

Space Weather @ B.USOC

13th European Space Weather Week November 14-18, Oostende, Belgium

Belgian User Support & Operations Centre

- Located in Brussels
- 2016: team of
 - 11 Operation Engineers,
 - 6 Ground Controllers

- European experiments in and outside Columbus, the European Module of the International Space Station, are operated from USOCs
- Link between the scientists and the ISS "world"
- Prepare and perform payload operations.
- Monitor, control and troubleshoot.
- Provide data access to user in R/T or near R/T.
- Archive/Process data received.

spaceapplications

International Space Station

Altitude: ~400km

Orbital inclination: 51.6°

Orbital period: 92.65 minutes

• Typically 6 crew members

spaceappiications

How Space Weather affects International Space Station

Communication

S-Band (2-4GHz) and Ku-Band (12-18GHz) using TDRSS

spaceapplications

TDRSS: Tracking and Data Relay Satellite System

How Space Weather affects International Space Station

Communication

S-Band (2-4GHz) and Ku-Band (12-18GHz) using TDRSS

Vehicle traffic

 Jan 2014: Launch of Orb-1mission delayed by 1 day due to X1-flare and SEP event

How Space Weather affects International Space Station

Communication

- S-Band (2-4GHz) and Ku-Band (12-18GHz) using TDRSS
- Vehicle traffic
 - Jan 2014: Launch of Orb-1mission delayed by 1 day due to X1-flare and SEP event

Payload anomalies

Distribution of single event upsets in 2012 (Verzola, Lagny, & Biswas, AIAA 2014-1722)

How Space Weather affects International Space Station

- Communication
 - S-Band (2-4GHz) and Ku-Band (12-18GHz) using TDRSS
- Vehicle traffic

Jan 2014: Launch of Orb-1mission delayed by 1 day due to X1-flare and

SEP event

- Payload anomalies
- Trajectory Predictions
 - Need for reboosts

TDRSS: Tracking and Data Relay Satellite System

14 Nov 2016

ESWW13

How Space Weather affects International Space Station

Communication

S-Band (2-4GHz) and Ku-Band (12-18GHz) using TDRSS

Vehicle traffic

Jan 2014: Launch of Orb-1mission delayed by 1 day due to X1-flare and

SEP event

Payload anomalies

Trajectory Predictions

Need for reboosts

Astronaut health

- Radiation effects
- Max. radiation dose over entire career: 1Sv

TDRSS: Tracking and Data Relay Satellite System

Crew Radiation Exposure

The Space Radiation Analysis Group (SRAG) at the Johnson Space Center is responsible for ensuring that the radiation exposure received by astronauts remains below established safety limits. SARG provides:

- Radiological support during missions.
- Pre-flight and extra-vehicular activity (EVA) crew exposure projections.
- Evaluation of radiological safety with respect to exposure to isotopes and radiation producing equipment carried on the spacecraft.
- Comprehensive crew exposure modelling capability.
- Radiation instruments to characterize and quantify the radiation environment inside and outside the spacecraft.

Crew radiation exposure

REM Orbital Dose Rate Map (uGy/min) D03-W0094 (S/N 1007)

Radiation
Environment
Monitor Data
(Timepix
instrument
onboard the ISS)

Radiation Event Definition and Warning

- Natural sources of space radiation: trapped particles, Galactic Cosmic Rays, Solar Particle Events
- Solar Particle Event (SPE)
 - Exceed of 10 pfu (>10 MeV) at geosynchronous altitude → alert
 - Previously, alarm levels were based on X-ray flux level >M5
 - Mostly a concern for EVA astronauts
- Energetic SPE
 - Exceed of 1 pfu (>100 MeV) at geosynchronous altitude → contingency
 - particles with sufficient energy to penetrate the ISS modules
- Geomagnetic Storm
 - Major: Kp=6
 - Severe: Kp≥7 → alert
- Warning generated by NOAA/SWPC and predicted time window provided

helspo

pfu: Particle Flux Unit (particles/sr.cm².s) EVA: Extra Vehicle Activity NOAA: National Oceanic and Atmospheric Administration SWPC: Space Weather Prediction Centre

A

spaceapplications

Crew radiation exposure

Crew ionization radiation exposure limits

EXPOSURE PERIOD	blood forming organ (BFO)	<u>Eye</u>	<u>Skin</u>
30 DAYS	0.25 Sv	1.00 Sv	1.50 Sv
ANNUAL	0.50 Sv	2.00 Sv	3.00 Sv

- Passive and Active dosimeters all around the station
- In case of alert:
 - Regular monitoring by Crew and Ground
- In case of contingency crew could be advised to avoid lower shielded areas
- If energetic SPE reached 100 pfu (>100 MeV) level, crew should remain in the higher shielded areas:
 - Service Module Aft of Treadmill
 - Node 2 Crew Quarters
 - US Lab

Spaceapplications

Crew radiation exposure

Actions required for radiation exposure conditions

EXPOSURE STATUS	ACTIONS REQUIRED	
non-restricted (below the action levels)	 Provide routine crew exposure monitoring. Perform EVA exposure management (go/no-go criteria for EVA based on radiation exposure). 	
restricted (EXCEEDED action levels)	 non-restricted PLUS: review EVA schedules and update end of mission exposure projections. consider positive actions to reduce the risk of exceeding the joint exposure limits, such as 1. restricting crew location within ISS 2. limiting EVAs 	
VIOLATION or projected violation of Joint Exposure Limits	restricted PLUS: consider positive actions to reduce the risk of exceeding the joint exposure limits, such as 1. terminating an EVA in progress 2. changing ISS altitude/attitude 3. DEFERRING reboost 4. accelerating crew rotation	

B.USOC Operations – recent missions

- SOLAR
 Spectral Solar Irradiance Measurements
- METERON
 Robotic operations
- Fluid Science Lab
- THOR

Observation of thunderstorms and Transient Luminous Events

ASIM (expected Sep 2017)

Atmosphere Space Interaction Monitor

- Detection of Terrestrial Gamma Ray Flashes and Transient Luminous Events
- Science campaigns for Aurora, Polar Mesospheric Clouds, Aerosols,...

Space Weather and B.USOC operations

SOLAR

- Operational since 2008
- Measure long-term evolution of Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI)
 - → important for climate models
 - → EUV data are input to Total Electron Content models
- One of the instruments is sensitive to the South Atlantic Anomaly
 - →impact on science data; avoid measurements during SAA passage
- Radiation sensitive component causes the anomalous deactivation of the "Analog Input Board" → recovery requires reboot

Space Weather and B.USOC operations

Space Weather and B.USOC Operations

ASIM

One of the ASIM instruments should not be operated over SAA (early

degradation of instrument)

ISS orbit and trajectory

Auroral Oval predictions

A

spaceapplication

Questions?

