Medical Image Processing for Interventional Applications

Super-Resolution: ML Estimation

Online Course – Unit 22 Andreas Maier, Thomas Köhler, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Super-Resolution as an Inverse Problem

Maximum Likelihood Estimation

Bayesian Formulation

Maximum Likelihood Estimation

Numerical Optimization

Summary

Take Home Messages

Further Readings

Problem Statement

Given: Set of low-resolution frames given as continuous functions (irradiance light fields)

$$y^{(1)}(u), \ldots, y^{(K)}(u),$$

where $\boldsymbol{u} \in \mathbb{R}^2$ (pixel grid)

We want to reconstruct a high-resolution image $x(\mathbf{u})$ that generated these frames according to:

$$y^{(k)}(u) = W^{(k)}\{x(u)\}, \quad \text{for all } k = 1, ..., K,$$

where $\mathcal{W}^{(k)}\{\cdot\}$ is the (frame-wise) image formation model that:

- models characteristics of the camera optics,
- models spatial sampling on the sensor array.
- \rightarrow We investigate different approaches to model and solve this inverse problem.

Image Formation Model

Mathematical description of the image formation process:

Given an ideal image x(u), $u \in \mathbb{R}^2$, as continuous function, we can model the formation of a low-resolution image $y^{(k)}(u)$:

$$y^{(k)}(\boldsymbol{u}) = \mathcal{D}\left\{\mathcal{M}^{(k)}\left\{x(\boldsymbol{u})\right\} * h^{(k)}(\boldsymbol{u})\right\} + \varepsilon(\boldsymbol{u}).$$

 $\mathfrak{D}\{\cdot\}$ and $\mathfrak{M}^{(k)}\{\cdot\}$: sampling and motion operators

 $h^{(k)}(\mathbf{u})$: space invariant point spread function (PSF)

 $\varepsilon(\mathbf{u})$: additive noise

Figure 1: Steps of the image formation from an ideal image to a low-resolution output

Image Formation Model

Discretization of the continuous model:

• We need to discretize the image formation model to employ it for digital super-resolution algorithms:

$$\mathbf{y}^{(k)} = \mathbf{W}^{(k)} \mathbf{x} + \boldsymbol{\varepsilon}^{(k)}.$$

Image formation modeled by matrix/vector operations:

 \boldsymbol{x} : high-resolution image $\boldsymbol{x} \in \mathbb{R}^N$,

 $\mathbf{y}^{(k)}$: k-th low-resolution frame $\mathbf{y}^{(k)} \in \mathbb{R}^{M}$ where M < N,

 $\mathbf{W}^{(k)}$: system matrix of k-th frame to model motion, PSF and downsampling.

Anatomy of the System Matrix

Definition of the matrix: The system matrix models the mapping from \mathbf{x} to $\mathbf{y}^{(k)}$:

$$W_{mn}^{(k)} = h(\mathbf{v}_n - \mathbf{u}_m'),$$

where

 $h(\mathbf{u})$: camera PSF as space and time invariant kernel,

 \mathbf{v}_n : coordinates of *n*-th pixel in \mathbf{x} ,

 \mathbf{u}_m' : coordinates of *m*-th pixel in **y** warped to **x**.

The elements are normalized according to:

$$\sum_{n} W_{mn}^{(k)} = 1.$$

Example: Isotropic Gaussian kernel of width σ_{PSF}

$$h(\mathbf{u}) = \exp\left(-\frac{||\mathbf{u}||_2^2}{2\sigma_{\mathsf{PSF}}^2}\right)$$

Anatomy of the System Matrix

Properties and practical considerations:

- The system matrix $\mathbf{W}^{(k)}$ consists of:
 - *N* columns, where *N* denotes the number of high-resolution pixels,
 - *M* rows, where *M* is the number of low-resolution pixels.
 - \longrightarrow This is infeasible to store for larger instances (e.g., $N=1024^2$ and $M=512^2$).
- For a practical computation, we approximate $\mathbf{W}^{(k)}$ as sparse matrix by assuming a narrow kernel $h(\mathbf{u})$:

$$W_{mn}^{(k)} := 0$$
 if $||\mathbf{v}_n - \mathbf{u}'_m||_2 > d_{max}$,

e.g., $d_{max} = 3\sigma$ for isotropic Gaussian PSF.

Topics

Super-Resolution as an Inverse Problem

Maximum Likelihood Estimation

Bayesian Formulation Maximum Likelihood Estimation **Numerical Optimization**

Summary

Take Home Messages Further Readings

Bayesian Formulation of Multi-Frame Super-Resolution

Definitions and nomenclature:

Let us assign probability distributions to the quantities of the image formation model:

- We model a high-resolution image with a prior distribution $\mathbf{x} \sim p(\mathbf{x})$.
- Similarly, we model a low-resolution image as random variable $\mathbf{y}^{(k)} \sim p(\mathbf{y}^{(k)})$.

According to Bayes rule we obtain the posterior distribution:

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{x} | \mathbf{y}^{(1)} \dots \mathbf{y}^{(K)}) = \frac{p(\mathbf{x}) \cdot p(\mathbf{y}^{(1)} \dots \mathbf{y}^{(K)} | \mathbf{x})}{p(\mathbf{y}^{(1)} \dots \mathbf{y}^{(K)})} = \frac{p(\mathbf{x}) \cdot p(\mathbf{y} | \mathbf{x})}{p(\mathbf{y})}$$

under the assumption of independent and identically distributed (i.i.d.) observations y.

Maximum Likelihood Estimation

Derivation of the log-likelihood:

- For maximum likelihood (ML) estimation, x is assumed to be uniformly distributed (no prior available).
- The negative log-likelihood under this assumption is given by:

$$L(\mathbf{x}, \mathbf{y}^{(1)} \dots \mathbf{y}^{(K)}) = -\log p(\mathbf{y}^{(1)} \dots \mathbf{y}^{(K)} | \mathbf{x}).$$

 $p(\mathbf{y}^{(1)}...\mathbf{y}^{(K)}|\mathbf{x})$ is referred to as the Bayesian observation model.

Reconstruct x that explains y best:

$$\hat{\mathbf{x}}_{ML} = \underset{\mathbf{x}}{\operatorname{arg\,max}} p(\mathbf{y} | \mathbf{x}) = \underset{\mathbf{x}}{\operatorname{arg\,min}} L(\mathbf{x}, \mathbf{y}^{(1)} \dots \mathbf{y}^{(K)}).$$

Maximum Likelihood Estimation

Definition of the observation model:

Let $\varepsilon \sim N(0, \sigma^2 I)$ be spatially uncorrelated, additive Gaussian noise:

$$p(\mathbf{y}^{(k)}|\mathbf{x}) = \left(\frac{1}{2\pi\sigma}\right)^{\frac{M}{2}} \exp\left(-\frac{\left|\left|\mathbf{y}^{(k)} - \mathbf{W}^{(k)}\mathbf{x}\right|\right|_{2}^{2}}{2\sigma^{2}}\right).$$

Using the observation model $p(\mathbf{y}^{(k)}|\mathbf{x})$, ML estimation is equivalent to the energy minimization:

$$\hat{\mathbf{x}}_{ML} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \sum_{k=1}^{K} \left| \left| \mathbf{y}^{(k)} - \mathbf{W}^{(k)} \mathbf{x} \right| \right|_{2}^{2} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \left| \left| \mathbf{y} - \mathbf{W} \mathbf{x} \right| \right|_{2}^{2}.$$

Numerical Optimization

Optimization of the log-likelihood:

• Closed-form solution: Solve for $\hat{\mathbf{x}}_{ML}$ using the pseudoinverse \mathbf{W}^+ :

$$\hat{\mathbf{x}}_{ML} = \mathbf{W}^{+}\mathbf{y}$$
.

For a large system W, it is not feasible to compute W^+ directly.

- Iterative numerical optimization to determine $\hat{\mathbf{x}}_{ML}$ from an initial guess \mathbf{x}^0 :
 - Gradient descent iterations: $\mathbf{x}^{t+1} = \mathbf{x}^t + \alpha^t \cdot \mathbf{p}^t$
 - Calculation of the search direction p^t according to steepest descent:

$$\boldsymbol{p}^t = \nabla_{\boldsymbol{x}} ||\mathbf{y} - \mathbf{W}\mathbf{x}||_2^2 = -2 \boldsymbol{W}^{\top} (\mathbf{y} - \mathbf{W}\mathbf{x})$$

- \longrightarrow Different strategies available to compute \boldsymbol{p}^t
- Calculation of α^t by line search or use of constant step size ($\alpha^t = \alpha$)

Topics

Super-Resolution as an Inverse Problem

Maximum Likelihood Estimation Bayesian Formulation Maximum Likelihood Estimation

Numerical Optimization

Summary

Take Home Messages Further Readings

Take Home Messages

- The multiframe super-resolution problem can be stated as an inverse problem and yields a system matrix after discretization of the image formation model.
- The system matrix is normally quite large, so that sparsity assumptions are made.
- One possibility to solve the inverse problem is maximum likelihood estimation where high- and low-resolution images are regarded as probability distributions.

Further Readings

Theory of image super-resolution (books and review articles):

- Hayit Greenspan. "Super-Resolution in Medical Imaging". In: *The Computer Journal* 52.1 (Feb. 2008), pp. 43–63. DOI: 10.1093/comjnl/bxm075
- Peyman Milanfar, ed. Super-Resolution Imaging. Digital Imaging and Computer Vision. CRC Press, 2011
- Sina Farsiu et al. "Advances and Challenges in Super-Resolution". In: *International Journal of Imaging Systems and Technology* 14.2 (Aug. 2004), pp. 47–57. DOI: 10.1002/ima.20007
- Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. "Super-Resolution Image Reconstruction: A Technical Overview". In: *IEEE Signal Processing Magazine* 20.3 (May 2003), pp. 21–36. DOI: 10.1109/MSP.2003.1203207

ML/MAP super-resolution:

- Lyndsey C. Pickup. "Machine Learning in Multi-frame Image Super-resolution". PhD Thesis. Robotics Research Group, University of Oxford, 2007
- Michael Elad and Arie Feuer. "Restoration of a Single Superresolution Image from Several Blurred, Noisy, and Undersampled Measured Images". In: *IEEE Transactions on Image Processing* 6.12 (Dec. 1997), pp. 1646–1658. DOI: 10.1109/83.650118