Versuchsprotokoll E8

Kennlinie

14.01.2015

Alexander Schlüter, Josh Wewers, Frederik Edens

Gruppe 15/mi
alx.schlueter@gmail.com
joshw@muenster.de
f_eden01@wwu.de

Inhaltsverzeichnis

1	Ein	führung	1
2	Versuch		1
	2.1	Diode in Durchlassrichtung	1
	2.2	Zenerdiode	2
	2.3	Glühlampe	4
	2.4	NTC	5
	2.5	Temperaturabhängigkeit des Widerstandes eines Metalldrahtes	7
3	Dis	kussion	8

1 Einführung

2 Versuch

Im Folgendem werden die Kennlienen von verschieden Bauteilen mit dem Aufbau 1 bestimmt. Sämtliche Messwerte für die Spannung wurden mit einem Messfehler von $\Delta U = V$ bzw. $\Delta I = mA$ aufgenommen.

Abbildung 1: Messaufbau für unterschiedliche Leiter

2.1 Diode in Durchlassrichtung

Wie in Abbildung 1 a) gezeigt wird der Strom für unterschiedliche Spannung gemessen, um daraus eine U-I-Kennlinie zu ermitteln.

Abbildung 2: Messwerte und Fit für eine Diode in Durchlassrichtung

Aufgrund des anscheinend exponentiellen Verlaufs der Messwerte wurde mit gnuplot nach dem least-squares-Verfahren die Werte gegen die Funktion $f(x) = a \cdot b^x$ gefittet. Ausgabe:

Variable	Wert	Unsicherheit
a	$5,61784\cdot 10^{-7}$	$\pm 3,084 \cdot 10^{-8}$
b	$1,69598\cdot 10^{11}$	$\pm 1,319 \cdot 10^{10}$

Tabelle 1: Linearer Fit zu Abbildung 2

2.2 Zenerdiode

Wie in Abbildung 1 b) gezeigt wird der Strom für unterschiedliche Spannung gemessen, um daraus eine U-I-Kennlinie zu ermitteln. Dies wird jedoch einmal mit einer Polung in Durchlassrichtung und einmal in Sperrrichtung getan.

Abbildung 3: Messwerte und Fit für eine Zenerdiode in Sperrrichtung

Aufgrund des anscheinend exponentiellen Verlaufs der Messwerte wurde mit gnuplot nach dem least-squares-Verfahren die Werte gegen die Funktion $f(x) = a \cdot b^x$ gefittet. Ausgabe:

Variable	Wert	Unsicherheit
a	$1,50271\cdot 10^{-7}$	$\pm 5,433 \cdot 10^{-8}$
b	42,7533	$\pm 3,073$

Tabelle 2: Linearer Fit zu Abbildung 3

Abbildung 4: Messwerte und Fit für eine Zenerdiode in Durchlassrichtung

Aufgrund des anscheinend exponentiellen Verlaufs der Messwerte wurde mit gnuplot nach dem least-squares-Verfahren die Werte gegen die Funktion $f(x) = a \cdot b^x$ gefittet. Ausgabe:

Variable	Wert	Unsicherheit
a	$3,08803\cdot10^{-11}$	$\pm 3,759 \cdot 10^{-12}$
b	$9,72068\cdot 10^{16}$	$\pm 1,673 \cdot 10^{16}$

Tabelle 3: Linearer Fit zu Abbildung 4

2.3 Glühlampe

Wie in Abbildung 1 c) gezeigt wird der Strom für unterschiedliche Spannung gemessen, um daraus eine U-I-Kennlinie zu ermitteln.

Abbildung 5: Messwerte und Fit für eine Lampe

Aufgrund des anscheinend Wurzel artigem Verlaufs der Messwerte, besonders im Bereich bis 3V, wurde mit gnuplot nach dem least-squares-Verfahren die Werte gegen die Funktion $f(x) = a \cdot \sqrt{x}$ gefittet. Ausgabe:

Variable	Wert	Unsicherheit
a	14,9315	$\pm 0,2092$

Tabelle 4: Linearer Fit zu Abbildung 5

2.4 NTC

Wie in Abbildung 1 d) gezeigt wird der Strom für unterschiedliche Spannung gemessen, um daraus eine U-I-Kennlinie zu ermitteln. Dabei muss nach jeder Spannungserhöhung gewartet werden, bis sich der Temperaturgradient abgebaut hat.

Abbildung 6: Messwerte und Fit für eine NTC-Widerstand

Aufgrund des anscheinend quadratischem Verlaufs der Messwerte wurde mit gnuplot nach dem least-squares-Verfahren die Werte gegen die Funktion $f(x) = a \cdot x^2 + b \cdot x + c$ gefittet. Beim Fitten wurde der letzte Messwert nicht betrachtet, da er vollkommen aus dem Verlauf der Werte herausfällt. Dies ist auf ein Versagen der Leistung des Netzgeräts zurückzuführen. Ausgabe:

Variable	Wert	Unsicherheit
a	$0,\!316693$	$\pm 0,05691$
b	-0,0533435	$\pm 0,4446$
\mathbf{c}	$1,\!05214$	$\pm 0,6146$

Tabelle 5: Quadratischer Fit zu Abbildung 6

2.5 Temperaturabhängigkeit des Widerstandes eines Metalldrahtes

Der Zusammenhang aus der Theorie gilt für den spezifischen Widerstand ρ , jedoch messen wir im Versuch den Widerstand $R = \rho \cdot l/A$, wobei l die Länge des Leiters und A die Querschnittsfläche ist. Wir gehen näherungsweise davon aus, dass die thermische Ausdehnung während des Versuches gering ist und nehmen deshalb l und A als konstant an. Für den Fit definieren wir $C := \rho_0 \cdot l/A$.

Die Messwerte werden für Aufheizen bzw. Abkühlen getrennt mit gnuplot nach dem least-squares-Verfahren gegen die aus der Theorie erwartete Funktion $R(T) = C(1 + \alpha \cdot T)$ gefittet.

Abbildung 7: Messwerte und Fit fürs Aufheizen

Variable	Wert
C_{auf}	$(5,06455\pm0,03523)\Omega$
$\alpha_{ m auf}$	$(4,48047 \pm 0,16030) \mathrm{^{m}\Omega/^{\circ}C}$

Tabelle 6: Fit zu Abbildung 7

Abbildung 8: Messwerte und Fit fürs Abkühlen

Variable	Wert
C_{ab}	$(5,06929\pm0,02510)\Omega$
$lpha_{ m ab}$	$(4,30956 \pm 0,10240) \mathrm{m}\Omega/\mathrm{c}$

Tabelle 7: Fit zu Abbildung 8

3 Diskussion

Literatur

Donath, Markus und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Mechanik und Elektrizitätslehre. Auflage Wintersemester 2014/2015. Westfälische Wilhelms-Universität Münster. Physikalisches Institut, Oktober 2014.