Network Compression1

2021年4月2日

16:39

Limited memory space, limited computing power,

Compression: 压缩

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation

Network Pruning

- Networks are typically over-parameterized (there is significant redundant weights or neurons)
- Prune them!

Pruning 剪切

Importance of a weight;

· Importance of a neuron:

the number of times it wasn't zero on a given data set

Weight 和 Neuron是否重要

移除一些东西,

Remove 一点 recover 再recover回来 For I in range(n): Remove a little and then compare the importance again and fine- tune it. Importance of a weight:

Importance of a neuron:

the number of times it wasn't zero on a given data set

- After pruning, the accuracy will drop (hopefully not too much)
- Fine-tuning on training data for recover
- Don't prune too much at once, or the network won't recover.

Why Pruning?

- How about simply train a smaller network?
- It is widely known that smaller network is more difficult to learn successfully.
 - Larger network is easier to optimize?
 https://www.youtube.com/watch?v=_VuWvQU
 MQVk

Small network is hard to train. If network is big enough you can get the global min by gradient descent.

If not random: copy the weight to the small one. It can be better

Prun weight :GPU can't speed up. Prun neuron is a better way.

• Neuron pruning

Knowledge Distillation

Teacher provides more information than target.

Temperature

$$y_i = \frac{exp(x_i)}{\sum_j exp(x_j)} \qquad \qquad y_i = \frac{exp(x_i/T)}{\sum_j exp(x_j/T)}$$

Temperature 有什么用呢? 把不同 label的 拉近一点

$$x_1 = 100$$
 $y_1 = 1$ $x_1/T = 1$ $y_1 = 0.56$
 $x_2 = 10$ $y_2 \approx 0$ $x_2/T = 0.1$ $y_2 = 0.23$
 $x_3 = 1$ $y_3 \approx 0$ $x_3/T = 0.01$ $y_3 = 0.21$