RC复位电路

在MCU系统电路设计中,通常存在有电阻电容组成的阻容复位电路,前提是系统电源供电可靠。如下图所示为STM32的上电复位电路和手动复位电路,由10k电阻和0.1uF的电容组成

- 此款STM32CPU复位引脚是低电平有效,即RESET为低电平时,CPU处于复位状态,上图中,由于R21和C37组成RC复位电路。在系统上电瞬间,C37两端的电压可以认为是0V,即RESET是低电平,此时CPU处于复位状态,随后VCC3.3通过电阻给电容C37充电,当C37的充电电压升到CPU的高电平门槛电压时,CPU就会退出复位状态,进入运行状态。
- 手动复位: 当按键按下之后, C37两端被短路接地, RESET电平被拉低, 即可实现手动复位。
- 在设计电路时,需要选择适当的 R 值和 C 值,以保证 NRST 低电平持续时间满足 CPU 复位最小脉宽的要求。如图所示为CPU的NRST pin电压参数,可以看到地电平为0.8V,高电平最小为2V

Table 49. NRST pin characteristics											
Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.5	-	0.8	٧					
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage		2	-	V _{DD} +0.5						
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis		-	200	-	mV					
R _{PU}	Weak pull-up equivalent resistor(2)	$V_{IN} = V_{SS}$	30	40	50	kΩ					
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse		-	-	100	ns					
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns					
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs					

- 这里补充一个知识点,关于RC与RL充放电时间常数问题
 - 1、RC充放电时间常数

 串联RC电路的时间常数是一个固定的时间间隔,等于电阻和电容的乘积。τ为RC 充放电时间常数,单位是S; R为电阻,单位是Ω; C为电容,单位是F,其公式 为:

$$\tau = RC$$

• 2、RL充放电时间常数

• 串联RL电路的时间常数是一个固定的时间间隔,等于电感对电阻的比值。其公式为:式中, τ为RL充放电时间常数,单位是S; L为电感,单位是H; R为电阻,单位是Ω。

$$\tau = L/R$$

- 3、RC与RL充放电瞬时电压通用公式,
 - 式中, ν是电容器或电感器电压在某个时间的瞬时值,单位是V; VF是电容器或电感器电压终值,单位是V; Vi是电容器或电感器电压的初始值,单位是V; e是自然对数的底, t为充放电时间,单位s; τ为电容器或电感器充放电时间常数,单位是s。

$$v = V_F + (V_i - V_F) \times e^{-t/\tau}$$

- 4、RC与RL充放电瞬时电流通用公式,
 - 式中, i是电容器或电感器电流在某个时间t的瞬时值,单位是A; IF是电容器或电感器电流终值,单位是A; li是电容器或电感器电流的初始值,单位是A; e是自然对数的底,t为充放电时间,单位s; τ为电容器或电感器充放电时间常数,单位是s。

$$i = I_F + (I_i - I_F) \times e^{-t/\tau}$$

- 接下来我们来计算一下MCU系统中,CPU从一开始的0V复位状态到2V高电平状态需要多少时间
 - 即充电过程: R=10K,C=0.1uF,时间常数 τ = RC=10000R x 0.0000001F = 0.001s=1ms
 - 根据图中计算需要0.93ms

$$V = V_F + (V_1 - V_F)e^{-t/2}$$

$$2 = 3.3 + (0 - 3.3)e^{-t/2}$$

$$-1.3 = -3.3e^{-t/2}$$

$$-1.3 = e^{-1000t}$$

$$\frac{1.3}{3.3} = e^{-1000t}$$

$$-0.9315 = -1000t$$

$$t \approx 0.9370s$$

同时我们利用TI的Analog Engineer's Calculator软件也可以计算的得出所需要的时间,如图验证正确

- 算完了充电时间,再来计算一下放电时间,从电容3.3V放电到0.8V的时候需要多少时间
 - 即放电过程: R=10K,C=0.1uF,时间常数 τ = RC=10000R x 0.0000001F = 0.001s=1ms
 - 根据图中计算需要0.42ms

$$0.8 = 0 + (3.3 - 0)e^{-\frac{1}{0.001}}$$

$$0.8 = 3.3e^{-1000t}$$

$$\ln(\frac{8}{33}) = \ln e^{-1000t}$$

$$\ln(\frac{8}{33}) = -1000t$$

$$t = 1.42 \text{ ns}.$$

• RC和RL充放电指数曲线图对应速查表

			RC&RL 充放	(电指数曲线	对应查找表				
时间常数	充电过程				放电过程				
τ	终值电压	初值电压	初值电流	终值电流			初值电流百分比		
	百分比%	百分比%	百分比%	百分比%					
	电容	电感	电容	电感	电容	电感	电容	电感	
1τ	63%	37%	37%	63%	37%	37%	37%	37%	
2τ	86%	14%	14%	86%	14%	14%	14%	14%	
3τ	95%	5%	5%	95%	5%	5%	5%	5%	
4τ	98%	2%	2%	98%	2%	2%	2%	2%	
5τ	99%	1%	1%	99%	1%	1%	1%	1%	
	电压增加	电压衰减	电流衰减	电流增加	电压衰减	电压衰减	电流衰减	电流衰减	

以上内容整理于 幕布文档