自然語言處理 2024 Term Project LLM Classification Finetuning

第87組

組員:

國立政治大學 資管四 李宥萱 國立陽明交通大學 資工三 吳定霖 國立陽明交通大學 資工三 吳宗樺

一、專案介紹

1. 任務介紹

此任務目的是預測使用者更偏好哪一個大型語言模型所回答的答案, 幫助縮短 LLM 能力與人類偏好之間的差距。且與 Reinforcement Learning from Human Feedback (RLHF)的概念密切相關, 將不僅是根據固定的規則學習, 也通過人類 的指導來理解更複雜的部分, 使得機器能夠更貼近人類的期望和行為方式, 將有 助於改善聊天機器人與人類的互動。

2. 資料集介紹

資料集由 ChatBot Arena 的使用者互動資料組成。在每次使用者互動中,會向兩個不同的大型語言模型提供一個或多個prompt,然後指出哪個模型給出的回應更令人滿意。訓練資料包含 55,000 筆資料,而測試集約為 25,000 筆。

欄位	描述		
id	A unique identifier for the row.		
modeL[a/b]	The identity of model_[a/b]. Included in train.csv but not test.csv.		
prompt	The prompt that was given as an input (to both models).		
response_[a/b]	The response from modeL[a/b] to the given prompt.		
winner_modeL[a /b/tie]	Binary columns marking the judge's selection. The ground truth target column.		

3. 輸入/輸出/評估方式

● 輸入: prompt, response_[a/b]

● 輸出: a 模型回應較好的機率、b 模型回應較好的機率、兩模型回應一樣好的機率 (三個機率值總和為 1)

● 評估方式: 三個預測機率值與正確答案的 Log Loss

N: 樣本的數量

○ V_i: 真實標籤

○ pi: 該樣本屬於positive class的預測機率

$$ext{Log Loss} = -rac{1}{N}\sum_{i=1}^{N}\left(y_i\log(p_i) + (1-y_i)\log(1-p_i)
ight)$$

二、資料分析(EDA)

● 共64種模型, 其中最常被做比較的模型前三名分別為gpt-4-1106-preview, claude-2.1, claude-1。

Distribution of LLMs

- 最常被兩兩比較的模型
 - o gpt-4-1106-preview V.S. claude-2.1
 - o gpt-4-1106-preview V.S. gpt-4-0613
 - o claude-1 V.S. claude-2.1

● 模型贏的次數最多的前三名: gpt-4-1106-preview, gpt-4-0613, gpt-3.5-turbo-0613

● 模型win-loss比率最高的前五名:gpt-4-1106-preview, gpt-4-0125-preview, gpt-3.5-turbo-0314, gpt-4-0314, claude-1

● 模型win-loss比率最低的前五名: chatglm2-6b, dolly-v2-12b, llama-13b, chatglm3-6b, stablelm-tuned-alpha-7b

三、研究方法

1. 問題困難點

- 數據特徵差異與異質性:不同語言模型在回答問題方面可能有各自的特色,使得response的語言特徵可能非常多樣。尤其是不同的prompt類型(如問題回答、翻譯、文本生成等)會引發模型給出不同風格的回應。
- 模型對長文本的處理能力: Prompt和response的長度對於某些模型而言可能太長, 導致長文本中的關鍵信息可能被模型忽略, 造成較差的成效。
- 多類別分類:必須同時準確預測三類結果的概率分佈(a模型回應較好的機率、b模型回應較好的機率、兩模型回應一樣好的機率)。
- 模型泛化能力:模型需要對未曾見過的prompt和response進行預測,因此模型須有一定的泛化能力以應對大量未知的資料特徵。

2. 我們提出的研究方法

- 資料前處理
 - 文本預處理
 - 使用 NLTK 將文本分詞
 - 移除停用詞與特殊字符
 - 詞形還原

```
# Preprocess Data
def preprocess_text(text):
    #convert text to lower case
    text = text.lower()
    #remove digits and special characters using regular expressions
    text = re.sub(r'\d+', '', text)
    text = re.sub(r'[^\w\s]', '', text)
    #tokenize the text
    text = nltk.word_tokenize(text)

    return text

# Remove stopwords
def remove_stopwords(text):
    stop_words = set(stopwords.words('english'))
    text_no_stopwords

return text_no_stopwords

def lemmatization(text):
    lemmatizer = nltk.WordNetLemmatizer()
    lemmatizer_text = [lemmatizer.lemmatize(text) for text in text]

    return lemmatizer_text
```

■ 資料格式化

- 建立Prompt-Response配對
- 將winner model [a/b/tie] 轉換為數字標籤

○ 模型設計

- DeBERTa-v3 small
 - max_length = 512, epochs = 1, batch_size = 16, lr = 2e-5
 - 各自的隱層輸出經過平均池化(mean-pooling)。將兩者拼接後,通過一層全連接層進行分類。最終使用softmax 將 logits 轉化為概率分布。

```
# Configuration
class CFG:
    seed = 42
    model_name = "./deberta-v3-small/"
    max_length = 512
    epochs = 3
    batch_size = 16
    lr = 2e-5
    label2name = {0: 'winner_model_a', 1: 'winner_model_b', 2: 'winner_tie'}
    name2label = {v: k for k, v in label2name.items()}
```

○ 訓練與驗證

- 損失函數與優化器
 - CrossEntropyLoss 作為分類任務的損失函數。
 - 使用 AdamW 並透過線性學習率調度器控制學習率。

```
criterion = nn.CrossEntropyLoss()
optimizer = AdamW(model.parameters(), lr=CFG.lr)
scheduler = get_scheduler("linear", optimizer, num_warmup_steps=0, num_training_steps=len(train_loader) * CFG.epochs)
```

■ 訓練流程

- 使用 torch.cuda.amp 提高混合精度訓練效率。
- 前向傳播:計算 logits 和損失。
- 反向傳播:通過梯度縮放 (amp.GradScaler) 避免數值不穩定。
- 優化器更新權重。

```
scaler = amp.GradScaler() # Initialize GradScaler for mixed precision
for epoch in range(CFG.epochs):
   model.train()
   loop = tqdm(train_loader, desc=f"Epoch {epoch+1}/{CFG.epochs}", leave=True) # TQDM progress bar
   for batch in loop:
       inputs = {k: v.squeeze(1).to(device) for k, v in batch.items() if k != "labels" and k != "token_type_ids"}
       labels = batch["labels"].to(device)
       optimizer.zero grad()
       with amp.autocast(): # Enable mixed precision
           outputs = model(**inputs)
       scaler.scale(loss).backward()
       scaler.step(optimizer)
       scaler.update()
       train_loss += loss.item()
       # Update TODM progress bar
       loop.set postfix(loss=loss.item())
   print(f"Epoch {epoch+1}, Train Loss: {train_loss / len(train_loader):.4f}")
```

■ 推理過程

• 應用 softmax, 將 logits 轉換為 [0, 1] 範圍的概率。

3. 問題困難點與提出方法間的關聯

- 數據特徵差異與異質性:透過使用 NLTK 分詞、移除停用詞和特殊字符,將有效減少雜訊並強調關鍵語義特徵。而詞形還原處理減少語義冗餘,提升特徵表達的一致性。
- 模型對長文本的處理能力: DeBERTa-v3 small模型支援512tokens ,可以盡量使完整上下文不丟失,提升模型的預測精準度,適合處 理長文本。而透過平均池化(mean-pooling)可以確保在隱層輸出 中均衡提取長文本的重要信息,減少丟失細節。
- 多類別分類: CrossEntropyLoss是專為多類別分類問題設計的損失函數,能有效評估預測分佈和真實分佈的偏差,確保模型在概率估計上更準確。此外, CrossEntropyLoss的設計與Log Loss的評估方式一致,都強調預測分佈與真實分佈的匹配,能直接優化模型在Log Loss評估中的表現。

 模型泛化能力: DeBERTa透過Disentangled Attention將內容嵌入 (content embeddings) 和位置嵌入 (position embeddings) 分開建模, 讓模型能夠更精準地處理句子結構和上下文關係, 特別是在需要捕捉多層次語義的情境中。並使用Replaced Token Detection, 以捕捉語言的「自然性」, 如流暢度和語義合理性, 將在處理語言特徵時更具泛化能力, 更貼近人類偏好。

四、研究成果

模型輸出loss後直 接應用softmax	inference的時候再 應用softmax	epoch	score
X	0	1	1.04219
×	0	3	1.07467
0	0	1	1.04398
O (log_softmax)	0	1	1.07435
0	Х	1	1.35201
0	Х	3	1.58984

如果在計算損失前應用了 softmax, 會導致兩個問題:

- 數值不穩定:當 logits 的值非常大或非常小時,指數函數容易導致 溢出或下溢。
- 冗餘計算: CrossEntropyLoss 內部會再一次計算 log(softmax), 重複操作可能會降低效率。

五、其他額外嘗試

- 1. 針對Llama fine tune, 嘗試直接微調語言模型, 可能在情感、文意理解能力較強。
 - 模型: Llama 3.2 1b
 - 使用這個模型的理由是,可以使用較少的計算資源,就實現 出大型語言模型的微調
 - Fine tune : Lora Fine tune

```
# Lora Configuration
lora_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1
)
118
```

● 超參數設定:

```
class CFG:
    seed = 42
    model_name = "unsloth/Llama-3.2-1B"
    max_length = 512
    epochs = 1
    batch_size = 2
    lr = 2e-5
    label2name = {0: 'winner_model_a', 1: 'winner_model_b', 2: 'winner_tie'}
    name2label = {v: k for k, v in label2name.items()}
```

● 實驗:

- 測試對於大型語言模型微調來說,是否加入系統提示詞 (system prompt) 會對於大型語言模型的性能提升。
- 我們測試了不加入提示詞與加入提示此兩個實驗組與對照 組。

```
74    system_prompt = """
75    There is a prompt and its response.
76    Please tell me whether the human likes the response of this prompt.
77
78    """
```

結果:

○ 沒有提示詞: loss = 1.7 ○ 有提示詞: loss = 1.65

○ 可以看到, 有無提示詞對於這個任務來說沒有太多的幫助。

2. 實作 Direct Preference Optimization 的 paper

(https://arxiv.org/abs/2305.18290)

- 核心概念
 - 偏好建模: DPO 將偏好學習轉化為一種概率建模問題, 通過最大化用戶偏好樣本的對數似然來優化模型。
 - 去強化學習: 與傳統基於強化學習的方法(例如 RLHF)不同, DPO 無需訓練額外的 reward model, 直接在生成模型的基礎上進行調整, 減少複雜性。

■ 數學框架: DPO 以偏好樣本為基礎, 計算兩個回應在模型中的概率, 調整模型使得用戶偏好的回應概率更高。

```
def dpo_loss(outputs, labels, beta=1.0):
    logits_a, logits_b, logits_tie = outputs[:, 0], outputs[:, 1], outputs[:, 2]

# Pairwise difference for logits
diff = logits_a - logits_b
exp_diff = torch.exp(beta * diff)

# Compute loss for each case
loss = torch.where(
    labels == 0, # Prefer A
    -torch.log(exp_diff / (1 + exp_diff)),
    torch.where(
    labels == 1, # Prefer B
        -torch.log(1 / (1 + exp_diff)),
        -torch.log(torch.softmax(torch.stack([logits_a, logits_b, logits_tie], dim=-1), dim=-1)[:, 2]) # Tie
    )
    return loss.mean()
```

- 如何提升模型的用戶偏好預測能力
 - 直接優化偏好目標:通過對比用戶偏好數據中的回應對, DPO 能夠更精確地捕捉用戶偏好的細微差異。
 - 減少過擬合風險:由於不需要單獨的回報模型, DPO 在學習過程中避免了額外的 noise and biases。

六、探討其他組別的作法

- 第 105 組
 - 一樣使用DeBERTa-v3 small作為預訓練模型, 但在classifier的部分有使用Layer Normalization提高模型收斂速度, 並在反向傳播時透過梯度剪裁(Gradient Clipping), 防止梯度爆炸。
- 第54組
 - 比較多種DeBERTa和ALBERT模型, 其中DeBERTa-v3_base_en 的成效最好。
- 第51組
 - 使用TfidfVectorizer和CountVectorizer作為特徵表示,並透過 LightGBM模型來評估特徵的重要性,以進一步使用Wrapper方法 來進行特徵選擇。
 - 使用XGBoost模型進行訓練, 並使用early stopping避免過度擬合。
- 第83組
 - 透過以下三個資料前處理作為特徵表示
 - prompt + response_a/b的embedding
 - embedding之間的attention score

- TF-IDF, word counts
- 藉由交換model_a和model_b(response_a和response_b)去實現 data augmentation

七、後續研究方向

- 透過增強數據多樣性、分割特徵差異解決overfitting的問題。
- 結合其他LLM,預期能有效綜合兩個模型的優勢,減少單一模型的偏誤。
- 採用稀疏化技術(如 Sparse Fine-tuning), 僅調整模型中的部分參數或模塊(例如 LoRA 方法), 以降低資源需求, 並減少模型過擬合的風險。
- 引入多維度的評估標準(例如語言流暢度、語義相關性和用戶滿意度), 避免過於依賴單一指標, 提升模型對真實偏好的準確度, 而非僅基於 Log Loss。