Math 453 HW 12

Name: Changyu Wu

CWID: A20337986

1. Sec 5.3 #1

I(f) = black, black, white, red

 $R_1(f) = red, black, black, white$

 $R_2(f) = white, red, black, black$

 $R_3(f) = black, white, red, black$

 $F_1(f) = black, red, white, black$

 $F_2(f) = white, black, black, red$

 $F_{1,2}(f) = black, black, red, white$

 $F_{2,3}(f) = red$, white, black, black

2. Sec 5.3 #2

Apply CFB theorem and we get

$$|\mathcal{O}| = \frac{1}{|G|} \sum_{\pi \in G} |\mathrm{fix}_G(\pi)|$$

And the symmetry group is

motion	product of disjoint cycles	$\left \operatorname{fix}_{D_9}(\pi)\right $
I	(1)(2)(3)(4)(5)(6)(7)(8)(9)	k ⁹
R_1	(1 3 9 7)(2 6 8 4)(5)	k^3
R_2	(19)(28)(37)(46)(5)	k^5
R_3	(1793)(2486)(5)	k^3
F_1	(1)(24)(37)(5)(68)(9)	k ⁶
F_2	(13)(2)(46)(5)(79)(8)	k^6
F_3	(19)(26)(3)(48)(5)(7)	k^6
F_4	(17)(28)(39)(4)(5)(6)	k^6

Therefore, there're $\frac{1}{8}(k^9 + 4k^6 + k^5 + 2k^3)$ ways

3. Sec 5.3 #3

(a) Let a be the edge between ball 1 and 2, b be the edge between ball 2 and 3, etc.

motion	product of disjoint cycles	$\left \operatorname{fix}_{D_4}(\pi)\right $
I	(a)(b)(c)(d)	2 ⁴
R_1	(a b c d)	2^1
R_2	(a c)(b d)	2^2
R_3	(a d c b)	2^1
F_1	(a)(b d)(c)	2^3
F_2	(a c)(b)(d)	2^3

$F_{1,2}$	(a b)(c d)	2 ²
$F_{2,3}$	(a d)(b c)	2^2

Apply *CFB* theorem and we get $\frac{1}{|G|}\sum_{\pi \in G}|\text{fix}_{G}(\pi)| = \frac{1}{8}(2^{4} + 2 \cdot 2^{1} + 3 \cdot 2^{2} + 2 \cdot 2^{3}) = 6$

(b) Let a be the edge between ball 1 and 2, b be the edge between ball 2 and 3, etc.

motion	product of disjoint cycles	$\left \operatorname{fix}_{D_4}(\pi)\right $
I	(1)(2)(3)(4)(a)(b)(c)(d)	2 ⁸
R_1	$(1\ 2\ 3\ 4)(a\ b\ c\ d)$	2^{2}
R_2	$(1\ 3)(2\ 4)(a\ c)(b\ d)$	2^4
R_3	(1 4 2 3)(a d c b)	2^2
F_1	(1)(2 4)(3)(a)(b d)(c)	2^{6}
F_2	(1 4)(2 3)(a c)(b)(d)	2^{5}
$F_{1,2}$	$(1\ 3)(2\ 4)(a\ b)(c\ d)$	2^4
$F_{2.3}$	(1)(2 4)(3)(a d)(b c)	2^{5}

Apply *CFB* theorem and we get $\frac{1}{|G|}\sum_{\pi \in G}|\text{fix}_{G}(\pi)| = \frac{1}{8}(2^{8} + 2 \cdot 2^{2} + 2 \cdot 2^{4} + 2^{5} + 2^{6}) = 83$

4. Sec 5.3 #4

(1) Suppose $\pi(f) = f$ is true. By definition 5.3.1, the action of G on C^A is defined by $(\pi(f))(a) \coloneqq f(\pi^{-1}(a))$

Replace $\pi(f)$ with f in the above equation and we get

$$f(a) \coloneqq f\big(\pi^{-1}(a)\big)$$

This means that

$$a = \pi^{-1}(a)$$

is true for all $a \in A$, which means that the value of a is irrelevant, then f must be constant

(2) Suppose f is constant. Again, by definition 5.3.1, we get

$$(\pi(f))(a) \coloneqq f(\pi^{-1}(a))$$

Since the value passed to function f will not affect the output of f, we can replace $\pi^{-1}(a)$ on the right-hand side of the equation with anything we want, for example, a, then the equation becomes

$$(\pi(f))(a) \coloneqq f(a)$$

Therefore, $\pi(f) = f$

Combine (1) and (2), hence, theorem 5.3.6 is proven

5. Sec 5.3 #6

The symmetry group has size 2, hence, there are $\frac{1}{2}(2^8 + 2^4) = 136$ ways