Macroeconometrics

Lecture 19 Modeling trend inflation

Tomasz Woźniak

Department of Economics University of Melbourne

A first look at the data... no one said it's gonna be easy!

UC models for Australian CPI inflation

UC model for Australian CPI prices

UC model for Australian Real GDP

Materials:

A zip file L19 mcxs.zip for the reproduction of the results

Objectives.

- ▶ To familiarise with the parameters, trend, and cycle estimates
- ➤ To investigate the definition of the trend via the model specification
- ► To document the prior dependence of the results

Learning outcomes.

- ▶ Documenting the persistence properties of the data
- ► Visualising the trend and cycle
- ► Performing prior robustness checks

Consumer Price Index in Australia

Quarterly data from 1949Q3 to 2022Q1 (T = 295)

Downloaded from the ABS using

readabs::read_abs(series_id = "A2325846C")

Consumer Price Index in Australia

Consumer Price Index in Australia

Integration order verification

Quarterly data from 1976Q1 to 2022Q1

variable	deterministic terms	lag order	t_{ADF}	p-value
cpi _t	trend, constant constant	24	-2.776	0.252
cpi _t		24	-0.922	0.714
π_t π_t	constant	23	-2.324	0.193
	none	23	-2.29	0.023
$\Delta\pi_t$	none	22	-2.868	<0.01

Computations performed using fUnitRoots::adfTest

UC models for Australian CPI inflation

UC-AR(p) model with hierarchical prior for variances.

$$y_{t} = \tau_{t} + \epsilon_{t}$$

$$\tau_{t} = \mu + \tau_{t-1} + \eta_{t}$$

$$\epsilon_{t} = \alpha_{1}\epsilon_{t-1} + \dots + \alpha_{p}\epsilon_{t-p} + e_{t}$$

$$\begin{bmatrix} \eta_{t} \\ e_{t} \end{bmatrix} | Y_{t-1} \sim ii \mathcal{N} \begin{pmatrix} \mathbf{0}_{2}, \begin{bmatrix} \sigma_{\eta}^{2} & 0 \\ \sigma_{e}^{2} \end{bmatrix} \end{pmatrix}$$

Prior hyper-parameters.

$$\underline{\alpha} = \mathbf{0}_p,$$
 $\underline{V}_{\alpha} = \kappa_1 I_p,$ $\kappa_1 = 1,$ $\alpha \in A$ – not imposed $\underline{\beta} = \mathbf{0}_2,$ $\underline{V}_{\beta} = \kappa_2 I_2,$ $\kappa_2 = 1$ $\underline{\nu} = 3,$ $s = 0.00346,$ $a = 1$

Estimation via Gibbs sampler as presented in Lectures 17 & 18

Estimation results from UC-AR(p) models: π_t 1976Q1-2022Q1

р	$lpha_1$	$lpha_2$	$lpha_3$	$lpha_4$	$lpha_5$	% s	μ	$\sigma_{\eta}^2/\sigma_e^2$
1	0.893 0.091					95.9	-0.011 0.055	2.009
2	1.221 0.203	-0.346 0.213				98.4	-0.015 0.054	2.288
3	1.092 0.131	-0.003 0.181	-0.267 0.111			99.8	-0.018 0.048	1.398
4	0.838 0.108	0.158 0.130	0.101 0.130	-0.395 0.115		100	-0.022 0.039	0.750
5	1.025 0.095	0.089 0.119	0.037 0.119	-0.624 0.128	0.330 0.100	99.2	-0.026 0.033	0.382

% s – fraction of posterior draws for which stationarity condition holds $\sigma_\eta^2/\sigma_e^2 - \text{signal-to-noise ratio}$

Estimated trend and cycle from UC-AR(4)

UC-AR(p) with hierarchical prior and correlated shocks.

$$\begin{aligned} y_t &= \tau_t + \epsilon_t \\ \tau_t &= \mu + \tau_{t-1} + \eta_t \\ \epsilon_t &= \alpha_1 \epsilon_{t-1} + \dots + \alpha_p \epsilon_{t-p} + e_t \\ \begin{bmatrix} \eta_t \\ e_t \end{bmatrix} \middle| Y_{t-1} &\sim \textit{ii} \mathcal{N} \left(\mathbf{0}_2, \begin{bmatrix} \sigma_{\eta}^2 & \rho \sigma_{\eta} \sigma_e \\ \sigma_e^2 \end{bmatrix} \right) \end{aligned}$$

Prior hyper-parameters.

$$\underline{\alpha} = \mathbf{0}_p,$$
 $\underline{V}_{\alpha} = \kappa_1 I_p,$ $\kappa_1 = 1,$ $\alpha \in A$ – not imposed $\underline{\beta} = \mathbf{0}_3,$ $\underline{V}_{\beta} = \kappa_2 I_3,$ $\kappa_2 = 1$ $\underline{\nu} = 3,$ $s = 0.00346,$ $a = 1$

Estimation results from UC-AR(p) models: π_t 1976Q1–2022Q1

р	$lpha_1$	α_2	α_3	$lpha_4$	$lpha_5$	% s	μ	ρ	$\sigma_{\eta}^2/\sigma_e^2$
2	1.240 0.266	-0.374 0.262				97/7	-0.011 0.079	0.056 0.053	4.693
3	1.038 0.313	-0.025 0.244	-0.246 0.212			99.6	-0.014 0.066	0.079 0.060	7.583
4	0.828 0.179	0.139 0.196	0.105 0.187	-0.398 0.165		99.8	-0.020 0.057	0.132 0.069	2.380
5	1.013 0.132	0.094 0.149	0.054 0.148	-0.664 0.154	0.331 0.126	99.1	-0.023 0.058	0.102 0.064	1.184

[%] s – fraction of posterior draws for which stationarity condition holds $\sigma_\eta^2/\sigma_e^2 - \text{signal-to-noise ratio}$

Estimated trend and cycle from UC-AR(4) with ρ

UC-AR(p) with gamma prior.

$$y_{t} = \tau_{t} + \epsilon_{t}$$

$$\tau_{t} = \mu + \tau_{t-1} + \eta_{t}$$

$$\epsilon_{t} = \alpha_{1}\epsilon_{t-1} + \dots + \alpha_{p}\epsilon_{t-p} + e_{t}$$

$$\begin{bmatrix} \eta_{t} \\ e_{t} \end{bmatrix} | Y_{t-1} \sim ii\mathcal{N} \begin{pmatrix} \mathbf{0}_{2}, \begin{bmatrix} \sigma_{\eta}^{2} & 0 \\ \sigma_{\eta}^{2} & \sigma_{e}^{2} \end{bmatrix} \end{pmatrix}$$

$$\sigma_{\eta}^{2} \mid \underline{s} \sim \mathcal{G}(s, a)$$

Estimation results from UC-AR(p) models: π_t 1976Q1–2022Q1

$lpha_1$	$lpha_2$	$lpha_3$	$lpha_4$	$lpha_5$	% s	μ	$\sigma_{\eta}^2/\sigma_e^2$
0.841	0.160	0.091	-0.387		100	-0.021	0.780
0.114	0.135	0.136	0.120			0.041	

[%] s – fraction of posterior draws for which stationarity condition holds σ_η^2/σ_e^2 – signal-to-noise ratio

Estimated trend and cycle from UC-AR(4) with gamma prior

Stochastic or deterministic trend?

Testing restriction $\sigma_{\eta}^2=0$ is difficult. However

$$\sigma_{\eta}^{2} \mid \underline{s} \sim \mathcal{G}\left(2\underline{s}, \frac{1}{2}\right) \qquad \Rightarrow \qquad \pm \sqrt{\sigma_{\eta}^{2}} \mid \underline{s} \sim \mathcal{N}\left(0, \underline{s}\right)$$

Testing restriction $\pm \sqrt{\sigma_{\eta}^2} = 0$ seems easier.

Savage-Dickey density ratio for $\pm \sqrt{\sigma_{\eta}^2} = 0$:

$$\frac{p\left(\pm\sqrt{\sigma_{\eta}^2} = 0 \mid data\right)}{p\left(\pm\sqrt{\sigma_{\eta}^2} = 0\right)} = \frac{\Pr\left[\pm\sqrt{\sigma_{\eta}^2} = 0 \mid data\right]}{\Pr\left[\pm\sqrt{\sigma_{\eta}^2} = 0\right]}$$

Stochastic or deterministic trend?

The value of the SDDR is clearly less than 1 which constitutes strong Bayesian evidence against the restriction.

UC-AR(4) with time-varying drift.

$$\begin{aligned} y_t &= \tau_t + \epsilon_t \\ \tau_t &= \mu_t + \tau_{t-1} + \eta_t \\ \mu_t &= \mu_{t-1} + m_t \\ \epsilon_t &= \alpha_1 \epsilon_{t-1} + \dots + \alpha_4 \epsilon_{t-4} + e_t \\ \begin{bmatrix} \eta_t \\ e_t \\ m_t \end{bmatrix} \middle| Y_{t-1} \sim ii \mathcal{N} \begin{pmatrix} \mathbf{0}_3, \begin{bmatrix} \sigma_\eta^2 & 0 & 0 \\ & \sigma_e^2 & 0 \\ & & \sigma_m^2 \end{bmatrix} \end{pmatrix} \end{aligned}$$

Estimation results from UC-AR(4) *cpi_t* 1976Q1–2022Q1

α_1	α_2	α_3	$lpha_4$	% s	$\sigma_{\eta}^2/\sigma_e^2$	$ au_0$	μ_0
	-0.085 0.222			0.956	1.911	2.816 0.016	

% s – fraction of posterior draws for which stationarity condition holds $\sigma_\eta^2/\sigma_e^2 - \text{signal-to-noise ratio}$

Quarterly data from 1959Q3 to 2021Q4 (T = 250)

Downloaded from the ABS using

readabs::read_abs(series_id = "A2304402X")

UC-AR(4) with time-varying drift.

$$y_{t} = \tau_{t} + \epsilon_{t}$$

$$\tau_{t} = \mu_{t} + \tau_{t-1} + \eta_{t}$$

$$\mu_{t} = \mu_{t-1} + m_{t}$$

$$\epsilon_{t} = \alpha_{1}\epsilon_{t-1} + \dots + \alpha_{4}\epsilon_{t-4} + e_{t}$$

$$\begin{bmatrix} \eta_{t} \\ e_{t} \\ m_{t} \end{bmatrix} Y_{t-1} \sim ii\mathcal{N} \begin{pmatrix} \mathbf{0}_{3}, \begin{bmatrix} \sigma_{\eta}^{2} & 0 & 0 \\ & \sigma_{e}^{2} & 0 \\ & & \sigma_{m}^{2} \end{bmatrix}$$

Estimation results from UC-AR(4) gdp_t 1959Q3–2022Q1

α_1	α_2	α_3	$lpha_4$	% s	$\sigma_{\eta}^2/\sigma_e^2$	$ au_0$	μ_0
		-0.149 0.191		0.992	1.311	11.072 0.023	

[%] s – fraction of posterior draws for which stationarity condition holds $\sigma_{\eta}^2/\sigma_e^2 - \text{signal-to-noise ratio}$

Australian CPI prices and inflation

Unobserved Component models correctly capture the dynamics in Australian CPI prices and inflation.

Trend-cycle decomposition indicates increasing long-run inflation trend.

Hierarchical priors are the essential extension.