

Python与金融数据挖掘(10)

文欣秀

wenxinxiu@ecust.edu.cn

舆情数据评分系统搭建

- ◆ 创建窗体和控件,用于输入新闻主题
- ◆编写爬虫模块,用于数据采集和清洗
- ◆编写與情分析模块,用于数据的评分
- ◆编写数据库模块,用于存储统计数据
- ◆编写绘图模块,用于展示及相关性分析
- ◆编写机器学习算法模块,用于结果预测

重庆荣昌卤鹅事件

"卤鹅哥"林江是重庆荣昌的自媒体博主,也是荣昌卤鹅的传承者。 2025年3月30日、林江在个人抖音号发布视频称要请美国顶流 自媒体博主"甲亢哥"吃荣昌非遗特色美食荣昌卤鹅。3月31日, "卤鹅哥" 在成都街头首次向 "甲亢哥" 投喂荣昌卤鹅,此后他又 辗转重庆、香港、深圳、长沙等城市、继续向"甲亢哥"投喂卤 鹅。这一行为引发了众多网友关注,让荣昌卤鹅在网络上迅速走 红,相关视频让荣昌卤鹅的网络曝光率暴增 4050%。

重庆荣昌卤鹅爬虫

程序代码 (一)


```
from tkinter import *
from tkinter.messagebox import *
import requests
import re
from snownlp import SnowNLP
import pymysql
```

程序代码 (二)


```
def crawler():
  try:
     headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100
Safari/537.36'}
     global title, score
                                                                   这个城市有点潮」菜昌:不止卤鹅的香 解锁这个小城的独有"匠韵"
     company=E1.get()
                                                                   : 0.9461442198454122
引迪祎荣昌行都在忙啥?吃铺盖面取陶壶穿夏布,跟卤鹅哥"
     url = 'http://www.baidu.com/s?tn=news&rtt=1&wd=' + company
     res = requests.get(url, headers=headers).text
     p_title = '<h3 class="news-title_1YtI1 ">.*?>(.*?)</a>'
     title = re.findall(p_title, res, re.S)
     #下一页
```

程序代码(三)


```
#...
  for i in range(len(title)):
     title[i] = title[i].strip()
     title[i] = re.sub('<.*?>', ", title[i])
                                            🦸 结果
                                                          X
     print(str(i + 1) + '.' + title[i])
     s = SnowNLP(title[i])
     score. append(s. sentiments)
                                                      确定
     print(f"评分: {score}")
  showinfo("结果","{}".format(company+'爬虫成功!'))
except:
  showinfo("结果",{}.format(company+'爬虫失败!'))
```

程序代码 (四)

```
TO STEEL STE
```

```
def save():
                                                                         0.721077
  global title,href
                                                                         0.367738
  try:
                                                       「这个城市有点潮」荣昌:不止卤鹅的香 解锁这个小城的独有"匠韵"
     conn = pymysql.connect(host="localhost", user="root",
     password="123456", database="test")
     cur = conn.cursor()
     cur.execute("""DROP TABLE IF EXISTS result""")
     sql = """CREATE TABLE result (title CHAR(100), score float)"""
     cur.execute(sql)
     conn.commit()
     conn.close()
     #...
```

程序代码(五)


```
#将数据存入数据库
    conn = pymysql.connect(host='localhost', port=3306, user='root',
password='123456', database='test')
    cur = conn. cursor()
    for i in range(len(title)):
      sql = "INSERT INTO result(title,score) VALUES (%s,%s) "
    cur. execute(sql, (title[i],score[i]))
    conn. commit()
    cur. close()
    conn. close()
    showinfo("存储","存入数据库成功")
  except:
    showinfo("存储","存入数据库失败")
```

程序代码 (六)


```
root = Tk()
root.title("网络爬虫")
root.geometry("250x150")
L1 = Label(root, text="关键词: ",font=20)
L1.place(x=10,y=20)
E1 = Entry(root, bd =5,font=20,width=15)
E1.place(x=80,y=20)
B1 = Button(root, text="开始爬取
",font=20,width=10,command=crawler)
                                     ∅ 网络爬虫
B1.place(x=10,y=80)
                                     关键词: 重庆荣昌卤鹅
B2 = Button(root, text="存入数据库
",font=20,width=10,command=save)
                                              存入数据库
                                      开始爬取
B2.place(x=130,y=80)
root.mainloop()
```

Matplotlib

Matplotlib常用函数

函数名称	函数作用
plot()	绘图折线图
show()	在本机显示图形

常用函数及其属性

plt.figure(figsize=(w, h)): 创建绘图对象,并设置宽度w和高度h

plt.title(): 为图表添加标题

plt.plot()参数主要包括:

- ➤ 常见的颜色字符: 'r'、'g'、'b'、'y'、'w'等
- ▶ 常见的线型字符: '-'(直线)、'--'(虚线)、':'(点线)等
- ➤ 常用的描点标记: 'o'(圆圈)、's'(方块)、'^'(三角形)等

Matplotlib应用案例

编写程序:从文件中读入某股票的日期和成交量,使用matplotlib 绘制出价格折线图。

Matplotlib应用案例


```
import matplotlib.pyplot as plt
date,num = [],[]
with open("上证指数1.txt","r") as fobj:
  for i in fobj:
     if i[:2]=="日期":
        continue
                                                       1/8 1/9 1/10 1/11 1/14 1/15 1/16 1/17 1/18 1/21 1/22 1/23 1/24 1/25 1/28
     i=i.strip(); info=i.split(",")
     date.append(info[0][5:]); num.append(float(info[6]))
plt.rcParams['font.sans-serif']=['SimHei']
plt.title("上证指数一月份成交量")
plt.plot(date,num,"or-")
plt.show()
```

Matplotlib常用函数

函数名称	函数作用
plot()	绘图折线图
show()	在本机显示图形
bar()	绘制垂直条形图

绘制垂直条形图

import matplotlib.pyplot as plt name=["阿里巴巴","京东","拼多多"] grade=[85, 95, 75] #虚构数据仅为举例 plt.rcParams['font.sans-serif']=['SimHei'] plt.bar(name, grade) plt.show()

绘制水平条形图

import matplotlib.pyplot as plt name=["阿里巴巴","京东","拼多多"] grade=[85, 95, 75] #虚构数据仅为举例 plt.rcParams['font.sans-serif']=['SimHei'] plt.barh(name, grade) plt.show()

思考题

编写程序:从文件中读入某股票的日期和成交量,使用matplotlib 绘制出价格条形图。

Matplotlib应用案例


```
import matplotlib.pyplot as plt
date,num = [],[]
with open("上证指数1.txt","r") as fobj:
  for i in fobj:
    if i[:2]=="日期":
       continue
    i=i.strip(); info=i.split(",")
    date.append(info[0][5:]); num.append(float(info[7]))
plt.rcParams['font.sans-serif']=['SimHei']
plt.title("上证指数一月份成交量")
plt.bar(date,num)
plt.show()
```

Matplotlib常用函数

函数名称	函数作用
plot()	绘图折线图
show()	在本机显示图形
bar()	绘制垂直条形图
scatter()	绘制散点图

绘制散点图

import matplotlib.pyplot as plt name=["阿里巴巴","京东","拼多多"] grade=[85, 95, 75] #虚构数据仅为举例 plt.rcParams['font.sans-serif']=['SimHei'] plt.scatter(name, grade) plt.show()

思考题

编写程序:从文件中读入某股票的日期和成交量,使用matplotlib 绘制出价格散点图。

Matplotlib应用案例


```
import matplotlib.pyplot as plt
date,num = [],[]
with open("上证指数1.txt","r") as fobj:
  for i in fobj:
    if i[:2]=="日期":
       continue
    i=i.strip(); info=i.split(",")
    date.append(info[0][5:]); num.append(float(info[7]))
plt.rcParams['font.sans-serif']=['SimHei']
plt.title("上证指数一月份成交量")
plt.scatter(date,num)
plt.show()
```

Matplotlib常用函数

函数名称	函数作用
plot()	绘图折线图
show()	在本机显示图形
bar()	绘制垂直条形图
scatter()	绘制散点图
pie()	绘制饼图

绘制饼图

import matplotlib.pyplot as plt score=[85, 95, 75]

plt.pie(score)
plt.show()

制作个人消费饼图

import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] labels = ['吃饭','日用品','学习用具','其它'] sizes = [1200, 300, 200, 500]explodes = (0,0,0,0.2)plt.pie(sizes, explode = explodes, labels = labels, autopct='%.1f%%', shadow=True) plt.title("4月份个人消费分析") plt.show()

Matplotlib常用函数

函数名称	函数作用
plot()	绘图折线图
show()	在本机显示图形
bar()	绘制垂直条形图
scatter()	绘制散点图
pie()	绘制饼图
subplot()	绘制子图

个人消费对比分析

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei']

p1=plt.subplot(121)

p2=plt.subplot(122)

labels = ['吃饭','日用品','学习用具','其它']

sizes1 = [1200,300,200,500]

sizes2 = [1100,400,300,800]

explodes = (0,0,0,0.2)

p1.pie(sizes1,explode=explodes,labels=labels,
autopct='%1.1f%%', shadow=True)

p2.pie(sizes2,explode=explodes,labels=labels,
autopct='%1.1f%%', shadow=True)

plt.suptitle(''3、4月份个人消费分析'')

plt.show()

Numpy

NumPy(Numerical Python的缩写): 是一个开源的Python 科学计算库, NumPy数组在数值运算方面的效率优于列表。它是数据分析、机器学习和科学计算的主力军。

官网: https://numpy.org/doc/stable/

创建Numpy数组

```
>>> import numpy as np #一般以np作为别名
>>> score=np.array([80,91,78]) # 创建一维数组
>>> print(score+5)
>>> b = np.array([[10,5],[30,6]]) # 创建二维数组
>>> print(b*b)
```


Numpy重要函数

```
>>> import numpy as np
```

>>> a = np. arange(0,10, 0.1)

>>> b = np. linspace(0,10,100)

>>> c=a. reshape(20,5)

>>> result=a. reshape(-1,1)

#[0, 10), 步长为0.1

#[0,10],分成100份

#变为20行5列

#变成1列

>>> test=result. flatten() #返回一个折叠成一维的数组


```
import numpy as np
```

import numpy as np

x=np.arange(0,2*np.pi,0.01) #x从0到2π, 步长0.01

y=np.sin(x)

plt.plot(x,y)

plt.show()

Numpy绘制函数图

```
import matplotlib.pyplot as plt import numpy as np
```

x=np.linspace(0,2*np.pi,100) #x从0到2π分成100份

y=np.sin(x)

plt.plot(x,y)

plt.show()

思考题

编写程序,绘制正态分布的密度函数: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

其中: $\mu = 0, \sigma = 1$ x \in [-5,5]

40

40

正态分布密度函数

```
import matplotlib.pyplot as plt
```

from numpy import *

plt.figure(figsize=(4,3))

x=linspace(-5,5,100) #x从-5到5分成100份

y=(1/(sqrt(2*pi)))*exp(-(x*x)/2)

plt. plot(x,y,'-b')

plt. show()

Numpy元素取值

```
>>> import numpy as np
```

>>> a = np. arange(10). reshape(2,5)

>>> a[0]

#打印第1行

>>> a[1][2]或者a[1,2]

#打印第2行第3列

>>> a[:,1]

#打印第2列

>>> a[:,[1,3]]

#打印第2、4列

课堂练习

若temp=np. arange(0,20).reshape(5,4), 则temp[3,2]的

值为()。

A, 12

B, 13

C, 14

D, 15

随机整数

numpy.random. randint(low, high, size, dtype=int):返回范围为[low, high)随机整数,size为数组尺寸

- >>> import numpy as np
- >>> one=np. random. randint(2) #产生1个[0,2)之间随机整数
- >>> grade=np. random. randint(1,5,size=10) #产生10个[1,5)之间随机整数
- >>> salary=np. random. randint(2000,3000,size=(2,4)) #2行4列

工资奖金散点图


```
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.family']=['SimHei']
salary=np. random. randint(8000,15000,size=200)
bonus=np. random. randint(500,1000,size=200)
plt.scatter(salary,bonus,c="r",marker="*")
plt.xlabel("工资")
plt.ylabel("奖金")
plt.title('工资奖金分布图')
plt.show()
              如何产生浮点数工资及奖金?
```


随机浮点数

numpy.random.uniform(low,high,size): 从一个均匀分布

[low,high)中随机采样, size为样本数目

- >>> import numpy as np
- >>> **test=np. random. uniform()** #产生1个[0,1)之间随机浮点数
- >>> score= np. random. uniform(0, 100, size=3) #产生 3个0-99的随机浮点数
- >>> s= np. random. uniform(200,300,size=(2,4)) #产生2行4列200-299的浮点数

案例分析

import numpy as np import matplotlib.pyplot as plt x = np.arange(0, 10, 0.2)y1=3*x+5y2=y1+np.random.uniform(-5,5,size=50) plt.plot(x,y1,"r-",label='y1')plt.plot(x,y2,"b--",label='y2')plt.legend(loc='upper left') plt.show()

如何将数据存入文件中?

Numpy数据存储

import numpy as np

	А	В	С	D	Е	F	G	Н		J
1	5	5.6	6.2	6.8	7.4	8	8.6	9.2	9.8	10.4
2	5.2	9.3	5.4	10.2	2.5	12.3	9	12	9.4	12.1

import matplotlib.pyplot as plt

x = np.arange(0, 10, 0.2)

$$y1=3*x+5$$

y2=y1+np.random.uniform(-5,5,size=50)

$$c=[y1,y2]$$

np.savetxt("result.csv",c,fmt='%.1f',delimiter=',', newline='\n')

思考

如何从文件中读取销售额和费用并绘制图形?

	Α	В
1	261.54	35
2	6	2.56
3	2808.08	5.81
4	1761.4	89.3
5	160.2335	5.03
6	140.56	8.99
7	288.56	2.25
8	1892.848	8.99
9	2484.7455	4.2
10	3812.73	1.99
11	108.15	0.7
12	1186.06	3.92
13	51.53	0.7
14	90.05	2.58
15	7804.53	5.99

销售额与费用散点图


```
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.family']=['SimHei']
result=np.loadtxt("trade.csv",delimiter=",")
money=result[:,0]
cost=result[:,1]
plt.scatter(money,cost,c="r",marker="*")
plt.xlabel("销售额")
plt.ylabel("费用")
plt.title('销售额费用分布图')
plt.show()
```

	Α	В
1	261.54	35
2	6	2.56
3	2808.08	5.81
4	1761.4	89.3
5	160.2335	5.03
6	140.56	8.99
7	288.56	2.25
8	1892.848	8.99
9	2484.7455	4.2
10	3812.73	1.99
11	108.15	0.7
12	1186.06	3.92
13	51.53	0.7
14	90.05	2.58
15	7804.53	5.99

np.random.seed()函数

np.random.seed(): seed()中的参数被设置了之后,可以按顺序产生一组固定的数组。如果使用相同的seed()值,则每次生成的随机数都相同。如果不设置这个值,那么每次生成的随机数不同。

案例分析


```
import numpy as np
np.random.seed(1)
L1 = np.random.randn(3, 3)
L2 = np.random.randn(3, 3)
print(L1)
print(L2)
```

import numpy as np np.random.seed(1) L1 = np.random.randn(3, 3)np.random.seed(1) L2 = np.random.randn(3, 3)print(L1) print(L2)

只调用一次seed(),两次的产生随机数不同

调用两次seed(),两次产生的随机数相同

np.random.randn()函数

np.random.randn(): 生成服从标准正态分布的随机数。标准正态分布,也称为高斯分布,是一种概率分布,其概率密度函数呈钟形曲线,均值为0,标准差为1。在深度学习和统计学中,这个函数常用于生成符合正态分布的随机数据。

np.random.randn(3,4): 生成一个3行4列的二维数组,数组中的每个元素都是从标准正态分布中随机抽取的。

案例分析

案例分析

import matplotlib.pyplot as plt import numpy as np np.random.seed(1) t = np.arange(0, 30, 0.01)nse1 = np.random.randn(len(t))nse2 = np.random.randn(len(t))s1 = np.sin(2 * np.pi * 10 * t) + nse1s2 = np.sin(2 * np.pi * 10 * t) + nse2plt.plot(t, s1, t, s2); plt.xlim(0, 2)

plt.xlabel('Time (s)'); plt.ylabel('s1 and s2')

plt.grid(True); plt.show()

Matplotlib常用函数

函数名称	函数作用
plot()	绘图折线图
show()	在本机显示图形
bar()	绘制垂直条形图
scatter()	绘制散点图
pie()	绘制饼图
subplot()	绘制子图
hist()	绘制直方图

直方图

直方图(Histogram): 又称质量分布图,是一种统计报告图,

由一系列高度不等的纵向条纹或线段表示数据分布的情况。

一般用横轴表示数据类型,纵轴表示分布情况。

直方图

构建直方图:第一步是将值的范围分段,即将整个值的范围分成一系列间隔,然后计算每个间隔中有多少值。直方图是用面积表示各组频数的多少,矩形的高度表示每一组的<u>频数</u>

或频率, 宽度则表示各组的组距。

plt.hist(x, bins=10, range=None, normed=False, ...)

x: 指定要绘制直方图的数据

bins: 指定直方图条形的个数

range: 指定直方图数据的上下界

normed: 是否将直方图的频数转换成频率

绘制直方图

import matplotlib.pyplot as plt

import numpy as np

#生成10000个高斯分布随机数

x=np. random. randn(10000)

plt. hist(x)

plt. show()

函数名称	函数作用
plot()	绘图折线图
show()	在本机显示图形
bar()	绘制垂直条形图
scatter()	绘制散点图
pie()	绘制饼图
subplot()	绘制子图
hist()	绘制直方图
boxplot()	绘制箱型图

样本分位数

四分位数(Quartile):指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。

第一四分位数 (Q1): 第25%的数字

第二四分位数 (Q2): 第50%的数字

第三四分位数 (Q3): 第75%的数字

62

箱型图

1977年由美国统计学家John Tukey发明

案例分析

import numpy as np import matplotlib.pyplot as plt a=np.loadtxt("advertising.csv",delimiter=",") h=a[:,0]; w=a[:,1]h=h.reshape(-1,1); w=h.reshape(-1,1)plt.subplot(121); plt.xlabel("wechat"); plt.boxplot(h) plt.subplot(122); plt.xlabel("weibo"); plt.boxplot(w) plt.show()

Seaborn

Seaborn: 是一种基于matplotlib的图形可视化python libraty。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。Seaborn其实是在matplotlib 的基础上进行了更高级的API封装,从而使得作图更加容易,应该把Seaborn视为matplotlib的补充,而不是替代物。

http://seaborn.pydata.org/

Seaborn

3	193	236	235	267	317	356	362	4
3	181	235	227	269	313	348	348	6.0
2	183	229	234	270	318	355	363	4
3	218	243	264	315	374	422	435	4
)	230	264	302	364	413	465	491	CD
9	242	272	293	347	405	467	505	CD
1	209	237	259	312	355	404	404	4
2	191	211	229	274	306	347	359	4
3	172	180	203	237	271	305	310	3
							3	6

np.random.rand(): 生成[0,1)区间内的均匀分布的随机数。

np.random.rand(3, 4): 生成一个3行4列的二维数组,数组中的每个元素都是在[0, 1)区间内随机生成的。

np.random.random()函数

np.random.random():与np.random.rand()函数在功能上相同

np.random.rand(3, 4): 生成一个3行4列的二维数组,数组中的每个元素都是在[0, 1)区间内随机生成的。

热力图

import numpy as np - 0.8 import seaborn as sb - 0.6 import matplotlib.pyplot as plt - 0.4 data = np.random.rand(4,6)- 0.2 $heat_map = sb.heatmap(data)$ plt.show() 0

谢谢