Étude des valeurs extrêmes univariées

El Mazzouji Wahel, Mariac Damien, Condamy Fabian $21~{\rm mars}~2025$

Table des matières

1	Introduction	3
2	Les lois de M_n 2.1 Quelques notations 2.2 Paramètre b_n	3 3 4 4 5 5 5 6
3	Quelques exemples numériques 3.0.1 Loi uniforme	7 8 8 8
4		10 10 10 11 11 11 12 12
5	5.1 Estimateur de Pickands	14 15 16
6		16
7	Détermination du domaine d'attraction	16
8	8.1 Première méthode (Méthode des maxima en bloc) avec Wooster	17 17 17 18 18
9		20

1 Introduction

Le théorème central limite, formulé par Pierre-Simon de Laplace en 1809, garantit que, sous des conditions raisonnables, la somme normalisée de ces variables suit asymptotiquement une loi normale. Cette convergence est utile pour étudier le comportement **global** des observations, mais elle ne renseigne pas sur le comportement des valeurs extrêmes.

Il est donc naturel de se demander quelle peut être la convergence en loi de ses dernières. Autrement dit, pour $X = (X_1, ..., X_n)$ un échantillon de variables aléatoires i.i.d , on pose :

$$M_n = \max\{X_i \mid i \in \{1, ..., n\}\}\$$

et on s'intéresse à la convergence de M_n , ainsi qu'aux hypothèses sous lesquelles cette convergence a lieu.

Remarque: Etudier le minimum est totalement analogue dans ce qui suit.

2 Les lois de M_n

2.1 Quelques notations

On commence par faire une remarque sur la fonction de repartion de M_n en utilisant le fait que les X_i sont i.i.d :

En effet, si on note F_{M_n} la fonction de repartition de M_n , et F_{X_i} la fonction de repartition de X_i on a :

$$\forall t \in \mathbb{R} \quad F_{M_n}(t) = \mathbb{P}(M_n < t) = \mathbb{P}(X_1 < t, ..., X_n < t) = \mathbb{P}(X_1 < t)^n = F_{X_1}^n(t)$$

Dans la suite, on notera F(t), la fonction de repartition des X_i .

Mais on rencontre un probleme ici, puisque si $n \to +\infty$, $F(t)^n$ converge vers 0 (ou 1 si t est la borne sup du support des X_i).

L'idée est donc d'introduire 2 suites (b_n) et (a_n) (avec $a_n > 0$ pour tout n) afin de pouvoir contrôler M_n . Puis étudier la loi de la limite de $\frac{M_n - b_n}{a_n}$. Comme la fonction de repartition caracterise la loi, il nous suffit d'étudier la fonction G définie pour tout t dans le support des X_i comme :

$$\mathbb{P}\left(\frac{M_n - b_n}{a_n} < t\right) \xrightarrow[n \to +\infty]{} G(t)$$

Si il existe de tel suite a_n et b_n alors on dit que F est dans le domaine d'attraction de G.

à ce stade la, il nous faut donc trouver les distributions G qui peuvent apparaître comme limite dans l'équation ci-dessus.

Pour ce faire, nous allons utiliser le théoreme suivant :

Théorème (méthode de la fonction muette): Soit Y_n une variable aléatoire de fonction de répartition F_n , et soit Y une variable aléatoire de fonction de répartition F. Alors $Y_n \xrightarrow{\mathcal{L}} Y$ si et seulement si pour toute fonction z réelle, bornée et continue :

$$\mathbb{E}[z(Y_n)] \to \mathbb{E}[z(Y)].$$

En prenant ici $Y_n = \frac{M_n - b_n}{a_n}$, on obtient :

$$\mathbb{E}[z(\frac{M_n - b_n}{a_n})] = \int_{-\infty}^{\infty} z(\frac{x - b_n}{a_n}) n F^{n-1}(x) dF(x)$$

L'astuce ici va être de faire un changement de variable astucieux. On va poser :

$$x = Q(1 - \frac{1}{y}) = K(y)$$
 avec Q la fonction quantile

Donc,
$$\int_{-\infty}^{\infty} z \left(\frac{x - b_n}{a_n} \right) n F^{n-1}(x) dF(x) = \int_0^n z \left(\frac{K\left(\frac{n}{v}\right) - b_n}{a_n} \right) \left(1 - \frac{v}{n} \right)^{n-1} dv.$$
 (1)

Or, on a $\lim_{n\to\infty}(1-\frac{v}{n})^{n-1}=e^{-v}$, et on a $\lim_{n\to\infty}\int_0^n=\int_0^{+\infty}.$

2.2 Paramètre b_n

On en déduit une bonne valeur pour b_n . En effet,

$$\mathbb{P}\left(\frac{M_n - b_n}{a_n} < t\right) \xrightarrow[n \to +\infty]{} G(t) \in]0:1[$$

$$\iff F^n(a_n t + b_n) \xrightarrow[n \to +\infty]{} G(t)$$

$$\iff n \ln(F(a_n t + b_n)) \xrightarrow[n \to +\infty]{} \ln(G(t))$$

$$\iff n(-F(a_n t + b_n) + 1) \xrightarrow[n \to +\infty]{} \ln(G(t)) \quad (\text{car } \lim_{x \to 0} \frac{\ln(1 - x)}{x} = -1)$$

$$\iff n \mathbb{P}(X_1 > a_n t + b_n) \xrightarrow[n \to +\infty]{} -\ln(G(t))$$

On obtient alors pour paramètre d'échelle :

$$n\mathbb{P}(X_1 > b_n) = 1 \iff \mathbb{P}(X_1 < b_n) = 1 - \frac{1}{n}$$

 $\iff F(b_n) = 1 - \frac{1}{n}$
 $b_n = Q(1 - \frac{1}{n}) = K(n)$

Dans la dernière équivalence, on a composé par la fonction quantile.

2.3 Paramètre a_n

Avec le parametre b_n définie au dessus, on obtient alors une condition, il faut qu'il existe une fonction a tel que $\lim_{x\to\infty} \frac{K(\frac{x}{v})-K(x)}{a(x)}$ converge (vers une fonction h(n)).

Proposition:

Les limites possibles sont données par :

$$c h_{\gamma}(u) = c \int_{1}^{u} v^{-\gamma - 1} dv = c \frac{u^{\gamma} - 1}{\gamma}.$$
 (2)

Nous interprétons $h_0(u) = \log(u)$ lorsque $\gamma = 0.*$

On ne veut pas que c=0, car il conduit à une limite dégénérée pour $\frac{M_n-b_n}{a_n}$. Ensuite, le cas c>0 peut être ramené au cas c=1 en incorporant c dans la fonction a.

Preuve de la Proposition

Soient u, v > 0. Alors:

$$\frac{U(xuv) - U(x)}{a(x)} = \frac{U(xuv) - U(xu)}{a(xu)} \frac{a(xu)}{a(x)} + \frac{U(xu) - U(x)}{a(x)}.$$
 (2.3)

Si la limite dans F est dans le domaine d'attraction de G (ce qu'on suppose à ce stade), alors le rapport $\frac{a(ux)}{a(x)}$ converge vers g(u).

De plus, pour u, v > 0,

$$\frac{a(xuv)}{a(x)} = \frac{a(xuv)}{a(xv)} \frac{a(xv)}{a(x)}.$$

Par passage à la limite pour x, la fonction g satisfait l'équation fonctionnelle de Cauchy:

$$g(uv) = g(u) g(v).$$

Les solutions de cette équation sont de la forme $g(u)=u^{\gamma}$ avec γ un réel.

Donc, on a $\lim_{x\to\infty} \frac{a(ux)}{a(x)} = x^{\gamma}l(x)$, on dit dans ce cas que a est une fonction à variation régulière.

2.4 Les lois limites

En reprenant (2.3) et en utilisant ce qui précède, on obtient :

$$\lim_{x \to \infty} \frac{U(xuv) - U(x)}{a(x)} = u^{\gamma} h(v) + h(u)$$

autrement dit : $h_{\gamma}(uv) = u^{\gamma}h_{\gamma}(v) + h_{\gamma}(u)$

On fait alors une disjonction de cas sur la valeur de gamma.

2.4.1 1. Cas $\gamma \neq 0$

En reprenant l'équation (2), on obtient :

$$h_{\gamma}\left(\frac{1}{v}\right) = \frac{(1/v)^{\gamma} - 1}{\gamma} = \frac{v^{-\gamma} - 1}{\gamma}.$$

Posons $u = \frac{v^{-\gamma} - 1}{\gamma}$. On résout alors pour v:

$$v^{-\gamma} = 1 + \gamma u \implies v = (1 + \gamma u)^{-1/\gamma}.$$

On définit ainsi la fonction

$$\eta_{\gamma}(u) = (1 + \gamma u)^{-1/\gamma}.$$

Le changement de variable de v à u permet de réécrire l'intégrale limite sous la forme

$$\int_{u \in S_{\gamma}} z(u) d \Big\{ \exp \Big[-\eta_{\gamma}(u) \Big] \Big\},\,$$

ce qui conduit à identifier la loi limite par

$$G_{\gamma}(u) = \exp\Bigl\{-\eta_{\gamma}(u)\Bigr\} = \exp\Bigl\{-\left(1+\gamma u\right)^{-1/\gamma}\Bigr\}.$$

La nature du support S_{γ} dépend du signe de γ :

- Si $\gamma > 0$, l'inversion montre que $v \in (0,1)$ correspond à $u > -\frac{1}{\gamma}$ (loi de Fréchet).
- Si $\gamma < 0,$ on trouve que $u < -\frac{1}{\gamma}$ (loi de Weibull).

2.4.2 2. Cas $\gamma = 0$

Lorsque $\gamma \to 0$, la fonction h_{γ} tend par continuité vers

$$h_0(u) = \ln u.$$

De même, le changement de variable s'adapte :

$$u = h_0\left(\frac{1}{v}\right) = \ln\left(\frac{1}{v}\right) = -\ln v,$$

ce qui implique

$$v = e^{-u}$$
.

Le changement de variable transforme alors l'intégrale limite en

$$\int_{-\infty}^{\infty} z(u) d \left\{ \exp \left[-e^{-u} \right] \right\},\,$$

et la loi limite est alors donnée par

$$G_0(u) = \exp\left\{-e^{-u}\right\}, \quad u \in \mathbb{R},$$

ce qui correspond à la loi de Gumbel.

2.5 Résumé

Les lois limites qui s'imposent dependent d'un parametre γ et sont les suivantes :

— Si $\gamma > 0$ (loi de Fréchet) :

$$G_{\gamma}(u) = \exp\left\{-\left(1 + \gamma u\right)^{-1/\gamma}\right\}, \quad u > -\frac{1}{\gamma}.$$

— Si $\gamma = 0$ (loi de Gumbel) :

$$G_0(u) = \exp\left\{-e^{-u}\right\}, \quad u \in \mathbb{R}.$$

— Si $\gamma < 0$ (loi de Weibull) :

$$G_{\gamma}(u) = \exp\left\{-\left(1 + \gamma u\right)^{-1/\gamma}\right\}, \quad u < -\frac{1}{\gamma}.$$

3 Quelques exemples numériques

Voici maintenant quelques applications numériques sur des lois usuelles de ce que nous avons vu dans cette section. Pour chacune des représentations suivantes, nous avons simulé 1000 fois chaque loi puis ensuite effectué 10000 simulations pour le maximum afin d'avoir une précision correcte.

3.0.1 Loi uniforme

Pour la loi uniforme sur [0,1], on peut montrer théoriquement que la limite du max est une loi exponentielle de paramètre 1 (loi de Weibull bien particulière).

Soient U_1, U_2, \dots, U_n des variables aléatoires indépendantes et identiquement distribuées selon la loi uniforme sur [0,1].

On a, pour $x \in [0,1]$:

$$P(M_n \le x) = P(U_1 \le x, \dots, U_n \le x)$$

= $P(U_1 \le x)^n$ par indépendance des U_i
= x^n

Nous allons maintenant effectuer le changement de variable x = 1 - y/n avec y > 0 pour examiner la queue de la distribution :

$$P(M_n < 1 - y/n) = (1 - y/n)^n$$
.

Pour *n* grand, on a : $(1 - y/n)^n \approx e^{-y}$. Donc, $P(M_n \le 1 - y/n) \approx e^{-y}$.

Or, par définition, la loi exponentielle de paramètre 1 a pour fonction de répartition : $P(Y \le y) = 1 - e^{-y}$, y > 0.

Ainsi, on a donc montré que :

$$P(n(1-M_n) \le y) \to P(Y \le y) = 1 - e^{-y},$$

ce qui établit la convergence en loi :

$$Y_n = n(1 - M_n) \xrightarrow{\mathcal{L}} \mathcal{E}(1).$$

Ainsi, on trouve que $a_n = \frac{1}{n}$ et $b_n = 1$.

Avec notre machine, nous obtenons le graphe suivant :

Max de 1000 lois uniformes

Remarquons que l'on obtient une loi de Gumbell, ce qui est assez logique au vu du fait que ce soit une loi à queue très légère (elle n'en a tout simplement pas car son support est borné).

3.0.2 Loi exponentielle

Pour une loi exponentielle de paramètre 1, la loi limite est une loi de Gumbel. Théoriquement, on trouve $a_n = 1$ et $b_n = \log(n)$.

Cette fois-ci, on avait une loi à queue fine, et on obtient loi de Gumbel, ce qui était attendu.

3.0.3 Loi normale

Pour maintenant une loi normale centrée-réduite, on peut montrer que la loi limite est encore une fois une loi de Gumbel. On trouve les paramètres généralisés $a_n = \frac{1}{\sqrt{(2*\log(n)}}$ et $b_n = \frac{1}{a_n} - \frac{\log(\log(n)) + \log(4*pi)}{2*\sqrt{2*\log(n)}}$.

Max de 1000 lois normales centrées-réduites

Notons ainsi que l'on a la même loi limite que pour la loi exponentielle de paramètre 1, les graphes sont quasiment identiques.

3.0.4 Loi de Cauchy

Enfin, pour une loi de Cauchy (de paramètres 0 et 1 ici), la loi limite est une loi de Fréchet. On a les coefficients suivants : $a_n = pi$ et $b_n = n$.

Max de 1000 lois de Cauchy

Enfin ici, on avait une loi à queue lourde, et on obtient bien la loi de Fréchet attendue.

4 Estimation du paramètre gamma

Soient X_1, \ldots, X_n i.i.d. On définit la fonction de répartition :

$$F(x) = P(X_1 \le x), \quad x \in \mathbb{R}$$

Nous allons définir la fonction de répartition empirique.

4.1 Fonction de répartition empirique

Définition : Pour tout $x \in \mathbb{R}$, la fonction de répartition empirique est donnée par :

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_i)$$

où $\mathbb{1}_{(-\infty,x]}(X_i)$ est l'indicatrice de l'événement $\{X_i \leq x\}$. La fonction de répartition empirique utilise la statistique d'ordre.

4.2 Quantiles et inverse généralisée

Définition: Soit $p \in (0,1)$, on appelle *p-quantile*, noté x_p , de la loi F toute quantité satisfaisant :

$$F(x_p) = p$$

Pour définir un quantile de manière plus générale, on considère l'inverse généralisée de F.

Définition : Pour tout $u \in [0,1]$, on appelle inverse généralisée de F, notée F^- , la fonction définie par :

$$F^{-}(u) = \inf\{x \in \mathbb{R} \mid F(x) \ge u\}$$

4.3 Quantiles empiriques

Définition: Soit $p \in (0,1)$, on appelle *p*-quantile empirique, noté $x_p(n)$, la valeur:

$$x_p(n) = F_n^-(p) = \inf\{x \in \mathbb{R} \mid F_n(x) \ge p\}$$

4.4 Estimation de γ par la méthode des quantiles

Pour déterminer les estimateurs de γ pour ces trois distributions, nous utilisons l'estimation par la méthode des quantiles. Nous allons commencer par estimer le paramètre γ pour la distribution de Fréchet.

4.4.1 Rappel de la fonction de répartition

Rappelons que la fonction de répartition de la loi de Fréchet s'écrit comme :

$$F(x) = \exp(-x^{-\gamma}), \quad x > 0, \quad \gamma > 0.$$

On cherche x tel que :

$$\exp(-x^{-\gamma}) = p.$$

En prenant le logarithme, on obtient :

$$ln(p) = -x^{-\gamma}$$

$$x^{\gamma} = -\frac{1}{\ln(p)}$$

4.4.2 Estimation de γ à partir du quantile médian

On utilise l'estimateur du quantile avec la médiane de la distribution $(x_{1/2})$:

$$x_{1/2} = (\ln 2)^{-1/\gamma} = f(\gamma),$$

où $f(\gamma)$ est une fonction bijective. Si l'on sait estimer $x_{1/2}$, alors on peut facilement estimer γ en inversant f:

$$\gamma = f^{-1}(x_{1/2}).$$

On résout :

$$x = f(\gamma) \iff x = (\ln 2)^{-1/\gamma}$$

$$\iff (\ln 2)^{1/\gamma} = \frac{1}{x}$$

$$\iff \frac{1}{\gamma}\ln(\ln 2) = \ln\left(\frac{1}{x}\right) = -\ln x.$$

D'où:

$$\gamma = -\frac{\ln(\ln 2)}{\ln x} = f^{-1}(x).$$

4.4.3 Convergence et estimation empirique

Rappelons que le quantile empirique converge en probabilité vers le quantile théorique :

$$x_p(n) \xrightarrow{\mathbb{P}} x_p = F^{-1}(p).$$

En particulier, pour $p = \frac{1}{2}$:

$$x_{1/2}(n) \xrightarrow{\mathbb{P}} x_{1/2},$$

où $x_{1/2}(n)$ est le quantile empirique d'ordre 1/2 (médiane empirique).

Or, la convergence en probabilité est stable par transformation continue, d'où :

$$f^{-1}(x_{1/2}(n)) \xrightarrow{\mathbb{P}} f^{-1}(x_{1/2}) = \gamma.$$

Ainsi,

$$\gamma = f^{-1}(x_{1/2}(n))$$

est un estimateur convergent de γ . Finalement, l'estimateur de γ est donné par :

$$\hat{\gamma} = -\frac{\ln(\ln 2)}{\ln x_{1/2}(n)}.$$

4.5 Estimation de γ pour la distribution de Gumbel

La fonction de répartition de Gumbel est donnée par :

$$F(x) = \exp(-\exp(-x/\gamma)).$$

Ainsi, pour $p = \frac{1}{2}$, on a:

$$F(x_{1/2}) = \frac{1}{2}$$

$$\iff \exp(-\exp(-x_{1/2}/\gamma)) = \frac{1}{2}$$

$$\iff -\exp(-x_{1/2}/\gamma) = -\ln(2)$$

$$\iff \exp(-x_{1/2}/\gamma) = \ln(2)$$

$$\iff -\frac{x_{1/2}}{\gamma} = \ln(\ln(2))$$

$$\iff \gamma = -\frac{x_{1/2}}{\ln(\ln(2))} = f(x_{1/2}),$$

où f est une fonction continue.

4.5.1 Convergence et estimation empirique

En utilisant le quantile empirique, on a :

$$x_{1/2}(n) \xrightarrow{\mathbb{P}} x_{1/2}.$$

Puisque la convergence en probabilité est stable par transformation continue, il en résulte :

$$f(x_{1/2}(n)) \xrightarrow{\mathbb{P}} \gamma = f(x_{1/2}).$$

Ainsi, un estimateur convergent de γ est donné par :

$$\hat{\gamma} = f(x_{1/2}(n)) = -\frac{x_{1/2}(n)}{\ln(\ln(2))}.$$

4.6 Estimation de γ pour la distribution de Weibull

Ainsi, l'estimateur $\hat{\gamma}$ est un estimateur convergent de γ . La fonction de répartition de Weibull est donnée par :

$$F(x) = 1 - \exp(-x^{\gamma}).$$

Pour $p = \frac{1}{2}$, nous avons :

$$F(x_{1/2}) = \frac{1}{2}$$

$$\iff 1 - \exp(-x_{1/2}^{\gamma}) = \frac{1}{2}$$

$$\iff \frac{1}{2} = \exp(-x_{1/2}^{\gamma})$$

$$\iff -\ln(2) = -x_{1/2}^{\gamma}$$

$$\iff \ln(2) = x_{1/2}^{\gamma}.$$

En appliquant le logarithme népérien :

$$\gamma \ln(x_{1/2}) = \ln(\ln 2)$$

$$\iff \gamma = \frac{\ln(\ln 2)}{\ln(x_{1/2})} = \varphi(x_{1/2}),$$

où φ est une fonction continue.

4.6.1 Convergence et estimation empirique

Puisque $x_{1/2}(n)$ converge en probabilité vers $x_{1/2}$, on a :

$$\varphi(x_{1/2}(n)) \xrightarrow{\mathbb{P}} \varphi(x_{1/2}) = \gamma.$$

Finalement, un estimateur convergent de γ est donné par :

$$\hat{\gamma} = \frac{\ln(\ln 2)}{\ln(x_{1/2}(n))}.$$

5 Méthodes d'estimation de l'indice de valeurs extrêmes

Dans cette section, nous nous intéressons aux différentes méthodes d'estimation du paramètre γ , intervenant dans la distribution des valeurs extrêmes généralisée. D'une part, des approches non paramétriques sont dédiées à l'estimation de l'indice de queue, notamment les estimateurs de Hill et de Pickands. D'autre part, des méthodes paramétriques ont été développées, parmi lesquelles la méthode du maximum de vraisemblance, la méthode des moments et les approches bayésiennes.

Définition : On appelle *statistique d'ordre* la permutation aléatoire de l'échantillon X_1, \ldots, X_n , qui ordonne les valeurs de l'échantillon par ordre croissant :

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$

En particulier, $X_{(1)} = \min X_i$ et $X_{(n)} = \max X_i$.

Attention!!! Même si les X_i sont i.i.d., les statistiques d'ordre $X_{(i)}$ ne le sont pas.

Définition : On dit qu'une suite $(k_n)_{n\geq 0}$ d'entiers est intermédiaire si :

$$\lim_{n \to \infty} k_n = \infty \quad et \lim_{n \to \infty} \frac{k_n}{n} = 0$$

Définition : On dit qu'un estimateur $\hat{\gamma_n}$ est convergent s'il converge en probabilité vers γ , soit :

$$\lim_{n \to \infty} P(|\hat{\gamma}_n - \gamma| > \epsilon) = 0 \quad \forall \epsilon > 0$$

5.1 Estimateur de Pickands

L'estimateur de Pickands est défini par la statistique

$$\hat{\gamma}_{k,n} = \frac{1}{\ln(2)} \ln \left(\frac{X_{k,n} - X_{2k,n}}{X_{2k,n} - X_{4k,n}} \right)$$

Cet estimateur présente l'avantage d'être applicable quelle que soit la distribution des extrêmes. Cependant, la représentation graphique de cet estimateur en fonction du nombre k d'observations considérées révèle généralement un comportement volatil au départ, ce qui peut nuire à la lisibilité du graphique. De plus, cet estimateur est particulièrement sensible à la taille de l'échantillon sélectionné, ce qui le rend peu robuste.

Cet estimateur est asymptotiquement normal, avec :

$$\sqrt{k} \frac{\gamma_{\hat{k},n} - \gamma}{\sigma(\gamma)} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$

Lorsque $k \to +\infty$, la variance asymptotique est donnée par :

$$\sigma(\gamma) = \frac{\gamma \sqrt{2^{(2\gamma+1)}+1}}{2(2^{\gamma}-1)\ln(2)}$$

Une généralisation de l'estimateur de Pickands a été introduite comme suit :

$$\hat{\gamma}_{(k,u,v)} = \frac{1}{\ln(v)} \ln \left(\frac{X_{n-k+1,n} - X_{n-[uk]+1,n}}{X_{n-[vk]+1,n} - X_{n-[uvk]+1,n}} \right)$$

où u et v sont des réels positifs différents de 1, de sorte que les indices [vk], [uk] et [uvk] ne dépassent pas n. Lorsque u = v = 2, on retrouve l'estimateur de Hill $\hat{\gamma}_{k,n}$.

5.2Construction de l'estimateur de Pickands

Proposition : (Caractérisations de $D(H_{\gamma})$)

Pour $\gamma \in \mathbb{R}$, les affirmations suivantes sont équivalentes.

- (a) $F \in D(H_{\gamma})$
- (b) Pour une certaine function positive $c(t) = a(\frac{1}{t})$:

$$\lim_{t \to 0} \frac{U(tx) - U(t)}{c(t)} = \begin{cases} \frac{x^{\gamma} - 1}{\gamma} & \text{si } \gamma \neq 0, \\ \log(x) & \text{si } \gamma = 0, \end{cases} \quad \text{pour } x > 0.$$

La dernière affirmation est équivalente à :

$$\lim_{s \to 0} \frac{U(sx) - U(s)}{U(sy) - U(s)} = \begin{cases} \frac{x^{\gamma} - 1}{y^{\gamma} - 1} & \text{si } \gamma \neq 0, \\ \frac{\log(x)}{\log(y)} & \text{si } \gamma = 0. \end{cases}$$

pour x, y > 0 et $y \neq 1$.

Lemme A : Soit X_1, \ldots, X_n des variables aléatoires indépendantes et de fonction de répartition F. Soit U_1, \ldots, U_n des variables aléatoires indépendantes de loi uniforme [0,1]. Alors $F^{-1}(U_{1,n}), \ldots, F^{-1}(U_{n,n})$ a même loi que $(X_{1,n},...,X_{n,n})$

Preuve de la construction de l'estimateur de Pickands :

On déduit de la proposition précédente que pour $\gamma \in \mathbb{R}$ et α on a avec le choix t=2s, x=2 et $y=\frac{1}{2}$,

$$\lim_{t \to \infty} \frac{U(t) - U(t/2)}{U(t/2) - U(t/4)} = 2^{\gamma}.$$

En fait, en utilisant la croissance de U qui se déduit de la croissance de F, on obtient

$$\lim_{t \to \infty} \frac{U(t) - U(t_{c_1}(t))}{U(t_{c_1}(t)) - U(t_{c_2}(t))} = 2^{\gamma}$$

dès que $\lim_{t\to\infty} c_1(t) = \frac{1}{2}$ et $\lim_{t\to\infty} c_2(t) = \frac{1}{4}$. Il reste donc à trouver des estimateurs pour U(t).

Soit $k(n), n \ge 1$ une suite d'entiers telle que $1 \le k(n) \le \frac{n}{4}$ et $\lim_{n \to \infty} \frac{k(n)}{n} = 0$ et $\lim_{n \to \infty} k(n) = \infty$. Soit $(V_{1,n}, \dots, V_{n,n})$ la statistique d'ordre d'un échantillon de variables aléatoires indépendantes de loi de Pareto. On note $F_V(x) = 1 - x^{-1}, x \ge 1$.

On déduit avec certains résultats de bases liés à $(V_{1,n},\ldots,V_{n,n})$ que les suites

$$\frac{k}{n} V_{n-k+1,n}, \quad \frac{2k}{n} V_{n-2k+1,n}, \quad \frac{4k}{n} V_{n-4k+1,n}$$

pour $n \ge 1$ convergent en probabilité vers 1.

On en déduit en particulier, les convergences en probabilité suivantes :

$$V_{n-k+1,n} \to \infty, \quad \frac{V_{n-2k+1,n}}{V_{n-k+1,n}} \to \frac{1}{2}, \quad \frac{V_{n-4k+1,n}}{V_{n-k+1,n}} \to \frac{1}{4}.$$

Donc la convergence suivante a lieu en probabilité

$$\frac{U(V_{n-k+1,n}) - U(V_{n-2k+1,n})}{U(V_{n-2k+1,n}) - U(V_{n-4k+1,n})} \to 2^{\gamma}.$$

Remarquons que si $x \ge 1$, alors $U(x) = F^{-1}(F_V(x))$. On a donc

$$(U(V_{1,n}), \dots, U(V_{n,n})) = (F^{-1}(F_V(V_{1,n})), \dots, F^{-1}(F_V(V_{n,n}))).$$

Or F_V est la fonction de répartition de la loi de Pareto.

On déduit de la croissance de F_V que $(F^{-1}(F_V(V_{1,n})), \ldots, F^{-1}(F_V(V_{n,n})))$ a la même loi qu'une suite de nvariables aléatoires uniformes sur [0, 1] indépendantes.

On déduit du lemme A que le vecteur aléatoire $(F^{-1}(F_V(V_{1,n})), \dots, F^{-1}(F_V(V_{n,n})))$ a la même loi que

Donc la variable aléatoire $\frac{U(V_{n-k+1,n})-U(V_{n-2k+1,n})}{U(V_{n-k+1,n})-U(V_{n-4k+1,n})}$ a la même loi que :

$$\frac{X_{n-k+1,n} - X_{n-2k+1,n}}{X_{n-k+1,n} - X_{n-4k+1,n}}$$

Ainsi cette quantité converge en loi vers 2^{γ} quand n tend vers l'infini.

5.3 Estimateur de Hill

Tout d'abord, l'estimateur de Hill est applicable uniquement aux distributions de Fréchet ($\gamma > 0$), où il permet d'obtenir un estimateur de l'indice de queue plus efficace que celui de Pickands. Cet estimateur est défini par la statistique suivante :

$$\hat{\gamma}_{k,n} = \frac{1}{k} \sum_{i=1}^{k} \ln(\frac{X_{n-i+1,n}}{X_{n-k,n}})$$

pour $k \in \{1, \dots, n-1\}$. Si l'on choisit $k, n \to +\infty$, de sorte que $\frac{k}{n} \to 0$, alors on peut montrer que $\lim_{k \to \infty} \hat{\gamma}_{k,n} = \gamma$. Cet estimateur possède la propriété d'être asymptotiquement normal, ce qui signifie que :

$$\sqrt{k} \frac{\hat{\gamma}_{k,n} - \gamma}{\gamma} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$

Il existe plusieurs approches pour construire l'estimateur de Hill. Une approche possible consiste à utiliser la méthode du maximum de vraisemblance.

Tout d'abord, on considère une suite de variables aléatoires X_1, \ldots, X_n i.i.d. suivant une loi de Pareto de paramètre $\lambda > 0$, dont la fonction de répartition est donnée par :

$$F(x) = 1 - x^{-\lambda}$$
, pour $x \ge 1$.

La densité de probabilité associée est alors :

$$f(x) = \lambda x^{-\lambda - 1}$$
, pour $x \ge 1$.

La fonction de vraisemblance est donnée par :

$$L(x_1, ..., x_n, \lambda) = \prod_{i=1}^n f(x_i) = \lambda^n \prod_{i=1}^n x_i^{-\lambda - 1}.$$

En prenant le logarithme, on obtient la log-vraisemblance :

$$\log L(x_1, \dots, x_n, \lambda) = n \log \lambda - (\lambda + 1) \sum_{i=1}^n \log x_i.$$

En dérivant cette expression par rapport à λ , on obtient :

$$\frac{d\log L}{d\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} \log x_i.$$

En dérivant une seconde fois, nous obtenons :

$$\frac{d^2 \log L}{d\lambda^2} = -\frac{n}{\lambda^2} < 0,$$

ce qui confirme qu'il s'agit bien d'un maximum.

Ainsi, l'estimateur du maximum de vraisemblance de $\frac{1}{\lambda}$ est donné par :

$$\hat{\lambda}^{-1} = \frac{1}{n} \sum_{i=1}^{n} \log X_i.$$

Cela implique que l'estimateur du paramètre λ est :

$$\hat{\lambda} = \left(\frac{1}{n} \sum_{i=1}^{n} \log X_i\right)^{-1}.$$

Estimateur de DEDH 5.4

Le troisième estimateur de l'indice de queue est celui proposé par Dekkers, Einmahl et De Haan. Il s'agit d'une généralisation de l'estimateur de Hill, applicable à tous les domaines d'attraction. Il est défini par :

$$\hat{\gamma}_n^{(DEdH)}(k_n) = \mathcal{M}_{k_n}^{(1)} + 1 - \frac{1}{2} \left(1 - \frac{(\mathcal{M}_{k_n}^{(1)})^2}{\mathcal{M}_{k_n}^{(2)}} \right)^{-1}$$

οù

$$\mathcal{M}_{k_n}^{(r)} = \frac{1}{k_n} \sum_{i=1}^{k_n} (\ln(X_{(n-i+1)}) - \ln(X_{(n-k_n)}))^r.$$

La valeur de $\mathcal{M}_{k_n}^{(1)}$ correspond à l'estimateur de Hill. L'estimateur de DEDH possède la propriété de convergence en loi :

$$\sqrt{k_n} (\frac{\hat{\gamma}_n^{(DEdH)}(k_n) - \gamma}{\sigma_M}) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1) \quad \text{quand } n \to \infty.$$

où:

$$\sigma_M^2 = \begin{cases} 1 + \gamma^2, & \text{si } \gamma \ge 0, \\ (1 - \gamma^2)(1 - 2\gamma) \left(4 - \frac{8(1 - 2\gamma)}{1 - 3\gamma} - \frac{(5 - 11\gamma)(1 - 2\gamma)}{(1 - 3\gamma)(1 - 4\gamma)} \right), & \text{si } \gamma < 0. \end{cases}$$

En pratique, il est difficile de comparer ces estimateurs de manière tranchée. Toutefois, l'estimateur de Hill se distingue par une variance asymptotique plus faible, ce qui justifie son choix dans la suite. Etant donné que cet estimateur n'est valide uniquement pour les distributions appartenant au domaine d'attraction de Fréchet, c'est-à-dire dans le cas où $\gamma > 0$, il est essentiel de vérifier cette hypothèse.

6 Sélection des estimateurs de l'indice de valeurs extrêmes

Le choix de l'estimateur dépend du type de distribution sous-jacente. L'estimateur de Hill est spécifiquement adapté aux distributions de Fréchet ($\gamma > 0$), caractérisées par des queues lourdes. Il est donc plus efficace dans ce cas et sera préféré à l'estimateur de Pickands.

Cependant, pour les distributions de Weibull ($\gamma < 0$) et Gumbel ($\gamma = 0$), l'estimateur de Hill n'est pas applicable. Dans ces cas, on utilise l'estimateur de Pickands, qui est valide quel que soit le signe de γ .

L'estimateur de Pickands est basé sur les distances entre deux statistiques d'ordre, sans tenir compte du maximum de l'échantillon, ce qui entraîne une perte d'information sur la queue de distribution. Par conséquent, il présente une plus grande volatilité que l'estimateur de Hill, qui repose sur la moyenne des logarithmes des observations.

7 Détermination du domaine d'attraction

Une approche graphique qui permet de déterminer à quel domaine d'attraction appartiennent les données consiste à tracer le quantile plot généralisé repris de Anis Borchani (2010). Le quantile plot généralisé est défini par:

$$\left(\ln\left(\frac{n+1}{j}\right), \ln\left(\hat{\gamma}_{j,n}^{(UH)}\right)\right)$$
 pour tout $j \in [1; k_n]$

avec

$$\hat{\gamma}_{j,n}^{(UH)} = X_{(n-j)} \hat{\gamma}_n^{(H)}(k_n).$$

La difficulté pratique dans le calcul de ces estimateurs réside dans le choix du nombre d'excès k_n à prendre en compte. Si les estimateurs sont calculés en utilisant un trop grand nombre d'observations, leur biais sera élevé. À l'inverse, si le nombre d'observations est trop faible, cela entraînera une variance importante.

8 Application sur des données réelles

Afin d'illustrer les méthodes d'estimation de l'indice de valeurs extrêmes, nous allons appliquer ces techniques sur des données réelles. Nous allons utiliser les données du package *ismev* de R. Plus précisement wooster et rain. Wooster contient les données de temperature minimal (en Fahrenheit) annuelle à Wooster de 1983 à 1988. Tandis que Rain contient les données de pluie journalière dans en Angletterre de 1914 à 1962.

Nous allons utiliser deux méthodes d'estimation sur les paramêtres a_n , b_n et γ afin de d'estimer la valeur extrêmes.

8.1 Première méthode (Méthode des maxima en bloc) avec Wooster

8.1.1 Principe

La première étape consiste à decouper nos données en blocs de taille k et de calculer le maximum sur chaque bloc. Le parametre k est choisit en fonction de l'interpretation des données. (par exemple, si on a des données journalières, on peut choisir k=365 pour avoir des maximums annuelle). Ensuite, pour chaque bloc on calcule le maximum. Cela nous donne une suite de maximum. Une fois les maximums obtenus, on estime a_n,b_n et γ en utilisant la méthode du maximum de vraisemblance.

8.1.2 Application sur les données de Wooster

L'objectif sur ces données est de savoir si il existe (et dans le cas écheant de le calculer) un seuil tel que les températures ne puisse pas depasser. Chercher cette valeur seuil serait utilse en agriculure par exemple pour savoir si les températures ne sont pas trop élevées pour les cultures.

Histogram de wooster

Nous avons découper ici nos données en blocs de taille 60 et de calculer le maximum sur chaque bloc. L'estimation numériques par l'algorithme de Nelder-Mead des paramètres a_n,b_n (qu'on note pour la suite σ et μ) et γ nous donne :

$$\sigma = 36.02, \quad \mu = 18.82, \quad \gamma = -0.5$$

Nous obtenons une valeur de γ négative, ce qui signifie que la distribution des températures max à Wooster est de type Weibull. Nous pouvons donc conclure que les températures à Wooster sont pas limitées par un seuil. Ce seuil est donc de : $x_{max} = \mu - \frac{\sigma}{\gamma} = 74.93$

Il est alors raisonnables de penser que les températures à Wooster ne depassent pas 74.93.

V

8.2 Méthode de depassement de seuil avec Rain

8.2.1 Principe

La deuxieme méthode consiste à fixer un seuil u et de considèrer les données qui depassent ce seuil. C'est à dire X_i tel que $X_i > u$. Ensuite, on stocke les excès $X_i - u$. Cela nous donne un jeu de données positifs. La clé de cette méthode est que pour un seuil u bien choisit, les excès suivent une loi de Pareto de parametres σ (échelle) et γ (le gamma qu'on estime dans toute la théorie). C'est alors qu'on ajuste les paramêtres σ et γ par maximum de vraisemblance.

8.2.2 Application sur les données de Rain

L'objectif sur ces données est de savoir si il existe (et dans le cas écheant de le calculer) un seuil tel que les pluies ne puisse pas depasser. Chercher cette valeur seuil serait utilse en agriculure par exemple pour savoir si les pluies ne sont pas trop élevées pour les cultures.

On remarque dans un premier temps que les données sont concentrés autour de 0. Mais qu'elles sont capable de prendre des données très élevées. Il est alors raisonnables de penser qu'apres estimation, on va obtenir une valeur de gamma positive ou nulle. En effet, il n'apparait pas de cassure dans la distribution des données. De plus, la queue de distribution est longue mais ne parait pas lourde. Ce qui suggererait une valeur de gamma proche de 0.

Après estimation numériques, on obtient : $\sigma = 7.94$ et $\gamma = 0.034$ avec pour γ un intervalle de confiance : [-0.022; 0.102].

Une valeur de gamma aussi proche de 0 doit nous conduire à une étude plus approfondie. Plusieurs méthode s'offre à nous pour améliorer l'estimation de gamma.

ON Peut considere la premiere méthode afin de comparer les résultats.

On peut faire varier le seuil u est juger de l'impact sur l'estimation de gamma.

Ou alors de façon plus arbitraire, on peut considère de la valeur de gamma en fonction du type de donnée qu'on étudie et de la cohérence que cela apporte.

Pour notre exemple, on considère que $\gamma>0$

Rain Excesses et densité de Pareto

La distribution de Pareto (courbe rouge) avec les parametres estimmés semblent bien coller avec les données. Cela signifie qu'on s'attend à des excès au-delà du seuil de plus en plus rares, sans pour autant exclure la survenue de précipitations sensiblement élevées,

L'avantage de cette méthode est qu'elle est plus efficace car elle utilise plus de données. Cependant, elle est plus difficile à mettre en place car il faut choisir un seuil u qui est crucial pour l'estimation de gamma.

9 Annexe

9.1 Codes R

Voici un exemple de code R utilisé dans la première section :

```
# Paramètres
            n <- 1000
N <- 10000
2
                               # Taille de l'échantillon pour la simulation des lois uniformes
                               # Nombre de simulations pour le maximum
3
            # Simulation des maxima de lois uniformes(0,1)
5
            set.seed(123) # fixation de l'aléa
6
            M_n <- replicate(N, max(runif(n))) # M_n = max / X_n = runif</pre>
8
            # Normalisation pour observer la convergence
9
            Y_n \leftarrow n * (1 - M_n)
10
11
            # Histogramme des valeurs transformées
12
            hist(Y_n, breaks = 50, probability = TRUE,
col = "lightblue", border = "white", ylab = "Densité",
13
14
            xlab = expression(Y_n), main = "Max_de_1000_lois_uniformes")
16
17
            \# Densité théorique de la loi exponentielle (paramètre = 1)
            curve(dexp(x, rate = 1), col = "red", lwd = 2, add = TRUE)
18
19
            # Légende
20
            legend("topright", legend = c("Simulation", "Densitéuthéoriqueu:uexp(1)"),
21
            fill = c("lightblue", NA), border = c("white", NA),
22
            lty = c(NA, 1), col = c(NA, "red"), lwd = c(NA, 2))
```