МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине "ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА"

Вариант «Метод прямоугольников»

Студент: Чернова Анна Ивановна Группа Р32301

Преподаватель:

Перл Ольга Вячеславовна

1. Описание реализованного метода, расчетные формулы

Определенный интеграл заменяется на интегральную сумму. На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени. Площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из n- многоугольников. Таким образом, вычисление определённого интеграла сводится к нахождению суммы n- элементарных прямоугольников $\int_a^b f(x)dx \approx S_n = \sum_{i=1}^n f(\varepsilon_i)\Delta x_i$, где в качестве точек ε_i могут выбираться левые ($\varepsilon_i = x_{i-1}$) или правые ($\varepsilon_i = x_i$) границы отрезков.

Принимая за $h=rac{b-a}{n}=const$, получаем следующие формулы для метода прямоугольника:

$$\int_a^b f(x) dx pprox h_1 y_0 + h_2 y_1 + \dots + h_n y_{n-1} = h \sum_{i=1}^n y_{i-1}$$
 - метод левых прямоугольников,

$$\int_a^b f(x) dx pprox h_1 y_1 + h_2 y_2 + \dots + h_n y_n = h \sum_{i=1}^n y_i$$
 - метод правых прямоугольников,

$$\int_a^b f(x) dx = h \sum_{i=1}^n f(x_{i-1/2})$$
 - метод средних прямоугольники,

где
$$f(x_i)=y_i$$
, $f(a)=y_0$, $f(b)=y_n$, $\Delta x_i=x_i-x_{i-1}=h_i$, $x_{i-1/2}=\frac{x_{i-1}+x_i}{2}=x_{i-1}+\frac{h_i}{2}$, $i=1,2,...n$.

2. Блок-схема численного метода

3. Листинг реализованного метода

```
leftPart = getSquareLeft(data.getLowerLimit(),
data.getUpperLimit(), n);
data.getUpperLimit(), n);
public double getSquareLeft(double lowerLimit, double upperLimit, int n)
public double getSquareRight(double lowerLimit, double upperLimit, int
   double h = (upperLimit - lowerLimit) / n;
public double getSquareMiddle(double lowerLimit, double upperLimit, int
    double h = (upperLimit - lowerLimit) / n;
```

4. Примеры результата работы программы

Выберите функцию из списка. Введите число от 1 до 4

- 1. $y = x^3 2x + 3$
- $2. y = \sin x / x$
- 3. $y = 3\ln x / (x 1)$
- 4. $y = x \cos x$

1

Выберите метод из списка. Введите число от 1 до 3

- 1. метод левых прямоугольников
- 2. метод правых прямоугольников
- 3. метод средних прямоугольников

3

Введите нижний предел интегрирования

1

Введите верхний предел интегрирования

4

Введите точность

0.001

Ответ: 57.74974250793457

Выберите функцию из списка. Введите число от 1 до 4

- 1. $y = x^3 2x + 3$
- $2. y = \sin x / x$
- 3. $y = 3\ln x / (x 1)$
- 4. $y = x \cos x$

2

Выберите метод из списка. Введите число от 1 до 3

- 1. метод левых прямоугольников
- 2. метод правых прямоугольников
- 3. метод средних прямоугольников

2

Введите нижний предел интегрирования

0.1

Введите верхний предел интегрирования

2

Введите точность

0.05

В интервал интегрирования входит точка разрыва первого рода. Рассчитаем интеграл слева и справа от точки разрыва.

Ответ: 6.32682344570323

Выберите функцию из списка. Введите число от 1 до 4

```
1. у = x^3 - 2x + 3
2. у = sinx / x
3. у = 3lnx / (x - 1)
4. у = xcosx
2
Выберите метод из списка. Введите число от 1 до 3
1. метод левых прямоугольников
2. метод правых прямоугольников
3. метод средних прямоугольников
1
Введите нижний предел интегрирования
0
Введите верхний предел интегрирования
1
```

Введите точность

0.00001

Одно из введенных границ не входит в область допустимых значений функции

6

5. Вывод

Метод прямоугольников, метод трапеций и метод Симпсона схожи между собой тем, что в каждом из них подынтегральная функция заменяется приближенной функцией, однако для метода прямоугольников — это полином нулевой степени, для метода трапеций — полином первой степени, а для метода Симпсона — полином второй степени. Метод прямоугольников используется, если функция достаточно простая и имеет малые изменения. Если функция имеет более сложную форму и/или имеет большие изменения, то лучше использовать метод трапеций или метод Симпсона. Если нужна высокая точность, то лучше использовать метод Симпсона.