

CMOS I'J

刘鹏

浙江大学 信息与电子工程学院

liupeng@zju.edu.cn

MOS管结构和符号

Vgs(th)称为MOS管的开启电压

Vcs=0漏极和源极之间相当于两个PN结背向地串联,所以D-S间不导通, ib=0

MOS: Metal-Oxide-Semiconductor Field-Effect Transistor

CMOS (2) ZDMC

晶体管

CMOS (3)

ZDMC

CMOS 反相器

工作原理:

1、输入为低电平V₁₁ = 0V时

电路中电流近似为零(忽略Ⅰ位的 截裡偏电源源间的半要降落在下

T. 建到电路的重要降在T。上

输出为低电平V_{OL}≈0V

实现逻辑"非"功能 F = A

 $V_{DD} > V_{GS(th)N} + |V_{GS(th)P}|$

V_{GS(th)N}--NMOS的开启电压

CMOS (4) ZDMC

电压传输特性和电流传输特性

CMOS (5)

(1) 输出低电平

•低电平导通电阻: $R_{OL} \leq 1k \Omega$

•最大低电平输出电流I_{OL}

(以4069为例)

$$0.36 \text{mA} \text{ (V}_{DD} = 5 \text{V)}$$

$$0.9 \text{mA}$$
 ($V_{DD} = 10 \text{V}$)

$$2.4 \text{mA}$$
 ($V_{DD} = 15 \text{V}$)

电阻负载能力差

CMOS (6)

 V_{OH}

CMOS反相器的输出特性

- (2) 输出高电平
- •高电平导通电阻: $R_{OH} \le 1k \Omega$
- ·最大高电平输出电流I_{OH}:

(以4069为例)

- $-0.51 \text{mA} \text{ (V}_{DD} = 5 \text{V)}$
- -1.3 mA (V_{DD} = 10 V)
- -3.4 mA (V_{DD} =15V)

因为, CMOS门的 输入阻抗为∞,但考 虑到分布参数, 般取50

(3) 扇出系数:

CMOS (7)

N>50

CMOS反向器传输延时时间

传输延时原因

MOS管开关延时

分布参数

负载电容

$$t_{pd} = (t_{pHL} + t_{pLH})/2$$

动态功耗

$$f
ightharpoonup P_c$$

CMOS (8) ZDMC

与非门逻辑功能的CMOS门电路

或非门逻辑功能的CMOS门电路

二输入"或非"门电路(PMOS管T₁、T₃

当A和B为低电平时:

输出高电平

当A和B有一个或一个以上 为高电平时:

电路输出低电平

二 电路实现"或非"逻辑功能

$$F = \overline{A + B}$$

THE WIND WIND

漏极开路门电路 (OD门)

3. 原理

必须外接负载电阻R_L,才能 实现与非功能

$$Y = \overline{AB}$$

4. 应用

与OC门一样,可做"线与"、 "电平变换"等作用

CMOS (11)

CMOS传输门和双向开关

1. 电路结构

2. 工作条件

$$(1)V_{SS} \le V_{I} \le V_{DD}$$

$$(2)R_L >> R_{ON}$$

CMOS (12) ZDMC

CMOS传输门和双向开关原理

$$(1) C = 0, \overline{C} = 1$$

$$V_{GSN} \le 0, V_{GSP} \ge 0, T_1, T_2$$
 都截止

CMOS (13)

由于, CMOS器件的源极和栅极在结 构上是对称,所以传输门是双向的

 $(V_{DS} < V_{GS} - V_{GS(th)N})$: 假设T₁非饱和导通,

 T_1 、 T_2 至少有一个非饱和导通, 所以, $C = V_{DD}$, $\overline{C} = 0$ 时,传输门导通

$$0 < (V_{DD} - V_{I}) - V_{GS(th)N}$$

$$V_{I} \leq V_{DD} - V_{GS(th)N}$$

T₁非饱和导通条件

同理,
$$T_2$$
非饱和导通
条件: $\left|V_{GS(th)P}\right| \le V_I \le V_{DD}$

T,导通

ZDMC

Regulation of the control of the con

CMOS传输门

主要应用

- ✓ 双向模拟开关,
- ✓ 数据选择器 (可传输模拟信号)

CMOS (15)

CMOS三态门

2. 逻辑符号

3. 原理

$$\overline{EN} = 0, T'_{1}, T'_{2}$$
导通, $Y = \overline{A}$ $\overline{EN} = 1, T'_{1}, T'_{2}$ 截止, Y 为高阻态

4. 三态门应用

主要应用

- ✓ 总线逻辑
- ✓ 双向传输

CMOS (16) **ZDMC**

门级逻辑电路--非门

CMOS (17)

逻辑值

- 阈值电压
 - 逻辑 1 (真): V > Vdd –V th 逻辑 0 (错): V < Vth
- 噪声容限?

in	out	not(out, in)
F	Т	
Т	F	

CMOS (18)

ZDMC

开关实现的逻辑运算

■ 用开关实现逻辑函数 (布尔运算)

两类基本结构: 串行 (AND) 和并行 (OR)

CMOS (19)

A SOUNDER

门级逻辑电路 - 与非门

■ 詳门 (NOT)

■ 与非门(NAND)

nand (out, a, b)

a	b	out
0	0	1
0	1	1
1	0	1
1	1	0

逻辑函数:

- a 与 b = 1, 则输出 = 0 输出表达式 = (ab)'
- pFET网络和nFET网络相互之间是对偶的

如何实现与门?

CMOS (20)

门级逻辑电路

- 一些简单的MOSFET连线规则
- nFET 仅用来传导逻辑0
- pFET 仅用来传导逻辑1
- 如与非门

注意: 在特殊情况下,有经验专家可能采用违反此规则的设计

CMOS (21)

门级逻辑电路 --或非门

■ 与非门 (NAND)

a b	out	nor (out, a, b)
0 0	1	
0 0 0 1 1 0 1 1	0	
1 0	0	
1 1	0	

或非门 (NOR)

逻辑函数:

- a 或 b = 1,则输出 = 0 输出表达式 = (a+b)'
- 同样 , pFET网络和nFET网络相互之间是对偶的
- 可以构成更复杂的逻辑函数, 如:输出 = (a+bc)'

CMOS (22)

传输门

- 利用传输门是CMOS电路中构造 开关的方法
- 同时需要以下2种FET
 - nFET 传输0
 - pFET 传输1
- 传输门是双向的(不像其它逻辑 门和三态缓冲器)
- 从功能上来讲更像三态缓冲器, 但并没有直接与Vdd或GND相连, 所以必须与其它逻辑门或缓冲器相结合

CMOS (23)

门级逻辑电路--三态缓冲器

实现反相三态缓冲器 功能的逻辑门电路

反相三态缓冲器

使能端反相

in

en

当多个端口同时连接到一条公共总线时通常会使用三态缓冲器,只有一个端口可以连接到总线,其它端口均"断开"

CMOS (24) ZDMC

门级逻辑电路--多路选择器

■ 多路选择器

s=1时 c=a, s=0时 c=b

■ 反相多路选择器的门电路

CMOS (25)

CMOS门电路未使用输入端口的规定

- CMOS电路的输入端口不能悬空,所有输入端口要么连接到固定电压位(地电压GND或电源电压V_{DD}),要么连接到其它输入信号
- 这项规则适用于芯片上未使用的逻辑门的输入
- 未连接的CMOS输入,容易受到噪声和静电荷的影响, 这些噪声和静电电荷很容易使P沟道和N沟道MOSFET偏 置在导电状态,从而导致电路功耗增加,及电路过热

CMOS (26) ZDMC

John Bardeen, William Shockley and Walter Brattain at Bell Labs in 1948.

https://en.wikipedia.org/wiki/Transistor

CMOS (27) **ZDMC**