

ترم پاییز ۱۳۹۹–۱۴۰۰

8.2.2 Theorem (König's theorem). Let G = (V, E) be a bipartite graph. Then the size of a maximum matching in G equals the size of a minimum

vertex cover of G. $\beta(G)$ $\alpha'(G)$

$$\max \sum_{(i,j)\in E} x_{ij}$$

$$s.t. \sum_{j:(i,j)\in E} x_{ij} \le 1 \quad \forall i \in U$$

$$\sum_{i:(i,j)\in E} x_{ij} \le 1 \quad \forall j \in V$$

$$x_{ij} \ge 0 \quad \forall (i,j) \in E.$$

$$x_{ij} \in Z$$

$$\max \sum_{(i,j) \in E} x_{ij}$$

$$s.t. \sum_{j:(i,j) \in E} x_{ij} \le 1 \quad \forall i \in U$$

$$\sum_{i:(i,j) \in E} x_{ij} \le 1 \quad \forall j \in V$$

$$x_{ij} \ge 0 \quad \forall (i,j) \in E.$$

$$x_{ij} \in Z$$

$$x \in \{0,1\}$$
 لازم نيست

ماتريس وقوع

$$(i,j) \in E$$

max	$\sum_{(i,j)\in E} x_{ij}$	
s.t.	$\sum_{j:(i,j)\in E} x_{ij} \le 1$	$\forall i \in U$
		$\forall j \in V$
	$x_{ij} \geq 0$	$\forall (i,j) \in E$.
	$x_{ij} \in Z$	

	1		i	U
			-	
				V
	1		j	
			_	J

$$(i,j) \in E$$

$$\max \sum_{(i,j) \in E} x_{ij}$$

$$s.t. \sum_{j:(i,j) \in E} x_{ij} \le 1 \quad \forall i \in U$$

$$\sum_{i:(i,j) \in E} x_{ij} \le 1 \quad \forall j \in V$$

$$x_{ij} \ge 0 \quad \forall (i,j) \in E.$$

$$x_{ij} \in Z$$

maximize
$$\sum_{j=1}^{m} x_j$$
subject to
$$A\mathbf{x} \leq \mathbf{1}$$
$$\mathbf{x} \geq 0$$
$$\mathbf{x} \in \mathbb{Z}^m,$$

y_i A u q \mathbf{S} \mathbf{r} \mathbf{v} \mathbf{w}

y_i \mathbf{u} q r \mathbf{v}

$$\min \quad \sum_{i \in U} y_i + \sum_{j \in V} z_j$$

s.t.
$$y_i + z_j \ge 1 \quad \forall (i,j) \in E$$

 $y_i, z_j \ge 0 \quad \forall (i,j)$
 $y_i, z_j \in Z$

$$\min \quad \sum_{i \in U} y_i + \sum_{j \in V} z_j$$

s.t.
$$y_i + z_j \ge 1 \quad \forall (i,j) \in E$$

 $y_i, z_j \ge 0 \quad \forall (i,j)$
 $y_i, z_j \in Z$

$$y,z \in \{0,1\}$$
 لازم نیست

$$(i,j) \in E$$

$$T$$

$$i \} U$$

$$j \} V$$

$$\min \quad \sum_{i \in U} y_i + \sum_{j \in V} z_j$$

s.t.
$$y_i + z_j \ge 1 \quad \forall (i,j) \in E$$

 $y_i, z_j \ge 0 \quad \forall (i,j)$
 $y_i, z_j \in Z$

$$y,z \in \{0,1\}$$
 لازم نيست

$$(i,j) \in E$$

$$T$$

$$1$$

$$i$$

$$V$$

$$j$$

$$V$$

minimize
$$\sum_{i=1}^{n} y_i$$
subject to
$$A^T \mathbf{y} \ge \mathbf{1}$$
$$\mathbf{y} \ge 0$$
$$\mathbf{y} \in \mathbb{Z}^n,$$

پوشش راسی کمینه

 $\min \quad \sum y_i + \sum z_j$

s.t.
$$y_i + z_j \ge 1 \quad \forall (i,j) \in E$$
 $y_i, z_j \ge 0 \quad \forall (i,j)$

$$y,z \in \{0,1\}$$
 لازم نيست

 $y_i, z_i \in Z$

پوشش راسی کمینه

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m,$

minimize $\sum_{i=1}^{n} y_i$ subject to $A^T \mathbf{y} \ge \mathbf{1}$ $\mathbf{y} \ge 0$ $\mathbf{y} \in \mathbb{Z}^n,$

maximize
$$\sum_{j=1}^{m} x_j$$
subject to
$$A\mathbf{x} \leq \mathbf{1}$$
$$\mathbf{x} \geq 0$$
$$\mathbf{x} \in \mathbb{Z}^m,$$

minimize
$$\sum_{i=1}^{n} y_i$$
subject to
$$A^T \mathbf{y} \ge \mathbf{1}$$
$$\mathbf{y} \ge 0$$
$$\mathbf{y} \in \mathbb{Z}^n,$$

maximize
$$\sum_{j=1}^{m} x_{j}$$
subject to
$$A\mathbf{x} \leq \mathbf{1}$$
$$\mathbf{x} \geq 0$$
$$\mathbf{x} \in \mathbb{Z}^{m},$$

maximize $\sum_{j=1}^{m} x_j$
subject to $A\mathbf{x} \leq \mathbf{1}$
 $\mathbf{x} \geq 0$

برنامهریزی خطی حا

maximize $\sum_{j=1}^{m} x_{j}$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^{m},$

maximize $\sum_{j=1}^{m} x_j$
subject to $A\mathbf{x} \leq \mathbf{1}$
 $\mathbf{x} \geq 0$

آرامسازی

حل برنامهریزی خطی

برنامهریزی خطی

maximize $\sum_{j=1}^{m} x_j$
subject to $A\mathbf{x} \leq \mathbf{1}$
 $\mathbf{x} \geq 0$

آرامسازی

حل برنامهریزی خطی

برنامهریزی خطی

جواب حقیقی بهینه

maximize $\sum_{j=1}^{m} x_j$
subject to $A\mathbf{x} \leq \mathbf{1}$
 $\mathbf{x} \geq 0$

maximize $\sum_{j=1}^{m} x_{j}$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^{m},$

آرامسازی

حل برنامهریزی خطی

برنامهریزی خطی

جواب حقیقی بهینه

صحیحسازی جواب

maximize $\sum_{j=1}^{m} x_j$
subject to $A\mathbf{x} \leq \mathbf{1}$
 $\mathbf{x} \geq 0$

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m,$

آرامسازى

حل برنامهریزی خطی

برنامهریزی خطی

جواب حقیقی بهینه

صحیحسازی جواب

جواب صحيح

 $\sum_{j=1}^{m} x_j$ maximize تطابق بيشينه subject to $Ax \leq 1$ $\mathbf{x} \ge 0$ $\sum_{j=1}^{m} x_j$ maximize آرامسازي برنامهریزی خطی subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m$, حل برنامهریزی خطی چراکار میکند؟؟! جواب حقیقی بهینه صحیحسازی جواب

جواب صحيح

 $\sum_{j=1}^{m} x_j$ $\mathbf{maximize}$ تطابق بیشینه subject to $Ax \leq 1$ $\mathbf{x} \ge 0$ $\sum_{j=1}^{m} x_j$ maximize برنامهریزی خطی آرامسازی subject to $Ax \leq 1$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m$, حل برنامهریزی خطی چراکار میکند؟؟! جواب حقیقی بهینه چرا راسها صحیحاند؟ صحیح سازی جواب

جواب صحيح

maximize $\sum_{j=1}^{m} x_j$ تطابق بیشینه subject to $Ax \leq 1$ $\mathbf{x} \geq 0$ $\sum_{j=1}^{m} x_j$ maximize برنامهریزی خطی آرامسازی subject to $Ax \leq 1$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m$, حل برنامهریزی خطی چراکار میکند؟؟! جواب حقیقی بهینه چرا راسها صحیحاند؟ صحیحسازی جواب

جواب صحيح

چرا همه bfsها صحیحاند؟

صحیح > ۱ هر bfs

صحیح > ۱ هر bfs

Ax = b

حانون
$$x_i = rac{\det(A_i)}{\det(A)}$$

$$i=1,\dots,n$$

کرامر
$$x_i = rac{\det(A_i)}{\det(A)}$$

$$i=1,\dots,n$$

صحيح

کرامر
$$x_i = rac{\det(A_i)}{\det(A)}$$

$$i=1,\ldots,n$$

صحيح

اگر A صحیح و (det(A) خوب

کرامر
$$x_i = rac{\det(A_i)}{\det(A)}$$

$$i=1,\ldots,n$$

صحيح

اگر A صحیح و (A) خوب

تعریف:

Totally unimodular matrices. A matrix A is called totally unimodular if every square submatrix of A (obtained from A by deleting some rows and some columns) has determinant 0, 1, or -1. We note that, in particular, the entries of A can be only 0, -1, and +1.

قضيه:

subject to $A\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}$, ماتریس A کاملا تکپیمانهای و b صحیح ==> تمام bfsها صحیح

قضيه:

subject to
$$A\mathbf{x} = \mathbf{b}$$

 $\mathbf{x} \ge \mathbf{0}$,

ماتریس A کاملا تکپیمانهای و
$$b$$
 صحیح $==>$ تمام bfs ها صحیح

$$A_B x_B = b$$
 :جوابهای شدنی پایهای

قضيه:

subject to
$$A\mathbf{x} = \mathbf{b}$$

 $\mathbf{x} \ge \mathbf{0}$,

$$A_B x_B = b$$
 :جوابهای شدنی پایهای

قانون خوامر خوامر
$$x_i = rac{\det(A_i)}{\det(A)}$$
 کرامر $i = 1, \ldots, n$

ماتریس
$$A$$
: کاملا تکپیمانهای $==>(A\mid e_i)$ کاملا تکپیمانهای

بردار صفر با یک یک

اثبات:

ماتریس
$$(A \mid e_i)$$
 >== کاملا تکپیمانهای حاتریس انهای

بردار صفر با یک

اگر شامل ستون e_i و سطر غیر صفر: بسط دترمینان

ماتریس
$$(A \mid e_i)$$
 >== کاملا تکپیمانهای <==

بردار صفر با یک

اثبات:

اگر شامل ستون e_i و سطر غیر صفر: بسط دترمینان

اگر بدون ستون e_i : قبلا بوده!

قضيه:

subject to
$$A\mathbf{x} \leq \mathbf{b}$$
 $\mathbf{x} \geq \mathbf{0}$,

ماتریس A کاملا تکپیمانهای و
$$d$$
 صحیح $==>$ تمام bfs ها صحیح

$$\bar{A} = (A \,|\, I_m)$$

قضيه:

subject to
$$A\mathbf{x} \leq \mathbf{b}$$

 $\mathbf{x} \geq \mathbf{0}$,

ماتریس A کاملا تکپیمانهای و
$$b$$
 صحیح $==>$ تمام bfs ها صحیح

subject to
$$A\mathbf{x} \leq \mathbf{b}$$

 $\mathbf{x} \geq \mathbf{0}$,

$$\bar{A} = (A \,|\, I_m)$$

قضيه

subject to
$$A\mathbf{x} \leq \mathbf{b}$$

 $\mathbf{x} \geq \mathbf{0}$,

subject to
$$A\mathbf{x} \leq \mathbf{b}$$

 $\mathbf{x} \geq \mathbf{0}$,

$$\bar{A} = (A | I_m)$$
 $\bar{\mathbf{x}} = \mathbf{b}$ $\bar{\mathbf{x}} \geq \mathbf{0}$,

قضيه:

subject to
$$A\mathbf{x} \leq \mathbf{b}$$

 $\mathbf{x} \geq \mathbf{0}$,

subject to
$$A\mathbf{x} \leq \mathbf{b}$$
 $\mathbf{x} \geq \mathbf{0}$,

$$\bar{A} = (A | I_m)$$
 $\bar{\mathbf{x}} = \mathbf{b}$ $\bar{\mathbf{x}} \geq \mathbf{0}$,

همه راسها صحیح

با جواب بهینه غیر راس چه کنیم؟

اگر ستونی بدون ۱

اگر ستونی بدون ۱ اگر ستونی با یکی ۱ ==> مثل قضیه قبل

اگر ستونی بدون ۱ اگر ستونی با یکی 1 ==> مثل قضیه قبل

اگر همه ستونها ۲ تا ۱:

اگر ستونی بدون ۱ اگر ستونی با یکی ۱ ==> مثل قضیه قبل

اگر همه ستونها ۲ تا ۱:

جمع سطرهای T:U: T جمع سطرهای T:V

تطابق بیشینه

maximize $\sum_{j=1}^{m} x_j$
subject to $A\mathbf{x} \leq \mathbf{1}$
 $\mathbf{x} \geq 0$

راسهای چندوجهی تطابق بیشینه صحیحاند

تطابق بیشینه

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$

راسهای چندوجهی تطابق بیشینه صحیحاند

جواب بهینه برابر

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m,$

تطابق بیشینه

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$

جواب بهینه برابر

maximize $\sum_{j=1}^{m} x_{j}$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^{m},$

تطابق بیشینه

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$

جواب بهینه برابر

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m,$

نتیجه: راسهای چندوجهی پوشش راسی کمینه صحیحاند

پوشش راسی کمینه

minimize $\sum_{i=1}^{n} y_i$
subject to $A^T \mathbf{y} \ge \mathbf{1}$
 $\mathbf{y} \ge 0$

جواب بهینه برابر

minimize $\sum_{i=1}^{n} y_i$ subject to $A^T \mathbf{y} \ge \mathbf{1}$ $\mathbf{y} \ge 0$ $\mathbf{y} \in \mathbb{Z}^n,$

نتیجه: راسهای چندوجهی پوشش راسی کمینه صحیحاند

تطابق بیشینه

دوگانی

پوشش راسی کمینه

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$

جواب بهینه برابر

minimize $\sum_{i=1}^{n} y_i$ subject to $A^T \mathbf{y} \ge \mathbf{1}$ $\mathbf{y} \ge 0$

جواب بهینه برابر

جواب بهینه برابر

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m,$

minimize $\sum_{i=1}^{n} y_i$ subject to $A^T \mathbf{y} \ge \mathbf{1}$ $\mathbf{y} \ge 0$ $\mathbf{y} \in \mathbb{Z}^n,$

نتیجه: راسهای چندوجهی پوشش راسی کمینه صحیحاند

تطابق بیشینه

دوگانی

پوشش راسی کمینه

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$

جواب بهينه برابر

minimize $\sum_{i=1}^{n} y_i$
subject to $A^T \mathbf{y} \ge \mathbf{1}$
 $\mathbf{y} \ge 0$

جواب بهینه برابر

قضیه کونیگ

جواب بهینه برابر

maximize $\sum_{j=1}^{m} x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^m,$

minimize $\sum_{i=1}^{n} y_i$ subject to $A^T \mathbf{y} \ge \mathbf{1}$ $\mathbf{y} \ge 0$ $\mathbf{y} \in \mathbb{Z}^n,$

نتیجه: (نسخه وزندار کونیگ)

maximize $\sum_{j=1}^{m} \overset{\vee}{w_{j}} x_{j}$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^{m}$

تطابق وزندار بیشینه (دوبخشی)

نتیجه: (نسخه وزندار کونیگ)

maximize $\sum_{j=1}^{m} \overset{\mathsf{v}}{w_{j}} x_{j}$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^{m}$

minimize $\sum_{i=1}^{n} y_{i}$ subject to $A^{T}\mathbf{y} \geq \mathbf{w}$ $\mathbf{y} \geq 0$

تطابق وزندار بیشینه (دوبخشی)

نتیجه: (نسخه وزندار کونیگ)

maximize $\sum_{j=1}^{m} \mathbf{w}_{j} x_{j}$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$ $\mathbf{x} \in \mathbb{Z}^{m}$

minimize $\sum_{i=1}^{n} y_{i}$ subject to $A^{T}\mathbf{y} \geq \mathbf{w}$ $\mathbf{y} \geq 0$

تطابق وزندار بیشینه (دوبخشی) پوشش راسی وزندار کمینه (دوبخشی)

نتیجه: (نسخه وزندار کونیگ)

maximize $\sum_{j=1}^{m} w_j x_j$ subject to $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \geq 0$

minimize $\sum_{i=1}^{n} y_{i}$ subject to $A^{T}\mathbf{y} \geq \mathbf{w}$ $\mathbf{y} \geq 0$

تطابق وزندار بیشینه (دوبخشی)

 $\mathbf{x} \in \mathbb{Z}^m$

=

پوشش راسی وزندار کمینه (دوبخشی)

غير دوبخشى

- قضیه کونیگ در گراف کلی درست نیست
- الگوریتم خوب تطابق بهینه در گراف کلی داریم
- الگوریتم خوب پوشش راسی بهینه در گراف کلی (احتمالا) نداریم!

• ماتریس شار بیشینه: کاملا تک پیمانهای

• ماتریس شار بیشینه: کاملا تک پیمانهای

• شار بیشینه ==> آرامسازی ==> شار بیشینه خطی

• ماتریس شار بیشینه: کاملا تکپیمانهای

- شار بیشینه ==> آرامسازی ==> شار بیشینه خطی
- برش کمینه ==> آرامسازی ==> برش کمینه خطی

• ماتریس شار بیشینه: کاملا تکپیمانهای

- شار بیشینه ==> آرامسازی ==> شار بیشینه خطی
- برش کمینه ==> آرامسازی ==> برش کمینه خطی

شار بیشینه خطی <== دوگان ==> برش کمینه خطی

کاربرد جبرخطی در فران مان بندی

زمانبندى: مثال

	Single B&W	Duplex B&W	Duplex Color
Master's thesis, 90 pages two-sided, 10 B&W copies		45 min	60 min
All the Best Deals flyer, 1 page one-sided, 10,000 B&W copies	2h 45 min	4h 10 min	5h 30 min
Buyer's Paradise flyer, 1 page one-sided, 10,000 B&W copies	2h 45 min	4h 10 min	5h 30 min
Obituary, 2 pages two-sided, 100 B&W copies		2 min	3 min
Party platform, 10 pages two-sided, 5,000 color copies			3h 30 mir

چون جواب بهتر از ۵:۳۰ داریم، اینها در جواب بهینه نیستند!

ماشینها
$$M:=\{1,\ldots,m\}$$

كارها

$$> J := \{m+1, \dots, m+n\}$$

 $egin{aligned} egin{aligned} & \mathbf{a} & \mathbf{c} \\ \mathbf{j} & \mathbf{d} & \mathbf{c} \\ & \mathbf{d} & \mathbf{d} \end{aligned}$

 $d_{ij} > 0$

Minimize

subject to $\sum_{i \in M} x_{ij} = 1$ $\sum_{j \in J} d_{ij} x_{ij} \leq t$ $x_{ij} \geq 0$ $x_{ij} \in \mathbb{Z}$

for all $j \in J$ for all $i \in M$ ماشينها for all $i \in M, j \in J$ for all $i \in M, j \in J$.

كارها

هزینه ماتریس ماشین i کار j

Minimize

subject to
$$\sum_{i \in M} x_{ij} = 1 \quad \text{for all } j \in J$$
$$\sum_{j \in J} d_{ij} x_{ij} \leq t \quad \text{for all } i \in M$$

 $x_{ij} \geq 0$ for all $i \in M, j \in J$ كارها

ماشينها

 $x_{ij} \in \mathbb{Z}$ for all $i \in M, j \in J$.

هزینه ماتریس i ماشین i

$$x \in \{0,1\}$$
 لازم نیست

آرامسازى

```
\begin{array}{ll} \text{Minimize} & t \\ \text{subject to} & \sum_{i \in M} x_{ij} \ = \ 1 & \text{ for all } j \in J \\ & \sum_{j \in J} d_{ij} x_{ij} \ \leq \ t & \text{ for all } i \in M \\ & x_{ij} \ \geq \ 0 & \text{ for all } i \in M, j \in J \end{array}
```

آرامسازى

Minimize subject to

$$\sum_{i \in M} x_{ij} = 1 \quad \text{for all } j \in J$$

$$\sum_{j \in J} d_{ij} x_{ij} \leq t \quad \text{for all } i \in M$$

$$x_{ij} \geq 0 \quad \text{for all } i \in M, j \in J$$

اضافه کنیم
$$x_{ij} = 0 \quad ext{ for all } i \in M, j \in J ext{ with } d_{ij} > T < T$$
 بهینه T

ارامسازی شده + قیود اضافه

Minimize

Minimize
$$t$$
 subject to $\sum_{i \in M} x_{ij} = 1$ for all $j \in J$ $\sum_{j \in J} d_{ij} x_{ij} \leq t$ for all $i \in M$ $x_{ij} \geq 0$ for all $i \in M, j \in J$ with $d_{ij} > T$.

آرامسازی شده + قیود اضافه

Minimize subject to

$$\sum_{i \in M} x_{ij} = 1$$
 for all $j \in J$
 $\sum_{j \in J} d_{ij} x_{ij} \leq t$ for all $i \in M$
 $x_{ij} \geq 0$ for all $i \in M, j \in J$
 $x_{ij} = 0$ for all $i \in M, j \in J$ with $d_{ij} > T$.

الگوريتم نهايي:

۱_ محاسبه T مناسب،

۲_ حل نسخه آرامسازی شده

۳_ جواب خوب براساس برنامهریزی خطی