Exam 12.01.2011 on stochastic calculus.

Notation: W_t is the standard Wiener process.

Part A (10 points each problem). Time allowed: 120 minutes.

1. The joint probability density function of X and Y is given by

$$f(x,y) = \begin{cases} x+y, & x \in [0;1], y \in [0;1] \\ 0, & \text{otherwise} \end{cases}$$

Find $\mathbb{E}(Y|X)$ in terms of X, find the probability density function of $\mathbb{E}(Y|X)$

- 2. Consider the process $X_t = \int_0^t sW_s dW_s$. Find $\mathbb{E}(X_t)$, $Var(X_t)$, $Cov(X_t, W_t)$
- 3. The process Y_t is given by $Y_t = 2W_t + 5t$. The stopping time τ is given by $\tau = \min\{t | Y_t^2 = 100\}$. Find the distribution of the random variable Y_τ and the expected value $\mathbb{E}(\tau)$.

Hint: you may find the martingales a^{Y_t} and $Y_t - f(t)$ useful

- 4. Find $\mathbb{P}(W_2 W_1 > 2)$
- 5. In the framework of Black and Scholes model find the price of an asset which gives you the payoff of 1 rubble only if the final price S_t is at least two times bigger than the initial price S_0 of the asset.
- 6. Consider the free end problem, where T > 0 is not given

$$\int_0^T (\dot{x}^2 - x + 1) dt \to extr$$

At the left end x(0) = 0 Find the optimal T value and the extremal. Check that you solved the optimality problem or show the opposite.

Part B (20 points each prolem). Time allowed: 60 minutes.

1. Consider the stochastic differential equation

$$dX_t = (\sqrt{1 + X_t^2} + 0.5X_t)dt + \sqrt{1 + X_t^2}dW_t, \quad X_0 = 0$$

- (a) Suppose that Y_t is another process that depens only on X_t , i.e. $Y_t = f(X_t)$. Find dY using the Ito's lemma.
- (b) Find such function f that the term before dW in dY is constant.
- (c) Find X_t
- (d) Sketch $\mathbb{P}(X_t > 0)$ as the function of t.
- 2. Consider the neoclassical optimal growth model

$$\int_0^\infty e^{-rt} \left(\bar{U} - \frac{1}{c(t)} \right) dt \to \max$$

subject to $\dot{k} = A \ln(1+k) - c - \delta k$, where $A > r > \delta > 0$, $k(0) = k_0$, $\bar{U} > 0$.

- (a) Derive necessary conditions, using the current value Hamiltonian
- (b) Sketch the phase diagram for this problem with the capital intensity and consumption labeled on the horizontal and vertival axes, respectively
- (c) Check that the steady state solution exists. Provide explanation.
- (d) Explore the stability of the steady state, using the Jacobian
- (e) Why are you sure the found growth path maximizes the discounted stream of utility?