Lecture 9

至1 两阶段法的单纯形表实现

1. Phase I 的处理

进行两阶段法时,我们先要解下面的优化问题:

minimize x, y $e^{T}y$ s.t. Ax+y=b $x, y \ge 0$

O Step 1:调整屏门题的 constraint Ax=b,使b中元素均非负

O Step 2: か入り、构建 auxiliary problem

③ Step 3: 对 auxiliany problem 构建 initial 单纯形表

· Bottom part: 即为 Ax+y=b的系数

Reduced cost part: (注意这里'y不为 slack variable, reduced cost 不为目标函数系数)

· 对j basic part: reduced cost 为 D

· 对于 nonbasic part:有 c̄j = cj-'cBABAj = -'eTAj,因此 reduced cost 即为该到元素和的相反数

Objective value part:即为该列元素和的相反数

④ Step 4: 解单纯形表

21 Phase I 的处理

若经过 Phase I,得到 optimal solution ('x*,0), optimal value D.

① 若 x* not degenerate:

Step 1: 直接去除关于 auxiliary Variables 的到.

Step 2: 利用 cj = cj - 'Ct At Aj 重新求解 top row

Step 3: 重新计算 objective value (注言表右上角为 objective value 相反数)

Step 4:解单纯形表

② 考 'x* degenerate:

将与auxiliary variables 对应的 basic indices 替换为任意 original variables 的 indices ,并重新计算表.

例 用单纯形表解下列优化问题

minimize $x_1 + x_2 + x_3$ subject to $x_1 + 2x_2 + 3x_3 = 3$ $-4x_2 - 9x_3 = -5$ $3x_3 + x_4 = 1$ $x_1, x_2, x_3, x_4 \ge 0$

先将'b 化为正,并引出 auxiliary problem:

minimize
$$x_5 + x_6 + x_7$$

subject to $x_1 + 2x_2 + 3x_3$ $+ x_5$ $= 3$
 $4x_2 + 9x_3$ $+ x_6$ $= 5$
 $3x_3 + x_4$ $+ x_7 = 1$
 x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , $x_7 \ge 0$

到出 initial tableau 并解单纯形表:

В	-1	-Ь	-15	-1	D	D	D	-9		В	0	-4	-12	-1	1	D	D	-6
7	1	2	ş	0	1	0	0	3		ı	1	2	3	V	ı	O	0	₹
ь	0	4	9	D	0	1	D	_	\Rightarrow	Ь	0	4	9	V	0	1	D	5
7			3					1		7	0		3					1

	В	0	0	-3	-1	ı	1	D	-1		В	0	0	0	D	1	1	ı	D
_	1	1	O	-3/2	0		-1/2		1/2	_	ı	1	O		1/2			1/2	
—	2	0	1	9/4	Ø	0	1/4	D	5/4	<i>—</i>	2	0	1	D	-3/4	0	1/4	-34	1/2
	7	0	0	3	1	0	D	1	1		3	0	0	1	1/3	0	D	1/3	1/3

因此, X=(1,1/2,1/3,0) is a BFS for the original problem (B=11,2,33)

列出原问题的tableau并解单纯形表:_____

r	В	0	0	0	1/12	-11/6		В	0	0	1/4	U	-7/4
D-[1/1/].	1	1	Ū	0	1/2	-	\Rightarrow	1	1	O	-3/2	0	1/2
C 32	2	0	I	D	-3/4	1/2		2	0	1	9/4	V	5/4
	3	0	0	1	1/3	1/3		4	0	0	3	ı	1

Thus, the optimal solution is (1/2,54,0,1) with optimal value - 7/4

多2 单纯形法的复杂度

- 1. Complexity of an algorithm
 - · 程序解决问题所需的 number of arithmetic operations (加.减.乘.除.比较…)被称为 complexity of the algorithm
 - · 通常考虑 worst-case instance

e.g. Examples:

- Find the largest element among *n* numbers has complexity *n*
- ▶ Add two *m*-by-*n* matrices has complexity *mn*
- ▶ Multiply two *n*-by-*n* matrices in a naive way has complexity n^3

2. Polynomial - time algorithms

- 一个程序被称为 polynomial-time algorithm 若其解决问题所需的 number of arithmetic operations 的上界为一个关于 input size 的多项式
- · polynomial-time algorithm 被认为 practical, 否则被认为 impractical

- e.g. Here are some known polynomial algorithms:
 - ▶ Gaussian elimination for matrix inversion (n^3)
 - ▶ Fast method for matrix inversion ($\sim n^{2.373}$)
 - ▶ Naive method for sorting n numbers (n^2)
 - ▶ Merge sort for sorting n numbers $(n \log n)$

Here are some non-polynomial algorithms:

- \triangleright Enumeration method for traveling salesman problem (n!)
- ▶ Dynamic programming for traveling salesman problem $(2^n n^2)$

3. Definition: polynomial - time solvable problem

- · 若一个问题存在 polynomial time algorithm,则我们称其为一个 polynomial time solvable problem,或表示为 P
- 存在-类问题,目前无法找到 polynomial time algorithm,这类问题被称为 NP Hard problem. 若可以证明-类 NP-Hard problems 中的一个有 polynomial - time algorithm,则可证明这一类问题 (NP-complete) 都存在 polynomial - time algorithm (NP=P)

4. 单纯形法的复杂度

- · Pivoting rule 的选取会影响单纯形法的复杂度
- · 但截至目前,还没有发现 polynomial -time algorithm
- · 但在现实中表现很好,平均情况下 stops in a polynomial number of iterations

5. 线性规划的复杂度

- · 第一个 polynomial—time algorithm for LP: ellipsoid method 但在现实中表现很差
- · 一个理论上与现实中场表现很好的 alaprithm: interior point method