

Table des matières

1		e second degré	1
	1.1		
		1.1.1 Définitions	
		1.1.2 Factorisation	
		1.1.3 Somme et produit des racines	
	1.2	1	
		1.2.1 Forme canonique et discriminant	
		1.2.2 Résolution	
	1.3	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1.3.1 Sommet et axe de symétrie	
		1.3.2 Tableau de variations	
		1.3.3 Application aux racines	
	1.4	4 Signe de $ax^2 + bx + c$	
	т.		4
2		es fonctions dérivées	4
	2.1		
		2.1.1 Définition	
	2.2		
		2.2.1 Fonction affine $f(x) = mx + p$	
		2.2.2 Fonction carrée $f(x) = x^2 \dots \dots \dots$	
		2.2.3 Fonction inverse $f(x) = \frac{1}{x} \dots \dots$	
		2.2.4 Fonction racine carrée $f(x) = \sqrt{x}$	
		2.2.5 Fonction valeur absolue $f(x) = x \dots \dots$	
	2.3	3 Fonction dérivée	4
		2.3.1 Définitions	4
		2.3.2 Dérivée de fonctions usuelles	
	2.4	4 Opérations	
		2.4.1 Somme	
		2.4.2 Produit	
		2.4.3 Quotient	
		2.4.4 Composition	
_			_
3		pplication de la dérivée	7_
	3.1		
	3.2		
	3.3		
		3.3.1 $f(x) = x^3 - ax$; où $a > 0$	
		3.3.2 $f(x) = x^3 + ax$; où $a > 0$	
		3.3.3 Courbes représentatives	
4	Suit	uites numériques	9
-	4.1	-	
	4.2		
	1.2	4.2.1 Mode explicite	
		4.2.2 Mode tératif ou récurrent	
		4.2.3 Limites de suites géométriques	
		4.2.4 Vocabulaire	
	4.3		
	4.5		
	1 1	4.3.2 Méthodes	
	4.4	1	
		4.4.1 Généralité	
		4.4.2 Représentation graphique	
	, -	4.4.3 Somme des termes	
	4.5		
		4.5.1 Généralités	
		4.5.2 Représentation graphique	

		4.5.3	Somme o	des termes					 	 		 			 	•	10
5	Lim	ites de	suites													1	11
	5.1	Cas où	ı la limite	est finie .					 	 		 			 		11
	5.2			est finie .													11
6	_	gonomé															12
	6.1	Angles	orientés						 	 		 			 		12
		6.1.1	Le radia	n					 	 		 			 		12
		6.1.2	Orientat	ion					 	 		 			 		12
		6.1.3	Point ass	socié à un a	angle x				 	 		 			 		12
		6.1.4	Angles o	rientés de	vecteurs	3			 	 		 			 		12
	6.2		0														12
	٠. _	6.2.1		n													12
		6.2.2		és des fonc													$\frac{12}{12}$
		0.2.2	6.2.2.1	Périodicit													$\frac{12}{12}$
			6.2.2.1														
				Parité													12
			6.2.2.3	Variations													13
			6.2.2.4	Courbes r	-												13
			6.2.2.5	Dérivées .													13
	6.3	Angles	associés						 	 		 			 		13
	6.4	Cercle	trigonom	étrique					 	 		 			 		14
	_																
7	Pro	babilit															15
	7.1			ditionnelle													15
	7.2	Formu	les des pr	obabilités 1	totales				 	 		 			 		15
	7.3	Événer	ments ind	épendants					 	 		 			 		15
8	Vari		aléatoire														16
	8.1	Variab	le aléatoi	re réelle .					 	 		 			 		16
	8.2	Espéra	ance						 	 		 			 		16
	8.3	Varian	ce et écar	t type					 	 		 			 		16
9	Fon		exponent														17
	9.1			= 1													17
	9.2	Vers u	ne nouvel	le écriture					 	 		 			 		17
		9.2.1	Propriéte	és fondame	entales				 	 		 			 		17
		9.2.2	Nouvelle	notation.					 	 		 			 		17
		9.2.3	Étude de	e la fonctio	n expor	entie	lle		 	 		 			 		18
	9.3	Foncti		nentielles .													18
	0.0	9.3.1		e^{kx} , avec k													18
		9.3.2		ion aux su													18
	9.4			ntative	_		-										
	9.4	Courb	e represer	nanve				 •	 	 	•	 	 ٠		 •	•	18
10	Pro	duit so	alaire													1	19
10				roduit scal	loiro												19
																	19
				nental													19
	10.4	Expres	ssion dans	s une base	orthogo	$_{\mathrm{nale}}$			 	 		 			 	•	19
	A	1:	د		- - - ·											_	20
11				oduit scal													20
				oite													20
	11.2	Equati	ions de ce	rcles					 	 		 			 	. :	20

1 Le second degré

Racine d'un polynôme du second degré

1.1.1 Définitions

Définition : Un polynôme du second degré est défini sur \mathbb{R} par : $P(x) = ax^2 + bx + c$ où a, b et c sont des réels fixés, avec $a \neq 0$.

Définition : Si $P(x_0) = 0$ alors, x_0 est racine de P.

1.1.2 Factorisation

Théorème : Si x_1 est une racine de $P(x) = ax^2 + bx + c$ alors, il existe un réel x_2 tel que $P(x) = a(x - x_1)(x - x_2).$

Remarque: Un polynôme du second degré admet au plus deux racines.

1.1.3 Somme et produit des racines

Propriété : Soient x_1 et x_2 les deux racines de $P(x) = ax^2 + bx + c$ alors $\begin{cases} S = x_1 + x_2 = \frac{-b}{a} \\ P = x_1 x_2 = \frac{c}{a} \end{cases}$, x_1 et x_2 sont les racines de $Q(x) = x^2 - Sx + P$.

1.2Équations du second degré

Forme canonique et discriminant 1.2.1

Remarque:

$$f(x) = ax^2 + bx + c$$

$$= a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a}\right)$$

$$= a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b^2 - 4ac}{4a^2}\right)\right)$$

Définition: Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, $\Delta = b^2 - 4ac$ est le discriminant.

Définition: Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, $f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = a\left(x - \alpha\right)^2 + \beta$ avec $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha) = -\frac{\Delta}{4a} = \frac{-b^2 + 4ac}{4a}$ est la forme canonique de f(x).

1.2.2 Résolution

Remarque: Soit $f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$ avec $a \neq 0$.

Définition: Si $\Delta < 0$ alors, $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0$

Définition: Si $\Delta = 0$ alors, $f(x) = a\left(x + \frac{b}{2a}\right)^2$.

Définition: Si $\Delta > 0$ alors, $f(x) = a\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right) = a\left(x + \frac{b + \sqrt{\Delta}}{2a}\right)\left(x + \frac{b - \sqrt{\Delta}}{2a}\right)$.

Théorème: Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, si $\Delta < 0$ alors, f(x) n'admet aucune racine. **Théorème**: Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, si $\Delta = 0$ alors, f(x) admet une racine double en

 $x_0 = \frac{-b}{2a}$ avec $f(x) = a(x - x_0)^2$. **Théorème :** Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, si $\Delta > 0$ alors, f(x) admet deux racines distinctes en $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ avec $f(x) = a(x - x_1)(x - x_2)$.

1.3 Représentation graphique

1.3.1 Sommet et axe de symétrie

Remarque: On a montré que $f(x) = ax^2 + bx + c = a(x-\alpha)^2 + \beta$ ainsi, $f(x) = a(x-\alpha)^2 + f(\alpha)$. **Propriété:** Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, la courbe représentative de f est une parabole de sommet $S(\alpha; \beta)$. Elle admet donc la droite d'équation $x = \alpha$ pour axe de symétrie.

1

1.3.2 Tableau de variations

Remarque : Si a > 0

remarque . or a > 0			
x	$-\infty$	lpha	+∞
ax^2+bx+c		β	

Remarque : Si a < 0

x	$-\infty$	lpha	$+\infty$
ax^2+bx+c		β	→

1.3.3 Application aux racines

 $\Delta < 0$

a < 0 $\frac{-b}{2a}$

 $\Delta = 0$

 $\begin{array}{c}
a < 0 \\
 & \xrightarrow{-b} \\
\hline
\end{array}$

Signe de $ax^2 + bx + c$

 $\mathbf{Remarque}: f\left(x\right) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right) \text{ avec } a \neq 0, \text{ si } \Delta < 0 \text{ alors } \left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0 \text{ d'où } f\left(x\right) \text{ est } d = 0$ du signe de a.

Remarque: $f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$ avec $a \neq 0$, si $\Delta = 0$ alors $f(x) = a\left(x + \frac{b}{2a}\right)^2$ d'où f(x) est du signe de a et s'annule en $\frac{-b}{2a}$.

Remarque: $f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$ avec $a \neq 0$, si $\Delta > 0$ alors $f(x) = a(x - x_1)(x - x_2)$ avec

$x_1 < x_2$.						
x	$-\infty$	x_1		x_2		$+\infty$
$x-x_1$	_	0	+		+	
$x-x_2$	_		_	0	+	
$(x-x_1)(x-x_2)$	+	0	_	0	+	
$ax^2 + bx + c$	Signe de a	0	Signe de $-a$	0	Signe de a	

Théorème: Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, si $\Delta < 0$ alors f(x) est du signe de a. **Théorème**: Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, si $\Delta = 0$ alors f(x) est du signe de a sauf en α où elle

Théorème: Soit $f(x) = ax^2 + bx + c$ avec $a \neq 0$, si $\Delta > 0$ alors f(x) est du signe de a à l'extérieur des racines et du signe de -a à l'intérieur des racines.

2 Les fonctions dérivées

2.1 Nombre dérivé

2.1.1 Définition

Définition : Soit f une fonction définie sur E et $a \in E$, f est dite dérivable en a, de nombre dérivé f'(a), si $\lim_{h\to 0} \left(\frac{f(a+h)-f(a)}{h}\right) = f'(a)$.

Définition: La tangente en A(a; f(a)) à (y = f(x)) admet pour équation y = f'(a)(x - a) + f(a).

Définition : f'(a) est le coefficient directeur de la tangente en a.

2.2 Calcul de nombres dérivés

2.2.1 Fonction affine f(x) = mx + p

Définition: Soit
$$a \in \mathbb{R}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{m(a+h)+p-(ma+p)}{h}$$

$$= \frac{mh}{h}$$

$$= m$$

$$f'(a) = m$$

2.2.2 Fonction carrée $f(x) = x^2$

Définition: Soit
$$a \in \mathbb{R}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2-a^2}{h}$$

$$= \frac{2ah+h^2}{h}$$

$$= 2a+h$$

$$f'(a) = 2a$$

2.2.3 Fonction inverse $f(x) = \frac{1}{x}$

Définition: Soit
$$a \in \mathbb{R}^*$$

$$\frac{f(a+h)-f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h}$$

$$= \frac{\frac{-h}{a(a+h)}}{h}$$

$$= \frac{-1}{a(a+h)}$$

$$f'(a) = -\frac{1}{a^2}$$

2.2.4 Fonction racine carrée $f(x) = \sqrt{x}$

Définition: Soit
$$a \in \mathbb{R}^*$$

$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{a+h}-\sqrt{a}}{h}$$

$$= \frac{h}{\sqrt{a+h}-\sqrt{a}} \times \frac{\sqrt{a+h}+\sqrt{a}}{\sqrt{a+h}+\sqrt{a}}$$

$$= \frac{h}{h(\sqrt{a+h}+\sqrt{a})}$$

$$= \frac{1}{\sqrt{a+h}+\sqrt{a}}$$

$$f'(a) = -\frac{1}{2\sqrt{a}}$$

2.2.5 Fonction valeur absolue f(x) = |x|

Définition : $\begin{cases} |x| = x \text{ si } x \geqslant 0 \\ |x| = -x \text{ si } x \leqslant 0 \end{cases}$

Remarque: La fonction valeur absolue n'est pas dérivable en 0.

2.3 Fonction dérivée

2.3.1 Définitions

Définition : Une fonction f est dérivable sur un intervalle I si elle admet un nombre dérivable pour tout $x \in I$.

4

Définition : La fonction qui à x fait correspondre le nombre dérivé en x est appelée fonction dérivée et est notés f'.

2.3.2 Dérivée de fonctions usuelles

Définition: f(x) = mx + p est dérivable sur \mathbb{R} avec f'(x) = m. **Définition**: $f(x) = x^2$ est dérivable sur \mathbb{R} avec f'(x) = 2x. **Définition**: $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* avec $f'(x) = \frac{-1}{x^2}$. **Définition**: $f(x) = \sqrt{x}$ est dérivable sur \mathbb{R}^*_+ avec $f'(x) = \frac{1}{2\sqrt{x}}$. **Définition :** Pour tout $n \in \mathbb{N}$ $f(x) = x^n$ est dérivable sur \mathbb{R} avec $f'(x) = nx^{n-1}$. **Définition :** Pour tout $n \in \mathbb{N}$ $f(x) = \frac{1}{x^n}$ est dérivable sur \mathbb{R}^* avec $f'(x) = \frac{-n}{x^{n+1}}$.

2.4**Opérations**

2.4.1 Somme

Théorème: Si f et g sont deux fonctions dérivables sur un intervalle I, alors (f+g) est dérivable sur I, avec (f+g)' = f' + g'.

2.4.2 Produit

Théorème: Soient u et v deux fonctions dérivables sur un intervalle I. La fonction $(u \times v)$ est dérivable sur I avec (uv)' = u'v + uv'.

Suf T avec
$$(uv) = uv + uv$$
.
Démonstration :

$$(uv)' = \frac{(uv)(a+h) - (uv)(a)}{h}$$

$$= \frac{u(a+h)v(a+h) - u(a)v(a)}{h}$$

$$= \frac{u(a+h) - u(a)}{h}v(a+h) + u(a)\frac{v(a+h) - v(a)}{h}$$

$$= u'(a)v(a) + u(a)v'(a)$$

Conséquence : (kf)' = kf' pour k un réel fixé.

2.4.3 Quotient

Démonstration : Soit f une fonction dérivable sur I avec f(x) = 0 sur I. Soit $g(x) = \frac{1}{f(x)}$.

Demonstration: Solit
$$f$$
 the foliction derivable sur I avec f
$$g'(x) = \frac{g(a+h)-g(a)}{h}$$

$$= \frac{\frac{1}{f(a+h)}-\frac{1}{f(a)}}{h}$$

$$= \frac{f(a)-f(a+h)}{hf(a)f(a+h)}$$

$$= -\frac{f(a+h)-f(a)}{h} \times \frac{1}{f(a)f(a+h)}$$
Or, $\lim_{h\to 0} \left(\frac{f(a+h)-f(a)}{h}\right) = f'(a)$ et $\lim_{h\to 0} \left(\frac{1}{f(a)f(a+h)}\right) = \frac{1}{(f(a))^2}$.

D'où $\lim_{h\to 0} = \left(\frac{g(a+h)-g(a)}{h}\right) = \frac{-f'(a)}{(f(a))^2}$.

Théorème: Soit f une fonction dérivable sur I avec $f(x) \neq 0$ pour tout x sur I. Alors, $\frac{1}{f}$ est dérivable sur I avec $\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}$.

Théorème: Soient u et v deux fonctions dérivable sur I avec $v(x) \neq 0$ pour tour x dans I. La fonction $\left(\frac{u}{v}\right)$ est dérivable sur I avec $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

Démonstration:

$$\begin{aligned} \left(\frac{u}{v}\right)' &= \left(u \times \frac{1}{v}\right)' \\ &= u' \times \frac{1}{v} + u \times \left(\frac{1}{v}\right)' \\ &= \frac{u'}{v} + u \times \frac{-v'}{v^2} \\ &= \frac{u'v - uv'}{v^2} \end{aligned}$$

2.4.4 Composition

Théorème: Soient f et g deux fonctions dérivables, alors $(g(f(x)))' = g'(f(x)) \times f'(x)$. Conséquence: $(f(x)^n)' = n(f(x))^{n-1} \times f'(x)$ pour tout $n \in \mathbb{N}$. Conséquence : $\left(\frac{1}{f(x)^n}\right)' = \frac{-n}{(f(x))^{n+1}} \times f'(x)$ pour tout $n \in \mathbb{N}$.

 $\begin{aligned} &\textbf{Cons\'equence}: \left(\sqrt{f\left(x\right)}\right)' = \frac{1}{2\sqrt{f(x)}} \times f'\left(x\right). \\ &\textbf{Cons\'equence}: \left(f\left(ax+b\right)\right)' = f'\left(ax+b\right) \times a \text{ pour tout } (a;b) \in \mathbb{R}^2. \end{aligned}$

3 Application de la dérivée

Dérivée et variation 3.1

Théorème : Soit f une fonction dérivable sur un intervalle I. Si f'(x) > 0 sur I, sauf en un nombre fini de points où elle s'annule, alors f est strictement croissante sur I.

Théorème: Soit f une fonction dérivable sur un intervalle I. Si f'(x) < 0 sur I, sauf en un nombre fini de points où elle s'annule, alors f est strictement décroissante sur I.

Théorème: Soit f une fonction dérivable sur un intervalle I. Si f'(x) = 0 sur I, alors f est constante sur I.

3.2 Extremum local d'une fonction

Définition : Soit f une fonction définie sur E et $a \in E$. f admet un extremum local en x = a s'il existe un intervalle ouvert, centré en a tel que la restriction de f à cet intervalle admette un extremum en a.

Propriété: Soit f une fonction dérivable. Si f admet un extremum local en a, alors f'(a) = 0.

Propriété : Soit f une fonction dérivable. Si f' s'annule en a, alors f admet un extremum local en a.

Des polynômes du troisième degré

3.3.1 $f(x) = x^3 - ax$; où a > 0

Remarque : f est définie sur \mathbb{R} avec $f'(x) = 3x^2 - a$.

$$3x^2 - a = 0$$

$$\Leftrightarrow x^2 = \frac{a}{3}$$

$$\Leftrightarrow x^2 = \frac{a}{2}$$

$$\Leftrightarrow x = \pm \sqrt{\frac{a}{3}}$$

Le coefficient de x^2 étant 3 > 0, on en déduit le signe de f'.

x	$-\infty$,	$-\sqrt{\frac{a}{3}}$	v	$\sqrt{\frac{a}{3}}$		$+\infty$
Signe de $f'(x)$		+	0	_	0	+	
Variations de $f(x)$			<i>→ →</i>				

3.3.2 $f(x) = x^3 + ax$; où a > 0

Remarque : f est définie sur \mathbb{R} avec $f'(x) = 3x^2 + a$.

$$3x^2 + a \geqslant a > 0$$

040 140 240 0	
x	$-\infty$ $+\infty$
Signe de $f'(x)$	+
Variations de $f(x)$	

3.3.3 Courbes représentatives

Remarque : Soit $a \in \mathbb{R}_+^*$

4 Suites numériques

4.1 Notion de suites

Définition : Une suite numérique est une application de \mathbb{N} dans \mathbb{R} .

Définition: Pour $n \in \mathbb{N}$, et une suite (u), on note u_n l'image de l'entier n par la suite (u).

4.2 Exemples fondamentaux de générations d'une suite

4.2.1 Mode explicite

Définition : La suite (u) est définie par $u_n = f(n)$.

4.2.2 Mode itératif ou récurrent

Définition : La suite (u) est définie par u_0 et $u_{n+1} = f(u_n)$.

4.2.3 Limites de suites géométriques

Théorème : Si -1 < q < 1 alors $\lim_{n \to +\infty} (q^n) = 0$.

Théorème: Si q > 1 alors $\lim_{n \to +\infty} (q^n) = +\infty$.

4.2.4 Vocabulaire

Définition: Si $\lim_{n \to +\infty} (u_n) = l$ où $l \in \mathbb{R}$, d'où (u_n) admet une limite fixe, la suite est dite convergente.

Définition: Si (u_n) n'admet pas de limite ou admet une limite infinie, la suite est dite divergente.

4.3 Sens de variation

4.3.1 Définitions

Définition: La suite (u_n) est dite croissante si, pour tout $n \in \mathbb{N}$, $u_{n+1} \ge u_n$.

Définition: La suite (u_n) est dite strictement croissante si, pour tout $n \in \mathbb{N}$, $u_{n+1} > u_n$.

Définition: La suite (u_n) est dite décroissante si, pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n$.

Définition: La suite (u_n) est dite strictement décroissante si, pour tout $n \in \mathbb{N}$, $u_{n+1} < u_n$.

4.3.2 Méthodes

Méthode : Si $u_n = f(n)$, alors u_n est de même sens que f(n).

Méthode : Dans les autres cas, on étudie le signe de $u_{n+1} - u_n$.

4.4 Suites arithmétiques

4.4.1 Généralité

Définition : Une suite (u_n) est dite arithmétique de raison r, un réel fixé, si pour tout $n \in \mathbb{N}$,

 $u_{n+1} = u_n + r.$

Propriété: (u_n) est une suite arithmétique de raison r si et seulement si, $u_n = u_0 + nr$, pour tout $n \in \mathbb{N}$.

4.4.2 Représentation graphique

Propriété: La représentation graphique d'une suite arithmétique est un ensemble de points alignés.

Remarque: Une suite arithmétique a un accroissement linéaire ou une évolution linéaire.

4.4.3 Somme des termes

Théorème: Soit (u_n) une suite arithmétique. $u_0 + u_1 + u_2 + \cdots + u_n = (n+1)\left(\frac{u_0 + u_n}{2}\right)$. C'est-à-dire:

$$\sum_{k=0}^{n} (u_k) = (n+1) \left(\frac{u_0 + u_n}{2} \right). \text{ D'où } : \sum_{k=m}^{n} (u_k) = (n-m+1) \left(\frac{u_m + u_n}{2} \right), \text{ avec } m \leqslant n.$$

4.5 Suites géométriques

4.5.1 Généralités

Définition : La suite (u_n) est dite géométrique de raison q, un réel fixé, si pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n \times q$. **Propriété :** (u_n) est une suite géométrique de raison q si et seulement si, $u_n = u_0 \times q^n$, pour tout $n \in \mathbb{N}$.

4.5.2 Représentation graphique

Remarque : Une suite géométrique a un accroissement exponentiel ou une évolution exponentielle.

4.5.3 Somme des termes

Théorème : Soit
$$(u_n)$$
 une suite géométrique. $u_0 + u_1 + u_2 + \dots + u_n = \left(\frac{u_0 - u_{n+1}}{1 - q}\right) = u_0 \times \left(\frac{1 - q^{n+1}}{1 - q}\right)$. C'est-à-dire : $\sum_{k=0}^{n} (u_k) = u_0 \times \left(\frac{1 - q^{n+1}}{1 - q}\right)$. D'où : $\sum_{k=m}^{n} (u_k) = u_m \times \left(\frac{1 - q^{n-m+1}}{1 - q}\right)$, avec $m \le n$.

5 Limites de suites

Cas où la limite est finie 5.1

Définition: On dit que la suite (u_n) admet pour limite $+\infty$ si tout intervalle du type $[A; +\infty[$ contient

tous les termes de la suite à partir d'un certain rang. On note alors, $\lim_{n\to+\infty} (u_n) = +\infty$. **Définition :** On dit que la suite (u_n) admet pour limite $-\infty$ si tout intervalle du type $]-\infty;A]$ contient tous les termes de la suite à partir d'un certain rang. On note alors, $\lim_{n\to+\infty} (u_n) = -\infty$. **Remarque :** Une suite qui admet pour limite $+\infty$ n'est pas nécessairement croissante et, de même, une

suite croissante n'admet pas non plus nécessairement pour limite $+\infty$.

5.2Cas où la limite est finie

Définition : On dit que la suite (u_n) admet pour limite un réel l, si tout intervalle centré en l contient tous les termes de la suite à partir d'un certain rang. On note alors, $\lim_{n\to+\infty} (u_n) = l$.

6 Trigonométrie

6.1Angles orientés

6.1.1 Le radian

Définition : L'angle plat vaut π radians.

6.1.2Orientation

Définition: Le sens inverse à celui des aiguilles d'une montre est appelé le sens trigonométrique. Le sens contraire est appelé anti-trigonométrique.

Définition : Soit $(O; \vec{\imath}, \vec{\jmath})$ un repère orthonormé. Le cercle de centre O et de rayon 1, orienté dans le sens trigonométrique est appelé cercle trigonométrique.

6.1.3 Point associé à un angle x

Définition : Soient M un point du cercle trigonométrique et l la longueur entre l'origine du cercle et le point M. Le point M est associé à l'angle x, avec : x = l si l'on parcourt le cercle dans le sens trigonométrique et x = -l si l'on parcourt le cercle dans le sens anti-trigonométrique.

Définition : Un point M est associé à un réel x est aussi associé à $x + 2k\pi$, où $k \in \mathbb{Z}$.

Définition: La mesure principale d'un nombre est l'unique mesure dans l'intervalle $]-\pi;\pi]$.

Remarque: La mesure principale correspond au chemin le plus court sur le cercle.

6.1.4 Angles orientés de vecteurs

Définition: Soit l la longueur de l'arc \overrightarrow{AB} , $(\vec{u}, \vec{v}) = l$ si l'on parcourt le cercle dans le sens trigonomé-

Définition: Soit l la longueur de l'arc \widehat{AB} . $(\vec{u}, \vec{v}) = -l$ si l'on parcourt le cercle dans le sens antitrigonométrique.

6.2 Sinus et cosinus

6.2.1Définition

Définition : soit $\alpha \in \mathbb{R}$ et M le point du cercle trigonométrique associé à l'angle de mesure α , $\begin{cases} \cos(\alpha) = x_M \\ \sin(\alpha) = y_M \end{cases}$.

Propriété : Pour tout $x \in \mathbb{R}$, $\begin{cases} -1 \leqslant \cos(x) \leqslant 1 \\ -1 \leqslant \sin(x) \leqslant 1 \end{cases}$. **Relation fondamentale :** $(\cos(x))^2 + (\sin(x))^2 = \cos^2(x) + \sin^2(x) = 1$.

Valeurs de référence :

valeurs de reference.							
x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	
$\cos\left(x\right)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	
$\sin\left(x\right)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	

6.2.2Propriétés des fonctions sinus et cosinus

6.2.2.1 Pérjodicité

Propriété : $\begin{cases} \cos(x+2k\pi) = \cos(x) \\ \sin(x+2k\pi) = \sin(x) \end{cases}$, pour tout $x \in \mathbb{R}, k \in \mathbb{Z}$.

Propriété: Les fonctions sinus et cosinus sont périodiques de période 2π .

6.2.2.2 Parité $\mathbf{Propri\acute{e}t\acute{e}}: \left\{ \begin{smallmatrix} \cos(-x) = \cos(x) \\ \sin(-x) = -\sin(x) \end{smallmatrix}, \text{ pour tout } x \in \mathbb{R}. \right.$

Propriété: La fonction cosinus est paire. Propriété: La fonction sinus est impaire. 6.2.2.3 Variations

x	0	$\frac{\pi}{2}$	π
$\cos\left(x\right)$	1 ———	0 —	→ -1
$\sin\left(x\right)$	0	→ 1 <u> </u>	0

6.2.2.4 Courbes représentatives

6.2.2.5 Dérivées

Propriété : $\begin{cases} (\cos(x))' = -\sin(x) \\ (\sin(x))' = \cos(x) \end{cases}$, pour tout $x \in \mathbb{R}$.

6.3 Angles associés

 $\textbf{Propriét\'e}: \left\{ \begin{smallmatrix} \cos(-x) = \cos(x) \\ \sin(-x) = -\sin(x) \end{smallmatrix}, \text{ pour tout } x \in \mathbb{R}. \right.$

Propriété: $\begin{cases} \cos(x+2k\pi) = \cos(x) \\ \sin(x+2k\pi) = \sin(x) \end{cases}$, pour tout $x \in \mathbb{R}$, $k \in \mathbb{Z}$.

Propriété : $\begin{cases} \cos(x+\pi) = -\cos(x) \\ \sin(x+\pi) = -\sin(x) \end{cases}$, pour tout $x \in \mathbb{R}$.

Propriété : $\begin{cases} \cos(\pi - x) = -\cos(x) \\ \sin(\pi - x) = \sin(x) \end{cases}$, pour tout $x \in \mathbb{R}$.

Propriété : $\begin{cases} \cos\left(x + \frac{\pi}{2}\right) = -\sin(x) \\ \sin\left(x + \frac{\pi}{2}\right) = \cos(x) \end{cases}$, pour tout $x \in \mathbb{R}$.

Propriété : $\begin{cases} \cos(\frac{\pi}{2} - x) = \sin(x) \\ \sin(\frac{\pi}{2} - x) = \cos(x) \end{cases}$, pour tout $x \in \mathbb{R}$.

6.4 Cercle trigonométrique

Probabilités 7

7.1Probabilité conditionnelle

Définition: Soient A et B deux événements avec $P(B) \neq 0$. La probabilité que A soit réalisé sachant que B soit réalisé est $P_B(A) = \frac{P(A \cap B)}{P(B)}$. $P_B(A)$ se lit « P de A sachant B ». **Remarque**: $P_B(A) \times P(B) = P(A \cap B) = P(B \cap A) = P_A(B) \times P(A)$.

Arbre pondéré de probabilités :

Remarque: La somme des probabilités des branches issues d'un nœud vaut 1.

Remarque: La probabilité d'un chemin est égal au produit des probabilités des branches composant ce

Remarque: La probabilité d'un événement est la somme des probabilités des chemins réalisant cet événement

7.2 Formules des probabilités totales

Définition : $\{B_1, B_2, B_3, \dots, B_n\}$ est une partition de l'univers Ω si $B_1 \cup B_2 \cup B_3 \cup \dots \cup B_n = \bigcup_{k=0}^n (B_k) = \Omega$ et si $B_k \cap B_j = \emptyset$ pour $k \neq j$.

Théorème : Soit $\{B_1, B_2, B_3, \dots, B_n\}$ une partition de l'univers Ω et A un événement. $P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n) = \sum_{k=1}^{n} (P(A \cap B_k)) = \sum_{k=1}^{n} (P_{B_k}(A) \times P(B_k))$

7.3 Événements indépendants

Définition: Soient A et B deux événements avec $P(A) \neq 0$ et $P(B) \neq 0$. A et B sont dits indépendants $si P_{A}(B) = P(B).$

Remarque : Soient A et B deux événements indépendants, $P_A(B) = P(B)$.

Remarque : Soient A et B deux événements indépendants, $P_B(A) = P(A)$.

Remarque : Soient A est indépendant de B si et seulement si B est indépendant de A. **Théorème**: A et B sont indépendants si et seulement si $P(A \cap B) = P(A) \times P(B)$.

Remarque: A et B sont indépendants si et seulement si \overline{A} et B sont indépendants.

Remarque : A et B sont indépendants si et seulement si A et \overline{B} sont indépendants.

Remarque: A et B sont indépendants si et seulement si \overline{A} et \overline{B} sont indépendants.

8 Variables aléatoires

8.1 Variable aléatoire réelle

Définition: Soit une expérience aléatoire d'univers Ω . Une variable aléatoire réelle, notée X, est une application de Ω dans \mathbb{R} .

Définition: $X(\Omega) = \{x_1, x_2, x_3, \dots, x_n\}$ est l'image univers de Ω par X.

Définition : La loi de X est la probabilité définie par $p(X = x_k) = p_k$ pour $1 \le k \le n$.

8.2 Espérance

Définition : Soient une expérience aléatoire d'univers Ω et X une variable aléatoire réelle d'univers image $X(\Omega) = \{x_1, x_2, x_3, \dots, x_n\}$. On appelle espérance mathématiques de X le réel noté E(X) défini

par
$$E(X) = x_1 p(X = x_1) + x_2 p(X = x_2) + x_3 p(X = x_3) + \dots + x_n p(X = x_n) = \sum_{k=1}^{n} (x_k p(X = x_k)).$$

Remarque : Le terme espérance vient du langage des jeux. Lorsque X représente le gain, E(X) représente le gain moyen que peut « espérer » un joueur sur un grand nombre de parties.

Remarque: E(X) est la moyenne des résultats x_k , pondérés par les valeurs p_k . Ainsi, E(X) est parfois

Remarque : $E(X) = \sum_{\omega \in \Omega} (X(\omega) p(\omega)).$

Variance et écart type 8.3

Définition : Soient une expérience aléatoire d'univers Ω et X une variable aléatoire réelle d'univers

image
$$X(\Omega) = \{x_1, x_2, x_3, \cdots, x_n\}$$
. On appelle variance de X le réel noté $V(X)$ défini par $V(X) = p(X = x_1)(x_1 - E(X))^2 + p(X = x_2)(x_2 - E(X))^2 + \cdots + p(X = x_n)(x_n - E(X))^2$ $= \sum_{k=1}^{n} \left(p(X = x_k)(x_k - E(X))^2 \right)$

Remarque : La variance représente la moyenne des carrés des écarts à la moyenne $E\left(X\right)$, des résultats x_k pondérés par les valeurs p_k .

Remarque: Pour tout $1 \le k \le n$, $p(X = x_k) \ge 0$ et $(x_k - E(X))^2 \ge 0$ d'où $V(X) \ge 0$.

Remarque : Les valeurs $(x_k - E(X))$ sont les valeurs prises par la variable aléatoire réelle (X - E(X)), E(X) est un nombre fixé, donc $V(X) = E(X - E((X))^2)$

Définition : Soient une expérience aléatoire d'univers Ω et X une variable aléatoire réelle d'univers image $X(\Omega) = \{x_1, x_2, x_3, \dots, x_n\}$. On appelle écart type de la variable aléatoire réelle X le réel noté $\sigma(X)$ défini par $\sigma(X) = \sqrt{V(X)}$.

Fonction exponentielle 9

y' = y et y(0) = 19.1

Lemme : Si une fonction f, dérivable sur \mathbb{R} , vérifie f'(x) = f(x) et f(0) = 1, alors pour tout $x \in \mathbb{R}$, $f(x) \neq 0$.

Démonstration:

Soit
$$g(x) = f(x) \times f(-x)$$
.

$$g'(x) = f'(x) \times f(-x) + f(x) \times f'(-x) \times (-1)$$

= $f(x) \times f(-x) - f(x) \times f(-x)$
= 0

Donc,
$$g(x) = k = g(0) = f(0) \times f(-0) = 1$$
.

Donc,
$$g(x) = f(x) \times f(-x) = 1$$
, et ainsi, $f(x) \neq 0$.

Théorème: Il existe une unique fonction, appelée exponentielle et notée exp, solution de l'équation $\left\{ \begin{smallmatrix} y'=y\\y(0)=1 \end{smallmatrix} \right.$

Démonstration:

On admet l'existence de solution.

Soient f et g deux fonctions vérifiant $\begin{cases} f'(x)=f(x) \\ f(0)=1 \end{cases}$ et $\begin{cases} g'(x)=g(x) \\ g(0)=1 \end{cases}$.

Soit
$$h(x) = \frac{f(x)}{g(x)}$$
.

$$h'(x) = \frac{f'(x) \times g(x) - f(x) \times g'(x)}{(g(x))^2} = 0.$$
 D'où $h(x) = k$.

D'où
$$h(x) = k$$
.

Or,
$$h(0) = \frac{f(0)}{g(0)} = 1 = k$$
.

Ainsi,
$$h(x) = \frac{f(x)}{g(x)} = 1 \Leftrightarrow f(x) = g(x)$$
.

9.2Vers une nouvelle écriture

9.2.1Propriétés fondamentales

Propriété: La fonction exponentielle est définie et dérivable sur \mathbb{R} avec $(\exp(x))' = \exp(x)$.

Propriété : Pour tous réels x et y, $\exp(x+y) = \exp(x) \times \exp(y)$.

Propriété : Pour tout réel x, $\exp(-x) = \frac{1}{\exp(x)}$.

Propriété : Pour tous réels x et y, $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$.

Propriété : Pour tout réel x, $\exp(x \times n) = (\exp(x))^n$.

Propriété : Pour tout réel x, $\exp\left(\frac{x}{2}\right) = \sqrt{\exp\left(x\right)}$.

Propriété : Pour tout réel x, $\exp(x) > 0$.

Démonstration de $\exp(x + y) = \exp(x) \times \exp(y)$:

Soit
$$f(x) = \frac{\exp(a+x)}{\exp(x)}$$
.

Soit
$$f(x) = \frac{\exp(a+x)}{\exp(x)}$$
.
 $f'(x) = \frac{\exp(a+x)}{\exp(x)} = f(x)$.
 $f(0) = \frac{\exp(a)}{\exp(a)} = 1$.
Ainci $f(x) = \exp(x)$

$$f(0) = \frac{\exp(a)}{\exp(a)} = 1$$

Ainsi,
$$f(x) = \exp(x)$$
.

Ainsi,
$$f(x) = \exp(x)$$
.
D'où $\frac{\exp(a+x)}{\exp(a)} = \exp(x)$.

Ou encore, $\exp(a + x) = \exp(a) \times \exp(x)$.

9.2.2 Nouvelle notation

Définition : On note $\exp(1) = e$ et $\exp(x) = e^x$.

Remarque : $(e^x)' = e^x$.

Remarque: $e^{xy} = e^x \times e^y$.

Remarque : $e^{-x} = \frac{1}{e^x}$.

Remarque : $e^{x-y} = \frac{e^x}{e^y}$. Remarque : $e^{nx} = (e^x)^n$

Remarque : $e^{\frac{x}{2}} = \sqrt{e^x}$.

Remarque : $e^x > 0$.

9.2.3 Étude de la fonction exponentielle

Remarque : Pour tout $x \in \mathbb{R}$, $(e^x)' = e^x > 0$.

Tableau de variations:

Tubicuu uc vui				
x	$-\infty$	0	1	$+\infty$
e^x		1	e —	

 $\begin{array}{l} \textbf{Cons\'equences} : e^x > 1 \Leftrightarrow x > 0. \\ \textbf{Cons\'equences} : e^x < 1 \Leftrightarrow x < 0. \\ \textbf{Cons\'equences} : e^x > e \Leftrightarrow x > 1. \\ \textbf{Cons\'equences} : e^x < e \Leftrightarrow x < 1. \end{array}$

9.3 Fonctions exponentielles

9.3.1 $f(x) = e^{kx}$, avec $k \in \mathbb{R}$ fixé

Remarque: $f'(x) = (e^{kx})' = ke^{kx}$. **Remarque**: $(e^{u(x)})' = u'(x)e^{u(x)}$.

9.3.2 Application aux suites géométriques

Théorème : Pour tout réel k, la suite (u_n) définie par $u_n = e^{kn}$ est une suite géométrique de raison $q = e^k$.

Théorème: Si $u_n = q^n \times u_0$ avec q > 0, alors il existe un $k \in \mathbb{R}$, tel que $q = e^k$.

Remarque : $0 < q < 1 \Leftrightarrow k < 0$. Remarque : $q = 1 \Leftrightarrow k = 0$. Remarque : $q > 1 \Leftrightarrow k > 0$.

9.4 Courbe représentative

10 Produit scalaire

Expression du produit scalaire

Rappel: La norme du vecteur \vec{u} est sa longueur notée $||\vec{u}||$.

Définition : Le produit scalaire de deux vecteurs \vec{u} et \vec{v} est noté $\vec{u} \cdot \vec{v}$.

Définition: Si $\vec{u} \neq \overrightarrow{0}$ et $\vec{v} \neq \overrightarrow{0}$, $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$.

Définition: Si $\vec{u} = \overrightarrow{0}$ ou $\vec{v} = \overrightarrow{0}$, $\vec{u} \cdot \vec{v} = 0$.

Propriété : \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.

10.2 Propriétés

Théorème : $\vec{u} \cdot \vec{u} = \|\vec{u}\|^2 = \vec{u}^2$.

Théorème : $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.

Théorème: $\vec{u} \cdot (k\vec{v}) = (k\vec{u}) \cdot \vec{v} = k (\vec{u} \cdot \vec{v})$ avec $k \in \mathbb{R}$.

Théorème : $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Remarque: $(\vec{u} + \vec{v})^2 = ||\vec{u} + \vec{v}||^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 \Leftrightarrow \vec{u} \cdot \vec{v} = \frac{1}{2} (||\vec{u} + \vec{v}||^2 - \vec{u}^2 - \vec{v}^2).$

10.3 Résultat fondamental

Remarque : Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs, $\alpha = \left(\overrightarrow{AB}, \overrightarrow{AC}\right)$ et H le projeté orthogonal de C sur (AB).

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos{(\alpha)}.$

Remarque : Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs, $\alpha = \left(\overrightarrow{AB}, \overrightarrow{AC}\right)$ et H le projeté orthogonal de C sur (AB).

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH \text{ si } H \in [AB).$

Remarque : Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs, $\alpha = \left(\overrightarrow{AB}, \overrightarrow{AC}\right)$ et H le projeté orthogonal de C sur (AB).

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH \text{ si } H \notin [AB).$

Expression dans une base orthogonale

Théorème: Soit $(O; \vec{\imath}, \vec{\jmath})$ un repère du plan. Soit $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\vec{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$ deux vecteurs, $\vec{u} \cdot \vec{v} = aa' + bb'$.

Conséquence : $\vec{u}^2 = \|\vec{u}\|^2 = a^2 + b^2 \Leftrightarrow \|\vec{u}\| = \sqrt{a^2 + b^2}$. Conséquence : $\|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

Application du produit scalaire 11

Équations de droite 11.1

Définition : Un vecteur \vec{n} orthogonal à \overrightarrow{AB} est dit normal à (AB). **Théorème :** Toute droite de vecteur normal $\vec{n} \left(\begin{smallmatrix} a \\ b \end{smallmatrix} \right) \neq \overrightarrow{0}$ admet une équation de la forme ax + by + c = 0

avec $c \in \mathbb{R}$.

Théorème: Réciproquement, ax + by + c = 0 avec $(a, b) \neq (0, 0)$ et $c \in \mathbb{R}$ est l'équation d'une droite de

vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$.

Remarque : La droite (D) ax + by + c = 0 admet pour vecteur directeur $\vec{u}(\frac{-b}{a})$ car $\vec{u} \cdot \vec{n} = -ba + ab = 0$.

11.2 Équations de cercles

Théorème : L'équation du cercle de centre I(a;b) et de rayon $r \ge 0$ est $(x-a)^2 + (y-b)^2 = r^2$.