The AES Process

1997: NIST publishes request for proposal

1998: 15 submissions. Five claimed attacks.

1999: NIST chooses 5 finalists

2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits. Block size: 128 bits

AES is a Subs-Perm Network (not Feistel)

AES-128 Schematic

The Round Function

ByteSub: a 1 byte S-box. 256 byte table (easily computable)

ShiftRows:

$S_{0,0}$	$S_{0,1}$	$S_{0,2}$	S _{0,3}	
<i>S</i> _{1,0}	$S_{1,1}$	<i>S</i> _{1,2}	<i>S</i> _{1,3}	[
$S_{2,0}$	S _{2,1}	S _{2,2}	S _{2,3}	[
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}	[

$S_{0,0}$	$S_{0,1}$	$S_{0,2}$	$S_{0,3}$
$S_{1,1}$	<i>S</i> _{1,2}	S _{1,3}	$S_{1,0}$
$S_{2,2}$	S _{2,3}	S _{2,0}	<i>S</i> _{2,1}
S _{3,3}	S _{3,0}	S _{3,1}	S _{3,2}

MixColumns:

Code size/performance tradeoff

	Code size	Performance
Pre-compute round functions (24KB or 4KB)	largest	fastest: table lookups and xors
Pre-compute S-box only (256 bytes)	smaller	slower
No pre-computation	smallest	slowest

Example: Javascript AES

AES in the browser:

Prior to encryption: pre-compute tables

Then encrypt using tables

Attacks

Best key recovery attack:

four times better than ex. search [BKR'11]

Related key attack on AES-256: [BK'09]

Given 2^{99} inp/out pairs from **four related keys** in AES-256 can recover keys in time $\approx 2^{99}$

Review PRFs and PRPs

Canonical examples:

- 1. 3DES: n = 64 bits, k = 168 bits
- 2. AES: n=128 bits, k=128, 192, 256 bits

Abstractly: PRPs and PRFs

Pseudo Random Function (PRF) defined over (K,X,Y):

$$F: K \times X \rightarrow Y$$

such that exists "efficient" algorithm to evaluate F(k,x)

Pseudo Random Permutation (PRP) defined over (K,X):

E:
$$K \times X \rightarrow X$$

such that:

- 1. Exists "efficient" <u>deterministic</u> algorithm to evaluate E(k,x)
- 2. The function $E(k, \cdot)$ is one-to-one
- 3. Exists "efficient" inversion algorithm D(k,x)

Secure PRFs

```
Let F: K \times X \to Y be a PRF  \begin{cases} \text{Funs}[X,Y] \colon & \text{the set of } \underline{\textbf{all}} \text{ functions from } X \text{ to } Y \\ \\ S_F = \{ F(k,\cdot) \text{ s.t. } k \in K \} \subseteq \text{Funs}[X,Y] \end{cases}
```

Intuition: a PRF is secure if

a random function in Funs[X,Y] is indistinguishable from

a random function in S_F

Secure PRF: definition

For b=0,1 define experiment EXP(b) as:

Def: F is a secure PRF if for all "efficient" A:

$$Adv_{PRF}[A,F] := \left| Pr[EXP(0)=1] - Pr[EXP(1)=1] \right|$$

is "negligible."

Secure PRPs (secure block cipher)

For b=0,1 define experiment EXP(b) as:

Def: E is a secure PRP if for all "efficient" A:

$$Adv_{PRP}[A,E] = \left| Pr[EXP(0)=1] - Pr[EXP(1)=1] \right|$$

is "negligible."

Example Secure PRPs

PRPs believed to be secure: 3DES, AES, ...

AES-128:
$$K \times X \to X$$
 where $K = X = \{0,1\}^{128}$

An example concrete assumption about AES:

All
$$2^{80}$$
—time algs. A have $Adv_{PRP}[A, AES] < 2^{-40}$

Final Note

Suggestion:

don't think about the inner-workings of AES and 3DES.

We assume both are secure PRPs and will see how to use them

Security for Many-Time Key

Example applications:

- 1. File systems: Same AES key used to encrypt many files.
- 2. IPsec: Same AES key used to encrypt many packets.

Key used more than once \Rightarrow adv. sees many CTs with same key

Adversary's power: chosen-plaintext attack (CPA)

Can obtain the encryption of arbitrary messages of his choice

(conservative modeling of real life)

Adversary's goal: Break sematic security

Semantic Security for Many-Time Key

 $\mathbb{E} = (E,D)$ a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

Semantic Security for Many-Time Key

 $\mathbb{E} = (E,D)$ a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

Semantic Security for Many-Time Key (CPA security)

 $\mathbb{E} = (E,D)$ a cipher defined over (K,M,C). For b=0,1 define EXP(b) as:

if adv. wants c = E(k, m) it queries with $m_{j,0} = m_{j,1} = m$

Def: \mathbb{E} is sem. sec. under CPA if for all "efficient" A:

$$Adv_{CPA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible."

Ciphers insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m. Then:

So what? an attacker can learn that two encrypted files are the same, two encrypted packets are the same, etc.

Leads to significant attacks when message space M is small

Ciphers insecure under CPA

Suppose E(k,m) always outputs same ciphertext for msg m. Then:

If secret key is to be used multiple times ⇒ given the same plaintext message twice, encryption must produce different outputs.

Solution 1: Randomized Encryption

E(k,m) is a randomized algorithm:

- ⇒ encrypting same msg twice gives different ciphertexts (w.h.p)
- ⇒ ciphertext must be longer than plaintext

Roughly speaking: CT-size = PT-size + "# random bits"

Solution 1: Randomized Encryption

Let $F: K \times R \longrightarrow M$ be a secure PRF.

For $m \in M$ define $E(k,m) = [r \in R, \text{ output } (r, F(k,r) \oplus m)]$

Is E semantically secure under CPA?

Yes, whenever F is a secure PRF

No, there is always a CPA attack on this system

Yes, but only if R is large enough so r never repeats (w.h.p)

It depends on what F is used

Solution 2: nonce-based Encryption

nonce n: a value that changes from msg to msg.

(k,n) pair <u>never</u> used more than once

method 1: nonce is a counter (e.g. packet counter)

- used when encryptor keeps state from msg to msg
- if decryptor has same state, need not send nonce with CT

<u>method 2</u>: encryptor chooses a **random nonce**, $n \leftarrow N$

Solution 2: nonce-based Encryption

System should be secure when nonces are chosen adversarially.

All nonces $\{n_1, ..., n_q\}$ must be distinct.

Def: nonce-based $\mathbb E$ is sem. sec. under CPA if for all "efficient" A:

$$Adv_{nCPA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible."

Lecture 4.4: Message Integrity

Message Integrity

Goal: **integrity**, no confidentiality.

Examples:

- Protecting public binaries on disk.
- Protecting banner ads on web pages.

Message Integrity: MACs

Def: **MAC** I = (S,V) defined over (K,M,T) is a pair of algs:

- S(k,m) outputs t in T
- V(k,m,t) outputs `yes' or `no'

Integrity requires a secret key

Attacker can easily modify message m and re-compute CRC.

CRC designed to detect <u>random</u>, not malicious errors.

Secure MACs

Attacker's power: **chosen message attack** for $m_1, m_2, ..., m_q$ attacker is given $t_i \leftarrow S(k, m_i)$

Attacker's goal: existential forgery produce some <u>new</u> valid message/tag pair (m,t). $(m,t) \not\in \left\{ (m_1,t_1), ..., (m_q,t_q) \right\}$

- ⇒ attacker cannot produce a valid tag for a new message
- \Rightarrow given (m,t) attacker cannot even produce (m,t') for t' \neq t

Secure MACs

For a MAC I=(S,V) and adv. A define a MAC game as:

Def: I=(S,V) is a <u>secure MAC</u> if for all "efficient" A: $Adv_{MAC}[A,I] = Pr[Chal. outputs 1] is "negligible."$

Example

Let I = (S,V) be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that

$$S(k, m_0) = S(k, m_1)$$
 for ½ of the keys k in K

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m_0 or m_1

$$Adv_{MAC}[A,I] = 1/2$$

Example

Let I = (S,V) be a MAC.

Suppose S(k,m) is always 5 bits long

Can this MAC be secure?

No, an attacker can simply guess the tag for messages
It depends on the details of the MAC

Yes, the attacker cannot generate a valid tag for any message

$$Adv_{MAC}[A,I] = 1/32$$

Example: protecting system files

Suppose at install time the system computes:

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

Then: secure MAC ⇒ all modified files will be detected

Secure PRF => Secure MAC

For a PRF $\mathbf{F}: \mathbf{K} \times \mathbf{X} \longrightarrow \mathbf{Y}$ define a MAC $I_F = (S,V)$ as:

- S(k,m) := F(k,m)
- V(k,m,t): output 'yes' if t = F(k,m) and 'no' otherwise.

A Bad Example

Suppose $F: K \times X \rightarrow Y$ is a secure PRF with $Y = \{0,1\}^{10}$

Is the derived MAC I_F a secure MAC system?

Yes, the MAC is secure because the PRF is secure

No tags are too short: anyone can guess the tag for any msg It depends on the function F

$$Adv_{MAC}[A,I] = 1/1024$$

Security

<u>Thm</u>: If **F**: $K \times X \longrightarrow Y$ is a secure PRF and 1/|Y| is negligible (i.e. |Y| is large) then I_F is a secure MAC.

In particular, for every eff. MAC adversary A attacking I_F there exists an eff. PRF adversary B attacking F s.t.:

$$Adv_{MAC}[A, I_F] \le Adv_{PRF}[B, F] + 1/|Y|$$

 \Rightarrow I_F is secure as long as |Y| is large, say |Y| = 2^{80} .

Proof Sketch

Suppose $f: X \longrightarrow Y$ is a truly random function

Then MAC adversary A must win the following game:

A wins if t = f(m) and $m \notin \{m_1, ..., m_q\}$

 \Rightarrow Pr[A wins] = 1/|Y| same must hold for F(k,x)

Examples

AES: a MAC for 16-byte messages.

Main question: how to convert Small-MAC into a Big-MAC?

Two main constructions used in practice:

- CBC-MAC (banking ANSI X9.9, X9.19, FIPS 186-3)
- HMAC (Internet protocols: SSL, IPsec, SSH, ...)

Both convert a small-PRF into a big-PRF.

Construction 1: encrypted CBC-MAC

Why the last encryption step in ECBC-MAC?

Suppose we define a MAC $I_{RAW} = (S,V)$ where

$$S(k,m) = rawCBC(k,m)$$

Then I_{RAW} is easily broken using a 1-chosen msg attack.

Adversary works as follows:

- Choose an arbitrary one-block message m∈X
- Request tag for m. Get t = F(k,m)
- Output t as MAC forgery for the 2-block message (m, t⊕m)

Indeed: rawCBC(k, (m, $t \oplus m$)) = F(k, F(k,m) \oplus ($t \oplus m$)) = F(k, $t \oplus$ ($t \oplus m$)) = t

Construction 2: NMAC (nested MAC)

Truncating MACs based on PRFs

Easy lemma: suppose $F: K \times X \longrightarrow \{0,1\}^n$ is a secure PRF. Then so is $F_t(k,m) = F(k,m)[1...t]$ for all $1 \le t \le n$

⇒ if (S,V) is a MAC is based on a secure PRF outputting n-bit tags
 the truncated MAC outputting w bits is secure
 ... as long as 1/2^w is still negligible (say w≥64)

Collision Resistance

```
Let H: M \rightarrow T be a hash function ( |M| >> |T| )
A collision for H is a pair m_0, m_1 \in M such that:
               H(m_0) = H(m_1) and m_0 \neq m_1
A function H is collision resistant if for all (explicit) "eff" algs. A:
          Adv_{CR}[A,H] = Pr[A outputs collision for H]
   is "neg".
Example: SHA-256 (outputs 256 bits)
```

MACs from Collision Resistance

Let I = (S,V) be a MAC for short messages over (K,M,T) (e.g. AES) Let H: $M^{big} \rightarrow M$

Def: $I^{big} = (S^{big}, V^{big})$ over (K, M^{big}, T) as:

 $S^{big}(k,m) = S(k,H(m))$; $V^{big}(k,m,t) = V(k,H(m),t)$

<u>Thm</u>: If I is a secure MAC and H is collision resistant then I^{big} is a secure MAC.

Example: $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$ is a secure MAC.

MACs from Collision Resistance

$$S^{big}(k, m) = S(k, H(m))$$
; $V^{big}(k, m, t) = V(k, H(m), t)$

Collision resistance is necessary for security:

Suppose adversary can find $m_0 \neq m_1$ s.t. $H(m_0) = H(m_1)$.

Then: Sbig is insecure under a 1-chosen msg attack

step 1: adversary asks for $t \leftarrow S(k, m_0)$

step 2: output (m_1, t) as forgery

Protecting file integrity using Collision Resistance Hash

Software packages:

When user downloads package, can verify that contents are valid

H collision resistant ⇒ attacker cannot modify package without detection

no key needed (public verifiability), but requires read-only space

Lecture 4.5: Basic Key Exachange

Key Management

Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

A Better Solution

Online Trusted 3rd Party (TTP)

Every use remembers one key

Generating Keys: A toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Generating Keys: A Toy Protocol

Alice wants a shared key with Bob. Eavesdropping security only.

```
Eavesdropper sees: E(k_A, "A, B" \parallel k_{AB}); E(k_B, "A, B" \parallel k_{AB})
```

(E,D) is CPA-secure \Rightarrow

eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.

(basis of Kerberos system)

Key Question

Can we generate shared keys without an **online** trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

Merkle (1974), Diffie-Hellman (1976), RSA (1977)

More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Public Key Encryption

PK: Public Key SK: Secret Key