中赤外域における 伝搬型表面プラズモンの 励起と伝搬長測定

平松信義 東京大学工学部物理工学科 3 年 2015 年 8 月 21 日

伝搬型表面プラズモン (SPP: Surface Plasmon Polariton) とは

金属表面での電磁波と 自由電子の粗密波の連成波

<u>化学・生物学・材料科学分野への応用は広く行われている</u>

Keyword: 分子認識、超薄膜のイメージング、たんぱく質の検出、表面 増強ラマン分光

光導波路としての応用

光の回折限界以下の領域にエネル ギーを閉じ込めることができる

ナノメートルオーダーまで微細化 された光集積回路が実現可能に

K. C. Y. Huang, et al., Nature photonics, 8, 244(2014)

- これまでの研究は可視域で行われてきた
- 中赤外域(波長 3µm~30µm)では長く伝搬することが 予想される

<u>目的:中赤外域での SPP を励起し伝搬長を求める</u>

SPP の励起方法

SPP の分散曲線と伝搬光の 分散曲線は交点を持たない

伝搬光と SPP は 通常結合しないが、 回折格子によって結合できる

SPPの励起の確認

アノマリ(回折異常)とは特定の入射角での 回折強度に特異的な変化が起こること

プラズモン共鳴アノマリ SPP を励起できる条件でおこる ◎P 偏光で如実

プンフィリの分析によって SPP の励起を確認できる

予備実験:可視域での SPP 励起

15 次回折光強度の入射角依存性 (He-Ne レーザー)

波長:632.8[nm]

グレーティング密度: 100[gr/mm]

要検討

回折光強度に特異 的な溝が発生して いる

<u>→</u> 回折光のエネル ギーが SPP の励起 に使われた

SPP 伝搬長の測定方法

長さの異なる導波路をいくつか 作成し、出力光強度 Pout を比較 することにより伝搬長 Lo を計算

電磁界解析(FDTD法)

入射光に対する検出光の電場強度比は最大 20%

SPP からの散乱光は 検出可能だと考えた

実験装置の作成

- SPP の励起と検出を行う ための光学系を作成した
- 電子線描画装置を用いて ZnS 基盤上に導波路構造 を作成した

導波路構造の模式図

密度: 29.6[gr/mm] の回折 格子についての顕微鏡写真

SPP 励起の確認

反射光強度の入射角依存性

波長:10[μm]

グレーティング密度: 29.6[gr/mm]

SPP 励起に起因する反射 率の低下は見られなかった

考察

- 厚みが薄いことによる 金薄膜内部の透過と干渉が ノイズとして大きい
- 反射光ではなく -2 次の回 折光でアノマリが発生して いる可能性がある

散乱光 Pout の検出

散乱光 Pout は検出できなかった

考察

- SPP の励起に適切な角度で赤外光の 入射が行えていなかった可能性があ る
- 光束入射位置の精度が良くなかった 可能性がある
- 入射光の反射が散乱光 Pout を覆い隠してしまっていた可能性がある

入射光の反射が無視できる配置で 再度、慎重に実験を行う

まとめ、今後の展望

まとめ

- 回折格子を用いて可視域での SPP の励起を確認した
- 電磁界シミュレータを用いた解析で、 SPP の励起効率と伝搬長を見 積もった
- 実験デバイスと測定のための工学系を設計し、実際に作成した
- 簡単のため、反射光強度の計測による赤外域での SPP の励起実験を 行ったが、 SPP の励起は確認できなかった

今後の展望

- 2次の回折光強度を計測することにより、赤外域での SPP の励起を 確認する
- 赤外域での SPP の伝搬長を測定する

作成した試料のグレーティング構造における反射光の角度依存性

波長:10[μm]

グレーティング密度: 29.6[gr/mm]

金 - 空気間における SPP の分散関係

赤外光の 0 次回折光(反射光)強度の角度依存性

波長:10[μm]

グレーティング密度: 150[gr/mm]

0次回折光強度の入射角依存性 (CO₂レーザー)

アノマリ(回折異常)とは特定の入射角での 回折強度に特異的な変化が起こること

wood のアノマリ 回折光が界面に平行に出るときにおこる ⊚S 偏光で如実

プラズモン共鳴アノマリSPP を励起できる条件でおこる⊚P 偏光で如実

アノマリの分析によって SPP の励起を確認できる

SPP の励起方法:回折格子を用いる

編集予定 ...

$$k_p = k_l + m k_g (m \in \mathbb{Z})$$

SPP の励起方法: Kretchmann 配置

高屈折率のプリズムを用いて伝搬光の位相速度を遅くする プリズム - 金属界面でのエヴァネッセント光を 裏面の SPP とカップルする

中赤外域における 伝搬型表面プラズモンの 励起と伝搬長測定

平松信義 東京大学工学部物理工学科 3 年 2015 年 8 月 21 日

伝搬型表面プラズモン (SPP: Surface Plasmon Polariton) とは

金属表面での電磁波と自由電子の粗密波の連成波

化学・生物学・材料科学分野への応用は広く行われている

Keyword: 分子認識、超薄膜のイメージング、たんぱく質の検出、表面 増強ラマン分光

光導波路としての応用

光の回折限界以下の領域にエネル ギーを閉じ込めることができる

ナノメートルオーダーまで微細化 された光集積回路が実現可能に

K. C. Y. Huang, et al., Nature photonics, 8, 244(2014)

• これまでの研究は可視域で行われてきた

中赤外域 (波長 3μm~30μm) では長く伝搬することが 予想される

目的:中赤外域での SPP を励起し伝搬長を求める

SPP の励起方法

SPP の励起の確認

アノマリ(回折異常)とは特定の入射角での 回折強度に特異的な変化が起こること

・ プラズモン共鳴アノマリ SPP を励起できる条件でおこる ⊚P 偏光で如実

アノマリの分析によって SPP の励起を確認できる

予備実験:可視域での SPP 励起

SPP 伝搬長の測定方法

電磁界解析 (FDTD 法)

実験装置の作成

- SPP の励起と検出を行う ための光学系を作成した ←
- 電子線描画装置を用いて ZnS 基盤上に導波路構造 を作成した

__ He-Ne レーザー用_

Λ= 1.88μm

CO**2** レーザー用

グレーティング

Λ= 33.8μm

系 1

アノマリフィルター II

11 11

11 11

目印

____14mm

SPP 励起の確認

反射光強度の入射角依存性

グレーティング密度: 29.6[gr/mm]

SPP 励起に起因する反射 率の低下は見られなかった

考察

- 厚みが薄いことによる 金薄膜内部の透過と干渉が ノイズとして大きい
- 反射光ではなく -2 次の回 折光でアノマリが発生して いる可能性がある

散乱光 Pout の検出

散乱光 Pout は検出できなかった

考察

- SPP の励起に適切な角度で赤外光の 入射が行えていなかった可能性があ る
- 光束入射位置の精度が良くなかった可能性がある
- 入射光の反射が散乱光 Pout を覆い隠してしまっていた可能性がある

入射光の反射が無視できる配置で 再度、慎重に実験を行う

まとめ、今後の展望

まとめ

- 回折格子を用いて可視域での SPP の励起を確認した
- 電磁界シミュレータを用いた解析で、 SPP の励起効率と伝搬長を見 積もった
- 実験デバイスと測定のための工学系を設計し、実際に作成した
- 簡単のため、反射光強度の計測による赤外域での SPP の励起実験を 行ったが、 SPP の励起は確認できなかった

<u>今後の展望</u>

- 2次の回折光強度を計測することにより、赤外域での SPP の励起を 確認する
- 赤外域での SPP の伝搬長を測定する

作成した試料のグレーティング構造における反射光の角度依存性

波長:10[μm]

グレーティング密度: 29.6[gr/mm]

赤外光の 0 次回折光 (反射光)強度の角度依存性

波長:10[μm] グレーティング密度:150[gr/mm]

0次回折光強度の入射角依存性 (CO2レーザー)

アノマリ(回折異常)とは特定の入射角での 回折強度に特異的な変化が起こること

・ wood のアノマリ 回折光が界面に平行に出るときにおこる ⊚S 偏光で如実

・ プラズモン共鳴アノマリ SPP を励起できる条件でおこる ⊚P 偏光で如実

プレスリの分析によって SPP の励起を確認できる

SPP の励起方法: 回折格子を用いる

編集予定 ...

$$k_p = k_l + m k_g (m \in \mathbb{Z})$$

SPP の励起方法: Kretchmann 配置

高屈折率のプリズムを用いて伝搬光の位相速度を遅くする プリズム - 金属界面でのエヴァネッセント光を 裏面の SPP とカップルする

