TREŚCI ZADAŃ

Wykorzystując szkielet skryptu z zadania 1.5.3 znajdź maksimum funkcji określonej wzorem:

```
a) f(x,y)=(x^2-y^2)-(1-x)^2, x,y \in <-2,2>
b) f(x,y)=x^2+\sin(y), x \in <0,1>, y \in <0,3.14>
c) f(x,y)=\sin(3\times x+y)\times \sin(y-x)\times x, x,y \in <-5,5>
```

Jeżeli reszta z dzielenia nr nr Twojego indeksu przez 3 wynosi 1 znajdź maksimum funkcji z punktu a), jeżeli 2 z punktu b), jeżeli 0 z punktu c).

Przeprowadź analizę dokładności uzyskanego rozwiązania w zależności od prawdopodobieństwa krzyżowania, wielkości populacji, liczby iteracji oraz prawdopodobieństwa mutacji. W oparciu o przeprowadzone eksperymenty określ optymalne parametry algorytmu genetycznego

Realizacja zadania

#ustawienie parametrów algorytmu ewolucyjnego $min_x = -2$ max_x = 2 min_y = -2 max_y = 2 pop_size = 20 pc = 0.8 pm = 0.1 maxiter = 100 seed = 1 sleep = -1 16 #funkcia optymalizowana 17 18 Funkciaa <- function(x,y) 19 + $(x \land 2 - y \land 2) - (1 - x) \land 2$ #funkcja dopasowania fitness = function(x) Funkcjaa(x[1], x[2]) # wykres funkcji 29
30 x <- y <- seq(-2,2, by = 0.1)
31 f <- outer(x, y, Funkcjaa)
32 persp3D(x, y, f, theta =50, phi =20, col.palette =bl2gr.colors)
33 filled.contour(x, y, f, color.palette = jet.colors) # funkcja monitorujaca działanie algorytmu 38 monitor <- function(obj) 39 * { 40 contour(x, y, f, drawlab contour(x, y, f, drawlabels = FALSE, col = grey(0.5))
title(paste("iteration = obj@iter", 100), font.main = 1)
points(obj@population, pch = 20, col = 2)
Sys.sleep(0.2) 41 58 59 60 #wyświetlanie podsumowanie summary(GA) # wykres - najlepiej dopasowany osobnik abline(v = GA@solution, lty =3) #wyświetlenie wartości najlepszego przystosowania osiagnietego w każdej iteracji GABbestSol

Wykres 3D funkcji: $f(x,y)=(x^2-y^2)-(1-x)^2$

Wykres 2D funkcji: $f(x,y)=(x^2-y^2)-(1-x)^2$

Konfiguracja początkowa – wyniki

Rys. Dane wejściowe i wyniki.

Rys. Wykres przedstawiający populację osobników po setnej iteracji.

Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

Rys. Część najlepszego przystosowania w iteracjach 87-94.

Prawdopodobieństwo krzyżowania równe 1

Rys. Wykres przedstawiający populację osobników po setnej iteracji.

```
-- Genetic Algorithm ------
GA settings:
                     = real-valued
Туре
Population size
Number of generations = 100
Crossover probability = 1
Mutation probability = 0.1
Search domain =
upper
GA results:
Iterations
                      = 100
Fitness function value = 2.880125
Solution =
          x1
[1,] 1.940135 0.01201432
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

```
[[87]]
[1,] 1.940135 0.01201432
[[88]]
[1,] 1.940135 0.01201432
[[89]]
[1,] 1.940135 0.01201432
[[90]]
[1,] 1.940135 0.01201432
[[91]]
[1,] 1.940135 0.01201432
[[91]]
[1,] 1.940135 0.01201432
[[92]]
[1,] 1.940135 0.01201432
[[93]]
[1,] 1.940135 0.01201432
[[93]]
[1,] 1.940135 0.01201432
[[94]]
[1,] 1.940135 0.01201432
```

Rys. Część najlepszego przystosowania w iteracjach 87-94.

Prawdopodobieństwo krzyżowania równe 0.2

Rys. Wykres przedstawiający populację osobników po setnej iteracji.

```
-- Genetic Algorithm ------
GA settings:
                     = real-valued
Туре
Population size
Number of generations = 100
Elitism
Crossover probability = 0.2
Mutation probability = 0.1
Search domain =
     x1 x2
lower -2 -2
upper 2 2
GA results:
Iterations
                      = 100
Fitness function value = 2.970167
Solution =
[1,] 1.985087 -0.002768531
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

ANALIZA

Analizując otrzymane wyniki można dostrzec, że utrzymują się one na dość wysokim poziomie. W początkowej konfiguracji po setnej iteracji algorytmu, wynik pierwszego argumentu funkcji zbliżył się do 2 (x1=1,924283), zaś wynik argumentu drugiego argumentu (x2=0,01966459) zbliżył się do 0. Były to rozwiązania optymalne.

Po zmianie wartości prawdopodobieństwa na 100% wyniki uległy nieznacznemu polepszeniu (x1=1.940135~oraz~x2=0.01201432), natomiast po zmniejszeniu wartości prawdopodobieństwa do 20% wyniki znacznie się polepszyły i znajdowały się bliżej optymalnych wartości (x1=1.985087, x2=-0.002768531).

Polepszenie wyników można zauważyć porównując ze sobą optymalność procentową wyników:

PC	X1	X2
80%	96%	90%
100%	97%	96%
20%	99,5%	99,9%

WPŁYW WIELKOŚCI POPULACJI

Wielkość populacji 500

Rys. Wykres przedstawiający populację osobników po setnej iteracji.

Dane wejściowe i wynik algorytmu

-- Genetic Algorithm -----

```
GA settings:
                          real-valued
Туре
Population size
                          500
Number of generations =
                          100
Elitism
                           25
Crossover probability =
                           0.8
Mutation probability
Search domain =
x1 x2
lower -2 -2
upper 2 2
GA results:
Iterations
                        = 100
Fitness function value = 2.99281
Solution =
[1,] 1.996464 0.01090895
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

Wielkość populacji 100

Rys. Wykres przedstawiający populację osobników po setnej iteracji.

Dane wejściowe i wynik algorytmu

```
GA settings:
                         real-valued
Туре
Population size
                         100
Number of generations =
                         100
Elitism
Crossover probability =
                         0.8
Mutation probability
Search domain =
      x1 x2
lower -2 -2
upper
      2
          2
GA results:
                       = 100
Iterations
Fitness function value = 2.990783
Solution =
[1,] 1.995416 0.00703946
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

ANALIZA

Wpływ liczby osobników na wynik można zauważyć porównując ze sobą optymalność procentową wyników:

Liczba populacji	X1	X2
20	96%	90%
500	99,8%	99,5%
100	99,75%	99,65%

Na podstawie tabeli wyników można dostrzec że zwiększenie populacji do 500 polepszyło wyniki, natomiast po obniżeniu do 100, wynik drugiego argumentu zmalał, natomiast argument pierwszy wzrósł. Wyniki z liczbą populacji 100 są nieco lepsze, dlatego szukając najbardziej dopasowanej wartości celu powinniśmy szukać w przedziale 100-500 (*z liczbami bardziej zmierzającymi do 100*).

Prawdopodobieństwo mutacji

Prawdopodobieństwo mutacji 1

Rys. Wykres przedstawiający populację osobników po setnej iteracji.

```
-- Genetic Algorithm -----
GA settings:
Туре
                       real-valued
Population size
Number of generations = 100
Elitism
Crossover probability = 0.8
Mutation probability =
Search domain =
     x1 x2
lower -2 -2
upper 2 2
GA results:
                      = 100
Iterations
Fitness function value = 2.991083
Solution =
[1,] 1.997269 -0.05877858
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

Prawdopodobieństwo mutacji 0.01

Rys. Wykres przedstawiający populację osobników po setnej iteracji.

```
-- Genetic Algorithm -----
                    = real-valued
Туре
Population size
                    = 100
Number of generations =
                       100
Crossover probability = 0.8
Mutation probability = 0.01
Search domain =
     x1 x2
lower -2 -2
upper 2 2
GA results:
Iterations
                     = 100
Fitness function value = 2.856328
Solution =
          x1
[1,] 1.928164 8.068798e-05
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

Prawdopodobieństwo mutacji 0.5

Rys. Wykres przedstawiający populację osobników po setnej iteracji.

```
-- Genetic Algorithm -----
GA settings:
                       real-valued
Туре
Population size
                       100
Number of generations
                        100
Crossover probability =
                        0.8
Mutation probability =
Search domain =
     x1 x2
     -2 -2
     2
upper
GA results:
                      = 100
Iterations
Fitness function value = 2.990289
Solution =
                     x2
          x1
[1,] 1.997685 0.07128008
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

ANALIZA

W wyniku zwiększania się prawdopodobieństwa mutacji, wyniki coraz bardziej zbliżają się do oczekiwanych wartości. Wraz ze wzrostem prawdopodobieństwa mutacji zwiększa się różnica miedzy najlepszym wynikiem w danej iteracji, a wynikiem średnim, co doskonale reprezentują powyższe wykresy. Wzrost mutacji wpłynął też na szybkość znajdowania osobnika reprezentującego najlepszy wynik, poza tym nastąpił też spadek osobników zbliżonych do optymalnych wyników.

Liczba iteracji

Liczba iteracji równa 10

Rys. Wykres przedstawiający populację osobników po 10- iteracji.

```
Mean = -2.188672 | Best = 1.094012
      iter = 1
                   Mean = -1.326515 | Best =
Mean = -0.280478 | Best =
                                          Best = 1.094012
Best = 1.094012
GΑ
      iter = 3
GA
GA
                   Mean = 0.2426753
      iter = 5
                   Mean = 0.6614948 | Best = 1.5635996
GA
GA
      iter = 6
iter = 7
                   Mean = 0.683115 |
Mean = 1.014847 |
                                         Best = 1.687279
                                       | Best = 1.687279
                 | Mean = 1.002274
      iter = 9 | Mean = 1.043167
                                       | Best = 1.687279
      iter = 10 | Mean = 1.083119 | Best = 1.687279
  #wyświetlanie podsumowanie
-- Genetic Algorithm -----
GA settings:
Type
Population size
                           = real-valued
Number of generations = 10
Elitism = 1
Crossover probability =
Mutation probability =
Search domain =
x1 x2
lower -2 -2
upper 2 2
GA results:
Iterations = 10
Fitness function value = 1.687279
[1,] 1.390324 0.3055639
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

Liczba iteracji równa 1000

Rys. Wykres przedstawiający populację osobników po 1000- iteracji.

Dane wejściowe i wynik algorytmu

-- Genetic Algorithm ------

```
GA settings:
                        real-valued
Туре
Population size
                         20
Number of generations =
                         1000
Elitism
Crossover probability = 0.8
Mutation probability = 0.1
Search domain =
      x1 x2
      -2 -2
2 2
upper
GA results:
Iterations
                       = 1000
Fitness function value = 2.995495
Solution =
           x1
[1,] 1.997747 0.0001000284
```


Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

ANALIZA

Wpływ liczby iteracji na wynik można zauważyć porównując ze sobą optymalność procentową wyników:

Liczba iteracji	X1	X2
20	96%	90%
10	70%	85%
1000	99,86%	100%

Na podstawie wygenerowanych wyników można dostrzec, że wraz ze wzrostem iteracji zwiększa się ilość mutacji i krzyżowań, dzięki czemu wyniki stają się coraz lepsze. Wyniki w 1000 iteracji są najbardziej optymalne (najbardziej zbliżone do oczekiwanych wartości x1=2 oraz x2=0).

Określenie najbardziej optymalnych parametrów na podstawie wcześniej otrzymanych wyników

```
min_x = -2 max_x = 2
min_y = -2 max_y = 2
pop_size = 500 pc = 0.7
pm = 0.01 maxiter = 100
seed = 1 sleep = -1
```


Rys. Wykres 3D

Rys. Mediana, średnia oraz najlepszy wynik w każdej iteracji.

```
-- Genetic Algorithm ------
GA settings:
Туре
                     = real-valued
Population size
                    = 500
Number of generations = 100
Elitism
                     = 25
Crossover probability = 0.7
Mutation probability = 0.01
Search domain =
     x1 x2
lower -2 -2
upper 2 2
GA results:
Iterations
                      = 100
Fitness function value = 2.980505
Solution =
          х1
[1,] 1.990253 0.0007981353
```

Rys. Otrzymane wyniki końcowe.

Rys. Wykres przedstawiający populację osobników po iteracji.

OGÓLNA ANALIZA

- W każdym z powyższych wariantów algorytm odnalazł w danej dziedzinie wartości bliskie najbardziej optymalnym.
- Wraz ze wzrostem populacji wyniki zwiększają się do maksimum.
- Mutacja i krzyżowanie mają duży wpływ na działanie algorytmu. Im większa liczba mutacji
 tym wyniki bardziej zbliżają się do oczekiwanych. Natomiast w przypadku krzyżowania im
 mniejsza ilość prawdopodobieństwa krzyżowania tym lepszy rezultat.
- Liczba iteracji ma wpływ na optymalność czasowa algorytmu.
 Najbardziej optymalne rozwiązanie:

```
-- Genetic Algorithm -----
```

```
GA settings:
                     = real-valued
                     = 10000
Population size
Number of generations = 1000
Elitism
                     = 500
Crossover probability = 0.5
Mutation probability = 0.3
Search domain =
     x1 x2
lower -2 -2
upper 2 2
GA results:
Iterations
                      = 1000
Fitness function value = 2.999974
Solution =
[1,] 1.999987 -0.0001109267
```

WNIOSKI

- Im większa liczba operacji, tym lepszy wynik. Jest to efekt tego, że dłuższe działanie algorytmu, pozwala uzyskać bardziej dokładny wynik.
- Niestety zwiększenie liczby iteracji wpływa też niekorzystnie na optymalność czasową algorytmu.
- Tworzenie nowych pokoleń związane jest z zastosowaniem operatorów genetycznych tj. mutacja czy krzyżowanie.
- Podczas tworzenia kolejnych pokoleń na rodziców wybierane są osobniki o największej wartości przystosowania. Dzięki temu osobniki w kolejnych iteracjach są coraz lepiej przystosowane i dają lepsze wyniki.
- Każdy osobnik żyjący w danym środowisku musi się do niego przystosować, dzięki temu można powiedzieć, że im wyższy wynik, tym osobnik jest bardziej przystosowany do środowiska, w którym żyje.
- Algorytmy genetyczne znajdują bardzo szerokie zastosowanie w różnych dziedzinach życia codziennego. Przykładem jest np. problem komiwojażera, gdzie należy znaleźć najkrótszą drogę łączącą wszystkie miasta, tak aby przez każde z nich przejść tylko raz.

PLIKI

Najlepsze_przystosowanie.R

♣ GA.R –podstawowy algorytm