Trigonométrie

Dans toutes les représentations graphiques, le plan est muni d'un repère orthonormé direct $(O, \overrightarrow{e_x}, \overrightarrow{e_y})$.

Calcul de cosinus, sinus et tangente

⊳ 1

- 1) Représenter graphiquement, à la règle et au compas, les grandeurs suivantes :
 - **a.** $\cos\left(\frac{5\pi}{12}\right)$, $\sin\left(\frac{5\pi}{12}\right)$ et $\tan\left(\frac{5\pi}{12}\right)$
 - **b.** $\cos\left(\frac{7\pi}{12}\right)$, $\sin\left(\frac{7\pi}{12}\right)$ et $\tan\left(\frac{7\pi}{12}\right)$
- 2) Calculer leurs valeurs exactes. (Indication : on pourra exprimer $\frac{5\pi}{12}$ à l'aide de $\frac{\pi}{4}$ et $\frac{\pi}{6}$.)

▶ 2

Calculez les valeurs suivantes :

- 1) $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$,
- 2) $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$,
- 3) $\cos\left(\frac{11\pi}{12}\right)$ et $\cos\left(\frac{7\pi}{12}\right)$,
- **4)** $\tan(-\frac{5\pi}{12})$,
- **5)** $\cos\left(\frac{\pi}{24}\right)$ puis $\tan\left(\frac{\pi}{24}\right)$.

▶ 3

On veut calculer les valeurs de $\cos\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{2\pi}{5}\right)$. On pose $\theta = \frac{2\pi}{5}$, $s = \cos(\theta) + \cos(3\theta)$ et $p = \cos(\theta) \times \cos(3\theta)$.

- 1) Comparez $cos(\theta)$ et $cos(4\theta)$, $cos(2\theta)$ et $cos(3\theta)$.
- **2)** Montrez que s = 2p.
- 3) Montrez que $s^2 = \frac{1}{2}(2+3s)$.
- 4) Déduisez-en les valeurs de s et de p.
- 5) Concluez.

▶ 4

1) Sans calculer $\cos\left(\frac{5\pi}{12}\right)$ et $\cos\left(\frac{\pi}{12}\right)$ individuellement, calculer les valeurs de

$$\cos\left(\frac{5\pi}{12}\right) \times \cos\left(\frac{\pi}{12}\right)$$
 et $\cos\left(\frac{5\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)$

2) En déduire la valeur de $\cos\left(\frac{5\pi}{12}\right)$ et $\cos\left(\frac{\pi}{12}\right)$.

▶ 5

On suppose que a appartient à l'intervalle $\left[0,\frac{\pi}{2}\right]$ et que $\sin(a)=\frac{1}{3}$.

Calculer cos(2a), sin(2a), sin(3a) et sin(4a).

Calcul algébrique

⊳ 6

Soit a et b deux réels. Montrer que

$$\cos(a+b)\cos(a-b) = \cos^2(a) - \sin^2(b)$$

et que
$$\sin(a+b)\sin(a-b) = \sin^2(a) - \sin^2(b)$$
.

▶ 7

Déterminer l'ensemble de définition des expressions suivantes, puis les simplifier :

$$\frac{\sin(3x)}{\sin(x)}$$
, $\frac{\cos(3x)}{\cos(x)}$ et $\frac{\sin(3x)}{\sin(x)} - \frac{\cos(3x)}{\cos(x)}$.

⊳ 8

À l'aide notamment des angles associés, montrer que

- 1) $\sin\left(\frac{\pi}{8}\right) \sin\left(\frac{3\pi}{8}\right) + \sin\left(\frac{5\pi}{8}\right) \sin\left(\frac{7\pi}{8}\right) = 0$,
- 2) $\sin^2(\frac{\pi}{8}) + \sin^2(\frac{3\pi}{8}) + \sin^2(\frac{5\pi}{8}) + \sin^2(\frac{7\pi}{8}) = 2$,
- 3) $\oint \sin^4\left(\frac{\pi}{8}\right) + \sin^4\left(\frac{3\pi}{8}\right) + \sin^4\left(\frac{5\pi}{8}\right) + \sin^4\left(\frac{7\pi}{8}\right) = \frac{3}{2}$.

▶ 9

Exprimer les fonctions suivantes en fonction de cos(2x):

- 1) $2\cos^2(x) + 4\sin^2(x)$,
- 2) $\cos^4(x) 2\sin^2(x)\cos^2(x) + \sin^4(x)$,
- 3) $\cos^4(x) \sin^4(x)$.

▶ 10

Factoriser les expressions suivantes :

- 1) $1 + \cos(2x) + \cos(x)$,
- **2)** $1 \cos(2x) + \sin(x)$,
- 3) $1 + \cos(x) + \cos(\frac{x}{2})$,
- **4)** $1 + \cos(x) + \sin(\frac{x}{2})$.

▶ 11 Linéarisation

Soit x un réel quelconque.

- 1) Linéariser $\cos^2(x) \sin(2x)$, $\cos(x) \sin^2(x)$ et $\cos^4(x)$.
- **2)** En déduire l'intégrale de ces quantités sur $\left[0, \frac{\pi}{4}\right]$.

▶ 12

Un mouvement périodique vérifie

$$\forall t \ge 0$$
, $x(t) = 2\cos(\omega t) - 3\sin(\omega t)$

où ω est une constante strictement positive.

1) Déterminer A > 0 et $\varphi \in \mathbb{R}$ pour que

$$\forall t \ge 0, \quad x(t) = A\cos(\omega t - \varphi).$$

- 2) Déterminer la valeur maximale et la valeur minimale prises par x.
 - En quels instants ces valeurs sont-elles atteintes?

Équations trigonométriques

▶ 13 Équations trigonométriques

Résoudre les équations suivantes d'inconnue $x \in \mathbb{R}$; écrire l'ensemble des solutions et le représenter graphiquement.

1)
$$\cos(2x - \frac{\pi}{3}) = \frac{1}{2}$$
;

2)
$$\cos(x) = \cos(x + \frac{\pi}{3})$$
;

3)
$$\cos(2x) = \sin(3x)$$
;

4)
$$\cos(x) = -\sin(\frac{x}{2} + \frac{\pi}{4});$$

5)
$$\tan\left(\frac{x}{2} + \frac{\pi}{4}\right) = -\tan(x)$$
;

6)
$$\cos(x) - \sin(x) = \frac{\sqrt{6}}{2}$$
 (indic. : transf. amplitude-phase).

7)
$$\cos(x) + \cos(3x) + \cos(5x) = 0$$
.

▶ 14

Soit x un nombre réel.

1) Factoriser l'expression
$$1 - \cos(x) + \sin(x)$$
.

2) Résoudre l'équation
$$1 - \cos(x) + \sin(x) = 0$$
.

▶ 15

On souhaite résoudre l'équation

(E)
$$\cos(3x) - 2\cos(2x) = 0$$
.

- 1) Exprimer le premier membre de l'équation en fonction de cos(x) seulement.
- **2)** Résoudre l'équation (E).

▶ 16

Résoudre l'équation $\cos^3(x) + \sin^3(x) = 1$.

Arc-cosinus, arc-sinus, arc-tangente

▶ 17

1) Donner la valeur de $cos(\theta)$, $sin(\theta)$ et $tan(\theta)$ sous l'hypothèse que

a.
$$cos(\theta) = \frac{4}{5}$$
 et $-\frac{\pi}{2} \le \theta \le 0$;

b.
$$cos(\theta) = -\frac{1}{3}$$
 et $0 \le \theta \le \pi$;

c.
$$\sin(\theta) = \frac{1}{4} \operatorname{et} \tan(\theta) > 0$$
;

d.
$$\Rightarrow$$
 tan(θ) = $\sqrt{5}$ et cos(θ) < 0.

2) Dans chaque cas, écrire une relation impliquant θ et un arc-cosinus / un arc-sinus / un arc-tangente.

▶ 18

Calculez les quantités suivantes :

1)
$$\arcsin\left(\sin\left(\frac{19\pi}{9}\right)\right)$$
 et $\arccos\left(\cos\left(\frac{13\pi}{5}\right)\right)$,

2)
$$\arctan\left(\tan\left(\frac{21\pi}{8}\right)\right)$$
 et $\arccos\left(\cos\left(\frac{13\pi}{5}\right)\right)$,

3)
$$\arcsin\left(\sin\left(\frac{5\pi}{7}\right)\right)$$
 et $\arcsin\left(\cos\left(\frac{21\pi}{8}\right)\right)$.

▶ 19

Calculez les valeurs suivantes :

1)
$$\cos\left(\arcsin\left(\frac{4}{5}\right)\right)$$
 et $\sin\left(\arccos\left(\frac{5}{13}\right)\right)$,

2)
$$\sin\left(2\arccos\left(\frac{1}{7}\right)\right)$$
,

3)
$$\tan\left(\arcsin\left(\frac{-\sqrt{5}}{3}\right)\right)$$
 et $\tan\left(\arccos\left(\frac{-\sqrt{13}}{7}\right)\right)$,

4)
$$\cos\left(\arctan\left(\frac{-\sqrt{3}}{4}\right)\right)$$
 et $\sin\left(\arctan(\sqrt{2})\right)$.

▶ 20

Démontrez les relations suivantes :

1)
$$\forall x \in [-1, 1], \ \arccos(x) + \arcsin(x) = \frac{\pi}{2}$$

2)
$$\forall x \in]-1,1[$$
, $\arcsin(x) = \arctan\left(\frac{x}{\sqrt{1-x^2}}\right)$,

3)
$$\forall x > 0$$
, $\arctan(x) + \arctan(\frac{1}{x}) = +\frac{\pi}{2}$. Que devient cette relation lorsque $x < 0$?

(Indication : quelles sont les définitions d' $\arccos(x)$, $\arcsin(x)$, $\arctan(x)$?)