Chapitre 5

Corrigé des exercices

Exercice 1 On obtient sans peine les tables de vérité suivantes :

а	b	a b
0	0	1
0	1	1
1	0	1
1	1	0

a	a a
0	1
1	0

De ceci on déduit les équivalences suivantes :

$$\neg a \equiv a \mid a$$

$$a \land b \equiv \neg (a \mid b) \equiv (a \mid b) \mid (a \mid b)$$

$$a \lor b \equiv \neg a \mid \neg b \equiv (a \mid a) \mid (b \mid b)$$

$$a \Rightarrow b \equiv a \mid \neg b \equiv a \mid (b \mid b)$$

$$a \Leftrightarrow b \equiv (a \mid b) \mid (\neg a \mid \neg b) \equiv (a \mid b) \mid ((a \mid a) \mid (b \mid b))$$

Pour montrer que l'opérateur nor, que l'on note parfois \otimes , est lui aussi un système complet, il suffit de montrer qu'on peut exprimer le connecteur de Sheffer à l'aide du seul \otimes .

а	b	$a \otimes b$
0	0	1
0	1	0
1	0	0
1	1	0

а	a⊗a
0	1
1	0

Il est facile de constater que $a \mid b \equiv \neg(a \otimes b)$, donc $a \mid b \equiv (a \otimes b) \otimes (a \otimes b)$. Le nor forme donc lui aussi un système complet.

Exercice 2 Utilisons l'algèbre de Boole pour simplifier l'expression :

$$\overline{ab}(a+\overline{b})(a+b) \equiv (\overline{a}+\overline{b})(a+\overline{b})(a+\overline{b}) \equiv (\overline{a}\overline{b}+a\overline{b}+\overline{b})(a+b) \equiv (\overline{b}+\overline{b})(a+b) \equiv \overline{b}(a+b) \equiv a\overline{b}$$

donc l'expression proposée est équivalente à $a \land \neg b$.

Exercice 3 On calcule :

$$ab + c + \overline{b}\overline{c} + \overline{a}\overline{c} \equiv ab + c + (\overline{a} + \overline{b})\overline{c} \equiv ab + c + \overline{ab}\overline{c} \equiv ab + c + \overline{ab + c} \equiv 1$$

 $a + \overline{b}\overline{c} + \overline{a}c + b\overline{c} \equiv a + (b + \overline{b})\overline{c} + \overline{a}c \equiv a + \overline{c} + \overline{a}c \equiv a + \overline{c} + \overline{a} \equiv 1$

donc les deux expressions proposées sont bien des tautologies.

5.2 option informatique

Exercice 4 Dressons la table de vérité de la formule logique $F = (\neg a \lor b) \land c \iff a \oplus c$:

а	b	С	$\neg a \lor b$	$(\neg a \lor b) \land c$	$a \oplus c$	F
0	0	0	1	0	0	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	0	1	0
1	0	1	0	0	0	1
1	1	0	1	0	1	0
1	1	1	1	1	0	0

Sous forme normale disjonctive, nous avons $F \equiv \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + \overline{a}b\overline{c} + \overline{a}bc + a\overline{b}c$.

De même, $\overline{F} \equiv a\overline{b}\overline{c} + ab\overline{c} + abc$, donc sous forme normale conjonctive on a $F \equiv (\overline{a} + b + c)(\overline{a} + \overline{b} + c)(\overline{a} + \overline{b} + \overline{c})$. Formons maintenant le tableau de Karnaugh de F:

		bc						
		00	01	11	10			
a	0	1	1	1	1			
а	1	0	1	0	0			

On en déduit que $F \equiv \overline{a} + \overline{b}c$. Si on préfère une conjonction, on a $\overline{F} \equiv ab + a\overline{c}$, donc $F \equiv (\overline{a} + \overline{b})(\overline{a} + c)$.

Exercice 5 Les tableaux de Karnaugh des formules F et G sont les suivants :

		cd						
	F	00	11	10				
	00	1	1	1	1			
ab	01	0	1	1	1			
	11	0	0	1	1			
	10	0	0	0	1			

		са								
	G	00 01		11	10					
	00	1	1	1	1					
1.	01	1	1	1	1					
b	11	0	0	0	0					
	10	1	1	0	0					

Nous avons donc $F \equiv \overline{a}\overline{b} + c\overline{d} + \overline{a}d + bc$ et $G \equiv \overline{a} + \overline{b}c$.

Exercice 6

- a) Posons F = ab + acd + bde; alors le coffre peut être ouvert si et seulement si $F \equiv 1$.
- b) Le tableau de Karnaugh associé à F est le suivant :

			cde							
		000	001	011	010	110	111	101	100	
ab	10	0	0	0	0	1	1	0	0	
	00	0	0	0	0	0	0	0	0	
	01	0	0	1	0	0	1	0	0	
	11	1	1	1	1	1	1	1	1	

On observe que $\overline{F} \equiv \overline{a}\overline{b} + \overline{b}\overline{c} + \overline{b}\overline{d} + \overline{a}\overline{d} + \overline{a}\overline{e}$, donc $F \equiv (a+b)(b+c)(b+d)(a+d)(a+e)$.

c) Ceci montre qu'il suffit de poser 5 serrures sur le coffre, et de fournir une clé de la première serrure à A et B, une clé de la deuxième serrure à B et C, une clé de la troisième serrure à B et D, une clé de la quatrième serrure à A et D, et enfin une clé de la cinquième serrure à A et E (soit 10 clés en tout).

Exercice 7 La loi \oplus étant associative dans $\mathbb{Z}/2\mathbb{Z}$, nous avons :

$$a \oplus (a \oplus b) \equiv (a \oplus a) \oplus b \equiv 0 \oplus b \equiv b$$
 et $(a \oplus (a \oplus b)) \oplus (a \oplus b) \equiv b \oplus (a \oplus b) \equiv a$.

Considérons alors la séquence d'instructions suivante :

```
v \leftarrow u \oplus v, u \leftarrow u \oplus v, v \leftarrow u \oplus v.
```

Si au départ *u* contient l'entier *a* et *v* l'entier *b*, alors :

- après la première instruction u contient a et v contient $a \oplus b$;
- après la deuxième instruction u contient $a \oplus (a \oplus b) = b$ et v contient $a \oplus b$;
- après la troisième instruction u contient b et v contient $b \oplus (a \oplus b) = a$.

Les deux références ont vu leur contenus échangés.

Exercice 8 Seule la première de ces assertions est une tautologie, ce qu'on peut prouver automatiquement :

```
# let f = analyseur "((a => b) => a) => a" in est_une_tautologie f ;;
- : bool = true

# let f = analyseur "((a => b) => a) => b" in satisfiabilite f ;;
a = faux b = faux
a = faux b = vrai
a = vrai b = vrai
- : unit = ()
```

L'assertion « $((a \Rightarrow b) \Rightarrow a) \Rightarrow a$ est une tautologie » s'appelle la loi de Peirce; en revanche la formule $((a \Rightarrow b) \Rightarrow a) \Rightarrow b$ n'est pas une tautologie puisqu'elle n'est pas vérifiée pour la distribution de vérité a = vrai et b = faux.

Exercice 9 Notons *a* la proposition « j'aime Marie » et *b* la proposition « j'aime Anne ».

Les deux réponses du logicien peuvent se résumer par la formule F suivante : $((a \Rightarrow b) \Rightarrow a) \land (a \Rightarrow (a \Rightarrow b))$. Formons la table de vérité de cette formule :

а	b	$a \Rightarrow b$	$(a \Rightarrow b) \Rightarrow a$	$a \Rightarrow (a \Rightarrow b)$	F
0	0	1	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	1	1	1	1	1

On en déduit que le logicien aime à la fois Anne et Marie.

Nous aurions aussi pu utiliser la fonction que nous avons définie en Caml:

```
# let F = analyseur "((a => b) => a) et (a => (a => b))"
   in satisfiabilite F ;;
a = vrai b = vrai
   - : unit = ()
```

Exercice 10 Définissons les assertions suivantes :

```
a: «x est écossais»;
b: «x porte des chaussures oranges»;
c: «x porte une jupe»;
d: «x est marié»;
```

e: « x sort le dimanche ».

Le règlement du club indique que si x est un membre du club, alors la formule

$$F = (\neg a \Rightarrow b) \land (c \lor \neg b) \land (d \Rightarrow \neg e) \land (e \Leftrightarrow a) \land (c \Rightarrow a \land d) \land (a \Rightarrow c)$$

5.4 option informatique

est satisfaite. Cherchons donc si cette formule peut être satisfaite :

Il semble que F ne soit pas satisfiable, autrement dit que ¬F soit une tautologie. Vérifions-le :

```
# est_une_tautologie (Op_unaire (neg, F)) ;;
- : bool = true
```

Aucun membre du club ne peut répondre aux exigences de ce règlement!