Série 13

Exercice 1. Soit $\mathbf{P} = \{P_1, \dots, P_n\}$ un ensemble de $n \geq 3$ points qui ne sont pas tous alignes sur une meme droite et soit $\mathrm{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ son groupe d'isometries.

1. Soit ϕ une isometrie telle que

$$\forall i = 1, \cdots, n, \ \phi(P_i) = P_i,$$

montrer que ϕ est l'identite.

2. Montrer que si ϕ , ψ sont des isometries (quelconques) telles que

$$\forall i = 1, \dots, n, \ \phi(P_i) = \psi(P_i),$$

alors $\phi = \psi$.

- 3. Montrer que le groupe $\operatorname{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ est fini (on remarquera que tout element de ce groupe induit une permutation de l'ensemble \mathbf{P}); en particulier (en vertu du Theorem de classifications des groupes finis d'isometries) il est soit cyclique soit dihedral.
- 4. Que dire si n=2?
- 5. Montrer (avec un exemple simple) que si \mathbf{P} est un ensemble de points du plan, qui ne sont pas tous alignes et qui est infini alors $\mathrm{Isom}(\mathbb{R}^2)_{\mathbf{P}}$ peut etre egalement infini.
- **Solution 1.** Il suffit de considérer P_1, P_2, P_3 et d'observer que les droites distinctes (P_1, P_2) et (P_1, P_3) sont des droites de points fixes pour ϕ et par la classification des points fixes des différentes isometrie la seule possibilite est que $\phi = \operatorname{Id}_{\mathbb{R}^2}$.
 - 2. Puisque les isométries sont bijectives, on a $\forall i = 1, \dots, n, \ \phi(P_i) = \psi(P_i) \leftrightarrow \psi^{-1} \circ \phi(P_i) = P_i$ donc par la partie 1. on a $\psi^{-1} \circ \phi = \operatorname{Id}_{\mathbb{R}^2}$ et donc $\phi = \psi$.
 - 3. Si φ est une isometrie preservant **P** alors elle induit une bijection de l'ensemble des points dans **P** car on a

$$\forall i = 1, \cdots, n, \ \phi(P_i) = P_j$$

pour un certain $j \in \{1, \dots, n\}$. Ainsi chaque element du groupe des isometrie de \mathbf{P} induit une bijection de l'ensemble des éléments de \mathbf{P} et on dispose d'un morphisme de groupes

$$\text{Isom}(\mathbb{R}^2)_{\mathbf{P}} \mapsto \mathfrak{S}(\mathbf{P}).$$

(on peut definir ce morphisme par $\phi \mapsto \sigma_{\phi}$ tq $\forall i = 1, \dots, n, \ \phi(P_i) = P_j \rightarrow \sigma_{\phi}(i) = j$).

Ce morphisme est injectif : supposons que ϕ induise l'identite sur \mathbf{P} : $\forall P_i$, $\sigma(P_i) = P_i$, alors par la partie 1. on a $\phi = \mathrm{Id}_{\mathbb{R}^2}$.

Ainsi Isom(\mathbb{R}^2) $_{\mathbf{P}}$ est fini (il s'injecte dans un groupe fini). Et par le Theoreme de classifications des groupes finis d'isometries, il est soit cyclique soit dihedral.

4. Pour n = 2, on doit a deux possibilités :

$$\phi(P_1) = P_1 \text{ et } \phi(P_2) = P_2$$

ou

$$\phi(P_1) = P_2 \text{ et } \phi(P_2) = P_1$$

Dans le premier cas, par la classification des isométries en fonction de leurs points fixes, on a soit que ϕ est l'identité, soit c'est une symetrie non glissée (car a deux points fixes) s_1 d'axe la droite passant par les points P_1 et P_2 .

Dans le deuxieme cas, c'est soit une rotation r d'ordre 2 de centre le milieu des deux points, soit une symétrie s_2 orthogonale au vecteur $\overrightarrow{P_1P_2}$ passant par le milieu du segment $[P_1, P_2]$ et donc forcément non-glissée.

On obtient donc un groupe dihédral d'ordre 4 dont des générateurs sont la rotation r et une des deux symétries (par ex. s_1)

5. Soit $\mathbf{P} = \mathbb{R}$. Alors $\mathrm{Isom}(\mathbb{R}^2)_{\mathbf{P}} = \mathrm{Isom}(\mathbb{R}^2)$ qui est infini.

Exercice 2 (Un processus de moyenne). Soit $G \subset \text{Isom}(\mathbb{R}^2)$ un groupe fini et $\mathbf{P} \subset \mathbb{R}^2$ un sous ensemble quelconque de \mathbb{R}^2 .

1. Montrer que le groupe d'isometries de l'ensemble

$$G(\mathbf{P}) := \bigcup_{g \in G} g(\mathbf{P}), \text{ avec } g(\mathbf{P}) = \{g(P), P \in \mathbf{P}\}$$

contient G.

- 2. Quel est la structure du groupe d'isometries de la figure 3 ci-dessous?
- 3. Donner les parametres complexes de ses differents elements.
- 4. Au vu le la premiere question a partir de quel sous-ensemble cette figure a elle ete construite?
- 5. Donner pour tout $n \ge 3$ un exemple de figure dont le groupe d'isometries est isomorphe au groupe cyclique C_n .

Solution 2. 1. On a $G(\mathbf{P}) = \{g(P) \mid g \in G, P \in \mathbf{P}\}$, donc l'ensemble $G(\mathbf{P})$ est stable sous l'action de G. En effet,

$$\forall h \in G \ hG(\mathbf{P}) = \{hg(P) \mid g \in G, P \in \mathbf{P}\} = \{g'(P) \mid g' \in G, P \in \mathbf{P}\} = G(\mathbf{P})$$

FIGURE 1 – Quel est mon groupe d'isometries?

donc h est une isométrie préservant $G(\mathbf{P})$. Alors le groupe d'isometries de $G(\mathbf{P})$ contient G.

2. On utilise les notations comme indiqué dans le figure 1. Soit P=(1/2,1/2), il est le baricentre des points $(A_0,B_0,C_0,\cdots,A_3,B_3,C_3)$ avec les poids $(1/12,\cdots,1/12)$. On a

$$d(P, A_0) = d(P, A_1) = d(P, A_2) = d(P, A_3),$$

 $d(P, B_0) = d(P, B_1) = d(P, B_2) = d(P, B_3),$
 $d(P, C_0) = d(P, C_1) = d(P, C_2) = d(P, C_3),$

et

$$d(P, A_0) \neq d(P, B_0); \quad d(P, A_0) \neq d(P, C_0); \quad d(P, B_0) \neq d(P, C_0).$$

Soit $g \in \text{Isom}(\mathbb{R}^2)$ l'une des symmétries de la figure. On sait que g(P) = P, alors $d(P, A_0) = d(P, g(A_0))$ et donc $g(A_0) = A_n$ pour certain $n = 0, \dots, 3$. Du même, on a $g(B_0) = B_j$, $g(C_0) = C_k$ pour certain $j, k = 0, \dots, 3$. En considérant les relations

$$d(A_0, B_0) = d(g(A_0), g(B_0)) = d(A_n, B_j),$$

$$d(B_0, C_0) = d(g(B_0), g(C_0)) = d(B_j, C_k),$$

on obtient que j = k = n (car clairement, $d(A_i, B_i) \neq d(A_i, B_j)$ si $i \neq j$ et de même pour les C_i), ainsi

$$g(B_0) = B_n, \quad g(C_0) = C_n.$$

- Donc $g \in \text{Isom}(\mathbb{R}^2)$ est une rotation autour de P avec angle $\pi n/2$, et le groupe de symmétrie de cette figure est le groupe cyclique $C_4 \cong \mathbb{Z}/4\mathbb{Z}$.
- 3. Supposons que $g(A_0) = A_n$, alors g est une rotation autour de P avec angle $\pi n/2$. Donc

$$\begin{array}{lcl} g & = & T_{1/2+1/2i} \circ r_{e^{\pi n i/2},0} \circ T_{-(1/2+1/2i)} = T_{1/2+1/2i} \circ r_{i^n,0} \circ T_{-(1/2+1/2i)} \\ & = & r_{i^n,(1+i)(1-i^n)/2}. \end{array}$$

4. Prenons $G \subset \text{Isom}(\mathbb{R}^2)$ le sous-groupe engendré par la rotation autour de P avec angle $\pi/2$, alors la figure peut être construit avec l'ensemble $\mathbf{P} = \{A_0, B_0, C_0\}$.