Nonlinear Partial Differential Equations 1

So Murata

2024/2025 Winter Semester - Uni Bonn

1 Preliminaries

1.1 Measure theory

1.2 Sobolev spaces

Definition 1.1. A n-dimensional multi-index is a n-tuple in \mathbb{N}_0^n . And for such n-tuple α we define $|\alpha| = \sum_{i=1}^n \alpha_i$.

Definition 1.2. Let U be an open subset of n-dimensional real Euclidean space. A measurable function $f: U \to \mathbb{C}$ is said to be locally integrable over U if for any compact subset K of U, the integral $\int_K |f| dx$ is finite. The set of all such functions is denoted by $L^1_{loc}(U)$.

Definition 1.3. Let X be a topological space. $f: X \to \mathbb{R}$ is said to be compactly supported if there is a compact subset K of X such that $f(X - K) = \{0\}$.

Definition 1.4. Let U be an open subset of \mathbb{R}^n . A test function $\phi: U \to \mathbb{R}$ is a function such that it is infinitely continuously differentiable and compactly supported. The set of all such functions over U is denoted by $\mathcal{C}_{\mathbb{C}}^{\infty}(U)$.

Definition 1.5. Let $u: U \to \mathbb{R}$ be a $|\alpha|$ times continuously differentiable function over an open subset U of \mathbb{R}^n . Then the partial-derivative respect to α is

$$D^{\alpha}u = \frac{\partial^{|\alpha|}u}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}.$$

Definition 1.6. Let $u, v \in L^1_{loc}(U)$ where U is an open subset of \mathbb{R}^n and α be a multi-index. We say that α -th weak derivative of u is v (denoted as $D^{\alpha}u = v$), if the following equality holds.

$$\int_{U} u D^{\alpha} \phi dx = (-1)^{|\alpha|} \int_{v} \phi dx$$

for any test function ϕ .

Remark 1.1. In the definition above, if $|\alpha| = 1$, this means the integration by parts.

Lemma 1.1. Weak derivatives are unique almost everywhere. In other words, if v_1, v_2 are weak derivatives for u, then for any $\phi \in \mathcal{C}_C^{\infty}(U)$ we have

$$\int_{U} (v_1 - v_2)\phi dx = 0.$$

Proof. The above equality is clear as the left-hand side equals to

$$\int_{U} uD^{\alpha}\phi dx - \int_{U} uD^{\alpha}\phi dx.$$

Definition 1.7. Let U be an open subset of \mathbb{R}^n , $k \in \mathbb{N}$, $p \in [1, \infty]$. We define the Sobolev space with k and p over U such that

$$W^{k,p}(U) = \{ u \in L^1_{\mathbf{loc}}(U) \mid \forall \alpha \in \mathbb{N}^n_0, |\alpha| \le k \Rightarrow D^{\alpha}u \in L^p(U) \}.$$

Notation 1.1. For the case p = 2 we denote $W^{k,2}(U) = H^k(U)$.

Remark 1.2. When k = 0 we have $W^{0,p}(U) = L^p(U)$.

Definition 1.8. The essential supremum of a functional $f: U \to \mathbb{R}$ is

$$\mathrm{esssup}_U(f)\inf\{c\in\mathbb{R}\mid \forall x\in U, f(x)\leq c\}.$$

Definition 1.9. We define a norm on a Sobolev space $W^{k,p}(U)$ such that for $u \in W^{k,p}(U)$,

$$||u||_{W^{k,p}(U)} = \begin{cases} \left(\sum_{|\alpha| \le k} \int_{U} |D^{\alpha}u|^{p} dx \right)^{\frac{1}{p}} & (1 \le p < \infty), \\ \sum_{|\alpha| \le k} \operatorname{esssup}_{U}(|D^{\alpha}u|) & (p = \infty). \end{cases}$$

Definition 1.10. A sequence in the Sobolev space $W^{k,p}(U)$ converges if it converges in its Sobolev norm.

Definition 1.11. For a sequence $(u_m) \subset W^{k,p}(U)$, $u_m \to u$ in $W^{k,p}_{loc}(U)$ if for any compact subset K of U, we have $u_m \to u$ in $W^{k,p}_{loc}(K)$.

Definition 1.12. The Sobolev space $W_0^{k,p}(U)$ with boundary value zero at ∂U is the closure of $C_C^{\infty}(U)$ in the topology induced by the Sobolev norm.

1.3 Example

Let U = B(0,1) be a unit ball in \mathbb{R}^n and $u: U \to \mathbb{R}$ be such that $u(x) = ||x||^{-\alpha}$ for any x except 0. Then we have the following statement,

$$u \in W^{1,p}(U) \Leftrightarrow \alpha < \frac{n-p}{p}.$$

Let us consider $\{r_k\}_{k\in\mathbb{N}}\subset B(0,1)=U$ such that it is dense in U. The function

$$u(x) = \sum_{k=1}^{\infty} \frac{1}{2^{l}} |x - r_{k}|^{-\alpha},$$

is in $W^{1,p}(U)$ if and only if $\alpha = \frac{n-p}{p}$. This function is not bounded in any ball contained in U. (Use the fact that p < n) but $u \notin L^{\infty}(U)$.

Theorem 1.1. Let U be an open and bounded set in \mathbb{R}^n . Suppose that $u \in W^{k,p}(U)$, then there exists a sequence $(u_m)_{m \in \mathbb{N}} \subset C^{\infty}(U) \cap W^{k,p}(U)$ such that $u_m \to u$ in $W^{k,p}(U)$.

1.4 Sobolev Inequalities

Definition 1.13. Let $p \in [1, \infty)$. The Soolev conjugate of p is

$$p^* = \frac{np}{n-p}.$$

Remark 1.3. From the definition we see

$$\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}.$$

Thus $p^* > p$.

Theorem 1.2. Let $U \subset \mathbb{R}^n$ be an open bounded set and $u \in W^{1,p}(U)$. Then there exists a constant C only depending on n and U such that

$$||u - (u)_U||_{L^2(U)} \le C(n, U) ||Du||_{L^2(U)},$$

where

$$(u)_U = \frac{1}{\mu(U)} \int_U u dx.$$

Corollary 1.1. In Theorem 1.2, if we have $u \in H_0^1(U)$, then there exists a constant C only depending on n and U such that

$$||u||_{L^2(U)} \le C(n, U)||Du||_{L^2(U)},$$

Remark 1.4. We may now replace the Sobolev norm in $H_0^1(U)$ with $||Du||_{L^2(U)}$. Recall that the norm defined on $H_0^1(U)$ is

$$||u||_{H_0^1(U)} = ||u||_{L^2(U)} + ||Du||_{L^2(U)}.$$

By the corollary, we obtain the inequality,

$$||Du||_{L^2(U)} \le ||u||_{H^1_o(U)} \le C(n, U)||Du||_{L^2(U)}.$$

Therefore, $||Du||_{L^2(U)}$ induces same topology as the Sobolev norm.

2 Second Order Elliptic Equations

2.1 Definitions

Notation 2.1. For a function $u: U \to \mathbb{R}$ where U is an open subset of \mathbb{R}^n , we use the following notation.

$$\frac{\partial u}{\partial x_i} = u_{x_i}.$$

Definition 2.1. Give an open bounded subset U of \mathbb{R}^n , $f: U \to \mathbb{R}$. The second order elliptic equation is the problem to find functions $u: \overline{U} \to \mathbb{R}$ which satisfies the following equations,

$$\begin{cases} Lu(x) = f(x) & (x \in U), \\ u(x) \equiv 0 & (x \in \partial U), \end{cases}$$

where L is called a second-order partial differential operator such that for any $u: U \to \mathbb{R}$,

$$Lu = -\sum_{i,j=1}^{n} (a^{i,j}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u,$$
 (2.1)

where for each $i, j = 1, \dots, n, a^{i,j}, b^i, c : U \to \mathbb{R}$.

Remark 2.1. If $a^{i,j}$ are differentiable on U for each $i, j = 1, \dots, n$, we can rewrite Equation 2.3 to be such that

$$Lu = -\sum_{i,j=1}^{n} a^{i,j}(x)u_{x_ix_j} + \sum_{i=1}^{n} \overline{b}^i(x)u_{x_i} + c(x)u,$$
 (2.2)

where for each $i = 1, \dots, n$,

$$\overline{b}^{i}(x) = b_{i}(x) - \sum_{j=1}^{n} (a^{i,j}(x))_{x_{j}}(x).$$

This is due to the Leibniz rule.

Remark 2.2. In the case $u \in C^2(U)$, we may assume that $a_{i,j} = aj$, i for each $i, j = 1, \dots, n$ from now on. This is justified by the following procedure. Given $(a^{i,j})_{i,j=1\dots,n}$ we define $(\tilde{a}^{i,j})_{i,j=1\dots,n}$ in the following way,

$$\tilde{a}^{i,j}(x) = \frac{1}{2}(a^{i,j}(x) + a^{j,i}(x)).$$

Because the first part of the equation 2.3 can be rewritten as

$$\sum_{i,j=1}^{n} \frac{1}{2} (a^{i,j}(x) + a^{j,i}(x)) u_{x_i x_j} + \sum_{i,j=1}^{n} \frac{1}{2} (a^{i,j}(x) - a^{j,i}(x)) u_{x_i x_j}.$$

Using Young's theorem we derive that

$$\sum_{i,j=1}^{n} \frac{1}{2} (a^{i,j}(x) - a^{j,i}(x)) u_{x_i x_j} = 0.$$

Definition 2.2. A second-order partial differential operator is said to be uniformly elliptic if there is $\theta > 0$ such that for any $\xi \in \mathbb{R}^n$

$$\sum_{i,j=1}^{n} a^{i,j}(x)\xi_{i}\xi_{j} \ge \theta \|\xi\|^{2}$$

holds for almost everywhere on U.

Remark 2.3. The above definition can be stated in a different manner. Given a quadratic form $A(x) = (a^{i,j}(x))_{i,j=1,\dots,n}$. The problem is uniformly elliptic if and only if

$$A(x) > \theta I$$

holds almost everywhere for a fixed constant $\theta > 0$.

Example 2.1. If we take $a^{i,j} = \delta_{i,j}$, and $b^i, c \equiv 0$, the problem is

$$Lu = -\Delta u$$
.

2.2 Weak Solutions

In this subsection, we assume that $a^{i,j}, b^i, c \in L^{\infty}(U)$ for each $i, j = 1, \dots, n$ and $f \in L^2(U)$. Suppose we have a second-order elliptic equation. Then by multiplying $v \in \mathcal{C}_0^{\infty}(U)$, we get

$$-\int_{U} \sum_{i,j=1}^{n} (a^{i,j}(x)u_{x_{i}})_{x_{j}} v dx = \int_{U} \sum_{i,j=1}^{n} a^{i,j}(x)u_{x_{i}} v_{x_{j}} dx$$

which is well-defined if $||Dv|| \in L^1(U)$.

Definition 2.3. Given a second-order elliptic equation, we define a bilinear form $B: H_0^1(U) \times H_0^1(U) \to \mathbb{R}$ such that

$$B(u,v) = \int_{U} \sum_{i,j=1}^{n} a^{i,j}(x)u_{x_i}v_{x_j} + \sum_{i=1}^{n} b^{i}(x)ux_iv + c(x)uvdx$$

Remark 2.4. Such B(u, v) is a well-defined continuous bilinear form.

Definition 2.4. Given a second-order elliptic equation

$$\begin{cases} Lu(x) = f(x) & (x \in U), \\ u(x) = 0 & (x \in \partial U). \end{cases}$$

A function $u \in H_0^1(U)$ is called a weak solution to the problem if for any $v \in H_0^1(U)$, we have

$$B(u,v) = \langle f, v \rangle_{L^2(U)}.$$

Remark 2.5. Suppose we have a classical solution u, (in other words $u \in C^2(U)$ and $a^{i,j} \in C^1(U)$). Then such u is also a weak solution.

Remark 2.6. Suppose for $u \in H_0^1(U)$, we have that for any $v \in \mathcal{C}_0^{\infty}(U)$

$$B(u,v) = \langle f, v \rangle_{L^2(U)}.$$

Then such u is a weak-solution, as $C_0^{\infty}(U)$ is dense in $H_0^1(U)$.

We could also replace the condition on f which is that $f \in L^2(U)$ to $f \in H^{-1}(U)$.

Definition 2.5. Given a second-order elliptic equation, we say that $u \in H_0^1(U)$ is a weak solution of the problem if

$$B[u, v] = \langle f, v \rangle,$$

where

$$\langle f, v \rangle = \int_{U} f^{0}v + \sum_{i=1}^{n} f^{i}v_{x_{i}}dx \quad (f^{0}, f^{1}, \dots, f^{n} \in L^{2}(U)),$$

is the duality pairing of $H^{-1}(U)$ and $H_0^1(U)$.

Proposition 2.1. Suppose we have a problem

$$\begin{cases} Lu(x) = f(x) & (x \in U), \\ u(x) = g(x) & (x \in \partial U). \end{cases}$$

where ∂U is smoothly parametrizable. Furthermore, suppose there is $w \in H^1(U)$ such that

$$w(x) = g(x) \quad (x \in \partial U).$$

Then for the modified problem,

$$\begin{cases} L(u(x)) = f(x) - Lw(x) & (x \in U), \\ u(x) = 0 & (x \in \partial U). \end{cases}$$

 $we\ can\ get\ solutions\ of\ the\ original\ problem\ given\ a\ solution\ of\ the\ second\ one\ and\ adding\ w\ to\ it.$

Proof. In order to show that such modified problem is indeed well-defined, we have to prove that

$$f - Lw \in H^{-1}(U).$$

By definition, $w \in H^1(U)$ thus $w_{x_i} \in L^2(U)$ for any $i = 1, \dots, n$. For any $i, j = 1, \dots, n, a^{i,j} \in L^{\infty}(U)$. We now deduce that $a^{i,j}w_{x_i} \in L^2(U)$. Later. \square

2.3 Existence of Weak Solutions

Theorem 2.1 (Lax-Milgram). Let $(H, \langle \cdot, \cdot \rangle_H)$ be a real Hilbert space and H^* be the dual of it. Assume that for a bilinear form $B: H \times H \to \mathbb{R}$, there exists $\alpha, \beta > 0$ such that

- i). $|B(u,v)| \le \alpha ||u|| ||v||$,
- ii). for any $v \in H$, $\beta ||u||^2 \leq B(u, v)$.

Then for each $f \in H^*$, there is a unique $u \in H$ such that

$$B(u, v) = \langle f, v \rangle_H$$
.

Proof. Given $u \in H$, the mapping $v \mapsto B(u,v)$ is a bounded linear operator by the first condition on B. By Riesz representation theorem, there is unique $w \in H$ such that

$$B(u, v) = \langle w, v \rangle_H$$
.

Let us define $A: H \to H$ to be such that A(u) = w where w is acquired through the above construction. We will show that A is a bounded linear operator.

We first show that it is linear. Given $\lambda_1, \lambda_2 \in \mathbb{R}$ and $u_1, u_2 \in H$,

$$\langle A(\lambda_1 u_1 + \lambda_2 u_2,)v \rangle_H = B(\lambda_1 u_1 + \lambda_2 u_2, v)$$

$$= \lambda_1 B(u_1, v) + \lambda_2 B(u_2, v)$$

$$= \lambda_1 \langle Au_1, v \rangle_H + \lambda_2 \langle Au_2, v \rangle_H$$

$$= \langle A\lambda_1 u_1 + A\lambda_2 u_2, v \rangle_H$$

holds for any $v \in H$. Thus by uniqueness from Riesz representation theorem, we have proved that A is linear.

We then prove that A is bounded.

$$||Au||^2 = \langle Au, Au \rangle_H,$$

$$= B(u, Au),$$

$$\leq \alpha ||u|| ||Au||,$$

$$\Rightarrow ||Au|| \leq \alpha ||u||,$$

by the first condition on B.

Such A has following two properties.

- i). A is injective,
- ii). $\mathcal{R}(A)$, the range of A is closed.

Suppose Au = 0 then by the second condition on B we derive

$$\begin{split} \beta \|u\|^2 &\leq B(u,u), \\ &= \langle Au, u \rangle_H, \\ &\leq \|Au\| \|u\| \\ &\Rightarrow \beta \|u\| \leq \|Au\| = 0. \end{split}$$

Let $(Au_n)_{n\in\mathbb{N}}\subset\mathcal{R}(A)$ be a convergent sequence with its limit w^* . Using the second condition on B and the previous argument on the norm of Au once again, we derive

$$\beta ||u_n - u_m|| \le ||A(u_n - u_m)||,$$

= $||Au_n - Au_m||.$

Sincer $(Au_n)_{n\in\mathbb{N}}$ is a Cauchy sequence we derived that $(u_n)_{n\in\mathbb{N}}$ is also a Cauchy sequence in a complete space, thus convergent. We define the limit to be u^* . By continuity of A, we have $Au^* = w^*$.

We now prove that $\mathcal{R}(A) = H$. Suppose not, $\mathcal{R}(A) \neq H$, then we know that $\mathcal{R}(A)$ is closed therefore

$$(M^{\perp})^{\perp} = M \neq H.$$

This shows that $M^{\perp} \neq \{0\}$. Take $u^{\perp} \in \mathcal{R}(A)^{\perp}$ and $u = Au^{\perp}$ which is in $\mathcal{R}(A)$. Then we have

$$\beta \|u^{\perp}\|^2 \le B(u^{\perp}, u^{\perp}) = \langle Au^{\perp}, u^{\perp} \rangle_H = 0.$$

Therefore, we derived $||u^{\perp}|| = 0$ which is a contradiction. We conclude $\mathcal{R}(A) = H$.

Using Riesz representation theorem, there exists $w \in H$ such that for any $v \in H$,

$$\langle f, v \rangle_H = \langle w, v \rangle_H.$$

By the subjectivity of A, there is $u \in H$ such that Au = w. Therefore we derive the formula,

$$B(u, v) = \langle Au, v \rangle_H = \langle w, v \rangle_H = \langle f, v \rangle_H.$$

Now we will prove the uniqueness of such u. Suppose $u, \overline{u} \in H$ are such that

$$\langle u, v \rangle_H = \langle f, u \rangle_H = \langle \overline{u}, v \rangle_H.$$

Then by the linearity of the scalar product, we obtain that for any $v \in H$,

$$B(u - \overline{u}, v) = 0.$$

In particular, when $v = u - \overline{u}$, we obtain,

$$\beta \|u - \overline{u}\|^2 = 0.$$

Thus the uniqueness is proven.

Remark 2.7. B does not have to be symmetric. In the case when B is symmetric, the theorem is trivial.

This comes from by defining (u, v) = B(u, v) a new scalar product which is possible since B is symmetric and by the second condition we have

$$(u, u) \ge \beta ||u||^2 \Rightarrow ((u, u) = 0 \Leftrightarrow u = 0).$$

Using the Riesz representation theorem for (\cdot, \cdot) , we obtain that, for any $v \in H$,

$$(w,v) = \langle f, v \rangle_H.$$

Theorem 2.2. Give an open bounded subset U of \mathbb{R}^n , $f: U \to \mathbb{R}$. We consider the second order elliptic equation.

$$\begin{cases} Lu(x) = f(x) & (x \in U), \\ u(x) \equiv 0 & (x \in \partial U), \end{cases}$$

where L is a second-order partial differential operator such that for any $u:U\to\mathbb{R},$

$$Lu = -\sum_{i,j=1}^{n} (a^{i,j}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u,$$
 (2.3)

where for each $i, j = 1, \dots, n$, $a^{i,j}, b^i, c : U \to \mathbb{R}$ belong to $L^{\infty}(U)$. Furthermore, we pose the uniformly elliptic condition to L.

Let us define $B(u,v): H_0^1(U) \times H_0^1(U) \to \mathbb{R}$ to be such that

$$B(u,v) = \int_{U} \sum_{i,j=1}^{n} a^{i,j} u_{x_i} v_{x_j} + \sum_{i=1}^{n} b^i u_{x_i} v + cuv \, dx,$$

where $a^{i,j}, b^i, c \in L^{\infty}(U)$. Then there exists $\alpha, \beta > 0$ and $\gamma \geq 0$ such that,

- 1). $B(u,v) \leq \alpha ||u||_{H_0^1(U)} ||v||_{H_0^1(U)}$.
- 2). $\beta \|u\|_{H_0^1(U)}^2 \le B(u, u) + \gamma \|u\|_{L^2(U)}^2$.

Proof.

$$|B(u,v)| \le \sum_{i,j=1}^{n} ||a^{i,j}||_{L^{2}(U)} \int_{U} |Du||Dv| dx$$

$$+ \sum_{i=1}^{n} ||b^{i}||_{L^{\infty}(U)} \int_{U} |Du||v| dx$$

$$+ ||c||_{L^{\infty}(U)} \int_{U} |u||v| dx.$$

We then use the Cauchy-Schwarz inequality to deduce that

$$\int_{U} |Du||Dv|dx \le ||Du||_{L^{2}(U)} ||Dv||_{L^{2}(U)},$$

$$\int_{U} |Du||v|dx \le ||Du||_{L^{2}(U)} ||v||_{L^{2}(U)},$$

$$\int_{U} |u||v|dx \le ||u||_{L^{2}(U)} ||v||_{L^{2}(U)}.$$

Using Poincaré inequality, we derive that

$$B(u,v) \le \alpha ||u||_{H_0^1(U)} ||v||_{H_0^1(U)}.$$

We now prove the second claim. First we note that, by the uniformly elliptic condition, there is $\theta>0$ such that

$$\theta \int_{U} |Du|^{2} \leq \int_{U} \sum_{i,j=1}^{n} a^{i,j} u_{x_{i}} u_{x_{j}} dx,$$

$$\leq B(u,u) - \int_{U} \sum_{i=1}^{n} b^{i} u_{x_{i}} u dx - \int_{U} cu^{2} dx,$$

$$\leq B(u,u) + \sum_{i=1}^{n} \|b^{i}\|_{L^{\infty}(U)} \|Du\|_{L^{2}(U)} \|u\|_{L^{2}(U)} + \|c\|_{L^{\infty}(U)} \|u\|_{L^{2}(U)}^{2}.$$

By AM-GM inequality, we obtain for any $x, y \leq 0$ and $\epsilon > 0$, we have,

$$xy \le \varepsilon x^2 + \frac{1}{4\varepsilon} y^2.$$

Let us choose $\varepsilon > 0$ to be such that

$$\varepsilon = \frac{\theta}{2\sum_{i=1}^{n} \|b^i\|_{L^{\infty}(U)}}.$$

Substituting this to the inequality, we get

$$\begin{split} \theta \int_{U} |Du|^2 & \leq B(u,u) + \frac{\theta}{2} \|u\|_{H_0^1(U)}^2 + \gamma \|u\|_{L^2(U)}^2, \\ \frac{1}{2} \theta \|u\|_{H_0^1(U)}^2 & \leq B(u,u) + \gamma \|u\|_{L^2(U)}^2. \end{split}$$

Let $\beta = \frac{1}{2}$, we derived the claim.

Remark 2.8. In general the problem

$$Lu = f, \quad u \in H_0^1(U),$$

is not solvable.

Theorem 2.3. Let the second order elliptic operator L with boundaries. There exists $\gamma \geq 0$ such that for any $\mu \geq \gamma$ and each $f \in L^2(U)$, there exists a unique solution $u \in H^1_0(U)$ such that

$$B(u,v) + \mu \langle u,v \rangle_{H_0^1(U)} = \langle f,v \rangle_{H_0^1(U)}$$

holds for any $v \in H_0^1(U)$.

Proof. Let $\gamma \geq 0$ be as in Theorem ??. Now we define

$$B_{\mu}(u,v) = B(u,v) + \mu \langle u,v \rangle_{L^{2}(U)}.$$

Then we have

$$\begin{split} B_{\mu}(u,v) &\leq |B(u,v)| + \mu |\langle u,v\rangle_{L^{2}(U)}|, \\ &\leq \alpha \|u\|_{H_{0}^{1}(U)} \|v\|_{H_{0}^{1}(U)} + \mu \|u\|_{L^{2}(U)} \|v\|_{L^{2}(U)}, \\ &\leq (\alpha + \mu) \|u\|_{H_{0}^{1}(U)} \|v\|_{H_{0}^{1}(U)}. \end{split}$$

Thus satisfies the first condition for Theorem ??. For the second part, we observe that

$$\beta \|u\|_{H_0^1(U)}^2 \le B(u, v) + \gamma \|u\|_{H_0^1(U)} \|v\|_{H_0^1(U)}^2,$$

$$B_{\mu}(u, u) - \mu \|u\|_{L^2(U)}^2 + \gamma \|u\|_{H_0^1(U)} \|v\|_{H_0^1(U)}^2,$$

$$\le B_{\mu}(u, u).$$

Therefore, there is a unique $u \in H_0^1(U)$, such that for any $v \in H_0^1(U)$, we have

$$B_{\mu}(u,v) = \langle f, v \rangle_{L^{2}(U)}.$$

(In other words, the problem has a weak solution).

Remark 2.9.