Roll No.	***************************************	

TCS-402

rated a feet fittee fitte

B. TECH. (CSE)
(FOURTH SEMESTER)
MID SEMESTER EXAMINATION, 2021

FINITE AUTOMATA AND FORMAL LANGUAGES

Time: 11/2 Hours

Maximum Marks: 50

- **Note:** (i) Answer all the questions by choosing any *one* of the sub-questions.
 - (ii) Each question carries 10 marks.
- 1. (a) Convert the following NDFA as given in Table 1 to DFA and informally describe the language it accepts. Here, P is initial state, S* and T* is final state.

	Table 1	
Current State	Next S	State
Current State	0	1
\rightarrow P	{P, Q}	{P}
Q	{R, S}	{T}
R	{P, R}	{T}
S*	18 H - KUC	10 T-
T*		

10 Marks (CO2, CO6)

OR

(b) Design a regular expression, where every string start with 01 over input symbol $\Sigma = \{0,1\}$ using Arden's theorem.

10 Marks (CO2, CO6)

2. (a) Construct a minimal DFA that accept all the string of a's and b's where 4th symbol from left end is always b.

10 Marks (CO1, CO2)

OR

(b) Construct a Moore machine that take set of all string over {a, b} as input and count number of substring 'ab'.

10 Marks (CO1, CO2)

3.	(a)	Construct a Moore machine equivalent to
		the Mealy machine M defined in Table 2.

· Table 2								
Current	Next State							
State	0	Output	1	Output				
\rightarrow Q ₁	Q_1	1	Q_2	0				
Q ₂	Q ₄	1	Q ₄	1				
Q ₃	Q ₂	1-1-	Q_3	1				
Q ₄	Q ₃	0	Q_1	1				

10 Marks (CO2, CO6)

OR

(b) Write Regular expression for the given DFA. 10 Marks (CO2, CO6)

4. (a) Construct a minimum DFA equivalent to the DFA given in below figure:

10 Marks (CO5)

OR

(b) Convert epsilon-NFA to NFA:

10 Marks (CO5)

5. (a) Using the pumping lemma, show that the language $L = \{a^n b^{2n} \square n > 0\}$ is not regular.

10 Marks (CO2, CO6)

OR

(b) Let M1 and M2 be two FA accepting languages L1 and L2 respectively as shown in the following figure. Construct a DFA to accept the language (i) L1 ∪ L2 and (ii) L1 ∩ L2: 10 Marks (CO2, CO6)

TCS-402

1200