MA 1201: Mathematics II

Satvik Saha, 19MS154 February 21, 2020

Solution 1. Let $\epsilon > 0$. Since g is Riemann integrable on [a, b], we find $\delta_0 \in \mathbb{R}$ such that for all tagged partitions \dot{P} of [a, b] such that $||P|| \leq \delta_0$, we have

$$|S(g,\dot{P}) - \int_a^b g| < \frac{\epsilon}{2}.$$

Let \dot{Q} be a tagged partition on [a,b]. Note that since f(x)-g(x)=0 everywhere except at x=c, and c is a tag of at most 2 intervals,

$$S(f, \dot{Q}) - S(g, \dot{Q}) \le 2|f(c) - g(c)|||\dot{Q}||.$$

Thus, setting $\delta = \min\{\delta_0, \ \epsilon/(4|f(c) - g(c)| + 4)\}$, for all partitions such that $\|\dot{P}\| \le \delta$, we have

$$\begin{split} |S(f,\dot{P}) - \int_{a}^{b} g| &= |S(f,\dot{P}) - S(g,\dot{P}) + S(g,\dot{P}) - \int_{a}^{b} g| \\ &\leq |S(f,\dot{P}) - S(g,\dot{P})| + |S(g,\dot{P}) - \int_{a}^{b} g| \\ &\leq \frac{|f(c) - g(c)|}{|f(c) - g(c)| + 1} \cdot \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &< \epsilon. \end{split}$$

Hence, f is Riemann integrable on [a, b], and

$$\int_a^b f = \int_a^b g.$$

Solution 2. Let $\epsilon > 0$. We seek $k \in \mathbb{N}$ such that for all $n \geq k$, $n \in \mathbb{N}$,

 $|S(f, \dot{P_n}) - \int_a^b f| < \epsilon.$

Since f is Riemann integrable, there exists $\delta \in \mathbb{R}$ such that for all partitions \dot{P} such that $||\dot{P}|| < \delta$,

$$|S(f, \dot{P}) - \int_{a}^{b} f| < \epsilon.$$

Note that since $\|\dot{P}_n\| \to 0$ as $n \to \infty$, there exists $k' \in \mathbb{N}$ such that for all $n \ge k'$, $\|\dot{P}_n\| < \delta$. Hence, setting k = k' finishes the proof.

$$\int_{a}^{b} f = \lim_{n \to \infty} S(f, \dot{P}_n).$$

Solution 3. Let $f: [0,1] \to \mathbb{R}$ be defined such that $f(x) = \frac{1}{2n}$ for all $x = \frac{1}{n}$, $n \in \mathbb{N}$ and f(x) = 0 otherwise. We claim that f is Riemann integrable, and that $\int_0^1 f = 0$.

Let $\epsilon > 0$. We seek δ such that for all tagged partitions \dot{P} on [0,1] such that $||\dot{P}|| < \delta$, we have $|S(f,\dot{P})| < \epsilon$.

We set $E = \{x : x \in [0,1] \land f(x) \ge \epsilon/2\}$. This set is finite, since there are finitely many natural

Given a partition \dot{P} , a point $x \in E$ can be a tag of at most two intervals in \dot{P} . Also, $f(x) \leq \frac{1}{2}$ for each of these points. The total length of each interval is at most $||\dot{P}||$, and there are k such intervals. Hence, the contribution to the Riemann sum over those intervals containing such points is at most $\frac{1}{2} \cdot 2k \cdot ||\dot{P}||$. In the remaining intervals, each tag $z \in [0,1] \setminus E$, so $f(z) < \epsilon/2$. The total length of these intervals is at most the length of the domain, i.e. 1. Hence, their contribution to the Riemann sum is at most $\epsilon/2 \cdot 1$.

We set $\delta = \epsilon/2k$. Then, for all partitions such that $||\dot{P}|| < \delta$,

$$S(f, \dot{P}) = \sum_{\xi_i \in E} f(\xi_i)(x_{i+1} - x_i) + \sum_{\xi_i \notin E} f(\xi_i)(x_{i+1} - x_i)$$

$$< \sum_{\xi_i \in E} \frac{1}{2} \cdot \frac{\epsilon}{2k} + \sum_{\xi_i \notin E} \frac{\epsilon}{2} (x_{i+1} - x_i)$$

$$\leq \frac{1}{2} \cdot \frac{\epsilon}{2k} \cdot 2k + \frac{\epsilon}{2} \cdot 1$$

$$= \epsilon.$$

This completes the proof.

Solution 4.

(i)

$$\lim_{n \to \infty} \sum_{k=1}^{3n} \frac{1}{n+k} \ = \ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{3n} \frac{1}{1+k/n} \ = \ \int_0^3 \frac{1}{1+x} \, \mathrm{d}x \ = \ \log 4.$$

(ii)

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sin \frac{k\pi}{n} = \int_{0}^{1} \sin(\pi x) dx = 2.$$

(iii)

$$\lim_{n \to \infty} \sum_{k=1}^{2n} \frac{n}{n^2 + k^2} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} \frac{1}{1 + k^2/n^2} = \int_0^2 \frac{1}{1 + x^2} \, \mathrm{d}x = \arctan 2.$$

(iv)

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{k}{n} \right)^{1/n} = \exp \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \log \left(1 + \frac{k}{n} \right) = \exp \int_{0}^{1} \log(1+x) \, \mathrm{d}x = 4e^{-1}.$$

(v)

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{k^2}{n^2} \right)^{k/n^2} = \exp \lim_{n \to \infty} \frac{1}{n} \prod_{k=1}^{n} \frac{k}{n} \log \left(1 + \frac{k^2}{n^2} \right) = \exp \int_0^1 x \log(1 + x^2) \, \mathrm{d}x = 2e^{-1/2}.$$

Solution 5.

(i) We claim that if $f: [a, b] \to \mathbb{R}$ is Riemann integrable, then f is bounded. Suppose not. Let the Riemann integral of f on [a, b] be L. Then, for $\epsilon = 1$, we find δ such that for all tagged partitions \dot{P} on [a, b] with $||\dot{P}|| < \delta$, we have $|S(f, \dot{P}) - L| < 1$, i.e. $S(f, \dot{P}) < |L| + 1$. Let $Q = \{x_0, x_1, \dots, x_n\}$ be such a partition, with $||Q|| < \delta$. Since f is unbounded on [a, b], it must be unbounded on at least one of the subintervals $[x_k, x_{k+1}]$. Now, we select tags to create the tagged partition $\dot{Q} = \{([x_i, x_{i+1}], \xi_i)\}$. We choose $\xi_k \in [x_k, x_{k+1}]$ such that

$$|f(\xi_k)(x_{k+1} - x_k)| > |L| + 1 + |\sum_{i \neq k} f(\xi_i)(x_{i+1} - x_i)|.$$

¹In the case where k=0, i.e. $\epsilon>1$, the result follows trivially since f(x)<1 for all $x\in[0,1]$.

Thus,

$$|S(f,\dot{Q})| \ge |f(\xi_k)(x_{k+1} - x_k)| - |\sum_{i \ne k} f(\xi_i)(x_{i+1} - x_i)| > |L| + 1.$$

This is a contradiction, which proves our claim.

(ii) For any tagged partition \dot{P} on [a, b],

$$S(f, \dot{P}) \leq \sum_{i} |f(\xi_i)| (x_{i+1} - x_i) \leq M(b - a).$$

Hence, for all $\epsilon > 0$, there exists δ such that for all such partitions with $||\dot{P}|| < \delta$,

$$|\;|S(f,\dot{P})| - |\int_{a}^{b} f|\;|\; \leq \;|S(f,\dot{P}) - \int_{a}^{b} f|\; < \; \epsilon$$

$$\left| \int_a^b f \right| < |S(f, \dot{P})| + \epsilon < M(b-a) + \epsilon.$$

Since this holds for all $\epsilon > 0$, we can write

$$\left| \int_a^b f \right| \le M(b-a).$$

Solution 6.

(i) We have $f: [-2,2] \to \mathbb{R}$,

$$f(x) = \begin{cases} 3x^2 \cos \frac{\pi}{x^2} + 2\pi \sin \frac{\pi}{x^2} & x \in [-2, 2] \setminus \{0\}, \\ 0 & x = 0. \end{cases}$$

We set $F: [-2,2] \to \mathbb{R}$,

$$F(x) = \begin{cases} x^3 \cos \frac{\pi}{x^2} & x \in [-2, 2] \setminus \{0\}, \\ 0 & x = 0. \end{cases}$$

Now, f is continuous on $[-2,2] \setminus \{0\}$, and hence is Riemann integrable. Also, F is continuous on [-2,2], and F'(x) = f(x) for all $x \in [-2,2] \setminus \{0\}$. Using the Fundamental Theorem of Calculus,

$$\int_{-2}^{+2} f = F(2) - F(-2) = 16 \cos \frac{\pi}{4}.$$

(ii) We have $f: [0,3] \to \mathbb{R}$,

$$f(x) = \begin{cases} -x & x \in [0, 1], \\ x & x \in (1, 3]. \end{cases}$$

We set $F: [0,3] \to \mathbb{R}$,

$$F(x) = \begin{cases} \frac{-x^2}{2} & x \in [0, 1], \\ \frac{x^2}{2} - 1 & x \in (1, 3]. \end{cases}$$

$$\int_0^3 f = F(3) - F(0) = \frac{7}{2}.$$

(iii) We have $f: [1,3] \to \mathbb{R}$,

$$f(x) = \begin{cases} 1 & x \in [1, 2), \\ 2 & x \in [2, 3), \\ 3 & x = 3 \end{cases}$$

We set
$$F: [1,3] \to \mathbb{R}$$
,

$$F(x) = \begin{cases} x & x \in [1, 2), \\ 2x - 2 & x \in [2, 3), \\ 3x - 5 & x = 3. \end{cases}$$

$$\int_{1}^{3} f = F(3) - F(1) = 3.$$

Solution 7. We have $f:[0,3] \to \mathbb{R}$,

$$f(x) = \begin{cases} 0 & x \in [0,1), \\ x & x \in [1,2), \\ 2x & x \in [2,3), \\ 3x & x = 3 \end{cases}$$

We set $F: [0,3] \to \mathbb{R}$,

$$F(x) = \begin{cases} 0 & x \in [0, 1), \\ \frac{x^2}{2} - \frac{1}{2} & x \in [1, 2), \\ \frac{2x^2}{2} - \frac{5}{2} & x \in [2, 3), \\ \frac{3x^2}{2} - \frac{14}{2} & x = 3. \end{cases}$$

$$\int_0^3 f = F(3) - F(0) = \frac{13}{2}.$$