

Complementos de Cálculo Diferencial e Integral

 $10^{\rm a}$ Ficha de trabalho - $2^{\rm o}$ Semestre 2014/2015

- 1. Seja $\mathbf{g}: I \to \mathbb{R}^n$ um caminho diferenciável. Mostre que se $a \in I$ é um ponto de acumulação do conjunto $\mathbf{g}^{-1}(\mathbf{v})$ para algum $\mathbf{v} \in \mathbb{R}^n$, então $\mathbf{g}'(a) = 0$.
- 2. Seja $\mathbf{g} : [\alpha, \beta] \to \mathbb{R}^n$ um caminho fechado de classe C^1 . Mostre que existe $t_0 \in]\alpha, \beta[$ tal que

$$\langle \mathbf{g}(t_0), \mathbf{g}'(t_0) \rangle = 0.$$

- 3. Seja $\mathbf{g}: I \to \mathbb{R}^n$ um caminho regular. Mostre que se existem uma recta $L \in \mathbb{R}^n$ e uma sequência de números distintos $t_k \to a$ tais que $\mathbf{g}(t_k) \in L$, então L é a recta tangente a \mathbf{g} no ponto $\mathbf{g}(a)$.
- 4. Seja $\mathbf{g}: I \to \mathbb{R}^n$ um caminho regular. Mostre que uma recta $L \in \mathbb{R}^n$ contendo o ponto $\mathbf{g}(a)$ é a recta tangente a \mathbf{g} nesse ponto se e só se

$$\lim_{t \to a} \frac{d(\mathbf{g}(t), L)}{\|\mathbf{g}(t) - \mathbf{g}(a)\|} = 0.$$

5. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua com as seguintes propriedades:

 $0 \leqslant f(t) \leqslant 1, f(t) = f(t+2)$ para qualquer t e

$$f(t) = \begin{cases} 0 & \text{se } 0 \leqslant t \leqslant \frac{1}{3} \\ 1 & \text{se } \frac{2}{3} \leqslant t \leqslant 1 \end{cases}.$$

Defina-se $\mathbf{g}\left(t\right)=\left(x\left(t\right),y\left(t\right)\right)$ onde

$$x(t) = \sum_{n=1}^{\infty} 2^{-n} f(3^{2n-1}t)$$
 e $y(t) = \sum_{n=1}^{\infty} 2^{-n} f(3^{2n}t)$.

Prove que \mathbf{g} é contínua e $\mathbf{g}([0,1]) = [0,1]^2 \subset \mathbb{R}^2$.

Ou seja, a curva parametrizada pelo caminho \mathbf{g} é o quadrado $[0,1]^2$.

Sugestão: Cada $(x_0, y_0) \in [0, 1]^2$ tem a forma

$$x_0 = \sum_{n=1}^{\infty} 2^{-n} a_{2n-1}$$
 e $y_0 = \sum_{n=1}^{\infty} 2^{-n} a_{2n}$

onde $a_n \in \{0, 1\}$. Se

$$t_0 = \sum_{s=1}^{\infty} 3^{-s-1} (2a_s),$$

mostre que $f(3^k t_0) = a_k$ e portanto $\mathbf{g}(t_0) = (x_0, y_0)$.