Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения РАН

На правах рукописи

Верещагин Антон Сергеевич

МАТЕМАТИЧЕСКИЕ МОДЕЛИ ПОГЛОЩЕНИЯ ГЕЛИЯ МИКРОСФЕРАМИ И СОРБЕНТОМ НА ИХ ОСНОВЕ

Специальность 01.02.05 — «Механика жидкости, газа и плазмы»

Диссертация на соискание учёной степени доктора физико-математических наук

Научный консультант: Академик РАН, д-р физ.-мат. наук, профессор Фомин Василий Михайлович

Оглавление

1.1	Кратк	ий обзор по истории открытия гелия и методам его выделения	
	1.1.1	Криогенный метод извлечения гелия из природного газа	
	1.1.2	Мембранный метод для получения гелий-концентрата	
	1.1.3	Адсорбционные методы очистки гелия от примесей	
	1.1.4	Гибридные методы получения чистого гелия	
	1.1.5	Мембранно-сорбционный метод выделения гелия	
1.2	Обзор	по методам осреднения в механике и гетерогенным	
	модел	ям механики многофазных сред	
	1.2.1	Феноменологическая теория описания многофазных	
		(гетерогенных) сред	
	1.2.2	Использование осреднения по объему для получения	
		основных уравнений механики многофазных	
		(гетерогенных) сред	
	1.2.3	Другие способы осреднения	
1.3	Микросферы и сорбенты на их основе		
	1.3.1	Геометрия, физические, химические свойства	
	1.3.2	Области применения	

Глава 1. Обзор

1.1 Краткий обзор по истории открытия гелия и методам его выделения

Гелий — второй элемент в таблице Менделева, самый распространённый изотоп 4 Не которого имеет среднюю атомную массу 4,0026 а.е.м., был обнаружен в 1968 году независимо учёными Жансеном и Локьером в спектральными методами при исследовании солнечной короны. В 1871 году Кельвин предложил назвать обнаруженное вещество «гелий». В 1895 году Рамзай при исследовании газа, выделенного из минерала клевеита, обнаружил присутствие гелия на Земле. Было установлено, что неопознанная линия спектра D_3 , отвечавшая новому элементу, имела длину волны 5874,9 Å[1].

Гелий относится к группе «инертных» газов. Особые свойства гелия: легкость (легче только водород H_2); абсолютная инертность; низкая адсорбционная способность; низкая растворимость в пластовых водах; высокая диффузионная способность и проницаемость, вызванная малым диаметром атомов $(2,7 \, \text{Å})$. Стоит также отметить сверхтекучесть гелия (He-II) ниже температуру кипения $2,186 \, \text{K}$ [2].

Гелий имеет огромную ценность из-за своих уникальных свойств. Основные области применения гелия [2—4]:

- сверхпроводимость (включая MPT) 29 %;
- воздухоплавание − 16 %;
- сварка и резка металлов 12 %;
- оптико-волокно -7%;
- аналитические цели 6 %;
- атомная энергетика 6 %;
- детектирование микротечей 6 %;
- полупроводники 5 %;
- − ракетная техника 4 %;
- выплавка металлов -3%;
- дыхательные смеси -2 %;
- другие 4 %.

Устойчивый рост годового потребления гелия составляет примерно 5~% в год [2].

После использования гелий в следствие своей лёгкости и «текучести» улетучивается в атмосферу, а его утилизация является крайне трудоёмкой. Гелий является невозобновляемым ресурсом, поэтому необходимы эффективные способы выделения и хранения гелия из имеющихся ресурсов этого газа.

Гелий (в основном 4 He) в земной атмосфере (земной гелий) — продукт α -распада тяжелых радиоктивных элементов (U, Th, Ac). Скорость образования гелия мала — за один год 1 т урана, связанного минералами, выделяет около $0,12\,\mathrm{cm}^3$ гелия. Далее он остаётся в земной коре (в природном газе) либо рассеивается из атмосферы в космос. Содержание другого стабильного изотопа 3 He крайне мало как в воздухе, так и в природном газе. Соотношения содержания 3 He/ 4 He составляет $1,1\cdot 10^{-6}$ для воздуха и $1,4\cdot 10^{-7}$ для природного газа [1]. Низкая скорость образования гелия объясняет низкое содержание гелия в природном газе и атмосфере.

В работе [5] автор обосновывает вариант извлечения гелия из воздуха на основе криогенного метода. На сегодняшний день на Земле гелий добывают в основном из природного газа, т.к. содержание гелия в атмосфере ничтожно мало, и такой подход требует больших энергетических затрат рис. 1.1.

Рисунок 1.1 — Расход энергии на извлечение гелия криогенными методами в зависимости от состава исходного сырья. Вариант в) описывает энергозатраты при добыче гелия из воздуха [5].

Месторождения природного газа по содержанию гелия делятся на несколько основных типов (Таблица 1). Содержание гелия в месторождении коррелирует с возрастом продуктивных отложений [6].

Таблица 1 — Классификация природных газов по гелиеносности [6]

Преобладающие ин-	Гелиесодержание в	³ He/ ⁴ He
тервалы концентрации	газах	
гелия, %		
< 0,005	Весьма низкое	$10^{-7} - 10^{-6}$
0,005-0,009	Низкое	10^{-7} – 10^{-6}
0,010-0,049	Пониженное	10^{-7}
0,050-0,099	Повышенное	10^{-8}
0,100-1,000	Высокое	10^{-8}
> 1,000	Очень высокое	$10^{-8} - 10^{-6}$

Достаточно обширное описание сырьевой базы гелия содержится в литературе [4; 6]. Нужно сказать, что основная добыча гелия ведётся в США (70 % от мировой), а выделения гелия из природного газа становится целесообразным при его содержании в смеси больше либо равном 0,1 %.

Месторождения газа в Восточной Сибири располагают значительными гелиеносными ресурсами углеводородов и являются идеальной базой для создания газоперерабатывающего, гелиевого и газохимического кластера для получения продукции с высокой добавленной стоимостью и создания необходимых и достаточных условий для динамичного экономического и социального развития территорий Сибири и Дальнего Востока. Подготовленные к промышленному освоению запасы природного газа Собинского, Ковыктинского и Чаяндинского месторождений составляют около 3 трлн. н. м³ (с гелиесодержанием от 0,2 % до 0,6 %). Прогнозные оценки освоения этих и других месторождений показывают, что Россия в ближайшем будущем может стать одним из крупнейших производителей и поставщиков гелия на внутренний и мировой рынок и одновременно удовлетворить потребности стран Юго-Восточной Азии и Тихоокеанского региона в природном газе.

Подготовка и комплексная переработка гелиеносного природного газа с целью выделения гелия, других ценных компонентов, и последующей доставки природного газа по газотранспортным сетям от месторождений к потребителям является актуальной научной и технологической задачей. Решение этой задачи и стро-

ительство газотранспортной системы «Сила Сибири», объединяющей Иркутский и Якутский центры газодобычи, станет в конечном итоге важным шагом в создании единой системы газоснабжения России. К настоящему времени для разделения газов используется три основных метода: криогенный, мембранный и адсорбционный.

1.1.1 Криогенный метод извлечения гелия из природного газа

В настоящее время в промышленном масштабе гелий извлекают из природного газа с помощью криогенной технологии, физическую основу которой составляет конденсация углеводородных фракций, являющихся основными компонентами природного газа. В результате выделение небольших объемов гелия из природного газа требует высоких энергетических и капитальных затрат [5; 7].

ОАО «НПО «Гелиймаш» было разработано и выпущено подавляющее большинство криогенных гелиевых установок, работающих в России и странах ближнего зарубежья. Всего, начиная с первого гелиевого ожижителя, выпущенного в 60-е годы XX века, предприятием было поставлено около ста криогенных гелиевых установок различной производительности для научных центров, промышленных предприятий, исследовательских комплексов, больниц, нужд предприятий оборонного комплекса. На базе турбодетандеров собственной разработки с использованием результатов экспериментальных и теоретических работ были созданы криогенные гелиевые установки КГУ-500/4,5-140, КГУ-1600/3,8, КГУ-600/20, ориентированные, как на ожижительных, так и на рефрижераторный режимы на различных температурных уровнях от 3,8 К до 20 К. «НПО «Гелиймаш» создал гелиевые ожижители производительностью 700 л/ч по жидкому гелию для крупнейшего гелиевого центра Европы – Оренбургского гелиевого завода. Одна из последних криогенных гелиевых установок была поставлена Корпорации «ТВЭЛ» для тестирования сверхпроводящих элементов, предназначенных для европейского международного проекта термоядерного реактора ИТЭР в Кадараше. Создан ожижитель производительностью 200 л/ч, ведутся работы по созданию гелиевого ожижителя производительностью 1100 л/ч для СКО международного проекта NICA в ОИЯИ (Дубна). В крупных ожижителях гелия применены одноступенчатые жидкостно-паровые турбодетандеры вместо дроссельных вентилей,

что позволило значительно увеличить производительность установок. Аналогичными турбодетандерами оснащены три ожижителя гелия, которые более шести лет успешно работают в г. Оренбурге, а также крупный ожижитель гелия в Российском научном центре «Курчатовский институт» (Москва). ПАО «ГАЗПРОМ» – ОАО «НПО «Гелиймаш» в период 1980 – 1995 гг реализовали крупномасштабные российские технологии (до 10 млн. нм³/год) по выделению, очистке и ожижению гелия. Все мощности по ожижению гелия на ОГЗ реализованы с помощью технологий и оборудования НПО «Гелиймаш» [8].

[9]

- 1.1.2 Мембранный метод для получения гелий-концентрата
 - 1.1.3 Адсорбционные методы очистки гелия от примесей
 - 1.1.4 Гибридные методы получения чистого гелия
 - 1.1.5 Мембранно-сорбционный метод выделения гелия

1.2	Обзор по методам осреднения в механике и гетерогенным моделям
	механики многофазных сред

1.2.1 Феноменологическая теория описания многофазных (гетерогенных) сред

Литература [10; 11]

1.2.2 Использование осреднения по объему для получения основных уравнений механики многофазных (гетерогенных) сред

Литература [11—15]

1.2.3 Другие способы осреднения

Нужно добавить методы осреднения с помощью функции Грина на линейных систем диф. уравнений

- 1.3 Микросферы и сорбенты на их основе
- 1.3.1 Геометрия, физические, химические свойства
 - 1.3.2 Области применения

Список литературы

- 1. *Фастовский В. Г.* Инертные газы / В. Г. Фастовский, А. Е. Ровинский, Ю. В. Петровский. Изд. 2-е. М.: Атомиздат, 1972. 352 с.
- 2. Якуцени В. П. Традиционные и перспективные области применения гелия / В. П. Якуцени // Нефтегазовая геология. Теория и практика. 2009. Т. 4, № 1. С. 1—13.
- 3. *Якуцени В. П.* Историко-аналитический обзор законодательного обеспечения эффективного использования и сохранения ресурсов гелия в США / В. П. Якуцени // Нефтегазовая геология. Теория и практика. 2008. Т. 3, № 4. С. 1—9.
- 4. Комплексный реинжиниринг процессов хозяйственного освоения ресурсов гелия на Востоке России / В. А. Крюков [и др.]. Новосибирск : ИЭОПП СО РАН, 2012. 184 с.
- Симоненко Ю. М. Криогенные методы получения гелия из атмосферы / Ю. М. Симоненко // Холодильная техника и технология. 2014. Т. 50, № 2. С. 64—70.
- 6. *Якуцени В. П.* Сырьевая база гелия в мире и перспективы развития гелиевой промышленности / В. П. Якуцени // Нефтегазовая геология. Теория и практика. 2014. Т. 4, № 2. С. 1—24.
- 7. *Андреев И. Л.* Гелиевая промышленность в России и мировой опыт создания и эксплуатации гелиевого оборудования / И. Л. Андреев // Хим. нефт. машиностр. 1995. Т. 2. С. 16—22.
- 8. ОГ-1000 Ожижитель гелия [Электронный ресурс]. URL: http://geliymash. ru/products/kriogennye gelievye ozhizhiteli i refrizheratory /og 1000 . php (дата обр. 10.08.2017).
- 9. *Степанов В. В.* Оптимизационные технико-экономические исследования энерготехнологических установок производства СПГ и электроэнергии с извлечением гелия / В. В. Степанов. Ирк., 2009. 26 с. URL: http://dlib.rsl.ru/viewer/01003472846 (дата обр. 11.08.2017).

- 10. *Рахматулин Х. А.* Основы газодинамики взаимопроникающих движений сжимаемых сред / Х. А. Рахматулин // Прикладная математика и механика. 1956. Т. 20, № 2. С. 184—195.
- 11. *Нигматулин Р. И.* Динамика многофазных сред. Часть І. / Р. И. Нигматулин. М.: Наука. Гл. ред. физ-мат лит., 1987.
- 12. *Нигматулин Р. И.* Механика сплошной среды. Кинематика. Динамика. Термодинамика. Статистическая динамика / Р. И. Нигматулин. М.: ГЭОТАР-Медиа, 2014. 640 с.
- 13. *Николаевский В. Н.* Пространственное осреднение и теория турбулентности / В. Н. Николаевский. М. : АН СССР, 1961. 69 с.
- 14. *Николаевский В. Н.* Собрание трудов. Геомеханика. Том 2. Земная кора. Нелинейная сейсмика. Вихри и ураганы / В. Н. Николаевский. М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Итститут компьтерных исследований, 2010. 560 с.
- 15. Whitaker S. The Method of Volume Averaging / S. Whitaker. Springer Science+Business Media Dordrecht, 1999. C. 220.