Files - projet

Une grande surface possède n caisses. On choisit une unité de temps arbitraire (le tour) et on décide que lorsqu'un client passe à la caisse, cela prend un temps aléatoire compris entre 1 et n unités de temps.

À chaque unité de temps, un client arrive aux caisses.

On commence la simulation avec n clients qui arrivent.

On aimerait simuler le temps d'attente aux caisses et évaluer le temps d'attente moyen par client.

Avec une seule file

On décide qu'une seule file existe : les clients attendent dans la file et dès qu'une caisse se libère, le premier client dans la file est reçu.

Simulation

Voici un début de simulation avec n=3 caisses

Initialisation

L'heure est 00.

Puisqu'il y a 3 caisses, on place 3 clients dans la file (les carrés verts). Pour l'instant personne n'a attendu donc le total des temps d'attente est **00**.

Les trois caisses sont libres : elles sont bleues, avec un temps d'attente de zéro.

Première itération

L'horloge a fait un tour.

Les 3 clients sont passés en caisse : les deux dernières prendront 3 tours pour traiter les achats de son client, la première 2 tours.

Un nouveau client se présente et attend.

Deuxième itération

L'horloge a fait un tour.

Un nouveau client arrive dans la file.

Il est obligé d'attendre lui aussi. Pour l'instant le temps d'attente total n'est pas actualisé : on attend qu'un client soit servi avant de comptabiliser son temps d'attente.

Troisième itération

L'horloge a fait un tour.

Le client qui attendait depuis 2 tours est reçu, on actualise le temps d'attente total. Il passe dans la première caisse. Au total, 4 clients ont été reçus, avec un temps d'attente total de 2 tours, donc un temps d'attente moyen de 0.5 tour par client.

Un nouveau client se présente dans la file.

Quatrième itération

L'horloge a fait un tour.

Les 2 clients précédents sont servis, on ajoute leurs temps d'attente, un nouveau client arrive, et cætera.

Conseils pour démarrer

File

Pour commencer on peut créer une file file_attente et une variable tour valant 0.

Ensuite, pour se rappeler de l'heure d'arrivée d'un client il suffit d'enfiler son heure d'arrivée, c'est-à-dire la valeur de la variable **tour**.

On peut définir une constante NB_CAISSES et mettre en file NB_CAISSE clients.

Caisses

On peut créer une classe Caisse qui va fonctionner un peu comme la classe Ball déjà rencontrée, avec

- Une variable de classe nb_caisses valant 0 au départ;
- Une variable de classe caisses de type list, valant [] au départ, pour stocker les différentes caisses;
- Une variable de classe nb_clients_servis valant 0;
- Une méthode __init__ qui crée des instances de classes avec (au minimum) les attributs suivants :
 - self.file, la file d'attente, passée en paramètre dans les constructeur (ainsi dans les prochaines partie, chaque caisse pourra avoir sa propre file);
 - self.temps_attente, un int mesurant le nombre de tours avant que la caisse soit libre;

Quand le constructeur est appelé, Caisse.nb_caisses augmente de 1 et l'instance (self) est ajoutée à la liste Caisse.caisses.

- Une méthode sert_client qui
 - commence par enlever un client de sa file : alors on récupère son heure d'arrivée (notons la heure) dans
 la file et tour-heure nous donne son temps d'attente, qu'on peut ajouter à la variable Caisse . temps_attente_to
 - comme on sert un nouveau client, on peut incrémenter Caisse.nb_clients_servis

- le temps passé à s'occuper du client est randint(1,NB_CAISSES) et devient la nouvelle valeur de l'attribut temps_attente de la caisse.
- Une méthode actualise qui sera plus tard appelée une fois par tour et :
 - enlèvera 1 au temps d'attente de la caisse;
 - si elle est libre, servira un client (s'il y en a dans la file);

Boucle principale

On pourra créer NB_CAISSES caisses, créer une constante NB_TOURS et boucler sur la variable tour : tant qu'on a pas atteint NB_TOURS, on

- fait arriver un client dans la file;
- parcourt la liste Caisse.caisses;
- actualise chaque caisse;
- termine en ajoutant 1 à tour

Fin du programme

C'est à vous de jouer, vous avez tout pour calculer le temps moyen d'attente par client servi.

Plusieurs files, au hasard

Adapter le programme précédent avec une file par caisse, avec 1 client par file au départ, et les suivants arrivent en choisissant une file au hasard sans en changer.

Plusieurs files, au hasard

Adapter le programme précédent avec une file par caisse, avec 1 client par file au départ, et les suivants arrivent en choisissant une caisse libre ou une avec le moins de monde.

Bilan

Dresser le bilan des 3 méthodes.

Bon courage!