HW 6, MA 1023 Due 3/2

- 1. 1) Sketch the region bounded by the polar curve $r = -4\cos\theta$ and $\frac{3\pi}{4} \le \theta \le \frac{5\pi}{4}$.
- 2) Find the area of the above region.

In exercise 2-3, find the length of the polar curves.

$$r = \theta^2$$
 $0 \le \theta \le \sqrt{5}$

3.

$$r = 2 + 2\cos(\theta)$$
 $0 \le \theta \le \pi$

- 4. Graph the points in the xyz-coordinate system satisfying the the given equations or inequalities.
- 1) $x^2 + y^2 = 4$ and z = -2. 2) $x^2 + y^2 + z^2 = 3$ and z = 1.
- 5. Find the component form and length of the vector with initial point P(1,-2,3) and terminal point Q(-5, 2, 2).
- 6. Give $\vec{u} = \langle 3, -2, 1 \rangle$, $\vec{v} = \langle 2, -4, -3 \rangle$, $\vec{w} = \langle -1, 2, 2 \rangle$, find the magnitude of
- (1) $\vec{u} + \vec{v} + \vec{w}$;
- (2) $2\vec{u} 3\vec{v} 5\vec{w}$.
- 7. Find a unit vector parallel to the sum of $\vec{u} = 2\vec{i} + 4\vec{j} 5\vec{k}$ and $\vec{v} = \vec{i} + 2\vec{j} + 3\vec{k}$.
- 8. Determine the value of x so that $\vec{u} = \langle 2, x, 1 \rangle$ and $\vec{v} = \langle 4, -2, -2 \rangle$ are perpendicular.