Christoph Schnarr

Blatt 1

Ferienkurs Quantenmechanik – Sommer 2009

Grundlagen der Quantenmechanik

1 Skalarprodukt und Matrixdarstellung (*)

In einem dreidimensionalen Hilbertraum sind folgende Vektorzustände gegeben:

$$|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle$$

$$|\beta\rangle = i|1\rangle + 2|3\rangle$$

Hierbei sind $|1\rangle$, $|2\rangle$ und $|3\rangle$ die orthonormierten Basiszustände.

- 1. Berechnen Sie die Skalarprodukte $\langle \alpha | \beta \rangle$ und $\langle \beta | \alpha \rangle$ explizit und zeigen Sie, dass $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$.
- 2. Finden Sie alle Matrixelemente von $\widehat{A} = |\alpha\rangle\langle\beta|$ und geben Sie die Matrixdarstellung von \widehat{A} an.
- 3. Ist der Operator \widehat{A} hermitesch? Begründung?

2 Matrixdarstellung und Eigenwerte (*)

Der Hamilton-Operator eines Zwei-Niveau-Systems lautet:

$$\mathcal{H} = \epsilon (|1\rangle \langle 1| - |2\rangle \langle 2| + |1\rangle \langle 2| + |2\rangle \langle 1|)$$

Hierbei sind $|1\rangle$ und $|2\rangle$ die orthonormierten Basiszustände. Der Parameter ϵ hat Energieeinheiten.

- 1. Wie lautet die Matrixdarstellung des Operators \mathcal{H} in dieser Basis.
- 2. Finden Sie die Energieeigenwerte und die zugehörigen Eigenzustände des Operators \mathcal{H} .

3 Normierung (*)

Ein Elektron befindet sich im Spinzustand $\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$

1. Bestimmen Sie die Normierungskonstante A.

4 Kommutatoren (*)

Gegeben seien zwei Operatoren \widehat{A} und \widehat{B} , wobei gilt:

$$\left[\widehat{A}, \left[\widehat{A}, \widehat{B}\right]\right] = \left[\widehat{B}, \left[\widehat{A}, \widehat{B}\right]\right] = 0$$

Zeigen Sie, dass für n = 1, 2, 3... gilt:

$$\left[\widehat{A}^{n},\widehat{B}\right]=n\widehat{A}^{n-1}\left[\widehat{A},\widehat{B}\right]$$

5 Hermitesche Operatoren (**)

- 1. Gegeben seien die hermiteschen Operatoren \widehat{A} und \widehat{B} . Zeigen Sie, dass
 - (a) der Operator $\widehat{A}\widehat{B}$ hermitesch ist, nur wenn $\widehat{A}\widehat{B}=\widehat{B}\widehat{A}$ gilt.
 - (b) $(\widehat{A} + \widehat{B})^n$ hermitesch ist.
- 2. Beweisen Sie, dass für jeden Operator \widehat{A} folgende Operatoren hermitesch sind:
 - (a) $\left(\widehat{A} + \widehat{A}^{\dagger}\right)$
 - (b) $i\left(\widehat{A} \widehat{A}^{\dagger}\right)$
 - (c) $\left(\widehat{A}\widehat{A}^{\dagger}\right)$
- 3. Zeigen Sie, dass der Eigenwert eines hermiteschen Operators reell ist und dass die Eigenfunktionen orthogonal sind.
- 4. In der klassischen Hamiltonfunktion sind die Terme p f(x) und f(x) p äquivalent. Die Ersetzungsregel $p \to \hat{p} = -i\hbar \frac{d}{dx}$ für den Übergang zum Hamiltonoperator führt aber zu verschiedenen Operatoren. In dem Ansatz

$$p f(x) \to \alpha \widehat{p} f(x) + (1 - \alpha) f(x) \widehat{p}$$

ist die Reihenfolge offen gelassen.

Wie ist der reelle Koeffizient α zu wählen, damit der resultierende Operator hermitesch ist?

6 Matrix-Exponentielle (***)

Die Matrix-Exponentielle ist für einen Operator \widehat{A} definiert als: $e^{\widehat{A}} = \sum_{n=0}^{\infty} \frac{\widehat{A}^n}{n!}$

Sie hat folgende Eigenschaften:

- $\bullet \ e^{-\widehat{A}}e^{\widehat{A}} = e^{\widehat{A}}e^{-\widehat{A}} = \widehat{1}$
- $e^{\widehat{A}+\widehat{B}}=e^{\widehat{A}}e^{\widehat{B}}$ für $\left[\widehat{A},\widehat{B}\right]=0$
- 1. Zeigen Sie für den hermiteschen Operator \hat{H} , dass der adjungierte Operator von $e^{i\hat{H}}$ der Operator $e^{-i\hat{H}}$ ist.

2

2. Zeigen Sie, dass $\widehat{U}=e^{i\widehat{H}}$ für einen hermiteschen Operator \widehat{H} unitär ist.

3. Nehmen Sie für zwei nicht-kommutierende Operatoren \widehat{A} und \widehat{B} die Funktion

$$f(\lambda) = e^{\lambda \widehat{A}} \widehat{B} e^{-\lambda \widehat{A}} \qquad (\lambda \in \mathbb{R})$$

an.

Benutzen Sie diese Funktion, um die Baker-Campbell-Hausdorff-Formel

$$e^{\widehat{A}} \ \widehat{B} \ e^{-\widehat{A}} = \widehat{B} + \sum_{n=1}^{\infty} \frac{1}{n!} \left[\widehat{A}, \widehat{B} \right]^{(n)}$$

zu zeigen.

Hierbei sind: $\left[\widehat{A}, \widehat{B} \right]^{(1)} = \left[\widehat{A}, \widehat{B} \right]$ und $\left[\widehat{A}, \widehat{B} \right]^{(n)} = \left[\widehat{A}, \left[\widehat{A}, \widehat{B} \right]^{(n-1)} \right]$

Hinweis: Verwenden Sie die Taylor-Entwicklung von $f(\lambda)$.

7 Cauchy-Schwarzsche Ungleichung und verallgemeinerte Unschärferelation (**)

1. Beweisen Sie die Cauchy-Schwarzsche Ungleichung $\langle \psi | \psi \rangle \langle \phi | \phi \rangle \ge \left| \langle \psi | \phi \rangle \right|^2$

Hinweis: Betrachten Sie die Ungleichung $\langle \psi + \lambda \phi | \psi + \lambda \phi \rangle \geq 0$ und finden Sie den Wert von λ , der die linke Seite minimiert.

Beachten Sie, dass λ und λ^* unabhängig voneinander variiert werden können.

2. Beweisen Sie, dass für zwei hermitesche Operatoren \widehat{A} und \widehat{B} die verallgemeinerte Unschärferelation

$$\Delta \widehat{A} \, \Delta \widehat{B} \geq \frac{1}{2} \left| \left\langle \left[\widehat{A}, \widehat{B} \right] \right\rangle \right|$$

gilt.

Hierbei ist:
$$\left(\Delta \widehat{A}\right)^2 = \left\langle \widehat{A}^2 \right\rangle - \left\langle \widehat{A} \right\rangle^2$$
 und $\left(\Delta \widehat{B}\right)^2 = \left\langle \widehat{B}^2 \right\rangle - \left\langle \widehat{B} \right\rangle^2$

Hinweis: Betrachten Sie die Cauchy-Schwarzsche Ungleichung mit:

$$|\phi\rangle = \left(\widehat{A} - \left\langle \widehat{A} \right\rangle\right) |\xi\rangle$$

$$|\psi\rangle = \left(\widehat{B} - \left\langle \widehat{B} \right\rangle\right) |\xi\rangle$$

$$\langle \widehat{A} \rangle = \langle \xi | \widehat{A} | \xi \rangle$$

$$\langle \widehat{B} \rangle = \langle \xi | \widehat{B} | \xi \rangle$$

3. Rechnen Sie nach, dass man für $\widehat{A}=\widehat{x}=x$ und $\widehat{B}=\widehat{p}=\frac{\hbar}{i}\frac{\partial}{\partial x}$ die Unschärferelation

$$\Delta \widehat{x} \, \Delta \widehat{p} \geq \frac{1}{2} \hbar$$

erhält.

4. Die Unschärferelation $\Delta x \Delta p \geq \frac{\hbar}{2}$ lässt sich auch aus der Ungleichung

$$\int dx \left| \left[\gamma \left(x - \langle x \rangle \right) - i \left(\widehat{p} - \langle p \rangle \right) \right] \psi(x) \right|^2 \ge 0$$

mit $\gamma \in \mathbb{R}$ folgern.

Zeigen Sie, dass das Gleichheitszeichen nur für Gaußfunktionen gilt.

8 Projektor-Algebra (***)

Es sei \mathcal{E}_a ein Teilraum des Hilbertraums, \mathcal{E}_a^{\times} der dazu komplementäre Raum. Jeder Ket-Vektor $|u\rangle$ besitzt eine Projektion in \mathcal{E}_a und eine in \mathcal{E}_a^{\times} , sodass

$$|u\rangle = |u_a\rangle + |u_a^{\times}\rangle$$

Man definiert als Projektionsoperator einen linearen Operator mit der Eigenschaft:

$$P_a |u\rangle = |u_a\rangle$$

- 1. Zeigen Sie, dass der Projektor P_a hermitesch ist.
- 2. Beweisen Sie folgende Operatorgleichung:

$$P_a^2 = P_a$$

3. Betrachten Sie eine Folge von orthonormierten Vektoren $|1\rangle, |2\rangle, ..., |N\rangle$:

$$\langle m|n\rangle = \delta_{mn} \qquad (m, n = 1, 2, ..., N)$$

Diese Vektoren spannen einen bestimmen (N-dimensionalen) Unterraum \mathcal{E}_N des Vektorraums auf, zu dem sie gehören.

Zeigen Sie, dass

$$P_N = \sum_{m=1}^{N} |m\rangle \langle m|$$

der Projektionsoperator auf \mathcal{E}_N ist.

4. Eine Observable A besitze endliche viele verschiedene Eigenwerte $a_1, a_2, ..., a_N$. Man setze

$$f(A) = (A - a_1)(A - a_2) \cdots (A - a_N) = (A - a_n) g_n(A)$$

mit:
$$g_n(A) = \prod_{m \neq n} (A - a_m)$$

Zeigen Sie, dass

- (a) f(A) = 0 gilt.
- (b) der Projektor P_n auf dem Unterraum zum n-ten Eigenwert durch den Ausdruck

$$P_n = \frac{g_n(A)}{g_n(a_n)}$$

gegeben ist.

5. Betrachten Sie den Fall, dass A jeweils n_{α} Eigenvektoren zum Eigenwert a_{α} habe $(n_{\alpha}$ -fache Entwartung).

 $P_{\alpha} = \sum_{i=1}^{n_{\alpha}} |\alpha, i\rangle \langle \alpha, i|$ sei der Projektor auf den Unterraum \mathcal{E}_{α} , den die $|\alpha, i\rangle$ aufspannen.

Zeigen Sie, dass

$$\sum_{\alpha} P_{\alpha} = 1$$

gilt.

9 Hellmann-Feynman-Theorem (*)

1. Beweisen Sie das Hellmann-Feynman-Theorem:

$$\langle \psi(\lambda) | \frac{\partial \mathcal{H}(\lambda)}{\partial \lambda} | \psi(\lambda) \rangle = \frac{\partial}{\partial \lambda} E(\lambda)$$

Hierbei ist:

$$\mathcal{H}(\lambda) |\psi(\lambda)\rangle = E(\lambda) |\psi(\lambda)\rangle$$

$$\langle \psi (\lambda) | \psi (\lambda) \rangle = 1$$

2. Im Falle des harmonischen Oszillators ist $E_n = \hbar\omega \left(n + \frac{1}{2}\right)$ und $\mathcal{H} = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$.

Berechnen Sie mit Hilfe des Hellmann-Feynman-Theorems das Verhältnis zwischen den Erwartungswerten der kinetischen und der potentiellen Energie.

Betrachten Sie einmal m und einmal ω als Parameter.

10 Dichte-Operatoren (**)

1. Zeigen Sie, dass für einen
 Zustand mit dem Dichte-Operator $\widehat{\varrho} = |\Psi\rangle \langle \Psi|$ der Erwartungswert einer Observable
 \widehat{A} gegeben ist durch:

$$\langle \widehat{A} \rangle = \langle \Psi | \widehat{A} | \Psi \rangle$$

2. Zeigen Sie, dass die Gleichung

$$\hat{\rho}^2 = \hat{\rho}$$

für einen beliebigen Dichte-Operator $\widehat{\varrho} = \sum_{\alpha} p_{\alpha} |\Psi_{\alpha}\rangle \langle \Psi_{\alpha}|$ dann und nur dann gilt, wenn $\widehat{\varrho}$ einen reinen Zustand beschreibt.

3. Leiten Sie ausgehend von der Schrödinger-Gleichung die von Neumann Gleichung her, welche die Zeitentwicklung eines Dichte-Operators beschreibt:

$$\frac{d\widehat{\varrho}}{dt} = \frac{\partial\widehat{\varrho}}{\partial t} + \frac{i}{\hbar} \left[\widehat{\varrho}, \mathcal{H}\right]$$

Hierbei ist: $\frac{\partial \widehat{\varrho}}{\partial t} = \sum_{\alpha} \dot{p}_{\alpha} \left| \Psi_{\alpha} \right\rangle \left\langle \Psi_{\alpha} \right|$

4. Nehmen Sie an, dass der Dichte-Operator $\widehat{\varrho}$ die Form

$$\widehat{\varrho} = \sum_{\alpha} p_{\alpha} \left| \Psi_{\alpha} \right\rangle \left\langle \Psi_{\alpha} \right| \qquad (\dot{p}_{\alpha} = 0 \ \text{für alle} \ \alpha)$$

hat.

Zeigen Sie, dass in diesem Fall die Zeitentwicklung der Erwartungswerte

$$\langle \widehat{A} \rangle = \operatorname{Tr} \left(\widehat{\varrho} \widehat{A} \right)$$

gegeben ist durch:

$$\frac{d\langle \widehat{A} \rangle}{dt} = \frac{1}{i\hbar} \left\langle \left[\widehat{A}, \mathcal{H} \right] \right\rangle + \left\langle \frac{d\widehat{A}}{dt} \right\rangle$$