Energy Resources, Economics and Environment

Rangan Banerjee
Forbes Marshal Chair Professor
Department of Energy Science and Engineering

IIT Bombay

Global Trends - Unbounded Growth?

Issues

- Why is the environment important?
- How do energy systems impact the environment?
- Is there a trade-off between environment and economic development?
- What are the major impacts and causes?
- How can we quantify these impacts?
- How do we ensure a sustainable future?

Interactions of energy systems with the environment

Tester J.W. et al Sustainable Energy, Choosing Among Options, PHI, 2009

RANGAN BANERJEE, IIT Bombay

Energy Consumption and Air Pollution

- SO₂
- NOx
- CO
- SPM
- CO₂
- CFC

- Modification of Atmospheric properties/processes
- Photochemical Smog
- Precipitation Acidity
- Visibility
- Corrosion Potential
- Radiation Balance Alteration
- Ultraviolet energy absorption

Environmental Impacts

- Adverse Health Impacts- Local
- Local perturbations to Global Disruptions as human energy use increased
- Human Disruption Index (DI) = Ratio of Human generated flow of a given pollutant to the natural or baseline flow

Human Disruption Index

Insult	Baseline tonnes/yr	DI	O.S. T.
Lead Emissions	12000	18	41% C En
Oil to oceans	200000	10	44% Petr
Cadmium emiss	1400	5.4	13% CE, 5% Tr En
Sulphur emissions	31 million	2.7	85% CE
Methane	160million	2.3	18% CE

Human Disruption Index

Lead: 12000, Oil to Ocean: 200,000 Cd: 1400 Sulphur: 31Mi, CH4:160M

Particular Emisson, CH4, C02, N2, NOx, Sulphur, Oil to Ocean, Lead, Mercury, Cadmium

Insult	Baseline tonnes/yr	DI	OS TO THE REAL PROPERTY OF THE PARTY OF THE
Nitrogen fixation	140million	1.5	30% C En
Mercury emission	2500	1.4	20% C En
NOx	33 million	0.5	12% CE, 8% Tr En
Particulate emiss	3100 million	2.7	35% CE 10% Tr En
Carbon Dioxide	150million	2.3	75% CE

Energy and Emissions

Planetary Boundaries

nature Vol 461|24 September 2009

FEATURE

A safe operating space for humanity

Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue **Johan Rockström** and colleagues.

Rockstrom et al, Nature, 2009

Long term global temperature record

Rockstrom et al, Nature, 2009

Boundary character Scale of process	Processes with global scale thresholds	Slow processes without known global scale thresholds	
	Climate Change		
Systemic processes at planetary scale	Ocean Acidification		
	Stratospheric Ozone		
	Glob	al P and N Cycles	
	Atmosph	l neric Aerosol Loading	
Aggregated processes		Freshwater Use	
from local/regional scale		Land Use Change	
		Biodiversity Loss	
		Chemical Pollution	

PLANETARY BOUNDARIES						
Earth-system process	Parameters	Proposed boundary		Current status	Pre-industrial value	
Climate change	(i) Atmospheric carbon dioxide over concentration (parts per million by volume)	350	<	387	280	
	(ii) Change in radiative forcing OVEr (watts per metre squared)	1	<	1.5	0	
Rate of blodiversity loss	Extinction rate (number of species per million species per year) high-ov	10 ver	<	>100	0.1-1	
Nitrogen cycle (part of a boundary with the phosphorus cycle)	Amount of N ₂ removed from the atmosphere for human use high ov (millions of tonnes per year)	35 er	<	121	0	
Phosphorus cycle (part of a boundary with the nitrogen cycle)	Quantity of P flowing into the oceans (millions of tonnes per year)	W	>	8.5-9.5	-1	
Stratospheric ozone depletion	Concentration of ozone (Dobson over	276	<	283	290	
Ocean acidification	Global mean saturation state of aragonite in surface sea water OVE	2.75 r	<	2.90	3.44	
Global freshwater use	Consumption of freshwater by humans (km³ per year)	4,000	>	2,600	415	
Change in land use	Percentage of global land cover converted to cropland	15	>	11.7	Low	
Atmospheric aerosol loading	Overall particulate concentration in the atmosphere, on a regional basis		То	be determ <mark>i</mark> ne	d	
Chemical pollution	For example, amount emitted to, or concentration of persistent organic pollutants, plastics, endocrine disrupters, heavy metals and nuclear waste in, the global environment, or the effects on ecosystem and functioning of Earth system thereof		То	be determ <mark>i</mark> ne	d.	

Carbon Dioxide Concentrations

http://www.ei.lehigh.edu/learners/cc/paleoclimatology/iceCore.png

http://www.abc.net.au/radionational/image/74 49688-3x2-700x467.jpg

https://www.usatoday.com/story/weather/2014/05/01/carbon-dioxide-400-ppm-april-mauna-loa/8575651/

Examine the trend of CO2 shown here.

Which of the following is true:

- i) CO₂ concentrations show an overall increase over several years but fluctuate randomly within the year
- ii) The seasonal fluctuation in the CO2 concentration is due to seasonal fluctuations in the energy pattern
- iii) The seasonal fluctuation is due to local fluctuations in Hawai
- iv) The seasonal fluctuations are due to ice melting in summer
- y) None of the above

https://www.usatoday.com/story/weather/2014/05/01/carbon-dioxide-400-ppm-april-mauna-loa/8575651/

Recent Carbon dioxide concentrations

https://scripps.ucsd.edu/programs/keelingcurve/

Last accessed June 16,2019

Source: Annual Reviews

Indicators of the Human Influence on the Atmosphere during the Industrial Era

(a) Global atmospheric concentrations of three well mixed greenhouse gases

(b) Sulphate aerosols deposited in Greenland ice

Radiative Forcing Components

Global Warming Potential

Global Warming Potentials of Selected Greenhouse Gases

Gas	Lifetime (yr)	GWP			
		20 yr	100 yr	500 yr	
CO2	~100	1	1	1	
CH4	10	62	25	8	
N2O	120	290	320	180	
CFC-12	102	7900	8500	4200	
HCFC-123	1.4	300	93	29	
SF6	3200	16500	24900	36500	

Figure 2.5: Example Environmental Pathway for Combustion-derived, Health-damaging Air Pollution

SOURCE

EMISSIONS CONCENTRATION EXPOSURE

DOSE

Quantity and quality of fuel gives some idea of

Emissions of air pollutants depend on how much of which type is burned in

The concentration of air pollutants in the air depends not only on the emissions but also on the atmospheric condi-tions (or ventilation conditions inside

Exposure depends on how how much many people breathe certain concentra-tions

Dose measures pollutant is actually deposited in the body and depends not only on exposure but also factors such

Health effects depend not only on dose but also on factors such as age, sex, whether the person smokes, and the

Measurement and control can be initiated at any stage.

Intake Fraction

Gms of pollutant inhaled per tonne emitted

Disability Adjusted Lost Years

- One DALY can be thought of as one lost year of "healthy" life. The sum of these DALYs across the population, or the burden of disease, can be thought of as a measurement of the gap between current health status and an ideal health situation where the entire population lives to an advanced age, free of disease and disability. (Source: WHO)
- DALY = YLL +YLD

Carbon Dioxide Emissions

Kaya identity: Total CO₂ Emissions = (CO₂/E)(E/GDP)(GDP/Pop)Pop

CO₂/E – Carbon Intensity

E/GDP- Energy Intensity of Economy

Kaya Identity

Total CO₂ Emissions =

 $\overline{(CO_2/E)(E/GDP)(GDP/Pop)Pop}$

CO₂/E – Carbon Intensity

E/GDP- Energy Intensity of Economy

Rangan Banerjee 28

Does a country that has a lower energy intensity per unit GDP imply that it is more efficient?

Figure 4.5: Primary energy intensity for four selected countries and FSU, total (solid lines) and commercial energy (dashed lines), in kgoe, per GDP, in US(1990)\$. Unless otherwise specified, GDP refers to GDP_{mer}. For China, India, and FSU intensities based on GDP_{ppp} are also given. Data sources: Nakićenović, 1987; Martin, 1988; TERI, 1994.

Energy Intensity vs Per capita GDP

Energy Intensity Improvements

Energy Intensity vs per capita use

Sectoral Shares of GDP in 1985 and 2010

	1971	1981	1991	2001	2008	2011
	13/1	1301	<u> </u>	2001	2000	2011
Industry	23%	25%	26%	25%	27%	27%
Services	36%	39%	44%	51%	57%	59%
Agriculture	42%	36%	30%	23%	16%	13.9%

Composition of GDP

Source: Kanitkar, T. et al ESD, 2015

Emission Factor

- Emissions per unit of output
 e.g. CO₂ / kWh for a power plant
 Depends on composition of fuel
 Efficiency, characteristics of conversion device
 Can be done for all pollutants
- Calculations possible from basic stoichiometry

Power plant calculation (Previous lecture)

- A thermal power plant is rated at 500 MW (gross), has 9% auxiliary consumption, has an annual PLF of 80%. Calculate the annual generation in MWh and Million units and in GJ.
- If the plant has an efficiency of 38% calculate the amount of input energy supplied to the plant. If the input energy used is coal (NCV 4500 kcal/kg) calculate the annual amount pf coal used

Power plant calculation (Previous lecture)

 If the power plant has an efficiency of 38% calculate the emission factor of the plant. The input energy used is coal (NCV 4500 kcal/kg) and the percentage of carbon in the coal is 50% by weight

Options for Low Carbon

Mitigation options increase sinks, reduce sources- aforestation, fuel mix, energy efficiency, renewables, nuclear, carbon sequestration (CCS) Adaptation

Homework

- Check the IEA statistics for India for 2005 and 2015
- Calculate the terms of the Kaya identity for both these years.
- How do you think these factors will change in 2025?
- What are possible future scenarios?
- What interventions can we make to reduce the carbon intensity?

India's NDC

#1 Reduce Emissions Intensity of GDP by 33-35% of 2005 level in 2030

#2 Create 40% cumulative non fossil power by installed capacity by 2030 (using finance from Green Climate Fund)

#3 Create an additional carbon sink of 2.5 to 3 billion tonnes of CO₂ equivalent through additional tree cover and forest

Summing up

- Environment- key driver for future energy systems
- Focus is on future sustainability
- Climate change, local emissions,, urban air quality
- Quantification Kaya identity, Emission factors
- Future classes we will explore the interaction between energy, economics and environment

References

- Arnulf Grubler, Transitions in Energy use, IIASA, Laxenburg, Austria (2004).
- World Energy Outlook 2017, http://www.iea.org/
- Tester J.W. et al Sustainable Energy, Choosing Among Options, PHI, 2009
- Rockstrom et al, A safe operating space for humanity https://www.nature.com/articles/461472a.pdf
- Energy After Rio: UNDP Publication
- www.globalenergyassessment.org
- Chapter 1,#5, www.globalenergyassessment.org
- http://cdiac.ornl.gov/trends/co2/graphics/lawdome.gif
- http://www.ei.lehigh.edu/learners/cc/paleoclimatology/iceCore.png
- http://www.abc.net.au/radionational/image/7449688-3x2-700x467.jpg
- https://www.usatoday.com/story/weather/2014/05/01/carbon-dioxide-400-ppm-april-mauna-loa/8575651/
- Kanitkar, T., Banerjee, R., and Jayaraman, T., Impact of economic structure on mitigation targets for developing countries, Energy for Sustainable Development, (26) 56-61, June 2015.
- Technical notes Human Development Report 2013: The Rise of the South Human Progress in a Diverse World, http://hdr.undp.org/sites/default/files/hdr_2013_en_technotes.pdf
- Reda Cherif, et al. IMF Working Paper: Riding the Energy Transition: Oil beyond 2040, May 2017.

Email: rangan@iitb.ac.in

Thank you