Práctica Alternativa al Examen: Búsqueda Ramificada con Momentos

Práctica Alternativa al Examen: Búsqueda Ramificada con Momentos

David Cabezas Berrido

Índice

Introducción

Inspiración

Idea general

Descripción de la Metaheurística

Resumen

Decisión de la acción

Truncamiento de la solución

Ramificación de la solución

Contenido

Introducción

Inspiración

 ${\bf Idea\ general}$

Descripción de la Metaheurística

Resumen

Decisión de la acción

Truncamiento de la solución

Ramificación de la solución

Práctica Alternativa al Examen: Búsqueda Ramificada con Momentos

Lintroducción
Linspiración

Inspiración

Diseñaremos una metahurística inspirándonos en un fenómeno físico, la conservación del momento lineal o del movimiento.

Cuando un objeto se desprende de otro que se está moviendo, conserva su momento. Por ejemplo, esto se manifiesta cuando un paracaidista salta de un avión o se desprenden fragmentos de un meteorito.

Idea general

- ▶ Nuestra metaheurística, **Búsqueda Ramificada con Momentos**, pretende "lanzar" soluciones que se muevan por el espacio.
- Cada solución tendrá asociado un vector velocidad (momento), que determina la dirección en la que se mueve.
- Las soluciones se ramifican o dividen en otras de forma que las soluciones resultantes conserven la inercia de la solución de la que partieron.
- Necesitamos definir un algoritmo de trayectoria para las soluciones que le dé sentido al momento.

Contenido

Introducción

Inspiración

Idea general

Descripción de la Metaheurística

Resumen

Decisión de la acción

Truncamiento de la solución

Ramificación de la solución

Resumen

Cada solución S cuenta con un impulso $\lambda \in \mathbb{R}^+$ y un vector momento μ . En cada iteración hace una de las siguientes acciones.

- La solución desaparece, es truncada.
- La solución se divide en dos, que 'saldrán disparadas" en direcciones opuestas. Las soluciones generadas conservan la inercia de la original.
- La solución se "desvía" hacia un vecino con mejor fitness y luego se actualiza usando su momento. La regla es: $S \leftarrow S + \lambda \nu$. La solución pierde cierta cantidad de impulso.

Decisión de la acción

Acción a realizar

- Queremos truncar soluciones con escasas opciones de superar a la mejor encontrada hasta el momento. Truncaremos cuando la diferencia de fitness sea alta y el impulso bajo o queden pocas evaluaciones por hacer.
- Queremos ramificar soluciones prometedoras, pero queremos que exista variedad entre las soluciones. Dividiremos soluciones con diferencia de fitness baja y número de evaluaciones suficiente para que las soluciones generadas puedan prosperar. Conviene dejar que las soluciones resultantes de una ramificación se separen antes de volver a ramificarlas, no queremos ramificar ni muy pronto (poca variedad) ni muy tarde (pocas evaluaciones restantes).
- ► En la mayoría de ocasiones, la solución se limita a avanzar.

No hay una mejor forma de concretar estas ideas. A continuación ofrecemos nuestra implementación.

Decisión de la acción

Algorithm 1: Branch: Búsqueda Ramificada: Bucle Principal.

```
Input: Una solución: vector de flotantes S
Input: Su momento: vector de flotantes \mu
Input: Su impulso: escalar positivo \lambda
Input: Evaluaciones a realizar: entero positivo evals
fitness \leftarrow eval(S)
                           // Supondremos la función de evaluación siempre
 disponible
evals \leftarrow evals - 1
best \leftarrow \min(best, fitness)
while evals > 0 do
    D \leftarrow fitness - best
                                      // Suponemos accesible la mejor fitness
     obtenida hasta el momento
    \hat{D} \leftarrow \frac{D}{1 + D}
                                             // Diferencia normalizada en [0,1]
    p \leftarrow U[0,1]
                            // Flotante aleatorio en [0,1], elegido según la
     distribución uniforme
    if (p < P_{vanish} \stackrel{D}{\searrow} and evals \leq MaxEvalsTruncate) or \lambda < MinImpulse
     then

    La solución es truncada.

    else if p > P_{split} \frac{D}{\lambda} and MinImpulseSplit \leq \lambda \leq
     MaxImpulseSplit and evals > MinEvalsSplit then
     La solución se divide en dos.
    else
        La solución avanza.
```

Práctica Alternativa al Examen:	Búsqueda	Ramificada	con	Momentos
Descripción de la Metaheurístic	ca			
Truncamiento de la solución				

Truncamiento

Truncamos la solución con un simple break para el bucle.

Acumulamos las evaluaciones restantes para que no se desperdicien:

 $spareEvals \leftarrow spareEvals + evals$

Práctica Alternativa al Examen:	Búsqueda	Ramificada	con	Momentos
Descripción de la Metaheurístic	ca			
Bamificación de la solución				

Ramificación