OPL1000

ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

TCP 客户端基于蓝芽配网说明文檔

http://www.opulinks.com/

Copyright © 2017-2020, Opulinks. All Rights Reserved.

REVISION HISTORY

版本纪录

日期	版本	更新内容
2018-05-31	0.1	 初版
2018-07-27	0.2	● 新增处理: TCP 服务器向客户端响应 ACK 信息
2018-12-14	0.3	● 新增 skip DTIM, timeout, high power, low power 定义
2019-07-19	0.4	● 更新 DTIM 说明与示例同步
2020-01-12	0.5	● 更新示例。之前的版本·AP SSID 和密码需在在项目中直接定义;在此版本·由于 BLE 配置 WIFI 功能已加入·DUT 可经由 BLE 连接取得 AP 信息 ● 加入新章节来介绍如何 BLE 配置 WIFI
2020-01-14	1.0	● 将章节 2、3 修改为基于 BLEWIFI 的内容

OPL1000

TABLE OF CONTENTS

目录

1.	介绍			1
			用范围	
			i	
			献	
2.			BLEWIFI 示例工作原理	
	2.1.	工程组	织	2
	2.2.	工作原	理和过程	3
			参数说明	
			用	
			初始化和任务处理句柄	
		2.4.2.	蓝牙配网	9
			TCP 建立和数据传输	
3.	使用	TCP Clie	ent BLEWIFI 功能	11
	3.1.	编译 T(CP_client Example	11
	3.2.	下载固	件	13
			ent blewifi 功能验证	
		3.3.1.	开启蓝牙广播并完成蓝牙配网	15
		3.3.2.	PC 端执行网络调试助手 协助验证	16
		3.3.3.	睡眠模式设置和验证	17

LIST OF FIGURES

图目录

Figure 1: 工程文件	2
Figure 2: TCP_CLIENT_BLEWIFI 示例网络连接图	3
Figure 3: 网络调试助手中 TCP Server 参数配置	4
Figure 4: 需要更新的宏定义	5
Figure 5: 定义 TCP server 和 port	6
Figure 6: 定义 UARTO 的 PIN	6
Figure 7: BLE 消息处理函数映射表	7
Figure 8: WIFI 消息处理函数映射表	7
Figure 9: BLEWIFI controller 消息处理函数映射表	8
Figure 10: UARTO 消息处理函数映射表	8
Figure 11: IOT 数据发送相关的消息处理函数映射表	8
Figure 12: 蓝牙配网相关参考文档	9
Figure 13: TCP Server IP 的获取和更新	11
Figure 14: Keil C 编译工程	12
Figure 15: gcc 编译工程	13
Figure 16: PACK OPL1000 固件	13
Figure 17: 下载固件	14
Figure 18: 完成蓝牙配网	15
Figure 19: OPL1000 和 TCP Server 间 RX path 通信示例	16
Figure 20: OPL1000 和 TCP Server 间 TX path 通信示例	16
Figure 21: 切换睡眠模式	17

OPL1000

LIST OF TABLES

表目录

Table 1: 项目文件夹和内容	3
Table 2: PIN 参数说明	5
Table 3: 蓝牙配网相关的 API	9
Table 4: 调用 TCP API 说明	10

1. 介绍

1.1. 文档应用范围

本文档介绍 TCP-Client Blewifi 示例工程的工作原理和使用方法。该工程中完成如下功能:使用蓝牙配 网使 OPL1000 设备和指定 AP 连接,然后将 OPL1000 配置为 TCP 客户端(Client),其后 OPL1000 设备就可以与同一网段的 TCP 服务器(Server)进行连接和数据传输。

1.2. 缩略语

Abbr.	Explanation	
AP	Wireless Access Point 无线访问接入点	
APP	APPlication 应用程序	
APS	Application Sub-system 应用子系统·在本文中亦指 M3 MCU	
Blewifi	BLE config WIFI 蓝牙配网应用	
DevKit	Development Kit 开发工具板	
DTIM	Delivery Traffic Indication Message 传输指示消息	
TCP	Transmission Control Protocol 传输控制协议	

1.3. 参考文献

- [1] DEVKIT 快速使用指南 OPL1000-DEVKIT-getting-start-guide.pdf
- [2] Download 工具使用指南 OPL1000-patch-download-tool-user-guide.pdf

访问链接: https://github.com/Opulinks-Tech/OPL1000A2-SDK/tree/master/Doc/OPL1000A2-patch-download-tool-user-guide.pdf

[3] SDK 应用程序开发指南 OPL1000-SDK-Development-guide.pdf

访问连接: https://github.com/Opulinks-Tech/OPL1000A2-SDK/blob/master/Doc/OPL1000-SDK-
Development-guide.pdf

2. TCP_CLIENT_BLEWIFI 示例工作原理

2.1. 工程组织

本示例程序所在目录为 SDK\ APS_PATCH\examples\system\tcp_client_blewifi · 主要包含蓝牙配网 · 数据传输 · TCP 数据收发 · 串口处理和工程文件等。

Figure 1: 工程文件

- src
 - btn_press_ctrl
 - iot_data
 - smart_sleep
 - tcp_client
 - uart
 - app_at_cmd.c
 - app_at_cmd.h
- Makefile
- opl1000_app_m3.bat
- app_m3.ini
- opl1000_app_m3.sct
- opl1000_app_m3.uvoptx
- ₩ opl1000_app_m3.uvprojx
- ** readme.md

Table 1: 项目文件夹和内容

文件夹和文件	内容说明
src	存放蓝牙配网·各功能模块相关.c 和.h 头文件·以及 main 文件
src/iot_data	存放收发数据相关的代码
src/smart_sleep	存放跟睡眠模式相关的代码
src/tcp_client	存放跟收发 TCP 数据相关的代码
src/uart	存放跟 UARTO 收发数据相关的代码
Makefile	用于以 gcc 方式编译的 makefile 文件
opl1000_app_m3.bat	编译工程文件。
opl1000_app _m3.ini	
opl1000_app_m3.sct	
opl1000_app_m3.uvoptx	
opl1000_app_m3.uvprojx	

2.2. 工作原理和过程

TCP server 和 OPL1000 建立 TCP 数据传输的网络拓扑如下图所示。

OPL1000 以 Station 的角色连接到 WIFI AP · PC 端也作为 Station 连接到 WIFI AP · 这样 PC 和 OPL1000 接入到同一个 AP · 处于一个局域网网段。

Figure 2: TCP_CLIENT_BLEWIFI 示例网络连接图

PC 端执行网络调试助手程序 NetAssist.exe。在网络设置对话框,选择 TCP Server 作为协议类型,填入 WIFI AP 分配给 PC 的 IP 地址,在本例中为 192.168.100.105。 本地端口号可以任意取一个数,但最好不要使用已知、通用的端口号,例如 8080。在本例中端口号定义为 8181。

TCP server 的 IP 地址和端口参数在 在本例程中赋值给宏定义 TCP_SERVER_ADDR 和 TCP_PORT。

【注意:关于 TCP server 的 IP 地址的获取,请参考本文的第 3.1 节 】

Figure 3: 网络调试助手中 TCP Server 参数配置

它的工作过程为:

- 1 OPL1000 模块上电后, 拉低 IO5 管脚并保持 5 秒钟以上时间, 以开启蓝牙广播;
- 2 在手机上打开 OPL1000 APP 进行蓝牙配网,选择合适的 WIFI AP,输入密码后连接 AP 成功;
- 3 OPL1000 模块获得 IP 后, 会自动尝试连接 TCP server (由 Netassist.exe 实现);
- 4 在成功和 TCP Server 在监听的端口号建立连接后,用户可以开始 TX 或 RX 这两个 path 的验证;
- 5 对于 RX path·用户可以在 Netassist 上发送一个字符串(比如·200 字节)·OPL1000 模块在收到这串数据后会把它发送到串口 UART0【关于 UART0 的定义·请参考本文的 2.3 节】;
- 6 对于 TX path,用户在打开串口 UARTO 后,在串口上输入一些测试数据(注意:在此输入的字符不会回显),OPL1000 模块在收到这串数据后发送数据到 TCP server 端,也就是说,在 Netassist 上会接收到这些数据。

2.3. 宏定义参数说明

本示例程序需要进行设定的宏定义主要存放在 src/blewifi_configuration.h 文件中,其中宏定义 MW_FIM_VER11_PROJECT 是一个必须要更新的宏,只需更新为跟原来的值不同即可。

Figure 4: 需要更新的宏定义

而跟本示例程序相关的引脚定义如下:

Table 2: PIN 参数说明

宏定义	内容说明	默认值
BUTTON_IO_PORT	用于定义触发蓝牙配网的 IO 引脚,低电平有效且需保持 5S	GPIO_IDX_05
	及以上	
WAKEUP_IO_PORT	用于定义切换睡眠模式的 IO 引脚。高电平时进入睡眠模	GPIO_IDX_17
	式;低电平时则唤醒睡眠模式	
NOTIFY_IO_PORT	定义用于通知主控 MCU 当前 OPL1000 的睡眠模式的 IO 引	GPIO_IDX_22
	脚。主控 MCU 可根据该引脚的电平判断 OPL1000 是否在睡	
	眠模式。高电平时表明 OPL1000 处于睡眠模式	
TCP_IO_PORT_0	用于定义指示当前 TCP 连接状态的引脚。高电平时表示连接	GPIO_IDX_06
	正常;低电平时表示连接断开;	
TCP_IO_PORT_1	用于定义指示当前 TCP 连接状态的引脚。低电平时表示连接	GPIO_IDX_07
	正常;高电平时表示连接断开;	

而指定连接的 TCP Server, 端口号在 tcp_client.h 文件中定义。如下所示:

Figure 5: 定义 TCP server 和 port

```
#define TCP_SERVER_ADDR "192.168.100.105"
#define TCP PORT 8181
```

在本示例程序中,OPL1000 为主控 MCU 提供了 UARTO 做为收发透传数据的接口。在hal_pin_config_project.h 文件中定义 IO2, IO3 用作 UARTO 的 TX, RX 如下:

Figure 6: 定义 UARTO 的 PIN

```
blewifi_configuration.h tcp_client.h hal_pin_config_project.h
78
79
    #define HAL_PIN_TYPE_IO_2
                                   PIN_TYPE_UARTO_TX
80
81
82
83
84
85
86
87
88
89
90
91
92
93 #define HAL PIN TYPE IO 3 PIN TYPE UARTO RX
```

2.4. API 调用

2.4.1. 初始化和任务处理句柄

和所有基于 BLEWIFI 的工程一样,本示例程序的初始化入口函数为 src/main_patch.c 文件中的 BleWifiAppInit()函数。

该例程主要启用了五个任务处理句柄如下

1. BLE Handler

BLE Handler 功能是等待手机端蓝牙与 OPL1000 的连接,此时 OPL1000 会持续发送 BLE 广播,直到蓝牙建立连接,在 blewifi_data.c 文件中定义了一组消息处理函数如下:

Figure 7: BLE 消息处理函数映射表

```
static T BleWifi Ble ProtocolHandlerTbl g tBleProtocolHandlerTbl[] =
                                             BleWifi Ble ProtocolHandler 過离数
    {BLEWIFI REQ SCAN,
    {BLEWIFI REQ CONNECT,
                                             BleWifi Ble ProtocolHandler Connect),
    {BLEWIFI REQ DISCONNECT,
                                             BleWifi Ble ProtocolHandler Disconnect},
    {BLEWIFI REQ RECONNECT,
                                             BleWifi Ble ProtocolHandler Reconnect},
    {BLEWIFI REQ READ DEVICE INFO,
                                             BleWifi Ble ProtocolHandler ReadDeviceInfo},
    {BLEWIFI_REQ_WRITE_DEVICE_INFO,
                                             BleWifi_Ble_ProtocolHandler_WriteDeviceInfo},
    {BLEWIFI_REQ_WIFI_STATUS,
                                             BleWifi Ble ProtocolHandler WifiStatus},
    {BLEWIFI_REQ_RESET,
                                             BleWifi Ble ProtocolHandler Reset},
#if (BLE OTA FUNCTION EN == 1)
    {BLEWIFI_REQ_OTA_VERSION,
                                             BleWifi Ble ProtocolHandler OtaVersion),
    {BLEWIFI REQ OTA UPGRADE,
                                             BleWifi Ble ProtocolHandler OtaUpgrade},
```

2. WIFI Handler

WIFI Handler 是 OPL1000 与 AP 建立连接后,连线及断线检查,断线后重连功能。在 blewifi_wifi_api.c 文件中定义了一组消息处理函数如下,每条记录对应一个消息和消息处理函数的映射:

Figure 8: WIFI 消息处理函数映射表

3. BLEWIFI controller Handler

BLEWIFI controller Handler 是跟 OPL1000 BLEWIFI controller 相关的功能。blewifi_ctrl.c 文件中定义了一组消息处理函数如下,每条记录对应一个消息和消息处理函数的映射:

Figure 9: BLEWIFI controller 消息处理函数映射表

```
static T_BleWifi_Ctrl_EvtHandlerTbl g_tCtrlEvtHandlerTbl[] = 每个消息对应一个消息处理函数
    {BLEWIFI CTRL MSG BLE INIT COMPLETE,
                                                                         BleWifi Ctrl TaskEvtHandler BleInitComplete},
     (BLEWIFI CTRL MSG BLE ADVERTISING CFM,
(BLEWIFI CTRL MSG BLE ADVERTISING EXIT CFM,
                                                                        BleWifi Ctrl TaskEvtHandler BleAdvertisingCfm),
BleWifi Ctrl TaskEvtHandler BleAdvertisingExitCfm},
                                                                        BleWifi_Ctrl_TaskEvtHandler_BleAdvertisingTimeChangeCfm},
BleWifi_Ctrl_TaskEvtHandler_BleConnectionComplete),
     (BLEWIFI CTRL MSG BLE ADVERTISING TIME CHANGE CFM,
     {BLEWIFI_CTRL_MSG_BLE_CONNECTION_COMPLETE,
                                                                        BleWifi_Ctrl_TaskEvtHandler_BleConnectionFail},
     {BLEWIFI_CTRL_MSG_BLE_CONNECTION_FAIL,
     {BLEWIFI_CTRL_MSG_BLE_DISCONNECT,
                                                                         BleWifi_Ctrl_TaskEvtHandler_BleDisconnect},
     {BLEWIFI_CTRL_MSG_BLE_DATA_IND,
                                                                        BleWifi_Ctrl_TaskEvtHandler_BleDataInd},
     {BLEWIFI_CTRL_MSG_WIFI_INIT_COMPLETE,
{BLEWIFI_CTRL_MSG_WIFI_SCAN_DONE_IND,
{BLEWIFI_CTRL_MSG_WIFI_CONNECTION_IND,
                                                                        BleWifi_Ctrl_TaskEvtHandler_WifiInitComplete},
BleWifi_Ctrl_TaskEvtHandler_WifiScanDoneInd},
BleWifi_Ctrl_TaskEvtHandler_WifiConnectionInd},
     {BLEWIFI_CTRL_MSG_WIFI_DISCONNECTION_IND,
                                                                        BleWifi_Ctrl_TaskEvtHandler_WifiDisconnectionInd},
     {BLEWIFI_CTRL_MSG_WIFI_GOT_IP_IND,
                                                                        BleWifi_Ctrl_TaskEvtHandler_WifiGotIpInd},
     {BLEWIFI_CTRL_MSG_WIFI_AUTO_CONNECT_IND,
                                                                        BleWifi_Ctrl_TaskEvtHandler_WifiAutoConnectInd},
```

4. 与 UARTO 消息处理相关的句柄

该句柄在 src/uart/uart.c 文件中实现,用于处理 UARTO 上收到的数据并转发。

Figure 10: UARTO 消息处理函数映射表

5. 与 IOT 数据发送相关的句柄

该句柄在 src/iot data/iot data.c 文件中实现,主要用于建立 TCP 连接,发送 TCP 数据和 heartbeat。

Figure 11: IOT 数据发送相关的消息处理函数映射表

2.4.2. 蓝牙配网

本例程中使用到的蓝牙配网相关的 API 说明如下所示

Table 3: 蓝牙配网相关的 API

API 接口	API 说明
BleWifi_Wifi_Init	WiFi 相关的初始化函数
wifi_event_loop_init	初始化事件处理回调函数 · 本例中定义为
	BleWifi_Wifi_EventHandlerCb
wifi_init	初始化 WIFI 任务所用堆栈以及 wifi 初始化完成事件句柄
wifi_start	启动 WIFI 任务
osThreadCreate	创建用户应用进程·进程入口为 user_wifi_app_entry
wifi_do_scan	扫描可用的无线接入点
wifi_connection	如果指定的 AP 在扫描到的 AP 列表中·则连接它
BleWifi_Ble_Init	直接调用 BleWifi_Ble_ServerAppInit
BleWifi_Ble_ServerAppInit	创建 BLE task·BLE 相关的初始化函数
BleWifi_Ble_TaskHandler	BLE 相关的消息处理函数
BleWifi_Ctrl_Init	BLEWIFI controller 相关的初始化函数。主要包括创建 task.
	message queue· timer· Event Group 等。
BleWifi_Ctrl_Task	接收消息并交由消息处理句柄处理
BleWifi_Ctrl_TaskEvtHandler	BLEWIFI controller 相关的消息处理句柄

更多信息,请参考 https://github.com/Opulinks-Tech/OpulinksTech-WIKI/wiki/Documents

Figure 12: 蓝牙配网相关参考文档

其他应用说明文档

- 蓝牙配网应用设计说明
- 基于OPL1000的物联网应用框架说明
- OPL1000系统初始化说明

2.4.3. TCP 建立和数据传输

本例程中使用到的 TCP 相关的 API 说明如下所示

Table 4: 调用 TCP API 说明

API 接口	API 说明
connect_tcp	注册内部 WIFI 事件句柄
disconnect_tcp	初始化事件处理回调函数,本例中定义为
	wifi_event_handler_cb
write_tcp	初始化 WIFI 任务所用堆栈以及 wifi 初始化完成事件句柄
read_tcp	设置 OPL1000 WIFI 工作模式

使用 TCP CLIENT BLEWIFI 功能 3.

编译 TCP_client Example

编译 tcp client blewifi 示例工程包括三个步骤:

Step1: 将 PC 连接 WIFI AP,可以使用 ipconfig 命令查看 WIFI AP 分配给 PC 的 IP 地址。 将 PC 的 IP 信 息填入到宏定义 TCP_SERVER_ADDR 和 TCP_ PORT 中。

```
#define TCP_SERVER_ADDR
                                "192.168.100.105"
#define TCP_PORT
                                8181
```

Figure 13: TCP Server IP 的获取和更新

```
无线局域网适配器 WLAN:
      连接特定的 DNS 后缀
                                                                                       fe80::6dd5:dc8d:d8c:e787%19
      本地链接 IPv6 地址.
      IPv4 地址
                                                                                      192. 168. 100. 105
                                                                                       255. 255. 255. 0
192. 168. 100. 1
#include "lwip/necub."
                              "192.168.100.105"
                                                                                         连接特定的 DNS 后缀
                                                                                                                             192. 168. 100. 105
uintptr_t connect_tcp(const char *host, uint16_t port);
int disconnect_tcp(uintptr_t fd);
int write_tcp(uintptr_t fd, const char *buf, uint32_t len, uint32_t timeout_ms);
int read_tcp(uintptr_t fd, char *buf, uint32_t len, uint32_t timeout_ms);
```

Step2: 在 blewifi_configuration.h 文件中更新 MW_FIM_VER11_PROJECT 宏

【注:更新为跟原来不一样的值】:

```
#define MW_FIM_VER11_PROJECT
                                               0x07
                                                        // 0x00 ~ 0xFF
为了方便演示工程代码,把 src\iot_data\iot_data.c 文件里的"#if 0"修改为"#if 1"
iot_data.c
369日#if 1 默认是#if 0
370
                     for(int i=0;i<ret;i++){</pre>
371
                        Hal_Uart_DataSend(UART_IDX_0, szBuf[i]);
372
373
    #endif
```


374

CHAPTER THREE

Step3: tcp client blewifi 示例工程可通过 Keil C (打开 opl1000_tt_m3.uvprojx 工程文件)和 Gcc (makefile 文件)两种方式编译,任取其中一种方式即可。使用 Keil C 编译 tcp_client_blewifi 工程文件路径:

SDK\APS_PATCH\examples\system\tcp_client_blewifi\opl1000_app_m3.uvprojx

Figure 14: Keil C 编译工程

Keil C 工具设置以及编译过程可以参考文献 SDK 应用程序开发指南。

而通过 gcc 编译的结果如下:

Figure 15: gcc 编译工程

3.2. 下载固件

编译成功后, 在 download tool 的 pack 界面上,选择相应的 opl1000_app_m3.bin 文件,将它 pack 成 OPL1000.bin 如下。

Figure 16: PACK OPL1000 固件

在 pack 好 OPL1000 固件后,用 download tool 下载固件到 OPL1000 模块如下:

Figure 17: 下载固件

关于 download tool 的更多信息,请参考 Download 工具使用指南 <u>OPL1000-patch-download-tool-user-guide.pdf</u>。

3.3. tcp client blewifi 功能验证

下载固件到 OPL1000 模块后,用户可开始验证本例程如下:

3.3.1. 开启蓝牙广播并完成蓝牙配网

- 1. 上电后拉低 IO5 引脚并保持 5 秒及以上的时间,以开启蓝牙配网;
- 2. 打开 OPL1000 手机 APP·完成蓝牙配网后·OPL1000 在获得 IP 后会自动尝试和下节描述的网络调试助手(用作 TCP server)建立连接;

Figure 18: 完成蓝牙配网

BLEWIFI_CTRL_EVENT_BIT_GOT_IP
establish tcp connection with server(host=192.168.100.105 port=8181)
success to establish tcp, fd=0
After connect_tcp
connect_tcp Success

3.3.2. PC 端执行网络调试助手协助验证

PC 端启动网络调试助手程序。选择 TCP_server 协议、填写 IP 地址和端口号。注意一定要和 tcp_client.h 文件中定义的 TCP_SERVER_ADDR、TCP_SERVER_PORT 一致。点击"连接"按钮、启动 TCP Server 服务。

下图展示了 RX path 通信成功的执行结果。在网络调试助手上发送数据 (hello world)后,UARTO (COM4)上会接收到这串数据,而在 APS 口上则会显示收到这个字符串的提示。

Figure 19: OPL1000 和 TCP Server 间 RX path 通信示例

下图展示了 TX path 通信成功的执行结果。在 PC 上打开 UARTO (COM4) ·输入一些字符 (不回显) ; OPL1000 接收到这些字符后 · 在 APS 串口上输入提示信息 · 并将字符串 (数据) 发送到 TCP server,即 网络调试助手上。

Figure 20: OPL1000 和 TCP Server 间 TX path 通信示例

3.3.3. 睡眠模式设置和验证

在连上 TCP server 后,用 at+sysmode=2 命令切换为用户模式,再用 at+sleep=1,17 命令进入睡眠模式。在把 IO17 拉高后又可唤醒 OPL1000.

Figure 21: 切换睡眠模式

OPL1000

CONTACT

sales@Opulinks.com

