CS581 Theory of Computation: Homework #1

Due on January 20 2015 at 2:00pm

Harry H. Porter Winter 2016

Konstantin Macarenco

Problem 1

- a. Start State: M_1 q_1 , M_2 q_1
- b. Set of accept states M_1 $F = \{q_2\}, M_2$ $F = \{q_1, q_4\},$
- c. $M_1 = \{q_1, q_2, q_3, q_1, q_1\}, M_2 = \{q_1, q_1, q_1, q_2, q_4\}$
- d. M_1 No, M_2 Yes
- e. M_1 No, M_2 Yes

Problem 2

 M_1

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\sum = \{a, b\}$
- 3. δ described as

Table 1: M_1 Transition function

	a	b
q_1	q_2	q_1
q_2	q_3	q_3
q_3	q_2	q_1

- 4. Start state $q_1 \in Q$
- 5. $F = \{q_3\} \subseteq Q$ Start state $q_1 \in Q$

 M_2

1.
$$Q = \{q_1, q_2, q_3, q_4\}$$

2.
$$\sum = \{a, b\}$$

3. δ described as

Table 2: M_2 Transition function

	a	b
q_1	q_1	q_2
q_2	q_3	q_4
q_3	q_2	q_1
q_4	q_3	q_4

- 4. Start state $q_1 \in Q$
- 5. $F = \{q_1, q_4\} \subseteq Q$ Start state $q_1 \in Q$

Problem 3

Problem 4

a

