Теория за ДИС 1.1

Иво Стратев

21 ноември 2017 г.

Околности. Определения за граница на редица и фунцкия

Околности

Околност на $a \in \mathbb{R}$

$$\forall \varepsilon > 0 \quad |x - a| < \varepsilon \iff x \in (a - \varepsilon, a + \varepsilon)$$

Пробита околност на $a \in \mathbb{R}$

$$\forall \varepsilon > 0 \quad 0 < |x - a| < \varepsilon \iff x \in (a - \varepsilon, a) \cup (a, a + \varepsilon)$$

Околност на $a-0 \in \mathbb{R}$

$$\forall \varepsilon > 0 \quad a - \varepsilon < x < a \iff x \in (a - \varepsilon, a)$$

Околност на $a+0 \in \mathbb{R}$

$$\forall \varepsilon > 0 \quad a < x < a + \varepsilon \iff x \in \left(a, \ a + \varepsilon\right)$$

Околност на ∞

$$\forall M>0\in\mathbb{R}\quad x>M\iff x\in(M,\;\infty)$$

Околност на $-\infty$

$$\forall M < 0 \in \mathbb{R} \quad x < M \iff x \in (-\infty, M)$$

Редици

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a \in \mathbb{R}$$

$$\forall \varepsilon \; \exists \nu \in \mathbb{N} \; : \; \forall n \in \mathbb{N} \; : \; n > \nu \implies |a_n - a| < \varepsilon$$

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n\to\infty]{} \infty$$

 $\forall C \in \mathbb{R}^+ \; \exists \nu \in \mathbb{N} : \; \forall n \in \mathbb{N} : \; n > \nu \implies a_n > C$

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n\to\infty]{} -\infty$$

 $\forall C \in \mathbb{R}^- \ \exists \nu \in \mathbb{N} : \forall n \in \mathbb{N} : n > \nu \implies a_n < C$

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a+0$$

 $\forall \varepsilon \exists \nu \in \mathbb{N} : \forall n \in \mathbb{N} : n > \nu \implies a < a_n < a + \varepsilon$

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a - 0$$

 $\forall \varepsilon \; \exists \nu \in \mathbb{N} \; : \; \forall n \in \mathbb{N} \; : \; n > \nu \implies a - \varepsilon < a_n < a$

Функции

$$f(x) \xrightarrow[x \to x_0]{} A \in \mathbb{R}$$

Хайне
$$f: \mathbb{D} \to \mathbb{R}$$
 $f: \mathbb{D} \to \mathbb{R}$ $f: \mathbb{D} \to \mathbb{R}$ $f: \mathbb{D} \to \mathbb{R}$ $f(x) \xrightarrow[x \to x_0]{} A \in \mathbb{R}$ $f(x) \xrightarrow[x \to x_0]{} A \mapsto |f(x) - A| < \varepsilon$

Лява (Дясна) граница

$$f(x) \xrightarrow[x \to x_0 - 0 \ (x_0 + 0)]{} A$$

Хайне
$$f: \mathbb{D} \to \mathbb{R}$$
 $f: \mathbb{D} \to \mathbb{R}$ $f: \mathbb{D} \to \mathbb{R}$

$$f(x) \xrightarrow[x \to \pm \infty]{} A \in \mathbb{R}$$

Хайне
$$f: \mathbb{D} \to \mathbb{R}$$
 $f: \mathbb{D} \to \mathbb{R}$ $f: \mathbb{D} \to \mathbb{R}$ $f: \mathbb{D} \to \mathbb{R}$ $f: \mathbb{D} \to \mathbb{R}$ $f(x) \xrightarrow[x \to \pm \infty]{} A \in \mathbb{R}$ $f(x) \xrightarrow[x \to \pm \infty]{} A \in \mathbb{R}$ $f(x) \xrightarrow[x \to \pm \infty]{} A \in \mathbb{R}$ $f(x) \xrightarrow[x \to \pm \infty]{} A \mapsto |f(x) - A| < \varepsilon$

$$f(x) \xrightarrow[x \to c]{} \pm \infty$$
при $c=a \in R$ или $c=a-0$ или $c=a+0$ или $c=\pm \infty$

Хайне за $f(x) \xrightarrow[x \to c]{} \pm \infty$ при $c=a\in R$ или c=a-0 или c=a+0 или $c=\pm \infty$

$$f: \mathbb{D} \to \mathbb{R} \quad f(x) \xrightarrow[x \to c]{} \pm \infty$$

$$\forall \{x_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} c \quad x_n \in \mathbb{D}$$

$$\Longrightarrow \{f(x_n)\} \xrightarrow[n \to \infty]{} \pm \infty$$

Коши за $f(x) \xrightarrow[x \to a \in \mathbb{R}]{} \pm \infty$

$$f: \mathbb{D} \to \mathbb{R} \quad f(x) \xrightarrow[x \to a]{} \pm \infty$$

$$\forall A > 0 \ (A < 0) \ \exists \delta > 0, \ x \in \mathbb{D} \ : \ 0 < |x - a| < \delta$$

$$\implies f(x) > A \ (f(x) < A)$$

Koши за $f(x) \xrightarrow[x \to a+0]{} \pm \infty$

$$\begin{split} f: \mathbb{D} &\to \mathbb{R} \quad f(x) \xrightarrow[x \to a \pm 0]{} \pm \infty \\ \forall A > 0 \ (A < 0) \ \exists \delta > 0, \ x \in \mathbb{D} \ : \ a < x < a + \delta \ (a - \delta < x < a) \\ &\Longrightarrow f(x) > A \ (f(x) < A) \end{split}$$

Коши за $f(x) \xrightarrow[x \to \pm \infty]{} \pm \infty$

$$\begin{split} f: \mathbb{D} &\to \mathbb{R} \quad f(x) \xrightarrow[x \to \pm \infty]{} \pm \infty \\ \forall A &> 0 \ (A < 0) \ \exists B > 0 \ (B < 0), \ x \in \mathbb{D} \ : \ x > B \ (x < B) \\ \Longrightarrow & f(x) > A \ (f(x) < A) \end{split}$$

Отрицания на определения за граници на Функции

$$f(x) \xrightarrow{x \to x_0} A \in \mathbb{R}$$

Хайне
$$f: \mathbb{D} \to \mathbb{R}$$
 $f: \mathbb{D} \to \mathbb{R}$ $f(x) \xrightarrow{x \to x_0} A \in \mathbb{R}$ $f(x) \to x_0 = x_$

Лява (Дясна) граница

$$f(x) \xrightarrow[x \to x_0 = 0 \ (x_0 + 0)]{} f(x)$$

Хайне
$$f: \mathbb{D} \to \mathbb{R}$$
 $f: \mathbb{D} \to \mathbb{R}$ $f: \mathbb{D} \to \mathbb{R}$

$$f(x) \xrightarrow[x \to \pm \infty]{} A \in \mathbb{R}$$

Хайне
$$f: \mathbb{D} \to \mathbb{R}$$
 $f: \mathbb{D} \to \mathbb{R}$ $f: \mathbb{D} \to \mathbb{R}$ $f(x) \xrightarrow{x \to \pm \infty} A \in \mathbb{R}$ $f(x) \xrightarrow{x \to \pm \infty} A \in \mathbb{R}$ $f(x) \xrightarrow{x \to \pm \infty} A \in \mathbb{R}$ $\exists \{x_n\}_{n=1}^{\infty} \xrightarrow{n \to \infty} \pm \infty, \ x_n \in \mathbb{D}$ $\exists \varepsilon > 0 \ \forall M > 0 \ (M < 0), \ x \in \mathbb{D} : \ x > M \ (x < M)$ $\Longrightarrow |f(x) - A| \ge \varepsilon$

$$f(x) \underset{x \to c}{\longrightarrow} \pm \infty$$
при $c = a \in R$ или $c = a - 0$ или $c = a + 0$ или $c = \pm \infty$

Хайне за f(x) $\xrightarrow{x \to c} \pm \infty$ при $c = a \in R$ или c = a - 0 или c = a + 0 или $c = \pm \infty$

$$f: \mathbb{D} \to \mathbb{R} \quad f(x) \xrightarrow{x \to c} \pm \infty$$

$$\exists \{x_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} c \quad x_n \in \mathbb{D}$$

$$\Longrightarrow \{f(x_n)\} \xrightarrow[n \to \infty]{} \pm \infty$$

Коши за
$$f(x) \xrightarrow{x \to a \in \mathbb{R}} \pm \infty$$

$$\begin{split} f: \mathbb{D} &\to \mathbb{R} \quad f(x) \xrightarrow{x \to a} \pm \infty \\ \exists A > 0 \; (A < 0) \; \forall \delta > 0, \; x \in \mathbb{D} \; : \; 0 < |x - a| < \delta \\ \Longrightarrow f(x) \leq A \; (f(x) \geq A) \end{split}$$

Коши за
$$f(x) \xrightarrow[x \to a \pm 0]{} \pm \infty$$

$$f: \mathbb{D} \to \mathbb{R} \quad f(x) \xrightarrow{x \to a \pm 0} \pm \infty$$

$$\exists A > 0 \ (A < 0) \ \forall \delta > 0, \ x \in \mathbb{D} : \ a < x < a + \delta \ (a - \delta < x < a)$$

$$\implies f(x) \le A \ (f(x) \ge A)$$

Koши за
$$f(x) \xrightarrow{x \to +\infty} \pm \infty$$

$$\begin{split} f: \mathbb{D} &\to \mathbb{R} \quad f(x) \xrightarrow[x \to \pm \infty]{} \pm \infty \\ \exists A > 0 \; (A < 0) \; \forall B > 0 \; (B < 0), x \in \mathbb{D} \; : \; x > B \; (x < B) \\ &\Longrightarrow f(x) \leq A \; (f(x) \geq A) \end{split}$$

Аритметични действия със сходящи редици

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a$$

$$\{b_n\}_{n=1}^{\infty} \xrightarrow[n\to\infty]{n\to\infty} b$$

$$0 \le |a_n + b_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b|$$

$$(|a_n - a| \xrightarrow[n \to \infty]{} 0, |b_n - b| \xrightarrow[n \to \infty]{} 0)$$

$$\implies \{a_n + b_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a + b \quad \square$$

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a$$

$$\{b_n\}_{n=1}^{\infty} \xrightarrow[n\to\infty]{n\to\infty} b$$

$$0 \le |a_n + b_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b|$$
$$(|a_n - a| \xrightarrow[n \to \infty]{} 0, |b_n - b| \xrightarrow[n \to \infty]{} 0)$$

$$(|a_n - a| \xrightarrow[n \to \infty]{} 0, |b_n - b| \xrightarrow[n \to \infty]{} 0)$$

$$\implies \{a_n + b_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a + b \quad \square$$

$$\{b_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} b$$

$$\implies \forall \varepsilon > 0 \ \exists \nu \in \mathbb{N} : \forall n \in \mathbb{N} : n > \nu \implies |b_n - b| = |-(b_n - b)| = |-b_n - (-b)| < \varepsilon$$

$$\implies \{-b_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} -b \quad \square$$

$$\implies \{a_n + (-)b_n\}_{n=1}^{\infty} = \{a_n - b_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a + (-b) = a - b$$

$$\implies \{a_n - b_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a - b \quad \Box$$

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a$$

$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a$$

$$\{b_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} b$$

Th
$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a$$
, $\forall n \in \mathbb{N} \ a_n > 0 \implies a \ge 0$
 $\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a \implies \forall \varepsilon > 0 \ \exists \nu \in \mathbb{N} : \forall n \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$
 $\exists n \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$
 $\exists n \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$
 $\exists n \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$

Th
$$\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a$$
, $\forall n \in \mathbb{N} \ a_n < 0 \implies a \leq 0$
 $\{a_n\}_{n=1}^{\infty} \xrightarrow[n \to \infty]{} a \implies \forall \forall \varepsilon > 0 \ \exists \nu \in \mathbb{N} : \forall n \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$
 $\exists \nu \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$
 $\exists \nu \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$
 $\exists \nu \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$
 $\exists \nu \in \mathbb{N} : n > \nu \implies |a_n - a| < \varepsilon$

Th(За непрекъснатите ф-ци)

Ако f(x) е непрекъсната в околност на x_0 , $f(x_0) > 0$ ($f(x_0) < 0$) и f(x) е непрекъсната в x_0

$$\exists \delta > 0 : \forall x \in (x_0 - \delta, x_0 + \delta) \ f(x) > \frac{f(x_0)}{2} \ (f(x) < \frac{f(x_0)}{2})$$

Д-во: f(x) е непрекъсната в околност на x_0 $\Longrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; : \; |x - x_0| < \delta \; \Longrightarrow \; |f(x) - f(x_0)| < \varepsilon$

$$\varepsilon := \frac{f(x_0)}{2} = y_0, \ \forall y_0 \ \exists \delta_{y_0} > 0 : \ |x - x_0| < \delta_{y_0}$$

$$\implies |f(x) - f(x_0)| < y_0 \iff f(x_0) - y_0 < f(x) < f(x_0) + y_0$$

$$\implies \frac{f(x_0)}{2} < f(x) < \frac{3f(x_0)}{2} \implies f(x) > \frac{f(x_0)}{2} \quad \Box$$

Th(Вайерщрас)

Нека $f(x) \in C[a, b]$ то тя е ограничена и има НГС и НМС.

Д-во: f(x) - ограничена $\iff \exists M \in \mathbb{R} \ \forall x \in [a,\ b] \quad f(x) \leq M$

Доп., че f(x) е неограничена $\implies \forall M \in \mathbb{R} \ \exists x_M \in [a, b] \ f(x_M) > M$

$$\implies \forall n \in \mathbb{N} \ \exists x_n \in [a, \ b] \ f(x_n) \ge n$$

От Th(Болцано-Вайерщрас за редици)

$$\implies \exists \{x_{n_k}\}_{k=1}^\infty -$$
сходяща подредица на $\{x_n\}_{n=1}^\infty$

и
$$x_{n_k} \xrightarrow[k \to \infty]{} x_0 \in [a, b].$$

Ot
$$f(x) \in C[a, b] \implies \lim_{k \to \infty} f(x_{n_k}) = f(x_0)$$

$$f(x_0) \ge n \implies f(x_{n_k}) \ge n_k > k \mid \lim_{k \to \infty}$$

$$\lim_{k \to \infty} f(x_{n_k}) \ge \lim_{k \to \infty} k = \infty \implies \sharp (\{f(x_{n_k})\} \text{ е ограничена})$$
 \square

Нека
$$M = \sup\{f(x) \mid x \in [a, b]\}$$
 Доп., че $\forall x \in [a, b]$ $f(x) < M$

$$g(x) = \frac{1}{M - f(x)}$$

От аритметични действия с неп. функции $\implies g(x)$ е непрекъсната

$$\implies \exists C > 0 : \forall x \in [a, b] \quad g(x) \le C$$

$$\implies \frac{1}{M-f(x)} \le C \mid \frac{M-f(x)}{C}$$

$$\frac{1}{C} \le M - f(x)$$

$$f(x) \le M - \frac{1}{C} \,\forall x \in [a, b] \implies \sharp (M = \sup\{f(x) \mid x \in [a, b]\})$$

$$\implies \exists x_{max} \ f(x) \leq M \quad \forall x \in [a, b], \ f(x_{max}) = M \quad \Box$$

Нека
$$m = \inf\{f(x) \mid x \in [a, b]\}$$
 Доп., че $\forall x \in [a, b] \quad f(x) > m$

$$h(x) = \frac{1}{f(x) - m}$$

От аритметични действия с неп. функции $\implies h(x)$ е непрекъсната

$$\implies \frac{1}{f(x)-m} \le C \mid \frac{f(x)-m}{C}$$

$$\frac{1}{C} \le f(x) - m$$

$$\frac{1}{C} + m \le f(x) \ \forall x \in [a, b] \implies \ \ \ \not \le (m = \inf\{f(x) \mid x \in [a, b]\})$$

$$\implies \exists x_{min} \ f(x) \ge m \quad \forall x \in [a, \ b], \ f(x_{min}) = m \quad \Box$$

Th(Болцано)

Нека
$$f(x) \in C[a, b], f(a)f(b) < 0 \implies \exists c \in (a, b) : f(c) = 0$$

Д-во: БОО
$$f(a) > 0, f(b) < 0$$

$$A = \{ \forall x \in [a, \ b] : f(x) > 0 \} \subset [a, \ b] \implies A$$
 е ограчено $c = limsup A$

Допс.
$$f(c) > 0$$

$$f(c) > 0 \implies \exists \delta > 0 : \forall x \in (c - \delta, ; c + \delta) \ f(x) > \frac{f(c)}{2} > 0$$

Допс. f(c) < 0

$$f(c) < 0 \implies \exists \varepsilon > 0 : \forall x \in (c - \varepsilon, ; c + \varepsilon) \ f(x) < \frac{f(c)}{2} < 0$$

$$\forall x > c \ f(x) \ge 0 \implies f(f(c) < 0) \ (2)$$

От (1) и (2)
$$\implies \exists c \in (a, b) \ f(c) = 0 \quad \Box$$

Th Болцано-Вайерщрас (за междинните стойностии)

Нека $f(x) \in C[a, b], m = minf(x)$ и n = maxf(x)

$$\implies \forall c \in [m, n] \ \exists x_c \in [a, b] : f(x_c) = c$$

Д-во:
$$h(x) = f(x) - c$$

Ако
$$c=m$$
 или $c=n \implies \exists x_c \in [a, b] : f(x_c)=c$

Ако
$$c \in (m, n)$$
 $d = min\{x_{min}, x_{max}\}$ $e = max\{x_{min}, x_{max}\}$

От Th(Болцано) за
$$h$$
 в $[d, e] \implies \exists x_c : h(x_c) = f(x_c) - c = 0$

$$\implies \exists x_c \in [a, b] : f(x_c) = c \quad \Box$$

Теоремки за средни стойности. Връзка между знак на първа производна и монотоност на функция. + Теоремка за константа функция

Th(Ферма)

Нека f(x) е дефинирна в околност на x_0 - лок. екст. и f(x) е диференцируема в x_0 , тогава $f'(x_0)=0$

Д-во:

Ако x_0 е т. лок. макс.

$$\exists \delta > 0 : \forall x \in (x_0 - \delta, x_0 + \delta) \quad f(x) \le f(x_0)$$

$$\implies f(x) - f(x_0) \le 0 \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

Ako
$$x > x_0$$

$$x > x_0 \implies x - x_0 > 0 \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

$$\implies \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} \le 0 (1)$$

Ако $x < x_0$

$$x < x_0 \implies x - x_0 < 0 \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

$$\implies \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \ (2)$$

От (1) и (2)
$$\implies \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = 0$$

Ако x_0 е т. лок. мин.

$$\exists \delta > 0 : \forall x \in (x_0 - \delta, x_0 + \delta) \quad f(x) \ge f(x_0)$$

$$\implies f(x) - f(x_0) \ge 0 \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

Ако $x > x_0$

$$x > x_0 \implies x - x_0 > 0 \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

$$\implies \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$
 (3)

Ако $x < x_0$

$$x < x_0 \implies x - x_0 < 0 \quad \forall x \in (x_0 - \delta, x_0 + \delta)$$

$$\implies \lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \tag{4}$$

От (3) и (4)
$$\implies \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = 0$$
 \square

Th(Рол)

Нека
$$f(x) \in C[a, b]$$
 и $f(x)$ е диференцируема в (a, b) и $f(a) = f(b)$ $\exists c \in (a, b) : f'(c) = 0$

Д-во:

Ako
$$f(x) \equiv const \implies f'(x) = 0$$

Нека
$$f(x) \not\equiv const$$

От
$$\operatorname{Th}(\operatorname{Baйepupac}) \implies$$

$$\exists x_{min}, x_{max} \in [a, b]$$
:

$$f(x_{max}) = max\{f(x) \mid x \in [a, b]\}\$$

$$f(x_{min}) = min\{f(x) \mid x \in [a, b]\}\$$

Ако $x_{min}, x_{max} \notin (a, b)$

$$x_{min} \neq x_{max}, f(a) = f(b) \implies minf(x) = maxf(x)$$

 $\implies f(x) \equiv const \implies \mbox{$\rlap/$}(f(x) \not\equiv const)$

Ако поне една от x_{min} или $x_{max} \in (a, b)$

Ако $x_{max} \in (a, b), \ c = x_{max}$ в противен случай $c = x_{min}$ $\implies c \in (a, b)$ - лок. екст. от $\operatorname{Th}(\Phi \text{ерма})$ $\implies f'(c) = 0$

Th(За крайните нараствания на Лагранж)

Нека $f(x) \in C[a, b]$ и f(x) е диференцируема в (a, b). Тогава $\exists c \in (a, b) : f(b) - (a) = f'(c)(b - a)$

Д-во:

$$h(x) = f(x) - kx$$

$$h(a) = f(a) - ka = f(b) - kb = h(b)$$

$$k : f(a) - ka = f(b) - kb$$

$$kb - ka = f(b) - f(a)$$

$$k(b-a) = f(b) - f(a)$$

$$k = \frac{f(b) - f(a)}{b - a}$$

От Th(Рол) за
$$h(x) \implies \exists c \in (a, b) : h'(c) = 0$$

$$h'(c) = f'(c) - k = 0$$

$$\implies f'(c) = k = \frac{f(b) - f(a)}{b - a}$$

$$\implies f'(c)(b-a) = f(b) - f(a) \quad \Box$$

Обобщена Th(За крайните нараствания на Коши)

Нека $f(x), g(x) \in C[a, b]$ и f(x), g(x) са диференцируеми в (a, b), като $g'(x) \neq 0 \ \forall x \in (a, b).$ Тогава $\exists c \in (a, b) : \frac{f(b) - (a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$

Д-во:

Коректност:

Допс., че
$$g(b) - g(a) = 0$$
 то от Th(Рол) $\implies \exists c_2 \in (a, b) : g'(c_2) = 0$

$$h(x) = f(x) - kg(x)$$

$$k : h(a) = f(a) - kg(a) = f(b) - kg(b) = h(b)$$

$$f(a) - kg(a) = f(b) - kg(b)$$

$$kg(b) - kg(a) = f(b) - f(a)$$

$$k(g(b) - g(a)) = f(b) - f(a)$$

$$k = \frac{f(b) - f(a)}{g(b) - g(a)}$$

От Th(Рол) за
$$h(x) \implies \exists c \in (a, b) : h'(c) = 0$$

$$h'(c) = f'(c) - kg'(x) = 0$$

$$\implies f'(c) = kg'(c) = \frac{f(b) - f(a)}{g(b) - g(a)}g'(c)$$

$$\implies \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \quad \Box$$

$$\mathbf{Th}(f(x) \uparrow \in C(a, b) \iff \forall x \in (a, b) \ f'(x) \ge 0)$$

$$\mathbf{Th}(f(x) \uparrow \in C(a, b) \implies \forall x \in (a, b) \ f'(x) \ge 0)$$

Нека $t \in (a, b)$

Ако x > t

$$x > t, \ f(x) \uparrow \Longrightarrow f(x) \ge f(t)$$

$$\implies f(x) - f(t) \ge 0, \ x - t > 0$$

$$\implies \lim_{x \to t} \frac{f(x) - f(t)}{x - t} = f'(t) \ge 0 \quad (1)$$

Ако x < t

$$x < t, \ f(x) \uparrow \Longrightarrow f(x) \le f(t)$$

$$\implies f(x) - f(t) \le 0, \ x - t < 0$$

$$\implies \lim_{x \to t} \frac{f(x) - f(t)}{x - t} = f'(t) \ge 0 \quad (2)$$

От (1) и (2)
$$\implies \forall x \in (a, b) f'(x) \ge 0$$
 \square

$$\mathbf{Th}(f(x) \in C(a, b) : \forall x \in (a, b) \ f'(x) \ge 0 \implies f(x) \uparrow)$$

$$f(x) \uparrow \Longrightarrow \forall x_1, x_2 \in (a, b); x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$$

Доп., че
$$\exists t_1, t_2 \in (a, b); t_1 < t_2; f(t_1) > f(t_2)$$

От $\operatorname{Th}(\Lambda$ агранж за крайните нараствания) \implies

$$\exists c \in (t_1, t_2) : f(t_2) - f(t_1) = f'(c)(t_2 - t_1)$$

$$f'(x) \ge 0 \ \forall x \in (a, b) \implies f'(c) \ge 0$$

$$t_1 < t_2 \implies t_2 - t_1 > 0$$

$$\implies f(t_2) - f(t_1) \ge 0 \implies f(t_2) \ge f(t_1) \implies \sharp (f(t_1) > f(t_2))$$

$$f(x) \in C(a, b) : \forall x \in (a, b) f'(x) \ge 0 \implies f(x) \uparrow \square$$

$$\mathbf{Th}(f(x)\downarrow\in C(a,\ b)\iff \forall x\in(a,\ b)\ f'(x)\leq 0)$$

$$\mathbf{Th}(f(x)\downarrow\in C(a,\ b)\implies \forall x\in(a,\ b)\ f'(x)<0)$$

Нека $t \in (a, b)$

Ако x > t

$$x > t, \ f(x) \downarrow \Longrightarrow \ f(x) \le f(t)$$

$$\implies f(x) - f(t) \le 0, \ x - t > 0$$

$$\implies \lim_{x \to t} \frac{f(x) - f(t)}{x - t} = f'(t) \le 0$$
 (3)

Ако x < t

$$x < t, \ f(x) \downarrow \implies f(x) \ge f(t)$$

$$\implies f(x) - f(t) \ge 0, \ x - t < 0$$

$$\implies \lim_{x \to t} \frac{f(x) - f(t)}{x - t} = f'(t) \le 0$$
 (4)

От (3) и (4)
$$\Longrightarrow \forall x \in (a, b) f'(x) \leq 0$$
 \square

$$\mathbf{Th}(f(x) \in C(a, b); \ f'(x) \le 0 \ \forall x \in (a, b) \implies f(x) \downarrow)$$

$$f(x) \downarrow \Longrightarrow \forall x_1, x_2 \in (a, b); x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$$

Доп., че
$$\exists t_1, \ t_2 \in (a, \ b); \ t_1 < t_2; \ f(t_1) < f(t_2)$$

От Th(Лагранж за крайните нараствания) \Longrightarrow

$$\exists c \in (t_1, t_2) : f(t_2) - f(t_1) = f'(c)(t_2 - t_1)$$

$$f'(x) \le 0 \ \forall x \in (a, b) \implies f'(c) \le 0$$

$$t_1 < t_2 \implies t_2 - t_1 > 0$$

$$\implies f(t_2) - f(t_1) \le 0 \implies f(t_2) \le f(t_1) \implies \sharp (f(t_1) < f(t_2))$$

$$\implies f(x) \in C(a, b); \ f'(x) \le 0 \ \forall x \in (a, b) \implies f(x) \downarrow \quad \Box$$

Th
$$\forall x \in (a, b) \ f'(x) = 0 \implies \forall x \in (a, b) \ f(x) \equiv const$$

Нека f(x) е дефинирна и диференцируема в (a, b) и

$$\forall x \in (a, b) \ f'(x) = 0 \implies \forall x \in (a, b) \ f(x) \equiv const$$

Д-во:

Нека $x_0 \in (a, b)$ От Th(Лагранж за крайните нараствания)

$$\implies \exists c \in (a, b) : \forall x \in (a, b) f(x) - f(x_0) = f'(c)(x - x_0)$$

$$f'(x) = 0 \ \forall x \in (a, b) \implies f'(c) = 0 \implies f(x) - f(x_0) = 0$$

$$\implies \forall x \in (a, b) \ f(x) = f(x_0) \implies \forall x \in (a, b) \ f(x) \equiv const \quad \Box$$

Формула на Лайбниц за производна от по-висок ред на произведение на две функции

Нека функциите f и g са n пъти диференцируеми. Тогава n-та производна на фунцкията f.g съществува и се дава с формулата:

$$(f.g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}.g^{(n-k)}$$

Уравнение на допирателна към графика на фунцкия

Полином на Тейлор

$$(T_n(f, a))(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Уравнение на допирателна към графика на фунцкия

$$y = T_1(f, x_0) = f(x_0) + f'(x_0)(x - x_0)$$

Нека $f:(a,b)\to\mathbb{R}$

f е изпъкнала \smile , ако:

$$\forall x, x_0 \in (a, b) \implies f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

$$\forall x_1, x_2 \in (a, b) : x_1 < x_2 \implies f'(x_1) \le f'(x_2) \quad (f' \uparrow)$$

$$\forall x \in (a, b) \implies f''(x) \ge 0$$

f е вдълбната , ако:

$$\forall x, x_0 \in (a, b) \implies f(x) \leq f(x_0) + f'(x_0)(x - x_0)$$

$$\forall x_1, x_2 \in (a, b) : x_1 < x_2 \implies f'(x_1) \geq f'(x_2) \quad (f' \downarrow)$$

$$\forall x \in (a, b) \implies f''(x) \leq 0$$

Задачи:

Задача 1.

Нека
$$f:[0,6) \to \mathbb{R}, \ f(0)=2, \ f(1)=1, \ \lim_{x \to 6-0} f(x)=3$$

Докажете, че $\exists \min f(x), x \in [0,6)$

Док-во:

$$\exists \delta < 1 \ \forall x \in (6 - \delta, 6) \ f(x) \in (2, 5, 3, 5)$$

$$x > 6 - \delta \implies f(x) > 2, 5 \implies x \in [0, 6 - \delta] \exists \min f(x) \le 1$$

Дайте пример за графика на фунцкия, която няма максимум

Задача 2.

Нека
$$f:[0,6)\to\mathbb{R},\ f(0)=4,\ f(4)=2,\ \lim_{x\to 6-0}f(x)=1$$

Докажете, че $\exists \max f(x), x \in [1,6)$

Док-во:

$$\exists \delta < 1 \ \forall x \in (6 - \delta, 6) \ f(x) \in (0, 5, 1, 5)$$

$$x > 6 - \delta \implies f(x) < 1, 5 \implies x \in [0, 6 - \delta] \exists \max f(x) \ge 4$$

Дайте пример за графика на фунцкия, която няма минимум

Използвана литература:

- 1. Записки от лекциите на доц. д-р. Първан Първанов от курса Диференциално и интегрално смятене 1, воден през зимния семестър на 2016г. на спец. Информатика във ФМИ към СУ "Св. Климент Охридкси"
- 2. П. Джаков Р. Малеев Р. Леви С. Троянски, Диференциално и интегрално смятане Функции на една променлива, Факултет по Математика и Информатика СУ "Св. Климент Охридкси 2007 г.
- 3. Е. Любенова П. Недевски К. Николов Л. Николова В. Попов, РЪКОВОДСТВО ПО МАТЕМАТИЧЕСКИ АНАЛИЗ ПЪРВА ЧАСТ, СОФТЕХ София 2008