

Oxidation and Reduction Set 21: Balancing Redox Equations

1. (a)
$$2I^{-} \rightarrow I_2 + 2e^{-}$$

 $C\ell_2 + 2e^{-} \rightarrow 2C\ell^{-}$
 $2I^{-} + C\ell_2 \rightarrow I_2 + 2C\ell^{-}$

(b)
$$Cu \rightarrow Cu^{2+} + 2e$$
-
$$Au^{+} + e^{-} \rightarrow Au$$

$$Cu + 2Au^{+} \rightarrow Cu^{2+} + 2Au$$
 $x = 2$

(c)
$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

 $Pb^{2+} + 2e^{-} \rightarrow Pb$
 $Zn + Pb^{2+} \rightarrow Zn^{2+} + Pb$

(d)
$$Fe \rightarrow Fe^{2+} + 2e^{-}$$

 $2H^{+} + 2e^{-} \rightarrow H_{2}$
 $Fe + 2H^{+} \rightarrow Fe^{2+} + H_{2}$

(g)
$$Pb \rightarrow Pb^{2+} + 2e^{-}$$

 $Cu^{2+} + 2e^{-} \rightarrow Cu$
 $Pb + Cu^{2+} \rightarrow Pb^{2+} + Cu$

(i)
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

 $2NO_3^{-} + 4H^{+} + 2e^{-} \rightarrow 2NO_2 + 2H_2O$
 $Cu + 2NO_3^{-} + 4H^{+} \rightarrow Cu^{2+} + 2NO_2 + 2H_2O$

(j)
$$SO_2 + 2H_2O + 6e^- \rightarrow SO_4^{2-} + 4H^+$$

 $OC\ell^- + 2H^+ + 3e^- \rightarrow C\ell^- + H_2O$ x 2
 $SO_2 + 2OC\ell^- \rightarrow SO_4^{2-} + 2C\ell^-$

2. (a)
$$2I^{-} \rightarrow I_2 + 2e^{-}$$

(b)
$$S_2O_3^{2-} + 5H_2O \rightarrow 2SO_4^{2-} + 8e^- + 10H^+$$

(c)
$$S_2O_3^{2-} + 5H_2O + 4I_2 \rightarrow 2SO_4^{2-} + 10H^+ + 8I^-$$

3. (a)
$$CH_3CH_2OH + H_2O \rightarrow CH_3COOH + 2H^+ + 2e^-$$

(b)
$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$

(b)
$$O_2 + 2H_2O + 8e^- \rightarrow 4OH^-$$

(c)
$$2CH_3CH_2OH + O_2 \rightarrow 2CH_3COOH$$

4. (a)
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

- (b) O₂ is reduced and C in the glucose is oxidised
- (c) O_2 is the oxidising agent, $C_6H_{12}O_6$ is the reducing agent

5. (a) Ox:
$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

Red:
$$Ti^{4+} + 4e^{-} \rightarrow Ti$$

RedOx:
$$2Mg + TiC\ell_4 \rightarrow 2MgCl_2 + Ti$$

(b) $TiC\ell_4$ is reduced, Mg metal is oxidised

6. (a)
$$3NO_2 + H_2O \rightarrow 2HNO_3 + NO$$

- (b) NO₂ is both
- (c) A disproportionation reaction