

Universidad Tecnológica Nacional Facultad Regional Villa María

Ingeniería en Sistemas de la Información

Sintaxis y Semántica del Lenguaje

Trabajo Práctico N°5

<u>GRUPO H</u>

Alumnos:

- Arias Matías [matiasarias384@gmail.com][13673]
- Márquez Juan Cruz [marquezjuanchy@hotmail.com][13359]
- Muzillo Tomás [tomimuzzillo@gmail.com][13765]
- Zoy Eder [ederzoy6@gmail.com][13620]

1. Obtener árbol de derivación según gramática:

$$E \to E + T \mid T$$

$$T \to T \times F \mid F$$

$$F \to \langle E \rangle \mid a$$

2. Según la gramática:

- a. Variables: R, S, T, X
- b. Terminales: a,b, ϵ
- c. Variable de inicio: R
- d. 5 ejemplos de Strings en L(G):
 - ab □
 - aab 🗆
 - aaabb 🗆
 - ababbaa 🗆
 - bba □

Ingeniería en Sistemas de Información Sintaxis y Semántica de los Lenguajes

True or False:
$$T \stackrel{*}{\Rightarrow} T$$
. \Box

True or False: $XXX \stackrel{*}{\Rightarrow} aba$. \Box

True or False: $X \stackrel{*}{\Rightarrow} aba$. \Box

True or False: $T \stackrel{*}{\Rightarrow} XX$. \Box

True or False: $T \stackrel{*}{\Rightarrow} XXX$. \Box

True or False: $S \stackrel{*}{\Rightarrow} \varepsilon$. \Box

3. 5 oraciones generadas a partir de la gramática:

ORACIÓN → SUJETO PREDICADO | PREDICADO

SUJETO → ARTÍCULO NOMBRE

ARTICULO → el | la

NOMBRE → casa | niño

PREDICADO → VERBO COMPLEMENTO

VERBO → corre | es

COMPLEMENTO → bien | obediente | bonita

- 1. el niño corre bien.
- 2. es obediente.
- 4. corre bien
- 5. el niño es obediente.

4. Especificar en FORMA NORMAL DE CHOMSKY [FNCH]

a. $A \to XB | O_1O_1 | BA | AB | BB | \varepsilon$ $B \to O_1O_1$ $X \to BA$ $O_1 \to O$ b. $S \to 1_1A | 1_1B$ $A \to O | O_1S | X_1A$ $B \to 1 | 1_1S | X_2B$ $X_1 \to 1_1A$ $X_2 \to O_1B$ $1_1 \to 1$ $O_1 \to O$

c.

 $S \rightarrow B_1A \mid A_1B$

 $A \rightarrow B_1X_1 | A_1S | a$

 $B \rightarrow A_1X_2 | B_1S | b$

 $X_1 \rightarrow AA$

 $X_2 \rightarrow BB$

 $A_1 \rightarrow a$

 $B_1 \rightarrow b$

d.

 $S \rightarrow X_1D \mid CA_1 \mid B_1C_1$

 $A \rightarrow X_2C|X_3D|X_4D|AC|C_1D|B_1D|X_5A|A_1A|A_1B|a$

 $B\!\to X_4D\!\mid\! AC\!\mid\! C_1D\!\mid\! B_1D\!\mid\! X_5A\!\mid\! A_1A\!\mid\! A_1B\!\mid\! a$

 $C \rightarrow B_1D|X_5A|A_1A|A_1B|a$

 $D \rightarrow C_1D|a$

 $X_1 \rightarrow B_1D$

 $X_2 \rightarrow A_1C$

 $X_3 \rightarrow B_1 A_1$

 $X_4 \rightarrow C_1B$

 $X_5 \rightarrow A_1B$

 $A_1 \rightarrow a$

 $B_1 \rightarrow b$

 $C_1 \rightarrow c$

- **5.** Especificación de diagrama de estados y la definición formal del AP que reconoce el lenguaje:
- a. L= $(x^ny^n: n \in \mathbb{N})$.

$$x, A/A A$$
 $x, Zo/A Zo$
 $y, A/\epsilon$
 $q0$
 $y, A/\epsilon$
 $q1$
 $\epsilon, Zo/\epsilon$

$$\begin{split} \textbf{Definición Formal} &= \{ \{q0,\,q1,\,q2\},\,\{x,y\},\,\{A,\,Z0\},\,\Delta,\,qo,\,\{q2\} \} \\ \textbf{\Delta} &= \{ ((q0,\,x,\,Z0)(q0,A)),\,((q0,\,x,\,A)(q0,AA)),\,((q0,\,y,\,A)(q1,\epsilon)),\,((q1,\,y,\,A)(q1,\epsilon)),\,((q1,\epsilon\,,\,Z0)(q2,\epsilon)) \} \end{split}$$

b.
$$L_{wwr} = \{ww^R \mid w \text{ is in } (0+1)^*\}$$

Definición Formal = $\{\{q0, q1, q2\}, \{0,1\}, \{0, 1, Z0\}, \Delta, q0, \{q2\}\}$

c Δ. L={a·bcbc· | i,k>=1 ^ i<k}

Definición Formal = $\{\{q0, q1, q2, q3, q4\}, \{a,b,c\}, \{A, Z0\}, \Delta, q0, \{q4\}\}\}$

$$d\Delta.L. = \{a^1 b c^k / i, k \ge 1 \ y i > k\}$$

este autómata tiene por condición k>i

 $\begin{aligned} & \textbf{Definici\'on Formal} = \{ \{q0, \, q1, \, q2\}, \, \{a, \, b, \, c\}, \, \{A, \, Z0\}, \, \Delta, \, q0, \, \{q2\} \} \\ & \Delta = \{ ((q0, \, a, \, Z0)(q0, A \, Z0)), \, ((q0, \, a, \, A)(q0, AA)), \, ((q0, \, b, \, A)(q1, A)), \quad ((q1, \, c, \, A)(q1, \epsilon)), \, ((q1, \, c, \, Z0)(q2, \, Z0 \,)), \, ((q2, \, c, \, Z0)(q2, \, Z0 \,)) \} \end{aligned}$

Parte 2: Códigos adjuntos con la entrega del trabajo

6)

No se encuentra en FNCH ya que no se cumplen las reglas:

- 1. $A \rightarrow a$, $a \in \Sigma$
- 2. $A \rightarrow BC$, con B,C $\in V$

En la gramática tenemos, por ejemplo:

$$S \to Sa \,$$

$$I \rightarrow M+I$$

$$L \rightarrow aLbL$$

Además, existen reglas que no son generadoras y eliminándolas hacen que otras sean inalcanzables.

Conversión:

- $S \rightarrow SA1 \mid X2L \mid b$
- $L \rightarrow X2L \mid b$
- $X1 \rightarrow A1L$
- $X2 \rightarrow X1B$
- A1 → a
- B1 → b

7. ¿Qué lenguaje reconoce el siguiente autómata?

APD₃ =< {e₀,e₁,e₂}, {a,b,c}, {A, Z₀},
$$\delta$$
 , e₀, Z₀, {e₂}>
$$\delta: \begin{array}{c} a_{1}Z_{0}/AZ_{0} \\ a_{2}A/AA \\ e_{1} \end{array} \begin{array}{c} c_{1}Z_{0}/Z_{0} \\ \epsilon_{2}Z_{0}/Z_{0} \end{array}$$

L = {w/w comienza con una o más "a", seguido por una única "b", y finaliza con una cantidad de "c" mayor o igual a la cantidad de "a"} □

$$L = \{ a^ibc^j : j,i > 0 \ j \ge i \} \quad \Box$$

8. Diseñar gramáticas libres de contexto para los siguientes lenguajes:

■
$$\{0^n1^n : n \in \mathbb{N}\},$$
 S $\to 0$ S1 | 01 | ϵ

■
$$\{0^n1^{2n}: n \in \mathbb{N}\},\$$
 S \to 0S11 | 011| ϵ

puede generar "10" y no es válido

9. Gramática Ambigua:

```
\begin{split} G &= (V, \Sigma, R, S) \\ V &= \{ \text{PROG}, \text{IF}, \text{STAT} \} \\ \Sigma &= \{ \text{if}, \text{then}, \text{else}, \text{condición}, \text{stat} \} \\ R &= \{ \text{PROG} \rightarrow \text{STAT}, \text{ STAT} \rightarrow \text{if condición then STAT}, \\ \text{STAT} \rightarrow \text{if condición then STAT else STAT}, \text{ STAT} \rightarrow \text{stat} \} \\ S &= \text{PROG} \end{split}
```

Si, es ambigua, ya que existen dos árboles de derivación para la misma cadena y cada árbol indica una manera distinta de estructurar la expresión.

if condicion then if condicion then stat else stat

Para eliminar la ambigüedad expresamos la gramática como FNCH

PROG → STAT

 $STAT \rightarrow if$ condicion then $STAT \mid if$ condicion then $STAT \mid stat$

- PROG → X₂STAT | X₄STAT | stat
- STAT → X₂STAT | X₄STAT | stat
- X₄ → X₃E
- X₃ → X₂STAT
- X₂ → X₁T
- X₁ → IC
- I → if
- C → condicion
- T → then
- E → else