

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Google Al Language, 2019

Presented by Seyoung Kim

Table of Contents

- Introduction
- Bert
- Experiments
- Ablation Study
- Conclusion

Introduction

BERT

- Bidirectional Encoder Representations from Transformers
- Deep Bidirectional Transformers for language understanding
 - Jointly conditioning on left & right context in all layers

BERT

- Adaptive to many downstream tasks regardless of input type
 - Single sentence
 - <Sentence, Sentence> pair
- Need only one additional output layer, fine-tuned end-to-end
 - → Minimize the # of params need to be learned from scratch

Word Embedding in NLP

- Word Embedding
 - The basis of deep learning for NLP
 - Representing words in the vector space
- Word2Vec, GloVe
 - Pre-trained on text corpus from co-occurrence statistics

Word Embedding in NLP

- Problem
 - Word embeddings are applied in a context-free manner

```
open a bank account on the river bank [0.3, 0.2, -0.8, ...]
```

- Solution
 - Train contextual representations on text corpus
 - → Make pre-trained Language Model!

```
[0.9, -0.2, 1.6, ...] [-1.9, -0.4, 0.1, ...] 
open a bank account on the river bank
```


Pre-trained Language Model

Model Structure

Block

Applying strategy

Pre-train task

Left-to-right model

Transformer's Decoder

Fine-tuning

Next word prediction

Shallow concat of left-to-right & right-to-left model

LSTM

Feature-based

Next word prediction

Limitations of previous works

- Unidirectional structure
 - Cannot learn context from both direction
 - → Harmful for both sentence-level, token-level tasks

I need a fan to cool my heat!

Limitations of previous works

- Why are traditional LMs unidirectional?
 - Pre-train task: Predict next word
 - → If we use bidirectional structure, words can "see themselves"
 - → CHEATING, not LEARNING

- Why are traditional LMs unidirectional?
 - Pre-train task: Predict next word

Overcome this limitation by chainging the task!

- Multi-layer bidirectional Transformer Encoder
 - Use Transformer encoder as a basic block (bidirectional)

Figure 1: The Transformer - model architecture.

Final hidden state Final hidden vector Sentence information embedded Contextual Representation of each token Class Label $C \in \mathbb{R}^H$, $T_i \in \mathbb{R}^H$ (H=768) T_M Multi-layer BERT **Encoder Layer** Transformer encoder (L=12) (A=12)E_[CLS] E_{M} Input embedding Tok [SEP] Sentence 1 Sentence 2

Input Representation

- Input representation is able to represent both a single sentence and a pair of sentences
 - To make BERT handle variety of downstream tasks
 - Sentence: arbitrary span of contiguous text, rather than a linguistic sentence
 - Sequence: the input token sequences to BERT
 - → may be a single sentence or two sentences

An aim is a goal or objective to achieve in life. In order to succeed in life, one must have a goal. My aim in life is to be a teacher.

Sometimes we come across some forgetful persons in our surroundings. And some

geniuses are also forgetful to some extent.

objective to achieve in life. In order to succeed in life, one must [SEP] sometimes we come across some forgetful persons

- Use special classification token
 - [CLS] first token of every sequence
 - [SEP] separation between two sentences
 - [MASK] replaced for randomly selected token (for MLM)
- Use 30K WordPiece Tokenizer

- Token embedding
 - Pre-trained WordPiece token embedding
- Segment embedding
 - Learned embedding indicating where it belongs
- Position embedding
 - Represent relative position of each token
 - Based on Sine, Cosine

- Encoder Block
 - Construct the meaning of the entire input sequence repeatedly (as many as L times)

- Multi-head attention
 - Compute attention H times with different weights
 - Concatenate results

- Position-wise Feed-forward Network
 - Two linear transformation
 - Apply GELU activation

- Dropout, Add & Norm
 - Dropout FFN/Multi-head attention output with 10% prob
 - Add original representation
 - Learn relationship with the rest of the tokens, but don't forget what we already learned!
 - Apply LayerNorm
 - Improve the stability of network

- Pre-trained with two unsupervised task
 - Masked Language Model (MLM)
 - Next Sentence Prediction (NSP)
- Loss
 - Mean MLM likelihood + Mean NSP likelihood

- Masked Language Model
 - Mask out k% of the input words (k=15%)
 - Predict the masked words

- But...
 - [Mask] token never seen at fine-tuning
- Solution
 - For selected 15% of words to predict,
 - 80%: Replace with [MASK]
 men went to the store → men went to the [MASK]
 - 10%: Replace with random token
 men went to the store → men went to the zoo
 - 10%: Left intact
 men went to the store → men went to the store

- Next Sentence Prediction (NSP)
 - Learn relationships between sentences
 - → Beneficial to QA, NLI task
 - Predict whether sentence B is next sentence of sentence A
 - Selecting sentence B
 - 50%: Actual next sentence
 - 50%: Random sentence from corpus

Fine-tuning BERT

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Experiments

Model Architecture

	BERT _{BASE}	BERT _{LARGE}
L	12	24
А	12	16
Н	768	1024
Total Params	110M	340M

L = number of layers (Transformer blocks)

H = hidden size

 $A = number\ of\ self-attention\ heads$

Experiment

Making input sequence

- Data: BookCorpus (800M words) + WikiPedia (2,500M words)
- Tokenized using 37,000 WordPiece tokens
- Get 2 sentences
 - Combined length ≤ 512 tokens
 - 50%: random sentence, 50%: next sentence
- batchsize=256 (256*512=128,000 tokens/batch)

Training

- 40 epochs
- gelu activation
- 4 days to complete with $16TPU(BERT_{BASE})$, $64TPU(BERT_{LARGE})$
- To speed up the training...
 - 90% of the steps: sequence with 128 tokens
 - 10% of the steps: sequence with 512 tokens

GLUE

		F1				Spearman correlation			
System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

^{*} Accuracy reported if not specified.

- GLUE The General Language Understanding Evaluation benchmark
 - Collection of diverse natural language understanding tasks
- BERT_{BASE}, same size with GPT, shows better results
- BERT_{LARGE} beats BERT_{BASE}, and records state-of-the-art

System	System Dev		Test		
	EM	F1	EM	F1	
Leaderboard (Oct	8th, 2	018)			
Human	-	-	82.3	91.2	
#1 Ensemble - nlnet	-	-	86.0	91.7	
#2 Ensemble - QANet	-	-	84.5	90.5	
#1 Single - nlnet	-	-	83.5	90.1	
#2 Single - QANet	-	-	82.5	89.3	
Publishe	ed				
BiDAF+ELMo (Single)	-	85.8	-	-	
R.M. Reader (Single)	78.9	86.3	79.5	86.6	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERT _{LARGE} (Single)	84.1	90.9	-	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

System		Dev		st			
•	EM	F1	EM	F1			
Top Leaderboard Systems (Dec 10th, 2018)							
Human	86.3	89.0	86.9	89.5			
#1 Single - MIR-MRC (F-Net)	-	_	74.8	78.0			
#2 Single - nlnet	-	-	74.2	77.1			
Published							
unet (Ensemble)	-	-	71.4	74.9			
SLQA+ (Single)	-		71.4	74.4			
Ours							
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1			

v2.0

- SQuAD The Stanford Question Answering Dataset
 - Collection of I00K <question, answer> pairs
 - Given the question and paragraph that contains answer, model predict the answer text span in the paragraph (v2.0 has "no answer" label)
- Ensemble of BERT_{LARGE} with data augmentation records state-of-the-art

System	Dev	Test
ESIM+GloVe ESIM+ELMo	51.9 59.1	52.7 59.2
BERT _{BASE} BERT _{LARGE}	81.6 86.6	86.3
Human (expert) [†] Human (5 annotations) [†]	-	85.0 88.0

- SWAG The Situations With Adversarial Generations (SWAG)
 - Given a sentence, choose the most plausible continuation among four choices
 - I 13k sentence-pair completion examples that evaluate grounded commonsense inference
- BERT_{LARGE} records state-of-the-art, outperforming human!

Ablation Study

Effect of Pre-training Task

- Left-to-Right (LTR) model performs worse than MLM on all task
- Adding random initialized BiLSTM on top
 - Results better, but still far worse than MLM

- MLM takes longer to converge because MLM predict 15% instead of 100%
- But absolute results are much better

Effect of Model Size

	Ну	perpar	ams	Dev Set Accuracy				
	#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2	
Bigger model	3	768	12	5.84	77.9	79.8	88.4	
	6	768	3	5.24	80.6	82.2	90.7	
	6	768	12	4.68	81.9	84.8	91.3	D - 44 - 11 11 - 114
	12	768	12	3.99	84.4	86.7	92.9	Better result
	12	1024	16	3.54	85.7	86.9	93.3	
	24	1024	16	3.23	86.6	87.8	93.7	Ţ

- Bigger is better even on small task (If the model is sufficiently pre-trained)
- Previous feature-based bi-LSTM study showed big model is not always good
- Authors hypothesize that when the model is directly fine-tuned on the downstream task w/ small additional params → model can benefit from large pre-trained representations

Feature-based Approach

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
$BERT_{LARGE}$	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	_
Weighted Sum All 12 Layers	95.5	-

- Tested on CoNLL-2033 NER dataset
- Feature-based approach
 - Use contextual embeddings as input of 2-layer 768-dim BiLSTM
 - Append classification layer
- Both feature-based approach & fine-tuning approach works well!

Effect of Different Masking Strategy

Masking Rates			Dev Set Results			
MASK	SAME	RND	MNLI Fine-tune	_	NER Feature-based	
80%	10%	10%	84.2	95.4	94.9	
100%	0%	0%	84.3	94.9	94.0	
80%	0%	20%	84.1	95.2	94.6	
80%	20%	0%	84.4	95.2	94.7	
0%	20%	80%	83.7	94.8	94.6	
0%	0%	100%	83.6	94.9	94.6	

- Fine-tuning is robust to different masking strategy
- Random words 100% of time: degrades performance
- Masking I 00% of time: problematic when applying feature-based approach

Conclusion

- Demonstrate the importance of bidirectional pre-training for language representations
- Achieve SOTA performance on -
 - II NLP tasks
 - Both sentence-level and token-level tasks
 - Outperform many task-specific architecture
- Demonstrate pre-trained representations reduce the need for heavily-engineered task-specific architectures

Appendix

History of Natural Language Processing

Introduction

2001		Neural language models	
2008	•	Multi-task learning	
2013	•	Word embeddings	Word2Vec, GloVe
2013	•	Neural networks for NLP	RNN, LSTM
2014	•	Sequence-to-sequence models	
2015	•	Attention	Transformer
2015	•	Memory-based networks	
2018		Pre-trained language models	ELMo, GPT, BERT

WordPiece Tokenizer

- Make vocabulary set by merging subword from letter
- Based on likelihood

Applying pre-trained model

- Strategies for applying pre-trained model to downstream tasks
 - Feature based (ELMo)
 - Use ELMo's output token as an embedding vector of additional taskspecific architectures
 - Fine-tuning based (GPT)
 - Introduces minimal task-specific params
 - Trained on the downstream tasks by fine-tuning all pre-trained params

Positional Embedding

$$p_{i,j} = \begin{cases} \sin\left(\frac{i}{10000^{\frac{j}{d_{emb_dim}}}}\right) & \text{if } j \text{ is even} \\ \cos\left(\frac{i}{10000^{\frac{j-1}{d_{emb_dim}}}}\right) & \text{if } j \text{ is odd} \end{cases}$$

$$Hello\left(\sin\left(\frac{0}{10000\frac{0}{emb}dim}\right) - \cos\left(\frac{0}{10000\frac{0}{emb}dim}\right) - \cos\left(\frac{0}{10000\frac{0}{emb}dim}\right) - \sin\left(\frac{0}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{0}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{0}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{0}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{0}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{1}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{1}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{1}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{1}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{1}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{1}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{2}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{2}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{2}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{3}{10000\frac{2}{emb}dim}\right) - \cos\left(\frac{3}{10000\frac{2}{emb}$$

Fine-tuning BERT

- Single Text Classification
 - SST-2, CoLA

Fine-tuning BERT

- Single Text Tagging
 - CoNLL-2033 NER

- Text Pair Classification or Regression
 - MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

Fine-tuning BERT

- Question Answering
 - SQuAD vI.I

Fine-tuning BERT: GLUE

- (a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG
- Introduce classification layer
- Final hidden vector $C \in \mathbb{R}^H$
- Weights $W \in \mathbb{R}^{K \times H}$, where K is number of labels
- Compute standard CE loss

i.e., $\log(\operatorname{softmax}(CW^T))$.

Fine-tuning BERT: SQuAD v1.1

- Introduce start vector $S \in \mathbb{R}^H$, end vector $E \in \mathbb{R}^H$
- Probabilty of word i being the start of the answer span is computed as a dot product between T_i and S $P_i = \frac{e^{S \cdot T_i}}{2\pi T_i}$
- Softmax over all of the words in paragraph $\Gamma_i = \frac{\Gamma_i}{\sum_j e^{S \cdot T_j}}$
- The score of candidate span from i to j defined as $S \cdot T_i + E \cdot T_j$
- Find maximum scoring span
- Sum of log-likelihoods of correct start&end position

(c) Question Answering Tasks: SQuAD v1.1

References

BERT

- Blogs
 - https://medium.com/dissecting-bert
 - https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
 - https://docs.likejazz.com/bert/
 - https://wikidocs.net/115055
 - https://eatchu.tistory.com/31

Lectures

- Stanford CS224N BERT and other pre-trained LMs https://youtu.be/knTc-NQSjKA
- https://youtu.be/30SvdoA6ApE
- https://youtu.be/lwtexRHoWG0

Code

- https://github.com/codertimo/BERT-pytorch
- Transformer
 - http://nlp.seas.harvard.edu/2018/04/03/attention.html
- NLP Tasks
 - https://huffon.github.io/2019/11/16/glue/

