Análise de Algoritmos de Busca em Grafos KNN

Calvin Suzuki de Camargo Guilherme Soares Silvestre

1. Grafo KNN

Construção

- Input:
 - Número de vértices (V) e arestas (K)
- Vértices estão contidos em um plano cartesiano V x V
- Cada V deve conectar com K nós mais próximos
- Casos especiais necessitam regras mais específicas

Regras

- Cada vértice V é fonte de K arestas
- Vale a ligação inversa
- Mesmo que um nó já tenha sido fonte K arestas,
 ele pode ser chegada de novas arestas

2. Tipos de busca

Busca exaustiva (cega)

 Também chamados de algoritmos de busca por força-bruta ou busca não-informada

- As buscas cegas a serem a avaliadas são:
 - Busca por profundidade (Depth-first)
 - Busca por largura (Breadth-first)

Busca por profundidade (Depth)

(last-in first-out)

Busca por profundidade (Depth)

Incompleto: pode ficar preso em um ramo infinito

Busca por profundidade (Depth)

Não garante o melhor caminho

Busca por largura (Breadth)

(first-in first-out)

Busca por largura (Breadth)

Completo: garante encontrar todas as soluções

Busca por largura (Breadth)

Busca heurística

 É um algoritmo de busca que leva em conta alguma informação auxiliar sobre o seu alvo

- As buscas heurísticas implementadas são:
 - Busca Gulosa ou Best first
 - Busca Algoritmo A
 - Busca Algoritmo A*

Busca heurística

 A busca calcula a heurística de cada vértice por meio de uma fórmula 'F':

$$F(v) = g(n) + h(n)$$

- Função 'g' calcula o custo do caminho feito
- Função 'h' calcula a estimativa para chegar até o alvo

Busca Gulosa (Best First)

 A busca gulosa concentra-se somente nos vértices de menor distância euclidiana do alvo:

$$F(v) = G^*g(n) + H^*h(n)$$

- Usaremos:
 - G = 0
 - $\cdot H = 1$

Busca Gulosa (Best First)

Busca Algoritmo A

 Essa solução trata a distância até o alvo com um peso maior do que o caminho percorrido:

$$F(v) = G^*g(n) + H^*h(n)$$

- Usaremos:
 - G = 10
 - · H = 1

Busca Algoritmo A

Busca Algoritmo A*

 Essa solução considera os valores heurísticos de caminho e distância até o alvo com pesos iguais:

$$F(v) = G^*g(n) + H^*h(n)$$

- Usaremos:
 - G = 1
 - $\cdot H = 1$

Busca Algoritmo A*

3. Resultados e análise

Critérios

1. Tempo

Tempo de processamento até o encontro do caminho até o objetivo

2. Vértices

Número de vértices entre o ponto inicial e o objetivo 3. Distância

Distância percorrida pelo caminho até o objetivo 4. Memória

Consumo de memória para a escolha do caminho

Ambiente de testes para Tempo, Vértices e Distância

- 9 Grafos KNN foram feitos para a combinação de número de vértices: V = 500, 5000 e 10000, e arestas: K = 3, 5 e 7
- 100 interações foram feitas de forma que para cada uma os 5 algoritmos eram acionados
- Para cada interação, o ponto inicial e o objetivo são gerados aleatoriamente.

Tempo de processamento

Em qual velocidade os algoritmos performam e para quais situações?

Tempo de processamento

Buscas cegas apresentam maior tempo

 Busca em profundidade apresenta maior tempo desvio padrão

Buscas heurísticas são mais rápidas

Best first apresenta maior velocidade

Número de vértices

Qual é a eficiência dos algoritmos caso seja necessário alcançar o menor número de vértices?

Número de vértices

Busca por Profundidade apresenta o maior caminho

Busca em Largura apresenta o menor caminho

 Buscas heurísticas apresentam similaridade nesse quesito comparáveis com a Largura

Dentre os heurísticos, A* apresenta leve vitória

Distância do caminho

Qual é a eficiência dos algoritmos caso seja necessário alcançar a menor distância?

Distância do caminho

Busca em Profundidade alcança caminho maior

 Buscas heurísticas apresentam tamanho de caminho comparáveis

 A* alcança o menor caminho devido a análise pessimista

Consumo máximo de memória

Qual é o consumo de memória dos métodos a partir desta implementação?

Ambiente de testes para Memória

- Para cada um dos 9 grafos gerados, os pontos críticos (mais afastados) foram mapeados.
- O algoritmo age no limite de cada grafo, buscando os dois pontos que anotamos como mais afastados
- O objetivo é alcançar um majorante para o consumo de memória em cada situação.
- A biblioteca utilizada foi o tracemalloc para o monitoramento. Foi medido o pico de memória em cada situação para cada método.

Consumo máximo de memória

 Buscas heurísticas e Largura apresentam consumo máximo de memória similar

- Busca em Profundidade apresenta consumo de memória muito maior
 - Fator principal: tamanho de caminho em vértices ~20x maior em grafos de 10000 vértices

3.Conclusão

Best & Worst

	Critérios					
	Tempo	Vértices	Distância	Memória		
Melhor	Best First	Largura	A*	Largura		
Pior	Profundidade	Profundidade	Profundidade	Profundidade		

Cards

	Largura	Profundidade	Best First	А	A*
Tempo	Ruim	Pior	Melhor	Bom	Bom
Vértices	Melhor	Pior	Bom	Bom	Bom
Distância	Bom	Pior	Bom	Bom	Melhor
Memória	Melhor	Pior	Bom	Bom	Bom

