Comparison of B and Al:

<u>Similarities</u>: B & Al have similarities due to similar valence shell configuration.

- Both exhibit a valency of 3
- Both form similar oxides B₂O₃.Al₂O₃
- Both form similar halides BCl₃, AlCl₃.
- Trihalides of both act as Lewis acids.

Differences: B & Al differ due to the difference in the penultimate shell configuration.

Boron	Aluminium
$B \rightarrow (n-1)s^2$	$AI \rightarrow (n-1)s^2p^6$
B is non – metal	Al is metal
It is rare in occurance	It is very much abundant
Bad conductor	Good conductor
Exhibits allotropy (same element in different physical forms)	
Maximum valency is 4	Maximum valency is 6
Forms covalent compounds	Forms both ionic and covalent compounds.
Exhibits oxidation state 3 also	Exhibits +3 oxidation state only
It does not form cation	Forms cation
It reacts with alkalies to liberate H ₂ gas	It reacts with both acids & bases to liberate H ₂ gas
B ₂ O ₃ is acidic	Al ₂ O ₃ is amphoteric
It forms stable hydrides	Its hydrides are unstable
Forms stable borates	Aluminates are unstable

Oxides:

• B₂O₃ is a white solid & soluble in water while Al₂O₃ is also white solid but insoluble in water.

$$B_2O_3 + H_2O \rightarrow B(OH)_3$$
 or H_3BO_3 (boric acid)

- Boric acid is a weak monobasic acid
- B₂O₃ is formed when borax reacts with strong acid

$$Na_2B_4O_7 + 2HCl + H_2O \rightarrow H_3BO_3 + 2NaCl$$

- Hydroxides: Hydroxide of B is acid i.e. B(OH)₃
- Hydroxide of Al is amphoteric i.e., Al(OH)₃
- B(OH)₃ is soluble & Al(OH)₃ is insoluble in water & it is white gelatinous precipitate.
- B(OH)₃ is prepared from B₂O₃ and H₂O

$$B_2O_3 + 3H_2O \rightarrow 2H_3BO_3$$

• Al(OH)₃ is prepared from Al salt & NH₃ solution.

$$AICI_3 + 3NH_4OH \rightarrow AI(OH)_3 + 3NH_4CI$$

Trihalides: Both form trihalides. Trihalides are electron deficient. Therefore they act as Lewis acids. In these trihalides, central atom is sp² hybridised and trigonal planar.

- All Boron trihalides are covalent.
- AIF₃ is ionic, an AICl₃ is covalent and hydrated AICl₃ is ionic.
- Boron trihalides will be hydrolysed to give boric acid.
- BCl₃ + $3H_2O \rightarrow B(OH)_3 + 3HCl$
- Lewis acidic strength order: BF₃<BCl₃ > BBr₃ > Bl₃
- The substance which accepts electron pair is called Lewis acid.
- All electron deficient molecules are lewis acids.
- Trihalides of B & Al such as BF₃, AlCl₃, etc are electron deficient & act as Lewis acids.
- Because of their ability to behave like Lewis acids, they are used as Friedel crafts catalysts.
- Anhydrous AlCl₃ will exists as dimer [Al₂Cl₆] to compensate electron deficiency.

Upto 400°C, AlCl₃ will exist as dimer beyond 800°C, it will exist as monomer.

Back – bonding : In BF₃, each fluorine has 3 lone pairs & B has vacant 2p orbital.

- Fluorine donates one of its three lone pairs to the vacant orbital of B & forms a dative bond in between them.
- This backbond is possible because of donation of electron pair from 2p orbital of F to 2p orbital of B. As a result of this back bonding, the electron deficiency of B is nullified to large extent.
- \therefore BF₃ behaves as weak lewis acid eventhough more electron-negative flourines are bonded to Boron.

Such type of back bonding is not possible in other boron trihalides because lone pair has to be donated from higher p – orbital i.e, 3p, 4p, 5p etc. to the 2p orbital of Boron.

$$BF_3 < BCl_3 > BBr_3 > Bl_3$$

Due to back bonding BF₃ has the following three

- Because of the above resonance structures of BF₃.
- Bond order of B F is 4/3 i.e., 1.33
- Bond length of B F is slightly decreased than the expected value.