

Practice: Conducting a Capability Analysis with Nonnormal Data

Open the File PartFlatness.jmp.

In this scenario, you are studying the flatness of metal parts. Flatness is measured as the deviation from a horizontal plane, measured in microns. The upper specification for the process is 30 microns. You have measured the flatness of 122 parts.

- 1. Use the Distribution platform to create a histogram and summary statistics. It is fairly clear that the distribution is nonnormal.
- 2. Select Continuous Fit, Fit All from the red triangle for Deviation from Flat.
 - a. Which distribution is selected as the best fit?
 - a. The best fitting distribution is the Weibull, which is right skewed.
- 3. Conduct a long-term capability analysis for the selected distribution. Use an upper spec of 30. There is no lower spec or target.
 - a. A P_p value is not computed. Why?
 - b. What is P_{pk}?
 - c. Would you consider this process to be capable?
 - d. What percent of parts will be nonconforming?
 - a. A Pp is not computed because we don't have a lower spec. Pp compares the width of the spec limits to the process spread.
 - b. The P_{pk} is 0.821
 - c. If we consider that a barely capable process has a P_{pk} =1.0, then, no, the process is not capable.
 - d. The estimated percent beyond the upper spec is 0.4588, and the ppm (parts per million) nonconforming is 4588.

Hide Solution

Statistical Thinking for Industrial Problem Solving

Copyright © 2020 SAS Institute Inc., Cary, NC, USA. All rights reserved.

Close