

Exploratory Data Analysis and Visualization on Crime Data Using PySpark

Final Project

Addis Yesserie (addisy1@umbc.edu)

MPS Data Science, UMBC

Data603 Platforms for Big Data Processing

Spring 2022

Outline

- Introduction
- Objectives
- Datasets
- Data Preprocessing and Processing
- EDA
- Conclusions
- Limitations
- References

Introduction

- Big Data Analytics (BDA) can effectively address the challenges of data
 - too vast, too unstructured, and too fast-moving to be managed by traditional methods
- BDA can aid organizations to utilize their data and facilitate new opportunities

Introduction

- BDA has become an emerging approach for:
 - Analyzing data
 - Extracting information
 - Relations in a wide range of application areas
- BDA is a systematic approach for
 - analyzing and identifying
 - Patterns
 - Relations
 - Trends within a large volume of data

Objectives

•To explore, analyze, visualize crime incidences in Montgomery County, Maryland

 The use of Big Data Analytics on this crime incident and pattern analysis will enable for hotspot detection and predictive policing

Next >

< Previous

Datasets

 Publicly available datasets that consist of crime activities in Montgomery County, MD

Crime Data https://data.montgomerycountymd.gov/Public- Safety/Crime/icn6-v9z3/data

Q Search

Appendix – Overview of Data Included in Crime Dataset

Display		
Order	Column	Field Description
1	Incident ID	Police Incident Number
2	CR Number	Police Report Number
3	Dispatch Date / Time	The actual date and time a Officer was dispatched
4	Class	Four-digit code identifying the crime type of the incident
5	Class Description	Common name description of the incident class type
6	Police District Name	Name of District (Rockville, Wheaton etc.)
7	Block Address	Address in 100 block level
8	City	City
9	State	State
10	Zip Code	Zip code
11	Agency	Assigned Police Department
12	Place	Place description
13	Police Sector	Police Sector Name
14	Beat	Police patrol area subset within District
15	PRA	Police patrol are subset within Beat
16	Start Date / Time	Occurred from date/time
17	End Date / Time	Occurred to date/time
18	Latitude	Latitude
19	Longitude	Longitude
20	Police District Number	Major Police Boundary
21	Location	Location

Study Area – Montgomery County Police Districts and Stations

Methods

- After acquiring the data, big data processing python package including :
 - PySpark were used to perform data reading, transforming, querying and analysis
 - Folium maps implemented to visualize crime data

Methodology

Data Preprocessing and Processing

```
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from pyspark.sql import*
import pyspark
import datetime
from datetime import datetime
from pyspark.sql.functions import unix timestamp, from unixtime
from pyspark.sql.functions import year, month, dayofmonth, dayofweek, hour
from pyspark.sql.functions import when, count, col, countDistinct, desc, first, lit
from pyspark.sql.functions import split
import pandas as pd
import matplotlib.pyplot as plt
import folium
from folium import plugins
from folium.plugins import MarkerCluster
from folium.plugins import FastMarkerCluster
```

Python
Libraries/
Functions

Schema

```
|-- Incident ID: integer (nullable = true)
-- Offence Code: string (nullable = true)
-- CR Number: integer (nullable = true)
-- Dispatch Date / Time: timestamp (nullable = true)
-- NIBRS Code: string (nullable = true)
-- Victims: integer (nullable = true)
-- Crime Name1: string (nullable = true)
-- Crime Name2: string (nullable = true)
-- Crime Name3: string (nullable = true)
-- Police District Name: string (nullable = true)
-- Block Address: string (nullable = true)
-- City: string (nullable = true)
-- State: string (nullable = true)
-- Zip Code: integer (nullable = true)
-- Agency: string (nullable = true)
-- Place: string (nullable = true)
-- Sector: string (nullable = true)
|-- Beat: string (nullable = true)
-- PRA: string (nullable = true)
-- Address Number: integer (nullable = true)
-- Street Prefix: string (nullable = true)
-- Street Name: string (nullable = true)
-- Street Suffix: string (nullable = true)
-- Street Type: string (nullable = true)
-- Start Date Time: timestamp (nullable = true)
|-- End Date Time: timestamp (nullable = true)
|-- Latitude: double (nullable = true)
-- Longitude: double (nullable = true)
-- Police District Number: string (nullable = true)
-- Location: string (nullable = true)
```


EDA: Crime Analysis and Visualization

Crime_Category	Crime_CategoryCount
LARCENY	57723
ASSAULT	23081
POLICE INFORMATION	16378
DRUGS	16202
DAMAGE PROPERTY	13413
LARCENY (DESCRIBE	11320
MENTAL ILLNESS	10635
FRAUD	9863
LOST PROPERTY	9817
IDENTITY THEFT	8131
BURGLARY	7724
DRIVING UNDER THE	6664
SUDDEN DEATH	5618
AUTO THEFT	5579
PUBLIC PEACE	5563
MISSING PERSON	4340
LIQUOR	4226
TRESPASSING	3731
DAMAGE PROPERTY (3563
JUVENILE	3549
+	++

Count of Crime Categories

Count of

Crime Against

only showing top 20 rows

Districts with most Crime

```
Police_District|count|
      SILVER SPRING 54644
            WHEATON 49860
 MONTGOMERY VILLAGE 44434
           BETHESDA 37598
          ROCKVILLE 36614
         GERMANTOWN 34061
CITY OF TAKOMA PARK | 4959 |
        TAKOMA PARK | 826 |
```

Which City had the most Crime Incidents?

```
City Name | count |
     SILVER SPRING 90343
      GAITHERSBURG 37677
         ROCKVILLE 37023
        GERMANTOWN 25887
           BETHESDA | 18816 |
|MONTGOMERY VILLAGE| 8297|
       TAKOMA PARK | 7035 |
           POTOMAC | 5694 |
       CHEVY CHASE | 5561
           DERWOOD 4860
        KENSINGTON | 4167
              OLNEY | 4127
      BURTONSVILLE | 3236
        CLARKSBURG 2910
          DAMASCUS | 2205 |
              BOYDS | 1843 |
       BROOKEVILLE | 817 |
       POOLESVILLE | 793 |
            ASHTON
                     375
      SANDY SPRING
                      363
```


Place of Incidence

++	+	
Place1	Place1Count	
Residence	92848	
Street	43700	
Parking Lot	28300	
Other/Unknown	23307	
Retail	22431	
School/College	6300	
Parking Garage	5496	
Restaurant	5108	
Grocery/Supermarket	4874	
Commercial	3485	
Convenience Store	3006	
Government Building	2923	
Hotel/Motel/Etc.	2351	
Hospital/Emergenc	1970	
Gas Station	1892	
Park		
School	1299	
Bar/Night Club		
Bank		
Bank/S&L/Credit U	1005	
+		
only showing top 20 rows		

Top 3 place where Crime Incidences mostly happened

Top 15 Block Addresses with most Crime

+	+
Block_Address Block_Add	dressCount
+	+
11100 BLK VEIRS	3881
20900 BLK FREDER	2733
7100 BLK DEMOCRA	1815
100 BLK EDISON P	1622
700 BLK RUSSELL AVE	1483
7300 BLK CALHOUN PL	1438
8100 BLK GEORGIA	1002
8600 BLK COLESVI	994
11200 BLK NEW HA	881
20000 BLK AIRCRA	822
11200 BLK GEORGI	803
12000 BLK CHERRY	750
8200 BLK GEORGIA	694
1000 BLK MILESTO	679
22700 BLK CLARKS	666
+	+

Which year had the most crimes?

		/earcount
İ	2017	50383
İ	2018	47279
	2019	45358
	2020	41064
	2021	39949
+		+
only	showing	top 5 rows

Which Month had the most crimes?

+	++		
month(Date) monthCount			
+	++		
10	24127		
7	23274		
8	23267		
9	23198		
3	22887		
12	22712		
11	22517		
1	22050		
2	20981		
4	20569		
5	19355		
6	18138		
+	++		

Which Day had the most crimes?

What time of the day most crimes occurred?

hour(Date)	hourCount	
+	+	
0	19348	Midnight
12	16897	
17	16045	
18	15776	
15	15713	
16	15381	
19	14632	
20	14585	
21	13672	
14	13037	
22	12866	
13	12775	
11	11324	
23	11248	
10	10656	
9	10375	
8	7566	Mornings
1	6613	
2	5912	
7	50 <mark>2</mark> 7	
+		•
only showing top 20 rows		

What time of the day most crimes occurred?

+		+	
hour(Date) hourCount			
+		+	
	0	19348	Midnight
	12	16897	
	17	16045	
	18	15776	
	15	15713	
	16	15381	
	19	14632	
	20	14585	
	21	13672	
	14	13037	
	22	12866	
	13	12775	
	11	11324	
	23	11248	
	10	10656	
	9	10375	
	8	7566	Mornings
	1	6613	0
	2	5912	
	7	5027	
+		+	
only	showing t	op 20 row	IS

Before Covid-19 (2017)

	Place1 Pl	lace1Count
	Residence	16689
	Street	9862
Pa	rking Lot	5370
	Retail	4302
Oth	ner/Unknown	3745
Schoo	1/College	1644
	Restaurant	1160
Parki	ng Garage	1129
Grocery/S	Supermarket	871
0	Commercial	683
+		+
only showi	ng top 10 row	NS

During Covid-19 (2020)

+		
1	Place1 F	Place1Count
1	Residence	15905
i	Street	5477
Pa	arking Lot	4807
Otl	ner/Unknown	4721
	Retail	3104
Grocery/	Supermarket	837
Park:	ing Garage	789
School	ol/College	698
	Restaurant	597
Conven:	ience Store	497
+	+-	+
only show:	ing top 10 ro	ows

Visualizing Places of Crime Incidences before and during Covid-19

Before Covid-19 (2017)

+	
Crime_Category Cri	me_CategoryCount
+	
LARCENY	10499
DRUGS	4401
ASSAULT	4000
POLICE INFORMATION	2732
DAMAGE PROPERTY	2532
LARCENY (DESCRIBE	2294
FRAUD	1941
LOST PROPERTY	1805
DRIVING UNDER THE	1748
BURGLARY	1521
PUBLIC PEACE	1354
MENTAL ILLNESS	1256
MENTAL ILLNESS	1194
LIQUOR	1127
TRESPASSING	888
SUDDEN DEATH	855
AUTO THEFT	845
MISSING PERSON	795
DAMAGE PROPERTY (776
IDENTITY THEFT	748
+	+
only showing top 20 rows	

During Covid-19 (2020)

+	+
Crime_Category Crime_C	CategoryCount
+	+
LARCENY	10037
ASSAULT	3573
POLICE INFORMATION	2852
DAMAGE PROPERTY	2443
MENTAL ILLNESS	2002
FRAUD	1931
LARCENY (DESCRIBE	1897
LOST PROPERTY	1507
IDENTITY THEFT	1442
DRUGS	1347
BURGLARY	1208
SUDDEN DEATH	1146
AUTO THEFT	1019
PUBLIC PEACE	663
MISSING PERSON	650
DRIVING UNDER THE	558
JUVENILE	539
RECOVERED PROPERTY	524
TRESPASSING	498
DAMAGE PROPERTY (496
+	+
only chausing ton 20 name	

only showing top 20 rows

Visualizing Crime Types before and during Covid-19

Observations

- Places and magnitude of crime has changed mainly the following:
 - Drug related crimes has declined during the Covid-19 periods
 - Crime at school/College areas has sharply declined as most students were on a virtual learning programs
 - Identity Theft has dramatically increased
 - Mental Illness has shown an increase in total
 - Sudden death has increased
 - Liquor related crimes has declined

Geospatial Visualization of Crime Patterns - Folium Maps

From the folium map, we can see, each member in one cluster are close to each other based on the same color is near to each other and clearly show Hotspots of crime Locations

Folium Maps – Crime Hotspots

Conclusions

- Comparing crime patterns before and during Covid-19 clearly indicates an overall decline in the crime incidences
- The absence of clear crime pattern created a challenge from achieving a clearly defined clusters
- Folium Mapping was found useful tool and easy to visualize data that has been manipulated in Python on an interactive leaflet map

Limitations

- The organization and complexity of the Crime data
- Many missing Data and Null Values had impacted the analysis to certain extent
- The large dataset has hindered to run Folium maps in Docker

???

Thank you!