Least-Squares Approximation

Tutorial homework questions: 7b; 16a.

H By Hand; **C** Computer; **T** Theory; **E** Extra; **A** Advanced.

Recommended: C1; H2.a; C3; H4; 6.a; H7.a; H8; C9; C13; H14.b; H16.a; C17.b.

Polynomial Approximation

C1. Use Matlab's polyfit function to compute least-squares approximations of degrees 1, 2 and 3 to the following data:

For each case, compute the root-mean-square error of the approximation over the data points, and estimate the value of y when x = 1.5.

H2. Find the linear least-squares approximation for the following data, compute the root-mean-square error, and estimate the missing value. Graph the data and the approximation.

C3. Write a Matlab function to compute the coefficients a_0, a_1 of the linear least-squares approximation to data $(x_i, y_i), i = 1, ..., n$.

Use your function to compute the linear least-squares approximation to the data in Question 1.

- **H4.** Find the least-squares polynomial approximations of degrees 2 and 3 for the data in Question 2, compute the root-mean-square error, and estimate the missing value.
- C5. Write a Matlab function to compute the coefficients a_0, a_1, \ldots, a_k of the polynomial approximation to the linear least-squares approximation to data (x_i, y_i) , $i = 1, \ldots, n$.

Use your function to compute the least-squares polynomial approximations of degrees up to 4 for the data in Question 1.

6. Find the linear and quadratic least squares polynomial approximations to f on the indicated interval:

a.
$$f(x) = x^2 - 2x + 3$$
 on $[0,1]$; **b.** $f(x) = e^x$ on $[0,2]$; **c.** $f(x) = \ln x$ on $[1,3]$.

c.
$$f(x) = \ln x$$
 on [1, 3].

H7. Compute the coefficients of Legendre basis polynomials for the least squares polynomial approximations of degrees 1, 2 and 3 on the interval [-1,1] for the following functions:

a.
$$f(x) = x^3$$

b.
$$f(x) = e^x$$

c.
$$f(x) = \ln(x+2)$$

Compute the total square errors. How does the difference in the errors relate to the coefficients?

H8. The (weighted) least-squares approximations in Legendre and Chebyshev bases for a function f are given by:

a.
$$p_5(x) = 0.3397 + 1.1505P_1(x) + 0.1711P_2(x) - 1.2405P_3(x) - 0.5983P_4(x) + 0.0816P_5(x)$$
.

b.
$$q_5(x) = 0.3069T_0(x) + 0.7059T_1(x) + -0.0405T_2(x) + -0.7514T_3(x) - 0.3054T_4(x) + 0.0421T_5(x)$$
.

Use the recurrence relations to compute $p_5(x)$ and $q_5(x)$ at x = 0.7.

C9. Plot the Legendre polynomials P_k for k = 0, ..., 8.

Compute the coefficients c_k of P_k in the best eighth-degree least-squares approximation to the functions given in Question 7, and plot the resulting polynomials p.

Hint: The functions P_k should be computed using the recurrence relation

$$P_k(x) = \left((2 - \frac{1}{k})x P_{k-1}(x) - (1 - \frac{1}{k})P_{k-2}(x) \right).$$

For fixed x, you can use this to compute $P_k(x)$ for $k = 0, \dots, 8$ for use in e.g. Romburg integration.

C10. Plot the Chebyshev polynomials T_k for k = 0, ..., 8.

Compute the coefficients c_k of T_k in the best eighth-degree least-squares approximation using weight $w(x) = 1/\sqrt{1-x^2}$ to the functions given in Question 7, and plot the resulting polynomials p.

Hint: The functions T_k should be computed using the recurrence relation

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x).$$

Plot and compare the linear and quadratic Legendre and Chebyshev approximations. Which give the best *uniform* approximations?

- **AT11.** Construct the Laguerre polynomials L_k of degrees up to 4, which are orthogonal on the interval $[0,\infty)$ with respect to the weight function $w(x)=e^{-x}$.
- **E12.** Use the Laguerre polynomials calculated to compute the least squares polynomials of degree $1, \ldots, 4$ on the interval $[0,\infty)$ with respect to the weight function $w(x)=e^{-x}$ for the following functions.

a.
$$f(x) = x^2$$

a.
$$f(x) = x^2$$
 b. $f(x) = e^{-x}$ **c.** $f(x) = x^3$ **d.** $f(x) = e^{-2x}$

c.
$$f(x) = x^3$$

d.
$$f(x) = e^{-2x}$$

Fourier Series

C13. Use Matlab to compute the coefficients of the Fourier approximation $s_5(x)$ of degree n=5 to the function $f(x) = (\cos x)/(2 + \sin x)$. Plot the graph of the function f and the Fourier approximations

The energy of the signal in the k-the mode is $a_k^2 + b_k^2$. Comment on the how energy in the k^{th} mode for k = 1, ..., n relates to the form of the function.

Hint: You may wish to write a function fourierval(as,bs,x), which evaluates the Fourier series with coefficients a_k, b_k at the point x. Alternatively, you could use arguments (a0,as,bs,x).

H14. Find the Fourier approximations $s_n(x)$ on $[-\pi, \pi]$ for n = 1, 2, 3 and the following functions.

a.
$$f(x) = x \sin x$$
;

b.
$$f(x) = e^x$$
.

Compute the total-square-errors and the mean-square-errors. How does the difference in the totalsquare-errors relate to the coefficients?

Hint: You can evaluate the integrals by parts.

- **E15.** Determine the Fourier approximations $s_n(x)$ on the interval $[-\pi, \pi]$ for the functions given in Question 14 by computing 2m data points $y_j = f(x_j)$ with $x_j = j\pi/m$, using m = 4, 8 and n = 3. Compare your answers with those found previously.
- **H16.** Find the Fourier approximations $S_2(x)$ on $[-\pi, \pi]$ for the following data:

Use your approximations to estimate the missing value.

C17. Use Matlab to compute the coefficients of the Fourier approximations to the data (x_i, y_i) below:

a.

$$x_i$$
 $-\pi$
 $-3\pi/4$
 $-\pi/2$
 $-\pi/4$
 0
 $\pi/4$
 $\pi/2$
 $3\pi/4$
 y_i
 0.17647
 0.33194
 0.47059
 0.88653
 0.76471
 0.60924
 0.47059
 0.05464

 b.
 x_i
 $-\pi$
 $-3\pi/4$
 $-\pi/2$
 $-\pi/4$
 0
 $\pi/4$
 $\pi/2$
 $3\pi/4$
 y_i
 0.00000
 0.06678
 0.21630
 0.57983
 1.00000
 0.57983
 0.21630
 0.06678

Comment on your results.

E18. Compute the coefficients of the Fourier series of the sawtooth wave, which is the 2π -periodic function satisfying

$$f(x) = x$$
 for $x \in [-\pi, +\pi)$.

Write down the general form of the least-squares approximation s_n .

Plot s_n for $n=1,2,3,\ldots$ What happens to the least-squares error as $n\to\infty$? What happens to the uniform error?

By computing $\int_0^{\pi} f(x)^2 dx$ and $\int_0^{\pi} s(x)^2 dx$, find a formula for $\sum_{k=1}^{\infty} 1/k^2$.

AC19. Write a Matlab function to compute the discrete Fourier transform using the fast Fourier transform method. Compute the trigonometric interpolating polynomial of degree 4 and 6 on $[-\pi, \pi]$ using $2m = 2^6$ and 2^8 data points for the following functions.

a.
$$f(x) = \pi(x - \pi)$$
 b. $f(x) = |x|$

b.
$$f(x) = |x|$$

c.
$$f(x) = x \cos x^2$$

E20. Compute the Fourier coefficients b_m up to m=15 for the wavelet

$$f(x) = \exp(3\cos(x))\sin(5x).$$

Comment on how the coefficients vary. Which is the largest coefficient?