WiDS QRL - Quantum Search

Nilabha Saha

January 2023

1 Quantum Search

1.1 The Oracle

Suppose we wish to search through a zero-indexed search space of N elements. For convenience, we assume $N=2^n$, so that the index can be stored in n bits, and we assume that the search problem has exactly M solutions where $1 \leq M \leq N$. A particular instance of the search problem can be represented by a function f defined as f(x)=1 if x is a solution to the search problem, and f(x)=0 if x is not a solution to the search problem. We assume that we are supplied with a quantum oracle - a black box with the ability to recognise solutions to the search problem signalled by making use of an oracle qubit.

The oracle is a unitary operator O defined by its action on the computational basis:

$$|x\rangle|q\rangle \xrightarrow{O} |x\rangle|q \oplus f(x)\rangle$$

where $|x\rangle$ is the *index register*, and $|q\rangle$ is the oracle qubit.

If the oracle is applied with the oracle qubit in the state $|-\rangle$, then the action of the oracle is given as:

$$|x\rangle(|-\rangle) \xrightarrow{O} (-1)^{f(x)}|x\rangle|-\rangle$$

The state of the oracle qubit isn't changed and it turns out that it remains as $|-\rangle$ throughout the quantum search algorithm and hence can be omitted from further discussion. With this convention, the action of the oracle can be written as:

$$|x\rangle \xrightarrow{O} (-1)^{f(x)}|x\rangle$$

The oracle "marks" the solutions to the search problem by shifting the phase of the solution. For an N item search problem with M solutions, the search oracle need be applied $O(\sqrt{\frac{N}{M}})$ times in order to obtain a solution on a quantum computer.

1.2 The Procedure

Schematically, the search algorithm operates as shown:

The algorithm proper makes use of a single n qubit register. The goal of the algorithm is to find a solution to the search problem using the smallest possible number of applications of the oracle.

The Hadamard transform is used to put the computer in an equally weighted superposition state:

$$|\psi\rangle = \frac{1}{N^{1/2}} \sum_{x=0}^{N-1} |x\rangle$$

The quantum search algorithm then consists of repeated application of a quantum subroutine, know as the *Grover iteration* or *Grover operator*, which we denote G. The quantum circuit of the Grover iteration is illustrated as follows:

The iteration can be broken into four steps:

- Apply the oracle O.
- Apply the Hadamard transform $H^{\otimes n}$.
- Perform a conditional phase shift on the computer, with every computational basis state except $|0\rangle$ receiving a phase shift of -1,

$$|x\rangle \to -(-1)^{\delta_{x_0}}|x\rangle.$$

• Apply the Hadamard transform $H^{\otimes n}$.

The unitary operator corresponding to the phase shift in the Grover iteration is $2|0\rangle\langle 0|-I$.

The Grover iteration requires a single oracle call. The combined effect of the steps 2, 3, 4 of the Grover iteration is:

$$H^{\otimes n}(2|0\rangle\langle 0|-I)H^{\otimes n} = 2|\psi\rangle\langle\psi|-I,$$

where $|\psi\rangle$ is the equally weighted superposition of states. Thus, the Grover iteration G may be written $G=(2|\psi\rangle\langle\psi|-I)O$. The operation $(2|0\rangle\langle0|-I)$ applied to a general state $\sum_k \alpha_k |k\rangle$ produces

$$\sum_{k} [-\alpha_k + 2\langle \alpha \rangle] |k\rangle,$$

where $\langle \alpha \rangle \equiv \sum_k \alpha_k / N$ is the mean value of the α_k . For this reason, $(2|\psi\rangle\langle\psi|-I)$ is sometimes referred to as the *inversion about mean* operation.

1.3 Geometric Visualisation

Let us adopt the convention that $\sum_{x}^{'}$ indicates a sum over all x which are solutions to the search problem, and $\sum_{x}^{''}$ indicates a sum over all x which are not solutions to the search problem. Define normalised states

$$|\alpha\rangle \equiv \frac{1}{\sqrt{N-M}} \sum_{x}^{"} |x\rangle$$

$$|\beta\rangle \equiv \frac{1}{\sqrt{M}} \sum_{x}^{\prime} |x\rangle$$

We also have that:

$$|\psi\rangle = \sqrt{\frac{N-M}{M}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle$$

Thus, the initial state of the quantum computer is in a state spanned by $|\alpha\rangle$ and $|\beta\rangle$.

The effect of G can be understood as follows: The oracle operation O performs a reflection about the vector $|\alpha\rangle$ in the plane defined by $|\alpha\rangle$ and $|\beta\rangle$, that is, $O(a|\alpha\rangle + b|\beta\rangle) = a|\alpha\rangle - b|\beta\rangle$. Similarly, $2|\psi\rangle\langle\psi|$ - I also performs a reflection in the plane defined by $|\alpha\rangle$ and $|\beta\rangle$ about the vector $|\psi\rangle$. And the product of two reflections is a rotation! In fact, in the $|\alpha\rangle$, $|\beta\rangle$ basis, the Grover iteration can be written as:

$$G = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

where θ is a real number in the range 0 to $\pi/2$ (assuming for simplicity that $M \leq N/2$) chosen so that

$$\sin \theta = \frac{2\sqrt{M(N-M)}}{N}$$

Thus, $G^k|\psi\rangle$ remains in the space spanned by $|\alpha\rangle$ and $|\beta\rangle$ for all k. We can also find the rotation angle. Let $\cos(\theta/2) = \sqrt{(N-M)/N}$, so that $|\psi\rangle = \cos(\theta/2)|\alpha\rangle + \sin(\theta/2)|\beta\rangle$. The following figure shows the action of G:

Thus, the two reflections which comprise G take $|\psi\rangle$ to

$$G|\psi\rangle = \cos\frac{3\theta}{2}|\alpha\rangle + \sin\frac{3\theta}{2}|\beta\rangle$$

So the rotation angle is θ . It follows that continued application of G takes the state to

$$G^k|\psi\rangle = \cos{(\frac{2k+1}{2}\theta)}|\alpha\rangle + \sin{(\frac{2k+1}{2}\theta)}|\beta\rangle$$

Repeated application of the Grover iteration rotates the state vector close to $|\beta\rangle$. When this occurs, an observation in the computational basis produces with high probability one of the outcomes superposed in $|\beta\rangle$, that is, a solution to the search problem!

1.4 Performance

Let CI(x) denote the integer closest to the real number x, where by convention we round halves down. Repeating the Grover iteration

$$R = CI(\frac{\cos^-1\sqrt{M/N}}{\theta})$$

times rotates $|\psi\rangle$ to within an angle $\theta/2$ of $|\beta\rangle$. Observation of the state in the computational basis then yields a solution to the search problem with probability

of error at most M/N for $M \ll N$.

The upper bound on the number of iterations is given by:

$$R \leq \lceil \frac{\pi}{4} \sqrt{\frac{N}{M}} \rceil$$

Thus, R is, in fact, $O(\sqrt{N/M})$, a quadratic improvement over the O(N/M)oracle calls required classically.

Quantum Search for M=1 1.5

Inputs:

• a black box oracle O which performs the transformation $O|x\rangle|q\rangle = |x\rangle|q\oplus$ f(x), where f(x) = 0 for all $0 \le x < 2^n$ except x_0 , for which $f(x_0) = 1$

• n+1 qubits in the state $|0\rangle$

Outputs: x_0

Runtime: $O(\sqrt{2^n})$ operations. Succeeds with probability O(1)

Procedure:

• initial state

$$|0\rangle^{\otimes n}|0\rangle$$

• apply $H^{\otimes n}$ to the first n qubits, and HX to the last qubit

$$\rightarrow \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x\rangle \left[\frac{|0\rangle - |1\rangle}{2}\right]$$

• apply the Grover iteration $R \approx \lceil \pi \sqrt{2^n}/4 \rceil$ times

$$\rightarrow [(2|\psi\rangle\langle\psi|-I)O]^R \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \approx |x_0\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]$$

 \bullet measure the first n qubits

$$\rightarrow x_0$$