

ELEMENTS OF TOPOLOGY (22MAB298)

Semester 2	22/23 In-Person Exam paper
	Please fill in:
ID number:	Desk number:
	amination is to take place in-person at a central University venue under exam conditions. The standard length of time for this paper is 2 hours . It be able to leave the exam hall for the first 30 or final 15 minutes of your exam. Your invigilator will collect your exam paper when you have finished.
Invigilator	Help during the exam s are not able to answer queries about the content of your exam paper. Instead,
please mak	ke a note of your query in your answer script to be considered during the marking process.
lf y	ou feel unwell, please raise your hand so that an invigilator can assist you.
	You may not use a calculator for this exam.
Write your	answer for every question in the appropriate space. Indicate within that space if you give additional parts of your answer elsewhere.
	Answer all 3 questions.

1. (a) Give the definition of a topology. [4]

Continue at the end of the booklet (if necessary).

(b) Let $X=\{1,2,3,4\}$ and consider the collection of subsets

$$\tau = \{\{1, 2, 3, 4\}, \{1\}, \{2, 3\}, \{2, 4\}, \{2\}\}.$$

Does τ define a topology for X? Explain your answer. [3]

(c) Consider \mathbb{R} equipped with the usual topology coming from the Euclidean metric. State whether the following sets are open with respect to this topology:

(i)
$$\mathbb{R} \setminus (\mathbb{Q} \cap (0, \infty))$$
. [2]

(ii)
$$(-1,0) \cup (0,1)$$
. [2]

(iii)
$$\{x : \sin(x) > 0\}.$$
 [2]

You do not need to explain your answers.

(d)	Let (X,τ) be a topological space and $Y\subset X.$ and prove that it actually defines a topology.	Define the subspace topology for Y [7]
		Continue at the end of the booklet (if necessary).

(e) Let
$$X=\{1,2,3\}$$
 and

$$\tau = \{\{1, 2, 3\}, \emptyset, \{1\}, \{2\}\}.$$

Prove that there exists no metric d for X such that τ is the topology generated by d. Hint: Consider open balls centred at 3. [5]

- 2. (a) Let $X=\mathbb{R}$ and $Y=\mathbb{Q}$. Calculate the interior, boundary, and exterior of the subset $Y\subset X$ with respect to the following topologies:
 - (i) The topology given by the standard Euclidean metric. [4]
 - (ii) The discrete topology. [4]
 - (iii) The indiscrete topology. [4]

Explain your solutions.

(b) Let (X,τ) and (Y,τ') be topological spaces. $f:X\to Y \ \mbox{to be continuous}.$	Define what it means for a function [4]

(c) Let $X=\mathbb{R}$ be equipped with the indiscrete topology. Let (Y,d) be a metric space. Prove that if $f:X\to Y$ is continuous then f is a constant function. [9]

3. (a) Define what it means for a topological space to be connected.	3.	(a)	Define what it means for	a topological space to be connected.	[4]
--	----	-----	--------------------------	--------------------------------------	-----

Continue at the end of the booklet (if necessary).

- (b) Let $X = (-1, 0) \cup (0, 1)$.
 - (i) Equip X with a topology τ such that X is not connected with respect to this topology. [3]
 - (ii) Equip X with a topology τ' such that X is connected with respect to this topology. [3]

(c) Let (X, τ) be a topological space. Suppose that there exists a continuous and surjective function $f: X \to \{-1, 1\}$ when $\{-1, 1\}$ is equipped with the discrete topology. Prove that X is not connected. [5]

(d)) Define	e what it	means	for a t	opologi	cal space	$e(X, \tau)$	to be	e pathw	ise conr	nected.	[4]
							Cor	ntinue at	t the end o	f the book	let (if nece	ssary).

(e) Let (X,τ) and (Y,τ') be topological spaces. Assume that (X,τ) is pathwise connected and $f:X\to Y$ is continuous and surjective. Prove that (Y,τ') is pathwise connected.

Extra space for answers to any questions:	13 of 15

