Departamento de Electrónica, Telecomunicações e Informática

Sistemas Multimédia

Ficha de Exercícios nº1

1. Dados os números complexos seguintes

(a)
$$z_1 = 2 + j2$$
 (b) $z_2 = -1 + j$ (c) $z_3 = 4e^{(j\pi)}$ (d) $z_4 = \sqrt{3}e^{(\frac{j\pi}{3})}$

- (a) Represente graficamente os números complexos.
- (b) Os números estão representados em notação polar ou cartesiana. Indique quais estão em polar?
- (c) Calcule

i.
$$z_1 + z_3$$

ii.
$$\frac{z_4}{z_6}$$

ii.
$$\frac{z_4}{z_2}$$
 iii. $(z_2)^4$

iv.
$$z_1 + z_2 - \sqrt{z_3}$$

2. Calcule os valores de A, Θ e Φ nas expressões seguintes

(a)
$$e^{j(100\pi t + \frac{\pi}{3})} + e^{j(100\pi t + \frac{\pi}{4})} = Ae^{j(\Theta t + \Phi)}$$

(b)
$$\cos(100\pi t + \frac{\pi}{3}) + \cos(100\pi t + \frac{\pi}{4}) = A\cos(\Theta t + \Phi)$$

(c)
$$\cos(\omega t + \frac{\pi}{6}) + \cos(\omega t + \frac{\pi}{2}) + \cos(\omega t - \pi) = A\cos(\Theta t + \Phi)$$

- 3. Os sinais seguintes são periódicos. Diga qual é o período e a amplitude de cada um deles
 - (a) $2\sin(0.3\pi t \pi/2)$
 - (b) $\cos(0.12\pi t) + \cos(0.12\pi t + \pi/5)$
 - (c) $\cos(0.3\pi t)\cos(0.2\pi t)$
 - (d) $\cos(2\pi f_0 t + \pi/3)$
- 4. Um sinal pode ser escrito como uma soma de sinusóides

$$x(t) = \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \Phi_k) + A_0$$

1

onde A_k é um número real e $\Phi_k \in [0, 2\pi]$

- (a) Prove que o sinal é periódico com período $T=1/f_0$
- (b) Diga qual é o período de cada uma das sinusóides do somatório. Para simplificar assuma que $\Phi_k=0$ e faça um esboço dos termos da expressão anterior para k=0,1,2,3
- (c) Prove que x(t) também pode ser escrito na forma seguinte

$$x(t) = \sum_{m=-N}^{N} B_m \exp(j2\pi m f_0 t)$$

onde coeficientes B_m são números complexos que dependem de A_k e de Φ_k :

- $m = 0, B_0 = A_0$
- $m > 0 \Rightarrow m = k, B_m = \frac{A_k}{2} \exp(j\Phi_k)$
- $m < 0 \Rightarrow m = -k, B_m = \frac{A_k}{2} \exp(-j\Phi_k)$
- (d) Qual é o módulo e a fase dos números complexos B_m ? Há alguma relação entre os coeficientes para m positivo e para m negativo?
- (e) Assuma que um sinal com $f_0 = 100Hz$ tem os coeficientes B_m

m	módulo de B_m	Fase de B_m
-2	0.25	$-\pi/4$
-1	0.5	$\pi/2$
0	1	0
1	0.5	$-\pi/2$
2	0.25	$\pi/4$

Escreva a expressão do sinal sob a forma de somatório

- De exponenciais.
- De cossenos

Diga qual é o período do sinal.