# GigaDevice Semiconductor Inc.

# GD32VF103 RISC-V 32-bit MCU

**Datasheet** 

Revision 1.9

( Nov. 2023 )



# **Table of Contents**

| Та | ble c | of Contents                                                     | 1  |
|----|-------|-----------------------------------------------------------------|----|
| Li | st of | Figures                                                         | 4  |
| Li | st of | Tables                                                          | 5  |
| 1. | Gei   | neral descriptionn                                              | 7  |
| 2. |       | ·<br>vice overview                                              |    |
|    | 2.1.  | Device information                                              |    |
|    | 2.2.  | Block diagram                                                   |    |
|    | 2.3.  | Pinouts and pin assignment                                      |    |
|    |       |                                                                 |    |
|    | 2.4.  | Memory map                                                      |    |
|    | 2.5.  | Clock tree                                                      |    |
|    | 2.6.  | Pin definitions                                                 |    |
|    | 2.6.  | · · · · · · · · · · · · · · · · · · ·                           |    |
|    | 2.6.2 |                                                                 |    |
|    | 2.6.  | •                                                               |    |
|    | 2.6.  |                                                                 |    |
| 3. | Fur   | nctional description                                            | 37 |
| ,  | 3.1.  | System and memory architecture                                  | 37 |
| ;  | 3.2.  | On-chip memory                                                  | 37 |
| ,  | 3.3.  | Clock, reset and supply management                              | 37 |
| į  | 3.4.  | Boot modes                                                      | 38 |
| ,  | 3.5.  | Power saving modes                                              | 39 |
| ;  | 3.6.  | Analog to digital converter (ADC)                               | 39 |
| ,  | 3.7.  | Digital to analog converter (DAC)                               | 40 |
| ,  | 3.8.  | DMA                                                             | 40 |
| ,  | 3.9.  | General-purpose inputs/outputs (GPIOs)                          | 40 |
|    | 3.10. | Timers and PWM generation                                       | 41 |
| ;  | 3.11. | Real time clock (RTC)                                           | 42 |
| ;  | 3.12. | Inter-integrated circuit (I2C)                                  | 42 |
| ;  | 3.13. | Serial peripheral interface (SPI)                               | 44 |
| ;  | 3.14. | Universal synchronous asynchronous receiver transmitter (USART) | 44 |
|    |       |                                                                 |    |



| GigaDevice |
|------------|

| _ |       | 1.4.10                                  |    |
|---|-------|-----------------------------------------|----|
|   | 3.15. | Inter-IC sound (I2S)                    |    |
|   | 3.16. | Universal serial bus full-speed (USBFS) |    |
|   | 3.17. | Controller area network (CAN)           |    |
|   | 3.18. | External memory controller (EXMC)       | 45 |
|   | 3.19. | Debug mode                              | 45 |
|   | 3.20. | Package and operation temperature       | 46 |
| 4 | . Ele | ctrical characteristics                 | 47 |
|   | 4.1.  | Absolute maximum ratings                | 47 |
|   | 4.2.  | Operating conditions characteristics    | 47 |
|   | 4.3.  | Power consumption                       | 49 |
|   | 4.4.  | EMC characteristics                     | 53 |
|   | 4.5.  | Power supply supervisor characteristics | 54 |
|   | 4.6.  | Electrical sensitivity                  | 55 |
|   | 4.7.  | External clock characteristics          | 55 |
|   | 4.8.  | Internal clock characteristics          | 57 |
|   | 4.9.  | PLL characteristics                     | 58 |
|   | 4.10. | Memory characteristics                  | 59 |
|   | 4.11. | NRST pin characteristics                | 59 |
|   | 4.12. | GPIO characteristics                    | 60 |
|   | 4.13. | ADC characteristics                     | 62 |
|   | 4.14. | Temperature sensor characteristics      | 63 |
|   | 4.15. | DAC characteristics                     | 63 |
|   | 4.16. | I2C characteristics                     | 64 |
|   | 4.17. | SPI characteristics                     | 65 |
|   | 4.18. | I2S characteristics                     | 67 |
|   | 4.19. | USART characteristics                   | 69 |
|   | 4.20. | CAN characteristics                     | 69 |
|   | 4.21. | USBFS characteristics                   | 70 |
|   | 4.22. | EXMC characteristics                    | 70 |
|   | 4.23. | TIMER characteristics                   | 71 |
|   | 4.24. | WDGT characteristics                    | 72 |





|       | 0. ACCOUNT                         |    |
|-------|------------------------------------|----|
| 4.25. | Parameter conditions               | 72 |
| 5. Pa | ckage information                  | 73 |
| 5.1.  | LQFP100 package outline dimensions | 73 |
| 5.2.  | LQFP64 package outline dimensions  | 75 |
| 5.3.  | LQFP48 package outline dimensions  | 77 |
| 5.4.  | QFN36 package outline dimensions   | 79 |
| 5.5.  | Thermal characteristics            | 81 |
| 6. Or | dering information                 | 83 |
| 7. Re | vision History                     | 84 |



# **List of Figures**

| Figure 2-1. GD32VF103 block diagram                                          | 10 |
|------------------------------------------------------------------------------|----|
| Figure 2-2. GD32VF103Vx LQFP100 pinouts                                      | 11 |
| Figure 2-3. GD32VF103Rx LQFP64 pinouts                                       | 12 |
| Figure 2-4. GD32VF103Cx LQFP48 pinouts                                       | 13 |
| Figure 2-5. GD32VF103Tx QFN36 pinouts                                        | 13 |
| Figure 2-6. GD32VF103 clock tree                                             | 18 |
| Figure 4-1. Recommended power supply decoupling capacitors <sup>(1)(2)</sup> | 48 |
| Figure 4-2. Typical supply current consumption in Run mode                   | 53 |
| Figure 4-3. Typical supply current consumption in Sleep mode                 | 53 |
| Figure 4-4. Recommended external NRST pin circuit <sup>(1)</sup>             | 60 |
| Figure 4-5. I/O port AC characteristics definition                           | 61 |
| Figure 4-6. I2C bus timing diagram                                           | 65 |
| Figure 4-7. SPI timing diagram - master mode                                 |    |
| Figure 4-8. SPI timing diagram - slave mode                                  |    |
| Figure 4-9. I2S timing diagram - master mode                                 |    |
| Figure 4-10. I2S timing diagram - slave mode                                 | 69 |
| Figure 4-11. USBFS timings: definition of data signal rise and fall time     | 70 |
| Figure 5-1. LQFP100 package outline                                          |    |
| Figure 5-2. LQFP100 recommended footprint                                    | 74 |
| Figure 5-3. LQFP64 package outline                                           |    |
| Figure 5-4. LQFP64 recommended footprint                                     | 76 |
| Figure 5-5. LQFP48 package outline                                           |    |
| Figure 5-6. LQFP48 recommended footprint                                     |    |
| Figure 5-7. QFN36 package outline                                            | 79 |
| Figure 5-8. QFN36 recommended footprint                                      | 80 |



# **List of Tables**

| Table 2-1. GD32VF103 devices features and peripheral list (LQFP64, LQFP100)                                                                                                                                                                                                                                                 | 8                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Table 2-2. GD32VF103 devices features and peripheral list (QFN36, LQFP48)                                                                                                                                                                                                                                                   | 9                          |
| Table 2-3. GD32VF103 memory map                                                                                                                                                                                                                                                                                             | 14                         |
| Table 2-4. GD32VF103Vx LQFP100 pin definitions                                                                                                                                                                                                                                                                              | 19                         |
| Table 2-5. GD32VF103Rx LQFP64 pin definitions                                                                                                                                                                                                                                                                               | 26                         |
| Table 2-6. GD32VF103Cx LQFP48 pin definitions                                                                                                                                                                                                                                                                               | 30                         |
| Table 2-7. GD32VF103Tx QFN36 pin definitions                                                                                                                                                                                                                                                                                | 34                         |
| Table 4-1. Absolute maximum ratings <sup>(1)(4)</sup>                                                                                                                                                                                                                                                                       | 47                         |
| Table 4-2. DC operating conditions                                                                                                                                                                                                                                                                                          | 47                         |
| Table 4-3. Clock frequency <sup>(1)</sup>                                                                                                                                                                                                                                                                                   | 48                         |
| Table 4-4. Operating conditions at Power up/ Power down <sup>(1)</sup>                                                                                                                                                                                                                                                      | 48                         |
| Table 4-5. Start-up timings of Operating conditions <sup>(1)(2)(3)</sup>                                                                                                                                                                                                                                                    | 48                         |
| Table 4-6. Power saving mode wakeup timings characteristics <sup>(1)(2)</sup>                                                                                                                                                                                                                                               | 48                         |
| Table 4-7. Power consumption characteristics <sup>(2)(3)(4)(5)(6)</sup>                                                                                                                                                                                                                                                     | 49                         |
| Table 4-8. EMS characteristics <sup>(1)</sup>                                                                                                                                                                                                                                                                               | 54                         |
| Table 4-9. Power supply supervisor characteristics                                                                                                                                                                                                                                                                          | 54                         |
| Table 4-10. ESD characteristics <sup>(1)</sup>                                                                                                                                                                                                                                                                              | 55                         |
| Table 4-11. Static latch-up characteristics <sup>(1)</sup>                                                                                                                                                                                                                                                                  | 55                         |
| Table 4-12. High speed external clock (HXTAL) generated from a crystal/ceramic                                                                                                                                                                                                                                              | 55                         |
| Table 4-13. High speed external clock characteristics (HXTAL in bypass mode)                                                                                                                                                                                                                                                | 56                         |
| Table 4-14. Low speed external clock (LXTAL) generated from a crystal/ceramic                                                                                                                                                                                                                                               |                            |
| characteristics                                                                                                                                                                                                                                                                                                             | 56                         |
| Table 4-15. Low speed external user clock characteristics (LXTAL in bypass mode)                                                                                                                                                                                                                                            | 57                         |
| Table 4-16. High speed internal clock (IRC8M) characteristics                                                                                                                                                                                                                                                               | 57                         |
| Table 4-17. Low speed internal clock (IRC40K) characteristics                                                                                                                                                                                                                                                               | 58                         |
| Table 4-18. PLL characteristics                                                                                                                                                                                                                                                                                             | 58                         |
| Table 4-19. PLL1/2 characteristics                                                                                                                                                                                                                                                                                          | 58                         |
| Table 4-20. Flash memory characteristics                                                                                                                                                                                                                                                                                    | 59                         |
| Table 4-21. NRST pin characteristics                                                                                                                                                                                                                                                                                        | 59                         |
| Table 4-22. I/O port DC characteristics <sup>(1)(3)</sup>                                                                                                                                                                                                                                                                   | 60                         |
|                                                                                                                                                                                                                                                                                                                             | 61                         |
| Table 4-23. I/O port AC characteristics <sup>(1)(2)</sup>                                                                                                                                                                                                                                                                   |                            |
| Table 4-23. I/O port AC characteristics <sup>(1)(2)</sup><br>Table 4-24. ADC characteristics                                                                                                                                                                                                                                | 62                         |
| ·                                                                                                                                                                                                                                                                                                                           |                            |
| Table 4-24. ADC characteristics                                                                                                                                                                                                                                                                                             | 62                         |
| Table 4-24. ADC characteristics  Table 4-25. ADC R <sub>AIN</sub> max for f <sub>ADC</sub> = 14 MHz <sup>(1)</sup> Table 4-26. Temperature sensor characteristics <sup>(1)</sup> Table 4-27. DAC characteristics                                                                                                            | 62<br>63<br>63             |
| Table 4-24. ADC characteristics<br>Table 4-25. ADC R <sub>AIN</sub> max for f <sub>ADC</sub> = 14 MHz <sup>(1)</sup><br>Table 4-26. Temperature sensor characteristics <sup>(1)</sup>                                                                                                                                       | 62<br>63<br>63             |
| Table 4-24. ADC characteristics  Table 4-25. ADC R <sub>AIN</sub> max for f <sub>ADC</sub> = 14 MHz <sup>(1)</sup> Table 4-26. Temperature sensor characteristics <sup>(1)</sup> Table 4-27. DAC characteristics                                                                                                            | 62<br>63<br>63             |
| Table 4-24. ADC characteristics  Table 4-25. ADC R <sub>AIN</sub> max for f <sub>ADC</sub> = 14 MHz <sup>(1)</sup> Table 4-26. Temperature sensor characteristics <sup>(1)</sup> Table 4-27. DAC characteristics  Table 4-28. I2C characteristics <sup>(1)(2)</sup>                                                         | 62<br>63<br>63<br>64       |
| Table 4-24. ADC characteristics  Table 4-25. ADC R <sub>AIN</sub> max for f <sub>ADC</sub> = 14 MHz <sup>(1)</sup> Table 4-26. Temperature sensor characteristics <sup>(1)</sup> Table 4-27. DAC characteristics  Table 4-28. I2C characteristics <sup>(1)(2)</sup> Table 4-29. Standard SPI characteristics <sup>(1)</sup> | 62<br>63<br>63<br>64<br>65 |





| Table 4-33. USBFS start up time                                                        | 70 |
|----------------------------------------------------------------------------------------|----|
| Table 4-34. USBFS DC electrical characteristics                                        | 70 |
| Table 4-35. USBFS electrical characteristics <sup>(1)</sup>                            | 70 |
| Table 4-36. Asynchronous multiplexed PSRAM/NOR read timings <sup>(1)(2)(3)</sup>       | 70 |
| Table 4-37. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)(3)                  | 71 |
| Table 4-38. TIMER characteristics <sup>(1)</sup>                                       | 71 |
| Table 4-39. FWDGT min/max timeout period at 40 kHz (IRC40K) <sup>(1)</sup>             | 72 |
| Table 4-40. WWDGT min/max timeout value at 54 MHz (f <sub>PCLK1</sub> ) <sup>(1)</sup> | 72 |
| Table 5-1. LQFP100 package dimensions                                                  | 73 |
| Table 5-2. LQFP64 package dimensions                                                   |    |
| Table 5-3. LQFP48 package dimensions                                                   | 77 |
| Table 5-4. QFN36 package dimensions                                                    | 79 |
| Table 5-5. Package thermal characteristics <sup>(1)</sup>                              | 81 |
| Table 6-1. Part ordering code for GD32VF103xx devices                                  | 83 |
| Table 7-1. Revision history                                                            | 84 |



### 1. General description

The GD32VF103 device is a 32-bit general-purpose microcontroller based on the RISC-V core with best ratio in terms of processing power, reduced power consumption and peripheral set. The RISC-V processor core is tightly coupled with an Enhancement Core-Local Interrupt Controller (ECLIC), SysTick timer and advanced debug support.

The GD32VF103 device incorporates the RISC-V 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 128 KB on-chip Flash memory and 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connect to two APB buses. The devices offer up to two 12-bit ADCs, up to two 12-bit DACs, up to four general 16-bit timers, two basic timers plus a PWM advanced timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, two CANs, an USBFS.

The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32VF103 devices suitable for a wide range of interconnection applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, LED display and so on.



## 2. Device overview

## 2.1. Device information

Table 2-1. GD32VF103 devices features and peripheral list (LQFP64, LQFP100)

| Part Number  |                 | GD32VF103 |       |       |       |       |       |
|--------------|-----------------|-----------|-------|-------|-------|-------|-------|
|              |                 | RB        | R8    | R6    | R4    | VB    | V8    |
|              | Code area (KB)  | 128       | 64    | 32    | 16    | 128   | 64    |
| Flash        | Data area (KB)  | 0         | 0     | 0     | 0     | 0     | 0     |
| _            | Total (KB)      | 128       | 64    | 32    | 16    | 128   | 64    |
| ',           | SRAM (KB)       | 32        | 20    | 10    | 6     | 32    | 20    |
|              | General         | 4         | 4     | 2     | 2     | 4     | 4     |
|              | timer(16-bit)   | (1-4)     | (1-4) | (1-2) | (1-2) | (1-4) | (1-4) |
|              | Advanced        | 1         | 1     | 1     | 1     | 1     | 1     |
|              | timer(16-bit)   | (0)       | (0)   | (0)   | (0)   | (0)   | (0)   |
| Timers       | SysTick         | 1         | 1     | 1     | 1     | 1     | 1     |
| Ţ            | Basic timer(16- | 2         | 2     | 2     | 2     | 2     | 2     |
|              | bit)            | (5-6)     | (5-6) | (5-6) | (5-6) | (5-6) | (5-6) |
|              | Watchdog        | 2         | 2     | 2     | 2     | 2     | 2     |
|              | RTC             | 1         | 1     | 1     | 1     | 1     | 1     |
|              | U(S)ART         | 5         | 5     | 2     | 2     | 5     | 5     |
|              | I2C             | 2         | 2     | 1     | 1     | 2     | 2     |
| ivity        |                 | (0-1)     | (0-1) |       |       | (0-1) | (0-1) |
| Connectivity | SPI/I2S         | 3/2       | 3/2   | 1/-   | 1/-   | 3/2   | 3/2   |
| Col          | CAN             | 2         | 2     | 2     | 2     | 2     | 2     |
|              | USBFS           | 1         | 1     | 1     | 1     | 1     | 1     |
|              | GPIO            | 51        | 51    | 51    | 51    | 80    | 80    |
|              | EXMC            | -         | -     | -     | -     | 1     | 1     |
|              | EXTI            | 16        | 16    | 16    | 16    | 16    | 16    |
| ပ္           | Units           | 2         | 2     | 2     | 2     | 2     | 2     |
| ADC          | Channels        | 16        | 16    | 16    | 16    | 16    | 16    |
|              | DAC             | 2         | 2     | 2     | 2     | 2     | 2     |
|              | Package         |           | LQF   | P64   |       | LQF   | P100  |





Table 2-2. GD32VF103 devices features and peripheral list (QFN36, LQFP48)

|              |                   | 1100 40 | F103 devices features and peripheral list (QFN36, LQFP48)  GD32VF103 |       |       |         |         |       |       |  |  |
|--------------|-------------------|---------|----------------------------------------------------------------------|-------|-------|---------|---------|-------|-------|--|--|
| F            | Part Number       | ТВ      | Т8                                                                   | Т6    | T4    | СВ      | C8      | C6    | C4    |  |  |
|              | Code area<br>(KB) | 128     | 64                                                                   | 32    | 16    | 128     | 64      | 32    | 16    |  |  |
| Flash        | Data area<br>(KB) | 0       | 0                                                                    | 0     | 0     | 0       | 0       | 0     | 0     |  |  |
|              | Total (KB)        | 128     | 64                                                                   | 32    | 16    | 128     | 64      | 32    | 16    |  |  |
| :            | SRAM (KB)         | 32      | 20                                                                   | 10    | 6     | 32      | 20      | 10    | 6     |  |  |
|              | General           | 4       | 4                                                                    | 2     | 2     | 4       | 4       | 2     | 2     |  |  |
|              | timer(16-bit)     | (1-4)   | (1-4)                                                                | (1-2) | (1-2) | (1-4)   | (1-4)   | (1-2) | (1-2) |  |  |
|              | Advanced          | 1       | 1                                                                    | 1     | 1     | 1       | 1       | 1     | 1     |  |  |
|              | timer(16-bit)     | (0)     | (0)                                                                  | (0)   | (0)   | (0)     | (0)     | (0)   | (0)   |  |  |
| Timers       | SysTick           | 1       | 1                                                                    | 1     | 1     | 1       | 1       | 1     | 1     |  |  |
| i≡           | Basic             | 2       | 2                                                                    | 2     | 2     | 2       | 2       | 2     | 2     |  |  |
|              | timer(16-bit)     | (5-6)   | (5-6)                                                                | (5-6) | (5-6) | (5-6)   | (5-6)   | (5-6) | (5-6) |  |  |
|              | Watchdog          | 2       | 2                                                                    | 2     | 2     | 2       | 2       | 2     | 2     |  |  |
|              | RTC               | 1       | 1                                                                    | 1     | 1     | 1       | 1       | 1     | 1     |  |  |
|              | U(S)ART           | 2       | 2                                                                    | 2     | 2     | 3       | 3       | 2     | 2     |  |  |
| rity         | I2C               | 1       | 1                                                                    | 1     | 1     | 2 (0-1) | 2 (0-1) | 1     | 1     |  |  |
| Connectivity | SPI/I2S           | 1/-     | 1/-                                                                  | 1/-   | 1/-   | 3/2     | 3/2     | 1/-   | 1/-   |  |  |
| ŏ            | CAN               | 2       | 2                                                                    | 2     | 2     | 2       | 2       | 2     | 2     |  |  |
|              | USBFS             | 1       | 1                                                                    | 1     | 1     | 1       | 1       | 1     | 1     |  |  |
|              | GPIO              | 26      | 26                                                                   | 26    | 26    | 37      | 37      | 37    | 37    |  |  |
|              | EXMC              | -       | -                                                                    | -     | -     | -       | -       | -     | -     |  |  |
|              | EXTI              | 16      | 16                                                                   | 16    | 16    | 16      | 16      | 16    | 16    |  |  |
| ADC          | Units             | 2       | 2                                                                    | 2     | 2     | 2       | 2       | 2     | 2     |  |  |
| AE           | Channels          | 10      | 10                                                                   | 10    | 10    | 10      | 10      | 10    | 10    |  |  |
|              | DAC               | 2       | 2                                                                    | 2     | 2     | 2       | 2       | 2     | 2     |  |  |
|              | Package           |         | QFI                                                                  | N36   |       |         | LQI     | -P48  |       |  |  |



# 2.2. Block diagram

Figure 2-1. GD32VF103 block diagram





## 2.3. Pinouts and pin assignment

Figure 2-2. GD32VF103Vx LQFP100 pinouts





Figure 2-3. GD32VF103Rx LQFP64 pinouts





Figure 2-4. GD32VF103Cx LQFP48 pinouts



Figure 2-5. GD32VF103Tx QFN36 pinouts





# 2.4. Memory map

Table 2-3. GD32VF103 memory map

| Pre-defined  |        | memory map                |               |
|--------------|--------|---------------------------|---------------|
| Regions      | Bus    | Address                   | Peripherals   |
| External     |        |                           |               |
| device       |        | 0xA000 0000 - 0xA000 0FFF | EXMC_SWREG    |
|              |        | 0x9000 0000 - 0x9FFF FFFF | Reserved      |
|              | AHB    | 0x7000 0000 - 0x8FFF FFFF | Reserved      |
| External RAM |        |                           | EXMC -        |
|              |        | 0x6000 0000 - 0x6FFF FFFF | NOR/PSRAM/SRA |
|              |        |                           | М             |
|              |        | 0x5000 0000 - 0x5003 FFFF | USBFS         |
|              |        | 0x4008 0000 - 0x4FFF FFFF | Reserved      |
|              |        | 0x4004 0000 - 0x4007 FFFF | Reserved      |
|              |        | 0x4002 BC00 - 0x4003 FFFF | Reserved      |
|              |        | 0x4002 B000 - 0x4002 BBFF | Reserved      |
|              |        | 0x4002 A000 - 0x4002 AFFF | Reserved      |
|              |        | 0x4002 8000 - 0x4002 9FFF | Reserved      |
|              | al AHB | 0x4002 6800 - 0x4002 7FFF | Reserved      |
|              |        | 0x4002 6400 - 0x4002 67FF | Reserved      |
|              |        | 0x4002 6000 - 0x4002 63FF | Reserved      |
|              |        | 0x4002 5000 - 0x4002 5FFF | Reserved      |
|              |        | 0x4002 4000 - 0x4002 4FFF | Reserved      |
|              |        | 0x4002 3C00 - 0x4002 3FFF | Reserved      |
|              |        | 0x4002 3800 - 0x4002 3BFF | Reserved      |
| Peripheral   |        | 0x4002 3400 - 0x4002 37FF | Reserved      |
|              |        | 0x4002 3000 - 0x4002 33FF | CRC           |
|              |        | 0x4002 2C00 - 0x4002 2FFF | Reserved      |
|              |        | 0x4002 2800 - 0x4002 2BFF | Reserved      |
|              |        | 0x4002 2400 - 0x4002 27FF | Reserved      |
|              |        | 0x4002 2000 - 0x4002 23FF | FMC           |
|              |        | 0x4002 1C00 - 0x4002 1FFF | Reserved      |
|              |        | 0x4002 1800 - 0x4002 1BFF | Reserved      |
|              |        | 0x4002 1400 - 0x4002 17FF | Reserved      |
|              |        | 0x4002 1000 - 0x4002 13FF | RCU           |
|              |        | 0x4002 0C00 - 0x4002 0FFF | Reserved      |
|              |        | 0x4002 0800 - 0x4002 0BFF | Reserved      |
|              |        | 0x4002 0400 - 0x4002 07FF | DMA1          |
|              |        | 0x4002 0000 - 0x4002 03FF | DMA0          |
|              |        | 0x4001 8400 - 0x4001 FFFF | Reserved      |



|                        |      |                           | ODOZ VI 100 I |
|------------------------|------|---------------------------|---------------|
| Pre-defined<br>Regions | Bus  | Address                   | Peripherals   |
|                        |      | 0x4001 8000 - 0x4001 83FF | Reserved      |
|                        |      | 0x4001 7C00 - 0x4001 7FFF | Reserved      |
|                        |      | 0x4001 7800 - 0x4001 7BFF | Reserved      |
|                        |      | 0x4001 7400 - 0x4001 77FF | Reserved      |
|                        |      | 0x4001 7000 - 0x4001 73FF | Reserved      |
|                        |      | 0x4001 6C00 - 0x4001 6FFF | Reserved      |
|                        |      | 0x4001 6800 - 0x4001 6BFF | Reserved      |
|                        |      | 0x4001 5C00 - 0x4001 67FF | Reserved      |
|                        |      | 0x4001 5800 - 0x4001 5BFF | Reserved      |
|                        |      | 0x4001 5400 - 0x4001 57FF | Reserved      |
|                        |      | 0x4001 5000 - 0x4001 53FF | Reserved      |
|                        |      | 0x4001 4C00 - 0x4001 4FFF | Reserved      |
|                        |      | 0x4001 4800 - 0x4001 4BFF | Reserved      |
|                        |      | 0x4001 4400 - 0x4001 47FF | Reserved      |
|                        |      | 0x4001 4000 - 0x4001 43FF | Reserved      |
|                        | APB2 | 0x4001 3C00 - 0x4001 3FFF | Reserved      |
|                        | AFDZ | 0x4001 3800 - 0x4001 3BFF | USART0        |
|                        |      | 0x4001 3400 - 0x4001 37FF | Reserved      |
|                        |      | 0x4001 3000 - 0x4001 33FF | SPI0          |
|                        |      | 0x4001 2C00 - 0x4001 2FFF | TIMER0        |
|                        |      | 0x4001 2800 - 0x4001 2BFF | ADC1          |
|                        |      | 0x4001 2400 - 0x4001 27FF | ADC0          |
|                        |      | 0x4001 2000 - 0x4001 23FF | Reserved      |
|                        |      | 0x4001 1C00 - 0x4001 1FFF | Reserved      |
|                        |      | 0x4001 1800 - 0x4001 1BFF | GPIOE         |
|                        |      | 0x4001 1400 - 0x4001 17FF | GPIOD         |
|                        |      | 0x4001 1000 - 0x4001 13FF | GPIOC         |
|                        |      | 0x4001 0C00 - 0x4001 0FFF | GPIOB         |
|                        |      | 0x4001 0800 - 0x4001 0BFF | GPIOA         |
|                        |      | 0x4001 0400 - 0x4001 07FF | EXTI          |
|                        |      | 0x4001 0000 - 0x4001 03FF | AFIO          |
|                        |      | 0x4000 CC00 - 0x4000 FFFF | Reserved      |
|                        |      | 0x4000 C800 - 0x4000 CBFF | Reserved      |
|                        |      | 0x4000 C400 - 0x4000 C7FF | Reserved      |
|                        |      | 0x4000 C000 - 0x4000 C3FF | Reserved      |
|                        | APB1 | 0x4000 8000 - 0x4000 BFFF | Reserved      |
|                        |      | 0x4000 7C00 - 0x4000 7FFF | Reserved      |
|                        |      | 0x4000 7800 - 0x4000 7BFF | Reserved      |
|                        |      | 0x4000 7400 - 0x4000 77FF | DAC           |
|                        |      | 0x4000 7000 - 0x4000 73FF | PMU           |





| Pre-defined<br>Regions | Bus | Address                   | Peripherals             |
|------------------------|-----|---------------------------|-------------------------|
|                        |     | 0x4000 6C00 - 0x4000 6FFF | BKP                     |
|                        |     | 0x4000 6800 - 0x4000 6BFF | CAN1                    |
|                        |     | 0x4000 6400 - 0x4000 67FF | CAN0                    |
|                        |     | 0x4000 6000 - 0x4000 63FF | Shared USB/CAN          |
|                        |     |                           | SRAM 512bytes           |
|                        |     | 0x4000 5C00 - 0x4000 5FFF | USB device FS registers |
|                        |     | 0x4000 5800 - 0x4000 5BFF | I2C1                    |
|                        |     | 0x4000 5400 - 0x4000 57FF | I2C0                    |
|                        |     | 0x4000 5000 - 0x4000 53FF | UART4                   |
|                        |     | 0x4000 4C00 - 0x4000 4FFF | UART3                   |
|                        |     | 0x4000 4800 - 0x4000 4BFF | USART2                  |
|                        |     | 0x4000 4400 - 0x4000 47FF | USART1                  |
|                        |     | 0x4000 4000 - 0x4000 43FF | Reserved                |
|                        |     | 0x4000 3C00 - 0x4000 3FFF | SPI2/I2S2               |
|                        |     | 0x4000 3800 - 0x4000 3BFF | SPI1/I2S1               |
|                        |     | 0x4000 3400 - 0x4000 37FF | Reserved                |
|                        |     | 0x4000 3000 - 0x4000 33FF | FWDGT                   |
|                        |     | 0x4000 2C00 - 0x4000 2FFF | WWDGT                   |
|                        |     | 0x4000 2800 - 0x4000 2BFF | RTC                     |
|                        |     | 0x4000 2400 - 0x4000 27FF | Reserved                |
|                        |     | 0x4000 2000 - 0x4000 23FF | Reserved                |
|                        |     | 0x4000 1C00 - 0x4000 1FFF | Reserved                |
|                        |     | 0x4000 1800 - 0x4000 1BFF | Reserved                |
|                        |     | 0x4000 1400 - 0x4000 17FF | TIMER6                  |
|                        |     | 0x4000 1000 - 0x4000 13FF | TIMER5                  |
|                        |     | 0x4000 0C00 - 0x4000 0FFF | TIMER4                  |
|                        |     | 0x4000 0800 - 0x4000 0BFF | TIMER3                  |
|                        |     | 0x4000 0400 - 0x4000 07FF | TIMER2                  |
|                        |     | 0x4000 0000 - 0x4000 03FF | TIMER1                  |
|                        |     | 0x2007 0000 - 0x3FFF FFFF | Reserved                |
|                        |     | 0x2006 0000 - 0x2006 FFFF | Reserved                |
|                        |     | 0x2003 0000 - 0x2005 FFFF | Reserved                |
| SRAM                   | AHB | 0x2002 0000 - 0x2002 FFFF | Reserved                |
|                        |     | 0x2001 C000 - 0x2001 FFFF | Reserved                |
|                        |     | 0x2000 8000 - 0x2001 BFFF | Reserved                |
|                        |     | 0x2000 0000 - 0x2000 7FFF | SRAM                    |
|                        |     | 0x1FFF F810 - 0x1FFF FFFF | Reserved                |
| Code                   | AHB | 0x1FFF F800 - 0x1FFF F80F | Option Bytes            |
|                        |     | 0x1FFF B000 - 0x1FFF F7FF | Boot loader             |



# GD32VF103 Datasheet

| Pre-defined<br>Regions | Bus | Address                   | Peripherals          |
|------------------------|-----|---------------------------|----------------------|
|                        |     | 0x1FFF 7A10 - 0x1FFF AFFF | Reserved             |
|                        |     | 0x1FFF 7800 - 0x1FFF 7A0F | Reserved             |
|                        |     | 0x1FFF 0000 - 0x1FFF 77FF | Reserved             |
|                        |     | 0x1FFE C010 - 0x1FFE FFFF | Reserved             |
|                        |     | 0x1FFE C000 - 0x1FFE C00F | Reserved             |
|                        |     | 0x1001 0000 - 0x1FFE BFFF | Reserved             |
|                        |     | 0x1000 0000 - 0x1000 FFFF | Reserved             |
|                        |     | 0x083C 0000 - 0x0FFF FFFF | Reserved             |
|                        |     | 0x0830 0000 - 0x083B FFFF | Reserved             |
|                        |     | 0x0802 0000 - 0x082F FFFF | Reserved             |
|                        |     | 0x0800 0000 - 0x0801 FFFF | Main Flash           |
|                        |     | 0x0030 0000 - 0x07FF FFFF | Reserved             |
|                        |     | 0x0000 0000 - 0x002F FFFF | Aliased to Main      |
|                        |     | 0x0000 0000 - 0x002F FFFF | Flash or Boot loader |



### 2.5. Clock tree

Figure 2-6. GD32VF103 clock tree



#### Legend:

HXTAL: High speed external clock

LXTAL: Low speed external clock

IRC8M: High speed internal clock

IRC40K: Low speed internal clock



## 2.6. Pin definitions

### 2.6.1. GD32VF103Vx LQFP100 pin definitions

Table 2-4. GD32VF103Vx LQFP100 pin definitions

|                         |      |                            | GD32\                       | /F103Vx LQFP100                       |
|-------------------------|------|----------------------------|-----------------------------|---------------------------------------|
| Pin Name                | Pins | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                 |
| PE2                     | 1    | I/O                        | 5VT                         | Default: PE2 Alternate: EXMC_A23      |
| PE3                     | 2    | I/O                        | 5VT                         | Default: PE3 Alternate: EXMC_A19      |
| PE4                     | 3    | I/O                        | 5VT                         | Default: PE4 Alternate: EXMC_A20      |
| PE5                     | 4    | I/O                        | 5VT                         | Default: PE5 Alternate: EXMC_A21      |
| PE6                     | 5    | I/O                        | 5VT                         | Default: PE6 Alternate: EXMC_A22      |
| VBAT                    | 6    | Р                          |                             | Default: VBAT                         |
| PC13-<br>TAMPER-<br>RTC | 7    | I/O                        |                             | Default: PC13 Alternate: TAMPER-RTC   |
| PC14-<br>OSC32IN        | 8    | I/O                        |                             | Default: PC14 Alternate: OSC32IN      |
| PC15-<br>OSC32OUT       | 9    | I/O                        |                             | Default: PC15 Alternate: OSC32OUT     |
| VSS_5                   | 10   | Р                          |                             | Default: VSS_5                        |
| VDD_5                   | 11   | Р                          |                             | Default: VDD_5                        |
| OSCIN-PD0               | 12   | I                          |                             | Default: OSCIN<br>Remap: PD0          |
| OSCOUT-<br>PD1          | 13   | 0                          |                             | Default: OSCOUT<br>Remap: PD1         |
| NRST                    | 14   | I/O                        |                             | Default: NRST                         |
| PC0                     | 15   | I/O                        |                             | Default: PC0<br>Alternate: ADC01_IN10 |
| PC1                     | 16   | I/O                        |                             | Default: PC1 Alternate: ADC01_IN11    |
| PC2                     | 17   | I/O                        |                             | Default: PC2 Alternate: ADC01_IN12    |
| PC3                     | 18   | I/O                        |                             | Default: PC3 Alternate: ADC01_IN13    |



| GD32VF103 DataSHEE |        |                            |                             |                                               |  |  |
|--------------------|--------|----------------------------|-----------------------------|-----------------------------------------------|--|--|
| Pin Name           | Pins   | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                         |  |  |
| VSSA               | 19     | Р                          |                             | Default: VSSA                                 |  |  |
| VREFN              | 20     | Р                          |                             | Default: VREFN                                |  |  |
| VREFP              | 21     | Р                          |                             | Default: VREFP                                |  |  |
| VDDA               | 22     | Р                          |                             | Default: VDDA                                 |  |  |
|                    |        |                            |                             | Default: PA0                                  |  |  |
| PA0-WKUP           | 23     | I/O                        |                             | Alternate: WKUP, USART1_CTS, ADC01_IN0,       |  |  |
|                    |        |                            |                             | TIMER1_CH0 _ETI, TIMER4_CH0,                  |  |  |
|                    |        |                            |                             | Default: PA1                                  |  |  |
| PA1                | 24     | I/O                        |                             | Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, |  |  |
|                    |        |                            |                             | TIMER4_CH1,                                   |  |  |
|                    |        |                            |                             | Default: PA2                                  |  |  |
| PA2                | 25     | I/O                        |                             | Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2,  |  |  |
|                    |        |                            |                             | TIMER4_CH2                                    |  |  |
|                    |        |                            |                             | Default: PA3                                  |  |  |
| PA3                | 26     | I/O                        |                             | Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3,  |  |  |
|                    |        |                            | TIMER4_CH3                  |                                               |  |  |
| VSS_4              | 27     | Р                          |                             | Default: VSS_4                                |  |  |
| VDD_4              | 28     | Р                          |                             | Default: VDD_4                                |  |  |
|                    |        |                            |                             | Default: PA4                                  |  |  |
|                    |        |                            |                             | Alternate: SPI0_NSS, USART1_CK, ADC01_IN4,    |  |  |
| PA4                | 29     | I/O                        |                             | DAC_OUTO                                      |  |  |
|                    |        |                            |                             | Remap: SPI2_NSS, I2S2_WS                      |  |  |
|                    |        |                            |                             | Default: PA5                                  |  |  |
| PA5                | 30     | I/O                        |                             | Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1      |  |  |
|                    |        |                            |                             | Default: PA6                                  |  |  |
| PA6                | 31     | I/O                        |                             | Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0   |  |  |
|                    |        |                            |                             | Remap: TIMER0_BRKIN                           |  |  |
|                    |        |                            |                             | Default: PA7                                  |  |  |
| PA7                | 32     | I/O                        |                             | Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1   |  |  |
|                    |        |                            |                             | Remap: TIMER0_CH0_ON                          |  |  |
|                    |        |                            |                             | Default: PC4                                  |  |  |
| PC4                | 33     | I/O                        |                             | Alternate: ADC01_IN14                         |  |  |
|                    |        |                            |                             | Default: PC5                                  |  |  |
| PC5                | PC5 34 | I/O                        |                             | Alternate: ADC01_IN15                         |  |  |
|                    |        |                            |                             | Default: PB0                                  |  |  |
| PB0                | 35     | I/O                        |                             | Alternate: ADC01_IN8, TIMER2_CH2              |  |  |
|                    |        |                            |                             | Remap: TIMER0_CH1_ON                          |  |  |
|                    |        |                            |                             | Default: PB1                                  |  |  |
| PB1                | 36     | I/O                        |                             | Alternate: ADC01_IN9, TIMER2_CH3              |  |  |





|          | GD32VF103Vx LQFP100 |                            |                             |                                 |  |  |  |  |
|----------|---------------------|----------------------------|-----------------------------|---------------------------------|--|--|--|--|
| Pin Name | Pins                | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description           |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_CH2_ON            |  |  |  |  |
| PB2      | 37                  | I/O                        | 5VT                         | Default: PB2, BOOT1             |  |  |  |  |
|          |                     |                            |                             | Default: PE7                    |  |  |  |  |
| PE7      | 38                  | I/O                        | 5VT                         | Alternate: EXMC_D4              |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_ETI               |  |  |  |  |
|          |                     |                            |                             | Default: PE8                    |  |  |  |  |
| PE8      | 39                  | I/O                        | 5VT                         | Alternate: EXMC_D5              |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_CH0_ON            |  |  |  |  |
|          |                     |                            |                             | Default: PE9                    |  |  |  |  |
| PE9      | 40                  | I/O                        | 5VT                         | Alternate: EXMC_D6              |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_CH0               |  |  |  |  |
|          |                     |                            |                             | Default: PE10                   |  |  |  |  |
| PE10     | 41                  | I/O                        | 5VT                         | Alternate: EXMC_D7              |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_CH1_ON            |  |  |  |  |
|          |                     |                            |                             | Default: PE11                   |  |  |  |  |
| PE11     | 42                  | I/O                        | 5VT                         | Alternate: EXMC_D8              |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_CH1               |  |  |  |  |
|          |                     |                            |                             | Default: PE12                   |  |  |  |  |
| PE12     | 43                  | I/O                        | 5VT                         | Alternate: EXMC_D9              |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_CH2_ON            |  |  |  |  |
|          |                     |                            |                             | Default: PE13                   |  |  |  |  |
| PE13     | 44                  | I/O                        | 5VT                         | Alternate: EXMC_D10             |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_CH2               |  |  |  |  |
|          |                     |                            |                             | Default: PE14                   |  |  |  |  |
| PE14     | 45                  | I/O                        | 5VT                         | Alternate: EXMC_D11             |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_CH3               |  |  |  |  |
|          |                     |                            |                             | Default: PE15                   |  |  |  |  |
| PE15     | 46                  | I/O                        | 5VT                         | Alternate: EXMC_D12             |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER0_BRKIN             |  |  |  |  |
|          |                     |                            |                             | Default: PB10                   |  |  |  |  |
| PB10     | 47                  | I/O                        | 5VT                         | Alternate: I2C1_SCL, USART2_TX, |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER1_CH2               |  |  |  |  |
|          |                     |                            |                             | Default: PB11                   |  |  |  |  |
| PB11     | 48                  | I/O                        | 5VT                         | Alternate: I2C1_SDA, USART2_RX  |  |  |  |  |
|          |                     |                            |                             | Remap: TIMER1_CH3               |  |  |  |  |
| VSS_1    | 49                  | Р                          |                             | Default: VSS_1                  |  |  |  |  |
| VDD_1    | 50                  | Р                          |                             | Default: VDD_1                  |  |  |  |  |
| PB12     | 51                  | I/O                        | 5VT                         | Default: PB12                   |  |  |  |  |



| GD32VF103Vx LQFP100 |         |                            |                             |                                              |  |  |  |
|---------------------|---------|----------------------------|-----------------------------|----------------------------------------------|--|--|--|
| Pin Name            | Pins    | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                        |  |  |  |
|                     |         |                            |                             | Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK,   |  |  |  |
|                     |         |                            |                             | TIMER0_BRKIN, I2S1_WS, CAN1_RX               |  |  |  |
|                     |         |                            |                             | Default: PB13                                |  |  |  |
| PB13                | 52      | I/O                        | 5VT                         | Alternate: SPI1_SCK, USART2_CTS,             |  |  |  |
|                     |         |                            |                             | TIMER0_CH0_ON, I2S1_CK, CAN1_TX,             |  |  |  |
|                     |         |                            |                             | Default: PB14                                |  |  |  |
| PB14                | 53      | I/O                        | 5VT                         | Alternate: SPI1_MISO, USART2_RTS,            |  |  |  |
|                     |         |                            |                             | TIMER0_CH1_ON                                |  |  |  |
| PB15                | 54      | I/O                        | 5VT                         | Default: PB15                                |  |  |  |
| FDIO                | 34      | 1/0                        | 371                         | Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD |  |  |  |
|                     |         |                            |                             | Default: PD8                                 |  |  |  |
| PD8                 | 55      | I/O                        | 5VT                         | Alternate: EXMC_D13                          |  |  |  |
|                     |         |                            |                             | Remap: USART2_TX                             |  |  |  |
|                     |         |                            |                             | Default: PD9                                 |  |  |  |
| PD9                 | 56      | I/O                        | 5VT                         | Alternate: EXMC_D14                          |  |  |  |
|                     |         |                            |                             | Remap: USART2_RX                             |  |  |  |
|                     |         |                            |                             | Default: PD10                                |  |  |  |
| PD10                | 57      | I/O                        | 5VT                         | Alternate: EXMC_D15                          |  |  |  |
|                     |         |                            |                             | Remap: USART2_CK                             |  |  |  |
|                     |         |                            |                             | Default: PD11                                |  |  |  |
| PD11                | 58      | I/O                        | 5VT                         | Alternate: EXMC_A16/EXMC_CLE                 |  |  |  |
|                     |         |                            |                             | Remap: USART2_CTS                            |  |  |  |
|                     |         |                            |                             | Default: PD12                                |  |  |  |
| PD12                | 59      | I/O                        | 5VT                         | Alternate: EXMC_A17/EXMC_ALE                 |  |  |  |
|                     |         |                            |                             | Remap: TIMER3_CH0, USART2_RTS                |  |  |  |
|                     |         |                            |                             | Default: PD13                                |  |  |  |
| PD13                | 60      | I/O                        | 5VT                         | Alternate: EXMC_A18                          |  |  |  |
|                     |         |                            |                             | Remap: TIMER3_CH1                            |  |  |  |
|                     |         |                            |                             | Default: PD14                                |  |  |  |
| PD14                | 61      | I/O                        | 5VT                         | Alternate: EXMC_D0                           |  |  |  |
|                     |         |                            |                             | Remap: TIMER3_CH2                            |  |  |  |
|                     | PD15 62 |                            |                             | Default: PD15                                |  |  |  |
| PD15                |         | I/O                        | 5VT                         | Alternate: EXMC_D1                           |  |  |  |
|                     |         |                            |                             | Remap: TIMER3_CH3                            |  |  |  |
|                     |         |                            |                             | Default: PC6                                 |  |  |  |
| PC6                 | 63      | I/O                        | 5VT                         | Alternate: I2S1_MCK                          |  |  |  |
|                     |         |                            |                             | Remap: TIMER2_CH0                            |  |  |  |
| DO7                 | C4      | 1/0                        | E\ / T                      | Default: PC7                                 |  |  |  |
| PC7                 | 64      | I/O                        | 5VT                         | Alternate: I2S2_MCK                          |  |  |  |



|              | GD32VF103Vx LQFP100 |                            |                             |                                                      |  |  |  |  |
|--------------|---------------------|----------------------------|-----------------------------|------------------------------------------------------|--|--|--|--|
| Pin Name     | Pins                | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                |  |  |  |  |
|              |                     |                            |                             | Remap: TIMER2_CH1                                    |  |  |  |  |
| PC8          | 65                  | I/O                        | 5VT                         | Default: PC8                                         |  |  |  |  |
| FC0          | 03                  | 1/0                        | 371                         | Remap: TIMER2_CH2                                    |  |  |  |  |
| PC9          | 66                  | I/O                        | 5VT                         | Default: PC9                                         |  |  |  |  |
| 1 09         | 00                  | 1/0                        | 371                         | Remap: TIMER2_CH3                                    |  |  |  |  |
|              |                     |                            |                             | Default: PA8                                         |  |  |  |  |
| PA8          | 67                  | I/O                        | 5VT                         | Alternate: USART0_CK, TIMER0_CH0, CK_OUT0,           |  |  |  |  |
|              |                     |                            |                             | USBFS_SOF                                            |  |  |  |  |
| PA9          | 68                  | I/O                        | 5VT                         | Default: PA9                                         |  |  |  |  |
|              |                     |                            |                             | Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS         |  |  |  |  |
| PA10         | 69                  | I/O                        | 5VT                         | Default: PA10                                        |  |  |  |  |
|              |                     |                            |                             | Alternate: USART0_RX, TIMER0_CH2, USBFS_ID           |  |  |  |  |
|              |                     |                            |                             | Default: PA11                                        |  |  |  |  |
| PA11         | 70                  | I/O                        | 5VT                         | Alternate: USART0_CTS, CAN0_RX, USBFS_DM,            |  |  |  |  |
|              |                     |                            |                             | TIMER0_CH3                                           |  |  |  |  |
|              |                     | I/O                        | 5VT                         | Default: PA12                                        |  |  |  |  |
| PA12         | 71                  |                            |                             | Alternate: USART0_RTS, USBFS_DP, CAN0_TX,            |  |  |  |  |
|              |                     |                            |                             | TIMERO_ETI                                           |  |  |  |  |
| PA13         | 72                  | I/O                        | 5VT                         | Default: JTMS                                        |  |  |  |  |
| 110          |                     |                            |                             | Remap: PA13                                          |  |  |  |  |
| NC<br>VOC. 0 | 73                  |                            |                             | -<br>D ( 11 ) ( 20 )                                 |  |  |  |  |
| VSS_2        | 74                  | Р                          |                             | Default: VSS_2                                       |  |  |  |  |
| VDD_2        | 75                  | Р                          |                             | Default: VDD_2                                       |  |  |  |  |
| PA14         | 76                  | I/O                        | 5VT                         | Default: JTCK                                        |  |  |  |  |
|              |                     |                            |                             | Remap: PA14                                          |  |  |  |  |
| DA45         | 77                  | I/O                        | 5VT                         | Default: JTDI                                        |  |  |  |  |
| PA15         | 77                  |                            |                             | Alternate: SPI2_NSS, I2S2_WS                         |  |  |  |  |
|              |                     |                            |                             | Remap: TIMER1_CH0_ETI, PA15, SPI0_NSS  Default: PC10 |  |  |  |  |
| PC10         | 78                  | I/O                        | 5VT                         | Alternate: UART3_TX                                  |  |  |  |  |
| PCIU         | 70                  | 1/0                        | 371                         | Remap: USART2_TX, SPI2_SCK, I2S2_CK                  |  |  |  |  |
|              |                     |                            |                             |                                                      |  |  |  |  |
| PC11 79      | 70                  | I/O                        | 5VT                         | Default: PC11 Alternate: UART3_RX                    |  |  |  |  |
|              | "0                  | 3 7 1                      | Remap: USART2_RX, SPI2_MISO |                                                      |  |  |  |  |
|              |                     |                            |                             | Default: PC12                                        |  |  |  |  |
| PC12         | 80                  | I/O                        | 5VT                         | Alternate: UART4_TX                                  |  |  |  |  |
| 1 012        | 00                  | "0                         | 3 7 1                       | Remap: USART2_CK, SPI2_MOSI, I2S2_SD                 |  |  |  |  |
|              |                     | <u> </u>                   |                             | Default: PD0                                         |  |  |  |  |
| PD0          | 81                  | I/O                        | 5VT                         | Alternate: EXMC_D2                                   |  |  |  |  |
|              |                     |                            |                             | AIGHIAG. EAWO_DZ                                     |  |  |  |  |



| GD32VF103Vx LQFP100 |            |                            |                             |                                            |  |  |  |
|---------------------|------------|----------------------------|-----------------------------|--------------------------------------------|--|--|--|
| Pin Name            | Pins       | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                      |  |  |  |
|                     |            |                            |                             | Remap: CAN0_RX                             |  |  |  |
|                     |            |                            |                             | Default: PD1                               |  |  |  |
| PD1                 | 82         | I/O                        | 5VT                         | Alternate: EXMC_D3                         |  |  |  |
|                     |            |                            |                             | Remap: CAN0_TX                             |  |  |  |
| PD2                 | 02         | 1/0                        | 5VT                         | Default: PD2                               |  |  |  |
| PD2                 | 83         | I/O                        | 301                         | Alternate: TIMER2_ETI, UART4_RX            |  |  |  |
| PD3                 | 84         | I/O                        | 5VT                         | Default: PD3                               |  |  |  |
| PD3                 | 04         | 1/0                        | 301                         | Remap: USART1_CTS                          |  |  |  |
|                     |            |                            |                             | Default: PD4                               |  |  |  |
| PD4                 | 85         | I/O                        | 5VT                         | Alternate: EXMC_NOE                        |  |  |  |
|                     |            |                            |                             | Remap: USART1_RTS                          |  |  |  |
|                     |            |                            |                             | Default: PD5                               |  |  |  |
| PD5                 | 86         | I/O                        | 5VT                         | Alternate: EXMC_NWE                        |  |  |  |
|                     |            |                            |                             | Remap: USART1_TX                           |  |  |  |
|                     |            |                            | 5VT                         | Default: PD6                               |  |  |  |
| PD6                 | 87         | I/O                        |                             | Alternate: EXMC_NWAIT                      |  |  |  |
|                     |            |                            |                             | Remap: USART1_RX                           |  |  |  |
|                     |            |                            |                             | Default: PD7                               |  |  |  |
| PD7                 | 88         | I/O                        | 5VT                         | Alternate: EXMC_NE0                        |  |  |  |
|                     |            |                            |                             | Remap: USART1_CK                           |  |  |  |
|                     |            |                            |                             | Default: JTDO                              |  |  |  |
| PB3                 | 89         | I/O                        | 5VT                         | Alternate:SPI2_SCK, I2S2_CK                |  |  |  |
|                     |            |                            |                             | Remap: PB3, TIMER1_CH1, SPI0_SCK           |  |  |  |
|                     |            |                            |                             | Default: NJTRST                            |  |  |  |
| PB4                 | 90         | I/O                        | 5VT                         | Alternate: SPI2_MISO                       |  |  |  |
|                     |            |                            |                             | Remap: TIMER2_CH0, PB4, SPI0_MISO          |  |  |  |
|                     |            |                            |                             | Default: PB5                               |  |  |  |
| PB5                 | 91         | I/O                        |                             | Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD   |  |  |  |
|                     |            |                            |                             | Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX      |  |  |  |
|                     |            |                            |                             | Default: PB6                               |  |  |  |
| PB6                 | 92         | I/O                        | 5VT                         | Alternate: I2C0_SCL, TIMER3_CH0            |  |  |  |
|                     |            |                            | Remap: USART0_TX, CAN1_TX   |                                            |  |  |  |
| PB7 93              |            |                            |                             | Default: PB7                               |  |  |  |
|                     | 93         | I/O                        | 5VT                         | Alternate: I2C0_SDA, TIMER3_CH1, EXMC_NADV |  |  |  |
|                     |            |                            |                             | Remap: USART0_RX                           |  |  |  |
| воото               | 94         | I                          |                             | Default: BOOT0                             |  |  |  |
| PB8                 | 95         | I/O                        | 5VT                         | Default: PB8                               |  |  |  |
| F D0                | <b>ჟ</b> ე | 1/0                        | 371                         | Alternate: TIMER3_CH2                      |  |  |  |



# GD32VF103 Datasheet

|          | GD32VF103Vx LQFP100 |                            |                             |                                  |  |  |  |  |
|----------|---------------------|----------------------------|-----------------------------|----------------------------------|--|--|--|--|
| Pin Name | Pins                | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description            |  |  |  |  |
|          |                     |                            |                             | Remap: I2C0_SCL, CAN0_RX         |  |  |  |  |
|          |                     |                            |                             | Default: PB9                     |  |  |  |  |
| PB9      | 96                  | I/O                        | 5VT                         | Alternate: TIMER3_CH3            |  |  |  |  |
|          |                     |                            |                             | Remap: I2C0_SDA, CAN0_TX         |  |  |  |  |
| PE0      | 97                  | I/O                        | 5VT                         | Default: PE0                     |  |  |  |  |
| PEU      | 97                  | 1/0                        |                             | Alternate: TIMER3_ETI, EXMC_NBL0 |  |  |  |  |
| PE1      | 98                  | I/O                        | 5VT                         | Default: PE1                     |  |  |  |  |
| FEI      | 90                  | 1/0                        | 371                         | Alternate: EXMC_NBL1             |  |  |  |  |
| VSS_3    | 99                  | Р                          |                             | Default: VSS_3                   |  |  |  |  |
| VDD_3    | 100                 | Р                          |                             | Default: VDD_3                   |  |  |  |  |

#### Notes:

(1) Type: I = input, O = output, P = power.

(2) I/O Level: 5VT = 5 V tolerant.



### 2.6.2. GD32VF103Rx LQFP64 pin definitions

Table 2-5. GD32VF103Rx LQFP64 pin definitions

|                         | GD32VF103RX EQFF64 pill definitions |                            |                             |                                                                                                 |  |  |  |
|-------------------------|-------------------------------------|----------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Pin Name                | Pins                                | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                                           |  |  |  |
| VBAT                    | 1                                   | Р                          |                             | Default: VBAT                                                                                   |  |  |  |
| PC13-<br>TAMPER-<br>RTC | 2                                   | I/O                        |                             | Default: PC13 Alternate: TAMPER-RTC                                                             |  |  |  |
| PC14-<br>OSC32IN        | 3                                   | I/O                        |                             | Default: PC14<br>Alternate: OSC32IN                                                             |  |  |  |
| PC15-<br>OSC32OUT       | 4                                   | I/O                        |                             | Default: PC15<br>Alternate: OSC32OUT                                                            |  |  |  |
| OSCIN-PD0               | 5                                   | I                          |                             | Default: OSCIN<br>Remap: PD0                                                                    |  |  |  |
| OSCOUT-<br>PD1          | 6                                   | 0                          |                             | Default: OSCOUT<br>Remap: PD1                                                                   |  |  |  |
| NRST                    | 7                                   | I/O                        |                             | Default: NRST                                                                                   |  |  |  |
| PC0                     | 8                                   | I/O                        |                             | Default: PC0 Alternate: ADC01_IN10                                                              |  |  |  |
| PC1                     | 9                                   | I/O                        |                             | Default: PC1 Alternate: ADC01_IN11                                                              |  |  |  |
| PC2                     | 10                                  | I/O                        |                             | Default: PC2 Alternate: ADC01_IN12                                                              |  |  |  |
| PC3                     | 11                                  | I/O                        |                             | Default: PC3 Alternate: ADC01_IN13                                                              |  |  |  |
| VSSA                    | 12                                  | Р                          |                             | Default: VSSA                                                                                   |  |  |  |
| VDDA                    | 13                                  | Р                          |                             | Default: VDDA                                                                                   |  |  |  |
| PA0-WKUP                | 14                                  | I/O                        |                             | Default: PA0 Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0 _ETI, TIMER4_CH0 <sup>(3)</sup> |  |  |  |
| PA1                     | 15                                  | I/O                        |                             | Default: PA1 Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, TIMER4_CH1 <sup>(3)</sup>            |  |  |  |
| PA2                     | 16                                  | I/O                        |                             | Default: PA2 Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2, TIMER4_CH2 <sup>(3)</sup>             |  |  |  |
| PA3                     | 17                                  | I/O                        |                             | Default: PA3 Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3, TIMER4_CH3 <sup>(3)</sup>             |  |  |  |



|          | GD32VF103Rx LQFP64 |                            |                             |                                                                                                                                                         |  |  |  |  |
|----------|--------------------|----------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pin Name | Pins               | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                                                                                                   |  |  |  |  |
| VSS_4    | 18                 | Р                          |                             | Default: VSS_4                                                                                                                                          |  |  |  |  |
| VDD_4    | 19                 | Р                          |                             | Default: VDD_4                                                                                                                                          |  |  |  |  |
| PA4      | 20                 | I/O                        |                             | Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0 Remap:SPI2_NSS <sup>(3)</sup> , I2S2_WS <sup>(3)</sup>                                 |  |  |  |  |
| PA5      | 21                 | I/O                        |                             | Default: PA5 Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1                                                                                                   |  |  |  |  |
| PA6      | 22                 | I/O                        |                             | Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN                                                                            |  |  |  |  |
| PA7      | 23                 | I/O                        |                             | Default: PA7 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON                                                                           |  |  |  |  |
| PC4      | 24                 | I/O                        |                             | Default: PC4 Alternate: ADC01_IN14                                                                                                                      |  |  |  |  |
| PC5      | 25                 | I/O                        |                             | Default: PC5 Alternate: ADC01_IN15                                                                                                                      |  |  |  |  |
| PB0      | 26                 | I/O                        |                             | Default: PB0 Alternate: ADC01_IN8, TIMER2_CH2, Remap: TIMER0_CH1_ON                                                                                     |  |  |  |  |
| PB1      | 27                 | I/O                        |                             | Default: PB1 Alternate: ADC01_IN9, TIMER2_CH3, Remap: TIMER0_CH2_ON                                                                                     |  |  |  |  |
| PB2      | 28                 | I/O                        | 5VT                         | Default: PB2, BOOT1                                                                                                                                     |  |  |  |  |
| PB10     | 29                 | I/O                        | 5VT                         | Default: PB10 Alternate: I2C1_SCL <sup>(3)</sup> , USART2_TX <sup>(3)</sup> , Remap: TIMER1_CH2                                                         |  |  |  |  |
| PB11     | 30                 | I/O                        | 5VT                         | Default: PB11 Alternate: I2C1_SDA <sup>(3)</sup> , USART2_RX <sup>(3)</sup> , Remap: TIMER1_CH3                                                         |  |  |  |  |
| VSS_1    | 31                 | Р                          |                             | Default: VSS_1                                                                                                                                          |  |  |  |  |
| VDD_1    | 32                 | Р                          |                             | Default: VDD_1                                                                                                                                          |  |  |  |  |
| PB12     | 33                 | I/O                        | 5VT                         | Default: PB12 Alternate: SPI1_NSS <sup>(3)</sup> , I2C1_SMBA <sup>(3)</sup> , USART2_CK <sup>(3)</sup> , TIMER0_BRKIN, I2S1_WS <sup>(3)</sup> , CAN1_RX |  |  |  |  |
| PB13     | 34                 | I/O                        | 5VT                         | Default: PB13 Alternate: SPI1_SCK <sup>(3)</sup> , USART2_CTS <sup>(3)</sup> , TIMER0_CH0_ON, I2S1_CK <sup>(3)</sup> , CAN1_TX                          |  |  |  |  |



|          | GD32VF103Rx LQFP64 |                            |                             |                                                                                                                  |  |  |  |  |
|----------|--------------------|----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pin Name | Pins               | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                                                            |  |  |  |  |
| PB14     | 35                 | I/O                        | 5VT                         | Default: PB14 Alternate: SPI1_MISO <sup>(3)</sup> , USART2_RTS <sup>(3)</sup> , TIMER0_CH1_ON                    |  |  |  |  |
| PB15     | 36                 | I/O                        | 5VT                         | Default: PB15 Alternate: SPI1_MOSI <sup>(3)</sup> , TIMER0_CH2_ON, I2S1_SD <sup>(3)</sup>                        |  |  |  |  |
| PC6      | 37                 | I/O                        | 5VT                         | Default: PC6 Alternate: I2S1_MCK <sup>(3)</sup> Remap: TIMER2_CH0                                                |  |  |  |  |
| PC7      | 38                 | I/O                        | 5VT                         | Default: PC7 Alternate: I2S2_MCK <sup>(3)</sup> Remap: TIMER2_CH1                                                |  |  |  |  |
| PC8      | 39                 | I/O                        | 5VT                         | Default: PC8 Remap: TIMER2_CH2                                                                                   |  |  |  |  |
| PC9      | 40                 | I/O                        | 5VT                         | Default: PC9 Remap: TIMER2_CH3                                                                                   |  |  |  |  |
| PA8      | 41                 | I/O                        | 5VT                         | Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF                                                |  |  |  |  |
| PA9      | 42                 | I/O                        | 5VT                         | Default: PA9 Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS                                                        |  |  |  |  |
| PA10     | 43                 | I/O                        | 5VT                         | Default: PA10 Alternate: USART0_RX, TIMER0_CH2, USBFS_ID                                                         |  |  |  |  |
| PA11     | 44                 | I/O                        | 5VT                         | Default: PA11 Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3                                               |  |  |  |  |
| PA12     | 45                 | I/O                        | 5VT                         | Default: PA12 Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI                                               |  |  |  |  |
| PA13     | 46                 | I/O                        | 5VT                         | Default: JTMS<br>Remap: PA13                                                                                     |  |  |  |  |
| VSS_2    | 47                 | Р                          |                             | Default: VSS_2                                                                                                   |  |  |  |  |
| VDD_2    | 48                 | Р                          |                             | Default: VDD_2                                                                                                   |  |  |  |  |
| PA14     | 49                 | I/O                        | 5VT                         | Default: JTCK<br>Remap: PA14                                                                                     |  |  |  |  |
| PA15     | 50                 | I/O                        | 5VT                         | Default: JTDI Alternate: SPI2_NSS <sup>(3)</sup> , I2S2_WS <sup>(3)</sup> Remap: TIMER1_CH0 _ETI, PA15, SPI0_NSS |  |  |  |  |
| PC10     | 51                 | I/O                        | 5VT                         | Default: PC10 Alternate: UART3_TX <sup>(3)</sup>                                                                 |  |  |  |  |





| GD32VF103Rx LQFP64 |                |                            |                             |                                                                                     |  |  |  |
|--------------------|----------------|----------------------------|-----------------------------|-------------------------------------------------------------------------------------|--|--|--|
| Pin Name           | Pins           | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                               |  |  |  |
|                    |                |                            |                             | Remap: USART2_TX <sup>(3)</sup> , SPI2_SCK <sup>(3)</sup> , I2S2_CK <sup>(3)</sup>  |  |  |  |
|                    |                |                            |                             | Default: PC11                                                                       |  |  |  |
| PC11               | 52             | I/O                        | 5VT                         | Alternate: UART3_RX <sup>(3)</sup>                                                  |  |  |  |
|                    |                |                            |                             | Remap: USART2_RX <sup>(3)</sup> , SPI2_MISO <sup>(3)</sup>                          |  |  |  |
|                    |                |                            |                             | Default: PC12                                                                       |  |  |  |
| PC12               | 53             | I/O                        | 5VT                         | Alternate: UART4_TX <sup>(3)</sup>                                                  |  |  |  |
|                    |                |                            |                             | Remap: USART2_CK <sup>(3)</sup> , SPI2_MOSI <sup>(3)</sup> , I2S2_SD <sup>(3)</sup> |  |  |  |
| PD2                | 54             | I/O                        | 5VT                         | Default: PD2                                                                        |  |  |  |
| 1 02               | J <del>T</del> | 1/0                        | 371                         | Alternate: TIMER2_ETI, UART4_RX <sup>(3)</sup>                                      |  |  |  |
|                    |                |                            |                             | Default: JTDO                                                                       |  |  |  |
| PB3                | 55             | I/O                        | 5VT                         | Alternate:SPI2_SCK <sup>(3)</sup> , I2S2_CK <sup>(3)</sup>                          |  |  |  |
|                    |                |                            |                             | Remap: PB3, TIMER1_CH1, SPI0_SCK                                                    |  |  |  |
|                    |                | I/O                        |                             | Default: NJTRST                                                                     |  |  |  |
| PB4                | 56             |                            |                             | Alternate: SPI2_MISO <sup>(3)</sup>                                                 |  |  |  |
|                    |                |                            |                             | Remap: TIMER2_CH0, PB4, SPI0_MISO                                                   |  |  |  |
|                    |                |                            |                             | Default: PB5                                                                        |  |  |  |
| PB5                | 57             | I/O                        |                             | Alternate: I2C0_SMBA, SPI2_MOSI(3), I2S2_SD(3)                                      |  |  |  |
|                    |                |                            |                             | Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX                                               |  |  |  |
|                    |                |                            |                             | Default: PB6                                                                        |  |  |  |
| PB6                | 58             | I/O                        | 5VT                         | Alternate: I2C0_SCL, TIMER3_CH0 <sup>(3)</sup>                                      |  |  |  |
|                    |                |                            |                             | Remap: USART0_TX, CAN1_TX                                                           |  |  |  |
|                    |                |                            |                             | Default: PB7                                                                        |  |  |  |
| PB7                | 59             | I/O                        | 5VT                         | Alternate: I2C0_SDA , TIMER3_CH1 <sup>(3)</sup>                                     |  |  |  |
|                    |                |                            |                             | Remap: USART0_RX                                                                    |  |  |  |
| воото              | 60             | I                          |                             | Default: BOOT0                                                                      |  |  |  |
|                    |                |                            |                             | Default: PB8                                                                        |  |  |  |
| PB8                | 61             | I/O                        | 5VT                         | Alternate: TIMER3_CH2 <sup>(3)</sup>                                                |  |  |  |
|                    |                |                            |                             | Remap: I2C0_SCL, CAN0_RX                                                            |  |  |  |
|                    |                |                            |                             | Default: PB9                                                                        |  |  |  |
| PB9                | 62             | I/O                        | 5VT                         | Alternate: TIMER3_CH3 <sup>(3)</sup>                                                |  |  |  |
|                    |                |                            |                             | Remap: I2C0_SDA, CAN0_TX                                                            |  |  |  |
| VSS_3              | 63             | Р                          |                             | Default: VSS_3                                                                      |  |  |  |
| VDD_3              | 64             | Р                          |                             | Default: VDD_3                                                                      |  |  |  |

#### Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available in GD32VF103R8/B devices.



### 2.6.3. GD32VF103Cx LQFP48 pin definitions

Table 2-6. GD32VF103Cx LQFP48 pin definitions

| GD32VF103Cx LQFP48 |      |                            |                             |                                                                                                                         |
|--------------------|------|----------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Pin Name           | Pins | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                                                                   |
| VBAT               | 1    | Р                          |                             | Default: VBAT                                                                                                           |
| PC13-<br>TAMPER-   | 2    | I/O                        |                             | Default: PC13 Alternate: TAMPER-RTC                                                                                     |
| PC14-<br>OSC32IN   | 3    | I/O                        |                             | Default: PC14 Alternate: OSC32IN                                                                                        |
| PC15-<br>OSC32OUT  | 4    | I/O                        |                             | Default: PC15 Alternate: OSC32OUT                                                                                       |
| OSCIN-PD0          | 5    | I                          |                             | Default: OSCIN<br>Remap: PD0                                                                                            |
| OSCOUT-<br>PD1     | 6    | 0                          |                             | Default: OSCOUT<br>Remap: PD1                                                                                           |
| NRST               | 7    | I/O                        |                             | Default: NRST                                                                                                           |
| VSSA               | 8    | Р                          |                             | Default: VSSA                                                                                                           |
| VDDA               | 9    | Р                          |                             | Default: VDDA                                                                                                           |
| PA0-WKUP           | 10   | I/O                        |                             | Default: PA0 Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0_ETI, TIMER4_CH0 <sup>(3)</sup>                          |
| PA1                | 11   | I/O                        |                             | Default: PA1 Alternate: USART1_RTS, ADC01_IN1, TIMER4_CH1 <sup>(3)</sup> ,TIMER1_CH1                                    |
| PA2                | 12   | I/O                        |                             | Default: PA2 Alternate: USART1_TX, TIMER4_CH2 <sup>(3)</sup> ,ADC01_IN2, TIMER1_CH2                                     |
| PA3                | 13   | I/O                        |                             | Default: PA3 Alternate: USART1_RX, TIMER4_CH3 <sup>(3)</sup> , ADC01_IN3, TIMER1_CH3                                    |
| PA4                | 14   | I/O                        |                             | Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4 DAC_OUT0 Remap: SPI2_NSS <sup>(3)</sup> , I2S2_WS <sup>(3)</sup> |
| PA5                | 15   | I/O                        |                             | Default: PA5 Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1                                                                   |
| PA6                | 16   | I/O                        |                             | Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0                                                                |



| GD32VF103 DataSHEC |      |                            |                             |                                                                                           |
|--------------------|------|----------------------------|-----------------------------|-------------------------------------------------------------------------------------------|
| Pin Name           | Pins | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                                     |
|                    |      |                            |                             | Remap: TIMER0_BRKIN                                                                       |
|                    |      |                            |                             | Default: PA7                                                                              |
| PA7                | 17   | I/O                        |                             | Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1                                               |
|                    |      |                            |                             | Remap: TIMER0_CH0_ON                                                                      |
|                    |      | I/O                        |                             | Default: PB0                                                                              |
| PB0                | 18   |                            |                             | Alternate: ADC01_IN8, TIMER2_CH2                                                          |
|                    |      |                            |                             | Remap: TIMER0_CH1_ON                                                                      |
|                    |      |                            |                             | Default: PB1                                                                              |
| PB1                | 19   | I/O                        |                             | Alternate: ADC01_IN9, TIMER2_CH3                                                          |
|                    |      |                            |                             | Remap: TIMER0_CH2_ON                                                                      |
| PB2                | 20   | I/O                        | 5VT                         | Default: PB2, BOOT1                                                                       |
|                    |      |                            |                             | Default: PB10                                                                             |
| PB10               | 21   | I/O                        | 5VT                         | Alternate: I2C1_SCL <sup>(3)</sup> , USART2_TX <sup>(3)</sup>                             |
|                    |      |                            |                             | Remap: TIMER1_CH2                                                                         |
|                    |      | I/O                        |                             | Default: PB11                                                                             |
| PB11               | 22   |                            | 5VT                         | Alternate: I2C1_SDA <sup>(3)</sup> , USART2_RX <sup>(3)</sup>                             |
|                    |      |                            |                             | Remap: TIMER1_CH3                                                                         |
| VSS_1              | 23   | Р                          |                             | Default: VSS_1                                                                            |
| VDD_1              | 24   | Р                          |                             | Default: VDD_1                                                                            |
|                    |      | I/O                        | 5VT                         | Default: PB12                                                                             |
| PB12               | 25   |                            |                             | Alternate: SPI1_NSS <sup>(3)</sup> , I2S1_WS <sup>(3)</sup> , I2C1_SMBA <sup>(3)</sup> ,  |
|                    |      |                            |                             | USART2_CK <sup>(3)</sup> , TIMER0_BRKIN, CAN1_RX                                          |
|                    | 26   | I/O                        | 5VT                         | Default: PB13                                                                             |
| PB13               |      |                            |                             | Alternate: SPI1_SCK <sup>(3)</sup> , I2S1_CK <sup>(3)</sup> , USART2_CTS <sup>(3)</sup> , |
|                    |      |                            |                             | TIMER0_CH0_ON, CAN1_TX                                                                    |
|                    | 27   | I/O                        | 5VT                         | Default: PB14                                                                             |
| PB14               |      |                            |                             | Alternate: SPI1_MISO <sup>(3)</sup> , USART2_RTS <sup>(3)</sup> ,                         |
|                    |      |                            |                             | TIMER0_CH1_ON                                                                             |
| PB15               | 28   | I/O                        | 5VT                         | Default: PB15                                                                             |
| 1 510              |      | "0                         |                             | Alternate: SPI1_MOSI <sup>(3)</sup> , TIMER0_CH2_ON, I2S1_SD <sup>(3)</sup>               |
|                    | 29   | I/O                        | 5VT                         | Default: PA8                                                                              |
| PA8                |      |                            |                             | Alternate: USART0_CK, TIMER0_CH0, CK_OUT0,                                                |
|                    |      |                            |                             | USBFS_SOF                                                                                 |
| PA9                | 30   | I/O                        | 5VT                         | Default: PA9                                                                              |
|                    |      |                            |                             | Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS                                              |
| PA10               | 31   | I/O                        | 5VT                         | Default: PA10                                                                             |
| . , , , ,          |      |                            |                             | Alternate: USART0_RX, TIMER0_CH2, USBFS_ID                                                |
| PA11               | 32   | I/O                        | 5VT                         | Default: PA11                                                                             |
|                    |      |                            |                             | Alternate: USART0_CTS, CAN0_RX, TIMER0_CH3,                                               |





| GD32VF103Cx LQFP48 |          |                            |                             |                                                                         |
|--------------------|----------|----------------------------|-----------------------------|-------------------------------------------------------------------------|
| Pin Name           | Pins     | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                   |
|                    |          |                            |                             | USBFS_DM                                                                |
|                    |          | I/O                        | 5VT                         | Default: PA12                                                           |
| PA12               | 33       |                            |                             | Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI,                             |
|                    |          |                            |                             | USBFS_DP                                                                |
| PA13               | 34       | I/O                        | 5VT                         | Default: JTMS                                                           |
| 17110              |          | .,, 0                      |                             | Remap: PA13                                                             |
| VSS_2              | 35       | Р                          |                             | Default: VSS_2                                                          |
| VDD_2              | 36       | Р                          |                             | Default: VDD_2                                                          |
| PA14               | 37       | I/O                        | 5VT                         | Default: JTCK                                                           |
| . , , , ,          | <u> </u> | 1/0                        |                             | Remap: PA14                                                             |
|                    |          |                            | 5VT                         | Default: JTDI                                                           |
| PA15               | 38       | I/O                        |                             | Alternate:SPI2_NSS <sup>(3)</sup> , I2S2_WS <sup>(3)</sup>              |
|                    |          |                            |                             | Remap: TIMER1_CH0 _ETI, PA15, SPI0_NSS                                  |
|                    |          |                            |                             | Default: JTDO                                                           |
| PB3                | 39       | I/O                        | 5VT                         | Alternate:SPI2_SCK <sup>(3)</sup> ,I2S2_CK <sup>(3)</sup>               |
|                    |          |                            |                             | Remap: PB3, TIMER1_CH1, SPI0_SCK                                        |
|                    | 40       | I/O                        | 5VT                         | Default: NJTRST                                                         |
| PB4                |          |                            |                             | Alternate:SPI2_MISO <sup>(3)</sup>                                      |
|                    |          |                            |                             | Remap: TIMER2_CH0, PB4, SPI0_MISO                                       |
|                    | 41       | I/O                        |                             | Default: PB5                                                            |
| PB5                |          |                            |                             | Alternate: I2C0_SMBA ,SP12_MOSI <sup>(3)</sup> , I2S2_SD <sup>(3)</sup> |
|                    |          |                            |                             | Remap: TIMER2_CH1, SPI0_MOSI,CAN1_RX                                    |
|                    | 42       | I/O                        | 5VT                         | Default: PB6                                                            |
| PB6                |          |                            |                             | Alternate: I2C0_SCL, TIMER3_CH0 <sup>(3)</sup>                          |
|                    |          |                            |                             | Remap: USART0_TX,CAN1_TX                                                |
|                    | 43       | I/O                        | 5VT                         | Default: PB7                                                            |
| PB7                |          |                            |                             | Alternate: I2C0_SDA , TIMER3_CH1 <sup>(3)</sup>                         |
|                    |          |                            |                             | Remap: USART0_RX                                                        |
| воото              | 44       | I                          |                             | Default: BOOT0                                                          |
|                    | 45       | I/O                        | 5VT                         | Default: PB8                                                            |
| PB8                |          |                            |                             | Alternate: TIMER3_CH2 <sup>(3)</sup>                                    |
|                    |          |                            |                             | Remap: I2C0_SCL, CAN0_RX                                                |
|                    | 46       | I/O                        | 5VT                         | Default: PB9                                                            |
| PB9                |          |                            |                             | Alternate: TIMER3_CH3 <sup>(3)</sup>                                    |
|                    |          |                            |                             | Remap: I2C0_SDA, CAN0_TX                                                |
| VSS_3              | 47       | Р                          |                             | Default: VSS_3                                                          |
| VDD_3              | 48       | Р                          |                             | Default: VDD_3                                                          |

#### Notes:

(1) Type: I = input, O = output, P = power.



- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available in GD32VF103C8/B devices.



## 2.6.4. GD32VF103Tx QFN36 pin definitions

Table 2-7. GD32VF103Tx QFN36 pin definitions

| GD32VF103TX QFN36 pill definitions |      |                            |                             |                                                                                      |
|------------------------------------|------|----------------------------|-----------------------------|--------------------------------------------------------------------------------------|
| Pin Name                           | Pins | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                                |
| VDD_3                              | 1    | Р                          |                             | Default: VDD_3                                                                       |
| OSCIN-PD0                          | 2    | ı                          |                             | Default: OSCIN<br>Remap: PD0                                                         |
| OSCOUT-<br>PD1                     | 3    | 0                          |                             | Default: OSCOUT Remap: PD1                                                           |
| NRST                               | 4    | I/O                        |                             | Default: NRST                                                                        |
| VSSA                               | 5    | Р                          |                             | Default: VSSA                                                                        |
| VDDA                               | 6    | Р                          |                             | Default: VDDA                                                                        |
|                                    |      |                            |                             | Default: PA0                                                                         |
| PA0-WKUP                           | 7    | I/O                        |                             | Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0_ETI, TIMER4_CH0 <sup>(3)</sup>    |
| PA1                                | 8    | I/O                        |                             | Default: PA1 Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, TIMER4_CH1 <sup>(3)</sup> |
| PA2                                | 9    | I/O                        |                             | Default: PA2 Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2, TIMER4_CH2 <sup>(3)</sup>  |
| PA3                                | 10   | I/O                        |                             | Default: PA3 Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3, TIMER4_CH3 <sup>(3)</sup>  |
| PA4                                | 11   | I/O                        |                             | Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0                     |
| PA5                                | 12   | I/O                        |                             | Default: PA5 Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1                                |
| PA6                                | 13   | I/O                        |                             | Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN         |
| PA7                                | 14   | I/O                        |                             | Default: PA7 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON        |
| PB0                                | 15   | I/O                        |                             | Default: PB0 Alternate: ADC01_IN8, TIMER2_CH2 Remap: TIMER0_CH1_ON                   |
| PB1                                | 16   | I/O                        |                             | Default: PB1                                                                         |



| GD32VF103Tx QFN36 |      |                            |                             |                                                                                       |
|-------------------|------|----------------------------|-----------------------------|---------------------------------------------------------------------------------------|
| Pin Name          | Pins | Pin<br>Type <sup>(1)</sup> | I/O<br>Level <sup>(2)</sup> | Functions description                                                                 |
|                   |      |                            |                             | Alternate: ADC01_IN9, TIMER2_CH3                                                      |
|                   |      |                            |                             | Remap: TIMER0_CH2_ON                                                                  |
| PB2               | 17   | I/O                        | 5VT                         | Default: PB2,BOOT1                                                                    |
| VSS_1             | 18   | Р                          |                             | Default: VSS_1                                                                        |
| VDD_1             | 19   | Р                          |                             | Default: VDD_1                                                                        |
| PA8               | 20   | I/O                        | 5VT                         | Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF                     |
| PA9               | 21   | I/O                        | 5VT                         | Default: PA9 Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS                             |
| PA10              | 22   | I/O                        | 5VT                         | Default: PA10 Alternate: USART0_RX, TIMER0_CH2, USBFS_ID                              |
| PA11              | 23   | I/O                        | 5VT                         | Default: PA11 Alternate: USART0_CTS, CAN0_RX, TIMER0_CH3, USBFS_DM                    |
| PA12              | 24   | I/O                        | 5VT                         | Default: PA12 Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBFS_DP                    |
| PA13              | 25   | I/O                        | 5VT                         | Default: JTMS<br>Remap: PA13                                                          |
| VSS_2             | 26   | Р                          |                             | Default: VSS_2                                                                        |
| VDD_2             | 27   | Р                          |                             | Default: VDD_2                                                                        |
| PA14              | 28   | I/O                        | 5VT                         | Default: JTCK<br>Remap: PA14                                                          |
| PA15              | 29   | I/O                        | 5VT                         | Default: JTDI<br>Remap: TIMER1_CH0 _ETI, PA15, SPI0_NSS                               |
| PB3               | 30   | I/O                        | 5VT                         | Default: JTDO<br>Remap: PB3, TIMER1_CH1, SPI0_SCK                                     |
| PB4               | 31   | I/O                        | 5VT                         | Default: NJTRST<br>Remap: TIMER2_CH0, PB4, SPI0_MISO                                  |
| PB5               | 32   | I/O                        |                             | Default: PB5 Alternate: I2C0_SMBA Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX               |
| PB6               | 33   | I/O                        | 5VT                         | Default: PB6 Alternate: I2C0_SCL, TIMER3_CH0 <sup>(3)</sup> Remap: USART0_TX, CAN1_TX |
| PB7               | 34   | I/O                        | 5VT                         | Default: PB7 Alternate: I2C0_SDA , TIMER3_CH1 <sup>(3)</sup>                          |



| GD32VF103Tx QFN36                     |    |   |                             |                       |  |  |
|---------------------------------------|----|---|-----------------------------|-----------------------|--|--|
| Pin Name Pins Pin Type <sup>(1)</sup> |    |   | I/O<br>Level <sup>(2)</sup> | Functions description |  |  |
|                                       |    |   |                             | Remap: USART0_RX      |  |  |
| воото                                 | 35 | I |                             | Default: BOOT0        |  |  |
| VSS_3                                 | 36 | Р |                             | Default: VSS_3        |  |  |

#### Notes:

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available in GD32VF103T8/B devices.



## 3. Functional description

## 3.1. System and memory architecture

The devices of GD32VF103 series are 32-bit general-purpose microcontrollers based on the 32bit RISC-V processor. The RISC-V processor includes three AHB buses known as I-Code, D-Code and System buses. All memory accesses of the RISC-V processor are executed on the three buses according to the different purposes and the target memory spaces. The memory organization uses a Harvard architecture, pre-defined memory map and up to 4 GB of memory space, making the system flexible and extendable.

## 3.2. On-chip memory

- Up to 128 Kbytes of Flash memory
- All memory region of the MCU executes instructions without waiting time
- 32 Kbytes of SRAM

The RISC-V processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 128 Kbytes of inner Flash at most, which includes code Flash and data Flash, is available for storing programs and data, and there is no waiting time within code Flash area when CPU executes instructions. The <u>Table 2-3. GD32VF103</u> <u>memory map</u> shows the memory map of the GD32VF103 series of devices, including code, SRAM, peripheral, and other pre-defined regions.

## 3.3. Clock, reset and supply management

- Internal 8 MHz factory-trimmed RC and external 3 to 25 MHz crystal oscillator
- Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- Integrated system clock PLL
- 2.6 to 3.6 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control unit provides a range of frequencies and clock functions. These include an Internal 8M RC oscillator (IRC8M), a High Speed crystal oscillator (HXTAL), a Low Speed Internal 40K RC oscillator (IRC40K), a Low Speed crystal oscillator (LXTAL), a Phase Lock Loop (PLL), a HXTAL clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The frequency of AHB, APB2 and the APB1 domains can be configured by each prescaler. The maximum frequency of the AHB, APB2 and APB1 domains is 108 MHz/108 MHz/54 MHz. See *Figure 2-6. GD32VF103 clock tree* for details.

GD32VF103 Reset Control includes the control of three kinds of reset: power reset, system



reset and backup domain reset. The system reset resets the processor core and peripheral IP components except for the JTAG-DP controller and the Backup domain. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when V<sub>DD</sub> is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

#### Power supply schemes:

- V<sub>DD</sub> range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through V<sub>DD</sub> pins.
- V<sub>DDA</sub> range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. V<sub>DDA</sub> and V<sub>SSA</sub> must be connected to V<sub>DD</sub> and V<sub>SS</sub>, respectively.
- V<sub>BAT</sub> range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when V<sub>DD</sub> is not present.

#### 3.4. Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10), USART1 (PD5 and PD6), USBFS in device mode (PA9, PA11 and PA12). It also can be used to transfer and update the Flash memory code, the data and the vector table sections.



## 3.5. Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

#### Sleep mode

In sleep mode, only clock of core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

#### ■ Deep-sleep mode

In deep-sleep mode, all clocks in the 1.2V domain are off, and all of IRC8M, HXTAL and PLLs are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm/ time stamp/ tamper, the LVD output, USB Wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.

#### Standby mode

In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLLs are disabled. The contents of SRAM and registers (except Backup registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm/ time stamp/ tamper, the FWDGT reset, and the rising edge on WKUP pin.

## 3.6. Analog to digital converter (ADC)

- 12-bit SAR ADC engine with up to 1MSPS conversion rate
- 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
- Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
- Conversion range: V<sub>SSA</sub> to V<sub>DDA</sub> (2.6 to 3.6 V)
- Temperature sensor

Up to two 12-bit 1MSPS multi-channel ADCs are integrated in the device. Each is a total of up to 16 multiplexed external channels with 2 internal channels for temperature sensor and voltage reference measurement. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced usages.

The ADCs can be triggered from the events generated by the general level 0 timers (TIMERx=1,2,3) and the advanced timers (TIMER0) with internal connection. The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2.6 V <  $V_{DDA}$  < 3.6 V. The temperature sensor is internally connected to the ADC\_IN16 input channel which is used to convert the sensor output voltage into a digital value.



To ensure a high accuracy on ADC and DAC, the ADC/DAC independent external reference voltage should be connected to  $V_{REF+}/V_{REF-}$  pins. According to the different packages,  $V_{REF+}$  pin can be connected to  $V_{DDA}$  pin, or external reference voltage,  $V_{REF-}$  pin must be connected to  $V_{SSA}$  pin. The  $V_{REF+}$  pin is only available on no less than 100-pin packages, or else the  $V_{REF+}$  pin is not available and internally connected to  $V_{DDA}$ . The  $V_{REF-}$  pin is only available on no less than 100-pin packages, or else the  $V_{REF-}$  pin is not available and internally connected to  $V_{SSA}$ .

## 3.7. Digital to analog converter (DAC)

- Two 12-bit DAC converters of independent output channel
- 8-bit or 12-bit mode in conjunction with the DMA controller

The two 12-bit buffered DAC channels are used to generate variable analog outputs. The DACs are designed with integrated resistor strings structure. The DAC channels can be triggered by the timer TRGO outputs or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is  $V_{\text{REF+}}$ .

#### 3.8. DMA

- 7 channel DMA0 controller and 5 channel DMA1 controller
- Peripherals supported: TIMERs, ADC, SPIs, I2Cs, USARTs, DAC, I2S

The direct memory access (DMA) controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

## 3.9. General-purpose inputs/outputs (GPIOs)

- Up to 80 fast GPIOs, all mappable on 16 external interrupt lines
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 80 general purpose I/O pins (GPIO), named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15, PE0 ~ PE15 for the device to implement logic input/output functions. Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupt on the GPIO pins of the device have related control and configuration registers in the Interrupt/event Controller Unit (EXTI). The GPIO



ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Each GPIO pin can be configured as pull-up, pull-down or no pull-up/pull-down. All GPIOs are high-current capable except for analog mode.

## 3.10. Timers and PWM generation

- Up to one 16-bit advanced timer (TIMER0), four 16-bit general timers(TIMERx=1,2,3,4), and two 16-bit basic timer (TIMER5 & TIMER6)
- Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
- 16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 64-bit SysTick timer up counter
- 2 watchdog timers (Free watchdog timer and window watchdog timer)

The advanced timer (TIMER0) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for

- Input capture
- Output compare
- PWM generation (edge-aligned or center-aligned counting modes)
- Single pulse mode output

If configured as a general 16-bit timer, it can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.

The general timer, known as TIMERx=1,2,3,4 can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The general timer also supports an encoder interface with two inputs using quadrature decoder.

The basic timer, known as TIMER5 and TIMER6 are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.

The GD32VF103 have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.

The free watchdog timer includes a 12-bit down-counting counter and a 3-bit prescaler, it is clocked from an independent 40 KHz internal RC and as it operates independently of the



main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard up counter. The features are shown below:

- A 64-bit up counter
- Maskable system interrupt generation when the counter and comparison values are equal
- Programmable clock source

## 3.11. Real time clock (RTC)

- 32-bit up-counter with a programmable 20-bit prescaler
- Alarm function
- Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.

## 3.12. Inter-integrated circuit (I2C)

- Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 KHz
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to





transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.



## 3.13. Serial peripheral interface (SPI)

- Up to three SPI interfaces with a frequency of up to 27 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

# 3.14. Universal synchronous asynchronous receiver transmitter (USART)

- Up to three USARTs and two UARTs with operating frequency up to 6.75 MHz
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- USARTs support ISO 7816-3 compliant smart card interface

The USART (USART0, USART1 and USART2) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication except UART4.

## 3.15. Inter-IC sound (I2S)

- Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz
- Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32VF103 contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.



#### 3.16. Universal serial bus full-speed (USBFS)

- One USB device/host/OTG full-speed Interface with frequency up to 12 Mbit/s
- Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers in device/host/OTG mode. Full-speed peripheral is compliant with the USB 2.0 specification. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HXTAL crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

## 3.17. Controller area network (CAN)

- Two CAN2.0B interface with communication frequency up to 1 Mbit/s
- Internal main PLL for USB CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 28 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

## 3.18. External memory controller (EXMC)

- Supported external memory: SRAM, PSRAM, ROM and NOR-Flash
- Up to 16-bit data bus
- Support to interface with Motorola 6800 and Intel 8080 type LCD directly

External memory controller (EXMC) is an abbreviation of external memory controller. It has one bank for external device support. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.

## 3.19. Debug mode

- Support standard JTAG debugging interface and mature interactive debugging tool GDB
- Support up to four hardware breakpoints



The RISC-V Core does not support trace debugging. Hardware breakpoints are mainly used to set breakpoints at read-only sections (such as Flash).

## 3.20. Package and operation temperature

- LQFP100 (GD32VF103Vx), LQFP64 (GD32VF103Rx), LQFP48 (GD32VF103Cx), QFN36 (GD32VF103Tx)
- Operation temperature range: -40°C to +85°C (industrial level)



## 4. Electrical characteristics

## 4.1. Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 4-1. Absolute maximum ratings(1)(4)

| Symbol                            | Parameter                                             | Min                                                                  | Max                    | Unit |
|-----------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|------------------------|------|
| $V_{DD}$                          | External voltage range <sup>(2)</sup>                 | V <sub>SS</sub> - 0.3 V <sub>SS</sub> + 3.6                          |                        | V    |
| $V_{DDA}$                         | External analog supply voltage                        | V <sub>SSA</sub> - 0.3                                               | V <sub>SSA</sub> + 3.6 | V    |
| V <sub>BAT</sub>                  | External battery supply voltage                       | V <sub>SS</sub> - 0.3                                                | V <sub>SS</sub> + 3.6  | V    |
| Vin                               | Input voltage on 5V tolerant pin(3)                   | V <sub>SS</sub> - 0.3                                                | V <sub>DD</sub> + 3.6  | V    |
| VIN                               | Input voltage on other I/O                            | Vss - 0.3                                                            | 3.6                    | V    |
| AV <sub>DDX</sub>                 | Variations between different VDD power pins           | _                                                                    | 50                     | mV   |
| V <sub>SSX</sub> -V <sub>SS</sub> | Variations between different ground pins              | _                                                                    | 50                     | mV   |
| lıo                               | Maximum current for GPIO pins                         | _                                                                    | ±25                    | mA   |
| TA                                | Operating temperature range                           | -40                                                                  | +85                    | °C   |
|                                   | Power dissipation at T <sub>A</sub> = 85°C of LQFP100 | _                                                                    | 697                    |      |
| P <sub>D</sub>                    | Power dissipation at T <sub>A</sub> = 85°C of LQFP64  | _                                                                    | 647                    | mW   |
| FD                                | Power dissipation at T <sub>A</sub> = 85°C of LQFP48  | range -40 +85 C of LQFP100 — 697 C of LQFP64 — 647 C of LQFP48 — 621 | IIIVV                  |      |
|                                   | Power dissipation at T <sub>A</sub> = 85°C of QFN36   | _                                                                    | 926                    |      |
| T <sub>STG</sub>                  | Storage temperature range                             | -65                                                                  | +150                   | °C   |
| TJ                                | Maximum junction temperature                          | _                                                                    | 125                    | °C   |

<sup>(1)</sup> Guaranteed by design, not tested in production.

## 4.2. Operating conditions characteristics

Table 4-2. DC operating conditions

| Symbol          | Parameter              | Conditions              | Min <sup>(1)</sup> | Тур | Max <sup>(1)</sup> | Unit |
|-----------------|------------------------|-------------------------|--------------------|-----|--------------------|------|
| $V_{\text{DD}}$ | Supply voltage         | _                       | 2.6                | 3.3 | 3.6                | V    |
| $V_{DDA}$       | Analog supply voltage  | Same as V <sub>DD</sub> | 2.6                | 3.3 | 3.6                | V    |
| $V_{BAT}$       | Battery supply voltage | _                       | 1.8(2)             | _   | 3.6                | V    |

<sup>(1)</sup> Based on characterization, not tested in production.

<sup>(2)</sup> All main power and ground pins should be connected to an external power source within the allowable range.

<sup>(3)</sup> V<sub>IN</sub> maximum value cannot exceed 5.5 V.

<sup>(4)</sup> It is recommended that V<sub>DD</sub> and V<sub>DDA</sub> are powered by the same source. The maximum difference between V<sub>DD</sub> and V<sub>DDA</sub> does not exceed 300 mV during power-up and operation.

<sup>(2)</sup> In the application which  $V_{BAT}$  supply the backup domains, if the  $V_{BAT}$  voltage drops below the minimum value, when  $V_{DD}$  is powered on again, it is necessary to refresh the registers of backup domains and enable LXTAL again.



VBAT
VSS

VSS

N \* VDD

N \* VSS

VDDA

VSSA

VREFP

VREFN

1 μF 10 nF

VREFN

Figure 4-1. Recommended power supply decoupling capacitors (1)(2)

- (1) The VREFP and VREFN pins are only available on no less than 100-pin packages, or else the VREFP and VREFN pins are not available and internally connected to VDDA and VSSA pins. More details refer to AN091 GD32VF103 Hardware Development Guide.
- (2) All decoupling capacitors need to be as close as possible to the pins on the PCB board.

Table 4-3. Clock frequency<sup>(1)</sup>

| Symbol                                | Parameter            | Conditions | Min | Max | Unit |
|---------------------------------------|----------------------|------------|-----|-----|------|
| f <sub>HCLK</sub> AHB clock frequency |                      | _          | _   | 108 | MHz  |
| f <sub>APB1</sub>                     | APB1 clock frequency | _          | _   | 54  | MHz  |
| f <sub>APB2</sub>                     | APB2 clock frequency | _          | _   | 108 | MHz  |

<sup>(1)</sup> Guaranteed by design, not tested in production.

Table 4-4. Operating conditions at Power up/ Power down<sup>(1)</sup>

| Symbol | Parameter                      | Conditions   | Min | Max | Unit  |
|--------|--------------------------------|--------------|-----|-----|-------|
| t      | V <sub>DD</sub> rise time rate |              | 0   | ∞   | us/V  |
| tvdd   | V <sub>DD</sub> fall time rate | <del>_</del> | 20  | ∞   | µs/ v |

<sup>(1)</sup> Guaranteed by design, not tested in production.

Table 4-5. Start-up timings of Operating conditions(1)(2)(3)

| Symbol    | Parameter       | Conditions              | Тур | Unit |
|-----------|-----------------|-------------------------|-----|------|
| 4         | Start-up time   | Clock source from HXTAL | 132 | ma   |
| Istart-up | Start-up tillle | Clock source from IRC8M | 132 | ms   |

- (1) Based on characterization, not tested in production.
- (2) After power-up, the start-up time is the time between the rising edge of NRST high and the main function.
- (3) PLL is off.

Table 4-6. Power saving mode wakeup timings characteristics(1)(2)

|                    | ·                                                   |     |      |
|--------------------|-----------------------------------------------------|-----|------|
| Symbol             | Parameter                                           | Тур | Unit |
| t <sub>Sleep</sub> | Wakeup from Sleep mode                              | 4.5 |      |
| 4_                 | Wakeup from Deep-sleep mode (LDO On)                | 6.0 | μs   |
| IDeep-sleep        | Wakeup from Deep-sleep mode (LDO in low power mode) | 6.0 |      |

| Symbol           | Parameter                | Тур   | Unit |
|------------------|--------------------------|-------|------|
| <b>t</b> Standby | Wakeup from Standby mode | 118.8 | ms   |

- (1) Based on characterization, not tested in production.
- (2) The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions:  $V_{DD} = V_{DDA} = 3.3 \text{ V}$ , IRC8M = System clock = 8 MHz.

## 4.3. Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 4-7. Power consumption characteristics (2)(3)(4)(5)(6)

| Symbol    | Parameter      | Conditions                                                          | Min | Typ <sup>(1)</sup> | Max | Unit |
|-----------|----------------|---------------------------------------------------------------------|-----|--------------------|-----|------|
|           |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |     |                    |     |      |
|           |                | System clock = 108 MHz, All peripherals                             | _   | 35.00              | _   | mA   |
|           |                | enabled                                                             |     |                    |     |      |
|           |                | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|           |                | System clock = 108 MHz, All peripherals                             | _   | 20.05              | _   | mA   |
|           |                | disabled                                                            |     |                    |     |      |
|           |                | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 25 \text{ MHz},$ |     |                    |     |      |
|           |                | System clock = 96 MHz, All peripherals                              | _   | 32.30              | _   | mA   |
|           |                | enabled                                                             |     |                    |     |      |
|           |                | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|           |                | System clock = 96 MHz, All peripherals                              | _   | 18.90              | _   | mA   |
|           | Supply current | disabled                                                            |     |                    |     |      |
|           |                | $V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$         |     |                    |     |      |
|           |                | System clock = 72 MHz, All peripherals                              | _   | 23.50              | _   | mA   |
| IDD+IDDA  |                | enabled                                                             |     |                    |     |      |
| 100 1100/ | (Run mode)     | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|           |                | System clock = 72 MHz, All peripherals                              | _   | 13.40              | _   | mA   |
|           |                | disabled                                                            |     |                    |     |      |
|           |                | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|           |                | System clock = 48 MHz, All peripherals                              | _   | 16.60              | _   | mA   |
|           |                | enabled                                                             |     |                    |     |      |
|           |                | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|           |                | System clock = 48 MHz, All peripherals                              |     | 9.90               | _   | mA   |
|           |                | disabled                                                            |     |                    |     |      |
|           |                | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|           |                | System clock =36 MHz, All peripherals                               | _   | 13.10              | _   | mA   |
|           |                | enabled                                                             |     |                    |     |      |
|           |                | $V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$         |     |                    |     |      |
|           |                | System clock = 36 MHz, All peripherals                              | _   | 8.10               | _   | mA   |
|           |                | disabled                                                            |     |                    |     |      |



|        |                | OD321                                                               | 1 10 | ים טי              | atuo |      |
|--------|----------------|---------------------------------------------------------------------|------|--------------------|------|------|
| Symbol | Parameter      | Conditions                                                          | Min  | Typ <sup>(1)</sup> | Max  | Unit |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |      |                    |      |      |
|        |                | System clock = 24 MHz, All peripherals                              | _    | 9.80               | _    | mA   |
|        |                | enabled                                                             |      |                    |      |      |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |      |                    |      |      |
|        |                | System clock = 24 MHz, All peripherals                              | _    | 6.50               | _    | mA   |
|        |                | disabled                                                            |      |                    |      |      |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |      |                    |      |      |
|        |                | System clock = 16 MHz, All peripherals                              | _    | 7.60               | _    | mA   |
|        |                | enabled                                                             |      |                    |      |      |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |      |                    |      |      |
|        |                | System clock = 16 MHz, All peripherals                              | _    | 5.30               | _    | mA   |
|        |                | disabled                                                            |      |                    |      |      |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |      |                    |      |      |
|        |                | System clock = 8 MHz, All peripherals                               | _    | 5.30               | _    | mA   |
|        |                | enabled                                                             |      |                    |      |      |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |      |                    |      |      |
|        |                | System clock = 8 MHz, All peripherals                               | _    | 4.10               | _    | mA   |
|        |                | disabled                                                            |      |                    |      |      |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 4 MHz,          |      |                    |      |      |
|        |                | System clock = 4 MHz, All peripherals                               | _    | 1.80               |      | mA   |
|        |                | enabled                                                             |      | 1.00               |      | 11   |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 4 MHz,          |      |                    |      |      |
|        |                | System clock = 4 MHz, All peripherals                               | _    | 1.30               | _    | mA   |
|        |                | disabled                                                            |      | 1.00               |      | 1117 |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 2 MHz,          |      |                    |      |      |
|        |                | System clock = 2 MHz, All peripherals                               |      | 1.30               |      | mA   |
|        |                | enabled                                                             |      | 1.50               |      | 1117 |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 2 MHz,          |      |                    |      |      |
|        |                | System clock = 2 MHz, All peripherals                               |      | 1.00               |      | mA   |
|        |                | disabled                                                            | _    | 1.00               |      | ША   |
|        |                |                                                                     |      |                    |      |      |
|        |                | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |      | 20.20              |      | A    |
|        |                | System Clock = 108 MHz, CPU clock off,                              | _    | 26.20              | _    | mA   |
|        |                | All peripherals enabled                                             |      |                    |      |      |
|        |                | $V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$         |      | 44.05              |      |      |
|        | Supply current | System Clock = 108 MHz, CPU clock off,                              | _    | 11.35              | _    | mA   |
|        | (Sleep mode)   | All peripherals disabled                                            |      |                    |      |      |
|        |                | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 25 \text{ MHz},$ |      |                    |      |      |
|        |                | System Clock = 96 MHz, CPU clock off, All                           | _    | 24.10              | _    | mA   |
|        |                | peripherals enabled                                                 |      |                    |      |      |
|        |                | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 25 \text{ MHz},$ | _    | 10.70              | _    | mA   |
|        |                | System Clock = 96 MHz, CPU clock off, All                           |      |                    |      |      |



|        | _         | OD321                                                               |     | 1                  |     |      |
|--------|-----------|---------------------------------------------------------------------|-----|--------------------|-----|------|
| Symbol | Parameter | Conditions                                                          | Min | Typ <sup>(1)</sup> | Max | Unit |
|        |           | peripherals disabled                                                |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$         |     |                    |     |      |
|        |           | System Clock = 72 MHz, CPU clock off, All                           | _   | 18.70              | _   | mA   |
|        |           | peripherals enabled                                                 |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|        |           | System Clock = 72 MHz, CPU clock off, All                           | _   | 8.70               | _   | mA   |
|        |           | peripherals disabled                                                |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|        |           | System Clock = 48 MHz, CPU clock off, All                           | _   | 13.40              | _   | mΑ   |
|        |           | peripherals enabled                                                 |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|        |           | System Clock = 48 MHz, CPU clock off, All                           | _   | 6.70               | _   | mΑ   |
|        |           | peripherals disabled                                                |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 25 \text{ MHz},$ |     |                    |     |      |
|        |           | System Clock = 36 MHz, CPU clock off, All                           | _   | 1.80               | _   | mΑ   |
|        |           | peripherals enabled                                                 |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|        |           | System Clock = 36 MHz, CPU clock off, All                           | _   | 5.70               | _   | mΑ   |
|        |           | peripherals disabled                                                |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{HXTAL} = 25 \text{ MHz},$  |     |                    |     |      |
|        |           | System Clock = 24 MHz, CPU clock off, All                           | _   | 8.30               | _   | mA   |
|        |           | peripherals enabled                                                 |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$         |     |                    |     |      |
|        |           | System Clock = 24 MHz, CPU clock off, All                           | _   | 4.90               | _   | mA   |
|        |           | peripherals disabled                                                |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$         |     |                    |     |      |
|        |           | System Clock = 16 MHz, CPU clock off, All                           | _   | 6.50               | _   | mΑ   |
|        |           | peripherals enabled                                                 |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 25 \text{ MHz,}$         |     |                    |     |      |
|        |           | System Clock = 16 MHz, CPU clock off, All                           | _   | 4.30               | _   | mA   |
|        |           | peripherals disabled                                                |     |                    |     |      |
|        |           | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |     |                    |     |      |
|        |           | System Clock = 8 MHz, CPU clock off, All                            | _   | 4.70               | _   | mA   |
|        |           | peripherals enabled                                                 |     |                    |     |      |
|        |           | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 25 MHz,         |     |                    |     |      |
|        |           | System Clock = 8 MHz, CPU clock off, All                            | _   | 3.60               | _   | mA   |
|        |           | peripherals disabled                                                |     |                    |     |      |
|        |           | V <sub>DD</sub> = V <sub>DDA</sub> = 3.3 V, HXTAL = 4 MHz,          |     |                    |     |      |
|        |           | System Clock = 4 MHz, CPU clock off, All                            | _   | 1.40               | _   | mA   |
|        |           | peripherals enabled                                                 |     |                    |     |      |
|        |           | $V_{DD} = V_{DDA} = 3.3 \text{ V, HXTAL} = 4 \text{ MHz,}$          |     | 0.90               |     | mA   |
|        |           |                                                                     |     |                    |     |      |



| - |                   |                                                          | 0202                                                                   |          |                    |      |      |
|---|-------------------|----------------------------------------------------------|------------------------------------------------------------------------|----------|--------------------|------|------|
|   | Symbol            | Parameter                                                | Conditions                                                             | Min      | Typ <sup>(1)</sup> | Max  | Unit |
|   |                   |                                                          | System Clock = 4 MHz, CPU clock off, All                               |          |                    |      |      |
|   |                   |                                                          | peripherals disabled                                                   |          |                    |      |      |
|   |                   |                                                          | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{ HXTAL} = 2 \text{ MHz},$     |          |                    |      |      |
|   |                   |                                                          | System Clock = 2 MHz, CPU clock off, All                               | <b>—</b> | 1.00               | _    | mA   |
|   |                   |                                                          | peripherals enabled                                                    |          |                    |      |      |
|   |                   |                                                          | $V_{DD} = V_{DDA} = 3.3 \ V, \ HXTAL = 2 \ MHz,$                       |          |                    |      |      |
|   |                   |                                                          | System Clock = 2 MHz, CPU clock off, All                               | _        | 0.70               | _    | mA   |
|   |                   |                                                          | peripherals disabled                                                   |          |                    |      |      |
|   |                   |                                                          | $V_{\text{DD}} = V_{\text{DDA}} = 3.3 \text{ V}$ , LDO in normal power |          | 460.0              |      |      |
|   |                   | Cupply ourront                                           | and normal driver mode, IRC40K off, RTC                                | _        | 0                  | 2200 | μΑ   |
|   |                   | Supply current                                           | off, All GPIOs analog mode                                             |          |                    |      |      |
|   | (Deep-Sleep mode) | $V_{DD} = V_{DDA} = 3.3 \text{ V}$ , LDO in normal power |                                                                        | 427.5    |                    |      |      |
|   |                   | and low driver mode, IRC40K off, RTC off,                | _                                                                      | 0        | 2200               | μA   |      |
|   |                   |                                                          | All GPIOs analog mode                                                  |          |                    |      |      |
|   |                   |                                                          | $V_{DD} = V_{DDA} = 3.3 \text{ V, LDO off, LXTAL off,}$                |          | 7.00               | 00   |      |
|   |                   |                                                          | IRC40K on, RTC on                                                      | _        | 7.62               | 22   | μA   |
|   |                   | Supply current                                           | $V_{DD} = V_{DDA} = 3.3 \text{ V}, \text{LDO off, LXTAL off,}$         |          | 7.40               | 00   |      |
|   |                   | (Standby mode)                                           | IRC40K on, RTC off                                                     |          | 7.49               | 22   | μA   |
|   |                   |                                                          | $V_{DD} = V_{DDA} = 3.3 \text{ V, LDO off, LXTAL off,}$                |          | 6.32               | 22   | μA   |
|   |                   |                                                          | IRC40K off, RTC off                                                    |          | 0.02               |      | μ, τ |
|   |                   |                                                          | $V_{DD}$ off, $V_{DDA}$ off, $V_{BAT} = 3.6$ V, LXTAL on               |          | 2.18               |      | μA   |
|   | Battery supply    | with external crystal, RTC on                            |                                                                        | 2.10     | _                  | μΛ   |      |
|   | I <sub>BAT</sub>  | current (Backup                                          | $V_{DD}$ off, $V_{DDA}$ off, $V_{BAT} = 3.3 \text{ V}$ , LXTAL on      | _        | 2.10               | _    | μA   |
|   | IDAI              | mode)                                                    | with external crystal, RTC on                                          |          | 2.10               |      | μΛ   |
|   |                   | mode)                                                    | $V_{DD}$ off, $V_{DDA}$ off, $V_{BAT} = 2.6 \text{ V}$ , LXTAL on      | _        | 1.97               | _    | μA   |
|   |                   |                                                          | with external crystal, RTC on                                          |          | 1.01               | _    | μΛ   |

<sup>(1)</sup> Based on characterization, not tested in production.

- (5) When analog peripheral blocks such as ADCs, DACs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.
- (6) All GPIOs are configured as analog mode except standby mode.

<sup>(2)</sup> Unless otherwise specified, all values given for T<sub>A</sub> = 25 °C and test result is mean value.

<sup>(3)</sup> When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL.

<sup>(4)</sup> When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL.





Figure 4-2. Typical supply current consumption in Run mode





#### 4.4. EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in the <u>Table 4-8. EMS characteristics</u>, based on the EMS levels and classes compliant with IEC 61000 series standard.



Table 4-8. EMS characteristics<sup>(1)</sup>

| Symbol           | Parameter                               | Conditions                                                                              | Level/Class |
|------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|-------------|
| Vrop             | Voltage applied to all device pins to   | V <sub>DD</sub> = 3.3 V, T <sub>A</sub> = 25 °C<br>LQFP100, f <sub>HCLK</sub> = 108 MHz | 3A          |
| Vesd             | induce a functional disturbance         | conforms to IEC 61000-4-2                                                               | 37          |
|                  | Fast transient voltage burst applied to | V <sub>DD</sub> = 3.3 V, T <sub>A</sub> = 25 °C                                         |             |
| V <sub>FTB</sub> | induce a functional disturbance through | LQFP100, f <sub>HCLK</sub> = 108 MHz                                                    | 4A          |
|                  | 100 pF on VDD and VSS pins              | conforms to IEC 61000-4-2                                                               |             |

<sup>(1)</sup> Based on characterization, not tested in production

# 4.5. Power supply supervisor characteristics

Table 4-9. Power supply supervisor characteristics

| Symbol                                 | Parameter                             | Conditions                    | Min | Тур  | Max | Unit |
|----------------------------------------|---------------------------------------|-------------------------------|-----|------|-----|------|
|                                        |                                       | LVDT<2:0> = 000(rising edge)  | _   | 2.18 | _   |      |
|                                        |                                       | LVDT<2:0> = 000(falling edge) |     | 2.08 |     |      |
|                                        |                                       | LVDT<2:0> = 001(rising edge)  | _   | 2.29 | _   |      |
|                                        | _                                     | LVDT<2:0> = 001(falling edge) | _   | 2.19 | _   |      |
|                                        |                                       | LVDT<2:0> = 010(rising edge)  | _   | 2.38 | _   |      |
|                                        |                                       | LVDT<2:0> = 010(falling edge) | _   | 2.28 | _   |      |
|                                        | Low voltage  Detector level selection | LVDT<2:0> = 011(rising edge)  | _   | 2.49 | _   |      |
| V (1)                                  |                                       | LVDT<2:0> = 011(falling edge) | _   | 2.38 | _   | V    |
| <b>V</b> <sub>LVD</sub> <sup>(1)</sup> |                                       | LVDT<2:0> = 100(rising edge)  | _   | 2.58 | _   | V    |
|                                        |                                       | LVDT<2:0> = 100(falling edge) | _   | 2.48 | _   |      |
|                                        |                                       | LVDT<2:0> = 101(rising edge)  | _   | 2.68 | _   |      |
|                                        |                                       | LVDT<2:0> = 101(falling edge) | _   | 2.58 | _   |      |
|                                        |                                       | LVDT<2:0> = 110(rising edge)  | _   | 2.78 | _   |      |
|                                        |                                       | LVDT<2:0> = 110(falling edge) | _   | 2.68 | _   |      |
|                                        |                                       | LVDT<2:0> = 111(rising edge)  | _   | 2.88 | _   |      |
|                                        |                                       | LVDT<2:0> = 111(falling edge) | _   | 2.78 | _   |      |
| V <sub>LVDhyst</sub> <sup>(2)</sup>    | LVD hystersis                         | _                             | _   | 100  | _   | mV   |
| V <sub>POR</sub> <sup>(1)</sup>        | Power on reset threshold              |                               | _   | 2.44 | _   | V    |
| V <sub>PDR</sub> <sup>(1)</sup>        | Power down reset                      | _                             | _   | 1.86 | _   | V    |



| Symbol                              | Parameter           | Conditions | Min | Тур | Max | Unit |
|-------------------------------------|---------------------|------------|-----|-----|-----|------|
|                                     | threshold           |            |     |     |     |      |
| V <sub>PDRhyst</sub> <sup>(2)</sup> | PDR hysteresis      |            | _   | 600 | _   | mV   |
| trsttempo <sup>(2)</sup>            | Reset temporization |            | _   | 2   | _   | ms   |

<sup>(1)</sup> Based on characterization, not tested in production

## 4.6. Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods.

Table 4-10. ESD characteristics<sup>(1)</sup>

| Symbol                | Parameter                     | Conditions              | Min | Тур | Max  | Unit |
|-----------------------|-------------------------------|-------------------------|-----|-----|------|------|
| \/                    | Electrostatic discharge       | $T_A = 25  ^{\circ}C;$  |     |     | F000 | V    |
| VESD(HBM)             | voltage (human body model)    | JESD22-A114             |     | _   | 5000 | V    |
| V                     | Electrostatic discharge       | T <sub>A</sub> = 25 °C; |     |     | 500  | V    |
| V <sub>ESD(CDM)</sub> | voltage (charge device model) | JESD22-C101             |     |     |      | V    |

<sup>(1)</sup> Based on characterization, not tested in production.

Table 4-11. Static latch-up characteristics(1)

| Symbol | Parameter                        | Conditions                     | Min | Тур | Max  | Unit |
|--------|----------------------------------|--------------------------------|-----|-----|------|------|
| LU     | I-test                           | T <sub>A</sub> = 25 °C; JESD78 |     |     | ±200 | mA   |
|        | V <sub>supply</sub> over voltage | 1A = 23 O, JESD16              |     |     | 5.4  | V    |

<sup>(1)</sup> Based on characterization, not tested in production.

#### 4.7. External clock characteristics

Table 4-12. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics

| Symbol                                 | Parameter                     | Conditions                                          | Min | Тур | Max | Unit |
|----------------------------------------|-------------------------------|-----------------------------------------------------|-----|-----|-----|------|
| f <sub>HXTAL</sub> <sup>(1)</sup>      | Crystal or ceramic frequency  | $2.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ | 3   | 8   | 25  | MHz  |
| R <sub>F</sub> <sup>(2)</sup>          | Feedback resistor             | V <sub>DD</sub> = 3.3 V                             | _   | 400 | _   | kΩ   |
|                                        | Recommended matching          |                                                     |     |     |     |      |
| CHXTAL <sup>(2)(3)</sup>               | capacitance on OSCIN and      | _                                                   | _   | 20  | 30  | pF   |
|                                        | OSCOUT                        |                                                     |     |     |     |      |
| Ducy <sub>(HXTAL)</sub> <sup>(2)</sup> | Crystal or ceramic duty cycle | _                                                   | 48  | 50  | 52  | %    |
| g <sub>m</sub> (2)                     | Oscillator transconductance   | Startup                                             | _   | 35  | _   | mA/V |
| IDDHXTAL <sup>(1)</sup>                | Crystal or ceramic operating  | V <sub>DD</sub> = 3.3 V, f <sub>HCLK</sub> =        | _   | 1.4 | _   | mA   |

<sup>(2)</sup> Guaranteed by design, not tested in production

| Symbol                  | Parameter                       | Conditions                     | Min | Тур | Max | Unit |
|-------------------------|---------------------------------|--------------------------------|-----|-----|-----|------|
|                         | current                         | $f_{IRC8M} = 8 \text{ MHz}$    |     |     |     |      |
|                         |                                 | T <sub>A</sub> = 25 °C         |     |     |     |      |
|                         |                                 | $V_{DD}$ = 3.3 V, $f_{HCLK}$ = |     |     |     |      |
| tsuhxtal <sup>(1)</sup> | Crystal or ceramic startup time | $f_{IRC8M} = 8 \text{ MHz}$    | _   | 1.8 | _   | ms   |
|                         |                                 | T <sub>A</sub> = 25 °C         |     |     |     |      |

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) C<sub>HXTAL1</sub> = C<sub>HXTAL2</sub> = 2\*(C<sub>LOAD</sub> C<sub>S</sub>), For C<sub>HXTAL1</sub> and C<sub>HXTAL2</sub>, it is recommended matching capacitance on OSCIN and OSCOUT. For C<sub>LOAD</sub>, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C<sub>S</sub>, it is PCB and MCU pin stray capacitance.

Table 4-13. High speed external clock characteristics (HXTAL in bypass mode)

| Symbol                             | Parameter                           | Conditions                                                               | Min      | Тур | Max                          | Unit     |
|------------------------------------|-------------------------------------|--------------------------------------------------------------------------|----------|-----|------------------------------|----------|
| f <sub>HXTAL_ext</sub> (1)         | External clock source or oscillator | V <sub>DD</sub> = 3.3 V                                                  | 1        |     | 50                           | MHz      |
| THXTAL_ext' /                      | frequency                           | VDD = 3.3 V                                                              | -        | _   | Max 50 VDD 0.3 VDD — 10 — 60 | IVII IZ  |
| V <sub>HXTAI H</sub> (2)           | OSCIN input pin high level          | $V_{DD} = 3.3 \text{ V} \qquad 0.7 \text{ V}_{DD} \qquad - \qquad V_{D}$ | 0.7.1/22 |     | \/                           | <b>V</b> |
| V HX TALH \ /                      | voltage                             |                                                                          | VDD      | V   |                              |          |
| V <sub>HXTALL</sub> <sup>(2)</sup> | OSCIN input pin low level voltage   |                                                                          | Vss      | _   | $0.3 \ V_{DD}$               | ٧        |
| t <sub>H/L(HXTAL)</sub> (2)        | OSCIN high or low time              | _                                                                        | 5        | _   | _                            | ns       |
| t <sub>R/F(HXTAL)</sub> (2)        | OSCIN rise or fall time             | _                                                                        | _        | _   | 10                           | ns       |
| C <sub>IN</sub> <sup>(2)</sup>     | OSCIN input capacitance             | _                                                                        |          | 5   | _                            | pF       |
| Ducy <sub>(HXTAL)</sub> (2)        | Duty cycle                          | _                                                                        | 40       | _   | 60                           | %        |

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

Table 4-14. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics

| Symbol                                | Parameter                       | Conditions              | Min | Тур    | Max | Unit |
|---------------------------------------|---------------------------------|-------------------------|-----|--------|-----|------|
| f <sub>LXTAL</sub> (1)                | Crystal or ceramic frequency    | V <sub>DD</sub> = 3.3 V | _   | 32.768 | _   | kHz  |
|                                       | Recommended matching            |                         |     |        |     |      |
| C <sub>LXTAL</sub> <sup>(2) (3)</sup> | capacitance on OSC32IN and      | _                       | _   | 10     | 20  | pF   |
|                                       | OSC32OUT                        |                         |     |        |     |      |
| Ducy <sub>(LXTAL)</sub> (2)           | Crystal or ceramic duty cycle   | _                       | 48  | 50     | 52  | %    |
| g <sub>m</sub> (2)                    | Oscillator transconductance     |                         | _   | 11     | _   | μA/V |
| I (1)                                 | Crystal or ceramic operating    |                         |     | 1.97   |     |      |
| IDDLXTAL (1)                          | current                         | _                       | _   | 1.97   | 20  | μA   |
| tsulxtal <sup>(1) (4)</sup>           | Crystal or ceramic startup time | _                       | _   | 1.8    | _   | s    |

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3)  $C_{LXTAL1} = C_{LXTAL2} = 2*(C_{LOAD} C_S)$ , For  $C_{LXTAL1}$  and  $C_{LXTAL2}$ , it is recommended matching capacitance on OSC32IN and OSC32OUT. For  $C_{LOAD}$ , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For  $C_S$ , it is PCB and MCU pin stray capacitance.
- (4) t<sub>SULXTAL</sub> is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.



Table 4-15. Low speed external user clock characteristics (LXTAL in bypass mode)

| Symbol                             | Parameter                           | Conditions              | Min                 | Тур    | Max                 | Unit  |
|------------------------------------|-------------------------------------|-------------------------|---------------------|--------|---------------------|-------|
| f <sub>LXTAL_ext</sub> (1)         | External clock source or oscillator | V <sub>DD</sub> = 3.3 V |                     | 32.768 | 1000                | kHz   |
| ILX IAL_ext\ /                     | frequency                           | י טט <b>– טט ס</b>      |                     | 32.700 | 1000                | KI IZ |
| V <sub>LXTALH</sub> (2)            | OSC32IN input pin high level        |                         | 0.7 V <sub>DD</sub> |        | V <sub>DD</sub>     |       |
| VLXIALH(=)                         | voltage                             | _                       | U.7 VDD             | _      | <b>V</b> DD         | V     |
| V <sub>LXTALL</sub> <sup>(2)</sup> | OSC32IN input pin low level         |                         | Vss                 |        | 0.3 V <sub>DD</sub> | V     |
| V LXTALLY /                        | voltage                             |                         | V 55                |        | 0.5 VDD             |       |
| t <sub>H/L(LXTAL)</sub> (2)        | OSC32IN high or low time            | ı                       | 450                 |        |                     | ne    |
| t <sub>R/F(LXTAL)</sub> (2)        | OSC32IN rise or fall time           |                         | 50                  |        | 50                  | ns    |
| C <sub>IN</sub> <sup>(2)</sup>     | OSC32IN input capacitance           |                         | _                   | 5      |                     | pF    |
| Ducy <sub>(LXTAL)</sub> (2)        | Duty cycle                          |                         | 30                  | 50     | 70                  | %     |

<sup>(1)</sup> Based on characterization, not tested in production.

#### 4.8. Internal clock characteristics

Table 4-16. High speed internal clock (IRC8M) characteristics

| Symbol                               | Parameter                                            | Conditions                                                    | Min  | Тур | Max  | Unit |
|--------------------------------------|------------------------------------------------------|---------------------------------------------------------------|------|-----|------|------|
|                                      | High Speed Internal                                  |                                                               |      |     |      |      |
| f <sub>IRC8M</sub>                   | Oscillator (IRC8M)                                   | $V_{DD} = V_{DDA} = 3.3 \text{ V}$                            | _    | 8   |      | MHz  |
|                                      | frequency                                            |                                                               |      |     |      |      |
|                                      |                                                      | $V_{DD} = V_{DDA} = 3.3 V$                                    | -2.5 |     | +1.5 | %    |
|                                      | IDC9M appillator Eraguanay                           | $T_A = -40^{\circ}C \sim +85^{\circ}C^{(1)}$                  | -2.5 |     | +1.5 | 70   |
|                                      | IRC8M oscillator Frequency accuracy, Factory-trimmed | $V_{DD} = V_{DDA} = 3.3 V$ ,                                  | -1.2 |     | +1.2 | %    |
| ACC <sub>IRC8M</sub>                 | accuracy, Factory-IIIIIIIIeu                         | $T_A = 0^{\circ}C \sim +85^{\circ}C^{(1)}$                    | -1.2 |     | T1.Z | /0   |
| ACCIRC8M                             |                                                      | $V_{DD} = V_{DDA} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C}$ | -1   |     | +1   | %    |
|                                      | IRC8M oscillator Frequency                           |                                                               |      |     |      |      |
|                                      | accuracy, User trimming                              | _                                                             | _    | 0.5 | _    | %    |
|                                      | step <sup>(1)</sup>                                  |                                                               |      |     |      |      |
| Ducy <sub>IRC8M</sub> <sup>(2)</sup> | IRC8M oscillator duty cycle                          | $V_{DD} = V_{DDA} = 3.3 \text{ V}$                            | 48   | 50  | 52   | %    |
| IDDAIRC8M <sup>(1)</sup>             | IRC8M oscillator operating                           | $V_{DD} = V_{DDA} = 3.3 \text{ V},$                           |      | 90  |      |      |
| IDDAIRC8M(1)                         | current                                              | f <sub>HCLK</sub> = f <sub>HXTAL_PLL</sub> = 108 MHz          |      | 80  | _    | μA   |
| t <sub>SUIRC8M</sub> <sup>(1)</sup>  | IRC8M oscillator startup                             | $V_{DD} = V_{DDA} = 3.3 \text{ V},$                           |      | 2   |      |      |
| LSUIRC8M\'''                         | time                                                 | $f_{HCLK} = f_{HXTAL\_PLL} = 108 \text{ MHz}$                 |      | 4   |      | μs   |

<sup>(1)</sup> Based on characterization, not tested in production.

<sup>(2)</sup> Guaranteed by design, not tested in production.

<sup>(2)</sup> Guaranteed by design, not tested in production.



Table 4-17. Low speed internal clock (IRC40K) characteristics

| Symbol                                | Parameter                                           | Conditions                                                                                              | Min | Тур | Max | Unit |
|---------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| f <sub>IRC40K</sub> <sup>(1)</sup>    | Low Speed Internal oscillator<br>(IRC40K) frequency | $V_{DD} = V_{DDA} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim +85 \text{ °C}$                          | 30  | 40  | 60  | kHz  |
| I <sub>DDAIRC40K</sub> <sup>(2)</sup> | IRC40K oscillator operating current                 | $V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{HCLK} = f_{HXTAL\_PLL} = 108 \text{ MHz}$                       | _   | 2   | _   | μΑ   |
| tsuirc40k <sup>(2)</sup>              | IRC40K oscillator startup                           | $T_A = 25 \text{ °C}$ $V_{DD} = V_{DDA} = 3.3 \text{ V},$ $f_{HCLK} = f_{HXTAL\_PLL} = 108 \text{ MHz}$ |     | 100 | _   | μs   |
| tSUIRC40K                             | time                                                | T <sub>A</sub> = 25 °C                                                                                  |     |     |     |      |

<sup>(1)</sup> Guaranteed by design, not tested in production.

#### 4.9. PLL characteristics

Table 4-18. PLL characteristics

| Symbol                            | Parameter                  | Conditions         | Min | Тур | Max | Unit  |
|-----------------------------------|----------------------------|--------------------|-----|-----|-----|-------|
| f <sub>PLLIN</sub> <sup>(1)</sup> | PLL input clock frequency  | _                  | 1   | _   | 25  | MHz   |
| f <sub>PLLOUT</sub> (2)           | PLL output clock frequency | _                  | 16  | _   | 108 | MHz   |
| f <sub>VCO</sub> (2)              | PLL VCO output clock       |                    | 32  |     |     | MHz   |
| IVCO(-)                           | frequency                  | _                  | 32  | _   | _   | IVITZ |
| t <sub>LOCK</sub> (2)             | PLL lock time              | _                  | ١   | _   | 400 | μs    |
| I <sub>DDA</sub> (1)(3)           | Current consumption on     | VCO freq = 216 MHz |     | 906 |     | 114   |
| IDDA' /\ /                        | $V_{DDA}$                  | VCO 11eq - 210 WHZ |     | 300 |     | μΑ    |
|                                   | Cycle to cycle Jitter      |                    |     | 35  |     |       |
| Jitter <sub>PLL</sub> (1)(4)      | (rms)                      | System clock       |     | 33  |     | ne    |
| JILLEI PLL. N. /                  | Cycle to cycle Jitter      |                    |     | 371 |     | ps    |
|                                   | (peak to peak)             |                    |     | 371 |     |       |

<sup>(1)</sup> Based on characterization, not tested in production.

Table 4-19. PLL1/2 characteristics

| Symbol                             | Parameter                  | Conditions          | Min | Тур | Max | Unit |
|------------------------------------|----------------------------|---------------------|-----|-----|-----|------|
| f <sub>PLLIN</sub> <sup>(1)</sup>  | PLL input clock frequency  |                     | 1   | _   | 25  | MHz  |
| f <sub>PLLOUT</sub> <sup>(2)</sup> | PLL output clock frequency | _                   | 16  | _   | 108 | MHz  |
| fvco <sup>(2)</sup>                | VCO output frequency       | <del>_</del>        | 32  | _   | 216 | MHz  |
| t <sub>LOCK</sub> (2)              | PLL lock time              | _                   | _   | _   | 400 | μs   |
| I <sub>DDA</sub> <sup>(1)(3)</sup> | Current consumption on     | VCO freq = 216 MHz  |     | 145 |     |      |
| IDDA                               | $V_{DDA}$                  | VCO freq = 210 Minz | _   | 143 | _   | μΑ   |
| Jitter <sub>PLL</sub> (1)(4)       | Cycle to cycle Jitter      | System alask        |     | 35  |     | 20   |
| JILLEIPLL                          | (rms)                      | System clock        | _   | 35  |     | ps   |

<sup>(2)</sup> Based on characterization, not tested in production.

<sup>(2)</sup> Guaranteed by design, not tested in production.

<sup>(3)</sup> System clock = HXTAL = 8 MHz, f<sub>PLLOUT</sub> = 108 MHz.

<sup>(4)</sup> Value given with main PLL running.

|  | Cycle to cycle Jitter |  | 371  |  |  |
|--|-----------------------|--|------|--|--|
|  | (peak to peak)        |  | 37 1 |  |  |

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) System clock = HXTAL = 8 MHz, fPLLOUT = 108 MHz.
- (4) Value given with main PLL running

## 4.10. Memory characteristics

Table 4-20. Flash memory characteristics

| Symbol           | Parameter                  | Conditions                                               | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(2)</sup> | Unit    |
|------------------|----------------------------|----------------------------------------------------------|--------------------|--------------------|--------------------|---------|
|                  | Number of guaranteed       |                                                          |                    |                    |                    |         |
| PEcyc            | program /erase cycles      | $T_A = -40  ^{\circ}\text{C} \sim +85  ^{\circ}\text{C}$ | 100                | _                  | _                  | kcycles |
|                  | before failure (Endurance) |                                                          |                    |                    |                    |         |
| t <sub>RET</sub> | Data retention time        | T <sub>A</sub> = 125 °C                                  | _                  | 20                 | _                  | years   |
| wtprog           | Word programming time      | T <sub>A</sub> = -40 °C ~ +85 °C                         | _                  | 37.5               | 86                 | μs      |
| terase           | Page erase time            | $T_A = -40  ^{\circ}\text{C} \sim +85  ^{\circ}\text{C}$ | _                  | 45                 | 300                | ms      |
| tmerase(128K)    | Mass erase time            | $T_A = -40  ^{\circ}\text{C} \sim +85  ^{\circ}\text{C}$ |                    | 1                  | 3.2                | s       |

<sup>(1)</sup> Based on characterization, not tested in production.

## 4.11. NRST pin characteristics

Table 4-21. NRST pin characteristics

| Symbol                               | Parameter                          | Conditions                                                               | Min            | Тур | Max                   | Unit |
|--------------------------------------|------------------------------------|--------------------------------------------------------------------------|----------------|-----|-----------------------|------|
| V <sub>IL(NRST)</sub> <sup>(1)</sup> | NRST Input low level voltage       | 0.03/43/                                                                 | -0.5           | _   | 0.3 V <sub>DD</sub>   | .,   |
| V <sub>IH(NRST)</sub> <sup>(1)</sup> | NRST Input high level voltage      | $2.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA} \leq$ $3.6 \text{ V}$ | $0.7 \ V_{DD}$ |     | V <sub>DD</sub> + 0.5 | V    |
| V <sub>hyst</sub> <sup>(1)</sup>     | Schmidt trigger Voltage hysteresis | 3.0 V                                                                    | _              | 210 |                       | mV   |
| R <sub>pu</sub> <sup>(2)</sup>       | Pull-up equivalent resistor        | _                                                                        | _              | 40  |                       | kΩ   |

<sup>(1)</sup> Based on characterization, not tested in production.

<sup>(2)</sup> Guaranteed by design, not tested in production.

<sup>(2)</sup> Guaranteed by design, not tested in production.





Figure 4-4. Recommended external NRST pin circuit<sup>(1)</sup>

(1) Unless the voltage on NRST pin go below  $V_{\text{IL}(NRST)}$  level, the device would not generate a reliable reset.

## 4.12. **GPIO** characteristics

Table 4-22. I/O port DC characteristics<sup>(1)(3)</sup>

| Symbol                         | Parame                    | ter        | Conditions                                                           | Min                 | Тур | Max                 | Unit |
|--------------------------------|---------------------------|------------|----------------------------------------------------------------------|---------------------|-----|---------------------|------|
| VIL                            | Standard IO Low<br>voltag | •          | $2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$ | _                   | l   | 0.3 V <sub>DD</sub> | V    |
| VIL                            | 5V-tolerant IO input volt |            | $2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$ | _                   |     | 0.3 V <sub>DD</sub> | V    |
| V <sub>IH</sub>                | Standard IO Finput volt   |            | $2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$ | 0.7 V <sub>DD</sub> | _   | _                   | >    |
| VIH                            | 5V-tolerant IO input volt |            | $2.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DDA} \le 3.6 \text{ V}$ | 0.7 V <sub>DD</sub> | _   | _                   | ٧    |
|                                | Low level outp            | ut voltage | $V_{DD} = 2.6 \text{ V}$                                             | _                   |     | 0.3                 |      |
| Vol                            | for each IO Pins          |            | $V_{DD} = 3.3 \text{ V}$                                             | _                   |     | 0.3                 | V    |
|                                | (I <sub>IO</sub> = +8     | mA)        | $V_{DD} = 3.6 \text{ V}$                                             | _                   | 1   | 0.3                 |      |
|                                | Low level outp            | ut voltage | $V_{DD} = 2.6 \text{ V}$                                             | _                   | 1   | 1                   |      |
| VoL                            | for each IC               | ) Pins     | $V_{DD} = 3.3 \text{ V}$                                             | _                   | 1   | 0.8                 | V    |
|                                | (I <sub>IO</sub> = +20    | mA)        | $V_{DD} = 3.6 \text{ V}$                                             | _                   | 1   | 0.7                 |      |
|                                | High level outp           | ut voltage | V <sub>DD</sub> = 2.6 V                                              | 2.3                 | _   | _                   |      |
| Vон                            | for each IC               | ) Pins     | $V_{DD} = 3.3 \text{ V}$                                             | 3.0                 | _   | _                   | V    |
|                                | (I <sub>IO</sub> = +8     | mA)        | $V_{DD} = 3.6 \text{ V}$                                             | 3.3                 | 1   | _                   |      |
|                                | High level outp           | ut voltage | V <sub>DD</sub> = 2.6 V                                              | 1.5                 | _   | _                   |      |
| Vон                            | for each IC               | ) Pins     | $V_{DD} = 3.3 \text{ V}$                                             | 2.6                 | _   | _                   | V    |
|                                | (I <sub>IO</sub> = +20    | mA)        | V <sub>DD</sub> = 3.6 V                                              | 2.8                 | _   | _                   |      |
| R <sub>PU</sub> <sup>(2)</sup> | Internal pull-up          | All pins   | VIN = VSS                                                            | _                   | 40  |                     | kΩ   |
| L PU <sup>-</sup> /            | resistor                  | PA10       |                                                                      | _                   | 10  |                     | K12  |
| R <sub>PD</sub> <sup>(2)</sup> | Internal pull-            | All pins   | $V_{IN} = V_{DD}$                                                    |                     | 40  | _                   | kΩ   |



|   | Symbol | Parame        | eter | Conditions | Min | Тур | Max | Unit |
|---|--------|---------------|------|------------|-----|-----|-----|------|
| Ī |        | down resistor | PA10 | _          | _   | 10  | _   |      |

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current (typical source capability:3 mA shared between these IOs, but sink capability is same as other IO), the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF).

Table 4-23. I/O port AC characteristics(1)(2)

| GPIOx_MDy[1:0] bit value <sup>(3)</sup> | Parameter                          | Conditions                                     | Max | Unit    |  |
|-----------------------------------------|------------------------------------|------------------------------------------------|-----|---------|--|
|                                         |                                    | V <sub>DD</sub> =2.6 V, C <sub>L</sub> = 10 pF | 6   |         |  |
|                                         |                                    | $V_{DD} = 2.6 \text{ V}, C_L = 30 \text{ pF}$  | 4   |         |  |
| $GPIOx\_CTL->MDy[1:0] = 10$             | Maximum frequency <sup>(4)</sup>   | $V_{DD} = 2.6 \text{ V}, C_L = 50 \text{ pF}$  | 2   | MHz     |  |
| (IO_Speed = 2 MHz)                      | Maximum frequency                  | $V_{DD} = 3.3 \text{ V}, C_L = 10 \text{ pF}$  | 8   | IVII IZ |  |
|                                         |                                    | $V_{DD} = 3.3 \text{ V}, C_L = 30 \text{ pF}$  | 6   |         |  |
|                                         |                                    | $V_{DD} = 3.3 \text{ V}, C_L = 50 \text{ pF}$  | 4   |         |  |
|                                         |                                    | $V_{DD} = 2.6 \text{ V}, C_L = 10 \text{ pF}$  | 16  |         |  |
|                                         | Maximum frequency <sup>(4)</sup> - | $V_{DD} = 2.6 \text{ V}, C_L = 30 \text{ pF}$  | 12  | - MHz   |  |
| $GPIOx\_CTL->MDy[1:0] = 01$             |                                    | $V_{DD} = 2.6 \text{ V}, C_L = 50 \text{ pF}$  | 10  |         |  |
| (IO_Speed = 10 MHz)                     |                                    | $V_{DD} = 3.3 \text{ V}, C_L = 10 \text{ pF}$  | 20  | IVII IZ |  |
|                                         |                                    | $V_{DD} = 3.3 \text{ V}, C_L = 30 \text{ pF}$  | 16  |         |  |
|                                         |                                    | $V_{DD} = 3.3 \text{ V}, C_L = 50 \text{ pF}$  | 14  |         |  |
|                                         |                                    | $V_{DD} = 2.6 \text{ V}, C_L = 10 \text{ pF}$  | 108 |         |  |
|                                         |                                    | $V_{DD} = 2.6 \text{ V}, C_L = 30 \text{ pF}$  | 100 |         |  |
| $GPIOx\_CTL->MDy[1:0] = 11$             | Maximum frequency <sup>(4)</sup>   | $V_{DD} = 2.6 \text{ V}, C_L = 50 \text{ pF}$  | 72  | MHz     |  |
| (IO_Speed = 50 MHz)                     | maximum frequency                  | $V_{DD} = 3.3 \text{ V}, C_L = 10 \text{ pF}$  | 108 | IVII IZ |  |
|                                         |                                    | $V_{DD} = 3.3 \text{ V}, C_L = 30 \text{ pF}$  | 100 |         |  |
|                                         |                                    | $V_{DD} = 3.3 \text{ V}, C_L = 50 \text{ pF}$  | 80  |         |  |

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all test results given for T<sub>A</sub> = 25 ℃.
- (3) The I/O speed is configured using the GPIOx\_CTL -> MDy[1:0] bits. Refer to the GD32VF103xx user manual which is selected to set the GPIO port output speed.
- (4) The maximum frequency is defined in Figure 4-5 and maximum frequency cannot exceed 108 MHz.

Figure 4-5. I/O port AC characteristics definition





## 4.13. ADC characteristics

Table 4-24. ADC characteristics

| Symbol                           | Parameter                        | Conditions                      | Min  | Тур  | Max              | Unit                |
|----------------------------------|----------------------------------|---------------------------------|------|------|------------------|---------------------|
| $V_{DDA}^{(1)}$                  | Operating voltage                | _                               | 2.6  | 3.3  | 3.6              | V                   |
| $V_{IN}^{(1)}$                   | ADC input voltage range          | _                               | 0    | _    | $V_{REFP}$       | ٧                   |
| f <sub>ADC</sub> <sup>(1)</sup>  | ADC clock                        | _                               | 0.6  | _    | 14               | MHz                 |
|                                  |                                  | 12-bit                          | 0.04 | _    | 1                |                     |
| fs <sup>(1)</sup>                | Compling rate                    | 10-bit                          | 0.05 | _    | 1.17             | MSPS                |
| IS <sup>(··)</sup>               | Sampling rate                    | 8-bit                           | 0.06 | _    | 1.4              | MSPS                |
|                                  |                                  | 6-bit                           | 0.08 | _    | 1.75             |                     |
| V <sub>AIN</sub> <sup>(1)</sup>  | Analog input voltage             | 16 external; 2 internal         | 0    | _    | V <sub>DDA</sub> | V                   |
| V <sub>REFP</sub> <sup>(2)</sup> | Positive Reference Voltage       | _                               | 2.4  | _    | V <sub>DDA</sub> | V                   |
| V <sub>REFN</sub> <sup>(2)</sup> | Negative Reference<br>Voltage    | _                               | _    | Vssa | _                | V                   |
| R <sub>AIN</sub> <sup>(2)</sup>  | External input impedance         | See <u>Equation 1</u>           | _    | _    | 320              | kΩ                  |
| R <sub>ADC</sub> <sup>(2)</sup>  | Input sampling switch resistance | _                               | _    | _    | 0.55             | kΩ                  |
| C <sub>ADC</sub> <sup>(2)</sup>  | Input sampling capacitance       | No pin/pad capacitance included | _    | _    | 5.5              | pF                  |
| t <sub>s</sub> (2)               | Sampling time                    | f <sub>ADC</sub> = 14 MHz       | 0.1  | _    | 17.1             | μs                  |
|                                  | T                                | 12-bit                          | _    | 14   | _                |                     |
| ı (2)                            | Total conversion                 | 10-bit                          | _    | 12   | _                | 415                 |
| t <sub>CONV</sub> <sup>(2)</sup> | time(including sampling          | 8-bit                           | _    | 10   | _                | 1/ f <sub>ADC</sub> |
|                                  | time)                            | 6-bit                           | _    | 8    | _                |                     |
| tsu <sup>(2)</sup>               | Startup time                     | _                               | _    | _    | 1                | μs                  |

<sup>(1)</sup> Based on characterization, not tested in production.

$$\textit{Equation 1}: \text{ R}_{\text{AIN}} \text{ max formula } \text{ R}_{\text{AIN}} < \frac{\text{T}_{\text{s}}}{\text{f}_{\text{ADC}} * \text{C}_{\text{ADC}} * \text{In}(2^{N+2})} - \text{R}_{\text{ADC}}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 4-25. ADC  $R_{AIN}$  max for  $f_{ADC}$  = 14  $MHz^{(1)}$ 

| T <sub>s</sub> (cycles) | t <sub>s</sub> (us) | R <sub>AINmax</sub> (kΩ) |
|-------------------------|---------------------|--------------------------|
| 1.5                     | 0.11                | 1.46                     |
| 7.5                     | 0.54                | 9.49                     |
| 13.5                    | 0.96                | 17.5                     |
| 28.5                    | 2.04                | 37.6                     |
| 41.5                    | 2.96                | 55                       |
| 55.5                    | 3.96                | 73.7                     |
| 71.5                    | 5.11                | 95                       |

<sup>(2)</sup> Guaranteed by design, not tested in production.



| T <sub>s</sub> (cycles) | t <sub>s</sub> (us) | R <sub>AINmax</sub> (kΩ) |
|-------------------------|---------------------|--------------------------|
| 239.5                   | 17.11               | 320                      |

<sup>(1)</sup> Guaranteed by design, not tested in production.

# 4.14. Temperature sensor characteristics

Table 4-26. Temperature sensor characteristics<sup>(1)</sup>

| Symbol          | Parameter                                      | Min | Тур  | Max | Unit  |
|-----------------|------------------------------------------------|-----|------|-----|-------|
| T∟              | V <sub>SENSE</sub> linearity with temperature  | _   | ±1.5 | _   | °C    |
| Avg_Slope       | Average slope                                  | _   | 4.1  | _   | mV/°C |
| V <sub>25</sub> | Voltage at 25 °C                               | _   | 1.45 | _   | V     |
| ts_temp (2)     | ADC sampling time when reading the temperature | _   | 17.1 | _   | μs    |

<sup>(1)</sup> Based on characterization, not tested in production.

## 4.15. DAC characteristics

Table 4-27. DAC characteristics

| Symbol                           | Parameter                              | Conditions                                                                  | Min | Тур  | Max                | Unit |
|----------------------------------|----------------------------------------|-----------------------------------------------------------------------------|-----|------|--------------------|------|
| $V_{DDA}^{(1)}$                  | Operating voltage                      | _                                                                           | 2.6 | 3.3  | 3.6                | V    |
| V <sub>REFP</sub> <sup>(2)</sup> | Positive Reference Voltage             | _                                                                           | 2.4 | _    | $V_{DDA}$          | V    |
| V <sub>REFN</sub> (2)            | Negative Reference<br>Voltage          |                                                                             | _   | Vssa |                    | V    |
| R <sub>LOAD</sub> <sup>(2)</sup> | Load resistance                        | Resistive load with buffer ON                                               | 5   | _    |                    | kΩ   |
| Ro <sup>(2)</sup>                | Impedance output with buffer OFF       | _                                                                           | _   | _    | 15                 | kΩ   |
| C <sub>LOAD</sub> <sup>(2)</sup> | Load capacitance                       | No pin/pad capacitance included                                             | _   | _    | 50                 | pF   |
| DAC_OUT min <sup>(2)</sup>       | Lower DAC_OUT voltage with buffer ON   | _                                                                           | 0.2 | _    |                    | V    |
| DAC_OUT max <sup>(2)</sup>       | Higher DAC_OUT voltage with buffer ON  | _                                                                           | _   | _    | V <sub>DDA</sub> - | V    |
| DAC_OUT<br>min <sup>(2)</sup>    | Lower DAC_OUT voltage with buffer OFF  | _                                                                           | _   | 0.5  |                    | mV   |
| DAC_OUT max <sup>(2)</sup>       | Higher DAC_OUT voltage with buffer OFF | ı                                                                           |     | _    | V <sub>DDA</sub> - | V    |
| I <sub>DDA</sub> <sup>(1)</sup>  | DAC current consumption                | With no load, middle $code(0x800)$ on the input, $V_{REFP} = 3.6 \text{ V}$ | _   | 470  | _                  | μΑ   |
|                                  | in quiescent mode                      | With no load, worst code(0xF1C) on the input,                               | _   | 570  | _                  | μΑ   |

<sup>(2)</sup> Shortest sampling time can be determined in the application by multiple iterations.



| Symbol                              | Parameter                                                              | Conditions                                                                 | Min | Тур | Max  | Unit |
|-------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|-----|-----|------|------|
|                                     |                                                                        | V <sub>REFP</sub> = 3.6 V                                                  |     |     |      |      |
| . (1)                               | DAC current consumption                                                | With no load, middle code(0x800) on the input, $V_{REFP} = 3.6 \; V$       | _   | 90  | _    | μА   |
| I <sub>DDVREFP</sub> <sup>(1)</sup> | in quiescent mode                                                      | With no load, worst code(0xF1C) on the input, VREFP = 3.6 V                | _   | 298 | _    | μА   |
| DNL <sup>(1)</sup>                  | Differential non-linearity error                                       | DAC in 12-bit mode                                                         | _   | _   | ±3   | LSB  |
| INL <sup>(1)</sup>                  | Integral non-linearity                                                 | DAC in 12-bit mode                                                         | _   | _   | ±4   | LSB  |
| Offset <sup>(1)</sup>               | Offset error                                                           | DAC in 12-bit mode                                                         | _   | _   | ±12  | LSB  |
| GE <sup>(1)</sup>                   | Gain error                                                             | DAC in 12-bit mode                                                         | _   | _   | ±0.5 | %    |
| T <sub>setting</sub> <sup>(1)</sup> | Settling time                                                          | $C_{LOAD} \leqslant~50$ pF, $R_{LOAD} \geqslant~5$ $k\Omega$               | _   | 0.3 | 1    | μs   |
| T <sub>wakeup</sub> (2)             | Wakeup from off state                                                  | _                                                                          | _   | 5   | 10   | μs   |
| Update rate <sup>(2)</sup>          | Max frequency for a correct  DAC_OUT change from  code i to i ± 1 LSBs | $C_{\text{LOAD}} \leqslant~50$ pF, $R_{\text{LOAD}} \geqslant~5$ $k\Omega$ | _   |     | 4    | MS/s |
| PSRR <sup>(2)</sup>                 | Power supply rejection ratio (to V <sub>DDA</sub> )                    | _                                                                          | 55  | 80  | _    | dB   |

<sup>(1)</sup> Based on characterization, not tested in production.

## 4.16. I2C characteristics

Table 4-28. I2C characteristics<sup>(1)(2)</sup>

| Symbol                   | Parameter             | Conditions | Standard<br>mode |      | Fast mode |     | Fast mode plus |     | Unit |
|--------------------------|-----------------------|------------|------------------|------|-----------|-----|----------------|-----|------|
|                          |                       |            | Min              | Max  | Min       | Max | Min            | Max |      |
| t <sub>SCL(H)</sub>      | SCL clock high time   |            | 4.0              | _    | 0.6       | _   | 0.2            |     | μs   |
| t <sub>SCL(L)</sub>      | SCL clock low time    |            | 4.7              | _    | 1.3       |     | 0.5            | 1   | μs   |
| t <sub>SU(SDA)</sub>     | SDA setup time        |            | 250              | _    | 100       |     | 50             | l   | ns   |
| th(SDA)                  | SDA data hold time    | _          | 0(3)             | 3450 | 0         | 900 | 0              | 450 | ns   |
| t <sub>R</sub> (SDA/SCL) | SDA and SCL rise time | _          | _                | 1000 | _         | 300 | _              | 120 | ns   |
| t <sub>F(SDA/SCL)</sub>  | SDA and SCL fall time | _          | _                | 300  | _         | 300 | _              | 120 | ns   |
| th(STA)                  | Start condition hold  | _          | 4.0              | _    | 0.6       | _   | 0.26           |     | μs   |

<sup>(2)</sup> Guaranteed by design, not tested in production.



| Symbol            | Parameter                                     | Conditions | Standard<br>mode |     | Fast mode |     | Fast mode plus |     | Unit |
|-------------------|-----------------------------------------------|------------|------------------|-----|-----------|-----|----------------|-----|------|
|                   |                                               |            | Min              | Max | Min       | Max | Min            | Max |      |
|                   | time                                          |            |                  |     |           |     |                |     |      |
| tsu(sta)          | Repeated Start<br>condition<br>setup time     |            | 4.7              | _   | 0.6       | _   | 0.26           | _   | μs   |
| tsu(sto)          | Stop condition setup time                     | _          | 4.0              |     | 0.6       |     | 0.26           | 1   | μs   |
| t <sub>BUFF</sub> | Stop to Start<br>condition time (bus<br>free) |            | 4.7              | _   | 1.3       | _   | 0.5            | _   | μs   |

- (1) Guaranteed by design, not tested in production.
- (2) To ensure the standard mode I2C frequency, f<sub>PCLK1</sub> must be at least 2 MHz. To ensure the fast mode I2C frequency, f<sub>PCLK1</sub> must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f<sub>PCLK1</sub> must be at least a multiple of 10 MHz.
- (3) The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL.

Figure 4-6. I2C bus timing diagram



## 4.17. SPI characteristics

Table 4-29. Standard SPI characteristics(1)

| Symbol              | Parameter              | Conditions                                              | Min | Тур | Max | Unit |
|---------------------|------------------------|---------------------------------------------------------|-----|-----|-----|------|
| f <sub>SCK</sub>    | SCK clock frequency    | _                                                       | _   | _   | 27  | MHz  |
| tsck(H)             | SCK clock high time    | Master mode, f <sub>PCLKx</sub> = 108 MHz,<br>presc = 8 | 35  | 37  | 39  | ns   |
| t <sub>SCK(L)</sub> | SCK clock low time     | Master mode, f <sub>PCLKx</sub> = 108 MHz,<br>presc = 8 | 35  | 37  | 39  | ns   |
|                     |                        | SPI master mode                                         |     |     |     |      |
| t <sub>V(MO)</sub>  | Data output valid time | _                                                       |     | 7   | _   | ns   |
| t <sub>H(MO)</sub>  | Data output hold time  | _                                                       |     | 4   | _   | ns   |

| tsu(MI)              | Data input setup time    | _                          | 1 | _  | _ | ns |
|----------------------|--------------------------|----------------------------|---|----|---|----|
| t <sub>H(MI)</sub>   | Data input hold time     | _                          | 0 | _  |   | ns |
|                      |                          | SPI slave mode             |   |    |   |    |
| tsu(NSS)             | NSS enable setup time    | f <sub>PCLK</sub> = 54 MHz | 0 | _  | _ | ns |
| t <sub>H(NSS)</sub>  | NSS enable hold time     | f <sub>PCLK</sub> = 54 MHz | 1 | _  |   | ns |
| t <sub>A(SO)</sub>   | Data output access time  | _                          | _ | 9  | _ | ns |
| t <sub>DIS(SO)</sub> | Data output disable time | _                          |   | 8  | ١ | ns |
| t <sub>V(SO)</sub>   | Data output valid time   | _                          | _ | 10 | _ | ns |
| t <sub>H(SO)</sub>   | Data output hold time    | _                          |   | 10 |   | ns |
| t <sub>SU(SI)</sub>  | Data input setup time    | _                          | 0 | _  |   | ns |
| t <sub>H(SI)</sub>   | Data input hold time     | _                          | 1 | _  |   | ns |

<sup>(1)</sup> Based on characterization, not tested in production.

Figure 4-7. SPI timing diagram - master mode





SCK (CKPH=0 CKPL=1)

SCK (CKPH=0 CKPL=1)

tack

th(NSS)

th(SO)

th(SO)

th(SO)

th(SO)

th(SO)

D[7]

th(SI)

Figure 4-8. SPI timing diagram - slave mode

## 4.18. I2S characteristics

Table 4-30. I2S characteristics(1)(2)

| Symbol                 | Parameter                    | Conditions                  | Min   | Тур   | Max   | Unit |
|------------------------|------------------------------|-----------------------------|-------|-------|-------|------|
|                        |                              | Master mode (data: 16 bits, | 3.070 | 2 072 | 3.074 |      |
| fcĸ                    | Clock frequency              | Audio frequency = 96 kHz)   | 0.070 | 3.072 | 3.074 | MHz  |
|                        |                              | Slave mode                  | -     | 10    | _     |      |
| t <sub>H</sub>         | Clock high time              |                             | -     | 162   | _     | ns   |
| t∟                     | Clock low time               | _                           | _     | 163   | _     | ns   |
| tv(ws)                 | WS valid time                | Master mode                 | _     | 2     | _     | ns   |
| t <sub>H(WS)</sub>     | WS hold time                 | Master mode                 | _     | 2     | _     | ns   |
| tsu(ws)                | WS setup time                | Slave mode                  | 0     | _     | _     | ns   |
| t <sub>H(WS)</sub>     | WS hold time                 | Slave mode                  | 1     | _     | _     | ns   |
| Duay                   | _ I2S slave input clock duty | Clave made                  |       |       |       | 0/   |
| Ducy <sub>(SCK)</sub>  | cycle                        | Slave mode                  | _     | 50    |       | %    |
| tsu(sd_mr)             | Data input setup time        | Master mode                 | 3     | _     | _     | ns   |
| t <sub>SU(SD_SR)</sub> | Data input setup time        | Slave mode                  | 0     | _     | _     | ns   |
| t <sub>H(SD_MR)</sub>  | Data innut hald time         | Master receiver             | 0     | _     | _     | ns   |
| t <sub>H(SD_SR)</sub>  | Data input hold time         | Slave receiver              | 1     | _     | _     | ns   |
|                        | Data autout valid time       | Slave transmitter           |       | 12    |       | 20   |
| t <sub>V(SD_ST)</sub>  | Data output valid time       | (after enable edge)         | _     | 12    | _     | ns   |
| t <sub>H(SD_ST)</sub>  | Data output hold time        | Slave transmitter           |       | 10    | _     | ns   |



| Symbol    | Parameter                      | Conditions          | Min | Тур | Max | Unit |
|-----------|--------------------------------|---------------------|-----|-----|-----|------|
|           |                                | (after enable edge) |     |     |     |      |
| 4         | (SD_MT) Data output valid time | Master transmitter  | _   | 10  | _   |      |
| IV(SD_MT) |                                | (after enable edge) |     |     |     | ns   |
|           | Data output hold time          | Master transmitter  |     | 7   | _   |      |
| th(SD_MT) |                                | (after enable edge) | _   |     |     | ns   |

- (1) Guaranteed by design, not tested in production.
- (2) Based on characterization, not tested in production.

Figure 4-9. I2S timing diagram - master mode







Figure 4-10. I2S timing diagram - slave mode

#### 4.19. USART characteristics

Table 4-31. USART0 characteristics(1)

| Symbol              | Parameter           | Conditions                   | Min  | Тур | Max | Unit |
|---------------------|---------------------|------------------------------|------|-----|-----|------|
| fsck                | SCK clock frequency | f <sub>PCLKx</sub> = 108 MHz | _    | _   | 54  | MHz  |
| t <sub>SCK(H)</sub> | SCK clock high time | f <sub>PCLKx</sub> = 108 MHz | 4.63 | _   | _   | ns   |
| t <sub>SCK(L)</sub> | SCK clock low time  | f <sub>PCLKx</sub> = 108 MHz | 4.63 | _   | _   | ns   |

<sup>(1)</sup> Guaranteed by design, not tested in production.

Table 4-32. USART1-2/UART3-4 characteristics<sup>(1)</sup>

| Symbol              | Parameter           | Conditions                   | Min  | Тур | Max | Unit |
|---------------------|---------------------|------------------------------|------|-----|-----|------|
| fsck                | SCK clock frequency | f <sub>PCLKx</sub> = 108 MHz | _    | _   | 54  | MHz  |
| tsck(H)             | SCK clock high time | f <sub>PCLKx</sub> = 108 MHz | 9.26 | _   | _   | ns   |
| t <sub>SCK(L)</sub> | SCK clock low time  | f <sub>PCLKx</sub> = 108 MHz | 9.26 | _   | _   | ns   |

<sup>(1)</sup> Guaranteed by design, not tested in production.

#### 4.20. CAN characteristics

Refer to <u>Table 4-22. I/O port DC characteristics</u>(1) for more details on the input/output alternate function characteristics (CANTX and CANRX).



## 4.21. USBFS characteristics

Table 4-33. USBFS start up time

| Symbol                  | Parameter          | Max | Unit |
|-------------------------|--------------------|-----|------|
| tstartup <sup>(1)</sup> | USBFS startup time | 1   | μs   |

<sup>(1)</sup> Guaranteed by design, not tested in production.

Table 4-34. USBFS DC electrical characteristics

| Symbo                 | ol              | Parameter                       | Conditions                         | Min | Тур  | Max | Unit |
|-----------------------|-----------------|---------------------------------|------------------------------------|-----|------|-----|------|
|                       | $V_{DD}$        | USBFS operating voltage         | _                                  | 3   | _    | 3.6 | ٧    |
| Input                 | V <sub>DI</sub> | Differential input sensitivity  | I(USBDP, USBDM)                    | 0.2 | _    | _   |      |
| levels <sup>(1)</sup> | V <sub>CM</sub> | Differential common mode range  | Includes V <sub>DI</sub> range     | 8.0 | _    | 2.5 | V    |
|                       | Vse             | Single ended receiver threshold | _                                  | 1.3 | _    | 2.0 |      |
| Output                | Vol             | Static output level low         | $R_L$ of 1.55 $k\Omega$ to 3.3 $V$ | _   | 0.04 | 0.3 | V    |
| levels(2)             | Vон             | Static output level high        | $R_L$ of 21 k $\Omega$ to $V_{SS}$ | 2.8 | 3.3  | 3.6 | V    |

<sup>(1)</sup> Guaranteed by design, not tested in production.

Table 4-35. USBFS electrical characteristics(1)

| Symbol           | Parameter                       | Conditions                      | Min | Тур | Max | Unit |
|------------------|---------------------------------|---------------------------------|-----|-----|-----|------|
| t <sub>R</sub>   | Rise time                       | CL = 50 pF                      | 4   | _   | 20  | ns   |
| t <sub>F</sub>   | Fall time                       | CL = 50 pF                      | 4   | _   | 20  | ns   |
| t <sub>RFM</sub> | Rise / fall time matching       | t <sub>R</sub> / t <sub>F</sub> | 90  | _   | 110 | %    |
| VCRS             | Output signal crossover voltage | _                               | 1.3 | _   | 2.0 | V    |

<sup>(1)</sup> Guaranteed by design, not tested in production.

Figure 4-11. USBFS timings: definition of data signal rise and fall time



## 4.22. EXMC characteristics

Table 4-36. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)(3)

|                        |                                         | •    |      |      |
|------------------------|-----------------------------------------|------|------|------|
| Symbol                 | Parameter                               | Min  | Max  | Unit |
| t <sub>w(NE)</sub>     | EXMC_NE low time                        | 64.1 | 66.1 | ns   |
| t <sub>V(NOE_NE)</sub> | EXMC_NEx low to EXMC_NOE low            | 26.9 | _    | ns   |
| t <sub>w(NOE)</sub>    | EXMC_NOE low time                       | 36.2 | 38.2 | ns   |
| th(NE_NOE)             | EXMC_NOE high to EXMC_NE high hold time | 0    | _    | ns   |

<sup>(2)</sup> Based on characterization, not tested in production.



| t <sub>v(A_NE)</sub>      | EXMC_NEx low to EXMC_A valid                           | 0 —  |      | ns |
|---------------------------|--------------------------------------------------------|------|------|----|
| t <sub>v(A_NOE)</sub>     | Address hold time after EXMC_NOE high                  | 0    | _    | ns |
| t <sub>v(BL_NE)</sub>     | EXMC_NEx low to EXMC_BL valid                          | 0 —  |      | ns |
| t <sub>h(BL_NOE)</sub>    | EXMC_BL hold time after EXMC_NOE high                  | 0 —  |      | ns |
| t <sub>su(DATA_NE)</sub>  | Data to EXMC_NEx high setup time                       | 37.2 | _    | ns |
| t <sub>su(DATA_NOE)</sub> | Data to EXMC_NOEx high setup time                      | 37.2 | _    | ns |
| t <sub>h(DATA_NOE)</sub>  | Data hold time after EXMC_NOE high                     | 0    | _    | ns |
| t <sub>h(DATA_NE)</sub>   | Data hold time after EXMC_NEx high                     | 0    | _    | ns |
| t <sub>v(NADV_NE)</sub>   | EXMC_NEx low to EXMC_NADV low                          | 0    | _    | ns |
| t <sub>w(NADV)</sub>      | EXMC_NADV low time                                     | 8.3  | 10.3 | ns |
| T <sub>h(AD_NADV)</sub>   | EXMC_AD(address) valid hold time after  EXMC_NADV high | 8.3  | 10.3 | ns |

<sup>(1)</sup>  $C_L = 30 \text{ pF}.$ 

Table 4-37. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)(3)

| Symbol                    | Parameter                               | Min  | Max  | Unit |
|---------------------------|-----------------------------------------|------|------|------|
| t <sub>w(NE)</sub>        | EXMC_NE low time                        | 45.5 | 47.5 | ns   |
| t <sub>V(NWE_NE)</sub>    | EXMC_NEx low to EXMC_NWE low            | 8.3  | _    | ns   |
| t <sub>w(NWE)</sub>       | EXMC_NWE low time                       | 26.9 | 28.9 | ns   |
| t <sub>h(NE_NWE)</sub>    | EXMC_NWE high to EXMC_NE high hold time | 8.3  | _    | ns   |
| t <sub>v(A_NE)</sub>      | EXMC_NEx low to EXMC_A valid            | 0    | _    | ns   |
| t <sub>V(NADV_NE)</sub>   | EXMC_NEx low to EXMC_NADV low           | 0    | _    | ns   |
| t <sub>w(NADV)</sub>      | EXMC_NADV low time                      | 8.3  | 10.3 | ns   |
| t                         | EXMC_AD(address) valid hold time after  | 8.3  |      | ns   |
| t <sub>h(AD_NADV)</sub>   | EXMC_NADV high                          | 6.3  |      |      |
| t <sub>h(A_NWE)</sub>     | Address hold time after EXMC_NWE high   | 8.3  | _    | ns   |
| t <sub>h(BL_NWE)</sub>    | EXMC_BL hold time after EXMC_NWE high   | 8.3  | _    | ns   |
| t <sub>v(BL_NE)</sub>     | EXMC_NEx low to EXMC_BL valid           | 0    | _    | ns   |
| t <sub>v(DATA_NADV)</sub> | EXMC_NADV high to DATA valid            | 8.3  | _    | ns   |
| t <sub>h(DATA_NWE)</sub>  | Data hold time after EXMC_NWE high      | 8.3  | _    | ns   |

<sup>(1)</sup>  $C_L = 30 pF$ .

## 4.23. TIMER characteristics

Table 4-38. TIMER characteristics(1)

| Symbol           | Parameter             | Conditions                       | Min  | Max                        | Unit       |
|------------------|-----------------------|----------------------------------|------|----------------------------|------------|
| t <sub>res</sub> | Timer resolution time | _                                | 1    | _                          | tTIMERXCLK |
|                  |                       | f <sub>TIMERxCLK</sub> = 108 MHz | 9.26 | _                          | ns         |
| f <sub>EXT</sub> | Timer external clock  | _                                | 0    | f <sub>TIMERxCLK</sub> / 2 | MHz        |

<sup>(2)</sup> Guaranteed by design, not tested in production.

<sup>(3)</sup> Based on configure: f<sub>HCLK</sub> = 108 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1.

<sup>(2)</sup> Guaranteed by design, not tested in production.

 $<sup>(3) \</sup>quad \text{Based on configure: } f_{\text{HCLK}} = 108 \text{ MHz, AddressSetupTime} = 0, \\ \text{AddressHoldTime} = 1, \\ \text{DataSetupTime} = 1.$ 

### GD32VF103 Datasheet

|   | Symbol     | Parameter                   | Conditions                       | Min    | Max         | Unit                   |
|---|------------|-----------------------------|----------------------------------|--------|-------------|------------------------|
|   |            | frequency                   | ftimerxclk = 108 MHz             | 0      | 54          | MHz                    |
|   | RES        | Timer resolution            | Fimer resolution —               |        | 16          | bit                    |
|   |            | 16-bit counter clock period | _                                | 1      | 65536       | t <sub>TIMERxCLK</sub> |
|   | tCOUNTER   | when internal clock is      | f <sub>TIMERxCLK</sub> = 108 MHz | 0.0093 | 607         |                        |
|   |            | selected                    |                                  |        | 007         | μs                     |
|   | tury count | Maximum possible count      |                                  | _      | 65536x65536 | timerxclk              |
| t | tmax_count | waximum possible count      | f <sub>TIMERxCLK</sub> = 108 MHz | _      | 39.8        | s                      |

<sup>(1)</sup> Guaranteed by design, not tested in production.

#### 4.24. WDGT characteristics

Table 4-39. FWDGT min/max timeout period at 40 kHz (IRC40K)(1)

| B                 | DDIO OLLIV   | Min timeout RLD[11:0] = | Max timeout RLD[11:0] |      |
|-------------------|--------------|-------------------------|-----------------------|------|
| Prescaler divider | PR[2:0] bits | 0x000                   | = 0xFFF               | Unit |
| 1/4               | 000          | 0.025                   | 409.525               |      |
| 1/8               | 001          | 0.025                   | 819.025               |      |
| 1/16              | 010          | 0.025                   | 1638.025              |      |
| 1/32              | 011          | 0.025                   | 3276.025              | ms   |
| 1/64              | 100          | 0.025                   | 6552.025              |      |
| 1/128             | 101          | 0.025                   | 13104.025             |      |
| 1/256             | 110 or 111   | 0.025                   | 26208.025             |      |

<sup>(1)</sup> Guaranteed by design, not tested in production.

Table 4-40. WWDGT min/max timeout value at 54 MHz (f<sub>PCLK1</sub>)<sup>(1)</sup>

| Prescaler divider | PSC[1:0] | Min timeout value<br>CNT[6:0] = 0x40 | Unit | Max timeout value<br>CNT[6:0] = 0x7F | Unit |
|-------------------|----------|--------------------------------------|------|--------------------------------------|------|
| 1/1               | 00       | 75.8                                 |      | 4.85                                 |      |
| 1/2               | 01       | 151.7                                |      | 9.7                                  | mo   |
| 1/4               | 10       | 303.4                                | μs   | 19.4                                 | ms   |
| 1/8               | 11       | 606.8                                |      | 38.8                                 |      |

<sup>(1)</sup> Guaranteed by design, not tested in production.

#### 4.25. Parameter conditions

Unless otherwise specified, all values given for  $V_{DD}$  =  $V_{DDA}$  = 3.3 V,  $T_A$  = 25 °C.



## 5. Package information

### 5.1. LQFP100 package outline dimensions

SECTION B-B

Figure 5-1. LQFP100 package outline

Table 5-1. LQFP100 package dimensions

| Symbol | Min   | Тур   | Max   |
|--------|-------|-------|-------|
| Α      | _     | _     | 1.60  |
| A1     | 0.05  | _     | 0.15  |
| A2     | 1.35  | 1.40  | 1.45  |
| A3     | 0.59  | 0.64  | 0.69  |
| b      | 0.18  | _     | 0.26  |
| b1     | 0.17  | 0.20  | 0.23  |
| С      | 0.13  | _     | 0.17  |
| c1     | 0.12  | 0.13  | 0.14  |
| D      | 15.80 | 16.00 | 16.20 |
| D1     | 13.90 | 14.00 | 14.10 |
| E      | 15.80 | 16.00 | 16.20 |
| E1     | 13.90 | 14.00 | 14.10 |
| е      | _     | 0.50  | _     |
| eB     | 15.05 | _     | 15.35 |
| L      | 0.45  |       | 0.75  |
| L1     | _     | 1.00  | _     |
| θ      | 0°    | _     | 7°    |



Figure 5-2. LQFP100 recommended footprint





## 5.2. LQFP64 package outline dimensions

Figure 5-3. LQFP64 package outline



Table 5-2. LQFP64 package dimensions

| Symbol | Min   | Тур   | Max   |
|--------|-------|-------|-------|
| А      | _     | _     | 1.60  |
| A1     | 0.05  | _     | 0.15  |
| A2     | 1.35  | 1.40  | 1.45  |
| A3     | 0.59  | 0.64  | 0.69  |
| b      | 0.18  | _     | 0.26  |
| b1     | 0.17  | 0.20  | 0.23  |
| С      | 0.13  | _     | 0.17  |
| c1     | 0.12  | 0.13  | 0.14  |
| D      | 11.80 | 12.00 | 12.20 |
| D1     | 9.90  | 10.00 | 10.10 |
| E      | 11.80 | 12.00 | 12.20 |
| E1     | 9.90  | 10.00 | 10.10 |
| е      | _     | 0.50  | _     |
| eB     | 11.25 | _     | 11.45 |
| L      | 0.45  |       | 0.75  |
| L1     | _     | 1.00  | _     |
| θ      | 0°    | _     | 7°    |



Figure 5-4. LQFP64 recommended footprint





## 5.3. LQFP48 package outline dimensions

DETAIL: F

BASE METAL

WITH PLATING
SECTION B-B

Figure 5-5. LQFP48 package outline

Table 5-3. LQFP48 package dimensions

| Symbol | Min  | Тур  | Max  |
|--------|------|------|------|
| A      |      |      | 1.60 |
| A1     | 0.05 |      | 0.15 |
| A2     | 1.35 | 1.40 | 1.45 |
| A3     | 0.59 | 0.64 | 0.69 |
| b      | 0.18 | _    | 0.26 |
| b1     | 0.17 | 0.20 | 0.23 |
| С      | 0.13 | _    | 0.17 |
| c1     | 0.12 | 0.13 | 0.14 |
| D      | 8.80 | 9.00 | 9.20 |
| D1     | 6.90 | 7.00 | 7.10 |
| Е      | 8.80 | 9.00 | 9.20 |
| E1     | 6.90 | 7.00 | 7.10 |
| е      | _    | 0.50 | _    |
| eB     | 8.10 | _    | 8.25 |
| L      | 0.45 | _    | 0.75 |
| L1     | _    | 1.00 | _    |
| θ      | 0°   | _    | 7°   |



Figure 5-6. LQFP48 recommended footprint





## 5.4. QFN36 package outline dimensions

Figure 5-7. QFN36 package outline



Table 5-4. QFN36 package dimensions

| Symbol | Min  | Тур  | Max  |
|--------|------|------|------|
| А      | 0.80 | 0.85 | 0.90 |
| A1     | 0    | 0.02 | 0.05 |
| b      | 0.18 | 0.23 | 0.30 |
| b1     | _    | 0.16 | _    |
| С      | 0.18 | 0.20 | 0.23 |
| D      | 5.90 | 6.00 | 6.10 |
| D2     | 3.80 | 3.90 | 4.00 |
| Е      | 5.90 | 6.00 | 6.10 |
| E2     | 3.80 | 3.90 | 4.00 |
| е      | _    | 0.50 | _    |
| h      | 0.30 | 0.35 | 0.40 |
| L      | 0.50 | 0.55 | 0.60 |
| L1     | _    | 0.10 | _    |
| Nd     | 3.95 | 4.00 | 4.05 |
| Ne     | 3.95 | 4.00 | 4.05 |



Figure 5-8. QFN36 recommended footprint





#### 5.5. Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter "0". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

 $\theta_{JA}$ : Thermal resistance, junction-to-ambient.

 $\theta_{JB}$ : Thermal resistance, junction-to-board.

 $\theta_{JC}$ : Thermal resistance, junction-to-case.

Ψ<sub>JB</sub>: Thermal characterization parameter, junction-to-board.

ΨJT: Thermal characterization parameter, junction-to-top center.

$$\theta_{JA} = (T_J - T_A)/P_D \tag{5-1}$$

$$\theta_{JB} = (T_J - T_B)/P_D \tag{5-2}$$

$$\theta_{JC} = (T_J - T_C)/P_D \tag{5-3}$$

Where,  $T_J$  = Junction temperature.

 $T_A$  = Ambient temperature

T<sub>B</sub> = Board temperature

T<sub>C</sub> = Case temperature which is monitoring on package surface

P<sub>D</sub> = Total power dissipation

 $\theta_{JA}$  represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower  $\theta_{JA}$  can be considerate as better overall thermal performance.  $\theta_{JA}$  is generally used to estimate junction temperature.

 $\theta_{JB}$  is used to measure the heat flow resistance between the chip surface and the PCB board.

 $\theta_{JC}$  represents the thermal resistance between the chip surface and the package top case.  $\theta_{JC}$  is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Table 5-5. Package thermal characteristics<sup>(1)</sup>

| Symbol | Condition                    | Package | Value | Unit |
|--------|------------------------------|---------|-------|------|
|        |                              | LQFP100 | 57.42 |      |
| 0      | Natural convection, 2S2P PCB | LQFP64  | 61.80 | °C/W |
| θυα    |                              | LQFP48  | 64.40 | C/VV |
|        |                              | QFN36   | 43.20 |      |
| 0      | Cold plate 2000 DOD          | LQFP100 | 31.68 | 0000 |
| θјв    | Cold plate, 2S2P PCB         | LQFP64  | 42.83 | °C/W |



## GD32VF103 Datasheet

| Symbol          | Condition                     | Package | Value | Unit |
|-----------------|-------------------------------|---------|-------|------|
|                 |                               | LQFP48  | 42.32 |      |
|                 |                               | QFN36   | 16.51 |      |
|                 |                               | LQFP100 | 13.85 |      |
| θ <sub>JC</sub> | Cold plate, 2S2P PCB          | LQFP64  | 21.98 | °C/W |
| <b>⊕</b> 1C     |                               | LQFP48  | 22.47 | C/VV |
|                 |                               | QFN36   | 16.18 |      |
|                 |                               | LQFP100 | 41.28 |      |
| III             | Natural convection, 2S2P PCB  | LQFP64  | 43.05 | °C/W |
| $\Psi_{JB}$     | Natural convection, 252F PCB  | LQFP48  | 42.42 |      |
|                 |                               | QFN36   | 16.64 |      |
|                 |                               | LQFP100 | 0.75  |      |
|                 | Natural convection, 2S2P PCB  | LQFP64  | 1.58  | °C/W |
| $\Psi_{ m JT}$  | ivatural convection, 2327 PCB | LQFP48  | 1.74  | C/VV |
|                 |                               | QFN36   | 1.07  |      |

<sup>(1)</sup> Thermal characteristics are based on simulation, and meet JEDEC specification.



# 6. Ordering information

Table 6-1. Part ordering code for GD32VF103xx devices

|                | 5 5 5 6 6 7 6 7 | able 0-1. Falt ordering code for 9D32VI 103XX devices |              |                             |  |  |  |  |
|----------------|-----------------|-------------------------------------------------------|--------------|-----------------------------|--|--|--|--|
| Ordering code  | Flash (KB)      | Package                                               | Package type | Temperature operating range |  |  |  |  |
| GD32VF103VBT6  | 128             | LQFP100                                               | Green        | Industrial                  |  |  |  |  |
| OD32VI 103VD10 | 120             | EQT 100                                               | Orcen        | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103V8T6  | 64              | LQFP100                                               | Green        | Industrial                  |  |  |  |  |
| 0502111001010  |                 | 2011100                                               | 0.00         | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103RBT6  | 128             | LQFP64                                                | Green        | Industrial                  |  |  |  |  |
|                |                 |                                                       |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103R8T6  | 64              | LQFP64                                                | Green        | Industrial                  |  |  |  |  |
|                |                 |                                                       |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103R6T6  | 32              | LQFP64                                                | Green        | Industrial                  |  |  |  |  |
|                |                 |                                                       |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103R4T6  | 16              | LQFP64                                                | Green        | Industrial                  |  |  |  |  |
|                |                 |                                                       |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103CBT6  | 128             | LQFP48                                                | Green        | Industrial                  |  |  |  |  |
|                |                 |                                                       |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103C8T6  | 64              | LQFP48                                                | Green        | Industrial                  |  |  |  |  |
|                | -               | -, -                                                  |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103C6T6  | 32              | LQFP48                                                | Green        | Industrial                  |  |  |  |  |
|                |                 |                                                       |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103C4T6  | 16              | LQFP48                                                | Green        | Industrial                  |  |  |  |  |
|                | -               | -, -                                                  |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103TBU6  | 128             | QFN36                                                 | Green        | Industrial                  |  |  |  |  |
|                | -               | -,                                                    |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103T8U6  | 64              | QFN36                                                 | Green        | Industrial                  |  |  |  |  |
|                | -               |                                                       |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103T6U6  | 32              | QFN36                                                 | Green        | Industrial                  |  |  |  |  |
|                |                 |                                                       |              | -40 °C to +85 °C            |  |  |  |  |
| GD32VF103T4U6  | 16              | QFN36                                                 | Green        | Industrial                  |  |  |  |  |
|                | -               |                                                       |              | -40 °C to +85 °C            |  |  |  |  |



## 7. Revision History

Table 7-1. Revision history

| Revision No. |    | Description                                                                      | Date         |
|--------------|----|----------------------------------------------------------------------------------|--------------|
| 1.0          |    | Initial Release                                                                  | Jun.5, 2019  |
|              | 1. | Clock tree modification, the factor for CK_CST changes                           |              |
| 1.1          |    | from 8 to 4, refers to Clock tree.                                               | Sep.16,2019  |
| 1.1          | 2. | Add I2C fast mode plus related information, refers to <u>I2C</u>                 | ОСР. 10,2013 |
|              |    | <u>characteristics</u> .                                                         |              |
|              | 1. | Chapter <u>Electrical characteristics</u> electrical                             |              |
|              |    | characteristics update.                                                          |              |
| 1.2          | 2. | Chapter <u>Package information</u> package information                           | Feb.15,2020  |
| 1.2          |    | update.                                                                          | 1 65.15,2020 |
|              | 3. | Delete the PD0,PD1 remap to OSC pins information in                              |              |
|              |    | packages no less than100 pins, refers to <b>Pin definitions</b> .                |              |
|              | 1. | Chapter <u>PLL characteristics</u> modification.                                 |              |
|              | 2. | Add description of $V_{\text{REF+}}$ and $V_{\text{REF-}}$ connection in chapter |              |
|              |    | Analog to digital converter (ADC).                                               |              |
| 4.2          | 3. | Modify the LDO mode conditions in <b>Power consumption</b> .                     | Dag 45 2020  |
| 1.3          | 4. | Delete EXMC characteristics comments in chapter <b>EXMC</b>                      | Dec.15,2020  |
|              |    | <u>characteristics</u> .                                                         |              |
|              | 5. | T <sub>STG</sub> range changes to -65°C~+150°C in <i>Absolute</i>                |              |
|              |    | maximum ratings.                                                                 |              |
|              | 1. | Add I2C, SPI, I2S timing diagrams, refers to <u>I2C</u>                          |              |
| 1.4          |    | characteristics, SPI characteristics and I2S                                     | Mar.29,2021  |
|              |    | <u>characteristics</u> .                                                         |              |
|              | 1. | Update SPI and I2S timing diagrams, refers to <u>SPI</u>                         |              |
|              |    | characteristics and I2S characteristics.                                         |              |
|              | 2. | Update package information and ordering information,                             |              |
| 1.5          |    | refers to <b>Package information</b> and <b>Ordering</b>                         | Dec.14, 2021 |
|              |    | <u>information</u> .                                                             |              |
|              | 3. | Modify WDGT characteristics, refers to WDGT                                      |              |
|              |    | <u>characteristics</u> .                                                         |              |
|              | 1. | Add P <sub>D</sub> parameter in <i>Table 4-1. Absolute maximum</i>               |              |
|              |    | <u>ratings</u> (1)(4).                                                           |              |
|              | 2. | Modify I2C timing diagrams, refers to <u>I2C</u>                                 |              |
| 1.0          |    | <u>characteristics</u> .                                                         | lum 7, 0000  |
| 1.6          | 3. | Modify LQFP64 package information, refer to <u>LQFP64</u>                        | Jun.7, 2022  |
|              |    | package outline dimensions.                                                      |              |
|              | 4. | Update NRST external pin circuit, refer to Figure 4-4.                           |              |
|              |    | Recommended external NRST pin circuit(1)                                         |              |



# GD32VF103 Datasheet

|     | 5. | EXMC related pin update, refer to <i>Pin definitions</i> .             |              |
|-----|----|------------------------------------------------------------------------|--------------|
|     | 1. | Pin name modification in <i>Pin definitions</i> and <i>Pinouts and</i> |              |
|     |    | pin assignment.                                                        |              |
|     | 2. | Modify comments to <u>Table 4-2. DC operating conditions</u> .         |              |
|     | 3. | Add comments to <b>Power consumption</b> .                             |              |
| 1.7 | 4. | Modify <u>I2C characteristics</u> diagram <u>Figure 4-6. I2C bus</u>   | Dec.5, 2022  |
|     |    | <u>timing diagram</u> .                                                |              |
|     | 5. | Modify <u>I2S characteristics</u> diagram <u>Figure 4-9. I2S</u>       |              |
|     |    | timing diagram - master mode and Figure 4-10. I2S                      |              |
|     |    | <u>timing diagram - slave mode</u> .                                   |              |
|     | 1. | Modify VREF/VREF+ to VREFP, modify VREF- to VREFN.                     |              |
| 1.8 | 2. | Add related application note in the notes, refers to                   | lup 15, 2022 |
| 1.0 |    | Electrical characteristics.                                            | Jun.15, 2023 |
|     | 3. | Modify format of pin definitions, refer to <b>Pin definitions</b> .    |              |
|     | 1. | Add parameter note for table Table 4-22. I/O port DC                   |              |
| 1.9 |    | characteristics <sup>(1)(3)</sup> .                                    | Nov.30, 2023 |
|     | 2. | Update package outlines in <i>Package information</i> .                |              |



#### **Important Notice**

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2023 GigaDevice - All rights reserved