

NCERT solutions for class 9 Maths Triangles Ex 7.1

Q1. In quadrilateral ABCD (See figure). AC = AD and AB bisects \angle A. Show that \triangle ABC \cong \triangle ABD. What can you say about BC and BD?

Ans. Given: In quadrilateral ABCD, AC = AD and AB bisects $\angle A$.

To prove: $\triangle ABC \cong \triangle ABD$

Proof: In \triangle ABC and \triangle ABD,

AC = AD [Given]

 \angle BAC = \angle BAD [: AB bisects \angle A]

AB = AB [Common]

 $\triangle ABC \cong \triangle ABD$ [By SAS congruency]

Thus BC = BD [By C.P.C.T.]

Q2. ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA. (See figure). Prove that:

- (i) \triangle ABD $\cong \triangle$ BAC
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$

Ans. (i) In \triangle ABC and \triangle ABD,

BC = AD [Given]

 \angle DAB = \angle CBA [Given]

AB = AB [Common]

 $\triangle ABC \cong \triangle ABD$ [By SAS congruency]

Thus AC = BD [By C.P.C.T.]

- (ii) Since $\triangle ABC \cong \triangle ABD$
- \therefore AC = BD [By C.P.C.T.]
- (iii) Since \triangle ABC \cong \triangle ABD
- $\therefore \angle ABD = \angle BAC [By C.P.C.T.]$

Q3. AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB (See figure)

Ans. In \triangle BOC and \triangle AOD,

$$\angle$$
 OBC = \angle OAD = 90° [Given]

$$BC = AD [Given]$$

$$\triangle$$
 BOC $\cong \triangle$ AOD [By ASA congruency]

$$\Rightarrow$$
 OB = OA and OC = OD [By C.P.C.T.]

Q4. l and m are two parallel lines intersected by another pair of parallel lines p and q (See figure). Show that Δ ABC $\cong \Delta$ CDA.

Ans. AC being a transversal. [Given]

Therefore \angle DAC = \angle ACB [Alternate angles]

Now $p \parallel q$ [Given]

And AC being a transversal. [Given]

Therefore \angle BAC = \angle ACD [Alternate angles]

Now In \triangle ABC and \triangle ADC,

 \angle ACB = \angle DAC [Proved above]

 \angle BAC = \angle ACD [Proved above]

AC = AC [Common]

 \triangle ABC \cong \triangle CDA [By ASA congruency]

Q5. Line l is the bisector of the angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of \angle A. Show that:

- (i) $\triangle APB \cong \triangle AQB$
- (ii) BP = BQ or P is equidistant from the arms of \angle A (See figure).

Ans. Given: Line l bisects $\angle A$.

 $\therefore \angle BAP = \angle BAQ$

(i) In
$$\triangle$$
ABP and \triangle ABQ,

$$\angle$$
 BAP = \angle BAQ [Given]

$$\angle$$
 BPA = \angle BQA = 90° [Given]

AB = AB [Common]

$$\triangle APB \cong \triangle AQB$$
 [By ASA congruency]

(ii) Since
$$\triangle APB \cong \triangle AQB$$

$$\therefore$$
 BP = BQ [By C.P.C.T.]

 \Rightarrow B is equidistant from the arms of \angle A.

Q6. In figure, AC = AB, AB = AD and \angle BAD = \angle EAC. Show that BC = DE.

Ans. Given that $\angle BAD = \angle EAC$

Adding ∠DAC on both sides, we get

$$\angle$$
 BAD + \angle DAC = \angle EAC + \angle DAC

$$\Rightarrow \angle BAC = \angle EAD \dots (i)$$

Now in \triangle ABC and \triangle AED,

AB = AD [Given]

AC = AE [Given]

 \angle BAC = \angle DAE [From eq. (i)]

∴
$$\triangle$$
 ABC \cong \triangle ADE [By SAS congruency]
 \Rightarrow BC = DE [By C.P.C.T.]

Q7. AB is a line segment and P is the mid-point. D and E are points on the same side of AB such that \angle BAD = \angle ABE and \angle EPA = \angle DPB. Show that:

- (i) $\triangle DAF \cong \triangle FBP$
- (ii) AD = BE (See figure)

Ans. Given that $\angle EPA = \angle DPB$

Adding \angle EPD on both sides, we get

$$\angle$$
 EPA + \angle EPD = \angle DPB + \angle EPD

$$\Rightarrow$$
 \angle APD = \angle BPE(i)

Now in \triangle APD and \triangle BPE,

$$\angle$$
 PAD = \angle PBE [: \angle BAD = \angle ABE (given),

$$\therefore \angle PAD = \angle PBE$$
]

AP = PB [P is the mid-point of AB]

$$\angle$$
 APD = \angle BPE [From eq. (i)]

$$\triangle$$
 DPA $\cong \triangle$ EBP [By ASA congruency]

$$\Rightarrow$$
 AD = BE [By C.P.C.T.]

Q8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. (See figure)

Show that:

- (i) $\triangle AMC \cong \triangle BMD$
- (ii) ∠DBC is a right angle.
- (iii) \triangle DBC \cong \triangle ACB

(iv) CM =
$$\frac{1}{2}$$
 AB

Ans. (i) In \triangle AMC and \triangle BMD,

AM = BM [AB is the mid-point of AB]

∠ AMC = ∠ BMD [Vertically opposite angles]

CM = DM [Given]

- $\triangle AMC \cong \triangle BMD$ [By SAS congruency]
- $\therefore \angle ACM = \angle BDM \dots (i)$
- \angle CAM = \angle DBM and AC = BD [By C.P.C.T.]
- (ii) For two lines AC and DB and transversal DC, we have,

 \angle ACD = \angle BDC [Alternate angles]

 \therefore AC || DB

Now for parallel lines AC and DB and for transversal BC.

But \triangle ABC is a right angled triangle, right angled at C.

$$\therefore$$
 \angle ACB = 90° (iii)

Therefore \angle DBC = 90° [Using eq. (ii) and (iii)]

 \Rightarrow \angle DBC is a right angle.

(iii) Now in \triangle DBC and \triangle ABC,

DB = AC [Proved in part (i)]

$$\angle$$
 DBC = \angle ACB = 90° [Proved in part (ii)]

BC = BC [Common]

$$\triangle DBC \cong \triangle ACB$$
 [By SAS congruency]

(iv) Since
$$\triangle$$
 DBC \cong \triangle ACB [Proved above]

$$\therefore$$
 DC = AB

$$\Rightarrow$$
 AM + CM = AB

$$\Rightarrow$$
 CM + CM = AB [: DM = CM]

$$\Rightarrow$$
 2CM = AB

$$\Rightarrow$$
 CM = $\frac{1}{2}$ AB

******* END ******