RNeighbors Classifier

Kneighbors Classifier

Kneighbors Classifier (noneighbors = 3)

kno. fit (x-train, y-train)

3) Experiment with diff. & values

Use cross-val score to evaluate

scores (stability). for different &

values.

Visualize decision boundaries

X-2d = X.iloc [:,1:3]

Take the first 2 features

for 2D plotting

X-Min, X-MOX = X-2d. iloc[:,0]. nuin()-1, getting

X-2d. iloc[:,0]. max()+1 minand

Maxydu

Y-min, y-max = X-2d. iloc[:,1]. min()-1, Column

X-2d. iloc[:,1]. max()+1 hleuse

+1 +0 et

xx144= mp. Meshgaid (mp. amange (x. min, x. mar, 0.02), pp. arrange (y-min, y-wax, EX, X= [1,2,3] The 0.02)) > generates value from

- ximin to xinux with xxivy = np. Neeparid (xxv) (i.e) if x-nein=0 x-nex+1 =)[0 0.02 0.04 0.06 KK= [[11513] YY=[[A, A, A] [11213]] mestipoints = pol. Datofrane (TP. c [xx. novel), yy. novel) columns = Y - od.columns > makes xx andyy [112,3,1,2,3] -> xx as ID array [A, 4, 5, 5, 5] -> 44 tobour what I And np.c do this (444) (244) (344) And pd. Datapaune creates dataset with X-2dicolonins nomes as Column nomes Final Output is like see thin Notebook Hay to hosboard of two as 2100 11 1 stol interpretary plants to (the took of the more most to messens but to some a moseige a min forage (JY . gov. y - 1 decision boundar 4 plot nicely son

I labels : knn. prodict (mosh-prodict)
Detalkength
Like this and it do our normal
know thing (i.e) finding Euclideron distance for each now of this wesh-points with teamed dataset of them. the original dataset
In knn model, it doesn't learn any Pattern and them predict like hormal models.
Det simply stores the feel dateset (trained dateset) during modelling or fraining And later if we want to predict it with
unseen data (test set), it simply computes
Euchidian distance value of any unseen set Eg: X= (x1, x2, XE) Y= (y1, y2) ye) value of thain of thain
diest side 1 15 1-12 to (8-42) the . (CXX-VE) and and content

After this we obtain of of values (per oach 4000), now use need to consider k nearest values (distance) and then take nojonity voting for the outcome (output) Eq: Predict ! (2.5,3) of Petalletingth Perample 2 Sepalwidth Label to indicated Epos Coloring R Computo distances to all points (112) and (2:5:3) =) (12:5-19+13.2) = 1(8) Ily for all other (213) => 0.5 (112), (2.3) (3.3) is nearest, And labels for that are A, A and B So the onewer

the state

I class-to-int = {label: idx for idx label in enumerate (the class this creates a (a) a ? dictionary that has each chasse and with value as integra like o, 1,2. like that · Z=np. array ([class-to-int [labol] for label is ki 2-lobels) for De converts our Inlabel is estaining output te to integer as classito-inf. Z= Z. Reshape (xx. shape) we have to convert I into 2D array because only if 2 is 2d arm. then only de we can plot Decision Soundary Lu We Decision Boundary By computing * [i] [i] ond y [i] [i] > so. we need Z [i] ! plt. contound (xxyy, 2, alpha = 04) diagram's trangerous,

Defines x and y axis values &

x -axis =) xx. min to x. max

y-axis =) yy. min to y. max

this, because whenever,

The plot with color for class o.

>> 2 [i] [i] = 0, if fills that patch of class o.

>> 2 [i] [i] = 1, if fills thith color for closs 1.

And so on

Anows regions where values are the same.

Det automatically finds boundaries when

I changes (ie) class o ends and class 1

begins

This is why how we get our Decision boundary.