Tutorial 7 solutions

▼ Question 1

 $\{1,2,3\}$ is not a group under $imes_4$ because it is not closed. e.g. $2 imes_4 2=0$

 $\{1,2,3,4\}$ is closed under \times_5 as it is closed, identity element (1) and inverse of all elements ($1^{-1}=1,2^{-1}=3,3^{-1}=2,4^{-1}=4$) exist in the set, and multiplication is known to be associative.

▼ Question 2

 $\mathbb{Z}_9^* = \langle \{1,2,4,5,7,8\}, imes_9
angle$ and the identity element is 1

$$\therefore 2^{-1} = 5, 7^{-1} = 4, 8^{-1} = 8$$

▼ Question 3

Under $imes_{91} 22^{-1} = 29$

Hence, 29 was left out of the list.

▼ Question 4

For some $a,b\in G$,

$$aba = aba \Rightarrow a(ba) = (ab)a$$

 $\Rightarrow ab = ba$ by taking $x = a, y = ba, z = ab$

Hence, G is commutative on its operation and thus it is Abelian.

▼ Question 5

The group $G=\langle \mathbb{Z}_n, +_n \rangle$ is cyclic, and hence, any subgroup H of G is also cyclic.

Thus, $H=\langle h
angle$

If h is even, all elements of H are even (as n is even)

If h is odd, let $2k=rac{n}{h}.$ Then,

Tutorial 7 solutions 1

$$egin{aligned} H &= \{0,h,2h,...,(2k-1)h\} \ &= \{0,2h,...,(2k-2)h\} \cup \{h,...,(2k-1)h\} \ &= H_1 \cup H_2 \ & ext{and} \ |H_1| = |H_2| = k \end{aligned}$$

Hence, either every member of H is even or exactly half of the members of H are even

▼ Question 6

Associativity: Since we assume H, K are subgroups of G, then $H\cap K$ inherits associativity from G

Closure: $\forall x,y \in H \cap K; x,y \in H \text{ and } x,y \in K.$ And since H and K are subgroups they are closed. $\therefore x,y \in H \Rightarrow xy \in H \text{ and } x,y \in K \Rightarrow xy \in K$

Hence, $\forall x,y \in H \cap K$; $xy \in H \cap K$, and $H \cap K$ is closed

Identity: Since H and K are subgroups, $e \in H$ and $e \in K$. Thus, $e \in H \cap K$

Inverse: $\forall x \in H \cap K; x \in H \text{ and } x \in K$. And since H and K are subgroups they contain the inverses of their elements. $\therefore x \in H \Rightarrow x^{-1} \in H$ and $x \in K \Rightarrow x^{-1} \in K$.

Hence, $\forall x \in H \cap K; x^{-1} \in H \cap K$, and $H \cap K$ contains the inverses of their elements.

Hence, $H \cap K$ is a subgroup.

▼ Question 7

Associativity: Since H is a subset of G, then H inherits associativity from G

$$\begin{array}{l} \textbf{Closure: } \forall x,y \in H \text{ let } |x| = 2k+1, |y| = 2n+1. \\ \therefore x^{2k+1} = e \text{ and } \left(x^{2k+1}\right)^{2n} = x^{4kn+2n} = e. \text{ Similarly, } y^{4kn+2k} = e \\ x^{4kn+2n}y^{4kn+2k} = e \Rightarrow (xy)^{4kn+2k+2n+1}x^{-2k-1}y^{-2n-1} = e \\ & \Rightarrow (xy)^{(2k+1)(2n+1)} = x^{2k+1}y^{2n+1} \\ & \Rightarrow (xy)^{(2k+1)(2n+1)} = e \end{array}$$

Thus, $(|xy|) \, | \, (|x|) \, (|y|)$. And since |x| and |y| are odd, all of its divisors are odd. Hence, |xy| is also odd and $\forall x,y \in H; xy \in H$ and H is closed.

Identity: $|e|=1\Rightarrow e\in H$

Tutorial 7 solutions 2

Inverse: $\forall x \in G, |x^{-1}| = |x|$. And $x \in H \Rightarrow |x|$ is odd. $\therefore |x^{-1}|$ is also odd and $x^{-1} \in H$, and H contains the inverses of their elements.

Hence, H is a subgroup.

▼ Question 10

$$\mathbb{Z}_8^*=\langle\{1,3,5,7\}, imes_8
angle$$
 and $\mathbb{Z}_{12}^*=\langle\{1,5,7,11\}, imes_{12}
angle$

Consider a morphism
$$F:\mathbb{Z}_8^* o\mathbb{Z}_{12}^*$$
 such that $F(1)=1,F(3)=11,F(5)=5.F(7)=7$

1 is the identity element of \mathbb{Z}_8^* , 1 is the identity element of \mathbb{Z}_{12}^* and F(1)=1. Hence, identity mapping satisfied.

 $imes_8$ and $imes_{12}$ are commutative operators, and $F(1 imes_81)=F(1) imes_{12}F(1)=1$,

$$F(1 \times_8 3) = F(1) \times_{12} F(3) = 11, F(1 \times_8 5) = F(1) \times_{12} F(5) = 5,$$

$$F(1 \times_8 7) = F(1) \times_{12} F(7) = 7, F(3 \times_8 3) = F(3) \times_{12} F(3) = 1,$$

$$F(3 \times_8 5) = F(3) \times_{12} F(5) = 7, F(3 \times_8 7) = F(3) \times_{12} F(7) = 5,$$

$$F(5 imes_85) = F(5) imes_{12}F(5) = 1$$
 , $F(5 imes_87) = F(5) imes_{12}F(7) = 11$ and

 $F(7 \times_8 7) = F(7) \times_{12} F(7) = 1$. Hence, mapping of operation on any two elements satisfied.

$$F(1^{-1}(w.r.t. \times_8)) = F(1) = 1 = 1^{-1}(w.r.t. \times_{12}),$$

$$F(3^{-1}(\text{w.r.t.} \times_8)) = F(3) = 11 = 11^{-1}(\text{w.r.t.} \times_{12}),$$

$$F(5^{-1}(\text{w.r.t.} \times_8)) = F(5) = 5 = 5^{-1}(\text{w.r.t.} \times_{12})$$
 and

$$F(7^{-1}(\text{w.r.t.} \times_8)) = F(7) = 7 = 7^{-1}(\text{w.r.t.} \times_{12})$$
. Hence, mapping of inverses satisfied.

Hence, \mathbb{Z}_8^* is isomorphic to \mathbb{Z}_{12}^*

Tutorial 7 solutions 3