	(Cognome)	(Nome)		(Co	rso di laurea))
Esercizio 1.	Completare l	a seguente tabel			di progra	mmazione line	eare:	
			$\begin{cases} \max x_1 \\ -x_1 - 2 \\ -2 x_1 - \\ x_1 \le 4 \\ 4 x_1 + x_1 \\ -x_1 + 3 \\ 5 x_1 + x_2 \end{cases}$	$-x_2$ $x_2 \le -6$ $x_2 \le -6$ $x_2 \le 19$ $x_2 \le 18$ $x_2 \le 23$				
В	ase Soluzio	one di base				Ammissibile (si/no)	Degenere (si/no)	
[1	$x = \frac{1}{2}$					(61/110)	(61/110)	
	, ,							
	. , , ,	ıe iterazioni dell'	algoritmo del si	nnlesso prim	nale ner il	problema del	l'esercizio 1	
Lisereizio 2.	Lifettuare de	ie nerazioni den	angoriumo dei sii	прісвао ріпі	_			
	Base	x	y		Indice uscente		pporti	Indic entran
1° iterazione	{2,5}							
2° iterazione								
la levigatura e 80 ore per la l	ed una per la levigatura e 6 rezzo e la dit	I	cabella le ore nec a mentre il B ne	essarie per l ha 60 e 75 d	a produzi ore. Ciase	ione. L'impian cuna unità di j	to A ha a disp prodotto utiliz	posizione zza 4 kg.
variabili decis modello:	sionali:							
								i i

b=

beq=

ub=

A=

Aeq=

1b=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,5) (2,3)				
(3,4) (5,6)	(2,4)	x =		
(1,2) (2,3) (3,4)				
(4,5)(5,6)	(1,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (3,4) (4,5) (4,6)	
Archi di U	(2,4)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$										·				

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 6 \ x_1 + 13 \ x_2 \\ 14 \ x_1 + 11 \ x_2 \ge 51 \\ 7 \ x_1 + 14 \ x_2 \ge 51 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 498 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	21	5	13	24	18	22	9
Volumi	233	28	149	81	184	447	492

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =	$v_I(P) =$
	1()

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + 2x_1 + x_2^2 - 2x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1 + x_2^2 \le 0, \quad x_1^2 + 3x_1 \le 0}.$$

Soluzioni del sist	Soluzioni del sistema LKT				Minimo		Sella
x	λ	μ	globale	locale	globale	locale	
(-1,1)							
(-3,1)							
$\left(-3,\sqrt{3}\right)$							
$\left(-3,-\sqrt{3}\right)$							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 + 4 x_1 x_2 - 4 x_2^2 + 9 x_1 - 2 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-3,4), (-1,2), (0,-4) e (-2,-5). Fare un passo del metodo del gradiente proiettato.

	Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
(-	$-\frac{2}{3}, -\frac{13}{3}$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max x_1 - x_2 \\ -x_1 - 2 \ x_2 \le -6 \\ -2 \ x_1 - x_2 \le -6 \\ x_1 \le 4 \\ 4 \ x_1 + x_2 \le 19 \\ -x_1 + 3 \ x_2 \le 18 \\ 5 \ x_1 + x_2 \le 23 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (2, 2)	SI	NO
{3, 4}	y = (0, 0, 5, -1, 0, 0)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{2, 5}	(0, 6)	$\left(0, -\frac{2}{7}, 0, 0, -\frac{3}{7}, 0\right)$	2	$\frac{28}{3}$, 7, $\frac{119}{16}$	4
2° iterazione	{4, 5}	(3, 7)	$\left(0,\ 0,\ 0,\ \frac{2}{13},\ -\frac{5}{13},\ 0\right)$	5	$\frac{143}{7}$, $\frac{91}{2}$, 13, 13	3

Esercizio 3.

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
(1,2) (1,5) (2,3) (3,4) (5,6)	(2,4)	x = (-3, 0, 6, -6, 6, -2, 0, 0, 3)	NO	NO
(1,2) (2,3) (3,4) (4,5) (5,6)	(1,5)	$\pi = (0, 6, 12, 20, 25, 32)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) $(1,4)$ $(3,4)$ $(4,5)$ $(4,6)$	(1,2) (1,5) (3,4) (4,5) (4,6)
Archi di U	(2,4)	(2,4)
x	(3, 0, 0, 0, 6, 4, 3, 3, 0)	(3, 0, 0, 0, 6, 4, 3, 3, 0)
π	(0, 6, 1, 9, 14, 19)	(0, 6, -3, 5, 10, 15)
Arco entrante	(1,5)	(2,4)
θ^+, θ^-	11,0	11,3
Arco uscente	(1,4)	(1,2)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	· 2	iter	3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		4		3	}		,)	7	7	6	5
nodo 2	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 3	19	1	15	2	13	4	13	4	13	4	13	4	13	4
nodo 4	9	1	9	1	9	1	9	1	9	1	9	1	9	1
nodo 5	$+\infty$	-1	18	2	18	2	18	2	18	2	18	2	18	2
nodo 6	$+\infty$	-1	$+\infty$	-1	27	4	27	4	27	4	27	4	27	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	28	3	21	5	21	5	21	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	3, 5	, 6	5, 6	5, 7	6,	7	(3	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	5	(0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0)	5
1 - 2 - 3 - 7	6	(6, 5, 0, 6, 0, 0, 11, 0, 0, 0, 0)	11
1 - 2 - 5 - 7	5	(11, 5, 0, 6, 5, 0, 11, 0, 0, 5, 0)	16
1 - 4 - 6 - 7	5	(11, 5, 5, 6, 5, 0, 11, 0, 5, 5, 5)	21

Taglio di capacità minima: $N_s = \{1, 2, 5\}$ $N_t = \{3, 4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 6 \ x_1 + 13 \ x_2 \\ & 14 \ x_1 + 11 \ x_2 \ge 51 \\ & 7 \ x_1 + 14 \ x_2 \ge 51 \\ & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(\frac{51}{7}, 0\right)$ $v_I(P) = 44$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = (8,0) $v_S(P) = 48$

c) Calcolare un taglio di Gomory.

r=1 $3x_1+6x_2 \ge 22$ ovvero anche $x_1+2x_2 \ge 8$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 498 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	21	5	13	24	18	22	9
Volumi	233	28	149	81	184	447	492

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(0, 1, 1, 1, 1, 0, 0)$$
 $v_I(P) = 60$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{205}{233}, 1, 0, 1, 1, 0, 0\right)$$
 $v_S(P) = 65$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

60,65

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + 2x_1 + x_2^2 - 2x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1 + x_2^2 \le 0, \quad x_1^2 + 3x_1 \le 0\}.$$

Soluzioni del sistema LKT				Massimo		Minimo		
x	λ	μ	globale	locale	globale	locale		
(-1, 1)	(0,0)		NO	NO	SI	SI	NO	
(-3, 1)	$\left(0,-\frac{4}{3}\right)$		NO	NO	NO	NO	SI	
$\left(-3, \sqrt{3}\right)$			NO	SI	NO	NO	NO	
$\left(-3, -\sqrt{3}\right)$			SI	SI	NO	NO	NO	

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 + 4 x_1 x_2 - 4 x_2^2 + 9 x_1 - 2 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-3,4) , (-1,2) , (-0,-4) e (-2,-5). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-\frac{2}{3}, -\frac{13}{3}\right)$	(1, -2)	$\begin{pmatrix} \frac{4}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{pmatrix}$	$\left(-\frac{16}{5}, -\frac{8}{5}\right)$	$\frac{5}{12}$	$\frac{5}{24}$	$\left(-\frac{4}{3}, -\frac{14}{3}\right)$