

Exercise 4: Implementing a New Training Loop

Taekyung Heo

Postdoctoral Fellow, School of ECE Georgia Institute of Technology taekyung@gatech.edu

Acknowledgments: William Won (GT), Srinivas Sridharan (Facebook), Sudarshan Srinivasan (Intel)

Training Loops

- Training loop determines the behavior of a workload
 - Parallelization strategy
 - Computation order
 - Communication order
- Supported training loops
 - Data parallel Goal: tweak this loop
 - Model parallel
 - DLRM
 - Transformer
- You can implement a new training loop to support other models

Vanilla Data-parallel Training Loop (FWD)

Vanilla Data-parallel Training Schedule

Vanilla Data-parallel Training Loop (BWD)

Flow-per-layer: 1.Compute weight gradient-> 2.issue weight gradient comm -> 3.compute input gradient -> 4. go to previous layer

Vanilla Data-parallel Training Schedule

Vanilla Data-parallel Training Loop

Vanilla Data-parallel Training Schedule

FSM Diagram

Exercise: Reorder Data-parallel Training Loop

Reordered Data-parallel Training Loop

FSM Diagram

Adding a New Training Loop

- See astra-sim/workload/Workload.cc
- Vanilla data-parallel loop is implemented in iterate_data_parallel()
- Add a reordered version, iterate_data_parallel_reorder()

```
void Workload::call(EventType event, CallData* data) {
  if (counter > 0) {
    generator->try_register_event(
        this, EventType::Workload_Wait, NULL, counter);
    return;
}
if (parallelismPolicy == ParallelismPolicy::Data) {
    iterate_data_parallel();
} else if (parallelismPolicy == ParallelismPolicy::DataReorder) {
    iterate_data_parallel_reorder();
} else if (parallelismPolicy == ParallelismPolicy::Transformer) {
    iterate_hybrid_parallel_Transformer();
```

Vanilla Training Loop (iterate_data_parallel)

```
void Workload::iterate data parallel() {
  assert(index >= 0);
  assert(index < SIZE);</pre>
  check for sim end();
  if (current state == LoopState::Forward Pass)
  - 31 lines: if (!lavers[index]->is weight grad comm finished b]
    if (index >= SIZE) {
      current state = LoopState::Weight Gradient;
      index--:
    generator->register event(this, EventType::General, NULL, 1);
    else if (current state == LoopState::Weight Gradient) {
    14 lines: if (delay loaded == false) {---
    if (index == 0) {
      pass counter++;
      current state = LoopState::Forward Pass;
      else {
      current_state = LoopState::Input_Gradient;
    generator->register event(this, EventType::General, NULL, 1);
    return:
    else if (current state == LoopState::Input Gradient)
    11 lines: if (delay loaded == false) {----
    delay loaded = false;
    index--;
    current state = LoopState::Weight Gradient;
    generator->register event(this, EventType::General, NULL, 1);
    return;
```

- Training loop is implemented as a FSM
- index presents the current layer index
- current_state holds the current state

Vanilla Data-parallel Training Schedule

FSM Diagram BWD WG IG

Reordered Training Loop (iterate_data_reorder)

```
void Workload::iterate data parallel reorder() {
 assert(index >= 0);
 assert(index < SIZE);</pre>
 check for sim end():
     (current state == LoopState::Forward Pass)
   16 lines: if ('lavers[index]->is weight grad comm finished b
   if (index >= SIZE) {
     current state = LoopState::Input Gradient;
     index--:
   generator->register_event(this, EventType::General, NULL, 1);
   return;
   else if (current_state == LoopState::Weight_Gradient) {
   15 lines: if (delay loaded == false) {-----
   if (index > 1) {
     index--:
     current state = LoopState::Input Gradient;
    } else if (index == 1) {
      index--:
     current state = LoopState::Weight Gradient
     else if (index == 0) {
     pass_counter++;
     current state = LoopState::Forward Pass;
    generator->register_event(this, EventType::General, NULL, 1);
   else if (current state == LoopState::Input Gradient)
   11 lines: if (delay loaded == false) {------
    delay loaded = false
   current state = LoopState::Weight Gradient;
   generator->register_event(this, EventType::ueneral, NULL, 1);
   return;
```

 You can reorder the computation schedule by tweaking the index and current_state

Reordered Data-parallel Training Schedule

Adding Debugging Messages

```
void Workload::iterate data parallel reorder() {
 assert(index >= 0);
 assert(index < SIZE);</pre>
 check_for_sim_end();
 if (current_state == LoopState::Forward Pass) {
    3 lines: if (!layers[index]->is_weight_grad_comm_finished_blockir
   if (delay loaded == false) {
     counter = layers[index]->get fwd pass compute();
     delav loaded = true:
     if (generator->id == 0)
        std::cout << "[TUTORIAL] FWD[" << index <<"]" << std::endl;</pre>
  } else if (current state == LoopState::Weight Gradient) {
   if (delay loaded == false) {
     counter = layers[index]->get_weight_grad_compute();
     if (generator->id == 0)
       std::cout << "[TUTORIAL] BWD_WG[" << index <<"]" << std::endl</pre>
 } else if (current_state == LoopState::Input_Gradient) {
   if (delay loaded == false) {
     counter = layers[index]->get input grad compute();
     delay loaded = true:
     if (generator->id == 0)
        std::cout << "[TUTORIAL] BWD IG[" << index <<"]" << std::endl</pre>
    9 lines: if (counter > 0) {-----
```

- You can add debugging messages to make sure that the training loop works as expected
- Make sure to print debugging messages only when (generator->id == 0)
 - Each processing element is a generator
 - If you don't filter the ID, you will see debugging messages from all PEs

Adding Debugging Messages

Vanilla Data-parallel Loop

./exercise 4/exercise 4 vanilla.sh | grep TUTORIAL

```
[TUTORIAL] FWD[0]
[TUTORIAL] FWD[1]
[TUTORIAL] FWD[2]
[TUTORIAL] FWD[3]
[TUTORIAL] BWD_WG[3]
[TUTORIAL] BWD_IG[3]
[TUTORIAL] BWD_IG[2]
[TUTORIAL] BWD_IG[2]
[TUTORIAL] BWD_IG[1]
[TUTORIAL] BWD_IG[1]
[TUTORIAL] BWD_IG[1]
[TUTORIAL] BWD_WG[0]
....
```

Reordered Data-parallel Loop

./exercise_4/exercise_4_reorder.sh | grep TUTORIAL

```
[TUTORIAL] FWD[0]
[TUTORIAL] FWD[1]
[TUTORIAL] FWD[2]
[TUTORIAL] FWD[3]
[TUTORIAL] BWD_IG[3]
[TUTORIAL] BWD_WG[3]
[TUTORIAL] BWD_IG[2]
[TUTORIAL] BWD_WG[2]
[TUTORIAL] BWD_IG[1]
[TUTORIAL] BWD_WG[1]
[TUTORIAL] BWD_WG[0]
....
```

Agenda

Time (PDT)	Topic	Presenter
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna
2:00 – 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan
2:20 – 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi
3:30 – 4:00	Coffee Break	
4:00 – 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded