Домашнее задание по алгебре

Родигина Анастасия, 167 группа

7 мая 2017

Задача 1

Пусть α комплексный корень многочлена $x^3 - 3x + 1$. Представьте элемент

$$\frac{\alpha^4 - \alpha^3 + 4\alpha + 3}{\alpha^4 + \alpha^3 - 2\alpha^2 + 1} \in \mathbb{Q}(\alpha)$$

в виде
$$f(\alpha)$$
, где $f(x) \in \mathbb{Q}[x]$ и $deg f(x) \leq 2$.

Из того, что $f(\alpha) = 0$, заметим, что $\alpha^3 - 3\alpha + 1 = 0$. Повыражаем разные степени α и подставим в искомый элемент:

$$\alpha^{3} = 3\alpha - 1$$

$$\alpha^{4} = 3\alpha^{2} - \alpha$$

$$\frac{\alpha^{4} - \alpha^{3} + 4\alpha + 3}{\alpha^{4} + \alpha^{3} - 2\alpha^{2} + 1} = \frac{3\alpha^{2} - \alpha - 3\alpha + 1 + 4\alpha + 3}{3\alpha^{2} - \alpha + 3\alpha - 1 - 2\alpha^{2} + 1} = \frac{3\alpha^{2} + 4}{\alpha^{2} + 2\alpha}$$

Найдем такой элемент, который при умножении на $(\alpha^2 + 2\alpha)$ будет давать 1. Сделать это можно с помощью метода неопределенных коэффициентов:

$$1=(\alpha^2+2\alpha)(A\alpha^2+B\alpha+C)+(\alpha^3-3\alpha+1)(D\alpha^2+E\alpha+F)=$$
 = $D\alpha^5+(A+E)\alpha^4+(2A+B+F-3D)\alpha^3+(2B+C+D-3E)\alpha^2+(2C+E-3F)\alpha+F$ Решая систему уравнений на эти коэффициенты получаем многочлен: $-\alpha^2+\alpha+1$ Тогда:

$$\frac{3\alpha^2 + 4}{\alpha^2 + 2\alpha} = (3\alpha^2 + 4)(-\alpha^2 + \alpha + 1) = -10\alpha^2 + 16\alpha + 1$$

Задача 2

Найдите минимальный многочлен для числа $\sqrt{3} - \sqrt{5}$ над Q.

Возьмем многочлен, корнем которого будет $\sqrt{3} - \sqrt{5}$:

$$x = \sqrt{3} - \sqrt{5}$$

$$x^2 = 8 - 2\sqrt{15}; \qquad x^2 - 8 = -2\sqrt{15}$$

$$x^4 - 16x^2 + 4 = 0$$

$$(x - \sqrt{3} + \sqrt{5})(x + \sqrt{3} - \sqrt{5})(x - \sqrt{3} - \sqrt{5})(x + \sqrt{3} + \sqrt{5}) = x^4 - 16x^2 + 4$$

Заметим, что данный многочлен является неприводимым над Q (т.е. не разлагается на множители над Q и является простым элементом кольца). А это значит, что он и будет минимальным (меньшей степени быть не может из выше сказанного).

Задача 3

Пусть F подполе в \mathbb{C} , полученное присоединением $\kappa \mathbb{Q}$ всех комплексных корней многочлена $x^4 + x^2 + 1$ (то есть F — наименьшее подполе в \mathbb{C} , содержащее \mathbb{Q} и все корни этого многочлена). Найдите степень расширения $[F:\mathbb{Q}]$.

Запишем корни многочлена $x^4 + x^2 + 1$:

$$x_{1.2} = \pm \sqrt[3]{-1}; \quad x_{3.4} = \pm (-1)^{2/3}$$

Несложно заметить, что все корни лежат в поле $Q[\sqrt[3]{-1}]$. Из этого следует, что степень расширения не более 2. Кроме того, используем тот факт, что $\sqrt[3]{-1}$ - нельзя представить в Q, из этого следует, что степень не менее 2. (Интересный факт, что именно так обосновываются комплексные числа (классы вычетов по модулю x^2+1 многочленов R[x]) - это просто так:))

Задача 4

Пусть $F = \mathbb{C}(x)$ поле рациональных дробей и $K = \mathbb{C}(y)$, где y = x + 1/x. Найдите степень расширения [F:K].

 $xy = x(x+1/x) \Rightarrow x^2 - xy + 1 = 0$, где х будет корнем данного уравнения над $\mathbb{C}(y)$. Осталось проверить будет ли лежать этот х в $\mathbb{C}(y)$. (Если он н будет там лежать, тогда степень расширения будет равна 2)

Решим квадратное уравнение относительно х.

$$x = \frac{1 \pm \sqrt{y^2 - 4}}{2}$$

Этот многочлен является неприводимым, тогда степень расширения будет равна 2