8.4 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33CK64MC105 family devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx[15]) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx[11]), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 8-3.

TABLE 8-3: CHANGE NOTIFICATION EVENT OPTIONS

CNSTYLE Bit (CNCONx[11])	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

Note: Pull-ups and pull-downs on Input Change Notification pins should always be disabled when the port pin is configured as a digital output.

8.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

8.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

8.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I²C modules. A similar requirement excludes all modules with analog inputs, such as the A/D Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

8.5.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral mapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. The dsPIC33CK64MC105 devices have implemented the control register lock sequence.

After a Reset, writes to the RPINRx and RPORx registers are allowed, but they can be disabled by setting the IOLOCK bit (RPCON[11]). Attempted writes with the IOLOCK bit set will appear to execute normally, but the contents of the registers will remain unchanged. Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes. To set or clear IOLOCK, the NVMKEY unlock sequence must be executed:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Clear (or set) IOLOCK as a single operation.

Note: MPLAB® XC16 compiler provides a built-in C language function for unlocking and modifying the RPCON register:

__builtin_write_RPCON(value);
For more information, see the XC16 compiler help files.

8.5.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping. Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit index value maps the RPn pin with the corresponding value, or internal signal, to that peripheral. See Table 8-4 for a list of available inputs.

For example, Figure 8-2 illustrates remappable pin selection for the U1RX input. Example 8-1 provides a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

Input Functions: U1RX, U1CTS
 Output Functions: U1TX, U1RTS

EXAMPLE 8-1: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

```
// Unlock Registers
//*********
 builtin write RPCON(0x0000);
//**********
// Configure Input Functions (See Table 8-5)
// Assign U1Rx To Pin RP35
U1RXR = 35;
// Assign U1CTS To Pin RP36
U1CTSR = 36;
//*********
// Configure Output Functions (See Table 8-7)
//*********
// Assign U1Tx To Pin RP37
RP37R = 1;
_
//************
// Assign U1RTS To Pin RP38
RP38R = 2;
//**********
// Lock Registers
 _builtin_write_RPCON(0x0800);
```

FIGURE 8-2: REMAPPABLE INPUT FOR U1RX

Note: For input only, Peripheral Pin Select functionality does not have priority over TRISx settings. Therefore, when configuring an RPn pin for input, the corresponding bit in the TRISx register must also be configured for input (set to '1'). Physical connection to a pin can be made through RP32 through RP77. There are internal signals and virtual pins that can be connected to an input. Table 8-4 shows the details of the input assignment.

TABLE 8-4: REMAPPABLE PIN INPUTS

RPINRx[15:8] or RPINRx[7:0]	Function	Available on Ports
0	Vss	Internal
1	Comparator 1	Internal
2	Comparator 2	Internal
3	Comparator 3	Internal
4-5	RP4-RP5	Reserved
6	PTG Trigger 26	Internal
7	PTG Trigger 27	Internal
8-10	RP8-RP10	Reserved
11	PWM Event Out C	Internal
12	PWM Event Out D	Internal
13	PWM Event Out E	Internal
14-31	RP14-RP31	Reserved
32	RP32	Port Pin RB0
33	RP33	Port Pin RB1
34	RP34	Port Pin RB2
35	RP35	Port Pin RB3
36	RP36	Port Pin RB4
37	RP37	Port Pin RB5
38	RP38	Port Pin RB6
39	RP39	Port Pin RB7
40	RP40	Port Pin RB8
41	RP41	Port Pin RB9
42	RP42	Port Pin RB10
43	RP43	Port Pin RB11
44	RP44	Port Pin RB12
45	RP45	Port Pin RB13
46	RP46	Port Pin RB14
47	RP47	Port Pin RB15
48	RP48	Port Pin RC0
49	RP49	Port Pin RC1
50	RP50	Port Pin RC2
51	RP51	Port Pin RC3
52	RP52	Port Pin RC4
53	RP53	Port Pin RC5
54	RP54	Port Pin RC6
55	RP55	Port Pin RC7
56	RP56	Port Pin RC8
57	RP57	Port Pin RC9
58	RP58	Port Pin RC10
59	RP59	Port Pin RC11
60	RP60	Port Pin RC12
61	RP61	Port Pin RC13

TABLE 8-4: REMAPPABLE PIN INPUTS (CONTINUED)

RPINRx[15:8] or RPINRx[7:0]	Function	Available on Ports
62-64	RP62-RP64	Reserved
65	RP65	Port Pin RD1
66-71	RP66-RP71	Reserved
72	RP72	Port Pin RD8
73	RP73	Reserved
74	RP74	Port Pin RD10
75-76	RP75-RP76	Reserved
77	RP77	Port Pin RD13
78-167	RP78-RP167	Reserved
168	DAC pwm_req_on	Internal
169	DAC1 pwm_req_off	Internal
170-175	RP170-175	Reserved
176	RP176	Virtual RPV0
177	RP177	Virtual RPV1
178	RP178	Virtual RPV2
179	RP179	Virtual RPV3
180	RP180	Virtual RPV4
181	RP181	Virtual RPV5

8.5.5 VIRTUAL CONNECTIONS

The dsPIC33CK64MC105 devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

TABLE 8-5: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Input Name ⁽¹⁾	Function Name	Register	Register Bits
External Interrupt 1	INT1	RPINR0	INT1R[7:0]
External Interrupt 2	INT2	RPINR1	INT2R[7:0]
External Interrupt 3	INT3	RPINR1	INT3R[7:0]
Timer1 External Clock	T1CK	RPINR2	T1CK[7:0]
SCCP Timer1	TCKI1	RPINR3	TCKI1R[7:0]
SCCP Capture 1	ICM1	RPINR3	ICM1R[7:0]
SCCP Timer2	TCKI2	RPINR4	TCKI2R[7:0]
SCCP Capture 2	ICM2	RPINR4	ICM2R[7:0]
SCCP Timer3	TCKI3	RPINR5	TCKI3R[7:0]
SCCP Capture 3	ICM3	RPINR5	ICM3R[7:0]
SCCP Timer4	TCKI4	RPINR6	TCKI4R[7:0]
SCCP Capture 4	ICM4	RPINR6	ICM4R[7:0]
SCCP Fault A	OCFA	RPINR11	OCFAR[7:0]
SCCP Fault B	OCFB	RPINR11	OCFBR[7:0]
PWM PCI Input 8	PCI8	RPINR12	PCI8R[7:0]
PWM PCI Input 9	PCI9	RPINR12	PCI9R[7:0]
PWM PCI Input 10	PCI10	RPINR13	PCI10R[7:0]
PWM PCI Input 11	PCI11	RPINR13	PCI11R[7:0]
QEI1 Input A	QEIA1	RPINR14	QEIA1R[7:0]
QEI1 Input B	QEIB1	RPINR14	QEIB1R[7:0]
QEI1 Index 1 Input	QEINDX1	RPINR15	QEINDX1R[7:0]
QEI1 Home 1 Input	QEIHOM1	RPINR15	QEIHOM1R[7:0]
UART1 Receive	U1RX	RPINR18	U1RXR[7:0]
UART1 Data-Set-Ready	U1DSR	RPINR18	U1DSRR[7:0]
UART2 Receive	U2RX	RPINR19	U2RXR[7:0]
UART2 Data-Set-Ready	U2DSR	RPINR19	U2DSRR[7:0]
SPI1 Data Input	SDI1	RPINR20	SDI1R[7:0]
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R[7:0]
SPI1 Client Select	SS1	RPINR21	SS1R[7:0]
Reference Clock Input	REFCLKI	RPINR21	REFOIR[7:0]
SPI2 Data Input	SDI2	RPINR22	SDI2R[7:0]
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R[7:0]
SPI2 Client Select	SS2	RPINR23	SS2R[7:0]
UART3 Receive	U3RX	RPINR27	U3RXR[7:0]
UART3 Data-Set-Ready	U3DSR	RPINR27	U3DSRR[7:0]
SCCP Fault C	OCFC	RPINR37	OCFCR[7:0]
PWM PCI Input 17	PCI17	RPINR37	PCI17R[7:0]
PWM PCI Input 18	PCI18	RPINR38	PCI18R[7:0]
PWM PCI Input 12	PCI12	RPINR42	PCI12R[7:0]
PWM PCI Input 13	PCI13	RPINR42	PCI13R[7:0]
PWM PCI Input 14	PCI14	RPINR43	PCI14R[7:0]
PWM PCI Input 15	PCI15	RPINR43	PCI15R[7:0]
PWM PCI Input 16	PCI16	RPINR44	PCI16R[7:0]

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

TABLE 8-5: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)

Input Name ⁽¹⁾	Function Name	Register	Register Bits
SENT1 Input	SENT1	RPINR44	SENT1R[7:0]
CLC Input A	CLCINA	RPINR45	CLCINAR[7:0]
CLC Input B	CLCINB	RPINR46	CLCINBR[7:0]
CLC Input C	CLCINC	RPINR46	CLCINCR[7:0]
CLC Input D	CLCIND	RPINR47	CLCINDR[7:0]
ADC Trigger Input (ADTRIG31)	ADCTRG	RPINR47	ADCTRGR[7:0]
SCCP Fault D	OCFD	RPINR48	OCFDR[7:0]
UART1 Clear-to-Send	U1CTS	RPINR48	U1CTSR[7:0]
UART2 Clear-to-Send	U2CTS	RPINR49	U2CTSR[7:0]
UART3 Clear-to-Send	U3CTS	RPINR49	U3CTSR[7:0]

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

8.5.6 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 8-43 through Register 8-62). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 8-7 and Figure 8-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 8-3: MULTIPLEXING REMAPPABLE OUTPUTS FOR RPn

Note 1: There are six virtual output ports which are not connected to any I/O ports (RP176-RP181). These virtual ports can be accessed by RPOR17, RPOR18 and RPOR19.

8.5.7 MAPPING LIMITATIONS

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally, any combination of peripheral mappings, across any or all of the RPn pins, is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs, and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view (see Table 8-6).

TABLE 8-6: REMAPPABLE OUTPUT PIN REGISTERS

Register	RP Pin	I/O Port						
RPOR0[5:0]	RP32	Port Pin RB0						
RPOR0[13:8]	RP33	Port Pin RB1						
RPOR1[5:0]	RP34	Port Pin RB2						
RPOR1[13:8]	RP35	Port Pin RB3						
RPOR2[5:0]	RP36	Port Pin RB4						
RPOR2[13:8]	RP37	Port Pin RB5						
RPOR3[5:0]	RP38	Port Pin RB6						
RPOR3[13:8]	RP39	Port Pin RB7						
RPOR4[5:0]	RP40	Port Pin RB8						
RPOR4[13:8]	RP41	Port Pin RB9						
RPOR5[5:0]	RP42	Port Pin RB10						
RPOR5[13:8]	RP43	Port Pin RB11						
RPOR6[5:0]	RP44	Port Pin RB12						
RPOR6[13:8]	RP45	Port Pin RB13						
RPOR7[5:0]	RP46	Port Pin RB14						
RPOR7[13:8]	RP47	Port Pin RB15						
RPOR8[5:0]	RP48	Port Pin RC0						
RPOR8[13:8]	RP49	Port Pin RC1						
RPOR9[5:0]	RP50	Port Pin RC2						
RPOR9[13:8]	RP51	Port Pin RC3						
RPOR10[5:0]	RP52	Port Pin RC4						
RPOR10[13:8]	RP53	Port Pin RC5						
RPOR11[5:0]	RP54	Port Pin RC6						
RPOR11[13:8]	RP55	Port Pin RC7						
RPOR12[5:0]	RP56	Port Pin RC8						
RPOR12[13:8]	RP57	Port Pin RC9						
RPOR13[5:0]	RP58	Port Pin RC10						
RPOR13[13:8]	RP59	Port Pin RC11						
RPOR14[5:0]	RP60	Port Pin RC12						
RPOR14[13:8]	RP61	Port Pin RC13						
RPOR15[5:0]	RP65	Port Pin RD1						
RPOR15[13:8]	RP72	Port Pin RD8						
RPOR16[5:0]	RP74	Port Pin RD10						
RPOR16[13:8]	RP77	Port Pin RD13						
RPOR17[5:0]	RP176	Virtual Pin RPV0						
RPOR17[13:8]	RP177	Virtual Pin RPV1						
RPOR18[5:0]	RP178	Virtual Pin RPV2						
RPOR18[13:8]	RP179	Virtual Pin RPV3						
RPOR19[5:0]	RP180	Virtual Pin RPV4						
RPOR19[13:8]	RP181	Virtual Pin RPV5						

TABLE 8-7: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPnR[5:0]	Output Name
Not Connected	0	Not Connected
U1TX	1	RPn tied to UART1 Transmit
U1RTS	2	RPn tied to UART1 Request-to-Send
U2TX	3	RPn tied to UART2 Transmit
U2RTS	4	RPn tied to UART2 Request-to-Send
SDO1	5	RPn tied to SPI1 Data Output
SCK1	6	RPn tied to SPI1 Clock Output
SS1	7	RPn tied to SPI1 Client Select
SDO2	8	RPn tied to SPI2 Data Output
SCK2	9	RPn tied to SPI2 Clock Output
SS2	10	RPn tied to SPI2 Client Select
REFCLKO	14	RPn tied to Reference Clock Output
OCM1A	15	RPn tied to SCCP1 Output
OCM2A	16	RPn tied to SCCP2 Output
OCM3A	17	RPn tied to SCCP3 Output
OCM4A	18	RPn tied to SCCP4 Output
CMP1	23	RPn tied to Comparator 1 Output
U3TX	27	RPn tied to UART3 Transmit
Ū3RTS	28	RPn tied to UART3 Request-to-Send
PWM4H	34	RPn tied to PWM4H Output
PWM4L	35	RPn tied to PWM4L Output
PWMEA	36	RPn tied to PWM Event A Output
PWMEB	37	RPn tied to PWM Event B Output
QEICMP1	38	RPn tied to QEI1 Comparator Output
CLC10UT	40	RPn tied to CLC1 Output
CLC2OUT	41	RPn tied to CLC2 Output
PWMEC	44	RPn tied to PWM Event C Output
PWMED	45	RPn tied to PWM Event D Output
PTGTRG24	46	RPn tied to PTG Trigger Output 24
PTGTRG25	47	RPn tied to PTG Trigger Output 25
SENT1OUT	48	RPn tied to SENT1 Output
CLC3OUT	59	RPn tied to CLC4 Output
CLC4OUT	60	RPn tied to CLC4 Output
U1DTR	61	RPn tied to UART1 DTR
U2DTR	62	RPn tied to UART2 DTR
U3DTR	63	RPn tied to UART3 DTR

8.5.8 I/O HELPFUL TIPS

- 1. In some cases, certain pins, as defined in Table 31-14 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or lesser than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins, by default, after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Select for PORTx registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.

Note: Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- or sink more current than what is specified in the VoH/IoH and VoL/IoL DC characteristics specification. The respective IoH and IoL current rating only applies to maintaining the corresponding output at or above the VoH, and at or below the VoL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 31.0 "Electrical Characteristics" of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted.

- The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a Built-In Self-Test (BIST).
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

8.5.9 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

8.5.9.1 Key Resources

- "I/O Ports with Edge Detect" (www.microchip.com/DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

TABLE 8-8: PORTA REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELA	_	_	_	_	_	_	_	_	_	_	_		,	ANSELA[4:0]	
TRISA	_	_	_	_	_	_	_	_	_	_	_			TRISA[4:0]		
PORTA	_	_	_	_	_	_	_	_	_	_	_			RA[4:0]		
LATA	_	_	_	_	_	_	_	_	_	_	_			LATA[4:0]		
ODCA	_	_	_	_	_	_	_	_	_	_	_			ODCA[4:0]		
CNPUA	_	_	_	_	_	_	_	_	_	_	_			CNPUA[4:0]		
CNPDA	_	_	_	_	_	_	_	_	_	_	_			CNPDA[4:0]		
CNCONA	ON	_	_	_	CNSTYLE	_	_	_	_	_	_	_	_	_	_	_
CNEN0A	_	_	_	_	_	_	_	_	_	_	_	CNEN0A[4:0]				
CNSTATA	_	_	_	_	_	_	_	_	_	_	_	CNSTATA[4:0]				
CNEN1A	_	_	_	_	_	_	_	_	_	_	_	CNEN1A[4:0]				
CNFA	_	_	_	_	_	_	_	_	_	_	_	CNFA[4:0]				

dsPIC33CK64MC105 FAMILY

TABLE 8-9: PORTB REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELB	ANSELB[9:7] ANSELB[4:0]															
TRISB							TF	RISB[15:0]								
PORTB							ı	RB[15:0]								
LATB							L	ATB[15:0]								
ODCB							OI	DCB[15:0]								
CNPUB							CN	IPUB[15:0]							
CNPDB							CN	IPDB[15:0]							
CNCONB	ON	1	_	_	CNSTYLE	_	_	_	1	-	1	1	1	1	1	_
CNEN0B							CN	NEN0[15:0]							
CNSTATB	CNSTATB[15:0]															
CNEN1B	CNEN1B[15:0]															
CNFB	CNFB[15:0]															

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELC	_	_	_	_	_	_	_	_	ANSE	_C[7:6]	_	_		ANSEL	C[3:0]	
TRISC	_	_							TRISC	[13:0]						
PORTC	_	_							RC[1	3:0]						
LATC	_	_							LATC[13:0]						
ODCC	_	_							ODCC	[13:0]						
CNPUC		1							CNPUC	[13:0]						
CNPDC	-								CNPDC	[13:0]						
CNCONC	ON	_	_	_	CNSTYLE	_	_	_	_	_	_	_	_	_	_	_
CNEN0C	_	_							CNEN0	C[13:0]						
CNSTATC	_	_							CNSTAT	C[13:0]						
CNEN1C	_	_		CNEN1C[13:0]												
CNFC	_	_		CNFC[13:0]												

TABLE 8-11: PORTD REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELD	_	_	ANSELD13	_	_	ANSELD10	_	_	_	_	_	_	_	_	_	_
TRISD	_	_	TRISD13		-	TRISD10	_	TRISD8	_	_	_	_	_	_	TRISD1	_
PORTD	_	_	RD13		-	RD10	_	RD8	_	_	_	_	_	_	RD1	_
LATD		-	LATD13	_	-	LATD10	1	LATD8	1		_	-		_	LATD1	_
ODCD	1	1	ODCD13	_	1	ODCD10	1	ODCD8	1	1	_	1	1	_	ODCD1	_
CNPUD		_	CNPUD13	_		CNPUD10		CNPUD8			_	_	_	_	CNPUD1	_
CNPDD		-	CNPDD13	_	-	CNPDD10	1	CNPDD8	1		_	-		_	CNPDD1	_
CNCOND	ON	1	_	_	CNSTYLE		1	_	1	1	_	1	1	_	_	_
CNEN0D		_	CNEN0D13	_		CNEN0D10		CNEN0D8			_	_	_	_	CNEN0D1	_
CNSTATD		-	CNSTATD13	_	-	CNSTATD10	1	CNSTATD8	1		_	-		_	CNSTATD1	_
CNEN1D	1	1	CNEN1D13	_	1	CNEN1D10	1	CNEN1D8	1	1	_		1	_	CNEN1D1	_
CNFD		-	CNFD13	_	1	CNFD10		CNFD8							CNFD1	_

8.5.10 PERIPHERAL PIN SELECT REGISTERS

REGISTER 8-13: RPCON: PERIPHERAL REMAPPING CONFIGURATION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	_	_	_	IOLOCK	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11 IOLOCK: Peripheral Remapping Register Lock bit

1 = All Peripheral Remapping registers are locked and cannot be written 0 = All Peripheral Remapping registers are unlocked and can be written

bit 10-0 **Unimplemented:** Read as '0'

Note 1: Writing to this register needs an unlock sequence.

REGISTER 8-14: RPINRO: PERIPHERAL PIN SELECT INPUT REGISTER 0

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT1R7 | INT1R6 | INT1R5 | INT1R4 | INT1R3 | INT1R2 | INT1R1 | INT1R0 |
| bit 15 | | | | | | | bit 8 |

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 INT1R[7:0]: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 8-15: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT3R7 | INT3R6 | INT3R5 | INT3R4 | INT3R3 | INT3R2 | INT3R1 | INT3R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT2R7 | INT2R6 | INT2R5 | INT2R4 | INT2R3 | INT2R2 | INT2R1 | INT2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 INT3R[7:0]: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 **INT2R[7:0]:** Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-16: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| T1CKR7 | T1CKR6 | T1CKR5 | T1CKR4 | T1CKR3 | T1CKR2 | T1CKR1 | T1CKR0 |
| bit 15 | | | | | | | bit 8 |

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 T1CKR[7:0]: Assign Timer1 External Clock (T1CK) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 8-17: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM1R7 | ICM1R6 | ICM1R5 | ICM1R4 | ICM1R3 | ICM1R2 | ICM1R1 | ICM1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI1R7 | TCKI1R6 | TCKI1R5 | TCKI1R4 | TCKI1R3 | TCKI1R2 | TCKI1R1 | TCKI1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 ICM1R[7:0]: Assign SCCP Capture 1 (ICM1) Input to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 TCKI1[7:0]: Assign SCCP Timer1 (TCKI1) Input to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-18: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM2R7 | ICM2R6 | ICM2R5 | ICM2R4 | ICM2R3 | ICM2R2 | ICM2R1 | ICM2R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI2R7 | TCKI2R6 | TCKI2R5 | TCKI2R4 | TCKI2R3 | TCKI2R2 | TCKI2R1 | TCKI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 ICM2R[7:0]: Assign SCCP Capture 2 (ICM2) Input to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 TCKI2R[7:0]: Assign SCCP Timer2 (TCKI2) Input to the Corresponding RPn Pin bits

REGISTER 8-19: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM3R7 | ICM3R6 | ICM3R5 | ICM3R4 | ICM3R3 | ICM3R2 | ICM3R1 | ICM3R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI3R7 | TCKI3R6 | TCKI3R5 | TCKI3R4 | TCKI3R3 | TCKI3R2 | TCKI3R1 | TCKI3R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 ICM3R[7:0]: Assign SCCP Capture 3 (ICM3) Input to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 TCKI3R[7:0]: Assign SCCP Timer3 (TCKI3) Input to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-20: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM4R7 | ICM4R6 | ICM4R5 | ICM4R4 | ICM4R3 | ICM4R2 | ICM4R1 | ICM4R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI4R7 | TCKI4R6 | TCKI4R5 | TCKI4R4 | TCKI4R3 | TCKI4R2 | TCKI4R1 | TCKI4R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 ICM4R[7:0]: Assign SCCP Capture 4 (ICM4) Input to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 TCKI4R[7:0]: Assign SCCP Timer4 (TCKI4) Input to the Corresponding RPn Pin bits

REGISTER 8-21: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFBR7 | OCFBR6 | OCFBR5 | OCFBR4 | OCFBR3 | OCFBR2 | OCFBR1 | OCFBR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFAR7 | OCFAR6 | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 OCFBR[7:0]: Assign xCCP Fault B (OCFB) Input to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 OCFAR[7:0]: Assign xCCP Fault A (OCFA) Input to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-22: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCI9R7 | PCI9R6 | PCI9R5 | PCI9R4 | PCI9R3 | PCI9R2 | PCI9R1 | PCI9R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCI8R7 | PCI8R6 | PCI8R5 | PCI8R4 | PCI8R3 | PCI8R2 | PCI8R1 | PCI8R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 PCI9R[7:0]: Assign PWM Input 9 (PCI9) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 PCI8R[7:0]: Assign PWM Input 8 (PCI8) to the Corresponding RPn Pin bits

REGISTER 8-23: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI11R7 | PCI11R6 | PCI11R5 | PCI11R4 | PCI11R3 | PCI11R2 | PCI11R1 | PCI11R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI10R7 | PCI10R6 | PCI10R5 | PCI10R4 | PCI10R3 | PCI10R2 | PCI10R1 | PCI10R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 PCI11R[7:0]: Assign PWM Input 11 (PCI11) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 PCI10R[7:0]: Assign PWM Input 10 (PCI10) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-24: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB1R7 | QEIB1R6 | QEIB1R5 | QEIB1R4 | QEIB1R3 | QEIB1R2 | QEIB1R1 | QEIB1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA1R7 | QEIA1R6 | QEIA1R5 | QEIA1R4 | QEIA1R3 | QEIA1R2 | QEIA1R1 | QEIA1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 QEIB1R[7:0]: Assign QEI1 Input B (QEIB1) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 QEIA1R[7:0]: Assign QEI1 Input A (QEIA1) to the Corresponding RPn Pin bits

REGISTER 8-25: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEIHOM1R7 | QEIHOM1R6 | QEIHOM1R5 | QEIHOM1R4 | QEIHOM1R3 | QEIHOM1R2 | QEIHOM1R1 | QEIHOM1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEINDX1R7 | QEINDX1R6 | QEINDX1R5 | QEINDX1R4 | QEINDX1R3 | QEINDX1R2 | QEINDX1R1 | QEINDX1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 QEIHOM1R[7:0]: Assign QEI1 Home 1 Input (QEIHOM1) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 QEINDX1R[7:0]: Assign QEI1 Index 1 Input (QEINDX1) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-26: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1DSRR7 | U1DSRR6 | U1DSRR5 | U1DSRR4 | U1DSRR3 | U1DSRR2 | U1DSRR1 | U1DSRR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U1RXR7 | U1RXR6 | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 U1DSRR[7:0]: Assign UART1 Data-Set-Ready (U1DSR) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 U1RXR[7:0]: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits

REGISTER 8-27: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U2DSRR7 | U2DSRR6 | U2DSRR5 | U2DSRR4 | U2DSRR3 | U2DSRR2 | U2DSRR1 | U2DSRR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U2RXR7 | U2RXR6 | U2RXR5 | U2RXR4 | U2RXR3 | U2RXR2 | U2RXR1 | U2RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **U2DSRR[7:0]:** Assign UART2 Data-Set-Ready (U2DSR) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 U2RXR[7:0]: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-28: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK1R7 | SCK1R6 | SCK1R5 | SCK1R4 | SCK1R3 | SCK1R2 | SCK1R1 | SCK1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI1R7 | SDI1R6 | SDI1R5 | SDI1R4 | SDI1R3 | SDI1R2 | SDI1R1 | SDI1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 SCK1R[7:0]: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 SDI1R[7:0]: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits

REGISTER 8-29: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| REFOIR7 | REFOIR6 | REFOIR5 | REFOIR4 | REFOIR3 | REFOIR2 | REFOIR1 | REFOIR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SS1R7 | SS1R6 | SS1R5 | SS1R4 | SS1R3 | SS1R2 | SS1R1 | SS1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 REFOIR[7:0]: Assign Reference Clock Input (REFCLKI) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 SS1R[7:0]: Assign SPI1 Client Select (SS1) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-30: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK2R7 | SCK2R6 | SCK2R5 | SCK2R4 | SCK2R3 | SCK2R2 | SCK2R1 | SCK2R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI2R7 | SDI2R6 | SDI2R5 | SDI2R4 | SDI2R3 | SDI2R2 | SDI2R1 | SDI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 SCK2R[7:0]: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 SDI2R[7:0]: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

REGISTER 8-31: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SS2R7 | SS2R6 | SS2R5 | SS2R4 | SS2R3 | SS2R2 | SS2R1 | SS2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 SS2R[7:0]: Assign SPI2 Client Select (SS2) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-32: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U3DSRR7 | U3DSRR6 | U3DSRR5 | U3DSRR4 | U3DSRR3 | U3DSRR2 | U3DSRR1 | U3DSRR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U3RXR7 | U3RXR6 | U3RXR5 | U3RXR4 | U3RXR3 | U3RXR2 | U3RXR1 | U3RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **U3DSRR[7:0]:** Assign UART3 Data-Set-Ready (U3DSR) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 U3RXR[7:0]: Assign UART3 Receive (U3RX) to the Corresponding RPn Pin bits

REGISTER 8-33: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI17R7 | PCI17R6 | PCI17R5 | PCI17R4 | PCI17R3 | PCI17R2 | PCI17R1 | PCI17R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFCR7 | OCFCR6 | OCFCR5 | OCFCR4 | OCFCR3 | OCFCR2 | OCFCR1 | OCFCR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 PCI17R[7:0]: Assign PWM Input 17 (PCI17) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 OCFCR[7:0]: Assign xCCP Fault C (OCFC) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-34: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI18R7 | PCI18R6 | PCI18R5 | PCI18R4 | PCI18R3 | PCI18R2 | PCI18R1 | PCI18R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 PCI18R[7:0]: Assign PWM Input 18 (PCI18) to the Corresponding RPn Pin bits

REGISTER 8-35: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI13R7 | PCI13R6 | PCI13R5 | PCI13R4 | PCI13R3 | PCI13R2 | PCI13R1 | PCI13R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI12R7 | PCI12R6 | PCI12R5 | PCI12R4 | PCI12R3 | PCI12R2 | PCI12R1 | PCI12R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 PCI13R[7:0]: Assign PWM Input 13 (PCI13) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 PCI12R[7:0]: Assign PWM Input 12 (PCI12) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-36: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI15R7 | PCI15R6 | PCI15R5 | PCI15R4 | PCI15R3 | PCI15R2 | PCI15R1 | PCI15R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI14R7 | PCI14R6 | PCI14R5 | PCI14R4 | PCI14R3 | PCI14R2 | PCI14R1 | PCI14R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 PCI15R[7:0]: Assign PWM Input 15 (PCI15) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 PCI14R[7:0]: Assign PWM Input 14 (PCI14) to the Corresponding RPn Pin bits

REGISTER 8-37: RPINR44: PERIPHERAL PIN SELECT INPUT REGISTER 44

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT1R7 | SENT1R6 | SENT1R5 | SENT1R4 | SENT1R3 | SENT1R2 | SENT1R1 | SENT1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI16R7 | PCI16R6 | PCI16R5 | PCI16R4 | PCI16R3 | PCI16R2 | PCI16R1 | PCI16R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 SENT1R[7:0]: Assign SENT1 Input (SENT1) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 PCI16[7:0]: Assign PWM Input 16 (PCI16) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-38: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINAR7 | CLCINAR6 | CLCINAR5 | CLCINAR4 | CLCINAR3 | CLCINAR2 | CLCINAR1 | CLCINAR0 |
| bit 15 | | | | | | | bit 8 |

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 CLCINAR[7:0]: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 8-39: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 CLCINCR[7:0]: Assign CLC Input C (CLCINC) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 CLCINBR[7:0]: Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-40: RPINR47: PERIPHERAL PIN SELECT INPUT REGISTER 47

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ADCTRGR7 | ADCTRGR6 | ADCTRGR5 | ADCTRGR4 | ADCTRGR3 | ADCTRGR2 | ADCTRGR1 | ADCTRGR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINDR7 | CLCINDR6 | CLCINDR5 | CLCINDR4 | CLCINDR3 | CLCINDR2 | CLCINDR1 | CLCINDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 ADCTRGR[7:0]: Assign ADC Trigger Input (ADCTRG) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 CLCINDR[7:0]: Assign CLC Input D (CLCIND) to the Corresponding RPn Pin bits

REGISTER 8-41: RPINR48: PERIPHERAL PIN SELECT INPUT REGISTER 48

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1CTSR7 | U1CTSR6 | U1CTSR5 | U1CTSR4 | U1CTSR3 | U1CTSR2 | U1CTSR1 | U1CTSR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFDR7 | OCFDR6 | OCFDR5 | OCFDR4 | OCFDR3 | OCFDR2 | OCFDR1 | OCFDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **U1CTSR[7:0]:** Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 OCFDR[7:0]: Assign xCCP Fault D (OCFD) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-42: RPINR49: PERIPHERAL PIN SELECT INPUT REGISTER 49

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U3CTSR7 | U3CTSR6 | U3CTSR5 | U3CTSR4 | U3CTSR3 | U3CTSR2 | U3CTSR1 | U3CTSR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U2CTSR7 | U2CTSR6 | U2CTSR5 | U2CTSR4 | U2CTSR3 | U2CTSR2 | U2CTSR1 | U2CTSR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **U3CTSR[7:0]:** Assign UART3 Clear-to-Send (U3CTS) to the Corresponding RPn Pin bits

See Table 8-4.

bit 7-0 **U2CTSR[7:0]:** Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn Pin bits

REGISTER 8-43: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP33R[5:0]: Peripheral Output Function is Assigned to RP33 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP32R[5:0]: Peripheral Output Function is Assigned to RP32 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-44: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP35R[5:0]: Peripheral Output Function is Assigned to RP35 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP34R[5:0]: Peripheral Output Function is Assigned to RP34 Output Pin bits

REGISTER 8-45: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP37R[5:0]: Peripheral Output Function is Assigned to RP37 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP36R[5:0]: Peripheral Output Function is Assigned to RP36 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-46: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP38R5	RP38R5	RP38R5	RP38R5	RP38R5	RP38R5
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP39R[5:0]: Peripheral Output Function is Assigned to RP39 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP38R[5:0]: Peripheral Output Function is Assigned to RP38 Output Pin bits

REGISTER 8-47: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP41R[5:0]:** Peripheral Output Function is Assigned to RP41 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP40R[5:0]:** Peripheral Output Function is Assigned to RP40 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-48: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP43R[5:0]:** Peripheral Output Function is Assigned to RP43 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP42R[5:0]: Peripheral Output Function is Assigned to RP42 Output Pin bits

REGISTER 8-49: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP45R[5:0]:** Peripheral Output Function is Assigned to RP45 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP44R[5:0]: Peripheral Output Function is Assigned to RP44 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-50: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP47R[5:0]:** Peripheral Output Function is Assigned to RP47 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP46R[5:0]:** Peripheral Output Function is Assigned to RP46 Output Pin bits

REGISTER 8-51: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP49R[5:0]:** Peripheral Output Function is Assigned to RP49 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP48R[5:0]: Peripheral Output Function is Assigned to RP48 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-52: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP51R[5:0]: Peripheral Output Function is Assigned to RP51 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP50R[5:0]:** Peripheral Output Function is Assigned to RP50 Output Pin bits

REGISTER 8-53: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP53[5:0]: Peripheral Output Function is Assigned to RP53 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP52R[5:0]: Peripheral Output Function is Assigned to RP52 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-54: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP55R[5:0]: Peripheral Output Function is Assigned to RP55 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP54R[5:0]: Peripheral Output Function is Assigned to RP54 Output Pin bits

REGISTER 8-55: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP57R[5:0]:** Peripheral Output Function is Assigned to RP57 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP56R[5:0]: Peripheral Output Function is Assigned to RP56 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-56: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP59R[5:0]: Peripheral Output Function is Assigned to RP59 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP58R[5:0]: Peripheral Output Function is Assigned to RP58 Output Pin bits

REGISTER 8-57: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP61R[5:0]:** Peripheral Output Function is Assigned to RP61 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP60R[5:0]:** Peripheral Output Function is Assigned to RP60 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-58: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP72R5	RP72R4	RP72R3	RP72R2	RP72R1	RP72R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP72R[5:0]: Peripheral Output Function is Assigned to RP72 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP65R[5:0]: Peripheral Output Function is Assigned to RP65 Output Pin bits

REGISTER 8-59: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP77R5	RP77R4	RP77R3	RP77R2	RP77R1	RP77R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP74R5	RP74R4	RP74R3	RP74R2	RP74R1	RP74R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP77R[5:0]: Peripheral Output Function is Assigned to RP77 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP74R[5:0]: Peripheral Output Function is Assigned to RP74 Output Pin bits

(see Table 8-7 for peripheral function numbers)

REGISTER 8-60: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP177R5 ⁽¹⁾	RP177R4 ⁽¹⁾	RP177R3 ⁽¹⁾	RP177R2 ⁽¹⁾	RP177R1 ⁽¹⁾	RP177R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP176R5 ⁽¹⁾	RP176R4 ⁽¹⁾	RP176R3 ⁽¹⁾	RP176R2 ⁽¹⁾	RP176R1 ⁽¹⁾	RP176R0 ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP177R[5:0]:** Peripheral Output Function is Assigned to RP177 Output Pin bits⁽¹⁾

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP176R[5:0]:** Peripheral Output Function is Assigned to RP176 Output Pin bits⁽¹⁾

(see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

REGISTER 8-61: RPOR18: PERIPHERAL PIN SELECT OUTPUT REGISTER 18

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP179R5 ⁽¹⁾	RP179R4 ⁽¹⁾	RP179R3 ⁽¹⁾	RP179R2 ⁽¹⁾	RP179R1 ⁽¹⁾	RP179R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP178R5 ⁽¹⁾	RP178R4 ⁽¹⁾	RP178R3 ⁽¹⁾	RP178R2 ⁽¹⁾	RP178R1 ⁽¹⁾	RP178R0 ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R[5:0]:** Peripheral Output Function is Assigned to RP179 Output Pin bits⁽¹⁾

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP178R[5:0]:** Peripheral Output Function is Assigned to RP178 Output Pin bits⁽¹⁾

(see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

REGISTER 8-62: RPOR19: PERIPHERAL PIN SELECT OUTPUT REGISTER 19

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP181R5 ⁽¹⁾	RP181R4 ⁽¹⁾	RP181R3 ⁽¹⁾	RP181R2 ⁽¹⁾	RP181R1 ⁽¹⁾	RP181R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP180R5 ⁽¹⁾	RP180R4 ⁽¹⁾	RP180R3 ⁽¹⁾	RP180R2 ⁽¹⁾	RP180R1 ⁽¹⁾	RP180R0 ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP181R[5:0]: Peripheral Output Function is Assigned to RP181 Output Pin bits

(see Table 8-7 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP180R[5:0]: Peripheral Output Function is Assigned to RP180 Output Pin bits

(see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

TABLE 8-12: PPS INPUT CONTROL REGISTERS

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPCON	_	_	_		IOLOCK	_	_	_	_	_	_	-	_	_	_	_
RPINR0	INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	_	_	_	_	_	_	_
RPINR1	INT3R7	INT3R6	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	INT2R7	INT2R6	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
RPINR2	T1CKR7	T1CKR6	T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0	_	_	_	_	_	_	_	_
RPINR3	ICM1R7	ICM1R6	ICM1R5	ICM1R4	ICM1R3	ICM1R2	ICM1R1	ICM1R0	TCKI1R7	TCKI1R6	TCKI1R5	TCKI1R4	TCKI1R3	TCKI1R2	TCKI1R1	TCKI1R0
RPINR4	ICM2R7	ICM2R6	ICM2R5	ICM2R4	ICM2R3	ICM2R2	ICM2R1	ICM2R0	TCKI2R7	TCKI2R6	TCKI2R5	TCKI2R4	TCKI2R3	TCKI2R2	TCKI2R1	TCKI2R0
RPINR5	ICM3R7	ICM3R6	ICM3R5	ICM3R4	ICM3R3	ICM3R2	ICM3R1	ICM3R0	TCKI3R7	TCKI3R6	TCKI3R5	TCKI3R4	TCKI3R3	TCKI3R2	TCKI3R1	TCKI3R0
RPINR6	ICM4R7	ICM4R6	ICM4R5	ICM4R4	ICM4R3	ICM4R2	ICM4R1	ICM4R0	TCKI4R7	TCKI4R	TCKI4R5	TCKI4R4	TCKI4R3	TCKI4R2	TCKI4R1	TCKI4R0
RPINR11	OCFBR7	OCFBR6	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	OCFAR7	OCFAR6	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
RPINR12	PCI9R7	PCI9R6	PCI9R5	PCI9R4	PCI9R3	PCI9R2	PCI9R1	PCI9R0	PCI8R7	PCI8R6	PCI8R5	PCI8R4	PCI8R3	PCI8R2	PCI8R1	PCI8R0
RPINR13	PCI11R7	PCI11R6	PCI11R5	PCI11R4	PCI11R3	PCI11R2	PCI11R1	PCI11R0	PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
RPINR14	QEIB1R7	QEIB1R6	QEIB1R5	QEIB1R4	QEIB1R3	QEIB1R2	QEIB1R1	QEIB1R0	QEIA1R7	QEIA1R6	QEIA1R5	QEIA1R4	QEIA1R3	QEIA1R2	QEIA1R1	QEIA1R0
RPINR15	QEIHOM1R7	QEIHOM1R6	QEIHOM1R5	QEIHOM1R4	QEIHOM1R3	QEIHOM1R2	QEIHOM1R1	QEIHOM1R0	QEINDX1R7	QEINDX1R6	QEINDX1R5	QEINDX1R4	QEINDX1R3	QEINDX1R2	QEINDX1R1	QEINDX1R0
RPINR18	U1DSRR7	U1DSRR6	U1DSRR5	U1DSRR4	U1DSRR3	U1DSRR2	U1DSRR1	U1DSRR0	U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
RPINR19	U2DSRR7	U2DSRR6	U2DSRR5	U2DSRR4	U2DSRR3	U2DSRR2	U2DSRR1	U2DSRR0	U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
RPINR20	SCK1R7	SCK1R6	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
RPINR21	REFOIR7	REFOIR6	REFOIR5	REFOIR4	REFOIR3	REFOIR2	REFOIR1	REFOIR0	SS1R7	SS1R6	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
RPINR22	SCK2R7	SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
RPINR23	_	_	_	_	_	_	_	_	SS2R7	SS2R6	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
RPINR27	U3DSRR7	U3DSRR6	U3DSRR5	U3DSRR4	U3DSRR3	U3DSRR2	U3DSRR1	U3DSRR0	U3RXR7	U3RXR6	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
RPINR37	PCI17R7	PCI17R6	PCI17R5	PCI17R4	PCI17R3	PCI17R2	PCI17R1	PCI17R0	OCFCR7	OCFCR6	OCFCR5	OCFCR4	OCFCR3	OCFCR2	OCFCR1	OCFCR0
RPINR38	_	_	_	_	_	_	_	_	PCI18R7	PCI18R6	PCI18R5	PCI18R4	PCI18R3	PCI18R2	PCI18R1	PCI18R0
RPINR42	PCI13R7	PCI13R6	PCI13R5	PCI13R4	PCI13R3	PCI13R2	PCI13R1	PCI13R0	PCI12R7	PCI12R6	PCI12R5	PCI12R4	PCI12R3	PCI12R2	PCI12R1	PCI12R0
RPINR43	PCI15R7	PCI15R6	PCI15R5	PCI15R4	PCI15R3	PCI15R2	PCI15R1	PCI15R0	PCI14R7	PCI14R6	PCI14R5	PCI14R4	PCI14R3	PCI14R2	PCI14R1	PCI14R0
RPINR44	SENT1R7	SENT1R6	SENT1R5	SENT1R4	SENT1R3	SENT1R2	SENT1R1	SENT1R0	PCI16R7	PCI16R6	PCI16R5	PCI16R4	PCI16R3	PCI16R2	PCI16R1	PCI16R0
RPINR45	CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0	_	_	_	_	_	_	_	_
RPINR46	CLCINCR7	CLCINCR6	CLCINCR5	CLCINCR4	CLCINCR3	CLCINCR2	CLCINCR1	CLCINCR0	CLCINBR7	CLCINBR6	CLCINBR5	CLCINBR4	CLCINBR3	CLCINBR2	CLCINBR1	CLCINBR0
RPINR47	ADCTRGR7	ADCTRGR6	ADCTRGR5	ADCTRGR4	ADCTRGR3	ADCTRGR2	ADCTRGR1	ADCTRGR0	CLCINDR7	CLCINDR6	CLCINDR5	CLCINDR4	CLCINDR3	CLCINDR2	CLCINDR1	CLCINDR0
RPINR48	U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	OCFDR7	OCFDR6	OCFDR5	OCFDR4	OCFDR3	OCFDR2	OCFDR1	OCFDR0
RPINR49	U3CTSR7	U3CTSR6	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	U2CTSR7	U2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0

TABLE 8-13: PPS OUTPUT CONTROL REGISTERS

	ABLE 0-13. THE CONTROL REGISTERS														1	
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPOR0	_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
RPOR1	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0
RPOR2	_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0		_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
RPOR3	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0		_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
RPOR4	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	_	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
RPOR5	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	_	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
RPOR6	_	_	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	_	_	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
RPOR7	_	_	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	_	_	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
RPOR8	_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	_	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
RPOR9	_	_	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0	_	_	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
RPOR10	_	_	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0	_	_	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
RPOR11	_	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	_	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
RPOR12	_	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	_	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
RPOR13	_	_	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0	_	_	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0
RPOR14	_	_	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0	_	_	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
RPOR15	_	_	RP72R5	RP72R4	RP72R3	RP72R2	RP72R1	RP72R0	_	_	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0
RPOR16	_	_	RP77R5	RP77R4	RP77R3	RP77R2	RP77R1	RP77R0		_	RP74R5	RP74R4	RP74R3	RP74R2	RP74R1	RP74R0
RPOR17	_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0		_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
RPOR18	_	_	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	_	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
RPOR19	_	_	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0