SIN 251 – Organização de Computadores (2023)

Aula 01 - Sistemas de Numeração

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

- O Sistema Decimal
- O Sistema Binário
- Conversão entre Binário e Decimal
 - Inteiros
 - Frações
- Notação Octal
- Notação Hexadecimal

O Sistema Decimal

- Sistema Baseado nos Dígitos Decimais
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- O que o número 83 significa?
 - Significa 8 vezes 10 mais 3.
 - $-83 = (8 \times 10) + 3$
- O número 4728 significa...
 - 4 milhares, 7 centenas, 2 dezenas mais 8
 - $-4728 = (4 \times 1000) + (7 \times 100) + (2 \times 10) + 8$
 - ou ainda:
 - $-4728 = (4 \times 1000) + (7 \times 100) + (2 \times 10) + (8 \times 1)$

O Sistema Decimal

- O sistema decimal é dito possuir base 10
 - Cada número é multiplicado por 10 elevado a uma potencia correspondente a posição do digito
 - $83 = (8 \times 10^{1}) + (3 \times 10^{0})$
 - $-4728 = (4 \times 10^3) + (7 \times 10^2) + (2 \times 10^1) + (8 \times 10^0)$
- O mesmo principio vale para números decimais fracionários
 - São utilizados potências negativas de 10
 - $-0,256 = (2 \times 10^{-1}) + (5 \times 10^{-2}) + (6 \times 10^{-3})$
- Um número composto por parte inteira e parte fracionária
 - $-472,256 = (4 \times 10^{2}) + (7 \times 10^{1}) + (2 \times 10^{0}) + (2 \times 10^{-1}) + (5 \times 10^{-2}) + (6 \times 10^{-3})$

O Sistema Decimal

- Para a representação decimal do número
 - $X = \{ d_2d_1d_0, d_{-1}d_{-2}d_{-3} \}$
 - d = 0, 1, 2, 3, 4, 5, 6, 7, 8 ou 9
- O valor de X é
 - $X = \sum_{i} (d_i \times 10^i)$

O Sistema Binário

- Sistema Decimal
 - 10 dígitos diferentes usados para representar números com uma base 10
- Sistema Binário
 - Apenas 2 dígitos: 1 e 0
 - Representados com a base 2
- É comum incluir a base do número em subscrito para evitar confusão
 - 83₁₀ e 4728₁₀ \rightarrow números decimais
- Os dígitos 1 e 0 em notação binária possuem o mesmo significado como quando em notação decimal
 - $0_2 = 0_{10}$
 - $-1_2=1_{10}$

O Sistema Binário

- Assim como na notação decimal,
 - cada digito de um número binário possui um valor dependendo de sua posição.

$$- 102 = (1 \times 21) + (0 \times 20) = 210$$

$$- 112 = (1 \times 21) + (1 \times 20) = 310$$

$$- 1002 = (1 \times 22) + (0 \times 21) + (0 \times 20) = 410$$

Valores de frações são representadas com potências negativas da base

-
$$1001,101_2 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 8 + 1 + 0,5 + 0,125 = 9,625_{10}$$

O Sistema Binário

- Para a representação binária do número
 - $Y = \{ b_2b_1b_0, b_{-1}b_{-2}b_{-3} \}$
 - b = 0 ou 1
- O valor de Y é
 - $Y = \sum_{i} (b_i \times 2^i)$

- Binário para Decimal (MUITO SIMPLES)
 - Multiplique cada digito pela potência de 2 apropriada e some os resultados.
 - Exemplos anteriores!!!

- Decimal para Binário (SIMPLES)
 - Inteiros e frações são manipulados separadamente.

Parte INTEIRA

- Em notação binária um inteiro é representado por
 - $b_{m-1}b_{m-2}...b_2b_1b_0$

$$b_{i} = 0 \text{ ou } 1$$

- Possui o valor
 - $(b_{m-1} \times 2^{m-1}) + (b_{m-2} \times 2^{m-2}) + ... + (b_1 \times 2^1) + b_0$

(b) 21₁₀

Parte FRACIONÁRIA

- O algoritmo de conversão envolve repetidas multiplicações por 2.
 - A cada passo a parte fracionaria do número é multiplicada por 2.
 - O digito a esquerda da virgula (0 ou 1) contribui para a representação binária.
- O processo não é exato.
 - Uma fração decimal com um número finito de dígitos pode gerar uma representação binária com um número infinito de bits.
 - O processo é cessado após uma sequência predefinida de passos, dependendo da precisão desejada.

(a) $0.81_{10} = 0.110011_2$ (approximately)

(b)
$$0.25_{10} = 0.01_2$$
 (exactly)

Notação Octal

- Sistema Octal
 - 8 dígitos diferentes usados para representar números com uma base 8.
 - 0, 1, 2, 3, 4, 5, 6, e 7
- Antigamente utilizado como uma alternativa mais compacta ao binário.
 - Programação em linguagem de máquina.
- Atualmente, o <u>sistema hexadecimal</u> é mais utilizado para esse fim.
- A <u>aritmética</u> é semelhante a dos sistemas <u>decimal</u> e binário, o motivo pelo qual não será apresentada.
- EXEMPLO:
 - 4701₈ em base 10?
 - $-4 \times 8^{3} + 7 \times 8^{2} + 0 \times 8^{1} + 1 \times 8^{\circ} = 2048 + 448 + 0 + 1 = 2497_{10}$

Notação Octal - Conversões

- Decimal Octal
 - Parte inteira
 - Sucessivas divisões por 8
 - Parte fracionária
 - Sucessivas multiplicações por 8
- Octal Decimal

-
$$4701_8 = 4 \times 8^3 + 7 \times 8^2 + 0 \times 8^1 + 1 \times 8^\circ = 2497_{10}$$

- Binário Octal
 - Dividir os bits em grupos de 3 (partindo do ponto decimal).
 - Substituir cada grupo pelo digito octal correspondente.
- Octal Binário
 - Substituir cada digito octal pelo grupo de 3 bits correspondente.

- Toda forma de dados nos computadores s\(\tilde{a}\)o representados por c\(\tilde{o}\)digos bin\(\tilde{a}\)rios
 - Natureza binária inerente dos computadores digitais
- Difícil manipulação para humanos.
- Notação mais compacta para profissionais da computação trabalharem com dados brutos
 - Notação decimal
 - Inerente para o ser humano
 - Processo de conversão para binário (e vice-versa) → TEDIOSO
 - Notação hexadecimal

- Notação hexadecimal
 - 16 símbolos são usados (dígitos hexadecimais).
 - Cada possível combinação de quatro dígitos binários corresponde a um dígito hexadecimal.

0000 = 0	0100 = 4	1000 = 8	1100 = C
0001 = 1	0101 = 5	1001 = 9	1101 = D
0010 = 2	0110 = 6	1010 = A	1110 = E
0011 = 3	0111 = 7	1011 = B	1111 = F

Uma sequência de dígitos hexadecimais pode representar um inteiro na base 16:

•
$$2C_{16} = (2_{16} \times 16^{1}) + (C_{16} \times 16^{0})$$

= $(2_{10} \times 16^{1}) + (12_{10} \times 16^{0}) = 44_{10}$

Decimal (base 10)	Hexadecimal (base 16)	Binário (base 2)
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	А	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111
16	10	0001 0000
17	11	0001 0001
18	12	0001 0010
31	1F	0001 1111
100	64	0110 0100
255	FF	1111 1111
256	100	0001 0000 0000

- Notação hexadecimal
 - Usada não apenas para representar inteiros
 - Notação concisa para representar qualquer sequência de dígitos binários
 - Textos, números ou qualquer outro tipo de dado.
- Razões para utilizar a notação hexadecimal
 - 1. Mais compacta do que a notação binária
 - Na maioria dos computadores, dados binários são organizados em grupos de 4 (1 digito hexadecimal)
 - 3. Conversão entre binário e hexadecimal extremamente fácil
- Considere a string binária 1101111100001

$$1101 1110 0001 = DE1_{16}$$
 $D E 1$

A conversão pode ser feita mentalmente.

Conversões Hexadecimal

Hexadecimal - Decimal

-
$$2C_{16} = (2_{16} \times 16^{1}) + (C_{16} \times 16^{0}) = (2_{10} \times 16^{1}) + (12_{10} \times 16^{0}) = 44$$

- Decimal Hexadecimal
 - Divisões sucessivas por 16 (parte inteira)
 - Multiplicações sucessivas por 16 (parte fracionária)
- Hexadecimal Binário (Extremamente fácil)
 - Substituir cada digito hexadecimal pelo grupo de 4 bits correspondente
- Binário Hexadecimal (Extremamente fácil)
 - Dividir os bits em grupos de 4 (partindo do ponto decimal)
 - Substituir cada grupo pelo digito hexadecimal correspondente

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
 - Apêndice A

FIM