Procedimentos Pós Análise de Variância

$$Y_{ij} = m + t_i + e_{ij}$$

DADOS

Modelo

$$Y_{ij} = m + b_j + t_i + e_{ij}$$

Hipóteses - Efeito de Tratamento Fixo

$$H_0$$
: $m_1 = m_2 = ... = m_{10}$

Tabela 1. Resumo da análise de variância do percentual de absorção de água de dez linhagens de feijão.

FV	GL	SQ	QM
Tratamento	9	18061.37	2006.82 **
Resíduo	20	75.27	3.76
Média	81,97		
CV(%)	2,37		

Tabela 1. Resumo da análise de variância de produtividade de grãos em Kg ha⁻¹ referente a avaliação de 10 cultivares de arroz.

GL	QM
2	34191,1
9	1951613,63 **
18	194759,66
4492,1	
9,82	
	2 9 18 4492,1

Existe diferença significativa entre as médias das cultivares, mas onde se encontra?

Médias do percentual de absorção de água de dez linhagens de feijão.

Cultivares	Média $\overline{Y}_{i.}$
1	95.5
2	87.8
3	70.4
4	26.3
5	108.2
6	90.1
7	101.3
8	49.9
9	89.8
10	100.5

a2	10!	10 <i>x</i> 9 <i>x</i> 8!		4 =
$C_{10}^2 =$	${8! * 2!} =$	${8! \times 2!}$	$=\frac{1}{2}$	45

m_1	$-m_2=0$
m_2	$-m_3 = 0$

•

•

•

$$m_9 - m_{10} = 0$$

Médias de produtividade de grãos em Kg ha⁻¹ referente a avaliação de 10 cultivares de arroz.

Cultivares	Médias $\overline{Y}_{i.}$
1	5600.667
2	4024.333
3	3972.333
4	5222.333
5	4517.667
6	3052
7	4427.333
8	3923.667
9	5583.333
10	4597.333

Tomada de Decisão Qual ou quais as melhores cultivares?

Estudos Pormenorizados

- Procedimentos de comparações múltiplas
 - Testes de médias
 - Tukey
 - Duncan
 - Student-Newman-Keuls (SNK)
 - Dunnett

- Teste de agrupamento de médias
 - Scott and Knott (SK)

Teste de Tukey

- Teste utilizado para testar qualquer contraste entre duas médias.
- Pré-requisito (teste exato): Todos os tratamentos devem possuir mesmo número de repetições.

$$H_0: m_i - m_{i'} = 0$$

 $H_a: m_i - m_{i'} \neq 0$

• ex: 5 tratamentos

$$C_5^2 = \frac{5!}{3! * 2!} = \frac{5 \times 4 \times 3!}{3! \times 2!} = \frac{20}{2} = 10$$

$$m_1 - m_2 = 0$$
 $m_2 - m_4 = 0$
 $m_1 - m_3 = 0$ $m_2 - m_4 = 0$
 $m_1 - m_4 = 0$ $m_3 - m_4 = 0$
 $m_1 - m_5 = 0$ $m_3 - m_5 = 0$
 $m_2 - m_3 = 0$ $m_4 - m_5 = 0$

Aplicação do teste de tukey

1º: Calculo da diferença mínima significativa: DMS (Δ)

$$\Delta = q_{(n,v,\alpha)} \sqrt{\frac{1}{2} \hat{V}(D)} = q_{(n,v,\alpha)} \sqrt{\frac{QMres}{r}}$$

 $q_{(n,v,\alpha)}$: amplitude total estudentizada. valor tabelado

n: número de tratamentos

v: Grau de liberdade do resíduo

α: nível de significância

Exemplo:

Tabela 1. Resumo da análise de variância de produtividade de grãos em Kg ha⁻¹ referente a avaliação de 10 cultivares de arroz.

FV	GL	QM
Blocos	2	34191,1
Tratamento	9	1951613,63 **
Resíduo	18	194759,66
Média	4492,1	
CV(%)	9,82	

$$q_{(n,v,\alpha)} = 5.07$$

$$\Delta = q_{(n,v,\alpha)} \sqrt{\frac{QMres}{r}} = 5,07 * \sqrt{\frac{194759,66}{3}} = 1291,81$$

Valores da estatística q para teste de Tukey

Alfa = 0.05

GL		Número	de tratam	entos					
Erro	2	3	4	5	6	7	8	9	10
5	3.64	4.6	5.22	5.67	6.03	6.33	6.58	6.8	6.99
6 7	3.46	4.34	4.9	5.3	5.63	5.9	6.12	6.32	6.49
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6	6.16
8	3.26	4.04	4.53	4.89	5.17	5.4	5.6	5.77	5.92
9	3.2	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74
10	3.15	3.88	4.33	4.65	4.91	5.12	5.3	5.46	5.6
11	3.11	3.82	4.26	4.57	4.82	5.03	5.2	5.35	5.49
12	3.08	3.77	4.2	4.51	4.75	4.95	5.12	5.27	5.39
13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.32
14	3.03	3.7	4.11	4.41	4.64	4.83	4.99	5.13	5.25
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.2
16	3	3.65	4.05	4.33	4.56	4.74	4.9	5.03	5.15
17	2.98	3.63	4.02	4.3	4.52	4.7	4.86	4.99	5 11
18	2.97	3.61	4	4.28	4.49	4.67	4.82	4.96	5.07
19	2.96	3.59	3.98	4.25	4.47	4.65	4.79	4.92	5.04
20	2.95	3.58	3.96	4.23	4.45	4.62	4.77	4.9	5.01
24	2.92	3.53	3.9	4.17	4.37	4.54	4.68	4.81	4.92
30	2.89	3.49	3.85	4.1	4.3	4.46	4.6	4.72	4.82
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.73
60	2.83	3.4	3.74	3.98	4.16	4.31	4.44	4.55	4.65
120	2.8	3.36	3.68	3.92	4.1	4.24	4.36	4.47	4.56
inf	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.47

2º: Obter os valores dos contrastes $(m_i - m_{i'})$ em valor absoluto.

$$|m_6 - m_8| = 3052 - 3923,7 = 871,7$$

	Cultivares	1	9	4	10	5	7	2	3	8	6
Cultivares	Médias	5600.7	5583.3	5222.3	4597.3	4517.7	4427.3	4024.3	3972.3	3923.7	3052
1	5600.7	0.0	17.3	378.3	1003.3	1083.0	1173.3	1576.3	1628.3	1677.0	2548.7
9	5583.3		0.0	361.0	986.0	1065.7	1156.0	1559.0	1611.0	1659.7	2531.3
4	5222.3			0.0	625.0	704.7	795.0	1198.0	1250.0	1298.7	2170.3
10	4597.3				0.0	79.7	170.0	573.0	625.0	673.7	1545.3
5	4517.7					0.0	90.3	493.3	545.3	594.0	1465.7
7	4427.3						0.0	403.0	455.0	503.7	1375.3
2	4024.3							0.0	52.0	100.7	972.3
3	3972.3								0.0	48.7	920.3
8	3923.7									0.0	871.7
6	3052										0.0

 3° : Comparar cada estimativa de contraste, em valor absoluto, com a diferença mínima significativa (Δ).

$$\Delta = 1291,81$$

Cultivares	Médias		
1	5600.7	а	
9	5583.3	а	
4	5222.3	ab	
10	4597.3	abc	
5	4517.7	abc	
7	4427.3	abc	
2	4024.3	bcd	
3	3972.3	bcd	
8	3923.7	cd	
6	3052	d	

Teste de Tukey

lestes Comparativos de Médias	
	F
Entradas >>Arquivo de Dados	
C:\Users\Cliente\Desktop\VINICIUS\DISCIPLINA	\S\ANALISE_EXPERIMENTOS\comparacac ▼ 🛗
<u>D</u> eclaração de Parâmetros	Processar
<u>N</u> ome das Variáveis	Análise Gráfica
Nome dos <u>T</u> ratamentos	<u>F</u> inalizar

<u> </u>		
rquivos		
>> Dados C:\Users\Cliente\Desktop\VINICIUS	VDISCIPLINAS VANALISE	EXPERIMENTOS\cor
>> QMR		
		i
Parâmetros		Opções
Número de Variáveis	1 🔻	
Número de Tratamentos	10 🔻	Retornar
Graus de Liberdade do Resíduo	18	Trocomus
Número de Repetições	3 🔻	•
Nível de Significância	5 🔻	Ler Dados
Teste Tukey	•	

Teste de Tukey

DMC . 1201 90462

saida\$\$\$.doc

ZADTÁNZEL . »

Arquivo Exportar Dados Editar Fonte Cor Frente Cor Fundo Utilitários Calculadoras >> Ampliar<< Finalizar

Programa GENES Testes Comparativos de Médias

Arquivo de dados C:\Users\Cliente\Desktop\VINICIUS\DISCIPLINAS\ANALISE_EXPERIMENTOS\comparacao_medias\analises\GENES\medias_arroz.txt

Número de variáveis 1
Graus de Liberdade do Resíduo 18
Número de Repetições 3
Nível de Significância 5
Número de Tratamentos 10
Testes Comparativos de Médias Tukey

Arquivo com os QMR

Data 07-18-2019

Teste : Tukey

OMD: 104750 66

VARIAVEL : X1	QMR: 194759.66	q	: 5.07	DMS : 129	1.80463	
1 Trat1	5600.667	a	1	5600.667	a	
9 Trat9	5583.333	a	2	4024.333	bcd	
4 Trat4	5222.333	ab	3	3972.333	bcd	
10 Trat10	4597.333	abc	4	5222.333	ab	
5 Trat5	4517.667	abc	5	4517.667	abc	
7 Trat7	4427.333	abc	6	3052.0	d	
2 Trat2	4024.333	bcd	7	4427.333	abc	
3 Trat3	3972.333	bcd	8	3923.667	cd	
8 Trat8	3923.667	cd	9	5583.333	a	
6 Trat6	3052.0	d	10	4597.333	abc	

Teste de Duncan

estes Comparativos de Médias	
	F
Entradas >>Arquivo de Dados	
C:\Users\Cliente\Desktop\VINICIUS\DISCIPLIN	NAS√ANALISE_EXPERIMENTOS\comparacac ▼ 6
<u>D</u> eclaração de Parâmetros	Processar
Nome das Variáveis	Análise Gráfica
Nome dos <u>T</u> ratamentos	<u>F</u> inalizar

Testes Comparativos o	de Médias		
4			
Arquivos >> Dados			
C:\Users\Cliente\	.Desktop\VINICIUS	\DISCIPLINAS\ANALISE_	EXPERIMENTOS\comp
>> QMR			
J			
Parâmetros			Opções
Número de Variáv	eis	1 🔻	
Número de Tratam	entos	10 ▼	Retornar
Graus de Liberdad	e do Resíduo	18 🔻 🍆	Tietoma
Número de Repeti	ções	3	
Nível de Significâ	ncia	5	Ler Dados
Teste	Duncan	•	

Teste de Duncan

Programa GENES
Testes Comparativos de Médias
Arquivo de dados
C:\Users\Cliente\Desktop\VINICIUS\DISCIPLINAS\ANALISE_EXPERIMENTOS\comparacao_medias\analises\GENES\medias_arroz.txt
Número de variáveis
1
Graus de Liberdade do Resíduo
18

Número de Repetições3Nível de Significância5Número de Tratamentos10Testes Comparativos de MédiasDuncan

Arquivo com os QMR

Data 07-18-2019

Teste : Duncan

VARIÁVEL: x1	QMR: 194759.66		z max: 3.41	DMSmax :	868.8469
1 Trat1	5600.667	a	1	5600.667	a
9 Trat9	5583.333	a	2	4024.333	c
4 Trat4	5222.333	ab	3	3972.333	c
10 Trat10	4597.333	bc	4	5222.333	ab
5 Trat5	4517.667	bc	5	4517.667	bc
7 Trat7	4427.333	bc	6	3052.0	d
2 Trat2	4024.333	c	7	4427.333	be
3 Trat3	3972.333	c	8	3923.667	c
8 Trat8	3923.667	C	9	5583.333	a
6 Trat6	3052.0	d	10	4597.333	bc

Teste de Student-Newman-Keuls (SNK)

Teste de Student-Newman-Keuls (SNK)

Teste de Student-Newman-Keuls (SNK)

Arquivo Exportar Dados Editar Fonte Cor Frente Cor Fundo Utilitários Calculadoras >> Ampliar<< Finalizar

Programa GENES
Arquivo de dados
C:\Users\Cliente\Desktop\VINICIUS\DISCIPLINAS\ANALISE_EXPERIMENTOS\comparacao_medias\analises\GENES\medias_arroz.txt

Número de variáveis
Graus de Liberdade do Resíduo
Número de Repetições
3
Nível de Significância
5
Número de Tratamentos
10
Testes Comparativos de Médias
Arquivo com os QMR

Data 07-19-2019

Teste : SNK - Student Newman Keuls

VARIAVEL: x1	QMR: 194759.66	P	max: 5.07	DMSmax :	1291.80463	
l Trat1	5600.667	a	1	5600.667	a	
9 Trat9	5583.333	a	2	4024.333	cd	
4 Trat4	5222.333	ab	3	3972.333	cd	
10 Trat10	4597.333	abc	4	5222.333	ab	
5 Trat5	4517.667	abc	5	4517.667	abc	
7 Trat7	4427.333	bc	6	3052.0	d	
2 Trat2	4024.333	$^{\mathrm{cd}}$	7	4427.333	be	
3 Trat3	3972.333	cd	8	3923.667	cd	
3 Trat8	3923.667	cd	9	5583.333	a	
6 Trat6	3052.0	d	10	4597.333	abc	

 Teste utilizado quando as únicas comparações que interessam são aquelas entre um determinado padrão (testemunha) e cada um dos demais tratamentos.

$$H_0: m_i - m_{testemunha} = 0$$
 $H_a: m_i - m_{testemunha} \neq 0$

- Quantos contrastes testar?

1. 5 tratamentos (4 tratamentos + 1 testemunha (m_5)) 2. 5 tratamentos (3 tratamentos + 2 testemunhas $(m_4 \ e \ m_5)$)

$$m_1 - m_5 = 0$$

 $m_2 - m_5 = 0$
 $m_3 - m_5 = 0$
 $m_4 - m_5 = 0$

$$m_1 - m_5 = 0$$
 $m_1 - m_4 = 0$
 $m_2 - m_5 = 0$ $m_2 - m_4 = 0$
 $m_3 - m_5 = 0$ $m_3 - m_4 = 0$

Aplicação do teste de Dunnett

Calculo da diferença mínima significativa: DMS (Δ)

$$\Delta = d = td_{(n,glr)} \sqrt{2 * \frac{QMres}{r}}$$

 $td_{(n,glr)}$: valor tabelado do teste de Dunnet

n: número de tratamentos incluindo a testemunha

glr: Grau de liberdade do resíduo

Exemplo: Teste de Dunnett com 1 testemunha

Tabela 1. Resumo da análise de variância de produtividade de grãos em Kg ha⁻¹ referente a

avaliação de 10 cultivares de arroz.

FV	GL	QM
Blocos	2	34191,1
Tratamento	9	1951613,63 **
Resíduo	18	194759,66
Média	4492,1	
CV(%)	9,82	

Cultivares (i)	Médias
1	5600.67
2	4024.33
3	3972.33
4	5222.33
5	4517.67
6	3052
7	4427.33
8	3923.67
9	5583.33
10	4597.33

$$td_{(10,18)} = 2,98$$

$$d = td_{(n,glr)} \sqrt{2 * \frac{QMres}{r}} = 2,98 * \sqrt{2 * \frac{194759,66}{3}} = 1073,79$$

	22			Number	of Group	s, Includi	ng Contro	ol Group		
n	α	2	3	4	5	6	7	8	9	10
5	.05	2.57	3.03	3.29	3.48	3.62	3.73	3.82	3.90	3.97
3	.01	4.03	4.63	4.98	5.22	5.41	5.56	5.69	5.80	5.89
6	.05	2.45	2.86	3.10	3.26	3.39	3.49	3.57	3.64	3.71
0	.01	3.71	4.21	4.51	4.71	4.87	5.00	5.10	5.20	5.28
7	.05	2.36	2.75	2.97	3.12	3.24	3.33	3.41	3.47	3.53
,	.01	3.50	3.95	4.21	4.39	4.53	4.64	4.74	4.82	4.89
8	.05	2.31	2.67	2.88	3.02	3.13	3.22	3.29	3.35	3.41
0	.01	3.36	3.77	4.00	4.17	4.29	4.40	4.48	4.56	4.62
9	.05	2.26	2.61	2.81	2.95	3.05	3.14	3.20	3.26	3.32
9	.01	3.25	3.63	3.85	4.01	4.12	4.22	4.30	4.37	4.43
10	.05	2.23	2.57	2.76	2.89	2.99	3.07	3.14	3.19	3.24
10	.01	3.17	3.53	3.74	3.88	3.99	4.08	4.16	4.22	4.28
11	.05	2.20	2.53	2.72	2.84	2.94	3.02	3.08	3.14	3.19
11	.01	3.11	3.45	3.65	3.79	3.89	3.98	4.05	4.11	4.16
12	.05	2.18	2.50	2.68	2.81	2.90	2.98	3.04	3.09	3.14
12	.01	3.05	3.39	3.58	3.71	3.81	3.89	3.96	4.02	4.07
13	.05	2.16	2.48	2.65	2.78	2.87	2.94	3.00	3.06	3.10
15	.01	3.01	3.33	3.52	3.65	3.74	3.82	3.89	3.94	3.99
14	.05	2.14	2.46	2.63	2.75	2.84	2.91	2.97	3.02	3.07
14	.01	2.98	3.29	3.47	3.59	3.69	3.76	3.83	3.88	3.93
15	.05	2.13	2.44	2.61	2.73	2.82	2.89	2.95	3.00	3.04
13	.01	2.95	3.25	3.43	3.55	3.64	3.71	3.78	3.83	3.88
16	.05	2.12	2.42	2.59	2.71	2.80	2.87	2.92	2.97	3.02
10	.01	2.92	3.22	3.39	3.51	3.60	3.67	3.73	3.78	3.83
17	.05	2.11	2.41	2.58	2.69	2.78	2.85	2.90	2.95	3.00
17	.01	2.90	3.19	3.36	3.47	3.56	3.63	3.69	3.74	3.79
18	.05	2.10	2.40	2.56	2.68	2.76	2.83	2.89	2.94	2.98
10	.01	2.88	3.17	3.33	3.44	3.53	3.60	3.66	3.71	3.75
19	.05	2.09	2.39	2.55	2.66	2.75	2.81	2.87	2.92	2.96
19	.01	2.86	3.15	3.31	3.42	3.50	3.57	3.63	3.68	3.72
20	.05	2.09	2.38	2.54	2.65	2.73	2.80	2.86	2.90	2.95
20	.01	2.85	3.13	3.29	3.40	3.48	3.55	3.60	3.65	3.69
24	.05	2.06	2.35	2.51	2.61	2.70	2.76	2.81	2.86	2.90
24	.01	2.80	3.07	3.22	3.32	3.40	3.47	3.52	3.57	3.61
30	.05	2.04	2.32	2.47	2.58	2.66	2.72	2.77	2.82	2.86
50	.01	2.75	3.01	3.15	3.25	3.33	3.39	3.44	3.49	3.52
40	.05	2.02	2.29	2.44	2.54	2.62	2.68	2.73	2.77	2.81
40	.01	2.70	2.95	3.09	3.19	3.26	3.32	3.37	3.41	3.44
60	.05	2.00	2.27	2.41	2.51	2.58	2.64	2.69	2.73	2.77
00	.01	2.66	2.90	3.03	3.12	3.19	3.25	3.29	3.33	3.37

Obter os valores dos contrastes ($m_i - m_{testemunha}$) em valor absoluto.

Cultivares (i)	Médias	$ m_i - m_{10} $	Decisão
1	5600.67	1003.33	а
2	4024.33	573,00	a
3	3972.33	625,00	a
4	5222.33	625,00	a
5	4517.67	79,67	a
6	3052	1545,33	
7	4427.33	170,00	a
8	3923.67	673,67	a
9	5583.33	986,00	a
10	4597.33		a

$$|m_1 - m_{10}| = |5600, 67 - 4597, 33| = 1003, 33$$

 $\Delta = d = 1073, 79$

Comparar cada estimativa de contraste, em valor absoluto, com a diferença mínima significativa (Δ).

Cultivares	Médias				
1	5600.7 a				
9	5583.3 a				
4	5222.3 a				
5	4517.7 a				
7	4427.3 a				
2	4024.3 a				
3	3972.3 a				
8	3923.7 a				
6	3052				
10	4597.3 a				

Teste de Dunnett		
4		
Arquivos — — — — — — — — — — — — — — — — — — —		
C:\Users\Cliente\Desktop\VINICIUS\D	ISCIPLINAS\ANALISE_EXPER	RIMENTOS\comparacao_
>> QMR		
		<u> </u>
Parâmetros		Opções
Número de Variáveis	1 🔻	
Graus de Liberdade do Resíduo	18 🔻	Retornar
Número de Repetições	3 •	
Nível de Significância	5	Ler Dados
Número de Testemunhas	1 •	
Número de Tratamentos	10 🔻	

Número de Repetições 3
Nível de Significância 5
Número de testemunhas 1
Arquivo com os QMR
Data 07-19-2019

Teste: Dunnett

VARIÁ	VEL : A	QMR : 194759.66	td: 2.98	DMS : 1073.7919
1	A	5600.667	a	
9	I	5583.333	a	
4	D	5222.333	a	
5	E	4517.667	a	
7	G	4427.333	a	
2	В	4024.333	a	
3	С	3972.333	a	
8	н	3923.667	a	
6	F	3052.		
10	J	4597.333	a	

Exemplo: Teste de Dunnett com 3 testemunhas

Tabela 1. Resumo da análise de variância de produtividade de grãos em Kg ha⁻¹ referente a avaliação de 10 cultivares de arroz.

FV	GL	QM
Blocos	2	34191,1
Tratamento	9	1951613,63 **
Resíduo	18	194759,66
Média	4492,1	
CV(%)	9,82	

Cultivares (i)	Médias
1	5600.67
2	4024.33
3	3972.33
4	5222.33
5	4517.67
6	3052
7	4427.33
8	3923.67
9	5583.33
10	4597.33

$$td_{(8,18)} = 2,89$$

$$d = td_{(n,glr)} \sqrt{2 * \frac{QMres}{r}} = 2,89 * \sqrt{2 * \frac{194759,66}{3}} = 1041,362$$

	-			Number	of Group	s, Includi	ng Contro	ol Group		
n	α	2	3	4	5	6	7	8	9	10
=	.05	2.57	3.03	3.29	3.48	3.62	3.73	3.82	3.90	3.97
5	.01	4.03	4.63	4.98	5.22	5.41	5.56	5.69	5.80	5.89
	.05	2.45	2.86	3.10	3.26	3.39	3.49	3.57	3.64	3.71
6	.01	3.71	4.21	4.51	4.71	4.87	5.00	5.10	5.20	5.28
7	.05	2.36	2.75	2.97	3.12	3.24	3.33	3.41	3.47	3.53
7	.01	3.50	3.95	4.21	4.39	4.53	4.64	4.74	4.82	4.89
0	.05	2.31	2.67	2.88	3.02	3.13	3.22	3.29	3.35	3.41
8	.01	3.36	3.77	4.00	4.17	4.29	4.40	4.48	4.56	4.62
0	.05	2.26	2.61	2.81	2.95	3.05	3.14	3.20	3.26	3.32
9	.01	3.25	3.63	3.85	4.01	4.12	4.22	4.30	4.37	4.43
10	.05	2.23	2.57	2.76	2.89	2.99	3.07	3.14	3.19	3.24
10	.01	3.17	3.53	3.74	3.88	3.99	4.08	4.16	4.22	4.28
- 11	.05	2.20	2.53	2.72	2.84	2.94	3.02	3.08	3.14	3.19
11	.01	3.11	3.45	3.65	3.79	3.89	3.98	4.05	4.11	4.16
12	.05	2.18	2.50	2.68	2.81	2.90	2.98	3.04	3.09	3.14
12	.01	3.05	3.39	3.58	3.71	3.81	3.89	3.96	4.02	4.07
12	.05	2.16	2.48	2.65	2.78	2.87	2.94	3.00	3.06	3.10
13	.01	3.01	3.33	3.52	3.65	3.74	3.82	3.89	3.94	3.99
14	.05	2.14	2.46	2.63	2.75	2.84	2.91	2.97	3.02	3.07
14	.01	2.98	3.29	3.47	3.59	3.69	3.76	3.83	3.88	3.93
16	.05	2.13	2.44	2.61	2.73	2.82	2.89	2.95	3.00	3.04
15	.01	2.95	3.25	3.43	3.55	3.64	3.71	3.78	3.83	3.88
16	.05	2.12	2.42	2.59	2.71	2.80	2.87	2.92	2.97	3.02
16	.01	2.92	3.22	3.39	3.51	3.60	3.67	3.73	3.78	3.83
17	.05	2.11	2.41	2.58	2.69	2.78	2.85	2.90	2.95	3.00
17	.01	2.90	3.19	3.36	3.47	3.56	3.63	3.69	3.74	3.79
10	.05	2.10	2.40	2.56	2.68	2.76	2.83	2.89	2.94	2.98
18	.01	2.88	3.17	3.33	3.44	3.53	3.60	3.00	3.71	3.75
10	.05	2.09	2.39	2.55	2.66	2.75	2.81	2.87	2.92	2.96
19	.01	2.86	3.15	3.31	3.42	3.50	3.57	3.63	3.68	3.72
20	.05	2.09	2.38	2.54	2.65	2.73	2.80	2.86	2.90	2.95
20	.01	2.85	3.13	3.29	3.40	3.48	3.55	3.60	3.65	3.69
24	.05	2.06	2.35	2.51	2.61	2.70	2.76	2.81	2.86	2.90
24	.01	2.80	3.07	3.22	3.32	3.40	3.47	3.52	3.57	3.61
20	.05	2.04	2.32	2.47	2.58	2.66	2.72	2.77	2.82	2.86
30	.01	2.75	3.01	3.15	3.25	3.33	3.39	3.44	3.49	3.52
40	.05	2.02	2.29	2.44	2.54	2.62	2.68	2.73	2.77	2.81
40	.01	2.70	2.95	3.09	3.19	3.26	3.32	3.37	3.41	3.44
60	.05	2.00	2.27	2.41	2.51	2.58	2.64	2.69	2.73	2.77
60	.01	2.66	2.90	3.03	3.12	3.19	3.25	3.29	3.33	3.37

Obter os valores dos contrastes ($m_i - m_{testemunha}$) em valor absoluto.

Cultivare				
	Médias	$ m_i - m_8 $	$ m_i - m_9 $	$ m_i - m_{10} $
S		· · · · · · · · · · · · · · · · · · ·		ι τ 101
1	5600.67	1677	17.334	1003.3
2	4024.33	100.666	1559	573
3	3972.33	48.666	1611	625
4	5222.33	1298.666	361	625
5	4517.67	594	1065.7	79.666
6	3052	871.667	2531.3	1545.3
7	4427.33	503.666	1156	170
8	3923.67			
9	5583.33			
10	4597.33			

$$|m_1 - m_8| = |5600, 67 - 3923, 67| = 1677$$

 $|m_1 - m_9| = |5600, 67 - 5583, 3| = 17,334$
 $|m_1 - m_{10}| = |5600, 67 - 4597, 33| = 1003,3$
 $\Delta = d = 1041,362$

Comparar cada estimativa de contraste, em valor absoluto, com a diferença mínima significativa (Δ).

Cultivares	Médias					
1	5600.7		b	С		
4	5222.3		b	С		
5	4517.7	а		С		
7	4427.3	а		С		
2	4024.3	а		С		
3	3972.3	а		С		
6	3052	а				
8	3923.7	a				
9	5583.3		b			
10	4597.3			С		

	<u> </u>	
Teste de Dunnett		
4		
Arquivos Dados		
77		
C:\Users\Cliente\Desktop\VINICIUS\D	ISCIPLINAS\ANALISE_EXPER	RIMENTOS\comparacao_
>> QMR		
		(iii)
Parâmetros		Opções
Número de Variáveis	1 🔻	
Graus de Liberdade do Resíduo	18 🔻	Retornar
Número de Repetições	3 •	
Nível de Significância	5 🔻	Ler Dados
Número de Testemunhas	3	
Número de Tratamentos	10 🔻	

Teste: Dunnett

VARIÁVEL : Produtividade

		QMR : 194759.66	td: 2.89	DMS : 1041.362
1	A	5600.667	bc	
4	D	5222.333	bc	
5	E	4517.667	аc	
7	G	4427.333	аc	
2	В	4024.333	аc	
3	С	3972.333	аc	
6	F	3052.	a	
8	н	3923.667	a	
9	I	5583.333	b	
10	J	4597.333	С	

Teste de Scott and Knott

estes Comparativos de Médias	
	F
Entradas >>Arquivo de Dados	
C:\Users\Cliente\Desktop\VINICIUS\DISCIPLIN	AS\ANALISE_EXPERIMENTOS\comparacac ▼ 6
<u>D</u> eclaração de Parâmetros	Processar
Nome das Variáveis	Análise Gráfica
Nome dos <u>T</u> ratamentos	<u>F</u> inalizar

Testes Comparativos de Médias		
4		
Arquivos >> Dados		
C:\Users\Cliente\Desktop\VINICIUS\D	ISCIPLINAS \ANALISE_EX	XPERIMENTOS\com _i
>> QMR		<u> </u>
Parâmetros		Opções
Número de Variáveis	1 🔻	
Número de Tratamentos	10 ▼	Retornar
Graus de Liberdade do Resíduo	18	
Número de Repetições	3	
Nível de Significância	5 🔻	Ler Dados
Teste Scott & Knott	•	
,		

Teste de Scott and Knott

Adaptabilidade e estabilidade de linhagens de feijão comum em Minas Gerais

Glauco Vieira Oliveira⁽¹⁾, Pedro Crescêncio Souza Carneiro⁽¹⁾, José Eustáquio de Souza Carneiro⁽²⁾ e Cosme Damião Cruz⁽¹⁾

(1)Universidade Federal de Viçosa (UFV), Dep. de Biologia Geral, CEP 36571-000 Viçosa, MG. E-mail: glaucovieira@vicosa.ufv.br, carneiro@ufv.br, cdcruz @ufv.br (2)UFV, Dep. de Fitotecnia. E-mail: jesc@ufv.br

Tabela 2. Resumo das análises de variância individuais, referentes aos ensaios de valor de cultivo e uso (VCU) de feijão dos grupos preto e carioca, conduzidos em Minas Gerais, em diferentes safras, nos anos de 2002 e 2003.

Safra	Local	VC	U grupo preto		VC	U grupo carioca	,
•		QM genótipos	Produtividade	CV	QM genótipos	Produtividade	CV (%)
			(kg ha ⁻¹)	(%)		(kg ha ⁻¹)	
Águas ⁽¹⁾	Viçosa	330.996,78**	880	32	167.853,25**	1.057	25
	Coimbra	171.378,34**	991	26	-	-	-
Inverno ⁽¹⁾	Viçosa	236.474,58**	1.647	12	308.592,25**	2.034	14
	Coimbra	358.596,73**	2.578	8	566.173,96**	2.552	11
	Ponte Nova	232.520,89**	2.520	12	350.526,66**	2.246	10
	Leopoldina	162.334,56**	2.004	10	318.741,68**	1.926	17
Seca ⁽²⁾	Viçosa	237.500,55**	3.098	10	420.589,90**	2.846	11
	Coimbra	327.314,57**	2.145	14	406.117,70**	2.327	17
	Ponte Nova	193.303,13 ^{ns}	2.767	14	305.689,58 ^{ns}	3.130	15
	Florestal	665.533,63**	1.607	17	277.756,50**	1.711	18
Inverno ⁽²⁾	Viçosa	395.164,82**	1.436	20	591.615,57**	1.487	19
	Coimbra	302.560,14**	3.665	6	281.418,85**	3.824	8
	Ponte Nova	241.482,12**	2.599	11	203.427,73**	3.168	10
	Capinópolis		2.602	11	102.109,57 ^{ns}	2.989	9

nsNão-significativo. ** e *Significativo a 1 e 5% de probabilidade pelo teste F, respectivamente. (1)Ano de 2002. (2)Ano de 2003.

Table 2. Grain yield (kg.ha⁻¹) of the black common bean genotypes (GEN) evaluated in the fall-winter/2002, dry/2003 and fall-winter/2003 seasons in the municipalities of Viçosa (VI), Coimbra (CB), Ponte Nova (PN), Leopoldina (LP), Florestal (FT) and Capinópolis (CP) in the Minas Gerais State.

CEN	Fal	Fall - Winter Season/2002				Dry Season/2003				Fall - Winter Season/ 2003		
GEN	VI	CB	PN	LP	VI	CB	PN	FT ⁵	VI	CB	PN	CP
VP1	1863 c*	3061 a	2588 d	2171 a	3475 a	1656 f	2701	712 f	1230 d	3891 b	2850 d	2858 d
VP2	1483 h	2250 b	2485 d	1982 b	3005 b	1774 f	3081	1551 c	1623 c	3322 c	2585 h	2508 g
VP3	2133 b	2955 a	2878 b	2043 b	2860 b	2065 d	2704	1052 e	2215 a	4047 b	2760 e	2480 g
VP4	1839 с	2782 a	2429 e	1995 b	2689 b	1897 e	2203	1571 c	1612 c	3367 с	2695 f	2464 g
VP5	1741 d	2411 b	2790 b	2209 a	3326 a	2017 e	2828	2479 a	1495 c	3403 c	2902 с	3058 b
VP6	1782 d	2548 b	2836 b	2009 b	3007 b	1364 g	2837	1632 c	1410 d	3669 с	2817 e	2436 h
VP7	1491 h	2176 b	2111 g	1811 b	2774 b	2516 b	2886	2476 a	1565 c	3531 c	2496 i	2564 f
VP8	1544 g	2370 b	2668 c	2285 a	3164 a	2099 d	2853	1566 c	1346 d	3516 c	2581 h	2619 e
VP9	1416 i	2186 b	2431 e	1795 b	3364 a	2705 a	2912	1969 b	1027 e	3494 c	2065 m	2480 g
VP10	1481 h	2243 b	2390 e	1796 b	2746 b	2251 c	2572	1412 d	1368 d	3548 c	2358 k	2181 j
VP11	1475 h	2365 b	2375 e	1943 b	2983 b	2471 b	2577	1719 c	1343 d	3879 b	2345 k	2664 e
VP12	1424 i	2302 b	2210 f	1928 b	3279 a	2475 b	2452	1359 d	1247 d	3596 с	22421	2430 h
VP13	1635 f	2376 b	2349 e	2161 a	3098 a	1974 e	2798	1469 d	1353 d	3669 c	2436 j	2597 f
Vi 5700	1861 c	3110 a	2563 d	2375 a	3488 a	2586 a	2753	1689 с	1626 c	3856 b	3000 b	2969 с
Vi 5500	1687 e	3044 a	2820 b	2421 a	2977 b	2110 d	3307	1992 b	1843 b	3902 b	3050 a	2358 i
Vi 7800	1899 с	2735 a	2403 e	1892 Ь	2535 b	2182 c	2724	1452 d	1679 c	3445 c	2641 g	2419 h
CNFP 9346	1308 j	2288 b	2214 f	1456 b	3261 a	2177 c	2963	2051 b	1253 d	3478 c	2486 i	2447 g
CNFP 7988	1087 k	2311 b	2248 f	1710 Ь	3307 a	1972 e	2405	639 f	1026 e	3097 c	2085 m	2541 f
Ouro Negro	2260 a	3006 a	3230 a	2096 a	3110 a	2217 c	3094	1659 с	1937 b	4405 a	2804 e	3285 a
Valente	1531 g	3049 a	2376 e	2009 b	3504 a	2389 b	2702	1686 с	530 f	4179 a	2785 e	2680 e
Means	1647	2578	2520	2004	3098	2145	2768	1607	1436	3665	2599	2602
Ej †	-742	189	131	-385	709	-244	379	-782	-953	1276	210	213
CV (%)	12	8	12	10	10	14	14	17	20	6	11	11
p-value	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	>0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

[†] E_j – Environmental index; * Values followed by a same letter in column belong to a same group, Scott and Knott test at significant at level of 5% probability.

Teste de agrupamento de médias Scott and Knott (SK)

e-ISSN 1983-4063 - www.agro.ufg.br/pat - Pesq. Agropec. Trop., Goiânia, v. 46, n. 3, p. 259-266, Jul./Sep. 2016

Five decades of black common bean genetic breeding in Brazil¹

Leiri Daiane Barili², Naine Martins do Vale², José Eustáquio de Souza Carneiro², Fabyano Fonseca e Silva², Felipe Lopes da Silva²

Table 1. Summary of combined analysis of variance for grain yield (Yield), number of pods per plant (NPP) and seeds per pod (NSP), 1,000-seed weight (W1000), grain appearance (GA) and plant architecture (Arch) of black common bean cultivars.

Source of	Degrees of	Mean square						
variation	freedom	Yield (kg ha ⁻¹)	NPP	NSP	W1000 (g)	GA	Arch	
Blocks	2	66,062.5 ^{ns}	2.39 ^{ns}	0.44 ^{ns}	1,283.17**	0.24 ^{ns}	1.92 ^{ns}	
Cultivars (C)	39	2,992,701.7**	59.59**	5.93**	6,798.80**	5.09**	30.27**	
Environment (E)	3	24,585,945.9**	98.38**	2.26**	50,653.01**	3.70**	91.55**	
CxE	117	184,528.3**	$3.07^{\rm ns}$	0.22^{ns}	357.46**	0.40**	3.02**	
Error	318	89,087.9	2.54	0.23	191.54	0.15	1.41	
Mean	-	2,800.0	12.78	4.57	215.67	1.66	4.66	
CV (%)	-	10.66	12.46	10.40	6.42	23.39	25.50	

 $^{^{\}rm ns},$ ** and *: non-significant and significant at 1 % and 5 %, respectively, by the F-test.

Genotype	Institution	Year	Code	Yield
VP 22	UFV	2013	53	4,037 a
VP 33	UFV	2013	53	3,542 b
IPR Tuiuiú	Iapar	2010	50	3,932 a
BRS Expedito	Embrapa	2007	47	3,319 b
IPR Tiziu	Iapar	2006	46	3,464 b
BRS Esplendor	Embrapa	2006	46	3,380 b
IPR Gralha	Iapar	2006	46	3,238 b
IAC-Tunã	IAC	2005	45	3,498 b
BRS Supremo	Embrapa	2004	44	3,222 b
BRS Campeiro	Embrapa	2003	43	3,341 b
BRS Grafite	Embrapa	2003	43	3,212 b
IPR Graúna	Iapar	2002	42	3,069 b
BRS Valente	Embrapa	2001	41	3,159 b
IPR Uirapurú	Iapar	2000	40	3,135 b
IAC-Una	IAC	1994	34	3,049 b
Xamego	Pesagro	1993	33	2,499 c
Iapar 65	Iapar	1993	33	2,468 c
Ouro Negro	Embrapa	1992	32	2,643 c
BR-IPA 10	IPA	1992	32	2,491 c
Onix	Emgopa	1992	32	2,386 c
Diamante Negro	Embrapa	1991	31	3,158 b
Varre-Sai	Pesagro	1991	31	2,573 c
Iapar 44	Iapar	1990	30	2,430 c
BR 6-Barriga verde	Empase	1990	30	2,420 c
Preto Uberabinha	IpeacoMG	1990	30	2,328 c
BR-Ipagro 1 Macanudo	Embrapa	1989	29	2,462 c
BR-Ipagro 2 Pampa	Ipagro	1989	29	2,467 c
Iapar 20	Iapar	1987	27	2,434 c
FT 120	FT-Sementes	1986	26	2,437 c
BR 1- Xodó	Pesagro	1985	25	2,441 c
BR-2 Grande Rio	Pesagro	1985	25	2,343 c
BR-3 Ipanema	Pesagro	1985	25	2,276 c
Milionário 1732	Epamig	1983	23	2,434 c
Iapar 8-Rio Negro	Iapar	1983	23	2,334 c
Rico 1735	Epamig	1983	23	2,321 c
IRAÍ	Ipagro	1981	21	2,426 c
Moruna	IAC	1980	20	2,380 c
Capixaba Precoce	Emcapa	1980	20	2,364 c
Rio Tibagi	Iapar	1971	11	2,402 c
Rico 23	UFV	1960	1	2,482 c
Mean	-	-	-	2,800
			41	