Projekt automatu z zapiekankami z funkcją podgrzewania

Agnieszka Guzik nr albumu: 236819; Jakub Malinowski, nr albumu: 236422 31 maja 2019

1 Temat projektu

Tematem niniejszej publikacji jest projekt automatu vendingowego z zapiekankami z funkcją podgrzewania. Automat będzie serwował zapiekanki różnego typu i umożliwiał wybór stopnia ich podgrzania. Aby zachować świeżość zapiekanek będą one przecowywane w temperaturze $5^{\circ}C$ i podgrzewane tuż przed wydaniem użytkownikowi.

2 Sposób realizacji projektu

Projekt został wykonany z użyciem istniejących i ogólnodostepnych podzespołów. Dokumentacja zawiera:

- 1. Opis środowiska działania systemu i problemów z tym związanych.
- 2. Analizę zapotrzebowania na funkcjonalności w systemie.
- 3. Przedstawienie działania systemu ze szczególnym uwzględnieniem wygody użytkowania systemu, jego ergonomii, kompletności
- 4. Zestawienie komponentów systemu oraz ich wzajemne interakcje.
- 5. Oszacowanie łącznego kosztu komponentów

3 Opis środowiska

Automat jest przeznaczony do użykowania we wnętrzach. Podczas przygotywywania zapiekanki może dojść do awarii, należy więc zadbać o to, by pieniądze były pobierane z konta klienta tylko wtedy gdy zapiekanka zostanie prawidłowo wydana. W wielu automatach wybrany przez klienta produkt jest spychany z pułki i spada swobodnie na dno komory automatu. Zapiekanki są podatniejsze na uszkodzenia mechaniczne niż najczęściej sprzedawane w automatach vendingowych produkty (takie jak np. napoje i batoniki). Z tego powodu należy wybrać sposób transportowania zapiekanek, który nie narażałby ich na uszkodzenia związane z upadkiem.

4 Założenia projektowe (spis funkcjonalności)

- 1. Prosty w obsłudze interfejs użytkownika.
- 2. Szybki i bezpieczny transport między chłodziarką a opiekaczem.
- 3. Możliwość dostosowania temperatury w chłodziarce.
- 4. Możliwość dostosowania temperatury w opiekaczu.
- 5. Możliwość dostosowania czasu grzania.
- 6. Szybki i bezpieczny transport między opiekaczem a podajnikiem dostępny dla użytkownika.

5 Działanie urządzenia

Użytkownik za pomocą interfejsu wybiera produkt, co powoduje otwarcie części chłodzącej. Odpowiedni dyspenser zwalnia zapiekankę, która za pomocą prznośnika tranportowana jest do opiekacza. Następuje zamknięcie opiekacza oraz zwiększenie temperatury do temperatury zaprogramowanej do podgrzewania. Następnie drzwiczki od strony użytkownika są automatycznie otwierane i użytkownik może wyjąć wybrany produkt.

5.1 Diagram Stanów

5.2 Diagramy użycia

Na kolejnych schematach przedstawiono scenariusze użycia dla wybranych akcji wykonywanych przez Klienta.

5.2.1 Scenariusz wybrania zapiekanki

Cel

• Wybranie produktu.

Klient
1. Wybranie na ekranie dotykowym numeru produktu.
2. Wybranie stopnia podgrzania z trzech dostępnych opcji "Nie podgrzana"; "Ciepła"; "Gorąca"
3. Zbliżenie karty płatniczej
4. Zaakceptowanie karty płatniczej
5. Poprawne wybranie produktu
4a. Odrzucenie karty płatniczej
5a. Powrót do punktu pierwszego

5.2.2 Scenariusz wydania zapiekanki

\mathbf{Cel}

- Podgrzanie zapiekanki
- Wydanie gotowego produktu klientowi

Aktor	Automat
Warunki wstępne	Klient wybrał produkt, a jego karta została zaakceptowana
Scenariusz główny	
	1. Otwarcie części chłodzącej
	2. Odpowiedni dyspeser zwalnia zapiekankę
	3. Zapiekanka transportowana jest do opiekacza
	4. Zapiekanka jest podgrzewana
	5. Drzwiczki po stronie klienta otwierają się
	6. Pieniądze z karty klienta zostają pobrane
Scenariusz alterna-	
tywny	2a. Dyspenser jest blokowany
	3a. Klient, poprzez komunikad na ekranie, zostaje powiadomiony, że nastąpił błąd a pieniądze z jego karty nie zostały pobrane
	4a. Powrot do punktu pierwszego
Scenariusz alterna-	
tywny	5a. Drzwiczki nie zostają otwarte
	6a. Klient, poprzez komunikad na ekranie, zostaje powiadomiony, że nastąpił błąd a pieniądze z jego karty nie zostały pobrane
	7a. Automat blokuje się

5.3 Procedura działania automatu

6 Wizualizacja urządzenia

7 Lista Komponentów

- Arduino Uno
- Ekran dotykowy
- Prznośnik windowy
- Termostat
- Moduły chłodzące
- Opiekacz
- Czytnik kart płatniczych
- \bullet Konwerter UART/RS232
- Przekaźnik statyczny
- Spirale metalowe
- Czujnik temperatury
- Serwomechanizmy

- Moduły sterownika silnika
- Silnik DC
- $\bullet \,$ Sterownik serwomachanizmów
- Obudowa
- Zasilacz

7.1 Ekran dotykowy

Model	3.2" TFT LCD Touch shield for Arduino
Rozmiar	3.2"
Kolory	262K
Backlight	LED
TFTResolution	240 x 320 pixels
Sterownik IC	SSD1289

7.2 Przenośnik windowy

Model	3557 - ST 5000 Elevator
Częsci	
	• Kontroler (The Elevator Controller)
	• Rama windy (The Elevator Frame Assembly)
	 Przegroda bezpieczeństwa (The Security Baffle Assembly)
	• The Delivery Door Lock Slide
	• Sensor optyczny drzwiczek (The Delivery Door Optical Sensor)

Rysunek 1: Rama przenośnika windowego

7.3 Termostat

Model	Termostat W1209 z sondą temperatury $-50/+100$ °C
Opis	Moduł termostatu z wyświetlaczem umożliwiającego stero-
	wanie urządzeniem do 2300 W na podstawie temperatury.
	Zasilany napięciem 12 V. Reguluje temperaturę w zakre-
	sie od $-50^{\circ}C$ C do $110^{\circ}C$, posiada wyjścia wbudowanego
	przekaźnika. W zestawie znajduje się również wodoodpor-
	na sonda pomiarowa NTC 10K z przewodem 30 cm
Napięcie zasilania	12 V
Regulacja tempera-	od $-50^{\circ}C$ do $110^{\circ}C$
tury	
Wyświetlacz	
segmentowy	3 przyciski
Rozdzielczość	
	$\bullet~0,1^{\circ}C$ w zakresie od $-9,9^{\circ}C$ do $90^{\circ}C$
	\bullet 1°C w pozostałym zakresie
Obciążenie wyjścia	
do 2300 W	• 20A / 12 V DC
	• 10 A / 230 V AC
Wymiary płytki	50 x 40 x 17 mm

7.4 Moduł Chłodzący

Model	REFRIGERATING UNIT R134A
Wymiary	600x470 mm
Kompresor	Model:EMT6160Z
	Gaz chłodzący: R-134a
	Napięcie: 230V

7.5 Opiekacz

Moc	900W
Temperaura mak-	$230^{\circ}C$
symalna	
Zasilanie	230 V, 50 Hz

7.6 Czytnik kart płatniczych

Model	VPOS Nayax
Wspierane systemy	
płatności	• EMV Level 1, EMV Level 2
	• Karta magnetyczna - ISO7811
	• Inne wspierane karty: NFC, MIFARE, HID-iClass
	Aplikacje płatnicze
Interfejs	RS-232
Zasilanie	8V - 16V DC
Wsparcie dla algo- rytmów	DES, 3DES, AES, RSA, SHA1
Komunikacja bez- dotykowa	częstotliwość 13.56 MHz; MIFARE, NFC
Standardy	
	• ISO 7816 Smart Card
	• ISO 14443 Typ A i B
	• ISO 15693
Wymiary	105 x 84 x 48.3 mmm

7.7 Konwerter UART/RS232

Czytnik kart płatniczych korzysta ze standardu RS232. Szeregowy port Arduino pracuje w standardzie TTL. Z tego powodu należy wykorzystać konwerter.

7.8 Przekaźnik statyczny

Model	SSR-25DA
Napięcie pracy wyj-	od 24V do 380V AC
ścia	
Prąd sterujący	od 4,5mA do 20mA
Czas reakcji wejścia	< 10ms
Wymiary	$63 \times 45 \times 23 \text{mm}$
Waga	105g

7.9 Czujnik temperatury

Napięcie zasilania	3.3–5V
Zakres pomiarów	$-50^{\circ}C-600^{\circ}C$
Dokładność pomia-	$+/-2,0\%(+2^{\circ}C)$
rów	
Zakres napięcia	0 - 3.3V
wyjścia	
Wymiary	20 x 40mm

7.10 Serwomechanizm

Napięcie zasilania	4.5V - 6V
Moment Obrotowy	4 kg/cm
Wymiary	22 x 11,5 x 27 mm
Waga	55g

7.11 Moduł sterowania silnikiem

Sterownik	L298N
Napięcie zasilania	5-35V
Zasilanie logiki	4.5-5.5V
Wymiary	22x11,5x27mm
Maksymalny pobór	20W
mocy	

7.12 Silnik DC

Napięcie zasilania	od 6 V do 7,5 V
Napięcie znamiono-	6 V
we	
Przekładnia	34:1
Prąd bez obciąże-	350 mA
nia	
Wymiary	51x24x24 mm
Masa	90g

7.13 Sterownik serwomechanizmów

Napięcie części logicznej	od 3,3 V do 5 V
Napięcie zasilania	do 6 V
serwomechanizmów Sygnał PMW	
	• rodzielczość: 12 bitów
	• częstotliwość: 40 Hz – 1000 Hz.
Maksymalna liczba urządzeń	16
Wymiary	62,5x25x43 mm
Masa	5,5 g

8 System podgrzewania zapiekanek

Na powyższym diagramie zostały przedstawione podstawowe zależności pomiędzy komponentami bioroącymi udział w podgrzewaniu zapiekanki. Gdy temparutura w opiekaczu przekroczy ustalony próg Arduino przy pomocy przekaźnika statycznego odetnie dopływ prądu do urządzenia grzewczego. W analogiczny sposób, gdy temperatura w opiekaczu spadnie poniżej ustalonego progu, dopływ prądu do urządzenia zostanie przywrócony. Operacje te są powtarzane aż minie czas ustalony wcześniej na podstawie wybranego przez klienta stopnia podgrzania.

Przekaźnik statyczny został użyty, gdyż jest on bardziej niezawodny niż prze-

kaźniki mechaniczne. Niewyłącznie opiekacza mogłoby spowodować uszkodzenie urządzenia.

9 System transportu zapiekanek

Aby zabezpieczyć zapiekankę przed uszkodzeniem w trakcie transportu, użyty został przenośnik windowy. Przenośnik ten podsuwa swoją kieszeń na wysokość odpowiedniej półki i przesuwa ją do odpowiedniego rzędu produktów. Po podstawieniu kieszeni przenośnika serwomechanizm z tyłu półki porusza metalową spiralą, w wyniku czego umieszczone w niej zapiekanki są przesuwane do przodu. Ze względu na dużą liczbę serwomechanizmów (16), urzyty został sterownik serwomechanizmów generujący syngał PMW.

Po dotarciu do krawędzi półki zapiekanka zsuwa się do kieszeni przenośnika. Prznośnik ten transportuje zapieknakę do opiekacza. Drzwiczki wenętrzne opiekacza są otwierane przy pomocy silnika prądu stałego. Silniki prądu stałego służą również do automatycznego otwierania drzwiczek zewnętrznych oraz zamykania i otwierania chłodzonej komory. Łączna liczba silników tego typu użyta w automacie wynosi trzy. Dla tego w automacie znajdóją się również dwa moduły sterowania silnikiem L298N (każdy z nich może sterować maksymalnie dwoma silnikami). Aby zminimalizować ilość energii wymienianej pomiędzy rozgrzanym opiekaczem a chłodzoną częścią automatu wewnętrzne drzwiczki opiekacza są otwarte tylko wtedy gdy drzwiczki chłodzonej komory są zamknięte.

10 Instrukcja obsługi

- $1.\ {\rm Za\ pomoc}_{\bar{\rm Q}}$ klawiatury widocznej na ekranie dotykowym wybierz numer produktu
- 2. Wybierz stopień podgrzania
- 3. Zblirz kartę do czytnika
- 4. Poczekaj aż karta zostanie zaakceptowana
- 5. Poczekaj aż produkt zostanie podgrzany
- 6. Odbierz produkt

11 Oszacowanie kosztów

Ekran dotykowy	100zł
Podajnik Windowy	150zł
Termostat	12zł
Moduł chłodzący	850zł
Opiekacz	130zł
Czytnik kart płatniczych	900zł
Konwerter UART/RS232	24zł
Przekaźnik statyczny	20zł
Czujnik temperatury	80zł
Serwomechanizmy	10zł * 16
Spirala metalowa	10 zł * 16
Silnik DC	40zł * 3
Moduł sterowania silnikiem	14zł * 2
Sterownik serwomeachanizmów	85zł
Obudowa	1100zł
Zasilacz	600zł
Suma	4519 zł