CS 560: Design and Analysis of Algorithms

Chapter 3: Asymptotic Notations

Asymptotic Analysis

- Running time depends on the size of the input
 - Larger array takes more time to sort
 - T(n): the time taken on input with size n
 - Look at **growth** of T(n) as $n \rightarrow \infty$.

"Asymptotic Analysis"

- Size of input is generally defined as the number of input elements
 - In some cases may be tricky

Asymptotic Analysis

- Ignore actual and abstract statement costs
- Order of growth is the interesting measure:
 - Highest-order term is what counts

As the input size grows larger it is the high order term that

dominates

Comparison of functions

	log ₂ n	n	nlog ₂ n	n ²	n ³	2 ⁿ	n!
10	3.3	10	33	10 ²	103	10 ³	10 ⁶
10 ²	6.6	10 ²	660	104	10 ⁶	1030	10158
10 ³	10	10 ³	104	10 ⁶	10 ⁹		
104	13	104	10 ⁵	108	1012		
10 ⁵	17	10 ⁵	10 ⁶	1010	10 ¹⁵		
10 ⁶	20	10 ⁶	10 ⁷	1012	1018		

For a super computer that does 1 trillion operations per second, it will be longer than 1 billion years

Order of growth

 $1 << \log_2 n << n << n \log_2 n << n^2 << n^3 << 2^n << n!$

(We are slightly abusing of the "<<" sign. It means a smaller order of growth).

Exact analysis is hard!

 We have agreed that the best, worst and average case complexity of an algorithm is a numerical function of the size of instances

- However, worst-case and average-case are difficult to deal with precisely, because the details are very complicated
- Thus, it is usually cleaner and easier to talk about upper and lower bounds of the function
- There is where the big O notation comes in!
- Since running our algorithm on a machine which is twice as fast will effect the running time by a multiplicative constant of 2, we are going to have to ignore the constants anyway

8/23/2018 6

Asymptotic notations

- O: Big-Oh
- Ω: Big-Omega
- Θ: Theta
- o: Small-oh
- ω: Small-omega

Names of bounding functions

- Now that we have clearly defined the complexity functions we are talking about, we can talk about upper and lower bounds on it
 - f(n)=O(g(n)) means c x g(n) is an upper bound on f(n)
 - $f(n) = \Omega(g(n))$ means c x g(n) is a lower bound on f(n)
 - $f(n) = \Theta(g(n))$ means $c_1 \times g(n)$ is an upper bound on f(n) and $c_2 \times g(n)$ is a lower bound on f(n)
- Got it? c, c₁, c₂ are constants independent of n
- All of these definitions imply a constant n₀ beyond which they are satisfied
- We don't care about the small values of n

O, Ω , and Θ

- The value of n₀ shown is the minimum possible value; any greater value will also work
 - (a) f(n)=O(g(n)) if there exists a positive constant n_0 , and c^* such that for all n greater than n_0 (to the right of n_0), the value of f(n) always lies on or below c^* x g(n). That is, $f(n) <= c^* x g(n)$
 - (b) $f(n) = \Omega(g(n))$ if there exists a positive constant n_0 , and c such that for all n greater than n_0 (to the right of n_0), the value of f(n) always lies on or above c* x g(n). That is, c* x g(n) <= f(n)
 - (c) $f(n) = \Theta(g(n))$ if there exists a positive constant n_0 , c^*_1 , and c^*_2 such that for all n greater than n_0 (to the right of n_0), the value of f(n) always lies between c^*_1 x g(n) and c^*_2 x g(n) inclusive. That is, c^*_2 x g(n) <= f(n) <= c^*_1 x g(n)
 - Finally, $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

What does all these mean?

- $3n^2-100n+6 = O(n^2)$ because $3.1n^2 > 3n^2-100n+6$
- $3n^2-100n+6 = O(n^3)$ because $3n^3 > 3n^2-100n+6$
- $3n^2-100n+6 \neq O(n)$ because for any c, $cn<3n^2$ when n>c
- $3n^2-100n+6 = \Omega(n^2)$ because $2n^2 < 3n^2-100n+6$
- $3n^2-100n+6 \neq \Omega(n^3)$ because $3n^2-100n+6 < n^3$
- $3n^2-100n+6 = \Omega(n)$ because $1000n < 3n^2-100n+6$
- $3n^2-100n+6 = \Theta(n^2)$ because O and Ω
- $3n^2-100n+6 \neq \Theta(n^3)$ because O only
- $3n^2-100n+6 \neq \Theta(n)$ because Ω only

Testing dominance

- f(n) dominates g(n) if $\lim_{n\to\infty} g(n)/f(n) = 0$, which is same as saying g(n)=o(f(n))
 - Note the little-oh--- it means "grows strictly slower than"
- Knowing the dominance relation between common functions is important because we want algorithms whose time complexity is as low as possible in the hierarchy
 - If f(n) dominates g(n), f is much larger than g
 - That is f is much slower (takes more time to run) than g

Examples

- n^a dominates n^b if a>b
 - since $\lim_{n\to\infty} n^b/n^a=1/n^{b-a}=0$
- n^a+o(n^a) does not dominate n^a
 - Since lim _{n→∞} n^a/(n^a +o(n^a))=1

Complexity	10	20	30	40
n	0.00001 sec	0.00002 sec	0.00003 sec	0.00004 sec
n^2	0.0001 sec	0.0004 sec	0.0009 sec	0.016 sec
3	0.001 sec	0.008 sec	0.027 sec	0.064 sec
_n 5	0.1 sec	3.2 sec	24.3 sec	1.7 min
2^n	0.001 sec	1.0 sec	17.9 min	12.7 days
3 ⁿ	0.59 sec	58 min	6.5 years	3855 cent

Big O

- Informally, O(g(n)) is the set of all functions with a smaller or same order of growth as g(n), within a constant multiple
- If we say f(n) is in O(g(n)), it means that g(n) is an asymptotic upper bound of f(n)
 - Intuitively, it is like $f(n) \le cg(n)$ for some constant c
- What is O(n²)?
 - The set of all functions that grow slower than or in the same order as n²

Examples

```
So:
```

```
n \in O(n^2)
```

This says $O(n^2)$ is a set of functions and f(n)=n is one of them We will often abuse this notation and simply say $n=O(n^2)$ as we have done before

 $n^2\in\,O(n^2)$

 $1000n \in O(n^2)$

 $n^2 + n \in O(n^2)$

 $100n^2 + n \in O(n^2)$

But:

 $1/1000 \text{ n}^3 \notin O(n^2)$

Why?

Intuitively, O is like ≤

Big Ω

- Informally, Ω (g(n)) is the set of all functions with a larger or same order of growth as g(n), within a constant multiple
- f(n) ∈ Ω(g(n)) means g(n) is an asymptotic lower bound of f(n)
 - Intuitively, it is like $g(n) \le f(n)$

So:

```
n^2 \in \Omega(n)
1/1000 n^2 \in \Omega(n)
```

But:

```
1000 \text{ n } \notin \Omega(\text{n}^2)
```

Intuitively, Ω is like ≥

Theta (Θ)

- Informally, Θ (g(n)) is the set of all functions with the same order of growth as g(n), within a constant multiple
- f(n) ∈ Θ(g(n)) means g(n) is an asymptotically tight bound of f(n)
 - Intuitively, it is like f(n) = g(n)
- What is $\Theta(n^2)$?
 - The set of all functions that grow in the same order as n²

Examples

```
So:
```

```
n^{2} \in \Theta(n^{2})
n^{2} + n \in \Theta(n^{2})
100n^{2} + n \in \Theta(n^{2})
100n^{2} + \log_{2}n \in \Theta(n^{2})
```

Intuitively, Θ is like =

But:

```
nlog<sub>2</sub>n \notin \Theta(n^2)
1000n \notin \Theta(n^2)
1/1000 n<sup>3</sup> \notin \Theta(n^2)
```

Tricky cases

How about sqrt(n) and log₂ n?

How about log₂ n and log₁₀ n

How about 2ⁿ and 3ⁿ

How about 3ⁿ and n!?

Big-Oh: O

• Definition:

There exist For all $O(g(n)) = \{f(n): \exists positive constants c and n_0 \text{ such that } 0 \le f(n) \le cg(n) \forall n > n_0 \}$

• $\lim_{n\to\infty} g(n)/f(n) > 0$ (if the limit exists.)

Abuse of notation (for convenience):
 f(n) = O(g(n)) actually means f(n) ∈ O(g(n))

Big-Oh: O

- Claim: $f(n) = 3n^2 + 10n + 5 \in O(n^2)$
- Proof by definition

To prove this claim by definition, we need to find some positive constants c and n_0 such that $f(n) \le cn^2$ for all $n > n_0$.

(Note: you just need to find one concrete example of c and n0 satisfying the condition.)

$$3n^2 + 10n + 5 \le 10n^2 + 10n + 10$$

 $\le 10n^2 + 10n^2 + 10n^2, \forall n \ge 1$
 $\le 30 n^2, \forall n \ge 1$

Therefore, if we let c = 30 and $n_0 = 1$, we have $f(n) \le c n^2$, $\forall n \ge n_0$. Hence according to the definition of big-Oh, $f(n) = O(n^2)$.

Alternatively, we can show that

$$\lim_{n\to\infty} n^2/(3n^2 + 10n + 5) = 1/3 > 0$$

Big-Omega: Ω

Definition:

```
\Omega(g(n)) = \{f(n): \exists positive constants c and n_0  such that 0 \le cg(n) \le f(n) \forall n>n_0\}
```

• $\lim_{n\to\infty} f(n)/g(n) > 0$ (if the limit exists.)

Abuse of notation (for convenience):
 f(n) = Ω(g(n)) actually means f(n) ∈ Ω(g(n))

Big-Omega: Ω

- Claim: $f(n) = n^2 / 10 = \Omega(n)$
- Proof by definition:

```
\begin{split} &f(n)=n^2 \: / \: 10, \: g(n)=n \\ &\text{Need to find a c and a } n_o \: \text{to satisfy the definition of } f(n) \in \\ &\Omega(g(n)), \: i.e., \: f(n) \geq cg(n) \: \text{for } n > n_0 \\ &n \leq n^2 \: / \: 10 \: \text{when } n \geq 10 \end{split} If we let c=1 and n_0=10, we have f(n) \geq cn, \: \forall \: n \geq n_0. Therefore, according to definition, f(n)=\Omega(n).
```

Alternatively:

```
\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} (n/10) = \infty
```

Theta: Θ

- Definition:
 - $\Theta(g(n))$ = {f(n): ∃ positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, $\forall n \ge n_0$ }
- $\lim_{n\to\infty} f(n)/g(n) = c > 0$ and $c < \infty$
- f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- Abuse of notation (for convenience):
 - $f(n) = \Theta(g(n))$ actually means $f(n) \in \Theta(g(n))$ $\Theta(1)$ means constant time.

Theta: Θ

- Claim: $f(n) = 2n^2 + n = \Theta(n^2)$
- Proof by definition:
 - Need to find the three constants c₁, c₂, and n₀
 such that
 - $c_1 n^2 \le 2n^2 + n \le c_2 n^2$ for all $n > n_0$
 - A simple solution is $c_1 = 2$, $c_2 = 3$, and $n_0 = 1$
- Alternatively, $\lim_{n\to\infty} (2n^2+n)/n^2 = 2$

8/23/2018 25

More Examples

- Prove $n^2 + 3n + \lg n$ is in $O(n^2)$
- Want to find c and n_0 such that $n^2 + 3n + \lg n <= cn^2$ for $n > n_0$
- Proof:

```
n^{2} + 3n + \lg n <= 3n^{2} + 3n + 3\lg n for n > 1

<= 3n^{2} + 3n^{2} + 3n^{2}

<= 9n^{2}

Or n^{2} + 3n + \lg n <= n^{2} + n^{2} + n^{2} for n > 10

<= 3n^{2}
```

More Examples

- Prove $n^2 + 3n + \lg n$ is in $\Omega(n^2)$
- Want to find c and n₀ such that
 n² + 3n + lg n >= cn² for n > n₀

$$n^2 + 3n + \lg n >= n^2 \text{ for } n > 0$$

 $n^2 + 3n + \lg n = O(n^2)$ and $n^2 + 3n + \lg n = \Omega(n^2)$ => $n^2 + 3n + \lg n = \Theta(n^2)$

More Examples

Prove that for any constant a and b,

$$-(n+a)^b = \Theta(n^b)$$

Class exercise

Small-o

Definition:

$$o(g(n)) = \{f(n): for any positive constant c, \exists n_0>0 such that $0 \le f(n) \le cg(n) \forall n>n_0\}$$$

There exist

• $\lim_{n\to\infty} f(n)/g(n) = 0$ (if the limit exists.)

Abuse of notation (for convenience):
 f(n) = o(g(n)) actually means f(n) ∈ o(g(n))

Small-o

- Claim: $f(n) = 10n + 5 \in o(n^2)$
- Proof by definition $\lim_{n\to\infty} (10n+5)/(n^2) = 0$
- Claim: $f(n)=n^2+10n+5 \neq o(n^2)$
- Proof by definition $\lim_{n\to\infty} (n^2+10n+5)/(n^2) = 1$

Small-ω

Definition:

```
ω(g(n)) = \{f(n): \text{ for any positive constant } c, \exists n_0>0 \text{ such that } 0 \le cg(n) < f(n) \forall n>n_0\}
```


There exist

- $\lim_{n\to\infty} f(n)/g(n) = \infty$
- Abuse of notation (for convenience):

 $f(n) = \omega(g(n))$ actually means $f(n) \in \omega(g(n))$

8/23/2018 31

Small- ω

- Claim: $f(n) = 10n^2 + 5 \in \omega(n)$
- Proof by definition $\lim_{n\to\infty} (10n^2+5)/(n) = \infty$
- Claim: $f(n)=10n+5 \notin \omega(n)$
- Proof by definition $\lim_{n\to\infty} (10n+5)/(n) = 10$

Using limits to compare orders of growth

$$\lim_{n \to \infty} f(n) / g(n) = \begin{cases} 0 \\ c > 0 \end{cases} \qquad f(n) \in O(g(n))$$

$$f(n) \in O(g(n))$$

$$f(n) \in O(g(n))$$

$$f(n) \in O(g(n))$$

logarithms

- It is important to understand deep in your bones what logarithms are and where they come from
- A logarithm is simply an inverse exponential function. Saying b^x=y is equivalent to saying x=log_by
- Exponential functions, like the amount owed on n year mortgage at an interest rate c% per year, are functions which grow distressingly fast, as anyone who has tried to pay off a mortgage knows
- Thus inverse exponential functions, i.e., logarithms grow refreshingly slow
- Binary search is an example of an O(log n) algorithm
 - After each comparison, we can throw away half of the possible number of keys
 - Thus 20 comparisons suffice to find any name in the million-name Manhattan phone book!
- If you have an algorithm which runs in O(log n) time, take it, because this is blindingly fast even on very large instances

Properties of logarithms

- Recall the definition, clog x =x for any c
- Asymptotically, the base of the logarithm does not matter
 - log_ba=log_ca/log_cb
 - Thus $log_2 n = (1/log_{100} 2) log_{100} n$, and note that $1/log_{100} 2 = 6.643$ is just a constant
- Asymptotically polynomial function of n does not matter
 - Note that $\log(n^{473}+n^2+n+96)=O(\log n)$
 - Since $n^{473}+n^2+n+96=O(n^{473})$ and log $(n^{473})=473\log(n)$
- Any exponential dominates every polynomial
 - This is why we will seek to avoid exponential time algorithms

logarithms

compare log₂n and log₁₀n

- $log_ab = log_cb / log_ca$
- $\log_2 n = \log_{10} n / \log_{10} 2 \sim 3.3 \log_{10} n$
- Therefore $\lim(\log_2 n / \log_{10} n) = 3.3$
- $\log_2 n = \Theta (\log_{10} n)$

Examples

Compare 2ⁿ and 3ⁿ

- $\lim_{n\to\infty} 2^n / 3^n = \lim_{n\to\infty} (2/3)^n = 0$
- Therefore, $2^n \in o(3^n)$, and $3^n \in \omega(2^n)$

• How about 2^n and 2^{n+1} ?

 $2^{n}/2^{n+1} = \frac{1}{2}$, therefore $2^{n} = \Theta(2^{n+1})$

L' Hopital's rule

$$\lim_{n\to\infty} f(n) / g(n) = \lim_{n\to\infty} f(n)' / g(n)'$$

$$\lim_{n\to\infty} f(n) / g(n)'$$
If both lim f(n) and lim g(n) are ∞ or 0

 You can apply this transformation as many times as you want, as long as the condition holds

Examples

- Compare n^{0.5} and log n
- $\lim_{n \to \infty} n^{0.5} / \log n = ?$
- $(n^{0.5})' = 0.5 n^{-0.5}$
- $(\log n)' = 1 / n$
- $\lim (n^{-0.5} / 1/n) = \lim (n^{0.5}) = \infty$
- Therefore, $\log n \in o(n^{0.5})$
- In fact, $\log n \in o(n^{\epsilon})$, for any $\epsilon > 0$

Stirling's formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} n^{n+1/2} e^{-n}$$

 $n! \approx \text{(constant)} \ n^{n+1/2} e^{-n}$

Examples

Compare 2ⁿ and n!

$$\lim_{n\to\infty} \frac{n!}{2^n} = \lim_{n\to\infty} \frac{c\sqrt{n}n^n}{2^n e^n} = \lim_{n\to\infty} c\sqrt{n} \left(\frac{n}{2e}\right)^n = \infty$$

- Therefore, $2^n = o(n!)$ and $n! = \omega(2^n)$
- Compare nⁿ and n!

$$\lim_{n\to\infty}\frac{n!}{n^n}=\lim_{n\to\infty}\frac{c\sqrt{n}n^n}{n^ne^n}=\lim_{n\to\infty}\frac{c\sqrt{n}}{e^n}=0$$

• Therefore, $n^n = \omega(n!)$ and $n!=o(n^n)$

How about log (n!)?

Examples

$$\log(n!) = \log \frac{c\sqrt{n}n^n}{e^n} = C + \log n^{n+1/2} - \log(e^n)$$

$$= C + n\log n + \frac{1}{2}\log n - n$$

$$= C + \frac{n}{2}\log n + (\frac{n}{2}\log n - n) + \frac{1}{2}\log n$$

$$= \Theta(n\log n)$$

More advanced dominance ranking

$$n! \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg \log^2 n \gg \log n \gg \log n / \log \log n \gg \log \log n \gg \alpha(n) \gg 1$$

Asymptotic notations

- O: Big-Oh
- Ω: Big-Omega
- Θ: Theta
- o: Small-oh
- ω: Small-omega
- Intuitively:

```
O is like \leq \Omega is like \geq \Theta is like = o is like < \omega is like >
```

True or false?

- 1. $2n^2 + 1 = O(n^2)$
- 2. Sqrt(n) = O(log n)
- 3. $\log n = O(\operatorname{sqrt}(n))$
- 4. $n^2(1 + sqrt(n)) = O(n^2 log n)$
- 5. $3n^2 + sqrt(n) = O(n^2)$
- 6. sqrt(n) log n = O(n)

Properties of asymptotic notations

- Please read from textbook page 51
- Transitivity

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n))
=> f(n) = \Theta(h(n))
(holds true for o, O, \omega, and \Omega as well).
```

Symmetry

```
f(n) = \Theta(g(n)) if and only if g(n) = \Theta(f(n))
```

Transpose symmetry

```
f(n) = O(g(n)) if and only if g(n) = \Omega(f(n))
f(n) = o(g(n)) if and only if g(n) = \omega(f(n))
```

About exponential and logarithm functions

- Please read from textbook page 55-56
- It is important to understand what logarithms are and where they come from.
- A logarithm is simply an inverse exponential function.
- Saying b^x = y is equivalent to saying that x = log_b y.
- Logarithms reflect how many times we can double something until we get to n, or halve something until we get to 1.
- $\log_2 1 = ?$
- $\log_2 2 = ?$

Binary Search

- In binary search we throw away half the possible number of keys after each comparison.
- How many times can we halve n before getting to 1?
- Answer: ceiling (lg n)

Logarithms and Trees

- How tall a binary tree do we need until we have n leaves?
- The number of potential leaves doubles with each level.
- How many times can we double 1 until we get to n?
- Answer: ceiling (lg n)

Logarithms and Bits

- How many numbers can you represent with k bits?
- Each bit you add doubles the possible number of bit patterns
- You can represent from 0 to 2^k 1 with k bits. A total of 2^k numbers.
- How many bits do you need to represent the numbers from 0 to n?
- ceiling (lg (n+1))

logarithms

- $\lg n = \log_2 n$
- $\ln n = \log_e n$, $e \approx 2.718$
- $\lg^k n = (\lg n)^k$
- $\lg \lg n = \lg (\lg n) = \lg^{(2)} n$
- $\lg^{(k)} n = \lg \lg \lg \ldots \lg n$
- $lg^24 = ?$
- $\lg^{(2)}4 = ?$
- Compare Ig^kn vs Ig^(k)n?

Useful rules for logarithms

For all a > 0, b > 0, c > 0, the following rules hold

- $log_b a = log_c a / log_c b = lg a / lg b$
- $log_b a^n = n log_b a$
- $b^{\log_b a} = a$
- log (ab) = log a + log b
 lg (2n) = ?
- $\log (a/b) = \log (a) \log(b)$
 - $\lg (n/2) = ?$
 - $\lg (1/n) = ?$
- $log_b a = 1 / log_a b$

More advanced dominance ranking

$$n^{n} >> n! >> 3^{n} >> 2^{n} >> n^{3} >> n^{2} >> n^{1+\varepsilon} >> n \log n \sim \log n!$$

>> $n >> n / \log n >> \sqrt{n} >> n^{\varepsilon} >> \log^{3} n >> \log^{2} n >> \log n$
>> $\log n / \log \log n >> \log \log n >> \log^{(3)} n >> \alpha(n) >> 1$

Next topic

Analyzing the complexity of an algorithm

Kinds of analyses

- Worst case
 - Provides an upper bound on running time
- Best case not very useful, can always cheat
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?

General plan for analyzing time efficiency of a non-recursive algorithm

- Decide parameter (input size)
- Identify most executed line (basic operation)
- worst-case = average-case?
- $T(n) = \sum_i t_i$
- $T(n) = \Theta(f(n))$

Example

```
repeatedElement (A, n)
  // determines whether all elements in a given
  // array are distinct
  for i = 1 to n-1 {
      for j = i+1 to n {
            if (A[i] == A[j])
                   return true;
  return false;
```

Example

```
repeatedElement (A, n)
  // determines whether all elements in a given
  // array are distinct
  for i = 1 to n-1 {
      for j = i+1 to n \{
            if (A[i] == A[j])
                   return true;
  return false;
```

Time complexity

Best case?

Worst-case?

Average case?

Best case

- A[1] = A[2]
- $-T(n) = \Theta(1)$
- Worst-case
 - No repeated elements
 - $T(n) = (n-1) + (n-2) + ... + 1 = n (n-1) / 2 = \Theta (n^2)$
- Average case?
 - What do you mean by "average"?
 - Need more assumptions about data distribution.
 - How many possible repeats are in the data?
 - Average-case analysis often involves probability.

Runtime analysis example

- Input size is n
- What are the running times of the following pseudocodes in Big-Oh notation?

```
I. void sunny(int n, int x) {
        for (int k = 0; k < n; ++k)
           if (x < 50) {
               for (int i = 0; i < n; ++i)
                  for (int j = 0; j < i; ++j)
                     System.out.println("x = " + x);
           } else {
              System.out.println("x = " + x);
II. void warm(int n) {
        for (int i = 0; i < 2 * n; ++i) {
           j = 0;
           while (j < n) {
              System.out.println("j = " + j);
              j = j + 5;
```

Runtime analysis example

- Input size is n
- What are the running times of the following pseudocodes in Big-Oh notation?

```
I. void sunny(int n, int x) {
        for (int k = 0; k < n; ++k)
           if (x < 50) {
                                                        O(n^3)
               for (int i = 0; i < n; ++i)
                  for (int j = 0; j < i; ++j)
                     System.out.println("x = " + x);
           } else {
              System.out.println("x = " + x);
II. void warm(int n) {
        for (int i = 0; i < 2 * n; ++i) {
           j = 0;
           while (j < n) {
              System.out.println("j = " + j);
              j = j + 5;
```

Runtime analysis example

- Input size is n
- What are the running times of the following pseudocodes in Big-Oh notation?

```
I. void sunny(int n, int x) {
        for (int k = 0; k < n; ++k)
            if (x < 50) {
                                                        O(n^3)
               for (int i = 0; i < n; ++i)
                  for (int j = 0; j < i; ++j)
                     System.out.println("x = " + x);
            } else {
               System.out.println("x = " + x);
II. void warm(int n) {
        for (int i = 0; i < 2 * n; ++i) {
                                                         O(n^2)
            j = 0;
           while (j < n) {
               System.out.println("j = " + j);
              j = j + 5;
```

Find the order of growth for sums

- $T(n) = \sum_{i=1..n} i = \Theta(n^2)$
- $T(n) = \sum_{i=1,n} log(i) = ?$
- $T(n) = \sum_{i=1...n} n / 2^i = ?$
- $T(n) = \sum_{i=1,n} 2^i = ?$
- •
- How to find out the actual order of growth?
 - Math...
 - Textbook Appendix A.1 (page 1058-60)

Arithmetic series

 An arithmetic series is a sequence of numbers such that the difference of any two successive members of the sequence is a constant.

• In general:

$$a_i = a_{i-1} + d$$
 Recursive definition
$$a_i = a_1 + (i-1)d$$
 Closed form, or explicit formula

Sum of arithmetic series

If a₁, a₂, ..., a_n is an arithmetic series, then

$$\sum_{i=1}^{n} a_i = \frac{n(a_1 + a_n)}{2}$$

e.g.
$$1 + 3 + 5 + 7 + ... + 99 = ?$$

(series definition:
$$a_i = 2i-1$$
)
This is $\sum_{i=1 \text{ to } 50} (a_i) = 50 * (1 + 99) / 2 = 2500$

Geometric series

 A geometric series is a sequence of numbers such that the ratio between any two successive members of the sequence is a constant.

In general:

$$a_i = ra_{i-1}$$
 Recursive definition
$$a_i = r^i a_0$$
 Closed form, or explicit formula

Sum of geometric series

$$\sum_{i=0}^{n} r^{i} = \begin{cases} (1-r^{n+1})/(1-r) & \text{if } r < 1\\ (r^{n+1}-1)/(r-1) & \text{if } r > 1\\ n+1 & \text{if } r = 1 \end{cases}$$

$$\sum_{i=0}^{n} 2^i = ?$$

$$\lim_{n\to\infty} \sum_{i=0}^n \frac{1}{2^i} = ?$$

$$\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{2^i} = ?$$

Sum of geometric series

$$\sum_{i=0}^{n} r^{i} = \begin{cases} (1-r^{n+1})/(1-r) & \text{if } r < 1\\ (r^{n+1}-1)/(r-1) & \text{if } r > 1\\ n+1 & \text{if } r = 1 \end{cases}$$

$$\sum_{i=0}^{n} 2^{i} = \frac{2^{n+1}-1}{2-1} = 2^{n+1} - 1 \approx 2^{n+1} \in \Theta(2^{n})$$

$$\lim_{n \to \infty} \sum_{i=0}^{n} \frac{1}{2^{i}} = \lim_{n \to \infty} \sum_{i=0}^{n} (\frac{1}{2})^{i} = \frac{1}{1-\frac{1}{2}} = 2$$

$$\lim_{n \to \infty} \sum_{i=0}^{n} \frac{1}{2^{i}} = \lim_{n \to \infty} \sum_{i=0}^{n} (\frac{1}{2})^{i} - (\frac{1}{2})^{0} = 2 - 1 = 1$$

Important formulas

$$\sum_{i=1}^{n} i^{2} \approx \frac{n^{3}}{3} \in \Theta(n^{3})$$

$$\sum_{i=1}^{n} i = n \in \Theta(n)$$

$$\sum_{i=1}^{n} i^{k} \approx \frac{n^{k+1}}{k+1} \in \Theta(n^{k+1})$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \in \Theta(n^{2})$$

$$\sum_{i=1}^{n} i^{2} \approx \frac{n^{k+1}}{k+1} \in \Theta(n^{k+1})$$

$$\sum_{i=1}^{n} i^{2} = (n-1)2^{n+1} + 2 \in \Theta(n^{2})$$

$$\sum_{i=1}^{n} i^{2} \in \Theta(n^{2})$$

Sum manipulation rules

$$\sum_{i} (a_i + b_i) = \sum_{i} a_i + \sum_{i} b_i$$

$$\sum_{i} ca_i = c \sum_{i} a_i$$

$$\sum_{i=m}^{n} a_i = \sum_{i=m}^{x} a_i + \sum_{i=x+1}^{n} a_i$$

Example:

$$\sum_{i=1}^{n} (4i + 2^{i}) = ?$$

$$\sum_{i=1}^{n} \frac{n}{2^{i}} = ?$$

Sum manipulation rules

$$\sum_{i} (a_i + b_i) = \sum_{i} a_i + \sum_{i} b_i$$

$$\sum_{i} ca_i = c \sum_{i} a_i$$

$$\sum_{i=m}^{n} a_i = \sum_{i=m}^{x} a_i + \sum_{i=x+1}^{n} a_i$$

Example:

$$\sum_{i=1}^{n} (4i + 2^{i}) = 4\sum_{i=1}^{n} i + \sum_{i=1}^{n} 2^{i} = 2n(n+1) + 2^{n+1} - 2$$

$$\sum_{i=1}^{n} \frac{n}{2^{i}} = n \sum_{i=1}^{n} \frac{1}{2^{i}} \approx n$$

•
$$\sum_{i=1...n} n / 2^i = n * \sum_{i=1...n} (1/2)^i = ?$$

using the formula for geometric series:

$$\sum_{i=0..n} (\frac{1}{2})^i = 1 + \frac{1}{2} + \frac{1}{4} + \dots (\frac{1}{2})^n = 2$$

 Application: algorithm for allocating dynamic memories

•
$$\sum_{i=1..n} \log (i) = \log 1 + \log 2 + ... + \log n$$

= $\log 1 \times 2 \times 3 \times ... \times n$
= $\log n!$
= $\Theta(n \log n)$

Application: algorithm for selection sort using priority queue