

Přemysl Lubal August 2022

Cu(I)

Reaction	Brown and Ekberg, 2016
$Cu^+ + H_2O \rightleftharpoons Cu(OH) + H^+$	-7.8 ± 0.4
$Cu^+ + 2 H_2O \rightleftharpoons Cu(OH)_2^- + 2 H^+$	-18.6 ± 0.6

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 650–702.

Přemysl Lubal August 2022

Copper(II)

Reaction	Baes and Mesmer, 1976	NIST46	Plyasunova et al., 1997	Powell et al., 2007	Brown and Ekberg, 2016
$Cu^{2+} + H_2O \rightleftharpoons CuOH^+ + H^+$	<-8	-7.7	-7.97 ± 0.09	-7.95 ± 0.16	-7.64 ± 0.17
$Cu^{2+} + 2 H_2O \rightleftharpoons Cu(OH)_2 + 2 H^+$	(<-17.3)	-17.3	-16.23 ± 0.15	-16.2 ± 0.2	-16.24 ± 0.03
$Cu^{2+} + 3 H_2O \rightleftharpoons Cu(OH)_3^- + 3 H^+$	(<-27.8)	-27.8	-26.63 ± 0.40	-26.60 ± 0.09	-26.65 ± 0.13
$Cu^{2+} + 4 H_2O \rightleftharpoons Cu(OH)_4^{2-} + 4 H^+$	-39.6	-39.6	-39.73 ± 0.17	-39.74 ± 0.18	-39.70 ± 0.19
$2 \text{ Cu}^{2+} + \text{H}_2\text{O} \rightleftharpoons \text{Cu}_2(\text{OH})^{3+} + \text{H}^+$			-6.71 ± 0.30	-6.40 ± 0.12	-6.41 ± 0.17
$2 Cu^{2+} + 2 H_2O \rightleftharpoons Cu_2(OH)_2^{2+} + 2 H^+$	-10.36	-10.3	-10.55 ± 0.17	-10.43 ± 0.07	-10.55 ± 0.02
$3 \text{ Cu}^{2+} + 4 \text{ H}_2\text{O} \rightleftharpoons \text{Cu}_3(\text{OH})_4^{2+} + 4 \text{ H}^+$			-20.95 ± 0.30	-21.1 ± 0.2	-21.2 ± 0.4

$CuO(s) + 2 H^+ \rightleftharpoons Cu^{2+} + H_2O$	7.62	7.64 ± 0.06	7.64 ± 0.06	7.63 ± 0.05
$Cu(OH)_2(s) + 2 H^+ \rightleftharpoons Cu^{2+} + 2 H_2O$			8.67 ± 0.05	8.68 ± 0.10

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 274.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 650–702.

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46

K.J. Powell, P.L. Brown, R.H. Byrne, T. Gajda, G. Hefter, S. Sjöberg and H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The $Cu^{2+} + OH^-$, Cl^- , CO_3^{2-} , SO_4^{2-} , and PO_4^{3-} systems. Pure Appl. Chem. 79, 895–950 (2007).

N.V. Plyasunova, M. Wang, Y. Zhang and M. Muhammed, Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu²⁺ at 298.15 K. Hydrometalurgy 45, 37–51 (1997).