

Современные системы цифрового телевидения

Старт 2-клик Стоп - 1 клик

Практическое занятие 1

Сигналы аналогового ТВ

ФИО преподавателя: Смирнов

Александр Витальевич

e-mail: av_smirnov@mirea.ru

Введение

Тема практического занятия 1 — решение задач по расчету параметров сигналов аналогового цветового телевидения.

В случае проведения занятия в дистанционном режиме отчет должен быть прислан на почту преподавателя. Отчет может быть выполнен на компьютере или оформлен на бумаге, а затем отсканирован или сфотографирован. Титульный лист не требуется. Достаточно в начале отчета указать фамилию и инициалы студента, номер группы и номер работы.

Отчет должен быть оформлен в виде одного файла. Рекомендуемый формат файла .pdf. Имя файла должно содержать фамилию студента, номер группы и номер работы. При невыполнении этих требований отчет проверяться не будет.

Присылая исправленный отчет необходимо сохранять письмо преподавателя с замечаниями. При невыполнении этого требования исправленный отчет проверяться не будет.

В случае проведения занятия в очном режиме отчет может быть сдан как в электронной форме, так и на бумаге.

Выбор варианта

1. Определить свой номер варианта Nvar в соответствии с номером в списке группы Ngr.

Если $1 \le Ngr \le 15$, то Nvar = Ngr.

Если $16 \le Ngr \le 30$, то Nvar = Ngr - 15.

Если $31 \le Ngr \le 45$, то Nvar = Ngr - 30.

Расчет сигналов

2. Рассчитать значения яркостного сигнала

$$E_{Y}' = 0.30 E_{R}' + 0.59 E_{G}' + 0.11 E_{B}'$$

и двух цветоразностных сигналов

$$E_{R-Y}' = E_{R}' - E_{Y}', \qquad E_{B-Y}' = E_{B}' - E_{Y}'$$

для 5 полос, заданных в соответствующей варианту строке табл.1.1. Значения сигналов основных цветов даны в табл.1.2. Результаты записать в табл.1.3. Нарисовать временные диаграммы яркостного и цветоразностных сигналов в течение строки, соблюдая масштабы по вертикали и по горизонтали.

Таблица 1.2

Таблица 1.2

No	E'_R	E'_R	E'_R	Цвет
1	0	0	0	черный
2	0	0	1	синий
3	1	0	0	красный
4	1	0	1	пурпурный
5	0	1	0	зеленый
6	0	1	1	голубой
7	1	1	0	желтый
8	1	1	1	белый

Таблица 1.3

Таблица 1.3

	E_{Y}	E_{R-Y}	E_{B-Y}	U	V	U_{CM}	φ_C	φ_C
	В	В	В	В	В	В	рад	градус
Цвет 1								
Цвет 2								
Цвет 3								
Цвет 4								
Цвет 5								

В первом столбце надо записать названия цветов по своему варианту

Пример графика

Расчет сигналов PAL

3. Для каждого цвета по своему варианту рассчитать значения цветоразностных сигналов U и V, амплитуду U_{CM} и фазу φ_C цветовой поднесущей системы PAL в радианах и градусах. Расчет выполнять с точностью не менее чем до 3 значащих цифр. Значения фазового угла привести к диапазону от $-\pi$ до π (от -180° до 180°). Результаты расчетов записать в табл.1.3.

$$U = 0.493 \, E'_{B-Y}; \quad V = 0.877 \, E'_{R-Y}; \quad U_{CM} = \sqrt{U^2 + V^2}; \quad \varphi_C = \operatorname{arctg} \frac{V}{U} + b\pi.$$

Коэффициент b принимает значение 0 или 1 в зависимости от того, в правой или левой полуплоскости расположен вектор (U, V).

Векторная диаграмма

Координаты точек в этом примере не соответствуют реальным цветам. Знаки «+» и «-» соответствуют полярности второго слагаемого в формуле

$$E_P = U \cos \omega_C t \pm V \sin \omega_C t$$

Таблица 1.4

Таблица 1.4

	E_Y	E_{R-Y}	E_{B-Y}	D_R	D_B	f_R	f_{B}	K_R	K_B
	В	В	В	В	В	МГц	МГц	дБ	дБ
Цвет 1									
Цвет 2									
Цвет 3									
Цвет 4									
Цвет 5									

4. В табл.1.4 записать названия цветов по своему варианту, значения яркостного и цветоразностных сигналов для этих цветов.

Расчет сигналов SECAM

5.1. Рассчитать значения цветоразностных сигналов SECAM D_R и D_B

$$D_R = -1.9 E_{R-Y};$$
 $D_B = 1.5 E_{B-Y}.$ (1.3)

5.2. Рассчитать значения частоты цветовой поднесущей при передаче сигнала D_R

$$f_R = 4,406 + 0,280 D_R (M\Gamma \mu);$$
 (1.4)

и значение частоты цветовой поднесущей при передаче сигнала D_{B}

$$f_B = 4,250 + 0,230 D_B (M \Gamma ц).$$
 (1.5)

5.3. Рассчитать значения коэффициента ВЧПИ (K_R , K_B в дБ) для сигналов D_R и D_B по формуле:

$$K = 10 \lg \frac{1 + (K_1 F)^2}{1 + (K_2 F)^2}$$
 (дБ) (1.6)

где $K_1 = 16$; $K_2 = 1,26$; $F = f / f_0 - f_0 / f$; $f_0 = 4,286$ МГц, $f = f_R$ или $f = f_B$.

Частотная характеристика ВЧПИ

На графике частотной зависимости коэффициента ВЧПИ отметить точки, полученные при расчете. При этом проверить, совпали ли расчетные точки с графиком. При заметном отклонении проверить расчеты.

10.8.20

Выводы

6. Сделать выводы о зависимости размаха цветовой поднесущей в системах PAL и SECAM от наличия и отсутствия окраски участка изображения. Связать эти выводы с типом модуляции цветовой поднесущей, применяемым в каждой из этих систем, и другими операциями обработки цветовой поднесущей.

Спасибо за внимание!