Colle 2A : Relations binaires, ensembles $\mathbb R$ et $\mathbb N$, applications

Question de cours : Démontrer que toute partie non vide majorée de N admet un plus grand élément.

Exercice 1:

Soit
$$n \in \mathbb{N}^*$$
 et pour tout $i \in [1, n]$, $a_i \in [1, +\infty[$. Montrer que $\prod_{i=1}^n (1 + a_i) \le 2^{n-1} \left(1 + \prod_{i=1}^n a_i\right)$.

Exercice 2:

Soit $f: E \to E$ une application. Pour tout $n \in \mathbb{N}^*$, f^n désigne la composée n-ème de f définie par récurrence par $f^0 = Id_E$ et pour tout $k \in \mathbb{N}$, $f^{k+1} = f \circ f^k$. Soit $A \subset E$, $A_n = f^n(A)$ et $B = \bigcup_{i \in \mathbb{N}} A_i$.

- 1. Montrer que B est stable par f c'est-à-dire que $f(B) \subset B$.
- 2. Montrer que B est la plus petite partie de E stable par f et contenant A.

Exercice 3:

On définit une relation \sim sur $\mathbb{R}^{\mathbb{N}}$ par $u \sim v$ si $\forall n \in \mathbb{N}, \exists p,q \geqslant n, u_p \leqslant v_n$ et $v_q \leqslant u_n$. Montrer que la relation \sim est une relation d'équivalence.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 2B : Relations binaires, ensembles \mathbb{R} et \mathbb{N} , applications

Question de cours : Définition de la partie entière. Preuve de l'existence et de l'unicité.

Exercice 1:

Montrer que pour tout
$$n \in \mathbb{N}^*$$
, $\sum_{k=1}^n \frac{1}{\sqrt{k}} < \sqrt{n} + \sqrt{n+1} - 1$.

Exercice 2:

Soit $f: E \to E$. Montrer que f est injective si, et seulement si, pour toutes parties A et B de E, $f(A \cap B) = f(A) \cap f(B)$.

Exercice 3:

Soit A une partie d'un ensemble E. On appelle fonction caractéristique, ou fonction indicatrice, de A l'application $\chi_A: E \to \{0,1\}$ définie par $\chi_A(x) = \begin{cases} 1, & \text{si } x \in A \\ 0, & \text{si } x \notin A \end{cases}$.

Soit A et B deux parties de E et χ_A et χ_B leurs fonctions caractéristiques. Montrer que les fonctions suivantes sont les fonctions caractéristiques d'ensembles que l'on déterminera :

- 1. $1 \chi_A$
- 2. $\chi_A \chi_B$
- 3. $\chi_A + \chi_B \chi_A \chi_B$

Exercice 4:

Considérons la relation binaire sur \mathbb{C} définie par : $z \vdash z' \iff \exists n \in \mathbb{N}, z' = z^{2^n}$.

- 1. La relation \vdash est-elle une relation d'ordre?
- 2. Reprendre la question précédente en définissant \vdash sur \mathbb{R} .

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 2C : Relations binaires, ensembles $\mathbb R$ et $\mathbb N$, applications

Question de cours : Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer $\sum_{k=1}^{n} \sin(k\theta)$.

Exercice 1:

Pour tout $k \in \mathbb{N}^*$, on note u_k le plus grand diviseur impair de k. Montrer que, pour tout $n \in \mathbb{N}^*$, $\sum_{i=1}^n u_{n+i} = n^2$.

Exercice 2 : Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$:

1.
$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$$

$$2. \sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor.$$

Exercice 3 : théorème du point fixe de Knaster-Tarsky

Soit $f: \mathcal{P}(E) \to \mathcal{P}(E)$ croissante pour l'inclusion. Montrer qu'il existe une partie X de E qui vérifie f(X) = X.