Geometria Espacial

Aula 01: Revisão de Conceitos

Prof^a Dra. Karla Lima

1 Noções Primitivas e Axiomas

Noções Primitivas e Axiomas

Os postulados apresentados na Geometria Plana podem ser utilizados como postulados da Geometria Espacial. Tome como exemplo:

Postulado 1: Existem infinitos pontos numa reta.

Postulado 2: Dados dois pontos distintos do espaço existe uma, e somente uma, reta que os contém.

Postulado 3: Dados três pontos não colineares do espaço, existe um, e somente um, plano que os contém.

Postulado 4: Se uma reta possui dois de seus pontos em um plano, ela está contida no plano.

Uma vez estabelecidos os postulados, podemos utilizá-los na demonstração de outras propriedades:

Teorema 1. Existe uma único plano que contém uma reta e um ponto não pertencente a ela.

Uma vez estabelecidos os postulados, podemos utilizá-los na demonstração de outras propriedades:

Teorema 1. Existe uma único plano que contém uma reta e um ponto não pertencente a ela.

Demonstração:

- Pelo Postulado 1, uma reta possui infinitos pontos distintos. Sejam P e Q dois deles.
- Seja R o ponto não pertencente à reta.
- Como P, Q e R são não colineares, pelo Postulado 3, existe um, e somente um, plano α que os contém.
- Pelo Postulado 4, como dois dos pontos da reta (a saber, P e Q) estão no plano α , segue que a reta está contida no mesmo plano.
- Portanto, o plano α é o único que contém a reta e o ponto fora dela.

espaço.

A partir das respostas às perguntas:

"Como pode ser a interseção de duas retas distintas?" "Quando duas retas distintas determinam um plano?" obtemos uma importante classificação para um par de retas distintas no

- Pelo Postulado 2, duas retas distintas podem ter no máximo um ponto em comum.
- Quando duas retas possuem mais de um ponto em comum elas são chamadas coincidentes; ou seja, são a mesma reta.

© Profa Dra. Karla Lima

Dadas duas retas, elas podem:

- 1. Ter exatamente um ponto em comum;
- 2. Ter mais de um ponto em comum, logo são a mesma reta (coincidentes);
- 3. Não ter pontos em comum.

Definição 1. Duas retas são ditas **concorrentes** se possuem exatamente um ponto em comum.

Elas são sempre coplanares?

Teorema 2. Duas retas concorrentes sempre determinam um plano.

Teorema 2. Duas retas concorrentes sempre determinam um plano.

Demonstração: Basta tomar o ponto em comum $P \in r$, s e pontos $A \in r$ e $B \in s$ distintos de P.

Os postulados 3 e 4 completam a demonstração.

O caso em que as retas são coincidentes não é particularmente interessante, pois elas correspondem à mesma reta. Isso implica que existem infinitos planos determinados por essas retas coincidentes, tornando a análise menos significativa.

Por isso, a classificação das posições relativas se dão entre duas retas distintas.

Considere o caso em que as retas **são coplanares**, mas **não possuem pontos de interseção**.

Definição 2. Duas retas distintas são ditas **paralelas**, se são coplanares e não se interceptam.

Teorema 3. Duas retas paralelas distintas estão contidas em um único plano.

Teorema 3. Duas retas paralelas distintas estão contidas em um único plano.

Demonstração:

- Como as duas retas são coplanares, existe um plano α contendo as duas retas.
- Tome dois, A e B pontos distintos na reta r e um ponto C na reta s.
- Logo, A, B e C são não coplanares, logo existe um único plano contendo esses três pontos.
- Pelo Postulado 4, r está contida em α .

© Prof^a Dra. Karla Lima

- Pelo Postulado de Playfair:
 - Em um plano α , por um ponto não pertencente a uma reta, passa um única reta paralela à reta dada em α .
- Assim, existe uma única reta paralela à r que passa pelo ponto C em α .
- Como s é paralela à r e $C \in s$, o plano que passa por r e s é único.

Por fim, o caso em que as retas não determinam um plano, logo não possuem ponto em comum.

Definição 4. Duas retas que não estão num mesmo plano chamam-se **retas reversas**.

Duas retas distintas no espaço estão em um dos casos no quadro abaixo:

Posição relativa de r e s	Interseção de r e s	r e s são coplanares?
Concorrentes	Exatamente um ponto	Sim
Paralelas	Vazia	Sim
Reversas	Vazia	Não

Como pode ser a interseção de uma reta r e um plano α ?

 Pelo Postulado 4, se a reta e o plano tiverem 2 pontos em comum, a reta está contida no plano.

- O que acontece quando r e α possuem apenas um ponto em comum?
- E quando $r \cap \alpha = \emptyset$?

Definição 5. Dada uma reta r e um plano α no espaço, diz-se que r é **secante** a α quando r e α possuem apenas um ponto em comum.

Definição 6. Dada uma reta r e um plano α no espaço, diz-se que r é **paralela** a α quando r e α não possuem pontos em comum.

Posição Relativa de Reta e Plano

Exercício 1. Seja α um plano, r uma reta contida em α e P um ponto exterior à α . Mostre que a reta s, paralela a r passando por P, é paralela ao plano α .

Exercício 1. Seja α um plano, r uma reta contida em α e P um ponto exterior à α . Mostre que a reta s, paralela a r passando por P, é paralela ao plano α .

Exercício 2. Dadas três retas distintas no espaço, r, s e t, se $r \parallel t$ e $s \parallel t$ então $r \parallel s$.

Uma reta e um plano no espaço estão em um dos casos no quadro abaixo:

Posição relativa de r e α	Interseção de r e α
r contida em $lpha$	A própria reta <i>r</i>
r secante a $lpha$	Um único ponto
r paralela a $lpha$	Vazia

© Prof^a Dra. Karla Lima

Definição 7. Se dois planos α e β possuem 3 três pontos não colineares em comum, dizemos que os planos são **coincidentes**.

Quanto à classificação, vamos nos concentrar em planos distintos, pois planos coincidentes não apresentam um interesse relevante para este contexto.

Definição 8. Se dois planos distintos α e β possuem mais de um ponto em comum, dizemos que os planos são **secantes**.

Teorema 4. A interseção entre dois planos secantes é uma reta.

Teorema 4. A interseção entre dois planos secantes é uma reta.

Demonstração:

- α e β são planos secantes, logo possuem mais de um ponto em comum.
- Sejam P e Q os pontos em comum de α e β .
- Como são pontos distintos, determinam uma reta r.

© Prof^a Dra. Karla Lima

- Assim, $P \in \alpha$ e $Q \in \alpha$, de onde concluímos que $r \subset \alpha$.
- Analogamente, $P \in \beta$ e $Q \in \beta$, de onde concluímos que $r \subset \alpha$.
- Portanto, $r \subset \alpha \cap \beta$.
- Como concluímos que $r = \alpha \cap \beta$?

- Suponha que exista um ponto $A \in \alpha \cap \beta$ que não pertence à reta r.
- Os pontos A, P e Q são não colineares e determinam um único plano.
- Como $A,P,Q\in\alpha$ e $A,P,Q\in\beta$, concluímos que $\alpha=\beta$, contrariando a hipótese de que os planos são distintos.
- Logo, todo ponto de $\alpha \cap \beta$ deve pertencer à reta e $\alpha \cap \beta \subset r$.

Posição Relativa e Dois Planos

• Portanto,

$$r \subset \alpha \cap \beta$$
 e $\alpha \cap \beta \subset r$,

de onde segue que

$$r = \alpha \cap \beta$$
.

- Podem dois planos distintos no espaço terem um único ponto em comum?
- A resposta é não. Mas tal impossibilidade não decorre dos postulados estudados anteriormente, ou outro qualquer da Geometria Plana.
- A resposta é estabelecida através de mais um postulado:

Postulado 5. Se dois planos no espaço¹ possuem um ponto em comum, então possuem pelo menos uma reta em comum.

© Prof^a Dra. Karla Lima

¹Na Geometria Euclidiana de dimensão superior a 3, é perfeitamente possível dois planos terem exatamente um ponto em comum.

Definição 9. Se dois planos distintos α e β não possuem pontos em comum, dizemos que os planos são **paralelos**.

Posição Relativa e Dois Planos

Exercício 3. Como podemos construir um plano paralelo a um plano dado? Ele é único?