

ICCV 2021: Towards Real-world X-ray Security Inspection: A High-quality Benchmark and Lateral Inhibition Module for Prohibited Items Detection

Renshuai Tao^{1,2} Yanlu Wei¹ Xiangjian Jiang¹ Hainan Li¹ Haotong Qin¹ Jiakai Wang¹ Yuqing Ma¹ Libo Zhang³ Xianglong Liu^{1*} ¹State Key Laboratory of Software Development Environment, Beihang University ²iFLYTEK Research ³Institute of Software Chinese Academy of Sciences

{rstao, weiyanlu, hainan, ginhaotong, jk_buaa_scse, mayuqing, xlliu}@buaa.edu.cn silencejiang12138@gmail.com, libo@iscas.ac.cn

> 陶仁帅 软件开发环境国家重点实验室 北京航空航天大学 科大讯飞AI研究院

个人主页: rstao95.github.io

Background

AI Security Inspection?

Difficulties and Related Works

Difficulties:

- (1) Various
- (2) Small
- (3) Randomly stacked
- (4) Heavily overlapped

Related Works:

Dataset	Year	Category	N_p	A	Annotation		Color	Task	Data Source	
		category	- · p	Bounding Box	Number	Professional		2.1.5.1	2 200.200	
GDXray [23]	2015	3	8,150	✓	8,150	Х	Gray-scale	Detection	Unknown	
SIXray [25]	2019	6	8,929	×	X	×	RGB	Classification	Subway Station	
OPIXray [40]	2020	5	8,885	✓	8,885	✓	RGB	Detection	Artificial Synthesis	
HiXray	2021	8	45,364	✓	102,928	✓	RGB	Detection	Airport	

HiXray Dataset

Category	PO1	PO2	WA	LA	MP	TA	CO	NL	Total
Training Testing									82,452 20,476
Total	12,421	7,788	3,092	10,042	53,835	4,918	9,949	883	102,928

N_i	1	2	3	4	5	6	7	8	9	10
Training Testing	-		-	-	-					
Total	15,953	13,627	8,565	4,096	1,875	747	308	132	43	13

Algorithm 1: The Procedure of LIM.

Obtain the feature map set $C = \{C^1, \dots, C^L\}$.

$$\mathbf{A}^{l} = \mathcal{V}\left(\mathcal{F}^{l}(\mathbf{x})\right) + \sum_{m=1}^{L-l} \mathcal{U}^{m}\left(\mathbf{A}^{l+m}\right), \tag{1}$$

$$\mathbf{C}_{\mathrm{t}}^{l} = \mathcal{V}\left(\mathbf{B}^{l}\right) + \sum_{m=1}^{l-1} \mathcal{D}^{m}\left(\mathbf{C}_{\mathrm{t}}^{l-m}\right),\tag{2}$$

$$\mathbf{C}^l = \mathbf{C}_{\mathsf{t}}^l + \mathcal{F}^l(\mathbf{x}),\tag{3}$$

$$\mathbf{B}_{ijc}^{l} = \begin{cases} \mathbf{A}_{iWc}^{l} & \text{if } j = W, \\ \max\left\{\mathbf{A}_{ijc}^{l}, \mathbf{A}_{i(j+1)c}^{l}, \dots, \mathbf{A}_{iWc}^{l}\right\} & \text{otherwise,} \end{cases}$$
(4)

Experiments

Comparing with detection methods:

Method		HiXray Dataset (Ours)									OPIXray Dataset [40]					
Wiethou	AVG	PO1	PO2	WA	LA	MP	TA	CO	NL	AVG	FO	ST	SC	UT	MU	
SSD [20]	71.4	87.3	81.0	83.0	97.6	93.5	92.2	36.1	0.01	70.9	76.9	35.0	93.4	65.9	83.3	
SSD+DOAM [40]	72.1	88.6	82.9	83.6	97.5	94.1	92.1	38.2	0.01	74.0	81.4	41.5	95.1	68.2	83.8	
SSD+LIM	73.1	89.1	84.3	84.0	97. 7	94.5	92.4	42.3	0.1	74.6	81.4	42.4	95.9	71.2	82.1	
FCOS [35]	75.7	88.6	86.4	86.8	89.9	88.9	88.9	63.0	13.3	82.0	86.4	68.5	90.2	78.4	86.6	
FCOS+DOAM [40]	76.2	88.6	87.5	87.8	89.9	89.7	88.8	63.5	12.7	82.4	86.5	68.6	90.2	78.8	87.7	
FCOS+LIM	77.3	88.9	88.2	88.3	90.0	89.8	89.2	69.8	14.4	83.1	86.6	71.9	90.3	79.9	86.8	
YOLOv5 [14]	81.7	95.5	94.5	92.8	97.9	98.0	94.9	63.7	16.3	87.8	93.4	67.9	98.1	85.4	94.1	
YOLOv5+DOAM [40]	82.2	95.9	94.7	93.7	98.1	98.1	95.8	65.0	16.1	88.0	93.3	69.3	97.9	84.4	95.0	
YOLOv5+LIM	83.2	96.1	95.1	93.9	98.2	98.3	96.4	65.8	21.3	90.6	94.8	77.6	98.2	88.9	93.8	

Comparing with Pyramid Networks:

Method	AVG	PO1	PO2	WA	LA	MP	TA	СО	NL
SSD [20]	71.4	87.3	81.0	83.0	97.6	93.5	92.2	36.1	0.01
+FPN [17] +PANet [39]									
+LIM	73.1								

Ablation Studies:

Method	AVG	PO1	PO2	WA	LA	MP	TA	CO	NL
SSD [20]	71.4	87.3	81.0	83.0	97.6	93.5	92.2	36.1	0.01
+SP			82.3						
+BP +BP+BA			83.4 84.3						

Visualization

Visualization of SSD and SSD+LIM

Visualization of the boundary aggregation

Thank you for listening!

陶仁帅 软件开发环境国家重点实验室 博士生 个人主页: rstao95.github.io

刘祥龙 教授、博士生导师、国家优青获得者 个人主页: sites.nlsde.buaa.edu.cn/~xlliu

For more information, welcome to click on my home page!