- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 giugno 2009

(Cognome)														(No	me)			(Nu	ımer	o di	mat	trico	·la)		
(cognome)																									

 $\mathrm{CODICE} = 441380$

0000
0000
00000
00000
0000
00000

1. La serie a termini non-negativi

$$\sum_{n=3}^{\infty} \frac{\arctan(n)}{n^{\alpha}}$$

converge per

A: $\alpha \ge 1$ B: $\alpha > 0$ C: N.A. D: $\alpha > 1$ E: $3 < \alpha < \pi$

2. L'integrale

$$\left| \int_{-1}^{1} e^{|x|} dx \right|$$

vale

A:
$$2(1-e)$$
 B: $e + e^{-1}$ C: N.A. D: $2(e-1)$ E: $|e + e^{-1}|$

3. Una primitiva di $f(x) = \log(2x)$ è

A: $x - x \log(2x)$ B: $\log(3) + x \log(x) + (\log(2) - 1)x$ C: $x + x^2 \log(2x)$ D: N.A. N.E.

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : x^2 - 3x + 2 < 0\}$$

valgono

A:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 B: N.A. C: $\{1, 1, 2, 2\}$ D: $\{1, N.E., 2, N.E.\}$ E: $\{0, 0, 1, 1\}$

5. Data $f(x) = 5^{\frac{x}{5}}$. Allora f'(5) è uguale a

A: N.A. B:
$$\log(5)$$
 C: 1 D: 0 E: N.E.

6. La parte reale del numero complesso $z = \frac{2-i}{3+i}$ è

A:
$$-\pi/4$$
 B: $1/4$ C: 0 D: $-1/2$ E: N.A.

7. La funzione $f: \mathbb{R}^+ \to \mathbb{R}$ definita da $f(x) = \log_2(x)$ è

A: sempre positiva B: sempre negativa C: limitata inferiormente D: N.A. E: iniettiva

8. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = \sqrt{\pi}$ della funzione $y(x) = \sin(x^2)$

A:
$$2\pi - 2\sqrt{\pi}x$$
 B: $1 - 2\pi x$ C: $1 - 2\sqrt{\pi}x - x^2$ D: $(x - \pi/2)^2$ E: N.A.

A: $2\pi - 2\sqrt{\pi}x$ B: $1 - 2\pi x$ C: $1 - 2\sqrt{\pi}x - x^2$ D: $(x - \pi/2)^2$ E: N.A.

9. La funzione $f(x) = \begin{cases} \sin(x) & \text{per } x \ge 0 \\ \cos(x + \pi/2) & \text{per } x < 0 \end{cases}$

B: è continua e derivabile. C: non è né continua né derivabile. D: è continua, ma non derivabile. E: è derivabile, ma non continua.

10. Il limite

$$\lim_{x \to +\infty} x \left(\arctan(x) - \pi/2 \right)$$

vale

A: N.A. B: -1 C: $+\infty$ D: 0 E: N.E.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 giugno 2009

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 460496$

Α	В	С	D	\mathbf{E}	

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	0000

1. L'integrale

$$\left| \int_{-1}^{1} e^{|x|} dx \right|$$

vale

A: 2(e-1) B: N.A. C: $|e+e^{-1}|$ D: $e+e^{-1}$ E: 2(1-e)

2. La parte reale del numero complesso $z=\frac{2-i}{3+i}$ è

A: 0 B: -1/2 C: $-\pi/4$ D: N.A. E: 1/4

3. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = \sqrt{\pi}$ della funzione $y(x) = \sin(x^2)$ vale

A: $1 - 2\pi x$ B: N.A. C: $2\pi - 2\sqrt{\pi}x$ D: $(x - \pi/2)^2$ E: $1 - 2\sqrt{\pi}x - x^2$

4. Una primitiva di $f(x) = \log(2x)$ è

A: $x + x^2 \log(2x)$ B: N.A. C: N.E. D: $x - x \log(2x)$ E: $\log(3) + x \log(x) + (\log(2) - 1)x$

5. Data $f(x) = 5^{\frac{x}{5}}$. Allora f'(5) è uguale a

A: 1 B: N.E. C: 0 D: log(5) E: N.A

6. La serie a termini non-negativi

$$\sum_{n=3}^{\infty} \frac{\arctan(n)}{n^{\alpha}}$$

converge per

A: $\alpha \ge 1$ B: N.A. C: $\alpha > 0$ D: $\alpha > 1$ E: $3 < \alpha < \pi$

7. La funzione $f(x) = \begin{cases} \sin(x) & \text{per } x \ge 0 \\ \cos(x + \pi/2) & \text{per } x < 0 \end{cases}$

A: N.A. B: non è né continua né derivabile. C: è derivabile, ma non continua. D: è continua, ma non derivabile. E: è continua e derivabile.

8. La funzione $f: \mathbb{R}^+ \to \mathbb{R}$ definita da $f(x) = \log_2(x)$ è

A: N.A. B: iniettiva C: sempre positiva D: sempre negativa E: limitata inferiormente

9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : x^2 - 3x + 2 < 0\}$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: $\{1, N.E., 2, N.E.\}$ C: N.A. D: $\{1, 1, 2, 2\}$ E: $\{0, 0, 1, 1\}$

10. Il limite

$$\lim_{x \to +\infty} x \left(\arctan(x) - \pi/2 \right)$$

vale

A: $+\infty$ B: N.A. C: N.E. D: -1 E: 0

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 giugno 2009

(Cognome)	(Nome)	(Numero di matricola)
, ,	, ,	` '

Α	В	С	D	\mathbf{E}	

00000
00000
0000
0000
00000
00000
00000
00000

1. L'integrale

$$\left| \int_{-1}^{1} e^{|x|} dx \right|$$

vale

A: N.A. B: $|e + e^{-1}|$ C: $e + e^{-1}$ D: 2(e - 1) E: 2(1 - e)

2. La funzione $f: \mathbb{R}^+ \to \mathbb{R}$ definita da $f(x) = \log_2(x)$ è

A: limitata inferiormente B: sempre negativa C: sempre positiva D: N.A. E: iniettiva

3. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = \sqrt{\pi}$ della funzione $y(x) = \sin(x^2)$

A: N.A. B: $1 - 2\pi x$ C: $(x - \pi/2)^2$ D: $1 - 2\sqrt{\pi}x - x^2$ E: $2\pi - 2\sqrt{\pi}x$

4. Una primitiva di $f(x) = \log(2x)$ è

A: N.E. B: $\log(3) + x \log(x) + (\log(2) - 1)x$ C: $x - x \log(2x)$ D: $x + x^2 \log(2x)$ E. N.A.

5. Il limite

$$\lim_{x \to +\infty} x \left(\arctan(x) - \pi/2\right)$$

vale

A: N.A. B: N.E. C: 0 D: -1 E: $+\infty$

6. Data $f(x) = 5^{\frac{x}{5}}$. Allora f'(5) è uguale a

A: 0 B: $\log(5)$ C: 1 D: N.A. E: N.E.

7. La serie a termini non-negativi

$$\sum_{n=2}^{\infty} \frac{\arctan(n)}{n^{\alpha}}$$

converge per

A: $\alpha > 0$ B: $\alpha > 1$ C: $\alpha \ge 1$ D: $3 < \alpha < \pi$ E: N.A.

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : x^2 - 3x + 2 < 0\}$$

valgono

 $\text{A: N.A.} \quad \text{B: } \{-\infty, N.E., +\infty, N.E.\} \quad \text{C: } \{1,1,2,2\} \quad \text{D: } \{1,N.E.,2,N.E.\} \quad \text{E: } \{0,0,1,1\}$

9. La funzione $f(x) = \begin{cases} \sin(x) & \text{per } x \ge 0 \\ \cos(x + \pi/2) & \text{per } x < 0 \end{cases}$

A: è derivabile, ma non continua. B: è continua e derivabile. C: non è né continua né derivabile. D: è continua, ma non derivabile. E: N.A.

10. La parte reale del numero complesso $z = \frac{2-i}{3+i}$ è

A: -1/2 B: N.A. C: 0 D: $-\pi/4$ E: 1/4

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 giugno 2009

				(Cogn	ome))								(No	me)				(Nı	ımeı	o di	mat	ricola)
	CC)DI(CE =	= 25	3614	12																			
											ı														
				A	E	3 (С	D	F	3															
1			Г			7/	$\overline{}$			\															
			-	$\frac{\searrow}{}$		$\frac{1}{2}$	\preceq	$\frac{\searrow}{\sim}$		<u>ノ</u>															
2				<u>_</u>) (<u>) (</u>	$\underline{\underline{\hspace{1em}}}$	<u>_</u>) (<u>) </u>															
3))())															

4

567

8 9

10

1. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = \sqrt{\pi}$ della funzione $y(x) = \sin(x^2)$ vale

A: N.A. B:
$$1 - 2\sqrt{\pi}x - x^2$$
 C: $2\pi - 2\sqrt{\pi}x$ D: $1 - 2\pi x$ E: $(x - \pi/2)^2$

2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : x^2 - 3x + 2 < 0\}$$

valgono

A:
$$\{1, 1, 2, 2\}$$
 B: $\{1, N.E., 2, N.E.\}$ C: $\{0, 0, 1, 1\}$ D: N.A. E: $\{-\infty, N.E., +\infty, N.E.\}$

3. La parte reale del numero complesso $z = \frac{2-i}{3+i}$ è

A: 0 B:
$$-1/2$$
 C: $1/4$ D: $-\pi/4$ E: N.A.

4. L'integrale

$$\left| \int_{-1}^{1} e^{|x|} dx \right|$$

vale

A:
$$e + e^{-1}$$
 B: $2(e - 1)$ C: $2(1 - e)$ D: N.A. E: $|e + e^{-1}|$

5. Una primitiva di $f(x) = \log(2x)$ è

A:
$$x + x^2 \log(2x)$$
 B: N.A. C: $x - x \log(2x)$ D: $\log(3) + x \log(x) + (\log(2) - 1)x$ E: N.E.

6. La funzione $f: \mathbb{R}^+ \to \mathbb{R}$ definita da $f(x) = \log_2(x)$ è

A: limitata inferiormente B: sempre negativa C: iniettiva D: N.A. E: sempre positiva

7. Data $f(x) = 5^{\frac{x}{5}}$. Allora f'(5) è uguale a

8. La funzione $f(x) = \begin{cases} \sin(x) & \text{per } x \ge 0 \\ \cos(x + \pi/2) & \text{per } x < 0 \end{cases}$

A: è continua, ma non derivabile. B: non è né continua né derivabile. C: è derivabile, ma non continua. D: è continua e derivabile. E: N.A.

9. La serie a termini non-negativi

$$\sum_{n=3}^{\infty} \frac{\arctan(n)}{n^{\alpha}}$$

converge per

A:
$$3 < \alpha < \pi$$
 B: N.A. C: $\alpha \ge 1$ D: $\alpha > 0$ E: $\alpha > 1$

10. Il limite

$$\lim_{x \to +\infty} x \left(\arctan(x) - \pi/2 \right)$$

vale

A: N.E. B: 0 C:
$$+\infty$$
 D: N.A. E: -1

16 giugno 2009

(Cognome)										_			(N	ome)			_	(N	ume	ro d	i ma	trice	ola)				

A	В	С	D	\mathbf{E}	
		_			

1	
2	
3	
4	
5	
6	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
7	
8	
9	
10	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

16 giugno 2009

(Cognome)												(No	me)			_	(Numero di matricola)											

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

16 giugno 2009

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 194332$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

16 giugno 2009

(Cognome)											(Noı	me)			(N	ume	ero o	li m	atrio	cola)	_					

A	В	С	D	\mathbf{E}	

1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

16 giugno 2009

PARTE B

1. Studiare il numero di soluzioni, al variare di $\lambda \in \mathbb{R}$ della equazione

$$\lambda = \frac{1+|x|}{2+x}, \qquad x > 0.$$

2. Risolvere il problema di Cauchy

$$\begin{cases} y''(t) + y(t) = \sin(\pi t) \\ y(0) = 1 \\ y'(0) = 0. \end{cases}$$

Quanto vale y''(0)?

3. Studiare la convergenza ed eventualmente calcolare l'integrale generalizzato

$$\int_{2}^{+\infty} \frac{x}{(x-1)(x^2+9)} \, dx.$$

4. Dimostrare che nessun polinomio di grado dispari, strettamente maggiore di 1, è una funzione convessa.

Traccia di soluzione

1) Studiando la funzione

$$f(x) = \frac{1+|x|}{2+x} = \frac{1+x}{2+x}$$
, se $x > 0$.

si ricava subito che la derivata prima $f'(x)=(2+x)^{-2}$ è strettamente maggiore di zero. La funzione f è quindi strettamente monotona e la sua immagine è] $\inf_{x>0} f$, $\sup_{x>0} f = 1/2$, 2[. Pertanto per $1/2 < \lambda < 1$ c'è una soluzione, mentre per $\lambda \leq 1/2$ e $\lambda \geq 1$ non ci sono soluzioni.

2) L'equazione caratteristica ha come soluzioni $\lambda=\pm i$ e quindi l'equazione omogenea ha come soluzione

$$y_0(t) = c_1 \sin(t) + c_2 \cos(t)$$
.

Dato che non c'è risonanza una soluzione dellla non omogenea va cercata della forma

$$y_f(t) = c_1 \sin(\pi t) + c_2 \cos(\pi t).$$

Svolgendo i conti e imponendo le condizioni iniziali si trova

$$y(t) = \cos(t) + \frac{\pi \sin(t) - \sin(\pi t)}{-1 + \pi^2}$$

ed anche y''(0) = -1.

3) In questo caso osservando che

$$\frac{x}{(x-1)(x^2+9)} = \mathcal{O}(x^{-2})$$

l'integrale converge. Trattandosi di una funzione razionale, tramite la usuale fattorizzazione si trova che una primitiva è

$$\frac{1}{20} \left(6 \tan^{-1} \left(\frac{x}{3} \right) + 2 \log(x - 1) - \log \left(x^2 + 9 \right) \right)$$

e quindi

$$\int_{2}^{+\infty} \frac{x}{(x-1)(x^{2}+9)} dx = \lim_{b \to +\infty} \frac{1}{20} \left(6 \arctan\left(\frac{x}{3}\right) + 2\log(x-1) - \log\left(x^{2}+9\right) \right) \Big]_{2}^{b}$$
$$= \frac{1}{20} \left(3\pi - 6 \arctan\left(\frac{2}{3}\right) + \log(13) \right)$$

4) Se P(x) è un polinomio di grado dispari di grado strettamente maggiore di 1, allora la sua derivata seconda P''(x) è un polinomio di grado dispari di grado maggiore o uguale a 1. Pertanto

$$\lim_{x \to \pm \infty} P''(x) = \pm \infty \text{ oppure } \lim_{x \to \pm \infty} P''(x) = \mp \infty.$$

In entrambi i casi il teorema della permanenza del segnoci assicura l'esistenza di intervalli in cui la derivata seconda è negativa e quindi P non può essere convessa.