Теорема о непрерывности обратной функции.

Пусть $f: [a, b] \to \mathbb{R}$ строго возрастает на [a, b] и $f \in C[a, b]$.

Тогда на образе $Y \equiv f([a, b]) = [f(a), f(b)]$ определена обратная, строго возрастающая функция $f^{-1} \in C(Y)$.

Доказательство:

Предположим, что функция f строго возрастает на отрезке f.

По следствию из 2-ой теоремы Коши о промежуточном значении непрерывных функций область значений E непрерывной функции f тоже есть отрезок.

В силу строгого возрастания функции f для каждого $y \in E$ существует единственная точка $x \in I$ такая, что f(x) = y. Следовательно, для функции f существует обратная функция f^{-1} , определенная на отрезке E, имеющая множество значений I.

Покажем, что f^{-1} строго возрастает на E.

Пусть y_1 и y_2 — две произвольные точки из E такие, что $y_1 < y_2$, и прообразами этих точек будут точки x_1 и x_2 . $f^{-1}(y_1) = x_1$ и $f^{-1}(y_2) = x_2$.

Поскольку f — строго возрастающая функция, то неравенство $y_1 = f(x_1) < f(x_2) = y_2$ возможно тогда и только тогда, когда $x_1 < x_2$ или, что то же самое, когда $f^{-1}(y_1) < f^{-1}(y_2)$.

В силу произвольности $y_1 < y_2$ делаем вывод, что функция f^{-1} строго возрастает на множестве E.

Для случая, когда / строго убывает, теорема доказывается аналогично.