SEPTEMBER TENTATIVE PLAN

Sunday	Monday	Tuesday	Wednesday	THURSDAY	Friday	SATURDAY
					1	2
3	4	5	6	7	Section 0.1 Sets, containment, intersection, union	9
10	Section 0.1 and 0.2 Complements, indexed families of sets De Morgan's Laws, ordered pairs, Cartesian product, relations and functions	12	Section 0.2 Converse relations, composition of relations and functions	14	Section 0.3 Well-ordering principle and mathematical induction	16
17	Section 0.3 Well-ordering and induction continued Assignment 1 due	19	Section 0.4 Equivalent and countable set	21	Section 0.4 Equivalent and countable sets	23
24	25 Section 0.5 Begin Axioms of real numbers Quiz 1 in tutorial	26	Section 0.5 Axioms of real numbers, lower and upper bounds, Archimedean property	28	Section 0.5 Density or rationals and irrationals, existence of square roots, triangle inequality	30

OCTOBER TENTATIVE PLAN

SUNDAY	Monday	Tuesday	Wednesday	Thursday	Friday	SATURDAY
1	Section 1.1 Definition of sequences and convergence, open neighbourhoods Assignment 2 due	3	Section 1.1 Uniqueness of limits of sequences, boundedness and divergent sequences	5	$_{ m Fall\ break}$	7
8	9 Thanksgiving	10	Section 1.2 Definition of Cauchy sequences, convergent sequences are Cauchy, accumulation points	12	13 Test 1	14
15	Section 1.2 Bolzano-Weierstrass, Cauchy sequences are convergent Quiz 2 in tutorial	17	Section 1.3 Arithmetic operations on sequences	19	Section 1.3 Examples of sequences, inequalities of sequences (e.g. $a_n \leq b_n$ for all n)	21
22	Section 1.4 Subsequences Assignment 3 due	24	Section 1.4 Monotone sequences	26	27 Projects 0.1 and 1.4 Uncountability of real numbers via sequences	28
29	30 Section 2.1 Definition of the limit of a function Quiz 3 in tutorial	31				

November Tentative plan

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			Section 2.1 Examples of limits of functions	2	Section 2.2 Limits of functions and sequences	4
5	Section 2.2 Limits of functions and sequences	7	Section 2.3 Algebra of limits, products where one function is bounded, examples	9	10 Test 2	11
12	13 Remembrance day	14	Section 2.4 Definition of monotone functions, prepartory lemmas Assignment 4 due	16	Section 2.4 Limits of monotone functions exist everywhere except on a countable set	18
19	Section 3.1 Continuity at a point Quiz 4 in tutorial	21	Section 3.2 Examples $R^2 \to R$, algebra of continuous functions	23	Section 3.2 Algebra of continuous functions, compositions of continuous functions	25
26	Sections 3.3 Definition of uniform continuity, definition of closed, open and compact sets Assignment 5 due	28	Section 3.3 Continuous functions on compact sets are uniformly continuous	30		

DECEMBER TENTATIVE PLAN

SUNDAY	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					Section 3.4 Behaviour of continuous functions with respect to open, closed and compact sets	2
3	4 Section 3.4 Bolzano's Theorem Quiz 5 in tutorial	5	Section 3.5 Intermediate Value Theorem	7	Sections 4.1 and 4.2 Definition of the derivative at a point, derivatives and algebra of derivatives, or possibly review.	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30