

Image Plugin

Benjamin Gilles

21/10/13

Overview

Image data

- Based on CImg opensource library http://cimg.sourceforge.net/
 - Import/export in standard formats : bmp, jpeg, mpg, hdr, mhd+raw ...

Handles image orientation, position, pixel size

- Templated on the pixel type
 - ImageC = Image<char>, ImageUC = Image<unsigned char>, ImageD = Image<double>,
 ImageB = Image<bool>, etc.
- Most components templated on the image type :
 - e.g. <ImageViewer template='ImageD' />
- Five dimensions: x, y, z, channels, t

image 221 271 69 1 1

- Shared memory → no overhead when using data links
 - e.g. <ImageFilter inputImage= '@ container.image' />

Transform data

- Each Image is associated to a transformation
 - Encasulated into a single data to simplify linking across components (an engine is available to allow conversion from individual fields)
 - One type to minimize the number of instanciations
 - Linear transformation in the spatio-temporal domain
 - Can be turned into a perspective transformation
 - Pinhole camera intrinsics :
 - $fx = scalez /(2 \times scalex)$, $fy = scalez /(2 \times scaley)$
 - cx = (dimx 1)/2, cy = (dimy 1)/2

Viewer

- 'Plane' data to tune multi-planar rendering (MPR)
 - e.g. <ImageViewer plane=' 125 109 20' />
 - Visual model « slice through » visualization
 - Zoom using 'ctrl' key
- 'Histo' data to tune window/level

Vector/tensor visu for multi channel images

Filtering

- A single engine for all the standard filters
 - Blur, crop, threshold, distance, resample, etc...
 - e.g. smoothing :

 Node>
 ImageContainer name="image" filename="data/pelvis_f.raw" />
 ImageFilter name="filter" filter="1" param="2" inputImage="@image.image" inputTransform="@image.transform" />
 src="@image"
 Image="@ilter.outputImage" transform="@filter.outputTransform" />
 Image="@filter.outputImage" transform="@filter.outputTransform" />

src="@filter"

</Node>

Generation of volumetric meshes

sampler_HexaFEM.scn

Generation of frame model

MeshToImage_Frame.scn

Modeling heterogeneous materials

MeshToImage_Frame2.scn

Representing heterogeneous materials

MeshToImage_Hexa.scn

Branching images

Flexible/demos/BranchingImage_HexaFEM.scn

Allows superposition of voxels

- → sparse untangled FEM/meshless discretizations
- → contact/attachment modeling through branching cell topology

Registration

Registration/imageregistration.scn

Generation of iso-surfaces

marchingCubes.scn

Generation of a complete simulation

Flexible/demos/plate.scn

Visualization of volumetric data

Flexible/demos/strainDiscretizer.scn

Video streaming

testCam.scn

- Opency camera
- ImageAccumulator: creates 4d+t data and handles synchro

kinect.scn

- Kinect + depthMapToMeshEngine
 - Mix simulation and 4d captures for validation, interaction, etc.

Image deformation

Flexible/deformation/imageDeformation.scn

Future work

- Volume rendering, simulation of X-ray images
- 2d/3d textures using image types
- Image based collision models
- Cutting
- More registration methods
- More transformations
- Deformation models in Eulerian setting
- Anisotropic materials