Optics 2018, minimum x₀ measurement

F. Nemes

March 12, 2019

x-angle 130 μ rad, $\beta^* = 0.25$ m (Run 314276, 2018, April)

Monte Carlo plots: hitmap with and without θ_x^*

- The smearing due to scattering angle
- In the data we cannot switch of L_x or so
- However, one can make a cut on θ_x

$$x = v_{x} \cdot x^{*} + L_{x} \cdot \theta_{x}^{*} + D_{x} \cdot \xi \tag{1}$$

The RMS of the y-coordinate

lacktriangle The minimum shows the quick L_y cross-over 0

x-angle 160 μ rad

(Run 314247, 2018, April)

The RMS of the y-coordinate and x_0

- ullet A bit unexpected (see later with September 130 μ rad data)
- Would break dispersion as function of x-angle from 2017

Elastics at 160 $\mu \mathrm{rad}$: single arm correlations

- RP4 and 24: top verticals
- TOTEM methods to identify elastics
- Note: focusing

Elastics at 160 μ rad: test of absolute horizontal alignment

• $x_0 \approx 2.33 - 0.23 = 2.1 \text{ mm}$

Remaining alignment tests for x-angle 130 μ rad (2018, April)

x-angle 130 μ rad, $\beta^* = 0.25$ m (Run 323316, 2018, September)

The "neck" after cut • Remains a bit noisy even after cut in the important range • x₀ clearly below 2.5 mm Z (mm) 2 (mm) 1.5 10³ 10^{2} 0.5 10 -0.51.5 2 2.5 3 3.5 4.5 x_{RP3} [mm]

The x_0 point

- x_0 seems to be 7 % lower than in April
- Alignment, optics, resolution, x-angle?

The absolute alignment

- Ok, even with TProfiles
- Common in events in RP 3, 4, 5 are also Ok

x-angle 130 μ rad, $\beta^* = 0.27$ m (Run 323311, 2018, September)

Absolute alignment and the x_0 point

• $x_0 \approx 2.382 \text{ mm} + 0.06 \text{ mm} = 2.442 \text{ mm}$

Summary of April and September

- 130 μ rad: $x_0 \approx 2.445 \text{ mm} \pm 0.08$
- 160 μ rad: $x_0 \approx 2.10$ mm

Right arm

x-angle 130 μ rad, $\beta^* = 0.25$ m

(Run 314276, 2018, April)

The x_0 point in RP103

- Calibration point is not visible
- 2017 data suggest a factor 1.298 between left and right arm
- \bullet x_0 "should" be around 1.883 \pm 0.08

The x_0 point in RP103

- Parabolic fit
- First points not used, fit quality very low
- Extrapolation point is OK
- Dimuon data will help (also for left arm!)

A curiosity in the right arm from September

- Reason: $L_x = 0$ close to RP
- No coupling (MQSX off)
- Good for optics checks!

Notes on beam divergence

Based on emittance and beam spot

Beam divergence study from CT-PPS Physics meeting

• Lorentz
$$\gamma_{\mathrm{proton}} = \frac{E_{\mathrm{beam}}}{M_{\mathrm{proton}}} = \frac{6500 \text{ GeV}}{0.93827 \text{ GeV}}$$

•
$$\sigma_{\rm x,y}^* = \sqrt{\frac{\beta_{\rm x,y}^* \cdot \epsilon}{\gamma_{\rm proton}}} = \sqrt{\frac{0.4 \cdot 3.5 \cdot 10^{-6}}{\gamma_{\rm proton}}} = 14~\mu{\rm m}$$
 (ϵ stands for the emittance)

- The figure shows the physics run closest to the alignment run (from Jonathan)
- Excellent agreement between data and model
- Page 6: beam divergence $\sigma(x')^* = \sigma(x)^*/\beta^* = 14 \ \mu m/0.4m = 35 \ \mu rad$

Why $\sigma(x')^* = \sigma(x)^*/\beta^*$?

$$x'' - k(s)x = 0, \quad k = \frac{1}{B \cdot \rho} \frac{\mathrm{d}B_y}{\mathrm{d}x}.$$
 (2)

- Beam equation, harmonic oscillator with magnetic strength k(s)
- Ansatz: $x(s) = \sqrt{\beta_x(s)\varepsilon} \cos [\phi_x(s) + \phi_0]$ and $\phi' = \frac{1}{\beta}$
- Its derivative x(s)' is the beam divergence and $x(s)' \propto \sqrt{\frac{\varepsilon}{\beta(s)}} \sin(...)$
- At points $\beta' = 0$, see Wilson's book, the thesis of Hubert or mine
- Phase space ellipse and area: $\pi\sigma(x)\sigma(x')=\pi\epsilon=constant$ (Liouville theorem)

The Gaussian shape of $\sigma(x')$ by TOTEM at 13 TeV from CERN preprint:

Summary

- New and reliable method for "neck" position measurement
- Applied for available x-angles: remains close to 2017
- Rigorous test of alignment / optics assumptions
- Beam divergence notes

Note: alignment data with more x-angle combination would be useful. Now we have almost only 130 μ rad!