LA12 Ch5 The Jordan Canonical Form

KYB

Thrn, it's a Fact

mathrnfact@gmail.com

February 9, 2021

Overview

Ch5. The Jordan Canonical Form

- 5.3 Nilpotent
- 5.2 Generalized eigenspaces
- 5.4 The Jordan canonical form of a matrix Exercises

Definition (Nilpotent)

V: v.sp. $T:V\to V$ linear is nilpotent if $T^k=0$ for some k>0. If such k exists, there is the smallest k>0 such that $T^k=0$ and we say T is nilpotent of index k.

Example

For $A \in \mathbb{C}^{n \times n}$ with e.val λ , we know that $\mathcal{N}(A - \lambda I)^k$ is stable. Let m be the smallest number such that $\mathcal{N}(A - \lambda I)^k = \mathcal{N}(A - \lambda I)^{k+1}$ and $V = \mathcal{N}(A - \lambda I)^m$ Then $T: V \to V$ by $T(x) = (A - \lambda I)x$ is nilpotent.

L_{5.3} Nilpotent

Theorem (249)

Let $T: V \to V$ be linear. If $x \in V$ is satisfying that $T^{k-1}(x) \neq 0$ and $T^k(x) = 0$, then $\{x, T(x), \dots, T^{k-1}(x)\}$ is linearly independent.

Theorem (250)

Let $T: V \to V$ be nilpotent operator of index k. Suppose $x_0 \in V$ is any vector with $V^{k-1}(x) \neq 0$ and define $S = \text{span}\{x_0, T(x_0), \cdots, T^{k-1}(x_0)\}$. Then S is invariant under T. If $k < \dim(V)$, there exists a subspace W of V such that W is invariant under T and $V = S \oplus W$.

To prove the existence of W, we argue by induction on k.

Step1

$$k = 1.$$

Then T(x) = 0, Thus W = V.

Step2

Suppose the result holds for all nilpotent operators of index k-1.

 $R = \mathcal{R}(T)$ is invariant under T and $T|_R : R \to R$ is nilpotent of index k-1. Define $S_0 = S \cap R$ and $y_0 = T(x_0)$. Then

$$S_0 = \operatorname{span} T(x_0), \cdots, T^{k-1}(x_0) = \operatorname{span} y_0, \dots, T^{k-2}(y_0).$$

Then $\dim(S_0) = k - 1$, by I.H, there is W_0 such that $R = S_0 \oplus W_0$.

Step3

We have $S = \{x \in V | T(x) \in S_0\}$. Define $W_1 = \{x \in V | T(x) \in W_0\}$ (W_1 is not desired one). Since W_0 is invariant under T, $W_0 \subset W_1$.

Step4

Claim)

- $ightharpoonup V = S + W_1$
- ► $S \cap W_1 = \text{span}\{T^{k-1}(x_0)\}$
- ▶ Extend $\{T^{k-1}(x_0)\}$ to a basis \mathcal{B} for W_1 and let $W = \operatorname{span}(\mathcal{B} \{T^{k-1}(x_0)\})$.

Then $V = S \oplus W$.

Theorem (251)

Let $T: V \to V$ be a nilpotent operator of index k. Then there exists $\{x_1, \dots, x_s\} \subset V$ and integers r_1, \dots, r_s with $1 < r_s < \dots < r_1 = k$ such that

$$T^{r_i-1}(x_i) \neq 0, T^{r_i}(x_i) = 0$$
 for all $i = 1, \dots, s$,

and

$$x_1,T(x_1),\cdots,T^{r_1-1}(x_1),$$

 \vdots \vdots \vdots \vdots \vdots \vdots \vdots $x_s,T(x_s),\cdots,T^{r_s-1}(x_s)$

form a basis for V.

Step1

We can choose a nonzero vector $x_1 \in V$ such that $T^{k-1}(x_1) \neq 0$ and $T^k(x_1) = 0$. Let $r_1 = k$ and $S_1 = \text{span}\{x_1, T((x_1), \cdots, T^{r_1-1}(x_1))\}.$

Step2

By Thm250, S_1 is invariant under T and there is W_1 such that $V = S_1 \oplus W_1$. Note that $\dim(W_1) < \dim(V)$ and $T\big|_{W_1}$ is nilpotent of index $W_2 \le r_1$. Applying Step2 on W_1 and then we get $S_1 = \operatorname{span} x_2, T(x_2), \cdots, T^{r_2-1}(x_2)$. Continue in this fashion to find x_1, \cdots, x_s .

For convenient, assume $k = \dim(V)$. Then $\{x_1, \dots, T^{k-1}(x_1)\}$ is a basis for V. Label $u_1 = T^{k-1}(x_1), \dots, u_k = x_1$. Then $T(u_1) = 0, T(u_j) = u_{j-1}$ for $j = 2, \dots, k$. In terms of the isomorphism bwtween V and F^k , $u_i \mapsto e_i$, then

$$[T] = J = egin{bmatrix} 0 & 1 & & & \ & 0 & 1 & & \ & & \ddots & \ddots & \ & & & 0 & 1 \ & & & & 0 \end{bmatrix}$$

In general, for s > 1, we can find a basis $\{u_1, \dots, u_n\}$ such that

$$u_{1} = T^{r_{1}-1}(x_{1}), \dots, u_{r_{1}} = x_{1},$$

$$u_{r_{1}+1} = T^{r_{2}-1}(x_{2}), \dots, u_{r_{2}} = x_{2},$$

$$\vdots$$

$$u_{n-r_{s}+1} = T^{r_{s}-1}(x_{s}), \dots, u_{r_{s}} = x_{s}$$

with J_i , and

$$[A]=J=egin{bmatrix} J_1 & & & \ & J_2 & & \ & & \ddots & \ & & & J_s \end{bmatrix}$$

Lemma (232)

 $A \in F^{n \times n}$. If A has the form

$$A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$$

where
$$B \in F^{k \times k}$$
, $C \in F^{k \times (n-k)}$, and $D \in F^{(n-k) \times (n-k)}$, then

$$\det(A) = \det(B) \det(D) \qquad p_A(r) = p_B(r)p_D(r).$$

Proof

It suffices to show that det(A) = det(B) det(D).

$$\det(A) = \sum_{\tau \in S_n} \sigma(\tau) A_{\tau(1)1} \cdots A_{\tau(n)n}$$

Consider $\tau_1 \in S_k$ and $\tau_2 \in S_{n-k}$. Then we can make $\tau \in S_n$ by

$$\tau(i) = \begin{cases} \tau_1(i) & \text{for } i = 1, \dots, k \\ k + \tau_2(i - k) & \text{for } i = k + 1, \dots, n \end{cases}$$

Continue

Moreover, we can regard τ_1, τ_2 as elements, and then $\tau = \tau_1 \tau_2$, and $\sigma(\tau) = \sigma(\tau_1)\sigma(\tau_2)$. If $\tau \in S_n$ is not a form $\tau_1 \tau_2$, there $i \le k < j$ such that $\tau(i) = j, \tau(j) = i$. Then $A_{\tau(i)i} = 0$. Thus

$$\begin{aligned} \det(A) &= \sum_{\tau \in S_n} \sigma(\tau) A_{\tau(1)1} \cdots A_{\tau(n)n} \\ &= \sum_{\tau_1, \tau_2} \sigma(\tau_1) \sigma(\tau_2) \left(B_{\tau_1(1)1} \cdots B_{\tau_1(k)k} \right) \left(D_{\tau_2(k+1)k+1} \cdots D_{\tau_2(n)n} \right) \\ &= \det(B) \det(D) \end{aligned}$$

Recall

- ▶ $A \in F^{n \times n}$, define $N = \mathcal{N}(A)$. If there exists a subspace R of F^n such that R is invariant under A and $F^n = N \oplus R$, then R = col(A).
- ► TFAE.
 - 1. there exists a subspace R of F^n such that R is invariant under A and $F^n = N \oplus R$
 - 2. $\mathcal{N}(A) \cap \operatorname{col}(A) = \{0\}$, in which case $R = \operatorname{col}(A)$.
- $\mathcal{N}(A) \cap \operatorname{col}(A) = \{0\}$ if and only if $\mathcal{N}(A^2) = \mathcal{N}(A)$. $A \in F^{n \times n}, \ \lambda \in F$.
- ▶ If *S* is a subspace of F^n , then *S* is invariant under *A* iff *S* is invariant under $A \lambda I$.

Theorem (233)

 λ : e.val of $A \in F^{n \times n}$ and suppose $\mathcal{N}((A - \lambda I)^2) = \mathcal{N}(A - \lambda)$. Then $m.geo(\lambda) = m.alg(\lambda)$.

Proof

Let $k = \text{m.geo}(\lambda), m = \text{m.alg}(\lambda)$. We can find bases $\{x_1, \dots, x_k\}$ and $\{x_{k+1}, \dots, x_n\}$ for $N = \mathcal{N}(A - \lambda I)$ and $R = \text{col}(A - \lambda)$, respectively. Then $F^n = N \oplus R$. Then $\{x_1, \dots, x_n\}$ is a basis for F^n and if put $X = [x_1 | \cdots | x_n]$,

$$X^{-1}AX = \begin{bmatrix} \lambda I & 0 \\ \hline 0 & D \end{bmatrix}$$

Then $p_A(r) = (r - \lambda)^k p_D(r)$.

Continue

On the other hand, m.alg(λ) = m implies $p_A(r) = (r - \lambda)^m q(r)$ where $q(\lambda) \neq 0$. To prove k=m, it suffices to show that $p_D(\lambda) \neq 0$. Let $X_1=[x_1|\cdots|x_k], X_2=[x_{k+1}|\cdots|x_n]$. Suppose not. Then there is a nonzero $u \in F^{n-k}$ such that $Du = \lambda u$.

$$A[X_1|X_2] = [X_1|X_2] \begin{vmatrix} \lambda I & 0 \\ \hline 0 & D \end{vmatrix} \Rightarrow AX_1 = \lambda X_2, AX_2 = X_2D.$$

Define $x = X_2 u$.

$$Ax = AX_2u = X_2Du = X_2(\lambda u) = \lambda(X_2u) = \lambda x.$$

Corollary (234)

If $A \in \mathbb{C}^{n \times n}$ and for each e.val λ of A,

$$\mathcal{N}((A - \lambda I)^2) = \mathcal{N}(A - \lambda I),$$

then A is diagonalizable.

How about *A* is not diagonalizable? A: Jordan Canonical Form

Theorem (235)

 $A \in \mathbb{C}^{n \times n}$, and let λ be e.val of A with m.alg $(\lambda) = m$. Then:

1. there exists a smallest k > 0 such that

$$\mathcal{N}((A - \lambda I)^{k+1}) = \mathcal{N}((A - \lambda I)^k);$$

- 2. for all l > k, $\mathcal{N}((A \lambda I)^l) = \mathcal{N}((A \lambda I)^k)$;
- 3. $N = \mathcal{N}((A \lambda I)^k)$ and $R = col((A \lambda I)^k)$ are invariant under A;
- **4.** $\mathbb{C}^n = N \oplus R$:
- **5**. $\dim(N) = m$.

Definition (Generalized eigenspaces)

For such k, $G_{\lambda}(A) = \mathcal{N}((A - \lambda I)^k)$.

1

there exists a smallest k > 0 such that

$$\mathcal{N}((A - \lambda I)^{k+1}) = \mathcal{N}((A - \lambda I)^k)$$

Tutoring Linear Algebra

└Ch5. The Jordan Canonical Form 5.2 Generalized eigenspaces

for all
$$l > k$$
, $\mathcal{N}((A - \lambda I)^l) = \mathcal{N}((A - \lambda I)^k)$;

Ch5. The Jordan Canonical Form
5.2 Generalized eigenspaces

$$N = \mathcal{N}((A - \lambda I)^k)$$
 and $R = \operatorname{col}((A - \lambda I)^k)$ are invariant under A ;

Tutoring Linear Algebra

LCh5. The Jordan Canonical Form L_{5.2} Generalized eigenspaces

$$\mathbf{4.}$$

$$\mathbb{C}^n = N \oplus R;$$

Tutoring Linear Algebra

☐ Ch5. The Jordan Canonical Form ☐ 5.2 Generalized eigenspaces

$$\frac{5.}{\dim(N)} = m.$$

Lemma (237)

Let $A \in \mathbb{C}^{n \times n}$. If λ_i 's are distinct e.vals of A ($i = 1, \dots, s$) and if

$$x_1 + \cdots + x_s = 0, x_i \in G_{\lambda_i}(A)$$

then $x_1 = \cdots = x_s = 0$.

Theorem (238)

If

$$p_A(r) = (r - \lambda_1)^{m_1} \cdots (r - \lambda_t)^{m_t}$$

where λ_i 's are the distinct e.vals of A. Then $\mathbb{C}^n = \bigoplus G_{\lambda_i}(A)$.

For convenient, assume m.alg(λ) = n for $A \in \mathbb{C}^{n \times n}$. Let $N = \mathcal{N}((A - \lambda I)^n)$ Then there is a smallest k < n such that

$$\mathcal{N}((A - \lambda I)^k) = \mathcal{N}((A - \lambda I)^n)$$

Then $x \in N$, $(A - \lambda I)^k x = 0$. But there exists at least one nonzero $x \in N$ such that $(A - \lambda I)^{k-1} x \neq 0$.

Thus we can find $\{x_1, \dots, x_s\}$ and $1 \le r_1 \le \dots \le r_s = k$ such that

$$(A - \lambda I)^{r_i - 1} x_i = \neq 0, (A - \lambda I)^{r_i} x_i = 0$$

and

$$x_1,(A-\lambda I)x_1,\cdots,(A-\lambda I)^{r_1-1}x_1,$$

 \vdots \vdots \vdots \vdots \vdots \vdots \vdots $x_s,(A-\lambda I)x_s,\cdots,(A-\lambda I)^{r_s-1}x_s$

form a basis for \mathbb{C}^n .

Assume
$$s=1$$
. Then $\{x, (A-\lambda I)x, \cdots, (A-\lambda I)^{n-1}x\}$ is a basis for \mathbb{C}^n . Define $x_i=(A-\lambda I)^{n-i}x$ for $i=1,\cdots,n$. Let $X=[x_1|\cdots|x_n]$. Then
$$(A-\lambda I)X=[0|x_1|\cdots|x_{n-1}]$$

$$AX=[\lambda x_1|\cdots|\lambda x_n]+[0|x_1|\cdots|x_{n-1}]$$

$$=[x_1|\cdots|x_n]\begin{bmatrix}\lambda\\&\ddots\\&&\lambda\end{bmatrix}+[x_1|\cdots|x_n]\begin{bmatrix}0&1\\&\ddots&\ddots\\&&0&1\\&&&0\end{bmatrix}$$

$$AX = X \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda \end{bmatrix} = XB$$
$$X^{-1}AX = B$$

In general, let e.vals λ_i with m.alg $\lambda_i = m_i$ ($i = 1, \dots t$). For each i let k_i be the nilpotent index of $A - \lambda_i$. Define $N_i = \mathcal{N}((A - \lambda_i)_i^k)$. Then we can find $k_i \geq r_1^{(i)} \geq \cdots \geq r_1^{(s_i)}$ and $x_1^{(i)}, \cdots, x_{s_i}^{(i)}$ such that

$$x_1^{(i)}, (A - \lambda_i I) x_1^{(i)}, \cdots, (A - \lambda_i I)^{r_1^{(i)} - 1} x_1^{(i)},$$

 $\vdots \qquad \vdots \qquad \vdots$
 $x_{s_i}^{(i)}, (A - \lambda_i I) x_{s_i}^{(i)}, \cdots, (A - \lambda_i I)^{r_{s_i}^{(i)} - 1} x_{s_i}^{(i)}$

form a basis for N_i . Define $X_i^{(i)} = [(A - \lambda_i I)^{r_i^{(i)} - 1} x_1^{(i)} | \cdots | x_i^{(i)}]$

Then $AX_i^{(i)} = X_i^{(i)}J_i^{(i)}$ where

Now define $X_i = [X_1^{(i)}| \cdots | X_{r_i}^{(i)}]$ and $AX_i = X_iB_i$ where

$$B_i = egin{bmatrix} J_1^{(i)} & & & & \ & J_2^{(i)} & & & \ & & \ddots & & \ & & & J_{s_i}^{(i)} \end{bmatrix}$$

Finally, define $X = [x_1| \cdots | X_t]$. Then AX = XJ where

$$J = egin{bmatrix} B_1 & & & \ & B_2 & & \ & & \ddots & \ & & & B_t \end{bmatrix}$$

We call each B_i Jordan blocks. A is diagonalizable if and only if each Jordan blocks are 1×1 matrix.

Example

$$A = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & 0 & -1 & -2 & 0 & 1 & -2 \\ -4 & 2 & 0 & -2 & 2 & 1 & 2 & 2 \\ 1 & 11 & -2 & -6 & -13 & -2 & 3 & -13 \\ 1 & 4 & -1 & -2 & -4 & -1 & 1 & -5 \\ -4 & -10 & 3 & 6 & 15 & 2 & -2 & 15 \\ 0 & 10 & -2 & -6 & -11 & -2 & 3 & -11 \\ -1 & -4 & 1 & 2 & 3 & 1 & -1 & 4 \end{bmatrix}$$

Example

Ex5.4.1

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

Lexercises

Ex5.4.5

$$A = \begin{bmatrix} -3 & 1 & -4 & -4 \\ -17 & 1 & -17 & -38 \\ -4 & -1 & -3 & -14 \\ 4 & 0 & 4 & 10 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

Ex5.4.7

$$A = \begin{bmatrix} -7 & 1 & 24 & 4 & 7 \\ -9 & 4 & 21 & 3 & 6 \\ -2 & -1 & 11 & 2 & 3 \\ -7 & 13 & -18 & -6 & -8 \\ 3 & -5 & 6 & 3 & 5 \end{bmatrix} \in \mathbb{R}^{5 \times 5}$$

Ex5.4.4

Let A be a 4×4 matrix.

(a)
$$p_A(r) = (r-1)(r-2)(r-3)(r-4)$$

(b)
$$p_A(r) = (r-1)^2(r-2)(r-3)$$

(c)
$$p_A(r) = (r-1)^2(r-2)^2$$

(d)
$$p_A(r) = (r-1)^3(r-2)$$

(e)
$$p_A(r) = (r-1)^4$$

└Ch5. The Jordan Canonical Form

Lexercises

The End