EEE 473/573 - Medical Imaging

Quiz 3 – Friday, 25 December 2020

Duration: 30 minutes

Write your Name and Student ID at the top of every page. Write the following statement on the cover page and sign below.

Honor Code: "I have not given or received any aid during this quiz. I will do my share and take an active part in ensuring that others and I uphold the principles of honesty and integrity."

- 1) Consider the following spin echo MR sequence, with a repetition time TR. The RF pulses are applied along the x-axis. Assume that $M_z(0^-)=M_0$ and $M_{xy}(0^-)=0$, where M_0 is the equilibrium magnetization. Assume that TR $\gg T_2$. Do NOT assume that TR $\gg T_1$.
 - a) Find $M_z(0^+)$ and $M_{xy}(0^+)$.
 - **b)** Find $M_z\left(\frac{TE^-}{2}\right)$ and $M_{xy}\left(\frac{TE^-}{2}\right)$.
 - c) Find $M_z\left(\frac{TE^+}{2}\right)$ and $M_{xy}\left(\frac{TE^+}{2}\right)$.
 - **d)** Find $M_{xy}(TE)$.
 - e) Find $M_z(TR^-)$ and $M_{xy}(TR^-)$.

$M_z(0^-) = M_0$	$M_{xy}(0^-)=0$
$M_z(0^+) = M_0 cos 90^\circ = 0$	$M_{xy}(0^+) = M_0 e^{j\frac{\pi}{2}}$
$M_z\left(\frac{TE}{2}\right) = M_0(1 - e^{-TE/2T_1})$	$\boldsymbol{M}_{xy}\left(\frac{TE^{-}}{2}\right) = \boldsymbol{M}_{0}e^{j\frac{\pi}{2}}e^{-TE/2T_{2}^{*}}$
$M_z\left(\frac{TE^+}{2}\right) = -M_0\left(1 - e^{-TE/2T_1}\right)$	$M_{xy}\left(\frac{TE^{+}}{2}\right) = M_{0}e^{-j\frac{\pi}{2}}e^{-TE/2T_{2}^{*}}$
	$\boldsymbol{M}_{xy}(TE) = \boldsymbol{M}_0 e^{-j\frac{\pi}{2}} e^{-TE/T_2}$
$\begin{aligned} \mathbf{M}_{z}(TR^{-}) &= \mathbf{M}_{z} \left(\frac{TE^{+}}{2}\right) e^{-\left(TR - \frac{TE}{2}\right)/T_{1}} + \mathbf{M}_{0} \left(1 - e^{-\left(TR - \frac{TE}{2}\right)/T_{1}}\right) \\ &= \mathbf{M}_{0} - \mathbf{M}_{0} e^{-TR/T_{1}} \left(2e^{TE/2T_{1}} - 1\right) \end{aligned}$	$M_{xy}(TR^{-}) = M_{xy}\left(\frac{TE^{+}}{2}\right)e^{-(TR-TE/2)/T_{2}^{*}}$ ≈ 0

2) Draw the k-space trajectory for the pulse sequence shown on the right. Assume the durations are: $t_1=2\ ms$, $t_2=4\ ms$, $t_3=1\ ms$, and $t_4=4\ ms$. The gradient amplitudes are: $G_1=10\ mT/m$, $G_2=4\ mT/m$, and $G_3=2\ mT/m$.

Mark the data acquisition part of the trajectory (i.e., t_2 and t_4 intervals) with solid lines, and the other parts with dashed lines. Put arrows to mark the direction of the trajectory.

$$k_x = \overline{\gamma} \int G_x dt$$
 and $k_y = \overline{\gamma} \int G_y dt$

During t_1 :

$$k_{x,start} = 0$$
, $k_{x,end} = 42.58x10^6 G_1 t_1 \approx 0.85 mm^{-1}$
 $k_{y,start} = 0$, $k_{y,end} = 42.58x10^6 G_2 t_1 \approx 0.34 mm^{-1}$

During
$$t_2$$
:

$$k_{x,start}=0.85~mm^{-1}, \quad k_{x,end}=0.85~mm^{-1}-42.58x10^6~G_1t_2\cong -0.85~mm^{-1}$$
 No change in k_y .

During t_3 :

No change in k_x .

$$k_{y,start} = 0.34 \ mm^{-1}, \quad k_{y,end} = 0.34 \ mm^{-1} - 42.58 x 10^6 \ G_3 t_3 \cong 0.26 \ mm^{-1}$$

During t_4 :

$$k_{x,start} = -0.85~mm^{-1}, \quad k_{x,end} = -0.85~mm^{-1} + 42.58x10^6~G_1t_4 \cong 0.85~mm^{-1}$$
 No change in k_v .

