Confidence Intervals for Small Sample Means

Dr Tom Ilvento

Department of Food and Resource Economics

Confidence Interval for a Mean

- If σ is known, we use σ in the formula and use a z-value for the confidence interval.
- However, we rarely know the standard deviation of the population
- So I use my sample estimate, give as s.
- But I have a concern with this approach with the mean. I have two estimates
 - The estimate of the mean
 - The estimate of the standard deviation (s), which is used to estimate the standard error

Overview

 We discussed a confidence interval for proportions and means $p_s \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{p_s(1-p_s)}{n}}$

• For the confidence interval we needed

 $\overline{x} \pm Z_{\alpha/2} \frac{s}{\sqrt{n}}$

- An estimator either the sample proportion or the mean
- A sample from which I obtain my estimate
- Knowledge of the sampling distribution of the estimator
- A level or confidence (Confidence Coefficient) and a level of error (alpha)
- As long as the sample size is LARGE!

2

Issues of Normality and Sample Size when using s

- Is it a problem to use the sample estimate of s when σ is not known?
 - If the population is distributed normally, we have less of a problem – the sampling distribution will be normal
 - And if the population is not distributed normally, as long as the sample size is large, the Central Limit Theorem says as the sample size becomes larger, the sampling distribution will start to approach normality
- But what do we do if σ is unknown, and the sample size is small?

4

Relax and have a beer!

- W.S. Gossett worked for Guinness Brewery in Ireland around 1900
- In quality control tests he noticed the problem of using the zdistribution with small samples
- His solution was the t-distribution
- Based on the variable being distributed approximately normal

5

Critical Values of t-Distribution Area in One Tail 0.0500 0.0250 0.0100 Area in One Tail 0.0500 0.0250 0.0100 The t-table 3.078 12.706 4.303 3.182 4.303 3.182 4.303 3.182 4.303 3.182 4.303 3.182 4.303 5.182 4.303 5.182 4.303 6.182 4.303 6.182 31.821 (6.985 4.541 4.54 636 619 12 924 8 8 10 9 12 924 4 12 924 4 12 92 Organized with degrees of freedom as Probabilities in the right tail (α) are the columns Our table has α in two tails as well We substitute the t-value from the table for a z-value in the C.I. Example, 95% C.I., 15 d.f. In the case of a small sample, n < 30. the Central Limit Theorem doesn't hold. In order to do a C.I., a big assumption with a small sample is that the population is distributed 7 approximately normal

The t-distribution

- Similar to the standard normal distribution
- The t-distribution varies with n (sample size) via degrees of freedom
 - df = n-1
- As n gets larger, the t-distribution approximates the z distribution

Critical Values of t-Distribution

3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.356 1.356 1.345 6.314 21.206 21.821 2.920 4.303 6.985 2.355 3.182 4.541 2.132 2.776 3.747 2.015 2.571 3.365 1.895 2.365 2.998 1.805 2.365 2.998 1.803 2.262 2.821 1.812 2.228 2.764 1.756 2.201 2.718 1.757 2.228 2.764 1.775 2.228 2.254

• Here's a Table comparing values of z and t for a 95% C.I.

Sample Size	Z-Value	t-value
10	too small	2.262
20	too small	2.093
30	1.960	2.045
50	1.960	2.010
100	1.960	1.984
500	1.960	1.965
1000	1.960	1.962

6

318.309 22.327 10.215 7.173 5.893 5.208 4.785 4.501 4.297 4.144 4.025 3.930 3.852 3.787

The t-table

- The Confidence Interval based on a tvalue is given below
- The t-value is interpreted like the zvalue
- NOTE: the t-value represents the corresponding value at α/2, which is in the right tail of the curve
- So a t-value for 30 degrees of freedom at the .025 level is 2.042
- This corresponds to a z-value of 1.96
- And is used for a 95% C.I.

$$\bar{x} \pm t_{\alpha/2, n-1 \text{d.f.}} \left(\frac{s}{\sqrt{n}} \right)$$

16	1.337	1.746	2.120		2.921	3.686	4.015
17					2.898		3.965
18	1.330		2.101		2.878	3.610	3.922
19	1.328		2.093				
20	1.325			2.528	2.845		3.850
21	1.323	1.721	2.080				3.819
. 22	1.321	1.717	2.074				3.792
l 23	1.319						3.768
24						3.467	3.745
25	1.316		2.060			3.450	3.725
26	1.315		2.056				3.707
27	1.314		2.052				3.690
28	1.313		2.048		2.763		3.674
29	1.311		2.045				3.659
30	1.310		2.042				3.646
31	1.309	1.696	2.040				3.633
32	1.309	1.694	2.037				3.622
33	1.308	1.692	2.035				
34	1.307	1.691	2.032				
35			2.030				
36			2.028				
37	1.305		2.026	2.431			
38	1.304		2.024				
39	1.304		2.023				
40	1.303		2.021				
45	1.301		2.014				
50	1.299	1.676					
60	1.296	1.671					
70	1.294	1.667	1.994				
80	1.292	1.664	1.990				
90	1.291	1.662	1.987		2.632		3.402
100	1.290	1.660	1.984		2.626		
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
150	1.287	1.655	1.976	2.351	2.609	3.145	3.357
Infinity	1.282	1.645	1.960	2.326	2.576	3.090	3.291

The t-distribution

- There is a different t-distribution for each d.f.
- The following shows t-distributions compared to the standard normal
 - t for d.f. 4
 - t for d.f. 20
- Compared to the standard normal, the t-distribtion is flatter and has fatter tails
- As the d.f. gets larger, the t-value approaches z

		The table sho				(one-tailed or tw	vo-tailed)	
_	d.f.	0.2000	0.1000	Area in Two 0.0500	0.0200	0.0100	0.0020	0.0010
Basic Steps for C.I. for		0.1000	0.0500	Area in On 0.0250	Tail 0.0100	0.0050	0.0010	0.0005
asic sceps for Citi for -	- 1	3.078	6.314	12.706	31.821	63.657	318,309	636.619
	2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
mall Sample Mean	3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
	4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	1.476 1.440	2.015 1.943	2.571 2.447	3.365 3.143	4.032 3.707	5.893 5.208	6.869 5.959
	5	1.440	1.895	2.447	2.998	3.707	4.785	5.959
Set a probability that an interval	8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
estimator encloses the population	10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
parameter $p = .95$	12 13	1.356	1.782	2.179	2.681	3.055	3.930	4.318
P	13 14	1.350 1.345	1.771	2.160 2.145	2.650 2.624	3.012 2.977	3.852 3.787	4.221
	15	1.345	1.753	2.145	2.602	2.947	3.733	4.073
Cot on alpha layed as 1 n (4 n) = 05	16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
Set an alpha level as 1-p $(1-p) = .05$	17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
Divide the alpha by 2 =.025	20 21	1.325	1.725	2.086	2.528	2.845	3.552	3.850
Bittao tilo dipila by 2	21 22	1.323 1.321	1.721	2.080	2.518 2.508	2.831 2.819	3.527 3.505	3.819
	22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
Calculate the degrees of freedom as	24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
Calculate the degrees of freedom as	25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
n-1 if n=24. d.f. = 23	26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
11-1 II 11-24, U.I 23	27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28 29	1.313	1.701	2.048 2.045	2.467 2.462	2.763 2.756	3.408 3.396	3.674
	29 30	1.311 1.310	1.699	2.045	2.452	2.750	3.396	3.646
Locate the ½ probability value for your	31	1.309	1.696	2.042	2.453	2.744	3.375	3.633
. , , , ,	32	1.309	1.694	2.037	2.449	2.738	3.365	3.622
degrees of freedom in the t-Table	32 33	1.308	1.692	2.035	2.445	2.733	3.356	3.611
	34	1.307	1.691	2.032	2.441	2.728	3.348	3.601
	35	1.306	1.690	2.030	2.438	2.724	3.340	3.591
This only applies if our variable is	36 37	1.306 1.305	1.688	2.028 2.026	2.434 2.431	2.719 2.715	3.333 3.326	3.582 3.574
This only applies it out variable is	38	1.304	1.686	2.024	2.429	2.712	3.319	3.566
approximately normal!	39	1.304	1.685	2.023	2.426	2.708	3.313	3.558
approximately normal:	40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	45	1.301	1.679	2.014	2.412	2.690	3.281	3.520
	50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
	60 70	1.296 1.294	1.671	2.000 1.994	2.390 2.381	2.660 2.648	3.232 3.211	3.460
	70 80	1.294	1.664	1.994	2.381	2.648	3.211	3.435
	90	1.292	1.662	1.987	2.368	2.632	3.183	3.410
	100	1.290	1.660	1.984	2.364	2.626	3.174	3.390
	120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
	150	1.287	1.655	1.976	2.351	2.609	3.145	3.357
	Infinity	1.282	1.645	1.860	2.326	2.876	3.090	3,291

C.I. for a Mean

Use the Population parameter σ if it is known, and a z-value

$$\overline{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

- Use the sample estimate s, and a t-value, if σ is not known
- $\overline{x} \pm t_{n-1d.f.} \left(\frac{s}{\sqrt{n}} \right)$

П

 To be safe, software packages present all confidence intervals and hypotheses tests using a tvalue rather than a z-value

95% C.I. for Well Water Example using a t-value

- Let's say there are 2,500 households in the area
- I could try to test them all, but at \$50 a test it would cost \$125,000 and weeks of work
- So, I decide to take 50 well water samples, and test for the presence of nitrogen
 - n = 50 **d.f. = 49**
 - Mean = 7 mg/l
 - s = 3.003 mg/l
 - S.E. = 3.003/(50)^{.5} = .425

95% C.I. for Well Water Example using a t-value

$$\overline{x} \pm t_{n-1d.f.} \left(\frac{s}{\sqrt{n}} \right)$$

- To solve for this 95% B.O.E.
 - $t_{.05/2, 49 \text{ d.f.}} = 2.010$
 - S.E. = .425
 - Mean = 7.000
- 7.000 ± 2.010(.425)
- 7.000 ± .854
- 6.146 to 7.854

Mean	7.000
Standard Error	0.425
Median	7.050
Mode	7.100
Standard Deviation	3.003
Sample Variance	9.018
Kurtosis	-0.723
Skewness	0.101
Range	11.600
Minimum	1.600
Maximum	13.200
Sum	350.000
Count	50
Confidence Level(95.0%)	0.853

13

Problem I

- Spinifex pigeons in Western Australia rely entirely on seeds for food
- Our research will examine stomach contents of 16 pigeons
- Recorded the weight in grams of dry seed of each pigeon - assumed to be approximately normal
- Sample Statistics
 - n=16
 - Mean = 1.373
 - s = 1.034
- Construct a 99% C.I.

14

Spinifex 99% C.I. f

- Calculate the degrees of freedom as n-1 if n=16, d.f. = 15
- t-value for 99% C.I.
 - $\alpha = .01$
 - $\alpha/2 = .005$ in each tail
 - t_{.005} with 15 d.f. = 2.947
- 1.373 ± 2.947(.2585)
- 1.373 ± .762
- .611 to 2.135

$$\overline{x} \pm t_{\alpha/2, n-1 \text{d.f.}} \left(\frac{s}{\sqrt{n}} \right)$$

Critical Values of t-Distribution

Confidence Interval Problem

- A furniture company wants to test a random sample of sofas to determine how long the cushions last
- They simulate people sitting on the sofas by dropping a heavy object on the cushions until they wear out – they count the number of drops it takes
- This test involves 9 sofas
 - Mean = 12,648.889
 - s = 1.898.673
- Assume it follows a normal distribution. Generate a 95% Confidence Interval for this problem

Answer

- n = 9, small sample, approximately normal, so use t-distribution with 8 d.f.
 - $t_{.05/2, 8 \text{ d.f.}} = 2.306$
- Standard error = 1,898.673/(9).5
 - SE= 632.891
- 95% C.I.
 - 12,648.889 ± 2.306(632.891)
 - 12,648.889 ± **1,459.447**
 - 11,189.442 to 14,108.336

17

19

Sofa Confidence Interval using Excel

- I entered the data into a column in Excel
- I then used the following sequence
 - Tools...Data Analysis...Descriptive Statistics
- I then follow the options, including:
 - Identify the Input Range, marking a label is in the first row
 - Output range
 - Descriptive statistics
 - A 95% Confidence Interval

Drops					
Mean	12648.889				
Standard Error	632.891				
Median	12742				
Mode	#N/A				
Standard Deviation	1898.673				
Sample Variance	3604958.111				
Kurtosis	-0.676				
Skewness	-0.372				
Range	5886				
Minimum	9459				
Maximum	15345				
Sum	113840				
Count	9				
Confidence Level(95.0%)	1459.450				

18

A few more points on small sample confidence intervals

- If we cannot assume a normal distribution
 - The probability associated with our interval is not (1 -α)
 - We really shouldn't construct a C.I.
 - Or we should get more data larger sample size!
- If σ is known, we can use the z instead of the t, but we still need to have an approximately normal distribution for small samples
- It is ok, even preferred, to use the t-distribution for larger samples

Summary

- Confidence Intervals provide an interval estimate of a Population Parameter
- Requires knowledge of the sampling distribution of the estimator
 - We treat our estimate from a sample as one of many possible estimates from many possible samples
 - Our confidence is in the process
- Figure a C.I. Probability level as (1-α)
 - (1 -α) is referred to as the Confidence Coefficient
 - $\bullet \quad \text{Where } \alpha \text{ is the probability of being wrong in our } \\ \text{assertion}$
 - and α/2 represents the probability in either tail of the sampling distribution

Summary

- For proportions, you can use a z-score provided the sample size is large enough (Binomial approximation)
- For the mean
 - If σ is known, use a z-value for the C.I. similar to proportions
 - If σ is unknown, use the t-table with n-1 degrees of freedom
- In this class, I will allow you to use a z-value for hand problems when n > 30.
- If the sample size is small (<30), and the distribution is approximately normal, you must use the t-table with n-1 degrees of freedom

$$p \pm z_{\alpha/2} \sqrt{\frac{p \, q}{n}}$$

$$p \pm z_{\alpha/2} \sqrt{\frac{p \, q}{n}}$$

$$\overline{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right)$$

$$\overline{x} \pm t_{\alpha/2, n-1d.f.} \frac{s}{\sqrt{n}}$$

$$\overline{x} \pm t_{\alpha/2,n-1d.f.} \frac{s}{\sqrt{n}}$$

