

$$\frac{1}{2} = g(2i)$$

Applying Neural Netwerks Q: Will I pars this dars? ry = no. of Certures attended M2 = hours spent on final project 7(1) = [4,5] (21) - (21) - (21) 71) predicted: 0.1

10%.

Actual = 1 Quartify Loss $\angle \left(f\left(\chi^{(i)};W\right),y^{(i)}\right)$ cost function empirical Risk

Iraining Neural Networks -> minimize emos # We want to find the network weights that achieve the lowest loss $W^* = \underset{W}{\operatorname{argmin}} \quad \underbrace{1}_{N} \leq \underset{i=1}{\overset{n}{=}} \mathcal{L}\left(f\left(x^{(i)}, W\right), y^{(i)}\right)$ W* = argmin J(W) W = { W(0) W(1) ... } J(w,w') # Randomly pick initial (wo,w1) # compute gradient $\frac{\partial J(w)}{\partial (w)}$ - local minima Algorithin for opinization - Gradient Descent 1. Initialize weights randomly ~ N (0,0-2) 2. Loop until convergenc repeat step 38 4 3. Compute Gradient & J(W)
4. Updale weight W - W - of J J (W) until mi nimum a (M) 5. Return weights

Computing gradients: Back propagation (n) W_1 (21) W_2 (3) (3) (4) how does a small change in one weight (w_2) affect final loss J(w)? $\frac{\partial J(w)}{\partial w_2} = \frac{\partial J(w)}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial w_2}$ using chain rule $\frac{\partial J(w)}{\partial w_1} = \frac{\partial J(w)}{\partial \hat{y}} + \frac{\partial \hat{y}}{\partial z_1} + \frac{\partial \hat{y}}{\partial w_1}$ # Lepealing this process for every single weight in the network used gradient from later layer Neural Networks in Practice: Optimization $W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$ a have to choose learning rate me dium / average cannot be too higher too small

	R	zgv	lar	n'gā ()	tiòi	ı																			
							sha m	ints vod	or d .	ıΥ	opl	ı'nı	ijal	lwn	100	พโ	lem	<u></u>	o L	isa	owa (ge	•		
												lom													
					'n '	χ):	رع	arlı (1	sto	Pρ	ing													
					#	. K	Hor	s †	Yayi'	nin	g .	ber	ore	u	æ h	ave	. e	d	nan	ce	fo	Ou	erfi	t	