CS 08

steppe

2/28/2022

This is a case study!

Many solutions are available!

'You can go your own way, go your own way!'

We made you panic and sweat!

```
?iris
library(kableExtra)
library(tidyverse)
```

```
data(iris)
knitr::kable(head(iris), booktab = T)
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

We will now create a table of the summary statistics of this species here.

```
a <- iris %>% # use map and modify the outputs
  split(.$Species) %>%
  map(summary) %>%
  map(as.data.frame) %>%
  map(drop_na) %>%
  bind_rows() %>%
  separate(Freq, c('Statistic', 'Value'), ":") %>%
  filter(!str_detect(Var2, 'Species')) %>%
  mutate(Species = c(rep('setosa', times = 24),
                     rep('versicolor', times = 24),
                     rep('virginica', times = 24))) %>%
  select(-Var1) %>%
  rename(Variable = Var2) %>%
  filter(!str_detect(Statistic, 'Qu'))
iris_table <- iris %>% # use summarize
  group_by(Species) %>%
  summarise(across(where(is.numeric),
                   list(
                     'min.'= min,
```

Table 1: Summary Statistics of Iris Dataset

		Sepal		Petal	
Species	Statistic	Length	Width	Length	Width
I. setosa	min.	4.3	2.3	1.0	0.1
	mean	5.0	3.4	1.5	0.2
	median	5.0	3.4	1.5	0.2
	max	5.8	4.4	1.9	0.6
I. versicolor	min.	4.9	2.0	3.0	1.0
	mean	5.9	2.8	4.3	1.3
	median	5.9	2.8	4.3	1.3
	max	7.0	3.4	5.1	1.8
I. virginica	min.	4.9	2.2	4.5	1.4
	mean	6.6	3.0	5.6	2.0
	median	6.5	3.0	5.5	2.0
	max	7.9	3.8	6.9	2.5

```
max = max,
                     mean = mean,
                     median = median))
            ) %>%
  pivot_longer(-Species, values_to = 'Value') %>%
  separate(name, c('Tissue', 'Statistic'), sep = "_") %>%
  # here we work on styling the values for the table
  mutate(Tissue = str_replace(Tissue, '[.]', ' ')) %>%
  mutate(Species = paste0('I.', Species)) %>%
  mutate(Value = round(Value, digits = 1)) %>%
  pivot_wider(names_from = Tissue, values_from = Value) %>%
  mutate(Statistic=fct_relevel(Statistic, "min.", "mean", "median", 'max')) %>%
  arrange(Species, Statistic)
iris_table[c(2:4, 6:8, 10:12),1] <- ""
knitr::kable(iris_table,
             align = "llcccc",
             col.names = c('Species','Statistic','Length','Width','Length','Width'),
             caption = "Summary Statistics of Iris Dataset",
             booktabs = T) %>%
  kable_classic(full_width = F, html_font = "Cambria") %>%
  add_header_above(., c(" " = 2, "Sepal" = 2, "Petal" = 2))
rm(a, iris_table)
model_summary <- summary(lm(Sepal.Length ~ Sepal.Width, data = iris))</pre>
model_summary_statistics <- tibble("intercept" = model_summarystatistics [1,1],</pre>
                                              = model_summary$coefficients[2,1],
                                   "p_value" = model_summary$coefficients[2,4],
                                   "r_squared" = model_summary$r.squared)
model_summary_statistics <- model_summary_statistics %>%
```

Table 2: Results of a linear model with one continuous predictor and response

Intercept	Slope	p-Value	R\$^2\$
6.526	-0.223	0.152	0.014

We can very simply plot our linear model using the intercept and slope.

Relationship between Sepal Width and Sepal Length in three Species of Iris

We can make a big overly fancy plot of these relationships like so below. The one wrench in the gear is that I cannot figure out how to reorder the fancy dual legend with the line legend below using guides! Perhaps you can?

```
model <- lm(Sepal.Length ~ Sepal.Width, data = iris)</pre>
conf_int <- as.data.frame(predict(model, interval = "confidence", level = 0.95))</pre>
conf_int <- cbind(conf_int, iris)</pre>
pred_int <- as.data.frame(predict(model, interval = "prediction", level = 0.95))</pre>
## Warning in predict.lm(model, interval = "prediction", level = 0.95): predictions on current data ref
pred int <- cbind(pred int, iris)</pre>
ggplot(conf_int, aes(x = Sepal.Width, y = Sepal.Length))+
  # I use jitter to show I used these data as continuous !
  geom jitter(
   aes(
      shape=Species, color = Species)
  # we can add our model here
  geom_abline(intercept = model_summary$coefficients[1,1],
              slope = model_summary$coefficients[2,1],
              size = 1) +
  # Confidence intervals are here
  geom_line(aes(y = lwr), color = "black", linetype = "dashed") +
  geom line(aes(y = upr), color = "black", linetype = "dashed") +
    # this one is fake! only used to add the legend!
  geom_line(aes(y = lwr, linetype = "dashed"), color = "black") +
  # fill in the polyong here
  geom ribbon(aes(ymin=lwr, ymax=upr), alpha=0.1) +
  # Prediction intervals are here
  geom_line(data = pred_int, aes(y = lwr), color = "black", linetype = "dotted") +
  geom_line(data = pred_int, aes(y = upr), color = "black", linetype = "dotted") +
    # this one is fake! only to add the legend!
  geom_line(data = pred_int, aes(y = lwr, linetype = "dotted"), color = "black") +
  # define and add a line legend here
  scale_linetype_manual(values = c("95% Prediction" = "dotted",
                                   "95% Confidence" = "dashed"),
                        name = "Intervals") +
  # modify the shapes and colours of these data; if you are interested.
  scale_colour_manual(name = "Species",
                      labels = c("I. Setosa", "I. Versicolor", "I. Virginica"),
                      values = c("cyan4", "plum3", "coral1")) +
  scale_shape_manual(name = "Species",
                      labels = c("I. Setosa", "I. Versicolor", "I. Virginica"),
                      values = c(17, 15, 19)) +
```

```
# Some style stuff is here
labs(title = 'Regression of Sepal Width and Sepal Length in three Iris Species',
    y = 'Sepal Length (cm)',
    x = 'Sepal Width (cm)') +
theme(plot.title = element_text(hjust = 0.5)) +

# we will add the p-value and r^2 to the plot - it i s a little busy for my liking!
annotate(geom = "text", x=2.25, y=4.1,
    label = paste0("p-value = ", model_summary_statistics[,3])) +
annotate(geom = "text", x=2.25, y=3.9,
    label = paste0("r^2 = ", model_summary_statistics[,4])) +

# manually select our shapes
theme_classic()
```

Regression of Sepal Width and Sepal Length in three Iris Species


```
intercept = model_summary$coefficients[1,1]) +
  geom_ribbon(data = p1,
              aes(ymin=Sepal.Length.Predict.lwr,
                  ymax=Sepal.Length.Predict.upr),
              alpha=0.2) +
  labs(title = 'Relationship between Sepal Width and Sepal Length in three Iris Species',
       y = 'Sepal Length', x = 'Sepal Width') +
  theme(plot.title = element_text(hjust = 0.5)) +
  theme_classic()
rm(p1)
ggplot(iris, aes(x = Sepal.Width, y = Sepal.Length))+
  geom_jitter()+
  geom_smooth(method = "lm", colour = "black", formula = y ~ x) +
  labs(title = 'Relationship between Sepal Width and Sepal Length in three Iris Species',
      y = 'Sepal Length', x = 'Sepal Width') +
  theme_classic(base_size = 10) +
  theme(plot.title = element_text(hjust = 0.5))
rm(iris, model_summary)
```

Citations:

"Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2-5."