Правило умножения.

Если первый элемент A можно выбрать n способами, а второй элемент B — m способами, то оба элемента (A и B) в указанном порядке можно выбрать $n \cdot m$ способами.

Правило сложения.

Если первый элемент A можно выбрать n способами, а второй элемент $\mathbf{B} - m$ способами, причём первые и вторые способы **не пересекаются**, то любой из элементов (**A или B**) можно выбрать n+m способами.

Основные формулы комбинаторики.

n — число элементов данного множества. k — число элементов составляемого подмножества. По определению 0!=1.

Размещения Allocations	$A_n^k = \frac{n!}{(n-k)!}$	Упорядоченные подмножества. Отличаются или составом,
Anocations	$(n-\kappa)$:	или порядком элементов.
Перестановки	$P_n = n!$	Отличаются только порядком
Permutations	$I_n - n$:	следования элементов.
Сочетания Combinations	$C_n^k = \frac{n!}{k! \cdot (n-k)!}$	Отличаются только составом
		элементов.
		(Порядок не важен.)

Схема выбора с возвращением.

Размещения с повторениями	$\overline{A}_n^k = n^k$	Упорядоченные подмножества.
Сочетания с повторениями	$\overline{C}_{n}^{k} = \frac{(n+k-1)!}{k!(n-1)!}$	Элементы могут повторяться. Порядок не важен. Элементы могут повторяться.
Перестановки с повторениями	$P_n(n_1, n_2, \dots, n_k) = \frac{1}{n_1! \cdot r}$	$n!$ Число разбиений $n_2! \cdot \ldots \cdot n_k!$ множества.