1

Assignment 1

Ayush Kumar Singh - AI20BTECH11028

Download all python codes from

https://github.com/ayush-2321/AI1103/blob/main/assignment1/problem(a).py

and latex-tikz codes from

https://github.com/ayush-2321/AI1103/blob/main/assignment1/asignment1.txt

PROBLEM(A)(PROB. MISC. 5.8)

On a multiple choice examination with 3 possible answers of each of the five questions, what is the probability that the candidate would get four or more correct answers just by guessing

1 Solution

Let $X_i \in (0, 1)$ be a random variable where $X_i = 1$ represents a successful guess and $X_i = 0$ represents unsuccessful guess on the i^{th} question.

$$p = \frac{1}{3}$$

$$X = \sum_{i=1}^{n} X_i \tag{1.0.1}$$

where n is the total number of questions. So, X has a binomial distribution.

$$\Pr(X \ge r) = \sum_{k=r}^{n} \binom{n}{r} p^k (1-p)^{n-k}$$
 (1.0.2)

Now, in this case n=5 and r=4. From (1.0.2)

$$Pr(X = 4) = \frac{10}{243}$$
$$Pr(X = 5) = \frac{1}{243}$$

Hence, required probability= $\frac{11}{243}$

PROBLEM(B)

Five cards are drawn successively from a well shuffled deck of 52 cards. What is the probability that

- i. All the five cards are spades.
- ii. only 3 cards are spade.
- iii. no cards are spade.

2 solution

Let $X_i \in (0, 1)$ be a random variable which denotes whether spade is drawn at the i^{th} draw.

$$X = \sum_{i=1}^{i=5} X_i \tag{2.0.1}$$

where X denotes the number of spades obtained.

Since,
$$Pr(x) = \frac{\text{number of favourable outcome}}{\text{total number of outcomes}}$$

$$Pr(x) = \frac{{}^{13}C_x \times {}^{39}C_{5-x}}{{}^{52}C_5} \tag{2.0.2}$$

TABLE:cases

X	0	1	2	3	4	5
P(X)	$\frac{^{13}\text{C}_0 \times ^{39}\text{C}_5}{^{52}\text{C}_5}$	$\frac{^{13}\text{C}_1 \times ^{39}\text{C}_4}{^{52}\text{C}_5}$	$\frac{^{13}\text{C}_2 \times ^{39}\text{C}_3}{^{52}\text{C}_5}$	$\frac{^{13}\text{C}_3 \times ^{39}\text{C}_2}{^{52}\text{C}_5}$	$\frac{^{13}\text{C}_4 \times ^{39}\text{C}_1}{^{52}\text{C}_5}$	$\frac{^{13}\text{C}_5 \times ^{39}\text{C}_0}{^{52}\text{C}_5}$

So, using table and (2.0.2)

i.
$$X = 5$$

$$Pr(X = 5) = \frac{^{13}C_5}{^{52}C_5}$$

 $\implies Pr(X = 5) = 0.0049$

ii.
$$X = 3$$

$$Pr(X = 3) = \frac{{}^{13}C_3 \times {}^{39}C_2}{{}^{52}C_5}$$

$$\implies Pr X = 3 = 0.081$$

iii.
$$X = 0$$

$$Pr(X = 3) = \frac{^{39}C_5}{^{52}C_5}$$

 $\implies Pr X = 3 = 0.081$