RankNet 方法就是使用交叉熵作为损失函数,学习出一些模型(例如神经网络、决策树等) 来计算每个 pair 的排序得分,学习模型的过程可以使用梯度下降法。

RankNet 使用神经网络对文档进行打分, $f(x_1)$ 表示样本 x_1 的分数,如果 $f(x_1) > f(x_2)$,则表

我们可以利用函数 f 计算得到样本 x_i 比样本 x_i 排名更高的概率,如下所示。

另外还需要 x_i 比 x_i 排名更高 (即 x_i 比 x_i 更加相关) 的真实概率,在数据集中有参数 S_{ii} ·

如果 x_i 相关性比 x_i 更高,则 $S_{i,i}=1$;

如果 x_i 相关性比 x_i 低,则 $S_{ij} = -1$;

如果 x_i 相关性和 x_j 一样,则 $S_{ij} = 0$ 。

我们可以通过下面的公式计算 x_i 比 x_j 排名更高的真实概率。 $\overline{P}_{ij} = \frac{1}{2}(1+S_{ij})$

$$\overline{P}_{ij} = \frac{1}{2}(1 + S_{ij})$$

RankNet 的损失函数采用了 cross entrophy, 根据 损失函数进行梯度下降优 化神经网络的参数 (即函数 f), 损失函数如下所示。

$$C_{ij} = -\overline{P}_{ij}logP_{ij} - (1 - \overline{P}_{ij})log(1 - P_{ij})$$

下图是不同真实概率下,损失函数取值和 (o_i-o_i) 的关系。

