矩阵 (1-4)

上(下)三角矩阵、基本矩阵与初等矩阵、秩1矩阵

1.已知 A_1,A_2,\cdots,A_n 是n个对角元全都为零的n级上三角矩阵,证明 $A_1A_2\cdots A_n=O.$

2.设 $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ 是数域K上的2级矩阵,证明:如果|A|=1,那么A可以表示成第三类初等矩阵P(i,j(k))的乘积.

3.设 $A=(a_{ij})$ 是数域K上的 $n(n\leq 2)$ 级矩阵,证明: 如果|A|=1,那么A可以表示成第三类初等矩阵的乘积.

4.已知 <i>A</i> 是数域 <i>P</i> 上的-	一个2×2矩阵,	且存在正整数1億	更得 $A^l=O$,	证明: $A^2 = O$.		
5.设 <i>A</i> 是 <i>n</i> 级正定矩阵, 一组基.	\overrightarrow{lpha} 为 n 维非零的	勺实列向量,记 <i>B</i>	$d=A\overrightarrow{lpha}\overrightarrow{lpha}',$	求 <i>B</i> 得特征值及相	应的特征子空间的 维数-	与
6.已知 A 是一个 $n(n \ge 2$	$2)$ 级矩阵,则 A^{*}	*可以表示成A的	多项式.			