Самостійна робота з курсу "Теорія міри"

Студента 3 курсу групи МП-31 Захарова Дмитра

30 жовтня 2023 р.

Завдання 1

Умова. Нехай

$$X = \{1, 2, 3, 4\}, \ \mathcal{H} = \{\emptyset, \{1\}, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}\$$

- 1. Чи $\in \mathcal{H}$ півалгеброю?
- 2. Якщо ні, то доповніть \mathcal{H} до $\widetilde{\mathcal{H}}$ так, щоб $\mathcal{H} \subset \widetilde{\mathcal{H}}$ і $\widetilde{\mathcal{H}}$ була півалгеброю.

Розвязок.

Пункт 1. За означенням, аби множина \mathcal{H} була півалгеброю, потрібно $X \in \mathcal{H}$ та щоб \mathcal{H} була півкільцем. Дійсно, $X \in \mathcal{H}$. Отже перевіряємо, чи перед нами півкільце. Для цього має виконуватись:

- 1. $\forall A, B \in \mathcal{H} : A \cap B \in \mathcal{H}$
- 2. $\forall A, B \in \mathcal{H} \exists \{C_k\}_{k=1}^n \subset \mathcal{H} : (A \setminus B = \bigcup_{k=1}^n C_k \land \{C_k\}_{k=1}^n \in \text{неперетинними})$

Перша властивість дійсно виконується, для цього достатньо попарно перетнути елементи і перевірити, що вони будуть в \mathcal{H} :

$$\emptyset \cap \{1\} = \emptyset \in \mathcal{H}, \ \emptyset \cap \{1,2\} = \emptyset \in \mathcal{H}, \dots$$

$$\{1\} \cap \{1,2\} = \{1\} \in \mathcal{H}, \ \{1\} \cap \{3,4\} = \emptyset \in \mathcal{H}, \ \{1\} \cap \{1,2,3,4\} = \{1\} \in \mathcal{H}$$

$$\{1,2\} \cap \{3,4\} = \emptyset \in \mathcal{H}, \ \{1,2\} \cap \{1,2,3,4\} = \{1,2\} \in \mathcal{H}$$

$$\{3,4\} \cap \{1,2,3,4\} = \{3,4\} \in \mathcal{H}$$

А ось з другою властивістю є проблеми. Наприклад, візьмемо $A := \{1, 2, 3, 4\}, B = \{1\}$. Тоді $A \setminus B = \{2, 3, 4\}$. В нас залишаються $\{1, 2\}, \{3, 4\}, \emptyset$ і, хоча вони неперетинні, їх об'єднання не дасть $\{2, 3, 4\}$. Отже, перед нами не півкільце, а отже і не півалгебра.

Пункт 2. Найпростіший спосіб це звичайно доповнити \mathcal{H} до 2^X , в такому разі 2^X буде півкільцем (оскільки $\forall A, B \in 2^X : A \cap B \in 2^X$, а також $\forall A, B \in 2^X : A \setminus B \in 2^X$).

Але давайте знайдемо менш тривіальний варіант. Для початку, повернімося до вибору $A = \{1, 2, 3, 4\}, \ B = \{1\}$. Нам би допомогло скласти $A \setminus B$ з інших елементів, якщо б в нас було ще $\{2\}$, оскільки ми б взяли $\{C_k\}_{k=1}^2 := \{\{2\}, \{3, 4\}\}$. Тому, додамо його.

Тепер перевіримо, чи цього достатньо, тобто чи буде тепер такий клас множин півалгеброю:

$$\widetilde{\mathcal{H}} = \mathcal{H} \cup \{\{2\}\} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}\$$

Із перетинів додалися перетини $\{2\}$ з усіма іншими елементами. Неважко переконатись, що всі перетини будуть лежати в $\widetilde{\mathcal{H}}$.

Тепер розглянемо усі різниці. Спочатку віднімемо від $\{1,2,3,4\}$ всі інші елементи:

$$\{1,2,3,4\} \setminus \{3,4\} = \{1,2\} \in \widetilde{\mathcal{H}}$$

$$\{1,2,3,4\} \setminus \{1,2\} = \{3,4\} \in \widetilde{\mathcal{H}}$$

$$\{1,2,3,4\} \setminus \{2\} = \{1,3,4\} = \underbrace{\{1\}}_{\in \widetilde{\mathcal{H}}} \cup \underbrace{\{3,4\}}_{\in \widetilde{\mathcal{H}}}, \ \{1\} \cap \{3,4\} = \emptyset$$

$$\{1,2,3,4\} \setminus \{1\} = \{2,3,4\} = \underbrace{\{2\}}_{\in \widetilde{\mathcal{H}}} \cup \underbrace{\{3,4\}}_{\in \widetilde{\mathcal{H}}}, \ \{2\} \cap \{3,4\} = \emptyset$$

Якщо віднімати в зворотній бік, то будемо отримувати $\emptyset \in \widetilde{\mathcal{H}}.$

Тепер $\{3,4\}$:

$$\{3,4\} \setminus \{1,2\} = \{3,4\} \setminus \{1\} = \{3,4\} \setminus \{2\} = \{3,4\} \in \widetilde{\mathcal{H}}$$

В зворотній бік ситуація аналогічна:

$$\{1,2\}\setminus\{3,4\}=\{1,2\}\in\widetilde{\mathcal{H}},\ \{2\}\setminus\{3,4\}=\{2\}\in\widetilde{\mathcal{H}},\ \{1\}\setminus\{3,4\}=\{1\}\in\widetilde{\mathcal{H}}$$

Тепер $\{1, 2\}$:

$$\{1, 2\} \setminus \{2\} = \{1\} \in \widetilde{\mathcal{H}}, \ \{1, 2\} \setminus \{1\} = \{2\} \in \widetilde{\mathcal{H}}$$
$$\{1\} \setminus \{1, 2\} = \{2\} \setminus \{1, 2\} = \emptyset \in \widetilde{\mathcal{H}}$$

Нарешті,
$$\{1\} \setminus \{2\} = \{1\} \in \widetilde{\mathcal{H}}, \{2\} \setminus \{1\} = \{2\} \in \widetilde{\mathcal{H}}.$$

Отже, як перша, так і друга умови означення півкільця виконуються, а також $X \in \widetilde{\mathcal{H}},$ тому дійсно маємо півалгебру.

Відповідь.

- 1. Не ϵ , не виконується 2 умова означення півкільця для $\{1,2,3,4\}\setminus\{1\}.$
- 2. $\widetilde{\mathcal{H}} = \mathcal{H} \cup \{\{2\}\}$ або $\widetilde{\mathcal{H}} = 2^X$