CS & IT

DISCRETE

Mathematical logic

Lecture No. 1

Enalishstmt

Simple.
573
(T)

Compand:

573

573

573

673

673

673

(onnectives., Conjunction -> ais junction Conditional biconditional.

(AND/but) -> 1.

modifier negation (7/~)

£∧-∧-False

AND HATES FALSE

OR. D'Enclusive or (XOR) (A) (one/other but no+ both) -> Inclusive or (V) (T, V) = T(one/other/both) (- ソーソー) = T OR loves True I f f

Condutional (->)

Pw

P-a.

if Phena. if Pai a if P

q When p.

quotess p. qualess p. pomly if q. pimplies q.

if Graph is planar then es 3n-6.

P Q
$$P \rightarrow q$$
.

Planar(T) $e \le 3n - 6(T)$ T.

Planar(T) $e \le 3n - 6(T)$ T.

Planar(F) $e \le 3n - 6(T)$ T.

Planar(F) $e \le 3n - 6(T)$ T.

if you win the match then i will give pizza

match
$$(T) \rightarrow pizka(F) \equiv F$$

maken $(F) \rightarrow pizza(T) \equiv T$
if you clear gate then she will many you
 $F \rightarrow = T$

if Perfect matching exist then no of vertice will be even

True.

here we aright $T \rightarrow f = f \leftarrow \underline{Thm}$ is can prove aright $f \rightarrow f = T$.

where $f \rightarrow f = T$ is where $f \rightarrow f = T$.

Clear (T)	marry (T)	Ī
Clear (T)	marks (F)	4
Cleary	mam(T)	7.
Clexy	manica	T.

GOD

-) both are having Same behaviour
- 2) Same column.

P 9 7 P	7 - 2	Jora.	
T. T'V デ	7		
TFVF	F	F	
FTVT	T		j
FFVT			

if you go late to the office then boss may five you

Don't golate to the office or boss may fire your

Parshable.
TFFF

left side=T Right side=F T-> F = F

$$[p \to (q \to r)] \to [(p \to q) \to (p \to r)]$$

a)
$$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$$

b)
$$[(p \rightarrow q) \land \neg q] \rightarrow \neg p$$

c)
$$[(p \lor q) \land \neg p] \rightarrow q$$

d)
$$[(p \rightarrow r) \land (q \rightarrow r)] \rightarrow [(p \lor q) \rightarrow r]$$

a)
$$[p \land (p \rightarrow q) \land r] \rightarrow [(p \lor q) \rightarrow r]$$

b)
$$[[(p \land q) \rightarrow r] \land \neg q \land (p \rightarrow \neg r)] \rightarrow (\neg p \lor \neg q)$$

c)
$$[[p \lor (q \lor r)] \land \neg q] \rightarrow (p \lor r)$$

a)
$$\neg (p \lor \neg q) \rightarrow \neg p$$

b)
$$p \rightarrow (q \rightarrow r)$$

c)
$$(p \rightarrow q) \rightarrow r$$

d)
$$(p \rightarrow q) \rightarrow (q \rightarrow p)$$

e)
$$[p \land (p \rightarrow q)] \rightarrow q$$

f)
$$(p \land q) \rightarrow p$$

g)
$$q \leftrightarrow (\neg p \lor \neg q)$$

h)
$$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$$

$$[p \to (q \to r)] \to [(p \to q) \to (p \to r)]$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

