

Algebraic Identities Ex 4.3 Q14

Answer:

In the given problem, we have to find the value of numbers

(i) Given 1113 - 893

We can write
$$111^3 - 89^3$$
 as $(100 + 11)^3 - (100 - 11)^3$

We shall use the identity
$$(a+b)^3 - (a-b)^3 = 2[b^3 + 3a^2b]$$

Here
$$a = 100, b = 11$$

1113-893=100+113-100-113

$$= 2 \left[11^3 + 3 \left(100 \right)^2 \left(11 \right) \right]$$

$$= 2[1331 + 330000]$$

$$= 2[331331]$$

$$=662662$$

Hence the value of 1113 - 893 is 662662

(ii) Given $46^3 + 34^3$

We can write
$$46^3 + 34^3$$
 as $(40+6)^3 + (40-6)^3$

We shall use the identity $(a+b)^3 + (a-b)^3 = 2[a^3 + 3ab^2]$

Here
$$a = 40, b = 6$$

$$46^3 + 34^3 = (40 + 6)^3 + (40 - 6)^3$$

$$=2[40^3+3(6)^2(40)]$$

$$= 2[64000 + 4320]$$

$$=2[68320]$$

$$=136640$$

Hence the value of $46^3 + 34^3$ is 136640

(iii) Given
$$104^3 + 96^3$$

We can write $104^3 + 96^3$ as $(100 + 4)^3 + (100 - 4)^3$
We shall use the identity $(a+b)^3 + (a-b)^3 = 2[a^3 + 3ab^2]$
Here $a = 100, b = 4$
 $104^3 + 96^3 = (100 + 4)^3 + (100 - 4)^3$
 $= 2[100^3 + 3(100)(4)^2]$
 $= 2[1000000 + 300 \times 16]$
 $= 2[1000000 + 4800]$
 $= 2[1004800]$
 $= 2009600$
Hence the value of $104^3 + 96^3$ is 2009600
(iv) Given $93^3 - 107^3$
We can write $93^3 - 107^3$ as $(100 - 7)^3 - (100 + 7)^3$
We shall use the identity $(a-b)^3 - (a+b)^3 = -2[b^3 + 3a^2b]$
Here $a = 100, b = 7$

$$93^{3} - 107^{3} = (100 - 7)^{3} - (100 + 7)^{3}$$

$$= -2 \left[7^{3} + 3(7)(100)^{2} \right]$$

$$= -2 \left[343 + 21 \times 10000 \right]$$

$$= -2 \left[343 + 210000 \right]$$

$$= -2 \left[210343 \right]$$

$$= -420686$$

Hence the value of 933 - 1073 is -420686.

********* END *******