

Impostor from among us :0)

týden 1

Klasifikace signálů a sysémů

- Spojité
- Diskrétní
- Deterministické
- Stochastické
- Periodické
- Aperiodické
- časově invariantní
- Lineární

Stabilita signálů a systémů

- Lyapunova stabilita
- Asymptotickástabilita
- Exponenciální stabilita
- Stabilita omezený v
stup –omezený výstup (BIBO-Bounded Input Bounded Output)

Prevádzanie sinu a kosínusu na komplexné funkcie a naopak

(Převádění sinu a cosinu na komplexní funkce a naopak)

$$x(t) = Ae^{\sigma t}(\cos(\omega t + \varphi) + j\sin(\omega t + \varphi)) = Ae^{\varphi j}e^{(\sigma + \omega j)t} = Ae^{st}$$

$$A = |A|e^{\omega j}, \quad s = \sigma + \omega j$$

$$x(t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j} = \sin(\omega t)$$

$$x(t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2} = \cos(\omega t)$$

Dirakova funkce a jednotkový skok

Vzorkovací vlastnost dirakovy funkce

$$\int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt = \int_{-\infty}^{\infty} f(t_0)y\delta(t - t_0) = f(t_0)\int_{-\infty}^{\infty} \delta(t - t_0) = f(t_0)$$

týden 2

Průměrná hodnota, výkon, energie

Průměrná hodnota

$$Avg\{x[n]\} = \frac{1}{N_2 - N_1 + 1} \sum_{N=N_1}^{N_2} x[n] \qquad Avg\{x[n]\} = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} x[n]$$

$$Avg\{x(t)\} = \frac{1}{T_2 - T_1} \int_{T_2}^{T_1} x(t)dt \qquad Avg\{x(t)\} = \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{-T} x(t)dt$$

Okamžitý výkon

$$p(t) = |x(t)|^2$$
 $p[n] = |x[n]|^n$

Průměrný výkon

$$P=Avg\{|x(t)|^2\} \qquad P=Avg\{|x[n]|^2\}$$

Energie

$$E = \int_{\mathcal{I}} p(t)dt = \int_{\mathcal{I}} |x(t)|^2 dt \qquad E = \sum_{n \in \mathcal{I}} p[n] = \sum_{n \in \mathcal{I}} |x[n]|^2$$

- $\bullet\,$ Energetické signály E_{∞} konečný
- $\bullet\,$ Výkonové signály P_{∞} konečný

Fourierova řada

Fourierova řada se používá k přepisu signálu pomocí sinu a cosinu. Reálná Fourierova řada

$$\sum_{\omega} A(\omega) \cos(\omega t + \varphi(\omega)) \quad \omega = 2\pi k f$$

Komplexní Fourierova řada - aperiodické, diskrétní spektrum

$$x(t) = \sum_{k=-\infty}^{\infty} C_k e^{j\omega_k t}, \quad \omega_k = 2\pi f k = \frac{2\pi}{T} k$$

Koeficient komplexní Fourierovy řady - spojitý, periodický signál

$$C_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-j\omega_k t} dt$$

týden 3

Fourierovy transformace

Fourierova transformace ve spojitém čase (CTFT)

$$\mathcal{F}\{x(t)\} = X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

inverzní CTFT

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

Fourierova transformace v diskrétním čase (DTFT)

$$X(\Omega) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\Omega n}$$

inverzní (DTFT)

$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$

Diskrétní Fourierova Transformace (DFT)

$$X[k] = \sum_{s=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

Inverzní DFT

$$x_p[n] = \frac{1}{N} \sum_{s=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$$

Filtrace ve spektrální oblasti

 $H(\omega), H(\Omega), H[k]$ - Frekvenční charakteristika (odezva), to je to jaký frekvence to propuští/nepropouští. Filtruje ve spektrální oblasti, to znamená, že nahrajeme zvuk mikrofonem, ten pomocí fourierovy transofrmace přeneseme do spektrální oblasti a tady ho pronásobíme frekvenční charakteristikou, zpětnou fourierovou transformací to přeneseme zpět do časové oblasti a tam máme přefiltrovanej signál.

Čtyři druhy frekvenčních charakteristik

- Dolní propust
- Horní propust
- Pásmová zádrž
- Pásmová propust

Nevýhody filtrování ve frekvenční oblasti: Musíme uložit celý signál, není v reálném čase

Filtrace v časové oblasti

Lineární konvoluce

$$x[n] * y[n] = \sum_{m = -\infty}^{\infty} x[n - m]y[m] = \sum_{m = -\infty}^{\infty} x[m]y[n - m]$$
$$x(t) * y(t) = \int_{-\infty}^{\infty} x(t - \tau)y(\tau)d\tau = \int_{-\infty}^{\infty} x(\tau)y(t - \tau)d\tau$$

FIR filtry

týden 5

 $\delta[n]*h[n]=h[n]$ - impulsní odezva

 $1\cdot H(\Omega)=H(\Omega)$ - frekvenční charakteristika

IIR filtry

Nízký řád filtru - výpočetní náročnost je nízká Impulsní odezva nekonečná Data "obíhají" do nekonečna $a_0y[n]+a_1y[n-1]+a_2y[n-2]=b_0x[n]+b_1x[n-1]+b_2x[n-2]$ Difernční rovnice

týden 6

Popis spojitých LTI systémů

diskrétní systémy - difernční rovnice spojité systémy - diferenciální rovnice

Homogenní systémy

Homogenní systémy jsou bez vstupu (x(t) = 0) $a_2y''(t) + a_1y'(t) + a_0y(t) = 0$ prostě se řeší diferenciální rovnice typické odezvy: podle toho kde vyjdou kořeny diff. rovnice.

Relativní tlumení ζ a vlastní úhlová frekvence ω_0

 $y''(t) + 2\zeta\omega_0y'(t) + \omega_0^2$

 $\zeta > 1$ - nadkriticky tlumený systém

 $0 < \zeta < 1$ - podkriticky tlumený systém

 $\zeta=0$ - netlumený systém

 $\zeta=1$ - kriticky tlumený systém

 $\zeta < 0$ - nestabilní systém

(vlastní úhlová frekvence je frekvence netlumených kmitů)

Nehomogenní systémy

 $a_2y''(t) + a_1y'(t) + a_0y(t) = b_0x(t) + b_1x'(t) + b_2x''(t)$ Přepsat do frekvenční charakteristiky

$$H(j\omega) = \frac{b_0 + b_1 j\omega + b_2 (j\omega)^2}{a_0 + a_1 j\omega + a_2 (j\omega)^2}$$

$$Y(\omega) = X(\omega)H(j\omega) \stackrel{\mathcal{F}^{-1}}{\rightarrow} y(t) = x(t) * h(t)$$

Bodeho charakteristika

týden 7

Laplaceova transformace

$$\mathcal{L}\{x(t)\} = \int_0^\infty x(t)e^{-st}dt$$

Obrazy základních funkcí

$\delta(t)$	1
1 (t)	$\frac{1}{s}$
$e^{at}1(t)$	$\frac{1}{s-a}$
$\cos(\omega t)1(t)$	$\frac{s}{s^2 + \omega^2}$
$\sin(\omega t)1(t)$	$\frac{\omega}{s^2 + \omega^2}$

Statický systém - nemá póly v nule Astatický systém - má póly v nule

Z-transformace

$$\mathcal{Z}\{x[n]\} = \sum_{n=0}^{\infty} x[n]z^{-n} = X(z)$$

týden 9

Z-transformace

Definice

$$\mathcal{Z}\{x[n]\} = \sum_{n=0}^{\infty} x[n]z^{-n}$$

$\delta(t)$	1
1 (t)	$\frac{z}{z-1}$
$a^n 1(t)$	$\frac{z}{z-a}$

týden 10

Popis LTI systémů

Prostě náčrty systémů

týden 11

Linearizace

Hledání pracovního bodu......

Diskretizace

 (T_s) je vzorkovací perioda

• Dopředná diference

$$s = \frac{z - 1}{T_s}$$

• Zpětná diference

$$s = \frac{1 - z^{-1}}{T_s}$$

• Bilineární transformace

$$s = \frac{2}{T_s} \frac{1 - z^{-1}}{1 + z^{-1}}$$

• Impulsní invariance Provede se zpětný laplace, všechny t se nahradí $\frac{n}{T_s}$, a to se z-transformuje

• Metoda mapování nul a pólů Najdou se nuly a póly, ty se nahraděj pólama z prostoru z (pól je ω do z jako $e^{\frac{\omega}{T_s}}$)

týden 13

Modulace

Máme náhravku třeba lidský řeči (20Hz - 20kHz) a potřebujeme jí poslat, kdybychom chtěli poslat přímo frekvenci kterou posíláme, tak nebudeme mít dost velkou anténu, musíme to posunout do vyšších frekvencí

Amplitudová modulace

Nosnému signálu měníme amplitudu podle hodnot modulačního signálu.

 $y(t) = (1 + m \cdot x_m(t)) \cdot \cos(\omega_c t)$

Kosinus představuje nosný signál, ω_c je frekvence nosného signálu to $m \cdot x_m(t)$ je modulační signál

Demodulace - usměrnění signálu a low pass filtr

QAM - Kvadrální amplitudová modulace

Frekvenční modulace

Fázová modulace

Hilbertova Transformace

$$x_H(t) = \int_{-\infty}^{\infty} \frac{1}{t - \tau} x(\tau) ft$$

Odvození vzorců

$$\mathcal{Z}\{\delta[n]\} = \sum_{n=0}^{\infty} \delta[n] z^{-n} = z^0 = 1$$

impulsní odezva se zjštuje, tak že najdeme Z/L transformaci a přechodovou odezvu (odezva na jednotkový skok) najdeme tak, že zase najdem Z/L transformaci ale pronásonbenou zpětnou Z/L transformací jednotkovýho skoku

Laplaceova transformace

$$F(s) = \int_{0_{-}}^{\infty} f(t)e^{-st}dt, s = \sigma + j\omega$$

- $\mathbf{1}(t)$... jednotkový skok (označován také H(t) nebo $\eta(t)$)
- $\delta(t)$... Diracův jednotkový impuls

f(t)	F(s)	
$a \cdot f_1(t) + b \cdot f_2(t)$	$a \cdot F_1(s) + b \cdot F_2(s)$	linearita
$\frac{\frac{d^n f(t)}{dt^n}}{\int\limits_0^t f(\tau)d\tau}$	$s^{n}F(s)-s^{n-1}f(0_{-})-s^{n-2}f'(0_{-})-\cdots-s^{0}f^{(n-1)}(0_{-})$	derivace
$\int\limits_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$	integrál
$f_1(t) * f_2(t) =$ $= \int_0^t f_1(\tau) \cdot f_2(t - \tau) d\tau$	$F_1(s) \cdot F_2(s)$	konvoluce
$f(t-t_0) \cdot 1(t-t_0)$ $f(t) \cdot 1(t-t_0)$	$F(s)\cdot e^{-st_0} \ L\{f(t+t_0)\}\cdot e^{-st_0}$	posun v čase doprava $(t_0 \ge 0)$
$f(t) \cdot e^{at}$	F(s-a)	posun obrazu
f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$	změna měřítka
$\delta(t)$ $1(t)$ $e^{-at} \cdot 1(t)$ $t \cdot 1(t)$ $\cos(\omega t) \cdot 1(t)$ $\sin(\omega t) \cdot 1(t)$ $e^{-at} \cos(\omega t) \cdot 1(t)$ $e^{-at} \sin(\omega t) \cdot 1(t)$	$ \frac{1}{s+a} $ $ \frac{1}{s+a} $ $ \frac{1}{s^2} $ $ \frac{s}{s^2+\omega^2} $ $ \frac{\omega}{s^2+\omega^2} $ $ \frac{s+a}{(s+a)^2+\omega^2} $ $ \frac{\omega}{(s+a)^2+\omega^2} $	základní obrazy

Věta o počáteční hodnotě

Věta o koncové hodnotě

Věta o stejnosměrném zesílení

$$f\left(0_{+}\right) = \lim_{s \to \infty} sF\left(s\right)$$

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$
(jen pro stabilní systémy)

$$DCgain = \lim_{s \to 0} s \frac{1}{s} H(s) = H(s) \Big|_{s=0}$$

(jen pro stabilní systémy)

z-transformace

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$
, kde $z = e^{sT_s}$, přičemž $T_s = \frac{1}{f_s}$ Pozn. $n = 0$... 1. index (na rozdíl od Matlabu)

x[n]	X(z)	
$a \cdot x_1[n] + b \cdot x_2[n]$	$a \cdot X_1(z) + b \cdot X_2(z)$	linearita
x[n+1]-x[n]	$(z-1)X(z)-z\cdot x[0]$	diference
$x_1[n] * x_2[n] = \sum_{k=0}^{n} x_1[k] \cdot x_2[n-k]$	$X_1(z) \cdot X_2(z)$	konvoluce
$x[n-n_0] \cdot 1[n-n_0], n_0 > 0$	$z^{-n_0}\cdot X(z)$	posun v "čase" doprava
$x[n+1] \cdot 1[n]$	$z \cdot X(z) - z \cdot x[0]$	posuny v "čase" doleva
$x[n+2]\cdot 1[n]$	$z^2 \cdot X(z) - z^2 \cdot x[0] - z \cdot x[1]$	
$x[n+n_0] \cdot 1[n], n_0 > 0$	$z^{n_0} \cdot X(z) - z^{n_0} \cdot \sum_{k=0}^{n_0-1} x[k]z^{-k}$	
$\delta[n]$	1	
1 [n]	$\frac{z}{z-1}$	základní obrazy
$a^n \cdot 1[n]$	$\frac{z}{z-a}$	

Věta o počáteční hodnotě $x[0] = \lim_{z \to \infty} X(z)$

Věta o koncové hodnotě $\lim_{n\to\infty} x[n] = \lim_{z\to 1} (z-1)X(z)$ (jen pro stabilní systémy)

Věta o stejnosměrném zesílení $DCgain = H(z)|_{z=1}$ (jen pro stabilní systémy)

frekvenční charakteristika je to jaký frekvence potlačujeme a jaký necháváme/zesilujeme lineární konvoluce je filtrování v časový oblasti Časová oblsat - to co slyší mirofon - signál spektrální oblsat - to co slyší ucho - spektrum - dostaneme fourierovou transformací

Nevýhoda filtrování ve spektrální oblasti

- Musíme uložit celý signál
- Není v reálném čase

$H(\Omega), H(\omega), H[k]$	Frekvenční charakteristika	To jaký frekvence jsou potlačený/ponechaný/zesílený
$Y(\Omega)$		To co zbude po vynásobení signálu s $H(\Omega)$
h[n]	impulsní odezva	$H(\omega) = \mathcal{F}\{h(t)\}, H(\Omega) = \mathcal{F}\{h[n]\}$

LTI systém popsaný nějakou diferenciální rovnicí

$$y''(t) + 5'(t) + 6y(t) = x'(t) + 6x(t)$$

Najít póly a nuly - přepsat si rovnici

$$0 = \frac{\lambda + 6}{\lambda^2 + 5\lambda + 6} = \frac{\lambda + 6}{(\lambda + 2)(\lambda + 3)}$$

Nuly jsou tamm kde funkce nabývá nule, póly, tam kde nabývá nekonečna - prostě singularity

impulsní charakteristika - inverzní laplace

přechodová charakteristika - (odezva na jednotkový skok) - pronásoobené laplasovanym jednotkovym skokem $(\frac{1}{s})$ a inverzní lapace

hodnoty přechodové charakteristiky - jenom se dosadí do přechodové charakteristiky

Vypočítat výstup systému na nějakej vstup - je to jako přechodová charakteristika ale na vstupu není jednotkovej skok ale něco jinýho