

Course Name: Digital Hardware Design

Course Code: 17B1NEC741

Finite State Machine-1

Dr. Arti Noor
Dean, Academic Affairs
Electronics and Communication Engineering,
Jaypee Institute of Information Technology, Noida

Introduction(Cont.)

- Logic circuits can be classified into two types:
 - Combinational (No memory)
 - Outputs are based on the combination of inputs.
 - Sequential (With memory)
 - Outputs are based on memory (stored data) and inputs.

Primary O/P =f(primary I/Ps + Secondary I/Ps

Types of Sequential Circuits

- Synchronous Sequential Circuits
 - Behaviour depends on the input at a discrete time
 - Use clock pulses in the inputs of memory elements are called clocked sequential circuits.
- Asynchronous Sequential Circuits
 - Output depends on the sequence of input changes called asynchronous sequential circuits.

State Machine

Synchronous Sequential Circuits

- As its present O/P depends on present and previous sequence of inputs, its functioning cannot be explained by a simple truth table.
- State tables and state diagram are normally preferred to describe the working.
- Necessary to know the internal state of the circuit.

• Internal state is determined by the type of latches, flip flops, counters, shift registers, or memories used in the circuit.

State Machine

Few Definitions:

Input variable – All external input variables (A).

Output variable – All external output variables (Z).

State variable – output of memory defines the state of sequential machine and known as state variables(y).

Excitation variable – defined as the inputs to the memory(Y). It excites the memory to change its state.

State – defined by Q outputs.

Present state and Next State –state variables at time 't', is a **present state**. At time 't+1' after the clock edge application is called a **next state**.

Present state and next states are used to prepare state table of the state machine.

State Diagram and Table

- Circuit with two stable states '0' and '1' and an external input X.
- If input X = 0 then the circuit remains in the state '0'.
- If input X becomes 1, then the circuit makes a transition from state 0 to state 1.
- Draw the state diagram and table.

Present State (Qn)	Next State (Qn+1)		
	X=0	X=1	
0	0	1	
1	0	1	

- A flip-flop (FF) (SR, JK, D, T) is a simple memory storage component that stores the binary information.
- FFs follow a sequence of internal states.
- Characteristic table defines the state of each FF as a function of inputs and previous state.

SR flip flop

Characteristic Table

Q	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	Х
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Х

State Diagram

Excitation Table

Qn	Qn+1	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

$$Q(t+1) = S+R'Q$$

- Reset state (Q=0) and JK inputs are OX, FF remains in the same state.
- If JK inputs are 1X then FF makes 0 to 1 state transition.
- Set state (Q=1) and JK inputs are X0, FF remains in the same state. B
- If JK inputs are X1, then FF makes 1 to 0 state transitions.

JK flip flop

State Diagram

Excitation Table

Present State	Next State	Inputs	
D	Q(t+1)	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

$$Q_{next} = J'K'Q + JK' + JKQ'$$

$$= J'K'Q + JK'Q + JK'Q' + JKQ'$$

$$= K'Q(J'+J) + JQ'(K'+K)$$

$$= K'O + JO'$$

- Reset state when Q=0 and and D input is 0. FF in same state.
- But if D input is 1 then FF makes 0 to 1 state transition.
- Set state when Q=1 and D input is 1, FF in same state.
- But if D input is 0, then FF makes 1 to 0 state transitions

D flip flop

State Diagram

Excitation Table

Present State	Next State	Inputs
Q	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

$$Q(t+1) = D$$

10

- Reset state when Q=0 and and T input is 0. FF in same state.
- But if T input is 1 then FF makes 0 to 1 state transition.
- Set state when Q=1 and T input is 0, FF in same state.
- But if T input is 1, then FF makes 1 to 0 state transitions

T flip flop

State Diagram

Excitation Table

Present State	Next State	Inputs
Q	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

$$Q(t+1) = T XOR Q$$

=T'Q+TQ'

Finite State Machine

- A state machine is a behavioral model. It consists of a finite number of states and is therefore also called a Finite-State Machine (FSM).
- Based on the current state and a given input the machine performs state transitions and produces outputs.
- The outputs and the next state are both functions on the applied inputs and the present state.

Types of FSM

Mealy Machine

- Three major blocks, next state decoder, memory and output decoder.
- The output is a function of present input conditions (X) and the present state (PS) and defined as Y= g(X,PS).

Types of FSM

Moore Machine

• its output is strictly a function of the present state (PS) of the sequential circuit and is defined as Y=g(PS).

State Equations

State Equations: The algebraic equations through which clocked sequential circuits are described. It is used to describe the next state as a function of present state.

Example:

The circuit has input x, output y and 2 flip flops A and B.

$$A(t+1) = A(t)x + B(t)x$$
$$B(t+1) = A'(t)x$$

A state equation specifies the condition for a FF state transition.

State Equations

■ For simplicity (t) will be omitted from the present state. Hence the state equation become:

$$A(t+1) = Ax + Bx$$
$$B(t+1) = A'x$$

Consequently, the output is:

$$y(t) = x'(t)(A(t) + B(t))$$

Becomes

$$y = x'(A + B)$$

State Table

The time sequence of the inputs, outputs and FF states are listed in a table called *state table* or *transition table* .

2 FFs with one input x will make 8 entries in transition table

State Table

	Present State Input			ext ate	Output	
A	В	X	A	В	<i>y</i>	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

$$A(t+1) = Ax + Bx$$
$$B(t+1) = A'x$$

$$y = x'(A + B)$$

Second Form of the State Table

Present		Next State				Output	
	ate	x =	0	X =	= 1	x = 0	<i>x</i> = 1
A	В	A	В	A	В	y	y
0	0	0	0	0	1	0	0
O	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

In general, for a sequential circuit with m FF's, n inputs, and o outputs, the state table has:

- 2^{m+n} rows.
- •m next state columns
- o output columns.

State Diagram

- State diagram is a graphical presentation of the information available in a state table
- The state of the FF's is represented by a binary number inside a circle.
- The clock triggered transitions are represented by labeled directed lines connecting the circles. The labels are two numbers separated by a slash:
 - The number before the slash is the input value during the present state.
 - The second number after the slash is the output during the present state with the given input .

State Diagram

Second Form of the State Table

Present		Next State				Output	
	ate	x =	0	X =	= 1	x = 0	<i>x</i> = 1
A	В	A	В	A	В	y	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Final Steps

Circuit diagram → Equations – State table → State diagram

Example 2

Example 2

Presen	Inp	uts	Next	
A		x	У	A
O	1	O	O	O
O	2	O	1	1
O	2 3 4 5	1	O	1
O	4	1	1	O
1	5	O	O	1
1	6	O	1	O
1	7	1	0	O
1	8	1	1	1
	_			_

State table

More on FSM