Nirma University

2CS601 Theory of Computation

BTech (CSE)

Tutorial No 9

Q 1: Identify the nonterminals and terminals in the following grammars.

- (2) $S \rightarrow XY1 \mid 0$ $X \rightarrow 00X \mid 1$ $Y \rightarrow 1X1$
- (3) $S \rightarrow XY$ $X \rightarrow YSY$ $X \rightarrow YY \mid a$ $Y \rightarrow aXb \mid b$ (4) $S \rightarrow XY$ $X \rightarrow YSY$ $X \rightarrow YY \mid 1$ $Y \rightarrow 0X1 \mid 1$

Q 2: Convert the following CFG to CNF:

- (1) $S \rightarrow aAC$ $A \rightarrow aB \mid bAB$ $B \rightarrow b$ $C \rightarrow c$
- (2) $S \rightarrow 0X1Y$ $X \rightarrow 0X \mid 0$ $Y \rightarrow 1Y \mid 1$

Q 3: Identify and remove the nonreachable nonterminals from the following grammars:

- (1) $S > XY1 \mid 0$ $X > 00X \mid 1$ Y > 1X1 Z > 00

Q 4: Identify Language

- (1) L={ $a^ib^ic^i | i>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular
- (2) L={ $a^ib^jc^j | I,j>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular
- (3) L={ $a^nb^nc^md^m | n,m>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular

- d. Neither CFL nor Regular
- (4) L={ $0^n1^m2^{m+n} \mid n,m>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular

Q 5: Define Property

- (1) CFLs are closed under
 - a. Union
 - b. Complementation
 - c. Intersection
 - d. All the above
- (2) The CFLs and regular languages are both closed over
 - a. Union
 - b. Complementation
 - c. Intersection
 - d. None of the above
- (3) The CFLs and regular languages are both closed over
 - a. Difference
 - b. Intersection
 - c. Complement
 - d. Concatenation
- (4) CFLs are not closed under
 - a. Union
 - b. Concatenation
 - c. Intersection
 - d. Homomorphism

Q 6:

The regular expression corresponding to the CFG S -> aS | bS | a | b is

- a. a+b
- b. (a+b)*
- c. (a+b)*(a+b)
- d. None of the above
- (1) The CFG corresponding to the language $L=\{0^k1^k \mid k>=1\}$ is
 - a. S -> OS1 | O1
 - b. $S -> 0S1 | 01 | \epsilon$
 - c. S -> 0A1, A -> 01
 - d. All the above

- (2) The CFL L= $\{a^nb^n \mid n>0\}$ can be generated by the following CFG:
 - a. $S \rightarrow \epsilon \mid ab \mid aSb$
 - b. S -> ab | aSb
 - c. $S \rightarrow \epsilon \mid aSb$
 - d. All of the above