TMUA Practice - Integration

- The area of the region bounded by the curve $y = \sqrt{x}$, the line y = x 2 and the x-axis is: 1)

- A 2 B $\frac{5}{2}$ C 3 D $\frac{10}{3}$ E $\frac{16}{3}$

2) The graph shows a quadratic curve with equation $y = x^2 - 3x + 7$ and a straight line y = x + 4. What is the value of the shaded area?

- A $\frac{1}{3}$ B $\frac{4}{3}$ C $\frac{7}{3}$ D $\frac{32}{3}$
- 12

- The area of the region bounded by the curves $y = x^2$, y = x + 2 is: 3)

- A $\frac{9}{2}$ B $\frac{7}{3}$ C $\frac{7}{2}$ D $\frac{9}{4}$ E $\frac{11}{2}$

4) Find the area of the finite region between the curves with equations

$$y = x^2 + x - 1 \qquad \text{and} \quad y = x$$

- A $\frac{2}{3}$ B 1 C $\frac{4}{3}$ D $\frac{5}{3}$ E 2

- A line is tangent to the parabola $y = x^2$ at the point (a, a^2) where a > 0. 5) The area of the finite region bounded by the parabola, the tangent line and the x-axis equals:

 - A $\frac{a^2}{3}$ B $\frac{2a^2}{3}$ C $\frac{a^3}{12}$ D $\frac{5a^3}{6}$ E $\frac{a^4}{10}$

The area of the finite region between the parabolas with equations 6)

$$y = x^2 + 2ax + a$$
 and $y = a - x^2$ equals 9.

The possible values of *a* are:

- A a = 1 B $a = \pm 3$ C a = -3 D $a = \pm 1$ E a = 3

7) Find the area of the finite region between the curves with equations

$$y = 5 - x^2$$
 and $y = |x| - 1$

- A $\frac{19}{3}$ B $\frac{22}{3}$ C $\frac{25}{3}$ D $\frac{28}{3}$ E $\frac{44}{3}$

- Evaluate the following integral $\int_{-1}^{1} 2(x + |x|) 7x|x| dx$ 8)

 - A 2 B $\frac{7}{3}$ C $\frac{5}{2}$ D 4 E $\frac{9}{2}$

The positive number k satisfies $\int_0^k (\sqrt{x} + x^2) dx = 5$ for which value of k? 9)

A
$$k = (\sqrt{21} - 1)^{\frac{1}{3}}$$

B
$$k = \sqrt{3}$$

C
$$k = 3^{\frac{2}{3}}$$

D
$$k = (\sqrt{6} - 1)^{\frac{2}{3}}$$

E
$$k = 5^{\frac{2}{3}}$$

10) Let
$$f(x) = \int_{0}^{x} \frac{1}{2}t^{2} dt$$
 $g(x) = \int_{0}^{1} x^{2}t dt$

$$g(x) = \int_0^1 x^2 t \ dt$$

Which of the following statements is true?

- A gf(A) > fg(A) for all A > 0
- B gf(A) < fg(A) for all A > 0
- C gf(A) = fg(A) for all A > 0
- $\begin{array}{ll} \mathrm{D} & gf(A) > fg(A) \text{ for } A > 1 \\ \mathrm{E} & gf(A) < fg(A) \text{ for } A > 1 \end{array} \qquad \text{and } gf(A) < fg(A) \text{ for } A < 1 \\ \mathrm{E} & gf(A) < fg(A) \text{ for } A > 1 \end{array}$

- Find the minimum value of the function f(t) where $f(t) \equiv \int_{0}^{1} (x-t)^{2} + t^{2} dx$ $t \ge 0$ 11)

- A 0 B $\frac{5}{24}$ C $\frac{1}{4}$ D $\frac{1}{3}$ E $\frac{7}{12}$

12) The trapezium rule approximation using four trapezia for:

$$\int_0^6 |x(x-3)(x-6)| \ dx$$

- A $\frac{3^5}{2^3}$ B $\frac{3^5}{4}$ C $\frac{3^3}{2^5}$ D 6 E $\left(\frac{3}{2}\right)^5$

13) Find the area of the finite region between the curve with equation

$$y = (x - a)(x - b) \quad \text{where } 0 < a < b$$

and the *x*-axis

A
$$\frac{1}{3}(b-a)^3$$

$$B = \frac{1}{6}(b-a)$$

A
$$\frac{1}{3}(b-a)^3$$
 B $\frac{1}{6}(b-a)^3$ C $\frac{1}{2}(b+a)^2$ D $\frac{1}{3}(b+a)^2$ E $\frac{1}{2}(b+a)^3$

D
$$\frac{1}{3}(b+a)^2$$

$$E \quad \frac{1}{2}(b+a)^2$$

14)

The function
$$f(x)$$
 is such that
$$f(x) + 4f(-x) \equiv 1 + x^2 \int_{-1}^{1} f(u) \ du$$

Determine the value of $\int_{-1}^{1} f(x) dx$

A
$$\frac{6}{13}$$
 B $\frac{5}{6}$ C 2 D $\frac{5}{2}$ E $\frac{25}{9}$

$$B = \frac{5}{6}$$

$$D = \frac{5}{2}$$

E
$$\frac{25}{9}$$

Place the following integrals in order of size from smallest to largest. 15)

$$K = \int_{1}^{4} log_4 \sqrt{x} dx$$

$$L = \int_{1}^{4} log_4 x \ dx$$

$$K = \int_{1}^{4} log_{4} \sqrt{x} \ dx$$
 $L = \int_{1}^{4} log_{4} x \ dx$ $M = \int_{1}^{4} \sqrt{log_{4} x} \ dx$

$$A \quad K < L < M$$

$$B \quad K < M < L$$

$$D \quad L < K < M$$

$$E \quad M < K < L$$

Long Questions

For each positive integer k, let $f_k(x) = x^{\frac{1}{k}}$ for $x \ge 0$.

(i) On the same axes, labelling each curve clearly, sketch $y = f_k(x)$ for k = 1, 2, 3 indicating the intersection points.

(ii) Between the two points in (i), the curves $y = f_k(x)$ enclose several regions. What is the area of the region between the graphs of $y = f_k(x)$ and $y = f_{k+1}(x)$?

Verify that the area of the region between f_1 and f_2 is $\frac{1}{6}$

Let c be a constant where 0 < c < 1.

(iii) Find the x-coordinates of the points of intersection of the line y = c with $y = f_1(x)$ and of y = c with $y = f_2(x)$.

(iv) The constant c is chosen so that the line y = c divides the region between $y = f_1(x)$ and $y = f_2(x)$ into two regions of equal area.

Show that c satisfies the cubic equation $4c^3 - 6c^2 + 1 = 0$. Hence find c.