Geometry Unit 3: Transversals Bronx Early College Academy

Christopher J. Huson PhD

11 October - 21 October 2022

3.1 Identify transversal angles	11 October
3.2 Transversals problems	12 October
3.3 Triangle sum theorem	13 October
3.4 Parallelograms	14 October
3.5 External angles	17 October
3.6 Transversal situations	18 October
3.7 Parallelogram situations	19 October
3.8 Transversals review	20 October
3.9 Transversals test	21 October

Learning Target: I can name parallel lines transversal angles

HSG.CO.C.9 Prove theorems about lines and angles

3.1 Tuesday 11 October

Do Now: Identify the true statements

- 1. ∠1 ≅ ∠2
- 2. $\angle 2\cong \angle 4$
- 3. $m\angle 1 + m\angle 4 = 180^{\circ}$
- 4. $m\angle 2 + m\angle 3 = 90^{\circ}$

Lesson: Parallel lines crossed by a transverse line, horizontal and vertical directions

New terminology for parallel lines

Parallel lines are in the same plane and never intersect

Parallel lines $j \parallel k$, mark with arrows

Transversal Line l, crosses parallel lines

Interior Inside (\angle s)

Exterior Outside (\angle s)

Same side On the left or right of lAlternate Across l from each other

Horizontal Sideways direction

Vertical Up and down direction

New terminology for parallel lines

Parallel lines are in the same plane and never intersect

Parallel lines $j \parallel k$, mark with arrows

Transversal Line l, crosses parallel lines

Interior Inside (\angle s)

Exterior Outside (\angle s)

Same side On the left or right of lAlternate Across l from each other

Horizontal Sideways direction

Vertical Up and down direction

We often number the angles this way.

New theorems for parallel lines

Corresponding Having the same position. e.g. $\angle 2$ and $\angle 6$ Postulate Corresponding $\angle s$ of $\|$ lines are congruent, $\angle 2\cong \angle 6$

- 1. Alternate interior \angle s are \cong \angle 4 \cong \angle 5
- Same-side interior ∠s are supplementary
 m∠3 + m∠5 = 180
- 3. Alternate exterior \angle s are \cong $\angle 1 \cong \angle 8$

There are only two angle measures, the acute \angle s and the obtuse \angle s And they add to 180° , i.e. supplementary

Apply the theorems of parallel lines with a transversal

Given two parallel lines and a transversal, with m $\angle 6=70^\circ.$ Write down the value of each angle measure.

1.
$$m \angle 1 =$$

2.
$$m\angle 2 =$$

3.
$$m \angle 3 =$$

4.
$$m \angle 4 =$$

5.
$$m \angle 5 =$$

6.
$$m\angle 6 = 70^{\circ}$$

7.
$$m \angle 7 =$$

8.
$$m\angle 8 =$$

Apply the theorems of parallel lines with a transversal

Given two parallel lines and a transversal, with m $\angle 6=70^\circ.$ Write down the value of each angle measure.

1.
$$m \angle 1 =$$

2.
$$m\angle 2 =$$

3.
$$m \angle 3 =$$

4.
$$m \angle 4 =$$

5.
$$m \angle 5 =$$

6.
$$m\angle 6 = 70^{\circ}$$

7.
$$m \angle 7 =$$

8.
$$m \angle 8 =$$

Solution

Extension: Ratios are fractions

We often state proportions as ratios

Example: Divide a distance into equal parts, i.e.

1:1

We say "one to one", or "in a one to one ratio." A rectangle's length to width ratio is two to one. 2:1

Learning Target: I can calculate transversal angles

HSG.CO.C.9 Prove theorems about lines and angles 3.2 Wednesday 12 October

Do Now: Identify each angle

- 1. Opposite ∠4
- 2. Corresponding to $\angle 3$

- 5. Alternate interior to $\sqrt{4}$

Alternate exterior to ∠8 4. Same side interior to $\angle 5$

Lesson: Solve for angle measures

Parallel lines intersected by a transversal. Find x.

Alternate interior angles measure 100° and 12x + 16, as shown.

Are the angles congruent or supplementary?

Parallel lines intersected by a transversal. Find x.

Parallel lines do not have to be horizontal.

State the postulate or theorem you are employing.

Parallel lines intersected by a transversal. Find x.

Given: Same side interior angles measure 115° and 15x - 10.

Remember the check.

Extension: Partitioning a segment or angle in a ratio

Point \overrightarrow{B} divides \overrightarrow{AC} in a 2 : 1 ratio, i.e. AB = 2BC Ray \overrightarrow{BD} divides $\angle ABC$ in a 2 : 1 ratio. Find x.

HSG.CO.C.9 Prove theorems about lines and angles

3.3 Thursday 13 October

Do Now:

- Given two parallel lines, two transversals
- 2. Find *x*, *y*
- What relationship are you using? (e.g. vertical angles, same-side exterior angles, alternate interior angles)

Lesson: The sum of a triangle's interior angles is 180°

Triangle sum theorem

Triangle sum theorem

Given parallel lines $k \parallel I$, $\triangle ABC$, $m \angle B = 65^{\circ}$, $m \angle C = 55^{\circ}$.

Find $m \angle BAC = x$.

Interior The three angles that are *inside* the triangle Theorem The sum of the measures of the three internal angles of a triangle is 180°

Mark 3 missing angle measures to make a straight angle

An *auxilary* line I is drawn through A, parallel to triangle base \overline{BC} . Find m/BAC.

Auxilary An extra line added to a diagram

Linear triple Three adjacent angles that make a straight line

Mark 3 missing angle measures to make a straight angle

An *auxilary* line I is drawn through A, parallel to triangle base \overline{BC} . Find m/BAC.

$$43 + x + 72 = 180$$

 $x = 60^{\circ}$

Theorem:
$$m\angle A + m\angle B + m\angle C = 180^{\circ}$$
 for any triangle

Auxilary An extra line added to a diagram

Linear triple Three adjacent angles that make a straight line

Find the missing angle measure

Given $\triangle ABC$, $m\angle A=82^{\circ}$, $m\angle C=59^{\circ}$. Find $m\angle B$.

Triangle sum theorem (180°)

Check your notes

Auxilary line An extra line added to a diagram
Linear triple Three adjacent angles that make a straight line
Interior angles The three angles that are inside the triangle
Theorem The sum of a triangle's angles is 180°

$$m\angle A + m\angle B + m\angle C = 180^{\circ}$$

Extension: Euclid's fifth postulate (the Parallel Postulate)

Given a line and a point, there exists one line through the point parallel to the line.

Euclid Greek author of the most successful math book of all time, *The Elements*

Postulate A statement we assume is true as the basis of all further mathematical theorems and proofs

Non-Euclidean geometries Alternative mathematics not using the Parallel Postulate. Lobachevsky (1826 Russian), Bolyai (1832 Hungarian), Einstein (1916 German)

Learning Target: I can find the angles of a parallelogram

HSG.CO.C.9 Prove theorems about lines and angles 3.4 Friday 14 October

Do Now: Two parallel lines intersect a transversal. Given corresponding angles $m\angle 1 = 4.4x - 63$ and $m\angle 2 = 2.8x + 9$.

Find the measure of $\sqrt{1}$.

Learning Target: I can find the angles of a parallelogram

HSG.CO.C.9 Prove theorems about lines and angles

3.4 Friday 14 October

Do Now: Two parallel lines intersect a transversal. Given corresponding angles $m\angle 1 = 4.4x - 63$ and $m\angle 2 = 2.8x + 9$.

Find the measure of $\angle 1$.

Corresponding angles are \cong

$$4.4x - 63 = 2.8x + 9$$
$$1.6x = 72$$
$$x = 45$$

$$m\angle 1 = 4.4(45) - 63 = 135^{\circ}$$

Check:

$$m\angle 2 = 2.8(45) + 9 = 135$$

A parallelogram's opposite sides are parallel and congruent

Consecutive angles are supplementary. Opposite angles are congruent.

Find the other angle measures.

Learning Target: I can calculate external triangle angles

HSG.CO.C.9 Prove theorems about lines and angles

3.5 Monday 17 October

Do Now:

- 1. Given two parallel lines, two transversals
- 2. Find *x*, *y*
- What relationship are you using? (e.g. vertical angles, same-side exterior angles, alternate interior angles, etc.)

Lesson: Triangle external angle theorem

Given parallel lines $\overrightarrow{AB} \parallel \overrightarrow{CDE}$ with $\overrightarrow{AC} \cong \overrightarrow{CD}$. If $m \angle BAD = 80$ find $m \angle ACD$.

HSG.CO.C.9 Prove theorems about lines and angles 3.6 Tuesday 18 October

Given two parallel lines and a transversal,

$$m\angle 4 = 3x$$
 and $m\angle 5 = x + 70$.

Write an equation, then solve for x.

3.6 Transversal situations

Learning Target: I can calculate angles in parallelograms

HSG.CO.C.9 Prove theorems about lines and angles 3.7 Wednesday 19 October

Do Now:

- 1. Given a triangle, shown
- 2. Find angle measures x, y
- 3. What relationships are you using? (e.g. vertical angles, same-side exterior angles, alternate interior angles)

Lesson: Triangle's exterior angles

HSG.CO.C.9 Prove theorems about lines and angles 3.8 Thursday 20 October

Two parallel lines intersect a second set of parallel lines. Given $m\angle 2 = 2.8x + 9$ and $m\angle 4 = 4.4x - 63$, find the measure of $\angle 1$.

Learning Target: I can review with my classmates

HSG.CO.C.9 Prove theorems about lines and angles 3.9 Friday 21 October

21 October