Osciladores senoidales

La inestabilidad de los amplificadores realimentados se puede utilizar para generar señales senoidales. Estos circuitos se denominan osciladores senoidales.

Existen otros métodos para obtener señales senoidales. Entre ellos cabe destacar:

- 1. Generadores senoidales basados en la generación de una onda triangular y el empleo de una red no lineal. Se utilizan en generadores de bajo coste para laboratorio.
- 2. Sintetizadores digitales. Utilizan una memoria que contiene las muestras de un período de señal y un convertidor digital analógico que las convierte en valores de tensión. Se denominan también generadores de forma de onda arbitraria porque permiten sintetizar cualquier señal.

1. Criterio de Barkhausen.

Un amplificador realimentado actúa como oscilador senoidal si se cumple que la ganancia de bucle (GB) es igual a 1. En otras palabras, el módulo de la ganancia de bucle debe ser 1, y la fase 0.

Para determinar la ganancia de bucle de forma analítica se debe abrir el bucle en algún punto, aplicar una señal en ese punto y determinar la señal que se obtiene al dar la vuelta al bucle. El bucle debe abrirse para poder obtener el grado de libertad preciso.

Para no alterar el comportamiento del amplificador, hay que añadir una impedancia de carga a la salida, igual a la de la entrada del bloque al que la salida estaba conectada antes de abrir.

En el caso de que no haya restador, GB= $A\beta$

¿Qué sucede si la fase de GB es cero pero su amplitud no es exactamente uno?

Si |GB| < 1 (0dB) no se produce oscilación. Si el valor de |GB| está próximo a 1 y se aplica una perturbación (escalón, impulso, etc.) se puede observar una oscilación amortiguada.

Si |GB| > 1 (0dB) se genera una oscilación que crece exponencialmente. En la práctica, dejará de crecer cuando el amplificador deje de ser lineal debido a la entrada en corte o en saturación de los transistores. En todo caso, la señal quedará recortada y por lo tanto ya no será una señal senoidal.

2. Diseño de un oscilador senoidal.

Aunque los osciladores senoidales se pueden considerar como amplificadores inestables, la forma en que se plantea el diseño es diferente:

Lo primero a definir es la frecuencia a la que se desea generar la oscilación (fo).

El amplificador básico se diseña para que no presente desfases adicionales en el entorno de la frecuencia de oscilación (0 ó 180º es OK).

La red de realimentación pasa a ser reactiva, por lo que su función de transferencia depende de la frecuencia. De esta forma, fo sólo depende de la red de realimentación (beta). La red empleada se estudia para conocer cual es la atenuación que produce sobre la señal, a la frecuencia fo.

La ganancia del amplificador básico se elige de foma que cancele la atenuación de beta, de forma que el módulo de la ganancia de bucle sea 1.

3. Oscilador RC de desplazamiento de fase.

Se emplea una red formada por tres elementos RC. Esta red presenta un desfase de 180 grados solamente para un valor de la frecuencia. Esa frecuencia será la de oscilación.

Para obtener GB=1, es preciso utilizar un amplificador inversor (equivale a desfase de 180º) y compensar así los 180º de la red RC.

La red más empleada es la de avance de fase:

Los 3 condensadores tienen la misma capacidad (C). Las 3 resistencias tienen el mismo valor (R).

La entrada a la red es la salida del amplificador (Vo). La salida de la red es la tensión que se realimenta (Vf).

La frecuencia de oscilación (fo) es la que provoca un desfase de 180º en la red beta. Analizando la red se demuestra que Vf/Vo es:

$$\frac{Vf}{Vo} = \frac{(\omega RC)^3}{(\omega RC)^3 - 5\omega RC - j[6(\omega RC)^2 - 1]}$$

Dado que el amplificador sólo puede tener una fase de 0º o 180º, la red beta tiene que acomodarse también a uno de esos valores. Por lo tanto, a la frecuencia de oscilación, el cociente Vf/Vo no puede tener parte imaginaria. La condición es:

$$6(\omega RC)^2 = 1$$

de donde se obtiene:

$$fo = \frac{1}{2\pi\sqrt{6}RC} \qquad \beta \Big|_{fo} = \frac{Vf}{Vo} = -\frac{1}{29}$$

Existe una red dual de la mostrada (Rs y Cs intercambian posiciones) para la cual se obtiene la misma atenuación, y una frecuencia de:

$$fo = \frac{\sqrt{6}}{2\pi RC}$$

E ambos casos el amplificador debe tener una ganancia de valor -29

4. Oscilador RC con red de Wien (Wien bridge).

http://www.messmuseum.de/hp650a.htm

La red de Wien utiliza dos condensadores iguales (C) y dos resistencias iguales (R).

Esta red presenta un desfase de 0 grados solamente para un valor de la frecuencia. Esa frecuencia será la de oscilación. Se puede

demostrar que:

$$fo = \frac{1}{2\pi RC}$$
 $\beta \Big|_{fo} = \frac{Vf}{Vo} = \frac{1}{3}$

En este caso es preciso utilizar un amplificador no inversor, con ganancia de valor 3.

Max Wien (1866-1938) inventó el puente de medida que lleva su nombre.

No confundir con el Premio Nobel (1911) Wilhelm Wien (1864-1928)!

5. Osciladores LC

Los osciladores LC se basan en la utilización de un circuito resonante.

La frecuencia de oscilación viene dada por:

$$fo = \frac{1}{2\pi\sqrt{LC}}$$

El circuito resonante está formado por 3 impedancias. Para que aparezca el efecto de resonancia deben existir impedancias inductivas y capacitivas (es decir con signos de reactancia positivos y negativos)

Los osciladores típicos emplean dos condensadores y una bobina (Colpitts), o un condensador y dos bobinas (Hartley). Las bobinas del Hartley suelen estar acopladas (autotransformador).

Estudio genérico del oscilador de 3 reactancias.

Se supone que A representa un transistor en emisor común.

Circuito con el bucle abierto

A

Zs se añade para incorporar el efecto de la resistencia de salida de la red beta.

$$Zs = Z_2 \parallel (Z_1 + Z_3)$$
 $Zs = \frac{Z_2 \cdot (Z_1 + Z_3)}{Z_1 + Z_2 + Z_3}$

La impedancia de carga del amplificador es:

$$Z_L = Z_3 \parallel (Z_1 + Z_2)$$
 $Z_L = \frac{Z_3 \cdot (Z_1 + Z_2)}{Z_1 + Z_2 + Z_3}$

La tensión V3 se puede expresar como: Donde Ib es:

$$V_{3} = -hfe \cdot Ib \cdot Z_{L} \frac{Z_{2}}{Z_{1} + Z_{2}} \qquad Ib = \frac{V_{1}}{Z_{S} + hie}$$

Sustituyendo lb:

$$V_3 = \frac{-hfe \cdot Z_L \cdot Z_2 \cdot V_1}{(Z_1 + Z_2) \cdot (Z_S + hie)}$$

Y sustituyendo ZL y Zs

$$V_{3} = \frac{-hfe \cdot Z_{L} \cdot Z_{2} \cdot V_{1}}{(Z_{1} + Z_{2}) \cdot (Z_{S} + hie)} \qquad V_{3} = \frac{-hfe \cdot Z_{2} \cdot V_{1} \frac{Z_{3}(Z_{1} + Z_{2})}{Z_{1} + Z_{2} + Z_{3}}}{(Z_{1} + Z_{2}) \cdot (hie + \frac{Z_{2}(Z_{1} + Z_{3})}{Z_{1} + Z_{2} + Z_{3}})}$$

Multiplicando numerador y denominador por (Z1+Z2+Z3):

$$V_3 = \frac{-hfe \cdot Z_2 \cdot Z_3 (Z_1 + Z_2)V_1}{(Z_1 + Z_2) \cdot (Z_1 + Z_2 + Z_3) \cdot hie + (Z_1 + Z_2) \cdot Z_2 \cdot (Z_1 + Z_3)}$$

Dividiendo numerador y denominador por (Z1+Z2):

$$V_{3} = \frac{-hfe \cdot Z_{2} \cdot Z_{3} \cdot V_{1}}{(Z_{1} + Z_{2} + Z_{3}) \cdot hie + Z_{2} \cdot (Z_{1} + Z_{3})}$$

Si las 3 impedancias son reactivas puras (sin parte resistiva), se pueden expresar como:

$$Z1 = jX1$$

$$Z2 = jX2$$

$$Z3 = jX3$$

Z1 = jX1 Z2 = jX2 Z3 = jX3 donde las X pueden ser + \acute{o} -

Con lo que se

obtiene:

$$V_{3} = \frac{-hfe \cdot X_{2} \cdot X_{3}}{j(X_{1} + X_{2} + X_{3}) \cdot hie - X_{2} \cdot (X_{1} + X_{3})} \cdot V_{1}$$

Para que oscile, V3/V1 debe ser igual a 1 (GB=1). Por lo tanto la fracción no puede poseer parte imaginaria, con lo que se obtiene la condición:

$$X1 + X2 + X3 = 0$$

Esta condición elimina la posibilidad de emplear 3 bobinas o 3 condensadores. Las únicas posibilidades son: 2L+1C ó 1L+2C

Osciladores LC reales

1. Colpitts

fo= 100 MHz

Transistor en base común

C1 y C5 son cc a la frecuencia de trabajo

L2 es un choque de RF, y se considera ca a la frecuencia de trabajo

L1, C2 y C3 forman la red beta (C2=50p, C3=100p ajustables)

Frecuencia de oscilación:

$$fo = \frac{1}{2\pi\sqrt{L_1 C_{eq}}}$$

$$Ceq = \frac{1}{\frac{1}{C_2} + \frac{1}{C_3}}$$

2. Hartley

La polarización del JFET de unión (canal N) se obtiene con $V_{GS} = 0$ (L1 es cc en continua).

El JFET está configurado en seguidor de fuente.

La ganancia de tensión en esta configuración es:

 $A_V < 1$

¿Cómo es posible que oscile si Av < 1 y la red beta es pasiva?

L1 es un "autotransformador" que eleva la tensión al pasar de fuente a puerta. El JFET sí amplifica en corriente.

3. Osciladores con cristal de cuarzo

Efecto piezoeléctrico

Los materiales piezoeléctricos (cuarzo, cerámicos) tienen una estructura cristalográfica.

Cuando estos materiales se presionan (o se expanden) las posiciones de los átomos se modifican ligeramente y el desequilibrio de cargas que se produce hace que aparezca un campo eléctrico.

El efecto es reversible: Si se aplica un potencial eléctrico, el material se contrae o se expande (dependiendo de la polaridad del potencial aplicado).

El término *cristal de cuarzo* se aplica en Electrónica a un dispositivo que es en realidad un condensador cuyo dieléctrico es un material piezoeléctrico. Por lo tanto, desde el punto de vista eléctrico es un dispositivo con dos terminales.

Si se aplica un impulso eléctrico a un cristal de cuarzo, se produce una oscilación mecánica (vibración del cristal) y una oscilación eléctrica (tensión en bornas). La oscilación tiene una frecuencia que depende del tamaño y el tipo de corte del cristal. Son valores normales entre 10kHz y 100 MHz.

Cp

Modelo eléctrico equivalente del crista de cuarzo.

Cp= capacidad eléctrica

Cs= capacidad mecánica equivalente

L= Inductancia mecánica equivalente

R= Pérdidas mecánicas equivalentes

Se producen dos resonancias: serie y paralelo.

Los osciladores que emplean cristal de cuarzo se consideran LC dado que el circuito equivalente del cristal también presenta resonancia.

Frecuencias de resonancia del cristal:

$$fs = \frac{1}{2\pi\sqrt{LCs}} \qquad fp = \frac{1}{2\pi\sqrt{LC}}$$

Siendo:

$$C = \frac{Cs \cdot Cp}{Cs + Cp}$$

Como Cp >> Cs, C y Cs son casi iguales, por lo que fs y fp sólo difieren en un pequeño margen.

En la práctica se puede utilizar un cristal para reemplazar a la bobina de un oscilador LC. De esta forma, el cristal opera en su *zona inductiva* (X>0) por lo que la frecuencia de oscilación estará entre fs y fp.

Oscilador con cristal basado en inversor CMOS

Los MOS P y N forman un inversor CMOS

La resistencia Rf introduce una realimentación en continua, con lo que el inversor funciona como un amplificador.

El cristal reemplaza a la bobina del Colpitts.

C1 y C2 completan la red Colpitts.

R1 permite obtener una onda *casi cuadrada* en Pc y una onda *casi senoidal* en Ps.