Concurrent Programming Project #3: Concurrent Stock Server

CSE4100: System Programming

Sungyong Park and Youngjae Kim (PhD)

Data Intensive Computing and Systems Laboratory (DISCOS)

https://discos.sogang.ac.kr

TA: Kyuri Park and Joseph Ro

목차

- 배경지식
 - Network programming
 - Stock server 프로그래밍
- 동시 주식 서버 (Concurrent Stock Server) 설계 및 구현 (각 30점 + 보고서 10점)
 - Task1: Event-driven Approach
 - Task2: Thread-based Approach
 - Task3: 성능 평가 및 분석
- 제출 방법
- 부록

프로젝트 목표

"여러 client들의 동시 접속 및 서비스를 위한 Concurrent stock server 을 구축"

- 주식 서버
 - 주식 정보를 저장하고 있고 여러 client들과 통신하여, 주식 정보 List, 판매, 구매의 동작을 수행
- 주식 클라이언트
 - 각 client는 server에 주식 사기, 팔기, 가격과 재고 조회 등의 요청을 함

배경지식: Network Programming

- 오른쪽 그림은 수업시간에 언급한 echoserver의 전체적인 구조임
- 배포한 압축파일을 압축해제 후 make 실행
 - stockserver, stockclient, multiclient
 세 개의 실행파일 생성
 - stockserver, stockclient는 수업시간에 시연한 echoserveri, echoclient와 동일함
- stockserver, stockclient 실행 후 stockserver, multiclient 실행을 추천함
- stockserver, multiclient는 실험을 돕기 위한 multiple client 실행 프로그램임 (뒤에서 자세히 설명)

배경지식: Stock Server Program

stockclient 와 stockserver 사이의 통신

client

```
S@csprol0:~/system_programming/project3$ hostname -I
172.30.10.10
S@csprol0:~/system_programming/project3$ ./stockclient 172.30.10.11 60000
hello
hello
system_programming
system_programming
project 3
project 3
```

- client는 분반에 맞는 서버에서 실행
 (프로젝트 주의사항 확인)
- "hostname –I" → IP addr (172.30.10.10, cspro10)
- ./stockclient 172.30.10.11 60000
 server IP addr와 open시 사용한 port number 입력
- MSG 입력하고 request!

• Response받은 Msg 출력

server

```
8@cspro:~/system_programming/project3$ hostname -I

172.30.10.11

8@cspro:~/system_programming/project3$ ./stockserver 60000

Connected to (172.30.10.10, 46564)

server received 6 bytes

server received 19 bytes

server received 10 bytes
```

- server는 cspro에서 실행
- "hostname –I" → IP addr (172.30.10.11, cspro)
- ./stockserver 60000
 먼저 port number를 설정하고 server open
 (cyber campus에 올린 개인 port사용)
- 받은 MSG의 byte수를 출력하고 해당 문자열을 다시 response ('\n'까지 byte 수에 포함)

주식 서버 "Client" 동작 설명

ID가 5인 주식을 3개 사고 ID가 2인 주식을 2개 판다. 그리고 show를 해보니 ID가 5인 주식은 3 → 0으로, ID가 2인 주식은 6 → 8로 update 되었다.

ID가 1인 주식을 8개 사려고 한다. 하지만 잔여 주식이 7개 뿐이기 때문에 모자르단 MSG 출력 → 6개만 산다고 request 1번 주식은 7 → 1로 update 클라이언트가 show, buy, sell, exit 네 개의 명령어를 요청함

- 1. show
 - : 현재 주식의 상태를 보여준다.
- 2. buy [주식 ID] [살 주식 개수]
 - ex. buy 5 3 : "ID가 5인 주식을 3개 사겠다."
- 3. sell [주식 ID] [팔 주식 개수]
 - ex. sell 2 2 : "ID가 2인 주식을 2개 팔겠다."
- 4. exit
 - : disconnection with server (주식 장 퇴장)
- ***** command exception handling

명령어와 특별 상황에 대해 예외 처리는 불필요

"buy 2 @", "slel 3 1", "sh ow", "buy 1 3 "

위와 같이 오타나 형식에 맞지 않는 command는 다루지 않음 Client의 보유 잔고 및 주식 정보는 고려하지 않음 즉, Sell 명령어는 절대 실패하지 않는 것을 가정

동시 주식 서버 (Concurrent Stock Server) 필요성

Step1

Step2

Step3

- 단일 프로세스/쓰레드 기반 stockserver는 여러 client와 connection이 불가능함
- 따라서, 앞의 실행 결과처럼 각각 client의 connection부터 요청된 request가 모두 직렬화 (serialize) 되어 순서대로 처리됨 (No concurrency)
- 본 프로젝트에서는 아래와 같은 concurrent 프로그래밍을 통해 동시 주식 서버를 두 가지 방식을 이용하여 설계 및 구현함
 - Event-based Approach using select()
 - Thread-based Approach using pthread library

Concurrent service

주식 서버 설계 (1)

- 자료구조 및 동작
 - 3 Client 요청 처리 (Sell, Buy, Show, etc)
 - 1 서버 데몬 실행

DRAM (Main Memory)

2 주식 관리 테이블 메모리 적재 (stock.txt) 주식 관리 테이블

주식 관리 테이블 디스크에 저장 (stock.txt)

주식 서버 설계 (2)

■ 주식 관리

- 주식들은 stock.txt 파일로 Table형태로 관리됨
- Table에서 각 행은 주식을 나타내고 주식은 세 가지 attribute을 가짐
 - ID, 잔여 주식, 주식 단가
- 오른쪽은 5개 주식 종목을 가진 stock.txt 예시임

■ 가정

- 주식 단가는 변동이 없음
 - 결국 데이터에 변동되는 값은 잔여 주식 뿐!
- Client request에서 남은 주식보다 많은 주식을 요구하면 잔여 주식이 부족하다는 메시지만 출력하고 요청은 처리되지 않음
 - "Not enough left stocks"

주식 관리 테이블

주식 서버 설계 (3)

- 효율적인 데이터 관리를 위해서 Binary Tree 사용
 - 트리의 각 노드는 <ID, 잔여 주식, 주식 단가, mutex lock 변수> 등을 선언 (뒤 페이지 그림 참고)
 - 주식 ID는 1~MAX에 random unique id로 발급


```
int ID;
int left_stock;
int price;
int readcnt;
sem_t mutex;
};
<예: 노드 구조>
```

Readers-Writers Problem

- 어떤 client가 i 종목 주식 읽을 때, 다른 client가 i 값을 update하게 되면 올바르게 동작 X
- Readers-writers problem solution을 고려한 노드 단위의 관리 (fine-grained locking) 필요

Task1: Event-driven Approach (30점)

- 각각의 client는 fd를 trigger하고, 서버는 fd들을 monitoring하던 select에 의해서 동작을 시작함.
- Server 시작과 함께 table(file)의 내용을 읽어 메모리에 적재 후, 요청을 처리
- Server의 종료 시 업데이트 된 변경사항을 파일에 정해진 형식에 따라 저장

kernel

Task2: Thread-based Approach (30점)

■ Thread-based Concurrent Stock Server

주식 종목 관리 테이블

https://people.cs.rutgers.edu/~pxk/416/notes/c-tutorials/times.html - gettimeofday 함수 사용

Task3: 성능 평가 및 분석 (30점)

■ 성능 평가

- Client 실행파일 내에 configuration들을 바꿔가면서 두 가지 동작 방식(event-driven, thread)의 elapse time을 측정하여 분석
 - 이 경우에 한해서는 client process의 개수를 제한하지 않고 10, 20개 이상 띄우면서 실험 가능 (Task 1-2 수행 시에는 4개 이하로 진행할 것!)
- 분석 내용은 보고서에 최대한 상세히 기재

■ 분석 방법

동시 처리율: 시간당 client 처리 요청 개수

▶ 분석 포인트

- 확장성: 각 방법에 대한 Client 개수 변화에 따른 동시 처리율 변화 분석
- 워크로드에 따른 분석: Client 요청 타입 (buy, show, sell 등)에 따른 동시 처리율 변화 분석
 - 워크로드 예제
 - 예1) 모든 client가 buy 또는 sell을 요청하는 경우
 - 예2) 모든 client가 show만 요청하는 경우
 - 예3) Client가 buy, show 등을 섞어서 요청하는 경우
- 가지 방법의 성능 또는 다양한 관점에서 비교 분석 (수업시간에 배운 내용과 일치하는지 또는 불일치하는지)
- 기타: 자유로운 분석

제출 방법

Documentation

- 첨부된 document에 해당 내용 삽입 (코드 붙여넣기 금지)
- 위 실험에 대한 결과 그래프와 분석 내용을 자세하게 작성 (높은 배점)
- Document는 pdf file로 변환해서 제출 (document.pdf)

Submission

■ 제출일 : ~ **6/3 23:59pm** (late : 6/6 23:59pm 하루당 10% 감점)

■ 주의사항

- 실행파일이나 필요 없는 파일은 제거 (<mark>감점</mark>)
- Makefile에서 output executable file name은 그대로 유지 (수정 시, 감점)
- [Mandatory] TA가 cspro 환경에서 채점하기 때문에 꼭 cspro에서 실행해 볼 것! (compile 오류시 0점)
- 본인 학번 폴더(ex. 20201234)를 생성하고 그 안에 총 2개의 프로젝트 폴더과 1개의 document (pdf파일로 변환)를 포함하여 압축할 것
- 각 프로젝트 파일에는 실행하는데 필요한 모든 코드가 포함되어야 합니다. (execution file, binary file 제외)
- 학번 파일 상위 폴더에서 tar 압축을 해서 cyber campus 과제란에 제출 (제출 형식 오류 시, 감점) (tar -cvzf prj3_20201234.tar.gz 20201234/)

프로젝트 주의 사항

■ Process Management에 유의해주세요

- ps -aux 명령어 혹은 top 명령어를 통해 백그라운드로 남아 있는 프로세스를 수시로 확인해주세요
- 백그라운드 프로세스가 죽지 않거나 서버가 동작하지 않을 경우 조교 이메일로 곧장 연락주세요

(1분반_박규리 조교 : <u>kyu99park@gmail.com</u>, 2분반_노요셉 조교 : <u>josephro9747@gmail.com</u>)

■ 각 분반에 맞는 실습 서버에서 실습을 진행해주세요!

1분반은 Client(cspro9), Server(cspro)서버에서 실습 2분반은 Client(cspro10), Server(cspro)서버에서 실습

- 제출 파일 양식 우측 이미지 참조 (제출 형식 오류 시, 감점)
 - task_3의 경우에는 보고서에 해당 내용 실행 결과 캡처와 함께 자세히 기재

```
$ pwd
~/20201234
$ cd ..
$ tree 20201234
   document.pdf
   task 1
       Makefile
        csapp.c
        csapp.h
        echo.c
        multiclient.c
        stock.txt
       stockclient.c
       stockserver.c
       Makefile
        csapp.c
        csapp.h
       echo.c
        multiclient.c
        stock.txt
        stockclient.c
        stockserver.c
   tar -cvzf prj3 20201234.tar.gz ./20201234
```

부록: 추가 설명

Multiclient 실행 파일(1)

- 터미널은 10개씩 띄우고 일일이 명령어를 작성하기는 어려움
- Multiclient 실행 파일은 이를 편하게 해 줌
 - 원하는 client 개수를 입력해주면 해당 개수만큼의 client 프로세스들을 생성하고, 각 client 프로세스는 앞에 정의된 show, buy, sell 등의 명령어를 주어진 횟수만큼 임의 순서로 실행하고 종료함
 - multiclient.c를 보면 아래와 같이 변수들이 정의되어 있음 (이 변수들은 얼마든지 수정해가면서 실험 진행 가능!)

#define MAX_CLIENT 100
#define ORDER_PER_CLIENT 10
#define STOCK_NUM 10
#define BUY SELL MAX 10

MAX_CLIENT 최대 만들 수 있는 client 개수 Client를 실행할 때 4보다 작은 값을 입력할 것 (evaluation할 경우 10, 20개 사용 가능)

ORDER_PER_CLIENT client 하나당 server로 보내는 request의 개수 show, buy, sell 중 random으로 server에 request 수행

STOCK_NUM stock file에 있는 주식 항복의 최대 개수 (stock.txt file을 참고해서 설정할 것)

BUY_SELL_MAX 주식을 사고 팔 때 한 request당 최대 항목의 개수 적절히 설정하여 사용 가능 (Ex. "buy 1 11" : 1번 주식을 <u>11개</u> 산다 (x))

Multiclient 실행 파일(2)

- 앞서 말한 #define configuration을 적절히 설정 후 실행
- stockserver를 먼저 실행하고 (./stockserver 1119), 아래와 같이 multiclient를 실행
- ./multiclient를 입력하면 사용법이 나옴 (stockclient 실행 방법과 비슷함)

```
gr120210196@cspro:~/project5$ ./multiclient
usage: ./multiclient <host> <port> <client#>
gr120210196@cspro:~/project5$ ■
```

- ./multiclient [IP_addr] [port #] [client_num[(ex. ./multiclient 172.30.10.11 1119 4) 아래와 같이 4개의 client process가 configuration에 따라 적절한 동작을 수행
 - 실험 시에는 client process를 4개 이하로 띄워서 실험할 것!
 - zombie나 orphan이 발생하지 않도록 주의할 것!

```
child process
4개 생성

gr120210196@cspro:~/project5$ ./multiclient 172.30.10.11 1119 4
child 45130
child 45131
child 45132
sell 6 4
child 45133
show
show
buy 1 4
sell 6 10
```

Multiclient 실행 파일(3)

서버 구현 상세 (1)

- 직접 구현해야 하는 부분은 stock server부분 뿐! (client 부분은 multiclient.c 그대로 사용하여 실험)
- stockserver.c에서 multiple client request를 처리 할 수 있도록 select와 pthread를 사용하여 구현
- Recommendation : 먼저 아래와 같이 command string을 server가 concurrency하게 판독할 수 있게 구현

```
gr120210196@cspro:~/my_project$ ./echoservert 1119
server received 8 bytes
server received 5 bytes
server received 5 bytes
server received 8 bytes
server received 10 bytes
server received 8 bytes
server received 10 bytes
```

```
gr120210196@cspro:~/project5$ ./multiclient 172.30.10.11 1119 4
child 45130
child 45131
child 45132
sell 6 4
child 45133
show
show
show
buy 1 4
sell 6 10
show
buy 1 1
```

서버 구현 상세 (2)

- Response 양식 (오른쪽 그림 참고)
 - [buy] success : buy request가 정상적으로 처리되었을 경우
 - [sell] success : sell request가 정상적으로 처리되었을 경우
 - Not enough left stocks: buy request에 대해서 잔여 주식이 부족한 경우 Recommendation: 이때는 client가 아닌 stockclient를 실행시키고 command를 하나씩 입력하고 제대로 처리되는지 확인하면서 진행
- Persistency를 위해서 connection이 모두 종료되면 stock.txt 에 update 내용이 반영되어야 함
 - stock.txt에 update 내용이 제대로 반영되었는지 확인함으로써 채점을 진행할 예정

```
buvl success
selll success
 7 1000
  10 1200
2 8 20000
Not enough left stock
[buy] success
show
 1 1000
  10 1200
2 8 20000
```