2017级《高等数学》(下) 联考试卷

试卷 A

考核方式 闭卷

考试时间 120 分钟

题号	_	=	三	四	五	六	总分
分数							
评卷人							

得分 评卷人

一、单项选择题(本大题共5个小题,每小题3分, 总计 15 分)

班级

订

- 1、在空间,方程 $y = \sqrt{2018 x^2}$ 所表示的图形为 ().
- (A) 圆周曲线; (B) 圆柱面;
- (C) 抛物柱面; (D) 抛物线.

密

- - (A) 0;
- (B) 1;
- (C) 2;
- (D) 不存在.

- 3、设 Ω : $x^2 + y^2 + z^2 \le a^2$ (a > 0),则积分 $\iint_{\Omega} (x + y + z + 3) dv = ($).
 - (A) 0;
- (B) $2\pi a^3$;

(D) $8\pi a^3$.

- (C) $4\pi a^3$:
- 4、设Σ是平面x+y+z=4被柱面 $x^2+y^2=1$ 截出的有限部分,则

$$\iint_{\Sigma} y dS = () .$$

- (A) 4π ; (B) 2π ;
- (C) π ;
- (D) 0.

5、	(重邮、	交大的	り同学做)下	列级数收敛	女 的是	<u>1</u> ().			
	(A)	$\sum_{n=1}^{\infty} \frac{1}{3n}$;		(B)	$\sum_{n=1}^{\infty} \left(\frac{1}{3n} - \frac{1}{3n} \right)$	$-\frac{1}{3^n}$;			
	(C)	$\sum_{n=1}^{\infty} \left(\frac{3^n}{2^n} \right)^n$	$\left(\frac{1}{3^n}\right)$;	((D)	$\sum_{n=1}^{\infty} \left(\frac{1}{3^n} - \frac{1}{3^n} \right)$	$-\frac{2^n}{3^n}$.			
5、	(理工的]同学做	的微分方程	$y' + \frac{1}{x}y = 2$	2 满力	足初始条	s件y _{x=1} =	=2的特	解为()
	(A)	y = 3	$-\frac{1}{x}$;	((B)	$y = x^2 + \frac{1}{2}$	$\frac{1}{x}$;			
	(C)	y = x +	$+\frac{1}{x^2}$;	((D)	$y = x + \frac{1}{x}$	- .			
得	分评	卷人	二、填空	· 题(本大)	题共	5 个小是	题,每小	题3分	,总计 15	(分)
6、	过点(2	, -3, 4) _	且垂直于平	· 注面 3x – y +	- 2 <i>z</i> =	=4的直线	线方程为			_·
7、	三元函	数 <i>u = x</i>	$xy^2 - z$ 在点	(M(1,-1,0))	处的	的梯度为.				_ -
8、	曲面 e ²	$z^z - z + x$	y=2在点((1,1,0)处的	切平	面方程	为			.•
9、	设 L 为	圆周	$+y^2=4$, \sqrt{y}	$\mathbb{I} \oint_L \frac{1}{x^2 + y^2}$	-ds =	:			·	
10	、(重曲	的同4	学做)设图	函数 f(x)	是 22	π 为周爿	期的周期	月函数,	在[-π,	π) 上
	f(x) =	$= \begin{cases} -1, \\ 1, \end{cases}$	$-\pi \le x < 0$ $0 \le x < \pi$, f(x)的	傅里	旦叶级数	的系数 <i>a</i> ,	, =		<u>_</u> .
10			做) 函数— 1-							
10	、(理工	的同学 [。]	做) 微分方	·程4v″-41	v' + v	√=0 的 追	通解为			

得 分 评卷人

评卷人 三、解答题(本大题共2个小题,每小题10分,总计20分)

11、设二元函数 $z = xe^{xy}$, 求: (1) $dz\Big|_{\substack{x=-1\\y=0}}$; (2) $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=-1\\y=0}}$.

- 12、(1)设 $z = f(x \ln y, \frac{y}{x})$, f 具有一阶连续偏导数,求 $\frac{\partial z}{\partial x}$;

得 分 评卷人

四、计算题(本大题共2个小题,每小题10分,总计20分)

13、计算二重积分 $I = \iint_D (2017 + 4y^2) dx dy$, 其中积分区域 $D = \{(x,y) | x^2 + y^2 \le 1\}$.

14、计算曲面积分 $I = \iint_{\Sigma} (2x+z) dy dz + z dx dy$,其中 Σ 是曲面 $z = x^2 + y^2$ 与平面 z = 1 围成的封闭曲面的内侧.

得 分 评卷人

五、综合题(本大题共2个小题,每小题10分,总计20分)

- 15、设曲线积分 $I = \int_L (e^y + 2x) dx + (xe^y) dy$,其中 L 为 xoy 平面上一条有向光滑曲线.
 - (1) 证明:该曲线积分在整个xoy平面上与路径无关;
- (2) 若L是曲线 $y = \sin(\frac{\pi}{2}x^2)$ 上由(0,0)到(1,1)的一段弧,计算I.

- **16、**给定幂级数 $\sum_{n=1}^{\infty} \frac{1}{n2^{n-1}} x^n$.
- 求: (1) 该幂级数的收敛域; (2) 该幂级数在收敛域内的和函数.

得 分	评卷人

六、应用题(本大题总计10分)

17、求二元函数 $f(x,y) = x^3 + y^3 - 3xy$ 的极值.