Среди множеств и определенных на них операций, укажите алгебры:

+ $< Z_1 + . \times >$, где \times – декартово произведение

✓ 2) < ∆, преобразования плоскости, переводящие треугольник в себя >, где ∆ – множество равносторонних треугольников с центром в начале координат

 $\sqrt{3}$ < N, HOД(n,m), HOK(n,m) >

 \checkmark 4) < Q(X), $\circ >$, где Q(X) – множество бинарных отношений на X с операцией композициз

 $\sqrt{5}$ < $Z_{[n]}$, разность, возведение в степень $n \in N >$

✓ 2. Рассмотрим алгебру < M, ·> где M – множество квадратных матриц вида $\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$, $a,b,d \in R$ Укажите:

а) Левый нейтральный элемент

б) Правый нейтральный элемент т

с) Нейтральный элемент

1) $\begin{pmatrix} d & 1 \\ 0 & 0 \end{pmatrix}$ 3) $\begin{pmatrix} 0 & 1 \\ d & 0 \end{pmatrix}$ 2) $\begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$ 4) $\begin{pmatrix} 0 & 0 \\ d & 1 \end{pmatrix}$

5) не существует

 \checkmark 3. Рассмотрим тождества группы, где $x_0 ∈ X$, m,n ∈ Z:

2 a) $\forall x,y \in X - (x+y) = (-y) + (-x)$

d) $mx_0 + nx_0 = (m+n)x_0$

4 b) $\forall y \in X - (-y) = y$

e) $n(mx_0) = (mn)x_0$

3 c) $(-n)x_0 = -(nx_0)$

Укажите соответствующие тождества в мультипликативной форме записи:

1) $x_0^m \cdot x_0^n = x_0^{m+n}$

4) $\forall x \in X (x^{-1})^{-1} = x$

2) $(x \cdot y)^{-l} = y^{-l} \cdot x^{-l}$

5) $(x_0^m)^n = x_0^{m-n}$

3) $x_0^{-n} = (x_0^n)^{-1}$

6) нет правильного ответа

Укажите циклические группы или группы, имеющие циклические подгруппы:

 $Y A = \langle Z_{\beta}, \otimes, [1] \rangle$

2) $A = \langle M_I, \cdot \rangle$ где M_I – множество квадратных матриц с целыми элементами, det M = 1

31 A= < N. +. 0>

✓ 4) $A = < f_X, ⋄>$, где f_X – биекции X на себя, |X|=3

 $5XA = \langle W(X), ^{\wedge}, \Lambda \rangle$, где W(X) – множество слов алфавита X с операцией конкатенации

5. Пусть < X ,+ ,· >- алгебра. Какие из представленных ниже аксиом являются аксиомами

а) Моноида по сложению? 1,2

b) Моноида по умножению?

1) $\forall x, y \in X \ (x+y)+z = x+(y+z)$

6) $\exists 1 \in X \ \forall x \in X \ x \cdot 1 = 1 \cdot x = x$

2) $\exists 0 \in X \ \forall x \in X \ x + 0 = 0 + x = x$

7) $\forall x \in X \exists x^{-1} \in X \ x \cdot x^{-1} = x^{-1} \cdot x = 1$

3) $\forall x \in X \exists -x \in X \ x + (-x) = (-x) + x = 0$

8) $\forall x, y \in X \ x \cdot y = y \cdot x$

4) $\forall x, y \in X \ x+y = y+x$

9) $\forall x,y,z \in X \ z \cdot (x+y) = z \cdot x + z \cdot y \cdot (x+y) \cdot z = x \cdot z + y \cdot z$

5) $\forall x, y \in X (x \cdot y) \cdot z = x \cdot (y \cdot z)$

10) $\forall x \neq 0 \exists x^{-1} \in X \ x \cdot x^{-1} = x^{-1} \cdot x = 1$

11) Х - конечное множество

 $\sqrt{6}$. Пусть < X, +, $\cdot >$ - алгебра. Какие из представленных ниже аксиом являются аксиомами

а) Аддитивной группы? 1,2,3,4

b) Мультипликативной группы? 5,6,7,8

<Oтветы см. u. 5>

поля?	 8. Пусть < X ,+ ,· > − алгебра. Какие из представленных ниже аксном являются аксномами поля? Ответы см. п. 5> 1,2,3,4,5,6,9,10 					
9. Пусть « Галуа?	< X ,+, → алгебра. 1	Какие из представле	нных ниже ак	сиом являются акси	омами поля	
	ы см. п. 5 > 1,2,3,4,5,6	0,9,10,11				
77 0	(n) – функция Эйлера. $\phi(5!) = \phi(1) \ \phi(2) \ \phi(3) \ \underline{\phi(4)}$					
**	(479) = 478 (0)=0 lусть n =20, делители ч		5 10 203 Re	опио ли что Уділо С	$\rho(d) = 20$?	
\checkmark 4) 1 \checkmark 5) n	=20, простые делители $=20$, простые делители	исла 20: п∈{1, 2, 4 и числа 20: p∈{2, 5	}. Верно ли, ч	$\phi(20) = 20 \prod_{p 2}$	$_{0}(1-\frac{1}{p})$?	
√ 11. Укажит	е условия, при которых	к выполняются срав	нения:			
a) a b) a	$a^{n-1} = 1 \pmod{n} 2,3,4$ $a^n = a \pmod{n} 2,3$	c) $a^{\alpha(n)} = 1 \pmod{n}$ d) $a^{-1} = a^{(n)-2} \pmod{n}$	2 4 5 n) 34			
	1) n∈N 4) HOД (a,n)=1					
	 а∈N n – простое числ 	5) φ(n) – фунг	щия Эилера			
✓ 12. Укажит ных алг	е, к какому классу алг гебр:	ебраических структ	ур, где п∈N, о	тносится каждая и	з перечислен-	
$(a) < Z_{[i]}$,,⊕ > 2	d) $\langle Z_{[n]}, \oplus, \otimes \rangle$				
b) < Z ₁ ,	$ \bullet,+,\bullet,0,1>4$	e) $\langle Z_{[n,r]}, \otimes \rangle$ 3				
2)	Коммутативный монов Коммутативная группа Коммутативная группа	а по сложению	5) Поле Галу	ивное кольцо уг ильного ответа		
, 13. Vкажи	те, к какому классу алг	гебраических струк	ур, где <i>p</i> – пр	остое число, относ	ится каждая из	
không có phần tử trung h a) < Z	ω,⊕ > °	d) $\langle Z_{[p]}, \oplus \rangle$ 2 e) $\langle Z_{[p]}, \otimes \rangle$ 1 f) $\langle Z_{[p]}, \oplus, \otimes \rangle$ 5				
c) < Z*	(p), ⊕, ⊗ > 0		4) Voine	утативное кольцо		
	 Коммутативный м Коммутативная гр Коммутативная гр 	VIIIIa no chomenno	5) Поле	(- 7)	i	
21 21 21 21	отрим $A = \langle Z_{[17]}, \otimes \rangle$ $A = $ мультипликативна $A = $ коммутативная гр Группа $A = $ циклической Порядок циклической $4, 8, 16$ $14^{16} = 1$ в $Z_{[17]}$	уппа по умноженив	ению порядка о порядка Ø(1 денной элеме	1 16 7) ентом <i>а∈Z[17</i>], мож	кет быть равен	

✓ ⁷ <Ответы см. п. 5> 1,2,3,4,5,6,9

/	15. Vrawara		определяющие поисти
•	a) D	выражения,	определяющие почеть

- а) Верхней полурешетки 2,3,5
- Ы Нижней полурешетки
- 1) $\forall x, y \in X : x \leq y \Leftrightarrow x \wedge y = x$
- 2) $x \lor y = sup \{x,y\}$ решетчатое объединение
- 5) нуль полурешетки

3) $\forall x, y \in X : x \leq y \Leftrightarrow x \lor y = y$

6) единица полурешетки

- 7) тождества поглощения
- 4) $x \wedge y = \inf\{x,y\}$ решетчатое пересечение
- / 16. Пусть X некоторое множество (конечное или бесконечное). Рассмотрим решетку < N, m|n>. Укажите:
 - а) Операцию верхней полурешетки и се нуль 1,3
 - б) Операцию нижней полурешетки и ее единицу
 - 1) $\forall n,m \in N \ HOД(n,m)$
- 4) не существует
- ∀n,m∈N HOK (n,m)
- 5) Ø

- 17. Укажите дистрибутивные решетки:

W

2)

b E loxe.

'CAC

BI

TH

14

M

H

- $\sqrt{18}$. Пусть $E = \{x_1, x_2, x_4\}$ некоторое множество. Укажите, какие из приведенных множеств являются:
 - а) Нечеткими подмножествами Е 2,3,4
 - б) Обычными (четкими) подмножествами Е 2,4

решётка

- $\{(x_1|0,5), (x_2|0), (x_3|0,1), (x_4|1)\}$
- 2) $\{(x_i|0), (x_i|0), (x_i|0)\}$
- 3) $\{(x_1|0,5), (x_3|1), (x_4|0)\}$
- 4) $\{(x_i|0), (x_i|1), (x_i|0)\}$
- $(x_1|0.5), (x_1|1.1), (x_4|0.8)$
- ✓ 19. Пусть E некоторое множество, \widetilde{A} нечеткое подмножество на E. Укажите, какие из приведенных характеристик подмножества $\widetilde{\mathbf{A}}$ не являются подмножествами E:
 - 1) Носитель
- 3) Ядро
- 5) множество идеальных элементов

- ✓ 2) Высота
- 4) Граница
- Укажите, какие из операций над нечеткими подмножествами обладают всеми тремя свойствами: коммутативность, ассоциативность, идемпотентность?
 - 1) Разность
- 3) Алгебраическая сумма
- √5) Пересечение

- Объединение 4) Алгебраическое произведение
- ✓ 21. Даны нечеткие подмножества множества $E = \{x_1, x_2, x_3, x_4\}$: $\widetilde{A} = \{(x_1|0,4), (x_2|0,2), (x_3|0), (x_4|1)\}, \ \widetilde{B} = \{(x_1|0,3), (x_2|0,1), (x_3|0,7), (x_4|0)\}.$

Укажите верные утверждения:

1)
$$\widetilde{B} = \emptyset$$

$$4)\widetilde{A} - \widetilde{B} = \widehat{B}$$

$$\sqrt{2}$$
) $\widetilde{A} \cap \widetilde{B} \subseteq \widetilde{B}$

1)
$$\widetilde{B} = \emptyset$$

 $\sqrt{2}$ $\widetilde{A} \cap \widetilde{B} \subseteq \widetilde{B}$
2) $\widetilde{A} \cap \widetilde{B} \subseteq \widetilde{B}$
5) $\widetilde{A} \oplus \widetilde{B} \neq \emptyset$

$$\checkmark$$
3) $\widetilde{A} \subseteq \widetilde{A} \cup \widetilde{B}$

 \checkmark 22. Пусть E- некоторое множество, $\widetilde{A}-$ нечеткое подмножество на E. Пусть \widetilde{A}_{α_1} и $\widetilde{A}_{\alpha_2}-$ множества - ATRA.

 α уровней, где $\alpha_l \ge \alpha_2$. Что верно? 1) $\widetilde{A}_{\alpha_1} = \widetilde{A}_{\alpha_2}$ 3) $\widetilde{A}_{\alpha_1} \cap \widetilde{A}_{\alpha_2} = \emptyset$ 2) $\widetilde{A}_{\alpha_1} \supset \widetilde{A}_{\alpha_2}$ 4) $\widetilde{A}_{\alpha_1} \subset \widetilde{A}_{\alpha_2}$

 $\sqrt{5}$) $\widetilde{A}_{\alpha_1} \cap \widetilde{A}_{\alpha_2} \neq \emptyset$

2) $\widetilde{A}_{\alpha_1} \supset \widetilde{A}_{\alpha_2}$

 $\sqrt{23}$. Укажите, какая из приведенных числовых функций – расстояний r между нечеткими подмножествами \widetilde{A} и \widetilde{B} – удовлетворяет условию $r(\widetilde{A}, \widetilde{A})=0$:

(1) $d(\widetilde{A}, \widetilde{A})$ (2) $\delta(\widetilde{A}, \widetilde{A})$

- \checkmark 3) $e(\widetilde{A}, \widetilde{A})$ \checkmark 4) $e^2(\widetilde{A}, \widetilde{A})$

 $\sqrt{5}$) $\varepsilon(\widetilde{A},\widetilde{A})$