Exemples Graphes non orientés Degré d'un graphe Arbres Représentation et primitives de base

Graphes non orientés

Alix Munier-Kordon et Maryse Pelletier

LIP6 Sorbonne Université Paris

LU2IN003 Initiation à l'algorithmique

Plan du cours

- Exemples
- 2 Graphes non orientés
- Object d'un graphe
- 4 Arbres
- 6 Représentation et primitives de base
 - Représentation
 - Primitives de base

Problème d'Euler

Figure: Plan des 7 ponts de Konigsberg

Peut-on trouver un itinéraire qui passe exactement une fois par chaque pont ?

Modélisation par un graphe non orienté

Figure: Graphe G = (V, E). Sommets \leftrightarrow quartiers, arêtes \leftrightarrow ponts

Peut-on trouver une chaîne qui passe par toutes les arêtes pour le graphe G = (V, E)?

Recherche d'un itinéraire

Figure: Plan du métro parisien

Quel est le chemin le plus court (en nombre de stations) pour aller de République à Monparnasse ?

Définition

Definition

Un graphe non orienté G est défini par un couple G = (V, E), où V est un ensemble de sommets et E un ensemble d'arêtes.

$$V = \{1, 2, 3, 4\}, E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{2, 4\}\}.$$

Définition

Definition

Soit G = (V, E) un graphe non orienté.

Une *boucle* est une arête $\{u, u\}$ avec $u \in V$

Une arête $e = \{u, v\}$ est *multiple* si il existe au moins deux arêtes $\{u, v\}$ dans E.

Definition

Un graphe non orienté simple G est un graphe sans boucle ni arête multiple.

Dans ce cours, on suppose a priori que tous les graphes non orientés sont simples.

Terminologie pour les graphes non orientés

- Pour tout sommet u ∈ V, Γ(u) = {v ∈ V, {u, v} ∈ E} est l'ensemble des sommets adjacents à u (ou les voisins de u).
- Toute arête $e = \{u, v\} \in E$ est incidente à u et v.
- Un sous-graphe de G = (V(G), E(G)) est un graphe H = (V(H), E(H)) tel que $V(H) \subset V(G)$ et $E(H) \subseteq E(G)$.
- Le sous-graphe induit par un ensemble de sommets $V' \subset V(G)$ est le sous-graphe G' = (V', E') avec $E' = \{e = \{u, v\} \in E, u \in V', v \in V'\}.$

Terminologie pour les graphes non orientés (suite)

- Une chaîne(walk) est une séquence de sommets et d'arêtes ν = v₁e₁v₂e₂···v_ne_nv_{n+1} avec v_i ∈ V pour i ∈ {1,···, n+1} et e_i = {v_i, v_{i+1}} ∈ E pour i ∈ {1,···, n}.
- Une chaîne simple(trail) est une chaîne ne passant pas deux fois par la même arête.
- Une chaîne élémentaire(path) est une chaîne qui ne passe pas deux fois par le même sommet.

Remarque

Tout chaîne contient une chaîne élémentaire.

Terminologie pour les graphes non orientés (fin)

- Un *cycle* est une chaîne fermée (*i.e.* telle que $v_{n+1} = v_1$).
- Un cycle élémentaire est une chaîne élémentaire fermée.
- Un graphe connexe est tel que, pour tout couple (u, v) ∈ V², il existe une chaîne élémentaire entre u et v.

Est-ce que ces deux graphes sont connexes ?

Représentation et primitives de base

Degré d'un graphe

Definition

Soit G = (V, E) un graphe non orienté. Le degré de tout sommet $v \in V$ est égal à $d(v) = |\Gamma(v)|$.

Theorem

Pour tout graphe G = (V, E) non orienté, $\sum_{v \in V} d(v) = 2|E|$.

Définition d'un arbre

Definition

Soit T = (V, E) un graphe non orienté. T est un arbre si T est connexe sans cycle élémentaire.

Minimal connexe, maximum acyclique

Definition

Soit G = (V, E) un graphe non orienté. G est minimal connexe si, G est connexe et pour tout $e \in E$, $G' = (V, E - \{e\})$ n'est pas connexe.

Definition

Soit G = (V, E) un graphe non orienté. G est maximal acyclique si, G est sans cycle élémentaire et pour tout couple de sommets $\{x,y\}$ non adjacents dans G,

 $G' = (V, E \cup \{\{x, y\}\})$ contient un cycle élémentaire.

Caractérisation d'un arbre

Theorem

Soit T = (V, E) un graphe non orienté. Les propriétés suivantes sont équivalentes :

- T est un arbre.
- T est minimal connexe.
- T est maximal acyclique.
- Entre deux sommets quelconques, il existe une chaîne élémentaire unique.

Représentation et primitives de base

Relation entre |E| et |V|

Theorem

Soit G = (V, E) un graphe non orienté. Si $|E| \ge |V|$, alors G contient un cycle élémentaire.

Theorem

Soit G = (V, E) un graphe non orienté. Si |E| < |V|-1, alors G n'est pas connexe.

Theorem

Si
$$T = (V, E)$$
 est un arbre, alors $|E| = |V| - 1$.

Que pensez-vous de la réciproque ?

Matrice sommet-arête pour G = (V, E) non orienté

Pour tout couple $(i,j) \in V \times E$,

- $M[i,j] \in \{0,1\};$
- M[i,j] = 1 ssi i est incident à j.

$$M = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{array}\right)$$

Matrice sommet-sommet pour G = (V, E) non orienté

Pour tout couple $(i,j) \in V \times V$,

- **1** $R[i,j] \in \{0,1\};$
- P[i,j] = 1 ssi i est adjacent à j.

$$R = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

Listes d'adjacence pour G = (V, E) non orienté

Pour $i \in V$, L[i] est la liste des sommets adjacents à i.

$$L[0] = [1,3]$$

 $L[1] = [0,2,3]$
 $L[2] = [1,3]$
 $L[3] = [0,1,2]$

Taille en mémoire des deux représentations

Soit G = (V, E) un graphe non orienté :

	Taille mémoire	
Matrice sommet-arête	$\Theta(V \times E)$	
Matrice sommet-sommet	$\Theta(V ^2)$	
Listes d'adjacence	$\Theta(\max(V , E))$	

Complexité des primitives d'accès aux arêtes

Soit G = (V, E) un graphe non orienté :

- G.existeArete(i,j): pour tout couple $(i,j) \in V^2$, True ssi $\{i,j\} \in E$;
- ② G.adjacents(i): pour $i \in V$, $\Gamma(i)$.

Représentation	G.existeArete(i,j)	G.adjacents(i)
Matrice som-a	$\mathcal{O}(m)$	$\mathcal{O}(m \times n)$
Matrice som-som	Θ(1)	$\Theta(n)$
Matrice Adj.	$\mathcal{O}(d(i))$	Θ(1)

$$\overline{n=|V|, m=|E|.}$$

