${\bf DifferenzkokernUndKoproduktDef}$

Definition 1.

NeuDifferenzenkokerndef"

Bemerkung 2. [Wikipedia] Sei A eine Kategorie. Sei weiter $C_1, C_2 \in Obj_A$ und $f, g \in Hom_A(C_1, C_2)$.

Im Falle der Existenz ist der Differnenzenkokern von f, g nach definition 1 durch ein Objekt $C \in Obj_A$ und einen Morphismus $\psi = \{\psi_{C_1}, \psi_{C_2}\}$ gegeben, wobei gilt:

$$\psi_{C_2} = f \circ \psi_1 = g \circ \psi_2$$

Wir sehen, dass ψ eindeutig durch $q := \psi_2 \in Hom_{\mathcal{A}}(C_1, C_2)$ gegeben ist. Der Differnzenkokern ist also eindeutig durch $(C \in obj_{\mathcal{A}}, q \in Hom_{\mathcal{A}}(C_1, C_2))$ gegeben, wobei q folgenden Eigenschaften besitzt:

Es gilt $f \circ q = g \circ g$ und für alle $C \in Obj_A$ und $q' \in Hom_A$ mit $f \circ q' = g \circ q'$ existiert genau ein $\varphi \in Hom_A$, mit $q \circ \varphi = q'$:

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} C$$

$$\downarrow q' \qquad \downarrow \exists ! \varphi$$

$$C'$$

Wenn wir fortan vom Differenzkokern sprechen meinen wir damit das Paar (C,q).

NeuDifferenzenkokerndef'

Lemma 3. /Wikipedia/

(1.) Sei weiter $C \in Obj_{\mathcal{C}}$ und $q: C_2 \longrightarrow C$ mit $f \circ q = g \circ q$ und der folgenden universellen Eigenschaft gegeben:

Für alle $C' \in Obf_{\mathcal{C}}$ und $q' \in Hom_{\mathcal{A}}(C_2, C')$, mit $f \circ q = g \circ q$ erfüllen existiert genau ein $\varphi \in Hom_{\mathcal{A}}$, mit $q \circ \varphi = q'$:

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} C$$

$$\downarrow \exists ! \varphi$$

$$C'$$

Dann existiert den Differenzkokern von f, g und ist durch C und den Morphismus $\psi: \mathcal{C} \longrightarrow C$ mit $\psi_{C_1} = f \circ q$ und $\psi_{C_2} = q$ gegeben.

(2.) Falls der Differenzkokern (C, ψ) von f, g existiert, so existiert auch ein eindeutiges $q \in Hom_{\mathcal{A}}(C_2, C)$, welches die in (1.) beschriebenen Eigenschaften erfüllt.

Beweis. \Box

NeuDifferenzenkokerndef [vlg. Wikipedia aber eigener Beweis]

Lemma 4. Sei A eine Kategorie mit $C_1, C_2 \in Hom_A(C_1, C_2)$, so sind folgende Formulierungen äquivalent zur Definition des Differenzkokern's $T := \lim_{n \to \infty} C$

- 1. Es existiert ein Morphismus $\psi: \mathcal{C} \longrightarrow T$, mit der Eigenschaft, dass für alle Morphismen $\psi': \mathcal{C} \longrightarrow T'$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ \psi = \psi'$ existiert.
- 2. Es existiert ein $q \in Hom_{\mathcal{A}}(C_2, T)$ mit $q \circ f = q \circ g$ und der Eigenschaft, dass für alle Morphismen $q' \in Hom_{\mathcal{A}}(C_2, Z)$ mit $q' \circ f = q' \circ g$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ q = q'$ existiert.

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} T$$

$$\downarrow \exists ! \varphi$$

$$T'$$

Beweis. 1. ist offensichtlich eine Ausformulierung der Einführung des Kolimes aus ??, zeige also im folgenden noch die Äquivalenz von 1. und 2.

• $1 \Rightarrow 2$:

Da $\psi: \mathcal{C} \longrightarrow T$ ein Morphismus ist, gilt für $\{f, g\} = Hom_{\mathcal{C}}(C_1, C_2)$: $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_1} \circ \psi_{C_2}$, setze also $q := \psi_{C_2}$.

Sei nun $q' \in Hom_{\mathcal{A}}(C_2, T)$ mit der Eigenschaft $q' \circ f = q' \circ g$ gegeben: Definiere den Morphismus $\psi' : \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q' \circ f, \psi_2 = q'\}$, somit folgt direkt aus der Universellen Eigenschaft von ψ , dass genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ existiert, mit $\varphi \circ q = q'$.

• $2 \Rightarrow 1$:

Definiere $\psi: \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q \circ f, \psi_2 = q\}$. Durch die Eigenschaft von q gilt $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_2} \circ g$.

Sei nun $\psi': \mathcal{C} \longrightarrow \mathcal{A}$ ein beliebiger Morphismus.

Definiere $d' := \psi'$, somit existiert durch die Eigenschaft von d genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ mit $\varphi \circ q = q'$.

$$\Rightarrow \varphi \circ \psi_2 = \psi_2'$$
 und $\varphi \circ \psi_1 = \varphi \circ \psi_2 \circ f = \varphi \circ \psi_2' \circ f = \varphi \circ \psi_1'$

Wenn im weiteren Verlauf von dem Differenzkokern zweier Homomorphismen $f,g:C_1\longrightarrow C_2$ gesprochen wird, meinen wir damit den Homomorphismus $q:C_2\longrightarrow T$ aus lemma 4.