ITHIUM SECONDARY BATTERY

Patent Number:

JP9330719

Publication date:

1997-12-22

Inventor(s):

FUJIMOTO HIROYUKI; SUNAKAWA TAKUYA; WATANABE HIROSHI; NOMA

TOSHIYUKI; NISHIO KOJI

Applicant(s)::

SANYO ELECTRIC CO LTD

Requested

Patent:

☐ JP9330719

Application

Number:

JP19960172984 19960611

Priority Number

(s):

IPC Classification: H01M4/58; H01M10/40

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery in which the battery characteristic is hardly reduced after storage when a charged battery is stored at high temperature by adding a prescribed transition metal oxide to a lithium-transition metal composite oxide as positive electrode active material to suppress the oxidation decomposition of the solvent of nonaqueous electrolyte. SOLUTION: This lithium secondary battery has a positive electrode, a negative electrode, and a nonaqueous electrolyte, the positive electrode contains a lithium-transition metal composite oxide as active material, the negative electrode contains a material capable of electrochemically storing and releasing lithium ions or lithium metal as active material. To the lithium-transition metal composite oxide which is the active material of the positive electrode, at least one transition metal oxide selected from FeOb, CoOc, MnOa, NiOe, TiOf and the like is added. The drawing shows the capacity residual factor, taking the volume residual ration (%) as the ordinate and the addition quantity ratio (wt.%) of transition metal oxide to lithium-transition metal composite oxide as the abscissa.

Data supplied from the esp@cenet database - 12

TOP

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-330719

(43)公開日 平成9年(1997)12月22日

(51) Int.Cl.6		識別記号	庁内整理番号	FΙ			技術表示箇所
H01M	4/58			H01M	4/58		
	10/40				10/40	Z	

審査請求 未請求 請求項の数4 FD (全 10 頁)

(21)出願番号	特願平8-172984	(71)出顧人 000001889
		三洋電機株式会社
(22)出顧日	平成8年(1996)6月11日	大阪府守口市京阪本通2丁目5番5号
(==) [[]	,,,,,	(72)発明者 藤本 洋行
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 砂川 拓也
		大阪府守口市京阪本通2丁目5番5号 三
		洋領機株式会社内
		(72) 発明者 遊辺 浩志
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(74)代理人 弁理士 松尾 智弘
		最終頁に続く

(54) 【発明の名称】 リチウム二次電池

(57)【要約】

【解決手段】正極活物質としてのリチウムー遷移金属複合酸化物に、 FeO_b (0 < b < 1. 35)、 CoO_c (0 < c < 1. 35)、 MnO_d (0 < d < 1. 35)、 NiO_e (0 < e < 1. 1)、 TiO_f (0 < f < 2. 0)、 VO_g (0 < g < 2. 1)、 CrO_h (0 < h < 2. 6)及び CuO_i (0 < i < 1. 35)よりなる群から選ばれた少なくとも1種の遷移金属酸化物が添加されている。

【効果】本発明電池は、添加せる遷移金属酸化物が非水 電解液の溶媒の酸化分解を抑制するので、充電状態の電 池を高温で保存した場合に保存後に電池特性が低下しに くい。

【特許請求の範囲】

【請求項1】リチウムー遷移金属複合酸化物を活物質とする正極と、リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質又は金属リチウムを活物質とする負極と、非水電解液とを備えるリチウム二次電池であって、前記リチウムー遷移金属複合酸化物に、 FeO_b (O < b < 1. 35)、 CoO_c (O < c < 1. 35)、 MnO_d (O < d < 1. 35)、 NiO_e (O < e < 1. 1)、 TiO_f (O < f < 2. 0)、 VO_g (O < g < 2. 1)、 CrO_h (O < h < 2. 6) 及び CuO_i (O < i < 1. 35) よりなる群から選ばれた少なくとも1種の遷移金属酸化物が添加されていることを特徴とするリチウム二次電池。

【請求項2】前記リチウム-遷移金属複合酸化物が、式: $Li_{x}MO_{y}$ (0 < x < 1.1, 1.9 < y < 2.2 、Mは実質的に $Ni_{x}Co_{x}Fe$ 及びMnよりなる群から選ばれた少なくとも一種の遷移元素)で表されるリチウム-遷移金属複合酸化物である請求項1記載のリチウム二次電池。

【請求項3】前記遷移金属酸化物が、酸化第一鉄(FeO)、四酸化三鉄(Fe_3O_4)、酸化コバルト(II)(CoO)、三酸化二バナジウム(V_2O_3)、酸化第一銅(Cu_2O)、一酸化チタン(TiO)、酸化マンガン(II)(MnO)、四酸化三マンガン(Mn_3O_4)及び酸化クロム(II)(CrO)よりなる群から選ばれた少なくとも1種の遷移金属酸化物である請求項1又は2記載のリチウム二次電池。

【請求項4】前記遷移金属酸化物が、前記リチウム-遷 移金属複合酸化物に対して1~20重量%添加されてい る請求項1~3のいずれかに記載のリチウム二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、リチウム-遷移金属複合酸化物を活物質とする正極と、リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質又は金属リチウムを活物質とする負極と、非水電解液とを備えるリチウム二次電池に係わり、詳しくは充電状態の電池を高温で保存した場合に電池特性の劣化が起こりにくいリチウム二次電池を提供することを目的とした、正極の改良に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】リチウム二次電池の正極活物質としては、高電圧化・高エネルギー密度化を可能ならしめるリチウムー遷移金属複合酸化物がよく知られている。

【0003】しかしながら、リチウムー遷移金属複合酸化物を正極活物質に使用したリチウム二次電池では、充電状態の電池を高温で保存すると、リチウムー遷移金属複合酸化物中の酸素が放出され、放出された酸素と非水電解液の溶媒とが反応して非水電解液の溶媒が酸化分解

する。そして、この分解時に発生するガスや分解生成物により正極活物質粒子(リチウムー遷移金属複合酸化物粒子)の表面が覆われ、電池の内部抵抗が上昇したり、保存後の充放電容量が低下したりする。

【0004】このように充電状態の電池を高温で保存した後の電池特性が低下する原因としては、溶媒の酸化分解以外に、リチウムー遷移金属複合酸化物中に残留するアルカリ(合成原料に使用したLiOHなど)や水分が挙げられる。

【0005】アルカリや水分に起因する電池特性の低下を抑制したリチウム二次電池としては、正極活物質($LiCoO_2$)に固体酸(SiO_2 、 Al_2O_3 など)を添加して正極活物質中の残留アルカリや残留水分を除去したものが提案されている(特開平4-355056号 公報)

【0006】しかしながら、充電状態の電池を高温で保存した後の電池特性の低下は、溶媒の酸化分解に起因するところが大きいために、残留アルカリや残留水分を除去する方法では、保存後の電池特性の低下を十分に抑制することはできないことが分かった。

【0007】したがって、本発明は、充電状態の電池を 高温で保存した場合に、電池特性の劣化が起こりにくい リチウム二次電池を提供することを目的とする。

[8000]

【課題を解決するための手段】上記目的を達成するため の本発明に係るリチウム二次電池(本発明電池)は、リ チウム-遷移金属複合酸化物を活物質とする正極と、リ チウムイオンを電気化学的に吸蔵及び放出することが可 能な物質又は金属リチウムを活物質とする負極と、非水 電解液とを備えるリチウム二次電池であって、前記リチ ウムー遷移金属複合酸化物に、FeO。(0<b<1. 35), $C \circ O_c$ (0 < c < 1.35), $M n O_d$ (0 < d < 1.35) NiO_e (0 < e < 1.1) Ti O_f (0<f<2.0), VO_g (0<g<2.1). CrO_h (0<h<2.6)及 CuO_i (0<i< 1.35)よりなる群から選ばれた少なくとも1種の遷 移金属酸化物が添加されていることを特徴とする。 【0009】リチウムー遷移金属複合酸化物としては、 式:Li_x MO_y (0 < x < 1. 1、1. 9 < y < 2. 2、Mは実質的にNi、Co、Fe及びMnよりなる群 から選ばれた少なくとも一種の遷移元素)で表されるリ チウム-遷移金属複合酸化物が例示され、その具体例と LTU, LiCoO2, LiNiO2, LiFeO2,

【 O O 1 O 】 遷移金属酸化物の具体例としては、酸化第一鉄 (FeO)、四酸化三鉄 (Fe₃O₄)、酸化コバルト(II)(CoO)、三酸化二バナジウム(V₂O₃)、酸化第一銅(Cu₂O)、一酸化チタン(T

LiMnO₂、LiMn₂O₄が挙げられる。

 $_2$ O_3)、酸化第一銅(Cu_2 O)、一酸化チタン(T i O)、酸化マンガン(II)(M n O)、四酸化三マンガン(M n_3 O_4)、酸化クロム(II)(C r O)が例示さ

れる。これらの遷移金属酸化物は、一種単独を用いても よく、必要に応じて二種以上を併用してもよい。

【0011】遷移金属酸化物が比較的酸化数の低いものに限定されるのは、酸化数の高いものではリチウムー遷移金属複合酸化物から放出された酸素との反応が十分に起こらず、放出された酸素と非水電解液の溶媒との反応が主に起こるため、溶媒の酸化分解を有効に抑制することができないからである。

【0012】遷移金属酸化物の好適な添加量は、リチウムー遷移金属複合酸化物に対して1~20重量%である。遷移金属酸化物の添加量が1重量%未満の場合は添加量が過少なために溶媒の酸化分解を抑制する効果が十分に発現されず、一方同添加量が20重量%を超えた場合は、電導度の低い多量の遷移金属酸化物の存在により正極の電子伝導性が低下するとともに、正極活物質粒子間の接触面積の減少によりリチウムイオンの拡散が阻害される結果、放電容量が減少する。

【0013】負極の活物質は、リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質又は金属リチウムである。リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質としては、リチウム合金(リチウムーアルミニウム合金、リチウムー鉛合金など)及び炭素材料(黒鉛、コークス、有機物焼成体など)が例示される。

【0014】非水電解液の溶質としては、LiPF6、 LiBF4 LiClO4 LiCF3 SO3 LiA sF_6 、LiN(CF₃ SO₂)₂及びLiSO₂ (C F₂)₃ CF₃ が例示され、また非水電解液の溶媒とし ては、エチレンカーボネート、プロピレンカーボネー ト、ブチレンカーボネート、ビニレンカーボネート、シ クロペンタノン、スルホラン、3-メチルスルホラン、 2, 4-ジメチルスルホラン、3-メチル-1, 3-オ キサゾリジンー2ーオン、ケーブチロラクトン、ジメチ ルカーボネート、ジエチルカーボネート、エチルメチル カーボネート、メチルプロピルカーボネート、ブチルメ チルカーボネート、エチルプロピルカーボネート、ブチ ルエチルカーボネート、ジプロピルカーボネート、1, 2-ジメトキシエタン、テトラヒドロフラン、2-メチ ルテトラヒドロフラン、1、3-ジオキソラン、酢酸メ チル、酢酸エチル及びこれらの混合物が例示される。

【0015】正極活物質たるリチウムー遷移金属複合酸化物に比較的低酸化数の遷移金属酸化物が添加されている本発明電池では、充電状態の電池を高温で保存した場合に、添加せる遷移金属酸化物がダミー(還元剤)となってリチウムー遷移金属複合酸化物から放出された酸素と反応するので、溶媒の酸化分解が起こりにくい。而して、充電状態のこの種の電池を高温で保存した場合の保存後の電池特性の低下は、溶媒の酸化分解に原因するところが大きいため、本発明によればこれが有効に抑制される。

[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細 に説明するが、本発明は下記実施例に何ら限定されるも のではなく、その要旨を変更しない範囲で適宜変更して 実施することが可能なものである。

【0017】(実施例1~6)

「正極の作製〕リチウム原料〔水酸化リチウム(LiOH)〕とニッケル原料〔水酸化ニッケル(Ni(OH)2)〕とコバルト原料〔水酸化コバルト(Co(OH)2〕とをモル比2:1:1で混合し、乾燥空気雰囲気下にて750° Cで20時間焼成して、式:LiNi₀.5 Co₀.5 O2 で表されるリチウムー遷移金属複合酸化物を得た。次いで、このリチウムー遷移金属複合酸化物を、石川式らいかい乳鉢を用いて粉砕して、平均粒径約5μmの正極活物質粉末を得た。

【0018】次いで、この正極活物質粉末に四酸化三鉄 (Fe₃ O₄)を0.5重量%、1重量%、5重量%、10重量%、20重量%又は22重量%添加して合剤粉末を作製し、各合剤粉末90重量部と、導電剤としての人造黒鉛粉末5重量部と、PVdF(ボリフッ化ビニリデン)5重量部の5重量%NMP(Nーメチルー2ーピロリドン)溶液とを混練してスラリーを調製し、これらのスラリーをドクターブレード法により正極集電体としてのアルミニウム箔の両面に塗布し、真空下にて150°Cで2時間加熱処理し、圧延して、帯状の正極を作製した。

【0019】 (負極の作製) 天然黒鉛粉末 (Lc>1000Å、 $d_{002}=3$. 35Å) 95重量部とPV dF5重量部の5重量%NMP溶液とを混練してスラリーを調製し、このスラリーをドクターブレード法により負極集電体としての銅箔の両面に塗布し、真空下にて150° Cで2時間加熱処理し、圧延して、帯状の負極を作製した

【0020】〔リチウム二次電池の作製〕上記の、各正極及び負極を用いて、正極容量が負極容量よりも小さい A A サイズの円筒形のリチウム二次電池 A 1~A 6を作製した。なお、セパレータとしてポリプロピレン製の微多孔膜を、非水電解液としてエチレンカーボネートとジメチルカーボネートとの体積比1:1の混合溶媒にLiPF。を1モル/リットル溶かしたものを、それぞれ使用した。

【0021】(比較例1)正極の作製において、四酸化三鉄をリチウムー遷移金属複合酸化物($LiNi_{0.5}$ C $o_{0.5}$ O $_2$)に添加しなかったこと以外は実施例 $1\sim6$ と同様にして、比較電池B1を作製した。

【0022】(実施例 $7\sim12$) 正極の作製において、四酸化三鉄に代えて酸化第一鉄 (FeO) をリチウムー 遷移金属複合酸化物 ($\text{LiNi}_{0.5}$ $\text{Co}_{0.5}$ O_{2})に 0.5 重量%、1 重量%、5 重量%、1 0 重量%、2 0 重量%又は22 重量%添加したこと以外は実施例 $1\sim6$

と同様にして、リチウム二次電池A7~A12を作製した。

【0023】(比較例 $2\sim5$) 正極の作製において、四酸化三鉄に代えて三酸化二鉄(Fe_2O_3)をリチウム - 遷移金属複合酸化物($LiNi_{0.5}Co_{0.5}O_2$)に 1重量%、5重量%、10重量%又は20重量%添加したこと以外は実施例 $1\sim6$ と同様にして、比較電池 $B2\sim85$ を作製した。

【0024】(実施例 $13\sim18$) 正極の作製において、四酸化三鉄に代えて酸化マンガン(II) (MnO)をリチウムー遷移金属複合酸化物 ($LiNi_{0.5}$ $Co_{0.5}$ O_2)に0.5 重量%、1 重量%、5 重量%、1 0 重量%、2 0 重量%又は2 2 重量%添加したこと以外は実施例 $1\sim6$ と同様にして、リチウム二次電池A1 $3\sim$ A1 8を作製した。

【0025】(実施例 $19\sim24$) 正極の作製において、四酸化三鉄に代えて四酸化三マンガン ($Mn_3 O_4$)をリチウムー遷移金属複合酸化物 ($LiNi_{0.5} Co_{0.5} O_2$) に0.5重量%、1重量%、5重量%、10重量%、20重量%又は22重量%添加したこと以外は実施例 $1\sim6$ と同様にして、リチウム二次電池 $A19\sim A24$ を作製した。

【0026】(比較例 $6\sim9$)正極の作製において、四酸化三鉄に代えて二酸化マンガン (MnO_2) をリチウムー遷移金属複合酸化物 ($LiNi_{0.5}$ $Co_{0.5}$ O_2) に1重量%、5重量%、10重量%又は20重量%添加したこと以外は実施例 $1\sim6$ と同様にして、比較電池B $6\sim$ B9を作製した。

【0027】(実施例 $25\sim30$) 正極の作製において、四酸化三鉄に代えて酸化コバルト(II)(CoO)をリチウムー遷移金属複合酸化物($LiNi_{0.5}$ $Co_{0.5}$ O_2)に0.5重量%、1重量%、5重量%、10重量%、20重量%又は22重量%添加したこと以外は実施例 $1\sim6$ と同様にして、リチウム二次電池A25 \sim A30を作製した。

【0028】(実施例 $31\sim36$) 正極の作製において、四酸化三鉄に代えて一酸化チタン (TiO)をリチウムー遷移金属複合酸化物 ($LiNi_{0.5}$ Co $_{0.5}$ O $_2$)に0.5 重量%、1 重量%、5 重量%、10 重量%、20 重量%又は22 重量%添加したこと以外は実施例 $1\sim6$ と同様にして、リチウム二次電池A $31\sim$ A36 を作製した。

【0029】(比較例 $10\sim13$) 正極の作製において、四酸化三鉄に代えて二酸化マンガン(TiO_2)をリチウム- 遷移金属複合酸化物($LiNi_{0.5}$ $Co_{0.5}$ O_2)に1重量%、5重量%、<math>10重量%又は20重量%添加したこと以外は実施例 $1\sim6$ と同様にして、比較電池 $B10\sim813$ を作製した。

【0030】(実施例37~42)正極の作製において、四酸化三鉄に代えて酸化クロム(CrO)をリチウ

ムー遷移金属複合酸化物($LiNi_{0.5}Co_{0.5}O_2$) に0.5重量%、1重量%、5重量%、10重量%、20重量%又は22重量%添加したこと以外は実施例 $1\sim$ 6と同様にして、リチウム二次電池 $A37\sim A42$ を作製した。

【0031】(実施例 $43\sim48$) 正極の作製において、四酸化三鉄に代えて酸化第一銅(Cu_2 O)をリチウムー遷移金属複合酸化物($LiNi_{0.5}$ C o 0.5 O₂)に0.5 重量%、1 重量%、5 重量%、1 0 重量%、2 0 重量%又は2 2 重量%添加したこと以外は実施例 $1\sim6$ と同様にして、リチウム二次電池A43~A48を作製した。

【0032】(比較例 $14\sim17$)正極の作製において、四酸化三鉄に代えて酸化第二銅(CuO)をリチウムー遷移金属複合酸化物($LiNi_{0.5}Co_{0.5}O_2$)に1重量%、 $5重量%、10重量%又は20重量%添加したこと以外は実施例<math>1\sim6$ と同様にして、比較電池B $14\sim$ B17を作製した。

【0033】(実施例 $49\sim54$)正極の作製において、四酸化三鉄に代えて三酸化二バナジウム(V_2O_3)をリチウムー遷移金属複合酸化物($LiNi_{0.5}Co_{0.5}O_2$)に0.5重量%、1重量%、5重量%、10重量%、20重量%又は22重量%添加したこと以外は実施例 $1\sim6$ と同様にして、順にリチウム二次電池 $A49\sim A54$ を作製した。

【0034】(比較例 $18\sim21$)正極の作製において、四酸化三鉄に代えて五酸化バナジウム(V_2 O_5)をリチウムー遷移金属複合酸化物($LiNi_{0.5}$ $Co_{0.5}$ O_2)に1重量%、5重量%、10重量%又は20重量%添加したこと以外は実施例 $1\sim6$ と同様にして、比較電池 $B18\sim$ B21を作製した。

【0035】(実施例 $55\sim60$) 正極の作製において、四酸化三鉄に代えて酸化ニッケル (NiO)をリチウムー遷移金属複合酸化物 ($LiNi_{0.5}$ $Co_{0.5}$ O_2)に0.5 重量%、1 重量%、5 重量%、10 重量%、0.5 重量%、0.5 三量% (0.5 年 上級外は実施例 $1\sim6$ と同様にして、順にリチウム二次電池A5

【0036】〈各電池の充電保存特性〉各電池を、室温(25°C)にて、200mAで4.2Vまで充電した後、200mAで2.75Vまで放電して、保存前の内部抵抗R1及び放電容量C1を求めた。次いで、これらの放電後の各電池を、200mAで4.2Vまで充電し、60°Cで20日間保存した後、200mAで2.75Vまで放電して、保存後の内部抵抗R2及び放電容量C2を求めた。保存前の放電容量C1及び保存後の放電容量C2の各値から、下式に基づき、容量残存率を算出した。

[0037]

5~A60を作製した。

容量残存率 (%) = (C2/C1)×100

【0038】各電池の保存前の内部抵抗R1及び保存後の内部抵抗R2を表1~表8に、また各電池の容量残存率を図1~図4に、それぞれ示す。図1~図4は、いずれも縦軸に容量残存率(%)を、横軸にリチウムー遷移金属複合酸化物(LiNi_{0.5} Co_{0.5} O₂)に対する

遷移金属酸化物の添加量率 (重量%)を、それぞれとって示した直交軸座標グラフである。

[0039]

【表1】

電池	過移金属酸化 物	遷移金属酸化 物の添加%	保存前の内部 抵抗 (mΩ)	保存後の内部 抵抗(mΩ)	
A 1	Fe, O.	0. 5	150	249	
A 2	Fe, O.	1	153	220	
А3	Fe, O4	5	1 5 2	213	
A 4	Fe: 04	1 0	154	210	
A 5	Fe ₂ O ₄	2 0	156	221	
A 6	Fe, O.	2 2	155	250	
A 7	FeO	0. 5	152	2 4 2	
A 8	FeO	1	153	2 1 5	
A 9	FeO	5	153	210	
A 1 0	FeO	1 0	155	208	
A 1 1	FeO	2 0	154	2 1 3	
A 1 2	FeO	2 2	157	2 4 8	
B 1		無添加	150	3 1 5	
B 2	Fer Or	1	153	317	
В 3	Fe ₂ O ₃	5	155	3 1 9	
B 4	Fe. O.	10	156	3 1 8	
В 5	Fez Oz	2 0	158	3 2 0	
[丰2]					

[0040]

【表2】

電池	遷移金属酸化 物	遷移金属酸化 物の添加%	保存前の内部 抵抗(mΩ)	保存後の内部 抵抗(mΩ)
A 1 3	MnO	0. 5	151	2 5 5
A 1 4	MnO	1	153	2 2 2
A 1 5	MnO	5	154	218
A 1 6	MnO	1 0	156	213
A 1 7	MnO	2 0	156	219
A 1 8	MnO	2 2	158	257
A 1 9	Mn ₃ O ₄	0.5	153	262
A 2 0	Mn; O4	1	154	238
A 2 1	Mn = 04	5	1 5 6	233
A 2 2	Mn 3 O4	1 0	155	2 2 5
A 2 3	Mn ₂ O ₄	2 0	157	2 3 5
A 2 4	Mn 3 O 4	2 2	159	265
В 6	MnOz	1	153	3 1 6
B 7	MnOz	5	1 5 8	319
B 8	MnOz	1 0	157	320
B 9	MnOz	2 0	158	3 2 1

[0041]

【表3】

電池	遷移金属酸化 物	遷移金属酸化 物の添加%	保存前の内部 抵抗(mΩ)	保存後の内部 抵抗 (mΩ)
A 2 5	CoO	0. 5	152	245
A 2 6	CoO	1	1 5 2	2 1 7
A 2 7	CoO	5	154	213
A 2 8	CoO	1 0	156	2 1 0
A 2 9	CoO	2 0	156	215
A 3 0	CoO	2 2	157	244

[0042]

【表4】

電池	避移金属酸化 物	遷移金属酸化 物の添加%	保存前の内部 抵抗(mΩ)	保存後の内部 抵抗(mΩ)
A 3 1	TiO	0.5	151	253
A 3 2	TiO	1	153	2 2 2
A 3 3	TiO	5	156	218
A 3 4	TiO	1 0	157	2 1 5
A 3 5	TiO	2 0	158	220
A 3 6	TiO	2 2	158	255
B 1 0	TiOz	ı	154	317
B 1 1	TiOz	5	155	3 1 8
B 1 2	TiOz	1 0	156	3 1 9
B 1 3	TiO2	2 0	157	3 2 0

[0043]

【表5】

電池	遷移金属酸化 物	遷移金属酸化 物の添加%	保存前の内部 抵抗 (mΩ)	保存後の内部 抵抗 (mΩ)
A 3 7	CrO	0. 5	153	250
A 3 8	CrO	1	155	220
A 3 9	CrO	5	155	2 1 5
A 4 0	CrO	1 0	156	212
A 4 1	CrO	20	158	217
A 4 2	CrO	2 2	159	249

[0044]

【表6】

電池	避移金属酸化 物	選移金属酸化 物の添加%	保存前の内部 抵抗(mΩ)	保存後の内部 抵抗(mΩ)
A 4 3	Cu ₂ O	0. 5	151	248
A 4 4	Cu ₂ O	1	152	2 2 1
A 4 5	Cu ₂ O	5	155	217
A 4 6	Cu _z O	1 0	157	2 1 2
A 4 7	Cu _z O	2 0	158	218
A 4 8	Cu ₂ O	2 2	158	250
B 1 4	CuO	1	153	3 1 7
B 1 5	CuO	5	155	3 2 0
B16	CuO	1 0	157	3 1 9
B 1 7	CuO	2 0	158	3 2 2

[0045]

【表7】

電池	遊移金属酸化 物	避移金属酸化 物の添加%	保存前の内部 抵抗(mΩ)	保存後の内部 抵抗(mΩ)
A 4 9	V 2 O 3	0. 5	151	2 4 5
A 5 0	V _z O _z	1	1 5 2	2 1 8
A 5 1	V 2 O 3	5	155	214
A 5 2	V 2 O 3	10	156	209
A 5 3	V2 O3	2 0	157	216
A 5 4	V ₂ O ₃	2 2	158	244
B 1 8	V2 O5	1	152	319
B 1 9	V2 O5	5	154	3 2 0
B 2 0	V 2 O 5	10	155	3 2 1
B 2 1	V ₂ O ₅	2 0	157	3 2 1

[0046]

【表8】

電池	遷移金瓜酸化 物	遷移金属酸化 物の添加%	保存前の内部 抵抗(mΩ)	保存後の内部 抵抗(mΩ)
A 5 5	NiO	0.5	151	267
A 5 6	NiO	1	152	239
A 5 7	NiO	5	154	233
A 5 8	NiO	10	156	2 2 7
A 5 9	NiO	2 0	157	2 3 6
A 6 0	NiO	2 2	158	268

【0047】表1~表8及び図1~図4に示すように、本発明電池A1~A60は、比較電池B1~B21に比べて、保存後の内部抵抗の上昇が小さく、容量残存率が高い。この事実から、本発明電池A1~A60は比較電池B1~B21に比べて充電状態の電池を高温で保存した場合に保存後に電池特性が低下しにくいことが分かる。また、本発明電池のうち同じ遷移金属酸化物を添加したもの同士を比較すると、本発明電池A2~A5,A8~A11,A14~A17,A20~A23,A26~A29,A32~A35,A38~A41,A44~A47,A50~A53,A56~A59の保存特性が特に優れていることから、リチウム-遷移金属複合酸化物に対する遷移金属酸化物の添加%は1~20重量%が好ましいことが分かる。

[0048]

【発明の効果】本発明電池は、添加せる遷移金属酸化物が非水電解液の溶媒の酸化分解を抑制するので、充電状態の電池を高温で保存した場合に保存後に電池特性が低下しにくい。

【図面の簡単な説明】

【図1】本発明電池及び比較電池を充電状態で保存した場合の容量残存率を示したグラフである。

【図2】本発明電池及び比較電池を充電状態で保存した場合の容量残存率を示したグラフである。

【図3】本発明電池及び比較電池を充電状態で保存した 場合の容量残存率を示したグラフである。

【図4】本発明電池及び比較電池を充電状態で保存した 場合の容量残存率を示したグラフである。

フロントページの続き

(72) 発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72) 発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内