Предметноориентированные системы научной осведомлённости

Выполнил: Соболевский Д.А.

Уч. группа: НФИбд-02-20

№ студ. билета: 1032201668

Цели и задачи

- Ознакомиться с концепцией предметно- ориентированных систем научной осведомленности
- Рассмотреть основные преимущества использования таких систем

План презентации

- 1. Что такое предметно-ориентированные системы научной осведомлённости
- 2. Функции и основные характеристики
- 3. Примеры и применение

Введение

Предметно-ориентированные системы научной осведомленности - это инструменты для обработки данных в конкретной научной области, разработанные на основе знаний об этой области, что позволяет значительно повысить эффективность научной работы.

Общая программная архитектура

Основными компонентами предметноориентированной системы научной осведомленности являются, помимо инструментария интеллектуального анализа данных, хранилище знаний и подсистема производства профессиональных знаний, включающая набор встроенные экспертных систем и искусственных нейронных сетей.

Программные компоненты

- Компонент фактографических научных баз данных
- Компонент интеллектуального анализа данных
- Компонент производства новых знаний
- Компонент распространения профессиональных знаний (дистанционного обучения)

Хранилище знаний предметно-ориентированных систем научной осведомленности

Хранилище знаний - предметноориентированная, интегрированная, поддерживающая временные ряды данных электронная коллекция, которая содержит данные, знания, процедуры генерирования знаний и используется для анализа и исследования данных, производства новых знаний и поддержки принятия решений. Программно-технологическая архитектура предметноориентированной системы научной осведомленности в сети Интернет

Предметно-ориентированные системы научной осведомленности предназначены для решения следующих задач:

- сбор, верификация и хранение фактографических и текстовых данных в рамках конкретно выбранной предметной области;
- поиск данных фактографических и текстовых данных в рамках конкретно выбранной предметной области;
- извлечение данных для выполнения интеллектуального анализа данных и сохранение результатов анализа в хранилище данных системы;
- производство и распространение новых данных и профессиональных знаний в рамках конкретно выбранной предметной области.

Программно-технологическая архитектура системы научной осведомленности

Система состоит из нескольких программных слоев. Первый слой реализован как предметно-ориентированное веб-приложение, которое предоставляет пользователю интерфейс и принимает управляющие решения. Данное веб-приложение предоставляет доступ к следующим программным компонентам системы: информационной подсистеме, аналитической подсистеме, подсистеме дистанционного обучения, встроенной подсистеме объяснений и подсистеме производства новых профессиональных знаний.

Функции и основные характеристики

Основные функции

- сбор и обработка научной информации из различных источников (журналы, конференции, базы данных и т.д.);
- классификация и индексация информации с учетом предметных областей и пользовательских потребностей;
- аналитическая обработка данных для выявления трендов и перспектив развития науки;
- предоставление удобного интерфейса для поиска, доступа и использования информации;
- создание инструментов для взаимодействия и обмена информацией между учеными и специалистами, таких как форумы, чаты и совместные проекты.

Основные характеристики

- высокая степень автоматизации процессов сбора, обработки и представления информации;
- адаптивность к изменениям в предметной области и пользовательских интересах;
- масштабируемость для поддержки большого количества пользователей и обширных баз данных;
- гибкость и модульность, обеспечивающие возможность интеграции новых функций и источников информации;
- безопасность и конфиденциальность данных, обеспечивающая защиту от несанкционированного доступа.

Примеры и применение

Примеры

- PubMed, предоставляющая доступ к медицинским и биологическим публикациям;
- Scopus и Web of Science, предлагающие комплексный поиск по научным статьям и публикациям в различных дисциплинах;
- arXiv, являющийся архивом предварительных публикаций (preprints) в области физики, математики, информатики и других технических наук;
- MathSciNet, содержащий информацию о математических публикациях и исследованиях;
- Google Scholar, предоставляющий широкий доступ к научным статьям, конференциям, тезисам и диссертациям.

Применение

Предметно-ориентированные системы научной осведомлённости позволяют:

- ускорить процесс научных исследований, предоставляя оперативный доступ к актуальным данным и публикациям;
- выявлять тренды и перспективы развития науки, что способствует определению приоритетных направлений исследований и инвестиций;
- обеспечивать эффективное образовательное взаимодействие между преподавателями и студентами, предоставляя доступ к актуальным исследованиям и материалам для изучения;
- улучшать качество научных публикаций, предоставляя инструменты для оценки их академического влияния и достоверности;
- содействовать междисциплинарному сотрудничеству и обмену знаниями между учеными и специалистами разных областей.

Заключение

Использование предметно-ориентированных систем научной осведомленности является одним из наиболее эффективных способов улучшения качества и эффективности научной работы.

- 1. Алексеев, В. Н., & Миронова, Е. В. (2014). Информационные технологии в научно-образовательной деятельности. Вестник Московского государственного областного университета. Серия: Естественные науки, (4), 5-14.
- 2. Белкин, Н. И. (2010). Информационный поиск: концепции и методы. Научнотехническая информация, Серия 2, (3), 1-15.
- 3. Гарифуллин, Р. Р., & Рахимов, А. Р. (2013). Основные подходы к обработке научной информации. Вестник Уфимского государственного авиационного технического университета, 17(7), 174-179.
- 4. Заграевская, О. И., & Барышева, Г. В. (2014). Современные тенденции развития научной информации и предметно-ориентированных информационных систем. Информационные технологии и математическое моделирование