```
In [5]: #Importing libraries we need
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
```

```
In [50]: #import and read data
irisData = pd.read_csv('iris.csv')
#Read the top 5 using head function
irisData.head()
```

Out[50]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [52]: #How many columns and rows does our shape have? irisData.shape

Out[52]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

In [21]: #Get descriptive statistics descriStats = irisData.describe() descriStats

Out[21]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [151]: #Display species we have and count how many each has irisData.groupby('species').species.count()

Out[151]: species

setosa 50 versicolor 50 virginica 50

Name: species, dtype: int64

In [152]: # Visualize each attribute using histograms hists = irisData.hist(bins=10)


```
In [153]: fig,(axSep,axPet) = plt.subplots(nrows = 1,ncols = 2)
    axSep.plot(irisData['sepal_length'], color='green', marker='o', linestyle='axSep.plot(irisData['sepal_width'], color='red', marker='o', linestyle='sol axPet.plot(irisData['petal_length'], color='blue', marker='o', linestyle='s axPet.plot(irisData['petal_width'], color='orange', marker='o', linestyle='axSep.legend()
    axPet.legend()
    axPet.set_title('Petal')
    axSep.set_title('Petal')
```

Out[153]: Text(0.5, 1.0, 'Petal')

Get the sample mean of Sepal data

```
In [6]: sepLength = irisData['sepal_length']
In [66]: count = 0
    for i in sepLength:
        count = count + i
        sepal_len_mean = round((count/sepLength.count()),2)
        print('The sample mean of Sepal length data is : ',sepal_len_mean)
```

The sample mean of Sepal length data is: 5.84

Now let's calculate the coefficient of variation in sepal lenth data

```
In [99]: sepal_length_sdv = descriStats.iloc[2:3,0]
sepal_length_sdv = float(sepal_length_sdv)
```

```
In [100]: coeff_of_var = (sepal_length_sdv/sepal_len_mean)*100
In [101]: print('The coefficient of variation in sepal lenth data is equal', math.flo
    The coefficient of variation in sepal lenth data is equal 14 %
```

Apply Chevychev rule of intervals

Display how much data in 1st, second, and 3rd interval from the mean

```
In [117]: counts = [ 88.9,75,93 ]
    lab = ["1st","2nd","3rd"]
    plt.pie(counts,shadow = True, labels= lab);
```


Calculate percentiles using quantile function

Calculate the IQR(upper-lower value of 75th percentile in this case minus the 25th)

```
In [38]: iqrSeries = quantiles.to_numpy()
    for i in range(len(iqrSeries)):
        iqr = iqrSeries[2]-iqrSeries[0]
        print('The interquartile range on sepal with data is: ',iqr)
```

The interquartile range on sepal with data is: 0.5

Box plot petal width column using quartile values

```
In [46]: sepLength = irisData['sepal_length']
    plt.boxplot(iqrSeries)
    plt.show()
    #the range in sepal width is less than the range in sepal length data set
```



```
In [51]: plt.boxplot(sepLength)
   plt.show()
# We can take conclusion that legth data foe sepal is more spread out based
#Also from the box plot we can tell the minimums, maximums and medias of dat
```



```
In [71]: #sepal width equal 3.0 constistute how much percent of the whole sepla with
sepWidth = irisData['sepal_width']
count = 0
for i in range(len(sepWidth)):
    if sepWidth[i] == 3.0:
        count = count + 1
print(round((count/len(sepWidth)*100),2),'% of sepal width data is equal to
```

17.33 % of sepal width data is equal to 3.0

End