INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores

Licenciatura/Mestrado de Engenharia Informática e Computadores

Unidade Curricular de Sistemas Distribuídos (20 semestre letivo 2014/2015)

OpenNebula – plataforma cloud

Grupo nº 4

Autores:

36836, Manuel Dias Marques 39278, Oxana Dizdari 39320, Beatriz Neto

Resumo

Actualmente, uma das principais considerações é a falta de soluções genéricas e de código aberto para a gestão e monotorização de clouds privadas.

OpenNebula é uma ferramenta que visa a solucionar este problema. Foi implementada com ideais e objetivos direcionados a uma solução simples e aberta. Ao longo deste relatório serão explicadas essas abordagens e soluções.

Índice

RE	ESUMO	II
1.	. O QUE É <i>OPENNEBULA</i> ?	1
2.	. HISTÓRIA	2
3.	. OBJECTIVO	3
4.	. OPENNEBULA E OUTRAS PLATAFORMAS CLOUD	4
5.	. CARACTERÍSTICAS	5
6.	. RAZÕES PARA USAR <i>OPENNEBULA</i>	6
7.	. OPENNEBULA E APLICAÇÕES DE LARGA ESCALA	7
	Clusters	7
	CLOUD HÍBRIDA	8
	OPENNEBULA ZONES (OZONE)	8
	VIRTUAL DATA CENTERS (VDC)	0
	VINTOAL DATA CENTERS (VDC)	9
9.		
		10

1. O que é OpenNebula?

OpenNebula é uma ferramenta que fornece uma opção simples, mas rica em recursos e soluções flexíveis para a gestão global de *datacenters*. Permite utilizar *clouds* em infraestruturas existentes. OpenNebula pode ser utilizado para o desenvolvimento de *clouds* privadas, públicas e híbridas. Possui também a capacidade de combinar uma infraestrutura local com uma infraestrutura baseada em *cloud* pública, permitindo ambientes altamente escaláveis.

Esta ferramenta inclui recursos de integração, gestão, escalabilidade e segurança, e permite que os utilizadores consigam criar e gerir as suas próprias máquinas virtuais de forma dinâmica. Possui também uma arquitetura flexível que pode acomodar múltiplos hardware e combinações diferentes de software.

2. História

O OpenNebula foi criado, inicialmente, como um projeto de pesquisa, em 2005, por Ignacio M. Llorente e Rubén S. Montero. Desde a sua primeira versão pública do software, de Março de 2008, evoluiu através de versões de código aberto e agora opera como um projeto *open-source*. O OpenNebula é o resultado de muitos anos de pesquisa e desenvolvimento em gestão eficiente e escalável de máquinas virtuais em infraestruturas distribuídas em estreita colaboração com a comunidade de utilizadores.

A tecnologia do OpenNebula amadureceu graças a uma comunidade ativa de utilizadores e programadores. Diferentes projetos, grupos de pesquisa e empresas construíram novos componentes para complementar e melhorar suas funcionalidades. Em Março de 2010, os principais autores de OpenNebula fundaram a C12G Labs para permitir que o projeto OpenNebula não fosse vinculado exclusivamente ao financiamento público. A OpenNebula.org é agora gerido e suportado por a OpenNebula Systems. E em Setembro de 2013 houve a primeira conferência organizada pela OpenNebula, que inclui apresentações por empresas líderes a nível mundial.

3. Objectivo

As plataformas *cloud*, como uma tecnologia cada vez mais utilizada, possuem dados problemas a nível de varias plataformas existentes. Esses problemas ou contradições têm como exemplo, o *vendor lock-in*, que torna um utilizador dependente de um fornecedor, sendo essas dependências por produtos ou serviços. Outro desses problemas seria o facto de as APIs das plataformas utilizadas serem orientadas a uma tecnologia específica. Provocando uma incompatibilidade com outras plataformas. Estes exemplos são dois dos problemas que a OpenNebula aborda.

A OpenNebula tem como objetivo ser aberta, flexível, extensível e fonecer uma camada com capacidade de organizar e automatizar as operações sobre *clouds* direcionadas a meios empresariais. Esta também se foca em provocar uma evolução na *cloud* por investindo em plataformas existentes, protegendo os investimentos dos utilizadores e despromovendo o *vendor lock-in*.

O fundamento pelo qual a OpenNebula se rege é ser a mais simples plataforma a nível empresarial e trazer facilidade de interação entre *clouds* empresariais privadas e híbridas.

4. OpenNebula e outras plataformas Cloud

OpenNebula concentra-se em virtualização de dados, trazendo todas as funcionalidades necessárias para a gestão abrangente de infraestruturas virtuais. Outras soluções open-source dão mais importância aos recursos e utilização de Cloud pública, sem perceberem o potencial existente na virtualização de DataCenter para permitir a existência de uma Cloud privada. OpenNebula não traz apenas uma implementação open-source das interfaces de Cloud pública, mas também as mais recentes inovações na gestão de datacenters para a implantação de Clouds IaaS

5. Características

De modo a ajudar a construir *clouds* confiáveis de uma forma simples, *OpenNebula* caracterizase por:

- Simplicidade não exige muitos administradores para construir e manter uma *Cloud*.
- Transparência tendo em conta que o software é *opensource*.
- Confiabilidade permite execução durante um longo período de tempo com pouca manutenção.
- Flexibilidade Facilidade de construção da Cloud que se enquadre nas políticas de datacenter.

Figura 1 - adaptada de http://opennebula.org/wp-content/uploads/2013/12/webinar onedc.png

Para além das características indicadas anteriormente, OpenNebula permite:

- Uma boa gestão de segurança dos utilizadores. O sistema de autenticação e autorização de pedidos é completo e seguro.
- Controle total do ciclo de vida, gestão e configuração completa de máquinas virtuais.
- Vasta gama de sistemas operativos, incluindo Microsoft Windows e Linux.

6. Razões para usar OpenNebula

- As suas funcionalidades são avançadas e inovadoras para construir *clouds* privadas e públicas.
- 2. Possui uma funcionalidade única para a implementação de *cloud* híbrida, de maneira a completar a sua infraestrutura local com capacidade computação de *clouds* externas.
- 3. Disponibiliza suporte para hipervisores independentes (Xen, KVM and VMware).
- 4. Disponibliza back-end altamente escalável e eficiente, testado para gerir várias dezenas de milhares de VMs em milhares de núcleos, e os recursos de segurança e de contabilidade de que são necessárias para adoção da *cloud* interna.
- 5. Tem capacidades únicas de integração que permitem a implementação da *cloud* sobre o ambiente de desenvolvimento existente.
- 6. Suporta interfaces para administradores, utilizadores e integradores de *cloud*.
- 7. Fornece aos utilizadores e administradores a interoperabilidade e portabilidade da cloud, permitindo a escolha através de interfaces, hypervisors e clouds públicas. Consiste também num software flexível, que pode ser instalado em qualquer combinação de hardware e software.
- 8. Adopta e aplica normas.
- 9. É totalmente *open source*, com arquitetura e interfaces também abertas.
- 10. Disponibiliza uma tecnologia estável, robusta e rigorosamente testada.

7. OpenNebula e Aplicações de Larga Escala

Um dos princípios no design da OpenNebula foca-se em conseguir suportar aplicações de larga escala. Na generalidade dos casos deste tipo de aplicações temos que lidar com um largo numero de *hosts* físicos, com a intenção de correr um grande número de máquinas virtuais. Isto é relevante pois muitos dos utilizadores da OpenNebula usam aplicações com dezenas de milhares de máquinas virtuais.

A escalabilidade de um gestor de uma infraestrutura virtual, é a chave quando trabalhamos com aplicações em larga escala. A habilidade de lidar com um grande número de recursos, sendo essencial manter estes recursos sob controlo e ter sempre resposta a estes, é a razão pela qual o projeto OpenNebula tornou a sua componente central o mais estável e robusta possível. Mas a habilidade de lidar com aplicações de larga escala não é unicamente pela sua escalabilidade. É também por outros aspectos que o OpenNebula possui, prontos para lidar com um grande numero de recursos. Esses são: Clusters, Virtual Data Centers, Hybrid Cloud e OpenNebula Zones.

Clusters

São entidades lógicas definidas por um grupo de *hosts* físicos que partilham o mesmo servidor e as mesmas redes virtuais. Os *Clusters* são usados para balanceamento de carga computacional, ter disponibilidade e desempenho computacional. A ideia é ter um grupo de *hosts* físicos com homogeneidade suficiente para conseguirem retirar a imagem do mesmo servidor e usar também a mesma rede virtual. Sendo assim ele têm a mesma configuração de ligações físicas, tendo em conta que partilham a mesma configuração de ligações ou têm acesso ao mesmo Open vSwitch.

As implementações distribuídas em larga escala beneficiam com os Clusters, tendo com eles a habilidade de entregar uma VM especifica à *hardware* que a requisitou e a possibilidade de balancear a carga de operações I/O através de vários *datastores*.

Cloud Híbrida

Uma extensão de uma *cloud* privada que permite a combinação de recursos locais com os recursos de um fornecedor *cloud* remoto, feito de modo transparente através do OpenNebula. O fornecedor remoto pode ser um serviço comercial *cloud*, como a Amazon Ec2, ou uma infraestrutura parceira a correr noutra instância da OpenNebula.

Este suporte a *cloudbursting* faz com que os ambientes hospedeiros sejam altamente escaláveis. Com isto as exigências máximas que não conseguem ser satisfeitas localmente são transferidas para fornecedores externos.

OpenNebula Zones (oZone)

Estas zonas são essencialmente vistas como instâncias da OpenNebula, sendo um grupo de *hosts* físicos interligados com hipervisores controlados por a OpenNebula. A zona pode ser adicionada a um servidor oZone, que fornece uma centralização da gestão de implementações OpenNebula.

Desta maneira, o servidor oZone apresenta uma lista de recursos agregados, permitindo uma federação solta de várias *clouds*, adicionando uma ordem de magnitude na escalabilidade de uma infraestrutura da *cloud*, para que esta possa ser gerida por a tecnologia OpenNebula.

Virtual Data Centers (VDC)

Sendo ambientes de infraestruturas virtuais totalmente isolados onde grupos de utilizadores, sob controlo de um administrador VDC, podem criar e gerir poder computacional, capacidade de armazenamento e de ligação. Os administradores podem criar novos utilizadores. Ambos utilizadores e administradores acedem a uma *proxy* invertida, para que não tenham a necessidade de conhecer os fins de comunicação da *cloud* OpenNebula, mas sim o endereço do servidor oZone e o VDC a que pertence.

Esta funcionalidade é usada em implementações de larga escala aumentando o *multi-tenancy*, ou seja particionamento de uma *cloud* grande em várias pequenas, facilitando assim a sua distribuição a diferentes grupos e organizações.

9. Arquitetura OpenNebula

A arquitetura de uma *cloud* é definida por três componentes principais: **storage** (armazenamento), **networking** (rede) e **virtualization** (virtualização). A figura 2 mostra a arquitetura da *cloud* OpenNebula. O serviço OpenNebula corre num *host* chamado de *Frontend*, com conexões para os monitores das máquinas virtuais (hypervisor) através do serviço de rede. O *Front-end*, servidor ou máquina virtual, utiliza esta rede para gerir todos os cursos da cloud, e disponibiliza uma de uma base de dados MySQL, schedule e serviços opcionais do OpenNebula.

Figura 2 - Arquitetura OpenNebula

Os hipervisores, responsáveis por criar e correr máquinas virtuais, estão também conectados ao *back-end* de armazenamento da cloud atraves da rede de armazenamento. Tendo em conta o baixo tráfego de rede exigido pelo OpenNebula para operar, esta rede pode ser a mesma que a rede de serviços.

O back-end de armazenamento é responsável por fornecer suporte de armazenamento para as máquinas virtuais em execução (System DS) e para os repositórios de imagem (Image DS) As máquinas virtuais requerem dois tipos interligações de rede: privada e pública. A rede privada implementa redes virtuais isoladas (VLAN) para a comunicação interna entre as máquinas virtuais. O acesso a cada rede virtual pode ser restrito a diferentes utilizadores, grupos

ou limitada através de quotas. Algumas máquinas virtuais precisam de comunicar com o mundo, por isso o acesso a redes públicas é recomendado para alguns hipervisores.

São recomendados dois tipos de implementação de uma cloud baseada na arquitetura acima descrita: básica, para *clouds* de tamanho médio (a partir de algumas dezenas de hipervisores) e avançada, para *clouds* de grandes dimensões (de dezenas a centenas de hipervisores). Estes dois tipos de implementação têm também algumas características que as distinguem que podem ser importantes para uma escolha.

	Básica	Avançada
Sistemas Operativos		
	Suportados : (Ubuntu or CentOS/RHEL) em todas as	
	máquinas.	
Hipervisor	KVM (Kernel-based Virtual Machine)	
Rede	VLAN	VXLAN
Armazenamento	NFS/GlusterFS	Ceph Cluster
Autenticação	Native Authentication ou Active Directory	

Conclusões

Neste trabalho tivemos que pesquisar e adquirir conhecimentos sobre a OpenNebula. O que é, com que objetivos foi criada, a sua arquitetura e como visa solucionar os problemas das plataformas *cloud* hoje em dia.

Ao longo da pesquisa feita foi recolhida informação sobre os problemas que esta plataforma resolve e quais as suas qualidades. Tendo maioritariamente em foco os aspectos que relacionam a OpenNebula a aplicações em larga escala e os mecanismos usados para as suportarem.

Relativamente a problemas com que nos deparamos durante a resolução deste trabalho foi a quantidade excessiva de informação fornecida sobre a OpenNebula. Foi um problema que se refletiu sobre a recolha e resumo dessa informação.

Referêcias

- [1] "OpenNebula," [Online]. Available: http://www.sparkmycloud.com/hybrid-cloud/opennebula/opennebula-datacenter-virtualization.html. [Acedido em 17 06 2015].
- [2] "Projecto," [Online]. Available: https://projetos.inf.ufsc.br/arquivos_projetos/projeto_1285/Principal.pdf. [Acedido em 17 06 2015].
- [3] "Características," [Online]. Available: http://docs.opennebula.org/4.12/release_notes/release_notes/features.html. [Acedido em 17 06 2015].
- [4] "Arquitetura," [Online]. Available: https://support.opennebula.pro/hc/en-us/articles/204210319. [Acedido em 17 06 2015].
- [5] "opennebula.org," [Online]. Available: http://opennebula.org/about/project/. [Acedido em 17 06 2015].