

AD-A122 391 CUMULATIVE REACTANT SPECIES INDEX FOR VOLUMES I-VIII OF 1/2
THE COMPILATION-O.. (U) ARMY MISSILE COMMAND REDSTONE
ARSENAL AL DIRECTED ENERGY DIRE.. E W MC DANIEL ET AL.
UNCLASSIFIED SEP 82 DRSMI/RM-82-1-TR-VOL-9 F/G 20/8 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD A 122 391

(12)

TECHNICAL REPORT RH-82-1

CUMULATIVE REACTANT SPECIES INDEX FOR VOLUMES I-VIII
OF THE COMPILATION OF DATA RELEVANT TO GAS LASERS
VOLUME IX

E. W. McDaniel, et al.
School of Physics, Georgia Institute of Technology
Atlanta, Georgia 30332

S. T. Manson
Physics Department, Georgia State University
Atlanta, Georgia 30303

J. W. Gallagher, J. R. Rumble, and E. C. Beaty
Joint Institute for Laboratory Astrophysics
University of Colorado
Boulder, Colorado 80302

T. A. Barr, Jr. and T. G. Roberts
Directed Energy Directorate
US Army Missile Laboratory

DEC 15 1982

A

SEPTEMBER 1982

U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama 35809

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

FILE COPY

82 12 15 016

DISPOSITION INSTRUCTIONS

**DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT
RETURN IT TO THE ORIGINATOR.**

DISCLAIMER

**THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.**

TRADE NAMES

**USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES
NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF
THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER RH-82-1, VOL IX	2. GOVT ACCESSION NO. A122391	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) CUMULATIVE REACTANT SPECIES INDEX FOR VOLUMES I-VIII OF THE COMPILATION OF DATA RELEVANT TO GAS LASERS -- VOLUME IX		5. TYPE OF REPORT & PERIOD COVERED Technical Report
7. AUTHOR(s) See Reverse		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Commander, US Army Missile Command ATTN: DRSMI-RH Redstone Arsenal, AL 35898		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Commander, US Army Missile Command ATTN: DRSMI-RPT Redstone Arsenal, AL 35898		12. REPORT DATE September 1982
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 174
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES *Volume I contains pages 1-427 Volume II contains pages 429-892 Volume III contains pages 893-1348 Volume IV contains pages 1349-1916 Volume V contains pages 1917-2401 Volume VI contains pages 2403-2541 Volume VII contains pages 2542-2796 Volume VIII contains pages 2797-3218		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) See Reverse		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This volume contains a cumulative reactant species index for MIRADCOM Technical Report H-78-1. Volumes I and II covered data relevant to rare gas and gas-monohalide excimer lasers; Volumes III - VI covered data relevant to nuclear pumped lasers; and Volumes VII - VIII covered additional data relevant to gas lasers.		

7. AUTHORS

School of Physics, Georgia Institute of Technology:
E. W. McDaniel, M. R. Flannery, E. W. Thomas, H. W. Ellis,*
K. J. McCann, F. L. Eisele, and W. Pope

Physics Department, Georgia State University:
S. T. Manson

Joint Institute for Laboratory Astrophysics, University of Colorado:
J. W. Gallagher, J. R. Rumble, and E. C. Beaty

High Energy Laser Laboratory, US Army Missile Command:
T. G. Roberts

*Present address: Eckerd College, St. Petersburg, Florida 33733

19. KEYWORDS

Lasers
Rare gas - rare gas excimers
Rare gas - monohalide excimers
Cross sections
Lifetimes
Reaction rates
Transport properties
Particle collisions
Potential energy curves
Excitation
Ionization
Laser pumping mechanisms
Heavy nuclides
Light nuclides
High energy electron beams
High energy ion beams

Notes Concerning Use of Index

1. For references to electron - heavy particle collisions, look under "Electrons".
2. For references to photon - heavy particle collisions, look under the heading for the heavy particle involved.
3. For references to heavy particle - heavy particle collisions, it may be necessary to look under the headings for each of the species involved. In general, each combination of reactants is listed only once.

Ac

Polarizability 1157

Ag

Electron affinity 1160

Polarizability 1157

Self-sputtering coefficients 838-39

Ag+

On Ar, high energy electron capture 1628

high energy electron loss 1628

On N₂, high energy electron capture 1628

high energy electron loss 1628

On O₂, high energy electron capture 1628

high energy electron loss 1628

Air

Ionizations per volt per mm Hg at 0° C 732

Al

Electron affinity 1160

Energy level and Grotrian diagrams 1009-11

Photoelectric yields 889

Polarizability 1156

Secondary electron emission coefficient by impact
of various ions 3196, 3198

Self-sputtering coefficients 838-39

Al⁺

Energy level and Grotrian diagrams 1012-18
On Al, sputtering yield 3172
Photoionization cross section 3026

Al⁻

Bean attenuation in an electric field 767

Am

Polarizability 1157

Ar

Absorption coefficient showing structure due to
autoionization 646

Average energy expended by a charged particle to
create an ion pair 814

Branching ratio of various final states in photoabsorption 3010

Continuous free - free absorption coefficients 692

Electron affinity 214, 1160

Energy level and Grotrian diagrams 1081-1103

Energy parameters 152

Free - free absorption cross section 2078

General wavelength ranges for observed emission continua 711

Interaction parameters 1187

Ionizations per volt per mm Hg at 0 °C 732

Lifetimes 202-3, 208

Low-energy collisions 235-38, 247-51, 274-75, 300-1, 316, 318, 1510,
1513-16

Mobilities of ions in Ar 740

Multiphoton ionization 700

Photoionization cross sections 642-4, 647, 658, 662, 1926, 3010

Polarizabilities $\alpha_{zz}(m_j=1)$ and $\alpha_{zz}(m_j=2)$ of the $3p_2$

Noble Gas Atoms 216

Polarizability 216-17, 1156

Refractive indices 696

Secondary electron spectrum from electron impact

ionization 2255-59, 61, 3208-3213

Secondary electron spectrum from proton impact

ionization 2313-18, 3208-3213

Secondary electron spectrum from Ar^+ impact

ionization 2367-69

Secondary electron spectrum from He^+ impact

ionization 2356-58

Secondary electron spectrum from He^{++} impact

ionization 2359-61

Stopping power for heavy ions 2175-76

V_0 in the equation $i = i_0 e^{n(V-V_0)}$ 732

Ar^*

Autoionization structure in the photoionization

cross section 663

Low-energy collisions 236-38, 245-46, 254-55, 306-7, 1513-16

Photoionization cross section 658, 662-3, 1928, 1931-34

$Ar(^3P_0)$

Diffusion data in argon 752, 2119

Loss rates in Ar 752

Low-energy reactions 1509, 1510, 2119

Quenching on various gases (40 target species) 2754-55

Ar(3P_2)

Diffusion data in argon 752, 2119

Loss rates in argon 752

Low-energy reactions 1509, 1510, 2119

Quenching on various gases (63 target species) 2754-55

Ar(${}^3P^5$ 4p)

On Ar, energy transfer 2756

Ar(4s)

Photoionization cross section 667-68

Low-energy reactions 1509

Ar(4p)

Photoionization cross section 667-68

Ar $^+$

Drift velocity in argon 742

Energy level and Grotrian diagrams 1104-29

Energy parameters 152

Interaction parameters 1187

Ion-molecule reactions 1392 1510, 1513 1522-24

Low-energy collisions 237, 245-46, 292-93, 319-20, 1510, 1523-24,

Mobility in argon 740-41

Mobility in helium 737

On Al, sputtering yield 3172

On Ag, sputtering yield 3183
On Ar, charge transfer 2782
 ionization, secondary electron spectra 2367-69
On Au, sputtering yeild 3186
On Be, sputtering yield 3170
On Br⁻, three-body recombination 1360, 1380-81, 2682-86
On C, sputtering yield 3171
On CH₄, charge transfer 2782
On CO, charge transfer 2782
On CO₂, charge transfer 2782
On Cl⁻, three-body recombination 1360, 1380-81, 2682-86
On Cr, sputtering yield 3175
On Cu, sputtering yield 3179
On F⁻, three-body recombination 1360, 1375-76, 1380-81, 1518, 2682-86
On Fe, sputtering yield 3176
On I⁻, three-body recombination 1360. 1380-81, 2682-86
On Mo, electron yields 864, 866
 sputtering yield 3181
On N₂, charge transfer 2782
On Ni, sputtering yield 3178
On O₂, charge transfer 2782
On Pd, sputtering yield 3182
On Pt, electron yields 868
On Ta, electron yields 868
 sputtering yield 3184
On Ti, sputtering yield 3173
On V, sputtering yield 3174

On W, electron yields 864-66
scattering 886
sputtering yield 3185
On 28 elements, sputtering yields 844
Photoionization cross section 3027
Polarizability 220
Spin-orbit parameters 73

On D₂, Ion-molecule reactions 2730
On H₂, Ion-molecule reactions 2730

On D₂, Ion-molecule reactions 2730
On H₂, Ion-molecule reactions 2730

Ion-molecule reactions 1508-10
Low-energy collisions 321-22
Mobility in argon 740-41
On Ar, charge transfer 2782
On He, charge transfer 2781
On Kr, charge transfer 2782
On Mo, electron yields 864
On N₂, charge transfer 2782
On Ne, charge transfer 2782
On O₂, charge transfer 2782
On W, electron yields 865
On Xe, charge transfer 2782

Polarizability 220

Ar^{3+}

Ion-molecule reactions 1509, 1524

Ar_2

Interaction energies 179

Interatomic potential energy 188-89, 1180

Low-energy collisions 1512

Photoionization cross section (relative) 2041

Photoionization cross section 3107

Ar_2^*

Extrema of the $^3\Sigma^+_g$ and $^3\Sigma^+_u$ potential curves 185

Lifetimes 212

Low-energy collisions 242-43, 255, 1512, 1518

Photoabsorption cross sections 713

Potential curves 184

Potential curves for the $^3\Sigma^+_g$ and $^3\Sigma^+_u$ states 183

Spectroscopic constants 185

$\text{Ar}_2 ({}^1\Sigma^+)$

Interaction energies 180

Ar_2^+

Absorption data 133, 1206-7, 1263, 2583-84, 2590, 2595, 2599, 2603, 2606, 2610, 2613, 2617, 2622, 2631

Absorption spectra for the $I(1/2)_u \rightarrow II(1/2)_g$ transition 150, 1207

Apperance potential 2990

Dipole-allowed absorptions 134
Energies of states 1258
Energy level difference parameters 154
Energy parameters 152
Equilibrium separation 135
Ground state potential curve characteristics 121
Low-energy collisions 242, 246, 1518
Mobility in argon 740-41
On Br⁻, three-body recombination 2697-2701
On Cl⁻, three-body recombination 2697-2701
On F⁻, three-body recombination 321-22, 1360, 1377-78, 2697-2701
two-body recombination 1358
On I⁻, three-body recombination 2697-2701
Photoabsorption cross sections 712
Photodissociation cross sections 686-87, 3111-13
Photoionization efficiency curve 672
Potential curves 130-31, 136-37, 1188, 1190, 1195, 1196
Potential curves for the ground state 121
Spectroscopic constants 1202, 1205
Spectroscopic data 133, 1259
Total energies 132, 134
Transition moments 2579, 2591-93

Dissociation energy 149

Dissociation energy 135

Ar_2F

Absorption data 1262, 1264
Covalent states 32
Diatomics-in-molecules potential surfaces 35
Diatomics-in-molecules potential surfaces
for the ionic states 34-36
Electronic energies 1268
Emission data 1256, 1260, 1262
Ionic states 33
Orbital representation 1251, 1256
Potential energy curves 1252-55
Radiative lifetime 1268
Spectroscopic constants 1259
Transition moments 1261
Vertical transition energies 1257

Ar_2F^*

Low-energy collisions 256, 1520

Ar_3^+

Absorption data 2631
Electronic energies 2628
Jahn - Teller energies 2629
Potential energy curves 2630
Spectroscopic constants 2628

Ar^{3+}

On He, charge transfer 2781

ArBr

Laser and fluorescent wavelengths 12

Potential energy curves 2647-48

ArCl

Einstein coefficients 1223-25

Emission data 1226

Laser and fluorescent wavelengths 12

Potential energy curves 1222

Transition probabilities 1223

Vibrational levels 1222

ArF

Crossing points and energies of the

III 1/2 - II 3/2 curve crossings 53

Dipole moments of the covalent states 78-79

Dipole moments of the ionic states 80-81

Einstein coefficients 107, 110, 1219-21

Emission energies and wavelengths 107, 110, 1226

Laser and fluorescent wavelengths 12

Lifetimes 107, 110

Potential energy curves for the covalent states 39, 52

Potential energy curves for the covalent and

ionic states 20-21, 1218

Separated atom limits for the ionic states 54

Spectroscopic constants 1259

Spectroscopic constants for the ionic states 67, 69

Total energies of the covalent and ionic states 46-47

Transition moments and probabilities 107, 110, 1219

Transition moments for the ionic-covalent
transitions 32-83, 85-86, 107-110

Vibrational Levels 1218

ArF^*

Dominant formation kinetics 1484

Dominant quenching kinetics 1484

Low-energy collisions 256-57, 1519, 1520

ArH^+

Mobility in argon 740

ArI

Laser and fluorescent wavelengths 12

ArKr

Interaction energy 1182

Interatomic potential 188

Potential energy curves 1182

ArKr^*

Low-energy collisions 244

ArKr^+

Absorption data 1210

Apperance potential 2990

Low-energy collisions 244

On Br^- , three-body recombination 2718-2719
On Cl^- , three-body recombination 2718-2719
On F^- , three-body recombination 2718-2719
On I^- , three-body recombination 2718-2719
Potential energy curves 1208-9

Ar-Kr Ion Chemistry

Reaction rates 1495

Ar-N₂-NO e-beam Pumped System

Flow chart, with reaction rates indicated 1486
Rate coefficients 1487-88

ArO

Crossing points 1296
Dipole moments 1299
Energies of states 1286
Orbital representation 1295
Potential energy curves 1288
Radiative lifetimes 1297
Transition moments 1296, 1298

ArXe

Interatomic potential 188

ArXe⁺

On Br^- , three-body recombination 2714-2715

On Cl⁻, three-body recombination 2714-2715

On F⁻, three-body recombination 2714-2715

On I⁻, three-body recombination 2714-2715

As

Polarizability 1156

At

Polarizability 1157

Au

Energy distributions of photoelectrons 888

Excitation energies 1322, 1323, 1325, 1327

Orbital energies 1321, 1323

Photoelectric yield 890

Polarizability 1157

Radial expectation values 1321

Secondary electron emission coefficient by impact

of various ions 3197

Self-sputtering coefficients 838-39

AuCl

Potential energy curves 1330

Spectroscopic constants 1328

AuH

Potential energy curves 1329

Spectroscopic constants 1328

B

Electron affinity 1160
Energy level and Grotrian diagrams 911, 912
Polarizability 1156

B^+

Energy level and Grotrian diagrams 913-16
Photoionization cross section 3026

Ba

Polarizability 1157

Ba^+

On Ar, high energy electron capture 1633
high energy electron loss 1633
On N₂, high energy electron capture 1633
high energy excitation 1650-51
high energy electron loss 1633
On O₂, high energy electron capture 1633
high energy electron loss 1633

Ba^{2+}

On N₂, high energy excitation 1650-51
On O₂, high energy electron capture 1634

Be

Polarizability 217, 1156

Be^+

Photoionization cross section 3026

Be^{2+}

Polarizability 220

Bi

Polarizability 1157

Bk

Polarizability 1157

Br

Electron affinity 214, 1160

Low-energy collisions 251, 253, 1520-21

Photoionization cross section 652-53, 1940, 1944

Polarizability 216, 1156

Spin-orbit parameter 73

Stopping power for heavy ions 2185-86

Br^+

Equilibrium fractions in H_2 , He , N_2 , and O_2 2230

Equilibrium fractions in Ar , Kr , Ne , and Xe 2231

On Ag, reflection coefficient 3203

On Al, reflection coefficient 3203

On Au, reflection coefficient 3203

On Cu, reflection coefficient 3203

Br^{n+}

On Ar, high energy electron capture 1638-39
high energy electron loss 1638-39
On He, high energy electron capture 1638-39, 1644
high energy electron loss 1638-39, 1644
On H₂, high energy electron capture 1638-39
high energy electron loss 1638-39

Br^-

Electron photodetachment cross section 682-83, 2044
Low-energy collisions 253, 1519, 1525
Mobility in argon 744
Mobility in helium 743
On NO₂, charge transfer 2785
On O₃, charge transfer 2785
Polarizability 220

Br_2

Electron affinity 214, 1161
Extinction coefficient for continuous absorption 702, 704, 2032
Low-energy collisions 252, 317
Photoabsorption cross section 1968
Photoabsorption cross section (relative) 3095
Photoionization cross sections 652-54
Polarizability 221
Refractive indices 697

Photodissociation cross section 688-89, 2066

Photoionization cross section (relative) 2013

Extinction coefficient for continuous absorption 702, 2032

Photodestruction cross section 3132

Average energy expended by a charged particle to

create an ion pair 814

Electron affinity 1162

Electron affinity 1160

Energy level and Grotrian diagrams 917-27

Photoionization cross section 1949-50, 3012-15

Polarizability 1156

Stopping power for heavy ions 2189, 2190

Energy level and Grotrian diagrams 928-32

Ion-molecule reactions 1392
On CH₃NH₂, Ion-molecule reactions 2739
On CH₃OH, Ion-molecule reactions 2739
On CH₄, Ion-molecule reactions 2731, 2737
On CO, Ion-molecule reactions 2731, 2737
On CO₂, Ion-molecule reactions 2731, 2737, 2739
On COS, Ion-molecule reactions 2739
On H₂, Ion-molecule reactions 2731, 2737
On H₂CO, Ion-molecule reactions 2739
On H₂O, Ion-molecule reactions 2731, 2737, 2739
On H₂S, Ion-molecule reactions 2739
On NH₃, Ion-molecule reactions 2731, 2738
On N₂, Ion-molecule reactions 2737
On NO, Ion-molecule reactions 2731
On O₂, Ion-molecule reactions 2731, 2737
Photoionization cross section 3026

C⁻

Beam attenuation in an electric field 767
Ion-molecule reactions 1401
Photodetachment cross section 2046, 2048, 2061

C₂

Electron affinity 1162

C₂⁺

Ion-molecule reactions 1393

C₂^-

Ion-molecule reactions 1401-2

Photodetachment cross section (relative) 2062

C₂H

Electron affinity 1162

C₂H^-

Ion-molecule reactions 1402

On O₃, charge transfer 2785

Photodetachment cross section (relative) 2062

C₂H₂

Photoabsorption cross section 3077

Photoionization cross section (relative) 3098

Quantum yield of ionization in photoabsorption 3078

Secondary electron spectra from electron impact

ionization 2275-79

C₂H₄

Photoabsorption cross section 3079

Quantum yield of ionization photoabsorption 3080

Secondary electron spectra from electron impact

ionization 2277-79

C₂H₆

Photoabsorption cross section 3081-82, 3084

Quantum yield of ionization in photoabsorption 3083

Secondary electron spectra from electron impact

ionization 2277-79, 2283-85

C2N2

Photoionization cross section (relative) 2017

C3H8

Photoabsorption cross section 3084

C4H10

Photoabsorption cross section 3084

C5H12

Photoabsorption cross section 3084

C6H6

Photoabsorption cross section 3085

Photoionization cross section 3086-87

Quantum yield of ionization photoabsorption 3088

CCl2+

On Cl⁻, two-body recombination 1359

CCl3+

On Cl⁻, two-body recombination 1359

CCl3NO

Photoabsorption cross section 3094

Photoabsorption cross section 3095

Polarizability 221

On Cl⁻, two-body recombination 1359

Average energy expended by a charged particle to
create an ion pair 814

On Cl⁻, two-body recombination 1359

Electron affinity 1161

Photoionization cross section (relative) 3102

Photoionization cross section (relative) 3109

Electron affinity 1161

Photodissociation cross section (relative) 3104

CF3I

Electron affinity 1161

CF3I+

Photodissociation cross section (relative) 3105

CF3NO

Photoabsorption cross section 3093

CF4

Polarizability 221

CFCI3

Photoionization cross section (relative) 3101

CH

Electron affinity 1161

CH+

Ion-molecule reactions 1392

On CO, ion-molecule reactions 2737

On CO₂, ion-molecule reactions 2737, 2739

On COS, ion-molecule reactions 2739

On CH₃NH₂, ion-molecule reactions 2739

On CH₃OH, ion-molecule reactions 2739

On CH₄, ion-molecule reactions 2737

On H₂, ion-molecule reactions 2737

On H_2CO , ion-molecule reactions 2739
On H_2O , ion-molecule reactions 2737, 2739
On H_2S , ion-molecule reactions 2739
On N_2 , ion-molecule reactions 2737
On NH_3 , ion-molecule reactions 2738
On O_2 , ion-molecule reactions 2737

Photodetachment cross section 2061

Electron affinity 1162

On CO , ion-molecule reactions 2737
On CO_2 , ion-molecule reactions 2737, 2739
On COS , ion-molecule reactions 2739
On CH_3NH_2 , ion-molecule reactions 2739
On CH_3OH , ion-molecule reactions 2739
On CH_4 , ion-molecule reactions 2737
On H_2 , ion-molecule reactions 2737
On H_2O , ion-molecule reactions 2737, 2739
On H_2CO , ion-molecule reactions 2739
On H_2S , ion-molecule reactions 2739
On N_2 , ion-molecule reactions 2737
On NH_3 , ion-molecule reactions 2738
On O_2 , ion-molecule reactions 2737

Photodetachment cross section 2063

Electron affinity 1162

On C_2H_2 , ion-molecule reactions 2740
On CO , ion-molecule reactions 2737, 2740
On CO_2 , ion-molecule reactions 2737, 2739, 2740
On COS , ion-molecule reactions 2739, 2740
On CH_3NH_2 , ion-molecule reactions 2739, 2740
On CH_3OH , ion-molecule reactions 2739, 2740
On CH_4 , ion-molecule reactions 2737, 2740
On H_2 , ion-molecule reactions 2737, 2740
On H_2O , ion-molecule reactions 2737, 2739, 2740
On H_2CO , ion-molecule reactions 2739, 2740
On H_2S , ion-molecule reactions 2739, 2740
On N_2 , ion-molecule reactions 2737, 2740
On NH_3 , ion-molecule reactions 2738, 2740
On O_2 , ion-molecule reactions 2737, 2740

Photodetachment cross section 2064

Photoionization cross section (relative) 2014

Photoionization cross section (relative) 3102

Photoionization cross section (relative) 3109

Photoionization cross section (relative) 2015

Photoionization cross section (relative) 2016

Electron affinity 1161

Photoabsorption cross section 3092

Photoionization cross section (relative) 3100

Electron affinity 1161

Photoabsorption cross section 1988, 3073-74, 3084

Photoionization cross section 3076

Polarization 221

Secondary electron spectra from electron impact

Ionization 2280-85, 2288

Secondary electron spectra from proton impact

ionization 2350-51

Quantum yield of ionization in photoabsorption 3075

CH_4^+

On CO, ion-molecule reactions 2737
On CO₂, ion-molecule reactions 2737, 2739
On COS, ion-molecule reactions 2739
On CH₃NH₂, ion-molecule reactions 2739
On CH₃OH, ion-molecule reactions 2739
On CH₄, ion-molecule reactions 2737
On H₂, ion-molecule reactions 2737
On H₂O, ion-molecule reactions 2737, 2739
On H₂CO, ion-molecule reactions 2739
On H₂S, ion-molecule reactions 2739
On N₂, ion-molecule reactions 2737
On NH₃, ion-molecule reactions 2738
On O₂, ion-molecule reactions 2737

CN

Electron affinity 1162

CN⁻

Ion-molecule reactions 1401

CO

Average energy expended by a charged particle to

create an ion pair 814

Branching ratio of various final states in photoabsorption 3044-45

Dipole and quadrupole moments 221

Photoabsorption cross section 1989, 3036, 3042

Polarizability 221

Quantum yield of ionization in photoabsorption 3043

Secondary electron spectra from electron impact

ionization 2286-87

CO*

On He, Ar, H₂, D₂, CO, and O: V → T energy transfer

rates at 300 °K 1448

On CO, O₂, N₂: V → V energy transfer rates at

300 °K: 1449

On CS₂, SO₂, OCS, N₂O, CO₂: V → V energy transfer

rates at 300 °K 1450

On CO, He, Ar, H₂, N₂: cross sections for broadening

V - R optical transitions 1451

Rates for deactivation 1465-66

CO⁺

Ion-molecule reactions 1392-93

On CH₃OH, ion-molecule reactions 2748

On CH₄, charge transfer 2781

ion-molecule reactions 2748

On CO, charge transfer 2781

On CO₂, ion-molecule reactions 2748

On COS, ion-molecule reactions 2748

On H₂, ion-molecule reactions 2748

On H₂CO, ion-molecule reactions 2748

On H₂O, ion-molecule reactions 2748

On NH₃, ion-molecule reactions 2748

On O₂, ion-molecule reactions 2748

Photoionization cross section 3027

CO₂

Average energy expended by a charged particle to create an
ion pair 814

Branching ratio various final states in photoabsorption 3045, 3055

Dipole and quadrupole moments 221

Electron affinity 1162

Energy levels for three vibrational modes, compared with those
of N₂ and CO 1460

On HCl, DCl, HBr, DBr, HI, HF, DF

deactivation rates for HX and DX at 300 °K 1454, 1456-58

deactivation rates for CO₂ at 300 °K 1455, 1459

Photoabsorption cross section 1990, 3046-48, 3054

Photofragmentation cross sections 3048

Photoionization cross section 3045, 3047-48

Photoionization cross section (relative) 3096

Polarizability 221

Rates for deactivation 1460-68

Quantum yield of ionization in photoabsorption 3049, 3054

Secondary electron spectra from electron impact

ionization 2286, 2288, 2373, 3206

CO₂*

Diffusion in CO₂ 2120

3248

CO₂ Electric Discharge Laser

Rate coefficients for electron impact ionization 1472
Rate coefficients for electron attachment 1472-73
Rate coefficients for electron detachment 1473
Rate coefficients for charge transfer, interchange,
clustering 1473-75
Rate coefficients for electron-ion and ion-ion
recombination 1476-77
Rate coefficients for vibrational pumping reactions 1478
Rate coefficients for electronic pumping and de-
excitation reactions 1478
Rate coefficients for vibrational relaxation reactions 1479-80
Rate coefficients for free radical reactions 1481-83

CO₂⁺

Ion-molecule reactions 1393
On Th, charge transfer 2783
On U, charge transfer 2783

(CO₂)₂ - DIMERS

Photoionization cross section (relative) 3108

CO₂ (001)

Vibrational quenching on HCl, CH₄, CH₃D, CH₂D₂, CHD₃, CD₄ 2774

CO₃

Electron affinity 1162

$\text{CO}_3(\text{H}_2\text{O})$

Electron affinity 1162

Ion-molecule reactions 1401

Photodestruction cross section 2072-73

Photodetachment cross section 2055-56

Photodissociation cross section 2069

Ion-molecule reactions 1401

Electron affinity 1162

Ion-molecule reactions 1401

Photodissociation cross section 2070

Electron affinity 1162

Polarizability 1156

Quenching on He, Ne, Ar, Kr, Xe 2759

3250

Ca^+

Photoionization cross section 3027

Ca^{2+}

Polarizability 220

Cd

Electron affinity 1160

Energies of states 2655

Photoelectric yields 889

Photoionization cross section 1959-61

Polarizability 1157

Stopping power for heavy ions 2197-98

Cd_2

Fluorescence 2653-54

Potential energy curves 2650-52

Spectroscopic constants 2656

Ce

Polarizability 1157

Cf

Polarizability 1157

Cl

Branching ratio of various final states in photoabsorptiton 3023

Continuous free - free absorption coefficients 693

3251

Electron affinity 214, 1160
Energy level and Grotrian diagrams 1032-55
Energy parameters 152
Free - free absorption cross sections 2078
Low-energy collisions 251, 253, 316, 1520
Photoionization cross section 652-53, 1939, 1943, 3023
Polarizability of ground state 216, 1156
Spin-orbit parameter 73
Stopping power for heavy ions 2183-84

Cl⁺

Energy level and Grotrian diagrams 1056-80
Ion-molecule reactions 1393
Photoionization cross section 3027

Cl⁻

Electron photodetachment cross section 682-83, 2044
Energy parameters 152
Ion-molecule reactions 1402
Low-energy collisions 1519, 1521, 1524-25
Mobility in argon 744
Mobility in helium 743
Polarizability 220

ClCN

Photoionization cross section (relative) 2018

Cl_2

Dipole and quadrupole moments 221
Electron affinity 214, 1161
Extinction coefficient for continuous absorption 702, 704, 2032
Ground state potential curve characteristics 121
Low-energy collisions 252
Polarizability 221
Potential curves 151-52
Potential curves for the ground state 121
Refractive indices 697
Spectroscopic constants 2556

Cl_2^-

Energy level difference parameters 154
Ground state potential curve characteristics 121
Ion-molecule reactions 1402
Low-energy collisions 252
On O_3 , charge transfer 2785
Photodestruction cross section 3132
Photodissociation cross section 688-89, 2066, 3123-24
Potential curves 151
Potential curves for the ground state 121

$\text{Cl}_2^-(\pi)$

Energy parameters 152

Energy parameters 152

Photodestruction cross section 3131

Photoabsorption cross section (relative) 2019-20

Ion-molecule reactions 1393

Ion-molecule reactions 1402

Ion-molecule reactions 1402

Photoabsorption cross section 1991-93

Ion-molecule reactions 1402

Photodestruction cross section 3132-33

ClF_x/CS₂/D₂ Reaction Model

23 low energy reactions involving various combinations
of C, F, C, S, and D atoms 1443

ClF_x/CS₂/H₂ Reaction Model

19 low energy reactions involving various combinations
of C, F, C, S, and H atoms 1428-19

Cm

Polarizability 1157

Co

Polarizability 1156

Cr

Polarizability 1156

Self-sputtering coefficients 840-41

Cr⁺

On Cr, sputtering yield 3175

Photoionization cross section 3027

Cs

Electron affinity 1160

On O₂, charge transfer 2786

On SeF₆, charge transfer 2786

Polarizability 217, 1157

Stopping power for heavy ions 2199-2200

Cs (np)

Minimum electric field strength for field ionization 769

Cs(42p)

Electric field strength for ionization 770

CsF (j, n)

Quenching (rotational) on He, Ne, Ar, Kr, Xe, CH₄, CF₄, SF₆,
C₂H₆, N₂, CO, CO₂, N₂O, CH₃Cl, CH₃Br, CF₃H, CF₃Cl, CF₃Br 2771

Cs⁺

Longitudinal diffusion 746

Mobility in argon 740

Mobility in krypton 739

Mobility in neon 739

Mobility in xenon 739

On Ag, reflection coefficient 3203

On Al, reflection coefficient 3203

On Ar, high energy electron capture 1632

high energy electron loss 1632

On Au, reflection coefficient 3203

On Cs, charge transfer 2784

On Cu, reflection coefficient 3203

On Fe, sputtering yield 3177

On H₂, high energy excitation 1648-49

On N₂, high energy electron capture 1632

high energy electron loss 1632

On O₂, high energy electron capture 1632

high energy electron loss 1632

Polarizability 220

Cu

Electron affinity 1160

Photoelectric yield 891

Polarizability 1156

Secondary electron emission coefficient by impact
of various ions 3196, 3198

Self-sputtering coefficient 838-39

Cu⁺

On Cu, sputtering yield 3180

Photoionization cross section 3027

D

Electron affinity 1160

D⁺

On Ag, sputtering yield 844

On Al, sputtering yield 3163

On Au, sputtering yield 3167

On Be, sputtering yield 3162

On C, sputtering yield 3162

On Fe, sputtering yield 3164

On Mo, sputtering yield 3166

On Ni, sputtering yield 3165

On Ta, sputtering yield 3166
On Ti, sputtering yield 3163
On V, sputtering yield 3164
On W, sputtering yield 3167
On Zr, sputtering yield 3165
Reflection from surfaces, general formulation 3201
Sputtering yield of metals, general formulation 3168

DBr

Vibrational quenching on DBr 2764

DCl (v = 1)

Vibrational quenching on DCl 2762

D₂

Photoabsorption cross section 1970, 1973-74

Photofragmentation ratios 3035

D₂(C³π_u)

Quenching rate in external electric field 773

D₂O

Photoabsorption cross section 1999-2000, 2002

DF/CO₂ Transfer Reaction Model

38 low-energy reactions involving DF and CO₂ molecules 1441-42

DF/HF, D/H V-V and Isotopic Exchange Reaction Model

47 low energy reactions involving various combinations

of D, H, and F atoms 1444-45

Dy

Polarizability 1157

Electrons

Backscattering coefficients 870-78

Energy to create ion-pair in pure gas 814-2207

On air, constants A and B in the equation

$$\alpha/p = Ae^{-B/(E/p)} \quad 731$$

On Al, backscattering 878

bremsstrahlung yield 782

On Ar, constants A and B in the equation

$$\alpha/p = Ae^{-B(E/p)} \quad 731$$

cross sections for simultaneous ionization

and excitation 492

energy loss 782

excitation cross sections 489-91, 2917, 2923

excitation of the 1048° A line 490

excitation of the 1067° A line 489

first Townsend ionization coefficient α

divided by gas pressure (p) 731

fractional energy loss (K) per collision

for electrons of mean energy (E) 729

ionization 540-41, 2970, 2973
ionization and excitation efficiencies 507
ionization, secondary electron spectra 2255-59, 2261
momentum transfer cross section 442, 446-47, 1663
range 782
rate coefficient for ionization 577
ratios of cross sections $\sigma_{\text{tot}}/\sigma_0$ in ionization 546-47
total collision cross section 440-41, 2905
total elastic scattering cross section 442, 2900
transport coefficients 726-29
total cross section for scattering from mixture
of $3p_0$ and $3p_2$ states 443
{combined $4s$ ($4s'$) states}, excitation 491
On Ar^* , ionization 586, 2975
On Ar^+ , excitation cross sections 470-71
recombination (radiative) 1859
On Ar^{2+} , recombination (radiative) 1859
On Ar^{3+} , recombination (radiative) 1859
On Ar^{4+} , recombination (radiative) 1859
On Ar_2^* , ionization 1829-30
On Ar_2^+ , dissociative recombination 622-23
On Ba^+ , single ionization 564-65
On Br , bremsstrahlung yield 787
On Br , energy loss 787
elastic scattering 1661
On Br_2 , drift velocity 730
ratio of electron to gas temperature 730

On C, attachment (radiative) 1866
elastic scattering 1664
excitation 496-97
ionization 1823

On C⁺, recombination coefficient 592
recombination (dielectronic) 1861
recombination (radiative) 622, 1859, 1860

On C⁻ detachment 2994-95

On C²⁺ ionization 2983

On C³⁺, excitation (electronic) 1734
ionization 1824
recombination (dielectronic) 1861
recombination (radiative) 1860

On C⁴⁺, recombination (dielectronic) 1861
recombination (radiative) 1860

On C⁵⁺, recombination (dielectronic) 1861
recombination (radiative) 1860

On C₂⁺, recombination (dielectronic) 1861
recombination (dissociative) 1847, 1851
recombination (radiative) 1860

On C₂D₆ dissociation 2948

On C₂F₆, attachment coefficient 2106
ionization coefficient 2106
transport properties 2104-5

On C₂H₂, dissociation 1814-17
energy and angular distributions of secondary electrons 2373
ionization, secondary electron spectra 2277-79
total scattering 1718
On C₂H₂⁺, recombination (dissociative) 1847, 1857
On C₂H₃⁺, recombination (dissociative) 1847, 1858
On C₂H₄, dissociation 2960
ionization 2987
ionization, secondary electron spectra 2277-79
On C₂H₆, dissociation 2962
ionization, secondary electron spectra 2277-79, 2283-85
On C₃F₈, transport properties 2104-5
On C₃H₄, dissociation 2961
On C₃H₆, dissociation 2949, 2963
On C₃H₈, dissociation 2950, 2965
On C₄F₁₀, transport properties 2104-5
On C₄H₆, dissociation 2964
On C₄H₈, dissociation 2952
On C₄H₁₀, dissociation 2952
On C₆H₁₄, dissociation 2966
On CCl₃F, attachment 3002
On CCl₂F₂, attachment 3001
transport properties 2103
On CCl₃F, attachment 3000
On CFCl₃, dissociation 2947
On CF₂Cl₂, dissociation 2946

On CF_3Cl dissociation 2945
On CF_3H , dissociation 2943-44
On CF_4 , attachment (dissociative) 1915-16
 attachment coefficient 2106
 dissociation 2942
 ionization coefficient 2106
 transport properties 2104-5
On CH^+ , recombination (dissociative) 1847, 1852
On CH_2^+ , recombination (dissociative) 1847, 1853
On CH_3^+ , recombination (dissociative) 1847, 1854
On CH_4 , dissociation 1807-13, 2958-59
 ionization 2986
 ionization, secondary electron spectra 2280-85, 2288
 momentum transfer 1716
 total scattering 1714-15, 2912-13
On CH_4^+ , recombination (dissociative) 1847, 1855
On CH_5^+ , recombination (dissociative) 1847, 1856
On CO , attachment (dissociative) 1866-87
 dissociation 1782-84, 2956
 excitation (electronic) 1749
 excitation (vibrational) 504, 2926
 first ionization coefficient 2101
 ionization 542-43
 ionization, secondary electron spectra 2286-87
 momentum transfer 1694
 total scattering 1691-93
 transport coefficients 2091-92

On CO₂, attachment (dissociative) 1889-94
constants A and B in the equation $\alpha/p = A e^{-B/(E/p)}$ 731
dissociation 1789-94, 2957
effective ionization coefficient 2101
energy and angular distributions of secondary electrons 2373
first ionization coefficient 2102
ionization 548-49, 1831
ionization, secondary electron spectra 2286, 2288
momentum transfer 1702-3
total scattering 1699-1701, 2909
transport coefficients 2093-94

On CO₂⁺, ionization 2989
recombination (dissociative) 623

In CO₂:N₂:He Mixtures, transport properties 2097-2100

On CS₂, attachment (dissociative) 1910-14
total scattering cross section 2911

On Ca⁺, ionization 562-63

On Cd, ionization 2978-9

On Cl, attachment (radiative) 1869
bremsstrahlung yield 786
elastic scattering 1660
energy loss 786
range 786

On Cl₂, attachment 632-35, 1878
drift velocity 730

ionization 582-84
ion-pair formation 634-35
ratio of electron to gas temperature 730
total and partial dissociative attachment 632-33
total scattering crosssection 450, 1719
On Cs⁺, ionization 568-69
On Cu, backscattering 878
On D₂, attachment (dissociative) 1874, 3003-4
dissociation 520-21, 1757-59, 2954
ionization 532-33
On D₂⁺, cross section for production of D⁺ ions 550-51
dissociative recombination 616-17
On DCI, attachment (dissociative) 1883
On different metals, values of the peak secondary electron levels 853
On F, attachment (radiative) 1868
bremsstrahlung yield 785
elastic scattering 1659
energy loss 785
momentum transfer cross section 442
range 785
total elastic scattering cross section 442
On F⁻ detachment 2991
On F₂, dissociation 2936
dissociative attachment 630-31
ionization 584
momentum transfer cross section 449
total elastic cross section 449

On Fe, backscattering 872-73

On H, attachment (dissociative) 1871-72

attachment (radiative) 628-29, 1865

bremsstrahlung yield 789

collisional excitation 456-57

energy loss 789

range 789

single ionization 528-29

total scattering 434-35

On H^{*(2s)}, ionization 530-31

On H⁺, cross sections for radiative capture of electrons 596-97

recombination coefficients 591-95, 598-601

recombination cross sections 593, 622

On HBr, attachment (dissociative) 1884

dissociation 2938

On HCl, attachment (dissociative) 1880-82

constants A and B in the equation $\alpha/p = Ae^{-B/(E/p)}$ 731

dissociation 2937

elastic scattering 1721

excitation (rotational) 1722-24

momentum transfer 1725

total scattering 1720

On HCO⁺, recombination (dissociative) 623

On HD, attachment (dissociative) 1873

On HF, elastic scattering 1726

excitation (rotational) 1727-29

On H₂, angular distribution of protons produced in
dissociative ionization 516-17
attachment (dissociative) 1871-72, 3003-4
constants A and B in the equation $\alpha/p = Ae^{-B/(E/p)}$ 731
differential cross sections for ejection of electrons 572-73
dissociation 518-19, 1754-56, 2953
dissociative ionization 534-35
energy spectra of protons obtained in dissociative
ionization 514-15
excitation (electronic) 1742
first ionization coefficient 2101
fractional energy loss (K) per collision for electrons
of mean energy (\bar{E}) 729
ionization 532-33
ionization, secondary electron spectra 2272-74, 2283-85
momentum transfer 1676-77
total scattering 434-35, 1675
transport coefficients 2086-87

On H₂⁺, attachment (radiative) 1875
cross section for dissociative ionization 552-53
cross section for the production of protons 550-53
dissociation 512-13
dissociative recombination 616-17, 623, 1841
recombination coefficients 602-3

On H₂O, attachment (dissociative) 1897-99
constants A and B in the equation $\alpha/p = Ae^{-B/(E/p)}$ 731
dissociation 1795-1802, 2939

energy and angular distributions of secondary electrons

2373

ionization, secondary electron spectra 2289-92

momentum transfer 1709-10

total scattering 1708

transport coefficients 2095-96

On H_2O^+ , recombination (dissociative) 1847, 1849

On H_2S , dissociation 2940

On H_3^+ , dissociation 1760

recombination (dissociative) 618-19, 623, 1842, 2997

On $\text{H}_3^+\cdot\text{H}^2$ recombination (dissociative) 623

On H_3O^+ , recombination (dissociative) 623, 1837-38,
1847, 1850

On $\text{H}_3\text{O}^+\cdot\text{H}_2\text{O}$, electron temperature dependence for
recombination 625

On $\text{H}_3\text{O}^+\cdot(\text{H}_2\text{O})_2$, electron temperature dependence for
recombination 625

On $\text{H}_3\text{O}^+\cdot(\text{H}_2\text{O})_3$, electron temperature dependence for
recombination 625

On hydrogenic ions, collisional excitation 458-59

On HI, attachment (dissociative) 1885

bremsstrahlung yield 780

On He, constants A and B in the equation
 $\alpha/p = Ae^{-B/(E/p)}$ 731

cross sections for emission of the He II

spectral lines 462-63

de-excitation 2927-28

3268

differential cross sections for ejection
 of electrons 570-71
 differential cross sections for inelastic
 and elastic scattering 438-39
 elastic differential scattering 436-37
 electron energy distribution function
 at 77 °K 724-25
 energy loss 780
 excitation cross sections 460-61, 472-77, 2921
 first ionization coefficient 2102
 first Townsend coefficient (α) divided
 by the gas pressure (p) 731
 ionization 540-41, 1820, 2968
 ionization, secondary electron
 spectra 2248-52
 momentum transfer cross section 442, 444, 724-25
 range 780
 rate coefficients for ionization 575
 ratios for cross sections σ^2_+/ σ_T in
 ionization 536-37
 single ionization 538-39
 total collision cross section 440
 total elastic scattering cross section 442
 total scattering 434-35
 transport coefficients 721-23
On He (2^1S_0), total scattering cross section 450
On He (2^3S_1), total scattering cross section 450

On He ($2^1, 2^2 S$) ionization 585

On He^+ , collisional excitation 464-65

 cross section for production of He^{2+} 554-55

 recombination coefficients 592, 604-7, 610-15. 622

 recombination (dielectronic) 1861

On He_2^+ , recombination (dissociative) 623

On $\text{He}/\text{N}_2/\text{CO}_2$, recombination rate as function of E/N 1470

On $\text{He}/\text{N}_2/\text{CO}_2/\text{H}_2\text{O}$, attachment rate as function of E/N 1471

On Hg, constants A and B in the equation

$\alpha/p = Ae^{-B/(E/p)}$ 731

 excitation 1735-36, 2920

 fractional energy loss (K) for electrons

 of mean energy (\bar{E}) 729

 ionization 2980-2982

 momentum transfer 1674

 total elastic scattering cross section 2903

 total scattering 1673, 2908

On Hg^+ , excitation (electronic) 1737-39

 ionization 1832

On Hg^{2+} , excitation (electronic) 1740

On I, attachment (radiative) 1870

 bremsstrahlung yield 788

 elastic scattering 1662

 energy loss 788

 range 788

On I_2 , attachment (dissociative) 636, 1879

 drift velocity 730

electron attachment coefficient K 637
ratio of electron to gas temperature 730
On K^+ , single ionization 556-57
recombination 622
On Kr, bremsstrahlung yield 783
constants A and B in the equation $\alpha/p = Ae^{-B/(E/p)}$ 731
drift velocities 728
energy loss 783
excitation 2918, 2924
first Townsend coefficient (α) divided by the
gas pressure (p) 731
ionization 580-81, 2971, 2973
ionization, secondary electron spectra 2260-61
momentum transfer cross section 442, 448
range 783
rate coefficient for ionization 578
total collision cross section 440-41, 2906
total elastic scattering cross section 442, 2901
On Kr^* , ionization 586, 2976
On KrF , de-excitation 2929-2930, 2933
On Kr_2^+ , rate coefficient for dissociative recombination 623-24
On Li, ionization 554-55
On Li^+ , excitation 500-1
recombination coefficient 622
single and double ionization 556-57
On Mg^+ , single ionization 566-67
On Mg^{2+} , single ionization 566-67

On Mo,	backscattering	876-77
	emission of secondary electrons	850-51
On N,	bremsstrahlung yield	790
	elastic scattering	1667
	energy loss	791
	ionization	542-43, 1822
	range	790
	total scattering	1665-66
On N ⁺ ,	recombination coefficient	592, 622
	recombination (dielectronic)	1861
	recombination (radiative)	1859, 1860
	single ionization	558-59
On N ²⁺ ,	recombination (dielectronic)	1861
	recombination (radiative)	1860
	single ionization	558-59
On N ³⁺ ,	recombination (dielectronic)	1861
	recombination (radiative)	1860
On N ⁴⁺ ,	ionization	1825
	recombination (dielectronic)	1861
	recombination (radiative)	1860
On N ⁵⁺ ,	recombination (dielectronic)	1861
	recombination (radiative)	1860
On N ⁶⁺ ,	recombination (dielectronic)	1861
	recombination (radiative)	1860
On NF ₃ ,	attachment (dissociative)	1901-3
On NH ₃ ,	attachment (dissociative)	1900
	dissociation	1803-6, 2941

drift velocity 2108
energy and angular distributions of secondary
electrons 2373
ionization, secondary electron spectra 2286
momentum transfer 1713
total scattering 1712
On NH_4^+ , recombination (dissociative) 1839-40
On N_2 , constants A and B in the equation $\alpha/p = Ae^{-B/(E/p)}$ 731
differential cross sections for ejection of electrons 572-73
dissociation 1761-71, 2955
dissociative ionization 534-35
elastic scattering 1682-83
excitation (electronic) 1743-44
excitation (vibrational) 502-3
first ionization coefficient 2102
fractional energy loss (K) per collision for
electrons of mean energy ($\bar{\epsilon}$) 729
global view of vibrational excitation 502
ionization 538-39, 544-45
ionization, secondary electron spectra 2268-71
momentum transfer 1684-85
recombination rate as function of E/N 1469
total scattering 1678-81
transport coefficients 2088-89
On N_2^* , recombination coefficient 608-9
On N_2^+ , dissociation 512-13
excitation (electronic) 1745

recombination (collisional-radiative) 608-9
recombination (dissociative) 622-23, 1845
On N_2H^+ , recombination (dissociative) 1846
On $N_2^+ \cdot N_2$, recombination (dissociative) 623
On N_2O , attachment (dissociative) 1895-96, 2999
drift velocity 2108
ionization 2985
momentum transfer 1706-7
total scattering 1704-5
On NO, attachment (dissociative) 1888
dissociation 1785-88
elastic scattering 1697
excitation (electronic) 1750-51
ionization 2984
excitation (vibrational) 506
ionization, secondary electron spectra 2286
momentum transfer 1698
total scattering 1695-96
On NO^+ , recombination (dissociative) 620-23, 1843
On $NO^+ \cdot NO$, recombination (dissociative) 623
On Na^+ , single ionization 556-57
recombination 622
On Ne , bremsstrahlung yield 781
constants A and B in the equation $\alpha/p = Ae^{-B/(E/P)}$ 731
emission cross sections 466-67
energy loss 781
excitation cross sections 466-67, 478-88, 2916, 2922

first Townsend coefficient (α) divided by the
gas pressure (p) 731
ionization 540-41, 2969, 2973
ionization, secondary electron spectra 2253-54
momentum transfer cross section 442, 445
range 781
rate coefficient for ionization 576
ratios of cross sections σ^{n+}/σ_T in ionization 536-37
total collision cross section 440
total elastic scattering cross section 442, 2899
total scattering cross section 441, 2904
transport coefficients 726-27
On Ne^* , ionization 586, 2974
On Ne^+ , ionization 548-49
recombination (dielectronic) 1861
recombination (radiative) 622, 1859, 1860
On Ne^{2+} , recombination (dielectronic) 1861
recombination (radiative) 1860
On Ne^{3+} , recombination (dielectronic) 1861
recombination (radiative) 1860
On Ne^{4+} , recombination (dielectronic) 1861
recombination (radiative) 1860
On Ne^{5+} , recombination (dielectronic) 1861
recombination (radiative) 1860
On Ne^{6+} , recombination (dielectronic) 1861
recombination (radiative) 1860
On Ne_2^* ionization 1827-28

On Ne_2^+ , dissociative recombination 622-23

On N_2 , backscattering 874-75
emission of secondary electrons 848-49

On O, attachment (radiative) 1867
bremsstrahlung yield 791
elastic scattering 1668
energy loss 792
excitation 498-99
ionization 1821
momentum transfer 1671-72
range 791
single ionization 528-29
total scattering 1669-70

On O^+ , recombination (dielectronic) 1861
recombination (radiative) 592, 622, 1859, 1860
single ionization 560-61

On O^- detachment 2993

On O^{2+} , recombination (dielectronic) 1861
recombination (radiative) 1860
single ionization 560-61

On O^{3+} , recombination (dielectronic) 1861
recombination (radiative) 1860

On O^{4+} , recombination (dielectronic) 1861
recombination (radiative) 1860

On O^{5+} , ionization 1826
recombination (dielectronic) 1861
recombination (radiative) 1860

On O ⁶⁺ ,	recombination (dielectronic)	1861
	recombination (radiative)	1860
On O ⁷⁺ ,	recombination (dielectronic)	1861
	recombination (radiative)	1860
On OCS,	attachment (dissociative)	1904-9
	total scattering	1717, 2910
On OH,	momentum transfer	1711
On OH ⁺ ,	recombination (dissociative)	1847-48
On O ₂ ,	attachment (dissociative)	1876-77
	constants A and B in the equation $\alpha/p = Ae^{-B/(E/p)}$	731
	differential cross sections for ejection of electrons	572-3
	dissociation	522-23, 1772-81
	effective ionization coefficient	2101
	elastic scattering	1689
	excitation (electronic)	1746-48
	excitation (vibrational)	505
	ionization	544-45
	ionization coefficient	2103
	ionization, secondary electron spectra	2265-67
	momentum transfer	1690
	total scattering	1686-88
	transport coefficients	2090, 2092
On O ₂ ⁺ ,	dissociation	510-11
	recombination (dissociative)	620-23, 1844
On O ₂ ⁺ .O ₂ ,	recombination (dissociative)	623
On Pb,	backscattering	878
On Rb ⁺ ,	ionization	568-69

On SF₆, ionization 2988
total scattering cross section 2914
momentum transfer 1730
transport properties 2107

On semiconductors and insulators,
maximum secondary electron yields 854

On steel, backscattering 870-71
emission of secondary electrons 846-47

On Sr⁺, ionization 562-63

On T⁺, single ionization 564-65

On U, excitation 1741
ionization 1833

On UF₆, elastic scattering 1731
momentum transfer 1732

On Xe, bremsstrahlung yield 784
constants A and B in the equation
 $\alpha/p = Ae^{-B/(E/p)}$ 731
cross sections for the production of
fluorescence 493-95
drift velocities 728
energy losses 784
excitation 2919, 2925
first Townsend coefficient (α) divided by the
gas pressure (p) 731
ionization 580-81, 2972-73
ionization, secondary electron spectra 2260-61

momentum transfer cross section 442, 448
range 784
rate coefficient for ionization 579
total collision cross section 440-41, 2906
total elastic scattering cross section 442, 2902
On Xe^* , ionization 586, 2977
On Xe_2^+ , recombination (dissociative) 623-25
On XeF , de-excitation 2931-33
On XeF_2 , thermal rate coefficient for dissociative
electron attachment 638

Er

Polarizability 1157

Es

Polarizability 1157

Eu

Polarizability 1157

F

Electron affinity 214, 1160
Energy level and Grotrian diagrams 970-75
Energy parameters 152
Low-energy collisions 251
On He, high-energy F⁻ production 419
Photoionization cross section 652-53, 1938, 1942
Polarizability 216, 1156

Spin-orbit parameter 73

Stopping power for heavy ions 2181-82

F⁺

Energy level and Grotrian diagrams 976-90

Photoionization cross section 3026

F⁻

Electron photodetachment cross section 682-83, 2044

Energy parameters 152

Ion-molecule reactions 140?

Mobility in argon 744

Mobility in helium 743

On O₃, charge transfer 2785

Polarizability 220

FCN

Photoionization cross section (relative) 2022

F₂

Absorption Data 2569

Attachment 630-31

Dipole and quadrupole moments 221

Dissociation energies 2555

Electron affinity 214, 1161

Energies of states 2551-52

Excitation energies 2553

Extinction coefficient for continuous absorption 702, 704
Frank-Condon factors 2570
Low-energy collisions 252-53
Molecular constants 2558, 2565-67
Orbital representation 2563
Photoabsorption cross section (relative) 2021
Photoionization cross section 3041
Potential energy curves 2557, 2560-62, 2564
Refractive index 697
Spectroscopic constants 2554, 2556
Transition moments 2559, 2568

F_2^-

Energy level difference parameters 154
Ground state potential curve characteristics 121
Photodissociation cross section 688-89, 2066
Potential curves for the ground state 121

$F_2^-(\pi)$

Energy parameters 152

$F_2^-(\sum)$

Energy parameters 152

F_2/D_2 Chain Reaction Model

261 low-energy reactions involving various combinations
of F and D atoms 1430-36

F₂/D₂ Cold Reaction Model

127 low-energy reactions involving various combinations
of F and D atoms 1437-40

F₂/H₂ Chain Reaction Model

148 low-energy reactions involving various combinations
of F and H atoms 1413-17

F₂/H₂ Cold Reaction Model

64 low-energy reactions involving various combinations
of F and H atoms 1418-20

F₂/NO/HI/H₂ Reaction Model

71 low-energy reactions involving various combinations
of F, N, O, H, and I atoms 1423-25

F₂O

Photoionization cross section (relative) 2023-24

F₂/O₂/H₂ Reaction Model

35 low-energy reactions involving various combinations
of F, O, and H atoms 1426-27

Fe

Electron affinity 1160

Polarizability 1156

Self-sputtering coefficients 843

Fe⁺

Ion-molecule reactions 1393

Photoionization cross section 3027

FeO

Electron affinity 1161

Fission Fragments

Excited state formation in N₂ 2215

Fm

Polarizability 1157

Fr

Polarizability 1157

Ga

Excitation energies 1304

Ionization potential 1304

Polarizability 1156

GaKr

Absorption data 1314

Electronic energies 1303

Emission data 1314

Orbital representation 1316

Potential energy curves 1305-6

Spectroscopic constants 1304

Transition moments 1309-11

GaKr⁺

Electronic energies 1303

Orbital representation 1316

Potential energy curves 1305-6

Spectroscopic constants 1304

Gd

Polarizability 1157

Ge

Polarizability 1156

Spectral distribution curve 892

GeF (A 2 ν)

Quenching or He, SF₆, N₂ 2770

Gr⁺

Photoionization cross section 3027

hν

See target species.

H

Critical electric field strength, F_c 760

Electric field ionization probability 763

Electron affinity 1160

Energy level and Grotrian diagrams 902-4

Field ionization spectra 761-62, 764

Ionization energy as function of external magnetic flux density 772

On Ar, high-energy electron capture 396-97
high-energy ionization 1534-35
high-energy production of slow positive ions 1538
high-energy stripping 1548-49

On C, high-energy stripping 1552-53

On CCl_2F_2 , high-energy stripping 419

On CO, high-energy stripping 1552-53

On CO_2 , high-energy production of slow negative ions 1537
high-energy production of slow positive ions 1537
high-energy stripping 1552-53

On Cu, scattering from surface 880-81

On He, high-energy electron capture 350-51
high-energy excitation 336-37, 340-41, 1560-61
high-energy ionization 1534-35
high-energy production of free electrons 358-59
high-energy production of slow positive ions 356-57, 1538
high-energy stripping 362-63, 1548-49

On H_2 , high-energy ionization 1534-35
high-energy production of free electrons 358-59
high-energy production of slow positive ions 356-57, 1541-42

high-energy stripping 1548-49
On H₂O, high-energy stripping 1552-53
On Kr, high-energy H⁺ production 401
high-energy H⁻ production 403
high-energy Kr ion production 401
high-energy ionization 1534-35
high-energy production of slow positive ions 1538
high-energy stripping 404-5, 1548-49
On N, high-energy stripping 1552
On N₂, high-energy excitation 1577-78
high-energy ionization 1534-35
high-energy stripping 1548-49
On N_e, high-energy electron capture 394-95
high-energy ionization 1534-35
high-energy production of slow positive ions 1538
high-energy stripping 362-63, 1548-49
On O, high-energy stripping 1552
On O₂, high-energy ionization 1534-35
On Xe, high-energy H⁻ production 403, 406-9
high-energy ionization 406-9, 1534-35
high-energy production of slow positive ions 1540
high-energy stripping 406-9, 1548-49
Photoionization cross section 1922-23, 3009
Polarizability 217, 1156
Stopping power for heavy ions 2169-70

H (2s)

On H₂, high-energy electron loss or stripping 360-61

On He, high-energy electron loss or stripping 360-61

H (n = 8)

Electric field spectrum line 765

H*

Electric field ionization spectrum 761-62

Photoionization cross section 1922-23

H⁺

Emission spectrum induced by 4 MeV H⁺ on dense Ar target 2220

Emission spectrum induced by 4 MeV H⁺ on dense He target 2219

Energy degradation of 4 MeV H⁺ in He 2218

Energy deposition for 1 keV H⁺ in N₂ 2213

Energy loss pathways for high-energy H⁺ in high-density N₂ 2211

Energy loss pathways for high-energy H⁺ in high-density O₂ 2212

Energy to create ion-pair in binary gas mixtures 2208

Energy to create ion-pair in pure gas 2207

Equilibrium fractions in H and H₂ 2225-26

 in He and Ar 816-17

 in CO, CO₂, H₂O, Kr, and Ne 2227

 in N₂ and O₂ 818-19

Ion-molecule reactions 1393

On Ag, sputtering yields 844

On Al, sputtering yield 3163

On Ar, high-energy electron capture 392-93, 396-97, 1550-51
equilibrium fractions 816-17
high-energy excitation 392-93, 1562-64
high-energy ionization 1532-33
high-energy production of slow positive ions 1538-39
ionization, secondary electron spectra 2313-18
path length 2137
projected range 2141, 2146
range 804-5
rate coefficient for ionization 577
rate coefficient for charge transfer 577
stopping cross section 794-95
stopping power 2128, 2133
On Au, sputtering yield 3167
On Be, sputtering yield 3162
On Br, path length 2138
projected range 2142, 2147
stopping power 2129, 2134
On C, high-energy electron capture 1554
path length 2139
projected range 2143, 2148
sputtering yield 3162
stopping power 2130, 2135
On C₂H₂, ionization, secondary electron spectra 2350
On C₂H₄, ionization, secondary electron spectra 2350
On C₂H₆, ionization, secondary electron spectra 2350
On CH₄, high-energy electron capture 1556-57

high-energy production of slow positive ions 1547
ionization, secondary electron spectra 2350-51
On CO, high-energy electron capture 1554-55
high-energy excitation 1580
high-energy ionization 1536
high-energy production of slow negative ions 1536
high-energy production of slow positive ions 1536, 1547
ON CO₂, high-energy electron capture 1554-55
high-energy production of slow negative ions 1537
high-energy production of slow positive ions 1537
On Cd, path length 2140
projected range 2144, 2149
stopping power 2131, 2136
On Cl, path length 2138
projected range 2142, 2147
stopping power 2129, 2134
On Cs, path length 2140
projected range 2144, 2149
stopping power 2131, 2136
On Cu, scattering from surface 880-81
On F, path length 2138
projected range 2142, 2147
stopping power 2129, 2134
On Fe, sputtering yield 3164
On H, high-energy electron capture 1556
path length 2137
projected range 2141, 2145

stopping power 2128, 2132
On H⁺, sputtering yield 3165
On H⁻, two-body recombination 368-69, 1356, 1363-64
On H₂, high-energy electron capture 348-49, 1550-51
high-energy excitation 348-49, 1566-69, 1648
high-energy ionization 1532-33
high-energy production of free electrons 354-55
high-energy production of slow positive ions 352-53, 1541-42
ionization, secondary electron spectra 2325-34
range 806-7
stopping cross section 796-97
On H₂O, high-energy electron capture 1556-57
ionization, secondary electron spectra 2347-48
On He, equilibrium fractions 816-17
high-energy electron capture 342-45, 348-51,
1550-51
high-energy excitation 342-49, 1558-59
high-energy ionization 1532-33
high-energy production of free electrons 354-55
high-energy production of slow positive
ions 348-49, 352-53, 1538-39
ionization, secondary electron spectra 2299-2309
mobility 737
path length 2137
projected range 2141, 2145
range 806-7
rate coefficients for charge transfer 574-75

rate coefficients for ionization 575
stopping cross section. 796-97
stopping power 2128, 2132

On Hg, path length 2140
projected range 2144, 2149
stopping power 2131, 2136

On I, path length 2138
projected range 2142, 2147
stopping power 2129, 2134

On Kr, high-energy electron capture 402, 1550-51
high-energy excitation 1563
high-energy ionization 402, 1532-33
high-energy production of slow positive ions 402, 1538-39
path length 2137
projected range 2141, 2146
range 804-5
rate coefficient for charge transfer 578
rate coefficient for ionization 578
stopping cross section 794-95
stopping power 2128, 2133

On Mo, electron yields 867
sputtering yield 3166

On N, high-energy electron capture 1556
path length 2139
projected range 2143, 2148
stopping power 2130, 2135

On NH₃, ionization, secondary electron spectra 2349

On N₂, equilibrium fractions 818-19
high-energy electron capture 348-49, 1550-51
high-energy excitation 348-49, 352-53, 1574-76, 1620
high-energy ionization 1532-33
high-energy production of slow positive ions 1543-44
ionization, secondary electron spectra 2335-2345
range 806-7
stopping cross section 796-97

On NO, high-energy excitation 1579

On Ne, high-energy electron capture 394-95, 1550-51
high-energy excitation 1562-63, 1565
high-energy ionization 1532-33
high-energy production of slow positive ions 1538-39
ionization, secondary electron spectra 2310-12, 2348
path length 2137
projected range 2141, 2145
range 804-5
rate coefficient for charge transfer 576
rate coefficient for ionization 576
stopping cross-section 794-95
stopping power 2128, 2132

On Ni, secondary electron emission 856-57

On O, high-energy electron capture 1556
path length 2139
projected range 2143, 2148
stopping power 2130, 2135

On O₂, equilibrium fractions 818-19

On N₂, equilibrium fractions 818-19
high-energy electron capture 348-49, 1550-51
high-energy excitation 348-49, 352-53, 1574-76, 1620
high-energy ionization 1532-33
high-energy production of slow positive ions 1543-44
ionization, secondary electron spectra 2335-2345
range 806-7
stopping cross section 796-97

On NO, high-energy excitation 1579

On Ne, high-energy electron capture 394-95, 1550-51
high-energy excitation 1562-63, 1565
high-energy ionization 1532-33
high-energy production of slow positive ions 1538-39
ionization, secondary electron spectra 2310-12, 2348
path length 2137
projected range 2141, 2145
range 804-5
rate coefficient for charge transfer 576
rate coefficient for ionization 576
stopping cross-section 794-95
stopping power 2128, 2132

On Ni, secondary electron emission 856-57
sputtering yield 3165

On O, high-energy electron capture 1556
path length 2139
projected range 2143, 2148
stopping power 2130, 2135

On O₂, equilibrium fractions 818-19

path length 2139
projected range 2143, 2148
stopping power 2130, 2135
On O₂, equilibrium fractions 818-19
high-energy electron capture 348-49, 1550-51
high-energy excitation 348-49, 1570-73
high-energy ionization 1532-33
high-energy production of slow positive ions 1545-46
ionization, secondary electron spectra 2346
On S, path length 2139
projected range 2143, 2148
stopping power 2130, 2135
On Ta, sputtering yield 3166
On Ti, sputtering yield 3162
On U, path length 2140
projected range 2144, 2149
stopping power 2131, 2136
On V, sputtering yield 3164
On W, sputtering yield 3167
On Xe, energy and angular distributions of secondary electrons 2374
high-energy electron capture 406-9, 1550-51
high-energy ionization 406-9
high-energy production of slow positive ions 406-9, 1540
ionization, secondary electron spectra 2319-22
path length 2137
projected range 2141, 2146
range 804-5

rate coefficient for charge transfer 579
rate coefficient for ionization 579
stopping cross-section 794-95
stopping power 2128, 2133
On Zr, sputtering yield 3165
Reflection from surfaces, general formulation 3201
Sputtering yield of metals, general formulation 3168

H⁻

Beam attenuation in an electric field 767
Electron detachment by applied electric field 771
Ion-molecule reactions 1403
On Ar, high-energy single electron loss or stripping 398-99
On CCl₂F₂, high-energy stripping 419
high-energy ion production 420
On CCl₄, high-energy ion production 420
On H₂, high-energy loss of two electrons 366-67
high-energy one electron loss or stripping 364-65
On He, high-energy excitation 338-39
high-energy loss of two electrons 366-67
high-energy one electron loss or stripping 338-39, 364-65
On Kr, high-energy electron capture 404
high-energy excitation 404
high-energy stripping 405
On Ne, high-energy single electron loss or stripping 398-99
On Xe, high-energy electron capture 404
high-energy excitation 404
high-energy ionization 406-9

high-energy production of slow positive ions 1540
high-energy stripping 405-9
Photodetachment cross section 2046-47
Polarizability 220

HBr

Dipole and quadrupole moments 221
Extinction coefficient for continuous absorption 2033
Polarizability 221

HBr (v = 1)

Vibrational quenching on HBr 2764

HCO⁺

On CH₃OH, ion-molecule reactions 2748
On CH₄, ion-molecule reactions 2748
On CO₂, ion-molecule reactions 2748
On COS, ion-molecule reactions 2748
On H₂, ion-molecule reactions 2748
On H₂CO, ion-molecule reactions 2748
On H₂O, ion-molecule reactions 2748
On NH₃, ion-molecule reactions 2748
On O₂, ion-molecule reactions 2748

HCl

Dipole and quadrupole moments 221
Photoabsorption cross section 1994
Polarizability 221
Photoionization cross section (relative) 2025

Rates for deactivation 1465-66

HCl (v = 1)

Isotopic vibrational energy transfer on H Cl 2766

HCl (v = 1, 2)

Vibrational quenching on H, Cl, HCl, N₂O, CO₂ and Br 2761-64, 2766

HCN

Photoabsorption cross section 3089

Photodestruction cross section 3089

HF

Dipole and quadrupole moments 221

Photoionization cross section (relative) 2026

Polarizability 221

Rates for deactivation 1465-66

HF/CO₂ Transfer Reaction Model

35 low-energy reactions involving HF and CO₂ 1421-2

HF (v=3)

Vibrational quenching on HCl, CO₂, N₂O, CO, N₂ and O₂ 2760

H₂

Average energy expended by a charged particle

to create an ion pair 814

Dipole and quadrupole moments 221

Electron affinity 1162

General wavelength ranges for observed emission continua 711

Multiphoton ionization 700

Photoabsorption cross section 1970-72, 3033-34

Photofragmentation ratios 3035

Photoionization cross section 3033

Polarizability 221

Rates for deactivation 1465-66

Secondary electron spectra from electron

impact ionization 2272-74, 2283-85

Secondary electron spectra from proton

impact ionization 2325-35

Quenching rate in external electric field 773

Dissociation in electric field 775-76

On Cu, scattering 880-81

On D⁻, two-body recombination 1357, 1367-68

On H₂, ion-molecule reactions 2734

On Mo, electron yields 867

On Ni, secondary electron emission 856-57

Photoionization cross section 3090

On CH₃OH, ion-molecule reactions 2748

On CH₄, ion-molecule reactions 2748
On CO₂, ion-molecule reactions 2748
On COS, ion-molecule reactions 2748
On H₂, ion-molecule reactions 2748
On H₂O, ion-molecule reactions 2748
On H₂CO, ion-molecule reactions 2748
On Ni₃, ion-molecule reactions 2748
On O₂, ion-molecule reactions 2748

H₂O

Dipole and quadrupole moments 221
Branching ratio of various final states in Photoabsorption 3063
Photoabsorption cross section 1995-2001, 3060, 3063
Photodissociation cross section 3063
Photofragmentation cross sections 3061, 3063
Photoionization cross section 3062
Polarizability 221
Quantum yield of ionization in photoabsorption 3061, 3063
Secondary electron spectra from electron
 impact ionization 2289-92, 2373
Secondary electron spectra from proton
 impact ionization 2347-48

H₂O⁺

Ion-molecule reactions 1394
On CO, ion-molecule reactions 2747
On C₂H₄, ion-molecule reactions 2747

On CH₄, ion-molecule reactions 2747
On H₂, ion-molecule reactions 2747
On Mg, charge transfer 2780
On NO, ion-molecule reactions 2747
On NO₂, ion-molecule reactions 2747
On O₂, ion-molecule reactions 2747

Ion-molecule reactions 1394
H₃⁺

Ion-molecule reactions 1394-95
Mobility in argon 740
On Cu, scattering from surface 880-81
On Mg, charge transfer 2777
On Ni, secondary electron emission 856-57

On CH₃OH, ion-molecule reactions 2748
On CH₄, ion-molecule reactions 2748
On CO₂, ion-molecule reactions 2748
On COS, ion-molecule reactions 2748
On H₂, ion-molecule reactions 2748
On H₂CO, ion-molecule reactions 2748
On H₂O, ion-molecule reactions 2748
On NH₃, ion-molecule reactions 2748
On O₂, ion-molecule reactions 2748

Ion-molecule reactions 1395

Mobility in argon 740

Mobility in argon 740

On NO_2^- , NO_3^- , $\text{NO}_2^- \cdot \text{H}_2\text{O}$, $\text{NO}_3^- \cdot \text{H}_2\text{O}$,

$\text{NO}_3^- \cdot \text{HNO}_3$, $\text{NO}_3^- \cdot (\text{HNO}_3)_2$:

two-body recombination 1359

Mobility in argon 740

Ion-molecule reactions 1394

Ion-molecule reactions 1394

Ion-molecule reactions 1394

Dipole and quadrupole moments 221

Polarizability 221

Ion-molecule reactions 1393

Ion-molecule reactions 1393

HI

Dipole and quadrupole moments 221
Extinction coefficient 2033
Extinction coefficient for continuous absorption 2033
Polarizability 221

HN^+

Ion-molecule reactions 1393

HNO_3

Electron affinity 1162

HNe^+

Ion-molecule reactions 1393

HNe_2^+

Ion-molecule reactions 1393

HO^+

Ion-molecule reactions 1394

HO^-

Ion-molecule reactions 1403

HO_2^+

Ion-molecule reactions 1394

HONO_2

Photoabsorption cross section 3091

He

Average energy expended by a charged particle to
create an ion pair 814

Continuous free - free absorption coefficients	692
Critical electric field strength, F_c	760
Dynamic polarizability	217
Electric field ionization spectrum	766
Electron affinity	214, 1160
Energy level and Grotrian diagrams	905-8
Energy parameters	152
Free - free absorption cross section	2078
General wavelength ranges for observed emission continua	711
Ionizations per volt per mm Hg at 0° C	732
Lifetimes	194-97
Low-energy collisions	227-28, 230-33, 245, 247, 250, 262-73, 276-91, 1507-8, 1522-23
Multiphoton ionization	700
On Ar, high-energy production of free electrons	1592
high-energy production of slow positive ions	1593
high-energy stripping	1599
On CH ₄ , high-energy production of slow positive ions	1597
On CO, high-energy production of slow positive ions	1596
On CO ₂ , high-energy production of slow positive ions	1597
On H ₂ , high-energy excitation	1620
high-energy ionization	390-91
high-energy one and two electron loss	388-89
high-energy production of free electrons	1592
high-energy production of slow positive ions	1593-95
On He, high-energy ionization	390-91
high-energy one and two electron loss	388-89

high-energy production of free electrons 1592
high-energy production of slow positive ions 1593-94
On Kr, high-energy He^+ production 413-14
high-energy He^- production 415
high-energy stripping 413-14, 1600
On N_2 , high-energy production of free electrons 1592
high-energy production of slow positive ions 1593-95
high-energy stripping 1603
On Ne, high-energy production of slow positive ions 1594
high-energy stripping 1598
On O_2 , high-energy production of slow positive ions 1596
high-energy stripping 1602
On Xe, high-energy He^+ production 414
high-energy He^- production 415
high-energy stripping 414, 1601
On W, secondary electron emission 860-61
Photoionization cross section 642-44, 1926
Polarizability 216-17, 1156
Refractive indices 696
Secondary electron spectrum from electron
impact ionization 2248-52
Secondary electron spectrum from proton
impact ionization 2299-3009, 3215-3216
Stopping power for heavy ions 2171-72
 He^*
Photoionization cross section 1926, 2039-40

$\text{He}(2^1\text{S})$

Diffusion data in helium 752
Dynamic polarizability 219
Low-energy collisions 1523
Photoionization 659-60, 2039
Quenching by electric field 774

$\text{He}(2^3\text{S})$

Diffusion data in helium 752
Dynamic polarizability 219
Low-energy collisions 1523
Photoionization cross section 658-60, 2040
Quenching on Kr, Xe, H₂, O₂, NO, HBr, HCl, H₂O, N₂O, NO₂, NH₃, C₂H₆, C₃H₈, CCl₂F₂, CCl₃F 2753

$\text{He}(4\text{p})$

Field ionization spectrum 768

$\text{He}(n^1, 3^1\text{p})$

Photoionization 661

$\text{He}^3(2^1\text{S}_0)$

Quenching rate in external electric field 773

$\text{He}^4(2^1\text{S}_0)$

Quenching rate in external electric field 773

He⁺

Drift velocity in helium 742

Energy level and Grotrian diagrams 909-10

Energy parameters 152

Equilibrium fractions in Kr and Ne 2228

Ion-molecule reactions 1395, 1507-8, 1523

Low-energy collisions 229-33, 245, 249, 319-20, 1523

Mobility in helium 737-38

Mobility in neon 739

On Ag, sputtering coefficients 882-83
sputtering yields 844

On Al, sputtering coefficients 830-31
sputtering yields 3163

On Ar, equilibrium fractions 824-25
high-energy electron capture 1604-5
high-energy emission cross sections 421, 426
high-energy production of free electrons 1581
high-energy production of slow positive ions 1582
high-energy stripping 1599
ionization, secondary electron spectra 2356-58
range 808-9, 2161, 2164
stopping cross-section 798-99
stopping power 2152, 2156

On Au, sputtering coefficients 832-33
sputtering yield 3167

On Ba, charge transfer 2779

On Be, sputtering coefficients 830-31

sputtering yield 3162

On Br, stopping power 2154, 2158

On C, sputtering coefficients 830-31

 sputtering yield 3162

 stopping power 2153, 2157

On Ca, charge transfer 2779

On CH₄, high-energy production of slow positive ions 1588

 ion-molecule reactions 2735

On CO, high-energy production of slow positive ions 1588

On CO₂, high-energy electron capture 1608

 high-energy production of slow positive ions 1588

On Cd, stopping power 2154, 2160

On Cl, stopping power 2154, 2158

On Cl₂, range 2162, 2165

On Cr, sputtering coefficients 834-35

On Cs, stopping power 2153, 2159

On Cu, sputtering coefficients 834-35

On D⁻, two-body recombination 368-69, 1356, 1365-66

On D₂, charge transfer 2777

On F, stopping power 2154, 2158

On F⁻, three-body recombination 1360, 1375-76

On F₂, range 2162, 2165

On Fe, sputtering coefficients 834-35

 sputtering yields 3164

On H, stopping cross section 800-1

 stopping power 2152, 2155

On H⁻, two-body recombination 368-69, 1356, 1365-66

On H₂, charge transfer 2777
equilibrium fractions 820-21
high-energy electron capture 374-75, 1606
high-energy excitation 1617-20, 1648
high-energy one electron loss 378-79
high-energy production of positive ions 382-83, 1587, 1594
high-energy production of slow electrons 380-81
range 810-11, 2161, 2163

On H₂O, high-energy electron capture 1608

On Hg, stopping power 2153, 2159

On He, charge transfer 2777
equilibrium fractions 820-21
high-energy electron capture 374-75, 1604
high-energy excitation 370-73
high-energy ionization rate 427
high-energy one electron loss 378-79
high-energy production of positive ions 382-83, 1594
high-energy production of slow electrons 380-81
range 810-11, 2161, 2163
stopping cross section 800-1
stopping power 2152, 2155

On I, stopping power 2154, 2158

On Kr, high-energy electron capture 413, 416, 1604-5
high-energy production of free electrons 411, 1581
high-energy emission cross sections 421-23, 426
high-energy excitation 425
high-energy Kr⁺ production 411

high-energy Krⁿ⁺ production 410
high-energy production of slow ions 410, 1582
high-energy stripping 1600
range 808-9, 2161, 2164
stopping cross section 798-99
stopping power 2152, 2156
On Mg, charge transfer 2778
On Mo, electron yields 864, 866-67
scattering 882-83
secondary electron emission 858-59, 867
sputtering coefficients 834-35
sputtering yield 3166
On N, stopping cross section 800-1
stopping power 2153, 2157
On N₂, equilibrium fractions 822-23
high-energy electron capture 1606-7
high-energy excitation 1620
high-energy production of free electrons 1581
high-energy production of slow positive
ions 1582, 1585-86, 1594
high-energy stripping 1603
ion-molecule reactions 2735
range 810-11, 2162, 2165
On Nb, sputtering coefficients 832-33
On Ne, charge transfer 2778
high-energy electron capture 1604-5
high-energy emission cross sections 421, 426

high-energy production of free electrons 1581
high-energy production of slow positive ions 1582, 1594
range 808-9, 2162, 2163
stopping cross section 798-99
stopping power 2152, 2155
high-energy stripping 1598
On Ni, secondary electron emission 856-57
sputtering coefficients 834-35
sputtering yields 3165
On O, stopping cross sections 800-1
stopping power 2153, 2157
On O₂, equilibrium fractions 822-23
high-energy electron capture 1606-7
high-energy production of free electrons 1581
high-energy production of slow positive ions 1582-84
ion-molecule reactions 2735
range 2162, 2165
On Pt, sputtering coefficients 832-33
On S, stopping power 2153, 2159
On Si, sputtering coefficients 830-31
On Ta, electron yields 865
sputtering coefficients 834-35
sputtering yield 3166
On Ti, sputtering coefficients 830-31
sputtering yields 3163
On U, stopping power 2154, 2160
On V, sputtering coefficients 834-35

sputtering yields 3164

On W, electron yields 864-66

scattering from surface 884-86

secondary electron emission 860-61

sputtering coefficients 834-35

sputtering yield 3167

On Xe, high-energy electron capture 416-17, 1604

high-energy emission cross sections 421, 423-24, 426

high-energy excitation 425-26

range 808-9, 2161, 2164

stopping cross section 798-99

stopping power 2152, 2156

On Zr, sputtering coefficient 832-33

sputtering yield 3165

Reflection from surfaces, general formulation 3201

Secondary electron spectra from H⁰ impact ionization 3215-16

Sputtering of metals, general formulation 3168

Polarizability 220

He²⁺

Emission of light in passage of He²⁺ through He-CO mixtures 2216

Energy to create ion-pair in binary gas mixtures 2209

Energy to create ion-pair in pure gas 814, 2207

Ion-molecule reactions 1507, 1512, 1522

Low-energy collisions 321-22

Mobility in He 737-38

Mobility in Ne 739

AD-A122 391 CUMULATIVE REACTANT SPECIES INDEX FOR VOLUMES I-VIII OF 2/2
THE COMPILATION O... (U) ARMY MISSILE COMMAND REDSTONE
ARSENAL AL DIRECTED ENERGY DIRE... E W McDANIEL ET AL.
UNCLASSIFIED SEP 82 ORSMI/RM-82-1-TR-VOL-9 F/0 20/8 NL

END
SAFETY
PREDICT
1-83
DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

On Ar, charge transfer 2778
high-energy electron capture 1609
high-energy production of free electrons 1589
high-energy production of slow positive ions 1590
ionization, secondary electron spectra 2359-2361

On CO, high-energy production of slow positive ions 1591

On H, high-energy electron capture 1610-11

On H₂, charge transfer 2777
high-energy electron capture 1610-11, 1613
high-energy production of free electrons 386-87, 1589
high-energy production of slow positive ions 384-85, 1590-91

On He, charge transfer 2778
high-energy electron capture 376-77
high-energy production of free electrons 386-87, 1589
high-energy production of slow positive ions 384-85, 1590
ionization of He with admixtures of Ar, Kr, Xe, and CO² 427

On Kr, charge transfer 2779
high-energy electron capture 413, 1612
high-energy He production 411
high-energy Krⁿ⁺ production 412

On Mo, electron yields 864
secondary electron emission 858-59

On N₂, high-energy electron capture 1613-14
high-energy production of free electrons 1589
high-energy production of slow positive ions 1590

On Ne, charge transfer 2778

On O₂, charge transfer 2778

high-energy electron capture 1613-14
On Ta, electron yields 865
On W, electron yields versus ion energy 865
On Xe, charge transfer 2779
high-energy Xe^{n+} production 418
Polarizability 220

He^{n+}

On Kr, high-energy He^{m+} production 413

He^-

Beam attenuation in an electric field 767
Detachment of electron by external electric field 771
Electric field ionization spectrum 768

$HeAr$

Interaction energy 1181
Potential energy curves 187, 1181

$HeAr^+$

Low-energy collisions 243

He_2

Diabatic and adiabatic potential energy curves of
 $^3\Delta_g$ symmetry 164
Diabatic and adiabatic potential curves of
 $^3\pi_u$ symmetry 163

Interaction energy 1180
Low-energy collisions 241, 1511-12
Photoionization cross section 2038-40
Potential curves of $^3\pi_g$ symmetry 162
Potential curves of $^3\Sigma_g^+$ symmetry 160
Potential curves of $^3\Sigma_u^+$ symmetry 161
Potential energy curves 124, 158-59, 187, 189, 1180

He_2^+

Asymptotic energies 123
Avoided crossings 123
Energy level difference parameters 153
Energy parameters 152
Ground state potential curve characteristics 121
Ion-molecule reactions 1395-96, 1512
Low-energy collisions 241-42, 246
Mobility in helium 737-38
On He, high-energy positive ion production 384-85
Potential curves 121, 122, 124
Symmetries and excitation energies of the lower
symmetry states 123
Three-body ion-ion recombination 321-22, 1360, 1377-78

$\text{He}_2^+ (^2\pi_{g,u}^+)$

Potential energy curves 122

Potential energy curves 122

Potential energy curves 122

Mobility in helium 737

Photodissociation cross section 3116-17

Interaction energy 1181

Potential energy curves 187, 1181

Low-energy collisions 243

Interaction energy 1181

Potential energy curves 187, 1181

Ion-molecule reactions 1395

Low-energy collisions 243

Mobility in helium 737

HeXe

Potential energy curves 187, 189

Hf

Polarizability 1157

Hg

Electron affinity 1160

Electronic energies 1322-24, 1326

Orbital energies 1321, 1323

Photoionization cross section 1962-64, 3024-25

Polarizability 1157

Stopping power for heavy ions 2201-2

Hg⁺

Mobility in argon 740

Mobility in helium 737

Mobility in neon 739

On Br⁻, Cl⁻, F⁻, I⁻, three-body recombination 1362, 1386-87

On Cr, sputtering yield 3176

On Cu, sputtering yield 3180

On Fe, sputtering yeild 3177

On Ta, sputtering yield 3184

On V, sputtering yield 3174

Hg Br

Absportion data 2631

Emission data 1281

Potential energy curves 1275-78

Spectroscopic constants 1280

HgBr_2

Absorption data 2637

Photoabsorption cross section 2003

Transition moments 2639

HgCl

Absorption data 2631

Emission data 1281

Potential energy curves 1271-74

Spectroscopic constants 1279

$\text{HgCl}(\text{B}^2\text{L})$

Quenching on He, Ne, Ar, Kr, Xe, N₂, Cl₂, HCl, CCl₄ 2772

HgCl_2

Absorption data 2637

Bond lengths 1331

Dissociation energies 1331

Energy level and Grotian diagrams 2646

Excitation energies 2638-89

Ionization potential 1332-33

Orbital energies 1333

Orbital representation 2640-43, 2645

Potential energy curves 2644

Transition moments 2639

HgH

Potential energy curves 1334
Spectroscopic constants 1335

Hg₂⁺

Absorption data 2627
Potential energy curves 2625-56
Spectroscopic constants 2625

HgI(B 2Σ)

Quenching on He, Ne, Ar, Kr, Xe, N₂ 2772

HgI(C 2π)

Quenching on He, Ne, Ar, Kr, Xe, N₂, I₂, CF₃I 2772

HgI₂

Photoabsorption cross section 2003

Ho

Polarizability 1157

I

Electron affinity 214, 1160
Low-energy collisions 251, 253, 1520-21
Photoionization cross section 652-53, 1941, 1945
Polarizability of ground state 216, 1157
Spin-orbit parameter 73
Stopping power for heavy ions 2187-88

I*

On He, Ar, N₂, CO, CO₂, SF₆, CF₂Cl₂, CF₃I,
i-C₃F₇I, CF₃Br, (CF₃)₂CO, I: cross sections
for collisional deactivation 1453
On Cl₂, Br₂, I₂, BrCl, ICl, IBr: collisional .
deactivation 1520-21

I⁺

Equilibrium fractions in H₂, He, N₂, and O₂ 2234
Equilibrium fractions in Ar and Ne 2235
Equilibrium fractions in Kr, Xe, and Hg vapor jet 2236
On Ar, high-energy electron capture 1631
high-energy electron loss 1631
On N₂, high-energy electron capture 1631
high-energy electron loss 1631
On O₂, high-energy electron capture 1631
high-energy electron loss 1631

Iⁿ⁺

On Air, high-energy electron capture 1639-43
high-energy electron loss 1639-43
On Ar, high-energy electron capture 1639-43
high-energy electron loss 1639-43
On CH₄, high-energy electron capture 1639-43
high-energy electron loss 1639-43
On CO₂, high-energy electron capture 1639-43
high-energy electron loss 1639-43

On Cl, high-energy electron capture 1639-43
high-energy electron loss 1639-43
On H₂, high-energy electron capture 1639-44
high-energy electron loss 1639-43
On He, high-energy electron capture 1639-44
high-energy electron loss 1639-43
On N₂, high-energy electron capture 1639-43
high-energy electron loss 1639-43
On N₂O, high-energy electron capture 1639-43
high-energy electron loss 1639-43
On O₂, high-energy electron capture 1639-44
high-energy electron loss 1639-43

I⁻

Electron photodetachment cross-section 682-83
Ion-molecule reactions 1403
Mobility in argon 744
Mobility in helium 743
On O₃, charge transfer 2785
Polarizability 220

IBr

Electron affinity 214, 1161
Extinction coefficient for continuous absorption 702, 2032

ICN

Photoabsorption cross section 2004
Photolionization cross section (relative) 2027

I₂

Electron affinity 214, 1161

Extinction coefficient for continuous absorption 702, 2032

I₂

Electron affinity 214, 1161

Extinction coefficient for continuous absorption 702-4

Photoabsorption cross section 1968

Photoionization cross section 652-53, 655

Potential energy curves 2573

Refractive indices 697

I₂*

Low-energy collisions 253

I₂+

On I⁻, two-body recombination 1359

Molecular constants 2572

Potential energy curves 2571-72

I₂-

Low-energy collision 253-54

Molecular constants 2572

Photodissociation cross section 688-89, 2066

Potential energy curves 2572

n-Molec⁻ Reactions

Positive Ions 1392-1400

Negative Ions 1401-7

In

Electron affinity 1160
Electronic energies 1304
Ionization potential 1304
Polarizability 1157

InKr

Absorption data 1313
Emission data 1313
Potential energy curves 1307

InKr⁺

Potential energy curves 1307

Ir

Polarizability 1157

Ions

References to transport data as of August 1, 1978 2113-15

K

Electron affinity 1160
On Br, charge transfer 2786
On Cl, charge transfer 2786
On I, charge transfer 2786
On O₂, charge transfer 2786
Polarizability 217, 1156

K⁺

Diffusion, (longitudinal) 747-48
Mobility in argon 740
Mobility in krypton 739
Mobility in neon 739
Mobility in xenon 739
On Ag, reflection coefficient 3203
On Al, reflection coefficient 3203
On Au, reflection coefficient 3203
On Br⁻, charge transfer 2786
On Cl⁻, charge transfer 2786
On Cu, reflection coefficient 3203
On H₂, high-energy excitation 1648
On I⁻, charge transfer 2786
Photoionization cross section 3027
Polarizability 220

Kr

Average energy expended by a charged particle to create
an ion pair 814
Continuous free - free absorption coefficients 692
Electron affinity 214, 1160
Free - free absorption cross section 2078
General wavelength ranges for observed emission continua 711
Interaction parameters 1187
Ionizations per volt per mm Hg at 0 °C 732
Lifetimes 204, 209, 211

Low-energy collisions 238-39, 247, 249-50, 1510-11, 1513
Mobilities of ions in Kr 739
Multiphoton ionization 700
On Ar, high-energy electron capture 1626
 high-energy production of free electrons 1621
 high-energy production of slow positive ions 1623
 high-energy electron loss 1626
On He, high-energy production of free electrons 1621
 high-energy production of slow positive ions 1623
On Kr, high-energy ionization 1624
 high-energy production of free electrons 1621
 high-energy production of slow positive ions 1623
On N₂, high-energy electron capture 1626
 high-energy electron loss 1626
On Ne, high-energy electron capture 1626
 high-energy production of free electrons 1621
 high-energy production of slow positive ions 1623
 high-energy electron loss 1626
On O₂, high-energy electron capture 1626
 high-energy electron loss 1626
On Xe, high-energy ionization 1624
 high-energy production of free electrons 1621
 high-energy production of slow positive ions 1623
Oscillator strengths 211
Photoionization cross section 642-44, 1926
Polarizabilities α_{zz} ($m_J=1$) and α_{zz} ($m_J=2$)
 of the 3p₂ atom 216

Polarizability of ground state 216, 1156

Refractive indices 696

Secondary electron spectra from electron impact

ionization 2260-61

Stopping power for heavy ions 2177-78

Total absorption cross section 648-49

V_0 in the equation $i = i_0 e^{n(V-V_0)}$ 732

Kr*

Autoionization in the photoionization cross section 664

Low-energy collisions 246, 254, 1514-16

Photoionization cross section 658, 662, 1929, 1931-34

Kr(5p)

Photoionization cross section 667, 669

Kr(5s)

Photoionization cross section 667, 669

Kr(5s₀₀)

Diffusion coefficient in krypton 753

Three-body reaction rate constant in krypton 753

Two-body reaction rate constant in krypton 753

Kr(5s₁₂)

Diffusion coefficient in krypton 753

Three-body reaction rate constant in krypton 753

Two-body reaction rate constant in krypton 753

Kr (3P_2)

Diffusion and reactions in Ar 2119
Diffusion and reactions in Kr 2119
Quenching on various gases (40 target species) 2754-55

Kr $^+$

Equilibrium fractions in H₂ and He 2232
Equilibrium fractions in Ar, Kr, N₂, and Ne 2233
Interaction parameters 1187
Ion-molecule reactions 1396, 1511
Low-energy collisions 239, 246, 255, 319-20, 1523
Mobility in argon 740
Mobility in helium 737
On Ag, sputtering yield 3183
On Al, sputtering yield 3172
On Ar, high-energy electron capture 1626
 high-energy production electron 1621
 high-energy production of slow positive ions 1623
 high-energy electron loss 1626
On Au, sputtering yield 3186
On Be, sputtering yield 3170
On Br $^-$, three-body recombination 2687-2691
On C, sputtering yield 3171
On CH₄, charge transfer 2783
On Cl $^-$, three-body recombination 2687-2691
On Cr, sputtering yield 3175
On Cu, sputtering yield 3179

On F⁻, three-body recombination 1361, 1375-76, 1382-83, 2687-2691, 2724
On Fe, sputtering yield 3177
On He, high-energy excitation 1646
 high-energy production of free electrons 1621
 high-energy production of slow positive ions 1623
On I⁻, three-body recombination 2687-2691
On Kr, charge transfer 2783
 high-energy ionization 1624
 high-energy production of free electrons 1621-22
 high-energy production of slow positive ions 1623
On Ma, sputtering yield 3181
On Mo, electron yields from surface 864, 866
 sputtering yield 3181
On N₂, high-energy electron capture 1626
 high-energy electron loss 1626
On Ne, high-energy electron capture 1626
 high-energy production of free electrons 1621-22
 high-energy production of slow positive ions 1623
 high-energy electron loss 1626
On Ni, sputtering yield 3178
On O₂, high-energy electron capture 1626
 high-energy electron loss 1626
On Pd, sputtering yield 3182
On Ta, sputtering yield 3184
On Ti, sputtering yield 3173
On V, sputtering yield 3174
On W, electron yields from surface 864-66

sputtering yield 3185

On Xe, high-energy ionization 1624

high-energy production of free electrons 1621

high-energy production of slow positive ions 1623

Spin-orbit parameter 73

$\text{Kr}^+({}^2\text{P}_{1/2})$

Mobility in krypton 739, 741

$\text{Kr}^+({}^2\text{P}_{3/2})$

Mobility in krypton 739, 741

Kr^{2+}

Low-energy collisions 238, 310-13, 321-22, 1511, 1513

On Ar, charge transfer 2783

On CH₄, charge transfer 2783

On He, charge transfer 2783

On Kr, charge transfer 2783

high-energy ionization 1624

high-energy production of free electrons 1622

On Ne, electron yields from surface 864

On Ne, charge transfer 2783,

high-energy production of free electrons 1622

On W, electron yields from surface 865

On Xe, charge transfer 2784

high-energy ionization 1624

Photoabsorption cross section 3110

Photodissociation cross section 3111-12, 3114

Kr³⁺

On He, high-energy electron capture 1639
high-energy electron loss 1639
On Kr, high-energy electron capture 1639
high-energy electron loss 1639
On N₂, high-energy electron capture 1639
high-energy electron loss 1639
On Ne, high-energy production of free electrons 1622

Kr⁴⁺

On He, high-energy electron capture 1639
high-energy electron loss 1639
On Kr, high-energy electron capture 1639
high-energy electron loss 1639
On N₂, high-energy electron capture 1639
high-energy electron loss 1639

KrAr

Photoionization cross section (relative) 2041
Photoionization efficiency curve 675

KrBr

Laser and Fluorescent wavelengths 12

KrCl

Einstein coefficients 1234-36

Emission data 1238
Fluorescence 1237
Laser and fluorescent wavelengths 12
Potential energy curves 1233
Transition probabilities 1234
Vibrational levels 1233

KrF

Absorption data 2631
Crossing points and energies of the III(1/2)-
II(3/2) curve crossings 53
Dipole moments of the covalent states 78-79
Dipole moments of the ionic states 80-81
Einstein coefficients 107, 111, 1228, 1230-31
Emission data 1238
Emission energies and wavelengths 107, 111
Fluorescence 1229, 1232
Laser and fluorescent wavelengths 12
Lifetimes 107, 111
Potential energy curves for the covalent states 39, 52
Potential energy curves for the covalent and
ionic states 22-23, 1227
Separated atom limits for the ionic states 54
Spectroscopic constants 67, 70, 1264
Total energies of the covalent and ionic states 48-49
Transition moments for the ionic-covalent
transitions 82-83, 88-89, 107, 111

Transition probabilities 1228, 1230-31

Vibrational levels 1227

KrF*

Dominant quenching processes 1485

Low-energy collisions 256-57

KrF(B)

Quenching on He, Ne, Ar, Kr, Xe, F₂, NF₃ 2767

KrI

Laser and fluorescent wavelengths 12

Kr₂

Interaction energies 179, 1180

Photoionization cross section (relative) 2041

Photoionization efficiency curve 673

Potential energy curves 188, 1180

Kr₂*

Lifetimes 212

Low-energy collisions 242, 255, 1512

Photoabsorption cross sections 713

Kr₂(¹Σ_g⁺)

Interaction energy 181

Kr_2^+

Absorption data 142, 1206-7, 1267, 2585-86, 2590, 2596, 2600, 2604, 2607, 2611, 2614, 2618, 2620, 2623, 2631

Absorption spectra for the $\text{I}(1/2)_u \rightarrow \text{II}(1/2)_g$ transition 150, 1207

Appearance potential 2990

Low-energy collisions 242, 255

On Br^- , three-body recombination 2702-2706

On Cl^- , three-body recombination 2702-2706

On F^- , three-body recombination 321-22, 1361-62, 1377-78, 1384-85
2702-2706

two-body recombination 1358

On I^- , three-body recombination 2702-2706

Photodissociation cross-section 686-87

Potential energy curves 138-39, 143, 1191, 1197-98

Spectroscopic constants 1203, 1205, 1264

Spectroscopic data for the ground state 142

Theoretical photoabsorption cross sections 712

Total energies 140-41

Transition moments 2580, 2591-93

$\text{Kr}_2^+ \text{ I}(1/2)_u$

Dissociation energy 149

Kr_2^{+*}

Low-energy collisions 242

Kr_2Cl

Diatomics-in-molecules potential surfaces 38

Kr_2F

Absorption data 1266-67

Diatomics-in-molecules potential surfaces 37

Electronic energies 1268

Emission data 1265-66

Spectroscopic constants 1264

Transition moments 1265

Vertical transition energies 1257

Kr_2F^*

Low-energy collisions 256

KrO

Crossing points 1296

Dipole moments 1299

Energies of states 1289

Potential energy curves 1291

Radiative lifetimes 1297

Spectroscopic constants 1293

Transition moments 1296, 1298

KrXe

Interatomic potential curve 188

KrXe^+

Appearance potential 2990

Low-energy collisions 244
On Br⁻, three-body recombination 2716-2717
On Cl⁻, three-body recombination 2716-2717
On F⁻, three-body recombination 2716-2717
On I⁻, three-body recombination 2716-2717

La

Polarizability 1157

Li

Electron affinity 1160
On Br, charge transfer 2785
On Cl, charge transfer 2785
On I, charge transfer 2785
Polarizability 217, 1156

Li⁺

Diffusion (longitudinal) 746
Mobility in argon 740
Mobility in neon 739
On Br⁻, charge transfer 2786
On Cl⁻, charge transfer 2786
On I⁻, charge transfer 2786
Photoionization cross section 3026
Polarizability 220

Li₂

Emission data 2667-68
Potential energy curves 2661-63
Transition operators 2666

LiCa

Emission data 2658-9

Rotational level diagram 2657

Spectroscopic constants 2659

LiCl

Electron affinity 1161

LiH(j=1)

Vibrational energy transfer on HCl, DCI 2760

Lu

Polarizability 1157

Lw

Polarizability 1157

Md

Polarizability 1157

Mg

Polarizability 1156

Mg⁺

Photoionization cross section 3026

Mg²⁺

Polarizability 220

MgBr (B^{2Σ})

Quenching on He, Ne, Ar, Kr, Xe, N₂, Br₂, HBr, CF₃Br,

CCl₃Br 2772

Mn

Polarizability 1156

Mn⁺

Photoionization cross section 3027

Mo

Energy distribution of photoelectrons 892
Photoelectric yields 888

Polarizability 1157

Secondary electron emission coefficient by impact
of various ions 3196, 3198

Self-sputtering coefficients 843

n

Moderating ratios of various moderators 2398
Number of neutrons emitted per fission 2400
On B¹⁰, thermal reaction cross section 2401
On He³, thermal reaction cross section 2401
On ²³⁹Pu, mass-yield curve for thermal fission 2380
mass-yield curve for fast fission 2386
neutron yield per neutron absorbed 2397
On ²⁴¹Pu, mass-yield curve for thermal fission 2381
On ²³²Th, fission cross section as function of neutron energy 2395
mass-yield curve for fast fission 2382
mass-yield curve for 14 MeV fission 2387
On ²³³U, mass-yield curve for thermal fission 2378
mass-yield curve for fast fission 2383
mass-yield curve for 14 MeV fission 2388
neutron yield per neutron absorbed 2397
On ²³⁵U, end products and energies from fission 2399

fission cross section as function of neutron energy 2394
fission neutron energy spectrum 2396
mass-yield curve for thermal fission 2379
mass-yield curve for fast fission 2384
mass-yield curve for 14 MeV fission 2389
neutron yield per neutron absorbed 2397
On ^{238}U , fission cross section as function of
neutron energy 2394-95
mass-yield curve for fast fission 2385
mass-yield curve for 14 MeV fission 2390

N

Electron affinity 1160
Energy level and Grotrian diagrams 933-42
Photoionization cross section 1951-54, 3016-18
Polarizability 1156
Stopping power for heavy ions 2191-92

N^*

Photoionization cross section 1951, 1953-54

N^+

Energy level and Grotrian diagrams 943-54
Ion-molecule reactions 1396
Mobility in helium 737
On Ag, sputtering coefficients 836-37
On CH_4 , ion-molecule reactions 2732, 2742, 2745

On CH_3NH_2 , ion-molecule reactions 2741, 2744
On CH_3OH , ion-molecule reactions 2741, 2744
On CO , ion-molecule reactions 2732, 2742, 2745
On CO_2 , ion-molecule reactions 2732, 2742, 2745
On COS , ion-molecule reactions 2742, 2745
On Cu , sputtering coefficients 836-37
On Fe , sputtering yield 3176
On H_2 , ion-molecule reactions 2732, 2742, 2745
On H_2O , charge transfer 2779
ion-molecule reactions 2732, 2742, 2745
On H_2CO , ion-molecule reactions 2741, 2744
On H_2S , ion-molecule reactions 2741, 2744
On N_2 , high-energy excitation 1650-51
On NH_3 , ion-molecule reactions 2732, 2741, 2744
On NO , ion-molecule reactions 2732, 2741
On N_2 , ion-molecule reactions 2742, 2745
On O^- , two-body recombination 1356, 1367-68
On O_2 , ion-molecule reactions 2732, 2736, 2742, 2745
On Th , charge transfer 2779
On U , charge transfer 2779
Photoionization cross section 3026

N^{2+}

On He , charge transfer 2779

NCO

Electron affinity 1162

NH

Electron affinity 1161

NH⁺

On CO₂, ion-molecule reactions 2742
On CO, ion-molecule reactions 2742
On COS, ion-molecule reactions 2742
On CH₃NH₂, ion-molecule reactions 2741
On CH₃OH₂, ion-molecule reactions 2741
On CH₄, ion-molecule reactions 2742
On H₂, ion-molecule reactions 2742
On H₂CO, ion-molecule reactions 2741
On H₂O, ion-molecule reactions 2742
On H₂S, ion-molecule reactions 2741
On N₂, ion-molecule reactions 2742
On NH₃, ion-molecule reactions 2741
On NO, ion-molecule reactions 2741
On O₂, ion-molecule reactions 2742

NH₂

Electron affinity 1161

NH₂⁺

On CO₂, ion-molecule reactions 2742
On CO, ion-molecule reactions 2742
On COS, ion-molecule reactions 2742
On CH₃NH₂, ion-molecule reactions 2741
On CH₃OH, ion-molecule reactions 2741

On CH₄, ion-molecule reactions 2742
On H₂, ion-molecule reactions 2742
On H₂CO, ion-molecule reactions 2741
On H₂O, ion-molecule reactions 2742
On H₂S, ion-molecule reactions 2741
On N₂, ion-molecule reactions 2742
On NH₃, ion-molecule reactions 2741
On NO, ion-molecule reactions 2741
On O₂, ion-molecule reactions 2742

NH₂⁻

Photodetachment cross section 2060
Photodetachment cross section (relative) 2059

NH₃

Branching ratio of various final states in photoabsorption 3071
Photoabsorption cross section 2005, 3065-67, 3069-70
Photoionization cross section 3066-70
Secondary electron spectrum from electron impact
ionization 2286, 2373
Secondary electron spectrum from proton impact
ionization 2349
Quantum yield of ionization in photoabsorption 3072

NH₃ (v = 1)

Quenching on NH₃, He, Ar, N₂, O₂ 2770

NH_3^+

On CO_2 , ion-molecule reactions 2742
On CO , ion-molecule reactions 2742
On COS , ion-molecule reactions 2742
On CH_3NH_2 , ion-molecule reactions 2741
On CH_3OH , ion-molecule reactions 2741
On CH_4 , ion-molecule reactions 2742
On H_2 , ion-molecule reactions 2742
On H_2O , ion-molecule reactions 2742
On H_2CO , ion-molecule reactions 2741
On H_2S , ion-molecule reactions 2741
On Mg , charge transfer 2779
On N_2 , ion-molecule reactions 2742
On NH_3 , ion-molecule reactions 2741
On NO , ion-molecule reactions 2741
On O_2 , ion-molecule reactions 2742

N_2

Average energy expended by a charged particle

to create an ion pair 814

Branching ratio of various final states in photoabsorption 3040

Dipole and quadrupole moments 221

Fluorescent efficiencies for excitation 2217

On CO , CO_2 : rates for deactivation of N_2^* 1460

On O_2 : rates for deactivation of N_2^* 1467-8

Photoabsorption cross section 1975-77, 3036

Polarizability 221

Quantum yield of ionization in photoabsorption 3039

Secondary electron spectrum from electron impact

ionization 2268-71, 2373

Secondary electron spectrum from proton impact

ionization 2336-45

N_2^+

Ion-molecule reactions 1397

Mobility in neon 739

On Au, sputtering coefficients 836-37

On CD_4 , charge transfer 2781

On CH_4 , charge transfer 2781

ion-molecule reactions 2732, 2745

On CH_3NH_2 , ion-molecule reactions 2744

On CH_3OH , ion-molecule reactions 2744

On CO, charge transfer 2781

ion-molecule reactions 2732

On CO_2 , charge transfer 2781

ion-molecule reactions 2732, 2745

On COS, ion-molecule reactions 2745

On Cu, ion-molecule reactions 2732

sputtering coefficients 836-37

On H_2 , ion-molecule reactions 2732, 2745

On H_2O , ion-molecule reactions 2732, 2745

On H_2CO , ion-molecule reactions 2744

On H_2S , ion-molecule reactions 2744

On N_2 , charge transfer 2781

ion-molecule reactions 2745

On NH₃, charge transfer 2781
ion-molecule reactions 2732, 2744
On NO, ion-molecule reactions 2732
On NO₂⁻, two-body recombination 1357
On O⁻, two-body recombination 1357
On O₂, charge transfer 2781
ion-molecule reactions 2732
On O₂⁻, ion-molecule reactions 2732
two-body recombination 1357, 1370-71
On Th, charge transfer 2781
On U, charge transfer 2781

N₂O

Branching ratio of various final states in photoabsorption 3056
Dipole and quadrupole moments 221
Electron affinity 1162
Photoabsorption cross section 2006, 3036, 3051-52
Photofragmentation cross section 3052
Photoionization cross section 3051-52
Polarizability 221
Relative photoionization cross section 3097
Quantum Yield of ionization in photoabsorption 3053-54

N₂O (001)

Vibrational quenching on HCl, CH₄, CH₃D, CH₂D₂, CHD₃, CD₄ 2774

N_2O^-

Ion-molecule reactions 1404

$(\text{NO}_2)_2$

Polarizability 221

N_3^+

Ion-molecule reactions 1397

On CH_3NH_2 , **ion-molecule reactions** 2744

On CH_3OH , **ion-molecule reactions** 2744

On CH_4 , **ion-molecule reactions** 2745

On CO , **ion-molecule reactions** 2745

On CO_2 , **ion-molecule reactions** 2745

On COS , **ion-molecule reactions** 2745

On H_2 , **ion-molecule reactions** 2745

On H_2CO , **ion-molecule reactions** 2744

On H_2O , **ion-molecule reactions** 2745

On H_2S , **ion-molecule reactions** 2744

On NH_3 , **charge transfer** 2783

ion-molecule reactions 2744

On N_2 , **ion-molecule reactions** 2745

On O_2 , **ion-molecule reactions** 2745

N_4^+

Ion-molecule reactions 1397-98

On CH_3NH_2 , **ion-molecule reactions** 2744

On CH₃OH, ion-molecule reactions 2744
On CH₄, ion-molecule reactions 2745
On CO, ion-molecule reactions 2745
On CO₂, charge transfer 2783
ion-molecule reactions 2745
On COS, charge transfer 2783
ion-molecule reactions 2745
On H₂, ion-molecule reactions 2745
On H₂O, charge transfer 2783
ion-molecule reactions 2745
On H₂CO, ion-molecule reactions 2744
On H₂S, ion-molecule reactions 2744
On NH₃, charge transfer 2783
ion-molecule reactions 2744
On N₂, ion-molecule reactions 2744
On O₂, charge transfer 2783
ion-molecule reactions 2745

NO

Dipole and quadrupole moments 221
Electron affinity 1162
Photoabsorption cross section 2007, 3036, 3057-58
Polarizability 221
Secondary electron spectra from electron impact
ionization 2286, 2373
Quantum yield of ionization in photoabsorption 3059

NO⁺

On Ar, ion-molecule reactions 2746

On Br ⁻ ,	charge transfer	2786
On CH ₃ NH ₂ ,	ion-molecule reactions	2744
On CH ₃ OH,	ion-molecule reactions	2744
On CH ₄ ,	ion-molecule reactions	2745
On Cl ⁻ ,	charge transfer	2786
On CO,	ion-molecule reactions	2745, 2746
On CO ₂ ,	ion-molecule reactions	2744, 2745, 2746
On COS,	ion-molecule reactions	2745
On H ₂ ,	ion-molecule reactions	2745, 2746
On H ₂ CO,	ion-molecule reactions	2744
On H ₂ O,	ion-molecule reactions	2745
On H ₂ S,	ion-molecule reactions	2744
On I ⁻ ,	charge transfer	2786
On N ₂ ,	ion-molecule reactions	2744, 2745, 2746
On NH ₃ ,	ion-molecule reactions	2744
On NO,	ion-molecule reactions	2746
On NO ₂ ⁻ ,	two-body recombination	1357-58, 1372
On NO ₃ ⁻ ,	two-body recombination	1358
On O ⁻ ,	two-body recombination	1357, 1373-74
On O ₂ ,	ion-molecule reactions	2744, 2745, 2746
On O ₂ ⁻ ,	two-body recombination	1357
	NOT [*]	
On Ar,	ion-molecule reactions	2746
On CO ₂ ,	ion-molecule reactions	2746
On CO,	ion-molecule reactions	2746
On H ₂ ,	ion-molecule reactions	2746
On N ₂ ,	ion-molecule reactions	2746

On NO, ion-molecule reactions 2746

On O₂, ion-molecule reactions 2746

Ion-molecule reactions 1397

Ion-molecule reactions 1403

Dipole and quadrupole moments 221

Electron affinity 1162

Photoabsorption cross section 2008

Photoionization cross section (relative) 2028-30

Polarizability 221

Ion-molecule reactions 1397

Ion-molecule reactions 1404

On O₃, charge transfer 2785

Photodetachment cross section 2065, 3122, 3131

Photodetachment cross section 3122, 3131

Photodetachment cross section 2065

NO_3

Electron affinity 1162

$\text{NO}^+ \cdot \text{O}_2$

Ion-molecule reactions 1397

NO_3^-

Ion-molecule reactions 1404

Photodestruction cross section 3131

$\text{NO}_3^- \cdot \text{H}_2\text{O}$

Photodestruction cross section 3131

Na

Electron affinity 1160

On Br, charge transfer 2786

On Cl, charge transfer 2785

On I, charge transfer 2786

Polarizability 217, 220, 1156

Na^+

Diffusion (longitudinal) 746-47

Mobility in argon 740

Mobility in neon 739

On Ag, reflection coefficient 3203

On Al, reflection coefficient 3203

On Au, reflection coefficient 3203

On Br, charge transfer 2786

On Br⁻, charge transfer 2786
On Cl⁻, charge transfer 2785, 2786
On Cu, reflection coefficient 3203
On H₂, high-energy excitation 1648
On I, charge transfer 2786
On I⁻, charge transfer 2786
On O⁻, two-body recombination 1356, 1369
Photoionization cross section 3026, 3028

Na₂

Emission data 2667-68
Potential energy curves 2664-65
Transition operators 2666

Nb

Polarizability 1157
Self-sputtering coefficient 843

Nd

Polarizability 1157

Ne

Average energy expended by a charged particle
to create an ion pair 814
Continuous free - free absorption coefficients 692
Dynamic polarizability 218
Electron affinity 214, 1160
Energy level and Grotrian diagrams 991-1001
Energy parameters 152

Free - free absorption cross section	2078
General wavelegnths for observed emission continua	711
Interaction parameters	1187
Ionizations per volt per mm Hg at 0 °C	732
Lifetimes	198-200
Low-energy collisions	233-35, 247, 250, 304-5, 314, 316
Mobilities of ions in Ne	739
Multiphoton ionization	700
On Ar, high-energy production of free electrons	1621
high-energy production of slow positive ions	1623
On He, high-energy production of free electrons	1621
high-energy production of slow positive ions	1623
On Kr, high-energy production of free electrons	1621
high-energy production of slow positive ions	1623
On Ne, high-energy production of free electrons	1621
high-energy production of slow positive ions	1623
On Xe, high-energy production of free electrons	1621-22
high-energy production of slow positive ions	1623
Photoionization cross section	642-44, 1926, 3026
Polarizabilities $\alpha_{zz}(m_J=1)$ and $\alpha_{zz}(m_J=2)$ of the 3P_2 atom	216
Polarizabilities of $^1,^3P_J$ states	173
Polarizability	216-17, 1156
Polarizability of ground state	216
Refractive indices	696
Secondary electron spectra from electron impact ionization	2253-54

Secondary electron spectra from proton impact

 ionization 2310-12, 2348

Secondary electron spectra from Ne+ impact

 ionization 2364-66

Stopping power for heavy ions 2173-74

Transition probabilities 201

Van der Waals C₆ coefficients 173

V₀ in the equation $i = i_0 e^{n(V-V_0)}$ 732

 Ne (1s₃)

Diffusion data in neon 753

Three-body destruction rate in neon 753

 Ne (1s₅)

Diffusion data in neon 753

Three-body destruction rate 753

 Ne^{*}

Photoionization cross sections 658, 662, 1927, 1931-35

 Ne⁺

Drift velocity in Ne 742

Energy level and Grotrian diagrams 1002-8

Energy parameters 152

Interaction parameters 1187

Ion-molecule reactions 1398, 1523

Low-energy collisions 235, 245, 294-95, 315, 319-20, 1513, 1523

Mobility in helium 737-38

Mobility in neon 739

On Ag, sputtering yield 3183

On Al, sputtering yield 3172

On Ar, high-energy production of free electrons 1621
high-energy production of slow positive ions 1623

On Au, sputtering yield 3186

On Ba, charge transfer 2780

On Be, sputtering yield 3170

On Br⁻, three-body recombination 2677-2681

On Ca, charge transfer 2780

On Cl⁻, three-body recombination 2677-2681

On Cr, sputtering yield 3175

On Cu, sputtering yield 3179

On F⁻, three-body recombination 1360, 1375-76, 2677-2681
two-body recombination 1356

On Fe, sputtering yield 3176

On He, high-energy production of free electrons 1621
high-energy production of slow positive ions 1623

On I⁻, three-body recombination 2677-2681

On Kr, high-energy production of free electrons 1621-22
high-energy production of slow positive ions 1623

On Mo, electron yields 864, 866
sputtering yield 3181

On Ne, charge transfer 2780
high-energy production of free electrons 1621-22
high-energy production of slow positive ions 1623

ionization, secondary electron spectra 2364-66
On Ni, sputtering yield 3178
On Pd, sputtering yield 3182
On Sr, charge transfer 2780
On Ta, sputtering yield 3184
On V, sputtering yield 3174
On W, electron yields 364-5
scattering 886
sputtering yield 3185
On Xe, high-energy production of free electrons 1621-22
high-energy production of slow positive ions 1623
Polarizability 220
Spin-orbit parameters 73

Ne^{2+}

Ion-molecule reactions 1508, 1512, 1522, 1524
Low-energy collisions 235, 296-99, 308-9, 321-22
On Ar, charge transfer 2780
On He, charge transfer 2780
On Kr, charge transfer 2780
high-energy production of free electrons 1622
On Mo, electron yields 864
On Ne, charge transfer 2780
high-energy production of free electrons 1622
On W, electron yields 865-66
On Xe, charge transfer 2780
high-energy production of free electrons 1622
Polarizability 220

Ne^{3+}

On Kr, high-energy production of free electrons 1622
On Ne, high-energy production of free electrons 1622
On Xe, high-energy production of free electrons 1622

Ne^{4+}

On Xe, high-energy production of free electrons 1622

NeAr

Interaction energy 1182
Potential energy curves 187, 1182

NeAr^+

Low-energy collisions 243

NeBr

Laser and fluorescent wavelengths 12

NeCl

Laser and fluorescent wavelengths 12

NeF

Crossing points and energies of the III(1/2) - II(3/2)

curve crossing 53
Dipole moments of the covalent states 78
Dipole moments of the ionic states 80
Einstein coefficients 107, 109

Emission energies and wavelengths 107, 109
Fluorescence 1217
Laser and fluorescent wavelengths 12
Lifetimes 107, 109
Potential energy curves for the covalent states 39, 52
Potential energy curves for the covalent and
ionic states 18, 19, 1215
Separated atom limits for the ionic states 54
Spectroscopic constants for the ionic states 67-68
Total energies of the covalent and ionic states 44-45
Transition moments 1216
Transition moments for the ionic-covalent
transitions 82, 84, 107, 109
Vibrational levels 1216
Vibrational wavefunctions 1216

NeI

Laser and fluorescent wavelengths 12

NeKr

Interaction energy 1182
Potential energy curves 188, 1182

NeKr⁺

Low-energy collisions 243
On Br⁻, three-body recombination 2720-2721
On Cl⁻, three-body recombination 2720-2721

On F⁻, three-body recombination 2720-2721

On I⁻, three-body recombination 2720-2721

Ne_2

Ground state energies 169

Interaction energy 1180

Potential energy curves 187, 1180

Ne_2^*

Dissociation energy 172

Equilibrium position 172

Height of barrier, V_{\max} 172

Photoabsorption cross sections 713

Position of potential maximum, R_{\max} 172

Potential energies 170-71

Potential energy curves 165-68

$\text{Ne}_2 \text{ O}_u^+ ({}^3\text{P}_1)$

Radiative levels 177

Vibrational levels 177

$\text{Ne}_2 ({}^1\text{S}_u^+)$

Dipole transition matrix elements 178

Radiative lifetimes 175

Vibrational levels 175

$\text{Ne}_2 ({}^3\text{S}_u^+)$

Vibrational levels 174

$\text{Ne}_2 \text{ u}({}^3\text{P}_2)$

Radiative lifetimes 176

Vibrational levels 176

$\text{Ne}_2 \text{ w}/\Omega = 0$

Potential curves of excited states 166

$\text{Ne}_2 \text{ w}/\Omega = 1$

Potential curves of excited states 167

$\text{Ne}_2 \text{ w}/\Omega = 2$

Potential curves of excited states 168

Ne_2^+

Absorption data 1206-7, 2582, 2589, 2590, 2594, 2598, 2602, 2609,
2616, 2621, 2631

Absorption spectra for the I(1/2)u + II(1/2)g

transition 150, 1207

Dissociation energy 172

Energy level difference parameters 154

Energy parameters 152

Equilibrium position 172

Ground state potential curve characteristics 121

Ion-molecule reactions 1398

Low-energy collisions 242, 1512

Mobility in helium 737

Mobility in neon 738-9

On F⁻, three-body recombination 321-22, 1360, 1377-78

Photodissociation cross section 3111

Potential curves 125-26, 1189, 1193-94

Potential curves for the ground state 121

Potential energies 127-28

Spectroscopic constants 1201, 1205

Theoretical photoabsorption cross sections 712

Transition moments 2578, 2591-93

Radiative lifetimes 177

Vibrational levels 177

Vibrational levels 129

Crossing points 1296

Energies of states 1285

Potential energy curves 1287

Interatomic potential 188

On Br⁻, three-body recombination 2712-13

On Cl⁻, three-body recombination 2712-13

On F⁻, three-body recombination 2712-13
On I⁻, three-body recombination 2712-13

Ne/Xe/NF₃ Mixtures (e-beam pumped)

Energy flow pathways 1492

Reaction rates 1493-4

Ni

Photoelectric yield 890

Polarizability 1156

Secondary electron emission coefficient by

impact of Ar⁺ 3198

Self-sputtering coefficients 838-39

Ni⁺

On Ni, sputtering yield 3178

Photoionization cross section 3027

No

Polarizability 1157

Np

Polarizability 1157

O

Electron affinity 1160

Energy level and Grotrian diagrams 955-62

On Ag, sputtering coefficient 842

On Au, sputtering coefficient 842

Photoionization cross section 1955-58, 3019-22

Polarizability 1156

Stopping power for heavy ions 2193-94

$O(^1D)$

Quenching on N_2O , H_2 , HCl , NH_3 and CH_4 2757

$O(^1D_2)$

On N_2O , quenching 2758

O^+

Energy level and Grotrian diagrams 963-69

Ion-molecule reactions 1398-99

On Ag, sputtering coefficient 842

On Ar, ion-molecule reactions 2746

On CO, ion-molecule reactions 2745, 2746

On CO_2 , ion-molecule reactions 2745, 2746

On COH_2N_2 , ion-molecule reactions 2745

On COS, ion-molecule reactions 2745

On CH_3OH , ion-molecule reactions 2744

On CH_4 , ion-molecule reactions 2745

On Cu, sputtering coefficient 842

On H_2 , ion-molecule reactions 2745, 2746

On H_2CO , ion-molecule reactions 2744

On H_2O , charge transfer 2779

ion-molecule reactions 2745

On H_2S , ion-molecule reactions 2744

On Mo, scattering from surface 882-83

secondary electron emission 862-63

On N₂, ion-molecule reactions 2735, 2745, 2746
On NH₃, charge transfer 2779
ion-molecule reactions 2744
On NO, ion-molecule reactions 2746
On O⁻, two-body recombination 1356, 1367-68
On O₂, charge transfer 2779
ion-molecule reactions 2745, 2746
On Ta, sputtering coefficient 842
On Th, charge transfer 2779
On U, charge transfer 2779
On W, secondary electron emission 860-61
Photoionization cross section 3026

Polarizability 220

0⁺*

On Ar, ion-molecule reactions 2746
On CO, ion-molecule reactions 2746
On CO₂, ion-molecule reactions 2746
On H₂, ion-molecule reactions 2746
On N₂, ion-molecule reactions 2746
On NO, ion-molecule reactions 2746
On O₂, ion-molecule reactions 2746

0⁻

Beam attenuation in an electric field 767

Ion-molecule reactions 1404-5

Longitudinal diffusion 747

On Mo, secondary electron emission 862-63

On N₂, charge transfer 2784

On O₃, charge transfer 2784

Photodetachment cross section 2049, 2056, 3119

Polarizability 220

O⁻•H₂O

Ion-molecule reactions 1405

O-CS₂ Chemical Laser System

24 low energy reactions involving various

combinations of O, C, and S atoms 1446

OD

Electron affinity 1162

OD⁻

Photodetachment cross section 2058, 3120

OH

Electron affinity 1162

OH⁻

On O₃, charge transfer 2784

Photodetachment cross section 2057-58, 3120

O₂

Average energy expended by a charged particle to create

an ion pair 814

3362

Dipole and quadrupole moments 221
Electron affinity 1162
Equilibrium values 1348
Molecular constants 1347
On Ag, sputtering coefficient 842
On Au, sputtering coefficient 842
Photoabsorption cross section 1978-85, 3036
Polarizability 221
Potential energy curves 1339-46
Quantum yield of ionization in photoabsorption 3037
Secondary electron spectra for electron impact ionization 2265-67
Secondary electron spectra for proton impact ionization 2346
Separated-atom energy levels 1348

O_2^*

Rates for deactivation 1465-66

O_2^+

Diffusion (longitudinal) in O_2 748
Diffusion (transverse) in O_2 748
Ion-molecule reactions 1399-1440
On Ar, ion-molecule reactions 2746
On CH_3NH_2 , ion-molecule reactions 2744
On CH_3OH , ion-molecule reactions 2744
On CH_4 , ion-molecule reactions 2745
On CO, ion-molecule reactions 2745, 2746
On CO_2 , ion-molecule reactions 2745, 2746

On COS, charge transfer 2781
ion-molecule reactions 2745

On H₂, ion-molecule reactions 2745, 2746

On H₂CO, ion-molecule reactions 2744

On H₂O, ion-molecule reactions 2745

On H₂S, charge transfer 2781
ion-molecule reactions 2744

On He, charge transfer 2779

On Mo, secondary electron emission 862-63

On N₂, ion-molecule reactions 2745, 2746

On NH₃, charge transfer 2781
ion-molecule reactions 2744

On NO, ion-molecule reactions 2746

On NO₂⁻, two-body recombination 1358, 1372

On NO₃⁻, two-body recombination 1358

On O⁻, two-body recombination 1358, 1373-74

On O₂, charge transfer 2781
ion-molecule reactions 2745, 2746

On O₂⁻, two-body recombination 1358, 1370-71

On W, secondary electron emission 860-61

Photodissociation cross section (relative) 3103

Potential energy curves 1339

O₂⁺*

On Ar, ion-molecule reactions 2746

On CO, ion-molecule reactions 2746

On CO₂, ion-molecule reactions 2746

On H₂, ion-molecule reactions 2746

On N₂, ion-molecule reactions 2746

On NO, ion-molecule reactions 2746

On O₂, ion-molecule reactions 2746

On CH₄, ion-molecule reactions 2749

Ion-molecule reactions 1405-6

On Mo, secondary electron emission 862-63

Photodestruction cross section 2072

Photodetachment cross section 2052-54, 3121

Potential energy curves 1339

Ion-molecule reactions 1406

Photodestruction cross section 3129

Ion-molecule reactions 1406

Photodestruction cross section 3128-31

Photodestruction cross section 3131

O_3

Electron affinity 1162
On Ag, sputtering coefficient 842
Photoabsorption cross section 1993
Photodissociation cross section 3038

O_3^*

Photodissociation cross section 3038

$O_3(001)$

On HCl, vibration quenching 2773

O_3^-

Ion-molecule reactions 1406
On NO₂, charge transfer 2785
Photodestruction cross section 2074-75, 3125-26
Photodetachment cross section 2056
Photodissociation cross section 2068

$O_3^- \cdot H_2O$

Ion-molecule reactions 1406
Photodestruction cross section 3130

$O_3^- \cdot 2H_2O$

Ion-molecule reactions 1406

O_4

Electron affinity 1162

O_4^+

Ion-molecule reactions 1400
On O_2^- , three-body recombination 1360, 1379
On O_4^- , three-body recombination 1360, 1379

O_4^-

Ion-molecule reactions 1406-7
Photodestruction cross section 2076, 3127

O_5^+

Ion-molecule reactions 1400

O_8

Polarizability 1157
Photons

See target species

P

Electron affinity 1160

Polarizability 1156

P^+

Photoionization cross section 3026

P⁻

Beam attenuation in an electric field 767

PH

Electron affinity 1161

PH2

Electron affinity 1161

PO

Electron affinity 1161

Pa

Polarizability 1157

Pb

Polarizability 1157

Pb⁺

On Cu, sputtering yield 3180

Pd

Photoelectric yields 883

Polarizability 1157

Pm

Polarizability 1157

Po

Polarizability 1157

Pr

Polarizability 1157

Pt

Polarizability 1157

Spectral distribution curves 889, 892

Pu

Polarizability 1157

Ra

Polarizability 1157

Rare Gas Ions

Recombination energies 622

Rb

Electron affinity 1160

Polarizability 220, 1156

Rb⁺

Diffusion (longitudinal) 746

Mobility in argon 740

Re

Polarizability 1157

Rh

Polarizability 1157

R_n

Polarizability 1157

Rui

Polarizability 1157

RI Photodissociation Laser

22 low energy reactions involving combinations

of I, rare gas, O atoms 1452

S

Electron affinity 1160

Energy level and Grotrian diagrams 1019-27

Polarizability 1156

Stopping power for heavy ions 2195

S(¹S)

Quenching on He, Ar, N₂, H₂, Kr, Xe 2759

S⁺

Energy level and Grotrian diagrams 1028-31

Ion-molecule reactions 1400

On CO₂, ion-molecule reactions 2733

On CH₄, ion-molecule reactions 2733

On H₂, ion-molecule reactions 2733

On H₂O, ion-molecule reactions 2733

On NO, ion-molecule reactions 2733

On NH₃, ion-molecule reactions 2733

On O₂, ion-molecule reactions 2733

Photoionization cross section 3026

S⁻

Ion-molecule reactions 1407

On O₃, charge transfer 2785

S_2 ($v' = 4$)

Vibrational and rotational quenching by impact on He, Ne, Ar,

Kr, Xe, H₂, N₂ 2769

SF₃

Electron affinity 1161

SF₄

Electron affinity 1161

SF₅

Electron affinity 1161

SF₆

Electron affinity 1161

Photoabsorption cross section 3064

Photoionization cross section (relative) 3099

Polarizability 221

SH

Electron affinity 1162

SH⁻

On O₃, charge transfer 2785

SO

Electron affinity 1162

SO⁻

On SO₂, charge transfer 2785

SO_2

Dipole and quadrupole moments 221

Electron affinity 1162

Polarizability 221

S_2

Electron affinity 1162

Sb

Polarizability 1157

Sb^+

On Ar, high-energy electron capture 1629

high-energy electron loss 1629

On N_2 , high-energy electron capture 1629

high-energy electron loss 1629

On O_2 , high-energy electron capture 1629

high-energy electron loss 1629

Sc

Polarizability 1156

Sc^+

Photoionization cross section 3027

Se

Electron affinity 1160

Equilibrium fractions in Ar, Kr, O₂, and Xe 2229

Polarizability 1156

SeF₆

Electron affinity 1161

Si

Polarizability 1156

Self-sputtering coefficients 840-41

Si⁺

Photoionization cross section 3026

Si⁻

Beam attenuation in an electric field 767

SiF (A 2 Σ)

Quenching on He 2770

SiH

Electron affinity 1162

SiH₂

Electron affinity 1162

Sm

Polarizability 1157

3374

Sn

Polarizability 1157

Sr

On Ar, high-energy electron capture 1627

high-energy electron loss 1627

On N₂, high-energy electron capture 1627

high-energy electron loss 1627

On O₂, high-energy electron capture 1627

high-energy electron loss 1627

Polarizability 1156

Sr(¹P₁)

Quenching on He, Ne, Ar, Kr and Xe 2759

Sr⁺

On Ar, high-energy electron capture 1627

high-energy electron loss 1627

On N₂, high-energy electron capture 1627

high-energy electron loss 1627

On O₂, high-energy electron capture 1627

high-energy electron loss 1627

Ta

Photoelectric yields 888

Polarizability 1157

Secondary electron emission coefficient by impact

of Ar⁺ 3198

Self-sputtering coefficient 843

Tb

Polarizability 1157

Tc

Polarizability 1157

Te

Electron affinity 1160

Polarizability 1157

Spectral distribution curve 892

TeF₆

Electron affinity 1161

Th

Polarizability 1157

Ti

Polarizability 1156

Ti⁺

Photoionization cross section 3027

Tl

Excitation energies 1304

Ionization potential 1304

3376

Polarizability 1157

TlKr

Absorption data 1315

Emission data 1315

Potential energy curves 1308

Transition moments 1312

TlKr⁺

Potential energy curves 1308

TRIMETYLBENEZE

Photodissociation cross section 3094

Tm

Polarizability 1157

U

Electron affinity 1160

On Ar, N₂, Ne, O₂ high-energy electron loss 1635

Polarizability 1157

Stopping power for heavy ions 2203-4

U⁺

On Ar, high-energy electron capture 1635

high-energy electron loss 1635

On N₂, high-energy electron capture 1635

high-energy electron loss 1635

On Ne, high-energy electron capture 1635

high-energy electron loss 1635

On O₂, high-energy electron capture 1635

high-energy electron loss 1635

UF₅

Electron affinity 1161

UF₆

Electron affinity 1161

Photoabsorption cross section 2009

V

Polarizability 1156

Self-sputtering coefficients 843

V⁺

Photoionization cross section 3027

W

Photoelectric yields 888, 891

Polarizability 1157

Secondary electron emission coefficient by impact

of various ions 3197

Self-sputtering coefficient 843

3378

Xe

Average energy expended by a charged particle
to create an ion pair 814

Continuous free - free absorption coefficients 693

Critical electric field strength, F_C 760

Double photoionization cross section ratio 3011

Electron affinity 214, 1160

Free - free absorption cross section 2078

General wavelength ranges for observed emission continua 711

Interaction parameters 1187

Ionizations per volt per mm Hg at 0° C 732

Lifetimes 205-6, 211

Low-energy collisions 240-41, 249-50, 1511, 1513

Mobilities of ions in Xe 739

Multiphoton ionization 700

On Ar, high-energy electron capture 1630
high-energy electron loss 1630

On N₂, high-energy electron capture 1630
high-energy electron loss 1630

On Ne, high-energy electron capture 1630
high-energy production of free electrons 1622
high-energy electron loss 1630

On O₂, high-energy electron capture 1630
high-energy electron loss 1630

Oscillator strengths 211

Photoionization cross section 642-44, 1926

Polarizabilities $\alpha_{zz}(m_j=1)$ and $\alpha_{zz}(m_j=2)$

of the 3P_2 atom 216

Polarizability of ground state 216, 1157

Refractive indices 696

Stopping power for heavy ions 2179-80

Total absorption coefficient 650-51

V_0 in the equation $i = i_0 e^{n(V-V_0)}$ 732

Xe (Metastable)

Autoionization structure in the photoionization cross section 665-66

Xe*

Low-energy collisions 241, 246, 254-5, 1511, 1513-18

Photoionization cross section 658, 662, 1930-34

Xe (28f)

Quenching by E field 759

Xe (3P_2)

Diffusion and reactions in argon 2119

Diffusion and reactions in xenon 2119

Diffusion coefficient in xenon 753

Quenching on various gases (40 target species) 2754-55

Xe**

Low-energy collisions 241, 246

Xe⁺

Excitation cross sections 207

3380

Interaction parameters 1187

Low-energy collisions 241, 246, 255, 302-3, 319-20

Mobility in helium 737

Mobility in xenon 742

On Ag, sputtering yield 3183

On Al, sputtering yield 3172

On Ar, high-energy electron capture 1630
high-energy electron loss 1630

On Au, sputtering yield 3186

On Be, sputtering yield 3170

On Br⁻, three-body recombination 2692-2696, 2707-2711

On C, sputtering yield 3171

On Cl⁻, three-body recombination 2692-2696, 2725, 2707-2711

On Cs, sputtering yield 3175

On Cu, sputtering yield 3179

On F⁻, three-body recombination 1362, 1375-76, 2692-2696, 2707-2711
two-body recombination 1357

On Fe, sputtering yield 3177

On He, high-energy excitation 1647

On I⁻, three-body recombination 2692-2696, 2707-2711

On Kr, high-energy production of free electrons 1622

On Mo, electron yields 864, 866
sputtering yield 3181

On Ne, high-energy electron capture 1630
high-energy production of free electrons 1622
high-energy electron loss 1630

On N₂, high-energy electron capture 1630

high-energy electron loss 1630
high-energy excitation 1650-51
On Ni, sputtering yield 3178
On O₂, high-energy electron capture 1630
high-energy electron loss 1630
On Pd, sputtering yield 3182
On Ta, sputtering yield 3184
On Ti, sputtering yield 3173
On V, sputtering yield 3174
On W, electron yields 864-66
sputtering yield 3185
On Xe, charge transfer 2784
high-energy production of free electrons 1622
Secondary electron spectrum from electron impact
ionization 2260-61
Secondary electron spectrum from proton impact
ionization 2319-22, 2374
Spin-orbit parameters 73
Transition probabilities 207

Xe⁺(2P_{1/2})

Mobility in xenon 739, 742

Xe⁺(2P_{3/2})

Mobility in xenon 739, 742

Xe²⁺

Ion-molecule reactions 1513
Low-energy collisions 321-22, 1511
On Ar, charge transfer 2784
On CO₂, charge transfer 2784
On Kr, charge transfer 2784
high-energy production of free electrons 1622
On Mo, electron yields 864
On N₂, charge transfer 2784
On Ne, charge transfer 2784
high-energy production of free electrons 1622
On O₂, charge transfer 2784
On W, electron yields 865
On Xe, charge transfer 2784
high-energy production of free electrons 1622

Xe³⁺

On Kr, high-energy production of free electrons 1622
On Ne, high-energy production of free electrons 1622
On Xe, high-energy production of free electrons 1622

Xe⁴⁺

On Kr, high-energy production of free electrons 1622
On Ne, high-energy production of free electrons 1622

XeAr

Photoionization efficiency curve 676
Photoionization cross section (relative) 2041

XeBr

Coefficients (C_{π}) of the $1^2\pi$ state in the covalent I(1/2) state 61
Coefficients (C_{π}) of the $2^2\pi$ state in the ionic III(1/2) state 62
Dipole moments for the covalent states 92
Dipole moments for the ionic states 93
Dipole moment for the $1^2\Sigma^+$ state 91
Dipole moment for the $1^2\pi$ state 91
Einstein coefficients 108, 114
Electronic states 28-29
Emission energies and wavelengths 108, 114
Laser and fluorescent wavelengths 12
Lifetimes 108, 114
Spectroscopic constants for the ionic states 65-66
Spectroscopic constants of the III(1/2) state 72
Spin-orbit coupling parameters 73
Total energies as a function of R for the covalent
and ionic states 57
Total energies as a function of R for the electronic states 58
Transition moments for the ionic-covalent
transitions 94, 103, 108, 114
Transition moments ($2^2\pi - 1^2\pi$) 96
Transition moments ($2^2\Sigma^+ - 1^2\Sigma^+$) 95

XeCl

Absorption data 2631, 2635

Coefficients (C_{π}) of the $1^2\pi$ state in the covalent I(1/2) state 61

Coefficients (C_{π}) of the $2^2\pi$ state in the ionic III(1/2) state 62

Dipole moments for the covalent states 92

Dipole moments for the ionic states 93

Dipole moment for the $1^2\pi$ state 91

Dipole moment for the $1^2\zeta^+$ state 91

Einstein coefficients 108, 113

Electronic states 26-27

Emission energies and wavelengths 108, 113

Frank - Condon factors 2636

Laser and fluorescent wavelengths 12

Lifetimes 108, 113

Potential energy curves 2634

Spectroscopic constants for the ionic states 65, 66

Spectroscopic constants for the III(1/2) states 72

Spin-orbit coupling parameters 73

Total energies as a function of R for the electronic states 55-56

Transition moments 113

Transition moments for the ionic-covalent transitions 94, 102, 108

Transition moments ($2^2\zeta^+ - 1^2\zeta^+$) 95

Transition moments ($2^2\pi - 1^2\pi$) 96

XeF

Absorption data 2631

Coefficient (C_{π}) of the $1^2\pi$ state in the covalent I(1/2) state 61

Coefficient (C_{π}) of the $2^2\pi$ state in the ionic III(1/2) state 62

Crossing points and energies of the III(1/2) - II(3/2)

 curve crossings 53

 Dipole moments of the covalent states 78-79, 92

 Dipole moments of the ionic states 80-81, 93

 Dipole moment for the $1^2\pi$ state 91

 Dipole moment for the $1^2\Sigma^+$ state 91

 Einstein coefficients 107-8, 112

 Emission energies and wavelengths 107-8, 112

 Franck-Condon factors 1241-42

 Laser and fluorescent wavelengths 12

 Lifetimes 107-8, 112

 Low-energy collisions 1519-20

 Potential energy curves for covalent states 39, 52

 Potential energy curves for the covalent and ionic states 24-25, 1244

 R centroids 1243

 Rotational level diagram 1239

 Separated atom limits for the ionic states 54

 Spectroscopic constants 1245-46

 Spectroscopic constants for the ionic states 65-67, 71

 Spectroscopic constants of the III(1/2) state 72

 Spin-orbit coupling parameters 73

 Total energies of the covalent and ionic states 50-51

 Transition moments 112

 Transitional moments for the ionic-covalent
 transitions 82-83, 87, 90, 94, 107-8

 Vibrational levels 1244

 Wavenumbers 1240

Transition moments ($2^2\pi - 1^2\pi$) 96

Transition moments ($2^2\Gamma^+ - 1^2\Gamma^+$) 95

XeF*

Dominant quenching processes 1485

Low-energy collisions 256-57

XeF(B)

Quenching on He, Ne, Ar, Kr, Xe, F₂, NF₃, XeF₂, N₂ 2767

XeF(c)

Quenching on He, Ne, Ar, Kr, Xe, F₂, NF₃, XeF₂, N₂ 2767

XeF₂

Photoionization cross section (relative) 2041

Photoionization efficiency curves of mass-identified ions 678

XeF₄

Photoionization cross section (relative) 2041

Photoionization efficiency curves of mass-identified ions 679

XeF₆

Photoionization cross section (relative) 2041

Photoionization efficiency curves of mass-identified ions 680

Xenon Halides

Transition moments (III 1/2 - I 1/2) 99

Transition moments (III 1/2 - II 1/2) 100

Transition moments (IV 1/2 - I 1/2)	98
Transition moments (IV 1/2 - II 1/2)	101
Schematic representation of the strongest emission bands	97

Xe-Hg System

Energy flow diagram	1490
Reaction rates	1491

XeI

Coefficients (C_{π}) of the $1^2\pi$ state in the covalent I(1/2) states	61
Coefficients (C_{π}) of the $2^2\pi$ state in the ionic III(1/2) states	62
Dipole moments for the covalent states	92
Dipole moments for the ionic states	93
Dipole moment for the $1^2\pi$ state	91
Dipole moment for the $1^2\pi^+$ state	91
Einstein coefficients	108, 115
Electronic states	30-31
Emission energies and wavelengths	108, 115
Laser and fluorescent wavelengths	12
Lifetimes	108, 115
Spectroscopic constants for the ionic states	65-66
Spectroscopic constants for the III(1/2) states	72
Spin-orbit coupling parameters	73
Total energies as a function of R for the covalent and ionic states	59
Total energies as a function of R for the electronic states	60

Transition moments for the ionic-covalent

transitions 94, 104, 108, 115

Transition moments ($2^2\pi - 1^2\pi$) 96

Transition moments ($2^2\Sigma^+ - 1^2\Sigma^+$) 95

XeKr

On Br⁻, three-body recombination 2722-2723

On Cl⁻, three-body recombination 2722-2723

On F⁻, three-body recombination 2722-2723

On I⁻, three-body recombination 2722-2723

Photoionization cross section (relative) 2041

Photoionization efficiency curve 677

XeO

Crossing points 1296

Dipole moments 1299

Energies of states 1290

Potential energy curves 1292

Radiative lifetimes 1297

Spectroscopic constants 1293

Transition moments 1296, 1298

Vibrational levels 1294

Xe₂

Energies of states 1176

Fluorescence lifetimes 212

Interaction energies 179

Low-energy collisions 1512
Photoionization cross section (relative) 2041
Photoionization efficiency curve 674
Potential energy curves 186, 188, 189, 1170, 1177

Xe_2^*

Energies of states 1176
Low-energy collisions 242-43
Photoabsorption cross sections 713
Potential energy curves 1174-75, 1177
Spectroscopic constants 1171
Transition moments 1179
Vertical transition energies 1178

$\text{Xe}_2 ({}^1\Gamma_g^+)$

Interaction energies 182

Xe_2^+

Absorption data 147, 1206-7, 2587-88, 2590, 2957, 2601, 2605, 2608, 2612,
2615, 2619, 2624, 2631
Absorption spectra for the I(1/2)u + II(1/2)g
transition 150, 1207
Appearance potential 2990
Energies of states 1176
Mobility in xenon 739
On F-, three-body recombination 1362, 1377-78
two-body recombination 1359

Photoabsorption cross sections 712
Photodissociation cross section 686-87, 3111-12, 3115
Potential energy curves 143-44, 148, 1172-73, 1177, 1192, 1199, 1200
Spectroscopic constants 1171, 1204, 1205
Spectroscopic data 147
Three-body ion - ion recombination 321-22
Total energies 145-46
Transition moments 2581, 2591-93
Vertical transition energies 1178

Xe_2^+ I(1/2)u

Dissociation energy 149

Xenon kinetic model

Rate coefficients 1489

Y

Polarizability 1156

Yb

Polarizability 1157

Zn

Energies of states 2655

Photoelectric yields 889

Polarizability 1156

Self-sputtering coefficients 840-41

Zn^+

Photoionization cross section 3027

Zn_2

Potential energy curves 2649

Spectroscopic constants 2656

Zr

Polarizability 1156

Secondary electron emission coefficient by impact

of Ar^+ 3198

Self-sputtering coefficients 843

3392

DISTRIBUTION

	No. of Copies
School of Physics Georgia Institute of Technology ATTN: Dr. E. W. McDaniel K. J. McCann Dr. F. L. Eisele E. W. Thomas Dr. W. M. Pope Dr. M. R. Flannery Atlanta, Georgia 30332	50 10 10 10 10 10
Joint Institute for Laboratory Astrophysics University of Colorado ATTN: J. W. Gallagher J. R. Rumble E. C. Beaty Boulder, Colorado 80302	10 10 10
Eckerd College ATTN: Dr. H. W. Ellis St. Petersburg, Florida 33733	10
Physics Department Georgia State University ATTN: S. T. Manson Atlanta, Georgia 30303	10
Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	12
Director Ballistic Missile Defense Advanced Technology Center ATTN: ATC, Mr. J. D. Carlson ATC-0, Mr. W. Davies Mr. G. Sanmann Mr. J. Hagefstration -T, Dr. E. Wilkinson -R, Mr. Don Schenk Huntsville, Alabama 35807	1 1 1 1 1 1

DISTRIBUTION (Continued)

	<u>Copies</u>
Defense Advanced Research Project ATTN: Director, Laser Division 1400 Wilson Boulevard Arlington, Virginia 22209	1
Lawrence Livermore Laboratory ATTN: Dr. Joe Fleck Dr. John Emmet P. O. Box 808 Livermore, California 94550	1 1
Los Alamos Scientific Laboratory ATTN: Dr. Keith Boyer (MS 550) P. O. Box 1663 Los Alamos, New Mexico 87544	1
Central Intelligence Agency ATTN: Mr. Julian C. Nall (OSI/PSTD) Washington, DC 20505	1
US Army Research Office ATTN: Dr. Robert Lontz P. O. Box 12211 Research Triangle Park, North Carolina 27709	2
DRSMI-LP, Mr. Voight	1
DRSMI-R, Dr. McCorkle	1
-RH, COL W. R. DeLeuil	1
-RHS, Dr. Honeycutt	1
Mr. Cason	1
-RHB, Dr. Roberts (Additional Distribution)	485
-RA	1
-RPR	3
-RPT (Record Set)	1

PATE
LME