[简答题]

Chapter 5 P3. Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from x to all network nodes. Show how the algorithm works by computing a table similar to Table 5.1.

[参考答案]

如下表所示:

Step	N	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	X	∞	∞	3,x	6,x	6,x	8,x
1	XV	7,v	6,v		6,x	6,x	8,x
2	xvu	7,v			6,x	6,x	8,x
3	xvuw	7,v				6,x	8,x
4	xvuwy	7,v					8,x
5	xvuwyt						8,x
6	xvuwytz						

[简答题]

Chapter 5 P5. Consider the network shown below, and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algorithm and show the distance table entries at node z. Showing your work using a table similar to Fig. 5.6.

Fig. 5.6 Distance-vector (DV) algorithm in operation.

[参考答案]

迭代步骤如下:

	r	C	ost	to					ı									T								ı				
$D_U()$	u	V	X	У	Z				u	V	X	у	Z					u	V	X	у	Z				u	V	X	У	Z
u	0	1	∞	2	00	\		u	0	1	4	2	7	1			u	0	1	4	2	6	\		u	0	1	4	2	6
from	00	∞	00	00	∞ \	1	,	v	1	0	3	00	6	1			V	1	0	3	3	5	1		V	1	0	3	3	5
– У	00	00	00	00	00	//		У	2	∞	3	0	00	1	/	/	∳ y	2	3	3	0	5	1	\ /	/y	2	3	3	0	5
		C	ost 1	to			X /							\	X			1					1	X						
$D_V()$	u	V	X	У	Z	\/	V		u	V	X	У	Z			V	_	u	V	X	У	Z	1/	/ \	V—	u	V	X	У	Z
u	∞	∞	∞	∞	∞	X	/*	u	0	1	∞	2	∞	X		/	u	0	1	4	2	7	X		la n	0	1	4	2	6
E v	\bigcirc	0	3	00	6			v	\bigcirc	0	3	3	5	()			V	\bigcirc	0	3	3	5			v	1	0	3	3	5
tom x	00	00	00	00	00		/ ,	X	00	3	0	3	2	1	\	/	X	4	3	0	3	2	1/1		"X	4	3	0	3	2
z	00	00	00	00	00	11	//	z	∞	6	2	00	0	1,	1		z	7	5	2	5	0	1/		/ z	6	5	2	5	0
	1	C	ost	to		1	X 1		l I					\	X		*	1					\	X	Î					
$D_X()$	u	V	X	У	Z		V.		u	V	X	У	Z	. \	$/\chi$	V	_	u	V	X	У	Z	/	$\langle \rangle$	$\sqrt{-}$	u	V	X	У	Z
V	00	00	00	00	00		\ / `	V	1	0	3	00	6	Λ	/\	/	V	1	0	3	3	5		/\	V V	1	0	3	3	5
trom x	00	3	0	3	2		V	X	4	3	0	3	2		\bigvee	V	X	4	3	0	3	2		/ V	X	4	3	0	3	2
⊈ y	∞	00	8	∞	00	//	Λ,	У	2	∞	3	0	∞	1	1	Λ	, y	2	3	3	0	5	//	Λ	≠y	2	3	3	0	5
Z	∞	00	00	00	∞	IXI	/ <u>/</u>	Z	oo	6	2	00	0			V	Z	7	5	2	5	0	IX	\/	\sqrt{z}	6	5	2	5	0
	1	C	ost	to		XX	/V		1					X	X	$/ \setminus$	1	1					X,	V /	V	1				
$D_Y()$	u	V	X	У	Z		Λ		u	V	X	У	Z	. / \	V	Λ	_	u	V	X	y	Z	/\	M	Λ	u	V	X	y	Z
u	∞	00	∞	∞	∞		X.	u	oo	1	∞	2	00	1	1	Χ.	u	0	1	4	2	7	11	/ /X	[*] u	0	1	4	2	6
tom x	00	00	00	00	00	<u>/// </u>	\bigvee	X	00	3	0	3	2	1/1	' V	1)	X	4	3	0	3	2	1//	\bigvee	X	4	3	0	3	2
± y	2	00	3	0	00	///		у	2	3	3	0	5	<u>/</u> /	/		y	2	3	3	0	5	//	$/\backslash \backslash$	у	2	3	3	0	5
- 0	i		cost	to		//										11		i					//			ı				
$D_Z()$	u	V	X	У	Z	//	\\.		u	V	X	У	Z	. [/		//	_	u	V	X	У	Z	//		\\	u	V	X	У	Z
E V	∞	00	∞	00	00	//	1	V	1	0	3	00	6	//		1	V	1	0	3	3	5	//		V	1	0	3	3	5
rom x	∞	∞	∞	∞	∞ //	/	*	X	∞	3	0	3	2	//			X	4	3	0	3	2 /			X	4	3	0	3	2
Z	8	6	2	00	0			z	7	5	2	5					Z	6	5	2	5	0)/			Z	6	5	2	5	0

[简答题]

Chapter P14. Consider the network shown below. Suppose AS3 and AS2 are running OSPF for their intra-AS routing protocol. Suppose AS1 and AS4 are running RIP for their intra-AS routing protocol. Suppose eBGP and iBGP are used for the inter-AS routing protocol. Initially suppose there is no physical link between AS2 and AS4.

- a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, eBGP, or iBGP?
- b. Router 3a learns about x from which routing protocol?
- c. Router 1c learns about x from which routing protocol?
- d. Router 1d learns about x from which routing protocol?

[参考答案]

AS4 和 AS3 是两个不同的 AS, 所以他们之间互相学习路由需要通过 BGP, 3c 与 AS4 相邻, 跨越两个 AS, 所以 3c 通过 eBGP (external BGP session) 学习到 x, 3a 和 3b 并不与 AS4 相邻, 需要通过 iBGP (internal BGP session) 才可以学习 到 x。

同理,1c 与 3a 有 eBGP 邻居关系所以 1c 通过 eBGP 学习到 x,1a、1d 和 1b 则通过 iBGP 学习到 x。因此:

- a. 3c 通过 eBGP 学习到 x。
- b. 3a 通过 iBGP 学习到 x。
- c.1c 通过 eBGP 学习到 x。
- d. 1d 通过 iBGP 学习到 x。