Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский университет науки и технологий»

Кафедра Высокопроизводительных вычислительных технологий и систем

	1	2	3	4	5	6	7	8	9	10
100										
90										
80										
70										
60										
50										
40										
30										
20										
10										
0										

ИНТЕГРАЛЬНОЕ МОДЕЛИРОВАНИЕ ВОЛНОВОГО ПОЛЯ НА поверхности наблюдений

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

«Методы оптимизации»

3952.337208.000 ПЗ

Группа	Фамилия И.О.	Подпись	Дата	Оценка
MKH-416				
Студент	Яковлев О. В.			
Консультант	Ямилева А. М.			
Принял	Лукащук В.О.			

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский университет науки и технологий»

Кафедра Высокопроизводительных вычислительных технологий и систем

ЗАДАНИЕ

на курсовую работу по дисциплине

«Методы оптимизации»

Студент: Яковлев Олег Витальевич Группа: МКН-416

Консультант: Ямилева Альфия Маратовна

1. Тема курсовой работы

Интегральное моделирование волнового поля на поверхности наблюдений.

2. Основное содержание

- 2.1. Изучить метод моделирования распространения волнового поля при помощи демиграции Кирхгофа
- 2.2. Разработать программу для численного решения уравнения Гельмгольца.
- 2.3. Проанализировать поведение волны на границах сред с различной акустической плотностью.
- 2.4. Оформить пояснительную записку к курсовой работе.

3. Требования к оформлению материалов работы

3.1. Требования к оформлению пояснительной записки

Пояснительная записка к курсовой работе должна быть оформлена в соответствии с требованиями ГОСТ и содержать

- титульный лист,
- задание на курсовую работу,
- содержание,
- введение,

- заключение,
- список литературы,
- приложение, содержащее листинг разработанной программы, если таковая имеется.

Дата выдачи задания	Дата окончания работы	
"" 202_ г.	""202_ г.	
Консультант	Ямилева А. М.	

СОДЕРЖАНИЕ

Вв	едение				•							•			5
1.	Постановка задачи .														6
2.	Волновое уравнение														6
3.	Формула Кирхгофа.														7
4.	Функция Грина														7
3aı	ключение														8
Сп	исок литературы														9

введение

1. ПОСТАНОВКА ЗАДАЧИ

Рис. 1 – Модель среды

Рассмотрим задачу нахождения значения скалярного волнового поля на поверхности наблюдения. Допустим задана поверхность, ограничивающая некоторую область пространства $D=[0,X]\times[0,Y]\times[0,Z]$, изображённую на рисунке 1. Область пространства D разделена на слои D_1 и D_2 , с постоянной скоростью звука c_1 и c_2 соответственно. На границе находятся точечные источники колебаний S, которые возбуждают акустическую волну.

Необходимо по данным характеристикам источников найти значение волнового поля на поверхности наблюдения z=Z.

2. ВОЛНОВОЕ УРАВНЕНИЕ

Конечно, решение данной задачи можно получить при помощи решения дифференциального волнового уравнения 1.

$$\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} + \frac{\partial^2 P}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 P}{\partial t^2} = F(x, y, z, t) \tag{1}$$

Однако, для волнового уравнения с произвольной правой частью F(x,y,z,t) можно записать формулу представления решения в аналитическом виде.

$$P(\bar{r}',t') = \iiint_{D_1} \int_{-\infty}^{+\infty} F(\bar{r},t)G(\bar{r}',t'|\bar{r},t) dt dv$$
 (2)

3. ФУНКЦИЯ ГРИНА

Рассмотрим мгновенный точечный источник колебаний. Тогда правая часть уравнения 1 будет иметь вид $f(x,z,t) = \delta(t)\delta(x)\delta(z)$.

$$G(r', t'|r, t) = \begin{cases} \frac{1}{2\pi} \cdot \frac{1}{\sqrt{(t'-t)^2 - \frac{|r-r'|^2}{c^2}}}, & |r-r'| \le c(t'-t)\\ 0, & |r-r'| > c(t'-t) \end{cases}$$

ТООО написать вывод функции Грина

4. ФОРМУЛА КИРХГОФА

Так как область D ограничена и имеет кусочно-гладкую границу, тогда по теореме Остроградского-Гаусса можно выразить решение в виде

$$P(r',t') = \iint_{S} \int_{-\infty}^{+\infty} [G(r',t'|r,t)\partial_{n}P(r,t) - P(r,t)\partial_{n}G(r',t'|r,t)]dt ds$$

ТООО написать вывод интеграла кирхгофа

ЗАКЛЮЧЕНИЕ

ПЛАН-ГРАФИК

выполнения курсовой работы

обучающегося Яковлева О.В.

Наименование этапа работ	Трудоемкость выполнения, час.	Процент к общей трудоемкости выполнения	Срок предъявления консультанту				
Получение и согласование задания	0,3	0,8	4 неделя				
Знакомство с литературой по теме курсовой работы	2,7	2,7 7,5					
Вывод матричного уравнения моделирования по Кирхгофу	7	19,44	6 неделя				
Разработка программы для численного моделирования	12	33,33	8 неделя				
Проведение вычислительных экспериментов	7	19,44	11 неделя				
Анализ результатов вычислительных экспериментов	4	11,11	12 неделя				
Составление и оформление пояснительной записки и подготовка к защите	2,7	7,5	13 неделя				
Защита	0,3	0,8	14 неделя				
Итого	36	100	-				