Splay trees

Samo-modyfikujące się drzewa BST (Sleator, Tarjan 1983 rok).

Dowolny ciąg m operacji Insert, Delete, Search wykonywany jest w łącznym czasie $O(m \lg n)$, gdzie n oznacza maksymalny rozmiar drzewa w trakcie tych operacji.

Stąd, *zamortyzowany* czas jednej operacji: $O(\lg n)$.

Operacja splay

Po wykonaniu każdej z operacji Insert, Delete, Search wykonywana jest procedura splay, która przekształca drzewo tak, że najgłębszy wierzchołek x osiągnięty w trakcie wykonanej operacji staje się nowym korzeniem.

W przypadku Insert: x jest nowo wstawionym wierzchołkiem.

W przypadku Search: x jest znalezionym kluczem, lub liściem.

W przypadku Delete: x jest rodzicem fizycznie usuniętego węzła.

Operacja splay na x polega na wykonywaniu ciągu kroków, aż x stanie się korzeniem.

Każdy krok polega na wykonaniu jednej lub dwóch *rotacji*, zależnie od następujących przypadków:

Przypadek 1 (zig): x jest lewym synem korzenia y

Przypadek 2 (zig-zig): x jest lewym synem y i y jest lewym synem z

Przypadek 3 (zig-zag): x jest prawym synem y i y jest lewym synem z

Symetryczne przypadki są przetwarzane symetrycznie.

Motywacje

Dla wierzchołka u drzewa BST T niech $l_T(u)$ oznacza liczbę wierzchołków na ścieżce od korzenia do u.

Niech $L(T) = \sum_{u \in T} l_T(u)$. (dla T pustego L(T) = 0).

Intuicyjnie: im większe L(T) tym gorzej zbalansowane jest T.

Jeśli drzewo o n wierzchołkach jest zrównoważone to $L(T) = O(n \lg n)$, a jeśli $L(T) = \Omega(n^2)$, to drzewo jest niezrównoważone.

Dla $u \in T$, wagą $w_T(u)$ nazywamy liczbę wierzchołków w drzewie o korzeniu w.

Niech
$$W(T) = \sum_{u \in T} w_T(u)$$
.

Można sprawdzić, że W(T) = L(T). (Ćwiczenie)

Niech $r_T(u) = \lg w_T(u)$ (ranga u).

Potencjałem drzewa T nazywamy $\Phi(T) = \sum_{u \in T} r_{T(u)}$.

Można sprawdzić, że spośród drzew o ustalonej liczbie wierzchołków, lepiej zrównoważone są te o mniejszym potencjale.

Zadaniem procedury splay jest zmniejszenie potencjału drzewa.

Analiza

Zauważmy, że łączny czas wszystkich operacji jest proporcjonalny do łącznej liczby kroków we wszystkich wywołaniach splay:

Każdy krok procedury splay wykonuje stałą liczbę rotacji a czas działania Insert, Delete, albo Search jest zdominowany przez czas wywoływanej przez siebie procedury splay.

Zatem szacowanym przez nas kosztem będzie liczba wykonanych rotacji procedury splay.

Lemat 0. Dla dodatnich liczb rzeczywistych a, b i c jeśli $a+b\leqslant c$, to $\lg a + \lg b \leqslant 2\lg c - 2$.

D-d. lg jest funkcją niewypukłą.

Stąd
$$\frac{\lg a + \lg b}{2} \leqslant \lg\left(\frac{a+b}{2}\right) \leqslant \lg\frac{c}{2} = \lg c - 1$$
.

Pomnóżmy obie strony przez dwa.

Lemat 1. Zamortyzowany koszt kroku zig procedury splay(x) przekształcającego drzewo T w T' wynosi:

$$a = 1 + \Phi(T') - \Phi(T) \le 1 + 3[r_{T'}(x) - r_T(x)]$$

D-d.

Zmieniają się jedynie rangi x i y. Zatem:

$$a = 1 + \Phi(T') - \Phi(T) = 1 + [r_{T'}(x) + r_{T'}(y)] - [r_T(x) + r_T(y)].$$

Ponieważ
$$r_{T'}(y) \leqslant r_T(y)$$
: $a \leqslant 1 + [r_{T'}(x) - r_T(x)]$.

Ponieważ
$$r_{T'}(x) \geqslant r_T(x)$$
: $a \leqslant 1 + 3[r_{T'}(x) - r_T(x)]$. \square

Lemat 2. Zamortyzowany czas kroku zig-zig procedury splay(x) przekształcającego drzewo T w T' wynosi:

$$a = 2 + \Phi(T') - \Phi(T) \leq 3[r_{T'}(x) - r_T(x)]$$

D-d.

$$a = 2 - \Phi(T') - \Phi(T)$$

= 2 + [$r_{T'}(x) + r_{T'}(y) + r_{T'}(z)$] - [$r_T(x) + r_T(y) + r_T(z)$]

Ponieważ $r_{T'}(x) = r_T(z)$: $a = 2 + r_{T'}(y) + r_{T'}(z) - r_T(x) - r_T(y)$

Ponieważ
$$r_T(x) \leqslant r_T(y)$$
 oraz $r_{T'}(x) \geqslant r_{T'}(y)$:
$$a \leqslant 2 + r_{T'}(x) + r_{T'}(z) - 2r_T(x)$$

Zauważmy, że
$$w_T(x) + w_{T'}(z) < w_{T'}(x)$$

Z Lematu 0 mamy: $r_T(x) + r_{T'}(z) \leq 2r_{T'}(x) - 2$

Stad: $r_{T'}(z) \leq 2r_{T'}(x) - r_{T}(x) - 2$.

Wstawiając to do: $a \leq 2 + r_{T'}(x) + r_{T'}(z) - 2r_T(x)$ otrzymujemy:

$$a \leq 2 + r_{T'}(x) + 2r_{T'}(x) - r_T(x) - 2 - 2r_T(x)$$

$$= 3[r_{T'}(x) - r_T(x)]$$

Lemat 2. Zamortyzowany czas kroku zig-zag procedury splay(x) przekształcającego drzewo T w T' wynosi:

$$a = 2 + \Phi(T') - \Phi(T) \le 3[r_{T'}(x) - r_T(x)]$$

D-d.

$$a = 2 - \Phi(T') - \Phi(T)$$

= 2 + [$r_{T'}(x) + r_{T'}(y) + r_{T'}(z)$] - [$r_T(x) + r_T(y) + r_T(z)$]

Ponieważ
$$r_{T'}(x) = r_T(z)$$
: $a = 2 + r_{T'}(y) + r_{T'}(z) - r_T(x) - r_T(y)$

Ponieważ
$$r_T(x) \le r_T(y)$$
: $a \le 2 + [r_{T'}(y) + r_{T'}(z)] - 2r_T(x)$

Zauważmy, że: $w_{T'}(y) + w_{T'}(z) < w_{T'}(x)$

Z Lematu 0:
$$r_{T'}(y) + r_{T'}(z) \leq 2r_{T'}(x) - 2$$

Wstawiając to do $a \leq 2 + [r_{T'}(y) + r_{T'}(z)] - 2r_T(x)$ otrzymujemy:

$$a \le 2 + [2r_{T'}(x) - 2] - 2r_{T}(x)$$

= $2[r_{T'}(x) - r_{T}(x)]$
 $\le 3[r_{T'}(x) - r_{T}(x)]$ (ponieważ: $r_{T'}(x) \ge r_{T}(x)$).

Twierdzenie 1. Zamortyzowana liczba pojedynczych rotacji w operacji splay na BST z n wierzchołkami jest $\leq 3 \lg n + 1$.

D-d. Załóżmy, że splay jest wywołana na wierzchołku $x = w_0$ w T. Niech T' - drzewo po zakończeniu splay.

Niech $w_0, \ldots, w_{k-1}, w_k$ - wierzchołki na ścieżce od $x=w_0$ do korzenia w_k drzewa T, takie że w_i jest dziadkiem w_{i-1} dla $1 \leqslant i \leqslant k-1$, a w_{k-1} jest synem lub wnukiem w_k .

Niech $T_0 = T$, a T_j będzie drzewem po j-tym kroku splay. (Stąd: $T_k = T'$) Łatwo zauważyć, że: $r_{T_j}(x) = r_T(w_j)$ dla j = 0, 1, ..., k. (Po j-tym kroku x staje się korzeniem poddrzewa z węzłami, które były w poddrzewie o korzeniu w_j .)

Niech t oznacza faktyczną liczbę rotacji w splay, a t_j - liczbę rotacji w j-tym kroku (tj. 1 lub 2). $t = \sum_{j=1}^k t_j$.

Wtedy zamortyzowana liczba rotacji wynosi:

$$t + \Phi(T') - \Phi(T) = t + \Phi(T_k) - \Phi(T_0) = \sum_{j=1}^{k} [t_j + \Phi(T_j) - \Phi(T_{j-1})]$$

Z Lematów 2 i 3 (kroki zig-zig lub zig-zag):

$$t_j + \Phi(T_j) - \Phi(T_{j-1}) \le 3[r_{T_j}(x) - r_{T_{j-1}}(x)]$$
 dla $j = 1, ..., k-1$

Z Lematów 1, 2 i 3 (krok zig-zig lub zig-zag lub zig):

$$t_k + \Phi(T_k) - \Phi(T_{k-1}) \le 1 + 3[r_{T_k}(x) - r_{T_{k-1}}(x)]$$

Stąd (oszacowanie sumą teleskopową):

$$\sum_{j=1}^{k} \left[t_j + \Phi(T_j) - \Phi(T_{j-1}) \right] \le 1 + \sum_{j=1}^{k} 3[r_{T_j}(x) - r_{T_{j-1}}(x)]$$
$$= 1 + 3[r_{T_k}(x) - r_{T_0}(x)]$$

Wiemy, że $r_{T_k}(x) = r_T(w_k) = \lg n \text{ oraz } r_{T_0}(x) = r_T(w_0) \geqslant 0.$

Stąd:
$$t + \Phi(T') - \Phi(T) \leqslant 1 + 3\lg n$$

Ш

Można wykazać, że wykonanie Insert na n-wierzchołkowym BST zwiększa jego potencjał o nie więcej niż $\lg n$ (ćwiczenie: wskazać najgorszy przypadek i oszacować przyrost potencjału przez sumę teleskopowa) oraz, że Delete nie może zwiększyć potencjału (ćwiczenie).

Z tego wynika, że wykonanie ciągu m operacji słownikowych (tj. Insert, Delete, Search uzupełnionych o operację splay) na początkowo pustym drzewie, wykonuje łącznie $m(4 \lg n + 1)$ rotacji, gdzie n jest maksymalnym rozmiarem drzewa w trakcie tych operacji.

(Czyli zamortyzowany koszt jednej operacji jest $\leq 4 \lg n + 1$.)

Dla danego BST A i wartości klucza x operacja split(x, A, B, C) tworzy z elementów drzewa A dwa nowe BST B i C, takie że B zawiera elementy $\leq x$ a C - elementy >x.

Operacja join(A, B) skleja dwa BST A i B, takie że maksymalny klucz w A jest mniejszy niż minimalny klucz w B, w jedno BST.

Przy pomocy operacji splay można efektywnie zaimplementować split i join. (Ćwiczenie.)

Porównanie ze zrównoważonymi BST

- nie wymagają dodatkowej informacji w węzłach (np. kolor w drzewach czerwono-czarnych)
- struktura adaptuje się dynamicznie do wzorca zapytań (często wyszukiwane klucze przemieszczają się w okolice korzenia)
- faktyczny koszt jednej operacji może być $\Omega(n)$ (wada np. w aplikacjach interaktywnych).