

FACULTAD: INFORMÁTICA Y ELECTRÓNICA CARRERA: SOFTWARE

ESTUDIANTE:	CÉSAR GINES			CÓDIGO:	7237
	ARTURO BADILLO				6857
ASIGNATURA:	APLICACIONES INFORMÁTICAS II			PAO:	OCTAVO
PERIODO ACADÉMICO:		OCTUBRE 2024 – MARZO 2025			
FECHA DE ENTREGA:		05 DE NOVIEMBRE DEL 2024			

Estudio de Factibilidad

1. Factibilidad Técnica

• Tecnología disponible:

El desarrollo del proyecto requiere una tecnología blockchain sólida, como Ethereum o Binance Smart Chain, que admite contratos inteligentes mediante el lenguaje Solidity, y plataformas de desarrollo frontend como React o Angular.

• Recursos y conocimientos:

Se cuenta con dos desarrolladores con experiencia en desarrollo web, quienes serán responsables del backend y frontend de la plataforma.

• Infraestructura y equipos:

Se utilizarán laptops de alto rendimiento y servidores en la nube (como AWS o Google Cloud) para el almacenamiento de datos y el procesamiento de las transacciones blockchain, que permitirán escalabilidad y disponibilidad.

• Limitaciones técnicas:

Posibles dificultades para auditar contratos inteligentes y riesgos de escalabilidad a medida que crece la base de usuarios. Para abordar esto, se planean auditorías periódicas y optimización en fases posteriores.

2. Factibilidad Económica

• Costos iniciales:

Desarrollo: Sueldos de los desarrolladores o costo de oportunidad. Infraestructura en la nube: Aproximadamente \$1000-\$2000 mensuales según el uso de los servidores.

Herramientas y auditorías de contratos inteligentes: Licencias de software, pruebas de seguridad (como MythX) y herramientas de diseño (como Figma) que pueden costar \$200-\$500 al mes.

• Ingresos potenciales:

Monetización a través de membresías premium o funciones avanzadas.

Publicidad dirigida o alianzas con proyectos blockchain.

Comisiones mínimas en transacciones de criptomonedas para generar ingresos adicionales.

Evaluación de rentabilidad: Aunque la inversión inicial es moderada, la rentabilidad dependerá de la cantidad de usuarios activos y del atractivo del sistema de recompensas. Un plan de recuperación del 100% de la inversión se proyecta dentro de 18-24 meses con un crecimiento constante de usuarios.

3. Factibilidad Operativa

- Viabilidad del sistema de minería: El sistema de minería por interacciones requiere una cuidadosa programación para evitar abusos y garantizar que solo interacciones genuinas generen recompensas.
- Gestión de seguridad y privacidad: La plataforma debe cumplir con normativas de protección de datos y con altos estándares de seguridad en la blockchain para proteger los activos de los usuarios.
- Adaptación a los usuarios: La interfaz será intuitiva y similar a otras redes sociales, lo que facilita la adopción y minimiza el tiempo de aprendizaje. Para mantener el interés, se planean actualizaciones frecuentes y la incorporación de nuevas funcionalidades.

4. Factibilidad Legal

• Regulación sobre criptomonedas:

La legalidad del sistema de recompensas en criptomonedas variará según la región. Se debe consultar con asesores legales para garantizar que el proyecto cumpla con las normativas locales e internacionales.

• Protección de datos:

La plataforma debe cumplir con leyes como el RGPD en Europa o las normativas locales de cada país en cuanto al manejo de datos personales.

• Contratos y derechos de usuario:

Establecer términos y condiciones que regulen el uso de la plataforma, la privacidad y la transparencia en la distribución de recompensas en criptomonedas.

5. Factibilidad Temporal

Plazo de desarrollo:

Se estima un período de desarrollo de 12 meses, dividido en fases de diseño, programación, auditoría, y pruebas, seguido de un lanzamiento beta.

• Factores de riesgo temporal:

Posibles retrasos en la auditoría y pruebas de contratos inteligentes.

Ajustes necesarios por cambios regulatorios en el manejo de

• Mitigación:

criptomonedas.

Plan de hitos trimestrales que permitirá un seguimiento continuo del progreso y la realización de ajustes según sea necesario.

Conclusión del Estudio de Factibilidad

Tras evaluar los factores técnicos, económicos, operativos, legales y temporales, el proyecto es factible siempre que se sigan las prácticas recomendadas en blockchain y se mantenga un enfoque riguroso en la seguridad.

Los riesgos técnicos y legales pueden mitigarse con auditorías y asesoría continua, mientras que los aspectos económicos se equilibrarán mediante monetización en fases avanzadas.

La viabilidad del proyecto dependerá de una adopción temprana y de la capacidad para asegurar el atractivo del sistema de recompensas a lo largo del tiempo.

Análisis de Riesgo

1. Riesgos Técnicos

• Riesgo: Vulnerabilidades en contratos inteligentes

Impacto: Alto

Probabilidad: Media

Mitigación:

Realizar auditorías frecuentes de contratos inteligentes con herramientas como

MythX y Slither para detectar vulnerabilidades.

Seguir mejores prácticas en la escritura de contratos en Solidity y hacer revisiones

de código en equipo.

Riesgo: Problemas de escalabilidad en blockchain

Impacto: Alto

Probabilidad: Media

Mitigación:

Elegir una blockchain que admita escalabilidad (como Binance Smart Chain o

Layer 2 en Ethereum).

Implementar optimizaciones en los contratos para reducir el consumo de gas y

estudiar alternativas que permitan reducir el costo y tiempo de transacción a

medida que aumente el número de usuarios.

Riesgo: Incompatibilidad entre tecnologías

Impacto: Medio

Probabilidad: Baja

Mitigación:

Realizar pruebas de integración tempranas entre el frontend, backend, y la

blockchain. Escoger tecnologías compatibles y bien soportadas, y realizar

revisiones de arquitectura en cada etapa.

2. Riesgos Económicos

• Riesgo: Sobrecosto en infraestructura y auditorías

Impacto: Alto

Probabilidad: Media

Mitigación:

Monitorear y ajustar el presupuesto regularmente.

Utilizar servicios de computación en la nube flexibles y de pago por uso para ajustar el costo en función de la demanda.

Establecer un presupuesto límite para las auditorías y revisar cuidadosamente los contratos antes de enviarlos a auditoría.

• Riesgo: Retrasos en la rentabilidad del proyecto

Impacto: Medio

Probabilidad: Media

Mitigación:

Planificar fuentes de ingresos alternativos, como publicidad o servicios premium, que generen ingresos adicionales antes de la adopción masiva.

Crear un plan de crecimiento de usuarios y proyecciones de ingresos ajustados para diferentes escenarios.

3. Riesgos Operativos

• Riesgo: Baja adopción de usuarios

Impacto: Alto

Probabilidad: Media

Mitigación:

Definir un plan de marketing dirigido al público objetivo y comunicar claramente las ventajas de usar una red social descentralizada.

Ofrecer incentivos iniciales y funcionalidades atractivas para aumentar la adopción.

Realizar pruebas de usabilidad para asegurar una experiencia de usuario optimizada.

• Riesgo: Abuso del sistema de recompensas

Impacto: Alto

Probabilidad: Media

Mitigación:

Diseñar un sistema de recompensas robusto que solo premie interacciones genuinas, usando métodos de validación y detección de actividad sospechosa. Implementar revisiones automáticas de la actividad de los usuarios y un sistema de retroalimentación para el análisis constante.

4. Riesgos Legales y Regulatorios

Riesgo: Cambios en la regulación de criptomonedas

Impacto: Alto

Probabilidad: Media

Mitigación: Consultar periódicamente con asesores legales y monitorear cambios en la regulación de criptomonedas a nivel local e internacional. Mantener el proyecto dentro de los marcos regulatorios y, en caso necesario, realizar ajustes para cumplir con nuevas normativas.

Riesgo: Incumplimiento de normas de protección de datos

Impacto: Alto

Probabilidad: Baja

Mitigación:

Implementar políticas de privacidad en línea con normativas como el RGPD. Asegurar que los datos personales se manejen de forma segura y estén encriptados. Realizar auditorías de privacidad y adoptar buenas prácticas en la gestión de datos personales.

• Riesgos de Tiempo y Cronograma

Riesgo: Retrasos en el desarrollo por dificultades técnicas

Impacto: Medio

Probabilidad: Media

Mitigación: Seguir una metodología ágil que permita revisiones periódicas del avance y detectar problemas temprano. Asignar tiempo adicional en el cronograma para resolver imprevistos técnicos y ajustar la planificación de las fases de acuerdo con el progreso del proyecto.

• Riesgo: Retrasos en las auditorías de seguridad

Impacto: Medio

Probabilidad: Alta

Mitigación:

Planificar auditorías desde el inicio del proyecto y seleccionar auditorías internas antes de realizar revisiones externas.

Definir hitos de desarrollo temprano que permitan iniciar auditorías de partes específicas del código.

Resumen del Análisis de Riesgo

El proyecto enfrenta riesgos técnicos, económicos, operativos, legales y de cronograma, siendo los más críticos la escalabilidad del blockchain, el abuso del sistema de recompensas, y los cambios regulatorios en el manejo de criptomonedas. La mayoría de estos riesgos son mitigables con una planificación anticipada, auditorías de seguridad y privacidad, y estrategias de crecimiento que garanticen adopción temprana y rentabilidad. La adopción de una metodología ágil permitirá controlar los riesgos relacionados con el tiempo y adaptarse a los desafíos técnicos y regulatorios a medida que se desarrolle el proyecto.