Math 459 Lecture 18

Todd Kuffner

Last Time

The Bayesian linear regression model.

Gibbs sampling for Bayesian linear regression.

MCMCregress and the mercury risks for Kuwaiti fishermen.

Today

Bayes factors, model comparison, and measure of evidence

Bayesian hypothesis testing

Next time: approximating the marginal likelihood, computing Bayes factors, model and variable selection

Broad Overview

Three 'old' schools of thought regarding statistical testing:

- ► Fisher
- ▶ Neyman (and Pearson)
- Jeffreys

Example

Suppose we have i.i.d. $X_1, \ldots, X_n \sim \mathcal{N}(\theta, \sigma^2)$ with known σ^2 , n = 10 and we wish to test $H_0: \theta = 0$ vs. $H_1: \theta \neq 0$. Suppose $z = \sqrt{n}\bar{x}/\sigma = 2.3$.

Fisher would give p-values p = 0.021

Jeffreys would report posterior probabilities of H_0 , $Pr(H_0|x_1,\ldots,x_n)=0.28$, if he put equal prior probabilities on the two hypotheses and used a Cauchy $(0,\sigma)$ prior on H_1

Neyman would prespecify Type I error probability $\alpha=0.05$ and would report $\alpha=0.05$ and a Type II error probability β

Fisher's significance testing

Suppose one observes data $X \sim f(x|\theta)$ and wishes to test $H_0: \theta = \theta_0$

- ▶ choose a test statistic T = t(X), large values of which give evidence against H_0
- ▶ compute p-value $p = Pr_0(t(X) \ge t(x))$, reject H_0 if this is small

Neyman-Pearson testing

Believe you can only test a point null $H_0: \theta = \theta_0$ vs. some alternative $H_1: \theta = \theta_1$.

- reject H_0 if $T \geq c$, where c is a pre-specified critical value
- compute type I and type II error probabilities, $\alpha = Pr_0$ (reject the null), $\beta = Pr_1$ (fail to reject null)

Jeffreys approach

Agreed with Neyman that you need an alternative to be able to test the null.

- ▶ define Bayes factor $B(x) = f(x|\theta_0)/f(x|\theta_1)$
- ▶ reject H_0 if $B(x) \leq 1$
- ▶ report objective posterior error probabilities (i.e. the posterior probabilities of the hypotheses), e.g.

$$Pr(H_0|x) = \frac{B(x)}{1 + B(x)}$$

based on assigning equal prior probabilities of 1/2 to the two hypotheses and then applying Bayes theorem

Motivating Bayes Factors

Recall in decision theory (and frequentist testing) the following terminology.

- we have a statistical model $f(x|\theta)$ with $\theta \in \Theta$
- want to test a null hypothesis of the form

$$H_0: \theta \in \Theta_0$$

where $\Theta_0 \subset \Theta$, e.g. could be the single point $\{\theta_0\}$ (a point null hypothesis)

▶ in linear regression, Θ_0 is often a *subspace* of the vector space Θ ; then testing is the same as model selection

Example (Robert)

Suppose we have a logistic regression model

$$Pr_{\alpha}(y=1) = 1 - Pr_{\alpha}(y=0) = \exp(\alpha^{t}x)/(1 + \exp(\alpha^{t}x)), \quad \alpha, x \in \mathbb{R}^{p}$$

- could be a model for the probability of winning the lottery, or developing a water buffalo allergy during your lifetime
- ▶ the explanatory variables $x = (x_1, ..., x_p)$ represent factors you believe can influence this probability
- wish to test whether some coefficient, say α_{i0} corresponding to x_{i0} is zero or not

Neyman-Pearson perspective

Formalize the decision space \mathcal{D} which is restricted to $\{1,0\}$.

▶ thus such testing problems can be viewed as inference about the indicator function $I_{\Theta_0}(\theta)$, and thus answers should be in $I_{\Theta_0}(\Theta) = \{0, 1\}$

Frequently we have more information about the support of θ , specifically that $\theta \in \Theta_0 \cup \Theta_1 \neq \Theta$.

▶ then define the alternative hypothesis against which we test H_0 as

$$H_1:\theta\in\Theta_1$$

In these terms, every test procedure, say φ , is interpreted as an estimator of $I_{\Theta_0}(\theta)$.

▶ to derive a Bayes estimator, we need a loss function $L(\theta, \varphi)$

Example

Neyman-Pearson proposed the 0–1 loss

$$L(\theta, \varphi) = \begin{cases} 1 & \text{if } \varphi \neq I_{\Theta_0}(\theta), \\ 0 & \text{otherwise} \end{cases}$$

For the 0–1 loss, the Bayesian 'test procedure' (i.e. estimator) is

$$\varphi^{\pi}(x) = \begin{cases} 1 & \text{if } Pr^{\pi}(\theta \in \Theta_0|x) > Pr^{\pi}(\theta \in \Theta_0^C|x), \\ 0 & \text{otherwise.} \end{cases}$$

Intuitive justification: this estimator choose the hypothesis with largest posterior probability.

Generalization of Example

One could penalize errors made according to differnt weights, depending on whether H_0 is true or false.

▶ the weighted 0–1 losses defined below are called " $a_0 - a_1$ "

$$L(\theta, \varphi) = \begin{cases} 0 & \text{if } \varphi = I_{\Theta_0}(\theta), \\ a_0 & \text{if } \theta \in \Theta_0 \text{ and } \varphi = 0, \\ a_1 & \text{if } \theta \notin \Theta_0 \text{ and } \varphi = 1. \end{cases}$$

Question: what is the Bayesian estimator in this case?

The Bayes estimator associated with prior π is

$$\varphi^{\pi}(x) = \begin{cases} 1 & \text{if } Pr^{\pi}(\theta \in \Theta_0|x) > \frac{a_1}{a_0 + a_1}, \\ 0 & \text{otherwise.} \end{cases}$$

Sketch of proof: Note that

$$L(\pi, \varphi | x) = \int_{\Theta} L(\theta, \varphi) \pi(\theta | x) d\theta$$
$$= a_0 P r^{\pi}(\theta \in \Theta_0 | x) I_{\{0\}}(\varphi) + a_1 P r^{\pi}(\theta \notin \Theta_0 | x) I_{\{1\}}(\varphi)$$

and from this the Bayes estimator follows.

Comment

For the class of losses to which this generalized 0–1 loss belongs, H_0 is rejected when the posterior probability of H_0 is small.

- ▶ the acceptance level is determined by the form of the loss function
- note that φ^{π} depends only on a_0/a_1
- ▶ also, the larger a_0/a_1 is, meaning wrong answers are more important under H_0 relative to H_1 , the smaller the posterior probability of H_0 needs to be for H_0 to be accepted

Example

Consider $x \sim \text{Bin}(n, p)$ and $\Theta_0 = [0, 0.5]$.

• with uniform prior $\pi(p) = 1$, the posterior probability of H_0 is

$$Pr^{\pi}(p \le \frac{1}{2}|x) = \frac{\int_0^{1/2} p^x (1-p)^{n-x} dp}{B(x+1, n-x+1)}$$
$$= \frac{(1/2)^{n+1}}{B(x+1, n-x+1)} \left\{ \frac{1}{x+1} + \frac{n-x}{(x+1)(x+2)} + \dots + \frac{(n-x)!x!}{(n+1)!} \right\}$$

which can be computed and compared with the acceptance level.

Example

Suppose $x \sim \mathcal{N}(0, \sigma^2)$ and $\theta \sim \mathcal{N}(\mu, \tau^2)$.

• then $\pi(\theta|x)$ is $\mathcal{N}(\mu(x),\omega^2)$ where

$$\mu(x) = \frac{\sigma^2 \mu + \tau^2 x}{\sigma^2 + \tau^2}, \quad \omega^2 = \frac{\sigma^2 \tau^2}{\sigma^2 + tau^2}$$

To test $H_0: \theta < 0$, compute

$$Pr^{\pi}(\theta < 0|x) = Pr^{\pi}\left(\frac{\theta - \mu(x)}{\omega} < \frac{-\mu(x)}{\omega}\right) = \Phi(-\mu(x)/\omega).$$

Denoting the $a_1/(a_0 + a_1)$ quantile by z_{a_0,a_1} , i.e. $\Phi(z_{a_0,a_1}) = a_1/(a_0 + a_1)$, then H_0 is accepted when

$$-\mu(x) > z_{a_0,a_1}\omega.$$

Comment

Note that to a Bayesian it is natural to base a decision on the posterior probability that the hypothesis is true.

This can help motivate the Bayes factor, which is really a 1-to-1 transformation of the posterior probability, but it has its own rich history.

The Bayes Factor

The **Bayes factor** is the ratio of the posterior probabilities of the null and alternative hypotheses *over* the ratio of the prior probabilities of the null and alternative hypotheses,

$$B_{01}^{\pi}(x) = \frac{Pr(\theta \in \Theta_0|x)}{Pr(\theta \in \Theta_1|x)} / \frac{\pi(\theta \in \Theta_0)}{\pi(\theta \in \Theta_1)}.$$

This measures how the odds of Θ_0 against Θ_1 change due to the observed data.

▶ simple interpretation is to compare B_{01} to 1 to assess the evidence against each model; in practice the comparison scale depends on the loss function

Explanation from First Principles

Probability of model M given data D, using Bayes's formula:

$$Pr(M|D) = \frac{Pr(D|M) \cdot Pr(M)}{Pr(D)}$$

▶ to compare two models

Posterior model odds =
$$\frac{Pr(M_1|D)}{Pr(M_2|D)}$$
=
$$\frac{Pr(D|M_1) \cdot Pr(M_1)/Pr(D)}{Pr(D|M_2) \cdot Pr(M_2)/Pr(D)}$$
=
$$\left(\frac{Pr(M_1)}{Pr(M_2)}\right) \left(\frac{Pr(D|M_1)}{Pr(D|M_2)}\right)$$
= prior model odds × Bayes factor

Connection with Likelihood Ratios

When $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$, the Bayes factor is just the usual likelihood ratio

$$B_{01}^{\pi}(x) = \frac{f(x|\theta_0)}{f(x|\theta_1)}$$

Bayes factors are like Bayesian likelihood ratios because, if π_0 is a prior distribution under H_0 and π_1 is a prior distribution under H_1 , then

$$B_{01}^{\pi}(x) = \frac{\int_{\Theta_0} f(x|\theta_0)\pi_0(\theta)d\theta}{\int_{\Theta_1} f(x|\theta_1)\pi_1(\theta)d\theta} = \frac{m_0(x)}{m_1(x)},$$

the ratio of marginal likelihoods.

Another Viewpoint of the Connection

Let $\hat{\theta}$ and $\hat{\theta}_1$ be the MLE on the sets Θ_0 and Θ_1 , respectively.

▶ the likelihood ratio

$$\frac{f(x|\hat{\theta}_0)}{f(x|\hat{\theta}_1)} = \frac{\sup_{\Theta_0} f(x|\theta)}{\sup_{\Theta_1} f(x|\theta)}$$

which appears as a particular case of $B_{01}^{\pi}(x)$ when π_0 and π_1 are Dirac masses at $\hat{\theta}_0$ and $\hat{\theta}_1$.

To a Bayesian, however, this doesn't mean the likelihood ratio is valid as an inferential tool, because the priors π_0 and π_1 both depend on x.

Good and Jeffreys and the Bayes factor

- ► I.J. Good (1916–2009): weight of evidence (log of Bayes factor)
- ➤ Sir Harold Jeffreys (1891–1989): advocated BFs
- ► Edwin Jaynes (1922–1998): WashU physics professor, Probability Theory: The Logic of Science

Strength of Evidence

Let K be the Bayes factor for H_0 relative to H_1 .

	K	Strength of evidence for H_0
	< 1	negative (supports H_1)
	$(1, \sqrt{10})$	weak
Jeffreys scale	$(\sqrt{10}, 10)$	substantial
	$(10, 10\sqrt{10})$	strong
	$(10\sqrt{10}, 100)$	very strong
	> 100	decisive

Kass & Raftery (1995 survey)

$2 \log K$	K	Strength of evidence for H_0
(0,2)	(1, 3)	weak
(2, 6)	(3, 20)	positive
(6, 10)	(20, 150)	strong
> 10	> 150	very strong

Useful Departure in Terminology

Moving away from the hypothesis testing framework, Bayes factors provide a means of comparing different models, which could be of completely different types.

- given data $y = (y_1, \dots, y_n)^T$ i.i.d. with true density $p_0(y)$
- given two candidate models M_k , M_l , where each model M_{α} , where α is in a countable index set A, prescribes

$$M_{\alpha} = \{\mathcal{F}_{\alpha}, \Pi_{\alpha}, \lambda_{\alpha}\}$$

where \mathcal{F}_{α} is a set (or family) of densities, Π_{α} is a prior distribution, which is a probability measure on \mathcal{F}_{α} and λ_{α} is a probability measure on A

• e.g. the usual parametric setup has

$$\mathcal{F} = \{ p_{\theta}(y), \theta \in \Theta \subset \mathbb{R}^p, \pi(\theta) \}$$

▶ usually we compare two models with $\lambda_{\alpha} = 1/\text{card}(A) = 1/2$ $\forall \alpha \in A$, so these cancel out

Definition (again)

The Bayes factor for comparing M_k to M_l is

$$BF_{kl} = \frac{m(y|M_k)}{m(y|M_l)}$$

- observe that the crucial thing for computing Bayes factors is to be able to compute the marginal likelihood in each model
- ▶ recall this is a messy integral; until the late 1980s, we had trouble computing this, or even finding a decent estimate, in complex models (Laplace approximation)
- ▶ mid-1990s was the real breakthrough (MCMC estimation of marginal likelihood)

Bayes factor consistency

The BF for comparing model k to model l, BF_{kl} is **consistent** if both

- 1. $BF_{kl} \to \infty$ in probability if the true density (p_0) is in model M_k
- 2. $BF_{kl} \rightarrow 0$ in probability if the true density is in model M_l Equivalently
 - 1. $\log BF_{kl} \to \infty$ in probability if $p_0 \in M_k$
 - 2. $\log BF_{kl} \to -\infty$ in probability if $p_0 \in M_l$

Improper Priors

Using improper priors can cause problems for Bayes factors (e.g. Lindley's paradox).

Several proposals to modify Bayes factors to incorporate improper priors.

- ▶ posterior Bayes factor (Aitkin, early 1990s)
- ► fractional Bayes factors (O'Hagan, 1995)
- objective Bayes factors using intrinsic priors (Berger & Pericchi, Bayarri, etc., late 1990s-present)

Other measures of evidence

- posterior likelihood ratio (PLR); Dempster
- Ockham's factor; Jaynes and others
- ▶ relative belief ratios calibrated by strength; Evans (2015 book)
- ▶ Aitkin: p-value derived from profile likelihood
- ▶ Shafer et al. (2011): test martingales
- ➤ Smith & Ferrari (2014): extending PLR for composite hypotheses