Using a Classic Load Balancer to Distribute Traffic

Step 1: Create a security group

1.1 Navigate to the AWS Management Console home page, search for and click on **Security Groups**

1.2 Click on Create security group

1.3 In the **Create security group** section, add **MyHttpServer** for the Security group name and **Allow SSH and Http traffic** for the Description

1.4 Set the Inbound rules type to SSH and HTTP with source set to Anywhere IPv4

1.5 Click on Create security group

The security group has been created successfully.

Step 2: Launch instances with different availability zones

2.1 Navigate to Instances and click on Launch instances

2.2 Add the Name as Http-Server-1

2.3 Select Amazon Linux as the OS and Amazon Linux 2 AMI (HVM) - Kernel 5.10, SSD Volume Type as the AMI

Launch the first instance by assigning it a name and specifying the subnet information along with the availability zone

2.4 Select the Instance type as t2.micro, create a new key pair, and name it Http-Server-1

2.5 Enter the network settings details as shown:

2.6 Click on Select existing security group and select MyHttpServer

2.7 Provide the user data code under the **Advanced details** section to install and start the HTTP server, and click on **Launch instance**

#!/bin/bash

Use this for your user data (script from top to bottom)

install httpd (Linux 2 version)

yum update -y

yum install -y httpd

systemctl start httpd

systemctl enable httpd

echo "<h1>Welcome to AWSNetworks web-server \$(hostname -f)</h1>" >

/var/www/html/index.html

2.8 Repeat the steps to launch the second instance with a different availability zone

The instances with different availability zones have been launched successfully.

Step 3: Create the Classic Load Balancer

3.1 Navigate to Load Balancers on the left pane and click on it

3.2 Click on the Create Load Balancer button

3.3 Select Classic Load Balancer and click on Create

3.4 Enter CLB-Demo as the Load Balancer Name

3.5 Select us-east-1c and us-east-1e as the Availability Zones in the Mappings section

3.6 Select the existing security groups MyHttpServer and default

3.7 Change the Response timeout to **5** seconds and the Interval timeout to **30** seconds in the **Health checks** domain

3.8 Click on Add instances

3.9 Select both instances and click on Confirm

3.10 Click on Add new tag in the Load balancer tags - optional section

3.11 Provide a Key and Value name for the tags, then verify the details

3.12 Click on Create load balancer

The load balancer has been created successfully.

Step 4: Deploy the Classic Load Balancer to an EC2 instance

1.1 Click on the CLB-Demo load balancer

1.2 Verify the details

1.3 Click on the Target instances tab and check the status of both instances

The status needs to be **In-service**, which means that both instances are running successfully.

1.4 Copy the **DNS name** and paste it into the browser to view the output

Note: The user data script running on the instances will display a welcome message when accessing the Load Balancer's DNS name in the browser.

By following these steps, you have successfully deployed a Classic Load Balancer and distributed traffic across EC2 instances.