Lenguajes Formales, Autómatas y Computabilidad

Autómatas finitos no determinísticos con transiciones instantáneas y Expresiones Regulares

Segundo Cuatrimestre 2024

Bibliografía

Capítulo 3, Introduction to Automata Theory, Languages and Computation, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

En esta clase

- ▶ Autómatas finitos no determinísticos con transiciones instantáneas.
- ightharpoonup Teorema: Equivalencia entre AFND- λ y AFND.

Definición (Autómata Finito No Determinístico con transiciones λ)

Un AFND- λ es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde

Q es conjunto de estados

 Σ es el alfabeto de entrada

 q_0 es estado inicial

F es conjunto de estados finales

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q).$

Demostraremos que para todo AFND- λ hay un AFND que reconoce el mismo lenguaje. Vamos a necesitar herramientas.

Clausura λ

La clausura λ de un estado q, $Cl_{\lambda}\left(q\right)$, es el conjunto de estados alcanzable desde q, siguiendo sólo transiciones λ . Usamos la noción de clausura transitivo-reflexiva para definir Cl_{λ} .

Definición (clausura λ de un estado)

Dado un AFND- λ $(Q, \Sigma, \delta, q_o, F)$. Sea $R \subseteq Q \times Q$ tal que $(q, p) \in R$ si y solo si $p \in \delta(q, \lambda)$. Definimos $Cl_{\lambda}: Q \to \mathcal{P}(Q)$,

$$Cl_{\lambda}(q) = \{p : (q, p) \in R^*\}$$

Notar que $q \in Cl_{\lambda}(q)$.

Definición (clausura λ de un conjunto de estados P)

$$Cl_{\lambda}(P) = \bigcup_{q \in P} Cl_{\lambda}(q).$$

Extendemos la definición de δ a conjuntos de estados, $\delta: \mathcal{P}\left(Q\right) \times \left(\Sigma \cup \{\lambda\}\right) \to \mathcal{P}(Q), \ \delta\left(P,a\right) = \bigcup_{q \in P} \delta\left(q,a\right).$

Definición (función transición-sin- $\lambda \hat{\delta}$)

Dado un AFND- λ $M=(Q,\Sigma,\delta,q_0,F)$ con $\delta:Q\times(\Sigma\cup\{\lambda\})\to\mathcal{P}(Q)$ definimos la función de transición -sin- λ $\widehat{\delta}:Q\times\Sigma\to\mathcal{P}(Q)$

$$\widehat{\delta}(q, a) = Cl_{\lambda} \Big(\delta \big(Cl_{\lambda}(q), a \big) \Big)$$

Notar que $\widehat{\delta}(q, a)$ puede ser distinto de $\delta(q, a)$.

Extendemos $\widehat{\delta}$ a conjuntos de estados,

$$\widehat{\delta}: \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q), \ \widehat{\delta}(P,a) = \bigcup_{a \in P} \widehat{\delta}(q,a).$$

Extendemos
$$\hat{\delta}$$
 a palabras $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$,

$$\widehat{\delta}\left(q,\lambda\right)=Cl_{\lambda}\left(q\right),\qquad\qquad \widehat{\delta}\left(q,xa\right)=\widehat{\delta}\left(\widehat{\delta}\left(q,x\right),a\right).$$

Atención!!

Aqui se usa $\widehat{\delta}$ para definir aceptación en AFND- λ $M=\langle Q, \Sigma, \delta, q_0, F \rangle$.

Definición (lenguaje aceptado por un AFND- λ)

Sea AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. El lenguaje aceptado por M, $\mathcal{L}(M)$, es el conjunto de cadenas aceptadas por M,

$$\mathcal{L}\left(M\right)=\left\{ x:\widehat{\delta}\left(q_{0},x\right)\cap F\neq\phi\right\} .$$

Teorema (equivalencia entre AFND y AFND- λ)

Dado un AFND- λ $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ hay un AFND $M'=\langle Q, \Sigma, \delta', q_0, F' \rangle$ tal que $\mathcal{L}(M)=\mathcal{L}(M')$.

Demostración del teorema

Sea AFND- λ $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ donde $\delta: Q \times \Sigma \cup \{\lambda\} \to \mathcal{P}(Q)$. Usaremos las versiones extendidas de δ en ambos argumentos, conjuntos de estados, y palabras de Σ^* .

Sea $\widehat{\delta}: Q \times \Sigma \to \mathcal{P}(Q)$ la función de transición-sin λ .

Usaremos también las versiones extendidas en $\widehat{\delta}$ en ambos argumentos, conjuntos de estados, y palabras de Σ^* .

Definimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$, donde $\delta' : Q \times \Sigma \to \mathcal{P}(Q)$,

$$\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right), \text{ para cada } a\in\Sigma \text{ y } q\in Q$$

Definimos δ' para conjuntos y para cadenas de la manera estandard, $\delta': \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$ y $\delta': Q \times \Sigma^* \to \mathcal{P}(Q)$.

$$F' = \left\{ \begin{array}{cc} F & \text{, si } Cl_{\lambda}\left(q_{0}\right) \cap F = \emptyset \\ \\ F \cup \left\{q_{0}\right\} & \text{, si no.} \end{array} \right.$$

Observar que $F' \supseteq F$.

Debemos ver para toda $x \in \Sigma^*$, $x \in \mathcal{L}(M)$ si y solo si $x \in \mathcal{L}(M')$.

Caso $x = \lambda$.

Supongamos $\lambda \in \mathcal{L}(M)$. Entonces, $\widehat{\delta}(q_0, \lambda) \cap F \neq \emptyset$. Como $\widehat{\delta}(q_0, \lambda) = Cl_{\lambda}(q_0)$ tenemos $Cl_{\lambda}(q_0) \cap F \neq \emptyset$.

Luego $F' = F \cup \{q_0\}$ y por lo tanto $q_0 \in F'$, entonces $\lambda \in \mathcal{L}(M')$.

Supongamos $\lambda \in \mathcal{L}(M')$. Entonces, $\delta'(q_0, \lambda) \cap F' \neq \emptyset$.

Por definición de δ' tenemos $\delta'(q_0, \lambda) = \{q_0\}.$

Luego $q_0 \in F'$ y necesariamente $Cl_{\lambda}(q_0) \cap F \neq \emptyset$,

(asumir
$$Cl_{\lambda}(q_0) \cap F = \emptyset$$
 implica $F = F'$ y $q_0 \notin F'$, lo que contradice $q_0 \in F'$).

Dado que $\widehat{\delta}(q_0, \lambda) = Cl_{\lambda}(q_0)$, tenemos $\widehat{\delta}(q_0, \lambda) \cap F \neq \emptyset$, y por la definición de palabra aceptada en AFND- λ , $\lambda \in \mathcal{L}(M)$.

Caso $|x| \geq 1$. Debemos ver que $x \in \mathcal{L}(M)$ si y solo si $x \in \mathcal{L}(M')$.

Demostremos que $\delta'(q_0, x) = \widehat{\delta}(q_0, x)$, para todo $x \in \Sigma^+$.

Lo hacemos por inducción en la longitud de la cadena.

Caso base |x|=1. Sea x=a. Por definición de M', $\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right).$

Caso inductivo |x| > 1. Sea x = wa y asumamos que vale para w.

$$\delta'(q_0, wa) = \delta'(\underline{\delta'(q_0, w)}, a) = \delta'(\widehat{\underline{\delta}(q_0, w)}, a),$$

las expresiones tomadas por las llaves son iguales por h.i.

y para cualquier $P \subseteq Q$

$$\delta'\left(P,a\right) = \bigcup_{q \in P} \delta'\left(q,a\right) = \bigcup_{q \in P} \widehat{\delta}\left(P,a\right) = \widehat{\delta}\left(P,a\right)$$

haciendo $P = \widehat{\delta}(q_0, w)$, tenemos que

$$\delta'\left(q_{0},wa\right)=\delta'(\widehat{\delta}\left(q_{0},w\right),a)=\widehat{\delta}(\widehat{\delta}\left(q_{0},w\right),a)=\widehat{\delta}\left(q_{0},wa\right).$$

Seguimos con el caso $|x| \ge 1$.

Supongamos $x\in\mathcal{L}\left(M\right)$. Entonces, $\widehat{\delta}\left(q_{0},x\right)\cap F\neq\varnothing$, Por lo tanto, $\delta'\left(q_{0},x\right)\cap F'\neq\varnothing$, ya que $F\subseteq F'$ Concluimos $x\in\mathcal{L}\left(M'\right)$.

Supongamos $x \in \mathcal{L}\left(M'\right)$. Entonces, $\delta'\left(q_{0},x\right) \cap F' \neq \varnothing$. Dado que F' = F ó $F' = F \cup \{q_{0}\}$, $\left(\widehat{\delta}\left(q_{0},x\right) \cap F \neq \varnothing\right)$ ó $\left(\widehat{\delta}\left(q_{0},x\right) \cap \{q_{0}\} \neq \varnothing \wedge Cl_{\lambda}\left(q_{0}\right) \cap F \neq \varnothing\right)$ por def. de F'

implica

$$x \in \mathcal{L}(M)$$
 ó $x \in \mathcal{L}(M)$ luego $x \in \mathcal{L}(M)$.

Г

Ejercicios

- 1. Demostrar que ara cada AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ existe otro AFND - λ $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M) = \mathcal{L}(M')$ y F' tiene un único estado final.
- 2. Indicar Verdadero o Falso y justificar Sea Σ un alfabeto con al menos dos símbolos, y sea a un símbolo de Σ . Sea AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. Considerar el AFND- λ $M' = \langle Q, \Sigma \setminus \{a\}, \delta', q_0, F \rangle$ que se obtiene de reemplazar todas las transiciones con el símbolo a por transiciones λ . Es decir,
 - para todo $q \in Q$, para todo $x \in \Sigma$ tal que $x \neq a$, $\delta'(q, x) = \delta(q, x)$,
 - para todo $q \in Q$, $\delta'(q, \lambda) = \delta(q, a)$,
 - ¿Cual es el lenguaje aceptado por M'?
- 3. ¿Se puede acotar superiormente cuantas transiciones requiere la aceptación de una palabra en un AFND- λ ?