2					
TIPLE CHOICE. Cl	noose the one alternative	e that best completes the	statement or ans	wers the question.	
A chemical reaction at constant pres		om the surroundings is s	aid to be	and has a	ΔΗ
A) endotherm	ic, positive				
B) endotherm	•				
C) exothermic					
D) exothermic	•				
E) exothermic	r, neutral				
2) The reaction					
4Al (s) +	$3O_2(g) \rightarrow 2Al_2O_3(s)$	$\Delta H^{\circ} = -3351 \text{ kJ}$			
is, a	nd therefore heat is	by the reaction.			
A) exothermic	released				
B) exothermic	, absorbed				
C) endotherm	ic, released				
D) endotherm	ic, absorbed				
E) thermoneu	tral, neither released nor	r absorbed			
3) The value of ΔH is formed in the		is -126 kJ. How much he	eat (in kJ) is releas	sed when 2.00 mol of	NaOH
2Na ₂ O ₂	$2(s) + 2H_2O(l) \rightarrow 4Na$	$OH(s) + O_2(g)$			
A) 252	B) -126	C) 7.8	D) 63	E) 3.9	
4) The value of ΔH		is -790 kJ. The enthalpy	change accompar	nying the reaction of	0.95 g of
2S (s) -	$-3O_2(g) \rightarrow 2SO_3(g)$				

A) 673 B) 2.68×10^3 C) 5.23×10^4 D) -6535 E) 1.34×10^3

 $2C_6H_6(l) + 15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(l)$

6)	The value of ΔH° for the 23.0 g of HCl is formed.	reaction below is -336	kJ. Calculate the heat	(kJ) released to the surro	oundings when		
	$CH_4(g) + 3Cl_2$	$_{2}(g) \rightarrow CHCl_{3}(l) + 3l_{2}$	HCl (g)				
	A) 211	B) 177	C) 70.7	D) -336	E) 2.57×10^3		
7)	7) The specific heat capacity of lead is 0.13 J/g-K . How much heat (in J) is required to raise the temperature of 15 g of lead from 22°C to 37°C?						
	A) 29	B) 5.8 x 10 ⁻⁴	C) -0.13	D) 2.0	E) 0.13		
8)	8) The specific heat of liquid bromine is 0.226J/g-K . How much heat (J) is required to raise the temperature of 10.0mL of bromine from $25.00 ^{\circ}\text{C}$ to $27.30 ^{\circ}\text{C}$? The density of liquid bromine: 3.12g/mL .						
	A) 16.2	B) 10.4	C) 32.4	D) 5.20	E) 300		
9)	9) The specific heat capacity of methane gas is $2.20\mathrm{J/g}$ –K. How many joules of heat are needed to raise the temperature of $5.00\mathrm{g}$ of methane from $36.0^\circ\mathrm{C}$ to $75.0^\circ\mathrm{C}$?						
	A) 22.9	B) 88.6	C) 429	D) 0.0113	E) 1221		
10)	The ΔH for the solution 13.9–g sample of NaOH from 23.0°C to A) 14.0°C	dissolves in 250.0 g of	water in a coffee-cup c	alorimeter, the tempera	ture increases		
11)	Given the following read	ctions					
	Fe ₂ O ₃ (s) + 3C	$O(s) \rightarrow 2Fe(s) + 3CO$	$_{2}$ (g) $\triangle H = -28.0$	kJ			
	3Fe (s) + 4CO ₂	$(s) \rightarrow 4CO(g) + Fe_3O(g)$	O_4 (s) $\triangle H = +12.5$	kJ			
	the enthalpy of the react	tion of Fe ₂ O ₃ with CO					
	$3Fe_2O_3(s) + C$	$O(g) \rightarrow CO_2(g) + 2F$	Ge ₃ O ₄ (s)				
	is kJ. A) 40.5	B) +109	C) -15.5	D) -109	E) -59.0		

12) Given the following reactions

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H = 66.4 \text{ kJ}$

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H = -114.2 \text{ kJ}$

the enthalpy of the reaction of the nitrogen to produce nitric oxide

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

is $___kJ$.

A) -47.8

- B) 47.8
- C) 180.6
- D) -180.6

E) 90.3

13) Calculate ΔH° (in kJ) for reaction 3.

$$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$$
 $\triangle H = -790 \text{ kJ}$

$$\triangle H = -790 \text{ k}$$

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

$$\triangle H = -297 \text{ kJ}$$

the enthalpy of the reaction in which sulfur dioxide is oxidized to sulfur trioxide

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

A) -196

B) -543

C) 1087

D) 196

E) -1384

14) The value of ΔH° for the following reaction is -3351 kJ:

$$2Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

The value of ΔH_f° for Al₂O₃ (s) is _____ kJ.

$$C) +3351$$

D) -16.43

E) -32.86

15) Given the data in the table below, ΔH°_{TXN} for the reaction

$$Ca(OH)_2 + 2H_3AsO_4 \rightarrow Ca(H_2AsO_4)_2 + 2H_2O$$

is _____ kJ.

Substance	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)
Ca(OH) ₂	-986.6
H_3AsO_4	-900.4
$Ca(H_2AsO_4)_2$	-2346.0
H ₂ O	-285.9

E) -744.9

16) Given the data in the table below, $\Delta H^{\circ}_{\ TXN}$ for the reaction

$$IF_7(g) + I_2(g) \rightarrow IF_5(g) + 2IF(g)$$

is _____ kJ.

Substance	ΔH_{f}° (kJ/mol)
IF (g)	- 95
$IF_5(g)$	-840
$IF_7(g)$	-941

- A) 311 kJ
- B) 69 kJ
- C) -1991 kJ
- D) -69 kJ
- E) The ΔH_f° of I2 (g) is needed for the calculation.

Answer Key

Testname: CH_06_PRAC_TEST.TST

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) A ID: chem9b 5.1-32
- 2) A ID: chem9b 5.1-33
- 3) D ID: chem9b 5.1-35
- 4) C ID: chem9b 5.1-37
- 5) A ID: chem9b 5.1-38
- 6) C ID: chem9b 5.1-40
- 7) A ID: chem9b 5.1-54
- 8) A ID: chem9b 5.1-57
- 9) C ID: chem9b 5.2-5
- 10) D ID: chem9b 5.1-58
- 11) E ID: chem9b 5.1-63
- 12) C ID: chem9b 5.1-64
- 13) A ID: chem9b 5.1-66
- 14) B ID: chem9b 5.1-74
- 15) B ID: chem9b 5.1-81
- 16) E ID: chem9b 5.1-83

AP (hen practice test, Ch.6

$$2.00 \, \text{mol NaOH}_{\times} \frac{-126 \, \text{KJ}}{4 \, \text{mol NaOH}} = -63 \, \text{kJ} \frac{3}{63 \, \text{kJ}} \frac{$$

$$\Delta H = -669 kJ$$

$$669 kJ are released$$

$$\frac{6}{35.45} = \frac{1 \text{ mol MCl}}{36.46 \text{ g HeQ}} = \frac{-336 \text{ kJ}}{3 \text{ mol Hel}} = \frac{-70.7 \text{ kJ}}{3 \text{ mol Hel}} = \frac{-70.7 \text{ kJ}}{36.46 \text{ g/mol}}$$

$$\frac{55.45}{36.46 \text{ g/mol}} = \frac{1.01}{36.46 \text{ g/mol}} = \frac{-70.7 \text{ kJ}}{70.7 \text{ kJ are}}$$

$$C \qquad \Delta H = -70.7 \, \text{kJ}$$

$$C \qquad \sqrt{70.7 \, \text{kJ are related}}$$

$$\begin{array}{l}
\widehat{7} & 9 = MCAT \\
 = (15p)(0.135)(15k) \\
 = 295 & A
\end{array}$$

$$M = 10.0 \text{ m/s} = 31.2g$$

$$\frac{27.30}{2.30\%}$$

APChem Practice Test, Ch.6

23.0

T= 23°C

water's C & solution's C

$$15500J = (13.9 + 250.0) (4.18 \frac{J}{9K}) (\Delta T)$$

155005

$$14.0K = \Delta T = 7_F - T_{\lambda}$$

AP Chem practice text, ch. 6

PAGE
THREE $\begin{cases}
3(\text{Fe-20}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2) & 3(-28 \text{ KS}) \\
2(3\text{Fe} + 4\text{CO}_2 \rightarrow 4\text{CO} + \text{Fe3CH}_2) & 2(+12.5 \text{ KJ})
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2) & 3(-28 \text{ KS}) \\
2(3\text{Fe} + 4\text{CO}_2 \rightarrow 4\text{CO} + \text{Fe3CH}_2) & 2(+12.5 \text{ KJ})
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2) & 3(-28 \text{ KS}) \\
2(3\text{Fe} + 4\text{CO}_2 \rightarrow 4\text{CO} + \text{Fe3CH}_2) & 2(+12.5 \text{ KJ})
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2) & 3(-28 \text{ KS}) \\
2(3\text{Fe} + 4\text{CO}_2 \rightarrow 4\text{CO} + \text{Fe3CH}_2) & 2(+12.5 \text{ KJ}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2) & 3(-28 \text{ KS}_2) \\
2(+12.5 \text{ KJ}_2) & 2(+12.5 \text{ KJ}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2) & 3(-28 \text{ KS}_2) \\
2(+12.5 \text{ KJ}_2) & 2(+12.5 \text{ KJ}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2) \\
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2) \\
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2) \\
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2) \\
2(+12.5 \text{ KJ}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28 \text{ KS}_2)
\end{cases}$ $\begin{cases}
3(\text{Fe-20}_3 + 2\text{Fe}_3\text{CH}_2) & 3(-28$

(12) GOAL: $N_2 + O_2 \rightarrow 2NO$ $N_2 + 2O_2 \rightarrow 7NO_2$ Severse $2NO_2 \rightarrow 2NO_2$ Severse $2NO_2 \rightarrow 2NO_2$ Severse Severse

 $N_{2}+N_{2}+2N_{2} \rightarrow 2NQ_{2}+2N_{0}+N_{2}$ $N_{2}+Q_{2} \rightarrow 2N_{0}$ $\Delta H=+180.6 kJ$

A.P.Chemistry Practice Test, Ch.6

PAGE

(13) $GOAL: 250_2 + 0_2 \rightarrow 250_3$

$$\frac{2S + k0_{2} \rightarrow 2S0_{3}}{S + 0_{2} \rightarrow S0_{2}} \Delta H = -790 KT$$

$$\frac{\text{duble and}}{\text{revelse}} \rightarrow \frac{S + 0_{2} \rightarrow S0_{2}}{S + 20_{2}} \Delta H = -297 KJ$$

$$+ 2S0_{2} \rightarrow 2S + 20_{2} \Delta H = +594 KJ$$

 $(\widehat{A}) 250_z + O_z \rightarrow 250_3 \quad \Delta H = -196 kJ$

Because this reaction shows the Granton of
Alzus from its elements, the SH for the formation
of only one male would be 1/2 of the given sho

$$1 \text{ mol} Al_2 O_3 \times \frac{-3351 \text{ KJ}}{2 \text{ mol} Al_2 O_3} = \frac{-1676 \text{ KJ}}{2}$$

$$\begin{array}{lll}
15) & \text{AH}_{r+n} = \left[(1)(-2346) + (2)(-285.9) \right] - \left[(-986.6) + (2)(-900.4) \right] \\
&= \left[(-2346 + -571.8) \right] - \left[(-986.6) + (-1800.8) \right] \\
&= -2917.8 - 2787.4
\end{array}$$

A.P. Chemistry Practice Fest, Ch.6

(16) E, because

Iz is a solid in its standard state (I would have told you, "Iz is asdid at 25°C and latin" if I were to have put this on a test.)

PAGE