BEST AVAILABLE COPY

PICTURE READER

Patent number:

JP2001238053

Publication date:

2001-08-31

Inventor:

HAMASUNA SHUNSUKE

Applicant:

FUJI XEROX CO LTD

Classification:

- international:

G06T1/00; G06T5/00; H04N1/028; H04N1/19;

H04N1/409; H04N1/48; G06T1/00; G06T5/00;

H04N1/028; H04N1/19; H04N1/409; H04N1/48; (IPC1-

7): H04N1/19; G06T1/00; G06T5/00; H04N1/028;

H04N1/409; H04N1/48

- european:

Application number: JP20000048590 20000225 Priority number(s): JP20000048590 20000225

Report a data error here

Abstract of JP2001238053

PROBLEM TO BE SOLVED: To solve the problem that the cost is increased considerably due to the increase in the circuit scale corresponding to the increase in the number of photoelectric converters (pixel arrays) in the case of applying the technique of a picture reading sensor obtained by assuming reading of a monochromatic picture to reading of a color picture as it is. SOLUTION: The picture reading sensor 1 has respective pixel arrays of R, G and B for reading color picture information and a pixel arrays for reading monochromatic picture information. Picture data LR, LG and LB obtained corresponding to the respective pixel arrays of R, G and B are converted to the monochromatic picture information L* by an RGB&rarr L* conversion circuit 11. The circuit of the poststage compares monochromatic picture information LW obtained from the sensor 1 with the information L* obtained by the circuit 11 at the same reading position of an original to detect noise component such as black line generated on a reading picture due to stuck dust on a reading optical system.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-238053 (P2001-238053A)

(43)公開日 平成13年8月31日(2001.8.31)

(51) Int.Cl. ⁷		識別記号		FΙ			Ŧ	-73-}*(参考)
H 0 4 N	1/19			H04N	1/028		С	5B047
G06T	1/00				1/04		103E	5B057
	5/00	•		G06F	15/64		310	5 C 0 5 1
H 0 4 N	1/028				15/68		350	5 C O 7 2
	1/409			H04N	1/40		101C	5 C 0 7 7
			客查請求	未請求 請求	R項の数5	OL	(全 16 頁)	最終頁に続く

(21)出願番号 特願2000-48590(P2000-48590) (71)出願人 000005496 富士ゼロックス株式会社 東京都港区赤坂二丁目17番22号 (72)発明者 疾砂 俊輔 神奈川県海老名市本郷2274番地 富士ゼロックス株式会社海老名事業所内 (74)代理人 100086298

最終頁に続く

(54) 【発明の名称】 画像競取装置

(57)【要約】

【課題】 モノクロ画像の読取りを想定して為された画像読取センサの技術をそのままカラー画像の読取りに適用した場合、光電変換素子 (画素列)の数が多くなるため、それに対応して回路規模が増大し、大幅なコストアップとなる。

【解決手段】 画像読取センサ1は、カラー画情報を読み取るR、G、Bの各画素列と、モノクロ画情報を読み取る画素列とを有する。R、G、Bの各画素列に対応して得られる画像データLR、LG、LBは、RGB→L*変換回路11でモノクロ画像情報L*に変換される。そして、後段の回路において、原稿の同一読取位置における画像読取センサ1から得られたモノクロ画情報LWとRGB→L*変換回路11で得られたモノクロ画像情報にL*とを比較することにより、読取光学系上の付着ゴミなどに起因して読取画像上に発生する黒すじ等のノイズ成分を検出する。

弁理士 船橋 國則

【特許請求の範囲】

【請求項1】 原稿のカラー画情報を読み取る第一読取手段と、

原稿のモノクロ画情報を読み取る第二読取手段と、前記第一読取手段によって読み取られたカラー画情報からモノクロ画情報を得るモノクロ画情報取得手段と、原稿の同一読取位置における前記第二読取手段によって読み取られたモノクロ画情報の値と前記モノクロ画情報取得手段によって得られたモノクロ画情報の値とを比較してノイズを検出するノイズ検出手段とを備えることを 10 特徴とする画像読取装置。

【請求項2】 請求項1記載の画像読取装置においてさらに、

前記ノイズ検出手段の検出出力に基づいて、前記第一読取手段または前記第二読取手段から出力される読取画像 データを補正する補正手段を有することを特徴とする画 像読取装置。

【請求項3】 前記補正手段は、前記ノイズ検出手段が 前記第一読取手段側の異常に起因するノイズを検出した とき、異常画素データを出力する画素を除くその周辺画 20 素の画素データから補間データを生成し、この補間デー タによって異常画素データを置き換えることを特徴とす る請求項2記載の画像読取装置。

【請求項4】 前記補正手段は、前記ノイズ検出手段が 前記第二読取手段側の異常に起因するノイズを検出した とき、原稿の同一読取位置において前記モノクロ画情報 取得手段で得られる画像情報によって異常画素データを 置き換えることを特徴とする請求項2記載の画像読取装 置。

【請求項5】 前記第一読取手段は、原稿搬送方向に等間隔に配置され、かつ原稿搬送方向に直交する方向に延びる複数本の画素列からなり、

前記第一読取手段と前記第二読取手段との間の距離が、 前記第一読取手段の各画素列間の距離よりも長く設定さ れていることを特徴とする請求項1記載の画像読取装 置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複写機やファクシミリ等の画像処理装置に用いられる画像読取装置に関し、特に自動原稿搬送装置を有し、この自動原稿搬送装置によってシート状原稿を移動させながら当該原稿上の画像を読み取る画像読取装置に関する。

[0002]

【従来の技術】従来、複写機やファクシミリ等の画像処理装置には、自動原稿搬送装置によってシート状原稿を移動させながら当該原稿上の画像を読み取る原稿移動型画像読取装置を有する構成のものがある。この種の画像読取装置では、原稿を読取位置固定する一方、光学系を移動させながら原稿上の画像を読み取る構成の原稿固定 50

型画像読取装置に比べて、読取速度が速いという利点がある。

【0003】この原稿移動型画像読取装置を有する複写機やファクシミリ等の画像処理装置では、原稿に付着したゴミが原稿台のコンタクトガラスを汚したり、あるいはコンタクトガラスに付着したりする場合がある。この場合に、その汚れや付着ゴミが画像読取装置によって読み取られ、その結果、コピー画像や送信画像に、原稿にはない副走査方向に延びた縦すじが発生することになる。

【0004】これは、原稿移動型画像読取装置では原稿の浮きをなくすのを目的として、コンタクトガラス上の原稿を読み取る位置での搬送ギャップを最も狭くしていることから、その位置で原稿上に付着したほこりや異物が原稿搬送中にコンタクトガラスに付着しやすくなるためである。その結果、コンタクトガラスを汚して縦すじ(以下、付着ゴミによる縦すじと称す)の原因となったり、あるいは、コンタクトガラスを汚さなくても一時的に読取位置にとどまるだけでも縦すじ(以下、浮遊ゴミによる縦すじと称す)の原因となってしまう。

【0005】これら付着ゴミによる縦すじや浮遊ゴミによる縦すじが読取画像上に発生しないようにするために、従来、光電変換素子を原稿搬送方向に複数個配列し、原稿読取時に原稿の同一読取位置におけるこれら光電変換素子からの画像データを比較し、これら画像データに差異がある場合には画像ノイズとして検出し、この検出ノイズを除去する構成の装置が提案されている(例えば、特開平9-139844号公報参照)。

【0006】この種の装置は、特開平5-2658号公報、特開平6-70099号公報、特開平9-2791 0号公報などにも開示されており、原稿移動型画像読取 装置において、コンタクトガラス上の付着ゴミによる縦 すじや浮遊ゴミによる縦すじを防止する対策として有効 な手法と言える。

[0007]

【発明が解決しようとする課題】しかしながら、上記の各公報に開示された装置はいずれも、モノクロ (白黒)画像読取装置を念頭において為されたものであり、その技術をフルカラー画像読取装置にそのまま適用するには問題がある。すなわち、フルカラー画像読取装置に使用されている画像読取センサは、現在、R (赤), G

(緑), B (青)の各分光感度特性を有する3本の光電変換素子(画素列)を副走査方向に一定のライン間隔にて並べたタイプが主流となっている。

【0008】このタイプの画像読取センサを持つフルカラー画像読取装置に、白黒画像読取装置を念頭において為された上記従来技術を適用した場合、R, G, B各々が複数の光電変換素子を有することになり、例えばR, G, B各々2本と仮定した場合でも、計6個の光電変換素子が必要となり、これに対応して光電変換素子出力後

の画像処理回路も対策前の2倍となるため、回路規模が 増大するとともに、大幅なコストアップとなる。

【0009】また、R, G, B各々2本ずつ副走査方向 に一定のライン間隔にて並べることにより、R, G, B 各々のライン間隔が広がってしまうことになり、その結 果、読取画像の原稿副走査方向の速度変動に対する影響 が大きくなり、画質が大幅に劣化してしまうことにもな

【0010】本発明は、上記課題に鑑みてなされたもの であり、その目的とするところは、読取光学系上に付着 10 したゴミなどの異物による読取画像への影響を低減させ た画像読取装置を提供することにある。

[0011]

【課題を解決するための手段】本発明による画像読取装 置は、原稿のカラー画情報を読み取る第一読取手段と、 原稿のモノクロ画情報を読み取る第二読取手段と、第一 読取手段によって読み取られたカラー画情報からモノク ロ画情報を得るモノクロ画情報取得手段と、原稿の同一 読取位置における第二読取手段によって読み取られたモ ノクロ画情報の値とモノクロ画情報取得手段によって得 20 られたモノクロ画情報の値とを比較してノイズを検出す。 るノイズ検出手段とを備える構成となっている。

【0012】上記構成の画像読取装置において、第一読 取手段は、原稿のカラー画情報を読み取り、その読み取 ったカラー画情報をモノクロ画情報取得手段に与える。 すると、モノクロ画情報取得手段は、第一読取手段から のカラー画情報を基に、モノクロ画情報を取得する。こ の取得されたモノクロ画情報は、第二読取手段によって 読み取られたモノクロ画情報と共にノイズ検出手段に与 えられる。ここで、原稿の同一読取位置における第二読 30 取手段によって読み取られたモノクロ画情報とモノクロ 画情報取得手段によって得られたモノクロ画情報とは、 通常、同じ値となる。そこで、ノイズ検出手段は、原稿 の同一読取位置における両モノクロ画情報の各値を比較 し、差があるときノイズとして検出する。

[0013]

【発明の実施の形態】以下、本発明の実施の形態につい て図面を参照して詳細に説明する。図1および図2は、 本発明の一実施形態に係る画像読取装置の構成を示すブ ロック図である。なお、紙面の都合上、図1の回路部分 と図2の回路部分とを分離して示しているが、両回路部 分は図中のX部で相互に接続されているものとする。

【0014】先ず、図1において、第一, 第二読取手段 を構成する画像読取センサ1は、フォトダイオードなど の受光セル(画素)が直線状に配列されてなる複数本の 画素列を有するCCD(Charge Coupled Device)リニア センサにより構成されている。具体的には、図3に示す ように、R(赤), G(緑), B(青)の各分光感度特 性を持つ3本の画素列1R, 1G, 1Bと、モノクロ

成となっている。

【0015】画像読取センサ1の構成について、図3を 用いてより具体的に説明する。図3において、第一読取 手段を構成する3本の画案列1R, 1G, 1Bは各々、 例えば7μm×7μmのフォトダイオード等からなる受 光セル (画素) が n 個 (画素 1 ~ 画素 n) 直線状に配置 された構成となっており、図の下側からB、G、Rの順 に14 μm (2ライン分)の間隔を持って3列に配列さ れている。

【0016】第二読取手段を構成する画案列1Wも、同 様に、例えば7μm×7μmのフォトダイオード等から なる受光セルがn個直線状に配置された構成となってい る。そして、3本の画素列1R, 1G, 1Bのうち、最 も近接している画素列(本例では、画案列1R)との間 に、例えば42μm (6ライン分) の間隔をもって配列 されている。

【0017】この画像読取センサ1は、画素列1W、1 R, 1G, 1Bの配列方向が、原稿搬送方向(副走査方 向) に一致するように配置される。そして、画素列1 W, 1R, 1G, 1Bは、発振器 2 の発振クロックに基 づいてタイミングジェネレータ (TG) 3から出力され る各種のタイミング信号によって駆動される。これによ り、画像読取センサ1の各画素列1W, 1R, 1G, 1 Bは、原稿上の離れた位置の4ライン分の画像を同時に 読み取ってアナログ画像信号を出力する。

【0018】画像読取センサ1の各画素列1W, 1R, 1G, 1Bから出力される各アナログ画像信号は、サン プル・ホールド (S/H) 回路 4W, 4R, 4G, 4B にて各々サンプリングされた後、出力増幅回路 5 W. 5 R, 5G, 5Bにて各々ラインごとに適正なレベルに増 幅される。増幅された各アナログ画像信号は、A/D変 換回路6W, 6R, 6G, 6Bにてディジタル画像デー タに変換される。

【0019】これらディジタル画像データは、シェーデ ィング補正回路7W、7R、7G、7Bにて画素列1 W, 1R, 1G, 1Bの感度バラツキや光学系の光量分 布特性がそれぞれ補正された後、画像パス変更回路8を 経て後段回路に供給される。画像パス変更回路8の後段 には、遅延回路9W, 9R, 9Gが配されている。これ ら遅延回路 9 W, 9 R, 9 Gは、画素列 1 W, 1 R, 1 G, 1Bの各アナログ画像信号に基づくディジタル画像 データの相互を同時化するためのものである。

【0020】すなわち、先述したように、画素列1W, 1R, 1G, 1Bは、原稿上の離れた位置の4ライン分 の画像を同時に読み取るように、副走査方向に一定の間 隔をもって配置された位置関係にあることから、ここで は、画像読取りの際に最後行の画素列1 Bのディジタル 画像データを基準とし、最後行の読取ラインからの各ラ イン間の距離に応じて残りの画素列1W, 1R, 1Gの (白黒) の分光感度特性を持つ画素列1Wとを有する構 50 各ディジタル画像データを遅延させることにより、副走

査方向の4ライン分のディジタル画像データが原稿上の同一位置(同一ライン)の画像データとなるように同時化する。

【0021】遅延回路 9 W, 9 R, 9 G を経た各画像データ(本例では、画素列 1 B についての画像データは画像パス変更回路 8 から直接供給される)は、R (reflect ance)/L (lightness) コンバータ 10 W, 10 R, 10 G, 10 B において、反射率に応じた画像データから明度に応じた画像データ LW, LR, LG, LB に変換される。

【0022】これら明度画像データLW, LR, LG, LBのうち、明度画像データLR, LG, LBは、モノクロ画情報取得手段としてのRGB \rightarrow L*変換(モノクロ画像生成)回路11に供給される。このRGB \rightarrow L*変換回路11は、R, G, Bの各画像データLR, LG, LBからモノクロ画像データL*を生成する。ここで、この生成されたモノクロ画像データL*と明度画像データLWとは、原理的に、ほとんど同じ画像濃度となる。

【0023】この明度画像データLWおよびモノクロ画 20 像データL*は、n段(nは整数)のラッチ回路12 W,12Xにてラッチされることによって同時化された 後、図2における黒線検出回路13および黒線除去回路 14にそれぞれ供給される。また、明度画像データL R,LG,LBは、n段(nは整数)のラッチ回路12 R,12G,12Bにてラッチされ、さらにn段のラッチ回路15R,15G,15Bにてラッチされる。そして、各ラッチされた画像データは、図2における補間データ生成回路16R,16G,16Bにそれぞれ供給される。

【0024】図2において、黒線検知回路13は、明度画像データLWおよびモノクロ画像データL*を比較することによって黒線(縦すじ)画像などのノイズ成分を検出するノイズ検出手段として機能する。この黒線検知回路13の検知結果(黒線検知信号)は黒線除去回路14に供給される。黒線除去回路14には、補間データ生成回路16R,16G,16Bにて生成されたR,G,Bの各補間データと共に、ラッチ回路12W,12X,12R,12G,12Bの各ラッチデータLWn,LXn,LRn,LGn,LBnも供給される。

【0025】黒線除去回路14は、黒線検知回路13から供給される黒線検知信号に基づいて黒線を除去する処理を行い、黒線を除去した画像データLWc, LRc, LGc, LBcを次段の画像処理回路17に供給する。この画像処理回路17は、装置に関する処理、例えば色空間変換、カラー補正、拡大・縮小、地肌除去、フィルタリングなどの各種の処理を行う。

【0026】CPU18は、データ/アドレスバスライ 原理について説明する。この例では、Aセンサン19によって上記の各ブロックと相互に接続されてお 取手段であるカラー画読取センサ、Bセンサをり、このデータ/アドレスバスライン19を介して上記 50 手段であるモノクロ画読取センサとしている。

の各プロックを制御する。具体的には、画像読取センサ1を駆動するタイミングジェネレータ3の周期の設定、出力増幅回路5W,5R,5G,5Bの利得の制御、シェーディング補正回路7W,7R,7G,7Bの制御、黒線検知回路13、黒線除去回路14および画像処理回路17のパラメータ/モード設定などを行う。

【0027】図4は、本発明に係る画像読取装置の光学系の一例を示す概略構成図である。図4において、原稿を搬送装置によって移動させながら原稿画像を読み取る原稿移動読取りモード時には、原稿載置台(図示せず)に載置された原稿21は、引き込みローラ22によって1枚ずつ搬送ローラ23まで運ばれる。搬送ローラ23は、原稿搬送方向を変えてコンタクトガラス24上に原稿21を搬送する。

【0028】この位置で原稿はバックプラテン25によってコンタクトガラス24に押さえつけられつつ搬送される。このとき、後述するようにして原稿の画像情報が読み取られる。そして、画像情報が読み取られた原稿は、最後に、排出ローラ26によって搬送装置内から外部へ排出される。

【0029】コンタクトガラス24上の原稿画像は、図示せぬ露光ランプからの照射光に基づく原稿面からの反射光が、第一ミラー27、第二ミラー28および第三ミラー29にて光路変更された後、レンズ30によって縮小されかつ画像読取センサ1の画素列1W,1R,1G,1Bに結像される。そして、これら画素列1W,1R,1G,1Bにて画素単位で光電変換され、アナログ画像信号として出力される。このとき、画素列1W,1R,1G,1Bは、原稿上の離れた4ラインの画像を同30時に読み取る(図4では、A,B2ラインの例となっている)。

【0030】一方、原稿を読取位置に固定し、光学系を移動させながら原稿画像を読み取る原稿固定読取りモード時には、図示せぬ原稿載置台に載置された原稿面を、第一ミラー27、第二ミラー28および第三ミラー29(図示せぬキャリッジに搭載されて移動可能な構成となっている)にて副走査方向に移動しながら、走査することによって原稿画像を読み取る。

【0031】ここで、原稿移動読取りモード時にはBラインが先行読取りラインとなり、原稿固定読取りモード時にはAラインが先行読取りラインとなる。このような理由から、先述したように、図1において、画像パス変更回路8によって原稿の読取りモードに応じて後段の遅延回路9W,9R,9Gに入力するラインを変更するようにしている。

【0032】ここで、上記構成の光学系において、ゴミ等の付着に起因する画像上の縦すじ(黒線)を検知する原理について説明する。この例では、Aセンサを第一読取手段であるカラー画読取センサ、Bセンサを第二読取手段であるモノクロ画読取センサとしている。

【0033】今、光路Aに該当するコンタクトガラス2 5上のA点にゴミが付着したとすると、その箇所のゴミ が画像として光路Aを通り、画像読取センサ1によって 読み取られる。このとき、そのゴミに起因して出力画像 上に、読取原稿上にはない副走査方向(原稿搬送方向) に延びる縦すじが現れる。一方、光路Bに該当するコン タクトガラス25上のB点にはゴミが存在しないため、 原稿画像は正常に読み取られる。

【0034】そこで、A点とB点の搬送に相当する時間 だけ、先行して読み取られるBセンサの読取画像データ 10 を遅延させて、A点と同じ位置でAセンサの読取画像デ ータと比較すると、ゴミが存在する箇所では双方の読取 画像データが不一致となる。この原理を利用すること で、付着ゴミによる縦すじや浮遊ゴミによる縦すじを検 知することができる。

【0035】図1および図2に示した本実施形態に係る 画像読取装置では、RGB→L*変換回路11で取得さ れたモノクロ画像データL*がAセンサの読取画像デー タに相当し、明度画像データLWがBセンサの読取画像 データに相当する。したがって、モノクロ画像データし *と明度画像データLWとを比較することにより、出力 画像に縦すじが発生した場合に、その縦すじがモノクロ 側の画素列1Wまたはカラー側の画素列1R, 1G, 1 Bのいずれかにゴミなどの異物が付着し、それが原因と なっていることを検知することができる。

【0036】しかしながら、この場合、原稿の搬送速度 が一定の場合には何ら問題ないが、実際の原稿搬送装置 においては、原稿が引き込みローラ22や搬送ローラ2 3を離れるときや、排出ローラ26に到着するときなど に、瞬間的に搬送速度が変動することになる。そのた め、遅延によって合わせた位置にずれが生じて、本来一 致している読取画像データであるにも拘わらず不一致と なり、誤検知が発生してしまう。

【0037】ただし、この搬送速度の変動は、ローラを 離れるときや、到達するときに瞬間的に発生するもので あるため、その速度変動に起因する位置のずれは2.3 ライン程度しか続かない。それに対し、ゴミなどの異物 の付着に起因する縦すじは、短くとも数10ライン以上 は続くため、その間の5~10ライン以上連続して不一 致が続く場合にのみ、ゴミなどの異物の付着に起因する 40 縦すじと判断することで、搬送速度の変動による誤検知 なく、付着ゴミや浮遊ゴミなどに起因する画像上の縦す じを検知することができる。

【0038】ところで、原稿移動読取りモード時には、 図3に示す実際の画像読取センサ1では、Bの画素列1 Bを基準として各ラインの遅延補正を行うようにしてい る。したがって、黒線(縦すじ)検知に使用しているモ ノクロ画像データL*を生成する画素列1Bと、明度画 像データLWを得る画素列1Wとの間の画像読取センサ μm) となる。

【0039】一方、原稿画像は、レンズ30(図4を参 照)によって縮小されて画像読取センサ1上に結像され る。このため、画素列1Bと画素列1Wの間隔は、原稿 の位置では423μmに相当し、423μm以下のゴミ による画像上の縦すじについては検知して除去すること が可能となる。この間隔を大きくする程、大きなゴミに よる画像上の縦すじを除去できるが、当該間隔が大きす ぎると、搬送速度の変動による位置のずれも大きくな り、誤検知が発生してしまう。

【0040】また、第一読取手段を構成するR、G、B の各画素列1R, 1G, 1B間の距離 (ライン間距離) は、同じ理由にから近いほど良い。したがって、本実施 形態に係る画像読取センサ1においては、R, G, Bの 各画素列1R, 1G, 1B間の距離を、カラー画素列1 R, 1G, 1Bのうちの画素列1W側の画素列(本例で は、画素列1R)とモノクロ画素列1Wとの間の距離よ りも短くなるように設定している。

【0041】次に、図5を用いて原稿の搬送速度の変動 による画像データの不一致について説明する。図5は、 同一画素の副走査方向に対する画像データを示す波形図 であり、図中、上段の波形は後から読み取った画像デー タAを、中段の波形は先行して読み取った画像データB を遅延して得られる画像データを、下段の波形は上段の 画像データから中段の画像データを減算して得られる差 データをそれぞれ示している。この画像データの差が発 生するところが、画像データの不一致箇所となる。

【0042】また、領域1は搬送速度が定速の領域を、 領域2は搬送速度が速くなった領域を、領域3は搬送速 30 度が遅くなった領域を表わす。領域1では、搬送速度が 所定の速度であるため、画像データAと遅延された画像 データBは一致し、データの差は発生しない。

【0043】しかし、領域2では、搬送速度が速くなる ことから、画像データAが画像データBの遅延時間より も先に読み取られるために、両画像データに差が発生 し、不一致となってしまう。領域3は逆に、搬送速度が 遅くなることから、画像データAが画像データBの遅延 時間よりも後に読み取られるために、両画像データに差 が発生し、不一致となってしまう。

【0044】図6は、黒線検知回路13の具体的な構成 の一例を示すブロック図である。図6において、黒線検 知回路13は、画像データの不一致を検出するデータ比 較ブロック31と、このデータ比較ブロック31から出 力される2つの比較結果を動作モードに応じて選択する 選択回路32と、位置ずれによる誤検知を防止する連続 性検知ブロック33とを有する構成となっている。

【0045】データ比較ブロック31は、比較回路31 1、減算回路312、比較回路313、AND回路31 4、反転回路315およびAND回路316から構成さ 1上での間隔は70 μ m (= 42 μ m + 14 μ m + 14

された4つのラインメモリ331~334およびAND 回路335から構成されている。

【0046】データ比較プロック31において、比較回路311は、第二読取手段としてのモノクロ用画素列1Wの読取画像データに基づく明度画像データLWnをA入力とし、モノクロ画情報取得手段としてのRGB \rightarrow L*変換回路11で取得されたモノクロ画像データLXnをB入力とし、その比較結果(A>B)をAND回路314および反転回路315に供給する。

【0047】減算回路312は、明度画像データLWnをA入力とし、モノクロ画像データLXnをB入力とし、A入力からB入力を減算してその減算結果(A-B)を比較回路313は、減算回路312の減算結果(A-B)をA入力とし、CPU18から与えられるスレッシュホールドレベル(以下、スレッシュ・レベルと略称する)をB入力とし、その比較結果(A>B)をAND回路314,316に供給する。

【0048】AND回路314は、比較回路311,3 13の各比較結果(A>B)の論理積をとる。反転回路 315は、比較回路311の比較結果(A>B)を論理 反転してAND回路316に供給する。AND回路31 6は、比較回路313の比較結果(A>B)と、反転回 路315で論理反転された比較回路311の比較結果 (A>B)との論理積をとる。

【0049】選択回路32は、AND回路314,316の各論理積出力を2入力(A,B入力)とし、CPU18から与えられるモード信号Modeに基づいて、2入力の一方を選択して出力する。ここで、モード信号Modeは例えば1ビットの情報であり、カラー画像読取30モード(フルカラーモード)のときに論理"1"(高レベル)、白黒画像読取モード(白黒モード)のときに論理"0"(低レベル)となる。

【0050】連続性検知ブロック33において、ラインメモリ331~334は、FIFO(first in first o ut)メモリによって構成され、入力データを1ライン周期ずつ順に遅らせる。その結果、入力データに対して、ラインメモリ331からは1ライン周期分遅れた出力データが、ラインメモリ332からは2ライン周期分遅れた出力データが、ラインメモリ333からは3ライン周期分遅れた出力データが、ラインメモリ334からは4ライン周期分遅れた出力データがそれぞれ導出される。【0051】入力データおよびラインメモリ331~334の各出力データは、AND回路335に供給される。AND回路335は、入力データおよびラインメモリ331~334の各出力データの論理積をとり、その論理積結果を黒線検知信号として出力する。

【0052】次に、上記構成の黒線検知回路13の回路 動作について説明する。

【0053】先ず、データ比較ブロック31において、

比較回路311はモノクロ画像データしXnと明度画像データしWnとを比較し、LXn>LWnの場合、即ちモノクロ画像データしXnが明度画像データしWnに対して黒い場合、高レベル(以下、"H"レベルと記す)の比較結果を出力する。この比較結果は、直接AND回路314に与えられるとともに、反転回路315で論理反転されてAND回路316に与えられる。

10

【0054】また、減算回路312は、モノクロ画像データLXnと明度画像データLWnとの差を算出し、その減算結果を比較回路313に与える。比較回路313は、CPU18によって設定されたスレッシュ・レベルTHに対する減算回路312の減算結果(画像データLXnと画像データLWnの差)の大小を比較し、(LXnと画像データLWnの差)>THの場合に"H"レベルの比較結果を出力する。この比較結果は、AND回路314,316に与えられる。

【0055】AND回路314は、比較回路311,3 13の各比較結果が共に"H"レベルのときに、"H"レベルの論理積結果を出力する。この"H"レベルの論理積結果を出力する。この"H"レベルの論理積結果が出力されたところが、モノクロ画像データLXnと明度画像データLWnの不一致箇所となる。すなわち、AND回路314の"H"レベルの論理積結果は、第一読取手段であるカラー用画素列1R,1G,1 B側にゴミ付着などに起因して異常画素(ここでは、正常な画素データが得られない画素を指している)が発生したことを示す。

【0056】一方、AND回路316は、反転回路315の反転出力と比較回路313の比較結果が共に"H"レベルのときに、"H"レベルの論理積結果を出力する。ここで、反転回路315の反転出力は、LXn<LWnのときに"H"レベルとなる。したがって、AND回路316の"H"レベルの論理積結果は、第二読取手段であるモノクロ用画素列1W側にゴミ付着などに起因して異常画素が発生したことを示す。

【0057】選択回路32は、CPU18で設定されるモード信号Modeが"H"レベルのとき、即ちカラー画像読取モードのときにA入力を、"L"レベルのとき、即ち白黒画像読取モードのときにB入力を選択する。すなわち、カラー画像読取モードのときには、AND回路314の論理積出力が選択されて連続性検知ブロック33に供給され、白黒画像読取モードのときには、AND回路316の論理積出力が選択されて連続性検知ブロック33に供給されることになる。

【0058】連続性検知ブロック33において、選択回路32の出力データである入力データは、直接AND回路335に供給されるとともに、ラインメモリ331で1ライン周期分遅延されてAND回路335に供給され、ラインメモリ332でさらに1ライン周期分遅延されてAND回路335に

供給され、ラインメモリ334でさらに1ライン周期分 遅延されてAND回路335に供給される。

【0059】これにより、AND回路335には、主走 査方向(画素列1W, 1R, 1G, 1Bの画素配列方 向) に同期した、1ライン周期ずつ遅れたデータ不一致 の検知結果が与えられることになる。そして、AND回 路335は、1ライン周期ずつ遅れた検知結果が共に "H"レベルのとき、即ち5ライン連続してモノクロ画 像データLXnと明度画像データLWnの不一致が発生 したときに、"H"レベルの黒線検知信号を出力する。 【0060】図7のタイミングチャートに、入力データ およびラインメモリ331~334でそれぞれ1ライン 周期ずつ遅延された計5ライン分の画像データの比較結 果が示されており、各ラインは主走査方向に同期がとれ ている。ここで、"H"レベルは、画像データの比較結 果が不一致になった画素を示している。この5ライン分 の比較結果の論理積出力である黒線検知信号が "H" レ ベルになった画素が、5ライン連続で不一致が続く画 素、つまりゴミなどの付着に起因して黒線 (縦すじ)を 発生している画素となる。

【0061】なお、本例に係る黒線検知回路13では、 モノクロ画像データLXnと明度画像データLWnが5 ライン連続して不一致になった箇所を黒線の発生箇所と 判定するとしたが、ラインメモリの数を増やすことで黒 線と判定するライン数を多く設定することが可能であ る。

【0062】また、本例に係る黒線検知回路13では、 黒線(黒すじ)をノイズ成分として検知する場合を前提 として比較回路311ではLXn>LWnを判定する構 成としたが、LXn<LWnを判定する構成とすること で、白線(白すじ)を検知することができ、また比較回 路311の比較結果を無視することで、黒線、白線の両 方を検知することもできる。ここで、白線(白すじ)と は、画像読取り時に照射された光がゴミなどの異物で正 反射して画像読取センサ1に入射した場合に、その異物 に起因して白い縦すじとして発生するノイズ成分のこと を言う。

【0063】続いて、黒線除去回路14の具体的な構成 について説明する。なお、この黒線除去回路14は、画 像読取センサ1の4本の画素列1W, 1R, 1G, 1B で読み取られた画像データLWn, LRn, LGn, L Bnの各々に対応して設けられた4つの黒線除去回路か ら構成され、これら4つの黒線除去回路にて並行して黒 線除去の処理を行うようになっている。

【0064】先ず、画像データLRn, LGn, LBn に対する3つの黒線除去回路について説明する。ここで は、画像データLRnに対する黒線除去回路の場合を例 に採って説明するが、他の画像データLGn, LBnに 対する黒線除去回路についても全く同じ回路構成となっ ている。図8は、画像データLRnに対する黒線除去回 50 は、モノクロ画像データLXnが遅延回路43で所定の

路の構成の一例を示すブロック図である。

【0065】図8において、画像データLRnに対する 黒線除去回路14尺は、選択回路41、遅延回路42、 43および選択回路44を有する構成となっている。 選 択回路41は、R画像データLRnをA入力とし、補間 データ生成回路16R(図2を参照)で生成されたR補 間データをB入力とし、黒線検知回路13から与えられ る黒線検知信号が"L"レベルのときにR画像データL Rnを、"H"レベルのときにR補間データをそれぞれ 選択する。

【0066】すなわち、選択回路41では、黒線が検知 されていない画素のときはR画像データLRnが選択さ れ、黒線が検知された画素のときはR補間データが選択 される。これら選択されたデータは、遅延回路42で所 定の時間だけ遅延されて選択回路44のA入力となる。 選択回路44のB入力としては、R補間データが遅延回 路43で所定の時間だけ遅延されて与えられる。

【0067】ここで、遅延回路42,43の遅延量(遅 延時間)としては、図6の連続性検知ブロック33にお - 20 けるラインメモリの数(ライン数)に対応して設定され る。本例の場合には、4ライン周期分の遅延時間が設定 される。

> 【0068】選択回路44は、黒線検知回路13から与 えられる黒線検知信号が "L" レベルのときに選択回路 41で選択され、遅延回路42で遅延されたデータ (R 画像データLRn/R補間データ)を、"H"レベルの ときに遅延回路43で遅延されたR補間データをそれぞ れ選択し、最終的に黒線が除去されたR画像データとし て出力する。

【0069】続いて、モノクロ画像データLWnに対す る黒線除去回路について説明する。図9は、モノクロ画 像データLWnに対する黒線除去回路の構成の一例を示 すプロック図である。図9において、モノクロ画像デー タLWnに対する黒線除去回路14Wは、選択回路4 5、遅延回路46, 47および選択回路48を有する構 成となっている。

【0070】選択回路45は、モノクロ画像データLW nをA入力とし、RGB→L*変換回路11 (図1を参 照) で生成されたモノクロ画像データLXnをB入力と し、黒線検知回路13から与えられる黒線検知信号が "L"レベルのときにモノクロ画像データLWnを、 "H"レベルのときにモノクロ画像データLXnをそれ ぞれ選択する。

【0071】すなわち、選択回路45では、黒線が検知 されていない画素のときはモノクロ画像データLWnが 選択され、黒線が検知された画素のときはモノクロ画像 データLXnが選択される。これら選択された画像デー タは、遅延回路46で所定の時間だけ遅延されて選択回 路48のA入力となる。選択回路48のB入力として

-7-

時間だけ遅延されて与えられる。

【0072】ここで、遅延回路46,47の遅延量とし ては、画像データLRnに対する黒線除去回路14Rの 場合と同様に、図6の連続性検知プロック33における ラインメモリの数 (ライン数) に対応して、本例の場合 には、4ライン周期分の遅延時間が設定される。

【0073】選択回路48は、黒線検知回路13から与 えられる黒線検知信号が"L"レベルのときに選択回路 45で選択され、遅延回路46で遅延された画像データ (モノクロ画像データLWn/モノクロ画像データLX n)を、"H"レベルのときに遅延回路47で遅延され たモノクロ画像データLXnをそれぞれ選択し、最終的 に黒線が除去されたモノクロ画像データとして出力す る。

【0074】次に、補間データ生成回路16R, 16 G, 16Bの具体的な構成について説明する。ここで は、Rの補間データ生成回路16Rの場合を例に採って 説明するが、他の補間データ生成回路16G, 16Bに ついても全く同じ回路構成となっている。

【0075】補間データ生成回路16尺では、図10に 示すように、ゴミなどの異物が付着したと判定された画 素(以下、注目画素と称す)の周辺画素内で、画素デー タがその注目画素の画素データよりも一定値以上離散し た値をもつ画素、即ち周辺画素内でゴミの影響を受けて いない画素を正常画素として認識し、この画素データを 用いて補間データを生成する。

【0076】図11は、補間データ生成回路16Rの構 成の一例を示すブロック図である。本例に係る補間デー タ生成回路16Rでは、周辺画素として、ある注目画素 nの主走査方向前後それぞれ4画素(n-4~n-1), (n+1~n+4)、計8画素を設定するものと する。

【0077】図11において、本例に係る補間データ生 成回路16尺は、上記8画素の画素データ(LRn-4 ~LRn-1), (LRn+1~LRn+4) に対応し てそれぞれ8個ずつ設けられた減算回路51-1~51-8、比較回路 5 2-1~5 2-8および選択回路 5 3-1~5 3-8と、2個の加算器54,55と、1個の除算器56 とを備えた構成となっている。

【0078】減算回路51-1~51-8は、注目画素nの 画素データLRnをA入力とし、注目画素nの主走査方 向前後それぞれ4画素 (n-4~n-1), (n+1~ n+4) の各画素データ(LRn-4~LRn-1), (LRn+1~LRn+4)をそれぞれB入力とし、≡ A-B≡の減算処理を行う。これら減算回路51-1~5 1-8の各減算結果は、比較回路 5 2-1~ 5 2-8の各 A 入 力となる。

【0079】比較回路52-1~52-8は、CPU18で 設定されるスレッシュ・レベルを各B入力とし、このス

算結果が大きいか(A>B)否かの比較処理を行う。こ れら比較回路52-1~52-8の各比較結果は、選択回路 53-1~53-8に対して各選択入力SELAとして与え られるとともに加算器55にも供給される。

14

【0080】選択回路53-1~53-8は、注目画素nの 主走査方向前後それぞれ4画素(n-4~n-1),

 $(n+1\sim n+4)$ の各画素データ (LR $n-4\sim$ LR n-1), (LR $n+1\sim$ LRn+4) をそれぞれA入 力とし、論理"O"をB入力としており、比較回路52 -1~52-8の比較結果がA>BのときにA入力を、それ 以外のときにB入力をそれぞれ選択する。選択回路53 -1~53-8の各選択出力は加算器54に供給される。

【0081】加算器54は、選択回路53-1~53-8で 周辺画素の画素データ(LRn-4~LRn-1),

(LRn+1~LRn+4)を選択されたとき、これら 画素データ (LRn-4~LRn-1), (LRn+1 ~LRn+4)を積算する。一方、加算器55は、比較 回路52-1~52-8での比較結果がA>Bとなった回路 数を積算する。除算器56は、加算器54の積算結果A を加算器55の積算結果Bで除算する処理を行う。

【0082】ここで、上記構成の補間データ生成回路1 6 Rの回路動作について説明する。本補間データ生成回 路16Rには、ある注目画素 n 画素データLR n と、そ の周辺画素 $(n-4\sim n-1)$, $(n+1\sim n+4)$ の 各画素データ (LRn-4~LRn-1), (LRn+ 1~LRn+4) が入力される。

【0083】減算回路51-1~51-8では先ず、注目画 素 n の画素データ L R n と、周辺画素 (n-4~n-1), (n+1~n+4) の各画素データ (LRn-4 ~LRn-1), (LRn+1~LRn+4) との差分 ■A-B≡が算出される。そして、比較回路52-1~5 2-8では、注目画素 n と周辺画素 (n-4~n-1), (n+1~n+4)の各画素データの差分がスレッシュ ・レベルと比較され、その比較結果が選択回路53-1~ 53-8に与えられる。

【0084】ここで、注目画素nと周辺画素(n-4~ n-1), $(n+1\sim n+4)$ の各画素データの差分 が、上記スレッシュ・レベルで決まるある一定範囲内な らば、選択回路53-1~53-8は論理"0"を選択して 40 出力し、一定範囲外ならば、選択回路53-1~53-8は 周辺画素 $(n-4\sim n-1)$, $(n+1\sim n+4)$ の各 画素データをそのまま選択して出力する。

【0085】選択回路53-1~53-8から出力された周 辺画素 $(n-4\sim n-1)$, $(n+1\sim n+4)$ の画素 データは加算器54で積算される。また、加算器55で は、比較回路 5 1-1~5·1-8内でA>Bとなった回路 数、即ち正常画素数の積算が行われる。そして、最終的 に除算器56において、加算器54の積算値を加算器5 5の積算値で除算することで、正常画素の各画素データ レッシュ・レベルよりも減算回路51-1~51-8の各減 50 の平均値を求め、この平均値をR補間データとして出力

15

する。

【0086】なお、本例では、R補間データを生成する場合を例にとって説明したが、G補間データ/B補間データを生成する場合も同様にして行われることになる。【0087】次に、図12のタイミングチャートを用いて、図8の黒線除去回路14Rまたは図9の黒線除去回路14Wにおいて、黒線(黒すじ)の先端から後端までを除去する原理について説明する。なお、図12は、特定の画素の画像データを副走査方向に連続的に表わしたタイミングチャートである。

【0088】図12において、1段目のデータ(a)は4ラインから13ラインまでの黒線が発生した画像データAを、2段目のデータ(b)は遅延して位置を合わせた画像データBをそれぞれ示している。この2つの画像データA、Bから、先述した黒線検知回路13(図6を参照)によって検知された黒線検知信号(黒すじ検知データ)が3段目のデータ(c)である。

【0089】ここで、黒すじ検知データ(c)が画像データA(a)の黒すじ発生タイミングの先頭から4ライン周期の期間に亘って"H"レベルとなっていないのは、先述した連続性検知プロック33(図6を参照)において、5ライン連続で画像データの不一致が発生した場合に黒すじと判断しているためである。この黒すじ検知データ(c)で画像データを選択したのが、4段目の黒すじ除去画像データ(d)である。

【0090】すなわち、黒すじ検知データ (c) が "L" レベルのときに画像データA (a) を、 "H" レベルのときに画像データB (b) を選択している。このときに、上述したように、黒すじ検知データ (d) が画像データA (a) の黒すじ発生タイミングの先頭から4ライン周期の期間に亘って "H" レベルとなっていないために、黒すじ除去画像データ (d) では先頭の4ライン分黒すじが除去されずに残っている。

【0091】これを除去するために、黒すじ除去画像データ(d)を4ライン周期分だけ遅延したデータが5段目のデータ(e)、画像データB(b)を4ライン周期分だけ遅延したデータが6段目のデータ(f)である。そして、これら2つのデータ(e)、(f)を黒すじ検知データ(c)で選択したものが7段目の最終的な黒すじ除去画像データ(g)となる。この最終的な黒すじ除去画像データ(g)から明らかなように、図8の黒線除去回路14Rまたは図9の黒線除去回路14Rにおいて、画像データA(a)に発生した黒すじを先端から後端まで除去されることがわかる。

【0092】上述したように、複写機やファクシミリ等の画像処理装置に用いられる原稿移動型画像読取装置において、R, G, Bの各画素列1R, 1G, 1Bに対してモノクロ用の1本の画素列Wを配置してなる画像読取センサ1を用い、R, G, Bの各画素列1R, 1G, 1Bから得られる画像データLR, LG, LBに基づい

て、RGB→L*変換回路11でモノクロ画像データL *を取得し、この取得したモノクロ画像データL*と画 素列1Wから得られるモノクロ画像データLWとを比較

することにより、次のような作用効果が得られる。

【0093】すなわち、R, G, Bの画素列1R, 1 G, 1Bの各々に対して黒すじ等のノイズ成分を検出す るための画素列を1本ずつ配する必要がないことから、 画像処理回路の回路規模も最小限の増大で済み、しかも R, G, B各々のライン間隔が広がることもないため、 原稿の搬送速度変動による読取画像への影響を抑えつつ

原備の破送速度変動による説取画像への影響を抑えつつ 低コストにてコンタクトガラスなどの読取光学系上に付 着したゴミや浮遊ゴミに起因する読取画像上の黒すじ等 のノイズ成分を確実に検知できる。

【0094】そして、そのノイズ成分の検知結果に基づいて、R, G, Bの各画素列1R, 1G, 1Bから得られる画像データLR, LG, LBまたは画素列1Wから得られる画像データLWを補正することにより、コンタクトガラスなどの読取光学系上に付着したゴミや浮遊ゴミに起因する読取画像上の黒すじ等のノイズ成分を確実に除去した読取画像を得ることができる。

【0095】特に、R, G, Bの各画素列1R, 1G, 1B側にゴミ付着などに起因して異常画素が発生したことを検知した場合には、異常画素データを出力する画素を除くその周辺画素の画素データから補間データを生成し、この補間データによって異常画素データを置き換えることにより、除去部分の画像と周辺の画像との間に違和感が生じないように、読取画像上の黒すじ等のノイズ成分を除去することができる。

【0096】一方、モノクロ用画素列1W側にゴミ付着などに起因して異常画素が発生したことを検知した場合には、原稿の同一読取位置においてRGB→L*変換回路11で得られるモノクロ画像データL*によって異常画素データを置き換えることにより、モノクロ用画素列1Wに対して黒線などのノイズ成分を検出するための画素列を設けなくても、モノクロ画像読取モード時に発生する読取画像上の黒すじ等のノイズ成分を除去することができる。

【0097】なお、本画像読取装置はフルカラー画像読取モードおよびモノクロ画像読取モードを複数の画像読取モードを有し、その画像読取モードが図示せぬコントロールパネルからの指示によって設定されることになる。そして、その設定された画像読取モードごとに上述した各処理を実行することにより、画像読取モードごとに最適な黒すじの検知および除去の処理が行われることになる。

【0098】また、黒すじ等のノイズ成分の検知および除去の処理に当たって、画像読取センサ1において、R,G,Bの各画素列1R,1G,1B間の距離を、モノクロ用の画素列1Wと本例ではRの画素列1Rとの間の距離よりも短く設定したことにより、フルカラー画像

読取モード時の原稿の搬送速度変動による読取画像の画質への影響を抑えつつ、黒すじ等のノイズ成分の検知および除去の処理能力を向上できる。

【0099】しかも、上記の距離の関係は、換言すれば、モノクロ用の画素列1WとRの画素列1Rとの間の距離が、R,G,Bの各画素列1R,1G,1B間の距離よりも長く設定されている関係になるので、多少サイズの大きなゴミなどの異物が付着したとしても、R,G,Bの各画素列1R,1G,1Bとモノクロ用の画素列1Wの双方に同時に異常画素が発生することを回避で10きるので、黒すじ等のノイズ成分のより確実な検知および除去が行えることになる。

[0100]

【発明の効果】以上説明したように、本発明によれば、原稿のカラー画情報を読み取る第一読取手段と、原稿のモノクロ画情報を読み取る第二読取手段とを有し、第一読取手段によって読み取られたカラー画情報からモノクロ画情報を取得し、原稿の同一読取位置におけるこの取得したモノクロ画情報の値と第二読取手段によって読み取られたモノクロ画情報の値とを比較してノイズを検出することにより、読取光学系上に付着したゴミなどの異物による読取画像上の黒すじ等のノイズ成分を確実に検出することができる。

【図面の簡単な説明】

【図1】 本発明の一実施形態に係る画像読取装置の構成を示すブロック図(その1)である。

【図2】 本発明の一実施形態に係る画像読取装置の構成を示すブロック図(その2)である。

【図3】

[図10]

【図3】 画像読取センサの構成の一例を示す平面図である。

【図4】 本発明に係る画像読取装置の光学系の一例を示す概略構成図である。

【図5】 同一画素の副走査方向に対する画像データを示す波形図である。

【図6】 黒線検知回路の具体的な構成例を示すブロック図である。

【図7】 黒線検知回路の動作説明のためのタイミングチャートである。

【図8】 画像データLRnに対する黒線除去回路の構成例を示すブロック図である。

【図9】 画像データLWnに対する黒線除去回路の構成例を示すブロック図である。

【図10】 補間データの生成原理の説明図である。

【図11】 補間データ生成回路の構成例を示すブロック図である。

【図12】 特定の画素の画像データを副走査方向に連続的に表わしたタイミングチャートである。

20 【符号の説明】

1…画像読取センサ、1W, 1R, 1G, 1B…画素列、3…タイミングジェネレータ、8…画像パス変更回路、11…RGB→L*変換(W画像生成)回路、13…黒線検知回路、14…黒線除去回路、16R, 16G, 16B…補間データ生成回路、17…画像処理回路、18…CPU、23…搬送ローラ、24…コンタクトガラス、26…排出ローラ、31データ比較ブロック、32…選択回路、33…連続性検知ブロック

【図4】

【図1】

【図5】

•

【図6】

【図9】

【図7】

[図8]

【図12】

【図11】

フロントページの続き

H04N 1/48

(51) Int. CI. 7

識別記号

F I H O 4 N 1/46 テーマコート*(参考) A 5 C O 7 9 Fターム(参考) 5B047 AA01 AB04 BA01 BB03 BC01 BC05 BC09 BC11 BC14 BC23 CB22 DB01 DC09 5B057 AA11 BA13 CA01 CA08 CA12 CA16 CB01 CB08 CB12 CB16 CC01 CD06 CE02 CE18 DB02 DB06 DB09 DC36 5CO51 AAO1 BAO3 DAO3 DBO1 DB10 DB11 DB13 DB15 DB22 DB24 DB28 DB33 DC03 DC07 DE13 DE15 DE19 FA01 5C072 AA01 BA20 CA02 DA02 DA04 EA05 FA07 FA08 UA05 UA06 UA12 UA13 UA18 UA20 XA01 5C077 LL02 LL17 MM22 MP08 PP32 PP36 PQ20 RR19 SS01 TT06 5C079 HA11 HA16 HB01 HB08 HB11 JA23 LA01 LA28 NA02 NA09

PA01 PA02

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第3区分

【発行日】 平成17年6月2日(2005.6.2)

【公開番号】特開2001-238053(P2001-238053A)

【公開日】平成13年8月31日(2001.8.31)

【出願番号】特願2000-48590(P2000-48590)

【国際特許分類第7版】

. . . .

H 0 4 N 1/19
G 0 6 T 1/00
G 0 6 T 5/00
H 0 4 N 1/028
H 0 4 N 1/409
H 0 4 N 1/48

[FI]

H 0 4 N 1/04 1 0 3 E H 0 4 N 1/028 C G 0 6 F 15/64 3 1 0 G 0 6 F 15/68 3 5 0 H 0 4 N 1/40 1 0 1 C H 0 4 N 1/46 A

【手続補正書】

【提出日】 平成16年8月18日(2004.8.18)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

原稿のカラー画情報を読み取る第一読取手段と、

原稿の特定色画情報を読み取る第二読取手段と、

前記第一読取手段によって読み取られたカラー画情報から<u>特定色</u>画情報を得る<u>特定色</u>画情報取得手段と、

原稿の同一読取位置における前記第二読取手段によって読み取られた<u>特定色</u>画情報の値と前記<u>特定色</u>画情報取得手段によって得られた<u>特定色</u>画情報の値とを比較してノイズを検出するノイズ検出手段と

を備えることを特徴とする画像読取装置。

【請求項2】

請求項1記載の画像読取装置においてさらに、

前記ノイズ検出手段の検出出力に基づいて、前記第一読取手段または前記第二読取手段から出力される読取画像データを補正する補正手段を有する

ことを特徴とする画像読取装置。

【請求項3】

前記補正手段は、前記ノイズ検出手段が前記第一読取手段側の異常に起因するノイズを検出したとき、異常画素データを出力する画素を除くその周辺画素の画素データから補間データを生成し、この補間データによって異常画素データを置き換える

ことを特徴とする請求項2記載の画像読取装置。

【請求項4】

前記補正手段は、前記ノイズ検出手段が前記第二読取手段側の異常に起因するノイズを検出したとき、原稿の同一読取位置において前記<u>特定色</u>画情報取得手段で得られる画像情報によって異常画素データを置き換える

ことを特徴とする請求項2記載の画像読取装置。

【請求項5】

前記第一読取手段は、原稿搬送方向に等間隔に配置され、かつ原稿搬送方向に直交する方向に延びる複数本の画素列からなり、

前記第一読取手段と前記第二読取手段との間の距離が、前記第一読取手段の各画素列間の距離よりも長く設定されている

ことを特徴とする請求項1記載の画像読取装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 1

【補正方法】変更

【補正の内容】

[0011]

【課題を解決するための手段】

本発明による画像読取装置は、原稿のカラー画情報を読み取る第一読取手段と、原稿の特定色画情報を読み取る第二読取手段と、第一読取手段によって読み取られたカラー画情報から特定色画情報を得る特定色画情報取得手段と、原稿の同一読取位置における第二読取手段によって読み取られた特定色画情報の値と特定色画情報取得手段によって得られた特定色画情報の値とを比較してノイズを検出するノイズ検出手段とを備える構成となっている。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 2

【補正方法】変更

【補正の内容】

[0012]

上記構成の画像読取装置において、第一読取手段は、原稿のカラー画情報を読み取り、その読み取ったカラー画情報を特定色画情報取得手段に与える。すると、特定色画情報取得手段は、第一読取手段からのカラー画情報を基に、特定色画情報を取得する。この取得された特定色画情報は、第二読取手段によって読み取られた特定色画情報と共にノイズ検出手段に与えられる。ここで、原稿の同一読取位置における第二読取手段によって読み取られた特定色画情報と特定色画情報取得手段によって得られた特定色画情報とは、通常、同じ値となる。そこで、ノイズ検出手段は、原稿の同一読取位置における両特定色画情報の各値を比較し、差があるときノイズとして検出する。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 1 0 0

【補正方法】変更

【補正の内容】

[0100]

【発明の効果】

以上説明したように、本発明によれば、原稿のカラー画情報を読み取る第一読取手段と、原稿の特定色画情報を読み取る第二読取手段とを有し、第一読取手段によって読み取られたカラー画情報から特定色画情報を取得し、原稿の同一読取位置におけるこの取得した特定色画情報の値と第二読取手段によって読み取られた特定色画情報の値とを比較してノイズを検出することにより、読取光学系上に付着したゴミなどの異物による読取画像上の黒すじ等のノイズ成分を確実に検出することができる。

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開 2 0 0 2 — 2 7 1 6 3 1 (P 2 0 0 2 - 2 7 1 6 3 1 A) (43)公開日 平成14年9月20日(2002.9.20)

(51) Int. C1. 7	識別記号	FI	テーマコード(参考)			
H 0 4 N	1/409	G O 6 T	5/00 3 0 0 5B057			
G 0 6 T	5/00 3 0 0	H04N	1/40 1 0 1 C 5C072			
H 0 4 N	1/19		1/04 1 0 3 E 5C077			
	1/48		1/46 A 5C079			
	審査請求 未請求 請求項の数 6	OL	(全14頁)			
(21)出顯番号	特顧2001-68122(P2001-68122)	(71)出願人	000005496			
			富士ゼロックス株式会社			
(22)出願日	平成13年3月12日(2001.3.12)		東京都港区赤坂二丁目17番22号			
		(72)発明者	清水 孝 克			
			神奈川県海老名市本郷2274番地 富士ゼロ			
			ックス株式会社海老名事業所内			
		(72)発明者	近藤 晋			
			神奈川県海老名市本郷2274番地 富士ゼロ			
		· ·	ックス株式会社海老名事業所内			
		(74)代理人	100086298			
			弁理士 船橋 國則			
			最終頁に続く			

(54) 【発明の名称】画像読取装置

(57)【要約】

【課題】 原稿を移動させながらその原稿上の画像を読み取る画像読取装置において、カラー画像に対応する場合であっても、回路規模の増大や多大な処理負荷等を要することなく、ゴミ等の異物による画像の読み取り結果への影響を排除可能にする。

【解決手段】 互いに異なる分光感度に対応した複数の画案列を有した読取手段10と、各画案列による読み取り結果の濃度値を比較するとともに、その読み取り結果に原稿主走査方向におけるエッジ成分が含まれているか否かを判断し、これらから前記読取手段10での読み取り結果に含まれるノイズ成分を検出するノイズ検出手段18とを偏えるように、画像読取装置を構成する。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:					
☐ BLACK BORDERS					
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES					
☐ EADED TEXT OR DRAWING					
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING					
☐ SKEWED/SLANTED IMAGES					
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS					
☐ GRAY SCALE DOCUMENTS					
LINES OR MARKS ON ORIGINAL DOCUMENT					
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY					
☐ OTHER:					

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.