Rational Least Squares Fitting using Krylov Spaces

Mario Berljafa* Stefan Güttel*

For given matrices $\{A,F\}\subset\mathbb{C}^{N\times N}$ and a vector $\mathbf{v}\in\mathbb{C}^N$, we consider the problem of finding a rational function R_m^{\min} of type (m,m) such that

$$||F\mathbf{v} - R_m(A)\mathbf{v}||_2^2 \to \min,$$

and propose an iterative algorithm [1, 2] for its solution. At each iteration the algorithm constructs a rational Krylov space $\mathcal{Q}_{m+1}(A, \mathbf{v})$ and manipulates an associated Arnoldi decomposition to find better approximations to the poles of R_m^{\min} . In the special case when $A = \operatorname{diag}(\lambda_j)$ and $F = \operatorname{diag}(\psi_j)$ are diagonal we have a weighted rational least squares fitting problem $\sum_{j=1}^N |v_j|^2 \cdot |\psi_j - R_m(\lambda_j)|^2 \to \min$, and compare our method to the popular vector fitting [3].

References

- [1] M. BERLJAFA AND S. GÜTTEL, A Rational Krylov Toolbox for MAT-LAB, MIMS EPrint 2014.56, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, 2014. Available for download at http://guettel.com/rktoolbox/.
- [2] M. BERLJAFA AND S. GÜTTEL, Generalized rational Krylov decompositions with an application to rational approximation, MIMS EPrint 2014.59, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, 2014.
- [3] B. Gustavsen and A. Semlyen, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Del., 14 (1999), pp. 1052–1061.

^{*}School of Mathematics, The University of Manchester, Alan Turing Building, Oxford Road, M13 9PL Manchester, United Kingdom, mario.berljafa@manchester.ac.uk, stefan.guettel@manchester.ac.uk