Contratação de term deposit

Disciplina: PCS5787 - Tópicos Especiais em Ciência dos Dados e Big Data (2022)

Grupo 7
Marcos Paulo Pereira Moretti
NUSP 9345363
Curso: Mestrado
Engenharia de Computação

Objetivo

- Predizer se um cliente vai contratar ou não um term deposit após um contato telefônico
- Comparar métodos de machine learning nessa tarefa de classificação
- Identificar as variáveis relevantes na contratação
- Identificar o público que mais contrata e menos contrata com base nas predições

Motivação

- Tópico muito explorado na literatura
 - Artigo recente* cita mais de 18 artigos outros com técnicas de modelagem para o problema Machine Learning for Bank Telemarketing Prediction
 - Busca por "machine learning bank telemarketing" (feita em 05/12/2022)
 na WoS traz 16 resultados, sendo 13 deles nos últimos 3 anos
- Apresentar ofertas personalizadas aos clientes de forma eficaz

^{*} H. Toulni et. al. S. C. K. Tékouabou, S. C. Gherghina, "A machine learning framework towards bank telemarketing prediction," Journal of risk and Financial Management, no. 15, June 2022.

Referências de **papers relevantes** sobre machine learning for bank telemarketing citados em [H. Toulni et. al. S. C. K. Tékouabou, S. C. Gherghina]

Table 1. Summary of the relevant papers dealing with direct bank telemarketing prediction using machine learning. SRAP = Scientific Research an Academy Publisher; CBWDJ = Class-based weighted decision jungle, JSCS = Japanese Society of Computational Statistics.

Ref.	Year	Nb_f	Tools	Algorithms	Metrics	Best Score (%)	Publisher	Type
Feng et al. (2022)	2022	21	Python	META-DES-AAP	Acc, AUC	89.39; 89.44	Elsevier	Article
Koumétio and Toulni (2021)	2021	13	Python	improved KNN	Acc, AUC, f_1	96.91	Springer	Chapter
Yan et al. (2020)	2020	21	_	S_Kohonen network	Acc	80	Elsevier	Article
Ghatasheh et al. (2020)	2020	21	-	CostSensitive-MLP	Acc	84.18	MDPI	Article
Selma (2020)	2020	21	(-	ANN	Acc; f_1	98.93; 95.00	Waset	Article
Birant (2020)	2020	21	12	CBWDJ	(Acc; Arec; Rec)	(92.70; 84.92; 75.93)	IntechOpen	Chapter
Tekouabou et al. (2019)	2019	21	Python	DT C5.0	DT C5.0 Acc, Prec, Rec, f_1		ACM	Conf
Farooqi and Iqbal (2019)	2019	21	WEKA	DT J48 Acc,Spe, Sen, prec AUC, f ₁		91.2; 95.9; 53.8; 62.7; 88.4; 58	IJRTE	Article
Mustapha and Alsufyani (2019)	2019	17	-	ANN	Info Gain, Entropy		The SAI	Article
Ilham et al. (2019)	2019	21	RapidMiner	SVM	Acc, AUC	97.7; 92.5	IOP	Chapter
Ładyżyński et al. (2019)	2019	21	H2O	RF,DL	prc, rec		Elsevier	Article
Koumétio et al. (2018)	2018	18	RapidMiner	DT C4.5	Acc, f_1	87.6; 81.4	IEEE	Conf
Moro et al. (2014)	2014	22	R/rminer	LR, DT, NN, SVM	AUC; ALIFT	80.0; 70.0	Elsevier	Article
Vajiramedhin and Suebsing (2014)	2014	8	*	C4.5	Acc, AUC	92.14; 95.60	Hikari	Article
Elsalamony (2014)	2014	17	SPSS	MLPNN, TAN, LR, C5.0	Acc, Sens, Spec	90.49; 62.20; 93.12	FCS	Article
Karim and Rahman (2013)	2013	21	WEKA	NB; C4.5	Acc, Prec, AUC	93.96; 93.34; 87.5	SRAP	Article
Elsalamony and Elsayad (2013)	2013	18	2	BC, RF, SC, GB (C5.0)	Acc; AUC; Kappa	96.11; 99.3; 91.70	SRP	Article
Moro et al. (2011)	2011	29	R/rminer	NB; DT; SVM	AUC; ALIFT	93.8; 88.7	EUROSIS-ETI	Article

Dataset escolhido

- Bank Marketing Data Set (UCI Repository)
 - Datasets sobre ligações telefônicas de campanhas de marketing de uma instituição bancária portuguesa
 - Ligações oferecendo term deposit
 - Variável resposta: contratou ou não o produto
- Dataset completo foi utilizado
 - 41.188 exemplos de ligações telefônicas
 - Ligações entre maio de 2008 e novembro de 2010
 - 21 atributos e 1 resposta

Fonte:

https://www.iconfinder.com/icons/2585818/bank_server_bank ing_database_bigdata_database_server_financial_database_icon https://archive.ics.uci.edu/ml/index.php (06/12/2022)

O que é term deposit?

- Investimento em renda fixa
- Emitido por instituição financeira
- Curto prazo
- Liquidado no vencimento do título
 - Maiores taxas de retorno
- Similar ao CDB (Certificado de Depósito Bancário)

Análise exploratória - target

Análise exploratória - target

- Target "levemente" desbalanceada
- Referências faltantes
- Referências fortemente desbalanceadas

Análise exploratória - Dados do cliente (pessoais)

Análise exploratória - Dados do cliente (crédito)

Análise exploratória - Dados do contato

Tipo do contato (telefone ou celular)

sucesso

Análise exploratória - Dados do contato

Dia da semana

У	day_of_week	no	yes	%yes		
2	thu	7578	1045	0.121		
3	tue	7137	953	0.118		
4	wed	7185	949	0.117		
0	fri	6981	846	0.108		
1	mon	7667	847	0.099		

aproximadamente mesma proporção de contratantes

Duração

parece discriminar, pois ligações mais longas geram mais contratações

não é possível utilizar essa variável em tempo de predição

Análise exploratória - Campanhas

 Contatos feitos na campanha atual

 Dias passados desde a última chamada

 Contatos feitos antes da campanha atual

previous	no	yes	%yes
5	5.000	13.000	0.722
6	2.000	3.000	0.600
3	88.000	128.000	0.593
4	32.000	38.000	0.543
2	404.000	350.000	0.464
1	3594.000	967.000	0.212
0	32422.000	3141.000	0.088
7	1.000	0.000	0.000

 Resultado da última campanha

poutcome	no	yes	%yes
success	479	894	0.651
failure	3647	605	0.142
nonexistent	32422	3141	0.088

> 10% de contratações quando fazemos até 3 ligações Não parece discriminar y

Depois de ser ligado 1 vez, 20% das ligações levaram à contratação

Sucesso na última campanha parece discriminar y

Análise exploratória - Índices externos

 Variação no índice de empregabilidade (trimestral)

 Índice de Confiança do Consumidor (CCI) (mensal)

 Índice de Preços do Consumidor (CPI) (mensal)

Euribor (Euro Interbank Offered Rate) (trimestral)

Análise exploratória - Correlações com a target

Variáveis selecionadas para modelagem

Não foram selecionadas:

- Variáveis temporais (alto desbalanceamento)
- duração (indisponível no tempo de predição)
- Dados pessoais do cliente (idade, profissão, estado civil, profissão)
- Correlação "muito baixa"

duration	0.405
anomes	0.352
year	0.348
euribor3m	0.319
poutcome_success	0.316
previous	0.230
contact_cellular	0.145
month_mar	0.144
month_oct	0.137
month_sep	0.126
default_no	0.099
job_student	0.094
job_retired	0.092
month_dec	0.079
month_apr	0.076
cons.conf.idx	0.055
marital_single	0.054
education	0.044
month_nb	0.037
<pre>poutcome_failure</pre>	0.032
job_admin.	0.031
age	0.030
job_unemployed	0.015
day_of_week_thu	0.014
housing_yes	0.012
day_of_week_tue	0.008
day_of_week_wed	0.006
marital_unknown	0.005
loan_no	0.005

-0.002
-0.003
-0.004
-0.005
-0.006
-0.007
-0.007
-0.009
-0.009
-0.011
-0.011
-0.012
-0.017
-0.021
-0.032
-0.032
-0.043
-0.066
-0.0/4
-0.099
-0.108
-0.136
-0.145
-0.194
-0.298
-0.325
-0.355

Modelagem - Feature engineering

- Encoding das variáveis categóricas
 - \circ yes/no/unknown \Rightarrow 1/0 (ex.: y, loan)
 - \circ success/failure/unknown \Rightarrow 1/0 (ex.: poutcome)
 - \circ cellular/telephone \Rightarrow 1/0 (ex.: contact)

- OneHotEncoding de variáveis categóricas
 - Dia da semana

day_of_week	day_of_week_fri	day_of_week_mon	day_of_week_thu	day_of_week_tue	day_of_week_wed
mon	0	1	0	0	0
tue	0	0	0	1	0
wed	0	0	0	0	1
thu	0	0	1	0	0
fri	1	0	0	0	0

Modelagem - Divisão em treino e teste

- Out-of-time
 - Treino: 05/2008 a 12/2008
 - o Teste: 01/2009 a 12/2009
- Removemos 2010, pois tinha muito desbalanceamento na quantidade de exemplos

Modelagem -Seleção de variáveis

- Remoção de variáveis muito correlacionadas
 - o pdays
 - emp.var.rate

0.75

- 0.50

- 0.25

0.00

- -0.25

-0.50

- -0.75

Modelagem - Treino dos modelos

- 15 variáveis utilizadas
- Grid Search para encontrar hiperparâmetros
 - Validação cruzada de 5 folds, avaliados com ROC-AUC
- 4 modelos treinados
 - Random Forest
 - XGBoost
 - KNN
 - Multi-Layer Perceptron

Fonte:

https://victorzhou.com/series/neural-networks-from-scratch/ (06/12/2022)

Resultados - Avaliação dos modelos

Resultados - Variáveis mais importantes

- Euribor indica o valor da taxa de ganho do investimento
- CPI é a inflação, ou seja, melhor se for menor
- Qtde. de chamadas na campanha também é importante

Resultados - Perfil mais propenso

pouco público

pouco público score_classificatio	ca	ett. of IIs	age	job	marital	education	default	housing	loan	contact	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m
3.0	0	2	58.50	admin.	divorced	university.degree	no	yes	no	cellular	70	20.50	NaN	0.00	-1.80	92.84	-50.00	1.66
4.0	0	91	38.33	blue- collar	married	high.school	no	yes	no	cellular	7	6.80	2.64	0.95	-1.85	92.90	-45.90	1.30
5.0	0 32	63	38.31	blue- collar	married	high.school	no	yes	no	cellular	11	3.01	4.82	0.65	-1.86	92.92	-45.89	1.57
6.0	0 71	80	39.22	admin.	married	university.degree	no	yes	no	cellular	104	1.71	5.57	0.25	-2.13	92.85	-43.13	133.07
7.0	0 8	44	42.93	admin.	married	university.degree	no	no	no	cellular	207	1.76	6.47	0.15	-3.08	92.54	-33.11	583.84
8.0	0	70	45.16	admin.	married	university.degree	no	yes	no	telephone	120	1.30	13.00	0.01	-3.17	92.40	-30.00	788.50

Conclusões

- Treinamos um classificador melhor que aleatório
- Descobrimos que os índices externos são importantes para determinar a contratação do investimento (Euribor, CPI, CCI)
- Também é importante a variável de contatos realizados na campanha
- Descobrimos um perfil de alta escolaridade, baixo tomador de crédito e boa qualidade de contatos (alta duração, mais dias para recall, menos recontatos na campanha) como potenciais contratantes

Fonte: https://www.stockio.com/free-icon/business-icons-idea (06/12/2022)

E o ciclo dos dados?

Executado aqui:

Análise de dados e modelagem

A fazer:

Deploy e escoragem com bases futuras ⇒ campanhas

Fonte: Aula 1 - Introdução à Ciência dos Dados e Big Data (PCS5787 -2022) (06/12/2022)

Muito obrigado!

Dúvidas?

Fonte: https://www.freeiconspng.com/images/question-mark-icon (06/12/2022)

Referências

- https://www.investopedia.com/terms/t/termdeposit.asp
- https://archive.ics.uci.edu/ml/index.php
- https://archive.ics.uci.edu/ml/datasets/bank+marketing
- H. Toulni et. al. S. C. K. Tékouabou, S. C. Gherghina, "A machine learning framework towards bank telemarketing prediction," Journal of risk and Financial Management, no. 15, June 2022
- Abbas, "Recognition of spoken languages from acoustic speech signals using fourier parameters," International Journal of Computer Applications, , no. 3, 2015.
- A. Alqaddoumi S. E. Saeed, M. Hammad, "Predicting customer's subscription response to bank telemarketing campaign based on machine learning algorithms," International Conference on Decision Aid Sciences and Applications (DASA), , no. 3, 2022.
- G. Casey D. Dheeru, "UCI machine learning repository," 2017.
- P. Cortez S. Moro and P. Rita, "A data-driven approach to predict the success of bank telemarketing. decision support systems," 2014.