Решение домашнего задания к уроку "Производная функции нескольких переменных" часть 2

```
In [1]: import warnings
    import numpy as np
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from pylab import *
    warnings.filterwarnings('ignore')
%matplotlib inline
```

1. Задание

Исследовать функцию на условный экстремум:

$$U = 3 - 8x + 6y$$
, если $x^2 + y^2 = 36$

Решение:

$$f(x, y) = U = 3 - 8x + 6y, \phi(x, y) = x^2 + y^2 - 36$$

Составим функцию Лагранжа:
$$L(\lambda, x, y) = f(x, y) + \lambda \cdot \phi(x, y)$$
 $L(\lambda, x, y) = 3 - 8x + 6y + \lambda \cdot (x^2 + y^2 - 36)$

Решим систему уравнений:

$$\begin{cases} \frac{\partial L}{\partial x} = -8 + 2x\lambda = 0, \\ \frac{\partial L}{\partial y} = 6 + 2y\lambda = 0, \\ \frac{\partial L}{\partial \lambda} = x^2 + y^2 - 36 = 0. \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ y = -\frac{3}{\lambda}, \\ \frac{16}{\lambda^2} + \frac{9}{\lambda^2} = 36. \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ y = -\frac{3}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ y = -\frac{3}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{24}{5}, \\ x = \frac{24}{5}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \\ x = -\frac{5}{6}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \end{cases} \Rightarrow \begin{cases} x = \frac{4}{\lambda}, \end{cases} \Rightarrow \begin{cases} x = \frac$$

$$\Rightarrow M_1(-rac{5}{6},-rac{24}{5},rac{18}{5}), M_2(rac{5}{6},rac{24}{5},-rac{18}{5})$$
 - стационарные точки

Выясним характер экстремумов:

$$\begin{array}{l} \frac{\partial^2 L}{\partial x^2} = 2\lambda, \ \frac{\partial^2 L}{\partial x \partial y} = 0, \frac{\partial^2 L}{\partial y^2} = 2\lambda \\ d^2 L = \frac{\partial^2 L}{\partial x^2} dx^2 + 2 \frac{\partial^2 L}{\partial x \partial y} dx dy + \frac{\partial^2 L}{\partial y^2} dy^2 \\ d^2 L\big|_{M_1} = -\frac{5}{3} (dx^2 + dy^2) < 0 \Rightarrow M_1(-\frac{5}{6}, -\frac{24}{5}, \frac{18}{5}) \text{ - точка условного максимума} \\ d^2 L\big|_{M_2} = \frac{5}{3} (dx^2 + dy^2) > 0 \Rightarrow M_2(\frac{5}{6}, \frac{24}{5}, -\frac{18}{5}) \text{ - точка условного минимума} \end{array}$$

Геометрическая интерпретация:

Точки условного максимума и минимума - точки максимального и минимального значения функции в области пересечения значений функции и условия.

На графиках ниже:

- 1. Синяя плоскость значения функции
- 2. Зеленый цилиндр ограничивающие условия
- 3. Черный эллипс контур пересечения функции и условий
- 4. Красные точки точки условного экстремума

```
In [2]: # Возвращает значение функции в точках (x, y)
        def get_func_1(x,y):
            return 3 - 8*x + 6*y
        # Отрисовывает основную функцию // синяя плоскость
        def plot_func(ax):
            x_p = np.linspace(-7, 7, 100)
            y_p = np.linspace(-7, 7, 100)
            X_p, Y_p = np.meshgrid(x_p, y_p)
            Z_p = 3 - 8*X_p + 6*Y_p
            ax.plot_surface(X_p, Y_p, Z_p, alpha=0.3, color='b', shade=True)
            ax.plot_wireframe(X_p, Y_p, Z_p, alpha=0.2, rstride=4, cstride=4, color='b')
        # Отрисовывает условия на (х, у) // зеленый цилиндр
        def plot_condition(ax):
            x c = np.linspace(-6, 6, 100)
            z_c = np.linspace(-100, 100, 100)
            X_c, Z_c=np.meshgrid(x_c, z_c)
            Y_c = np.sqrt(36-X_c*2)
            ax.plot wireframe(X c, Y c, Z c, alpha=0.4, rstride=4, cstride=4, color='g')
            ax.plot_wireframe(X_c, -Y_c, Z_c, alpha=0.4, rstride=4, cstride=4, color='g')
        # Отрисовывает контур пересечения основной функции с условиями // черный эллипс
        def plot_contour(ax):
            X m = np.linspace(-6, 6, 100)
            Y_m = np.sqrt(36-X_m**2)
            z_m_1 = 3 - 8*x_m + 6*y_m
            z_m_2 = 3 - 8*x_m - 6*y_m
            ax.plot(X_m, Y_m, Z_m_1,color='black')
            ax.plot(X_m, -Y_m, Z_m_2,color='black')
        # Отрисовывает критические точки, оси координат, задает границы графика
        def plot_additions(ax):
            # Отмечаем оси координат
            ax.plot((-7,7), (0,0), (0,0), alpha=0.5, c='r', linestyle='--')
            ax.plot((0,0), (-7,7), (0,0), alpha=0.5, c='r', linestyle='--')
            ax.plot((0,0), (0,0), (-100,100), alpha=0.5, c='r', linestyle='--')
            # Отмечаем критические точки М 1(-24/5,18/5,63), М 2(24/5,-18/5,-57)
            ax.scatter(-24/5,18/5,get_func_1(-24/5,18/5),'z',50,'red')
            ax.scatter(24/5,-18/5,get_func_1(24/5,-18/5),'z',50,'red')
            ax.text(-24/5,18/5,get_func_1(-24/5,18/5),'M_1')
            ax.text(24/5,-18/5,get_func_1(24/5,-18/5),'M_2')
            # Границы графика
            ax.set_xlim((-7,7))
            ax.set_ylim((-7,7))
            ax.set_xlabel('x')
            ax.set_ylabel('y')
            ax.set_zlabel('z')
```

```
In [3]: fig = plt.figure(figsize=(20,20))
        ax = fig.add_subplot(221, projection='3d')
        plot_func(ax)
        plot_condition(ax)
        plot_contour(ax)
        plot_additions(ax)
        ax.view_init(90, 0)
        ax.set_title('Вид сверху')
        ax = fig.add_subplot(222, projection='3d')
        plot_func(ax)
        plot_condition(ax)
        plot_contour(ax)
        plot_additions(ax)
        ax.view_init(0, 90)
        ax.set_title('Вид сбоку')
        ax = fig.add_subplot(223, projection='3d')
        plot func(ax)
        plot_condition(ax)
        plot_contour(ax)
        plot_additions(ax)
        ax.set_title('Общий вид')
        plt.show()
```

Вид сверху

0 -6 -4 -2 0 2 4 6

Вид сбоку

Ответ: $M_1(-\frac{5}{6},-\frac{24}{5},\frac{18}{5})$ -точка условного максимума, $M_2(\frac{5}{6},\frac{24}{5},-\frac{18}{5})$ -точка условного минимума

2. Задание

Исследовать функцию на условный экстремум:

$$U = 2x^2 + 12xy + 32y^2 + 15$$
, если $x^2 + 16y^2 = 64$

Решение:

$$f(x, y) = U = 2x^2 + 12xy + 32y^2 + 15, \phi(x, y) = x^2 + 16y^2 - 64$$

Составим функцию Лагранжа: $L(\lambda, x, y) = f(x, y) + \lambda \cdot \phi(x, y)$

Составим функцию Лагранжа:
$$L(\lambda, x, y) = f(x, y) + \lambda \cdot \phi(x, y)$$
 $L(\lambda, x, y) = 2x^2 + 12xy + 32y^2 + 15 + \lambda \cdot (x^2 + 16y^2 - 64)$
Решим систему уравнений:
$$\begin{cases} \frac{\partial L}{\partial x} = 4x + 12y + 2x\lambda = 0, \\ \frac{\partial L}{\partial y} = 12x + 64y + 32y\lambda = 0, \\ \frac{\partial L}{\partial \lambda} = x^2 + 16y^2 - 64 = 0. \end{cases} \Rightarrow \begin{cases} y = -\frac{x(\lambda+2)}{6}, \\ \frac{18x}{3} - \frac{16x(\lambda+2)}{6} - \frac{8\lambda x(\lambda+2)}{6} = 0, \Rightarrow \begin{cases} y = -\frac{x(\lambda+2)}{6}, \\ -8\lambda^2 x - 32\lambda x - 14x = 0, \Rightarrow \end{cases} \end{cases} \Rightarrow \begin{cases} y = -\frac{x(\lambda+2)}{6}, \\ \lambda = -\frac{1}{2}, \\ \lambda = -\frac{1}{2}, \\ \lambda = -\frac{7}{2}, \end{cases} \Rightarrow \begin{cases} \lambda = -\frac{1}{2}, \\ \lambda = -\frac{7}{2}, \\ x = 4\sqrt{2}, \\ y = \sqrt{2}; \end{cases} \end{cases}$$

$$\Rightarrow M_1(-rac{1}{2},4\sqrt{2},-\sqrt{2}), M_2(-rac{1}{2},-4\sqrt{2},\sqrt{2}), \ M_3(-rac{7}{2},4\sqrt{2},\sqrt{2}), M_4(-rac{7}{2},-4\sqrt{2},-\sqrt{2})$$
 - стационарные точки

Выясним характер экстремумов:

$$\frac{\partial^2 L}{\partial x^2} = 4 + 2\lambda, \ \frac{\partial^2 L}{\partial x \partial y} = 12, \ \frac{\partial^2 L}{\partial y^2} = 64 + 32\lambda$$

$$d^2 L = \frac{\partial^2 L}{\partial x^2} dx^2 + 2 \frac{\partial^2 L}{\partial x \partial y} dx dy + \frac{\partial^2 L}{\partial y^2} dy^2 = (4 + 2\lambda) dx^2 + 24 dx dy + (64 + 32\lambda) dy^2$$

$$d^2 L\big|_{M_1} = d^2 L\big|_{M_2} = (4 - 1) dx^2 + 24 dx dy + (64 - 16) dy^2 = 3 (dx + 4 dy)^2 > 0 \Rightarrow M_1(-\frac{1}{2}, 4\sqrt{2}, -\sqrt{2}), M_2(-\frac{1}{2}, -4\sqrt{2}, \sqrt{2}) - \text{точки условного}$$
 минимума
$$d^2 L\big|_{M_3} = d^2 L\big|_{M_4} = (4 - 7) dx^2 + 24 dx dy + (64 - 7 \cdot 16) dy^2 = -3 (dx - 4 dy)^2 < 0 \Rightarrow M_3(-\frac{7}{2}, 4\sqrt{2}, \sqrt{2}), M_4(-\frac{7}{2}, -4\sqrt{2}, -\sqrt{2}) - \text{точки условного}$$
 максимума

Геометрическая интерпретация:

Точки условного максимума и минимума - точки максимального и минимального значения функции в области пересечения значений функции и условия.

На графиках ниже:

- 1. Синяя поверхность значения функции
- 2. Зеленый цилиндр ограничивающие условия
- 3. Черная кривая контур пересечения функции и условий
- 4. Красные точки точки условного экстремума

```
In [4]: \# Возвращает значение функции в точках (x,y)
        def get func 2(x,y):
            return 2*x**2 + 12*x*y + 32*y**2 + 15
        # Отрисовывает основную функцию // синяя поверхность
        def plot_func(ax):
            x p = np.linspace(-8, 8, 100)
            y_p = np.linspace(-8, 8, 100)
            X_p, Y_p = np.meshgrid(x_p, y_p)
            Z_p = 2*X_p**2 + 12*X_p*Y_p + 32*Y_p**2 + 15
            ax.plot_surface(X_p, Y_p, Z_p, alpha=0.3, color='b', shade=True)
            ax.plot_wireframe(X_p, Y_p, Z_p, alpha=0.1, rstride=4, cstride=4, color='b')
        # Отрисовывает условия на (х, у) // зеленый цилиндр
        def plot condition(ax):
            x c = np.linspace(-8, 8, 100)
            z c = np.linspace(0,1000,100)
            X_c, Z_c=np.meshgrid(x_c, z_c)
            Y_c = np.sqrt((64-X_c**2)/16)
            ax.plot wireframe(X c, Y c, Z c, alpha=0.4, rstride=4, cstride=4, color='g')
            ax.plot_wireframe(X_c, -Y_c, Z_c, alpha=0.4, rstride=4, cstride=4, color='g')
        # Отрисовывает контур пересечения основной функции с условиями
        def plot_contour(ax):
            X m = np.linspace(-8, 8, 100)
            Y m = np.sqrt((64-X m**2)/16)
            Z_m_1 = 2*X_m**2 + 12*X_m*Y_m + 32*Y_m**2 + 15
            Z_m_2 = 2*X_m**2 - 12*X_m*Y_m + 32*Y_m**2 + 15
            ax.plot(X_m, Y_m, Z_m_1,color='black')
            ax.plot(X_m, -Y_m, Z_m_2,color='black')
        # Отрисовывает критические точки, оси координат, задает границы графика
        def plot_additions(ax):
            # Отмечаем оси координат
            ax.plot((-8,8), (0,0), (0,0), alpha=0.5, c='r', linestyle='--')
            ax.plot((0,0), (-8,8), (0,0), alpha=0.5, c='r', linestyle='--')
            ax.plot((0,0), (0,0), (10,1000), alpha=0.5, c='r', linestyle='--')
            # Отмечаем критические точки
            ax.scatter(4*2**(0.5),-2**(0.5),get_func_2(4*2**(0.5),-2**(0.5)),'z',50,'red')
            ax.text(4*2**(0.5),-2**(0.5),get_func_2(4*2**(0.5),-2**(0.5)),'M 1')
            ax.scatter(-4*2**(0.5), 2**(0.5), get_func_2(-4*2**(0.5), 2**(0.5)), 'z', 50, 'red')
            ax.text(-4*2**(0.5),2**(0.5),get func 2(-4*2**(0.5),2**(0.5)),'M 2')
            ax.scatter(4*2**(0.5),2**(0.5),get_func_2(4*2**(0.5),2**(0.5)),'z',50,'red')
            ax.text(4*2**(0.5),2**(0.5),get_func_2(4*2**(0.5),2**(0.5)),'M_3')
            ax.scatter(-4*2**(0.5),-2**(0.5),get_func_2(-4*2**(0.5),-2**(0.5)),'z',50,'red')
            ax.text(-4*2**(0.5), -2**(0.5), get_func_2(-4*2**(0.5), -2**(0.5)), 'M_4')
            # Границы графика
            ax.set_xlim((-10,10))
            ax.set_ylim((-10,10))
            ax.set_zlim((10,1000))
            ax.set_xlabel('x')
            ax.set_ylabel('y')
            ax.set_zlabel('z')
```

```
In [5]: fig = plt.figure(figsize=(20,20))
        ax = fig.add_subplot(221, projection='3d')
        plot_func(ax)
        plot_condition(ax)
        plot_contour(ax)
        plot_additions(ax)
        ax.view_init(90, 0)
        ax.set_title('Вид сверху')
        ax = fig.add_subplot(222, projection='3d')
        plot_func(ax)
        plot_condition(ax)
        plot_contour(ax)
        plot additions(ax)
        ax.view_init(0, 0)
        ax.set_title('Вид сбоку')
        ax = fig.add_subplot(223, projection='3d')
        plot func(ax)
        plot_condition(ax)
        plot_contour(ax)
        plot_additions(ax)
        ax.set_title('Общий вид')
        plt.show()
```


10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Вид сверху

Ответ: $M_1(-\frac{1}{2},4\sqrt{2},-\sqrt{2}), M_2(-\frac{1}{2},-4\sqrt{2},\sqrt{2})$ - точки условного минимума, $M_3(-\frac{7}{2},4\sqrt{2},\sqrt{2}), M_4(-\frac{7}{2},-4\sqrt{2},-\sqrt{2})$ - точки условного максимума

3. Задание

Найти производную функции $U=x^2+v^2+z^2$ по направлению вектора \overrightarrow{c} (-9,8,-12) в точку M(8,-12,9)

Решение:

Найдем частные производные в точке M(8, -12, 9):

$$\frac{\partial U}{\partial x} = 2x \Rightarrow \frac{\partial U}{\partial x}\Big|_{(8,-12,9)} = 16$$

$$\frac{\partial U}{\partial y} = 2y \Rightarrow \frac{\partial U}{\partial y}\Big|_{(8,-12.9)} = -24$$

$$\frac{\partial U}{\partial z} = 2z \Rightarrow \frac{\partial U}{\partial z}\Big|_{(8,-12,9)} = 18$$

Найдем координаты направляющего вектора единичной длины:

$$|\overrightarrow{c}| = \sqrt{(-9)^2 + 8^2 + (-12)^2} = \sqrt{81 + 64 + 144} = \sqrt{289} = 17$$

 $\overrightarrow{c_0} = (-\frac{9}{17}, \frac{8}{17}, -\frac{12}{17}) \Rightarrow \cos \alpha = -\frac{9}{17}, \cos \beta = \frac{8}{17}, \cos \gamma = -\frac{12}{17}$

$$\frac{\partial U}{\partial c} = \frac{\partial U}{\partial x} \cos \alpha + \frac{\partial U}{\partial y} \cos \beta + \frac{\partial U}{\partial z} \cos \gamma$$

$$\left. \frac{\partial U}{\partial \stackrel{\rightarrow}{c}} \right|_{M(8,-12,9)} = 16 \cdot (-\frac{9}{17}) + (-24) \cdot \frac{8}{17} + 18 \cdot (-\frac{12}{17}) = \frac{-144-192-216}{17} = -\frac{552}{17} < 0 \Rightarrow$$
 функция U по направлению вектора $\stackrel{\rightarrow}{c}$ в точке $M(8,-12,9)$ убывает.

Ответ: $-\frac{552}{17}$

4. Задание

Найти производную функции $U=e^{x^2+y^2+z^2}$ по направлению вектора \overrightarrow{d} (4,-13,-16) в точку L(-16,4,-13)

Решение:

Найдем частные производные в точке
$$L(-16,4,-13)$$
: $\frac{\partial U}{\partial x}=2xe^{x^2+y^2+z^2}\Rightarrow \frac{\partial U}{\partial x}\Big|_{(-16,4,-13)}=-32e^{441}$

$$\frac{\partial U}{\partial y} = 2ye^{x^2 + y^2 + z^2} \Rightarrow \frac{\partial U}{\partial y}\Big|_{(-16,4,-13)} = 8e^{441}$$

$$\frac{\partial U}{\partial z} = 2ze^{x^2 + y^2 + z^2} \Rightarrow \frac{\partial U}{\partial z}\Big|_{(-16,4,-13)} = -26e^{441}$$

Найдем координаты направляющего вектора единичной длины:

$$|\overrightarrow{d}| = \sqrt{4^2 + (-13)^2 + (-16)^2} = \sqrt{16 + 169 + 256} = \sqrt{441} = 21$$

$$\overrightarrow{d_0} = (\frac{4}{21}, -\frac{13}{21}, -\frac{16}{21}) \Rightarrow \cos \alpha = \frac{4}{21}, \cos \beta = -\frac{13}{21}, \cos \gamma = -\frac{16}{21}$$

$$\frac{\partial U}{\partial x} = \frac{\partial U}{\partial x} \cos \alpha + \frac{\partial U}{\partial y} \cos \beta + \frac{\partial U}{\partial z} \cos \gamma$$

$$\left. \frac{\partial U}{\partial \overrightarrow{d}} \right|_{L(-16,4,-13)} = -32e^{441} \cdot \frac{4}{21} + 8e^{441} \cdot (-\frac{13}{21}) + (-26e^{441}) \cdot (-\frac{16}{21}) = \frac{-128e^{441} - 104e^{441} + 416e^{441}}{21} = \frac{184e^{441}}{21} > 0 \Rightarrow функция U по направлению фильмар (1998) ($$

вектора \overrightarrow{d} в точке L(-16,4,-13) возрастает

Ответ: $\frac{184e^{441}}{21}$

In []: