Using Ubuntu Linux

- Collaborators : Jamal Bills, Nikko Solon
- 1. Given the following MIPS code snippet
 - (a) Hazards in lines 2 and 3; 6@2.5
 - (b) Reorder/rewrite

```
1 LOOP:
2 addi $t0, $t0, 4
3 lw $s0, 60($t0)
4 lw $v0, 0($t0)
5 bne $s0, $0, LOOP
6 sw $v0, 20($t0)
```

- (c) The three reasons why we use caches in a pipelined processor. Is to increase clock speeds, reduce time required to access memory, and reduce interruptions. Pipelining increases CPU speed by making each instruction run proportionally to each other.
- (d) Circle whether each change will make something decrease (-)

	Instructions/Progr am	Cycles/Instruction	Seconds/Cycle
Reducing the number of registers in the ISA	- = 护	- = •	Ø = +
Adding a branch delay slot	= 5	b = . +	D
Merging the Execute and Mem stages (loads and stores use an additional adder to calculate base+offset)	D= +	- ₽ Đ	>
Changing the implementation from a microcoded CISC machine to a RISC pipeline	- Đ	5 = +	D

Figure 1: Caption

2. Consider the following loop.

```
loop: lw r1, 0($r1)
and r1, r1, r2
lw r1, 0(r1)
lw r1, o(r1)
beq r1, r0, loop
```

(a) Show a pipeline execution diagram

```
2nd Cycle | lw r1, 0(r1)
                           | WB |
2nd Cycle | lw r1, 0(r1)
                           | EX | MEM | WB |
2nd Cycle | beq r1,r0,loop| ID | X
                                        EX | MEME | WB
3rd Cycle | lw r1,0(r1)
                           | IF | X
                                        ID | EX | MEM | WB |
3rd Cycle | add r1,r1,r2
                                        IF | ID |
                                                      | EX | MEM| WB
3rd Cycle | lw r1, o(r1), r2|
                                            |IF
                                                   Χ
                                                      | ID
                                                              EX | MEM |
3rd Cycle | lw r1, 0(r1)
                                                        ΙF
                                                            | ID | X
3rd Cycle |beq r1, r0,loop|
                                                             | IF | X
```

- (b) How often (as percentage of all cycles)
 - 8 clock cycles in which all five pipeline stages are doing useful work, not all stages are used.
- 3. Caches are important to provide a high performance

(a) For each of these references, identify the binary address (in words, not bytes)

Word Address	Binary Address	Tag	Index	$\operatorname{Hit}(H)/\operatorname{Miss}(M)$
3	0000 0011	0	3	M
180	1011 0100	11	4	M
43	0010 1011	2	11	M
2	0000 0010	0	2	M
191	1011 1111	11	15	M
88	0101 1000	5	8	M
190	1011 1110	11	14	M
14	0000 1110	0	14	M
181	1011 0101	11	5	M
44	0010 1100	2	12	M
186	1011 1010	11	10	M
253	1111 1101	15	13	M

(b) For each of these references, identify the binary address (in words), the tag, and the index given a direct-mapped cache

Word Address	Binary Address	Tag	Index	$\mathrm{Hit}(\mathrm{H})/\mathrm{Miss}(\mathrm{M})$
3	0000 0011	0	1	M
180	1011 0100	11	2	M
43	0010 1011	2	5	M
2	0000 0010	0	1	Н
191	1011 1111	11	7	M
88	0101 1000	5	4	M
190	1011 1110	11	7	Н
14	0000 1110	0	7	M
181	1011 0101	11	2	Н
44	0010 1100	2	6	M
186	1011 1010	11	5	M
253	1111 1101	15	6	M

- (c) You are asked to optimize a cache design for the above references C2 takes 3 cycles
- (d) Below are listed parameters for different direct mapped cache designs

Cache Data Size: 32kiB
Cache Block Size: 2 words
Cache Access Time: 1 cycle

- 4. For a direct-mapped cache design with 32-bit address
 - (a) What is the cache block size (in words)? The number of words is 8.
 - (b) How many entries does the cache have? There are 32 entries.
 - (c) What is the ratio between total bits required data | tag | valid | cache/block | 256bit | 22bits | 1bit | 1.09
 - (d) How many blocks are replaced Replace 4 blocks
 - (e) What is the hit ratio? There are 4 hits, and thefore the ration is 4/12 = .33