1. Ассоциативность:

Для любых $x,y,z\in G$:

$$(x*y)*z = (x \cdot a \cdot y)*z = (x \cdot a \cdot y) \cdot a \cdot z = x \cdot a \cdot y \cdot a \cdot z,$$
$$x*(y*z) = x*(y \cdot a \cdot z) = x \cdot a \cdot (y \cdot a \cdot z) = x \cdot a \cdot y \cdot a \cdot z.$$

Таким образом, (x*y)*z = x*(y*z), ассоциативность выполняется.

2. Нейтральный элемент:

Найдем $e' \in G$, такой что x * e' = x и e' * x = x.

Из условия $x \cdot a \cdot e' = x$ следует $a \cdot e' = e$, откуда $e' = a^{-1}$.

Проверка:

$$x * a^{-1} = x \cdot a \cdot a^{-1} = x \cdot e = x, \quad a^{-1} * x = a^{-1} \cdot a \cdot x = e \cdot x = x.$$

Нейтральный элемент для операции $*-a^{-1}$.

3. Обратный элемент:

Для каждого $x \in G$ найдем $x' \in G$, такой что $x * x' = a^{-1}$ и $x' * x = a^{-1}$.

Решая
$$x \cdot a \cdot x' = a^{-1}$$
, получаем $x' = a^{-1} \cdot x^{-1} \cdot a^{-1}$.

Проверка:

$$\begin{split} x*x' &= x \cdot a \cdot (a^{-1} \cdot x^{-1} \cdot a^{-1}) = x \cdot (a \cdot a^{-1}) \cdot x^{-1} \cdot a^{-1} = e \cdot a^{-1} = a^{-1}, \\ x'*x &= (a^{-1} \cdot x^{-1} \cdot a^{-1}) \cdot a \cdot x = a^{-1} \cdot x^{-1} \cdot (a^{-1} \cdot a) \cdot x = a^{-1} \cdot (x^{-1} \cdot x) = a^{-1}. \end{split}$$

Обратный элемент для x относительно $*-x'=a^{-1}\cdot x^{-1}\cdot a^{-1}.$

Заключение:

Все аксиомы группы выполняются. Следовательно, (G,st) — группа.

Ответ:

Группа G с операцией * действительно является группой, так как выполняются все аксиомы группы: ассоциативность, наличие нейтрального элемента a^{-1} и обратных элементов $a^{-1} \cdot x^{-1} \cdot a^{-1}$ для каждого $x \in G$.

$$(G,*)$$
— группа

$$\left(\begin{array}{ccccc} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & -1 \\ -2 & 0 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{array}\right).$$

+ Г1. Пусть G, — группа, $a\in G$. Для любых двух элементов $x,y\in G$ положим $x*y=x\cdot a\cdot y$. Докажите, что G, * — гоже группа.

Г2. Отображение $\varphi(x):G\to G$, заданное формулой $\varphi(x)=x^{-1}$ является гомоморфизмом групп. Сколько может быть элементов в группе G/Z(G)?

 $ec{\Gamma}$ 3. Подстановка $arphi \in S_{17}$ такова, что $\operatorname{ord}(arphi)$ нечетно. Докажите, что $arphi \in A_{17}$.

 Γ 4. Пусть G — группа, N_1 и N_2 — ее нормальные подгруппы. Докажите, что для любых $a_1 \in N_1$ и $a_2 \in N_2$ выполняется $[a_1,a_2] \in N_1 \cap N_2$.

2)

1. Анализ условия гомоморфизма:

Отображение $arphi(x)=x^{-1}$ является гомоморфизмом, если для любых $a,b\in G$ выполняется равенство:

$$arphi(ab)=arphi(a)arphi(b)\quad\Rightarrow\quad (ab)^{-1}=a^{-1}b^{-1}.$$

Однако в общем случае $(ab)^{-1}=b^{-1}a^{-1}$. Для выполнения равенства $b^{-1}a^{-1}=a^{-1}b^{-1}$ необходимо, чтобы a^{-1} и b^{-1} коммутировали для всех $a,b\in G$. Это возможно только если G — абелева группа (все элементы коммутируют).

2. Следствие для центра группы:

В абелевой группе каждый элемент коммутирует со всеми остальными, поэтому центр Z(G) совпадает с самой группой G:

$$Z(G) = G$$
.

3. Факторгруппа G/Z(G) :

Факторгруппа G/Z(G) состоит из классов смежности по подгруппе Z(G). Поскольку Z(G)=G, существует только один класс смежности — сама группа G. Таким образом:

$$G/Z(G)\simeq \{e\},$$

где $\{e\}$ — тривиальная группа с одним элементом.

Ответ:

1

3)

1. Разложение подстановки на циклы:

Порядок подстановки φ определяется как наименьшее общее кратное длин циклов в её разложении:

$$\operatorname{ord}(\varphi) = \operatorname{HOK}(l_1, l_2, \ldots, l_k),$$

где l_i — длины непересекающихся циклов. Если $\operatorname{ord}(\varphi)$ нечётно, то все l_i также должны быть нечётными, так как НОК нечётных чисел остаётся нечётным.

2. Чётность циклов:

Цикл длины l можно представить как произведение l-1 транспозиций. Если l нечётно, то l-1 чётно, то есть каждый цикл в разложении φ соответствует чётному числу транспозиций. Общее количество транспозиций в разложении φ будет суммой чётных чисел, что также чётно.

3. Чётность подстановки:

Подстановка φ является чётной, если её можно представить как произведение чётного числа транспозиций. Поскольку разложение φ содержит только чётное число транспозиций, $\varphi \in A_{17}$.

4. Альтернативный подход через гомоморфизм знака:

Рассмотрим гомоморфизм знака $\operatorname{sgn}: S_{17} \to \{\pm 1\}$. Порядок $\operatorname{sgn}(\varphi)$ в группе $\{\pm 1\}$ должен делить $\operatorname{ord}(\varphi)$ и порядок $\{\pm 1\}$, равный 2. Поскольку $\operatorname{ord}(\varphi)$ нечётен, $\operatorname{sgn}(\varphi)=1$, то есть φ чётна.

Заключение:

Все циклы в разложении φ имеют нечётную длину, что приводит к чётному числу транспозиций в разложении. Следовательно, φ является чётной подстановкой и принадлежит A_{17} .

$$arphi\in A_{17}$$

4)

Для доказательства того, что коммутатор $[a_1,a_2]$ элементов $a_1\in N_1$ и $a_2\in N_2$ принадлежит пересечению $N_1\cap N_2$, воспользуемся следующими рассуждениями:

1. Определение коммутатора:

Коммутатор двух элементов a_1 и a_2 определяется как $[a_1\,,a_2\,]=a_1^{-1}\,a_2^{-1}\,a_1\,a_2\,.$

- 2. Принадлежность N_1 :
 - ullet Так как N_1 нормальная подгруппа, для любого $a_1\in N_1$ и $a_2\in G$ сопряжение $a_2^{-1}a_1a_2$ принадлежит N_1 .
 - ullet Таким образом, $a_2^{-1} \, a_1 \, a_2 \, \in N_1$.
 - ullet Умножая $a_1^{-1} \in N_1$ на $a_2^{-1}a_1a_2 \in N_1$, получаем $[a_1,a_2] = a_1^{-1}(a_2^{-1}a_1a_2) \in N_1$.
- 3. Принадлежность N_2 :
 - ullet Так как N_2 нормальная подгруппа, для любого $a_2^{-1}\in N_2$ и $a_1\in G$ сопряжение $a_1^{-1}\,a_2^{-1}\,a_1$ принадлежит N_2 .
 - ullet Таким образом, $a_1^{-1} \, a_2^{-1} \, a_1 \, \in N_2$.
 - ullet Умножая $a_1^{-1}a_2^{-1}a_1\in N_2$ на $a_2\in N_2$, получаем $[a_1,a_2]=(a_1^{-1}a_2^{-1}a_1)a_2\in N_2$.
- 4. Заключение:

Коммутатор $[a_1\,,a_2\,]$ принадлежит как N_1 , так и N_2 , следовательно, он лежит в их пересечении $N_1\cap N_2$.

Ответ:

$$[a_1,a_2]\in N_1\cap N_2$$