EC569 Economic Growth Population and Economic Growth (Lecture 3)

ilhan Güner School of Economics, University of Kent

January 28, 2019

Impact of population on economic growth

Δ population \Rightarrow

- consumption needs of the economy (the number of mouths)
- productive capacity of the economy (the number of hands)

Figure 4.1: Relationship Between Income per Capita and Population Growth

Graph from: Weil (2013)

Figure 4.2: World Population, 10,000 B.C. to A.D. 2010

Graph from: Weil (2013)

Population growth rate

```
• 10,000 B.C. − 1 A.D. : .04%
```

• 1 A.D. – 1800: .09%

1800 - 1900: .6%

• 1900 - 1950: .9%

• 1950 - 2000: 1.8%

Malthusian Model vs Solow Model

Malthus:

- Land is fixed
- · Level of population is relevant

Solow:

- Capital is reproducible
- Growth rate of population is relevant

Population growth in the Solow Model

Law of motion for capital per worker

$$\dot{k} = \gamma f(k) - (\delta + n)k,$$

where n is the population growth rate.

At the steady state

$$\gamma f(k^*) = (\delta + n)k^*$$

- As $n \uparrow$, $k^* \downarrow$
- Countries with high population growth are poorer.
- Higher population growth dilutes per-worker capital stock more quickly
- Lower steady state level of output per worker

Figure 4.7: The Solow Model Incorporating Population Growth

The figure shows how raising the population growth rate from n: to n: affects the steady-state level of capital per worker (k) and the steady-state level of output per worker (y).

Income Differences

Suppose country i and country j differ only in population growth rate.

$$y_i^* = A^{1/(1-\alpha)} \left(\frac{\gamma}{n_i + \delta}\right)^{\alpha/(1-\alpha)} h$$

$$y_j^* = A^{1/(1-\alpha)} \left(\frac{\gamma}{n_j + \delta}\right)^{\alpha/(1-\alpha)} h$$

$$\frac{y_i^*}{y_j^*} = \left(\frac{n_j + \delta}{n_i + \delta}\right)^{\alpha/(1-\alpha)}$$

Quantitative predictions:

- Supporse $\delta = 5\%$, $\alpha = 1/3$, hence $\alpha/(1-\alpha) = 1/2$
- $n_i = 0\%$ and $n_i = 4\%$

$$\frac{y_i^*}{y_i^*} = \left(\frac{.04 + .05}{.00 + .05}\right)^{1/2} \approx 1.34$$

Income per capita in country i would be 34% higher than income per capita in country i

What's the unrealistic critical assumption of the Solow model in this topic?

What's the unrealistic critical assumption of the Solow model in this topic?

Constant population growth rate

Population projection by the UN, World

Shown is the total population since 1950 and the Medium Variant projections by the UN Population Division until 2100.

Graph from: ourworldindata.org

The annual number of births and deaths including the UN projections until 2100, World

Graph from: ourworldindata.org

Malthusian Model vs Solow Model

Malthus:

- Land is fixed
- Level of population is relevant

Solow:

- Capital is reproducible
- Growth rate of population is relevant

The Malthusian Model

- Thomas Malthus (1766–1834), Essay on the Principle of Population (1798)
- Limited quantity of available resources (land) would limit potential fertility and hence population.
- Explains why living standards and population did not change much before 19th century

No reproducable capital

The Malthusian Model, cnt'd

Small population relative to the available land

 $\downarrow \downarrow$

People are better off

 $\downarrow \downarrow$

Faster population growth

 $\downarrow \downarrow$

Amount of land available per person falls

 $\downarrow \downarrow$

People become poorer

 $\downarrow \downarrow$

Limit population growth

 $\downarrow \downarrow$

Reach level of income commensurate with constant population

Figure 4.3: The Malthusian Model

Figure 4.4 Effect of Productivity Improvement in the Malthusian Model

Effects of productivity improvement in the Malthusian Model

Productivity improvement

1

Higher living standards

11

Population growth

11

Standard of living goes down

ļ

New steady state with larger population and same level of income per capita as before

Effects of productivity improvement in the Malthusian Model,cont'd

- In A.D. 1000, China was the most technologically advanced country in the world
- High population density in China
- · Similar living standards in Europe and China
- Introduction of potato into Ireland
- Increase in productivity
- After 1750, potato became the primary Irish staple
- Population of island tripled
- Little improvement in the standard of living

Figure 4.5 Effect of 'Moral Restraint' in the Malthusian Model

Breakdown of the Malthusian Model

- Fixed land ⇒
 (Higher population ⇒ Decline in standard of living)
- Population will grow whenever income per capita is high

Figure 2.18. Escaping the Malthusian trap: Population and real wages in England (1280s-1860s).

Source: Bowles, S., Carlin, W. and Stevens, M. (2017). 'Technological Change, Population and Growth'. Unit 2 in The CORE Team, The Economy. Available at:

http://www.core-econ.org.

Figure 4.1: Relationship Between Income per Capita and Population Growth

Graph from: Weil (2013)

Figure 4.6: Breakdown of the Malthusian Model in Western Europe

Summary

- Malthusian model:
 - Population growth is endogenous
 - Cannot account for the population dynamics of the modern world
 - Cannot account for the negative correlation of population growth rate and income per capita
- Solow model
 - Accounts for the negative correlation of population growth rate and income per capita
 - Population growth rate is exogenous
 - Cannot account for the reduction in population growth rate as countries get richer