Contents

1	Basic	1
	1.1 vimrc	1
	1.2 Fast Integer Input	1
_	71	_
2		1 1
		2
		2
	2.4 Hungarian $(O(n^3))$	2
	2.5 Hungarian $O(n^4)$	3
3		3
	ÿ	3
	3.2 <ext pbds=""></ext>	Э
4	Graph	4
		4
	4.2 Heavy-Light Decomposition	4
		5
		5
		5
	4.6 Tarjan's bridge	6
5	String	6
_	0	6
		6
	5.3 Manacher's	6
		6
		7
		7
		8
	5.8 Smallest Rotation	,
6		9
		9
	6.2 Number theoretic transform	9
		9
	6.4 Lagrange Interpolation	
	6.5 Miller Rabin	
	6.7 Gaussian Elimination	
	6.8 Linear Equations (full pivoting)	
	6.9 μ function	
	$6.10 \left\lfloor \frac{n}{i} \right\rfloor$ Enumeration	1
	6.11 Extended GCD	
	6.12 Chinese remainder theorem	
	6.13 Lucas's theorem	
	6.14 Primes	1
7	Dynamic Programming 1	1
	7.1 Convex Hull (monotone)	1
	7.2 Convex Hull (non-monotone)	1
	7.3 $1D/1D$ Convex Optimization	
	7.4 Conditon	
	7.4.1 concave totally monotone	
	7.4.2 convex totally monotone	
	7.4.4 convex monge condition	
		_
8	Geometry 1	
	8.1 Basic	
	8.2 Triangle Center	
	8.3 Sector Area	
	8.4 Polygon Area 1 8.5 Half Plane Intersection 1	
	8.6 Polygon Center	
	8.7 Maximum Triangle	
	8.8 Point in Polygon	
	8.9 Circle-Line Intersection	4
	8.10 Circle-Triangle Intersection	
	8.11 Polygon Diameter	
	8.12 Minimun Distance of 2 Polygons	
	8.13 Convex Hull	
	8.14 Rotating Caliper 1 8.15 Min Enclosing Circle 1	
	8.16 Closest Pair	
		-

Basic 1

1.1 vimrc

```
syn on
colo desert
se ai nu ru mouse=a
se cin et ts=4 sw=4 sts=4
set backspace=indent,eol,start
inoremap {<ENTER> {<ENTER>}<UP><END><ENTER>
```

1.2 Fast Integer Input

```
#define getchar gtx
inline int gtx() {
  const int N = 1048576;
  static char buffer[N];
  static char *p = buffer, *end = buffer;
  if (p == end) {
     if ((end = buffer + fread(buffer, 1, N, stdin)) ==
     buffer) return EOF;
     p = buffer;
  return *p++;
}
template <typename T>
inline bool rit(T& x) {
  char c = 0; bool flag = false;
while (c = getchar(), (c < '0' && c != '-') || c > '9
  ') if (c == -1) return false;

c == '-' ? (flag = true, x = 0) : (x = c - '0');

while (c = getchar(), c >= '0' && c <= '9') x = x *

10 + c - '0';
  if (flag) x = -x;
  return true;
}
template <typename T, typename ...Args>
inline bool rit(T& x, Args& ...args) { return rit(x) &&
      rit(args...); }
```

$\mathbf{2}$ Flow

2.1 Dinic

```
struct dinic {
  static const int inf = 1e9;
  struct edge {
     int dest, cap, rev;
     edge(int d, int c, int r): dest(d), cap(c), rev(r)
  vector<edge> g[maxn];
  int qu[maxn], ql, qr;
  int lev[maxn];
  void init() {
  for (int i = 0; i < maxn; ++i)</pre>
       g[i].clear();
  void add_edge(int a, int b, int c) {
  g[a].emplace_back(b, c, g[b].size() - 0);
  g[b].emplace_back(a, 0, g[a].size() - 1);
  bool bfs(int s, int t) {
     memset(lev, -1, sizeof(lev));
     lev[s] = 0;
     ql = qr = 0;
qu[qr++] = s;
while (ql < qr) {
       int x = qu[ql++];
        for (edge &e : g[x]) if (lev[e.dest] == -1 && e.
     cap > 0) {
          lev[e.dest] = lev[x] + 1;
```

```
qu[qr++] = e.dest;
  return lev[t] != -1;
int dfs(int x, int t, int flow) {
  if (x == t) return flow;
  int res = 0;
  for (edge \&e : g[x]) if (e.cap > 0 \&\& lev[e.dest]
  == lev[x] + 1) {
    int f = dfs(e.dest, t, min(e.cap, flow - res));
    res += f;
    e.cap -= f
    g[e.dest][e.rev].cap += f;
  if (res == 0) lev[x] = -1;
 return res;
int operator()(int s, int t) {
  int flow = 0;
  for (; bfs(s, t); flow += dfs(s, t, inf));
  return flow;
```

2.2 ISAP

```
struct isap {
  static const int inf = 1e9;
  struct edge {
    int dest, cap, rev;
    edge(int a, int b, int c): dest(a), cap(b), rev(c)
  };
  vector<edge> g[maxn];
  int it[maxn], gap[maxn], d[maxn];
  void add_edge(int a, int b, int c) {
    g[a].emplace\_back(b, c, g[b].size() - 0); g[b].emplace\_back(a, 0, g[a].size() - 1);
  int dfs(int x, int t, int tot, int flow) {
  if (x == t) return flow;
     for (int &i = it[x]; i < g[x].size(); ++i) {
       edge &e = g[x][i]
       if (e.cap > 0 \&\& d[e.dest] == d[x] - 1) {
         int f = dfs(e.dest, t, tot, min(flow, e.cap));
         if (f) {
           e.cap -= f;
           g[e.dest][e.rev].cap += f;
           return f;
         }
    if ((--gap[d[x]]) == 0) d[x] = tot;
    else d[x]++, it[x] = 0, ++gap[d[x]];
    return 0;
  int operator()(int s, int t, int tot) {
    memset(it, 0, sizeof(it));
memset(gap, 0, sizeof(gap));
    memset(d, 0, sizeof(d));
    int r = 0;
    gap[0] = tot;
    for (; d[s] < tot; r += dfs(s, t, tot, inf));</pre>
    return r;
};
```

2.3 MinCostMaxFlow

```
struct MincostMaxflow {
   struct Edge {
     int to, rev, cap, w;
     Edge() {}
     Edge(int a, int b, int c, int d): to(a), cap(b), w(
     c), rev(d) {}
   };
   int n, s, t, p[maxn], id[maxn];
```

```
int d[maxn];
   bool inque[maxn];
   vector<Edge> G[maxn];
   pair<int, int> spfa()
     memset(p, -1, sizeof(-1));
     fill(d, d + maxn, inf);
     memset(id, -1, sizeof(id));
     d[s] = 0; p[s] = s;
     queue<int> que; que.push(s); inque[s] = true;
     while (que.size()) {
       int tmp = que.front(); que.pop();
       inque[tmp] = false;
       int i = 0;
       for (auto e : G[tmp]) {
         if (e.cap > 0 & d[e.to] > d[tmp] + e.w) {
           d[e.to] = d[tmp] + e.w;
           p[e.to] = tmp;
           id[e.to] = i;
           if (!inque[e.to]) que.push(e.to), inque[e.to]
      = true;
         ++i;
       }
     if (d[t] == inf) return make_pair(-1, -1);
     int a = inf;
     for (int i = t; i != s; i = p[i]) {
       a = min(a, G[p[i]][id[i]].cap);
     for (int i = t; i != s; i = p[i]) {
   Edge &e = G[p[i]][id[i]];
       e.cap -= a; G[e.to][e.rev].cap += a;
     return make_pair(a, d[t]);
   MincostMaxflow(int _n, int _s, int _t): n(_n), s(_s),
      t(_t) {
     fill(G, G + maxn, vector<Edge>());
   void add_edge(int a, int b, int cap, int w) {
     G[a].push_back(Edge(b, cap, w, (int)G[b].size()));
     G[b].push\_back(Edge(a, 0, -w, (int)G[a].size() - 1)
  pair<int, int> maxflow() {
  int mxf = 0, mnc = 0;
     while (true) {
       pair<int, int> res = spfa();
       if (res.first == -1) break;
       mxf += res.first; mnc += res.first * res.second;
     return make_pair(mxf, mnc);
};
```

2.4 Hungarian $(O(n^3))$

```
struct Hungarian {
  vector<vector<int>> w;
  bitset<maxn> s, t;
vector<int> lx, ly, mx, my, slack, prv;
  int n, matched;
  Hungarian() {}
  Hungarian(int _n): n(_n) {
     w = vector<vector<int>>(n, vector<int>(n));
     lx.resize(n); ly.resize(n); mx.assign(n, -1); my.
     assign(n, -1);
     slack.resize(n); prv.resize(n);
  void add_edge(int a, int b, int c) {
    w[a][b] = c;
  void add(int x) {
     s[x] = true;
     for (int i = 0; i < n; ++i) {
  if (lx[x] + ly[i] - w[x][i] < slack[i]) {
    slack[i] = lx[x] + ly[i] - w[x][i];
</pre>
          prv[i] = x;
```

```
void augment(int now) {
     int x = prv[now], y = now;
     ++matched:
     while (true) {
       int tmp = mx[x]; mx[x] = y; my[y] = x; y = tmp; if (y == -1) return;
       x = prv[y];
   void relabel() {
     int delta = inf;
     for (int i = 0; i < n; ++i) if (!t[i]) delta = min(
     delta, slack[i]);
     for (int i = 0; i < n; ++i) if (s[i]) lx[i] -=
     delta;
     for (int i = 0; i < n; ++i) {
  if (t[i]) ly[i] += delta;</pre>
       else slack[i] -= delta;
    }
  void go() {
     s.reset(); t.reset();
     fill(slack.begin(), slack.end(), inf);
     int root = 0;
     for (; root < n && mx[root] != -1; ++root);</pre>
     add(root);
     while (true) {
       relabel();
       int y = 0;
       for (; y < n; ++y) if (!t[y] && slack[y] == 0)
       if (my[y] == -1) return augment(y), void();
       add(my[y]); t[y] = true;
   int matching() {
     int ret = 0;
     for (int i = 0; i < n; ++i) {
  for (int j = 0; j < n; ++j) lx[i] = max(lx[i], w[</pre>
     i][j]);
     for (int i = 0; i < n; ++i) go();
     for (int i = 0; i < n; ++i) ret += w[i][mx[i]];</pre>
     return ret;
};
```

2.5 Hungarian $(O(n^4))$

```
struct hungarian {
  static const int inf = 1e9;
  int lx[maxn], ly[maxn], w[maxn][maxn];
  int match[maxn];
 bool vx[maxn], vy[maxn];
 void init() {
    for (int i = 0; i < maxn; ++i) for (int j = 0; j < maxn)
    maxn; ++j) w[i][j] = -inf;
    for (int i = 0; i < maxn; ++i) w[i][i] = 0;
  void add_edge(int a, int b, int c) {
    w[a][b] = max(w[a][b], c);
 bool dfs(int now) {
    vx[now] = true;
    for (int i = 0; i < maxn; ++i) if (lx[now] + ly[i]
    == w[now][i] && !vy[i]) {
      vy[i] = true;
      if (!match[i] || dfs(match[i])) {
        match[i] = now;
        return true;
      }
    return false;
  void relabel() {
    int dlt = inf:
    for (int i = 0; i < maxn; ++i) if (vx[i]) {
    for (int j = 0; j < maxn; ++j) if (!vy[j]) dlt =
min(dlt, lx[i] + ly[j] - w[i][j]);</pre>
```

```
for (int i = 0; i < maxn; ++i) if (vx[i]) lx[i] -=
    for (int i = 0; i < maxn; ++i) if (vy[i]) ly[i] +=
    dlt;
  int operator()() {
    fill(lx, lx + maxn, -inf); fill(ly, ly + maxn, 0);
     for (int i = 0; i < maxn; ++i) {
       for (int j = 0; j < maxn; ++j) lx[i] = max(lx[i],
      w[i][j]);
    memset(match, 0, sizeof(match));
for (int i = 0; i < maxn; ++i) {</pre>
       while (true) {
         memset(vx, false, sizeof(vx));
         memset(vy, false, sizeof(vy));
if (dfs(i)) break;
         relabel();
      }
    int r = 0;
    for (int i = 0; i < maxn; ++i) if (w[match[i]][i] >
     0) r += w[match[i]][i];
    return r:
};
```

3 Data Structure

3.1 Disjoint Set

```
struct DisjointSet {
  int p[maxn], sz[maxn], n, cc;
  vector<pair<int*, int>> his;
  vector<int> sh;
  void init(int _n) {
    n = _n; cc = n;
for (int i = 0; i < n; ++i) sz[i] = 1, p[i] = i;</pre>
    sh.clear(); his.clear();
  void assign(int *k, int v) {
    his.emplace_back(k, *k);
    *k = v;
  void save() {
    sh.push_back((int)his.size());
  void undo() {
    int last = sh.back(); sh.pop_back();
    while (his.size() != last) {
      int *k, v;
      tie(k, v) = his.back(); his.pop_back();
      *k = v;
  int find(int x) {
    if (x == p[x]) return x;
    return find(p[x]);
  void merge(int x, int y) {
    x = find(x); y = find(y);
    if (x == y) return;
    if (sz[x] > sz[y]) swap(x, y);
    assign(\&sz[y], sz[x] + sz[y]);
    assign(&p[x], y);
    assign(&cc, cc - 1);
} dsu;
```

3.2 < ext/pbds >

```
#include <bits/stdc++.h>
#include <bits/extc++.h>
#include <ext/rope>
using namespace __gnu_pbds;
```

```
using namespace __gnu_cxx;
#include <ext/pb_ds/assoc_container.hpp>
typedef tree<int, null_type, std::less<int>,
    rb_tree_tag, tree_order_statistics_node_update>
    tree_set;
typedef cc_hash_table<int, int> umap;
typedef priority_queue<int> heap;
int main() {
 // rb tree
  tree_set s
  s.insert(71); s.insert(22);
  assert(*s.find_by_order(0) == 22); assert(*s.
  find_by_order(1) == 71);
assert(s.order_of_key(22) == 0); assert(s.
    order_of_key(71) == 1);
  s.erase(22);
  assert(*s.find_by\_order(0) == 71); assert(s.
    order_of_key(71) == 0);
  // mergable heap
  heap a, b; a.join(b);
  // persistant
  rope<char> r[2];
  r[1] = r[0];
  std::string st = "abc";
 r[1].insert(0, st.c_str());
r[1].erase(1, 1);
  std::cout << r[1].substr(0, 2) << std::endl;</pre>
  return 0;
```

4 Graph

4.1 Link-Cut Tree

```
struct node
 node *ch[2], *fa, *pfa;
  int sum, v, rev;
 node(int s): v(s), sum(s), rev(0), fa(nullptr), pfa(
    nullptr) {
    ch[0] = nullptr;
    ch[1] = nullptr;
  int relation() {
    return this == fa->ch[0] ? 0 : 1;
  void push() {
   if (!rev) return;
swap(ch[0], ch[1]);
if (ch[0]) ch[0]->rev ^= 1;
    if (ch[1]) ch[1]->rev ^= 1;
    rev = 0:
 }
  void pull() {
    if (ch[0]) sum += ch[0]->sum;
    if (ch[1]) sum += ch[1]->sum;
  void rotate() {
    if (fa->fa) fa->fa->push();
    fa->push(), push();
swap(pfa, fa->pfa);
    int d = relation();
    node *t = fa;
    if (t->fa) t->fa->ch[t->relation()] = this;
    fa = t -> fa;
    t->ch[d] = ch[d \land 1];
    if (ch[d \land 1]) ch[d \land 1] -> fa = t;
    ch[d \land 1] = t;
    t->fa = this;
    t->pull(), pull();
  void splay()
    while (fa)
      if (!fa->fa) {
         rotate();
         continue;
```

```
fa->fa->push(), fa->push();
       if (relation() == fa->relation()) fa->rotate(),
    rotate();
       else rotate(), rotate();
  }
  void evert() {
    access();
    splay();
    rev ^= 1;
  void expose() {
    splay(), push();
    if (ch[1]) {
       ch[1]->fa = nullptr;
       ch[1]->pfa = this;
       ch[1] = nullptr;
       pull();
  bool splice() {
    splay();
    if (!pfa) return false;
    pfa->expose();
    pfa->ch[1] = this;
    fa = pfa
    pfa = nullptr;
    fa->pull();
    return true;
  void access() {
    expose();
    while (splice());
  int query() {
    return sum;
};
namespace lct {
  node *sp[maxn];
  void make(int u, int v) {
    // create node with id u and value v
    sp[u] = new node(v, u);
  void link(int u, int v) {
  // u become v's parent
    sp[v]->evert();
    sp[v]->pfa = sp[u];
  void cut(int u, int v) {
    // u was v's parent
    sp[u]->evert();
    sp[v]->access(), sp[v]->splay(), sp[v]->push();
    sp[v]->ch[0]->fa = nullptr;
sp[v]->ch[0] = nullptr;
    sp[v]->pull();
  void modify(int u, int v) {
    sp[u]->splay();
    sp[u]->v = v
    sp[u]->pull();
  int query(int u, int v) {
   sp[u]->evert(), sp[v]->access(), sp[v]->splay();
    return sp[v]->query();
}
```

4.2 Heavy-Light Decomposition

```
struct HeavyLightDecomp {
  vector<int> G[maxn];
  int tin[maxn], top[maxn], dep[maxn], maxson[maxn], sz
     [maxn], p[maxn], n, clk;
  void dfs(int now, int fa, int d) {
    dep[now] = d;
    maxson[now] = -1;
    sz[now] = 1;
    p[now] = fa;
```

```
for (int u : G[now]) if (u != fa) {
  dfs(u, now, d + 1);
      sz[now] += sz[u];
      if (maxson[now] == -1 \mid | sz[u] > sz[maxson[now]])
     maxson[now] = u;
  void link(int now, int t) {
    top[now] = t;
    tin[now] = ++clk;
    if (maxson[now] == -1) return;
    link(maxson[now], t);
    for (int u : G[now]) if (u != p[now]) {
      if (u == maxson[now]) continue;
      link(u, u);
    }
  HeavyLightDecomp(int n): n(n) {
    memset(tin, 0, sizeof(tin)); memset(top, 0, sizeof(
    top)); memset(dep, 0, sizeof(dep));
    memset(maxson, 0, sizeof(maxson)); memset(sz, 0,
    sizeof(sz)); memset(p, 0, sizeof(p));
  void add_edge(int a, int b) {
    G[a].push_back(b);
    G[b].push_back(a);
  void solve() {
  dfs(0, -1, 0);
    link(0, 0);
  int lca(int a, int b) {
    int ta = top[a], tb = top[b];
    while (ta != tb) {
      if (dep[ta] < dep[tb]) {</pre>
        swap(ta, tb); swap(a, b);
      a = p[ta]; ta = top[a];
    if (a == b) return a;
    return dep[a] < dep[b] ? a : b;
  vector<pair<int, int>> get_path(int a, int b) {
    int ta = top[a], tb = top[b];
    vector<pair<int, int>> ret;
while (ta != tb) {
      if (dep[ta] < dep[tb]) {</pre>
        swap(ta, tb); swap(a, b);
      ret.push_back(make_pair(tin[ta], tin[a]));
      a = p[ta]; ta = top[a];
    ret.push_back(make_pair(min(tin[a], tin[b]), max(
    tin[a], tin[b])));
    return ret;
};
```

4.3 Centroid Decomposition

```
vector<pair<int, int>> G[maxn];
int sz[maxn], mx[maxn];
bool v[maxn];
vector<int> vtx;

void get_center(int now) {
    v[now] = true; vtx.push_back(now);
    sz[now] = 1; mx[now] = 0;
    for (int u : G[now]) if (!v[u]) {
        get_center(u);
        mx[now] = max(mx[now], sz[u]);
        sz[now] += sz[u];
    }
}

void get_dis(int now, int d, int len) {
    dis[d][now] = cnt;
    v[now] = true;
    for (auto u : G[now]) if (!v[u.first]) {
```

```
get_dis(u, d, len + u.second);
}

void dfs(int now, int fa, int d) {
  get_center(now);
  int c = -1;
  for (int i : vtx) {
    if (max(mx[i], (int)vtx.size() - sz[i]) <= (int)vtx
        .size() / 2) c = i;
    v[i] = false;
}

get_dis(c, d, 0);
  for (int i : vtx) v[i] = false;
  v[c] = true; vtx.clear();
  dep[c] = d; p[c] = fa;
  for (auto u : G[c]) if (u.first != fa && !v[u.first])
    {
     dfs(u.first, c, d + 1);
}
}</pre>
```

4.4 Maximum Clique

```
struct MaxClique {
   int n, deg[maxn], ans;
   bitset<maxn> adj[maxn];
   vector<pair<int, int>> edge;
   void init(int _n) {
     _n = n;
     for (int i = 0; i < n; ++i) adj[i].reset();</pre>
   void add_edge(int a, int b) {
     edge.emplace_back(a, b);
     ++deg[a]; ++deg[b];
   int solve() {
     vector<int> ord;
     for (int i = 0; i < n; ++i) ord.push_back(i);
     sort(ord.begin(), ord.end(), [&](const int &a,
     const int &b) { return deg[a] < deg[b]; });</pre>
     vector<int> id(n);
     for (int i = 0; i < n; ++i) id[ord[i]] = i;
     for (auto e : edge) {
       int u = id[e.first], v = id[e.second];
       adj[u][v] = adj[v][u] = true;
     bitset<maxn> r, p;
     for (int i = 0; i < n; ++i) p[i] = true;</pre>
     dfs(r, p);
     return ans;
   void go(bitset<maxn> r, bitset<maxn> p) {
  if (1.0 * clock() / CLOCKS_PER_SEC >= time_limit)
     if (p.count() == 0) return ans = max(ans, (int)r.
     count()), void();
     if ((r | p).count() <= ans) return;</pre>
     int now = p._Find_first();
     bitset<maxn> cur = p & ~adj[now];
     for (now = cur._Find_first(); now < n; now = cur.</pre>
     _Find_next(now)) {
       r[now] = true
       go(r, p & adj[now]);
       r[now] = false;
       p[now] = false;
  }
};
```

4.5 Tarjan's articulation point

```
vector<pair<int, int>> g[maxn];
int low[maxn], tin[maxn], t;
int bcc[maxn], sz;
int a[maxn], b[maxn], deg[maxn];
bool cut[maxn], ins[maxn];
```

```
vector<int> ed[maxn];
stack<int> st:
void dfs(int x, int p) {
 tin[x] = low[x] = ++t;
  int ch = 0;
  for (auto u : g[x]) if (u.first != p) {
    if (!ins[u.second]) st.push(u.second), ins[u.second
    ] = true:
    if (tin[u.first]) {
      low[x] = min(low[x], tin[u.first]);
      continue;
   }
    ++ch;
    dfs(u.first, x);
    low[x] = min(low[x], low[u.first]);
    if (low[u.first] >= tin[x]) {
      cut[x] = true;
      ++SZ;
      while (true) {
        int e = st.top(); st.pop();
        bcc[e] = sz;
        if (e == u.second) break;
   }
  if (ch == 1 \&\& p == -1) cut[x] = false;
```

4.6 Tarjan's bridge

```
vector<pair<int, int>> g[maxn];
int tin[maxn], low[maxn], t;
int a[maxn], b[maxn];
int bcc[maxn], sz;
bool br[maxn];
stack<int> st;
void dfs(int x, int p) {
  tin[x] = low[x] = ++t;
  st.push(x);
  for (auto u : g[x]) if (u.first != p) {
    if (tin[u.first]) {
      low[x] = min(low[x], tin[u.first]);
      continue:
    dfs(u.first, x);
    low[x] = min(low[x], low[u.first]);
    if (low[u.first] == tin[u.first]) br[u.second] =
    true;
  if (tin[x] == low[x]) {
    while (st.size()) {
      int u = st.top(); st.pop();
      bcc[u] = sz;
      if (u == x) break;
}
```

5 String

5.1 KMP

```
int f[maxn];
int kmp(const string& a, const string& b) {
   f[0] = -1; f[1] = 0;
   for (int i = 1, j = 0; i < b.size() - 1; f[++i] = ++j
    ) {
     if (b[i] == b[j]) f[i] = f[j];
     while (j != -1 && b[i] != b[j]) j = f[j];</pre>
```

```
for (int i = 0, j = 0; i - j + b.size() <= a.size();
    ++i, ++j) {
    while (j != -1 && a[i] != b[j]) j = f[j];
    if (j == b.size() - 1) return i - j;
    }
    return -1;
}</pre>
```

5.2 Z algorithm

5.3 Manacher's

5.4 Aho-Corasick

```
struct AC {
  int ptr, ql, qr, root;
vector<int> cnt, q, ed, el, ch[sigma], f;
void clear(int p) { for (int i = 0; i < sigma; ++i)</pre>
     ch[i][p] = 0; 
  int newnode() { clear(ptr); ed[ptr] = 0; return ptr
     ++; }
  void init() {
    ptr = 1; cnt.resize(maxn); q.resize(maxn);
     ed.resize(maxn); el.resize(maxn); f.resize(maxn);
     for (int i = 0; i < sigma; ++i) ch[i].resize(maxn);</pre>
    root = newnode();
  int add(const string &s) {
    int now = root;
     for (int i = 0; i < s.length(); ++i) {</pre>
       if (ch[s[i]][now] == 0) ch[s[i]][now] = newnode()
      now = ch[s[i]][now];
     ed[now] = 1;
    return now;
  void build_fail() {
    ql = qr = 0; q[qr++] = root;
    while (ql < qr) {</pre>
```

```
int now = q[q1++];
for (int i = 0; i < sigma; ++i) if (ch[i][now]) {</pre>
         int p = ch[i][now], fp = f[now];
while (fp && !ch[i][fp]) fp = f[fp];
          int pd = fp ? ch[i][fp] : root;
          f[p] = pd;
         el[p] = ed[pd] ? pd : el[pd];
q[qr++] = p;
    }
  void build(const string &s) {
     build_fail();
     int now = 1;
     for (int i = 0; i < s.length(); ++i) {</pre>
       while (now && !ch[s[i]][now]) now = f[now];
       now = now ? ch[s[i]][now] : root;
       ++cnt[now];
     for (int i = qr - 1; i >= 0; --i) cnt[f[q[i]]] +=
     cnt[q[i]];
};
```

5.5 Suffix Array

```
struct SuffixArray {
  int sa[maxn], tmp[2][maxn], c[maxn], _lcp[maxn], r[
    maxn], n;
  string s;
  SparseTable st;
  void suffixarray()
     int* rank = tmp[0];
    int* nRank = tmp[1];
    int A = 128;
    for (int i = 0; i < A; ++i) c[i] = 0;
    for (int i = 0; i < s.length(); ++i) c[rank[i] = s[
    i]]++;
    for (int i = 1; i < A; ++i) c[i] += c[i - 1];
    for (int i = s.length() - 1; i \ge 0; --i) sa[--c[s[
    i]]] = i;
    for (int n = 1; n < s.length(); n *= 2) {</pre>
      for (int i = 0; i < A; ++i) c[i] = 0;
      for (int i = 0; i < s.length(); ++i) c[rank[i</pre>
    ]]++;
      for (int i = 1; i < A; ++i) c[i] += c[i - 1];
      int* sa2 = nRank;
      int r = 0:
      for (int i = s.length() - n; i < s.length(); ++i)
     sa2[r++] = i;
      for (int i = 0; i < s.length(); ++i) if (sa[i] >=
     n) sa2[r++] = sa[i] - n;
      for (int i = s.length() - 1; i \ge 0; --i) sa[--c[
    rank[sa2[i]]] = sa2[i];
      nRank[sa[0]] = r = 0;
      for (int i = 1; i < s.length(); ++i) {</pre>
        if (!(rank[sa[i - 1]] == rank[sa[i]] && sa[i -
    1] + n < s.length() && rank[sa[i - 1] + n] == rank[
    sa[i] + n])) r++;
        nRank[sa[i]] = r;
      swap(rank, nRank);
      if (r == s.length() - 1) break;
      A = r + 1;
  void solve() {
    suffixarray();
    for (int i = 0; i < n; ++i) r[sa[i]] = i;
int ind = 0; _lcp[0] = 0;
    for (int i = 0; i < n; ++i) {
  if (!r[i]) { ind = 0; continue; }</pre>
      while (i + ind < n \&\& s[i + ind] == s[sa[r[i] -
    1] + ind])_++ind;
      _{lcp[r[i]]} = ind ? ind-- : 0;
    st = SparseTable(n, _lcp);
  int lcp(int L, int R) {
    if (L == R) return n - L - 1;
```

```
L = r[L]; R = r[R];
if (L > R) swap(L, R);
++L;
return st.query(L, R);
}
SuffixArray(string s): s(s), n(s.length()) {}
SuffixArray() {}
};
```

```
5.6 SAIS
namespace SAIS {
  enum type { L, S, LMS };
const int maxn = 1e5 + 5;
  int bkt[maxn], cnt[maxn], lptr[maxn], rptr[maxn],
    tptr[maxn]:
  int rev[maxn];
  void pre(const vector<int> &s, int sigma) {
    fill(bkt, bkt + s.size(), -1);
    fill(cnt, cnt + sigma, 0);
    for (int i = 0; i < s.size(); ++i) ++cnt[s[i]];</pre>
    int last = 0;
    for (int i = 0; i < sigma; ++i) {</pre>
      lptr[i] = last;
      last += cnt[i]
      rptr[i] = tptr[i] = last - 1;
  void induce(const vector<int> &s, const vector<type>
    &v) {
    for (int i = 0; i < s.size(); ++i) if (bkt[i] > 0)
      if (v[bkt[i] - 1] == L) bkt[lptr[s[bkt[i] -
    1]]++] = bkt[i] - 1;
    for (int i = s.size() - 1; i \ge 0; --i) if (bkt[i]
    > 0) {
      if (v[bkt[i] - 1] != L) bkt[rptr[s[bkt[i] -
    1]]--] = bkt[i] - 1;
  bool equal(int 1, int r, const vector<int> &s, const
    vector<type> &v) {
    do { if (s[l] != s[r]) return false; ++l, ++r; }
    while (v[l] != LMS && v[r] != LMS);
    return s[l] == s[r];
  vector<int> radix_sort(const vector<int> &lms, const
    vector<int> &s, const vector<type> &v, int sigma) {
    pre(s, sigma);
    for (int i = 0; i < lms.size(); ++i) bkt[tptr[s[lms
    [i]]]--] = lms[i];
    induce(s, v);
    vector<int> rt(lms.size());
    for (int i = 0; i < lms.size(); ++i) rev[lms[i]] =</pre>
    i;
    int prv = -1, rnk = 0;
for (int i = 0; i < s.size(); ++i) {</pre>
      int x = bkt[i]
      if (v[x] != LMS) continue;
      if (prv == -1) {
        rt[rev[x]] = rnk;
        prv = x;
        continue;
      if (!equal(prv, x, s, v)) ++rnk;
      rt[rev[x]] = rnk;
      prv = x;
    return rt;
  vector<int> counting_sort(const vector<int> &s) {
    vector<int> o(s.size());
    for (int i = 0; i < s.size(); ++i) o[s[i]] = i;
    return o;
  vector<int> reconstruct(const vector<int> &sa, const
    vector<int> &s, const vector<type> &v) {
    vector<int> pos;
```

```
for (int i = 0; i < s.size(); ++i) if (v[i] == LMS)
     pos.push_back(i);
    vector<int> rev(sa.size());
    for (int i = 0; i < sa.size(); ++i) rev[i] = pos[sa</pre>
    [i]];
    return rev;
  vector<int> sais(const vector<int> &s, int sigma) {
    vector<type> v(s.size());
    v[s.size() - 1] = S
    for (int i = s.size() - 2; i >= 0; --i) {
      if (s[i] < s[i + 1] || s[i] == s[i + 1] && v[i +
    1] == S) v[i] = S;
      else v[i] = L;
    for (int i = s.size() - 1; i >= 1; --i) {
      if (v[i] == S \&\& v[i - 1] == L) v[i] = LMS;
    vector<int> lms;
    for (int i = 0; i < s.size(); ++i) if (v[i] == LMS)
     lms.push_back(i);
    vector<int> r = radix_sort(lms, s, v, sigma);
    vector<int> sa;
    if (*max_element(r.begin(), r.end()) == r.size() -
    1) sa = counting_sort(r)
    else sa = sais(r, *max_element(r.begin(), r.end())
    + 1);
    sa = reconstruct(sa, s, v);
    pre(s, sigma);
    for (int i = sa.size() - 1; i >= 0; --i) bkt[tptr[s
    [sa[i]]]--] = sa[i];
    induce(s, v);
    return vector<int>(bkt, bkt + s.size());
  vector<int> build(const string &s) {
    vector<int> v(s.size() + 1);
    for (int i = 0; i < s.size(); ++i) v[i] = s[i];</pre>
    v[v.size() - 1] = 0;
    vector<int> sa = sais(v, 256);
    return vector<int>(sa.begin() + 1, sa.end());
}
```

5.7 DC3

```
namespace DC3{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
#define SG(v,i) ((i)>=int(v.size())?0:v[i])
  inline bool smaller(int a, int b, vector<int> &r){
    if(SG(r,a+0) != SG(r,b+0)) return SG(r,a+0) < SG(r,b+0)
    +0);
    if(SG(r,a+1) != SG(r,b+1)) return SG(r,a+1) < SG(r,b+1)
    +1);
    return SG(r,a+2)<SG(r,b+2);</pre>
  int cc[100005];
  inline vector<int> sort(vector<int> &r, int o, vector
    <int> &ix, int m){
    vector<int> rt(ix.size());
    for(int z=0;z<0;++z) r.push_back(0);</pre>
    for(int i=0;i<=m;++i) cc[i] = 0;</pre>
    for(int i=0;i<ix.size();++i) ++cc[r[ix[i]+o]];</pre>
    for(int i=0;i<=m;++i) cc[i+1] += cc[i];</pre>
    for(int i=ix.size()-1;i>=0;--i) rt[--cc[r[ix[i]+o
    ]]] = ix[i];
    for(int z=0;z<0;++z) r.pop_back();</pre>
    return rt;
  vector<int> dc3(vector<int> &v, int n, int m){
    int c1 = (n+1)/3;
    vector<int> i12;
    for(int i=0;i<n;++i){</pre>
      if(i%3==0)continue
      i12.push_back(i);
    i12 = sort(v, 2, i12, m);
```

```
i12 = sort(v, 1, i12, m);
i12 = sort(v, 0, i12, m);
    int nr = 1;
    vector<int> r12(i12.size());
#define GRI(x) ((x)/3 + ((x)/3 = 2?c1:0))
    r12[GRI(i12[0])] = 1;
    for(int i=1;i<i12.size();++i){</pre>
      if(smaller(i12[i-1], i12[i], v)) r12[GRI(i12[i])]
     = ++nr
      else r12[GRI(i12[i])] = nr;
#define GEI(x) ((x)<c1?(x)*3+1:(x-c1)*3+2)
    if(nr != i12.size()){
      i12 = dc3(r12, i12.size(), nr);
       for(int i=0;i<i12.size();++i) r12[i12[i]] = i+1;</pre>
       for(int &i: i12) i = GEI(i);
    vector<int> i0;
    if(n%3==1) i0.push_back(n-1);
    for(int i=0;i<i12.size();++i) if(i12[i]%3 == 1) i0.</pre>
    push_back(i12[i]-1);
    i0 = sort(v, 0, i0, m);
    vector<int> ret(v.size());
    int ptr12=0, ptr0=0, ptr=0;
    while(ptr12<i12.size() && ptr0<i0.size()){</pre>
      if(i12[ptr12]%3 == 1){
         if([&](int i, int j) -> bool{
           if(SG(v,i) != SG(v,j)) return SG(v,i) < SG(v,j)
           return SG(r12,GRI(i+1))<SG(r12,GRI(j+1));</pre>
        }(i12[ptr12], i0[ptr0]))ret[ptr++] = i12[ptr12
    ++];
        else ret[ptr++] = i0[ptr0++];
      }
      else{
         if([&](int i, int j) -> bool{
          if(SG(v,i+0)) = \overline{SG(v,j+0)} return SG(v,i+0) <
    SG(v,j+0);
           if(SG(v,i+1) != SG(v,j+1)) return SG(v,i+1) <
    SG(v,j+1);
           return SG(r12,GRI(i+2))<SG(r12,GRI(j+2));</pre>
        }(i12[ptr12], i0[ptr0]))ret[ptr++] = i12[ptr12
    ++];
        else ret[ptr++] = i0[ptr0++];
      }
    while(ptr12<i12.size()) ret[ptr++] = i12[ptr12++];</pre>
    while(ptr0<i0.size()) ret[ptr++] = i0[ptr0++];</pre>
    return ret;
  vector<int> build(string str){
    vector<int> val(str.size()+1, 0);
for(int i=0;i<str.size();++i) val[i] = str[i];</pre>
    return dc3(val, val.size(), 255);
#pragma GCC diagnostic pop
```

5.8 Smallest Rotation

```
string rotate(const string &s) {
  int n = s.length();
  string t = s + s;
  int i = 0, j = 1;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) ++k;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) ++j;
  }
  int pos = (i < n ? i : j);
  return s.substr(pos, n);
}</pre>
```

6 Math

6.1 Fast Fourier transform

```
const int maxn = 131072;
using cplx = complex<double>;
const cplx I = cplx(0, 1);
const double pi = acos(-1);
cplx omega[maxn + 1];
void prefft() {
  for (int i = 0; i <= maxn; ++i) omega[i] = exp(i * 2
 * pi / maxn * I);</pre>
void bin(vector<cplx> &a, int n) {
  int lg;
  for (\bar{l}g = 0; (1 << lg) < n; ++lg); --lg;
  vector<cplx> tmp(n);
  for (int i = 0; i < n; ++i) {
    int to = 0;
    for (int j = 0; (1 << j) < n; ++j) to l = (((i >> j)
     & 1) << (lg - j));
    tmp[to] = a[i];
  for (int i = 0; i < n; ++i) a[i] = tmp[i];
void fft(vector<cplx> &a, int n) {
  bin(a, n);
  for (int step = 2; step <= n; step <<= 1) {</pre>
    int to = step >> 1;
for (int i = 0; i < n; i += step) {</pre>
      for (int k = 0; k < to; ++k) {
        cplx x = a[i + to + k] * omega[maxn / step * k]
        a[i + to + k] = a[i + k] - x;
        a[i + k] += x;
    }
  }
}
void ifft(vector<cplx> &a, int n) {
  fft(a, n);
  reverse(a.begin() + 1, a.end());
  for (int i = 0; i < n; ++i) a[i] /= n;
vector<int> multiply(const vector<int> &a, const vector
    <int> &b, bool trim = false) {
  int d = 1;
  while (d < max(a.size(), b.size())) d <<= 1; d <<= 1;</pre>
  vector<cplx> pa(d), pb(d);
  for (int i = 0; i < a.size(); ++i) pa[i] = cplx(a[i],
  for (int i = 0; i < b.size(); ++i) pb[i] = cplx(b[i],
     0);
  fft(pa, d); fft(pb, d);
  for (int i = 0; i < d; ++i) pa[i] *= pb[i];
  ifft(pa, d);
  vector<int> r(d);
  for (int i = 0; i < d; ++i) r[i] = round(pa[i].real()</pre>
  if (trim) while (r.size() && r.back() == 0) r.
    pop_back();
  return r;
```

6.2 Number theoretic transform

```
const long long p = 2013265921, root = 31;
long long omega[maxn + 1];
long long fpow(long long a, long long n) {
  long long ret = 1ll;
  for (; n; n >>= 1) {
    if (n & 1) ret = ret * a % p;
```

```
a = a * a % p;
  return ret;
}
void prentt() {
  omega[0] = 1;
  long long r = fpow(root, (p - 1) / maxn);
  for (int i = 1; i \le \max_i ++i) omega[i] = omega[i -
    1] * r % p;
void ntt(vector<long long>& a, int n, bool inv = false)
  int basic = maxn / n;
  int theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
     int mh = m >> 1;
     for (int i = 0; i < mh; ++i) {
       long long w = omega[i * theta % maxn];
       for (int j = i; j < n; j += m) {
         int k = j + mh;
         long long x = a[j] - a[k];
if (x < 0) x += p;
         a[j] += a[k];
         if (a[j] > p) a[j] -= p;
a[k] = w * x % p;
     theta = theta * 2 % maxn;
  int i = 0;
  for (int j = 1; j < n - 1; ++j) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);
     if (j < i) swap(a[i], a[j]);</pre>
  if (!inv) return;
  long long ni = fpow(n, p - 2);
  reverse(a.begin() + 1, a.end());
for (int i = 0; i < n; ++i) a[i] = a[i] * ni % p;
```

6.3 Fast Walsh-Hadamard transform

```
void xorfwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = 1 + r >> 1;
  xorfwt(v, 1, m), xorfwt(v, m, r);
  for (int i = l, j = m; i < m; ++i, ++j) {
    int_x = v[i] + v[j];
    v[j] = v[i] - v[j], v[i] = x;
void xorifwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  for (int i = l, j = m; i < m; ++i, ++j) {
  int x = (v[i] + v[j]) / 2;
    v[j] = (v[i] - v[j]) / 2, v[i] = x;
  xorifwt(v, l, m), xorifwt(v, m, r);
}
void andfwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = 1 + r >> 1;
  andfwt(v, l, m), andfwt(v, m, r);
for (int i = l, j = m; i < m; ++i, ++j) v[i] += v[j];
void andifwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  andifwt(v, l, m), andifwt(v, m, r);
for (int i = l, j = m; i < m; ++i, ++j) v[i] -= v[j];</pre>
void orfwt(int v[], int l, int r) {
 if (r - l == 1) return;
```

```
int m = l + r >> 1;
  orfwt(v, l, m), orfwt(v, m, r);
  for (int i = l, j = m; i < m; ++i, ++j) v[j] += v[i];
}

void orifwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  orifwt(v, l, m), orifwt(v, m, r);
  for (int i = l, j = m; i < m; ++i, ++j) v[j] -= v[i];
}</pre>
```

6.4 Lagrange Interpolation

```
namespace lagrange {
  long long pf[maxn], nf[maxn];
   void init() {
     pf[0] = nf[0] = 1;
     for (int i = 1; i < maxn; ++i) {
       pf[i] = pf[i - 1] * i % mod;
       nf[i] = nf[i - 1] * (mod - i) % mod;
   \frac{1}{y} given y: value of f(a), a = [0, n], find f(x)
  long long solve(int n, vector<long long> y, long long
     if (x <= n) return y[x];</pre>
     long long all = 1;
     for (int i = 0; i \le n; ++i) (all *= (x - i + mod))
      %= mod;
     long long ans = 0;
     for (int i = 0; i <= n; ++i) {
       long long z = all * fpow(x - i, -1) % mod;
long long l = pf[i], r = nf[n - i];
(ans += y[i] * z % mod * fpow(l * r, -1)) %= mod;
     return ans;
}
```

6.5 Miller Rabin

```
// n < 4759123141
                     chk = [2, 7, 61]
// n < 1122004669633 \text{ chk} = [2, 13, 23, 1662803]
                  chk = [2, \overline{3}25, 9375, 28178, 450775,
// n < 2^64
    9780504, 1795265022]
vector<long long> chk = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };
long long fmul(long long a, long long n, long long mod)
  long long ret = 0;
  for (; n; n >>= 1) {
    if (n & 1) (ret += a) %= mod;
    (a += a) \% = mod;
  return ret;
long long fpow(long long a, long long n, long long mod)
  long long ret = 1LL;
  for (; n; n >>= 1) {
  if (n & 1) ret = fmul(ret, a, mod);
    a = fmul(a, a, mod);
  return ret;
bool check(long long a, long long u, long long n, int t
  a = fpow(a, u, n);
  if (a == 0) return true;
  if (a == 1 \mid | a == n - 1) return true;
  for (int i = 0; i < t; ++i) {
    a = fmul(a, a, n);
    if (a == 1) return false;
    if (a == n - 1) return true;
```

```
}
return false;
}
bool is_prime(long long n) {
    if (n < 2) return false;
    if (n % 2 == 0) return n == 2;
    long long u = n - 1; int t = 0;
    for (; u & 1; u >>= 1, ++t);
    for (long long i : chk) {
        if (!check(i, u, n, t)) return false;
    }
    return true;
}
```

6.6 Pollard's rho

```
long long f(long long x, long long n, int p) { return (
     fmul(x, x, n) + p) % n; }
map<long long, int> cnt;
void pollard_rho(long long n) {
   if (n == 1) return;
   if (prime(n)) return ++cnt[n], void();
if (n % 2 == 0) return pollard_rho(n / 2), ++cnt[2],
     void();
   long long x = 2, y = 2, d = 1, p = 1;
   while (true) {
     if (d != n && d != 1) {
       pollard_rho(n / d);
       pollard_rho(d);
       return;
     if (d == n) ++p;

x = f(x, n, p); y = f(f(y, n, p), n, p);
     d = \__gcd(abs(x - y), n);
}
```

6.7 Gaussian Elimination

```
void gauss(vector<vector<double>> &d) {
   int n = d.size(), m = d[0].size();
   for (int i = 0; i < m; ++i) {
      int p = -1;
      for (int j = i; j < n; ++j) {
        if (fabs(d[j][i]) < eps) continue;
        if (p == -1 || fabs(d[j][i]) > fabs(d[p][i])) p =
        j;
      }
      if (p == -1) continue;
      for (int j = 0; j < m; ++j) swap(d[p][j], d[i][j]);
      for (int j = 0; j < n; ++j) {
        if (i == j) continue;
        double z = d[j][i] / d[i][i];
        for (int k = 0; k < m; ++k) d[j][k] -= z * d[i][k];
      }
    }
}</pre>
```

6.8 Linear Equations (full pivoting)

```
}
  if (p == -1) continue;
  swap(r[p], r[i]), swap(c[z], c[i]);
  for (int j = 0; j < n; ++j) {
  if (i == j) continue;</pre>
    double z = d[r[j]][c[i]] / d[r[i]][c[i]]
     for (int k = 0; k < m; ++k) d[r[j]][c[k]] -= z *
  d[r[i]][c[k]];
    aug[r[j]] \stackrel{-}{=} z * aug[r[i]];
vector<vector<double>> fd(n, vector<double>(m));
vector<double> faug(n), x(n);
for (int i = 0; i < n; ++i) {</pre>
  for (int j = 0; j < m; ++j) fd[i][j] = d[r[i]][c[j]]
  faug[i] = aug[r[i]];
d = fd, aug = faug;
for (int i = n - 1; i >= 0; --i) {
  double p = 0.0;
  for (int j = i + 1; j < n; ++j) p += d[i][j] * x[j]
  x[i] = (aug[i] - p) / d[i][i];
for (int i = 0; i < n; ++i) sol[c[i]] = x[i];</pre>
```

6.9 μ function

```
int mu[maxn], pi[maxn];
vector<int> prime;
void sieve() {
  mu[1] = pi[1] = 1;
for (int i = 2; i < maxn; ++i) {</pre>
     if (!pi[i]) {
       pi[i] = i;
       prime.push_back(i);
       mu[i] = -1;
     for (int j = 0; i * prime[j] < maxn; ++j) {</pre>
       pi[i * prime[j]] = prime[j];
mu[i * prime[j]] = -mu[i];
       if (i % prime[j] == 0) {
          mu[i * prime[j]] = 0;
          break;
       }
     }
  }
}
```

6.10 $\lfloor \frac{n}{i} \rfloor$ Enumeration

```
vector<int> solve(int n) {
  vector<int> vec;
  for (int t = 1; t < n; t = (n / (n / (t + 1)))) vec.
     push_back(t);
  vec.push_back(n);
  vec.resize(unique(vec.begin(), vec.end()) - vec.begin
     ());
  return vec;
}</pre>
```

6.11 Extended GCD

```
template <typename T> tuple<T, T, T> extgcd(T a, T b) {
   if (!b) return make_tuple(a, 1, 0);
   T d, x, y;
   tie(d, x, y) = extgcd(b, a % b);
   return make_tuple(d, y, x - (a / b) * y);
}
```

6.12 Chinese remainder theorem

Given $x \equiv a_i \mod n_i \forall 1 \leq i \leq k$, where n_i are pairwise coprime, find x.

Let $N = \prod_{i=1}^{k} n_i$ and $N_i = N/n_i$, there exist integer M_i and m_i such that $M_i N_i + m_i n_i = 1$.

A solution to the system of congruence is $x = \sum_{i=1}^{k} a_i M_i N_i$.

6.13 Lucas's theorem

```
For non-negative integers m and n and prime p, \binom{m}{n} = \prod_{i=0}^k \binom{m_i}{n_i} \mod p where m = m_k p^k + m_{k-1} p^{k-1} + \ldots + m_1 p + m_0, m = n_k p^k + n_{k-1} p^{k-1} + \ldots + n_1 p + n_0.
```

6.14 Primes

 $\begin{array}{l} 97, 101, 131, 487, 593, 877, 1087, 1187, 1487, 1787, 3187, 12721, \\ 13331, 14341, 75577, 123457, 222557, 556679, 999983, \\ 1097774749, 1076767633, 100102021, 999997771, \\ 1001010013, 1000512343, 987654361, 999991231, \\ 999888733, 98789101, 987777733, 999991921, 1000000007, \\ 1000000087, 1000000123, 1010101333, 1010102101, \\ 100000000039, 100000000000037, 2305843009213693951, \\ 4611686018427387847, 9223372036854775783, \\ 18446744073709551557 \end{array}$

7 Dynamic Programming

7.1 Convex Hull (monotone)

```
struct line {
  double a, b;
  inline double operator()(const double &x) const {
     return a * x + b; }
  inline bool checkfront(const line &l, const double &x
     ) const { return (*this)(x) < l(x); }</pre>
  inline double intersect(const line &l) const { return
  (l.b - b) / (a - l.a); }
  inline bool checkback(const line &l, const line &
     pivot) const { return pivot.intersect((*this)) <=</pre>
     pivot.intersect(l); }
void solve() {
  for (int i = 1; i < maxn; ++i) dp[0][i] = inf;
  for (int i = 1; i \le k; ++i) {
     deque<line> dq; dq.push_back((line){ 0.0, dp[i -
     1][0] });
    for (int j = 1; j <= n; ++j) {
  while (dq.size() >= 2 && dq[1].checkfront(dq[0],
  invt[j])) dq.pop_front();
       dp[i][j] = st[j] + dq.front()(invt[j]);
       line nl = (line)\{ -s[j], dp[i - 1][j] - st[j] + s
     [j] * invt[j] };
       while (dq.size() >= 2 && nl.checkback(dq[dq.size
     () - 1], dq[dq.size() - 2])) dq.pop_back();
       dq.push_back(nl);
  }
}
```

7.2 Convex Hull (non-monotone)

```
struct line {
  int m, y;
  int l, r;
  line(int m = 0,int y = 0, int l = -5, int r =
    1000000009): m(m), y(y), l(l), r(r) {}
  int get(int x) const { return m * x + y; }
```

```
int useful(line le) const {
    return (int)(get(l) >= le.get(l)) + (int)(get(r) >=
     le.get(r));
int magic;
bool operator < (const line &a, const line &b) {</pre>
 if (magic) return a.m < b.m;</pre>
  return a.l < b.l;
set<line> st;
void addline(line l) {
 magic = 1;
  auto it = st.lower_bound(l);
  if (it != st.end() && it->useful(l) == 2) return;
  while (it != st.end() \&\& it->useful(l) == 0) it = st.
    erase(it);
  if (it != st.end() && it->useful(l) == 1) {
    int L = it \rightarrow l, R = it \rightarrow r, M;
    while (R > L) {
      M = (L + R + 1) >> 1;
      if (it->get(M) >= l.get(M)) R = M - 1;
      else L = M;
    line cp = *it;
    st.erase(it);
    cp.l = L + 1;
    if (cp.l <= cp.r) st.insert(cp);</pre>
    l.r = L;
  else if (it != st.end()) l.r = it->l - 1;
  it = st.lower_bound(1);
 while (it != st.begin() && prev(it)->useful(l) == 0)
    it = st.erase(prev(it));
  if (it != st.begin() && prev(it)->useful(l) == 1) {
    --it;
    int L = it \rightarrow l, R = it \rightarrow r, M;
    while (R > L) {
      M = (L + R) >> 1;
      if (it->get(M) >= l.get(M)) L = M + 1;
      else R = M;
    line cp = *it;
    st.erase(it);
    cp.r = L - 1;
    if (cp.l <= cp.r) st.insert(cp);</pre>
    l.l = L;
  else if (it != st.begin()) l.l = prev(it)->r + 1;
  if (l.l <= l.r) st.insert(l);
int getval(int d) {
 magic = 0;
  return (--st.upper_bound(line(0, 0, d, 0)))->get(d);
```

7.3 1D/1D Convex Optimization

```
struct segment {
   int i, l, r;
   segment() {}
   segment(int a, int b, int c): i(a), l(b), r(c) {}
};

inline long long f(int l, int r) {
   return dp[l] + w(l + 1, r);
}

void solve() {
   dp[0] = 0ll;
   deque<segment> deq; deq.push_back(segment(0, 1, n));
   for (int i = 1; i <= n; ++i) {
      dp[i] = f(deq.front().i, i);
      while (deq.size() && deq.front().r < i + 1) deq.
      pop_front();
   deq.front().l = i + 1;</pre>
```

```
segment seg = segment(i, i + 1, n);
while (deq.size() && df(i, deq.back().l) < df(deq.back().i, deq.back().l)) deq.pop_back();
if (deq.size()) {
   int d = 1048576, c = deq.back().l;
   while (d >>= 1) if (c + d <= deq.back().r) {
     if (df(i, c + d) > df(deq.back().i, c + d)) c
   += d;
   }
   deq.back().r = c; seg.l = c + 1;
}
if (seg.l <= n) deq.push_back(seg);
}
</pre>
```

7.4 Condition

7.4.1 concave totally monotone

```
\forall i < i', j < j', B[i][j] \le B[i'][j] \implies B[i][j'] \le B[i'][j']
```

7.4.2 convex totally monotone

```
\forall i < i', j < j', B[i][j] \ge B[i'][j] \implies B[i][j'] \ge B[i'][j']
```

7.4.3 concave monge condition

```
\forall i < i', j < j', B[i][j] + B[i'][j'] \ge B[i][j'] + B[i'][j]
```

7.4.4 convex monge condition

```
\forall i < i', j < j', B[i][j] + B[i'][j'] \le B[i][j'] + B[i'][j]
```

8 Geometry

8.1 Basic

```
const double eps = 1e-8;
const double pi = acos(-1);
struct Point {
  double x, y;
  Point(double a = 0, double b = 0): x(a), y(b) {}
};
typedef Point Vector;
// L:ax+by+c=0
struct Line {
  double a, b, c, angle;
  Point p1, p2;
  Line() {}
  Line(Point s, Point e) {
    a = s.y - e.y, b = e.x - s.x;
c = s.x * e.y - e.x * s.y;
    angle = atan2(e.y - s.y, e.x - s.x);
    p1 = s, p2 = e;
};
struct Segment {
  Point s, e;
Segment() {}
  Segment(Point a, Point b): s(a), e(b) {}
  Segment(double x1, double y1, double x2, double y2) {
    s = Point(x1, y1);
    e = Point(x2, y2);
  }
};
Vector operator+(Point a, Point b) { return Vector(a.x
    + b.x, a.y + b.y); }
Vector operator-(Point a, Point b) { return Vector(a.x
    - b.x, a.y - b.y); }
```

```
Vector operator*(Point a, double k) { return Vector(a.x
            * k, a.y * k); }
Vector operator/(Point a, double k) { return Vector(a.x
           / k, a.y / k); }
double len(Vector a) { return sqrt(a.x * a.x + a.y * a.
// <0 when ep at opsp clockwise
double Cross(Point &sp, Point &ep, Point &op) { return
         (sp.x - op.x) * (ep.y - op.y) - (ep.x - op.x) * (sp.x - op.x
          .y - op.y); }
double Cross(Vector a, Vector b) { return a.x * b.y - b
         .x * a.y; }
double Dot(Vector a, Vector b) { return a.x * b.x + a.y
           * b.y; }
int epssgn(double x) {
  if (fabs(x) < eps) return 0;
  else return x < 0 ? -1 : 1;</pre>
double dis(Point a, Point b) { return sqrt((a.x - b.x)
         * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); }
bool Parallel(Line l1, Line l2) { return fabs(l1.a * l2
         .b - l2.a * l1.b) < eps;
bool LineEqual(Line 11, Line 12) { return Parallel(11,
         l2) && fabs(l1.a * l2.c - l2.a * l1.c) < eps &&
         fabs(l1.b * l2.c - l2.b * l1.c) < eps; }
double PointToSegDist(Point A, Point B, Point C) {
                                                                                                                                        lc);
     if (dis(A, B) < eps) return dis(B, C);</pre>
    if (epssgn(Dot(B - A, C - A)) < 0) return dis(A, C);
if (epssgn(Dot(A - B, C - B)) < 0) return dis(B, C);
return fabs(Cross(B - A, C - A)) / dis(B, A);</pre>
                                                                                                                                         lc);
                                                                                                                             }
double TwoSegMinDist(Point A, Point B, Point C, Point D
         ) { return min(min(PointToSegDist(A, B, C)
         PointToSegDist(A, B, D)), min(PointToSégDist(C, D, A), PointToSegDist(C, D, B))); }
Point SymPoint(Point p, Line l) {
    Point result;
    double a = 1.p2.x - l.p1.x;
double b = l.p2.y - l.p1.y;
double t = ((p.x - l.p1.x) * a + (p.y - l.p1.y) * b)
         / (a * a + b * b);
    result.x = 2 * l.p1.x + 2 * a * t - p.x;
    result.y = 2 * l.p1.y + 2 * b * t - p.y;
     return result;
// without end points: <= -> <
bool IsSegmentIntersect(Point s1, Point e1, Point s2,
         Point e2) {
     if (min(s1.x, e1.x) \le max(s2.x, e2.x) \&\&
        min(s1.y, e1.y) \leftarrow max(s2.y, e2.y) && min(s2.x, e2.x) \leftarrow max(s1.x, e1.x) &&
        min(s2.y, e2.y) <= max(s1.y, e1.y) &&
Cross(s2, e2, s1) * Cross(s2, e2, e1) <= 0 &&
         Cross(s1, e1, s2) * Cross(s1, e1, e2) <= 0) return
         1:
    return 0;
}
int IsLineIntersectSegment(Point p1, Point p2, Point s,
           Point e){ return !Cross(p1, p2, s) * Cross(p1, p2,
           e) > eps; }
int IsLineIntersectSegment(Line l1, Point s, Point e) {
           return !Cross(l1.p1, l1.p2, s) * Cross(l1.p1, l1.
         p2, e) > eps; }
Point GetIntersect(Line l1, Line l2) {
    Point res;
     res.x = (11.b * 12.c - 12.b * 11.c) / (11.a * 12.b -
    l2.a * l1.b);
res.y = (l1.c * l2.a - l2.c * l1.a) / (l1.a * l2.b -
         l2.a * l1.b);
     return res;
```

8.2 Triangle Center

```
Point TriangleCircumCenter(Point a, Point b, Point c) {
  Point res;
  double a1 = atan2(b.y - a.y, b.x - a.x) + pi / 2;
  double a2 = atan2(c.y - b.y, c.x - b.x) + pi / 2;
double ax = (a.x + b.x) / 2;
  double ay = (a.y + b.y) / 2;
  double bx = (c.x + b.x) / 2;
  double by = (c.y + b.y) / 2;
double r1 = (sin(a2) * (ax - bx) + cos(a2) * (by - ay
)) / (sin(a1) * cos(a2) - sin(a2) * cos(a1));
  return Point(ax + r1 * cos(a1), ay + r1 * sin(a1));
Point TriangleMassCenter(Point a, Point b, Point c) {
  return (a + b + c) / 3.0;
Point TriangleOrthoCenter(Point a, Point b, Point c) {
  return TriangleMassCenter(a, b, c) * 3.0 - TriangleCircumCenter(a, b, c) * 2.0;
Point TriangleInnerCenter(Point a, Point b, Point c) {
  Point res;
  double la = len(b - c);
  double lb = len(a - c);
  double lc = len(a - b);
  res.x = (la * a.x + lb * b.x + lc * c.x) / (la + lb +
  res.y = (la * a.y + lb * b.y + lc * c.y) / (la + lb +
  return res;
```

8.3 Sector Area

```
// calc area of sector which include a, b
double SectorArea(Point a, Point b, double r) {
   double theta = atan2(a.y, a.x) - atan2(b.y, b.x);
  while (theta <= 0) theta += 2 * pi;
while (theta >= 2 * pi) theta -= 2 * pi;
theta = min(theta, 2 * pi - theta);
return r * r * theta / 2;
```

8.4 Polygon Area

```
// point sort in counterclockwise
double ConvexPolygonArea(vector<Point> &p, int n) {
  double area = 0;
  for (int i = 1; i < p.size() - 1; i++) area += Cross(
    p[i] - p[0], p[i + 1] - p[0]);
  return area / 2;
```

Half Plane Intersection

```
int cmp(const Line &l1, const Line &l2) {
  int d = epssgn(l1.angle - l2.angle);
if (!d) return (epssgn(Cross(l2.p1 - l1.p1, l2.p2 -
     11.p1)) > 0);
  return d < 0;
void QSort(Line L[], int l, int r) {
  int i = l, j = r;
Line swap, mid = L[(l+r) / 2];
  while (i <= j) {
  while (cmp(L[i], mid)) ++i;
  while (cmp(mid, L[j])) --j;</pre>
      if (i <= j) {
        swap = L[i];
        L[i] = L[j];
```

```
L[j] = swap;
 }
  if (i < r) QSort(L, i, r);</pre>
  if (l < j) QSort(L, l, j);</pre>
int IntersectionOutOfHalfPlane(Line &hpl, Line &l1,
    Line &12) {
   Point p = GetIntersect(l1, l2);
   return epssgn(Cross(hpl.p1 - p, hpl.p2 - p)) < 0;</pre>
// move hpl for dis
Line HalfPlaneMoveIn(Line &hpl, double &dis) {
 double dx = hpl.p1.x - hpl.p2.x;
double dy = hpl.p1.y - hpl.p2.y;
  double ll = len(hpl.p1 - hpl.p2);
 Point pa = Point(dis * dy / ll + hpl.p1.x, hpl.p1.y -
     dis * dx / ll)
  Point pb = Point(dis * dy / ll + hpl.p2.x, hpl.p2.y -
     dis * dx / ll);
  return Line(pa, pb);
// get intersect of n halfplane l, intersect point in p
void HalfPlaneIntersect(Line l[], int n, Point p[], int
     &pn) {
  int i, j;
int dq[maxn], top = 1, bot = 0;
  OSort(l, 0, n-1);
for (i = j = 0; i < n; i++) if (epssgn(l[i].angle - l</pre>
    [j].angle) > 0) l[++j] = l[i];
 n = j + 1;
  dq.push_back(0); dq.push_back(1);
 for(i = 2; i < n; i++) {
  while (dq.size() >= 2 && IntersectionOutOfHalfPlane
  (l[i], l[dq[dq.size() - 1]], l[dq[dq.size() - 2]]))
     dq.pop_back();
    while (dq.size() >= 2 && IntersectionOutOfHalfPlane
    (l[i], l[dq[0]], l[dq[1]])) dq.pop_front();
    dq.push_back(i);
  while (dq.size() >= 2 && IntersectionOutOfHalfPlane(l
    [dq[0]], l[dq[dq.size() - 1]], l[dq[dq.size() -
    2]])) dq.pop_back();
 while (dq.size() >= 2 && IntersectionOutOfHalfPlane(l
    [dq[dq.size() - 1]], l[dq[dq[0]]], l[dq[dq[1]]]))
    dq.pop_front();
  dq.push_back(dq.front());
  for (pn = 0, i = 0; i < dq.size() - 1; ++i, ++pn) p[
    pn] = GetIntersect(l[dq[i + 1]], l[dq[i]]);
```

8.6 Polygon Center

```
Point BaryCenter(vector<Point> &p, int n) {
   Point res(0, 0);
   double s = 0.0, t;
   for (int i = 1; i < p.size() - 1; i++) {
        t = Cross(p[i] - p[0], p[i + 1] - p[0]) / 2;
        s += t;
        res.x += (p[0].x + p[i].x + p[i + 1].x) * t;
        res.y += (p[0].y + p[i].y + p[i + 1].y) * t;
   }
   res.x /= (3 * s);
   res.y /= (3 * s);
   return res;
}</pre>
```

8.7 Maximum Triangle

```
double ConvexHullMaxTriangleArea(Point p[], int res[],
   int chnum) {
   double area = 0, tmp;
   res[chnum] = res[0];
```

8.8 Point in Polygon

```
bool PointInConvexHull(Point p[], int res[], int chnum,
     Point x) {
  Point g = (p[res[0]] + p[res[chnum / 3]] + p[res[2 *
    chnum / 3]]) / 3.0;
  int l = 0, r = chnum, mid;
  while (l + 1 < r) {
    mid = (l + r) >> 1;
    if (epssgn(Cross(p[res[l]] - g, p[res[mid]] - g)) >
    if (epssgn(Cross(p[res[1]] - g, x - g)) >=0 && epssgn(Cross(p[res[mid]] - g, x - g)) < 0) r = mid;
      else l = mid;
    } else {
       if (epssgn(Cross(p[res[l]] - g, x - g)) < 0 &&
    epssgn(Cross(p[res[mid]] - g, x - g)) >=0 ) l = mid
      else r = mid;
    }
  r %= chnum;
  return epssgn(Cross(p[res[r]] - x, p[res[l]] - x)) ==
      -1;
```

8.9 Circle-Line Intersection

```
// remove second level if to get points for line (
     defalut: segment)
void CircleCrossLine(Point a, Point b, Point o, double
     r, Point ret[], int &num) {
  double x0 = o.x, y0 = o.y;
  double x1 = a.x, y1 = a.y;
  double x2 = b.x, y2 = b.y;
double dx = x2 - x1, dy = y2 - y1;
  double A = dx * dx + dy * dy;
double B = 2 * dx * (x1 - x0) + 2 * dy * (y1 - y0);
  double C = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0)
     y0) - r * r;
  double delta = B * B - 4 * A * C:
  num = 0;
  if (epssgn(delta) >= 0) {
     double t1 = (-B - sqrt(fabs(delta))) / (2 * A);
     double t2 = (-B + sqrt(fabs(delta))) / (2 * A);
if (epssgn(t1 - 1.0) <= 0 && epssgn(t1) >= 0) ret[
num++] = Point(x1 + t1 * dx, y1 + t1 * dy);
     if (epssgn(t2 - 1.0) \le 0 \&\& epssgn(t2) >= 0) ret[
     num++] = Point(x1 + t2 * dx, y1 + t2 * dy);
  }
}
vector<Point> CircleCrossLine(Point a, Point b, Point o
       double r) {
  double x0 = 0.x, y0 = 0.y;
  double x1 = a.x, y1 = a.y
  double x2 = b.x, y2 = b.y;
double dx = x2- x1, dy = y2 - y1;
double A = dx * dx + dy * dy;
```

```
double B = 2 * dx * (x1 - x0) + 2 * dy * (y1 - y0);
double C = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 -
    y0) - r * r;
double delta = B * B - 4 * A * C;
vector<Point> ret;
if (epssgn(delta) >=0){
    double t1 = (-B - sqrt(fabs(delta))) / (2 * A);
    double t2 = (-B + sqrt(fabs(delta))) / (2 * A);
    if (epssgn(t1 - 1.0) <= 0 && epssgn(t1) >= 0) ret.
    emplace_back(x1 + t1 * dx, y1 + t1 * dy);
    if (epssgn(t2 - 1.0) <= 0 && epssgn(t2) >= 0) ret.
    emplace_back(x1 + t2 * dx, y1 + t2 * dy);
}
return ret;
}
```

8.10 Circle-Triangle Intersection

```
// calc area intersect by circle with radius r and
    triangle OAB
double Calc(Point a, Point b, double r) {
  Point p[2];
  int num = 0;
 bool ina = epssgn(len(a) - r) < 0, inb = epssgn(len(b)
    ) - r) < 0;
  if (ina) {
    if (inb) return fabs(Cross(a, b)) / 2.0; //
    triangle in circle
    else \{ // a point inside and another outside: calc
    sector and triangle area
     CircleCrossLine(a, b, Point(0, 0), r, p, num);
      return SectorArea(b, p[0], r) + fabs(Cross(a, p
    [0])) / 2.0;
 } else {
   CircleCrossLine(a, b, Point(0, 0), r, p, num);
    if (inb) return SectorArea(p[0], a, r) + fabs(Cross
    (p[0], b)) / 2.0;
   SectorArea(p[1], b, r) + fabs(Cross(p[0], p[1])) /
    2.0; // segment ab has 2 point intersect with
     else return SectorArea(a, b, r); // segment has
    no intersect point with circle
 }
}
```

8.11 Polygon Diameter

```
// get diameter of p[res[]] store opposite points in
double Diameter(Point p[], int res[], int chnum, int
    app[][2], int &appnum) {
  double ret = 0, nowlen;
  res[chnum] = res[0];
  appnum = 0;
  for (int i = 0, j = 1; i < chnum; ++i) {
    while (Cross(p[res[i]] - p[res[i + 1]], p[res[j +
    1]] - p[res[i + 1]]) < Cross(p[res[i]] - p[res[i +
    1]], p[res[j]] - p[res[i + 1]])) {
      ++j;
      j %= chnum;
    app[appnum][0] = res[i];
    app[appnum][1] = res[j];
    ++appnum;
    nowlen = dis(p[res[i]], p[res[j]]);
    if (nowlen > ret) ret = nowlen;
    nowlen = dis(p[res[i + 1]], p[res[j + 1]]);
    if (nowlen > ret) ret = nowlen;
  return ret;
```

8.12 Minimun Distance of 2 Polygons

```
// p, q is convex
double TwoConvexHullMinDist(Point P[], Point Q[], int n
       int m) {
  int YMinP = 0, YMaxQ = 0;
  double tmp, ans = 999999999;
for (i = 0; i < n; ++i) if(P[i].y < P[YMinP].y) YMinP</pre>
      = i;
  for (i = 0; i < m; ++i) if(Q[i].y > Q[YMaxQ].y) YMaxQ
      = i;
  P[n] = P[0], Q[m] = Q[0];
  for (int i = 0; i < n; ++i) {
    while (tmp = Cross(Q[YMaxQ + 1] - P[YMinP + 1], P[
    YMinP] - P[YMinP + 1]) > Cross(Q[YMaxQ] - P[YMinP +
      1], P[YMinP] - P[YMinP + 1])) YMaxQ = (YMaxQ + 1)
     % m;
     if (tmp < 0) ans = min(ans, PointToSegDist(P[YMinP</pre>
     ], P[YMinP + 1], Q[YMaxQ]))
     else ans = min(ans, TwoSegMinDist(P[YMinP], P[YMinP
+ 1], Q[YMaxQ], Q[YMaxQ + 1]));
     YMinP = (YMinP + 1) \% n;
  return ans;
```

8.13 Convex Hull

```
int Graham(Point p[], int n, int res[]) {
  int len, top;
  top = 1;
  sort(p, p + n, [](const Point &a, const Point &b) {
       return a.y == b.y ? a.x < b.x : a.y < b.y; }
  // QSort(p,0,n-1);
  for (int i = 0; i < 3; i++) res[i] = i;
for (int i = 2; i < n; i++) {
    while (top && epssgn(Cross(p[i], p[res[top]], p[res
     [top - 1]])) >= 0) top--;
    res[++top] = i;
  len = top;
  res[++top] = n - 2;
for (int i = n-3; i>=0; i--) {
    while (top != len && epssgn(Cross(p[i], p[res[top
     ]], p[res[top - 1]])) >= 0) top--;
    res[++top] = i;
  return top;
}
```

8.14 Rotating Caliper

```
struct pnt {
   int x, y;
   pnt(): x(0), y(0) {};
   pnt(int xx, int yy): x(xx), y(yy) {};
} pp[maxn];

pnt operator-(const pnt &a, const pnt &b) { return pnt(
        b.x - a.x, b.y - a.y); }
int operator^(const pnt &a, const pnt &b) { return a.x
        * b.y - a.y * b.x; } //cross
int operator*(const pnt &a, const pnt &b) { return (a -
        b).x * (a - b).x + (a - b).y * (a - b).y; } //
        distance
int tb[maxn], tbz, rsd;
int dist(int n1, int n2){
    return p[n1] * p[n2];
}
int cross(int t1, int t2, int n1){
    return (p[t2] - p[t1]) ^ (p[n1] - p[t1]);
}
bool cmpx(const pnt &a, const pnt &b) { return a.x == b
        .x ? a.y < b.y : a.x < b.x; }

void RotatingCaliper() {</pre>
```

```
for (int i = m + 1; i \le r \& fabs(p[m].x - p[i].x) <
sort(p, p + n, cmpx);
for (int i = 0; i < n; ++i) {
                                                                   d; ++i) vec.push_back(i);
  while (tbz > 1 && cross(tb[tbz - 2], tb[tbz - 1], i
                                                                sort(vec.begin(), vec.end(), [=](const int& a, const
  ) <= 0) --tbz;
                                                                  int& b) { return p[a].y < p[b].y; });</pre>
  tb[tbz++] = i;
                                                                for (int i = 0; i < vec.size(); ++i)</pre>
                                                                  for (int j = i + 1; j < vec.size() && fabs(p[vec[j])
rsd = tbz - 1;
                                                                  ]].y - p[vec[i]].y) < d; ++j) {
for (int i = n - 2; i >= 0; --i) {
                                                                    d = min(d, dis(p[vec[i]], p[vec[j]]));
  while (tbz > rsd + 1 && cross(tb[tbz - 2], tb[tbz -
   1], i) <= 0) --tbz;
  tb[tbz++] = i;
                                                                return d;
}
--tbz;
int lpr = 0, rpr = rsd;
// tb[lpr], tb[rpr]
while (lpr < rsd || rpr < tbz - 1) {</pre>
  if (lpr < rsd && rpr < tbz - 1) {
  pnt rvt = p[tb[rpr + 1]] - p[tb[rpr]];</pre>
    pnt lvt = p[tb[lpr + 1]] - p[tb[lpr]];
    if ((lvt ^ rvt) < 0) ++lpr;</pre>
    else ++rpr;
  else if (lpr == rsd) ++rpr;
  else ++lpr;
  // tb[lpr], tb[rpr]
```

8.15 Min Enclosing Circle

```
pt center(const pt &a, const pt &b, const pt &c) {
 pt p0 = b - a, p1 = c - a;
  double c1 = norm2(p0) * 0.5, c2 = norm2(p1) * 0.5;
  double d = p0 \land p1;
  double x = a.x + (c1 * p1.y - c2 * p0.y) / d;
 double y = a.y + (c2 * p0.x - c1 * p1.x) / d;
  return pt(x, y);
circle min_enclosing(vector<pt> &p) {
  random_shuffle(p.begin(), p.end());
  double r = 0.0;
  pt cent;
  for (int i = 0; i < p.size(); ++i) {</pre>
    if (norm2(cent - p[i]) <= r) continue;</pre>
    cent = p[i];
    r = 0.0;
    for (int j = 0; j < i; ++j) {
      if (norm2(cent - p[j]) <= r) continue;</pre>
      cent = (p[i] + p[j]) / 2;
r = norm2(p[j] - cent);
for (int k = 0; k < j; ++k) {</pre>
         if (norm2(cent - p[k]) \leftarrow r) continue;
         cent = center(p[i], p[j], p[k]);
         r = norm2(p[k] - cent);
  return circle(cent, sqrt(r));
```

8.16 Closest Pair

```
pt p[maxn];
double dis(const pt& a, const pt& b) {
    return sqrt((a - b) * (a - b));
}

double closest_pair(int l, int r) {
    if (l == r) return inf;
    if (r - l == 1) return dis(p[l], p[r]);
    int m = (l + r) >> 1;
    double d = min(closest_pair(l, m), closest_pair(m +
        1, r));
    vector<int>    vec;
    for (int i = m; i >= l && fabs(p[m].x - p[i].x) < d;
        --i) vec.push_back(i);</pre>
```