CKCC Gene Expression And Their 95th Percentiles

Liam McKay
Treehouse Undergraduate Research

In pediatric patients: we look for genes highly expressed

Slide Numbers

- We cut off at 95 Percentile of gene expression within the sample
 - What? the genes with highest expression 5% in a sample
 - Why? It's a conservative measure with little doubt

Problems?

- Are we losing data?
- Can we reduce the stringency of 95 Percentile?

What does a single patient's gene expression look like?

Histogram of Sample TH01_0054_S01; binwidth = 0.1

What does the 95th pctl look like across all patients?

These are percentile cutoff values!

Bin = 0.1log2(TPM+1)

Units: log2(TPM+1)

Skew is More Apparent in the 95th Pctl than 75th Pctl

95th and 75th Percentiles of All Samples

Low vs. High 95th Percentiles

- Is the quality of the patient genes expression related to its 95th pctl?
- Is there something **characteristic** of a sample having high gene expression **other than the 95th pctl**

Time-out!

- What is causing this low p95?
- Is low p95 correlated to a major specific distribution change
- There is no major systematic differences between high and low p95 histogram (yet)

Where are we going?

- We need to find other ways to investigate low p95

How many unexpressed genes do samples have?

On average:

- ~50% of genes in each sample were unexpressed

- There are differences in number of genes expressed in histograms
- Are fewer genes expressed in samples with low 95th pctl
- Specifically, are unexpressed gene counts higher in samples with a low 95th percentile?

3. Across the cohort, the number of expressed genes **not correlated** to each patients' 95th pctl

- 8.8% correlation

Best fit line shows flat correlation, however

We cannot conclude anything

Number of Expressed Genes (thousands)

However, TH01*[RiboD] samples have ~50% correlation between p95 and # of Expressed Genes

ds)

Nur

Blue = TH01
Red = everything else

- There is more correlation in TH01 than the rest
- 33.4% Not TH01 correlation
- 47.6% TH01 correlation

Substantial correlations are Present in the Data

From Each CKCC partner

- TH02 has the highest correlation
- TH01 47.56%
- TH02 57.11%
- TH03 53.68%
- TH06 41.39%

Number of Expressed Genes (thousands)

Conclusion

- There is a correlation between the **number of expressed genes** in a sample and **its p95**
- But only apparent in samples that were prepared and sequenced by the same group

Next

 We decided to investigate UMEND reads and p95 to find what else is causing low p95

4. Across the cohort, the number of UMEND reads is **not correlated** to each patients' 95th pctl

However, TH01*[RiboD] samples have ~70%

correlation between p95 and UMEND

- riboD samples especially
- RiboD has70.1%correlation
- PolyA-S 27.1%

95th Percentile Per Sample

95th Percentile vs. UMEND Reads Per Sample

Again, Substantial correlations are Present in the Data From Each CKCC partner

- Separation by sample center
- Shows TH01 has highest correlation
- TH01 70.1%
- TH02 55.38%
- TH03 32.88%

- 1. Plot every patient's expression values (histograms)
 - a. There was half of the genes expressed (we assumed other half was unexpressed)

Histogram of Sample TH01_0054_S01; binwidth = 0.1

- 2. Plot the distribution of 95pctl per sample
 - a. There are high and low 95th pctls
 - b. Why? because of UMEND / # of Expressed Genes

- 3. Plot # of genes expressed vs. 95th pctl per sample
 - a. Looking at total ungrouped data there is no correlation
 - b. Each sample center = positive correlation p95/expression count (TH01: 47.6%)

- 4. Plot UMEND count vs. 95th pctl pan-sample (scatter)
 - a. Looking at total ungrouped data there is no correlation
 - b. Each sample center = positive correlation p95/UMENDread (TH01: 70.1%)

What does it all mean?

- There is a systematic difference between low p95 and high p95 using other investigations than just sample 95th percentile

- UMEND, and number of expressed genes are correlated to the 95th percentile
- More robust, less stringent statements about a sample's p95
- However, this systematic difference should be investigated with significance.
 (p<0.0005)

The End! Questions?

Supplemental

RiboD vs. PolyA Selection

- All rna is PolyA or non PolyA
 - PolyA has no ribosomal
 - Non PolyA has ribosomal
- RiboD → sequence more of the total RNA than polyA

mRNA Non-polyA RNA PolyA RNA

Non poly a doesn't need to make a ton of copies for g because its not going to be expressed Poly A 95th percentile is therefore higher than non Poly A

Ribonuclease Depletion [RiboD]
Everything Not rRNA
mRNA, Non-PolyA-rRNA, polyA

Poly-A Selection [PolyA]
polyA

Ribo-depletion and PolyA-selection 95th Percentile Values

5. PolyA > RiboD ⁶ rel. p95

Welch Two Sample t-test

- t = -5.3986,
- df = 24.118,
- p-value =
- 1.496e-05

alternative hypothesis:

true difference in means is not equal to 0
95 percent confidence interval:
-1.2779641 -0.5712024

-1.2//9641 -0.5/120 sample estimates: mean of x mean of y

4.374965 5.299548

Ribo-depletion and PolyA-selection Measured Expression

6. Ribo D > PolyA rel. Exp Genes

- Box Plot Ribo-/- | PolyA +
- t = 5.121, df = 49.389,
- p-value = 5.016e-06
- Therefore, true difference in means is not equal to 0
- 95 percent confidence interval: 1352.013 3097.878

```
sample estimates:
   mean of x 30121.91
   mean of y 27896.97
```

Upper Normalized Measured Read Counts vs. Upper Expected Read Counts

7. p95 expected count vs. p95 TPM

- Actual Count
- Expected count is not read length normalized, it's what we expect to see
- TPM is read length normalized

95th Pctl Expected Count of Samples vs. 95th Pctl TPM of Samples

RiboD has less variance of expected and actual read count

- RiboD cor = 0.7387
- PolyA cor = 0.4999

RiboD has the least variance of high expected counts vs TPM

 RiboD has the least variance even when comparing against other sample centers

8. Let's analyze by Gene!

- Method:

- Take most variably expressed genes
- Compare the same in each sample.
- Variance = SD²

Standard Deviation

$$s_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

 η = The number of data points

 $ar{x}=$ The mean of the x_i

 x_i = Each of the values of the data

Variance of Genes Calculations

- Top 5% of the data variates from the mean by 2.56
- the overall mean is 1.019 log2(TPM+1) pan-sample
- average standard deviation of genes
 differing from the mean is 0.56

Gene	variation
GFAP	28.6
COL1A1	20.6
TMSB4XP6	19.5
COL3A1	18.7
COL1A2	17.7
SNORA73A	16.9
AP003041.1	16.4
SNORD13	15.9
SNORD3A	15.7
AL162151.3	15.6

Highest 22 p95s | maxVarGene: MT-RNR1 | Distance From Mean: 15.407 TH01 0063 S01 TH03 0004 S03 TH03 0004 S04 TH03 0016 S01 TH03 0025 S02 20 -15 -10 -5 -TH03 0104 S01 TH03_0107_S01 TH03_0115_S01 TH03_0117_S01 TH03_0143_S01 20 -15 -10 -5 -TH03_0143_S02 TH03_0148_S01 TH03_0159_S01 TH03_0159_S02 TH06_0610_S01 Gene Expression 20 -15 -10 -TH06 0620 S01 TH06 0626 S01 TH06 0627 S01 TH06 0622 S01 TH06 0633 S01 20 -15 -10 -TH06 0645 S01 TH06 0649 S01 20 -15 -10 -

← Samples with High gene expr variance

22 Highest 95 pctls

31

Lowest 22 p95s | maxVarGene: MT-RNR1 | Distance From Mean: 15.407

← Samples with High gene expr variance

22 Lowest 95th Pctls

- Slightly lower log2(TPM+1) than highest 22 95th pctls

Highest Gene Variance pan-sample

 Non TH01 have mostly square distributions

142 samples plotted

No Difference in low p95 and high p95 genes with high variability

Results full

- 1. Plot every patient's expression values (hists)
 - a. There was half of the genes expressed (we assumed other half was unexpressed)
- 2. Plot the distribution of 95pctl per sample (hist)
 - a. There are high and low 95th pctls
 - b. Why? because of RiboD / PolyA difference
- 3. Plot gene expression vs. 95th pctl per sample (scatter)
 - a. expression count doesn't affect patients 95th pctl pan-sample and pan-center
 - b. TH01 sample center = positive correlation p95/unexpression count (47.6%)
- 4. Plot UMEND count vs. 95th pctl pan-sample (scatter)
 - a. UMEND read doesn't affect p95 pan-sample and pan-center
 - b. TH01 sample center = positive correlation p95/UMENDread (70.1%)
- 5. Method RiboD vs. PolyA 95th pctl (boxplot)
 - a. RiboD 95th Pctl pan-sample < PolyA 95th Pctl pan-sample

Results full

- 6. Method RiboD vs. PolyA Expression (boxplot)
 - a. RiboD Expressed Genes > PolyA Expressed Genes
- 7. Plot 95th pctl of expected_count vs. 95th pctl of TPM (scatter)
 - a. RiboD has less variance comparing actual count to depth of sequencing
- 8. High variance genes (hists)
 - a. Samples with high gene variance have similar distributions no matter their 95th pctl

Code to calculate Variance and Mean

```
mean(dfGeneMean$mean)
                                                          quantile(dfGeneVar$variation, 0.95)
# the overall mean is 1.019 sample
                                                          # > 95% of the data variates from the mean by 2.56
dfGeneVar <- outlierResults %>%
      group_by(Gene) %>%
       summarize(variation = var(sample)) %>%
                                                          geneList <- dfGeneVar %>% filter(variation >
       arrange(desc(variation))
                                                          quantile(dfGeneVar$variation, 0.95))
mean(dfGeneVar$variation) # 0.56
                                                          # get names of genes p95 of variation and up
# so most genes differ from the norm on average by 0.56
sd(dfGeneVar$variation) # standard deviation = 1.15
                                                          dfSamples <- outlierResults %>% group by(sampleID) %>% filter(Gene
                                                          %in% geneList$Gene)
summary(dfGeneVar)
                                                                 # match names to all of their th01 th02 etc...
      Gene
                      variation
 # Length:58581
                    Min. : 0.000000
 # Class :character
                    1st Ou.: 0.001579
                    Median: 0.069611
 # Mode :character
                    Mean : 0.565726
                    3rd Ou.: 0.707318
                           :28.579563
                    Max.
```

Reference In R Code

Ribo-depletion and PolyA-selection Measured Expression

TPM increases, p95 doesn't change

Same correlation

RiboD has more expressed genes

TH03 has the Most correlation

TH03- low expression, high 95th pctls

More UMEND reads = More Expressed Genes

- More UMEND = more expressedGenes per sample
- 72.7% Correlation

Ideas (old)

- 22 best/worst counts histogram for expected_count
- Get back values from ggplot
- Get values its going to plot
- Pick max y val greater than 2 log2(TPM+1)
- Find max using calculus with density points

43

95th Percentiles of All Samples

Normalized Density Curve(Sum All y)= 1


```
m <- ggplot(percentileOfEachSampleDf, aes(p95))</pre>
m <- m + geom density()sum(p$data[[1]]$y)</pre>
# sum of data is 173.9702
# I want to divide the points of the density
p <- print(m)</pre>
head(p$data[[1]]$y)
by the sum of all to get a normalized curve that adds
to one
normalized <- data.frame(p$data[[1]]$y,p$data[[1]]$x)</pre>
sum(p$data[[1]]$y/sum(p$data[[1]]$y))
# this sum is 1
ggplot(normalized, aes(p$data[[1]]$x,
p$data[[1]]$y/sum(p$data[[1]]$y))) + geom line() +
  ggtitle("Normalized Density Curve Sum All y = 1") +
  ylab("Density of Observations") +
  xlab("log2(TPM+1)")
```

```
cor(dfScatter$n,dfScatter$p95)
                                            Correlation of 1
# 0.08755389
                                           5-
# about 8.8% correlation
                                           4-
# REFERENCE
                                        > 3-
x \leftarrow seq(1,5)
y <- x
df = data.frame(x,y)
                                                     х
cor(x,y)
ggplot(df, aes(x,y)) + geom_point() +
ggtitle("Correlation of 1")
# correlation of 1 (when x = y)
```

Cohorts Used

- Ckcc rsem genes → Raw TPM values of each sample
- Ckcc comp4.3 tert8 → Log₂(TPM+1) values of each sample

- TPM
 - Normalizes all gene expression from RNA seq reads
 - Transcripts Per Kilobase Million
 - Divide the read counts by length of each gene in Kb
 - Add all of these up and divide by 1,000,000 (scaling factor)

Sum of TPM Values

```
sum TPMDf <- rawTPMDf %>%
  group by(sampleID) %>%
  summarise(sum = sum(TPM))
  sampleID
                                      sum
  <chr>>
                                    <dh1>
1 TH01 0053 S01 rsem genes.results 1000000
2 TH01 0054 S01 rsem genes.results 1000000
3 TH01 0055 S01 rsem genes.results 1000000
4 TH01 0061 S01 rsem genes.results 999998
5 TH01 0062 S01 rsem genes.results 1000000
6 TH01 0063 S01 rsem genes.results 1000000
7 TH01 0064 S01 rsem genes.results 1000000
8 TH01 0069 S01 rsem genes.results 999998
9 TH01 0120 S01 rsem genes.results 999999
10 TH01 0121 S01 rsem genes.results 1000001
# ... with 136 more rows
min(sum TPMDf$sum)
 [1] 999997.7
max(sum TPMDf$sum)
 [1] 1000001
```

- Sum of all TPM values for each sample are 1,000,000 ± 1 TPM