

# Domain Agnostic Learning with Disentangled Representations



Xingchao Peng<sup>1</sup>, Zijun Huang<sup>2</sup>, Ximeng Sun<sup>1</sup>, Kate Saenko<sup>1</sup>

<sup>1</sup>Boston University <sup>2</sup>Columbia University

### Introduction

- Conventional domain adaptation:
  Single source domain with labels
  Single target domain without labels
- Domain Agnostic Learning:
  Single source domain with labels
  Mixed unlabeled target domain





Domain Agnostic Learning



# Datasets



## Deep Adversarial Disentangled Autoencoder



#### Class Disentanglement:

• Train class identifier:

$$\mathcal{L}_{ce} = -\mathbb{E}_{(x_s, y_s) \sim \widehat{\mathcal{D}}_s} \sum_{k=1}^{K} \mathbb{1}[k = y_s] log(C(f_D))$$

• Confuse class identifier:

$$\mathcal{L}_{ent} = -\frac{1}{n_s} \sum_{j=1}^{n_s} \log C(f_{ci}^j) - \frac{1}{n_t} \sum_{j=1}^{n_t} \log C(f_{ci}^j)$$

#### Domain Disentanglement:

Adversarial loss:

$$\mathcal{L}_{DI} = -\mathbb{E}[l_f \log P(l_f)]$$
$$-\mathbb{E}(1 - l_f)[\log P(1 - l_f)]$$

Feature Reconstruction

$$\mathcal{L} = \|\widehat{f}_G - f_G\|_F^2$$

#### Mutual Information Minimization:

$$I(\mathcal{D}_x; \mathcal{D}_{f_{di}}) = \int_{\mathbb{X} \times \mathcal{Z}} \log \frac{d\mathbb{P}_{XZ}}{d\mathbb{P}_X \otimes \mathbb{P}_Z} d\mathbb{P}_{XZ}$$

#### Ring-style Normalization

$$\mathcal{L}_{ring} = \frac{1}{2n} \sum_{i=1}^{n} (||T(x_i)||_2 - R)^2$$

# **Experiments on Digit-Five dataset**

| Models                         | mt→mm,sv,sy,up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $mm \rightarrow mt, sv, sy, up$ | sv→mt,mm,sy,up       | sy→mt,mm,sv,up | up→mt,mm,sv,sy  | Avg  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|----------------|-----------------|------|
| Source Only                    | 20.5±1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.5±0.9                        | 62.9±0.3             | 77.9±0.4       | 22.6±0.4        | 47.5 |
| DAN (Long et al., 2015)        | $21.7 \pm 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $55.3 \pm 0.7$                  | $63.2 \pm 0.5$       | $79.3 \pm 0.2$ | $40.2 \pm 0.4$  | 51.9 |
| DANN (Ganin & Lempitsky, 2015) | $22.8 {\pm} 1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $45.2 \pm 0.6$                  | $61.8 \pm 0.2$       | $79.3 \pm 0.3$ | $38.7 \pm 0.6$  | 49.6 |
| ADDA (Tzeng et al., 2017)      | $23.4 \pm 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $54.8 {\pm} 0.8$                | $63.5 \pm 0.4$       | $79.6 \pm 0.3$ | $43.5 \pm 0.5$  | 52.9 |
| UFDN (Liu et al., 2018a)       | $20.2 \pm 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $41.6 \pm 0.7$                  | $64.5 \pm 0.4$       | $60.7 \pm 0.3$ | $44.6 \pm 0.2$  | 46.3 |
| MCD (Saito et al., 2018)       | $28.7 \pm 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $43.8 \pm 0.8$                  | $75.1 \pm 0.3$       | $78.9 \pm 0.3$ | $55.3 \pm 0.4$  | 56.4 |
| DADA+class (I)                 | 28.9±1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.1±0.9                        | $65.4 \pm 0.2$       | $79.8 \pm 0.1$ | $50.4 \pm 0.3$  | 54.9 |
| DADA+domain (II)               | $34.1 \pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $57.1 \pm 0.4$                  | $71.3 \pm 0.4$       | $82.5 \pm 0.3$ | $45.4 \pm 0.4$  | 57.5 |
| DADA+ring (III)                | $35.3 \pm 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $57.5 \pm 0.6$                  | $80.1 \pm 0.3$       | $82.9 \pm 0.2$ | $46.2 \pm 0.3$  | 60.4 |
| DADA+rec (IV)                  | <b>39.4</b> $\pm$ 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>61.1</b> $\pm$ 0.7           | $80.1 \pm 0.4$       | $83.7 \pm 0.2$ | $47.2 \pm 0.4$  | 62.3 |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                      |                |                 |      |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 -                            |                      | 20 -           | Man Att         |      |
| 20 -                           | THE RESERVE TO SERVE THE PARTY OF THE PARTY | 20 -                            |                      |                | 410             |      |
| 10 -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | Array San            | 10 -           | 2.3             |      |
|                                | A VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 -                            | 101/4                | ,   "] 🐝       |                 |      |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 -                             | and the state of the | ,              |                 |      |
| -10 -                          | 第一年 1990年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -10 -                           |                      | -10 -          | <b>爱</b>        | · .  |
| -20 -                          | 35 To 10 To | -20 -                           |                      | -20 -          |                 |      |
| -20 -10 0 10 20 -30            | -20 -10 0 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 30 -20                        | -10 0 10             | -20            | -10 0 10        | 20   |
| (a) Source Features            | (b) UFDN Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (                               | c) MCD Features      | (d)            | ) DADA Features |      |

Figure 3. Feature visualization: t-SNE plot of source features, UFDN (Liu et al., 2018a) features, MCD (Saito et al., 2018) features and DADA features on agnostic target domain in  $sv \rightarrow mm, mt, up, sy$  setting. We use different markers and different colors to denote different categories. (Best viewed in color.)

## **Experiments on Office-Caltech10**

Table 2. Accuracy on Office-Caltech10 dataset with DAL protocal. The methods in the above table are based on "AlexNet" backbone and the methods below are based on the "ResNet" backbone. For both backbones, our model outperforms other baselines.

| Method                            | $A \rightarrow C,D,W$ | $C \rightarrow A,D,W$ | $\mathrm{D}  ightarrow \mathrm{A,C,W}$ | $W \rightarrow A,C,D$ | Average |
|-----------------------------------|-----------------------|-----------------------|----------------------------------------|-----------------------|---------|
| AlexNet (Krizhevsky et al., 2012) | 83.1±0.2              | $88.9 \pm 0.4$        | 86.7±0.4                               | 82.2±0.3              | 85.2    |
| DAN (Long et al., 2015)           | $82.5 \pm 0.3$        | $86.2 \pm 0.4$        | $75.7 \pm 0.5$                         | $80.4 \pm 0.2$        | 81.2    |
| RTN (Long et al., 2016)           | $85.2 \pm 0.4$        | $89.8 \pm 0.3$        | $81.7 \pm 0.3$                         | $83.7 \pm 0.4$        | 85.1    |
| JAN (Long et al., 2017)           | $83.5 \pm 0.3$        | $88.5 \pm 0.2$        | $80.1 \pm 0.3$                         | $85.9 \pm 0.4$        | 84.5    |
| DANN (Ganin & Lempitsky, 2015)    | $85.9 \pm 0.4$        | $90.5 \pm 0.3$        | $88.6 {\pm} 0.4$                       | $90.4 \pm 0.2$        | 88.9    |
| DADA (Ours)                       | $86.3 \pm 0.3$        | $91.7 \pm 0.4$        | $89.9 \pm 0.3$                         | $91.3 \pm 0.3$        | 89.8    |
| ResNet (He et al., 2016)          | 90.5±0.3              | 94.3±0.2              | $88.7 \pm 0.4$                         | 82.5±0.3              | 89.0    |
| SE (French et al., 2018)          | $90.3 \pm 0.4$        | $94.7 \pm 0.4$        | $88.5 \pm 0.3$                         | $85.3 \pm 0.4$        | 89.7    |
| MCD (Saito et al., 2018)          | $91.7 \pm 0.4$        | <b>95.3</b> ±0.3      | $89.5 \pm 0.2$                         | $84.3 \pm 0.2$        | 90.2    |
| DANN (Ganin & Lempitsky, 2015)    | $91.5 \pm 0.4$        | $94.3 \pm 0.4$        | $90.5 \pm 0.3$                         | $86.3 \pm 0.3$        | 90.6    |
| DADA (Ours)                       | $92.0 \pm 0.4$        | $95.1 \pm 0.3$        | <b>91.3</b> ±0.4                       | $93.1 \pm 0.3$        | 92.9    |



# **Experiment on DomainNet**

(d) DADA confusion matrix

(c) MCD confusion matrix

Table 3. Accuracy on the DomainNet dataset (Peng et al., 2018) dataset with DAL protocol. The table below shows the results based on AlexNet (Krizhevsky et al., 2012) backbone and the below are the results of ResNet (He et al., 2016) backbone. For both setting, our model outperforms other baselines.

| Models                            | clp→inf,pnt<br>qdr,rel,skt | inf→clp,pnt,<br>qdr,rel,skt | pnt→clp,inf,<br>qdr,rel,skt | qdr→clp,inf,<br>pnt,rel,skt | rel→clp,inf,<br>pnt,qdr,skt | skt→clp,inf,<br>pnt,qdr,rel | Avg  |
|-----------------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------|
| AlexNet (Krizhevsky et al., 2012) | $22.5\pm0.4$               | $15.3 \pm 0.2$              | $21.2\pm0.3$                | $6.0\pm0.2$                 | $17.2 \pm 0.3$              | $21.8 \pm 0.3$              | 17.3 |
| DAN (Long et al., 2015)           | $23.7 \pm 0.3$             | $14.9 \pm 0.4$              | $22.7\pm0.2$                | $7.6 \pm 0.3$               | $19.4 \pm 0.4$              | $23.4 \pm 0.5$              | 18.6 |
| RTN (Long et al., 2016)           | $21.4 \pm 0.3$             | $14.2 \pm 0.3$              | $21.0\pm0.4$                | $7.7 \pm 0.2$               | $17.8 \pm 0.3$              | $20.8 \pm 0.4$              | 17.2 |
| JAN (Long et al., 2017)           | $21.1 \pm 0.4$             | $16.5 \pm 0.2$              | $21.6\pm0.3$                | $9.9 \pm 0.1$               | $15.4\pm0.2$                | $22.5\pm0.3$                | 17.8 |
| DANN (Ganin & Lempitsky, 2015)    | $24.1 \pm 0.2$             | $15.2 \pm 0.4$              | $24.5 \pm 0.3$              | $8.2 \pm 0.4$               | $18.0 \pm 0.3$              | $24.1 \pm 0.4$              | 19.1 |
| DADA (Ours)                       | $23.9 \pm 0.4$             | $17.9\pm0.4$                | $25.4\pm0.5$                | $9.4 \pm 0.2$               | $20.5\pm0.3$                | $25.2 \pm 0.4$              | 20.4 |
| ResNet101 (He et al., 2016)       | $25.6 \pm 0.2$             | $16.8 \pm 0.3$              | $25.8\pm0.4$                | $9.2 \pm 0.2$               | $20.6 \pm 0.5$              | $22.3\pm0.1$                | 20.1 |
| SE (French et al., 2018)          | $21.3 \pm 0.2$             | $8.5 \pm 0.1$               | $14.5 \pm 0.2$              | $13.8 \pm 0.4$              | $16.0 \pm 0.4$              | $19.7 \pm 0.2$              | 15.6 |
| MCD (Saito et al., 2018)          | $25.1 \pm 0.3$             | $19.1 \pm 0.4$              | $27.0 \pm 0.3$              | $10.4 \pm 0.3$              | $20.2 \pm 0.2$              | $22.5\pm0.4$                | 20.7 |
| DADA (Ours)                       | 26.1±0.4                   | $20.0 \pm 0.3$              | $26.5 \pm 0.4$              | $12.9\pm0.4$                | $20.7 \pm 0.4$              | $22.8 \pm 0.2$              | 21.5 |

#### Conclusion

- Deep Features are high entangled
- Disentangle features to class-irrelevant and domain-specific features
- Disentangle features to domain-specific and domain-invariant features
- Mutual Information Minimization
- Ring Loss Normalization