Implementing Automatic Resource Fault Prediction and Detection System

A Project Report

Submitted by

LATHIKA S 412621106023

GOPIKA J 412621106015

MADHUMITHA R 412621106025

in partial fulfillment for the award of the degree

Of

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

SRI VENKATESWARAA COLLEGE OF TECHNOLOGY

ANNA UNIVERSITY: CHENNAI 600 025

APRIL/MAY 2025

ANNA UNIVERSITY: CHENNAI 600 025 BONAFIDE CERTIFICATE

Certified that this project report "Implementing Automatic Resource Fault Prediction and Detection System" is the bonafide work of "LATHIKA. S (412621106023) who carried out the project work under my supervision.

	SIGNATURE	SIGNATURE	
	DR.ABDUR RAHMAN	DR.HARIKRISHNAN	
	HEAD OF THE DEPARTMENT	SUPERVISOR	
	Department of ECE,	Department of ECE,	
	Sri Venkateswaraa College of	Sri Venkateswaraa College of	
	Technology, Vadakal,	Technology, Vadakal,	
	Sriperumbudur.	Sriperumbudur.	
	project work was submitted for vi tateswaraa College of Technology.	va voce held on	at Sri
Subje	ect Code: EC3811		

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We wish to express our heartfelt gratitude to our beloved Chairman Mr. B. Haribabu and Vice Chairman Dr. Srinivasan Haribabu for providing us this facility to study integrating with values.

We express our sincere gratitude to our CEO Mr. J. N. Senthil Kanna for improving the quality education constantly.

We express our gratitude to **Dr. S. Lakshmi**, Principal, Sri Venkateswaraa College of technology for the encouragement given by her to the progress and completion of our project.

We thank **Mr. Dr.N. Abdur Rahman**, Head of the Department Of Electronics and Communication Engineering for his effective leadership, encouragement and guidance in the project.

We thank our Project Coordinator, Mr. M. L. Alphin Ezhil Manuel, Assistant Professor, Department of Computer Science and Engineering, for his valuable suggestion and motivation throughout our project work.

We thank Mr. A. Abdul Wahid, Head, Career Development Services Cell, for his valuable suggestion and motivation in our project work.

We also thank our Project Supervisor, **Dr.Harikrishnan**, Assistant Professor, Department of Electronics and Communication Engineering, for mentoring and helping us immensely in all stages, henceforth leading to the completion of our project work successfully.

Finally, we would thank all teaching and non-teaching staff members of our Department of Electronics and Communication Engineering, our parents, friends, and well-wishers who have always supported us in all our works.

ABSTRACT

This project focuses on building a smart fault detection and alert system using IoT technology. In today's world, it's important to identify issues like light failure, water leakage or overflow, and fire or smoke hazards at an early stage to prevent damage and ensure safety. Our system is designed to automatically detect such faults and instantly alert the user through a mobile application.

We used an **ESP8266-NodeMCU** board as the brain of the system, connected to various sensors like **LDR** (for light detection), **DHT11** (for temperature and humidity), **MQ2** (for smoke), **flame sensor**, and a **water level sensor**. These sensors constantly monitor the environment, and if any abnormal condition is detected, the system immediately triggers a **buzzer** and sends a real-time notification to the user via the **Blynk app**.

To make the system more informative, we also simulated voltage and current fluctuations during fault conditions. The water level detection is linked with a **relay module**, which automatically controls the flow of water in case of overflow.

The main goal of this project is to reduce manual monitoring, improve safety, and allow users to stay informed through mobile alerts. This system can be easily expanded or customized to suit different environments like homes, offices, or industries.

TABLE OF CONTENTS

S.NO	TITLE	PAGE NO
	ABSTRACT	iv
	LIST OF ABBREVIATIONS	vii
	LIST OF FIGURES	viii
1	INTRODUCTION	1
	1 1 Overview of Fault Prediction and Detection Systems	1
	1 2 Importance of Automated Fault Detection	1
	1 3 Objectives of the Project	2
	1 4 Scope of the Project	2
	1 5 Problem Statement	2
	1 5 1 Reason for the Problem	3
	1 5 2 Proposed Solution	3
2	LITERATURE SURVEY	4
	2 1 Review of Existing Fault Detection Methods	4
	2 2 Machine Learning in Fault Prediction	4
	2 3 Water Leakage Detection Technologies	4
	2 4 Fire and Smoke Detection Systems	5
	2 5 Research on Automated Alert Mechanisms	6
3	SYSTEM ANALYSIS	16
	3 1 Existing System	16
	3 2 Proposed System	16
	3 3 Comparison Between Existing and Proposed System	17

S.NO	TITLE	PAGE NO
4	SYSTEM DESIGN	18
	4 1 Block Diagram	18
	4 2 Description of the block diagram	18
5	SYSTEM ARCHITECTURE	20
6	HARDWARE IMPLEMENTATION	21
	6 1 Implementation	21
	6 2 Component Description	22
7	SOFTWARE IMPLEMENTATION	24
	7 1 Software Environment	24
	7 2 Prediction Model Output	24
	7 3 Alert System Demonstration	24
	7 4 Result Discussion	25
8	CODING AND RESULT	26
	8 1 Coding	26
	8 1 1 Test code	26
9	CONCLUSION AND FUTURE ENHANCEMENT	33
	9 1 Conclusion	33
	9 2 Future Enhancement	34
	REFERENCES	35

LIST OF ABBREVATIONS

Abbreviation	Full Form
IOT	Internet of Things
LDR	Light Dependent Resistor
DHT11	Digital Humidity and Temperature sensor
MQ2	Smoke and Gas Sensor
ESP8266	Wi-Fi Microcontroller
LED	Light Emitting Diode
VCC	Voltage Common Collector (Power Supply Pin)
Blynk	Cloud-based IoT Application Platform
MCU	Microcontroller Unit
API	Application Programming Interface
$^{\circ}\mathrm{C}$	Degree Celsius
V	Voltage
A	Ampere (Current)
Wi-Fi	Wireless Fidelity
ADC	Analog to Digital Converter
GPIO	General Purpose Input Output

LIST OF FIGURES

Figure No.	Figure Name	Page No
4.4	Block Diagram	18
4.2.1	Description of the Block Diagram	19
4.2.2	Description of the Block Diagram	19
5.1	System Architecture	20
6	Hardware Implementation	21
6.2.1	Light Sensor	22
6.2.2	Voltage Sensor	22
6.2.3	Buzzer/Alarm System	23
6.2.4	Rain Drop sensor	23
6.2.5	ESP8266	23
6.2.6	Led	24
6.2.7	Button Switch	24
6.2.8	MQ-2	25
6.2.9	Relay Module	25
6.2.10	Temperature Sensor	26
6.2.11	Fire Sensor	26
8.1.1	Blynk Dashboard	34
8.1.2	Alert ScreenShot	35
8.1.3	Alert Notifications	36