Chapter 1 Homework

1. Write a formula expressing $z = \langle \langle x,y \rangle, \langle v,w \rangle \rangle$ using just ϵ and =.

SOLUTION.

2. (a) Show that $\alpha < \beta$ implies that $\gamma + \alpha < \gamma + \beta$ and $\alpha + \gamma \leqslant \beta + \gamma$. (b) Give an example to show that the " \leq " cannot be replaced by "<". (c) Also show: $\alpha \leq \beta \rightarrow \exists ! \delta(\alpha + \delta = \beta)$.

SOLUTION.

- (a) Suppose $\alpha < \beta$.
- (i) The element $<\alpha,1>\in\beta\times\{1\}$, but $<\alpha,1>\notin\alpha\times\{1\}$, which implies that $\gamma\times\{0\}\cup\alpha\times\{1\}<\gamma\times\{0\}\cup\beta\times\{1\}$ with the ordering from the definition of "+".
- (ii) Towards a contradiction, suppose $\alpha + \gamma > \beta + \gamma$. Then there is some element in $c \in \alpha \times \{0\} \cup \gamma \times \{1\}$ such that $c \notin \beta \times \{0\} \cup \gamma \times \{1\}$. This implies $\beta > \alpha$, a contradiction.
- (b) Let $\gamma = \omega$, $\alpha = 0$, and $\beta = 1$. Then $0 + \omega = \omega = 1 + \omega$, and hence there is no strict inequality.
- (c) If $\alpha = \beta$, then existence is trivial ($\delta = 0$) and uniqueness is clear since, for $\delta > 0$, $\beta + \delta > \beta$. So suppose $\alpha < \beta$.

Existence: Transfinite induction on β .

Base: $\beta = 0$. Then this is trivial with $\alpha = 0$, $\gamma = 0$.

Successor: $\beta = S(\zeta) = \zeta + 1$. Then by IH $\exists \delta(\alpha + \delta = \zeta)$. But given associativity of addition, $\alpha + (\delta + 1) = (\alpha + \delta) + 1 = \zeta + 1 = \beta$.

Limit: β is a limit ordinal. By IH for all $\zeta < \beta$, $\exists \delta(\alpha + \delta = \zeta)$. For all such δs , consider $\delta' = \sup(\delta)$.

Then:

 $\alpha + \delta' = \sup(\alpha + \delta)$ (note this is trivial is δ is not a limit ordinal; else it follows by def of addition, and δ as above)

$$= \sup (\zeta : \zeta < \beta)$$
$$= \beta$$

Uniqueness: Suppose $\alpha + \delta_1 = \alpha + \delta_2 = \beta$. Then by (a), $\delta_1 \not< \delta_2$ and $\delta_2 \not< \delta_1$, hence $\delta_1 = \delta_2$.

3. (a) Show that if $\gamma > 0$, then $\alpha < \beta$ implies that $\gamma \cdot \alpha < \gamma \cdot \beta$ and $\alpha \cdot \gamma \leqslant \beta \cdot \gamma$. (b) Give an example to show that the " \leqslant " cannot be replaced by "<". (c) Also show $(\alpha \leqslant \beta \land \alpha > 0) \rightarrow \exists ! \delta, \zeta(\zeta < \alpha \land \alpha \cdot \delta + \zeta = \beta)$.

SOLUTION.

- (a) (i)Suppose $\alpha < \beta$. Then $<\alpha, 0> \in \beta \times \gamma$, but this element is not in $\alpha \times \gamma$, from the definition of ordinal multiplication.
- (ii) [TO BE SOLVED: SIMILAR TO (2)]
- (b) $2 \cdot \omega = 3 \cdot \omega = \omega$, for example.
- (c) [TO BE SOLVED]