

SHUBHAM WARE

M.Nr2211211

Ware.shubham@st.ovgu.de

FOLLOWING IS MAIN LOOP USED IN PROGRAM

```
POSITION UPDATES FOR PARTICLE
```

```
x1 update=x1+v1 update.*del t;
x1=x1 update;
x2_update=x2+v2_update.*del_t;
x2=x2 update;
```

CALULATING OVERLAP OF PARTICLES

```
overlap_update=overlap(x1_update,x2_update,d1,d2);
del_overlap=overlap_update-overlp;
overlp=overlap_update;
```

CONDITION FOR LOADING AND UNLOADING COEFF OF RESTITUTION

```
if del overlap>=0
  force= -kl*overlap_update*norm_unit_vector(x1_update,x2_update);
  force= -kun*overlap_update*norm_unit_vector(x1_update,x2_update);
end
```

UPDATE VELOCITY FOR NEW FORCE CALULATED

v2_update=v2_update+0.5*(force/m)*del_t;

CALULATING KINETIC ENERGY FOR PARTICLE 2

KE(j)=kinetic energy(m,v2 update);

ANSWERS

```
1.
Radius sum=d1/2+d2/2;
if R12>= Radius sum
 sigma=0;
sigma=(Radius sum)-R12;
end
```

2. leapfrog

3&4. PARTCILE POSITION WITH LINEAR MODEL

Fig(1.1)particle position and kinetic energy

Fig(1.2)particle position and kinetic energy for 0.8 coeff of restitution

5.

CONCLUSION:

- 1. By looking at two different plots for linear model and one with coeff. of restitution we could easily see that kinetic energy is lost in the process of Collison.
- 2. By making time step more finer we get more better results; but in this case time step 0.01 was found to be efficient and viable.
- 3. Additionally I also changed the mass of the 2nd particle and found that with a mass of 100 kg second particle goes even further near to 1st object, proving change in movement conservation for the algorithm.