Ultimate Boundedness of a Neural Network Identifier for Nonlinear Dynamics via Robust Adaptive Update

Donghwa Hong

June 14, 2025

1 Problem Formulation

1.1 System and Identifier Dynamics

The nonlinear system is described by:

$$\dot{\boldsymbol{x}}(t) = \mathbf{A}\boldsymbol{x}(t) + g(\boldsymbol{x}, u) + h(\boldsymbol{x}, u) \tag{1}$$

where $\boldsymbol{x} \in \mathbb{R}^n$ is the state, $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a known Hurwitz matrix, $g(\cdot)$ is an known nonlinear function and $h(\cdot)$ is an unknown nonlinear function. The NN identifier is:

$$\dot{\hat{x}}(t) = \mathbf{A}\hat{x}(t) + g(\mathbf{x}, u) + \hat{h}(\hat{\bar{x}})$$
(2)

where the NN output is $\hat{h}(\hat{x}, u) = \hat{\mathbf{W}}^T \sigma(\hat{\mathbf{V}}^T \hat{\bar{x}})$. Here, $\hat{\mathbf{W}} \in \mathbb{R}^{h \times n}$ and $\hat{\mathbf{V}} \in \mathbb{R}^{d \times h}$ are the estimated weight matrices. The NN input $\hat{\bar{x}}$ is constructed from the estimated states \hat{x} and other available signals.

1.2 Error Dynamics

Defining the errors $\tilde{x} = x - \hat{x}$, $\tilde{\mathbf{W}} = \mathbf{W} - \hat{\mathbf{W}}$, and $\tilde{\mathbf{V}} = \mathbf{V} - \hat{\mathbf{V}}$, the error dynamics are given by:

$$\dot{\tilde{x}} = \mathbf{A}\tilde{x} + \tilde{\mathbf{W}}^T \sigma(\hat{\mathbf{V}}^T \hat{\bar{x}}) + w(t)$$
(3)

where $w(t) = \mathbf{W}^T(\sigma(\mathbf{V}^T\bar{x}) - \sigma(\hat{\mathbf{V}}^T\hat{x})) + \epsilon(x)$ is the lumped disturbance term.

Assumption 1. The ideal weights \mathbf{W}, \mathbf{V} are bounded. The disturbance w(t) is bounded by $||w(t)|| \leq w_M$. The activation function σ and its derivatives are bounded.

Assumption 2 (Open-Loop Stability). The open-loop system (1) is stable, which implies that the state vector $\mathbf{x}(t)$ is bounded in L_{∞} .

2 Update Law and Stability Analysis

2.1 Update Laws

Theorem 1. Consider the plant model (1) and the identifier model (2). Given Assumption 2, if the weights of the NLPNN are updated according to

$$\dot{\hat{\mathbf{W}}} = -\eta_1 \left(\frac{\partial J}{\partial \hat{\mathbf{W}}} \right) - \rho_1 \| \tilde{\mathbf{x}} \| \hat{\mathbf{W}}, \tag{4}$$

$$\dot{\hat{\mathbf{V}}} = -\eta_2 \left(\frac{\partial J}{\partial \hat{\mathbf{V}}} \right) - \rho_2 \| \tilde{\mathbf{x}} \| \hat{\mathbf{V}}, \tag{5}$$

where $\eta > 0$ is the learning rate, $J = \frac{1}{2} \int_0^t e^{-\lambda(t-\tau)} \|\tilde{\boldsymbol{x}}(\tau)\|^2 d\tau$ is the objective function and ρ is a small positive number, then $\tilde{\boldsymbol{x}}$, $\tilde{\mathbf{W}}$, and $\tilde{\mathbf{V}} \in L_{\infty}$.

Proof. Since the cost functional is of an integral form, we first introduce the filtered error signal z(t) to construct the update laws.

$$z(t) = \int_0^t e^{-\lambda(t-\tau)} \tilde{x}(\tau) d\tau$$
 (6)

$$\dot{z} = -\lambda z + \tilde{x} \tag{7}$$

Let us define

$$net_{\hat{\mathbf{V}}} = \hat{\mathbf{V}}\hat{\mathbf{x}} \tag{8}$$

$$net_{\hat{\mathbf{W}}} = \hat{\mathbf{W}}\sigma(\hat{\mathbf{V}}\hat{\mathbf{x}}). \tag{9}$$

Therefore, by using the chain rule $\frac{\partial J}{\partial \hat{\mathbf{W}}}$ and $\frac{\partial J}{\partial \hat{\mathbf{V}}}$ can be computed according to

$$\begin{split} \frac{\partial J}{\partial \hat{\mathbf{W}}} &= \frac{\partial J}{\partial \mathrm{net}_{\hat{\mathbf{W}}}} \cdot \frac{\partial \mathrm{net}_{\hat{\mathbf{W}}}}{\partial \hat{\mathbf{W}}} \\ \frac{\partial J}{\partial \hat{\mathbf{V}}} &= \frac{\partial J}{\partial \mathrm{net}_{\hat{\mathbf{V}}}} \cdot \frac{\partial \mathrm{net}_{\hat{\mathbf{V}}}}{\partial \hat{\mathbf{V}}}, \end{split}$$

where

$$\frac{\partial J}{\partial \operatorname{net}_{\hat{\mathbf{W}}}} = \frac{\partial J}{\partial \tilde{\mathbf{x}}} \frac{\partial \tilde{\mathbf{z}}}{\partial \hat{\mathbf{x}}} \frac{\partial \hat{\mathbf{x}}}{\partial \operatorname{net}_{\hat{\mathbf{W}}}} = -\mathbf{z}^{T} \frac{\partial \hat{\mathbf{x}}}{\partial \operatorname{net}_{\hat{\mathbf{W}}}},
\frac{\partial J}{\partial \operatorname{net}_{\hat{\mathbf{V}}}} = \frac{\partial J}{\partial \tilde{\mathbf{x}}} \frac{\partial \tilde{\mathbf{x}}}{\partial \hat{\mathbf{x}}} \frac{\partial \hat{\mathbf{x}}}{\partial \operatorname{net}_{\hat{\mathbf{V}}}} = -\mathbf{z}^{T} \frac{\partial \hat{\mathbf{x}}}{\partial \operatorname{net}_{\hat{\mathbf{V}}}}$$
(10)

and

$$\frac{\partial \operatorname{net}_{\hat{\mathbf{W}}}}{\partial \hat{\mathbf{W}}} = \sigma(\hat{\mathbf{V}}\hat{\mathbf{x}})$$

$$\frac{\partial \operatorname{net}_{\hat{\mathbf{V}}}}{\partial \hat{\mathbf{V}}} = \hat{\mathbf{x}}.$$
(11)

We modify the original BP algorithm such that the static approximations of $\frac{\partial \hat{x}}{\partial \text{net}_{\hat{\mathbf{V}}}}$ and $\frac{\partial \hat{x}}{\partial \text{net}_{\hat{\mathbf{V}}}}$ ($\hat{x} = 0$) can be used.

$$\frac{\partial \hat{x}}{\partial \text{net}_{\hat{\mathbf{W}}}} \approx -\mathbf{A}^{-1}$$

$$\frac{\partial \hat{x}}{\partial \text{net}_{\hat{\mathbf{V}}}} \approx -\mathbf{A}^{-1}\hat{\mathbf{W}}(\mathbf{I} - \mathbf{\Lambda}(\hat{\mathbf{V}}\hat{x})),$$
(12)

where

$$\mathbf{\Lambda}(\hat{\mathbf{V}}\hat{\mathbf{x}}) = \operatorname{diag}\{\sigma_i^2(\hat{\mathbf{V}}_i\hat{\mathbf{x}})\}, \quad i = 1, 2, \dots, m.$$
(13)

$$\dot{\hat{\mathbf{W}}} = -\eta_1 \left(z^T \mathbf{A}^{-1} \right)^T \sigma(\hat{\mathbf{V}}^T \hat{\bar{\mathbf{x}}})^T - \rho_1 \|\tilde{\mathbf{x}}\| \hat{\mathbf{W}}$$
(14)

(15)

$$\dot{\hat{\mathbf{V}}} = -\eta_2 \hat{\bar{x}} \left(\mathbf{z}^T \mathbf{A}^{-1} \hat{\mathbf{W}} (\mathbf{I} - \mathbf{\Lambda} (\hat{\mathbf{V}} \hat{\mathbf{x}})) \right)^T - \rho_2 \|\tilde{\mathbf{x}}\| \hat{\mathbf{V}}$$
(16)

(17)

where $\eta_W, \eta_V, \rho_1, \rho_2 > 0$ are design parameters. By using (14) and (15) in terms of $\tilde{\mathbf{W}}$ may be written as

$$\dot{\tilde{\mathbf{W}}} = \eta_1 (\boldsymbol{z}^T \mathbf{A}^{-1})^T (\sigma(\hat{\boldsymbol{x}}))^T + \rho_1 ||\tilde{\boldsymbol{x}}|| \hat{\mathbf{W}}.$$
(18)

$$\dot{\hat{\mathbf{V}}} = \eta_2 \hat{\bar{\mathbf{x}}} \left(\mathbf{z}^T \mathbf{A}^{-1} \hat{\mathbf{W}} \operatorname{diag}(\sigma'(\hat{\mathbf{V}}^T \hat{\bar{\mathbf{x}}})) \right)^T - \rho_2 \|\tilde{\mathbf{x}}\| \hat{\mathbf{V}}$$
(19)

2

2.2 Lyapunov Stability

Theorem 2. For the system given by (3) with the update laws (15)-(17), all signals in the system $(\tilde{\mathbf{x}}, \tilde{\mathbf{W}}, \tilde{\mathbf{V}})$ are Uniformly Ultimately Bounded.

Proof. The stability proof is conducted in two steps using a cascaded system approach.

We first prove the boundedness of the state error \tilde{x} and the output layer weight error \mathbf{W} . This is possible because the term $\sigma_v = \sigma(\hat{\mathbf{V}}^T\hat{\bar{x}})$ in the error dynamics (3) is always bounded, regardless of the value of $\hat{\mathbf{V}}$, due to the bounded nature of the activation function σ .

Consider the Lyapunov function candidate for the first subsystem:

$$L = \frac{1}{2}\tilde{\boldsymbol{x}}^T \mathbf{P}_1 \tilde{\boldsymbol{x}} + \frac{1}{2} \operatorname{tr}(\tilde{\mathbf{W}}^T \rho^{-1} \tilde{\mathbf{W}}) + \frac{1}{2} \int_0^t e^{-\lambda(t-\tau)} \tilde{\boldsymbol{x}}(\tau)^T \mathbf{P}_2 \tilde{\boldsymbol{x}}(\tau) d\tau$$
 (20)

Its time derivative, after substituting the error dynamics, is:

$$\dot{L} = -\frac{1}{2}\tilde{\boldsymbol{x}}^{T}(\mathbf{Q}_{1} - \mathbf{P}_{2})\tilde{\boldsymbol{x}} + \tilde{\boldsymbol{x}}^{T}\mathbf{P}_{1}(\tilde{\mathbf{W}}^{T}\boldsymbol{\sigma}_{v} + w) + \operatorname{tr}(\dot{\tilde{\mathbf{W}}}^{T}\boldsymbol{\rho}^{-1}\tilde{\mathbf{W}}) - \lambda L_{\operatorname{int}}$$
(21)

where $\sigma_v = \sigma(\hat{\mathbf{V}}^T \hat{\bar{x}})$, $\mathbf{Q} = \mathbf{Q}_1 - \mathbf{P}_2 > 0$, and $L_{\text{int}} = \frac{1}{2} \int_0^t e^{-\lambda(t-\tau)} \tilde{x}(\tau)^T \mathbf{P}_2 \tilde{x}(\tau) d\tau$. We substitute the update law (15) using $\dot{\hat{\mathbf{W}}} = -\dot{\hat{\mathbf{W}}}$.

$$\operatorname{tr}(\dot{\tilde{\mathbf{W}}}^{T} \rho^{-1} \tilde{\mathbf{W}}) = \operatorname{tr}\left(\left(\eta_{W} \mathbf{A}^{-T} \boldsymbol{z} \sigma_{v}^{T} + \rho \|\tilde{\boldsymbol{x}}\| \hat{\mathbf{W}}\right)^{T} \rho^{-1} \tilde{\mathbf{W}}\right)$$
$$= \eta_{W} \operatorname{tr}(\sigma_{v} \boldsymbol{z}^{T} \mathbf{A}^{-1} \rho^{-1} \tilde{\mathbf{W}}) + \|\tilde{\boldsymbol{x}}\| \operatorname{tr}(\hat{\mathbf{W}}^{T} \tilde{\mathbf{W}})$$

We expand the leakage term by substituting $\hat{\mathbf{W}} = \mathbf{W} - \tilde{\mathbf{W}}$:

$$\begin{aligned} \|\tilde{\boldsymbol{x}}\| \operatorname{tr}(\hat{\mathbf{W}}^T \tilde{\mathbf{W}}) &= \|\tilde{\boldsymbol{x}}\| \operatorname{tr}((\mathbf{W} - \tilde{\mathbf{W}})^{\mathbf{T}} \tilde{\mathbf{W}}) \\ &= -\|\tilde{\boldsymbol{x}}\| \|\tilde{\mathbf{W}}\|^2 + \|\tilde{\boldsymbol{x}}\| \|\mathbf{W}\| \|\tilde{\mathbf{W}}\| \end{aligned}$$

Substituting this back into the \hat{L} expression:

$$\dot{L} \leq -\frac{1}{2}\tilde{\boldsymbol{x}}^T \mathbf{Q}\tilde{\boldsymbol{x}} - \|\tilde{\boldsymbol{x}}\| \|\tilde{\mathbf{W}}\|^2 - \lambda L_{\text{int}}$$

$$+ \tilde{\boldsymbol{x}}^T \mathbf{P}_1(\tilde{\mathbf{W}}^T \sigma_v + w) + \eta_W \operatorname{tr}(\sigma_v \boldsymbol{z}^T \mathbf{A}^{-1} \rho^{-1} \tilde{\mathbf{W}}) + \|\tilde{\boldsymbol{x}}\| \|\mathbf{W}\| \|\tilde{\mathbf{W}}\|$$

Moreover, we have

$$\begin{aligned} |\tilde{\boldsymbol{x}}^{T}\mathbf{P}_{1}\tilde{\mathbf{W}}^{T}\sigma_{v}| &\leq \|\tilde{\boldsymbol{x}}\|\|\mathbf{P}_{1}\|(\|\tilde{\mathbf{W}}\|\sigma_{M} + \bar{w})\\ \|\tilde{\boldsymbol{x}}\|\|\mathbf{W}\|\|\hat{\mathbf{W}}\| &\leq \|\tilde{\boldsymbol{x}}\|\|\tilde{\mathbf{W}}\|W_{M}\\ |\eta_{W}\operatorname{tr}(\sigma_{v}\boldsymbol{z}^{T}\mathbf{A}^{-1}\rho^{-1}\tilde{\mathbf{W}})| &\leq \eta_{W}\|\sigma_{v}\|\|\boldsymbol{z}\|\|\mathbf{A}^{-1}\rho^{-1}\|\|\tilde{\mathbf{W}}\|\\ &\leq \eta_{W}\sigma_{M}\frac{\sqrt{n}}{\lambda}\|\tilde{\boldsymbol{x}}\|\|A^{-1}\rho^{-1}\|\|\tilde{\mathbf{W}}\|.\end{aligned}$$

where $||W|| \leq W_M$, $||\sigma(\hat{\bar{x}})|| \leq \sigma_M$, and because z(t) is the state of the first-order filter (6) driven

by $\tilde{\boldsymbol{x}}(t)$, its 2-norm satisfies

$$\|\boldsymbol{z}(t)\| = \left\| \int_{0}^{t} e^{-\lambda(t-\tau)} \tilde{\boldsymbol{x}}(\tau) \, d\tau \right\|$$

$$\leq \int_{0}^{t} e^{-\lambda(t-\tau)} \|\tilde{\boldsymbol{x}}(\tau)\| \, d\tau$$

$$\leq \|\tilde{\boldsymbol{x}}\|_{\infty} \int_{0}^{t} e^{-\lambda(t-\tau)} \, d\tau$$

$$= \frac{1 - e^{-\lambda t}}{\lambda} \|\tilde{\boldsymbol{x}}\|_{\infty}$$

$$\leq \frac{\sqrt{n}}{\lambda} \|\tilde{\boldsymbol{x}}\|_{\infty}$$

$$\leq \frac{\sqrt{n}}{\lambda} \|\tilde{\boldsymbol{x}}\|_{\infty}$$

$$\leq \frac{\sqrt{n}}{\lambda} \|\tilde{\boldsymbol{x}}\|_{\infty} \quad (\text{since } \|\tilde{\boldsymbol{x}}\|_{\infty} \leq \|\tilde{\boldsymbol{x}}\|). \tag{22}$$

with n denoting the state dimension.

Then, the inequality becomes:

$$\dot{L} \leq -\frac{1}{2}\lambda_{\min}(\mathbf{Q})\|\tilde{\mathbf{x}}\|^{2} - \|\tilde{\mathbf{x}}\|\|\tilde{\mathbf{W}}\|^{2} - \lambda L_{\text{int}}
+ \|\tilde{\mathbf{x}}\|\|\mathbf{P}_{1}\|(\|\tilde{\mathbf{W}}\|\sigma_{M} + \bar{w}) + \|\tilde{\mathbf{x}}\|W_{M}\|\tilde{\mathbf{W}}\| + \eta_{W}\sigma_{M}\frac{\sqrt{n}}{\lambda}\|\tilde{\mathbf{x}}\|_{\infty}\|\mathbf{A}^{-1}\|\|\rho^{-1}\|\|\tilde{\mathbf{W}}\|$$
(23)

By completing the squares for the terms involving $\|\hat{W}\|$, we look for conditions on $\|x\|$ which are independent of the neural network weights error and also make the time derivative of the Lyapunov candidate negative.

$$\dot{L} \leq -\|\tilde{x}\|\|\tilde{\mathbf{W}}\|^{2} + \left((\|\mathbf{P}_{1}\|\sigma_{M} + W_{M} + \eta_{W}\sigma_{M}\frac{\sqrt{n}}{\lambda}\|\mathbf{A}^{-1}\rho_{1}^{-1}\|)\|\tilde{x}\| \right) \|\tilde{\mathbf{W}}\|$$
$$-\frac{1}{2}\lambda_{\min}(\mathbf{Q})\|\tilde{x}\|^{2} + \|\tilde{x}\|\|\mathbf{P}_{1}\|w_{M} - \lambda L_{\text{int}}$$

Let $k_b = \|\mathbf{P}_1\|\sigma_M + W_M + \eta_W\sigma_M\frac{\sqrt{n}}{\lambda}\|\mathbf{A}^{-1}\rho_1^{-1}\|$. The terms involving $\tilde{\mathbf{W}}$ are of the form $-(\|\tilde{\mathbf{x}}\|)\|\tilde{\mathbf{W}}\|^2 + (k_b\|\tilde{\mathbf{x}}\|)\|\tilde{\mathbf{W}}\|$. By completing the square, this is bounded above by $\frac{(k_b\|\tilde{\mathbf{x}}\|)^2}{4|\tilde{\mathbf{x}}\|} = \frac{k_b^2}{4}\|\tilde{\mathbf{x}}\|$. The final inequality for \dot{L} is:

$$\dot{L} \le -\frac{1}{2}\lambda_{min}(\mathbf{Q})\|\tilde{\boldsymbol{x}}\|^2 - \lambda L_{\text{int}} + \left(\|\mathbf{P}_1\|\bar{\boldsymbol{w}} + \frac{k_b^2}{4}\right)\|\tilde{\boldsymbol{x}}\|$$
(24)

To find a sufficient condition that guarantees $\dot{L} \leq 0$ and subsequently derive the ultimate bound, we can analyze a simpler upper bound. Since the term $-\lambda L_{int}$ is always non-positive, it can be omitted from the right-hand side while the inequality still holds. The analysis thus proceeds with the remaining terms:

$$\|\tilde{\boldsymbol{x}}\| \ge \frac{2\left(\|\mathbf{P}_1\|\bar{w} + (\|\mathbf{P}_1\|\sigma_M + W_M + \eta_W\sigma_M\frac{\sqrt{n}}{\lambda}\|\mathbf{A}^{-1}\rho_1^{-1}\|)^2\right)}{\lambda_{min}(\mathbf{Q})} = b$$
 (25)

Furthermore, the above condition on $\|\tilde{\boldsymbol{x}}\|$ guarantees the negative semi-definiteness of \hat{L} and therefore, ultimate boundedness of $\tilde{\boldsymbol{x}}$. In fact, \hat{L} is negative definite outside the ball with radius b.

Remark 1.

4