Agrégation Externe

Le groupe linéaire

On pourra consulter les ouvrages suivants.

- M. Alessandri. Thèmes de géométrie. Groupes en situation géométrique.. Dunod. 1999.
- S. Francinou, H. Gianella, S. Nicolas. Oraux X-ENS. Algèbre 2 et 3. Cassini (2009).
- K. Madere. Préparation à l'oral de l'agrégation. Leçons d'algèbre. Ellipses (1998).
- R. Mneimne. Réduction des endomorphismes. Calvage et Mounet (2006).
- P. Ortiz. Exercices d'algèbre. Ellipses (2004).
- D. Perrin. Cours d'algèbre. Ellipses (1996).
- J. E. ROMBALDI. Analyse matricielle. EDP Sciences (2000).
- P. Tauvel. Mathématiques générales pour l'agrégation. Masson (1993).

Notations

K désigne un corps commutatif.

E est un \mathbb{K} -espace vectoriel supposé de dimension finie dans un premier temps.

En compléments, on s'intéressera au cas de la dimension infinie.

 $\mathcal{L}(E)$ est l'algèbre des endomorphismes de E.

 $GL(E) = (\mathcal{L}(E))^{\times}$ est le groupe des éléments inversibles de $\mathcal{L}(E)$, soit le groupe des automorphismes de E.

 $E^* = \mathcal{L}(E, \mathbb{K})$ est l'espace dual de E.

On rappelle qu'un hyperplan de E est le noyau d'une forme linéaire non nulle sur E.

Pour tout entier $n \geq 1$, $\mathcal{M}_n(\mathbb{K})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} et $GL_n(\mathbb{K})$ le groupe des éléments inversibles de $\mathcal{M}_n(\mathbb{K})$, soit le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$.

Pour E de dimension finie, le choix d'une base de E permet de réaliser un isomorphisme d'algèbres de $\mathcal{L}(E)$ sur $\mathcal{M}_n(\mathbb{K})$, où n est la dimension de E.

Cet isomorphisme induit un isomorphisme de groupes de GL(E) sur $GL_n(\mathbb{K})$.

On note Id [resp. I_n] l'endomorphisme [resp. la matrice] identité.

Une matrice scalaire est une matrice diagonale de la forme λI_n , où $\lambda \in \mathbb{K}$.

Une homothétie est un endomorphisme de E de la forme λId , où $\lambda \in \mathbb{K}$.

- I - Premières propriétés. Questions diverses

E est un K-espace vectoriel de dimension $n \geq 1$.

1. Caractérisations des éléments de GL(E)

Pour $u \in \mathcal{L}(E)$, montrer que les assertions suivantes sont équivalentes.

- (a) $u \in GL(E)$;
- (b) $\ker(u) = \{0\}$ (u est injectif);
- (c) $\operatorname{Im}(u) = E$ (u est surjectif);
- (d) rg(u) = n;
- (e) $\det(u) \neq 0$;
- (f) u transforme toute base de E en une base de E;
- (g) il existe $v \in \mathcal{L}(E)$ tel que $u \circ v = Id$;
- (h) il existe $w \in \mathcal{L}(E)$ tel que $w \circ u = Id$.

2. Cas des corps finis

Pour cette question, $\mathbb{K} = \mathbb{F}_q$ est un corps fini à q éléments (on a alors $q = p^r$, où $p \ge 2$ est un nombre premier et r est un entier naturel non nul).

(a) Montrer que:

$$\operatorname{card}(GL(E)) = \prod_{k=1}^{n} (q^{n} - q^{k-1}) = q^{\frac{n(n-1)}{2}} \prod_{j=1}^{n} (q^{j} - 1)$$

- (b) Soient E, F deux \mathbb{F}_q -espaces vectoriels de dimensions respectives $n \geq 1$ et $m \geq 1$. Déduire de la question précédente que les espaces vectoriels E et F sont isomorphes si, et seulement si, les groupes GL(E) et GL(F) sont isomorphes.
- (c) Montrer que si \mathbb{L} est un corps tel que les groupes $GL_n(\mathbb{F}_q)$ et $GL_n(\mathbb{L})$ soient isomorphes, \mathbb{L} est alors un corps fini à q éléments (donc isomorphe à \mathbb{F}_q).

- (d) Pour $\mathbb{K} = \mathbb{F}_q$, montrer qu'un automorphisme $u \in GL(E)$ est diagonalisable si, et seulement si, $u^{q-1} = Id$.
- (e) Pour $\mathbb{K} = \mathbb{F}_q$, en désignant par DL(E) l'ensemble des automorphismes de E qui sont diagonalisables, montrer que:

$$\operatorname{card}\left(DL\left(E\right)\right) = \sum_{\substack{(n_{1}, \cdots, n_{q-1}) \in \mathbb{N}^{q-1} \\ n_{1}+\cdots+n_{q-1}=n}} \frac{\operatorname{card}\left(GL_{n_{1}}\left(\mathbb{F}_{q}\right)\right) \cdots \operatorname{card}\left(GL_{n_{q-1}}\left(\mathbb{F}_{q}\right)\right)}{\operatorname{card}\left(GL_{n_{1}}\left(\mathbb{F}_{q}\right)\right) \cdots \operatorname{card}\left(GL_{n_{q-1}}\left(\mathbb{F}_{q}\right)\right)}$$

avec la convention card $(GL_0(\mathbb{F}_q))=1$.

Indication: vérifier que DL(E) est en bijection avec l'ensemble \mathcal{F} des familles (E_1, \dots, E_{q-1})

de sous-espaces vectoriels de E tels que $E = \bigoplus_{k=1}^{q-1} E_k$, puis utiliser une action du groupe GL(E) sur l'ensemble des éléments de \mathcal{F} tels que dim $(E_k) = n_k$, où (n_1, \dots, n_{q-1}) est

fixé.

- (f) En notant $q = p^r$ avec $p \ge 2$ premier et $r \ge 1$, donner un exemple de p-Sylow de $GL_n(\mathbb{F}_q)$ pour $n \geq 2$.
- (g) Montrer que, tout groupe fini d'ordre $n \geq 1$ est isomorphe à un sous-groupe de $GL_n(\mathbb{F}_p)$. Indication: utiliser un théorème de Cayley et les matrices de permutations.
- (h) Rappeler comme le résultat précédent permet de montrer le premier théorème de Sylow: si G est un groupe d'ordre $p^{\alpha}m$ avec $\alpha \geq 1$ et p premier ne divisant pas m, il existe alors un p-Sylow de G.
- 3. GL(E) coupe tout hyperplan de $\mathcal{L}(E)$ Montrer que pour tout hyperplan H de $\mathcal{M}_n(\mathbb{K})$, où $n \geq 2$, on a $H \cap GL_n(\mathbb{K}) \neq \emptyset$.
- 4. Bases de $\mathcal{L}(E)$ dans GL(E)En supposant que le corps \mathbb{K} est infini, montrer qu'il existe une base de $\mathcal{L}(E)$ formée d'isomorphismes.

$$-$$
 II $-$ Sous-groupes de $GL(E)$

E est un K-espace vectoriel de dimension $n \geq 1$.

SL(E) [resp. $SL_n(\mathbb{K})$] est le sous-ensemble de GL(E) défini par :

$$SL(E) = \{u \in \mathcal{L}(E) \mid \det(u) = 1\}, SL_n(\mathbb{K}) = \{A \in \mathcal{M}_n(\mathbb{K}) \mid \det(A) = 1\}$$

- 1. Le sous-groupe SL(E)
 - (a) Montrer que SL(E) est un sous-groupe distingué de GL(E) isomorphe à $SL_n(\mathbb{K})$ (distingué dans $GL_n(\mathbb{K})$) et que le groupe quotient $\frac{GL(E)}{SL(E)}$ est isomorphe à \mathbb{K}^* .
 - (b) Pour $\mathbb{K} = \mathbb{F}_q$ (corps fini à q éléments), montrer que :

$$\operatorname{card}(SL(E)) = q^{n-1} \prod_{k=1}^{n-1} (q^n - q^{k-1}) = q^{\frac{n(n-1)}{2}} \prod_{k=2}^{n} (q^k - 1)$$

- (c) Pour n=2, quels sont les éléments d'ordre 2 du groupe SL(E)?
- 2. Centres de GL(E) et de SL(E)On note Z(G) le centre d'un groupe (G,\cdot) .

- (a) Montrer que $Z(GL(E)) = \mathbb{K}^* \cdot Id$.
- (b) Les groupes $GL_n(\mathbb{Q})$, $GL_n(\mathbb{R})$ et $GL_n(\mathbb{C})$ peuvent-ils être isomorphes?
- (c) Montrer que $Z(SL(E)) = \mu_n(\mathbb{K}) \cdot Id$ où $\mu_n(\mathbb{K}) = \{\lambda \in \mathbb{K} \mid \lambda^n = 1\}$ est le groupe multiplicatif des racines n-èmes de l'unité dans \mathbb{K}^* .
- (d) Montrer que $Z(PGL(E)) = Z(PSL(E)) = \{\overline{I_n}\}$, où PGL(E) = GL(E)/Z(GL(E)) et PSL(E) = SL(E)/Z(SL(E)) (groupes projectifs).
- (e) Montrer que, pour \mathbb{K} algébriquement clos, les groupes $PGL_n(\mathbb{K})$ et $PSL_n(\mathbb{K})$ sont isomorphes.
- (f) Montrer que, pour tout entier $n \ge 1$, on a :

$$\operatorname{card}\left(PGL_{n}\left(\mathbb{F}_{q}\right)\right) = \operatorname{card}\left(SL_{n}\left(\mathbb{F}_{q}\right)\right)$$

$$\operatorname{card}\left(Z\left(SL_{n}\left(\mathbb{F}_{q}\right)\right)\right) = n \wedge (q-1)$$

$$\operatorname{card}\left(PSL_{n}\left(\mathbb{F}_{q}\right)\right) = \frac{q^{\frac{n(n-1)}{2}}}{n \wedge (q-1)} \prod_{i=2}^{n} \left(q^{i}-1\right)$$

- 3. Isomorphisme entre $GL_n(\mathbb{K})$ et $SL_n(\mathbb{K}) \times Z(GL_n(\mathbb{K}))$ On suppose que $n \geq 2$.
 - (a) On suppose que le morphisme de groupes :

$$\varphi_n: \mathbb{K}^* \to \mathbb{K}^*$$

$$\lambda \mapsto \lambda^n$$

est un isomorphisme.

- i. Donner des exemples de telle situation.
- ii. Montrer que l'application:

$$\theta_n: SL_n(\mathbb{K}) \times \mathbb{K}^* \to GL_n(\mathbb{K})$$

$$(S, \lambda) \mapsto \lambda S$$

est un isomorphisme de groupes $(GL_n(\mathbb{K}))$ est isomorphe $SL_n(\mathbb{K}) \times Z(GL_n(\mathbb{K}))$.

(b) On suppose qu'il existe un sous-groupe G de $GL_n(\mathbb{K})$ tel que l'application :

$$\theta_n: SL_n(\mathbb{K}) \times G \rightarrow GL_n(\mathbb{K})$$

 $(S, A) \mapsto SA$

soit un isomorphisme de groupes.

- i. Montrer que l'application det : $G \to \mathbb{K}^*$ est un isomorphisme de groupes et que le groupe G est commutatif.
- ii. Montrer que $G = Z(GL_n(\mathbb{K}))$ et φ_n est un isomorphisme.

Remarque: De manière générale, $GL_n(\mathbb{K})$ est produit semi-direct de $SL_n(\mathbb{K})$ et \mathbb{K}^* (voir Perrin).

4. Sous-groupes finis de GL(E) dont tous les éléments sont d'ordre 1 ou 2

On suppose que \mathbb{K} est de caractéristique différente de 2 et on se donne un sous-groupe fini G de GL(E) tel que tout élément de G soit d'ordre au plus égal à 2.

- (a) Montrer que tous les éléments de G sont diagonalisables de valeurs propres dans $\{-1,1\}$.
- (b) Montrer que G est commutatif de cardinal 2^r où r est un entier compris entre 0 et n.

(c) Soient E, F deux \mathbb{K} -espaces vectoriels de dimensions respectives $n \geq 1$ et $m \geq 1$. Montrer que les espaces vectoriels E et F sont isomorphes si, et seulement si, les groupes GL(E) et GL(F) sont isomorphes.

Pour K fini de caractéristique 2, c'est encore vrai (question **I.2b**).

Pour K infini de caractéristique 2, c'est encore vrai (plus difficile, voir J. Fresnel, Algèbre des matrices, Hermann, exercice A.4.7.21.3).

5. Sous-groupes finis de GL(E), un théorème de Burnside

Le théorème de Burnside qui suit nous donne deux caractérisations des sous-groupes finis de $GL\left(E\right) .$

On suppose que le corps K est de caractéristique nulle et algébriquement clos.

On rappelle qu'un groupe G est dit d'exposant fini s'il existe un entier $m \ge 1$ tel que $g^m = 1$ pour tout $q \in G$.

Le théorème de Lagrange nous dit que tout groupe fini est d'exposant fini (si G est d'ordre $n \ge 1$, tout élément g de G a un ordre qui divise n, donc $g^n = 1$).

Pour les sous-groupe de GL(E), le théorème de Burnside nous dit que la réciproque est vraie, c'est-à-dire qu'un sous-groupe de GL(E) est fini si, et seulement si, il est d'exposant fini.

(a) Soit G un sous-groupe fini de $GL\left(E\right)$. Montrer que tous les éléments de G sont diagonalisables et que l'ensemble :

$$\operatorname{tr}(G) = \{\operatorname{tr}(u) \mid u \in G\}$$

est fini.

- (b) Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, 0 est la seule valeur propre de u.
- (c) Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, $\operatorname{Tr}(u^k) = 0$ pour tout k compris entre 1 et $n = \dim(E)$.
- (d) Soient G un sous-groupe de GL(E), F le sous-espace vectoriel de $\mathcal{L}(E)$ engendré par G, $\mathcal{B} = (u_i)_{1 \le i \le p}$ une base de F extraite de G et φ l'application :

$$\varphi: G \to \mathbb{K}^p$$

$$u \mapsto (\operatorname{tr}(u \circ u_1), \cdots, \operatorname{tr}(u \circ u_p))$$

- i. Montrer que si u,v dans G sont tels que $\varphi\left(u\right)=\varphi\left(v\right)$, l'endomorphisme $u\circ v^{-1}-Id$ est alors nilpotent.
- ii. Dans le cas où tous les éléments de G sont diagonalisables, montrer que l'application φ est injective.
- (e) Soit G un sous-groupe de $GL\left(E\right) .$

Montrer que les assertions suivantes sont équivalentes :

- i. G est fini;
- ii. G est d'exposant fini;
- iii. tous les éléments sont diagonalisables et tr(G) est fini.
- 6. Soient H une partie de $\mathcal{L}(E)$ contenant Id et stable par la composition des applications. Montrer que $G = H \cap GL(E)$ est un sous-groupe de GL(E).

$$-$$
 III $-$ Générateurs de $SL(E)$ et de $GL(E)$

E est de dimension finie $n \geq 2$.

Définition 1 Soit φ une forme linéaire non nulle sur E.

On appelle transvection d'hyperplan $\ker(\varphi)$ toute application linéaire $u \in \mathcal{L}(E)$ définie par :

$$\forall x \in E, \ u(x) = x + \varphi(x) a \tag{1}$$

 $o\dot{u} \ a \in \ker(\varphi)$.

Définition 2 Soit φ une forme linéaire non nulle sur E.

On appelle dilatation d'hyperplan $\ker(\varphi)$ toute application linéaire $u \in GL(E)$ définie par :

$$\forall x \in E, \ u(x) = x + \varphi(x) a \tag{2}$$

 $o\grave{u} \ a \in E \setminus \ker(\varphi)$.

On notera $\tau_{\varphi,a} = Id + \varphi \cdot a$ une transvection définie par (1), où $\varphi \in E^* \setminus \{0\}$ et $a \in \ker(\varphi)$ et $\delta_{\varphi,a} = Id + \varphi \cdot a$ une dilatation définie par (2) où $\varphi \in E^* \setminus \{0\}$ et $a \notin \ker(\varphi)$.

Avec notre définition $Id = \tau_{\varphi,0}$ est une transvection (transvection triviale). C'est la définition prise par Ramis-Warusfel, mais pas celle de Perrin où l'identité n'est pas une transvection.

1. Transvections, définitions équivalentes

Montrer que pour $u \in \mathcal{L}(E) \setminus \{Id\}$, les assertions suivantes sont équivalentes.

- (a) u est une transvection.
- (b) Il existe un hyperplan H de E tel que $u_{|H} = Id_H$ et $\operatorname{Im}(u Id) \subset H$.
- (c) Il existe une base de E dans laquelle la matrice de u est de la forme :

$$T_n = \left(\begin{array}{ccc} I_{n-2} & 0 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{array}\right)$$

(avec
$$T_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
).

(d) Il existe une base dans laquelle la matrice de u est de la forme :

$$T_{ij}(\lambda) = I_n + \lambda E_{ij}$$

avec $1 \le i \ne j \le n$ et $\lambda \in \mathbb{K}^*$.

(e) $\operatorname{rg}(u-Id)=1$ et le polynôme caractéristique de u est $P_u(X)=(X-1)^n$.

2. Quelques propriétés des transvections

- (a) Montrer qu'une transvection $\tau_{\varphi,a}$ est un isomorphisme de E, son inverse étant la transvection $\tau_{\varphi,-a}$, puis que 1 est son unique valeur propre, l'espace propre associé étant $\ker(\varphi)$ si $u \neq Id$.
- (b) Montrer que l'ensemble T(H) des transvections d'hyperplan $H = \ker(\varphi)$ est un sous groupe commutatif de GL(E) isomorphe au groupe additif (H, +).
- (c) Montrer que le polynôme minimal d'une transvection $u \neq Id$ est $(X-1)^2$.
- (d) Montrer que, pour \mathbb{K} ayant au moins 3 éléments ($\mathbb{K} \neq \mathbb{F}_2$), toute transvection différente de Id s'écrit comme produit de deux matrices diagonalisables inversibles.
- (e) Montrer que le conjugué dans GL(E) d'une transvection est une transvection.
- (f) Montrer que, pour $n \geq 3$, toutes les transvections différentes de Id sont conjuguées dans SL(E).

Que se passe-t-il pour n = 2?

3. Dilatations, définitions équivalentes

Soit $u \in GL(E)$. Montrer que les assertions suivantes sont équivalentes.

- (a) u est une dilatation.
- (b) Il existe un hyperplan H de E tel que $u_{|H} = Id_H$ et u est diagonalisable de valeurs propres 1 et $\lambda \in \mathbb{K} \setminus \{0,1\}$ (c'est-à-dire que $E = \ker(u Id) \oplus \ker(u \lambda Id)$). On dit que u est une dilatation de rapport λ (pour \mathbb{K} de caractéristique différente de 2 et $\lambda = -1$, on dit que u est une réflexion d'hyperplan $H = \ker(\varphi)$).
- (c) Il existe une base de E dans laquelle la matrice de u est de la forme :

$$D_n(\lambda) = \begin{pmatrix} I_{n-1} & 0 \\ 0 & \lambda \end{pmatrix} = I_n + (\lambda - 1) E_{n,n}$$

avec $\lambda = \det(u) \in \mathbb{K} \setminus \{0, 1\}$.

4. Quelques propriétés des dilatations

- (a) Montrer que l'inverse d'une dilatation de rapport λ est une dilatation de rapport $\frac{1}{\lambda}$.
- (b) Montrer que le polynôme minimal d'une dilatation de rapport λ est $(X-1)(X-\lambda)$.
- (c) Montrer que le conjugué dans GL(E) d'une dilatation est une dilatation de même rapport.
- (d) Montrer que deux dilatations sont conjuguées dans GL(E) si, et seulement si, elles ont même rapport.

5. Générateurs de SL(E)

On se propose de montrer que, pour E de dimension $n \geq 2$, le groupe SL(E) est engendré par l'ensemble des transvections.

- (a) Soient H_1, H_2 deux hyperplans distincts de E et $a \in E \setminus (H_1 \cup H_2)$.
 - i. Montrer que $H = H_1 \cap H_2 \oplus \mathbb{K}a$ est un hyperplan de E.
 - ii. Montrer que $E = H + H_1 = H + H_2$.
 - iii. Montrer qu'il existe une transvection u telle que u(a) = a et $u(H_1) = H_2$. Indication: pour $a_2 \in H_2 \setminus H$, on justifiera l'existence de $a_1 \in H_1 \setminus H$ et $b \in H$ tels que $a_2 = a_1 + b$, puis on peut considérer la transvection $\tau_{\varphi,b}$ où φ est une équation de H telle que $\varphi(a_1) = 1$.
- (b) Montrer que pour tous x, y non nuls dans E, il existe $u \in SL(E)$ produit de une ou deux transvections tel que y = u(x).
- (c) Montrer que le groupe SL(E) est engendré par l'ensemble des transvections. Ce résultat peut aussi se montrer en utilisant les opérations élémentaires sur les matrices.

6. Générateurs de GL(E).

- (a) Montrer que, pour E de dimension $n \geq 2$, le groupe GL(E) est engendré par l'ensemble des dilatations et des transvections.
- (b) Montrer que, pour \mathbb{K} ayant au moins trois éléments ($\mathbb{K} \neq \mathbb{F}_2$), le groupe GL(E) est engendré par l'ensemble des dilatations.
- (c) Montrer que, pour $\mathbb{K} \neq \mathbb{F}_2$, le groupe GL(E) est engendré par l'ensemble des matrices diagonalisables inversibles.
- (d) Montrer que le groupe GL(E) est engendré par l'ensemble TN(E) des automorphismes de E de trace nulle.

Indication: utiliser des matrices de permutation pour $n \geq 3$.

7. Groupes dérivés de GL(E) et de SL(E)

On rappelle que le groupe dérivé d'un groupe (G,\cdot) est le sous-groupe D(G) de G engendré par les commutateurs, c'est-à-dire les éléments de G de la forme :

$$[a,b] = aba^{-1}b^{-1}$$

où a, b sont dans G.

- (a) Montrer que $D(GL(E)) \subset SL(E)$ et $D(SL(E)) \subset SL(E)$.
- (b) Montrer que, pour toute transvection $\tau_{\varphi,a}$ ($\varphi \in E^* \setminus \{0\}$ et $a \in \ker(\varphi)$), $\tau_{\varphi,a}^2$ est une transvection.
- (c) Pour $n \geq 3$ et \mathbb{K} de caractéristique différente de 2, déduire du résultat précédent que D(GL(E)) = SL(E) et D(SL(E)) = SL(E).
- (d) Pour $n \geq 3$, montrer que $D\left(GL\left(E\right)\right) = SL\left(E\right)$ et $D\left(SL\left(E\right)\right) = SL\left(E\right)$. Indication : on peut utiliser une représentation matricielle.
- (e) Pour n = 2 et $\mathbb{K} \neq \mathbb{F}_2$ montrer que D(GL(E)) = SL(E).
- (f) Pour n = 2, $\mathbb{K} \neq \mathbb{F}_2$ et $\mathbb{K} \neq \mathbb{F}_3$, montrer que $D\left(SL\left(E\right)\right) = SL\left(E\right)$. Pour n = 2, $\mathbb{K} = \mathbb{F}_2$, on a $D\left(SL\left(E\right)\right) \simeq \mathcal{A}_3$ et pour $\mathbb{K} = \mathbb{F}_3$, on a $D\left(SL\left(E\right)\right) \simeq \mathbb{H}_8$ (voir Perrin, exercices).

8. Morphismes de groupes de $GL_n(\mathbb{K})$ dans \mathbb{K}^* pour \mathbb{K} infini

On suppose que le corps \mathbb{K} est infini et on se donne un morphisme de groupes γ de $GL_n(\mathbb{K})$ dans \mathbb{K}^* qui soit une fonction polynomiale des coefficients a_{ij} des matrices $A = ((a_{ij}))_{1 \leq i,j \leq n} \in GL_n(\mathbb{K})$.

- (a) Montrer qu'il existe un entier naturel r tel que pour toute matrice de la dilatation $D_n(\lambda) = \begin{pmatrix} I_{n-1} & 0 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{F}_q^*$, on a $\gamma(D_n(\lambda)) = \lambda^r$.
- (b) Montrer que, pour toute matrice de transvection $T_{ij}(\lambda) = I_n + \lambda E_{ij}$ où $1 \le i \ne j \le n$ et $\lambda \in \mathbb{F}_q$, on a $\gamma(T_{ij}(\lambda)) = 1$.
- (c) Déduire de ce qui précède que :

$$\forall A \in GL_n(\mathbb{K}), \ \gamma(A) = (\det(A))^r$$

9. Morphismes de groupes de $GL_n(\mathbb{K})$ dans \mathbb{K}^* pour \mathbb{K} fini

On suppose que $\mathbb{K} = \mathbb{F}_q$ et on se donne un morphisme de groupes γ de $GL_n(\mathbb{F}_q)$ dans \mathbb{F}_q^* .

- (a) Montrer qu'il existe un entier naturel r compris entre 0 et q-2 tel que pour toute matrice de la dilatation $D_n(\lambda) = \begin{pmatrix} I_{n-1} & 0 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{F}_q^*$, on a $\gamma(D_n(\lambda)) = \lambda^r$.
- (b) Montrer que, pour toute matrice de transvection $T_{ij}(\lambda) = I_n + \lambda E_{ij}$ où $1 \le i \ne j \le n$ et $\lambda \in \mathbb{F}_q$, on a $\gamma(T_{ij}(\lambda)) = 1$.
- (c) Déduire de ce qui précède que :

$$\forall A \in GL_n(\mathbb{F}_q), \ \gamma(A) = (\det(A))^r$$

$$-\mathbf{IV} - \mathbf{Topologie} \ \mathbf{sur} \ GL(E) \ (\mathbb{K} = \mathbb{R} \ \mathbf{ou} \ \mathbb{K} = \mathbb{C})$$

Pour cette partie, $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et $(E, \|\cdot\|)$ est un \mathbb{K} -espace vectoriel normé de dimension finie $n \geq 1$.

1. Densité de GL(E) dans $\mathcal{L}(E)$

- (a) Montrer que GL(E) est un ouvert dense de $\mathcal{L}(E)$ et que l'application $u \mapsto u^{-1}$ est continue de GL(E) dans GL(E).
- (b) Montrer que $GL_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$, mais fermé dans $GL_n(\mathbb{C})$.
- (c) Montrer, en utilisant la densité de GL(E) dans $\mathcal{L}(E)$, qu'il existe une base de $\mathcal{L}(E)$ formée d'isomorphismes.
- (d) Pour tout entier $n \geq 2$, toute matrice $A = ((a_{i,j}))_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ et tous i,j compris entre 1 et n, on note $A_{i,j}$ la matrice carrée d'ordre n-1 déduite de A en supprimant la ligne i et la colonne j.

Le scalaire $\det(A_{i,j})$ est le mineur d'indice (i,j) et le scalaire $(-1)^{i+j} \det(A_{i,j})$ est le cofacteur d'indice (i,j).

La comatrice de A est la matrice :

$$C(A) = \left(\left((-1)^{i+j} \det \left(A_{i,j} \right) \right) \right)_{1 \le i,j \le n}$$

Montrer que :

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \det(C(A)) = (\det(A))^{n-1}$$

(e) Montrer que:

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{K}) \times \mathcal{M}_n(\mathbb{K}), C(AB) = C(A)C(B)$$

(f) Montrer que si A et B sont semblables dans $\mathcal{M}_n(\mathbb{K})$, alors leurs comatrices le sont aussi.

2. Connexité de GL(E)

- (a) Montrer que \mathbb{C}^* est connexe par arcs.
- (b) Montrer que, pour $\mathbb{K} = \mathbb{C}$, GL(E) est connexe par arcs.
- (c) Montrer que, pour $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, SL(E) est connexe par arcs.
- (d) Montrer que, pour $\mathbb{K} = \mathbb{R}$, GL(E) n'est pas connexe, puis que ses composantes connexes sont les ouverts de $\mathcal{L}(E)$:

$$GL^{+}(E) = \{u \in GL(E) \mid \det(u) > 0\} \text{ et } GL_{n}^{-}(E) = \{u \in GL(E) \mid \det(u) < 0\}$$

Ce résultat permet de définir une orientation sur un espace vectoriel réel E de dimension n. On dit que deux bases \mathcal{B} et \mathcal{B}' de E définissent la même orientation si la matrice de passage de \mathcal{B} à \mathcal{B}' est dans $GL_n^+(\mathbb{R})$.

3. Sous-groupes de GL(E).

(a) On suppose que $\mathbb{K} = \mathbb{C}$.

Montrer que si G est un sous-groupe borné de GL(E), alors toutes les valeurs propres des éléments de G sont de module égal à 1, puis que tous ses éléments sont diagonalisables.

(b)

- i. Montrer que si $\lambda \in \mathbb{C}$ est tel que $\lambda \neq 1$ et $|\lambda| = 1$, il existe alors un entier naturel p tel que $|1 \lambda^p| > \sqrt{2}$.
- ii. Montrer que le seul sous-groupe de GL(E) contenu dans la boule de centre Id et de de rayon $\sqrt{2}$ est $\{Id\}$.