Modular Arithmetic and Diophantine Equations

EVAN CHEN

BNW-MODS

§1 Lecture notes

- "Exponential" Diophantine equations vs. "polynomial" Diophantine equations.
- Take modulo things.
 - Squares nice mod 4.
 - Cubes nice mod 7, 9.
 - Use Fermat's theorem for general powers.
- Factor (e.g. difference of squares, $a^n \pm b^n$).

Problem 1.1. Solve $3^x = 2^y + 1$.

Problem 1.2. Solve $3^x = 2^y - 1$.

Problem 1.3 (HMMT 2016). Let a and b be integers (not necessarily positive). Prove that $a^3 + 5b^3 \neq 2016$.

Problem 1.4 (Balkan MO). Prove that $x^2 \neq y^5 - 4$ for any integers x and y.

§2 Practice problems

Problem 2.1 (JMO 2011). Find all positive integers n such that $2^n + 12^n + 2011^n$ is a perfect square.

Problem 2.2 (MOP 2013). For which primes p is $(p-1)^p + 1$ a power of p?

Problem 2.3 (Ali Gürel). Solve $a^{11} + 11b^{11} + 111c^{11} = 0$ over \mathbb{Z} .

Problem 2.4 (JMO 2013). Are there integers a and b such that a^5b+3 and ab^5+3 are both perfect cubes of integers?

Problem 2.5 (Shortlist 2002). What is the smallest positive integer t such that we can find integers x_1, x_2, \ldots, x_t with

$$x_1^3 + x_2^3 + \dots + x_t^3 = 2002^{2002}$$
?

Problem 2.6 (AMSP 2011). Find all positive integers x and y satisfying $2^x - 5 = 11^y$.

Problem 2.7 (IMO 2006/4). Determine all pairs (x, y) of integers such that

$$1 + 2^x + 2^{2x+1} = y^2.$$