RAPPORT D'ANALYSE DE DÉFAILLANCE

BIELLES DE LIAISON

AIRBUS A320

Référence: RAF-A320-BL-2025-087

Classification: TECHNIQUE / USAGE INTERNE

Date d'analyse: 23 mai 2025

Échantillon: Bielle de liaison #BL-47-92356

Catégorie: Organe de direction

Niveau d'urgence pour changement: Normal

1. CONTEXTE ET OBJECTIFS

Ce rapport présente les résultats de l'analyse de défaillance effectuée sur une bielle de liaison déposée lors de la maintenance programmée d'un Airbus A320-251N (MSN 8765). L'analyse a été réalisée suite à la détection d'un jeu anormal lors de l'inspection de routine du système de commandes de vol.

Objectifs de l'analyse: - Identifier la nature et l'étendue de la défaillance - Déterminer les mécanismes de dégradation - Évaluer l'impact sur la sécurité des vols - Formuler des recommandations pour la maintenance de la flotte

Historique du composant: - Heures de vol: 8,750 - Cycles: 5,430 - Date de mise en service: Septembre 2021 - Dernière inspection: Février 2025

2. MÉTHODOLOGIE ET RÉSULTATS

2.1 Examen visuel et macroscopique

L'inspection visuelle a révélé une usure anormale au niveau de l'alésage de l'œil de la bielle côté actionneur. Des traces de fretting (micro-déplacements) sont visibles sur la surface de contact avec l'axe.

Observations macroscopiques: - Usure prononcée de l'alésage (ovalisation de 0,22 mm) - Traces de fretting sur la surface interne de l'œil - Absence de fissures visibles à l'œil nu - Légère décoloration de la surface de contact - Présence de particules métalliques dans la graisse résiduelle

2.2 Analyse dimensionnelle

Des mesures précises ont été effectuées pour quantifier la dégradation.

Paramètre	Valeur nominale	Tolérance	Valeur mesurée	Écart
Diamètre alésage côté actionneur	12,000 mm	±0,015 mm	12,220 mm	+0,220 mm
Diamètre alésage côté gouverne	12,000 mm	±0,015 mm	12,035 mm	+0,035 mm
Longueur totale	245,500 mm	±0,100 mm	245,480 mm	-0,020 mm
Rectitude	-	<0,050 mm	0,045 mm	Conforme
Rugosité surface alésage	Ra 0,8	Max Ra 1,6	Ra 3,2	Non conforme

L'ovalisation de l'alésage côté actionneur dépasse significativement les tolérances admissibles.

2.3 Analyse métallographique

Des échantillons ont été prélevés dans la zone endommagée pour analyse métallographique.

Microstructure: - Matériau: Alliage d'aluminium 7075-T6 - Structure granulaire normale dans les zones non affectées - Déformation plastique localisée dans la zone de contact - Absence de fissures intergranulaires - Pas de signes de corrosion sous contrainte - Présence de micro-pitting sur la surface de contact

2.4 Analyse des débris

Les particules métalliques prélevées dans la graisse ont été analysées par microscopie électronique à balayage (MEB) et spectroscopie à dispersion d'énergie (EDS).

Résultats: - Particules d'aluminium provenant de la bielle (70%) - Particules d'acier provenant de l'axe (25%) - Contaminants divers (5%) - Taille des particules: 5-50 μ m - Morphologie: Particules plates et allongées typiques d'une usure adhésive

2.5 Tests mécaniques

Des essais mécaniques ont été réalisés sur des échantillons prélevés à proximité de la zone endommagée.

Propriété	Spécification	Résultat	Conformité
Dureté (HRB)	85-90	87	CONFORME
Résistance traction (MPa)	>520	535	CONFORME

Propriété	Spécification	Résultat	Conformité
Limite élastique (MPa)	>450	465	CONFORME
Allongement (%)	>8	9,5	CONFORME

Les propriétés mécaniques du matériau sont conformes aux spécifications, ce qui exclut une défaillance due à un matériau non conforme.

3. INTERPRÉTATION ET CONCLUSIONS

3.1 Mécanisme de défaillance

L'analyse indique que la défaillance est due à une usure par fretting, caractérisée par: -Micro-mouvements oscillatoires entre la bielle et l'axe - Dégradation progressive de la surface de contact - Formation de débris d'usure agissant comme abrasif - Augmentation progressive du jeu

Les facteurs contributifs probables sont: 1. Lubrification insuffisante ou dégradée 2. Charges vibratoires excessives 3. Possible désalignement initial du montage 4. Cycles de chargement répétés

3.2 Évaluation de la sécurité

La défaillance observée présente un niveau de risque **MODÉRÉ** pour les raisons suivantes: - L'usure est progressive et détectable lors des inspections de routine - Les systèmes de commandes de vol sont redondants - Aucune fissure pouvant mener à une rupture brutale n'a été détectée - Le jeu excessif peut toutefois entraîner une précision réduite des commandes de vol

3.3 Recommandations

Sur la base de cette analyse, les recommandations suivantes sont formulées:

1. Pour le composant analysé:

- 2. Mise au rebut définitive (non réparable)
- 3. Conservation comme échantillon de référence pour formation

4. Pour la flotte:

- 5. Inspection spéciale des bielles de liaison sur les appareils ayant accumulé >4000 cycles
- 6. Réduction de l'intervalle d'inspection de 1000 à 750 cycles pour les bielles de liaison
- 7. Vérification du couple de serrage des fixations selon les spécifications révisées
- 8. Application du lubrifiant amélioré référence LUB-AL-7075-V2

9. Pour la maintenance:

- 10. Mise à jour de la procédure d'inspection avec attention particulière aux jeux axiaux
- 11. Formation spécifique des techniciens sur la détection précoce du fretting
- 12. Révision de la procédure de lubrification (quantité et fréquence)

13. Pour la conception:

- 14. Évaluation de l'utilisation d'un revêtement anti-friction sur les futures bielles
- 15. Considération d'une modification de la géométrie pour réduire les contraintes localisées

Analyse réalisée par:

[Signature]
Dr. Laurent Martin
Ingénieur Matériaux Senior
Certification COFREND ET3 #13587

Approuvé par:

[Signature]
Catherine Renard
Responsable Bureau d'Analyse Technique
EASA Part-145 #FR.145.0824

Ce rapport est conforme aux exigences EASA Part-145.A.45 et FAA AC 43-210.

Note concernant le changement de pièce:

Niveau d'urgence: NORMAL

Le remplacement de ce composant doit être planifié dans les 500 heures de vol ou 300 cycles, selon la première échéance. Une inspection visuelle renforcée est requise jusqu'au remplacement.