

Tarea 1

12 de agosto de 2024

 $2^{\underline{0}}$ semestre 2024 - Profesores P. Bahamondes - D. Bustamante - M. Romero

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 19 de agosto a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template L^AT_FX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas (salvo que utilice su cupón #problemaexcepcional).
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Pregunta 1

(a) Demuestre por inducción que para todo número natural $n \geq 0$ se cumple:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

(b) Demuestre por inducción que para todo natural $n \geq 1$ y para todo natural $m \geq 1$, se tiene que:

$$(m+1)^n > mn$$

(Hint: Aplique inducción sobre n, tomando un m arbitrario.)

Pregunta 2

Sea $b \geq 2$ un número natural fijo. Decimos que un número natural $n \geq 0$ se puede escribir en base b si existen $\ell \geq 1$ números naturales $k_0, \ldots, k_{\ell-1} \in \{0, \ldots, b-1\}$ tal que

$$n = \sum_{i=0}^{\ell-1} k_i \cdot b^i$$

Demuestre por inducción fuerte que todo número natural $n \geq 0$ se puede escribir en base b.