

Aprendizagem Profunda para Visão por Computador

(Deep Learning for Computer Vision)

Apresentação da UC

Tomás Brandão - DCTI - ISTA

Sumário

- Funcionamento da UC
 - Programa
 - Funcionamento das aulas
 - Avaliação
 - Material
- Introdução à visão por computador e análise de imagens

Funcionamento da UC

Programa

- Representação de imagens
- Operações com imagens
- Redes neuronais "clássicas"
- Redes neuronais convolucionais
- Transferência de conhecimento
- Deteção de objetos e segmentação
- Outras aplicações: geração de conteúdos, super-resolução, ...

Avaliação

- Avaliação ao longo do semestre não há avaliação por exame!
 - Modalidade A (implica presença em pelo menos 60% das aulas)
 - Exercícios (30%): participação em aula (10%) e 2 trabalhos de grupo (10%+10%)
 - Teste (30%)
 - Projeto (40%) em grupo
 - Modalidade B (sem requisitos de assiduidade)
 - Teste (45%)
 - Projeto (55%) individual ou em grupo
 - Obs.
 - O teste realiza-se após o final do período de aulas (29/abril?)
 - O projeto inclui relatório e discussão oral; e tem nota mínima de 10 val.
 - Prazo de entrega do projeto e discussões em datas a combinar (há flexibilidade)

Grupos de 3 ou 4 elementos Max 10 grupos/turno (será possível?) Escolha de grupos através do Moodle

Funcionamento das aulas

- Aulas teórico-práticas
 - 1ª parte Introdução aos temas
 - Exposição e exemplos
 - 2ª parte Exercícios (e quizz?)
 - Podem-se resolver em grupo, mas a avaliação da participação é individual
 - É fundamental trazerem portáteis (pelo menos um por grupo)

Material

- Python 3 versão 3.9 a 3.12
- Principais pacotes que irão ser utilizados:
 - opency-python (e numpy)
 - matplotlib
 - pandas
 - tensorflow
 - ultralytics (e pytorch)
- Um IDE para python (à escolha)
 - PyCharm (usado pelo professor nas aulas)
 - Notebooks (Jupyter, Colab)
 - VS Code
 - ...

TPC – Próxima aula

- Instalar/configurar um ambiente de desenvolvimento de Python com o OpenCV
- Criar um pequeno script para ler e mostrar uma imagem, usando o OpenCv.

```
# importar a biblioteca do opencv
import cv2
# ler uma imagem de teste (ajustar nome/caminho)
# garantir que a imagem está no sitio certo
img = cv2.imread(r'd:\imagens\test.jpg')
# mostrar a imagem numa janela
cv2.imshow('Imagem de Teste',img)
# colocar em espera até que se carregue numa tecla
cv2.waitKey(0)
# destruir a janela criada
cv2.destroyAllWindows()
```


Introdução à visão por computador

O que é? Para que serve?

Visão por Computador – o que é?

Área multidisciplinar onde o principal objetivo é conseguir fazer com que um computador consiga extrair informação de imagens e vídeos de forma a compreender o seu conteúdo para realizar tarefas úteis num dado contexto

Do ponto de vista da engenharia, a visão por computador está associada à automatização de funções que muitas vezes os seres humanos também conseguem realizar com base no seu sistema visual

Os computadores "vêm" números...

Para nós é fácil de dizer que esta é a imagem de uma pessoa...

Mas e o computador? O que ele "vê" relativamente à imagem tipicamente são três matrizes com valores 0-255...

		6 6		_	_				55 69	<i>c</i> 1	61 90
	30 26	24 19	20 18	20 22	24 20	22 24	20 28		31 38	32 62	114 166
129 115 104 104 102 	118 103 100 101	115 110 109 106 102	108 110 109 106 107	111 110 108 106 114	110 106 104 106 102	110 112 111 102 99		103 113 148 173 192	104 125 166 186 213	96 149 185 95 100	179 110 117
217		216	217	213	204	187	•••	171	188		

Exemplo – classificação de imagens

- Classificação o resultado será uma classe (ou categoria)
- Regressão o resultado será a previsão de um valor (contínuo)

Características de imagem (features)

Nariz, olhos, boca

Roda, faróis, para-brisas, grelha

Porta, janelas, paredes, telhado

- As características relevantes variam muito consoante o domínio do problema
- O ser humano tende a classificar usando características de alto nível
- As características de alto nível não são fáceis de obter através de cálculos...

Classificação de imagens: timeline

Até finais dos anos 90

Extração "manual" de características

Classificação:

thresholds e condições obtidos empiricamente

Anos 00's

Extração "manual" de características

Aprendizagem "clássica"

Classificação:

Redes neuronais Árvores de decisão Support vector machines 2012 em diante

Aprendizagem Profunda Redes neuronais convolucionais

Extração automática de características:
Camadas convolucionais e de *pooling*

Classificação:

Camadas *fully-connected*

Extração "manual" de features

- Variam muito consoante o contexto do problema de classificação em causa
- E há questões que não são fáceis de ultrapassar...

Variações do ponto de vista

Condições de iluminação

Diferenças de escala

Oclusões

Variações "intra-classe"

Aprendizagem automática de features

Abordagem atual amplamente utilizada: redes neuronais convolucionais (será um dos temas mais importantes em APVC)

O computador aprende uma hierarquia de features com base em exemplos

Baixo nível Manchas Linhas Cores

Nível médio
Olhos
Bocas
Narizes

Alto nível
Estrutura facial

Áreas de aplicação

Videovigilância

Medicina

Condução autónoma

Acesso à informação

Robótica e indústria

Agricultura

Reconhecimento facial

E outras mais...

Tarefas mais habituais

Segmentação semântica

Classificação de imagem

Localização e identificação

Localização e identificação de múltiplos objetos

Segmentação de de múltiplos objetos

Pixels

Objeto único

Múltiplos objetos

Outras tarefas mais específicas

Transferência de estilo

Outras tarefas mais específicas

Coloração automática

Alguns exemplos de trabalhos desenvolvidos no ISCTE

Identificação de marca, modelo e ano de veículos

João Cruz, Deep learning for large-scale fine-grained recognition of cars Dissertação MEI, orientação de Luís Nunes e Tomás Brandão, 2018

- Objetivo Facilitar a introdução de dados de veículos em stands online, identificando automaticamente a marca, modelo e ano de fabrico de automóveis com base nas imagens submetidas
- Sistema baseado em *transfer learning*
- Principais resultados
 - Construção de um dataset (OTO-970) com cerca de 1.2 milhões de imagens e 790 classes
 - Taxa de acertos global na ordem dos 92.7%
 - Top-3 e Top-5 na ordem dos 97,8% e 98,4%

opel corsa 2006 alfa romeo 147 na vw passat 2000

peugeot_partner_2008 audi_a4_1995

seat leon 2012

Identificação de modelo de arma

S. Valentim, T. Fonseca, T. Brandão, J. Ferreira, R. Ribeiro e S. Nae, Gun model classification based on fired cartridge case head images with siamese networks, Lecture Notes in Networks and Systems – Intelligent Systems Design and Applications, 2021

- Objetivo Identificar automaticamente o modelo de arma que disparou um projétil com base em imagens dos cartuchos ejetados (recolhidos na cena do crime)
- Solução baseada em redes CNN siamesas
- Acertos Top-1/Top-2: 100%/100% dataset NBTRD (USA); 57%/81% dataset experimental PJ

Deteção da espécie invasora Acacia longifolia

C. Gonçalves, P. Santana, T. Brandão, M. Guedes,

Automatic detection of Acacia longifolia invasive species based on UAV-acquired aerial imagery,

Information Processing in Agriculture, 2022

- Objetivo
 Identificar a presença da espécie invasora Acacia longifolia, a partir de imagens adquiridas por um drone
- Sistema baseado em CNN que pode classificar pixel-a-pixel ou blocos 100x100
- Resultados:
 - Taxa de acertos de 98.7% (CNN binary)
 - Taxa de acertos de 98.5% (CNN multiclass)

Deteção e classificação de graffitis

J. Fogaça, T. Brandão e J. Ferreira,

Deep learning-based graffiti detection: a study using images from the streets of Lisbon,

Applied Sciences, 2023

- Objetivo
 Localizar graffitis em imagens e classificar segundo street art / graffiti ilegal
- Solução baseada em deteção de objetos e classificação com redes neuronais convolucionais
- Resultados:
 - Deteção: IoU: 0.70
 - Accuracy (street art/ilegal/sem grafiti):
 0.81

True: street art
Predicted: street art

True: illegal graffiti Predicted: illegal graffiti

True: without graffiti Predicted: without graffiti

Deteção de pessoas e análise de trajetórias

- S. Correia, D. Mendes, P. Jorge, T. Brandão, P. Arriaga e L. Nunes, *Occlusion-aware pedestrian detection and tracking,* International Conference on Systems, Signals and Image Processing, North Macedonia, 2023
- D. Mendes, S. Correia, P. Jorge, T. Brandão, P. Arriaga e L. Nunes, *Multi-camera person re-identification* based on trajectory data, Applied Sciences, 2023
- Objetivos
 - Deteção de pessoas/grupos
 - Reconhecimento de ações
 - Análise de trajetórias
- Técnicas usadas
 - Deteção de objetos
 - Processamento de sinais/imagem
 - Extração de esqueletos usando técnicas de deep-learning

Deteção automática de incêndios

A. M. Gonçalves, T. Brandão, J. C. Ferreira, Wildfire Detection With Deep Learning — A Case Study for the CICLOPE Project, IEEE Access, 2024

- Goal
 - Melhorar a taxa de falsos alarmes de um sistema de deteção automática de incêndios florestais (CICLOPE)
- Técnicas usadas
 - Dual-channel CNNs
 - Modelos de atenção

Diagnóstico de doenças cardiovasculares

L. B. Elvas, S. Gomes, J. C. Ferreira., L. Rosário, T. Brandão, Deep learning for automatic calcium detection in echocardiography, BioData Mining, 2024

- Objetivos
 - Auxiliar o diagnóstico de uma doença do coração, a calcificação da válvula aórtica, através de ecocardiografias
 - Detetar automaticamente a válvula aórtica
 - Classificar a presença de cálcio
- Técnicas usadas
 - Deteção de objetos
 - Classificação de imagens
- Resultados (preliminares)

- Deteção/localização da válvula: F1-Score de 98%
- Classificação de cálcio: 96% de acertos (MobileNetV3Large com transfer learning)

E muitos outros trabalhos...

- Matilde Saraiva, Detection of hardly-visible road networks in low-resolution satellite imagery, 2024, MCD
- João Pedro Ferreira, Deep learning for personal protection equipment (PPE) detection in real-life scenarios, 2024,
 MCD
- Rita Bairros, Calcium detection and scoring in 3D transoesophageal echocardiography based on computer vision, 2024, MSIAD
- Sara Gomes, Deep learning-based automatic calcium detection in echocardiography, 2023, MSIAD
- Francisca Guedes, Activity detection and classification in public sports spaces, 2023, MIG
- Sérgio Santos, Land cover automatic classification using deep learning techniques applied to satellite imagery, 2023, METI
- Simão Correia, Extraction of pose characteristics from customer images in large retail environments, 2023, MEI
- Diogo Mendes, Reidentificação de pessoas em ambientes comerciais multicâmara com base no seu percurso,
 2023, MEI
- Diana Mendes, A Importância das imagens no alojamento local: uma abordagem data driven, 2022, MMAG
- Afonso Gonçalves, Wildfire detection with deep learning a case study for the CICLOPE project, 2022, MSIAD
- -