Mini-Project 2: Logistic Regression & Disaster Survival

Instructor: Daniel L. Pimentel-Alarcón

DUE 02/12/2018

In this mini-project you will use logistic regression to determine whether you would have survived the Titanic sinking. To find out, we will use the titanic dataset (titanic_data.csv), containing the following information of 887 passengers: 1) whether they survived or not (1 = survived, 0 = deceased), 2) passenger class, 3) gender (0 = male, 1 = female), 4) age, 5) number of siblings/spouses aboard, 6) number of parents/children aboard, and 7) fare:

	Passenger 1	Passenger 2	Passenger 3	 Passenger 887
Survived	0	1	1	 0
Passenger Class	3	1	3	 3
Gender	0	1	1	 0
Age	22	38	26	 32
Siblings/Spouses	1	1	0	 0
Parents/Children	0	0	0	 0
Fare	7.25	71.2833	7.925	 7.75

Our goal is to construct a classifier that determines/predicts whether an individual would survive or not. Let $y_i \in \{0,1\}$ be the *label* indicating whether the ith individual survived, and let $\mathbf{x}_i \in \mathbb{R}^6$ denote the feature vector of the ith individual (containing all remaining variables). For example, $y_1 = 0$ and $\mathbf{x}_1 = \begin{bmatrix} 3 & 0 & 22 & 1 & 0 & 7.25 \end{bmatrix}^\mathsf{T}$. Our goal is to construct a classifier that given \mathbf{x} determines y.

In this mini-project we will use logistic regression, whose classifier has the form:

$$\underbrace{\frac{1}{1+e^{-\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}}}}_{\mathsf{P}(y=1|\mathbf{x})} \quad \stackrel{\hat{y}=1}{\gtrless} \quad \underbrace{1-\frac{1}{1+e^{-\boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}}}}_{\mathsf{P}(y=0|\mathbf{x})}, \tag{2.1}$$

and is parametrized by the coefficient vector $\boldsymbol{\beta} \in \mathbb{R}^6$, which we aim to find by maximizing:

$$\ell(\beta) := \sum_{i=1}^{N} \log \left[\left(\frac{1}{1 + e^{-\beta^{\mathsf{T}} \mathbf{x}_{i}}} \right)^{y_{i}} \left(1 - \frac{1}{1 + e^{-\beta^{\mathsf{T}} \mathbf{x}_{i}}} \right)^{1 - y_{i}} \right], \tag{2.2}$$

which is simply an other way to write (2.1) for N training samples.

- (a) Create a function that implements (2.2).
- (b) The gradient of $\ell(\beta)$, which is also a vector in \mathbb{R}^6 , is given by:

$$\nabla \ell(\boldsymbol{\beta}) = \sum_{i=1}^{N} \left(y_i - \frac{1}{1 + e^{-\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i}} \right) \mathbf{x}_i$$
 (2.3)

Create a function that implements (2.3).

(c) Since we cannot simply set (2.3) to zero and solve for β , we have to use optimization techniques like gradient ascent, whose update is given by:

$$\boldsymbol{\beta}_{t+1} = \boldsymbol{\beta}_t + \eta \nabla \ell(\boldsymbol{\beta}_t), \tag{2.4}$$

where $\eta \in \mathbb{R}$ is the *step size* (often called *learning parameter*). Gradient ascent simply iterates (2.4) until $\ell(\beta_t)$ converges. Create a function that implements gradient ascent.

- (d) Randomly split your data into training (80%) and testing (20%).
- (e) Run gradient ascent on your training data for different values of η . If η is too big, you may run into numerical errors or loose accuracy. If η is too small, it may take too long to converge. What value of η seems best to maximize $\ell(\beta)$? What is the best (largest) $\ell(\beta)$ you can achieve?
- (f) What coefficient vector $\boldsymbol{\beta}$ do you obtain using your choice of η from (e)? How accurately does this predict survival on the test data?
- (g) What would be *your* feature vector. According to your classifier, would *you* have survived? Under which circumstances (passenger class, family aboard, and fare), would your prediction be different?
- (h) According to your answer from (f), which seem to be the 3 features that most affect survival? Visualize survivals as a function of these variables.

I have created the following code to help you get started:

```
% © Daniel L. Pimentel-Alarcón, 2018, http://danielpimentel.github.io
        close all: clear all: clc:
 4
        % ========== LOAD DATA ==========
        data = csvread('titanic_data.csv',1,0);
        Y = data(:,1)';
                              % labels
        X = data(:,2:end)'; % feature vectors
                             ==== SPLIT DATA =
10 -
        Y_train = % COMPLETE HERE: 80% of labels
X_train = % COMPLETE HERE: 80% of features
11 -
        Y_test = % COMPLETE HERE: 20% of labels
13 -
        X_test = % COMPLETE HERE: 20% of features
14
15
                      = GRADIENT ASCENT =
16 -
17 -
        eta = % COMPLETE HERE: Choose step size
tol = % COMPLETE HERE: Choose tolerance for convergence
18
        beta = gradientAscent(Y_train,X_train,eta,tol); %COMPLETE HERE: Code this function
19
20
21
        Y_hat = classify_logReg(X_test,beta); %COMPLETE HERE: Code this function error = sum(abs(Y_hat - Y_test)) / length(Y_test)
22 -
23
        % ======= WOULD I HAVE SURVIVED? ===:
24
25
        my_class = %COMPLETE HERE: What class would you have bought2
26 -
        my_gender = %COMPLETE HERE: 0=male, 1=female
        my_age = %COMPLETE HERE: Your age
27 -
28
        my_ss = %COMPLETE HERE: How many spouse/siblings would you have traveled with2
29 -
        my_pc = %COMPLETE HERE: How many parents/children would you have traveled with2
30 -
        idx = find(X(1,:)==my\_class); % people in the same class as me
31 -
        my_fare = mean(X(6,idx)); % average fare in my class
32
33
34
       % Construct my feature vector
my_x = %COMPLETE HERE: Put together your feature vector
35
36
37 -
        % Classify
        my_y = classify_logReg(my_x,beta) %COMPLETE HERE: (You already coded this function above)
38
39
        % ====== VISUALIZE 3 MOST IMPORTANT VARIABLES ======
        %COMPLETE HERE: Hint: you may use bar/pie plots.
```

References

[1] Xiaoli Fern, Xiaoli Fern, available at http://web.engr.oregonstate.edu/~xfern/classes/cs534/notes/logistic-regression-note.pdf