Exercise 4.2. Prove that if \mathbf{M} and \mathbf{L} are both Hermitian, $i[\mathbf{M}, \mathbf{L}]$ is also Hermitian. Note that the i is important. The commutator is, by itself, not Hermitian.

We have

$$(i[\mathbf{M}, \mathbf{L}])^{\dagger} = (i\mathbf{M}\mathbf{L} - i\mathbf{L}\mathbf{M})^{\dagger} = -i(\mathbf{M}\mathbf{L})^{\dagger} + i(\mathbf{L}\mathbf{M})^{\dagger}$$

Noting that $(\mathbf{ML})^{\dagger} = \mathbf{L}^{\dagger} \mathbf{M}^{\dagger}$ we have

$$(i[\mathbf{M}, \mathbf{L}])^{\dagger} = -i\mathbf{L}^{\dagger}\mathbf{M}^{\dagger} + i\mathbf{M}^{\dagger}\mathbf{L}^{\dagger}$$

By hypothesis $\mathbf{M} = \mathbf{M}^{\dagger}$ and $\mathbf{L} = \mathbf{L}^{\dagger}$ hence

$$(i[\mathbf{M}, \mathbf{L}])^{\dagger} = -i\mathbf{L}\mathbf{M} + i\mathbf{M}\mathbf{L} = i[\mathbf{M}, \mathbf{L}]$$