MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 2 - NOVEMBER 2015 ROUND 7 TEAM QUESTIONS ANSWERS**

C) ______ F) ____

В

- A) Determine the integer value of *n* for which $(1+i)^{11} + (1-i)^n = -16 + 16i$.
- B) One million lottery tickets are numbered 000000 through 999999. Let *A* be the set of lucky lottery tickets.

A lucky lottery ticket has the form abcxyz, where a+b+c=x+y+z.

Let *B* be the set of unlucky lottery tickets.

An unlucky lottery ticket is defined to be one where the 6 digits sum to 27.

For 1) - 5) below, list the numbers of the true statements.

Note N(X) denotes the number of elements in set X.

1)
$$N(B) > N(A)$$

2)
$$N(B) < N(A)$$

3)
$$N(B) = N(A)$$

- 4) With respect to the given definitions, no ticket is both lucky and unlucky.
- 5) With respect to the given definitions, at least one ticket is both lucky and unlucky.

D

F) $\triangle ABC$ is known to be isosceles, but it is not known which angle is the vertex angle. \overrightarrow{BP} is a <u>trisector</u> of $\angle B$, so that $m\angle PBC < m\angle ABP$ (*P* is on \overline{AC}). \overrightarrow{CQ} is a bisector of $\angle C(Q \text{ is on } \overline{AB})$.

$$\overrightarrow{BP} \cap \overrightarrow{CQ} = \{D\}$$
. $m \angle BDC = 140^{\circ}$. Compute all possible $m \angle A$.