Package 'moveWindSpeed'

June 7, 2023

Title Estimate Wind Speeds from Bird Trajectories

Version 0.2.4														
Description Estimating wind speed from trajectories of individually tracked birds using a maximum likelihood approach.														
Depends R ($>= 3.0.0$), methods, move														
Suggests testthat, knitr, rmarkdown, sf														
License GPL														
<pre>URL https://gitlab.com/bartk/moveWindSpeed</pre>														
<pre>BugReports https://gitlab.com/bartk/moveWindSpeed/-/issues</pre>														
LazyData true														
RoxygenNote 7.2.3														
Imports Rcpp														
LinkingTo Rcpp														
VignetteBuilder knitr														
NeedsCompilation yes														
Author Bart Kranstauber [aut, cre], Rolf Weinzierl [aut]														
Maintainer Bart Kranstauber <b.kranstauber@uva.nl></b.kranstauber@uva.nl>														
Repository CRAN														
Date/Publication 2023-06-07 08:20:02 UTC														
R topics documented:														
estimatePhi 2 findGoodPoints 3 getDefaultIsThermallingFunction 4 getIsFocalPointFunction 5 getIsSamplingRegularFunction 5 getTrackSegments 6														

2 estimatePhi

	getWindEstimate		 													7
	getWindEstimates		 													8
	getWindowSizeLR	₹	 													10
	storks		 													10
	windEstimLogLik		 													11
Index																12

estimatePhi

estimatePhi

Description

An function to estimate phi (the autocorrelation of speed) from data. This is done using iterative calls to the wind speed optimization on a selection of segments.

Usage

```
estimatePhi(
  data,
  isThermallingFunction = getDefaultIsThermallingFunction(360, 4),
  maxPointsToUseInEstimate = 20,
  phiInitialEstimate = 0,
  isGoodPoint = NULL,
  returnPointsUsedInEstimate = F,
  windowSize = 29,
  ...
)
```

Arguments

```
An move object or stack.
data
isThermallingFunction
                  The thermalling function to use.
maxPointsToUseInEstimate
                  Maximal number of desired windows for phi estimation
phiInitialEstimate
                  Initial phi estimate
isGoodPoint
                  The points to use for phi estimation as logical or numeric, if NULL then find-
                  GoodPoints is used.
returnPointsUsedInEstimate
                  an logical value, if the segments used for phi estimation should also be returned.
windowSize
                  An window size, odd number or the start and end of the window relative to the
                  focal point
                  extra arguments for getWindSpeedEstimates
```

findGoodPoints 3

Value

a list with phi and the log likelihood and the number of locations used

Examples

```
data(storks)
estimatePhi(
  storks[[2]],
  windowSize = 19,
  isSamplingRegular = 1,
  isThermallingFunction = getDefaultIsThermallingFunction(360, 4),
  maxPointsToUseInEstimate = 10
)
```

findGoodPoints

Function to find good points for estimation of phi

Description

The function tries to find non overlapping windows for phi optimization.

Usage

```
findGoodPoints(
  data,
  maxPointsToUseInEstimate,
  phiInitialEstimate,
  windowSize,
  ...
)
```

Arguments

```
data An move object.

maxPointsToUseInEstimate
The number of desired windows.

phiInitialEstimate
The initial value used for the autocorrelation when calculating the wind speed for finding suitable windows.

windowSize An odd number providing the window size
... passed on to getWindEstimates
```

Value

a logical vector with the focal locations

Examples

```
data(storks)
which(findGoodPoints( storks[[2]],
windowSize = 29,  isSamplingRegular = 1,
isThermallingFunction = getDefaultIsThermallingFunction(360, 4),  maxPointsToUseInEstimate = 10,
phiInitialEstimate = 0 ))
```

getDefaultIsThermallingFunction

A function to generate an isThermallingFunction

Description

A function to generate an isThermallingFunction

Usage

```
getDefaultIsThermallingFunction(totalAngle = 360, minMeanSpeed = NULL)
```

Arguments

totalAngle the cumulative angle that is required to consider an trajectory thermalling minMeanSpeed the minimal air speed that is required to decide of a track is thermalling

Value

a function is returned that based on a series of headings returns a logical value to indicate is a track is thermalling or not

```
fun<-getDefaultIsThermallingFunction(170)
fun(1:160)
fun(1:190, rep(2,190))
fun<-getDefaultIsThermallingFunction(170, 3)
fun(1:190, rep(2,190))
fun(1:190, rep(3.4,190))</pre>
```

getIsFocalPointFunction

getIsFocalPointFunction

A function to generate isFocalPoint functions

5

Description

A function to generate isFocalPoint functions

Usage

```
getIsFocalPointFunction(isFocalPoint)
```

Arguments

isFocalPoint a function, a boolean array from which such a function can be built, or a list of indices

Value

a function which decides if wind estimation is performed for a point in the input data

```
{\tt getIsSamplingRegularFunction}
```

A function to generate functions used to check if a segment is regular

Description

A function to generate functions used to check if a segment is regular

Usage

```
getIsSamplingRegularFunction(isSamplingRegular)
```

Arguments

isSamplingRegular

a function which decides if a sequence of timestamps is regular or the interval which is considered regular

Value

a function which decides if a sequence of timestamps is regular

6 getTrackSegments

Examples

```
fun<-getIsSamplingRegularFunction(10)
fun(Sys.time()+1:5)
fun(Sys.time()+c(0,10,20,30))
fun(Sys.time()+c(0,10,20,31))</pre>
```

getTrackSegments

An helper function to extract trajectory segments for wind estimation from a track

Description

An helper function to extract trajectory segments for wind estimation from a track

Usage

```
getTrackSegments(
  data,
  timestamps,
  windowSize = 29,
  isFocalPoint = function(i, ts) {
    TRUE
  },
  isSamplingRegular = 1,
  focalSampleBefore = 0
)
```

Arguments

data A two column dataframe.

timestamps A series of POSIXct timestamps as long as the data.

windowSize The window size (odd number) or two numbers giving the start and end of a

window around a focal point.

isFocalPoint an function taking location numbers and timestamps that is used to see if a loca-

tion should be considered as an focal point. It can for example be used to speed up calculations by only considering every second location. An numeric value

can also be provided then only these locations are considered

isSamplingRegular

Either an numeric or a function that is used to decide if a series of timestamps is regular. If numeric than it should correspond to the interval in seconds.

focalSampleBefore

An argument to be used if data is not the start of the location count.

Value

A list of ground speeds

getWindEstimate 7

Examples

```
length(getTrackSegments(data.frame(1:40,1:40), Sys.time()+1:40))\\ length(getTrackSegments(data.frame(1:40,1:40), Sys.time()+c(1:25,36:50), windowSize=11))\\ str(getTrackSegments(data.frame(1:40,1:40), Sys.time()+1:40, windowSize=39))
```

getWindEstimate

Estimate wind speed from a sample of ground speeds

Description

Estimate wind speed from a sample of ground speeds

Usage

```
getWindEstimate(groundSpeeds, phi, windStart = c(0, 0))

## S4 method for signature 'matrix,numeric'
getWindEstimate(groundSpeeds, phi, windStart = c(0, 0))
```

Arguments

groundSpeeds matrix with two columns representing the ground speeds.

phi numeric of length one giving the auto correlation.

windStart numeric of length 2 giving the wind speed where to optimize from.

Value

an list with parameter estimates

```
 s<-seq(\emptyset,2*pi, .1) \\ set.seed(34) \\ getWindEstimate(cbind(4*cos(s)+3+rnorm(length(s)), 4*sin(s)+2+rnorm(length(s))), 0) \\ getWindEstimate(cbind(4*cos(s)+3+rnorm(length(s),sd=.2), 4*sin(s)+2+rnorm(length(s),sd=.2)), 0) \\
```

8 getWindEstimates

getWindEstimates

Generate wind estimates for a trajectories or data frame with wind speeds

Description

Generate wind estimates for a trajectories or data frame with wind speeds

Usage

```
getWindEstimates(data, timestamps, ...)
## S4 method for signature 'MoveStack, missing'
getWindEstimates(data, timestamps, ...)
## S4 method for signature 'Move, missing'
getWindEstimates(data, timestamps, groundSpeedXY = NULL, ...)
## S4 method for signature 'data.frame,POSIXct'
getWindEstimates(
  data,
  timestamps,
  windowSize = 29,
  isFocalPoint = function(i, ts) {
     TRUE
 },
  isSamplingRegular = 1,
  focalSampleBefore = 0,
  returnSegmentList = F,
  referenceGroundSpeed = NULL,
)
## S4 method for signature 'list, ANY'
getWindEstimates(
  data,
  timestamps,
  phi = 0,
  isThermallingFunction = getDefaultIsThermallingFunction(360, 4),
 columnNamesWind = c("estimationSuccessful", "residualVarAirspeed", "windX", "windY",
    "windVarX", "windVarY", "windCovarXY", "windVarMax", "airX", "airY"),
  referenceGroundSpeed = NULL,
)
```

Arguments

data

Move object, MoveStack or data.frame containing wind speeds

getWindEstimates 9

timestamps of the speed observations

.. other possible arguments currently nothing else is implemented

groundSpeedXY an character of length 2 containing column names from the move object that

need to be used as the x and y component of the ground speed vector

windowSize a numeric vector of length 1 or 2, if length 1 it is the size of the focal window

data will be assigned to the central location. If length 2 the window size is sum(windowSize)+1) and the first element is the number of location before the focal locations, the second is the number of locations after the focal location.

isFocalPoint an function that based on location number and timestamps returns a logical vec-

tor if location should be included. Or a numeric/logical vector indicating the

location numbers.

isSamplingRegular

either a function that determines based on a vector of timestamps if the sampling interval is regular or a numeric value that corresponds to the time interval between observations in the dataset that is regular

focalSampleBefore

The number of locations that occurred before the move object fed in the getWindEstimates function, used in case stacks are provided for example. This is most cases not useful for users.

returnSegmentList

a logical value indicating if the list of segments to estimate wind over should be returned instead of the estimates

referenceGroundSpeed

a number indicating which of the grounds speed vectors to take as a reference for air speed, by default the 0th/middle location of the window if that is specified by one number.

phi the auto correlation of air speed.

isThermallingFunction

An function that based on a series of headings and speeds (wind corrected) decides if an segment should be considered thermalling.

columnNamesWind

The column names used for storing the data in the returned objected after it has been calculated.

Value

a Move object, dataframe or a MoveStack depending on input

```
data("storks")
# run example for reduced dataset
windEst<-getWindEstimates(storks[format(timestamps(storks),"%H")=="12",][[2:3]])
# Use evolution status 2 to avoid using rgdal (set using sp)
set_evolution_status(2L)
windEst<-spTransform(windEst, center=TRUE)
plot(windEst)</pre>
```

10 storks

getWindowSizeLR

Generate arguments for window size around focal point

Description

A function to translate an window size argument to a standardized argument.

Usage

```
getWindowSizeLR(windowSize)
```

Arguments

windowSize

a pair of positive integers determining the window size left and right of a focal point or an odd number determining the size of a symmetrical window

Value

windowSize a pair of positive integers determining the window size left and right of a focal point

storks

Example stork data.

Description

A dataset containing location data of 6 juvenile storks (Ciconia ciconia) on the 18th of august when migration just started. On several occasion the birds use thermals.

Usage

storks

Format

A MoveStack consisting of 22333 locations

Source

```
https://www.movebank.org/
```

windEstimLogLik 11

Examples

```
data("storks")
```

wind Estim Log Lik

Estimate the log likelihood

Description

Estimate the log likelihood

Usage

```
windEstimLogLik(sigma, phi)
```

Arguments

sigma the residual variance in airspeed

phi the autocorrelation used in the calculations

Value

the log likelihood

```
\label{lik} windEstimLogLik(c(1.3,.6,1.5,1.8),.3)\\ windEstimLogLik(c(1.3,.6,1.5,1.8),.5)
```

Index

```
* datasets
    storks, 10
estimatePhi, 2
findGoodPoints, 3
getDefaultIsThermallingFunction, 4
getIsFocalPointFunction, 5
getIsSamplingRegularFunction, 5
getTrackSegments, 6
getWindEstimate, 7
getWindEstimate,matrix,numeric,ANY-method
        (getWindEstimate), 7
getWindEstimate,matrix,numeric-method
        (getWindEstimate), 7
getWindEstimates, 8
getWindEstimates,data.frame,POSIXct-method
        (getWindEstimates), 8
getWindEstimates,list,ANY-method
        (getWindEstimates), 8
getWindEstimates,Move,missing-method
        (getWindEstimates), 8
getWindEstimates,MoveStack,missing-method
        (getWindEstimates), 8
getWindowSizeLR, 10
storks, 10
windEstimLogLik, 11
```