DR. FRANCESCO GALLINARO TUTORAT: MAX HERWIG

Modelltheorie

Blatt 1

Abgabe: 31.10.2023, 12 Uhr

Aufgabe 1 (4 Punkte).

In der Sprache \mathcal{L} sei $(\mathcal{A}_i)_{i\in I}$ eine gerichtete Familie von Unterstrukturen der \mathcal{L} -Struktur \mathcal{B} .

- a) Zeige, dass eine eindeutige \mathcal{L} -Unterstruktur $\bigcup_{i \in I} \mathcal{A}_i$ von \mathcal{B} existiert, die Universum $\bigcup_{i \in I} \mathcal{A}_i$ hat.
- b) Sei nun zusätzlich für jedes i aus I die Struktur A_i eine elementare Untersturktur von \mathcal{B} . Zeige mit Hilfe von Tarskis Test, dass dann auch $\bigcup_{i\in I} A_i \leq \mathcal{B}$ gilt.

Aufgabe 2 (8 Punkte).

Eine konsistente Theorie T ist modellvollständig, wenn für je zwei Modelle \mathcal{A} und \mathcal{B} von T gilt, dass $\mathcal{A} \preceq \mathcal{B}$, falls \mathcal{A} eine Unterstruktur von \mathcal{B} ist.

- a) Zeige, dass jede konsistente Theorie mit Quantorenelimination modellvollständig ist.
- b) Wir nehmen an, dass \mathcal{A} ein Modell der modellvollständigen Theorie T ist. Zeige, dass die \mathcal{L}_A Theorie $T \cup \text{Diag}^{\text{at}}(\mathcal{A})$ vollständig ist.

Hinweis: Welche \mathcal{L}_A -Strukturen sind Modelle von $T \cup \text{Diag}^{\text{at}}(\mathcal{A})$?

- c) Sei T eine konsistente Theorie derart, dass für jedes Modell \mathcal{A} von T die Theorie $T \cup \text{Diag}^{\text{at}}(\mathcal{A})$ vollständig ist. Zeige, dass T modellvollständig ist.
- d) Betrachte nun eine konsistente Theorie T derart, dass es für jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n]$ eine universellen Formel

$$\psi[x_1,\ldots,x_n]=\forall y_1\ldots\forall y_m\theta[x_1,\ldots,x_n,y_1,\ldots,y_m]$$
 mit θ quantorenfrei

so gibt, dass $T \models \forall \bar{x}(\varphi[\bar{x}] \leftrightarrow \psi[\bar{x}])$. Zeige, dass T modellvollständig ist.

Hinweis: Blatt 0, Aufgabe 1

Aufgabe 3 (8 Punkte).

Betrachte die Sprache \mathcal{L} , welche aus einem zweistelligen Relationszeichen E besteht. Sei \mathcal{K} die Klasse der \mathcal{L} -Strukturen \mathcal{A} derart, dass die Interpretation der Relation E eine Äquivalenzrelation mit unendlich vielen Äquivalenzklassen ist. Des Weiteren besitzt jede $E^{\mathcal{A}}$ -Äquivalenzklasse höchstens 2 Elemente.

- a) Gib eine Axiomatisierung T an.
- b) Ist T konsistent? Ist T vollständig?
- c) Sei \mathcal{A} ein abzählbares Modell von T mit genau einer Äquivalenzklasse der Größe 1 und \mathcal{B} ein abzählbares Modell von T mit genau zwei Äquivalenzklassen der Größe 1. Zeige, dass \mathcal{A} sich in \mathcal{B} einbetten lässt.
- d) Ist T modellvollständig? Hat T Quantorenelimination?

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.