

Department of Physics, Shandong University

Compressed EWK study(ISRC1N2)

Chengxin Liao

liaocx@ihep.ac.cn

Mar, Wed 5, 2025

Outline

- 1. Hyperparameters optimization
- 2. Performance of Model
- 3. Backup

Hyperparameters optimization(HH)

Input(HH-Channel):

Sample:

Sig: ISRC1N2(mass_C1 = 100GeV, mass_N2 = 70GeV)->12180 entries

Bkg: 513850 entries

All input data(C1N2_100_70 and Bkg) already passed pre-selection

Strategy:

method: BDTG

Separate sig(bkg) into five folders, one for test, the other three for train, and last one for validation set, then traverse all possibilities.

Pre-Selection

```
had-had channel: nTaus \ge 2, nLeps = 0
pass \ MET \ trigger; \ MET \ge 200
1 \le nBaseJet \le 8
b - Veto
OS
```

Hyperparameters optimization(HH)

```
Variables (26): Obj kinematics
                Pt tt
                Angular correlations
                dPhit1x
                dEtatt
                dPhiMax xt
                dPhiztt
                dPhitt
                dPhizxe
                dPhiMin xt
                dPhit2x
                dPhiMin tj1
                dRt2x
```

```
Event kinematics

MII(Invariant Mass of tau1 and tau2)

MIA

MT2_150

MET_Tau

Proj_tt

MstauA

MCT

frac_MET_tt

frac_MET_tau1

frac_MET_MeffInc_40

frac_MET_Meff
```

These vars are selected based on the importance

dRMax xt

dRMin tj

sum cos dphi

dRtt

Hyperparameters optimization(HH)

Grid Search:

Ntrees: 200, 300, 400, 500

Max Depth: 6, 8, 10, 12

MinNodeSize: 1%, 2%, 3%

Learning Rate: 0.01, 0.05, 0.1

Show top Zn

Model Name	Binned	Significance	Max Zn	Max	Zn Bin
500_12_1_005		14.2770	3.83857		199
300_10_1_01		13.9648	3.76965		198
200_6_1_01		13.9250	3.74940		198
500_6_3_01		14.2740	3.72616		199
400_10_1_01		13.9553	3.70167		199
300_6_2_01		13.9366	3.69620		199
300_10_2_01		14.0094	3.67743	No.	199
300_8_1_01		14.0434	3.67624		198
200_8_1_01		14.1925	3.67005		198
400_12_1_005		14.1384	3.66529	est "	199
200_6_2_01		14.2209	3.65978		199
200_6_3_01		13.7197	3.64427		199
500_10_1_01		13.8227	3.63722		198
500_8_1_01		13.8369	3.61405		198
400_10_2_01		14.2001	3.60950		199
500_6_1_005	40/3	14.0399	3.60132		197

Rebin result

```
Model Name, Binned Significance, Max Zn, Max Zn Bin, bin num 500_12_1_005, 16.0862, 3.8635, 198, 200 500_12_1_005, 15.9967, 3.62563, 99, 100 500_12_1_005, 15.9318, 3.62563, 50, 50 500_12_1_005, 15.6612, 3.07372, 40, 40 500_12_1_005, 15.3086, 2.45396, 25, 25 500_12_1_005, 15.0825, 2.20391, 20, 20
```

Binned significance:
$$Z = \sqrt{2((s_i + b_i)\log(1 + \frac{s_i}{b_i}) - s_i)}$$

Compared with form result, there has a significant improvement in Zn

ı		Model Name	Binned Significance 12.1380 12.9663 12.1254 12.1150 13.1608 12.8853 12.7673 12.9965 12.8248 13.1256 12.9703 12.4457 12.9285 12.8685 12.7738 12.2453 12.9369 12.7388 12.6318 12.9393 12.9179 12.8501 12.9846 12.9337 12.8854 12.9337 12.8854 12.9936 12.9337 12.8854 12.9906 12.8406 13.2400 12.8263	Max 7n	Max 7n Bin
	137	100_8_3_005	12.1380	3.27179	48
	128	100 6 1 01	12.9663	3.24539	49
	15	100 12 3 005	12.1254	3.22901	48
	85	100 10 3 005	12.1150	3.20722	48
	105	200 10 1 01	13.1608	3.19603	50
	104	100 8 1 01	12.8853	3.18398	50
	63	200_6_1_005	12.7673	3.17520	49
	2	200_6_1_01	12.9052	3.17138	50
	38	100_6_2_01	12.8248	3.16297	49
	131	300_8_2_01	13.1256	3.16255	50
	93	300_6_1_005	12.9703	3.14200	50
	73	100_6_1_005	12.4457	3.14142	48
	69	400_6_1_01	12.9285	3.14074	50
	54	200_8_3_01	12.8685	3.13397	50
	12	200_6_2_005	12.7035	3.12582	49
	33	100_6_2_005	12.2453	3.11746	48
	66	400_6_1_005	12.9369	3.10400	50
	45	100_10_3_01	12.7388	3.10074	49
	7	100_12_3_01	12.6318	3.10071	49
	48	400_12_2_01	12.9393	3.09236	50
	72	400_12_2_005	12.9179	3.06882	50
	62	300_6_1_01	12.8501	3.06869	50
	133	400_10_1_01	12.9846	3.06413	50
	91	100_6_3_01	12.6291	3.06320	49
	9	400_8_3_01	12.9337	3.06226	50
	58	300_10_3_005	12.8854	3.05992	49
	36	300_10_1_01	12.9906	3.05755	50
	89	100_10_2_01	12.8406	3.05210	49
	43	200_8_2_01	13.2400	3.04952	50
	19	400_6_2_005	12.8263	3.04206	50

Performance of Model(HH)

hyper parameter: NTrees=500, learning rate=0.05, max depth=12, MinNodeSize=1%(default)

Apply a rough cut at 0.80 to check the distribution

It has a wider peak than LH signal region

Precise cut at 0.91 to define signal region

Rebin to: [0.91, 0.94, 0.97, 1.00]

Performance of Model(HH)

hyper parameter: NTrees=500, learning rate=0.05, max depth=12, MinNodeSize=1%(default)

Root of quadratic sum of Zn = 5.3163

bin	max Zn	C1N2ISR (100,70)	bkg	Higgs	OtherTop	SingleTop	TopPair	VV	Wjets	Zlljets	Zttjets
(0.91-0.95)	2.8271	38.472+- 1.192	42.987+- 6.489(15.09%)	0.150+- 0.041	0.026+- 0.020	0.958+- 0.303	4.156+- 0.802	5.144+- 0.289	28.198+- 6.388	0.265+- 0.185	4.090+- 0.675
(0.95-0.98)	3.0639	53.206+- 1.399	44.788+- 6.645(14.83%)	0.019+- 0.014	0.026+- 0.020	0.473+- 0.239	5.158+- 0.888	4.512+- 0.303	32.118+- 6.547	0.040+- 0.026	2.435+- 0.612
(0.98-1.00)	3.29906	45.161+- 1.287	24.891+- 3.088(12.40%)	0.007+- 0.007	0.034+- 0.017	0.348+- 0.184	2.050+- 0.570	2.263+- 0.187	19.479+- 3.753	0.196+- 0.123	2.435+- 0.612

TODO

- 1. BDT distribution of Validation Set & Binned BDT distribution of Data and Test Set
- 2. Finish Rebin Code
- 3. Summary of HH&LH channel ML results and the definition of SR
- 4. arrange the old code and optimize them(add README.md)

BackUp

An Interesting Method to Rebin

It can be proved that there are 2^{n-1} ways to rebin if histgram have n bins except 2 bins

2 bins

- 1. [0] [1] (separate)
- 2. [0+1] (merged)

Oredered the method and trun into binary number

3 bins

4 bins

- 1. [0] [1] [2]
- 2. [0+1][2]
- 3. [0] [1+2]
- 4. [0+1+2]

Based on Mathmatical Induction

 2^{n-1} ways to rebin

- 1. [0] [1] [2] [3]
- 2. [0+1][2][3]
- 3. [0] [1+2] [3]
- 4. [0] [1] [2+3]
- 5. [0+1+2][3]
- 6. [0] [1+2+3]
- 7. [0+1] [2+3]
- 8. [0+1+2+3]

Example in 4 bins

- 000 (no walls): [0+1+2+3]
- 001 (wall at 2-3): [0+1+2] [3]
- 010 (wall at 1-2): [0+1] [2+3]
- 011 (walls at 1-2, 2-3): [0+1] [2] [3]
- 100 (wall at 0-1): [0] [1+2+3]
- 101 (walls at 0-1, 2-3): [0] [1+2] [3]
- 110 (walls at 0–1, 1–2): [0] [1] [2+3]
- 111 (all walls): [0] [1] [2] [3]
- That's $2^3 = 8$ options (3 gaps).