Types of RNA
○ 80% rRNA
○ 15% tRNA
○ 2% mRNA
○ 2% non-coding RNA
Eukaryotic RNA polymerase transcription
○ RNA polymersase I: pre-rRNA
○ RNA polymerase II: mRNA, siRNA(transcription control), miRNA(translation control), snRNA(Splicing control)
○ RNA polymerase III: tRNA, 5S & 7S rRNA (ribosomal subunit)
Location of processing:
○ tRNA and rRNA in the cytoplasm
○ Most mRNA, tRNA, rRNA, snRNA in the nucleus
• Transcription coupled with modification: capping enzyme, splicosome complex and polyadenylation enzyme coupled on
the polymerase.
Advantages: Quality control, prevent degradation, conserve cellular resources
mRNA Post transcriptional modification
• 5' capping: addition of 7-methyl guanosine (m7G)
 γ-phosphate on the 5' end of the polynucleotide removed with RNA triphosphatase
 α-phosphate of the guanosine triphosphate molecule linked with β-phosphate of 5' end nucleotide with
guanylyltransferase, creating a unique 5 prime-5 prime bond
 Methyl group added to guanosine N7 using methyltransferase.
RNA splicing: Exon connected together, intron excised and degraded via transesterification.
o snNRP(small nuclear nucleoriboproteins) made up of 100-200 nucleotides + proteins (U1,2,4,5,6 involved)
○ Intron sequence: 5' GU site, branching point adenine, pyrimidine tract near 3' end, 3' end AG site.
○ Binding and splicing sequence:
► U1 bind to 5' end GU site.
Branch bridging protein (BBP) bind to branching point
► U2 auxillary factor 65kDa (U2AF65) bind to pyrimidine tract, U2AF35 bind to 3' end AG site
► U2 bind to branching point displace BBP
► U4,5,6 binds, release U2 auxillary factors.
▶ 1st transesterification at 5' Gu site, release U1 and U4, branching lariat form, exon 1 freed
Splicosome complex bring AG site closer to exon 1, 2nd transesterification, two exons joined. Lariat released
 Alternative splicing: In different tissues, different splice sites through enhancer/silencers, different position of poly.
tail, different exon shuffling. Lead to expression of the same gene but different product
Poly-A tail
Polyadenylation factor found with polymerase
 When poly-A signal AAUAA detected, polyadenylation factor bind to signal, induce cleavage by endonuclease
Addition of a poly-A tail downstream of the signal, using polyadenine polymerase
Poly-A binding protein (PAB) binding prevent degradation of tail
tRNA rRNA processing
• tRNA processing
○ D-loop cleavage (5' end) and T-loop cleavage (3' end), addition of CAA site on 3' end for amino acid binding
○ Splicing remove introns
○ Aminoacyl synthetase ATP —> AMP

rRNA processing
○ Self-spliced
Coordinated modification of nucleotides by small nucleolar RNA (snoRNA)
○ E.g. rRNA in S.cerevisae cleaved by RNAse III
Diseases related to RNA processing:
mRNA Splicing - Spinal Muscular atrophy
mRNA Splicing - Cystic fibrosis
mRNA Polyadenylation - Alzheimer's
mRNA Polyadenylation - Parkinson's
tRNA processing - mitochondrial disorders
tRNA processing - Neurodegenerative disorder
rRNA processing - Developmental abnormalities
rRNA processing - Skeletal dysplasia
Types of RNA
Types of polymerase, function
Processing locations
Coupling components position, advantages
mRNA processing three steps
Different tissue expressions
trna, rrna
Diseases

