LP47 – Mécanismes de la conduction électrique dans les solides.

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Description classique de la conduction

2. Conductivité électrique

Métal	Conductivité (M S . cm^{-1})
Aluminium $(T = 25^{\circ}C)$	0,377
Fer $(T = 25^{\circ}C)$	0,103
Carbon $(T = 0^{\circ}C)$	7,272.10 ⁻⁴
Bore $(T = 0^{\circ}C)$	5,555.10 ⁻¹³

I. Description classique de la conduction

3. Limites du modèles

Fig. II.4. — Variation de la résistivité des métaux. La température a été normalisée à la valeur de la température de Debye Θ_D . Lorsque la pureté d'un métal donné change, la résistivité change par une valeur indépendante de la température égale à ϱ_D , résistivité résiduelle.

II. Description semi-quantique de la conduction, mer de Fermi

2. Niveau de Fermi

II. Description semi-quantique de la conduction, mer de Fermi

3. Influence d'un champ électrique sur la mer de Fermi

III. Isolant, conducteur, semi-conducteur : la structure de bandes

3. Différents types de matériaux

III. Isolant, conducteur, semi-conducteur : la structure de bandes

3. Différents types de matériaux

III. Isolant, conducteur, semi-conducteur :la structure de bandes

3. Différents types de matériaux

Valeurs expérimentales de la résistivité du germanium en fonction de 1/T, pour différentes concentration d'antimoine : pour la courbe 1 à 29 la densités d'atome varie de $5,3 \ 10^{20} \ m^{-3}$ à $9,5.10^{23} \ m^{-3}$.

