Precession of Equinoxes and Sun's Transit in the Vṛddha-Gārgīya Jyotiṣa

Sunder Chakravarty, Research Associate R.N. Iyengar, Distinguished Professor CAHC, IKS Centre of MoE Jain University, Bangalore, India

5-Nov-2022, BIHS Mumbai

ज्योतिः शास्त्रम् (Astral Science)

- Starts with observations of sun, moon and the planets- in the background of stars
- Progresses from broad observations to finer observations of positions and movements
- Further progresses towards a computational model

वृद्धगार्गीयज्योतिषम् (VGJ)

- Big text ~5000 verses and some prose, 24 anga-s, 40 upanga-s
- CAHC has published a critical edition of 5 chapters of 1st anga

Focus of this talk - two Sun Transit chapters of VGJ

- 1. आदित्यचारः 11th section
- 2. ऋतुस्वभावः 59th section, chapters 1-6

Nakṣatra-s

- Zones in the sky through which Moon, Sun and planets travel
- Using clock analogy nakṣatra-s are the dial markings - 27(28)in all
 - The quicker hand is the Moon one round a sidereal month
 - The slower hand is the Sun one round a sidereal year. In one year, the Sun makes
 - one dakṣiṇāyana (north-to-south) and
 - one uttarāyaṇa (south-to-north) journey
- Some nakṣatra-s are unambiguously identified
 - कृत्तिका, रोहिणी, मघा, हस्ता, चित्रा,स्वाति, विशाखे, ज्येष्ठा,
 मूला
- Others have some ambiguity
 - ० आर्द्रा, श्रविष्ठा/धनिष्ठा, रेवती

Equinox & Precession

- **Equinox** is the midpoint of
 - The sun's dakṣiṇā yana & uttarā yaṇa journeys
- **Precession** The *nakṣatra* dial also rotates
 - In direction opposite to Sun/Moon hand
 - And takes ~26000 years to complete a round
- This precession has the following effects
 - The nakṣatra marking the seasons/equinoxes
 move by 1 nakṣatra every ~1000 years
 - the pole drifts from abhayadhruva (thuban)
 around -3000 to around dhruva (polaris) now

Nakṣatra Listings

- The table shows **83 stars** of the *nak*ṣ*atra-s*
- each *nakṣatra* has 1 or more **constituent stars**
- Vedic, Jaina & Baudha texts have astrograph and count information
- **Proxy stars** for each *nakṣatra* help model आदी, अर्घ, अन्त in the text

#	Nakṣatra		St	ar Co	unt		Astrograph	Constituent Stars	Proxy Star (Author's)	Abhyankar's Yogatara
		VC3	ęγ	AVP	SXA	scp*				
1	Kṛttikā	6	6	6	6	6	Knife/Cleaver	(17,19,20,23,27,η) Tau	η Tau	η Tau
2	Rohiņī	5	5	1	5	5	Cart	(α,γ,δ1,ε,θ2) Tau	α Tau	a Tau
3	Mṛgaśira	3	3	3	3	3	Deer's Head	(α,γ,λ) Ori	λ Ori	λ Ori
4	Ārdrā	1	1	1	1	1	Bāhuḥ (Arm) Red Dot*	(γ) Gem	γ Gem	γ Gem
5	Punarvasu	2	2	2	2	5	Balance*	(α,β) Gem	β Gem	β Gem
6	Puṣya	1	1	1	3	3	Śarāva (Pot-lid)*	(δ) Cnc	δ Cnc	δ Cnc
7	Āśleṣā	6	6	6	1	6	Snake Head Flag*	(δ,ε,ζ,η,ρ,σ) Hya	ζ Hya	ζ Нуа
8	Maghā	6	6	6	5	7	Enclosure	(α,γ1,ε,ζ,η,μ) Leo	ζ Leo	a Leo
9	P Phalgunī	2	2	2	2	2	Half-chair	(δ,θ) Leo	δ Leo	δ Leo
10	U Phalgunī	2	2	2	2	2	Half-chair	(93,β) Leo	β Leo	β Leo
11	Hasta	5	5	5	5	5	Hasta (hand)	(α,β,γ,δ,ε) Crv	δ Crv	γ Crv
12	Citrā	1	1	1	1	1	Madhupuspa (Flower)*	(a) Vir	a Vir	a Vir
13	Svātī	1	1	1	1	1	Kīlaka (Wedge)*	(α) Boo	α Boo	a Boo
14	Viśākhā	2	2	2	2	5	Divider Rope*	(a1,a2) Lib	α2 Lib	a Lib
15	Anūrādhā	4	4	4	4	5	Necklace	(β1,δ,π,ω1) Sco	δ Sco	δ Sco
16	Jyeṣṭhā	3	3	1	3	3	Elephant Tusk*	(α,ε,σ,(τ)) Sco	ε Sco	a Sco
17	Mūla	6	2	7	7	1	Root Scorpion Tail*	(ζ2,θ,ι1,κ,λ,ν) Sco	к Sco	λSco
18	P Aṣāḍhā	4	4	4	4	4	Gajavikrama (Elephant Step)*	(γ,δ,ε,λ) Sgr	λSgr	δ Sgr
19	U Aṣāḍhā	4	4	4	4	4	Simhanişadya (Lion seat)*	(ζ,σ,τ,ϕ) Sgr	τ Sgr	σ Sgr
**	Abhijit	-	3	1	3	3	Gośīrṣāvali*	(?) Vega	-	a Aql
20	Śravaṇa	3	3	3	3	3	Ear Yavamadhya (Barleyseed)1	(α,β,γ) Aql	a Aql	β Del
21	Dhaniṣṭhā	4	5	5	4	5	Śakuni-pañjara (Bird cage)*	$(\alpha,\beta,\gamma2,\delta)$ Del	β Del	β Aqr
22	Śatabhiṣak	1	1	1	1	100	Puṣpopacāra (Flower Boquet)*	(λ) Aqr	λ Aqr	a PsA
23	P Prostapada	2	2	2	2	2	Cow's Foot	(α,β) Peg	a Peg	a Peg
24	U Prostapada	2	2	2	2	2	Cow's Foot	(γ) Peg (α)And	γ Peg	γ Peg
25	Revatī	1	1	1	1	32	Boat*	(ε,(α,ζ)) Psc	ε Psc	ζ Psc (a And)
26	Aśvayuk	3	2	1	2	3	Horseneck	(α,β,γ) Ari	β Ari	β Ari
27	Bharaṇī	3	3	3	3	3	Bhaga (Perineum)	(35,39,41) Ari	41 Ari	41 Ari ८
		83	82	78	82	222				3

आदित्यचारः (Sun's transit)

Verse	From	То	ऋतु
श्रविष्ठादीनि चत्वारि पौष्णार्धञ्च दिवाकरः । वर्धयन् सरसस्तिक्तं मासौ तपति शैशिरे ॥ 47	श्रविष्ठा आदी	रेवती अर्ध	शिशिर
रोहिण्यन्तानि विचरन् पौष्णार्धाद्य भानुमान् । मासौ तपति वासन्तौ कषायं वर्धयन् रसम्॥ ४8	रेवती अर्ध	रोहिणी अन्त	वसन्त
सार्पार्धान्तानि विचरन् सौम्याद्यानि तु भानुमान् । ग्रैष्मिकौ तपते मासौ कटुकं वर्धयन् रसम्॥ 52	मृगशिरा आदी	आश्लेषा अर्ध	ग्रीष्म
सावित्रान्तानि विचरन् सार्पार्धाद्यानि भास्करः । वार्षिकौ तपते मासौ रसमम्लं विवर्धयन्॥ 53	आश्लेषा अर्ध	हस्ता अन्त	वर्षा
चित्रादीन्यथ चत्वारि ज्येष्ठार्धञ्च दिवाकरः। शारदौ लवणाख्यं च तपत्याप्याययन् रसम्॥ 54	चित्रा आदी	ज्येष्ठा अर्ध	शरद्
ज्येष्ठार्धादीनि चत्वारि वैष्णवान्तानि भास्करः । हेमन्ते तपते मासौ मधुरं वर्धयन् रसम् ॥ 55	ज्येष्ठा अर्ध	श्रवण अन्त	हेमन्त

- Similar information is found in the PT as prose
 - o Maps each of 6 ऋतु to a span 4½ nakṣatra (of 61 days)
 - PT book dates 6 bright stars(★) to 1350-1130 BCE, based on visibility in their stated seasons
- An **improved dating** fits below for their stated seasons
 - 9 circled seasonals() nakṣatra-s
 27 proxy stars
 83 constituent stars
 - o This yields 50 years around 1250 BCE a finer window

आदित्यचारः - date estimation

- From the text
 - nakṣatra-s are equally spaced at 13.33° given seasons are of equal of 4½ naksatra-s
 - शिशिर start is sun with श्रविष्ठादि taken as 270°
 - Given the nakṣatra-s sequence and above, span of each nakṣatra is obtained
- The **best fit method** finds the epoch where most nakṣatra-s are in their prescribed span
 - Get longitude of 83 stars from -2500 to 500 in 50 year epoch steps
 - \circ For each epoch compute this error metric \mathbb{E}_{epoch}
 - \circ The epoch with **lowest error metric** is the best fit \mathbb{B}_{epoch}

$$egin{aligned} \mathbb{B}_{epoch} &= rg \min_{epoch \in -2500, 500, 50} \mathbb{E}_{epoch} \ \mathbb{E}_{epoch} &= rac{1}{27} \sum_{ au=1}^{27} rac{\sum_{ au=1}^{T_{ au}} err_{ au, au}}{T_{ au}} \ err_{ au, au} &= egin{cases} 0, & ext{if } long_{ au} < long_{ au} < long_{ au+1} \ else & min(ig| long_{ au} - long_{ au}ig|, ig| long_{ au} - long_{ au+1}ig|) \end{cases}$$

Error Plot - Minima at ~ -1250 indicates best fit

Containment Plot - Maxima at ~ -1250 indicates best fit

Transition from 28 to 27 nakṣatra-s (अभिजित, श्रवण, धनिष्ठा/श्रविष्ठा)

- Winter solstice drift can be seen
 - ॰ श्रविष्ठार्धा in MAU to
 - श्रविष्ठादि in PT/VGJ
 - ∘ towards अभिजित in MB
- At some point in the transition period
 - ॰ धनिष्ठा is named the winter solstice naksatra
 - अभिजित is eliminated to pack 6 ऋतु of 4½ nakṣatra-s
 - the 27 नक्षत्राणि regime takes hold over the 28
- Validating the transition period with
 - প্রবিষ্ঠা as β Aqr (প্রবण post transition)
 - श्रवण as β Del (धनिष्ठा post transition)
 - the 9 seasonal nakṣatra-s remain in bound from 1700-1350bce
- The 6 ऋg system
 - started around 1700 BCE with day counts and
 - stabilized around 1300 BCE with 4½ nakṣatra-s per ऋत्

#	Nakṣatra	Star Count								
		VC3	ęγ	AND	SKA	s(P*	Astrograph	Constituent Stars	(Author's)	Abhyankar's Yogatara
19	U Aṣāḍhā	4	4	4	4	4	Simhanisadya (Lion seat)*	(ζ,σ,τ,φ) Sgr	τ Sgr	σ Sgr
**	Abhijit	-	3	1	3	3	Gośirṣāvali*	(?) Vega	-	a Aql
20	Śravaṇa	3	3	3	3	3	Ear Yavamadhya (Barleyseed)1	(α,β,γ) Aql	a Aql	β Del
21	Dhaniṣṭhā	4	5	5	4	5	Śakuni-pañjara (Bird cage)*	(α,β,γ2,δ) Del	β Del	β Aqr
22	Śatabhişak	1	1	1	1	100	Puspopacāra (Flower Boquet)*	(λ) Aqr	λ Aqr	a PsA
23	P Prostapada	2	2	2	2	2	Cow's Foot	(α,β) Peg	a Peg	a Peg

ऋतुस्वभावः

- Describes Suns path through
 - ∘ 12 vaidīka and
 - 12 corresponding laukīka months and
 - 12 nakṣatra-s for each of these months -~30° apart
 - 6 seasons and their months
- This is different from आदित्यचारः
 - ॰ ऋतु sequence begins with वसन्त not शिशिर
 - ऋतु are related to months, not nakṣatra span & boundaries
 - श्रविष्ठा is past its time when शिशिर starts, not heralding शिशिर
 - Equinox is reckoned as mid वसन्त
 - A 12 month solar calendar, obviating intercalation, emerges

Minima at ~ -500 indicates best fit for ऋतुस्वभावः

ऋतुस्वभावः - nakṣatra-s, vaidīka & laukīka months

In closing

- ऋतु based sun transit started around -1700 with 61 day count
- आदित्यचारः observations date to about -1250 with 4½ nakṣatra-s span per season
- ऋतुस्वभावः observations date to about -500 with 12 solar months
- VGJ is layered and contains information across generations of observations and inferences MABHASYA ISU DRIA SAHAS SAHASYA TAPA
- Solar transit (zodiac) is certainly part of original Indian knowledge that has been recorded and evolved over time