

ESTIMASI POSE TIGA DIMENSI DARI GAMBAR MONOKULER MENGGUNAKAN DEEP NEURAL NETWORK

Nama : Denilson

NPM : 51416815

Jurusan : Teknik Informatika

Pembimbing : Dr. Dharmayanti, ST., MM

LATAR BELAKANG

TUJUAN PENELITIAN

Aplikasi:

- Estimasi titik kunci pose tiga dimensi dari sebuah citra visual monokuler / datar.
- Fungsi pemetaan / estimasi menggunakan neural network
- Visualisasi

SISTEM SARAF

Jaringan Saraf

TEOREMA PENAKSIRAN UNIVERSAL

- Sebuah model jaringan feed-forward dapat membentuk fungsi apapun secara subjektif.
- Sebuah model jaringan saraf tiruan dibentuk dari serangkaian lapisan
- Didalamnya terdapat deretan sel saraf atau neuron
- Rangkaian lapisan panjang dapat memetakan fungsi yang sulit

RESIDUAL NETWORK

GRADIENT DESCENT

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{d_i - f_i}{\sigma_i} \right)^2$$

KERANGKA PENELITIAN

DATA PELATIHAN

- 0 Pinggang
- 1 Paha Kanan
- 2 Lutut Kanan
- 3 Pergelangan Kaki Kanan
- 4 Paha Kiri
- 5 Lutut Kiri
- 6 Pergelangan Kaki Kiri
- 7 Leher
- 8 Bahu Kanan
- 9 Siku Kanan
- 10 Pergelangan Tangan Kanan
- 11 Bahu Kiri
- 12 Siku Kiri
- 13 Pergelangan Tangan Kiri
- 14 Kepala

Bentuk Vektor Datar:

2D: [PGx, PGy, PKAx, PKAy, ...]

3D: [PGx, PGy, PGz, PKAx, PKAy, PKAz, ...]

Terdapat 2110396 pasang titik kunci.

75% => Pelatihan

More Information

25% => Validasi

Ionescu et al. Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments

RESIDUAL LINEAR

MODEL NEURAL NETWORK

PRA PEMROSESAN DATA

PELATIHAN MODEL

HASIL PELATIHAN

ANALISIS DATA INPUT

Gunadarma University

More Information
GUNADARMA UNIVERSITY

Jl. Margonda Raya 100, Pondok Cina - Depok, Indonesia
Telp. (+62-21) 7888 1112

OpenPose

Cao et al. Openpose: Realtime multi-person 2d pose estimation using part affinity fields.IEEE Transactions on Pattern Analysis and Machine Intelligence.

UJI COBA

ANALISIS

ANALISIS

ANALISIS

PENUTUP

KESIMPULAN:

- Aplikasi estimasi pose tiga dimensi menggunakan modeldeep neuralnetworkberhasil dilatih
- Model melakukan pemelajaran secara mandiri menggunakan data pose 2D sebagai input dan pose 3D sebagai output dengan hasil 0.0437
- Model deep neural networkini masih minimalis, data dengan satu domain, dan memiliki tahapan yang tidak efisien

SARAN:

- Menggunakan model yang lebih kompleks
- Data dengan domain yang lebih luas seperti estimasi pose pada hewan tertentu.

