MPEI 2015-2016

Aula 15 – Cadeias de Markov

4 Novembro 2015

?!

 O que esteve na origem do grande sucesso inicial da Google ?

- O que tem em comum esse sucesso com a capacidade de interagir por voz com computadores, robôs e smartphones ?
 - No reconhecimento de fala ?
 - Na síntese de fala ?

Exemplo 1

- Suponhamos que em cada dia que têm aulas de MPEI acordam e decidem se vêm ou não à aula.
- Se vieram à aula anterior, a probabilidade de virem é 70%; se faltaram à anterior, essa probabilidade é 80%.

Algumas questões:

- Se vieram à aula esta quarta, qual a probabilidade de virem na aula de QUARTA da próxima semana ?
- Assumindo que o semestre tem duração infinita (que horror!), qual a percentagem aproximada de aulas a que estariam presentes ?

Exemplo 2

- Dividir a turma em 3 grupos A, B e C no início do semestre
- No final de cada aula:
- 1/3 do grupo A vai para o B e outro 1/3 do grupo A vai para o grupo C
- ¼ do grupo B vai para A e ¼ de B vai para C
- ½ do grupo C vai para o grupo B
- Como ficarão os grupos ao fim de n aulas ?

Exemplo 3 – "Pub Crawl"

Bares junto a uma conhecida Universidade:

Outro exemplo

Passeio aleatório (random walk)

Lançar moeda

Cara Coroa Coroa ... Cara ...

Muitas áreas de aplicação

- Muitas vezes estamos interessados na transição de algo entre certos estados.
- Exemplos:
 - Movimento de pessoas entre regiões
 - Estado do tempo
 - Movimento entre as posições num jogo de Monopólio
 - Pontuação ao longo de um jogo
 - Estado de Filas de atendimento

Princípios básicos

Processos estocásticos

- Lidam com a dinâmica da teoria de probabilidades
- O conceito de processo estocástico estende o conceito de variável aleatória
- Uma v.a. X mapeia um acontecimento $s \in \Omega$ num número X(s)
- O processo mapeia o evento para números diferentes em tempos diferentes
 - O que implica que em lugar de termos um número X(s) temos X(t,s)
 - Sendo t∈ T geralmente um conjunto de tempos

Processos estocásticos

- Se fixarmos s, X(t) é uma função real do tempo
- X(t,s) pode então ser vista como uma colecção de funções no tempo
- Se fixarmos t temos uma função X(s) que depende apenas de s, ou seja uma variável aleatória

Um nome alternativo é processos aleatórios

Classificação de processos estocásticos

- Podem ser classificados segundo o parâmetro t e os valores que X(t,s) pode assumir (estados do processo)
- Quanto a *t*:
 - Tempo contínuo: Se T é um intervalo contínuo
 - Tempo discreto: Se T é um conjunto contável
 - Também chamada sequência aleatória e representada por $\boldsymbol{X}[n]$
- Quanto ao conjunto de estados (E):
 - Contínuo
 - Discreto

Definição

 Um processo de Markov é um processo estocástico em que a probabilidade de o sistema estar num estado específico num determinado período de observação depende apenas do seu estado no período de observação imediatamente precedente

O futuro apenas depende do presente e não do passado

Tipos de processos de Markov

Discretas/contínuas

		Espaço de estados	
		Discreto	Contínuo
Tempo	Discreto	Cadeia de Markov tempo discreto	Processo de Markov em tempo discreto
	Contínuo	Cadeia de Markov tempo contínuo	Processo de Markov em tempo contínuo

 Focaremos a nossa atenção em cadeias de Markov de tempo discreto

Cadeias de Markov discretas

- X_n : estado após n transições
 - Pertence a um conjunto finito,
 - Em geral $\{1, 2, ..., m\}$
 - $-X_0$ é dado ou aleatório

Questões comuns relativas a cadeias de Markov

 Qual a probabilidade de transição entre dois estados em n observações ?

Existe algum equilíbrio ?

Existe uma estabilidade a longo prazo ?

Propriedade/Suposição de Markov

Probabilidade de transição do estado i para o estado j:

•
$$p_{ji} = P(X_{n+1} = j | X_n = i)$$

$$= P(X_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)$$

- Quando estas probabilidades p_{ji} não dependem de n a cadeia diz-se homogénea
 - Focaremos a nossa atenção neste tipo de cadeias de Markov

Propriedade/Suposição de Markov

• $P(X_0 = x_0, X_1 = x_1, X_2 = x_2 \dots) = ?$

$$= P(X_0 = x_0) P(X_1 = x_1 | X_0 = x_0) P(X_2 = x_2 | X_0 = x_0, X_1 = x_1) \dots$$

$$= P(X_0 = x_0) P(X_1 = x_1 | X_0 = x_0) P(X_2 = x_2 | X_1 = x_1) \dots$$

$$= x_1) \dots$$

- O futuro é independente do passado, dado o presente
- O processo "não tem memória"

Especificação de uma cadeia

Identificar os estados possíveis

Identificar as transições possíveis

Identificar as probabilidades de transição

Aplicando ao exemplo 1 – faltar ou não faltar à aula

Estados ?

Transições ?

Probabilidades de transição ?

Aplicando ao exemplo 1 – faltar ou não faltar à aula

- Estados ?
 - 2: {faltar, não faltar}

 Probabilidades de transição ?

- Transições ?
 - Faltar-> não faltar
 - Não faltar -> faltar
 - Faltar -> faltar
 - Não faltar -> não faltar

- Faltar-> não faltar : 0,8
- Não faltar -> faltar : 0,3
- Faltar -> faltar : 0,2
- Não faltar -> não faltar: 0,7

Matriz de transição

- É usual representar as probabilidades de transição através de uma matriz, chamada de matriz de transição
- Tendo o sistema n estados possíveis, para cada par i, j fazemos t_{ji} igual à probabilidade de mudar do estado i para o estado j.
- A matriz T cujo valor na posição linha = j, coluna = i é t_{ji} é a matriz de transição

• Nota: Alguns autores adoptam t_{ij} como a probabilidade de mudar do estado i para o estado j

•
$$T = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

• Considerando estado 1 "não faltar", temos

•
$$T = \begin{cases} n\tilde{a}o \ faltar \rightarrow \begin{pmatrix} 0.7 & 0.8 \\ 0.3 & 0.2 \end{pmatrix}$$

$$A B C$$
 $T = A 1/3$
 $B 1/3$
 $C 1/3$

MPEI 2015 MIECT/LEI

Futuro Estado

$$T = \begin{bmatrix} A & B & C \\ A & 1/3 & 1/4 & 0 \\ B & 1/3 & 1/2 & 1/2 \\ C & 1/3 & 1/4 & 1/2 \end{bmatrix}$$

Futuro Estado

Matriz T é estocástica

 A matriz de transição reflecte propriedades importantes das probabilidades:

- Todas as entradas são não-negativas
- Os valores em cada COLUNA somados d\u00e3o sempre resultado 1

 Devido a estas propriedades a matriz é denominada de matriz estocástica

Representação gráfica da cadeia

Apropriada e possível para número de estados pequeno

- Nós: representam todos os estados
- Setas: para todas as transições permitidas (one-step)
 - Ou seja, seta entre i e j apenas de $p_{ji}>0$

Representação gráfica da cadeia

• Exemplo:

Simulação / Visualização dinâmica

- Estão disponíveis online formas de visualizar as transições entre estados ao longo do tempo ...
- Um desses exemplos é Markov Chains A visual explanation by <u>Victor Powell</u>
 - http://setosa.io/blog/2014/07/26/markovchains/index.html

Que inclui:

- http://setosa.io/markov/index.html#%7B%22tm%22%3A% 5B%5B0.5%2C0.5%5D%2C%5B0.5%2C0.5%5D%5D%7D
- Para usar precisamos apenas de introduzir a matriz T
 - Que define o número de estados, quais as transições possíveis e as probabilidades associadas a essas transições

Simulando os nossos exemplos

Exemplo 1:

— Matriz:
 [[0.7, 0.3],
 [0.8, 0.2]]

 http://setosa.io/markov/index. html#%7B%22tm%22%3A%5B %5B0.7%2C0.3%5D%2C%5B0.8 %2C0.2%5D%5D%7D

Exemplo 2:

— Matriz: [[0.33,0.33,0.34], [0.25,0.5,0.25], [0,0.5,0.5]] Outro exemplo

```
[ [0,1,0,0],
 [0,0,1,0],
 [0,0,0,1],
 [0.2,0.3,0.3,0.2]]
```

- O que vamos ver ?
- Acesso directo:

http://setosa.io/markov/index.ht ml#%7B%22tm%22%3A%5B%5B0 %2C1%2C0%2C0%5D%2C%5B0%2 C0%2C1%2C0%5D%2C%5B0%2C0 %2C0%2C1%5D%2C%5B0.2%2C0. 3%2C0.3%2C0.2%5D%5D%7D