

Lista de Exercícios de Álgebra Linear I

10/10/2023

- 1. Sejam $R, P, S : \mathbb{R}^2 \to \mathbb{R}^2$ respectivamente a rotação de 30° rm torno da origem, a projeção ortogonal sobre a reta y = x/3 e a reflexão em torno da mesma reta. Dado o vetor v = (2, 5), determine os vetores Rv, Pv e Sv.
- 2. Prove que toda transformação linear $A:V\to W$ transforma todo conjunto convexo $C\subset V$ em um conjunto convexo $A(C)\subset W$.
- 3. Seja $A: E \to F$ uma transformação lienar. Se os vetores Av_1, Av_2, \cdots, Av_n são L.I., prove que $v_1, \cdots, v_n \in E$ também são L.I.. Se F = E e os vetores Av_1, \cdots, Av_n geram E, prove que v_1, \cdots, v_n geram E.
- 4. Sejam $A:V\to V$ uma transformação linear. Prove que $A^2=0$ se, e somente se, para todo $v\in E$ tem-se $Av\in \mathrm{Kern}(A)$.
- 5. Seja $A: E \to E$ uma transformação linear. Para quaisquer vetores $u \in \text{Kern}(A)$ e $v \in \text{Im}(A)$, prove que se tem $Au \in \text{Kern}(A)$ e $Av \in \text{Im}(A)$.
- 6. Escreva a expressão de uma transformação linear $A: \mathbb{R}^2 \to \mathbb{R}^2$ cujo núcleo seja a reta y=x e cuja imagem seja a reta y=2x.
- 7. Seja $A:V\to V$ uma apicação linear. Mostre que $A^2=0$ se, e somente se, ${\rm Im}(A)\subset {\rm Kern}(A).$
- 8. Seja $A: \mathcal{P}_n \to \mathcal{P}_n$ a transformação linear definida por $A(p(x)) = x \cdot p'''(x)$. Descreva o núcleo e a imagem de A. Obtenha bases para eles.