Hochschule Esslingen

Sommersemest	er 2009	Blatt-Nr.	1 von 10
Fachbereich:	Informationstechnik	Semester:	IT4
Prüfungsfach:	Echtzeitsysteme	Fachnummer:	4061
Hilfsmittel:	schriftliche Unterlagen, Taschenrechner	Zeit:	90 Minuten

Name, Vorname	:
Aufgabe 1: Dive	rse Fragen (25 Minuten)
	enden Teilaufgaben können unabhängig voneinander bearbeitet werden.
1.1 Erläutern Sie	kurz den Begriff "präemptives Scheduling" im Gegensatz zum "nicht- Scheduling".
1.2 Erläutern Sie Antwort:	e kurz den Begriff "optimaler Scheduling-Algorithmus".

Sommersemest	er 2009	Blatt-Nr.	2 von 10
Fakultät:	Informationstechnik	Semester:	TI 7
Prüfungsfach:	Echtzeitsysteme	Fachnummer:	4061
Hilfsmittel:	schriftliche Unterlagen, Taschenrechner	Zeit:	90 Minuten

	1.3	Erläutern Sie	kurz den	Unterschied	zwischen	einer	Semapho	re und	einem	Mute
--	-----	---------------	----------	-------------	----------	-------	---------	--------	-------	------

1.3	Antwort:
1.4	Die Frequenz des RTI des im Labor verwendeten Mikrocontrollers lässt sich gemäß der Gleichung $f_{RTI} = f_{oscclk} / (2^{9+X} (Y+1))$ einstellen, wobei X drei Bit und Y 4 Bit groß ist. Damit sollen Sie eine Echtzeituhr mit einer Auflösung von ca. 0,1 Sekunden realisieren, die eine Abweichung von nie mehr als 1 Sekunde gegenüber einem globalen perfekten Referenzzeitgeber besitzt. Welche Werte verwenden Sie für X und Y, wenn der Oszillatortakt f_{oscclk} 4 MHz beträgt? Wie oft müssen Sie innerhalb von 24 Stunden die Uhr neu synchronisieren?
×	Y =
Α	nzahl Resychronisationen per 24 Stunden:

1.5 Im Echtzeit-Projekt haben Sie mit einem verteilten System mit zwischen drei und fünf Prozessoren gearbeitet. Nehmen Sie an, Sie lassen auf jedem Rechner des Komplettsystems mit fünf Prozessoren jeweils eine Echtzeituhr mit einer mittleren Gangabweichung von jeweils 25 · 10⁻⁶ sec/sec laufen. Ausgehend von perfekt synchronisierten Uhren soll die Zeitdifferenz nie größer als 1 Sekunde sein.

Genügt es, wenn die Uhren einmal alle 24 Stunden resynchronisiert werden? Wie groß ist zu diesem Zeitpunkt die maximale Zeitdifferenz zwischen jeweils zwei Uhren?

Sommersemest akultät:	Informationstechnik	Blatt-Nr. Semester:	3 von 10 TI 7
rüfungsfach:		Fachnummer:	
lilfsmittel:	schriftliche Unterlagen, Taschenrechner	Zeit:	90 Minuten
	: Rechenweg:	Zeit.	30 Milliateri
maximale Zei	tdifferenz nach 24 Stunden:		
6 Erläutern S	tdifferenz nach 24 Stunden:sie die wesentlichen Unterschiede zwische Betriebssystem und einem Echtzeitbetriebs	en einem allgemeinen (Ger ssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Ger ssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Ger ssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Ger ssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Ger ssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Ger ssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Ger ssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Ger ssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Gerssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Gerssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Gerssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Gerssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Gerssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Gerssystem.	neral
6 Erläutern S Purpose)-B	sie die wesentlichen Unterschiede zwische	en einem allgemeinen (Gerssystem.	neral

Sommersemest		Blatt-Nr.	4 von 10
Fakultät:	Informationstechnik	Semester:	TI 7
Prüfungsfach:	Echtzeitsysteme	Fachnummer:	4061
Hilfsmittel:	schriftliche Unterlagen, Taschenrechner OSEK-Spezifikation für Semaphoren bzw. Re	Zeit:	90 Minuten
	tokoll vor, und wenn ja, welches? Wie heißt der in Belegen einer Ressource?	r OSEK-Betriebssysten	naufruf zum
	dingungen sind erforderlich, damit es beim Zug ingsituation (Deadlock) kommt?	riff auf Betriebsmittel z	u einer
Antwort:			
	emaphoren ein gleichzeitiges Warten auf die F tel realisiert werden? Bitte begründen.	reigabe von mehr als e	einem
Antwort:			

Sommersemest	er 2009	Blatt-Nr.	5 von 10
Fakultät:	Informationstechnik	Semester:	TI 7
Prüfungsfach:	Echtzeitsysteme	Fachnummer:	4061
Hilfsmittel:	schriftliche Unterlagen, Taschenrechner	Zeit:	90 Minuten

Aufgabe 2: Synchronisation (30 Minuten)

2.1 Betrachten Sie vier Tasks, die gemäß folgender Tabelle auf Ereignisse (Events) warten und dann die entsprechenden Aktivitäten ausführen, die jeweils eine Zeiteinheit für ihre Ausführung benötigen:

Task	Priorität	Event Flag Bits	Konj./disj.	Aktivität
$ au_1$	10	0 und 2	konjunktiv	A1
$ au_2$	20	3		A2
$ au_3$	30	4 und 5	disjunktiv	A3
$ au_4$	40	6 und 2	konjunkiv	A4

Der zugrunde liegende Scheduler ist präemptiv und arbeitet prioritätsorientiert.

Die Aktivitäten setzen die folgenden Eventflags ganz am Anfang (nach 0 Zeiteinheiten Laufzeit) oder ganz am Ende (mit 0 Zeiteinheiten Restlaufzeit) ihrer Laufzeit:

Aktivität	Zeitpunkt	Event Flag Bits
A1	Anfang	Bit 6
A2		
A3		
A4	Ende	Bit 4

Für die Modellierung betrachten Sie das Setzen *dieser* Eventflags als eine zusätzliche Aktivität mit null Laufzeit direkt vor oder direkt nach der Aktivität Ax.

Zeichnen Sie auf die folgende Seite das zu diesem Szenario gehörige Aktivitätsdiagramm unter der Annahme, dass alle Tasks vom Typ "run to completion" sind.

Sommersemest	er 2009	Blatt-Nr.	6 von 10
Fakultät:	Informationstechnik	Semester:	TI 7
Prüfungsfach:	Echtzeitsysteme	Fachnummer:	4061
Hilfsmittel:	schriftliche Unterlagen, Taschenrechner	Zeit:	90 Minuten

Lösung zu Aufgabe 2.1 (UML-Aktivitätsdiagramm):						
Task $ au_1$	Task $ au_2$	Task $ au_3$	Task $ au_4$			

Sommersemest	er 2009	Blatt-Nr.	7 von 10
Fakultät:	Informationstechnik	Semester:	TI 7
Prüfungsfach:	Echtzeitsysteme	Fachnummer:	4061
Hilfsmittel:	schriftliche Unterlagen, Taschenrechner	Zeit:	90 Minuten

2.2 Zum Zeitpunkt 0 sind alle Eventflags zurückgesetzt. Es werden von außen nun zu den in der untenstehenden Tabelle dargestellten Zeitpunkten Eventflags gesetzt. Gehen Sie davon aus, dass alle einmal angelaufenen Aktionen zu Ende laufen können, bevor ein neues Ereignis auftritt.

Wenn eine Task ihren Zustand wechselt, tragen Sie den neuen Zustand sowie die evtl. ausgeführte Aktion in eine neue Zeile ein (a: ablaufbereit; w:wartend; l:laufend, r:ruhend):

Zeitpunkt	Setze Eventflag	Zustand $ au_1$	Zustand $ au_2$	Zustand $ au_3$	Zustand $ au_4$	Aktion
0		W	W	W	W	
1	0 und 3					
2	2					
3						
4						
5						
6						

2.3 Das unten dargestellte Szenario hat sich ergeben, wobei immer zu den angegebenen Zeitpunkten ein Eventflag gesetzt worden ist oder auch nicht. Rekonstruieren Sie *alle* möglichen Folgen von Eventflag-Setz-Ereignissen, die zu dem beobachteten Ablauf geführt haben können (a: ablaufbereit; w:wartend; l:laufend; r:ruhend):

Zeitpunkt	Gesetzte Eventflags	Zustand $ au_1$	Zustand $ au_2$	Zustand $ au_3$	Zustand $ au_4$
0		W	W	W	W
1				I	
2				r	I
3			l		r
4			r		
5		l			

Sommersemest	er 2009	Blatt-Nr.	8 von 10
Fakultät:	Informationstechnik	Semester:	TI 7
Prüfungsfach:	Echtzeitsysteme	Fachnummer:	4061
Hilfsmittel:	schriftliche Unterlagen, Taschenrechner	Zeit:	90 Minuten

Aufgabe 3: Scheduling (35 Minuten)

Gegeben sind vier Tasks, die auf Resourcen (A,B,C) zugreifen:

 $\tau_1(r_0 = 10, C = 4, Prio=1; [A;1])$, wobei die Task zwei Zeiteinheiten läuft, bevor sie auf die Ressource A zugreift.

 τ_2 (r₀ = 7, C = 4, Prio=2; [A;1][B;1]), wobei die Task eine Zeiteinheit läuft, bevor sie auf die Ressourcen A und dann B zugreift.

 τ_3 (r₀ = 4, C = 4, Prio=3; [B;1][C;1]), wobei die Task eine Zeiteinheit läuft, bevor sie auf die Ressourcen B und dann C zugreift.

 τ_4 (r₀ = 4, C = 4, Prio=4; [A;5[B;2]][C;1]), wobei die Task zwei Zeiteinheiten läuft, dann auf Ressource A zugreift, sie eine Zeiteinheit lang hält und dann einen verschachtelten Zugriff auf die Ressourcen B und danach C vornimmt.

Notation: r₀ ist die Release- oder Request-Zeit, C ist die Ausführungszeit, Prio ist die Priorität der Task (höhere Zahl gleich höhere Priorität). [A;5] bedeutet Zugriff auf Ressource 5 für fünf Zeiteinheiten. [A;a[B;b]] bedeutet ein verschachtelter Zugriff, wobei Benutzung der Ressource A die Benutzung von B beinhaltet, und die Zeit b in a enthalten ist.

Das Task-Set soll mit zwei verschiedenen Ressource-Access-Protokollen geplant werden.

3.1 Zeichnen Sie das Zeitdiagramm für das obige Taskset unter Verwendung des *Priority Inheritance Protokolls* in das vorbereitete Diagramm. **Eigene Skizzen werden nicht akzeptiert!** Antwort:

Sommersemest	er 2009	Blatt-Nr.	9 von 10	
Fakultät:	Informationstechnik	Semester:	TI 7	
Prüfungsfach:	Echtzeitsysteme	Fachnummer:	4061	
Hilfsmittel:	schriftliche Unterlagen, Taschenrechner	Zeit:	90 Minuten	

3.2 Zeichnen Sie das Zeitdiagramm für das obige Taskset unter Verwendung des *Priority Ceiling Protokolls* in das vorbereitete Diagramm. **Eigene Skizzen werden nicht akzeptiert!** Antwort:

3.3 Betrachten Sie ein neues periodisches Taskset mit den folgenden Parametern:

$ au_{i}$	r _i	C _i	T _i
τ_1	0	4	36
$ au_2$	0	3	8
$ au_3$	0	2	24
$ au_4$	0	8	39
$ au_5$	0	1	27
$ au_6$	0	1	25

Ist es möglich, dieses Taskset mit dem Rate-Monotonic-Verfahren unter Einhaltung aller Fristen einzuplanen? Bitte begründen!

-			ter 2009					Blatt-Nr.		von 1
	akultät:	Informationstechnik					Semester: T			
	rüfungsfach:		Echtzeitsysteme schriftliche Unterlagen, Taschenrechner					chnummer:	406	
HI	Ifsmittel:	schriftlic	the Unterla	gen, Tasch	nenrechner		Zei	it:	90 Min	uten
	Antwort:									
3.4	Zeichnen Sin die unte									
+										
0	2	4	6	8	10	12	14	16	18	t
							1	1 1 1		
20	22	24	26	28	30	32	34	36	38	t
3.5	Für das Ta werden, di Ist es mög	ese betra	ge 0,8 Zei	teinheiten	, auch für	den Start	des erste	n Jobs.		gt