# Fourier Transform for Continuous Functions (or Signals)

- How to define the frequency or spectrum for general continuous-time signals?
- Central goal: representing a signal by a set of orthogonal bases corresponding to frequencies or spectrum.
- Fourier series allows to find the spectrum of only periodic functions.

#### From Periodic to Non-Periodic

- Fourier series transforms a periodic continuous signal into the frequency domain.
- What will happen when the continuous signal is not periodic?
- Consider the period of a signal with the fundamental frequency  $\omega_0$ .
- $T_0$  specifies the fundamental period,

$$T_0 = \frac{2\pi}{w_0} = \frac{1}{f}$$

## **Review of Fourier Series**

• Fourier series representation of a periodic signal  $x_{T_0}(t)$  can be given by the pair of equations

Forward Transform

$$a_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x_{T_0}(t) e^{-jk\omega_0 t} dt$$

Integrals over a period  $[0,T_0]$  and  $[-T_0/2, T_0/2]$  are the same

Inverse Transform

$$x_{T_0}(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

where 
$$\omega_0 = \frac{2\pi}{T_0}$$

## Imaging $T_0 \rightarrow \infty$

• A non-periodic signal can be conceptually thought of as a periodic signal whose fundamental period  $T_0$  is infinitely long,

$$T_0 \rightarrow \infty$$
.

In this case, the fundamental frequency

$$\omega_0 \rightarrow 0$$
.

## Interval between adjacent frequency

- Remember that the spectrum (in the frequency domain) of a periodic continuous signal is discrete, specified by  $k\omega_0$  (k is an integer).
- Therefore, the interval between adjacent frequencies,  $k\omega_0$  and  $(k+1)\omega_0$ , is just  $\omega_0$ .

# Example: recall the case of squared wave





## Notation change of the forward transform of Fourier series

• Because  $\frac{1}{T_0} = \frac{w_0}{2\pi}$ , let us re-denote  $f(t) = x_{T_0}(t)$  and rewrite the forward transform of Fourier series as

$$a_{k} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x_{T_{0}}(t) e^{-jkw_{0}t} dt$$

$$= \frac{w_0}{2\pi} \int_{-\pi/w_0}^{\pi/w_0} f(t) e^{-jkw_0 t} dt$$

# Extreme Case of Fourier Series: $T_0{ ightarrow}\infty$ (i.e., $\omega_0{ ightarrow}0$ )

- Further changing the notation:
- Let  $b_{k\omega_0} = a_k$ , the forward transform becomes

$$b_{k\omega_0} = \frac{w_0}{2\pi} \int_{-\pi/w_0}^{\pi/w_0} f(t) e^{-jkw_0 t} dt$$

The inverse transform becomes

$$f(t) = \sum_{k=-\infty}^{\infty} b_{k\omega_0} e^{jkw_0 t}$$

## Extreme Case of Fourier Series: $\omega_0 \rightarrow 0$

- When  $\omega_0 \rightarrow 0$ , we can *image* that the frequency becomes continuous:
- The interval  $\omega_0$  becomes  $d\omega$
- Let  $\omega = k\omega_0$ . Then, when  $\omega_0 \to 0$ , the forward transform approaches

$$b(w) = \frac{dw}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-jwt}dt$$

#### **Extreme Case of Fourier Series**

Combining with the inverse transform,

$$f(t) = \sum_{k=-\infty}^{\infty} b(w)e^{jwt}$$

we have

$$f(t) = \int_{-\infty}^{\infty} \frac{dw}{2\pi} \left[ \int_{-\infty}^{\infty} f(t)e^{-jwt}dt \right] e^{jwt}$$

$$b(\omega)$$

when  $\omega_0 \rightarrow 0$ , where the summation in the inverse transform becomes integral.

Define this as a

#### It becomes:

#### **Continuous Fourier Transform**

Consider the above recovering equation of f(t).
 Let us decompose the equation into forward transform and inverse transform:

$$f(t) = \int_{-\infty}^{\infty} \frac{1}{2\pi} \left[ \int_{-\infty}^{\infty} f(t) e^{-jwt} dt \right] e^{jwt} dw$$

Forward Transform of f(t) to the frequency domain F(w)

#### **Continuous Fourier Transform**

#### a.k.a. Continuous-time Fourier Transform

Forward Transform

$$F(jw) = \int_{-\infty}^{\infty} f(t)e^{-jwt}dt$$

Inverse Transform

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(jw)e^{jwt} dw$$

• Remark: in the continuous domain,  $e^{j\omega t}$  ( $\omega \in R$ ) still form a set of orthogonal bases (with the amount uncountable infinite), no matter whether  $\omega$  is a multiple of an integer or continuous real value.

#### **Continuous Fourier Transform**

- Both time and frequency domains in continuous Fourier transform are continuous.
- The frequency waveform is also referred to as the 'spectrum'.

## **Continuous Fourier Transform**

- Continuous Fourier transform is the most fundamental Fourier transform. We will see later that other Fourier transforms (including Fourier series) are its special cases.
- It is also the most 'standard' Fourier transform. When there is no specification, we usually referred to Fourier Transform as this type.

#### **Continuous Fourier Transform Pair**

#### Transform pair

#### **Forward**

$$F(jw) = \int_{-\infty}^{\infty} f(t)e^{-jwt}dt$$

#### **Backward**

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(jw)e^{jwt} dw$$

Sometimes also written as

$$F(jw) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-jwt}dt$$

$$F(jw) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-jwt}dt \qquad f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(jw)e^{jwt}dw$$

depending on how we decompose the normalization constant  $1/(2\pi)$ .

## Note that there are Many Variations of the Forms of Continuous F. T. (example from Kuhn's slides 2005)

#### Recall: Fourier transform

The Fourier integral transform and its inverse are defined as

$$\mathcal{F}\{g(t)\}(\omega) = G(\omega) = \alpha \int_{-\infty}^{\infty} g(t) \cdot e^{\mp j\omega t} dt$$

$$\mathcal{F}^{-1}\{G(\omega)\}(t) = g(t) = \beta \int_{-\infty}^{\infty} G(\omega) \cdot e^{\pm j\omega t} d\omega$$

where  $\alpha$  and  $\beta$  are constants chosen such that  $\alpha\beta = 1/(2\pi)$ .

Many equivalent forms of the Fourier transform are used in the literature, and there is no strong consensus on whether the forward transform uses  $e^{-j\omega t}$  and the backwards transform  $e^{j\omega t}$ , or vice versa. Some authors set  $\alpha=1$  and  $\beta=1/(2\pi)$ , to keep the convolution theorem free of a constant prefactor; others use  $\alpha=\beta=1/\sqrt{2\pi}$ , in the interest of symmetry.

The substitution  $\omega = 2\pi f$  leads to a form without prefactors:

$$\mathcal{F}\{h(t)\}(f) = H(f) = \int_{-\infty}^{\infty} h(t) \cdot e^{\mp 2\pi j f t} dt$$

$$\mathcal{F}^{-1}{H(f)}(t) = h(t) = \int_{-\infty}^{\infty} H(f) \cdot e^{\pm 2\pi j f t} df$$

## Symmetry between Time and Frequency of Continuous Fourier Transform

- Unlike Fourier series, the continuous Fourier transform has very similar forward and inverse transforms.
- Except to the normalization constant, the only difference is that the forward uses j and the inverse uses j in the complex exponential basis.
- This suggests that the roles of time and frequency can be exchanged, and some properties are symmetric to each other.

# **Existence and Convergence of Fourier**Transform

- We have 'derived' continuous Fourier transform as an extreme extension of Fourier series.
- To ensure the existence of continuous Fourier transform, we should consider the conditions where the integrals exist.
- A sufficient condition is

Sufficient Condition for Existence of 
$$X(j\omega)$$

$$\int_{-\infty}^{\infty} |x(t)|dt < \infty$$

#### **Rational**

$$|X(j\omega)| = \left| \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \right|$$

$$\leq \int_{-\infty}^{\infty} |x(t)e^{-j\omega t}| dt = \int_{-\infty}^{\infty} |x(t)| dt$$

• Hence, if  $\int_{-\infty}^{\infty} |x(t)| dt < \infty$ , or equivalently, the integral is

bounded, then the continuous Fourier transform is also bounded.

# **Existence and Convergence of Fourier**Transform

- The above is a sufficient condition but not a necessary condition.
- Many functions that do not satisfy the above condition, but we can still obtain a useful Fourier transform representation particularly when the impulse signals are allowed to be used.
- The impulse signals will be introduced in the next course.
  - In engineering, we usually do not care much about the exact necessary and sufficient conditions, despite there are mathematically rigorous ways to specify these conditions.

## **Examples of Fourier Transform Pairs**

Rectangular function (rectangular pulse signal)

$$x(t) = \begin{cases} 1 & -\frac{1}{2}T \le t < \frac{1}{2}T \\ 0 & \text{otherwise} \end{cases}$$

Derivation of its continuous F. T.

$$X(j\omega) = \int_{-T/2}^{T/2} e^{-j\omega t} dt$$

$$= \frac{e^{-j\omega t}}{-j\omega} \Big|_{-T/2}^{T/2} = \frac{e^{-j\omega T/2} - e^{j\omega T/2}}{-j\omega}$$

$$= \frac{\sin(\omega T/2)}{\omega/2} \qquad \text{(Sinc function)} ($$

Note that in this case, the Fourier transform is a real function.
The phase is zero

# Fourier transform of rectangular function

 Rectangular function can also be represented by the unit-pulse function u(t) as

$$u(t+\frac{T}{2})-u(t-\frac{T}{2})$$

where the unit-step function is defined as

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

Hence, we have the Fourier transform pair:

Time-Domain
$$\left[u(t+\frac{1}{2}T)-u(t-\frac{1}{2}T)\right] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{\sin(\omega T/2)}{\omega/2}$$

A real-valued function in frequency domain (sinc function)



Figure 11-4: Fourier transform of a rectangular pulse. (a) Time function  $x(t) = u(t + \frac{1}{2}T) - u(t - \frac{1}{2}T)$ , and (b) Corresponding Fourier transform  $X(j\omega)$  is a sinc function.

# Time and Frequency domains are dual



Figure 11-5: Fourier transform of sinc function: (a) Time function  $x(t) = \sin(\omega_b t)/(\pi t)$ , and (b) corresponding Fourier transform  $X(j\omega) = u(\omega + \omega_b) - u(\omega - \omega_b)$ .

# Fourier transform of right-sided real-exponential signal

Time-Domain
$$e^{-at}u(t) \longleftrightarrow \frac{Frequency-Domain}{\frac{1}{a+j\omega}}$$

Unit-step function

A complex function in frequency domain

Since

$$X(j\omega) = \frac{1}{a+j\omega} = \frac{1}{a+j\omega} \left( \frac{a-j\omega}{a-j\omega} \right)$$
$$= \frac{a}{a^2 + \omega^2} + \frac{-j\omega}{a^2 + \omega^2}$$

The real and imaginary parts are

$$\Re e\{X(j\omega)\} = \frac{a}{a^2 + \omega^2}$$

$$\Im m\{X(j\omega)\} = -\frac{\omega}{a^2 + \omega^2}$$



# Continuous Fourier transform of a Gaussian Function

- Gaussian function:  $e^{-t^2/(2\sigma^2)}$
- The CFT of a Gaussian function is also a Gaussian function (i.e., if time domain is Gaussian, the frequency domain is also Gaussian:

$$e^{-t^2/(2\sigma^2)} \stackrel{CFT\ Pair}{\longleftrightarrow} \sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$$