Final-term Lab Assessment Task

	Submitted By:	
Name	ID	Task Completed
Saha, Anik Kumar	19-41289-3	1,2
Ahmed, Nafiz	19-41283-3	3,4
Ahmed, Raiyan	19-41322-3	5
Akhter, Zubaida	19-41541-3	6
Malik, Md. Sakibur Rahman	18-38856-6	7

Parameters:

Consider, your ID = AB-CDEFG-H. = 19-41289-3

[please use any random value if assigned value comes out zero]

VAL1 = DFG*100	VAL2 = FH*10
VAL1 = 18900	VAL2 = 830

Problem Statement:

Suppose, you want to send a message which contains your FIRST MEMBER LAST NAME. Develop a MATLAB code to show the transmission process to send the information from SENDER to RECEIVER. Available frequency ranges for the transmission: 2.2 - 2.4 GHz

Hint:

- 1. Encode the message.
- 2. Convert binary bit stream from parallel to serial transmission.
- 3. Convert data to signal using at least **VAL1** sample data.
- 4. Now, modulate the digital signal (using any Digital to Analog Conversion except ASK) to send via a transmission channel.
- 5. The signal to noise ratio of the channel is **VAL2**.
- 6. Demodulate the received signal.
- 7. Convert the binary data to retrieve the message.

Instructions:

- 1. Task can be submitted individually or in Group (not more than 4 person)
- 2. **For Group Submission:** You can use one of the group member ID for parameter calculation. Anyone from the group can submit the task (no need of multiple submission)
- 3. Plagiarism is strictly prohibited.
- 4. Please use MATLAB software to accomplish the project.
- 5. Use this file as Cover Page.
- 6. In your submission file, you must add three sections: Cover page, Code & Output.
- 7. Finally submit it in PDF format.

Code:

File Name: asc2bin.m function dn = asc2bin(txt) dec=double(txt) %Text to ASCII (decimal) p2=2.^(0:-1:-7) % 2^0,2^-1,...,2^-7 B=mod(floor(p2'*dec),2) %Decimal to binary conversion %Columns of B are bits of chars dn=reshape(B,1,numel(B));%Bytes to serial conbversion end

```
File Name: bin2asc.m
function txt = bin2asc(dn)
L=length(dn); %Length of input string
L8=8*floor(L/8); %Multiple of 8 Length
B=reshape(dn(1:L8),8,L8/8); %Cols of B are bits of chars
p2=2.^(0:7); %power of 2
dec=p2*B; %Binary to decimal conversion
txt=char(dec); %ASCII (decimal) to txt
end
```

Main Code

```
x=asc2bin(Transmitted Message); % Binary Information
bp=.000001; % bit period
disp(' Binary information at Transmitter :');
disp(x);
##################
##############
% 2) Convert binary bit stream from parallel to serial
transmission.
% 3) Convert data to signal using at least VAL1 sample
data.
##############
%XX representation of transmitting binary information as
digital signal XXX
bit=[];
for n=1:1:length(x)
if x(n) == 1;
se=5*ones(1,VAL1);
else x(n) == 0;
se=zeros(1, VAL1);
end
bit=[bit se];
end
t1=bp/VAL1:bp/VAL1:VAL1*length(x)*(bp/VAL1);
subplot(4,1,1);
plot(t1,bit,'lineWidth',2.5);grid on;
axis([0 bp*length(x) -.5 6]);
ylabel('amplitude(volt)');
xlabel(' time(sec)');
title('Transmitting information as digital signal');
##################
##################
% 4) Now, modulate the digital signal (using any Digital
to Analog Conversion except ASK) to send via a
transmission channel.
```

```
##############
A=5; % Amplitude of carrier signal
br=1/bp; % bit rate
f1=2.4e9; % carrier frequency for information as 1
f2=2.2e9; % carrier frequency for information as 0
t2=bp/99:bp/99:bp;
ss=length(t2);
m=[];
for (i=1:1:length(x))
  if (x(i) == 1)
     y=A*cos(2*pi*f1*t2);
   else
     y=A*cos(2*pi*f2*t2);
   end
  m = [m y];
end
t3=bp/99:bp/99:bp*length(x);
subplot(4,1,2);
plot(t3,m);
xlabel('time(sec)');
ylabel('amplitude(volt)');
title('waveform for binary FSK modulation coresponding
binary information');
###################
##################
% 5) The signal to noise ratio of the channel is VAL2.
##################
disp('********)
disp(' Message transmitted through a Transmission
medium');
disp('********)
%Channel Noise%
t4=bp/99:bp/99:bp*length(x);
Rec=awqn (m, VAL2);
subplot(4,1,3);
plot(t4, Rec);
```

```
axis([0 bp*length(x) -6 6]);
xlabel('time(sec)');
ylabel('amplitude(volt)');
title('Received signal at Receiver');
##################
##################
% 6) Demodulate the received signal.
##################
mn=[];
for n=ss:ss:length(m)
 t=bp/99:bp/99:bp;
 y1=cos(2*pi*f1*t); % carrier siignal for information 1
 y2=cos(2*pi*f2*t); % carrier siignal for information 0
 mm=y1.*m((n-(ss-1)):n);
 mmm=v2.*m((n-(ss-1)):n);
 t4=bp/99:bp/99:bp;
 z1=trapz(t4,mm); % intregation
 z2=trapz(t4,mmm); % intregation
 zz1=round(2*z1/bp);
 zz2 = round(2*z2/bp);
 if(zz1>A/2); % logic lavel= (0+A)/2 or (A+0)/2 or 2.5 (
in this case)
  a = 1;
 else(zz2>A/2);
  a = 0;
 end
 mn = [mn \ a];
end
disp(' Binary information at Reciver :');
disp(mn);
%XXXXX Representation of binary information as digital
signal which achived
%after demodulation
bit=[];
```

```
for n=1:length(mn);
  if mn(n) == 1;
     se=ones(1,100);
   else mn(n) == 0;
     se=zeros(1,100);
   end
   bit=[bit se];
end
t4=bp/100:bp/100:100*length(mn)*(bp/100);
subplot(4,1,4)
plot(t4,bit,'LineWidth',2.5);grid on;
axis([0 bp*length(mn) -.5 1.5]);
ylabel('amplitude(volt)');
xlabel(' time(sec)');
title('recived information as digital signal after binary
FSK demodulation');
##################
##################
% 7) Convert the binary data to retrieve the message.
##################
%Converting Information bit to Message%
Received Message=bin2asc(mn)
%>>>>> end of program >>>>>>>>>
##################
```

Output:


```
Command Window
 Transmitted_Message =
    'Anik'
 dec =
    65 110 105 107
 p2 =
   1.0000 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078
          0
               1
                    1
                    0
     0
          1
               0
          1
               1
                    1
              0
     0
         1
               1
                    1
     1
          1
               1
               0
  Binary information at Transmitter :
   Columns 1 through 20
```

	1 thi	-																	
1	0	0	0	0	0	1	0	0	1	1	1	0	1	1	0	1	0	0	
Column	s 21 th	rough	32																
0	1	1	0	1	1	0	1	0	1	1	0								
*****	k *																		
Message	transm	nitted	throug	nha Ti	ansmis	sion m	nedium												
*****	k *																		
Binary :	informa		at Reci																
Binary :	informa s 1 thi	ough 2	at Reci 20	iver :															
Binary :	informa	ough 2	at Reci 20	iver :			0	0	1	1	1	0	1	1	0	1	0	0	
Binary :	informa s 1 thr	ough 2	at Reci 20	iver :				0	1	1	1	0	1	1	0	1	0	0	
Binary : Column:	informa s 1 thr 0 s 21 th	ough 2 0 irough	at Reci 20 0	o (1		1			1		1	0	1	1	0	1	0	0	
Binary Column	informa s 1 thr 0 s 21 th	ough 2 0 irough	at Reci 20 0 32	o (1	0	1	0					0	1	1	0	1	0	0	
Binary Column	informa s 1 thm 0 s 21 th	ough 2 0 nrough 1	at Reci 20 0 32	o (1	0	1	0					0	1	1	0	1	0	0	