

Semi-Supervised Siamese Network for Identifying Bad Data in Medical Imaging Datasets

Niamh Belton^{1,2}, Aonghus Lawlor^{3,4} and Kathleen M. Curran^{1,2}

¹Science Foundation Ireland Centre for Research Training in Machine Learning

²School of Medicine, UCD

³School of Computer Science, UCD

⁴Insight Centre for Data Analytics, UCD, Dublin, Ireland

Proposed Method

Objective: Develop a pre-processing technique to identify bad data that could harm the model's training process in future analysis.

(iii) Mid-Slice of Cases with Largest MED

(iv) Additional Bad Data Examples

Example A
Class => Bad data
Siamese network, MED =>
0.98
Siamese network,
classification => Bad data
Isolation Forest,
classification => Bad data

Example B
Class => Bad data
Siamese network, MED => 1.2
Siamese network,
classification => Bad data
Isolation Forest, classification
=> Not bad data

Model Performance

 Threshold chosen based on the largest Euclidean Distance between reference MRIs.

	AUC	Sensitivity	Specificity
Siamese Network (proposed)	0.989	100%	89%
Isolation Forest	0.802	71%	92%

Advantages

- Achieves good performance.
- Identifies a wide variety of bad data.
- Requires only a fraction of the training data that previous methods require.
- Less tedious labelling process in comparison to other semi-supervised techniques.

