

Tema 4. Representación basada en Kernels

Percepción (PER)

Curso 2017/2018

Departamento de Sistemas Informáticos y Computación

- 1 Introducción ▷ 3
- 2 Clasificación binaria y Kernels ▷ 5
- 3 Aprendizaje Kernel Perceptron ▷ 11
- 4 Kernel Polinomial ▷ 15
- 5 Kernel Gaussiano ▷ 19
- 6 Kernels Generalizados ▷ 21

- 1 Introducción ▷ 3
 - 2 Clasificación binaria y Kernels ▷ 5
 - 3 Aprendizaje Kernel Perceptron ▷ 11
 - 4 Kernel Polinomial ▷ 15
 - 5 Kernel Gaussiano ▷ 19
 - 6 Kernels Generalizados ▷ 21

Introducción

■ Objetivo principal de la representación basada en kernels es:

Cambio de espacio de representación para obtener separabilidad lineal

Escuela Técnica
Superior de Ingenieria
Informática

- 1 Introducción ▷ 3
- 2 Clasificación binaria y Kernels ▷ 5
 - 3 Aprendizaje Kernel Perceptron ▷ 11
 - 4 Kernel Polinomial ▷ 15
 - 5 Kernel Gaussiano ▷ 19
 - 6 Kernels Generalizados ▷ 21

Clasificación binaria y Kernels

- Usualmente se estudian los métodos kernel en problemas de clasificación binarios
- Conjunto de entrenamiento

$$X = \{(\mathbf{x}_1, c_1), (\mathbf{x}_2, c_2), \cdots, (\mathbf{x}_n, c_n)\}$$
 con $c_i \in \{-1, +1\}$

■ La clasificación de una nueva muestra \mathbf{x} se realiza por el signo de una función discriminante $g(\mathbf{x})$:

$$c(\mathbf{x}) = \begin{cases} +1 & \text{si } g(\mathbf{x}) \ge 0 \\ -1 & \text{si } g(\mathbf{x}) < 0 \end{cases}$$

■ El algoritmo Perceptron se puede reescribir para la clasificación en dos clases

Aprendizaje - Perceptron de 2 clases

- Entrada: $\{(\mathbf{x}_1,c_1),(\mathbf{x}_2,c_2),\cdots,(\mathbf{x}_n,c_n)\}$ y factor de aprendizaje α
- Salida: w y w_0 // vector de pesos entrenados y término independiente
- Algoritmo:

```
\mathbf{w} = \mathbf{0}; w_0 = 0 // vector de pesos iniciales y peso umbral nulos do
```

```
m=0; // número de muestras bien clasificadas  \begin{aligned} &\mathbf{for}\;(i=1;\,i\leq n;\,i++) \\ &g(\mathbf{x}_i)=\mathbf{w}^t\cdot\mathbf{x}_i+w_0 \\ &\mathbf{if}\;c_i\cdot g(\mathbf{x}_i)\leq 0\;\mathbf{then}\;//\;\mathrm{Si}\;\mathrm{hay}\;\mathrm{un}\;\mathrm{error}\;\mathrm{de}\;\mathrm{clasificaci\acute{o}n} \\ &\mathbf{w}=\mathbf{w}+\alpha\,c_i\,\mathbf{x}_i;\;w_0=w_0+\alpha\,c_i \\ &\mathbf{else} \\ &m=m+1 \end{aligned}
```

while
$$(m < n)$$

Aprendizaje - Perceptron de 2 clases

- Entrada: $\{(\mathbf{x}_1, c_1), (\mathbf{x}_2, c_2), \cdots, (\mathbf{x}_n, c_n)\}$ y factor de apr. $\alpha \in \mathbb{R}^n \land \alpha_i = \alpha_j \ \forall i, j$
- Salida: $g(\mathbf{x})$ // función de clasificación
- Algoritmo:

$$g(\mathbf{x}) = 0$$

do

m=0; // número de muestras bien clasificadas for $(i=1;\ i\leq n;\ i++)$

if $c_i \cdot g(\mathbf{x}_i) \leq 0$ then // Si hay un error de clasificación $g(\mathbf{x}) = g(\mathbf{x}) + \alpha_i c_i (\mathbf{x}_i^t \cdot \mathbf{x}) + \alpha_i c_i$

else

$$m = m + 1$$
;

while (m < n)

Clasificación binaria y Kernels

• $g(\mathbf{x}) = \mathbf{w}^t \cdot \mathbf{x} + w_0$ es un clasificador con vector de pesos \mathbf{w} y peso umbral w_0 :

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i c_i \mathbf{x}_i \qquad w_0 = \sum_{i=1}^{n} \alpha_i c_i$$

• $g(\mathbf{x})$ relaciona \mathbf{x} con algunas muestras de entrenamiento por el producto escalar y α_i pasa de factor de aprendizaje al peso de cada muestra:

$$g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i c_i (\mathbf{x}_i^t \cdot \mathbf{x}) + \alpha_i c_i$$

- Generalizar producto escalar para resolver tareas que no son linealmente separables
- Reemplazar producto escalar por una función $kernel\ K(\mathbf{x}_i, \mathbf{x})$, que proyecta a un espacio donde las muestras son linealmente separables y realiza el producto escalar.
- La proyección es **implícita** y se obtiene al calcular la función kernel:

$$g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i c_i K(\mathbf{x}_i, \mathbf{x}) + \alpha_i c_i = \sum_{i=1}^{n} \alpha_i c_i (\Phi(\mathbf{x}_i^t) \cdot \Phi(\mathbf{x})) + \alpha_i c_i$$

Clasificación binaria y Kernels

Función kernel: función que dado un par de objetos del espacio de representación original nos devuelve un valor real:

$$K: E \times E \to \mathbb{R}$$

Usualmente la representación es vectorial, entonces:

$$K: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$$

Dicho valor real modela el producto escalar de esos dos objetos en un nuevo espacio de representación:

$$K(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$$

■ La representación alternativa no se llega a producir, sólo se necesita el resultado del producto escalar en esa representación para usarlo en un clasificador lineal

- 1 Introducción ▷ 3
- 2 Clasificación binaria y Kernels ▷ 5
- 3 Aprendizaje Kernel Perceptron ▷ 11
 - 4 Kernel Polinomial ▷ 15
 - 5 Kernel Gaussiano ▷ 19
 - 6 Kernels Generalizados ▷ 21

Aprendizaje - Kernel Perceptron

El algoritmo Kernel Perceptron aprende la siguiente función:

$$g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i c_i K(\mathbf{x}_i, \mathbf{x}) + \alpha_i c_i$$

■ Es decir, una función lineal en un espacio de representación alternativo:

$$g(\mathbf{x}) = \mathbf{w} \,\Phi(\mathbf{x}) + w_0$$

con

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i c_i \Phi(\mathbf{x}_i) \qquad w_0 = \sum_{i=1}^{n} \alpha_i c_i$$

- lacktriangle Los únicos parámetros a aprender son los $lpha_i$
- En fase de aprendizaje la función kernel se representa por una matriz $\mathbf{K} \in \mathbb{R}^{n \times n}$ tal que $\mathbf{K}_{i,j} = K(\mathbf{x}_i, \mathbf{x}_j)$ (matriz Gramm)

Aprendizaje - Kernel Perceptron

Desde el punto de vista de la función a aprender:

- Entrada: $\{(\mathbf{x}_1, c_1), (\mathbf{x}_2, c_2), \cdots, (\mathbf{x}_n, c_n)\}$
- Salida: $g(\mathbf{x})$
- Algoritmo:

$$g(\mathbf{x}) = 0;$$

do

m=0; // número de muestras bien clasificadas

for
$$(i = 1; i \le n; i++)$$

if $c_i \cdot g(\mathbf{x}_i) \leq 0$ then // Si hay un error de clasificación

$$g(\mathbf{x}) = g(\mathbf{x}) + c_i K(\mathbf{x}_i, \mathbf{x}) + c_i$$

else

$$m = m + 1$$

while (m < n)

Aprendizaje - Kernel Perceptron

Desde el punto de vista de los parámetros α :

```
■ Entrada: \{(\mathbf{x}_1, c_1), (\mathbf{x}_2, c_2), \cdots, (\mathbf{x}_n, c_n)\}
```

- Salida: $\alpha \in \mathbb{R}^n$
- Algoritmo:

```
\alpha = \mathbf{0};
```

do

m=0; // número de muestras bien clasificadas for $(i=1;\,i\leq n;\,i++)$ if $c_i\cdot g(\mathbf{x}_i)\leq 0$ then // Si hay un error de clasificación $\alpha_i=\alpha_i+1$

else

$$m = m + 1$$

while (m < n)

- 1 Introducción ▷ 3
- 2 Clasificación binaria y Kernels ▷ 5
- 3 Aprendizaje Kernel Perceptron ▷ 11
- 4 Kernel Polinomial ▷ 15
 - 5 Kernel Gaussiano ▷ 19
 - 6 Kernels Generalizados ▷ 21

Kernel Polinomial

Kernel polinomial:

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^t \cdot \mathbf{y} + c)^d$$

• Ejemplo d=2

$$K(\mathbf{x}, \mathbf{y}) = \left(\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + c \right)^2$$

$$= (x_1 y_1 + x_2 y_2 + c) (x_1 y_1 + x_2 y_2 + c)$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 2 x_1 y_1 x_2 y_2 + 2 x_1 y_1 c + 2 x_2 y_2 c + c^2$$

$$= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1 x_2 & \sqrt{2}x_1 & \sqrt{2}x_2 & c \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1 y_2 \\ \sqrt{2}y_1 \\ \sqrt{2}y_2 \\ c \end{bmatrix}$$

$$= \Phi(\mathbf{x}) \cdot \Phi(\mathbf{y})$$

Kernel Polinomial

- Conjunto de entrenamiento (ver figura izquierda)
- Representación de $g(\mathbf{x})$ con $\mathbf{x} \in [-1,1]$ y $\alpha_i = 1, \forall i$ (ver figura derecha)

■ Recordad $g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i c_i K(\mathbf{x}_i, \mathbf{x})$ siendo $K(\mathbf{x}_i, \mathbf{x})$ un kernel polinómico

Kernel Polinomial

■ En el ejemplo previo hay una proyección implícita a un nuevo espacio donde las muestras de entrenamiento son linealmente separables:

http://upload.wikimedia.org/wikipedia/commons/b/b1/Svm_8_polinomial.JPG

- 1 Introducción ▷ 3
- 2 Clasificación binaria y Kernels ▷ 5
- 3 Aprendizaje Kernel Perceptron ▷ 11
- 4 Kernel Polinomial ▷ 15
- 5 Kernel Gaussiano ▷ 19
 - 6 Kernels Generalizados ▷ 21

Kernel Gaussiano

Kernel Gaussiano:

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(\frac{-||\mathbf{x} - \mathbf{y}||^2}{2\sigma^2}\right)$$

■ Representación gráfica de la gaussiana (unidimensional):

- \blacksquare Kernel muy empleado, pues asume que la función $\Phi(\cdot)$ implícitamente relacionada proyecta los puntos a un espacio de dimensionalidad infinita
- En dimensionalidad infinita los datos son *siempre* linealmente separables

- 1 Introducción ▷ 3
- 2 Clasificación binaria y Kernels ▷ 5
- 3 Aprendizaje Kernel Perceptron ▷ 11
- 4 Kernel Polinomial ▷ 15
- 5 Kernel Gaussiano ▷ 19
- 6 Kernels Generalizados ▷ 21

Kernels Generalizados

- Objetivo: definir y evaluar diferentes funciones kernel
- La función kernel debe cumplir que:

$$\exists \Phi : \mathbb{R}^D \to \mathbb{R}^{D'} : K(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{x}^t) \Phi(\mathbf{y})$$

• Mercer condition: condición necesaria y suficiente para caracterizar que K sea un kernel válido:

"La matriz Gramm $\mathbf{K}_{i,j}$ definida para el conjunto de entrenamiento $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ es semidefinida positiva $(\mathbf{z}^t\mathbf{K}\mathbf{z}\geq 0, \forall \mathbf{z}\in\mathbb{R}^{n\times 1}, \mathbf{z}\neq \mathbf{0})$ "

■ La matriz Gramm **K** es semidefinida positiva si se cumple:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} K(\mathbf{x}_i, \mathbf{x}_j) c_i c_j \ge 0 \quad \forall c_i, c_j \in \mathbb{R}$$

■ Respetando esta propiedad podemos construir kernels desde kernels más simples

$$Kernels \ Generalizados$$
 Si K_1 y K_2 son kernels, entonces K es un kernel:
$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} c \cdot K_1(\mathbf{x}, \mathbf{y}) & c > 0 \\ f(\mathbf{x}) \cdot K_1(\mathbf{x}, \mathbf{y}) \cdot f(\mathbf{y}) & \text{para cualquier función } f \\ q(K_1(\mathbf{x}, \mathbf{y})) & q & \text{polinomio con coeficientes no negativos} \\ (c + K_1(\mathbf{x}, \mathbf{y}))^d & d, c > 0 \\ K_1(\mathbf{x}, \mathbf{y}) + K_2(\mathbf{x}, \mathbf{y}) \\ K_1(\mathbf{x}, \mathbf{y}) \cdot K_2(\mathbf{x}, \mathbf{y}) & \exp(K_1(\mathbf{x}, \mathbf{y})) \\ \frac{K_1(\mathbf{x}, \mathbf{y})}{\sqrt{K_2(\mathbf{x}, \mathbf{y})}} \end{cases}$$

Kernels Generalizados

• Sea A una matriz semidefinida positiva, entonces K es un kernel:

$$K(\mathbf{x}, \mathbf{y}) = \mathbf{x}^t \ \mathcal{A} \ \mathbf{y}$$

- lacksquare Sean $\mathbf{x},\mathbf{y}\in\mathbb{R}^D$, tales que $\mathbf{x}=(\mathbf{x}_a,\mathbf{x}_b)$, $\mathbf{y}=(\mathbf{y}_a,\mathbf{y}_b)$, con:
 - ullet $\mathbf{x}_a, \mathbf{y}_a \in \mathbb{R}^{D_a}$
 - \bullet $\mathbf{x}_b, \mathbf{y}_b \in \mathbb{R}^{D_b}$
 - $\bullet \ D = D_a + D_b$

Si K_a y K_b son kernels en \mathbb{R}^{D_a} y \mathbb{R}^{D_b} , respectivamente, K es un kernel:

$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} K_a(\mathbf{x}_a, \mathbf{y}_a) + K_b(\mathbf{x}_b, \mathbf{y}_b) \\ K_a(\mathbf{x}_a, \mathbf{y}_a) \cdot K_b(\mathbf{x}_b, \mathbf{y}_b) \end{cases}$$

