2024-2025 CSMH

I - Étude globale

1 - Définitions

Définition 1 : (Suite numérique)

Une suite numérique est une fonction de dans \mathbb{N} dans \mathbb{R} .

Exemple 1:

La fonction définie pour tout entier naturel n par u(n) = 2n + 1 est une suite.

Notation:

- On peut désigner la suite u avec la notation (u_n) (entre parenthèses);
- L'écriture u_n (sans parenthèses) désigne le terme de rang n de la suite u, c'est à dire u(n);

Remarque 1:

Une suite u peut être définie à partir d'un certain rang u_0 , on notera alors $(u_n)_{n\geq n_0}$ pour désigner la suite u.

Définition 2 : (Modes de génération)

Il existe trois façon de définir une suite :

1. Définition explicite :

La suite (u_n) est définie directement par son terme général :

$$u_n = f(n)$$

Avec f une fonction dépendant de n définie sur \mathbb{N} ;

2. Définition par récurrence :

Soit f une fonction définie sur \mathbb{R} et $a \in \mathbb{R}$, une suite u_n peut être définie par récurrence par :

$$\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \end{cases}$$

3. Définition implicite :

La suite est définie par une propriété géométrique, économique ... au sein d'un problème.

Remarque 2:

Quel que soit le mode de définition d'une suite, il se peut que celle-ci ne soit définie qu'à partir d'un certain rang $n_0 > 0$.

Remarque 3:

On peut faire les analogies suivantes entre les suites et les fonctions :

Fonctions		Suites
f	\leftrightarrow	u
X	\leftrightarrow	n
antécédent	\leftrightarrow	rang
image	\leftrightarrow	terme
f	\leftrightarrow	u

CSMH

2 - Sens de variation

Remarque 4:

Dans la suite, on considère (u_n) une suite définie sur \mathbb{N} pour tout $n \geq n_0$, avec $n_0 \geq 0$.

Définition 3 : (Suite croissante)

 (u_n) croissante $\iff u_{n+1} \ge u_n, \ \forall n \ge n_0$

Exemple 2:

Définition 4 : (Suite strictement croissante)

 (u_n) strictement croissante $\iff u_{n+1} > u_n, \forall n \ge n_0$

Exemple 3:

Définition 5 : (Suite décroissante)

 (u_n) décroissante $\iff u_{n+1} \le u_n, \ \forall n \ge n_0$

Exemple 4:

Définition 6 : (Suite strictement décroissante)

 (u_n) strictement décroissante $\iff u_{n+1} < u_n, \ \forall n \ge n_0$

Exemple 5:

Définition 7 : (Suite monotone)

La suite (u_n) est monotone si et seulement si elle uniquement est croissante ou décroissante (sans changer de sens de variation).

Exemple 6:

Définition 8 : (Suite constante)

 (u_n) constante $\iff u_{n+1} = u_n, \forall n \geq n_0$

Exemple 7: