Yau College Math Competition 2023

Final Probability and Statistics

Individual Exam Problems (June 10-11, 2023)

Choose 3 of the following 4 problems.

Problem 1. Suppose that $Y_n \sim \text{Poisson}(n)$ is a Poisson random variable with parameter $n \in \mathbb{N}^* = \{1, 2, \dots\}$.

- (1) Calculate $E(Y_n n)_+$, where $x_+ = \max\{x, 0\}$.
- (2) Prove that $E^{(Y_n-n)_+}_{\sqrt{n}}$ converges to EN_+ as $n \to \infty$, where $N \sim N(0,1)$ (standard normal).
 - (3) Use the above results to derive Stirling's formula for the factorial n!.

Problem 2. For any random variables ξ and η on the same probability space taking values in $\mathbb{N}^* = \{1, 2, \cdots\}$, assume that $P(\xi \text{ is divisible by } r) = P(\eta \text{ is divisible by } r)$, $\forall r \in \mathbb{N}^*$. Prove or disprove that $\xi \stackrel{d}{=} \eta$ (i.e., ξ and η have the same distribution).

Problem 3. Fix some integer $k \geq 2$. For any $n \geq 1$, let $\{X_{n,i} : i = 1, 2, \dots, k\}$ be i.i.d. uniform random variables taking values in $\{1, 2, \dots, n\}$. Let $Z_n = \gcd\{X_{n,i} : i = 1, 2, \dots, k\}$ be the greatest common divisor of $\{X_{n,i} : i = 1, 2, \dots, k\}$.

- (1) Prove that Z_n converges in law to some limit Z with $P(Z=r) \propto r^{-k}, \forall r \in \mathbb{N}^*$.
- (2) Choose k numbers independently and uniformly from $\{1, 2, \dots, n\}$. Let $P_n(k)$ be the probability that these numbers are relatively prime. Find $\lim_{n\to\infty} P_n(k)$.

Problem 4. Let X_1, \ldots, X_n be independent observations. Assume that $X_i \sim \text{Poisson}(i\lambda)$, where λ is an unknown parameter.

- (1) Find an unbiased estimator of the parameter λ . Is your estimator the best unbiased estimator in terms of minimizing the mean squared error?
 - (2) Is your estimator asymptotically normal?