Result & Discussion

1. Original Histopathological Image Distribution

2. Sample Images

By manually inspection on data images we could find unusable, noisy images among the data set and then we have to process this data by croping, rotating, Spliting or removing entire image to maintain data usability. We use "ImageJ" software to acheive this target and restore the images in folder called "Pre-Processed Data"

Subtype	Original Noisy Images	Processed Images		
Clear Cell				
Endometroid	A STEMPS			
Mucinous				
Non_Cancerous				
Serious				

3. Image Size Distribution

4. Image Extension Distribution

1. Random Forest

Random Forest	Classificati precision		on Separat f1-score	e Test Data: support
Clear Cell	0.64	0.75	0.69	100
Endometri		0.83	0.81	100
Mucinous	0.64	0.66	0.65	100
Non_Cancerous	0.68	0.70	0.69	100
Serous	0.85	0.61	0.71	100
accuracy			0.71	500
macro avg	0.72	0.71	0.71	500
weighted avg	0.72	0.71	0.71	500
Random Forest	Model Accura	cy on Test	Data: 0.7	1

2. XG Boost

Fine-Tuned XGBoost Classification Report:				
	precision	recall	f1-score	support
Clear Cell	0.66	0.76	0.70	100
Endometri	0.85	0.85	0.85	100
Mucinous	0.64	0.71	0.67	100
Non_Cancerous	0.74	0.70	0.72	100
Serous	0.87	0.68	0.76	100
accuracy			0.74	500
macro avg	0.75	0.74	0.74	500
weighted avg	0.75	0.74	0.74	500
Fine-Tuned XGBoost Model Accuracy: 0.74				

The fine-tuned XGBoost model achieved the highest accuracy (74%) among the tested models (Random Forest, Decision Tree, SVM), indicating it best captured the patterns in the data.

Best classified

 Serous (Precision- 0.87) and Endometrioid (F1-score- 0.85) show high precision and recall, indicating the model distinguishes these subtypes well.

Challenging subtypes

- Mucinous and Clear_Cell had lower F1-scores (0.67 and 0.70), suggesting more misclassifications possibly due to overlapping features or fewer unique patterns.
- Non_Cancerous had moderate results, with balanced precision and recall (~0.70).

3. Decision Tree

Decision Tree				
	precision	recall 1	t1-score	support
Clear_Cell	0.55	0.61	0.58	100
Endometri	0.70	0.69	0.70	100
Mucinous	0.52	0.53	0.52	100
Non_Cancerous	0.59	0.59	0.59	100
Serous	0.60	0.53	0.56	100
accuracy			0.59	500
macro avg	0.59	0.59	0.59	500
weighted avg	0.59	0. 59	0.59	500
Decision Tree	Model Accurac	cy on Test	Data: 0.5	9

4. SVM Classifier

SVM Classification Report:				
	precision	recall	f1-score	support
Clear_Cell	0.37	0.37	0.37	100
Endometri	0.52	0.67	0.59	100
Mucinous	0.39	0.43	0.41	100
Non_Cancerous	0.31	0.31	0.31	100
Serous	0.68	0.43	0.53	100
accuracy			0.44	500
macro avg	0.46	0.44	0.44	500
weighted avg	0.46	0.44	0.44	500
SVM Model Accu	racy: 0.44			