CS101 Algorithms and Data Structures Fall 2023 Homework 2

Due date: 23:59, October 22, 2023

- 1. Please write your solutions in English.
- 2. Submit your solutions to gradescope.com.
- 3. Set your FULL name to your Chinese name and your STUDENT ID correctly in Account Settings.
- 4. If you want to submit a handwritten version, scan it clearly. CamScanner is recommended.
- 5. When submitting, match your solutions to the problems correctly.
- 6. No late submission will be accepted.
- 7. Violations to any of the above may result in zero points.

1. (12 points) Multiple Choices

Each question has <u>one or more</u> correct answer(s). Select all the correct answer(s). For each question, you will get 0 points if you select one or more wrong answers, but you will get 1 point if you select a non-empty subset of the correct answers.

Write your answers in the following table.

(a)	(b)	(c)	(d)	(e)	(f)
AC	BC	AB	BC	D	A

- (a) (2') Which of the following scenarios are appropriate for using hash tables?
 - A. For each user login, the website should verify whether the username (a string) exists.
 - B. While you are writing C++ codes, the IDE (for example, VS Code) is checking whether all brackets match correctly.
 - C. The Domain Name System (DNS) translates domain names (like www.shanghaitech.edu.cn) to IPv4 addresses (like 11.16.44.165).
 - D. A playlist where music files are played sequentially.
- (b) (2') We have a hash table of size M with a uniformly distributed hash function. n elements are stored into the hash table. Which of the following statements are true?
 - A. If $n \leq M$, then the probability that there will be a hash collision is about $\frac{n}{M}$.
 - B. If collisions are resolved by chaining and the load factor is $\lambda = 0.9$, the average time complexity of a successful search (accessing an element which exists in the hash table) is $\Theta(1)$.
 - C. If collisions are resolved by linear probing, when there are many erase operations, lazy erasing is usually less time-consuming than actual erasing (attempting to fill the empty bin by moving other elements).
 - D. If collisions are resolved by quadratic probing, when the hash table is fully filled (n = M), you can reallocate a new space of size 2M and copy the M bins of the old space to the first M bins of the new space (like $\mathtt{std}:\mathtt{vector}$) in order to hold more elements.
- (c) (2') Consider a table of capacity 7 using open addressing with hash function $k \mod 7$ and linear probing. After inserting 6 values into an empty hash table, the table is below. Which of the following choices give a possible order of the key insertion sequence?

Inde	ex 0	1	2	3	4	5	6
Key	$_{\rm VS}$ 47	15	49	24		26	61

- A. 26, 61, 47, 15, 24, 49
- B. 26, 24, 15, 61, 47, 49
- C. 24, 61, 26, 47, 15, 49
- D. 26, 61, 15, 49, 24, 47
- (d) (2') Which of the following statements is(are) **NOT** correct?
 - A. $n! = o(n^n)$.
 - **B.** $(\log n)^2 = \omega(\sqrt{n})$.

C.
$$n^{\log(n^2)} = O(n^2 \log(n^2))$$
.

D.
$$n + \log n = \Omega(n + \log \log n)$$
.

(e) (2') Consider the recurrence relation

$$T(n) = \begin{cases} T(n-1) + 3n & n > 0 \\ 2 & n = 0 \end{cases}$$

Which of the following statements are true?

A.
$$T(n) = 2^{n-1}$$

B.
$$T(n) = O(n)$$

C.
$$T(n) = \Omega(3^n)$$

D.
$$T(n) = \Theta(n^2)$$

(f) (2') Your two magic algorithms run in

$$f(n) = n\lceil \sqrt{n}\rceil (1 + (-1)^n) + 1$$

$$g(n) = n |\log n|$$

time, where n is the input size. Which of the following statements are true?

A.
$$f(n) = o(n^2)$$
.

B.
$$f(n) = \omega(n)$$
.

C.
$$f(n) + g(n) = \Theta(n^{1.5})$$
.

D.
$$f(n) + g(n) = \omega (n \log (1.5n))$$
.

Here is the definition of Landau Symbols without using the limit:

$$f(n) = \Theta(g(n)) : \exists c_1, c_2 \in \mathbb{R}^+, 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \text{ as } n \to \infty.$$

$$f(n) = O(g(n)) : \exists c \in \mathbb{R}^+, 0 \le f(n) \le c \cdot g(n) \text{ as } n \to \infty.$$

$$f(n) = \Omega(g(n)) : \exists c \in \mathbb{R}^+, 0 \le g(n) \le c \cdot f(n) \text{ as } n \to \infty.$$

$$f(n) = o(g(n)) : \forall c \in \mathbb{R}^+, 0 \le f(n) < c \cdot g(n) \text{ as } n \to \infty.$$

$$f(n) = \omega(g(n)) : \forall c \in \mathbb{R}^+, 0 \le g(n) < c \cdot f(n) \text{ as } n \to \infty.$$

2. (11 points) Hash Table Insertions and Deletions

Consider an empty hash table of capacity 7 and with hash function $h(k) = (3k + 6) \mod 7$. Collisions are resolved by quadratic probing with the probing function $H_i(k) = (h(k) + i^2) \mod 7$, paired with lazy erasing. We will give three kinds of instructions, which are among the set {Insert, Delete, Search}. For Insert/Delete instructions, you need to fill the hash table after each instruction. For Search instructions, write down probing sequence (index). Use 'D' to indicate that the bin has been marked as deleted.

(a) (1') Insert 9

Index	0	1	2	3	4	5	6
Key Value						9	

(b) (1') Insert 17

Index	0	1	2	3	4	5	6
Key Value		17				9	

(c) (1') Insert 32

Index	0	1	2	3	4	5	6
Key Value		17			32	9	

(d) (1') Insert 24

Index	0	1	2	3	4	5	6
Key Value		17	24		32	9	

(e) (1') Insert 18

Index	0	1	2	3	4	5	6
Key Value		17	24		32	9	18

(f) (1') Search 18

Solution: First, we compute h(18), which is 4. Then, we find the index 4, only to find that there is a value in index 4 and the value is not equal to 18. Thus we compute $H_i(k) = (h(k) + i^2) \mod 7$, we have index 5, which has a value. We repeat that way with increaing i, then go to index $1((4+2^2) \mod 7 = 1)$, which has a value, then go to index $6((4+3^2) \mod 7 = 6)$, whose value is 18, thus finish searching.

(g) (1') Delete 32

Index	0	1	2	3	4	5	6
Key Value		17	24		D	9	18

(h) (1') Insert 25

Index	0	1	2	3	4	5	6
Key Value		17	24		25	9	18

(i) (3') Suppose that the collisions are resolved by linear probing.

i. Write down the content of the hash table after Insert 9, 17, 32, 24, 18.

Index	0	1	2	3	4	5	6
Key Value		17	24		32	9	18

ii. What is the load factor λ ?

Solution: In this hash table we have a capacity of 7 with 5 inserted elements, Thus the load factor is $\frac{5}{7}$.

3. (4 points) Analysing the Time Complexity of a C++ Function

What is the time complexity of fun (in the form of $\Theta(f(n))$, where n is the size of the vector a)?

NOTE: Please clearly demonstrate your complexity analysis: you should give the complexity of the basic parts of an algorithm first, and then analyse the complexity of larger parts. The answer of the total complexity alone only accounts for 1pt.

Solution:

The inner loop has a capacity of $\theta(i)$.

In the outer loop has a capacity of $\theta(\log_2(n-1))$. We can get the capacity of outer loop from the equation $2^k = n$.

The middle loop has a capacity of $\theta(\frac{n}{2i})$.

To compute the capacity of whole loop, we can simply multiply them to get the answer, which is $\theta(\log_2(n-1)) \cdot \frac{n}{2}$. The final answer can be written without constant. The answer is $\theta(n\log(n))$.

4. (6 points) Compare and Proof

For each pair of functions f(n) and g(n), give your answer whether f(n) = o(g(n)), $f(n) = \omega(g(n))$ or $f(n) = \Theta(g(n))$. Give a **proof** of your answers.

(a)
$$(3')$$

$$f(n) = \log(n!)$$

$$g(n) = \log(n^n)$$

Solution:

Proof

$$\frac{f(n)}{g(n)} = \frac{\log(n!)}{\log(n^n)}$$

$$= \log_{n^n} n!$$
(1)

It's obvious that $n! \in [1, n^n]$, so that $\log_{n^n} n! \in [0, 1]$. Thus $f(n) = \theta(g(n))$.

(b) (3')

$$f(n) = n^{1+\varepsilon}, \qquad (\varepsilon \in \mathbb{R}^+)$$

 $g(n) = n(\log n)^k, \qquad (k \in \mathbb{Z}^+)$

Solution:

Proof

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^{(1+\varepsilon)}}{n(\log(n))^k}$$

$$= \lim_{n \to \infty} \frac{n^{\varepsilon}}{(\log(n))^k}$$
(2)

Since $\varepsilon > 0$ and k > 0, we know

$$\lim_{n \to \infty} f(n) \to \infty$$

$$\lim_{n \to \infty} g(n) \to \infty$$
(3)

Thus we can use L Hoptial's rule and get

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\varepsilon n^{\varepsilon}}{k(\log(n))^{k-1}}$$
(4)

We can repeat the operation of using L Hoptial's rule until k goes to 0. We have

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{(\varepsilon)^k n^{\varepsilon}}{k!}$$
 (5)

Then the answer is obvious. It's $f(n) = \omega(g(n))$.