6 Lecture 6

[6.1] Theorem A nonempty bounded polyhedron K is a polytope.

Proof. As K is closed, bounded and convex, by [5.3], K = conv(E), where E is the set of vertices of K. By [5.33] and [5.24], E is nonempty and finite. Hence K is a polytope.

- [6.2] <u>Definition</u> Let $\emptyset \neq P \subseteq \mathbb{R}^n$. We call $P^* := \{x \mid a^t x \leq 1, \forall a \in P\}$ the <u>POLAR DUAL</u> or simply the <u>DUAL</u> of P. We simply write a^* to mean $\{a\}^*$.
- **[6.3]** Example Take $a = \begin{bmatrix} 1 & 1 \end{bmatrix}^t$. Then $a^* = \{x \mid a^t x \le 1\}$ is the half-space $x + y \le 1$. It is unbounded.

[6.4] Fact If $0 \neq c \in \mathbb{R}^n$, then $c^t y = 1$ is a hyperplane that passes through $\frac{c}{\|c\|^2}$ (the vector along c of norm $1/\|c\|$) and c^* is the halfspace that contains 0.! This is why some people call the polar dual the RECIPROCAL DUAL.

- **[6.5]** Fact For any nonzero $c \in \mathbb{R}^n$, the dual c^* always has 0 in its interior. Is $B_{\delta}(0)$, $\delta = 1/\|c\|$, in the interior?!! Hence intersection of finitely many of them will also contain 0 in its interior.
- [6.6] Fact Let S be nonempty. Then $S^* = \bigcap_{a \in S} a^*$. That is, S^* is the intersection of the duals of each point in S. Follows from the definition.
- **[6.7] Fact** If $A \subseteq B$, then $B^* \subseteq A^*$. Follows from the definition.
- [6.8] <u>Example</u> Take $S = \{e_1, 2e_2, -3e_1, -e_2\}$. Draw S^* and $(S^*)^*$.

$$S^* = (onv(s)^* \qquad S \subseteq (onv(s))$$

$$(onv(s)^* \subseteq S^*$$

[6.9] <u>Lemma</u> (Dual of a nonempty set is the dual of its convex hull) Let $\emptyset \neq S \subseteq \mathbb{R}^n$. Then $\operatorname{conv}(S)^* = S^*$. In particular, dual of a polytope is a polyhedron.

$$\frac{\pi \in S^{*}}{13} \quad \text{To show } \quad \chi \in (\sigma_{NV}(S)).$$

$$\frac{\pi}{13} \quad \frac{\pi}{13} \leq 1 \quad \forall y \in (\sigma_{NV}(S))$$

$$= \frac{\pi}{13} \left(\frac{\pi}{13} + \cdots + \frac{\pi}{13} + \frac{\pi}{13} \right)$$

$$= \frac{\pi}{13} \left(\frac{\pi}{13} + \cdots + \frac{\pi}{13} + \frac{\pi}{13} \right)$$

$$\leq \frac{\pi}{13} + \cdots + \frac{\pi}{13} = 1$$

$$\leq \frac{\pi}{13} + \cdots + \frac{\pi}{13} = 1$$

Proof. As $S \subseteq \mathsf{conv}(S)$, we have $\mathsf{conv}(S)^* \subseteq S^*$. Now let $z \in S^*$. We show that $z \in x^*$ for each $x \in \mathsf{conv}(S)$. Towards that, let $x = \sum \lambda_i s_i \in \mathsf{conv}(S)$. As $z \in S^*$, we have $z^t s_i \leq 1$ for each i. Hence

$$z^t x = z^t (\sum \lambda_i s_i) = \sum \lambda_i (z^t s_i) \le 1$$

and so $z \in x^*$. Hence $S^* \subseteq \text{conv}(S)^*$. The next statement is immediate.

[6.10] <u>Lemma</u> (Dual of set with zero as an interior point is bounded.) Let $P \subseteq \mathbb{R}^n$ such that $B_{\epsilon}(0) \subseteq P$. Then P^* is bounded.

Proof. Take $0 \neq x \in P^*$. As $\frac{\epsilon x}{2\|x\|} \in B_{\epsilon}(0) \subseteq P$, we have $\frac{\epsilon}{2\|x\|} x^t x \le 1$. That is, $\|x\| \le \frac{2}{\epsilon}$. $B_{\epsilon}(0) \subseteq \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{i=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=$

Proof. Let $P = \text{conv}\{x_1, \dots, x_t\} \subseteq \mathbb{R}^n$ with $B_r(0) \subseteq P$. Then P^* is a bounded polyhedron, hence a polytope. Again, as P^* also has 0 in its interior, we see that P^{**} is a polytope.

To show $P \subseteq P^{**}$, take $a \in P$. So $a^t w \le 1$ for each $w \in P^*$. That is, $a \in P^{**}$.

To show the other inclusion, let $a \in P^{**} \setminus P$. As $a \notin P$ and P is a closed convex set, by the strict separation, $\exists b \neq 0$ and α such that $b^t a > \alpha$ and $b^t z < \alpha$, $\forall z \in P$. As $0 \in P$, we have $\alpha > 0$. Put $d = \frac{b}{\alpha}$ to get $d^t a > 1$ and $d^t z \leq 1$, $\forall z \in P$. This means, $d \in P^*$ and $a^t d > 1$. So a cannot be in P^{**} , a contradiction.

[6.12] Corollary

- a) A polytope with an interior point 0 is a bounded polyhedron. (As P^{**} is a polyhedron.)
- b) A polytope with an interior point is a bounded polyhedron. (Follows from translation.)
- [6.13] Theorem Every polytope (whether it has an interior point or not) in \mathbb{R}^n is a bounded polyhedron.

P does not have an int pl => P is and in a har plane

P= (unv ($x_1, x_2, ..., x_k$). consider $x_0 = \frac{x_1 + x_2 + ... + x_k}{k} \in P$ In p

one p $C^T x_0 = x$ and $C^T x_1 > x_2 < x_3 < x_4 < P$ Affine the constant of the properties of the constant of the plane of the pl

Proof. Let $P = \text{conv}(x_1, \dots, x_t)$. If P is contained in a hyperplane of \mathbb{R}^n , we are done by induction. So, assume also that P is not contained in any hyperplane.

In this case the idea is to find an interior point. We claim that $x_0 := \frac{x_1 + \dots + x_t}{t} \in P^{\circ}$.

Note that x_0 is already in P. So, if the claim is not true, then $x_0 \in \partial P$. So there is a hyperplane $H : c^t x = \beta$ supporting P positively at x_0 . As

$$\beta = c^t x_0 = c^t \left[\frac{x_1}{t} + \frac{x_2}{t} + \dots + \frac{x_t}{t} \right] \ge \beta,$$

we see that $c^t x_1 = \cdots = c^t x_t = \beta$. That is, x_1, \ldots, x_t lie on H. Hence P lies on H. A contradiction.

Some exercises

[6.14] Exercise(E) Let $P = \text{conv}(0, e_1, e_2, e_3, e_1 + e_2 + e_3) \subseteq \mathbb{R}^3$. If $P^* = \{x \mid Ax \leq b\}$, then write A and b.

[6.15] Exercise(E) Let $P = \text{conv}(0, e_1, e_2, e_3, e_1 + e_2 + e_3) \subseteq \mathbb{R}^3$. We know that each polytope is a bounded polyhedron, that is, we can write $P = \{x \mid Ax \leq b\}$ for some A and b. Write A and b.

[6.16] Exercise(E) (Some interesting pictures of the dual) a) Take $P = \{\alpha e_1 \mid \alpha \in \mathbb{R}\}$. Show that $P^* = P^{\perp}$.

b) Let $P = \overline{B_1(0)} \subseteq \mathbb{R}^2$ in $\|\cdot\|_1$. Draw P^* and notice that $P^* = \overline{B_1(0)}$ in $\|\cdot\|_{\infty}$. Draw P^{**} and notice that $P^{**} = P$

c) Take $P = \overline{B_1(0)} \subseteq \mathbb{R}^2$ in $\|\cdot\|_2$. Draw P^* .

[6.17] Exercise(E) (Vertices of P^* .) Let $P = C(e_1 - e_2, 2e_1, e_1 + e_2, -e_1) \subseteq \mathbb{R}^2$. Draw the dual P^* and write the vertices of P^* .

[6.18] Exercise(M) (Converse of a result) a) I have a set $P \subseteq \mathbb{R}^2$ for which P^* is bounded. Must P contain $\overline{0}$ as interior point?

- b) I have a closed convex set $P \subseteq \mathbb{R}^2$ for which P^* is bounded. Must P contain 0 as an interior point?
- [6.19] Exercise(E) Let $P = \text{conv}\{x_1, \dots, x_t\}$ be a polytope in \mathbb{R}^n which is not contained in any hyperplane of \mathbb{R}^n . Then show that $\{x_2 x_1, \dots, x_t x_1\}$ span \mathbb{R}^n .
- [6.20] Exercise(E) $(P = P^{**} \text{ can hold for other sets too.})$ In \mathbb{R}^2 consider the set $S = \{x \mid x_1 \ge -1\}$. Let $y \in S^*$. Argue that y(2) must be 0, as $\pm \alpha e_2 \in S$ for each $\alpha > 0$. Argue that y(1) cannot be a positive number, as $\alpha e_1 \in S$ for each $\alpha > 0$. Argue that $y(1) \ge -1$. Conclude that $S^* = \{y \mid y(2) = 0, -1 \le y(1) \le 0\}$. Draw S^{**} .
- [6.21] NoPen a) T/F? If S is a set of 50 points in \mathbb{R}^2 with positive y-coordinates, then S^* must be unbounded.
 - b) Is $(\mathbb{R}^3_+)^* = \mathbb{R}^3_-$?

Farka's Lemma

[6.22] Why Farka's Lemma? When does a nonnegative solution of Ax = b exist? Farka's lemma gives an answer.

The following is a crucial result which is similar to that of [3.52]. We could not use that, as we do not know whether the convex hull contains the origin or not.

[6.23] <u>Lemma</u> (Cone generated by a finite set is closed.) Let $S = \{x_1, \dots, x_k\} \subseteq \mathbb{R}^n$. Then either $cone(S) = \mathbb{R}^n$ or it is the intersection of finitely many closed linear half spaces.

Proof. Take $P = \mathsf{conv}(0, x_1, \dots, x_k)$. Being a polytope, it is a polyhedron, say, $P = \{x \mid Ax \leq b\}$. As $0 \in P$, we have $b \geq 0$. If b > 0 entrywise, then some $B_{\epsilon}(0) \subseteq P$. In that case, we get $\mathsf{cone}(S) = \mathbb{R}^n$.

Otherwise, let \overline{A} be the submatrix of A obtained by taking the rows of A corresponding to the zeros in b. We claim that $\mathsf{cone}(S) = \{x \mid \overline{A}x \leq 0\}$. To see that, let $z \in \mathsf{cone}(S), z \neq 0$. Then $\alpha z \in P$, for some $\alpha > 0$. So, $\overline{A}\alpha z \leq 0$ and hence $\overline{A}z \leq 0$. Conversely, let z satisfy $\overline{A}z \leq 0$. Choose r > 0, so that $A(z/r) \leq b$. (Why is this possible?) Thus $z/r \in P$ and so $z \in \mathsf{cone}(P) = \mathsf{cone}(S)$.

Before we go to Farka's Lemma we introduce one more notation.

- [6.24] <u>Definition</u> For a matrix A we use $\underline{conv(A)}$ and $\underline{cone(A)}$ to denote the convex hull and the convex cone generated by the columns of A, respectively.
- [6.25] <u>Farka's Lemma</u> Let $A \in M_{m,n}(\mathbb{R})$ and $b \in \mathbb{R}^m$. Then the following are equivalent.

a) The system Ax = b has a nonnegative solution.

b) For each $z \in \mathbb{R}^m$ satisfying $z^t A \ge 0$ we have $z^t b \ge 0$.

Ax=b has a numberature solution C+f solution C+f C+f

as does not

es not. \equiv b & cone (A)

cone (A) $7 \times 7,0$ 7×7

Proof. a) \Rightarrow b). Assume that $Ay = b, y \ge 0$ holds. Let $z \in \mathbb{R}^m$ such that $z^t A \ge 0$. Then $z^t b = z^t (Ay) = 0$ $(z^t A)y \ge 0.$

b) \Rightarrow a). Suppose b) holds for each $z \in \mathbb{R}^m$ and suppose, by the way of contradiction that Ax = b has no nonnegative solution. This means, $b \notin cone(A)$. Since cone(A) is closed (see [6.23]) and convex, by [4.10] and [4.11], there exists c such that $c^t b < 0$ and $c^t z \ge 0$, $\forall z \in \mathsf{cone}(A)$. In particular, we have $c^t A \ge 0$ and $c^t b < 0$, a contradiction.

Some exercises

Exercise(E) Consider the cone generated by $\{-e_1, e_1 + e_2, e_2 + e_3, e_3\}$ in \mathbb{R}^4 . Write this cone as intersection of finitely many closed half-spaces.

[6.27]Exercise(H) (Dichotomies)

- a) Let A be an $m \times n$ matrix. Use separation theorems to show that exactly one of the following systems has a solution: (i) Ax > 0, (ii) $A^t y = 0$, $y \ge 0$, $y \ne 0$.
- b) Let A be an $m \times n$ matrix. Use Farka's lemma to show that exactly one of the following systems has a solution: (i) Ax > 0, (ii) $A^t y = 0$, $y \ge 0$, $y \ne 0$.
- c) Let A be an $m \times n$ matrix and $c \in \mathbb{R}^m$. Prove that exactly one of the following systems has a solution: (i) $Ax \le c$, (ii) $A^t y = 0$, $c^t y = -1$, $y \ge 0$.