MATRIX TRANSFORMATIONS

Points in the plane can be represented by their position vectors. In the diagram below, for example, the position vector of A is $\begin{bmatrix} 1 & & \\ 1 & & \\ & & \end{bmatrix}$

The position vectors of the vertices of the triangle ABC can be put in a single matrix $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$.

1 Find the product of $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}.$

Let the columns of the new matrix be the position vectors of the **image** of triangle ABC under the transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

2 On a copy of the diagram above draw the triangle ABC and its image after the transformation.
What is the transformation?

What do you notice about the image matrix?

4 Test your conjecture by considering the image of (1, 0) and (0, 1) under this transformation represented by the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

7 Find the matrix that represents a stretch parallel to the *x*-axis with a scale factor of 2 and the *y*-axis invariant.

- 8 a In the diagram below A and B are the images of (1,0) and (0,1) under a counter clockwise rotation of θ about (0,0). Use the diagram to show this rotation is represented by the matrix $\frac{\cos\theta \sin\theta}{\sin\theta \cos\theta} .$
 - **b** What will be the matrix for a clockwise rotation of magnitude θ ?
 - c Hence write down the matrix that represents a rotation of 60° clockwise about (0, 0).

9 a The line y = mx can be written as $y = (\tan \alpha)x$, where α is the angle made with the x-axis.

In the diagram below A and B represent the images of (1, 0) and (0, 1) respectively under a reflection in the line $y = (\tan \alpha)x$.

- a Explain why the image of (1, 0) has coordinates $(\cos 2\alpha, \sin 2\alpha)$.
- **b** By finding $O\hat{B}C$ in terms of α find the image of (0, 1) under the transformation.
- the line $y = (\tan \alpha)x$ is $\begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix}$.
- **d** By first finding α , determine the matrix that represents a reflection in the line $y = \sqrt{3}x$.

10 By considering the images of (1, 0) and (0, 1) find the general matrices for:a one-way stretch, parallel to the x-axis, scale factor k	
b an enlargement scale factor k , centre $(0,0)$.	