Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik

Wintersemester 2020/21

Übungsblatt 6

Hausaufgaben (Abgabe bis 14.12.2020, 14:00 Uhr)

Hausaufgabe 6.1: Lineares Gleichungssystem $(4 \text{ P.}) \text{ Sei } A := \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -3 & 4 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 & 2 & 2 \\ -5 & -11 & 3 & -6 & -6 & -4 \end{pmatrix} \in \mathbb{Q}^{4 \times 6} \text{ und } \vec{b} = \begin{pmatrix} 0 \\ -1 \\ 0 \\ -2 \end{pmatrix} \in \mathbb{Q}^4.$ Berechnen Sie LR(A; b)

Hausaufgabe 6.2: Gleichungssysteme mit Parametern (4 P.) Seien
$$s, t \in \mathbb{R}$$
 Parameter, $A := \begin{pmatrix} 1 & 1 & 0 \\ -3 & -1 & -2 \\ -3 & s & -1 \end{pmatrix} \in M_3(\mathbb{R})$ und $\vec{b} := \begin{pmatrix} 1 \\ 5 \\ t \end{pmatrix}$.

Berechnen Sie LR($A; \vec{b}$) in Abhängigkeit von s und t.

Hinweis: Bringen Sie zuerst A in ZSF. Abhängig von s, t kann das Gleichungssystem keine, genau eine oder unendlich viele Lösungen besitzen. LR(A; b)ist jeweils explizit anzugeben.

Hausaufgabe 6.3: Linearkombinationen

- a) (2 P.) Seien $\vec{v}_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} \frac{2}{1} \\ 0 \end{pmatrix}$. Untersuchen Sie, ob $[\vec{v}_1, \vec{v}_2, \vec{v}_3]$ linear unabhängig ist.
- b) (2 P.) Finden Sie einen Vektor $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$, der sich <u>nicht</u> als Linearkombination $c_1 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} + c_2 \begin{pmatrix} \frac{5}{4} \\ -1 \end{pmatrix} + c_3 \begin{pmatrix} \frac{1}{1} \\ 0 \end{pmatrix}$ mit $c_1, c_2, c_3 \in \mathbb{R}$ darstellen lässt (mit Nachweis). Formulieren Sie einen geometrischen Grund, warum es einen solchen Vektor gibt.

Erreichbare Punktzahl: