$$= 5 + 20 - 21$$

$$= 5 + 20 - 21$$

$$= 5 + 20 - 21$$

$$= 5 + 20 - 21$$

$$= 5 + 20 - 21$$

$$= 60. (7 - 6) = 10.1 = 60$$

$$= 5 + 20 - 21$$

$$= 60. (7 - 6) = 10.1 = 60$$

$$= 60.1 = 60$$

$$= 60.1 = 60$$

$$= 60.1 = 60$$

$$= 60.1 = 60$$

$$= 60.1 = 60$$

$$\begin{pmatrix} A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A$$

(1st column)

(8)
$$(-1,0)$$
, $(0,5)$, $(1,-4)$, $(2,1)$ \longrightarrow $(0,0)$, $(1,5)$, $(2,-4)$, $(3,1)$ (15) , $(1,+0)$, $(+1+0)$, $(+1+0)$, $(+1+0)$, $(+1+0)$, $(+1+0)$, $(+1+0)$, $(+1+0)$, $(+1+0)$, $(+1+0)$, $(-1,-10$

$$\frac{9}{4 \cdot 52} = \begin{vmatrix} 1 - 2 - 1 \\ 4 - 52 \\ 0 2 - 1 \end{vmatrix} = \begin{vmatrix} 1 - 2 - 1 \\ 4 - 52 \end{vmatrix} = \begin{vmatrix} 1 - 16 \\ 2 - 1 \end{vmatrix} = \begin{vmatrix} -16 \\ 2 - 1 \end{vmatrix} + \begin{vmatrix} -$$

(1) a) let
$$\vec{u} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 where $xyzo$ and

i) let $c = 0$ then $c \cdot \vec{u} = 0 \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $0 \cdot 0 \ge 0 \rightarrow c\vec{u}$ is in w

ii) let $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ then $c \cdot \vec{v} = c \cdot \begin{bmatrix} x \\ y \end{bmatrix} =$

(11)

a) Note that Since a is in
$$\mathbb{R}$$
, then this set is Span $\{t^2\}$,

and Since this set can be described as a spanning set then

all polynomials of the form $\bar{p}(t) = at^2$ is a subspace of \mathbb{R}_m $m = 2$.

b) Note that the zero vector has the form
$$0+0t+0t^2$$
, and even if $a=0$ then $\vec{p}(t)=0+t^2=t^2$ and the coefficient of t^2 will always be '1', so the zero vector is not in the set of all polynomials of the form $\vec{p}(t)=a+t^2$. Not a subspace.