а) Впишите в данный треугольник ABC треугольник, одна из вершин P которого фиксирована и лежит на стороне AB, и периметр которого имеет наименьшее возможное значение

Построение:

- 1. Пусть P' отражение P от одной из сторон (не AB) (Пусть это будет AC)
- 2. Пусть P'' отражение P' от второй стороны (не AB) (По остаточному принципу это будет BC)
- 3. Пусть $D=(P''P)\cap [BC]$
- 4. Пусть $E=(P'D)\cap [AC]$ Утверждается, что $\triangle PDE$ - искомый

б) Треугольник Шварца: Впишите в данный остроугольный треугольник ABC треугольник наименьшего возможного периметра. Докажите, что получившийся

треугольник - высотный (образован основаниями высот)

Докажем лемму:

В каждой из вершин D, E, F (которые являются основаниями высот треугольника) две стороны высотного треугольника образуют одинаковые углы со стороной исходного треугольника.

Каждый из этих углов равен углу при противоположной вершине исходного треугольника.

Например, $\angle CDE = \angle BDF = \angle BAC$ и т. д.

Доказательство

- 1. $\angle ADB = \angle AEB = \angle BFC = 90^\circ$ (по условию)
- 2. Пусть ω окружность с диаметром OB
- 3. $D,F\in\omega$ (из \red) т.к. смотрят на OB под прямым углом)
- 4. $\angle OBF$, $\angle ODF$ опираются на $\check{OF}\Rightarrow \angle OBF=\angle ODF$
- 5. Т.к. $\angle AEB=90^\circ$ (из 1), то $\triangle AEB$ прямоугольный $\Rightarrow \angle EBA+\angle EAB=90^\circ\Rightarrow \angle BAC=90^\circ-\angle OBF$
- 6. Т.к. $\angle ADB=90^\circ$ (из 1)), то $\angle BDF+\angle ADF=90^\circ\Rightarrow \angle BDF=90-\angle ODF=\angle BAC$ Ч.Т.Д.

Обратно к задаче

Заметим, что точки F и E - места отражения луча из D, который возвращается в неё же, при этом проходя наименьший маршрут (доказано в предыдущих задачах), а следовательно треугольник им образованный имеет наименьший возможный периметр

в) Впишите в произвольный треугольник ABC треугольник наименьшего возможного периметра

