Honors Mathematics III Review — Midterm 2

CHEN Xiwen

UM-SJTU Joint Institute

July 16, 2018

Table of contents

Convergence and Continuity

Equivalence of Norms
Compact Sets
Continuous and Uniformly Continuous
Continuous Functions on Compact Sets

Functions and Derivatives

Differentiability and Derivative Partial Derivatives and Jacobian Integrals of Functions

Equivalence of Norms

Compact Sets
Continuous and Uniformly Continuous
Continuous Functions on Compact Sets

Functions and Derivatives

Differentiability and Derivative
Partial Derivatives and Jacobian
Integrals of Functions

Equivalence of Norms

Theorem. In a *finite-dimensional* vector space, all norms are equivalent.

- ▶ Prove continuity. Exercise 5.6. Use a suitable norm to prove det is continuous. $(\|A\| = \max_{i,j} |a_{ij}|)$
- ► Exercise 5.4. Does not hold for infinite-dimensional vector spaces: in the vector space of continuous functions on [0, 1], the norms

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|, \quad ||f||_{1} = \int_{0}^{1} |f(x)| dx$$

are not equivalent.

Equivalence of Norms

Compact Sets

Continuous and Uniformly Continuous Continuous Functions on Compact Sets

Functions and Derivatives

Differentiability and Derivative
Partial Derivatives and Jacobian
Integrals of Functions

For a set $U \subset V$ where $(V, \|\cdot\|)$ is a normed vector space, it is

- ▶ Open: if $\forall a \in U$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(a) \subset U$.
- Closed: if its complement is open.
- ► Compact: if every sequence in *U* has a convergent subsequence with limit contained in *U*.

Exercise 5.1.

- 1. If a set $A \subset \mathbb{R}$ is closed and $f \in C(A, \mathbb{R})$, the set $f(A) = \operatorname{ran} f$ does not have to be closed.
 - ▶ The set \mathbb{R} is closed.
 - ▶ A function defined on \mathbb{R} (e.g., f(x) = x) can have an open range.

Exercise 5.1.

- 1. If a set $A \subset \mathbb{R}$ is closed and $f \in C(A, \mathbb{R})$, the set $f(A) = \operatorname{ran} f$ does not have to be closed.
 - ▶ The set \mathbb{R} is closed.
 - ▶ A function defined on \mathbb{R} (e.g., f(x) = x) can have an open range.
- 2. If a set $B \subset \mathbb{R}$ is open and $g \in C(B, \mathbb{R})$, the set g(B) does not have to be open.
 - ▶ The set \mathbb{R} is open.
 - \blacktriangleright A function defined on $\mathbb R$ (e.g., cosine and sine) have a closed range.

Exercise 5.1.

- 1. If a set $A \subset \mathbb{R}$ is closed and $f \in C(A, \mathbb{R})$, the set $f(A) = \operatorname{ran} f$ does not have to be closed.
 - ▶ The set \mathbb{R} is closed.
 - A function defined on \mathbb{R} (e.g., f(x) = x) can have an open range.
- 2. If a set $B \subset \mathbb{R}$ is open and $g \in C(B, \mathbb{R})$, the set g(B) does not have to be open.
 - ▶ The set \mathbb{R} is open.
 - \blacktriangleright A function defined on $\mathbb R$ (e.g., cosine and sine) have a closed range.
- 3. If $f \in C(\mathbb{R}^n, \mathbb{R}^m)$ and $K \subset \mathbb{R}^m$ is compact, then $f^{-1}(K)$ does not have to be compact.
 - $f:(0,2\pi)\to [-1,1], \quad f(x)=\sin x.$
 - **Note.** f is continuous, if $C \subset \mathbb{R}$ is compact, then f(C) is also compact. But the inverse is not true.

Interior, Exterior and Boundary Points

- ▶ Interior point: $\exists \varepsilon > 0, B_{\varepsilon}(x) \subset M$. (int M).
- ▶ Boundary point: $\forall \varepsilon > 0, B_{\varepsilon}(x) \cap M \neq \emptyset, B_{\varepsilon}(x) \cap (V \setminus M) \neq \emptyset.$ (∂M).
- Exterior point: x is neither a boundary nor an interior point.
- ▶ Closure: $\overline{M} = M \cup \partial M$.

Equivalence of Norms

Continuous and Uniformly Continuous

Continuous Functions on Compact Sets

Functions and Derivatives

Differentiability and Derivative
Partial Derivatives and Jacobian
Integrals of Functions

Continuous and Uniformly Continuous

Let $(U, \|\cdot\|_1)$ and $(V, \|\cdot\|_2)$ be normed vector spaces, $\Omega \subset U$ and $f: \Omega \to V$ a function. Then f is a

 \blacktriangleright Continuous function on Ω :

$$\forall \forall \exists \forall x \in U \text{ } \delta > 0 \text{ } y \in U \text{ } ||x - y||_1 < \delta \quad \Rightarrow \quad ||f(x) - f(y)||_2 < \varepsilon.$$
Note A function is continuous at a $\in U$ if and only if

Note. A function is continuous at $a \in U$ if and only if

$$\forall \underset{\substack{(x_n), n \in \mathbb{N} \\ x_n \in U}}{\forall} x_n \to a \quad \Rightarrow \quad f(x_n) \to f(a)$$

(Often used to prove or disprove continuity.)

▶ Uniformly continuous function on Ω :

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x\in U} \forall_{y\in U} ||x-y||_1 < \delta \quad \Rightarrow \quad ||f(x)-f(y)||_2 < \varepsilon.$$

Equivalence of Norms Compact Sets Continuous and Uniformly Continuous

Continuous Functions on Compact Sets

Functions and Derivatives
Differentiability and Derivative
Partial Derivatives and Jacobian
Integrals of Functions

Continuous Functions on Compact Sets

- 1. On a normed vector space $(V, \|\cdot\|)$,
 - ▶ $K \subset V$ is compact $\Rightarrow K$ is closed and bounded.
 - ▶ $K \subset V$ is closed and bounded, and V is finite-dimensional, $\Rightarrow K$ is compact.
- 2. For a continuous function f defined on a compact set $K \subset V$,
 - ightharpoonup f(K) is compact.
 - ▶ f has a maximum on K.
 - f is uniformly continuous on K.

Equivalence of Norms
Compact Sets
Continuous and Uniformly Continuous
Continuous Functions on Compact Sets

Functions and Derivatives Differentiability and Derivative

Partial Derivatives and Jacobian Integrals of Functions

Differentiability and Derivative

▶ The first derivative.

$$f(x+h) = f(x) + Df|_x h + o(h), \qquad h \to 0$$

► The second derivative.

$$Df|_{x+h} = Df|_x + D^2f_xh + o(h), \qquad h \to 0$$

The Derivatives of Functions

 Determinant. Exercise 5.6 & RC 7. (Second derivative for invertible matrices.)

$$(D\det)|_A H = \det A \cdot \operatorname{tr}(A^{-1}H) = \operatorname{tr}(A^{\sharp}H)$$

$$D^2 \det|_A [J, H] = \det(A) \left(\operatorname{tr}(A^{-1}J) \cdot \operatorname{tr}(A^{-1}H) - \operatorname{tr}(A^{-1}JA^{-1}H) \right)$$

2. $\Phi(A) = A^3$.

$$D\Phi|_A H = A^2 H + AHA + HA^2$$

$$D^2\Phi|_A [H, J] = AJH + AHJ + JAH + JHA + HAJ + HJA$$

- 3. Inverse. $D(\cdot)^{-1}|_A H = -A^{-1}HA^{-1}$.
- 4. Linear maps. $DL|_{x} = L$.
 - ▶ Complex conjugation when \mathbb{C} is regarded as a real vector space. $D(\cdot)|_z h = \overline{h}$.
 - ▶ Trace of matrix. $Dtr|_A = tr$.

Equivalence of Norms
Compact Sets
Continuous and Uniformly Continuous
Continuous Functions on Compact Sets

Functions and Derivatives

Differentiability and Derivative
Partial Derivatives and Jacobian

Partial Derivatives and Jacobian

Evaluate partial derivatives

- 1. on an open interval. (Usually for continuous partial derivatives.) Calculate based on formula.
- 2. at a specific point. (Not continuous partial derivatives.) Use definition

$$\frac{\partial f}{\partial x_j}\Big|_{x} = \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$

Note. The partial derivative at a point should be evaluated up to the specific value of this point.

Partial Derivatives and Jacobian

e.g.

1. Exercise 5.7.

$$g(x_1, x_2) = \begin{cases} (x_1^2 + x_2^2) \sin((x_1^2 + x_2^2)^{-1/2}) & (x_1, x_2) \neq (0, 0) \\ 0 & (x_1, x_2) = (0, 0) \end{cases}$$

2. Exercise 6.7.

$$f(x,y) = \begin{cases} \frac{x^3}{y^2} e^{-x^2/y} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

and therefore

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^1 f(x, y) \mathrm{d}y \bigg|_{x=0} \neq \int_0^1 \frac{\partial}{\partial x} f(x, y) \mathrm{d}y \bigg|_{x=0}$$

Partial Derivatives and Jacobian

- e.g.
 - 2. Exercise 6.7.

$$f(x,y) = \begin{cases} \frac{x^3}{y^2} e^{-x^2/y} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

and therefore

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^1 f(x, y) \mathrm{d}y \bigg|_{x=0} \neq \int_0^1 \frac{\partial}{\partial x} f(x, y) \mathrm{d}y \bigg|_{x=0}$$

Jacobian

If all partial derivatives of f at x,

$$J_f(x) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} \bigg|_{x}$$

- ▶ All partial derivatives are continuous on $\Omega \Rightarrow f$ is continuously differentiable on Ω with derivative given by Jacobian.
- Not all partial derivatives are continuous $\Rightarrow f$ is not differentiable.
 - e.g. Exercise 5.7.

$$g(x_1, x_2) = \begin{cases} (x_1^2 + x_2^2) \sin((x_1^2 + x_2^2)^{-1/2}) & (x_1, x_2) \neq (0, 0) \\ 0 & (x_1, x_2) = (0, 0) \end{cases}$$

Finding Derivatives

▶ Definition.

$$f(x + h) = f(x) + Df|_{x}h + o(h), \qquad h \to 0$$

 $Df|_{x+h} = Df|_{x} + D^{2}f_{x}h + o(h), \qquad h \to 0$

▶ Product Rule.

$$D(f \odot g) = (Df) \odot g + f \odot (Dg)$$

Chain Rule.

$$D(f \circ g)|_{x} = Df|_{g(x)} \circ Dg|_{x}$$

Note. Composition of two functions.

Chain Rule

Change of coordinates.

$$\Phi(x,y) = \begin{pmatrix} u \\ v \end{pmatrix}, \quad f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = g(u,v)$$

then

$$Df|_{(x,y)} = Dg|_{\Phi(x,y)} \circ D\Phi|_{(x,y)} = \begin{pmatrix} \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} \end{pmatrix} \quad \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

Namely,

$$\frac{\partial}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial}{\partial v}, \quad \frac{\partial}{\partial y} = \frac{\partial u}{\partial y} \frac{\partial}{\partial u} + \frac{\partial v}{\partial y} \frac{\partial}{\partial v}$$

e.g. Exercise 6.4.

$$\Delta_{(r,\theta)} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

Equivalence of Norms
Compact Sets
Continuous and Uniformly Continuous
Continuous Functions on Compact Sets

Functions and Derivatives

Differentiability and Derivative Partial Derivatives and Jacobian Integrals of Functions

Integrals of Functions

Mean value theorem.

$$f(x+y) - f(x) = \int_0^1 Df|_{x+ty} y dt = \left(\int_0^1 Df_{x+ty} dt\right) y$$

▶ Differentiating under an integral.

$$g(x) = \int_a^b f(t, x) dt$$
, $Dg(x) = \int_a^b Df(t, \cdot)|_X dt$

e.g.

1. Evaluate integral

$$\int_0^\infty \frac{\sin t}{t} \mathrm{d}t$$

2. Prove Euler's integral formula

$$\int_0^\infty x^n e^{-x} \mathrm{d}x = n!$$

Equivalence of Norms
Compact Sets
Continuous and Uniformly Continuous
Continuous Functions on Compact Sets

Functions and Derivatives

Differentiability and Derivative Partial Derivatives and Jacobian Integrals of Functions

Length

► Curve length:

$$\ell(\mathcal{C}) = \int_a^b \|\gamma'(t)\| \mathrm{d}t$$

Curve length function:

$$\ell \circ \gamma(t) = \int_a^t \|\gamma'(\tau)\| \mathrm{d}\tau$$

► Length parametrization:

$$\|\gamma'(t)\| = \frac{\mathrm{d}(\ell \circ \gamma)(t)}{\mathrm{d}t}$$

Note. This means that $\frac{\mathrm{d}s}{\mathrm{d}t} = \|\gamma'\|$.

Vectors

▶ Unit tangent vector, unit normal vector, binormal vector.

$$T\circ\gamma(t)=rac{\gamma'(t)}{\|\gamma'(t)\|},\quad N\circ\gamma(t)=rac{(T\circ\gamma)'(t)}{\|(T\circ\gamma)'(t)\|},\quad B=T imes N$$

Relations of derivatives.

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} T \\ N \\ B \end{pmatrix} = \|\gamma'(t)\| \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}$$

Curvature and Torsion

► Curvature in \mathbb{R}^3 :

$$\kappa \circ \gamma(t) = \kappa \circ \ell^{-1}(s)|_{s=\ell \circ \gamma(t)} = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3}$$

Note. The curvature is calculated differently in length parametrization.

▶ Torsion in \mathbb{R}^3 .

$$\tau = \frac{\langle \gamma' \times \gamma'', \gamma''' \rangle}{\|\gamma' \times \gamma''\|^2} = \frac{\det(\gamma', \gamma'', \gamma''')}{\|\gamma' \times \gamma''\|^2}$$

Tangent Line, Tangent Plane, Tangent Vectors

► Tangent line at *t*₀:

$$\gamma(t_0): \{\gamma(t_0) + \gamma'(t_0)t, t \in \mathbb{R}\}\$$

▶ Tangent line of $f: \mathbb{R}^n \to \mathbb{R}$ along h:

$$t_{f,x;h}(x) = \begin{pmatrix} x + sh \\ f(x) + D_h f|_X s \end{pmatrix}$$

▶ Tangent plane at $(x_0, f(x_0))$:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ f(x_0, y_0) \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ \frac{\partial f}{\partial x}(x_0, y_0) \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}$$

Tangent Line, Tangent Plane, Tangent Vectors

▶ Tangent vectors at $(x_0, f(x_0))$:

$$t_1 := egin{pmatrix} 1 \ 0 \ rac{\partial f}{\partial x}(x_0,y_0) \end{pmatrix} \;\;, \qquad t_2 := egin{pmatrix} 0 \ 1 \ rac{\partial f}{\partial y}(x_0,y_0) \end{pmatrix}$$

▶ Normal vectors at $(x_0, f(x_0))$:

$$n = t_1 \times t_2 = \begin{pmatrix} -rac{\partial f}{\partial x}(x_0, y_0) \\ -rac{\partial f}{\partial y}(x_0, y_0) \\ 1 \end{pmatrix}$$

▶ Best linear approximation of f at x_0 :

$$Tf(\cdot; x_0) = f(x_0) + Df|_{x_0}(\cdot - x_0)$$

Directional Derivatives

► Directional derivative:

$$|D_h f|_{x} = \left. \frac{\mathrm{d}}{\mathrm{d}t} f(x + th) \right|_{t=0}$$

For smooth functions,

$$D_h f|_{x} = Df|_{x} h = \langle \nabla f(x), h \rangle$$

Note.
$$||h|| = 1$$
.

► Normal derivative:

$$\left. \frac{\partial f}{\partial n} \right|_{p} = D_{N(p)} f|_{p}$$

Directional Derivatives

Note. The existence of directional derivatives does not guarantee differentiability.

e.g. Sample 2 Exercise 8. $f: \mathbb{R}^2 \to \mathbb{R}$, all directional derivatives exist, but f is not differentiable.

$$f(x,y) = \begin{cases} \left(1 - \cos\frac{x^2}{y}\right)\sqrt{x^2 + y^2} & y \neq 0\\ 0 & y = 0 \end{cases}$$

Thanks for your attention! **Good Luck!**