

Mining as an explorative process

- Finding cues
- Making hypotheses
- Evaluating Hypotheses
- Getting interesting/useful information

- (Semi-)automatic extraction of knowledge from databases which is:
 - Valid (in the statistical sense)
 - · Unknown so far
 - Potentially useful
- Combination of approaches from databases, statistics, and machine learning
- Differences to querying a database:
 - No precise semantics
 - Not 100% perfect results
 - No perfect results
 - Solutions hard to port to similar application domains

Example tasks

- Customer relationship management
 - Grouping of customer populations (tailored marketing)
 - Prediction of customer behaviour (individualized marketing)
 - Risk assessment (risky credits, fraudulent credit card use)
- Fault analysis
 - Interdependencies between faults
 - Interdependencies between production processes or maintenance

procedures and faults

- Time-series analysis
 - · Trend detection
 - Stock market development
 - Event prediction (stock market crashes, bankruptcies, natural disasters)
 - Intrusion detection
- Web Usage and Text Mining

[1] source: Kenneth Jensen@Wikipedia based on ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0 /en/ModelerCRISPDM.pdf

- Cross industry standard process for data mining
- Life-cycle model

1. Business understanding phase

- Analysis of objectives and requirements
- Problem definition
- Initial strategy development

2. Data understanding phase

- Data collection
- Exploratory data analysis
- Assessment of data quality

3. Data preparation phase

- Cleansing, transformation etc.

4. Modelling phase

- Selection of modelling techniques and tools

- Parameter tuning / optimization
- Data analysis

5. Evaluation Phase

- Evaluation of the model
- Comparison of the outcome to the initial objectives
- Deployment decision

6. Deployment phase

- Reporting
- Transfer to other application cases
- If applicable: introduction into day-to-day business

- 1. Model Identification Choose the optimal model type
- 2. Model Estimation Instantiation of the model by training its model parameters
- 3. Model Application Usage of the model to calculate the next results
- **4. Model Evaluation** Compare the model's results with real values using an error measure
- 5. Model Adaption Adaption of the model parameters or the model type

Goals

- Decrease runtime of data mining process
- Decrease resource requirements of data mining process
- · Increase quality of mining result

Important aspects

- Handling of missing data
- · Detecting outliers
- Reducing the number of dimensions
- Reducing the number of values
- Transforming data values (e.g. binning, rescaling)
- Depends on data type
- Uses similarity/distance measures

Nominal scale

- No problem-specific order and distance relation
- Mathematical Operators: =, !=
- Central Tendency: mode (most often occurring value)
- Examples: color, zip-code

Ordinal scale

- · Problem-specific order relation
- No problem-specific distance relation
- Mathematical Operators: =, !=, >, <
- Central Tendency: mode, median
- · Examples: income classes, medal ranks, age

Interval scale

- · Problem-specific order and distance relation
- No problem-specific zero point
- Differences meaningful, ratios meaningless
- Mathematical Operators: =, !=, >, <, +, -
- · Central Tendency: mode, median, arithm. mean, deviation

• Examples: temperature (Celsius), date (B.C./A.D.)

Ratio scale

- Problem-specific zero point (absence of the feature)
- Differences and ratios meaningful
- Mathematical Operators: =, !=, >, <, +, -, ·, /
- Central Tendency: mode, median, arithm./geom. mean, deviation
- Examples: temperature (Kelvin), speed, length, age, quantity

Metrics

Many data mining techniques are based on some notion of distance, similarity or dissimilarity.

Data Types

Metrics

Handling of Missing Data

Outlier Detection

Dimensionality Reduction

Value Count Reduction

Examples

Numeric values/points: Minkowski distance

$$d(\vec{x}, \vec{y}) = (\sum_{i=1}^{n} |x_i - y_i|^m)^{1/m}$$

m=1: Manhattan distance m=2 Euclidian distance m=∞ Tchebychev distance

9

Sets/Bags/Vectors:

/Bags/ vectors:

• Cosine similarity =
$$\cos(\theta)$$

• Jaccard Coefficient
$$J(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

Signatures, histograms, Probability distributions:

· Earth Mover's distance/Wasserstein metric

Strings:

- Soundex (phonetic)
- Monge-Elkan similarity (sequence- and set-based)
- Levenshtein distance (sequence based)

Data Mining

9

- Finding the minimum distance is an optimization problem
- Space and time requirements $O(m \cdot n)$

Levenshtein Distance: Example

- 1. Create initial matrix of size (|x|+1, |y|+1)
- 2. Fill 1st row and column with ascending numbers starting at 0
- 3. Compute the rest pf the matrix according to the following rule:

$$\mathbf{D}_{i,j} = min \begin{cases} D_{i-1,j-1} \ if \ x_i = y_i \\ D_{i-1,j-1} + 1 \ (exchange) \\ D_{i,j-1} + 1 \ (insert) \\ D_{i-1,j} + 1 \ (delete) \end{cases}$$

4. Get the distance from the lower right cell in the matrix

		b	е	a	r
	0	1	2	3	4
g	1	1	2	3	4
0	2	2	2	3	4
а	3	3	3	2	3
	4	4	4	3	3

11

Translation for step 3

Data Mining

Exercise: Levenshtein Distance

Determine the Levenshtein distance (and the according matrix) between "english" and "danish"

Data Mining

12

Some data mining tools are insensitive to missing data

Ignore all incomplete objects

- · Might result in the loss of a substantial amount of data
- Problem: maybe a systematic correlation between target of mining process and missing values (e.g. customers who do not answer a specific question of a survey)

Manual completion

· Expensive in time and money

Automatic completion

- Using a global constant
- Using the global mean value
- Using a class-dependent mean value
- Use a predictive model, e.g. based on feature correlations

 Not applicable if the application is aimed at outlier detection, e.g. fraudulent credit card transactions

Manual detection supported by visualization tools

Only for low dimensional data

Statistical methods

- Threshold for the variance, e.g. two times variance
- · Only applicable if the distribution is known

Using domain knowledge

- Value restrictions, e.g. 0 < age < 150
- Less applicable for multi-dimensional data

Distance-based detection

A sample is an outlier if it has not enough neighbours

Deviation-based methods

- Measure the dissimilarity of a data set (e.g. variance)
- Determine the smallest subset of data that if removed results in the largest reduction of dissimilarity
- Combinatorics of subset selection → extremely expensive

Exercise Outlier Detection

$$S = {S1,...,S4} = {(2,3),(1,1),(3,3),(3,2)}$$

17

Data Mining

Data Preprocessing Data Types	 High-dimensional spaces are sparse → Keeping the same object density in a space with more dimensions requires exponentially more objects → To enclose a prespecified portion of objects, an increasingly large part of the hypercube needs to be "encircled" 				
Metrics	Example				
Handling of Missing Data	Portion p	Dimensions n	Edge length e	e ⁿ = p	
3 3	0.1	1	0.1	$0.1^{1}=0.1$	
Outlier Detection	0.1	2	0.316	$0.316^2 = 0.1$	
	0.1	3	0.464	$0.464^3 = 0.1$	
Dimensionality Reduction					
Value Count Reduction	0.1	10	0.794	$0.794^{10} = 0.1$	
Value Court Reduction			•		
ин	0.1	100	0.977	$0.977^{100} = 0.1$	
Universität Hamburg				18	

- Almost every object is closer to an edge of the cube than to another sample object
- · Almost every object is an outlier

Which data can be discarded without sacrificing the quality of the data mining results?

Too many dimensions:

- Mining results degrade (insufficient amount of data)
- Resulting model is incomprehensible
- Problem becomes intractable

Too few dimensions:

- Data dependencies are lost
- Mining results degrade (limited expressiveness)

Feature selection approaches:

Idea: discard features (i.e. attributes, dimensions) which

- have many inaccurate/inconsistent values
- have many missing values

- do not provide much (relevant) information
- contribute least to the overall class distinction capability (task specific criterion)

Approaches: Feature ranking, minimum subset selection

Feature composition approaches:

Idea: features are composed into a new feature set with reduced dimensionality

→ Given feature space is transformed into a more compact feature space without losing relevant information

Approach: Principal component analysis (PCA)

