ΘΕΜΑ 4

Μία σεληνάκατος μάζας $m_\Delta=5000~{\rm kg}$ κατεβαίνει με σταθερή ταχύτητα $u=10~{\rm m/s}$ για να προσεληνωθεί. Σε ύψος $h=120~{\rm m}$ από την επιφάνεια αποκολλάται ένα εξάρτημα μικρής μάζας από το σύστημα προσελήνωσης και πέφτει στην Σελήνη. Αν η μάζα της Σελήνης είναι $m_\Sigma=7.4\cdot 10^{23}~{\rm kg}$, η ακτίνα της $R_\Sigma=1750~{\rm km}$ και δίνεται $G=6.67\cdot 10^{-11}~{\rm N\cdot m^2/kg^2}$, να υπολογίσετε :

4.1.Την ένταση του βαρυτικού πεδίου στην επιφάνεια της Σελήνης.

Μονάδες 5

4.2.Την δύναμη που ασκεί η σεληνάκατος στην Σελήνη και την δυναμική ενέργειά της όταν βρίσκεται σε ύψος h = 1250 km και αρχίζει η διαδικασία καθόδου.

Μονάδες 6

4.3.Με ποια ταχύτητα θα φθάσει στην επιφάνεια της Σελήνης το εξάρτημα που αποκολλήθηκε.

Μονάδες 7

4.4.Ποιο από τα δύο σώματα (σεληνάκατος – εξάρτημα) θα φθάσει πρώτο στην επιφάνεια και με ποια χρονική διαφορά.

Μονάδες 7