http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

# Intro to Probability

Instructor: Alexandre Bouchard Fall 2014

# Plan for today:

- Axioms of probability.
- Reliability, continued.
- Probability tree diagram.
- More examples.

### http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

# Logistics

- Let me know if you cannot access website
- Last reminders:
  - Doodle under Contact tab.
  - Clickers (see links in <u>Syllabus</u> tab)
  - Piazza under Contact tab.
  - Pre-readings posted in <u>Schedule</u> tab
- Slides under Files tab
- Additional practice problems: Syllabus tab

http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

# Logistics

- I will start using clickers today,
  - but I am not taking grade into account (yet)
- First problems will be released by Wednesday (more about that on Wed)
- We cannot have a larger room unfortunately, but keep monitoring the enrollment!

# Disclaimer

- Workload and difficulty increases in the second half of semester (continuous probability)
- Make sure you have the time to stay on top of the material
- Good things to review from pre-requisite courses:
  - set theory notation
  - bivariate integration

# Review

- Outcome: a scenario, s =
- Sample space S: all the possible scenarios
- Event: a set of outcomes, e.g.  $E = \{s \in S : s \text{ is red}\}$
- Probability: in the discrete, equally weighted case, P(E) = |E| / |S|
- Properties:
  - $P(E \cup F) = P(E) + P(F)$  when E & F are disjoint (non-overlapping)
  - $P(E^c) = I P(E)$

# Going beyond the equally weighted case

## Discrete, equally weighted

### **Definition (I):**

$$P(E) = |E| / |S|$$

### Properties (2):

- a)  $0 \le P(E) \le I$
- b) P(S) = I
- c)  $P(E \cup F) = P(E) + P(F)$

if E and F are disjoint

# Discrete, equally weighted

### **Definition (I):**

$$P(E) = |E| / |S|$$

### Properties (2):

a) 
$$0 \le P(E) \le I$$

b) 
$$P(S) = I$$

c) 
$$P(E \cup F) = P(E) + P(F)$$
  
if E and F are disjoint

Not equally weighted (or not discrete)

Example: redundancy problem (ex. 11)

### General rules of probability

#### Assume:

- a)  $0 \le P(E) \le I$
- b) P(S) = I
- c)  $P(E \cup F \cup ...) = P(E) + P(F) + ...$  if *E*, *F*, ... are all disjoint

# Discrete, equally weighted

### **Definition (I):**

P(E) = |E| / |S|

### Properties (2):

- a)  $0 \le P(E) \le I$
- b) P(S) = I
- c)  $P(E \cup F) = P(E) + P(F)$ if E and F are disjoint

Not equally weighted (or not discrete)

Example: redundancy problem (ex. 11)

## General rules of probability

These are called the axioms of probability \*\*\*

#### Assume:

- a)  $0 \le P(E) \le 1$
- b) P(S) = I
- c)  $P(E \cup F \cup ...) = P(E) + P(F) + ...$  if *E*, *F*, ... are all disjoint

## Discrete, equally weighted

### **Definition (I):**

$$P(E) = |E| / |S|$$

### Properties (2):

- a)  $0 \le P(E) \le I$
- b) P(S) = I
- c)  $P(E \cup F) = P(E) + P(F)$ if E and F are disjoint

Not equally weighted (or not discrete)

Example: redundancy problem (ex. 11)

# Redundancy is not always stupid

- Redundant systems:
  - create one or more duplicates of an important part of a machine
  - as long as one of the copies works, the machine works as a whole
  - the machine only fails when both copies break
- Many examples in biology (kidneys), engineering





Redundant server power supply

Ex. I I

# Example of a typical reliability problem

- Known:
  - Power supply #I works 60% of the time at delivery
  - Power supply #2 works 70% of the time at delivery
  - You also observed that both power supplies work at delivery 40% of the time
- Question: what is the probability that both power supply are broken at delivery?

# Strategy

- I. Define a probability space S
- 2. Define the known information as events, ex.:  $W_1$  = power supplies #1 works
- 3. Define the goal in terms of the probability of an event
- 4. Use properties I and 2 to find that probability (see next 2 slides as well to make your life easier)

Prop. 3

# De Morgan's law: Distributing complements



Prop. 4 Inclusion-exclusion:

Going between unions and intersections

#### From earlier:

$$P(E \cup F) = P(E) + P(F)$$
 if E and F are disjoint,  
i.e.  $E \cap F = \emptyset$ 

What if: we want the prob. of non-disjoint unions?



### Ex. I I

- Known:
  - Power supply #1 works 60% of the time at delivery
  - Power supply #2 works 70% of the time at delivery
  - You also observed that both power supplies work at delivery 40% of the time
- Question: what is the probability that both power supply are broken at delivery?

- A) 6%
- B) 10%
- C) 12%
- D) 20%

#### De Morgan's law: Distributing complements



Prop. 4 Inclusion-exclusion:

Going between unions and intersections

#### From earlier:

$$P(E \cup F) = P(E) + P(F)$$
 if E and F are disjoint,  
i.e.  $E \cap F = \emptyset$ 

What if: we want the prob. of non-disjoint unions?

$$P(E \cup F) \qquad P(E) \qquad P(F) \qquad P(E \cap F)$$

# Partitions and probability tree diagrams

# Partition of an event

F

The events  $E_i$  form a partition of the event F if:



- 1. The union of the  $E_i$ 's is equal to F:  $\bigcup_i E_i = F$
- 2. The  $E_i$ 's are disjoint: if  $i \neq j$ , then  $E_i \cap E_j = \emptyset$

Why is this useful?

# Partition of an event

F

The events  $E_i$  form a partition of the event F if:



- 1. The union of the  $E_i$ 's is equal to F:  $\bigcup_i E_i = F$
- 2. The  $E_i$ 's are disjoint: if  $i \neq j$ , then  $E_i \cap E_j = \emptyset$

Why is this useful?

**Note**: as consequence of I, 2 and the axioms of probability,  $P(F) = P(E_1) + P(E_2) + P(E_3) + P(E_4)$ 

# Probability tree diagram



Wednesday, September 10, 14

Examples of solving discrete probability problems with tree diagrams

# Probability that *n* coins are all tails

### Recall:

Probability when outcomes are equally likely:

$$P(E) = |E| / |S|$$

# of outcomes of interest
# of outcomes

**Here:** 
$$|E| = ?$$
  $|S| = ?$ 

Ex. 12 Probability that *n* coins are all tails

### Recall:

Probability when outcomes are equally likely:

$$P(E) = |E| / |S|$$

# of outcomes of interest # of outcomes

**Here:** 
$$|E| = 1$$
  $|S| = ?$ 













# Probability of winning the lottery

- You pick your number when you buy a ticket
- The lottery company draws at random from an urn containing n numbered balls {1, 2, ..., n} [example: n=5]



 without replacement (each number is either picked 0 or 1 time, not more)



Ex. 13

# Probability of winning the lottery (without replacement)

- You win if the numbers you picked match those from the draw.
- See example on the right, do you win in this case?



Ex. 13

# Probability of winning the lottery (without replacement)

- You win if the numbers you picked match those from the draw.
- See example on the right, do you win in this case?
  - a) if order matters, NO
  - b) if order does not matter, YES



Note: most lottery use (b), but let's do (a) first---it is simpler

### Ex. 13a

# Probability of winning the lottery (order matters, without replacement)

### Recall:

Probability when outcomes are equally likely:

$$P(E) = |E| / |S|$$

# of outcomes # of outcomes

**Here:** 
$$|E| = 1$$
  $|S| = ?$ 

Ex. 13a

Find |S|:

A) 243

B) 125

C) 60

D) 15

