Mesure et intégration

${\rm Quizz}\ 1$

1) Soit (X, A) un espace mesurable, et f une application de X dans un ensemble X' .
La famille $f(A)$ est elle en général une tribu sur X' ?
□ oui □ non
Non en général, par exemple si f est constante, alors $f(A) = \{\emptyset, \{y\}\}\$
2) Soit (X) un ensemble, \mathcal{A} et \mathcal{A}' deux tribus sur X .
La famille $\mathcal{A} \cup \mathcal{A}'$ est elle en général une tribu sur X ?
□ oui □ non
Non en général, contre exemple : $X = \{1, 2, 3\}$, $A = \sigma(\{1\}, \{2, 3\})$, $A' = \sigma(\{1, 2\}, \{3\})$. L'union ne contient pas $\{2\} = \{1, 2\} \cap \{2, 3\}$.
3) Les familles suivantes sont-elles des π -systèmes sur \mathbb{R} ? (on supposera sans forcément le préciser explicitement que l'ensemble vide est ajouté à la famille)
Vrai \square Faux \square $\{[a,b[,a,b\in\mathbb{R}\}$
Vrai
Vrai \square Faux \square $\{[a,b], a,b \in \mathbb{N}\}$
Vrai
Vrai \square Faux \square La famille des ensembles de cardinal = N , avec $N \ge 1$.
Faux en général, l'intersection de 2 ensemble de cardinal 2 peut être de cardinal 1. Par contre c'est vrai pour $N=1$ puisque l'on a rajouté \emptyset , comme précisé en préambule.
Vrai \square Faux \square La famille des ensembles de cardinal $\leq N,$ avec $N\geq 1$
Vrai
Vrai \square Faux \square La famille des ensembles de cardinal fini
Vrai
Vrai \square Faux \square La famille des ensembles de cardinal dénombrable.
Vrai
Sont-elles des classes monotones?
Non dans tous les cas, même si on rajoute \mathbb{R} . Noter que la dernière vérifie les conditions 2 et 3, elle ne contient juste pas \mathbb{R} (et si on rajoute \mathbb{R} elle ne vérifie plus la condition 2). En fait

je n'ai pas en tête d'exemple explicite de famille qui soit une classe monotone non triviale,

 $suggestions\ bienvenues\ \dots$

4) Soit X un ensemble infini, et \mathcal{A} la collection des ensembles A tels que A ou A^c est fini. S'agit-il d'une tribu ? $(\bullet \bullet)$
□ oui □ non
Non. On peut considérer par exemple une injection de \mathbb{N} , dans X , notée (x_n) . La réunion des x_{2n} est censée être dans la tribu, mais ni elle ni son complémentaire ne sont finies.
5) Les familles suivantes engendrent la tribu des boréliens sur $\mathbb R$:
Vrai \square Faux \square La famille des parties fermées
$\textit{Vrai, il s'agit d'une famille dans la tribu des bor\'eliens, et elle contient notamment les }]-\infty, c]$
Vrai \square Faux \square La famille $\{[a,b[,a,b\in\mathbb{R}\}$
Vrai, il s'agit de boréliens comme intersection des $]a-1/n,b[$ et on peut retrouver les intervalles ouverts en considérant l'union des $[a+1/n,b[$.
Vrai \square Faux \square La famille des compacts
Vrai, il s'agit de fermés, donc de boréliens, et elle contient notamment les $[a,b]$, donc les $]a,b[$ par union dénombrable, comme précédemment.
6) Soient μ_1 et μ_2 deux mesures définies sur le même espace mesurable (X, \mathcal{A}) . On a alors
Vrai \square Faux \square $\lambda \mu_1$ est une mesure pour tout λ réel.
Faux évidemment en général, mais vrai si $\lambda \geq 0$.
Vrai \square Faux \square La somme $\mu_1 + \mu_2$ est une mesure
Vrai .
Vrai \square Faux \square Le produit $\mu_1 \times \mu_2$ est une mesure
Faux en général, on perd l'additivité. Prendre par exemple $\mu_1 = \mu_2$, deux ensembles A et B disjoints de masse 1 , on a
$\mu_1 \times \mu_2(A \cup B) = 4 \neq 2 = \mu_1 \times \mu_2(A) + \mu_1 \times \mu_2(B).$
Noter que la question n'est pas très bien posée en général (si les mesures ne sont pas finie), car il faudrait s'entendre sur ce que vaut le produit $0 \times +\infty$.
Vrai \square Faux \square La différence $\mu_1 - \mu_2$ est une mesure
Faux évidemment en général, ça peut prendre des valeurs négatives, mais c'est quand même vrai dès que $\mu_2(A) \leq \mu_1(A)$ pour tout $A \in \mathcal{A}$.