ANALYSIS OF VARIANCE (ANOVA)

Prof. Dr. Dyah Erny Herwindiati, S.Si, M.Si. Lely Hiryanto, S.T., M.Sc., Ph.D.

Anova

- Anova adalah satu metode analisis statistika yang digolongkan ke dalam kelompok statistik inferensial.
 - Anova Satu Arah: satu independent variable
 - Anova Dua Arah: dua independent variables
- Anova Satu Arah (One Way Anova): digunakan untuk melakukan pengujian perbandingan rata-rata beberapa kelompok, biasanya terdiri dari lebih dari dua kelompok.
- Penggunaan Anova kelompok yang berasal dari sampel yang berbeda antar kelompok.

Hipotesis Anova Satu Arah

- Hipotesis yang digunakan dalam Anova satu arah adalah sebagai berikut:
 - Hipotesis nol (H0) dalam uji ANOVA adalah bahwa semua (minimal 3) populasi yang sedang dikaji memiliki rata-rata hitung (mean) sama
 - H0: μ 1 = μ 2 = μ 3 = ... = μ n, Tidak terdapat perbedaan signifikan antara rata-rata hitung dari n kelompok.
 - H1: μ1 ≠ μ2 ≠ μ3 ≠ ... ≠ μn, Ada perbedaan yang signifikan antara rata-rata hitung dari n kelompok
- Hipotesis yang digunakan untuk Anova satu arah dan Anova dua arah adalah sama.
- Analisis ragam Anova tidak dapat menentukan mana kelompok yang benar-benar berbeda.
- Kemampuan analisis ragam Anova hanya mampu mendeteksi apakah ada perbedaan rata-rata dari beberapa kelompok tersebut.

Anova Satu Arah

- Tujuan: untuk membandingkan nilai mean (rata-rata) atau varians dari beberapa populasi (yang biasanya lebih dari 2 populasi).
- Contoh: jika terdapat k populasi , k=1,2,...,k dan di setiap populasi terdapat sejumlah n sampel seperti pada tabel 1 berikut. Kita ingin membandingkan apakah sekurang-kurangnya ada satu perbedaan rata-rata atau varians dari k populasi tersebut.

Tabel 1. Contoh Konsep Dasar Anova

Populasi					
1	2	:	k		
<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1k}		
x_{21}	x_{22}		x_{2k}		
<i>x</i> ₃₁	x ₂₃		X_{3k}		
X_{nl}	x_{n2}		X_{nk}		

Ide Utama Anova

- Mengukur "within" variabilitas dan juga "between" variabilitas dari "treatmen groups".
 - "Within" treatmen adalah variabilitas karena random error setiap observasi
 - "Between" treatmen adalah
 Variabilitas karena perbedaan
 k treatmen dan karena random
 error setiap observasi

Tabel 3. Tabel Anova

Keterangan:

$$SS_T = \sum_{t=1}^k n_t \left(\overline{y}_t - \overline{y} \right)^2$$

$$SS_{R} = \sum_{t=1}^{k} \sum_{i=1}^{n_{t}} (y_{ti} - \overline{y}_{t})^{2}$$

$$SS_{D} = \sum_{t=1}^{k} \sum_{i=1}^{n_{t}} (y_{ti} - \overline{y})^{2}$$

Sumber	Kuadrat	Derajat	
Variasi	Jumlah	Bebas	Kuadrat Mean
Between	22	<i>l</i> _ 1	MS = SS / v
Treatmen	SS_T	$v_T = k - 1$	$MS_T = SS_T / v_T$
Within	SS_R	$v_{-} = N - k$	$MS_R = SS_R / v_R$
Treatmen	BB_R	PR IV N	$MS_R = SS_R / V_R$
Total (terhadap Grand Mean)	SS_D	$N_{\rm G}={ m v}_{ m T}$	· + v _R

k = jumlah populasi

N =total jumlah observasi untuk semua populasi

Contoh,

Seorang manajer akan membandingkan output dari 3 buah mesin.

Manajer tersebut mencatat output dari mesin ke 1 dalam durasi 1 menit (dipilih secara random), dan diulangi sebanyak 5 kali. Dengan cara yang sama, dilakukan pula pencatatan untuk mesin ke 2 sebanyak 10 kali dan 6 kali untuk mesin ke 3.

Mes	sin 1	Me	sin 2	Mesin 3	
\mathbf{Y}_1		Y_2		Y_3	
10		6		11	
6		7		8	
8		9		13	
12		4		10	
6		6		10	
		10		12	
		5			
		6			
		8			
		6			

Grand mean dari semua mesin adalah (42+67+64)/21 = 8.238.

Mesin 1	Mesi	n 2	Mesir	1 3
\mathbf{Y}_1	Y_2		\mathbf{Y}_3	
10	6		11	
6	7		8	
8	9		13	
12	4		10	
6	6		10	
	10		12	
	5			
	6			
	8			
	6			
42	67		64	

$$\overline{Y}_1 = \frac{42}{5} = 8.4$$

$$\overline{Y}_2 = \frac{67}{10} = 6.7$$

$$\overline{Y}_1 = \frac{42}{5} = 8.4$$
 $\overline{Y}_2 = \frac{67}{10} = 6.7$
 $\overline{Y}_3 = \frac{64}{6} = 10.67$

Kita hitung variabilitas tiap mesin (Within Treatment)

Mesin1		Mesin 2		Mesin 3	
\mathbf{Y}_1	$(Y_1 - \overline{Y}_1)^2$	Y_2	$(\mathbf{Y}_2 - \overline{\mathbf{Y}}_2)^2$	Y_3	$(Y_3 - \overline{Y}_3)^2$
10	2.56	6	0.49	11	0.1111
6	5.76	7	0.09	8	7.1111
8	0.16	9	5.29	13	5.4444
12	12.96	4	7.29	10	0.4444
6	5.76	6	0.49	10	0.4444
		10	10.89	12	1.7778
		5	2.89		
		6	0.49		
		8	1.69		
		6	0.49		
42	27.2	67	30.10	64	15.33

 $\overline{Y}_1 = \frac{42}{5} = 8.4$ $\overline{Y}_2 = \frac{67}{10} = 6.7$ $\overline{Y}_3 = \frac{64}{6} = 10.67$

Kuadrat Jumlah variasi dari within groups SS_R adalah jumlah kuadrat dari variabilitas output setiap mesin = 27.2 + 30.10 + 15.33 = 72.63.

Rumus: $SS_R = \sum_{t=1}^{k} \sum_{i=1}^{n_t} (y_{ti} - \overline{y}_t)^2$

 $\overline{Y}_1 = \frac{42}{5} = 8.4$

 $\overline{Y}_2 = \frac{67}{10} = 6.7$

 $\overline{Y}_3 = \frac{64}{6} = 10.67$

Machine 1		Machine 2		Machine 3	
\mathbf{Y}_1	$(Y_1 - \overline{Y}_1)^2$	Y_2	$(Y_2 - \overline{Y}_2)^2$	Y_3	$(Y_3 - \overline{Y}_3)^2$
10	2.56	6	0.49	11	0.1111
6	5.76	7	0.09	8	7.1111
8	0.16	9	5.29	13	5.4444
12	12.96	4	7.29	10	0.4444
6	5.76	6	0.49	10	0.4444
		10	10.89	12	1.7778
		5	2.89		
		6	0.49		
		8	1.69		
		6	0.49		
42	27.2	67	30.10	64	15.33

Jika grand mean dari semua mesin adalah (42+67+64)/21 = 8.238.

Maka Kuadrat jumlah dari between treatment/ Group:

$$SS_{T} = \sum_{t=1}^{k} n_{t} (\bar{y}_{t} - \bar{y})^{2}$$

$$= 5(8.4 - 8.238)^{2} + 10(6.7 - 8.238)^{2}$$

$$+6(10.67 - 8.238)^{2}$$

$$= 5(0.026) + 10(2.365) + 6(5.898)$$

$$= 59.18$$

$$\overline{Y}_1 = \frac{42}{5} = 8.4$$
 $\overline{Y}_2 = \frac{67}{10} = 6.7$
 $\overline{Y}_3 = \frac{64}{5} = 10.67$

Mesii	n 1	Mesi	in 2	Mesii	n 3
Y_1		\mathbf{Y}_2		Y_3	
10		6		11	
6		7		8	
8		9		13	
12		4		10	
6		6		10	
		10		12	
		5			
		6			
		8			
		6			
42		67		64	

Keterangan:

$$SS_T = \sum_{t=1}^k n_t \left(\overline{y}_t - \overline{y} \right)^2$$

$$SS_{R} = \sum_{t=1}^{k} \sum_{i=1}^{n_{t}} (y_{ti} - \overline{y}_{t})^{2}$$

$$SS_D = \sum_{t=1}^{k} \sum_{i=1}^{n_t} (y_{ti} - \overline{y})^2$$

Tabel 3. Tabel Anova

Sumber	Kuadrat	Derajat	
Variasi	Jumlah	Bebas	Kuadrat Mean
Between	CC	1	MC - CC /2
Treatmen	SS_T	$v_T = k - 1$	$MS_T = SS_T / v_T$
Within	22	v = N - k	$MS_R = SS_R / v_R$
Treatmen	SS_R	v _R - 1 v · n	$MS_R = SS_R / V_R$
	~~		
Total (terhadap	SS_D	$N_{\rm G}$	
Grand Mean)			

$$N_{\rm G} = v_T + v_R$$

Sumber Variasi	Jumlah Kuadrat	Derajat Bebas	Kudrat Mean	F-hitung
Between Treatmen	59.18	2	59.18/2 = 29.588	$\frac{MS_T}{MS_R} = \frac{29.588}{4.035}$
Within Treatmen	72.63	18	72.63/18 = 4.035	MS_R 4.035 =7.33
Total	131.81	20		

Distribusi F dan F_{tabel}

$$F_{2,18,5\%} = 3.55$$

 $F_{tabel} = F_{v1,v2,\alpha\%} = 3.55$

Jika kita bandingkan F-hitung = 7.33 dengan F_{tabel} =3.55

Berarti F-hitung terletak di daerah kritis, daerah penolakan Hipotesis Ho

- H0: $\mu 1 = \mu 2 = \mu 3 = Tidak$ terdapat perbedaan signifikan antara rata-rata Mesin 1, Mesin 2 dan Mesin 3.
- H1: μ 1 \neq μ 2 \neq μ 3, Ada perbedaan yang signifikan antara ratarata Mesin 1, Mesin 2 dan Mesin 3