國立台北大學 專題研究

應用不同分類法則於人臉表情影像辨識與比較

指導老師: 吳漢銘 教授

系所班別: 統計系 三年級

姓名學號: 顧育如 (410578014)

林奕辰 (410578018)

張鈞怡 (410578039)

吳佳璇 (410578041)

莊雅雯 (410578058)

報告日期: 2019/06/14

國立台北大學 專題研究

應用不同分類法則於人臉表情影像辨識與比較

顧育如、林奕辰、張鈞怡、吳佳璇、莊雅雯

摘要

隨著即時監控系統的普及,人類臉部情緒表情的影像辨識也日趨重要。藉由臉部表情的即時偵測,可以幫助人們互相了解對方當下的情況,進而採用適當的處置,例如:駕駛人於行車過程中是否有酒駕或疲勞駕駛的傾向、根據嫌疑人的表情特徵來判斷是否在說謊等等。這些影像辨識技術的實行仰賴於機器學習中分類法則的運用。本研究將根據公有人臉表情影像資料集(JAFFE)、作者自拍的人臉表情影像資料集(Students),以及將兩者合併的混合影像資料集,運用三種不同的分類法則一分別為 K 最近鄰居法(K Nearest Neighbor)、支持向量機(Support Vector Machine)及隨機森林法(Random Forest),探討何種分類法則對於人臉情緒表情辨識的效果最佳。由於影像資料的龐大繁雜,本研究會先將每一影像進行前置處理,例如:標準化、灰階化及影像特徵擷取等。而為了提升分類法的計算效率,我們預先採用了主成份析分析(PCA)進行資料降維;接著運用三種分類法則於降維後的影像資料集,並使用 K 折交叉驗證法(K-Fold Cross Validation)選擇最適參數,以得到一個最佳的表情預測模型。最後,我們以準確度、敏感、偵檢率及 Kappa 係數等驗證指標,來衡量各分類法則的辨識效果,並比較它們的優劣及特性。

目錄

壹 ·	•	前言	3
漬	•	文獻回顧	3
參·	•	分析方法	4
	<u> </u>	K—最近鄰居法(K—Nearest Neighbor)	4
	<u> </u>	隨機森林(Random Forest)	4
	三、	支持向量機(Support Vector Machine)	5
肆	•	實證分析	6
	<u> </u>	資料蒐集	6
	、	資料處理	6
	\equiv 、	主成分分析(Principal Components Analysis, PCA)	7
	四、	K 折交叉驗證法(K-Fold Cross-Validation)	8
	五、	K 最近鄰居法(KNN)	9
		(—) JAFFE	9
		(二) Students	9
		(三) 混合資料集	10
	六、	隨機森林 (RF)	10
		(-) JAFFE	10
		(二) Students	11
		(三) 混合資料集	12
	七、	支持向量機(SVM)	13
		(-) JAFFE	14
		(二) Students	15
		(三) 混合資料集	16
伍	•	結論	16
		(一) 分類法之比較	16
		(二) 資料對分類影響之探討	17
		(三) 分析方法之改進	17
陸	•	參考文獻	18
柒·		附錄	20

壹、 前言

人類的臉孔是一種承載多種訊息的媒體,我們不但可以從一個人的臉孔判 讀當事人的身份、性別、年齡等訊息,並且可以進一步得知當事人的情緒狀態。臉部表情做為人與人溝通的重要資訊,在多數的情況下往往能夠代表一個 人情緒的直接反應,可能是高興或是悲傷、難過等,皆可經由臉部表情變化來 傳達。

影集《謊言終結者》是一部描述心理學的美國電視劇,利用「臉部動作編碼系統」(Facial Action Coding System)分析被觀察者的肢體語言和微表情,進而推測他們是否撒謊。因此,在我們看了這部影集後,便產生了由人的臉部表情去辨識情緒的想法。

我們欲使用三種分類方法建立分類模型,分別是 K 最近鄰居法(K-Nearest Neighbors,以下簡稱 KNN)、隨機森林(Random Forest,以下簡稱 RF)以及支持向量機(Support Vector Machine,以下簡稱 SVM),探討何種模型在進行臉部表情辨識時,分類結果表現最好。

在預測圖像的分類結果時,最常見的說法便是支持向量機分類的準確度最高。因此,我們將探討若這三種方法應用在臉部表情的分類時,分類準確度最高的方法是否依然是支持向量機。另一方面,我們會將每一分類方法進行參數調整,以每一個最佳的配適模型,比較三種分類器的準確度。

貳、 文獻回顧

臉部表情在社交互動及研究情緒中提供了重要的行為測量。為了對表情圖 像進行分類,需進一步對影像進行分析、加工及處理,使其滿足視覺化和其他 要求的技術。大多數的影像都是以數字形式進行分析,灰階化便是其中之一。

灰階的影像中,通常以每個像素 8 bits 去做記錄,因此有 256 種不同的灰階(如圖 一),當值越高的時候,代表亮度越高。使用這種方式可以避免圖像失真,且較容易進行轉換。

從彩色影像轉換成灰階影像的過程稱為灰階化,可以通過 $\mathbf{R} \cdot \mathbf{G} \cdot \mathbf{B}$ 分量去做加權總合(如式 $\mathbf{1}$):

$$0.2989 \times R + 0.5870 \times G + 0.1140 \times B$$
 式 1

進行灰階化可以降低在運算上的複雜度之外,亦不影響圖像特徵的截取。 因黑白交替次數的頻率、長寬的比例等,皆與色彩因素無關,因此可以採用灰階化後的影像再去進行特徵的擷取。[1]

在分析臉部表情的圖像時,為了在截取特徵時去除雜訊,我們會以 130×105 的矩形,對影像中的五官區域進行裁切,以去除頭髮等不必要的資 訊。[2]

資料處理後,使用主成分分析(Principle Component Analysis,以下簡稱PCA)將資料做降維,並由特徵臉觀察每一主成分對影像之解釋[3]。每一張圖像可以由特徵臉的線性組合解釋,即為圖像中的可解釋變異[3]。

為了在比較不同分類器的準確度時,每一分類器可以用較好的參數使用模型進行比較,因此,可使用 K 折交叉驗證法在驗證時去調整參數,以選擇最佳參數後的配適模型。[4]

Songbo Tan(2005)提出鄰近加權 K—最鄰近法(Neighbor-weighted K-nearest neighbor,以下簡稱 NWKNN),當資料集中類別變數的個數不平均時,使用 NWKNN 其分類結果較 KNN 佳。[5]

Emir Kremic and Abdulhamit Subasi(2016)以隨機森林及支持向量機探討 臉部辨識分類的準確率,得出隨機森林分類的結果與支持向量機的分類的結果 不分軒輊,值得我們去探討。[6]

參、 分析方法

一、 K—最近鄰居法(K—Nearest Neighbor)

K—最近鄰居法(Fix et al., 1951)(如圖 二)是最常見的分類方法之一。 以已經被標籤的影像資料作為訓練集,當有新資料(即測試集)時,首先計算 該資料與其他資料的歐式距離,找出與測試集最鄰近的 K 個點,再以投票多數 決的方式判斷此測試集屬於何種分類。

圖 二 K—最近鄰居法

二、 隨機森林(Random Forest)

隨機森林 (Breiman, 2011) (如圖 三)是一個結合了 Bagging (Breiman, 2011)和決策樹的分類方法,並在 Bagging 的過程中加入了隨機分配的性質。

Bagging 不依賴早期的預測,每一棵樹皆是由重複抽樣(Bootstrap Sample)建構的,最後再以投票表決產生分類結果。在 RF 中,每個節點使用最佳節點進行分裂,在該節點隨機選擇它的的預測變量,這樣的做法使得其分類的表現較其他分類器好。

首先,在原始的資料中先抽取 n_{tree} 個重複抽樣的樣本。在每個重複抽樣的樣本中,種植未修剪的分類樹。在每一個節點中,隨機抽樣預測因子的 m_{try} ,並從這些變數中選擇最佳分裂。最後,藉由集合所有的 n_{tree} 的預測結果,使用多數表決分類預測新的資料。

在預測的過程中,我們可以獲得估計的錯誤率。在每一次重複抽樣的迭代中,預測不在重複抽樣樣本的資料(即所謂的"Out-Of Bag"(OOB)資料),並使用重複抽樣的決策樹。集合所有的OOB,計算出錯誤率,OOB即為預測的錯誤率。

圖 三 隨機森林

三、 支持向量機 (Support Vector Machine)

支持向量機(Vapnik et al.,1963)是一個二元分類器,為一種監督式學習的演算法,希望能在資料當中建構出一個超平面(hyperplane)(如圖 四),並且藉由此超平面將資料分成兩個類別,進而達到預測以及分類資料的作用。而超平面的選擇取決於希望距離兩個類別的資料越大越好,這樣才能夠更精準的分辨新的資料點屬於哪個類別,產生較小的誤差。同時也能做到結合核函數去處理非線性的資料,即以核函數把資料投射到更高維度的空間中,對資料去進行更好的分類。

圖 四 SVM 超平面

肆、 實證分析

一、資料蒐集

本研究使用 JAFFE 資料集(以下簡稱 JAFFE)以及我們所拍攝的照片(以下簡稱為 Students)建立一個新的資料集(以下簡稱為混合資料集),其中 JAFFE 有 151 筆數據,Students 有 100 筆數據。因此,混合資料集共有 251 筆數據,每一筆數據皆對應到一種表情。表情為本研究所要預測的應變數,共五種表情,分別是 1-生氣、2-開心、3-哀傷、4-厭惡、5-驚嚇。

二、資料處理

由於 JAFFE 的圖片像素為 256×256 且已經過灰階化,而 Students 的圖片像素為 3024×3024 且為全彩(如圖 五-左上),因此需將 Students 壓縮成 256×256(如圖 五-右上),並將壓縮後的 Students 進行灰階化(如圖 五-左下),藉由此步驟可以降低分析時的複雜程度。在經過壓縮後,我們將所有圖像疊合,如此一來便可確保所有圖像的五官能被完整截取(如圖 五-右下),其截取後的圖片像素為 130×105 —將每一圖片分割成 130 列 105 行,共 13650 格,每一個會對應到 0~255 其中一個數值。將每一圖片的 13650 個數值以列排序,並除之以 255 做標準化,固定數值於 0~1 之間。第一列即為第一張圖像(如圖 六),以此類推。

圖 五 影像大小固定→灰階化→切割

	x1	x2	x3	x4	x5	х6	x7	x8	 у
=	0.28951	0.323796	0.357103	0.263041	0.253739	0.161598	0.560203	0.587583	 1
6-	0.113584	0.146384	0.148605	0.169299	0.118706	0.101493	0.072843	0.051761	 1
	0.149531	0.09102	0.073827	0.337479	0.610626	0.644752	0.687937	0.701906	 1
	0.565961	0.386991	0.574534	0.699717	0.755689	0.717565	0.625205	0.429364	 1
	0.51908	0.525052	0.51002	0.510437	0.538712	0.53519	0.524261	0.508764	 1
	0.879473	0.871078	0.87941	0.574902	0.58515	0.582377	0.577261	0.574848	 2
	0.069649	0.087857	0.074125	0.106778	0.141042	0.043102	0.120977	0.107178	 2
	0.763725	0.729254	0.641506	0.418567	0.661088	0.65694	0.621028	0.617221	 2
	0.162221	0.126733	0.132218	0.166104	0.168294	0.135136	0.165989	0.08553	 2
	0.047472	0.055597	0.054875	0.062942	0.073392	0.408974	0.459547	0.447306	 2
	0.578432	0.588797	0.596065	0.593683	0.574834	0.592477	0.564724	0.537426	 3
	0.049605	0.080442	0.062063	0.068866	0.095031	0.091104	0.116908	0.116831	 3
	0.70913	0.261974	0.327623	0.132143	0.124573	0.683843	0.645474	0.652299	 3
	0.640317	0.379186	0.338454	0.316403	0.255473	0.192772	0.175832	0.14868	 3
	0.042248	0.048257	0.06802	0.050361	0.07488	0.050108	0.049894	0.063384	 3

圖 六 量化後的資料

三、 主成分分析(Principal Components Analysis, PCA)

因三個資料皆屬高維度、低樣本資料(High-Dimension, Low-Sample-Size data, HDLSS),我們利用奇異值分解(Singular Value Decomposition)方法,做 PCA 縮減維度[7],以便進行資料分析。我們將分別對 JAFFE、Students 以及混合資料集作主成分分析。

為了避免選取的主成分太少導致資料訊息流失過多,因此我們所選擇主成 分其累積解釋變異需達 70%。如圖 七所示,三個資料即提取的主成分個數分 別為: JAFFE 10 個, Students 15 個,以及混合資料集 12 個。

圖 七 PCA 累積解釋變異

決定主成分個數後,我們可利用特徵臉(Eigenface),觀察各主成分對影像之解釋。如圖 八至圖 十,JAFFE 的第一主成分在瞳孔的解釋比例明顯; Students 之第一主成分則是在眼部周圍的解釋比例明顯;而混合資料集的第一 主成分在瞳孔以及眼睛輪廓解釋的比例皆明顯。

圖 八 JAFFE 資料集特徵臉

圖 十 Students 資料集特徵臉

圖 九 混合資料集特徵臉

四、 K 折交叉驗證法(K-Fold Cross-Validation)

我們以資料集的 80%作為訓練集(Train Data),20%做為測試集(Test data)。首先,將訓練集分割成 K 個子樣本,其中,1 個子樣本作為驗證模型的數據(Validation),其他 K - 1 個樣本用來訓練模型。交叉驗證重複 K 次,每個子樣本(Validation)輪流驗證準確度(或錯誤率),再將 K 次結果平均,以得到準確度之估測值。利用交叉驗證,得到不同參數組合的錯誤率估計,以使模型分類錯誤率(error rate)最低的參數,建立最佳的分類模型,再使用此模型預測 20%的測試集,最終得到預測結果的混淆矩陣。見圖 十一。

圖 十一 K 折交叉驗證法

我們將以三種不同的方法—K 最近鄰居法(KNN)、隨機森林(Random Forest)以及支持向量機(SVM)做分類,並比較三種方法的準確率。

五、 K 最近鄰居法(KNN)

為了促進 KNN 的分類效果並避免資料偏斜的影響,本研究將根據距離的遠近,而這裡我們採用的是歐式距離的算法[8](如式 2),並以 NWKNN 方式調整投票的權重,使距離較近的,權重較大,最後各分類根據權重將會得到一個分數,選擇分數最高的作為分類結果。

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$
 $\ddagger 2$

在建立 KNN 模型的過程中,K 的選擇尤為重要。若是 K 太小,預測結果可能會受訓練集中偶然的異常值影響。若是 K 太大,也可能因資料偏斜,某個較大的類別出現的次數較多,導致分類結果被誤判。因此透過訓練集的 10-fold 交叉驗證,從 K=3~10 中,選取錯誤率最低的 K 建立模型,由圖 十二可見 JAFFE 資料集、Students 資料集、混合資料集三個模型最佳的 K 皆為 3。

圖 十二 KNN 10-fold 交叉驗證錯誤率

(一) JAFFE

對 JAFFE 建構的 KNN 模型準確度(Accuracy)為 86%, Kappa 係數 82%,可知模型整體分類結果良好,五種表情的特異性(Specificity)都非常高。此外,「開心」的敏感度(Sensitivity)、準確度都較其他四者低了許多,可知 KNN 對 JAFFE 資料集中,開心的分類能力其結果較差。(附錄 A.1 (A))

(二) Students

對 Students 建構的 KNN 模型準確度僅 15%,Kappa 為負,可知分類結果差強人意。跟 JAFFE 相反的是,敏感度在「開心」的表情最高。「生氣」及「厭惡」的表情分類結果明顯較其他三者低,且除了「開心」以外的表情陽性預測值(Positive Predict Value)都極低,由結果可發現只有「開心」的準確度最高,為 72%。(附錄 A.1 (B))

(三) 混合資料集

以混合資料集所建構的分類模型,其準確度為 47%。特異性在「生氣」、「開心」、「驚訝」皆有不錯的表現,然而敏感度在五種表情的表現卻中庸,可知此預測模型雖然對類別的陰性預測值(Negative Predict Value)高,陽性預測值卻無特別表現。對照偵檢率(Detection Rate),模型的確較難準確分類,因此Kappa 係數僅 34%,整體模型的準確度不高。(附錄 A.1 (C))

六、 隨機森林 (RF)

隨機森林是由多個決策樹[9]構成,決策樹中的每一個節點都是關於某個特徵的條件,為的是將數據集按照不同的響應變量一分為二。由於本研究為一分類器的準確度比較,因此我們採用 GINI 係數,其一次僅能產生兩個節點,即是(True)或否(False)的分類。我們將透過 Mean Decrease Gini 來衡量變數的重要性,值愈高即表示該變數對於模型的判別影響愈大。

在建立隨機森林的模型時,有兩個重要的參數,一為 n_{tree} ,另一為 m_{try} , n_{tree} 為決策樹的數量,通常越多的決策樹越好,但選擇超過所需的數量是不必要的,因此 n_{tree} 的選擇首先可以透過圖形判斷模型內誤差穩定時的值; m_{try} 為每棵樹的每一節點處隨機抽取 m 個特徵數(m < M,M 為樣本的變數),每棵樹之間的相關性越差,或樹之間是獨立的,則森林的分類性能越好。

(一) JAFFE

由圖 十三(左)中可發現錯誤率在 n_{tree} 為 400 至 600 之間時趨向穩定,因此在做 10-fold 交叉驗證時,給定參數 n_{tree} 分別為 400、500 以及 600,而 m_{try} 為 $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ 。此模型的 OOB 為 18.85%,在圖 十三(右)中,當 錯誤率越小時,顏色越深,因此當 $n_{tree} = 400$ 時, $m_{try} = 2$,此時錯誤率最 小,為 22.76%。

圖 十三 尋找 Random Forest 在 JAFFE 時的最佳參數

圖 十四中,可發現第六主成分的 Mean Decrease Gini 值最大,近 20,而第一主成分的 Mean Decrease Gini 值近 5;可知前者之重要性為後者的 4 倍,且對於模型的判別影響最大。

圖 十四 JAFFE 主成分重要性

我們發現,對 JAFFE 建構的 RF 分類模型,無論是準確度、Kappa 係數、敏感度或其他模型指標的值,皆與 SVM 相同,因此 RF 對 JAFFE 在不同分類分類的準確度也與 SVM 相同。(附錄 A.1 (D))

(二) Students

由圖 十五(左)中可發現錯誤率在 n_{tree} 為 400 至 600 之間時趨向穩定。 此模型的 OOB 為 75%,在圖 十五(右)中,當 $n_{tree}=500$ 時, $m_{try}=5$, 此時錯誤率為 76.25%。

圖 十五 尋找 Random Forest 在 Students 時的最佳參數

圖 十六中,可發現第四主成分的 Mean Decrease Gini 值最大,近 8,而第六主成分的 Mean Decrease Gini 值近 2;可知前者之重要性為後者的 4 倍,且對於模型的判別影響最大。

圖 十六 Students 主成分重要性

此模型的數據與 SVM 有些微差異,其準確度為 30%, Kappa 係數為 12.5%, 高於 SVM。與 SVM 不同的還有,對「開心」的敏感度更高,且「厭惡」的特異性反而高出許多。「驚訝」的分類表現則與 SVM 沒有太大差異。因此得到模型對「高興」的分類準確度最高,「厭惡」、「驚訝」的準確度次之。 (附錄 A.1 (E))

(三) 混合資料集

由圖 十七(左),可發現錯誤率在 n_{tree} 為 400 至 600 之間時趨向穩定。 此模型的 OOB 為 35.64%,由圖 十七(右)中可知,當 $n_{tree}=500$ 時, $m_{try}=2$,此時錯誤率為 34.67%。

圖 十七 尋找 Random Forest 在混合資料集時的最佳參數

由圖 十八,可發現第四主成分的 Mean Decrease Gini 近 20,最大,而第八 主成分的 Mean Decrease Gini 值接近 10,代表前者之重要性為後者的 2 倍,且 對於模型的判別影響最大。

圖 十八 混合主成分重要性

合併兩資料集所建構的分類模型,準確度、Kappa 係數與 SVM 相同。對混淆矩陣做計算,「開心」與「驚訝」的特異性及敏感度較其他三者高;而「生氣」的敏感度特別低,與開心差了 0.5,推測是因為 RF 在 Students 資料集分類「開心」時的準確度較 SVM 高。結果為「生氣」的準確度最低,而「開心」與「驚訝」的分類結果最好。雖然模型整體的準確度與 SVM 相同,但是對個別表情的分類能力不似 SVM 來的平均。(附錄 A.1 (F))

七、 支持向量機(SVM)

本研究利用 SVM 中,一對一(One-against-One)[10]之方法進行多元分類,即從 N 個類別中任選取兩個類別為一個組合,共 N(N-1)/2 種組合。依照這每種二類別組合去進行各二類別分類問題的分類器訓練。

此外,由於本研究之資料型態非線性,無法直接以一條線得到超平面。因此,我們利用 Radial Based Function(RBF)的核函數(如式 3、式 4)將資料投射到更高維度的特徵空間(Feature Space)中(如圖 十九)。其中,映射函數 ϕ 可將資料應射到特徵空間,以切割出較適合的超平面進行分類。

$$k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$
 \sharp 3

$$k(x_i, x_j) = \exp\left[\frac{-\|x_i - x_j\|^2}{2\sigma^2}\right]$$

圖 十九 特徵空間

RBF 所需的參數為 Gamma 和 C。 Gamma 參數用來決定資料點的影響力範圍。當 Gamma 值大時,資料點的影響力範圍較近,影響力權重也較大,易畫出擬合近點的超平面,造成過度擬合 (Overfitting)。反之, Gamma 值小時,遠的資料點也具影響力,畫出的超平面則較平滑。

SVM 分類的依據及是去計算最大的邊界(margin),以將資料分成兩邊。本研究將尋找一 Soft-Margin SVM,計算損失函數中的容錯項,C(cost)(如式5、式6),給予誤判的資料懲罰值,以適當地容錯。當C越大,容錯能力越小,反之,則 support vectors 越多,容錯能力較大。

minimize
$$\frac{1}{2} ||w||^2 + C \sum_i \xi_i$$

subject to
$$y_i(w^Tx_i - b) - 1 + \xi_i$$
, ξ_i $\Rightarrow 0 \quad \forall i$

在此給定適當的參數範圍, $C:1,2,\dots,10$; $Gamma:0.1,0.2,\dots,3.0$,經過 10-fold 交叉驗證,對每一參數組合訓練一對應之模型,總計 300 種模型。觀察每一個模型的錯誤率(error rate),以最低 error rate 者為最佳模型。

(→) JAFFE

JAFFE 以 C=3,Gamma=0.2 建構最佳模型,得到最小 error rate=0.162。Support Vector 共有 112 個,分別為「生氣」23 個、「開心」22 個、「哀傷」25 個、「厭惡」24 個、「厭惡」18 個。由圖 二十可知,準確度在 Gamma 值上升至 0.2 後便趨於平穩,因此選擇 0.2 作為 Gamma 的最佳參數值。而雖然 C 雖較混合資料集來的小,Support Vector 數卻較少,推測是因為 JAFFE 的影像辨識度較高,分類較準確,容錯率不必提高太多,因此大 margin 的需求較低,Support Vector 的數量便較少。

圖 二十 JAFFE 在 SVM 的準確度

此模型準確度為 89.7%, Kappa 係數為 87.1%, 皆比 KNN 模型來的高。對 混淆矩陣做計算, 發現「開心」的敏感度明顯較其他四者低很多,對照準確 度,得到模型在開心的分類結果最差。(附錄 A.1 (G))

(二) Students

Students 以 C=4 ,Gamma=0.1 建構最佳模型,得到最小的 error rate=0.825。 Support Vector 共有 79 個,分別為生氣 16 個、開心 15 個、哀傷 16 個、厭惡 16 個、驚訝 16 個。由圖 二十一可見,準確度在 Gamma 上升至 0.1 後趨於平穩,故選擇 0.1 作為 gamma 的最佳參數值。而此資料集之 C 值較 JAFFE 資料集大,且 error rate 相當高,推測是因 Students 資料集中的影像較難以辨識,因此需提高 C 值以降低容錯率,提升分類準確度。

圖 二十一 Students 在 SVM 的準確度

此模型準確度為 25%,而 Kappa 係數只有 6.25%,雖然較 KNN 高,分類表現仍不盡理想。我們可以發現「開心」的敏感度、偵檢率最高,而「哀傷」和「生氣」敏感度和偵檢率皆低至 0,「驚訝」的特異性則為第二高。結果顯示模型在「開心」的準確度最好,而「驚訝」的分類表現也較 KNN 好,推測為整體模型準確度較高的原因。(附錄 A.1 (H))

(三) 混合資料集

混合資料集以 C=5, Gamma=0.2 建構最佳模型,得到最小的 error rate =0.371。 Support Vector 共有 194 個,分別為「生氣」40 個、「開心」37 個、「哀傷」41 個、「厭惡」39 個、「驚訝」37 個。在選擇時,我們希望能得到的 C 和 Gamma 皆越小越好,如此一來模型較不容易過度擬合,訓練集資料的影響力也會較大,然而 C 也不能過小,否則容錯率過高、分類結果亦差。由圖 二十二可觀察出,Gamma 的值上升至 0.2 後,準確率便趨於平穩,故擇 Gamma=0.2 為最佳參數。此時 C 值之所以不太小,即是為了要避免容錯率太高。

圖 二十二混合資料集 在 SVM 的準確度

此模型準確度為 53.1%,而 Kappa 係數為 41.4%,兩者皆較 KNN 來的高。 五種表情的特異性皆不錯,與 KNN 不同的是,「開心」及「驚訝」的敏感度及特 異性都明顯優於其他三者。對照個別表情的分類準確度,「開心」與「驚訝」的 分類結果較好。整體模型的分類結果優於 KNN。(附錄 A.1 (I))

在三個資料集中,「開心」以及「驚訝」的 Support Vector 都較少,代表這兩種表情在分類上可以有較小的 margin,容錯率不需太大,因此我們進一步推測出 SVM 在這二種表情的分類上有較好的分類準確度。

伍、 結論

(一) 分類法之比較

在本研究中,10-fold 交叉驗證所選擇的最佳模型,錯誤率之差異皆在 5% 以內。此外,本研究固定五種表情個別的樣本數量差異於±1 之內,以降低分類 法所建立的模型受類別樣本數差異的影響。

以上述之基準,比較準確度及 Kappa 係數,三種分類法中,RF 資料集與 SVM 資料集表現皆最好,且分類能力相當;而 KNN 最差,分類能力較無顯著表現。RF 與 SVM 較明顯的差異可由 Students 發現:SVM 的準確度高 RF 5%。不過因 Students 的測試集僅 20 筆,實際上 RF 僅比 SVM 多分類正確一個「開心」的觀察值而已。整體而言,雖 RF 與 SVM 能力相當,RF 對「開心」的敏感度卻較高,而 SVM 對五種表情的分類能力有平均好的表現。

由於 Students 在採集過程中,五官位置移動的範圍較大,導致資料的變異也較大。RF 的 bagging 以及 SVM support vector 的數量可以減少分類受資料變異影響;然而 KNN 因對訓練集的依賴度比前二者高,因此 K 在做模型訓練時,可能會因受訓練集的資料變異影響,造成模型對分類的界線模糊。

(二) 資料對分類影響之探討

在「開心」、「傷心」和「驚訝」三種表情分類時,都有較高的比例被正確 預測,但「傷心」此分類的陽性預測值並不佳,推論是因為生氣的表情不夠明 顯,導致被誤判為「傷心」,而影響其陽性預測值。

因 JAFFE 之影像,臉部五官位置、膚色色調皆相似,分類器較易找到分類標準,因此 JAFFE 的分類準確度很高,僅「開心」誤判率較高。而我們自己建構的 Students,因表情不夠明顯,在三個分類方法中都表現得很差,僅「開心」的分類效果明顯較突出。在 Jaffe「開心」的影像中,有近三分之一的照片,嘴角無明顯上揚,但在 Students 中,大多數影像都是咧嘴笑,因此將兩項資料集結合起來後,便增加了 Jaffe 對於「開心」的分辨能力。

(三) 分析方法之改進

由於自己拍攝的資料五官位置不一導致整體的準確度下降,因此需結合臉部特徵擷取的技術來整理影像,且人臉資料是以 pixel 表達,膚色的不同、拍照的光線,皆會導致 pixel 值的變化,因此增加辨識影像的困難度。

陸、參考文獻

(一) 文獻

- [1] 張呈源 and 蘇彥彰, "停車場車牌辨識管理系統," 2014.
- [2] H.-B. Deng, L.-W. Jin, L.-X. Zhen, and J.-C. Huang, "A new facial expression recognition method based on local Gabor filter bank and PCA plus LDA," *International Journal of Information Technology*, vol. 11, pp. 86-96, 2005.
- [3] M. Agarwal, H. Agrawal, N. Jain, and M. Kumar, "Face recognition using principle component analysis, eigenface and neural network," in 2010 International conference on signal acquisition and processing, 2010, pp. 310-314.
- [4] C. Shao, K. Paynabar, T. H. Kim, J. J. Jin, S. J. Hu, J. P. Spicer, *et al.*, "Feature selection for manufacturing process monitoring using cross-validation," *Journal of Manufacturing Systems*, vol. 32, pp. 550-555, 2013.
- [5] S. Tan, "Neighbor-weighted k-nearest neighbor for unbalanced text corpus," Expert Systems with Applications, vol. 28, pp. 667-671, 2005.
- [6] E. Kremic and A. Subasi, "Performance of random forest and SVM in face recognition," *Int. Arab J. Inf. Technol.*, vol. 13, pp. 287-293, 2016.
- [7] K. Yata and M. Aoshima, "Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix," *Journal of multivariate analysis*, vol. 101, pp. 2060-2077, 2010.
- [8] 吳俊穎, "利用相似比例加權改善 KNN 演算法於偏斜資料之分類效能," 碩士論文,資訊工程學系碩士班,中華大學,2014.
- [9] L. E. Raileanu and K. Stoffel, "Theoretical comparison between the gini index and information gain criteria," *Annals of Mathematics and Artificial Intelligence*, vol. 41, pp. 77-93, 2004.
- [10] G. Anthony, H. Gregg, and M. Tshilidzi, "Image classification using SVMs: one-against-one vs one-against-all," *arXiv preprint arXiv:0711.2914*, 2007.

(二)圖片來源

圖 一 灰階量化表	http://rep.nuu.edu.tw/bitstream/197384625/5606/2/1
	1.%E5%81%9C%E8%BB%8A%E5%A0%B4%E8
	%BB%8A%E7%89%8C%E8%BE%A8%E8%AD%
	98%E7%AE%A1%E7%90%86%E7%B3%BB%E7
	<u>%B5%B1.pdf</u>
圖 二 K—最近鄰居法	https://medium.com/datadriveninvestor/knn-
	algorithm-and-implementation-from-scratch-
	<u>b9f9b739c28f</u>
圖 三 隨機森林	https://zhuanlan.zhihu.com/p/38484624
圖 四 SVM 超平面	https://zhuanlan.zhihu.com/p/31898820
圖 十一 K 折交叉驗證法	https://towardsdatascience.com/train-test-split-and-
	cross-validation-in-python-80b61beca4b6
圖 十九 特徵空間	http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tuto
	rials/SVM2.pdf

柒、 附錄

- A.1 五種表情在不同分類器中各項數據圖表
- (A) KNN-JAFFE 資料集

表一 JAFFE 混淆矩陣

混淆矩陣								
實際預測	生氣	開心	哀傷	厭惡	驚訝			
生氣	6	0	0	0	0			
開心	0	4	0	0	1			
哀傷	0	2	5	0	0			
厭惡	0	0	1	5	0			
驚訝	0	0	0	0	5			

表二 JAFFE 精準度及 Kappa 係數

Overall Statistics				
Accuracy	0.8621			
Карра	0.8276			

表三 JAFFE 表情各項數據

Statistics by Class								
Angry Happy Sad Disgust Surprise								
Sensitivity	1.0000	0.6667	0.8333	1.0000	0.8333			
Specificity	1.0000	0.9565	0.9130	0.9583	1.0000			
Positive Predict Value	1.0000	0.8000	0.7143	0.8333	1.0000			
Negative Predict Value	1.0000	0.9167	0.9545	1.0000	0.9583			

(B) KNN-Students 資料集

表四 Students 混淆矩陣

混淆矩陣									
實際預測	生氣	開心	哀傷	厭惡	驚訝				
生氣	0	2	2	1	0				
開心	0	2	0	0	1				
哀傷	1	0	0	1	1				
厭惡	3	0	1	1	2				
驚訝	0	0	1	1	0				

表五 Students 精準度及 Kappa 係數

Overall Statistics				
Accuracy	0.15			
Карра	-0.0625			

表六 Students 表情各項數據

70.1								
Statistics by Class								
Angry Happy Sad Disgust Surprise								
Sensitivity	0.0000	0.5000	0.0000	0.2500	0.0000			
Specificity	0.6875	0.9375	0.8215	0.6250	0.8750			
Positive Predict Value	0.0000	0.6667	0.0000	0.1429	0.0000			
Negative Predict Value	0.7333	0.8824	0.7647	0.7692	0.7778			

(C) KNN-混合資料集

表七 混合資料集混淆矩陣

混淆矩陣									
實際預測	生氣	開心	哀傷	厭惡	驚訝				
生氣	4	0	2	1	0				
開心	0	5	0	0	2				
哀傷	3	4	5	4	0				
厭惡	3	1	3	4	3				
驚訝	0	0	0	0	5				

表八 混合資料集精準度及 Kappa 係數

Overall Statistics				
Accuracy	0.4694			
Карра	0.3382			

表九 混合資料集表情各項數據

Statistics by Class								
Angry Happy Sad Disgust Surpris								
Sensitivity	0.4000	0.5000	0.5000	0.44444	0.5000			
Specificity	0.92308	0.9487	0.7179	0.7500	1.0000			
Positive Predict Value	0.57143	0.7143	0.3125	0.28571	1.0000			
Negative Predict Value	0.85714	0.8810	0.8485	0.85714	0.8864			

(D) RF-JAFFE 資料集

表十 JAFFE 混淆矩陣

混淆矩陣						
實際預測	生氣	開心	厭惡	驚訝		
生氣	6	0	0	0	0	
開心	0	4	0	0	1	
哀傷	0	2	6	0	0	
厭惡	0	0	0	5	0	
驚訝	0	0	0	0	5	

表十一 JAFFE 精準度及 Kappa 係數

Overall Statistics				
Accuracy 0.8996				
Карра	0.8705			

表十二 JAFFE 表情各項數據

2011 70000							
Statistics by Class							
Angry Happy Sad Disgust Surprise							
Sensitivity	1.0000	0.6667	1.0000	1.0000	0.8333		
Specificity	1.0000	0.9565	09130	1.0000	1.0000		
Positive Predict Value	1.0000	0.8000	0.7500	1.0000	1.0000		
Negative Predict Value	1.0000	0.9167	1.0000	1.0000	0.9583		

(E) RF-Students 資料集

表十三 Students 混淆矩陣

混淆矩陣							
實際預測	生氣	開心	哀傷	厭惡	驚訝		
生氣	0	0	1	0	0		
開心	1	4	1	0	1		
哀傷	1	0	0	2	2		
厭惡	2	0	0	1	0		
驚訝	0	0	2	1	1		

表十四 Students 精準度及 Kappa 係數

	= = =				
Overall Statistics					
Accuracy	0.3				
Карра	0.125				

表十五 Students 表情各項數據

7/11/2007							
Statistics by Class							
Angry Happy Sad Disgust Surprise							
Sensitivity	0.0000	1.0000	0.0000	0.2500	0.2500		
Specificity	0.9375	0.8125	0.6875	0.8750	0.8125		
Positive Predict Value	0.0000	0.5714	0.0000	0.3333	0.2500		
Negative Predict Value	0.7895	1.0000	0.7333	0.8235	0.8125		

(F) RF-混合資料集

表十六 混合資料集混淆矩陣

混淆矩陣							
實際預測	生氣	開心	哀傷	厭惡	驚訝		
生氣	3	0	1	3	0		
開心	0	8	0	0	2		
哀傷	2	1	5	2	0		
厭惡	2	0	4	4	2		
驚訝	3	1	0	0	6		

表十七 混合資料集精準度及 Kappa 係數

Overall Statistics				
Accuracy 0.5396				
Карра	0.4139			

表十八 混合資料集表情各項數據

7117 1 113 - 7 1 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1							
Statistics by Class							
Angry Happy Sad Disgust Surprise							
Sensitivity	0.3000	0.8000	0.5000	0.44444	0.6000		
Specificity	0.89744	0.9487	0.8718	0.8000	0.8974		
Positive Predict Value	0.42857	0.8000	0.5000	0.33333	0.6000		
Negative Predict Value	0.83333	0.9487	0.8718	0.86486	0.8974		

(G) SVM-JAFFE 資料集

表十九 JAFFE 混淆矩陣

混淆矩陣							
實際預測	生氣	開心	哀傷	厭惡	驚訝		
生氣	6	0	0	0	0		
開心	0	4	0	0	1		
哀傷	0	2	6	0	0		
厭惡	0	0	0	5	0		
驚訝	0	0	0	0	5		

表二十 JAFFE 精準度及 Kappa 係數

Overall Statistics				
Accuracy 0.8966				
Карра	0.8705			

表二十一 JAFFE 表情各項數據

Statistics by Class							
Angry Happy Sad Disgust Surprise							
Sensitivity	1.0000	0.6667	1.0000	1.0000	0.8333		
Specificity	1.0000	0.9565	0.9130	1.0000	1.0000		
Positive Predict Value	1.0000	0.8000	0.7500	1.0000	1.0000		
Negative Predict Value	1.0000	0.9167	1.0000	1.0000	0.9583		

(H) SVM-Students 資料集

表二十二 Students 混淆矩陣

混淆矩陣					
實際預測	生氣	開心	哀傷	厭惡	驚訝
生氣	0	0	2	1	1
開心	0	3	0	0	0
哀傷	1	0	0	1	1
厭惡	3	0	2	1	1
驚訝	0	1	0	1	1

表二十三 Students 精準度及 Kappa 係數

Overall Statistics			
Accuracy 0.25			
Карра	0.0625		

表二十四 Students 表情各項數據

KIN 1 // XXXX					
Statistics by Class					
Angry Happy Sad Disgust Surprise					Surprise
Sensitivity	0.0000	0.7500	0.0000	0.2500	0.2500
Specificity	0.7500	1.0000	0.8125	0.6250	0.8750
Positive Predict Value	0.0000	1.0000	0.0000	0.1429	0.3333
Negative Predict Value	0.7500	0.9412	0.7647	0.7692	0.8235

(I) SVM-混合資料集

表二十五 混合資料集混淆矩陣

混淆矩陣					
實際預測	生氣	開心	哀傷	厭惡	驚訝
生氣	4	0	2	2	0
開心	0	6	0	0	2
哀傷	3	2	5	3	0
厭惡	3	1	3	4	1
驚訝	0	1	0	0	7

表二十六 混合資料集精準度及 Kappa 係數

Overall Stat	tistics
Accuracy	0.5306
Карра	0.4139

表二十七 混合資料集表情各項數據

Statistics by Class					
Angry Happy Sad Disgust Surprise					Surprise
Sensitivity	0.4000	0.6000	0.5000	0.44444	0.7000
Specificity	0.89744	0.9487	0.7949	0.8000	0.9744
Positive Predict Value	0.5000	0.7500	0.3846	0.3333	0.8750
Negative Predict Value	0.85366	0.9024	0.8611	0.86486	0.9268

A.2 不同分類器及不同資料集混淆矩陣

圖 二十三 混淆矩陣的熱圖

分工表

<u> </u>	
姓名	分工事項
顧育如	資料處理、隨機森林、支持向量機
林奕辰	資料處理、隨機森林
張鈞怡	隨機森林、書面整理
吳佳璇	支持向量機、書面整理
莊雅雯	資料視覺化分析、K—最近距離法