Communications Services and Security Wireless Networks

Cèsar Fernández

Departament d'Informàtica Universitat de Lleida

Curs 2022 - 2023

- Wireless Ethernet
 - WLAN Technologies
 - Configurations
 - Medium Access Control (MAC)
 - WLAN Frames
 - IEEE 802.11 Extensions
- WiFi Security
 - Contents outline

- WiFi connection
- Authentication
- WEP, Wireless Enhanced Privacy
- 802.11i
- Wifi deployments
 - Centralized control architecture
 - Alcatel-Lucent Instant AP
- Bibliography

Contents

- Wireless Ethernet
 - WLAN Technologies
 - Configurations
 - Medium Access Control (MAC)
 - WLAN Frames
 - IEEE 802.11 Extensions
- 2 WiFi Security
- Wifi deployments
- Bibliography

Wireless Ethernet

Introduction

- WLAN (Wireless Local Area Network) rises as an alternative to wired networks
- Two main motivations:
 - Sometimes, wired is not possible
 - Equipment mobility requirements
- To employ radio frequency
- Range station determined by radio equipment power
- At 1.990 IEEE starts the 802.11 working group

Two main transmission techniques

- Narrow Band
 - A frequency band is assigned to each client
 - Frequency assignment such that no interferences among clients
- Broad Band
 - Clients physically interfere among them
 - Spread spectrum techniques recover interfering situation
 - So, more immunity to external interfering sources

Two main Spread Spectrum techniques

FHSS (Frequency-Hopping Spread Spectrum)

- The carrier frequency changes (hops) frequently (several times per second)
- Changing patterns known by transmitter and receiver.
 Synchronization required
- Any non-synchronized reception is seen as noise

Two main Spread Spectrum techniques

DSSS (Direct-Sequence Spread Spectrum)

- Each information bit XORed by a faster bit sequence (chips)
- Chip sequences are pseudo-random and orthogonal
- As in frequency hopping, chip sequences are agreed by pairs (synchronized)
- Any non-synchronized reception is seen as noise

Such a faster chip sequence makes broader the transmission band

Configurations

Contents Wireless Ethernet Security Deployment Biblio

Two type of WLAN configurations

Simple networks (Ad-hoc)

Client communication is allowed for stations inside the cover range

Configurations

Two type of WLAN configurations

Distributed networks (Infrastructure)

- A wired infrastructure exists where Access Points are attached
- Access points serve a set of mobile clients, giving a cell coverage

Some problems

- To employ CSMA for WLAN is inefficient
- Because of limited range, CSMA presents two problems:
 - Hidden station
 - Exposed station

Hidden station problem

- A sends to B
- C senses the medium and detects it free (because out of range).
 C starts sending
- C interferes B, masking A reception

Exposed station problem

- B sends to A
- C senses the medium busy. Can not send to D, even possible because out of range from A

MACA protocol (Multiple Access with Collision Avoidance)

Early protocol for WLAN (Karn, 1990) Procedure:

- When A wants to send to B, A sends a RTS (Request To Send) to B.
 The RTS frame contains the size of the data to be sent
- All the stations receiving RTS from A (inside A range) keep quiet until B responds
- B sends a CTS (Clear To Send) to A, telling its availability to receive data. CTS frame also have the data size from A
- All the stations receiving CTS from B (inside B range) keep quiet during B transmission time
- When a RTS is sent and no response is received, enters into a exponential binary backoff retransmission

MACAW protocol (Multiple Access with Collision Avoidance for Wireless)

Modified MACA based (Bharghavan, 1.994). Efficiency improved

- Receiving station sends ACK when a frame has been correctly received
- To avoid initial collisions CSMA is employed for RTS frames
- Exponential binary backoff employed for each connection instead of for each station

WLAN Frames

WLAN frame types

- Data frames: End user information frames
- Control frames: MAC operation related frames, such as RTS, CTS, ACK, . . .
- Management frames: Management operations related to beacons, authentication, SSID, . . .

WLAN Frames

WLAN frame structure

It is common for all WLAN frames

Preamble PLCI	Header MAC Frame
---------------	------------------

- Preamble: two fields
 - *Sync*: 80 bits (0101...) for receiver synchronization
 - SDF(Start Frame Delimiter): 16 bits (0000 1100 1011 1101)
- PLCP Header(Physical Layer Convergence Procedure): Information to decode the MAC frame
 - Signaling: information rate (8 bits)
 - Service: modulation type (8 bits)
 - Length: frame length (16 bits)
 - CRC: 16 bits for error detection
- MAC Frame: Layer 2 frame

Byt	es 2	2	6	6	6	2	6	0 - 2312	4
	Frame Control	Duration / ID	Address 1	Address 2	Address 3	Sequence	Address 4	Body	CRC

MAC Frame Format

Frame control

Bi	ts	2	2	4	1	1	1	1	1	1	1	1	
	Pr	otocol	Туре	Subtype	To DS	From DS	Frag.	Retrans.	PM	PMD	WEP	Order	1

- Protocol: Set to 00
- Type:
 - 00: Management (Association req/res, Probe req/res, Authentication, Beacon, ...)
 - 01: Control (RTS, CTS, ACK, ...)
 - 10: Data
- Subtype:
- To DS: Set to 1 for frames going to AP
- From DS: Set to 1 for frames coming from AP

Byt	es 2	2	6	6	6	2	6	0 - 2312	4
	Frame Control	Duration / ID	Address 1	Address 2	Address 3	Sequence	Address 4	Body	CRC

MAC Frame Format

Frame control

Bi	ts	2	2	4	1	1	1	1	1	1	1	1	
	Pr	otocol	Туре	Subtype	To DS	From DS	Frag.	Retrans.	PM	PMD	WEP	Order	

- Fragmentation: indicates fragmented data
- Retransmission: set to 1 if frame has been retransmitted
- PM:(Power Management) tells that station is going to enter in power saving mode
- PMD: set to 1 if AP has pending data for a PM mode station
- WEP: enciphered data
- Order: for protocols DEC and LAT only

Byt	es 2	2	6	6	6	2	6	0 - 2312	4
	Frame Control	Duration / ID	Address 1	Address 2	Address 3	Sequence	Address 4	Body	CRC

MAC Frame Format

Duration / ID

Its value depends on the frame type:

- For stations in PM mode indicates the association ID (AID). So, when station wakes up, AP sends the corresponding buffered data
- Otherwise, indicates the time that channel is expected to be busy during the current transmission (in microseconds)

Byt	tes 2	2	6	6	6	2	6	0 - 2312	4
	Frame Control	Duration / ID	Address 1	Address 2	Address 3	Sequence	Address 4	Body	CRC

MAC Frame Format

Addresses

Their content depends on To DS and From DS values

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSSID	N/A ^a
0	1	Destination	BSSID	Source	N / A
1	0	BSSID	Source	Destination	N/A
1	1	AP _{rx}	AP_{tx}	Source	Destination b

^aAd-Hoc networks, Control and Management frames

BSSID (Basic Service Set Id)

BSSID allows to differentiate WLAN in the same area.

- For infrastructure networks, BSSID is the AP MAC wired address
- For adhoc networks, BSSID is randomly generate

^bWireless bridges

Byt	es 2	2	6	6	6	2	6	0 - 2312	4
	Frame Control	Duration / ID	Address 1	Address 2	Address 3	Sequence	Address 4	Body	CRC

MAC Frame Format

Addresses

Their content depends on To DS and From DS values

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSSID	N/A ^a
0	1	Destination	BSSID	Source	N / A
1	0	BSSID	Source	Destination	N/A
1	1	AP _{rx}	AP_{tx}	Source	Destination b

^aAd-Hoc networks, Control and Management frames

ESSID (Extended SSID) (or SSID for short)

- ESSID is a set of 32 ASCII chars. Included in management frames (beacon, . . .)
- Consists of all the BSSID of the network

^bWireless bridges

Byt	es 2	2	6	6	6	2	6	0 - 2312	4
	Frame Control	Duration / ID	Address 1	Address 2	Address 3	Sequence	Address 4	Body	CRC

MAC Frame Format

Sequence

For fragmented frames indicates their sequence order

CRC

Cyclic Redundancy Check

IEEE 802.11 Extensions

- New features and specifications based on IEEE 802.11
- Higher transmission rates for WLAN
- Only physical layer is modified
- New modulation techniques to enhance throughput

802.11b

- Operates at 2.4 GHz, ISM band (Industrial Scientific and Medical), known as "Wi-Fi" (Wireless Fidelity).
- Employs DSSS at transmission rates of 1, 2, 5.5 and 11 Mbps.
- Barker Code signal being modulated as QPSK (Quadrature Phase Shift Keying) at 2, 5.5 i 11 Mbps and as BPSK (Binary Phase Shift Keying) at 1 Mbps.
- 802.11b backward 802.11 compatible at 1 and 2 Mbps.

Modulations

$$\begin{aligned} \mathbf{10}_{bpsk} &= \left\{ \begin{array}{ll} -a \cdot \cos(\omega_{c}t), & 0 \leq t < T_{s}, & (T_{s} = T_{b}) \\ a \cdot \cos(\omega_{c}(t - T_{s})), & T_{s} \leq t < 2T_{s} \\ \mathbf{10}_{qam} &= -\frac{a}{\sqrt{2}} \cdot \cos(\omega_{c}t) + \frac{a}{\sqrt{2}} \cdot \sin(\omega_{c}t), \, 0 \leq t < T_{s}, \, (T_{s} = 2T_{b}) \end{array} \right. \end{aligned}$$

- QAM double transmission rate with the same bandwidth
- QAM more error sensitivity at the same power strength

Bandwidth for a $2T_s$ period pulse

$$a_n = \frac{4a}{\pi n} \sin(\pi n/2)$$

Bandwidth for a $2T_s$ period pulse

At 11 Mbps:

- QAM, $T_s = 0.18 \,\mu s$
- BPSK, $T_s = 0.09 \,\mu s$

 $sin(\omega_c t)$

Transmission and reception outline $\begin{array}{c} -\frac{a}{\sqrt{2}} \\ \cos(\omega_c t) \\ + - -\frac{a}{\sqrt{2}} \cdot \cos(\omega_c t) + \frac{a}{\sqrt{2}} \cdot \sin(\omega_c t) \end{array}$

Transmission and reception outline

Transmission and reception outline $\cos(\omega_c t)$ $-\frac{a}{\sqrt{2}}\cdot\cos(\omega_c t)+\frac{a}{\sqrt{2}}\cdot\sin(\omega_c t)$ merger $sin(\omega_c t)$ $\frac{a}{2\sqrt{2}}\left(-1-\cos(2\omega_c t)+\sin(2\omega_c t)\right)$ $\frac{a}{2\sqrt{2}}\left(1-\cos(2\omega_c t)-\sin(2\omega_c t)\right)$

CDMA - DSSS

- Each information bit XORed with an established Barker Code
- Barker code consists on 11 chips for BPSK: + + + + + - -
- Multiple access technique as a modulation engine
- Deals better against interferences; orthogonality
- Spread Spectrum

802.11a

- Working at 5 GHz (USA: 5.18 5.32, 5.745-5.805 GHz). UNII band (Unlicensed National Information Infrastructure)
- 33 channels(UNII-1 + UNII-2A + UNII-2C). 20 MHz separation
- Non compatible with the rest of wireless networks (working at 2.4 GHz.)
- Modulation OFDM (Orthogonal Frequency Division Multiplexing)
 V_{T_{Max}} 54 Mbps.
- OFDM splits a high speed carrier into 52 orthogonal sub-carriers, transmitting on the 52 sub-carriers at the same time
- Available rates: 6, 9, 12, 18, 24, 36, 48 and 54 Mbps

Example: 4 sub-carriers transmitter

802.11g

- Same rates than 802.11a but 802.11b backward compatibility
- Operates at 2.4 GHz in ISM band
- For high transmission rates, OFDM is used, as in 802.11a
- 802.11g devices automatically change to QPSK modulation if only 802.11b compliant devices are detected

IEEE 802.11 Extensions

802.11n

- Transmission rates up to 600 Mbps
- a/b/g interoperability
- Several technologies employed
 - Multiple Input Multiple Output (MIMO)
 - Channel Bonding
 - MAC protocol enhancements

IEEE 802.11 Extensions

802.11ac

- Fifth generation wifi
- Transmission rates up to 6.9 Gbps
- Only operates at 5 GHz band
- Evolution of 802.11n
- Pushing forward 802.11n technologies (MIMO, Modulation)

MIMO

Devices (APs and clients 802.11n) with multiple antennas

- Notation M × N indicates: M transmitting and N receiving antennas
- AP on picture may operates with the following configurations: 3×3 , 3×2 , 2×3 ,
 - M > 2 for APs. M > 1 for clients

MIMO

- The transmitter split the information into M streams, being transmitted at the same time through each antenna Spatial Multiplex
- Each path spatial signature allows discrimination, determined by the multipath effect

MIMO

- The transmitter split the information into *M* streams, being transmitted at the same time through each antenna Spatial Multiplex
- Each path spatial signature allows discrimination, determined by the multipath effect

MIMO

- The transmitter split the information into M streams, being transmitted at the same time through each antenna Spatial Multiplex
- Each path spatial signature allows discrimination, determined by the multipath effect

MIMO

- The transmitter split the information into M streams, being transmitted at the same time through each antenna Spatial Multiplex
- Each path spatial signature allows discrimination, determined by the multipath effect

Multipath helps MIMO!

Channel Bonding

- Two channels are bonded, on each band (ISM or UNII; b/g or a)
- 20 MHz each channel
- 40 MHz total bandwidth

Modulation and Coding Scheme (MCS)

		Coding		Mbps	Mbps
MCS	Type	rate	SS	(20 MHz)	(40 MHz)
0	bpsk	1/2	1	6.5	13.5
1	qpsk	1/2	1	13.	27.
2	qpsk	3/4	1	19.5	40.5
7	64-qam	5/6	1	65.	135.
8	bpsk	1/2	2	13.	27.
15	64-qam	5/6	2	130.	270.
16	bpsk	1/2	3	19.5	40.5
31	64-qam	5/6	4	260.	540.

Modulation and Coding Scheme (MCS)

			Modula	tion and	coding sch	emes		
						Data rate (in Mbit/s) ^{[8}	1
MCS	Spatial streams	Modulation type	Coding	20 MHz channel		40 MHz channel		
	iuex	streams	суре	Tate	800 ns GI	400 ns GI	800 ns GI	400 ns GI
	0	1	BPSK	1/2	6.5	7.2	13.5	15
	1	1	QPSK	1/2	13	14.4	27	30
	2	1	QPSK	3/4	19.5	21.7	40.5	45
	3	1	16-QAM	1/2	26	28.9	54	60
	4	1	16-QAM	3/4	39	43.3	81	90
	5	1	64-QAM	2/3	52	57.8	108	120
	6	1	64-QAM	3/4	58.5	65	121.5	135
	7	1	64-QAM	5/6	65	72.2	135	150
	8	2	BPSK	1/2	13	14.4	27	30
	9	2	QPSK	1/2	26	28.9	54	60
	10	2	QPSK	3/4	39	43.3	81	90
	11	2	16-QAM	1/2	52	57.8	108	120
	12	2	16-QAM	3/4	78	86.7	162	180
	13	2	64-QAM	2/3	104	115.6	216	240

14	2	64-QAM	3/4	117	130	243	270
15	2	64-QAM	5/6	130	144.4	270	300
16	3	BPSK	1/2	19.5	21.7	40.5	45
17	3	QPSK	1/2	39	43.3	81	90
18	3	QPSK	3/4	58.5	65	121.5	135
19	3	16-QAM	1/2	78	86.7	162	180
20	3	16-QAM	3/4	117	130	243	270
21	3	64-QAM	2/3	156	173.3	324	360
22	3	64-QAM	3/4	175.5	195	364.5	405
23	3	64-QAM	5/6	195	216.7	405	450
24	4	BPSK	1/2	26	28.8	54	60
25	4	QPSK	1/2	52	57.6	108	120
26	4	QPSK	3/4	78	86.8	162	180
27	4	16-QAM	1/2	104	115.6	216	240
28	4	16-QAM	3/4	156	173.2	324	360
29	4	64-QAM	2/3	208	231.2	432	480
30	4	64-QAM	3/4	234	260	486	540
31	4	64-QAM	5/6	260	288.8	540	600

From wikipedia

Enhancement Factors

Rate	Technique
54 Mbps	OFDM conventional (48 subcarriers)
	As 802.11g/802.11a
65 Mbps	Up to 52 subcarriers
135 Mbps	Channel bonding (40 MHz)
< 600 Mbps	Up to MIMO 4×4

Comparing channel assignment for ISM and UNII bands

MCS=0 (bspk, 6.5 Mbps, Coding rate=1/2). Bits=101010... $T_0=1/6.5\mu s=0.15\mu s$. $BW_{between.zeros}=26$ MHz

Enhacements

- Modulations up to 256 QAM with 1/r = 5/6
- More spatial streams, M = 8
- Larger bandwidths: 20, 40, 80 and 160 MHz

Contents

- Wireless Ethernet
- 2 WiFi Security
 - Contents outline
 - WiFi connection
 - Authentication
 - WEP, Wireless Enhanced Privacy
 - 802.11i
- Wifi deployments
- Bibliography

Contents outline

- Connection process. Scan, authentication and association
- Authentication
 - Mechanisms (SSID, MAC, Captive Portal, 802.1x)
 - Protocols (PAP, CHAP, MSCHAP, EAP)
 - 802.1x (EAPOL)
- Ciphers
 - WEP (outdated)
 - 802.11i (WPA2)
 - TLS (Protocol for authentication and key agreement)
 - TKIP (Protocol for key interchange)

Connection process phases

- Scan
- Authentication
- Association

WiFi connection

Scan

- Client searches for a compatible wireless network
- Beacon frames employed
- Two working modes:
 - Active scan. Client sends Probe Request frames through each available channel
 - Passive scan. Client doesn't transmit. Expecting beacon frames

The scan scope may be limited to a given SSID

Authentication

- Directed authentication. Clients → network
- Employed frames: Authentication Request, Authentication Response
- Two mechanisms:
 - Open System Authentication (OSA). Default mechanism
 - Shared Key Authentication (SKA). Employs Wired Equivalent Privacy (WEP) protocol. Both, AP and client shares a common key

Upon both mechanisms, manufacturers use proprietary authentication methods (based on MAC address, on SSID, Captive Portal, ...)

Association

- Employed frames: Association Request and Association Response
- When client receives Association Response, WiFi services are operative

Connection states

Auth. Auth. No auth. No assoc. No assoc. Assoc. Deassoc. Deauth. Class 1, 2 and 3 Class 1 Class 1 and 2

	Class	Control	Management	Data
Ì	1	RTS	Probe Request	To DS = 0 and From DS = 0
İ		CTS	Probe Response	
- 1		ACK	Beacon	
			Authentication	
İ			Deauthentication	
İ			ATIM	
Ī	2		Association Request/Request	
ı			Reassociation Request/Request	
			Disassociation	
ſ	3		Deauthentication	To DS = 1 or From DS = 1

Access Control Lists (ACL)

- ACL not included in 802.11 standard, but implemented in most APs
- It is a list of allowed MAC
- During association, the client MAC is checked in ACL
- If check fails, Association Response is sent, denying its access

Methods

- Based on SSID (Service Set Identifier)
- Based on MAC
- Captive Portal
- 802.1x

Based on SSID

- Used on a first stage (open or protected) to allocate the clients at the corresponding subnet (corp, visitor, ...)
- Then, proceed with the corresponding authentication method, i.e. (corp: 802.1x, visitor: Captive Portal)

Based on MAC

- Insecure
- Suitable for light devices with few ability to authenticate (printers, scanners, . . .)
- MAC tables must be defined at APs or WiFi Controllers (centralized deployments)

Captive Portal

- Open Authentication/Association
- Useful when changing users (hotels, visitors, ...)
- Steps:
 - Client associates to an open SSID. Gets IP, DNS, ...
 - 2 Firewall (AP or central) allows DNS queries. Drops any other traffic

- Client HTTP requests are NAT-Destined to an authentication web (via https)
- Once authenticated, the firewall opens traffic for the client and sends a HTTP redirect to the client

Authentication protocols

- PAP (Password Authentication Protocol)
- CHAP (Challenge Authentication Protocol)
- MSCHAP (Microsoft Challenge Authentication Protocol)
- EAP (Extensible Authentication Protocol)

PAP (Password Authentication Protocol)

- The client sends login:password in clear text
- Insecure.

CHAP (Challenge Authentication Protocol) 3-way handshake client auth, server Challenge(random) Response (MD5(random,key)) OK

MSCHAP (Micro\$oft Challenge Authentication Protocol)

- v1. Same scheme than CHAP. DES cipher instead MD5
- v2. No backward compatibility. Authenticates server and client

Authentication: EAP

EAP (Extensible Authentication Protocol)

- Basis for 802.1x
- Initially thought for PPP (Point to Point Protocol)
- Framework supporting different authentication mechanisms:
 MD5, One Time Password, TLS, TTLS, LEAP, . . .

From: Wireless Networks, The Definitive Guide, O'Reilly, 2002

Authentication: EAP

EAP: Frame

- Code: request (1), response (2), success(3)
- Identifier: It is the same for the corresponding requests and responses
- Length
- Type:
 - 1 Identity
 - 2 Notification
 - 3 NAK, suggests a new authentication method
 - 4 MD5
 - 5 OTP
 - 6 GTC
 - **13** TLS
 - 21 TTLS
- Data

EAP: example Edit View Go Capture Analyze Statistics Telephony Tools Help → Expression... ☐ Clear ✓ Apply Filter: eap No. . Time Source Destination Protocol Info Lenght 1 0.000000 Cisco-Li 7a:e4:8 FAP Request, Identity [RFC3748] Request, Identity [RFC3748 17 2.756208 IntelCor 55:e5:4 EAP Response, Identity [RFC3748] 30 18 2.781338 Cisco-Li 7a:e4:8 EAP Request, MD5-Challenge [RFC3748] 42 19 2.781419 IntelCor 55:e5:4 EAP Response, Legacy Nak (Response only) [RFC3748] 26 20 2.792906 Cisco-Li 7a:e4:E FAP Request, EAP-TTLS [RFC5281] 26 21 2.793339 IntelCor 55:e5:4 SSL Client Hello 22 2.832718 Cisco-Li 7a:e4:8 FAP Request, EAP-TTLS [RFC5281] 1044 23 2.832822 IntelCor 55:e5:4 FAP Response, EAP-TTLS [RFC5281] 26 24 2.839506 Cisco-Li 7a:e4:8 TLSv1 Server Hello, Certificate, Server Key Exchange, Server Hello Do 657 25 2.880096 IntelCor 55:e5:4 TLSv1 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Me 224 26 2.899002 Cisco-Li 7a:e4:E TLSv1 Encrypted Handshake Message, Change Cipher Spec, Encrypted Hand 264 27 2.900457 IntelCor 55:e5:4 TLSv1 Application Data, Application Data 196 28 2.906984 Cisco-Li 7a:e4:E TLSv1 Application Data 115 29 2.907189 IntelCor 55:e5:4 FAP Response, EAP-TTLS [RFC5281] 26 30 2.916290 Cisco-Li 7a:e4:8 FAP Success 24 Frame 16 (25 bytes on wire, 25 bytes captured) D Linux cooked capture ▼ 802.1X Authentication Version: 2 Type: FAP Packet (0) Length: 5 Code: Request (1) Id: 0 Length: 5 Type: Identity [RFC3748] (1) 0000 00 00 00 01 00 06 00 13 10 7a e4 87 00 00 88 8e

Authentication: EAP

EAP: example

Authentication: EAP

EAP: example

Authentication: EAP

EAP: example

802.1x

- Defines a port-based authentication method
- Initially thought for 802.3(Ethernet)
- Also known as EAPOL (EAP over LAN)
- Main parts:
 - Supplicant: Client
 - Authenticator: Can be the AP or the WiFi Controller
 - AAA Server: (Accounting, Authorization and Authentication Server). Can be a RADIUS server

Frame Format

- MAC Header: source and destination addresses
- Type: Ethernet
- Version: 1
- Frame type:
 - EAP-Packet (EAP Frames)
 - EAPOL-Start (Supplicant starts the process when no started by the Authenticator)
 - EAPOL-Logoff
 - EAPOL-Key (Crypto content for key establishment)
- Length
- Frame body

WEP facts

802.11 uses WEP as cipher algorithm

- PRNG (Pseudo-Random Number Generator)
- Stream cipher method RC4 (Rivest Cryptosystem number 4)
- Broken in 2000

WEP Keys

- 4 keys. Only one used for cipher/decipher
- Two ways of generation:
 - Static: The key is written on each device
 - Dynamic: Generated from a pass phrase

WEP Cipher method

Based on RC4

802.11i facts

- Standard for wireless network security. Approved in July, 2004
- Improves security pitfalls on previous mechanisms
- WPA (WiFi Protected Access) is a subset of 802.11i
- Security methods
 - RSNA (Robust Security Network Association):
 - WPA: WEP + TKIP (Temporal Key Integrity Protocol)
 - WPA2: AES128 + CCMP (Counter Mode with CBC-MAC Protocol)
 - WPA3: AES128 + CCMP in personal mode. AES256-GCM-SHA384 (GCM: Galois Counter Mode) in enterprise mode. Replaces PSK by SAE (Simultaneous Authentication of Equals)
 - Key management
 - Pre-RSNA. (WEP)
- WPA2/3 modes may authenticate using PSK (Pre-Shared Keys) (WPA-Personal) or 802.1x (WPA-Enterprise)

TKIP (Temporal Key Integrity Protocol)

- Creates a MIC (Message Integrity Code) based on frame data and header to enable authentication (Michael algorithm)
- Uses the temporal key obtained from key management (see later) to derive RC4 key and WEP seed
- MIC prevent attacks based on:
 - bit flipping
 - iterative guessing of the key
 - redirection and impersonation (changing MAC addresses)

Counter Mode with CBC-MAC Protocol (CCMP)

- AES (Advanced Encryption Standard) based cipher method.
 Cipher function with 128, 192 or 256 bits length security
- Algorithm CCM (Counter mode with CBC-MAC) employed, giving privacy, integrity and authentication
- CCMP is mandatory when 802.11i employed
- Two CCM cipher modes: CTR (Counter) and CBC (Cipher Block Chaining) using the same key with 2 different objectives:
 - CTR. Ciphers information. Converts a block cipher as AES into a stream cipher mechanism
 - CBC.Uses the last ciphered block as a Message Integrity Code (MIC)

Galois Counter Mode (GCM)

- Included in TLS1.3 and WPA3
- Authenticated encryption. Uses AAD (Additional and Authenticated Data) to generate a MIC (tag) field for authentication
- As in Counter Mode Ciphers (as CCMP) it is a stream cipher
- Operates in GF(2ⁿ) where n is the block size (128,256,...)
- AESGCM parameters for ciphering:
 - Key
 - Nonce (initializes IV)
 - AAD (A)
 - Plaintext

outputs:

- Ciphertext (C)
- Authentication tag

Galois Counter Mode (GCM)

Key management

- RSNA defines two key hierarchies:
 - Pairwise key. Protects unicast traffic
 - GTK (Group Temporal Key). Protects multicast and broadcast traffic
- Key exchange at frames EAPOL-Key
- First, PMK (Pairwise Master Key) is set at both ends based on:
 - Pre-shared keys (PSK) (WPA2-Personal)
 - 802.1x negotiation (WPA2-Enterprise)
- Then, 4-way handshake is used to derive:
 - PTK (Pairwise Temporal Key): protects handshake traffic
 - GTK
 - TK (Temporal Key): protects unicast traffic
- Handshake may be periodically updated to renew keys in a session

4-way handshake supplicant authenticator a_nonce Compute PTK=PMK+a_nonce s_nonce + MIC +s_nonce+a_MAC+s_MAC PTK computation GTK + MIC ack Ciphered traffic

PTK: Pairwise Temporal Key

MIC: Message Integrity Code

GTK: Group Temporal Key

Contents Wireless Ethernet Security Deployment Biblio Master Eng. Informatica, 2022/23

802.1x authentication and master key establishment

- Different authentication mechanisms supported by EAP
- Some of them also allow to establish secure keys at both ends
- TLS (Transport Layer Security). More reliable mechanism
- Find here more on TLS
- Problem: Certificates required in order to authenticate clients
- TTLS (Tunneled TLS) relax previous requirement (no client certificate required). An AAA server may be used for client authentication
- Both mechanisms end with the establishment of a 384 random bits block (Master Block), only known by both communicating parts

WPA2-Personal in detail (AES128-CCMP)

- PSK=PBKDF2HMAC(key='passphrase', algo=SHA1, salt=SSID,length=32,iteration=4096)
- data='Pairwise key expansion' || 0x00 || MAC_add1 || MAC_add2 || nonce_1 || nonce_2
- MAC_add1, MAC_add2, nonce_1, nonce_2 correspond to MAC addresses 1 and 2 of MAC header and nonces of handshake 1 and 2. (Ordered: less first)
- PTK = SHA1_HMAC(key=PSK, in=data, length=48)

 def SHA1_HMAC(key, in, length):
 r="
 for i in [0:[length/20]]: #(20 is the size of SHA1)
 r+=HMAC(key, algo=SHA1, in=in || i (1 byte))
 return r[:length]
- KCK=PTK[0:16]. EAPOL-Key Confirmation Key. Used to compute MIC on WPA EAPOL Key message
- KEK=PTK[16:32]. EAPOL-Key Encryption Key (KEK). Used to encrypt GTK
- TK=PTK[32:48]. Temporal Key (TK). Used to encrypt/decrypt Unicast data packets
- MIC for handshake messages from 2 to 4 is computed as:
 - i ∈ [2, 4]
 - mess_i is the 802.1x authentication part of handshake message i
 - data='mess' || str(i) || mess_i[0:81] || (0x00)*16 || mess_i[81+16:] (MIC field masked with 0)
 - MIC=HMAC(key=KCK, algo=SHA1, in=data)
 - If MIC == mess_i[81:81+16] message is authentic

WPA2-Personal in detail (AES128-CCMP)

- Unwrap GTK
 - data is WPA Key Data in handshake message 3 (GTK AES wrapped)
 - GTK=AES_UNWRAP(key=KEK, in=data)[30:46]
 - Used to encrypt/decrypt multicast/broadcast data packets
- Decrypt a data packet. AESCCMP requires:
 - A nonce (to initialize IV)
 - AAD (Additional Authenticated Data) to compute the MIC (also called tag)
- If frame has QoS field:
 - AAD = FrameControl (2 bytes) || Address_1 (6 bytes) || Address_2 || Address_3 || 0x0000 || QoSControl[0:2]
 - nonce=QoSControl[0:1] || Address_2 || CCMPpar[0:2] || CCMPpar[4:8]
- If QoS does'nt exist:
 - AAD = FrameControl || Address_1 || Address_2 || Address_3 || 0x0000
 nonce=0x00 || Address_2 || CCMPpar[0:2] || CCMPpar[4:8]
- CCMPpar is a 8 bytes field in 802.11 data frame. Implements an incremental counter
- AESCCM_decrypt(key=TK, tag_length=8, in=encrypted_data, nonce=nonce, associated_data=AAD) Unicast packets
- AESCCM_decrypt(key=GTK, tag_length=8, in=encrypted_data, nonce=nonce, associated_data=AAD) Multicast/Broadcast packets

Getting the Master Key

- Even ciphersuite is TLS-AES256-GCM-SHA384:
 - AES256-GCM-SHA384 for tunneling encryption
 - WPA2 will use AES128-CCMP in the 4-way-handshake
- pm: decrypted premaster from Client Key Exchange
- def PRF(key,label,seed,algo,n): # Pseudo Random Function

```
seed=label || seed
```

```
A_0=seed , B=""
```

for
$$i$$
 in $[1:n+1]$:

$$A_i$$
= HMAC(key=pm,in= A_{i-1} ,algo=algo)

for i in [0:n]:

$$B = B \mid\mid HMAC(key=pm,in=A_{i+1},algo=algo)$$

return B

- s = SHA384(ClientHello || ServerHello || ServerCert || ServerHelloDone || ClientKeyExchange)
- MasterKey = PRF(key=pm,label="extended master secret",seed=s, algo=SHA384, n=1)[0:48]

Decrypting inner authentication (EAP-PAP/CHAP/...)

- AES256-GCM-SHA384 requires:
 - 64 bytes for client and server keys
 - 8 bytes for client and server IV
 - No MAC keys needed
- S = ServerHello.random | ClientHello.random
- KeyBlock = PRF(key=MasterKey, label="key expansion", seed=s, algo=SHA384, n=2)[0:72]
- oclient_write_key = KeyBlock[0:32]
- server_write_key = KeyBlock[32:64]
- oclient_write_iv = KeyBlock[64:68]
- server_write_iv = KeyBlock[68:72]
- Assume data being the encrypted EAP message
- tag = data[-16:] Authentication tag
- GCM Nonce has two parts:
 - Explicit: goes in the data. First 8 bytes
 - Implicit: derived from IV
- oclient_nonce = client_write_iv || data[0:8]

Decrypting inner authentication (EAP-PAP/CHAP/...)

- content_type = 0x17
- version = 0×0303
- ciphertext_length = len(data)-24 (2 bytes). 8 explicit nonce + 16 tag
- AAD = seq_num || content_type || version || ciphertext_length
- AESGCM_decrypt(in=data[8:],nonce= client_nonce , key=client_write_key, associated_data=AAD)

4-way handshake

- S = ClientHello.random | ServerHello.random
- KeyBlock = PRF(key=MasterKey, label="ttls keying material",seed=s, algo=SHA384, n=1)
- MSK = KeyBlock[0:48]
- data='Pairwise key expansion' || 0x00 || MAC_add1 || MAC_add2 || nonce_1 || nonce_2
- MAC_add1, MAC_add2, nonce_1, nonce_2 correspond to MAC addresses 1 and 2 of MAC header and nonces of handshake 1 and 2. (Ordered: less first)
- PTK = SHA1_HMAC(key=MSK[0:32], in=data, length=48)
- KCK, KEK and TK as before
- Handshake messages authenticated as before
- GTK decrypted as before
- Data packet decrypted as before

Contents

- Wireless Ethernet
- WiFi Security
- Wifi deployments
 - Centralized control architecture
 - Alcatel-Lucent Instant AP
- Bibliography

Wifi deployments

The challenges

A medium/large size wifi deployment presents some challenges:

Coverage

- Limited coverage range per AP (less than 100 mts). Infrastructure/building dependent
- Trade-off between density deployment and cost
- Radio Frequency plan required to avoid interferences
- Network backbone determines AP situation. Mesh networks

Capacity

- Some spot areas may require higher bandwidth. Dual 802.11 b/g and 802.11a deployments
- Roaming may be required. IP mobility
- Non stationary scenario. People moves, so bandwidth requirement changes

Security

- Per user based security profiles (students, staff, visitors, ...)
- Don't rely on weak encryption methods
- Integration to the corporate authenticators

Wifi deployments

Two approaches

Fat APs

- Suitable for small deployments
- AP contains full configuration parameters
- Cheap solution but hard to manage
- Open source initiatives DD-WRT

Centralized control and Thin APs

- AP boots configuration from controller
- APs merely radio repeaters
- Controller have the full network configuration
- Many integrated features: firewall, automatic radio management, radio frequency planner, ...
- Easy to manage
- Proprietary solutions: Alcatel-Lucent, Aruba, Cisco, ...

The components

Controller

- Performs all the configuration and management tasks for WLAN
- Provides APs their config parameters
- Control over radio assignments (frequency and power), avoids interferences, central security checks
- Ends communication AP tunnels.
- Must be sized according to the number of APs

Thin APs

- Mere radio repeaters
- Boots from controller
- Multiple SSID (virtual AP)
- Consider 20/30 users per AP
- Software modules. Define WLAN features: firewall, mesh, mobility, intrusion detection and response, adaptive radio management, ...
- Licenses. May be based on; number sessions, number APs, WLAN features. . . .

Centralized control architecture

Architecture outline Distribution network core Data Center

Centralized control architecture

Centralized control architecture

AP booting process

- AP must be able to obtain IP by DHCP
- As well as the controller IP (statically or dynamically through DHCP option 41)
- GRE tunnels are established between APs and controller
- All AP traffic flows through controller (unless alternative AP) operation modes specified; remote AP. ...)

Alcatel-Lucent Instant AP

Description

- Small deployments with centralized control not much expensive
- No controller needed. Control tasks assumed by an AP
- Up to 16 APs and 256 users per deployment
- APs family supported (IAP-105, 92, 93, 134 and 135)

Alcatel-Lucent Instant AP

Main features

- Easy configuration. Automatic master controller AP establishment (virtual controller)
- Web control interface
- Mesh networks support
- Authentication methods:
 - 802.1x
 - Captive portal
 - Based on MAC
- Firewall capabilities. Rules can be created
- Adaptive Radio Management (ARM)
 - Voice and load aware
 - Band steering (2.4 5 GHz)
 - Load balancing and air-time fairness
- Intrusion and Detection System (IDS). Rogue detection and containment methods

Contents

- Wireless Ethernet
- WiFi Security
- Wifi deployments
- Bibliography

Bibliography

- 802.11 Wireless Networks: The Definitive Guide. Matthew Gast. Ed. O'Reilly, 2002.
- Implementing 802.1x. Security Solutions for Wired and Wireless Networks. Jim Geier. Wiley Publishing, 2008.
- 802.11i. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. 2016.
- RFC 5281. Extensible Authentication Protocol Tunneled Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0)

