Intégrales Généralisées

Table des matières

1. Rappel sur les integrales	1
2. Premières définitions.	2
3. Critères fondamentaux.	2
4. Critère de convergence pour le cas f de signe constant.	3
5. Intégrales généralisées absolument convergente.	4
6. Comparaison série-intégrale.	5
7. Produits infinis.	5

1. Rappel sur les integrales

Définition 1.1. Soit $f : [a, b] \to \mathbb{R}$ et une subdivision $\sigma := \{x_0 < ... < x_n\}$ de [a, b]. On dit que f est Riemann intégrable si

$$\inf_{\sigma} \sum_{i=1}^{n} \left((x_i - x_{i-1}) \sup_{[x_{i-1}, x_i]} f \right) = \sup_{\sigma} \sum_{i=1}^{n} \left((x_i - x_{i-1}) \inf_{[x_{i-1}, x_i]} f \right)$$

Théorème 1.2. $f:[a,b] \to \mathbb{R}$ est Riemann intégrable si elle est continue par morceaux i.e il existe une subdivision $\sigma := \{x_0 < ... < x_n\}$ de [a,b] tel que f soit continue sur les $]x_{i-1}; x_i[_{i \in [1;n]}]$.

 $f:[a,b]\to\mathbb{C}$ est Riemann intégrable si Re(f) et Im(f) sont Riemann intégrables. On a alors :

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \operatorname{Re}(f(x)) dx + i \int_{a}^{b} \operatorname{Im}(f(x)) dx$$

Proposition 1.3. Soit $f, g : [a, b] \to \mathbb{R}$ intégrables, $\lambda \in \mathbb{R}$.

- (1) $f + \lambda g$ est intégrable et $\int_a^b f + \lambda g = \int_a^b f + \lambda \int_a^b g$.
- (2) fg est intégrable (voir théorème d'intégration par parties).
- (3) $f \ge 0 \to \int_a^b f \ge 0$ avec $\int_a^b f = 0 \leftrightarrow \forall x \in [a; b] f(x) = 0$.
- (4) $f \ge g \to \int_a^b f \ge \int_a^b g$.
- (5) |f| est intégrable et $\left| \int_a^b f \right| \le \int_a^b |f|$.

Théorème 1.4 (théorèle d'intégration par parties). Soit $f, g : [a, b] \to \mathbb{R}$ de classe C^1

$$\int_{a}^{b} f'g = [fg]_{a}^{b} - \int_{a}^{b} fg'$$

Théorème 1.5 (changement de variable). Soit I un intervalle, $\varphi : [a,b] \to I$ une fonction de classe C^1 et $f:I \to \mathbb{R}$ continue. On a:

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx$$

avec le changement de variables $x = \varphi(t)$ ou $dx = \varphi'^{(t)} dt$.

2. Premières définitions.

Définition 2.1.

- (1) Soit $f:[a,b[\to\mathbb{R}$ continue. On dit que l'intégrale $\int_a^b f(x) \, \mathrm{d}x$ converge si $\int_a^t f(x) \, \mathrm{d}x$ admet une limite finie quand $t \to b^-$.
- (2) Soit $f:]a, b] \to \mathbb{R}$ continue. On dit que l'intégrale $\int_a^b f(x) \, \mathrm{d}x$ converge si $\int_t^b f(x) \, \mathrm{d}x$ admet une limite finie quand $t \to a^+$.

Définition 2.2. Si $f:]a, b[\to \mathbb{R}$ continue, on dit que l'intégrale $\int_a^b f(x) \, \mathrm{d}x$ converge s'il existe $c \in]a, b[$ tel que $\int_a^c f(x) \, \mathrm{d}x$ converge et $\int_c^b f(x) \, \mathrm{d}x$ converge.

Remarque 2.3. Si il existe $c \in]a, b[$ tel que $\int_a^c f(x) dx$ converge alors pour tout $d \in]a, b[$, $\int_a^d f(x) dx$ converge car $\int_a^c f(x) dx = \int_a^d f(x) dx + \int_d^c f(x) dx$ converge.

3. Critères fondamentaux.

Théorème 3.1 (théorème de Riemann). Soit $\alpha \in \mathbb{R}$.

- (1) $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$ converge si et seulement si $\alpha > 1$.
- (2) $\int_0^1 \frac{1}{x^{\alpha}} dx$ converge si et seulement si $\alpha < 1$.

En particulier, $\int_0^{+\infty} \frac{1}{r^{\alpha}} dx$ diverge toujours.

Démonstration.

(1) Soit t > 1.

$$\int_1^t \frac{\mathrm{d}x}{x^{\alpha}} = \begin{cases} \left[\ln(x)\right]_1^t = \ln(t) \xrightarrow[t \to +\infty]{} +\infty & \text{si } \alpha = 1\\ \left[\frac{1}{1-\alpha}x^{-\alpha+1}\right]_1^t = \frac{1}{1-\alpha}\left[x^{-\alpha+1}\right]_1^t = \frac{1}{1-\alpha}\left(\frac{1}{t^{\alpha-1}} - 1\right) & \text{si } \alpha \neq 1 \end{cases}$$

Si $\alpha > 1$: $\int_1^t \frac{1}{x_1^{\alpha}} dx \xrightarrow[t \to +\infty]{} -1\frac{1}{1} - \alpha = \frac{1}{1} \in \mathbb{R} \Rightarrow \int_1^+ \infty \frac{1}{x^{\alpha}} dx$ converge. Si $\alpha < 1$: $\int_1^t \frac{1}{x_1^{\alpha}} dx \xrightarrow[t \to +\infty]{} +\infty \Rightarrow \int_1^{+\infty} \frac{1}{x^{\alpha}} dx$ diverge.

(1) $\int_0^1 \frac{1}{x^{\alpha}} dx$ par le changement de variable $y = \frac{1}{x}$, $dx = -\frac{1}{v^2} dy$, On obtient :

$$\int_{1}^{t} \frac{1}{x^{\alpha}} dx = \int_{\frac{1}{t}}^{1} -\frac{y^{\alpha}}{v^{2}} dy = \frac{\int_{1}^{1}}{t} \frac{1}{v^{2-\alpha}} dy \text{ converge si et seulement si } 2 - \alpha < 1 \Leftrightarrow 1 < \alpha$$

Corollaire 3.2.

- (1) $\int_a^b \frac{1}{(x-a)^{\alpha}} dx$ converge si et seulement si $\alpha < 1$.
- (2) $\int_a^b \frac{1}{(b-x)^{\alpha}} dx$ converge si et seulement si $\alpha < 1$.

Démonstration.

- (1) Soit $t \in]a, b[$. $\int_t^b \frac{1}{(x-a)^\alpha} dx = \int_{t-a}^{b-a} \frac{1}{y^\alpha} dy.$
- (2) Pareil.

4. Critère de convergence pour le cas f de signe constant.

Théorème 4.1.

- * Soit $f:[a,b[\to\mathbb{R}]$ une fonction continue telle que pour tout $x\in[a,b[,f(x)\geq0.\int_a^bf(x)\,\mathrm{d}x]$
- converge si et seulement si $F: [a, b[\to \mathbb{R}; t \mapsto \int_a^t f(x) dx \text{ est majorée.}$ * Soit $f:]a, b] \to \mathbb{R}$ une fonction continue telle que pour tout $x \in]a, b], f(x) \geq 0. \int_a^b f(x) dx$ converge si et seulement si $F:]a,b] \to \mathbb{R}; t \mapsto \int_t^b f(x) dx$ est majorée.

Démonstration. * La fonction F est dérivante et $F'(t) = f(t) \ge 0 \Rightarrow F$ est croissante $\Rightarrow \lim_{t \to b^-} F(t)$ existe et $\lim_{t\to b^-} F(t) = \sup_{[a,b]} F(t) = l \in \mathbb{R} \cup \{\pm\infty\}$ or $l \in \mathbb{R}$ si et seulement si F est majoréé.

$$*F(t) = \int_{t}^{b} f(x) dx = -\int_{b}^{t} f(x) dx.$$

 $*F(t) = \int_t^b f(x) \, \mathrm{d}x = -\int_b^t f(x) \, \mathrm{d}x.$ On a F dérivable et $F'(t) = -f(t) \le 0 \Rightarrow F$ est décroissante $\Rightarrow \lim_{t \to a^+} F(t)$ existe et $\lim_{t \to a^+} F(t) = \lim_{t \to a^+} F(t)$ $\inf_{[a,b]} F(t) = l \in \mathbb{R} \cup \{\pm \infty\}$ or $l \in \mathbb{R}$ si et seulement si F est majoréé.

Exemple 4.2.

1. $F(t) = \int_0^1 \sin^2\left(\frac{1}{t}\right) dx \cdot f :]0, 1] \to \mathbb{R}; x \mapsto \sin^2\left(\frac{1}{t}\right)$ continue et positive.

De plus, $\forall x \in]0,1], f(x) \le 1$ et $F(t) = \int_t^1 \sin^2\left(\frac{1}{x}\right) \mathrm{d}x \le \int_t^1 1 \, \mathrm{d}x = [x]_t^1 = 1 - t \le 1$. Donc F(t) est bornée $\Rightarrow \int_t^1 \sin^2\left(\frac{1}{x}\right) \mathrm{d}x$ converge.

Théorème 4.3 (Critère de comparaison). Soit $f, g : [a, b[\to \mathbb{R} \text{ continues telles que pour tout }]$ $t \in [a, b[, f(t) \le g(t)]$. Alors:

- (1) $\int_a^b g(t) dt$ converge $\Rightarrow \int_a^b f(t) dt$ converge.
- (2) $\int_a^b f(t) dt$ converge $\Rightarrow \int_a^b g(t) dt$ diverge.

Démonstration. Soit $F: [a, b[\to \mathbb{R}; t \mapsto \int_a^t f(x) \, \mathrm{d}x \text{ et } G: [a, b[\to \mathbb{R}; t \mapsto \int_a^t g(x) \, \mathrm{d}x]$ $f \le g \underset{\text{par monotonie}}{\Longrightarrow} \int_a^t f(x) \, \mathrm{d}x \le \int_a^t g(x) \, \mathrm{d}x \Longrightarrow F(x) \le G(x).$

- (1) Si $\int_a^b g(x) dx$ converge G est bornée donc F est bornée donc $\int_a^b f(x) dx$.
- (2) Si $\int_a^b g(x) dx$ diverge F n'est pas majorée i.e $\forall M \in \mathbb{R}, \exists x \in [a, b[\ tq\ F(x) > M.\ De\ plus, G(x) \ge F(x) > M$ donc G n'est pas majorée donc d'après le théorème $\int_a^b g(x) dx$ diverge.

Exemple 4.4.

1.
$$\int_1^{+\infty} \frac{\sin(x)^2}{x^2} dx$$
.

1. $\int_{1}^{+\infty} \frac{\sin(x)^{2}}{x^{2}} dx.$ $f: [1, +\infty[\to \mathbb{R}, x \mapsto \frac{\sin(x)^{2}}{x^{2}} \text{ est continue et positive et } \forall x \in [1, +\infty[, f(x) \le \frac{1}{x^{2}}.$

D'après le théorème de Riemann, $\int_1^{+\infty} \frac{1}{x^2} dx$ converge donc par le critère de comparaison, $\int_{1}^{+\infty} f(x) dx$ converge.

Théorème 4.5 (critère des équivalents). Soit $f, g : [a, b[\to \mathbb{R}]$ continues et positives. $f \underset{b}{\sim} g \Rightarrow \left(\int_a^b f(x) \, \mathrm{d}x \, \mathrm{et} \int_a^b f(x) \, \mathrm{d}x \right)$ sont de même nature.

 $D\acute{e}monstration. \quad f\underset{b}{\sim} g \Rightarrow \exists \delta > 0, \\ \exists \lambda :]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{tels } \text{ que } \forall x \in]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{tels } \text{ que } \forall x \in]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{tels } \text{ que } \forall x \in]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{tels } \text{ que } \forall x \in]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{tels } \text{ que } \forall x \in]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{tels } \text{ que } \forall x \in]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{tels } \text{ que } \forall x \in]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{tels } \text{ que } \forall x \in]b - \delta; \\ b[\rightarrow \mathbb{R} \text{ telle que } \lim_{x \rightarrow b^-} \lambda(x) = 0 \quad \text{telle que } \lambda(x) = 0 \quad \text{t$ δ ; $b[, f(x) - g(x) + \lambda(x)g(x)$.

Posons $\varepsilon = \frac{1}{2}$. $\exists \eta > 0$ tel que $b - \eta < x < b \Rightarrow |\lambda(x)| < \frac{1}{2} \Leftrightarrow -\frac{1}{2} < \lambda(x) < \frac{1}{2} \operatorname{car} \lim_{x \to b^{-}} \lambda(x) = 0$.

On pose $\alpha = \max\{b - \delta, b - \eta\}$ Ainsi, $\forall x \in]\alpha, b[\cap]\alpha, b[:$

$$-\frac{1}{2}g(x) \le \lambda(x)g(x) \le \frac{1}{2}g(x) \operatorname{car} g(x) > 0$$

$$\Leftrightarrow -\frac{1}{2}g(x) \le f(x) - g(x) \le \frac{1}{2}g(x) \operatorname{car} f \approx g(x)$$

$$\Rightarrow \frac{1}{2}g(x) \le f(x) \le \frac{3}{2}g(x).$$

Ainsi, par le théorème des comparaisons, si $\int_{\alpha}^{b} f(x) dx$ converge, alors $\int_{\alpha}^{b} \frac{1}{2} g(x) dx$ converge donc

 $\int_{\alpha}^{b} g(x) dx$ converge. De même, si $\int_{\alpha}^{b} \frac{3}{2}g(x) dx$ converge, alors $\int_{\alpha}^{b} g(x) dx$ converge donc $\int_{\alpha}^{b} f(x) dx$ converge. Enfin comme f et g sont bien définit sur $[a, \alpha]$, il n'y a pas de problème d'intégration. П

Théorème 4.6 (négligeabilité). Soit $f, g : [a, b] \to \mathbb{R}$ continues et positives. Si $f = o_b(g)$ alors:

- (1) $\int_a^b g(x) dx$ converge $\Rightarrow \int_a^b f(x) dx$ converge.
- (2) $\int_a^b f(x) dx$ diverge $\Rightarrow \int_a^b f(x) dx$ diverge.

Démonstration. Soit $f,g:[a,b]\to\mathbb{R}$ continues et positives. Soit $\lambda:[c,b[\to\mathbb{R}$ telle que $\lim_{t\to b^-}\lambda(t)=0$ 0. On a $f = \lambda g$. Posons $\varepsilon = \frac{1}{2}$.

$$\exists c' > c \text{ tq } \forall x \in [c', b[, |\lambda(x)| < \frac{1}{2}]$$

$$f(x) = \lambda(x)g(x) < \frac{1}{2}g(x).$$

Ainsi, par le théorème des comparaisons, si $\int_{c'}^b g(x) dx$ converge, alors $\int_{c'}^b f(x) dx$ converge. Et si, $\int_{c'}^b f(x) dx$ diverge, alors $\int_{\alpha}^b g(x) dx$ diverge.

Théorème 4.7 (Théorème de Bertrand). Soit $\alpha, \beta \in \mathbb{R}$.

- (1) $\int_b^{+\infty} \frac{1}{x^{\alpha} \ln(x)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.
- (2) $\int_a^{b<1} \frac{1}{x^{\alpha|\ln(x)|\beta}}$ converge si et seulement si $\alpha < 1$ ou $(\alpha = 1$ et $\beta > 1)$.

Démonstration. A FAIRE !!!!

5. Intégrales généralisées absolument convergente.

Définition 5.1. On dit que l'intégrale $\int_a^b f(x) dx$ est absolument convergente si $\int_a^b |f(x)| dx$ converge. Si $\int_a^b f(x) dx$ converge mais pas absolument, on dit qu'elle est semi-convergente.

Théorème 5.2. Si $\int_a^b f(x) dx$ est absolument convergente alors $\int_a^b f(x) dx$ est convergente.

Démonstration. Soit $f:[a,b[\to\mathbb{R} \text{ continue.}]$ On définit $f_+(x)=\max\{0,f(x)\}=\frac{f(x)+|f(x)|}{2}$ et $f_-(x)=\min\{0,f(x)\}=\frac{|f(x)|-f(x)}{2}$

On a: $*f_+, f_-$ continue sur [a, b].

$$* f_{+} \ge 0, f_{-} \ge 0.$$

$$* f = f_{+} - f_{-}.$$

$$*|f| = f_+ + f_- \Rightarrow f_+ \le |f| \text{ et } f_- \le |f|.$$

On pose $F: [a, b[\to \mathbb{R}; t \mapsto \int_a^t f(x) dx]$.

Pour chaque
$$t \in [a, b[: \int_a^t f(x) dx = \int_a^t f_+(x) dx - \int_a^t f_-(x) dx$$
.
Comme $0 \le f_+, f_- \le |f|$ et $\int_a^t |f(x)| dx$ converge (Hypothèse inititiale), $\int_a^b f_+(x) dx$ et $\int_a^b f_-(x) dx$ convergent. Ainsi $\int_a^b f_+(x) dx - \int_a^b f_- dx$ converge

Exemple 5.3.

1.
$$\int_0^1 \sin\left(\frac{1}{x}\right) dx$$

 $f:]0,1] \to \mathbb{R}; x \mapsto \sin\left(\frac{1}{x}\right)$ est continue. De plus, $\forall x \in]0,1], |f(x)| \le 1$ et $\int_0^1 1 \, \mathrm{d}x = 1$ Par le critère de comparaison, $\int_0^1 |f(x)| \, \mathrm{d}x$ converge $\Rightarrow \int_0^1 f(x) \, \mathrm{d}x$ converge.

Théorème 5.4. Soit $\varphi:]\alpha, \beta[\to]a, b[$ de classe C^1 bijective et $f:]a, b[\to \mathbb{R}$ continue.

Les intègrales $\int_a^b f(t) dt$ et $\int_\alpha^\beta f(\varphi(x))\varphi'(x) dx$ ont la même nature.

Démonstration. A FAIRE !!!!!

6. Comparaison série-intégrale.

Théorème 6.1. Soit $f:[a,+\infty[\to\mathbb{R}]$ une fonction continue, positive et décroissante.

 $\int_a^+ \infty f(x) dx$ et $\sum_{n=a}^{+\infty} f(n)$ ont la même nature.

Si elles convergent,:

$$\int_{n+1}^{+\infty} f(t) \, \mathrm{d}t \le R_n = \sum_{k=n+1}^{+\infty} f(k) \le \int_n^{+\infty} f(t) \, \mathrm{d}t.$$

7. Produits infinis.

Proposition 7.1. Si $\Pi(1+a_n)$ converge alors $1+a_n \underset{n\to +\infty}{\longrightarrow} 1 \Leftrightarrow a_n \underset{n\to +\infty}{\longrightarrow} 0$.

Théorème 7.2. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs. Le porduit infini $\Pi(1+a_n)$ converge si et seulement si $\sum a_n$ converge.

Démonstration. VOIR POLY !!!!!

- 1. On a vu que $\Pi\left(1+\frac{1}{n}\right)$ converge $\Rightarrow \sum \left(\frac{1}{n}\right)$ diverge. 2. Pour $\alpha > 1 : \sum \left(\frac{1}{n^{\alpha}}\right)$ converge $\Rightarrow \Pi\left(1+\frac{1}{n^{\alpha}}\right)$ converge. 3. Soit $x \in [0,1[,\sum(x^n) \text{ converge} \Rightarrow \Pi(1+x^n) \text{ converge}.$

Théorème 7.4. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs. $\Pi(1-a_n)$ converge si et seulement si $\sum (a_n)$ converge si et seulement si $\Pi(1+a_n)$ converge.

$$\begin{array}{l} \textit{D\'{e}monstration}. \text{ Si } \lim_{n \to +\infty} a_n \neq 0, \sum (a_n) \text{ diverge et } \Pi(a_n+1) \text{ diverge}. \\ \text{Si } \lim_{n \to +\infty} a_n = 0, \text{ il existe } N \in \mathbb{N} \text{ tel que } \forall n \geq N, a_n \leq \frac{1}{2}. \end{array}$$

VOIR POLY!!!!! (On voit rien avec son stylo vert nul).

Exemple 7.5.
$$\sum \frac{1}{n^{\alpha}}$$
 converge $\Rightarrow \Pi(1 - \frac{1}{n^{\alpha}})$ converge si $\alpha > 1$.

Remarque 7.6. Sans l'hypothèse de positivité, le théorème est faux.

Définition 7.7 (convergence absolue). Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. Le produit infini $\Pi(1+a_k)$ est dit absolument convergent si $\Pi(1 + |a_k|)$ converge.

Théorème 7.8. Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. Si le produit infini $\Pi(1+a_k)$ est absolument convergent alors il est convergent.

Théorème 7.9. Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle telle que pour tout $n\in\mathbb{N}, a_n+1\geq 0$. $\Pi(1+a_n)$ converge si et seulement si $\sum \ln(1+a_n)$ converge. De plus, une convergence est absolue si et seulement si l'autre l'est.

Remarque 7.10. Il existe une variante du théorème avec a_n une suite complexe.

Théorème 7.11. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels telle que $\sum a_n^2$ converge. On a $\sum a_n$ et $\Pi(1 + a_n)$ sont de même nature.