Parallel Processing & Distributed Systems

Thoai Nam

Faculty of Computer Science and Engineering
HCMC University of Technology

- □ HPC and applications
- □ Introduction
 - What is parallel processing?
 - Why do we use parallel processing?
- Parallelism

Applications (1)

Khí động học trong tàu vũ trụ

Mô phỏng tiểu hành tinh

Tác dụng của thuốc ở mức phân tử

Tràn dầu của BP

Mô phỏng nguyên tử Lithium

Mô hình thời tiết PCM

Mô phỏng Renault F1

Mô phỏng não

Mô phỏng Uranium-235 hình thành từ phân rã Phutonium-239

Mô phỏng xe va chạm

☐ Critical HPC issues

- Global warming
- Alternative energy
- Financial disaster modeling
- Healthcare
- ☐ New trends
 - Big Data
 - Internet of Things (IoT)
 - 3D movies and large scale games are fun
 - Homeland security

High Performance Computing - HPC

Faculty of Computer Science & Engineering - HCMUT

K computer 10.5 Petaflops 705,024 cores

10,649,600 cores

http://www.TOP500.org/

top500.org

	NAME	SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER
1	Sunway TaihuLight	Shenwei SW26010 (260C 1.45 GHz) Custom interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
2	Tianhe-2 (Milkyway-2)	Intel Ivy Bridge (12C 2.2 GHz) & Xeon Phi (57C 1.1 GHz), Custom interconnect	NSCC in Guangzhou	China	3,120,000	33.9	17.8
3	Titan	Cray XK7, Opteron 6274 (16C 2.2 GHz) + Nvidia Kepler GPU, Custom interconnect	DOE/SC/ORNL	USA	560,640	17.6	8.2
4	Sequoia	IBM BlueGene/Q, Power BQC (16C 1.60 GHz), Custom interconnect	DOE/NNSA/LLNL	USA	1,572,864	17.2	7.9
5	K computer	Fujitsu SPARC64 VIIIfx (8C 2.0 GHz), Custom interconnect	RIKEN AICS	Japan	705,024	10.5	12.7

HPC distribution in TOP500 (Jun 2016)

TOP500 (Jun 2016)

Parallel architecture

- Multi-core
- Many core
 - GPUs (Ndivia)
 - Xeon Phi (Intel)

SuperNode I & II

SuperNode I in 1998-2000

SuperNode II in 2003-2005

SuperNode-V project: 2010-2012

EDA-Grid & VN-Grid

SuperNode II

Applications
Chip design
Data mining
Airfoid optimization

Security

Monitoring

User Management Campus/VN-Grid (GT)

Resource Management

Information Service
Data Service

POP-C++

Scheduling

50 TFlops machine

- Vendors: HPE
- Intel Xeon processors
- Intel Xeon Phi
- Infiniband

Computer node

- □ 2 x Intel Xeon E5-2680 v3
- □ 2 x Intel Xeon Phi 7120P
- 256 GB RAM
- □ 2 Infiniband ports (40 Gbps)
- □ 2 Gbps ports
- □ 2 TB hard disk

Parallel processing & Distributed systems

Sequential Processing

- □ 1 CPU
- Simple
- □ Big problems???

Grand Challenge Problems

- A grand challenge problem is one that cannot be solved in a reasonable amount of time with today's computers
- □ Ex:
 - Modeling large DNA structures
 - Global weather forecasting
 - Modeling motion of astronomical bodies

\Box The N² algorithm:

- N bodies
- N-1 forces to calculate for each bodies
- N² calculations in total
- After the new positions of the bodies are determined, the calculations must be repeated

- 10⁷ stars and so 10¹⁴ calculations have to be repeated
- Each calculation could be done in 1μs (10⁻⁶s)
- It would take ~3 years for one iteration (~26800 hours)
- But it only takes 10 hours for one iteration with 2680 processors

- □ Power processor
 - 50 Hz -> 100 Hz -> 1 GHz -> 4 Ghz -> ... -> Upper bound?
- □ Smart worker
 - Better algorithms
- □ Parallel processing

Parallel Processing Terminology

- Parallel processing
- □ Parallel computer
 - Multi-processor computer capable of parallel processing
- □ Throughput:
 - The throughput of a device is the number of results it produces per unit time.
- □ Speedup
 - S = Time(the most efficient sequential algorithm)/Time(parallel algorithm)
- □ Parallelism:
 - Pipeline
 - Data parallelism
 - Control parallelism

- □ A number of steps called segments or stages
- □ The output of one segment is the input of other segment

 Distributing the data across different parallel computing nodes

Applying the same operation simultaneously to elements of a data set

Pipeline & Data Parallelism

1. Sequential execution

2. Pipeline

3. Data Parallelism

Pipeline & Data Parallelism

- □ Pipeline is a special case of control parallelism
- □ T(s): Sequential execution time
 - T(p): Pipeline execution time (with 3 stages)
 - T(dp): Data-parallelism execution time (with 3 processors)
 - S(p): Speedup of pipeline
 - S(dp): Speedup of data parallelism

Widget	1	2	3	4	5	6	7	8	9	10
T(s)	3	6	9	12	15	18	21	24	27	30
Т(р)	3	4	5	6	7	8	9	10	11	12
T(dp)	3	3	3	6	6	6	9	9	9	12
S(p)	1	1+1/2	1+4/5	2	2+1/7	2+1/4	2+1/3	2+2/5	2+5/11	2+1/2
S(dp)	1	2	3	2	2+1/2	3	2+1/3	2+2/3	3	2+1/2

Pipeline & Data Parallelism

- □ Task/Function parallelism
- Distributing execution processes (threads) across different parallel computing nodes

Applying different operations to different data elements simultaneously

Throughput: Woodhouse problem

- □ 5 persons complete 1 woodhouse in 3 days
- 10 persons complete 1 woodhouse in 2 days
- □ How to build 2 houses with 10 persons?
 - (1) 10 persons building the 1st woodhouse and then the 2nd one later (sequentially)
 - (2) 10 persons building 2 woodhouses concurrently; it means that each group of 5 persons complete a woodhouse

☐ The **throughput** of a device is the number of results it produces per unit time

□ High Performance Computing (HPC)

 Needing large amounts of computing power for short periods of time in order to completing the task as soon as possible

□ High Throughput Computing (HTC)

 How many jobs can be completed over a long period of time instead of how fast an individual job can complete

- ☐ An algorithm is scalable if the level of parallelism increases at least linearly with the problem size.
- An architecture is scalable if it continues to yield the same performance per processor, albeit used in large problem size, as the number of processors increases.
- Data-parallelism algorithms are more scalable than controlparallelism algorithms