

Matlab SVM-Related Functions and References

- Matlab SVM: http://www.mathworks.com/help/stats/support-vector-machines-sym.html#responsive_offcanvas
- Matlab SVM class
 - http://www.mathworks.com/help/stats/support-vector-machine-classification.html
 - http://www.mathworks.com/help/stats/classificationsvm-class.html

- Matlab Functions:
 - **fitcsvm**(X, Y, 'KernelFunction', 'rbf', 'Crossval', 'on', 'Standardize', true);
 - http://www.mathworks.com/help/stats/fitcsvm.html
 - http://www.mathworks.com/help/stats/classificationsvm-class.html
 - Mutip-class SVM → http://www.mathworks.com/help/stats/fitcecoc.html
 - [label, score] = predict(SVMModel, newX);
 - http://www.mathworks.com/help/stats/compactclassificationsvm.predict.html
 - crossval(), kFoldLoss(), kfoldPredict()

Python sklearn SVM References

- Support Vector Machine
 - http://scikit-learn.org/stable/modules/svm.html
- sklearn.svm.SVC
 - http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
 - sklearn.svm.LinearSVC http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
- Plot different SVM classifiers in the iris dataset
 - http://scikit-learn.org/stable/auto_examples/sym/plot_iris.html

- One-class SVM
 - http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM

Outline

■ SVM Basic Idea, Large Margin Classifier, Support Vectors.

- SVM Model
 - Model Complexity and SVM Vector Length.
 - SVM Decision Boundary and SVM Margin.
 - SVM Hinge Loss Function vs. Logistic Regression.

• SVM Regularization, Box Constraint, SVM Support Vector and α .

SVM Multiclasses.

Support Vector Machines

- Find a decision boundary to separate data of different classes.
 - Optimal hyperplane for linearly separable patterns.
 - In 2-D a hyperplane is a line.
 - Non-linearly separable data?

SVM = Large Margin Classifier

- Find the maximum-margin hyperplane that divides points of different classes.
 - Maximize hyperplane margin (to be safe). B1 is better than B2.
- SVM is usually referred to as *large margin classifier*.
- But, SVM is more than just a large margin classifier.
 - Outliers.
 - ∞ -dimension.

Support Vectors

- Support vectors are data points that lie *closest to* decision surface.
 - Support vectors are training subset that would **change** hyperplane if moved.
 - Support vectors are the **critical** elements of the training set, most difficult to classify.
 - Support vectors must be numeric!! Converting discrete to numeric???
- ONLY "difficult points" have influence on SVM.
 - DTs, Naïve Bayes, LR, Logit will be influenced by <u>ALL</u> points.

MPG + **Displacement** → **Cylinders**, **Outlier impact?!**

SVM Linear / RBF Kernel + Regularization

Powerful SVM Kernal with ∞-Dimensionality

■ Build SVM in ∞-dimension

Outline

■ SVM Basic Idea, Large Margin Classifier, Support Vectors.

- SVM Model
 - Model Complexity and SVM Vector Length.
 - SVM Decision Boundary and SVM Margin.
 - SVM Hinge Loss Function vs Logistic Regression.

• SVM Regularization, Box Constraint, SVM Support Vector and α .

SVM Multiclasses.

SVM Model in Plain English

- SVM model learns parameters w (i.e. θ) and b (θ_0) just like other ML methods.
- **SVM** model learns parameters w (i.e. θ) such that...
 - 1) It is perpendicular to the class boundary, and at the same time...
 - 2) It creates the largest possible margin to separate data of 2 different classes.
- So finding w (i.e. θ) = finding class boundary.
- Magnitude of w = model complexity
 - Just like other ML methods...
 - One way to define model complexity L_2
 - $L_2 = \sqrt[2]{w_1^2 + w_2^2 + \cdots} = ||w|| = \text{vector length.}$
 - Turn out Margin = $\frac{2}{||w||}$

See **Appendix** for math reasons.

||w|| = Length of A Vector w

- The length of vector $\mathbf{w} = ||\mathbf{w}|| = \sqrt{w_1^2 + w_2^2 + \cdots} = \sqrt{w^T w} = \sqrt{\sum_{j=1}^{d} w_j^2}$
 - Length of vector w (i.e. θ) decide the margin $=\frac{2}{||w||}$

See **Appendix** for math reasons.

- Length of vector w =complexity of the SVM model!!!
 - $w = [-1 \ 1];$ $||w|| = sqrt(w(1)^2 + w(2)^2) = norm(w, 2) = sqrt(sum(w.^2)) = 1.414$
 - $w = [-2 \ 2];$ $||w|| = sqrt(w(1)^2 + w(2)^2) = norm(w, 2) = sqrt(sum(w.^2)) = 2.8284$

Margin =
$$\frac{2}{||w||} = \frac{2}{\sqrt{w^T w}}$$
 $||w|| = \sqrt{w_1^2 + w_2^2 + \cdots}$

$$||\mathbf{w}|| = \sqrt{w_1^2 + w_2^2 + \cdots}$$

||w|| decide the <u>margin</u> of an SVM model, ||w|| =<u>model complexity</u>

 $margin = 2 / w_len$

Hyperplane (Decision Boundary)

- A hyperplane is a set of points X satisfying $\mathbf{w}^T \mathbf{X} + \mathbf{b} = \mathbf{c}$ or $\mathbf{w}^T \mathbf{X} = \mathbf{c}$
 - Vector **w** is **perpendicular** to the hyperplane (D.B.)
 - $\begin{bmatrix} -1 \\ 1 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \boldsymbol{b} = -x_1 + x_2 + 0$ with $\boldsymbol{b} = \boldsymbol{0}$ and $\boldsymbol{c} = 0$ for the blue line.

syms x1 x2
hold on;
h1 = ezplot(-x1+x2, [0 5 0 5]); % B
h2 = ezplot(-x1+x2-1, [0 5 0 5]); % R
h3 = ezplot(-x1+x2+1, [0 5 0 5]); % G
hold off, grid on
set(h1,'color',[0 0 1])
set(h2,'color',[1 0 0])
set(h3,'color',[0 1 0])

Hyperplane– 2

- A hyperplane is a set of points X satisfying $\mathbf{w}^T \mathbf{X} + \mathbf{b} = \mathbf{c}$ or $\mathbf{w}^T \mathbf{X} = \mathbf{c}$
 - Vector **w** is **perpendicular** to the hyperplane.
 - $\begin{bmatrix} -1 \\ 1 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b = -x_1 + x_2 + 5$ with b = 5 and c = 0 for the blue line

syms X Y h1 = ezplot(-X+Y+5, [0 12 -5 7]); % B $h2 = \text{ezplot}(-X+Y+4, [0\ 12\ -5\ 7]); \% R$ $h3 = \text{ezplot}(-X+Y+6, [0\ 12\ -5\ 7]); \% G$ set(h1,'color',[0 0 1]), set(h2,'color',[1 0 0])

$$> 1$$
 or < -1

- A hyperplane is a set of points X satisfying $\mathbf{w}^T \mathbf{X} + \mathbf{b} = \mathbf{c}$ or $\mathbf{w}^T \mathbf{X} = \mathbf{c}$
 - Vector \mathbf{w} is **perpendicular** to the hyperplane.
 - $\begin{bmatrix} -1 \\ 1 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \boldsymbol{b} = -x_1 + x_2 + 0$ with $\boldsymbol{b} = 0$ and $\boldsymbol{c} = 0$ for the blue line.

syms X Y
hold on;
h1 = ezplot(-X+Y, [0 5 0 5]);
h2 = ezplot(-X+Y-1, [0 5 0 5]);
h3 = ezplot(-X+Y+1, [0 5 0 5]);
hold off, grid on
set(h1,'color',[0 0 1])
set(h2,'color',[1 0 0])
set(h3,'color',[0 1 0])

$$> 1 \text{ or } < -1$$

 $w^TX + b$

SVM Definition

- A hyperplane is a set of points X satisfying $w^TX + b = c$ or $w^TX = c$
 - Vector \mathbf{w} is **perpendicular** to the hyperplane.
 - Margin = $\frac{2}{||w||}$ magnitude of w =model complexity
 - Maximize the margin by choosing right w and b, w.r.t. X
 - Parallel hyperplanes are as far apart as possible, but still separate data

http://en.wikipedia.org/wiki/Support_vector_machine

Matlab SVM-Related Functions and References

- Matlab SVM: http://www.mathworks.com/help/stats/support-vector-machines-sym.html#responsive_offcanvas
- Matlab SVM class
 - http://www.mathworks.com/help/stats/support-vector-machine-classification.html
 - http://www.mathworks.com/help/stats/classificationsvm-class.html
- Matlab Functions:
 - **fitcsvm**(X, Y, 'KernelFunction', 'rbf', 'Crossval', 'on', 'Standardize', true);
 - http://www.mathworks.com/help/stats/fitcsvm.html
 - http://www.mathworks.com/help/stats/classificationsvm-class.html

$$w^TX + b$$

$$\downarrow$$
[label, score] = predict(SVMModel, newX);

- http://www.mathworks.com/help/stats/compactclassificationsvm.predict.html
- crossval(), kFoldLoss(), kfoldPredict()

Detailed Information Returned from Matlab SVM

Matlab SVM class

- http://www.mathworks.com/help/stats/support-vector-machine-classification.html
- http://www.mathworks.com/help/stats/classificationsvm-class.html
- **Beta** .Bias (i.e. $[\theta_{1..N} \quad \theta_0] \quad [w_{1..N} \quad w_0]$)
- .IsSupportVector
- SupportVectorLabels
- SupportVectors
- **BoxConstraints** (regularizer C)
- Alpha
- Margin = $\frac{2}{||\mathbf{w}||}$
- $min_{w,b,\alpha} \frac{1}{2} ||\mathbf{w}||^2 \mathbf{C} \times \sum_{i=1}^{m} [\alpha_i (1 y^{(i)} (\mathbf{w} x^{(i)} + \mathbf{b}))]$
- **.W**
- OutlierFraction


```
3.7321
         -1.7321
4.7321
         -0.7321
         -3.7321
1.7321
0.7321
         -4.7321
                  -1
0.2679
          1.7321
                   1
          2.7321
1.2679
                   1
         -0.2679
-1.7321
         -1.2679
-2.7321
```

Matlab SVM Simple Example


```
X = [3.73, 4.73, 1.73, 0.73, 0.27, 1.27, -1.73, -2.73; -1.73, -0.73, -3.73, -4.73, 1.73, 2.73, -0.27, -1.27]
Y = [-1; -1; -1; -1; 1; 1; 1; 1; 1];
SVM = fitcsvm(X, Y)
sv = SVM.SupportVectors;
theta = SVM.Beta;
                           theta0 = SVM.Bias;
                                                          \frac{0}{0} w
Sep = null(theta'); % dot(theta, Sep) \approx 0
gscatter(X(:,1),X(:,2), Y, ", ", 25)
hold on, plot(sv(:,1), sv(:,2), 'ko'), \% \leftarrow plot SVs
fstr1 = [num2str(theta(1)) '*x+' num2str(theta(2)) ...
               '*y+' num2str(theta0) '=0']
h1 = ezplot(fstr1); hold off
                                        % plot separation
% worry this later.
w len = norm(theta);
                             margin = 2 / w_len
```

>1 or <-1 using Matlab **predict()** Function

• $w^TX + b = \text{predict}(\text{SVM_Model}, \text{newData})$

Probability Calculation

■ How do we do that?

SVM = fitcsvm(X, Y, 'ScoreTransform', 'logit')

• Utilizing what we have learned so far...

1./(1+exp(-(SVM.Beta'*X'+SVM.Bias)))

sklearn.svm.SVC, Build Model

- Don't use "svm.LinearSVC", use svm.SVC(kernel = 'linear') instead.
 - It doesn't return support-vector information.
 - http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC.decision_function

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
X1 = [3.73, 4.73, 1.73, 0.73, 0.27, 1.27, -1.73, -2.73]
X2 = [-1.73, -0.73, -3.73, -4.73, 1.73, 2.73, -0.27, -1.27]
X = \text{np.column stack}((X1, X2))
y = np.array([-1, -1, -1, -1, 1, 1, 1, 1])
# fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel = 'linear', C = 1000) # 	
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
# plot the decision function
ax = plt.gca(); xlim = ax.get xlim(); ylim = ax.get ylim()
# create grid to evaluate model
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision function(xy).reshape(XX.shape)
```


sklearn.svm.SVC, Obtain Results


```
print(clf.n_support_) # number of support vectors in EACH class
print(clf.support_) # Indices of support vectors
print(clf.support_vectors_) # Support vectors
print(clf.coef_) # coefficients in "primary" form
print(clf.dual_coef_) # coefficients in "dual" form

print(clf.predict(X), '\n') # predicted classes
print(clf.score(X, y), '\n') # mean accuracy
print(clf.decision_function(X), '\n') # Distance of X to hyperplane
```

```
[1 1]

[3 7]

[[ 0.73 -4.73]

[-2.73 -1.27]]

[[-0.28901735 0.28901735]]

[[-0.08353102 0.08353102]]
```

```
[-1 -1 -1 -1 1 1 1 1]

clf = svm.SVC(kernel='linear', C=1000, probability = True)

print(clf.predict_proba(X), '\n') # predicted probability

[-1.000000001 -1.000000001 -1.000000001 1.000000002 1.000000002 [0.833333 0.166667]
1.000000002 1.000000002]
```

Similar example at: http://scikit-learn.org/stable/auto_examples/sym/plot_separating_hyperplane.html

> 1 or < -1 and Cost (i.e. Error) Function?

- How to impose penalty (i.e. error) to the points that are wrongly classified?
 - Especially for those VERY VERY wrongly classified?
 - But, **NO** penalty to points that are correctly classified.

$$[max(0,(1-y_i\times w^Tx_i))]$$

$$\max(0, (1 - (-1) \times 1.83)) = \max(0, (1 - (-1.83)) = \max(0, 1 + 1.83) = 2.83$$

$$\max(0, (1 - (-1) \times -2)) = \max(0, (1 - 2)) = \max(0, -1) = 0$$

$$\max(0, (1 - 1 \times -0.665)) = \max(0, (1 + 0.665)) =$$

 $\max(0, 1.665) = 1.665$

$\underline{\text{Hinge Loss}} = [max(0, (1 - y_i \times w^T x_i))]$

- *Hinge loss* \rightarrow error \uparrow as pts move <u>opposite</u> from the correct class boundary.
 - Need <u>right</u> margin $\frac{2}{||w||}$ by choosing <u>right</u> w to minimize error.
 - Moving points far away from $f(x) = \pm 1$.

© Copyright 2018 by Dr. Chih Lai

Page: 28

SVM, MPG + Weight → # Cylinders

- $w^TX + b = \text{predict}(\text{SVM_Model}, \text{newData})$
 - [labels, score] = predict(svm_mdl, X);
- $Margin = \frac{2}{||w||}$
 - ||w|| = magnitude of w = model complexity

petal

http://sebastianraschka.com/Articles/2014_python_lda.html

load fisheriris

X = meas(51:end, 3:4);

Y = double(strcmp('versicolor', species(51:end))); % create BINARY class

svm_mdl = fitcsvm(X, Y, 'Standardize', true)

[labels score] = predict(svm_mdl, X);

CFM = **confusionmat**(Y, labels)

accuracy = sum(diag(CFM))/sum(CFM(:)),

0.9400

SVM Iris Prediction and ROC Curves

```
load fisheriris
X = meas(51:end, 3:4);
Y = double(strcmp('versicolor',species(51:end)));
                                                  % BINARY class
svm mdl = fitcsvm(X, Y, 'Standardize', true)
[PredictedClasses, scores] = predict(svm_mdl, X);
CFM = confusionmat(Y, PredictedClasses)
accuracy = sum(diag(CFM))/sum(CFM(:)),
[xpos, ypos, T, AUC0] = perfcurve(Y, scores(:, 1), 0);
figure, plot(xpos, ypos)
xlim([-0.05 1.05]), ylim([-0.05 1.05])
xlabel('\bf FP rate'), ylabel('\bf TP rate')
title('\bf ROC for class 0 by SVM')
[xpos, ypos, T, AUC1] = perfcurve(Y, scores(:, 2), 1);
figure, plot(xpos, ypos)
xlim([-0.05 1.05]), ylim([-0.05 1.05])
xlabel('\bf FP rate'), ylabel('\bf TP rate')
title('\bf ROC for class 1 by SVM')
```


sklearn.metrics.roc_curve(y, scores, pos_label)
sklearn.metrics.roc_auc_score

sklearn, SVM Prediction—Iris Example (using var 3 and 4)

http://scikit-learn.org/stable/auto_examples/svm/plot_iris.html

```
# import some data to play with
iris = datasets.load_iris()
# Take the last two features.
X = iris.data[50:, 2:4]
y = iris.target[50:]
print(y.shape, y.size)

C = 1.0  # SVM regularization parameter
clf = svm.SVC(kernel = 'linear', C = C)
clf.fit(X, y)
```


Hinge Loss and Logit

- If y = class 1, need $\theta^T x \ge 1$, not just $\theta^T x \ge 0$.
- If y = class -1, need $\theta^T x \le -1$, not just $\theta^T x \le 0$.
- SVM has <u>less</u> influence from outliers.
- Logistic Regression???

syms z, ezplot(-log(1/(1+exp(1)^(-z))), [-66]) -log(P) for class 1 -log(1-P) -log(1

SVM, MPG + Displacement

CITI	- 0.75
68	0
5	27

Summary – SVM Objectives

■ To place data of each class on the correct side, SVM needs to...

• MAX margin =
$$\frac{2}{||w||}$$
 = MIN $||w||^2$ or $\sum_{j}^{d} w_{j}^2$.

- Moe precisely, our objectives are:
 - Minimize $||w||^2$ such that...
 - 1. $\mathbf{w}^T \mathbf{x}_i + b \ge 1$ for record i with $y_i = +1$ **AND**
 - 2. $\mathbf{w}^T \mathbf{x}_i + b \le -1$ for record i with $y_i = -1$.

- Combine above "AND" statements \rightarrow minimize $[max(0, (1 y_i(w^Tx_i + b)))]$
 - If $y_i = +1$ & $w^T x_i \approx \infty$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, -\infty) = 0$. What if $w^T x_i = 0.5$??
 - If $y_i = -1$ & $w^T x_i \approx -\infty$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, -\infty) = 0$. What if $w^T x_i = -0.5$??
- Combine above condition 1 & 2 together as:
 - $min_w [\sum_{i=1}^m [max(0, (1-y_i \times w^Tx_i)] = min_w [E].$

Combine Together... SVM Cost Function

- MAX margin = $\frac{2}{||w||}$ or **minimize** $||w||^2$.
- minimize $[max(0, (1-y_i \times w^Tx_i)]$.

 $min_{w} \sum_{i=1}^{m} [max(\mathbf{0}, (1-y_{i} \times w^{T}x_{i})] + \frac{1}{2}||w||^{2}$ $= min_{w}[E+L]$

- $min_w \sum_{i=1}^m [max(\mathbf{0}, (1-y_i \times w^Tx_i))] = min_w [\mathbf{E}].$
 - If $v_i = +1$

 - and $w^T x_i \approx \infty$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, -\infty) = 0$.

 - and $w^T x_i = 1$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, 0) = 0$.

 - and $w^T x_i = 0.5$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, 0.5) = 0.5$.

 - and $w^T x_i = -0.5$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, 1.5) = 1.5$.

 - and $w^T x_i = -2$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, 3) = 3$.

- If $y_i = -1$

 - and $w^T x_i \approx -\infty$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, -\infty) = 0$.

 - and $w^T x_i = -1$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, 0) = 0$.

 - and $w^T x_i = -0.5$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, 0.5) = 0.5$.

 - and $w^T x_i = +0.5$, $\rightarrow \max(0, 1 y_i \times w^T x_i) = \max(0, 1.5) = 1.5$.

 - and $w^Tx_i = +2$, $\rightarrow \max(0, 1 v_i \times w^Tx_i) = \max(0, 3) = 3$.

Outline

SVM Basic Idea, Large Margin Classifier, Support Vectors.

- SVM Model
 - Model Complexity and SVM Vector Length.
 - SVM Decision Boundary and SVM Margin.
 - SVM Hinge Loss Function vs Logistic Regression.

• SVM Regularization, Box Constraint, SVM Support Vector and α .

SVM Multiclasses.

$$\mathbf{M} = \frac{2}{||w||}$$

$$min_w \ C \times \sum_{i=1}^m [max(0, (1-y_i \times w^Tx_i))] + \frac{1}{2} ||w||^2 = min_w [CE + L].$$

- $C \uparrow \rightarrow E \downarrow \rightarrow M \downarrow \rightarrow \text{Regularization} \downarrow \rightarrow \#SV \downarrow \rightarrow w \uparrow (L \uparrow)$
 - (bias↓, variance↑)

 $C \downarrow \rightarrow E \uparrow \rightarrow M \uparrow \rightarrow \text{Regularization} \uparrow \rightarrow \#SV \uparrow \rightarrow w \downarrow (L \downarrow)$

(bias↑, variance ↓)

- SVM_Model = **fitcsvm**(X, Y, **'BoxConstraint'**,
- clf = svm.SVC(kernel = 'linear', C = 100)

SVM Regularization

$$\mathbf{M} = \frac{2}{||w||}$$

- $min_w \ C \times \sum_{i=1}^m [max(0, (1-y_i \times w^Tx_i))] + \frac{1}{2} ||w||^2 = min_w [CE + L].$
- Need larger margin $\mathbf{M} = \frac{2}{||w||}$ by choosing smaller parameter w to minimize L.
- Need smaller E (error) by moving points far away from $f(x) = \pm 1$.
- $C \uparrow \rightarrow$ need $E \downarrow \rightarrow$ move boundary far from pts \rightarrow smaller margin $\rightarrow L \uparrow$.
 - More complex model w/ larger parameters w.
- $C \downarrow \rightarrow E$ less important \rightarrow larger margin more error $\rightarrow L \downarrow$.
 - **Simpler model** w/ smaller parameters w.

LR regularization $min(\mathbf{E} + \lambda \theta)$

Different C with Linearly Separable Data

$$\mathbf{M} = \frac{2}{||w||}$$

- - $C\uparrow \rightarrow w\uparrow \rightarrow \text{Regularization} \downarrow \rightarrow \text{M} \downarrow \rightarrow \text{Err} \downarrow \rightarrow \#\text{SV} \downarrow$
 - $C \downarrow \rightarrow w \downarrow \rightarrow \text{Regularization} \uparrow \rightarrow \text{M} \uparrow \rightarrow \text{Err} \uparrow \rightarrow \#\text{SV} \uparrow$

Count # of SVs!!!

LR regularization $min(\mathbf{E} + \lambda \theta)$

Solving Cost Function, Important Parameters, and Miracles

- Objective function:
 - $min_w \mathbf{C} \times \sum_{i=1}^m [max(\mathbf{0}, (1-y_i \times w^Tx_i))] + \frac{1}{2}||w||^2 = min_w[\mathbf{CE} + \mathbf{L}].$
- How? By solving w/ Lagrange multiplier α_i for every point i:
 - - Parameters include w, and multiplier α .

•
$$\frac{\partial L_P}{\partial w} = 0$$
 \Rightarrow $w = \sum_{i=1}^m \alpha_i y_i x_i$ $\frac{\partial L_P}{\partial b} = 0$ \Rightarrow $\sum_{i=1}^m \alpha_i y_i = 0$ [F1]

- Karush-Kuhn-Tucker (*KKT*) conditions: $\alpha_i \ge 0$ and $(1 y_i \times w^T x_i) = 0$
 - $\alpha_i > 0$ only if x_i is critical. Also, $C \ge \alpha_i \ge 0$.

DM Tran, p262

- Substitute [F1] to primary form we get dual form as:
- Min $L_D = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j \sum_{i=1}^m \alpha_i$ (Dual form)
 - Parameters include ONLY multiplier α .
 - Decision boundary: wX + b = 0 \rightarrow $(\sum_{i=1}^{m} \alpha_i y_i x_i X) + b = 0$.

Matlab: score

Python: decision_function

Matlab SVM Simple Example with α_i

• $\alpha_i \uparrow \rightarrow criticalness$ to decision boundary.

||w|| = 0.408, M = 4.899

$$SVM_M = fitcsvm(X, Y)$$

$$Sep = null(theta');$$
 % dot(theta, Sep) close to 0

 $SVM_M. \\ \textbf{IsSupportVector}$

SVM_M.SupportVectorLabels

SVM_M.Alpha

Matlab SVM Example w/ $\alpha_i \leftarrow \rightarrow$ Python dual_coef_

 \bullet $\alpha_i \uparrow \rightarrow criticalness$ to decision boundary.

Python code on slide 25, 26

```
X = [3.5 \ 4 \ 4 \ 4.5 \ 4.9 \ 5 \ 5.5 \ 5.5 \ 0.5 \ 1 \ 1.3 \ 1.5 \ 2 \ 2.5]
4.3 3 4 1.8 4.5 4 2.5 3.5 1.5 2.5 0.5 1.5 2 0.8];
SVM_M = fitcsvm(X, Y)
sv = SVM_M.SupportVectors;
theta = SVM_M.Beta;
theta0 = SVM M.Bias;
Sep = null(theta');
                   % dot(theta, Sep) close to 0
w_len = norm(theta);
margin = 2 / w_len
SVM_M.IsSupportVector
SVM_M.SupportVectorLabels
SVM_M.Alpha
```

Parameters, Relationships $min_{w,b}[CE + L]$

- Penalty parameter (box constraint) C > 0.
 - $C\uparrow \rightarrow w\uparrow \rightarrow \text{Regularization}\downarrow \rightarrow M\downarrow \rightarrow \text{Err}\downarrow \rightarrow \#\text{SV}\downarrow \rightarrow \text{training time}\uparrow$
 - Matlab function: fitcsvm(X, Y, 'Standardize', 1, 'BoxConstraint', C) Sparsity in w (or θ)
- With <u>additional constraints</u> $C \ge \alpha_i \ge 0$. $(\alpha_i = 0 \Rightarrow \text{non-support vector})$

• $\alpha_i \uparrow \rightarrow criticalness$ to decision boundary (???).

Hard Margin, Soft Margin, Support Vectors

■ Extending the definition of support vectors...

How C Impacts ||W||, Margin, and # of SVs $min_{w,b}[CE + L]$

• fitcsvm(X, Y, 'Standardize', 1, 'BoxConstraint', **C**)

 $C\uparrow \rightarrow w\uparrow \rightarrow \text{Regularization} \downarrow \rightarrow \text{M} \downarrow \rightarrow \text{Err} \downarrow \rightarrow \#\text{SV} \downarrow$

$C\uparrow \rightarrow w\uparrow \rightarrow \text{Regularization} \downarrow \rightarrow \text{M} \downarrow \rightarrow \text{Err} \downarrow \rightarrow \#\text{SV} \downarrow$

- Notice the orientation of the decision boundary is also changing.
 - $C \uparrow \rightarrow w \uparrow \rightarrow \text{Regularization} \downarrow \rightarrow M \downarrow \rightarrow \text{Err} \downarrow \rightarrow \#SV \downarrow$
 - $C \downarrow \rightarrow w \downarrow \rightarrow \text{Regularization} \uparrow \rightarrow \text{M} \uparrow \rightarrow \text{Err} \uparrow \rightarrow \#\text{SV} \uparrow$

$$min_{w,b}[CE + L]$$

Visualizing SVM Regularization

- SVM Regularization is controlled by the Box Constraint C.
 - $C\uparrow \rightarrow w\uparrow \rightarrow \text{Regularization} \downarrow \rightarrow \text{M} \downarrow \rightarrow \text{Err} \downarrow \rightarrow \#\text{SV} \downarrow$
 - $C \downarrow \rightarrow w \downarrow \rightarrow \text{Regularization} \uparrow \rightarrow \text{M} \uparrow \rightarrow \text{Err} \uparrow \rightarrow \#SV \uparrow$
 - More like ridge regularization in which w-values closer to 0s, but \neq 0s.

Visualizing SVM Regularization with More C-Values

■ SVM Regularization is controlled by the Box Constraint C.

$$min_{w,b}[CE + L]$$

- $C \uparrow \rightarrow w \uparrow \rightarrow \text{Regularization} \downarrow \rightarrow M \downarrow \rightarrow \text{Err} \downarrow \rightarrow \#SV \downarrow$
- $C \downarrow \rightarrow w \downarrow \rightarrow \text{Regularization} \uparrow \rightarrow \text{M} \uparrow \rightarrow \text{Err} \uparrow \rightarrow \#SV \uparrow$
- More like <u>ridge</u> regularization in which w-values closer to 0s, but \neq 0s. (see y-axis)

SVM + Regularization: Iris Example (using var 3 and 4)

- Box constraint C > 0.
 - $C\uparrow \rightarrow w\uparrow \rightarrow \text{Regularization} \downarrow \rightarrow \text{M} \downarrow \rightarrow \text{Err} \downarrow \rightarrow \#\text{SV} \downarrow \rightarrow \text{training time} \uparrow$

load fisheriris

X = meas(51:end, 3:4);

Y = strcmp('versicolor', species(51:end)); % create BINARY class

svm_mdl = fitcsvm(X, Y, 'Standardize', true, 'BoxConstraint', 2)

[labels score] = predict(svm_mdl, X);

© Copyright 2018 by Dr. Chih Lai

Page: 50

Moving One Point (with Y = 1) Across Decision Boundary

• Title = [C, Accuracy, ||w||, Margin].

 $min_{w,b}[CE + L], \quad C \geq \alpha_i \geq 0$

■ Each point = [slack, α].

Speed Performance

MDL-01 2018S, Bank Marketing

Terrence White, Ronald E Twite Leela Sowjanya Chippada, Nathan Adams Ahmad K Lubnani, Mowlid Abdillahi

Training						
KernelScale	.1	1	10	1	1	1
BoxConstraint	1	1	1	.1	10	100
SVM	444 sec	33 sec	5 sec	7 sec	234 sec	454 sec
SVM with lasso	353 sec	14 sec	3 sec	5 sec	99 sec	349 sec

Market Basket Analysis, DM-01, 18S

Nikhil Dama, Semere Tekleab, Deepika Ravikumar Hughbert Kumwesiga, Ashenafi Darihun, Neo Ce Tao

Model	Decision Tree	Random Forest	Naive Bayes	KNN	Logistic Regression	MLP Classifier	Gradient Boosting Classifier
Train Time	10.85282135	27.07999134	1.410721064	177.724442	51.38662076	110.8316162	283.5447896
ROC-AUC Score	0.811	0.813	0.8	0.788	0.809	0.813	0.814
F1	0.734	0.735	0.649	0.719	0.729	0.734	0.737
Accuracy	0.736	0.737	0.704	0.72	0.733	0.737	0.737
Precision	0.738	0.738	0.794	0.72	0.737	0.74	0.737
Recall	0.73	0.732	0.549	0.718	0.722	0.729	0.738
Log Loss	9.115	9.089	10.234	9.669	9.235	9.092	9.072
Confusion Matrix	<u>Decision Tree</u>	Random Forest	Naive Bayes	KNN	<u>Logistic Regression</u>	MLP Classifier	Gradient Boosting Classifier
TN, FP	[[123183 42868]	[[123102 42949]	[[142512 23539]	[[119954 46097]	[[123438 42613]	[[123562 42489]	[[122404 43647]
FN, TP	[44624 120852]]	[44292 121184]]	[74690 90786]]	[46710 118766]]	[46032 119444]]	[44782 120694]]	[43433 122043]]

Remember to Perform k-Fold Cross Validation

crossval()

• kFoldLoss()

• kfoldPredict()

After Build SVM with Cross-Validation, How To Do Prediction??

SVMModel = fitcsvm(Predictor, Interest, 'KernelFunction', 'rbf', 'Crossval', 'on', 'Standardize', true); [label, score] = predict(SVMModel, X);

```
% however, an error occurs as → Undefined function 'predict' for input arguments of type
'classreg.learning.partition.ClassificationPartitionedModel'.

Error in a6 (line 10)
[label, score] = predict(SVMModel, X);
```

%% WHY??

Since you built a cross-validation (by default 10 folds). You have 10 models.

If you want to predict new data, you have to specify which model you want to use. For example:

```
[label, score] = predict(SVMModel.Trained{3,1}, X);
```

<u>Or</u> you can use your 10 cross-validation models to evaluate the prediction of your "Non-Training Data" by calling

```
[label, score] = kfoldPredict(SVMModel);
```

```
# http://scikit-learn.org/stable/modules/cross_validation.html
from sklearn.model_selection import cross_val_score
clf = svm.SVC(kernel='linear', C=1)
scores = cross_val_score(clf, iris.data, iris.target, cv=5)
```

Multiple Classes

- CVMdl = fitcecoc(x, y, 'CrossVal', 'on');
- CompactSVMModel = CVMdl.Trained{1};

- http://www.mathworks.com/help/stats/fitcecoc.html
 - One vs. one

- clf = svm.SVC(decision_function_shape = 'ovo') # one vs. one
- clf = svm.SVC(decision_function_shape = 'ovr') # one vs. reset

SVM, Multiple Classes

Test Data

	Class	x2	x1
1	1	5	11
2	2	27	5
3	3	20	20
3	3	20	14
1	3	15	12
3	3	20	12
3	3	21.5000	12
3	3	15	16
3	3	25	12
1	1	15	7.8000
1	1	15	8
1	1	15	8.2000
2	2	16	8

Linear and Quadratic

- Matlab function.
 - fitcsvm(X, Y, 'Standardize', 1, 'BoxConstraint', 0.5, 'KernelFunction', 'polynomial', 'PolynomialOrder', 3)

- NOT going to spend too much time on this.
 - Why?
 - Going to ∞-dimension can find more effective separation.

Linear SVM Summary

- SVMs produces large margin separating hyperplane, and efficient in high-D.
 - Use *regularization* to find the lowest-normed vector (margin) that separates data.
 - Hard-margin SVM will find a hyperplane that separates ALL data (if possible).
 - Soft-margin SVMs (generally preferred) do better when there's noise data.
- SVM maximizes the **margin** between points closest to the boundary.
 - SVMs only consider points near the margin (support vectors).
 - In SVM, only few points near the decision boundary really make a difference.
 - Because of this, SVM is slightly more robust.

- Logistic regression finds a model to maximize the **likelihood** of the training data.
 - Logistic regression considers <u>ALL</u> the points in the data set.
 - i.e. **EVERY** point has a certain influence on the final model.

SVM One Class Classification

- Matlab fitcsvm() or Sklearn svm.OneClassSVM()
 - An unsupervised method to learn a decision function for novelty detection.
 - Classify new data as how similar or how different to the training set.
 - Like clustering??? Compare either to *k*-means or *GMM* (Gaussian Mixture Model).
 - http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM
 - http://scikit-learn.org/stable/auto_examples/covariance/plot_outlier_detection.html#sphx-glr-auto-examples-covariance-plot-outlier-detection-py
 - http://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

Appendix

SVM and Its Margin =
$$\frac{2}{||w||} = \frac{2}{\sqrt{w^T w}}$$

- If we know vector w and 3 hyperplanes, then few facts...
 - The length of vector $\mathbf{w} = ||\mathbf{w}|| = \sqrt{\mathbf{w}^T \mathbf{w}} = \sqrt{\mathbf{w}_1^2 + \mathbf{w}_2^2} = \sqrt{\sum_{j=1}^{d} \mathbf{w}_j^2}$. or $||\mathbf{w}||^2 = \mathbf{w}^T \times \mathbf{w}$
 - $x^+ = x^- + mw \rightarrow x^+ x^- = cw$.
 - $w^T x + b = 0$ and $w^T x' + b = 0 \Rightarrow w^T (x' x) + b = 0$. (perpendicular)
 - $wx^+ + b = 1$ since x^+ is on $w^Tx + b = 1$. $wx^- + b = -1$ since x^- is on $w^Tx + b = -1$.
 - $w^T x^+ + b = 1 \rightarrow w^T (x^- + cw) + b = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow c||w||^2 1 = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow c||w||^2 1 = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow c||w||^2 1 = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow c||w||^2 1 = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow c||w||^2 1 = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow c||w||^2 1 = 1 \rightarrow c||w||^2 + w^T x^- + b = 1 \rightarrow$
 - $\rightarrow c||w||^2 = 2 \rightarrow c = \frac{2}{||w||^2}$.
- Margin = $||x^{+} x^{-}|| = ||cw|| = c||w|| = \frac{2}{||w||^{2}}||w|| = \dots$ = $\frac{2}{||w||} = \frac{2}{\sqrt{w^{T}w}}$
- Margin is defined as 2 over the length of w.
- How do we find \mathbf{w} (i.e. θ) to maximize the margin?

SVM Margin Example

$$Margin = \frac{2}{||w||} = \frac{2}{\sqrt{w^T w}}$$

$\theta^{T}X + \theta_0 = 0$ Example

```
Y = [ones(4, 1) * -1; ones(4, 1)];
X = [1 1; 1 2; 1 3; 1 4; 3 1; 3 2; 3 3; 3 4;];
SVM M = fitcsvm(X, Y, 'BoxConstraint', 1)
sv = SVM M.SupportVectors;
theta = SVM M.Beta;
                                       theta0 = SVM M.Bias;
Sep = null(theta');
                                       % perpendicular to theta
fstr1 = [num2str(theta(1)) '*x+' num2str(theta(2)) '*y+' num2str(theta(0)) '=0']
fstr2 = [num2str(Sep(1)) '*x+' num2str(Sep(2)) '*y' '=0']
ezplot(fstr2, [-1 6 -1 6]), hold on,
gscatter(X(:,1),X(:,2),Y),
h1=ezplot(fstr1, [-1 6 -1 6]); axis equal,
set(h1, 'color', [1 0 0]),
plot(sv(:,1), sv(:,2), 'ko', 'MarkerSize', 10), hold off,
                         w^{T}X + w_{0} = 0
theta'*[2; 5]+theta0
```


$$\theta^{T}X + \theta_{0} = 0$$
 vs. $\theta^{T}X = \hat{y}$ Example

$$Y = [-1; -1; 1; 1];$$

sv = SVM_M.SupportVectors;

theta =
$$SVM_M$$
.Beta;

theta
$$0 = SVM_M.Bias;$$

% perpendicular to theta

fstr1 = [num2str(theta(1)) '*x+' num2str(theta(2)) ...

$$fstr2 = [num2str(Sep(1)) '*x+' num2str(Sep(2)) '*y' '=0']$$

ezplot(fstr2, [0 18 0 18]), hold on,

gscatter(X(:,1),X(:,2),Y),

h1=ezplot(fstr1, [0 18 0 18]); axis equal, grid on,

set(h1, 'color', [1 0 0]),

plot(sv(:,1), sv(:,2), 'ko', 'MarkerSize', 10), hold off,

% Next, try to compute y when x = 10. We obtained y = 8.125

(10*theta(1)-5)/theta(2)

%
$$y = 8.125$$
 when $x = 10$.

theta'*[10; 8.125]+theta0

$$w^{T}X + w_{0} = 0$$

• In LR, θ fix to data.

•
$$\theta = 4$$
 in the figure.

(cyan line)

In SVM, θ separate data.

•
$$\theta = (-5, 0.1176, 0.4706)$$
 (red line)

Soft Margin SVM with Slack & /xi/

- Slack var $\xi_i = 0$ for data NOT cross the boundary of its class, otherwise $\xi_i > 0$.
 - $slack_i = max(0, (1 y^{(i)}(wx^{(i)} + b)) = max(0, dist_to_bound) \ge 0$
 - $dist_{to}bound = 1 y \times negLoss(:, 2)'$ "negLoss" from predict(...) = $(\theta^{T}X + \theta_{0})$.

X=[1 4; 2 8; 3 12; 4 16]; Y = [-1; -1; 1; 1];

SVM = fitcsvm(X, Y)

theta = SVM.**Beta**; theta0 = SVM.**Bias**;

 $w_{len} = norm(theta); margin = 2 / w_{len}$

[labels **negLoss** yHatScores] = **predict**(SVM, X);

dist2DB = 1-Y'.* negLoss(:, 2)' $\% = 1 - v(\theta^{T}X + \theta_{0})$

slack = max(zeros(1, length(dist2DB)), dist2DB);

Example for Non-Zero Slack & /xi/

- $slack_i = max(0, (1 y_i \times w^Tx_i) = max(0, dist_to_bound) \ge 0$
 - $dist_to_bound = 1 y \times negLoss(:, 2)'$ "negLoss" from predict(...) = w^TX .
 - $\xi_i = 0$ if data is on right side of its class.
 - otherwise $\xi_i > 0$.

