AMENDMENTS TO THE CLAIMS

(Currently amended) A method for non-intrusively 1. 1 measuring carbon dioxide (CO2) in a high temperature gas 2 flow containing water vapor (H2O), said method comprising: 3 providing a laser sensor; operating said laser sensor at a selective wavelength 5 substantially near 2 μ m, 6 selecting the R(50) spectroscopic transition of the 7 $v_1+2v_2+v_3$ CO₂ absorption band in near-infrared; 8 utilizing said laser sensor to spectrally interrogate 9 said R(50) spectroscopic transition for sensitive measurements 10 of CO2, wherein 11 said interrogation utilizes a spectrally resolved 12 13

said interrogation utilizes a spectrally resolved

technique comprising scanned- and fixed-wavelength absorption,

balanced ratiometric detection, frequency-modulation (FM)

spectroscopy, photothermal deflection, and photoacoustic

spectroscopy; and wherein

said R(50) spectroscopic transition is substantially isolated from interfering absorption by high temperature species including said water vapor (H_2O) present in said high temperature gas flow.

- (Original) The method of claim 1, wherein said high temperature is characterized to be more than 400 K.
- 1 3. (Original) The method of claim 1, wherein said 2 interfering high temperature species further comprising 3 CO, NH₃, N₂O, and NO.

14

15

16

17

18

19

20

1

2

1 4. (Original) The method of claim 1, wherein said gas flow
2 is generated by a combustor and said measurements of CO₂
3 are taken in situ in said combustor.

1 5. (Original) The method of claim 1, wherein said
2 measurements of CO₂ are taken in a process chamber or in a
3 sampling line.

2

3

1

8

9

6. (Original) The method of claim 1, wherein said laser sensor comprises a fiber-coupled distributed feedback diode laser.

7. (Original) The method of claim 1, wherein said laser
sensor comprises a non-fiber-coupled laser, a Fabry-Perot
(FP) diode laser, a distributed Bragg reflector (DBR)
laser, a quantum cascade laser, an edge-emitting diode
laser, or a vertical cavity surface-emitting laser
(VCSEL).

8. Cancelled.

1 9. (Original) A system having a plurality of multiplexed
2 laser sensors operating at a plurality of selective
3 wavelengths for non-intrusively and simultaneously
4 measuring combustion parameters including carbon dioxide
5 (CO₂) along a single optical path in a high temperature
6 gas flow containing water vapor (H₂O), wherein the
7 improvement comprising:

one of said laser sensors operating at a wavelength substantially near 2 μ m spectrally interrogates a

selective R(50) spectroscopic transition of the $v_1+2v_2+v_3$ CO₂ absorption band in near-infrared for accurate measurements of CO₂, wherein

13

14

15

11

said R(50) spectroscopic transition is substantially isolated from interfering absorption by high temperature species present in said high temperature gas flow.

- (Original) The system of claim 9 further comprising: 10. 1 a multimode optical fiber into which output beams 2 from said multiplexed lasers are combined; 3 a collimating lens for directing said combined 4 output beams through said high temperature gas flow; and 5 a diffraction grating for demultiplexing said 6 combined output beams so that transmitted intensity from 7 each of said plurality of laser sensors as well as said 8 combustion parameters can be simultaneously independently 9 monitored along said single optical path by a plurality 10
- 1 11. (Original) The system of claim 10, wherein said combustion parameters further comprise H_2O and temperature.

of detectors.

- 1 12. (Original) The system of claim 10, wherein said plurality
 2 of detectors comprise extended wavelength response
 3 detectors.
- 1 13. (Original) The system of claim 9, wherein said high 2 temperature is characterized to be more than 400 K.

1 14. (Original) The system of claim 9, wherein said 2 interfering high temperature species comprises said water 3 vapor.

- 1 15. (Original) The system of claim 14, wherein said 2 interfering high temperature species further comprises 3 CO, NH₃, N₂O, and NO.
- 1 16. (Original) The system of claim 9, wherein said gas flow
 2 is generated by a combustor and said measurements of CO₂
 3 are taken in situ in said combustor.
- 1 17. (Original) The system of claim 9, wherein said
 2 measurements of CO₂ are taken in a process chamber or in a
 3 sampling line.
- 1 18. (Original) The system of claim 9, wherein said plurality
 2 of laser sensors are characterized as fiber-coupled
 3 distributed feedback diode lasers.
- 19. (Original) The system of claim 9, wherein said plurality
 2 of laser sensors are characterized as non-fiber-coupled
 3 lasers, Fabry-Perot (FP) diode lasers, distributed Bragg
 4 reflector (DBR) lasers, quantum cascade lasers, edge5 emitting diode lasers, or vertical cavity surface6 emitting lasers (VCSEL).
 - 20. (Original) The system of claim 9, wherein said interrogation utilizes a spectrally resolved technique comprising scanned- and fixed-wavelength absorption,

balanced ratiometric detection, frequency-modulation (FM) spectroscopy, photothermal deflection, and photoacoustic spectroscopy.