浙江大学 2005 - 2006 学年 夏 季学期

《 大学物理甲 I 》课程期末考试试卷(A)

开课学院: 理 管 院 , 考试形式: 闭卷, 允许带 无存储功能的计算器 入场

考试时间: 2006 年 7 月 2 日, 所需时间: 120 分种

考生姓名: ______学号: ______专业: _____在课教师:

					/		エレトラスクト・	
题序	填空	计1	计 2	计3	111	计5	计 6	总分
得分					V			
评卷人			*					

气体摩尔常量 $R=8.31\,\mathrm{J\cdot mol^{-1}\cdot K^{-1}}$ 真空介电常数 $\varepsilon_0=8.85\times 10^{-12}(\mathrm{C}^2\cdot\mathrm{N^{-1}\cdot m})$

玻尔兹曼常量 $k=1.38\times10^{-23}$ J·K⁻¹ 真空中光速 $c=3\times10^8$ (m/s)

- 一、填空题: (12题, 共48分)
- 1. (本题 4分) t001

2. (本题 4分) 0722

如图所示,质量为m的小球速度为 v_0 ,与一个以速度 v_0 ($v<v_0$)退行的活动挡板作垂直的完全弹性碰撞(设挡板质量M>>m)。则碰撞后小球的速度为 $v_1=$ ______,档板对小球的冲量I=_______。

3. (本题 4分) t002

轻绳跨过轻定滑轮,一猴子抓住绳的一端,绳的另一端挂一与猴子质量相等的重**物**。若猴子由静止开始,相对绳子以速度 v 向上爬,则重物上升的速度为 。

4. (本题 4分) 0737

有一质量为m=5kg的物体,在0到10秒内,受到如图所示的变力F的作用,由静止开始沿x轨正向运动,而力的方向始终沿x轨的正方向,则10秒内变力F所做的功为____。

5. (本题 4 分) 3487

一驻波方程 $y = A\cos 2\pi x \cos 100\pi$ (SI),位于 $x_1 = 1/8$ m 处的质元 P_1 与位于 $x_2 = 3/8$ m 处的质元 P_2 的振动相位差为______。

6. (本题 4分) 3329

一频率为 400Hz 的声源以 2.0m/s 的速度正对一高端运动,声音在空气中的速度为 330m/s。在声源后面站在地面上的人听到的声音的拍频为

7. (本题 4 分) 3443

设治弦线传播的一入射波的表达式为 $y_1 = A\cos(\omega I - 2\pi x/\lambda)$,波在 x = L 处 (B 点)发生反射,反射点为自由端(如图所示),设波在传播和反射过程中振幅不变,则反射波的表达式为

8. (本题 4 分) 4089

有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氦气(视为刚性分子的理想气体),它们的压强和温度都相等,现象 3. 的热量传给氢气,使氢气的温度升高,如果使氦气也升高相同的温度,则应向氦气体递的热量是

9. (本题 4分) 4042

某气体在温度 T=273K 时,压强 $\rho=1.0\times10^{-2}$ atm,密度 $\rho=1.24\times10^{-2}$ kg/m³,则该气体分子的方均根速率为_____。

10. (本题 4 分) t003

地球上某地先后受到两个雷击,时间间隔 1s。在相对地球沿两雷击连线方向作匀速直线运动的飞船中测量,这两个雷击相隔 2s。则这两个雷击在飞船参照系中的空间间隔为

11. (本题 4分) 4170

一体积为 V_0 、质量为 m_0 的立方体沿某一棱的方向相对于观察者 A 以接近光速的速度 v 运动,则观察者 A 测得立方体的密度为

12. (本题 4分) t004

用不带电的细塑料棒弯成半径为 50.0cm 的圆弧, 其两端间空隙为 2.0cm, 电量为 3.12×10⁻⁹C 的正电荷均 匀分布在棒上,则圆心处的场强大小是_____; 方向

二、计算题: (6.题. 共 52分)

1. (本题 10分) t005

绕线轮的质量为 4.0 kg,绕对称轴的转动惯量为 $J=9.0 \times 10^{-2} \text{kg·m}^2$,大圆半径为 R=0.20 m,小圆半径为 r=0.10 m。用 F=25 N 的水平力拉线的一端,使绕线轮在水平地面上作纯滚动。求:(1)绕线轮的角加速度和质心加速度;(2)地面对绕线轮的摩擦力;(3)摩擦系数至少多大才无相对滑动。

2. (本题 8 分) 0786

一质量均匀分布的圆盘,质量为M、半径为R,放在一粗糙水平面上,圆盘可绕通过其中心o的竖直固定光滑轴转动。开始时,圆盘静止,一质量为m的子弹以水平速度 v_0 垂直于圆盘半径打入原盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘获得的角速度;(2)经过多少时间后,圆盘停止转动。(忽略子弹重力造成的摩擦阻力矩)

3. (本题 10分) t006

电子气由 N个自由电子构成, 电子速率在 v~v+dv之间的概率为:

$$\frac{\mathrm{d}N}{N} = \begin{cases} Av^2 \, \mathrm{d}v & (0 \le v \le v_0) \\ 0 & (v_0 < v < \infty) \end{cases}$$

式中为A常量。(1) 作出速率分布函数曲线;(2) 用 v_0 定出A;(3) 求 v_p 、 \overline{v} 和 $\sqrt{v^2}$;(4) 求速率在 $0 \sim v_0/2$ 之间的电子的方均根速率。(答案均以 v_0 表示)

4. (本题 8 分) 4943

气缸内有一定量的氧气(视为刚性分子的理想气体),作如图所示的循环过程,其中 ab 是等温过程,bc 为等体过程,ca 是绝热过程。已知 a 点状态参量为 p_a 、 V_a 、 T_a ,b 点的体积 $V_b=3V_a$ 。试求:(1)该循环的效率 η ;(2)从状态 b 到状态 c,氧气的熵变 ΔS 。

5. (本题 8 分) 3273

一弹簧振子沿x 轴作简谐振动。已知振动物体最大位移为 $x_m=0.4m$,最大恢复力为 $F_m=0.8N$,最大速度为 $v_m=0.8\pi$ m/s,又知i=0 时的初位移为+0.2m,且初速度与所选x 轴正方向相反。求:(1)振动的总和被能:(2)振动的表达式。

6. (本题 8分) 1060

A、B 为真空中两个平行的"无限大"均匀**第**电平面,A 面上的电荷面密度 $\sigma_A=-17.7\times 10^{-8}$ C/m²,B 面上的电荷面密度 $\sigma_B=35.4\times 10^{-8}$ C/m²,求两平面之间和两平面外的电场强度。

