1. Calcule a derivada das seguintes funções:

(a)
$$f(x) = e^{-x}$$

(d)
$$p(x) = (x^{17} - 2x^{13})^2$$

(g)
$$s(x) = x^2 e^{-2x}$$

(b)
$$g(x) = \frac{e^x - e^{-x}}{2}$$

(e)
$$q(x) = (f(x))^3$$

(h)
$$t(x) = (x+1)e^{x+1}$$

(a)
$$f(x) = e^{-x}$$
 (d) $p(x) = (x^{17} - 2x^{13})^2$ (g) $s(x) = x^2 e^{-2x}$ (b) $g(x) = \frac{e^x - e^{-x}}{2}$ (e) $q(x) = (f(x))^3$ (h) $t(x) = (x+1)e^{x+1}$ (c) $h(x) = (1-x)(1-x^{50})$ (f) $r(x) = \frac{x^3 - 1}{x - 1}$ (i) $u(x) = (2^x - 1)^3$

(f)
$$r(x) = \frac{x^3 - 1}{x - 1}$$

(i)
$$u(x) = (2^x - 1)^3$$

2. Use a regra do produto e a regra do quociente para calcular as seguintes derivadas:

(a)
$$\frac{d}{dx}\left[(x^2+3)e^x\right]$$

(e)
$$\frac{d}{dx} \left[\frac{(x+1)^2}{x^2 e^x} \right]$$
 (i)
$$\frac{d}{dx} \left[3^{\frac{x}{2}+1} \right]$$

(i)
$$\frac{d}{dx} \left[3^{\frac{x}{2}+1} \right]$$

(b)
$$\frac{d}{dx} \left[\frac{x^3}{e^x} \right]$$

(f)
$$\frac{d}{dx} \left[e^{1-2x} \cdot (x^3 - 1) \right]$$
 (j) $\frac{d}{dx} \left[x^2 \cdot 4^x \right]$

$$(j) \frac{d}{dx} \left[x^2 \cdot 4^x \right]$$

(c)
$$\frac{d}{dx} \left[10^x (x^2 + 1)^3 \right]$$

(c)
$$\frac{d}{dx} \left[10^x (x^2 + 1)^3 \right]$$
 (g) $\frac{d}{dx} \left[\left(1 - \frac{1}{x} \right) \cdot 2^{-x} \right]$ (k) $\frac{d}{dx} \left[(x+1)^3 \cdot 6^x \right]$

(k)
$$\frac{d}{dx} \left[(x+1)^3 \cdot 6^x \right]$$

(d)
$$\frac{d}{dx} \left[\frac{x^3 e^x}{x^2 + 1} \right]$$

$$(h) \frac{d}{dx} \left[\frac{x^3}{5^x} \right]$$

(l)
$$\frac{d}{dx} \left[\frac{x^2 \cdot 10^x}{x^3 - 1} \right]$$

3. Calcule a derivada de cada uma das funções abaixo:

(a)
$$f(x) = x^2 \cos(2x)$$

(d)
$$p(x) = (x+1)\cot(x)$$

(g)
$$s(x) = \frac{\sin^2(x)}{\sqrt[3]{x}}$$

(b)
$$g(x) = \frac{\operatorname{tg}^2(x)}{x^2}$$

(e)
$$q(x) = \frac{x \operatorname{tg}(x)}{x^2 + 1}$$

(h)
$$t(x) = (x^2 - 3x)\operatorname{sc}(x)$$

(c)
$$h(x) = \frac{\operatorname{sen}(x)}{x}$$

(f)
$$r(x) = e^x \operatorname{sen}(2x)$$

(i)
$$u(x) = \frac{\cos(x)}{x+1}$$

4. Determine a equação da reta tangente ao gráfico das seguintes funções no ponto x_0 indicado:

(a)
$$f(x) = x^2$$
, $x_0 = -1$

(a)
$$f(x) = x^2$$
, $x_0 = -1$ (d) $p(x) = \sqrt[3]{x}$, $x_0 = 1$

(g)
$$s(x) = 2^x$$
, $x_0 = 1$

(b)
$$g(x) = x e^x$$
, $x_0 = 0$

(b)
$$g(x) = x e^x$$
, $x_0 = 0$ (e) $q(x) = \text{sen}(x)$, $x_0 = \frac{\pi}{2}$ (h) $t(x) = \text{sc}(x)$, $x_0 = 0$

(h)
$$t(x) = sc(x), x_0 = 0$$

(c)
$$h(x) = e^{-x}$$
, $x_0 = 0$

(f)
$$r(x) = tg(x), \quad x = 0$$

(c)
$$h(x) = e^{-x}$$
, $x_0 = 0$ (f) $r(x) = \operatorname{tg}(x)$, $x = 0$ (i) $u(x) = \frac{\operatorname{sen}(x)}{x}$, $x_0 = \frac{\pi}{4}$

5. Use a regra da cadeia para calcular as seguintes derivadas:

(a)
$$\frac{d}{dx} \left[e^{x^2 + 1} \right]$$

(d)
$$\frac{d}{dx} \left[\frac{e^{x^2}}{x^3 + 1} \right]$$

(g)
$$\frac{d}{dx} \left[\frac{(x+2)^2}{3^{x^2+1}} \right]$$

(b)
$$\frac{d}{dx} \left[x^2 e^{-x^3} \right]$$

(e)
$$\frac{d}{dx} \left[e^x \cdot \sqrt{x^2 + 2} \right]$$

(h)
$$\frac{d}{dx} \left[4^{x^2+x} \cdot (x^3 - x + 2) \right]$$

(c)
$$\frac{d}{dx} \left[\frac{7^{x^2}}{x^3 + 2} \right]$$

(f)
$$\frac{d}{dx} \left[2^{x^3 + x} \cdot (x^2 + 3) \right]$$
 (i) $\frac{d}{dx} \left[\frac{e^{x^3}}{2^{x^2 - 1}} \right]$

(i)
$$\frac{d}{dx} \left[\frac{e^{x^3}}{2^{x^2 - 1}} \right]$$