

Discrete Mathematics BCSC 0010

Module 2
Propositional Logic
(Logical Connectives and Truth Tables)

Conditional or Implication

- Let *p* and *q* be propositions.
- The *conditional statement* $p \square q$ is the proposition "if p, then q."
- The conditional statement $p \square q$ is false when p is true and q is false, and true otherwise.
- In the conditional statement $p \square q$, p is called the *hypothesis* (or *antecedent* or *premise*) and q is called the *conclusion* (or *consequence*).

p	q	$p \rightarrow q$
Т	Т	Т
T	F	F
F	T	T
F	F	T

Variety of terminology is used to express $p \square q$

- •"if p, then q"
- •"if p, q"
- "q if p"
- "q when p"
- "q unless $\sim p$ "
- "p implies q"
- "p only if q"
- "q whenever p"
- "q follows from p"

Example

• Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \square q$ as a statement in English.

• "If Maria learns discrete mathematics, then she will find a good job." or

• "Maria will find a good job when she learns discrete mathematics."

Accredited with A Grade by NAAC

CONVERSE, CONTRAPOSITIVE, AND INVERSE

•We can form some new conditional statements starting with a conditional statement $p \square q$.

• The converse of $p \square q$ is the proposition $q \square p$.

• The contrapositive of $p \square q$ is the proposition $\sim q \square \sim p$.

• The inverse of $p \square q$ is the proposition $\sim p \square \sim q$.

- The contrapositive always has the same truth value as $p \square q$.
- When two compound propositions always have the same truth value we call them **equivalent**, so conditional statement and its contrapositive are equivalent.
- The converse and the inverse of a conditional statement are also equivalent

What are the contrapositive, the converse, and the inverse of the conditional statement "The home team wins whenever it is raining."?

•Solution:

- •Because "q whenever p" is one of the ways to express the conditional statement $p \square q$, the original statement can be rewritten as
- •"If it is raining, then the home team wins."
- Consequently,
- •contrapositive: "If the home team does not win, then it is not raining."
- •converse: "If the home team wins, then it is raining."
- Inverse: "If it is not raining, then the home team does not win."

Biconditional or Equivalence

- We now introduce another way to combine propositions that expresses that two propositions have the same truth value.
- Let p and q be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition "p if and only if q."
- The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Biconditional or Equivalence

• There are some other common ways to express $p \leftrightarrow q$

- "p is necessary and sufficient for q"
- •"if p then q, and conversely"
- "p iff q"

 $p \leftrightarrow q$ has exactly the same truth value as $(p \square q) \land (q \square p)$.

Example

- •Let p be the statement "You can take the flight"
- •and let q be the statement "You buy a ticket."

- Then $p \leftrightarrow q$ is the statement :
- •"You can take the flight if and only if you buy a ticket."

Precedence of connectives

Operator	Precedence
-	1
< >	2 3
\rightarrow \leftrightarrow	4 5

For example, $\neg p \land q$ means $(\neg p) \land q$ not $\neg (p \land q)$

Exclusive OR (XOR)

- Let *p* and *q* be propositions.
- The *exclusive or* of p and q, denoted by $p \oplus q$ is the proposition that is true when exactly one of p and q is true and is false otherwise.

p	q	p ⊕ q
T	Т	F
T	F	Т
F	Т	T
F	F	F

Truth Tables of Compound Propositions

Construct a truth table for the proposition $\neg(p \land \neg q)$

p	q	$\neg q$	$p \land \neg q$	$\neg(p \land \neg q)$
T	Т	F	F	T
T	F	T	T	F
F	T	F	F	T
F	F	T	F	T

Construct a truth table for the proposition

$$(p \vee \neg q) \Box (p \wedge q)$$

p	q	$\neg q$	$p \lor \neg q$	p ∧ q	$(p \vee \neg q) \to (p \wedge q)$
T	T	F	T	T	T
T	F	T	T	F	F
F	T	F	F	F	T
F	F	T	T	F	F

Next Topic

•How to Translate English Sentences into expressions