Relazione di laboratorio - Esperienza di Poisson

Misure del rate di una sorgente radioattiva

Federico Cesari

1 Scopo dell'esperienza

L'esperienza di laboratorio ha come scopo la misurazione del rate di una sorgente radioattiva, ovvero il numero di eventi registrati in tempi porta di 1 e 3 secondi dal contatore geiger quando la sorgente è posta a 3cm da questo.

L'apparato sperimentale utilizzato consiste di: un rilevatore di radiazione (contatore geiger) posto su una rotaia e una pietra di uranile utilizzata come sorgente radioattiva.

2 Acquisizione dati

Prima di effettuare le misurazioni del rate della sorgente radioattiva misuro il rate dovuto solamente alla radioattività naturale di fondo. La radiazione di fondo è causata dalla presenza di gas radioattivi come Radon e Torio in atmosfera, dalla presenza di elementi radioattivi nel terreno e in acqua, oppure da radiazioni cosmiche che portano particelle ad alta energia cariche positivamente che entrano in atmosfera provocando l'emissione di fotoni, elettroni e neutroni.

Nel momento in cui dovrò misurare il rate dell'uranile dovrò tenere in considerazione la presenza dei conteggi dovuti al fondo.

3 Distribuzione sperimentale del fondo

Senza avvicinare la sorgente radioattiva al contatore geiger prendo 1500 misurazioni, prima con tempo porta di 1s e poi di 3s, del rate della radiazione di fondo.

Rate del fondo (1s)= (0.283 ± 0.01) count/s

4 Distribuzione sperimentale di fondo + sorgente a 3cm

Posizionata la pietra di uranile a 3cm dal contatore prendo 1500 misurazioni

La varianza e la media sono confrontabili entro 1,2,3,... volte la somma delle loro incertezze?

Attingendo dai dati riportati in *Tabella 3* e *Tabella 4* si evince che per entrambi i tempi porta la differenza tra media e varianza è, in valore assoluto, minore della somma delle rispettive incertezze. Infatti

$$|\bar{x} - \sigma^2| = |3.061 - 3.192| = \mathbf{0.131} < \mathbf{0.163} = |0.046 + 0.117| = |\sigma_{\bar{x}} + \sigma_{\text{var}}|$$

(3s)
$$|\bar{x} - \sigma^2| = |9.343 - 9.562| = 0.219 < 0.429 = |0.080 + 0.349| = |\sigma_{\bar{x}} + \sigma_{\text{var}}|$$

5 Test χ^2

5.1 Test χ^2 con tempo porta di 1s

Tramite il test del χ^2 verifico se le distribuzioni teoriche di Poisson e di Gauss si adattano a quelle sperimentali calcolate con tempo porta di 1 secondo.

Scelgo un livello di significatività $\alpha = 5\%$ e calcolo i rispettivi χ^2 critici e i gradi di libertà.

5.1.1 Adattamento a Poissoniana (1s)

Ipotesi nulla La distribuzione teorica di Poisson si adatta alla distribuzione sperimentale.

Numero classi	10
Livello di significatività $lpha$	5%
Valore di χ^2	8.813
Numero di gradi di libertà	(10-1-1)=8
Valore di χ^2 critico	15.507

Tabella 5: χ^2 Poissoniana

Coclusione del test Poiché $\chi^2 < \chi^2_{\text{critico}}$, la discrepanza tra le frequenze attese e quelle osservate risulta essere accettabile nei livelli di significatività scelti. Posso dire che la distribuzione teorica di Poisson si adatta bene alla distribuzione sperimentale e quindi **accetto** l'ipotesi nulla.

5.1.2 Adattamento a Gaussiana (1s)

Ipotesi nulla La distribuzione teorica di Gauss si adatta alla distribuzione sperimentale.

Numero classi	11
Livello di significatività α	5%
Valore di χ^2	96.060
Numero di gradi di libertà	(11-2-1)=8
Valore di v^2 critico	15 507

Tabella 6: χ^2 Gaussiana

Coclusione del test Poiché $\chi^2 > \chi^2_{\rm critico}$ la discrepanza tra le frequenze attese e quelle osservate supera i valori accettabili nei livelli di significatività scelti. Posso dire che la distribuzione teorica di Gauss non si adatta alla distribuzione sperimentale e quindi **rifiuto** l'ipotesi nulla.

5.2 Test χ^2 con tempo porta di 3s

Tramite il test del χ^2 verifico se le distribuzioni teoriche di Poisson e di Gauss si adattano a quelle sperimentali calcolate con tempo porta di 1 secondo.

Scelgo un livello di significatività α = 5% e calcolo i rispettivi χ^2 critici e i gradi di libertà.

5.2.1 Adattamento a Poissoniana (3s)

Ipotesi nulla La distribuzione teorica di Poisson si adatta alla distribuzione sperimentale.

Numero classi	17
Livello di significatività $lpha$	5%
Valore di χ^2	19.371
Numero di gradi di libertà	(17-1-1)=15
Valore di χ^2 critico	24.996

Tabella 7: χ² Poissoniana

Coclusione del test Poiché $\chi^2 < \chi^2_{\rm critico}$, la discrepanza tra le frequenze attese e quelle osservate risulta essere accettabile nei livelli di significatività scelti. Posso dire che la distribuzione teorica di Poisson si adatta bene alla distribuzione sperimentale e quindi **accetto** l'ipotesi nulla.

5.2.2 Adattamento a Gaussiana (3s)

Ipotesi nulla La distribuzione teorica di Gauss si adatta alla distribuzione sperimentale.

Numero classi	18
Livello di significatività $lpha$	5%
Valore di χ^2	59.344
Numero di gradi di libertà	(18-2-1)=15
Valore di γ^2 critico	24.966

Tabella 8: χ² Gaussiana

Coclusione del test Poiché $\chi^2 > \chi^2_{\rm critico}$ la discrepanza tra le frequenze attese e quelle osservate supera i valori accettabili nei livelli di significatività scelti. Posso dire che la distribuzione teorica di Gauss non si adatta alla distribuzione sperimentale e quindi **rifiuto** l'ipotesi nulla.

5.3 Test di Gauss

Tramite il Test Z stabilisco se il rate calcolato per tempo porta di 1s è compatibile con il rate calcolato per tempo porta di 3s.