General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

NASA TM X-73983

A SURVEY OF KINETIC DATA OF COMPOUNDS

CONTAINING FLUORINE

Dana A. Brewer

Langley Research Center

(NASA-TM-X-73983) A SURVEY OF KINETIC DATA OF COMPOUNDS CONTAINING FLOURINE (NASA) 119 p HC A06/MF A01 CSCL 04A

N77-12609

Unclas 55838

November 1976

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665

1. Report No.	2. Government Accession No.	3, Recipient's Catalog No.
NASA TM X-73983	<u> </u>	5. Report Date
4. Title and Subtitle		November 1976
	a of Compounds Containing	6. Performing Organization Code
Fluorine		6500
7. Author(s)		8. Performing Organization Report No.
Dana A. Brewer		NASA TM X-73983
		10. Work Unit No.
9. Performing Organization Name and Address		1.98-30-02-02
Langley Research Center		11. Contract or Grant No,
Hampton, Virginia		
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Technical Memorandum
National Aeronautics and	d Space Administration	14. Sponsoring Agency Code
Washington, DC 20546		
15. Supplementary Notes		
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	ully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a so ished between 1953 and July ated with respect to accept balance in the atmosphere	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined fixinetic literature publ. The data are then evaluate to the overall reaction to elucidate important.	. However, the role of fluully. A tabulation of a set is shed between 1953 and July ated with respect to accept balance in the atmosphere reaction processes is discussed in the second processes.	uorine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research
ozone in the atmosphere has not been examined for kinetic literature published are then evaluate to the overall reaction	. However, the role of fluully. A tabulation of a set is shed between 1953 and July ated with respect to accept balance in the atmosphere reaction processes is discussed in the second processes.	corine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research ussed.
ozone in the atmosphere has not been examined fixinetic literature publ. The data are then evaluate to the overall reaction to elucidate important.	. However, the role of fluully. A tabulation of a set is shed between 1953 and July ated with respect to accept balance in the atmosphere reaction processes is discussed in the second processes.	corine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research ussed.
ozone in the atmosphere has not been examined fixinetic literature publ. The data are then evaluate to the overall reaction to elucidate important: 17. Key Words (Suggested by Author(s)) (STA)	. However, the role of fluully. A tabulation of a set is shed between 1953 and July ated with respect to accept balance in the atmosphere reaction processes is discussed in the second processes.	corine-containing compounds earch of the chemical y 1975, is presented. tability and importance. Possible future research ussed.

TABLE OF CONTENTS

Summary	• • •	• • •	• • •	• •	• • •	• • •	. 1
Introduction	• • •					• • • •	1
Symbols	• • •					• • •	. 11
Kinetic Theory of Reactions		• •				• • •	. 14
Methylene		•					. 18
Reaction Rate Data				• •			. 20
Analysis of Kinetic Data	• » &		e s:- •				. 91
Comments on Selected Reactions 1			• • • •			• • •	. 102
Fate of Fluorine Bonds	· . · ·	· · · ·				• • •	. 103
Future Investigations		• • •	• • •				. 104
References							. 106

A SURVEY OF KINETIC DATA OF COMPOUNDS CONTAINING FLUORINE

Dana A. Brewer*

SUMMARY

Chlorofluoromethanes may have a significant effect on the level of ozone in the atmosphere. However, the role of fluorine-containing compounds has not been examined fully.

A tabulation of a search of the chemical kinetic literature published between 1953 and July 1975, is presented. The data are then evaluated with respect to acceptability and importance to the overall reaction balance in the atmosphere. Possible future research to elucidate important reaction processes is discussed.

INTRODUCTION

Recent awareness of the widespread uses of chlorofluoromethanes as aerosol propellants and refrigerants, the ubiquitous presence of chloromethanes, and the introduction of hydrogen chloride as a space shuttle solid-rocket exhaust component, have focused attention on possible reactions

^{*} Graduate Research Assistant, Chemistry Department, Virginia Polytechnic Institute and State University, Blacksburg, Va.(Summer employee at NASA Langley Research Center). The NASA technical advisor was Dr. Gerald L. Pellett. The technical advice of Dr. Pellett, and Drs. John C. Schug and Michael A. Ogliaruso, professors at Virginia Polytechnic Institute and State University is gratefully acknowledged.

involving chlorine-containing compounds in the troposphere and stratosphere. Many of the halocarbons have been hypothesized to exert a significant impact on the environment in the near future by depleting ozone in the stratosphere through known homogeneous catalytic cycles, and by producing climate modifications through thermal-balance changes. Yet, current chemical kinetic and transport model predictions of these effects focus on the roles of chlorine and tend to dismiss as unimportant the possible roles of fluorine.

A complete tabulation of existing kinetic rate data for fluorine has not appeared in the open literature, partly because of the classification of rate data obtained from work on fluorine-containing liquid rocket propellants. Also, difficulties encountered in handling HF, F, and F_2 in the laboratory have significantly limited experimental investigations.

Prior to August 1975, a primary UV photolysis mechanism was the only accepted reaction process by which chlorofluoromethanes could be destroyed at significant rates in the stratosphere.

$$CFC1_3 + hv \rightarrow CFC1_2 + C1$$

 $CF_2C1_2 + hv \rightarrow CF_2C1 + C1$

Attention was primarily focused on the formation of the chlorine atom since an odd oxygen destruction cycle directly follows.

$$c1 + o_3 \rightarrow c10 + o_2$$

$$c10 + o \rightarrow c1 + o_2$$

However, subsequent reactions of the substituted methyl radicals have neither been included in current kinetic models nor considered in adequate detail. Also, alternate reactions of halides with certain organic compounds, known or suspected to be present in the atmosphere, have not been sufficiently examined. This, in part, is attributed to the lack of absolute rate data since organic reactions characteristically produce wide product distributions and have complex mechanisms.

Further, the destruction of chlorofluoromethanes to form methylene intermediates directly had been overlooked before August 1975,

$$CFC1_3 + hv + CFC1 + 2C1$$

 $CF_2C1_2 + hv + CF_2 + 2C1$

when preliminary work by the National Bureau of Standards was presented at the National Meeting of the Americal Chemical Society in Chicago. The consequences of this and/or other probable methylene formation mechanisms would seem to warrant at least as much attention as the methyl radical formation mechanism, since laboratory studies have shown that methylenes, once formed, react very rapidly with a variety of molecules. The author hypothesizes that methylene reactions may constitute important pathways by which chlorofluoromethanes undergo final degradation in the stratosphere.

This report presents the results of an extensive search of the chemical literature published between 1953 and July 1975, and includes a comprehensive tabulation and analysis of experimentally measured homogeneous gas-phase kinetic data for fluorine and simple hydrocarbon compounds. The report includes reactions from references 1 through 159, indicates which rate data appear acceptable and which rate data should be obtained, and proposes research that appears needed to elucidate important processes that may occur in the stratosphere.

The tabulation of reactions is grouped into sections based on primary reactants. Some of the reactions listed are not balanced because the references did not specify a complete product list or a consistent mechanism. A key is provided to aid the reader in determining which reactions are elementary reactions(E), balanced overall reactions(O), or unbalanced overall reactions(ONB). The reactions are grouped as follows:

Key Reaction

Chlorine and Fluorine Reactants

E 1.
$$F + F + M \rightarrow F_2 + M$$
 $M = Ar, F_2, HF, F, H_2O, H_2, O_2,$
H, O, OH

0 2.
$$F_2 + Cl_2 + M \rightarrow 2C1F + M$$

E 3.
$$F + C1_2 \rightarrow C1 + C1F$$

E 4.
$$F_{2} + C1 + C1F + F$$

E 5.
$$F + HC1 \rightarrow C1F + H$$

E 6.
$$F + C1F \rightarrow C1F_2$$

0 7.
$$C1F_3 + C1_2 \rightarrow 3C1F$$

0 8.
$$F_2 + C1F \rightarrow C1F_3$$

$$0 9. F_2 + C1F_3 + M \rightarrow C1F_5 + M$$

ONB 10.
$$O_2 + C1F + M \rightarrow O_3$$
 $M = Ar$

ONB 11.
$$C1_2 + F_2 + O_2 \rightarrow C1F_3O$$

0 12.
$$2C1F_3 + O_2 \rightarrow 2C1F_3O$$

E 13.
$$F_2 + C10_2 \rightarrow FC10_2 + F$$

ONB 14.
$$F_2 + Cl_2 \rightarrow Cl_F + Cl_3 + Cl_2$$

E 15.
$$F_2 + IF_5 \rightarrow IF_7$$

E 16. F + PH₃
$$\rightarrow$$
 HF + PH₂

Hydrogen, Fluorine, Oxygen Reactants

E 17.
$$H + F_2 \rightarrow HF + F$$

E 18.
$$F + H_2 \rightarrow HF + H$$

E 19.
$$H + F + M \rightarrow HF + M$$
 $M = Ar, F_2, HF, F, H_2O, H_2, O_2,$
H, OH, O

E 20.
$$H + O + M \rightarrow OH + M = F_2$$
, HF, F

E 21.
$$H + OH + M \rightarrow H_2O + M = F_2$$
, HF, F

E 22.
$$0 + 0 + M \rightarrow 0_2 + M = F_2$$
, HF, F

E 23.
$$H + H + M \rightarrow H_2 + M = F_2$$
, HF, F

Fluorine, Nitrogen, Oxygen, Hydrogen Reactants

0 24.
$$F_2 + 2NO + M \rightarrow 2FNO + M$$

ONB 25.
$$F_2 + FNO_3 + F_2 + FNO_2 + O_2$$

0 26.
$$F_2O + NOF \rightarrow NO_2F + F_2$$

o 27.
$$2FNO_3 \rightarrow 2FNO_2 + O_2$$

$$0 28. F_2 + 2NO_2 \rightarrow 2FNO_2$$

0 29.
$$F_2 + N_2 O \rightarrow OF_2 + N_2$$

E 30.
$$NF_2 + F + M \rightarrow NF_3 + M$$

E 31.
$$o_2(a^1\Delta) + NF(a^1\Delta) \rightarrow o_2(x^3\Sigma^-) + NF(b^1\Sigma^+)$$

0 32.
$$NF_2(^2B_1) + H \rightarrow HF(v-2) + NF(b^1\Sigma^+)$$

E 33.
$$F + NH_3 \rightarrow HF + NH_2$$

E 34. FO + FO
$$\rightarrow$$
 2F + O₂

E 35.
$$F + O_3 \rightarrow OF + O_2$$

0 36.
$$F_2O + 2F_2SO \rightarrow F_4SO + F_2SO_2$$

0 37.
$$F_2 + F_2 SO \rightarrow F_4 SO$$

Carbon, Hydrogen, Oxygen Reactants

0 38.
$$CO + O + M \rightarrow CO_2 + M$$

E 39.
$$co + oh \rightarrow co_2 + h$$

ONB 40. F + CO₂ + M
$$\rightarrow$$
 CF₃OF + $\frac{1}{2}$ O₂ + M

ONB 41.
$$F_2 + CO + O_2 \rightarrow COF_2 + CO + (FCO)_2O_2$$

0 42.
$$5CH_2O + 6O \rightarrow 3H_2 + 3CO + 2H_2O + 2CO_2 + O_2$$

0 43.
$$CH_2O + OH \rightarrow CHO + H_2O$$

ONB 44.
$$CF_2O + F_2 \rightarrow CF_3OF + CF_3OOCF_3$$

0 45.
$$2CH_3O_7 \rightarrow 2CH_3O + O_2$$

E 46.
$$CH_3O + O_2 \rightarrow CH_2O + HO_2$$

E 47.
$$CH_3O + NO \rightarrow CH_2O + HNO$$

E 48.
$$CH_3O + NO_2 \rightarrow CH_3ONO_2$$

0 49.
$$CH_3 + CH_3CHO + CH_4 + CH_3CO$$

E 50.
$$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$$

E 51.
$$CH_4 + OH \rightarrow CH_3 + H_2O$$

E 52.
$$O + CH_{\Delta} \rightarrow OH + CH_{3}$$

Miscellaneous Reactants

E 53.
$$CH_3 + H_2S \rightarrow CH_4 + SH$$

E 54.
$$CF_3 + H_2S \rightarrow CHF_3 + SH$$

0 55.
$$3CH_4 + 6CF_3 \rightarrow C_2F_6 + CF_3CH_3 + 3CHF_3 + C_2H_6$$

E 56.
$$CF + F + M \rightarrow CF_2 + M$$

Carbon-Carbon Double Bond Reactant

ONB 57.
$$O + CH_2 = CH_2 \rightarrow CH_2O + CH_4 + CH_3CHO + CO + H_2 + O_2$$

ONB 58. 40 +
$$4CF_2 = CF_2$$
 + $3CF_2O + C_2F_4O^* + 2^1CF_2 + CF_2O_2$

onb 59.
$$o(^{3}P) + CF_{2} = CFC1 \rightarrow CF_{2}O + CFC1O + CF_{2} + CFC1$$

ONB 60.
$$O(^{3}P) + CF_{2} = CC1_{2} \rightarrow CF_{2}O + CC1_{2}O + CF_{2} + CC1_{2}$$

ONB 61.
$$F_2 + O_2 + CC1_2 = CC1_2 + CC1_2 FCOC1 + CC1_3 COC1 + CC1_2 O$$

0 62.
$$3CH_2=CH_2 + 5CCl_3Br \rightarrow CCl_3CH_2CH_2Br + 2CCl_3CCl_3 + 2CH_2BrCH_2Br$$

0 63.
$$3CHF=CH_2 + 5CCl_3Br \rightarrow CCl_3CHFCH_2Br + 2CHFBrCH_2Br + 2CCl_3CCl_3$$

0 64.
$$3CH_2 = CHF + 5CCl_3Br \rightarrow CCl_3CH_2CHFBr + 2CHFBrCH_2Br + 2CCl_3CCl_3$$

0 65.
$$3CH_2=CF_2 + 5CCl_3Br + CCl_3CH_2CF_2Br + 2CH_2BrCF_2Br + 2CCl_3CCl_3$$

0 66.
$$3CH_2=CF_2 + 5CCl_3Br + CCl_3CF_2CH_2Br + 2CH_2BrCF_2Br + 2CCl_3CCl_3$$

0 67.
$$3\text{CHF}=\text{CF}_2 + 5\text{CCl}_3\text{Br} \rightarrow \text{CCl}_3\text{CHFCF}_2\text{Br} + 2\text{CHFBrCF}_2\text{Br} + 2\text{CCl}_3\text{CCl}_3$$

- 0 68. $3\text{CHF=CF}_2 + 5\text{CCl}_3\text{Br} \rightarrow \text{CCl}_3\text{CF}_2\text{CHFBr} + 2\text{CHFBrCF}_2\text{Br} + 2\text{CCl}_3\text{CCl}_3$
- o 69. $3CF_2=CF_2+5CC1_3Br \rightarrow CC1_3CF_2CF_2Br + 2CF_2BrCF_2Br + 2CC1_3CC1_3$

ONB 70.
$$CF_2 = CF_2 + O = N = F$$
 $\xrightarrow{F_2}$ $\xrightarrow{F_2}$ $\xrightarrow{F_2}$ $\xrightarrow{F_2}$ $\xrightarrow{F_2}$ $\xrightarrow{F_2}$ $\xrightarrow{F_2}$ $\xrightarrow{F_2}$

Carbon-Carbon Single Bond Reactant

o 71.
$$\frac{7}{2}$$
 F₂ + $\frac{5}{2}$ Cl₂ + 6CCl₂=CCl₂ \rightarrow C₂Cl₆ + 2CCl₂FCCl₂F + 3CCl₂FCCl₃

0 72.
$$F_2 \rightarrow CF_2 + CX_2 = CX_2$$
 $X = C1$, Br, I

o 73.
$$c_3H_8 + M \rightarrow CH_3 + c_2H_5 + M$$

0 74.
$$3C_2H_5Br \rightarrow C_2H_4 + 3HBr + C_2H_5 + C_2H_3$$

E 75.
$$C_2H_6 + F \rightarrow HF + C_2H_5$$

E

76.
$$C_2H_6 + Br \rightarrow C_2H_5 + HBr$$

E 77.
$$C_2H_5F + Br \rightarrow CH_3CHF + HBr$$

E 78.
$$CH_3CHF_2 + Br \rightarrow CH_3CF_2 + HBr$$

E 79.
$$CH_3CF_3 + Br \rightarrow CH_2CF_3 + HBr$$

E 80.
$$CHF_2CHF_2 + Br \rightarrow CHF_2CF_2 + HBr$$

E 81.
$$CF_3CH_2F + Br \rightarrow CF_3CHF + HBr$$

E 82.
$$CF_3CHF_2 + Br \rightarrow CF_3CF_2 + HBr$$

0 83.
$$2CC1F_2CC1F_2 + F_2 \rightarrow 2CC1F_2CF_3 + 2C1F$$

0 84.
$$CF_3CC1F_2 + F_2 + C_2F_6 + C1F$$

o 85.
$$4\text{CCl}_3\text{CHCl}_2 + \text{Cl}_2 + 2\text{O}_2 \rightarrow \text{C}_2\text{Cl}_6 + 2\text{CCl}_3\text{COCl} + 2\text{COCl}_2 + 4\text{HCl}$$

0 86.
$$CC1_3CHC1_2 + F_2 \rightarrow HF + CC1_3CC1_2F$$

Methane and Substituted Methane Reactants

E 87.
$$F + CHF_3 \rightarrow HF + CF_3$$

$$88. F_2 + CHF_3 + CF_4 + HF$$

E 89. Br + CHF₃
$$\rightarrow$$
 HBr + CF₃

E 90. F + CHC1F₂
$$\rightarrow$$
 HF + CC1F₂

E 91.
$$F + CHC1_3 \rightarrow HF + CC1_3$$

E 92. F + CHC1₂F
$$\rightarrow$$
 HF + CC1₂F

E 93.
$$F + CH_2F_2 \rightarrow HF + CHF_2$$

E 94. Br +
$$CH_2F_2 \rightarrow HBr + CHF_2$$

E 95.
$$F + CH_2C1_2 \rightarrow HF + CHC1_2$$

E 96. F +
$$CH_3F \rightarrow HF + CH_2F$$

E 97. Br +
$$CH_3F$$
 + HBr + CH_5F

E 98. F +
$$CH_3C1 \rightarrow HF + CH_2C1$$

0 99.
$$6F_2 + 5CH_3I \rightarrow 2CH_2F_2 + 2CH_3F + I_2 + 3HF + CH_2IF + IF$$
+ IF

E 100.
$$F + CH_4 \rightarrow HF + CH_3$$

E 101. Br +
$$CH_4 \rightarrow CH_3 + HBr$$

0 102.
$$3CC1_4 + 6H + 2H_2 \rightarrow 6HC1 + CH_2C1_2 + CHC1_3 + CHC1$$

E 103. F +
$$CCl_4 \rightarrow CCl_3 + ClF$$

0 104.
$$F_2 + CC1_4 + CC1_3F + C1F$$

0 105.
$$F_2 + CFC1_3 \rightarrow CF_2C1_2 + C1F$$

0 106.
$$F_2 + CF_2C1_2 \rightarrow CF_3C1 + C1F$$

0 107.
$$CF_3C1 + F_2 \rightarrow CF_4 + C1F$$

E 108.
$$CF_{\Delta} + M \rightarrow CF_{3} + F + M$$

0 109.
$$CF_3Br + F \rightarrow CF_4 + Br$$

E 110.
$$CF_3Br + F \rightarrow BrF + CF_3$$

0 111.
$$F + CCl_3Br + CFCl_3 + Br$$

0 113.
$$F + CF_3I \rightarrow CF_L + I$$

0 114.
$$F + CF_3I \rightarrow IF + CF_3$$

Methyl Radical Reactant

E 115.
$$CF_3 + M \rightarrow CF_2 + F + M$$
 $M = Ar$

E 116.
$$CF_3 + CF_3 + M \rightarrow C_2F_6 + M$$
 M = Ar

E 117.
$$CH_3 + CH_3 \rightarrow C_2H_6$$

E 118.
$$CF_3 + F + M \rightarrow CF_4 + M$$

0 119.
$$CHFC1_2 + O_2 \rightarrow CO_2 + HF + 2C1$$

E 120.
$$CH_3 + NO \rightarrow CH_3NO$$

E 121.
$$CH_3 + NO_2 \rightarrow CH_3NO_2$$

E 122.
$$CH_3 + CH_3NO \rightarrow (CH_3)_2NO$$

0 123.
$$2CHF_2C1 \rightarrow 2HC1 + C_2F_4$$

E 124.
$$CF_3 + CF_3 \rightarrow C_2F_6$$

E 125.
$$CH_3 + CH_3F \rightarrow CH_4 + CH_2F$$

E 126.
$$CH_3 + CH_3Br + CH_3Br + CH_3$$

E 127.
$$CH_3 + CH_3I \rightarrow CH_3I + CH_3$$

E 128.
$$CH_3 + CH_2F_2 \rightarrow CH_4 + CHF_2$$

E 129.
$$CH_3 + CH_2C1Br + CH_3 + CH_2C1$$

E 130.
$$CH_3 + CH_2C1I \rightarrow CH_3I + CH_2C1$$

E 131.
$$CH_3 + CF_2Br_2 \rightarrow CH_3Br + CF_2Br$$

E 132.
$$CH_3 + CHF_3 \rightarrow CH_4 + CF_3$$

0 133. 3CHCl₃
$$\rightarrow$$
 CCl₄ + 3HCl + CCl₂=CCl₂

E 134.
$$CH_3 + CHCl_2Br \rightarrow CH_3Br + CHCl_2$$

E 135.
$$CH_3 + CBr_4 \rightarrow CH_3Br + CBr_3$$

E 136.
$$CH_3 + CC1_4 \rightarrow CH_3C1 + CC1_3$$

E 137.
$$CH_3 + CCl_3Br \rightarrow CH_3Br + CCl_3$$

E 138.
$$CH_3 + CF_3I \rightarrow CH_3I + CF_3$$

E 139.
$$CF_3 + CH_3Br \rightarrow CF_3Br + CH_3$$

E 140.
$$CH_3 + C_2H_5I \rightarrow CH_3I + C_2H_5$$

Methylene Reactant/Product

0 141.
$$CH_2CO \rightarrow CH_2 + CO$$

o 142.
$$CH_2N_2 \rightarrow {}^{1}CH_2 + N_2$$

E 143.
$$CF_2 + M \rightarrow CF + F + M$$

o 144.
$$5\text{CH}_4 \rightarrow {}^3\text{CH}_2 + 2\text{CH}_3 + 3\text{H}_2 + \text{C}_2\text{H}_6$$

E 145.
$$CF_2 + CFC1 \rightarrow CF_2CFC1$$

E 146.
$$2CF_2 \rightarrow C_2F_A$$

0 147.
$$3H + 7CH_2N_2 + H_2 \rightarrow C_2H_4 + 2CH_4 + CHN_2 + C_2H_6 + 6N_2$$

E 148.
$$CF_2 + F + M \rightarrow CF_3 + M$$

0 149.
$$5CH_2CO + 4H_2 \rightarrow C_2H_6 + 5CO + C_2H_4 + CH_4 + 4H$$

E 150.
$${}^{1}CH_{2} + CH_{4} \rightarrow C_{2}H_{6}$$

SYMBOLS

- A frequency factor in rate constant; has same units as rate constant
- D dissociation energy of a specific bond

- e electron
- E activation energy of the reaction; units are cal/mole unless otherwise noted
- EPR electron paramagnetic resonance spectroscopy
- ESR electron spin resonance spectroscopy
- ΔG Gibb's free energy of reaction
- GC gas chromatography
- GLPC gas liquid phase chromatography
- h Plank's constant
- ΔH enthalpy of reaction
- ΔH_{f}^{O} enthalpy of formation at 298° K
- I incident intensity of light
- IR infrared spectroscopy
- J photon flux, photons/sec-cm²
- k rate constant in units of centimeters, molecules, and seconds (cm, mol, s)
- k_b Boltzmann constant
- M inert gas; collisional deactivator in a reaction

- MS mass spectrometry
- NMR nuclear magnetic resonance spectroscopy
- P pressure in torr
- R universal gas constant (1.987 cal/mole-OK)
- r rotational quantum number
- rds rate determining step in a mechanism
- ΔS entropy of reaction
- T temperature in degrees Kelvin
- t translational quantum number
- ΔU internal energy of reaction in kcal/mole
- UV ultraviolet spectroscopy
- v vibrational quantum number
- VPC vapor phase chromatography
- λ wavelength in Angstroms
- γ collisional efficiency
- # activated complex
- [] concentration in moles/liter

molecule in excited state

KINETIC THEORY OF REACTIONS

The kinetic theory which forms the foundation for rate constant expressions is briefly outlined below to aid the reader in interpreting the contents of table 1.

Thermal reactions are those reactions that proceed by applying heat in the absence of external UV-visible radiation effects. They are primarily ground state processes; that is, initially both the reactants and products are mainly in their ground electronic and usually lower vibrational-rotational levels.

The simplest type of thermal reaction is the elementary reaction which may be unimolecular, bimolecular, or termolecular. Unimolecular or first order elementary reactions occur when a molecule in an excited state breaks apart to form one or more different species or products. Bimolecular or second order elementary reactions consist of two molecules or reactants colliding in a single step to form one or more products. Third order or termolecular elementary reactions have three reactants colliding in a single step to form one or more products that are different from the reactants. The products may be different compounds or the same compounds as the reactants but in different quantum states.

A collection of elementary reactions comprises a mechanism. A mechanism is postulated, based on experimentally determined data; it may or may not actually describe the correct way in which the molecules react in elementary reactions. For a one step mechanism, the elementary reaction is equal to the total reaction, and the order and the molecularity of the reaction are equivalent. However, when more than one elementary reaction describes the total reaction, it is no longer proper to speak of molecularity; when it is possible to express the empirical rate law in the form

rate =
$$k[A]^m[B]^n$$

the order of the reaction is the sum of exponents in the rate equation. The rate constant, k, has units that reflect the order of the reaction. A first order reaction rate constant has the units of s^{-1} , a second order reaction has the units of cm²/mol-s, and the units of a third order reaction are cm⁶/mol²-s.

The rate constant appearing in the rate equation may be formulated in several ways. It is common practice to express observed or empirical rate constants in the Arrhenius form,

$$k = A \exp \left(-\frac{E_a}{RT}\right)$$

where A is the frequency factor and E_a is the activation energy. The activation energy is approximately equal to the energy difference between the reactants in an average quantum state and the transition state, the top of the average potential energy barrier along the reaction coordinate. When a complex mechanism is used to describe the reaction, the activation energy for the total reaction is some combination of the activation energies for the elementary reactions.

Transition state theory, applicable to bimolecular and termolecular reactions, is a theory generally used to predict rate constants rather than evaluate experimental data. The transition state or activated complex is defined as those configurations that occur at the top of a potential energy barrier along the reaction coordinate. The rate constant for a bimolecular reaction between two nonlinear polyatomic reactants A (comprised of $n_{\rm b}$ atoms) and B (comprised of $n_{\rm b}$ atoms) is

$$k = \left(\frac{k_b T}{h}\right) \frac{f_t^{\neq} f_v^{\neq} f_v^{\neq}}{f_{t,A} f_{r,A} f_{v,A} f_{t,B} f_{r,B} f_{v,B}} \exp \left(-\frac{E_o}{RT}\right)$$

where f_t , f_r , and f_v are the statistical mechanical partition functions for translation, rotation, and vibration, respectively, and E_o is the difference between the ground state energy levels of the initial and transition states. The partition functions, $f_{v,A}$ and $f_{v,B}$, are evaluated for 3n-6 vibrational degrees of freedom while f_v^f is evaluated for 3n-7 degrees of freedom. The 3n-7 degrees of vibrational freedom in the transition state result because

the theory treats one vibrational degree of freedom as a translation along the reaction coordinate.

The transition state may be described by thermodynamic quantities. 56 The free energy of activation, ΔG^{\dagger} , and the enthalpy of activation, ΔH^{\dagger} , may be used to write down the entropy of activation

$$\Delta S^{\neq} = \frac{\Delta H^{\neq} - \Delta G^{\neq}}{T}$$

The empirical activation energy is related to the enthalpy of activation by

$$\Delta H^{\neq} = E_a - nRT$$

where n is the molecularity of the reaction. When a detailed temperature dependence of the rate constant for a gas-phase reaction is known, such as

$$k = A T^m \exp \left(-\frac{E_o}{RT}\right)$$

 E_o and E_a may be related by

$$E_a - E_o = mRT$$

and

$$\Delta H^{\neq} = E_0 + (m-n)RT$$

The activation energies for the forward and reverse processes are also related to the enthalpy by

$$\Delta H = E_{a,f} - E_{a,r}$$
.

Unimolecular reactions are treated by employing the Lindemann-Hinshelwood mechanism:

$$A + M \rightarrow A^* + M$$

$$A^* + M \rightarrow A + M \qquad 2)$$

$$A^* \rightarrow B + C$$
 . 3)

Step 3 is a true unimolecular reaction. The rate of disappearance of A is expressed as

$$\frac{d[A]}{dt} = -k_1[A][M] + k_2[A^*][M]$$

the rate of intermediate formation as

$$\frac{d[A^*]}{dt} = k_1[A][M] - k_2[A^*][M] - k_3[A^*]$$

and the rate of product formation as

$$\frac{d[B]}{dt} = \frac{d[C]}{dt} = k_3[A^*]$$

When the steady state approximation, $\frac{d[A^*]}{dt} = 0$, is applied, then the equations reduce to

$$[A^*] = \frac{k_1[A][M]}{k_2[M] + k_3}$$

$$-\frac{d[A]}{dt} = \frac{d[B]}{dt} = \frac{d[C]}{dt} = \frac{k_1 k_3 [A][M]}{k_2 [M] + k_3}.$$

Taking the high pressure limit of M, or when M is in high concentration relative to A, B, and C, $k_2[M] >> k_3$, and the equations reduce to

$$-\frac{d[A]}{dt} = \frac{d[B]}{dt} = \frac{d[C]}{dt} = \frac{k_1 k_3 [A]}{k_2}$$

Conversely, when M is in low concentration, that is $k_3 \gg k_2[M]$, then

$$-\frac{d[A]}{dt} = \frac{d[B]}{dt} = \frac{d[C]}{dt} = k_1[A][M] .$$

The rate constants obtained from the application of the Lindemann mechanism are qualitatively correct but quantitatively poor. Much more accurate treatments of unimolecular reactions have resulted from the treatment of the data with the Rice, Ramsberger, Kassel, and Marcus (RRKM) theory; this theory looks at individual rate constants as functions of the molecular energy.

Photochemical reactions are those reactions which proceed when light of a specific wavelength range is absorbed and a reactive state/specie is produced. The reactions generally occur at a much lower temperature than if light were absent, and, by definition, may involve radicals or molecules in excited states.

$$A + hv \rightarrow A^* \rightarrow products$$

Evaluation of rate constants for these reactions involves an application of Beer's law,

$$I_a = I_o (1 - \exp(-\beta Nd))$$

where I_a is the absorbed intensity and I_o is the incident intensity of light, β is the molecular absorption coefficient, d is the thickness of the sample, and N is the number of molecules per cubic centimeter. The rate constant for an elementary photolytic reaction is expressed in terms of a quantum yield,

$$\Phi = \frac{\text{number of molecules formed}}{\text{number of quanta absorbed}}$$
,

while the overall rate constant is a function of both light intensity and the concentrations of reactants and products.

METHYLENE

Methylene, also called carbene, is a reactive intermediate in many chemical reactions. The simplest methylene, CH₂, is a diradical which may exist either as a triplet, ³CH₂, having two unpaired electrons, or as a singlet, ¹CH₂, where the electrons are paired. Numerous theoretical calculations on CH₂ have shown that the triplet is the ground state, and there is an energy difference of only a few kilocalories between the ground state triplet and the first excited state singlet. ⁸⁵

Carbenes are primarily formed in two ways, 101 by α -elimination and by disintegration of a double bond. In α -elimination, a carbon loses a group without its electron pair and then a group with its pair, usually a halide ion:

$$R \xrightarrow{\stackrel{\leftarrow}{\downarrow}} C1 \xrightarrow{-H^+} R \xrightarrow{\stackrel{\leftarrow}{\downarrow}} C1 \xrightarrow{-C1^-} R \xrightarrow{\stackrel{\leftarrow}{\downarrow}} C$$

R is any other substituent. In most cases of α -elimination, the positive

group is lost first, followed by a negative group; however, it is possible for the negative group to be removed first or for both groups to be removed simultaneously.

Carbenes may also be formed when a double bond disintegrates; each doubly bonded atom retains an electron pair:

$$R = C = C + R + R + R + C = R$$

The two most important ways of generating carbenes, the photolysis of ketene and diazomethane, are formed in this way:

$$CH_2=C=0$$
 $\xrightarrow{h\nu}$ $:CH_2 + CO$
 $CH_2=N=N$ $\xrightarrow{h\nu}$ $:CH_2 + N_2$.

The reactions of carbenes are quite different from the reactions of other intermediates, eations, anions, and radicals. While recombination is an important reaction of radicals such as the methyl radical, it is a relatively unimportant reaction of carbenes. This is true because, when both radicals and carbenes are in the presence of stable molecules and reactive species, carbenes are more reactive; thus the mean lifetimes are much shorter, and the probability of recombination is reduced.

Important reactions of carbenes are abstraction, insertion, and addition to a double bond. Methylene can abstract a hydrogen atom to yield free radicals,

$$: \operatorname{CH}_2 + \operatorname{CH}_3 \operatorname{CH}_3 \rightarrow : \operatorname{CH}_3 + \operatorname{CH}_3 \operatorname{CH}_2 .$$

The insertion reaction,

occurs in competition with the abstraction reaction for the homogeneous gas phase reactions surveyed in table 1; workers have reported that abstraction predominates over insertion in all cases. Thus, the insertion reaction is more difficult to study, and more than one product is formed in methylene reactions.

The products formed when methylene adds to a double bond depend upon whether methylene is a triplet or a singlet. In the reaction of the singlet,

both electron pairs move simultaneously, resulting in retention of the configuration of the substituents around the original carbons forming the double bond. On the other hand, since the electrons in the triplet methylene are unpaired and cannot both form one covalent bond, the electrons do not move simultaneously, and the configuration about the double bond is not retained. For example,

The reactivities of methylenes decrease with increasing substitution in the order of $\mathrm{CH_2} > \mathrm{CHC1} > \mathrm{CCl_2} > \mathrm{CHF} > \mathrm{CF_2}$. The ground state multiplicities also change when substituted carbenes are compared with unsubstituted methylene: the ground state of $\mathrm{CH_2}$ is a triplet while the ground state of $\mathrm{CF_2}$ is believed to be a singlet.

REACTION RATE DATA

Table 1 is a compilation of experimentally determined rate data. The data are limited to the temperature and wavelength ranges that occur in the troposphere and stratosphere ($T \le 400^{\circ}$ K, $\lambda \ge 1200^{\circ}$ A). They do not include reactions with a carbon chain length greater than two or reactions that require unusual, liquid, or solid phase catalysts. Unless

otherwise stated, all data follow Arrhenius kinetics; that is, the rate constant is expressed in the form

$$k = A \exp(-E_a/RT)$$
.

Those references that include a wavelength are photolytic reactions; that is, they require either photolytic activation to produce the reactants or photolytic energy to overcome an energy barrier of an elementary reaction in the mechanism. All studies utilizing a shock tube are investigations of reactions occurring thermally. Further, an elementary reaction in a mechanism is photolytically induced only when light energy (hv) specifically appears in the step. No attempt was made to correct any obvious errors in the kinetic data reviewed in table 1. However, all rate data were transformed into consistent concentration units to aid in comparing rate data of several authors. All error limits noted are those stated in the references. When thermodynamic enthalpy is noted, a negative sign indicates exothermicity.

rate = $k[F]^2[M]$ $k = \frac{1.60 \times 10^{-32}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$ $k = \frac{1.6 \times 10^{-32}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$ $k = \frac{3.2 \times 10^{-32}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$ $k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$ $k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$ $k = \frac{1.3 \times 10^{-31}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$ $k = \frac{2.1 \times 10^{-31}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$	$M = Ar$, T in K $M = F_2$ $M = HF$ $M = F$ $M = H_2O$ $M = H_2$
$k = \frac{1.6 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{3.2 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{1.3 \times 10^{-31}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$	$M = F_2$ $M = HF$ $M = F$ $M = H_2O$
$k = \frac{3.2 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{1.3 \times 10^{-31}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$	M = HF M = F M = H ₂ 0
$k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{1.3 \times 10^{-31}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$	$M = F$ $M = H_2 O$
$k = \frac{6.4 \times 10^{-32}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{1.3 \times 10^{-31}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$	M = H ₂ 0
$k = \frac{1.3 \times 10^{-31}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$	
	$M = H_2$
$k = \frac{2.1 \times 10^{-31}}{2.1 \times 10^{-31}} \text{cm}^{6} / \text{mol}^{2} = 10^{-31}$	i
	M = 0 ₂
$k = \frac{3.2 \times 10^{-31}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$	M = H
$k = \frac{6.4 \times 10^{-31}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$	M = 0
$k = \frac{6.4 \times 10^{-31}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = OH
k_{295}° = 8.02x10 ⁻³⁵ cm ⁶ /mol ² -s	M = Ar
$-\frac{d[F]}{dt} = 2k[F]^2[M] + k_{wall}[F]$	Error in rate constant is ± factor of 2
	$k = \frac{6.4 \times 10^{-31}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k = \frac{6.4 \times 10^{-31}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $k_{295}^{\circ} \text{ k} = 8.02 \times 10^{-35} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$

Table 1.- Continued

1.	$F + F + M \rightarrow F_2 + M$ (continued)		
T	15 15 15 15.	Rate Data	Comments
Ref.	Kinetic Methods	nate Data	Considera
110	Shock tube	$A = 4.03 \times 10^{-37} \text{ cm}^{6} / \text{mol}^{2} - \text{s}$	M = Ar
Modica, et. al.	$T = 2700 - 3000^{\circ} K$	E _n = 12115cal/mole	·
(1968)	Product Detection: UV at 2660 A		
		$A = (1.23 \pm 0.58) \times 10^{-11}$	M = Ar
79 Johnson,	keverse reaction studied Shock tube	A = (1.2,±0.58)x10 cm ³ /mol-s	n = Ar
et. al. (1964)	T = 1300-1600 ⁰ K	E _a = 29.97±3.51 kcal/mole	
	Product analysis: spectro-	a .	
	photometric		
79	Reverse reaction studied	$A = (7.6\pm4.0)x10^{-12}$	M = Ar
Johnson, et. al.	Shock tube	cm ³ /mol-s	
(1964) 131,132	T = 1300–1600 ⁰ K	E _a = 28.49±2.15 kcal/mole	
Seery, et. al.	Product analysis: spectro-		
(1966)	photometric		
39	Reverse reaction studied	$A = (2.3 \pm 2.2) \times 10^{-12}$	M = Ne
Diesen (1966)	Shook tube	cm ³ /mol-s	
	$T = 1650 - 2700^{\circ} K$	E _a = 23.66±1.24 kcal/mole	
	Product analysis: MS		
40	Reverse reaction studied	$A = (3.89\pm4.27)\times10^{-11}$	M = Ne
Diesen (1968)	Shock tube	cm ³ /mcl-s	
	T = 1400-2000 ⁰ K	E _a = 34.39±3.08 kcal/mole	
	Product analysis: MS	A = (6.46±3.55)x10 ⁻¹²	M = Ar
		em ³ /mol-s	
		E _a = 28.68±2.15 kcal/mole	
39	Reverse reaction studied	$A = (2.01\pm2.57)\times10^{-11}$	M = Ne
Diesen (1966)	Shock tube	cm ³ /mol-s	
40 Diesen	Product analysis: MS	E _a = 33.08±1.70 kcal/mole	
(1968)			

Table 1.- Continued

1.	$F + F + M \rightarrow F_2 + M$ (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
132 Seery, al.(196		Efficiency ratio of third bodies: Ne : Ar = 1 : 1.5	
2.	$Cl_2 + F_2 + M + 2CIF + M$		
50 Fletche et. al. (1969)		A = 1.84x10 ⁻² cm ^{3/2} /mcl ^{3/2} -s E _a = 19800 cal/mole rate = k[F ₂][Cl ₂] ^{1/2}	Mechanism ΔH $\frac{(\text{kcal/mole})}{(\text{kcal/mole})}$ 1) $F_2 + M + 2F + M$ 38 2) $F + Cl_2 + ClF + Cl$ -3 3) $Cl + F_2 + ClF + F$ -23 4) $Cl + F + M + ClF + M$ -61 5) $F + F + M + F_2 + M$ -38 6) $Cl + Cl + M + Cl_2 + M$ -58
16 Blauer, et. al. (1971)		E _{a,r} = 12 kcal mole Rate constants determined for some elementary reactions: C1F + N + C1 + F + M A = 1.7x10 ^{-14±3} cm ³ /mol-s E _a = 61300±3000 cal/mole C1 ₂ + M + C1 + C1 + M A = (3.2±2.4)x10 ⁻¹¹ cm ³ /mol-s E _a = (46450±1500) cal/mole	Estimated from Evanz-Polanyi rule Endothermic exchange reactions postulated as part of mechanism

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
Clyne, et. al.	T = 300°K F atoms from microwave discharge	$\Delta U_{298}^{0} = -2.5 \text{ kcal/mole}$ $k = (1.1\pm0.3)\text{xl0}^{-10} \text{ cm}^{3}/\text{mol-s}$	
(1973)	Fast flow reactor		
	Product analysis: MS		
57 Ganguli,	F atoms from microwave discharge	$\Delta H = 3 \pm 2 \text{ kcal/mole}$	Error in rate data is ± factor of 2
et. al. (1974)	Chemiluminescent titration of F ₂ with Cl ₂		
	Teflon flow reactor		
	P = 10-81 torr		
152 Warnatz,	Flow reactor	$A = 9.13 \times 10^{-10} \text{ cm}^3/\text{mol-s}$	
et. al. (1971)	F atoms from microwave discharge Product analysis: MS	E _a = 1400 cal/mole	
4.	F ₂ + Cl + ClF + F		<u></u>
57	P = 10-81 torr	ΔH = -23±2 kcal/mole	Error in rate data is ± factor of 2
Ganguli, et. al.	T = 295 ^o K	k < 1.7x10 ⁻¹⁵ cm ³ /mol-s	
(1974)	Chemiluminescent titration of F_2 with Cl_2		
	Teflon flow reactor		
5.	F + HCl -> ClF + H		
91	Flash photolysis	$k = 2.5 \text{x} \cdot 10^{-1.1} \text{ cm}^3 / \text{mol-s}$	

5. F+	HCl → ClF + H (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
84	Flow system	k ₂₉₈ ° _K = 3.2x10 ⁻¹² cm ³ /mol-s	
Jonathan, et. al. (1971)	Product analysis: IR Chemilum- inescence	E _a = 2.54 kcal/mole	Assumed
	P = 80-100 torr	$A = 2.2 \times 10^{-10} \text{ cm}^3/\text{rhol-s}$	Assumed
115	T = 298 ⁰ K	k ₂₉₈ ° _K = 1.2x10 ⁻¹¹ cm ³ /mol-s	
Pollack, et. al. (1973)	Fast flow reactor		
(1973)	Product detection: GC, MS, IR		
88 Kirsch,	T = 1700 ⁰ K	E _a = 1 kcal/mole (approximate)	HF detection used to deduce rate of reaction 5
et. al. (1972)	HF detection: IR chemilumines- cence	7.9% HCl in v=1 vibrational level	or reaction 5
	F from microwave discharge		
	Vibrational study of		
	F + HC1(v,r,t) +		
	HF(v,r,t,) + C1		
	v = vibrational state		
	r = rotational state		
	t = translational state		
6. CIF	+ F → ClF ₂		
99 100	T ≤ 25°K		Decay at higher temperatures
Mamantov, et al.(1970,	Product analysis: IR F atoms from Hg lamp: λ =		by 2 mechanisms:
1971)	2800-4200 Å		1) ClF ₂ + F → ClF ₃
			2) 2ClF ₂ + ClF + ClF ₃

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
130 Schmit et. al.(194	z, 7)		Quantitative reaction
8. F	2 + ClF → ClF ₃		
126 San Roman, et. al. (1970)	$\lambda = 3650 ^{\circ}\text{A}$ Photolytic reaction $T = 303 - 323 ^{\circ}\text{K}$ $2 + \text{ClF}_3 + \text{M} + \text{ClF}_5 + \text{M}$	With sufficient F ₂ , quantum yield of CIF ₃ = 1.0 mol/photon	Quantum yield is independent of: (1) which reactant absorbs energy (2) added oxygen (3) total pressure (4) ClF ₃ concentration (5) reactant concentration (6) temperature
92 Kreiger, et. al. (1966)	$T = 289-343^{\circ}K$ $\lambda = 3650 \text{ A}$ Product analysis: UV	At 298°K, quantum yield = 0.5 mol/photon $ \frac{d[ClF_5]}{dt} = \frac{k \text{ Jabs}}{\frac{k'[ClF_3]}{[M']} + 1 + \frac{k''}{[M]}} $ $ k = \frac{k_3}{k_3^{+k_4}} $ $ k'' = \frac{k_7^{k_4}}{k_3^{k_6+k_4^{+k_6}}} $ $ k' = \frac{k_4^{k_5}}{k_2^{k_6+k_4^{+k_6}}} $	0 ₂ inhibition Mean lifetime of $ClF_{5}^{*} = 10^{-9}s$ Mechanism: (1) $F_{2} + hv + 2F$ (2) $F + ClF_{3} + M + ClF_{4} + M$ (3) $ClF_{4} + F + ClF_{5}^{*}$ (4) $ClF_{4} + F + ClF_{3} + F_{2}$ (5) $ClF_{5}^{*} + ClF_{3} + 2ClF_{4}$ (6) $ClF_{5}^{*} + M + ClF_{5} + M$ (7) $ClF_{5}^{*} + ClF_{4} + F$

Ref.	Kinetic Methods	Rate Data	Comments
92 (continu	ned)	At 298°K, k=0.50, k'=2.00, k" = 80.	
		Temperature efficiency = -0.97±0.01/10° rise	
		$M' = \gamma_{F_2}^{P_{F_2}} + \gamma_{ClF_5}^{P_{ClF_5}} + \gamma_{x}^{P_{x}}; x \neq ClF_3$	
		γ _{F2} :γ _{C1F5} ;γ _{N2} :γ _{Ne} = 1 : 0.4 : 0.22 : 0.18	
10.	$0_2 + ClF + M \rightarrow 0_3$		
100 Mamantov,	T = 15°K		M = Ar
	$T = 15^{\circ}K$ $\lambda = 2800 - 4200 \text{ Å}$ Product detection: IR		M = Ar Product identification only
Mamantov, et. al. (1971)	λ = 2800 - 4200 Å		
Mamantov, et. al. (1971)	$\lambda = 2800 - 4200 \text{ Å}$ Product detection: IR $21_2 + F_2 + 0_2 + 01F_30$ $\lambda = 1700 - 2967 \text{ Å}$		
Mamantov, et. al. (1971) 11. C 114 Pilipovich, et. al.	$\lambda = 2800 - 4200 \text{ Å}$ Product detection: IR $21_2 + F_2 + 0_2 + 01F_30$ $\lambda = 1700 - 2967 \text{ Å}$		Product identification only
Mamantov, et. al. (1971) 11. Collaboration of the	$\lambda = 2800 - 4200 \text{ Å}$ Product detection: IR $31_2 + F_2 + 0_2 + 01F_30$ $\lambda = 1700 - 2967 \text{ Å}$		Product identification only Product identification
Mamantov, et. al. (1971) 11. C 114 Pilipovich, et. al.	λ = 2800 - 4200 Å Product detection: IR $21_2 + F_2 + 0_2 + C1F_30$ λ = 1700 - 2967 Å T = 213°K Product analysis: IR, UV, vapor		Product identification only Product identification
Mamantov, et. al. (1971) 11. C 114 Pilipovich, et. al. (1972)	λ = 2800 - 4200 Å Product detection: IR Cl ₂ + F ₂ + O ₂ + ClF ₃ O λ = 1700 - 2967 Å T = 213°K Product analysis: IR, UV, vapor pressure, gas density 2ClF ₃ + O ₂ + 2ClF ₃ O λ = 1700 - 2967 Å		Product identification only Product identification

.

Table 1.- Continued

12.	$2C1F_3 + o_2 \rightarrow 2C1F_30$ (continued)		1
Ref.	Kinetic Methods	Rate Data	Comments
			Mechanism:
			1) C1F ₃ ² C1F + F ₂
			2) 0 ₂ + 2 0
			3) C1F + 0 → C10F
			4) Clof + F ₂ + ClF ₃ 0
13.	$F_2 + Clo_2 \rightarrow FClo_2 + F$		
6	T = 227 - 247 °K	$E_a = 8.5 \pm 0.4 \text{ kcal/mole}$	
Aymonino, et. al.	P = 50 - 500 torr	rate = k[F ₂] [C10 ₂]	
(1954)		$k_{227} o_{K} = 3.8 \times 10^{-22} \text{ cm}^{3}/\text{mol-s}$	
		$k_{237} o_K = 8.6 \times 10^{-22} \text{ cm}^3/\text{mol-s}$	
		$k_{247}^{\circ} c_{K} = 1.7 \times 10^{-21} cm^{3}/mol-s$	
14.	$\text{Cl}_2 + \text{F}_2 + \text{ClF}_3 + \text{ClF} + \text{ClF}_2$		
100	T = 14 °K		Stoichiometry dependence observed
Mamantov, et. al.	$\lambda = 2800 - 4200 \text{ Å}$		
(1971)	Product detection: IR		
124 Ruff, et. a1.(1930)		ΔH = 3.3 kcal/mole in liquid phase	ClF ₃ dimerizes in gas phase with non-ideal behavior
15.	$F_2 + IF_5 \rightarrow IF_7$		
49	T = 328.8 - 366.2 °K	rate = $k[F_2][IF_5]$	Table of raw rate data
Fischer, al.(1957)	Vacuum line	E _a = 14 kcal/mole	
	Product detection: pressure meas- urements		

3	16.	F + PH ₃ → HF + PH ₂		
r	Ref.	Kinetic Methods	Rate Data	Comments
	115 Pollack, et. al. (1973)	Fast flow reactor Product analysis: GC, MS, IR	k ≥ 2.2x10 ⁻¹¹ cm ³ /mol-s	
	17.	H + F ₂ → HF + F		
	1 Albright, et. al. (1969) 120 Rabideau, et. al. (1972) 31 Clyne, et. al. (1973)	T = 294 - 565°K Product analysis: molecular beam MS T = 300°K Fast flow reactor Product detection: EPR X-band spectrometer Fast flow reactor Product analysis: MS	$\Delta H = -98 \text{ kcal/mole}$ $A = (2.0\pm0.6) \text{x} 10^{-10} \text{ cm}^3/\text{mol-s}$ $E_a = 2400\pm200 \text{ cal/mole}$ $k = (4.2\pm0.3) \text{x} 10^{-12} \text{ cm}^3/\text{mol-s}$ $k = 2.5 \text{x} 10^{-11} \text{ cm}^3/\text{mol-s}$ $E_a \le 2 \text{ kcal/mole}$ Collisional efficiency = 0.1	Photolytic activation ≤ 100 chain cycles
	18	F + H ₂ → HF + H		
	31 Clyne, et. al. (1973)	T = 300°K F atoms from microwave discharge Fast flow reactor Product analysis: MS	k _{H2} = (2.5±1.25)x10 ⁻¹¹ cm ³ /mol-s	
	75 Homann, et. al. (1970)	Product analysis: MS, gas titration Flow system	A = 2.6x10 ⁻¹⁰ cm ³ /mol-s E _a = 1600 cal/mole	

Table 1.- Continued

18.	$F + H_2 \rightarrow HF + H(continued)$		
Ref.	Kinetic Methods	Rate Data	Comments
91	Flash photolysis	k ₂₉₈ ° _K = 6.3 x 10 ⁻¹¹ cm ³ -mol-s	Deactivation probabilities (P):
Kompa, et. al. (1972)			For HF(v=1) + HF(v=0) $\xrightarrow{v,t}$ 2HF(v=0) P = 2 x 10 ⁻²
			For HF(v=1) + H ₂ (v=0) $\xrightarrow{V_1V_2}$ HF(v=0) P = 3 x 10 ⁻⁵
120	T = 300°K	$k = (6.6 \pm 1.7) \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
Rabideau, et. al. (1972)	Fast flow reactor		
(15/2)	Product determination: EPR X-band spectrometer		
41, 42 Dodonov,	$T = 300 - 400^{\circ} K$	$k = (3 \pm 1) \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
et. al. (1969, 1971)			
52 Foon,	F atoms from microwave discharge	$k_{298} o_{K} = 7.4 \times 10^{-13} \text{ cm}^{3}/\text{mol-s}$	
et. al. (1971)	Static system	$A = 5.12 \times 10^{-13} \text{ cm}^3/\text{mol-s(assumed)}$	
	Product analysis: GC	$E_a = 5.20 \text{ kcal/mole}$	
94 Levy,	T = 395 - 435 °K	Rate decreases with 0 ₂ addition but reaches	Thermal activation
et. al. (1968)	P _{total} = 645 torr	a limiting value at P ₀ = 100 torr Limiting rate law:	Study of 0_2 inhibition of rate
	$P_{0_2} = 85 - 500 \text{ torr}$	$-\frac{d[F_2]}{dt} = k[F_2][H_2]^{1/2}$	Mechanism:
	Product detection: UV, visible		1) $H + F_2 + HF + F = E_a = 5-7 \text{ kcal/mole}$
-		Total E _a = 16.7 kcal/mole	2) $F + O_2 + M \rightarrow F - O - O + M$
ĺ		$H_{f}^{O}(FOO) = 3.5 \text{ kcal/mole}$	3) FOO + $H_2 \rightarrow HF + O_2 + H$
			Light has no effect on rate

Table 1.- Continued

Ref. Kinetic Meth	ods Rate Data	Comments
25 Thermal reaction Cadle,	Limiting rate = k[F][H ₂] ^{1/2}	Mechanism for O ₂ inhibition reaction from data of reference 94:
et. al. (1963)	$k_{\text{overall}} = 4.5 \pm 0.6 \times 10^{-3} \text{s}^{-1}$	1) F + H ₂ → HF + H
		2) $H + O_2 + M \rightarrow HO_2 + M$
		3) $\text{HO}_2 + \text{F}_2 \rightarrow \text{HF} + \text{O}_2 + \text{F}$
		4) $HO_2 + F + HF + O_2$
		5) H + 0 ₂ → 0H + 0
		6) 0 + H ₂ + OH + H
		7) OH + H ₂ → H ₂ O + H
		Reaction 2 predominates below 500°K with large [02]
22 Brokaw (1965)		Mechanism (no O ₂) from data of reference 94:
		$F + H_2 \rightarrow HF + H$ exothermic
		$H + F_2 + \alpha HF^* + (1-\alpha)HF + F$
		exothermic
		HF* + F ₂ → HF + 2F
		HF* + M → HF + M
		$2F + M \rightarrow F_2 + M$
		$M = N_2, H_2$

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
95 Levy, et. al.	$T = 288.2 \pm 0.5^{\circ} K$ Mixtures of H_2 , F_2 , O_2 , H_2	E _{a,3} = 1.5±0.3 kcal/mole	Mechanism: 1) F ₂ + hv → 2F
(1968)	$\lambda = 3130 \text{ Å}$ $I = (1.11 \pm 0.07) \times 10^{17}$	$-\frac{dIF_2I}{dt} = \frac{1}{2} (k_2IF) [H_2] + k_3[H] IF_2I + k_5[F_2] [HO_2I]$	2) F + H ₂ + HF + H 3) H + F ₂ + HF + H
	I _o = (1.11±0.07)x10 ¹⁷ quanta/s	+ x ⁶ [Ł] [HO ⁵]}	4) $H + O_2 + M \rightarrow HO_2 + M$ 5) $HO_2 + F_2 \rightarrow HF + O_2 + F$
		At P = 760 torr, T = 288° K, $\frac{k_3}{k_4}$ = 0.193±0.019	6) $F + HO_2 \rightarrow HF + O_2$
95 Levy,	T = 395 - 435 ^O K	Limiting rate for [0 ₂] >> [F ₂]	O ₂ inhibiton study
et. al. (1968)	Thermal reaction	rate _{lim} = $k[F_2]IH_2]^{1/2}$ Step 1: $E_a = 37 \text{ kcal/mole}$ Step 5: $E_a = 5-6 \text{ kcal/mole}$	Mechanism: $F_2 + M \xrightarrow{k_1} 2F + M$ Other steps same as photolytic reaction steps 2-6 (ref. 95)
		$k_3 = 2.95 \times 10^{-12} \text{ cm}^3/\text{mol-s}$ $k_4 = 2.5 \times 10^{-32} \text{ cm}^6/\text{mol}^2\text{-s}$	
48 Fettis, et. al. (1964)	T = 195 - 351°K F atoms from microwave discharge	Transition state theory used to treat rate date A = 7.83x10 ⁻¹¹ cm ³ /mol-s	
	Product analysis: GC	E _g = 1710 kcal/mole	
		ΔS_t^{\neq} = 6.99 cal/mole ^O K ΔS_r^{\neq} = 4.92 cal/mole ^O K	

Ref.	Kinetic Methods	Rate Data	Comments
9 Bahn, et. al.	Recommended rate constants	rate = k[H][F][M]	T in ^O K
(1969)		$k = \frac{6.9 \times 10^{-30}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = Ar, F ₂
		$k = \frac{1.4 \times 10^{-29}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = HF
		$k = \frac{2.7 \times 10^{-29}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	м = F, H ₂ O
		$k = \frac{5.5 \times 10^{-29}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = H ₂
		$k = \frac{9.0 \times 10^{-29}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = 0 ₂
		$k = \frac{1.4 \times 10^{-23}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = H
		$k = \frac{2.8 \times 10^{-28}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	М = ОН, О
20.	H + O + M + OH + M		
9 Bahn,	Recommended rate constants	rate = k[H][0][M]	T in ^C K
et. al. (1969)		$k = \frac{1.1 \times 10^{-29}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	м = F ₂
		$k = \frac{2.2 \times 10^{-29}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = HF
		$k = \frac{4.4 \times 10^{-29}}{T} \text{ cm}^6 / \text{mol}^2 - \text{s}$	M = F
			1

Table 1.- Continued

21.	H + OH > M - H ₂ O + M		
Ref.	Kinetic Methods	Rate Data	Comments
9 Bahn,	Recommeneded rate constants	rate = k[H][OH][M]	T in ^o K
et. al. (1969)		$k = \frac{3.3 \times 10^{-29}}{T} \text{ cm}^6/\text{mol}^2\text{-s}$	$M = F_2$
		$k = \frac{3.3 \text{x} 10^{-28}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = F
		$k = \frac{1.7 \times 10^{-28}}{T} \text{ cm}^{6}/\text{mol}^{2}-\text{s}$	M = HF
22.	0 + 0 + M + 0 ₂ + M		
9 Bahn,	Recommended rate constants	rate = k[0] ² [M]	T in ^O K
et. al. (1969)		$k = \frac{3.3 \times 10^{-31}}{T} \text{ cm}^{6}/\text{mol}^{2}\text{-s}$	M = F ₂
		$k = \frac{1.3 \times 10^{-30}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$	M = F
		$k = \frac{6.6 \times 10^{-30}}{T} \text{ cm}^6/\text{mol}^2 - \text{s}$	M = HF
23.	H + H + M → H ₂ + M		
9 Bahn,	Recommended rate constants	rate = k[H] ² [M]	T in ^O K
et. al. (1969)		$k = \frac{2.8 \times 10^{-30}}{T} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$	M = F ₂
		$k = \frac{1.1 \times 10^{-29}}{T} \text{ cm}^{6}/\text{mol}^{2}\text{-s}$	M = F
		$k = \frac{5.6 \times 10^{-30}}{T} \text{ cm}^6/\text{mcl}^2\text{-s}$	M = HF

Ref.	Kinetic Methods	Rate Data	Comments
115 Pollack,	Fast flow reactor	$k = 7.75 \times 10^{-35} \text{ cm}^6/\text{mol}^2 - \text{s}$	₩ = Ar
et. al. (1973)	Product analysis: GC, MS, IR		R = radical
(1973)			Wall reactions accounted for
			Mechanism:
			1) F ₂ + NO - FNO + F
			2) $F + NC + M \rightarrow FNC* + M$
			3) FNO* + FNO + hv
			4) FNG* + M → FNO + M
			5) F + R-X → XF + R
			6) R + NC → RNO
1			7) R + F ₂ + RF + F
			3) R + FNO → RF + NC
1			9) R + F + RF
			10) $R + R \rightarrow R_2$
80	Steady flow system	ΔH ^O 298 ^O K = -74.8 kcal.mole	Reaction as chemiluminescent
Johnston, et. al.	Calorimeter	$\Delta H_{\mathbf{r}}(FNO) = -15.8 \text{ kcal/mole}$	Mechanism:
(1959)	T = 294.5 = 299.5 °K	D(F-NC) = 55.4 kcal/mole	1) NO + F ₂ + FNO +F
		Step 1:	2) NO + F + FNO=
		ΔH_{298}^{o} $o_{K} = -19.4$ kcal/mole	3⟩ FNO× → FNC + hv
		Step 4: $\Delta H_{298}^{o} \circ_{K} = -55.4 \text{ kcal/mole}$	4) NO + F + M → FNO + M

Table 1.- Continued

24.	F_2 + 2NO + M \rightarrow 2FNO + M (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
121 Rapp, et. al. (1960)	T = 195-360°K Dilute diffusion flame method Product analysis: Photogra- phic (visible)	E _{a,l} = 1.5 ± 1.0 kcal/mcle A ₁ = lx10 ⁻¹² cm ³ /mol-s	Mechanism: 1) NO + F ₂ → ONF (rate determining step) 2) NO + F → ONF* 3) ONF* + ONF + hv 4) ONF* + M → ONF
25.	$F_2^0 + F_{10}^3 + F_2 + F_{10}^2 + O_2$		
24 Bruna, et. al. (1972)	T = 298 ⁰ K Photolytic reaction; 0 ₂ inhibition λ = 3650 Å	For $F_2NO_3 \rightarrow FO + FNO_3$, $A = 10^{14} s^{-1}$ At $298^{\circ} K$, $k = 4.8 \times 10^{-8} s^{-1}$ At $307^{\circ} K$, $k = 1.8 \times 10^{-7} s^{-1}$ At $317^{\circ} K$, $k = 4.1 \times 10^{-7} s^{-1}$	Mechanism: 1) $F_2O + hv \rightarrow F + FO$ 2) $FO + FNO_3 \rightarrow FNO_2 + F + O_2$ 3) $F + F + M \rightarrow F_2 + M$ 4) $FO + FNO_3 \stackrel{?}{\leftarrow} F_2NO_3$ (unbalanced) 5) $FO + F_2NO_3 \rightarrow FNO_2 + F_2 + O_2$
26	$F_2^0 + NOF \rightarrow NO_2^F + F_2$		
24 Bruna, et. al. (1972)	$\lambda = 3650 \text{ Å}$ $T = 298 \text{ °K}$	Quantum yield < 1 and depends on INC ₂ FJ	NO ₂ F has an inhibiting effect on the rate

27.	2FNO ₃ → 2FNO ₂ + O ₂		
Ref.	Kinetic Methods	Rate Data	Comments
140 Skiens, et. al. (1958) 138 Sicre, et. al. (1962)	T = 373°K Thermal reaction Product analysis: IR, MS, gas density Thermal reaction T = 363 - 383 °K F ₂ catalyzed decomposition	$k_{\infty} = 5.80 \times 10^{13} \text{ exp } (\frac{29700}{\text{RT}}) \text{ s}^{-1}$ At $T = 353^{\circ} \text{K}$, $^{\text{T}}1/2 = 7 \text{ hours}$ $D(\text{F-NO}_2) = 29.7 \text{ keal/mole}$ $E_{a, 2} = 8 \text{ keal/mole}$ Mechanism changes with added NO ₂ Reaction becomes: $FNO_3 + NO_2 + FNO_2 + NO_3$ A = 1.11×10 ⁻⁹ cm ³ /mol-s $E_a = 22.7 \text{ keal/mole}$	Explosive at low pressures Mechanism: 1) $FNO_3 + F + NO_3$ (rate determining step) 2) $NO_3 + NO_3 + 2NO_2 + O_2$ 3) $NO_2 + F + M + FNO_2 + M$ Mechanism: 2) $NO_3 + NO_2 + NO_2 + NO_3 + NO_4 + NO_2$ 3) $NO_3 + NO_4 + 2NO_2$ 4) $2NO_4 + O_2 + 2NO_2$ Mechanism: 1) $FNO_3 + F + NO_3$ 2) $NO_3 + F_2 + NO_2F + OF$ 3) $OF + NO_3F + \frac{1}{2}F_2 + FNO_2 + \frac{1}{2}O_2$
28.	F ₂ + 2NO ₂ → 2FNO ₂		
113 Perrine, et. al. (1953)	T = 300.9°K, 323.6 °K, 343.4 °K Product analysis: optical, absorptiometric	rate = k[NO ₂][F ₂] A = 2.7xl0 ⁻¹² cm ³ /mol-s E _a = 10.47±0.18 kcal/mole	Mechanism: 1) $NO_2 + F_2 + F + FNO_2$ 2) $NO_2 + F + M + FNO_2 + M$

Table 1.- Continued

28.	F ₂ + 2NO ₂ + 2FNO ₂ (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
141 Smardzewski, et. al. (1974)	<pre>λ = 2300-4000 Å Cryogenic matrix study T = 4 K Product analysis: IR , Raman of OF and OF₂</pre>	Net reaction: F ₂ + NO ₂ → NO + OF ₂	Mechanism: 1) $F_2 + hv + 2F$ 2) $NO_2 + hv + NO + O$ 3) $O + F + OF$ 4) $OF + F + OF_2$ 5) $O + F_2 + OF_2$ 6) $OF + hv + OF + F$
29.	$F_2 + N_2 O \rightarrow CF_2 + N_2$		
112 Ogden, et. al. (1967)	T = 4°K Photolysis source: Hg lamp Product detection: IR	D(O-F) ≥ 40 kcal/mole	Mechanism: 1) $F + N_2 0 \rightarrow 0F + N_2$ 2) $0F + F \rightarrow 0F_2$ 3) $0F + F_2 \rightarrow 0F_2 + F$
30.	$NF_2 + F + M \rightarrow NF_3 + M$		
32 Clyne, et. al. (1974)	Discharge flow system Product analysis: MS	ΔU ⁰ ₂₉₈ = -60.5 kcal/mole k ₂₉₈ ° _K = (8.9±3.3)x10 ⁻³¹ cm ⁶ /mol ² -s	
31.	$0_2(a^1 \Delta) + NF(a^1 \Delta) \rightarrow 0_2(X^3 \Sigma^-) + NF(b^1 \Sigma^+)$		
71 Herbelin, et. al. (1973)	Radio frequency descharge	k = 2x10 ⁻¹² cm ³ /mol-s	

32.	$NF_2(^2B_1) + H \rightarrow HF(v - 2) + NF(b^1z^+)$		
Ref.	Kinetic Methods	Rate Data	Comments
71 Herbelin, et. al. (1973)	Radio frequency discharge flow system	k ≅ 2 x 10 ⁻¹³ cm ³ /mol-s	Mechanism: $NF_2(^2B_1) + II \rightarrow HF^* + NF(a^1\Delta)$ $HF(v \stackrel{>}{=} ?) + NF(a^1\Delta) \rightarrow$
			<pre>HF(v - 2) + NF(b¹Σ⁺) Efficient quenchers of HF[*]: HF(0), CO₂, NO Inefficient quenchers of HF[*]: NF(a¹Δ)</pre>
33.	F + NH ₃ → HF + NH ₂		
115 Pollack, et. al. (1973)	Fast flow reactor Product analysis: GC, MS, IR	$k = 5.5 \times 10^{-13} \text{ cm}^3/\text{mol-s}$	
34.	F0 + F0 → 2F + 0 ₂		
32 Clyne, et. al. (1974)	T = 298 ⁰ K Discharge flow system Product analysis: MS	$\Delta U_{298}^{o} {}_{K} = -16.3 \text{ kcal/mole}$ $k_{298}^{o} {}_{K} = (8.5 \pm 2.8) \times 10^{-12} \text{ cm}^{3}/\text{mol-s}$	
35.	$F + O_3 \rightarrow OF + O_2$		
1 <i>5</i> 1 Wagner, et. al. (1972)	Product analysis: MS of OF F from microwave discharge Flow system	A = 2.8 x 10 ⁻¹¹ cm ³ /mol-s E _a = 450 cal/mole	Intermediate reaction: $OF^* \div OF \rightarrow 2F + O_2$ $k \approx 3.3 \times 10^{-11} \text{cm}^3/\text{mol-s}$

Table 1 .- Continued

Ref. Kinetic Methods Rate Data Comments	
Magner, et. al. (1971) Reaction sproduced by microwave discharge Product analysis: MS of OF T = 273 - 293°K $\lambda = 5760 \text{ R}$ Quantum yield at $293^{\circ}\text{K} = 4.6 \times 10^{3} \text{mol/photon}$ Eastricco, et. al. (1962) Reaction 35 is at least 4 times slower than $F + 0.3 + F + 0.2 + 0.3^{\circ}\text{P}$ Long chain lengths postulated to the post of the product at 0.3° rise $\frac{d10.3}{dt} = k J_{abs}$ Temperature coefficient = 1.19/10° rise $\frac{d10.3}{dt} = k J_{abs}$ Wall reactions important slove, et. al. (1958) F = 15-400 torr T = 278 = 293°K Quantum yield = 1.0 mol/hv Rate is: a) independent of reactant of b) independent of temperature	
Wagner, et. al. (1971) It also be a served product by microwave discharge Product analysis: MS of OF T = 273 - 293°K $\lambda = 5760 \text{ Å}$ Quantum yield at $293^{\circ}\text{K} = 203^{\circ}\text{K}$ Quantum yield at $293^{\circ}\text{K} = 203^{\circ}\text{K} = 203^{\circ}\text{K}$ A = 5760 Å T = 273 - 293°K $\lambda = 5760 \text{ Å}$ Quantum yield at $293^{\circ}\text{K} = 203^{\circ}\text{K} =$	
Product analysis: MS of OF 142 Stericco, et. al. (1962) $T = 273 - 293^{\circ}K$ $\lambda = 5760 \text{R}$ Quantum yield at $293^{\circ}K = 4.6 \times 10^{3} \text{mol/photon}$ $E_{a} = 3 \text{kcal/mole}$ $T = 2760 \text{Reaction } 35 \text{is at least } 4 + \text{times slower than } 6 + \text{fol } 6 + $	
Staricco, et. al. (1962) $\lambda = 5760 \text{ Å}$ $\lambda = 300 \text{ Å}$	
times slower than $\frac{1}{3}$ to the state of	
Temperature coefficient = 1.19/10° rise Long chain lengths postulated to the products at 0_3 : T = 318 - 338°K Temperature coefficient = 1.20/10° rise Temperature coefficient = 1.20/10° rise Temperature coefficient = 2.0/10° rise Temperature coefficient = 2.0/10° rise F + $0_3 \rightarrow F + 0_2 + 0(^2P)$ Long chain lengths postulated to generate the products important important important important = 2.0/10° rise F atoms react with decomposi products at 0_3 : $0_3 \rightarrow 0 + 0_2^*$ T = 278 = 293°K Quantum yield = 1.0 mol/hv Rate is: a) independent of reactant of b) independent of coxygen core compositions important = 2.0/10° rise To a single product of temperature coefficient = 1.19/10° rise F + $0_3 \rightarrow F + 0_2 + 0(^2P)$ Long chain lengths postulated to a single product important = 2.0/10° rise F atoms react with decomposi products at 0_3 : $0_3 \rightarrow 0 + 0_2^*$ T = 278 = 293°K Quantum yield = 1.0 mol/hv	
$-\frac{\text{dIO}_3!}{\text{dt}} = \text{k J}_{\text{abs}}$ 137	
137 T = 318 - 338 $^{\circ}$ K Temperature coefficient = 2.0/10 $^{\circ}$ rise Thermal reaction important F atoms react with decomposity products at 0_3 : $0_3 + 0 + 0_2^*$ 36. F ₂ 0 ÷ 2F ₂ S0 + F ₄ S0 + F ₂ S0 ₂ T = 278 = 293 $^{\circ}$ K Quantum yield = 1.0 mol/hv Rate is: a) independent of reactant of b) independent of temperature coefficient = 2.0/10 $^{\circ}$ rise Wall reactions important F atoms react with decomposity products at 0_3 : $0_3 + 0 + 0_2^*$ Quantum yield = 1.0 mol/hv b) independent of oxygen core coefficient = 2.0/10 $^{\circ}$ rise	•
Sicre, et. al. (1958) Thermal reaction $P = 15-400 \text{ torr}$ 36. $F_2 0 + 2F_2 \text{SO} + F_4 \text{SO} + F_2 \text{SO}_2$ Thermal reaction $P = 15-400 \text{ torr}$ 36. $F_2 0 + 2F_2 \text{SO} + F_4 \text{SO} + F_2 \text{SO}_2$ Thermal reaction $O_3 + O + O_2^*$ Quantum yield = 1.0 mol/hv Rate is: a) independent of reactant of b) independent of oxygen correct or condended to the composition of temperature.	
et. al. (1958) Thermal reaction $P = 15-400 \text{ torr}$ Fatoms react with decomposi products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 : $0_3 + 0 + 0_2$ Thermal reaction in the products at 0_3 in the product at	
$P = 15-400 \text{ torr}$ $36. \qquad F_20 + 2F_2S0 + F_4S0 + F_2S0_2$ $27 \qquad \qquad T = 278 = 293^{\circ}K$ $\text{Castellano, et. al. (1964)}$ $\lambda = 3650 \text{ Å}$ $Quantum yield = 1.0 \text{ mol/hv}$ Rate is: $\text{a) independent of reactant of b) independent of coxygen core of independent of temperature.}$	ion
36. $F_2^0 + 2F_2^{SO} + F_4^{SO} + F_2^{SO}_2$ 27	
Castellano, et. al. (1964) $\lambda = 3650 \text{ Å}$ a) independent of reactant of b) independent of oxygen cor c) independent of temperature.	
et. al. λ = 3650 Å a) independent of reactant (1964) b) independent of oxygen cor c) independent of temperature	
b) independent of oxygen cor c) independent of temperatur	oncentrati
"我们就是我们的"我们","我们","我们","我们就是我们的"我们","我们","我们","我们","我们","我们","我们","我们",	entration
No thermal reaction occur	;
	3
Mechanism:	
1) $F_2^0 + hv \rightarrow F + F^0$	
2) $F + F_2SO + F_3SO$	
3) $F_2SO + FO \rightarrow F_2SO_2 + F$	
4) $2F_3SO + F_4SO + F_2SO$	

Ref.	Kinetic Methods	Rate Data	Comments
27 Castellano, et. al. (1964)	$\lambda = 3650 \text{ Å}$ $T = 278 - 293 \text{ °K}$ $T = 323 - 393 \text{ °K}$ Thermal reaction	At T = 293°K. thermal reaction is 20% of photolytic reaction For: P _{F2} < 30 torr, Φ = 1.0 mol/photon P _{F2} = 250 torr, T = 278 °K, Φ = 1.12 mol/photon P _{F2} = 250 torr, T = 293 °K, Φ = 1.28 mol/photon Activation energies for steps in mechanism: E _{a,1} = 12.0 kcal/mole E _{a,3} = 18.0 kcal/mole E _{a,4} = 9.8 kcal/mole E _{a,5} = 0	Mechanism: 1) $F_2 o 2F$ 2) $F + F_2SO o F_3SO$ 3) $F_3SO + F_2 + F_4SO + F$ 4) $2F_3SO o F_4SO + F_2SO$ Independent of pressure Mechanism: 1) $F_2SO + F_2 o F_3SO + F$ 2) $F + F_2SO o F_3SO$ 3) $2F_2SO + F_2 + 2F_3SO$ 4) $F_3SO + F_2 + F_4SO + F$ 5) $2F_3SO + F_4SO + F_2SO$
38.	CO + O + M → CO ₂ + M		
98 Mahan, et. (1961)	High pressure limit al.	$k = 8 \times 10^{-15} \exp\left(-\frac{3700}{RT}\right) \text{cm}^3/\text{mol-s}$	

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
139 Simonaitis et. al. (1972)	λ ≧ 2200 Å N ₂ O diluent gas Product analysis: GC	High pressure: $A^{\infty} = 2.66 \times 10^{-14} \text{ cm}^3/\text{mol-s}$ $E_{a^{\infty}} = 2900 \text{ cal/mole}$ Low pressure: $A_0 = 1.63 \times 10^{-32} \text{ cm}^6/\text{mol}^2\text{-s}$ $E_{a,0} = 4100 \text{ cal/mole}$ $k_0 = k_1$ $k_{\infty} = \frac{k_1 k_2}{k_{\infty} k_{\infty}}$	Mechanism: 1) $O(^{3}F) + CO + M \stackrel{?}{\leftarrow} CO_{2}(^{3}B_{2}) + M$ 2) $CO_{2}(^{3}B_{2}) \stackrel{?}{\leftarrow} CO_{2}(^{1}B_{2})$ 3) $CO_{2}(^{1}B_{2}) + M + CO_{2}(^{1}\Sigma_{g}^{+}) + M$
156 Wilson (1972)	CO + OH + CO ₂ + H	A = 5.1 x 10 ⁻¹³ cm ³ /mol-s E _a = 596 cal/mole	
86 Jubert, et. al. (1969)	F + CO ₂ + M + CF ₃ OF + $\frac{1}{2}$ O ₂ + M T = 353 - 408°K Photochemical reaction λ = 3130, 3650 Å Product analysis: IR, UV, visible	Quantum yield < 0.1 mol/photon E _{a,2} = 10.9±0.3 kcal/mole D(FO-0) = 14±2 kcal/mole third body F ₂ 1.0 0 ₂ 1.0 N ₂ 1.0 CO ₂ 1.5 CF ₃ OF 2.0 SiF ₄ CF ₄ 6.5	Mechanism: 1) $F_2 + hv + 2F$ 2) $F + CO_2 + M + FCO_2 + M$ 3) $FCO_2 + F + CF_3OF + \frac{1}{2}O_2$ (unbalanced 4) $FCO_2 + F_2 + CF_3OF + \frac{1}{2}O_2$ (unbalanced 5) $F + F + M + F_2 + M$ 6) $F \xrightarrow{\text{wall}} SiF_4 + \frac{1}{2}O_2$ 7) $F + O_2 \stackrel{?}{\leftarrow} FO_2$ 8) $FO_2 + F + F_2 + O_2$

41.	$F_2 + CO + O_2 + COF_2 + CO + (FCO)_2O_2$		
Ref.	Kinetic Methods	Rate Dara	Comments
70 Heras, et. al. (1961)	Thermal reaction Product detection: pressure measurements T = 288 - 318°K	$-\frac{dP}{dt} = k(F_2)(CO)$ $A_{rds} = 7.8 \times 10^{-13} \text{ cm}^3/\text{mol-s}$ $E_{a,rds} = 13500\pm1200 \text{ cal/mole}$ Steric factor: $\alpha = 2.8 \times 10^{-3}$ Temperature coefficient = 2.10/10° rise	F ₂ + CO → FCO + F (rate deter- mining step) Chain reaction mechanism
42.	$5\text{CH}_2\text{O} + 6\text{ O} + 3\text{H}_2 + 3\text{CO} + 2\text{H}_2\text{O} + 2\text{CO}_2 + \text{O}_2$		
72 Herron, et. al. (1969)	T = 300°K Flow system Product analysis: MS	k _{300°K} = (1.5±0.4) x 10 ⁻¹³ cm ³ /mol-s	Mechanism: 1) $0 + CH_2O + OH + CHO$ 2) $0 + OH + O_2 + H$ 3) $0 + CHO + CO + OH$ 4) $0 + CHO + CO_2 + H$ 5) $OH + CH_2O + H_2O + CHO$ 6) $CH + OH + H_2O + O$ 7) $H + CH_2O + H_2 + CHO$ 8) $H + CHO + H_2 + CO$
111 Morris, et. al. (1971)	CH ₂ + OH + CHO + H ₂ O T = 353 ^O K Discharge flow system Product analysis: MS	$k = 1.4 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	Error in rate data = ± 25%

Table 1. - Continued

44. C	F ₂ 0 + F ₂ - CF ₃ 0F + CF ₃ 00CF ₃		
Ref.	Kinetic Methods	Rate Data	Comments
96 Lopez, et. al. (1974)	$T = 288 - 353^{\circ}K$ $\lambda = 3650 \text{ M}$ $I_{\circ} = 1 \times 10^{19}$ At $T = 303^{\circ}K$, $\varepsilon_{F_{2}} = 6.61 \times 10^{-5} \text{ torr}^{-1}$	$\Phi_{\mathrm{CF}_{2}0} = \frac{2[\mathrm{CF}_{2}0]}{k + [\mathrm{CF}_{2}0]}$ Quantum yield ≤ 2 mol/photon $E_{a,2} = 6.2 \text{ kcal/mole}$ $E_{a,6} - E_{a,4} = 5 \text{ kcal/mole}$ $E_{a,8} = 0$ $E_{a,9} = 0$ $E_{a,9} = \frac{11\pm 3}{2} \text{ kcal/mole}$ $E_{a,10} = \frac{3}{2} \text{ kcal/mole}$	Mechanism without O_2 inhibition: 1) $F_2 + hv + 2F$ 2) $F + GF_2O + GF_2GF$ 3) $2GF_2OF + (GF_2OF)^*_2$ 4) $(GF_2OF)^*_2 + (GF_2OF)^!_2$ 5) $(GF_2OF)^*_2 + GF_2OF + GF_2O$ 6) $(GF_2OF)^*_2 + GF_2O + (GF_3O)_2 + GF_2O$ 7) $(GF_2OF)^!_2 + 2GF_3OF$ (unbalanced) 8) $F = \frac{\text{wall}}{2} + \frac{1}{2} F_2$ 9) $F + O_2 + FO_2$ 10) $F + FO_2 + F_2 + O_2$ No thermal reaction occurs
45.	$20H_3O_2 + 20H_3O + O_2$		
93 Levy (1972)	$T = 283^{\circ} K$ $\lambda = 3130^{\circ} A$	$k = 2 \times 10^{-15} \text{ cm}^3/\text{mol-s}$	
46.	CH ₃ O + O ₂ → CH ₂ O + HO ₂		
67 Heicklen, et. al. (1968)	Estimated rate data	A = 1.7 x 10 ⁻¹³ cm ³ /mol-s E _a = 6360 cal/mole	

47.	$CH_3O + NO \rightarrow CH_2O + HNO$		
Ref.	Kinetic Method	Rate Dat a	Comments
102 McGraw, et. al. (1969)	$\lambda = 3660 \text{ Å}$ Flow system $I_0 = 6.0 \times 10^{15} \text{ photons/cm}^3 - \text{s}$	k = 1.0 x 10 ⁻¹⁴ cm ³ /mol-s	
48.	CH ₃ O + NO ₂ → CH ₃ ONO ₂		
68 Heicklen, e al.(1968)	1	k - 1.0 x 10 ⁻¹³ cm ³ /mol-s	
49.	он ₃ + сн ₃ сно → сн ₄ + сн ₃ со		
87 Kerr, et. al. (1965)	λ = 3660 Å Product analysis:	$\Delta H_{\Gamma}^{\circ}(Gii_3CO) = -3.1 \text{ kcal/mole}$ $k_8 = 3.6 \times 10^{-11} \text{ cm}^3/\text{mol-s}$ $A_9 = 5.25 \times 10^{-13} \text{ cm}^3/\text{mol-s}$ $E_{a,9} = 6800 \text{ cal/mole}$ $A_{10} = 3.0 \times 10^{-13} \text{ cm}^3/\text{mol-s}$ $E_{a,10} = 7100 \text{ cal/mole}$ Assumed: k_8	$M = CC, (CH_3)_2N_2, n-C_5H_{10}$ Mechanism: 1) $(CH_3)_2N_2 + hv + 2CH_3 + N_2$ 2) $CH_3 + CO + CH_3CO^*$ 3) $CH_3CO^* + CH_3 + CO$ 4) $CH_3CO^* + M + CH_3CO + M$ 5) $CH_3CO + M + CH_3CO^* + M$ 6) $CH_3CO + CH_3 + CH_3COCH_3$ 7) $2CH_3CO + (CH_3CO)_2$ 8) $2CH_3 + C_2H_6$ 9) $CH_3 + CH_3CHO + CH_4 + CH_3CO$ 10) $CH_3 + (CH_3)_2N_2 + (CH_3)_2^*NNCH_3$
50. M	M + CH ₃ + O ₂ → CH ₃ O ₂ + M		
67, Heickle et. al.(196		k = 8 x 10 ⁻³² cm ⁶ /mol ² -s	

Table 1.- Continued

51.	CH ₄ + OH → CH ₃ + H ₂ O		
Ref.	Kinetic Methods	Rate Data	Comments
156 Wilson (1972) 157 Wilson, et. al. (1967)	Review of rate data OH produced from H + HNO ₂ Fast flow reactor Product analysis: ESR	A = $4.8 \times 10^{-11} \text{ cm}^3/\text{mol-s}$ $E_a = 4970 \text{ cal/mole}$ A = $4.8 \times 10^{-11} \text{ cm}^3/\text{mol-s}$ $E_a = 5000 \text{ cal/mole}$	Mechanism: (1) $CH_4 + OH + CH_3 + H_2O$ (2) $CH_3 + OH + H_2CO + H_2$ (3) $CH_3 + O_2 + H_2CO + OH$ (4) $H_2CO + OH + HCO + H_2O$ (5) $H_2CO + OH + CO + H_2O$
52.	о + сн ₄ → он + сн ₃	A = 10 ⁻¹⁰ cm ³ /mol-s	(7) HCO + H → CO + H ₂ Assumed
65 Harteck, et. al. (1931)		E = 7 kcal/mole	nssumed

4

52.	0 + CH ₄ + OH + CH ₃ (continued)		
Ref.	Kinetic Methods	Rate Dara	Comments
61 Greenberg, et. al.	Photolysis of N_2O at $\lambda = 2139 \text{ Å to produce } O(^1D)$	For translationally energetic $O(\frac{1}{2}D)$:	Mechanism: (1) $O(^{1}D) + CH_{\lambda} \rightarrow HO + CH_{3}$
(1972)	T = 298 ⁰ K Product analysis: GC	$\frac{k_{1-5}}{k_6 + k_7} = 2.28 \pm 0.20$	(2) HO + CH ₄ + H ₂ O + CH ₃
	F = 10-100 torr	For no excess translational energy:	(3) $2CH_3 + C_2H_6$ (4) $HO + CH_3 + CH_3OH$
		$\frac{k_{1-5}}{k_{6}+k_{7}} = 1.35 \pm 0.30$	(5) $O(^{1}D) + CH_{4} \rightarrow CH_{3}OH$ (6) $O(^{1}D) + N_{2}O \rightarrow N_{2} + O_{2}$
			(7) $O(^{1}D) + N_{2}O \rightarrow 2NC$ Rates measured relative to
			reactions 6 and 7 where k ₆ + k ₇ = 1.8x10 ⁻¹⁰ cm ³ /mol-s from reference 202. Important of reactions:
			$C(^{1}D) + CH_{4} + HO + CH_{3} 95 \pm 5\%$ $O(^{1}D) + CH_{4} + O(^{3}P) + CH_{4}$ $5 \pm 5\%$
			$O(^{1}D) + CH_{4} \rightarrow CH_{2} + H_{2}O$ <3%
			O(¹ D) + CH ₄ + CH ₃ OH <1%
			$O(^{1}D) + CH_{4} \rightarrow CH_{2}O + H_{2}$ <0.2%
153 Westenberg,	$T = 500 - 900^{\circ} K$	$A = 3.3 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
et. al. (1969)	Fast flow reactor Product analysis: ESR	E _a = 9200 cal/mole	

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
77	Photolysis of CH ₃ OCH ₃ to	$A = 4.2 \times 10^{-13} \text{ cm}^3/\text{mol-s}$	Mechanism:
Imai, et. al.	produce CH ₃	E _a = 2600 cal/mole	(1) CH ₃ COCH ₃ + hv → CH ₃ CO + CH ₃
(1960)	$T = 323 - 413^{\circ} K$		(2) CH ₃ CO → CH ₃ + CO
	Product analysis: gas burette,		(3) 2CH ₃ + C ₂ H ₆
	derivative preparation		(4) $\text{CH}_3 + \text{CH}_3\text{COCH}_3 \rightarrow \text{CH}_4 + \text{CH}_3\text{COCH}_2$
			(5) $CH_3 + H_2S \rightarrow CH_4 + SH$
			(5) 5113 1 125 1 5114 1 511
78	Photolysis of CH ₃ CHO to	A2 3 5 1 0 5	Rate measured relative to:
Imai, et. al.	produce CH3	$\frac{A_2}{A_1} = 1.7 \pm 0.5$	(1) CH ₃ + CH ₃ CHO + CH ₄ + CH ₃ CO
(1960)	$T = 423 - 633^{\circ}K$	$E_1 - E_2 = 4.0 \text{ kcal/mole}$	(2) CH ₃ + H ₂ S ÷ CH ₄ + SH
	Product detection: pressure measurements		Mechanism:
	measurements		(1) CH ₃ CHO + h _V +CH ₃ + CHO
			(2) CHO → CO + H
			(3) H + CH ₂ CHO + H ₂ + CH ₂ CQ
			, ~ ,
			(4) CH ₃ CO + CH ₃ + CO
			(5) $CH_3 + CH_3CHO \rightarrow CH_4 + CH_3CO$
			(6) 2CH ₃ → C ₂ H ₆
			(7) $CH_3 + H_2S + CH_4 + SH$
			(8) $SH + CH_3CHO \rightarrow H_2S + CH_3CO$
1.			

Ref. Kinetic Methods	Rate Data	Comments
Arthur, et. al. (1966) λ = 100 - 275 Å Photolysis of (CF ₃) ₂ CO to produce CF ₃	A = $(7.7\pm1.1) \times 10^{-14} \text{ cm}^3/\text{mol-s}$ $E_a = 3880\pm260 \text{ cal/mole}$ $E_{a,2} = 0 \text{ assumed}$	Measured relative to recombination rate constant for CF_3 Mechanism: (1) $(CF_3)_2CO + hv + 2CF_3 + CO$ (2) $2CF_3 + C_2F_6$ (3) $CF_3 + H_2S + CHF_3 + SH$ (4) $2SH + H_2 + S_2$ (5) $2SH + H_2S + S$

Table 1.- Continued

55.	$60F_3 + 30H_4 + C_2H_6 + C_2F_6 + CF_3CH_3 + 3CHF_3$	ontinued)	
Ref.	Kinetic Methods	Rate Data	Comments
2 Alcock, et. al. (1965)	Photolysis of (CF ₃) ₂ CO to produce CF ₃ λ > 3860 Å Preduct analysis: GC T = 426 - 568 K	$E_4 = 0$ $\frac{k_3}{k_2^{1/2}} = (1.5 \pm 0.7) \times 10^{-7}$ $\exp \left(-\frac{(11300 \pm 500)}{RT}\right) \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}^{1/2}$ Low pressure competition reactions $\frac{k_6}{k_2^{1/2}} = (2.1 \pm 0.4) \times 10^{-6} \text{ exp}$ $\left(-\frac{(10600 \pm 200)}{RT}\right) \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}^{1/2}$	Assumed Mechanism of reference 9 (above) 6) CF ₃ + CH ₃ Cl + CHF ₃ + CH ₂ Cl 7) CF ₃ + CH ₃ Cl + CClF ₃ + CH ₃ 8) CF ₃ + CH ₃ Br + CHF ₃ + CH ₂ Br 9) CF ₃ + CH ₃ Br + CBrF ₃ + CH ₃ 10) CF ₃ + CH ₃ I + CHF ₃ + CH ₂ I 11) CF ₃ + CH ₃ I + CIF ₃ + CH ₃
	T = 423-533 ^O K No photolytic products	$\frac{k_6}{k_7} \ge 2000$ $\frac{k_8}{k_2^{1/2}} = (2.5 \pm 0.8) \times 10^{-6} \exp$ $(-\frac{(10900 \pm 300)}{RT}) cm^{3/2}/mol^{1/2} - s^{1/2}$ $\frac{k_9}{k_2^{1/2}} = (1.1 \pm .5) \times 10^{-7} \exp$ $(-\frac{(8400 \pm 100)}{RT}) cm^{3/2}/mol^{1/2} - s^{1/2}$	

2

Table 1 .- Continued

<u> </u>	6CF ₃ + 3CH ₄ + C ₂ H ₆ + C ₂ F ₆ + CF ₃ CH ₃ + 3CHF ₃		
Ref.	Kinetiu Methods	Rate Data	Comments
2 (contin	nued)	$\frac{k_8}{k_9} = (22 \pm 6) \exp \left(-\frac{(2500 \pm 250)}{RT}\right)$	
	T = 328 - 483 ^C K	$\frac{k_{10}}{k_2^{1/2}} = (7.0 \pm 2.5) \times 10^{-8} \exp$	
		$\left(-\frac{(7500 \pm 300)}{RT}\right) \text{ cm}^{3/2}/\text{mol}^{1/2}-\text{s}^{1/2}$	
		$\frac{k_{11}}{k_2^{1/2}} = (6.2 \pm 1.2) \times 10^{-9} \text{ exp}$	
		$\left(-\frac{(3300 \pm 150)}{RT}\right) \text{ cm}^{3/2}/\text{mol}^{1/2}\text{-s}^{1/2}$	
		$\frac{k_{10}}{k_{11}} = (28 \pm 11) \exp(-\frac{(4900 \pm 300)}{RT})$	
8 Ayscough, et. al. (1955)	$T = 353 - 573^{\circ}K$ $\lambda = 3130 \text{ A}$ Product analysis: gas burette,	$\frac{k_3}{k_2^{1/2}} = 1.29 \times 10^{-8} \exp(-\frac{(10300\pm500)}{RT})$	Relative rate measured using mechanism of references 2 and 9.
	MS, IR		
56.	CF + F + M → CF ₂ + M		
110 Modica, et. al. (1968)	T = 1700 - 3000°K Shock tube	$k = \frac{1.8 \times 10^{-21}}{T^{2.85}} cm^{6}/mol^{2} - s$	M = Ar
	Product analysis: UV		

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
72 Herron, et. al. (1969) 37 Davis, et. al. (1972)	Low pressure Flow system Product analysis: MS $T = 232 - 500^{\circ}K$ $\lambda = 1759 \text{ Å}$ Flask photolysis-resonance fluorescence technique	Steps 6-8 originally proposed in reference 191. From reference 192: k ₇ = 6.3 x 10 ⁻¹² cm ³ /mol-s k ₈ = 3.6 x 10 ⁻¹¹ cm ³ /mol-s From reference 193: k ₂ = (3.2 ± 0.5) x 10 ⁻¹¹ cm ³ /mol-s A = (5.42 ± 0.30) x 10 ⁻¹² cm ³ /mol-s E _a = 1130 ± 32 cal/mole	Clarification of mechanism: 1) $0 + C_2H_4 + CH_3 + CH0$ 2) $0 + CH_3 + CH_20 + H$ 3) $0 + CH0 + C0 + OH$ 4) $0 + OH + O_2 + H$ 5) $0 + CH_20 + OH + CH0$ 6) $H + HCO + H_2 + CO$ 7) $CH_3 + CHO + CH_3CHO$ 8) $CH_3 + CHO + CH_4 + OH$
58. 146 - Tyerman, et. al. (1969) 81 Johnston, et. al. (1967)	4 $0(^{3}\text{P}) + 4c_{2}\text{F}_{4} + 3c\text{F}_{2}\text{O} + 2^{1}\text{CF}_{2} + c_{2}\text{F}_{4}\text{O*} + c_{2}\text{F}_{4}$ $\lambda > 3000 \text{ Å}$ Flash photolysis Product analysis: IR $\lambda \stackrel{?}{=} 2200 \text{ Å}$ Product detection: IR of CF_{2}O	F2 ⁰ 2 $k = 5 \times 10^4 \text{ s}^{-1}$ Quantum yield of $CF_2O = 1.0 \text{ mol/}$ photon $\frac{k_3}{k_4^{1/2}} = 5.0 \times 10^{-10} \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}^{1/2}$	Mechanism: 1) $0(^{3}P) + C_{2}F_{4} + CF_{2}O + ^{3}CF_{2}$ 2) $0(^{3}F) + C_{2}F_{4} + C_{2}F_{4}O*$ 3) $^{3}CF_{2} + O_{2} + CF_{2}O_{2}$ 4) $2^{3}CF_{2} + C_{2}F_{4}$

Ç

Ġ	
4	

Ref. Kinetic Method	Rate Data	Comments
146 Tyerman, et. al., (1969) Record Tyerman, et. al., (1969) λ > 3000 Å Product analysis: IR	A = 3.9 x 10^{-11} cm ³ /mol-s $E_a = 2.61$ kcal/mole	Rate measured relative to the rate of $O(^3P) + C_2F_4$
60. $O(^{3}P) + CF_{2}=CCL_{2} + CF_{2}O +$	- CC1 ₂ 0 + CF ₂ + CC1 ₂	
146 Tyerman, et. al. (1969) Tyerman, et. al. (1969)	$A = 5.7 \times 10^{-12} \text{ cm}^3/\text{mol-s}$ $E_a = 1.29 \text{ kcal/mole}$	Rate measured relative to the rate of $O(^3P) + C_2F_4$
61. $F_2 + O_2 + CC1_2 = CC1_2 + CC1$. ₂ FCOC1 + CC1 ₃ COC1 + CC1 ₂ O	
104 Product analysis: deriv Miller, made and characterized et. al. (1956)		

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
144 Tedder, et. al. (1966)	Rotating sector technique λ > 2800 Å Product analysis: gas density	A = 6.6 x 10 ⁻¹⁶ cm ³ /mol-s E _a = 3200 ± 300 cal/mole	1) $CCl_3Br + hv + CCl_3 + Br$ 2) $CCl_3 + CH_2=CH_2 + CCl_3CH_2CH_2$ 3) $CCl_3CH_2CH_2 + CCl_3Br + CCl_3CH_2CH_2Br + CCl_3 + CCl_3Br + CCl_3B$
63. 144 Tedder, et. al. (1966)	3CHF=CH ₂ + 5CCl ₃ Br + CCl ₃ CHFCH ₂ Br + 2CCl ₃ CCl Product analysis: gas density λ > 2800 Å Rotating sector technique	$^{+2}$ CHFBrCH ₂ Br A = (4.18 ± 0.16) x 10 ⁻¹⁶ cm ³ /mol-s E _a = 5300 ± 200 cal/mole	Mechanism is identical to the mechanism of reaction 62.
64.	3CH ₂ =CHF + 5CCl ₃ Br → CCl ₃ CH ₂ CHFBr + 2CHFBrCH	2 ^{Br} + 2001 ₃ 001 ₃	
144 Tedder, et. al. (1966)	Product analysis: gas density $\lambda > 2800 \stackrel{O}{A}$ Rotating sector technique	A = 5.27 ± 0.19 x 10 ⁻¹⁶ cm ³ /mol-s E _a = 3300 ± 200 cal/mole	Mechanism is identical to the mechanism of reaction 62.
65.	$3\text{CH}_2 = \text{CF}_2 + 5\text{CCl}_3 \text{Br} + \text{CCl}_3 \text{CA}_2 \text{CF}_2 \text{Br} + 2\text{CH}_2 \text{BrCF}_3 \text{CA}_3 \text{CF}_4 \text{Br}_3 \text{CA}_4 \text{CF}_4 \text{Br}_5 \text{CF}_6 \text{CF}_6 \text{Br}_6 \text{CF}_6 \text{CF}_6 \text{Br}_6 \text{CF}_6 \text$	2 ^{Br} + 2001 ₃ 001 ₃	
144 Tedder,	Product analysis: gas density $\lambda > 2800 \text{ Å}$	A = $(8.4 \pm 0.4) \times 10^{-16} \text{ cm}^3/\text{mol-s}$ E _a = $4600 \pm 300 \text{ cal/mole}$	Mechanism is identical to the mechanism of reaction 62.

66.	3CH ₂ =CF ₂ + 5CCl ₃ Br → CCl ₃ CF ₂ CH ₂ Br + 2CH ₂ Br	CF ₂ Br + 2CCl ₃ CCl ₃	
Ref.	Kinetic Methods	Rate Data	Comments
144 Tedder, et. al. (1966)	λ > 2800 Å Rotating sector technique Product analysis: gas density	A = $(5.3 \pm 0.3) \times 10^{-16} \text{ cm}^3/\text{mol-s}$ $E_a = 8300 \pm 500 \text{ cal/mole}$	Mechanism is identical to the mechanism of reaction 62.
67.	3CHF=CF ₂ + 5CCl ₃ Br + CCl ₃ CHFCF ₂ Br + 2CHFBr	CF ₂ Br + 2CCl ₃ CCl ₃	
144 Tedder, et. al. (1966)	λ > 2800 Å Rotating sector technique Product analysis: gas density	$A = (3.3 \pm 0.2) \times 10^{-15} \text{ cm}^3/\text{mol-s}$ $E_a = 6100 \pm 800 \text{ cal/mole}$	Mechanism is identical to the mechanism of reaction 62.
68.	3CHF=CF ₂ + 5CCl ₃ Br + CCl ₃ CF ₂ CHFBr + 2CHFBr	CF ₂ Br + 2CCl ₃ CCl ₃	
144 Tedder, et. al. (1966)	λ > 2800 Å Rotating sector technique Product analysis: gas density	A = $4.2 \pm 0.3 \times 10^{-15} \text{ cm}^3/\text{mol}-\epsilon$, $E_a = 7100 \pm 700 \text{ cal/mole}$	Mechanism is identical to the mechanism of reaction 62.
69.	$3CF_2 = CF_2 + 5CCl_3Br \rightarrow CCl_3CF_2CF_2Br + 2CF_2Br$	CF ₂ Br + 2CCl ₃ CCl ₃	
144 Tedder, et. al. (1966)	λ > 2800 Å Rotating sector technique Product analysis: gas density	A = 2.1 \pm 0.1 x 10 ⁻¹⁴ cm ³ /mol-s E _a = 6100 \pm 400 cal/mole	Mechanism is identical to the mechanism of reaction 62.
70.	$CF_2 = CF_2 + O = N - F \rightarrow F_2 - F_2 + F_2 - CF_3 - CF_2$	+ GF ₃ CF ₂ NO F ₂ GCF ₂	
3 Andreades (1962)	UV photolysis Product analysis: VPC, IR, MS	$\Delta H_{f}^{O}(CF_{2}) = -17 \text{ kcal/mole}$	Product analysis only A true insertion mechanism is not necessarily followed.

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
105	T = 152 °K		Mechanism:
Miller, et. al.	Thermal reaction		1) $CC1_2 = CC1_2 + F_2 + CC1_2FCC1_2 + F$
(1956)	Product analysis: titration, derivative preparation and character-		2) $CC1_2FCC1_2 + F + CC1_2FCC1_2F$
	ization		3) $CC1_2 = CC1_2 + F \rightarrow CC1_2 FCC1_2$
			4) $CC1_2FCC1_2 + C1_2 + CC1_2FCC1_3 + C1$
			5) $cc1_2 = cc1_2 + c1 \rightarrow cc1_3 cc1_2$
			6) $cc1_3cc1_2 + c1_2 \rightarrow cc1_3cc1_3 + c1$
			7) $CC1_2FCC1_2 + F_2 + CC1_2FCC1_2F + F$
			8) $CC1_3CC1_2 + F_2 \rightarrow CC1_3CC1_2F + F$
72.	$F_{2} \xrightarrow{X_{2}} x_{2} \rightarrow cF_{2} + cx_{2} = cx_{2}$		
15	F_2 X_2 $\rightarrow CF_2 + CX_2 = CX_2$ T = 433 - 473 °K	X = Cl, F	Slow, quantitative thermal reaction
15 Birchall, et. al.	<u> </u>	X = CL, F	Slow, quantitative thermal reaction Product observation
15 Birchall,	<u> </u>	X = C1, F	
15 Birchall, et. al.	<u> </u>	X = C1, F	
15 Birchall, et. al. (1967) 73.	T = 433 - 473 °K	$X = C1$, F Quantum yield of ${}^{3}CH_{2} = 0.035 \text{ mol}/$	
15 Birchall, et. al. (1967) 73. 58 Gawlowski, et. al.	$T = 433 - 473$ °K $C_3H_8 + M \rightarrow CH_3 + C_2H_5 + M$		Product observation
15 Birchall, et. al. (1967) 73. 58 Gawlowski,	$T = 433 - 473$ °K $C_3H_8 + M \rightarrow CH_3 + C_2H_5 + M$ $\lambda = 1236.0 $	Quantum yield of ${}^{3}CH_{2} = 0.035 \text{ mol}/$	Product observation M = H ₂ S, NO
15 Birchall, et. al. (1967) 73. 58 Gawlowski, et. al.	$T = 433 - 473$ °K $C_{3}H_{8} + M \rightarrow CH_{3} + C_{2}H_{5} + M$ $\lambda = 1236.0 \text{ Å}$ High pressure case	Quantum yield of ${}^{3}CH_{2} = 0.035 \text{ mol}/$	Product observation $M = H_2S, NO$ Assumes $CH_2(^3P)$ and H_2S react
15 Birchall, et. al. (1967) 73. 58 Gawlowski, et. al. (1975)	$T = 433 - 473 \text{ °K}$ $C_3^{\text{H}}_8 + \text{M} \rightarrow \text{CH}_3 + C_2^{\text{H}}_5 + \text{M}$ $\lambda = 1236.0 \text{ Å}$ High pressure case Product analysis: MS	Quantum yield of ${}^{3}CH_{2} = 0.035 \text{ mol}/$	Product observation $M = H_2S, NO$ Assumes $CH_2(^3P)$ and H_2S react

74.	$3C_2H_5Br + C_2H_4 + 3HBr + C_2H_5 + C_2H_3$	(continued)	
Ref.	Kinetic Methods	Rate Data	Comments
59 (continue	d) Product analysis; titration of HBr		Mechanism:
			1) $C_2^{H_5}Br \rightarrow C_2^{H_4} + HBr$
			2) $C_2H_5Br_{wall} + HBr_{wall} + C_2H_6 + Br_2$
			3) M + Br ₂ → 2Br + M
			4) Br + $C_2H_5Br \rightarrow C_2H_4Br + HBr$
			5) $C_2H_4Br \rightarrow C_2H_4 + Br$
			6) Br + $C_2H_4 \rightarrow C_2H_3 + HBr$
			7) Br + $C_2H_6 \rightarrow C_2H_5 + HBr$
			Main products from step 5
			Step 4 is slow and endothermic
			Steps 6 and 7 are relatively slow
75.	C ₂ H ₆ + F → HF + C ₂ H ₅		
48	T = 165 - 351 °K	Transition state theory:	
Fettis, et. al.	F atoms from microwave discharge	$A = 4.49 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
(1964)	Product analysis: GC	$E_a = 220 \text{ cal/mole}$	
52 Foon,	Photolysis of F ₂ to produce F atoms	$E_a = 490 \text{ cal/mole}$ $A = 1.0 \times 10^{-13} \text{ cm}^3/\text{mol-s (assumed)}$	
et. al. (1971)	Product analysis: GC		
		k ₂₉₈ ° _K = 4.36 x 10 ⁻¹² cm ³ /mol-s	
76.	$c_2^{H_6} + Br \rightarrow c_2^{H_5} + HBr$		
33	T = 293 °K	E _a = 12.3 kcal/mole	
Coomber, et. al.	Thermal reaction	$A = 3.26 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
(1966)	Product analysis: IR, VPC		

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
33 Coomber, et. al. (1966)	T = 293 °K Thermal reaction Product analysis: IR, VPC	$E_a = 10.3 \text{ kcal/mole}$ $A = 3.99 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
78.	CH ₃ CHF ₂ + Br → CH ₃ CF ₂ + HBr		
33 Coomber, et. al. (1966)	T = 293 °K Thermal reaction Product analysis: IR, VPC	$E_a = 13.3 \text{ kcal/mole}$ $A = 5.5 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
79.	CH ₃ CF ₃ + Br → CH ₂ CF ₃ + HBr		
33 Coomber, et. al. (1966)	T = 293 °K Thermal reaction Product analysis: IR, VPC	$E_a = 22.2 \text{ kcal/mole}$ $A = 2.5 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
80.	CHF ₂ CHF ₂ + Br → CHF ₂ CF ₂ + HBr		
33 Coomber, et. al. (1966)	T = 293 °K Thermal reaction Product analysis: IR, VPC	$E_a = 18.1 \text{ kcal/mole}$ $A = 9.3 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
81.	CF ₃ CH ₂ F + Br → CF ₃ CHF + HBr		
33 Coomber, et. al. (1966)	T = 293 °K Thermal reaction Product analysis: IR, VPC	$E_a = 18.2 \text{ kcal/mole}$ $A = 9.0 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	

Rate Rate Data Comments				
### Tart, (1965) ### Product analysis: GC ### A = 2.7 x 10 ⁻¹² cm³/mol-s ### A = 2.7 x 10 ⁻¹² cm²/mol-s ### A = 2.7 x 10 ⁻¹²	Ref.	Kinetic Methods	Rate Data	Comments
### 1. Product analysis: GC	and the second s	Thermal reaction	$E_a = 18.0 \text{ kcal/mole}$	
$ \begin{array}{c} 54 \\ Foon, \\ et. al. \\ (1972) \end{array} \\ \begin{array}{c} T = 732 - 798 ^{\circ} \text{K} \\ Static system \\ Froduct anal, sis: GC \end{array} \\ \begin{array}{c} \text{Static system} \\ \text{Froduct anal, sis: GC} \end{array} \\ \begin{array}{c} \text{Static system} \\ \text{Froduct anal, sis: GC} \end{array} \\ \begin{array}{c} \text{Static system} \\ \text{A} = (206 \pm 80) \text{cm}^{3/2}/\text{mol}^{1/2} - \text{s} \end{array} \\ \begin{array}{c} \text{Static system} \\ \text{Product anal, sis: GC} \end{array} \\ \begin{array}{c} \text{Static system} \\ \text{A} = (206 \pm 80) \text{cm}^{3/2}/\text{mol}^{1/2} - \text{s} \end{array} \\ \begin{array}{c} \text{Static system} \\ \text{A} = (206 \pm 80) \text{cm}^{3/2}/\text{mol}^{1/2} - \text{s} \end{array} \\ \begin{array}{c} \text{Static system} \\ \text{Static system} \\ \text{Static system} \\ \text{Froduct analysis: GC} \end{array} \\ \begin{array}{c} \text{Rate} = \text{k[F_2]}^{\frac{1}{2}/2} [\text{C}_2 \text{F_5} \text{Cl}] \\ \text{Find the system} \\ \text{Froduct analysis: GC} \end{array} \\ \begin{array}{c} \text{Mechanism is identical to the mechanism of reaction 83;} \\ \text{Ratio} = \text{k[F_2]}^{\frac{1}{2}/2} [\text{C}_2 \text{F_5} \text{Cl}] \\ \text{Find the system} \\ \text{Find the system} \\ \text{Find the system} \\ \text{Froduct analysis: GC} \end{array} \\ \begin{array}{c} \text{Mechanism is identical to the mechanism of reaction 83;} \\ \text{R} = \text{CF}_3 \text{CF}_2 \end{array} \\ \end{array} \\ \begin{array}{c} \text{Mechanism:} \\ \text{Mechanism:} \\ \text{Mechanism:} \\ \text{Miller, et. al.} \\ \text{Cl}_3 \text{CHCl}_2 + \text{Cl}_2 + 2 \text{O}_2 + \text{C}_2 \text{Cl}_6 + 2 \text{CCl}_3 \text{COCl} + 2 \text{COCl}_2 + 4 \text{HCl} \end{array} \\ \end{array} \\ \begin{array}{c} \text{Mechanism:} \\ \text{Mechanism:} \\ \text{1) } \text{Cl}_2 + \text{NV} + 2 \text{Cl} \\ \text{2) } \text{CCl}_3 \text{CHCl}_2 + \text{Cl} + \text{CCl}_3 \text{CCl}_2 + \text{HCl} \end{array} \\ \end{array}$	et. al.	Product analysis: GC	$A = 2.7 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
Foon, att. al. (1972) Static system Froduct analysis: GC Froduc	83.	$2\text{CC1F}_2\text{CC1F}_2 + \text{F}_2 \rightarrow 2\text{CC1F}_2\text{CF}_3 + 2\text{C1F}$		
Et. al. (1972) Static system Product analysis: GC Rate = k[F ₂] ^{1/2} [C ₂ F ₅ Cl] Foon, et. al. (1972) Static system Product analysis: GC Rate = k[F ₂] ^{1/2} [C ₂ F ₅ Cl] E _a = 36.450 ± 0.300 kcal/mole A = (206 ± 80) cm ^{3/2} /mol ^{1/2} -s Rate = k[F ₂] ^{1/2} [C ₂ F ₅ Cl] E _a = 36.520 ± 0.300 kcal/mole A = (206 ± 80) cm ^{3/2} /mol ^{1/2} -s Rate = k[F ₂] ^{1/2} [C ₂ F ₅ Cl] E _a = 36.520 ± 0.300 kcal/mole Rechanism is identical to the mechanism of reaction 83; E _a = 36.520 ± 0.300 kcal/mole A = (206 ± 80) cm ^{3/2} /mol ^{1/2} -s Rechanism is identical to the mechanism of reaction 83; E _a = 36.520 ± 0.300 kcal/mole A = (206 ± 80) cm ^{3/2} /mol ^{1/2} -s Rechanism: 105 miller, et. al. (1972) Product analysis: derivative preparation and characterization Product analysis: derivative preparation and characterization		r = 732 - 798 °K	$Rate = \sqrt{F_2^{\frac{1}{2}}[CCIF_2CCIF_2]}$	Mechanism for R = CCIF ₂ CF ₂ :
## Product analysis: GC	et.al.	Static system	u.	1) $F_2 + M \rightarrow 2F + M$
84. $ CF_{3}CCIF_{2} + F_{2} + C_{2}F_{6} + CIF $ 84. $ CF_{3}CCIF_{2} + F_{2} + C_{2}F_{6} + CIF $ 85. $ T = 805.5 \text{ N} $ $ Static system $ $ Froduct analysis: GC $ 85. $ 4CC1_{3}CHC1_{2} + C1_{2} + 2 \cdot O_{2} + C_{2}C1_{6} + 2CC1_{3}COCI + 2COC1_{2} + 4HC1 $ 86. $ T = 353 - 373 \text{ N} $ $ Mechanism is identical to the mechanism of reaction 83; $ $ R = CF_{3}CF_{2} $ 87. $ Rate = k[F_{2}]^{1/2}[C_{2}F_{5}CI] $ $ E_{a} = 36.520 \pm 0.300 \text{ kcal/mole} $ $ A = (81.8 \pm 1.0) \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s} $ 88. $ 4CC1_{3}CHC1_{2} + C1_{2} + 2 \cdot O_{2} + C_{2}C1_{6} + 2CC1_{3}COCI + 2COC1_{2} + 4HC1 $ 89. $ Rate = k[F_{2}]^{1/2}[C_{2}F_{5}CI] $ $ Rechanism is identical to the mechanism of reaction 83; $ $ R = CF_{3}CF_{2} $ 89. $ Rate = k[F_{2}]^{1/2}[C_{2}F_{5}CI] $ $ Rate = k[F_{2}]^{1/2}[C_{2}F_{5$	(19/4)	Product analysis: GC	$A = (206 \pm 80) \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$	2) F + RC1 → C1F + R
5) R + ClF + RF + Cl 6) Cl + F ₂ + ClF + F 7) F + F + M + F ₂ + M 84.				3) $R + C1F + RC1 + F$
84.				4) $R + F_2 \rightarrow RF + F$
84. $CF_3CCIF_2 + F_2 + C_2F_6 + CIF$ 54	ĺ			5) R + C1F → RF + C1
84.				6) $C1 + F_2 \rightarrow C1F + F$
T = 805.5 % Rate = $k[F_2]^{1/2}[c_2F_5C1]$ Mechanism is identical to the mechanism of reaction 83; R = CF_3CF_2 Product analysis: GC A = (81.8 ± 1.0) cm ^{3/2} /mol ^{1/2} -s 85. $4CCl_3CHCl_2 + Cl_2 + 2 O_2 + C_2Cl_6 + 2CCl_3COCl + 2COCl_2 + 4HCl$ T = 353 - 373 °K Mechanism is identical to the mechanism of reaction 83; R = CF_3CF_2 Mechanism: R = CF_3CF_2 Mechanism: 105 Miller, et. al. (1956) Product analysis: derivative preparation and characterization Product analysis: derivative preparation and characterization				7) $F + F + M \rightarrow F_2 + M$
Foon, et. al. (1972). Static system $E_{a} = 36.520 \pm 0.300 \text{ kcal/mole}$ $A = (81.8 \pm 1.0) \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$ 85. $4\text{CCl}_{3}\text{CHCl}_{2} + \text{Cl}_{2} + 2 \text{ O}_{2} + \text{C}_{2}\text{Cl}_{6} + 2\text{CCl}_{3}\text{COCl} + 2\text{COCl}_{2} + 4\text{HCl}$ 105 $T = 353 - 373 \text{ °K}$ Miller, et. al. (1956) Product analysis: derivative preparation and characterization $Product analysis: derivative preparation and characterization$ $Product analysis: derivative preparation and characterization$ $Product analysis: derivative preparation and characterization$	84.	$c_{3}c_{1}$ + r_{2} + c_{2} + c_{1}		
et. al. (1972) Product analysis: GC $E_{a} = 36.520 \pm 0.300 \text{ kcal/mole}$ $A = (81.8 \pm 1.0) \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$ 85. $4\text{CCl}_{3}\text{CHCl}_{2} + \text{Cl}_{2} + 2 \text{ O}_{2} + \text{C}_{2}\text{Cl}_{6} + 2\text{CCl}_{3}\text{COCl} + 2\text{COCl}_{2} + 4\text{HCl}$ 105 Miller, et. al. (1956) Product analysis: derivative preparation and characterization Product analysis: derivative preparation and characterization $E_{a} = 36.520 \pm 0.300 \text{ kcal/mole}$ $A = (81.8 \pm 1.0) \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$ Mechanism: 1) Cl ₂ + hv + 2Cl 2) CCl ₃ CHCl ₂ + Cl + CCl ₃ CCl ₂ + HCl		T = 805.5 °K	Rate = $k[F_2]^{1/2}[c_2F_5c_1]$	
### Product analysis: GC	et. al.	Static system	E _a = 36.520 ± 0.300 kcal/mole	
105 Miller, et. al. (1956) Product analysis: derivative preparation and characterization T = 353 - 373 °K Mechanism: 1) Cl ₂ + hv + 2Cl 2) CCl ₃ CHCl ₂ + Cl + CCl ₃ CCl ₂ + HCl	(1972)	Product analysis: GC	$A = (81.8 \pm 1.0) \text{ cm}^{3/2}/\text{mol}^{1/2}\text{-s}$	
Miller, et. al. Photolytic reaction (1956) Product analysis: derivative preparation and characterization Product analysis: derivative preparation and characterization	85.	4CC1 ₃ CHCl ₂ + Cl ₂ + 2 O ₂ + C ₂ Cl ₆ + 2CCl ₃ COC	C1 + 2COC1 ₂ + 4HC1	
et. al. Photolytic reaction (1956) Product analysis: derivative preparation and characterization 1) Cl ₂ + hv + 2Cl 2) CCl ₃ CHCl ₂ + Cl + CCl ₃ CCl ₂ + HCl		T = 353 - 373 °K		Mechanism:
Product analysis: derivative preparation 2) CCl ₃ CHCl ₂ + Cl + CCl ₃ CCl ₂ + HCl	et. al.	Photolytic reaction		1) Cl ₂ + hv → 2C1
and characterization 3) $CCl_2CCl_2 + Cl_2 + Cl_3CCl_2 + Cl_3$	(1956)			2) $CC1_3CHC1_2 + C1 \rightarrow CC1_3CC1_2 + HC1$
	1	and characterization		3) CC1 CC1 + C1 - + CC1 - CC1 - + C1

21

85.	400130HCl2 + Cl2 + 2 O2 + C2Cl6 + 2001300	0C1 + 2C0C1 ₂ + 4HC1 (continued)	
Ref.	Kinetic Methods	Rate Data	Comments
105(continued			5) $CC1_3CC1_2O_2 \rightarrow CC1_3COC1 + C1O$ 6) $CC1_3CC1_2O_2 \rightarrow CCC1_2 + C1$
			7) CC1 ₃ CHC1 ₂ + C10 → CC1 ₃ COC1 + HC1 + C1
86.	CCl ₃ CHCl ₂ + F ₂ → HF + CCl ₃ CCl ₂ F		
105	T = 370 - 378 °K		Mechanism:
Miller, et. al. (1956)	Product analysis: titration, deriva- tive preparation and character- ization		1) CC1 ₃ CHC1 ₂ + F ₂ → CC1 ₃ CC1 ₂ + HF + F
	Thermal reaction		2) $CC1_3CC1_2 + F + CC1_3CC1_2F$
			3) CC1 ₃ CHC1 ₂ + F + CC1 ₃ CC1 ₂ + HF
87.	F + CHF ₃ → HF + CF ₃		
115	Fast flow reactor	$k = 1.9 \times 10^{-13} \text{ cm}^3/\text{mol-s}$	
Pollack, et. al. (1973)	Product analysis: GC, MS, IR		
88.	F ₂ + CHF ₃ → CF ₄ + HF		
31 Clyne,	T = 301 - 667 °K	Pseudo-first order analysis	Mechanism:
et. al. (1973)	F atoms from microwave discharge	ΔU_{298}^{o} o _K = -33.7 kcal/mole	1) $F + CHF_3 + CF_3 + HF$
(15,15)	Fast flow reactor	$A = 1.06 \pm 0.24 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	2) $CF_3 + F_2 + CF_4 + F$
	Product anaylsis: MS	E _a = 1040 ± 326 cal/mole	
89.	CHF ₃ + Br → HBr + CF ₃		
143	Product analysis: GC	E _a = 21.1 kca1/mole	
Tarr, et. al.		$A = 3.15 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
(1965)			

in and professional administration of the second se

90.	F + CHC1F ₂ → HF + CC1F ₂		
Ref.	Kinetic Methods	Rate Data	Comments
51 Foon, et. al. (1969)	F atoms from discharge Static system Product analysis: GC	A = $4.7 \times 10^{-14} \text{ cm}^3/\text{mol-s}$ $E_a = 1.2 \text{ kcal/mole}$ $k_{298} \circ_{\text{K}} = 5.0 \times 10^{-13} \text{ cm}^3/\text{mol-s}$	
115 Pollack, et. al. (1973)	Fast flow reactor Product analysis: GC, MS, IR	k ₂₉₈ ° _K = 2.3 x 10 ⁻¹² cm ³ /mol-s	
91.	F + CHCl ₃ + HF + CCl ₃		
31 Clyne, et. al. (1973)	F atoms from microwave discharge Fast flow reactor Product analysis: MS	$k_{300} \circ_{K} = (5.3 \pm 1.3) \times 10^{-12} \text{ cm}^{3}/\text{mol-s}$ $\Delta U_{298}^{\circ} \circ_{K} = -45.55 \text{ kcal/mole}$	
51 Foon, et. al. (1969)	F atoms from discharge Static system Product analysis: GC	A = $(3.1 \pm 0.2) \times 10^{-14} \text{ cm}^3/\text{mol-s}$ E _a = $657 \pm 48 \text{ cal/mole}$ k _{298 o_K} = $1.0 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
92.	F + CHCl ₂ F → HF + CCl ₂ F		
51 Foon, et. al. (1969)	F atoms from discharge Static system Product analysis: GC	A = $1.06 \times 10^{-11} \text{ cm}^3/\text{mol-s}$ $E_a = 1.29 \text{ kcal/mole}$ $k_{298 \text{ o}_K} = 1.2 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
93.	F + CH ₂ F ₂ → HF + CHF ₂		
115 Pollack, et. al. (1973)	Fast flow reactor Product analysis: MS, GC, IR	k = 1.1 x 10 ⁻¹¹ cm ³ /mol-s	

Table 1.- Continued

94.	$Br + CH_2F_2 \rightarrow HBr + CHF_2$		
Ref.	Kinetic Methods	Rate Data	Comments
143 Tarr, et. al. (1965)	Product analysis: GC	$E_a = 15.3 \text{ kcal/mole}$ $A = 5.5 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
95.	F + CH ₂ Cl ₂ → HF + CHCl ₂		
31 Clyne, et. al. (1973)	F atoms from microwave discharge Fast flow reactor Product analysis: MS	k _{300 °K} = (9.6 ± 2.4) x 10 ⁻¹² cm ³ /mol-s	
51 Foon, et. al. (1969)	F atoms from discharge Static system Product analysis: GC	$\Lambda = 2.2 \times 10^{-14} \text{ cm}^3/\text{mol-s}$ $E_a = 144 \text{ cal/mole}$ $k_{298} \text{ o}_{\text{K}} = 3.4 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
96.	F + CH ₃ F → HF + CH ₂ F		
115 Pollack, et. al. (1973)	Fast flow reactor Product analysis: MS, GC, IR	k = 8.8 x 10 ⁻¹¹ cm ³ /mol-s	
97.	CH ₃ F + Br → CH ₂ F + HBr		
143 Tarr, et. a1. (1965)	Product analysis: GC	$E_a = 14.8 \text{ kcal/mole}$ $A = 1.2 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
98.	F + CH ₃ C1 → HF + CH ₂ C1		
31 Clyne, et. al. (1973)	F atoms from microwave discharge Fast flow reactor Product analysis: MS	k _{300 °K} = (2.4 ± 0.7) x 10 ⁻¹¹ cm ³ /mol-s	

98.	$F + CH_3C1 + HF + CH_2C1$ (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
51 Foon, et. al. (1969)	F atoms from discharge Static system Product analysis: GC	$A = 5.3 \times 10^{-11} \text{ cm}^3/\text{mol-s}$ $E_a = 1.01 \text{ kcal/mole}$	
52 Foon, et. al. (1971)	F atoms from discharge Static system Product analysis: GC	$E_a = 1.08 \text{ kcal/mole}$ $A = 1.27 \times 10^{-13} \text{ cm}^3/\text{mol-s}$ $k_{298} c_K = 2.0 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
99.	6F ₂ + 5CH ₃ I → 2CH ₂ F ₂ + 2CH ₃ F + I ₂ + 3HF +	- CH ₂ IF + IF [*] + IF	
1.5 Rusin, et. al. (1967)	T = 298 °K Zone reactor		Reaction accompanied by chemilum- fuscence in the UV and visible regions
(1307)	Product analysis: EPR		Machanisma
			1) CH ₃ 1 + F + CH ₂ 1 + HF
			2) $GH_2^{I} + F_2 + GH_2^{I}F^* + F$
			3) tH ₃ I + V + CH ₃ F + I
			4) CH27F* + M - CH21F + M
1			5) CH2IF* + CH2" + I
-			6) CH ₂ F + F ₂ + CH ₂ F ₂ + F
No.			7) I + I + M - I ₂ + M
		The state of the s	8) I + F + M - FF* + M
			9) 65g1 ÷ F → 6Ag + IF
		THE STATE OF THE S	10) Chg + Fg ~ ChgF + T
100.	후 + 마, + 면 + cu ₃	Constituti di 1920-melanda (1920-melando) i Amerika pasi un di Sameniasi, Semesar disko Sas del di Sas di Sameniasi, semesar i semesar di Sas di Sas del di Sas di Sas del Sas di Sas del Sas	3. Jak. Pal. Bar. Baret. 1966. (Barota S. Sanary Britanger). (793. St. Sanary Princeporal Villager). And Pal. Baret. 1966. (Barota S. Sanary Britanger).
Giron a	The state of the s	Record of the control	erannemerane meri nemeranda erana ana eranema kan antangeranna ana ana ana ana ana ana ana ana an
61. 11. 1 (1973)	Patens from altremade electrates	Fig. 6. 1 Stratt Facult	en e

Table 1.- Continued

	F + CH ₄ → HF + CH ₃ (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
31(continued)	Product analysis: MS	Collisional efficiency = 0.1	
	Fast flow reactor		
150 Wagner,	T = 253 - 353 °K	$A = 5.5 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	Major chain termination reaction:
et. al. (1971)	F atoms from microwave discharge	$E_a = 1150 \text{ cal/mole}$	$2CH_3 + M + C_2H_6$
(23, 23,	Fast flow reactor		
	Product analysis: MS		
91	Flash photolysis	$k_{298 \text{ o}_{\text{K}}} = 7.1 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
Kompa, et. al. (1972)			
52 Foon,	F atoms from discharge	k ₂₉₈ °K =1 x 10 ⁻¹¹ cm ³ /mol-s	
et. al. (1971)	Static system	$E_a = 1.81 \text{ kcal/mole}$	
	Product analysis: GC		
103 Mercer,	$T = 298 - 423 ^{\circ}\text{K}$	$E_1 - E_a \approx 0.5 \pm 0.2 \text{ kcal/mole}$	Mechanism:
et. al. (1959)	Thermal reaction		1) F ₂ + 2F
(2,55).	Product analysis: MS		2) $F + CH_4 + HF + CH_3$
			3) CH ₃ + F ₂ + CH ₃ F + F
			Chain mechanism
			Surface reactions were important
115	Fast flow reactor	k _{298 °K} = 1 x 10 ⁻¹² cm ³ /mol-s	
Pollack, et. al. (1973)	Product analysis: MS, GC, IR		

100.	F + CH, - HF + CH; (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
48	$T = 165 - 351^{\circ} K$	Transition state theory:	
Fettis, et. al. (1964)	F atoms from microwave discharge	$\Lambda = 2.64 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
(1904)	Product analysis: GC	$E_a = 1.21 \text{ kcal/mole}$	
		$\Delta S_{t}^{\neq} = 2.31 \text{ cal/mole-}^{O}K$	
		$\Delta S_r^{\neq} = 5.51 \text{ cal/mol-}^{\circ} K$	
		$\Delta S_{v}^{\neq} = 4.8 \text{ cal/mole-}^{\circ} K$	
101.	CH ₄ + Br → CH ₃ + HBr	ali di assari kuna sengan dan kenaratan kenaratan sebagai dan	
143	Product analysis: GC	E _a = 17.3 kcal/mole	
Tarr, et. al.		$A = 2.3 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
		$A = 2.3 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
et. al.	3CC1 ₄ + 6H + 2H ₂ → 6HC1 + CH ₂ C1 ₂ + CHC1 ₃		
et. al. (1965) 102.	$3CC1_4 + 6H + 2H_2 + 6HC1 + CH_2C1_2 + CHC1_3$ $T = 298^{\circ} K$		Mechanism:
et. al. (1965) 102. 28 Clark, et. al.		+ CHC1	Mechanism: 1) CC1 ₄ + H + CC1 ₃ + HC1
et. al. (1965) 102. 28 Clark,	T = 298 ° K	+ CHCl $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$	
et. al. (1965) 102. 28 Clark, et. al.	$T = 298^{\circ} K$ Flow system	+ CHCl $\Delta H_2 = +14 \text{ kcal/mole}$	1) CC1 ₄ + H + CC1 ₃ + HC1
et. al. (1965) 102. 28 Clark, et. al.	$T = 298^{\circ} K$ Flow system	+ CHCl $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$ $\frac{k_6}{k_7} = 6.34$	1) CC1 ₄ + H + CC1 ₃ + HC1 2) CC1 ₃ + H + CHC1 ₃ *
et. al. (1965) 102. 28 Clark, et. al.	$T = 298^{\circ} K$ Flow system	+ CHCl $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$	1) CC1 ₄ + H + CC1 ₃ + HC1 2) CC1 ₃ + H + CHC1 ₃ * 3) CHC1 ₃ * + M + CHC1 ₃ + M
et. al. (1965) 102. 28 Clark, et. al.	$T = 298^{\circ} K$ Flow system	+ CHCl $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$ $\frac{k_6}{k_7} = 6.34$	1) $CC1_4 + H + CC1_3 + HC1$ 2) $CC1_3 + H + CHC1_3 + H$ 3) $CHC1_3 + M + CHC1_3 + M$ 4) $CHC1_3 + CC1_2 + HC1$
et. al. (1965) 102. 28 Clark, et. al.	$T = 298^{\circ} K$ Flow system	+ CHC1 $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$ $\frac{k_6}{k_7} = 6.34$ $\frac{k_3^7 M_3^7}{k_4} = 4.30$	1) $CC1_4 + H + CC1_3 + HC1$ 2) $CC1_3 + H + CHC1_3 + H$ 3) $CHC1_3 + H + CHC1_3 + H$ 4) $CHC1_3 + CC1_2 + HC1$ 5) $CC1_2 + H_2 + CH_2C1_2 + HC1$
et. al. (1965) 102. 28 Clark, et. al.	$T = 298^{\circ} K$ Flow system	+ CHC1 $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$ $\frac{k_6}{k_7} = 6.34$ $\frac{k_3^7 M_3^7}{k_4} = 4.30$	1) $CC1_4 + H + CC1_3 + HC1$ 2) $CC1_3 + H + CHC1_3 + H$ 3) $CHC1_3 + H + CHC1_3 + M$ 4) $CHC1_3 + CC1_2 + HC1$ 5) $CC1_2 + H_2 + CH_2C1_2 + HC1$ 6) $CC1_2 + HC1 + CHC1_3 + HC1$
et. al. (1965) 102. 28 Clark, et. al.	$T = 298^{\circ} K$ Flow system	+ CHC1 $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$ $\frac{k_6}{k_7} = 6.34$ $\frac{k_3^7 M_3^7}{k_4} = 4.30$	1) $CG1_4 + H + CG1_3 + HG1$ 2) $GG1_3 + H + CHG1_3 + M$ 3) $CHC1_3 + M + CHG1_3 + M$ 4) $CHC1_3 + CG1_2 + HG1$ 5) $CG1_2 + H_2 + CH_2G1_2 + G$ 6) $GG1_2 + HG1 + CHG1_3 + G$ 7) $CH_2G^3_2 + M + CH_2G1_2 + M$
et. al. (1965) 102. 28 Clark, et. al. (1966)	$T = 298^{\circ} K$ Flow system	+ CHC1 $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$ $\frac{k_6}{k_7} = 6.34$ $\frac{k_3^7 M_3^7}{k_4} = 4.30$	1) $CC1_4 + H + CC1_3 + HC1$ 2) $CC1_3 + H + CHC1_3 + M$ 3) $CHC1_3 + M + CHC1_3 + M$ 4) $CHC1_3 + CC1_2 + HC1$ 5) $CC1_2 + H_2 + CH_2C1_2 + G$ 6) $CC1_2 + HC1 + CHC1_3 + G$ 7) $CH_2C_1^2 + M + CH_2C_1^2 + M$ 8) $CH_2C_1^2 + CHC_1 + HC_1$
et. al. (1965) 102. 28 Clark, et. al. (1966)	T = 298 ° K Flow system Product analysis: GC	+ CHC1 $\Delta H_2 = +14 \text{ kcal/mole}$ $\Delta H_5 = -65 \text{ kcal/mole}$ $\frac{k_6}{k_7} = 6.34$ $\frac{k_3^{\lceil M_3 \rceil}}{k_4} = 4.30$ $\Delta H_6 = -45 \text{ kcal/mole}$	1) $CC1_4 + H + CC1_3 + HC1$ 2) $CC1_3 + H + CHC1_3 + M$ 3) $CHC1_3 + M + CHC1_3 + M$ 4) $CHC1_3 + CC1_2 + HC1$ 5) $CC1_2 + H_2 + CH_2C1_2 + M$ 6) $CC1_2 + HC1 + CHC1_3 + M$ 7) $CH_2C_1^2 + M + CH_2C_1^2 + M$ 8) $CH_2C_1^2 + CHC_1 + HC1$ $M = Ar$

Table 1.- Continued

Ref.	Kinetic Methods	Rate Data	Comments
29 Clark,	F atoms from discharge	k ₂₉₈ ° _K = 3.3 x 10 ⁻¹² cm ³ /mol-s	
et. al. (1964)	Flow system Product analysis: titration		
74 Homann,	Flame study	$k_{298} c_{K} = 6.6 \times 10^{-14} \text{cm}^{3}/\text{mol-s}$	
et. al. (1971)	$T = 1500 - 1600^{\circ} K$ P = 77 torr		
	Product analysis: MS		
90 Kolb,	$T = 298^{\circ} K$	$k_{298} \circ_{K} = 4.0 \times 10^{-16} \text{ cm}^3/\text{mol-s}$	
et. al. (1972)	Discharge-flow system Product analysis: MS		
104	$F_2 + ccl_4 \rightarrow ccl_3 F + cl F$		
54	$F_2 + CCl_4 + CCl_3F + CIF$ $T = 399 \text{ and } 498^{\circ} K$	$rate = k[F_2]^{1/2}[ccl_4]$	M = He
54 Foon, et. al.		rate = $k[F_2]^{1/2}[cc1_4]$ A = 130 cm ^{3/2} /mo1 ^{1/2} -s	M = He Mechan ⁱ sm:
54 Foon,	T = 399 and 498 °K		
54 Foon, et. al.	T = 399 and 498 K Static system	$A = 130 \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$	Mechanism:
54 Foon, et. al.	T = 399 and 498 K Static system	$A = 130 \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$	Mechan ⁱ sm: 1) F ₂ + M → 2F + M
54 Foon, et. al.	T = 399 and 498 K Static system	$A = 130 \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$	Mechanism: 1) F ₂ + M → 2F + M 2) F + CCl ₄ ÷ ClF + CCl ₃
54 Foon, et. al.	T = 399 and 498 K Static system	$A = 130 \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$	Mechanism: 1) $F_2 + M \rightarrow 2F + M$ 2) $F + CCl_4 \stackrel{?}{\leftarrow} ClF + CCl_3$ 3) $CCl_3 + F_2 \rightarrow CCl_3F + F$

ď.	
œ	

105.	$F_2 + CFCl_3 \rightarrow CF_2Cl_2 + C1F$		
Ref.	Kinetic Methods	Rate Data •	Comments
T = 589 - 733 °K Foon, et. al. (1972) Thermal reaction Product analysis: GC	T = 589 - 733 °K	$A = 40.7 \pm 0.4 \text{ cm}^{3/2}/\text{mol}^{1/2}\text{-s}$	M = He
	Static system	$E_a = 31.49 \pm 0.10 \text{ kcal/mole}$	Mechanism:
	Thermal reaction		1) $F_2 + M \rightarrow 2F + M$
	Product analysis: GC		2) F + CFCl ₃ ≠ ClF + CFCl ₂
			3) $CFC1_2 + F_2 + CF_2C1_2 + F$
			4) $CFC1_2 + CIF \rightarrow CF_2C1_2 + C1$
			5) C1 + F ₂ + C1F + F
			6) $F + F + M \rightarrow F_2 + M$
53	T = 491 - 598 °K	$rate = k! F_2^{1/2} [CFCl_3]$	No rate inhibition by ClF or O2
Feon, et. al.	Static system	$k = 2.4 \times 10^{-4} \text{ cm}^{3/2}/\text{mol}^{1/2}\text{-s}$	Mechanism:
(1971)	Thermal reaction	<u>Step</u> ΔH [≠] (kcal/mole)	1) F ₂ + M + 2F + M-
	Product analysis: GC	1 36.8	2) F + CFCl ₃ ± C1F + CFCl ₂
		2 15.1	3) $C1F + CFC1_2 \rightarrow CF_2 + C1$
	3 -52.5	4) $C1F + F + M + C1F_2 + M$	
		4 -24.7	5) $clf_2 + f_2 + clf_3 + f$
		5 -0.2	6) $CC1_2 + F_2 + CF_2C1_2 + F$ (unbalanced)
		6 -76.2	7) $C1 + F_2 \rightarrow C1F + F$
		7 –23.7	8) $F + F + M \rightarrow F_2 + M$
		8 -36.8	
106.	$F_2 + CF_2Cl_2 \rightarrow CF_3Cl + ClF$	erment, kannen kan ministri. Die 1944 Walle fühle fügligt zweit 1944 Etheret werden Station der oper Wilders 19 einer erweit 420 werdt für	
54	$T = 596 - 747^{\circ} K$	rate = k[F ₂] ^{1/2} [CF ₂ Cl ₂]	M = He
Foon, et. al. (1972)	Static system	$\Delta = 205. \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$	$R = CF_2C1$

Table 1 .- Continued

106.	$F_2 + CF_2Cl_2 \rightarrow CF_3Cl + ClF (continued)$		
Ref.	Kinetic Methods	Rate Data	Comments
54(continued)	Product analysis: GC	$E_a = 34.92 \pm 0.30 \text{ kcal/mole}$	Mechanism:
			1) F ₂ + M + 2F + M
			2) F + RC1 ≠ C1F + R
			3) R + F ₂ → RF + F
			4) R + ClF → RF + Cl
			5) C1 + F ₂ + C1F + F
			6) F + F + M + F ₂ + M
107.	$CF_3C1 + F_2 \rightarrow CF_4 + C1F$		
54	T = 732 - 798 °K	$rate = k[F_2]^{1/2}[CF_3CL]$	M ≈ He
Foon, et. al.	Static system	$A = 8.18 \pm 0.02 \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$	$R = CF_3$
(1972)	Product analysis: GC	E _a = 39.02 kcal/mole	Mechanism is identical to the mechanism of reaction 106.
108.	$CF_4 + M \rightarrow CF_3 + F + M$		
110 Modica,	T = 1700 - 3000 °K	$k = \frac{1.02 \times 10^{11}}{T^{4.64}} \exp\left(-\frac{122421}{RT}\right) \text{cm}^3/\text{mol-s}$	M = Ar
et. al. (1968)	Shock tube	T	
	Product detection: UV		
109.	$CF_3Br + F \rightarrow CF_4 + Br$		
17, 18,	T = 188 - 373 °K	ΔH = -105 kcal/mole for	Negative E _a
19, 20 Bozzelli,	F atoms from microwave discharge	$F + CF_3BrF \rightarrow CF_4 + BrF$	Postulated intermediate: CF ₃ BrF
et. al. (1973)	Fast flow system		Concentration of F atoms determined
	Product analysis: molecular beam MS		from titration with H_2 . Accuracy = $\pm 15\%$

Table 1.- Continued

110.	CF ₃ Br + F → BrF + CF ₃		
Ref.	Kinetic Methods	Rate Data	Comments
115 Pollack, et. al. (1973)	Fast flow reactor Product analysis: MS, GC, IR	$k = 4.0 \times 10^{-15} \text{ cm}^3/\text{mol-s}$	
111.	CCl ₃ Br + F → CFCl ₃ + Br		
17, 18, 19 Bozzelli, et. al. (1973)	F atoms from microwave discharge P = 1 torr Absolute concentration of F atoms determined by titration with H ₂ Fast flow reactor Product analysis: molecular beam MS	ΔH = -54 ± 8 kcal/mole	Study of halogen displacement mechanism; abstraction mechanism predominates
112.	CCl ₃ Br + F → BrF + CCl ₃		
17, 18, 19 Bozzelli, et. al. (1973)	F atoms from microwave discharge P = I torr Absolute concentration of F atoms determined by titration with H ₂ Fast flow reactor Product analysis: molecular beam MS	$E_a \approx 0$ $\Delta H = -3 \pm 4 \text{ kcal/mole}$ $k = (9.3 \pm 4.6) \times 10^{-11} \text{ cm}^3/\text{mol-s}$	Abstraction mechanism
113.	$CF_3I + F + CF_4 + I$		
17, 18, 19 Bozzelli, et. al. (1973)	F atoms from microwave discharge P = 1 torr Fast flow reactor	ΔH = -69 ± 8 kcal/mole	Study of halogen displacement mechanism; abstraction mechanism predominates

Table 1.- Continued

113.	CF ₃ I + F →CF ₄ + I (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
17, 18, 19 (continue	Absolute concentration of F atoms deterd) mined by titration with H ₂ Product analysis: molecular beam MS		
114.	$CF_3I + F \rightarrow IF + CF_3$		
17, 18, 19 Bozzelli, et. al. (1973)	F atoms from microwave discharge P = 1 torr Fast flow reactor Absolute concentration of F atoms determined by titration with H ₂ Product analysis: MS Product analysis: MS	$E_a = 0$ $k = (1.2 \pm 0.5) \times 10^{-10} \text{ cm}^3/\text{mol-s}$ $\Delta H = -10 \pm 5 \text{ kcal/mole}$ $k = (1.66 \pm 0.66) \times 10^{-10} \text{ cm}^3/\text{mol-s}$	Abstraction mechanism O ₂ present
115.	$CF_3 + M \rightarrow CF_2 + F + M$ $T = 1700 - 3000 ^{\circ} K$	2.6 × 10 ²⁵	
Modica, et. al. (1968)	Shock tube Product analysis: UV	$A = \frac{2.6 \times 10^{25}}{T^{9.04}} \text{ cm}^{3}/\text{mol-s}$ $E_{a} = 92254 \text{ cal/mole}$	
116.	$CF_3 + CF_3 + M \rightarrow C_2F_6 + M$		
110 Modica, et. al. (1968)	T = 1700 - 3000 °K Shock tube Product analysis: UV	$k = \frac{2.0 \times 10^{-30}}{T^{1/2}} cm^{6}/mo1^{2} - s$	M = Ar

117.	^{2CH} ₃ → ^C 2 ^H 6		
Ref.	Kinetic Methods	Rate Data	Comments
13 Basco, et. al. (1970)	Flash photolysis Product analysis: optical absorption, VPC	$k = 4.32 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
118.	$CF_3 + F + M \rightarrow CF_4 + M$		
110 Modica, et. al. (1968)	T = 1700 - 3000 ° K Shock tube Product analysis: UV	$A = \frac{2.67 \times 10^{-16}}{T^{4.64}} \text{ cm}^{6}/\text{mol}^{2}-\text{s}$ $E_{a} = 2849 \text{ cal/mole}$	M = Ar
119.	$CHFC1_2 + O_2 \rightarrow CO_2 + HF + 2C1$		
60 Gordon, et. al. (1973)	T = 297 ± 2 $^{\circ}$ K Flash photolysis at $\lambda \ge 1650$ A	ΔH ₃ = -180 kcal/mole	<pre>HF laser emissions: 15 observed from Δv = 3+2 to Δv = 1+0. Intensity increases linearly with flash energy.</pre>
			Only partial population inversion (typical of elimination reactions): $N_2/N_1 \approx 0.8$
			Emissions due to steps 3 and 4 in mechanism.
			Mechanism: 1) $CHFCl_2 + hv \rightarrow CHFCl + Cl$
			2) CHFC1 + hv → CHF + C1
			3) CHF + 0 ₂ [→] CHFOO → FCOOH [†]
			4) $FCOOH^{\dagger} \rightarrow O$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$

Table 1 .- Continued

120.	CH ₃ + NO → CH ₃ NO		
Ref.	Kinetic Methods	Rate Data	Comments
13 Basco, et. al. (1970)	Flash photolysis Product analysis: optical absorption, VPC	$k = 4.0 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
121.	$CH_3 + NO_2 \rightarrow CH_3NO_2$		
68 Heicklen, et. al. (1968)		$k = 5.0 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	
122.	$CH_3NO + CH_3 \rightarrow (CH_3)_2NO$		
68 Heicklen, et. al. (1968)		k > 6.6 x 10 ⁻¹⁴ cm ³ /mol-s	
123.	2CHF ₂ C1 → 2HC1 + C ₂ F ₄		
44, 45 Edwards, et. al. (1964, 1965)	Thermal reaction T = 806 - 1023 °K Flow and static systems Product analysis: GC	Derived at T = 298 $^{\circ}$ K: $\Delta H_{f}(CHF_{2}C1) = -112.3 \text{ kcal/mole}$ $\Delta H_{f}(CF_{2}) = -39.1 \pm 6.0 \text{ kcal/mole}$ $k_{1} = 6.9 \times 10^{13} \exp\left(-\frac{55790}{RT}\right) \text{ s}^{-1}$ $k_{2} = 0.354 \text{ cm}^{3}/\text{mol-s}$ $A_{-1} = 9.0 \times 10^{-13} \text{ cm}^{3}/\text{mol-s}$ $E_{a, -1} = 6210 \text{ cal/mole}$ $k_{-2} = 4.6 \times 10^{16} \exp\left(-\frac{70360}{RT}\right) \text{s}^{-1}$ $E_{a, 2} = 0 \text{ (assumed)}$	Mechanism: 1) CHF ₂ C1 [‡] CF ₂ + HC1 2) 2CF ₂ [‡] C ₂ F ₄ Side reactions: 3) CF ₂ + C ₂ F ₄ [‡] CF ₂ CFCF ₃ 4) C ₂ F ₄ + HC1 [‡] CHF ₂ CF ₂ C1 5) 2C ₂ F ₄ [‡] C ₄ F ₈ 6) CHF ₂ C1 + C ₂ F ₄ [‡] CHF ₂ CF ₂ CF ₂ C1 High A in k ₋₂ explained by increased freedom of rotation in going from C ₂ F ₄ to the transition state

123.	2CHF ₂ Cl + 2HCl + C ₂ F ₄ (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
12 Barnes, et. al. (1971)	Thermal reaction T = 727 - 796 °K Pyrolysis in static system Product analysis: gas burette	$A_1 = (4.0 \pm 2.8) \times 10^{12} \text{ s}^{-1}$ $E_{a,1} = 52800 \pm 1500 \text{ cal/mole}$ $A_{-1} = (3.5 \pm 10.4) \times 10^{-13} \text{ cm}^3/\text{mol-s}$ $E_{a,-1} = 12120 \pm 2700 \text{ cal/mole}$ $\Delta H_f^0 (CF_2) = -49.5 \text{ kcal/mole}$ $\Delta S^0 (CF_2) = 62.4 \text{ cal/mole}^0 K$	HC1 inhibits rate Mechanism: 1) $CHF_2CI \stackrel{?}{\leftarrow} CF_2 + HC1$ 2) $CF_2 + CF_2 \stackrel{?}{\leftarrow} C_2F_4$
124.	$cF_3 + cF_3 + c_2F_6$		
4 Arthur, et. al. (1966)	λ > 3000 Å Vacuum system Product analysis: GC	$k = 3.8 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
125.	$CH_3 + CH_3F \rightarrow CH_4 + CH_2F$		
118 Pritchard, et. al. (1965)		$E_a = 8.7 \pm 0.7 \text{ kcal/mole}$ Steric factor = 10^{-3}	Absolute activation energy obtained from competition reaction: CD ₃ + CD ₃ COCD ₃ + CD ₄ + CD ₂ COCD ₃ Reproducible activation energy only at T > 473 ° K
126.	CH ₃ Br + CH ₃ → CH ₃ + CH ₃ Br		
46 Evans, et. al. (1960)	T = 388 °K Product analysis: radioactive labelling	$E_a - E_{a,1} = 1.8 \pm 1.5 \text{ kcal/mole}$ $\frac{A}{A_1} = 3$	Rate measured relative to: 1) $CH_3 + CH_3 \rightarrow CH_2$ + CH_4

三

Table 1.- Continued

127.	$CH_3I + CH_3 \rightarrow CH_3 + CH_3I$		
Ref.	Kinetic Methods	Rate Data	Comments
46 Evans, et. al. (1960)	T = 338 ^O K Product analysis: radioactive labelling	$\frac{k}{k_1} = 45$	Rate measured relative to: 1) $CH_3 + \bigcirc CH_3 + \bigcirc CH_2$
128.	$CH_3 + CH_2F_2 \rightarrow CH_4 + CHF_2$		+ CH ₄
118 Pritchard, et. al. (1965)		$E_a = 10.2 \pm 0.2 \text{ kcal/mole}$ Steric factor = 10^{-3}	Absolute activation energy obtained from competition reaction: CD ₃ + CD ₃ COCD ₃ + CD ₄ + CD ₂ COCD ₃
129.	$CH_2ClBr + CH_3 + CH_3Br + CH_2Cl$		
46 Evans. et. al. (1960)	T = 338 °K Product analysis: radioactive labelling	$\frac{\mathbf{k}}{\mathbf{k_1}} = 6400$	Rate measured relative to: 1) CH ₃ + CH ₄ - CH ₂
130.	CH ₂ C1I + CH ₃ → CH ₃ I + CH ₂ C1		
46 Evans, et. al. (1960)	T = 338 °K Product analysis: radioactive labelling	$\frac{\mathbf{k}}{\mathbf{k}_1} = 6400$	Rate measured relative to: 1) $CH_3 + \bigcirc -CH_3 + \bigcirc -CH_2 + CH_4$
131.	CF ₂ Br ₂ + CH ₃ → CH ₃ Br + CF ₂ Br		
145 Tomkinson, et. al. (1964)	T = 363 - 418 $^{\rm O}$ K, λ = 2537 $^{\rm O}$ A Product analysis: MS	$E_a \approx 6.4 \pm 1.0 \text{ kcal/mole}$ $A = 1.7 \times 10^{-13} \text{ cm}^3/\text{mol-s}$	

Table 1.- Continued

76	132.	CH ₃ + CHF ₃ → CH ₄ + CF ₃		
	Ref.	Kinetic Methods	Rate Data	Comments
	117 Pritchard, et. al. (1964)		E _a = 10.2 ± 0.2 kcal/mole D(CF ₃ -H) = 105 kcal/mole	
	133.	$3CHC1_3 \rightarrow CC1_4 + 3HC1 + CC1_2 = CC1_2$		
	133 Semeluk, et. al. (1957)	T = 450 - 525 OK Thermal reaction Static and flow systems Product analysis: pressure measurements	$E_a = 37.2 \pm 2.0 \text{ kcal/mole}$ $A = 6.3 \times 10^8 \text{ s}^{-1}$ $D(CHCl_2-Cl) \le 72 \text{ kcal/mole}$	Mechanism: 1) CHCl ₃ + CHCl ₂ + Cl 2) Cl + CHCl ₃ \(\diff \text{HCl} + \text{CCl}_3 \) 3) CCl ₃ + Cl + CCl ₄ 4) CCl ₃ + CCl ₂ + Cl 5) CCl ₂ + CHCl ₃ \(\diff \text{CCl}_2 = \text{CCl}_2 + \text{HCl} \)
	134.	CHCl ₂ Br + CH ₃ + CH ₃ Br + CHCl ₂		
	46 Evans, et. al. (1960)	T = 338 ^O K Product analysis: radioactive labelling	$\frac{k}{k_1} = 131$	Rate measured relative to: 1) $CH_3 + \bigcirc -CH_3 + \bigcirc -CH_2 + CH_4$
	135.	CBr ₄ + CH ₃ → CH ₃ Br + CBr ₃		
	145 Tomkinson, et. al. (1964)	T = 363 - 418 ^C K Product analysis: VPC	E _a = 7.9 ± 1.1 kcal/mole A = 2.64 x 10 ⁻¹⁰ cm ³ /mol-s	

.

Table 1.- Continued

136.	$CC1_4 + CH_3 \rightarrow CH_3C1 + CC1_3$		
Ref.	Kinetic Methods	Rate Data	Comments
145 Tomkinson, et. al. (1964)	T = 363 - 413 °K λ = 2537 Å Product analysis: VPC	$E_a \approx 12.9 \pm 0.7 \text{ kcal/mole}$ $A \approx 4.21 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
137.	CCl ₃ Br → CH ₃ → CH ₃ Br + CCl ₃		
46 Evans, et. al. (1960)	T = 338 ^o K Product analysis: radioactive labelling	$\frac{k}{k_1} = 7400$	Rate measured relative to: 1) $CH_3 + \bigcirc CH_3 \rightarrow \bigcirc CH_2$ + CH_4
138.	$CE^3I + CH^3 \rightarrow CH^3I + CE^3$		
46 Evans, et. al. (1960) 145 Tomkinson, et. al. (1964)	<pre>T = 338 °K Product analysis: radioactive labelling T = 363 - 413 °K λ = 2537 Å Product analysis: VPC</pre>	$\frac{k}{k_1}$ = 20000 $E_a \approx 7.5 \pm 1.0 \text{ kcal/mole}$ $A \approx 1.05 \times 10^{-10} \text{ cm}^3/\text{mol-s}$	Rate measured relative to: 1) CH ₃ + CH ₄ - CH ₂ + CH ₄
139.	CF ₃ + CH ₃ Br → CF ₃ Br + CH ₃		
2 Alcock, et. al. (1965)		See reaction 55	

139.	CF ₃ + CH ₃ Br CF ₃ Br + CH ₃ (continued		
Ref.	Kinetic Methods	Rate Data	Comments
145 Tomkinson, et. a1. (1964)	Reverse reaction studied T = 363 - 418 °K Product analysis: VPC	$E_a \approx 12.5 \pm 1.0 \text{ kcal/mole}$ $A \approx 3.34 \times 10^{-11} \text{ cm}^3/\text{mol-s}$	
140.	$c_2H_5I + CH_3 \rightarrow CH_3I + C_2H_5$		
46 Evans, et. al. (1960)	T = 338 ^O K Product analysis: radioactive labelling	$\frac{k}{k_1}$ = 180 $E_a - E_{a,1} = -1.9 \pm 1.0 \text{ kcal/mole}$	Rate measured relative to: 1) CH ₃ + CH ₃ + CH ₂
141.	CH ₂ CO → CH ₂ + CO	$\frac{A}{A_1} = 10$	+ CH ₄
155 Wilson, et. al. (1958)	λ = 2700 - 3100 Å Product analysis: MS	$\frac{k_1}{k_2} = 2.7$ $\frac{k_3}{k_4} = 10.5$ $\frac{k_5}{k_4} = 0.8 \text{ for } M = CH_2CO, SF_6$ $\frac{k_5}{k_4} = 0.1 \text{ for } M = N_2$	$^{3}\text{CH}_{2} \text{ formed}$ Mechanism: $\text{CH}_{2}\text{CO} + \text{hv} + \text{CH}_{2} + \text{CO}$ 1) $\text{CH}_{2} + \text{CH}_{2}\text{CO} + \text{C}_{2}\text{H}_{4} + \text{CO}$ 2) $\text{CH}_{2} + \text{CO} + \text{CH}_{2}\text{CO}*$ 3) $\text{CH}_{2}\text{CO}* + \text{CH}_{2} + \text{CO}$ 4) $\text{CH}_{2}\text{CO}* + \text{CH}_{2}\text{CO} + 2\text{CH}_{2}\text{CO}$ 5) $\text{CH}_{2}\text{CO}* + \text{M} + \text{CH}_{2}\text{CO} + \text{M}$
38 DeGraff, et. al. (1967)	Reverse reaction studied $T = 293 - 353 ^{\circ} K$ $\lambda = 2900 - 3340 ^{\circ} K$ Product analysis: VPC, UV	$\frac{k_4}{k_3} = 3.6 \text{ at } \lambda = 3160 \text{ Å (λ dependent)}$ $\frac{k_2}{k_1} = 0.14 \pm 0.2 \text{ at } \lambda = 2900 - 3340 \text{ Å}$	3CH ₂ more reactive than ¹ CH ₂ with CO ¹ CH ₂ more reactive than ³ CH ₂ with CH ₂ CO Mechanism: 1) ¹ CH ₂ + CH ₂ CO → products

Table 1.- Continued

141. CH ₂ CO → CH ₂ + CO (continued)			
Ref.	Kinetîc Methods	Rate Data	Comments
38(continued)		k ₅	2) ¹ CH ₂ + CO → CH ₂ CO
		$\frac{k_5}{k_1} = 0.01$ for M= N ₂ , CO	3) ³ CH ₂ + CH ₂ CO + products
		For $CH_2CO + hv \rightarrow {}^1CH_2 + CO$,	4) ³ CH ₂ + CO + CH ₂ CO
		quantum yield of $^{1}CH_{2} = 0.53 \pm 0.03$	5) ¹ CH ₂ + M + ³ CH ₂ + M
			$M = N_2$, CO
			O ₂ selectively removes ³ CH ₂
34 Dalby,	λ = 2537 Ά		3CH ₂ is predominate product
(1964)	Hg sensitized decomposition		
	Product analysis: GC		
5	$T = 298 \pm 2^{\circ} K$	Quantum yields (Φ):	³ CH ₂ is predominate product
Avery, et. al.	λ = 2537 8	At $P_{CH_2CO} = 10 \text{ torr, } \Phi_{CO} = 1.0 \text{ mol/}$	Mechanism:
(1968)	Hg sensitized decomposition	photon	1) $\operatorname{Hg}(^{1}S_{0}) + \operatorname{hv} + \operatorname{Hg}(^{3}P_{1})$
	Product analysis: GC, pressure	At P _{CR₂CO} = 365 torr, Φ_{CO} = 1.51 mol/	2) $H_{g}(^{3}P_{1}) + CH_{2}CO \rightarrow H_{g}(^{1}S_{0}) + ^{3}(CH_{2}CO)$
	measurements	photon	3) ³ (CH ₂ CO) + ³ CH ₂ + CO
			4) ³ CH ₂ + C ₂ H ₄ + * CH ₂ CH ₂ CH ₂ **
			5) ³ CH ₂ CH ₂ CH ₂ * → H + CH ₂ CHCH ₂
			6) ³ CH ₂ CN ₂ CH ₂ * → ∇*
			7) ³ CH ₂ CH ₂ CH ₂ * → CH ₃ CH=CH ₂ *
			8) ∀* → CH ₃ CH=CH ₂ *
			9) ∇* + M → ∇ + M
			10)CH ₃ CH=CH ₂ * → H + CH ₂ CHCH ₂
			11) CH ₃ CH=CH ₂ * + M → CH ₃ CH=CH ₂ + M
			12) н + сн ₂ со → сн ₃ + со
			13) $H + C_2H_4 + C_2H_5$

-	CH ₂ CO → CH ₂ + CO (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
5(continued)			14) CH ₃ + CH ₃ → C ₂ H ₆
			15) $cH_3 + c_2H_5 \rightarrow c_3H_8$
			16) $c_2^{H_5} + c_2^{H_5} \sim n - c_4^{H_{10}}$
			17) $c_2 H_5 + c_2 H_5 \rightarrow c_2 H_6 + c_2 H_4$
			18) CH ₃ + Ch ₂ OHCH ₂ + CH ₃ CH ₂ CH=CH ₂
			19) ³ cH ₂ + CH ₂ CO → CH ₃ + CHCO
63 Halberstadt,	λ = 3130 Å	RRKM theory	
er. al. (1967)	Product analysis: GC	$D(CH_2-CO) = 81.9 \text{ kcal/mole at } 298^{\circ} \text{K}$	
		$E(^{1}CH_{2}) = E(^{3}CH_{2}) + 2.5 \text{ kcal/mole}$	
89 Kistiakowsky, et. al.	Two wavelength regions: $\lambda_{\rm I} > 2300 \text{ Å}$ $\lambda_{\rm II} > 2900 \text{ Å}$	Quantum yield of CO not changed by increasing the intensity of radiation	Not an association Lechanism Mechanism for $CH_2 + CO_2 + CO + CH_2O$:
(1958)	Product analysis: GC, MS	$\frac{\text{Rate } (\text{CH}_2 + \text{CO}_2)}{\text{Rate } (\text{CH}_2 + \text{CH}_2\text{CO})} = 2 \times 10^{-2}$	1) CH ₂ + CO ₂ → O=C
			0
			2) 0=C CH ₂ ÷ CO + CH ₂ O
142.	$CH_2N_2 \rightarrow {}^1CH_2 + N_2$		
136	T = 300 °K	RRKM theory	Only ${ m CF_3CH}$ and NCCH react with ${ m N_2}$
Shilov, et. al.	Product analysis: IR, MS	For stee 2, E _a = 8 kcal/mole	Mechanism:
(1968)		For step 5, E _a = 16 kcal/mole	1) $CH_2N_2 + M - {}^1CH_2 + N_2 + M$
ĺ			2) $^{1}\text{CH}_{2} + \text{N}_{2} + \text{M} \rightarrow \text{CH}_{2}\text{N}_{2} + \text{M}$
			3) ${}^{1}\text{CH}_{2} + \text{CH}_{2}\text{N}_{2} + \text{C}_{2}\text{H}_{4} + \text{N}_{2}$
			4) 1 CH ₂ + M \rightarrow 3 CH ₂ + M

Table 1 .- Continued

142.	$CH_2N_2 \rightarrow {}^1CH_2 + N_2 \text{ (continued)}$		
Ref.	Kirletic Methods	Rate Data	Comments
136(continue	d)		5) ${}^{3}\text{CH}_{2} + \text{N}_{2} + \text{M} + \text{CH}_{2}\text{N}_{2} + \text{M}$ 6) ${}^{3}\text{CH}_{2} + {}^{3}\text{CH}_{2} + \text{M} + \text{C}_{2}\text{H}_{4} + \text{M}$
143.	$CF_2 + M \rightarrow CF + F + M$		
107 Modica, et. al. (1966)	T = 2600 - 3700 °K Shock tube P = 325 torr Product analysis: absorption at 2536 Å	$A = \frac{6.98 \times 10^{2}}{r^{2.85}} \text{ cm}^{3}/\text{mol-s}$ $E_{a} = 106000 \text{ cal/mole}$	
144.	$5\text{CH}_4 \rightarrow {}^3\text{CH}_2 + 2\text{CH}_3 + 3\text{H}_2 + \text{C}_2\text{H}_6$		·
122 Rebbert, et. a1. (1971) 21 Braun, et. a1. (1970)	λ = 1048 - 1067 Å, 1256 Å P = 5 - 2200 torr Flash photolysis T = 298 °K P = 25 - 300 torr Product analysis: UV	Quantum Fields (1): At 1236 Å, ${}^{\circ}C_{2}H_{6} = 0.32 \pm 0.03 \text{ mol/photon}$ At 1048 - 1067 Å, ${}^{\circ}C_{2}H_{6} = 0.29 \pm 0.04 \text{ mol/photon}$ $\frac{k_{2}}{k_{5}} = 0.67$ Using above mechanism: $k_{2} = 1.9 \pm 0.5 \times 10^{-12} \text{ cm}^{3}/\text{mol-s}$ $k_{5} = 1.6 \pm 0.5 \times 10^{-12} \text{ cm}^{3}/\text{mol-s}$	Mechanism: 1) $CH_4 + hv \rightarrow {}^1CH_2 + H_2$ 2) ${}^1CH_2 + CH_4 \rightarrow C_2H_6*$ 3) $C_2H_6* + M \rightarrow C_2H_6 + M$ 4) $C_2H_6* + 2CH_3$ 5) ${}^1CH_2 + CH_4 + {}^3CH_2 + CH_4$ Four experimental points
145. 147 Tyerman, et. al. (1969)	$CF_2 + CFC1 \rightarrow CF_2CFC1$ $T = 298 ^{\circ}K$ $\lambda = 2490 ^{\circ}K$	$k = (1 \pm 0.8) \times 10^{-12} \text{ cm}^3/\text{mol-s}$	

145.	CF ₂ + CFCl ¬ CF ₂ CFCl (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
147(continue	d) Flash >hotolysis Product analysis: UV		
146.	$2CF_2 \rightarrow C_2F_4$		
36 Dalby, et. al. (1964)	T = 298 - 572 °K Flash photolysis Product analysis: UV	$E_a = 1.2 \text{ kcal/mole}$ $k_{298} \circ_K = (1.41 \pm 1.06) \times 10^{-14} \text{ cm}^3/\text{mol-s}$	O ₂ has no effect on rate
147 Tyerman, et. al. (1969)	$T = 298$ ^C K Flash photolysis $\lambda = 2490$ \hat{X} Product analysis: UV	$A = \frac{(4.15 \pm 0.83) \times 10^{-15}}{T^{1/2}} cm^{3}/mol-s$ $E_{a} = 400 \pm 100 cal/mole$	Added C ₂ H ₄ has no effect on rate
159 Zmbov, et. al. (1968)	Shock tube T = 1127 - 1244 ^O K Product analysis: MS	$D(CF_2=CF_2) = 76.3 \pm 3 \text{ kcal/mole}$	
108 Modita, et. al. (1967)	T = 1200 - 1600 ^O K Shock tube Product analysis: UV	$A = \frac{(5.66 \pm 1.29) \times 10^{-10}}{\text{T}(6.36 \pm 0.55)} \text{ cm}^6/\text{mol}^2 - \text{s}$ $E_a = 1840 \pm 263 \text{ cal/mole}$ $A_r = \frac{(6.78 \pm 1.20) \times 10^{16}}{\text{T}(6.36 \pm 0.55)} \text{ cm}^3/\text{mol} - \text{s}$	N ₂ is inert gas r = reverse reaction
26	т = 1240 - 1600 [°] к	$E_{a, r} = 74900 \pm 3000 \text{ cal/mole}$ $D(CF_2 - CF_2) = 74.9 \text{ kcal/mole}$ $\Delta H_r = 68.4 \pm 0.8 \text{ kcal/mole}$	- reverse reaction
Carlson, et. al. (1971)	Shock tube	$\Delta H_{f}(CF_{2}) = -44.5 \pm 0.4 \text{ kcal/mole}$	

Table 1.- Continued

146.	2CF ₂ + C ₂ F ₄ (continued)		
Ref.	Kinetic Methods	Rate Data	Comments
26(continu	ed) λ = 2200 - 2900 Å Product analysis: UV	$\Delta H_f(C_2F_4) = -157.4 \text{ kcal/mole}$ $E_{a,r} = 54300 \pm 260 \text{ cal/mole}$ $A_r = (8.9 \pm 1.8) \times 10^2 \text{ cm}^{3/2}/\text{mol}^{1/2} - \text{s}$	
147.	$3H \div 7CH_2N_2 + H_2 \rightarrow C_2H_4 + 2CH_4 + CHN_2 + C$	2 ^H 6 + 6N ₂	
14 Bell, et. al. (1962)	T = 195 °K Photolytic excitation by Hg arc		Mechanism: 1) $CH_2N_2 + hv + CH_2 + N_2$ 2) $CH_2 + CH_2N_2 + C_2H_4 + N_2$ 3) $CH_2 + H_2 + CH_4*$ 4) $M + CH_4* + CH_4 + M$ 5) $H + CH_2N_2 + CH_3 + N_2$ 6) $CH_3 + CH_2N_2 + CH_3CH_2N_2$ 7) $CH_3 + CH_3 + C_2H_6$ 8) $CH_3CH_2N_2 + CH_4 + CHN_2$
148.	$CF_2 + F + M + CF_3 + M$		
110 · Modica, et. al. (1968)	T = $1700 - 3000^{\circ}$ K Shock tube Product analysis: UV at $\lambda = 2660$ Å	$A = \frac{4.12 \times 10^{-2}}{\text{T}^{9.04}} \text{ cm}^{6}/\text{mol}^{2} - \text{s}$ $E_{a} = 2287 \text{ cal/mole}$	
149	$5\text{CH}_2\text{CO} + 4\text{H}_2 \rightarrow \text{C}_2\text{H}_6 + 5\text{CO} + \text{C}_2\text{H}_4 + \text{CH}_4 + \text{CH}_4$	- 4н	
116 Powell- Wiffen, et. al. (1968)	λ = 25C0 - 3400 Å T = 298 $^{\rm O}$ K Product analysis: GC	$k_4 k_3^{1/2} = 2.8 \times 10^{-15} \text{ cm}^{3/2}/\text{mol}^{1/2}\text{-s}$	CO used to scavenge ${}^{3}CH_{2}$ Mechanism: 1) $CH_{2}CO + hv + CH_{2} + CO$ 2) $CH_{2} + H_{2} + CH_{3} + H$

149.	50H ₂ CO + 4H ₂ → C ₂ H ₆ + 5CO + C ₂ H ₄ + CH ₄ +	4H (continued)	
Ref.	Kinetic Methods	Rate Data	Comments
116(continued			3) $2CH_3 \rightarrow C_2H_6$ 4) $CH_3 + H_2 \rightarrow CH_4 + H$ 5) $CH_2 + CH_2CO \rightarrow C_2H_4 + CO$
150.	1 CH ₂ + CH ₄ + C ₂ H ₆		
62 Halberstadt, et. al. (1973)	λ = 3130 Å Product analysis: GC	$k = 1.9 \times 10^{-12} \text{ cm}^3/\text{mol-s}$ $^{1}\text{CH}_2 = ^{3}\text{CH}_2 + 2.5 \text{ kcal/mole}$	Insertion reaction
151.	3 CH ₂ + 3 CH ₂ + 2 CH ₂ + 2 H ₂		
21 Braun, et. al. (1970)	Flash photolysis of CH ₂ CO to produce ³ CH ₂ T = 298 °K Product analysis: UV at 1415 %	k = (5.3 ± 1.5) x 10 ⁻¹¹ cm ³ /mol-s	
152.	¹ сн ₂ + н ₂ → сн ₃ + н		
21 Braun, et. al. (1970)	Flash photolysis of CH_2N_2 and CH_2CO to produce 1CH_2 $T = 298$ OK Product analysis: UV at 1415 $\acute{\text{A}}$	k = (7.0 ± 1.5) x 10 ⁻¹² cm ³ /mol-s	Mechanism: 1) \(^1\text{CH}_2 + \text{H}_2 \rightarrow \text{CH}_4\times 2) \(^1\text{CH}_4\times \rightarrow \text{CH}_3 + \text{H}
153.	1 CH ₂ + H ₂ + 3 CH ₂ + H ₂	in programming the expression of the commence	
21 Braun, et. al. (1970)	Flash photolysis of CH_2N_2 and CH_2CO to yield 1CH_2 $T = 298$ OK Product analysis: UV at 1415 $^{\circ}A$	k < 1.5 x 10 ⁻¹² cm ³ /mol-s	

154.	$^{1}CH_{2} + M \rightarrow ^{3}CH_{2} + M$		
Ref.	Kinetic Methods	Rate Data	Comments
21 Braun, et. al. (1970)	Flash photolysis of CH_2N_2 and and CH_2CO to produce 1CH_2 $T = 298$ 0K Product analysis: UV at 1415 3	For M = He: $k = (3.0 \pm 0.7) \times 10^{-13} \text{ cm}^3/\text{mol-s}$ For M = Ar: $k = (6.7 \pm 1.3) \times 10^{-13} \text{ cm}^3/\text{mol-s}$ For M = N ₂ : $k = (9.0 \pm 2.0) \times 10^{-13} \text{ cm}^3/\text{mol-s}$	
155.	3 CH ₂ + H ₂ \rightarrow CH ₃ + H		
21 Braun, et. al. (1970)	Flash photolysis of CH ₂ CO to produce ³ CH ₂ T = 298 ^o K Product analysis: UV	k < 5 x 10 ⁻¹⁴ cm ³ /mol-s	
156.	³ CH ₂ + CH ₄ → 2CH ₃		
21 Braun, et. al. (1970)	Flash photolysis of CH ₂ CO to produce ³ CH ₂ T = 298 ⁰ K Product analysis: UV	k < 5 x 10 ⁻¹⁴ cm ³ /mol-s	
157.	$4CH_2N_2 + 2CH_4 + C_2H_4 + 2C_2H_6 + 4N_2$		
14 Bell, et. al. (1962)	T = 195 ^C K Excitation by Hg arc Product analysis: MS, GC		Mechanism: 1) $CH_2N_2 + hv + CH_2 + N_2$ 2) $CH_2 + CH_2N_2 + C_2H_4 + N_2$ 3) $CH_2 + CH_4 + C_2H_6*$ 4) $C_2H_6* + M + C_2H_6 + M$ 5) $C_2H_6* + 2CH_3$ 6) $2CH_3 + C_2H_6$

Ref.	Kinetic Methods	Rate Data	Comments
106 Milligan,	T = 53 °K		Postulated intermediates in the reaction:
et. al. (1962)	λ > 1900 Å Product analysis: IR		н н н
			H H H
			C=0
			"2°
			Spectral assignments
	λ _I = 2600 - 3200 Å	k ₃ = k ₄ = k ₇	Recombination processes are exo- thermic
	-	k ₃ = k ₄ = k ₇	
Johnstone, et. al.	$\lambda_{I} = 2600 - 3200 \text{ Å}$ $\lambda_{II} = 3200 - 3800 \text{ Å}$	$k_3 \approx k_4 \approx k_7$ $\left(\frac{k_6}{k_5}\right)_1 = 1.3 \times 10^{-2} \text{ mole/l}$	thermic Abstraction mechanism:
Johnstone, et. al.	-	$\left(\frac{k_6}{k_5}\right)_{I} = 1.3 \times 10^{-2} \text{ mole/l}$	thermic Abstraction mechanism: 1) $CH_2 + CH_3C1 + CH_2C1 + CH_3$
Johnstone, et. al.	-	$\left(\frac{k_6}{k_5}\right)_{I} = 1.3 \times 10^{-2} \text{ mole/l}$ $\left(\frac{k_6}{k_5}\right)_{II} = 2.1 \times 10^{-2} \text{ mole/l}$	thermic Abstraction mechanism: 1) $CH_2 + CH_3C1 + CH_2C1 + CH_3$ 2) $CH_2C0 + hv \rightarrow CH_2 + C0$ 3) $CH_2C1 + CH_3 + C_2H_5C1*$
Johnstone, et. al.	-	$\left(\frac{k_6}{k_5}\right)_{I} = 1.3 \times 10^{-2} \text{ mole/l}$	thermic Abstraction mechanism: 1) $CH_2 + CH_3C1 + CH_2C1 + CH_3$ 2) $CH_2C0 + hv \rightarrow CH_2 + CO$ 3) $CH_2C1 + CH_3 + C_2H_5C1*$ 4) $2CH_3 \rightarrow C_2H_6$
Johnstone, et. al.	-	$\left(\frac{k_6}{k_5}\right)_{I} = 1.3 \times 10^{-2} \text{ mole/l}$ $\left(\frac{k_6}{k_5}\right)_{II} = 2.1 \times 10^{-2} \text{ mole/l}$ $\left(k_2 I_0\right)_{I} = 1.7 \times 10^{-6} \text{ s}^{-1}$	thermic Abstraction mechanism: 1) $CH_2 + CH_3C1 + CH_2C1 + CH_3$ 2) $CH_2C0 + hv \rightarrow CH_2 + C0$ 3) $CH_2C1 + CH_3 + C_2H_5C1*$ 4) $2CH_3 + C_2H_6$ 5) $C_2H_5C1* + M \rightarrow C_2H_5C1 + M$ 6) $C_2H_5C1* \rightarrow C_2H_4 + HC1$
ohnstone, et. al.	-	$\left(\frac{k_6}{k_5}\right)_{I} = 1.3 \times 10^{-2} \text{ mole/l}$ $\left(\frac{k_6}{k_5}\right)_{II} = 2.1 \times 10^{-2} \text{ mole/l}$ $\left(k_2 I_0\right)_{I} = 1.7 \times 10^{-6} \text{ s}^{-1}$	thermic Abstraction mechanism: 1) $CH_2 + CH_3C1 + CH_2C1 + CH_3$ 2) $CH_2C0 + hv \rightarrow CH_2 + CO$ 3) $CH_2C1 + CH_3 + C_2H_5C1*$ 4) $2CH_3 + C_2H_6$ 5) $C_2H_5C1* + M \rightarrow C_2H_5C1 + M$ 6) $C_2H_5C1* \rightarrow C_2H_4 + HC1$ 7) $2CH_2C1 \rightarrow C_2H_4C1_2*$
Johnstone, et. al.	-	$\left(\frac{k_6}{k_5}\right)_{I} = 1.3 \times 10^{-2} \text{ mole/l}$ $\left(\frac{k_6}{k_5}\right)_{II} = 2.1 \times 10^{-2} \text{ mole/l}$ $\left(k_2 I_0\right)_{I} = 1.7 \times 10^{-6} \text{ s}^{-1}$	thermic Abstraction mechanism: 1) $CH_2 + CH_3C1 + CH_2C1 + CH_3$ 2) $CH_2C0 + hv \rightarrow CH_2 + C0$ 3) $CH_2C1 + CH_3 + C_2H_5C1*$ 4) $2CH_3 + C_2H_6$ 5) $C_2H_5C1* + M \rightarrow C_2H_5C1 + M$ 6) $C_2H_5C1* \rightarrow C_2H_4 + HC1$
83 Johnstone, et. al. (1967)	-	$\left(\frac{k_6}{k_5}\right)_{I} = 1.3 \times 10^{-2} \text{ mole/l}$ $\left(\frac{k_6}{k_5}\right)_{II} = 2.1 \times 10^{-2} \text{ mole/l}$ $\left(k_2 I_0\right)_{I} = 1.7 \times 10^{-6} \text{ s}^{-1}$	thermic Abstraction mechanism: 1) $CH_2 + CH_3C1 + CH_2C1 + CH_3$ 2) $CH_2C0 + hv \rightarrow CH_2 + C0$ 3) $CH_2C1 + CH_3 + C_2H_5C1*$ 4) $2CH_3 \rightarrow C_2H_6$ 5) $C_2H_5C1* + M \rightarrow C_2H_5C1 + M$ 6) $C_2H_5C1* \rightarrow C_2H_4 + HC1$ 7) $2CH_2C1 \rightarrow C_2H_4C1_2*$ 8) $C_2H_4C1_2* + M \rightarrow C_2H_4C1_2 + M$

Table 1.- Continued

159.	9CH ₂ CO + 9CH ₃ Cl + 9CO + 2C ₂ H ₄ + 2HCl + 2	$c_{2}^{H_{6}} + cH_{4} + cH_{2}^{G1}_{2} + 2c_{2}^{H_{5}^{G1}} + c_{2}^{H_{4}^{G1}}_{2} + c_{2}^{H_{3}^{G1}}$	(continued)		
Ref.	Kinetic Methods	Rate Data	Comments		
134 Sctser, et. al. (1965) 11 Bamford, et. al. (1965) 82 Johnstone, et. al. (1966)	P = 10 - 1500 torr $\lambda = 3200 \text{ Å}$ Product analysis: GC $\lambda = 2450 - 4000 \text{ Å}$ Product analysis: VPC $\lambda_1 = 2500 - 3400 \text{ Å}$ $\lambda_2 = 3000 - 3800 \text{ Å}$ Product analysis: VPC	Steps 1, 3, 4, 7, and 8 are exothermic by 80 - 85 kcal/mole Relative rate of formation of C ₂ H ₆ to C ₂ H ₅ Cl is pressure dependent If [CH ₃] = [CH ₂ Cl], k ₄ = 2k ₅	C1 abstraction predominates; less than 5% insertion occurs. Using the mechanism above(ref. 83) steps 1 - 8 are important Major products: C ₂ H ₆ , CH ₂ Cl ₂ CH ₂ is six times more reactive with CH ₂ CO than with CH ₃ Cl Mechanism: 1) CH ₂ CO + hv → CH ₂ + CC 2) CH ₂ + CH ₂ CO → C ₂ H ₄ + CO 3) CH ₂ + CH ₃ Cl → CH ₂ Cl + CH ₃ 4) 2CH ₃ + C ₂ H ₆ 5) CH ₃ + C ₂ H ₆ 5) CH ₃ + CH ₂ Cl → C ₂ H ₅ Cl* 6) C ₂ H ₅ Cl* + M → C ₂ H ₅ Cl + M 7) C ₂ H ₅ Cl* + C ₂ H ₄ + HCl		
160.	$ \begin{array}{ccc} & \xrightarrow{a} & c_2 H_3 F + HF \\ & \xrightarrow{1} & c_2 H_4 F_2 \\ & \xrightarrow{\lambda} & 3200 - 3800 & & & & & \\ \end{array} $	E ₂ - E ₁ = 2.7 kcal/mole	a = abstraction		
Pritchard, et. al. (1965)	A = 3200 - 3800 A Product analysis: VPC	E _a - E _i = 2.7 KCal/Mole	<pre>i = insertion Energy transfer is less efficient with increasing temperature</pre>		

Table 1.- Continued

161.	$CF_2 + C_2F_4 + cyclo-C_3F_6$		
Ref.	Kinetic Methods	Rate Data	Comments
147 Tyerman, et. al. (1969)	$T = 298$ $^{\rm O}$ K $\lambda = 2490$ $^{\rm O}$ A Flash photolysis Product analysis: UV N_2 and N_2 O are diluent gases	$A = \frac{1.45 \times 10^{-16}}{\text{T}^{1/2}} \text{ cm}^3/\text{mol-s}$ $E_a = 3200 \pm 625 \text{ cal/mole}$	
162.	1 CH ₂ + CH ₂ Cl ₂ + CH ₂ ClCH ₂ Cl + CH ₃ CH ₂ Cl + C ₂ F	¹ 6	
30 Clark, et. al. (1970)	λ = 3000 - 3400 $\%$ Product analysis: GC, GLPC	Steps 4, 5, and 6 produce ¹ .igh vibrational excitation (~90 kcal/mole)	Abstraction predominates Mechanism:
			1) $CH_2CO + hv + {}^{1}CH_2 + CO$ 2) ${}^{1}CH_2 + CH_2C1_2 + 2CH_2C1$ 3) ${}^{1}CH_2 + CH_2C1_2 + CH_3 + CHC1_2$ 4) $2CH_2C1 + CH_2C1CH_2C1*$
66	λ = 3200 %	Geometric effects in transition state	5) CH ₃ + CH ₂ Cl → CH ₃ CH ₂ Cl* 6) 2CH ₃ → C ₂ H ₆ * Abstraction predominates
Hawsler, et. al. (1966)	T = 298 ^O K Product analysis: GLPC	Reaction is at least twice as rapid as ${}^{1}\text{CH}_{2}$ + CH_{3}Cl	Mechanism: Steps 3-6 of above mechanism(ref. 30) plus:
			1) $CH_2CO + hv \rightarrow CH_2 + CO$ 2) $CH_2 + CH_2CI_2 \rightarrow CH_3 + CHCI_2$ 7) $CH_3 + CHCI_2 \rightarrow CH_3CHCI_2$
			8) $CH_2C1 + CHC1_2 \rightarrow CH_2C1CHC1_2$

Table 1.- Continued

162.	¹ CH ₂ + CH ₂ Cl ₂ → CH ₂ ClCH ₂ Cl + CH ₃ CH ₂ Cl + C	H ₆ (continued)	
Ref.	Kinetic Methods	Rate Data	Comments
66(continued)			9) $2CHCl_2 + CHCl_2CHCl_2$ 10) $CH_3 + CHCl_2 + CH_2CHCl + HCl$ 11) $CH_2Cl + CHCl_2 + C_2H_2Cl_2 + HCl$
163.	$^{1}\text{CH}_{2} + c_{2}\text{H}_{6} + c_{3}\text{H}_{8}$		
62 Halberstadt, et. al. (1973)	λ = 3130 Å Product enalysis: GC	$k = 4.8 \times 10^{-12} \text{ cm}^3/\text{mol-s}$	Insertion by direct attack
164.	$CH_2 + 3SO_2 + CS_2 + H_2O + S + CO + CO_2$		
73 Hiroaka, et. al. (1974)	λ = 2540 $^{\circ}A$ Flow system Product analysis: MS		Mechanism: $CH_2 + SO_2 + H_2O + OCS$ $OCS \rightarrow CS_2 - S + CO + CO_2$ (unbalanced)
165.	$CF_2 + NO \rightarrow CF_2NO$		
109 Modica, et. al. (1967)	T = 1600 - 2500 °K Shock tube Product analysis: MS, UV	$A_f = (1.49 \pm 0.33) \times 10^{-10} \text{ cm}^3/\text{mol-s}$ $E_{a,f} = 29200 \pm 3300 \text{ cal/mole}$ $A_r = (3.14 \pm 2.47) \times 10^6 \text{ s}^{-1}$ $E_{a,r} = 20600 \pm 3600 \text{ cal/mole}$ $\Delta H_1 = 4.6 \text{ kcal/mole}$ $\Delta H_f(CF_2NO) = -15.7 \text{ kcal/mole}$ at $T = 2000 \text{ oK}$ $\Delta H_f(CF_2) = -41.9 \text{ kcal/mole}$ at $T = 2000 \text{ oK}$ $\Delta H_f(NO) = 21.6 \text{ kcal/mole}$ at $T = 2000 \text{ oK}$ Mean lifetime of $CF_2NO = 5.61 \times 10^{-5} \text{ s}$	f = forward reaction r = reverse reaction At T > 2500 °K, reaction proceeds to equilibrium by: 1) 2CF ₂ NO → 2CF ₂ O + N ₂ 2) CF ₂ NO + NO → CF ₂ O + N ₂ O

Ref. Kinetic M	lethods	Rate Data		Comments
10 Photolysis of CH ₂ C	CO to produce CH	For $\lambda = 2450 - 4000 ?$. k	$k_{H} = k_{H1} + k_{H2}$
Bamford,		701 N 2430 4000 1	$\frac{k_{c1}}{k_{c2}} = 1.62$	-
et. al.	GC		H,	Relative concentration of ¹ CH ₂ is reduced when longer wavelengths
		and $\frac{k_{H1}}{k_{H2}} = 0.098$		and N ₂ are present
				Abstraction mechanism predominates
		For ¹ CH ₂ : k _{C1} /k _H > 16		Mechanism:
		For ³ CH ₂ : k _{C1} / k _H < 0	0.14	
		$\Delta H_1 = 40 \text{ kcal/mole}$		1) $CH_2CO + hv + CH_2 + CO$
		Assumption: rates of	steps 9 to 11 are	2) $CH_2 + CH_2CO + C_2H_4 + CO$
		equal		3) $CH_2 + C_2H_4 \rightarrow C_3H_6$
		$k_6 = k_{C1}$		4) $CH_2 + C_2H_5C1 \rightarrow CH_3CH_2CH_2C1$
		$k_7 = k_{H1}$		5) CH ₂ + C ₂ H ₅ Cl + (CH ₃) ₂ CHCl
		$k_8 = k_{H2}$		6) $CH_2 + C_2H_5C1 + CH_2C1 + C_2H_5$
		0 H2	·	7) $CH_2 + C_2H_5C1 \rightarrow CH_3 + CH_2CH_2C1$
				8) $CH_2 + C_2H_5C1 \rightarrow CH_3 + CH_3CHC1$
	·			9) $C_2H_5 + CH_2C1 \rightarrow C_2H_5CH_2C1$
				10) $CH_3 + CH_2CH_2C1 \rightarrow C_2H_5CH_2C1$
				11) CH ₃ + CH ₃ CHCL → CH ₃ CH(CH ₃)Cl
				12) $c_2H_5 + CH_2C1 + c_2H_4 + CH_3C1$
				13) CH ₃ + CH ₃ CHC1 → CH ₄ + CH ₂ CHC1
			1	14) $C_2H_5 + CH_3CHC1 + C_2H_6 + CH_2CHC1$
				15) CH ₂ Cl + CH ₃ CHCl → CH ₃ Cl +
			1	C1,CCHC1
				Z .

ANALYSIS OF KINETIC DATA

The kinetic data listed in table I were analyzed as follows. The general recommendations were primarily based on the error limits inherent in the methods of measurement of the data. Other criteria which suggest the need for remeasuring rates are the lack of a consistent mechanism and wide variations in data measured by different groups of investigators.

One kinetic method of analysis that requires review is the detection of F_2 by a chemiluminescent titration with Cl_2 or H_2 . The titration itself has an inherent error of at least 15 percent. Therefore, the rate constants obtained by this method of analysis should be carefully examined.

It is difficult to apply the existing shock tube data to atmospheric reactions. The typical temperature range of a shock tube experiment is 2000 - 4000° K. Therefore, this technique may not yield reliable data for the low-temperature reactions occurring in the troposphere and stratosphere. An entirely different mechanism and set of products may occur in the lower temperature ranges. 127

The stopped flow method of determining products is generally inadequate in determining the rate data of interest because of the long time between reaction and detection relative to the other kinetic methods. In most cases, the reactions of interest are fast; therefore, fast flow techniques are much better. They tend to minimize the possibility of wall reactions which do not occur in the atmosphere to an appreciable extent.

Flash photolysis is a good method for initiating photolytic gas phase reactions. It is especially good when coupled with a mass spectrometer, the latter being used for determining product distributions. It is usually used to study inorganic reactions.

Kinetic data obtained using a molecular beam mass spectrometer are also fairly reliable for the analysis of reactions in which only a few unique products, that differ appreciably in the molecular weight of the fragments, result. When the molecular weights of the product ions correspond closely, as is often the case in organic reactions, then complex spectra result if mass spectrometry is used alone. The best methods to use for stable product molecules in this case are gas chromatography coupled with mass spectrometry. The gas chromatograph separates compounds with similar molecular weights so that product analysis using mass spectrometry is much more accurate. Infrared or ultraviolet spectroscopy serves to confirm product analysis when used in conjunction with gas chromatography and mass spectrometry. The accuracy of the rate data is questionable when spectroscopic techniques are used alone.

Table 2 lists the best currently available rate data. Rate constants at 298° K were calculated from the Arrhenius rate data for comparison purposes. The units of both the Arrhenius frequency factor and the rate constant are implied by the order of the reaction. Those data that are starred have been judged acceptable; redetermination of the starred rate data is considered unnecessary.

Many of the reactions listed in table 2 have reactants that require photolytic activation to be produced. However, the actual reactions for which the rate data were determined were thermally activated. This is the reason for the tabulation of reaction types.

Rate data for second order reactions for which the rate constants at 298° K were less than or equal to 10^{-18} were accepted even if the methods of obtaining the rate data were questionable. The reasoning for the acceptance of this rate data was that even an error of 10^{3} in the measurements would not appreciably increase the importance of this reaction in the atmosphere; previous workers have determined that second order reactions with rate constants less than 10^{-15} are unimportant. 123

Table 2.- Rate Data

	Overall Reaction	A of Overall Reaction	E of Overall Reaction (kcal/mole)	Order of Overall Reaction	T(^O K)	^k 298 ^о к	Reaction Type	Ref.
* 1.	F + F + M + F ₂ + M			3	295	8.02 x 10 ⁻³⁵	Thermal	57
*	$F_2 + M \rightarrow F + F + M$	7.6 x 10 ⁻¹²	28.49	2	298	9.66 x 10 ⁻³³	Thermal	79, 131, 132
2.	$Cl_2 + F_2 + M \rightarrow 2C1F + M$	1.84 x 10 ⁻²	19.8	1.5	298	5.53 x 10 ⁻¹⁷	Thermal	50
* 3.	Cl ₂ + F + Cl + ClF			2	300	1.1 x 10 ⁻¹⁰	Thermal	31
* 4,	$F_2 + G1 \rightarrow C1F + F$. 2	295	<1.7 x 10 ⁻¹⁵	Thermal	57
* 5,	F + HCl + ClF + H			2	298	1.2 x 10 ⁻¹¹	Thermal	115
*13.	$F_2 + Clo_2 + FClo_2 + F$			2	247	1.7 x 10 ⁻²¹	Thermal	6
*16.	F + PH ₃ → HF + PH ₂			2	298	≥2.2 x 10 ⁻¹¹	Thermal	115
*17.	$H + F_2 \rightarrow HF + F$		≤ =2.0	2	298	2.5 x 10 ⁻¹¹	Thermal	31
*18.	F + H ₂ → HF + H	2.6 x 10 ⁻¹⁰	1.60	2	298	1.74 x 10 ⁻¹¹	Thermal	75
19.	H + F + M → HF + M			3	298	2.3 x 10 ⁻³²	Thermal	9
24.	$F_2 + 2NO + M \rightarrow 2FNO + M$			3	298	7.75 x 10 ⁻³⁵	Thermal	115
25.	F ₂ NO ₃ → FO + FNO ₃			1	298	4.8 x 10 ⁻⁸	Photolytic	24
*27.	2FNO ₃ → 2FNO ₂ + 0 ₂	1.11 x 10 ⁻⁹	22.7	2	298	2.49 x 10 ⁻²⁶	Thermal	138
28.	$F_2 + 2NO_2 \rightarrow 2FNO_2$	2.7 x 10 ⁻¹²	10.47	2	298	5.65 x 10 ⁻²⁰	Thermal	113

	Overall Reaction	A of Overall Reaction	E of Overall Reaction (kcal/mole)	Order of Overall Reaction	T(⁰ H)	^k 298 ⁰ K	Reaction Type	Ref.
*30.	$NF_2 + F + M + NF_3 + M$			3	298	8.9 x 10 ⁻³¹	Thermal	32
*33.	$F + NH_3 \rightarrow HF + NH_2$			- 2	298	5.5 x 10 ⁻¹³	Thermal	115
*34.	FO + FO → 2F + O ₂			2	298	8.5 x 10 ⁻¹²	Thermal	32
*35	$F + O_3 \rightarrow OF + O_2$	2.8 x 10 ⁻¹¹	0.450	2	298	1.31 x 10 ⁻¹¹	Thermal	151
*38	. co + o + m → co ₂ + m	1.63 x 10 ⁻³²	4.1	3	298	1.60 × 10 ⁻³⁵	Thermal Low Pressure Limit	139
*41	F ₂ + CO → FCO + F	7.8×10^{-13}	13.5	2	298	9.78 x 10 ⁻²³	Thermal	70
*42	$5CH_2O + 6 O + 3H_2 + 3CO + 2H_2O + 2CO_2 + O_2$			2	300	1.5 x 10 ⁻¹³	Thermal	72
*43.	. са ₂ о + он → сно + н ₂ о			2	353	1.4 x 10 ⁻¹¹	Photolytic	111
45	. 2CH ₃ O ₂ → 2CH ₃ O + ¬ ₂			2	283	2 x 10 ⁻¹⁵	Photolytic	93
46	$cH_3o + o_2 \rightarrow cH_2o + Ho_2$	1.7 x 10 ⁻¹³	6,36	2	298	3.68 x 10 ⁻¹⁸	Estimated	67
*47	. сн ₃ 0 + NO → сн ₂ 0 + но			2	298	1.0 x 10 ⁻¹⁴	Photolytic	102
*48	. сн ₃ о + nо ₂ → сн ₃ опо ₂			2	298	1.0 x 10 ⁻¹³	Thermal	68
49.	. сн ₃ + сн ₃ сно + сн ₄ + сн ₃ со	≃5.25 x 10 ⁻¹³	≃6.8	2	298	5.40 x 10 ⁻¹⁸	Thermal	87
50	. сн ₃ + о ₂ + м + сн ₃ о ₂ + м			3	298	8 x 10 ⁻³²	Estimated	67

Table 2.- Continued

Overall Reaction	A of Overall Reaction	E _a of Overall Reaction (kcal/mole)	Order of Overall Reaction	T(^O K)	^k 298 ^o K	Reaction Type	Ref.
*51. CH ₄ + OH → CH ₃ + H ₂ O	4.8 x 10 ⁻¹¹	4.97	2	298	1.1 x 10 ⁻¹⁴	Thermal	156, 157
*52. 0 + CH ₄ + OH + CH ₃	3.3×10^{-11}	9.2	2	298	5.9 x 10 ⁻¹⁸	Thermal	153
*53. CH ₃ + H ₂ S + CH ₄ + SH	4.2 x 10 ⁻¹³	2.6	2	298	5.2 x 10 ⁻¹⁵	7 ermal	77, 78
54. $CF_3 + H_2S \rightarrow CHF_3 + SH$	7.7×10^{-14}	3.88	2	298	1.1 x 10 ⁻¹⁶	Thermal	4
55. 2CF ₃ → C ₂ F ₆	≥6.1 x 10 ⁻¹⁰	≥1.5	2	400	9.3 x 10 ⁻¹¹	Thermal	7
^{2CH} ₃ → ^C 2 ^H 6			2	400	3.88×10^{-11}	Thermal	7
56. CF + F + M → CF ₂ + M			3	298	1.59 x 10 ⁻²⁸	Thermal	110
*57. $O + CH_2 = CH_2 \rightarrow CH_2O + CH_4 + CH_3CHO + CO + H_2 + O_2$	5.42 x 10 ⁻¹²	1.130	2	298	8.04×10^{-13}	Photolytic	37
*59. $0(^{3}P) + CF_{2} = CFC1 \rightarrow CF_{2}O$ + $CFC10 + CF_{2} + CFC1$	3.9 x 10 ⁻¹¹	2.61	2	298	4.75 x 10 ⁻¹³	Photolytic	146
*60. $O(^{3}P) + CF_{2} = CC1_{2} \rightarrow CF_{2}O$ + $CC1_{2}O + CF_{2} + CC1_{2}$	5.7×10^{-12}	1.29	2	298	6.45 x 10 ⁻¹³	Photolytic	146
*62. 3CH ₂ =CH ₂ + 5CCl ₃ Br +	6.6 x 10 ⁻¹⁶	3.20	2	298	2.97 x 10 ⁻¹⁸	Photolytic	144
CCl ₃ CH ₂ CH ₂ Br + 2CCl ₃ CCl ₃ + 2CH ₂ BrCH ₂ Br							
*63. 3CHF=CH ₂ + 5CCl ₃ Br + CCl ₃ CHFCH ₂ Br + 2CHFBrCH ₂ Br	4.18×10^{-16}	5.3	2	298	5.42 x 10 ⁻²⁰	Photolytic	144
2CC1 ₃ CC1 ₃							

	Overall Reaction	A of Overall Reaction	E of Overall ^a Reaction (kcal/mole)	Order of Overall Reaction	т(⁰ К)	^k 298 ^с к	Reaction Type	Ref.
*64.	3CH ₂ =CHF + 5CCl ₃ Br →	5.27×10^{-16}	3.30	2	298	2.00×10^{-18}	Photolytic	144
	CCl ₃ CH ₂ CHFBr + 2CHFBrCH ₂ Br + 2CCl ₃ CCl ₃			in Table Table Office of the Control				
*65.	3CH ₂ =CF ₂ + 5CCl ₃ Br →	8.4×10^{-16}	4.60	2	298	3.55 x 10 ⁻¹⁹	Photolytic	144
	CC1 ₃ CH ₂ CF ₂ Br + 2CH ₂ BrCF ₂ Br + 2CC1 ₃ CC1 ₃							
*66.	3CH ₂ =CF ₂ + 5CCl ₃ Br +	5.3×10^{-16}	8.30	2	298	4.33×10^{-22}	Photolytic	144
	CC1 ₃ CF ₂ CH ₂ Br + 2CH ₂ BrCF ₂ Br + 2CC1 ₃ CC1 ₃							
*67.	2 3 1	3.3×10^{-15}	6.10	2	298	1.11 × 10 ⁻¹⁹	Photolytic	144
	CC1 ₃ CHFCF ₂ Br + 2CHFBrCF ₂ Br + 2CC1 ₃ CC1 ₃							
*68.	3CHF=CF ₂ + 5CCl ₃ Br →	4.2 x 10 ⁻¹⁵	7.10	2	298	2.60 x 10 ⁻²⁰	Photolytic	144
	CCl ₃ CF ₂ CHFBr + 2CHFBrCF ₂ Br + 2CCl ₃ CCl ₃							
* 69.	3CF ₂ =CF ₂ + 5CCl ₃ Br →	2.1×10^{-14}	6.10	2	298	7.05 x 10 ⁻¹⁹	Photolytic	144
	CC1 ₃ CF ₂ CF ₂ Br + 2CF ₂ BrCF ₂ Br + 2CC1 ₃ CC1 ₃				•			
74.	3C ₂ H ₅ Br → C ₂ H ₄ + 3HBr +	6.34 x 10 ¹¹	46.4	. , 1	298	5.89 x 10 ⁻²³	Photolytic	144
	$c_{2}^{H_{3}} + c_{2}^{H_{5}}$	-13			- 10	4.36 x 10 ⁻¹²		F2
	$c_{2}H_{6} + F \rightarrow HF + c_{2}H_{5}$	1.0 x 10 ⁻¹³	0.490	2	298	·	Thermal	52
*76.	$C_2H_6 + Br \rightarrow C_2H_5 + HBr$	3.26 x 10 ⁻¹¹	12.3	2	298	3.10 x 10 ⁻²⁰	Thermal	33

Table 2.- Continued

	Overall Reaction	A of Overall Reaction	E of Overall aReaction (kcal/mole)	Order of Overall Reaction	T(^U k)	^k 298 ^o k	Reaction Type	Ref.
*77.	$C_2H_5F + Br \rightarrow CH_3CHF + HBr$	3.99 x 10 ⁻¹²	10.3	2	298	1.11 x 10 ⁻¹⁹	Thermal	33
* 78.	CH ₃ CHF ₂ + Br + CH ₃ CF ₂ + HBr	5.5 x 10 ⁻¹²	13.3	2	298	9.67 x 10 ⁻²²	Thermal	33
*79.	CH ₃ CF ₃ + Br → CH ₂ CF ₃ + HBr	2.5 x 10 ⁻¹¹	22.2	2	298	1.30 x 10 ⁻²⁷	Thermal	33
* 80.	CHF ₂ CHF ₂ + Br ÷ CHF ₂ CF ₂ + HBr	9.3 x 10 ⁻¹²	18.1	2	298	4.93 x 10 ⁻²⁵	Thermal	33
*81.	CF ₃ CH ₂ F + Br → CF ₃ CHF + HBr	9.0 x 10 ⁻¹²	18.2	2	298	4.03 x 10 ⁻²⁵	Thermal	33
*82.	CF ₃ CHF ₂ + Br → CF ₃ CF ₂ + HBr	2.7×10^{-12}	18.0	2	298	1.69 x 10 ⁻²⁵	Thermal	143
* 83.	$2\text{CC1F}_2\text{CC1F}_2 + \text{F}_2 \rightarrow 2\text{C1F} + \\2\text{CC1F}_2\text{CF}_3$	2.06 x 10 ²	36.45	1.5	298	3.80 × 10 ⁻²⁵	Thermal .	54
*84.	$CF_3CCIF_2 + F_2 \rightarrow C_2F_6 + CIF$	81.8	36.52	1.5	298	1.34 x 10 ⁻²⁵	Thermal	54
* 87.	F + CHF ₃ → CF ₃ + HF			2	298	1.9 x 10 ⁻¹³	Thermal	115
*88.	$F_2 + CHF_3 \rightarrow CF_4 + HF$	1.06 x 10 ⁻¹¹	1.04	2	298	1.83 x 10 ⁻¹²	Thermal	31 .
* 89.	CHF ₃ + Br → HBr + CF ₃	3.15 x 10 ⁻¹²	21.1	2	298	1.05 x 10 ⁻²⁷	Thermal	143
* 90.	F + CHClF ₂ → HF + CClF ₂			2	298	2.3 x 10 ⁻¹²	Thermal	115
* 91.	$F + CHC1_3 \rightarrow HF + CC1_3$			2	300	5.3 x 10 ⁻¹²	Thermal	31
92.	F + CHCl ₂ F → HF + CCl ₂ F	1.25×10^{-12}	1.29	2	298	1.41×10^{-13}	Thermal	51
*93.	$F + CH_2F_2 \rightarrow HF + CHF_2$			2	298	1.1 x 10 ⁻¹¹	Thermal	115

Table 2.- Continued

Overall Reaction	A of Overall Reaction	E of Overall Reaction (kcal/mole)	Order of Overall Reaction	T(^{(*} K)	^k 298 ^o K	Reaction Type	Ref.
* 94. Br + CH ₂ F ₂ → HBr + CHF ₂	5.5 x 10 ⁻¹²	15.3	2	298	3.3×10^{-23}	Thermal	143
* 95. F + CH ₂ Cl ₂ → HF + CHCl ₂	2.2 x 10 ⁻¹⁴	0.144	2	298	1.7×10^{-14}	Thermal	51
* 96. F + CH ₃ F → HF + CH ₂ F			2	298	8.8 × 10 ⁻¹¹	Thermal	115
* 97. CH ₃ F + Br → CH ₂ F + HBr	1.2×10^{-11}	14.8	2	298	1.67 x 10 ⁻²²	Thermal	143
* 98. F + CH ₃ C1 + HF + CH ₂ C1	5.3×10^{-11}	1.01	2	298	9.6 x 10 ⁻¹²	Thermal	51
*100. F + CH ₄ + HF + CH ₃	5.5×10^{-11}	1.15	2	298	7.89 x 10 ⁻¹²	Thermal	150
*101. CH ₄ + Br + CH ₃ + HBr	2.3×10^{-11}	17.3	2	298	4.7 x 10 ⁻²⁴	Thermal	143
102. CHCl ₃ + CCl ₂ + HCl	2.6 x 10 ¹¹	4.7	1	298	9.3 x 10 ⁷	Thermal	135
103. $F + CCl_4 \rightarrow CCl_3 + ClF$			2	298	4.0 x 10 ⁻¹⁶	Thermal	90
*104. $F_2 + CC1_4 + CC1_3F + C1F$	130	28.64	1.5	298	1.28 x 10 ⁻¹⁹	Thermal	54
*105. F ₂ + CFCl ₃ + CF ₂ Cl ₂ + ClF	40.7	31.49	1.5	298	3.26 x 10 ⁻²²	Thermal	54
*106. F ₂ + CF ₂ Cl ₂ + CF ₃ Cl + ClF	205	34.92	1.5	298	5.01 x 10 ⁻²⁴	Thermal	54
*107. F ₂ + CF ₃ Cl + CF ₄ + ClF	8.18	39.02	1.5	298	1.97 x 10 ⁻²⁸	Thermal	54
*108. $CF_4 + M \rightarrow CF_3 + F + M$		122.421	2	298	5.48 x 10 ⁻⁹¹	Thermal	110
110. CF ₃ Br + F → BrF + CF ₃			2	298	4.0×10^{-15}	Thermal	115
*112. CCl ₃ Br + F + BrF + CCl ₃	9.3×10^{-11}	≃0	2	298	9.3×10^{-11}	Thermal	17, 18, 19

Table 2.- Continued

	Overall Reaction	A of Overall Reaction	E _a of Overall Reaction (kcal/mole)	Order of Overall Reaction	T(OK)	^k 298 ^G K	Reaction Type	Ref.
*114.	$CF_3I + F \rightarrow IF + CF_3$	1.2 x 10 ⁻¹⁰	= 0	2	298	1.2 x 10 ⁻¹⁰	Thermal	17, 18, 19
*115.	$CF_3 + M + CF_2 + F + M$		92.254	2	298	2.43 x 10 ⁻⁶⁵	Thermal	110
*116.	$CF_3 + CF_3 + M \rightarrow C_2F_6 + M$			3	298	1.16 x 10 ⁻³¹	Thermal	110
*117.	2CH ₃ → C ₂ H ₆			2	298	4.32×10^{-11}	Photolytic	13
*118.	$CF_3 + F + M + CF_4 + M$		2.849	3	298	7.18 x 10 ⁻³⁰	Thermal	110
*120.	сн ³ + ио → сн ³ ио			2	298	4.0 x 10 ⁻¹²	Photolytic	13
*121.	$CH_3 + NO_2 + CH_3NO_2$			2	298	5.0 x 10 ⁻¹²	Photolytic	68
122.	CH ₃ NO + CH ₃ → (CH ₃) ₂ NO			. 2	298	>6.6 x 10 ⁻¹⁴	Photolytic	68
123.	CHF ₂ C1 + CF ₂ + HC1	6.9 x 10 ¹³	55.79	1	298	8.3 x 10 ⁻²⁸	Thermal	44, 45
	CF ₂ + HC1 + CHF ₂ C1	9 0 x 10 ⁻¹³	6.21	2	298	2.51 x 10 ⁻⁷	Thermal	44, 45
	$CF_2 + CF_2 + C_2F_4$			2	298	0.345	Thermal	44, 45
	C ₂ F ₄ → 2CF ₂	4.6 x 10 ¹⁶	70.36	1	298	1.14 x 10 ⁻³⁵	Thermal	44, 45
	CHF ₂ C1 → CF ₂ + HC1	4.0 x 10 ¹²	52.80	1	298	7.51 x 10 ⁻²⁷	Thermal	12
	CF ₂ + HCl → CHF ₂ Cl	3.5×10^{-13}	12.12	2	298	4.51 x 10 ⁻²²	Thermal	12
124.	$CF_3 + CF_3 \rightarrow C_2F_6$			2	298	3.8 x 10 ⁻¹¹	Thermal	6
*131 .	CF ₂ Br → CH ₃ → CH ₃ Br + CF ₂ B	r 1.7 x 10 ⁻¹³	≃6.4	2	298	3.44 x 10 ⁻¹⁸	Thermal	145

	Overall Reaction	A of Overall Reaction	E of Overall Reaction (kcal/mole)	Order of Overall Reaction	T(^O K)	^k 298 ^o K	Reaction Type	Ref.
*133.	3CHCl ₃ + CCl ₄ + 3HCl + CCl ₂ =CCl ₂	6.3 x 10 ⁸	37.2	1	298	3.27 x 10 ⁻¹⁹	Thermal	133
*1 35.	$CBr_4 + CH_3 \rightarrow CH_3Br + CBr_3$	≃2.64 x 10 ⁻¹⁰	≃7. 9	2	298	4.24 x 10 ⁻¹⁶	Thermal	145
*136.	CC1 ₄ + CH ₃ + CH ₃ C1 + CC1 ₃	≃4.21 x 10 ⁻¹¹	≃12 . 9	2	298	1.45 × 10 ⁻²⁰	Thermal	145
*138.	CF ₃ I + CH ₃ → CH ₃ I + CF ₃	≃1.05 x 10 ⁻¹⁰	≃7.5	2	298	3.31 x 10 ⁻¹⁶	Thermal	145
*139.	$CH_3Br + CF_3 + CF_3Br + CH_3$	≈3.34 x 10 ⁻¹¹	12.5	2	298	2.27 x 10 ⁻²⁰	Thermal	145
*143.	$CF_2 + M \rightarrow CF + F + M$		106.0	2	298	1.11 x 10 ⁻⁸²	Thermal	107
144.	$^{1}\text{CH}_{2} + \text{CH}_{4} \rightarrow ^{3}\text{CH}_{2} + \text{CH}_{4}$. 2	298	1.6 x 10 ⁻¹²	Photolytic .	21
145.	CF ₂ + CFCl + CF ₂ =CFCl			2	298	=1 x 10 ⁻¹²	Photolytic	147
148.	$CF_2 + F + M \rightarrow CF_3 + M$		2.287	3	298	3.72 x 10 ⁻²⁶	Thermal	110
150.	1 CH ₂ + CH ₄ \rightarrow C ₂ H ₆			2	2)8	1.9 x 10 ⁻¹²	Photolytic	62
*151 .	3 CH ₂ + 3 CH ₂ \rightarrow C ₂ H ₂ \rightarrow H ₂			2	298	5.3 x 10 ⁻¹¹	Thermal	21
*152.	1 CH $_{2}$ + H $_{2}$ + CH $_{3}$ + H			2	298	7.0×10^{-12}	Thermal	21
*153.	1 CH ₂ + H ₂ + 3 CH ₂ + H ₂			2	298	<1.5 x 10 ⁻¹²	Thermal	21
*154.	1 CH ₂ + M + 3 CH ₂ + M			2	298	6.3 x 10 ⁻¹³	Thermal	21
*155.	$(M = Ar)$ $^{3}CH_{2} + H_{2} + CH_{3} + H_{3}$			2	298	<5 x 10 ⁻¹⁴	Thermal	21

Table 2.- Concluded

Overall Reaction	A of Overall Reaction	£ of Overall Reaction (kcal/mole)	Order of Overall Reaction	T(^O K)	^k 298 ^o K	Reaction Type	Ref.
*156. ³ CH ₂ + CH ₄ → 2CH ₃			2	298	<5 x 10 ⁻¹⁴	Thermal	21
*161. $CF_2 + C_2F_4 + cyclo-C_3F_6$		3.20	2	298	3.8×10^{-20}	Photolytic	147
163. $^{1}\text{CH}_{2} + c_{2}^{\text{H}}_{6} \rightarrow c_{3}^{\text{H}}_{8}$			2	298	4.8 x 10 ⁻¹²	Photolytic	62
165. CF ₂ + NO + CF ₂ NO	1.49 × 10 ⁻¹⁰	29.2	2	298	5.71 x 10 ⁻³²	Thermal	109
cf ₂ no → cf ₂ + no	3.14 x 10 ⁶	20.6	1	298	2.44 x 10 ⁻⁹	Thermal	109
	et e		:				

COMMENTS ON SELECTED REACTIONS

The dissociation of fluorine, the reverse of reaction 1, is favored at equilibrium based on the equilibrium constant for reaction 1 which has a value of 8.30×10^{-3} cm⁻³-mol-s. The rate constant for the reverse reaction was recommended by the authors of reference 132.

Reaction 10, 0_2 + C1F + M \rightarrow 0_3 , is an overall reaction which provides a previously unconsidered source of ozone. The possible importance of this reaction should be thoroughly investigated.

The results reported for reaction 17, $H+F_2 \rightarrow HF+F$, in reference 1 are questionable. Photolytic activation was used but the temperature range at which the reaction was studied was too high to avoid interference by the thermally activated reaction.

The rate constants for reaction 18, F + $\rm H_2$ \rightarrow HF + H, appear quite reliable at 300° K since two independent groups of workers, those of references 31 and 75, are in substantial agreement.

A comprehensive review with recommended rate data for nitric oxide reactions is found in reference 68. The reader is referred to this work for detailed data on nitric oxide reactions that are not included in table 1.

Especially important reaction rates, on which reactions 49 (CH₃ + CH₃CHO \rightarrow CH₄ + CH₃CO) and 54 (CF₃ + H₂S \rightarrow CHF₃ + SH) are based, are the recombination rates of methyl and trifluoromethyl radicals. Accurate determinations of the temperature dependences of the rate constants for the recombination reactions are needed.

Rate data for reactions 59 and 60 are stated relative to the reaction of $O(^3P) + CF_2 = CF_2$. The latter reaction has not been well studied.

The decomposition of ${\rm CCl}_4$ has been previously discussed with respect to possible sink mechanisms; other than photolysis, no stratospheric sink for ${\rm CCl}_4$ has been found. Reaction 102 deserves considerable attention not only as a possible sink mechanism for ${\rm CCl}_4$ but also as a mechanism by

which substituted methylenes, CHCl and CCl₂, could be formed. Special attention should be placed on an attempt to verify the mechanism of reference 28.

Chlorofluorocarbons, in which there is at least one hydrogen replacing a halogen, have been discussed as a possible replacement for fully halogenated chlorofluorocarbons. Reaction 123, $2\text{CHF}_2\text{Cl} \rightarrow 2\text{HCl} + \text{C}_2\text{F}_4$, can be used to illustrate the thermal stability of the hydrogen-containing halocarbons. The data from references 12, 44, and 45 vary widely, but the same conclusions may be drawn from all the references. The equilibrium constant for the decomposition of CHF_2Cl has the value of $1.66 \times 10^{-5} \text{ cm}^{-3}$ -mol for reference 12 and the value of $3.31 \times 10^{-11} \text{ cm}^{-3}$ -mol for references 44 and 45. At equilibrium, the formation of CHF_2Cl is favored. It is then highly unlikely that CHF_2Cl will decompose thermally in the troposphere or stratosphere.

The recombination of two difluorocarbenes, reaction 146, has been studied with little agreement between workers. Both orders and rate constants disagree markedly. For example, references 36 and 147, both studies using flash photolysis, have rate constants at 298°K that differ by a factor of 10³; the shock-tube measurements of the reverse reaction, references 108 and 26, not only differ in order but also by a factor of 10¹⁷. Since this reaction is used as a reference reaction for other relative rate studies, accurate rate data are necessary.

FATE OF FLUORINE BONDS

Hydrogen fluoride is a product rather than a reactant in all reactions surveyed. This is attributed to the large amount of energy that is required to break this bond, 135 kcal/mole. 43 Therefore, no chemical sinks for this compound have been found.

Carbon-chlorine and carbon-hydrogen bonds are broken before carbon-fluorine bonds in all cases examined. No studies of the rates of decomposition of fully substituted chlorofluoromethanes have been reported to date; measurements of the mechanisms and rate data are certainly necessary.

While bonds between fluorine and unlike atoms are relatively strong, the bond in F_2 is very weak in comparison, 35 kcal/mole. Therefore, the concentration of F_2 must be very low in the stratosphere and troposphere. However, both fluorine atoms and diatomic fluorine must be considered as reactive species when compiling reactions from various rate studies. The rate constants for the two species differ, and they must be treated as two distinct reactants.

FUTURE INVESTIGATIONS

The data compiled in table 1 are insufficient so that no concrete conclusions can be drawn about the mechanisms of chlorofluorocarbon decompositions. An important question that must be answered is the fate of the CF₂C1 and CFC1₂ radicals when exposed to photolytic energy. Little is known about the energy necessary to break a carbon-chlorine bond to form the substituted carbenes or the absorption cross sections of the radicals.

Methylene, CH₂, has been well studied theoretically using many different types of <u>ab initio</u> and semi-empirical quantum mechanical calculations. A comprehensive review of the calculations is found in reference 85. The substituted carbenes, however, have not received this attention because of the increased sizes of basis sets necessary for the calculations. Increased computer capabilities now make it possible to calculate accurate potential energy surfaces using <u>ab initio</u> methods. Computational studies are useful because of the difficulties encountered in obtaining experimental data on carbene reactions, the high reactivity and short lifetimes of carbenes, and the hazards and difficulties particularly associated with handling fluorinated compounds.

Rowland and Molina 123 have postulated that the most important degradation step for the chlorofluoromethyl radicals is the reaction with diatomic oxygen,

$$CF_2C1 + O_2 \rightarrow CF_2O + C1O$$
.

An interesting problem that deserves attention is the structure of the above intermediate and the way it breaks apart to yield ultimate degradation

products. One way to study this intermediate is by calculating transition state rate constants for the reaction. A thorough experimental investigation of the chemistry of ${\rm CF}_2{\rm O}$ is also indicated since little is known about its absorption spectrum or chemical properties.

Rowland and Molina, in evaluating the reactions of methyl and substituted methyl radicals, use the dissociation energies of the ground state molecules. This is not always correct when photolytic energy is present. In particular, the mechanism for the reactions of the radicals with diatomic oxygen, where the molecules are in the excited states, may not be the same as the ground state reactions. Calculations of the potential energy surfaces are necessary to determine if this assumption is correct.

A large portion of the reactions listed in table 1 cannot be included in stratospheric modeling calculations at the present time because of the lack of measurements of some of the reactant concentrations in the stratosphere. Attempts should be concentrated in making accurate measurements of the reactant concentrations before further modeling of the stratosphere is attempted.

REFERENCES

- Albright, R. C.; Dodonov, A. F.; Lavrovskaya, G. K.; Morozov, I. I.; Tal'roze, V. L.: Mass-Spectrometric Determination of Rate Constants for H-Atom Reactions with Cl₂ and F₂. J. Chem. Phys., vol. 50, 1969, p. 3632.
- 2. Alcock, W. G.; Whittle, E.: Reactions of Trifluoromethyl Radicals with Organic Halides. I. Methyl Halides. Trans. Faraday Soc., vol. 61,1965, p. 244.
- 3. Andreades, S.: Evidence for Net Insertion of Difluorocarbene in a N-F Bond. Chem. Ind. (London), vol. 1962, p. 782.
- 4. Arthur, N. L.; Bell, T. N.: Kinetics of the Abstraction of Hydrogen Atoms from Hydrogen Sulfide by Trifluoromethyl Radicals. Can J. Chem., vol. 44, 1966, p. 1445.
- 5. Avery, H. E.; Cvetanovic, R. J.: Mercury-Photosensitized Decomposition of Ketene as a Source of Triplet Methylene. J. Chem. Phys., vol. 48, 1968, p. 380.
- 6. Aymonino, P. J.; Sicre, J. E.; Schumacher, H. J.: The Reaction Between Fluorine and Chlorine Dioxide, a Homogeneous, Bimolecular Reaction. J. Chem. Phys., vol. 22, 1954, p. 756.
- 7. Ayscough, P. B.: Rate of Recombination of Radicals. II. The Rate of Recombination of Trifluoromethyl Radicals. J. Chem. Phys., vol. 24, 1956, p. 944.
- 8. Ayscough, P. B.; Polanyi, J. C.; Steacie, E. W. R.: The Vapor Phase Photolysis of Hexafluoroacetone in the Presence of Methane and Ethane. Can. J. Chem., vol. 33, 1955, p. 743.
- 9. Bahn, G. S.; Cherry, S. S.; Gold, P. I.; Mitchell, R. C.: Selection of Recombination Rate Constants for H-F-O Reactions. AIAA J., vol. 7, 1969, p. 181.
- Bamford, C. H.; Casson, J. E.; Hughes, A. N.: Methylene II. Gas Phase Reactions with Ethyl Chloride. Proc. Roy. Soc., vol. A306(1485), 1968,p. 135.
- Bamford, C. H.; Casson, J. E.; Wayne, R. P.: Methylene: Gas Phase Reactions with Organic Halides. Proc. Roy. Soc., vol. A289(1418), 1965, p. 287.
- Barnes, G. R.; Cox, R. A.; Simmons, R. F.: The Kinetics of the Gasphase Thermal Decomposition of Chlorodifluoromethane. J. Chem. Soc., vol. B1971, p. 1176.

- 13. Basco, N.; Jones, D. G. L.; Stuart, R. D.: A Quantitative Study of Alkyl Radical Reactions by Kinetic Spectroscopy. Part 1. Mutual Combination of Methyl Radicals and Combination of Methyl Radicals with Nitric Oxide. Int. J. Chem. Kinet., vol. 2, 1970, p. 215.
- 14. Bell, J. A.; Kistiakowsky, G. B.: The Reactions of Methylene. VI. The Addition of Methylene to Hydrogen and Methane. J. Amer. Chem. Soc., vol. 84, 1962, p. 3417.
- 15. Birchall, J. M.; Haszeldine, R. N.; Roberts, D. W.: Cyclopropanes as Sources of Difluorocarbene. Chem. Comm., vol. 1967, p. 287.
- 16. Blauer, J. A.; Solomon, W. C.; Engleman, V. S.: The Kinetics of Chlorine Fluoride at High Temperatures. J. Phys. Chem., vol. 75, 1971, p. 3939.
- 17. Bozzelli, J.; Kaufman, M.: Kinetics and Mechanisms of the Reactions of Atomic Fluorine with CF₃I and CCl₃Br. U.S.N.T.I.S. AD Rept. No. 750783, 1972.
- 18. Bozzelli, J. W.; Kaufman, M.: Kinetics and Mechanisms of the Reactions of Atomic Fluorine with CF₃I and CCl₃Br. J. Phys. Chem., vol. 77, 1973, p. 1783.
- Bozzelli, J. W.; Kolb, C. E.; Kaufman, M.: Reaction between Atomic Fluorine and CF₃Br: Evidence for a Pseudotrihalogen Radical Intermediate. J. Chem. Phys., vol. 59, 1973, p. 3669.
- Bozzelli, J. W.; Kolb, C. E.; Kaufman, M.: The Reaction between Atomic Fluorine and CF₃Br: Evidence for a Pseudotrihalogen Radical Intermediate. U.S.N.T.I.S. AD Rept. N. 760710, 1973.
- 21. Braun, W.; Bass, A. M.; Pilling, M.: Flash Photolysis of Ketene and Diazomethane: The Production and Reaction Kinetics of Triplet and Singlet Methylene. J. Chem. Phys., vol. 52, 1970, p. 5131.
- 22. Brokaw, R. S.: A Suggested Mechanism for the Hydrogen-Fluorine Reaction. J. Phys. Chem., vol. 69, 1965, p. 2488.
- 23. Brokaw, R. S.: A Suggested Mechanism for the Hydrogen-Fluorine Reaction. II. The Oxygen-Inhibited Reaction. J. Phys. Chem., vol. 69, 1965, p. 2808.
- 24. Bruna, P. C.; Sicre, J. E.; Schumacher, H. J.: Reactions of Fluorine Atoms and Oxygen Fluoride Radicals with Compounds of N, O, and F. An. Soc. Cient. Argent., vol. 194, 1972, p. 68.
- 25. Cadle, R. D.: Rates of Chemical Reactions in the Subionospheric Atmosphere. J. Geophys. Res., vol. 68, 1963, p. 3977.

- 26. Carlson, G. A.: A Shock Tube Study of the C₂F₄-CF₂ Equilibrium.
 J. Phys. Chem., vol. 75, 1971, p. 1625.
- 27. Castellano, E.; Schumacher, H. J.: Photochemical Reactions of Fluorine and Fluorine Monoxide with Thionyl Fluoride. Z. Physik. Chem. (Frankfurt), vol. 40, 1964, p. 51.
- 28. Clark, D. T.; Tedder, J. M.: Reaction of Hydrogen Atoms with Halogeno-Methanes. Part 1.-Carbon Tetrachloride. Trans. Faraday Soc., vol. 62, 1966, p. 393.
- 29. Clark, D. T.; Tedder, J. M.: Free-Radical Substitution in Aliphatic Compounds. VI. The Reaction of Fluorine Atoms with Carbon Tetrachloride. J. Phys. Chem., vol. 68, 1964, p. 2018.
- 30. Clark, W. G.; Setser, D. W.; Siefert, E. E.: Reactions of Methylene with Dichloromethane in the Presence of Carbon Monoxide and the Collisional Deactivation of Vibrationally Excited 1,2-Dichloroethane by Carbon Monoxide and Perfluorocyclobutane. J. Phys. Chem., vol. 74, 1970, p. 1670.
- 31. Clyne, M. A. A.; McKenney, D. J.; Walker, R. F.: Reaction Kinetics of Ground State Fluorine, F(³P), Atoms. I. Measurement of Fluorine Atome Concentrations and the Rates of Reactions F + CHF₃ and F + Cl₂ using Mass Spectrometry. Can. J. Chem., vol. 51, 1973, p. 3596.
- 32. Clyne, M. A. A.; Watson, R. T.: Kinetic Studies of Diatomic Free Radicals using Mass Spectrometry. Part 1.-System Description and Applications to F Atoms and FO Radicals. J. Chem. Soc., Faraday Trans. I, vol. 70, 1974, p. 1109.
- 33. Coomber, J. W.; Whittle, E.: Bromination of Fluoro-Alkanes. Part 3.-Methane, Fluoroform, and Fluoro-ethanes. Trans. Faraday Soc., vol. 62, 1966, p. 1553.
- 34. Cox, R. A.; Cvetanovic, R. J.: The Reaction of Methylene with Carbon Monoxide. J. Phys. Chem., vol. 72,1968, p. 2236.
- 35. Cvetanovic, R. J.: Mercury Photosensitized Decomposition of Ethylene Oxide. Can. J. Chem., vol. 33, 1955, p. 1684.
- 36. Dalby, F. W.: Flash Photolysis Measurement of the Kinetics of CF₂ Reactions. J. Chem. Phys., vol. 41, 1964, p. 2297.
- 37. Davis, D. D.; Huie, R. E.; Herron, J. T.; Kurylo, M. J.; Braun, W.: Absolute Rate Constants for the Reaction of Atomic Oxygen with Ethylene over the Temperature Range 232-500 °K. J. Chem. Phys., vol 56, 1972, p. 4868.

- 38. DeGraff, B. A.; Kistiakowsky, G. B.: Photolysis of Ketene in the Presence of Carbon Monoxide. J. Phys. Chem., vol. 71, 1967, p. 3984.
- 39. Diesen, R. W.: Mass-Spectral Studies of Kinetics Behind Shock Waves. III. Thermal Dissociation of Fluorine. J. Chem. Phys., vol. 44, 1966, p. 3662.
- 40. Diesen, R. W.: Kinetics of the Reaction of Fluorine with Difluoroamino Radicals and the Dissociation of Fluorine. J. Phys. Chem., vol. 72, 1968, p. 108.
- 41. Dodonov, A. F.; Gordon, E. B.; Lavrovskaya, G. K.; Morosov, I. I.; Ponomarev, A. N.; Tal'roze, V. L. Int. Symp. Chem. Lasers, Moscow, 1969.
- 42. Dodonov, A. F.; Lavrovskaya, G. K.; Morosov, I. I.; Tal'roze, V. L.:

 Mass Spectrometric Measurement of Rate Constant of Elementary
 Reaction Between Fluorine Atoms and Hydrogen. Dokl. Akad. Nauk.

 SSSR, vol. 198, 1971, p. 622.
- 43. Dow Chemical Company Thermal Research Laboratory: JANAF Thermochemical Tables. CFSTI-PB-168370, Midland, Michigan, 1965.
- 44. Edwards, J. W.; Small, P. A.: Kinetics of the Pyrolysis of Chlorodifluoromethane. Ind. Eng. Chem. Fundamentals, vol. 4, 1965, p. 396.
- 45. Edwards, J. W.; Small, P. A.: Pyrolysis of Chlorodifluoromethane and the Heat of Formation of Chlorodifluoromethane and Difluoromethylene. Nature, vol. 202(4939), 1964, p. 1329.
- 46. Evans, F. W.; Fox, R. J.; Szwarc, M.: Studies of Halogen Atoms
 Abstraction by Methyl Radicals. J. Amer. Chem. Soc., vol. 82,
 1960, p. 6414.
- 47. Fenimore, C. P.; Jones, G. W.: Formation of Carbon Monoxide in Methane Flames by Reaction of Oxygen Atoms with Methyl Radicals. J. Phys. Chem., vol. 65, 1961, p. 1532.
- 48. Fettis, G. C.; Knox, J. H.; Trotman-Dickenson, A. F.: The Transfer Reactions of Halogen Atoms. J. Chem. Soc., vol 1960, p. 1064.
- 49. Fischer, J.; Steuenberg, R. K.: The Kinetics of the Reaction of Fluorine with Iodine Pentafluoride to Form Iodine Heptafluoride. J. Amer. Chem. Soc., vol. 79, 1957, p. 1876.
- 50. Fletcher, E. A.; Dahneke, B. E.: Kinetics of the Chlorine Fluoride Reaction. J. Amer. Chem. Soc., vol. 91, 1969, p. 1603.
- 51. Foon, R.; McAskill, N. A.: Kinetics of Gas-Phase Fluorination of Halomethanes. Trans. Faraday Soc., vol. 65, 1969, p. 3005.

- 52. Foon, R.; Reid, G. P.: Kinetics of the Gas Phase Fluorination of Hydrogen and Alkanes. Trans. Faraday Soc., vol. 67, 1971, p. 3513.
- 53. Foon, R.; Tait, K. B.: Chlorine Abstraction Reactions of Fluorine.

 Part 1.-Reaction of Fluorine with Trichlorofluoromethane. Trans.

 Faraday Soc., vol. 67, 1971, p. 3038.
- 54. Foon, R.; Tait, K. B.: Chlorine Abstraction Reactions of Fluorine. Part 3.-Thermochemical Data for Chlorofluoroalkanes. J. Chem. Soc., Faraday Trans. I, vol. 68, 1972, p. 1121.
- 55. Frey, H. M.: Kinetic Evidence for a Large Separation Between Singlet and Triplet Methylene. Chem. Comm., vol. 1972, p. 1024.
- 56. Frost, A. L.; Pearson, R. G.: Kinetics and Mechanism. Second ed., John Wiley & Sons, Inc., 1961.
- 57. Ganguli, P. S.; Kaufman, M.: The Rate of Homogeneous Recombination of Fluorine Atoms. Chem. Phys. Lett., vol. 25, 1974, p. 221.
- 58. Gawlowski, J.; Herman, J. A.; Gagnon, P.: The Origin of the Methyl Radical in the Photolysis of Propane at 123.6 nm. Can. J. Chem., vol. 53, 1975, p. 1348.
- 59. Goldberg, A. E.; Daniels, F.: Kinetics of the Pyrolysis of Ethyl Bromide. J. Amer. Chem. Soc., vol. 79, 1957, p. 1314.
- 60. Gordon, R. J.; Lin, M. C.: Chemical HF Laser Emission from the CHF + O₂ Reaction. Chem. Phys. Lett., vol. 22, 1973, p. 107.
- 61. Greenberg, R. I.; Heicklen, J.: The Reaction of O(¹D) with CH₄.
 Int. J. Chem. Kinet., vol. 4, 1972, p. 417.
- 62. Halberstadt, M. L.; Crump, J.: Insertion of Methylene into the Carbon-Hydrogen Bonds of the C₁ to C₄ Alkanes. J. Photochem., vol. 1, 1973, p. 295.
- 63. Halberstadt, M. L.; McNesby, J. R.: Insertion of Methylene into Alkanes. J. Amer. Chem. Soc., vol. 89, 1967, p. 3417.
- 64. Hammes, G. G., ed.: Techniques of Chemistry, vol. 6, Investigations of Rates and Mechanisms of Reactions, Part 2. Investigation of Elementary Reaction Steps in Solution and Very Fast Reactions. John Wiley & Sons(New York), 1974.
- 65. Harteck, P.; Kopsch, U.: Gas-Phase Photo-oxidation. Z. Physik. Chem., vol B12, 1931, p. 327.
- 66. Hassler, J. C.; Setser, D. W.: Reaction of Methylene with Dichloromethane and Nonequilibrium Unimolecular Elimination Reactions of 1,1-C₂H₄Cl₂ and 1,1,2-C₂H₃Cl₃ Molecules. J. Chem. Phys., vol 45, 1966, p. 3237.

- 67. Heicklen, J.: Gas-Phase Reactions of Alkylperoxy and Alkoxy Radicals. Adv. Chem. Ser., vol. 76, 1968, p. 23.
- 68. Heicklen, J.; Cohen, N.: The Role of Nitric Oxide in Photochemistry. Adv. Photochem., vol. 5, 1968, p. 157.
- 69. Heicklen, J.; Knight, V.: Reaction of Oxygen Atoms with Tetrafluoroethylene in the Presence of Molecular Oxygen. J. Phys. Chem., vol. 70, 1966, p. 3893.
- 70. Heras, J. M.; Arvia, A. J.; Aymonino, A. J.; Schumacher, H. J.:
 Kinetics of the Thermal Reaction between Fluorine, Carbon Monoxide,
 and Oxygen. Z. Physik. Chem. (Frankfurt), vol. 28, 1961, p. 250.
- 71. Herbelin, J. M.; Cohen, N.: The Chemical Production of Electronically Excited States in the H/NF₂ System. Chem. Phys. Lett., vol. 20, 1973, p. 605.
- 72. Herron, J. T.; Penzhorn, R. D.: Mass Spectrometric Study of the Reactions of Atomic Oxygen with Ethylene and Formaldehyde. J. Phys. Chem., vol. 73, 1969, p. 191.
- 73. Hiroaka, H.: Carbonyl Sulfide Formation via Transient Sulphenes. Chem. Comm., vol. 1974, p. 1014.
- 74. Homann, K. H.; MacLean, D. I.: Structure of Fluorine-Supported Flames.

 I. Method of Investigation. The Dichlorodifluoromethane-Fluorine
 Flame. J. Phys. Chem., vol. 75, 1971, p. 3645.
- 75. Homann, K. H.; Solomon, W. G.; Warnatz, J.; Wagner, H. Gg.; Zetzsch, C.: A Method for Investigating Fluorine Atoms in an Inert Atmosphere. Ber. Bunsenges. Phys. Chem., vol. 74, 1970, p. 585.
- 76. Hudson, R. D.: Absorption Cross Sections of Stratospheric Molecules. Can J. Chem., vol. 52, 1974, p. 1465.
- 77. Imai, N.; Toyama, O.: Hydrogen Abstraction from Hydrogen Sulfide Molecules by Methyl Radicals. Bull. Chem. Soc. Japan, vol. 33, 1960, p. 652.
- 78. Imai, N.; Toyama, O.: The Photolysis of Acetaldehyde in the Presence of Hydrogen Sulfide. Bull Chem. Soc. Japan, vol. 33, 1960, p. 1120.
- 79. Johnson, C. D.; Britton, D.: Shock Waves in Chemical Kinetics: The Rate of Dissociation of Fluorine. J. Phys. Chem., vol. 68, 1964, p. 3032.
- 80. Johnston, H. S.; Bertin, H. J., Jr.: Heat of Formation of Nitrosyl Fluoride. J. Amer. Chem. Soc., vol. 81, 1959, p. 6402.

- 81. Johnston, T.; Heicklen, J.: Fate of Triplet Difluoromethylene. J. Chem. Phys., vol. 47,1967, p. 475.
- 82. Johnstone, R. S. B.; Wayne, R. P.: Effect of Excess Energy on the Reactivity of Methylene. Nature, vol. 211,1966, p. 1396.
- 83. Johnstone, R. S. B.; Wayne, R. P.: The Reaction of Methylene with Methyl Chloride. The Effect of Excess Energy in Methylene. Photochem. Photobiol., vol. 6, 1967, p. 531.
- 84. Jonathan, N.; Melliar-Smith, C. M.; Okuda, S.; Slater, D. H.; Timlin, D.: Initial Vibrational Energy Level Distributions Determined by Infra-red Chemiluminescence, II. The Reaction of Fluorine Atoms with Hydrogen Halides. Mol. Phys., vol. 22, 1971, p. 561.
- 85. Jones, M., Jr.; Moss, R. A., eds.: Carbenes. vols. I and II. John Wiley & Sons, Inc., 1973.
- 86. Jubert, A. H.; Sicre, J. E.; Schumacher, H. J.: The Kinetics of the Photochemical Reaction between Fluorine and Carbon Dioxide. Z. Physik. Chem., vol. 67,1969, p. 138.
- 87. Kerr, J. A.; Calvert, J. G.: The Formation and Decomposition Reactions of the Acetyl Radical and the Heat of Formation of the Acetyl Radical. J. Phys. Chem., vol. 69, 1965. p. 1022.
- 88. Kirsch, L. J.; Polanyi, J. C.: Effect of Reagent Vibrational Excitation on Reaction Rate and Product Energy Distribution in F + HC1 → HF + C1*. J. Chem. Phys., vol. 57, 1972, p. 4498.
- 89. Kistiakowsky, G. B.; Sauer, K.: Reactions of Methylene. 2. Ketene and Carbon Dioxide. J. Amer. Chem. Soc., vol. 80,1958, p. 1066.
- 90. Kolb, C. E.; Kaufman, M.: Molecular Beam Analysis Investigation of the Reaction Between Atomic Fluorine and Carbon Tetrachloride.

 J. Phys. Chem., vol. 76, 1972, p. 947.
- 91. Kompa, K. L.; Wanner, J.: Study of Some Fluorine Atom Reactions Using a Chemical Laser Method. Chem. Phys. Lett., vol. 12, 1972, p. 560.
- 92. Kreiger, R. L.; Gatti, R.; Schumacher, H. J.: The Kinetics of the Photochemical Formation of Chlorine Pentafluoride, CIF₅, from Chlorine Trifluoride and Fluorine. Z. Phys. Chem., vol. 51, 1966, p. 240.
- 93. Levy, H.: Photochemistry of the Lower Troposphere. Planet. Space Sci., vol. 20, 1972, p. 919.
- 94. Levy, J. B.; Copeland, B. K. W.: The Kinetics of the Hydrogen-Fluorine Reaction. II. The Oxygen-Inhibited Reaction. J. Phys. Chem., vol. 69, 1965, p. 408.

- 95. Levy, J. B.; Copeland, B. K. W.: The Kinetics of the Hydrogen-Fluorine Reaction. III. The Photochemical Reaction. J. Phys. Chem., vol. 72, 1968, p. 3168.
- 96. Lopez, M. I.; Castellano, E.; Schumacher, H. J.: Kinetics of the Photochemical Fluorination of Carbonyl Fluoride. J. Photochem., vol. 3, 1974, p. 97.
- 97. Lossing, F. P.: Free Radicals by Mass Spectrometry. XII. Primary Steps in the Mercury Photosensitized Decompositions of Acetone and Acetaldehyde. Can. J. Chem., vol. 35,1957, p. 305.
- 98. Mahan, B. H.; Solo, R. B.: The Carbon Monoxide-Oxygen Atom Reaction. Abstracts of Papers, 139th Meeting ACS, Washington, D.C., 1961.
- 99. Mamantov, G.; Vickroy, D. G.; Vasini, E. J.; Maekawa, T.; Moulton, M. C.: The Chlorine Difluoride Free Radical. Inorg. Nucl. Chem. Lett., vol. 6, 1970, p. 701.
- 100. Mamantov, G.; Clarke, M. R.: Low-Temperature Fluorine Chemistry. USNTIS AD Rept. No. 727059, 1971.
- 101. March, J.: Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. McGraw Hill Book Co., 1968.
- 102. McGraw, G. E.; Johnston, H. S.: Molecular-Modulation Spectrometry: CH₃ONO Photolysis and Detection of Nitroxyl. Int. J. Chem. Kinet., vol. 1, 1969, p.89.
- 103. Mercer, P. D.; Pritchard, H. O.: The Gas Phase Fluorination of Hydrogen-Methane Mixtures. J. Phys. Chem., vol. 63,1959, p. 1468.
- 104. Miller, W. T., Jr.: Dittman, A. L.: The Mechanism of Fluorination.

 I. Fluorine Sensitized Oxidation of Trichloro- and Tetrachloroethylene. J. Amer. Chem. Soc., vol. 78, 1956, p. 2793.
- 105. Miller, W. T., Jr.; Koch, S. D., Jr.; McLafferty, F. W.: The Mechanism of Fluorination. II. Free Radical Initiation Reactions. Fluorine-sensitized Chlorination and Oxidation. J. Amer. Chem. Soc., vol. 78, 1956, p. 4992.
- 106. Milligan, D. E.; Jacox, M. E.: Infrared Study of the Reaction of CH, with CO, in the Solid State. J. Chem. Phys., vol. 36,1962, p. 2911.
- 107. Modica, A. P.: Kinetics and Equilibria of the Difluorocarbene Radical Decomposition Behind Shock Waves. J. Chem. Phys., vol. 44, 1966, p. 1585.
- 108. Modica, A. P.; LaGraff, J. E.: C₂F₄ Dissociation in Nitrogen Shocks. J. Chem. Phys., vol. 45, 1966, p. 4729.

- 109. Modica, A. P.: Kinetics of the Difluoromethylene-Nitric Oxide Reaction.
 I. J. Chem. Phys., vol. 46, 1967, p. 3663.
- 110. Modica, A. P.; Sillers, S. J.: Experimental and Theoretical Kinetics of High-Temperature Fluorocarbon Chemistry. J. Chem. Phys., vol. 48, 1968, p. 3283.
- 111. Morris, E. D.; Niki, H.: Mass Spectrometric Study of the Reaction of Hydroxyl Radical with Formaldehyde. J. Chem. Phys., vol. 55, 197
- 112. Ogden, J. S.: Turner, J. J.: Photolytic Fluorine Reactions: F₂ + N₂O at 4^oK. J. Chem. Soc., vol. A1967, p. 1483.
- 113. Perrine, R. L.; Johnstone, H. S.: Kinetics of the Fast Reaction between Nitrogen Dioxide and Fluorine. J. Chem. Phys., vol. 21, 1953, p. 2202.
- 114. Pilipovich, D.; Rogers, H. H.; Wilson, R. D.: Chlorine Trifluoride Oxide. II. Photochemical Synthesis. Inorg. Chem., vol. 11, 1972, p. 2192.
- 115. Pollack, T. L.; Jones, W. E.: Gas Phase Reactions of Fluorine Atoms. Can. J. Chem., vol. 51, 1973, p. 2041.
- 116. Powell-Wiffen, J. W.; Wayne, R. F.: The Reaction of Methylene with Hydrogen. Photochem. Photobiol., vol. 8, 1968, p. 131.
- 117. Pritchard, G. O.; Bryant, J. T.; Thommarson, R. L.: The C-H Bond Dissociation Energies in CF₃H, C₂F₅H, and C₃F₇H. J. Phys. Chem., vol. 68, 1964, p. 568.
- 118. Pritchard, G. O.; Bryant, J. T.; Thommarson, R. L.: The Reaction of Methyl Radicals with Methyl and Methylene Fluoride. J. Phys. Chem., vol. 69, 1965, p. 664.
- 119. Pritchard, G. O.; Bryant, J. T.; Thommarson, R. L.: The Reaction of Methylene with CF₂H₂. J. Phys. Chem., vol. 69, 1965, p. 2804.
- 120. Rabideau, S. W.; Hecht, H. G.; Lewis, W. B.: A Study of the Kinetics of the Reaction between H₂ and F₂ by EPR Methods. J. Magn. Resonance, vol. 6, 1972, p. 384.
- 121. Rapp, D.; Johnston, H. S.: Nitric Oxide-Fluorine Dilute Diffusion Flame. J. Chem. Phys., vol. 33, 1960, p. 695.
- 122. Rebbert, R. E.; Lias, S. G.; Ausloos, P.: Vacuum Ultraviolet Photolysis of Methane. Reaction of Methylene. Chem. Phys. Lett., vol. 12, 1971, p. 323.
- 123. Rowland, F. S.; Molina, M. J.: Chlorofluoromethanes in the Environment. Rev. Geophys. Space Phys., vol. 13, 1975, p. 1.

- 124. Ruff, O.; Krug, H.: Oxygen Fluoride, OF₂. Z. anorg. u. allgem. Chem., vol. 190, 1930, p. 270.
- 125. Rusin, L. Yu.; Chaikin, A. M.; Shilov, A. E.: Branched Chain Reaction between Fluorine and Methyl Iodide. Kinet. Katal., vol. 8, 1970, p. 153.
- 126. San Roman, E. A.; Schumacher, H. J.: Kinetics of the Photochemical Formation of Chlorine Trifluoride in the System Fluorine-Chlorine Monofluoride. Z. Physik. Chem. (Frankfurt), vol. 71, 1970, p. 153.
- 127. Sanzone, G.: private communication.
- 128. Saunders, D.; Heicklen, J.: The Reaction of Oxygen Atoms with Tetrafluoroethylene. J. Amer. Chem. Soc., vol. 87, 1967, p. 2088.
- 129. Saunders, D.; Heicklen, J.: Some Reactions of Oxygen Atoms. I. C_2F_4 , C_3F_6 , C_2H_2 , $1-C_4H_8$, C_2H_6 , cis- C_3H_6 , and C_3H_8 . J. Phys. Chem., vol. 70, 1966, p. 1950.
- 130. Schmitz, H.; Schumacher, H.: The Reaction C1F + $F_2 \stackrel{?}{\sim} C1F_3$. Z. Naturforsch., vol. 2a, 1947, p. 362.
- 131. Seery, D. J.; Britton, D.: Shock Waves in Chemical Kinetics. Further Studies in the Dissociation of Fluorine. J. Phys. Chem., vol. 70, 1966, p. 4074.
- 132. Seery, D. J.; Britton, D.: Shock Waves in Chemical Kinetics. Further Studies in the Dissociation of Fluorine. USNTIS AD Rept. No.646057, 1966.
- 133. Semeluk, G. P.; Bernstein, R. B.: The Thermal Decomposition of Chloroform. II. Kinetics. J. Amer. Chem. Soc., vol. 79, 1957, p. 46.
- 134. Setser, D. W.; Littrell, R.; Hassler, J. C.: Gas Phase Reaction of Methylene with Methyl Chloride. J. Amer. Chem. Soc., vol. 87, 1965, p. 2062.
- 135. Shilov, A. E.; Sabirova: The Mechanism of the First Stage in the Thermal Decomposition of Chloromethanes. II. The Decomposition of Chloroform. Russ. J. Physic. Chem., vol. 34,1960, p. 408.
- 136. Shilov, A. E.; Shteinman, A. A.; Tyabin, M. B.: Reaction of Carbenes with Molecular Nitrogen. Tetrahedron Lett., vol. 39, 1968, p. 4177.
- 137. Sicre, J. E.; Schumacher, H. J.: Kinetics of the Thermal Reaction betweem Fluorine and Ozone. Anales. asoc. quim. arg., vol. 46, 1958, p. 38.

- 138. Sicre, J. E.; Schumacher, H. J.: Kinetics of the Thermal Reaction between Fluorine and Nitroxy Fluoride and the influence of Fluorine on the Thermal Decomposition Thereof. Z. Physik. Chem. (Frankfurt), vol. 32, 1962, p. 355.
- 139. Simonaitis, R.; Heicklen, J.: Kinetics and Mechanism of the Reaction of O(3P) with Carbon Monoxide. J. Chem. Phys., vol. 56, 1972, p. 2004.
- 140. Skiens, W. E.; Cady, G. H.: Thermal Decomposition of Fluorine Nitrate. J. Amer. Chem. Soc., vol. 80, 1958, p. 5640.
- 141. Smardzewski, R. R.; Fox, W. B.: Reaction of Atomic Fluorine with Oxygen Atoms in Cryogenic Matrices: A New Source of the Hypofluorite Radical. J. Chem. Phys., vol. 61, 1974, p. 4933.
- 142. Staricco, E. H.; Sicre, J. E.; Schumacher, H. J.: Photochemical Reaction between Fluorine and Ozone. Z. Physik. Chem. (Frankfurt), vol. 31, 1962, p. 385.
- 143. Tarr, A. M.; Coomber, J. W.; Whittle, E.: Bromination of Fluoro-Alkanes. Part 2.- Fluoromethane and Pentafluoroethane. Trans. Faraday Soc., vol. 61, 1965, p. 1182.
- 144. Tedder, J. M.; Walton, J. C.: Free Radical Addition to Olefins.
 Part 2.- Addition of Trichloromethyl Radicals to Fluoroethylenes.
 Trans. Faraday Soc., vol. 62, 1966, p. 1859.
- 145. Tomkinson, D. M.; Pritchard, H. O.: Abstraction of Halogen Atoms by Methyl Radicals. J. Phys. Chem., vol. 68, 1964, p. 541.
- 146. Tyerman, W. J. R.: Rate Parameters of Oxygen Atoms with C₂F₄, CF₂CFCl and CF₂CCl₂. Trans. Faraday Soc., vol. 65, 1969, p. 163.
- 147. Tyerman, W. J. R.: Rate Parameters for Reactions of Ground-State Difluorocarbene and Determination of the Absolute Intensity of the A¹B₁-X¹A₁Absorption Bands. Trans. Faraday Soc., vol. 65, 1969, p. 1188.
- 148. Vallana, C.; Castellano, E.; Schumacher, H. J.: Kinetics of the Thermal Reaction between Fluorine and Thionyl Fluoride. Z. Physik. Chem. (Frankfurt), vol. 42, 1964, p. 260.
- 149. Wagner, H. Gg.; Warnatz, J.; Zetzsch, C.: Production of F Atoms, H Atoms, and OF Radicals. Angew. Chem., vol. 10, 1971, p. 564.
- 150. Wagner, H. Gg.; Warnatz, J.; Zetzsch, C.: On the Reaction of F
 Atoms with Methane. An. Asoc. Quim. Argent., vol. 59, 1971, p. 169.

- 151. Wagner, H. Gg.; Zetzsch, C.; Warnatz, J.: Gas-Phase Preparation of OF Radicals by Reaction of Fluorine Atoms with Ozone. Ber. Bunsenges. Phys. Chem., vol. 76, 1972, p. 526.
- 152. Warnatz, J.; Wagner, H. Gg.; Zetzsch, C.: Determination of the Rate of Reaction of Fluorine Atoms with Molecular Chlorine. Ber. Bunsenges. Phys. Chem., vol. 75, 1971, p. 119.
- 153. Westenberg, A. A.; de Haas, N.: Reinvestigation of the Rate Coefficients for 0 + H₂ and 0 + CH₄. J. Chem. Phys., vol. 50, 1969, p. 2512.
- 154. Whitten, R. C.; Sims, J. S.: A Model of Carbon Compounds in the Stratosphere and Mesosphere. J. Geophys. Res., vol. 78, 1973, p. 536.
- 155. Wilson, T. B.; Kistiakowsky, G. B.: Reactions of Methylene. III.

 Addition to Carbon Monoxide. J. Amer. Chem. Soc., vol. 80,

 1958, p. 2934.
- 156. Wilson, W. E.: A Critical Review of the Gas-Phase Reaction Kinetics of the Hydroxyl Radical. J. Phys. Chem. Ref. Data, vol. 1, 1972, p. 535.
- 157. Wilson, W. E.; Westenberg, A. A.: Study of the Reaction of Hydroxyl Radical with Methane by Quantitative ESR. Proc. Eleventh Symp. (Intl.) on Combustion, 1967, p. 1143.
- 158. Young, R. A.; Black, G.; Slanger, T. G.: Reaction and Deactivation of O(1D). J. Chem. Phys., vol. 49, 1968, p. 4758.
- 159. Zmbov, H. F.; Uy, O. M.; Margrave, J. L.: Mass Spectrometric Study of the High-Temperature Equilibrium C₂F₄ ≠ 2CF₂ and the Heat of Formation of the CF₂ Radical. J. Amer. Chem. Soc., vol. 90, 1968, p. 5090.