

Two projections in a synaptic algebra

David J. Foulis,^{*} Anna Jenčová and Sylvia Pulmannová[†]

Abstract

We investigate P. Halmos' *two projections theorem*, (or *two subspaces theorem*) in the context of a synaptic algebra (a generalization of the self-adjoint part of a von Neumann algebra).

Mathematics subject Classification. 17C65, 81P10, 47B15

Keywords: Synaptic algebra, projection, Peirce decomposition, generic position, CS-decomposition

1 Introduction

In what follows, A is a synaptic algebra with enveloping algebra $R \supseteq A$, [3, 5, 6, 7, 8, 13] and P is the orthomodular lattice [1, 11] of projections in A . For instance, if $\mathcal{B}(\mathcal{H})$ is the algebra of all bounded linear operators on the Hilbert space \mathcal{H} and \mathcal{A} is the set of all self-adjoint operators in $\mathcal{B}(\mathcal{H})$, then \mathcal{A} is a synaptic algebra with enveloping algebra $\mathcal{B}(\mathcal{H})$. See the literature cited above for numerous additional examples of synaptic algebras.

In this article, we show that Halmos' work [10] on two projections on (or two subspaces of) a Hilbert space can be generalized to the context of the synaptic algebra A .

^{*}Emeritus Professor, Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA; Postal Address: 1 Sutton Court, Amherst, MA 01002, USA; foulis@math.umass.edu.

[†]Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia; pulmann@mat.savba.sk, jenca@mat.savba.sk.

The second and third authors were supported by Research and Development Support Agency under the contract No. APVV-0178-11 and grant VEGA 2/0059/12.

A leisurely, lucid, and extended exposition of Halmos' theory of two projections can be found in the paper [2] of A. Böttcher and I.M. Spitkovsky, where the basic theorem [2, Theorem 1.1] is expressed in terms of linear subspaces of a Hilbert space, projections onto these linear subspaces, and operator matrices. Working only with our synaptic algebra A , we have to forgo both Hilbert space and the operator matrix calculus—still we shall formulate generalizations of [10, Theorem 2], often called *Halmos's CS-decomposition theorem*. (See Theorems 5.6, 7.8, and Section 9 below). Also, in Section 8, we give a brief indication of how our version of the CS-decomposition can be used to develop analogues for synaptic algebras of some of the consequences of Halmos' theorem for operator algebras.

2 The orthomodular lattice of projections

In this section we outline some of the notions and facts pertaining to the synaptic algebra A and to the orthomodular lattice $P \subseteq A$ that we shall need in this article. In what follows, we shall use these notions and facts routinely, often without attribution. More details and proofs can be found in [3, 5, 6, 7, 8, 13]. We use the symbol \coloneqq to mean ‘equals by definition,’ as usual we abbreviate ‘if and only if’ by ‘iff,’ and the ordered field of real numbers is denoted by \mathbb{R} .

If $a, b \in A$, then the product ab , calculated in the enveloping algebra R , may or may not belong to A . However, if $ab = ba$, i.e., if a commutes with b (in symbols aCb), then $ab \in A$. Also, if $ab = 0$, then aCb and $ba = 0$. We define $C(a) := \{b \in A : aCb\}$. If aCc whenever $c \in A$ and cCb , we say that a *double commutes* with b , in symbols $a \in CC(b)$.

There is a unit element $1 \in A$ such that $a = a1 = 1a$ for all $a \in A$. To avoid trivialities, we assume that A is *nondegenerate*, i.e., that $1 \neq 0$.

Let $a, b, c \in A$. Then, although ab need not belong to A , it turns out that $ab + ba \in A$. Likewise, although abc need not belong to A , it can be shown that $abc + cba \in A$.

The synaptic algebra A is a partially ordered real linear space under the partial order relation \leq and we have $0 < 1$ (i.e., $0 \leq 1$ and $0 \neq 1$); moreover, 1 is a (strong) order unit in A . Elements of the “unit interval” $E := \{e \in A : 0 \leq e \leq 1\}$ are called *effects*, and E is a so-called *convex effect algebra* [9].

If $0 \leq a \in A$, then there is a uniquely determined element $r \in A$ such

that $0 \leq r$ and $r^2 = a$; moreover, $r \in CC(a)$ [3, Theorem 2.2]. Naturally, we refer to r as the *square root* of a , in symbols, $a^{1/2} := r$. If $b \in A$, then $0 \leq b^2$, and the *absolute value* of b is defined and denoted by $|b| := (b^2)^{1/2}$. Clearly, $|b| \in CC(b)$ and $|-b| = |b|$. Also, if aCb , then $|a|C|b|$ and $|ab| = |a||b|$.

Elements of the set $P := \{p \in A : p = p^2\}$ are called *projections* and it is understood that P is partially ordered by the restriction of \leq . The set P is a subset of the convex set E of effects in A ; in fact, P is the extreme boundary of E ([3, Theorem 2.6]). Evidently, $0, 1 \in P$ and $0 \leq p \leq 1$ for all $p \in P$. It turns out that P is a lattice, i.e., for all $p, q \in P$, the *meet* (greatest lower bound) $p \wedge q$ and the *join* (least upper bound) $p \vee q$ of p and q exist in P ; moreover, $p \leq q$ iff $pq = qp = p$. Two projections p and q are called *complements* iff $p \wedge q = 0$ and $p \vee q = 1$.

Let $p, q \in P$. The *orthocomplement* of p , defined by $p^\perp := 1 - p$, is again an element of P , and we have the following: $0^\perp = 1$, $1^\perp = 0$, $p^{\perp\perp} = p$, $p \leq q \Rightarrow q^\perp \leq p^\perp$, $p \wedge p^\perp = pp^\perp = 0$, and $p \vee p^\perp = p + p^\perp = 1$. Furthermore, $p \leq q$ iff $q - p \in P$, in which case $q - p = q \wedge p^\perp = qp^\perp = p^\perp q$. Also, we have the *De Morgan laws*: $(p \wedge q)^\perp = p^\perp \vee q^\perp$ and $(p \vee q)^\perp = p^\perp \wedge q^\perp$.

The projections p and q are said to be *orthogonal*, in symbols $p \perp q$, iff $p \leq q^\perp$. The *orthosum* $p \oplus q$ is defined iff $p \perp q$, in which case $p \oplus q := p + q$. It turns out that $p \perp q \Leftrightarrow pCq$ with $pq = qp = 0$; furthermore, $p \perp q \Rightarrow pCq$ with $p \oplus q = p + q = p \vee q \in P$. The lattice P , equipped with the orthocomplementation $p \mapsto p^\perp = 1 - p$, is a so-called *orthomodular lattice* (OML) [1, 11].

2.1 Definition. Following Halmos [10, p. 381], we shall say that two projections $p, q \in P$ are in *generic position* iff

$$p \wedge q = p \wedge q^\perp = p^\perp \wedge q = p^\perp \wedge q^\perp = 0,$$

or equivalently (De Morgan) iff

$$p \vee q = p \vee q^\perp = p^\perp \vee q = p^\perp \vee q^\perp = 1.$$

If $p \in P$ and $e \in E$, then $e \leq p$ iff $e = ep$ iff $e = pe$ [3, Theorem 2.4]. Applying this result to the projection $1 - p$ and the effect $1 - e$, we deduce that $p \leq e$ iff $p = ep$ iff $p = pe$. In particular, if $p, q \in P$, then $p \leq q$ iff $p = pq$ iff $p = qp$.

As is well-known, for projections $p, q \in P$, the question of whether or not pCq can be settled (in various ways) purely in terms of lattice operations in

P . For instance,

$$pCq \Leftrightarrow p = (p \wedge q) \vee (p \wedge q^\perp).$$

Using this fact, we obtain the following theorem.

2.2 Theorem. *Let $p, q \in P$ and define $p_r := p \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp) \in P$. Then:*

- (i) $p = ((p \wedge q) \vee (p \wedge q^\perp)) \oplus p_r = (p \wedge q) \vee (p \wedge q^\perp) \vee p_r = (p \wedge q) \oplus (p \wedge q^\perp) \oplus p_r$.
- (ii) $0 \leq p_r \leq p$ and $p - p_r = (p \wedge q) \vee (p \wedge q^\perp)$.
- (iii) pCq iff $p_r = 0$.

Proof. We have both $p \wedge q \leq p$ and $p \wedge q^\perp \leq p$, whence $(p \wedge q) \vee (p \wedge q^\perp) \leq p$ and (De Morgan)

$$\begin{aligned} p - ((p \wedge q) \vee (p \wedge q^\perp)) &= p \wedge ((p \wedge q) \vee (p \wedge q^\perp))^\perp = p \wedge (p^\perp \vee q^\perp) \wedge (p^\perp \vee q) \\ &= p \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp) = p_r, \end{aligned}$$

whereupon

$$p = ((p \wedge q) \vee (p \wedge q^\perp)) \oplus p_r = (p \wedge q) \vee (p \wedge q^\perp) \vee p_r.$$

Also, $p \wedge q \leq q$ and $p \wedge q^\perp \leq q^\perp$, so $(p \wedge q) \perp (p \wedge q^\perp)$ and $(p \wedge q) \vee (p \wedge q^\perp) = (p \wedge q) \oplus (p \wedge q^\perp)$, whence $p = (p \wedge q) \oplus (p \wedge q^\perp) \oplus p_r$, completing the proof of (i).

That $0 \leq p_r \leq p$ is clear, $p - p_r = (p \wedge q) \vee (p \wedge q^\perp)$ follows from (i), and we have (ii). Part (iii) is a consequence of (ii) and the fact that $pCq \Leftrightarrow p = (p \wedge q) \vee (p \wedge q^\perp)$. \square

In view of Theorem 2.2 (iii), we can regard the projection

$$p_r := p \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp)$$

as a sort of measure of the extent to which p commutes with q . Indeed, pCq iff $p_r = 0$; also $0 \leq p_r \leq p$ and if $p \neq 0$, then in some sense, the “larger” p_r is, the “greater the lack of commutativity of p and q ,” culminating in the case in which $p_r = p$. By Theorem 2.2 (ii), $p_r = p$ iff $(p \wedge q) \vee (p \wedge q^\perp) = 0$ iff $p \wedge q = p \wedge q^\perp = 0$.

An alternative measure of the extent to which p commutes with q , the *Marsden commutator* $[p, q]$, was introduced by E.L. Marsden, Jr. in [12].

2.3 Definition. If $p, q \in P$, then

$$[p, q] := (p \vee q) \wedge (p \vee q^\perp) \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp).$$

For the Marsden commutator, we have $0 \leq [p, q] \leq 1$, and as is proved in [12], $pCq \Leftrightarrow [p, q] = 0$. The relationship between $[p, q]$ and the projection p_r in Theorem 2.2 is explicated in Section 3 below. We note that $[p, q]$ is as large as possible, i.e., $[p, q] = 1$, iff p and q are in generic position, a situation which is studied in Sections 6 and 7 below.

We recall some additional basic facts regarding commutativity in P . Let $p, q, r \in P$. If pCq , then $p \wedge q = pq = qp$ and $p \vee q = p + q - pq$. Also, pCq iff pCq^\perp , and if either $p \leq q$ or $p \perp q$, then pCq . Furthermore, if pCq and pCr , then $pC(q \vee r)$ and $pC(q \wedge r)$. Calculations in the OML P are facilitated by the following theorem [11, Theorem 5, p. 25] which we use routinely in what follows:

2.4 Theorem. For $p, q, r \in P$, if any two of the relations pCq , pCr , or qCr hold, then $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$ and $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$.

If $a, b \in A$, then it turns out that $aba \in A$, whence we define the *quadratic mapping* $J_a: A \rightarrow A$ by $J_a b := aba$ for all $b \in A$. The quadratic mapping J_a is linear and order preserving on A .

A *synaptic automorphism* on A is a mapping $J: A \rightarrow A$ such that (1) J is a bijection, (2) J is an order automorphism on A , (3) J is a linear automorphism on A , and for all $a, b \in A$, (4) $ab \in A$ iff $JaJb \in A$ and (5) $ab \in A \Rightarrow J(ab) = JaJb$.

An element $u \in A$ is called a *symmetry* [7] iff $u^2 = 1$, and a *partial symmetry* is an element $t \in A$ such that $t^2 \in P$. By the uniqueness theorem for square roots, a projection is the same thing as a partial symmetry p such that $0 \leq p$. Each partial symmetry $t \in A$ has a *canonical extension* to a symmetry $u := t + (t^2)^\perp$. If u is a symmetry, then the quadratic mapping J_u , called a *symmetry transformation*, is a synaptic automorphism of A and $J_u^{-1} = J_u$. If u is a symmetry, then so is $-u$, and $J_u = J_{-u}$. If u and v are symmetries, then so are $J_u v = uvu$ and $J_v u = vuv$. By the uniqueness theorem for square roots, if u is a symmetry, then $0 \leq u \Leftrightarrow u = 1$.

Two projections $p, q \in P$ are *exchanged by a symmetry* $u \in A$ iff $J_{up} = upu = q$ (whence, automatically, $J_u q = uqu = p$, $J_u p^\perp = up^\perp u = q^\perp$, and $J_u q^\perp = uq^\perp u = p^\perp$). If p and q are exchanged by a symmetry u , then they are also exchanged by the symmetry $-u$. The two projections p and q are

exchanged by a partial symmetry $t \in A$ iff $tpt = q$ and $tqt = p$. If p and q are exchanged by a partial symmetry t and if $u := t + (t^2)^\perp$ is the canonical extension of t to a symmetry, then p and q are exchanged by the symmetry u .

Let $a \in A$. Then there is a uniquely determined projection $a^\circ \in P$, called the *carrier* of a , such that, for all $b \in A$, $ab = 0 \Leftrightarrow a^\circ b = 0$. It turns out that $a = aa^\circ = a^\circ a$, $a^\circ \in CC(a)$, and a° is the smallest projection $p \in P$ such that $a = ap$ (or, equivalently, $a = pa$). If n is a positive integer, then $(a^n)^\circ = |a|^\circ = a^\circ$. Furthermore, if $b \in A$ and $0 \leq a \leq b$, then $a^\circ \leq b^\circ$.

By [3, Definition 4.8, Theorem 4.9 (v), and Theorem 5.6], we have the following result which we shall need in the proof of Lemma 2.12 below and then later in Section 4.

2.5 Lemma. *Let $p, q \in P$ and let $0 \leq a \in A$. Then:*

- (i) $(J_p a)^\circ = (pap)^\circ = (pa^\circ p)^\circ = p \wedge (p^\perp \vee a^\circ)$.
- (ii) $(pqp)^\circ = p \wedge (p^\perp \vee q)$.

We shall also have use for the next two results which follow from [7, Lemma 4.1] and [8, Theorem 5.5].

2.6 Lemma. *If $0 \leq a_1, a_2, \dots, a_n \in A$, then*

$$\left(\sum_{i=1}^n a_i \right)^\circ = \bigvee_{i=1}^n (a_i)^\circ.$$

2.7 Lemma. *If $a, b, ab \in A$, then $(ab)^\circ = a^\circ b^\circ = b^\circ a^\circ = a^\circ \wedge b^\circ$.*

If $a \in A$, there is a partial symmetry $t \in A$, called the *signum* of a , such that $t^2 = a^\circ$, $t \in CC(a)$, $a = |a|t = t|a|$, and $|a| = ta = at$. If $u := t + (a^\circ)^\perp$ is the canonical extension of t to a symmetry, then $u \in CC(a)$, $a = |a|u = u|a|$, and $|a| = ua = au$. The formula $a = |a|u = u|a|$ is referred to as the *polar decomposition* of a .

In Section 4, we shall also need the following theorem [5, Theorem 6.5].

2.8 Theorem. *Let $p, q \in P$ and let $p - q^\perp = |p - q^\perp|u = u|p - q^\perp|$ be the polar decomposition of $p - q^\perp$, so that u is a symmetry that double commutes with $p - q^\perp$. Then: (i) $upqpu = qpq$. (ii) $u(p \wedge (p^\perp \vee q))u = q \wedge (p \vee q^\perp)$.*

Consider the synaptic algebra \mathcal{A} of self-adjoint operators on a Hilbert space \mathcal{H} . If $B \in \mathcal{A}$, then the carrier B° of B is the projection onto the closure of the range of B . Thus, $B^\circ = I$, the identity operator on \mathcal{H} , iff B is injective and the range of B is dense in \mathcal{H} . Also, a symmetry $U \in \mathcal{A}$ is the same thing as a self-adjoint unitary operator on \mathcal{H} . Halmos' work in [10] involves unitary operators mapping one linear subspace \mathcal{M} of \mathcal{H} onto another linear subspace \mathcal{N} of \mathcal{H} . Assuming that \mathcal{M} and \mathcal{N} are closed, let $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ be the (orthogonal) projections onto \mathcal{M} and \mathcal{N} , respectively, and suppose that U is a symmetry in \mathcal{A} that exchanges $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$. Then the restriction $U|_{\mathcal{M}}$ of U to \mathcal{M} is a unitary isomorphism from \mathcal{M} onto \mathcal{N} . Thus, in our synaptic algebra A , the situation in which a symmetry u exchanges a projection p with a projection q may be regarded as an analogue of a situation in which two closed subspaces of a Hilbert space are unitarily equivalent via the restriction of a self-adjoint unitary operator.

If n is a positive integer and there are n , but not $n+1$ pairwise orthogonal nonzero projections in P , we say that the synaptic algebra A has *rank n*. On the other hand, if there is an infinite sequence of pairwise orthogonal nonzero projections in P , then we say that A has *infinite rank*. If A is finite dimensional, then it has finite rank, but there are infinite dimensional synaptic algebras of finite rank.

2.9 Remarks. It is not difficult to see that A is of rank 2 iff every pair of distinct nonorthogonal projections in $P \setminus \{0, 1\}$ is in generic position. In [14, §19], D. Topping introduced the important notion of a *spin factor* and, using the results in [4], it can be shown that a Topping spin factor of dimension greater than 1 is the same thing as synaptic algebra of rank 2. We note that there are infinite-dimensional synaptic algebras of rank 2.

If $r \in P$, then with the partial order and operations inherited from A ,

$$rAr := J_r(A) = \{J_r a : a \in A\} = \{rar : a \in A\} = \{b \in A : b = br = rb\}$$

is a synaptic algebra in its own right with rRr as its enveloping algebra and r as its unit element [3, Theorem 4.10]. The orthomodular lattice of projections in rAr is the sublattice $P[0, r] := \{p \in P : p \leq r\}$ of P , and the orthocomplement in $P[0, r]$ of $p \in P[0, r]$ is $p^{\perp r} := p^\perp \wedge r = r - p$. If t is a symmetry in the synaptic algebra rAr , then t is a partial symmetry in A and its canonical extension to a symmetry in A is $u := t + r^\perp$. Thus, if $p, q \in P[0, r]$ and if p and q are exchanged by a symmetry t in rAr , then p

and q are exchanged by a symmetry u in A . Let $a \in rAr$. Then, if $0 \leq a$, it follows that $a^{1/2} \in rAr$. Moreover, $|a| \in rAr$, $a^\circ \in rAr$, and a° is the carrier of a as calculated in rAr .

The well-known *Peirce decomposition* of $a \in A$ with respect to $p \in P$, namely

$$a = pap + pap^\perp + p^\perp ap + p^\perp ap^\perp,$$

is easily proved by direct calculation using the fact that $p^\perp = 1 - p$. We note that pap^\perp and $p^\perp ap$ belong to the enveloping algebra R , but not necessarily to A ; however pap , $pap^\perp + p^\perp ap$, $p^\perp ap^\perp \in A$.

As suggested by the following example, in our work the Peirce decomposition will serve as a substitute for the operator matrix formulas appearing in [2, 10].

2.10 Example. To motivate and illustrate our subsequent work, we consider the case in which \mathcal{H} is a two-dimensional real Hilbert space, A is the rank 2 synaptic algebra of all self-adjoint linear operators on \mathcal{H} , $a \in A$, and $p \in P \setminus \{0, 1\}$. Then we can choose an orthonormal basis for \mathcal{H} such that a , p , and p^\perp , are represented by the matrices

$$a = \begin{bmatrix} \alpha & \gamma \\ \gamma & \beta \end{bmatrix}, \quad p = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad p^\perp = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

where $\alpha, \beta, \gamma \in \mathbb{R}$. Then, in the Peirce decomposition,

$$pap = \begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix}, \quad pap^\perp = \begin{bmatrix} 0 & \gamma \\ 0 & 0 \end{bmatrix}, \quad p^\perp ap = \begin{bmatrix} 0 & 0 \\ \gamma & 0 \end{bmatrix}, \quad p^\perp ap^\perp = \begin{bmatrix} 0 & 0 \\ 0 & \beta \end{bmatrix}.$$

2.11 Definition. With the example above in mind, we shall refer to $pap + p^\perp ap^\perp$ as the *diagonal part* and to $pap^\perp + p^\perp ap$ as the *off-diagonal part* of $a \in A$ with respect to $p \in P$.

2.12 Lemma. *Let $a \in A$ and $p \in P$. Then: (i) If $0 \leq a$, then $a = 0$ iff the diagonal part of a with respect to p is zero. (ii) aCp iff the off-diagonal part of a with respect to p is zero.*

Proof. (i) Assume that $pap + p^\perp ap^\perp = 0$. Then, since $0 \leq a$, we have $pap = 0$ and $p^\perp ap^\perp = 0$, so $(pap)^\circ = 0$ and $(p^\perp ap^\perp)^\circ = 0$, and it follows from Lemma 2.5 (i) that $p \wedge (p^\perp \vee a^\circ) = 0$ and $p^\perp \wedge (p \vee a^\circ) = 0$. From $p \wedge (p^\perp \vee a^\circ) = 0$, we have $p^\perp \vee (p \wedge (a^\circ)^\perp) = p^\perp \oplus (p \wedge (a^\circ)^\perp) = 1 = p^\perp \oplus p$, whence $p \wedge (a^\circ)^\perp = p$ by cancellation, and we conclude that $p \leq (a^\circ)^\perp$, i.e., $a^\circ \leq p^\perp$. Likewise,

from $p^\perp \wedge (p \vee a^\circ) = 0$, we deduce that $a^\circ \leq p$, and it follows that $a^\circ = 0$, and therefore $a = 0$. The converse is obvious.

(ii) Assume that $pap^\perp + p^\perp ap = 0$. Then $a = pap + p^\perp ap^\perp$, whence $ap = pa = pap$. The converse is obvious. \square

3 Two projections—basics

3.1 Standing Assumption. *In what follows, we assume that p and q are arbitrary but fixed projections in the OML P .*

Naturally, the orthocomplements p^\perp and q^\perp will have important roles to play in our subsequent study of p , q , and their mutual interaction. Accordingly, we shall be focusing our attention on the four projections

$$p, q, p^\perp, q^\perp$$

and certain “lattice polynomials” in p , q , p^\perp , and q^\perp , i.e., projections constructed from these four using lattice meet, join, and orthocomplementation in P .

In the following definition, we extend the notion of the projection r_p in Theorem 2.2 to the projections r_{p^\perp} , r_q , and r_{q^\perp} . The alternative formulation as a product in each part of the definition is justified by the fact that the projections in each threefold meet commute with one another.

3.2 Definition.

$$(1) \quad r_p := p \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp) = p(p^\perp \vee q)(p^\perp \vee q^\perp).$$

$$(2) \quad r_{p^\perp} := p^\perp \wedge (p \vee q) \wedge (p \vee q^\perp) = p^\perp(p \vee q)(p \vee q^\perp).$$

$$(3) \quad r_q := q \wedge (p \vee q^\perp) \wedge (p^\perp \vee q^\perp) = q(p \vee q^\perp)(p^\perp \vee q^\perp).$$

$$(4) \quad r_{q^\perp} := q^\perp \wedge (p \vee q) \wedge (p^\perp \vee q) = q^\perp(p \vee q)(p^\perp \vee q).$$

By Theorem 2.2 and symmetry, we have next two theorems.

3.3 Theorem. *The following conditions are mutually equivalent:*

(i) *At least one of the conditions $r_p = 0$, $r_{p^\perp} = 0$, $r_q = 0$, or $r_{q^\perp} = 0$ holds.*

(ii) *$r_p = r_{p^\perp} = r_q = r_{q^\perp} = 0$.*

- (iii) At least one of the conditions pCq , pCq^\perp , $p^\perp Cq$, or $p^\perp Cq^\perp$ holds.
- (iv) pCq , pCq^\perp , $p^\perp Cq$, and $p^\perp Cq^\perp$.
- (v) $[p, q] = 0$.

3.4 Theorem.

- (i) $p = (p \wedge q) \oplus (p \wedge q^\perp) \oplus r_p$.
- (ii) $p^\perp = (p^\perp \wedge q) \oplus (p^\perp \wedge q^\perp) \oplus r_{p^\perp}$.
- (iii) $q = (p \wedge q) \oplus (p^\perp \wedge q) \oplus r_q$.
- (iv) $q^\perp = (p \wedge q^\perp) \oplus (p^\perp \wedge q^\perp) \oplus r_{q^\perp}$

3.5 Corollary. pCq iff $r_p = r_q = 0$ iff r_pCr_q .

Proof. That $pCq \Rightarrow r_p = r_q = 0$ follows from Theorem 3.3 and obviously $r_p = r_q = 0 \Rightarrow r_pCr_q$. Suppose that r_pCr_q . Then in parts (i) and (iii) of Theorem 3.4, every summand in the orthogonal decomposition of p commutes with every summand in the orthogonal decomposition of q , whence pCq . \square

By parts (ii) and (iii) of the following theorem, the unit element $1 \in A$ is the orthosum, hence also the supremum, (in two different ways) of six pairwise orthogonal projections determined by p and q .

3.6 Theorem.

- (i) $r_p \perp r_{p^\perp}$ and $r_q \perp r_{q^\perp}$.
- (ii) $1 = (p \wedge q) \oplus (p \wedge q^\perp) \oplus (p^\perp \wedge q) \oplus (p^\perp \wedge q^\perp) \oplus r_p \oplus r_{p^\perp} = [p, q]^\perp \oplus r_p \oplus r_{p^\perp}$.
- (iii) $1 = (p \wedge q) \oplus (p \wedge q^\perp) \oplus (p^\perp \wedge q) \oplus (p^\perp \wedge q^\perp) \oplus r_q \oplus r_{q^\perp} = [p, q]^\perp \oplus r_q \oplus r_{q^\perp}$.
- (iv) $r_p \oplus r_{p^\perp} = r_q \oplus r_{q^\perp} = [p, q]$.

Proof. Part (i) follows from obvious facts that $r_p \leq p$, $r_{p^\perp} \leq p^\perp$, $r_q \leq q$, and $r_{q^\perp} \leq q^\perp$.

Part (ii) is a consequence of parts (i) and (ii) of Theorem 3.4, the fact that $1 = p \oplus p^\perp$, and Definition 2.3. Likewise, part (iii) follows from parts (iii) and (iv) of Theorem 3.4 and $1 = q \oplus q^\perp$.

Part (iv) follows from (ii) and (iii). \square

In the sixfold orthogonal decompositions of the unit 1 in parts (ii) and (iii) of Theorem 3.6, we are inclined to agree with Halmos [10, p. 381] that the first four projections $p \wedge q$, $p \wedge q^\perp$, $p^\perp \wedge q$, and $p^\perp \wedge q^\perp$ are “thoroughly uninteresting.” What is interesting, is what Halmos refers to as “the rest,” namely the projections $r_p \oplus r_{p^\perp}$ and $r_q \oplus r_{q^\perp}$. Accordingly, in what follows, we pay special attention to the projections r_p , r_{p^\perp} , r_q , r_{q^\perp} , and $r_p \oplus r_{p^\perp} = r_q \oplus r_{q^\perp} = [p, q]$.

3.7 Definition.

$$(1) \quad r := r_p \oplus r_{p^\perp} = r_q \oplus r_{q^\perp} = r_p \vee r_{p^\perp} = r_q \vee r_{q^\perp} = [p, q].$$

(2) We call the synaptic algebra rAr the *commutator algebra* of p and q .

3.8 Theorem.

(i) pCq iff $r = 0$.

(ii) $pr_p = r_p p = r_p$, $pr_{p^\perp} = r_{p^\perp} p = 0$, and $pr = rp = p \wedge r = r_p$.

(iii) $p^\perp r_p = r_p p^\perp = 0$, $p^\perp r_{p^\perp} = r_{p^\perp} p^\perp = r_{p^\perp}$, and $p^\perp r = rp^\perp = p^\perp \wedge r = r_{p^\perp}$.

(iv) $qr_q = r_q q = r_q$, $qr_{q^\perp} = r_{q^\perp} q = 0$, and $qr = rq = q \wedge r = r_q$.

(v) $q^\perp r_q = r_q q^\perp = 0$, $q^\perp r_{q^\perp} = r_{q^\perp} q^\perp = r_{q^\perp}$, and $q^\perp r = rq^\perp = q^\perp \wedge r = r_{q^\perp}$.

(vi) p, p^\perp, q , and q^\perp commute with $r = r_p \oplus r_{p^\perp} = r_q \oplus r_{q^\perp} = [p, q]$.

(vii) $r_p, r_{p^\perp}, r_p^\perp, r_q, r_{q^\perp}$, and r_q^\perp commute with r .

(viii) $r_p = p \wedge r = pr = rp$, $r_{p^\perp} = p^\perp \wedge r = p^\perp r = rp^\perp$, $r_q = q \wedge r = qr = rq$, and $r_{q^\perp} = q^\perp \wedge r = q^\perp r = rq^\perp$.

Proof. By Definition 3.7 and Theorem 3.3 (v), we have (i). Part (ii) follows from the facts that $r_p \leq p$, $r_{p^\perp} \leq p^\perp$, and $r = r_p + r_{p^\perp}$. Similar arguments prove (iii), (iv), and (v). Parts (vi) and (vii) follow from (ii)–(v).

Since $r = (p \vee q) \wedge (p \vee q^\perp) \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp)$, it follows that $p \wedge r = p \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp) = r_p$, and $p \wedge r = pr = rp$ because pCr . The remaining equalities in (viii) are proved similarly. \square

4 Sine and cosine effect elements

4.1 Example. Again we consider the rank 2 synaptic algebra in Example 2.10, this time having a look at the situation of present interest in which $p, q \in P$. Assuming that $p, q \neq 0, 1$, and $p \neq q, q^\perp$, we can choose an orthonormal basis for \mathcal{H} such that p diagonalizes and p, q, p^\perp , and q^\perp are represented by the matrices

$$p = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad q = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix},$$

$$p^\perp = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad q^\perp = \begin{bmatrix} \sin^2 \theta & -\cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos^2 \theta \end{bmatrix},$$

where $0 < \theta < \frac{\pi}{2}$ is the positive acute angle between the one-dimensional subspaces upon which p and q project (see [10, p. 384]).

In Example 4.1, we have

$$pqp + p^\perp q^\perp p^\perp = (\cos^2 \theta)I \text{ and } pq^\perp p + p^\perp qp^\perp = (\sin^2 \theta)I,$$

respectively, where I is the identity matrix. This suggests the following definition.

4.2 Definition. As $0 \leq q, q^\perp$, we have $0 \leq pqp, p^\perp q^\perp p^\perp, pq^\perp p, p^\perp qp^\perp$, so $0 \leq pqp + p^\perp q^\perp p^\perp$ and $0 \leq pq^\perp p + p^\perp qp^\perp$, whence we define

$$c := (pqp + p^\perp q^\perp p^\perp)^{1/2} \text{ and } s := (pq^\perp p + p^\perp qp^\perp)^{1/2}.$$

We refer to c as the *cosine effect* and to s as the *sine effect* for the projection q with respect to p .

Recall that an element $e \in A$ is called an *effect* iff $0 \leq e \leq 1$. In part (vi) of the next theorem, we show that c and s are, in fact, effects in A .

4.3 Theorem.

- (i) $c^2 = pqp + p^\perp q^\perp p^\perp = 1 - (p - q)^2 = (p - q^\perp)^2 = (p + q - 1)^2$.
- (ii) $s^2 = pq^\perp p + p^\perp qp^\perp = (p - q)^2$.
- (iii) $pc^2 = pqp = c^2 p, qc^2 = qpq = c^2 q, ps^2 = pq^\perp p = s^2 p, qs^2 = qp^\perp q = s^2 q$, and $s^2 p^\perp = p^\perp qp^\perp = p^\perp s^2$.

(iv) $c = |p - q^\perp|$ and $s = |p - q|$.

(v) $c^2 + s^2 = 1$.

(vi) $0 \leq c^2, s^2, c, s \leq 1$. Also, $c^2 \leq c$, and $s^2 \leq s$.

(vii) $C(c) = C(c^2) = C(s^2) = C(s)$.

(viii) $cCp, cCq, cCr, sCp, sCq, sCr$, and cCs .

(ix) $C(p) \cap C(q) \subseteq C(c) = C(s)$.

Proof. By direct calculation using Definition 4.2 and the facts that $p^\perp = 1 - p$ and $q^\perp = 1 - q$, we have $c^2 = pqp + p^\perp q^\perp p^\perp = 1 - p + pq + qp - q = 1 - (p - q)^2$. Also, $(p - q^\perp)^2 = (p + q - 1)^2 = 1 - p + pq + qp - q$, and (i) follows. Similarly, $s^2 = pq^\perp p + p^\perp qp^\perp = p - pq - qp + q = (p - q)^2$, proving (ii).

Part (iii) follows by direct calculation using the facts that $c^2 = pqp + p^\perp q^\perp p^\perp = 1 - p + pq + qp - q$ and $s^2 = pq^\perp p + p^\perp qp^\perp = p - pq - qp + q$.

Part (iv) follows from (i), (ii), and the facts that $0 \leq c, s$.

Part (v) follows from $c^2 = 1 - (q - p)^2 = 1 - s^2$. Obviously, $0 \leq c^2, s^2, c, s$. Also, $c^2, s^2 \leq c^2 + s^2 = 1$. By [3, Corollary 3.4], the facts that $0 \leq s$, $0 \leq 1$, $sC1$, and $s^2 \leq 1 = 1^2$ imply that $s \leq 1$. Likewise, $c \leq 1$, so $0 \leq c, s, c^2, s^2 \leq 1$. That $c^2 \leq c$ and $s^2 \leq s$ then follow from [3, Lemma 2.5 (i)], and (vi) is proved.

Since $0 \leq c, s$ and $c^2 = 1 - s^2$, it follows that $C(c) = C((c^2)^{1/2}) = C(c^2) = C(1 - s^2) = C(s^2) = C((s^2)^{1/2}) = C(s)$, proving (vii).

By (iii) and (vii), $p, q \in C(c) = C(s)$, whence cCr and sCr . Also, $c \in C(c) = C(s)$, completing the proof of (viii).

By parts (iv) and (vii) above, $a \in C(p) \cap C(q) \Rightarrow a \in C(p - q^\perp) \Rightarrow a \in C(|p - q^\perp|) \Rightarrow a \in C(c) = C(s)$, proving (ix). \square

The following theorem concerns the carriers c° and s° of the cosine and sine effects c and s .

4.4 Theorem.

(i) $c^\circ Cp, c^\circ Cq, c^\circ Cs, c^\circ Cr, s^\circ Cp, s^\circ Cq, s^\circ Cr, s^\circ Cc$, and $c^\circ Cs^\circ$.

(ii) $c^\circ = (p \vee q^\perp) \wedge (p^\perp \vee q)$ and $s^\circ = (p \vee q) \wedge (p^\perp \vee q^\perp)$.

(iii) $(cs)^\circ = c^\circ s^\circ = c^\circ \wedge s^\circ = (p \vee q) \wedge (p \vee q^\perp) \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp) = r = [p, q]$.

(iv) $c^2 s^{o\perp} = s^{o\perp} c^2 = s^{o\perp}$, whence $s^{o\perp} \leq c^2 \leq c$.

(v) $s^2 c^{o\perp} = c^{o\perp} s^2 = c^{o\perp}$, whence $c^{o\perp} \leq s^2 \leq s$.

Proof. (i) Part (i) follows from Theorem 4.3 (viii), and the facts that $c^o \in CC(c)$ and $s^o \in CC(s)$.

(ii) Since $0 \leq pqp, p^\perp q^\perp p^\perp$, we infer from Theorem 2.5 and Lemma 2.6 that

$$\begin{aligned} c^o &= (c^2)^o = (pqp + p^\perp q^\perp p^\perp)^o = (pqp)^o \vee (p^\perp q^\perp p^\perp)^o \\ &= (p \wedge (p^\perp \vee q)) \vee (p^\perp \wedge (p \vee q^\perp)) = (p \wedge (p^\perp \vee q)) \vee w, \end{aligned} \quad (1)$$

where $w := p^\perp \wedge (p \vee q^\perp)$. Now $pC(p^\perp \vee q)$ and pCw , whence

$$(p \wedge (p^\perp \vee q)) \vee w = (p \vee w) \wedge (p^\perp \vee q \vee w). \quad (2)$$

But pCp^\perp and $pC(p \vee q^\perp)$, whence

$$p \vee w = p \vee (p^\perp \wedge (p \vee q^\perp)) = (p \vee p^\perp) \wedge (p \vee p \vee q^\perp) = p \vee q^\perp. \quad (3)$$

Furthermore, since $w \leq p^\perp$,

$$p^\perp \vee q \vee w = p^\perp \vee q. \quad (4)$$

By Equations (3) and (4),

$$(p \vee w) \wedge (p^\perp \vee q \vee w) = (p \vee q^\perp) \wedge (p^\perp \vee q),$$

whence by Equations (2) and (1), $c^o = (p \vee q^\perp) \wedge (p^\perp \vee q)$.

Similarly,

$$s^o = (s^2)^o = ((pq^\perp p + p^\perp qp^\perp))^o,$$

and replacing q by q^\perp in the calculations above, we find that $s^o = (p \vee q) \wedge (p^\perp \vee q^\perp)$, completing the proof of (ii).

(iii) Part (iii) follows from Theorem (ii), 4.3 (viii), Lemma 2.7, and Definitions 2.3 and 3.7.

(iv) Since $s^{o\perp} c^2 = s^{o\perp}(1 - s^2) = s^{o\perp} - 0 = s^{o\perp}$, we have $s^{o\perp} \leq c^2 \leq c$.

(iv) Since $c^{o\perp} s^2 = c^{o\perp}(1 - c^2) = c^{o\perp} - 0 = c^{o\perp}$, whence $c^{o\perp} \leq s^2 \leq s$. \square

Using Theorem 4.4, we obtain formulas for Halmos' four "thoroughly uninteresting" projections in terms of p, q, c , and s as follows.

4.5 Corollary.

- (i) $s^{o\perp}p = ps^{o\perp} = s^{o\perp}q = qs^{o\perp} = s^{o\perp} \wedge p = s^{o\perp} \wedge q = p \wedge q.$
- (ii) $c^{o\perp}p = pc^{o\perp} = c^{o\perp}q^\perp = q^\perp c^{o\perp} = c^{o\perp} \wedge p = c^{o\perp} \wedge q^\perp = p \wedge q^\perp.$
- (iii) $c^{o\perp}p^\perp = p^\perp c^{o\perp} = c^{o\perp}q = qc^{o\perp} = c^{o\perp} \wedge p^\perp = c^{o\perp} \wedge q = p^\perp \wedge q.$
- (iv) $s^{o\perp}p^\perp = p^\perp s^{o\perp} = s^{o\perp}q^\perp = q^\perp s^{o\perp} = s^{o\perp} \wedge p^\perp = s^{o\perp} \wedge q^\perp = p^\perp \wedge q^\perp.$

Proof. As a consequence of Theorem 4.4 (i), the projections $c^{o\perp}$ and $s^{o\perp}$ commute with both p and q . Also, by Theorem 4.4 (ii) and De Morgan,

$$c^{o\perp} = (p^\perp \wedge q) \vee (p \wedge q^\perp) \text{ and } s^{o\perp} = (p^\perp \wedge q^\perp) \vee (p \wedge q).$$

We prove (i). Proofs of (ii), (iii), and (iv) are similar. We have $s^{o\perp}p = ps^{o\perp} = p \wedge [(p^\perp \wedge q^\perp) \vee (p \wedge q)] = (p \wedge p^\perp \wedge q^\perp) \vee (p \wedge p \wedge q) = p \wedge q$. Likewise, $s^{o\perp}q = qs^{o\perp} = q \wedge [(p^\perp \wedge q^\perp) \vee (p \wedge q)] = (q \wedge p^\perp \wedge q^\perp) \vee (q \wedge p \wedge q) = p \wedge q$. \square

5 A general CS-decomposition theorem

We devote this section to a proof of a general CS-decomposition theorem that does not require the projections p and q to be in generic position (Theorem 5.6 below).

By Theorem 4.3 (iii), we have the following result.

5.1 Lemma. *The Peirce decomposition of q with respect to p takes the form*

$$q = pqp + pqp^\perp + p^\perp qp + p^\perp qp^\perp = c^2p + pqp^\perp + p^\perp qp + s^2p^\perp.$$

Thus, for the diagonal part of the Peirce decomposition of q with respect to p , we have

$$pqp + p^\perp qp^\perp = c^2p + s^2p^\perp,$$

which is perfectly consistent with Halmos' Theorem 2 in [10], often called Halmos' *two projections theorem* or Halmos' *CS-decomposition theorem*. However, for full compliance with Halmos' theorem, we have to find a suitable formula, *in terms of the product cs*, for the off-diagonal part $pqp^\perp + p^\perp qp$ of the decomposition. (Note that Halmos' theorem was proved under the additional hypothesis that the projections involved are in generic position—see Section 6 below.) In this connection, the next theorem has a role to play.

5.2 Theorem.

$$(i) \quad c^2 s^2 = pqp + qpq - pqpq - qpqp = p(qp^\perp q)p + p^\perp(qpq)p^\perp \\ = (pqp^\perp + p^\perp qp)^2.$$

$$(ii) \quad cs = |pqp^\perp + p^\perp qp|.$$

Proof.

(i) We have $c^2 = 1 - (p - q)^2 = 1 - p + pq + qp - q$ and $s^2 = (p - q)^2 = p - pq - qp + q$, and it follows by direct calculation that $c^2 s^2 = pqp + qpq - pqpq - qpqp = p(qp^\perp q)p + p^\perp(qpq)p^\perp = (pqp^\perp + p^\perp qp)^2$.

(ii) As $cs = sc$, we have $(cs)^2 = c^2 s^2$. Also, $0 \leq c, s$ and $cs = sc$, so $0 \leq cs$ by [3, Lemma 1.5], and (ii) then follows. \square

5.3 Definition. As per Theorem 4.3 (iv) and Theorem 5.2 (ii), we define symmetries u , v , and k in A by polar decomposition of $p - q^\perp$, $p - q$, and $pqp^\perp + p^\perp qp$, respectively, as follows:

- (1) $p - q^\perp = p + q - 1 = cu = uc$, where $u \in CC(p - q^\perp)$.
- (2) $p - q = sv = vs$, where $v \in CC(p - q)$.
- (3) $pqp^\perp + p^\perp qp = csk = kcs$, where $k \in CC(pqp^\perp + p^\perp qp) = p - ps - sp + s$.

5.4 Lemma. *The symmetries u , v , and k commute with both s and c .*

Proof. We already know that uCc ; hence, since $C(c) = C(s)$ (Theorem 4.3 (vii)), we have uCs . Similarly, we already know that vCs , and therefore vCc .

We have cCp , cCq , sCp , sCq , so $c, s \in C(pqp^\perp + p^\perp qp)$. But $k \in CC(pqp^\perp + p^\perp qp)$, so kCc and kCs . \square

5.5 Lemma.

- (i) $upqpu = qpq$ and $u(p \wedge (p^\perp \vee q))u = q \wedge (q^\perp \vee p)$.
- (ii) $vpq^\perp pv = q^\perp pq^\perp$ and $v(p \wedge (p^\perp \vee q^\perp))v = q^\perp \wedge (q \vee p)$.
- (iii) $cs(pk + kp - k) = 0$ and $r(pk + kp - k) = 0$.

Proof. Part (i) follows from Theorem 2.8 and part (ii) follows from the same theorem upon replacing q by q^\perp .

To prove (iii), we begin by noting that since pCc , pCs , and $csk = pqp^\perp + p^\perp qp$, we have

$$cspk = pcsk = p(pep^\perp + p^\perp ep) = pep^\perp.$$

Moreover,

$$cskp^\perp = (pep^\perp + p^\perp ep)p^\perp = pep^\perp,$$

and therefore

$$cs(pk + kp - k) = cs(pk - kp^\perp) = 0,$$

whence $r(pk + kp - k) = (cs)^\circ(pk + kp - k) = 0$ by Theorem 4.4 (iii). \square

Combining Lemma 5.1, Definition 5.3, and Lemma 5.4, we obtain the following generalized version of Halmos' CS-decomposition theorem.

5.6 Theorem (Generalized CS-decomposition).

$$q = c^2p + csk + s^2p^\perp,$$

where $pqp = c^2p = pc^2$, $p^\perp qp^\perp = s^2p^\perp = p^\perp s^2$, $pqp^\perp + p^\perp qp = csk$, k is a symmetry, cCs , cCk , sCk , and $k \in CC(pqp^\perp + p^\perp qp)$.

Note that we do not have to assume that p and q are in generic position in Theorem 5.6. However, at this point in the development of our theory, we do not have much information about the critical symmetry k involved in the formula $pqp^\perp + p^\perp qp = csk$ for the off-diagonal part of the Peirce decomposition of q with respect to p . Nevertheless, due to its generality, Theorem 5.6 can be useful.

5.7 Corollary. Let $p, q \in P$ and let c and s be the cosine and sine effects for q with respect to p . Then the following conditions are mutually equivalent:

- (i) pCq .
- (ii) The off-diagonal part of q with respect to p is zero, i.e., $pqp^\perp + p^\perp qp = 0$.
- (iii) $q = c^2p + s^2p^\perp$.
- (iv) $cs = 0$
- (v) c and s are projections and $c^\perp = s$.
- (vi) $c, s \in P$, $c^\perp = s$, and $q = cp + c^\perp p^\perp = s^\perp p + sp^\perp = |p - s|$.
- (vii) There exists a projection $t \in P$ such that tCp and $q = |p - t|$.

Proof. The equivalence (i) \Leftrightarrow (ii) is Lemma 2.12 (ii). By Theorem 5.6, $q = c^2p + csk + s^2p^\perp$ where $csk = pqp^\perp + p^\perp qp$ and $k^2 = 1$, from which (ii) \Leftrightarrow (iii) and (iii) \Leftrightarrow (iv) both follow.

Now we claim that (iv) \Rightarrow (v). Indeed, assume (iv). Then, since cCs , $0 = c^2s^2 = c^2(1 - c^2) = c^2 - (c^2)^2$, so $c^2 \in P$, whence c is a partial symmetry with $0 \leq c$. Thus, c is a projection, and by a similar argument, so is s ; moreover, $c = c^2 = 1 - s^2 = 1 - s$, so $c^\perp = s$, and we have (iv) \Rightarrow (v). Conversely, if (v) holds, then $cs = cc^\perp = 0$, so (iv) holds, and we have (iv) \Leftrightarrow (v). Thus we have the mutual equivalence of conditions (i) through (v).

Assume (i). Then (iii), hence also (v) holds, whence $c, s \in P$, $c = s^\perp$, and $q = c^2p + s^2p^\perp = cp + c^\perp p^\perp = s^\perp p + sp^\perp = p - sp - ps + s = (p - s)^2$. Therefore, $q = q^{1/2} = |p - s|$. This proves that (i) \Rightarrow (vi).

Obviously, with $t = s$, (vi) \Rightarrow (vii), and it is clear that (vii) \Rightarrow (i). \square

A generalized CS-decomposition for the projection q^\perp with respect to p is easily obtained from Theorem 5.6.

5.8 Corollary. $q^\perp = s^2p + cs(-k) + c^2p^\perp$.

Proof. We have $q^\perp = 1 - q = p + p^\perp - c^2p - csk - s^2p^\perp = (1 - c^2)p + cs(-k) + (1 - s^2)p^\perp = s^2p + cs(-k) + c^2p^\perp$. \square

6 Generic position

As an immediate consequence of Definitions 2.1 and 2.3, we have the following.

6.1 Lemma. p and q are in generic position iff $r = [p, q] = 1$.

According to Theorem 3.8 (ii)–(v), the projections r_p, r_{p^\perp}, r_q and r_{q^\perp} belong to the lattice of projections $P[0, r]$ of the commutator algebra rAr of p and q . In this section we are going to prove that r_p and r_q are in generic position in rAr . We begin with two preliminary lemmas, the first of which—an immediate consequence of Theorem 3.8—identifies r_{p^\perp} and r_{q^\perp} as the orthocomplements of r_p and r_q in $P[0, r]$.

6.2 Lemma. (i) $r_p^{\perp r} = r_p^\perp \wedge r = r_p^\perp r = rr_p^\perp = r_{p^\perp}$. (ii) $r_q^{\perp r} = r_q^\perp \wedge r = r_q^\perp r = rr_q^\perp = r_{q^\perp}$.

6.3 Lemma. $r_p \wedge r_q = r_p \wedge r_{q^\perp} = r_{p^\perp} \wedge r_q = r_{p^\perp} \wedge r_{q^\perp} = 0$.

Proof. We have $r_p = p \wedge (p^\perp \vee q) \wedge (p^\perp \vee q^\perp) \leq p \wedge (p^\perp \vee q^\perp)$ and $r_q = q \wedge (p \vee q^\perp) \wedge (p^\perp \vee q^\perp) \leq q$, whence

$$r_p \wedge r_q \leq p \wedge (p^\perp \vee q^\perp) \wedge q = (p \wedge q) \wedge (p \wedge q)^\perp = 0,$$

whence $r_p \wedge r_q = 0$. The remaining equalities follow by symmetry. \square

6.4 Theorem. *The projections $r_p = pr = rp = r \wedge p \in P[0, r]$ and $r_q = qr = rq = r \wedge q \in P[0, r]$ are in generic position in the commutator algebra rAr .*

Proof. Combine Lemmas 6.2 and 6.3. \square

6.5 Corollary. $r_p \vee r_q = r_p \vee r_{q^\perp} = r_{p^\perp} \vee r_q = r_{p^\perp} \vee r_{q^\perp} = [p, q] = r$.

In view of Theorem 6.4, it seems natural to inquire about the cosine and sine effects of r_q with respect to r_p as calculated in rAr .

6.6 Definition.

$$c_r := (r_p r_q r_p + r_{p^\perp} r_{q^\perp} r_{p^\perp})^{1/2} \text{ and } s_r := (r_p r_{q^\perp} r_p + r_{p^\perp} r_q r_{p^\perp})^{1/2}.$$

6.7 Theorem.

(i) $c_r = cr = rc$ and $s_r = sr = rs$.

(ii) $c = c_r + |(p \wedge q) - (p^\perp \wedge q^\perp)|$ and $s = s_r + |(p \wedge q^\perp) - (p^\perp \wedge q)|$.

Proof. (i) By Theorem 4.3, we have $c_r = |r_p - r_{q^\perp}|$ and $s_r = |r_p - r_q|$. Thus, $c_r = |pr - q^\perp r| = |(p - q^\perp)r|$ and as $(p - q^\perp)Cr$ and $0 \leq r$, it follows that $c_r = |p - q^\perp|r = |p - q^\perp|r = cr = rc$. Similarly, $s_r = |pr - qr| = |(p - q)r| = |p - q|r = sr = rs$.

(ii) As $r^\perp = (p \wedge q) \vee (p \wedge q^\perp) \vee (p^\perp \wedge q) \vee (p^\perp \wedge q^\perp) = (p \wedge q) + (p \wedge q^\perp) + (p^\perp \wedge q) + (p^\perp \wedge q^\perp)$, it follows that $pr^\perp = (p \wedge q) + (p \wedge q^\perp)$ and $q^\perp r^\perp = (p \wedge q^\perp) + (p^\perp \wedge q^\perp)$. Thus, $cr^\perp = |p - q^\perp|r^\perp = |pr^\perp - q^\perp r^\perp| = |(p \wedge q) + (p \wedge q^\perp) - (p \wedge q^\perp) - (p^\perp \wedge q^\perp)| = |(p \wedge q) - (p^\perp \wedge q^\perp)|$. Therefore, $c = cr + cr^\perp = c_r + |(p \wedge q) - (p^\perp \wedge q^\perp)|$. A similar calculation yields $s = s_r + |(p \wedge q^\perp) - (p^\perp \wedge q)|$. \square

7 Dropping down to the commutator algebra

If pCq , then $r = 0$ and by Theorems 3.3 and 3.4, p, q, p^\perp , and q^\perp can be expressed in terms of Halmos' four "thoroughly uninteresting" projections, essentially concluding our study of p and q .

Using parts (i) and (iii) of Theorem 3.4, part (ii) of Theorem 6.7, and Halmos' four uninteresting projections, we can translate properties of r_p, r_q, c_r , and s_r into properties of p, q, c , and s ; hence these theorems reduce the study of the two projections p and q in the synaptic algebra A to the study of the two projections r_p and r_q , which by Theorem 6.4 are in generic position in the commutator algebra rAr of p and q . As we are going to assume that p does not commute with q , i.e., $r \neq 0$, Corollary 3.5 will imply that r_p does not commute with r_q . Thus, we propose to drop down from A to the nondegenerate commutator algebra rAr and focus on the study of r_p and r_q in rAr . Consequently, to simplify notation, we shall now replace the synaptic algebra rAr by A and replace r_p and r_q by p and q , respectively. Notice that this is exactly what was done by Böttcher and Spitkovsky [2, p. 1414].

7.1 Standing Assumption. *In what follows, we assume that the two projections p and q are in generic position in the nondegenerate synaptic algebra A , i.e.,*

$$\begin{aligned} p \wedge q &= p \wedge q^\perp = p^\perp \wedge q = p^\perp \wedge q^\perp = 0, \text{ and} \\ p \vee q &= p \vee q^\perp = p^\perp \vee q = p^\perp \vee q^\perp = 1 \neq 0. \end{aligned}$$

As a consequence of Assumption 7.1, $p = r_p, p^\perp = r_{p^\perp}, q = r_q, q^\perp = r_{q^\perp}$, and $r = [p, q] = 1$, so we shall have no further use for $r_p, r_{p^\perp}, r_q, r_{q^\perp}, r$, and $[p, q]$.

Notice that p and q are complements—but not orthocomplements—in the OML P . Likewise for p and q^\perp , p^\perp and q , and p^\perp and q^\perp .

7.2 Lemma. $(pqp)^\circ = (pq^\perp p)^\circ = p$, $(p^\perp qp^\perp)^\circ = (p^\perp q^\perp p^\perp)^\circ = p^\perp$, $(qpq)^\circ = (qp^\perp q)^\circ = q$, and $(q^\perp pq^\perp)^\circ = (q^\perp p^\perp q^\perp)^\circ = q^\perp$.

Proof. By Lemma 2.5 (ii), $(pqp)^\circ = p \wedge (p^\perp \vee q) = p \wedge 1 = p$, and the remaining formulas follow similarly. \square

7.3 Theorem. *The symmetries u and v (Definition 5.3) satisfy the following conditions:*

- (i) *u exchanges p and q as well as p^\perp and q^\perp .*

(ii) v exchanges p and q^\perp as well as q and p^\perp .

Proof. In Lemma 5.5 we have $p \vee q = p \vee q^\perp = p^\perp \vee q = p^\perp \vee q^\perp = 1$ and it follows that $upu = q$ and $vpv = q^\perp$, whence $up^\perp u = q^\perp$ and $vqv = p^\perp$. \square

7.4 Definition. $j := uvp + pvu$ and $\ell := 2p - 1$.

7.5 Theorem.

(i) j is a symmetry in A exchanging p and p^\perp .

(ii) j commutes with both s and c .

(iii) $j = pj + jp$.

(iv) $\ell = 2p - 1 = p - p^\perp = cu + sv$ is a symmetry that commutes with p, c , and s .

Proof. (i) Put $x := uvp \in R$ and $y := pvu \in R$. Then $j = x + y \in A$. As $upu = q$, it follows that $up = upu^2 = qu$. Likewise, $uq^\perp = p^\perp u$, and therefore $x = uvp = uq^\perp v = p^\perp uv$. Similarly, $y = pvu = vq^\perp u = vup^\perp$. Consequently, $x^2 = y^2 = 0$, $xy = p^\perp uvvup^\perp = p^\perp$, and $yx = pvvuvp = p$; hence $j^2 = (x+y)^2 = x^2 + xy + yx + y^2 = p^\perp + p = 1$, so j is a symmetry in A . Moreover, $xp = x$ and $yp = 0$, so $jpj = (x+y)p(x+y) = (xp+yp)(x+y) = x(x+y) = x^2 + xy = p^\perp$.

(ii) By Definition 5.3 (2), s commutes with v , by Lemma 5.4, s commutes with u , by Theorem 4.3 (viii), s commutes with p , and it follows that s commutes with $j = uvp + pvu$. A similar argument shows that c commutes with j .

(iii) As $1 = p^\perp + p = jpj + p$, it follows that $j = j^2pj + jp = pj + jp$.

(iv) Evidently, $cu + sv = (p - q^\perp) + (p - q) = 2p - 1 = \ell$ and $(2p - 1)^2 = 4p - 4p + 1 = 1$, so ℓ is a symmetry. Obviously, $\ell \in C(p) \cap C(c) \cap C(s)$. \square

7.6 Example. In the rank 2 synaptic algebra in Example 4.1, the projections p and q are in generic position. For the symmetries u, v, j , and ℓ , we have

$$u = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}, \quad v = \begin{bmatrix} \sin \theta & -\cos \theta \\ -\cos \theta & -\sin \theta \end{bmatrix},$$

$$j = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } \ell = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

7.7 Lemma.

- (i) $c^o = s^o = (cs)^o = (csj)^o = 1$.
- (ii) $uv + vu = 0$.
- (iii) $j = k$.

Proof. (i) By Theorem 4.4 (ii), $c^o = (p \vee q^\perp) \wedge (p^\perp \vee q) = 1 \wedge 1 = 1$ and $s^o = (p \vee q) \wedge (p^\perp \vee q^\perp) = 1 \wedge 1 = 1$. Also, $cs = sc \in A$, so by [8, Theorem 5.5], $(cs)^o = c^o s^o = 1$. Moreover, $j^o = (j^2)^o = 1^o = 1$, and $csj = jcs$, so by [8, Theorem 5.5] again, $(csj)^o = (cs)^o j^o = 1$.

(ii) By Theorem 7.5 (iv), $1 = \ell^2 = (cu+sv)^2 = (cu)^2 + cs(uv+vu) + (sv)^2 = c^2 + s^2 + cs(uv + vu) = 1 + cs(uv + vu)$, whence $cs(uv + vu) = 0$, and it follows from (i) that $0 = (cs)^o(uv + vu) = 1(uv + vu) = uv + vu$.

(iii) By Lemma 4.8 and Theorem 4.3 (viii), c and s commute with u , v , p and each other, whence by Definition 5.3, and direct calculation

$$\begin{aligned} csj &= cs(uvp + pvu) = csuvp + cspvu = (cu)(sv)p + p(sv)(cu) \\ &= (p + q - 1)(p - q)p + p(p - q)(p + q - 1) = pq + qp - 2pqp = pqp^\perp + p^\perp qp. \end{aligned}$$

Also, by Theorem 5.6, we have $csk = pqp^\perp + p^\perp qp$, and it follows that $cs(k - j) = 0$. Thus, by (i), $k - j = (cs)^o(k - j) = 0$, proving (iii). \square

Combining Theorem 5.6, Theorem 7.5, and Lemma 7.7, we obtain the following synaptic-algebra version of Halmos' CS-decomposition theorem.

7.8 Theorem (CS-Decomposition). *If p and q are projections in generic position in A , then*

$$q = c^2p + csj + s^2p^\perp,$$

where $pqp = c^2p = pc^2$, $p^\perp qp^\perp = s^2p^\perp = p^\perp s^2$, $pqp^\perp + p^\perp qp = csj$, $c^o = s^o = 1$, j is a symmetry exchanging p and p^\perp , cCs , cCj , sCj , and $j \in CC(pqp^\perp + p^\perp qp)$.

In Section 9 we show that Halmos' CS-decomposition theorem can be derived from Theorem 7.8.

8 Applications of the CS-decomposition

In this section we illustrate the utility of Theorem 7.8 by establishing some results analogous to those in [2] and [10]. Thus, in what follows, *we assume that p and q are projections in generic position and that the CS-decomposition of q with respect to p is*

$$q = c^2p + csj + s^2p^\perp.$$

In the following theorem we use Theorem 7.8 to calculate the spectrum of the sum $p + q$. We denote by $\sigma(a)$ the spectrum of an element $a \in A$ and, as is customary, we identify each real number $\lambda \in \mathbb{R}$ with the element $\lambda 1 \in A$. See [3, §8] for an account of spectral theory in a synaptic algebra.

8.1 Theorem (Cf. [2, Example 2.1]). *The spectrum of $p + q$ is $\sigma(p + q) = \{1 \pm \gamma : \gamma \in \sigma(c)\}$.*

Proof. Put $a := p + q$. Then by Theorem 4.3 (i), $(a - 1)^2 = (p + q - 1)^2 = c^2$, whereupon

$$\{(\lambda - 1)^2 : \lambda \in \sigma(a)\} = \sigma((a - 1)^2) = \sigma(c^2) = \{\gamma^2 : \gamma \in \sigma(c)\}.$$

Therefore, for all $\lambda \in \sigma(p + q) = \sigma(a)$, there exists $\gamma \in \sigma(c)$ such that $\lambda = 1 + \gamma$ or $\lambda = 1 - \gamma$. Moreover, for any $\gamma \in \sigma(c)$ there exists $\lambda \in \sigma(p + q)$ such that one of the latter two equations holds.

Let $\gamma \in \sigma(c)$. To complete the proof, it will suffice to show that $1 + \gamma \in \sigma(p + q)$ iff $1 - \gamma \in \sigma(p + q)$, i.e., that $\gamma \in \sigma(p + q - 1)$ iff $-\gamma \in \sigma(p + q - 1)$. By the CS-decomposition of q with respect to p , we have

$$\begin{aligned} p + q - 1 &= p + c^2p + s^2p^\perp + csj - p - p^\perp = c^2p + (s^2 - 1)p^\perp + csj \\ &= c^2p - c^2p^\perp + csj = c^2(p - p^\perp) + csj = c^2\ell + csj, \end{aligned}$$

where $\ell := p - p^\perp = 2p - 1$ is a symmetry commuting with p , c , and s (Theorem 7.5 (iv)); moreover, from $jpj = p^\perp$ we get

$$j\ell j = -\ell, \quad \ell j = -j\ell, \quad \text{and } \ell j\ell = -j.$$

Thus, the element $(p + q - 1) - \gamma = c^2\ell + csj - \gamma$ is invertible iff $j(c^2\ell + csj - \gamma)j = -c^2\ell + csj - \gamma$ is invertible iff $\ell(-c^2\ell + csj - \gamma)\ell = -c^2\ell - csj - \gamma = -(p + q - 1) - \gamma$ is invertible. Hence, $\gamma \in \sigma(p + q - 1)$ iff $-\gamma \in \sigma(p + q - 1)$. \square

We now turn our attention to some commutativity results that involve the CS-decomposition.

8.2 Lemma. *Suppose that there exists $b = bp = pb \in C(c)$ and that $a = b + jbj$. Then $ap = pa = b$ and $a \in C(q)$.*

Proof. Assume the hypotheses of the lemma. Then

$$bp^\perp = p^\perp b = 0, \text{ so } jbjp = jbp^\perp j = 0 = jp^\perp bj = pjbj, \quad (1)$$

whence

$$jbjp^\perp = p^\perp jbj = jbj, \text{ and } ap = bp + jbjp = b = pb + pjbj = pa. \quad (2)$$

Since $b \in C(c)$, we have $b \in C(s)$ by Theorem 4.3 (viii). Using the data in (1) and (2), we find that

$$aq = b(pc^2 + csj + p^\perp s^2) + jbj(pc^2 + jcs + p^\perp s^2) = c^2b + csbj + jbc + jbj s^2,$$

whereas

$$qa = (c^2p + jcs + s^2p^\perp)b + (c^2p + csj + s^2p^\perp)jbj = c^2b + jbc + csbj + s^2jbj.$$

Since s^2Cjbj , it follows that $aq = qa$. \square

8.3 Theorem. *Let $z \in P$ be a projection. Then $z \in C(p) \cap C(q)$ iff there exists a projection $t \in P$ such that $t = tp = pt \in C(c)$ and $z = t + jtj$.*

Proof. If $t \in P$, $t = tp = pt \in C(c)$, and $z = t + jtj$, then $z \in C(p) \cap C(q)$ by Lemma 8.2 with $a := z$ and $b := t$.

Conversely, suppose that $z \in P \cap C(p) \cap C(q)$ and let $g := |p - z^\perp|$ be the cosine effect of the projection z with respect to p (Theorem 4.3 (iv)). Thus, $g \in C(p)$ and since z commutes with p , we infer from Corollary 5.7 (vi) that g is a projection and $z = gp + g^\perp p^\perp$. By Theorem 4.3 (ix), $z \in C(c)$. Moreover, as $p, z \in C(c)$, we have $p - z^\perp \in C(c)$, whence $g = |p - z^\perp| \in C(c)$. Also, since $j \in CC(pqp^\perp + p^\perp qp)$ and $z \in C(p) \cap C(q)$, it follows that $j \in C(z)$. From this and from $p^\perp j = jp$ we find that

$$gp + g^\perp p^\perp = z = jzj = jgpj + jg^\perp p^\perp j = jgjp^\perp + jg^\perp jp,$$

and multiplying both sides of the last equation by p^\perp from the right, we obtain $g^\perp p^\perp = jgjp^\perp$. Consequently,

$$z = gp + g^\perp p^\perp = gp + jgjp^\perp = gp + jgpj.$$

Now put $t := gp = pg$. Then $z = t + jtj$, $tp = pt = t$, and $t^2 = g^2p = gp = t$, so $t \in P$. Moreover, since $g, p \in C(c)$, it follows that $t \in C(c)$. \square

In the next theorem, we find conditions under which an arbitrary element $a \in A$ commutes with projections p and q in generic position. The limits in the proof are taken with respect to the order-unit norm on A [3, p. 634].

8.4 Theorem. *An element $a \in A$ commutes with both p and q iff there exists $b \in C(c)$ such that $b = bp = pb$ and $a = b + jbj$.*

Proof. If $b \in C(c)$, $b = bp = pb$, and $a = b + jbj$, then $a \in C(p) \cap C(q)$ by Lemma 8.2.

Conversely, assume that $a \in C(p) \cap C(q)$ and let $(z_\lambda)_{\lambda \in \mathbb{R}}$ be the spectral resolution of a ([3, Definition 8.2 (ii)]). By [3, Theorem 8.10], $z_\lambda \in P \cap C(p) \cap C(q)$ for all $\lambda \in \mathbb{R}$, whence by Theorem 8.3, for each $\lambda \in \mathbb{R}$, there exists a projection $t_\lambda \in P$ such that $t_\lambda = t_\lambda p = pt_\lambda \in C(c)$ and $z_\lambda = t_\lambda + jt_\lambda j$.

By [3, Corollary 8.6], there is an ascending sequence $a_1 \leq a_2 \leq \dots$ in $CC(a)$ such that $a = \lim_{n \rightarrow \infty} a_n$ and each a_n is a finite real linear combination of projections z_λ in the spectral resolution of a . Let n be a positive integer. Then, since $a_n \in CC(a)$ and $a \in C(p) \cap C(q)$, it follows that $a_n \in C(p) \cap C(q)$. Moreover,

$$a_n = \sum_{i=1}^{M_n} \alpha_{n,i} z_{\lambda_{n,i}} = \sum_{i=1}^{M_n} \alpha_{n,i} (t_{\lambda_{n,i}} + jt_{\lambda_{n,i}}j) = d_n + jd_n j,$$

where $\alpha_{n,i} \in \mathbb{R}$ and $d_n := \sum_{i=1}^{M_n} \alpha_{n,i} t_{\lambda_{n,i}}$. Since $t_{\lambda_{n,i}} = t_{\lambda_{n,i}} p = pt_{\lambda_{n,i}} \in C(c)$, we have

$$d_n = d_n p = pd_n \in C(c), \text{ and } jd_n j = jd_n p j = jd_n j p^\perp.$$

Thus, $a_n p = pa_n = d_n p + jd_n j p = d_n \in C(c)$. Put $b := ap = pa$, noting that $b = bp = pb$. Also, since $a, p \in C(c)$, we have $b \in C(c)$. Moreover,

$$b = ap = (\lim_{n \rightarrow \infty} a_n)p = \lim_{n \rightarrow \infty} (a_n p) = \lim_{n \rightarrow \infty} d_n.$$

By [3, Theorem 8.11], $C(c)$ is closed in the order-unit-norm topology, whence $b = \lim_{n \rightarrow \infty} d_n \in C(c)$. Moreover, since j is a symmetry, we have

$$jbj = j(\lim_{n \rightarrow \infty} d_n)j = \lim_{n \rightarrow \infty} (jd_n j),$$

and it follows that

$$a = \lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} (d_n + jd_n j) = b + jbj.$$

□

9 Operator-matrix consequences

Let \mathcal{H} be a nonzero complex separable Hilbert space, let $\mathcal{B}(\mathcal{H})$ be the C*-algebra of all bounded linear operators on \mathcal{H} , and let A be the synaptic algebra of all self-adjoint operators in $\mathcal{B}(\mathcal{H})$. The assumption that $p, q \in A$ are projections in generic position is still in force. Following the notation in [2, pp. 1413 and ff.], we define the following closed linear subspaces of \mathcal{H} :

$$M_0 := p(\mathcal{H}) \text{ and } M_1 := p^\perp(\mathcal{H}).$$

Then $\mathcal{H} = M_0 \oplus M_1$; hence, in what follows, *we shall regard each vector $h \in \mathcal{H}$ as having the form*

$$h = \begin{bmatrix} x \\ w \end{bmatrix}, \text{ where } x \in M_0, w \in M_1, ph = \begin{bmatrix} x \\ 0 \end{bmatrix} \text{ and } p^\perp h = \begin{bmatrix} 0 \\ w \end{bmatrix}.$$

By Theorem 7.5, p and p^\perp are exchanged by a symmetry j in A . Thus, for each $w \in M_1$,

$$j \begin{bmatrix} 0 \\ w \end{bmatrix} = jp^\perp \begin{bmatrix} 0 \\ w \end{bmatrix} = pj \begin{bmatrix} 0 \\ w \end{bmatrix},$$

whence there is a uniquely determined element $Rw \in M_0$ such that

$$j \begin{bmatrix} 0 \\ w \end{bmatrix} = \begin{bmatrix} Rw \\ 0 \end{bmatrix}.$$

It is not difficult to show that $R^* = R^{-1}$, i.e., $R: M_1 \rightarrow M_0$ is a unitary isomorphism, and $R^*: M_0 \rightarrow M_1$ satisfies

$$j \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ R^*x \end{bmatrix}, \text{ whence } j \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} Rw \\ R^*x \end{bmatrix} = \begin{bmatrix} 0 & R \\ R^* & 0 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}.$$

Thus in operator-matrix form,

$$j = \begin{bmatrix} 0 & R \\ R^* & 0 \end{bmatrix} \text{ and } p = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix},$$

where $I: M_0 \rightarrow M_0$ is the identity operator.

Let

$$\mathcal{K} := \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x, y \in M_0 \right\}$$

be organized into a Hilbert space in the obvious way. It is easy to verify that the mappings given in operator-matrix form by

$$\begin{bmatrix} I & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} x \\ Rw \end{bmatrix} \text{ and } \begin{bmatrix} I & 0 \\ 0 & R^* \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ R^*y \end{bmatrix}$$

for

$$\begin{bmatrix} x \\ w \end{bmatrix} \in \mathcal{H} \text{ and } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{K}$$

are inverse unitary isomorphisms of \mathcal{H} onto \mathcal{K} and of \mathcal{K} onto \mathcal{H} .

Since the projections p and q are in generic position, Theorem 7.8 yields the decomposition

$$q = c^2 p + csj + s^2 p^\perp,$$

where c and s are the sine and cosine effects of q with respect to p , $pqp = c^2 p = pc^2$, $p^\perp qp^\perp = s^2 p^\perp = p^\perp s^2$, cCp , sCp , cCs , and as above, j is a symmetry exchanging p and p^\perp . Moreover, $pqp^\perp + p^\perp qp = csj$, cCj , sCj , and $j \in CC(pqp^\perp + p^\perp qp)$.

For each $x \in M_0$,

$$c \begin{bmatrix} x \\ 0 \end{bmatrix} = cp \begin{bmatrix} x \\ 0 \end{bmatrix} = pc \begin{bmatrix} x \\ 0 \end{bmatrix} \text{ and } s \begin{bmatrix} x \\ 0 \end{bmatrix} = sp \begin{bmatrix} x \\ 0 \end{bmatrix} = ps \begin{bmatrix} x \\ 0 \end{bmatrix}$$

whence there are uniquely determined elements $Cx \in M_0$ and $Sx \in M_0$ such that

$$c \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Cx \\ 0 \end{bmatrix} \text{ and } s \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} Sx \\ 0 \end{bmatrix}.$$

Using the fact that cCj , we have, for all $w \in M_1$,

$$c \begin{bmatrix} 0 \\ w \end{bmatrix} = cj \begin{bmatrix} Rw \\ 0 \end{bmatrix} = jc \begin{bmatrix} Rw \\ 0 \end{bmatrix} = j \begin{bmatrix} CRw \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ R^*CRw \end{bmatrix},$$

whence for $x \in M_0$ and $w \in M_1$,

$$c \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} Cx \\ R^*CRw \end{bmatrix}, \text{ similarly } s \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} Sx \\ R^*SRw \end{bmatrix},$$

and it follows that

$$csj \begin{bmatrix} x \\ w \end{bmatrix} = cs \begin{bmatrix} Rw \\ R^*x \end{bmatrix} = \begin{bmatrix} CSRw \\ R^*CSRR^*x \end{bmatrix} = \begin{bmatrix} CSRw \\ R^*CSx \end{bmatrix}.$$

Using the properties of c and s , it is not difficult to show that C and S are self-adjoint operators on M_0 , $0 \leq C \leq I$, $0 \leq S \leq I$, $C^2 + S^2 = I$, and that C and S have kernel zero. We note that, in operator-matrix form,

$$c = \begin{bmatrix} C & 0 \\ 0 & R^*CR \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & R^* \end{bmatrix} \begin{bmatrix} C & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & R \end{bmatrix} \text{ and}$$

$$s = \begin{bmatrix} S & 0 \\ 0 & R^*SR \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & R^* \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & R \end{bmatrix}.$$

Similarly, it is not difficult to show that the symmetries u and v can be expressed in matrix-operator form as

$$u = \begin{bmatrix} C & SR \\ R^*S & -R^*CR \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & R^* \end{bmatrix} \begin{bmatrix} C & S \\ S & -C \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & R \end{bmatrix} \text{ and}$$

$$v = \begin{bmatrix} S & -CR \\ -R^*C & -R^*SR \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & R^* \end{bmatrix} \begin{bmatrix} S & -C \\ -C & -S \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & R \end{bmatrix}.$$

In view of the results above,

$$q \begin{bmatrix} x \\ w \end{bmatrix} = (c^2p + csj + s^2p^\perp) \begin{bmatrix} x \\ w \end{bmatrix} = \begin{bmatrix} C^2x + CSRw \\ R^*CSx + R^*SRw \end{bmatrix}$$

$$= \begin{bmatrix} I & 0 \\ 0 & R^* \end{bmatrix} \begin{bmatrix} C^2 & CS \\ CS & S^2 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix},$$

whereupon, in operator-matrix form,

$$q = \begin{bmatrix} I & 0 \\ 0 & R^* \end{bmatrix} \begin{bmatrix} C^2 & CS \\ CS & S^2 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & R \end{bmatrix}.$$

This is precisely [2, Theorem 1.1]; hence, *Theorem 7.8 is a true generalization of Halmos' CS-decomposition theorem.*

Now let $a \in A$. Then by Theorem 8.4, $a \in C(p) \cap C(q)$ iff there exists $b \in C(c)$ such that $a = b + jbj$ and $b = bp = pb$. Evidently, $b = bp = pb$ iff b has the operator-matrix form

$$b = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix},$$

where B is a self-adjoint operator on M_0 , in which case

$$jbj = \begin{bmatrix} 0 & R \\ R^* & 0 \end{bmatrix} \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & R \\ R^* & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & R^*BR \end{bmatrix}$$

and bCc iff $BC = CB$. Moreover, in operator-matrix form, the condition $a = b + jbj$ is

$$a = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & R^*BR \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & R^* \end{bmatrix} \begin{bmatrix} B & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & R \end{bmatrix}.$$

This is precisely Halmos' solution of the problem of finding the simultaneous commutant of two projections in generic position [10, p.385].

References

- [1] Beran, L., *Orthomodular Lattices, An Algebraic Approach*, Mathematics and its Applications, Vol. 18, D. Reidel Publishing Company, Dordrecht, 1985.
- [2] Böttcher, A. and Spitkovsky, I.M., A gentle guide to the basics of two projections theory, *Linear Algebra Appl.* **432**, no. 6 (2010) 1412–1459.
- [3] Foulis, D.J., Synaptic algebras, *Math. Slovaca* **60**, no. 5 (2010) 631–654.
- [4] Foulis, D.J. and Pulmannová, Spin factors as generalized Hermitian algebras, *Found. Phys.* **39**, no. 3 (2009) 237–255.
- [5] Foulis, D.J. and Pulmannová, S., Projections in synaptic algebras, *Order* **27**, no. 2, (2010), 235–257.
- [6] Foulis, D.J. and Pulmannová, S., Type-decomposition of a synaptic algebra, *Found. Phys.* **43**, no. 8, (2013), 948–968.
- [7] Foulis, D.J. and Pulmannová, S., Symmetries in synaptic algebras. *Math. Slovaca* **64**, no. 3, (2014), 751–776.
- [8] Foulis, D.J. and Pulmannová, S., Commutativity in a synaptic algebra. to appear in *Math. Slovaca*.
- [9] Gudder, S., Pulmannová, S., Bugajski, S., and Beltrametti, E., Convex and linear effect algebras, *Rep. Math. Phys.* **44**, No. 3 (1999) 359–379.
- [10] Halmos, P., Two subspaces, *Trans. Amer. Math. Soc.* **144** (1969) 381–389.

- [11] Kalmbach, G., *Orthomodular Lattices*, Academic Press, Inc., London/New York, 1983.
- [12] Marsden, E.L. Jr., The commutator and solvability in a generalized orthomodular lattice, *Pacific J. Math.* **33** (1870) 357–361.
- [13] Pulmannová, S., A note on ideals in synaptic algebras, *Math. Slovaca* **62**, no. 6 (2012) 1091–1104.
- [14] Topping, D.M., *Jordan Algebras of Self-Adjoint Operators*, A.M.S. Memoir **No 53** AMS, Providence, Rhode Island, 1965.