E3DSB miniprojekt 1 - Tidsdomæneanalyse

Janus Bo Andersen $^{\rm 1}$

13. september 2019

 $^{^1\}mathrm{ja}67494@\mathrm{post.au.dk}$

Indhold

1	Indledning	1
2	Analyser	1
	2.1 Afspilning	1
	2.2 Bestemmelse af antal samples	2
	2.3 Plot af signal	2
	2.4 Min, max, RMS og energi	2
	2.5 Venstre vs. højre kanal (for s_1)	2
	2.6 Nedsampling af signal (for s_1)	2
	2.7 Fade-out med envelopes (for s_2)	2
3	Konklusion	2

1. Indledning

Dette første miniprojekt i E3DSB behandler tre lydsignaler med analyser i tidsdomænet. Opgaven er løst individuelt. Dette dokument er genereret af Matlab med en XSL-template. Matlab-kode og template findes på https://github.com/janusboandersen/E3DSB. Følgende lydklip benyttes

Signal	Skæring	Genre	Samplingsfrekv.
s_1	Spit Out the Bone	Thrash-metal	44.1 kHz
s_2	The Wayfaring Stranger	Bluegrass	96 kHz
s_3	Svanesøen	Klassisk	44.1 kHz

Tabel 1.1: 3 signaler behandlet i analysen

2. Analyser

Før analyser ryddes der op i Workspace.

```
clc; clear all; close all;
```

2.1 Afspilning

Filen åbnes med load. Signaler kan afspilles med soundsc(signal, fs). Samplingsfrekvensen f_s sættes efter værdi i tabel 1.1.

```
load('miniprojekt1_lydklip.mat')
soundsc(s1, fs_s1)
clear('sound');
```

- 2.2 Bestemmelse af antal samples
- 2.3 Plot af signal
- 2.4 Min, max, RMS og energi
- 2.5 Venstre vs. højre kanal (for s_1)
- 2.6 Nedsampling af signal (for s_1)
- 2.7 Fade-out med envelopes (for s_2)

3. Konklusion