Project Requirements

Cryptographic requirement (50%): Implement the RSA public-key algorithms (Key generation + Encryption and Decryption for binary or text data), but you can call symmetric key encryption algorithms from existing libraries.

Applications requirement (50%): Authentication using your implemented RSA, and confidentiality using available symmetric key implementations.

Authentication processes (Examples)

clear-text message.

	Sender creates a clear-text messages
	Sender creates a SHA-1 Message digest of the clear text message
;	Sender encrypts the SHA-1 message digest using the RSA asymmetric encryption algorithm with the sender 's <u>private key</u> , producing a digital signature that is attached to the clear-text message.
	Receiver uses the RSA asymmetric encryption algorithm with the sender's public key to decrypt the digital signature and recover the SHA-1 message digest.
(Receiver generates a SHA-1 message digest from the clear-text message and compares the generated SHA-1 message digest with the decrypted SHA-1 message digest; if they match, then the message is accepted as authentic.
Confidentially protection processes (Examples)	
	Sender generates a random 128-bit number to be used as a session shared secret key (SSSK) for this message only
	Sender encrypts the clear-text message, and appends a digital signature,using a symmetric encryption algorithm, such as CAST-128, IDEA or 3DES, with the SSSK.
	Sender then encrypts the SSSK using RSA with each recipient's public key(s) and then appends each uniquely encrypted copy of the SSSK to the black-text message.
	Each <i>receiver</i> uses RSA with its <u>private key</u> to decrypt and recover their copy of the SSSK.
	The decrypted SSSK is used to decrypt the black-text message thereby recovering the

Topics relevant	
☐ E-voting system in organization	
☐ Chat (message) application	
☐ Email securing platforms	
☐ Evaluation system (Hung's example)	