DEFIS - ICEB - UFOP Física Moderna

Atividade: Propriedades Ondulatórias da Matéria¹

I. Revisão da interferência da luz na dupla fenda

Um feixe de luz monocromática de comprimento de onda λ , oriundo de uma fonte pontual em um ponto distante, incide sobre duas fendas estreitas, F_1 e F_2 , separadas por uma distância d (veja o diagrama abaixo). A imagem logo acima do diagrama mostra a figura (o padrão) de interferência observado em uma tela distante. As regiões mais claras indicam uma maior incidência de luz na tela.

- **A.** No diagrama ampliado das duas fendas, uma seta indica a direção de propagação da luz da fenda F_2 ao ponto X na tela. Sobre o diagrama ampliado:
 - 1. Desenhe uma seta para indicar a direção aproximada de propagação da luz da fenda F_1 ao ponto X.
 - **2.** Identifique o segmento de linha que representa a diferença de caminho entre estas duas distâncias.
 - **3.** Para pequenos ângulos θ , escreva uma expressão matemática para a diferença de caminho entre as duas distâncias, em termos de d e θ .
- **B.** Qual deve ser a relação entre a diferença de caminho e o comprimento de onda dos feixes que passam por F_1 e F_2 para que seja observado
 - 1. o valor máximo de interferência construtiva?
 - 2. o valor mínimo de interferência destrutiva?
- C. Suponha que uma pequena mudança seja feita no experimento (mantendo a distância entre as fendas e a tela), resultando em um novo padrão como mostra a figura a seguir.
 - 1. Os ângulos que apresentam o máximo de intensidade na interferência no novo padrão são maiores, menores ou iguais aos máximos observados no padrão anterior?

- 2. Se o comprimento de onda da luz (λ) for a única quantidade alterada no experimento, determine se λ aumentou ou diminuiu nesta nova situação. Como você pode usar os resultados das partes \mathbf{A} e \mathbf{B} para justificar suas respostas?
- **3.** Se a separação das fendas d for a única quantidade alterada, determine se d aumentou ou diminuiu nesta nova situação. Como você pode usar os resultados das partes $\bf A$ e $\bf B$ para justificar suas respostas?

Verifique se suas respostas estão corretas com o(a) professor(a) antes de continuar.

II. Interferência de elétrons na dupla fenda

Um feixe de elétrons é acelerado devido a uma diferença de potencial de $1\ V$. O feixe incide em uma placa contendo duas fendas estreitas. A imagem acima do diagrama mostra a imagem de uma tela fosforescente colocada após as fendas (quando um elétron colide na tela, um brilho intenso na região de colisão é observado).

DEFIS - ICEB - UFOP Física Moderna

- **A.** Qual é o melhor modelo para descrever o comportamento dos elétrons neste caso: eles se propagam em linha reta após atravessar as fendas ou se propagam como ondas? Justifique sua resposta.
- **B.** Suponha que o experimento acima seja repetido com elétrons sendo acelerados com uma tensão diferente, por exemplo, 0,5 V.
 - Avalie se as regiões que brilham na tela ficarão mais próximas, mais afastadas ou se permanecerão na mesma posição.
 - 2. Com base na nova figura, você pode concluir que a metade da tensão usada para acelerar os elétrons altera o comprimento de onda do elétron?

Caso afirmativo: O comprimento de onda aumentou ou diminuiu nesta nova situação? Explique como sua resposta pode ser elaborada com base na figura.

Caso negativo: Explique seus argumentos justificando porque o comprimento de onda não mudará.

3. Como o decréscimo da tensão de aceleração por um fator de 1/2 afeta cada das quantidades listadas abaixo? Em particular, determine se cada quantidade aumenta ou diminui.

A energia cinética de cada elétron que passa pelas fendas.

O momento de cada elétron que passa pelas fendas.

O comprimento de onda De Broglie de cada elétron que atinge a fenda.

III. Aplicação: Experimento de Davisson-Germer

Um feixe de elétrons de mesma energia incide em um cristal de níquel como mostra a representação abaixo. É observado que um intenso espalhamento ocorre no ângulo θ determinado pela condição de Bragg, $2d\sin\theta=n\lambda$.

- **A.** Use trigonometria para mostrar que a diferença de caminho dos dois feixes espalhados (veja a figura) é igual a $2d\sin\theta$.
- **B.** Suponha que o experimento seja repetido alguns vezes e que em cada repetição algo seja alterado no experimento. Para cada mudança descrita abaixo, determine se o ângulo θ no qual o espalhamento é mais intenso ficará maior, menor ou permanecerá o mesmo.
 - A energia cinética do feixe de elétrons incidente decresce.
 - Os elétrons são substituídos por nêutrons, sendo que cada nêutron possui a mesma velocidade que possuíam os elétrons.

¹ Adaptado do livro *Tutorials in Introductory Physics* de McDermontt, Shaffer e Phys. Educ. Group da Univ. de Washington.