FOSA STR -Leo Rauschenberger

- 15min Einlesezeit+120min (man darf während der Einlesezeit schreiben!)
- Taschenrechner erlaubt (darf nur nicht kommunikationsfähig sein)

Basics:

U = A + (s+b) - 2k
Bei 3D: − 3 <i>k</i>
U = A + V - 3n
Beachte: 3 auch wenn 2D !!!!
U = A + n - 2k
$n_x = \frac{P}{b} = \frac{\sigma bs}{b} = \sigma s$
$b \text{ or } U = 2\pi R$
$ au = \frac{t_0}{c}$

Kreisring: $I_y = \pi R^3 s$	$U = 2\pi R$
Rechteck: $I_y = \frac{ab^3}{12}$	$A = \pi^2 R$
Schwerpunkt: $z_{sp} = \frac{\sum A_i z_{si}}{\sum A_i}$	Spannung: $\sigma = \frac{P}{A}$
Schubmodul: $G = \frac{\overline{E}}{2(1+\nu)}$	Dehnung: $\epsilon = \frac{\sigma^A}{E}$

Die Belastung steht bei j immer im Nenner!

Schubfeldträger

A = Auflagerkräfte S = Stäbe b = Bleche k = Knoten

$$|U = A + (s + b) - 2k|$$
 Bei 3D: ... – 3k

$ \begin{aligned} s &= 4 \\ b &= 1 \\ k &= 4 \end{aligned} $	A=6	s = 12 $b = 6$ $k = 8$
$ \begin{aligned} s &= 8 \\ b &= 5 \\ k &= 4 \end{aligned} $	A=5	s = 20 $b = 11$ $k = 12$
	A = 4	s = 28 $b = 16$ $k = 16$

Hinweis:

- 2-fach stat. Unbestimmt z.B. 1-fach innerlich & 1-fach äußerlich
- Nach Aufschneiden b=0 an dieser Stelle!
- System darf nicht kinematisch beweglich werden!!!

	1-fach	2-fach	t
0-System	Lager lösen	Lager lösenaufschneiden	$\frac{N}{mm}$
1-System	 <u>keine</u> äußeren Kräfte Schubfluss durch Einheitskräfte wiederherstellen 		$\frac{1}{mm}$
2-System		 <u>keine</u> äußeren Kräfte Auflagerkräfte durch Einheitskräfte wiederherstellen 	1

Ein Schnitt bedeutet, dass es keine durchgehenden Kräfte geben kann, d.h. Unterbrechung der Schubspannungen t. Die einzelnen Cubes sind aber <u>in sich intakt und auch das Blech bleibt erhalten</u>.

Einfache Regeln

Momente in Kräfte umwandeln	
Beim freischneiden versuchen den 3D Träger in 2D-Träger zu wandeln	2/2011 u Vorlesung

Pfeilrichtung

- Richtung des Abbaus der Zugspannung (+)
- Richtung des Aufbaus der Druckspannung (-)

Farbcode für t: braun, N: lila

- 1. An 1 Knoten anliegende Bilanzen aufstellen. Wichtig: Bilanzen müssen komplett sein; zur Not im Kastenträger schneiden!
- 2. T in angrenzenden Blechen finden
- 3. Tim nächsten Kasten finden

Längskräfte:

- Zug ist positiv, Druck negativ!
- Auch bei t=0 kann Normalkraft übertragen werden!!
- Auch nach Einführung der "1" Kräfte geben die Stäbe keinen Schubfluss weiter, e.g.
- Trapezfeld

Gegenüberliegend & parallel	₹ ₃ a ₃		$t_1 a_1^2 = t_3 a_3^2$
Adjunkt	a_3 a_1 $\bar{\ell}_1$	73 1 93 91 74	$t_1 a_1 = t_2 a_3 \ (= t_4 a_3)$ $t_1 a_1 = t_2 a_3 \ (= t_4 a_3)$
Gegenüberliegend & NICHT parallel	- \tau_2		$t_2 = t_4$

Mittlerer Feldschubfluss:

$$t_m = \sqrt{t_1 t_3} = \sqrt{t_2 t_4}$$

Normalkräfte:

Generell: $N(x) = \int_0^x t dx + N_0$

Trapez:

 $\mathbf{Mit}\ \bar{x} = x\cos\alpha$

 $\rightarrow N(\overline{x}) = \cdots$

l a	
•	

Kraftgrößenverfahren (S.19)

		<u> </u>
а	ac·l	
or vice-versa	$\frac{1}{2}ac\cdot l$	
т п п п п п п п п п п п п п п п п п п п	$\frac{1}{3}ac\cdot l$	
a	$\frac{1}{6}ac \cdot l$ $\frac{1}{6}a \cdot l (c + 2d)$	
a c d	$\frac{1}{6}a \cdot l \ (c+2d)$	Immer die Seite des Trapezes verdoppeln, wo das Dreieck hoch ist (+- egal)
a c d	$\frac{1}{6}a \cdot l (2c + d)$	(+- egai)
a b c d	$\frac{\frac{1}{6}a \cdot l (2c+d)}{\frac{1}{6}l \left(a(2c+d)+b(c+2d)\right)}$	Vorne*(2Vorne+andere) +hinten*(2Hinten+andere) Steigungen an sich nicht relevant (+- egal)
c c d	$\frac{1}{6}c \cdot l \ (c+d)$	

$$t = t_0 + t_1 X_1 + \dots + t_n X_n$$
$$N = N_0 + N_1 X_1 + \dots + N_n X_n$$

$$F = F_0 + F_1 X_1 + \dots + F_n X_n$$

Also:

2-fach	$\delta_{11}X_1 = -\delta_{10}$	$X_1 = -rac{\delta_{10}}{\delta_{11}}$ Negatives Vorzeichen beac	[N]
1-fach	$\begin{bmatrix} \delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22} \end{bmatrix} \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} = -\begin{bmatrix} \delta_{10} \\ \delta_{20} \end{bmatrix}$ $\delta_{12} = \delta_{21}$	Taschenrechner!	

Verschiebungsbeiwerte δ mit dem Verfahren nach Maxwell-Mohr:

$$\delta_{ij} = \sum \tfrac{1}{EA} \int_l N_i N_j dx + \sum \tfrac{1}{Gh} (t_i t_j A_S)$$

$$\begin{array}{cc} \delta_{10} & [mm] \\ \delta_{11} & \left[\frac{mm}{N}\right] \end{array}$$

A = Querschnittsfläche Stäbe

 A_S = Blechfläche

h = Dicke Bleche

$$G = \frac{E}{2(1+\nu)}$$

Immer von außen (Corners) nach innen

Stat. unbestimmter Balken

Statische Unbestimmtheit

U = A + V - 3n

Auflagerkräfte A:

,		
Feste Einspannung	3	
Auflager	2	

Wertigkeit der Verbindungselemente V:

0	Ohne Gelenke
2	1 Gelenk, 2 Zweige
4	1 Gelenk, 3 Zweige
6	1 Gelenk, 4 Zweige
3	Mit Schnitt

Anzahl Teilsysteme, Stäbe, Bleche n

Verschiebungsbeiwerte δ

$$\delta_{ij} = \int_{l} \frac{N_{i}N_{j}}{EA} dx + \int_{l} \frac{M_{i}M_{j}}{EI} dx$$

Verschiebungsmethode (S.21)

Grad der statischen Unbestimmtheit

 $\overline{U = A + n - 2k}$ n Anzahl Stäbe/Balken/Balken mit Stabanteil, k Anzahl der Knoten

→ Stat. Bestimmtheit für Verschiebungsmethode NICHT relevant!

Grad der kinematischen Unbestimmtheit

V = Anzahl der unbekannten Verschiebungsgrößen. Bei Balken beinhaltet dies auch die Verdrehungen.

- = Anzahl der Glg mit Unbekannten
 - Balken haben einen Stabanteil, wenn sie auch Verschiebungen in Längsrichtung haben.

	lokal	global
Balken	p.M. F.u. p.M. F.u	Meist global=lokal gewählt aufgrund der Komplexität
	A B lok, glob	
	$\begin{bmatrix} \frac{2I_{y}E}{L^{3}} \begin{bmatrix} 6 & 3L & -6 & 3L \\ 3L & 2L^{2} & -3L & L^{2} \\ -6 & -3L & 6 & -3L \\ 3L & L^{2} & -3L & 2L^{2} \end{bmatrix} \begin{pmatrix} v_{A} \\ \varphi_{A} \\ v_{B} \\ \varphi_{B} \end{pmatrix}$	Unbedingt die Richtung beachten (A-> B) sonst muss diagonal vertauscht werden!!
	N.B. Bei Senkrechtem Balken	
	von u, φ statt v abh.	
Stab	A B lokiglob Fin Fin	B F.u
	$\frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} u_A \\ u_B \end{pmatrix}$	Fiv a -> glob
		$[K] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$
	N.B. Bei Senkrechtem Stab: $\frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \binom{v_A}{v_B}$ d.h. von v statt u abh.	$\begin{bmatrix} a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$ $= \frac{EA}{L} \begin{bmatrix} c^2 & cs & -c^2 & -cs \\ cs & s^2 & -cs & -s^2 \\ -c^2 & -cs & c^2 & cs \end{bmatrix}$
		$\begin{bmatrix} -c & -cs & c & cs \\ -cs & -s^2 & cs & s^2 \end{bmatrix}$
Balken mit Stabanteil	PIM FIN PM FIN	$\begin{bmatrix} -cs & -s^2 & cs & s^2 \end{bmatrix}$ Meist global=lokal gewählt aufgrund der Komplexität.
	A ist hier 2x2 Matrix!!!	Andere Schreibweise:
	$=\begin{bmatrix} a_{11} & 0 & 0 & a_{12} & 0 & 0 \\ 0 & b_{11} & b_{12} & 0 & b_{13} & b_{14} \\ 0 & b_{22} & b_{22} & 0 & b_{23} & b_{24} \\ a_{21} & 0 & 0 & a_{22} & 0 & 0 \\ 0 & b_{31} & b_{32} & 0 & b_{33} & b_{34} \\ 0 & b_{41} & b_{42} & 0 & b_{43} & b_{44} \end{bmatrix}$ a=Stabanteil, b=Balkenanteil N.B. Bei Senkrechtem Balken	$[B] = \begin{bmatrix} B_{11} & 0 & 0 & B_{14} & 0 & 0 \\ 0 & B_{22} & B_{23} & 0 & B_{25} & B_{26} \\ 0 & B_{32} & B_{33} & 0 & B_{35} & B_{36} \\ B_{41} & 0 & 0 & B_{44} & 0 & 0 \\ 0 & B_{52} & B_{53} & 0 & B_{55} & B_{56} \\ 0 & B_{62} & B_{63} & 0 & B_{65} & B_{66} \end{bmatrix}$
	-> anpassen!	

Vorgehen:

- Wenn erwünscht, U,V, berechnen (nicht erforderlich)
- System zerlegen, falls ein mittiger Kraftangriffspunkt vorliegt: (SS12)

- Gesamtsteifigkeitsmatrix aufstellen
- Aus Gesamtsteifigkeitsmatrix die gesuchte Matrix ablesen

	M=0 dort wo nicht fest eingespannt
	$v,v,\phi=0$ wo fest eingespannt

• Gleichungssystem lösen nach v, v, ϕ Fx-991; eqn. Mode 5 -> 1 oder 2

$$w = \sqrt{u_D^2 + v_D^2}$$
$$\alpha = \operatorname{atan} \frac{v_D}{u_D}$$

- Gleichungssystem lösen nach F, M
 - → System per Hand lösen.
- Um die Auflagerkräfte an einem Punkt zu bestimmen, muss man die Verschiebung an einem Ort kennen. Diese muss ≠ 0 sein.
- In lokale Koordinaten übertragen indem:

$$\begin{pmatrix} F'_{cx} \\ F'_{cy} \end{pmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{pmatrix} F_{cx} \\ F_{cy} \end{pmatrix}$$

 \rightarrow Hieraus kann *Stabkraft = Kraft entlang Stab = F'_{cx}* abgelesen werden.

Ausgehend von:

$$\frac{EA}{L} \begin{bmatrix}
c^2 & cs & -c^2 & -cs \\
cs & s^2 & -cs & -s^2 \\
-c^2 & -cs & c^2 & cs \\
-cs & -s^2 & cs & s^2
\end{bmatrix}$$

	$L-cs$ $-s^2$	CS S ²	_
0°	$\frac{EA}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} u_A \\ v_A \\ u_B \\ v_B \end{pmatrix}$ = lokale Koordinaten	60°	$ \underbrace{\frac{EA}{L}}_{1} \begin{bmatrix} .25 & .433 &25 &433 \\ .433 & .75 &433 &75 \\25 &433 & .25 & .433 \\433 &75 & .433 & .75 \end{bmatrix} $
30°	$ \frac{EA}{L} \begin{bmatrix} .75 & .433 &75 &433 \\ .433 & .25 &433 &25 \\75 &433 & .75 & .433 \\433 &25 & .433 & .25 \end{bmatrix} $	90°	$\frac{EA}{L} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{pmatrix} u_A \\ v_A \\ u_B \\ v_B \end{pmatrix}$
45°	$ \frac{EA}{L} \begin{bmatrix} .5 & .5 &5 &5 \\ .5 & .5 &5 &5 \\5 &5 & .5 & .5 \\5 &5 & .5 & .5 \end{bmatrix} $	120°	$\underbrace{\frac{EA}{L}}_{L} \begin{bmatrix} .25 &433 &25 & .433 \\433 & .75 & .433 &75 \\25 & .433 & .25 &433 \\ .433 &75 &433 & .75 \end{bmatrix}$ d.h. Vorzeichenwechsel der Einträge im Vgl zu 60 Grad

In allen 4 Quadranten bis auf das Vorzeichen dieselben Faktoren.

Fehlersuche:

- Richtige Stablänge L verwendet?
- Kraft/Moment mit richtigem Vorzeichen?
- 2x2 und 4x4 Matrizen nicht durcheinanderwerfen!

Knicken

Elastisches Knicken:

$$P_{krit} = \pi^2 \frac{EI_y}{l^2}$$

 ${\it I_{z}}\,$ wählen wenn diese Richtung weicher!

Biegedrillknicken: früher auch als Kippen bezeichnet: Verdrehen des Stabquerschnitts sowie seitliches Ausweichen der Stabachse

Schalen (S.30)

Allgemein

Definition

- Dünnwandig $s \ll L, s \ll R$
- Gekrümmte Struktur

Unterscheidung zwischen:

- Allg. Schale
- Rotationsschale (zB Kegel)
- Zylinderschale

Örtliches Beulen (der Stringer)

Beulsteifigkeit erhöhen durch:

- Wanddicke (schwer)
- Konstruktiv mit Sicken, Falzen, Spant-, Stringer-Versteifung

Typen:

- Wellschale
- Trapezschale
- Sandwichschale

Beim Beulen bleiben die Kanten des Profils gerade, während die Wände ausbeulen (Beim Knicken weicht stattdessen die Stabachse aus).

$$\frac{\sigma_{0.2}}{E} = \cdots$$

$$\frac{\sigma_{kr,e}}{E} = 0.39 \left(\frac{s}{b}\right)^2 \le \frac{\sigma_{0.2}}{E}$$

$$\frac{\sigma_{kr,b}}{E} = 3.62 \left(\frac{s}{b}\right)^2 \le \frac{\sigma_{0.2}}{E}$$

ı	Reduziertes E-Modul:	FOSA 5.24
	$E_{red} = \sqrt{E \cdot E_K}$	
	$\frac{\overline{\sigma_{0.2}}}{\frac{E}{E}} = \frac{280}{707000} = 0.004$ $\frac{\sigma_{0.2}}{\frac{280}{E}} = \frac{280}{757000} = 0.00373$	
	Wert muss $\leq \sigma_{0.2}$ sein, sonst wird $\sigma_{0.2}$	
	genommen!	
	$0.004 \rightarrow 240 \frac{N}{mm^2}$	
	$0.0045 \rightarrow 250$	

0.005 260	Werkstoff Al2024 T3
$0.005 \rightarrow 260$	0.020
$0.006 \rightarrow 270$	0.018
$0.007 \to 280$	0.016
$0.008 \to 290$	0.014
$0.009 \rightarrow 297$	0.012
$0.010 \to 315$	\$ 0.010 <u>E. T. T.</u>
$0.020 \to 350$	0.008 TEEK
	0.006 G
	0.002
	0.000 0 50 100 150 200 250 300 350 400
	σ [N/mm²]

 $P_{krit,\ddot{o}rtl} = \sigma_{\ddot{o}rtl}Fn$ n die Anzahl der Stringer

$$j = \frac{P_{krit, \ddot{o}rtl}}{P}$$

Örtliches Versagen / Crippling (der Stringer) / Tragfähigkeit der Stringer

 $g = \#Schnitte + Wertigkeit_{Sections} * \#Sections$

1	g=2	$\sigma_{cripp} = \sigma_{0,2}0,56\left[\frac{gs^2}{F}\sqrt{\frac{E}{\sigma_{0,2}}}\right]^{0.85} \leq \sigma_{0,2}$	
2	T + T	$\sigma_{cripp} = \sigma_{0,2}0,67 \left[\frac{gs^2}{F} \sqrt{\frac{E}{\sigma_{0,2}}} \right]^{0,4} \le \sigma_{0,2}$	

Wenn $\sigma_{cripp} > \sigma_{0,2}$ dann $ightarrow \sigma_{cripp} = \sigma_{0,2}$

 $P_{krit,cripp} = \sigma_{cripp} Fn$

 $j = \frac{P_{krit,cripp}}{P}$

Teilschaleninstabilität (TSI)

- → Haut befindet sich im Nachbeulbereich!
- → Spante bleiben unverformt
- → Spannungsumlagerung von Haut auf Stringer

$$\sigma_{krTSI} = \sigma_{cripp} - rac{1}{E} igg(rac{\lambda'}{2\pi} \sigma_{cripp}igg)^2$$

HOCH ^2 beachten!!!!

$$\sigma_{krTSI} < \sigma_{02}$$

Sonst mit $\frac{\sigma_{krTSI}}{E}$ plast. Korrektur!

$$\lambda' = \frac{l_{SP}}{\sqrt{c_{SP} \frac{I_y}{A}}} = \frac{l_{SP}}{\sqrt{c_{SP} i}}$$

Spante

- Abstand Spante: $l_{SP} = \frac{L}{n_{SP}-1}$
 - o $(n_{SP} 1)$ da Segmente zählen)
- torsionsweich: $c_{SP} = 1$ (offene Profile OR gelenkige Lagerung)
- -starr: $c_{SP} = 2$ (geschlossene Profile OR torsionsstarre Lagerung)

Stringer & Mitttragende Breite:

- I_{y,strm}
- $A_{strm} = F + b_m h$

Annahme: $b_m = \frac{1}{3}b$ (oder wie gegeben)

Abstand Stringer:
$$b = \frac{U}{n_{str}} - d_{Stringerf \ddot{u} \dot{k} e} = \frac{2\pi R}{n_{str}} - d_{Stringerf \ddot{u} \dot{k} e}$$

Bei Hutprofilen, Rechteckprofilen muss $d_{Stringerf\"{u}\&e}$ d.h. die Distanz zwischen den gedachten Verbindungspunkten abgezogen werden!!!

$$P_{kr} = \sigma_{krTSI} \cdot (A_{Str} + b_m h) \cdot \boldsymbol{n_{str}}$$

$$\boxed{j = \frac{P_{kr}}{P}} = \frac{\sigma_{krTSI} \cdot (A_{Str} + b_m h) \cdot \mathbf{n_{str}}}{P}$$

Beispiel: Schalenhautdicke h, Anzahl Spante n_{SP} oder mitttragende Breite b_m berechnen:

$$\frac{\sqrt{(\sigma_{cripp} - \sigma_{krTSI})E}}{\frac{\sigma_{cripp}}{2\pi}} = \lambda' = \frac{l_{SP}}{\sqrt{c_{SP}}i}$$

Mit:

- σ_{cripp} gegeben oder berechnen aus vorherigem
- σ_{krTSI} gegeben oder über j: $\sigma_{krTSI} = \frac{jP}{(A_{Str} + b_m h)n_{Str}}$

n_{str}	σ_{krTSI} gegeben: $n_{Str} = \frac{1}{F} \bigg(\frac{jP}{\sigma_{krTSI}} - \frac{1}{3} 2\pi Rh \bigg)$ Resultat aufrunden!
n_{SP}	

1. Iterationsschritt

$$b_m^* = b_{(1)} \sqrt[3]{\frac{\sigma_{krB}}{\sigma_{TSI,1}}}$$

- $b_{(1)}$ Breite des Hautfeldes
- Durch b_{mneu} ergibt sich neues F, etc!

Szenarien:

Szenanen:	
Querschnitt ist torsionsweich	$\sigma_B = 3.62 E \left(\frac{s}{b}\right)^2 + 3.92 \left(\frac{s}{R}\right)^{1.54}$
S T	Mittragende Breite = Stringerteilung = $\frac{2\pi R}{n_{str}}$
Querschnitt wird durch Anschluss an Haut	$\sigma_B = 6.32 E \left(\frac{s}{b_1}\right)^2 + 3.92 \left(\frac{s}{R}\right)^{1.54}$
geschlossen (zB Winter 2015)	$OB = 0.32 L \binom{b_1}{b_1} + 3.72 \binom{R}{R}$
	Mittragende Breite = Stringerteilung = $\frac{2\pi R}{n_{str}}$
Querschnitt wird durch Anschluss an Haut NICHT	
geschlossen	
→ Betrachten wie 2 torsionsweiche	$\sigma_{Bb1} = 3.62 E \left(\frac{s}{h_{princehor}}\right)^2 + 3.92 \left(\frac{s}{R}\right)^{1.54}$
Querschnitte	$\langle b_{zwischen} \rangle$
1. Zwischen Spanten:	Mittragende Breite
U.S.	=Mitte Fuß bis Mitte Fuß 2 Stringer
+ 1 +	$= \frac{2\pi R}{n_{str}} - d_{HutFußabstand}$
2. Unter Spanten:	
b ————————————————————————————————————	$\sigma_{Bb2} = 3.62 E \left(\frac{s}{b_{unter}}\right)^2 + 3.92 \left(\frac{s}{R}\right)^{1.54}$
	Mittragende Breite
	=Mitte Fuß bis Mitte Fuß eines Stringer
	$=d_{HutFußabstand}$

Notes:

• Stringer & Spant sollen an Kreuzungspunkt möglichst <u>nicht</u> unterbrochen werden.

Allgemeine Instabilität

Wenn die Stützwirkung der Spante auf die Stringer nicht mehr ausreicht und diese unter Last nachgeben. Nach Shanley

Außenliegende Spante -> konservativ

$$I_{erf,Spant(außen)} \ge \frac{n_x R^4}{1273 \ l \ E}$$

Mit

$$E = E_{spant}(hier)$$

$$n_x = 1.1 \frac{Pj}{\pi D}$$

 $n_x = 1.1 \frac{P_j}{h n_{obs}}$ mit b der Abstand zwischen Hutquerschnitten

Innenliegend -> "optimistisch"-> Spantsteifigkeit I_{erf} verdoppelt

$$I_{erf,Spant(innen)} \ge 2 I_{erf,Spant}$$

Vorliegendes mit erforderlichem vergleichen:

$$I_{vorh,Spant} > I_{erf,Spant}$$

Nach Van der Neut

In der Praxis für orthorop versteifte Schalen besser.

Membranschale

Prinzip: Superposition d.h Lastfälle überlagern

U = axiale Verschiebung

V=radiale

Dimloser Schalenparameter:
$$\kappa = \left[3(1-\nu^2)\frac{r^2}{t^2}\right]^{0.25}$$
 HOCH 1/4! $\mu = \nu$

Ein System mit Festlagern ist einfach unbestimmt, 0-System wie oben und 1 System:

Mehrzelliger Hohlquerschnitt (S.22) & (S.9)

Statische Bestimmtheit:

U = n - 1 n die Anzahl der Zellen

 $M_T = 2At_0$ Erste Bret'sche Formel (Seite 11)

Wie sonst:

 $\delta_{ij} = \cdots$

Rechteckige Platte (S.27)

Recriteckige i latte (5.2.7
An belasteten Rändern gelenkig	$\sigma_{kr} = 0.904E \left(\frac{s}{a}\right)^2$
Freie Längsränder!	OR Euler-Längsstreifen
Treie Langstander:	$P_{krit} = \pi^2 \frac{E^* I_y}{l^2} \text{ mit } E^* = \frac{E}{1 - v^2}$
An 4 Rändern gelenkig oder eingespannt	$\sigma_{kr} = k_{\sigma} E \left(\frac{s}{b}\right)^2$
	• Gelenkig (belastete können eingespannt sein) $\xrightarrow{asym} k_{\sigma} \approx 3.62$
	• Eingespannt (belastete können gelenkig sein) $\xrightarrow{asym} k_{\sigma} \approx 6.32$
An 3 Rändern…	Buchstabe "C" stellt die Form der Stützung/Einspannung dar.
	$\sigma_{kr} = k_{\sigma} E \left(\frac{s}{b}\right)^2$
	• Eingespannt: $\xrightarrow{asym} k_{\sigma} \approx 1.15$
	• Gestützt: $k_{\sigma} = 0.39 + 0.87 \left(\frac{b}{a}\right)^2$
Platte unter Schub	→ b < a!
	$\tau_{kr} = k_{\tau} E \left(\frac{s}{h}\right)^2$
	• Eingespannt: $\xrightarrow{asym} k_{\tau} \approx 8.15$
	• Gestützt: $\stackrel{asym}{\longrightarrow} k_{ au} pprox 4.85$
Allseitig gelenkig gelagert	$n_e = \frac{\pi^2}{b^2} \frac{Es^3}{12(1-v^2)}$ $\alpha = \frac{a}{b}$
	$\alpha = \frac{a}{b}$
	Einseitiger Druck;

Konservativ (S.27):	
$\sigma_{kr} = 3.62E \left(\frac{s}{b}\right)^2$	

- Interaktion:
- $n_0 = \frac{P}{b} \left[\frac{N}{mm} \right]$ Kraft auf Platten**breite** bezogen $\rightarrow \sigma = \frac{n_0}{s}$ m = Anzahl Hallowellen in Längerichtung.
- m = Anzahl Halbwellen in Längsrichtung -> Aus Girlande im Diagramm ablesen!!!

Diagonalzugfeld (S.30)

Im Vergleich zum Schubfeld:

- Zusätzliche Gurtkräfte
- Biegung in den Gurten
- Druckbelastung der Pfosten
- Größere Schubverformungen

Ideales Zugfeld: $\sigma = 45 grad$

Wird die kritische (Schub)Spannung überschritten?

 $au_0 = \frac{Q}{SH}$ (FOSA) Q ist die Gesamtkraft also z.B. 2Q,3Q, etc.

$$\tau_{krit} = \frac{t_{0krit}}{s} = \frac{kn_e}{s}$$
 wobei (S.29):

$$oldsymbol{j} = rac{ au_0}{ au_{krit}} < 1$$
 Sicherheit gegen Ausbildung Diagonal-Schubfeld

Bedingung zur Ausbildung eines Diagonalschubfeldes: $au_0 = au_{krit}$

Gurt

Gurt wird auf Druck und auf Biegung belastet

Guit wild auf Druck und auf biegung belastet.		
		Maximal bei $x = \frac{B}{2}$
Überlastung	$L = -\frac{Q}{H}x - \frac{Q}{2} - F(Axialkr\ddot{a}fte!)$	$L\left(\frac{B}{2}\right)$
Druckgurt	Mit:	$\sigma_L = \frac{\langle Z \rangle}{A_{col}} < 0$
	• $\frac{Q}{H}x$ durch Momentenschnitt	11Gurt
	• $\frac{Q}{2}$ Hälfte der senkrechten Last, da Scherkräfte in 45	
	Winkel wirken.	
	Es kann vorkommen, dass Lu noch mit einem	
	Sicherheitsfaktor j multipliziert werden muss.	
Druckbiegung	Sicherheitsfaktor j multipliziert werden muss. $M_V = M_0 \frac{1}{1 - \frac{ P }{P_{krit,Gurt}}}$	$\sigma_B = \frac{M_V\left(\frac{B}{2}\right)}{W_{(y)}} < 0$
	Mit:	
	$\bullet P\left(\frac{B}{2}\right) = \left L\left(\frac{B}{2}\right)\right $	W das Widerstandsmoment
	• $P\left(\frac{B}{2}\right) = \left L\left(\frac{B}{2}\right)\right $ • $P_{krit,Gurt} = c^2 \frac{\pi^2 E I_y}{l^2}$ oder geg.	$W_y = \frac{I_y}{8}$
	• $(M_0 = -EI_y w'' \text{ wenn } w'' \text{ geg})$	
	M ₀ aus Momentenschnitt	$M_V\left(\frac{B}{2}\right) = M_{max}$ max.
	$M_0(x) = -\frac{1}{2}px^2 \qquad p = \frac{Q}{H}$	Biegemoment

GESAMT	$\sigma_{Druck,max} = \sigma_L + \sigma_B$
	Sicherheit gegen Plastizität: $j = \frac{\sigma_{0.2}}{\left \sigma_{Druck,max}\right }$

Pfosten $N = \frac{Qa}{H}$

Größere Schubverformungen -> Siehe FOSA

Rayleigh-Ritz

Anzahl der Koeffizienten = min. Höhe Ansatz + Anzahl RB

$$k = n + m$$

Biegelinie Ansatz 4. Ordnung:

$$w(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

$$w(x) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3$$

Vereinfachen durch RBs:

Geometrische RBs:	w(0) = 0 $w'(0) = 0$
Statische RBs:	w''(l) = 0 w'''(l) = 0

Biegelinie berechnen! → alle Unbekannten im Ansatz finden

- **Fx-991**: Integral-Taste und von 0 bis 1 integrieren
- Trinom: $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$

$$\pi = \pi_i + \pi_a$$

 $\frac{\partial \pi}{\partial a_i} \stackrel{\scriptscriptstyle ext{def}}{=} \mathbf{0}$ wobei a_i die Parameter im Ansatz

Innen π_i		Aussen π_a	
N.B: u,w bei inner Kraft immer quadriert			
Biegemoment	$\frac{1}{2} \int_0^L EIw''(x)^2 dx$	Einzelkraft (quer)	$-Fw(x_F)$
Normalkraft	$\frac{1}{2} \int_0^L EAu'(x)^2 dx$	Einzelkraft (parallel)	$-Fu(x_F)$
		Streckenlast (quer)	$-\int_0^L q(x)w(x)^2 dx$
		Knickstab	$-\frac{1}{2}\int_0^L Fw'(x)^2 dx$

$$\pi = \frac{1}{2} \int_0^L EIw''(x)^2 dx - \int_0^L q(x)w(x) dx$$

Nach gesuchter Variable ableiten: $(\frac{1}{2} \cdot 2)$:

$$\rightarrow \frac{\partial \pi}{\partial a_i} = EI \int_0^L w''(x) \frac{\partial w''(x)}{\partial a_i} dx - \int_0^L q(x) \frac{\partial w(x)}{\partial a_i} dx$$

Beispiel 2: Knickstab

$$\pi = \frac{1}{2} \int_0^L EIw''(x)^2 dx - \frac{1}{2} \int_0^L Fw'(x)^2 dx$$

Nach gesuchter Variable ableiten: $(\frac{1}{2} \cdot 2)$:

$$\rightarrow \frac{\partial \pi}{\partial a_i} = EI \int_0^L w''(x) \frac{\partial w''(x)}{\partial a_i} dx - \int_0^L Fw'(x) \frac{\partial w'^{(x)}}{\partial a_i} dx$$

- \rightarrow Daraus $P_{krit} = \cdots$
- ightharpoonup Stabilität: $\frac{\partial^2 \pi}{\partial a_i^2} < 0$ instabil(labil), $\frac{\partial^2 \pi}{\partial a_i^2} > 0$ stabil, $\frac{\partial^2 \pi}{\partial a_i^2} = 0$ indifferent
- → Güte des Ansatzes prüf durch vergleich mit Euler-Lösung

Stabilität der Schale (S.32)

	<u> </u>			
Axiallast (*)	$\sigma_{xkr,th} = 0.605 E \frac{s}{R}$			
	Imperfektionsempfindlichkeit			
	$\rho_{99} = 6.48 \left(\frac{s}{R}\right)^{0.54}$			
	$\sigma_{kr,r} = ho_{99} \sigma_{krth}$			
	Belastung			
	$\sigma_x = \frac{P}{2\pi Rs}$			
Innendruck (*)	Reduktion der Imperfektionsempfindlichkeit (S.33)			
	$\rho_{99,n} = \rho_{99} + \Delta \rho$			
	$\sigma_{kr,r}= ho_{99,n}\sigma_{krth}$			
	Entlastung (mit Kesselformel):			
	$\sigma_{x,vorh} = \frac{P}{\underbrace{2\pi Rs}} - \frac{p_i R}{\underbrace{2s}}$ note:			
	σ_x σ_{xpi}			
Biegemoment (*)	Reduktion der Imperfektionsempfindlichkeit (Erhöhung $ ho_{99}$ um 20%)			
	$\rho_{99,n} = (\rho_{99} + \Delta \rho) \cdot 1.2$			
	$+\Delta ho$ nur bei Kombination mit Innendruck			
	$\sigma_{kr,r} = ho_{99,n} \sigma_{krth}$			
	Entlastung (mit Kesselformel):			
	$\sigma_{Druck,max} = \frac{M_B}{I_y} R - \frac{p_i R}{2s} mit I_y = \pi R^3 s$			
Außendruck (**)	$ ho_{au}=0.7+\Delta ho$			
	Belastung ist Umfangsspannung:			
	$\sigma_{\phi} = \frac{p\kappa}{-}$			
Torsion (**)	$\sigma_{m{\phi}} = rac{pR}{s}$ $ ho_{m{ au}} = 0.65 + \Delta ho$			
10131011 (^^)	$ρ_{\tau} = 0.03 + Δρ$ +Δρ nur bei Kombination mit Innendruck			
	Belastung:			
	$\tau = \frac{M_T}{W_T} \qquad \text{mit } W_T = 2Ah_{min} \text{ (S.11)}$			

^(*) bei Kombinationen dieser Belastungen ändert sich nur ρ_{99} indem die Abminderungsfaktoren kombiniert werden: $\rho_{99,n} = \left(\rho_{99}(Axial) + \Delta\rho(Innendruck)\right) \cdot 1,2 \ (Biegemoment)$

(**) bei zusätzlichem Außendruck/Torsion Gleichung für kombinierte Belastung anwenden!

$$j = \frac{P_{kr}}{P} = \frac{\sigma_{kr}}{\sigma}$$

$$\left(\frac{\sigma_x}{\sigma_{xkr}}j\right)^{1.1} + \left(\frac{\sigma_\phi}{\sigma_{\phi kr}}j\right)^{1.1} + \left(\frac{\tau}{\tau_{kr}}j\right)^2 = 1$$

• Bei mit p_i kombinierter Belastung muss der Abminderungsfaktor für Torsion/Außendruck/Biegemoment ggf. auch um $\Delta \rho$ erhöht werden!!

Sandwich (S.37)

Vorteile:

- massengünstige Bauweise bei Steifigkeitsanforderungen
- gute Formhaltigkeit

Nachteile:

- hoher Aufwand bei der Fertigung
- schlecht inspizierbar (Delaminationen)
- schlecht reparierbar

c = "core" oder K = "Kern"f = "Flansch" oder []

 $H = t_f + t_c$ wenn symmetrisch!!!

 $G_C = \frac{E_C}{2(1+\nu)}$ pos. Vorzeichen!

Allg. Instabilität

Rechteckige Platte (S.38)

Zylinder (S.39):

 $n_{kr} = k_{\scriptscriptstyle X} D rac{\pi^2}{L^2}$ n ist bezogen auf Länge, hier auf Umfang

• Kern schubstarr $R^* \approx 0$

$$k_x = \frac{4\gamma L^2}{\pi^2 RH}$$

$$D = \frac{E_f t_f H^2}{2(1 - v^2)} \; (+vernachl.)$$

Mit
$$1 - v^2 = 1 - 0.09 = 0.91$$

• Kern schubnachgiebig $R^* \neq 0$

$$k_x$$
 aus Grafik

$$R^* =$$

$$j = \frac{n_{kr}}{n_x}$$

Knittern:

- Es werden NUR die Deckenschichten betrachtet!
- Ggf. Plastische Korrektur durchführen (S.38)!

Eine	11111	$\sigma_{kn} = 0.5\sqrt[3]{E_C G_c E_f} \qquad \sqrt[3]{}$
Deckenschicht		
Beide		Symmetrisch. wenn $> \sigma_{02} \ dann \ \sigma_{kn,sym} = \sigma_{kn,el} \rightarrow \frac{\sigma_{02}}{\sigma_{kn,sym}}$
Deckenschichten		$\sigma_{kn,sym} = \sqrt{\frac{E_f E_c t_f}{3H}}$ Antimetrisch. wenn $> \sigma_{02} \ dann \ \sigma_{kn,an} = \sigma_{kn,el} \to \frac{\sigma_{02}}{\sigma_{kn,an}}$ $\sigma_{kn,an} = \frac{G_c H}{2t_f}$ Die Sicherheit wird mit der kleineren Last (d.h. bei schubstarrem Kern der symmetrischen Last berechnet).
Intracell-Beulen (Honigwabenkern)		$\sigma_{int} = 0.75 E_f \left(rac{t_f}{d} ight)^{1.5} \text{wenn} > \sigma_{02} dann \sigma_{int} = \sigma_{kn,el} ightarrow rac{\sigma_{02}}{\sigma_{int}}$

$$j = \frac{F_{kr}}{F} = \frac{\sigma_{kr} \cdot 2t_f \cdot 2\pi R}{F} \qquad \text{oder } j = \frac{\sigma_{kr}}{\sigma_{\chi}} = \frac{\sigma_{kr}}{n_{\chi}/2t_f} \quad \text{es gibt 2 Flansche}$$

Wichtig! Es tragen nur die Deckenlagen!!!

<u>Fehlersuche</u>

- Potenzen beachten.
- Ggf. Plastische Korrektur durchführen!

Allgemeine Instabilität

Bei schubweich muss der gefundene Wert n_{kr} durch Faktor r geteilt werden!

Sandwich-Master-Diagramm

Gesamtverformung \approx (Biegeverformung schubstarr) * r

kritische Last \approx (kritische Last schubstarr) /r

A schubsteif

B vernachlässigbar

C

D Biegung der Haut nimmt Teil der Querkraft auf! E VERMEIDEN

 ${\it L}\,$ ist die halbwellenlänge des Beulmusters (meist Länge Platte)

Massenvergleich Zylinderschalen:

Dichten gegeben. $ho_{Al}=2.7rac{g}{cm^3}=2700rac{kg}{m^3}$

- $m_{isotrop} = BLH\rho$
- $m_{orthotrop} = (BLH + n_{str}A_{Str})\rho$
- $m_{sandwich} = BL(2t_f\rho_f + t_c\rho_c)$

Wellblechschale

$$g = 12!!!$$

$$I_y = \frac{a^3s}{12} \frac{1}{\cos\alpha} + \cdots$$

$$\Pi = \prod_{i} + \prod_{a}$$

Π_i setzt sich zusammen

$\Pi_{\scriptscriptstyle a}$ setzt sich zusammen

aus Biegemoment	$\frac{1}{2}\int_{0}^{1}EI\ w''(x)^{2}\ dx$	aus Einzelkraft (quer zum Stab)	$-F w(x_F)$
	2 0	aus Einzelkraft (in Stabrichtung)	$-Fu(x_F)$
aus Normalkraft	$\frac{1}{2}\int_{0}^{t}EAu'(x)^{2}dx$	aus Einzelmoment	$-M^L w'(x_M)$
aus Einzeldehnfeder	$\frac{1}{2} c_F w_c^2$	aus Streckenlast (quer zum Stab)	$-\int_{0}^{t}q(x) \ w(x) \ dx$
aus Einzeldrehfeder	$\frac{1}{2} c_M w_c^{/2}$	aus Streckenlast (in Stabrichtung)	$-\int_{1}^{0} p(x) \ u(x) \ dx$
aus Streckendehnfeder	$\frac{1}{2}\int_0^1 c_F \ w(x)^2 \ dx$	aus Streckenmoment	$-\int_{0}^{1} m^{L}(x) \ w'(x) \ dx$
aus Streckendrehfeder	$\frac{1}{2}\int c_M \ w'(x)^2 \ dx$		
	- 0	bei Knickstäben nur	$+\frac{1}{2}\int_{0}^{1}S_{0}w'(x)^{2}dx$
			$mit S_0 = \lambda F$

Elastische Bettung

Bettungsziffer: $\beta = 1mm \frac{s E}{R^2}$