Projecto Inteligência Artificial Parte 1

Grupo: 52 Sara Marques (93342) Luana Marques (82374)

Introdução

Neste relatório pretende-se analisar a solução proposta para o Problema dos "Ricochet Robots" com tabuleiros de dimensão variada.

O objetivo do problema é identificar uma possível sequência de ações dos robôs, que quando executada leva a que o robô apropriado chegue ao alvo correspondente.

Descrição da solução

A representação interna escolhida para um tabuleiro foi uma lista de listas.

Como heurística requisitada para os algoritmos de Procura Informada foi utilizada na solução proposta a *Distância de Manhattan*. Esta foi a escolha final de entre heurísticas como:

- Calcular a distância Euclidiana entre o robô jogador e o alvo;
- Calcular o total de barreiras dum tabuleiro;
- Calcular o total de ações possíveis num tabuleiro num dado momento;
- Calcular o número de alterações necessárias fazer ao tabuleiro para que o robô em jogo atinja o alvo (se não estiver num estado objetivo + a célula do alvo estiver vazia + robô jogador não está no alvo = 1; se não estiver num estado objetivo + robô jogador já está no alvo = 0; se não estiver num estado objetivo + a célula do alvo estiver ocupada + robô jogador não está no alvo = 2);
- Tentou-se também, sem sucesso, implementar uma base de dados de padrões de estados para detetar e evitar estados repetidos.

Concluiu-se que nenhuma das heurísticas experimentadas era admissível, e muito menos consistente. Por isso a escolha final da heurística de Manhattan, que é admissível e consistente, em certas instâncias, porque apenas movimentos horizontais e verticais são válidos.

Análise de Resultados

Aplicando os vários algoritmos de Procura requisitados a algumas instâncias nos ficheiros fornecidos em "instances\i*.txt" obteve-se os seguintes resultados:

	Procura em Largura Primeiro			Procura A*		
	Tempo de Execução(s)	Nº nós gerados	Nº nós expandidos	Tempo de Execução(s)	Nº nós gerados	Nº nós expandidos
Board 1 4x4	3	1674	1675	2	50	51
Board 2 5x5	2	31	32	1	2	3
Board 3 6x6	1	314	315	3	36	37
Board 4 3x3	4	3	4	2	1	2
Board 5 3x3	1	7	8	3	2	3
Board 6 4x4	1	77	78	2	7	8
Board 7 4x4	1	155	156	2	13	14
Board 8 5x5	2	1901	1902	4	77	78

Com a Procura em Profundidade Primeiro e a Procura Gananciosa não se obteve resultados, sendo as causas possíveis má implementação da solução proposta para estes casos que provavelmente originam ciclos infinitos.

Observa-se pelos resultados na tabela que, como esperado, a PLP gera e expande mais nós que procura A*.

Mesmo sendo uma procura informada observa-se que em metade dos testes a procura A* demora mais tempo a encontrar uma solução do que a PLP, o que pode evidenciar a falta de eficiência da heurística escolhida.

Ambas são completas e óptimas, para tabuleiros de pequena dimensão.