11:14

RECEIVED Atty. Dkt. No. 20030855 JUL 2 0 2007

CLAIM AMENDMENTS

Jul 20 '07

This listing of claims will replace all prior versions, and listings, of claims in the application.

1	1. (Currently Amended) A method of determining placement of components in a rack	
2	comprising the steps of:	
3	providing input variables comprising a rack height, an identification of a set of	
4	components, a weight and a height for each component in the set of components;	
· 5	determining a placement of the components in the rack according to constraints	
6		
7	by solving an optimization problem using a computer, the optimization problem using	
	the rack height, the identification of the set of components, the height and weight for	
8	each component and the constraints; and	
9	evaluating the placement of the components according to at least one objective	
10	comprising at least a center of gravity objective,	
11	wherein the steps of determining and evaluating the placement of the components	
12	comprise the use of a mixed integer programming technique.	
1	2. (Currently Amended) The method of claim 1A method of determining placement of	
1 2	2. (Currently Amended) The method of claim 1A method of determining placement of components in a rack comprising the steps of:	
	components in a rack comprising the steps of:	
2	components in a rack comprising the steps of: providing input variables comprising a rack height, an identification of a set of	
2	components in a rack comprising the steps of: providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components;	
2 3 4	components in a rack comprising the steps of: providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components; determining a placement of the components in the rack according to constraints	
2 3 4 5	components in a rack comprising the steps of: providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components; determining a placement of the components in the rack according to constraints by solving an optimization problem using a computer, the optimization problem using	
2 3 4 5 6	components in a rack comprising the steps of: providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components; determining a placement of the components in the rack according to constraints	
2 3 4 5 6 7	components in a rack comprising the steps of: providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components; determining a placement of the components in the rack according to constraints by solving an optimization problem using a computer, the optimization problem using the rack height, the identification of the set of components, the height and weight for each component and the constraints; and	
2 3 4 5 6 7 8	providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components; determining a placement of the components in the rack according to constraints by solving an optimization problem using a computer, the optimization problem using the rack height, the identification of the set of components, the height and weight for each component and the constraints; and evaluating the placement of the components according to at least one objective	
2 3 4 5 6 7 8 9	providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components: determining a placement of the components in the rack according to constraints by solving an optimization problem using a computer, the optimization problem using the rack height, the identification of the set of components, the height and weight for each component and the constraints; and evaluating the placement of the components according to at least one objective comprising at least a center of gravity objective,	
2 3 4 5 6 7 8 9	providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components: determining a placement of the components in the rack according to constraints by solving an optimization problem using a computer, the optimization problem using the rack height, the identification of the set of components, the height and weight for each component and the constraints; and evaluating the placement of the components according to at least one objective comprising at least a center of gravity objective, wherein the constraints comprise:	
2 3 4 5 6 7 8 9 10	providing input variables comprising a rack height, an identification of a set of components, a weight and a height for each component in the set of components: determining a placement of the components in the rack according to constraints by solving an optimization problem using a computer, the optimization problem using the rack height, the identification of the set of components, the height and weight for each component and the constraints; and evaluating the placement of the components according to at least one objective comprising at least a center of gravity objective,	

WESTBERG

11:14

Jul 20 '07

14	a single placement constraint which requires that each component be placed once
15	and only once; and
16	a non-overlapping constraint which requires that each slot in the rack be occupied
17	by no more than a single component.
1	3. (Original) The method of claim 2 wherein the constraints further comprise a height
2	preference constraint which prefers that a first component be placed above a second
3	component.
. 1	4. (Previously Presented) The method of claim 1 wherein the step of determining
2	placement of the components according to the constraints finds that at least one of the
3	constraints cannot be met and further comprising the steps of:
4	relaxing a particular constraint; and
5	determining placement of the components according to remaining constraints.
1	5. (Original) The method of claim 4 wherein the step of relaxing the particular
2	constraint comprises providing a choice of relaxation constraints to a user and the user
3	selecting the particular constraint from the choice of relaxation constraints.
1	6. (Currently Amended) The method of claim 1-further comprising the step-ofA method
2	of determining placement of components in a rack comprising the steps of:
3	providing input variables comprising a rack height, an identification of a set of
4	components, a weight and a height for each component in the set of components and
5	providing a weight distribution for each component in the set of components;
6	determining a placement of the components in the rack according to constraints
7	by solving an optimization problem using a computer, the optimization problem using
8	the rack height, the identification of the set of components, the height and weight for
9	each component and the constraints; and
10	evaluating the placement of the components according to at least one objective
11	comprising at least a center of gravity objective.

Atty. Dkt. No. 200308557-1

- . 1 7. (Previously Presented) The method of claim 1 wherein the step of evaluating the
- 2 placement of the components in the rack according to the objective comprises seeking a
- 3 minimum height for a center of gravity.
- 8. (Previously Presented) The method of claim 1 wherein the step of evaluating the 1
- placement of the components in the rack according to the objective comprises ensuring 2
- that a height of the center of gravity does not exceed a selected height. 3
- 9. (Original) The method of claim 1 further comprising the step of providing a 1
- placement height range for a particular component, wherein the placement height range 2
- 3 comprises a minimum height and a maximum height.
- 10. (Original) The method of claim 9 wherein the placement height range is increased, 1
- thereby forming an increase in the placement height range, and further wherein a penalty 2
- is applied to the objective according to the increase in the placement height range. 3
- 11. (Original) The method of claim 1 further comprising the step of providing an empty 1
- 2 space requirement for a particular component.
- 12. (Original) The method of claim 11 wherein the empty space requirement is selected 1
- from the group consisting of an empty space requirement above the particular component 2
- 3 and an empty space component below the particular component.
- 13. (Original) The method of claim 11 wherein the empty space requirement is relaxed, 1
- 2 thereby forming a relaxation of the empty space requirement, and further wherein a
- penalty is applied to the objective according to the relaxation of the empty space 3
- 4 requirement.
- 1 14. (Canceled).

- 1 15. (Original) The method of claim 14 wherein the step of employing the mixed integer
- 2 programming technique employs a heuristic approach.
- 1 16. (Original) The method of claim 1 further comprising a contiguous placement
- 2 constraint for at least two of the components within the set of components.
- 1 17. (Original) The method of claim 16 wherein the step of determining the placement of
- 2 the components in the rack according to the constraints comprises forming a virtual.
- 3 component from the at least two components according to the contiguous placement
- 4 constraint and further wherein remaining constraints determine placement of the virtual
- 5 component.
- 1 18. (Original) The method of claim 1 further comprising the step of evaluating the
- 2 placement of the components according to a second objective.
- 1 19. (Original) The method of claim 1 further comprising the step of evaluating the
- 2 placement of the components according to additional objectives.
- 1 20. (Original) The method of claim 1 wherein the constraints comprise hard constraints.
- 1 21. (Original) The method of claim 1 wherein the objective comprises a soft constraint.
- 1 22. (Original) The method of claim 1 wherein the objective comprises a sum of soft
- 2 constraints.
- 1 23. (Previously Presented) A method of determining placement of components in a rack
- 2 comprising the steps of:
- providing a rack height, an identification of a set of components, and, for each
- 4 component in the set of components, a height, a weight, and a weight distribution;
- determining a placement of the components in the rack according to constraints
- by solving an optimization problem using a computer, the optimization problem using

WESTBERG

Jul 20 '07

7	the rack height, the identification of the set of components, the height, weight and
8	weight distribution for each component and the constraints, wherein the constraints
9	comprise:
10	a rack height constraint which requires that placement of a particular
11	component does not result in a top height of the particular component exceeding
12	the rack height;
13	a single placement constraint which requires that each component be placed
14	once and only once; and
15	a non-overlapping constraint which requires that each slot in the rack be
16	occupied by no more than a single component; and
17	evaluating the placement of the components by seeking a minimum height for a
18	center of gravity of the components.
1	24. (Currently Amended) A computer readable memory comprising computer code for
2	directing a computer to make a determination of placement of components in a rack, the
3	determination of the placement of the components comprising the steps of:
4	obtaining input variables comprising a rack height, an identification of a set of
5	components, a weight and a height for each component in the set of components;
6	determining a placement of the components in the rack according to constraints
7	by solving an optimization problem using the rack height, the identification of the set
8	of components, the height and weight for each component and the constraints; and
9	evaluating the placement of the components according to at least one objective
10	comprising at least a center of gravity objective,
11	wherein the steps of determining and evaluating the placement of the components
12	comprise the use of a mixed integer programming technique.
1	25. (Previously Presented) The computer readable memory of claim 24 wherein the
2	constraints comprise:
3	a rack height constraint which requires that placement of a particular component
4	does not result in a top height of the particular component exceeding the rack height;

P.09

5	a single placement constraint which requires that each component be	placed once
6	and only once; and	

- a non-overlapping constraint which requires that each slot in the rack be occupied by no more than a single component.
- 1 26. (Previously Presented) The computer readable memory of claim 24 wherein the step
- 2 of determining placement of the components according to the constraints finds that at
- 3 least one of the constraints cannot be met and further comprising the steps of:
- 4 relaxing a particular constraint; and
- 5 determining placement of the components according to remaining constraints.
- 1 27. (Original) The computer readable memory of claim 26 wherein the step of relaxing
- 2 the particular constraint comprises providing a choice of relaxation constraints to a user
- 3 and the user selecting the particular constraint from the choice of relaxation constraints.
- 1 28. (Previously Presented) The computer readable memory of claim 24 further
- 2 comprising the step of obtaining a weight distribution for each component in the set of
- 3 components.
- 1 29. (Previously Presented) The computer readable memory of claim 24 wherein the step
- 2 of evaluating the placement of the components in the rack according to the objective
- 3 comprises seeking a minimum height for a center of gravity.
- 1 30. (Previously Presented) The computer readable memory of claim 24 wherein the step
- 2 of evaluating the placement of the components in the rack according to the objective
- 3 comprises ensuring that a height of the center of gravity does not exceed a selected
- 4 height.
- 1 31. (Original) The computer readable memory of claim 24 wherein the step of
- 2 evaluating the placement of the components comprises the step of employing a mixed
- 3 integer programming technique.

Atty. Dkt. No. 200308557-1

1	32. (Original) The computer readable memory of claim 31 wherein the step of
2	employing the mixed integer programming technique employs a heuristic approach.
1	33. (Previously Presented) A computer readable memory comprising computer code fo
2	directing a computer to make a determination of placement of components in a rack, the
3	determination of the placement of the components comprising the steps of:
4.	obtaining a rack height, an identification of a set of components, and, for each
5	component in the set of components, a height, a weight, and a weight distribution;
6	determining a placement of the components in the rack according to constraints
7	by solving an optimization problem using the rack height, the identification of the set
8	of components, the height, weight and weight distribution for each component and th
9	constraints, wherein the constraints comprise:
10	a rack height constraint which requires that placement of a particular
11	component does not result in a top height of the particular component exceeding
12	the rack height;
13	a single placement constraint which requires that each component be
14	placed once and only once; and
15	a non-overlapping constraint which requires that each slot in the rack be
16	occupied by no more than a single component; and
17	evaluating the placement of the components by seeking a minimum height for a
18	center of gravity of the components.