Klækken 2013

Martin Jullum

problem

Statistical model setup

roximation methods

Illustration

Approximate Bayesian Inference for Geophysical Inverse Problems

Martin Jullum

University of Oslo martinju@math.uio.no

May 25, 2013

Outline

Klækken 2013

Martin Jullun

The practic

Statistical nodel setup

Solution/approximation methods

lustration

- 1 The practical problem
- 2 Statistical model setup
- 3 Solution/approximation methods
- 4 Illustration

Oil and gas exploration

Klækken 2013

Martin Jullur

The practical problem

Statistical model setup

Solution/approximation methods

Ilustration

- Hard to determine where oil and gas are located
- Costs 200 800 million NOK to drill a exploration well
- Massive profit if one finds hydrocarbon reservoirs - large loss if not
 - Needs to estimate the probability of hydrocarbons

Seismic survey

Klækken 2013

Martin Jullur

The practical problem

Statistical model setup

Solution/approximation methods

Iluctration

- A source sends out shock waves
- Shock waves are reflected in the contrasts between the different facies (rock types)
- Receivers measure properties of smoothed reflected wave signals: Seismic data

Problem setup

Klækken 2013

Martin Jullum

The practical problem

Statistical model setup

Solution/approximation methods

Illustration

 The behavior of the reflected waves depends on the contrast facies

- Seismic data can be processed to tell us about the material properties
- Different facies have different material properties
- We would like to estimate the facies probability distribution at various locations below the seabed

Relations:

- $Z = XY + \epsilon$, for some error term ϵ
 - Z: Seismic Data
 - X: Data link (design matrix/dynamics)
 - Y: Rock material characteristics
- \bullet : Facies categories

Problem setup

Klækken 2013

Martin Jullum

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

 The behavior of the reflected waves depends on the contrast facies

- Seismic data can be processed to tell us about the material properties
- Different facies have different material properties
- We would like to estimate the facies probability distribution at various locations below the seabed

Relations:

- $Z = XY + \epsilon$, for some error term ϵ
 - Z: Seismic Data
 - X: Data link (design matrix/dynamics)
 - Y: Rock material characteristics
- θ : Facies categories

Problem setup

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

Ilustration

- The behavior of the reflected waves depends on the contrast facies
- Seismic data can be processed to tell us about the material properties
- Different facies have different material properties
- We would like to estimate the facies probability distribution at various locations below the seabed

Relations:

- $lacksquare Z = XY + \epsilon$, for some error term ϵ
 - Z: Seismic Data
 - X: Data link (design matrix/dynamics)
 - Y: Rock material characteristics
- \bullet : Facies categories

Hierarchical model setup

Klækken 2013

Martin Jullum

The practica problem

Statistical model setup

Solution/approximation methods

Ilustration

- p(Z|Y): Seismic data model
- $p(Y|\theta)$: Latent rock material physics model
- $p(\theta)$: Categorical facies model
- The forward problem: Determine Z from θ
- The inverse problem we are interested in: Determine θ from Z: I.e. the standard Bayesian problem of finding the posterior $p(\theta|Z)$.
- Main problem
 - Great number of surface locations m, each with a large number of vertical positions - massive amounts of data
 - The wavelet smoothen the reflected signal data
 - \blacksquare dim(θ) is enormous

Hierarchical model setup

Klækken 2013

Martin Jullum

The practical problem

Statistical model setup

Solution/approximation methods

Ilustration

- p(Z|Y): Seismic data model
- $p(Y|\theta)$: Latent rock material physics model
- $p(\theta)$: Categorical facies model
- The forward problem: Determine Z from θ
- The inverse problem we are interested in: Determine θ from Z: I.e. the standard Bayesian problem of finding the posterior $p(\theta|Z)$.
- Main problem
 - Great number of surface locations *m*, each with a large number of vertical positions massive amounts of data
 - The wavelet smoothen the reflected signal data
 - \blacksquare dim(θ) is enormous

Hierarchical model setup

Klækken 2013

Martin Jullum

The practic problem

Statistical model setup

Solution/approximation methods

Ilustration

- p(Z|Y): Seismic data model
- $p(Y|\theta)$: Latent rock material physics model
- $p(\theta)$: Categorical facies model
- The forward problem: Determine Z from θ
- The inverse problem we are interested in: Determine θ from Z: I.e. the standard Bayesian problem of finding the posterior $p(\theta|Z)$.

■ Main problem

- Great number of surface locations *m*, each with a large number of vertical positions massive amounts of data
- The wavelet smoothen the reflected signal data
- \blacksquare dim(θ) is enormous

Klækken 2013

Martin Jullum

The practica problem

Statistical model setup

Solution/approximation methods

Illustration

The simplest reasonable assumptions:

- $p(Z|Y,\theta) = p(Z|Y)$ is Gaussian
- $p(Y|\theta)$ is Gaussian and $p(Y_i|\theta) = p(Y_i|\theta_i)$ for some location i is also Gaussian
- $p(\theta)$ is categorical

How to find/approximate $p(\theta|Z)$:

Exact calculation - possible in theory, but not in practice

- MCMC similar problem as exact computation
- INLA assumptions are not completely fulfilled

Klækken 2013

Martin Jullum

The practica problem

Statistical model setup

Solution/approximation methods

Illustration

The simplest reasonable assumptions:

- $p(Z|Y,\theta) = p(Z|Y)$ is Gaussian
- $p(Y|\theta)$ is Gaussian and $p(Y_i|\theta) = p(Y_i|\theta_i)$ for some location i is also Gaussian
- $p(\theta)$ is categorical

How to find/approximate $p(\theta|Z)$:

Exact calculation - possible in theory, but not in practice

- MCMC similar problem as exact computation
- INLA assumptions are not completely fulfilled

Klækken 2013

Martin Jullum

The practical problem

Statistical model setup

Solution/approximation methods

Illustration

- The simplest reasonable assumptions:
 - $p(Z|Y,\theta) = p(Z|Y)$ is Gaussian
 - $p(Y|\theta)$ is Gaussian and $p(Y_i|\theta) = p(Y_i|\theta_i)$ for some location i is also Gaussian
 - $p(\theta)$ is categorical

How to find/approximate $p(\theta|Z)$:

- Exact calculation possible in theory, but not in practice
 - p(Y) is a Gaussian mixture which returns an exact mathematical formulae for $p(\theta|Z)$
 - The calculation requires summation over θ impossible due to large dim(θ)
 - MCMC similar problem as exact computation
 - INLA assumptions are not completely fulfilled

 $p(Y|\theta)$ Gaussian: OK

■ $p(Z|Y,\theta) = \prod_{i=1}^n p(Z_i|\eta_i,\theta)$, for linear predictor η_i of the Y_i s: Almost OK

 \blacksquare dim(θ) small: NO!

Klækken 2013

Martin Jullum

The practical problem

Statistical model setup

Solution/approximation methods

Illustration

The simplest reasonable assumptions:

- $p(Z|Y,\theta) = p(Z|Y)$ is Gaussian
- $p(Y|\theta)$ is Gaussian and $p(Y_i|\theta) = p(Y_i|\theta_i)$ for some location i is also Gaussian
- $p(\theta)$ is categorical

- Exact calculation possible in theory, but not in practice
 - p(Y) is a Gaussian mixture which returns an exact mathematical formulae for $p(\theta|Z)$
 - The calculation requires summation over θ impossible due to large $\dim(\theta)$
- MCMC similar problem as exact computation
- INLA assumptions are not completely fulfilled
 - $p(Y|\theta)$ Gaussian: OK
 - $p(Z|Y,\theta) = \prod_{i=1}^n p(Z_i|\eta_i,\theta)$, for linear predictor η_i of the Y_i s: Almost Q_i

Klækken 2013

Martin Jullum

The practical problem

Statistical model setup

Solution/approximation methods

Illustration

■ The simplest reasonable assumptions:

- $p(Z|Y,\theta) = p(Z|Y)$ is Gaussian
- $p(Y|\theta)$ is Gaussian and $p(Y_i|\theta) = p(Y_i|\theta_i)$ for some location i is also Gaussian
- $p(\theta)$ is categorical

- Exact calculation possible in theory, but not in practice
 - p(Y) is a Gaussian mixture which returns an exact mathematical formulae for $p(\theta|Z)$
 - The calculation requires summation over θ impossible due to large $\dim(\theta)$
 - MCMC similar problem as exact computation
 - INLA assumptions are not completely fulfilled
 - $p(Z|Y,\theta) = \prod_{i=1}^n p(Z_i|\eta_i,\theta)$, for linear predictor η_i of the Y_i s: Almost OK $\lim_{t \to \infty} \dim(\theta)$ small: NO!

Klækken 2013

Martin Jullum

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

■ The simplest reasonable assumptions:

- $p(Z|Y,\theta) = p(Z|Y)$ is Gaussian
- $p(Y|\theta)$ is Gaussian and $p(Y_i|\theta) = p(Y_i|\theta_i)$ for some location i is also Gaussian
- $p(\theta)$ is categorical

- Exact calculation possible in theory, but not in practice
 - p(Y) is a Gaussian mixture which returns an exact mathematical formulae for $p(\theta|Z)$
 - The calculation requires summation over θ impossible due to large $\dim(\theta)$
 - MCMC similar problem as exact computation
 - INLA assumptions are not completely fulfilled
 - $p(Y|\theta)$ Gaussian: OK
 - $p(Z|Y,\theta) = \prod_{i=1}^{n} p(Z_i|\eta_i,\theta)$, for linear predictor η_i of the Y_i s: Almost OK
 - \blacksquare dim(θ) small: NO!

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

llustration

■ The simplest reasonable assumptions:

- $p(Z|Y,\theta) = p(Z|Y)$ is Gaussian
- $p(Y|\theta)$ is Gaussian and $p(Y_i|\theta) = p(Y_i|\theta_i)$ for some location i is also Gaussian
- $p(\theta)$ is categorical

- Exact calculation possible in theory, but not in practice
 - p(Y) is a Gaussian mixture which returns an exact mathematical formulae for $p(\theta|Z)$
 - The calculation requires summation over θ impossible due to large $\dim(\theta)$
 - MCMC similar problem as exact computation
 - INLA assumptions are not completely fulfilled
 - $p(Y|\theta)$ Gaussian: OK
 - $p(Z|Y,\theta) = \prod_{i=1}^{n} p(Z_i|\eta_i,\theta)$, for linear predictor η_i of the Y_i s: Almost OK
 - \blacksquare dim(θ) small: NO!

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

Ilustration

- Let p_G denote distributions under the Gaussian assumption.
- If $p(Y) = p_G(Y)$, then $p(Y_i) = p_G(Y_i)$ and $p(Y_i|Z) = p_G(Y_i|Z)$ as well. Then

$$p(\theta_i|Z) \propto \int p(Z, Y_i, \theta_i) dY_i = p(\theta_i) \int p(Z|Y_i) p(Y_i|\theta_i) dY_i$$
$$\propto p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)} p(Y_i|\theta_i) dY_i$$

- The integrand consist of only Gaussians, so this is easy.
- $p(Y) = p_G(Y)$ is convenient, but generally incorrect

Klækken 2013

Martin Jullun

The practic

Statistical model setup

Solution/approximation methods

Ilustration

- Let p_G denote distributions under the Gaussian assumption.
- If $p(Y) = p_G(Y)$, then $p(Y_i) = p_G(Y_i)$ and $p(Y_i|Z) = p_G(Y_i|Z)$ as well. Then

$$p(\theta_i|Z) \propto \int p(Z, Y_i, \theta_i) dY_i = p(\theta_i) \int p(Z|Y_i) p(Y_i|\theta_i) dY_i$$
$$\propto p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)} p(Y_i|\theta_i) dY_i$$

- The integrand consist of only Gaussians, so this is easy.
- $p(Y) = p_G(Y)$ is convenient, but generally incorrect

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

- Let p_G denote distributions under the Gaussian assumption.
- If $p(Y) = p_G(Y)$, then $p(Y_i) = p_G(Y_i)$ and $p(Y_i|Z) = p_G(Y_i|Z)$ as well. Then

$$p(\theta_i|Z) \propto \int p(Z, Y_i, \theta_i) dY_i = p(\theta_i) \int p(Z|Y_i) p(Y_i|\theta_i) dY_i$$
$$\propto p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)} p(Y_i|\theta_i) dY_i$$

- The integrand consist of only Gaussians, so this is easy.
- $p(Y) = p_G(Y)$ is convenient, but generally incorrect

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

- Let p_G denote distributions under the Gaussian assumption.
- If $p(Y) = p_G(Y)$, then $p(Y_i) = p_G(Y_i)$ and $p(Y_i|Z) = p_G(Y_i|Z)$ as well. Then

$$p(\theta_i|Z) \propto \int p(Z, Y_i, \theta_i) dY_i = p(\theta_i) \int p(Z|Y_i) p(Y_i|\theta_i) dY_i$$
$$\propto p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)} p(Y_i|\theta_i) dY_i$$

- The integrand consist of only Gaussians, so this is easy.
- $p(Y) = p_G(Y)$ is convenient, but generally incorrect

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

Ilustration

- Let p_G denote distributions under the Gaussian assumption.
- If $p(Y) = p_G(Y)$, then $p(Y_i) = p_G(Y_i)$ and $p(Y_i|Z) = p_G(Y_i|Z)$ as well. Then

$$p(\theta_i|Z) \propto \int p(Z, Y_i, \theta_i) dY_i = p(\theta_i) \int p(Z|Y_i) p(Y_i|\theta_i) dY_i$$
$$\propto p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)} p(Y_i|\theta_i) dY_i$$

- The integrand consist of only Gaussians, so this is easy.
- $p(Y) = p_G(Y)$ is convenient, but generally incorrect

Locally focused approximation from a different perspective

Klækken 2013

Martin Jullur

The practic problem

Statistical model setup

Solution/approximation methods

Ilustration

We have exactly that

$$p(Y|Z) \propto p_G(Y|Z) \frac{p(Y)}{p_G(Y)}$$
.

Thus, if follows that

$$p(\theta_i|Z) \propto p(\theta_i) \int p(Y|Z)p(Y)p(Y|\theta_i)dY$$

$$\propto p(\theta_i) \int \frac{p_G(Y|Z)}{p_G(Y)}p(Y|\theta_i)dY$$

$$= \dots = p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)}p(Y_i|\theta)K(Y_i)dY_i$$

where

$$K(Y_i) = \int \frac{p_G(Y_{-i}|Z, Y_i)}{p_G(Y_{-i}|Y_i)} p(Y_{-i}|\theta_i, Y_i) dY_{-i}$$

Locally focused approximation from a different perspective

Klækken 2013

Martin Jullui

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

We have exactly that

$$p(Y|Z) \propto p_G(Y|Z) \frac{p(Y)}{p_G(Y)}$$
.

Thus, if follows that

$$p(\theta_i|Z) \propto p(\theta_i) \int p(Y|Z)p(Y)p(Y|\theta_i)dY$$

$$\propto p(\theta_i) \int \frac{p_G(Y|Z)}{p_G(Y)}p(Y|\theta_i)dY$$

$$= \dots = p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)}p(Y_i|\theta)K(Y_i)dY_i$$

where

$$K(Y_i) = \int \frac{p_G(Y_{-i}|Z, Y_i)}{p_G(Y_{-i}|Y_i)} p(Y_{-i}|\theta_i, Y_i) dY_{-i}$$

Locally focused approximation - with adjustment

Klækken 2013

Martin Jullun

problem

Statistical model setup

Solution/approximation methods

Illustration

By approximating $K(Y_i)$ by a constant, which holds e.g. when $p(Y_{-i}|\theta_i, Y_i) = p_G(Y_{-i}|Y_i)$, we once again get

$$p(\theta_i|Z) \propto p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)} p(Y_i|\theta_i) dY_i.$$

■ Even when relaxing the assumption of $p(Y|\theta) \sim$ Gaussian this can be calculated by numerical integration since the dimension of Y_i is typically ≤ 3 .

Locally focused approximation - with adjustment

Klækken 2013

Martin Jullun

The practical problem

Statistical model setup

Solution/approximation methods

Illustration

By approximating $K(Y_i)$ by a constant, which holds e.g. when $p(Y_{-i}|\theta_i, Y_i) = p_G(Y_{-i}|Y_i)$, we once again get

$$p(\theta_i|Z) \propto p(\theta_i) \int \frac{p_G(Y_i|Z)}{p_G(Y_i)} p(Y_i|\theta_i) dY_i.$$

■ Even when relaxing the assumption of $p(Y|\theta) \sim$ Gaussian this can be calculated by numerical integration since the dimension of Y_i is typically ≤ 3 .

Simple example

Klækken 2013

Martin Jullun

The practical problem

Statistical model setup

Solution/approximation methods

Illustration

- One surface location with
 n = 5 vertical positions
- dim(Y_i) = 1 and Y denotes acoustic impedance
- 4 possible facies: Slate, Brine, Oil and Gas
- Ignore wavelet smoothing
- Observe n-1 contrasts (Seismic data)

Two basic situations

Klækken 2013

Martin Jullun

The practica problem

Statistical model setup

Solution/approximation

Illustration

Y_i.hat

Slate

Klækken 2013

Martin Jullum

The practical problem

Statistical model setup

Solution/approximation methods

Illustration

■ The approximation can be rough, but is very fast.

■ Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations K(Y_i) is approximately constant
- Alternative approximations (ideas!)
- = Nested Laplace approximations for $p(Y_i)$, $p(Y_i|ZZ)$
 - Simplified Galesian muxture approximation for
- Wider local neighborhood approximation
 - » Exact computation with simple neighborhood structure or an exact computation with simple neighborhood structure.
- Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullum

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)

Klækken 2013

Martin Jullum

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)

Klækken 2013

Martin Jullum

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)
 - Nested Laplace approximations for $p(Y_i), p(Y_i|Z)$
 - **Simplified Gaussian mixture approximation for** $p(Y_i), p(Y_i|Z)$
 - Wider local neighborhood approximation
 - Exact computation with simple neighborhood structure or Y.
 - Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullun

The practic problem

model setup

Solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)
 - Nested Laplace approximations for $p(Y_i)$, $p(Y_i|Z)$
 - Simplified Gaussian mixture approximation for $p(Y_i), p(Y_i|Z)$
 - Wider local neighborhood approximation
 - Exact computation with simple neighborhood structure on Y.
 - Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)
 - Nested Laplace approximations for $p(Y_i)$, $p(Y_i|Z)$
 - Simplified Gaussian mixture approximation for $p(Y_i), p(Y_i|Z)$
 - Wider local neighborhood approximation
 - Exact computation with simple neighborhood structure on Y.
 - Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullum

The practic problem

model setup Solution/app

solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)
 - Nested Laplace approximations for $p(Y_i)$, $p(Y_i|Z)$
 - Simplified Gaussian mixture approximation for $p(Y_i), p(Y_i|Z)$
 - Wider local neighborhood approximation
 - Exact computation with simple neighborhood structure on Y.
 - Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullun

The practic problem

Solution/approximation

methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)
 - Nested Laplace approximations for $p(Y_i)$, $p(Y_i|Z)$
 - Simplified Gaussian mixture approximation for $p(Y_i), p(Y_i|Z)$
 - Wider local neighborhood approximation
 - Exact computation with simple neighborhood structure on Y.
 - Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)
 - Nested Laplace approximations for $p(Y_i)$, $p(Y_i|Z)$
 - Simplified Gaussian mixture approximation for $p(Y_i), p(Y_i|Z)$
 - Wider local neighborhood approximation
 - Exact computation with simple neighborhood structure on Y.
 - Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullun

The practic problem

Statistical model setup

Solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)
 - Nested Laplace approximations for $p(Y_i)$, $p(Y_i|Z)$
 - Simplified Gaussian mixture approximation for $p(Y_i), p(Y_i|Z)$
 - Wider local neighborhood approximation
 - Exact computation with simple neighborhood structure on Y
 - Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullun

The practic problem

Statistical nodel setup

Solution/approximation methods

Illustration

- The approximation can be rough, but is very fast.
- Do not need to specify the whole categorical distribution $p(\theta)$, but only $p(\theta_i)$

- Need to address in which situations $K(Y_i)$ is approximately constant
- Alternative approximations (ideas!)
 - Nested Laplace approximations for $p(Y_i)$, $p(Y_i|Z)$
 - Simplified Gaussian mixture approximation for $p(Y_i), p(Y_i|Z)$
 - Wider local neighborhood approximation
 - Exact computation with simple neighborhood structure on Y
 - Dimension reduction?
 - Other alternatives?

Klækken 2013

Martin Jullum

The practica problem

Statistical model setup

Solution/approximation methods

Illustration

Thank you for your time!