Homework 1

1 Exercise 1

1.1

Let's define x_0 as the limit of the net

$$\sum_{a \in A} a \to x_0. \tag{1}$$

Since it converges, it means that there exist a set $F_0 \subset A$ such that for all $F > F_0$ the following holds

$$\|\sum_{a \in F} a - x_0\| < \epsilon \tag{2}$$

for a given $\epsilon > 0$. Since ϵ is arbitrary, we can choose $F_0' > F_0$ such that for all $F > F_0'$

$$\|\sum_{a\in F} a - x_0\| < \frac{\epsilon}{|\alpha|}.$$
 (3)

Then, by properties of the norm we obtain

$$\|\alpha\| \sum_{a \in F} a - x_0 \| < \frac{\epsilon}{|\alpha|} \alpha = \epsilon$$

$$\|\alpha \sum_{a \in F} a - \alpha x_0 \| < \epsilon$$

$$\|\sum_{a \in F} \alpha a - \alpha x_0 \| < \epsilon.$$

Where in the last step we used the fact that F is finite. This proves that $\alpha \sum_{a \in A} a$ converges to $\alpha x_0 = \alpha \sum_{a \in A} a$.

1.2

The hypothesis that $\sum_{a \in A} a$ and $\sum_{b \in B} b$ implies that there exists an F_0^a and F_0^b such that for every $F^a > F_0^a$ and $F^b > F_0^b$ the following holds

$$\|\sum_{a \in F^a} a - \sum_{a \in A} a\| < \frac{\epsilon}{2} \qquad \|\sum_{b \in F^b} b - \sum_{b \in B} b\| < \frac{\epsilon}{2}. \tag{4}$$

Denote $F_0 = F_0^a \cup F_0^b$, it follows that for every $F > F_0$

$$\begin{split} \| \sum_{x \in F} x - \sum_{a \in A} a - \sum_{b \in B} b \| &= \| \sum_{x \in F \cap A} + \sum_{x \in F \cap B} x - \sum_{a \in A} a - \sum_{b \in B} b \| \\ &\leq \| \sum_{x \in F \cap A} x - \sum_{a \in A} a \| + \| \sum_{x \in F \cap B} x - \sum_{b \in B} b \| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Because ϵ was arbitrary, we conclude that $\sum_{x \in A \cup B} \to \sum_{a \in A} a + \sum_{b \in B} b$.

1.3

Let's start by proving the following proposition:

Proposition 1. Any converging $\sum_{a\in A} a \to x$ of positive numbers has at most a countable number of non zero elements. That is, $\sum_{a\in A} x = \sum_{i\in \mathbb{N}} a_i$, meaning that they converge to the same value x.

Proof. Say that the net converges to M, i.e. $\sum_{a \in A} a = M < \infty$ where for every $a \in A$, a > 0. Consider now the sets $S_n = \{a \in A | a > \frac{1}{n}\}$, then

$$M \ge \sum_{a \in S_n} a \ge \sum_{a \in S_n} \frac{1}{n} = \frac{N}{n}.$$

As $M < \infty$ so is N which is the cardinality of the set S_n . It follows that

$$\#\{a \in A | a > 0\} = \#S = \# \bigcup_{n=\mathbb{N}}^{\infty} S_n \tag{5}$$

We conclude that A has at most countable number of non zero elements as countable union of finite sets.

Let's now prove the (\Longrightarrow) direction. Given the previously proven statement, we can rewrite the net as countable sum and thus define a corresponding sequence $x_n = \sum_{i=0}^n a_i$ where w.log. we associated every non zero element a of A to an index i so that $a_i = a$. From standard analysis we obtain that every converging increasing sequence is bounded from above, i.e. there exists $N \in R$ so that $x_n < N$ for every n. It follows that for every finite $F \subset I$

$$\sum_{a \in F} a \le \sum_{i \in \mathbb{N}} a_i \le N. \tag{6}$$

We now prove the opposite implication (\iff). Assume that $\sup \left\{ \sum_{a \in F} a : F \in \mathcal{F} \right\} = x_0$. We proceed now by contradiction, suppose that $\sum_{a \in A} a \to x_0 + t$ for an arbitrary t > 0. Let's define now what does it mean for a net to be increasing. Given a set F_0 , it holds that for every $F > F_0$ we have that $\sum_{a \in F} a \ge \sum_{a \in F_0} a$.

By the definition of net convergence for standard set inclusion as order, we obtain that the net $\sum_{a\in A} a$ is increasing. It follows that for every F, $\sum_{a\in F} \leq x_0 + t$. Moreover, since $\sum_{a\in A} a \to x_0 + t$, there exists and F_t such that $\forall F > F_t$ we have $\|\sum_{a\in F} a - x_0 - t\| < \frac{t}{2}$. It follows

$$\| \sum_{a \in F} a - x_0 - t \| \le 0$$

$$\| \sum_{a \in F} a - x_0 - t \| = \sum_{a \in F} a - x_0 - t < \frac{t}{2}$$

$$\sum_{a \in F} a > x_0 + \frac{t}{2}$$

Which is a contradiction. As this holds for any arbitrary t, $\sum_{a \in A} a \leq x_0$. Let's conclude the proof by showing that

$$\sup \left\{ \sum_{a \in F} a : F \in \mathcal{F} \right\} = \sum_{a \in A} a = x_0. \tag{7}$$

Take an arbitrary $x < x_0$. By contradiction, assume that $\sup \left\{ \sum_{a \in F} a : F \in \mathcal{F} \right\} = x$. Again, by convergence of the net, there exists a F_0 such that $\forall F > F_0$ we have $\|\sum_{a \in F} a - x_0\| < |x - x_0|$. As both quantities are negative, it follows that $\sum_{a \in F} a - x_0 > x - x_0$ which leads to the contradiction $\sum_{a \in F} a > x$. Combining it with the previous point we get the desired equality.

2 Exercise 2

2.1

Let's define $H' = \bigvee \mathcal{F}$. By theorem 4.13 we have that $\forall h \in H'$, h can be written as $h = \sum_{e \in F} \langle h, e \rangle e$ as F is the basis for H' again by theorem 4.13.

Moreover, for every $x \in H$, we have that by definition $P_F x \in H'$. We define the operator Q acting on x as such

$$Qx := \sum_{e \in F} \langle x, e \rangle e. \tag{8}$$

For Q to be equal to P_F , Qx has to be the unique elements in H' such that $x - Qx \perp H'$. We proceed by taking an orthogonal basis of H such that $\mathcal{E} \subset B$, this basis is guaranteed to exist given the proposition 4.2. By theorem 4.13 again, by trivially noting that $\bigvee H = H$,

x can be represented as $x = \sum_{e \in B} \langle x, e \rangle e$. It follows that

$$\begin{aligned} x - Qx &= \sum_{e \in B} \langle x, e \rangle e - \sum_{e \in F} \langle x, e \rangle e \\ &= \sum_{e \in F} \langle x, e \rangle e + \sum_{e \in B \setminus F} \langle x, e \rangle e - \sum_{e \in F} \langle x, e \rangle e \\ &= \sum_{e \in B \setminus F} \langle x, e \rangle e \end{aligned}$$

We conclude that since B is orthogonal, it follows that $x - Qx \perp H' = \bigvee F$.

2.2

By the previous point, we can write $P_{G}x = \sum_{e \in G} \langle x, e \rangle e$ for every $G \subset \mathcal{G}$. It follows that

$$P_F P_G x = P_F \left(\sum_{e \in G} \langle x, e \rangle e \right)$$

$$= \sum_{e \in G} P_F \langle x, e \rangle e.$$

$$= \sum_{e \in G} \sum_{e' \in F} \langle \langle e, x \rangle e, e' \rangle e'$$

$$= \sum_{e \in G \cap F} \langle e, x \rangle \langle e, e' \rangle e'$$

$$= \sum_{e \in G \cap F} \langle e, x \rangle e.$$

Where we used the orthogonality of P_F and the fact that the set F, G are orthonormal.

2.3

Given an arbitrary finite family of disjoin orthonormal basis $(F_n)_{n\in\mathbb{N}}$.

$$P_{\bigcup_{i=1}^{n} F_i} = P_{\bigcup_{i=1}^{n-1} \cup F_n} = P_{F_j \cup F_n}$$

Where $F_j := \bigcup_{i=1}^{n-1} F_i$. Thus, we just have to prove the above statement for two sets. This follows directly from the linearity of the sum, i.e.

$$P_{F_i}x + P_{F_j}x = \sum_{e \in F_i} \langle x, e \rangle e + \sum_{e \in F_j} \langle x, e \rangle e = \sum_{e \in F_i \cup F_j} \langle x, e \rangle e = P_{F_i \cup F_j}.$$

For the convergence, we have that for a fixed $\epsilon > 0$, for all $n > n_0$ the following holds

true:

$$\|P_{\bigcup_{i=1}^{\infty} F_i} x - \sum_{e \in \bigcup_{i=1}^{n} F_i} \langle x, e \rangle e\| = \|P_{\bigcup_{i=1}^{\infty} F_i} x - \sum_{i=1}^{n} \sum_{e \in F_i} \langle x, e \rangle e\| < \epsilon.$$
 (9)

Equivalently, for the same ϵ , there exists a n'_0 such that for all $n > n_0$

$$\|\sum_{i=0}^{\infty} P_{F_{i}}x - \sum_{i=0}^{n} P_{F_{i}}x\| = \|\sum_{i=0}^{\infty} P_{F_{i}}x - \sum_{i=0}^{n} \sum_{e \in F_{i}} \langle e, x \rangle x\| < \epsilon$$
 (10)

By taking $\overline{n} = \max(n_0, n'_0)$ we get that both limits converge to the same value. By uniqueness of the limit we have that

$$P_{\bigcup_{i=1}^{\infty} F_i} x = \sum_{i=1}^{\infty} P_{F_i} x. \tag{11}$$

2.4

We prove by giving a counterexample that $\sum_{i=1}^{\infty} P_{F_i}x$ does not converge in the operator norm. Let's define $F_i = e_i$ where $e_i \cap e_j = \emptyset$ and $||e_i|| = 1$ for every i. Take now $\epsilon = \frac{1}{2}$, then, for for every n > N

$$\|\sum_{i=0}^{\infty} P_{F_i} x - \sum_{i=0}^{n} P_{F_i} x\| = \|\sum_{i=n}^{\infty} P_{F_i} x\| = 1 > \frac{1}{2}$$

Therefore, for $\epsilon = \frac{1}{2}$ there exists no n > 0 such that the difference of the norm converges.

3 Exercise 3

3.1

3.1.1 Inner product

We start by proving that H is indeed an inner product space given the definition of inner product $\langle x, y \rangle = \sum_{i \in I} \langle x(i), y(i) \rangle_i$, $x, y \in H$.

The first property we prove is the conjugate symmetry. For any $x, y \in H$ and assume the net converges $\langle x, y \rangle \to x_0$. Then, for a fixed $\epsilon > 0$, there exists an F_0 such that for all

 $F > F_0$

$$\begin{split} & \|\overline{\langle x,y\rangle}_F - \overline{x_0}\| < \epsilon \\ & \|\overline{\sum_{i \in F} \langle x_i,y_i\rangle} - \overline{x_0}\| < \epsilon \\ & \|\sum_{i \in F} \overline{\langle x_i,y_i\rangle} - \overline{x_0}\| < \epsilon \\ & \|\sum_{i \in F} \langle y_i,x_i\rangle - \overline{x_0}\| < \epsilon. \end{split}$$

we conclude that $\overline{\langle x, y \rangle} \to \overline{x_0}$.

3.1.2 Linearity in the first argument

We approach the proof in the same fashion as in the previous part. Assume $\langle x,y\rangle$ converges in H to x_0 . Then, for every $F>F_0$

$$\|\langle x, y \rangle_F - x_0\| < \frac{\epsilon}{\lambda}$$

$$|\lambda| \|\langle x, y \rangle_F - x_0\| < \frac{\epsilon}{|\lambda|} |\lambda| = \epsilon$$

$$\|\lambda \langle x, y \rangle_F - \lambda x_0\| < \epsilon\| < \lambda x, y >_F - \lambda x_0\|$$

$$< \epsilon$$

Where in the last equality we used the linearity of the norm in a finite dimensional setting.

3.1.3 Positive semi-definiteness

This part is trivial as $\langle x_i, x_i \rangle$ for any $i \in I$. It follows that

$$\langle x, x \rangle = \sum_{i \in I} \langle x_i, x_i \rangle > 0.$$
 (12)

Then the so defined inner product satisfies the inner product properties.

3.1.4 Well definiteness

Here we show that for every $x, y \in H$, $\langle x, y \rangle \in \mathbb{K}$.

$$\begin{split} \langle x,y \rangle &= \sum_{i \in I} \langle x_i,y_i \rangle \\ &\leq \sum_{i \in I} |\langle x_i,y_i \rangle| \\ &\leq \sum_{i \in I} \|x_i\| \|y_i\| \\ &\leq \sum_{i \in I} \|x_i\|^2 + \sum_{i \in I} \|y_i\|^2 < \infty. \end{split}$$

Where in the first inequality we used the Cauchy-Schwarz inequality.

3.2 Completeness

We now proceed to prove the completeness of H.

4 Exercise 4

4.1

Let's start noting how the operator S affects the inner product.

$$\langle Sx, y \rangle = \langle (0, x_1, \dots), y \rangle = \sum_{i=1}^{\infty} x_i y_{i+1}$$

We can see that the inner product with x and the adjoint on y must be equal $\langle x, S^*y \rangle = \sum_{i=1}^{\infty} x_i y_{i+1}$ which is the left shift operator

$$S^*(x_1, x_2, \dots) = (x_2, x_3, \dots)$$

4.2

Let's compute now te concatenation of S and its adjoint.

$$SS^*(x_1, x_2, \dots) = S(x_2, x_3, \dots) = (0, x_2, x_3, \dots)$$

Conversely

$$S^*S(x_1, x_2, \dots) = S(0, x_1, x_2, x_3, \dots) = (x_1, x_2, \dots) = x$$

4.3

And we can extend this to S^n and $(S^*)^n$

$$S^{n}(S^{*})^{n}x = (0^{n}, x_{n+1}, n_{n+2}, \dots)$$

and similarly

$$(S^*)^n S^n = x$$