Optical Bistability As Neural Network Nonlinear Activation Function

Davide Bazzanella

20th March 2018

Università degli studi di Trento

Introduction

All-optical Artificial Neural Networks

Applying integrated photonics to artificial neural networks

Introduction

Artificial Neural Networks

Microring Resonator

ANN Simulations

Artificial Neural Networks

ANNs

Artificial Neural Networks are computation systems, composed by a collection of nodes that work seemingly biological neurons.

ANNs blocks

ANNs are composed by single units, *nodes*, which elaborate the information in a way loosely similar to biological neurons.

What can they do?

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can obtain arbitrary decision regions¹

The amount of free parameters in an ANN, allow ..?

¹R. O. Duda et al., *Pattern classification*, (John Wiley & Sons, 2012)

- training
 - evaluate loss
 - adjust parameters
- validation
- test

- training
 - evaluate loss
 - adjust parameters
- validation
- test

- training
 - evaluate loss
 - adjust parameters
- validation
- test

- training
 - evaluate loss
 - adjust parameters
- validation
- test

- training
 - evaluate loss
 - adjust parameters
- validation
- test

Microring Resonator

MRR

placeholder

MRR

placeholder

MRR

placeholder

Theory

Linear

Theory

Nonlinear

Experiments

Setup

ANN Simulations

Simulation Framework

What means simulating? PyTorch library

Fundamental blocks

```
model (FF[f_a])
loss criteria (CEL)
weight update criteria (SGD)
```

Operation Tests

ReLU vs Sigmoid vs ffit

Conclusions

Overview Improvements Future Perspective

