I Questions de cours : programme de base

- 1 Montrer que les normes usuelles $\left\|\cdot\right\|_1$ et $\left\|\cdot\right\|_\infty$ sont des normes sur \mathbb{K}^n et que $\left\|\cdot\right\|_2$ est une norme sur $\mathbb{R}^n.$
- 2 Montrer que l'ensemble des suites bornées à valeurs dans un espace vectoriel normé est un espace vectoriel.
- 3 Démontrer que dans un espace vectoriel normé toute boule fermée est une partie convexe.
- 4 Démontrer que dans un espace vectoriel normé toute boule fermée est une partie fermée.
- 5 Démontrer que toute fonction lips chitzienne sur une partie d'un espace vectoriel normé y est continue.

II Questions de cours : programme renforcé

- 1 Démontrer que dans un espace vectoriel normé tout boule ouverte est une partie convexe.
 - 2 Énoncer et démontrer le théorème d'encadrement pour les suites de vecteurs.
 - 3 Énoncer et démontrer les inégalités entre les normes usuelles de $\mathbb{K}^n.$

III Questions de cours : programme ultime

- 1 Démontrer que la norme usuelle $\|\cdot\|_2$ est bien une norme sur \mathbb{C}^n .
- 2 Démontrer que le produit de deux suites convergentes dans un espace vectoriel normé est une suite convergente.
- 3 Donner les parties ouvertes induites par une fonction continue puis démontrer ce résultat.
- 4 Donner les parties fermées induites par une fonction continue puis démontrer ce résultat.

IV Exercices sur la topologie et la continuité

Exercice 1:

Soient $(E, \|\cdot\|)$ un espace vectoriel normé et g définie sur E par $g(x) = \frac{x}{1 + \|x\|}$.

- 1 Démontrer que g est une bijection de E dans $\mathcal{B}_o(0,1)$.
- 2 Montrer que g et g^{-1} sont continues.

Exercice 2:

- 1 Démontrer que si x et y sont deux réels, alors $2|xy| \le x^2 + y^2$.
- 2 On considère la fonction f définie sur $A = \mathbb{R}^2 \setminus \{(0,0)\}$ par $f(x,y) = \frac{3x^2 + xy}{\sqrt{x^2 + y^2}}$

Montrer que, pour tout $(x,y) \in A$ on a $|f(x,y)| \le 4 ||(x,y)||_2$ et en déduire que f admet une limite finie en (0,0).

Exercice 3:

Soit E un espace vectoriel normé.

- 1 Montrer que l'adhérence d'un sous-espace vectoriel de ${\cal E}$ est encore un espace vectoriel.
- 2 Soit H un hyperplan de E.

Montrer que H est soit fermé soit dense dans E.

Exercice 4:

On munit \mathbb{R}^2 de l'une de ses normes usuelles et on considère $\Delta = \{(x,y) \in \mathbb{R}^2 \mid x=y\}$ la première bissectrice ainsi que l'application f définie sur $\mathbb{R}^2 \setminus \Delta$ par $f(x,y) = \frac{x^2 + y^2}{x - y}$.

1 - Montrer que pour tout $\theta \in \mathbb{R} \backslash \left\{ \frac{\pi}{4} + \pi \mathbb{Z} \right\}$, l'application :

$$f_{\theta}: \left| \begin{array}{ccc} \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ r & \longmapsto & f\left(r\cos(\theta), r\sin(\theta)\right) \end{array} \right|$$

possède une limite en 0.

2 - Montrer que, néanmoins, f ne possède pas de limite en (0,0).

Indication : On pourra considérer les couples $(t+t^2,t)$ avec $t \in \mathbb{R}^*$.

Exercice 5:

Considérons la fonction g définie sur \mathbb{R}^2 par $g(x,y) = \frac{e^{x^2+y^2}}{1+x^2+u^2}$.

1 - Montrer que pour tout $a\in\mathbb{R},$ il existe R>0 tel que :

$$\forall (x,y) \in \mathbb{R}^2 \backslash \mathcal{B}_f(0,R), |g(x,y)| > a$$

2 - Montrer que g possède un minimum sur \mathbb{R}^2 .

Exercice 6:

1 - Justifier la continuité de l'application :

$$\varphi: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ A & \longmapsto & {}^t A A \end{array} \right|$$

2 - Montrer que $\mathcal{O}_n(\mathbb{R})$ est un fermé borné de $\mathcal{M}_n(\mathbb{R})$.