<u>AMENDMENTS TO THE CLAIMS:</u>

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-3. (Cancelled)

- 4. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ba_{0.95}Fe_{0.05})TiO_3$, wherein the oxide has a saturation magnetization of about 0.10 μ_B/mol Fe at 300K, and a coercive field of about 16 Oe at 300K.
- 5. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ca_{0.95}Fe_{0.05})TiO_3$, wherein the oxide has a saturation magnetization of about 0.11 μ_B/mol Fe at 300K, and a coercive field of about 12 Oe at 300K.
- 6. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ba_{0.95}Fe_{0.05})ZrO_3$, wherein the oxide has a saturation magnetization of about 0.11 μ_B/mol Fe at 300K, and a coercive field of about 25 Oe at 300K.
- 7. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ca_{0.95}Fe_{0.05})ZrO_3$, wherein the oxide has a saturation magnetization of about 0.12 μ_B/mol Fe at 300K, and a coercive field of about 4.5 Oe at 300K.
- 8. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ba_{0.95}Fe_{0.05}$)HfO₃, wherein the oxide has a saturation magnetization of about 0.125 μ_B /mol Fe at 300K, and a coercive field of about 20 Oe at 300K.

- 9. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ca_{0.95}Fe_{0.05}$)HfO₃, wherein the oxide has a saturation magnetization of about 0.12 μ_B /mol Fe at 300K, and a coercive field of about 7 Oe at 300K.
 - 10.-14. (Cancelled)
- 15. (Previously Presented) A ferromagnetic perovoskite oxide having the formula $La(Mo_{0.25}Fe_{0.75})O_3$, wherein the magnetic Curie temperature of the oxide is as high as 940 K, and wherein the oxide has a coercive field of about 238 Oe at 300K.
 - 16.-18. (Cancelled)
 - 19.-24. (Cancelled)