1 Logik

semantische Äquivalenz verschiedene Syntax, aber Wahrheitstabelle gleich DNF, KNF $\begin{array}{c|c|c|c|c} A & B & DNF: (A \wedge B) \vee (A \wedge \neg B) & 1\text{-Zeilen} \\ \hline 1 & 0 & 1 & KNF: (A \vee B) \wedge (A \vee \neg B) & 0\text{-Zeilen} \\ \hline 1 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline \end{array}$ Resolution (KNF) $\begin{array}{c|c|c|c|c|c} A \vee B, & A \to B, & B \to C & \vDash C & \equiv \\ \hline (A \vee B) & \wedge (A \to B) & \wedge (B \to C) & \wedge \neg C \equiv \\ \hline (A \vee B) & \wedge (\neg A \vee B) & \wedge (\neg B \vee C) & \wedge \neg C \\ \hline \{A, B\} & \{\neg A, C\} & \{\neg B, C\} & \{\neg C\} \\ \end{array}$

Hornformeln Eine Hornformel hat höchstens ein positives Literal $\begin{cases} \text{Fakten} \\ A & \{A\} \\ B & \{B\} \end{cases} \\ \text{Begeln} \\ A \land B \to C & \{\neg A, \neg B, C\} \\ B \land C \to D & \{\neg B, \neg C, D\} \end{cases}$ Abfrage: Gilt E? $\neg E \cup DB$ unerfüllbar (Resolution) $Q \text{uantoren} \qquad \neg \forall x (P(x)) & \equiv \exists x (\neg P(x)) \\ \neg \forall x (P(x) \land Q(x)) & \equiv \forall x (P(x)) \land \forall y (Q(y)) \\ \neg \exists (P(x) \lor Q(x)) & \equiv \exists x (P(x)) \lor \exists y (Q(y)) \end{cases}$

ABER: $\forall x (P(x) \lor Q(x)) \quad \not\equiv \quad \forall x (P(x)) \lor \forall y (Q(y))$ Bsp: P = gerade Zahlen; Q = ungerade Zahlen $\exists x (P(x) \land Q(x)) \quad \not\equiv \quad \exists x (P(x)) \land \exists y (Q(y))$ $\forall x \forall y P(x,y) \qquad \equiv \quad \forall y \forall x P(x,y)$ $\exists x \exists y P(x,y) \qquad \equiv \quad \exists y \exists x P(x,y)$ ABER:

 $\forall x \exists y P(x, y)$ $\not\equiv \exists y \forall x P(x, y)$ ausser x = y

2 Mengenlehre

Mengen $A \subset B :\Leftrightarrow \forall x (x \in A \to x \in B) \mid A = B :\Leftrightarrow (A \subset B) \land (B \subset A)$ $A \cup B : \{x | x \in A \lor x \in B \mid A \land B : \{x | x \in A \land x \in B\}$ $A \setminus B : \{x \in A \land x \notin B\} \mid A \land B : \{x \in A \oplus x \in B\}$ Potenzmenge $P \text{ Menge aller Teilmengen } P(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$ $|P| = 2^{|A|} \qquad |P(\{a,b\})| = 4 = 2^2$

Komplementärmenge $\bar{A} := U \setminus A$ Achtung! $\bar{\varnothing}$ existiert nicht!

3 Relationen

Eigenschaften reflexiv: $\forall a \in A : (a, a) \in R(\text{Relation})$

Bsp: 3 | 3 wahr, \leq , =, |, \subset , \equiv_m Gegenbsp: 3 < 3 falsch, <, >, \neq , \, \nmid , \in

anti-reflexiv: $\forall a \in A : (a, a) \notin R$

Symmetrie: $\forall a, b \in A : (a, b) \in R \Leftrightarrow (b, a) \in R$

Bsp: =, \equiv_m

Anti-Symmetrie: $\forall a, b \in A : (a, b) \in R \land (b, a) \in R \Rightarrow a = b$

Bsp: $\leq, <, =$

transitiv: $\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R$

Bsp: $\leq, <, =, \equiv_m \text{Gegenbsp:} \neq, \notin$

ÄquivalenzR (\sim) reflexiv, symmetrisch, transitiv ($\forall a \in A : a \sim a$) etc. (s.o.)

Äq.rel. partitionieren Grundmenge (Bell-Zahlen)

Äq.rel. sind disjunkt oder identisch

Alle Elemente einer Äq.rel sind miteinander verbunden

Bsp: \equiv_m , =

OrdnungsR (OR) reflexiv (anti-reflexiv), anti-symmetrisch, transitiv

Bsp: \leq auf $\mathbb{N}, \mathbb{Z}, \mathbb{R}$; | auf \mathbb{N}

OR heisst wohlgeordnet, falls ∀ nichtleere Teilmengen ∃ kleinstes Element

Bsp: (\mathbb{N}, \leq) ; Gegenbsp: (\mathbb{Z}, \leq)

Hassediagramm Darstellung endlicher Partialordnungen (Teilbarkeit)

Kante in gleiche Richtung: mit gleichem Faktor multipliziert

kgV: nächsthöherer gemeinsamer Knoten, ggT: nächsttieferer gem. Knoten

4 Kombinatorik

Urnenmodell		geordnet	ungeordnet		
		A $(1,1)$ $(1,2)$ $(1,3)$	B $(1,1)$ $(1,2)$ $(1,3)$		
	mit Zurückl.	(2,1) $(2,2)$ $(2,3)$	(2,2) $(2,3)$		
		(3,1) $(3,2)$ $(3,3)$	(3,3)		
		$\begin{array}{cccc} (3,1) & (3,2) & (3,3) \\ \hline C & (1,2) & (1,3) \\ \end{array}$	D = (1,2) (1,3)		
	ohne Zurückl.	$(2,1) \qquad (2,3)$			
		(3,1) $(3,2)$			
	n Kugeln, k Ziehungen				
	$A: n^k B: \binom{n+k-1}{k} C: \frac{n!}{(n-k)!} D: \binom{n}{k}$				
Inklusion-Exklusion	$ A \cup B = A + B - A \cap B $				
	$ A \cup B \cup C = A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $				
	$ A_1 \cup \cup A_n = \sum A_i - \sum A_i \cap A_j + + (-1)^{n+1} A_1 \cap \cap A_n $				
Schubfachprinzip	Werden n Objekte auf $k < n$ Schubfächer verteilt,				
	so gibt es ein Schubfach, das mind. 2, resp. $\left \frac{n}{k}\right $ Objekte enthält				
	Bsp: Von 100 Leuten sind mind. $\left\lceil \frac{100}{12} \right\rceil = 9$ im gleichen Monat geboren.				
Doppeltes Abzählen	$ S = \sum m_a = \sum$	$\sum_{e B} n_b \qquad S = A \times B$			
		eB port			
		• .			
	$ \begin{array}{c cc} & 1 \\ \hline \text{Airline} & a & 1 \\ b & 0 \\ \end{array} $	1 0			
	Airline $\begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix}$	1 1			
	m_a Summe der Zeilen = Summe der angeflogenen Airports einer Airline				
	n_b Summe der Spalten = Summe anfliegenden Airlines eines Airports				
	S = Flugverbindungen				
	a fliegt zum Airport 1 und 2; Airport 2 wird von a und b angeflogen				
Binomialkoeffizient	$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k} = \binom{n-1}{k-1} + \binom{n-1}{k} \text{Pascal-}\triangle$				
	$(x+y)^n = \sum_{k=0}^n \left($	$\binom{n}{k} x^{n-k} y^k$ Spez.fälle: x=	y=1; x=-1, y=1		
Vandermonde-Identität	Kugeln in Gruppen unterteilen				
	$\binom{n}{k} = \sum_{t=0}^{k} \binom{r}{t}$	$\binom{n-r}{k-t} \qquad \text{Bsp: } \binom{2n}{n}$	$= \sum_{k=0}^{n} \binom{n}{k} \cdot \binom{n}{n-k}$		

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 4 & 5 & 2 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

Zyklendarstellung: $(1,3,5) \circ (2,4)$

benötigte Perm. bis zur Identität = kgV(Einzelzyklen)

Perm. einer n-Menge = n!

fixpunktfreie Perm. = $\frac{n!}{e}$

Stirling \triangle 1.Art

$$S1_{n,k} = S1_{n-1,k-1} + (n-1) \cdot S1_{n-1,k}$$

 $S1_{n,k} = \#$ Permutationen von n Elementen mit genau k Zyklen

n = 0:

n = 1: 1 0

n = 2: 0 1

n = 3: 0

n = 4: 06 11

Stirling \triangle 2.Art

$$S2_{n,k} = S2_{n-1,k-1} + k \cdot S2_{n-1,k}$$

 $S2_{n,k} = \#$ Partitionen einer n-Menge in k-Mengen

n = 0:

n = 1:

1

n = 2:

7

n = 3: 0 1

3

n = 4: 0 1

Bell-Zahlen

$$B_n = \sum_{k=0}^{n} S_{n,k}$$
 Summe einer Zeile des Stirling \triangle 2.Art

 $B_n = \# \text{ Aq.rel auf einer n-Menge}$

$P_{n,k}$

$$P_{n,k} = \sum_{i=1}^{k} P_{n-k,i}$$

 $P_{n,k}=\#$ ungeordnete Partitionen von $n\in\mathbb{N}$ durch k positive Summanden

Bsp: n = 4, k = 2: 4 = 1+3 = 2+2 $\Rightarrow P_{4,2} = 2$

n = 0:

1 0

n = 1:

n = 2:

1 1

n = 3: 1 1

n = 4: 1

1

1

geordnete Partitionen von $n \in \mathbb{N}$ durch k positive Summanden = $\binom{n-1}{k-1}$

Rekursionsgleichung

$$f_n = f_{n-1} + f_{n-2}$$
 $f_0 = 0; f_1 = 1$

Ansatz: $f_n = \lambda^n \Rightarrow \lambda^n = \lambda^{n-1} + \lambda^{n-2}$

$$(\lambda^2 - \lambda - 1) \cdot \lambda^{n-2} = 0 \Rightarrow \lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}$$

char. Polynom

Lsg:
$$f_n = a \cdot \lambda_1^n + b \cdot \lambda_2^n$$

Lsg. bei mehrfachen Nst: $f_n = a \cdot \lambda_1^n + b \cdot n \cdot \lambda_1^n + c \cdot n^2 \cdot \lambda_1^n$

Anfangsbedingungen einsetzen:

$$0 = a \cdot 1 + b \cdot \Rightarrow a = -b$$

$$1 = a \cdot \lambda_1 - a \cdot \lambda_2 \Rightarrow 1 = a(\lambda_1 - \lambda_2)$$

$$a = \frac{1}{\sqrt{5}}; b = -\frac{1}{\sqrt{5}}$$

$$f_n = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

5 Graphentheorie

Graph G = (V, E) V = Knoten, E = Kanten

$$\sum_{i} \deg(v_i) = 2|E|$$

Kreis Sei $(v_i, ..., v_l)$ paarweise verschiedene Knoten, $l \ge 3$

G Kreis: $\forall i = 1, ..., l - 1 : (v_i, v_{i+1}) \in E \land (v_l, v_1) \in E$

zsh. G zusammenhängend. : $\forall u, v \in V \exists u$ -v-Pfad

G = (V, E) hat mind. |V| - |E| Zsh.komp.

$$G \operatorname{zsh.} \Rightarrow |V| - |E| \leqslant 1$$

Teilgraph H = (V', E') Teilgraph von $G = (V, E) : V' \subset V \land E' \subset E \land E' \subset V' \times V'$

Brücke $e \in E$ Brücke: $G' = (V, E \setminus e)$ hat eine Zsh.komp. mehr als G = (V, E,)

Baum kreislos, zsh., $|V| \ge 2$, mind. 2 Blätter

G ist ein Baum

 \Leftrightarrow G ist zsh. $\wedge |V| = |E| + 1$

 \Leftrightarrow G ist kreislos $\wedge |V| = |E| + 1$

 \Leftrightarrow G ist zsh. \land jede Kante ist Brücke

 $\Leftrightarrow~G$ ist maximal kreislos (zusätzl. Kante ergibt Kreis)

 $\Leftrightarrow \ \, \forall u,v \in V \exists ! \text{ u-v-Pfad} \qquad \exists : \text{zsh., } ! \text{: Kreislosigkeit}$

Spannbaum Sei G=(V,E) Baum. H=(V,E') Spannbaum: H Baum $\wedge E' \subset E$

Kanten im Spannbaum = |V| - 1

 K_n : vollständiger Graph # Kanten im $K_n = \binom{n}{2} = \frac{n(n-1)}{2}$

Cayley # Spannbäume im $K_n = n^{n-2}$

 C_n : Kreis(Zyklen) der Länge $n, n \ge 3$

 $M_{m,n}$ $M_{m,n}$: Gittergraph, Meshgraph

 $K_{m,n}$ $K_{m,n}$: vollst. bipartiter (zweifärbbarer) Graph

 Q_d : d-dim. Hyperkubus

 $V = 0, 1^d$ $u, v \in E :\Leftrightarrow d_H(u, v) = 1$ d_H : Hammingdistanz

 $|E| = 2^{d-1} \cdot d \quad |V| = 2^d$

Eulertour	Kreis, der jede Kante genau einmal enthält					
	Ein zsh. Graph hat eine geschlossene Eulertour gdw. alle Knotengrade gerade sind					
	Bsp: K_n für n ungerade, Q_d für d gerade					
	Ein zsh. Graph hat eine offene Eulertour gdw. zwei Knotengrade ungerade sind					
Hamiltonkreis	Kreis, der jeden Knoten genau einmal enthält					
	$M_{m,n}$ hamiltonsch, falls $m \cdot n$ gerade und $n \ge 2$					
	Q_d hamiltonsch für $d \geqslant 2$					
	$G = (V, E)$ mit $\deg(V) \geqslant \frac{ V }{2} \forall v \land V \geqslant 3 \Rightarrow G$ hamiltonsch					
Planare Graphen	G = (V, E) planar, wenn er ohne Kantenüberschneidung gezeichnet werden kann.					
	G planar, zsh. $\Rightarrow V + f - E = 2$					
	G teilt die Ebene in f Gebiete					
	$G \text{ planar}, V \geqslant 3 \implies E \leqslant 3 V - 6 \land \overline{\deg(v)} < 6$					
	G planar, bipartit $\Rightarrow E \leq 2 V - 4 \land \overline{\deg(v)} < 4$					
	Achtung: Die Umkehrrichtung gilt jeweils nicht!					
	Nicht planar sind (vollständige Liste nach Kuratowski):					
	$K_5, K_{3,3} \qquad K_6, K_{3,4}, K_{4,4}, \dots$					
	Graphen, die den K_5 oder $K_{3,3}$ als Teilgraph enthalten					
	Unterteilte Graphen von K_5 oder $K_{3,3}$					
	Graphen, die diese unterteilte Graphen als Teilgraph enthalten					
Knotenfärbbarkeit	$G = (V, E)$ zsh. $ V \ge 2$, zweifärbbar = bipartit $(\chi(G) = 2)$					
	gdw er keinen Kreis ungerader Länge enthält					
	$G = (V, E)$ planar $\Rightarrow \chi(G) \leq 4$					
	$\chi(K_n) = n \chi(K_{m,n}) = 2 \qquad \chi(M_{m,n}) = 2$					
	$ \chi(Q_d) = 2 \chi(\text{Baum}) = 2 \chi(C_n) = \begin{cases} 2 & n \text{ gerade} \\ 3 & n \text{ ungerade} \end{cases} $					

6 Zahlentheorie

Teilbarkeit	$a \mid b \Leftrightarrow \exists n : a \cdot n = b \Leftrightarrow b \text{ ist Vielfaches von } a \Rightarrow b > a$						
Euklid.Restsatz	$a = q \cdot m + r$						
Rest	$r =: R_m(a)$						
Modulare Arithmetik	$a = b + q \cdot m \Leftrightarrow a \equiv_m b \Leftrightarrow m \mid (a - b) \equiv_m \text{ ist Äquivalenz relation}$						
"Resttheoreme"	$R_m(a+b) = R_m(R_m(a) + R_m(b))$						
	$R_m(a \cdot b) = R_m(R_m(a) \cdot R_m(b))$ $R_m(a^b) = R_m(R_m(a)^b)$						
Beispiel	$R_7(2011^{2011}) = R_7(R_7(2011)^{2011}) = R_7(2^{2011}) = R_7(2^{3 \cdot Q + 1}) = R_7(2^{3 \cdot Q} \cdot 2) = R_7(R_7(8^Q) \cdot R_7(2)) = R_7(R_7(8)^Q \cdot 2) = R_7(1^Q \cdot 2) = 2$						
Ideal (=ggT)	$(a,b) = \{x \cdot a + y \cdot b \mid a,b,x,y \in \mathbb{Z}\}\$						
	$\forall a_i \in \mathbb{Z} \ \exists d \in \mathbb{Z} : (a_1,, a_n) = \{z \mid d \mid z \in \mathbb{Z}\} = d\mathbb{Z}$						
ggT,kgV	d heisst ggT von a und b ,	b, falls: l heisst kgV von a und b , falls:					
	$d \mid a$	$a \mid l$					
	$d \mid b$	$b \mid l$					
	$c \mid a \land c \mid b \Rightarrow c \mid d$	$a \mid m \wedge b \mid m \Rightarrow l \mid m$					
	ggT(a,b) = d = (a,b)	$a \cdot b = \text{kgV} \cdot \text{ggT}$					
Erw.Euklid.Algo (EEA)	ggT(24,9)	24 9					
		24 1 0					
		$\begin{vmatrix} 9 & 0 \end{vmatrix}$ 0					
		$= 6 1 - 2 \cdot 0 = 1 0 - 2 \cdot 1 = -2$					
	$9-1\cdot 6$	$\begin{vmatrix} 3 & 0 - 1 \cdot 1 = -1 & 1 - 1 \cdot -2 = 3 \\ 0 & 1 - 2 \cdot (-1) = 3 & -2 - 2 \cdot 3 = -8 \end{vmatrix}$					
	$6-2\cdot 3$						
	$ggT(24,9) = 3 = -24 + 3 \cdot 9$						
Multiplikative Inverse	$a \cdot \underline{\underline{x}} \equiv_b 1$						
	Nur vorhanden, falls $ggT(a,b) = 1$						
Beispiel (mit EEA)	$57^{-1} \equiv_{128}$? 128 57						
	128 1 0						
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	$2 \mid 14 \qquad \mid 1 \qquad -2$						
	$4 \mid 1 \qquad \mid -4 \underline{9}$						
$-4 \cdot 128 + 9 \cdot 57 = 1 \Rightarrow \underline{9} \cdot 57 \equiv_{128} 1$							

Chin. Restsatz (CRS)
$$x \equiv_3 1$$
 $m_1 = 3$ $a_1 = 1$ $M = 3 \cdot 4 \cdot 5 = 60$ $x \equiv_4 3$ $m_2 = 4$ $a_2 = 3$ $x \equiv_5 3$ $m_3 = 5$ $a_3 = 3$ $M_i = \frac{M}{m_i}$: $M_1 = 20$, $M_2 = 15$, $M_3 = 12$ $20 \cdot N_1 \equiv_3 1 \rightarrow N_1 = 2$ $M_i N_i \equiv_{m_i} 1$ erraten : $15 \cdot N_2 \equiv_3 1 \rightarrow N_2 = 3$ $12 \cdot N_3 \equiv_3 1 \rightarrow N_3 = 3$ $\tilde{x} = R_M \left(\sum_{i=1}^r a_i M_i N_i \right)$ $\tilde{x} = R_{60} (1 \cdot 20 \cdot 2 + 3 \cdot 15 \cdot 3 + 3 \cdot 12 \cdot 3) = R_{60} (40 + 135 + 108) = R_{60} (283) = 43$ $x = \tilde{x} \pmod{60}$

Umwandlung in ein reguläres CRS-System aus CRS-System mit nicht teilerfremden Moduli

$$z \equiv_{6} 1 \begin{cases} z \equiv_{2} 1 \\ z \equiv_{3} 1 \end{cases}$$

$$z \equiv_{10} 3 \begin{cases} z \equiv_{2} 3 = z \equiv_{2} 1 \\ z \equiv_{5} 3 \end{cases}$$

$$z \equiv_{75} 28 \begin{cases} z \equiv_{3} 28 = z \equiv_{3} 1 \\ z \equiv_{25} 28 = z \equiv_{25} 3 \end{cases}$$

$$z \equiv_{25} 3 \end{cases} z \equiv_{6} 1 \Rightarrow \begin{vmatrix} z \equiv_{6} 1 \\ z \equiv_{25} 3 \end{vmatrix} z = 103 \pmod{150}$$

7 Algebra

Assoziativität $\forall a, b, c \in G : (a * b) * c = a * (b * c)$

Gruppe (G,*) Neutrales Element $\exists e : a * e = e * = a \forall a$

Inverses $\forall a \exists b : a * b = b * a = e$

Geometrische Gruppen Rotationen, Ähnlichkeitstrafos, Translationen, Spiegelungen

Symmetriegruppe s_n Spiegelungen und Rotationen am n-Eck $|s_n| = 2n$

Untegruppen $H \subset G$ falls H bzgl. * selbst eine Gruppe ist

Lagrange |H| |G|

Falls G Untergruppen hat, so sind diese paarweise disjunkt

Produkt von Gruppen $\mathbb{Z}_{15}^* = \{\binom{1}{1}, \binom{2}{1}, \binom{3}{1}, \binom{4}{1}, \binom{1}{2}, \binom{2}{2}, \binom{3}{2}, \binom{4}{2}\} = \{1, 2, 3, 4\} \times \{1, 2\} = \mathbb{Z}_5^* \times \mathbb{Z}_3^*$

 $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$

 $\mathbb{Z}_m = \mathbb{Z}_p \times \mathbb{Z}_q$ falls $m = p \cdot q$

Endliche Gruppen $\mathbb{Z}_p \quad \mathbb{Z}_{p-1}^* \quad p$ prim

Ordnung endl. Gruppen ord $(a) := \min\{i > 0 \mid a^i = e\}$

 $\operatorname{ord}(a) \mid |G| \quad a^{|G|} = e$

G heisst zyklisch, falls $\exists g \in G : \operatorname{ord}(g) = |G|$ Zyklische endl. Gruppen

 $G = \{g^0, g^1, g^2, ..., g^{|G|-1}\}$

g heisst Generator von G, $G = \langle g \rangle$

|G| prim $\Rightarrow G$ zyklisch $\Rightarrow G$ abelsch

|G| prim \Rightarrow jedes $g \neq e$ ist Generator

 \mathbb{Z}_n^* Beispiel

 $\mathbb{Z}_m^* := \{ a \in \mathbb{Z}_m | \operatorname{ggT}(a, m) = 1 \}$ φ -Funktion

 $\varphi(m) = |\mathbb{Z}_m^*| \quad \text{``Anzahl teilerfremde Zahlen von m''}$ $\varphi(m) = \prod_{i=1}^r (p_i-1) \cdot p_i^{e_i-1} \quad m = \prod_{i=1}^r p_i^{e_i} \quad \text{Primfaktorzerlegung}$

 $\varphi(p) = p - 1$

 $|\mathbb{Z}_{45}^*|$ $45 = 3^2 \cdot 5^1 \Rightarrow p_1 = 3, e_1 = 2; p_2 = 5, e_2 = 1$ Beispiel

 $\varphi(45) = (3-1) \cdot 3^{2-1} \cdot (5-1) \cdot 5^{1-1} = 2 \cdot 3 \cdot 4 = 24$

 $\forall m \geqslant 2 \ \forall a : ggT(a, m) = 1$ Satz von Fermat-Euler

 $a^{\varphi(m)} \equiv_m 1$

 $a^{p-1} \equiv_n 1$

 $R_p(a^x) \leftrightarrow x \xrightarrow{isomorph} \mathbb{Z}_p^*$ Diskreter Logarithmus

 $x \to R_n(a^x)$ einfach

 $R_p(a^x) \to x$ schwierig, lösbar z.B. mit Babystep-Giantstep

Babystep-Giantstep Algo Eingabe: zykl.endl.Gruppe G, Generator g, Gruppenelement a

Ausgabe: $x = \log_a a$

 $m := \left\lceil \sqrt{|G|} \right\rceil$

 $\forall j \in \{0,...,m-1\}$ berechne g^j und speichere (j,g^j) in der Tabelle T

 $\forall i \in \{0, ..., m-1\}$ berechne $a \cdot (g^{-m})^i$ und suche den Wert in T

Falls gefunden, gib im + j aus

 $R_{29}(11^x) = 3$ G = 29, g = 11, a = 3Beispiel

 $|G| = \varphi(29) = 28 \Rightarrow m := \lceil \sqrt{28} \rceil = 6$ $\frac{j}{11^{j}} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 5 & 26 & 25 & 14 \end{vmatrix}$

 $11^{-6} = 11^{28-6} = 13$

 $i = 2, i = 5 \Rightarrow x = 2 \cdot 6 + 5 = 17$

Körper $(K,+,\cdot)$ (K,+) abelsche Gruppe bzgl. Addition mit NE 0

 (K^*,\cdot) abelsche Gruppe bzgl. Multiplikation mit NE 1

 $\forall a, b, c \in K : a \cdot (b+c) = a \cdot b + a \cdot c$

Endliche Körper

$$(\mathbb{Z}_p, +, \cdot) =: GF(m)$$

pprim, $n \in \mathbb{N} \Rightarrow \exists !$ endlicher Körper mit p^n Elementen, genannt $GF(p^n)$

Werden Zeilen oder Spalten eines GF vertauscht,

so ist es immer noch der gleiche (isomorphe) GF

Beispiele

irreduzible Polynome

Analogon zu Primzahlen

Polynom hat Nullstellen \Rightarrow Nicht irreduzibel

Für Polynome mit Grad ≤ 3 gilt obiges in beide Richtungen.

iP über GF(2)

Grad 1:
$$x, x + 1$$

Grad 2:
$$x^2 + x + 1$$

Grad 3:
$$x^3 + x + 1$$
, $x^3 + x^2 + 1$

Grad 4:
$$x^4 + x^3 + 1$$
, $x^4 + x + 1$, $x^4 + x^3 + x^2 + x + 1$

Elemente des $GF(2^3)$

Elemente des GF(2):0,1

Nimm ein irreduzibles Polynom, z.B. $P = x^3 + x + 1 = 0$

Alle Polynome, die strikt kleiner sind als das Primpolynom, sind $\in GF(2^3) \Rightarrow 0, 1, x, x$

Teilbarkeit

$$a(x) \mid b(x) \Leftrightarrow \exists n(x) : a \cdot n(x) = b \Rightarrow \deg(b) \geqslant \deg(a)$$

Euklid.Restsatz

$$a(x) = q(x) \cdot m(x) + r(x)$$

Rest

$$r(x) =: R_{m(x)}(a(x))$$

Modulare Arithmetik

$$a(x) = b(x) + q(x) \cdot m(x) \Leftrightarrow a(x) \equiv_{m(x)} b(x) \Leftrightarrow m(x) \mid (a(x) - b(x))$$

Multiplikative Inverse

$$a(x) \cdot z(x) \equiv_{m(x)} 1$$

Beispiel (mit EEA)

Alice	Eve	Bob	
p, q := prim		m := Nachricht	$m \leqslant n$
$\rightarrow n = p \cdot q$			
$\to f = \varphi(n) = (p-1)(q-1)$			
e := ggT(e, f) = 1	$\xrightarrow{n,e}$	$c = R_n(m^e)$	
$\to d = q \cdot f + e^{-1}$	\leftarrow		
$\to m = R_n(c^d)$			
Angriffenunkto			

Angriffspunkte

Alice

- 1. Finde $n = p \cdot q$, berechne d und m wie Alice
- 2. $c = R_n(m^e)$ durchprobieren

Diffie-Hellman

Eve

Bob

 $K_{AB}=K_{BA}$ ist der gemeinsame Schlüssel