

Natural Language Processing (NLP)

Phases of NLP?

- 1. Morphological Analysis
- 2. Syntactic Analysis
- 3. Semantic Analysis
- 4. Discourse integration
- 5. Pragmatic Analysis

Syntactic Processing is the step in which a flat input sentence is converted into a hierarchical structure that corresponds to the units of meaning in the sentence.

This process is called parsing.

Parsing

This is book.

- It plays an important role in natural language understanding systems for two reasons:
 - Semantic processing must operate on sentence "constituent".
 - Parsing **reduces** the number of constituents that semantics can consider.
 - Syntactic parsing is computationally "less" expensive than is semantic processing.

- often possible to extract the meaning of a sentence without using grammatical facts, but not always

- The satellite orbited Mars
- Mars orbited the satellite

Note: Orbit, path described by one celestial body in its revolution about another

- Syntactic processing have **two** main components:
 - A declarative representation, called a grammar
 - A *procedure*, *called parser*, that compares the grammar against input sentences to produce parsed structures.

- Parsing does
 - Assign syntactic tags (subject, verb, object etc.)
 - Assign syntactic relation between words
- Two types of Parsing technique
 - rule-based parsing
 - statistical parsing.

Rule-based parsing

- syntactic structure of language is provided as **production rules** that are similar to context free rules.
- Production rules are defined using non-terminal and terminal symbols.

Statistical parsing

- Require
 - large corpora
 - and linguistic knowledge is represented as statistical parameters or probability.

- If sentence is syntactically **correct**. The Parser generates **parse tree**.
- Parsing can be done in two methods:
 - top-down
 - bottom up

Bottom-up parsing:

- we start with the words in the sentence
- apply grammar rules in the backward direction until a single tree is produced whose root matches with start symbol.

Top-down parsing:

- we start with start symbol
- apply grammar rules in forward direction until the terminal symbol of the parse tree corresponds to the word in the sentence.

- The choice between these two approaches is similar to the choice between **forward and backward** reasoning in other problemsolving tasks.
- The most important consideration is the **branching factor**. Is it greater going backward or forward?
- Sometimes these two approaches are combined to a single method called "bottom-up parsing with top-down filtering".

• Consider the simple context free grammar for English language.

Rules	Dictionary Words
<s> -> <np><vp></vp></np></s>	<det> -> a an the</det>
<np> -> <det><noun></noun></det></np>	<noun> -> girl apple song</noun>
<np> -> <det><adj><noun></noun></adj></det></np>	<adj> -> cute smart</adj>
<np> -> <adj><noun></noun></adj></np>	<verb> -> sings eats ate</verb>
<vp> -> <verb></verb></vp>	
<vp> -> <verb><np></np></verb></vp>	

- The symbol \longrightarrow is used for 'defined as'.
- Vertical bar | for alternative definitions (OR)
- The S for sentence
- NP for noun phrase
- VP for verb phrase.

Parse tree

• The cute girl ate an apple

- First rule can be read as "A sentence is composed of a noun phrase followed by Verb Phrase"; Vertical bar is OR; E represents empty string.
- Symbols that are further expanded by rules are called **non terminal** symbols.
- Symbols that correspond directly to strings that must be found in an input sentence are called **terminal symbols**.
- Pure context free grammar is **not** effective for describing natural languages.
- NLPs have **less** in common with computer language processing systems such as compilers.

A grammar for arithmetic expressions, with semantics.


```
Exp(sem) - Exp(sem_1) \ Operator(op) Exp(sem_2) \ \{sem = Apply(op, sem_1, sem_2)\} \ Exp(sem) \rightarrow (Exp(sem)) \ Exp(sem) \rightarrow Number(sem) \ Digit(sem) \rightarrow sem \ \{0 < sem < 9\} \ Number(sem) \rightarrow Digit(sem) \ Number(sem) \rightarrow Number(sem_1) Digit(sem_2) \ \{sem = 10 \ x \ sem_1 + sem_2\} \ Operator(sem) \rightarrow sem \ \{sem G \ \{+, -, -, x \}\}
```



```
Exp(sem) - Exp(sem_1) \ Operator(op) Exp(sem_2) \ \{sem = Apply(op, sem_1, sem_2)\}
Exp(sem) \rightarrow (Exp(sem))
Exp(sem) \rightarrow Number(sem)
Digit(sem) \rightarrow sem \ \{0 < sem < 9\}
Number(sem) \rightarrow Digit(sem)
Number(sem) \rightarrow Digit(sem_1) Digit(sem_2) \ \{sem = 10 \ x \ sem_1 + sem_2\}
Operator(sem) \rightarrow sem \ \{sem \ G \ \{+, -, -, -, x \}\}
```


Parse tree with semantic interpretations for the string "3 + $(4 \div 2)$ ".