import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") #simple_linera_regression

self.W =np.random.rand((X_train.shape[1]))

for i in range(self.n steps):

def cal_gradiant_descent(self, X, y):

#Predicting Y for the X

return np.dot(X pred, self.W)

from sklearn.datasets import make_regression

#adding bias term

def predict(self, X):

#creating dataset

X shape = (1000, 1) $y_shape = (1000,)$

#train test split

Shape X train: (670, 1) Shape y train: (670,) Shape X test: (330, 1) Shape y_test : (330,)

%matplotlib inline

200

100

0

-100

-200

_train'>

300

200

100

0

-100

-200

#prediction

200

100

0

-100

-200

Out[12]: LinearRegression()

#error

accuracy (R^2) : 79.03370956723134 %

200

100

plt.xlabel('X test') plt.ylabel('Y')

plt.scatter(X_test, y_test) plt.scatter(X_test, y_predict)

In [14]:

#Same with Sklearn lib

modelSk =LinearRegression() modelSk.fit(X_train,y_train)

Mean squared error: 1534.17

y_predict=modelSk.predict(X_test)

def accuracy(X_test, y_test, y_pred):

accuracy(X_test,y_test,y_predict)

plt.title('Real vs Predicted values comparison')

Out[17]: <matplotlib.collections.PathCollection at 0x25c1006d550>

Real vs Predicted values comparison

Y train

In [8]:

-3

plt.xlabel('X train') plt.ylabel('Y train')

plt.xlabel('X_train') plt.ylabel('Y train')

import matplotlib.pyplot as plt

plt.scatter(X_train, y_train)

Out[6]: <matplotlib.collections.PathCollection at 0x25c7efed0a0>

-1

-1

model = Simple linear regression()

model.fit(X_train,y_train)

y_pred =model.predict(X_test)

Mean squared error: 1716.39

plt.scatter(X test, y test) plt.scatter(X test, y pred)

plt.xlabel('X_test') plt.ylabel('Y')

-2

sns.regplot(X_train, y_train)

Ó

plt.title('Relationship between X train and Y train variables')

Out[7]: <AxesSubplot:title={'center':'Relationship between X_train and Y_train variables'}, xlabel='X_train', ylabel='Y

X_train

Relationship between X_train and Y_train variables

0

X_train

plt.title('Real vs Predicted values comparison')

Out[11]: <matplotlib.collections.PathCollection at 0x25c7f113b20>

Real vs Predicted values comparison

X_test

from sklearn.linear model import LinearRegression

1

print("Mean squared error: %.2f" % np.mean((model.predict(X_test) - y_test) ** 2))

print("Mean squared error: %.2f" % np.mean((modelSk.predict(X_test) - y_test) ** 2))

print('accuracy (R^2):\n', modelSk.score(X_test, y_test)*100, '%')

Relationship between X_train and Y_train variables

In [4]:

print("X_shape =", X.shape) print("y_shape =",y.shape)

#calculating gradiant descent

X_pred =np.c_[np.ones(X.shape[0]),X]

from sklearn.model selection import train test split

plt.title('Relationship between X_train and Y train variables')

print("Shape X_train :", X_train.shape) print("Shape y_train :",y_train.shape) print("Shape X_test :", X_test.shape) print("Shape y_test :",y_test.shape)

random initialization of the model weights

return 2/X.shape[0] * np.dot(X.T,np.dot(X,self.W)-y)

self.W =self.W -self.learning rate*self.cal gradiant descent(X train,y)

X, $y = make_regression$ ($n_samples=1000$, $n_features = 1$, $n_targets=1$, bias = 2.5, noise=40, $random_state = 44$)

X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=.33, random_state=12)

Linear_Reg

def init (self,learning rate=1e-3,n steps=1000):

self.learning rate =learning rate self.n_steps =n_steps def fit(self, X, y):

class Simple linear regression:

adding the bias term

X_train = np.c_[np.ones(X.shape[0]),X] # random initialization of the model weights