

Advanced Text Analysis for Business (IDS-566)

Lecture 5 Feb 23, 2018

Course Overview

- Instructor
 - Ehsan M. Ardehaly PhD, ehsan@uic.edu
 - Office hours: 4:45 5:45 pm F, BLC L270
 - Teacher assistant: 4:00 5:00 pm W, BLC L270
- Objectives:
 - Text mining
 - Applications for business decisions
 - Study of machine learning concepts
 - Design and implementation of text mining approaches

Assignments-3

• Grade: 20%

Sentiment analysis

• Due date: 3/13/2018

- Submission:
 - Notebook (code + analysis) → PDF
 - Word document with code as an appendix → PDF

Agenda

Unsupervised learning

Motivation

Dimensionality reduction:

• LSA

Clustering:

• K-means

Text analysis:

Document clustering

Unsupervised Learning

- Supervised learning
 - With labeled data
 - Training data: X, y
- Supervised learning
 - Without labeled data
 - Training data: X

Supervised learning

- Pros:
 - Easier modeling
- Cons:
 - Requires human annotation:
 - Expensive
 - Noisy
 - Bias
 - Temporal dynamic

Unsupervised learning

- Pros:
 - Lost of data (BigData)
- Cons:
 - Hard to model

Unsupervised models

- Dimensionality reduction
- Clustering
- Topic Modeling
- Anomaly detection

Dimensionality reduction

- The curst of dimensionality
- Textual data has a high dimension
- Solution:
 - Reduce the dimension
 - Analysis the data in low dimension
 - Reducing noise

Motivation

- Discover hidden concepts
 - Words that occur often together (cooccurrence).
- Remove noise
 - Not all words are useful
- Visualization
 - 2D or 3D plot

Problem statement

- High dimension data: X (e.g. 50000x20000)
- Low dimension data: Z (e.g. 50000x100)
- Transformation function: f
 - Z = f(X)

Inverse transform

- Transformation function: f
 - Z = f(X)
- Inverse transformation function: f⁻¹
 - $\bullet \ X' = f^{-1}(Z)$
 - $X \approx X'$

Latent Semantic Analysis (LSA)

- Based on Singular Value Decomposition (SVD)
 - Also know as truncate SVD
- Suitable for sparse data (e.g. text)
- Fast training

LSA applications

- Document clustering
- Word clustering
- Word relations (synonymy and polysemy)
- Information retrieval

Application in NLP

- Synonymy
 - Different words describe the same idea.
 - These words may be close to each other in the lower dimension.
- Polysemy
 - Same word has multiple meanings (e.g. chair).
 - Hard to capture with LSA.

LSA components

- Component:
 - Each dimension in lower dimension
 - Each component is a vector with size of number of features.
- Component matrix (W)
- Z = XW

Document similarity

- Reduce dimension
- Measure similarity between documents in lower dimension
- Advantage:
 - Lower dimension is more dense

Topic model

- Abstract topics in a collection of documents.
- Each component could be consider as a topic.
- Words inside a topic often co-occur together.

Clustering

- Grouping a set of instances into a cluster.
 - Samples in a cluster are more similar to each other.
- Similarity
 - Distance function
 - Euclidean
 - Cosine

K-means

- Finding centroid
- Based on Euclidean distance
- Local optimum
- Sensitive to initialization

K-means clusters

https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means

Number of clusters

https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means

Inertia

- Metric to measure clustering accuracy
- Within sum of square (WSS) distance to the nearest centroid

$$\bullet \sum_{i} \min_{\mu_j \in C} \|x_i - \mu_j\|^2$$

Number of clusters vs. inertia

- More clusters → Lower inertia
- Number of clusters = number of samples
 - Zero inertia

Best number of clusters

Optimal number of clusters

http://www.sthda.com/english/articles/29-cluster-validation-essentials/96-determining-the-optimal-number-of-clusters-3-must-know-methods/#average-silhouette-methods/methods

Document clustering

- Creating the feature matrix:
 - Tf-idf is recommended
- Fit k-means with different number of clusters (e.g 2-10)
- Plot inertia
- Select the best one with elbow method (finding knee)

Challenge

- Text is sparse
- Distance metrics may not reflect the similarity
- Solution
 - Reduce the dimension before clustering

Clustering in low dimension (LD)

- Reduce the dimension
 - Using LSA
- Fit K-means
- Tune number of clusters
 - Elbow method

LD vs HD clustering

- Low dimension
 - Pros: Data is more dense.
 - Cons: number of components need to tune too.
- High dimension
 - Pros: Only one tuning parameter (number of clusters)
 - Cons: Sparsity

Clustering accuracy

- We often don't have labels
 - Hard to measure the cluster accuracy
- If we have the labels
 - We can measure the accuracy
 - Predict all samples in one cluster to one class base on majority vote

Clustering accuracy

• Cluster 1:

- 100 samples → class A
- 50 samples → class B
- 50 samples → class C
- Predict all samples as class A

Clustering applications

- Cluster analysis
- Feature learning
- Word clustering

Soft clustering

- Each sample may belongs to multiple clusters.
- Each sample has a weight for multiple clusters.
- Higher weight → More similar to the given cluster.

Soft clustering vs. topic modeling

- Similarity
 - Documents in a soft cluster have similar topics
 - A document can belong to multiple topics
- Difference:
 - Clustering is based on distance
 - Topic models are based on likelihood