3D-Druck

David Jäckel

Jugend Hackt

26. Oktober 2019

Inhalt

Was ist 3D-Druck?

Welche Drucker gibt es?

Wie funktioniert ein Drucker?

Wie funktioniert das mit dem Filament?

Wie wird der Druckkopf bewegt?

Was ist Filament?

Wie kann ich etwas Drucken?

Was ist 3D-Druck?

Was ist 3D-Druck?

▶ 3D-Druck ist ein additives Fertigungsverfahren

Fertigungsverfahren

Fertigungsverfahren

Additive Fertigung
 Material Schicht für Schicht auftragen.

Fertigungsverfahren

- Additive Fertigung
 Material Schicht für Schicht auftragen.
- Konventionelle Fertigung
 Sägen, Bohren, Fräßen, Gießen

Seit wann gibt es 3D-Drucker

Seit wann gibt es 3D-Drucker

Seit wann gibt es 3D-Drucker

- ► **SLA** Stereolithografie
- ► **SLS** Selective Laser Sintering

- ► **SLA** Stereolithografie
- ► **SLS** Selective Laser Sintering
- SLM Selective Laser Melting

- ► **SLA** Stereolithografie
- ► **SLS** Selective Laser Sintering
- ► **SLM** Selective Laser Melting
- ► LOM Laminated Object Manufacturing

- ► **SLA** Stereolithografie
- ► **SLS** Selective Laser Sintering
- ► **SLM** Selective Laser Melting
- ► LOM Laminated Object Manufacturing
- FDM Fused Deposition Modeling

▶ Ältestes additives Fertigungsverfahren

- ► Ältestes additives Fertigungsverfahren
- ► Flüssiges Material wird mit Hilfe von UV Laser ausgehärtet

- ► Ältestes additives Fertigungsverfahren
- Flüssiges Material wird mit Hilfe von UV Laser ausgehärtet
- Anwendung:
 - Rapid prototyping
 - Medizin

- ► Ältestes additives Fertigungsverfahren
- Flüssiges Material wird mit Hilfe von UV Laser ausgehärtet
- Anwendung:
 - Rapid prototyping
 - Medizin
- Materialien:
 - Flüssiger, lichtaushärtender Kunststoff (Photopolymer)

- ► Ältestes additives Fertigungsverfahren
- Flüssiges Material wird mit Hilfe von UV Laser ausgehärtet
- Anwendung:
 - Rapid prototyping
 - Medizin
- Materialien:
 - Flüssiger, lichtaushärtender Kunststoff (Photopolymer)

video

Schichtweise aufgetragenes Pulver mit Laser gesintert

- ► Schichtweise aufgetragenes Pulver mit Laser gesintert
- ► Einsatz von Bindemitteln

- Schichtweise aufgetragenes Pulver mit Laser gesintert
- ► Einsatz von Bindemitteln
- Zu fester Schicht verschmolzen

- Schichtweise aufgetragenes Pulver mit Laser gesintert
- ► Einsatz von Bindemitteln
- Zu fester Schicht verschmolzen
- Anwendung:
 - Rapid prototyping
 - Rapid tooling

- ► Schichtweise aufgetragenes Pulver mit Laser gesintert
- ► Einsatz von Bindemitteln
- Zu fester Schicht verschmolzen
- Anwendung:
 - Rapid prototyping
 - Rapid tooling
- Materialien:
 - Kunststoffpulver
 - Metallpulver

- Schichtweise aufgetragenes Pulver mit Laser gesintert
- ► Einsatz von Bindemitteln
- Zu fester Schicht verschmolzen
- Anwendung:
 - Rapid prototyping
 - Rapid tooling
- Materialien:
 - Kunststoffpulver
 - Metallpulver

video

► Schichtweise aufgetragenes Pulver mit Laser geschmolzen

- ► Schichtweise aufgetragenes Pulver mit Laser geschmolzen
- Kein Einsatz von Bindemitteln

- Schichtweise aufgetragenes Pulver mit Laser geschmolzen
- Kein Einsatz von Bindemitteln
- Zu fester Schicht verschmolzen

- Schichtweise aufgetragenes Pulver mit Laser geschmolzen
- Kein Einsatz von Bindemitteln
- Zu fester Schicht verschmolzen
- Anwendung:
 - Rapid prototyping
 - Rapid tooling

- Schichtweise aufgetragenes Pulver mit Laser geschmolzen
- Kein Einsatz von Bindemitteln
- Zu fester Schicht verschmolzen
- Anwendung:
 - Rapid prototyping
 - Rapid tooling
- Materialien:
 - Kunststoffpulver
 - Metallpulver

- Schichtweise aufgetragenes Pulver mit Laser geschmolzen
- Kein Einsatz von Bindemitteln
- Zu fester Schicht verschmolzen
- Anwendung:
 - Rapid prototyping
 - Rapid tooling
- Materialien:
 - Kunststoffpulver
 - Metallpulver

video

► Folien werden schichtweise aufgetragen, verklebt und zugeschnitten

- ► Folien werden schichtweise aufgetragen, verklebt und zugeschnitten
- Anwendung:
 - Rapid prototyping

- ► Folien werden schichtweise aufgetragen, verklebt und zugeschnitten
- Anwendung:
 - Rapid prototyping
- ► Materialien:
 - Papierfolien
 - Kunststofffolien
 - Aluminiumfolien
 - Keramikfolien

- ► Folien werden schichtweise aufgetragen, verklebt und zugeschnitten
- Anwendung:
 - Rapid prototyping
- ► Materialien:
 - Papierfolien
 - Kunststofffolien
 - Aluminiumfolien
 - Keramikfolien

video

► FDM ist markenrechtlich geschützt

- ▶ FDM ist markenrechtlich geschützt
- Auch als FFF (Fused Filament Fabrication) bezeichnet.

- ▶ FDM ist markenrechtlich geschützt
- ▶ Auch als **FFF** (Fused Filament Fabrication) bezeichnet.
- Schichtweises Auftragen von geschmolzenem Filament durch heiße Düse.

- ► FDM ist markenrechtlich geschützt
- ▶ Auch als **FFF** (Fused Filament Fabrication) bezeichnet.
- Schichtweises Auftragen von geschmolzenem Filament durch heiße Düse.
- Anwendung:
 - Rapid prototyping
 - Rapid tooling

- ► FDM ist markenrechtlich geschützt
- ▶ Auch als **FFF** (Fused Filament Fabrication) bezeichnet.
- Schichtweises Auftragen von geschmolzenem Filament durch heiße Düse.
- Anwendung:
 - Rapid prototyping
 - Rapid tooling
- ► Materialien:
 - Kunststoffe (Thermoplaste)

video

Wie funktioniert ein Drucker?

Wie funktioniert das mit dem Filament?

- Leicht zu tauschen
- Weniger Masse am Druckkopf
 - Schnellere Bewegungen
 - Schnellere Druckgeschwindigkeit
 - Höhere Genauigkeit

- Leicht zu tauschen
- Weniger Masse am Druckkopf
 - Schnellere Bewegungen
 - Schnellere Druckgeschwindigkeit
 - Höhere Genauigkeit
- Langer Bowdentube
 - Reibung
 - Dehnung/Stauchung des Filaments

Druckkopf

▶ Wird nach der Größe der Öffnung benannt

- ▶ Wird nach der Größe der Öffnung benannt
- ► Meist 0.4mm Durchmesser

- ▶ Wird nach der Größe der Öffnung benannt
- ► Meist 0.4mm Durchmesser
- Gibt Schichtdicke und Wandbreite vor

- Wird nach der Größe der Öffnung benannt
- Meist 0.4mm Durchmesser
- Gibt Schichtdicke und Wandbreite vor
 - ▶ 0.4mm ermöglicht 0.1-0.3mm Schichtdicke
 - ► Wandstärke immer ein Vielfaches des Nozzledurchmessers
 - Höhen immer ein Vielfaches der Schichtdicke

Wie wird der Druckkopf bewegt?

Y-Achse

Z-Achse

X-Achse

- Beheizt
- ▶ Unbeheizt

- ▶ Glas
 - ▶ Viele Materialien nur Beheizt
 - Glastemperatur

- ▶ Glas
 - Viele Materialien nur Beheizt
 - Glastemperatur
- Kunststoffe

- ▶ Glas
 - Viele Materialien nur Beheizt
 - Glastemperatur
- Kunststoffe
 - Oft mit strukturierter Oberfläche

- ▶ Glas
 - Viele Materialien nur Beheizt
 - Glastemperatur
- Kunststoffe
 - Oft mit strukturierter Oberfläche
- Bluetape

Druckbett

- ▶ Glas
 - Viele Materialien nur Beheizt
 - Glastemperatur
- Kunststoffe
 - Oft mit strukturierter Oberfläche
- Bluetape
 - Oft zum Verbessern der Haftung verwendet

- Mandana asite.

and the complete the second second

- Ein Faden aus Thermoplastischem Kunststoff
- ▶ Je nach Drucker mit verschiedenen Durchmessern

- Ein Faden aus Thermoplastischem Kunststoff
- Je nach Drucker mit verschiedenen Durchmessern
- Wird auf einer Spule aufgerollt verkauft

► Festigkeit

Flexibilität

- ► Festigkeit
 - ► Flexibilität
 - ► Haltbarkeit

- ► Festigkeit
 - ► Flexibilität
 - Haltbarkeit
 - Schrumpf und Verzug (Warping)

- ► Festigkeit
 - ► Flexibilität
 - Haltbarkeit
 - Schrumpf und Verzug (Warping)
 - Löslich (Stützstrukturen)

Verarbeitungseigenschaften

Verarbeitungseigenschaften

Verarbeitungseigenschaften

- Das am häufigsten verwendete Filament
 - Biokompatibel
 - Anwendung in bio Plastiktüten, etc.

- Das am häufigsten verwendete Filament
 - Biokompatibel
 - Anwendung in bio Plastiktüten, etc.
- Festes, sprödes Material, bricht leicht

Eigenschaften

Eigenschaften

- Schwierigkeit: Gering
- **▶ Drucktemperatur:** 180 230 °C
- **Druckbett-Temperatur:** 20 60 °C
- Schrumpf und Verzug: Gering
- Haltbarkeit: Durchschnittlich
- ► Glastemperatur: 45-65 °C
- Löslich: Nein

- Robuster Kunststoff
 - Eignet sich zum Beschichten mit Metallen und anderen Kunststoffen
 - LEGO-Steine, Playmobil, Motorradhelme

- Robuster Kunststoff
 - Eignet sich zum Beschichten mit Metallen und anderen Kunststoffen
 - LEGO-Steine, Playmobil, Motorradhelme
- Festes, haltbares und temperaturbeständiges Material

Eigenschaften

Eigenschaften

- Schwierigkeit: Hoch
- **▶ Drucktemperatur:** 210-250 °C
- **Druckbett-Temperatur:** 80 110 °C
- Schrumpf und Verzug: Stark
- Haltbarkeit: Hoch
- ► Glastemperatur: 95 110 °C
- Löslich: Ester, Ketonen und Aceton

► Lebensmittelsicherheit fraglich (hormonaktive Eigenschaften?)

- Lebensmittelsicherheit fraglich (hormonaktive Eigenschaften?)
 - Anwendung in PET Flaschen
 - ► Teil-biobasiert erhältlich

- Lebensmittelsicherheit fraglich (hormonaktive Eigenschaften?)
 - Anwendung in PET Flaschen
 - ► Teil-biobasiert erhältlich
- Festes, flexibles, haltbares Material

- Lebensmittelsicherheit fraglich (hormonaktive Eigenschaften?)
 - Anwendung in PET Flaschen
 - ► Teil-biobasiert erhältlich
- Festes, flexibles, haltbares Material
- Extrem hygroskopisch und klebrig (Stützstrukturen)

Eigenschaften

Eigenschaften

- Schwierigkeit: Gering
- **▶ Drucktemperatur:** 220 250 °C
- Druckbett-Temperatur: 50 75 °C
- Schrumpf und Verzug: Gering
- Haltbarkeit: Hoch
- **► Glastemperatur:** 70 °C
- Löslich: Nein

TPU

TPU

TPU

- Eine Form der Polyurethane
 - Anwendung(PU): Schaumstoffe, Lacke, Beschichtungen, Klebstoffe, Vergussmassen
 - ► TPU hat fast gummiartige Eigenschaften

TPU

- Eine Form der Polyurethane
 - Anwendung(PU): Schaumstoffe, Lacke, Beschichtungen, Klebstoffe, Vergussmassen
 - ► TPU hat fast gummiartige Eigenschaften
- Wegen der Materialeigenschaften schwer zu drucken

TPU

- ► Eine Form der Polyurethane
 - Anwendung(PU): Schaumstoffe, Lacke, Beschichtungen, Klebstoffe, Vergussmassen
 - ► TPU hat fast gummiartige Eigenschaften
- ▶ Wegen der Materialeigenschaften schwer zu drucken
- Extrem hygroskopisch

Eigenschaften

Eigenschaften

- Schwierigkeit: Mittel
- **▶ Drucktemperatur:** 210 230 °C
- Druckbett-Temperatur: 30 60 °C
- Schrumpf und Verzug: Gering
- Haltbarkeit: Sehr hoch
- ► Glastemperatur: -223 °C
- Löslich: Nein

Wie kann ich etwas Drucken?

Modelierungsprogramm

- Modelierungsprogramm
 - Blender

- ► Modelierungsprogramm
 - Blender
- ► CAD Programm

- ► Modelierungsprogramm
 - Blender
- ► CAD Programm
 - ► FreeCAD

- ► Modelierungsprogramm
 - Blender
- ► CAD Programm
 - FreeCAD
- Objektbibliothek

- Modelierungsprogramm
 - Blender
- ► CAD Programm
 - FreeCAD
- Objektbibliothek
- 3D P▶gThingiverse

STL Datei

► Vorbereitung für den Druck

- ► Vorbereitung für den Druck
 - Auswahl des Druckers

STL

3D Programr

- ► Vorbereitung für den Druck
 - Auswahl des Druckers
 - Platzieren auf dem Druckbett

3D Programn

- ► Vorbereitung für den Druck
 - Auswahl des Druckers
 - Platzieren auf dem Druckbett
 - Einstellen der Schichtdicke

BD Programm

- ► Vorbereitung für den Druck
 - Auswahl des Druckers
 - Platzieren auf dem Druckbett
 - Einstellen der Schichtdicke
 - Einstellen der Parameter für das Filament

3D Programm

- Vorbereitung für den Druck
 - Auswahl des Druckers
 - Platzieren auf dem Druckbett
 - Einstellen der Schichtdicke
 - Einstellen der Parameter für das Filament
 - Steuerkommandos für den jeweiligen Drucker

G-Code Datei

▶ Übertragen der G-Code Datei

- ▶ Übertragen der G-Code Datei
 - SD-Karte

STL

G-CODE

3D Programn

Slice

Drucker

- ▶ Übertragen der G-Code Datei
 - SD-Karte
 - USB-Stick

- ▶ Übertragen der G-Code Datei
 - SD-Karte
 - ▶ USB-Stick
 - ▶ WiFi STL

er Drucke

- ▶ Übertragen der G-Code Datei
 - SD-Karte
 - USB-Stick
 - ▶ WiFi
- G-Code nur mit jeweiligem Drucker kompatibel

- ▶ Übertragen der G-Code Datei
 - SD-Karte
 - USB-Stick
 - WiFi
- G-Code nur mit jeweiligem Drucker kompatibel
 - Vorsicht! Drucker kann kaputt gehen!

Los geht's

https://github.com/nomeme/JugendHackt-3D-Druck