AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Linear models & estimation by least squares – Part 1 of 3 (WMS Ch. 11.1-11.3, Wooldridge pp. 22-37)

November 28, 2017

Nicole Mason Michigan State University Fall 2017

MICHIGAN STATE

GAME PLAN

- Collect Ch. 10 HW
- Hand out graded exercise (due Thursday)
- Linear models & estimation by least squares
 - Part 1 of 3
 - · The simple linear regression model
 - Examples
 - Terminology
 - · Assumptions about the error term (and concept of endogeneity)
 - Deriving estimates of the simple linear regression parameters: ordinary least squares (OLS)
 - · Compute OLS estimates by hand & in Stata

Simple Linear Regression

2

MICHIGAN STATE UNIVERSITY

The simple linear regression model: motivation

- Suppose *y* and *x* are two variables that represent some population
- How does y change when x changes? What is the causal effect (ceteris paribus effect) of x on y?
- Examples?

у	х		
Corn yield	Fertilizer		
Beef demand	Beef price		
Wheat acreage	Wheat price		
Hourly wage	Years of education		
Community crime rate	# of police officers		

The simple linear regression model

$$y = \beta_0 + \beta_1 x + u$$

• *u* is the **error term** or **disturbance**

 β_0 (intercept) and β_1 (slope) are the population parameters to be estimated

- u for "unobserved"
- Represents all factors other than x that affect y
- Some use ε instead of u
- Terminology for y and x:

у	х		
Dependent variable	Independent variable		
Explained variable	Explanatory variable		
Response variable	Control variable		
Predicted variable	Predictor variable		
Regressand	Regressor		
	Covariate		

To use data to get unbiased estimates of β_0 and β_1 , need to restrict the relationship b/w x and u

$$y = \beta_0 + \beta_1 x + u$$

- 1. E(u) = 0 (not restrictive if have an intercept, β_0)
- 2. *** E(u|x) = E(u) (i.e. the average value of u does not depend on the value of x)

#1 & #2
$$\rightarrow$$
 E(u|x) = E(u) = 0 (zero conditional mean)

 If this holds, x is "exogenous"; but if x is correlated with u, x is "endogenous" (next class)

What does this assumption imply below?

- $yield = \beta_0 + \beta_1 fertilizer + u$, where u is unobserved land quality ($inter\ alia$)
- $wage = \beta_0 + \beta_1 educ + u$, where u is unobserved ability (*inter alia*)

What is E(y|x) if we assume E(u|x)=0?

Hint: Apply the rules for conditional expectations.

$$y = \beta_0 + \beta_1 x + u$$

$$\mathsf{E}(y|x) = \beta_0 + \beta_1 x$$

What is $\frac{\partial E(y|x)}{\partial x}$ and how do we interpret this result?

$$\frac{\partial E(y \mid x)}{\partial x} = \beta_I$$

Interpretation: β_I is the expected change in y given a one unit increase in x, ceteris paribus (slope) What is the interpretation of β_0 ? Interpretation: β_0 is the expected value of y when x = 0 (intercept)

MICHIGAN STATE JNIVERSITY

Why is it called <u>linear</u> regression?

$$y = \beta_0 + \beta_1 x + u$$

- Linear in parameters, β_0 and β_1
- Does NOT limit us to linear relationships between x and y
- But rules out models that are nonlinear in parameters, e.g.:

$$y = \frac{I}{\beta_0 + \beta_I x} + u$$
$$y = \Phi(\beta_0 + \beta_I x) + u$$
$$y = \frac{\beta_0}{\beta_I} x + u$$

8

Estimating β_0 and β_1

$$y = \beta_0 + \beta_1 x + u$$

• Suppose we have a random sample of size *N* from the population of interest. Then can write:

$$y_i = \beta_0 + \beta_1 x_i + u_i$$
, $i = 1, 2, 3, ..., N$

We don't know β_0 and β_1 but want to estimate β_0 them.

How could we use the data in our sample to estimate β_0 and β_1 ?

Recall 3 common methods of estimation

- 1. Method of moments
- 2. Maximum likelihood
- 3. Least squares
- All 3 of these approaches lead to the same estimators for β_0 and β_1 (under certain assumptions)
- We'll focus on the least squares approach
- See Wooldridge (2003: 27-29) for method of moments discussion and his panel data book for MLE discussion

10

(Ordinary) least squares (OLS) approach

- What was the gist of this approach?
 - Choose estimator to minimize the sum of squared deviations b/w observed & estimated values
- "Fitted" values of y and residuals:

Fitted (estimated, predicted) values of y: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_i x_i$

Residuals:

$$\hat{u}_i = y_i - \hat{y}_i$$

$$= y_i - \hat{\beta}_0 - \hat{\beta}_I x_i$$

OLS:

Choose $\hat{\beta}_0$ and $\hat{\beta}_I$ to minimize: $\sum_{i=1}^{N} \hat{u}_i^2 = \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_I x_i)^2$

Source: Wooldridge (2003)

The OLS estimators for β_0 and β_1

$$\hat{\beta}_{I} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{I}$$

Work through proof of formulas above. **This is a proof you should know.**

Another useful expression for
$$\hat{\beta}_I$$
:
$$\hat{\beta}_I = \frac{\sum_{i=1}^N (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^N (x_i - \overline{x})^2} = \frac{\sum_{i=1}^N x_i y_i - \frac{1}{N} \sum_{i=1}^N x_i \sum_{i=1}^N y_i}{\sum_{i=1}^N x_i^2 - \frac{1}{N} \left(\sum_{i=1}^N x_i\right)^2}$$

Proof will be posted to D2L.

Obtaining OLS estimates – example (by hand)

EXAMPLE 11.1

Use the method of least squares to fit a straight line to the n = 5 data points given in

Table 11.1.

$$\hat{\beta}_{I} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{N} x_{i} y_{i} - \frac{1}{N} \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{\sum_{i=1}^{N} x_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} x_{i}\right)^{2}}$$

 $\hat{\boldsymbol{\beta}}_0 = \overline{y} - \hat{\boldsymbol{\beta}}_I \overline{x}$

Table 11.1 Data for Example 11.1

X	У
-2	0
-1	0
0	1
1	1
2	3

Calculations using alternative formula

Table 11.2 Calculations for finding the coefficients

	U		
x_i	y_i	$x_i y_i$	x_i^2
-2	0	0	4
-1	0	0	1
0	1	0	0
1	1	1	1
2	3	6	4
$\sum_{i=1}^{n} x_i = 0$	$\sum_{i=1}^{n} y_i = 5$	$\sum_{i=1}^{n} x_i y_i = 7$	$\sum_{i=1}^{n} x_i^2 = 10$

© Cengage Learning

$$\hat{\beta}_{I} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{N} x_{i} y_{i} - \frac{1}{N} \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{\sum_{i=1}^{N} x_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} x_{i}\right)^{2}} = \frac{7 - \frac{1}{5}(0)(5)}{10 - \frac{1}{5}(0)^{2}} = 0.7$$

16

MICHIGAN STATE

Basic Stata Commands

- <u>regress</u> y x Linear regression of y on x
 - EX) regress wage educ
- predict newvar1, xb
 Compute fitted values
 - EX) predict wagehat, xb (I just made up the name wagehat)
- predict newvar2, resid
 Compute residuals
 - EX) predict uhat, resid (I just made up the name uhat)

Obtaining OLS estimates – example (Stata)

Wooldridge (2003) Example 2.4: Wage and education Use Stata to run the simple linear regression of wage (y) on educ (x). $wage_i = \beta_0 + \beta_1 educ_i + u_i$

Command: regress wage educ (or: reg wage educ)

What are β_0 and β_1 below?

Source	SS	df	MS		Number of obs	
Model Residual	1179.73204 5980.68225		9.73204 4135158		F(1, 524) Prob > F R-squared Adj R-squared	= 0.0000 = 0.1648
Total	7160.41429	525 13.	6388844		Root MSE	= 3.3784
wage	$\hat{eta}_{_I}$ \Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ _cons	.5413593 9048516	. 053248 6849678	10.17 -1.32	0.000 0.187	.4367534 -2.250472	.6459651 .4407687

Homework:

WMS Ch. 11:

reg wage educ

- 11.1, 11.3 (do calculations by hand)
- 11.4 and 11.5 (for these two problems, do calculations using Excel and the formulas on slide 17, and in Stata using the "regress" command; the data are on D2L in the Stata folder)
- Try to complete all Ch. 11 HW before last day of class (Dec. 8) so that we can go over it then. (You won't turn in Ch. 11.)

Next class:

- · Linear regression part 2 of 3
 - · Properties of OLS estimators

Reading for next class:

- WMS Ch. 11: section 11.4
- Wooldridge Introductory Econometrics (2003): pp. 38-60, 101-102

Aside: NPR "Hidden Brain" example of a natural experiment, and when it might be reasonable to assume E(u|x)=E(u)

Listen for the following:

- What is the dependent variable?
- · What is the main explanatory variable of interest?
- Why might it be reasonable to assume E(u|x)=E(u) here?
- What is a natural experiment?
- Dependent variable: cognitive function of elderly
- Main explanatory variable: wealth
- E(u|x)=E(u) might be reasonable Congress computational mistake – people in one cohort got higher benefits that next cohort (level of benefits shouldn't be correlated with unobservables)

20

MICHIGAN STATE

Aside: Natural experiments

A natural experiment occurs when some exogenous event—often a change in government policy—changes the environment in which individuals, families, firms, or cities operate. A natural experiment always has a control group, which is not affected by the policy change, and a treatment group, which is thought to be affected by the policy change. Unlike with a true experiment, where treatment and control groups are randomly and explicitly chosen, the control and treatment groups in natural experiments arise from the particular policy change. (Wooldridge, 2003: 417) 21