Mealy Machine

Example 1

Design an error detector for the following sequential circuit. The circuit has a single input x and a single output z. Data arrive serially on x synchronized with the clock. The output z (an error) should be "1" whenever two consecutive zeroes or three consecutive ones appear on line x. Implement the circuit using D, JK, RS and T flip-flops.

Examples of input/output

Х	0	0	1	1	1	1	1	0	0	0	1	1	1	0	0	1
Z	0	1	0	0	1	1	1	0	1	1	0	0	1	0	1	0
clk	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

State Diagram:

State assignment

Assign the following state arbitrary:

- $q_0 = 00$
- $q_1 = 01$
- $q_2 = 10$
- $q_3 = 11$

State Transition Table:

Present	Next state, output				
state	x=0		x=1		
y ₁ y ₀	y ₁ y ₀ /	Z	y ₁ y ₀ /	Z	
0 0	0 1,	0	10,	0	
0 1	0 1,	1	10,	0	
1 0	0 1,	0	1 1,	0	
1 1	0 1,	0	1 1,	1	

$$error = z = \overline{y_1} y_0 \overline{x} + y_1 y_0 x$$

D, JK, T, RS Transition Table:

present→next state	D			J		K	Т			R		S
0→0	0	store	0	0	0	Х	0	store	0	Х	0	Ω
0 70	O	reset	0	U	1	^	0	reset	1	^	0	U
0→1	1	set	1	1	0	V	1	set	0	0	1	1
0 7 1	I	invert	1	Į.	1	Х	I	set	0	U	1	J
1→0	0	reset	0	v	1	1	1	reset	1	1	0	0
170	U	invert	1	Х	1	I	I	reset	1	ı	0	U
1→1	1	store	0	v	0	0	0	store	0	0	0	V
171	l	set	1	Х	0	U	U	set	0	J	1	Х

State transition table of the circuit to design

Present	Next state			
state	x=0	x=1		
y ₁ y ₀	y ₁ y ₀	y ₁ y ₀		
0 0	0 1	10		
0 1	0 1	1 0		
1 0	0 1	11		
1 1	0 1	11		

1. D-FF implementation

Х У1 У0	0	1
00	0	1
01	0	1
11	0	1
10	0	1

$$\mathbf{y}_1^+ = \mathbf{D}_1 = \mathbf{x}$$

$$y_0^+ = D_0 = \overline{x} + y$$

Circuit Diagram of implementation with a D-Flip Flop

OR: Directly from Specification:

X_{t} =Present Input, X_{t-1} Previous input, X_{t-2} two clock passed previous input

2. JK-implementation

Х У1 У0	0	1
00	0	1
01	0	1
11	Х	Х
10	Х	x

$$\boldsymbol{J}_{\boldsymbol{y}_1} = \boldsymbol{x}$$

х У1 У0	0	1			
00	1	0			
01	х	Х			
11	X	X			
10	1	1			
$J_{y_0} = x + y_1$					

у ₁ у ₀	0	1
00	X	Х
01	Х	Х
11	1	0
10	1	0
	_	

$$K_{y_1} = X$$

y ₁ y ₀	0	1
00	Х	X
01	0	
11	0	0
10	Х	Х

$$\mathbf{K}_{\mathbf{y}_0} = \mathbf{x} \, \mathbf{y}_1$$

Circuit Implementation

3. T-implementation

Х У1 У0	0	1			
00	0	1			
01	0	$\left(1\right)$			
11	(0			
10	7	0			
$T_1 = xy_1 + xy_0$					

x y ₁ y ₀	0	1
00	7	0
01	0	$\overline{1}$
11	0	1
10	1	0

$$T_0 = xy_0 + xy_0 = x \square y_0$$

Circuit Implementation

