1. After defining functions for finding the mean vector, covarionce matrix, and sample correlation matrix, respectively, we read 'stock.dat' and save it as 'stock'.

(a) We first obtain the sample correlation matrix of 'stock' and save it as 'data'.

In [4]: #(a) Perform a factor analysis using principal component method on the sample correlation matrix.
#Correlation matrix
data = sample_corr_matrix(stock)
data

Out[4]:

	AC	DP	UC	EX	TX
AC	1.000000	0.576924	0.508656	0.386721	0.462178
DP	0.576924	1.000000	0.598384	0.389519	0.321953
UC	0.508656	0.598384	1.000000	0.436101	0.425627
EX	0.386721	0.389519	0.436101	1.000000	0.523529
TX	0.462178	0.321953	0.425627	0.523529	1.000000

We we the spectral decomposition of Z as

$$\underline{5} = \underline{e} \Lambda \underline{e}' = \lambda_1 \underline{e}_1 \underline{e}_1' + \lambda_2 \underline{e}_2 \underline{e}_1' + \dots + \lambda_p \underline{e}_p \underline{e}_p'$$

$$= \underline{e} \Lambda'^{\underline{2}} \Lambda'^{\underline{2}} \underline{e}'$$

$$= \left[\int_{\lambda_{1}}^{\lambda_{1}} e_{1} + \cdots + \int_{\lambda_{p}}^{\mu_{p}} e_{p} \right]$$

$$= \left[\int_{\lambda_{1}}^{\lambda_{1}} e_{1} + \cdots + \int_{\lambda_{p}}^{\mu_{p}} e_{p} \right]$$

$$= \left[\int_{\lambda_{1}}^{\lambda_{1}} e_{1} + \cdots + \int_{\lambda_{p}}^{\mu_{p}} e_{1} \right]$$

By ignoring the contribution of eigenvalues that are small, we can obtain the approximation

$$5 \simeq [\sqrt{\lambda_1} e_1 : \cdots : \sqrt{\lambda_m} e_m]$$

$$= \lfloor p_{xm} \rfloor_{mxp} (m < p)$$

$$\sqrt{\lambda_m} e_m \rfloor_{mxp}$$

We obtain the eigenvalues and eigenvectors from the sample correlation matrix data' and perform a factor analysis using Principal Component method. The corresponding code and results are shown below.

```
In [8]: #sorted eigenvalues
   index=eigval.argsort()[::-1]
   eigval=eigval[index]
   eigval
```

Out[8]: array([2.85648688, 0.8091185, 0.54004398, 0.45134682, 0.34300382])

```
In [9]: anal = pd.DataFrame()
    anal['Eigenvalue'] = eigval
    anal['Proportion'] = anal['Eigenvalue'] / len(anal)
    anal['Cumulative'] = anal['Proportion'].cumsum(axis=0)
    anal
```

Out[9]:

	Ligenitarae	. roportion	- Cumulative
0	2.856487	0.571297	0.571297
1	0.809118	0.161824	0.733121
2	0.540044	0.108009	0.841130
3	0.451347	0.090269	0.931399
4	0.343004	0.068601	1.000000

Eigenvalue Proportion Cumulative

a scree plot using the eigenvalues. (b) We draw In [10]: #(b) How many factors are required to describe adequately the space in which these data actually fall? #scree plot plt.title('Scree Plot of Eigenvalues') plt.xlabel('Number') plt.plot(eigval, 'o-') plt.show() Scree Plot of Eigenvalues 25 2.0 elbow 1.0 2.0 2.5 3.0 the ellou is at index=1. Thus, only one factor that is the space in which the adequately describe actually required to addition, we may this selection based on the rule also choosing make with eigenvalue ≥1. Factor I only, the factor loading (c) Since ve choose matrix can as shown be computed In [11]: #(c) Obtain the factor loading matrix using Principal Component method. loadings = pd.DataFrame() loadings['Factor1'] = np.sqrt(eigval[0])*eigvec[:,0] loadings.index = stock.columns np.round(loadings,2) Out[11]: Factor1 0.78 AC DP 0.77 UC 0.79 EX 0.71 TX 0.71 the rows in the factor loading matrix. (d) The communality of Squares h; = li + · · + lim In [12]: #(d) Obtain the communality of each variable loadsquare = loadings**2 pd.DataFrame(loadsquare.sum(axis=1), columns = ['Communality']) Communality AC 0.613773 DP 0.596774 UC 0.630945 EX 0.507916 0.507079 TX

- (e) From our results, we can say that the underlying characteristics of Factor | are all five variables. However, there is not a clear distinction. We may need to use other methods or rotation to get a better picture of the underlying characteristics of each factor.
- (f) Assuming factor—analyzer' package is installed, we use the package to obtain the factor bading matrix using minimum residual method. Here we choose Factor 2 as well since its corresponding eigenvalue is close to 1. Also, we would like to check whether rotation can help us better identify the underlying characteristics. For this purpose, we choose n-factors = 2.

Out[15]:

AC 0.696010 -0.096709

DP 0.758582 -0.418575

UC 0.715361 -0.146355

EX 0.606299 0.156562

TX 0.723501 0.545413

In [16]: #Preplot(Before Rotation)

loadings

Plothing the factor pattern, we obtain the following.

```
x = loadings.Factor1 ; y = loadings.Factor2
plt.figure(figsize = (5,4))
plt.title('Plot of Factor Pattern for Factor1 and Factor2')
plt.xlabel('Factor1'); plt.ylabel('Factor2')
plt.scatter(x,y)
for i in range(len(loadings)):
    plt.text(x[i]-0.05, y[i]+0.05, loadings.index[i])
plt.axvline(x = 0); plt.axhline(y = 0)
plt.xlim(-0.5,1); plt.ylim(-1,1)
plt.show()
         Plot of Factor Pattern for Factor1 and Factor2
    0.75
    0.50
    0.25
    0.00
   -0.25
   -0.75
   -1.00
             -0.2
                   0.0
                         0.2
                              0.4
                                   0.6
                                        0.8
```

Factor1

```
of the variables belong to. Rotation may be useful.
                    the rest
                  Varimax rotation which finds the orthogonal transformation T
                                                                                                                      maximizes
  V = \frac{1}{p} \sum_{j=1}^{\infty} \left[ \sum_{i=1}^{p} \widetilde{k_{ij}}^{**4} - \frac{\left(\sum_{i=1}^{p} \widetilde{k_{ij}}^{**2}\right)^{2}}{p} \right]
                                    the
                                              factor londing
  Similarly, we obtain
                                                                              after
 In [17]: #(g) Obtain factor (after rotation) Loading matrix using Minres method.
# Rotation Method: Varimax
           fa = FactorAnalyzer(n_factors=2, rotation='varimax', method='minres', is_corr_matrix=True)
           fa.fit(data)
 Out[17]: FactorAnalyzer(is_corr_matrix=True, n_factors=2, rotation='varimax',
                         rotation_kwargs={})
  In [18]: # Orthogonal Transformation Matrix
          fa.rotation_matrix_
 In [19]: # Rotated Factor Pattern
           Rloadings = pd.DataFrame(fa.loadings_,
                       index = stock.columns,
                       columns = ['Factor1', 'Factor2'])
           Rloadings
 Out[19]:
                Factor1 Factor2
           AC 0.596731 0.371073
            DP 0.850781 0.163778
           UC 0.643369 0.345306
            EX 0.365720 0.508290
            TX 0.206951 0.882100
                            rotated factor
   We
           plot
                                                        pattern
                                                                          below.
In [20]: #Plot(After Rotation)
           x = Rloadings.Factor1; y = Rloadings.Factor2
           plt.figure(figsize = (6,4))
           plt.title('Plot of Factor Pattern for Factor1 and Factor2')
           plt.xlabel('Factor1'); plt.ylabel('Factor2')
           plt.scatter(x,y)
           for i in range(len(loadings)):
               plt.text(x[i]-0.05, y[i]+0.05, Rloadings.index[i])
           plt.axvline(x = 0); plt.axhline(y = 0)
           plt.xlim(-0.5,1); plt.ylim(-0.8,1.2)
           plt.show()
                        Plot of Factor Pattern for Factor1 and Factor2
               1.00
               0.75
               0.50
               0.25
               0.00
              -0.25
              -0.50
                     -0.4
                            -0.2
                                   0.0
                                          0.2
                                                0.4
                                                       0.6
                                                              0.8
                                                                    1.0
```

Variables 'AC' and 'UC' are obser to Factor! However, it is difficult to distinguish

Factor1

(۲)	We	obtain the communalities (after votation) using the following code.
		#(h) Obtain the communalities (after rotation) of each variable. pd.DataFrame(fa.get_communalities(),
		index=stock.columns, columns=['Communality'])
	Out[21]:	Communality
	_	AC 0.493783 DP 0.750651
	_	UC 0.533161
	_	TX 0.820929
(;) B	ared on	the analysis using minimum residual method after rotation, it is clear that Factor 1
۵.	ccounts	for the variables 'AC', 'DP', and 'UC', whereas, Factor2 accounts for the variables
		I 'TX'. This demonstrates how rotation can be useful for interpreting factor analysis.