Intermediate Value Theorem (see theorbook p.126)

Suppose that f is continuous on [aib] and let N be any number between f(a) and f(b) where f(a) & f(b). Then there is a number c in (aib) such that f(c) = N. Math 1450, Honor Calculus Practice4, Fall 2016.

September 21, 2016

PSID:	Name:	Fol
1. Show that the equation Contradict Proof les Assume f has two roots		of has at most one root.
So $f(a) = f(b) = 0$, However, $f(x) = 20X$	43X+2>0. Meghs	By Intermediate Value Thm. We have $f(0) = 1 > 0$ and $f(1) = -6 < 0$
f is a strickly in and those are no sue $f(a) = f(b)$.	n a.b with	So there is CE (110) such that f(c)=0
So the assumption is When f'' is continuous, sl	now that	ion means f has exactly one vool.
Since par line	$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f}{h^2}$ $f(x+h) - f(x)$ and	$f(x-h) = f''(x).$ $f(x) = \lim_{h \to \infty} f(x) - f(x-h)$

Since
$$f(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x)$$
.

Since $f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ and $f(x) = \lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h}$$

$$ax^{2}bx+c=0 \Rightarrow x=\frac{-b^{2}\sqrt{b^{2}-4ac}}{2a}$$

3. Investigate the family of polynomials given by the equation $f(x) = 2x^3 + cx^2 + 2x$. For what values of c does the curve have maximum and minimum points?

Finding critical point of fox, we have $f(x) = 6x^2 + 2cx + 2 = 0$ $6x^2 + 2cx + 2 = 0$ is solvable $\Leftrightarrow \sqrt{4c^2 - 4g} > 0$ $\Rightarrow 4c^2 - 4g > 0 \Rightarrow c^2 / 2 > 0 \Rightarrow (c - 253)(c + 253) > 0$ $\frac{1}{253} = \frac{1}{253} \Rightarrow c > 253 \Rightarrow c > 253 \Rightarrow c > 253$

4. A cone-shaped drinking cup is made from a circular piece of paper of radius R by cutting out a sector and joining the edges CA and CB. Find the maximum capacity of such a cup.

But it's too complicated to let us use another approaching
$$= \frac{1}{3}\pi r^2h$$

Recos(x), $r(x) = R\sin(x)$, $r(x) = R\cos(x)$, $r(x) = R\sin(x)$, $r(x) = R\cos(x)$, $r(x) = R\sin(x)$, $r(x)$