Please amend claims 12-18 and 35-37 as follows:

- 12. (Amended) The method of claim 38, wherein all the amino acids of the compound are D-isomers.
 - 13. (Amended) The method of claim 38, wherein Y' is Lys.
 - 14. (Amended) The method of claim 38, wherein Y' is Lys and Z' is Phe.
 - 15. (Amended) The method of claim 38, wherein Y' is Phe.

Bl SVBCI)

- 16. (Amended) The method of claim 38, wherein X' is Val-Val.
- 17. (Amended) The method of claim 38, wherein R_1 is acetyl.
- 18. (Amended) The method of claim 38, wherein R_1 is H or R_2 is H.
- 35. (Amended) A method for treating or preventing demens in a patient having Downs syndrome comprising administering to the patient in need thereof an effective amount of a compound according to formula

SUBCR)

$$R_1-A - Y' - Leu - X' - Z' - B' - R_2 (I)$$

in which X' means any group or amino acid imparting to the compound of formula (I) the ability to bind to the KLVFF-sequence in β amyloid peptide, or two amino acids imparting the same ability, but with the proviso that one is not proline;

Y' means any amino acid;

Z' means any non-acidic amino acid;

A' means a direct bond or an α -amino acid bonded at the carboxyl terminal of the α -carboxy group or a di-, tri-, tetra- or pentapeptide bonded at the carboxyl terminal of the α -carboxy group;

B' means a direct bond or an α -amino acid bonded at the α -nitrogen or a di-, tri-, tetra- or pentapeptide bonded at the α -nitrogen of the N-terminal α -amino acid;

 R_1 is H or -CO- R_3 bonded at the α -amino group of A';

 R_2 is H, $-OR_4$ or NR_5R_6 all bound to the α -carboxyl group of the α -carboxyterminal of B';

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

R₄ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H, alkyl, cycloalkyl, aryl or substituted aryl or together are $-(CH_2)_n$, where n is 4-5.

 R_1 and R_2 together can form a hydrocarbon ring or heterocyclic ring; and all the α -amino acids can be either D- or L-isomers.

36. (Amended) A method for treating or preventing hereditary cerebral hemorrhage associated with amyloidosis (Dutch type) comprising administering to a patient in need thereof an effective amount of a compound according to formula

$$R_1-A'-Y'-Leu-X'-Z'-B'-R_2$$
 (I)

in which

X' means any group or amino acid imparting to the compound of formula (I) the ability to bind to the KLVFF-sequence in amyloid β peptide, or two amino acids imparting the same ability, but with the proviso that one is not proline;

Y' means any amino acid;

Z' means any non-acidic amino acid;

SUBCE

BZ cost

A' means a direct bond or an α -amino acid bonded at the carboxyl terminal of the α -carboxy group or a di-, tri-, tetra- or pentapeptide bonded at the carboxyl terminal of the α -carboxy group;

B' means a direct bond or an α -amino acid bonded at the α -nitrogen or a di-, tri-, tetra- or pentapeptide bonded at the α -nitrogen of the N-terminal α -amino acid;

 R_1 is H or -CO- R_3 bonded at the α -amino group of A';

 R_2 is H, $-OR_4$ or NR_5R_6 all bound to the α -carboxyl group of the α -carboxyterminal of B';

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

R₄ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H\ alkyl, cycloalkyl, aryl or substituted aryl or together are -(CH₂)_n-, where n is 4-5;

 R_1 and R_2 together can form a hydrocarbon ring or heterocyclic ring; and all the α -amino acids can be either D- or L-isomers.

37. (Amended) A method for preventing fibril formation of human amyloid protein in a patient in need thereof comprising administering to said patient an effective amount of a compound according to formula

$$R_1-A'-Y'-Leu - X'-Z'-B'-R_2$$
 (I)

in which

X' means any group or amino acid imparting to the compound of formula (I) the ability to bind to the KLVFF-sequence in amyloid β peptide, or two amino acids imparting the same ability, but with the proviso that one is not proline;

Y' means any amino acid;

Z' means any non-acidic amino acid;

A' means a direct bond or an α -amino acid bonded at the carboxyl terminal of the

BZ

Application No. <u>09/850,061</u> Attorney Docket No. <u>033315-002</u> Page 5

 α -carboxy group or a di-, tri-, tetra- or pentapeptide bonded at the carboxyl terminal of the α -carboxy group;

B' means a direct bond or an α -amino acid bonded at the α -nitrogen or a di-, tri-, tetra- or pentapeptide bonded at the α -nitrogen of the N-terminal α -amino acid;

 R_1 is H or -CO- R_3 bonded at the α -amino group of A';

 R_2 is H, $-OR_4$ or NR_5R_6 all bound to the α -carboxyl group of the α -carboxyterminal of B';

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

R₄ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H, alkyl, cycloalkyl, aryl or substituted aryl or together are $-(CH_2)_n$ -, where n is 4-5;

 R_1 and R_2 together can form a hydrocarbon ring or heterocyclic ring; and all the α -amino acids can be either D- or L-isomers.

Kindly add new claims 38-41 as follows:

38. (Newly added) A method for inhibiting polymerization of an amyloid β peptide in a patient in need thereof comprising administering to said patient a therapeutic effective amount of a compound having formula

$$R_1$$
-A' - Y' - Leu - X' - Z' - B' - R_2 (I)

in which

X' means any group or amino acid imparting to the compound of formula (I) the ability to bind to the KLVFF-sequence in amyloid β peptide, or two amino acids imparting the same ability, but with the proviso that one is not proline;

Y' means any amino acid;

Z' means any non-acidic amino acid;

cons

B3

A' means a direct bond or an α -amino acid bonded at the carboxyl terminal of the α -carboxy group or a di-, tri-, tetra- or pentapeptide bonded at the carboxyl terminal of the α -carboxy group;

B' means a direct bond or an α -amino acid bonded at the α -nitrogen or a di-, tri-, tetra- or pentapeptide bonded at the α -nitrogen of the N-terminal α -amino acid;

 R_1 is H or -CO- R_3 bonded at the α -amino group of A';

 R_2 is H, -OR₄ or NR₅R₆ all bound to the α -carboxyl group of the α -carboxyterminal of B';

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

R₄ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H, alkyl, cycloalkyl, aryl or substituted aryl or together are -(CH2)_n-, where n is 4-5;

 R_1 and R_2 together can form a hydrocarbon ring or heterocyclic ring; and all the α -amino acids can be either D- or L-isomers.

B3

39. (Newly added) A method for treating or preventing Alzheimer's disease or another disease characterized by amyloidosis in a patient in need thereof comprising administering to said patient a therapeutic effective amount of a compound having formula

$$R_{1}$$
-A' - Y' - Leu - X' - Z' - B' - R_{2} (I)

in which

X' means any group or amino acid imparting to the compound of formula (I) the ability to bind to the KLVFF-sequence in amyloid β peptide, or two amino acids imparting the same ability, but with the proviso that one is not proline;

Y' means any amino acid;

Z' means any non-acidic amino acid;

A' means a direct bond or an α-amino acid bonded at the carboxyl terminal of the

 α -carboxy group or a di-, tri-, tetra- or pentapeptide bonded at the carboxyl terminal of the α -carboxy group;

B' means a direct bond or an α -amino acid bonded at the α -nitrogen or a di-, tri-, tetra- or pentapeptide bonded at the α -nitrogen of the N-terminal α -amino acid;

 R_1 is H or -CO- R_3 bonded at the α -amino group of A';

 R_2 is H, -OR₄ or NR₅R₆ all bound to the α -carboxyl group of the α -carboxyterminal of B';

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

R₄ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H, alkyl, cycloalkyl, aryl or substituted aryl or together are -(CH2)_n-, where n is 4-5;

 R_1 and R_2 together can form a hydrocarbon ring or heterocyclic ring; and all the α -amino acids can be either D- or L-isomers.

40. (Newly added) A method for inhibiting polymerization of an amyloid β peptide to a ligand comprising contacting an amyloid β peptide containing environment with a polymerization inhibitory effective amount of a compound according to formula

$$R_1-A'-Y'-Leu-X'-Z'-B'-R_2$$
 (I)

in which

X' means any group or amino acid imparting to the compound of formula (I) the ability to bind to the KLVFF-sequence in amyloid β peptide, or two amino acids imparting the same ability, but with the proviso that one is not proline;

Y' means any amino acid;

Z' means any non-acidic amino acid;

A' means a direct bond or an α -amino acid bonded at the carboxyl terminal of the α -carboxy group or a di-, tri-, tetra- or pentapeptide bonded at the carboxyl terminal of the

 α -carboxy group;

B' means a direct bond or an α -amino acid bonded at the α -nitrogen or a di-, tri-, tetra- or pentapeptide bonded at the α -nitrogen of the N-terminal α -amino acid;

 R_1 is H or -CO- R_3 bonded at the α -amino group of A';

 R_2 is H, -OR₄ or NR₅R₆ all bound to the α -carboxyl group of the α -carboxyterminal of B';

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_4 is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H, alkyl, cycloalkyl, aryl or substituted aryl or together are -(CH2)_n-, where n is 4-5;

 R_1 and R_2 together can form a hydrocarbon ring or heterocyclic ring; and all the α -amino acids can be either D- or L-isomers.

B3 per

41. (Newly added) A method for inhibiting polymerization of an amyloid β peptide comprising contacting an amyloid β peptide containing environment with a polymerization inhibiting effective amount of a compound according to formula

$$R_1$$
-A' - Y' - Leu - X' - Z' - B' - R_2 (I)

in which

X' means any group or amino acid imparting to the compound of formula (I) the ability to bind to the KLVFF-sequence in amyloid β peptide, or two amino acids imparting the same ability, but with the proviso that one is not proline;

Y' means any amino acid;

Z' means any non-acidic amino acid;

A' means a direct bond or an α -amino acid bonded at the carboxyl terminal of the α -carboxy group or a di-, tri-, tetra- or pentapeptide bonded at the carboxyl terminal of the α -carboxy group;

B' means a direct bond or an α -amino acid bonded at the α -nitrogen or a di-, tri-, tetra- or pentapeptide bonded at the α -nitrogen of the N-terminal α -amino acid;

 R_1 is H or -CO- R_3 bonded at the α -amino group of A';

 R_2 is H, $-OR_4$ or NR_5R_6 all bound to the α -carboxyl group of the α -carboxyterminal of B';

R₃ is a straight or branched carbon chain of 1-4 carbon atoms;

R₄ is a straight or branched carbon chain of 1-4 carbon atoms;

 R_5 and R_6 independently are H, alkyl, cycloalkyl, aryl or substituted aryl or together are -(CH2)_n-, where n is 4-5;

 R_1 and R_2 together can form a hydrocarbon ring or heterocyclic ring; and all the α -amino acids can be either D- or L-isomers.

REMARKS

I. CLAIM STATUS & AMENDMENTS

As correctly indicated on the Office Action Summary, claims 1-37 were previously pending in this application. However, Applicants by way of the present Amendment hereby cancel claims 1-11 and 19-34 without prejudice to or disclaimer thereof. Applicants reserve the right to file a continuation on any subject matter canceled by way of this Amendment.

The present Amendment also amends claims 12-18 and 35-37. Support for the amendments to claims 12-18 can be found, at least, in original claims 12-18, respectively, and in claim 11. Support for the amendments to claims 35-37 can be found, at least, in original claims 11-24, respectively. Thus, no prohibited new matter is believed to have been added by these amendments.