ROBOTIC OFF-AXIS FUSED FILAMENT FABRICATION

Gerardo A. Mazzei Capote

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science (Mechanical Engineering)

at the

University of Wisconsin-Madison

2018

Final Oral Examination: August 11th, 2018

Approval

The following thesis, Robotic Off-Axi	•	veloped
at the University of Wisconsin-Mad	ison has been approved by:	
Signature	Date	

Professor Tim A. Osswald
Department of Mechanical Engineering
College of Engineering
University of Wisconsin-Madison

Abstract

Yada Yada Yada

Acknowledgments

Thank you Prof. Osswald and Prof. Rudolph for your trust and patience. I couldn't hope for better advisors.

Thank you Tom for your extrusion expertise and polymer knowledge. I suppose the sass was OK too.

Thank you Luke for building the tools necessary for this whole project to work. And for answering all my random grammar questions.

Thank you Alec for being an ever-present helping hand, sounding board, and a great classmate. Hope you make ND proud.

Thank you to Thibaut, Colby and Brendan. This thesis would look like very different without your contributions.

Thank you to the entire PEC family for creating a great learning environment. I've grown so much with all of you. I hope that you've learned a thing or two with me as well.

Thank you to Ben, Josh, Diego, Iván and José for your friendship. Madison is an amazing city but you made it a lot more fun. I wish you the best, wherever your future leads you.

Gracias a mi familia, a quienes les debo todo.

Gracias Sonya por tu cariño, por tus consejos y por tu madurez. Te quiero.

Table of Contents

Fr	ont Matter	i
	Abstract	i
	Acknowledgments	ii
1	Motivation and Objective	1

Symbols and Acronyms

Acronyms

AM Additive Manufacturing

CAD Computer Aided Design

FDM Fused Deposition Modeling $^{\mathrm{TM}}$

FFF Fused Filament Fabrication

RP Rapid Prototyping

1 Motivation and Objective

Additive Manufacturing (AM) is an umbrella term that encompasses all fabrication techniques where the final geometry of the part is obtained through superposition of material in a layer-by-layer basis [1]. Developed in the 1980s, this manufacturing technique permits immensely shorter part development cycles since the transition from a 3D computer aided design (CAD) to part fabrication only requires one intermediate step: the use of a slicing engine that converts the geometry of the object into machine instructions [1]. For this reason, AM technologies were initially employed exclusively for prototype development and were referred to as Rapid Prototyping techniques (RP). However, recent innovations in the field have caused AM to be perceived as a legitimate manufacturing technology since it is also capable of reproducing complex geometries unattainable through other means [1].

While offering great advantages over traditional part fabrication methods, AM comes with its own set of limitations and disadvantages: First and foremost, the use of a stratified build approach tends to produce extremely anisotropic parts. Secondly, the geometric accuracy of the object produced is highly dependent of process parameters, particularly of the thickness of the layers. Finally, as of the time of this writing, AM lacks the standardization and scrutiny that are associated to most traditional manufacturing techniques [1].

Fused Filament Fabrication (FFF), also known under the trademark Fused Deposition Modeling (FDMTM), represents perhaps the most prevalent AM technique in the market due to the advent of low-cost, desktop 3D printers in the early 2010s [2]. Due to the broad availability of machines and relatively low costs of material, there's a surging interest in optimizing FFF to produce small batches of end user grade parts. Success stories include vacuum form molds, fixtures, jigs and tools used to aid assembly lines in the automotive industry [3, 4, 5]. However, this technology still faces the challenges and limitations that currently affect the field of AM as a whole. Namely, anisotropy introduced through the layer-by-layer build approach makes it difficult to assess the expected mechanical behavior of FFF produced parts when subjected to important stresses [2].

Bibliography

- [1] Ian Gibson, David Rosen, and Brent Stucker. Additive Manufacturing Technologies. 2nd Ed. Springer, 2015. ISBN: 978-1-4939-2112-6. DOI: 10.1007/978-1-4939-2113-3. URL: http://link.springer.com/10.1007/978-1-4939-2113-3.
- [2] G A Mazzei Capote et al. "Towards a Robust Production of FFF End-User Parts with Improved Tensile Properties". In: Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International. Austin, TX, 2017, pp. 507-518. URL: http://sffsymposium.engr.utexas.edu/sites/default/files/2017/Manuscripts/TowardsaRobustProductionofFFFEndUserParts.pdf.
- [3] Cole Hartman and Veronica de la Rosa. Benefits of 3D Printing Vacuum Form Molds. 2014. URL: http://studiofathom.com/wp-content/uploads/Vacuum-Forming-White-Paper-F001-5-1-2014.pdf.
- [4] Luke Van Hulle. "Robotic Off-Axis Fused Filament Fabrication". Master Thesis. University of Wisconsin-Madison, 2017.
- [5] Caspar de Vries. Volkswagen Autoeuropa: Maximizing production efficiency with 3D printed tools, jigs, and fixtures. 2017. URL: https://ultimaker.com/en/stories/43969-volkswagen-autoeuropa-maximizing-production-efficiency-with-3d-printed-tools-jigs-and-fixtures.