Explaining Diabetes Progression with BMI: Distributional Modeling, Robust Visualization, and Rigorous Regression Diagnostics

Gabrielprogramist

September 28, 2025

1 Problem Description

I investigate whether Body Mass Index (BMI)—measured at baseline—explains variation in one-year diabetes progression (the canonical quantitative target in the scikit-learn Diabetes dataset). I use distributional analysis (KDE with principled bandwidth selection), expressive visualization (X/Y position, color/markings, conditioning, and contextual overlays), and statistical modeling (from simple linear regression to multiple regression with robust inference and regularization).

2 Problem Details

- Input features/signals: standardized clinical baselines (age, bmi, bp, s1–s6). BMI is the primary explanatory variable; others are secondary controls.
- Output: predicted/expected diabetes progression (continuous target).
- Objective: quantify and validate the association between BMI and the target while avoiding misleading conclusions.

3 Methodology

3.1 Kernel Density Estimation (KDE)

The univariate Gaussian KDE for BMI is defined as:

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right), \qquad K(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}.$$
 (1)

Bandwidth rules of thumb:

$$h_{\text{Scott}} = \sigma \, n^{-1/5},\tag{2}$$

$$h_{\text{Silverman}} = 0.9 \min\left(\sigma, \frac{\text{IQR}}{1.34}\right) n^{-1/5}.$$
 (3)

Cross-validation bandwidth is chosen by maximizing leave-one-out log-likelihood:

$$\ell(h) = \sum_{i=1}^{n} \log \hat{f}_{-i,h}(x_i), \quad \hat{f}_{-i,h}(x_i) = \frac{1}{(n-1)h} \sum_{j \neq i} K\left(\frac{x_i - x_j}{h}\right). \tag{4}$$

3.2 Simple Linear Regression (SLR)

$$y = \beta_0 + \beta_1 \text{ BMI} + \varepsilon, \qquad \hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$
 (5)

Evaluation metric:

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
. (6)

Breusch-Pagan test checks for heteroskedasticity:

$$BP \sim \chi_p^2, \tag{7}$$

from regression of e_i^2 on predictors.

Cook's distance for influential observations:

$$D_i = \frac{e_i^2}{p\hat{\sigma}^2} \cdot \frac{h_{ii}}{(1 - h_{ii})^2}.$$
 (8)

3.3 Beyond SLR

- Polynomial regression in BMI (degree d selected by CV).
- Multiple regression with robust HC3 standard errors for BMI's partial effect.
- Regularization methods:

Ridge:
$$\min_{\beta} \frac{1}{n} \sum_{i} (y_i - \mathbf{x}_i^{\mathsf{T}} \beta)^2 + \lambda \|\beta\|_2^2, \tag{9}$$

Lasso:
$$\min_{\beta} \frac{1}{n} \sum_{i} (y_i - \mathbf{x}_i^{\mathsf{T}} \beta)^2 + \lambda \|\beta\|_1.$$
 (10)

4 Data

• Diabetes dataset (scikit-learn): 442 rows, 10 standardized predictors, target is 1-year diabetes progression.

Table 1: BMI KDE bandwidths: rules of thumb vs CV-optimal.

Bandwidth	Scott	Silverman	CV-optimal
h	0.014	0.013	0.011

Figure 1: BMI density with Scott, Silverman, and CV-optimal bandwidths. Curves are very similar; CV is slightly narrower (≈ 0.011).

Table 2: SLR summary (bmi-only).

Metric	Value
Slope (bmi)	949.4353
Intercept	152.1335
RMSE	62.3735

Table 3: Test for heteroskedasticity in SLR residuals.

Figure 2: BMI density by age quartile using a common CV-optimal bandwidth. Central mass is similar; tails diverge modestly.

Figure 3: Simple linear regression: target vs. bmi. Clear positive association.

Figure 4: Residuals vs fitted for SLR: heteroskedasticity pattern (funnel-like spread).

Figure 5: Q–Q plot for SLR residuals: near-linear with mild tail deviations.

Table 4: Polynomial degree selection for BMI (10-fold CV).

Degree	CV_RMSE
1	62.604289
2	62.799326
3	62.989974
4	63.332757
5	62.911145

Figure 6: Added-variable plot: partial effect of bmi controlling for other features. Positive partial trend.

Table 5: Multiple regression: partial effect of bmi with HC3 standard errors.

Term	Coef	Robust SE (HC3)	t-value
bmi (partial)	519.8459	68.5908	7.5790

Table 6: Model comparison by 10-fold CV RMSE. Lower is better.

Model	CV_RMSE
Lasso (all features)	54.837533
Full OLS (all features)	54.860615
Ridge (all features)	55.042534
SLR (BMI only)	62.604289
Polynomial BMI (deg=1)	62.604289

Table 7: BMI coefficient across models (stability under regularization).

Feature	OLS_full	Ridge	Lasso
bmi	519.84592	521.05693	521.172424

5 Results

- 5.1 Exploratory Distributional Analysis
- 5.2 SLR Fit and Diagnostics
- 5.3 Beyond SLR: Nonlinearity and Controls
- 5.4 Regularization and Model Comparison
- 5.5 Interpretation Summary
 - BMI distribution. Scott ≈ 0.014 , Silverman ≈ 0.013 , CV-optimal ≈ 0.011 . Curves are very similar; subgroup KDEs by age show similar centers with modest tail differences.
 - SLR. Clear positive slope (949.4); RMSE \approx 62.37. Residuals exhibit heteroskedasticity (Breusch–Pagan p=0.000853); QQ-plot is near-linear with mild tail deviations.
 - Nonlinearity. 10-fold CV selects degree = 1; higher degrees do not improve RMSE \Rightarrow linear effect in BMI is adequate at this sample size.
 - Controls. In multiple regression with HC3, BMI remains strongly significant (coef ≈ 519.85 , $t \approx 7.58$); added-variable plot visualizes the positive partial effect.
 - Generalization. Multivariate models materially outperform BMI-only (CV-RMSE ≈ 55 vs 62.6). Ridge/Lasso give similar accuracy; BMI coefficient is stable across OLS/Ridge/Lasso (≈ 520).

6 Conclusion

- BMI is a robust positive predictor of diabetes progression.
- Heteroskedasticity in SLR requires robust inference (HC3) for valid uncertainty quantification.
- No strong nonlinearity in BMI's effect is detected; multivariate models substantially improve predictive accuracy.
- KDE with cross-validated bandwidth provides reliable distributional summaries and supports the modeling choices.

7 Data Source

• Diabetes dataset: sklearn.datasets.load_diabetes().

Appendix

A. Top-10 Influential Points (Cook's Distance)

Table 8: Top-10 by Cook's distance (SLR).

Cook's distance	Leverage
0.025992	0.007360
0.022201	0.031352
0.018009	0.010903
0.017441	0.005620
0.016661	0.006763
0.014368	0.010903
0.013066	0.006551
0.012813	0.005313
0.012139	0.008158
0.011847	0.006478

B. Full Coefficient Table (OLS vs Ridge vs Lasso)

Table 9: Coefficient comparison across models (all features).

Feature	OLS_full	Ridge	Lasso
s1	-792.175639	-547.475235	-92.831552
s5	751.273700	657.788378	508.078335
bmi	519.845920	521.056930	521.172424
s2	476.739021	282.626597	-0.000000
bp	324.384646	322.467922	292.377164
sex	-239.815644	-237.277928	-188.585504
s4	177.063238	148.328962	0.000000
s3	101.043268	-6.507128	-220.945511
s6	67.626692	69.341322	50.210204
age	-10.009866	-8.509261	-0.000000

C. Full KDE Bandwidth Grid (LOO Log-Likelihood)

Table 10: KDE bandwidth grid for BMI: h vs LOO log-likelihood.

h	$\ell(h)$
0.00253	707.239095
0.00276	711.468454
0.00301	715.071307
0.00327	718.027459
0.00356	720.635326
0.00388	722.898715
0.00423	724.838718
0.00460	726.448127
0.00501	727.847534
0.00546	729.045951
0.00594	730.038880
0.00647	730.880261
0.00705	731.568694
0.00768	732.106398
0.00836	732.499141
0.00910	732.758181
0.00991	732.889610
0.01080	732.895382
0.01176	732.776310
0.01280	732.529465
0.01394	732.138700
0.01518	731.583976
0.01653	730.833621
0.01800	729.846789
0.01961	728.565896
0.02135	726.950680
0.02325	724.919876
0.02532	722.400241
0.02757	719.312540
0.03003	715.540465
0.03270	711.004674
0.03561	705.572572
0.03877	699.141411
0.04222	691.544248
0.04598	682.652876
0.05007	672.349610
0.05453	660.481478
0.05938	646.971209
0.06466	631.721282
0.07042	614.642726