

Algorithmen II Übung am 29.10.2013

Organisatorisches

Algorithmen II - Team

Vorlesung:

Prof. Dr. Dorothea Wagner

Übung:

Thomas Bläsius (thomas.blaesius@kit.edu)

Benjamin Niedermann (benjamin.niedermann@kit.edu)

Sprechzeiten: Termin nach Vereinbarung

Homepage und Forum

- http://i11www.iti.kit.edu
- Aktuelle Informationen/Termine
- Skripte, Folien, Übungsblätter
- Literaturempfehlungen
- Forum
 - Für Fragen an die Übungsleiter.
 - Für Fragen untereinander.
 - Link befindet sich auf der Homepage der Vorlesung.

Klausur

- Umfasst zwei Stunden.
- Orientierung: Vorlesung Algorithmen II des Vorjahres + Vorlesung Algorithmen Hentechnik behandelte ähnlichen Stoff.
- Hauptklausur: voraussichtlich am 24.02.2014
- Nachklausur: noch nicht bekannt.

Genaue Klausurtermine werden rechtzeitig bekannt gegeben.

Wiederholung Laufzeitanalyse

 \mathcal{O} -Notation:

19 6 7 10 4

 $f(n) = \mathcal{O}(g(n))$: \Leftrightarrow es existieren positive Konstanten c und n_0 , so dass

$$0 \le f(n) \le c \cdot g(n)$$
 für alle $n \ge n_0$

Beispiel: Es gibt für Minimumsuche auf einem unsortieren Integer-Array der Länge n einen Algorithmus \mathcal{A} mit Laufzeit $\mathcal{O}(n)$,

d.h. man kann \mathcal{A} und zwei positive Konstanten c und n_0 so wählen, dass **für alle Eingaben** die Laufzeit f(n) von \mathcal{A} durch

$$0 \le f(n) \le c \cdot n$$
 für alle $n \le n_0$

abgeschätzt werden kann.

 \mathcal{O} -Notation:

19 6 7 10 4

worst-case-Analyse

 $f(n) = \mathcal{O}(g(n))$: \Leftrightarrow es existieren positive Konstanten c und n_0 , so dass

$$0 \le f(n) \le c \cdot g(n)$$
 für alle $n \ge n_0$

Beispiel: Es gibt für Minimumsuche auf einem unsortieren Integer-Array der Länge n einen Algorithmus \mathcal{A} mit Laufzeit $\mathcal{O}(n)$,

d.h. man kann \mathcal{A} und zwei positive Konstanten c und n_0 so wählen, dass **für alle Eingaben** die Laufzeit f(n) von \mathcal{A} durch

$$0 \le f(n) \le c \cdot n$$
 für alle $n \le n_0$

abgeschätzt werden kann.

Ω -Notation:

 $f(n) = \Omega(g(n)) :\Leftrightarrow$ es existieren positive Konstanten c und n_0 , so dass

$$0 \le c \cdot g(n) \le f(n)$$
 für alle $n \ge n_0$

Beispiel: Die Minimumsuche in einem unsortierten Integer-Array der Länge n besitzt Laufzeit $\Omega(n)$,

d.h. es gibt keinen Algorithmus, der dies schneller kann:

Jedes Element muss mindestens einmal betrachtet werden, damit sichergestellt ist, dass Minimum gefunden wurde.

 Θ -Notation:

 $f(n) = \Theta(g(n))$: \Leftrightarrow es existieren positive Konstanten c_1 , c_2 und n_0 , so dass

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$
 für alle $n \ge n_0$

Beispiel: Es gibt Algorithmus für Minimumssuche auf Integer-Array der Länge n mit Laufzeit $\Theta(n)$.

Amortisierte Analyse

Gegeben: Folge an Operationen auf einer Datenstrukturen: o_1, \ldots, o_m

Betrachte nicht Operation einzeln, sondern alle ausgeführten Operationen.

Beispiel:

Problem 1: Modellieren Sie eine Queue mit zwei Stacks so, dass die amortisierten Kosten von Dequeue und Enqueue jeweils in $\mathcal{O}(1)$ sind. Geben Sie die Operationen Dequeue und Enqueue in Pseudocode an und begründen Sie die amortisierten Kosten.

Führe zwei Stacks *E* und *D* ein:

ENQUEUE(x):

1. PUSH(E,x)

DEQUEUE:

- 1. Wenn $D = \emptyset$
 - (a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))
- 2. Pop(D)

ENQUEUE(1)
ENQUEUE(2)
ENQUEUE(3)
DEQUEUE
ENQUEUE(4)
DEQUEUE

Führe zwei Stacks *E* und *D* ein:

ENQUEUE(x):

1. PUSH(E,x)

DEQUEUE:

- 1. Wenn $D = \emptyset$
 - (a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))
- 2. Pop(D)

ENQUEUE(1)
ENQUEUE(2)
ENQUEUE(3)
DEQUEUE
ENQUEUE(4)
DEQUEUE

Führe zwei Stacks E und D ein:

ENQUEUE(x):

1. PUSH(E,x)

- 1. Wenn $D = \emptyset$
 - (a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))
- 2. Pop(D)

Führe zwei Stacks E und D ein:

ENQUEUE(1)
ENQUEUE(2)
ENQUEUE(3)
DEQUEUE
ENQUEUE(4)
DEQUEUE

ENQUEUE(x):

1. PUSH(E,x)

- 1. Wenn $D = \emptyset$
 - (a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))
- 2. Pop(D)

Führe zwei Stacks E und D ein:

ENQUEUE(x):

1. PUSH(E,x)

- 1. Wenn $D = \emptyset$
 - (a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))
- 2. Pop(D)

Führe zwei Stacks *E* und *D* ein:

ENQUEUE(1)
ENQUEUE(2)
ENQUEUE(3)
DEQUEUE
ENQUEUE(4)
DEQUEUE

ENQUEUE(x):

1. PUSH(E,x)

- 1. Wenn $D = \emptyset$
 - (a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))
- 2. Pop(D)

Führe zwei Stacks *E* und *D* ein:

ENQUEUE(1)

ENQUEUE(2)

ENQUEUE(3)

DEQUEUE

ENQUEUE(4)

→ DEQUEUE

ENQUEUE(x):

1. PUSH(E,x)

- 1. Wenn $D = \emptyset$
 - (a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))
- 2. Pop(D)

Führe zwei Stacks *E* und *D* ein:

ENQUEUE(1)
ENQUEUE(2)
ENQUEUE(3)
DEQUEUE
ENQUEUE(4)

→ DEQUEUE

ENQUEUE(x):

1. PUSH(E,x)

DEQUEUE:

- 1. Wenn $D = \emptyset$
 - (a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))
- 2. Pop(D)

Analyse:

- **ENQUEUE** benötigt $\mathcal{O}(1)$ Zeit.
- DEQUEUE benötigt $\mathcal{O}(|E|)$ Zeit.

Führe zwei Stacks *E* und *D* ein:

ENQUEUE(1)

ENQUEUE(2)

ENQUEUE(3)

DEQUEUE

ENQUEUE(4)

── DEQUEUE

ENQUEUE(x):

1. PUSH(E,x)

DEQUEUE:

1. Wenn $D = \emptyset$

(a) Solange $E \neq \emptyset$ tue PUSH(D, POP(E))

2. Pop(D)

Amortisierte Analyse – Buchungsmethode:

amortisierte Kosten

ENQUEUE 3
DEQUEUE 1

Idee: Jedes Element bekommt Kredit 3, wenn es auf Stack *E* gelegt wird.

eine Einheit für Push(E,x)

zwei Einheiten für Push(D,Pop(E))

Amortisierte Kosten $\mathcal{O}(1)$ für beide Operationen.

Flussnetzwerke

Problemdefinition

Definition:

gegeben: \blacksquare Einfacher gerichteter Graph D = (V, E).

- Kantengewichtsfunktion $c \colon E \to \mathbb{R}_0^+$.
- **Zwei** ausgezeichnete Knoten s (Quelle) und t (Senke).

Das Tupel (D, s, t, c) heißt *Netzwerk*. Eine Abbildung $f: E \to \mathbb{R}_0^+$ heißt *Fluss*, wenn folgende Bedingungen gelten:

- 1. Kapazitätsbedingung: für alle $(i,j) \in E$ gilt $0 \le f(i,j) \le c(i,j)$
- 2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E} f(i,j) \sum_{(j,i) \in E} f(j,i) = 0$

Kapazitätsbedingung:

$$0 \le \mathsf{Fluss} \le \mathsf{Kapazit\"{a}t}$$

Zwischenknoten können Fluss weder konsumieren noch produzieren.

Zuweisung bildet Fluss, denn sowohl Kapazitätsbedingung als auch Flusserhaltung gelten:

- 1. *Kapazitätsbedingung:* für alle $(i, j) \in E$ gilt $0 \le f(i, j) \le c(i, j)$
- 2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E} f(i,j) \sum_{(j,i) \in E} f(j,i) = 0$

Zuweisung bildet Fluss, denn sowohl Kapazitätsbedingung als auch Flusserhaltung gelten:

- 1. *Kapazitätsbedingung:* für alle $(i, j) \in E$ gilt $0 \le f(i, j) \le c(i, j)$
- 2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E} f(i,j) \sum_{(j,i) \in E} f(j,i) = 0$

Bisher sind nicht alle Kapazitäten erschöpft: Gibt es einen besseren Fluss?

Was heißt besser? / Wie Fluss messen?

Zuweisung bildet Fluss, denn sowohl Kapazitätsbedingung als auch Flusserhaltung gelten:

- 1. *Kapazitätsbedingung:* für alle $(i, j) \in E$ gilt $0 \le f(i, j) \le c(i, j)$
- 2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E} f(i,j) \sum_{(j,i) \in E} f(j,i) = 0$

Bisher sind nicht alle Kapazitäten erschöpft: Gibt es einen besseren Fluss?

Was heißt besser? / Wie Fluss messen?

Zuweisung bildet Fluss, denn sowohl Kapazitätsbedingung als auch Flusserhaltung gelten:

- 1. *Kapazitätsbedingung:* für alle $(i, j) \in E$ gilt $0 \le f(i, j) \le c(i, j)$
- 2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E} f(i,j) \sum_{(j,i) \in E} f(j,i) = 0$

$$w(f) := \sum_{(s,i)\in E} f(s,i) - \sum_{(i,s)\in E} f(i,s)$$
 heißt Wert des Flusses f .

Gegeben:

- 1. Netzwerk (D = (V, E), s, t, c), sodass zu einigen Kanten $(u, v) \in E$ auch $(v, u) \in E$ exisitiert.
- 2. Maximaler Fluss $f: E \to \mathbb{R}_0$

Zeige:

Es gibt Netzwerk (D' = (V, E'), s, t, c), sodass

- E' maximale Teilemenge von E ist, für die gilt $(u, v) \in E' \Rightarrow (v, u) \notin E'$, und
- für maximalen Fluss f' auf D' gilt w(f') = w(f)

Gegeben:

- 1. Netzwerk (D = (V, E), s, t, c), sodass zu einigen Kanten $(u, v) \in E$ auch $(v, u) \in E$ exisitiert.
- 2. Maximaler Fluss $f: E \to \mathbb{R}_0$

Zeige:

Es gibt Netzwerk (D' = (V, E'), s, t, c), sodass

- E' maximale Teilemenge von E ist, für die gilt $(u, v) \in E' \Rightarrow (v, u) \notin E'$, und
- für maximalen Fluss f' auf D' gilt w(f') = w(f)

Idee: Konstruktiver Beweis

- Sei $(u, v) \in E$ mit $(v, u) \in E$
- Betrachte D' = (V, E') mit $E' = E \setminus \{(v, u)\}$
- zeige D' erhält Maximalfluss

Idee: Konstruktiver Beweis

- Sei $(u, v) \in E$ mit $(v, u) \in E$
- Betrachte D' = (V, E') mit $E' = E \setminus \{(v, u)\}$
- zeige D' erhält Maximalfluss

Definiere Fluss f' für alle $(i, j) \in E'$:

$$f'(i,j) := \begin{cases} f(i,j) & \text{falls } (i,j) \neq (u,v) \\ f(i,j) - f(j,i) & \text{falls } (i,j) = (u,v) \end{cases}$$

- Ist f' wirklich ein Fluss?
- Ist f' Maximalfluss in D'?
- Gilt w(f) = w(f')?

Kapazitätsbedingung

1. Kapazitätsbedingung:

für alle
$$(i,j) \in E'$$
 gilt $0 \le f'(i,j) \le c(i,j)$

- Für alle Kanten $(i, j) \neq (u, v)$ erfüllt, da bereits für D und f erfüllt.
- Wegen $f(u, v) \ge f(v, u)$ gilt

$$0 \le f'(u, v) = f(u, v) - f(v, u) \le c(u, v)$$

2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E'} f'(i,j) - \sum_{(j,i) \in E'} f'(j,i) = 0$

Für alle $i \in V \setminus \{s, t, u, v\}$ erfüllt. Für den Knoten u betrachte Wert w'(u):

$$w'(u) = \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'} f'(u,w)$$

2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E'} f'(i,j) - \sum_{(j,i) \in E'} f'(j,i) = 0$

Für alle $i \in V \setminus \{s, t, u, v\}$ erfüllt. Für den Knoten u betrachte Wert w'(u):

$$w'(u) = \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'} f'(u,w)$$

$$= \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'\setminus\{(u,v)\}} f'(u,w) - f'(u,v)$$

2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E'} f'(i,j) - \sum_{(j,i) \in E'} f'(j,i) = 0$

Für alle $i \in V \setminus \{s, t, u, v\}$ erfüllt. Für den Knoten u betrachte Wert w'(u):

$$w'(u) = \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'} f'(u,w)$$

$$= \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'\setminus\{(u,v)\}} f'(u,w) - f'(u,v)$$

$$= \sum_{(w,u)\in E'} f(w,u) - \sum_{(u,w)\in E'\setminus\{(u,v)\}} f(u,w) - (f(u,v) - f(v,u))$$

2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E'} f'(i,j) - \sum_{(j,i) \in E'} f'(j,i) = 0$

Für alle $i \in V \setminus \{s, t, u, v\}$ erfüllt. Für den Knoten u betrachte Wert w'(u):

$$w'(u) = \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'} f'(u,w)$$

$$= \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'\setminus\{(u,v)\}} f'(u,w) - f'(u,v)$$

$$= \sum_{(w,u)\in E'} f(w,u) - \sum_{(u,w)\in E'\setminus\{(u,v)\}} f(u,w) - (f(u,v) - f(v,u))$$

$$= \sum_{(w,u)\in E'} f(w,u) - \sum_{(u,w)\in E'\setminus\{(u,v)\}} f(u,w)$$

 $(u,w)\in E$

o.B.d.A.: $f(u, v) \ge f(v, u)$

 $(w.u) \in E$

2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E'} f'(i,j) - \sum_{(j,i) \in E'} f'(j,i) = 0$

Für alle $i \in V \setminus \{s, t, u, v\}$ erfüllt. Für den Knoten u betrachte Wert w'(u):

$$w'(u) = \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'} f'(u,w)$$

$$= \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'\setminus\{(u,v)\}} f'(u,w) - f'(u,v)$$

$$= \sum_{(w,u)\in E'} f(w,u) - \sum_{(u,w)\in E'\setminus\{(u,v)\}} f(u,w) - (f(u,v) - f(v,u))$$

$$= \sum_{(w,u)\in E} f(w,u) - \sum_{(u,w)\in E} f(u,w)$$

$$= w(u)$$

Flusserhaltung

2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E'} f'(i,j) - \sum_{(j,i) \in E'} f'(j,i) = 0$

Für alle $i \in V \setminus \{s, t, u, v\}$ erfüllt. Für den Knoten u betrachte Wert w'(u):

$$W'(U) = \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'} f'(u,w) = W(U)$$

o.B.d.A.: $f(u, v) \ge f(v, u)$

Flusserhaltung

2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ gilt $\sum_{(i,j) \in E'} f'(i,j) - \sum_{(j,i) \in E'} f'(j,i) = 0$

Für alle $i \in V \setminus \{s, t, u, v\}$ erfüllt. Für den Knoten u betrachte Wert w'(u):

$$w'(u) = \sum_{(w,u)\in E'} f'(w,u) - \sum_{(u,w)\in E'} f'(u,w) = w(u)$$

- Falls $u \neq s$ und $u \neq t$, dann $w(u) = 0 \rightarrow$ Flusserhaltung gilt für u.
- Falls u = s oder u = t, dann $\mathbf{w}(\mathbf{f}') = w'(u) = w(u) = \mathbf{w}(\mathbf{f})$

Analoges Vorgehen für Knoten v.

o.B.d.A.: $f(u, v) \ge f(v, u)$

Maximalfluss

Maximalfluss wird erhalten:

Sei \hat{f} Maximalfluss in D':

 $w'(\hat{f}) \geq w'(f') = w(f)$

Jeder Fluss in D' ist auch ein Fluss in D: $w(\hat{f}) \leq w(f)$

 $\rightarrow w(f) = w'(f') = w'(\hat{f})$

o.B.d.A.: $f(u, v) \ge f(v, u)$

Erweitere Netzwerk um Knotenkapazitäten $\gamma\colon V\to\mathbb{R}_0^+\colon (D,s,t,c,\gamma)$

Abbildung $f: E \to \mathbb{R}_0^+$ heißt *Fluss* in (D, s, t, c, γ) , wenn:

Erweitere Netzwerk um Knotenkapazitäten $\gamma \colon V \to \mathbb{R}_0^+$: (D, s, t, c, γ)

Abbildung $f: E \to \mathbb{R}_0^+$ heißt *Fluss* in (D, s, t, c, γ) , wenn:

1. Kapazitätsbedingung:

$$0 \le f(i,j) \le c(i,j)$$
 für alle $(i,j) \in E$

Erweitere Netzwerk um Knotenkapazitäten $\gamma \colon V \to \mathbb{R}_0^+$: (D, s, t, c, γ)

Abbildung $f: E \to \mathbb{R}_0^+$ heißt *Fluss* in (D, s, t, c, γ) , wenn:

1. Kapazitätsbedingung:

$$0 \le f(i,j) \le c(i,j)$$
 für alle $(i,j) \in E$

2. Flusserhaltung:

$$\sum_{(i,j)\in E} f(i,j) - \sum_{(j,i)\in E} f(j,i) = 0 \text{ für alle } i \in V \setminus \{s,t\}$$

Erweitere Netzwerk um Knotenkapazitäten $\gamma \colon V \to \mathbb{R}_0^+$: (D, s, t, c, γ)

Abbildung $f: E \to \mathbb{R}_0^+$ heißt *Fluss* in (D, s, t, c, γ) , wenn:

1. Kapazitätsbedingung:

$$0 \le f(i,j) \le c(i,j)$$
 für alle $(i,j) \in E$

2. Flusserhaltung:

$$\sum_{(i,j)\in E} f(i,j) - \sum_{(j,i)\in E} f(j,i) = 0 \text{ für alle } i \in V \setminus \{s,t\}$$

3. Kontenkapazitätsbedinung:

$$\sum_{(v,w)\in E} f(v,w) \le \gamma(v) \quad \text{ wenn } v \in V \setminus \{t\}$$

$$\sum_{(u,v)\in E} f(u,v) \le \gamma(v) \quad \text{wenn } v = t$$

Erweitere Netzwerk um Knotenkapazitäten $\gamma \colon V \to \mathbb{R}_0^+$: (D, s, t, c, γ)

Abbildung $f: E \to \mathbb{R}_0^+$ heißt *Fluss* in (D, s, t, c, γ) , wenn:

1. Kapazitätsbedingung:

$$0 \le f(i,j) \le c(i,j)$$
 für alle $(i,j) \in E$

2. Flusserhaltung:

$$\sum_{(i,j)\in E} f(i,j) - \sum_{(j,i)\in E} f(j,i) = 0 \text{ für alle } i \in V \setminus \{s,t\}$$

3. Kontenkapazitätsbedinung:

$$\sum_{(v,w)\in E} f(v,w) \le \gamma(v) \quad \text{ wenn } v \in V \setminus \{t\}$$

$$\sum_{(u,v)\in E} f(u,v) \le \gamma(v) \quad \text{wenn } v = t$$

Zeige: Keine wirkliche Erweiterung zur klassischen Formulierung.

Lösung

Lösung

Netzwerk N' = (D' = (V', E'); s'; t'; c') aus Netzwerk $N = (D = (V, E); s; t; c; \gamma)$:

- Knoten: $V' = \bigcup_{v \in V} \{v_{in}, v_{out}\}$
- Quelle und Senke: $s' = s_{in}$, und $t' = t_{out}$
- Kanten $E' = \{(v_{\text{out}}, w_{\text{in}}) \mid (v, w) \in E\} \cup \{(v_{\text{in}}, v_{\text{out}}) \mid v \in V\}$
- Kapazitäten: $c': E' \to \mathbb{R}_0^+$ mit $c'(v_{\text{out}}, w_{\text{in}}) = c(v, w)$ und $c'(v_{\text{in}}, v_{\text{out}}) = \gamma(v)$

Begründung:

- Knotenbedingung wird durch Kapazität der neuen Kante realisiert.
- Nachbarschaften und weitere Kapazitätsbedinung bleiben erhalten.

Definition: Sei $S \subset V$. Die Partition $(S, V \setminus S)$ heißt *Schnitt* im Graphen D = (V, E). Im Netzwerk (D, s, t, c) heißt $(S, V \setminus S)$ ein s-t-Schnitt, falls $s \in S$ und $t \in V \setminus S$.

Die Kapazität eines Schnittes $(S, V \setminus S)$ ist definiert als $c(S, V \setminus S) := \sum_{\substack{(i,j) \in E \\ i \in S, j \in V \setminus S}} c(i,j)$

Ein Schnitt $(S, V \setminus S)$ heißt *minimal*, wenn $c(S, V \setminus S)$ minimalen Wert unter allen Schnitten $(S', V \setminus S')$ hat.

Definition: Sei $S \subset V$. Die Partition $(S, V \setminus S)$ heißt *Schnitt* im Graphen D = (V, E). Im Netzwerk (D, s, t, c) heißt $(S, V \setminus S)$ ein s-t-Schnitt, falls $s \in S$ und $t \in V \setminus S$.

Die Kapazität eines Schnittes $(S, V \setminus S)$ ist definiert als $c(S, V \setminus S) := \sum_{\substack{(i,j) \in E \\ i \in S, j \in V \setminus S}} c(i,j)$

Ein Schnitt $(S, V \setminus S)$ heißt *minimal*, wenn $c(S, V \setminus S)$ minimalen Wert unter allen Schnitten $(S', V \setminus S')$ hat.

Definition: Sei $S \subset V$. Die Partition $(S, V \setminus S)$ heißt *Schnitt* im Graphen D = (V, E). Im Netzwerk (D, s, t, c) heißt $(S, V \setminus S)$ ein s-t-Schnitt, falls $s \in S$ und $t \in V \setminus S$.

Die Kapazität eines Schnittes $(S, V \setminus S)$ ist definiert als $c(S, V \setminus S) := \sum_{\substack{(i,j) \in E \\ i \in S, j \in V \setminus S}} c(i,j)$

Ein Schnitt $(S, V \setminus S)$ heißt *minimal*, wenn $c(S, V \setminus S)$ minimalen Wert unter allen Schnitten $(S', V \setminus S')$ hat.

Definition: Sei $S \subset V$. Die Partition $(S, V \setminus S)$ heißt *Schnitt* im Graphen D = (V, E). Im Netzwerk (D, s, t, c) heißt $(S, V \setminus S)$ ein s-t-Schnitt, falls $s \in S$ und $t \in V \setminus S$.

Die Kapazität eines Schnittes $(S, V \setminus S)$ ist definiert als $c(S, V \setminus S) := \sum_{\substack{(i,j) \in E \\ i \in S, j \in V \setminus S}} c(i,j)$

Ein Schnitt $(S, V \setminus S)$ heißt *minimal*, wenn $c(S, V \setminus S)$ minimalen Wert unter allen Schnitten $(S', V \setminus S')$ hat.

Lemma 4.5: Sei $(S, V \setminus S)$ ein s-t-Schnitt im Netzwerk (D, s, t, c). Für jeden Fluss f gilt, dass

$$w(f) = \sum_{\substack{(i,j) \in E \\ i \in S, j \in V \setminus S}} f(i,j) - \sum_{\substack{(i,j) \in E \\ j \in S, i \in V \setminus S}} f(i,j)$$

Insbesondere gilt $w(f) \leq c(S, V \setminus S)$.

Definition: Sei $S \subset V$. Die Partition $(S, V \setminus S)$ heißt *Schnitt* im Graphen D = (V, E). Im Netzwerk (D, s, t, c) heißt $(S, V \setminus S)$ ein s-t-Schnitt, falls $s \in S$ und $t \in V \setminus S$.

Die Kapazität eines Schnittes $(S, V \setminus S)$ ist definiert als $c(S, V \setminus S) := \sum_{\substack{(i,j) \in E \\ i \in S, j \in V \setminus S}} c(i,j)$

Ein Schnitt $(S, V \setminus S)$ heißt *minimal*, wenn $c(S, V \setminus S)$ minimalen Wert unter allen Schnitten $(S', V \setminus S')$ hat.

In einem Netzwerk (D, s, t, c) ist der Wert eines Maximalflusses gleich der Kapazität eines minimalen s-t-Schnittes.

Lineare Programme

Lineare Programme (LP)

Ein lineares Programm besteht aus

1. Variablen: $\overline{X} = (x_1, \dots, x_n)^T$

2. einer linearen Zielfunktion: $f(\overline{X}) = c_1 \cdot X_1 + \cdots + c_n \cdot X_n$

3. **Nebenbedingungen**: $a_{1,1} \cdot x_1 + a_{1,2} \cdot x_2 + \cdots + a_{1,n} \cdot x_n \le b_1$

 $a_{m,1}\cdot x_1+a_{m,2}\cdot x_2+\cdots+a_{m,n}\cdot x_n\leq b_m$

Ziel: bestimme x_1, \ldots, x_n so, dass $f(\overline{x})$ maximal/minimal ist.

Matrixschreibweise des LP:

$$A\overline{x} \leq \overline{b} \text{ mit } A = (a_{i,j})$$

$$f(\overline{X}) = \overline{X}^T \overline{C}$$

mit
$$\overline{c} = (c_1, \ldots, c_n)^T$$
 und $\overline{b} = (b_1, \ldots, b_m)^T$

Lösungsraum 2-dimensionales LP

Beispiel: Bäckerei

	Weizenmehl	Wasser	Mischkornschrot
1 Kiste Weizenmischbrot (20€)	12 kg	8 kg	0 kg
1 Kiste Mehrkornbrot (60€)	6 kg	12 kg	10 kg
Kontingent	630 kg	620 kg	350 kg

Weitere Bedingungen:

- 10 Kisten Weizenmischbrote sind für Stammkunden reserviert.
- Bäcker möchte Gewinn maximieren.

Beispiel: Bäckerei

	Weizenmehl	Wasser	Mischkornschrot
1 Kiste Weizenmischbrot (20€)	12 kg	8 kg	0 kg
1 Kiste Mehrkornbrot (60€)	6 kg	12 kg	10 kg
Kontingent	630 kg	620 kg	350 kg

Weitere Bedingungen:

- 10 Kisten Weizenmischbrote sind für Stammkunden reserviert.
- Bäcker möchte Gewinn maximieren.

 x_1 = Kisten Weizenmischbrot, x_2 = Kisten Mehrkornbrot:

Zielfunktion **ZF**:

$$f(x_1, x_2) = 20 x_1$$

= max!

Beispiel: Bäckerei

	Weizenmehl	Wasser	Mischkornschrot
1 Kiste Weizenmischbrot (20€)	12 kg	8 kg	0 kg
1 Kiste Mehrkornbrot (60€)	6 kg	12 kg	10 kg
Kontingent	630 kg	620 kg	350 kg

Weitere Bedingungen:

- 10 Kisten Weizenmischbrote sind für Stammkunden reserviert.
- Bäcker möchte Gewinn maximieren.

Zielfunktion ZF:	$f(x_1, x_2) =$	20	<i>X</i> ₁	+	60	<i>X</i> ₂	= max!
Nebenbedingungen NB:		12	<i>X</i> ₁	+	6	<i>X</i> ₂	≤ 630
		8	<i>X</i> ₁	+	12	<i>X</i> ₂	≤ 620
					10	<i>X</i> ₂	≤ 350
			<i>X</i> ₁				≥ 10
			<i>X</i> ₁				≥ 0
			<i>X</i> ₂				> 0

 x_1 = Kisten Weizenmischbrot, x_2 = Kisten Mehrkornbrot:

Zielfunktion **ZF**: $f(x_1, x_2) =$ 20 *X*₁ = max! X_2 \leq 630 Nebenbedingungen **NB**: Weizen *X*₁ χ_2 8 12 ≤ 620 Wasser χ_2 *X*₁ 10 \leq 350 *X*2 Körner ≥ 10 Stammkunden *X*₁ ≥ 0 *X*₁ ≥ 0 *X*₂

Zielfunktion **ZF:**

$$f(x_1, x_2) =$$
 20
 x_1
 +
 60
 x_2
 = max!

 Nebenbedingungen **NB:**
 12
 x_1
 +
 6
 x_2
 ≤ 630
 Weizen

 8
 x_1
 +
 12
 x_2
 ≤ 620
 Wasser

 10
 x_2
 ≤ 350
 Körner

 x_1
 ≥ 10
 Stammkunden

 x_1
 ≥ 0
 x_2
 ≥ 0

Zielfunktion **ZF:**
$$f(x_1,x_2)=$$
 20 x_1+ 60 $x_2=$ max! Nebenbedingungen **NB:** 12 x_1+ 6 $x_2\le 630$ Weizen 8 x_1+ 12 $x_2\le 620$ Wasser 10 $x_2\le 350$ Körner x_1+ x_2+ x_2+ x_2+ x_3+ x_4+ x_5+ x_5+

Zielfunktion **ZF:**
$$f(x_1,x_2)=$$
 20 x_1+ 60 $x_2=$ max! Nebenbedingungen **NB:** 12 x_1+ 6 $x_2\le 630$ Weizen 8 x_1+ 12 $x_2\le 620$ Wasser 10 $x_2\le 350$ Körner x_1+ x_2+ x_2+ x_3+ x_4+ x_5+ x_5+

*X*₂

 ≥ 0

*X*₁

*X*₂

 ≥ 0

*X*₁

*X*₂

 ≥ 0

*X*₁

*X*₂

> 0

*X*₁

*X*₂

 ≥ 0

> 0

Dualität von Linearen Programmen

Betrachte folgendes Programm:

Zielfunktion ZF:	$f(x_1,x_2) =$	2	<i>X</i> ₁	+	3	<i>X</i> ₂	= max!
Nebenbedingungen NB:		4	<i>X</i> ₁	+	8	<i>X</i> ₂	≤ 12
		2	<i>X</i> ₁	+		<i>X</i> ₂	≤ 3
		3	<i>X</i> ₁	+	2	<i>X</i> ₂	≤ 4
			<i>X</i> ₁				≥ 0
						<i>X</i> 2	> 0

Schätze eine obere Schranke für f mithilfe der Nebenbedingungen ab:

Betrachte folgendes Programm:

Zielfunktion **ZF**:
$$f(x_1, x_2) =$$
 2 $x_1 + 3$ $x_2 = max!$
Nebenbedingungen **NB**: 4 $x_1 + 8$ $x_2 \le 12$
2 $x_1 + x_2 \le 3$
3 $x_1 + 2$ $x_2 \le 4$
 $x_1 + 2$ $x_2 = 0$

Schätze eine obere Schranke für f mithilfe der Nebenbedingungen ab:

$$2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$$

12 ist obere Schranke!

 ≥ 0

*X*₂

Betrachte folgendes Programm:

Zielfunktion **ZF**:
$$f(x_1, x_2) =$$

Nebenbedingungen **NB**:

Schätze eine obere Schranke für f mithilfe der Nebenbedingungen ab:

$$2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$$

12 ist obere Schranke!

besser:

$$2x_1 + 3x_2 \le \frac{4x_1 + 8x_2}{2} \le \frac{12}{2} = 6$$

6 ist obere Schranke

Betrachte folgendes Programm:

Zielfunktion **ZF**:
$$f(x_1, x_2) =$$
 2 $x_1 + 3$ $x_2 = \max!$
Nebenbedingungen **NB**: 4 $x_1 + 8$ $x_2 \le 12$
2 $x_1 + x_2 \le 3$
3 $x_1 + 2$ $x_2 \le 4$
 $x_1 + 2$ $x_2 \ge 0$

Schätze eine obere Schranke für f mithilfe der Nebenbedingungen ab:

$$\frac{2x_1+3x_2}{3} = \frac{4x_1+8x_2+2x_1+x_2}{3} \le \frac{12+3}{3} = 5$$
 5 ist obere Schranke!

Verallgemeinerung

Versuche Ungleichung der Form

$$d_1x_1+d_2x_2\leq h,$$

zu finden, so dass $d_1 \ge 2$, $d_2 \ge 3$ und h ist möglichst klein.

Zielfunktion ZF:	$f(x_1, x_2) =$	2	<i>X</i> ₁	+	3	<i>X</i> ₂	= max!
Nebenbedingungen NB:		4	<i>X</i> ₁	+	8	<i>X</i> ₂	≤ 12
		2	<i>X</i> ₁	+		<i>X</i> ₂	≤ 3
		3	<i>X</i> ₁	+	2	<i>X</i> ₂	≤ 4
			<i>X</i> ₁				≥ 0
						<i>X</i> ₂	≥ 0

Verallgemeinerung

Versuche Ungleichung der Form

$$d_1 x_1 + d_2 x_2 \leq h$$
,

zu finden, so dass $d_1 \ge 2$, $d_2 \ge 3$ und h ist möglichst klein.

Für $x_1, x_2 \ge 0$ gilt dann nämlich:

$$2x_1 + 3x_2 \le d_1x_1 + d_2x_2 \le h$$

Zielfunktion ZF:	$f(x_1, x_2) =$	2	<i>X</i> ₁	+	3	<i>X</i> ₂	= max!
Nebenbedingungen NB:		4	<i>X</i> ₁	+	8	<i>X</i> ₂	≤ 12
		2	<i>X</i> ₁	+		<i>X</i> ₂	≤ 3
		3	<i>X</i> ₁	+	2	<i>X</i> ₂	≤ 4
			<i>X</i> ₁				≥ 0
						<i>X</i> ₂	≥ 0

Verallgemeinerung

Versuche Ungleichung der Form

$$d_1x_1+d_2x_2\leq h,$$

zu finden, so dass $d_1 \ge 2$, $d_2 \ge 3$ und h ist möglichst klein.

Setze:

$$h = 12y_1 + 3y_2 + 4y_3$$

$$d_1 = 4y_1 + 2y_2 + 3y_3,$$

$$d_2 = 8y_1 + 1y_2 + 2y_3,$$

Zielfunktion ZF :	$f(x_1, x_2) =$	2	<i>X</i> ₁	+	3	<i>X</i> ₂	= max!
Nebenbedingungen NB:		4	<i>X</i> ₁	+	8	<i>X</i> ₂	≤ 12
		2	<i>X</i> ₁	+		<i>X</i> ₂	≤ 3
		3	<i>X</i> ₁	+	2	<i>X</i> ₂	≤ 4
			<i>X</i> ₁				≥ 0
						<i>X</i> ₂	≥ 0

Verallgemeinerung

Versuche Ungleichung der Form

$$d_1 x_1 + d_2 x_2 \leq h$$
,

zu finden, so dass $d_1 \ge 2$, $d_2 \ge 3$ und h ist möglichst klein.

Setze:

$$h = 12y_1 + 3y_2 + 4y_3$$

$$d_1 = 4y_1 + 2y_2 + 3y_3,$$

$$d_2 = 8y_1 + 1y_2 + 2y_3,$$

Wie y_1 , y_2 und y_3 bestimmen, so dass y_1 , y_2 , $y_3 \ge 0$ und $d_1 \ge 2$, $d_2 \ge 3$ und h möglichst klein?

Zielfunktion ZF :	$f(x_1, x_2) =$	2	<i>X</i> ₁	+	3	<i>X</i> ₂	= max!
Nebenbedingungen NB:		4	<i>X</i> ₁	+	8	<i>X</i> ₂	≤ 12
		2	<i>X</i> ₁	+		<i>X</i> ₂	≤ 3
		3	<i>X</i> ₁	+	2	<i>X</i> ₂	≤ 4
			<i>X</i> ₁				≥ 0
						<i>X</i> ₂	≥ 0

Verallgemeinerung

Versuche Ungleichung der Form

$$d_1 x_1 + d_2 x_2 \leq h$$
,

zu finden, so dass $d_1 \ge 2$, $d_2 \ge 3$ und h ist möglichst klein.

Setze:

$$h = 12y_1 + 3y_2 + 4y_3$$

$$d_1 = 4y_1 + 2y_2 + 3y_3,$$

$$d_2 = 8y_1 + 1y_2 + 2y_3,$$

ZF:
$$g(y_1, y_2, y_3) = 12$$
 $y_1 + 3$ $y_2 + 4$ $y_3 = min!$ **NB:** 4 $y_1 + 2$ $y_2 + 3$ $y_3 \ge 2$ 8 $y_1 + 1$ $y_2 + 2$ $y_3 \ge 3$

Duales Programm *DP*

Zielfunktion ZF:

$$f(x_1, x_2) =$$
 2
 $x_1 +$
 3
 $x_2 =$
 $=$ max!

 Nebenbedingungen NB:
 4
 $x_1 +$
 8
 $x_2 \le 12$

 2
 $x_1 +$
 $x_2 \le 3$

 3
 $x_1 +$
 2
 $x_2 \le 4$
 $x_1 +$
 $x_2 \ge 0$

 $y_1, y_2, y_3 \geq 0$

Dualität

Zielfunktion ZF :	$f(x_1, x_2) =$	2	<i>X</i> ₁	+	3	<i>X</i> ₂	= max!
Nebenbedingungen NB:		4	<i>X</i> ₁	+	8	<i>X</i> ₂	≤ 12
		2	<i>X</i> ₁	+		<i>X</i> ₂	≤ 3
		3	<i>X</i> ₁	+	2	<i>X</i> ₂	≤ 4
			<i>X</i> ₁				≥ 0
Primales Program	m <i>PP</i>					<i>X</i> ₂	≥ 0

ZF:
$$g(y_1, y_2, y_3) = 12$$
 $y_1 + 3$ $y_2 + 4$ $y_3 = min!$
NB: 4 $y_1 + 2$ $y_2 + 3$ $y_3 \ge 2$
 8 $y_1 + 1$ $y_2 + 2$ $y_3 \ge 3$

Duales Programm DP

Schwacher Dualitätssatz besagt: Für alle zulässigen Lösungen (x_1, x_2) von PP und alle zulässigen Lösungen (y_1, y_2, y_3) von DP gilt:

$$12y_1 + 3y_2 + 4y_3 \ge 2x_1 + 3x_2$$

Dualität

Zielfunktion ZF :	$f(x_1, x_2) =$	2	<i>x</i> ₁	+	3	<i>X</i> ₂	= max!
Nebenbedingungen NB:		4	<i>X</i> ₁	+	8	<i>X</i> ₂	≤ 12
		2	<i>X</i> ₁	+		<i>X</i> ₂	≤ 3
		3	<i>X</i> ₁	+	2	<i>X</i> ₂	≤ 4
			<i>X</i> ₁				≥ 0
Primales Program	ım <i>PP</i>					<i>X</i> ₂	≥ 0

ZF:
$$g(y_1, y_2, y_3) = \begin{bmatrix} 12 & y_1 & + & 3 & y_2 & + & 4 & y_3 & = min! \\ NB: & 4 & y_1 & + & 2 & y_2 & + & 3 & y_3 & \geq 2 \\ & 8 & y_1 & + & 1 & y_2 & + & 2 & y_3 & \geq 3 \end{bmatrix}$$
Duales Programm DP

Starker Dualitätssatz besagt:

PP lösbar $\Leftrightarrow DP$ lösbar

und wenn lösbar, dann max $f(x_1, x_2) = \min g(y_1, y_2, y_3)$ unter Nebenbedingungen.

Dualität

Primales Programm:

$$f(\overline{x}) = \overline{x}^T \overline{c} = max!$$
 $A\overline{x} \le \overline{b}$
 $\overline{x} \ge 0$
 $N = \{ \overline{x} \in \mathbb{R}^n \mid A\overline{x} \le \overline{b}, \overline{x} \ge 0 \}$

Duales Programm:

$$g(\overline{y}) = \overline{y}^T \overline{b} = min!$$
 $\overline{y}^T A \ge \overline{c}$
 $\overline{y} \ge 0$
 $M = \{ \overline{y} \in \mathbb{R}^m \mid \overline{y}^T A \ge \overline{c}, \overline{y} \ge 0 \}$

Schwacher Dualitätssatz: Für alle zulässigen Lösungen $\overline{x} \in N$ und $\overline{y} \in M$ des primalen bzw. dualen Programms gilt

$$\overline{x}^T\overline{c} \leq \overline{y}^T\overline{b}$$

Starker Dualitätssatz:

Primales Programm lösbar ⇔ zugehöriges duales Programm lösbar

und wenn lösbar, dann $\max_{\overline{x} \in N} f(\overline{x}) = \min_{\overline{y} \in M} g(\overline{y})$

Marco Stanley Fogg ist ein Student, dem nach dem Tod seines Onkels lediglich dessen antiquarische Buchsammlung als finanzielle Rücklage bleibt. Um sein Studium möglichst lange durch den Verkauf der Bücher finanzieren zu können, versucht er, seine Ernährung auf ein Minimum zu beschränken. Nachdem er für eine Menge von m wichtigen Nährstoffen $1, \ldots, m$ jeweils den minimalen täglichen Bedarf b_i $(i = 1, \ldots, m)$ für einen Mann seines Alters und Gewichts in Erfahrung gebracht hat, sucht er den lokalen Supermarkt auf und ermittelt für eine Menge von n Produkten $1, \ldots, n$ jeweils den Preis pro Einheit c_j $(j = 1, \ldots, n)$ sowie den Anteil a_{ij} des Nährstoffes i $(i = 1, \ldots, m)$ am Produkt j $(j = 1, \ldots, n)$.

Marco Stanley Fogg ist ein Student, dem nach dem Tod seines Onkels lediglich dessen antiquarische Buchsammlung als finanzielle Rücklage bleibt. Um sein Studium möglichst lange durch den Verkauf der Bücher finanzieren zu können, versucht er, seine Ernährung auf ein Minimum zu beschränken. Nachdem er für eine Menge von m wichtigen Nährstoffen $1, \ldots, m$ jeweils den minimalen täglichen Bedarf b_i ($i = 1, \ldots, m$) für einen Mann seines Alters und Gewichts in Erfahrung gebracht hat, sucht er den lokalen Supermarkt auf und ermittelt für eine Menge von n Produkten $1, \ldots, n$ jeweils den Preis pro Einheit c_j ($j = 1, \ldots, n$) sowie den Anteil a_{ij} des Nährstoffes i ($i = 1, \ldots, m$) am Produkt j ($j = 1, \ldots, n$).

Gesucht: lineares Programm *L*.

Marco Stanley Fogg ist ein Student, dem nach dem Tod seines Onkels lediglich dessen antiquarische Buchsammlung als finanzielle Rücklage bleibt. Um sein Studium möglichst lange durch den Verkauf der Bücher finanzieren zu können, versucht er, seine Ernährung auf ein Minimum zu beschränken. Nachdem er für eine Menge von m wichtigen Nährstoffen $1, \ldots, m$ jeweils den minimalen täglichen Bedarf b_i ($i = 1, \ldots, m$) für einen Mann seines Alters und Gewichts in Erfahrung gebracht hat, sucht er den lokalen Supermarkt auf und ermittelt für eine Menge von n Produkten $1, \ldots, n$ jeweils den Preis pro Einheit c_j ($j = 1, \ldots, n$) sowie den Anteil a_{ij} des Nährstoffes i ($i = 1, \ldots, m$) am Produkt j ($j = 1, \ldots, n$).

Gesucht: lineares Programm *L*.

Zielfunktion: minimiere $\sum_{j=1}^{n} c_j x_j$ (Kosten den Einkaufs)

Nebenbedingungen: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ für i = 1, ..., m

Marco Stanley Fogg ist ein Student, dem nach dem Tod seines Onkels lediglich dessen antiquarische Buchsammlung als finanzielle Rücklage bleibt. Um sein Studium möglichst lange durch den Verkauf der Bücher finanzieren zu können, versucht er, seine Ernährung auf ein Minimum zu beschränken. Nachdem er für eine Menge von m wichtigen Nährstoffen $1, \ldots, m$ jeweils den minimalen täglichen Bedarf b_i ($i = 1, \ldots, m$) für einen Mann seines Alters und Gewichts in Erfahrung gebracht hat, sucht er den lokalen Supermarkt auf und ermittelt für eine Menge von n Produkten $1, \ldots, n$ jeweils den Preis pro Einheit c_j ($j = 1, \ldots, n$) sowie den Anteil a_{ij} des Nährstoffes i ($i = 1, \ldots, m$) am Produkt j ($j = 1, \ldots, n$).

Gesucht: Duales Programm zu *L* und sinnvolle Interpretation.

Marco Stanley Fogg ist ein Student, dem nach dem Tod seines Onkels lediglich dessen antiquarische Buchsammlung als finanzielle Rücklage bleibt. Um sein Studium möglichst lange durch den Verkauf der Bücher finanzieren zu können, versucht er, seine Ernährung auf ein Minimum zu beschränken. Nachdem er für eine Menge von m wichtigen Nährstoffen $1, \ldots, m$ jeweils den minimalen täglichen Bedarf b_i $(i = 1, \ldots, m)$ für einen Mann seines Alters und Gewichts in Erfahrung gebracht hat, sucht er den lokalen Supermarkt auf und ermittelt für eine Menge von n Produkten $1, \ldots, n$ jeweils den Preis pro Einheit c_j $(j = 1, \ldots, n)$ sowie den Anteil a_{ij} des Nährstoffes i $(i = 1, \ldots, m)$ am Produkt j $(j = 1, \ldots, n)$.

Gesucht: Duales Programm zu *L* und sinnvolle Interpretation.

Zielfunktion: maximiere $\sum_{i=1}^{m} y_i b_i$

Nebenbedingungen: $\sum_{i=1}^{m} y_i a_{ij} \leq c_j$ für j = 1, ..., n

Marco Stanley Fogg ist ein Student, dem nach dem Tod seines Onkels lediglich dessen antiquarische Buchsammlung als finanzielle Rücklage bleibt. Um sein Studium möglichst lange durch den Verkauf der Bücher finanzieren zu können, versucht er, seine Ernährung auf ein Minimum zu beschränken. Nachdem er für eine Menge von m wichtigen Nährstoffen $1, \ldots, m$ jeweils den minimalen täglichen Bedarf b_i $(i = 1, \ldots, m)$ für einen Mann seines Alters und Gewichts in Erfahrung gebracht hat, sucht er den lokalen Supermarkt auf und ermittelt für eine Menge von n Produkten $1, \ldots, n$ jeweils den Preis pro Einheit c_j $(j = 1, \ldots, n)$ sowie den Anteil a_{ij} des Nährstoffes i $(i = 1, \ldots, m)$ am Produkt j $(j = 1, \ldots, n)$.

- Der Vektor y enthält zu jedem Nährstoff i einen Eintrag y_i , der dem festzulegenden Preis einer Einheit des Nährstoffes i entspricht.
- Das duale Programm maximiert dann die Kosten für einen Einkauf.
- Die Kosten der für eine Einheit eines Produktes benötigten Nährstoffe, darf einen maximalen Preis *c_i* nicht überschreiten.
- Der Besitzer des lokalen Supermarktes möchte den Preis eines solchen Einkaufs maximieren.

Flussproblem als lineares Programm

Betrachte das Netzwerk (*D*, *s*, *t*, *c*):

Führe für jede Kante (i, j) eine **Variable** $x_{i,j}$ ein.

Idee: $x_{i,j}$ gibt den Fluss an, der über die Kante (i,j) fließt.

Maximiere den Wert des Flusses:

$$f(\overline{X}) = \sum_{(s,i) \in E} X_{s,i} - \sum_{(i,s) \in E} X_{i,s}$$

Unter den Bedingungen:

- 1. Kapazitätsbedingung: für alle $(i, j) \in E$
 - $0 \le x_{i,j}$
 - $X_{i,j} \leq c(i,j)$
- 2. Flusserhaltung: für alle $i \in V \setminus \{s, t\}$ $\sum x_{i,j} \sum x_{j,i} = 0$

$$\sum_{(i,j)\in E} x_{i,j} - \sum_{(j,i)\in E} x_{j,i} = 0$$

Betrachte das Netzwerk (D, s, t, c) und sei \mathcal{P} die Menge aller einfachen Pfade von s nach t. Führe für jeden einfachen Pfad P von s nach t eine **Variable** x_P ein.

Idee: x_P gibt den Fluss an, der über den Pfad P fließt.

Betrachte das Netzwerk (D, s, t, c) und sei \mathcal{P} die Menge aller einfachen Pfade von s nach t. Führe für jeden einfachen Pfad P von s nach t eine **Variable** x_P ein.

Idee: x_P gibt den Fluss an, der über den Pfad P fließt.

Maximiere:

$$f(\overline{X}) = \sum_{P \in P} X_P$$

Unter den Bedingungen:

$$\sum_{P \in \mathcal{P}: (u,v) \in P} x_P \le c(u,v) \quad \text{für alle } (u,v) \in E$$

$$x_P \geq 0$$

für alle $P \in \mathcal{P}$

Betrachte das Netzwerk (D, s, t, c) und sei \mathcal{P} die Menge aller einfachen Pfade von s nach t. Führe für jeden einfachen Pfad P von s nach t eine **Variable** x_P ein.

Idee: x_P gibt den Fluss an, der über den Pfad P fließt.

Maximiere:

$$f(\overline{X}) = \sum_{P \in P} x_P$$

Unter den Bedingungen:

$$\sum_{P \in \mathcal{P}: (u,v) \in P} x_P \le c(u,v) \quad \text{für alle } (u,v) \in E$$

$$x_P \ge 0$$

für alle $P \in \mathcal{P}$

Problem dieser Formulierung:

 \mathcal{P} kann exponentiell viele Pfade enthalten.

Betrachte das Netzwerk (D, s, t, c) und sei \mathcal{P} die Menge aller einfachen Pfade von s nach t.

Führe für jeden einfachen Pfad P von s nach t eine Variable x_P ein.

Idee: x_P gibt den Fluss an, der über den Pfad P fließt.

Maximiere:

$$f(\overline{X}) = \sum_{P \in P} X_P$$

Unter den Bedingungen:

$$\sum_{P \in \mathcal{P}: (u,v) \in P} x_P \le c(u,v) \quad \text{für alle } (u,v) \in E$$

$$x_P \geq 0$$

für alle $P \in \mathcal{P}$

Duales Programm: Führe für jede Kante $(u, v) \in E$ **Variable** $y_{u,v}$ ein.

Minimiere:

$$\sum_{(u,v)\in E} y_{u,v}\cdot c(u,v)$$

Unter den Bedingungen:

$$\sum_{(u,v)\in P} y_{u,v} \ge 1 \quad \text{für alle } P \in \mathcal{P}$$

$$y_{u,v} \geq 0$$

 $y_{u,v} \ge 0$ für alle $(u, v) \in E$

Betrachte das Netzwerk (D, s, t, c) und sei \mathcal{P} die Menge aller einfachen Pfade von s nach t.

Führe für jeden einfachen Pfad P von s nach t eine Variable x_P ein.

Idee: x_P gibt den Fluss an, der über den Pfad P fließt.

Maximiere:

$$f(\overline{X}) = \sum_{P \in P} X_P$$

Unter den Bedingungen:

$$\sum_{P \in \mathcal{P}: (u,v) \in P} x_P \le c(u,v) \quad \text{für alle } (u,v) \in E$$

$$x_P \ge 0$$

für alle $P \in \mathcal{P}$

Duales Programm: Führe für jede Kante $(u, v) \in E$ **Variable** $y_{u,v}$ ein.

Minimiere:

$$\sum_{(u,v)\in E} y_{u,v}\cdot c(u,v)$$

Für $y_{u,v} \in \{0,1\}$ beschreiben Variablen einen s, t-Schnitt.

Unter den Bedingungen:

$$\sum_{(u,v)\in P} y_{u,v} \ge 1 \quad \text{für alle } P \in \mathcal{P}$$

$$y_{u,v} > 0$$

 $y_{u,v} \ge 0$ für alle $(u,v) \in E$