Layer-Wise Relevance Propagation For Deep Neural Networks

Abschlussbericht

vorgelegt von **Gruppe 4** Theo Conrads, Robin Kühling, Marc Bremser am 14. Juli 2020

am Mathematischen Institut der Universität zu Köln

Erstgutachter: Prof. Dr. Axel Klawonn

Inhaltsverzeichnis

Abbildu	ıngsverzeichnis	iii
Tabelle	nverzeichnis	v
0.1	Einleitung	vii
0.2	Interpretation der Resultate von Image-Classifiern	vii
0.3	Min-Max Modell	vii
0.4	Erweiterung Training-Free Ansatz	vii
0.5	Implementierung - Netzarchitektur	vii
0.6	LRP-Implementierung	vii
0.7	Min-Max Implementierung	vii
l itorati	urverzeichnis	iv

Abbildungsverzeichnis

Tabellenverzeichnis

0.1 Einleitung

Hier grundsätzliche Einführung

0.2 Interpretation der Resultate von Image-Classifiern

- Hier die Einleitung ins Thema Deep Taylor Decomposition.
- Für das kleine Netz erklären

0.3 Min-Max Modell

Min-Max-Modell?

0.4 Erweiterung Training-Free Ansatz

- Training Free vorstellen
- LRP Zusammenhang herstellen

0.5 Implementierung - Netzarchitektur

• Netwerkarchitekturen, den Programmcode vorstellen

0.6 LRP-Implementierung

 \bullet LRP Implementierung vorstellen

0.7 Min-Max Implementierung

• Implementierung Min-Max Modell

Literaturverzeichnis

[1] A. Toselli and O. Widlund. *Domain Decomposition Methods- Algorithms and Theory*, volume 34. Springer Series in Computational Mathematics, 2005.