Terminologie

- Statistique multivariée
- Analyse des données
- Apprentissage statistique à partir des données
 - Supervisé
 - Non supervisé
- Reconnaissance des formes statistique
- Fouille de données ou Data mining

Data mining (1)

- Explosion de la quantité de données disponibles
 - Informatique de gestion
 - Appareils de mesure : capteurs de pollution, images satellitaires, ...
 - Fichiers de logs
 - Le Web
- Objectif : extraire des informations à partir de ces données
- Moyens:
 - Constitution d'entrepôts de données (datawarehouse)
 - Outils d'analyse : Data mining

Data mining (2)

- Exemple de méthodes (modèles)
 - Visualiser et interpréter : ACP, MDS
 - Prévoir : classement, régression
 - Découvrir des structures
 - Rechercher des règles
- Intersection de plusieurs disciplines
 - Base de données
 - Statistique et analyse de données
 - Apprentissage (Machine learning)
 - Intelligence artificielle

Étapes du processus d'extraction d'information

- Nettoyage des données (60 % du processus)
 - Données manquantes, données atypiques (outliers), mise au format,...
- Sélection d'un jeu de données pertinent en fonction de l'objectif fixé
 - Sélection des variables, des individus,...
- Data mining
 - Choix des objectifs : résumé, classification, régression
 - Choix des méthodes
 - Application des méthodes
- Analyse des résultats
 - Visualisation
 - Interprétation
 - Retour aux étapes précédentes

Exemple des Moucherons (1)

- Découverte de 2 espèces de moucheron (1981)
- Difficile de les distinguer
- On cherche à le faire avec des caractéristiques externes simples
- Données :
 - 9 moucherons Af et 6 moucherons Apf
 - Longueurs de l'aile et de l'antenne en mm

Introduction 5 /

Exemple des Moucherons (2)

```
1.38
           1.64
0
   1.40
           1.70
   1.24
          1.72
0
0
   1.36
          1.74
0
   1.38
          1.82
0
   1.48
          1.82
0
   1.54
           1.82
0
   1.38
          1.90
0
   1.56
          2.08
   1.14
          1.78
1
   1.20
          1.86
   1.18
          1.96
   1.30
          1.96
1
   1.26
          2.00
1
   1.28
           2.00
```

UTC-SY09

Exemple des Moucherons (2)

Exemple des Moucherons (2)

Comment distinguer les 2 groupes ?

Exemple des Moucherons (3)

Il est facile visuellement de tracer une ligne

UTC-SY09 Introduction 7 / 14

Exemple des Moucherons (4)

Aucune des 2 variables ne peut faire le travail seul

Exemple des Moucherons (5)

On peut voir cela comment un changement de variables

Exemple des Moucherons (6)

- Variable intéressante : d=aile-antenne
- Mais aussi : aile/antenne
- Intérêt du graphe de dispersion (scatter plot)
- Mais que faire si on a plus de 2 variables ?
- Problème de discrimination et ensemble d'apprentissage
- Validité des résultats sur la population totale ?
 - Nécessité de la Statistique :
 - Vecteur aléatoire : (aile, antenne)
 - Loi jointe, lois marginales, lois conditionnelles, ...

Filtrage des spams

- Une personne cherche à filtrer ses emails : email et spam
- Données : 3601 emails, classés en email et spam pour lesquels on connaît la fréquence de 57 mots souvent utilisés

	Georg	you	your	hp	free	hpl	!	Our	re	edu	remove
Spam	0.00	2.26	1.38	0.02	0.52	0.01	0.51	0.51	0.13	0.01	0.23
Email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29	0.01

Problème de discrimination

UTC-SY09 Introduction 11 / 14

Cancer de la prostate

- Données : 97 patients
 - Niveau de gravité (log) : lcavol (difficile à calculer)
 - Poids de la prostate (log) : weight
 - âge
 - Quantité d'hyperplasie prostatique (log) : lbph
 - Invasion de la vésicule séminale : svi
 - Pénétration capsulaire (log) : lcp
 - Score de Gleason
 - Pourcentage de score de Gleason 4 ou 5 : pgg45
- Prédire lcavol (pour décider d'une opération ou non)
- Problème de régression

Plan

- Introduction
- Méthodes exploratoires élémentaires
- Analyse en Composantes Principales
- Classification Automatique
- Vecteur aléatoire et statistique multidimensionnelle
- Théorie de la décisison
- Discrimination dans le cas gaussien
- Régression linéaire
- Méthodes non paramétriques (kppv,...)
- Sélection de variables
- Evaluation des méthodes

Bibliographie

- Probabilités, analyse de données et statistique, Saporta, G., Technip, Paris (2006)
- A First Course in Multivariate Statistics, Flury, Springer (1997)
- The elements of statistical learning, Hastie, Tibshirani, Friedman, Springer (2001)
- Pattern recognition, Duda, Hart et Stork, Wiley (2000)

UTC-SY09 Introduction 14 / 14