Lattice paths and Lagrangian matroids

Edward D. Kim, University of California, Davis

AMS Spring 2010 Western Section Meeting Special Session on Geometric Combinatorics

April 18, 2010

Joint work with: Anna Gundert, ETH Zürich Daria Schymura, Freie Universität Berlin

The playbill

The cast

 $lattice\ path\ matroids\ \subset\ matroids,$ $lattice\ path\ Lagrangian\ matroids\ \subset\ Lagrangian\ matroids.$

The playbill

The cast (in order of appearance????)

 $lattice\ path\ matroids\ \subset\ matroids,$ $lattice\ path\ Lagrangian\ matroids\ \subset\ Lagrangian\ matroids.$

- Let P be a North/East path from (0,0) to (m,n).
- Let *Q* be a North/East path that stays above *P*.
- Let \mathcal{B} be the collection of all North/East paths \mathcal{B} between \mathcal{P} and \mathcal{Q} . Then \mathcal{B} is the set of bases of a matroid.

- Let P be a North/East path from (0,0) to (m,n).
- Let *Q* be a North/East path that stays above *P*.
- Let \mathcal{B} be the collection of all North/East paths \mathcal{B} between \mathcal{P} and \mathcal{Q} . Then \mathcal{B} is the set of bases of a matroid.

- Let P be a North/East path from (0,0) to (m,n).
- Let Q be a North/East path that stays above P.
- Let \mathcal{B} be the collection of all North/East paths B between P and Q. Then \mathcal{B} is the set of bases of a matroid.

- Let P be a North/East path from (0,0) to (m,n).
- Let *Q* be a North/East path that stays above *P*.
- Let \mathcal{B} be the collection of all North/East paths \mathcal{B} between \mathcal{P} and \mathcal{Q} . Then \mathcal{B} is the set of bases of a matroid.

- Let P be a North/East path from (0,0) to (m,n).
- Let *Q* be a North/East path that stays above *P*.
- Let \mathcal{B} be the collection of all North/East paths B between P and Q. Then \mathcal{B} is the set of bases of a matroid.

Lagrangian matroids

$$[n]^* = \{1^*, \dots, n^*\}, S = [n] \cup [n]^*$$

Definition

- $B \subset S$ is a transversal of S if $|B \cap \{i, i^*\}| = 1$ for all $i \in [n]$.
- For transversals X and Y of S, we say i is a divergence if $i \in X \triangle Y$.

Definition

Let \mathcal{B} be a set of transversals of S. \mathcal{B} is the set of bases of a Lagrangian matroid if the following *symmetric exchange axiom* holds:

For all $X, Y \in \mathcal{B}$ and each divergence i, there is a divergence j such that $X \triangle \{i, i^*, j, j^*\} \in \mathcal{B}$.

Lagrangian matroids

$$[n]^* = \{1^*, \dots, n^*\}, S = [n] \cup [n]^*$$

Definition

- $B \subset S$ is a transversal of S if $|B \cap \{i, i^*\}| = 1$ for all $i \in [n]$.
- For transversals X and Y of S, we say i is a divergence if $i \in X \triangle Y$.

Definition

Let \mathcal{B} be a set of transversals of S. \mathcal{B} is the set of bases of a Lagrangian matroid if the following *symmetric exchange axiom* holds:

For all $X, Y \in \mathcal{B}$ and each divergence i, there is a divergence j such that $X \triangle \{i, i^*, j, j^*\} \in \mathcal{B}$.

Lagrangian matroids

$$[n]^* = \{1^*, \dots, n^*\}, S = [n] \cup [n]^*$$

Definition

- $B \subset S$ is a transversal of S if $|B \cap \{i, i^*\}| = 1$ for all $i \in [n]$.
- For transversals X and Y of S, we say i is a divergence if $i \in X \triangle Y$.

Definition

Let \mathcal{B} be a set of transversals of S. \mathcal{B} is the set of bases of a Lagrangian matroid if the following *symmetric exchange axiom* holds:

For all $X, Y \in \mathcal{B}$ and each divergence i, there is a divergence j such that $X \triangle \{i, i^*, j, j^*\} \in \mathcal{B}$.

- Let *P* be an up-down path of length *n* starting at 0.
- Let Q be an up-down path starting at 0 that stays above P.
- Denote by $\mathcal{B}[P,Q]$ the set of all paths between P and Q.
- $\mathcal{B}[P,Q]$ is the set of bases of a Lagrangian matroid. (Say, for instance, that $i^* \in X$ if the path B goes up on the ith step.)

- Let P be an up-down path of length n starting at 0.
- Let Q be an up-down path starting at 0 that stays above P.
- Denote by $\mathcal{B}[P,Q]$ the set of all paths between P and Q.
- $\mathcal{B}[P,Q]$ is the set of bases of a Lagrangian matroid. (Say, for instance, that $i^* \in X$ if the path B goes up on the ith step.)

- Let *P* be an up-down path of length *n* starting at 0.
- Let Q be an up-down path starting at 0 that stays above P.
- Denote by $\mathcal{B}[P,Q]$ the set of all paths between P and Q.
- $\mathcal{B}[P,Q]$ is the set of bases of a Lagrangian matroid. (Say, for instance, that $i^* \in X$ if the path B goes up on the ith step.)

- Let *P* be an up-down path of length *n* starting at 0.
- Let Q be an up-down path starting at 0 that stays above P.
- Denote by $\mathcal{B}[P,Q]$ the set of all paths between P and Q.
- $\mathcal{B}[P,Q]$ is the set of bases of a Lagrangian matroid. (Say, for instance, that $i^* \in X$ if the path B goes up on the ith step.)

an example path $B \in \mathcal{B}[P,Q]$

- Let *P* be an up-down path of length *n* starting at 0.
- Let Q be an up-down path starting at 0 that stays above P.
- Denote by $\mathcal{B}[P,Q]$ the set of all paths between P and Q.
- $\mathcal{B}[P,Q]$ is the set of bases of a Lagrangian matroid. (Say, for instance, that $i^* \in X$ if the path B goes up on the ith step.)

an example path $B \in \mathcal{B}[P,Q]$

 $lattice\ path\ matroids\ \subset\ matroids,$ $lattice\ path\ Lagrangian\ matroids\ \subset\ Lagrangian\ matroids.$

Question: de Mier

What is the relationship between lattice path Lagrangian matroids and lattice path matroids?

Theorem

Let \mathcal{B} be a collection of transversals of $S = [n] \cup [n]^*$. For a transversal T of S, define $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$.

Then, \mathcal{B} is a Lagrangian matroid $\Leftrightarrow \mathcal{I}_T^{\mathcal{B}}$ is the set of independent sets of a matroid on $T \subset S$.

The plan...

 $lattice\ path\ matroids\ \subset\ matroids,$ $lattice\ path\ Lagrangian\ matroids\ \subset\ Lagrangian\ matroids.$

Question: de Mier

What is the relationship between lattice path Lagrangian matroids and lattice path matroids?

Theorem

Let \mathcal{B} be a collection of transversals of $S = [n] \cup [n]^*$. For a transversal T of S, define $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$.

Then, \mathcal{B} is a Lagrangian matroid $\Leftrightarrow \mathcal{I}_T^{\mathcal{B}}$ is the set of independent sets of a matroid on $T \subset S$.

The plan

 $lattice\ path\ matroids\ \subset\ matroids,$ $lattice\ path\ Lagrangian\ matroids\ \subset\ Lagrangian\ matroids.$

Question: de Mier

What is the relationship between lattice path Lagrangian matroids and lattice path matroids?

Theorem

Let $\mathcal B$ be a collection of transversals of $S=[n]\cup[n]^*$. For a transversal T of S, define $\mathcal I_T^{\mathcal B}=\{I:I\subseteq B\cap T \text{ for some }B\in\mathcal B\}$.

Then, \mathcal{B} is a Lagrangian matroid $\Leftrightarrow \mathcal{I}_T^{\mathcal{B}}$ is the set of independent sets of a matroid on $T \subset S$.

 $lattice\ path\ matroids\ \subset\ matroids,$ $lattice\ path\ Lagrangian\ matroids\ \subset\ Lagrangian\ matroids.$

Question: de Mier

What is the relationship between lattice path Lagrangian matroids and lattice path matroids?

Conjecture: de Mier

Let \mathcal{B} be a collection of transversals of $S = [n] \cup [n]^*$. For a transversal T of S, define $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$.

Then, \mathcal{B} is a lattice path Lagrangian matroid $\Leftrightarrow \mathcal{I}_T^{\mathcal{B}}$ is the set of independent sets of a lattice path matroid on $T \subset S$.

The plan...

 $lattice\ path\ matroids\ \subset\ matroids,$ $lattice\ path\ Lagrangian\ matroids\ \subset\ Lagrangian\ matroids.$

Question: de Mier

What is the relationship between lattice path Lagrangian matroids and lattice path matroids?

Theorem: Gundert, K., Schymura

Let \mathcal{B} be a collection of transversals of $S = [n] \cup [n]^*$. For a transversal T of S, define $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$.

Then, \mathcal{B} is a lattice path Lagrangian matroid $\Rightarrow \mathcal{I}_T^{\mathcal{B}}$ is the set of independent sets of a lattice path matroid on $T \subset S$.

The plan...

 $lattice\ path\ matroids\ \subset\ matroids,$ $lattice\ path\ Lagrangian\ matroids\ \subset\ Lagrangian\ matroids.$

Question: de Mier

What is the relationship between lattice path Lagrangian matroids and lattice path matroids?

Theorem: Gundert, K., Schymura

Let \mathcal{B} be a collection of transversals of $S = [n] \cup [n]^*$. For a transversal T of S, define $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$.

Then, \mathcal{B} is a lattice path Lagrangian matroid $\Rightarrow \mathcal{I}_T^{\mathcal{B}}$ is the set of independent sets of a lattice path matroid on $T \subset S$.

The plan...

 $\mathcal{B} = \mathcal{B}[P,Q]$ a LPLM, T a transversal.

What are the bases of $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$?

Paths $B \in \mathcal{B}[P, Q]$ that agree maximally with T! We call these maximal paths.

 $\mathcal{B} = \mathcal{B}[P,Q]$ a LPLM, T a transversal.

What are the bases of $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$?

Paths $B \in \mathcal{B}[P, Q]$ that agree maximally with T! We call these maximal paths.

 $\mathcal{B} = \mathcal{B}[P,Q]$ a LPLM, T a transversal.

What are the bases of $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$?

Paths $B \in \mathcal{B}[P, Q]$ that agree maximally with T! We call these maximal paths.

 $\mathcal{B} = \mathcal{B}[P,Q]$ a LPLM, T a transversal.

What are the bases of $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$?

Paths $B \in \mathcal{B}[P,Q]$ that agree maximally with T!

We call these maximal paths.

 $\mathcal{B} = \mathcal{B}[P,Q]$ a LPLM, T a transversal.

What are the bases of $\mathcal{I}_T^{\mathcal{B}} = \{I : I \subseteq B \cap T \text{ for some } B \in \mathcal{B}\}$?

Paths $B \in \mathcal{B}[P, Q]$ that agree maximally with T! We call these maximal paths.

P^{\max} and Q^{\max}

If two maximal paths cross,...

So there is a lowest maximal path P^{max} and a highest maximal path O^{max} .

We only have to consider paths between P^{\max} and Q^{\max} !

.

P^{\max} and Q^{\max}

If two maximal paths cross,...

So there is a lowest maximal path P^{\max} and a highest maximal path Q^{\max} .

We only have to consider paths between P^{\max} and Q^{\max} !

Suppose *S*, *R* maximal paths with $h_S(n) > h_R(n)$.

Among the disagreeing steps there have to be more with $P(i) = \sum_{i=1}^{n} P(i) = \sum_{i=1$

R cannot agree with T in each of these steps

 \Rightarrow W has one more agreement than R.

Suppose *S*, *R* maximal paths with $h_S(n) > h_R(n)$.

Among the disagreeing steps there have to be more with

$$R(j) = \searrow$$
, $S(j) = \nearrow$.

R cannot agree with T in each of these steps.

 \Rightarrow W has one more agreement than R.

Suppose *S*, *R* maximal paths with $h_S(n) > h_R(n)$.

Among the disagreeing steps there have to be more with

$$R(j) = \searrow$$
, $S(j) = \nearrow$.

R cannot agree with T in each of these steps.

 \Rightarrow W has one more agreement than R.

n

Suppose *S*, *R* maximal paths with $h_S(n) > h_R(n)$.

Among the disagreeing steps there have to be more with

$$R(j) = \searrow$$
, $S(j) = \nearrow$.

R cannot agree with T in each of these steps.

 \Rightarrow W has one more agreement than R.

Suppose all maximal paths agree in step i...

...then it looks like this (i.e., no gaps) $\implies i$ is a "parallel step"

Suppose NOT all maximal paths agree in step i...

...then the maximal paths form a zig-zag-shape! $\implies i$ is a "zig-zag step"

Proof of the theorem

We can assume:

- P^{max} and Q^{max} do not meet before the last step.
- There are no parallel steps.

Then:

- All paths between P^{max} and Q^{max} are maximal. (Only zig-zag steps!)
- T is constant. W.l.o.g. T = // ... /.

We can assume:

- P^{\max} and Q^{\max} do not meet before the last step.
- There are no parallel steps.

- All paths between P^{max} and Q^{max} are maximal. (Only zig-zag steps!)
- T is constant. W.l.o.g. T = // ... /.

We can assume:

- P^{max} and Q^{max} do not meet before the last step.
- There are no parallel steps.

- All paths between P^{max} and Q^{max} are maximal. (Only zig-zag steps!)
- T is constant. W.l.o.g. T = // ... /.

We can assume:

- P^{max} and Q^{max} do not meet before the last step.
- There are no parallel steps.

- All paths between P^{max} and Q^{max} are maximal. (Only zig-zag steps!)
- T is constant. W.l.o.g. $T = // \dots /$.

We can assume:

- P^{max} and Q^{max} do not meet before the last step.
- There are no parallel steps.

- All paths between P^{max} and Q^{max} are maximal. (Only zig-zag steps!)
- T is constant. W.l.o.g. $T = // \dots /$.

The maximally-agreeing paths correspond to bases of a lattice path matroid.

• TASK: Compute the lattice path matroid explicitly.

Plan of attack

Given T, P and Q of length n, iteratively build the lattice path matroid.

- If n > 1, then we take the lattice path matroid corresponding to
 - T(1, ..., n-1)
 - P(1, ..., n-1)
 - $Q(1,\ldots,n-1)$

and modify it

The maximally-agreeing paths correspond to bases of a lattice path matroid.

• TASK: Compute the lattice path matroid explicitly.

Plan of attack

Given T, P and Q of length n, iteratively build the lattice path matroid.

- If n > 1, then we take the lattice path matroid corresponding to
 - $T(1, \ldots, n-1)$
 - P(1, ..., n-1)
 - $Q(1,\ldots,n-1)$

and modify it

The maximally-agreeing paths correspond to bases of a lattice path matroid.

• TASK: Compute the lattice path matroid explicitly.

Plan of attack

Given T, P and Q of length n, iteratively build the lattice path matroid.

- If n > 1, then we take the lattice path matroid corresponding to
 - T(1, ..., n-1)
 - $P(1, \ldots, n-1)$
 - $Q(1,\ldots,n-1)$

and modify it

The maximally-agreeing paths correspond to bases of a lattice path matroid.

• TASK: Compute the lattice path matroid explicitly.

Plan of attack

Given T, P and Q of length n, iteratively build the lattice path matroid.

- If n > 1, then we take the lattice path matroid corresponding to
 - T(1, ..., n-1)
 - P(1, ..., n-1)
 - $Q(1,\ldots,n-1)$

and modify it.

Can assume $T(n) = \nearrow$

We can assume, without loss of generality, that $T(n) = \nearrow$.

Can assume $T(n) = \nearrow$

We can assume, without loss of generality, that $T(n) = \nearrow$.

$$T(n) = \searrow$$
, so "flip" everything.

Can assume $T(n) = \nearrow$

We can assume, without loss of generality, that $T(n) = \nearrow$.

 $T(n) = \nearrow$, paths agree on same steps.

In the easy case, all paths could extend

Now, cannot extend to agree with T

All maximal paths will still agree with T nine times

Build space of potential new paths (one under P^{\max})

Build space of potential new paths (one under P^{\max})

Build space of potential new paths (one under P^{\max})

Build space of potential new paths (one under P^{\max})

Build space of potential new paths (one under P^{max})

Build space of potential new paths (one under P^{\max})

Build space of potential new paths (one under P^{\max})

Build space of potential new paths (one under P^{max})

Build space of potential new paths (one under P^{\max})

All new maximal paths agree with T exactly 9 times

This is the area of all potential new paths

New lowest path P^{max}

Steps that are not allowed

New segments that are allowed

All maximal paths for n = 11

Maximal Lagrangian lattice paths for n = 10

Identify space of new paths

Add last step for old paths

Add new lowest path

Add new legal inside steps

Highlight: zone of new paths

Final picture

Thank you!

Thank you for your attention!

Special thanks to: Margaret Bayer, Andrew Berget, Joe Bonin, Jesús De Loera, Anna de Mier, Matthias Köppe, and Jay Schweig. Research supported in part by NSF grant DMS-0608785, NSF VIGRE grants DMS-0135345 and DMS-0636297, the Centre de Recerca Matemàtica at the Universitat Autónoma de Barcelona, and the Deutsche Forschungsgemeinschaft Research Training Group on Methods for Discrete Structures.