生物信息学:导论与方法 Bioinformatics: Introduction and Methods

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

北京大学生物信息学中心 高歌、魏丽萍 Ge Gao & Liping Wei Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTA
CCTAACCCTAACCCTAACCCTAACCC
CCCTAACCCTAACCCTAACCCTAACCCTAAC
AACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCCAACCCCAACCCCAAC
CTACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCTAACCCTAACCCTAA

Markov Model

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAA

Unit 1: From States to Markov Chain

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

Affine gap penalty: opening a gap receives a score of d; extending a gap receives a score of e.

Penalty = $d + (n-1)^* e$

```
# Aligned_sequences: 2
# 1: HBA HUMAN
# 2: HBB HUMAN
# Matrix: EBLOSUM62
# Gap penalty: 10.0
 Extend penalty: 0.5
# Length: 149
# Identity:
                65/149 (43.6%)
# Similarity:
                90/149 (60.4%)
# Gaps:
                9/149 ( 6.0%)
# Score: 292.5
HBA HUMAN
                  1 MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-D
                    11 1:1.:1:.1.1.1.1111 :...1.1111.1:.:.:1.1:.:1.11
HBB HUMAN
                  1 MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGD
HBA HUMAN
                 49 LS----HGSAOVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLR
                           .|:.:||.|||||..|.::.:||:|:::....:.||:||
HBB HUMAN
                 49 LSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH
                                                                        98
HBA HUMAN
                                                                      142
                 94 VDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
                    HBB HUMAN
                 99 VDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
                                                                      147
```

Alignment as (a series of) state(s)

New Best Alignment = Previous Best + Local Best

		Α	Α	G
	0 =	-5		
А		2 —	-3	
G				-1 ↑
С				-6

L	S	Р	_
	Т	P	E
X	M	M	Y

M	Match (not necessarily identical)
X	Insert at sequence X (delete at sequence Y)
Υ	Insert at sequence Y (delete at sequence X)

М	Match (not necessarily identical)
X	Insert at sequence X (delete at sequence Y)
Υ	Insert at sequence Y (delete at sequence X)

d	Gap open
е	Gap Extension

- M (i,j) is the score of the best alignment between $x_{1...i}$ and $y_{1...j}$, given x_i aligned to y_i
- X(i,j) is the score of the best alignment between $x_{1...i}$ and $y_{1...j}$, given x_i aligned to a gap
- Y (i,j) is the score of the best alignment between $x_{1...i}$ and $y_{1...j}$, given y_i aligned to a gap

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + s(x_i, y_j) \\ X(i-1, j-1) + s(x_i, y_j) \\ Y(i-1, j-1) + s(x_i, y_j) \end{cases}$$

$$S(x_i, y_j) \xrightarrow{S(x_i, y_j)} \xrightarrow{S(x_i, y_j$$

$$X(i, j) = \max \begin{cases} M(i-1, j) - d \\ X(i-1, j) - e \end{cases}$$
 $Y(i, j) = \max \begin{cases} M(i, j-1) - d \\ Y(i, j-1) - e \end{cases}$

$$\textbf{\textit{x}}_{i} \text{ aligned to } \textbf{\textit{y}}_{j} \qquad M\left(i,\,j\right) = \max \left\{ \begin{aligned} M\left(i-1,\,j-1\right) + s(x_{i},\,y_{j}) \\ X\left(i-1,\,j-1\right) + s(x_{i},\,y_{j}) \\ Y\left(i-1,\,j-1\right) + s(x_{i},\,y_{j}) \end{aligned} \right\} \text{ after a match}$$

$$\mathbf{x_{i}} \text{ aligned to } a \text{ } gap \quad X\left(i,j\right) = \max \begin{cases} M\left(i-1,j\right) - d \\ X\left(i-1,j\right) - e \end{cases}$$

$$\mathbf{y_{j}} \text{ aligned to } a \text{ } gap \quad Y(i,j) = \max \begin{cases} M(i,j-1) - d \\ Y(i,j-1) - e \end{cases} \\ \mathbf{X} \\ \mathbf{Y} \\ \mathbf$$

Andrei Andreyevich Markov (1856~1922)

The Mathematics Genealogy Project

Ph.D. University of St. Petersburg 1884

Dissertation: On Some Applications of Algebraic Continuous Fractions

Advisor: Pafnuty Chebyshev

Student(s):

Click here to see the students listed in chronological order.

Name	School	Year D	escendants
Abram Besicovitch	University of St. Petersburg	1912	34
Nikolai Gunter	University of St. Petersburg	1915	124
Jacob Tamarkin	University of St. Petersburg	1917	778
Georgy Voronoy	University of St. Petersburg	1897	2100

According to our current on-line database, Andrei Markov has 4 students and 3039 descendants.

Markov Chain

 A Markov chain describes a discrete stochastic process at successive times. The transitions from one state to any of all states, including itself, are governed by a probability distribution.

δ

Markov Chain

•
$$P(x_t | x_1...x_{t-1}) = P(x_t | x_{t-m}...x_{t-1})$$

• $X_t = f(X_{t-1}, X_{t-2},...X_{t-m})$

 A chain of random variables in which the next one depends (only) on the current one

$$- P(x_t | x_1...x_{t-1}) = P(x_i | x_{t-1})$$

$$X_1 \longrightarrow X_2 \longrightarrow \dots \longrightarrow X_{n-1} \longrightarrow X_n$$

Transition Probability

$$a_{kl} = P(X_t = S_l | X_{t-1} = S_k)$$

$$a_{lk} = P(X_{t} = S_{k} | X_{t-1} = S_{l})$$

	S ₁	•••	S _k	•••	S _I	•••	S _n
S ₁							
S _k					a _{kl}		
S _I			a _{lk}				
S _n							

Affine gap penalty: opening a gap receives a score of d; extending a gap receives a score of e.

Penalty = $d + (n-1)^* e$


```
# Aligned sequences: 2
# 1: HBA HUMAN
 2: HBB HUMAN
 Matrix: EBLOSUM62
# Gap penalty: 10.0
 Extend penalty: 0.5
# Length: 149
# Identity:
# Similarity:
                90/149 (60.4%)
# Gaps:
                 9/149 ( 6.0%)
 Score: 292.5
HBA HUMAN
                                                                        48
                    HBB HUMAIN
                                                                        48
                  1 MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGD
HBA HUMAN
                 49 LS----HGSAOVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLR
HBB HUMAIN
                 49 LSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLH
                                                                       98
HBA HUMAN
                                                                     142
HBB HUMAN
                 99 VDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
                                                                      147
```


M	Match (not necessarily identical)
X	Insert at sequence X (delete at sequence Y)
Υ	Insert at sequence Y (delete at sequence X)

δ	Gap open
3	Gap Extension

M	X	Υ
1-2δ	δ	δ
1-ε	3	0
1-ε	0	ε

Copyright © Peking University

Υ

M

X

L	S	Р						
	Т	Р	– Е	X	M	M	Y	M

$$P(XMMY) = a_{XM} a_{MM} a_{MY}$$

$$= (1 - \varepsilon)(1 - 2\delta)\delta$$
_Y

M	Match (not necessarily identical)
X	Insert at sequence X (delete at sequence Y)
Υ	Insert at sequence Y (delete at sequence X)

δ	Gap open
3	Gap Extension

M	X	Υ
1-2δ	δ	δ
1-ε	3	0
1-ε	0	3

Summary Questions

 There isn't direct transition between X and Y in our model, do you think it's reasonable? Explain your answer.

 Is it possible to have global alignment based on the rephrased Markov Chain-based model? Explain your answer.

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

