{cylinders of rank } i)$$

which ends up being

$$\sigma\left(\bigcup_{i\geq 1}\sigma(\{\omega_1=1\},\ldots,\{\omega_i=1\})\right)$$

2.11: σ -algebras are never countable.

Observation: If a σ -algebra \mathcal{F} contains an infinite sequence, $(E_i, i \geq 1)$ of pairwise disjoint sets, then it is uncountable.

Proof. The uncountable set

$$\left\{\bigcup_{i\in S}:S\subset\mathbb{N}\right\}\subset\mathcal{F}$$

Suppose that \mathcal{F} is a countably infinite σ -algebra. For each $x \in \mathcal{F}$, let

$$E_x = \bigcap_{\substack{E \supset x \\ E \in \mathcal{F}}} E \in \mathcal{F}$$

Now we have that for $x, y \in \Omega$, E_x and E_y are either identical or pairwise disjoint. A good <u>exercise</u> is to show that if $\{E_x : x \in \Omega\}$ is finite, then \mathcal{F} is finite. If $\{E_x : x \in \Omega\}$ is ∞ , then \mathcal{F} is uncountable. \square

2.10c: We look at

$$\mathcal{F}_1=\mathfrak{B}(\mathbb{R})$$

and

 $\mathcal{F}_2 = \{ \text{sets that are countable or co-countable} \}$ $\stackrel{?}{=} \sigma(A_i, i \ge 1) \qquad \text{WLOG all } A_i \text{ countable}$ $= \sigma(A_i, i \ge 1) \qquad \text{WLOG all } A_i \text{ countable}$

$$\subseteq \sigma\left(\left\{x\right\} : x \in \bigcup_{i \ge 1} A_i\right)$$

$$= \left\{S : \text{either } S \subset \bigcup A_i \text{ or } S^c \subset \bigcup A_i\right\}$$

Now any countable set

$$B \subset \left(\bigcup_{i \ge 1} A_i\right)^c$$

is not in $\sigma(A_i, i \geq 1)$.

12.2. Monotone Convergence Theorem. If $f_n \geq 0$ are measurable and $f_n \uparrow f$ where f is also measurable, then

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

Lemma (5). If f_n are simple and $f_n \uparrow f$, where f is measurable, then

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

Proof. \Leftarrow is obvious

 \Rightarrow We use the fact that

$$\int f \, \mathrm{d}\mu = \sup \left\{ \int g \, \mathrm{d}\mu : g \le f, \ g \text{ simple} \right\}$$

Pick a sequence g_n of simple functions such that

$$\lim_{n \to \infty} \int g_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

Let $h_n = \max(g_1, \dots, g_n, f_1, \dots, f_n) \ge g_n$ but it is also still $\le f$. Then

$$\lim_{n \to \infty} \int h_n \, \mathrm{d}\mu \ge \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu$$

We have that $h_n \uparrow f$ so

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int h_n \, \mathrm{d}\mu$$

Finally, $h_n \leq f$ for all n, so

$$\int h_n \, \mathrm{d}\mu \le \int f \, \mathrm{d}\mu$$

for all n, so

$$\lim_{n \to \infty} \int h_n \, \mathrm{d}\mu \le \int f \, \mathrm{d}\mu$$

Also, $h_n \geq g_n$ for all n, so

$$\int h_n \, \mathrm{d}\mu \ge \int g_n \, \mathrm{d}\mu$$

for all n, so

$$\lim_{n \to \infty} \int h_n \, \mathrm{d}\mu \ge \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

12.3. Proof of Monotone Convergence Theorem.

Proof. Let $\alpha^{(k)}:[0,\infty)\to[0,\infty)$ be

$$a^{(k)}(x) = \begin{cases} 0 & \text{if } x = 0\\ \frac{i}{2^k} & \text{if } x = \left(\frac{i}{2^k}, \frac{i+1}{2^k}\right], \ i \le k2^k\\ k & \text{if } x > k \end{cases}$$

For any measurable function $g \ge 0$, $\alpha^{(k)}(g)$ is simple and $\alpha^{(k)}(g) \uparrow g$ as $k \uparrow \infty$. We have $\alpha^{(k)}(f_n) \uparrow \alpha^{(k)}(f)$ as $n \to \infty$ and $\alpha^{(k)}(f_n) \uparrow f_n$ as $k \to \infty$. So Lemma 3 says that

$$\lim_{n \to \infty} \int \alpha^{(k)}(f_n) \, \mathrm{d}\mu = \int \alpha^{(k)}(f) \, \mathrm{d}\mu$$

and Lemma 5 says

$$\lim_{k \to \infty} \int \alpha^{(k)}(f_n) \, \mathrm{d}\mu = \int f_n \, \mathrm{d}\mu$$

taking limits on both sides with respect to n, we get

$$\lim_{n \to \infty} \int f_n \, d\mu = \lim_{n \to \infty} \lim_{k \to \infty} \int \alpha^{(k)}(f_n) \, d\mu$$

$$= \lim_{k \to \infty} \lim_{n \to \infty} \int \alpha^{(k)}(f_n) \, d\mu \quad \text{by Lemma 1}$$

$$= \lim_{k \to \infty} \int \alpha^{(k)}(f) \, d\mu$$

$$= \int f \, d\mu \quad \text{by Lemma 5}$$

Definition 18. We say that measurable functions $f, g: \Omega \to \mathbb{R}$ are almost everywhere equal if

$$\mu(\{f \neq g\}) = 0$$

Exercise:

$$0 \leq f_1 \leq f_2 \leq \ldots \leq f_{a.s.}$$

and

$$\lim_{n\to\infty} f_n \stackrel{a.e.}{=} f$$

then

$$\int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$$

12.4. Fatou's Lemma for Functions. If $f_n \geq 0$ are all measurable, then

$$\int \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int f_n \, \mathrm{d}\mu$$

Proof. Let

$$g_n = \inf_{m > n} f_m$$

So

$$\int \liminf_{n \to \infty} f_n \, \mathrm{d}\mu = \int \lim_{n \to \infty} g_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu$$

Now we use the fact that

$$\int \min(h_1, h_2) \, \mathrm{d}\mu \le \min\left(\int h_1 \, \mathrm{d}\mu, \int h_2 \, \mathrm{d}\mu\right)$$

so

$$\int \liminf_{n \to \infty} f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu$$

$$= \lim_{n \to \infty} \int \inf_{m \ge n} f_m \, \mathrm{d}\mu$$

$$\leq \lim_{n \to \infty} \inf_{m \ge n} \int f_m \, \mathrm{d}\mu$$

$$= \liminf_{n \to \infty} \int f_n \, \mathrm{d}\mu$$

12.5. Reverse Fatou. If $f_n \geq 0$ are measurable and $g \geq 0$ are measurable such that $f_n \leq g \ \forall n$, then

$$\int \limsup_{n \to \infty} f_n \, \mathrm{d}\mu \ge \limsup_{n \to \infty} \int f_n \, \mathrm{d}\mu$$

Idea: Apply Fatou to $f'_n, n \ge 1$ where $f'_n = g - f_n$. Then use linearity of integration.

13.1. General Integral and L^1 . $(S, \mathcal{S}, \mu), f \geq 0$ with $\int f \, d\mu$ defined. For any function $f: S \to \mathbb{R}$ measurable, we have that

$$\int f^+ \, \mathrm{d}\mu = \int f^- \, \mathrm{d}\mu$$

are defined where

$$f^{+} = \max(f, 0)$$
$$f^{-} = -\min(f, 0)$$

This gives us

$$f = f^+ - f^-$$

 $|f| = f^+ + f^-$

We saw that $f \in L^1(S, \mathcal{S}, d\mu)$ or that f is integrable if

$$\int |f| \, \mathrm{d}\mu = \int f^+ \, \mathrm{d}\mu + \int f^- \, \mathrm{d}\mu < \infty$$

In this case, we let

$$\int f \, \mathrm{d}\mu = \int f^+ \, \mathrm{d}\mu - \int f^- \, \mathrm{d}\mu$$

Check:

- Well-defined
- Monotone
- Linear
- Etc...

Let us check linearity. If we have $f, g \in L^1(S, \mathcal{S}, \mu)$, and

$$\int (cf + g) d\mu = \int (cf + g)^{+} d\mu + \int (cf + g)^{-} d\mu$$

Let $E = \{cf + g \ge 0\}$ so we have

$$\int (cf + g) d\mu = \int (cf + g) \mathbb{1}_E d\mu - \int -(cf + g) \mathbb{1}_{E^c} d\mu$$
$$= c \int f d\mu + \int g d\mu$$

The two integrals actually end up expanding into 8 integrals and combine back to get to the final line.

Basic Question: Given functions f_n , f, when does

$$\int f_n \, \mathrm{d}\mu \to \int f \, \mathrm{d}\mu ?$$

(Usually we ask this when $f_n \stackrel{a.e.}{\to} f$)

Observation: $f_n \stackrel{a.e.}{\to} f$ does not imply $\int f_n \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu$

Example 17. $(\mathbb{R}, \mathfrak{B}(\mathbb{R}), Leb)$

Take

$$f_n = \frac{1}{n} \mathbb{1}_{[-n,n]}$$

and take $f \equiv 0$. Then we have $f_n \stackrel{a.e.}{\to} f$ But

$$\int f_n \, \mathrm{d}\mu = 2$$

for all n, but

$$\int f \, \mathrm{d}\mu = 0$$

13.2. **Dominated Convergence Theorem.** If $f_n \stackrel{a.e.}{\to} f$ and $\exists g \in L^1$ such that $|f_n| \leq g$ for all n then

$$\int |f_n - f| \,\mathrm{d}\mu \to 0$$

as $n \to \infty$.

Note:

$$\int f_n d\mu - \int f d\mu = \int (f_n - f) d\mu \le \int |f_n - f| d\mu$$

which implies if

$$\int |f_n - f| \,\mathrm{d}\mu \to 0$$

then

$$\int f_n \, \mathrm{d}\mu \to \int f \, \mathrm{d}\mu$$

Exercise: If $\int |f_n - f| d\mu \to 0$, then $\int |f_n| d\mu \to \int |f| d\mu$.

Definition 19. For measurable functions f_n, f , we say $f_n \to f$ in $L^1(S, \mathcal{S}, \mu)$, or $f_n \stackrel{L^1}{\to} f$ if

$$\int |f_n - f| \, \mathrm{d}\mu \to 0$$

Proof of Dominated Convergence Theorem. Apply Reverse Fatou's Lemma to

$$\int |f_n - f| \,\mathrm{d}\mu$$

Note that

$$|f_n - f| \le |f_n| + |f| \le \underbrace{|g| + |f|}_{\le 2|g|} \in L^1(S, \mathcal{S}, \mu)$$

So

$$\limsup_{n \to \infty} \int |f_n - f| \, \mathrm{d}\mu \le \int \limsup_{n \to \infty} |f_n - f| \, \mathrm{d}\mu$$
$$= \int 0 \, \mathrm{d}\mu$$
$$= 0$$

so we have

$$\lim_{n \to \infty} \int |f_n - f| \, \mathrm{d}\mu = 0$$

Observation 2: Together, the two properties from the first observation, that is $f_n \stackrel{a.e.}{\to} f$ and $\int f_n d\mu =$ $\int f d\mu$ implies

$$f_n \stackrel{L^1}{\to} f$$

Theorem 15 (Scheffé). If $f_n, f \in L^1(S, \mathcal{S}, \mu)$ and $f_n \stackrel{a.e.}{\to} f$, then

$$\int f_n d\mu \to \int f d\mu \Leftrightarrow \int |f_n - f| d\mu \to 0$$

Proof. Need to prove only " \Rightarrow " as the other direction was shown above. So let us assume that $\int f_n d\mu \to f_n d\mu$ $\int f d\mu$. We want to show that

$$\int |f_n - f| \, \mathrm{d}\mu = \int (f_n - f)^+ \, \mathrm{d}\mu + \int (f_n - f)^- \, \mathrm{d}\mu \to 0$$

We have that

$$(f_n - f)^- = -\min(f_n - f, 0) = \begin{cases} 0 & f_n \ge f \\ f - f_n & f_n < f \end{cases}$$

So if $f_n \geq 0$, then $(f_n - f)^- \leq f$. By dominated convergence theorem

$$\int (f_n - f)^- d\mu \to \int 0 d\mu = 0$$

Also,

$$\int (f_n - f)^+ d\mu = \int (f_n - f) \mathbb{1}_{\{f_n \ge f\}} d\mu$$

$$= \int (f_n - f) (1 - \mathbb{1}_{\{f_n < f\}}) d\mu$$

$$= \int (f_n - f) d\mu - \int (f_n - f) \mathbb{1}_{\{f_n < f\}} d\mu$$

$$= \int f_n d\mu - \int f d\mu + \int (f_n - f)^- d\mu$$

which goes to 0, so $f_n \stackrel{L^1}{\to} f$.

13.3. Moving Bump. $(\mathbb{R}, \mathfrak{B}(\mathbb{R}), Leb)$

Let us define a function

$$f_m = \underbrace{f_{2^n + k}}_{0 < k < 2^{n-1}} := \mathbb{1}\left\{\frac{k}{2^n}, \frac{k+1}{2^n}\right\}$$

Let $f \equiv 0$. Then $f_n, f \in L^1(\mathbb{R}, \mathfrak{B}(\mathbb{R}), Leb)$ that is they are all integrable.

$$\int |f_m - f| \, \mathrm{d}\mu = \int |f_m| \, \mathrm{d}\mu = \int f_m \, \mathrm{d}\mu = \frac{1}{2^n} \le \frac{2}{m} \to 0$$

when $m \in [2^n, 2^{n+1})$. Hence $f_m \stackrel{L^1}{\to} f$. But $\forall x \in [0, 1]$, $\limsup_{n \to \infty} f_n(x) = 1$ so $f_n \stackrel{a_r e}{\to} f$.

13.4. **Integrals Over Subsets. Recall:** Given a measurable space (S, \mathcal{S}, μ) and $A \in \mathcal{S}$, we can define a new measure μ_A on (A, \mathcal{S}_A) where

$$S_A = \{E \cap A : E \in S\} = \{E \in S : E : E \subseteq A\}$$

by

$$\mu_A(E) = \mu(E)$$

Check: μ_A is a measure on (A, \mathcal{S}_A) . Now, given $f \in L^1(S, \mathcal{S}, \mu)$, let

$$\int_{A} f \, \mathrm{d}\mu = \int f \cdot \mathbb{1}_{A} \, \mathrm{d}\mu$$

In particular, $\int_S f d\mu = \int f d\mu$. Defining $f_A : A \to \mathbb{R}$ by $f_A(x) = f(x)$, then we should have

$$\int_A f \, \mathrm{d}\mu = \int f_A \, \mathrm{d}\mu_A$$

14. November 1st, 2012

Proof. This is referred to as the *standard machine*.

(1) Indicator functions

If $f = \mathbb{1}_B$, then since $f_A : A \to \mathbb{R}$, $f_A = \mathbb{1}_{A \cap B}$. Then

$$\int_{A} f \, d\mu = \int f \mathbb{1}_{A} \, d\mu$$

$$= \int \mathbb{1}_{A \cap B} \, d\mu$$

$$= \mu(A \cap B)$$

$$= \mu_{A}(A \cap B)$$

$$= \int \mathbb{1}_{A \cap B} \, d\mu_{A}$$

(2) Simple Functions Suppose

$$f = \sum_{i=1}^{n} c_i \mathbb{1}_{B_i}$$

Then

$$\int_{A} f \, d\mu = \int \left(\sum_{i=1}^{n} c_{i} \mathbb{1}_{B_{i}} \right) \mathbb{1}_{A} \, d\mu$$

$$= \int \sum_{i=1}^{n} c_{i} \mathbb{1}_{A \cap B_{i}} \, d\mu$$

$$= \sum_{i=1}^{n} c_{i} \int \mathbb{1}_{A \cap B_{i}} \, d\mu$$

$$= \sum_{i=1}^{n} c_{i} \int \mathbb{1}_{A \cap B_{i}} \, d\mu_{A}$$

$$= \int \underbrace{\left(\sum_{i=1}^{n} c_{i} \mathbb{1}_{B_{i}} \right) \mathbb{1}_{A}}_{f_{A}} \, d\mu_{A}$$

$$= \int f_{A} \, d\mu_{A}$$

One thing to be careful with is when we define the indicator, since $\omega \notin A$ means $\omega \in S \setminus A$, but with respect to $\mathbb{1}_{A \cap B}$ if $\omega \notin A \cap B$, we have a different S as our whole set. In this case, it is A.

(3) $f \ge 0$ Let $f_n \ge 0$, $f_n \uparrow f$, f_n simple.

$$f_n \mathbb{1}_A \uparrow f \mathbb{1}_A$$

SO

$$\int_{A} f_{n} d\mu \longrightarrow \int f d\mu$$

$$\parallel$$

$$\int f_{n,A} d\mu \xrightarrow{f_{n,A} \uparrow f_{A}} \int f_{A} d\mu_{A}$$

(4) $f \in L^1$, $f = f^+ - f^-$ Then

$$\int_{A} f \, \mathrm{d}\mu = \int (f^{+} - f^{-}) \mathbb{1}_{A} \, \mathrm{d}\mu$$

$$= \int_{A} f^{+} \, \mathrm{d}\mu - \int_{A} f^{-} \, \mathrm{d}\mu$$

$$= \int f_{A}^{+} \, \mathrm{d}\mu_{A} - \int f_{A}^{-} \, \mathrm{d}\mu_{A}$$

$$= \int f_{A}^{+} - f_{A}^{-} \, \mathrm{d}\mu_{A}$$

$$= \int f_{A} \, \mathrm{d}\mu_{A}$$

14.1. Change of Measure. (S, \mathcal{S}, μ) $f \geq 0$, $f \in L^1$

Then define a measure ν on (S, \mathcal{S}) by

$$\nu(E) = \int_E f \,\mathrm{d}\mu$$

Bayesian Idea: Updating belief in light of evidence. Is this a measure though? Let us check that. We need that if E_i , $i \ge 1$ are disjoint, then

$$\nu\left(\bigcup_{i\geq 1} E_i\right) = \sum_{i\geq 1} \nu(E_i)$$

or equivalently, if $F_n \uparrow F$, then

$$\nu(F_n) \to \nu(F)$$

We have

$$f\mathbb{1}_{F_n} \to f\mathbb{1}_F$$

so monotone convergence theorem says that

$$\underbrace{\int_{E_n} f \, \mathrm{d}\mu}_{=\nu(E_n)} \to \underbrace{\int_{E} f \, \mathrm{d}\mu}_{=\nu(E)}$$

We write $f = \frac{d\nu}{d\mu}$ or $d\nu = f d\mu$, because

Prop. If $g \geq 0$, which is measurable then

$$\int g \, \mathrm{d}\nu = \int g f \, \mathrm{d}\mu$$

Proof. Standard machine again: If $g = \mathbb{1}_E$, then

$$\int g \, \mathrm{d}\nu = \nu(E) = \int_E f \, \mathrm{d}\mu = \int f \mathbb{1}_E \, \mathrm{d}\mu = \int f g \, \mathrm{d}\mu$$

We are only showing this for indicators then the remaining steps follow the same as before.

14.2. **Expectation.** $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. If $X \geq 0$ is a random variable or $X \subset L^1(\mathbb{P})$, then let

$$\mathbb{E}[X] = \int X \, \mathrm{d}\mathbb{P}$$

Example 18.

$$X = \begin{cases} 1 & \textit{with prob.} \ \frac{1}{2} \\ 0 & \textit{with prob.} \ \frac{1}{2} \end{cases}$$

that is $\exists E, \mathbb{P}(E) = \frac{1}{2}$ such that $X = \mathbb{1}_E$.

$$\mathbb{E}[X] = \int \mathbb{1}_E \, \mathrm{d}\mathbb{P} = \mathbb{P}(E) = \frac{1}{2}$$

Theorem 16 (Bounded Convergence Theorem). $(\Omega, \mathcal{F}, \mathbb{P})$

If X_n , $n \geq 0$ is a sequence of random variables and $X_n \stackrel{a.s.}{\to} X$ where X is a random variable and $\exists K > 0$ such that $|X_n| < K$ for all n, then

$$\mathbb{E}[|X_n - X|] \to 0$$

This is just the Dominated Convergence Theorem where we take $g = K \mathbb{1}_{\Omega}$ and this works since we are in a space of finite measure.

14.3. Jensen's Inequality.

Theorem 17 (Jensen's Inequality). We have X is a random variable and $\varphi: \mathbb{R} \to \mathbb{R}$ is convex. If $X \in L^1(\mathbb{P}) \text{ and } \varphi(X) \in L^1(\mathbb{P}), \text{ then }$

$$\varphi(\mathbb{E}[X]) \le \mathbb{E}[\varphi(X)]$$

Proof. (Convex functions are continuous) Using this, we know that φ is a measurable function and so $\varphi(X)$ is a valid random variable.

Claim: $\forall x \in \mathbb{R}, \exists a, b \text{ such that } l(y) = ay + b \text{ satisfies } l(x) = \varphi(x) \text{ and } l(y) \leq \varphi(y) \ \forall y.$

Proof. Idea: φ has left and right derivatives at x and $\varphi'(x^-) \leq \varphi'(x^+)$. By convexity,

$$\varphi(x+h) - \varphi(x) \ge \varphi(x) - \varphi(x-h)$$

$$(\varphi(x+h) - \varphi(x-h) \ge 2\varphi(x))$$
 so

$$\frac{\varphi(x+h) - \varphi(x)}{h} \ge \frac{\varphi(x) - \varphi(x-h)}{h}$$

The left-hand side is decreasing in h and the right-hand side is increasing in h.

$$\varphi'(x^+) = \lim_{h \downarrow 0} \frac{\varphi(x+h) - \varphi(x)}{h} \qquad \varphi'(x^-) = \lim_{h \downarrow 0} \frac{\varphi(x) - \varphi(x-h)}{h}$$

The same proof shows that $\forall c > 0$,

$$\varphi(x+c) - \phi(x) \ge c\varphi'(x^+)$$

and

$$\varphi(x) - \varphi(x - c) \le c\varphi'(x^{-})$$

Let a be any constant with $\varphi'(x^-) \leq a \leq \varphi'(x^+)$. Then we have

$$l(y) = ay + (\varphi(x) - ax)$$

This is the line passing through $(x, \varphi(x))$ with slope a. We can see this since

$$\frac{l(y) - \varphi(x)}{y - x} = a$$

We also have

$$l(x) = \varphi(x)$$

Now let $\varphi(\mathbb{E}[X]) = l(\mathbb{E}[X])$, with $l \leq f$ and l is of the form l(x) = ax + b. Then by linearity of expectation,

$$\mathbb{E}[\varphi(X)] \geq \mathbb{E}[l(X)] = a\mathbb{E}[X] + b = l(\mathbb{E}[X]) = \varphi(\mathbb{E}[X])$$

Question: Where in the proof did I use that this is a probability space?

Theorem 18 (Markov's Inequality). If $X \ge 0$ is a random variable with $\mathbb{E}[X] < \infty$. Then $\forall t > 0$,

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}$$

Proof.

$$\begin{split} \mathbb{E}[X] &\geq \mathbb{E}[X\mathbbm{1}_{X \geq t}] \\ &\geq \mathbb{E}[t\mathbbm{1}_{X \geq t}] \\ &= t\mathbb{E}[\mathbbm{1}_{X \geq t}] \\ &= t\mathbb{P}(X \geq t) \end{split}$$

Corollary (1.). If $\mathbb{E}[X^2]$ is finite then

$$\mathbb{P}(|X - \mathbb{E}[X]\,| \geq t) \leq \frac{\mathbb{E}\big[(X - \mathbb{E}[X])^2\big]}{t^2}$$

Proof. Let $Y = (X - \mathbb{E}[X])^2$. Then

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) = \mathbb{P}(Y \ge t^2) \le \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2}$$

However we do not know that $\mathbb{E}[Y] < \infty$. Using the fact that

$$\mathbb{E}[X^2 - 2X\mathbb{E}[X] + (\mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

One more thing is missing though since we do not know that $\mathbb{E}[X] < \infty$.

Corollary (2.). If $X \geq 0$ is a random variable and $g : \mathbb{R} \to [0, \infty)$ is increasing and $\mathbb{E}[g(X)] < \infty$, then

$$\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[g(X)]}{g(t)}$$

We can see this as an easy application of Markov's inequality to g(X) as

$$X \ge t \Leftrightarrow g(X) \ge g(t)$$

Definition 20. For random variable X and $p \in [1, \infty)$, we write

$$||X||_p = (\mathbb{E}[|X|^p])^{1/p}$$

which is the L^p -norm. If $||X||_p < \infty$, we say that $X \in L^p(\mathbb{P})$

Definition 21. The essential supremum of X is

$$\operatorname{esssup} X := \sup(r : \mathbb{P}(X \ge r) > 0)$$

Exercise: $||X||_{\infty} := \lim_{p \to \infty} ||X||_p = \text{esssup}|X|$

Prop. If $1 \le p \le r \ then \ ||X||_p \le ||X||_r$.

Proof. Idea: Jensen: $\phi : \mathbb{R} \to \mathbb{R}$ where $\phi(x) = x^{r/p}$

$$||X||_r = \mathbb{E}[|X|^r]^{1/r}$$

$$= \mathbb{E}[\underbrace{(|X|^p)^{r/p}}]^{1/r}$$

$$\geq \phi(\mathbb{E}[|X|^p])^{1/r}$$

$$= \mathbb{E}[|X|^p]^{\frac{r}{p}\frac{1}{r}}$$

$$= ||X||_p$$

But there is a caveat since we are using the fact that $\mathbb{E}[|X|^p] < \infty$ in the proof. To deal with this, we truncate. We write

$$|X|^{\leq N} = |X| \cdot \mathbb{1}_{|X| < N}$$

Then $|X|^{\leq N}$ is bounded and $|X|^{\leq N} \uparrow |X|$. So

$$\|X\|_r \stackrel{MCT}{=} \lim_{N \to \infty} \||X|^{\leq N}\|_r \geq \lim_{N \to \infty} \||X|^{\leq N}\|_p \stackrel{MCT}{=} \|X\|_p$$

15.1. Bounding L^p -norm of X, Y given norm bound on X, Y.

Prop. If $X, Y \in L^1$ and $X \perp \!\!\!\perp Y$ then $X \cdot Y \in L^1$ and $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

Proof. It suffices to prove it when $X, Y \geq 0$ since then

a. If $X \perp \!\!\!\perp Y$ then $|X| \perp \!\!\!\perp |Y|$ so $\mathbb{E}[|XY|] < \infty$ and

(1)
$$\mathbb{E}[XY] = \mathbb{E}[(X^{+} - X^{-})(Y^{+} - Y^{-})]$$

$$(2) \qquad = \mathbb{E}[X^{+}Y^{+}] - \mathbb{E}[X^{+}Y^{-}] - \mathbb{E}[X^{-}Y^{+}] + \mathbb{E}[X^{-}Y^{-}]$$

$$(3) \qquad = \mathbb{E}[X^+] \,\mathbb{E}[Y^+] - \mathbb{E}[X^+] \,\mathbb{E}[Y^-] - \mathbb{E}[X^-] \,\mathbb{E}[Y^+] + \mathbb{E}[X^-] \,\mathbb{E}[Y^-]$$

$$= (\mathbb{E}[X^+] - \mathbb{E}[X^-])(\mathbb{E}[Y^+] - \mathbb{E}[Y^-])$$

$$= \mathbb{E}[X] \, \mathbb{E}[Y]$$

where all the expectations in 3 are finite since X^+, X^-, Y^+, Y^- are all random variables. Why is this true? $X^+ < |X|, X^- < |X|, Y^+ < |Y|$, and $Y^- < |Y|$.

b. Simple to Non-negative:

We let

$$X_k = \alpha^{(k)}(X)$$

$$Y_k = \alpha^{(k)}(Y)$$

so $X_k \perp \!\!\! \perp Y_k \ \forall k$ and $X_k \uparrow X, Y_k \uparrow Y, X_k Y_k \uparrow XY$, so

$$\begin{split} \mathbb{E}[XY] &= \lim_{k \to \infty} \mathbb{E}[X_k Y_k] \\ &= \lim_{k \to \infty} \mathbb{E}[X_k] \, \mathbb{E}[Y_k] \\ &\stackrel{MCT}{=} \, \mathbb{E}[X] \, \mathbb{E}[Y] \end{split}$$

c. Indicator to Simple:

This just done by linearity. It is done as in part a)

d. Indicators:

If $X = \mathbb{1}_A$ and $Y = \mathbb{1}_B$, then $X \perp \!\!\! \perp Y$. Then

$$\mathbb{E}[XY] = \mathbb{E}[\mathbb{1}_A \mathbb{1}_B]$$

$$= \mathbb{P}(A \cap B)$$

$$= \mathbb{P}(A) \mathbb{P}(B)$$

$$= \mathbb{E}[X] \mathbb{E}[Y]$$

The trick used in this proof is very important/useful! Should remember this for the exam!

Prop. If $X, Y \in L^2$, then $XY \in L^1$.

Proof. As before it suffices to prove when $X, Y \geq 0$. In this case,

$$\begin{split} \mathbb{E}[|XY|] &= \mathbb{E}[XY] \\ &\leq \mathbb{E}\left[\max(X,Y)^2\right] \\ &\leq \mathbb{E}\left[X^2 + Y^2\right] \\ &< \infty \qquad \text{by assumption} \end{split}$$

Theorem 19 (Hölder's Inequality). $p,q\geq 1, \ \frac{1}{p}+\frac{1}{q}=1.$ If $\|X\|_p<\infty,\ \|Y\|_q<\infty,\ then\ \|XY\|<\infty$ and

$$\mathbb{E}[|XY|] < \mathbb{E}[|X|^p]^{1/p} \, \mathbb{E}[|Y|^q]^{1/q}$$

Lemma (Young's inequality). If a, b > 0 then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof. This says that

$$\log(ab) \le \log\left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$

$$DIAGRAMS$$

By concavity,

$$\log\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{1}{p}\log(a^p) + \frac{1}{q}\log(b^q)$$

$$= \log a + \log b$$

$$= \log ab$$

Proof of Hölder's Inequality.

Claim: We can assume that X and Y are non-negative.

Claim: We can assume $\mathbb{E}[|X|^p] = 1$ and $\mathbb{E}[|X|^q] = 1$.

To prove the second claim, let

$$X' = \frac{X}{\|X\|_p}$$
 $Y' = \frac{Y}{\|Y\|_q}$

then $||X'||_p = 1 = ||Y'||_q$, so

$$\frac{\mathbb{E}[|XY|]}{\|X\|_p\|Y\|_q} = \mathbb{E}[|X'Y'|] \le \|X'\|_p \cdot \|Y'\|_q = 1$$

Finally, if $\mathbb{E}[|X|^p] = 1 = \mathbb{E}[|X|^q]$, then

$$XY \le \frac{X^p}{n} + \frac{Y^q}{q}$$

and taking expectations, we get

$$\mathbb{E}[XY] \le \frac{\mathbb{E}[X^p]}{p} + \frac{\mathbb{E}[Y^q]}{q}$$

$$\begin{split} &= \frac{1}{p} + \frac{1}{q} \\ &= 1 \\ &= \mathbb{E}[X^p]^{1/p} \, \mathbb{E}[Y^q]^{1/q} \end{split}$$

Corollary (Cauchy-Schwarz). If $X, Y \in L^2$ then

$$\mathbb{E}[|XY|] \le (\mathbb{E}[X^2])^{1/2} (\mathbb{E}[Y^2])^{1/2} < \infty$$

Definition 22. If $X, Y \in L^2(\mathbb{P})$, then the covariance between X and Y is

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

If Cov(X, Y) = 0, we say X, Y are uncorrelated.

Exercise: Find an example where X, Y are uncorrelated but not independent.

15.2. Computations with Random Variables. Let N be a Normal(0,1) variable, so

$$\mathbb{P}(N \le x) = F_N(x)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt$$

$$=: \frac{1}{\sqrt{2\pi}} \int_{(-\infty,x]} e^{-t^2/2} dLeb$$

Then N has density

$$f_N(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

with respect to Lebesgue measure.

From basic undergraduate probability,

$$\mathbb{E}[N^2] = \int x^2 f_N(x) \, \mathrm{d}x$$

Prop (1). (S, S, μ)

Let $f: \mathbb{R} \to [0, \infty)$, $h: \mathbb{R} \to \mathbb{R}$ measurable. Let $\nu = \mu(f)$.

$$\nu(E) = \int_E f \, \mathrm{d}\mu$$

Then

$$h \in L^1(\nu) \Leftrightarrow h \cdot f \in L^1(\mu)$$

and in this case

$$\int h \, \mathrm{d}\nu = \int h \cdot f \, \mathrm{d}\mu$$

Prop (2). Let X be a random variable with law Λ . Let $h: \mathbb{R} \to \mathbb{R}$ be measurable. Then

$$\int h(x) d\mathbb{P} = \mathbb{E}[|h(X)|] < \infty \Leftrightarrow \int |h| d\Lambda < \infty$$

and in this case

$$\mathbb{E}[h(X)] = \int h \, \mathrm{d}\Lambda$$

Corollary. If X has density f, then for any $h : \mathbb{R} \to \mathbb{R}$ measurable,

$$\mathbb{E}[|h(X)|] < \infty \Leftrightarrow \int_{\mathbb{R}} |h(x)f(x)| \, \mathrm{d}x < \infty$$

and in this case

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}} h(x)f(x) \, \mathrm{d}x$$

16.1. Chebyshev for Sums.

Theorem 20 (Chebyshev for sums). If $Z \in L^2(\mathbb{P})$, then $\mathbb{P}(|Z - \mathbb{E}[Z]| \geq t) \leq \frac{\operatorname{Var}(Z)}{t^2}$. Now suppose $Z = X_1 + \ldots + X_n$ where X_1, \ldots, X_n are pairwise independent with $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i^2] = 1$. Then Chebyshev tells us that

$$\mathbb{P}(|Z| \ge t) \le \frac{\operatorname{Var}(Z)}{t^2}$$

We have that

$$Var(Z) = \mathbb{E}\left[\left(\sum_{i=1}^{n} X_i\right)^2\right]$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}[X_i X_j]$$
$$= \sum_{i=1}^{n} \mathbb{E}[X_i^2]$$
$$= n$$

So

$$\mathbb{P}(|Z| \ge t) \le \frac{n}{t^2}$$

16.2. Weak Law of Large Numbers for Finite Variance.

Theorem 21 (WLLN for finite variance). If $X_i, i \geq 1$ are pairwise independent with $\mathbb{E}[X_i] = \mu$ for all i and $\sup_{i \geq 1} \operatorname{Var}(X_i) = K < \infty$, then for all $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) \to 0 \quad as \ n \to \infty$$

where $S_n = X_1 + \ldots + X_n$.

Proof. By replacing X_i by $X_i - \mu$, we can assume $\mu = 0$. We use the same argument as Chebyshev for sums. This gives us

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| > \varepsilon\right) = \mathbb{P}(|S_n| > \varepsilon n)$$

$$\leq \sum_{i=1}^n \frac{\mathbb{E}\left[X_i^2\right]}{\varepsilon^2 n^2}$$

$$\leq \frac{Kn}{\varepsilon^2 n^2}$$

$$= \frac{(K/\varepsilon)^2}{n}$$

$$\to 0 \text{ as } n \to \infty$$

16.3. Weierstrass approximation.

Let $\mathcal{C}([0,1]) = \{\text{continuous functions } f: [0,1] \to \mathbb{R}\}$. For $f,g \in \mathcal{C}([0,1])$, we write

$$\begin{split} \|f-g\| &= \|f-g\|_{\infty} \\ &= \mathrm{esssup}(f-g) \\ &= \sup_{x \in [0,1]} |f(x)-g(x)| \end{split}$$

Prop. For any $f \in \mathcal{C}([0,1])$ and $\varepsilon > 0$, \exists a polynomial $p : [0,1] \to \mathbb{R}$ such that $||f - p|| \le \varepsilon$.

Proof. For $0 \le p \le 1$, let X_1, \ldots, X_n be Bernoulli(p) and let $S_n = \sum_{i=1}^n X_i = \text{Bin}(n,p)$. Now let $B_n:[0,1]\to\mathbb{R},$

$$B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

In other words, $B_n(p) = \mathbb{E}\left[f\left(\frac{S_n}{n}\right)\right]$. **Intuition:** $\mathbb{E}[S_n] = np$ and by the WLLN, we have that for any $\delta > 0$, for n large,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > \delta\right)$$

is small.

To make this rigorous, note:

$$|B_n(p) - f(p)| = \left| \mathbb{E} \left[f\left(\frac{S_n}{n}\right) - f(p) \right] \right|$$

Let E_n be an event such that

$$E_n = \left\{ \left| \frac{S_n}{n} - p \right| < \delta \right\}$$

where δ is chosen such that for $|x - y| < \delta$,

$$|f(x) - f(y)| < \frac{\varepsilon}{2}$$

so now we have

$$|B_{n}(p) - f(p)| = \left| \mathbb{E} \left[\left(f \left(\frac{S_{n}}{n} \right) - f(p) \right) \mathbb{1}_{E_{n}} \right] + \mathbb{E} \left[\left(f \left(\frac{S_{n}}{n} \right) - f(p) \right) \mathbb{1}_{E_{n}^{c}} \right] \right|$$

$$\leq \mathbb{E} \left[\left| \left(f \left(\frac{S_{n}}{n} \right) - f(p) \right) \right| \mathbb{1}_{E_{n}} \right] + \mathbb{E} \left[\left| \left(f \left(\frac{S_{n}}{n} \right) - f(p) \right) \right| \mathbb{1}_{E_{n}^{c}} \right]$$

$$\leq \frac{\varepsilon}{2} \mathbb{P}(E_{n}) + \mathbb{E} \left[\left| \left(f \left(\frac{S_{n}}{n} \right) - f(p) \right) \right| \mathbb{1}_{E_{n}^{c}} \right]$$

We will use the fact that

$$\left| f\left(\frac{S_n}{n}\right) - f(p) \right| \le \left| f\left(\frac{S_n}{n}\right) \right| + |f(p)|$$

$$< 2||f||_{\infty}$$

and so

$$|B_n(p) - f(p)| \le \frac{\varepsilon}{2} + 2||f||_{\infty} \mathbb{P}(E_n^c)$$

$$= \frac{\varepsilon}{2} + 2||f||_{\infty} \mathbb{P}\left(\left|\frac{S_n}{n} - p\right| \ge \delta\right)$$

For n large enough, $\mathbb{P}(\left|\frac{S_n}{n}-p\right| \geq \delta) < \frac{\varepsilon}{4\|f\|_{\infty}}$, so $|B_n(p)-f(p)| < \varepsilon$. Since p was arbitrary (as this was uniformly continuous), we are done.

Theorem 22 (Weak Law of Large Numbers). If $X_i, i \geq 1$ are pairwise independent and identically distributed with $\mathbb{E}[|X|] < \infty$ then $\forall \varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}[X_1]\right| > \varepsilon\right) \to 0 \quad \text{as } n \to \infty$$

 $\textit{Proof.} \ \ \text{Fix} \ N>0 \ \ \text{and} \ \ \text{let} \ X_i^{\leq N}=X_i\mathbbm{1}_{|X_i|\leq N} \ \ \text{and} \ \ X_i^{>N}=X_i\mathbbm{1}_{|X_i|>N}. \ \ \text{Now let us define}$

$$S_n^{\leq N} = \sum_{i=1}^n X_i^{\leq N}$$
 $S_n^{>N} = \sum_{i=1}^n X_i^{>N}$

Write

$$\mathbb{P}\bigg(\bigg|\frac{S_n}{n} - \mathbb{E}[X_1]\bigg| \geq \varepsilon\bigg) \leq \mathbb{P}\bigg(\bigg|\frac{S_n^{\leq N}}{n} - \mathbb{E}\bigg[\frac{S_n^{\leq N}}{n}\bigg]\bigg| \geq \frac{\varepsilon}{2}\bigg) + \mathbb{P}\bigg(\bigg|\frac{S_n^{> N}}{n} - \mathbb{E}\bigg[\frac{S_n^{> N}}{n}\bigg]\bigg| \geq \frac{\varepsilon}{2}\bigg)$$

$$= \mathbb{P}\bigg(\bigg|\frac{S_n^{\leq N}}{n} - \mathbb{E}\Big[X_1^{\leq N}\Big]\bigg| \geq \frac{\varepsilon}{2}\bigg) + \mathbb{P}\bigg(\bigg|\frac{S_n^{>N}}{n} - \mathbb{E}\big[X_1^{>N}\big]\bigg| \geq \frac{\varepsilon}{2}\bigg)$$

Fact: If X is a random variable and $a \leq X \leq b$, then

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$\leq \mathbb{E}[(b - a)^2]$$

$$= (b - a)^2$$

Exercise: In fact, $Var(X) \leq \frac{(b-a)^2}{4}$.

By the exercise, $Var(X_1^{\leq N}) \leq N^2$, so

$$\begin{split} \mathbb{P}\bigg(\bigg|\frac{S_n^{\leq N}}{n} - \mathbb{E}\Big[X_1^{\leq N}\Big]\bigg| \geq \frac{\varepsilon}{2}\bigg) &= \mathbb{P}\Big(|S_n^{\leq N} - \mathbb{E}\big[S_n^{\leq N}\big]| > \frac{\varepsilon n}{2}\Big) \\ &\leq \frac{N^2 n}{(\varepsilon n/2)^2} \\ &= \left(\frac{4N^2}{\varepsilon^2}\right)\frac{1}{n} \end{split}$$

and this tends to 0 as $n \to \infty$.

Note: $|X_1^{\leq N}| \uparrow |X_1|$ as $N \to \infty$, so by Monotone Convergence Theorem,

$$\mathbb{E}\Big[|X_1^{\leq N}|\Big] \to \mathbb{E}[|X_1|]$$

But $|X_1| = |X_1^{\leq N}| + |X_1^{>N}|$.

$$\mathbb{E}\big[|X_1^{>N}|\big] \to 0 \quad \text{as } N \to \infty$$

We take N large enough so that $\mathbb{E}\big[X_1^{>N}\big]<\frac{\varepsilon^2}{8}.$ So this gives us that

$$\mathbb{P}\bigg(\bigg|\frac{S_n^{\leq N}}{n} - \mathbb{E}\Big[X_1^{\leq N}\Big]\bigg| \geq \frac{\varepsilon}{2}\bigg) < \frac{\varepsilon}{2}$$

for $n > \frac{8N^2}{\varepsilon^3}$.

To complete the proof, we now show

$$\left\| \mathbb{P} \left(\left| \frac{S_n^{>N}}{n} - \mathbb{E} \left[X_1^{>N} \right] \right| \ge \frac{\varepsilon}{2} \right) < \frac{\varepsilon}{2}$$

This expression can be written as

$$\begin{split} \mathbb{P}\Big(|S_n^{>N} - \mathbb{E}\big[S_n^{>N}\big] \,| &\geq \frac{\varepsilon n}{2}\Big) \leq \frac{\mathbb{E}\big[|S_n^{>N} - \mathbb{E}\big[S_n^{>N}\big]\big]}{\varepsilon n/2} \\ &\leq \frac{\mathbb{E}\big[|S_n^{>N}|\big] + |\mathbb{E}\big[S_n^{>N}\big] \,|}{\varepsilon n/2} \\ &\leq \frac{(4/\varepsilon)}{n} \mathbb{E}\bigg[\underbrace{|S_n^{>N}|}_{|+\dots + |X_N^{>N}|} \Big] \\ &\leq \frac{(4/\varepsilon)}{n} n \mathbb{E}\big[|X_1^{>N}|\big] \\ &\leq \frac{(4/\varepsilon)}{n} n \mathbb{E}\big[|X_1^{>N}|\big] \\ &\leq \left(\frac{4}{\varepsilon}\right) \left(\frac{\varepsilon^2}{8}\right) \\ &= \frac{\varepsilon}{2} \end{split}$$

We showed that for all $\varepsilon > 0$ and all n sufficiently large, then

$$\left\| \mathbb{P} \left(\left| \frac{S_n}{n} - \mathbb{E}[X_1] \right| > \frac{\varepsilon}{2} \right) < \varepsilon$$

 $X_i, i \ge 1 \text{ i.i.d.}, \mathbb{E}[X_i] < \infty, S_n = X_1 + \ldots + X_n.$

WLLN: $\forall \varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\bigg(\bigg|\frac{S_n}{n} - \mathbb{E}[X_1]\bigg| \ge \varepsilon\bigg) = 0$$

SLLN:

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n} \text{ exists, equals } \mathbb{E}[X_1]\right) = 1$$

which is equivalent to

$$\mathbb{P}\bigg(\forall \varepsilon > 0, \ \limsup_{n \to \infty} \frac{S_n}{n} < \mathbb{E}[X_1] + \varepsilon, \ \liminf_{n \to \infty} \frac{S_n}{n} > \mathbb{E}[X_1] - \varepsilon\bigg) = 1$$

Note that we have

$$\mathbb{P}\bigg(\limsup_{n\to\infty}\frac{S_n}{n}>\mathbb{E}[X_1]+\varepsilon\bigg)\geq \limsup_{n\to\infty}\mathbb{P}\bigg(\frac{S_n}{n}>\mathbb{E}[X_1]+\varepsilon\bigg)$$

and

$$\mathbb{P}\bigg(\liminf_{n\to\infty}\frac{S_n}{n}<\mathbb{E}[X_1]-\varepsilon\bigg)\leq \liminf_{n\to\infty}\mathbb{P}\bigg(\frac{S_n}{n}<\mathbb{E}[X_1]-\varepsilon\bigg)$$

which means that $SLLN \Rightarrow WLLN$.

Steps:

- (1) Assume $\mathbb{E}[X_1] = 0$
- (2) Claim: It suffices to prove when $X_1 \ge 0$. Suppose we know the SLLN in the case $X_1 \ge 0$. For general X_1 , write $X_i = X_i^+ X_i^-$. Then

$$\mathbb{P}\bigg(\lim_{n\to\infty}\frac{S_n^+}{n}=\mathbb{E}\big[X_1^+\big]\bigg)=1=\mathbb{P}\bigg(\lim_{n\to\infty}\frac{S_n^-}{n}=\mathbb{E}\big[X_1^-\big]\bigg)$$

We have

$$S_n^+ = X_1^+ + \ldots + X_n^+$$

 $S_n^- = X_1^- + \ldots + X_n^-$

If

$$\lim_{n \to \infty} \frac{S_n^+}{n} = \mathbb{E}\big[X_1^+\big] \quad \text{ and } \quad \lim_{n \to \infty} \frac{S_n^-}{n} = \mathbb{E}\big[X_1^-\big]$$

then

$$\lim_{n \to \infty} \frac{S_n}{n} = \lim_{n \to \infty} \left(\frac{S_n^+}{n} - \frac{S_n^-}{n} \right) = \mathbb{E} \big[X_1^+ \big] - \mathbb{E} \big[X_1^- \big] = \mathbb{E} [X_1]$$

so

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n}=\mathbb{E}[X_1]\right)\geq \mathbb{P}\left(\lim_{n\to\infty}\frac{S_n^+}{n}=\mathbb{E}[X_1]\,,\,\,\lim_{n\to\infty}\frac{S_n^-}{n}=\mathbb{E}[X_1]\right)=1$$

(3) Reduce the number of "times" n at which we must sample S_n .

Definition 23. A sequence n_i , $i \ge 1$ is lacunary if $\exists c > 1$ such that for all i sufficiently large, $n_{i+1} \ge cn_i$.

Theorem 23 (Lacunary SLLN). If $X_i \geq 0$, $\mathbb{E}[X_i] < \infty$, then for any lacunary sequence $n_i, i \geq 1$,

$$\mathbb{P}\left(\lim_{i\to\infty}\frac{S_{n_i}}{n_i}=\mathbb{E}[X_1]\right)=1$$

Proof of "non-negative SLLN" from Lacunary SLLN. It suffices to prove that $\forall \varepsilon > 0$,

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{n}<\mathbb{E}[X_1]+\varepsilon\right)=1=\mathbb{P}\left(\liminf_{n\to\infty}\frac{S_n}{n}>\mathbb{E}[X_1]-\varepsilon\right)$$

Since then we would have

$$\mathbb{P}\left(\bigcap_{k\geq 1}\left\{\limsup_{n\to\infty}\frac{S_n}{n}<\mathbb{E}[X_1]+\frac{1}{k}\right\}\cap\left\{\liminf_{n\to\infty}\frac{S_n}{n}>\mathbb{E}[X_1]-\frac{1}{k}\right\}\right)=1$$

DIAGRAMS

Let us fix ε . Let $n_i = \left(1 + \frac{\varepsilon}{3}\right)^i$. If

$$\limsup_{n \to \infty} \frac{S_n}{n} \ge \mathbb{E}[X_1] \left(1 + \varepsilon \right)$$

then $\exists i_k, k \geq 1$ such that $\forall k \geq 1$, for some $n \in [n_{i_k}, n_{i_k+1}]$,

$$\frac{S_n}{n} > \mathbb{E}[X_1] (1 + \varepsilon)$$

Then

$$\frac{S_{n_{i_k+1}}}{n_{i_k+1}} \geq \frac{S_n}{n_{i_k+1}} \geq \frac{S_n}{n\left(1+\frac{\varepsilon}{3}\right)} \geq \mathbb{E}[X_1] \, \frac{1+\varepsilon}{\left(1+\frac{\varepsilon}{3}\right)} > \mathbb{E}[X_1] \, \left(1+\frac{\varepsilon}{2}\right)$$

SO

$$\limsup_{i \to \infty} \frac{S_{n_i}}{n_i} \ge \mathbb{E}[X_1] \left(1 + \frac{\varepsilon}{2} \right)$$

It follows that

$$\mathbb{P}\bigg(\limsup_{i\to\infty}\frac{S_{n_i}}{n_i}>\mathbb{E}[X_1]\left(1+\frac{\varepsilon}{2}\right)\bigg)\geq \mathbb{P}\bigg(\limsup_{n\to\infty}\frac{S_n}{n}>\mathbb{E}[X_1]\left(1+\varepsilon\right)\bigg)$$

The left-hand side is zero based on lacunary SLLN.

Similarly, if

$$\liminf_{n \to \infty} \frac{S_n}{n} < \mathbb{E}[X_1] (1 - \varepsilon)$$

then let $i_k, k \ge 1$ be such that for all $k, \exists n \in [n_{i_k}, n_{i_k+1})$ for which $\frac{S_n}{n} < \mathbb{E}[X_1] (1 - \varepsilon)$. Then

$$\frac{S_{n_{i_k}}}{n_{i_k}} \le \frac{S_n}{n_{i_k}} \le \frac{S_n}{n} \left(1 + \frac{\varepsilon}{3} \right) < \mathbb{E}[X_1] \left(1 - \varepsilon \right) \left(1 + \frac{\varepsilon}{3} \right) < \mathbb{E}[X_1] \left(1 - \frac{\varepsilon}{2} \right)$$

SO

$$\mathbb{P}\left(\liminf_{n\to\infty}\frac{S_n}{n}<\mathbb{E}[X_1]\left(1-\varepsilon\right)\right)=0$$

Now all that we have that's left to prove is the lacunary SLLN. Fix a lacunary sequence $(n_i, i \ge 1)$ such that $n_{i+1} > cn_i$ for i sufficiently large. It suffices to prove that $\forall \varepsilon > 0$,

$$\mathbb{P}\bigg(\bigg|\frac{S_{n_i}}{n_i} - \mathbb{E}[X_1]\bigg| > \varepsilon \text{ i.o.}\bigg) = 0$$

We will show that

$$\sum_{i>1} \mathbb{P}\bigg(\bigg|\frac{S_{n_i}}{n_i} - \mathbb{E}[X_1]\bigg| > \varepsilon\bigg) < \infty$$

Then the result follows by Borel-Cantelli. Since we are looking at summability of the series, we may start the sum at i_0 , where i_0 is chosen such that $n_{i+1} \geq cn_i$ for $i \geq i_0$. Write

$$S_{n_i}^{\leq n_i} = \sum_{j=1}^{n_i} X_j^{\leq n_i} = \sum_{j=1}^{n_i} X_j \mathbb{1}_{|X_j| \leq n_i}$$

and

$$S_n^{>n_i} = S_{n_i} - S_{n_i}^{\leq n_i}$$

Then we have

$$\mathbb{P}\bigg(\bigg|\frac{S_{n_i}}{n_i}\bigg|>2\varepsilon\bigg)\leq \mathbb{P}\bigg(\bigg|\frac{S_{n_i}^{\leq n_i}}{n_i}-\mathbb{E}\Big[X_1^{\leq n_i}\Big]\bigg|>\varepsilon\bigg)+\mathbb{P}\big(S_{n_i}\neq S_{n_i}^{\leq n_i}\big)$$

for i large enough that $|\mathbb{E}\left[X_1^{\leq n_i}\right] - \mathbb{E}[X_1]| < \varepsilon$. This is because if

$$\left| \frac{S_{n_i}^{\leq n_i}}{n_i} - \mathbb{E} \left[X_1^{\leq n_i} \right] \right| \leq \varepsilon$$

and $S_{n_i} = S_{n_i}^{\leq n_i}$ then

$$\left| \frac{S_{n_i}}{n_i} - \mathbb{E} \left[X_1^{\leq n_i} \right] \right| \leq \varepsilon$$

so

$$\left| \frac{S_{n_i}}{n_i} - \mathbb{E}[X_1] \right| \le 2\varepsilon$$

First:

$$\mathbb{P}\left(\left|\frac{S_{n_{i}}^{\leq n_{i}}}{n_{i}} - \mathbb{E}\left[X_{1}^{\leq n_{i}}\right]\right| > \varepsilon\right) = \mathbb{P}\left(\left|S_{n_{i}}^{\leq n_{i}} - n_{i}\mathbb{E}\left[X_{1}^{\leq n_{i}}\right]\right| > \varepsilon n_{i}\right) \\
\leq \frac{\operatorname{Var}(S_{n_{i}}^{\leq n_{i}})}{(\varepsilon n_{i})^{2}} \\
\leq \frac{n_{i}\mathbb{E}\left[\left(X_{1}^{\leq n_{i}}\right)^{2}\right]}{(\varepsilon n_{i})^{2}} \\
= \frac{\mathbb{E}\left[\left(X_{1}^{\leq n_{i}}\right)^{2}\right]}{\varepsilon^{2}n_{i}}$$

Now this bound does not look very good but it'll end up working well! Now let us bound the second term.

Second:

$$\mathbb{P}(S_{n_i} \neq S_{n_i}^{\leq n_i}) \leq n_i \mathbb{P}(X_1 \geq n_i)$$

In the end what we want to do is sum these bounds so show that the sum of our probabilities is finite. Let $J = \min\{i : n_i \ge X_1\}$.

Summing the first bound, we get

$$\begin{split} \sum_{i=i_0}^{\infty} \mathbb{P} \bigg(\bigg| \frac{S_{n_i}^{\leq n_i}}{n_i} - \mathbb{E} \Big[X_1^{\leq n_i} \Big] \bigg| > \varepsilon \bigg) &= \mathbb{E} \left[\sum_{i=i_0}^{\infty} \frac{(X_1^{\leq n_i})^2}{n_i} \right] \\ &= \mathbb{E} \left[\sum_{i=\max(i_0,J)} \frac{X_1^2}{n_i} \right] \end{split}$$

But $X_1 \leq n_J$, so $X_1^2 \leq n_J X_1$, and so

$$\sum_{i=i_0}^{\infty} \mathbb{P}\left(\left|\frac{S_{n_i}^{\leq n_i}}{n_i} - \mathbb{E}\left[X_1^{\leq n_i}\right]\right| > \varepsilon\right) \leq \mathbb{E}\left[\sum_{i=\max(i_0,J)} \underbrace{\frac{n_J}{n_i}}_{\leq \frac{1}{1-c}} X_1\right] \leq \frac{1}{1-c}$$

18. November 13th, 2012

Recall: Lacunary SLLN: $S_n = X_1 + \ldots + X_n$, X_i iid $\in L^1(\mathbb{P})$, $n_i, i \geq 1$ such that $n_{i+1} \geq cn_i$ for all $i \geq i_0$, some c > 1, then

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_{n_i}}{n_i} = \mathbb{E}[X_i]\right) = 1$$

We had reduced the proof to showing two sums were finite.

$$\sum_{i=i_0}^{\infty} \frac{\mathbb{E}\left[(X_i^{\leq n_i})^{\alpha} \right]}{n_i}$$

and

$$\sum_{i=i_0}^{\infty} n_i \mathbb{P}(X_i > n_i)$$

We had that $J = \min\{i : X_i \ge X_1\}$ We have since the sequence is iid, the second sum is

$$\sum_{i=i_0}^{\infty} n_i \mathbb{P}(X_1 \ge n_i) = \sum_{i=i_0}^{\infty} n_i \mathbb{E}\left[\mathbb{1}_{\{X_1 > n_i\}}\right]$$

$$= \mathbb{E}\left[\sum_{i=i_0}^{\infty} n_i \mathbb{1}_{\{X_1 > n_i\}}\right]$$
$$= \mathbb{E}\left[\sum_{i=i_0}^{J-1} n_i\right]$$

We have

$$n_{J-1-k} \le \frac{n_{J-1}}{c^k} \le \frac{X_1}{c^k}$$

and so

$$\sum_{i=i_0}^{\infty} n_i \mathbb{P}(X_1 \ge n_i) \le \mathbb{E}\left[X_1 \sum_{k=0}^{J-1-i_0} \frac{1}{c^k}\right]$$

$$= \frac{1}{c-1} \mathbb{E}[X_1]$$

$$< \infty$$

18.1. **Product Spaces.** Let X, Y be independent $\mathcal{U}[0,1]$ random variables.

• What is $\mathbb{E}[XY]$? By independence, this is $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y] = \frac{1}{4}$

• What is $\mathbb{E}[e^{X+Y}]$? We can rewrite this as $\mathbb{E}[e^X e^Y] = \mathbb{E}[e^X] \mathbb{E}[e^Y] = (\mathbb{E}[e^X])^2$. We integrate this to give us

$$\left(\int_0^1 e^x \, \mathrm{d}x\right)^2 = (e-1)^2$$

• What is $\mathbb{E}[e^{XY}]$? We will do this in two steps, holding X a constant first, then Y as a contant.

$$\mathbb{E}\left[e^{XY}\right] = \mathbb{E}\left[\int_0^1 e^{Xy} \, \mathrm{d}y\right]$$

$$= \int_0^1 \int_0^1 e^{xy} \, \mathrm{d}y \, \mathrm{d}x$$

$$= \int_0^1 \frac{e^x - 1}{x} \, \mathrm{d}x$$

$$= \int_0^1 \sum_{i \ge 1} \frac{x^{i-1}}{i!} \, \mathrm{d}x$$

$$= \sum_{i \ge 1} \int_0^1 \frac{x^{i-1}}{i!} \, \mathrm{d}x$$

$$= \sum_{i \ge 1} \frac{1}{i \cdot i!}$$

Questions:

• What is a multiple integral?

• What is a joint density function?

• Writing Z = (X, Y), do we have

$$\mathbb{E}\big[e^{XY}\big] = \int_{[0,1]^2} f \,\mathrm{d}Leb([0,1]^2)$$

where $f:[0,1]^2 \to \mathbb{R}$ and $f(x,y) = e^{xy}$.

18.2. **Product** σ -algebras. Given measurable spaces $(\Omega_i, \mathcal{F}_i)$, $i \in I$, form the product

$$\Omega_I = \prod_{i \in I} \Omega_i$$

= $\{(\omega_i, i \in I) : \omega_i \in \Omega_i \ \forall i \in I\}$

Example 19.

$$\Omega_i = \{0, 1\}, I = \mathbb{N}$$

$$\mathcal{F} = \sigma\{\mathbb{1}_{\{\omega_i = 1\}, i \in \mathbb{N}}\}$$

For $i \in I$, let

$$\rho_i: \Omega_I \to \Omega_i$$
$$(\omega_j, j \in I) \to \omega_i$$

Let

$$\mathcal{F}_I = \sigma(\rho_i, i \in I)$$

To get a a feel for this, what is $\sigma(\rho_i)$? For $E_i \in \mathcal{F}_i$, then

$$\rho_i^{-1}(E_i) = \{\omega : \omega_i \in E_i\} = E_i \times \prod_{j \neq i} \Omega_j$$

so $\sigma(\rho_i) = \left\{ E_i \times \prod_{j \neq i} \Omega_j \right\}$ and \mathcal{F}_I contains this. If $I = \{1, 2\}$, then

$$\mathcal{F}_{I} = \sigma(\{A \times \Omega_{2} : A \in \mathcal{F}_{1}\} \cup \{\Omega_{1} \times B : B \in \Omega_{2}\})$$

$$= \sigma(\underbrace{\{A \times B : A \in \mathcal{F}_{1}, B \in \mathcal{F}_{2}\}}_{\text{Rectangles}})$$

These are called rectangles and they form a π -system. In general, if I is countable, then

$$\mathcal{F}_{I} = \sigma\left(\left\{\prod_{i \in I} A_{i} : A_{i} \in \mathcal{F}_{i}\right\}\right)$$

If I is uncountable, then

$$\mathcal{F}_{I} = \sigma \left(\left\{ \prod_{i \in S} A_{i} \times \prod_{i \in I \setminus S} \Omega_{i} : A_{i} \in \mathcal{F}_{i}, S \subset I, S \text{ countable} \right\} \right)$$

Alternatively, for $S \subset I$, let

$$\mathcal{F}_{I}^{S} = \left\{ E \times \prod_{i \in I \setminus S} \Omega_{i}, E \in \mathcal{F}_{S} \right\}$$

Example 20. If $I = \{1, 2, 3\}$ and $S = \{1, 2\}$ with $(\Omega_i, \mathcal{F}_i) = (\mathbb{R}, \mathfrak{B}(\mathbb{R}))$, then

$$\mathcal{F}_S = (\mathbb{R}^2, \mathfrak{B}(\mathbb{R}^2))$$

so in particular, we could take

$$E = \{x : |x| < 1\}$$

For any S countable, \mathcal{F}_{I}^{S} is a σ -algebra and

$$\mathcal{F}_I = \bigcup_{\substack{S \subset I \\ S \ countable}} \mathcal{F}_I^S$$

We have that

$$\mathcal{F}_I \supset igcup_{egin{array}{c} S \subset I \ S \ countable \end{array}} \mathcal{F}_I^S$$

is easy by the definition, and

$$\mathcal{F}_I \subset igcup_{egin{subarray}{c} S \subset I \ S \ countable \ \end{array}} \mathcal{F}_I^S$$

is true if we can show the right-hand side is a σ -algebra.

In summary, $\Omega_I = \prod_{i \in I} \Omega_i$.

- If I is countable, then \mathcal{F}_I is generated by rectangles
- If I is uncountable, then \mathcal{F}_I is generated by "countable cylinders", and in particular only ever restricts countably many coordinates.

Let us consider $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ and form the product space $\Omega = \Omega_1 \times \Omega_2$. It is common convention to write $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$, but this is an abuse of notation since it is really the σ -algebra generated by the product. However, we refer to this as the product σ -algebra.

For a measurable function, $f: \Omega \to \mathbb{R}$, and any $\omega_1 \in \Omega_1$, $\omega_2 \in \Omega_2$, let $f_{(\omega_1, \bullet)}: \Omega_2 \to \mathbb{R}$ which sends $\omega_2 \to f(\omega_1, \omega_2)$ and let $f_{(\bullet, \omega_2)}: \Omega_1 \to \mathbb{R}$ which sends $\omega_1 \to f(\omega_1, \omega_2)$.

Prop. For all $\omega_1 \in \Omega_1$, $\omega_2 \in \Omega_2$, $f_{(\omega_1, \bullet)}$ is \mathcal{F}_2 -measurable and $f_{(\bullet, \omega_2)}$ is \mathcal{F}_1 -measurable.

Proof. Write $f = f^+ - f^-$. Then $(f^+)_{(\omega_1, \bullet)} = (f_{(\omega_1, \bullet)})^+$ and $(f^-)_{(\omega_1, \bullet)} = (f_{(\omega_1, \bullet)})^-$. So it suffices to prove the proposition for non-negative functions. However going down to simple functions and then indicators is not as trivial as we would like it to be for the standard machine.

Instead, for $f \geq 0$, we have that $f = \lim_{n \to \infty} f \wedge n$ (min) and

$$f_{(\omega_1,\bullet)} = \lim_{n \to \infty} (f_{(\omega_1,\bullet)}) \wedge n = \lim_{n \to \infty} (f \wedge n)_{(\omega_1,\bullet)}$$

so it suffices to prove the proposition for bounded random variables. To prove this for bounded functions, we use the Monotone Class Theorem

Theorem 24 (Monotone Class Theorem). Suppose we have a measurable space (Ω, \mathcal{F}) , and $\mathcal{P} \subset \mathcal{F}$ a π -system, $\sigma(\mathcal{P}) = \mathcal{F}$. Let H be a collection of measurable functions $f: \Omega \to \mathbb{R}$. If

- (1) $\mathbb{1}_E \in H \text{ for } E \in \mathcal{P}.$
- (2) If $f, g \in H$, then $cf + g \in H$.
- (3) If $f_n \in H$, $f_n \uparrow f$, $f_n \ge 0$ (and f bounded), then $f \in H$.

then H contains all non-negative (bounded) measurable functions $f:\Omega\to\mathbb{R}$.

Assuming the Monotone Class Theorem, take

$$H = \{f: \Omega \to \mathbb{R}: \forall \omega_1 \in \Omega_1, \omega_2 \in \Omega_2, f_{(\omega_1, \bullet)} \text{ and } f_{(\bullet, \omega_2)} \text{ are measurable} \}$$

where

$$\mathcal{P} = \{A \times B : A \in \mathcal{F}_1, B \in \mathcal{F}_2\}$$

that is \mathcal{P} is the set of rectangles.

(1) If $f = \mathbb{1}_{A \times B}$, then

$$f_{(\omega_1, \bullet)} = \begin{cases} \mathbb{1}_B & \text{if } \omega_1 \in A \\ 0 & \text{if } \omega_1 \notin A \end{cases}$$

so $f \in H$. The same thing holds for $f_{(\bullet,\omega_2)}$.

- (2) If $f, g \in H$, then $(cf + g)_{(\omega_1, \bullet)} = cf_{(\omega_1, \bullet)} + g_{(\omega_1, \bullet)}$ is \mathcal{F}_2 -measurable and similarly, $(cf + g)_{(\bullet, \omega_2)}$ is \mathcal{F}_1 -measurable, so $cf + g \in H$.
- (3) Suppose $f_n \uparrow f$, $f_n \in H$, then $(f_n)_{(\omega_1, \bullet)} \uparrow f_{(\omega_1, \bullet)}$ so $f_{(\omega_1, \bullet)}$ is measurable. Likewise, $f_{(\bullet, \omega_2)}$ is measurable, so $f \in H$.

The monotone class theorem completes the proposition.

We defined a product σ -algebra, $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$ where

$$\mathcal{F}_1 \times \mathcal{F}_2 = \sigma(\{A \times B : A \in \mathcal{F}_1, B \in \mathcal{F}_2\})$$

Prop. If $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ is $\mathcal{F}_1 \times \mathcal{F}_2$ then $f_{(\omega_1, \bullet)}, f_{(\bullet, \omega_2)}$ are measurable for any $\omega_1 \in \Omega_2, \omega_2 \in \Omega_2$.

Theorem 25 (Monotone Class Theorem). $(\Omega, \mathcal{F}), \mathcal{P} \subset \mathcal{F} \ a \ \pi$ -system with $\sigma(\mathcal{P}) = \mathcal{F}$. If H is a class of functions from $\Omega \to \mathbb{R}$ such that

- $\mathbb{1}_E \in H \text{ for all } E \in \mathcal{P}$
- If $f, g \in H$ then $cf + g \in H$. $(c \in \mathbb{R})$.
- If $0 \le f_n \in H$, $f_n \uparrow f$ (f bounded), then $f \in H$

Then we have that H contains all (bounded, non-negative) measurable functions from $\Omega \to \mathbb{R}$.

Proof.

(1) **Step 1:**

Verify that $\mathbb{1}_E \in H, \forall E \in \mathcal{F}$.

Claim: $\mathcal{D} = \{E \in \mathcal{F} : \mathbb{1}_E \in H\}$ is a d-system (difference set) Assuming the claim, since $\mathcal{P} \subset \{E \in \mathcal{F}, \mathbb{1}_E \in H\}$, we get $\sigma(\mathcal{P}) \subset \{E \in \mathcal{F}, \mathbb{1}_E \in H\}$ and step 1 would be finished.

Proof of claim. If $A, B \in \mathcal{D}$, $A \subset B$, then

$$\mathbb{1}_{B\setminus A} = \mathbb{1}_B - \mathbb{1}_A \in H$$

by (2) with c = -1 so $B \setminus A \in \mathcal{D}$. If $A_n \in \mathcal{D}$, $n \in \mathbb{N}$, $A_n \uparrow A$, then $\mathbb{1}_{A_n} \uparrow \mathbb{1}_A$, so $\mathbb{1}_A \in H$ by (3) so $A \in \mathcal{D}$. Thus \mathcal{D} is a d-system.

(2) **Step 2:**

Claim: H contains all simple functions.

Proof. This is immediate from Step 1 and (2)

(3) **Step 3:**

Claim: If $f \geq 0$, f measurable then $f \in H$

Proof. For $k \in \mathbb{N}$, let $f_k = \alpha^{(k)}(f)$. Then f_k are simple, $f_k \uparrow f$ so $f \in H$ by step 2 and (3).

(4) **Step 4:**

For general f, write $f = f^+ - f^-$, and apply step 3 and (2)

Prop (2). If $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ is measurable and $f \geq 0$, and μ_1, μ_2 are σ -finite measures on $(\Omega_1, \mathcal{F}_1), (\Omega_2, \mathcal{F}_2)$ then

$$I_f^1 = \int f_{(\omega_1, \bullet)} \, \mathrm{d}\mu_2$$

is \mathcal{F}_1 -measurable and

$$I_f^2 = \int f_{(\bullet,\omega_2)} \, \mathrm{d}\mu_1$$

is \mathcal{F}_2 -measurable, and

$$\int I_f^1 \, \mathrm{d}\mu_1 = \int I_f^2 \, \mathrm{d}\mu_2$$

Proof. Let H be the class of functions $f:\Omega_1\times\Omega_2\to[0,\infty)$ satisfying the conditions of proposition 2.

• Step 0:

Claim: $\forall A \in \mathcal{F}_1, B \in \mathcal{F}_2$ we have $f = \mathbb{1}_{A \times B} \in H$.

Proof.

$$I_f^1(\omega) = \int f_{(\omega_1, \bullet)} d\mu_2 = \mu_2(B) \mathbb{1}_A$$

since

$$f_{(\omega_1, \bullet)} = \begin{cases} \mathbb{1}_B & \text{if } \omega_1 \in A \\ 0 & \text{otherwise} \end{cases}$$

DIAGRAMS

so I_f^1 is measurable. So we have

$$\int I_f^1 d\mu_1 = \mu_2(B) \int \mathbb{1}_A d\mu_1 = \mu_2(B)\mu_1(A)$$

Similarly, I_f^2 is measurable and $\int I_f^2 d\mu_2 = \mu_1(A)\mu_2(B)$. So $f = \mathbb{1}_{A \times B} \in H$.

• Step 1:

Claim: if $f \in H$, $g \in H$, then $cf + g \in H$.

Proof. If $f, g \in H$, then

$$I_{cf}^1 = cI_f^1$$

is measurable. So

$$I_{cf+g}^1 = cI_f^1 + I_g^1$$

is measurable. Likewise, I_{cf+q}^2 is measurable and

$$\int I_{cf+g}^1 d\mu_1 = c \int I_f^1 d\mu_1 + \int I_g^1 d\mu_1$$
$$= c \int I_f^2 d\mu_2 + \int I_g^2 d\mu_2 \quad \text{since } f, g \in H$$
$$= \int I_{cf+g}^2 d\mu_2$$

so $cf + g \in H$.

• Step 2:

Claim: If $f_n \in H$, $f_n \ge 0$, $f_n \uparrow f$, then $f \in H$.

Proof. Monotone convergence theorem implies that I_f^1, I_f^2 are measurable and then

$$\int I_f^1 d\mu_1 = \lim_{n \to \infty} \int I_{f_n}^1 d\mu_1$$
$$= \lim_{n \to \infty} \int I_{f_n}^2 d\mu_2$$
$$= \int I_f^2 d\mu_2$$

so $f \in H$.

By the monotone class theorem, if follows that H contains all non-negative measurable functions from $\Omega_1 \times \Omega_2 \to \mathbb{R}$.

Example 21 (Warning examples). $(\Omega_1, \mathcal{F}_1, \mu_1) = (\Omega_2, \mathcal{F}_2, \mu_2) = (\mathbb{N}, 2^{\mathbb{N}}, Counting measure)$

$$\Omega_1 \times \Omega_2 = \mathbb{N}^2$$

(6)
$$m = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & -1 & \cdots \\ 0 & 0 & -1 & 1 & \cdots \\ 0 & -1 & 1 & 0 & \cdots \\ -1 & 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ \hline n \end{bmatrix}$$

$$f(m,n) = \begin{cases} 1 & \text{if } m = n \\ -1 & \text{if } m = n+1 \\ 0 & \text{otherwise} \end{cases}$$

We have

$$\int I_f^1 = 1 + 0 + 0 + \dots = 1$$

and

$$\int I_f^2 = 0 + 0 + 0 + \dots = 0$$

If we define

$$\mathbb{E}\big[e^{XY}\big] = \iint e^{xy} \, \mathrm{d}x \, \mathrm{d}y$$

Definition 24. Given $(\Omega_1, \mathcal{F}_1, \mu_1), (\Omega_2, \mathcal{F}_2, \mu_2)$ σ -finite measure spaces, for $E \in \mathcal{F}_1 \times \mathcal{F}_2$, set

$$\mu(E) = (\mu_1 \times \mu_2)(E) = \iint \mathbb{1}_E \,\mathrm{d}\mu_1 \,\mathrm{d}\mu_2$$

Prop. μ is a measure

Proof.

- $\mu(\emptyset) = 0$ is trivial
- $\mu \ge 0$ is also trivial as we are integrating a non-negative function (the indicator function)
- If $E_n, n \geq 1$ are disjoint, $E = \bigcup_n E_n$, then

$$\mu(E) = \iint \mathbb{1}_E \, d\mu_1 \, d\mu_2$$

$$= \iint \sum_{i \ge 1} \mathbb{1}_{E_i} \, d\mu_1 \, d\mu_2$$

$$= \iint \left(\sum_{i \ge 1} \int \mathbb{1}_{E_i} \, d\mu_1 \right) \, d\mu_2$$

$$= \sum_{i \ge 1} \underbrace{\iint \mathbb{1}_{E_i} \, d\mu_1 \, d\mu_2}_{\mu(E_i)}$$

$$= \sum_{i \ge 1} \mu(E_i)$$

Claim. μ is σ -finite and so by the uniqueness lemma it is the unique σ -finite extension of its restriction to

$$\{A \times B : A \in \mathcal{F}_1, B \in \mathcal{F}_2\}$$

Proof. There exist $A_n \in \mathcal{F}_1$, $A_n \uparrow \Omega$, $B_n \in \mathcal{F}_2$, $B_n \uparrow \Omega_2$. with $\mu_1(A_n) < \infty$ and $\mu_2(B_n) < \infty$. Then $A_n \times B_n \uparrow \Omega_1 \times \Omega_2$ and $\mu(A_n \times B_n) < \infty$

Example 22 (Example from last class). $X \sim \mathcal{U}[0,1], Y \sim \mathcal{U}[0,1]$. Let μ_1 be the law of X = Leb([0,1]) and μ_2 be the law of Y = Leb([0,1]).

Let $\mu = \mu_1 \times \mu_2$. Then for any $A, B \in \mathfrak{B}([0,1])$,

$$\mu(A \times B) = \mu_1(A) \cdot \mu_2(B)$$
$$= \text{Leb}(A) \cdot \text{Leb}(B)$$
$$= \text{Leb}(A \times B)$$

so

$$\iint e^{xy} d\mu_1 d\mu_2 = \underbrace{\int e^{xy} d\mu}_{\mathbb{E}[e^{XY}]} = \iint e^{xy} d\mu_2 d\mu_1$$

20. November 15th, 2012

Prop. $(\Omega_1, \mathcal{F}_1, \mu_1), (\Omega_2, \mathcal{F}_2, \mu_2)$ σ -finite, $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ measurable, $f \geq 0$, then $\int f_{(\omega_1, \bullet)} d\mu_2$ and $\int f_{(\bullet, \omega_2)} d\mu_1$ are measurable and

$$\iint f \, \mathrm{d}\mu_1 \, \mathrm{d}\mu_2 = \iint f \, \mathrm{d}\mu_2 \, \mathrm{d}\mu_1$$

The proof of this from this morning works if $\mu_1(\Omega_1) < \infty$, $\mu_2(\Omega_2) < \infty$, and f is bounded.

If $f \geq 0$, spaces are σ -finite, then let $A_n \in \mathcal{F}$, $\mu_1(A_n) < \infty$, $A_n \uparrow \Omega_1$, $B_n \in \mathcal{F}_2$, $\mu_2(B_n) < \infty$, $B_n \uparrow \Omega_2$. Let $f_n = f \land n$. Then μ_{1,A_n} and μ_{2,B_n} , which are measures that restrict the σ -algebra to A_n and B_n respectively are finite measures. Then

$$f = \lim_{n \to \infty} f_n = \lim_{n \to \infty} \lim_{m \to \infty} f_n \mathbb{1}_{A_m \times B_m}$$

$$\iint f \, \mathrm{d}\mu_1 \, \mathrm{d}\mu_2 = \lim_{n \to \infty} \lim_{m \to \infty} \iint f_n \underbrace{\mathbb{1}_{A_m \times B_m}}_{\mathbb{1}_{A_m} \times \mathbb{1}_{B_m}} \, \mathrm{d}\mu_1 \, \mathrm{d}\mu_2$$

by four applications of monotone convergence theorem. This becomes

$$\iint f \, d\mu_1 \, d\mu_2 = \lim_{n \to \infty} \lim_{m \to \infty} \int \mathbb{1}_{B_m} \int f_n \mathbb{1}_{A_m} \, d\mu_1 \, d\mu_2$$
$$= \lim_{n \to \infty} \lim_{m \to \infty} \int \mathbb{1}_{B_m} \int f_n \, d\mu_{1,A_m} \, d\mu_2$$
$$= \lim_{n \to \infty} \lim_{m \to \infty} \iint f_n \, d\mu_{1,A_m} \, d\mu_{2,B_m}$$

Now these are bounded, so we can apply the result we used earlier, to give us

$$\iint f \, d\mu_1 \, d\mu_2 = \iint f_n \, d\mu_{2,B_m} \, d\mu_{1,A_m}$$

$$\vdots$$

$$= \iint f \, d\mu_2 \, d\mu_1$$

where we reverse what we had just shown.

Example 23 (Warning example). Take $(\Omega_1, \mathcal{F}_1) = (\Omega_2, \mathcal{F}_2) = ([0, 1], \mathfrak{B}([0, 1]))$. Let μ_1 be the Lebesgue measure and μ_2 the counting measure. Let

$$D = \{(x, x) : 0 \le x \le 1\}$$

and $f = \mathbb{1}_D$. On one hand, we have

$$\iint f \,\mathrm{d}\mu_1 \,\mathrm{d}\mu_2 = \int 0 \,\mathrm{d}\mu_2 = 0$$

On the other, we have

$$\iint f \,\mathrm{d}\mu_2 \,\mathrm{d}\mu_1 = \int 1 \,\mathrm{d}\mu_1 = 1$$

We defined $\mu = \mu_1 \times \mu_2$ by setting

$$\mu(E) = \iint \mathbb{1}_E \,\mathrm{d}\mu_1 \,\mathrm{d}\mu_2 = \iint \mathbb{1}_E \,\mathrm{d}\mu_2 \,\mathrm{d}\mu_1$$

In particular, $\mu(A \times B) = \mu_1(A)\mu_2(B)$.

Theorem 26 (Tonelli's Theorem). If $f \geq 0$, $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ is measurable then

$$\iint f \, \mathrm{d}\mu_2 \, \mathrm{d}\mu_1 = \int f \, \mathrm{d}\mu = \iint f \, \mathrm{d}\mu_1 \, \mathrm{d}\mu_2$$

Given random variables $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$, the joint law of X and Y is the measure Λ on $(\mathbb{R}^2, \mathfrak{B}(sR^2))$ with $\Lambda(E) = \mathbb{P}((X,Y) \in E)$.

Prop. If X, Y are independent, then

$$\Lambda = \Lambda_X \times \Lambda_Y$$

where Λ_X is the law of X and Λ_Y is the law of Y.

Proof. By independence, for any rectangle $A \times B$,

$$\Lambda(A \times B) = \Lambda_X(A) \times \Lambda_Y(B)$$

and the result follows from the uniqueness lemma because rectangles generate the product σ -algebra. \square

Now, we have

$$\mathbb{E}[e^{XY}] = \int \underbrace{f}_{g(X,Y)} d\mathbb{P}$$
Joint law of (X,Y)

$$= \int_{\mathbb{R}^2} g \overrightarrow{d\Lambda}$$

$$= \iint g d\Lambda_X d\Lambda_Y$$

$$= \iint e^{xy} dx dy$$

where $(X,Y): \Omega \to \mathbb{R}^2, g: \mathbb{R}^2 \to \mathbb{R}$ and $g(x,y) = e^{xy}$.

If X and Y are independent and have joint density $f: \mathbb{R}^2 \to [0, \infty)$, then

$$\mathbb{P}((X,Y) \in E) = \int_{E} f \, dLeb = \iint_{E} f \, dx \, dy$$

Then for $x, y \in \mathbb{R}$, set

$$f_X(x) = \int_{\mathbb{R}} f(x, y) \,dy$$
 $f_Y(y) = \int_{\mathbb{R}} f(x, y) \,dx$

Then f_X and f_Y are densities for X, Y respectively and $f \stackrel{a.e.}{=} f_X \cdot f_Y$.

- We take $(\Omega_1, \mathcal{F}_1, \mu_1), (\Omega_2, \mathcal{F}_2, \mu_2)$
- Define $\mathcal{F}_1 \times \mathcal{F}_2$ (generated by rectangles or countable cylinders) and check that sectional functions and sectional integrals are well-defined and that order of integration does not matter.
- We used the monotone class theorem plus monotone convergence.
- \bullet This all works for n-fold products.
- \bullet Define the product measure using double integrals. (For an n-fold product, we use an n-fold integral and the uniqueness lemma says this is well-defined.)
- Order of integration is unimportant for non-negative functions and all orders give $\int f d(\mu_1 \times \mu_2)$ (or $\int f d(\mu_1 \times \cdots \times \mu_n)$).

Theorem 27 (Fubini's Theorem). If we have $(\Omega_1, \mathcal{F}_1, \mu_1)$, $(\Omega_2, \mathcal{F}_2, \mu_2)$ are σ -finite and $\mu = \mu_1 \times \mu_2$. If $f \in L^1(\mu)$, then

$$\iint f \,\mathrm{d}\mu_1 \,\mathrm{d}\mu_2 = \int f \,\mathrm{d}\mu = \iint f \,\mathrm{d}\mu_2 \,\mathrm{d}\mu_1$$

(and all these integrals exist)

Proof. Write $f = f^+ - f^-$. By Tonelli, we have

$$\int f^+ \, \mathrm{d}\mu = \iint f^+ \, \mathrm{d}\mu_1 \, \mathrm{d}\mu_2$$

and

$$\int f^- \, \mathrm{d}\mu = \iint f^- \, \mathrm{d}\mu_1 \, \mathrm{d}\mu_2$$

so

$$\iint f d\mu_1 d\mu_2 = \iint f^+ d\mu_1 d\mu_2 - \iint f^- d\mu_1 d\mu_2$$
$$= \iint f^+ d\mu - \iint f^- d\mu$$
$$= \iint f d\mu$$

20.1. Infinite Product Spaces. $(\Omega_i, \mathcal{F}_i, \mu_i)$, $i \geq 1$ where we have probability spaces. Let $\mathcal{C}_n = \{\text{Degree } n \text{ cylinder sets}\}$ and

 $\mathcal{G} = \{\text{Finite disjoint unions of cylinders}\}\$

Define, for $C = \bigcup_{i=1}^n C_i \in \mathcal{G}$, $C_i = E_{i,1} \times E_{i,2}$. where

$$C_i = E_{i,1} \times E_{i,2} \times \cdots \times E_{i,n_i} \times \Omega_{n_i+1} \times \Omega_{n_2+1} \times \cdots$$

We set

$$\mu(C) = \sum_{i=1}^{n} \prod_{i=1}^{n_i} \mu_i(E_{i,j})$$

However, what needs to be checked is

Prop. \mathcal{G} is an algebra, μ is well-defined and is a pre-measure on \mathcal{G} .

Prop.

$$\sigma(\mathcal{G}) = \prod_{i \ge 1} \mathcal{F}_i$$

Thus, the product measure μ on $\prod_{i\geq 1} \mathcal{F}_i$ is uniquely defined. If $\mu_i, i\geq 1$ are the laws of $X_i, i\geq 1$. (so $\Omega_i = \mathbb{R}$ and $\mathcal{F}_i = \mathfrak{B}(\mathbb{R})$). However, we have that

$$\prod_{i\geq 1}\mathcal{F}_i\neq\mathfrak{B}(\mathbb{R}^\infty)$$

as we had before. Now let

$$\widehat{X}_j: \prod_{i=1}^{\infty}: \Omega_i \to \mathbb{R}$$

which sends $(\omega_i, i \geq 1)$ to ω_j . Then $(\widehat{X}_j, j \geq 1)$ are independent and \widehat{X}_j has law μ_j .

20.2. Stochastic Processes. Brownian motion $(B_t, t \ge 0) : \Omega \to \mathbb{R}^{[0,\infty)}$ is a "random function" such that $B_0 = 0$ and

(1) For all $s, t \geq 0$,

$$B_{t+s} - B_t \sim \mathcal{N}(0, s)$$

(2) For all $0 \le s_1 \le t_1 \le t_2 \le \cdots \le s_k \le t_k$,

$$B_{t_1} - B_{s_1}, B_{t_2} - B_{s_2}, \dots, B_{t_k} - B_{s_k}$$

are all independent.

(3) $(B_t, t \ge 0)$ is continuous with probability 1.

We'll see how to define a measure μ on $(\mathbb{R}^{[0,\infty)},\mathfrak{B}(\mathbb{R}^{[0,\infty)})$ such that the identity map $B:\mathbb{R}^{[0,\infty)}\to\mathbb{R}^{[0,\infty)}$ satisfies (1) and (2).

21. November 20th, 2012

Recall: If X has law Λ , then in the probability space $(\mathbb{R}, \mathfrak{B}(\mathbb{R}), \Lambda)$, the identity map $f : \mathbb{R} \to \mathbb{R}$, f(x) = x has the same distribution as X, i.e. has law Λ . We want a probability measure \mathbb{P} on $(\mathbb{R}^{[0,\infty)}, \prod_{t\geq 0} \mathfrak{B}(\mathbb{R}))$ so that the identity map from $\mathbb{R}^{[0,\infty)} \to \mathbb{R}^{[0,\infty)}$ has the distribution of Brownian motion (ignoring the continuity requirement.)

The requirements we needed to satisfy for Brownian motion were

- (1) for all $s, t \ge 0$, $B_{s+t} B_s \stackrel{d}{=} \mathcal{N}(0, t)$
- (2) $B_{t_1-s_1}, \ldots, B_{t_k-s_k}$ are independent if $s_1 \leq t_1 \leq s_2 \leq t_2 \leq \ldots \leq s_k \leq t_k$. In other words, for $t_1 < t_2 < \ldots < t_k$,

$$(B_{t_1}, B_{t_2}, \dots, B_{t_k}) \stackrel{d}{=} \left(N_1, N_1 + N_2, \dots, \sum_{i=1}^k N_i \right)$$

where N_1, \ldots, N_k are independent and $N_i \sim \mathcal{N}(0, t_i - t_{i-1})$ and $t_0 = 0$.

21.1. Poisson Processes.

Example 24 (Poisson Processes). *Idea:* Modelling "arrivals" in a system where in each tiny time interval dt an arrival occurs with "infinitesimal probability" f(t) dt for some non-negative measurable function $f \in L^1((0,\infty])$, and this is independent for distinct infinitesimal intervals. Let dt = 1 second

and $f(t) \equiv 1$.

$$\mathbb{P}(no\ busses\ in\ 4\ minutes) = (1 - dt)^{240}$$

$$= \left(1 - \frac{1}{600}\right)^{240}$$

$$= \left(1 - \frac{1}{n}\right)^{cn}$$

$$\approx e^{-c}$$

Done carefully, this yields that the time to first arrival is distributed as $\exp(1)$. Likewise, the time between first and second arrivals is $\exp(1)$. The number of arrivals by time t is distributed as $\operatorname{Poisson}(t)$. A poisson process on $[0,\infty)$ with rate f is a process $(<_t,t\geq 0)$ that satisfies

(1) For all $0 \le 2 \le t < \infty$,

$$N_t - N_s \stackrel{d}{=} \text{Poisson}\left(\int_s^t f(x) \, \mathrm{d}x\right)$$

(2) Independent increments

Definition 25. Suppose we are given probability measures

$$\{\mu_{t_1,\ldots,t_k}, k \ge 1 : (t_1,\ldots,t_k) \in \mathbb{R}^k\}$$

We say the family is consistent if

(1) For any permutation $\pi: [k] \to [k]$ and any $E_1, \ldots, E_k \in \mathfrak{B}(\mathbb{R})$,

$$\mu_{t_1,...,t_k}(E_1 \times \cdots \times E_k) = \mu_{t_{\pi(1)},...,t_{\pi(k)}}(E_{\pi(1)} \times \cdots \times E_{\pi(k)})$$

(2)
$$\mu_{t_1,\dots,t_k}(E_1 \times \dots \times E_k) = \mu_{t_1,\dots,t_k,t_{k+1}}(E_1 \times \dots \times E_k \times \mathbb{R})$$

21.2. Kolmogorov Extension Theorem.

Theorem 28 (Kolmogorov Extension Theorem). For any consistent family of measures, $\{\mu_{t_1,...,t_k}, k \geq 1 : (t_1,...,t_k) \in \mathbb{R}^k\}$, then there exists a probability measure \mathbb{P} on $(\mathbb{R}^\mathbb{R}, \prod_{r \in \mathbb{R}} \mathfrak{B}(\mathbb{R}))$ such that if $X : \mathbb{R}^\mathbb{R} \to \mathbb{R}^\mathbb{R}$ is the identity map, then $\forall (t_1,...,t_k) \in \mathbb{R}^k$, $(X(t_1),...,X(t_k))$ has law $\mu_{t_1,...,t_k}$.

Proof idea. Define \mathbb{P}_0 on \mathcal{G} = finite disjoint unions of cylinders, where a cylinder is a set of the form $E_{t_1} \times \cdots \times E_{t_k}$, by setting

$$\mathbb{P}_0\left(\bigcup_{i=1}^n C_i\right) = \sum_{i=1}^n \mu_{t_{i,1},\dots,t_{i,k_i}}(C_i)$$

where $C_i = E_{t_{i,1}} \times E_{t_{i,2}} \times \cdots \times E_{t_{i,k_i}}$. Consistency conditions ensure this is well-defined and additive. Showing that \mathbb{P}_0 is very similar to the argument for the Lebesgue measure. Carathéodory extension then gives \mathbb{P} with the desired properties. \mathbb{P} is then the unique measure on $(\mathbb{R}^{\mathbb{R}}, \prod_{r \in \mathbb{R}} \mathfrak{B}(\mathbb{R}))$ with these finite-dimensional distributions.

22. November 22nd, 2012

22.1. Conditional Expectation. Idea: $\mathbb{E}[X|Y]$ = "partial averaging". We pretend to know Y and average over the rest. Similarly, $\mathbb{E}[X|\mathcal{G}]$ = partial average where we pretend we know the information in \mathcal{G} and average over the rest. Informally, for each $y \in \mathbb{R}$, each $\omega \in Y^{-1}(y)$, then we should have

$$\mathbb{E}[X|Y](\omega) = \mathbb{E}[X|Y = y]$$

This suggests that $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$, which is called the tower law.

Example 25.

(1) X, Y are independent Uniform[0,1] random variables. What is $\mathbb{E}[e^{XY}|Y]$? We first have

$$\mathbb{E}\left[e^{Xy}\right] = \int_0^1 e^{xy} \, \mathrm{d}x = \frac{e^y - 1}{y}$$

So we should have

$$\mathbb{E}\big[e^{XY}|Y\big] = \frac{e^Y - 1}{Y}$$

(2) What is $\mathbb{E}[X|X]$? $\mathbb{E}[X|X] = X$. More generally, if $\sigma(X) \subset \mathcal{G}$, then

$$\mathbb{E}[X|\mathcal{G}] = X$$

(" $\mathbb{E}[X|\mathcal{G}]$ gets "more random" as \mathcal{G} grows")

- (3) If X, Y are independent, then $\mathbb{E}[X|Y] \equiv \mathbb{E}[X]$.
- (4) Let $X_i, i \geq 1$ be a sequence of iid random variables, $\mathbb{E}[X_1] = \mu$.

$$S_n = X_1 + X_2 + \dots + X_n$$

Then

$$\mathbb{E}[S_{n+1}|S_n] = \mathbb{E}[S_n + X_{n+1}|S_n]$$
$$= \mathbb{E}[S_n|S_n] + \mathbb{E}[X_{n+1}|S_n]$$
$$= S_n + \mu$$

Observation: We seem to always have $\mathbb{E}[X|\mathcal{G}]$ is a measurable a function with respect to \mathcal{G} .

(5) X,Y are independent with laws μ,ν and $\varphi:\mathbb{R}^2\to\mathbb{R}$ such that $\mathbb{E}[|\varphi(X,Y)|]<\infty$. What is $\mathbb{E}[\varphi(X,Y)|X]$?

Let $g: \mathbb{R} \to \mathbb{R}$ be such that

$$g(x) = \int_{\mathbb{R}} \varphi(x, y) \, \mathrm{d}\nu(y)$$

Then we should have $\mathbb{E}[\varphi(X,Y)|X] = g(X)$.

(6) If X, Y have joint density $f_{X,Y}(x,y)$ What should $\mathbb{E}[X|Y=y]$ be?

$$\mathbb{E}[X|Y=y] = \frac{\int x f_{X,Y}(x,y) \, \mathrm{d}x}{\int f_{X,Y}(x,y) \, \mathrm{d}x}$$

More strongly, given that Y = y, the conditional density of X should be

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{\int f_{X,Y}(x,y)}$$

Then we should have $\mathbb{E}[X|Y] = \int x f_{X|Y}(x|Y) dx$.

(7) Let Ω be finite or countable and $\mathcal{F} = 2^{\Omega}$ and \mathbb{P} is some probability. Let $(\Omega_i, i \geq 1)$ be a partition of Ω . Let $\mathcal{G} = \sigma(\Omega_i, i \geq 1)\sigma(Y)$, where $Y(\omega) = i$ if $\omega \in \Omega_i$. Then $\forall X : \Omega \to \mathbb{R}$, if $\omega \in \Omega_i$, then

$$\begin{split} \mathbb{E}[X|Y]\left(\omega\right) &= \mathbb{E}[X|\omega \in \Omega_i] \\ &= \frac{\mathbb{E}[X\mathbb{1}_{\Omega_i}]}{\mathbb{P}(\Omega_i)} \end{split}$$

We would also get that

$$\begin{split} \mathbb{E}[\mathbb{E}[X|Y]] &= \sum_{i \geq 1} \mathbb{E}[\mathbb{E}[X|Y] \, | \mathbb{1}_{\Omega_i}] \\ &= \sum_{i \geq 1} \mathbb{E}\bigg[\frac{\mathbb{E}[X\mathbb{1}_{\Omega_i}]}{\mathbb{P}(\Omega_i)} \cdot \mathbb{1}_{\Omega_i}\bigg] \\ &= \sum_{i \geq 1} \mathbb{E}[X\mathbb{1}_{\Omega_i}] \\ &= \mathbb{E}[X] \end{split}$$

Definition 26. Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra. We say a random variable C is a **version** of $\mathbb{E}[X|\mathcal{G}]$ if

- (a) C is \mathcal{G} -measurable
- (b) For all $E \subset \mathcal{G}$, then

$$\mathbb{E}[X\mathbb{1}_E] = \mathbb{E}[C\mathbb{1}_E]$$

Let us go back up to our examples and check that in (5), g(X) is a version of $\mathbb{E}[\varphi(X,Y)|X] = \mathbb{E}[\varphi(X,Y)|\sigma(X)]$. For any $A \in \sigma(X)$, we have $A = X^{-1}(B)$ for some $B \in \mathfrak{B}(\mathbb{R})$.

$$A = \{\omega : (X(\omega), Y(\omega)) \in B \times \mathbb{R}\}\$$

Then to check condition (b),

$$\begin{split} \mathbb{E}[\varphi(X,Y)\mathbb{1}_A] &= \int \varphi(X,Y)\mathbb{1}_A \,\mathrm{d}\mathbb{P} \\ &= \int \varphi(X,Y)\mathbb{1}_{B\times\mathbb{R}}(x,y) \,\mathrm{d}(\mu(x)\times\nu(y)) \\ &= \int_B \underbrace{\int_{\mathbb{R}} \varphi(x,y) \,\mathrm{d}\nu(y)}_{g(x)} \,\mathrm{d}\mu(x) \quad \text{by Fubini} \\ &= \int_B g(x) \,\mathrm{d}\mu(x) \\ &= \int g(x)\mathbb{1}_A \,\mathrm{d}\mathbb{P} \\ &= \mathbb{E}[g(X)\mathbb{1}_A] \end{split}$$

22.2. Uniqueness of Conditional Expectation. Fix C, D, two versions of $\mathbb{E}[X|\mathcal{G}]$. Suppose $\mathbb{P}(C > D) > 0$. Then $E := \{C > D\} \in \mathcal{G}, E_n := \{C > D + \frac{1}{n}\} \in \mathcal{G}$. We have $E_n \uparrow E$, so $\mathbb{P}(E_n) \to \mathbb{P}(E)$, so $\exists n$ such that $\mathbb{P}(E_n) > 0$. Then by (b),

$$\begin{split} \mathbb{E}[X\mathbb{1}_{E_n}] &= \mathbb{E}[C\mathbb{1}_{E_n}] \\ &\geq \mathbb{E}\left[\left(D + \frac{1}{n}\right)\mathbb{1}_{E_n}\right] \\ &= \mathbb{E}[D\mathbb{1}_{E_n}] + \frac{\mathbb{P}(E_n)}{n} \\ &> \mathbb{E}[D\mathbb{1}_{E_n}] \end{split}$$

so D is not a version of X, so we have a contradiction, meaning our assumption that $\mathbb{P}(C>D)>0$ was false. So

$$\mathbb{P}(C \neq D) = \mathbb{P}(C > D) + \mathbb{P}(D > C) = 0$$

Lemma. If $X \stackrel{a.s.}{\leq} Y$, then $\mathbb{E}[X|\mathcal{G}] \stackrel{a.s.}{\leq} \mathbb{E}[Y|\mathcal{G}]$.

Proof. Suppose that $\mathbb{E}[X|\mathcal{G}]$ is not almost surely at most $\mathbb{E}[Y|\mathcal{G}]$. Then $\exists n$ such that $E_n = \{\mathbb{E}[X|\mathcal{G}] > \mathbb{E}[Y|\mathcal{G}] + \frac{1}{n}\}$ has $\mathbb{P}(E_n) > 0$. Then

$$\begin{split} &0 \leq \mathbb{E}[(Y-X)\mathbb{1}_{E_n}] \\ &= \mathbb{E}[Y\mathbb{1}_{E_n}] - \mathbb{E}[X\mathbb{1}_{E_n}] \\ &= \mathbb{E}[\mathbb{E}[Y|\mathcal{G}]\,\mathbb{1}_{E_n}] - \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\,\mathbb{1}_{E_n}] \\ &< \mathbb{E}\left[-\frac{1}{n}\mathbb{1}_{E_n}\right] \\ &= -\frac{\mathbb{P}(E_n)}{n} \\ &< 0 \end{split}$$

and so we have a contradiction.

22.3. Existence of Conditional Expectation.

Theorem 29 (Conditional Expectation Existence). For all $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and any sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$, there exists a version of $\mathbb{E}[X|\mathcal{G}]$.

Key step: The theorem holds if $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$. We project from the space $L^2(\Omega, \mathcal{F}, \mathbb{P})$ onto $L^1(\Omega, \mathcal{G}, \mathbb{P})$ with an inner product defined by

$$\langle U, V \rangle = \mathbb{E}[UV]$$

Then $\mathbb{E}[(X-Y)Z] = 0 \ \forall Z \in L^2(\Omega, \mathcal{G}, \mathbb{P})$. We have $\mathbb{E}[XZ] = \mathbb{E}[YZ]$. Take $Z = \mathbb{1}_E$ for $E \in \mathcal{G}$, so $\mathbb{E}[X\mathbb{1}_E] = \mathbb{E}[Y\mathbb{1}_E]$

23. November 27th, 2012

23.1. Conditional Expectation. $C = \mathbb{E}[X|\mathcal{G}]$ is such that

- C is \mathcal{G} -measurable
- $\forall E \in \mathcal{G}, \ \mathbb{E}[C\mathbb{1}_E] = \mathbb{E}[X\mathbb{1}_E].$

Prop. Conditional expectations exist.

The key step is to show that if $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subset \mathcal{F}$, then there exists a version of $\mathbb{E}[X|\mathcal{G}]$.

Proof of prop from key step. We saw that if $X \stackrel{a.s.}{\leq} Y$, then $\mathbb{E}[X|\mathcal{G}] \stackrel{a.s.}{\leq} \mathbb{E}[Y|\mathcal{G}]$. Suppose that $X \geq 0$ and $\mathbb{E}[X] < \infty$. Let $X_n = \min(X, n)$ and let $C_n = \mathbb{E}[X_n|\mathcal{G}]$. Then $C_n \stackrel{a.s.}{\leq} C_{n+1} \stackrel{a.s.}{\leq} \dots$ so let

$$C = \limsup_{n \to \infty} C_n \stackrel{a.s.}{=} \lim_{n \to \infty} C_n$$

We have $C_n \xrightarrow{a.s.} C$.

Claim: C is a version of $\mathbb{E}[X|\mathcal{G}]$.

Proof.

- C is \mathcal{G} -measurable
- Fix $E \in \mathcal{G}$. Then

$$\begin{split} \mathbb{E}[X\mathbb{1}_E] &= \lim_{n \to \infty} \mathbb{E}[X_n\mathbb{1}_E] \\ &\stackrel{a.s.}{=} \lim_{n \to \infty} \mathbb{E}[C_n\mathbb{1}_E] \\ &= \mathbb{E}[C\mathbb{1}_E] \end{split}$$

For $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, let $X = X^+ - X^-$ and let $C^+ = \mathbb{E}[X^+ | \mathcal{G}]$, $C^- = \mathbb{E}[X^- | \mathcal{G}]$. Then for any $E \subset \mathcal{G}$,

$$\mathbb{E}[X\mathbb{1}_E] = \mathbb{E}[X^+\mathbb{1}_E] - \mathbb{E}[X^-\mathbb{1}_E]$$
$$= \mathbb{E}[C^+\mathbb{1}_E] - \mathbb{E}[C^-\mathbb{1}_E]$$
$$= \mathbb{E}[(C^+ - C^-)\mathbb{1}_E]$$

and $C = C^+ - C^-$ is a version of $\mathbb{E}[X|\mathcal{G}]$.

Basic properties of conditional expectation:

• $\forall X, Y \in L^1(\Omega, \mathcal{F}, \mathbb{P}),$

$$\mathbb{E}[aX + Y|\mathcal{G}] \stackrel{a.s.}{=} a\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[Y|\mathcal{G}]$$

• If $X \stackrel{a.s.}{\leq} Y$, then

$$\mathbb{E}[X|\mathcal{G}] \stackrel{a.s.}{\leq} \mathbb{E}[Y|\mathcal{G}]$$

• If $X \uparrow \lim_{n \to \infty} X_n \stackrel{a.s.}{=} X$, then

$$\lim_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \stackrel{a.s.}{=} \mathbb{E}[X|\mathcal{G}]$$

=0

Proof of key step.

DIAGRAMS

We want to give $L^2(\Omega, \mathcal{F}, \mathbb{P})$ an inner product structure. We set

$$\langle X,Y\rangle = \frac{\mathbb{E}[XY]}{\|X\|_2 \|Y\|_2}$$

which we can interpret as " $\cos \theta$ " assuming X and Y have mean 0. The norm of X is

$$\sqrt{\langle X, X \rangle} = ||X||_2$$

For this to define a normed vector space, work with equivalence classes where $X \sim Y$ if

$$||X - Y||_2 = 0 \Leftrightarrow \mathbb{E}[(X - Y)^2] = 0 \Leftrightarrow X \stackrel{a.s.}{=} Y$$

Check: If $||X_n - X||_2 \to 0$, then $||X_n - Y||_2 \to 0$, then $X \sim Y$. $([X_n] \to [X])$ This gives us an inner

product space $(L^2\langle \bullet, \bullet \rangle)$. More generally, $L^p(\Omega, \mathcal{F}, \mathbb{P}, \| \bullet \|_p)$ is a normed vector space.

Prop. $L^p(\Omega, \mathcal{F}, \mathbb{P})$ is complete.

Proof. We need to show: If $X_n, n \ge 1 \in L^p$, $\forall \varepsilon > 0$, $\exists n_0$ such that $\forall n, m \ge n_0$, $||X_n - X_m||_p < \varepsilon$, then $\exists X \in L^p$ such that $||X_n - X||_p \to 0$ as $n \to \infty$.

Let us first show that there exists a subsequental limit. For each $k \ge 1$, let n_k be such that $\forall n, m \ge n_k$, $\|X_n - X_m\|_p \le \frac{1}{2^k}$. Then

$$\sum_{k\geq 1} ||X_{n_{k+1}} - X_{n_k}||_p \leq \sum_{k\geq 1} \frac{1}{2^k}$$

$$= 1$$

We also have

$$\mathbb{E}\left[\sum_{k\geq 1} |X_{n_{k+1}} - X_{n_k}|\right] = \sum_{k\geq 1} \mathbb{E}\left[|X_{n_{k+1}} - X_{n_k}|\right]$$

$$\leq \sum_{k\geq 1} ||X_{n_{k+1}} - X_{n_k}||_p$$

$$= 1$$

If $a_k, k \ge 1$ is such that $\sum_{k \ge 1} |a_{k+1} - a_k| < \infty$ then (a_n) converges. Since $\mathbb{E}\left[\sum_{k \ge 1} |X_{n_{k+1}} - X_{n_k}|\right] \le 1$, then

$$\sum_{k>1} |X_{n_{k+1}} - X_{n_k}| < \infty$$

almost surely so X_{n_k} converges almost surely as $k \to \infty$. Let $X = \limsup_{k \to \infty} X_{n_k}$. Then $X_{n_k} \xrightarrow{a.s.} X$ as $k \to \infty$. It remains to show $X \in L^p$, $||X_n - X||_p \to 0$.

For any k and any $n \ge n_k$, $||X_n - X_{n_k}||_p \le \frac{1}{2^k}$. By Fatou,

$$\begin{split} \lim \inf_{i \to \infty} \mathbb{E}[|X_n - X_{n_i}|^p] &\geq \mathbb{E}\Big[\liminf_{i \to \infty} |X_n - X_{n_i}|^p \Big] \\ &= \mathbb{E}[|X_n - X|^p] \end{split}$$

but we have that

$$\liminf_{i \to \infty} \mathbb{E}[|X_n - X_{n_i}|^p] \le \frac{1}{2^{kp}}$$

so for all $n \ge n_k$, $||X_n - X||_p \le \frac{1}{2^k}$. Letting $kc \to \infty$, we get $||X_n - X||_p \to 0$. Finally,

$$||X||_p \le ||X - X_{n_k}||_p + ||X_{n_k}||_p$$

< ∞

Now let $\Delta = \inf\{\|X - Z\|_2 : Z \in L^2(\Omega, \mathcal{F}, \mathbb{P})\}$. Let $Y_n, n \geq 1$ be any sequence of elements of the $L^2(\Omega, \mathcal{G}, \mathbb{P})$ such that $||Y_n - X||_2 \to \Delta$.

Claim: Y_n is Cauchy.

DIAGRAMS

Proof. For $\varepsilon > 0$, let n_0 be such that $\forall n \geq n_0$, $||X - Y_n||_2^2 \leq \Delta^2 + \varepsilon$. Then for all $n, m \geq n_0$,

$$\begin{split} 2(\Delta^2 + \varepsilon) &\geq \|X - Y_n\|_2^2 + \|X - Y_m\|_2^2 \\ &= \mathbb{E}\big[(X - Y_n)^2\big] + \mathbb{E}\big[(X - Y_m)^2\big] \\ &= 2\mathbb{E}\left[\left(X - \frac{Y_n + Y_m}{2}\right)^2\right] + 2\mathbb{E}\left[\left(\frac{Y_n + Y_m}{2}\right)^2\right] \\ &\geq 2\Delta^2 + \frac{1}{2}\|Y_n - Y_m\|_2^2 \end{split}$$

SO

$$2\varepsilon \ge \frac{1}{2} \|Y_n - Y_m\|_2^2$$

or in other words

$$||Y_n - Y_m|| \le 2\sqrt{\varepsilon}$$

Since $L^2(\Omega, \mathcal{F}, \mathbb{P})$ is complete, let $Y \stackrel{a.s.}{=} \lim_{n \to \infty} Y_n$. Claim: $\langle X - Y, Z \rangle = \mathbb{E}[(X - Y), Z] = 0$ for all $Z \in L^2(\Omega, \mathcal{G}, \mathbb{P})$.

Proof. Fix any $Z \in L^2(\Omega, \mathcal{G}, \mathbb{P})$. Then for all $t \in \mathbb{R}$

$$\mathbb{E}[(X - (Y + tZ))^2] \ge \mathbb{E}[(X - Y)^2]$$

This gives

$$t^2 \mathbb{E} [Z^2] - 2t \mathbb{E} [Z(X - Y)] \ge 0$$

If $\mathbb{E}[Z(X-Y)] \neq 0$, then take

$$t = \pm \frac{\mathbb{E}[Z(X - Y)]}{\mathbb{E}[Z^2]}$$

and we get

$$t^2 \mathbb{E}[Z^2] - 2t \mathbb{E}[Z(X - Y)] < 0$$

so we have a contradiction.

Corollary. Y is a version of $\mathbb{E}[X|\mathcal{G}]$.

Proof. $\forall E \in \mathcal{G}, \mathbb{1}_E \in L^2(\Omega, \mathcal{G}, \mathbb{P})$ so

$$\mathbb{E}[(X-Y)\mathbb{1}_E] = 0$$

and

$$\mathbb{E}[X\mathbb{1}_E] = \mathbb{E}[Y\mathbb{1}_E]$$

24. November 29th, 2012

24.1. Conditional Expectation. Idea: "Hyperplane" (sub-subspace) \to Dense subspace ($L^2(\Omega, \mathcal{F}, \mathbb{P})$) \rightarrow Space of random variables (L^1)

Prop.

- (1) $\mathbb{E}[aX + Y|\mathcal{G}] \stackrel{a.s.}{=} a\mathbb{E}[X|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}]$ (2) $X \stackrel{a.s.}{\leq} Y \Rightarrow \mathbb{E}[X|\mathcal{G}] \stackrel{a.s.}{\leq} \mathbb{E}[Y|\mathcal{G}]$ (3) $0 \leq X_n \uparrow X \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \text{ then } \mathbb{E}[X_n|\mathcal{G}] \uparrow \underset{a.s.}{\wedge} \mathbb{E}[X|\mathcal{G}]$

Exercise: Use (3) to prove conditional versions of dominated convergence theorem and Fatou's lemma.

Prop (2: More properties of conditional expectation). $X, Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subset \mathcal{F}$

(1) If $X \perp \!\!\!\perp Y$ then $\mathbb{E}[X|\sigma(Y)] \stackrel{a.s.}{=} \mathbb{E}[X]$.

(2) (Tower Law). If $\mathcal{H} \subset \mathcal{G}$ is a sub- σ -algebra, then

$$\begin{split} \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \, | \mathcal{H}] &\stackrel{a.s.}{=} \, \mathbb{E}[X|\mathcal{H}] \\ &\stackrel{a.s.}{=} \, \mathbb{E}[\mathbb{E}[X|\mathcal{H}] \, | \mathcal{G}] \end{split}$$

Proof of (ii). Recall: If Z is \mathcal{G} -measurable then $\mathbb{E}[Z|\mathcal{G}] = Z$. But $\mathbb{E}[X|\mathcal{H}]$ is \mathcal{G} -measurable, and the second equality follows. Now let $W = \mathbb{E}[X|\mathcal{G}]$. We need to check

- (1) $\mathbb{E}[X|\mathcal{H}]$ is \mathcal{H} -measurable
- (2) For all $E \in \mathcal{H}$,

$$\mathbb{E}[W\mathbb{1}_E] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\,\mathbb{1}_E]$$

For (2), since $W = \mathbb{E}[X|\mathcal{G}]$ and $E \in \mathcal{G}$, then

$$\begin{split} \mathbb{E}[W\mathbb{1}_E] &= \mathbb{E}[X\mathbb{1}_E] \\ &= \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\,\mathbb{1}_E] \end{split}$$

where the first equality comes from the defining property applied to W and the second equality comes from the defining property applied to $\mathbb{E}[X|\mathcal{H}]$.

Prop (3). If Y is G-measurable and either $X \in L^p$, $Y \in L^q$ for some $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$ or $X, Y \geq 0$ and $\mathbb{E}[X] < \infty$, $\mathbb{E}[XY] < \infty$, then

$$\mathbb{E}[YX|\mathcal{G}] \stackrel{a.s.}{=} Y\mathbb{E}[X|\mathcal{G}]$$

Proof. Suppose that $Y = \mathbb{1}_E$, $E \in \mathcal{G}$. Then for any $F \in \mathcal{G}$,

$$\begin{split} \mathbb{E}[Y\mathbb{E}[X|\mathcal{G}] \, \mathbb{1}_F] &= \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \, \mathbb{1}_{E \cap F}] \\ &= \mathbb{E}[X\mathbb{1}_{E \cap F}] \\ &= \mathbb{E}[XY\mathbb{1}_F] \end{split}$$

By the defining property, $Y\mathbb{E}[X|\mathcal{G}] \stackrel{a.s.}{=} \mathbb{E}[XY|\mathcal{G}]$. Linearity yields the same result for simple functions. Next suppose that $X \geq 0$, $Y \geq 0$, and $\mathbb{E}[X] < \infty$, $\mathbb{E}[XY] < \infty$. Let $Y_n \uparrow Y$ where $Y_n \geq 0$ are simple functions. Then

$$\begin{split} \mathbb{E}[XY|\mathcal{G}] &\stackrel{a.s.}{=} \lim_{n \to \infty} \mathbb{E}[XY_n|\mathcal{G}] \\ &\stackrel{a.s.}{=} \lim_{n \to \infty} Y_n \mathbb{E}[X|\mathcal{G}] \\ &\stackrel{a.s.}{=} \lim_{n \to \infty} Y \mathbb{E}[X|\mathcal{G}] \end{split}$$

so we are done the second case.

Under the first case, write

$$XY = X^{+}Y^{+} - X^{+}Y^{-} - X^{-}Y^{+} + X^{-}Y^{-}$$

and apply linear of conditional expectation plus the second case to deduce the result.

2 more examples:

(1) Let $\mathcal{G}, \mathcal{H}, \mathcal{H} \perp \!\!\!\perp \sigma(\mathcal{G}, \sigma(X))$. For example, we could have X, Y, Z, with $Z \perp \!\!\!\perp \sigma(X, Y)$. Then

$$\mathbb{E}[X|\mathcal{G},\mathcal{H}] \stackrel{a.s.}{=} \mathbb{E}[X|\mathcal{G}]$$

Proof Idea. It suffices to consider $X \geq 0$. Let

$$\mathcal{P} = \{G \cap H : G \in \mathcal{G}, H \in \mathcal{H}\}$$

Claim: For all $F \in \mathcal{P}$,

$$\mu_X(F) = \mathbb{E}[X\mathbb{1}_F] = \mathbb{E}[\underbrace{\mathbb{E}[X|\mathcal{G}]}_Y\mathbb{1}_F] = \mu_Y(F)$$

If this held for all $F \in \sigma(\mathcal{G}, \mathcal{H})$, then it would precisely say that Y is a version of $\mathbb{E}[X|\mathcal{G}, \mathcal{H}]$, which is the claim. The uniqueness lemma proves this indeed holds for all $F \in \sigma(\mathcal{G}, \mathcal{H})$, assuming the claim.

Proof of Claim. We can write this in the form

$$\begin{split} \mathbb{E}[X\mathbb{1}_F] &= \mathbb{E}[X\mathbb{1}_G\mathbb{1}_H] \\ &= \mathbb{E}[X\mathbb{1}_G] \, \mathbb{P}(H) \\ &= \mathbb{E}[Y\mathbb{1}_G] \, \mathbb{P}(H) \\ &= \mathbb{E}[Y\mathbb{1}_G\mathbb{1}_H] \\ &= \mathbb{E}[Y\mathbb{1}_F] \end{split}$$

(2) If X_1, \ldots, X_n are independent and $h : \mathbb{R}^n \to \mathbb{R}$ such that $h(X_1, \ldots, X_n) \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ then setting $\gamma : \mathbb{R} \to \mathbb{R}$ with

$$\gamma(x) = \mathbb{E}[h(x, X_2, X_3, \dots, X_n)]$$

we have

$$\gamma(X_1) = \mathbb{E}[h(X_1, \dots, X_n)|X_1]$$

This is proved by Fubini's theorem.

24.2. Conditional Jensen's Inequality. $\mathbb{E}[|X|]<\infty$ and $\mathbb{E}[|\varphi(X)|]<\infty$

Then we have that

$$\varphi(\mathbb{E}[X|\mathcal{G}]) \le \mathbb{E}[\varphi(X)|\mathcal{G}]$$

Why is it that the proof of regular Jensen's inequality fails in this case? We had that l(x) = ax + b and $l(\mathbb{E}[X]) = \varphi(\mathbb{E}[X])$, so $l(y) \leq \varphi(y)$ for all y. Then

$$\mathbb{E}[\varphi(X)|\mathcal{G}] \overset{a.s.}{\geq} \mathbb{E}[l(X)|\mathcal{G}]$$

$$= \mathbb{E}[aX + b|\mathcal{G}]$$

$$\overset{a.s.}{=} a\mathbb{E}[X|\mathcal{G}] + b$$

$$= l(\mathbb{E}[X|\mathcal{G}])$$

$$\overset{?}{=} \varphi(\mathbb{E}[X|\mathcal{G}])$$

Proof. Let

$$S = \{(a, b) \in \mathbb{Q}^2 : ax + b \le \varphi(x), \ \forall x \in \mathbb{R}\}\$$

Then $\forall x, \varphi(x) = \sup\{ax + b : (a, b) \in S\}$. For any $(a, b) \in S$, $\varphi(X) \ge aX + b$ so

$$\mathbb{E}[\phi(X)|\mathcal{G}] \stackrel{a.s.}{\geq} a\mathbb{E}[X|\mathcal{G}] + b$$

Taking a supremum over $a, b \in S$, we get

$$\mathbb{E}[\varphi(X)|\mathcal{G}] \overset{a.s.}{\geq} \underbrace{\sup\{a\mathbb{E}[X|\mathcal{G}] + b : (a,b) \in S\}}_{= \varphi(\mathbb{E}[X|\mathcal{G}]) \text{ for every } \omega}$$

24.3. Conditional Hölder. $\frac{1}{p} + \frac{1}{q} = 1, X \in L^p, Y \in L$. Then

$$\mathbb{E}[|XY| \mid \mathcal{G}] \leq \mathbb{E}[|X|^p \mid \mathcal{G}]^{1/p} \, \mathbb{E}[|Y|^q \mid \mathcal{G}]^{1/q}$$

Corollary (Corollary of Jensen).

$$\mathbb{E}[|\mathbb{E}[X|\mathcal{G}]|^p] \le \mathbb{E}[|X|^p]$$

Proof. Apply conditional jensen on $\varphi(x) = |x|^p$.

$$|\mathbb{E}[X|\mathcal{G}]|^p \stackrel{a.s.}{\leq} \mathbb{E}[|X|^p|\mathcal{G}]$$

Taking expected values, we get

$$\mathbb{E}[|\mathbb{E}[X|\mathcal{G}]|^p] = \mathbb{E}[|X|^p]$$

where the right hand side is by the tower law.

Assignment 4:

$$\mathbb{P}(|S_n| \ge t) \le \left(\mathbb{E}\left[e^{\lambda(X - \frac{t}{n})}\right]\right)^n$$

and optimizing this bound over λ . Let λ^* be the optimal one. The last question on the assignment had to do with

$$\mathbb{P}(S_n = cn) \ge \frac{c}{\sqrt{n}} \left(\mathbb{E}\left[e^{\lambda^*(X - \frac{t}{n})}\right] \right)^n$$

25.1. Changes of Variables. $(\Omega, \mathcal{F}, \mathbb{P})$.

We have $X \in L^1$ is a random variable with law μ and cumulative distribution function F and density f. We have $g: \mathbb{R} \to \mathbb{R}$ with $g(X) \in L^1$. Then $\mathbb{E}[g(X)] = \int g \, \mathrm{d}\mu \stackrel{book}{=} \mu(g)$. Other notation for this is $\int g(x) \, \mathrm{d}\mu(x)$, $\int g(x)\mu(\,\mathrm{d}x)$ or $\int g \, \mathrm{d}F$ or $\int g(x)f(x) \, \mathrm{d}x$ or $\int g(x)\, \mathrm{d}F(x)$.

Having a density f means that for all $E \in \mathfrak{B}(\mathbb{R})$,

$$\mathbb{P}(X \in E) = \int_{E} f \, dLeb(\mathbb{R})$$
$$= \int_{E} f(x) \, dx$$

Example 26.

(1)
$$X \sim \exp(1), f(x) = e^{-x} \mathbb{1}(x \ge 0)$$

$$\mathbb{P}(X \ge t) = \mathbb{E}\left[\underbrace{\mathbb{1}(X \ge t)}_{g=\mathbb{1}_{[t,\infty)}}\right]$$
$$= \int \mathbb{1}_{[t,\infty)} d\mu$$
$$= \int_{[t,\infty)} e^{-x} dx$$

Now let us calculate $\mathbb{E}[X^3]$.

$$\mathbb{E}[X^3] = \int_{[0,\infty)} x^3 e^{-x} dx$$
$$= \left[-x^3 e^{-x} \right]_0^\infty - 3 \int_{[0,\infty)} x^2 e^{-x} dx$$
$$= 6 \int_0^\infty e^{-x} dx$$
$$= 6$$

We can continue doing this and we would actually get that

$$\mathbb{E}[X^n] = n!$$

(2) If we have $X_i, i \geq 1$ independent and exp(1), then

$$P_T = \max \left\{ i : \sum_{j=1}^{i} X_j \le t \right\} = Poisson(t)$$

We also have

$$G_k = \sum_{j=1}^k X_j = Gamma(k, l)$$

and

$$G_k > t \Leftrightarrow P_t < k$$

We have $X \stackrel{d}{=} Poisson(\lambda)$.

$$\mu \equiv \sum_{n \ge 0} \frac{\lambda^n e^{-\lambda}}{n!} \mathbb{1}_{\{n\}}$$

which gives us

$$\mathbb{P}(X \ge k) = \sum_{n=k}^{\infty} \frac{\lambda^n e^{-\lambda}}{n!}$$

This is the same as

$$\mathbb{P}(X \ge k) = \int \mathbb{1}_{[k,\infty)} d\mu$$
$$= \int_{[k,\infty)} 1 d\mu$$
$$= \mu([k,\infty))$$

The expected value is given by

$$\mathbb{E}[X] = \int x \, \mathrm{d}\mu$$
$$= \sum_{n \ge 0} \frac{n\lambda^n e^{-\lambda}}{n!}$$
$$= \lambda \sum_{n \ge 1} \frac{\lambda^{n-1} e^{-\lambda}}{(n-1)!}$$

$$\begin{split} \mathbb{E} \big[e^{tX} \big] &= \int e^{tx} \, \mathrm{d} \mu(x) \\ &= \sum_{n \geq 0} \frac{e^{tn} \lambda^n e^{-\lambda}}{n!} \\ &= e^{-\lambda} \sum_{n \geq 0} \frac{(\lambda e^t)^n}{n!} \\ &= e^{-\lambda} e^{(\lambda e^t)} \\ &= e^{\lambda (e^t - 1)} \end{split}$$

 $(3) \ X \stackrel{d}{=} \ Gamma(n,\lambda),$

$$f(x) = \frac{\mathbb{1}_{(x \ge 0)}}{(n-1)!} \frac{x^{n-1}e^{-x/\lambda}}{\lambda^n}$$

$$\mathbb{E}[X] = \int_{\mathbb{R}} x f(x) \, \mathrm{d}x$$

$$= \frac{1}{(n-1)!} \int_0^\infty \frac{x^n e^{-x/\lambda}}{\lambda^n} \, \mathrm{d}x$$

$$= \frac{1}{(n-1)!} \int_0^\infty \left(\frac{x}{\lambda}\right)^n e^{-x/\lambda} \, \mathrm{d}x$$

Now set $y = x/\lambda$. This gives us

$$\mathbb{E}[X] = \frac{\lambda}{(n-1)!} \int_0^\infty y^n e^{-y} \, \mathrm{d}y$$
$$= \frac{\lambda}{(n-1)!} n!$$
$$= \lambda n$$

For higher moments, we have

$$\mathbb{E}[X^k] = \int \frac{x^{n+k-1}e^{-x}}{\lambda^n(n-1)!} dx$$
$$= \frac{\lambda^{k-1}}{(n-1)!} \int \left(\frac{x}{\lambda}\right)^{n+k-1} e^{-x/\lambda} dx$$

$$= \frac{\lambda^k}{(n-1)!}(n+k-1)!$$

25.2. **Joint Law.** (X,Y) has joint law μ on $(\mathbb{R}^2,\mathfrak{B}(\mathbb{R}^2))$ with joint CDF F such that $F:\mathbb{R}^2\to [0,1]$, where $F(x,y)=\mathbb{P}(X\leq x,Y\leq y)$. We have $g:\mathbb{R}^2\to\mathbb{R},\,g(X,Y)\in L^1$.

$$\mathbb{E}[g(X,Y)] = \int_{\mathbb{R}^2} g \, \mathrm{d}\mu$$

$$= \int g(x,y) f(x,y) \, \mathrm{d}(x \times y)$$

$$= \int g(x,y) \, \mathrm{d}\mu(x,y)$$

$$= \int g(x,y) \mu(\mathrm{d}(x \times y))$$

If there is a density then

$$\int g(x,y) \, \mathrm{d}\mu(x,y) = \int gf \, \mathrm{d}Leb(\mathbb{R}^2)$$

and

$$\int g(x,y)\mu(d(x \times y)) = \iint g(x,y)f(x,y) dx dy$$
$$= \iint g(x,y)f(x,y) dy dx$$

If (X, Y) has density f, then

$$\mathbb{P}((X,Y) \in E) = \int_{E} f \, \mathrm{d}Leb(\mathbb{R}^{2})$$

Example 27. (X_1, X_2) are independent $\mathcal{N}(0, 1)$.

$$H = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and we have $a^2 + c^2 = 1$, $b^2 + d^2 = 1$ with ab + cd = 0.

Claim.

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = H^{-1}X$$

are independent $\mathcal{N}(0,1)$.

NB: Uncorrelated Normals need not be independent! If $N \sim \mathcal{N}(0,1)$ and

$$W = \begin{cases} 1 & \text{with prob. } 1/2\\ -1 & \text{with prob. } 1/2 \end{cases}$$

and M = NW. Then

$$\mathbb{E}[MN] = \mathbb{E}[N^2W] = 0$$

But M and N are not independent.

Proof of Claim. We compute (for fixed $E \in \mathfrak{B}(\mathbb{R}^2)$)

$$\mathbb{P}((Y_1, Y_2) \in E)$$

We'll show this equals $\mathbb{P}((X_1, X_2) \in E)$. Denote $X = (X_1, X_2)$.

$$\mathbb{P}((Y_1, Y_2) \in E) = \mathbb{P}(H^{-1}X \in E)
= \mathbb{P}(X \in H(E))
= \int \mathbb{1}_{[(x,y)\in H(E)]} f_{X_1}(x) f_{X_2}(y) d(x \times y)
= \int_{H(E)} \frac{e^{-x^2/2}}{\sqrt{2\pi}} \frac{e^{-y^2/2}}{\sqrt{2\pi}} d(x \times y)
= \frac{1}{2\pi} \int_{H(E)} e^{-\frac{x^2+y^2}{2}} d(x \times y)$$

$$= \frac{1}{2\pi} \int_{H(E)} e^{-\frac{1}{2} \|(x,y)\|_2^2} d(x \times y)$$

We have that

$$||(x,y)||_2 = ||H(x,y)||_2$$

since a rotation does not change where the origin is, so the distance must be the same. So we can actually write this as

$$\mathbb{P}((Y_1, Y_2) \in E) = \frac{1}{2\pi} \int_{H(E)} e^{-\frac{1}{2} ||H(x, y)||_2^2} d(x \times y)$$

$$= \frac{1}{2\pi} \int_E e^{-\frac{1}{2} ||(x, y)||_2^2} d(x \times y)$$

$$= \int_E f_{X_1}(x) f_{X_2}(y) d(x \times y)$$

$$= \mathbb{P}((X_1, X_2) \in E)$$

25.3. Differentiation Under the Integral Sign.

Recall:

$$L(\lambda) = \int_0^\infty e^{-\lambda x} f(x) \, \mathrm{d}x$$

We want

$$L'(\lambda) = \int_0^\infty \frac{\partial}{\partial \lambda} \left(e^{-\lambda x} f(x) \right) dx$$
$$= \int_0^\infty -x e^{-\lambda x} f(x) dx$$

Proof. FIX THIS!! By definition,

$$L'(\lambda) = \lim_{h \to 0} \frac{L(\lambda + h) - L(\lambda)}{h}$$

We have

$$L(\lambda + h) - L(\lambda) = \int_{[0,\infty)} (e^{-(\lambda + h)x} - e^{-\lambda x}) f(x) dx$$
$$= \int_{[0,\infty)} \left(\int_{[0,h)} (-x) e^{-\lambda t} dt \right) e^{-\lambda x} f(x) dx$$
$$= \int_{[0,\infty)} \int_{[0,h)} (-\lambda) e^{-\lambda(t+x)} f(x) dt dx$$

Write $I(\lambda,x)=e^{-\lambda x}f(x)$, then $(-\lambda)e^{-\lambda(t+x)}f(x+t)=\frac{\partial}{\partial\lambda}I(\lambda,x+t)$. K this all messed up. What we'll end up getting is that

$$\int_{[0,h]} \int_{[0,\infty)} \frac{\partial}{\partial \lambda} I(\lambda+t,x) \, \mathrm{d}x = h \frac{\partial}{\partial \lambda} I(\lambda,x)$$

and we divide by h. We get this by Fubini and continuity.

Not responsible for poisson processes, kolomogorov extension, brownian motion on the exam.

There will be 6 questions worth 66 questions. He will mark it out of 60, not 66. Probably of the same level of difficulty as the midterm.