Rod Hitting Ball Lab

Jason Guo

December 10, 2017

1 Objective

To determine the distance the racquetball will land from the point of launch as well as the angle the launcher will rise.

2 Data

Quantity	Value	Unit
L (rod length)	38.1	cm
l_{cm} (distance from axis to rod-mass COM)	29.9	cm
l_{top} (distance from axis to top of rod)	2.5	cm
l_{weight} (distance from bottom of rod to top of weight)	2	cm
H (final track height above ground)	98	cm
h_i (initial track height)	9	cm
h_f (final track height)	12.4	cm
R (ball radius)	2.85	cm
M (ball mass)	81.55	g
m (total rod & weight mass)	101.7	g
$m_{rod} \text{ (rod mass)}$	26.54	g
m_{weight} (weight mass)	75.16	g
θ_i (initial rod angle)	60	0
ϕ (track angle wrt horizontal)	0.5	0

3 Calculations

3.1 MOI of rod-mass

Let I_{rm} be the MOI of the rod-mass about its hinge. The distance d from the axis to the weight's COM = $L - l_{top} - \frac{l_{weight}}{2}$.

$$I_{rm} = \frac{1}{12} m_{rod} L^2 + m_{rod} (\frac{L}{2} - l_{top})^2 + m_{weight} d^2.$$

Thus, $I_{rm} \approx 0.01 \, kgm^2$.

3.2 Angular speed of rod on collision

From energy conservation, we have

$$mgl_{cm}(1-\cos\theta_i) = \frac{1}{2}I_{rm}\omega_i^2.$$

Thus, $\omega_i \approx 5.46 \, rad/s$.

3.3 Angular momentum

Let counterclockwise be positive by convention. We have

$$L_{rm} = I_{rm}\omega_i - Ndt = I_{rm}\omega_f$$

$$L_b = -NRt = -MRv - I_bv/R$$

where N is the normal force between the ball and rod-mass, t is the collision time, $I_b = \frac{2}{5}MR^2$ is the MOI of the ball about its COM, v is the linear velocity of the ball's COM, and d is the same as above.

Here, the angular momentum of the rod-mass L_{rm} is taken wrt the hinge; the angular momentum of the ball L_b is taken wrt its contact point on the track. This eliminates any friction terms that would otherwise be present in our expressions.

If we combine these expressions, we get

$$I_{rm}\omega_i = I_{rm}\omega_f + Mvd + I_bvd/R^2.$$

3.4 Coefficient of Restitution

We require another equation to actually solve for ω_f . From a table of CORs, we will estimate that the collision has a COR of e = 0.7. This means that

$$e = \frac{v_{tf} - v}{0 - v_{ti}} = 0.7$$

where v_{ti} and v_{tf} are the initial and final linear velocities of the rod-mass contact point with the ball, respectively, and v is the ball's translational velocity. Since the rod-mass contact point is a distance d from the hinge, $v_{ti} = \omega_i d$ and $v_{tf} = \omega_f d$.

Combining, we get that

$$v = d(0.7\omega_i + \omega_f).$$

3.5 Ball velocity (right after collision)

Substituting the COR expression into angular momentum conservation, we get that $w_f \approx 0.1 \, rad/s$ and $v \approx 1.36 \, m/s$.

3.6 Final rod angle

We reuse the energy conservation expression and find that $\omega_f \approx 0.1 \, rad/s$ corresponds to $\theta_f \approx 1^{\circ}$.

3.7 Ball velocity (before bump)

By Newton's Second Law,

$$M\frac{dv}{dt} = -F_D - Mg\sin\phi$$

where F_D is the drag force and $Mgsin \phi$ is component of gravity parallel to the track.

We know that $F_D = \frac{1}{2}\rho v^2 C_D A$. The density of air at room temperature ρ is $\approx 1.2 \, kg/m^3$, the drag coefficient C_D of the ball is ≈ 0.5 , and the cross-sectional area A of the ball is πR^2 . Thus, $F_D \approx 0.0008 v^2$.

Solving the differential equation with the condition v(0) = 1.36, we get that

$$v(t) = 2.95tan(.432 - .0290t).$$

We will guess, from the magnitude of velocities present and the track length, that it takes $\approx 2 s$ to reach the bump; its translational velocity right before the bump $v_{bi} \approx 1.16 \, m/s$.

3.8 Ball velocity (after bump)

We will neglect drag here because the bump was relatively short. However, a significant fraction of kinetic energy is transformed into gravitational potential energy. To simplify calculations, the total kinetic energy K of the ball is K = 1

 $K_{linear} + K_{rotation} = \frac{1}{2}Mv^2 + \frac{1}{2}I_b(\frac{v}{R})^2 = \frac{7}{10}Mv^2$ for an arbitrary translational velocity v.

By energy conservation,

$$K_i = K_f + Mg(h_f - h_i)$$

since the ball goes up a height of $h_f - h_i$ during the bump. Solving for the translational velocity right after the bump, we get that $v_{bf} \approx 0.93 \, m/s$.

3.9 Ball velocity (right before projectile motion)

Now, we will account for drag and the incline once again. Solving the differential equation again with the new condition v(0) = 0.93, we get that

$$v(t) = 2.95tan(.305 - .0290t).$$

We make another guess that this portion of the track takes $\approx 3 s$ to traverse. Finally, we get that the translational velocity right before projectile motion $u \approx 0.65 \, m/s$.

3.10 Ball Travel Distance

The travel time of the ball t is given by

$$-H = -\frac{1}{2}gt^2 \implies t \approx 0.45 \, s.$$

Thus, the ball will travel a distance $ut \approx 0.294 \, m = 29.4 \, cm$ off the table.