普通高级中学课程标准实验教科书

【北师版】

必

修

5

普通高级中学课程标准实验教科书

数

学

必 修 5

精品教学网www.itvb.net

全力打造全国最新最全的免费视频教学网站,现有内容已经覆盖学前,小学,初中已经覆盖学前,小学,初中高中,大学,职业等各学段欢迎各位爱学人士前来学习交流。

(若有需要本书配套的特级 教师同步辅导视频请联系 QQ181335740)

目 录

第-	一章	数列	(1)
	§ 1	数列	(3)
		1.1 数列的概念	(3)
		1.2 数列的函数特性	(6)
		习题 1—1	(10)
	§ 2	等差数列 · · · · · · · · · · · · · · · · · · ·	(12)
		2.1 等差数列	(12)
		2.2 等差数列的前 n 项和 · · · · · · · · · · · · · · · · · ·	(17)
		习题 1—2	(21)
	§ 3	等比数列	(24)
		3.1 等比数列	(24)
		3.2 等比数列的前 n 项和 · · · · · · · · · · · · · · · · · ·	(29)
		习题 1-3	(33)
	§ 4	数列在日常经济生活中的应用 · · · · · · · · · · · · · · · · · · ·	(36)
		习题 1—4	
		小结建议	
	复习	题一	(42)
	课题	学习 教育储蓄	(46)
第二	二章	解三角形 ·····	(49)
	§ 1	正弦定理与余弦定理	(51)
		1.1 正弦定理	
		1.2 余弦定理	(56)
		习题 2-1	(59)
	§ 2	三角形中的几何计算 ·····	(61)
		习题 2—2	(63)
	§ 3	解三角形的实际应用举例 ·····	(65)
		习题 2-3	(69)
	本章	小结建议	(71)

复习	题二	(72)
第三章	不等式	(75)
§ 1	不等关系	
3.1	1.1 不等关系 ····································	
	1.2 比较大小	
2.0	习题 3-1	
8 2	一元二次不等式······	
	2.1 一元二次不等式的解法	
	2.2 一元二次不等式的应用	
	习题 3─2	
§ 3	基本不等式	
	3.1 基本不等式	
	3.2 基本不等式与最大(小)值	
	习题 3—3 ······	
§ 4	简单线性规划	(108)
	4.1 二元一次不等式(组)与平面区域	(108)
	4.2 简单线性规划	(113)
	4.3 简单线性规划的应用	(119)
	习题 3—4 · · · · · · · · · · · · · · · · · · ·	(121)
阅读	材料 人的潜能	(123)
本章	小结建议	(125)
复习	题三	(127)
探究活动	カ 三角测量 ·······	(129)
附录 1	部分数学专业词汇中英文对照表	(132)
附录 2	信息检索网址导引	(133)

数列

这是科学史上的一个真实故事! 下面一列数

3,6,12,24,48,96,192,...

同学们可能并不在意,但普鲁士天文学家提丢斯(Titius, 1729—1796)却把它和下面的表格联系起来,推导出从太阳到行星距离的经验定律,并探明了一些新的行星!

他发现:

- 1. 每个数字恰好是前一个数字的 2 倍;
- 2. 如果把 0 加在这一列数字的最前面,我们再做一个简单的运算:每个数加上 4,然后再除以 10,就得出另一列数字 0,4,0,7,1,0,1,6,2,8,5,2,10,0,19,6,…

这可不是一列简单的数字:第一个数字表示了太阳到 其最近的行星——水星的近似距离,第二个数字表示太阳 到金星的近似距离……依此类推,他得到了一张出色的表:

距 离	水星	金星	地球	火星	?	木星	土星	?	?
实际距离	0.39	0.72	1.0	1.52	?	5.2	9.5	?	?
计算距离	0.4	0.7	1.0	1.6	2.8	5. 2	10.0	19.6	

注:表中数据的单位为天文单位,1个天文单位等于太阳到地球的距离,约为149 597 870 km,

表中留下了一些空格. 1781 年发现的天王星(19.2),差 不多恰好处在定律所预言的轨道(19.6)上. 于是,天文学家 们开始在距离太阳约为 2.8 个天文单位的区域寻找一个尚 未被发现的行星. 1801 年意大利天文学家比亚兹果然在这 个距离发现了谷神星,它与太阳的近似距离为 2.7 个天文单 位.

小小一列数字真不简单.

本章主要学习有关数列的基本知识,建立等差数列和 等比数列两种模型,探索它们的基本数量关系,感受它们的 应用.相信你会有更大的收获!

§◆ 数列

- 1.1 数列的概念
- 1.2 数列的函数特性
- - 2.1 等差数列
 - 2.2 等差数列的前n项和
- § 3 等比数列
 - 3.1 等比数列
 - 3.2 等比数列的前n项和
- § 4 数列在日常经济生活中的应用 课题学习 教育储蓄

§1 数列

1.1 数列的概念

我们来看下面的例子:

(1) 一个工厂把所生产的钢管堆成图 1-1 的形状.

从最上面的一排起,各排钢管的数量依次是

(2) GDP(Gross Domestic Product) 为国内生产总值. 分析各年 GDP 数据,找出增长规律,是国家制定国民经济发展计划的重要依据. 根据中华人民共和国 2002 年国民经济和社会发展统计公报(如图 1-2),我国(1998~2002年)这五年 GDP 值(亿元)依次排列如下:

78 345,82 067,89 442,95 933,102 398.

1

图 1-1

图 1-2

(3)"人口问题"是我国最大的社会问题之一,对人口数量的估计和发展趋势的预测是我们制定一系列相关政策的基础. 我国在解放后已进行了五次全国人口普查,历次全国人口普查公报数据资料如表 1-1,五次普查人口数量(百万)依次排列为

601, 93, 723, 07, 1 031, 88, 1 160, 02, 1 295, 33.

表 1-1

年 份	1953	1964	1982	1990	2000
人口数/百万	601.93	723.07	1 031, 88	1 160.02	1 295, 33

(4)如图 1-3 所示,正弦函数 y=sin x 的图像在 y 轴左侧所有最低点从右向左,它们的横坐标依次排成一列数

$$-\frac{\pi}{2}, -\frac{5\pi}{2}, -\frac{9\pi}{2}, -\frac{13\pi}{2}, \cdots$$

图 1-3

(5)正奇数 1,3,5,7,…的倒数排成—列数

$$1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$$
 5

(6)某人 2003 年 1~12 月工资,按月顺序排列为

一般地,按一定次序排列的一列数叫作**数列**,数列中的每一个数 叫作这个数列的**项**.数列一般形式可以写成

$$a_1, a_2, a_3, \cdots, a_n, \cdots$$

简记为数列 $\{a_n\}$,其中数列的第 1 项 a_1 也称**首项**; a_n 是数列的第 n 项,也叫数列的**通项**.

如数列⑤中,首项 $a_1=1$;第 10 项 $a_{10}=\frac{1}{19}$;第 n 项(通项) $a_n=$

$$\frac{1}{2n-1}$$
.

像数列①,②,③,⑥这样的项数有限的数列,称为**有穷数列**;像数列④,⑤这样的项数无限的数列,称为**无穷数列**.

上面的数列⑤中,每一项的序号n与这一项 a_n 有下面的对应关系:

可以看出,这个数列的每一项的序号 n 与这一项 a " 的对应关系

可用如下公式表示:

$$a_n = \frac{1}{2n-1}$$
.

这样,只要依次用序号 $1,2,3,\cdots$ 代替公式中的 n,就可以求出该数列相应的项.

实际上,对任意数列 $\{a_n\}$,其每一项的序号与该项都有对应关系, 见表 1-2.

表 1-2

序号	1	2	3	4	 n	
项	a_1	a_2	a_3	a_4	 a_n	

因此数列也可以看作定义域为正整数集 N_+ (或它的有限子集) 的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就 是这个数列.

如果数列 $\{a_n\}$ 的第n项 a_n 与n之间的函数关系可以用一个式子表示成 a_n =f(n),那么这个式子就叫作这个数列的**通项公式**,数列的通项公式就是相应函数的解析式.

例如,数列①的一个通项公式是

$$a_n = n + 2, n \in \{1, 2, 3, \dots, 7\}$$
;

数列④的一个通项公式是

$$a_n = -\frac{(4n-3)\pi}{2} \quad (n \in \mathbb{N}_+).$$

例1 根据下面的通项公式,分别写出数列的前5项.

(1)
$$a_n = \frac{n}{n+2}$$
; (2) $a_n = (-1)^n \cos \frac{n\pi}{4}$.

解 (1)在通项公式中依次取 n=1,2,3,4,5,得到数列 $\{a_n\}$ 的前 5 项为

$$\frac{1}{3}$$
, $\frac{1}{2}$, $\frac{3}{5}$, $\frac{2}{3}$, $\frac{5}{7}$;

(2)在通项公式中依次取 n=1,2,3,4,5,4 得到数列 $\{a_n\}$ 的前 5 项为

$$-\frac{\sqrt{2}}{2}$$
, 0, $\frac{\sqrt{2}}{2}$, -1, $\frac{\sqrt{2}}{2}$.

例 2 写出下面数列的一个通项公式.

- (1) 3,5,7,9,...
- $(2)1,2,4,8,\cdots$
- (3)9,99,999,9 999,...

解 (1)观察知,这个数列的前4项都是序号的2倍加1,所以它 的一个通项公式为

$$a_n = 2n + 1$$
;

(2) 这个数列的前 4 项可以写成 2°,21,22,23,所以它的一个通项 公式为

$$a_n = 2^{n-1}$$
;

(3)这个数列的前 4 项可以写成 10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式为

$$a_n = 10^n - 1$$
.

练习

(口答)已知数列{a_n}的通项公式,写出它的前5项.

$$(1)a_n=2n-1;$$

$$(2)a_n = \frac{3 + (-1)^n}{n}$$
.

2. 已知数列 $\{a_n\}$ 的通项公式为 $a_n=25-2n$,在下列各数中,()不是 $\{a_n\}$ 的项.

3. 使数列{a_n}的前 4 项依次是 20,11,2,-7 的一个通项公式是().

A.
$$a_n = 9n + 11$$

B.
$$a_n = -9n + 29$$

C.
$$a_n = 15.5 + (-1)^{n+1}4.5$$

D.
$$a_n = 9n - 16$$

4. 写出下面数列的一个通项公式.

数 列 的 函 数 特 性

新中国成立后,我国 1952~1994 年间部分年份进出口贸易总额 (亿美元)数据排成一数列:

19. 4,31. 0,42. 5,45. 9,147. 5,381. 4,696. 0,1 154. 4,2 367. 3.

此数列也可以用图直观表示(如图 1-4).

图 1-4

由此图可以看出我国 1952~1994 年部分年间,各时期进出口贸 易总额的增长变化情况.

我们可以把一个数列用图像来表示:

图 1-5 是数列①:3, 4, 5, 6, 7, 8, 9 的图像;

图 1-6 是数列⑤:1, $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$, …的图像;

图 1-7 是数列⑥: 1 100,1 100,…,1 100 的图像.

从图中可以看出,数列①的函数图像上升,称这样的数列为递增 数列;数列⑤的函数图像下降,称这样的数列为递减数列;数列⑥称 为常数列.

7

一般地,一个数列 $\{a_n\}$,如果从第 2 项起,每一项都大于它前面的一项,即 $a_{n+1} > a_n$,那么这个数列叫作**递增数列**.

如果从第 2 项起,每一项都小于它前面的一项,即 $a_{n+1} < a_n$,那么这个数列叫作**递减数列**.

如果数列 $\{a_n\}$ 的各项都相等,那么这个数列叫作常数列.

例 3 判断下列无穷数列的增减性.

$$(1)2,1,0,-1,\dots,3-n,\dots$$

$$(2)\frac{1}{2},\frac{2}{3},\frac{3}{4},\cdots,\frac{n}{n+1},\cdots$$

解 (1)设 $a_n = 3 - n$,那么

$$a_{n+1}=3-(n+1)=2-n,$$

 $a_{n+1}-a_n=(2-n)-(3-n)=-1,$

所以 $a_{n+1} < a_n$,因此数列 $\{a_n\}$ 是递减数列.

(2)设
$$b_n = \frac{n}{n+1}$$
,那么

$$b_{n+1} = \frac{n+1}{(n+1)+1} = \frac{n+1}{n+2},$$

$$b_{n+1} - b_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{1}{(n+1)(n+2)} > 0,$$

所以 $b_{n+1} > b_n$,因此这个数列是递增数列.

例 4 作出数列 $-\frac{1}{2}$, $\frac{1}{4}$, $-\frac{1}{8}$, $\frac{1}{16}$, ..., $\left(-\frac{1}{2}\right)^n$, ...的图像,并分析数列的增减性.

解 图 1-8 是这个数列的图像,数列各项的值负正相间,表示数列的各点相对于横轴上下摆动,它既不是递增的,也不是递减的. a.↓

图 1-8

例5 一辆邮车每天从 A 地往 B 地运送邮件,沿途(包括 A,B) 共有8站,从 A 地出发时,装上发往后面7站的邮件各一个,到达后 面各站后卸下前面各站发往该站的一个邮件,同时装上该站发往下 面各站的邮件各一个. 试写出邮车在各站装卸完毕后剩余邮件个数 所成的数列,画出该数列的图像,并判断该数列的增减性.

解 将 *A*,*B* 之间所有站按序 1,2,3,4,5,6,7,8 编号,通过计算, 上面各站剩余邮件数依次排成数列:

填写表 1-3.

表 1-3

站号	1	2	3	4	5	6	7	8
剩余邮件数	7	12	15	16	15	12	7	0

该数列的图像如图 1-9 所示.

图 1-9

它在 $\{1,2,3,4\}$ 上是递增的,在 $\{4,5,6,7,8\}$ 上是递减的.

练习

- 1. 在 1984 到 2000 年的五届夏季奥运会上,我国获得的金牌数依次排成数列:15,5,16,16,28. 试画出该数列的图像.
- 2. 已知下列数列 $\{a_n\}$ 的通项 a_n ,画出数列的图像,并判断数列的增减性.

$$(1)a_n = -n+1;$$

$$(2)a_n = 2^{n-1}$$
.

习 题 1—1

A 组

 根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形 和数,写出点数的通项公式。

(1)

(2)

2. 根据数列的通项公式填表.

n	1	2	 10		 n
a_n				 420	 n(n+1)

- 3. 在商店里,如图分层堆砌易拉罐,最顶层放1个,第二层放4个,第三层放9个. 如此下去,第六层放几个?
- 4. 求下列数列的一个通项公式.
 - (1)3,8,13,18,...

(2)5,50,500,5 000,...

- 5. 数列 $\{a_n\}$ 的通项是 $a_n=n^2-3n-28$,画出该数列的图像. 根据图像,判断从第几项起,这个数列是递增的.
- 6. 已知 $a_n=2n^2-15n+3$,画出数列的图像,求数列 $\{a_n\}$ 的最小项.

(第3题)

B 组

- 1. 求下列数列的一个通项公式.
 - $(1)-1,2,-3,4,\cdots$

$$(2)\frac{1}{2}, -\frac{4}{5}, \frac{9}{10}, -\frac{16}{17}, \cdots$$

- 2. 观察下列各图,并阅读图形下面的文字. 像这样,10 条直线相交,交 点的个数最多是().
 - A. 40 个 B. 45 个 C. 50 个 D. 55 个

2条直线相交 最多有1个交点

3条直线相交 最多有3个交点

4条直线相交 最多有6个交点

(第2題)

§2 等差数列

2.1 等差数列

考察下列三个数列的共同特征.

(1)一个剧场设置了 20 排座位,这个剧场从第 1 排起各排的座位数组成数列:

这个剧场座位安排有何规律?

(2)全国统一鞋号中,成年女鞋的各种尺码(表示以 cm 为单位的 鞋底的长度)由大至小可排列为

25,
$$24\frac{1}{2}$$
, 24 , $23\frac{1}{2}$, 23 , $22\frac{1}{2}$, 22 , $21\frac{1}{2}$, 21 ,

这种尺码的排列有何规律?

(3)蓝白两种颜色的正六边形地面砖,按图 1-10 的规律拼成若 干个图案:

图 1-10

这3个图案中白色地面砖的块数依次为多少?

研究这些数列的特征及变化规律,可以发现:

对于(1)中数列①,从第2项起,每一项与前一项的差都是2;

对于(2)中数列②,从第2项起,每一项与前一项的差都是 $-\frac{1}{2}$;

对于(3),前3个图案中白色地面砖的块数依次为

对于数列③,从第2项起,每一项与前一项的差都是4.

这三个数列具有共同的特性:从第 2 项起,每一项与前一项的差 是同一个常数. 我们称这样的数列为**等差数列**,称这个常数为等差数 列的**公差**,通常用字母 *d* 表示.

由此定义可知,对等差数列 $\{a_n\}$,有

$$a_2 - a_1 = a_3 - a_2 = \cdots = a_n - a_{n-1} = d$$
.

因此,数列①的公差 d=2;数列②的公差 $d=-\frac{1}{2}$;数列③的公差 d=4.

例1 判断下面数列是否为等差数列.

$$(1)a_n = 2n - 1$$
;

$$(2)a_n = (-1)^n$$
.

解 (1)由通项知,该数列为

由
$$a_n = 2n - 1$$
, $n \in \mathbb{N}_+$, 知 $a_{n+1} = 2(n+1) - 1$, 于是 $a_{n+1} - a_n = [2(n+1) - 1] - (2n-1) = 2$.

由n的任意性知,这个数列是等差数列.

(2)由通项 $a_n = (-1)^n$,可知该数列为

$$-1,1,-1,1,\cdots$$

 $a_2-a_1=1-(-1)=2,$
 $a_3-a_2=-1-1=-2.$

由于 $a_2-a_1\neq a_3-a_2$,所以这个数列不是等差数列.

例2 已知等差数列 $\{a_n\}$, $a_1=1$, $d=\sqrt{2}$, 求通项 a_n .

解 根据等差数列的定义,我们知道,这个数列开头几项应该是:

$$a_1=1$$
,
 $a_2=a_1+\sqrt{2}=1+\sqrt{2}$,
 $a_3=a_2+\sqrt{2}=(1+\sqrt{2})+\sqrt{2}=1+2\sqrt{2}$,
 $a_4=a_3+\sqrt{2}=(1+2\sqrt{2})+\sqrt{2}=1+3\sqrt{2}$,
...

因此,我们就可以归纳出一个规律:第n项等于第1项加上公差的(n-1)倍 $(n\ge 2)$,即

$$a_n = 1 + (n-1)\sqrt{2}$$
.

问题与思考

(1)当公差 d=0时, $\{a_n\}$ 是什么数列?

(2)将有穷等差数列{a_n}的所有项倒序排列,所成数列仍是等差数列吗?如果是,公差是什么?如果不是,请说明理由.

当 n=1 时,有 $a_1=1=1+(1-1)\sqrt{2}$. 所以,这个公式对 n=1 也成立.

因此,它就是所求的通项公式.

如果等差数列 $\{a_n\}$ 的首项是 a_1 ,公差是 d(参见图 1-11),那么根据等差数列的定义得到:

$$a_1 = a_1,$$

 $a_2 = a_1 + d,$
 $a_3 = a_2 + d = (a_1 + d) + d = a_1 + 2d,$
 $a_4 = a_3 + d = (a_1 + 2d) + d = a_1 + 3d,$
...

由此得到

$$a_n = a_1 + (n-1)d$$
.

当 n=1 时, $a_1=a_1+(1-1)d=1$. 所以,这个公式对 n=1 也成立.

这就是说:

若首项是 a_1 ,公差是d,则这个等差数列的通项公式是

$$a_n = a_1 + (n-1)d$$
.

例3 (1)求等差数列 9,5,1,···的第 10 项;

(2)已知等差数列 $\{a_n\}$, $a_n=4n-3$,求首项 a_1 和公差d.

解 (1)由
$$a_1$$
=9, d =5-9=-4,得

$$a_n = 9 + (n-1)(-4) = 13 - 4n$$
.

当
$$n=10$$
 时, $a_{10}=13-4\times10=-27$.

(2)由
$$a_n = 4n - 3$$
 知,

$$a_1 = 4 \times 1 - 3 = 1$$
,

H.

$$d=a_2-a_1=(4\times 2-3)-1=4$$
.

所以等差数列 $\{a_n\}$ 的首项 $a_1=1$,公差d=4.

问题与思考

若数列通项 a_n = pn+q(p,q) 为常数),问 $\{a_n\}$ 是否一定是等差数列?如果是,其首项和公差是什么?

例 4 已知在等差数列 $\{a_n\}$ 中 $,a_5=-20,a_{20}=-35.$ 试求出数列的通项公式.

解 设 $\{a_n\}$ 的通项公式是 $a_n=a_1+(n-1)d$ $(n\in \mathbb{N}_+)$,

$$a_5 = a_1 + 4d = -20$$
,

$$a_{20} = a_1 + 19d = -35$$
,

可得一个以 a_1 和d为未知数的二元一次方程组,解这个方程组得

$$a_1 = -16$$
, $d = -1$.

故数列 $\{a_n\}$ 的通项公式为

$$a_n = -16 + (n-1)(-1) = -15 - n$$

练习

- 1. 全国統一鞋号中,成年男鞋共有 14 种尺码,其中最小的尺码是 $23\frac{1}{2}$ cm,相邻的两个尺码都相差 $\frac{1}{2}$ cm. 把全部尺码从小到大列出.
- 2. 求下列等差数列的第 n 项.
 - (1)2.5.8....
 - (2)13,9,5,...

$$(3)1, \frac{1}{3}, -\frac{1}{3}, \dots$$

- 3. 回答本小节开头提出的问题:
 - 在(1)中,最后一排有多少个座位?
 - 在(3)中,第4个图案中有白色地面砖多少块?第n个图案中有白色地面砖多少块?

下面我们从函数角度研究等差数列{a_n}.

由 $a_n = f(n) = a_1 + (n-1)d = dn + (a_1 - d)$,可知其图像是直线 $y = dx + (a_1 - d)$ 上的一些等间隔的点,这些点的横坐标是正整数,其中公差 d 是该直线的斜率,即自变量每增加 1,函数值增加 d.

当 d>0 时,{a_n}为递增数列(图 1-12(1));

当 d < 0 时, $\{a_n\}$ 为递减数列(图 1-12(2));

当 d=0 时,{a_n}为常数列(图 1-12(3)).

图 1-12

问题与思考

已知一个等差数 列的任意两项,这个 数列的通项公式是否 可以确定?请从几何 意义上给出解释.

例 5 已知(1,1),(3,5)是等差数列 $\{a_n\}$ 图像上的两点.

- (1) 求这个数列的通项公式;
- (2)画出这个数列的图像;
- (3)判断这个数列的单调性.

解 (1)由于(1,1),(3,5)是等差数列 $\{a_n\}$ 图像上的两点,所以

$$a_1 = 1, a_3 = 5.$$

 $a_3 = a_1 + 2d = 1 + 2d = 5$,

d=2.

解得

于是

$$a_n = 2n - 1$$
.

- (2) 图像是直线 y=2x-1 上一些等间隔的点,如图 1-13 所示.
- (3) 因为一次函数 y=2x-1 是增函数,所以数列 $\{a_n\}$ 是递增数列.

如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫作a与b的等差中项.

如果 A = b 的等差中项,那么 A - a = b - A,所以

$$A = \frac{a+b}{2}$$
.

容易看出,在一个等差数列中,从第2项起,每一项(有穷等差数 列的末项除外)都是它的前一项与后一项的等差中项.

- **例6** 一个木制梯形架的上、下两底边分别为 33 cm,75 cm,把梯形的两腰各6等分,用平行木条连接各对应分点,构成梯形架的各级,试计算梯形架中间各级的宽度.
- 解 记梯形架自上而下各级宽度所构成的数列为 $\{a_n\}$,则由梯形中位线的性质,易知每相邻三项均成等差数列,从而 $\{a_n\}$ 成等差数列,依题意有

$$a_1 = 33$$
 cm, $a_7 = 75$ cm.

现要求 a_2 , a_3 , …, a_6 , 即中间 5 层的宽度.

$$d = \frac{a_7 - a_1}{7 - 1} = \frac{75 - 33}{6} = 7 \text{ (cm)}.$$

 $a_2 = 33 + 7 = 40$ (cm), $a_3 = 40 + 7 = 47$ (cm),

 $a_4 = 47 + 7 = 54$ (cm), $a_5 = 54 + 7 = 61$ (cm), $a_6 = 61 + 7 = 68$ (cm).

答 梯形架中间各级的宽度自上而下依次是 40 cm, 47 cm, 54 cm, 61 cm, 68 cm.

练 习 2

- 1. (口答)求下列各题中两个数的等差中项.
 - (1)100 与 180;
- (2)-2 与 6.
- 2. 已知等差数列的通项公式为 $a_n = -2n + 7$.
 - (1)求首项和公差;
 - (2)画出这个数列的图像;
 - (3)判断这个数列的单调性,
- 3. 已知△ABC的三内角的度数成等差数列,求其中间一项的度数.
- 4. 在通常情况下,从海平面到 10 km 高空,海拔每增加 1 km,气温就下降一固定数值.如果海拔 1 km 高空的气温是 8.5 ℃,海拔 5 km 高空的气温是 -17.5 ℃,那么海拔 2 km,4 km 和 8 km 高度的气温各是多少?

2.2 等差数列的前 n 项和

问题提出

如图 1-14 所示,有 200 根相同的圆木料,要把它们堆放成正三角 形垛,并使剩余的圆木料尽可能的少,那么将剩余多少根圆木料?

根据题意,各层圆木料数比上一层多一根,故其构成等差数列:

设共摆放了n层,能构成三角形垛的圆木料数为 S_n ,则

$$S_n = 1 + 2 + 3 + \cdots + n$$
,

这是一个等差数列的求和问题.如何计算该等差数列的和呢? 对于这个问题,高斯在 10 岁时就巧妙地求出了 n=100 时的结果. 高斯的算法是:

$$S_{100} = 1 + 2 + 3 + 4 + \dots + 98 + 99 + 100$$

= $100 + 99 + 98 + 97 + \dots + 3 + 2 + 1$,

这两个等式上、下对应项的和均为101,所以

$$2S_{100} = 101 + 101 + 101 + \cdots + 101 + 101 + 101$$
.

因为有 100 个 101,所以

$$2S_{100} = 101 \times 100 = 10 \ 100$$
,
 $S_{100} = \frac{10 \ 100}{2} = 5 \ 050$.

图 1-14

高斯(Gauss, 1777—1855),德国数 学家,近代数学奠基 者之一.与阿基米德、 牛顿并列为历史上最 伟大的数学家,有"数 学王子"之称. 你能从这个问题的解决过程中悟出求一般等差数列前 n 项和的 方法吗?

抽象概括

设 S_n 是等差数列 $\{a_n\}$ 的前 n 项和,即

$$S_n = a_1 + a_2 + a_3 + \cdots + a_n$$

根据等差数列 $\{a_n\}$ 的通项公式,上式可以写成

$$S_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + [a_1 + (n-1)d]$$
, ① 再把项的次序反过来, S_n 又可以写成

$$S_n = a_n + (a_n - d) + (a_n - 2d) + \dots + [a_n - (n-1)d]$$
, ② 把①,②等号两边分别相加,得

$$2S_n = \underbrace{(a_1 + a_n) + (a_1 + a_n) + \dots + (a_1 + a_n)}_{n \uparrow \uparrow}$$
$$= n(a_1 + a_n).$$

于是,首项为 a_1 ,末项为 a_n ,项数为n的等差数列的前n项和

$$S_n = \frac{n(a_1 + a_n)}{2} . \tag{3}$$

这个公式表明:等差数列前n项的和等于首末两项的和与项数乘积的一半,参见示意图 1-15.

a_5	a_4	a_3	a_2	a_1
a_1	a_1	a_1	a_1	a_1
d	d	d	d	d
d	d	d	d	d
d	d	d	d	d
d	d	d	d	d
a_1	a_1	a_1	a_1	a_1
a_1	a_2	a_3	a_4	a_5

图 1-15

将 $a_n = a_1 + (n-1)d$ 代入③式,得

$$S_n = na_1 + \frac{n(n-1)}{2}d. \tag{4}$$

特别地,当 $a_1=1,d=1$ 时,n个连续正整数的和

$$S_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
.

对于本节开头的问题,即转化为求满足 $S_n = \frac{n(n+1)}{2} \le 200$ 的最

(1)等差数列前 n项和的公式中共涉 及哪几个基本量?这 几个量分别表示 什么?

(2) 这几个基本 量中知道几个可以求 出另外几个? 你是依 据什么数学思想来断 言的?

说明

这种思想方法, 用图形来说明就更清 楚. 在图 1-14 上拼一 个倒过来的图形(示 意图见图 1-16),就 成为各行有相同个数 的平行四边形,计算 这个平行四边形的个 数就很容易了.

图 1-16

大自然数 n. 易知当 n=19 时, $S_n=190$; n=20 时, $S_n=210$. 所以 n 的 最大值为 19. 此时, 将堆垛 19 层, 剩余 10 根圆木料.

97 求前n个正奇数的和.

解 由等差数列前 n 项和公式,得

$$1+3+5+\cdots+(2n-1) = \frac{n(1+2n-1)}{2} = n^2$$
.

你能看出图 1-17 与本题的关系吗?

解 (1)设从第 1 圈到第 9 圈石板数所成数列为 $\{a_n\}$,由题意可知 $\{a_n\}$ 是等差数列,其中 $a_1=9$, d=9, n=9.

由等差数列的通项公式,得第9圈有石板

$$a_9 = a_1 + (9-1)d = 9 + (9-1) \times 9 = 81(4)$$
.

(2)由等差数列前 n 项和公式,得前 9 圈一共有石板

$$S_9 = 9a_1 + \frac{9(9-1)}{2}d = 9 \times 9 + \frac{9 \times 8}{2} \times 9 = 405$$
(块).

答 第9圈有81块石板,前9圈一共有405块石板.

练 习 1

- 1. 在2.1节问题(1)中,求剧场共有多少个座位.
- 2. 求前 n 个正偶数的和.
- 3. 在等差数列{a_n}中,
 - (1) 已知 $S_8 = 48$, $S_{12} = 168$, 求 a_1 和 d;
 - (2)已知 $a_6=10$, $S_5=5$,求 a_8 和 S_8 ;
 - (3)已知 $a_3+a_{15}=40$,求 S_{17} .

图 1-17

图 1-18

解 由于 $a_{n+1}-a_n=[2(n+1)+3]-(2n+3)=2$. 所以,数列 $\{a_n\}$ 是公差为 2 的等差数列,此数列自第 100 项到第 200 项仍是等差数列. 共有 101 项,所求和为

$$S = \frac{a_{100} + a_{200}}{2} \times 101$$

$$= \frac{2 \times 100 + 3 + (2 \times 200 + 3)}{2} \times 101$$

$$= 30 603.$$

例 10 在新城大道一侧 A 处,运来 20 棵新树苗. 一名工人从 A 处起沿大道一侧路边每隔 10 m 栽一棵树苗,这名工人每次只能运一棵. 要栽完这 20 棵树苗,并返回 A 处,植树工人共走了多少路程?

解 植树工人每种一棵树并返回 A 处所要走的路程(单位:m) 组成了一个数列

这是首项为 0,公差为 20,项数为 20 的等差数列,其和

$$S = \frac{20 \times (20 - 1)}{2} \times 20 = 3800 \text{ (m)}.$$

答 植树工人共走了 3 800 m 的路程.

例 11 九江抗洪指挥部接到预报,24 时后有一洪峰到达.为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第二道防线.经计算,除现有的部队指战员和九江干群连续奋战外,还需调用 20 台同型号翻斗车,平均每辆工作 24 时.但目前只有一辆车投入施工,其余的需从昌九高速公路沿线抽调,每隔 20 分能有一辆车到达,指挥部最多可调集 25 辆车,那么在 24 时内能否构筑成第二道防线?

解 从第一辆车投入工作算起,各车工作时间(单位:h)依次设为:

$$a_1, a_2, \cdots, a_{25},$$

这是一个等差数列, $a_1=24$,公差 $d=-\frac{1}{3}$.

25 辆车可以完成的工作量为:

$$a_1 + a_2 + \dots + a_{25} = 25 \times 24 + \frac{25 \times 24}{2} \times \left(-\frac{1}{3}\right) = 500.$$

需要完成的工作量为 24×20=480.

因此,在24小时内能构筑成第二道防线.

练 习 2

1. 已知数列 $\{2n-11\}$,那么 S_n 的最小值是().

- A, S₁ B, S₅ C, S₆ D, S₁₁
- 2. 一凸 n 边形,各内角的度数成等差数列,公差是 10°,最小内角 100°,则边 数 n= .
- 3. 某车间全年共生产 2 250 个零件,又已知 1 月份生产了 105 个零件,每月 生产零件的个数按等差数列递增, 平均每月比前一个月多生产多少个零 件? 12 月份生产多少个零件?

习 题 1—2

A 组

{a_n}为等差数列,填表;

题 次	a_1	d	n	a_n
(1)	8	-3	20	
(2)	2		9	18
(3)		3 4	30	$15\frac{3}{4}$
(4)	3	2		21

思考填表的过程,你能得出什么结论?

2. 已知等差数列 $\{a_n\}$ 的前三项为a-1,a+1,2a+3,则此数列的通项 为().

- A, 2n-5 B, 2n+1 C, 2n-3 D, 2n-1
- 3. 已知数列 $1,\sqrt{3},\sqrt{5},\sqrt{7},3,\sqrt{11},\dots,\sqrt{2n-1},\dots, 则\sqrt{21}$ 是这个数列的 ().

A. 第10项 B. 第11项 C. 第12项 D. 第21项

- 4. 设数列 $\{a_n\}$ 是单调递增的等差数列,前三项的和为 12,前三项的积为 48,则它的首项是().
 - A. 1
- B. 2 C. 4 D. 8

5. 设数列 $\{a_n\}$, $\{b_n\}$ 都是等差数列,它们相应项的和 a_n+b_n 是否仍是等差 数列? 若 $a_1 = 25$, $b_1 = 75$, $a_2 + b_2 = 100$, 则由 $a_n + b_n$ 所组成的数列的 第 37 项为().

A. 1

B. 0

C. 100 D. 3 700

 夏季高山上气温从山脚起每升高 100 m 降低 0.7 ℃,已知山顶气温是 14.1 ℃,山脚的气温是 26 ℃. 那么,此山相对于山脚的高度是(

A. 1500 m B. 1600 m C. 1700 m D. 1800 m

7. (1)求等差数列 8,5,2,…的第 20 项;

(2)-401 是不是等差数列-5,-9,-13,…的项? 如果是,是第几项?

8. 某城市环境噪声平均值(dB)见下表:

年份	1999	2000	2001	2002
噪声/dB	57.8	57.2	56.6	56.0

如果噪声平均值依此规律逐年减少,那么从 2002 年起,经过多少年, 噪声平均值将小于 42 dB?

- 9. 安装在一根公共轴上的5个皮带轮的直径成等差数列,其中最大和最 小的皮带轮的直径分别是 216 mm 与 120 mm, 求中间三个皮带轮的 直径.
- 10. 在下表的等差数列{a_n}中,根据已知的三个数,求未知的两个数.

题次	a_1	d	n	a_n	S_n	題次	a_1	d	n	a_n	S_n
(1)	5. 2	0.4	43			(5)	0.2			5. 2	137.7
(2)	$-37\frac{1}{2}$	4		$46\frac{1}{2}$		(6)		2	15	-10	
(3)	5 6	$-\frac{1}{3}$			$-158\frac{2}{3}$	(7)		3	31		0
(4)	5		26	105		(8)		2.5		27	157.5

- 12. 如图,一个堆放铅笔的 V 形架的最下面一层放一枝铅笔,往上每一层 都比它下面一层多放一枝,最上面一层放 120 枝. 这个 V 形架上共放 着多少枝铅笔?
- 一个物体第1s降落4,90m,以后每秒比前一秒多降落9,80m,
 - (1)如果它从山顶下落,经过5 s 到达地面,那么这山的高度是多 少米?
 - (2)如果它从 1 960 m 的高空落到地面,要经过多长时间?

(第12題)

- 14. 甲、乙两物体分别从相距 70 m 的两处相向运动,甲第 1 分走 2 m,以 后每分比前一分多走 1 m,乙每分走 5 m.问:甲、乙开始运动后多长 时间相遇?
- 15. 你能通过画图来表示数列 1,8,16,24,32,40 的和吗 (参考本节例 7)?

B 组

- 有一个阶梯教室,共有座位25排,第一排离教室地面高度为17 cm,前16排前后两排高度差8 cm,从17排起,前后两排高度差是10 cm(含16,17排之间高度差).求最后一排离教室地面的高度.
- 将等差数列 3,8,13,18,···按顺序抄在练习本上,已知每行抄 13 个数,每页抄 21 行. 求数 33 333 所在的页和行.
- 3. 在编号为 1~9 的九个盒子中,共放有 351 粒米,已知每个盒子都比 前一号盒子多放同样粒数的米.
 - (1)如果1号盒内放了11粒米,那么后面的盒子比它前一号的盒子 多放几粒米?
 - (2)如果 3 号盒子内放了 23 粒米,那么后面的盒子比它前一号的盒子多几粒米?
- 4. 已知 $\{a_n\}$ 是等差数列,其中 $a_1=31$,公差d=-8.
 - (1)求数列 $\{a_n\}$ 的通项公式,并作出它的图像;
 - (2)数列{a_n}从哪一项开始小于 0?
 - (3)求数列 $\{a_n\}$ 前 n 项和的最大值,并求出对应 n 的值.
- 5. 数列 $\{a_n\}$ 前 n 项和 $S_n = n^2 + 1$.
 - (1)试写出数列的前5项;
 - (2)数列{a_n}是等差数列吗?
 - (3)你能写出数列{a_n}的通项公式吗?

§3 等比数列

3.1 等比数列

问题与思考

一位拉面高手能 用一块面连续拉出 10多万根面条,你知 道他需要捏合、拉伸 多少次吗?

下面问题中的数列有什么共同特征?

(1)你吃过拉面吗?拉面馆的师傅将一根很粗的面条,拉伸、捏合、再拉伸、再捏合,如此反复几次,就拉成了许多根细面条.

这样捏合8次后可拉出多少根细面条?

第1次是1根,后面每次捏合都将1根变为2根,故有:

第2次捏合成2×1=2根;

第 3 次捏合成 2×2=2² 根;

.....

第8次捏合成2×26=27=128根.

前8次捏合成的面条根数构成一个数列

1,2,4,8,16,32,64,128.

1

对于数列①,从第2项起,每一项与前一项的比都是2;

(2)星火化工厂今年产值为 a 万元, 计划在以后 5 年中每年比上 年产值增长 10%, 试列出从今年起 6 年的产值(单位: 万元).

第1年产值:a;

第2年产值: $a+a\times10\%=a(1+10\%)$:

第3年产值: $a(1+10\%)+a(1+10\%)\times10\%=a(1+10\%)^2$;

.....

第 6 年产值: $a(1+10\%)^4+a(1+10\%)\times10\%=a(1+10\%)^5$. 故这 6 年的产值构成一个数列:

a,a(1+10%),a(1+10%)²,a(1+10%)³,a(1+10%)⁴,a(1+10%)⁵ ② 对于数列②,从第 2 项起,每一项与前一项的比都是 1+10%.

可以看出数列①,②有如下的共同特征:从第 2 项起,每一项与前一项的比都是与项数 n 无关的常数.

一般地,如果一个数列从第 2 项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫作**等比数列**,这个常数叫作等比数列的**公比**,公比通常用字母 q 表示($q\neq0$).

数列①,②都是等比数列,它们的公比分别是2,1+10%.

例1 以下数列中,哪些是等比数列?

$$(1)1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16};$$

- (2)1,1,1,...,1;
- (3)1,2,4,8,12,16,20;
- $(4)a,a^2,a^3,\dots,a^n$.

解 (1)是等比数列,公比 $q=-\frac{1}{2}$;

- (2)是公比为1的等比数列;
- (3)因为 $\frac{8}{4}$ $\neq \frac{12}{8}$,所以该数列不是等比数列;
- (4)当 $a\neq 0$ 时,这个数列是公比为 a 的等比数列;当 a=0 时,它不是等比数列.

已经知道了一个数列是等比数列,并且知道它的第一项 a_1 和公比 q,怎样写出它的通项公式?

设这个等比数列是

$$a_1, a_2, a_3, \dots, a_n, \dots$$

由等比数列的定义可以知道:

$$\frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \cdots = \frac{a_n}{a_{n-1}} = q$$
.

从而,

$$a_2 = a_1 q$$
,
 $a_3 = a_2 q = (a_1 q) q = a_1 q^2$,
 $a_4 = a_3 q = (a_1 q^2) q = a_1 q^3$,
...

由此可归纳出

$$a_n = a_1 q^{n-1}$$
.

在这个公式里,如果令n=1,那么

问题与思考

在等比数列中, 公比 q 为什么不为 0? 能否有某一项为 0?

$$a_1 = a_1 q^{1-1} = a_1 q^0 = a_1$$
.

由此可知, a_1 也可以用这个公式来表示,所以这个公式就是所要 求的通项公式,这就是说:

首项是 a_1 ,公比是 q 的等比数列的通项公式是

$$a_n = a_1 q^{n-1}$$
 $(a_1 \neq 0, q \neq 0).$

容易知道,本节开始给出的数列①、②的通项公式依次是

$$a_n = 2^{n-1}$$
(参看图 1-19);
 $a_n = a(1+10\%)^{n-1}$.

解 设等比数列的首项为 a_1 ,公比为q,则由已知,得

$$\begin{cases}
 a_1 = 2, & \\
 a_1 q + a_1 q^2 = 12, & \\
 \end{aligned}$$

将①式代入②式,得

$$q^2 + q - 6 = 0$$
.

解得

$$q = -3$$
 或 $q = 2$.

当
$$q=-3$$
时, $a_8=a_1q^7=2\times(-3)^7=-4$ 374,

当
$$q=2$$
 时, $a_8=2q^7=2\times 2^7=2^8=256$.

故数列的第8项是-4374或256.

在等比数列{a_n}中,填写下表.

題次	a_1	q	n	a_n
(1)	3	-2	5	
(2)		$\frac{1}{2}$	4	$\frac{1}{16}$
(3)	$\frac{1}{2}$		4	$\frac{1}{16}$
(4)	3		5	48
(5)	3	2		24

思考交流

根据指数函数的单调性,分析等比数列 $a_n = a_1 q^{n-1} (q > 0)$ 的单调性,填写表 1-4.

表 1-4

a_1	$a_1 > 0$			$a_1 < 0$		
q 的范围	0 <q<1< th=""><th>q=1</th><th>q>1</th><th>0<q<1< th=""><th>q=1</th><th>q>0</th></q<1<></th></q<1<>	q=1	q>1	0 <q<1< th=""><th>q=1</th><th>q>0</th></q<1<>	q=1	q>0
$\{a_n\}$ 的单调性						

例 3 在各项为负数的数列 $\{a_n\}$ 中,已知 $2a_n=3a_{n+1}$,且 $a_2 \cdot a_5=\frac{8}{27}$.

- (1)求证: $\{a_n\}$ 是等比数列,并求出通项;
- (2)试问-16/81 是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.

解 (1)因为
$$2a_n=3a_{n+1}$$
,所以 $\frac{a_{n+1}}{a_n}=\frac{2}{3}$.

故数列 $\{a_n\}$ 是公比 $q=\frac{2}{3}$ 的等比数列.

又
$$a_2 \cdot a_5 = \frac{8}{27}$$
, 则 $a_1 q \cdot a_1 q^4 = \frac{8}{27}$,

即

$$a_1^2 \cdot \left(\frac{2}{3}\right)^5 = \left(\frac{2}{3}\right)^3$$
.

由于数列各项均为负数,则 $a_1 = -\frac{3}{2}$,

所以

$$a_n = -\frac{3}{2} \times \left(\frac{2}{3}\right)^{n-1} = -\left(\frac{2}{3}\right)^{n-2}$$
.

(2)设 $a_n = -\frac{16}{81}$,由等比数列的通项公式得 $-\frac{16}{81} = -\left(\frac{2}{3}\right)^{n-2}$,

即

$$\left(\frac{2}{3}\right)^4 = \left(\frac{2}{3}\right)^{n-2}$$
.

根据指数函数的性质,有

$$4=n-2$$
, $\mathbb{N}_{n}=6$.

因此, $-\frac{16}{81}$ 是这个等比数列的第 6 项.

说明

hm² 表示公顷, 1 hm²=10 000 m².

- **例 4** 据报载,中美洲地区毁林严重.据统计,在 20 世纪 80 年代末,每时平均毁林约 48 hm²,森林面积每年以 3.6%~3.9%的速度减少,迄今被毁面积已达 1.3×10⁷ hm²,目前还剩1.9×10⁷ hm².请你回答以下几个问题:
- (1)如果以每时平均毁林约 48 hm² 计算,剩下的森林经过多少 年将被毁尽?
- (2)根据(1)计算出的年数n,如果以每年3.6%~3.9%的速度减少,计算n年后的毁林情况;
- (3)若按 3.6%的速度减少,估算经过 150 年后、经过 200 年后、 经过 250 年后及经过 300 年后森林面积的情况,经过多少年森林将被 毁尽?
 - 解 (1)如果每时平均毁林约 48 hm²,则每年平均毁林 48×24×365=420 480(hm²),

列出比式 $\frac{1.9\times10^7}{420~480}$ \approx 45. 2,故剩下的森林大约经过 45 年将被毁尽.

- (2)若以 3.6%速度减少,用计算器计算 45 年后还剩的森林面积为:
 - $1.9 \times 10^7 \times (1-0.036)^{45} \approx 3.65 \times 10^6 (hm^2)$,

若以 3.9%速度减少,45 年后还剩的森林面积为:

- 1. $9 \times 10^7 \times (1 0.039)^{45} \approx 3.17 \times 10^6 (hm^2)$.
- (3)经过 150 年后,还剩约 7.77×10⁴ hm²;经过 200 年后,约剩 1.24×10⁴ hm²;经过 250 年后,约剩 1 986 hm²;经过 300 年后,约剩 317 hm²;经过 512 年后,约剩 0.134 hm²,森林几乎毁尽.

问题与思考

若 $G^2 = ab$,则 a, G,b 是否必成等比数 列?

与等差中项类似,如果在 a 与 b 中插入一个数 G ,使得 a ,G ,b 成等比数列,那么根据等比数列的定义, $\frac{G}{a} = \frac{b}{G}$, $G^2 = ab$, $G = \pm \sqrt{ab}$. 我们称 G 为 a ,b 的等比中项.

容易知道,在等比数列中,首末两项除外,每一项都是它前后两项的等比中项.

练 习 2

已知数列 a,a(1-a),a(1-a)²,…是等比数列,则实数 a 的取值范围是
 ().

A. $a \neq 1$

B. $a\neq 0$ 或 $a\neq 1$

C. $a\neq 0$

D. $a\neq 0$ IL $a\neq 1$

2. 将公比为 q 的等比数列 $a_1, a_2, a_3, a_4, \cdots$ 依次取相邻两项的乘积组成新的数列 $a_1a_2, a_2a_3, a_3a_4, \cdots$ 此数列是().

A. 公比为 q 的等比数列

B. 公比为 q2 的等比数列

C. 公比为 q³ 的等比数列

D. 不一定是等比数列

3. 求下列各组数的等比中项.

(1)-45 和-80;

(2)7+3√5 7−3√5;

 $(3)(a+b)^2$ 和 $(a-b)^2$.

3.2 等比数列的前 n 项和

问题提出

一天,小林和小明做"贷款"游戏,他们签订了一份合同.从签订合同之日起,在整整一个月(30天)中,小明第一天贷给小林1万元,第二天贷给小林2万元……以后每天比前一天多贷给小林1万元.而小林按这样的方式还贷:小林第一天只需还1分钱,第二天还2分钱,第三天还4分钱……以后每天还的钱数是前一天的两倍.

合同开始生效了,第一天小林支出 1 分钱,收入 1 万元;第二天,他支出 2 分钱,收入 2 万元;第三天,他支出 4 分钱,收入 3 万元……到了第 10 天,他共得到 55 万元,付出的总数只有 10 元 2 角 3 分.到了第 20 天,小林共得 210 万元,而小明才得到 1 048 575 分,共 1 万元多一点.小林想:要是合同订两个月、三个月该多好!

果真是这样吗?

下面我们来计算一下双方得到的钱数.

设 30 天后,小林得到的钱数为 T_{30} (万元),小明得到的钱数为 S_{30} (分),则根据合同

$$T_{30}$$
=1+2+3+···+30= $\frac{(1+30)\times 30}{2}$ =465(万元),
 S_{30} =1+2+2²+···+2²⁹.

如何计算 S_{30} 呢?

思路—
$$S_{30} = 1 + 2 + 2^2 + \dots + 2^{29}$$

 $= 1 + 2(1 + 2 + 2^2 + \dots + 2^{28})$
 $= 1 + 2(S_{30} - 2^{29})$,
 $S_{30} - 2S_{30} = 1 - 2^{30}$,
 $S_{20} = 2^{30} - 1$.

思路二 观察①,得

$$S_{30} = 1 + 2 + 2^2 + \dots + 2^{29}$$
, ②

$$2S_{30} = 2 + 2^2 + \dots + 2^{29} + 2^{30}$$
. 3

③一②,得

$$S_{30} = 2^{30} - 1$$
.

而 $S_{30}=2^{30}-1$ 可不是一个小数目! 利用计算器计算,得到: $S_{30}=1$ 073 741 823(分)=1 073.741 823(万元).

小林听到这个结果,肯定会吓出一身冷汗!

我们将上述方法推广到一般等比数列求和.

设
$$S_n = a_1 + a_1 q + a_1 q^2 + \dots + a_1 q^{n-1}$$
, ①

①的两边同乘 q,得

$$qS_n = a_1q + a_1q^2 + \dots + a_1q^{n-1} + a_1q^n$$
. ②

①的两边分别减去②的两边,得

$$S_n - qS_n = a_1(1-q^n),$$

即

$$S_n(1-q)=a_1(1-q^n).$$

由此得到 $q \neq 1$ 时,等比数列前 n 项和公式

$$S_n = \frac{a_1(1-q^n)}{1-q}$$
.

因为

$$a_1q^n = (a_1q^{n-1})q = a_nq$$
,

所以上面的公式还可以写成

$$S_n = \frac{a_1 - a_n q}{1 - a}.$$

很明显,当q=1时,从①式可得 $S_n=na_1$. 从而,等比数列前n项和公式为

$$S_{n} = \begin{cases} na_{1}, & (q=1) \\ \frac{a_{1}(1-q^{n})}{1-q} = \frac{a_{1}-a_{n}q}{1-q}. & (q \neq 1) \end{cases}$$

例 5 (1)已知等比数列 $\{a_n\}$ 中 $,a_1=2,g=3$. 求 S_3 ;

(2)求等比数列 $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ 的前 10 项的和.

解 (1)
$$S_3 = \frac{2 \times (1-3^3)}{1-3} = 26;$$

(2)因为公比 $q = \frac{1}{2}$,

$$S_{10} = \frac{1 \times \left[1 - \left(\frac{1}{2}\right)^{10}\right]}{1 - \frac{1}{2}} = \frac{1023}{512}.$$

问题与思考

等比数列前 n 项 和的有关公式中共涉 及哪几个基本量? 这 几个量有什么实际意 义? 这几个基本量中 知道其中几个可以求 出另外几个?

例 6 五洲电扇厂去年实现利税 300 万元, 计划在以后 5 年中每 年比上年利税增长 10%. 同从今年起第 5 年的利税是多少? 这 5 年 的总利税是多少 (结果精确到万元)?

解 每年的利税组成一个首项 $a_1 = 300$, 公比 q = 1 + 10% 的等比 数列,从今年起,第5年的利税为

$$a_6 = a_1 q^5 = 300 \times (1 + 10\%)^5 = 300 \times 1.1^5 \approx 483 (万元);$$

过 5 年的总利税为

$$S = \frac{a_2(q^5-1)}{q-1} = 300 \times 1.1 \times \frac{1.1^5-1}{1.1-1} \approx 2015 (万元).$$

1. 求下列等比数列{a_}}前 n 项的和.

$$(1)a_1=1,q=3,n=10$$

(1)
$$a_1 = 1, q = 3, n = 10;$$
 (2) $a_1 = \frac{1}{2}, q = -\frac{1}{3}, n = 6;$

$$(3)a_1 = \frac{1}{3}, q = \frac{1}{3}, a_n = \frac{1}{6561};$$
 $(4)a_1 = 6, q = 2, a_n = 192.$

$$(4)a_1=6,q=2,a_n=192,$$

2. 某超市去年的销售额为 a 万元, 计划在今后 10 年内每年比上一年增加 10%. 从今年起 10 年内这家超市的总销售额为()万元.

C.
$$10 \times (1, 1^{10} - 1)a$$

D.
$$11 \times (1, 1^{10} - 1)a$$

例7 一个热气球在第一分上升了 25 m 的高度,在以后的每一分里,它上升的高度都是它在前一分上升高度的 80%. 这个热气球上升的高度能超过 125 m 吗?

解 用 a_n 表示热气球在第n 分上升的高度,由题意,得

$$a_{n+1} = \frac{4}{5}a_n$$
,

因此,数列 $\{a_n\}$ 是首项 $a_1=25$,公比 $q=\frac{4}{5}$ 的等比数列.

热气球在 n 分时间里上升的总高度

$$S_{n} = a_{1} + a_{2} + \dots + a_{n} = \frac{a_{1}(1 - q^{n})}{1 - q}$$

$$= \frac{25 \times \left[1 - \left(\frac{4}{5}\right)^{n}\right]}{1 - \frac{4}{5}} = 125 \times \left[1 - \left(\frac{4}{5}\right)^{n}\right] < 125.$$

答 这个热气球上升的高度不可能超过 125 m.

图 1-20

例8 如图 1-20 所示,作边长为 a 的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆.如此下去,求前n 个内切圆的面积和.

解 设第n个正三角形的内切圆的半径为 a_n .

因为从第 2 个正三角形开始,每一个正三角形的边长是前一个正三角形边长的 $\frac{1}{2}$,每一个正三角形内切圆的半径也是前一个正三角形内切圆半径的 $\frac{1}{2}$,故

$$a_1 = \frac{1}{2}a \tan 30^{\circ} = \frac{1}{2}a \times \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{6}a,$$
 $a_2 = \frac{1}{2}a_1,$
...
 $a_n = \frac{1}{2}a_{n-1}.$

数列 $\{a_n\}$ 是首项为 $\frac{\sqrt{3}}{6}a$,公比为 $\frac{1}{2}$ 的等比数列.

所以

$$a_n = \frac{\sqrt{3}}{6} \times \left(\frac{1}{2}\right)^{n-1} a$$
.

设前n个内切圆的面积和为 S_n ,则

$$\begin{split} S_n &= \pi (a_1^2 + a_2^2 + \dots + a_n^2) \\ &= \pi a_1^2 \left[1 + \left(\frac{1}{2} \right)^2 + \left(\frac{1}{4} \right)^2 + \left(\frac{1}{2^{n-1}} \right)^2 \right] \\ &= \pi a_1^2 \left[1 + \left(\frac{1}{4} \right) + \left(\frac{1}{4} \right)^2 + \dots + \left(\frac{1}{4} \right)^{n-1} \right] \\ &= \frac{4}{3} \times \frac{a^2}{12} \left(1 - \frac{1}{2^{2n}} \right) \pi \\ &= \frac{a^2}{9} \left(1 - \frac{1}{2^{2n}} \right) \pi. \end{split}$$

答 前 n 个内切圆的面积和是 $\frac{a^2}{9} \left(1 - \frac{1}{2^{2n}}\right)\pi$.

练 习 2

- 1. 求等比数列 1,2,4,…从第 5 项到第 10 项的和.
- 2. 一个球从a m 高处自由落下,每次着地后,又跳回到原高度的 $\frac{2}{3}$. 那么当 它第5次着地时,共经过了多少米?

习 题 1—3

组

- 1. 等比数列 x, 2x+2, 3x+3, … 的第四项为 ().
 - A. $-\frac{27}{2}$ B. $\frac{27}{2}$ C. -27 D. 27

- 2. 计算机的价格不断降低, 若每年计算机的价格降低 3, 现在价格为 8 100元的计算机 3 年后的价格可降低为().
 - A. 300元

B. 900元

C. 2400元

D. 3600元

3. 一个各项均正的等比数列,其每一项都等于它后面的相邻两项之和, 則公比q=(

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\frac{2\sqrt{5}}{2}$$

A.
$$\frac{\sqrt{3}}{2}$$
 B. $\frac{2\sqrt{5}}{2}$ C. $\frac{\sqrt{5}-1}{2}$ D. $\frac{1+\sqrt{5}}{2}$

D.
$$\frac{1+\sqrt{5}}{2}$$

4. 等比数列 $\{a_n\}$ 中,首项为 a_1 ,公比为q,则下列条件中,使 $\{a_n\}$ 一定为递 减数列的条件是().

A.
$$|q| < 1$$

B.
$$a_1>0$$
, $q<1$

C.
$$a_1>0$$
, $0 或 $a_1<0$, $q>1$$

- 5. 单摆一次摆动摆过的弧长为 36 dm,在连续的每次摆动中,每次摆动的 弧长是前一次的90%。请写出它每次摆动弧长的表达式,并写出第六 次摆动的弧长(结果精确到 1dm).
- 6. 培育水稻新品种,如果第一代得到20粒种子,并且从第一代起,以后 各代的每一粒种子都可以得到下一代的20粒种子,那么到第五代大 约可以得到这个新品种的种子多少粒?
- 7. 某工厂 1996 年产值为 200 万元, 计划从 1997 年开始, 每年的产值比 上年增长 20%. 问从哪年开始,该厂的年产值可超过 1 200 万元?
- 8. 在下表各题里, $\{a_n\}$ 是等比数列,由已知的三个数,求另外两个未 知数.

题次	a_1	q	n	a_n	S_n	題次	a_1	q	n	a_n	S_n
(1)	3	2	6			(5)	1			4	7
(2)	8	1/2		1/8		(6)		$\frac{1}{2}$	5	1/8	
(3)	5	2			35	(7)		2 3	4		65
(4)	2		4	54		(8)		2		96	189

- 9. 如果某人在听到喜讯后的 1 h 内将这一喜讯传给 2 个人,这 2 个人又 以同样的速度各传给未听到喜讯的另2个人……如果每人只传2人, 这样继续下去,要把喜讯传遍一个有2047人(包括第一个人)的小镇, 所需时间为().

- A. 8 h B. 9 h C. 10 h D. 11 h
- 10. 某制糖厂第1年制糖5万吨,如果平均每年的产量比上一年增加 10%,那么从第1年起,约几年内可使总产量达到30万吨(结果精确 到1年)?

B 组

1. 被称为"世界屋脊"的喜马拉雅山的主峰——珠穆朗玛峰,海拔 8 844 m,是世界第一高峰. 但一张报纸却不服气,它说:"别看我薄, 只有 0.01 cm 厚,但把我连续对折 30 次后,我的厚度就会远远超过 珠穆朗玛峰的高度."你认为这张报纸是不是在吹牛? 你不妨算 算看.

时间/天	0	1	2	3	4
剩余/g	20.0	18, 34	16, 82	15, 42	14. 14

3. 一个等比数列前 n 项的和为 48,前 2n 项的和为 60,则前 3n 项的和 为().

A. 83 B. 108 C. 75 D. 63

4. 设 $\{a_n\}$ 是由正数组成的等比数列,公比q=2,且 $a_1 \cdot a_2 \cdot a_3 \cdot \cdots \cdot$ a₃₀=2³⁰. 那么 a₃ ⋅ a₆ ⋅ ··· ⋅ a₃₀等于().

A. 2¹⁰ B. 2¹⁵ C. 2²⁰ D. 2¹⁶

§4 数列在日常经济生活中的应用

等差数列、等比数列是日常经济生活中的重要数学模型.例如存款、贷款、购物(房、车)分期付款、保险、资产折旧等问题都与其相关.

以银行存款为例,它是老百姓日常生活中最基本的经济活动.银行存款计息方式有两种:单利和复利,它们分别以等差数列和等比数列为数学模型.下面分别举例说明.

说明

单利 单利的计 算是仅在原有本金上 计算利息,对本金所 产生的利息不再计算 利息,其公式为

利息=本金×利率×存期 以符号 p 代表本 金,n 代表存期,r 代 表利率,S 代表本金 和利息和(以下简称 本利和),则有

$$S=P(1+nr)$$
.

复利 把上期末 的本利和作为下一期 的本金,在计算时每 一期本金的数额是不 同的.复利的计算公 式是

$$S = P(1+r)^n$$
.

- **例1** 零存整取模型 银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取. 规定每次存入的钱不计复利(暂不考虑利息税).
- (1)若每月存入金额为x元,月利率r保持不变,存期为n个月, 试推导出到期整取时本利和的公式;
- (2)若每月初存入 500 元,月利率为 0.3%,到第 36 个月末整取时的本利和是多少?
- (3)若每月初存入一定金额,月利率是 0.3%,希望到第 12 个月 末整取时取得本利和 2 000 元.那么每月初应存入的金额是多少?
- 解 (1)根据题意,第1个月存入的x元,到期利息为x•r•n;第2个月存入的x元,到期利息为x•r•(n-1)元······第n个月存入的x元,到期利息为x7元,不难看出,这是一个等差数列求和的问题.

各月利息之和为

$$xr(1+2+\cdots+n) = \frac{n(n+1)r}{2}x(\vec{\pi}),$$

而本金为 nx 元,这样就得到本利和公式

$$y=nx+\frac{n(n+1)r}{2}x(\vec{\pi}),$$

即

$$y=x\left[n+\frac{n(n+1)r}{2}\right](\vec{\pi}) \quad (n\in\mathbf{N}_{+});$$

(2)每月存入 500 元,月利率为 0.3%,根据①式,本利和

$$y = 500 \times \left(36 + \frac{36 \times 37}{2} \times 0.3\%\right)$$

= 18 999($\vec{\pi}$);

(3)依题意,在①式中,y=2000,r=0.3%,n=12.

$$x = \frac{y}{n + \frac{n(n+1)}{2}r}$$

$$= \frac{2\ 000}{12 + 6 \times 13 \times 0.3\%}$$

$$\approx 163.48(\vec{\pi}),$$

答 每月应存入 163.48 元.

- **例2** 定期自动转存模型 银行有另一种储蓄业务为定期存款自动转存.例如,储户某日存入一笔1年期定期存款,1年后,如果储户不取出本利和.则银行自动办理转存业务,第2年的本金就是第1年的本利和.按照定期存款自动转存的储蓄业务(暂不考虑利息税),我们来讨论以下问题:
- (1)如果储户存入定期为 1 年的 P 元存款,定期年利率为 r,连存 n 年后,再取出本利和. 试求出储户 n 年后所得本利和的公式;
- (2)如果存入1万元定期存款,存期1年,年利率为1.98%,那么5年后共得本利和多少万元?
 - \mathbf{M} (1)记n年后得到的本利和为 a_n ,根据题意,

第 1 年存入的本金 P 元,1 年后到期利息为 $P \cdot r$,1 年后本利和为

$$a_1 = P + P \cdot r$$

= $P(1+r)(\vec{\pi})$;

2年后到期利息为P(1+r)r元,2年后本利和为

$$a_2 = P(1+r) + P(1+r)r$$

= $P(1+r)^2(\vec{\pi})$;

.....

各年的本利和是一个以 $a_1 = P(1+r)$ 为首项,公比q=1+r的等比数列 $\{a_n\}$,故n年后到期的本利和

$$a_n = a_1 q^{n-1}$$

= $P(1+r)(1+r)^{n-1}$
= $P(1+r)^n(元)(复利公式).$

(2)根据上式,5年后本利和为

$$a_5 = 1 \times (1+0.0198)^5 \approx 1.10(万元)$$
.

答 5年后得本利和约为1.10万元.

银行整存整取定期储蓄年利率如表 1-5 所示.

表 1-5 (2003 年度)

存 期	1年	2年	3年	5年
年利率/%	1.98	2. 25	2.52	2.79

某公司欲将 10 万元存入银行 5 年,可按以下方案办理(不考虑利息税):

- (1)直接存入5年定期;
- (2) 先存 2 年定期,取出本利和后再存 3 年定期.

问题1 计算出不同存法到期后的本利和,哪种存款方式更 合算?

问题 2 你能设计出更好的存款方案吗?

信息技术建议

尝试设计"寻找 最好存款方式"的算 法程序,并上机实现.

练 习 1

- 小蕾 2003年1月31日存入银行若干万元,年利率为1.98%,到2004年1月31日取款时,银行按国家规定扣除了利息税(税率为20%——利息税占利息的百分数)138.64元,則小蕾存入银行的本金介于()之间.
 - A. 1万~2万 B. 2万~3万 C. 3万~4万 D. 4万~5万
- 2. 小峰从2000年开始,每年元旦向银行存款1万元,年利率为1.98%,办理 一年定期储蓄,以后按约定自动转存.请计算小峰到2008年元旦得到的 本利和.
- **例3** 分期付款模型 小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在一年内将款全部付清.商场提出的付款方式为:购买后2个月第1次付款,再过2个月第2次付款……购买后12个月第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算.求小华每期付的金额是多少?
- 解 假定小华每期还款x元,第k个月末还款后的本利欠款数为 A_k 元,则

$$A_2 = 5\ 000 \times (1+0.008)^2 - x;$$

$$A_4 = A_2(1+0.008)^2 - x$$

 $=5.000\times(1+0.008)^4-(1.008)^2x-x$;

$$A_6 = A_4(1+0.008)^2 - x$$

= 5 000×(1+0.008)⁶ - (1.008)⁴x - (1.008)²x - x;

$$A_{12} = 5\ 000 \times (1.008)^{12} - [(1.008)^{10} + (1.008)^8 + (1.008)^6 + (1.008)^4 + (1.008)^2 + 1]x;$$

由题意年底还清,所以 $A_{12}=0$.

解得

$$x = \frac{5\ 000 \times (1.008)^{12}}{1 + (1.008)^2 + (1.008)^4 + (1.008)^6 + (1.008)^8 + (1.008)^{10}}$$

$$\approx 880, 8(\vec{\pi}).$$

答 小华每次付款的金额为880.8元.

1 思考交流

商场出售电脑,提出了如表 1-6 所示的 3 种付款方式,以供顾客 选择.请分别算出各种付款方式每次应付款金额,并填在表中. 选择 一种你喜欢的付款方式,与同学交流,并说明选择的理由.

		74 - 0	
方案类别	分几次付清	付款方法	每期所付款额
1	3 次	购买后 4 个月第 1 次付款, 再过 4 个月第 2 次付款, 再过 4 个月第 3 次付款.	
2	6次	购买后 2 个月第 1 次付款, 再过 2 个月第 2 次付款 购买后 12 个月第 6 次付款.	
3	12次	购买后 1 个月第 1 次付款, 过 1 个月第 2 次付款 购买后 12 个月第 12 次付款.	

表 1-6

练 习 2

小杨 2002 年向银行貸款 20 万元用于购房,小杨住房貸款的年利率为 5.04%,并按复利计息. 若双方协议自 2003 年元月起生效,每年底还银行相 同金額的貸款,到 2012 年底全部还清(即用 10 年时间等額还款). 则小杨每 年底还银行貸款的金額是多少元(结果精确到 1 元)?

注:1. 每种方案中每次所付款额相同;

^{2.} 规定月利率为 0.8%,每月利息按复利计算.

习 题 1—4

 一架摄像机售价为1万元. 若采取分期付款,则需在1年内将款全部 还清,商家提供下表所示的几种付款方案:

方案	付款次数	付 款 方 法
1	6次	购买后 2 个月第 1 次付款,再过 2 个月第 2 次付款购买后 12 个月第 6 次付款.
2	12 次	购买后1个月第1次付款,过1个月第2次付款 购买后12个月第12次付款.
3	3次	购买后4个月第1次付款,再过4个月第2次付款, 再过4个月第3次付款.

注:1. 每种方案中每次所付款额相同;

2. 规定月利率为 0.8%,每月利息按复利计算.

按各种方案付款每次需付款额分别是多少?

2. 小王想用分期付款的方式购买一套价值 18 万元的商品房. 首付 8 万元,贷款期限为 20 年,银行住房贷款年利率为5.04%,按复利计息. 如果小王按年还款,每年还款的数额相同,那么每年需要还款多少元?小王为购买此房共要付房款多少元?

◆ 本章小结建议

一、学习要求

1. 数列的概念和简单的表示法

通过日常生活中的实例,了解数列的概念和几种简单的表示 方法(列表、图像、通项公式),了解数列是一种特殊函数.

- 2. 等差数列、等比数列
- (1)通过实例,理解等差数列、等比数列的概念.
- (2)探索并掌握等差数列、等比数列的通项公式及其前 n 项和 的公式.
- (3)能在具体的问题情境中,发现数列的等差或等比关系,并 能用有关知识解决相应的问题.
 - (4)体会等差数列及等比数列与一次函数、指数函数的关系.

二、复习建议

- 1. 阅读课本、整理笔记、复习例题,总结出本章的基本知识和 基本方法.
- 2. 归纳总结、对比记忆、做出本章小结,使本章知识系统化、条理化.
 - 3. 请制作本章知识框图.
 - 4. 本章复习时可思考以下问题:
 - (1)数列的基本概念有哪些?
- (2)怎样理解等差数列和等比数列的概念?它们作为两个最 基本的数列模型,有哪些应用?
 - (3)等差数列和等比数列的性质、计算公式是什么?
- (4)本章有哪些地方体现了函数思想?等差、等比数列与一次 函数和指数函数的关系是什么?
 - (5)学习本章后有哪些不解的问题?
 - (6)你能否归纳出几个最主要的问题?
 - 5. 请同学互相交流学习本章的体会.

复习题一

组 A

1. 数列{a_n}中,

$$a_n = \begin{cases} \frac{1}{2n-1} & (n \ \text{为奇数}), \\ \left(-\frac{1}{2}\right)^{n-1} & (n \ \text{为偶数}). \end{cases}$$

试写出这个数列的前5项.

2. 已知数列 $\{a_n\}$ 中 $,a_n-a_{n-1}=2(n\geq 2)$,且 $a_1=1$,则这个数列的第 10 项 为().

A. 18

B. 19

C. 20 D. 21

3. 等差数列 $\{a_n\}$ 中,已知 $a_1 = \frac{1}{3}$, $a_2 + a_5 = 4$, $a_n = 33$,则n为().

B. 49 C. 50

4. 等差数列 $\{a_n\}$ 中,已知公差 $d=\frac{1}{2}$,且 $a_1+a_3+\cdots+a_{99}=60$,则 $a_1+a_2+a_3+\cdots+a_{99}=60$,

···+a₁₀₀等于().

A. 170

B. 150

C. 145

D. 120

5. 在 a 和 b 两数之间插入 n 个数,使它们与 a,b 组成等差数列,则该数列的公 差为().

A. $\frac{b-a}{n}$ B. $\frac{b-a}{n+1}$ C. $\frac{a-b}{n+1}$ D. $\frac{b-a}{n+2}$

6. (1) 若数列 $\{a_n\}$, $\{b_n\}$ 是等差数列, 公差分别为 d_1 , d_2 , 则数列 $\{a_{2n}\}$, $\{a_n+2b_n\}$ 是不是等差数列?如果是,公差是多少?

(2) 若数列 $\{a_n\}$ 是等差数列 $,m+n=p+q,m,n,p,q\in \mathbb{N}_+$,试分析 a_m+a_n 与 $a_o + a_o$ 的关系.

7. 观察下面的数阵,容易看出,第n行最右边的数是 n^2 ,那么第 20 行最左边的 数是几? 第20 行所有数的和是多少?

> 5 6 7 8 9 10 11 12 13 14 15 16

8. 小明玩投放石子游戏,从A出发走1m放1枚石子,第二次走4m又放了3枚石子,第三次走7m再放5枚石子,再走10m放7枚石子.....照此规律最 后走到 B 处放下 35 枚石子, 从 A 到 B 的路程有多远?

9. 已知等比数列 $\{a_n\}$ 中 $,a_n=2\times3^{n-1}$,则由此数列的偶数项所组成的新数列的 前 n 项和为(

A. 3"-1

B. $3(3^n-1)$ C. $\frac{1}{4}(9^n-1)$ D. $\frac{3}{4}(9^n-1)$

 一张报纸,其厚度为 a,面积为 b,现将此报纸对折(即沿对边中点的连线折 叠)7次.这时报纸的厚度和面积分别为(

A. 8a, $\frac{1}{8}b$ B. 64a, $\frac{1}{64}b$ C. 128a, $\frac{1}{128}b$ D. 256a, $\frac{1}{256}b$

11. 生物学指出:生态系统中,在输入一个营养级的能量中,大约10%的能量能 够流到下一个营养级. 在 H_1 → H_2 → H_3 这个生物链中,若能使 H_3 获得 10 kJ 的能量,则需 H₁ 提供的能量为(

A. 105 kJ B. 104 kJ

C. 10³ kJ

12. 1999年11月1日起,全国储蓄存款开始征收利息税,利息税的税率是 20%,即储蓄利息的20%由各银行储蓄点代扣代收.某人在1999年11月 存人人民币1万元,存期一年,年利率为2,25%,到期时可得税后本利和共 计()元.

A. 10 225 B. 10 180 C. 11 800

D. 12 250

13. 某国有企业随着体制改革和技术创新,给国家创造的利税逐年增加. 下面 是近四年的利税值(万元):

1 000,1 100,1 210,1 331.

如果按照这个规律发展下去,下一年应给国家创造多少利税?

14. (1)求数列 $1\frac{1}{2}$, $2\frac{1}{4}$, $3\frac{1}{8}$, …前 n 项之和;

(2)求数列 5,55,555,…前 n 项之和.

15. 某城市的绿化建设有如下统计数据:

年 份	1999	2000	2001	2002
绿化覆盖率/%	17.0	17.8	18, 6	19.4

如果以后的几年继续依此速度发展绿化,那么到哪一年该城市的绿化覆盖 率可超过 23.4%?

16. (1)若 $\{a_n\}$, $\{b_n\}$ 都是等比数列,则数列 $\{a_{2n}\}$, $\{a_n \cdot b_n\}$ 是等比数列吗?

(2)已知 $\{a_n\}$ 是等比数列,且m+n=p+q,试比较 $a_m \cdot a_n = a_p \cdot a_q$ 的 关系.

B组

1. 对任意自然数 n, $\frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_n}=1$, 是数列 $\{a_n\}$ 为等差数列的()条件.

A. 必要不充分

B. 充分不必要

C. 充要

D. 既不充分也不必要

2. 一个蜂巢里有1只蜜蜂,第一天,它飞出去带回了5个伙伴;第二天,6只 蜜蜂飞出去各自带 5 个伙伴……如果这个过程继续下去,那么第 6 天所有 的蜜蜂归巢后,蜂巢中共有蜜蜂()只.

B. 66

C. 6³

D. 6²

3. $\{a_n\}$ 为等差数列,S 为前n 项和, $S_s < S_s$, $S_s = S_7$, $S_7 > S_8$,则下列说法错误 的是().

A. d < 0

B. $a_7 = 0$

 $C. S_9 > S_5$

D. S₆ 和 S₇ 均为 S₆ 的最大值

4. 计算机是将信息转换成二进制数进行处理的,二进制即"逢二进一". 如 $(1101)_2$ 表示二进制的数,将它转换成十进制的形式是 $1\times2^3+1\times2^2+0\times$ $2^{1}+1\times 2^{0}=13$,那么将二进制数 $11\cdots 1$ 转换成十进制数的形式是().

A. 217 - 2

B. 216-1

C. $2^{16}-2$ D. $2^{15}-1$

- 5. 老鼠每月生子一次,每次生 12 只,均雌雄各半,小鼠下月又生小鼠. 现在有 雌雄两只老鼠,在1月生小鼠12只,2月亲代和子代每对又生12只,此后 每月,子又生孙,孙又生子……那么到12月份,你能算出总共有多少只老 鼠吗?
- 6. 如图,有边长为1的正方形,取其对角线的一半,构成新的正方形,再取新 正方形对角线的一半,构成正方形……如此形成一个边长不断缩小的正 方形系列.

(第6題)

- (1)求这一系列正方形的面积所构成的数列,并证明它是一个等比数列;
- (2)从原始的正方形开始,到第9次构成新正方形时,共有10个正方形,求 这 10 个正方形面积的和;
- (3)如果把这一过程无限制地延续下去,你能否预言一下,全部正方形面 积相加"最终"会达到多少?

7. 摄影胶片绕在盘上,空盘时盘心直径 80 mm,满盘时直径为160 mm,已知 胶片厚度是 0.1 mm. 则满盘时,一盘胶片长约为多少?

C 组

 在一次人才招聘会上,甲、乙两家公司开出的工资标准分别是: 甲公司:第一年月工资1500元,以后每年月工资比上一年月工资增加230元;

乙公司:第一年月工资 2 000 元,以后每年月工资在上一年月工资基础上 递增 5%,

设某人年初想从甲、乙两公司中选择一家公司去工作.

- (1) 若此人分别在甲公司或乙公司连续工作 n 年,则他在两公司第 n 年的 月工资分别为多少?
- (2) 若此人在一家公司连续工作 10 年,则从哪家公司得到的报酬较多?
- 2. 假设某市 2004 年新建住房 400 万平方米,其中有 250 万平方米是中低价房. 预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%. 另外,每年新建住房中,中低价房的面积均比上年增加 50 万平方米.请问:
 - (1)该市历年所建中低价房的累计面积(以 2004 年为累计的第一年)到哪 一年底将首次不少于 4 750 万平方米?
 - (2)到 2009 年底,当年建造的中低价房的面积约占该年新建住房面积的 百分之几?

课题学习

教育储蓄

一、课题背景

"教育储蓄",是一种零存整取的定期储蓄存款方式,是国家为了 鼓励城乡居民以储蓄存款方式,为子女接受非义务教育积蓄资金,从 而促进教育事业发展而开办的.目前越来越多的家长意识到,为了孩 子将来能接受良好的高等教育,为子女办理教育储蓄是一种较为理 想的投资.为了解决"教育储蓄"的一系列计算问题,加深对它的认识,请收集"教育储蓄"的有关资料,例如可以通过以下途径:网上主 题词搜索、各大银行直接咨询.重点确认以下信息:教育储蓄的适用 对象,储蓄类型,最低起存金额、每户存款本金的最高限额,支取方 式,银行现行的各类、各档存款利率,零存整取、整存整取的本息计算 方法.请根据得到的信息,解决以下问题:

- 1. 依教育储蓄的方式,每月存 50 元,连续存 3 年,到期(3 年)时 一次可支取本利共多少元?
- 2. 依教育储蓄的方式,每月存 a 元,连续存 6 年,到期(6 年)时一次可支取本利共多少元?
- 3. 依教育储蓄的方式,每月存 50 元,连续存 3 年,到期(3 年)时 一次可支取本利比同档次的"零存整取"多收益多少元?
- 4. 如果想在3年后一次支取教育储蓄本利合计1万元,每月应存入多少元?
- 5. 如果想在3年后一次支取教育储蓄本利合计a元,每月应存入 多少元?
- 6. 依教育储蓄的方式,原打算每月存 100 元,连续存 6 年,可是到 4 年时,学生需要提前支取全部本利,一次可支取本利共多少元?
- 7. 依教育储蓄的方式,每月存 150 元,连续存 6 年,到期一次可支 取本利共多少元?
- *8. 比较教育储蓄与其他储蓄方式,如以每月可存 100 元,6 年后使用为例,探讨以现行的利率标准,其他储蓄方式可能的最大收益, 将得到的结果与教育储蓄比较.

说明

有 * 标记的问题 仅供学生选做.

- *9. 自己设计其他计算题(如自己设立指标,计算并比较 3 年期和 6 年期教育储蓄的相对收益的大小;两项专项储蓄方案等;设计一个回报率更高的投资方案等).
- *10. 将解决过程中出现的数学模型(如单利增长模型或复利增长模型)进一步抽象出来,思考这些模型是否有其他应用.

二、实施建议

- 1. 可以组成课题学习小组,集体讨论,互相启发,分工合作,根据问题确定调查提纲或待查信息,利用课余时间上网或到银行进行相应的调查.
 - 2. 注意合理使用计算机或计算器等数学工具.

解三角形

台风中心位于某沿海城市正东方向 300 km 处,正以 40 km/h的速度向西北方向移动,距离台风中心 250 km 范围内将会受其影响.如果台风风速不变,那么该市从何时起要遭受台风影响?这种影响持续多长时间?解决此类问题的有力工具之一便是解三角形的有关知识.

我们在初中曾经学习过直角三角形的边角关系.在这一章里,我们将运用三角函数及向量等知识研究任意三角形边、角之间的关系,推导出正弦定理和余弦定理,并运用它们解决一些与测量和几何计算有关的实际问题.

§ 正弦定理与余弦定理

- 1.1 正弦定理
- 1.2 余弦定理
- § 三角形中的几何计算

§1 正弦定理与余弦定理

1.1 正弦定理

三角形的边与角之间有什么数量关系呢?

我们分别用 a,b,c 表示 $\triangle ABC$ 的边 BC,CA,AB,用 A,B,C 表示 $\triangle BAC, \angle CBA, \angle ACB$ (如图 2-1).

D C a B B 2-2

我们先从特殊的三角形开始研究.

若△ABC是直角三角形,且C=90°,如图 2-2 所示,则由

$$\sin A = \frac{a}{c}, \sin B = \frac{b}{c},$$

可知

$$\frac{a}{\sin A} = \frac{b}{\sin B} = c.$$

因为

$$C=90^{\circ}, \sin C=1$$

所以

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
.

这个优美的关系式对等边三角形无疑也成立,对其他的三角形 是否成立呢?

图 2-3

问题与思考 你能用其他方法 证明这一关系式吗?

分析理解

如图 2-3 所示,以 A 为原点,以射线 AB 的方向为x 轴正方向建立直角坐标系,C 点在 y 轴上的射影为 C'.

因为向量 \overrightarrow{AC} 与 \overrightarrow{BC} 在 y 轴上的射影均为 $|\overrightarrow{OC'}|$,即 $|\overrightarrow{OC'}| = |\overrightarrow{AC}|\cos(A-90^\circ) = b\sin A$, $|\overrightarrow{OC'}| = |\overrightarrow{BC}|\sin B = a\sin B$,

所以 $a\sin B = b\sin A$,

即 $\frac{a}{\sin A} = \frac{b}{\sin B}$.

同理, $\frac{a}{\sin A} = \frac{c}{\sin C}.$

所以 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$

若 A 为锐角或直角,也可以得到同样的结论. 这样,我们得到下面的定理.

正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

我们运用由特殊到一般的方法发现了正弦定理,这种思想方法 经常用于发现数学规律.

例1 某地出土一块类似三角形刀状的古代玉佩(如图 2-4),其一角已破损. 现测得如下数据: BC=2.57 cm, CE=3.57 cm, BD=4.38 cm, B=45°, C=120°. 为了复原,请计算原玉佩两边的长(结果精确到0.01 cm).

分析 如图 2-5 所示,将 BD, CE 分别延长相交于一点 A. 在 $\triangle ABC$ 中,已知 BC 的长及角 B 与 C,可以通过正弦定理求 AB, AC 的长.

解 将 BD, CE 分别延长相交于一点 A. 在 $\triangle ABC$ 中,

$$BC=2.57 \text{ cm}, B=45^{\circ}, C=120^{\circ},$$

$$A=180^{\circ}-(B+C)=180^{\circ}-(45^{\circ}+120^{\circ})=15^{\circ}$$
.

因为
$$\frac{BC}{\sin A} = \frac{AC}{\sin B},$$

$$AC = \frac{BC\sin B}{\sin A} = \frac{2.57\sin 45^{\circ}}{\sin 15^{\circ}}.$$

利用计算器算得

$$AC \approx 7.02 (cm)$$
.

同理,

所以

$$AB \approx 8.60$$
 (cm).

答 原玉佩两边的长分别约为 7.02 cm, 8.60 cm.

下面我们来解决章头提到的问题.

例2 台风中心位于某市正东方向 300 km 处,正以 40 km/h 的速度向西北方向移动,距离台风中心 250 km 范围内将会受其影响.如果台风风速不变,那么该市从何时起要遭受台风影响?这种影响持续多长时间(结果精确到 0.1 h)?

分析 如图 2-6 所示,设该市在点 A,台风中心从点 B 向西北方 向移动, AB=300 km. 在台风中心移动过程中,当该中心到点 A 的距离不大于 250 km 时,该市受台风影响.

解 设台风中心从点 B 向西北方向沿射线 BD 移动,该市位于点 B 正西方向 300 km 处的点 A.

假设经过 t h, 台风中心到达点 C, 则在 $\triangle ABC$ 中, AB= 300 km, AC=250 km, BC=40t km, $B=45^{\circ}$, 由正弦定理

$$\frac{AC}{\sin B} = \frac{AB}{\sin C} = \frac{BC}{\sin A},$$

信息技术建议

解三角形的实际 问题中,数字计算往 往较繁,这时可借助 计算器或其他的计算 工具.

例如,在例 2 中,已知 $\sin C \approx 0.8485$,求 C 时,即可利用计算器.过程如下:设定DEG 模式,输入 0.8485,依次按2nd

sin = 键,即得到58.05.

图 2-6

$$\sin C = \frac{AB\sin B}{AC} = \frac{300\sin 45^{\circ}}{250} = \frac{3}{5}\sqrt{2} \approx 0.8485.$$

利用计算器算得角 C 有两个解

$$C_1 \approx 58.05^{\circ}$$
, $C_2 \approx 121.95^{\circ}$.

当C₁≈58.05°时,

$$A = 180^{\circ} - (B + C_1)$$

 $\approx 180^{\circ} - (45^{\circ} + 58.05^{\circ})$
 $= 76.95^{\circ}$,

问题与思考

你还能用其他的 方法解决这个问题 吗?

所以
$$BC_1 = \frac{AC_1 \sin A}{\sin B} = \frac{250 \sin 76.95^{\circ}}{\sin 45^{\circ}} \approx 344.4 \text{ (km)},$$

$$t_1 = \frac{BC_1}{40} = \frac{344.4}{40} \approx 8.6$$
 (h).

同理,当 $C_2 \approx 121.95$ °时, $BC_2 \approx 79.83$ km, $t_2 \approx 2.0$ h.

$$t_1 - t_2 \approx 8.6 - 2.0 = 6.6$$
 (h).

答 约2时后将要遭受台风影响,持续约6.6时.

练 习 1

- 1. 在△ABC中, a=0.15,C=103.4°,B=75.85°. 求 c 的长.
- 在△ABC 中,c=4,a=2,C=45°,则 sin A=______

正弦定理是揭示三角形边、角之间数量关系的重要公式,我们来 讨论与其有关的几个问题.

- 问题 1 由例 2 我们发现,已知两边和其中一边的对角,解三角 形时会出现两解的情况. 还会出现其他情况吗? 你能从代数或几何 角度给出解释吗?
- 问题 2 如图 2-7(1)所示,在 $Rt\triangle ABC$ 中,斜边 AB 是 $\triangle ABC$ 外接圆的直径(设 $Rt\triangle ABC$ 外接圆的半径为R),因此

有兴趣的同学对 这些问题作完整讨 论,并将结果以学习 报告的形式呈现 出来.

图 2-7

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
.

这个结论对于任意三角形(图 2-7(2),2-7(3))是否成立?

问题 3 在 Rt $\triangle ABC$ 中, $C=90^{\circ}$,则 $\triangle ABC$ 的面积 $S=\frac{1}{2}ab$. 对于任意 $\triangle ABC$,已知 a,b 及 C,则 $\triangle ABC$ 的面积 $S=\frac{1}{2}ab\sin C$. 你能

例3 如图 2-8,在 $\triangle ABC$ 中, $\overrightarrow{AB} = (x,y)$, $\overrightarrow{AC} = (u,v)$.求证: $\triangle ABC$ 的面积 $S = \frac{1}{2}|xv-yu|$.

图 2-8

练 习 2

证明这一结论吗?

- 在△ABC 中,a=2,b=√2,A=π/4,则 B=_____.
- 2. 在△ABC中,分别根据下列条件解三角形,其中有两解的是().

A.
$$a=7,b=14,A=30^{\circ}$$

B.
$$a=30,b=25,A=150^{\circ}$$

C.
$$a=72,b=50,A=135^{\circ}$$

D.
$$a=30,b=40,A=26^{\circ}$$

- 如图, △ABC 是半径为R 的⊙O 的内接正三角形. 求△ABC 的边长和 △OBC 的外接圆半径。
- 4. $\triangle ABC$ 的三个顶点是A(-5,0), B(3,-3), C(0,2). 求 $\triangle ABC$ 的面积.

(第3題)

1.2 余弦定理

问题提出

在三角形中,已知两角及一边,或已知两边和其中一边的对角,可以利用正弦定理求其他的边和角.那么,已知两边及其夹角,怎么求出此角的对边呢?已知三条边,又怎么求出它的三个角呢?

分析理解

我们利用向量来研究.

如图 2-9 所示,根据向量的数量积,可以得到

$$a^{2} = \overrightarrow{BC} \cdot \overrightarrow{BC}$$

$$= (\overrightarrow{AC} - \overrightarrow{AB}) \cdot (\overrightarrow{AC} - \overrightarrow{AB})$$

$$= \overrightarrow{AC}^{2} - 2 \overrightarrow{AC} \cdot \overrightarrow{AB} + \overrightarrow{AB}^{2}$$

$$= \overrightarrow{AC}^{2} - 2 |\overrightarrow{AC}| \cdot |\overrightarrow{AB}| \cos A + \overrightarrow{AB}^{2}$$

$$= b^{2} - 2bc\cos A + c^{2},$$

$$a^{2} = b^{2} + c^{2} - 2bc\cos A.$$

即

同理可证

$$b^2 = c^2 + a^2 - 2ca\cos B$$
,
 $c^2 = a^2 + b^2 - 2ab\cos C$.

由此得到下面定理.

问题与思考

余弦定理能解决 上面提出的第二个问 题吗? **余弦定理** 三角形任何一边的平方等于其他两边平方的和减去 这两边与它们夹角的余弦的积的两倍,即

$$a^{2}=b^{2}+c^{2}-2bc\cos A$$
,
 $b^{2}=c^{2}+a^{2}-2ca\cos B$,
 $c^{2}=a^{2}+b^{2}-2ab\cos C$.

例 4 如图 2-10 所示,有两条直线 AB 和CD 相交成 80°角,交点是 O. 甲、乙两人同时从点 O分别沿 OA,OC 方向出发,速度分别是 4 km/h,4.5 km/h.3 时后两人相距多远(结果精确到 0.1 km)?

分析 经过 3 时,甲到达点 P,OP=4×3=12(km),乙到达点 Q,OQ=4.5×3=13.5(km). 问题转化为在 $\triangle OPQ$ 中,已知 OP=12 km, OQ=13.5 km, $\angle POQ$ =80°,求 PQ 的长.

解 经过3时后,甲到达点 $P,OP=4\times3=12(km)$,乙到达点 $Q,OQ=4.5\times3=13.5(km)$. 依余弦定理,知

$$PQ = \sqrt{OP^2 + OQ^2 - 2OP \cdot OQ\cos \angle POQ}$$

= $\sqrt{12^2 + 13.5^2 - 2 \times 12 \times 13.5\cos 80^\circ}$
 $\approx 16.4 \text{ (km)}.$

答 3 时后两人相距约 16.4 km.

解 在
$$\triangle BCD$$
中, $BC=1$, $CD=1$, $\angle BCD=135$ °.
因为 $BD^2 = BC^2 + CD^2 - 2BC \cdot CD\cos \angle BCD$
 $= 1^2 + 1^2 - 2 \times 1 \times 1\cos 135$ °

$$=2+\sqrt{2}$$
,

所以 BD≈1.8.

在
$$\triangle ABD$$
中, $AB=1$, $BD=\sqrt{2+\sqrt{2}}$, $AD=\sqrt{3}$.

因为
$$\cos \angle DAB = \frac{AB^2 + AD^2 - BD^2}{2AB \cdot AD}$$

$$= \frac{1^2 + (\sqrt{3})^2 - (2 + \sqrt{2})}{2 \times 1 \times \sqrt{3}}$$

所以 ∠DAB≈80°.

你还能用其他方法求线段 BD 的长度及 \(DAB 的大小吗? 用余弦定理重新解答例 2,由此你有什么想法?

图 2-10

秦九韶(1202— 1261),字道古,是我 国古代最有成就的 数学家之一,著有 《数学九章》。

秦九韶是他那 个民族,他那个时 代,并且确实也是所 有时代最伟大的数 学家之一.

——美国科学史家 萨顿

海伦公式与秦九韶三斜求积公式

寻求三角形面积的计算方法在历史上曾经是一个数学热点问题,中外古代许多数学家都为此付出过艰辛的努力.

古希腊几何学家海伦(Heron,公元 62 年左右)在他的著作《度量论》一书中提出并证明了三角形的面积公式:

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
,

其中S表示三角形的面积,a,b,c表示三角形的三边长,p表示三角形的半周长,即 $p=\frac{1}{2}(a+b+c)$. 海伦公式简单、轮换对称,让人看一眼便铭记在心,并激发人们探索的欲望.

我国南宋数学家秦九韶也独立地发现了类似的求三角形 面积的公式:

$$S = \sqrt{\frac{1}{4} \left[a^2 c^2 - \left(\frac{a^2 + c^2 - b^2}{2} \right)^2 \right]}.$$

思考:秦九韶求积公式与余弦定理有什么关系?

练习

- △ABC 中,已知 b=1,c=2,A=60°,则 a=_____
- △ABC 的三边之比为3:5:7. 求这个三角形的最大角。
- 在△ABC中,已知b=2.730,c=4.297,A=58°30′.解这个三角形(边长精确到0.001,角度精确到1′).

习 题 2—1

A 组

- 在△ABC中,若 a=18,b=24,A=44°,则此三角形解的情况为().
 A. 无解 B. 两解 C. 一解 D. 解的个数不能确定
- 在△ABC中,若(a+b+c)(c+b-a)=3bc,则 A=(
 A. 150° B. 120° C. 60° D. 30°
- 3. 某体育学校决定修建一条三角形多功能比赛通道(如图),AB 段是跑道,BC 段是自行车道,CA 段是游泳道. 试根据图中数据,计算游泳道的长度(精确到 1 m).
- 4. 平行四边形两对角线的长分别为 a 和 b, 两对角线的一个交角为 θ , 0° $< \theta < 90$ °. 求该平行四边形的面积.
- 在△ABC中,若 c²=a²+b²,则△ABC是直角三角形且C=90°. 试问:
 (1)a,b,c 满足什么关系时,△ABC是锐角三角形或钝角三角形?
 (2)已知锐角三角形的边长分别为1,2,a. 求实数 a 的取值范围.
- F₁, F₂ 是作用于同一质点的两个力, | F₁ | =86 N, | F₂ | =83 N, 且 F₁,
 F₂ 的夹角为 77°12′. 求合力 F 的大小及合力与较大力所成的角 θ(力的大小精确到 1 N, 角度精确到 1°).
- 7. 如图,某林场为了及时发现火情,在林场中设立了两个观测点 A 和 B. 某日两个观测点的林场人员分别观测到 C 处有险情.在 A 处观测到火情发生在北偏西 40°方向,而在 B 处观测到火情发生在北偏西 60°方向,已知 B 在 A 的正东方向10 km 处. 那么火场 C 与两观测点 A,B 的距离分别是多少(精确到 0.1 km)?

B组

1. 下面是一道选择题的两种解法,两种解法看似都对,可结果并不一致,问题出在哪里? 在 $\triangle ABC$ 中,a=x,b=2,B=45°,若 $\triangle ABC$ 有两解,则x的取值范围是().

A. $(2, +\infty)$ B. (0,2) C. $(2,2\sqrt{2})$ D. $(\sqrt{2},2)$

解法 1 $\triangle ABC$ 有两解, $a\sin B < b < a$, $x\sin 45^{\circ} < 2 < x$,即 $2 < x < 2\sqrt{2}$,故选 C.

(第3題)

(第7題)

解法 2
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
, $\sin A = \frac{\sin B}{b} = \frac{x \sin 45^{\circ}}{2} = \frac{\sqrt{2}x}{4}$.

 $\triangle ABC$ 有 两 解, $b \sin A < a < b$, $2 \times \frac{\sqrt{2}x}{4} < x < 2$, 即 $0 < x < 2$, 故选 B.

2. 地球与金星的公转轨道分别是直径为 2.98 × 10° km 和 2.14×10° km的近似圆,圆心为太阳.某时刻,地球和金星的连线与地球和太阳的连线成 18°的角(如图).求此时地球与金星之间的距离(地球、金星、太阳均视为点,结果保留 3 个有效数字).

(第2題)

3. 运用函数 $y=\sin x, x \in [0,\pi)$ 的图像及正弦定理,说明平面几何中的定理"在三角形中,较大的边所对的角也较大,较小的边所对的角也较小"的正确性.

§2 三角形中的几何计算

正弦定理、余弦定理是两个重要的定理,在解决与三角形有关的 几何计算问题中有着广泛的应用.下面举例说明.

例 1 如图 2-12 所示,在梯形 ABCD 中,AD // BC,AB=5, AC=9, ∠BCA=30°, ∠ADB=45°. 求 BD 的长.

解 在 $\triangle ABC$ 中,AB=5,AC=9, $\angle BCA=30$ °.由正弦定理,得

$$\frac{AB}{\sin \angle BCA} = \frac{AC}{\sin \angle ABC},$$

$$\sin \angle ABC = \frac{AC\sin \angle BCA}{AB} = \frac{9\sin 30^{\circ}}{5} = \frac{9}{10}.$$

因为 AD//BC,所以 ZBAD=180°-ZABC,于是

$$\sin \angle BAD = \sin \angle ABC = \frac{9}{10}$$
.

同理,在 $\triangle ABD$ 中,AB=5, $\sin \angle BAD=\frac{9}{10}$, $\angle ADB=45^{\circ}$,解得

$$BD = \frac{9\sqrt{2}}{2}$$
.

答 BD 的长为 $\frac{9\sqrt{2}}{2}$.

解 设该机器人最快可在点 C 处截住足球,点 C 在线段 AD 上. 设 BC=x dm,由题意,CD=2x dm.

$$AC = AD - CD = (17 - 2x)(dm)$$
.

图 2-12

图 2-13

在△ABC中,由余弦定理,得

$$BC^2 = AB^2 + AC^2 - 2AB \cdot AC\cos A$$

$$\mathbb{P} \quad x^2 = (4\sqrt{2})^2 + (17 - 2x)^2 - 2 \times 4\sqrt{2} \times (17 - 2x)\cos 45^\circ.$$

说 明 解

解得
$$x_1=5 \text{ (dm)}, x_2=\frac{37}{3} \text{ (dm)}.$$

所以
$$AC=17-2x=7(dm)$$
,或 $AC=-\frac{23}{3}(dm)$ (不合题意,舍去).

答 该机器人最快可在线段 AD 上离点 A7 dm 的点 C 处截住足球.

dm 表示分米.

- **例3** 如图 2-14 所示,已知 \odot O 的半径是 1,点 C 在直径 AB 的 延长线上,BC=1,点 P 是 \odot O 上半圆上的一个动点,以 PC 为边作等 边三角形 PCD,且点 D 与圆心分别在 PC 的两侧.
 - (1) 若 $\angle POB = \theta$, 试将四边形 OPDC 的面积 y 表示成 θ 的函数;
 - (2) 求四边形 OPDC 面积的最大值.

分析 四边形 OPDC 可以分成 $\triangle OPC$ 与 $\triangle PCD$. $S_{\triangle OPC}$ 可用 $\frac{1}{2}OP \cdot OC\sin\theta$ 表示;而求 $\triangle PCD$ 的面积关键在于求出边长 PC,在 $\triangle POC$ 中利用余弦定理即可求出;至于面积最值的获得,则可通过三角函数知识解决.

解 (1)在△POC中,由余弦定理,得

$$PC^{2} = OP^{2} + OC^{2} - 2OP \cdot OC\cos\theta$$
$$= 5 - 4\cos\theta,$$

所以

$$\begin{split} y = & S_{\triangle OPC} + S_{\triangle PCD} \\ = & \frac{1}{2} \times 1 \times 2 \sin \theta + \frac{\sqrt{3}}{4} (5 - 4 \cos \theta) \\ = & 2 \sin \left(\theta - \frac{\pi}{3} \right) + \frac{5\sqrt{3}}{4} \; . \end{split}$$

(2)当
$$\theta - \frac{\pi}{3} = \frac{\pi}{2}$$
,即 $\theta = \frac{5\pi}{6}$ 时, $y_{\text{max}} = 2 + \frac{5\sqrt{3}}{4}$.

答 四边形 OPDC 面积的最大值为 $2+\frac{5\sqrt{3}}{4}$.

说明

ymax表示 y 取得 的最大值. 其中下标 max 是 英 文 单 词 maximum 的缩写.

练习

如图,在□ABCD中,∠DAC=45°. 求证:AC2 · BD2=AB4+AD4.

习 题 2—2

A 组

- 1. 在 $\triangle ABC$ 中, $A=60^{\circ}$,b=1, $S_{\triangle ABC}=\sqrt{3}$,则 $\frac{a}{\sin A}$ 的值为().
- A. $\frac{8\sqrt{3}}{81}$ B. $\frac{26\sqrt{3}}{3}$ C. $\frac{2\sqrt{39}}{3}$ D. $2\sqrt{7}$
- 2. $\triangle ABC$ 中, $B=60^{\circ}$, $C=45^{\circ}$, BC=8, D 是边 BC 上的一点, 且 $\overline{BD}=$ $\frac{\sqrt{3}-1}{2}$ BC,则 AD 的长为().
 - A. $4(\sqrt{3}-1)$ B. $4(\sqrt{3}+1)$ C. $4(3-\sqrt{3})$ D. $4(3+\sqrt{3})$

- 3. 在 $\triangle ABC$ 中,已知 $B=45^{\circ}$, D 是 BC 边上的一点, AD=5, AC=7, DC=3. 求 AB 的长.
- 在△ABC中,AB=2,A=60°,F为AB的中点,且CF²=AC・BC.求 AC 的长.
- 5. 如图,在 $\triangle ABC$ 中,AB=2,AC=4,线段 CB 的垂直平分线交线段 AC于点 D, DA-DB=1. 求 BC 的长及 $\cos \angle ACB$ 的值.
- 6. 如图,在 $\triangle ABC$ 中,AB=AC=3,BC=2,B的平分线交过点A且与 BC 平行的线于 D. 求 $\triangle ABD$ 的面积.

(第6题)

B 组

1. 如图,一条直线上有三点 A,B,C,点 C 在点 A 与点 B 之间,点 P 是 此直线外一点. 设 $\angle APC=\alpha$, $\angle BPC=\beta$.

$$\Re i \mathbb{E} : \frac{\sin (\alpha + \beta)}{PC} = \frac{\sin \alpha}{PB} + \frac{\sin \beta}{PA}.$$

(第2題)

- 2. 如图,圆内接四边形 ABCD 的边长分别为 AB=2, BC=6, CD=DA=4. 求四边形 ABCD 的面积.
- 3. 在△ABC中,三边长为连续的正整数,且最大角是最小角的2倍. 求此三角形的三边长.

§3 解三角形的实际应用举例

在解决一些与三角形有关的实际问题时,正弦定理、余弦定理有 着重要的作用. 下面举例说明.

例1 自动卸货汽车采用液压机构,设计时需要计算油泵顶杠 BC的长度,如图 2-15 所示. 已知车箱的最大仰角为 60°(指车厢 AC 与水平线夹角),油泵顶点 B 与车箱支点 A 之间的距离为1.95 m,AB与水平线之间的夹角为 $6^{\circ}20'$, AC 长为 1.40 m. 计算 BC 的长度(结 果精确到 0.01 m).

图 2-15

分析 这个问题就是在 $\triangle ABC$ (如图 2-16)中,已知 AB =1.95 m,AC=1.40 m, $\angle BAC=60^{\circ}+6^{\circ}20'=66^{\circ}20'$,求 BC 的长.

解 由余弦定理,得

$$BC^2 = AB^2 + AC^2 - 2AB \cdot AC\cos A$$

= 1. 95²+1. 40²-2×1. 95×1. 40cos 66°20′
≈ 3. 571,

图 2-16

所以

BC≈1.89(m).

答 顶杆 BC 约长 1.89 m.

例2 如图 2-17 所示,两点 C,D 与烟囱底部在同一水平直线 上,在点 C_1,D_1 ,利用高为1.5 m 的测角仪器,测得烟囱的仰角分别是 $\alpha = 45$ °和 $\beta = 60$ °, C, D 间的距离是 12 m. 计算烟囱的高 AB(结果精确 到 0.01 m).

说明

利用正弦定理、 余弦定理可以解决不 能到达的实际测量问 题.

图 2-18

如图 2-18 所示,因为 $AB=AA_1+A_1B$,又已知 $AA_1=$ 分析

1.5 m, 所以只要求出 A₁B 即可.

解 在 $\triangle BC_1D_1$ 中, $\angle BD_1C_1 = 180^{\circ} - 60^{\circ} = 120^{\circ}$, $\angle C_1BD_1 = 60^{\circ} - 45^{\circ} = 15^{\circ}$,由正弦定理,得

$$\frac{C_1D_1}{\sin \angle C_1BD_1} = \frac{BC_1}{\sin \angle BD_1C_1},$$

$$BC_1 = \frac{C_1 D_1 \sin \angle BD_1 C_1}{\sin \angle C_1 BD_1} = \frac{12 \sin 120^{\circ}}{\sin 15^{\circ}} = (18\sqrt{2} + 6\sqrt{6}) \text{ (m)},$$

从而

$$A_1B = \frac{\sqrt{2}}{2}BC_1 = 18 + 6\sqrt{3} \approx 28.392$$
(m),

因此 $AB=A_1B+AA_1\approx 28.392+1.5=29.892\approx 29.89$ (m).

答 烟囱的高约为 29.89 m.

练习1

- 从地平面 A,B,C 三点测得某山顶的仰角均为 15°,设 ZBAC=30°,而 BC=200 m. 求山高(结果精确到 0.1 m).
- 如图所示,在加工缝纫机挑线杆时,需要计算A,C两孔中心的距离,已知 BC=60.5 mm,AB=15.8 mm,∠ABC=80°,则AC=___mm(保留3个 有效数字).

(第 2 題)
A
B
C

图 2-19

- 例 3 图 2-19 是曲柄连杆机构的示意图. 当曲柄 CB 绕点 C 旋转时,通过连杆 AB 的传递,活塞作直线往复运动. 当曲柄在 CB_0 位置时,曲柄和连杆成一条直线,连杆的端点 A 在 A_0 处. 设连杆 AB 长为 l mm,曲柄 CB 长为 r mm,l>r.
- (1)当曲柄自 CB。按顺时针方向旋转角为 θ 时,其中 $0^{\circ} \leq \theta \leq$ 360°,求活塞移动的距离(即连杆的端点 A 移动的距离 A。A);
- (2)当 l=340 mm,r=85 mm,θ=80°时,求 A₀A 的长(结果精确到 1 mm).

图 2-20

分析 如图 2-20 所示,不难得到,活塞移动的距离为: $A_0A = A_0C - AC$, 易知 $A_0C = AB + BC = l + r$, 所以,只要求出 AC 的长即可. 在 $\triangle ABC$ 中,已知两边和其中一边的对角,可以通过正弦定理或余弦定理求出 AC 的长.

解 (1)设 AC=x,若 $\theta=0^{\circ}$,则 $A_{\circ}A=0$;若 $\theta=180^{\circ}$,则 $A_{\circ}A=2r$ mm;若 $0^{\circ}<\theta<180^{\circ}$,在 $\triangle ABC$ 中,由余弦定理,得

$$AB^{2} = AC^{2} + BC^{2} - 2AC \cdot BC\cos C,$$

即

$$x^2-2(r\cos\theta)x-(l^2-r^2)=0$$
,

解得
$$x_1 = r\cos\theta + \sqrt{(r\cos\theta)^2 + l^2 - r^2} = (r\cos\theta + \sqrt{l^2 - r^2}\sin^2\theta) \text{ (mm)},$$

 $x_2 = r\cos\theta - \sqrt{(r\cos\theta)^2 + l^2 - r^2} < 0$ (不合题意,舍去).
 $A_0A = A_0C - AC$
 $= AB + BC - AC$
 $= (l + r - r\cos\theta - \sqrt{l^2 - r^2}\sin^2\theta) \text{ (mm)}.$

若 180° < θ < 360° ,则根据对称性,将上式中的 θ 改成 360° - θ 即 可,有

$$A_0A = (l + r - r\cos\theta - \sqrt{l^2 - r^2\sin^2\theta})$$
mm.

总之,当0°≤θ<360°时,

$$A_0A = (l+r-r\cos\theta-\sqrt{l^2-r^2\sin^2\theta})$$
mm.

(2) 当 $l=340 \text{ mm}, r=85 \text{ mm}, \theta=80^{\circ}$ 时,利用计算器算得 $A_0A=340+85-85\cos 80^{\circ}-\sqrt{340^2-85^2\sin^280^{\circ}}$

 \approx 81(mm).

答 此时活塞移动的距离约为 81 mm.

- **例 4** 如图 2-21 所示,a 是海面上一条南北方向的海防警戒线,在 a 上点 A 处有一个水声监测点,另两个监测点 B, C 分别在 A 的正东方 20 km 处和 54 km 处. 某时刻,监测点 B 收到发自静止目标 P 的一个声波,8 s 后监测点 A, 20 s 后监测点 C 相继收到这一信号. 在当时气象条件下,声波在水中的传播速度是 1. 5 km/s.
- (1)设A到P的距离为x km, 用x表示B, C到P的距离, 并求x的值;
 - (2)求静止目标 P 到海防警戒线 a 的距离(结果精确到 0.01 km).
- **分析** (1)PA,PB,PC 长度之间的关系可以通过收到信号的先后时间建立起来;
- (2)作 $PD \perp a$,垂足为 D,要求 PD 的长,只需要求出 PA 的长和 $\cos \angle APD$,即 $\cos \angle PAB$ 的值. 由题意,PA-PB,PC-PB 都是定值,因此,只需要分别在 $\triangle PAB$ 和 $\triangle PAC$ 中,求出 $\cos \angle PAB$, $\cos \angle PAC$ 的表达式,建立方程即可.

请同学们运用正 弦定理求 A_oA 的长, 并比较两种方法的特 点.

图 2-21

解 (1)依題意, PA-PB=1.5×8=12(km), PC-PB=1.5×20 =30(km). 因此

$$PB = (x-12) \text{km}, PC = (18+x) \text{km}.$$

在 $\triangle PAB$ 中, AB=20 km,

即

$$\cos \angle PAB = \frac{PA^{2} + AB^{2} - PB^{2}}{2PA \cdot AB}$$

$$= \frac{x^{2} + 20^{2} - (x - 12)^{2}}{2x \cdot 20}$$

$$= \frac{3x + 32}{5x}.$$

同理,
$$\cos \angle PAC = \frac{72-x}{3x}$$
.
由于 $\cos \angle PAB = \cos \angle PAC$,
即 $\frac{3x+32}{5x} = \frac{72-x}{3x}$,
解得 $x = \frac{132}{7}$ (km).

(2)作 *PD*⊥*a*,垂足为 *D*. 在 Rt△*PDA* 中,

$$PD = PA\cos \angle APD = PA\cos \angle PAB$$

= $x \cdot \frac{3x + 32}{5x} = \frac{3 \times \frac{132}{7} + 32}{5} \approx 17.71 \text{ (km)}.$

静止目标 P 到海防警戒线 a 的距离约为 17.71 km.

在解决实际问题中,如果涉及三角形问题,我们可以把它抽象为 解三角形问题,进行解答,之后再还原成实际问题,这个过程我们可 以用流程图 2-22 表示.

练 习 2

 左图为曲柄连杆机构示意图,当曲柄 OA 在水平位置 OB 时,连杆端点 P 在Q的位置. Θ Θ 自 Θ 按顺时针方向旋转角度 α 时,P 和 Q 之间的距 离是x,已知OA=25 cm,AP=125 cm,在下列条件下求P和Q之间的距 离(结果精确到 0.1 cm).

 $(1)_{\alpha} = 50^{\circ}; (2)_{\alpha} = 90^{\circ}; (3)_{\alpha} = 135^{\circ}; (4)OA \perp AP.$

(第1题)

2. 某观察站 B 在城 A 的南偏西 20°的方向,由 A 出发的一条公路走向是南 偏东 40° ,在 B 处测得公路上距 B 31 km 的 C 处有一人正沿公路向 A 城 走去,走了 20 km 之后到达 D 处,此时 B,D 间的距离为 21 km,这个人还 要走多少路才能到达 A 城?

(第2題)

习 题 2—3

A 组

1. 从甲处望乙处的仰角为 α ,从乙处望甲处的俯角为 β ,则 α 与 β 的关系 为().

A. $\alpha > \beta$ B. $\alpha = \beta$ C. $\alpha + \beta = 90^{\circ}$ D. $\alpha + \beta = 180^{\circ}$

2. 海面上有 A,B,C 三个灯塔,AB=10 n mile,从 A 望 C 和 B 成 60°视 角,从B望C和A成75°视角,则|BC|=() n mile.

A. $10\sqrt{3}$ B. $\frac{10\sqrt{6}}{3}$ C. $5\sqrt{2}$ D. $5\sqrt{6}$

- 3. 如图为一角槽示意图,已知 $AB \perp AD$, $AB \perp BE$, 并量得 AB = 85 mm, 0.1°).
- 4. 为了测量上海东方明珠塔的高度,某人站在 A 处测得塔尖的仰角为 75.5°, 前进 38.5 m 后, 到达 B 处测得塔尖的仰角为 80.0°. 试计算东 方明珠塔的高度(精确到1 m).

说明

n mile 表示海里, 1 n mile=1 852 m.

(第3題)

B 组

1. 如图,某日中午 12:00 甲船以 24 km/h 的速度沿北偏东 40°的方向 驶离码头 P,下午 3:00 到达 Q地.下午 1:00 乙船沿北偏东 125°的 方向匀速驶离码头 P,下午 3:00 到达 R地. 若 R 在 Q 的正南方向, 则乙船的航行速度是多少(精确到 1 km/h)?

(第1題)

2. 如图,飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250 m,速度为189 km/h,飞行员先看到山顶的俯角为18°30′,经过960 s 后,又看到山顶的俯角为81°.求山顶的海拔高度(结果精确到1 m).

(第2題)

0

◆ 本章小结建议

一、学习要求

- 1. 通过对任意三角形边长和角度关系的探索,掌握正弦定理、 余弦定理,并能解一些简单的三角形.
- 能够运用正弦定理、余弦定理等知识和方法解决一些简单的 几何计算问题及相关的实际问题。

二、复习建议

- 1. 通过对课本、笔记及作业的复习,归纳出本章的基本知识和基本方法.
- 2. 整理反思后作出本章小结,加深对本章知识的理解,提出需要注意的问题.
 - 3. 为本章的知识小结画一个框图.
 - 4. 本章可供思考的问题:
 - (1)正弦定理、余弦定理的内容是什么?可应用于什么三角形?
 - (2)利用正弦定理可以解哪些三角形问题?需要注意什么?
 - (3)利用余弦定理可以解哪些三角形问题?
- (4)正弦定理、余弦定理可以解决哪些三角形中的几何计算问题?
 - (5)正弦定理和余弦定理可以解决哪些实际应用问题?
 - (6)你能否总结出几个本章最典型、最重要的问题?
 - 5. 请就自己的体会与提出的问题,与同学进行交流.

A 组

1. 选择最佳方法求下列图形中的 x(角度精确到 1°,边长精确到0.1).

2. 求下列图形中的 x(角度精确到 1°,边长精确到 0.1).

- 3. 如图,有两条相交成 60° 角的直路 xx',yy',交点是 O,甲、乙分别在 Ox,Oy 上,起初甲在离 O点 3 km 的 A点,乙在离 O点 1 km 的 B点,后来甲、乙两人同时以 4 km/h 的速度,分别沿 xx'的方向和沿 y'y 方向步行.
 - (1)起初两人的距离是多少?
 - (2)用含 t 的式子表示 t h 后两人的距离.
 - (3)什么时间两人的距离最短?
- 4. 如图,一艘船以32.2 kn 的速度向正北航行,在 A 处看灯塔 S 在船的北偏东 20°方向,30 min 后航行到 B 处,在 B 处看灯塔 S 在船的北偏东65°方向上. 求灯塔 S 和 B 处的距离(结果精确到0.1 n mile).

(第3題)

(第4题)

(第5題)

- 5. 如图,已知梯形 ABCD 的上底 AD 长 1 cm,下底 BC 长 4 cm,对角线 AC 长 4 cm,BD 长 3 cm,求梯形 ABCD 的两腰 AB,CD 的长及面积,
- 6. 如图, $|\overrightarrow{AB}| = 3.2$, $|\overrightarrow{AC}| = 4.8$, $|\overrightarrow{AB}| = |\overrightarrow{AC}|$ 的夹角为 50°. 求 $|\overrightarrow{AB}| = |\overrightarrow{AC}|$ 及 $|\overrightarrow{AB}|$ 一 $|\overrightarrow{AB}|$ 的夹角(长度精确到 0.1, 角度精确到 1′).

(第7題)

7. 如图, $|\overrightarrow{OA}| = |\overrightarrow{OB}| = 1$, \overrightarrow{OA} 与 \overrightarrow{OB} 的夹角为 125° , \overrightarrow{OC} 与 \overrightarrow{OA} 的夹角为 25° , $|\overrightarrow{OC}| = 5$. 用 \overrightarrow{OA} 和 \overrightarrow{OB} 表示 \overrightarrow{OC} (保留 4 个有效数字).

B 组

如图,某市三个新兴工业小区 A,B,C决定平均投资共同建一个中心医院 O,使得医院到三个小区的距离相等,已知这三个小区之间的距离分别为 AB=4.3 km, BC=3.7 km, CA=4.7 km. 该医院应建在何处(精确到 0.1 km 或 1°)?

(第1題)

(第2题)

- 2. 如图, O 是正方形 ABCD 内的一点, 且 $\angle OBC = \angle OCB = 15$ °. 求证: $\triangle OAD$ 是等边三角形.
- 在△ABC中,BC=a, CA=b, AB=c,当(c·b): (b·a): (a·c)=1:2:3
 时,求△ABC的三个内角(结果精确到 1°).
- 4. P,Q是海上的两个灯塔,从海图上可测知,以 PQ 为弦、含圆周角为 90°的 弓形弧内是危险区,内有许多暗礁. 一海轮开始时,见到两个灯塔都在它的北偏东 60°,海轮向东行驶一段距离,见灯塔 P 恰在它的正北方向,灯塔 Q 在它的北偏东 m°,且 $\sin m$ ° = $\frac{\sqrt{57}}{19}$. 海轮继续向东航行是否有触礁的危险?

C 组

(第1题)

- 1. 如图,设一条河宽800 m,河水流速为4 km/h,A,B两镇隔河相望,C镇位于B镇上游600 m处.某人乘小艇想从A镇去C镇,若小艇的最快航速为10 km/h,则他要在最短时间到达C镇,应按什么路线航行?并求出最短时间(精确到1°或1分).
- 在一块直径为30cm的圆形铁板上,截去直径分别为20cm,10cm的圆形 铁板各一块,现要求在所剩余的铁板中再截出同样大小的圆形铁板两块. 求这两块圆形铁板的最大半径.

普通高级中学课程标准实验教科书

【北师版】

必

修

5

普通高级中学课程标准实验教科书

数

学

必 修 5

电子课本下载地址:

www.docin.com/sxzyxz

一般的人,下半身长x与全身长y的比值 $\frac{x}{y}$ 在0.57~ 0.6之间,而芭蕾舞演员在表演时,脚尖立起给人以美的享 受. 原来, 脚尖立起调整了身段的比例. 如果设人的脚尖立 起提高了m,则下半身与全身的长度比由 $\frac{x}{y}$ 变成了 $\frac{x+m}{y+m}$,这 个比值非常接近黄金分割值(golden section)0.618. 女士们 追求美而穿高跟鞋,其目的之一就是在追求这个比值.用来 解释这种现象的数学关系是

$$0.58 \approx \frac{x}{y} < \frac{x+m}{y+m} \approx 0.618.$$

怎样判定"<"的关系成立? m 又是怎样的数?

本章,我们将学习不等关系的一些基本规律和一些相 关的数学模型,例如:基本不等式、线性规划等,并利用它们 解决一些简单的实际问题.

- 1.1 不等关系
- 1.2 比较大小
- § ◆ 一元二次不等式
 - 2.1 一元二次不等式的解法
 - 2.2 一元二次不等式的应用
- § ③ 基本不等式
 - 3.1 基本不等式
 - 3.2 基本不等式与最大(小)值
- § 4 简单线性规划
 - 4.1 二元一次不等式(组)与平面区域
 - 4.2 简单线性规划
 - 4.3 简单线性规划的应用

§1 不等关系

1.1 不等关系

在我们周围存在着形形色色的不等关系,请看以下例子.

例1 2003年10月15日9时,我国"神舟"五号载人飞船在酒泉 卫星发射中心发射成功,实现了中华民族千年的飞天梦想.这是自 1970年4月24日成功发射"东方红一号"人造卫星以来,我国航天史 上又一座新的里程碑,我国已成为继俄、美之后,世界上第三个掌握 载人航天技术、成功发射载人飞船的国家.

"东方红一号"与"神舟"五号部分参数的对比见表 3-1.

表 3-1 "东方红一号"与"神舟"五号部分参数对比表

我们不难发现,"神舟"五号飞船比"东方红一号"卫星在很多方面都有了较大的发展.

例2《铁路旅行常识》规定:

"一、随同成人旅行身高 1.1~1.4 米的儿童,享受半价客票(以下称儿童票),超过 1.4 米时应买全价票.每一成人旅客可免费带一名身高不足 1.1 米的儿童,超过一名时,超过的人数应买儿童票.

十、旅客每人免费携带品的体积和重量是每件物品的外部尺寸 长、宽、高之和不超过160厘米,杆状物品不超过200厘米,重量不得 超过20千克....."

设儿童身高为 h(单位:m),物品外部尺寸长、宽、高之和为 p(单位:cm),请在表 3-2 空格内填上对应的数学符号(<,<,>,>),并与同学交流.

"东方红一号"卫星

"神舟"五号飞船

表 3-2

文字表述	1.1~1.4 m	超过 1.4 m	不足1.1 m	不超过 160 cm
符号表示				

说明

据《国家水环境 质量标准》,Ⅰ,Ⅱ, Ⅲ类水均为适用于 集中式生活饮用水 源, IV, V 类水分别 为工业、农业用水, 从水质讲, 1 类水最 优, V类水最劣.

例 3 图 3-1 给出的是 2001 年我国长江流域片各省、自治区、直 辖市水质状况直方图.

图 3-1

请根据图中提供的信息,依河流水质的状况,将各省、自治区、直 辖市污染程度按从小到大的顺序(<,≤)进行排列。

- 例 4 如图 3-2, y=f(x)反映了某公司产品的销售收入 y 万元 与销售量xt的函数关系,y=g(x)反映了该公司产品的销售成本与 销售量的函数关系, 试问:
 - (1)当销售量为多少时,该公司赢利(收入大于成本);
 - (2)当销售量为多少时,该公司亏损(收入小于成本)?
 - (1)当销售量大于at时,即x>a时,公司贏利,即

(2)当销售量小于at时,即0≤x<a时,公司亏损,即</p>

$$f(x) < g(x)$$
.

- 例 5 某用户计划购买单价分别为 60 元、70 元的单片软件和盒 装磁盘,使用资金不超过500元.根据需要,软件至少买3片,磁盘至 少买 2 盒,问:软件数与磁盘数应满足什么条件?
 - 解 设软件数为x,磁盘数为y,据题意可得:

$$\begin{cases} 60x + 70y \leq 500, \\ x \geq 3 \text{ } \text{!! } x \in \mathbb{N}_+, \\ y \geq 2 \text{ } \text{!! } y \in \mathbb{N}_+. \end{cases}$$

这是一个不等式组的问题.

抽象概括

从上面的一些例子,我们可以感受到,不等关系反映在日常生活的方方面面,在数学意义上,不等关系可以体现:

常量与常量之间的不等关系. 例如,"神舟"五号的质量大于"东方红一号"的质量.

变量与常量之间的不等关系. 例如, 儿童身高 h m 小于或等于 1.4 m.

函数与函数之间的不等关系. 例如,当x>a时,销售收入 f(x)大于销售成本 g(x).

一组变量之间的不等关系. 例如, 购置软件的费用 60x 与购置磁盘的费用 70y 之和不超过 500 元.

练习

- 1. 航天育种是航天技术发展的产物,航天育种的蔬菜个头更大,单产量更高.如 太空黄瓜平均长40 cm,重1000 g 太空茄子果实周长62 cm,重2200 g 请 同学们自己测量普通蔬菜的有关数据,并与太空蔬菜进行比较.
- 有如图所示的两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图 (2)是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小 关系用含字母a,b的不等式表示出来。

(第2题)

1.2 比较大小

说明

不等式的基本

性质:

- 1. 若a>b,则 a+c>b+c;
- 2. 若a>b,c>0,则 ac>bc;
- 3. 若a>b,c<0,则 ac<bc.

任意两个实数 a,b 都能比较大小:

如果a-b>0,那么<math>a>b;

如果a-b < 0,那么a < b;

如果a-b=0,那么a=b.

由此可知,要确定任意两个实数a,b的大小关系,只需确定它们的差a-b与0的大小关系.

例 6 试比较(x+1)(x+5)与 $(x+3)^2$ 的大小.

解 由于
$$(x+1)(x+5)-(x+3)^2$$

= $(x^2+6x+5)-(x^2+6x+9)$
= $-4<0$,
 $(x+1)(x+5)<(x+3)^2$.

所以

man statement of the statement and the statement of the s

不等关系有一个重要特征——传递性.

比如,小张比小李高,小李比小王高,那么小张一定比小王高;又 如电脑录入文字,小李比小王录入速度快,小王比小张录入速度快, 那么小李一定比小张录入速度快.

实数的大小关系也具有传递性:如果a>b,b>c,那么a>c.

- 例7 建筑设计规定,民用住宅的窗户面积必须小于地板面积. 但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
- 解 设住宅窗户面积和地板面积分别为 a,b,同时增加的面积为 m,根据问题的要求 a < b,且 $\frac{a}{b} \ge 10\%$.

由于
$$\frac{a+m}{b+m} - \frac{a}{b} = \frac{m(b-a)}{b(b+m)} > 0$$
,

于是 $\frac{a+m}{b+m} > \frac{a}{b}$, 又 $\frac{a}{b} \ge 10\%$,

因此 $\frac{a+m}{b+m} > \frac{a}{b} \ge 10\%$.

所以,同时增加相等的窗户面积和地板面积后,住宅的采光条件 变好了!

一般地,设a,b为正实数,且a < b,m > 0,则

1. 结合章头语的内容, 请与同学合作填写表 3-3.

表 3-3

同学	x	У	m	<u>x</u> y	$\frac{x+m}{y+m}$
甲					
Z					
丙					
T	1				

你悟出了什么道理吗?

日常生活中,还有哪些实例满足例7中的不等式?

- 2. 甲、乙两人同时从 A 地出发沿同一路线走到 B 地,所用时间分别为 t_1 , t_2 , 甲有一半时间以速度 m 行走,另一半时间以速度 n 行走, 乙有一半路程以速度 m 行走,另一半路程以速度 n 行走,且 $m \neq n$.
 - (1)请你与同学各自算出 t₁ 与 t₂(用 m,n 表示);
 - (2)与同学一起比较 t₁ 与 t₂ 的大小,并判断甲、乙谁先到达B 地.

练习

- 设 a=x²-x,b=x-2,則 a 与b 的大小关系为().
 A. a>b
 B. a=b
 C. a≤b
 D. 与 x 有关
- 2. 甲、乙两位采购員同去一家粮食销售公司买了两次粮食,两次粮食的价格不同,两位采购员的购粮 方式也不同.其中,甲每次购买1000 kg,乙每次购粮用去1000 元钱,谁的购粮方式更合算?

A 组

1. 设 $m=x^2+y^2-2x+2y,n=-5$,则m,n的大小关系是().

A. m>n

B. m < n

C, m=n

D. 与x,y取值有关

A. a-b>d-c

B. a+d>b+c

C. a-c>b-c

D. a-c < a-d

3. 如果一辆汽车每天行驶的路程比原来多 19 km,那么在 8 天内它的 行程就超过 2 200 km;如果它每天行驶的路程比原来少 12 km,那 么它行同样的路程就得花 9 天多的时间。这辆汽车原来每天行驶的 路程(km)范围是().

A. (259,260)

B. (258, 260)

C. (257, 260)

D. (256, 260)

- 如图,试用直观的方法比较以 a₁+a₂ 为边长的正方形的面积与四个 阴影部分的面积的大小,并把这种大小关系用不等式表示出来。
- 5. 某粮食收购站分两个等级收购小麦. 一级小麦 a 元/kg, 二级小麦 b 元/kg(b<a). 现有一级小麦 m kg, 二级小麦 n kg, 若以两种价格的 平均数收购,是否合理? 为什么?

B组

- 一家庭若干人去某地旅游,甲旅行社规定户主买全票一张,其余人享受半价优惠;乙旅行社规 定家庭旅游算集体票,按原价的2/3 优惠. 这两家旅行社原价是一样的,试就家庭里的人数,分 别写出两家旅行社的收费表达式,并讨论哪家旅行社更优惠,请画出函数示意图.
- 2. 利用不等式的基本性质用">"或"<"填空.
 - (1)如果 a>b,c>d,那么 a+c b+d;
 - (2)如果 a>b>0,c>d>0,那么 ac bd 0;
 - (3)a>b>0,那么a² b²;

(4)a>b>0,那么va b.

完成答题后,与同学交流体会,并总结一般的规律.

3. 试比较 $(x^2-\sqrt{2}x+1)(x^2+\sqrt{2}x+1)$ 与 $(x^2-x+1)(x^2+x+1)$ 的大小。

§2 一元二次不等式

问题提出

汽车在行驶过程中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,一般称这段距离为"刹车距". 刹车距s(m)与车速x(km/h)之间具有确定的函数关系,不同车型的刹车距函数不同. 它是分析交通事故的一个重要数据.

甲、乙两辆汽车相向而行,在一个弯道上相遇,弯道限制车速在 40 km/h 以内,由于突发情况,两车相撞了.交警在现场测得甲车的刹 车距离接近但未超过12 m,乙车的刹车距离刚刚超过了10 m,又知这 两辆汽车的刹车距 s(m)与车速 x(km/h)之间分别有以下函数关系:

$$s_{\#} = 0.01x^2 + 0.1x$$
,
 $s_{Z} = 0.005x^2 + 0.05x$,

谁的车速超过了 40 km/h,谁就违章了.

试问:哪一辆车违章行驶?

由题意,只需分别解出不等式 $0.01x^2+0.1x \le 12$ 和 $0.005x^2+0.05x > 10$,确认甲、乙两车的行驶速度,就可以判断哪一辆车违章超速行驶.

像上面的形如 $ax^2+bx+c>0(>0)$ 或 $ax^2+bx+c<0(<0)$ 的不 等式(其中 $a\neq 0$),叫作一元二次不等式.

2.1 一元二次不等式的解法

实例分析

如何解一元二次不等式 $x^2-2x-3<0$?

当x变化时,不等式的左边可以看作是x的函数.确定满足不等式 $x^2-2x-3<0$ 的x,实际上就是确定x的范围.也就是确定函数 $y=x^2-2x-3$ 的图像在x轴下方时,其x的取值范围.

观察二次函数 $y=x^2-2x-3$ 的图像(如图 3-3),并回答以下问题:

图 3-3

- (1) x 的取值范围是什么时,y=0?
- (2) x 的取值范围是什么时,y<0?

经过观察与比较,我们可以发现:

对于(1),就是求一元二次方程 $x^2-2x-3=0$ 的解,它们是 $x_1=-1$, $x_2=3$,即 $x_1=-1$ 或 $x_2=3$ 时, y=0.

二次函数 $y=x^2-2x-3$ 的图像与 x 轴的交点坐标是(-1,0)与(3,0).

对于(2),不难看出,当一1<x<3 时,二次函数 $y=x^2-2x-3$ 的 图像在 x 轴的下方满足 y<0,也就是说,满足一元二次不等式 $x^2-2x-3<$ 0的 x 的取值范围是-1<x<3.

一般地,使某个一元二次不等式成立的x的值叫这个一元二次 不等式的解.一元二次不等式的所有解组成的集合,叫作这个一元二 次不等式的解集.

上面的例子说明,二次函数 $y=x^2-2x-3$ 的图像的形状及其与 x 轴的交点坐标,可以确定对应的一元二次不等式 $x^2-2x-3<0$ 或 $x^2-2x-3>0$ 的解集.

例 1 解不等式: 3x2+5x-2>0.

解 方程 $3x^2+5x-2=0$ 的两解是 $x_1=-2$, $x_2=\frac{1}{3}$.

函数 $y=3x^2+5x-2$ 的图像是开口向上的抛物线,与 x 轴有两个交点(-2,0)和 $\left(\frac{1}{3},0\right)$ (如图 3-4).

观察图像可得,不等式的解集为

$$\{x | x < -2, \not x > \frac{1}{3}\}.$$

根据不等式 $3x^2+5x-2>0$ 的解集,你能得出不等式 $3x^2+5x-2>0$ 的解集吗? 与同学交流各自的结论.

解 方程 $9x^2-6x+1=0$ 有两个相同实数解:

$$x_1 = x_2 = \frac{1}{3}$$
.

函数 $y=9x^2-6x+1$ 的图像是开口向上的抛物线,与 x 轴仅有一个交点 $\left(\frac{1}{3},0\right)$ (如图 3-5).

观察图像可得,不等式的解集是 $\left\{x \mid x \neq \frac{1}{3}\right\}$.

图 3-4

图 3-5

例 3 解不等式: $x^2-4x+5>0$.

解 方程 $x^2-4x+5=0$ 无实数解,函数 $y=x^2-4x+5$ 的图像 是开口向上的抛物线,与x 轴无交点(如图 3-6).

观察图像可得,不等式的解集为 R.

抽象概括

通过上面例子可知,当a>0时,解形如 $ax^2+bx+c>0(>0)或$ $ax^2+bx+c<0(<0)$ 的一元二次不等式,一般可分为三步:

- (1)确定对应方程 $ax^2+bx+c=0$ 的解;
- (2)画出对应函数 $y=ax^2+bx+c$ 的图像简图;
- (3)由图像得出不等式的解集.

1. 完成表 3-4.

表 3-4

设 $f(x) = ax^2 + bx + c(a > 0)$, 判别式 $\Delta = b^2 - 4ac$						
判	別式	Δ>0	Δ=0	Δ<0		
	f(x)=0 的解					
100000	y=f(x) 示意图					
不等	f(x)>0					
式的 解集	f(x)<0					

请你根据上表解出本节开头的两个不等式:
 0.01x²+0.1x-12≤0 与 0.005x²+0.05x-10>0,
 并指出哪一辆车违章.

77

图 3-6

练 习 1

 如图,请根据下列二次函数 y=f(x), y=g(x), y=h(x)的图像,分别写出不等式 f(x)>0,g(x)<0 和 h(x)≥0 的解集。

2. 画出下列函数的图像,并分别确定使函数值大于零的 x 的取值范围。

(1)
$$y=x^2+3x-3$$
;

(2)
$$y=4x^2+12x-9$$
;

(3)
$$y=6x^2-5x-6$$
.

3. 解下列不等式.

(1)
$$2x^2-13x+20>0$$
;

(2)
$$7x^2+5x+1<0$$
;

(3)
$$4x^2-4x+1 \le 0$$
.

下面我们研究,当 a<0 时,不等式 ax^2+bx+c >0(或<0)的 解法.

图 3-7

例 4 解不等式: -2x2+x+1<0.

解法1 方程-2x2+x+1=0的解为

$$x_1 = -\frac{1}{2}, x_2 = 1.$$

函数 $y=-2x^2+x+1$ 的图像是开口向下的抛物线,与 x 轴的交点为 $\left(-\frac{1}{2},0\right)$ 和(1,0)(如图 3-7).

观察图像可得,不等式的解集为 $\left\{x \mid x < -\frac{1}{2}, \text{或 } x > 1\right\}$.

解法 2 在不等式两边同乘-1,可得 $2x^2-x-1>0$.

方程 $2x^2-x-1=0$ 的解为 $x_1=-\frac{1}{2}$, $x_2=1$.

画出函数 $y=2x^2-x-1$ 的图像简图(如图 3-8).

观察图像,可得原不等式的解集为

$$\{x \mid x < -\frac{1}{2}, \text{if } x > 1\}.$$

一般地,对于 a<0 的一元二次不等式,可以直接采取类似 a>0 时的解题步骤求解;也可以先把它化成二次项系数为正的一元二次不等式,再求解.

用算法的思想,对任意一个一元二次不等式,可按图 3-9 所示的 框图求解.

例 5 解不等式: $-x^2+4x-4>0$.

解 仿照例 4 解法 2,可把不等式化成

$$x^2 - 4x + 4 < 0$$
.

方程 $x^2-4x+4=0$ 的解为 $x_1=x_2=2$.

画出函数 $y=x^2-4x+4$ 的图像简图(如图 3-10).

观察图像,得出原不等式的解集为②.

观察不等式(x+3)(x-2)>0,可以看出这是一个一元二次不等式,即 $x^2+x-6>0$,按上述求解程序可得到这个不等式的解集为 $(-\infty,-3)\cup(2,+\infty)$.

另一方面,如果我们根据积的符号法则看不等式(x+3)。(x-2)>0,那么就可以把它化成两个一元一次不等式组,即

(1)
$$\begin{cases} x+3 < 0, \\ x-2 < 0 \end{cases}$$
 $\not x = \begin{cases} x+3 > 0, \\ x-2 > 0. \end{cases}$

所以,不等式(x+3)(x-2)>0的解集就是上面不等式组(1)与(2)的解集的并集.

不等式组(1)的解集为($-\infty$,-3),不等式组(2)的解集为(2, $+\infty$).

故不等式(x+3)(x-2)>0 的解集为

$$(-\infty, -3) \bigcup (2, +\infty).$$

一般地, $a\neq 0$ 时,对形如 $a(x-x_1)(x-x_2)>0$ 或 $a(x-x_1)(x-x_2)<0$ 的一元二次不

等式,可依据积的符号法则,把一元二次不等式化成一元一次不等式组来解.

小资料2

 $ax^2+bx+c>0$ (a>0)时的求解框图,见图 3-11.

图 3-11

- 1. 若9-x²≤0,則().
 - A. 0≤x≤3
- B. −3≤x≤0
- C. −3≤x≤3
- D. x≤-3 x x≥3
- 不等式(x+1)(2-x)≤0 的解集为().
 - A. [-2,1]
- B. [-1,2]
- C. $(-\infty, -1]U[2, +\infty)$ D. $(-\infty, -2]U[-1, +\infty)$
- 3. 解下列不等式.
 - $(1) -x^2 + 8x 2 < 0;$
- $(2)12x-4x^{2}-9<0$
- $(3)(5-x)(x+4) \ge 18$
- (4)(3-x)(x+5)>0.

例6 设A,B分别是不等式3x²+6≤19x与不等式-2x²+ 3x+5>0 的解集,试求 $A\cap B$, $A\cup B$.

解 由 $3x^2+6 \le 19x$, 得 $3x^2-19x+6 \le 0$.

方程 $3x^2-19x+6=0$ 的解为 $x_1=\frac{1}{2}$, $x_2=6$.

函数 $y=3x^2-19x+6$ 的图像开口向上且与 x 轴有两个交点 $(\frac{1}{3},0)$ 和(6,0).

所以,原不等式的解集为 $A = \left\{ x \mid \frac{1}{3} \leqslant x \leqslant 6 \right\}$.

同理可得,不等式 $-2x^2+3x+5>0$ 的解集为

$$B = \left\{ x \mid -1 < x < \frac{5}{2} \right\}.$$

所以 $A \cap B = \{x \mid \frac{1}{3} \le x < \frac{5}{2} \}, A \cup B = \{x \mid -1 < x \le 6 \}.$

例 7 解关于 x 的不等式, $x^2-(2m+1)x+m^2+m<0$.

解 方程 $x^2 - (2m+1)x + m^2 + m = 0$ 的解为 $x_1 = m, x_2 = m + m = 0$ 1, 日知 m<m+1.

二次函数 $y=x^2-(2m+1)x+m^2+m$ 的图像开口向上,且与 x轴有两个交点.

所以,不等式
$$x^2 - (2m+1)x + m^2 + m < 0$$
 的解集为 $\{x \mid m < x < m+1\}.$

例 8 解关于 x 的不等式: $x^2+(1-a)x-a<0$.

方程 $x^2+(1-a)x-a=0$ 的解为 $x_1=-1$, $x_2=a$.

函数 $y=x^2+(1-a)x-a$ 的图像开口向上,所以

- (1) 当 a < -1 时,原不等式的解集为(a,-1);
- (2)当 a=−1 时,原不等式的解集为∅;
- (3) 当 a > -1 时,原不等式的解集为(-1,a).

1. 已知不等式 $ax^2 + bx + c \le 0$ ($a \ne 0$)的解集是 \emptyset , 剩(

A. a < 0, $\Delta > 0$ B. a < 0, $\Delta \le 0$

C. a>0, ∆≤0

D. a>0, Δ>0

- 2. $\[\] \[M = \{x \mid x^2 + 2x 15 < 0 \} \], \[N = \{x \mid (1+x)(6-x) < -8 \} \], \\ \[\] \[X \mid N \cap N . \]$
- 当 a<0 时,请仿照小资料2给出的程序框图,画出求解 ax²+bx+c>0 的框图。
- 解关于x的不等式:x²-(m+m²)x+m²<0.

说明

母含x的因式的不

等式,先把不等式的

右边化为 0, 再通过

符号法则,把它转化

成整式不等式来解,

从而使问题化繁

为简.

对这种分子分

2.2 一元二次不等式的应用

上一小节中,我们讨论了一元二次不等式的解法,本小节我们将 一起研究一元二次不等式的应用.

例 9 m 为何值时,方程 $x^2+(m-3)x+m=0$ 有实数解?

解 方程 $x^2 + (m-3)x + m = 0$ 有实数解,等价于

$$\Delta = (m-3)^2 - 4m \geqslant 0,$$

即

$$m^2-10m+9 \ge 0$$
.

这是关于m的一元二次不等式,按求解程序,可得这个不等式的解集为 $\{m | m \le 1, \text{或} m \ge 9\}$.

所以,当 m≤1 或 m≥9 时,原方程有实数解.

例 10 解下列不等式.

(1)
$$\frac{x+1}{x-3} \ge 0$$
;

(2)
$$\frac{5x+1}{x+1} < 3$$
.

解 (1) 按商的符号法则,不等式 $\frac{x+1}{x-3} \ge 0$ 可转化成不等式 $(x+1)(x-3) \ge 0$,但 $x \ne 3$.

解这个不等式,可得 $x \le -1$ 或 x > 3. 即知原不等式的解集为 $\langle x | x \le -1$,或 $x > 3 \rangle$.

(2) 不等式 $\frac{5x+1}{x+1}$ < 3 可改写为

 $\frac{5x+1}{x+1}$ -3<0(不等式的右边为 0),

即

$$\frac{2(x-1)}{x+1} < 0.$$

仿(1),可将这个不等式转化成 2(x-1)(x+1)<0,

解得 -1<x<1.

所以,原不等式的解集为(x - 1 < x < 1).

在前面,我们借助一元二次函数 $y=ax^2+bx+c$ 的图像,研究了一元二次不等式的解法.下面,我们再探求一些简单的高次不等式的解法.

例 11 解不等式:(x-1)(x-2)(x-3)>0.

解 这是一个一元三次不等式,我们还是利用对函数图像的分

82

析来解决这个问题. 设 f(x) = (x-1)(x-2)(x-3).

- (1) 显然, y=f(x) 的图像与x 轴的交点有三个,它们的坐标依次 是(1,0),(2,0),(3,0);
- (2)函数 y=f(x) 的图像把 x 轴分成了四个不相交的区间,它们 依次为

$$(-\infty,1)$$
, $(1,2)$, $(2,3)$, $(3,+\infty)$;

(3) 当x>3时, f(x)>0. 又函数 y=f(x) 的图像是一条不间断 的曲线,并且 f(x)的符号每顺次经过 x 轴的一个交点就会发生一次 变化,由此知道 y=f(x)的函数值的符号如图 3-12 所示.

图 3-12

变化规律很明显,从右到左在每个区间符号正负相间。

通过分析,知道不等式(x-1)(x-2)(x-3)>0的解集为 $(1,2) \cup (3,+\infty).$

如果把函数 f(x) 图像与 x 轴的交点(1,0),(2,0),(3,0)形象地 看成"针眼",函数 f(x)的图像看成"线",那么上述这种求解不等式 (x-1)(x-2)(x-3)>0 的方法,我们形象地把它称为**穿针引线法**.

- m 为何值时,方程 mx²-(2m+1)x+m=0 有两个不相等的实数解?
- 2. 已知函数 y=(a-2)x2+2(a-4)x-4 的图像都在x 输上方,求实数 a 的取值的集合.
- 3. 解下列不等式。

(1)
$$\frac{x+2}{3x+4} < 0$$
;

(2)
$$\frac{2x+3}{x-1} \ge 1$$
.

- 4. 解下列不等式。
 - (1) $(x+1)(x-3)(x-5) \ge 0$;
 - (2) (3x-1)(x+3)(x+1) < 0;
 - (3) (3x+5)(x-1)(x-2) < 0.

一元二次不等式在生产生活中有较广泛的应用. 我们将通过对 下面实例的分析,体会一元二次不等式的实际应用.

信息技术建议

用数学软件或 图形计算器作出函 数 y=(x-1)(x-2) (x-3)的图像,并 追踪图像上的点的 坐标,可以近似直观 看出不等式的解集

例 12 国家原计划以 2 400 元/t 的价格收购某种农产品 m t, 按 规定,农户向国家纳税为:每收入 100 元纳税 8 元(称作税率为 8 个百 分点,即 8%).为了减轻农民负担,制定积极的收购政策.根据市场规 律,税率降低 x 个百分点,收购量能增加 2x 个百分点.试确定 x 的 范围,使税率调低后,国家此项税收总收入不低于原计划的 78%.

分析 解决这类实际问题,关键是把文字语言转换成数学语言:

- (1)"税率降低x个百分点",即调节后税率为(8-x)%;
- (2)"收购量能增加 2x 个百分点",这时

总收购量为:m(1+2x%)t,

总收购价为:2 400m(1+2x%)元;

(3)"总收人不低于原计划的 78%",即税率调低后,

"税收总收人"≥2 400m×8%×78%.

解 设税率调低后的"税收总收人"为 y 元.

$$y = 2 400m(1+2x\%)(8-x)\%$$

= $-\frac{12}{25}m(x^2+42x-400)(0 < x < 8).$

依題意,得

$$y \ge 2400m \times 8\% \times 78\%$$
,

$$\mathbb{P} \qquad -\frac{12}{25}m(x^2+42x-400) \ge 2\ 400m \times 8\% \times 78\%,$$

整理,得

$$x^2+42x-88 \le 0$$
,

解得

$$-44 \leq x \leq 2$$
.

根据 x 的实际意义,知 0 < x < 8,所以 0 < x < 2 为所求. 答 x 的取值范围是 0 < x < 2.

不等式、方程与函数

在解二次不等式一节里,我们已经知道,借助二次函数及其图像,可以把二次方程与二次不等式联系到一起,得到二次不等式的解. 把这种关系推广就可以得到:对于函数 y=f(x),函数图像在x 轴上方(即f(x)函数值大于0)时,自变量的取值的集合是不等式f(x)>0的解集;函数图像在x 轴下方(即f(x)函数值小于0)时,自变量的取值的集合是不等式f(x)<0 的解集;函数图像与x 轴相交(即f(x)函数值等于0)时,自变量的取值的集合是方程f(x)=0的解集. 以这个结论为基础我们运用图形计算器解决更有意义的问题.

1. 解形如 f(x) > 0(或 f(x) < 0)的不等式.

利用图形计算器可以画出函数 y=f(x) 的图像,然后求出函数与x 轴交点的横坐标,再借助函数图像写出不等式的解。

例 13 解不等式 $x^3-6x^2+11x-6>0$.

解 利用图形计算器画出函数 $f(x)=x^3-6x^2+11x-6$ 的图像如图 3-13.

求出函数 y=f(x)与 x 轴交点的横坐标 1,2,3,由图像可得不 等式 $x^3-6x^2+11x-6>0$ 的解集为(1,2) $U(3,+\infty)$.

2. 解形如 f(x)>g(x)的不等式.

利用图形计算器可以画出函数 y=f(x) 和 y=g(x) 的图像,函数 y=f(x) 的图像在 y=g(x) 图像的上方部分的横坐标即为不等式的解。

例 14 解不等式 logo.3x>x.

解 设函数 $f(x) = \log_{0.3} x, g(x) = x$, 画出这两个函数的图像.

求出这两个函数交点的横坐标 $x \approx 0.53$, 如图 3-16, 由图像可得不等式 $\log_0 sx > x$ 的解集是 f(x) 的图像在 g(x) 图像上方时 x 的集合,因此不等式的近似解集为(0,0.53).

思考 能利用例 13 的方法解这个不等式吗?

你能用上面的方法解下列不等式吗?

- (1) $2\sin x > 0$:
- $(2)\log_{0.3}x>0.3^{*}$.
- 3.借助图形计算器根据函数的图像解不等式很便捷,但这种 方法解不等式有时是有局限的.例如:解不等式 2*-x³>0 时,画 出图像如图 3-17.

根据图像会得出这个不等式的近似解集为($-\infty$,1.4),但这个结果是错误的. 比如当x=10 时,这个不等式也成立,事实上,在x>1时,这两个函数还存在交点. 这种情况的出现是由于图形计算器只能显示函数的局部图像,无法显示出无穷远处的情况.

怎么解决这个问题呢?

用下面的方法可使 x>1.4 时两函数的关系出现在图形计算器上.

设
$$x=\frac{1}{t}$$
,不等式可以转化为 $2^{\dagger}>\left(\frac{1}{t}\right)^{3}$,再转化为 $2^{\dagger}-t^{3}<0$,

图 3-13

图 3-14

图 3-15

图 3-16

图 3-17

图 3-18

这样我们可以得到不等式在 $0 < t < \frac{1}{1.4}$ 范围内的解,再转化为x的取值范围,得到原不等式的解。

首先画出函数 $f(t)=2^{-1}-t^3$ 的图像如图 3-18.

图像似乎显示不等式在原点附近无解,但是把函数图像在原 点附近放大后就会观察到图 3-19,图 3-20 所示的情形:

请尝试用上面方法解不等式 log1.ω1x>x3.

练 习 2

已知汽车从踩削车到停车所滑行的距离(m)与速度(km/h)的平方及汽车总质量成正比,设某辆卡车 不装货物以 59 km/h 的速度行驶时,从削车到停车走了 20 m. 如果这辆卡车装着等于车重的货物行 驶时,发现前面 20 m 处有障碍物,这时为了能在离障碍物5 m以外处停车,最大限制时速应是多少 (结果保留整数,设卡车司机发现障碍物到踩削车需经过 1 s)?

习题 3-2

A 组

- 1. 下面四个不等式中解集为 R 的是().
 - A. $-x^2 + x + 1 \ge 0$

B. $x^2 - 2\sqrt{5}x + \sqrt{5} > 0$

C. $x^2 + 6x + 10 > 0$

D. $2x^2-3x+4<0$

- 若x∈R,则下列结论正确的是().
 - A. x²≥4 的解集是{x | x>±2}
 - B. $x^2-16<0$ 的解集是 $\{x \mid x<4\}$
 - C. $(x-1)^2 < 2$ 的解集是 $\{x \mid 1-\sqrt{2} < x < 1+\sqrt{2}\}$
 - D. 设 x_1, x_2 为 $ax^2 + bx + c = 0$ 的两个实根,且 $x_1 < x_2$,则 $ax^2 + bx + c < 0$ 的解集是 $\{x | x_1 < x < x_1\}$
- 已知两个圆的半径分别为 2 和 3,圆 心距 d 满足 d² −6d+5<0,则这两个圆的位置关系是
- 不等式 2≤x²-2x<8 的整数解集是
- 若对任意实数x,不等式x²+2(1+k)x+3+k>0 恒成立,则k 的取值范围是
- 通过函数图像比较下列式子在取不同的x值时的大小关系。
- (1) $2x^2-x+5 = 6$; (2) $x^2+3 = 3x$; (3) $x^2-1 = \frac{1}{2}x^2$.
- 7. 解下列不等式。
 - (1) $2x^2-x-1>0$;
- (2) $3x^2 + x 6 \le 0$;
- (3) 5x−20≤x²;
- $(4) -2x^2+3x+7>0$
- $(5) -3x^2+x-6 \le 0;$
- (6) $x-20 < x^2$.
- 8. 解下列不等式.
 - (1) $\frac{x-1}{x-2} > \frac{1}{2}$;
- (2) $(2x-5)(x-3)(x-4) \ge 0$.

组 В

- 解关于x的不等式。
 - (1) $x(x+a-1) \ge a$;
 - (2) $x^2-ax-2a^2>0$ (a>0);
 - (3) $a^{1}x+b^{1}(1-x) \ge [ax+b(1-x)]^{1}(a\ne b)$.
- 已知不等式(m²+4m-5)x²-4(m-1)x+3>0 对—切实数x恒成立,求实数m的范围.
- 某地要建一个水库,设计时,水库最大蓄水量为128 000 m³,在洪水暴发时,预测注入水库的 水量 $S_n(m^3)$ 与天数 $n(n \in \mathbb{N}, n \le 10)$ 的关系是 $S_n = 5000 \sqrt{n(n+24)}$,此水库原有水量为 80 000 m³, 泄水闸每天泄水量为 4 000 m³, 若山洪暴发的第一天就打开泄水闸, 试问这 10 天 中堤坝会发生危险吗? 若会,计算第几天发生危险;若不会,说明理由(水库蓄水量超过最大 蓄水量时,堤坝会发生危险).
- 去年,某地区用电量为akW·h,电价为0.8元/(kW·h),今年计划将电价降到0.55~0.75 元/(kW·h)之间. 用户心理承受价位是 0.40 元/(kW·h). 下调电价后,实际电价和用户心 理价位仍存在差值,假设新增的用电量与这个差值成反比(比例系数为0.2a),地区的电力成 本价为 0.3 元/(kW·h),电价定为多少时仍可保证电力部门的收益增长率不低于 20%?

§3 基本不等式

3.1 基本不等式

对于任意实数 $x,y,(x-y)^2 \ge 0$ 总是成立的,即 $x^2-2xy+y^2 \ge 0$,

所以 $\frac{x^2+y^2}{2} > xy$, 当且仅当 x=y 时, 等号成立.

设 $x=\sqrt{a},y=\sqrt{b}$,则由这个不等式可得出以下结论:

如果 a,b 都是非负数,那么 $\frac{a+b}{2} \geqslant \sqrt{ab}$,当且仅当 a=b 时,等号成立.

我们称上述不等式为基本不等式,其中 $\frac{a+b}{2}$ 称为a,b的算术平均数,

 \sqrt{ab} 称为a,b的几何平均数.因此,基本不等式又被称为均值不等式.

下面,我们给出基本不等式的一种几何解释.

如图 3-21 所示, AB 是 $\odot O$ 的直径, AC=a, CB=b, 过点 C 作 CD_AB $\odot O$ 上半圆于 D, 连接 AD, BD, 由射影定理可知:

$$CD = \sqrt{ab}$$
,前 $OD = \frac{a+b}{2}$.
 $OD \geqslant CD$,
 $\frac{a+b}{2} \geqslant \sqrt{ab}$,

因为

所以

当且仅当C与O重合,即a=b时,等号成立.

利用基本不等式或类似的几何图形,还可以推出与基本不等式有 关的简单不等式。

例1 设
$$a,b$$
均为正数,证明不等式: $\sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}$.

证明 因 a,b 均为正数,由基本不等式,可知 $\frac{\frac{1}{a} + \frac{1}{b}}{2} \geqslant \frac{1}{\sqrt{ab}}$,

也即
$$\sqrt{ab} \geqslant \frac{2}{\frac{1}{a} + \frac{1}{b}}$$
,当且仅当 $a = b$ 时,等号成立.

下面给出这个不等式的一种几何解释.

如图 3-22, 设AC=a, CB=b, CD_AB 交 $\odot O$ 上半圆 于D, 过 C作 $CE \perp OD \odot OD \oplus E$,

在 $Rt\triangle OCD$ 中,由射影定理可知:

$$DC^2 = DE \cdot OD$$
,

即

$$DE = \frac{DC^2}{OD} = \frac{ab}{a+b} = \frac{2}{\frac{1}{a} + \frac{1}{b}}.$$

图 3-22

由 DC≥DE,得

$$\sqrt{ab} \geqslant \frac{2}{\frac{1}{a} + \frac{1}{b}}$$
, 当且仅当 $a = b$ 时, 等号成立.

思考交流

如图 3-23,在 \odot O上半圆中,设 AC=a, CB=b, $OF \perp AB$ 交上半 圆于F,请你利用 $FC \ge OF$ 得出一个关于a,b的不等式,将这个不等 式与基本不等式和例 1 中的不等式进行比较.

对于基本不等式,用文字语言可叙述为:两个正数的算术平均数 不小于它们的几何平均数,但从数列角度看,可把a+b看作是正数a, b的等差中项, \sqrt{ab} 看作是正数 a, b 的正的等比中项, 基本不等式又可 以叙述为:两个正数的等差中项不小于它们正的等比中项.

图 3-23

阅读材料

对于正数 a,b 的几何平均数,我们可以有以下两种解释:

某工厂第一年的产值为1000万元,第二年的产值为第一年产值的2倍,第三年 的产值为第二年产值的 3 倍. 设工厂从第一年到第三年,每年产值平均增长 x 倍,那 Δx 満足:1000×2×3=1000 x^2 ,即

$$x=\sqrt{6}$$
.

一般地,设某工厂第一年的产值为 m,第二年的产值为第一年的 a 倍(即 ma); 第三年产值为第二年的 b 倍(即 mab).

如果该工厂从第一年到第三年,每年产值平均增长 x 倍,那么 x 满足:mab= mx^2 , \mathbb{P}

$$x = \sqrt{ab}$$
.

另外,我们可以把两个正数 a, b 看成是两条线段的长度,并以它们为边作一长方形,如图 3-24(1);如果我们想作一正方形,使它的面积等于这个长方形的面积,那么它的边长 \sqrt{ab} 就是a 和b 的几何平均数,如图 3-24(2).

练习

如图,正方形的边长为a+b(a>0,b>0),请你利用 $OA \le OB+BA$ 写出一个含有a,b的不等式来,并与前面的不等式比较,与同学交流体会.

3.2 基本不等式与最大(小)值

你可以把一段 16 cm 长的细铁丝弯成形状不同的矩形,如边长为 4 cm 的正方形;长 5 cm 宽 3 cm 的矩形;长 6 cm 宽 2 cm 的矩形……你会发现边长为 4 cm 的那个正方形的面积最大.这是因为:设矩形的长为 x cm,宽为 y cm,则 x+y=8.这时,由基本不等式得: $x+y \ge \sqrt{xy}$,即 $xy \le 16$,当且仅当 x=y=4 时,等号成立.由此可知,边长为 4 cm 的那个正方形的面积最大.

思考交流

用类似上面的方法证明:在面积为 16 cm² 的所有不同形状的矩形中,边长为 4 cm 的那个正方形的周长最小.

这表明, x, y 都为正数时, 下面的命题成立:

- (1) 若x+y=s (和为定值),则当x=y 时,积xy 取得最大值 $\frac{s^2}{4}$;
- (2) 若xy=p(积为定值),则当x=y时,和x+y取得最小值2 \sqrt{p} .

例 2 设x,y为正实数,且 2x+5y=20,求 $u=\lg x+\lg y$ 的最大值.

分析 因为 $u=\lg(xy)$, 所以问题成为:已知 x,y>0, 2x+5y=20, 求 xy 的最大值.

解 因为 x>0, y>0, 所以由基本不等式, 得

$$\frac{2x+5y}{2} \geqslant \sqrt{2x \cdot 5y} = \sqrt{10xy}.$$

由于 2x+5y=20, 所以 $\sqrt{10xy} \le 10$, 即 $xy \le 10$. 当且仅当 2x=5y时, 等号成立, 因此有

$$\begin{cases} 2x + 5y = 20, \\ 2x = 5y, \\ x = 5, y = 2. \end{cases}$$

解得

.

当x=5,y=2时,xy有最大值10.

这样

即

$$u = \lg x + \lg y = \lg(xy) \le \lg 10 = 1.$$

所以,当x=5,y=2时, $u=\lg x+\lg y$ 有最大值1.

例3 已知 $y=x+\frac{1}{x}(x\neq 0)$,证明: $|y| \ge 2$.

证明 (1)当x>0时,由基本不等式,得 $y=x+\frac{1}{x}>2$,当且仅当 $x=\frac{1}{x}$,即 x=1 时,等号成立.

(2)
$$\leq x < 0$$
 By, $-x > 0$, $y = x + \frac{1}{x} = -\left[(-x) + \frac{1}{(-x)}\right]$.

由(1)可知 $(-x)+\frac{1}{(-x)}\ge 2$,当且仅当x=-1时等号成立.

所以 $-\left[(-x) + \frac{1}{(-x)}\right] \leqslant -2,$

 $y = x + \frac{1}{x} \le -2$.

说明

利用本小节命 题求最大值或最小 值时,应注意:

 x,y一定要 是正数;

2. 求积 xy 最 大值时,应看和 x+ y 是否为定值;求和 x+y 最小值时,看 积 xy 是否为定值;

 等号是否能 够成立。

综上可知, y≥2.

练习1

1. 设x,y∈R,且x+y=5,到3*+3*的最小值是(

A. 0 B.
$$6\sqrt{3}$$
 C. $4\sqrt{6}$ D. $18\sqrt{3}$

2. 在下列函数中,最小值是2的为().

A.
$$y = x + \frac{1}{x}$$

C.
$$y = \lg x + \frac{1}{\lg x} (1 < x < 10)$$

D.
$$y = \sin x + \frac{1}{\sin x} (0 < x < \frac{\pi}{2})$$

3. 已知 $0 < x < \frac{3}{2}$, 试用不同方法求函数 y = 2x(3-2x)和 y = x(3-2x)的最大值.

基本不等式在解决实际问题中有广泛的应用. 通过对以下几个 实例的讨论,我们将体会基本不等式的应用.

- 例 4 如图 3-25,动物园要围成相同面积的长方形虎笼四间. 一 面可利用原有的墙,其他各面用钢筋网围成.
- (1)现有可围 36 m 长网的材料,每间虎笼的长、宽各设计为多少 时,可使每间虎笼面积最大?
- (2) 若使每间虎笼面积为 24 m²,则每间虎笼的长、宽各设计为多 少时,可使围成四间虎笼的钢筋网总长最小?
- 解 (1)设每间虎笼长为 x m, 宽为 y m,则由"有可围网长 36 m 的材料",得

$$4x+6y=36$$
,

即

$$2x+3y=18$$
.

设面积 S=xy.

由于
$$2x+3y \ge 2\sqrt{2x \cdot 3y} = 2\sqrt{6xy}$$
,

所以

$$2\sqrt{6}xy$$
 < 18, 得 xy < $\frac{27}{2}$,

即 $S \le \frac{27}{2}$, 当且仅当 2x = 3y 时, 等号成立.

解方程组

$$\begin{cases} 2x = 3y, \\ 2x + 3y = 18, \end{cases} = \begin{cases} x = 4.5, \\ y = 3. \end{cases}$$

答 每间虎笼设计长、宽分别为4.5 m和3 m时,可使面积最大.

请你与同学合作,解决问题(2).

例 5 某种汽车,购车费用是 10 万元,每年使用的保险费、养路费、汽油费约为 0.9 万元,年维修费第一年是 0.2 万元,以后逐年递增 0.2 万元,问这种汽车使用多少年时,它的年平均费用最少?

解 设使用 x 年平均费用最少.

由于"年维修费第一年是0.2万元,以后逐年递增0.2万元",可知 汽车每年维修费构成以0.2万元为首项,0.2万元为公差的等差数列.

因此,汽车使用x年总的维修费用为 $\frac{0.2+0.2x}{2}x$ 万元.

设汽车的年平均费用为 y 万元,则有

$$y = \frac{10+0.9x + \frac{0.2+0.2x}{2}x}{x}$$

$$= \frac{10+x+0.1x^{2}}{x}$$

$$= 1 + \frac{10}{x} + \frac{x}{10}$$

$$\ge 1 + 2\sqrt{\frac{10}{x} \cdot \frac{x}{10}}$$

$$= 3.$$

当且仅当 $\frac{10}{x} = \frac{x}{10}$,即 x = 10 时,y 取最小值.

答 汽车使用10年平均费用最少.

如图是 2002 年 8 月中国成功主办的国际数学家大会(ICM 2002)的会标. 这个标志的设

计基础是 1 700 多年前,中国古代数学家赵爽勾股圆方图中著名的 弦图,是为了勾股定理而绘制的. 经过设计变化成为含义丰富的 2002 年国际数学家大会的会标.

利用这个图,我们可以给基本不等式一个非常形象的几何解 释. 如图 3-26,由正方形 ABCD 的面积≥4 个阴影三角形面积之 和,得

$$a+b \geqslant 4 \times \frac{1}{2} \sqrt{ab}$$
,
 $\frac{a+b}{2} \geqslant \sqrt{ab}$.

即

赵爽(约公元 220 年),又名要,字君卿,东汉末至三国时代的吴 国人,他是我国历史上著名的数学家与天文学家.

赵爽倾其一生心血注释了《周髀》(为算经十书之一,约成书于 公元前二世纪,是我国最古老的天文学著作,唐初改名为《周髀算 经》》,他取得的突出成就之一是以超人的智慧,仅用勾股圆方图和 500 字的评注,就简明扼要地总结出中国古代勾股算术的深奥原理.

图 3-26

练 习 2

 制作一个面积为1 m²,形状为直角三角形的铁支架框,有下列四种长度的铁管供选择,较经济(够 用,又耗材最少)的是()。

A. 4.6 m B. 4.8 m

C. 5 m

D. 5, 2 m

- 2. 委挖一个面积为 432 m2 的矩形鱼池, 周围长、宽分别为 3 m 和 4 m 的 堤堰,要想占地总面积最小,鱼池的长和宽应为多少?
- 3. 某种变压器的截面是正十字形(如图所示),为了保证有一定的磁通 量,需要确定截面积,如果十字形芯片的截面积为 4 v5 cm2,应如何设 计十字形的长 y 及宽 x, 才能使正十字形外接圈的周长最短(从而使 绕在铁芯上的铜丝最短)?

习题 3-3

A 组

已知 0<x<1,则x(3−3x)取最大值时x的值为().

A. $\frac{1}{3}$

B. $\frac{1}{2}$

C. $\frac{3}{4}$

D. $\frac{2}{3}$

2. 设x,y是满足2x+y=20的正数,则 $\lg x+\lg y$ 的最大值是(

A. 50

B. 20

C. 1+lg 5

D. 1

3. 若a>b>1, $P=\sqrt{\lg a \cdot \lg b}$, $Q=\frac{1}{2}(\lg a + \lg b)$, $R=\lg\left(\frac{a+b}{2}\right)$, 则下列不等式成立的是().

A. R < P < Q B. P < Q < R C. Q < P < R D. P < R < Q

在直径为d的圆内接矩形中,最大的面积是多少?这样的矩形长宽之比是多少?

B组

- 如图所示,在⊙O上半圆中,AC=a,CB=b,CD_AB,EO_AB, FE_CE,请你利用CF≥CE,写出一个含有 a,b 的不等式.
- 设计一幅宣传画,要求画面面积 4 840 cm²,画面的宽与高的比为 λ(λ<1),画面的上、下各留 8 cm 空白,左、右各留5 cm空白,怎样 确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?

§4 简单线性规划

4.1 二元一次不等式(组)与平面区域

问题提出

一名刚参加工作的大学生为自己制定的每月用餐费的最低标准 是 240 元,又知其他费用最少需支出 180 元,而每月可用来支配的资 金为 500 元,这名新员工可以如何使用这些钱?

设用餐费为x元,其他费用为y元,由题意x不小于 240,y不小于 180,x与y之和不超过 500,用不等式组可表示为:

$$\begin{cases} x+y \leqslant 500, \\ x \geqslant 240, \\ y \geqslant 180. \end{cases}$$

如果将上述不等式组的一个解(x,y)视作平面直角坐标系上的 一个点,那么使问题转化为:确定平面直角坐标系中不等式组的解集 区域.

实例分析

我们先讨论,平面直角坐标系中的哪些点满足不等式 x>y.

如图 3-27,在平面直角坐标系中,y = x表示一条直线l,它将直角坐标平面分成三部分,即自身和它的两侧.在直线l上任意一点的坐标(x,y)都满足y=x,那么直线l右下方的任意一点的坐标(x,y)有什么特点呢?

在直线 l 上任取一点,例如,取点 A(1,1),过这点作与 y 轴平行的直线 l_1 .

 4 ± 1 上 所有点的横坐标都是 1,在 4 ± 1 取 4 的下侧一点 A'(1,-1),显然它的横坐标大于纵坐标,满足不等式 x>y.

不难看出,在h上,点A下侧的任意一点的坐标(x,y)都满足不等式x>y.

由于A可在直线l上任取,所以在直线l右下方的任意一点的坐标(x,y)都满足不等式x>y.

同样地,在直线 l 左上方的任意一点的坐标(x,y)都满足不等式x < y.

综上可知,集合 $\{(x,y)|x>y\}$ 所表示的图形是直线 l 右下方的 平面区域(图 3-28(1)阴影部分),而集合 $\{(x,y)|x<y\}$ 所表示的图形 是直线 l 左上方的平面区域(图 3-28(2)阴影部分).

这样,直线 l 把直角坐标平面分成了三个部分:

- (1) 直线 l 上的点(x,y)满足x-y=0;
- (2) 直线 l 右下方的平面区域内的点(x,y) 满足 x-y>0;
- (3) 直线 l 左上方的平面区域内的点(x,y)满足 x-y<0.

集合 $\{(x, y) | x=3\}, \{(x, y) | y=-1\}$ 分别把直角坐标平面分成了哪三个部分?请你画出图形,再刻画三个部分点的特征.

分析 作直线 l:x+2y-3=0,l 把直角坐标平面分成三部分。在 l 上取一点 $M\left(\frac{1}{2},\frac{5}{4}\right)$,过这点作一条与 y 轴平行的直线 $l_1:x=\frac{1}{2}$,在 l_1 上点 M 的上侧取任意一点 $\left(\frac{1}{2},y_1\right)$,它的纵坐标 $y_1>\frac{5}{4}$,于是 $\frac{1}{2}+2y_1-3>\frac{1}{2}+2\times\frac{5}{4}-3=0$,即点 $\left(\frac{1}{2},y_1\right)$ 的坐标满足不等式 x+2y-3>0;在 l_1 上点 l_2 的下侧取任意一点 $\left(\frac{1}{2},y_2\right)$,它的纵坐标满足 $y_2<\frac{5}{4}$,于是 $\frac{1}{2}+2y_2-3<\frac{1}{2}+2\times\frac{5}{4}-3=0$,即点 $\left(\frac{1}{2},y_2\right)$ 的坐标满足 不等式 x+2y-3<0.

同理,在l上任取一点P,过P作y 轴的平行线 l_2 ,可以说明:在 l_2 上,点P上侧任意一点的坐标(x,y)满足不等式x+2y-3>0;点P下侧任意一点的坐标(x,y)满足不等式x+2y-3<0.

解 直线 l 将直角坐标平面分成三部分(l 及其两侧). 在 l 右上方的平面区域内的任一点的坐标(x,y)满足不等式 x+2y-3>0,而另外两部分的点均不满足不等式 x+2y-3>0. 不等式 x+2y-3>0 表示的是直线 l 右上方的平面区域(图 3-29 中的阴影部分).

图 3-29

18

抽象概括

- 一般地,直线 l: ax+by+c=0 把直角坐标平面分成了三个部分:
- (1)直线 l上的点(x,y)的坐标满足ax+by+c=0;
- (2)直线 l 一侧的平面区域内的点(x,y)的坐标满足 ax+by+

x=2 x-y=0 x+y-1=0

图 3-31

说明

一般地,把直线 l:ax+by+c=0 画 成实线,表示平面区 域包括这一边界直 线;若把直线画成虚 线,则表示平面区域 不包括这一边界 直线. c>0;

(3)直线 l 另一侧的平面区域内的点(x,y) 的坐标满足 ax+by+c<0.

所以,只需在直线 l 的某一侧的平面区域内,任取一特殊点(x_0 , y_0),从 ax_0+by_0+c 值的正负,即可判断不等式表示的平面区域.

例 2 画出不等式 2x-y-4≤0 表示的平面区域。

解 先画出直线 l: 2x-y-4=0,取原点 O(0,0),把 O点的坐标 代人 2x-y-4,得

$$2 \times 0 - 0 - 4 < 0$$
.

所以,原点在 2x-y-4<0 表示的平面区域内,不等式 2x-y-4<0 表示的平面区域是 2x-y-4<0 表示的平面区域加上直线 l: 2x-y-4=0(图 3-30 中阴影部分).

例 3 画出以下不等式组表示的平面区域。

$$\begin{cases} x+y-1 \geqslant 0, & \textcircled{1} \\ x-y \geqslant 0, & \textcircled{2} \\ x \leqslant 2. & \textcircled{3} \end{cases}$$

分析 不等式组表示的平面区域是不等式①,②,③所表示的平 面区域的公共部分.

解 如图 3-31 所示.

不等式①表示直线 x+y-1=0 的右上方(包括直线)的平面 区域;

不等式②表示直线 x-y=0 右下方(包括直线)的平面区域; 不等式③表示直线 x=2 左方(包括直线)的平面区域。 所以,原不等式组表示上述平面区域的公共部分(阴影部分)。

练习1

- 图中表示的平面区域満足不等式().
 A. x+y-1<0 B. x+y-1>0 C. x-y-1<0 D. x-y-1>0
- 画出不等式 7x+2y-14<0表示的平面区域。
- 画出本节开头的不等式组所表示的平面区域。
 (3x+4y≤9,
- a由不等式組<5x+2y≤8,表示的平面区域。
 x≥0,y≥0

二元一次不等式(组)所表示的平面区域,在实际问题中有广泛 的应用,请看以下例子.

例 4 一工厂生产甲、乙两种产品,生产每吨产品的资源需求如表 3-5.

-	_	-
-	2	_
-04	3	-5

品种	电力/kW·h	煤/t	工人/人 5 2	
甲	2	3		
Z	8	5		

该厂有工人 200 人,每天只能保证 160 kW·h 的用电额度,每天 用煤不得超过 150 t,请在直角坐标系中画出每天甲、乙两种产品允许 的产量范围.

解 设每天分别生产甲、乙两种产品 x t 和 y t,

生产x t的甲产品和y t 乙产品的用电量是 $(2x+8y)(kW \cdot h)$,根据条件,有 $2x+8y \le 160$;

用煤量为(3x+5y)(t),根据条件,有 $3x+5y \le 150$; 用工人数为(5x+2y)(人),根据条件,有 $5x+2y \le 200$; 另外,还有 $x \ge 0$, $y \ge 0$.

综上所述,x,y应满足以下不等式组

$$\begin{cases} 2x + 8y \leqslant 160, \\ 3x + 5y \leqslant 150, \\ 5x + 2y \leqslant 200, \\ x \geqslant 0, y \geqslant 0. \end{cases}$$

甲、乙两种产品的产量范围是这组不等式表示的平面区域,即如 图 3-32 所示的阴影部分(含边界).

解 设初中x个班,高中y个班,此时办学所需资金为(28x+58y)万元,市政府准备投资 1 200 万元,则 28x+58y \lesssim 1 200,班级数量是非负整数,且要满足 20 \lesssim x+y \lesssim 30,即满足

$$\begin{cases} 28x + 58y \leqslant 1 \ 200, \\ x + y \geqslant 20, \\ x + y \leqslant 30, \\ x, y \in \mathbb{N}. \end{cases}$$

图 3-32

图 3-33

所以,办学规模应是图 3-33 阴影部分的整数点所表示的规模.

请你利用平面区域给出本章第一节例 5 的解,

练 习 2

- 1. 某工厂制造 A 型电子装置 45 台, B 型电子装置 55 台, 需用薄锅板为每台装置配一个外壳, 已知薄锅板的面积有两种规格: 甲种每张面积为 2 m², 可做 A, B 两型电子装置外壳分别 3 个和 5 个; 乙种每张面积 3 m², 可做 A, B 两型电子装置外壳各 6 个. 请用平面区域表示甲、乙两种薄锅板张数的取值范围。
- 某人7:00 乘摩托艇以匀速v kn(4≤v≤20)从 A 港出发,到相距50 n mile 的 B 港,然后乘汽车以 w km/h(30≤w≤100)的速度从 B 港出发,駛向相距300 km 的 C 市,期望于当日16:00~21:00 到达 C 市.请用图表示汽车、摩托艇的行驶时间的取值范围。

4.2 简单线性规划

首先,让我们讨论以下问题: ∂x ,y满足以下条件

$$\begin{cases}
5x+6y \leqslant 30, & \textcircled{2} \\
y \leqslant 3x, & \textcircled{2} \\
y \geqslant 1. & \textcircled{3}
\end{cases}$$

求 z=2x+y 的最小值和最大值.

由前面知道,满足每个不等式的解集都可以表示一个平面区域,满足不等式组的解集则表示这些平面区域的公共区域(如图 3-34).

这时,问题转化为:当点(x,y)在公共的平面区域中时,求z=2x+y的最小值和最大值.

为此,我们先来讨论当点(x,y)在整个坐标平面上变化时,z=2x+y值的变化规律.

当 =-3,-1,0,2,4 时,可得到直线:

图 3-34

$$l_2:2x+y=-3;$$

 $l_1:2x+y=-1;$
 $l_0:2x+y=0;$
 $l_1:2x+y=2;$
 $l_2:2x+y=4.$

显然,这是一组平行线.

由图 3-35 可看出,当直线 l_0 向上平移时,所对应的 z 随之增大; 当直线 l_0 向下平移时,所对应的 l_0 随之减小.

如图 3-36, 在把 6 向上平移过程中,直线与平面区域首先相交的顶点 $A\left(\frac{1}{3},1\right)$ 所对应的 z 最小;最后相交的顶点 $B\left(\frac{24}{5},1\right)$ 所对应的 z 最大.

从而得到
$$z_{min} = 2 \times \frac{1}{3} + 1 = \frac{5}{3}$$
; $z_{mex} = 2 \times \frac{24}{5} + 1 = \frac{53}{5}$.

图 3-35

图 3-36

类似于这个实例,如果两个变量x,y满足一组一次不等式,例如①②③,求这两个变量的一个线性函数(例如z=2x+y)的最大值或最小值,那么我们就称这个线性函数为目标函数,称一次不等式组为约束条件,像这样的问题叫作二元线性规划问题.

在线性规划问题中,满足约束条件的解(x,y)称为**可行解**,由所有可行解组成的集合称为**可行域**.在上述问题中,可行域是阴影部分表示的三角形区域,区域中任意的(x,y)都是这个问题的可行解,其中可行解 $\left(\frac{1}{3},1\right)$ 与 $\left(\frac{24}{5},1\right)$ 分别使目标函数取得最小值和最大值,我们把它们称为这个问题的最**优解**.

从这个问题的求解过程可以看出,最优解一般在可行域的边界 上,而且通常在可行域的顶点处取得.

例 6 设x,y满足约束条件

$$\begin{cases} x \geqslant -3, \\ y \geqslant -4, \\ -4x + 3y \leqslant 12, \\ 4x + 3y \leqslant 36. \end{cases}$$

(1)求目标函数 z=2x+3y 的最小值与最大值;

图 3-37

信息技术建议

用数学软件作 出可行域,并动态显 示目标函数的变化 情况,进而直观地判 断最优解.

图 3-38

说明

二元线性规划 问题中,最优解可能 有无数多个. (2)求目标函数 z=-4x+3y-24 的最小值与最大值.

解 (1)作出可行域(如图 3-37 阴影部分).

仿前,当把直线 l 向下平移时,所对应的 z=2x+3y 的函数值随 之减小,所以,直线经过可行域的顶点 B 时,z=2x+3y 取得最小值.

从图中可以看出,顶点B 是直线x=-3 与直线y=-4 的交点, 其坐标为(-3,-4);

当把l向上平移时,所对应的z=2x+3y的函数值随之增大,所以直线经过可行域的顶点D时,z=2x+3y取得最大值.

顶点 D 是直线 -4x+3y=12 与直线 4x+3y=36 的交点,解方程组

$$\begin{cases} -4x + 3y = 12, \\ 4x + 3y = 36, \end{cases}$$

可以求得顶点 D 的坐标为(3,8).

此时,顶点B(-3,-4)与顶点D(3,8)为最优解.

$$z_{\min} = 2 \times (-3) + 3 \times (-4)$$

= -18,

$$z_{\text{treex}} = 2 \times 3 + 3 \times 8 = 30.$$

(2)可行域同(1)(如图 3-38 阴影部分).

作直线 l_0 : -4x+3y=0, 仿前, 把直线 l_0 向下平移时, 所对应的 z'=-4x+3y 的函数值随之减小, 即 z=-4x+3y-24 的函数值随 之减小, 从图 3-38 可以看出,直线经过可行域顶点 C 时, z'=-4x+3y 取得最小值, 即 z=-4x+3y-24 取得最小值.

顶点 C 是直线 4x+3y=36 与直线 y=-4 的交点,解方程组

$$\begin{cases} y = -4, \\ 4x + 3y = 36, \end{cases}$$

得到顶点 C的坐标(12, -4),代人目标函数 z=-4x+3y-24,得

$$z_{\min} = -4 \times 12 + 3 \times (-4) - 24$$

= -84.

由于直线 4。平行于直线-4x+3y=12,因此当把直线 4。向上平移 到 4时,4与可行域的交点不止一个,而是线段 AD上的所有点.此时,

$$z_{\text{max}} = 12 - 24 = -12$$
.

设目标函数为z=ax+by+c,当b>0时,把直线b:ax+by=0向 上平移时,所对应的z随之增大;把b0 向下平移时,所对应的b2 随之 减小、

由此可得到,在约束条件下,当b>0时,求目标函数z=ax+by+c的最小值或最大值的求解程序为:

- (1)作出可行域;
- (2)作出直线 lo: ax+by=0;
- (3)确定 1。的平移方向,依可行域判断取得最优解的点;
- (4)解相关方程组,求出最优解,从而得出目标函数的最小值或最 大值。

练习1

1. x z = 2x + y 的最大值,式子中的x, y 满足

$$\begin{cases} y \leqslant x, \\ x + y \leqslant 1, \\ y \geqslant -1. \end{cases}$$

在以上问题中,不等式组叫作变量 x,y的 ,z=2x+y叫作

2. 已知 x,y满足约束条件

$$\begin{cases} x+y+5 \geqslant 0, \\ x-y \leqslant 0, \\ y \leqslant 0, \end{cases}$$

則 z=2x+4y 的最小值是

3. 在约束条件

$$\begin{cases} 2x+y \ge 1, \\ 6x+8y \ge 3, \\ x \ge 0, y \le 0 \end{cases}$$

下, 农目标函数 z=6x+4y 的最小值, 并判断有无最大值.

4. 在约束条件

$$\begin{cases}
-x+2y \leq 0, \\
x+2y \leq 12, \\
2x+y \leq 16, \\
x \geq 0, y \geq 0
\end{cases}$$

下, 求目标函数 z=3x+4y 的最小值与最大值.

前面我们讨论了目标函数中y的系数大于0的情况,现在我们 讨论y的系数小于0的情况.

例7 在约束条件

$$\begin{cases}
x+2y \leqslant 4, \\
x-y \leqslant 1, \\
x+2 \geqslant 0
\end{cases}$$

下,求目标函数 z=3x-y 的最小值和最大值.

解 当 z=-4,-2,0,1,3 时,可得到-组平行线

$$l_2:3x-y=-4;$$

 $l_1:3x-y=-2;$

$$l_0:3x-y=0;$$

$$l_1:3x-y=1;$$

$$l_2:3x-y=3.$$

由图 3-39 可知,当直线 lo 向上平移时,所对应的 z 随之减小; 当直线 lo 向下平移时,所对应的 z 随之增大.

作出可行域(如图 3-40).

可知,z=3x-y 随直线 $l_0:3x-y=0$ 向上平移而减小,随 l_0 向下平移而增大,所以,在顶点 B 取得最小值,在点 A 取得最大值.

顶点 B 是直线 x+2y=4 与直线 x+2=0 的交点,解方程组

$$\begin{cases} x+2y=4 \\ x+2=0 \end{cases}$$

可求出顶点 B 的坐标(-2,3), 代人目标函数,即可得最小值

$$z_{\min} = 3 \times (-2) - 3 = -9$$
.

顶点 A 是直线 x+2y=4 与直线 x-y=1 的交点,解方程组

$$\begin{cases} x+2y=4, \\ x-y=1, \end{cases}$$

得到顶点 A 的坐标为(2,1),代人目标函数,即可得最大值

$$z_{\text{mex}} = 3 \times 2 - 1 = 5$$
.

思考交流

请写出:在线性约束条件下,当6<0时,

- (1)直线 $l_0:ax+by=0$ 的平移方向与 z=ax+by+c 函数值的变 化趋势的关系;
 - (2)求z=ax+by+c的最小值或最大值的求解程序.

例 8 求 z=4a-2b 在约束条件

$$\begin{cases}
-1 \leqslant a - b \leqslant 2, \\
2 \leqslant a + b \leqslant 4
\end{cases}$$

下的最小值与最大值.

解 作出可行域(如图 3-41).

仿上例,可知 z 在顶点A 取得最小值,在顶点 C 取得最大值.

由
$$\begin{cases} a-b=-1, \\ a+b=2, \end{cases}$$
 得 $A\left(\frac{1}{2},\frac{3}{2}\right);$ 由 $\begin{cases} a-b=2, \\ a+b=4, \end{cases}$ 得 $C(3,1).$ 所以 $z_{\min} = 4 \times \frac{1}{2} - 2 \times \frac{3}{2} = -1,$ $z_{\max} = 4 \times 3 - 2 \times 1 = 10.$

练 习 2

1. 已知 x, y满足 $\begin{cases} 2 \leqslant x + y \leqslant 4, \\ -4 \leqslant x - y \leqslant -2, \end{cases}$ 别 2x - y 的取值范围是().

A. [-6.0]

B. [-5,-1]

C. [-6,-1]

D. [-5.0]

- 在△ABC中,三个项点的坐标分别为 A(2,4),B(-1,2),C(1,0),如果点(x,y)在△ABC 内部和边界上运动,那么 x-y 的最大值是 _______.
- 3. 4枝玫瑰花与5枝茶花的价格之和不小于22元,而6枝玫瑰花与3枝茶花的价格之和不大于24元, 试求2枝玫瑰花和3枝茶花的价格之差的最大值。

4.3 简单线性规划的应用

线性规划在实际中有广泛应用.下面我们通过对两个实例的分析,体会利用线性规划的方法解决问题的过程.

例9 医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每10g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10g含7单位蛋白质和4单位铁质,售价2元,若病人每餐至少需要35单位蛋白质和40单位铁质,试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?

解 设甲、乙两种原料分别用 10x g 和 10y g.

需要的费用为 z=3x+2y;

病人每餐至少需要 35 单位蛋白质,可表示为 $5x+7y \ge 35$;

同理,对铁质的要求可以表示为 10x+4y≥40.

这样,问题成为:在约束条件

$$\begin{cases}
5x+7y \geqslant 35, \\
10x+4y \geqslant 40, \\
x \geqslant 0, y \geqslant 0
\end{cases}$$

下,求目标函数 z=3x+2y 的最小值.

作出可行域,如图 3-42.

曲

> z = 0,作直线 $l_0 : 3x + 2y = 0$.

由图形可知,把直线 Lo 平移至顶点 A 时, z 取得最小值.

$$\begin{cases} 5x + 7y = 35, \\ 10x + 4y = 40, \end{cases} \notin A\left(\frac{14}{5}, 3\right).$$

所以用甲种原料 $\frac{14}{5}$ \times 10=28(g),乙种原料 $3\times$ 10=30(g),费用 最省.

例 10 某厂生产一种产品,其成本为 27 元/kg,售价为 50元/kg,生产中,每千克产品产生 0.3 m³的污水,污水有两种排放方式:

方式一: 直接排人河流.

方式二:经厂内污水处理站处理后排入河流,但受污水处理站技术水平的限制,污水处理率只有85%. 污水处理站最大处理能力是0.9 m³/h,处理污水的成本是5元/m³.

另外,环保部门对排人河流的污水收费标准是17.6元/m³,且允 许该厂排人河流中污水的最大量是0.225 m³/h.那么,该厂应选择怎 样的生产与排污方案,可使其每时净收益最大?

分析 为了解决问题,首先,要搞清楚是什么因素决定净收益. 净收益=售出产品的收入一生产费用,

其中生产费用包括生产成本、污水处理费、排污费等.

设该厂生产的产量为x kg/h,直接排入河流的污水为y m³/h, 每小时净收益为z元,则

- (1)售出产品的收入为 50x 元/h;
- (2)产品成本为 27x 元/h;
- (3)污水产生量为 0. 3x m³/h,污水处理量为(0. 3x-y) m³/h, 污水处理费为 5(0. 3x-y)元/h;
- (4)污水未处理率为 1-85%=0.15,所以污水处理厂处理后的污水排放量为 0.15(0.3x-y) m^3/h ,环保部门要征收的排污费为 17.6[0.15(0.3x-y)+y]元/h;

(5)
$$z = 50x - 27x - 5(0.3x - y) - 17.6[0.15(0.3x - y) + y]$$

= 20, 708x - 9, 96 y.

需要考虑的约束条件是:

- (1)污水处理能力是有限的,即 0≤0.3x-y≤0.9;
- (2)允许排入河流的污水量也是有限的,即

$$y+(1-0.85)(0.3 x-y) \le 0.225$$
.

解 根据题意,本问题可归纳为:在约束条件

$$\begin{cases} 0.3x - y \leq 0.9, \\ 9x + 170y \leq 45, \\ 0.3x - y \geq 0, \\ x \geq 0, y \geq 0 \end{cases}$$

下,求目标函数 z=20.708x-9.96y 的最大值.

作出可行域,如图 3-43,令 z=0 作直线 l_0 : 20.708x-9.96y=0, 由图形可以看出,平移直线 l_0 ,在可行域中的顶点 A 处,z 取得最大值.

图 3-43

解方程组
$$\begin{cases} 0.3x-y=0.9, \\ 9x+170y=45, \end{cases}$$
 得 $A(3.3,0.09).$

故该厂生产该产品 3.3 kg/h,直接排人河流的污水为 0.09 m 3 /h 时,可使每小时净收益最大,最大值为 20.708×3.3-9.96×0.9=67.44(元).

答 该厂应安排生产该产品 3.3 kg/h,直接排入河流的污水为 0.09 m³/h 时,其每小时净收益最大.

练习

A,B两个产地生产同一规格的产品,产量分别是 1.2 T t, 0.8 T t, 0.6 F t, 0.6 T t, 0.6 T

习题 3-4

A 组

1. 不等式组 $\begin{cases} x-3y+6 \ge 0, \\ x-y+2 \le 0 \end{cases}$ 表示的平面区域是().

(第1題)

2. 图中阴影部分区域所表示的不等式组是(

$$\mathbf{R} \begin{cases} x + y \leq 5, \\ 2x + y \leq 4 \end{cases}$$

$$C \begin{cases} x+y \geqslant 5, \\ 2x+y \leqslant 4 \end{cases}$$

D.
$$\begin{cases} x+y \ge 5, \\ 2x+y \ge 4 \end{cases}$$

3. 在直角坐标系中标出 $\{(x,y) | y \le 3, 2x - y - 3 \le 0, x, y \in \mathbb{N}_+\}$ 对应的点

(第2題)

4. 面出下列不等式组表示的平面区域。

$$(1) \begin{cases} y \leqslant 2x, \\ y \geqslant \frac{1}{3}x, \end{cases}$$

 $(x+4y \leq 3,$

$$(x-4y+3) = 0$$
,
 $3x+5y-25 \le 0$,

$$(2)\langle x \leq 8, \\ x \geq 0,$$

(y≥0,

- 5. 三角形三边所在的直线分别是x-y+5=0,x+y=0,x-3=0,求表示三角形内部区域的不等式组.
- 6. 求 f(x,y)=x+6y+7 的最大值,使(x,y)满足

$$\begin{cases} x+2y \leqslant 10, \\ 2x+y \geqslant 6, \\ y \geqslant 0. \end{cases}$$

B组

1. 在约束条件

$$\begin{cases} x+y \leqslant 8, \\ x+y \geqslant 2, \end{cases}$$

$$y \leqslant \frac{1}{2}x+5,$$

$$x \geqslant 0, y \geqslant 0$$

下,求z=2x-y的最小值与最大值.

2. 某宾馆准备建造一幢住宿楼,它设有单人房与双人房若干间,按要求,必须符合下列条件:该住宿楼最少能容纳50人住宿;单人房间每间面积10 m²,双人房间每间面积15 m²,且全部房间所占面积不超过480 m²;双人房的数目不得超过单人房数目.已知住宿楼建成开业后,每间单人房与每间双人房每月获益分别为250元与300元,试问:如何安排单人间与双人间的数目,才能使每月总的获益最大?

阅读材料

人的潜能

--- Dantzig 的故事

1947年,33岁的美国数学家 G.B. Dantzig 提出了解决一种最优化问题的单纯 形法,该方法奠定了线性规划的基础,使得经济学、环境科学、统计学应用等学科获得 了迅速发展,Dantzig也因而被誉为"线性规划之父".

Dantzig 的父亲是大学数学教授,但是他直到上初中时,对数学仍不感兴趣,甚至 在初中三年级时,代数成绩还不及格.对于这样的结果,Dantzig 非常内疚,他感到愧 对自己的数学家父亲,于是发奋努力,很快就发现其实数学并不难,逐渐地建立了自 信.上高中时 Dantzig 对父亲的数学题库非常着迷,他解决了所有的题目,并认为这 是父亲送给他的最珍贵的礼物.

在伯克利大学攻读统计学博士学位期间,"二战"爆发了,Dantzig 作为文职人员参加了空军. 1946年,Dantzig 返回伯克利并取得博士学位.

Dantzig 师从著名的统计学家 Neyman 教授. 在他们之间,发生过一个非常具有 传奇色彩的故事. 一天, Dantzig 因故迟到了,看到黑板上写着两道题目,以为是老师 留的课外作业,就抄了下来.在做的过程中,Dantzig 感到有点困难,最后用了好几天时间才完成,为此他还特意向 Neyman 教授道歉. 几周后的一个周末清晨,Dantzig 被一阵急促的敲门声吵醒. Neyman 教授一进门就激动地说:"我刚为你的论文写好一篇序言,你看一下,我要立即寄出去发表." Dantzig 过了好一阵才明白 Neyman 教授的意思:原来那是两道统计学中著名的未解决问题,他竟然当成课外作业解决了!

后来谈到这件事时,Dantzig 感慨道:如果自己预先知道这是两道著名的未解决的问题,根本就不会有信心和勇气去思考,也不可能解决它们。

Dantzig 的故事告诉我们:一个人的潜能是难以预料的,成功的障碍往往来自于 心理上的畏难情绪;一定要相信自己,保持积极的态度.

资料来源:数学译林,1990,9(2):139

0

89

œ.

0

65

8

0

0

69

0

6

6

0

6

0

8

0

臣

60

65

8

68

臣

◆ 本章小结建议

一、学习要求

1. 不等关系

通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

- 2. 一元二次不等式
- (1)经历从实际情境中抽象出一元二次不等式模型的过程.
- (2)通过函数图像了解一元二次不等式与相应函数、方程的 联系。
- (3)会解一元二次不等式,对给定的一元二次不等式,尝试 设计求解的程序框图.
 - 3. 基本不等式: $\sqrt{ab} \leqslant \frac{a+b}{2} (a,b \geqslant 0)$
 - (1)探索并了解基本不等式的证明过程.
 - (2)会用基本不等式解决简单的最大(小)值问题.
 - 4. 二元一次不等式组与简单线性规划问题
 - (1)从实际情境中抽象出二元一次不等式组.
- (2)了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组,
- (3)从实际情境中抽象出一些简单的二元线性规划问题,并 能加以解决.

二、复习建议

- 依据课本、笔记及作业总结本章的基本知识,掌握本章的基本方法,使知识有层次,有条理地呈现。
 - 2. 按学习要求中的四个部分,作出本章小结.
 - 3. 经过小结,作出本章知识框图.
 - 4. 本章复习时可供思考的问题:
 - (1)不等关系大量存在,你能再举些实际例子吗?
 - (2)什么是一元二次不等式? 怎么解一元二次不等式?
 - (3)什么是基本不等式? 你还能给出其他的几何解释吗?

0	
	(4)如何用基本不等式解决一些最大(小)值问题?
0	(5)二元一次不等式组的几何意义是什么?
	(6)怎样把二元一次不等式组表示成平面区域? (7)解决线性规划问题的基本步骤是什么?
	(8)如何从实际问题中体会线性规划的方法的应用?
	(9)本章的重点问题,你能总结出几个?
	5. 请同学互相交流学习本章的感受与思考.
0	
•	
0	
0	
0	
9	
0	
0	
0	
0	
-	
•	
0	
0	

复习题三

A 组

- 已知集合 M={x|0≤x<2},N={x|x²-2x-1<0},则集合 M∩N=().
 - A. $\{x \mid 0 \le x < 1\}$

B. $\{x \mid 0 \le x \le 1\}$

C. $\{x \mid 0 \le x < 2\}$

- D. $(x | 0 \le x \le 2)$
- 2. 已知 a>b>0,则下列不等式成立的是().
 - A. $a > \frac{a+b}{2} > \sqrt{ab} > b$
- B. $a > b > \frac{a+b}{2} > \sqrt{ab}$

C. $a > \frac{a+b}{2} > b > \sqrt{ab}$

- D. $a > \sqrt{ab} > \frac{a+b}{2} > b$
- 不等式 x-2y-1>0 表示的平面区域在直线 x-2y-1=0(
 - A. 左上方

B. 左下方

C. 右上方

D. 右下方

- 4. 解不等式.
 - $(1)2x^2-7x-15<0$

 $(2)x^2-4x+3 \ge 0$

 $(3)(3x-1)^2-4 \le 0$

- (4)(2x-3)(x+2)>4.
- m 为何值时,y=-x²+(2m+6)x-m-3在实数集上恒正或恒负?
- 求表示直线 x+2y-1=0 右上方区域的不等式。

7. 画出不等式组<x+2y≤4,表示的平面区域。

8. 已知 x,y 满足条件

$$\begin{cases} y \geqslant x, \\ x + 7y - 11 \leqslant 0, \\ 4x + y + 10 \geqslant 0, \end{cases}$$

求 z=4x-3y 的最大值和最小值.

 点 P(a,3)到直线 4x-3y+1=0 的距离等于 4,且在 2x+y-3<0 表示的平面区域内,求点 P 的 坐标.

B组

- 1. 解不等式(x-1)(x-2)<(x+3)(x-4)-20.
- 2. 解关于x的不等式: $(a-x)(x^2-x-2)>0$,其中常数a 是实数.
- 3. 用不等式组表示以(3,-2),(-3,0),(1,5)为顶点的三角形区域。
- 4. 咖啡馆配置两种饮料,甲种饮料每杯含奶粉9g,咖啡4g,糖3g;乙种饮料每杯含奶粉4g,咖啡5g,糖10g.每天原料的使用限额为奶粉3600g,咖啡2000g,糖3000g,若甲种饮料每杯获利0.7元,乙种饮料每杯获利1.2元,则应配置两种饮料各多少杯时才能使获利最大?

C 组

- 1. 设 $f(x) = ax^2 + bx$,且 $1 \le f(-1) \le 2, 2 \le f(1) \le 4$. 求 f(-2)的取值范围.
- 2. 某工厂拟造一座平面为长方形,且面积为200 m² 的三级污水处理池,由于地形限制,长、宽都不能超过16 m,处理池的高度一定。如果四周围池壁造价为400元/m,中间两道隔墙造价为248元/m,池底造价为80元/m²,那么如何设计污水池的长和宽,才能使总造价最低?

三角测量

一、问题背景和探究任务

雅鲁藏布大峡谷是世界第一大峡谷,对人类来说,她一直是个谜. 为了揭开大峡谷神秘的面纱,1998年10月,中国科学探险协会组织 "98中国天年雅鲁藏布大峡谷科学探险考察队",进行了人类首次徒 步穿越并考察雅鲁藏布大峡谷.这次野外徒步考察历时36天,其间 地质工作者对河流宽度、峡谷跨度、山体高度等开展了大量测量工作, 为保护和开发峡谷积累了第一手资料.

雅鲁藏布大峡谷地区州段

对于建筑物、山峰等的高度,两建筑物、山峰间的距离,往往无法 直接测量,这就需要精心设计测量方案,合理使用现有工具获得相关 数据,再使用这些相关数据经过计算,完成任务.

- 任务1 一座古塔矗立在河岸边,我们利用皮尺及测角仪怎样测量古塔的高度?
- 任务2 在某湖泊中有两个标志物,请你设计一个测量方案,使 得在湖的岸边通过测得的数据可以计算出两个标志物之间的距离.
- 任务3 在你生活的地区,自己选定一个测量物,设计测量方案, 完成测量,并写出测量报告.

二、实施建议

可以组成学习探究小组,集体讨论、分析,研究其中的数学问题,形成可行的探究方法,独立思考、计算,完成每个人的"成果报告".

- 2. 对完成任务1的建议:
- (1)如果在观测点 C 能够测量离古塔底部 B 的距离 BC,还需测量哪些数据,就能计算出古塔的高度 AB(如图所示)?
- (2)如果我们在河的另一岸,只选择一个观测点 C,能否通过测出 的数据计算出古塔的高度?若不能,还需增加几个观测点,才能通过 测量的数据计算出古塔的高度?请写出测量方案.
- (3)你还有其他的测高方案吗?评价这些测高方案,你认为哪些 较好?你评价的标准是什么?
 - 3. 对完成任务 2 的建议:

分析过程中用数据支持自己的观点,这样既可以使道理显得通俗 易懂,又利于揭示问题的本质.

 "成果报告"的书写建议: 成果报告可以下表形式呈现。

"三角测量"探究学习课题组成果报告表

14. **

ets -Des Live

			平级_	331	XE:	4_		_	元成时间	
课题组成员	分	I				主	要	页	献	
探究过程										
主要结论										
有何发现 和猜想										
探究体会										
建议										

成果交流: 探究小组推选一名代表,向全班报告研究成果,交流探 究体会. 5. 评价建议:

在评价中,采用自评、互评、教师评价相结合的形式,善于发现每 个成员工作中的特色,主要考虑以下几个方面:

- (1) 探究过程和结论,是否有序、清楚、简捷、正确;
- (2) 是否有独到的思考和发现;
- (3) 算法是否合理,信息技术应用是否适当;
- (4) 探究体会是否深刻,是否对大家很有启发;
- (5) 探究小组是否有效地合作,集体力量是否发挥良好.
- 6. 有心得的同学还可以撰写一篇小论文.

附录1

部分数学专业词汇中英文对照表

中文 英文

边长 length of edge

角度 degree 数列 sequence

等差数列 arithmetic progression 公差 common difference

不等式 inequality

等比数列 geometric progression

公比 common ratio

基本不等式 fundamental inequality 线性规划 linear programming

二元线性规划 binary linear programming

附录2

信息检索网址导引

1. 中国基础教育网

http://www.cbe21.com/

简介:中国基础教育网是由教育部基础教育课程教材发展中心与北京师范大学共同创 建的,面向全国基础教育工作者、学生、家长的专业服务平台,是中国基础教育领域的综合性 网站.

2. 基础教育教材网

http://www.100875.com.cn/

简介:基础教育教材网是由北京师范大学出版社创建的一个综合性网站,内容主要涉及 新课程标准改革研究、课题研究、教学研究、评价研究和教学资源等几个方面. 网站在提供教 学实例、教学课件的同时,也给教师和学生提供了交流互动的宽松平台.

后 记

本套教材是按照国家教育部于 2003 年 4 月颁布的《普通高中数学课程标准(实验)》编写的. 我们在编写过程中强调了数学课程的基础性和整体性,突出了数学的思想性和应用性,尊重学生的认知特点,创造多层次的学习活动,为不同的学生提供不同的发展平台,注意发挥数学的人文教育价值,好学好用.

教材的建设是长期、艰苦的任务,每一位教师在教学实践中要自主地开发资源,创造性 地使用教材. 我们殷切希望教材的使用者与我们携手合作,对教材的逐步完善提供有力的支持,促进基础教育课程改革的深入发展.

本套教材的编委会组成如下(按姓氏笔画排序):

王希平、王尚志、王建波、任志瑜、刘美仑、吕世虎、吕建生、李亚玲、李延林、汪香志、严士 健、张丹、张饴慈、张思明、姚芳、赵大悌、徐勇、戴佳珉.

参加本册教材编写的还有(按姓氏笔画排序):

仇金家、许书华、李延林、赵霞、顿继安、徐德前、黄龙如、焦继红。

由于时间仓促,教材中的错误在所难免,恳请广大使用者批评指正.

北京师范大学出版社