Framework Convolutional Neural Network

Il modello utilizzato per la cassificazione binaria (tracciato Nomrale o tracciato Anormale) di ECG è una rete convoluzionata sequenziale con 5 layer, che ha la sequente struttura:

- -l primi 4 layer sono composti da:
 - -Conv1D
 - -BathcNorm1D
 - MaxPool1D
 - -Funzione di attivazione RELU
- -L'ultimo layer è composto:
 - -AveragePooling1D
- -Layer Flatter
- -Layer Dense con funzione di attivazione Soft Max

Implementazione della CNN

```
'''layer 1'''
cnn = Sequential()
cnn.add(Conv1D(2**num_unit, kernel_size=initial_kernel_size,strides=strides, input_shape=(10800,1)))
cnn.add(BatchNormalization())
cnn.add(MaxPooling1D(pool_size=maxpooling_poolsize))
cnn.add(Activation(activation))
'''layer 2'''
cnn.add(Conv1D(2**num_unit,kernel_size=kernel_size))
cnn.add(BatchNormalization())
cnn.add(MaxPooling1D(pool_size=maxpooling_poolsize))
cnn.add(Activation(activation))
'''laver 3'''
cnn.add(Conv1D(2**(num_unit+1),kernel_size=kernel_size))
cnn.add(BatchNormalization())
cnn.add(MaxPooling1D(pool_size=maxpooling_poolsize))
cnn.add(Activation(activation))
'''layer 4'''
cnn.add(Conv1D(2**(num_unit+2),kernel_size=kernel_size))
cnn.add(BatchNormalization())
cnn.add(MaxPooling1D(pool_size=maxpooling_poolsize))
cnn.add(Activation(activation))
'''layer 5'''
cnn.add(AveragePooling1D(pool_size = avg_poolsize))
cnn.add(Flatten())
cnn.add(Dense(n_classes, kernel_initializer=kernel_initializer, activation='softmax'))
return cnn
```

Training, Validation and Testing

prima di effettuare il trening, la validazione e il test l'intero dataset e stato diviso in due parti così divise:

- -70% di learning set
- -30% di test set

Per la **validazione** degli iperparametri del modello è stata utilizzata la *convalida* incrociata K-Fold con k=10 sul set di Learning.

A ogni iterazione del k-Fold si sono effettuate le seguenti operazoni:

- -Creazione della CNN
- Il learning set è stato diviso ulteriormente in k parti dove k-1 parti sono state utilizzate per l'addestramento(trainingSet) e la restante parte come validation set

```
for train, val in kfold.split(LearningX, LearningY):
    model = CNN_loader()

    trainingSet_X = LearningX[train]
    trainingSet_y = LearningY[train]

validation_X = LearningX[val]
    validation_Y = LearningY[val]
```

- Fit del modello con il traning set e il validation set
- E' stata calcolata l' accuratezza e il rcall

```
loss,acc,recall = model.evaluate( validation_X, validation_Y,batch_size=batch_size, verbose=1)
ACCURACY.append(acc)
LOSSLESS.append(loss)
RECALL.append(recall)

print("Model Results: ")
print("lossless = " + str(loss))
print("accuracy = " + str(acc))
print("recall = " + str(recall))
```


Alla fine delle varie iterazioni si è calcolata la media e la deviazione standard delle accuratezze e del recall.

Dopo aver effettuato la **validazione** è stata effettuata la **predizione**.

Per la **predizione** la rete è stata addestrata sull' intero learning set e successivamente si è effettuata la predizione per i dati del test set utilizzando il modello appena creato.

Figura 1

Nella figura 1 è presentato un esempio di convalida incrociata k-fold con k=5.

In fine si è visualizzata la matrice di confusione e le seguenti metriche:

- -Precision
- -Recall
- -F1

Scelta iperparametri

Per la scelta degli iperparametri si è fatto riferimento all' articolo "Automatic ECG Diagnosis Using Convolutional Neural Network di Roberta Avanzato and Francesco Beritelli" e gli iperparametri scelti inizialmente sono stati i seguenti:

```
#Parametres
EPOCHS = 100
BATCH_SIZE = 24
MAXPOOL_POOL_SIZE = 4
AVGPOOL_POOL_SIZE = 2
KERNEL SIZE = 4
OPTIMIZER = tensorflow.keras.optimizers.Adam
ACTIVATION = 'relu'
KERNEL INITIALIZER = 'normal'
STRIDES = 4
NUM_UNIT = 7 # 2^NUM_UNIT 128 unit
LOSS_FUNCTION = 'binary_crossentropy'
INITIAL_KERNEL_SIZE = 80
LEARNING_RATE = 0.1
def CNN LOAD():
    model = createCNN(num unit = NUM UNIT,
                       initial_kernel_size = INITIAL_KERNEL_SIZE,
                       strides = STRIDES ,
                       kernel initializer = KERNEL INITIALIZER,
                       maxpooling_poolsize = MAXPOOL_POOL_SIZE ,
                       activation= ACTIVATION,
                       avg_poolsize = AVGPOOL_POOL_SIZE,
                       kernel_size = KERNEL_SIZE)
    model.compile(optimizer=OPTIMIZER(lr = LEARNING_RATE), loss=LOSS_FUNCTION, m
   return model
```

I risultati ottenuti con questi iperparametri sono stati i seguenti:

Direcotry ".\tests\test_with_initial_params"

Test effettuati per il miglioramento del modello

Per migliorare i risultati ottenuti (visti in precedenza) sono stati effettuati una serie di test cambiando gli iperparametri della CNN.

I risultati considerati più rilevanti sono riassunti nella seguente tabella.

	Testing Result			Validation Result	
Test	Recall A	Recall N	Accuracy	avg_accuracy	avg_recall
1	0,99	0,40	0,80	0,834 +/- 0,029	0,956 +/- 0,002
2	0,90	0,83	0,88	0,889 +/- 0,023	0,968 +/- 0,002
3	0,91	0,72	0,85	0,841 +/- 0,036	0,961 +/- 0,002
4	0,94	0,77	0,89	0,861 +/- 0,045	0,964 +/- 0,002
5	0,95	0,77	0,88	0,754 +/- 0.096	0,901 +/- 0,003
6	0,95	0,85	0,92	0,765 +/- 0,072	0,891 +/- 0,003
7	0,98	0,51	0,83	0,845 +/- 0,038	0,925 +/- 0,003
8	0,91	0,78	0,87	0,856 +/- 0,026	0,967 +/- 0,003

Dataset con segmenti di 15 secondi

Il ogni tracciato è stato suddiviso in segmenti di 15 secondo e ogni segmento è stato etichettato.

In tutto si sono ottenuti i 5280 segmenti di cui :

- 2105 segmenti etichettati come N
- 3175 segmenti etichettati come A

L'intero dataset è stato suddiviso in una parte di learning e una parte di test con una percentuale di 70% per il learning e 30% per il test.

Sia nel learning set che nel test set sono state mantenute le proporzioni iniziali tra segmenti etichettati come A e segmenti etichettati come N.

Eseguendo il test con i gli iperparametri di partenza (seguendo l' articolo) si sono ottenuti i seguenti risultati:

Testing	Validation Result			
Recall A	Recall N	Accuracy	avg_accuracy	avg_recall
0.91	0.89	0.90	0.880 +/- 0.063	0.970 +/- 0.002

Sono stati effettuati altri test cambando gli iperparametri e i risultati sono presentati nella segunte tabella.

	Testing Result			Validation Result	
Test	Recall A	Recall N	Accuracy	avg_accuracy	avg_recall
1	0,88	0,86	0,88	0,784 +/- 0,103	0,927 +/- 0,002
2	0,90	0,88	0,89	0,892 +/- 0,022	0,971 +/- 0,004
6	1.00	0,30	0,72	0,788 +/- 0,076	0,868 +/- 0,002
7	0,99	0,38	0,75	0,728 +/- 0,065	0,901 +/- 0,003

Successivamente al test set sono stati eliminati alcuni segmenti etichettati come A per ottenere una proporzione di 60% di segmenti etichettati come N e il 40% di segmenti etichettati come A.

Eseguedo il test con i gli iperparametri di partenza (seguendo l' articolo) si sono ottenuti i seguenti risultati:

Testing Result			Validation Result	
Recall A	Recall N	Accuracy	avg_accuracy	avg_recall
0,90	0,92	0,91	0,909 +/- 0,010	0,969 +/- 0,003

Si sono effettuati altri test cambiando gli iperparametri e i risultati ottenuti sono presentati nella seguente tabella:

	Testing Result			Validation Result	
Test	Recall A	Recall N	Accuracy	avg_accuracy	avg_recall
1	0,75	0,94	0,87	0,781 +/- 0,102	0,907 +/- 0,002
4	0,91	0,85	0,88	0,887 +/- 0,021	0,967+/- 0,001
6	0,80	0,96	0,89	0,821 +/- 0,037	0,866 +/- 0,004
7	0,83	0,88	0,86	0,851+/- 0,019	0,899 +/- 0,003
9	0,97	0,63	0,76	0,847 +/- 0,045	0,926 +/- 0,005
10	1.00	0,51	0,70	0,858 +/- 0,044	0,926 +/- 0,003
12	0,90	0,91	0,91	0,864 +/- 0,034	0,942 +/- 0,003
13	0,90	0,80	0,94	0,751 +/- 0,083	0,900 +/- 0,004

Lettura ECG classificati come Normali ma che sono Anomali

In ogni cartella relativo un file di testo in cui sono indicati il numero del tracciato , il numero del segmento all'interno del tracciato con il campione di partenza e il campione finale e le annotazioni su quel segmento.