3: AGENT ARCHITECTURE

Al6125: Intelligent Agents

Assoc Prof Zhang Jie

Agent Architecture

- An agent architecture is a software design for an agent
- We have already seen a top-level decomposition (abstract), into:
 - perception state decision action
- An agent architecture defines (concrete):
 - Key data structures;
 - Operations on data structures;
 - Control flow between operations

History of Agent Architectures

- Originally (1956-1985), pretty much all agents designed within Al were symbolic reasoning agents
- Its purest expression proposes that agents use explicit logical reasoning in order to decide what to do
- Problems with symbolic reasoning led to a reaction against this the so-called *reactive agents* movement, 1985–present
- From 1990-present, a number of alternatives proposed: *hybrid* architectures, which attempt to combine the best of reasoning and reactive architectures

Symbolic Reasoning Agents

- The classical approach to building agents is to view them as a particular type of knowledge-based system, and bring all the associated (discredited?!) methodologies of such systems to bear
- This paradigm is known as symbolic AI
- We define a deliberative agent or agent architecture to be one that:
 - contains an explicitly represented, symbolic model of the world
 - makes decisions (for example about what actions to perform) via symbolic reasoning

Symbolic Reasoning Agents

- If we aim to build an agent in this way, there are two key problems to be solved:
- that of translating the real world into an accurate, adequate symbolic description, in time for that description to be useful...vision, speech understanding, learning
- The representation/reasoning problem: that of how to symbolically represent information about complex real-world entities and processes, and how to get agents to reason with this information in time for the results to be useful...knowledge representation, automated reasoning, automatic planning

Symbolic Reasoning Agents

- Most researchers accept that neither problem is anywhere near solved
- Underlying problem lies with the complexity of symbol manipulation algorithms in general: many (most) search-based symbol manipulation algorithms of interest are *highly intractable*
- Because of these problems, some researchers have looked to alternative techniques for building agents; we look at these later

- How can an agent decide what to do using theorem proving?
- Basic idea is to use logic to encode a theory stating the best action to perform in any given situation
- Let:
 - ρ be this theory (typically a set of rules)
 - ullet Δ be a logical database that describes the current state of the world
 - \Box Ac be the set of actions the agent can perform
 - $\ \ \ \ \ \Delta \mid_{-\rho} \phi$ mean that ϕ can be proved from Δ using ρ

```
/* try to find an action explicitly prescribed */
for each a \in Ac do
       if \Delta | -_{o} Do(a) then
               return a
       end-if
end-for
/* try to find an action not excluded */
for each a \in Ac do
        if \Delta \not\mid -_{o} \neg Do(a) then
               return a
       end-if
end-for
return null /* no action found */
```

- An example: The Vacuum World
- Goal is for the robot to clear up all dirt

Use 3 domain predicates to solve problem:

```
In(x, y) agent is at (x, y)

Dirt(x, y) there is dirt at (x, y)

Facing(d) the agent is facing direction d
```

Possible actions:

$$Ac = \{turn, forward, suck\}$$

P.S. turn means "turn right"

Rules ρ for determining what to do:

```
In(0,0) \land Facing(north) \land \neg Dirt(0,0) \longrightarrow Do(forward)

In(0,1) \land Facing(north) \land \neg Dirt(0,1) \longrightarrow Do(forward)

In(0,2) \land Facing(north) \land \neg Dirt(0,2) \longrightarrow Do(turn)

In(0,2) \land Facing(east) \longrightarrow Do(forward)
```

- ...and so on!
- Using these rules (+ other obvious ones),
 starting at (0, 0) the robot will clear up dirt

Problems:

- How to convert video camera input to Dirt(0, 1)?
- decision making assumes a static environment: calculative rationality
- decision making using first-order logic is undecidable!

Typical solutions:

- weaken the logic
- use symbolic, non-logical representations
- shift the emphasis of reasoning from run time to design time

AGENT0 and PLACA

- Much of the interest in agents from the AI community has arisen from Shoham's notion of agent oriented programming (AOP)
- AOP: 'a new programming paradigm, based on a societal view of computation'
- The key idea that informs AOP is that of directly programming agents in terms of intentional notions like belief, commitment, and intention

- AGENT0 is implemented as an extension to LISP
- Each agent in AGENT0 has 4 components:
 - a set of capabilities (things the agent can do)
 - a set of initial beliefs
 - a set of initial commitments (things the agent will do)
 - a set of commitment rules 类似于heroy.
- The key component, which determines how the agent acts, is the commitment rule set

Each commitment rule contains

- a message condition
- a mental condition
- an action
- On each 'agent cycle' ...
 - The message condition is matched against the messages the agent has received
 - The mental condition is matched against the beliefs of the agent
 - If the rule fires, then the agent becomes committed to the action (the action gets added to the agent's commitment set)

- Actions may be
 - private:
 an internally executed computation, or
 - communicative: sending messages
- Messages are constrained to be one of three types:
 - "requests" to commit to action
 - "unrequests" to refrain from actions
 - "informs" which pass on information

A commitment rule:

```
COMMIT(
   ( agent, REQUEST, DO(time, action)
   ), ;;; msg condition
   ( B,
         [now, Friend agent] AND
         CAN(self, action) AND
         NOT [time, CMT(self, anyaction)]
   ), ;;; mental condition
   self,
   DO(time, action)
```

- This rule may be paraphrased as follows: if I receive a message from agent which requests me to do action at time, and I believe that:
 - agent is currently a friend
 - I can do the action
 - At time, I am not committed to doing any other action then commit to doing action at time

AGENT0 and PLACA

- AGENT0 provides support for multiple agents to cooperate and communicate, and provides basic provision for debugging...
- ...it is, however, a prototype, that was designed to illustrate some principles, rather than be a production language
- A more refined implementation was developed by Thomas, for her 1993 doctoral thesis
- Her Planning Communicating Agents (PLACA) language was intended to address one severe drawback to AGENT0: the inability of agents to plan, and communicate requests for action via high-level goals
- Agents in PLACA are programmed in much the same way as in AGENT0, in terms of mental change rules

AGENT0 and PLACA

An example mental change rule:

- Paraphrased:
 - if someone asks you to xerox something, and you can, and you don't believe that they're a VIP, or that you're supposed to be shelving books, then
 - adopt the intention to xerox it by 5pm, and
 - inform them of your newly adopted intention

Practical Reasoning

- Practical reasoning is reasoning directed towards actions — the process of figuring out what to do:
 - "Practical reasoning is a matter of weighing conflicting considerations for and against competing options, where the relevant considerations are provided by what the agent desires/values/cares about and what the agent believes." (Bratman)
- Practical reasoning is distinguished from theoretical reasoning – theoretical reasoning is directed towards beliefs

Practical Reasoning

- Human practical reasoning consists of two activities:
- deliberation deciding what state of affairs we want to achieve
- means-ends reasoning deciding how to achieve these states of affairs
- The outputs of deliberation are intentions

Intentions in Practical Reasoning

- Notice that intentions are much stronger than mere desires:
 - "My desire to play basketball this afternoon is merely a potential influencer of my conduct this afternoon. It must vie with my other relevant desires [. . .] before it is settled what I will do. In contrast, once I intend to play basketball this afternoon, the matter is settled: I normally need not continue to weigh the pros and cons. When the afternoon arrives, I will normally just proceed to execute my intentions." (Bratman, 1990)

What is Means-End Reasoning?

- Basic idea is to give an agent:
 - representation of goal/intention to achieve
 - representation of actions it can perform
 - representation of the environment
 and have it generate a *plan* to achieve the goal
- Essentially, this is
 automatic programming

Planning

- Question: How do we represent. . .
 - goal to be achieved
 - state of environment
 - actions available to agent
 - plan itself

- We'll illustrate the techniques with reference to the blocks world (like previous module)
- Contains a robot arm, 3 blocks (A, B, and C) of equal size, and a table-top

The Blocks World Ontology

To represent this environment, need an ontology

On(x, y)
OnTable(x)
Clear(x)

Holding(x)

obj x on top of obj yobj x is on the table nothing is on top of obj xarm is holding x

Here is a representation of the blocks world described above:

Clear(A)
On(A, B)
OnTable(B)
OnTable(C)

Use the closed world assumption: anything not stated is assumed to be false

- A goal is represented as a set of formulae
- Here is a goal:

 $OnTable(A) \wedge OnTable(B) \wedge OnTable(C)$

- Actions are represented using a technique that was developed in the STRIPS planner
- Each action has:
 - a *name*which may have arguments
 - a pre-condition list
 list of facts which must be true for action to be executed
 - a delete list
 list of facts that are no longer true after action is performed
 - an add list
 list of facts made true by executing the action

Each of these may contain *variables*

The Blocks World Operators

Example:

The *stack* action occurs when the robot arm places the object *x* it is holding is placed on top of object *y*.

$$Stack(x, y)$$
pre $Clear(y) \wedge Holding(x)$
del $Clear(y) \wedge Holding(x)$
add $ArmEmpty \wedge On(x, y)$

A Plan

What is a plan?
 A sequence (list) of actions, with variables replaced by constants.

Implementing Practical Reasoning Agents

A first pass at an implementation of a practical reasoning agent:

```
Agent Control Loop Version 1

1. while true

2. observe the world;

3. update internal world model;

4. deliberate about what intention to achieve next;

5. use means-ends reasoning to get a plan for the intention;

6. execute the plan

7. end while
```

(We will not be concerned with stages (2) or (3))

Implementing Practical Reasoning Agents

Let's make the algorithm more formal:

```
Agent Control Loop Version 2

1. B := B_0; /* initial beliefs */

2. while true do

3. get next percept \rho;

4. B := brf(B, \rho);

5. I := deliberate(B);

6. \pi := plan(B, I);

7. execute(\pi)

8. end while
```

Deliberation

- How does an agent deliberate?
 - begin by trying to understand what the options available to you are
 - choose between them, and commit to some
- Chosen options are then intentions

Deliberation

- The deliberate function can be decomposed into two distinct functional components:
- option generation
 in which the agent generates a set of possible
 alternatives;
 Represent option generation via a function, options,
 which takes the agent's current beliefs and current
 intentions, and from them determines a set of options
 (= desires)
- in which the agent chooses between competing alternatives, and commits to achieving them. In order to select between competing options, an agent uses a *filter* function.

Deliberation BDI agents

```
Agent Control Loop Version 3
1.
2. B := B_0; helief
3. I := I_0; intention
4. while true do
5.
         get next percept \rho;
6. B := brf(B, \rho);
7. D := options(B, I);
8. I := filter(B, D, I);
9. \pi := plan(B, I);
         execute(\pi)
10.
11. end while
```

Reactive Architectures

- There are many unsolved (some would say insoluble) problems associated with symbolic Al
- These problems have led some researchers to question the viability of the whole paradigm, and to the development of reactive architectures
- Although united by a belief that the assumptions underpinning mainstream Al are in some sense wrong, reactive agent researchers use many different techniques
- We start by reviewing the work of one of the most vocal critics of mainstream AI: Rodney Brooks

Rodney A. Brooks

- M.I.T professor
- Member of M.I.T.'s Artificial Intelligence Lab
- Developed the Subsumption Architecture for robot control in 1986
- His goal was to develop artificial, complete creatures capable of inhabiting our world, not a simplified world

The Subsumption Architecture

- The Subsumption Architecture is:
 - A layering methodology for robot control systems
 - A parallel and distributed method for connecting sensors and actuators in robots

The Subsumption Architecture

 Each layer is made up of connected, simple processors: Augmented Finite State Machines

The Subsumption Architecture

- The most important aspect of these FSMs
 - Outputs are simple functions of inputs and local variables
 - Inputs can be suppressed and outputs can be inhibitated
 - This function allows higher levels to subsume the function of lower levels
 - Lower, therefore, still function as they would without the higher levels

An Example: Allen

- Brooks' first Subsumption robot
- Level 0: Runs away if approached, avoids objects

An Example: Allen

Levels 1 and 0: Adds wandering

An Example: Allen

• Levels 2, 1, and 0: Adds hallway following

Programming Characteristics of Subsumption

- No internal model of the real world because:
 - No free communication
 - No shared memory
- So, use real world as the model
 - "The world really is a rather good model of itself"
 - Very accurate
 - Never out of date
 - No computation needed to keep model up to date
- Real world used for sub-system communication
 - Instead of direct communication, sub-systems just sense the real world

Brooks – behavior languages

- Brooks has put forward three theses:
 - Intelligent behavior can be generated without explicit representations of the kind that symbolic Al proposes
 - Intelligent behavior can be generated without explicit abstract reasoning of the kind that symbolic AI proposes
 - Intelligence is an *emergent* property of certain complex systems

Brooks – behavior languages

- He identifies two key ideas that have informed his research:
 - Situatedness and embodiment: 'Real' intelligence is situated in the world, not in disembodied systems such as theorem provers or expert systems
 - Intelligence and emergence: 'Intelligent' behavior arises as a result of an agent' s interaction with its environment. Also, intelligence is 'in the eye of the beholder'; it is not an innate, isolated property

Brooks – behavior languages

- To illustrate his ideas, Brooks built some robots based on his subsumption architecture
- A subsumption architecture is a hierarchy of taskaccomplishing behaviors
- Each behavior is a rather simple rule-like structure
- Each behavior 'competes' with others to exercise control over the agent
- Lower layers represent more primitive kinds of behavior (such as avoiding obstacles), and have precedence over layers further up the hierarchy
- The resulting systems are, in terms of the amount of computation they do, extremely simple
- Some of the robots do tasks that would be impressive if they were accomplished by symbolic AI systems

Steels' Mars Explorer

Steels' Mars explorer system, using the subsumption architecture, achieves nearoptimal cooperative performance in simulated 'rock gathering on Mars' domain: The objective is to explore a distant planet, and in particular, to collect sample of a precious rock. The location of the samples is not known in advance, but it is known that they tend to be clustered.

Steels' Mars Explorer Rules

- For individual (non-cooperative) agents, the lowest-level behavior, (and hence the behavior with the highest "priority") is obstacle avoidance:
 if detect an obstacle then change direction (1)
- Any samples carried by agents are dropped back at the mother-ship:

```
if carrying samples and at the base then drop samples (2)
```

Agents carrying samples will return to the mothership:

```
if carrying samples and not at the base then travel up gradient (3)
```

Steels' Mars Explorer Rules

- Agents will collect samples they find:
 if detect a sample then pick sample up (4)
- An agent with "nothing better to do" will explore randomly:

if true then move randomly (5)

Advantages of Reactive Agents

- Simplicity
- Economy
- Computational tractability
- Robustness against failure
- Elegance

Limitations of Reactive Agents

- Agents without environment models must have sufficient information available from local environment
- If decisions are based on *local* environment, how does it take into account *non-local* information (i.e., it has a <u>"short-term" view</u>)
- Difficult to make reactive agents that <u>learn</u>
- Since behavior emerges from component interactions plus environment, it is hard to see how to engineer specific agents (no principled methodology exists)
- It is hard to engineer agents with <u>large numbers of</u> <u>behaviors</u> (dynamics of interactions become too <u>complex</u> to understand)

- Many researchers have argued that <u>neither a</u> completely deliberative nor completely reactive approach is suitable for building agents
- They have suggested using hybrid systems, which attempt to marry classical and alternative approaches
- An obvious approach is to build an agent out of two (or more) subsystems:
 - a deliberative one, containing a symbolic world model, which develops plans and makes decisions in the way proposed by symbolic Al
 - a reactive one, which is capable of reacting to events without complex reasoning

- Often, the reactive component is given some kind of <u>precedence</u> over the deliberative one
- This kind of structuring leads naturally to the idea of a layered architecture, of which TOURINGMACHINES and INTERRAP are examples
- In such an architecture, an agent's control subsystems are arranged into a hierarchy, with higher layers dealing with information at increasing levels of abstraction

- A key problem in such architectures is what kind of control framework to embed the agent's subsystems in, to manage the interactions between the various layers
- Horizontal layering
 - Layers are each directly connected to the sensory input and action output.
 - In effect, each layer itself acts like an agent, producing suggestions as to what action to perform.
- Vertical layering
 - Sensory input and action output are each dealt with by at most one layer each

m possible actions suggested by each layer, n layers

Introduces bottleneck in central control system

Not fault tolerant to layer failure

Summary

- Symbolic Reasoning Agents
 - Deductive Reasoning Agents
 - Agent Oriented Programming (AOP)
 - Practical Reasoning Agents
 - Problems with symbolic reasoning agents
- Reactive Agents
 - Limitations of reactive agents
- Hybrid Architectures