FOOD WEBS

AP

DATA SCIENCE AND COMPLEX NETWORKS

BASIC CONCEPTS

The study of how objects(entities) connect to each other and the properties of their connection.

Possible understanding: a relationship istance.

TERMINOLOGY

- ullet $G=\langle V,E
 angle$ where $E\subseteq V imes V$
- ullet |V|=n, |E|=m, density is $|E|/|V|^2$
- ullet vertex v is adjacent to u if $(u,v)\in E; (v,v)
 ot\in E.$
- ullet neigh. of v, N(v): the set of adjacent vertices; deg(v) = |N(v)|
- ullet The adjacency matrix $A_{n imes n}$ of G: $(u,v)\in E \leftrightarrow a_{ij}=1$
- [incidence matrix $I_{n \times m}$ of G:]

PATHS, CONNECTEDNESS

- ullet A path u o v is a sequence of edges $\langle (u,c_1),(c_1,c_2),\dots(c_k,v)
 angle$
- its lenght (k+1) is the cardinatility of the path.
- Two vertices are connected if \exists a path betw. them.
- A graph is connected if all its vertices are.

DISTANCES, I

- Distance is the lenght of the (possibly non-unique) shortest path connecting them, ∞ otherwise.
- The diameter of a graph is the maximum distance between any two pairs

DISTANCES, II

Average distances are also important

[...] the first world-scale social-network graph-distance computations, using the entire Facebook network of active users (~721 million users, ~69 billion friendship links). The average distance [...] is 4.74, corresponding to 3.74 intermediaries or "degrees of separation."

WEIGHTED, DIRECTED, MULTIPLEX

$$G = \langle V, E, w
angle$$
 where $w: E
ightarrow \mathbb{R}$

Path lenght: sum of the weights of the arcs.

$$G=\langle V,E
angle$$
 where $v\in V$ are **nodes** and $\langle u,v
angle\in E$ are **arcs.** $w:E o\mathbb{R}$

Out-neigh. and In-neigh.

 $G=\langle V,E,D
angle$ where V are nodes D are dimensions/layers and $\langle u,v,d
angle\in E$ are arcs

INTERESTING QUESTIONS

INTERESTING QUESTIONS I: PATHS AND OFLOW

INTERESTING QUESTIONS II: CENTRALITIES

INTERESTING QUESTIONS III: CLUSTERING


```
import networkx as nx

G = nx.karate_club_graph()

print("Node Degree")

for v in G:
    print('%s %s' % (v, G.degree(v)))
```

EXTRA: VISUALIZING FREQUENCIES BY GRAPHS

Polisemy:

CH. 1: FOOD WEBS

IMPORTANT CONCEPTS

- load data and organise it in a **networkx** data structure
- modeling tip: it is ok to have a special node representing "nature"
- modeling tip: look for invariants
- find the connected component (the **bowtie**):

source, connect and sink.

LEARN NETWORK SCIENCE

METHOD

- study degree distribution
- find properties of a network in terms of the degree organization
- study *clustering coefficient*: why is it so much better than plain network density?

Clone the original (Python 2) from Github

From the same author, a summary of the main concepts

