

Description

The VSM20N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 150V, I_D = 30A$ $R_{DS(ON)} < 72m\Omega @ V_{GS} = 10V$ (Typ:62m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Boost converters
- LED backlighting
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
I	VSM20N15-TC	VSM20N15	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Symbol	Parameter	Limit	Unit	
V _{DS}	V _{DS} Drain-Source Voltage		V	
V _G s	V _{GS} Gate-Source Voltage		V	
I _D	Drain Current-Continuous	30	А	
I _D (100℃)	Drain Current-Continuous(TC=100℃)	21	Α	
I _{DM}	Pulsed Drain Current	65	А	
P _D	Maximum Power Dissipation	105	W	
	Derating factor	0.7	W/℃	
E _{AS}	Single pulse avalanche energy (Note 5)	306	mJ	
T_{J}, T_{STG}	Operating Junction and Storage Temperature Range	-55 To 175	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Electrical Characteristics (T_C=25°C unless otherwise noted)

	Symbol Parameter	Condition	Min	Тур	Max	Unit
Off Characteris	itics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V I _D =250μA	150	165	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
I _{GSS}	Gate-Body Leakage Current	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteris	tics (Note 3)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	3.5	4.5	V
R _{DS(ON)}	Drain-Source On-State Resistance	V _{GS} =10V, I _D =15A	-	62	72	mΩ
g FS	Forward Transconductance	V _{DS} =5V,I _D =10A	-	20	-	S
Dynamic Chara	acteristics (Note4)		•			
C _{lss}	Input Capacitance	., 50,(), 0),	-	1650	-	PF
Coss	Output Capacitance	V_{DS} =50V, V_{GS} =0V,	-	200	-	PF
C _{rss}	Reverse Transfer Capacitance	F=1.0MHz	-	70	-	PF
Switching Char	racteristics (Note 4)		•			
t _{d(on)}	Turn-on Delay Time		-	10.5	-	nS
t _r	Turn-on Rise Time	V_{DD} =75 V , R_L =5 Ω	-	5.5	-	nS
$t_{d(off)}$	Turn-Off Delay Time	V_{GS} =10V, R_{GEN} =3 Ω	-	14.5	-	nS
t _f	Turn-Off Fall Time		-	3	-	nS
Qg	Total Gate Charge	V 75V L 00A	-	30	-	nC
Q _{gs}	Gate-Source Charge	$V_{DS}=75V,I_{D}=20A,$ $V_{GS}=10V$	-	7.5	-	nC
Q _{gd}	Gate-Drain Charge	V _{GS} -10V	-	9.5	-	nC
Drain-Source D	Diode Characteristics					
V _{SD}	Diode Forward Voltage (Note 3)	V _{GS} =0V,I _S =30A	-	-	1.2	V
Is	Diode Forward Current (Note 2)	-	-	-	30	Α
t _{rr}	Reverse Recovery Time	TJ = 25°C, IF = 10A	-	23	-	nS
Qrr	Reverse Recovery Charge	di/dt = 100A/µs ^(Note3)	-	35	-	nC
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition:Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

35

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

30

Figure 11 Normalized Maximum Transient Thermal Impedance