Dr Neil Thomas

Lecture Outline

- **1. Statistical Physics.** The isothermal atmosphere: Ideal-Gas Law p = nkT and the Boltzmann factor $e^{-E/kT}$. Review of probability and statistics: molecular velocity and speed distributions. Collisions with the walls: Joule six-stream approximation and collision rate $\sqrt[4]{4nv}$ per unit area. Intermolecular collisions: scattering cross-section σ , mean free-path $l = 1/n\sigma$, mean free-time τ , drift velocity $v = \mu F$ and mobility $\mu = \tau/m$. Diffusion: Fick's Law $J_x = -D\partial n/\partial x$, diffusion coefficient D and the Einstein Relation $D = \mu kT$. Brownian motion and the random walk. Binomial probability distribution. Poisson and Gaussian distributions.
- **2. Thermal Equilibrium.** Microstates & macrostates. Order, disorder and the Boltzmann entropy $S = k \ln \Omega$ for a thermally isolated system. Equal *a priori* probabilities and maximum entropy. Zeroth Law of Thermodynamics. Thermodynamic temperature $T = (\partial U/\partial S)_V$. System in contact with a heat reservoir: the Boltzmann distribution and the partition function Z. Fluctuations. Two-level systems. Equipartition: classical and quantum harmonic oscillators. Black-body radiation and Johnson noise.
- 3. Thermodynamics. First Law: $\Delta U = \Delta Q + \Delta W$. Second Law: $\Delta S_{total} \geq 0$. Reversible and irreversible processes. Reversible heat $\Delta Q_{rev} = T\Delta S$. Latent heat. Clausius and Kelvin statements of the Second Law. Carnot cycle, heat engines and refrigerators. Functions of state. Infinitesimal changes: dU = dQ + dW and dU = TdS pdV. Entropy changes: heat capacity, compression/expansion of a gas, stretching a rubber band. Gibbs free-energy G: rubber elasticity, surface tension and phase equilibrium. Equilibrium conditions and availability A. Helmholtz free-energy F and enthalpy F. Maxwell relations. Joule-Kelvin effect. Third Law: $S \to 0$ as $T \to 0$. Adiabatic demagnetization.
- **4. Advanced Topics.** Perpetual-motion machines and Maxwell's Demon. Entropy and information. Negative temperatures. Microscopic view of heat and work. Chemical potential and an introduction to Fermi-Dirac statistics (time permitting).

Textbooks

Feynman, R.P. 1963 *The Feynman Lectures on Physics*, Volume I, Chs. 39–46 (Addison-Wesley). Covers basic kinetic theory and Brownian motion for Section 1 of the course.

Mandl, F. 1971 Statistical Physics (Wiley). Treats statistical mechanics and thermodynamics for Sections 2-4.

Further Reading

Adkins, C.J. 1983 *Equilibrium Thermodynamics*, 3rd ed. (Cambridge). Introduction to classical thermodynamics. Atkins, Peter 2007 *Four Laws that Drive the Universe* (Oxford University Press). Clear, concise overview. Dill, K.A. & Bromberg, S. 2010 *Molecular Driving Forces* 2nd ed. (Garland Science). Modern text with many examples of statistical mechanics and thermodynamics.

Dugdale, J.S. 1966 Entropy and Low Temperature Physics (Hutchinson). Good overview of entropy.

Fermi, E. 1966 Thermodynamics & Statistics (University of Chicago). Lecture notes in Fermi's own hand.

Flowers, B.H. & Mendoza, E. 1970 *Properties of Matter* (Wiley). Good reference for kinetic theory.

Kittel, C. 1969 Thermal Physics (John Wiley). Elegant presentation starting from microscopic theory.

Leff, H.S. & Rex, A.F. 2003 *Maxwell's Demon* 2nd ed. (Institute of Physics). Stimulating discussion of Maxwell's Demon together with classic scientific papers.

Pippard, A.B. 1966 *Elements of Classical Thermodynamics* (Cambridge University Press). Concise and elegant treatment of classical thermodynamics from a purely macroscopic viewpoint.

Reif, F. 1965 Fundamentals of Statistical & Thermal Physics (McGraw-Hill). More advanced treatment.

Zemansky, M.W. 1968 *Heat & Thermodynamics*, 5th ed. (McGraw-Hill). Good for applications.

n.thomas@bham.ac.uk