1D Constant (Analytical)

The 1D TDGL equation for a constant C is

$$\partial_t u = \partial_{xx} u + Cu - u^3$$

Table of contents

- Table of contents
- Parameter-less equation
- Linear dynamics
- Stationary states
- Kink dynamics
 - Main idea
 - An equation for the kink's velocity
 - Calculating I1
 - Calculating I2
 - Approximation to the periodic kink stationary state \$u{p}(x)\$
 - Expansion of \$u{p}(x)\$ close to the mid-point between kinks
 - · Asymptotic match

Parameter-less equation

If C is constant, it is possible to rescale x, t and u to get a parameter-free equation

- $ullet x o C^{-1/2}$
- $ullet t o C^{-1} t$
- $ullet \ u o C^{1/2}u$

then you simplify $C^{3/2}$ at each term you get

$$\partial_t u = \partial_{xx} u + u - u^3$$

This is not possible to to if C(t) as the time-derivative will transform differently with the rescaling.

Linear dynamics

If $u \simeq 0$ everywhere, then you can neglect the non-linearity and

$$\partial_t u \simeq \partial_{xx} u + C u$$

taking the Fourier transform

$$\sigma = i\omega = -q^2 + C$$

As $\lambda = \frac{2\pi}{q}$:

- If C>0 large wavelength modes ($q < C^{1/2}$, $\lambda > 2\pi C^{-1/2}$) are unstable
- If C<0 all modes decay to zero exponentially fast. The fastest unstable mode is q=0 and its characteristic time is $\tau=C^{-1}$, representing a **characteristic timescale** of the system.

Stationary states

The equation for stationary states $\partial_t u = 0$ is

$$\partial_{xx}u = -Cu + u^3$$

That can be written as the equation of motion of a system that conserves energy

$$\partial_{xx} u = -rac{dV}{du} \quad V(u) = rac{C}{2} u^2 - rac{1}{4} u^4 = rac{1}{4} (C - u^2)^2$$

so the stationary states of the TDGL are the trajectories of a particle experiencing no friction in the potential V(u) (u: position of the particle, x: time).

- If $C \leq 0$ there is only one possible trajectory: u = 0
- if C>0 there are two trivial trajectories $u=\pm\sqrt{C}$ and then the non-trivial trajectory with higher energy is

$$u(x) = \sqrt{C} u_k(\chi) \quad \chi = C^{1/2} x$$

$$u_k(\chi) = anh\left(2^{-1/2}(\chi-\chi_0)
ight)$$

where x_0 is the kink position ($\chi_0 = C^{1/2}x_0$) and can be any value. Then you have an infinite (that becomes finite if you apply PBC) number of lower energy trajectories that are **periodic trajectories** $u_p(\chi)$.

Kink dynamics

Due to the non-linearity in the TDGL equation, we cannot solve it analytically.

We deal with this by looking for laws that **approximately** describe the dynamics of the system. Here we **prove** a law that describe how the distance d(t) between **two isolated neighboring**

kinks decays with time: so we state that this law describe an **effective interaction** between kinks.

$$\dot{d}(t) \simeq -24\sqrt{2}C^{rac{1}{2}}e^{-2^{rac{1}{2}}C^{rac{1}{2}}d}$$

Main idea

Close to a kink, we **assume** that the kink's shape **does not change**, but the kink just propagates:

$$u(x,t) = u_n(x - \dot{x_n}t) \tag{1}$$

where

- $u_n(x)$ is the shape of the n-th kink;
- x_n is the position of the n-th kink.

Notice: This assumption, that the profile u(x) does not change but just propagates, is very reasonable close to the kink's position ($x \simeq x_n$). However, later, we will assume this for a large interval $[x_{n-\frac{1}{2}},x_{n+\frac{1}{2}}]$.

An equation for the kink's velocity

Here we find an (approximated) formula for $\dot{x_n}$, the velocity of the n-th kink as a function of the distance from the neighboring kinks.

The TDGL equation can be written in the form

$$\partial_t u = \partial_{xx} u - V'(u)$$

$$V(u)=\frac{1}{4}(C-u^2)^2$$

using the "propagating kink" assumption (1):

$$-\dot{x_n}\partial_x u_n = \partial_{xx} u_n - V(u_n)$$

Multiplying by $\partial_x u_n$ and integrating $\int_{x_{n-rac{1}{2}}}^{x_{n+1/2}} dx$

$$egin{aligned} -\dot{x_n} \int (\partial_x u_n)^2 dx &= \int rac{1}{2} \partial_x [(\partial_x u_n)^2] - \int rac{rac{dV}{du} du}{dx} dx \ -\dot{x_n} \int_{x_{-1}}^{x_{n+1/2}} (\partial_x u_n)^2 dx &= rac{1}{2} [(\partial_x u_n)^2]_{x_{n-rac{1}{2}}}^{x_{n+1/2}} - [V(u_n)]_{x_{n-rac{1}{2}}}^{x_{n+1/2}} \end{aligned}$$

The **reason** why we integrate from the mid-point between the (n-1)-th kink and the n-th kink ($x_{n-\frac{1}{2}}$) and the mid-point between the n-th and the (n+1)-th kink ($x_{n+\frac{1}{2}}$) is that, at the midpoint between two kinks, the derivative of u(x) is zero! (You clearly see it from simulations)

So the first term in the RH side is zero and it remains

$$-\dot{x_n}\int_{x_{n-rac{1}{2}}}^{x_{n+1/2}}(\partial_x u_n)^2dx=-[V(u_n)]_{x_{n-rac{1}{2}}}^{x_{n+1/2}}$$

Now we are left calculating the two objects

$${\mathcal I}_1=\int_{x_{n-rac12}}^{x_{n+1/2}}(\partial_x u_n)^2dx$$

$${\mathcal I}_2 = \left[V(u_n)
ight]_{x_{n-rac{1}{2}}}^{x_{n+1/2}}$$

Calculating I1

The idea we present for approximating this integral is the following:

Close to the kink's position $(x \simeq x_n)$ the shape of the n-th kink reasonably resembles the shape of an isolated kink $(u_n(x) \simeq u_k(x))$ if $x \simeq x_n$ and the derivative is large close to x_n and decreasing exponentially fast as we get close to $x_{n\pm\frac{1}{n}}$. So we make the approximation

$${\cal I}_1\simeq \int_{x_{n-rac{1}{2}}}^{x_{n+1/2}}(\partial_x u_k(x))^2 dx$$

then, as the derivative of the single kink profile decays exponentially fast, we can make a further approximation, by integrating along the whole real axis. And changing variable $\chi=C^{1/2}x$

$${\cal I}_1 = C^{3/2} \int_{-\infty}^{+\infty} d\chi (\partial_\chi u_k(\chi))^2$$

where the single kink profile is

$$u_k(\chi) = anh(2^{-1/2}\chi)$$

in the Master Report.pdf that integral has been calculated

$${\cal I}_1=rac{2\sqrt{2}}{3}C^{3/2}$$

Calculating 12

We need to evaluate V(u) at $u_n\left(x_{n\pm\frac{1}{2}}\right)$.

The idea to approximate $u_n\left(x_{n\pm\frac{1}{2}}\right)$ is to write an expansion of $u_n(x)$ valid close to the midpoints between two kinks. Then we calculate the derivative ∂_x and then we evaluate the derivative in $x=x_{n\pm\frac{1}{2}}$.

We said that the profile u(x) is well approximated by the single kink profile close to the kink's position. While it is not good close to the mid-point of two kinks, where the presence of the next kink will be relevant for the profile u(x).

Approximation to the periodic kink stationary state $u_p(x)$

A **better approximation** is represented by the stationary solution of the TDGL equation with period $x_{n+1} - x_{n-1}$ that we will call $u_n(x)$.

This is still an approximation, but it is the **best we can do** up to now.

Expansion of $u_p(x)$ close to the mid-point between kinks

Lets's change variable $\chi=C^{1/2}x$ and let's look for an **expansion** of $u_p(\chi)$ close to $x_{n\pm\frac{1}{2}}$ (notice that the kinks are located at x_{n-1},x_n,x_{n+1}).

Close to $x_{n+\frac{1}{2}}$, if the kinks are sufficiently far from each other, $u_p(\chi)\simeq 1$, so

$$u_p(\chi) = 1 + \delta u_p(\chi)$$

inside the TDGL equation (and using that $u_p(\chi)$ is a stationary solution: $\partial_t u_p=0$)

$$\partial_{xx}\delta u_p = -2\delta u_p + O(\delta u_p^2)$$

This equation, up to first order, admits exponential solutions. These solutions are infinite, but boundary conditions will *grant only one* solution.

As $u_p(\chi)$ decays/increases exponentially fast moving towards $x_{n\pm 1}$, we look for a solution of this kind (if you look to the profile of $u(\chi)$ in simulations, it looks like the following ansatz)

$$\delta u_n(\chi) = a_- e^{-2^{1/2}(\chi - \chi_n)} + a_+ e^{-2^{1/2}(\chi_{n+1} - \chi)}$$

where a_{\pm} are determined (if the ansatz is correct) by boundary conditions.

Asymptotic match

We require $u_p(\chi)=1+\delta u_p(\chi)$ to match $u_k(\chi)$ in a point that is **both**

- Far from the mid-point $x_{n+\frac{1}{2}}$
- Far from the n-th kink's position

$$u_k(\chi) \simeq 1 + \delta u_p(\chi) \quad \chi_n \ll \chi \ll \chi_{n+rac{1}{n}}$$

as we are far from the n-th kink, we can expand $u_k(\chi)$ for $\chi\gg\chi_n$

$$u_k(\chi) = anh(2^{-1/2}(\chi - \chi_n)) \simeq 1 - 2e^{-2^{1/2}(\chi - \chi_n)}$$

imposing the boundary condition

$$1 - 2e^{-2^{1/2}(\chi - \chi_n)} = 1 + a_-e^{-2^{1/2}(\chi - \chi_n)} + a_+e^{-2^{1/2}(\chi_{n+1} - \chi)}$$

as $\chi_n \ll \chi \ll \chi_{n+\frac{1}{2}}$ we can neglect the exponential with χ_{n+1} , then

$$a_+=-2$$

and, following a similar idea, also $a_-=-2$. So if $\chi\simeq\chi_{n+\frac{1}{2}}$

$$u_p(\chi) \simeq 1 - 2(e^{-2^{1/2}(\chi - \chi_n)} + e^{-2^{1/2}(\chi_{n+1} - \chi)})$$

Evaluating $V(u)=rac{1}{4}(C-u^2)^2$ at $u=u_p\left(\chi_{n\pmrac{1}{2}}
ight)$, we find

$${\mathcal I}_{\mathscr Z} = [V(u)]_{\chi_{n-rac{1}{2}}}^{\chi_{n+1/2}} = [C^2 \delta u_p^2 + O(\delta u_p^3)]]_{\chi_{n-rac{1}{2}}}^{\chi_{n+1/2}}$$

Notice: Above we calculated $\delta u(\chi)$ close to $\chi_{n+\frac{1}{2}}$. When you evaluate it close to $\chi_{n-\frac{1}{2}}$ you should keep in mind that the expression for $\delta u(\chi)$ is different! This leads to the following result .

To leading order

$${\cal I}_2 = 16C^2(e^{-2^{1/2}l_nC^{1/2}} - e^{-2^{1/2}l_{n-1}C^{1/2}})$$

where $l_n=x_{n+1}-x_n$ is the distance between the n-th kink and the (n+1)-th kink.

Putting our results together

$$\dot{x_n} = rac{\mathcal{I}_2}{\mathcal{I}_1} = rac{16}{rac{2\sqrt{2}}{3}} C^{1/2} (e^{-2^{1/2} l_n C^{1/2}} - e^{-2^{1/2} l_{n-1} C^{1/2}})$$

Then, if in your system there are **only TWO kinks** at distance d (and you adopt **periodic boundary conditions**)

$$\dot{d}(t) \simeq -24\sqrt{2}C^{rac{1}{2}}(t)(e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}d}-e^{-2^{rac{1}{2}}C(t)^{rac{1}{2}}(L-d)})$$

where L is the size of the simulation box. If $d \gg L$, the second exponential is negligible.