MTH 342 Homework 1

Philip Warton

January 13, 2020

1.

a.)

Proof. Let $u_1, u_2, v \in V$, we want to show that $u_1 + v = u_2 + v \Rightarrow u_1 = u_2$. By the axiom that states an additive inverse must exist, given $v \in V$, we have $-v \in V$ such that v + (-v) = 0. Therefore we can add -v to both sides of our equation, giving us $(u_1 + v) + (-v) = (u_2 + v) + (-v)$. From there, we can use the property of additive associativity and say that $u_1 + (v + (-v)) = u_2 + (v + (-v))$. By definition of additive inverse, this is equivalent to stating that $u_1 + \mathbf{0} = u_2 + \mathbf{0}$. By the axiom of the additive identity, we can rewrite the former statement as $u_1 = u_2$, showing that the cancellation law holds.

b.)

Proof. Suppose that a and b are neutral elements of V. Want to show that a=b. By definition of the neutral element we have $a+v=v \ \forall v \in V$, and $b+v=v \ \forall v \in V$. Thus, we have a+v=b+v, since both are equal to v. Then by the cancellation law shown in 1. we have a=b.

c.)

Proof. Let $0 \in F$ and $v \in V$, and denote the zero vector by $\mathbf{0}$. Want to show that $0v = \mathbf{0}$. Rewriting $0 \in F$ as 0 + 0 we can write 0v = (0 + 0)v. Then, by distributivity of multiplication we have 0v = 0v + 0v. Also, by the additive identity, we have $0v = 0v + \mathbf{0}$. Since both are equal to 0v, we can write that $0v + 0v = 0v + \mathbf{0}$. Then, by commutativity of addition this can be written as $0v + 0v = \mathbf{0} + 0v$. Now we invoke 1a. once again which implies that $0v = \mathbf{0}$.

d.)

Proof. Suppose $v, w \in V$ such that $v + w = \mathbf{0}$. We want to show that w = (-1)v. Let us take the additive inverse denoted by (-v) and add it to both sides, giving us $v + w + (-v) = \mathbf{0} + (-v)$. By reordering and invoking the axiom of associativity, this can be written as $(v + (-v)) + w = \mathbf{0} + (-v)$. By definition of the additive inverse, this is equivalent to $\mathbf{0} + w = \mathbf{0} + (-v)$. Invoking 1 a. we get w = (-v).

2.

Proof. We want to show that $V=\mathbb{C}$ is a vector space over $F=\mathbb{C}$, when scalar multiplication is defined as $z*v=\overline{z}v\ \forall z\in F,\ \forall v\in V.$

Since we know $\mathbb{C}^n=V$ to be a vector space under normal rules, one can assume that with no changes to how \mathbb{C} operates under vector addition that the axioms for addition are already satisfied.

We must now show that scalar multiplication is associative within our new scaling operation. Let $z_1, z_2 \in \mathbb{C} = F$, and let $v \in \mathbb{C} = V$. Let us write the term $z_1 * (z_2 * v)$ and show that it is equal to $(z_1 z_2) * v$. By our new multiplication operation we have

$$z_1 * (z_2 * v) = z_1 * (\overline{z_2}v)$$

$$= \overline{z_1}(\overline{z_2}v)$$

$$= (\overline{z_1}\overline{z_2})v$$

$$= (z_1z_2) * v$$

For the multiplicative identity, we still have $1 \in \mathbb{C} = F$, since it has no complex part. We can show this by writing $1 = 1 + 0i = 1 - 0i = \overline{1}$. Therefore, presence of a multiplicative identity is not changed by our scalar multiplication defintion.

To show distributivity, we must consider two types. For the first, let $z \in \mathbb{C} = F$ and $v_1, v_2 \in \mathbb{C} = V$. Then, $z*(v_1+v_2) = \overline{z}(v_1+v_2)$. This can be rewritten as $\overline{z}v_1+\overline{z}v_2=z*v_1+z*v_2$. For the second kind of distributivity, now let $z_1,z_2\in\mathbb{C}=F$ and $v\in\mathbb{C}=V$. We can write the following

$$(z_1 + z_2) * v = (\overline{z_1 + z_2})v$$

$$= (\overline{z_1} + \overline{z_2})v$$

$$= \overline{z_1}v + \overline{z_2}v$$

$$= z_1 * v + z_2 * v.$$

Therefore we have shown that even within the redefined scalar multiplication operation $V=\mathbb{C}$ is still a vector space over $F=\mathbb{C}$.

П

3.

Let F be a field and $V = \{A \in M_{2\times 2}(F) : A + A^T = 0\}$. z

a.)

Proof. Want to show that V is a vector space over F. Firstly, we must note that $V \subseteq U$ where $U = \{M_{2 \times 2}(F)\}$. Therefore we must only show that the properties of subspaces hold for V to show that it is a vector space. Let us show that V is closed under vector addition. Let $v, w \in V$, want to show $v + w \in V$. Let A be a matrix chosen arbitrarily, denoted by $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $a, b, c, d \in F$. By adding together A and A^T we get $\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 2a & b+c \\ b+c & 2d \end{bmatrix} = \mathbf{0} \Rightarrow a, d = 0$ and b = -c

Therefore, any matrix in the space V will be of the form $\begin{bmatrix} 0 & f \\ -f & 0 \end{bmatrix}$: $f \in F$. Denote $v = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$, and denote $w = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$. Given that matrix addition operates entrywise, we can write $v + w = \begin{bmatrix} 0 & a+b \\ -a+-b & 0 \end{bmatrix}$. Factoring out the -1 from the bottom left entry, we get $\begin{bmatrix} 0 & a+b \\ -(a+b) & 0 \end{bmatrix}$. Which is of the desired form for an matrix chosen arbitrarily in V. Therefore $v + w \in V \ \forall v, w \in V$. Let $v = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$ where $a \in F$ and suppose we have $f \in F$. By scaling v by a factor of f, we get $\begin{bmatrix} 0 & af \\ -af & 0 \end{bmatrix}$. Since the matrix is of the form we desire with $af \in F$ we have shown U is closed under scaling. Therefore U is a vector space.

b.)

For this space we have dimension =1. This is because all $v \in V$ are scalar multiples of the matrix shown in 3a. We can write the basis for this space as $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

4.

Let $V = \{f : \{(1,3) \cap \mathbb{Q}\} \to \mathbb{Q}\}$. Let our field $F = \mathbb{Q}$.

a.)

(i)

Proof. Suppose we have a function $f(x) = \frac{x}{x-2}$. We want to show that $f(x) \notin V \ \forall x \in \mathbb{Q}$ by counter-example. Let x = 2, we have $f(2) = \frac{2}{2-2} = \frac{2}{0}$. Since our denominator

cannot be zero we have $f(2) \notin \mathbb{Q}$.

(ii)

Proof. Suppose we have the function $g(x)=\sqrt{x}$. We want to show that $g(x)\notin V\ \forall x\in\mathbb{Q}$ by counter-example. Let x=2 again, and we have $g(2)=\sqrt{2}$. Since $\sqrt{2}$ is irrational we have $g(2) \notin \mathbb{Q}$.

b.)

Proof. We want to show that constants $a,b,c\in\mathbb{Q}$ must be zero in order to satisfy the equation $af_1(x) + bf_2(x) + cf_3(x) = 0$. Let us choose 3 points $x_1 = \frac{1}{2}, x_2 = 2, x_3 = 0$ $\frac{3}{2}$. We can then create a system of equations with a corrosponding coefficient matrix

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 2 \\ 1 & 2 & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} & \frac{2}{3} \end{bmatrix}$$
. By row reducing, we get the 3×3 identity matrix, which shows that these functions are linearly independent.