One end of a wire is attached to a fixed point. A force *F* is applied to the wire to cause extension *x*. The variation with *F* of *x* is shown in Fig. 5.1.

Fig. 5.1

The wire has a cross-sectional area of $4.1 \times 10^{-7} \, \text{m}^2$ and is made of metal of Young modulus $1.7 \times 10^{11} \, \text{Pa}$. Assume that the cross-sectional area of the wire remains constant as the wire extends.

(a)	State the name of the law that describes the relationship between F and x shown in Fig. 5.1	
	[1

(b) The wire has an extension of $0.48\,\text{mm}$.

Determine:

(i) the stress

(ii) the strain.

(c)	The resistivity of the metal of the wire is $3.7 \times 10^{-7} \Omega$ m.
	Determine the change in resistance of the wire when the extension x of the wire changes from $x = 0.48 \mathrm{mm}$ to $x = 0.60 \mathrm{mm}$.
	change in resistance = Ω [3]
(d)	A force of greater than 45 N is now applied to the wire.
	Describe how it may be checked that the elastic limit of the wire has not been exceeded.
	[1]
	[Total: 9]