微算機實驗報告

Lab # 10

姓名:仇健安 系級:電機系

學號:111511239

上課時間: 2025/05/13

一、實驗目的:

本實驗讓我們學習 8051 微控制器中 Timer 與 Counter 的運作原理,並應用於超音波測距系統,透過 Timer0 產生固定週期的方波作為距離單位,搭配 Counter1 記錄 Echo 訊號高電位期間接收到的脈波數,完成距離計算並以七段顯示器輸出結果,藉此熟悉中斷控制、Timer/Counter 設定與輸出顯示整合應用。

二、硬體架構:

裝置類別	功能說明	8051 腳位	模組/元件腳位	備註說明
七段顯示器 D1	顯示千位數	P2.0	D1 位選 (共陽 COM)	輪流設為 Low 選通
七段顯示器 D2	顯示百位數	P2.1	D2 位選 (共陽 COM)	
七段顯示器 D3	顯示十位數 (含小數點)	P2.2	D3 位選 (共陽 COM)	小數點由 P0.7 控制
七段顯示器 D4	顯示個位數 (小數部分)	P2.3	D4 位選 (共陽 COM)	
七段共用段碼	a 段	P0.7	a 段腳	所有顯示器段碼共用
	b 段	P0.6	b段腳	

裝置類別	功能説明	8051 腳位	模組/元件腳位	備註說明
超音波模組	c 段	P0.5	c 段腳	
	d 段	P0.4	d 段腳	
	e 段	P0.3	e 段腳	
	f段	P0.2	f段腳	
	g 段	P0.1	g段腳	
	小數點 dp	P0.0	h 段腳	用於 D3 加小數點
	Trig (觸發訊號輸入)	JP07.2(彈跳 開關輸出)	Trig 腳	按下按鈕產生 High 脈 波
	Echo (回音訊號輸出)	P3.3 / INT1	Echo 腳	Echo High → Counter 開始計數
	時脈輸入 (接收方波)	P3.5 / T1	無 (8051 自接 P1.0)	由 Timer0 產生方波輸入 Counter1
	電源正極	-	VCC	接 +5V
	接地	-	GND	接 GND
Timer0 方波輸出	CPL 切換輸出	P1.0	接到 P3.5 (T1)	每 58μs 一週期, 產生用於距離換算波型
彈跳開關	輸出觸發脈波至 Trig	JP07.2	Trig (超音波模組)	預設 LOW,按下變 HIGH,產生上升沿脈波

A/B 表示 A 除以 B 的商, A%B 表示 A 除以 B 的餘數,程式碼部分為 DIV AB,流程圖直接用完成除法後的商與餘表示給予的值

四、問題與討論:

- (1) 有哪些因素會造成頻率計算結果之誤差?
 - 超音波在空氣中傳播速度受溫度影響 聲速會隨著環境溫度變化,程式中固定聲速為340 m/s,但實際溫度的不同會導致有不同的 聲速,因此週期1公分的距離未必剛好是58us。
 - 2. Timer / Counter 本身解析度限制 Timer 0 週期未必足夠精細以及 Echo 傳遞訊號給 Counter 1 之間的延遲,都會影響測量精度。
 - 3. TimerO 反相產生方波與實際週期存在誤差 如中斷響應時間延遲,會讓方波週期略有偏移,進而影響 Counterl 計數結果。
- (2) 如果要增加頻率計算的範圍或是計算結果的解析度可以怎樣來設計?
 - 1. 提高 Timer0 的中斷頻率 將 Timer0 週期縮短 (例如由 $29 \mu s$ 改為 $3 \mu s$), 讓每個方波代表更小的單位距離 (0.1 cm), 提升解析度。
 - 2. 使用更高位元的 Counter 或累加器 8051 的 Counter1 是 16-bit,若配合軟體可進一步擴展記錄範圍(例如讀取多次後累加), 增加量測最大距離。

五、程式碼與註解:

ORG 0000H

AJMP INIT_SYSTEM ;程式起始點,跳到初始化系統設定

ORG 000BH

AJMP TIMERO ISR ; TimerO Overflow 中斷向量,進入中斷處理(產生方波)

ORG 0013H

AJMP ECHO FALL ISR ; 外部中斷 INT1 (Echo Falling edge) 向量

ORG 0050H ; 主程式碼段起始位址

;--- 七段顯示器數值對照表(共陽極顯示器,低電位點亮)

DIGIT TABLE:

DB 0C0H ; 顯示數字 0 DB 0F9H ; 顯示數字 1 DB 0A4H ; 顯示數字 2 DB 0B0H ; 顯示數字 3 DB 099H ; 顯示數字 4 DB 092H ; 顯示數字 5 DB 082H ; 顯示數字 6 DB 0F8H ; 顯示數字 7 DB 080H ; 顯示數字 8 DB 098H ; 顯示數字 9

DB 0FFH ; 空白(全部熄滅)

; -----

;初始化系統設定

; -----

INIT SYSTEM:

MOV IE, #10000110B; 開啟外部中斷 INT1 及 Timer0 中斷MOV IP, #00000110B; 設定 INT1 和 Timer0 為高優先順序

MOV TMOD, #11010010B ; 設定 Timer0 為 Mode 2 (Auto-reload)

;設定 Timerl 為 Counter 模式 (Mode 1) 並啟用 Gate 控制

MOV TL0, #227 ; 設定 Timer0 reload 值為 227 (每次計時 29 μs)

MOV TH0, #227

MOV TL1, #0 ; 初始化 Counter1 計數值為 0

MOV TH1, #0

MOV TCON, #01010100B ; 啟用 Timer0、Counter1 並設定 INT1 為 Falling edge 觸發

SETB P1.0 ; 將 P1.0 設為 High,作為方波輸出腳位起始狀態

; 顯示用的暫存器清空(R0~R3)

MOV R3, #0; 千位數MOV R2, #0; 百位數MOV R1, #0; 十位數MOV R0, #0; 個位數

MOV DPTR, #DIGIT_TABLE ; 設定 DPTR 指向七段碼對照表

: -----

;顯示主迴圈 (四位七段動態掃描)

; -----

DISPLAY LOOP:

; 顯示千位數 R3

MOV P2, #11110111B ; 選通第1顆七段顯示器 (D1)

MOV A, R3

MOVCA, @A+DPTR ; 對照七段表取得段碼

MOV PO, A

ACALL DELAY MS

; 顯示百位數 R2

MOV P2, #11111011B ; 選通第2顆顯示器 (D2)

MOV A, R2

MOVC A, @A+DPTR

ACALL DELAY_MS	
; 顯示十位數 R1	
MOV P2, #11111101B	;選通第3顆顯示器(D3)
MOV A, R1	
MOVC A, @A+DPTR	
MOV P0, A	
ACALL DELAY_MS	
; 顯示個位數 R0	
MOV P2, #11111110B	;選通第4顆顯示器(D4)
MOV A, R0	
MOVC A, @A+DPTR	
MOV P0, A	
ACALL DELAY_MS	
;等待 TimerO 產生一	· 次 overflow (約 29 μ s)
ACALL WAIT_29US	
AJMP DISPLAY_LOO	P ; 重複掃描顯示
;	
; 延遲等待 TimerO overflow	w (每次 29 µ s)
;	
WAIT_29US: JNB TF0, \$; 若 TFO 還沒設為 1 (尚未 overflow),則卡住等
CLR TF0	
	; 清除溢位旗標,準備下次使用
RET	
;;Timer() 中斷副程式:方波	· 后 台 孝 小
;	(人间座生
TIMER0_ISR:	
CPL P1.0	; 將 P1.0 反相,產生固定週期方波
RETI	
;	
; Echo Falling Edge 中斷:	處理量測結果
ECHO_FALL_ISR:	
;初始化顯示暫存器	

MOV P0, A

MOV A, TH1

MOV R0, #0

MOV R1, #0

MOV R2, #0

MOV R3, #0

; 檢查是否超過 255 (溢位), 若有則補上模擬進位值

CJNE A, #0, DIST_OVERFLOW

AJMP DIST_DECODE

DIST_OVERFLOW:

MOV R2, #2 ; 顯示百位補上進位值

MOV R1, #5

MOV R0, #6

; 將 TL1 的值拆解為千百十個位數顯示

DIST_DECODE:

MOV A, TL1

MOV B, #10

DIV AB ; A = 商, B = 餘數

MOV R4, A

MOV A, B ; 存個位數

ADD A, R0

MOV B, #10

DIV AB

MOV R0, B

ADD A, R1

MOV R1, A

MOV A, R4

MOV B, #10

DIV AB

MOV R4, A

MOV A, B

ADD A, R1

MOV B, #10

DIV AB

MOV R1, B

ADD A, R2

MOV R2, A

MOV A, R4 MOV B, #10 DIV AB MOV R4, A MOV A, B ADD A, R2 MOV B, #10 DIV AB MOV R2, B ADD A, R3 MOV R3, A ; 重設 Counterl, 準備下次量測 MOV TH1, #0 MOV TL1, #0 RETI ; 延遲副程式 (顯示穩定用) ; -----DELAY_MS: PUSH 7 PUSH 6 MOV R7, #100 ; 外圈次數 DELAY_MS_OUTER: MOV R6, #100 ; 內圈次數 DELAY_MS_INNER:

DJNZ R6, DELAY_MS_INNER

DJNZ R7, DELAY_MS_OUTER

POP 6

POP 7

RET

END

六、心得:

課堂心得:

課堂中老師教完 8051 微控制器中 Timer 與 Counter 的基本原理與差異,讓我對微處理器如何掌握時間與事件的能力有了更深刻的理解。Timer 利用內部時脈進行精準計時,而 Counter 則可以計算外部事件的次數。透過老師的講解,我也理解到這兩者除了可以正常在程式中使用,也可以配合中斷 (Interrupt) 的概念,即時處理達到條件的事件,讓程式不必輪詢等待。這些概念雖然一開始抽象,但經由實作與程式範例講解後變得更清晰,也為後續實驗的整合應用打下基礎。

實驗心得:

本次實驗讓我實際操作了 Timer、Counter 以及中斷機制,並將三者整合應用在超音波測距裝置上,深刻體會硬體與軟體協同運作的精妙。Timer() 負責以固定週期產生方波,Counter1 在 Echo 高電位期間計算接收到的脈波數量,並透過外部中斷 INT1 偵測 Echo 結束時機進行資料擷取與距離計算。整個流程中,每一項元件都各司其職又彼此配合,使我感受到微控制器資源協調運作的重要性。雖然中間在時序設定與顯示數值分解上花了一些時間理解與除錯,但也因此更加熟悉中斷處理、Timer reload 機制以及動態顯示掃描的實作方式。這次實驗不只是學習單一功能,而是一次完整系統整合的經驗,非常有成就感。

Notes:

- 1. 內容字體大小為 12, 間距為單行間距
- 2. 中文字字體為標楷體
- 3. 英文字和阿拉伯數字為 Times New Roman
- 4. 嚴禁抄襲,抄襲者以0分計算
- 5. 請於報告左上角附上照片
- 6. 每次實驗課繳交上次實驗結報