FINM 33000: Homework 5 Solutions

November 7, 2024

Problem 1

- (a) Let $X_t = W_t$ and $f(x) = e^{x^2 1}$. Then $dX_t = dW_t$ and $f'(x) = 2xe^{x^2 - 1}$ and $f''(x) = (2 + 4x^2)e^{x^2 - 1}$. So $dZ_t = 2X_t e^{X_t^2 - 1} dX_t + \frac{1}{2}(2 + 4X_t^2)e^{X_t^2 - 1}(dX_t)^2 = (1 + 2W_t^2)e^{W_t^2 - 1}dt + 2W_t e^{W_t^2 - 1}dW_t.$
- (b) Let $X_t = W_t^2 1$. Then $dX_t = dt + 2W_t dW_t$. Let $f(x) = e^x$. Then $f'(x) = f''(x) = e^x$ and $dZ_t = e^{X_t} dX_t + \frac{1}{2} e^{X_t} (dX_t)^2 = e^{X_t} (dt + 2W_t dW_t) + \frac{1}{2} e^{X_t} 4W_t^2 dt$ $= e^{X_t} (1 + 2W_t^2) dt + 2e^{X_t} W_t dW_t = (1 + 2W_t^2) e^{W_t^2 1} dt + 2W_t e^{W_t^2 1} dW_t.$
- (c) Since the drift does not always vanish, Z is not a martingale by L4.12.

Problem 2

(a) Solution 1: Apply multivariable Ito (L4.26) to $f(t,x) = e^{\kappa t}x$:

$$d(e^{\kappa t}X_t) = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(dX_t)^2 = \kappa e^{\kappa t}X_tdt + e^{\kappa t}dX_t + \frac{1}{2}\cdot 0$$

Solution 2: Apply the Ito product rule (L4.33) to the product of $e^{\kappa t}$ and X_t , and use the fact that $de^{\kappa t} = \kappa e^{\kappa t} dt$:

$$d(e^{\kappa t}X_t) = e^{\kappa t}dX_t + X_tde^{\kappa t} + dX_tde^{\kappa t} = e^{\kappa t}dX_t + \kappa e^{\kappa t}X_tdt + 0$$

Using either Solution 1 or Solution 2 as a first step, therefore, the next step is

$$d(e^{\kappa t}X_t) = e^{\kappa t}(\kappa(\theta - X_t)dt + \sigma dW_t) + \kappa e^{\kappa t}X_tdt = \kappa \theta e^{\kappa t}dt + \sigma e^{\kappa t}dW_t$$

so

$$e^{\kappa T} X_T = X_0 + \int_0^T \kappa \theta e^{\kappa t} dt + \int_0^T \sigma e^{\kappa t} dW_t = X_0 + \theta (e^{\kappa T} - 1) + \int_0^T \sigma e^{\kappa t} dW_t$$

(b) The integrand $\sigma e^{\kappa t}$ is nonrandom and $\int_0^T \sigma^2 e^{2\kappa t} dt = \frac{\sigma^2}{2\kappa} (e^{2\kappa T} - 1)$, so by the hint,

$$e^{\kappa T} X_T \sim \text{Normal} \left(\text{mean} = X_0 + \theta(e^{\kappa T} - 1), \text{ variance} = \frac{\sigma^2}{2\kappa} (e^{2\kappa T} - 1) \right)$$

Therefore $X_T \sim \text{Normal} \left(\text{mean} = \theta + (X_0 - \theta)e^{-\kappa T}, \text{ variance} = \frac{\sigma^2}{2\kappa} (1 - e^{-2\kappa T}) \right)$

¹If a (nonrandom) function $f: \mathbb{R} \to \mathbb{R}$ is continuously differentiable then df(t) = f'(t)dt by Ito's rule, or simply by the Fundamental Theorem of Calculus.

Problem 3

One way to solve is to compute, using Problem 2, the mean and variance of X_1 under each of the six combinations of parameters. Another way is to use the hint's interpretations of κ and θ .

- (a) $\theta = 10, \kappa = 8$
- (b) $\theta = 15, \kappa = 3$
- (c) $\theta = 15, \kappa = 8$
- (d) $\theta = 10, \kappa = 3$
- (e) $\theta = 5, \kappa = 3$
- (f) $\theta = 5, \kappa = 8$