ProbLimI: Problem Set XI

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set XI. The chosen problems are 2,3,4.

Question 2.

2. Let X_n be an irreducible homogeneous Markov chain on a countable state set $\mathbb S$ with transition kernel P (i.e., $P(x,y) = \mathbb P_x(X_1=y)$). We call a bounded from below or above function $f: \mathbb S \to \mathbb R$ super-harmonic w.r.t. P if $f(x) \geq (Pf)(x)$ for all x. Prove that X_n is recurrent if and only if the only nonnegative super-harmonic functions for it are the constant functions.

Solution.

Observe that $f(X_n)$ is a super-martingale. By martingale convergence, $f(X_n)$ converges a.s. to some RV Y. By recurrence, $Y = f(x) \mathbb{P}_x$ a.s. so f is constant.

Conversely, suppose the chain is transient. Define

$$\tau = \inf\{n \ge 0 : X_n = x_0\}$$

for some $x_0 \in \mathbb{S}$, and

$$f(x) = \mathbb{P}(\tau < \infty \mid X_0 = x)$$

By definition, $f(x) \in [0,1]$ for all x and $f(x_0) = 1$. By transience, f(y) < 1 for some $y \in \mathbb{S}$. Observe that

$$f(x) = \sum_{z \in \mathbb{S}} p(x, y) f(y)$$

for all $x \in \mathbb{S}$, by strong markov property. Hence, we have constructed a non-constant, super-harmonic function, and we are done.

Question 3.

3. Let X_n be an irreducible Markov chain on a countable state set $\mathbb S$ with transition kernel P and let $\mu:\mathbb S\to(0,\infty)$ be a positive invariant measure for it (i.e., $\mu^T=\mu^TP=\sum_{x\in\mathbb S}\mu(x)P(x,\cdot)$).

(a) Show that $\tilde{P}(x,y) = P(y,x)\mu(y)/\mu(x)$ is a transition kernel on S.

(b) Show that if a non-zero $\nu:\mathbb{S}\to [0,\infty)$ satisfies $\nu\geq \nu^{\mathrm{T}}P$ then the function $h=\nu/\mu$ is super-harmonic w.r.t. \tilde{P} .

(c) Prove that if X_n is recurrent then so is the Markov chain corresponding to \tilde{P} . Deduce that h is a constant function, that is, $\nu(x) = \alpha \mu(x)$ holds for some $\alpha > 0$ for every $x \in \mathbb{S}$.

Solution.

(a) As the space is discrete, we canonically equip it with the full sigma algebra, so

$$\tilde{P}(\cdot,A)$$

is measurable for any $A \in 2^{\mathbb{S}}$. Furthermore,

$$\tilde{P}(x,\cdot)$$

is a probability measure for any $x \in \mathbb{S}$, as

$$\tilde{P}(x,\mathbb{S}) = \sum_{y \in \mathbb{S}} P(y,x)\mu(y)\mu(x)^{-1} = \mu(x)\mu(x)^{-1} = 1$$

for any $x \in \mathbb{S}$, as P is a transition kernel. Countable additivity for each $x \in \mathbb{S}$ follows in the same way.

(b) As $\nu \leq \nu^T P$,

$$h(y) \le \sum_{s \in \mathbb{S}} h(x)\mu(x)P(x,y) = \sum_{s \in \mathbb{S}} h(x)\mu(y)\tilde{P}(y,x)$$

for all $y \in \mathbb{S}$, so dividing both sides by $\mu(y)$, shows that h is super-harmonic w.r.t \tilde{P} .

(c) From the same computation as 4 - a, we see that

$$\tilde{P}^{n}(x,y) = \mu(y)\mu(x)^{-1}P^{n}(y,x)$$

for all $x,y\in\mathbb{S}$. Hence, irreducibility and recurrency of P implies that \tilde{P} is irreducible and recurrent, since

$$\sum_{n=1}^{\infty} P^n(x,x) = \infty = \sum_{n=1}^{\infty} \tilde{P}(x,x)$$

for any $x \in \mathbb{S}$. Therefore, by problem 2, h is a constant function, and $\nu = \alpha \mu$ for some $\alpha > 0$.

Question 4.

4. Let X_n be a Markov chain on a countable state set S and μ be an invariant measure for it.

- (a) Show that $\mu^{\mathbb{T}} = \mu^{\mathbb{T}} P^k$ where $P^k(x,y) = \mathbb{P}_x(X_k = y)$ is the k-step transition kernel, and deduce that if $\mu(x) > 0$ for some $x \in \mathbb{S}$ then $\mu(y) > 0$ for every y accessible from x.
- (b) Let $\mathcal{R} \subset \mathbb{S}$ be an accessibility (\leftrightarrow) equivalence class that is recurrent. Show that $\mu(x)P(x,y)=0$ for every $x\notin\mathcal{R}$ and $y\in\mathcal{R}$.
- (c) Conclude that if \mathcal{R} as above is accessible from $x \notin \mathcal{R}$ then $\mu(x) = 0$.

Solution.

(a) When n = 1, the statement is true by definition of invariant measure. Suppose the statement is true for some $n \ge 2$. Then, by fubini,

$$\mu(x) = \sum_{s \in \mathbb{S}} \mu(s) P^{n}(s, x) = \sum_{t \in \mathbb{S}} \sum_{s \in \mathbb{S}} P^{n}(s, x) P(t, s)$$
$$= \sum_{t \in \mathbb{S}} P^{k}(t, x) \mu(t)$$

for any $x \in \mathbb{S}$. Threrefore, by induction, we have the statement.

Suppose $\mu(x) > 0$, and let y be accessible from x. Then, $p_{xy} > 0$, so $P^n(x,y) > 0$ for some n, as otherwise, by countable subadditivity we have $p_{xy} = 0$, which is a contradiction. Then, the above result,

$$\mu(y) = \sum_{z \in \mathbb{S}} \mu(z) P^n(z, y) \ge \mu(x) P^n(x, y) > 0$$

as required.

(b) We provide the proof for the case when it's a stationary distribution. Suppose x is transient. Then, by the contrapositive of theorem 6.5.4 in Durrett, $\mu(x) > 0$. Suppose x is recurrent. Then, by theorem 6.4.3 in Durrett, $p_{xy} = 0$, as otherwise $p_{yx} = 1$ and x and y communicate, which contradicts that $x \notin R$. As $P(x,y) \le p_{xy}$, P(x,y) = 0, and we are done.

(c) If R is accessible from $x \notin R$, then x must be transient. Otherwise, by theorem 6.4.3, $p_{yx} = 1$, so x and y communicates, which is a contradiction. Therefore, as before x being transient implies $\mu(x) > 0$.