Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Moderna I

Tarea 9

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

13 de Mayo 2020

Ejercicio 1. (25 puntos)

Sean X un G-conjunto, $x, y \in X$ y $g \in G$. Supongamos que y = gx. Demuestre que $G_y = gG_xg^{-1}$; concluya que $|G_x| = |G_y|$.

Demostración.

 (\subseteq) Si $a \in G_y$, entonces ay = y. Sabemos que y = gx, entonces

$$y = gx = gax = ga(g^{-1}g)x = gag^{-1}y$$

Por tanto gag^{-1} fija a y, y así $gG_xg^{-1} \leq G_y$.

 (\supseteq) Si $a \in gG_xg^{-1}$, entonces $agxg^{-1} = gxg^{-1}$. Sabemos que $x = g^{-1}y$, entonces

$$x = g^{-1}y = (agyg^{-1})^{-1}y = g^{-1}agx$$

Por tanto $g^{-1}ag$ fija a x, y así $G_y \leq gG_xg^{-1}$.

Si x y y están en la misma órbita, entonces hay un $g \in G$ con y = gx y de ahí

$$|G_y| = |G_{gx}| = |gG_yg^{-1}| = |G_x|$$

Ejercicio 2. (25 puntos)

Considere a G actuando en sí mismo por traslación. Es decir, tenemos la acción $\alpha: G \times G \to G$ dada por $\alpha(g,h)=gh$, donde el lado izquierdo es el producto del grupo G. Muestre que esta acción tiene una sóla órbita y que $G_x=1$ para todo $x\in G$.

Demostración. Si $x \in G$, entonces la órbita $\mathcal{O}(x) = G$ porque si $g \in G$, entonces $g = (gx^{-1})x$. El estabilizador G_x de x es $\{1\}$ porque si $x = \alpha(a, x) = ax$, entonces a = 1. De hecho uno dicee G actúa transitivamente en X cuando haya alguna $x \in X$ con $\mathcal{O}(x) = X$.

Ejercicio 3. (25 puntos)

Si G es finito y c es el número de clases de conjugación en G, demuestre que

$$c = \frac{1}{|G|} \sum_{\tau \in G} |C_G(\tau)|$$

Demostración. :(

Ejercicio 4. (25 puntos)

Sea p un número primo y sea X un G-conjunto finito, donde $|G|=p^n$ y |X| no es divisible por p. Demuestre que existe $x\in X$ tal que $\tau x=x$ para todo $\tau\in G$.

Demostraci'on.: