1 Algebra

1.1 Sequences and Series

Arithmetic progressions

- $T_n = U_n = a + (n-1)d$.
- A sequence is an A.P if $T_n T_{n-1} = d = \text{constant}$.
- $S_n = \frac{n}{2}(a+l) = \frac{n}{2}(2a+(n-1)d).$
- $\bullet \ T_n = S_n S_{n-1}.$

Geometric progressions

- $\bullet \ T_n = ar^{n-1}.$
- A sequence is a G.P if $\frac{T_n}{T_{n-1}} = r = \text{constant.}$
- $S_n = \frac{a(1-r^n)}{1-r}$.
- $|r| < 1 \implies S_{\infty} = \frac{a}{1-r}$.
- $|r| > 1 \implies$ divergent.

1.2 Summation

For $\sum_{r=m}^{n} u_r$, the number of terms is (n-m+1).

$$\sum_{r=1}^{n} (x_r \pm y_r) = \sum_{r=1}^{n} x_r \pm \sum_{r=1}^{n} y_r$$

$$\sum_{r=1}^{n} k u_r = k \sum_{r=1}^{n} u_r$$

$$\sum_{r=m}^{n} u_r = \sum_{r=1}^{n} u_r - \sum_{r=1}^{m-1} u_r$$

Useful sums:

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{r=1}^{n} r^{3} = (\sum_{r=1}^{n} r)^{2} = \frac{1}{4} n^{2} (n+1)^{2}$$

1.3 Permutations and combinations

$$^{n}C_{r}=rac{n!}{r!(n-r)!}$$
 $^{n}P_{r}=^{n}C_{r}\cdot r!$

If m objects are identical and the remaining are distinct (a total of n objects), permutations = $\frac{n!}{m!}$

1.4 The Binomial Thoerem

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$

1.5 Mathematical induction

- 1. Let P_n be the statement: *ello* for all $n \in \mathbb{Z}^+$.
- 2. For n = 1: LHS = something. RHS = something $\implies P_1$ is true.
- 3. Assume P_k is true for some $k \in \mathbb{Z}^+$.
- 4. Showing that P_{k+1} is true: it is true!
- 5. Since P_1 is true, and P_k is true $\implies P_{k+1}$ is true, by Mathematical Induction, P_n is true for all $n \in \mathbb{Z}^+$.

To do the inductive step:

$$\bullet \sum_{r=1}^{k+1} u_r = u_{k+1} + \sum_{r=1}^{k} u_r$$

$$\bullet \; \frac{d^{k+1}y}{dx^{k+1}} = \frac{d}{dx}(\frac{d^ky}{dx^k})$$

 \bullet For divisibility, let the expression = a multiple of m. You can always rearrange the inductive hypothesis.