

Randomization & Approximation in Machine Learning and Neural Network Pruning

Math 76 Final Project

Warren Shepard Sri Korandla Tushar Aggarwal August 2024

Dr. Alice Schwarze

Table of contents

- 1. The basics
- 2. k Approximate Nearest Neighbors
- 3. Graph-Based Semi-Supervised Learning
- 4. Randomized Pruning
- 5. Questions

Basic Randomization & Approximation in ML

Randomization & Approximation as we know it

The randomization techniques from class mostly involve **splitting** or **modifying data** randomly:

splitting data into training and testing subsets

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

- · bagging/bootstrapping procedures
- random parameter/weight initialization in neural networks

Approximation is of course the goal of machine learning, but we often use *exact* algorithms in ML models instead of approximation algorithms

What else can Randomization & Approximation be used for

- · Optimization:
 - · trade "accuracy" for speed
 - oftentimes algorithms have \geq 90% accuracy
- · In neural networks
 - "Prune" connections (somewhat) at random to get a smaller model with higher accuracy
- Sometimes, allowing some error is more "realistic" leading to a higher accuracy
 - higher accuracy's could also be because of a reduction in over fitting

Example: k Approximate Nearest Neighbors

Naive Solution

Problem: Given a set of vectors *S* in a data space and a similarity measure DIST (for example euclidean distance) find the k nearest ("most similar") neighbors to some input *x*.

Brute force solution: compare to every other point

- 1: **procedure** BRUTE-KNN(x, S, DIST, k = 1)
- 2: Compute DIST $(x, s) \forall s \in S$
- return k points ($s \in S$) with smallest DIST values

Issue: expensive and **redundant** (especially in higher dimensions and when there is lots of training data); O(n) lookup

k Approximate Nearest Neighbors (kANN)

A) data points; B) & C) approximate nearest neighbor [3]

Locality Sensitive Hashing (LSH)

Hashing:

- hash function: $f: U \to [n]$ where |U| >> n and n is (usually) prime
- typically, two inputs have a very low probability of "colliding" (their output is the same)
 - · inputs will have different "hashes" even if they are very similar

Locality Sensitive Hashing (LSH)

- two inputs which are similar have a high probability of colliding
 [3]
- \cdot can be used to solve kANN with high accuracy and in less time

LSH Preprocessing

Pre processing for LSH; completed in O(n) time

LSH Query

Querying for LSH; completed in O(1) time per query

Approximate-KNN Experiment

- using PyNNdescent package for kANN implementation [5]
 - · uses modern kANN algorithm [1], written in python
 - · accuracy converges to 90%
- Naive brute force implementation hand written in python
 - did not use an implementation from scikitlearn because compiled in C
 - best to have implementation we are comparing all in the same language

Results

kNN vs kANN raw accuracy and time comparison

- Constructing the k Nearest Neighbor Graph dominates runtime
- Most Label Propagation Algorithms (LPA) are simple and near linear in time

Parameters:

- · y := initial labels; $y_i := \text{label of node } i$; -1 if unlabeled
- W := adjacency matrix of nearest neighbors graph
- $\alpha \in [0,1] :=$ "clamping factor" indicating influence of initial labels per iteration

Update Rules:

$$F_{ic}^{(0)} \leftarrow \begin{cases} 1 & \text{if } y_i = c \\ 0 & \text{otherwise} \end{cases}$$
 F_{ic} is the **confidence** of node i having label c

$$\cdot \ F_{ic}^{(t+1)} \leftarrow \underbrace{\alpha \textit{WF}^{(t)}}_{\text{propagate from neighbors}} + \underbrace{(1-\alpha)F^{(0)}}_{\text{account for initial labels}}$$

$$y_i^* \leftarrow \arg\max_c F_{ic}^{(t_{\max})}$$
 y_i^* is the vector of final labels

Results I

Results I

Nearest Neighbor graph with k=5

Results I

Final labels using $\alpha=.99$

Results II

· Time: 4.20 seconds

· Accuracy: 0.976

· Time: 2.89 seconds

· Accuracy: 0.977

MNIST Dataset Preprocessing

- Normalized signal to take value $\in [0,1]$
- PCA to extract top 50 principle components
- masked 90% of labels to simulate semi-supervised learning;
 kept full label set for accuracy testing

MNIST Dataset Results

- * Ran with A100 GPU runtime on Google Colab
- * Parameters:

Using Brute Force kNN:

· Accuracy: 0.933

· Total Time: 18.81 minutes

Time to construct kNN-graph: 17.14 minutes

Using k Approximate NN:

· Accuracy: 0.955

· Time: 1.79 minutes

Time to construct kANN-graph:

MNIST Dataset Results

- * Ran with A100 GPU runtime on Google Colab
- * Parameters:

Using Brute Force kNN:

Accuracy: 0.933

· Total Time: 18.81 minutes

Time to construct kNN-graph: 17.14 minutes

Using k Approximate NN:

· Accuracy: 0.955

· Time: 1.79 minutes

• Time to construct kANN-graph: < 6.2 seconds

MNIST Dataset Results

- * Ran with A100 GPU runtime on Google Colab
- * Parameters:

Using Brute Force kNN:

- · Accuracy: 0.933
- · Total Time: 18.81 minutes
- Time to construct kNN-graph: 17.14 minutes

Using k Approximate NN:

- · Accuracy: 0.955
- Time: 1.79 minutes
- Time to construct kANN-graph: < 6.2 seconds

Approximate NN-graph construction is over 165 times faster than the naive

The Problem With (our) Label Propagation (implementation)

- · In theory, LPA can be parallelized
 - instead of executing sequentially, tasks are executed simultaneously on multiple units (i.e. CPU/GPU)
- No early stopping
 - · the number of iterations is a parameter
 - stop early if there is no/little change between two consecutive iterations
- Not leveraging sparse matrices
 - · MNIST PCA is not sparse!

LPA Implementation Improvements & Results

Improvements:

- · Parallelization did not help
- · Early stopping helped significantly and easy to implement

New results using k Approximate NN:

· Accuracy: 0.966

· Time: 16 seconds

• Time to construct kANN-graph: \approx 6 seconds

· LPA time: 10 seconds; over 10 times faster

Note: accuracy is 1% higher, which indicates initial model may have been slightly overfit

Hyper-Parameter (k) tuning

Accuracy (left) and time (right) comparison for $k \in [2:15]$

Note: Increase in time is a result of NN-graph construction, not LPA

The Inefficiency with LPA (in this context)

- we do not consider distances to nearest neighbors
- however, we already calculated these distances in kNN

- in kANN we did not, but it would take negligible time to compute distances
- Idea: if we consider distances to nearest neighbors in LPA, it could potentially be more accurate

Randomized Pruning in Neural Networks

Why Prune?

- "It is widely acknowledged that large and sparse models have higher accuracy than small and dense models" [4]
- pruning a model prevents over-fitting
- pruned models also require a fraction of the space a unpruned model would need in memory

Neurology Inspiration

Synaptic pruning in the brain [2]

Dataset and Neural Network Architecture

- We use a simple architecture recommended by tensorflow
- · We prune connections on one layer (more detail on next slide)
- pruning is done by setting pruned weights (outgoing to next layer) to zero
- Inspiration for randomized pruning: "Breaking through Deterministic Barriers: Randomized Pruning Mask Generation and Selection" [4]

MNIST Fashion Dataset

RESULTS

Network	Pruning Strategy	Accuracy
No Pruning	No pruning is applied. All connections	87.68%
	are retained.	
Threshold Fraction Pruning	Prune a specified fraction of connec-	86.63%
	tions with the smallest weights.	
Random Pruning	Prune a random subset of connections,	64.56%
	regardless of their weights or impor-	
	tance.	
Importance-Weighted Ran-	Prune connections probabilistically	78.06%
dom Pruning	based on their importance, where more	
	important connections are less likely to	
	be pruned.	
Fractional Random Thresh-	First, select a fraction of connections	87.47%
old Pruning	with the smallest weights. Then, ran-	
	domly prune a smaller fraction of these	
	selected connections.	

Summary of Pruning Strategies for Five Neural Networks

Questions???

References i

W. Dong, M. Charikar, and K. Li.

Efficient k-nearest neighbor graph construction for generic similarity measures.

In Proceedings of the 20th international conference on World wide web, pages 577-586. ACM, 2011.

I. Embrace.

Synaptic growth, synesthesia, and savant abilities. Embrace Autism, 2024.

Accessed: 2024-08-12.

S. Har-Peled, P. Indyk, and R. Motwani.

Approximate nearest neighbor: Towards removing the curse of dimensionality.

Theory of Computing, 8:321–350, 2012.

Special issue in honor of Rajeev Motwani.

References ii

J. Li, W. Gao, Q. Lei, and D. Xu.

Breaking through deterministic barriers: Randomized pruning mask generation and selection.

arXiv preprint arXiv:2310.13183, 2023.

Accessed: 2024-08-14.

PyNNDescent Developers.

PyNNDescent Documentation, 2024.

Accessed: 2024-08-14.