QXD0116 - Álgebra Linear

Transformações Lineares V

André Ribeiro Braga

Universidade Federal do Ceará

Campus Quixadá

Definição

Dada uma matriz $n \times n$ quadrada **A**, sua matriz característica é dada por

$$\mathbf{A} - \lambda \cdot \mathbf{I} = \begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{bmatrix},$$

onde **I** é a matriz identidade de ordem n e λ é um parâmetro. Seu determinante é um polinômio $P(\lambda)$ de grau n em λ , chamado de polinômio característico de **A**.

Exemplo

Seja
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Determine o polinômio característico de \mathbf{A} .

Solução

$$\det(\mathbf{A} - \lambda \cdot \mathbf{I}) = \det\left(\begin{bmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{bmatrix}\right) = (1 - \lambda) \cdot (4 - \lambda) - 6$$
$$= 4 - \lambda - 4\lambda + \lambda^2 - 6$$

$$P(\lambda) = \lambda^2 - 5\lambda - 2$$

Um escalar $\lambda \in \mathbb{R}$ é um autovalor de **A** se, e somente se, λ é um zero (raíz) de seu polinômio característico.

Prova

Sabemos que λ é um autovalor de $\bf A$ se, e somente se, $({\bf A}-\lambda\cdot {\bf I})$ é singular. Esta, por sua vez, é singular se, e somente se, $\det({\bf A}-\lambda\cdot {\bf I})=0$. Mas $\det({\bf A}-\lambda\cdot {\bf I})=P(\lambda)$, logo λ é raíz de $P(\lambda)$.

Teorema 2

Seja \mathbf{A} uma matriz de ordem n, então:

- (a) Existe, no mínimo, um autovetor correspondente a cada autovalor.
- (b) Os autovetores correspondentes a cada autovalor forma um espaço vetorial.

Prova

(a) Seja λ um autovalor de **A**. Para encontrar o autovetor correspondente, deve-se resolver o sistema

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \mathbf{v} = \mathbf{0}$$

Como $\det(\mathbf{A} - \lambda \cdot \mathbf{I}) = 0$, a matriz dos coeficientes tem posto menor que n. Portanto, a solução não-trivial existe.

Teorema 2

Seja **A** uma matriz de ordem *n*, então:

- (a) Existe, no mínimo, um autovetor correspondente a cada autovalor.
- (b) Os autovetores correspondentes a cada autovalor forma um espaço vetorial.

Prova

(b) Sejam ${\bf u}$ e ${\bf v}$ dois autovetores correspondentes ao autovalor λ . Então temos ${\bf A}\cdot{\bf u}=\lambda\cdot{\bf u}$ e ${\bf A}\cdot{\bf v}=\lambda\cdot{\bf v}$. Assim

$$\mathbf{A} \cdot (\alpha \cdot \mathbf{u} + \beta \cdot \mathbf{v}) = \alpha \cdot \mathbf{A} \cdot \mathbf{u} + \beta \cdot \mathbf{A} \cdot \mathbf{v}$$
$$= \alpha \cdot \lambda \cdot \mathbf{u} + \beta \cdot \lambda \cdot \mathbf{v}$$
$$= \lambda \cdot (\alpha \cdot \mathbf{u} + \beta \cdot \mathbf{v})$$

Teorema 3

Seja \mathbf{A} uma matriz de ordem n, então:

- (a) Os autovetores correspondentes a autovalores distintos são LI.
- (b) Se **A** tem *n* autovalores distintos, então existem *n* autovetores, um associado a cada autovalor.

Prova

(a) Supondo $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_s$ autovetores correspondentes aos autovalores $\lambda_1, \lambda_2, \dots, \lambda_s$ e que os autovetores são LD. E que s é o menor inteiro para que isso seja verdade. Então

$$\alpha_1 \cdot \mathbf{u}_1 + \alpha_2 \cdot \mathbf{u}_2 + \cdots + \alpha_s \cdot \mathbf{u}_s = \mathbf{0}, \quad (*)$$

onde α_i não são todos nulos.

Teorema 3

Seja **A** uma matriz de ordem *n*, então:

- (a) Os autovetores correspondentes a autovalores distintos são Ll.
- (b) Se **A** tem *n* autovalores distintos, então existem *n* autovetores, um associado a cada autovalor.

Prova

(a) Multiplicando-se por A

$$\alpha_1 \cdot \mathbf{A} \cdot \mathbf{u}_1 + \alpha_2 \cdot \mathbf{A} \cdot \mathbf{u}_2 + \dots + \alpha_s \cdot \mathbf{A} \cdot \mathbf{u}_s = \mathbf{0}$$

$$\alpha_1 \cdot \lambda_1 \cdot \mathbf{u}_1 + \alpha_2 \cdot \lambda_2 \cdot \mathbf{u}_2 + \dots + \alpha_s \cdot \lambda_s \cdot \mathbf{u}_s = \mathbf{0}. \quad (\Delta)$$

Se $\lambda_i = 0$, a equação fornece relação de dependência entre s-1 autovetores, contradizendo a definição de s.

Teorema 3

Seja \mathbf{A} uma matriz de ordem n, então:

- (a) Os autovetores correspondentes a autovalores distintos são LI.
- (b) Se **A** tem *n* autovalores distintos, então existem *n* autovetores, um associado a cada autovalor.

Prova

(a) Se todos $\lambda_i \neq 0$, então multiplicando a equação (*) por λ_1 e subtraindo da equação (Δ), obtemos

$$\alpha_2 \cdot (\lambda_2 - \lambda_1) \cdot \mathbf{u}_2 + \cdots + \alpha_s \cdot (\lambda_s - \lambda_1) \cdot \mathbf{u}_s = \mathbf{0}.$$

Teorema 3

Seja \mathbf{A} uma matriz de ordem n, então:

- (a) Os autovetores correspondentes a autovalores distintos são LI.
- (b) Se **A** tem *n* autovalores distintos, então existem *n* autovetores, um associado a cada autovalor.

Prova

(a) Como $(\lambda_i - \lambda_1) \neq 0$ para $i = 2, 3, \ldots, s$, obtemos novamente uma relação de dependência linear entre s-1 autovetores, contradizendo a definição de s. Logo, os autovetores correspondentes a autovalores distintos são LI.

Teorema 3

Seja \mathbf{A} uma matriz de ordem n, então:

- (a) Os autovetores correspondentes a autovalores distintos são LI.
- (b) Se **A** tem *n* autovalores distintos, então existem *n* autovetores, um associado a cada autovalor.

Prova

(b) Sabendo que existem n autovetores $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ correspondentes ao autovalores $\lambda_1, \lambda_2, \ldots, \lambda_n$. Seja \mathbf{u} um outro autovetor correspondente ao autovalor λ_i . Como $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ são LI, então

$$\mathbf{u} = \alpha_1 \cdot \mathbf{u}_1 + \alpha_2 \cdot \mathbf{u}_2 + \dots + \alpha_n \cdot \mathbf{u}_n. \quad (\Box)$$

Teorema 3

Seja **A** uma matriz de ordem *n*, então:

- (a) Os autovetores correspondentes a autovalores distintos são LI.
- (b) Se **A** tem *n* autovalores distintos, então existem *n* autovetores, um associado a cada autovalor.

Prova

(b) Multiplicando-se por A

$$\mathbf{A} \cdot \mathbf{u} = \alpha_1 \cdot \mathbf{A} \cdot \mathbf{u}_1 + \alpha_2 \cdot \mathbf{A} \cdot \mathbf{u}_2 + \dots + \alpha_n \cdot \mathbf{A} \cdot \mathbf{u}_n$$
$$\lambda_i \cdot \mathbf{u} = \alpha_1 \cdot \lambda_1 \cdot \mathbf{u}_1 + \alpha_2 \cdot \lambda_2 \cdot \mathbf{u}_2 + \dots + \alpha_n \cdot \lambda_n \cdot \mathbf{u}_n$$

Subtraindo pelo produto de (\Box) por λ_i

$$\mathbf{0} = \alpha_1 \cdot (\lambda_1 - \lambda_i) \cdot \mathbf{u}_1 + \alpha_2 \cdot (\lambda_2 - \lambda_i) \cdot \mathbf{u}_2 + \dots + \alpha_n \cdot (\lambda_n - \lambda_i) \cdot \mathbf{u}_n$$

Teorema 3

Seja \mathbf{A} uma matriz de ordem n, então:

- (a) Os autovetores correspondentes a autovalores distintos são LI.
- (b) Se **A** tem *n* autovalores distintos, então existem *n* autovetores, um associado a cada autovalor.

Prova

(b) Como $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ são LI, então $\alpha_j = 0$ para $j = 1, 2, \dots, n$ e $j \neq i$. Logo $\mathbf{u} = \alpha_i \cdot \mathbf{u}_i$.

obs: Autovalores iguais podem ou não ter autovetores LI.

Exemplo

Determine os autovalores e autovetores de $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por:

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \to T(\mathbf{u}) = \begin{bmatrix} u_1 - 3u_2 + 3u_3 \\ 3u_1 - 5u_2 + 3u_3 \\ 6u_1 - 6u_2 + 4u_3 \end{bmatrix} \to \mathbf{A} = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}.$$

Solução

Matriz característica:

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) = \begin{bmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{bmatrix}$$

Exemplo

Determine os autovalores e autovetores de $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por:

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \to T(\mathbf{u}) = \begin{bmatrix} u_1 - 3u_2 + 3u_3 \\ 3u_1 - 5u_2 + 3u_3 \\ 6u_1 - 6u_2 + 4u_3 \end{bmatrix} \to \mathbf{A} = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}.$$

Solução

Polinômio característico:

$$P(\lambda) = \lambda^3 - 12\lambda - 16 = (\lambda + 2)^2 \cdot (\lambda - 4)$$

Exemplo

Determine os autovalores e autovetores de $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por:

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \to T(\mathbf{u}) = \begin{bmatrix} u_1 - 3u_2 + 3u_3 \\ 3u_1 - 5u_2 + 3u_3 \\ 6u_1 - 6u_2 + 4u_3 \end{bmatrix} \to \mathbf{A} = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}.$$

Solução

Fazendo $\lambda_1 = \lambda_2 = -2$, obtemos:

$$\begin{cases} 3v_1 - 3v_2 + 3v_3 = 0 \\ 3v_1 - 3v_2 + 3v_3 = 0 \\ 6v_1 - 6v_2 + 6v_3 = 0 \end{cases} \Rightarrow v_1 = v_2 - v_3$$

Exemplo

Determine os autovalores e autovetores de $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por:

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \to T(\mathbf{u}) = \begin{bmatrix} u_1 - 3u_2 + 3u_3 \\ 3u_1 - 5u_2 + 3u_3 \\ 6u_1 - 6u_2 + 4u_3 \end{bmatrix} \to \mathbf{A} = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}.$$

Solução

Fazendo $\lambda_3 = 4$, obtemos:

$$\begin{cases}
-3v_1 - 3v_2 + 3v_3 = 0 \\
3v_1 - 9v_2 + 3v_3 = 0 \\
6v_1 - 6v_2 = 0
\end{cases} \Rightarrow v_1 = v_2 = \frac{v_3}{2}$$

