Homework 5 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

March 20, 2024

- 1. (a) If $x \in A$, d(x,A) = ||x-x|| = 0 and d(x,B) = k > 0, $\phi(x) = \frac{0}{0+k} = 0$. If $x \in B$, d(x,A) = l > 0 and d(x,B) = 0, $\phi(x) = \frac{l}{l+0} = 1$. If $x \notin A \land x \notin B$, d(x,A) = l and d(x,B) = k, $\phi(x) = \frac{l}{l+k} < 1$ and is positive. Thus, $0 \le \phi(x) \le 1$ for all $x \in \mathbb{R}^n$.
 - (b) Let $\phi(x) = (b-a) \frac{d(x,A)}{d(x,A) + d(x,B)} + a$. From (a), we can get $\phi(x \in A) = (b-a) \cdot 0 + a = a$, $\phi(x \in B) = (b-a) \cdot 1 + a = b$, and $a \le phi(x) \le b$ for all $x \in A$.
- 2. If f has more than one fixed point, there exists $x,y \in S$ s.t. $d(f^n(x),f^n(y))=d(x,y)$ for all $n \in \mathbb{N}$ (contradiction to $a_n \to 0$). Then, we want to show that f has fixed point. For any $x_0 \in S$, we let $x_k = f^k(x)$. Then, $d(x_n, x_{n-k}) \le a_{n-k} d(x_k, x_0) \to 0$ for any k and $n \to \infty$. Thus, $x_n \to x^* \in S$ is a fixed point of f.

3.