

Instance Completion and Motion Estimation with Deep Shape Priors for Autonomous Driving

Team members

Panyawat (Ohm) Rattana Shashank (Sai) Dammalapati

Supervisors

Xingguang (Starry) Zhong Yue Pan

Motivation

[Courtesy of Waymo]

Incorrect Bounding Box Predictions

Motivation – Shape Priors

Motivation – Shape Priors

Prior Work

Pipeline

Raw Lidar Sensor Data

Existing Methods

Result - Joint Optimization

Visualization shows

- 1. Point Cloud belonging to a detected car surface
- 2. Bounding Box is initialized with PointRCNN
- 3. Over the process of optimization we get improved bounding box and shape code

Result - Joint Optimization

Result - Joint Optimization

Bounding Box predicted by PointRCNN

Optimized Bounding Box

Result

Instance Completion and Motion Estimation for multiple cars

What is missing?

Improve Instance Association by using a SOTA MOT method

Evaluation using ground truth

- 1. Evaluation metric MOT, Detection Metrics
- 2. Dataset with ground truth Waymo, Nuscenes

Improvements

Improvement 1 : Multi Object Tracking (1)

Illustration by Per Thorneus, reproduced from K. Granstrom et al, "Random Set Methods: Estimation of Multiple Extended Objects," in IEEE Robotics & Automation Magazine, June 2014

[1] Multi-Object Tracking (MOT) is the task of detecting the presence of multiple objects in video or a lidar sequence, and associating these detections over time according to object identities

Improvement 1: Multi Object Tracking (2)

We will replace our IoU-based data association with a SOTA multi object tracking method.

- 1. This will improve the data association.
- The task of this project is to verify if our method based on shape priors improve the SOTA MOT.

Improvement2: loss function

Initial Bounding Box Prediction
Optimized Bounding Box

$$L = \lambda_s L_s + \lambda_R L_R$$

Latent Code Regularisation

$$L_R = |1 - ||z|||$$

SDF Loss

$$L_s = |s - \widehat{s}|$$

Limitations of the current method:

If the estimated bounding box is far from ground truth, the current method is unable to converge to correct solution

Improvement2: Optimization with prior motion

- Black Bounding Box is the Predicted Detection
- Red Arrow is the motion prior
- **Black Arrow** shows the bounding box's orientation

We can leverage motion priors, such as velocity and angular velocity, as an additional component in the loss function to rectify occasional inaccuracies in bounding box predictions

METRICS

HOTA Metric

HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking.

This metric consists of:

- 1. Localization
- 2. Association
- 3. Detection

Evaluating with Baseline Methods

19

Method	Remarks
MOT	We will use an existing SOTA MOT
MOT + ICP	ICP requires correct Point-to-Point data association
MOT + Ours	We expect higher score in the metrics because of shape prior

Conclusion

Raw Lidar Sensor

Data

Pipeline

Existing Methods

10/30/2023 LXISTING METHOUS OUR CONTINUE

Pipeline

Raw Lidar Sensor Data

Citations

[1] Luiten, J., Ošep, A., Dendorfer, P. et al. HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. Int J Comput Vis 129, 548–578 (2021). https://doi.org/10.1007/s11263-020-01375-2

Any Questions?

Any Questions?

fps

10/30/2023

GAZEBO

Pipeline

Detection Metrics

Average Precision Metric

True Positive Metric

mean Average Precision (mAP):

We use the well-known Average Precision metric, but define a match by considering the 2D center distance on the ground plane rather than intersection over union based affinities. Specifically, we match predictions with the ground truth objects that have the smallest centerdistance up to a certain threshold. For a given match threshold we calculate average precision (AP) by integrating the recall vs precision curve for recalls and precisions > 0.1. We finally average over match thresholds of {0.5, 1, 2, 4} meters and compute the mean across classes.

Average Translation Error (ATE)
Average Scale Error (ASE)
Average Orientation Error (AOE).