CMPSC 464: Introduction to the Theory of Computation

Recitation #6 Solution

(Date: 10/05/2022)

Instructor: Dr. Young Kun Ko TAs:

Problem 1

Theorem 4.4 of the book.

Problem 2

Proof by reduction from A_{TM} . Suppose that L_{PSU} were decidable and let R be a Turing machine deciding it. We use R to construct a Turing machine deciding A_{TM} . S is constructed as follows:

S = "On input is $\langle M, w \rangle$, where M is the code for a Turing Machine and w is a string:

- 1. Construct a new Turing machine M_w as follows: $M_w =$ "On input string x:
 - (a) Erase the input x and replace it with the constant string w.
- (b) Simplate M in winds a single ment Project Exam Help 2. Feed $\langle M_w \rangle$ to R. If R accepts, accept. If R rejects, reject."

If M accepts w, the language of M_w contains all strings and, thus, the string "PSU". If M doesn't accept w, the language of M_w is the empty set and, thus doesn't contain the string "PSU". So $R(\langle M_w \rangle)$ accepts exactly when M accepts w. Thus, S dec des A_{TM} .

But we know that A_{TM} is undecidable. So S can't exist. Therefore we have a contradiction. So L_{PSU} must have been undecidable.

WeChat: cstutorcs