Bernoulli Equations

Bernd Schröder

1. A Bernoulli equation is of the form $y' + p(x)y = q(x)y^n$, where $n \neq 0, 1$.

- 1. A Bernoulli equation is of the form $y' + p(x)y = q(x)y^n$, where $n \neq 0, 1$.
- 2. Recognizing Bernoulli equations requires some pattern recognition.

- 1. A Bernoulli equation is of the form $y' + p(x)y = q(x)y^n$, where $n \neq 0, 1$.
- 2. Recognizing Bernoulli equations requires some pattern recognition.
- 3. To solve a Bernoulli equation, we translate the equation into a linear equation.

- 1. A Bernoulli equation is of the form $y' + p(x)y = q(x)y^n$, where $n \neq 0, 1$.
- 2. Recognizing Bernoulli equations requires some pattern recognition.
- 3. To solve a Bernoulli equation, we translate the equation into a linear equation.
 - 3.1 The substitution $y = v^{\frac{1}{1-n}}$ turns the Bernoulli equation $y' + p(x)y = q(x)y^n$ into a linear first order equation for v,

- 1. A Bernoulli equation is of the form $y' + p(x)y = q(x)y^n$, where $n \neq 0, 1$.
- 2. Recognizing Bernoulli equations requires some pattern recognition.
- 3. To solve a Bernoulli equation, we translate the equation into a linear equation.
 - 3.1 The substitution $y = v^{\frac{1}{1-n}}$ turns the Bernoulli equation $y' + p(x)y = q(x)y^n$ into a linear first order equation for v,
 - 3.2 We can even write down the abstract form of the resulting linear first order equation, but it is simpler to remember the substitution $y = v^{\frac{1}{1-n}}$,

- 1. A Bernoulli equation is of the form $y' + p(x)y = q(x)y^n$, where $n \neq 0, 1$.
- 2. Recognizing Bernoulli equations requires some pattern recognition.
- 3. To solve a Bernoulli equation, we translate the equation into a linear equation.
 - 3.1 The substitution $y = v^{\frac{1}{1-n}}$ turns the Bernoulli equation $y' + p(x)y = q(x)y^n$ into a linear first order equation for v,
 - 3.2 We can even write down the abstract form of the resulting linear first order equation, but it is simpler to remember the substitution $y = v^{\frac{1}{1-n}}$,
 - 3.3 After we solve the equation for v, we obtain y as the appropriate power of v.

- 1. A Bernoulli equation is of the form $y' + p(x)y = q(x)y^n$, where $n \neq 0, 1$.
- 2. Recognizing Bernoulli equations requires some pattern recognition.
- 3. To solve a Bernoulli equation, we translate the equation into a linear equation.
 - 3.1 The substitution $y = v^{\frac{1}{1-n}}$ turns the Bernoulli equation $y' + p(x)y = q(x)y^n$ into a linear first order equation for v,
 - 3.2 We can even write down the abstract form of the resulting linear first order equation, but it is simpler to remember the substitution $y = v^{\frac{1}{1-n}}$,
 - 3.3 After we solve the equation for v, we obtain y as the appropriate power of v.

That's it.

Solve the Initial Value Problem
$$y' + y = x^2y^5$$
, $y(0) = 1$.

$$n = 5$$
,

$$n = 5,$$
 $y = v^{\frac{1}{1-5}}$

$$n = 5,$$
 $y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}},$

$$n = 5,$$
 $y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}},$ $y' =$

$$n = 5,$$
 $y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}},$ $y' = \frac{d}{dx}v^{-\frac{1}{4}}$

$$n = 5$$
, $y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}}$, $y' = \frac{d}{dx}v^{-\frac{1}{4}} = -\frac{1}{4}v^{-\frac{5}{4}}v'$

$$n = 5,$$
 $y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}},$ $y' = \frac{d}{dx}v^{-\frac{1}{4}} = -\frac{1}{4}v^{-\frac{5}{4}}v'$
 $y' + y = x^2y^5$

$$n = 5,$$
 $y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}},$ $y' = \frac{d}{dx}v^{-\frac{1}{4}} = -\frac{1}{4}v^{-\frac{5}{4}}v'$
 $y' + y = x^2\left(v^{-\frac{1}{4}}\right)^5$

$$n = 5,$$
 $y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}},$ $y' = \frac{d}{dx}v^{-\frac{1}{4}} = -\frac{1}{4}v^{-\frac{5}{4}}v'$
 $y' + \left(v^{-\frac{1}{4}}\right) = x^2\left(v^{-\frac{1}{4}}\right)^5$

$$n = 5, y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}}, y' = \frac{d}{dx}v^{-\frac{1}{4}} = -\frac{1}{4}v^{-\frac{5}{4}}v'$$
$$-\frac{1}{4}v^{-\frac{5}{4}}v' + \left(v^{-\frac{1}{4}}\right) = x^2\left(v^{-\frac{1}{4}}\right)^5$$

$$n = 5, y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}}, y' = \frac{d}{dx}v^{-\frac{1}{4}} = -\frac{1}{4}v^{-\frac{5}{4}}v'$$
$$-\frac{1}{4}v^{-\frac{5}{4}}v' + \left(v^{-\frac{1}{4}}\right) = x^2\left(v^{-\frac{1}{4}}\right)^5$$
$$-\frac{1}{4}v^{-\frac{5}{4}}v' + v^{-\frac{1}{4}} = x^2v^{-\frac{5}{4}}$$

$$n = 5, y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}}, y' = \frac{d}{dx}v^{-\frac{1}{4}} = -\frac{1}{4}v^{-\frac{5}{4}}v'$$
$$-\frac{1}{4}v^{-\frac{5}{4}}v' + \left(v^{-\frac{1}{4}}\right) = x^2\left(v^{-\frac{1}{4}}\right)^5$$
$$-\frac{1}{4}v^{-\frac{5}{4}}v' + v^{-\frac{1}{4}} = x^2v^{-\frac{5}{4}}$$
$$-\frac{1}{4}v' + v = x^2$$

$$n = 5, y = v^{\frac{1}{1-5}} = v^{-\frac{1}{4}}, y' = \frac{d}{dx}v^{-\frac{1}{4}} = -\frac{1}{4}v^{-\frac{5}{4}}v'$$

$$-\frac{1}{4}v^{-\frac{5}{4}}v' + \left(v^{-\frac{1}{4}}\right) = x^2\left(v^{-\frac{1}{4}}\right)^5$$

$$-\frac{1}{4}v^{-\frac{5}{4}}v' + v^{-\frac{1}{4}} = x^2v^{-\frac{5}{4}}$$

$$-\frac{1}{4}v' + v = x^2$$

$$v' - 4v = -4x^2$$

$$v' - 4v = -4x^2$$

Solving the linear equation.

 $\mu(x)$

$$v' - 4v = -4x^2$$

$$\mu(x) = e^{\int p(x) dx} \qquad v' - 4v = -4x^2$$

$$v' - 4v = -4x^2$$

 $\mu(x) = e^{\int p(x) dx} = e^{\int -4 dx}$

$$\nu' - 4\nu = -4x^{2}$$

$$\mu(x) = e^{\int p(x) dx} = e^{\int -4 dx} = e^{-4x}$$

$$\mu(x) = e^{\int p(x) dx} = e^{\int -4 dx} = e^{-4x}$$

$$e^{-4x} (v' - 4v) = -4x^2 e^{-4x}$$

$$\begin{aligned}
 v' - 4v &= -4x^2 \\
 \mu(x) &= e^{\int p(x) dx} = e^{\int -4 dx} &= e^{-4x} \\
 &= e^{-4x} (v' - 4v) &= -4x^2 e^{-4x} \\
 &= e^{-4x} v' - 4e^{-4x} v &= -4x^2 e^{-4x}
 \end{aligned}$$

$$\mu(x) = e^{\int p(x) dx} = e^{\int -4 dx} = e^{-4x}
e^{-4x} (v' - 4v) = -4x^2 e^{-4x}
e^{-4x} v' - 4e^{-4x} v = -4x^2 e^{-4x}
(e^{-4x}v)' = -4x^2 e^{-4x}$$

$$v' - 4v = -4x^{2}$$

$$\mu(x) = e^{\int p(x) dx} = e^{\int -4 dx} = e^{-4x}$$

$$e^{-4x} (v' - 4v) = -4x^{2} e^{-4x}$$

$$e^{-4x} v' - 4e^{-4x} v = -4x^{2} e^{-4x}$$

$$(e^{-4x} v)' = -4x^{2} e^{-4x}$$

$$e^{-4x} v = \int -4x^{2} e^{-4x} dx$$

$$\begin{aligned}
 v' - 4v &= -4x^2 \\
 \mu(x) &= e^{\int p(x) dx} = e^{\int -4 dx} &= e^{-4x} \\
 &= e^{-4x} (v' - 4v) &= -4x^2 e^{-4x} \\
 &= e^{-4x} v' - 4e^{-4x} v &= -4x^2 e^{-4x} \\
 &= e^{-4x} v' &= -4x^2 e^{-4x} \\
 &= e^{-4x} v &= \int -4x^2 e^{-4x} dx \\
 &= e^{-4x} v &= -4e^{4x} \int x^2 e^{-4x} dx
 \end{aligned}$$

Solving the linear equation (continued).

$$\int x^2 e^{-4x} dx =$$

$$\int x^2 e^{-4x} dx = -\frac{1}{4} e^{-4x} x^2 - \int \left(-\frac{1}{4}\right) e^{-4x} 2x dx$$

$$\int x^2 e^{-4x} dx = -\frac{1}{4} e^{-4x} x^2 - \int \left(-\frac{1}{4}\right) e^{-4x} 2x dx$$
$$= -\frac{1}{4} e^{-4x} x^2 + \frac{1}{2} \int e^{-4x} x dx$$

$$\int x^2 e^{-4x} dx = -\frac{1}{4} e^{-4x} x^2 - \int \left(-\frac{1}{4}\right) e^{-4x} 2x dx$$

$$= -\frac{1}{4} e^{-4x} x^2 + \frac{1}{2} \int e^{-4x} x dx$$

$$= -\frac{1}{4} e^{-4x} x^2 + \frac{1}{2} \left[-\frac{1}{4} e^{-4x} x - \int -\frac{1}{4} e^{-4x} dx \right]$$

$$\int x^2 e^{-4x} dx = -\frac{1}{4} e^{-4x} x^2 - \int \left(-\frac{1}{4}\right) e^{-4x} 2x dx$$

$$= -\frac{1}{4} e^{-4x} x^2 + \frac{1}{2} \int e^{-4x} x dx$$

$$= -\frac{1}{4} e^{-4x} x^2 + \frac{1}{2} \left[-\frac{1}{4} e^{-4x} x - \int -\frac{1}{4} e^{-4x} dx \right]$$

$$= -\frac{1}{4} e^{-4x} x^2 - \frac{1}{8} e^{-4x} x + \frac{1}{8} \int e^{-4x} dx$$

$$\int x^2 e^{-4x} dx = -\frac{1}{4} e^{-4x} x^2 - \int \left(-\frac{1}{4}\right) e^{-4x} 2x dx$$

$$= -\frac{1}{4} e^{-4x} x^2 + \frac{1}{2} \int e^{-4x} x dx$$

$$= -\frac{1}{4} e^{-4x} x^2 + \frac{1}{2} \left[-\frac{1}{4} e^{-4x} x - \int -\frac{1}{4} e^{-4x} dx \right]$$

$$= -\frac{1}{4} e^{-4x} x^2 - \frac{1}{8} e^{-4x} x + \frac{1}{8} \int e^{-4x} dx$$

$$= -\frac{1}{4} e^{-4x} x^2 - \frac{1}{8} e^{-4x} x - \frac{1}{32} e^{-4x} + c$$

Solve the Initial Value Problem
$$y' + y = x^2y^5$$
, $y(0) = 1$.

$$v = -4e^{4x} \left[-\frac{1}{4}e^{-4x}x^2 - \frac{1}{8}e^{-4x}x - \frac{1}{32}e^{-4x} + c \right]$$

$$v = -4e^{4x} \left[-\frac{1}{4}e^{-4x}x^2 - \frac{1}{8}e^{-4x}x - \frac{1}{32}e^{-4x} + c \right]$$
$$= x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}$$

$$v = -4e^{4x} \left[-\frac{1}{4}e^{-4x}x^2 - \frac{1}{8}e^{-4x}x - \frac{1}{32}e^{-4x} + c \right]$$
$$= x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}$$

$$y = v^{-\frac{1}{4}}$$

$$v = -4e^{4x} \left[-\frac{1}{4}e^{-4x}x^2 - \frac{1}{8}e^{-4x}x - \frac{1}{32}e^{-4x} + c \right]$$
$$= x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}$$

$$y = v^{-\frac{1}{4}} = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}\right)^{-\frac{1}{4}}$$

Solve the Initial Value Problem
$$y' + y = x^2y^5$$
, $y(0) = 1$.
Finding c .

Finding c.

$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}\right)^{-\frac{1}{4}}$$

Finding c.

$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}\right)^{-\frac{1}{4}}$$

$$1 = y(0)$$

Finding c.

$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}\right)^{-\frac{1}{4}}$$

$$1 = y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + ce^{4\cdot 0}\right)^{-\frac{1}{4}}$$

Finding c.

$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}\right)^{-\frac{1}{4}}$$

$$1 = y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + ce^{4 \cdot 0}\right)^{-\frac{1}{4}}$$

$$1 = \left(\frac{1}{8} + c\right)^{-\frac{1}{4}}$$

Finding c.

$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}\right)^{-\frac{1}{4}}$$

$$1 = y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + ce^{4 \cdot 0}\right)^{-\frac{1}{4}}$$

$$1 = \left(\frac{1}{8} + c\right)^{-\frac{1}{4}}$$

$$1 = \frac{1}{8} + c$$

Finding c.

$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}\right)^{-\frac{1}{4}}$$

$$1 = y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + ce^{4 \cdot 0}\right)^{-\frac{1}{4}}$$

$$1 = \left(\frac{1}{8} + c\right)^{-\frac{1}{4}}$$

$$1 = \frac{1}{8} + c$$

$$c = \frac{7}{4}$$

Finding c.

$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + ce^{4x}\right)^{-\frac{1}{4}}$$

$$1 = y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + ce^{4 \cdot 0}\right)^{-\frac{1}{4}}$$

$$1 = \left(\frac{1}{8} + c\right)^{-\frac{1}{4}}$$

$$1 = \frac{1}{8} + c$$

$$c = \frac{7}{8}, \qquad y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve the Initial Value Problem $y' + y = x^2y^5$, $y(0) = 1$?

$$\frac{d}{dx} \left[\left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}} \right] + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve the Initial Value Problem $y' + y = x^2y^5$, $y(0) = 1$?

$$\frac{d}{dx} \left[\left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}} \right] + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= -\frac{1}{4} \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(2x + \frac{1}{2} + \frac{7}{2}e^{4x} \right) + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve the Initial Value Problem $y' + y = x^2y^5$, $y(0) = 1$?

$$\frac{d}{dx} \left[\left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}} \right] + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= -\frac{1}{4} \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(2x + \frac{1}{2} + \frac{7}{2}e^{4x} \right) + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(-\frac{x}{2} - \frac{1}{8} - \frac{7}{8}e^{4x} + x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve

$$\frac{d}{dx} \left[\left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}} \right] + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= -\frac{1}{4} \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(2x + \frac{1}{2} + \frac{7}{2}e^{4x} \right) + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(-\frac{x}{2} - \frac{1}{8} - \frac{7}{8}e^{4x} + x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)$$

$$= \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} x^2$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve

$$\frac{d}{dx} \left[\left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}} \right] + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= -\frac{1}{4} \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(2x + \frac{1}{2} + \frac{7}{2}e^{4x} \right) + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(-\frac{x}{2} - \frac{1}{8} - \frac{7}{8}e^{4x} + x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)$$

$$= \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} x^2 = y^5 x^2$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve

$$\frac{d}{dx} \left[\left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}} \right] + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= -\frac{1}{4} \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(2x + \frac{1}{2} + \frac{7}{2}e^{4x} \right) + \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{1}{4}}$$

$$= \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} \left(-\frac{x}{2} - \frac{1}{8} - \frac{7}{8}e^{4x} + x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)$$

$$= \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x} \right)^{-\frac{5}{4}} x^2 = y^5 x^2 \qquad \checkmark$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve the Initial Value Problem $y' + y = x^2y^5$, $y(0) = 1$?

$$y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + \frac{7}{8}e^{4 \cdot 0}\right)^{-\frac{1}{4}}$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve the Initial Value Problem $y' + y = x^2y^5$, $y(0) = 1$?

$$y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + \frac{7}{8}e^{4 \cdot 0}\right)^{-\frac{1}{4}}$$
$$= \left(\frac{1}{8} + \frac{7}{8}\right)^{-\frac{1}{4}}$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve the Initial Value Problem $y' + y = x^2y^5$, $y(0) = 1$?

$$y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + \frac{7}{8}e^{4 \cdot 0}\right)^{-\frac{1}{4}}$$
$$= \left(\frac{1}{8} + \frac{7}{8}\right)^{-\frac{1}{4}}$$
$$= 1$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve the Initial Value Problem $y' + y = x^2y^5$, $y(0) = 1$?

$$y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + \frac{7}{8}e^{4 \cdot 0}\right)^{-\frac{1}{4}}$$
$$= \left(\frac{1}{8} + \frac{7}{8}\right)^{-\frac{1}{4}}$$
$$= 1 \qquad \checkmark$$

Does
$$y = \left(x^2 + \frac{1}{2}x + \frac{1}{8} + \frac{7}{8}e^{4x}\right)^{-\frac{1}{4}}$$
 Really Solve the Initial Value Problem $y' + y = x^2y^5$, $y(0) = 1$?

$$y(0) = \left(0^2 + \frac{1}{2} \cdot 0 + \frac{1}{8} + \frac{7}{8}e^{4 \cdot 0}\right)^{-\frac{1}{4}}$$
$$= \left(\frac{1}{8} + \frac{7}{8}\right)^{-\frac{1}{4}}$$
$$= 1 \qquad \checkmark$$

Yes, it does.