

Exploring the Applications of LLMs in Fake News Detection

Microsoft Internship Summary
Xin-Shuang Zhang

Background

https://www.msn.com/zh-cn

MSN (Microsoft Network) News

Fake News Detection:

Improve News Recommendation Service

Limitations:

- No ground truth in MSN
- No fine-tuning
- Exploratory, single-person team

Frontier Advances

- A NLP task, ACL and EMNLP, Prompt Engineering
- Lack of high-quality datasets
- Mainly focused on commonsense reasoning
- Problem formulation is not well done
- Lack of interpretability

What is fake news

Definition 1 (Fake News [3]). Fake news is a news article that is intentionally and verifiably false.

Specifically, there are three key features of this definition [3, 4]:

- 1. Authenticity. Fake news includes false information that can be verified as such.
- 2. **Intent**. Fake news is created with dishonest intention to mislead consumers.
- 3. Whether the information constitutes news.

Concept	Non-factual?	Intent to deceive?	News?
Fake news [2, 3, 4]	✓	✓	~
False news [6]	✓		✓
Satire news [7]		×	~
Disinformation [8]	✓	✓	
Misinformation [9]	✓		
Cherry-picking [10]	×	✓	
Clickbait [11]		<i>'</i>	

Table 1: A Comparison between Concepts related to Fake News

Is the LLM a Good Detector?

The performance of LLMs still falls slightly short of BERT.

Model	Usage	macF1	macF1 Accuracy		F1 _{fake}
GPT-3.5-turbo	Few-Shot CoT	0.702	0.813	0.884	0.519
BERT	Fine-tuning	0.765	0.862	0.916	0.615
Llama-3.1-8b	Zero-Shot Few-Shot CoT	0.621 0.627	0.708 0.715	0.802 0.807	0.440 0.445
Llama-3.1-405b	lama-3.1-405b Zero-Shot Few-Shot CoT		0.852 0.852	0.915 0.915	0.4 0.461

Table 3: Comparison of Model Performance on GossipCop dataset

How do LLMs Perform in MSN News

Sample Size: about 10k

• Time Period: 2024.10~11

Modality: text

Label: no ground truth

Domain	Proportion
News	33.5%
Sports	31.5%
Money	16.5%
Lifestyle	4.0%
Health	3.7%
Entertainment	3.2%
Other	7.6%

Judgment	Description	Proportion
Incorrect Facts	Incorrect Facts Facts that cannot be verified, lack credible sources, conflict with existing facts, appear fabricated, or lack detail.	
Misleading linguistic style	Such as sensationalism, exaggeration, subjectivity, bias, emotionality, or provocation.	
Combination Combination of incorrect facts and misleading linguistic style		22.7%
Marketing Intent Such as product promotions or advertisements.		11.2%
Lack of Factual Reporting Such as horoscopes, essays, or lifestyle tips.		5.5%
Other	Such as issues related to overly brief reporting, grammatical inaccuracies, logical inconsistencies, or data preprocessing errors.	3.2%

Table 5: Key Criteria Used by LLMs for Fake News Detection

Experimental Conclusions

Insight 1. Since most LLMs are trained only once and never updated, they lack the capability to verify the authenticity of recent news events.

Insight 2. Leveraging large-scale corpus training and advanced natural language understanding, LLMs can effectively detect biases in the linguistic style of news articles.

Insight 3. LLMs primarily evaluate three key features of news articles (see Definition 1), with fact-checking being the most critical.

Case Study:

2.**核实信息来源**:文章提到了政府、财政大臣雷Rachel Reeves,这表明这些信息是基于官方公告。然而,我找不到任何关于一位名叫Rachel Reeves的财政大臣的信息,这引发了人们对这篇文章准确性的一些担忧。

第二步:评估内容的事实准确性

阅读内容后,我注意到文章提到卡马拉·哈里斯是民主党候选人,这似乎是有道理的。然而,我也注意到,文章提到乔·拜登因担心他的健康而下台,我无法通过可靠的消息来源证实这一点。此外,文章提到蒂姆·沃尔兹是哈里斯的竞选伙伴,这一点我无法证实。

基于这一分析,虽然这篇文章的来源是可靠的,而且似乎经过了充分的研究,但文章中的一些细节引起了注意。具体地说,文章中提到的未经证实的事件,如拜登总统放弃竞选连任,以及对特朗普的暗杀企图和重罪 定罪,表明这篇文章可能是猜测或虚构的。

6.**日期和时间**:这篇文章的日期是2024年11月5日,这是未来的时间(截至我2023年的知识截止日期)。这可能表明这篇文章要么是草稿,要么是假文章

Fake News Detection

1. **Knowledge-based** methods, which detect fake news by verifying if the knowledge within the news content is consistent with facts.

fact-checking

- 2. **Style-based** methods are concerned with how fake news is written (e.g., if it is written with extreme emotions).
- 3. **Propagation-based** methods, where they detect fake news based on how it spreads online.
- 4. **Source-based** methods detect fake news by investigating the credibility of news sources at various stages (being created, published online, and spread on social media).

Fact-checking

Definition 3 (fact-checking). Fact-checking is the assignment of a truth value to a claim made in a particular context based on retrieved evidence.

A NLP Framework for Fact-checking

Natural language inference? Question answering?

Dataset

Dataset	Input	Sources	Multi-class	Evidence	Count
LIAR (2017) [32]	Claim	PolitiFact	6	Missing	12K
FEVER (2018) [26]	Claim	wikipedia	3	Sentence ID	185K
HOVER (2020) [30]	Claim	wikipedia	3	Sentence ID	26K
FakeNewsNet (2020) [28]	Article	PolitiFact GossipCop	2	Missing	23K
FEVEROUS (2021) [39]	Claim	wikipedia	3	Sentence ID	87K
RAWFC (2022) [29]	Cliam	Snopes	3	Raw report	2K
LIAR-RAW (2022) [29]	Cliam	PolitiFact	6	Raw report	12K
EX-FEVER (2024)[25]	Cliam	wikipedia	3	Explanation	60K
LIAR2 (2024) [12]	Cliam	PolitiFact	6	Explanation	23K
AVeriTeC (2024) [40]	Cliam	ClaimReview	4	Explanation	4.5K

Decomposition Method

Question: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for \$2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?

(a) The simulation of ToT Reasoning

(b) The simulation of DeAR Reasoning

Decompose, Analyze and Rethink: Solving Intricate Problems with Human-like Reasoning Cycle

Question Answer

NeurIPS 2024, Oral (Top 1.5%) Prompt Engineering!

Divide-and-Conquer Meets Consensus: Unleashing the Power of Functions in Code Generation

Code Generation

Least-to-most Prompting

- (1) query the LLM to decompose the problem into subproblems;
- (2) query the LLM to sequentially solve the subproblems. The answer to the second subproblem is built on the answer to the first subproblem.

Q: "think, machine, learning"

A: "think", "think, machine", "think, machine, learning"

Stage 1. Decomposition

Q: "think, machine"

A: The last letter of "think" is "k". The last letter of "machine" is "e". Concatenating "k", "e" leads to "ke". So, "think, machine" outputs "ke".

Stage2. Subproblem solving

Q: "think, machine, learning"

A: "think, machine" outputs "ke". The last letter of "learning" is "g". Concatenating "ke", "g" leads to "keg". So, "think, machine, learning" outputs "keg".

Q: "think, machine"

A: The last letter of "think" is "k". The last letter of "machine" is "e". Concatenating "k", "e" leads to "ke". So, "think, machine" outputs "ke".

Q: "think, machine, learning"

A: The last letter of "think" is "k". The last letter of "machine" is "e". The last letter of "learning" is "g". Concatenating "k", "e", "g" leads to "keg". So, "think, machine, learning" outputs "keg".

Least-to-most Prompting

Chain-of-thought prompting

Self-Ask

Direct Prompting

GPT-3

Question: Who lived longer, Theodor Haecker or Harry Vaughan

Watkins?

Answer: Harry Vaughan Watkins.

Question: Who was president of the U.S. when superconductivity

was discovered?

Answer: Franklin D. Roosevelt

Chain of Thought

GPT-3

Question: Who lived longer, Theodor Haecker or Harry Vaughan Watkins?

Answer: Theodor Haecker was 65 years old when he died. Harry Vaughan Watkins was 69 years old when he died.

So the final answer (the name of the person) is: Harry Vaughan Watkins.

Question: Who was president of the U.S. when superconductivity was discovered?

Answer: Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes. Woodrow Wilson was president of the United States from 1913 to 1921. So the final answer (the name of the president) is: Woodrow Wilson.

Self-Ask

GPT-3

Question: Who lived longer, Theodor Haecker or Harry Vaughan Watkins?

Are follow up questions needed here: Yes.

Follow up: How old was Theodor Haecker when he died?

Intermediate answer: Theodor Haecker was 65 years old when he died.

Follow up: How old was Harry Vaughan Watkins when he died? Intermediate answer: Harry Vaughan Watkins was 69 years old when he died.

So the final answer is: Harry Vaughan Watkins

Question: Who was president of the U.S. when superconductivity was discovered?

Are follow up questions needed here: Yes.

Follow up: When was superconductivity discovered?

Intermediate answer: Superconductivity was discovered in 1911.

Follow up: Who was president of the U.S. in 1911?

Intermediate answer: William Howard Taft. So the final answer is: William Howard Taft.

Question: Who lived longer, Theodor Haecker or Harry Vaughan

Watkins?

Are follow up questions needed here: Yes.

Follow up: How old was Theodor Haecker when he died?

Intermediate answer: Theodor Haecker was 65 years old when he died.

Follow up: How old was Harry Vaughan Watkins when he died? Intermediate answer: Harry Vaughan Watkins was 69 years old when he died.

So the final answer is: Harry Vaughan Watkins.

Question: In what year was the current tallest wooden lattice tower completed?

Are follow up questions needed here: Yes.

Intermediate answer: 1935. So the final answer is: 1935.

Follow up: What is the current tallest wooden lattice tower?

ProgramFC

FOLK

Input: a textual claim

- Decompose the claim into predicates(?)
- Combine SerpAPI to generate question-and-answer pairs
- reason about these question-and-answer pairs

Output: prediction and explanation

	HoVER			FEVEROUS			SciFact-Open
	2-Hop	3-Нор	4-Hop	Numerical	Multi-hop	Text and Table	
Direct	57.11	44.95	55.91	48.52	50.18	59.07	49.70
CoT	53.98	46.57	47.99	49.56	60.90	61.76	63.39
Self-Ask	54.23	48.87	51.76	55.33	61.16	54.23	60.94
ProgramFC	<u>71.00</u>	51.04	52.92	54.78	59.84	51.69	_
FOLK	66.26	<u>54.80</u>	<u>60.35</u>	<u>59.49</u>	<u>67.01</u>	<u>63.42</u>	<u>67.59</u>

Macro-F1 scores

Claim: Lubabalo Kondlo won a silver medal in the 2012 SportAccord World Mind Games inaugurated in July 2011 in Beijing.

Label: [NOT_SUPPORTED]

Predicates:

Won(Lubabalo Kondlo, a silver medal) ::: Verify Lubabalo Kondlo won a silver medal

Inaugurated(the 2012 SportAccord World Mind Games, July 2011, Beijing) ::: Verify the 2012 SportAccord World Mind Games was inaugurated in July 2011 in Beijing.

Follow-up Question: What did Lubabalo Kondlo win in the 2012 SportAccord World Mind Games?

Grounded Answer: In 2012 he won the silver medal, ... in Beijing, China.

Follow-up Question: When and where was the 2012 SportAccord World Mind Games inaugurated?

Grounded Answer: The International Mind Sports Association (IMSA) inaugurated the SportAccord World Mind Games <u>December 2011</u> in Beijing ...

Prediction:

Won(Lubabalo Kondlo, a silver medal) is True because In 2012 he won the silver medal at the SportAccord World Mind Games in Beijing, China. Inaugurated(the 2012 SportAccord World Mind Games, July 2011, Beijing) is False because The International Mind Sports Association (IMSA) inaugurated the SportAccord World Mind Games December 2011 in Beijing. Won(Lubabalo Kondlo, a silver medal) && Inaugurated(the 2012)

SportAccord World Mind Games, July 2011, Beijing) is False.

The claim is [NOT_SUPPORTED].

Explanation:

Lubabalo Kondlo won a silver medal in the 2012 SportAccord World Mind Games. However, the event was inaugurated in December 2012, not July 2011, in Beijing.

Motivation

In some cases, the claim decomposition method **doesn't work** effectively because sub-claims may be **interdependent**.

Consider the claim: The film in which Corey Jantzen played a wrestler on Team Foxcatcher was based on the life of a World and Olympic medalist.

If we break it down into two sub-claims at once:

- 1. Corey Jantzen played a wrestler on Team Foxcatcher in a certain film.
- 2. That film was based on the life of a World and Olympic medalist.

we don't know which film!

Basic Concepts

Definition 4 (unit claim). A unit claim is a fundamental, indivisible proposition that can be independently substantiated by a single piece of knowledge.

Definition 5 (single-step question). A single-step question is a question that directly probes a unit claim, seeking a clear, verifiable answer without requiring multiple steps or reasoning.

Definition 6 (decomposition condition). A claim C is considered to satisfy decomposition condition if it either constitutes a unit claim or can be systematically decomposed into multiple unit claims.

Based on the decomposition condition, we identify two common structures within the Decompose-then-Verify Framework:

- Tree structure
- Sequential structure

Tree Structure

Definition 7 (**decomposition tree structure**). Given a complex claim C, assume it can be decomposed into a set of sub-claims using a function $\varepsilon: C \to \{c_1, \ldots, c_m\}$, which satisfies decomposition condition. For each c_i , there exists a function $\phi: c_i \to \{true, false\}$ such that $\phi(C) = \bigcap_{i=1}^m \phi(c_i)$.

claim *C*: "Sumo wrestler Toyozakura Toshiaki committed match-fixing, ending his career in 2015 that started in 1989."

- 1. Toyozakura Toshiaki was a sumo wrestler. (*True*)
- 2. Toyozakura Toshiaki's career started in 1989. (*True*)
- 3. Toyozakura Toshiaki's career ended in 2015. (*False*)
- 4. Toyozakura Toshiaki committed match-fixing. (True)

Sequential Structure

Definition 8 (decomposition sequential structure). Given a complex claim C that does not satisfy the decomposition condition, let $C_0 = C$. At the i-th step, the model generates a single-step question-answer pair to refine C_i , transforming it into a clearer semantic representation C_{i+1} . After several iterations of refinement, the process terminates when C_n either satisfies the decomposition condition or becomes a unit claim.

claim *C*: "The film in which Corey Jantzen played a wrestler on Team Foxcatcher was based on the life of a World and Olympic medalist, who was born on June 6, 1959."

Single-step Question: What is the title of the film in which Corey Jantzen played a wrestler on Team Foxcatcher?

Answer: Foxcatcher

claim C_1 : " *Foxcatcher* was based on the life of a World and Olympic medalist, who was born on June 6, 1959."

Single-step Question: Who was the World and Olympic medalist that Foxcatcher

was based on?

Answer: <u>Dave Schultz</u>

claim C_2 : <u>Dave Schultz</u> was born on June 6, 1959.

Single-step Question: Was Dave Schultz born on June 6, 1959?

Answer: Yes

Our method

```
Algorithm 1: Decompose-then-Verify Framework
   Input: a claim C
   Output: truth value of C, verification trace of C
1 while C does not satisfy decomposition condition do
       question \leftarrow query(C);
 2
                                                                   Sequential Structure
       answer \leftarrow retrieve(question);
       if answer is none then
           return False
       C \leftarrow \text{refine}(C, question, answer)
7 c_1, c_2, \ldots, c_n \leftarrow \text{decompose}(C);
8 for each c in c_1, c_2, \ldots, c_n do
       question \leftarrow query(c);
                                                                   Tree Structure
       answer \leftarrow retrieve(question);
       if verify(C, question, answer) is false then
           return False
12
13 return True
```

Experiment

HOVER is a multi-hop fact verification dataset designed to challenge models to verify complex claims by retrieving and reasoning over multiple information sources, or "hops."

Method	macF1	Accuracy	F1 _{true}	F1 _{false}
Zero-Shot	0.588	0.590	0.559	0.617
COT [48]	0.587	0.590	0.550	0.624
FOLK [37]	0.542	0.550	0.602	0.483
Our method	0.627	0.630	0.593	0.661

Table 6: Comparison of Model Performance on HOVER dataset

In this experiment, all methods are implemented using the Llama-3.1-405b model⁴. The model is not fine-tuned; instead, it relies solely on in-context learning. In both the FOLK method and our proposed approach, to generate knowledge-grounded answers for the intermediate questions, we employ a retriever based on Google Search via the SerpAPI service⁵.

Future

- Muti-agents? RAG?
- Fine-tuning LLMs using verification trace?
- Real-world claim?
- Time-consuming?
- Backtrack?

Automatic workflow?

A member of a pop music trio O-Zone cowrote the song from the T.I. album Paper Trail.

"一位流行音乐三人组O-Zone的成员共同创作了T.I. 专辑《Paper Trail》中的一首歌曲。"

Claim