## Лабораторная работа 5

- 1. Требуется написать функцию, которая вычисляет линейную и угловую скорость выходного звена робота. Для этого сначала необходимо решить прямую задачу кинематики (см. лабораторная работа N=3).
  - Следующая схема соответствует «нулевому» положению, когда все шарниры находятся в положении 0 рад. В качестве глобальной системы координат принята система 0. Оси  $Z_1,\ Z_2,\ Z_3$  ортогональны листу и смотрят за него.



На вход функции подаются значения углов шарниров  $\theta_1$ ,  $\theta_2$ ,  $\theta_3$ ,  $\theta_4$ ,  $\theta_5$  (рад) и скорости изменения этих значений  $\dot{\theta}_1$ ,  $\dot{\theta}_2$ ,  $\dot{\theta}_3$ ,  $\dot{\theta}_4$ ,  $\dot{\theta}_5$  (рад/с).

Функция должна возвращать два вектора  $1 \times 3$ , которые соответствуют линейной и угловой скорости выходного звена (начало координат системы 5) в глобальной системе координат (покомпонентно).

Протестируйте функцию, вызвав ее для следующих входных данных:

$$\theta_1 = \pi/2,$$
  $\theta_2 = -\pi/2,$   $\theta_3 = \pi/2,$   $\theta_4 = \pi/3,$   $\theta_5 = \pi/2$   
 $\dot{\theta}_1 = 0.1,$   $\dot{\theta}_2 = 0.3,$   $\dot{\theta}_3 = 0.2,$   $\dot{\theta}_4 = -0.1,$   $\dot{\theta}_5 = 0.6$ 

2. Напишите аналогичную функцию для манипулятора PUMA Реальная модель робота выглядит следующим образом:





Для этого так же сначала необходимо решить прямую задачу кинематики. Следующая схема соответствует «нулевому» положению робота, когда все шарниры находятся в положении 0 рад. В качестве глобальной системы координат принята система 0.



На вход функции подаются значения углов шарниров  $\theta_1$ ,  $\theta_2$ ,  $\theta_3$ ,  $\theta_4$ ,  $\theta_5$ ,  $\theta_6$  (рад) и скорости изменения этих значений  $\dot{\theta}_1$ ,  $\dot{\theta}_2$ ,  $\dot{\theta}_3$ ,  $\dot{\theta}_4$ ,  $\dot{\theta}_5$ ,  $\dot{\theta}_6$  (рад/с).

 $\Phi$ ункция должна возвращать два вектора  $1 \times 3$ , которые соответствуют линейной и угловой скорости выходного узла (начало координат системы 6) в глобальной системе координат (покомпонентно).

Протестируйте функцию, вызвав ее для следующих входных данных:

$$\theta_1 = \pi/2,$$
  $\theta_2 = -\pi/2,$   $\theta_3 = \pi/4,$   $\theta_4 = -\pi/6,$   $\theta_5 = \pi/8,$   $\theta_6 = -\pi/3$   
 $\dot{\theta}_1 = 0.1,$   $\dot{\theta}_2 = -0.2,$   $\dot{\theta}_3 = 0.3,$   $\dot{\theta}_4 = 0.1,$   $\dot{\theta}_5 = 0.4,$   $\dot{\theta}_6 = -0.6$