PRIMO PROGETTO ASD 2019/2020

PRIMO PROGETTO ASD 2019/2020

UN NUOVO SINDACO IN CITTÀ

A Trento è stato eletto un nuovo sindaco! È un temuto professore di algoritmi, che nel tempo libero ha deciso di dedicarsi alla politica. Con il partito «Algoritmi, Cricche e Libertà», ha stravinto le elezioni!

IL SUO PROGRAMMA

Oltre ad avere a cuore i suoi studenti, il nuovo sindaco tiene molto alla città ed i suoi cittadini.

IL SUO PROGRAMMA

Oltre ad avere a cuore i suoi studenti, il nuovo sindaco tiene molto alla città ed i suoi cittadini.

Dopo un consulto con l'assessore alla Salute (M. F.) e l'assessore allo Sport (M. B.), ha stilato una lista di interventi che vorrà fare per la città. Tra le varie cose, ha pensato di incentivare l'uso delle biciclette e costruire nuove piste ciclabili!

IL SUO PROGRAMMA

Oltre ad avere a cuore i suoi studenti, il nuovo sindaco tiene molto alla città ed i suoi cittadini.

Dopo un consulto con l'assessore alla Salute (M. F.) e l'assessore allo Sport (M. B.), ha stilato una lista di interventi che vorrà fare per la città. Tra le varie cose, ha pensato di incentivare l'uso delle biciclette e costruire nuove piste ciclabili!

In realtà, stufo di trovare i 5 sempre troppo pieni, vorrebbe convincere gli studenti ad andare a Povo in bicicletta, per poi riuscire finalmente a trovare un posto sull'autobus!

LE NUOVE PISTE CICLABILI

Per attuare ciò, ha identificato *N* luoghi principali in tutta la città, punti di maggior interesse per gli abitanti. Le piste ciclabili già presenti e che verranno costruite sono tutte bidirezionali e collegano ciascuna due luoghi diversi. Come primo obbiettivo, ha voluto assicurarsi che **tutti i luoghi siano sempre raggiungibili dovunque ci si trovi in città**.

CICLI CICLABILI

Dopo un ulteriore consulto con il Vicesindaco (C. C.) - con delega al Riposo e al Divertimento - si decide di introdurre una miglioria alle piste che ridurrà la fatica degli studenti: ora nessuno dovrà più fare giri inutilmente!

tutti i luoghi che fanno parte di un percorso circolare semplice, dovranno essere collegati tra loro in maniera diretta. Un percorso circolare semplice è un insieme di piste ciclabili che collega un punto della città a se stesso, senza passare per nessun luogo due volte.

In altre parole, l'insieme di luoghi in ogni ciclo semplice, costituisce un sottografo completo.

IL VOSTRO COMPITO

Dopo l'inaugurazione delle nuove piste ciclabili, vari abitanti si chiedono come raggiungere i vari punti della città nel modo più veloce possibile. Sono molte le domande che arrivano al sindaco, che avrà bisogno di aiuto per rispondere a tutti! Il sindaco vi fornirà:

- ▶ la mappa della città, con gli *N* luoghi di interesse e le piste ciclabili che ha fatto costruire, facendo rispettare i requisiti sopra elencati.
- un elenco di tutte le richieste dei cittadini, che indicheranno il punto da cui vogliono partire e quello che vogliono raggiungere.

IL VOSTRO COMPITO

Per ciascuna richiesta dovrete comunicare la **minima distanza** che il cittadino dovrà percorrere, in termini di numero di piste ciclabili attraversate.

ESEMPIO I

Richieste (partenza, destinazione): (0, 1), (6, 3), (3, 1), (6, 5), (3, 5). **Risposte** (distanze minime): 1, 2, 3, 1, 2.

ESEMPIO II

Richieste (partenza, destinazione): (9, 10), (1, 3), (2, 3), (9, 1), (10, 6). **Risposte** (distanze minime): 1, 3, 3, 2, 1.

ESEMPIO III - INPUT NON VALIDO

Non troverete tra gli input mappe come questa:

Infatti, il ciclo formato dai nodi 0, 2, 10, 6, 5 non costituisce un sottografo completo.

INPUT/OUTPUT

Input:

- La prima riga riporta 3 numeri interi positivi: N, M e Q, rispettivamente il numero di luoghi, di piste ciclabili e di richieste.
- Le successive M righe descrivono la mappa: ciascuna riga contiene due interi a_i e b_i , compresi tra 0 ed N-1, ad indicare che a_i e b_i sono collegati da una pista ciclabile.
 - ▶ Nota: è garantito che la mappa sia un grafo connesso.
- Le successive Q righe forniscono le richieste: ciascuna contiene due interi u_j e v_j , compresi tra 0 ed N-1, i luoghi tra i quali si vuole conoscere la distanza.

Output: Q righe, la j-esima riga deve contenere la risposta alla j-esima richieta: ossia il minimo numero di piste ciclabili che bisogna percorre per arrivare da u_i a v_j .

ESEMPIO I (INPUT/OUTPUT)

3 5

Input:

Output:

ESEMPIO II (INPUT/OUTPUT)

Input:

```
11 17 5
0 5
  10
  10
  10
  8
  10
8 10
9 10
```

9 10 1 3 2 3 9 1 10 6

Output:

NOTE SU INPUT

ASSUNZIONI GENERALI

- 1 < N < 50000
- 1 < *M* < 500000
- 1 < Q < 50000
- Ogni grafo è connesso.
- Ogni grafo è non diretto.

CASI DI TEST

- Ci sono 20 casi di test in totale.
- In almeno 6 casi *N* < 10000 e *Q* < 10000.
- In almeno 10 casi l'input è un albero.
- In almeno 14 casi l'input è un albero con al più una cricca.

I limiti di tempo e memoria sono:

- Tempo limite massimo: 2 secondi.
- Memoria massima: 32 MB.

ESEMPIO (ALBERO CON UNA CRICCA)

Un albero con una cricca è costruito aggiungendo un arco tra due nodi in modo da creare un ciclo e collegando tutti i nodi che fanno parte del ciclo.

PUNTEGGIO

Ogni caso di test vale 5 punti. Il punteggio massimo è di 100 punti.

Per ogni caso di test per cui la vostra soluzione fornisce un output entro i limiti di tempo e memoria:

- se avete calcolato correttamente tutte le distanze richieste ottenete 5 punti;
- in caso contrario, 0 punti.
- x se uno o più risposte sono errate si ottengono comunque 0 punti.
- ⇒ La sufficienza è posta a 30 punti.
- ⇒ C'è un limite di 40 sottoposizioni per gruppo.

PUNTI BONUS PER L'ESAME

L'assegnazione punti avviene in maniera competitiva:

- 3 punti ai gruppi nel primo terzile della classica (primo terzo della classifica, punteggio maggiore a quello fatto da almeno 2/3 dei gruppi);
- 2 punti ai gruppi nel secondo terzile della classifica (secondo terzo della classifica);
- 1 punto ai gruppi nel terzo terzile della classifica (ultimo terzo della classifica).

Vengono considerati nella classifica per l'assegnazione dei punti solamente i **gruppi che raggiungono la sufficienza** (punteggio maggiore o uguale a 30).

CONSEGNA

Consegna: 13 dicembre ore 13:00

Per caricare il vostro codice, recatevi su

https://judge.science.unitn.it/arena

SUGGERIMENTI

Cominciate subito a lavorare al progetto per presentarvi al prossimo laboratorio (martedì 10 dicembre) con tutte le domande che vorrete fare.

In ogni caso, sappiate che:

- potete venire a ricevimento
- risponderemo alle vostre mail

Do's

È PERMESSO:

- Discutere all'interno del gruppo
- Chiedere chiarimenti sul testo
- Chiedere opinioni su soluzioni
- Sfruttare codice fornito nei laboratori
- Utilizzare pseudocodice da libri o Wikipedia
- Richiedere aiuto (anche pesante) per la soluzione "minima"
- Venire a ricevimento

DONT'S

È VIETATO:

- Discutere con altri gruppi
- Mettere il proprio codice su repository pubblici
- Utilizzare codice scritto da altri
- Condividere codice (abbiamo potenti mezzi!)

RICEVIMENTO

DATE E ORARI

- lunedì 9 dicembre 2019 dalle 9:00 alle 11:00;
- martedì 10 dicembre 2019 dalle 15:30 alle 17:30 in A101 (ricevimento in lab);
- mercoledì 11 dicembre 2019 dalle 10:30 alle 12:30;
- giovedì 12 dicembre 2019 dalle 10:30 alle 12:30 in B107 (ricevimento in lab);
- ⇒ Prima di venire a ricevimento (escludendo quelli in laboratorio), è obbligatorio richiedere appuntamento via mail (martin.brugnara@unitn.it) e

```
(martin.brugnara@unitn.it) e
(marta.fornasier@studenti.unitn.it).
```