Why The Following Doesn't Give Log-Local, Constant Gap Hamiltonian?

David Ponarovsky

August 20, 2023

1 What we would like to have:

Consider the LPS expander on n vertices and denote $t \sim l$ if t is adjacent to l. Let $M_{\Delta} \in \mathbb{C}^{n \times n}$ be the matrix defined by the product: [COMMENT] Such M_{Δ} dosn't exists.

$$\langle u|M_{\Delta}|l\rangle^*\langle l+1|M_{\Delta}|t-1\rangle\langle t|M_{\Delta}|v\rangle = \mathbf{1}_{t\sim l}\mathbf{1}_{u=t}\mathbf{1}_{v=l}$$

Given the Hamiltonian $H_{\text{init}} + m \cdot 2I - H_{\text{prop}} + H_{\text{end}}$, consider the Hamiltonian $\alpha H_{\text{init}} + m \cdot 22\Delta I - H_{\text{prop}} M_{\Delta} H_{\text{prop}} + \beta H_{\text{end}}$. Denote H_{prop} by $U_1 \otimes |2\rangle \langle 1| + U_2^{\dagger} \otimes |1\rangle \langle 2| + \cdots$. Now let $\Lambda_{t,l}$ be defined such that:

$$\Lambda_{l,t}^{\dagger} U_l^{\dagger} U_t \Lambda_{t,l} = U_l U_{l-1} ... U_{t+1} U_t$$

And consider the diagonalization $W^{\dagger}H_{\text{prop}}M_{\Delta}H_{\text{prop}}W$. Where:

$$\begin{split} W &= \sum \Lambda_{t,l} U_{t-1} U_{t-2} .. U_1 \otimes |t\rangle \left\langle t | M_{\Delta} |l\rangle \left\langle t | \right. \\ \Rightarrow & W^{\dagger} = \sum U_1^{\dagger} U_2^{\dagger} .. U_{t-1}^{\dagger} \Lambda_{t,l}^{\dagger} \otimes |t\rangle \left\langle t | M_{\Delta} |l\rangle^* \left\langle t | \right. \end{split}$$

Notice that:

$$\begin{split} W^{\dagger}U_{l}^{\dagger}U_{t}\left|l\right\rangle \left\langle l+1\right|M_{\Delta}\left|t-1\right\rangle \left\langle t\right|W = \\ W^{\dagger}U_{l}U_{t}\left|l+1\right\rangle \left\langle l\right|M_{\Delta}\left|t\right\rangle \left\langle t\right|\left|t\right\rangle \left\langle t\right|M_{\Delta}\left|v\right\rangle \left\langle t\right|\Lambda_{t,v}U_{t-1}U_{t-2}..U_{1} = \\ U_{1}^{\dagger}U_{2}^{\dagger}..\Lambda_{l,u}^{\dagger}U_{l-1}^{\dagger}U_{t}\Lambda_{t,l}U_{t-1}..U_{1}\left|l\right\rangle \left\langle l\right|M_{\Delta}\left|u\right\rangle^{*}\left\langle l\right|\left|l\right\rangle \left\langle l+1\right|M_{\Delta}\left|t-1\right\rangle \left\langle t\right|\left|t\right\rangle \left\langle t\right|M_{\Delta}\left|v\right\rangle \left|l\right\rangle \left\langle t\right| \\ U_{1}^{\dagger}..U_{l}^{\dagger}\Lambda_{l,t}^{\dagger}U_{l}^{\dagger}U_{t}\Lambda_{t,l}U_{t-1}..U_{1}\left|l\right\rangle \left\langle t\right| = \left|l\right\rangle \left\langle t\right| \\ \Rightarrow W^{\dagger}H_{\mathrm{prop}}M_{\Delta}H_{\mathrm{prop}}W = \sum_{l \sim j}\left|i\right\rangle \left\langle j\right| \end{split}$$

And the history state will look like:

$$\left|\eta\right\rangle = \sum \Lambda_{t,l} U_{t-1} U_{t-2} .. U_1 \left|x_0\right\rangle \otimes \left|t\right\rangle \left\langle t\right| M_{\Delta} \left|l\right\rangle$$

2 Lets change it a little bit.

Mabye we should define Λ to be depands on a single paramter, namely Λ_t and:

$$\Lambda_l^{\dagger} U_l^{\dagger} U_t \Lambda_t = U_l U_{l-1} ... U_{t+1}$$

That wil allow us to group terms, and if

$$\sum_{v,u} \langle u|D|l\rangle^* \langle l+1|M_{\Delta}|t-1\rangle \langle t|D|v\rangle = \mathbf{1}_{t\sim l}$$

Then we win. So now we ask wheter there exsits such D, M_{Δ} and Λ_t 's. (Or approximation).

Claim 2.1. There are such Λ 's and they given by:

$$\Lambda_l^{\dagger} = U_l \Lambda_{l-1}^{\dagger} U_{l-1}^{\dagger} U_l$$

Proof. By induction, assume existness for any $l,t \leq l-1$, namely $\Lambda_{l-1} = U_{l-1}^{\dagger}U_{l-2}\Lambda_{l-2}U_{l-1}^{\dagger}$. Then:

$$\begin{split} \Lambda_l^\dagger U_l^\dagger U_t \Lambda_t = & \Lambda_l^\dagger U_l^\dagger U_{l-1} U_{l-1}^\dagger U_t \Lambda_t \\ & \Lambda_l^\dagger U_l^\dagger U_{l-1} \Lambda_{l-1} \Lambda_{l-1}^\dagger U_{l-1}^\dagger U_t \Lambda_t = \Lambda_l^\dagger U_l^\dagger U_{l-1} \Lambda_{l-1} \cdot \ U_{l-1}..U_{t+1} = \\ & U_l U_{l-1}..U_{t+1} = \\ & \Rightarrow \Lambda_l^\dagger = U_l \Lambda_{l-1}^\dagger U_{l-1}^\dagger U_l \end{split}$$

What about defining $\tilde{D} = \langle t | \mathbf{1}_{t \sim l} | l \rangle$, $D = \tilde{D}/det(D)$ and $\langle l + 1 | M_{\Delta} | t - 1 \rangle = \mathbf{1}_{t \sim l} 1/\Delta^2$?

3 Ideas.

1. M_{Δ} has to be unitar (and not just hermitan).

2. H_{init} and H_{end} are the critical terms and deserve more gentle treatment.

4 Constant Clock.

We can encode the time by unarity encoding. namely $|t\rangle = |1^t000..\rangle$. Then the check $|l\rangle\langle t|$ replaced by the check $|1_l0\rangle\langle 1_t0|$. In addition we have to add panility for any non ilegal edge. So, if $t \not\sim l$ then we add panility at the form $J \cdot |1_l0\rangle\langle 1_t0|$. And we also add checks for the validity of the input $|10\rangle\langle 10|$.