Lab 05: Analog Design Optimization

Part (1) (1) ADT Design Xplore

Minimum IB = 34 uA

(2) ADT Verify

```
***simulator lang =LTspice
  .include "D:\Summer2022\AMS Course\ADT Windows Release v1.1.8\ADT/ltspice_example/ex_180nm.sp" .include "D:\Summer2022\AMS Course\ADT Windows Release v1.1.8\ADT\Core/ElectronicsCore/Amplifiers/circuits/A010001F/Ideal_Balun.txt"
  .params L_1 = 4.2e-07
.params W 1 = 1.0578478319991733e-05
.params L_2 = 3.9e-07
.params W 2 = 3.999176059603685e-06
.params L_3 = 1e-06
.params W 3 = 1.9505835082778885e-05
.params VICM = 0.9
  .params VGATE = 0.5370239962292114
  .params CL = 500f
.params VDD = 1.8
  .params TEMP = 27.0
M0 net20 VINP net19 0 nch 1=\{L_1\} w=\{W_1\} ad=\{0.64u^*\{W_1\}\} as=\{0.64u^*\{W_1\}\} pd=\{2^*(0.64u^*\{W_1\})\} ps=\{2^*(0.64u^*\{W_1\})\} M1 VOUTP VINN net19 0 nch 1=\{L_1\} w=\{W_1\} ad=\{0.64u^*\{W_1\}\} as=\{0.64u^*\{W_1\}\} pd=\{2^*(0.64u^*\{W_1\})\} ps=\{2^*(0.64u^*\{W_1\})\} ps=\{2^*(0.64u^*\{W_1\})\} ps=\{2^*(0.64u^*\{W_1\})\} ps=\{2^*(0.64u^*\{W_1\})\} m2 net20 AVDD AVDD pch 1=\{L_2\} w=\{W_2\} ad=\{0.64u^*\{W_2\}\} as=\{0.64u^*\{W_2\}\} pd=\{2^*(0.64u^*\{W_2\})\} ps=\{2^*(0.64u^*\{W_2\})\} M4 net19 VGATE 0 0 nch 1=\{L_3\} w=\{W_3\} ad=\{0.64u^*\{W_3\}\} as=\{0.64u^*\{W_3\}\} pd=\{2^*(0.64u^*\{W_3\})\} ps=\{2^*(0.64u^*\{W_3\})\} ps=\{2^
 V3 VGATE 0 (VGATE)
C1 VOUTP 0 (CL)
X_INPUT N3 VINP VICM1 VINN ideal_balun
Rtemp VIDD1 n3 le-6 noiseless
V1 AVDD 0 {VDD}
Vdiff VIDD1 0 0 AC 1
Vcm VICM1 0 {VICM}
  .op
.AC dec 100 1 10G
  .MEAS AC DC GAIN max mag(V(VOUTP))
.MEAS AC BW WHEN mag(V(VOUTP)) = DC GAIN / sqrt(2)
.MEAS AC UGF WHEN mag(V(VOUTP))=1
  .MEAS AC PM FIND V(VOUTP) WHEN mag(V(VOUTP))=1
     dc gain: MAX(mag(v(voutp)))=(34.6057dB,0°) FROM 1 TO 1e+010
    bw: mag(v(voutp))=dc gain / sqrt(2) AT 1.88592e+006
    ugf: mag(v(voutp))=1 AT 9.92666e+007
    pm: v(voutp)=(-6.11683e-006dB,-94.5144°) at 9.92666e+007
```

DC Gain = 34.6057 dB, GBW = $[10^{(34.6/20)}]*[1.88592*10^{6}] = 101.346$ MHz (3) ADT Design Cockpit

Minimum IB = 35.48 uA

(4) ADT Optimize

Minimum IB = 34.24 uA

(5) "loptOTA.m"

```
function OTA = loptOTA(specs)
% inputs in the form of [ M1.L , M3.L , M5.L , M1.RHO , M2.RHO , M3.RHO ,
% IB]
OTA = designOTA(specs);
load 180nch.mat;
```

```
load 180pch.mat;
UB = [1, 2.00, 1.5 , 20, 15 , 20, 1e-4]; % upper limits for inputs
LB = [0.18, 0.18, 0.5, 10, 10, 10, 1e-6]; % lower limits for inputs
% Add line here for inital inputs (X0 = ??)
X0 = [0.28 \ 1.7 \ 1 \ 15 \ 10 \ 10 \ 45.88e-6];
% Add line for the objective function (ObjFn= @ (X) ( ???? )
ObjFn= @ (X) (X(7));
NonLinConFn = @(X)NonLinCon(X, OTA, specs,nch,pch); %% some lines are missing inside
NonLinCon file
% calling fmincon
X = fmincon(ObjFn, X0, [], [], [], LB, UB, NonLinConFn);
                           % Save all variables
% Assign X to the corresponding OTA variables (Same lines as loptOTA)
OTA.M1.L = X(1);
OTA.M3.L = X(2);
OTA.M5.L = X(3);
OTA.M1.qm ID = X(4);
OTA.M3.gm ID = X(5);
OTA.M5.gm ID = X(6);
OTA.M5.ID = X(7);
OTA.M3.ID = 0.5*X(7);
OTA.M1.ID = 0.5*X(7);
OTA.M1.ID_W = look_up(nch, 'ID_W', 'GM_ID', OTA.M1.gm_ID, 'VDS', OTA.M1.VDS, 'L',
OTA.M1.L);
OTA.M1.W = OTA.M1.ID / OTA.M1.ID W;
OTA.M3.ID_W = look_up(pch, 'ID W', 'GM ID', OTA.M3.gm ID, 'VDS', OTA.M3.VDS, 'L',
OTA.M3.L);
OTA.M3.W = OTA.M3.ID / OTA.M3.ID W;
OTA.M5.ID_W = look_up(nch, 'ID_W', 'GM_ID', OTA.M5.gm ID, 'VDS', OTA.M5.VDS, 'L',
OTA.M5.L);
OTA.M5.W = OTA.M5.ID / OTA.M5.ID W;
OTA.M1.VGS = look upVGS(nch, 'GM ID', OTA.M1.gm ID, 'VDS', OTA.M1.VDS, 'L', OTA.M1.L);
OTA.M1.VG = OTA.M1.VGS + OTA.M5.VDS;
(6) "goptOTA.m"
function OTA = goptOTA(specs)
\% inputs in the form of [ M1.L , M3.L , M5.L , M1.RHO , M2.RHO , M3.RHO ,
% IB]
OTA = designOTA(specs);
load 180nch.mat;
load 180pch.mat;
UB = [0.5, 2.00, 1.5, 20, 15, 20, 1e-4]; % upper limits for inputs
LB = [0.18, 1, 0.5, 10, 10, 10, 1e-6]; % lower limits for inputs
ObjFn = @(X)(X(:,7)); %% vectorized objective function
NonLinConFn = @(X)NonLinConV(X, OTA, specs,nch,pch);
% calling fmincon
options=optimoptions('ga','UseVectorized',true,'PopulationSize',20);
X = ga(ObjFn, 7, [], [], [], LB, UB, NonLinConFn, options);
% Save all variables
% Assign X to the corresponding OTA variables , for example:
OTA.M1.L = X(1);
OTA.M3.L = X(2);
```

```
OTA.M5.L = X(3);
OTA.M1.gm ID = X(4);
OTA.M3.gm ID = X(5);
OTA.M5.gm ID = X(6);
OTA.M5.ID = X(7);
OTA.M3.ID = 0.5*X(7);
OTA.M1.ID = 0.5*X(7);
% continue the rest (multiple lines)
% note that if you did not write the lines , the values from the previous lab will be
used automaticlly
OTA.M1.ID_W = look_up(nch, 'ID_W', 'GM_ID', OTA.M1.gm_ID, 'VDS', OTA.M1.VDS, 'L',
OTA.M1.L);
OTA.M1.W = OTA.M1.ID / OTA.M1.ID W;
OTA.M3.ID_W = look_up(pch, 'ID_W', 'GM_ID', OTA.M3.gm ID, 'VDS', OTA.M3.VDS, 'L',
OTA.M3.L);
OTA.M3.W = OTA.M3.ID / OTA.M3.ID W;
OTA.M5.ID W = look up(nch, 'ID W', 'GM ID', OTA.M5.gm ID, 'VDS', OTA.M5.VDS, 'L',
OTA.M5.L);
OTA.M5.W = OTA.M5.ID / OTA.M5.ID W;
OTA.M1.VGS = look upVGS(nch, 'GM ID', OTA.M1.qm ID, 'VDS', OTA.M1.VDS, 'L', OTA.M1.L);
OTA.M1.VG = OTA.M1.VGS + OTA.M5.VDS;
(7) "optOTA test.m"
% OTA Design Script
% Write the SPECS
clear all;
clc;
AVDC = 34; %dB
GBW = 1e8; %Hz
CL = 500e-15; %Farad
specs = struct('AVDC', AVDC,...
'CL', CL,...
'GBW', GBW);
OTA = loptOTA(specs);
% Print the solution
fprintf('**** Local opt OTA Design ****\n\n');
fprintf('Input Pair:\n');
           L = %.2f um\n
                              W=%.2f um\n ViCM=%.4f
fprintf('
V \setminus n \setminus n', OTA.M1.L, OTA.M1.W, OTA.M1.VG);
fprintf('CM Load:\n');
            L = %.2f um\n
                               W=\%.2f um\n\n',OTA.M3.L,OTA.M3.W);
fprintf('
fprintf('Tail Current Source:\n');
fprintf('
            L = %.2f um\n
                               W=\%.2f um\n\n',OTA.M5.L,OTA.M5.W);
             Optimized current = %.2f uA\n\n', OTA.M5.ID*1e6);
fprintf('
OTA = goptOTA(specs);
% Print the solution
fprintf('**** Global opt OTA Design ****\n\n');
fprintf('Input Pair:\n');
fprintf('
             L = %.2f um\n
                               W=%.2f um\n ViCM=%.4f
V \setminus n \setminus n', OTA.M1.L, OTA.M1.W, OTA.M1.VG);
fprintf('CM Load:\n');
           L = %.2f um n W=%.2f um n n', OTA.M3.L, OTA.M3.W);
fprintf('
```

```
fprintf('Tail Current Source:\n');
fprintf(' L = %.2f um\n W=%.2f um\n\n',OTA.M5.L,OTA.M5.W);
fprintf(' Optimized current = %.2f uA\n\n', OTA.M5.ID*1e6);
```

Results:

```
**** Local opt OTA Design ****
                                         **** Global opt OTA Design ****
Input Pair:
                                           Input Pair:
    L = 0.42 \text{ um}
                                              L = 0.27 \text{ um}
    W=11.10 um
                                               W=8.46 um
    ViCM=1.1159 V
                                               ViCM=1.1282 V
CM Load:
                                          CM Load:
                                              L = 1.00 \text{ um}
    L = 0.52 \text{ um}
                                               W=16.66 um
    W=8.35 um
                                          Tail Current Source:
Tail Current Source:
                                               L = 0.87 \text{ um}
    L = 1.00 \text{ um}
                                               W=17.42 um
    W=19.17 um
                                             Optimized current = 38.95 uA
    Optimized current = 33.58 uA
```

Comparison:

	ADT	Matlab local opt	Matlab global opt		
	Input pair				
L	0.42 um	0.42 um	0.27 um		
W	10.58 um	11.10 um	8.46 um		
ViCM	1.16145 V	1.1159 V	1.1282 V		
CM load					
L	0.39 um	0.52 um	1 um		
W	3.999 um	8.35 um	16.66 um		
Tail current source					
L	1 um	1 um	0.87 um		
W	19.51 um	19.17 um	17.42 um		

Tool	Min current
ADT Design Xplore	34 uA
ADT Design Cockpit	35.48 uA
ADT Optimize	34.24 uA
Matlab Local Optimization	33.58 uA
Matlab Global Optimization	38.95 uA

Comment: Matlab local optimizer gives best results w.r.t the power minimization.

(8) "ota tb.cir"

netlist:

```
ota_tb.cir
 * Include external file that contains MOSFET Mode
 .INCLUDE ee214b hspice.sp
 ** Circuit Description **
 * power supply
 VDD 7 0 DC 1.8
 * input
 * Add lines here to add the input (voltage) source
 V1 4 0 1.1937 AC 0.5
 V2 3 0 1.1937 AC -0.5
 * circuit
 * 5T OTA
M1 6 4 2 0 nch L=0.42u W=10.58u
 M2 5 3 2 0 nch L=0.42u W=10.58u
M3 6 5 7 7 pch L=0.39u W=3.999u
M4 5 5 7 7 pch L=0.39u W=3.999u
M5 2 1 0 0 nch L=1u W=19.51u
 CL 6 0 500f
 * Current Mirror
M6 1 1 0 0 nch L=1u W=19.51u
 Iref 7 1 34u
 ** Analysis Requests **
 .op
 .ac dec 10 1 10e9
 .MEAS AC dc_gain max mag(V(6))
 .MEAS AC BW WHEN mag(V(6)) = dc_gain/sqrt(2)
 ** Outputs Requests **
 *.PROBE
 .END
```

Simulation results:

dc_gain: MAX(mag(v(6)))=(34.4249dB,0°) FROM 1 TO 1e+010 bw: mag(v(6))=dc_gain/sqrt(2) AT 2.00207e+006

Comparison table:

	Specification	ADT
AVDC	34 dB	34.4249 dB
GBW	100 MHz	105.372 MHz

Comment: all specifications are met using the sizing results of ADT that achieves minimum power consumption.

Part (2)

(1) ADT Design Xplore

	Nominal	C1	C2
--	---------	----	----

Min Current (ADT	37 uA	33.3 uA	40.7 uA
Design Xplore)			

(2) ADT Design Cockpit

	Nominal	C1	C2
Min Current (Design Cockpit)	42.33 uA	38.1 uA	46.56 uA

(3) ADT Optimize

	Nominal	C1	C2
Min Current (ADT Optimize)	40.45 uA	36.4 uA	44.49 uA

(4) ADT Verify

Nominal:

```
dc_gain: MAX(mag(v(voutp)))=(35.1455dB,0°) FROM 1 TO 1e+010
bw: mag(v(voutp))=dc_gain / sqrt(2) AT 1.91917e+006
ugf: mag(v(voutp))=1 AT 1.07334e+008
pm: v(voutp)=(-2.18742e-006dB,-95.46°) at 1.07334e+008
```

DC Gain = 35.1455 dB, GBW = $[10^{(35.1455/20)}]*[1.91917*10^{6}] = 109.746$ MHz **C1(IB/IB Nominal = 0.9):**

```
dc_gain: MAX(mag(v(voutp)))=(35.0747dB,0°) FROM 1 TO 1e+010
bw: mag(v(voutp))=dc_gain / sqrt(2) AT 1.78667e+006
ugf: mag(v(voutp))=1 AT 9.9259e+007
pm: v(voutp)=(-6.95425e-006dB,-95.2665°) at 9.9259e+007
```

DC Gain = 35.0747 dB, GBW = $[10^{(35.0747/20)}]*[1.78667*10^{6}] = 101.34$ MHz **C2 (IB/IB Nominal = 1.1):**

```
dc_gain: MAX(mag(v(voutp)))=(35.2051dB,0°) FROM 1 TO 1e+010
bw: mag(v(voutp))=dc_gain / sqrt(2) AT 2.04682e+006
ugf: mag(v(voutp))=1 AT 1.15114e+008
pm: v(voutp)=(-3.31399e-006dB,-95.6349°) at 1.15114e+008
```

DC Gain = 35.2051 dB, GBW = $[10^{(35.2051/20)}]*[2.04682*10^{6}] = 117.851$ MHz

	Nominal	C1	C2
DC Gain	35.1455	35.0747	35.2051
GBW	109.746 MHz	101.34 MHz	117.851 MHz
Min Current (ADT Design Xplore)	37 uA	33.3 uA	40.7 uA
Min Current (Design Cockpit)	42.33 uA	38.1 uA	46.56 uA
Min Current (ADT Optimize)	40.45 uA	36.4 uA	44.49 uA