

Predict the sea *surge*

▶ Variations of sea level composed of tide and surge.

Predict the sea surge

- ▶ Variations of sea level composed of tide and surge.
- Tide composed of astronomical tide and radiational tide. Easily predicted.

Predict the sea *surge*

- ▶ Variations of sea level composed of tide and surge.
- Tide composed of astronomical tide and radiational tide. Easily predicted.
- Surge is the difference between observed sea level and tide. Critical importance for safety reasons.

Data description

- Sea-level pressure field (SLP).
- Sea surges of two (unknown) cities.

Data description

- Sea-level pressure field (SLP).
- Sea surges of two (unknown) cities.

- Data from 1950s to 2010s.
- Windows of five days.
- ▶ SLP: 41 × 41 grid, every 3 hours.
- Surges: Normalized, every 12 hours.

Data description

- Sea-level pressure field (SLP).
- Sea surges of two (unknown) cities.

- Data from 1950s to 2010s.
- Windows of five days.
- ▶ SLP: 41 × 41 grid, every 3 hours.
- Surges: Normalized, every 12 hours.

Output: Surges on next five days.

Example data

Input:

Example data

Output:

▶ Metric: L^2 loss function, weight (1, 0.9, ..., 0.1).

- ▶ Metric: L^2 loss function, weight (1, 0.9, ..., 0.1).
- ▶ Benchmark: K-nearest neighbors on SLP at time t and t 24h, with K = 40, ignoring other SLPs, time, input surges.

- ▶ Metric: L^2 loss function, weight (1, 0.9, ..., 0.1).
- ▶ Benchmark: K-nearest neighbors on SLP at time t and t 24h, with K = 40, ignoring other SLPs, time, input surges.
- ► Achieves a score of 0.7720, ie. 23% of variance explained.

- ▶ Metric: L^2 loss function, weight (1, 0.9, ..., 0.1).
- ▶ Benchmark: K-nearest neighbors on SLP at time t and t 24h, with K = 40, ignoring other SLPs, time, input surges.
- ► Achieves a score of 0.7720, ie. 23% of variance explained.

True surges

Benchmark prediction

- Normalize the data:
 - 1. Normalize SLPs and time (input surges already normalized).
 - 2. Transform input surges to implement the weighted metric with a standard L^2 norm.

- Normalize the data:
 - 1. Normalize SLPs and time (input surges already normalized).
 - 2. Transform input surges to implement the weighted metric with a standard L^2 norm.
- Dimension reduction on SLPs with PCA.

- Normalize the data:
 - 1. Normalize SLPs and time (input surges already normalized).
 - 2. Transform input surges to implement the weighted metric with a standard L^2 norm.
- Dimension reduction on SLPs with PCA.
- Lasso regression for city 1 (resp. 2) on:
 - 1. Reduced SLPs.
 - 2. Input surges city 1 (resp. 2).
 - 3. Time.

- Normalize the data:
 - 1. Normalize SLPs and time (input surges already normalized).
 - 2. Transform input surges to implement the weighted metric with a standard L^2 norm.
- Dimension reduction on SLPs with PCA.
- Lasso regression for city 1 (resp. 2) on:
 - 1. Reduced SLPs.
 - 2. Input surges city 1 (resp. 2).
 - 3. Time.
- Transform back output surges.

- Normalize the data:
 - 1. Normalize SLPs and time (input surges already normalized).
 - 2. Transform input surges to implement the weighted metric with a standard L^2 norm.
- Dimension reduction on SLPs with PCA.
- Lasso regression for city 1 (resp. 2) on:
 - 1. Reduced SLPs.
 - 2. Input surges city 1 (resp. 2).
 - 3. Time.
- Transform back output surges.
- ➤ With the right hyperparameters, achieves a score of 0.4993, ie. more than 50% of the variance explained!

- Normalize the data:
 - 1. Normalize SLPs and time (input surges already normalized).
 - 2. Transform input surges to implement the weighted metric with a standard L^2 norm.
- Dimension reduction on SLPs with PCA.
- Lasso regression for city 1 (resp. 2) on:
 - 1. Reduced SLPs.
 - 2. Input surges city 1 (resp. 2).
 - 3. Time.
- Transform back output surges.
- ▶ With the right hyperparameters, achieves a score of 0.4993, ie. more than 50% of the variance explained!
- \triangleright < 6% difference with the best solution online (0.4419).

On an example

On an example

True surges

Our prediction

Comparison to benchmark

20

30

40

10

Comparison to benchmark

Benchmark

Our prediction

Since linear regression model, we can interpret coefficients:

Since linear regression model, we can interpret coefficients:

- ► SLPs:
 - 1. Hard to interpret: work on (198) features extracted with PCA.
 - 2. Mean 0.25%, standard deviation 0.29%.

Since linear regression model, we can interpret coefficients:

- ► SLPs:
 - 1. Hard to interpret: work on (198) features extracted with PCA.
 - 2. Mean 0.25%, standard deviation 0.29%.
- Input surges:

Last surge input influence (%var) on the surge evolution (days) in city 1

Second to last surge input influence (%var) on the surge evolution (days) in city 1

Since linear regression model, we can interpret coefficients:

- ► SLPs:
 - 1. Hard to interpret: work on (198) features extracted with PCA.
 - 2. Mean 0.25%, standard deviation 0.29%.
- Input surges:

Last surge input influence (%var) on the surge evolution (days) in city 1

Second to last surge input influence (%var) on the surge evolution (days) in city 1

► <u>Time</u>: 6.6% (resp. 5.3%) variance increase every 10 years in city 1 (resp. 2). Global warming?

Issues and other attempted methods

Data correlation:

- 1. Windows of data over 5 days, but samples every day.
- 2. If one takes only unoverlapped data, test efficiency decreases.
- 3. Taking subset of 40 time steps of SLPs does not work either.

Issues and other attempted methods

▶ Data correlation:

- 1. Windows of data over 5 days, but samples every day.
- 2. If one takes only unoverlapped data, test efficiency decreases.
- 3. Taking subset of 40 time steps of SLPs does not work either.

► Improve KNN?

- 1. Tweaking hyperparameters: no real increase over benchmark.
- Wasserstein distance (optimal transport): too hard to compute on whole SLPs.
- 3. Wind (gradient) computation seems to add only noise.

Issues and other attempted methods

▶ Data correlation:

- 1. Windows of data over 5 days, but samples every day.
- 2. If one takes only unoverlapped data, test efficiency decreases.
- 3. Taking subset of 40 time steps of SLPs does not work either.

► Improve KNN?

- 1. Tweaking hyperparameters: no real increase over benchmark.
- 2. Wasserstein distance (optimal transport): too hard to compute on whole SLPs.
- 3. Wind (gradient) computation seems to add only noise.
- <u>Neural Network</u> instead of Lasso regression? Either overfits or behaves poorly compared to Lasso.

Conclusion and further directions

- ► We have developped a simple method, using only PCA and Lasso regression, to predict sea surges.
- Explains > 50% of variance (benchmark 23%, best 56%).
- ▶ Model predicts 6% increase/10 years: climate change.

Conclusion and further directions

- ► We have developped a simple method, using only PCA and Lasso regression, to predict sea surges.
- Explains > 50% of variance (benchmark 23%, best 56%).
- ▶ Model predicts 6% increase/10 years: climate change.
- Preprocessing of SLPs in another (and more significant) way than PCA?
- Time series consideration?

Conclusion and further directions

- ► We have developped a simple method, using only PCA and Lasso regression, to predict sea surges.
- Explains > 50% of variance (benchmark 23%, best 56%).
- ▶ Model predicts 6% increase/10 years: climate change.
- Preprocessing of SLPs in another (and more significant) way than PCA?
- Time series consideration?
- ► Thank you!

Paul Fermé

FML challenge: Can you predict the tide?