ГГ1 - генератор с ФАПЧ (https://www.rlocman.ru/comp/koz/cd/cdh08.htm) 561ГГ1 = CD4046A 1561ГГ1 = CD4046B

ГГ1 состоит из генератора, управляемого напряжением, и двух фазовых компараторов, имеющих общий вход компарирования и общий усилитель входного сигнала. Микросхема содержит интегральный стабилитрон с напряжением стабилизации 5.2 В.

Генератор, управляемый напряжением (VCO) требует для работы подключения времязадающего конденсатора (между выводами C1 и C2) и одного (R1) или двух (R1, R2) резисторов (между соответствующим выводом и Gnd. Цепочка C1,R1 определяет диапазон частоты VCO, а R2 задает смещение диапазона, если это необходимо. Типовые значения резисторов лежат в пределах (10 КОм - 1 МОм. При напряжении питания 5 В времязадающая емкость должна быть не менее 100 пФ, а при питании 10 В должна быть не менее 50 пФ. Выход фазового компаратора через RC-цепочку соединяется с входом VCOi. Если этот сигнал необходимо использовать еще гденибудь, его можно получить от повторителя сигнала (вывод 10), который при этом должен быть соединен резистором (10 Ком или больше) с Gnd. Если это не требуется, вывод 10 (выход демодулятора) может быть оставлен неподключенным. Выход VCO может быть подключен непосредственно к фазовому компаратору (вывод 3) или через делитель частоты, например 561ИЕ9, 561ИЕ14, 561ИЕ15, 561ИЕ16, 561ИЕ19. Один или несколько таких счетчиков совместно с ГГ1 могут быть использованы чтобы построить микромощный синтезатор частоты. Потенциал L на входе Inh (вывод 5) разрешает работу VCO и повторителя сигнала, а потенциал Hзапрещает их работу, уменьшая потребляемую мощность.

Сигнальный вход фазового компаратора (вывод 14) может быть непосредственно соединен с сигналом, размах колебаний которого соответствует стандартным уровням КМОП логики (логический 0 <30%, а логическая 1 >70% напряжения источника питания). При меньшем размахе входной сигнал должен подаваться через емкость на сигнальный вход, который не требует установки смещения. Фазовый компаратор 1 (выход на выводе 2) является схемой Исключающее-ИЛИ, которая функционирует аналогично перегруженному балансному смесителю. Чтобы максимизировать диапазон захвата частоты, частоты на входе компаратора и сигнала должны иметь 50% заполнение цикла. При отсутствии сигнала или при шумовом сигнале на входе, этот фазовый компаратор имеет среднее выходное напряжение

равное половине напряжения питания. Фильтр низкой частоты, соединенный с выходом фазового компаратора, обеспечивает усредненное напряжение на входе VCO и вынуждает его генерировать на центральной частоте.

Диапазон частоты входного сигнала, в котором микросхема ГГ1 захватит эту частоту, является 2*Fc.

Диапазон частоты входного сигнала, в котором микросхема ГГ1 будет удерживать эту частоту, является 2*Fl. Диапазон захвата должен быть меньше диапазона удержания.

Фазовый компаратор 2 (выходы на выводах 1,13) является схемой запускаемой по фронту, которая содержит 4 триггерных ступени связанных с управляющими схемами и выходом с тремя состояниями. Этот фазовый компаратор запускается по положительному фронту на входе сигнала (вывод 3) или компаратора (вывод 4) и работает независимо от коэффициента заполнения на этих входах. Выход РС2 (вывод 13) обеспечивает уровень напряжения и коэффициент заполнения цикла соответственно частоте и разности фаз между входными сигналами. Когда этот выход соединен через ФНЧ со входом VCO, на емкости фильтра напряжение изменяется до тех пор, пока оба сигнала не станут равными по частоте и фазе. Когда это напряжение установилось, на выходе РСР (вывод 1) устанавливается высокий потенциал, сигнализирующий о захвате частоты. Когда используется фазовый компаратор 2 в ФНЧ рассеивается меньшая мощность.

- Fr F F F F F F F F F F F F F F F F F F									
Микросхема	4046A	4046A	ГГ1	ΓΓ1					
Параметры (Т=+25) при питании, В	E=+5	E=+10	E=+5	E=+10					
Выходной ток логического 0 (выводы 2 и 13), мА	0.43-	1.3-	0.36	0.9					
при выходном напряжении, В	0.5	0.5	0.5	1.0					
Выходной ток логического 0 (остальные выв.), мА	0.23-	0.7-	0.36	0.9					
при выходном напряжении, В	0.5	0.5	0.5	1.0					
Выходной ток логической 1 (выводы 2 и 13), мА	0.3-	0.9-	0.36	0.9					
при выходном напряжении, В	4.5	9.0	4.5	9.0					
Выходной ток логической 1 (остальные выв.), мА	0.08-	0.25-	0.36	0.9					
при выходном напряжении, В	4.5	9.0	4.5	9.0					
Максимальная рабочая частота, МГц	0.25-0.5-	0.6-1.2-	0.3-	0.6-					
Напряжение стабилизации стабилитрона (50 мкА),В	4.5-5.2-6.1		_	_					

Микросхема	4046B	4046B	4046B	ГГ1	ΓΓ1	ГГ1
Параметры (Т=+25) при питании	E=+5	E=+10	E=+15	+5	+10	+15
Выходной ток логического 0, мА	0.51-	1.3-	3.4-	0.51	1.3	3.4
при выходном напряжении, В	0.4	0.5	1.5	0.4	0.5	1.5
Выходной ток логической 1, мА	0.51-	1.3-	3.4-	0.51	1.3	3.4
при выходном напряжении, В	4.6	9.5	13.5	4.6	9.5	13.5
Максимальная рабочая частота, МГц	-0.7-	-1.4-	-1.9-	0.5-	1.0-	1.4-
Напряжение стабилизации стабилитрона (50 мкА),В	-5.2-	-5.2-	-5.2-	4.45-6.15		