Este documento detalla el desarrollo del modelo ML y la ingeniería de características.

Primero, se realizaron trabajos de preprocesamiento: selección de variables, encoding, normalización, etc.

Se sube el dataset a Azure:

Se prueba a entrenar con diferentes algoritmos, y se adjuntan las métricas de desempeño.

Gradient Boosting:

input data: /mnt/azureml/cr/j/36360f3ef50c40ad8c0ffc8cc7
Training with data of shape (38429, 38)

		precision	recall	f1-score	support
	0	0.91	0.98	0.94	6023
	1	0.61	0.20	0.30	759
20011	2.514			0.00	6702
accur	acy			0.90	6782
macro	avg	0.76	0.59	0.62	6782
weighted	avg	0.87	0.90	0.87	6782

Dogistoping the model via MLFlow

Random Forest:

/ INPUL UALA: /MMIL/AZUN'EMMI/CN/J/BNUBDCNAB/1440ZABN84BB44Z									
8 V Training with data of shape (38429, 38)									
9		precision	recall	f1-score	support				
.0									
.1	0	0.91	0.98	0.95	6021				
.2	1	0.63	0.22	0.33	761				
.3									
.4	accuracy			0.90	6782				
.5	macro avg	0.77	0.60	0.64	6782				
.6	weighted avg	0.88	0.90	0.88	6782				
.7									
			_						

.8 Registering the model via MLFlow

SVM:

Training with data of shape (38429, 38)							
	precision	recall	f1-score	support			
0	0.90	0.99	0.94	5970			
1	0.66	0.20	0.31	812			
accuracy			0.89	6782			
macro avg	0.78	0.59	0.63	6782			
weighted avg	0.87	0.89	0.87	6782			

Perceptron Linear

input data: /mnt/azuremi/cr/j/0te1d85b4acb4b3bbdb3t/t4tba Training with data of shape (38429, 38)

		precision	recall	f1-score	support
	0	0.92	0.76	0.83	6005
	1	0.20	0.46	0.28	777
accur	acy			0.72	6782
macro	avg	0.56	0.61	0.55	6782
weighted	avg	0.83	0.72	0.77	6782

Registering the model via MLFlow

Se prueba también con una variante, Boosted Decision Tree, usando las pipelines de Azure.

Pipeline y resultados:

Se decide continuar el desarrollo con el algoritmo de Random Forest.

Se lleva a cabo un análisis del poder decisorio de variables (PCA):

Se lleva a cabo un ajuste de los hiperparámetros del algoritmo Random Forest usando una grid search:

```
\ensuremath{\mathtt{\#}} Hyperparameter tuning for the Random Forest Classifier using random grid
 # Number of trees in random forest
<code>n_estimators</code> = [int(x) for x in <code>np.linspace(start</code> = 200, stop = 2000, num = 10)] # Number of features to consider at every split
max features = ['auto', 'sqrt']
# Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
max_depth = [int(x) for x in np.linspace(10, 110, num =
max_depth.append(None)
# Minimum number of samples required to split a node
min_samples_split = [2, 5, 10]
# Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 4]
# Method of selecting samples for training each tree
bootstrap = [True, False]
# Create the random grid
# Zandom grid = {'n_estimators': n_estimators.
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
                        'bootstrap': bootstrap}
 #Random Forest
 rfc = RandomForestClassifier()
 #rfc.fit(X_train, y_train)
 #model = rfc
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf_nandom = RandomizedSearchCV(estimator = rfc, param_distributions = random_grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs = -1)
# Fit the random search model
 rf\_random.fit(X\_train, y\_train)
model = rf_random
print("Grid search best paremeters:")
print(rf_random.best_params_)
rf_random.best_params_
```

Las cinco mejores combinaciones de hiperparámetros encontradas:

	tuning_results.head()							
:	param_n_estimators	param_min_samples_split	param_min_samples_leaf	param_max_features	param_max_depth	param_bootstrap		
	200	5	4	auto	10.0	True	'm	
	1000	5	2	sqrt	10.0	True	'm	
	1600	5	1	auto	10.0	True	'm	
	800	10	4	sqrt	50.0	True	'm	
	1000	2	1	auto	10.0	False	'm	
	4							

Hay sustancialmente más registros de una categoría que de otra, y esto afecta a la precisión al detectar sobre la categoría objetivo 1 ('sí'). Para contrarrestarlo, se introduce oversampling de esa categoría en el dataset. Estos son los resultados de desempeño del algoritmo Tuned Random Forest con hiperparámetros optimizados y oversampling:

6 parser=ArgumentParser(prog='main.py', usage=None, descriptio 7 input data: /mnt/azureml/cr/j/7a0809bf2d524eefb1aed336d9587b 8 Training with data of shape (40720, 38) 9 precision recall f1-score support 3 1 0 0.88 0.98 0.93 6028 2 0.76 0.32 0.45 1158 3 4 0.87 7186 accuracy 5 macro avg 0.82 0.65 0.69 7186 weighted avg 0.86 0.85 6 0.87 7186 7 8 Registering the model via MLFlow 9

20%

parser=Argumentrarser(prog= main.py , usage=None, descriinput data: /mnt/azureml/cr/j/1b339697cdd242a69bab9ee01d
Varining with data of shape (42416, 38)

9		precision	recall	f1-score	support
10					
11	0	0.87	0.97	0.92	5994
12	1	0.80	0.44	0.57	1492
13					
14	accuracy			0.87	7486
15	macro avg	0.84	0.71	0.74	7486
16	weighted avg	0.86	0.87	0.85	7486
17					

18 Registering the model via MLFlow

19

```
2
    2023/07/09 14:50:55 WARNING mlflow.sklearn: Failed to log evaluation
    Registered model 'bank-marketing-model-tuned-random-forest' alread
3
    2023/07/09 14:51:00 INFO mlflow.tracking._model_registry.client: W
4
    Created version '9' of model 'bank-marketing-model-tuned-random-fo
5
    parser=ArgumentParser(prog='main.py', usage=None, description=None
6
    input data: /mnt/azureml/cr/j/fecc758a98b84c6cb9c24595386c7cc7/cap
7
    Training with data of shape (44113, 38)
8
9
                   precision
                                recall f1-score
                                                    support
0
                                   0.96
                                             0.91
1
                0
                        0.87
                                                        6004
2
                1
                        0.81
                                   0.51
                                             0.63
                                                        1781
3
4
                                             0.86
                                                        7785
        accuracy
5
       macro avg
                        0.84
                                   0.74
                                             0.77
                                                        7785
    weighted avg
                                   0.86
                                             0.85
                                                        7785
6
                        0.86
7
    Registering the model via MLFlow
8
9
```

30%

Se ha elegido, por tanto, desarrollar un modelo de Tuned Random Forest con optimización de hiperparámetros y oversampling, mediante el editor de código y el editor de *pipelines* de Azure.

A continuación se muestran los errores tras intentar desplegar el modelo (al ser una cuenta gratuita carece de suficiente memoria), primero el error en el editor de código y segundo la pantalla de error de deployment

Activate Windows