MATH H113: Honors Introduction to Abstract Algebra

2016-04-22

- U.F.D.'s
- Polynomials

For Monday:

Read Sections 9.2 and 13.1

Homework due April 29:

8.3: 2

9.1: 8, 10, 13

9.2: 7, 9

13.1: 2, 7

We were proving: Theorem: Every P.I.D. is a U.F.D.

Proof: On Wednesday, we showed every nonzero nonunit element in R factors into a product of irreducibles (where R is a P.I.D.)

Step 2: Uniqueness. Suppose $r \in R$ is nonzero, not a unit, and has all factorizations $r = p_1 p_2 \cdots p_n$ and $r = q_1 q_2 \cdots q_m$, where all p_i and all q_i are irreducible, and $m, n \in \mathbb{N}$. Now if m = 0 or n = 0 then r = 1, which is a unit, so m, n > 0. We may assume $n \leq m$ (otherwise integerchange the two factorizations). We'll prove this by induction on n.

Base case: n=1. Then $r=p_1$, so r is irreducible. If $r=q_1q_2\cdots q_m$ with m>1 then r=ab where $a=q_1$ is not a unit and $b=q_2\cdots q_m$ $(m\geq 2)$ is not a unit (that would imply q_2 is a unit, but it's not). This contradicts irreducibility of $r=p_1$. m=1, so $p_1=q_1$ and we're done.

Inductive Step: Assume that if two products of n-1 and $m-1 \ge n-1$ irreducibles are equal then n-1=m-1 and all factors are associates after rearranging them.

We have p_1 is irreducible and $p_1 \mid q_1 \cdots q_m$.

Lemma (Prop. 11): In a P.I.D., an element, every irreducible element is prime. Proof: Let $p \in R$ be irreducible. Then the ideal (p) is nonzero, and we'll show that it's prime by showing that it's maximal. Let M be an ideal of R that contains (p). $M \supseteq (p)$. Write M = (m) (R is a P.I.D.). Then $p \in (m)$, so p = mr for some $r \in R$. Since p is irreducible, (m is a unit $\implies (m) = M = R)$ or (r is a unit $\implies m$ and p are associates $\implies (m) = M = (p)$).

Back to our proof: $p_1 \mid q_1 \cdots q_m$, so $p_1 \mid q_j$ for some j. After some rearranging, we may assume j = 1, so $p_1 \mid q_1$. Then $q_1 = p_1 r$ for some $r \in R$. Since q is irreducible, r must be a unit (because p_1 isn't). $\therefore p_1$ and q_1 are associates; $q_1 = rp_1, r \in R^{\times}$

Then $p_2 \cdots p_n = q_2' q_3 \cdots q_m$ where $q_2' = rq_2$ is irreducible. Conclude by induction.

 $\therefore R$ is a U.F.D.

(Not every U.F.D. is a P.I.D.; later (I hope) we'll see that F[x, y] is a U.F.D. for any field F; we already know it's not a P.I.D.)

Proposition: In a U.F.D. an element is prime if and only if it's irreducible. **Proof**:

- prime \implies irreducible: already proved (on Wed.)
- irreducible \implies prime: Let p be irreducible. Then $p \neq 0$ and p is not a unit, so we need to show only that if $p \mid ab$ then $p \mid a$ or $p \mid b$. Suppose $p \mid ab$, so pr = ab for some $r \in R$. Then p occurs in a factorization of the left-hand side into irreducibles, so it must occur in a factorization of a or a into irreducibles (by uniqueness of the factorization of a or a

Suppose R is a U.F.D. and every nonzero $r \in R$ can be written $r = up_1^{\alpha_1} \cdots p_n^{\alpha_n}$ where u is a unit, p_1, \cdots, p_n are irreducibles (or prime), $\alpha_i \in \mathbb{Z}_{>0}$ for all i, and no p_i is an associate of any p_j with $i \neq j$.

Proof: If r is a unit then let u = r and n = 0. Otherwise, write $r = p_1 \cdots p_n$ as a product of irreducibles. Then $r = up_1 \cdots p_r$ with u = 1. If none of the p_i , p_j are associates with $i \neq j$, then done; otherwise $p_j = p_i \cdot v$ for some unit v; replace p_j with p and n with uv and compine the p_i s and (decrease n). Repeat until you're done.

Example:

$$-36 = (-2) \cdot 2 \cdot 3 \cdot 3 \setminus = (-2) \cdot 2 \cdot 3^2 \setminus = -1 \cdot 2^2 \cdot 3^2$$

Proposition: Let R be a U.F.D., and let $a, b \in R$

We can write $a = up_1^{\alpha_1} \cdots p_n^{\alpha_n}$ and $b = vp_1^{\beta_1} \cdots p_n^{\beta_n}$ where u, v are units, $p_1, ldots, p_n$ are irreducibles with no associates, and $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{N}$. (Combine primes in factorizations of a and b, and include 0 exponents when necessary.) Then $a \mid b \iff \alpha_i \leq \beta_i$ for all i and $\prod p_i^{\min(\alpha_i, \beta_i)}$ is a gcd of a and b. (Just like in \mathbb{Z}).

Proof: See the book.

More on Polynomials

Assume for the rest of today's class that R is a commutative ring with $1 \neq 0$ (though most if not all will also be true for the trivial ring (where 1 = 0)).

Proposition: Let R be as above, and let I be an ideal in R. Then

- a. the ideal IR[x] = (I) in R[x] generated by the elements of I equals $\{a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0 \in R[x] : a_i \in I \, \forall i\}$ (call this I[x]).
- b. The natural map $R[x] \to (R/I)[x]$ induces an isomorphism $R[x]/(I) \cong (R/I)[x]$, and

c. If I (ideal in R) is prime, then so is (I) (ideal in R[x]).

Proof:

a. Let $f(x) = a_n x^n + \dots + a_0 \in R[x]$. If $f(x) \in I[x]$ then $a_i \in I$ for all I, and $\therefore f(x) = \sum_{i=0}^n a_i \cdot x^i \in IR[x] = (I)$.

Conversely, if $f(x) \in IR[x]$ then $f(x) = \sum_{j=1}^{m} b_j g_j(x)$ with $b_j \in I$ and $g_j(x) \in R[x] \ \forall j$. Then all coefficients of $b_j g_j(x)$ lie in I, so $b_j g_j(x) \in I[x] \ \forall j$. \therefore so is the sum, which is f(x).

- b. Let $\phi: R[x] \to (R/I)[x]$ be the map that applies the natural projection $R \to R/I$ to each coefficient. This is a ring homomorphism, by formals for addition and multiplication in polynomial rings, and the fact that π is a homomorphism. This is onto (because π is onto). Its kernel is I[x]. \therefore it gives an isomorphism $R[x]/(I) \xrightarrow{\sim} (R/I)[x]$ by the First Isomorphism Theorem.
- c. I is prime in $R \implies R/I$ is an integral domain
 - $\implies (R/I)[x]$ is an integral domain
 - $\implies R[x]/(I)$ is an integral domain
 - $\implies (I) isprime(inR[x])$