UNCLASSIFIED

AD 273 75 7

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

213 75 7 COPY U S ORDNANCE THEORY **MEASUREMENTS** PLASMA 503-03-009 516-01-006 516-04-007 Department of the Army Project

DESTRUCTION

This report shall be destroyed when no longer required.

A GENERAL PROBE THEORY FOR MEASUREMENTS

IN A PLASMA

Ву

Charles M. Cason and T. A. Barr, Jr.

PLASMA PHYSICS BRANCH

Ordnance Management Structure Code No. 5210.11.140 5210.11.148 5210.12.132

Department of Army Project No. 503-03-009 516-01-006 516-04-007

RESEARCH LABORATORY
Research and Development Directorate
U. S. Army Ordnance Missile Command

(U) ABSTRACT

The standard model of floating probes in plasmas is reviewed. It is shown that a maximum charge density exists for the application of this model. An explicit expression of voltage applied to the probes in terms of circuit current is obtained. When certain simplifying assumptions are used, this equation is reduced to the Langmuir single probe equation and the Johnson-Malter double probe equation.

From measurements of probe current versus applied probe voltage, electron temperature at each respective probe can be determined. One example is given to illustrate the calculation.

(This abstract is UNCLASSIFIED)

TABLE OF CONTENTS

	Page
INTRODUCTION	1
THEORY	2
General Probe Theory	2
Mathematical Characteristics of the Probe Potential Equations	6
Reduction to Langmuir Theory	9
Reduction to Johnson and Malter Theory	10
General Double Probe Method	11
CONCLUSION	13
Appendix A - TEMPERATURE LIMITATION OF PROBE THEORY	14
Appendix B - ANALYSIS OF SOME PROBE DATA BY THE GENERAL DOUBLE PROBE THEORY	17
REFERENCES	21
DICTRIBUTION	22

LIST OF ILLUSTRATIONS

		Page
Table		
I	Table of Probe Conditions	13
Figure		
1	Schematic diagram of probe circuit	3
2	Potential diagram for two probes in a plasma	5
3	Normalized current versus normalized voltage on each probe	7
4	Current variation with probe potential (M = 16m)	
	$V_f/T_e = k/\epsilon \ln \left(\frac{T_{im}}{T_e M}\right)^{1/2}$	8
5	Typical double probe characteristic curve	12
A - 1	Electrical conductivity versus temperature for an	
	argon plasma	16
B-1	Double probe data from an argon plasma	18
B-2	Sheath corrected probe data with theoretical curve	19

INTRODUCTION

The analysis of gas discharge processes embodies a wide variety of theoretical explanations for a host of experimental measurements. However, present day knowledge of gas discharge properties depends primarily upon experimental measurements. Perhaps the most important variables describing a gas discharge are the electron and ion densities, and their velocity distribution functions. Meaningful measurements of temperature of plasma constituents require them to be in thermal equilibrium. When this condition is satisfied, knowledge of electron and ion properties as determined by probes is required to calculate important plasma properties such as ambipolar diffusion coefficients, excitation rates, and ionization rates. There are at present various methods for analyzing probe data which are valid for special experimental sets of conditions. Workers in this area of plasma analysis occasionally invalidate their results by using a theory in experimental situations where the assumptions are inapplicable. It is the purpose of this paper to show the connection of these various probe theories, and to produce a generalized theory. A simple derivation of probe theory is presented which holds for various probe area ratios; the probes are not required to be surrounded by identical plasmas.

THEORY

GENERAL PROBE THEORY

Standard treatment of experimental data taken by probe methods allows the assumption of flat plate geometry according to a proof by Druyvesten (ref. 1), who concluded that any convex shape for a probe should be appropriate. The plasma sheath condition requires, according to Langmuir in reference 2, that only a few percent of electrons falling on the sheath may collide with sheath constituents before being collected by the probe. Hard sphere collisions of electrons with neutral particles are assumed to dominate any effect of scattering interactions between charged particles within the plasma. The limitations on this latter assumption will be discussed in appendix A. A Maxwell-Boltzmann distribution of particle speeds is assumed so that the concept of temperature may be used. Probes are considered cold, and consequently do not emit electrons.

The rate of sampling charged particles by the probes is assumed to be small compared to the rate of charge generation of the local plasma, so that the plasma's properties outside the probe sheath will not be modified. If the plasma is generated from thermal excitation in a dense gas, the conditions required for this assumption are possible to obtain. The primary condition required of the plasma, (discussed in more detail in appendix A), is that the plasma be diluted by neutral gas atoms in thermal equilibrium. The plasma, consisting only of positive ions of the gas species and free electrons, constitutes a very small percentage of the total number of particles present.

The basic equations governing the potentials on each of the two probes in this model are determined from Kirchhoff's law. As shown in figure 1, the ion currents to the probes are $i_i \times A$ where i_i is the random ion current in the plasma around the probe and A is the probe area. A similar notation for random electron current is used, in which i_e is the random electron current. Conventional current in the external circuit is denoted by I. Primed notations are used to refer to the part of the total random currents which are collected by a probe as determined by the probe's potential, while subscripts refer to probe 1 and 2. Figure 1 shows from Kirchhoff's law that

$$i_{11}^{\dagger}A_1 - A_1ie_1^{\dagger} + I = 0,$$
 (1)

and

$$i_{12}^{\dagger}A_2 - A_2 i_{e2}^{\dagger} - I = 0,$$
 (2)

where A_1 and A_2 are the areas of the two probes. Note that only one primed term per equation is allowed since $i_1^! = \int_v^\infty f(v) dv$ and $i_e^! = \int_{-\infty}^{-V} f(v) dv$ and each probe must be tat a single potential. The function f(v) is the distribution functions for x component of velocity, where $V = mv^2(\frac{1}{2}\epsilon)$, m and ϵ are the electron mass and charge, and v is the velocity of the electron.

The solutions for this integration, weren a Maxwellian distribution function is assumed are

$$i_e^i = \frac{m}{4} \epsilon \left(\frac{8}{\pi} \frac{kT_e}{m} \right)^{1/2} \exp(+ \epsilon V/kT_e)$$
 (3)

Probe A is assumed to be most a negative than probe 1

Figure 1. - Schematic diagram a of probe circuit.

and

$$i_{i}^{!} = \frac{M}{4} \epsilon \left(\frac{8}{\pi} \frac{kT_{i}}{M}\right)^{1/2} \exp\left(-\epsilon V/kT_{i}\right) \tag{4}$$

where M is the ion mass, T the temperature in degrees Kelvin and k is the Boltzmann constant. Equation (3) may be substituted into (1) and (2), where both probes are assumed to be at negative potentials with respect to the plasma to give the negative potential equations:

$$V_1 = T_{e_1}(k/\epsilon) \ln \left[(1 + I/i_{i_1}A_i)(i_{i_1}/i_{e_1}) \right], \tag{5}$$

and

$$V_2 = T_{e2}(k/\epsilon) \ln \left[(1 - I/i_{i2}A_2)(i_{i2}/i_{e2}) \right].$$
 (6)

The random electron current terms are a convenient grouping of constants from the integration. By setting I equal to zero, the floating potential V_f for any surface is found to be

$$V_{f} = \frac{1}{2} T_{e}(k/\epsilon) \ln \left(\frac{mT_{i}}{MT_{e}} \right), \tag{7}$$

which is in its standard form, assuming thermal equilibrium. This potential is negative with respect to the plasma potential when $|i_e| > |i_i|$ which is true for most cases.

Companion equations to (5) and (6) are developed when the probes are assumed to be at some positive potential with respect to the floating plasma potential. Equation (4) is substituted in (1) and (2) to give the positive potential equations

$$V_1 = -T_{il}(k/\epsilon) \ln \left[\left(\frac{1-I}{i_{el}A_l} \right) \left(\frac{i_{el}}{i_{il}} \right) \right], \qquad (8)$$

and

$$V_2 = -T_{e2}(k/\epsilon) \ln \left[\left(\frac{1+I}{i_{e2}A_2} \right) \left(\frac{i_{e2}}{i_{i2}} \right) \right] . \tag{9}$$

Here, the random ion current terms represent a convenient grouping of constants from the integration. The positive and negative potential equations may be added to yield complete expressions for probe potentials. Measurements of circuit voltage represented by V_a in figure 1,

correspond in an experiment to differences of probe potential, as illustrated in figure 2. Differences between the complete expressions for probe potentials, taken as indicated in figure 2, will yield the explicit equation of V_a for the current-voltage probe characteristic:

$$V_{a} = T_{i1}(k/\epsilon) \ln \left[\left(\frac{1-I}{i_{e1}A_{1}} \right) \left(\frac{i_{e1}}{i_{i1}} \right) \right] - T_{i2}(k/\epsilon) \ln \left[\left(\frac{1+I}{i_{e2}A_{2}} \right) \left(\frac{i_{e2}}{i_{i2}} \right) \right] +$$

$$T_{e2}(k/\epsilon) \ln \left[\left(\frac{1-I}{i_{e2}A_{2}} \right) \left(\frac{i_{i2}}{i_{e2}} \right) \right] - T_{e1}(k/\epsilon) \ln \left[\left(\frac{1+I}{i_{i1}A_{1}} \right) \left(\frac{i_{i1}}{i_{e1}} \right) \right].$$

$$(10)$$

While equation (10) holds for all values of external circuit current up to its limiting value as determined by the probe area and Kirchhoff's law,

Figure 2. - Potential diagram for two probes in a plasma.

only two terms appear in the calculation at any one time. When a given probe is positive, only its contributing term with ion temperature as a coefficient appears and the other term vanishes. For a negative probe, its contributing term with the electron temperature as a coefficient appears and its other term vanishes.

MATHEMATICAL CHARACTERISTICS OF THE PROBE POTENTIAL EQUATIONS

It is important to recognize the special properties of the negative potential equations (eqs. 5 and 6). The following definitions will be used in this section to simplify analysis:

$$B_1 = \frac{I}{i_{i_1}A_1} \tag{11}$$

and

$$B_2 = \frac{I}{i_{12}A_2} \tag{12}$$

Potentials of each probe will be normalized by using the electron temperature as a unit of voltage:

$$\eta = \frac{V}{T_{e}} \tag{13}$$

$$\eta_n = 2 - \eta_1 \tag{14}$$

Equations (5) and (6) may be rewritten when $T_e = T_i$ at each probe with the above definitions:

$$\eta_1 = \ln \left[(1 + B_1)(m/M)^{1/2} \right]$$
 (15)

and

$$\eta_2 = \ln \left[(1 - gB_1)(m/M)^{1/2} \right]$$
 (16)

where $g = B_2/B_1$

Figure 3 is a plot of η_1 and η_2 for hydrogen where the ion mass is 1.0 amu. It should be noted that η_1 is limited to each value of g determined by the maximum allowed circuit current. For values of g above about 45, the small probe is allowed to acquire positive potentials. For g=100, it is seen from the figure that η_1 is limited to +0.87 for

١

Figure 3. - Normalized current versus normalized voltage on each probe.

 η_2 approaching $-\infty$. The Langmuir theory (discussed later) is valid for hydrogen only when η_2 is nearly equal to -3.76. Large area ratios are often required for a probe to develop significant positive potentials consistent with equation (23) when $T_{e1} = T_{e2}$.

It is often helpful to visualize the current versus voltage on a probe for a given species of particle (ion or electron) under ideal conditions. Figure 4 is a plot of the current variation with probe potential. Due to the large ratio of ion and electron masses, a scaling factor was introduced to illustrate each current on the same plot.

The point of intersection is the floating potential for the probe in a hypothetical plasma having $i_e = 4i_i$ (which of course, is not realistic for any known ion at the same temperature as the electrons in its

Figure 4. - Current variation with probe potential

$$(M = 16m) V_f = k/\epsilon \ln \frac{T_i m^{1/2}}{T_e M}.$$

locality:) Potential zones of attraction of particles show all random current collected by the probe of unit area. It is assumed that the sheath dimensions are fixed. Zones of repulsion between the probe and the charges show the collection current variation according to equation (3) and (4).

REDUCTION TO LANGMUIR THEORY

Consider, as an example, the behavior of equation (10) when probe 2 acquires a positive potential. The argument of the logarithm of the first and third term in equation (10) can be shown to be equal to 1 by using Kirchhoff's law, and by ascertaining terms that are fractions of the random currents. A voltmeter would then measure

$$V_{a} = k/\epsilon \left\{ -T_{e1} \ln \left[\left(\frac{1-I}{i_{11}A_{1}} \right) \left(\frac{i_{11}}{i_{e1}} \right) \right] - T_{12} \ln \left[\left(\frac{1+I}{i_{e2}A_{2}} \right) \left(\frac{i_{e2}}{i_{12}} \right) \right] \right\}, \quad (17)$$

as the external circuit voltage for external circuit current I. It is apparent that equation (17) has an operating bound. The maximum value $I_{max} = -i_{il}A_i$ is substituted in equation (17). The required condition is that the second term must always be positive if probe 2 is to be positive, or

$$0 < T_{i2} \ln \left[\left(1 + \frac{i_{i1}A_1}{i_{e2}A_2} \right) \left(\frac{i_{e2}}{i_{i2}} \right) \right]. \tag{18}$$

The argument of the logarithm in equation (18) must therefore be less than unity. This condition establishes a requirement on both probe areas and local random ion currents for a probe to acquire a positive potential, or

$$\frac{\mathbf{i}_{11}\mathbf{A}_{1}}{\mathbf{i}_{22}\mathbf{A}_{2}} > \frac{\mathbf{i}_{12}}{\mathbf{i}_{22}} - 1. \tag{19}$$

If each side of equation (19) is equal, then probe 2 approaches zero potential when probe 1 approaches $-\infty$.

An important case arises when

$$\frac{i_{11}A_1}{i_{12}A_2} >> \frac{i_{e2}}{i_{12}} - 1. \tag{20}$$

This is the condition for a "floating" single probe. Equation (18) is transformed into

$$V_{a} \approx -\frac{1}{2} T_{el}(k/\epsilon) \ln \left(\frac{mT_{il}}{MT_{el}}\right) - T_{i2}(k/\epsilon) \ln \left[\left(\frac{1+I}{i_{e2}A_{2}}\right)\left(\frac{i_{e2}}{i_{i2}}\right)\right]$$
(21)

for the current-voltage relationship, since I is limited by $i_{e2}A_2$ which is much less than $i_{i1}A_1$.

A companion to equation (21) is developed, when the "floating" probe goes negative with respect to its surrounding plasma, by a similar treatment of equation (10) for - I:

$$V_{a} \approx -\frac{1}{2} T_{el}(k/\epsilon) \ln \left(\frac{mT_{il}}{MT_{el}} \right) - T_{e2}(k/\epsilon) \ln \left[\left(\frac{1-I}{i_{i2}A_{2}} \right) \left(\frac{i_{i2}}{i_{e2}} \right) \right]$$
 (22)

The first term in equations (21) and (22) is recognized to be the floating probe potential for probe 1. By making use of this fact and substituting in the Kirchhoff relation for I, equations (21) and (22) may be written in a different form:

$$V_{2} = V_{a} + V_{f1} = T_{i2}(k/\epsilon) \ln (i_{i2}) - T_{i2}(k/\epsilon) \ln (i_{i2}^{*})$$

$$V_{2} = V_{a} + V_{f1} = T_{e2}(k/\epsilon) \ln (i_{e2}) - T_{e2}(k/\epsilon) \ln (i_{e2}^{*})$$
(23)

Equations (23) were first derived by Langmuir and Mott-Smith (ref. 3) for "floating" single probes. Thus, under the approximations shown above, equation (10) may be reduced to the special case of the Langmuir single probe equation. The potential of the floating probe with respect to the surrounding plasma "zero" potential is plotted as a function of the natural logarithm of the current falling on the probe. Since the first term in each of equations (23) is a constant, the straight line slope of the current-voltage data is both a determination of the Maxwellian character of the collected charges and their temperature.

REDUCTION TO JOHNSON AND MALTER THEORY

With equation 10 as the starting point, it is assumed that both probes have area ratios which fail to satisfy the conditions prescribed by equations (19) and (20). The measured voltage between the probes would then depend primarily upon the temperature and random current of the local electrons surrounding each respective probe, as seen in equation (24).

$$V_{a} = -T_{e1}(k/\epsilon) \ln \left[\left(\frac{1+I}{i_{11}A_{1}} \right) \left(\frac{i_{11}}{i_{e1}} \right) \right] + T_{e2}(k/\epsilon) \ln \left[\left(\frac{1-I}{i_{12}A_{2}} \right) \left(\frac{i_{12}}{i_{e2}} \right) \right]$$
(24)

For convenience, the Johnson and Malter model (ref. 3) assumed the probes were so close together that no significant difference between local electron temperatures would be permitted. Equation (17) is written in its simplest form by using these conditions.

$$V_{a} = T_{e}(k/\epsilon) \ln \left(\frac{A_{2}i_{12} - I}{A_{1}i_{11} + I} \right)$$
 (25)

Differentiation of equation (25) results in

$$\frac{dV_{a}}{dI}\Big|_{V_{a}=0} = T_{e}(k/\epsilon) \frac{(A_{1}i_{11} + A_{2}i_{22})}{(A_{2}i_{12} - I|_{V_{a}=0})(A_{1}i_{11} + I|_{V_{a}=0})} = R_{o}, \quad (26)$$

where R_0 was defined as the "equivalent resistance" of the plasma. The following substitutions are required to place equation (26) in a familiar form: $\Sigma_{ip} = A_1 i_{i1} + A_2 i_{i2}$ and $G = \left[A_2 i_{e2}^{\dagger} / \Sigma_{ip}\right]_{V_a} = 0$

Electron temperature may then be calculated by

$$T_e = 11,600(G - G^2)R_o \Sigma_{ip}$$
 (27)

This result was first derived by Johnson and Malter (ref. 3) as the "equivalent resistance method". Use of equation (27) has an important restriction which is worth noting. The calculated electron temperature is some sort of effective or average value when the probes are placed in a plasma of unequal local electron temperatures. For this situation, T_e does not represent the actual value at either probe.

GENERAL DOUBLE PROBE METHOD

The expression for the current-voltage relation of equation (10) may be also used for the general case in which $T_{e1} = T_{e2}$ and $i_{11}A_1 = i_{12}A_2$. The equation for calculating these temperatures from current-voltage data is found by expanding equation (24) to reflect the floating potential of each probe according to equation (7):

$$V_a = T_{e2}(k/\epsilon) \ln \left(\frac{1-I}{i_{12}A_2}\right) - T_{e1}(k/\epsilon) \ln \left(\frac{1+I}{i_{11}A_1}\right) - V_{f1} + V_{f2}.$$
 (28)

The terms $V_{f2} - V_{f1}$ are the differences in floating potentials between probes 1 and 2, and will be denoted as ΔV_f as shown in figure 5. When the external circuit current is zero, the voltage measured is the difference in floating potentials. In order to calculate T_{e1} and T_{e2} from actual data, a knowledge of iiA for each probe is required.

Figure 5. - Typical double probe data characteristic curve.

This quantity, i_iA , is the saturated current and should be almost constant for all values of V_a .

The following table is helpful in identifying which saturated current refers to which probe, and the appropriate signs of current-voltage for analysis of data.

An analysis of data with unequal electron temperatures is given in appendix B to illustrate the procedure.

TABLE I

TABLE OF SATURATED CURRENT IN REFERENCE
TO PROBE FOR DATA ANALYSIS

Conditions	$T_{e1} > T_{e2}$	$T_{e2} > T_{e1}$
I = 0	V _a is positive	V _a is negative
$V_a \rightarrow +\infty$	$I \rightarrow -i_{i1}A_1$	$I \rightarrow -i_{11}A_1$
V _a → -∞	$I \rightarrow i_{i2}A_2$	$I \to + i_{12}A_2$
V _a = 0	$I = + I _{V_a = 0}$	$I = - I _{V_a = 0}$

CONCLUSION

A general probe theory has been derived which may be applied to data collected from floating probes (see eq. 10) in dilute plasmas. This theory includes the effects of the probes being placed in plasma regions of unlike temperature environments. From an explicit expression of measured voltage in terms of measured circuit current, it is shown that with appropriate simplifications the Langmuir "single probe" equation and the Johnson-Malter equation are obtained.

Appendix A

TEMPERATURE LIMITATION OF DOUBLE PROBE THEORY

A theory for determining the temperature of a plasma by electrical probes is described in the main section of this report. It is valid for electrons and ions which are scattered by neutral atoms only, since no consideration was made for Coulomb interaction between the charges. It becomes important to determine the temperature for which Coulomb forces between charges become significant in modifying the theory. Consideration of the electrical conductivity as a function of temperature will illustrate the maximum allowable temperature for which confidence may be placed in the interpretation of probe measurements by the above mentioned theory.

Calculation of electrical conductivity in a gas requires knowledge of the mobility of the charge carriers. The mobilities of charged particles in a partially ionized gas are influenced both by Coulomb and collision forces. Electrical conductivity may be easily calculated for two extreme cases, that of very little ionization and the other of almost complete ionization. The isobaric conductivities calculated for both cases, assuming thermal ionization, increase monotonically with temperature. Experimental results agree very well with the theory for each case. For the intermediate degree of ionization, there is a transition zone in which mobilities are influenced by both types of collision forces. The effluent gases from a plasma jet are of the proper temperature and density ranges to manifest conductivities characteristic of all three regions: collision, transition, and Coulomb forces.

An expression for the electrical conductivity of a gas in the low temperature region (valid to 7,000°K) was given by Lin, (ref. 4) as follows:

$$\sigma = n_e e^2 \overline{\tau} / m_e, \tag{29}$$

where σ is the gas conductivity, $\overline{\tau}$ the mean collision time for electron-atom (or molecule) collisions, and n_e , e, and m_e are the electron density (no./cm³) the electron charge, and the electron mass, respectively. The following assumptions are implicit in the derivation of equation 29:

- 1. In the region considered, the gas density is large enough to provide sufficiently numerous collisions between charged particles and neutrals so that statistical equilibrium is attained;
- 2. No electron attachment or other long-lived interactions occur between neutral and charged particles;

- 3. Values of the temperature and electron density are such that the Debye shielding distance is small in comparison to any critical physical length such as probe spacing or size;
 - 4. Electrical neutrality exists;

ŧ

- 5. No external electric or magnetic fields exists; and
- 6. Due to high electron mobility relative to the ions, the electrons are the current carriers.

By appropriate evaluation of $\overline{\tau}$ from kinetic theory, equation (29) may be written for argon:

$$\sigma = 5.4 \times 10^7 \frac{n_e}{n_t T_e^{1/2}} (mho/meter)$$
 (30)

where n_t is the number density of neutral particles, and T_e is the electron temperature. The atomic radius of argon (given in the Handbook of Chem. and Phys.) was used in evaluating the proportionality factor, 5.4×10^7 , in equation (30) and n_e is determined by Saha's ionization equation. For the case cited

$$n_e = 4.66 \times 10^{45} \frac{b'(T)}{b(T)} e^{-\frac{1.82 \times 10^5}{T}} (\frac{electron}{m^3})$$
 (31)

where b'(T) and b(T) are the partition functions for singly ionized and neutral argon, respectively, (ref. 5). By assuming the perfect gas state, the isobaric conductivity for "dilute" plasma may be determined as a function of temperature. Figure A-1 shows graphically the results of such a calculation for the 1 cm Hg isobar in an argon plasma.

For fully ionized or "dense" plasmas in which Coulomb collisions are expected to predominate, an expression for plasma resistivity has been developed by Spitzer and Härm (ref. 6)

$$R = \frac{3.8 \times 10^5 Z \ln \Lambda}{T^{3/2}} \text{ (ohm-meter)}$$
 (32)

where Z is the ion charge in multiples of the electron charge and ln A is a function which is tabulated by Spitzer and Harm (ref. 6). The values of plasma conductivity calculated from equation (32) are shown in figure A-1, together with those values calculated from equation (30). It may be seen from this graph that for an argon plasma at a pressure of 1 cm Hg, the probe theory may be applied for temperatures up to the transition zone from "dilute" to dense which is 6,000°K to 8,500°K.

Figure A-1. - Electrical conductivity versus temperature for an argon plasma.

Appendix B

AN ANALYSIS OF SOME PROBE DATA BY THE GENERAL DOUBLE PROBE THEORY

Johnson and Malter (ref. 3) have obtained double probe data in quiescent decaying plasmas. Their data were obtained from plasmas generated by a pulse discharge. Probe currents versus time were measured at fixed values of potential difference between probes. The data shown in figure A-1 are taken directly from their paper. The points shown on the curve 1 were taken 400 sec after the plasma generating discharge had closed. This period was determined by Johnson and Malter to be sufficient to establish equilibrium. The area of each probe in their experiments was equal so that the ratio A_1/A_2 which appears in the simplified probe theory is unity for this discussion.

For A_1/A_2 less than a critical value which is determined by the ion mass in the plasma (see equation 20), the general probe theory gives the applied voltage-current relation by the equation

$$V_{a} = k/\epsilon T_{e_{1}} \ln(1-I/i_{11}A_{1}) - k/\epsilon T_{e_{2}} \ln(1+I/i_{12}A_{2}) + \Delta V_{f}$$
 (33)

where ΔV_f is the difference in plasma-probe potential between the two probes.

In order to use the data of Johnson and Malter in the above equation constant values of iiA must be assumed. Observations of most data reveals the continued increase in I after the supposed saturation value of I has been reached. This increase in I is due to expansion of the sheath with voltage. The continued increase in I can be attributed to an effective increase of probe area, which occurs because of an increase in sheath volume produced by an increase in current to the probe. For a first approximation, this perturbation is assumed linear with I. The dashed lines on figure B-1. show how the magnitude of the perturbation has been estimated. The figure also shows the data of Johnson and Malter as modified by the perturbation correction. The modified data points were obtained by reducing the current I by an amount equal to the perturbation. For example, in figure B-1, the estimated perturbation on I at data point a is d'as shown by the solid bar between the dashed lines. Therefore, point a is lowered by an amount, d, and placed on the modified data chart of figure B-2. A similar correction was made for 17 other points.

The modified Johnson and Malter data were analyzed by the least squares method to fit the equation

Figure B-1. - Double probe data from an argon plasma.

Figure B-2. - Eighteen corrected double probe data points and theory curve.

$$y_i = a_1 + a_2 \ln(1 - x_i/x_1) + a_3 \ln(1 + x_i/x_2)$$
 (34)

which is of the same form as equation (32). The constants a_1 , a_2 , and a_3 are the unknowns to be determined. The x_i and y_i are the given data points. The values of x_1 and x_2 are determined graphically (see fig. B-2).

The equations which explicitly satisfy the least square minimization requirement for the problem cited here are:

$$O = \sum_{m} \left[a_1 + a_2 \ln(1 - x_1/x_1) + a_3 \ln(1 + x_1/x_2) - y_1 \right]$$
 (35)

$$O = \sum_{m} \left[a_1 + a_2 \ln(1 - x_1/x_1) + a_3 \ln(1 + x_1/x_2) - y_1 \right] \ln(1 - x_1/x_1)$$
 (36)

$$O = \sum_{m} \left[a_1 + a_2 \ln(1 - x_i/x_1) + a_3 \ln(1 + x_i/x_2) - y_i \right] \ln(1 + x_i/x_2)$$
 (37)

Eighteen points were taken from the modified Johnson and Malter data. These points were chosen more or less uniformly along the current-voltage curve. The value of m in equations (35) through (37) therefore, runs from 1 through 18. It may be noted here that the present analysis does not fully utilize the data available, since there were 30 available data points. The values of the coefficients obtained from the simultaneous solution of equations (35) through (37) are: $a_1 = -0.07523$ volt, $a_2 = 0.07253$ volt, and $a_3 = -0.10045$ volt. The graphically determined values of x1 and x2 were used in equations (35) through (37); these values are: $x_1 = 0.3723$ amp and $x_2 = 0.6012$ amp. By comparing the coefficients a1, a2, and a3 with their corresponding terms in equation (32), the electron temperatures at the probes and the difference in plasma-probe potentials were determined to be $T_{e_1} = 841$ K, $T_{e_2} = 1,165$ K, and $\Delta V_f = -0.07528$ volt. The curve in figure B-2 is generated from equation (34) after appropriate conversion of coefficients a1, a2, and a3.

From the Langmuir theory as modified and used by Johnson and Malter, (ref. 3) the values of T_{e_1} and T_{e_2} are not obtained separately. However, they obtained an average value of T_{e} , the electron temperature, of T_{e} = 1,015K. This value compares favorably with the arithmetic average of T_{e_1} and T_{e_2} which is 1,003K.

REFERENCES

- 1. Druyvesten, M. J: The Low Voltage Arc. Zeitschrift f. Physik, vol. 64, 1930 p. 781.
- 2. Langmuir, I., and Mott-Smith, H. Jr.: Studies of Electrical Discharges in Gases at Low Pressures. General Electric Review, vol. 27, 1924, pp. 449, 538, 616, 762, 810.
- 3. Johnson, E. O., and Malter, L.: A Floating Probe Method for Measurements in Gas Discharges. Physical Review, vol. 80, 1950, p. 58.
- 4. Lin, S.: Electrical Conductivity of an Ionized Gas Produced by Strong Shock Waves. Doctorial Dissertation, Cornell University, 1952.
- 5. Quarterly Research Review No. 19, 1 August 1958 31 October 1958, Research Laboratory, ARGMA 2A19.
- 6. Spitzer, L.: Physics of Fully Ionized Gases. Interscience Publishers, Inc., New York, 1956.

DISTRIBUTION

	Сору		Сору
In accordance with Lists A and B of the	- ••	Commanding Officer	
Guided Missile Technical Information		Diamond Ordnance Puse Laboratories	
Distribution List, MML 200/23, List		Washington 25, D. C.	
No. 23, 3 April 1961	1 - 192	ATTN: Mr. M. Apetein	228
Department of the Army		Technical Reference Section	229
Office, Chief of Ordnance		Commanding General	
Washington 25, D. C.		Ordnance Weapons Command	
ATTN: ORDTB		Rock Island, Illinois	
Mr. E. L. Holoday	193	ATTN: Mr. W. G. Smith	230
Mr. C. R. Cornthwaite	194	Commonda - Office	
Dr. R. B. Power, Jr.	195	Commanding Officer U. S. Army Signal Missile Support Agency	
Lt. Col. R. H. White	196	White Sands Missile Range, New Mexico	
		ATTN: SIGWS-EW	231
Commanding Officer			
Watertown Arsenal Watertown 72, Massachusetts		Commanding Officer	
ATTN: Ordnance Materials Research Office	197	Picatinny Arsenal Dover, New Jersey	
Dr. J. L. Martin	198	ATTN: Mr. S. Verner	2 3 2
Mr. J. A. Hofmann	199	Mr. W. R. Carson	233
Mr. Homer Priest	200	Mr. S. Penn	234
Laboratory Mr. N. L. Reed	201 202	ORDBB-THS	235
Mr. G. A. Darcy	202	Liquid Rocket Propulsion Laboratory Mr. S. Ritterman	236 237
Mr. P. Sagalyn	204	Mr. A. Machensie	238
Commanding General		Mr. W. Doremus	239
Aberdeen Proving Ground		Mr. Meneues	240
Maryland			
ATTN: Ordnance Board Lt. Col. K. E. Nelson	205 206	Commanding General Detroit Arsenal	
Dr. N. W. Arnold	207	28251 Van Dyke Avenue	
Ballistic Research Laboratories	208	Conterline, Michigan	
Lt. Col. G. Parsons	209	ATTN: ORDMX-B	241
Dr. F. Kaufmen	210		
Commandia a Office a			
Commanding Officer U. S. Army Research Office (Durham)		Commanding Officer	
Box CM		U. S. Army Signal Research and Development Laboratory	
Duke Station		Fort Mosmouth, New Jersey	
Durham, North Carolina		ATTN: SIGFM/EL-P	242
ATTN: Dr. J. W. Dawson	211	SIGFM/EL-DP	243
Dr. S. Githens Mr. G. Cox	212-214 215	SIGFM/EL-NA	244
2 0. 0	•,	SIGFM/EL-SA Dr. S. B. Levis	245 246
Chief		Mr. Louis Reiss	247
Armed Forces Special Weapons Project		Dr. H. Theissing	248
Washington 25, D. C.	•••	Director, Exploratory Res. Div. E	249
ATTN: Document Library Branch	216		
Department of the Army		Director	
Chief of Research and Development		Waterways Experiment Station Vicksburg, Mississippi	
Army Research Office		ATTN: Research Center Library	250
Washington 25, D. C.			
ATTN: Capt. K. G. Cometock Mr. Allan Tarr	217 218	Office of the Director of Defense Research	
Mr. Allan Tarr Lt. Col. L. G. Klinker	218 219	and Engineering	
D. Ca. D. G. Allandi	-17	Director of Weapons System Evaluation Group	
Commanding Officer		Room 2E812, The Pentagon Washington 25, D. C.	251 -253
Watervliet Arsenal			631-633
Watervliet, New York		Quartermaster Research and Engineering Laboratories	
ATTN: Mr. P. M. Netser Dr. Frits Santter	220 221	Natick, Massachusetts	
Dr. Fras Schall	**1	ATTN: Dr. J. M. Davies	254
Commanding Officer		Headquarters, Quartermaster Research and	
Ordnance Tank-Auto Command		Development Command	
1501 Board Street		Natick, Massachusetts	
Detroit 9, Michigan		ATTN: Dr. G. R. Thomas	255
ATTN: Mr. S. H. Paller Mr. Fred Sepai	222 223	Mr. L. A. Spano	256
Mr. P. Holiman-Plather	224	II & Assur Projectors in a Barrer to a A Mile Ann	
		U. S. Army Engineering Research and Development Laboratory	
Commanding General		Fort Belveir, Virginia	
USA Ordenace Arsenal Frankford		ATTN: Mr. A. W. Van Heuckereth	257
Philadelphia 37, Pennsylvania		Mr. Harry Lowe	258
ATTN: Mr. W. J. Kreeger Mr. M. Weinstock 1421-5583	225 226	Dr. Wiseman	259
Dr. M. L. Chwalew	220		

DISTRIBUTION (Continued)

	Сору		Copy
U. S. Army Transportation Research and		Liquid Propellant Information Agency	
Engineering Command		The Johns Hopkins University	
Fort Eustis, Virginia	260	Applied Physics Laboratory 8521 Georgia Avenue	
ATTN: Lt. V. DeFatta Dr. G. D. Sands	261	Silver Springe, Maryland	282-284
Dr. J. S. diRende	262	- W	
		Solid Propellant Information Agency The Johns Hopkins University	
U. S. Army Chemical Warfare Laboratories Army Chemical Center. Maryland		Applied Physics Laboratory	
ATTN: Mr. C. A. Butler	263	8621 Georgia Avenue	
Mr. T. A. Treglia	264	Silver Springs, Maryland	285
Department of the Army		Central Intelligence Agency	
Office, Chief of Engineers		2430 E Street, N. W.	
Directorate, Research and Development		Washington 25, D. C. ATTN: OCR Standard Distribution	
Building T-7 Washington 25, D. C.		ATTN: OCK SCHOOLING DISTRIBUTION	286-289
ATTN: Mr. E. F. Clark	265	National Bureau of Standards	
		Heat Division	
Walter Reed Army Medical Center		207 West Building Washington 25, D. C.	
Prosthetics Research Laboratory Washington 25, D. C.		ATTN: Mr. C. M. Hersfeld	290
ATTN: Dr. Fred Leonard	266		
		North American Aviation, Inc. 12214 Lakewood Boulevard	
The Johns Hopkins University Operations Research Office		Downey, California	
6935 Arlington Road		ATTN: Aerophysics Library	291
Betheeda, Maryland		THRU	-
ATTN: Dr. T. S. Needels	267	Air Force Plant Representative WEAPO	
Dr. B. B. Watson	268	North American Aviation, Inc.	
U. S. A. Medical Research and Development Command		Los Angeles International Airport	
Destal Research Branch		Los Angeles 45, California	
Main Navy Building Washington 25, D. C.		CONVAIR Scientific Research Laboratory	
ATTN: Lt. Col. P. M. Margetis	269	A Division of General Dynamics Corporation	
•		5001 Kearney Villa Road	
Commanding Officer		San Diego II, California ATT** Mr. A. L. Berlad	292
U. S. Naval Propellant Plant Indian Yead, Maryland	270		676
20000 1000, 2001,200		Bell Telephone Laboratories, Inc.	
U. S. Naval Ammunition Depot		Whippany, New Jersey	
Navy Number Six Six (66)		ATTN: ARGMA Liaison Officer Dr. Charles Hoover	293
c/o Fleet Post Office San Francisco, California		Dr. Charles Hoover	294
ATTN: Ordnance Technical Library	271	Spectrolab, Inc.	
·		7423 Varna Avenue	
Chief of Naval Research		N. Hellywood, California ATTN: Mr. A. E. Mann	295
Department of the Navy Washington 25, D. C.			•,,,
ATTN: Code 426	272	Geophysics Corporation of America	
		700 Commonwealth Avenue Boston 15, Massachusetts	
Air Force Office of Scientific Research Temperary T Building		ATTN: Mr. R. M. Chapman, Director of Engineering	296
14th Street and Constitution Avenue, N. W.		•	-,-
Washington 25, D. C.		Mr. Paul Dickerman	
ATTN: SRP SREC	273	Engineering Department Midway Laboratories	
	274	6238 S. Dressel	
Commander		Chicago, Illinois	297
Wright Air Development Center Wright-Patterson Air Force Base, Ohio		Mr. J. Leith Potter, Manager	
ATTN: WCLJD (Mr. E. Sookager)	275	Staff Engineering Gas Dynamics Facility	
WCLTY (Mr. J. Wittebert)	276	ARO, Inc.	
WCLSE-11 (Capt. D. Harney)	277	Tuliaboma, Toux essee	296
Dr. Arthur S. Ruark		AVCO Research Laboratory	
Chief, Controlled Thermonuclear Branch		2385 Revere Beach Parkway	
Division of Research		Everett 49, Massachusetts	
U. S. Atomic Energy Commission Washington 25, D. C.	100	ATTN: Librarian	299
**************************************	278	AVCO Manufacturing Corporation	
Lewis Research Center		Research and Advance Development Division	
National Aeronautics and Space Administration		201 Lewell Street Wilmington, Massachusetts	
31000 Breekpart Read Cleveland 35, Chie		ATTN: Dr. R. R. John	300
ATTN: Mr. J. Sleep	279		,44
Mr. C. E. Shepard	280	Dr. Raiph Buhler	
Exchange and GIR Division		Gianaini Research Laboratory 18400 S. Main Street	
Exchange and CRR Division Library of Congress		Santa Ana, California	301
Washington 25, D. C.	281		

DISTRIBUTION (Concluded)

	Сору		Сору
CONVAIR			
A Division of General Dynamics Corporation		Dr. Paul Gross Department of Chemistry	
Mail Zone 6-172 San Diego 12, California		Duke University	
ATTN: Mr. W. Short, Physics Section	302	Durham, North Carolina	322
Const Physics Bossest Const		Dr. J. Richard Haskins	
Space Physics Research Group Room 235, Bidg. 152		Gettysburg College	•••
Lawrence Radiation Laboratory P. O. Box 808		Gettysburg, Pennsylvania	323
Livermore, California ATTN: Dr. C. D. Schrader		Dr. William D. Williams	
ATTAL Dr. C. D. SCHFEUEF	303	Harding College Box 602	
Advanced Development Laboratories		Searcy, Arkansas	324
Bendix Products Division Bandix Aviation Corporation		Prof. Paul W. Gilles	
South Bend 20, Indiana		Department of Chemistry	
ATTN: Mr. A. O. Kresse	304	The University of Kansas	
Dr. J. L. Martin	305	Lawrence, Kansas	325
Dr. Abe M. Zarem		Dr. Harold G. Donnelly, Head	
Electro-Optical Systems		Chemical and Metallurgical Engineering Department Wayne State University	
170 N. Daisy Avenue Pasadena, California	306	Detroit 2, Michigan	326
	,	A	
Dr. William Clohesey, Director Technical Development		Armour Research Foundation Illinois Institute of Technology	
The Martin Company, Denver Division		Technical Center	
P. O. Box 179		10 W. 35th Street Chicage 16, Illinois	327
Denver 1, Colorado	307		36.
Mr. Frank Bradley, Director		Rohm and Hass Company	
Requirements		Redstone Arsenal Research Division Redstone Arsenal, Alabama	
The Martin Company, Baltimore Division Baltimore 3, Maryland	308	ATTN: Librarian	328
Described 3, Maryland	308	Thickel Chemical Corporation	
Radio Corporation of America		Redstone Division	
Moorestown, New Jersey ATTN: Mr. Alvin C. Gottlieb	309	Redetone Arsenal, Alabama ATTN: Librarian	•••
	307	George C. Marshall Space Flight Center	329
Rocketdyne 6633 Canoga Avenue		National Aeronautics and Space Administration	
Canoga Park, California		Redstone Arsenal, Alabama ATTN: M-5AT-DIR (Dr. O. H. Lange)	330
ATTN: Dr. Robert J. Thompson, Jr.		M-S and M-M (Dr. W. R. Lucas)	331
Dr. C. J. McDole	310	M-RP-T (Mr. G. B. Heller, Mr. D. W. Gates)	•••
Vidya		• • • •	332-341
2626 Hanover Street		National Aeronautics and Space Administration	
Palo Alto, California ATTN: Dr. M. G. Boobar	311	Manned Spacecraft Center Langley AFB, Virginia	
	•••	ATTN: Mr R. B. Erb	342
Saint Louis University		Mr. J. Kotanchik	343
221 N. Grand, St. Louis, Missouri ATTN: Mr. A. H. Weber, Physics Dept.	312	Commanding General	
		U. S. Army Ordnance Missile Command Redstone Arsenal, Alabama	
Project MATTERHORN James Forrestal Research Center		ATTN: ORDXM-XS	344
Princeton University, P. O. Box 451		ORDXM-XE	345
Princeton, New Jersey	313	ORDXM-XGR ORDXM-R	346 347
De C W Tembersh		ORDXM-RE	346
Dr. C. W. Tombaugh Physical Science Laboratory		ORDXM-REX (Mr. E. T. Carr) ORDXM-RF	349
New Mexico College of Agriculture and Mechanical Arts		ORDXM-RC	350-354 355
Box 548, State College, New Mexico	314	ORDXM-RP ORDXM-RH	356
Professor Kurt Wohl		ORDXM-RH ORDXM-RI	357 354
Chemical Engineering Department		ORDXM-RM	359-360
University of Delaware Newark, Delaware	315	ORDXM-RK ORDXM-RS	361
		ORDXM-RG	362 363
University of Alabama		ORDXM-RR	364-388
University, Alahama ATTN: Dr. F. H. Mitchell, Box 1392	316	ORDXM-RB ORDXM-RAP	389-391 392
Bureau of Engineering, Box 6162	317		376
Professor H. Kuenzel, Department of Mechanical Engineering	316		
Department of Chemical Engineering	319		
Dr. Loren E. Bollinger Rocket Research Laboratory			
Department of Aeronautical Engineering			
The Ohio State University	110		
Columbus 10, Ohio	320		
Dr. Peter Debye			
Chemistry Department			
Cornell University Ithaca, New York	321		

Army Reches and Cataled Minuite Agency, Research and Development Operations, Research Laboratory, A GENERAL PROFE THEORY FOR MEASUREMENTS. Pleasma - Temperature BA A TASSAL (U) - Charles M. Cason and T. A. Barr, Jr. ARCAA TR 2848, 1 Dec 61, 24 pp - 111m. The standard model of floating probes in plasmas is reviewed. It is shown that a maximum charge obtainable from ASTA, density exists for the application of this model. An explicit expension of voltage applied to the probes in terms of circuit current is obtained. AND Anny Rocket and Cataled Minuite Agency, Research Army Rocket and Cataled Minuite Agency Army Roc		1. Probe theories 2. Plasma - Temperature mesamerment 3. Plasma anahysis 4. Probes, Langmuis 5. Probes, Johnson-Malter 1. Caron, Charles M. 11. Barr, T. A., Jr. 11. Barr, T. A., Jr. 12. Arlington Rall Station, Arlington 12. Virginia. 13. Probe theories
Development Operations, Research Laboratory, Brons Amenal, Alabama 2. Plasma - Temperature 2. Research Alabama 3. Plasma analysis 4. Prober, Langmuit 5. Prober, Langmuit 7. Research Cascon and 8. Prober, Langmuit 8. Prober, Langmuit 9. Prober, Langmuit 1. Cascon, Charles M. 12. Cascon, Charles M. 13. Marr, T. A., Jr. 14. Barr, T. A., Jr. 15. Langmuit 16. Langmuit 17. A., Jr. 18. Barr, T. A., Jr. 18. Barr, T. A., Jr. 19. Langmuit 19. Animgton Hall Station, aspilied to the applied to the appl	Development Operations, Research Laboratory, brone Assemi, Alabama EMEASUR PROSE THEORY FOR MEASUREMENTS AT BARA, (U) - Charles M. Cason and A. Bare, F. GMA TR ZHAR, I Dec 6i, 24 pp - illus. Hastified Report standard model of floating probes in plasmas eviewed. It is shown that a maximum charge sity exists for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained.	2. Planma - Temperature measurement 3. Planma analysis 4. Probes, Languarie 5. Probes, Johanoa-Malter 1. Cason, Charles M. 11. Barr, T. A., Jr. 11. Barr, T. A., Jr. 12. Arlington Hall Station, Arlington 12. Virginia. UNCLASSIFIED 1. Productional
DETAIL PROPE THEORY FOR MEASUREMENTS 3. Pleases analysis 4. Podes, Langmuir 5. Probes, Langmuir 6. Description of the control	beone Ansemi, Alahama ZBUEAL PROSE THEORY FOR MEASUREMENTS A PLASMA (U) - Charles M. Cason and A. Bare, Jr. GMA TR ZHAR, I Dec 6i, 24 pp - illus. Ilassified Report standard model of flouting probes in plasmas eviewed. It is shown that a maximum charge sity exists for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained.	Breawenest 3. Plasma analysis 4. Probes, Johnson-Malter 1. Caron, Charles M. 11. Burr, T. A., Jr. DETREUTION: Copies obtainable from ASTIA, Arlington Hall Station. Arlington IQ, Virginia. UNCLASSIFIED Probe theories
A. Barr, p. Charles M. Casca and A. Phasma analysis A. Passas analysis A. Barr, p. A. Barr, p. A. Barr, p. CAA TR 2946, U. Charles M. Casca and S. Probus, Johnson-Malter E. Casca, Charles M. CAA TR 2946, I Dec 6i, 24 pp - illus, Illus, II. Barr, T. A., jr. Illus, T. A., jr. Illus, II. Barr, T. A., j	A PLASMA (U) - Charles M. Cason and A. Bare, F. A. Bare, F. GMA TR ZHAR, I Dec 6i, 24 pp - illus. Classified Report standard model of floating probes in plasmas eviewed. It is shown that a maximum charge sity exists for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accession No.	3. Platma analysis 4. Probes, Languanie 5. Probes, Johnson-Malter 1. Caron, Charles M. 11. Barr, T. A., Jr. DESTRIBUTION: Copies obtainable from ASTIA, Arlington Hall Station, Arlington I., Virginia. UNCLASSIFIED
A. Barr, p. A. Barr, p. CMA TR 2948, 1 Dec 61, 24 pp - illia. CMA TR 2948, 1 Dec 61, 24 pp -	A. PLASMA (U) - Charles M. Cason and A. Barr, F. GMA TR 2H4R, I Dec 61, 24 pp - illus. classified Report standard model of floating probes in plasmas releved. It is shown that a maximum charge stry exiets for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accession No.	4. Probes, Langmaint 5. Probes, JohanoaMalter I. Casom, Charles M. II. Barr, T. A., Jr. DESTRIBUTION: Copies obtainable from ASTIA, Arlington Hall Station. Arlington I2, Virginia.
A. Barr, Jr. CMA TR 2548, 1 Dec 6i, 24 pp - ilbs. CMA TR 2548, 1 Dec 6i, 24 pp - ilbs. CMA TR 2548, 1 Dec 6i, 24 pp - ilbs. CMA TR 2548, 1 Dec 6i, 24 pp - ilbs. CMA TR 2548, 1 Dec 6i, 24 pp - ilbs. Il Barr, T. A., Jr. Il Barr, T. A., Jr. Cason, Charles M. Il Barr, T. A., Jr. Cason, Charles M. Il Barr, T. A., Jr. Cason, Charles M. Cason Charles M. Arlington Hall Station, Arlington Hall Station, Arlington I2, Virginia. Accession No. Charles and Cated Missile Agency, Research Cason, Charles M. Cason, Charl	A. Barr, Jr. CMA TR 2H4R, 1 Dec 61, 24 pp - illus. classified Report standard model of floating probes in plasmas eviewed. It is shown that a maximum charge sity exists for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accession No.	5. Probes, Johanon-Malter 1. Cason, Charles M. 11. Barr, T. A., Jr. DETRIBUTION: Copies obtainable from ASTA, Arlington Hall Station, Arlington I2, Virginia. UNCLASSIFIED
CAMA TR 2HIR, 1 Dec 61, 24 pp - 1llus. Il. Burr, T. A., jr. Isanified Report In Burr, T. A., jr. Isanified Report In Burr, T. A., jr. In Burr, T. A.,	CMA TR 2H4R, 1 Dec 61, 24 pp - illus. classified Report standard model of floating probes in plasmas eviewed. It is shown that a maximum charge sity exists for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accession No.	I. Caron, Charles M. II. Barr, T. A., Jr. DETRIBUTION: Copies obtainable from ASTA, Arlington Hall Station, Arlington I2, Virginia. UNCLASSIFIED Productionals
CMA TR 244R, 1 Dec 61, 24 pp - 1llus. Isanified Report Isanified Report Isanified Report Is a shorn that a maximum charge obtainable from ASTIA, sity exists for the application of this model. Arilagon Hall Station, explicit expression of voltage applied to the Arilagon Hall Station, explicit expression of voltage applied to the Arilagon Hall Station, here in terms of circuit current is obtained. Accresion No. UNCLASS FIED Ty Rochet and Cated Minnis Agency, Research I, Probe theories Develocment Operations. Accretion Laboratory. 2. Plasma - Temperature	cana in green, 1 Dec 81, 28 pp - 1110s. classified Report standard model of floating probes in plasmas eviewed. It is shown that a maximum charge sity exists for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accession No.	DETRIBUTION: Copies obtainable from ASTA, Arlington Hall Station. Arlington 12, Virginia. UNCLASSIFIED
renamined Report Paradard model of floating probes in plasmas Priewred, it is shown that a maximum charge relative expension of voltage applied to the Arlington Hall Station, Arlington Hall Hall Hall Hall Hall Hall Hall Hal	standard model of floating probes in plasmas eviewed. It is shown that a maximum charge sity exists for the application of this model, explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accession No.	DESTRBUTION: Copter obtainable from ASTA, Arlington Hall Station. Arlington 12, Virginia. UNCLASSIFIED
retandard model of floating probes in plasmas DISTRBUTION: Copies rejeved, it is shown that a maximum change sity exists for the application of this model. Arlington Hall Station, explicit expression of voltage applied to the Arlington Hall Station, Arlington Hall Station, her is terms of circuit current is obtained. Accession No. UNCLASSFIED Ty Recelect and Guided Mismits Agency, Research I, Probe theories Development Operations. Revested Laboratory. 2, Plasms - Conservative	standard model of floating probes in plasmas eviewed. It is shown that a maximum charge sity exists for the application of this model, explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accession No.	DESTRUCTION: Copies obtainable from ASTA, Arlington Hall Station. Arlington I2, Virginia. UNCLASSIFIED
stry exists for the application of this model. Arlington Hall Station, explicit expression of voltage applied to the Arlington 12, Virginia. Are in terms of circuit current is obtained. Accession No. Accession No. UNCLASSFIED Ty Rochet and Guided Missile Agency, Research Ly Plasma - Centerium Develorment Operations. Research Laboratory. 2, Plasma - Centerium	eviewed. It is shown that a maximum charge sity exists for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accession No.	obtainable from ASTIA, Arlington Hall Station. Arlington I2, Virginia. UNCLASSIFIED
explicit expression of voltage applied to the Arlington Hall Station, explicit expression of voltage applied to the Arlington 12, Virginia. her in terms of circuit current is obtained. Accession No. Accession No. UNCLASSFIED Ty Reclect and Guided Mismits Approxy, Research Ly Pobs the ories Develorment Operations. Received Laboratory. 2, Plasma - Conservative	sity exists for the application of this model. explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accersion No.	Arlington Hall Station, Arlington 12, Virginia. UNCLASSIFIED
bes in terms of circuit current is obtained. Maccasion No. WINCLASS FIED Overloament Cartelium, Research Laboratore, 2, Plasma - Creative	explicit expression of voltage applied to the bes in terms of circuit current is obtained. Accervion No.	Arlington 12, Virginia. UNCLASSIFIED
bes in terms of circuit current is obtained. Accordion No. UNCLASSFIED Ty Rocket and Guided Missile America, Research I, Probe theories Development Operations, Research Laboratory, 2, Plasma - Comperature	bes in terms of circuit current is obtained. Accersion No.	UNCLASSIFIED
UNCLASS FIED Ty Rocket and Guided Missile Agency, Research 1, Probe theories Development Operations, Research Laboratory, 2, Plasma - Temperature	Accession No.	UNCLASSIFIED
1. Probe theories 2. Plasma - Temperature		Probe theories
2. Plasma - Temperature	Army Rocket and Guided Missile Agency, Research	
	and Development Operations, Research Laboratory,	2. Plasma - Temperature
meadurement	Redstone Arsenal, Alabama	· me asure me ut
r FOR MEASUREMENTS 3. Plasma analyzis	Y FOR MEASUREMENTS	3. Plasma analysis
<u> </u>		4. Probes, Langmuir
5. Probes, Johnson-Malter		5. Probes, Johnson-Malter
I. Cason, Charles M.		I. Cason, Charles M.
	ARGMA TR 2H4R, 1 Dec 61, 24 pp - illus.	II. Berr, T. A., Jr.
	Unclassified Report	
The standard model of floating probes in plasmas DISTRIBUTION: Copics	The standard model of floating probes in plasmas	DISTRIBUTION: Copies
obtainable from ASTIA,	is reviewed. It is shown that a maximum charge	obtainable from ASTIA,
Arlington Hall Station,	density exists for the application of this model.	Arlington Hall Station,
n of voltage applied to the Arlington 12, Virginia.		Arlington 12, Virginia.
probes in terms of circuit current is obtained.	probes in terms of circuit current is obtained.	