date: 08-05-2025

Hamming Codes

tags: Linear Block Codes

concept

minimum hamming distance	error detection	error correction
3	2 bit	1 bit

formulas

error detection, $s=d_{min}-1$ max error correction, t : $d_{min}=2t-1$ here t would be a floor value

Steps to correct a corrupted codeword (c/w)

step1 get the d_{min} for given codeword table.

step2 get value of t using the formula

step3 for each codeword in table do $m c/w \oplus recieved \ c/w$

step4 for each c/w, total number of 1 in the result from step 3 is the difference

step5 if difference matches t ,then replace received c/w with that c/w from table.

practice:

 Table 10.2
 A code for error correction (Example 10.3)

Dataword	Codeword	
00	00000	
01	01011	
10	10101	
11	11110	

- 17. Using the code in Table 10.2, what is the dataword if one of the following codewords is received?
 - a. 01011
 - b. 11111
 - c. 00000
 - d. 11011
- 18. Prove that the code represented by Table 10.8 is not a linear code. You need to find only one case that violates the linearity.

 Table 10.8
 Table for Exercise 18

Dataword	Codeword	
00	00000	
01	01011	
10	10111	
11	11111	

minimum hamming distance can indicate how many bits can be corrected. using the *max error correction* formula above.