Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

ВЫСШАЯ ШКОЛА ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ И СУПЕРКОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ПРАКТИЧЕСКАЯ РАБОТА № 3 «СИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТНЫХ СХЕМ. СЧЕТЧИКИ.» по дисциплине «Архитектура вычислительных систем»

Выполнил студент гр.3530903/80302	<подпись>		А.П.	Большакова
Руководитель доцент, к.т.н.			H.M.	Вербова
	<подпись>	«	>>	2020 г.

Цель работы.

Целью данной работы является изучение принципа синтеза последовательных схем на примере синтеза недвоичного счётчика.

Ход работы.

1. Синтез недвоичного вычитающего счётчика.

По заданию работы требовалось построить недвоичный вычитающий счётчик с коэффициентом пересчёта, равным 5. Изначально было определено, на основе какого количества триггеров (m) строится такой счётчик:

$$m \ge |K_{cu}| = |5| \approx 2.32; m = 3$$

Далее было вычислено количество избыточных состояний счётчика:

$$N = 2^m - K_{\sim} = 8 - 5 = 3$$

Из возможных состояний счётчика были исключены три состояния: $\overline{Q_1}$ $\overline{Q_2}$ $\overline{Q_3}$, $Q_1\overline{Q_2}$ $\overline{Q_3}$ и $\overline{Q_1}$ $Q_2\overline{Q_3}$. Было учтено, что требуемый счётчик — вычитающий, а значит номер последующего состояния должен быть на единицу меньше номера предыдущего состояния. Таким образом, порядок изменения состояний счётчика при этом оказался следующим:

$$Q_1Q_2Q_3; \quad \overline{Q_1} \ Q_2 \ Q_3; \quad Q_1 \ \overline{Q_2} \ Q_3; \quad \overline{Q_1} \ \overline{Q_2} \ Q_3; \quad Q_1 \ Q_2 \ \overline{Q_3}; \quad Q_1 \ Q_2 \ Q_3 \quad \mbox{и т.д.}$$

Была составлена таблица функционирования счётчика (Таблица 1):

№ сост.	\overline{Q}_1^t	\overline{Q}_2^t	Q_3^t	Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}
0	1	1	1	0	1	1
1	0	1	1	1	0	1
2	1	0	1	0	0	1
3	0	0	1	1	1	0
4	1	1	0	1	1	1

Таблица 1 – Таблица функционирования счётчика.

На основании таблицы функционирования счётчика были составлены прикладные таблицы для каждого триггера счётчика (Таблицы 2-4). Прикладные таблицы отражают переход данного триггера из предыдущего состояния в последующее. Для составления прикладных таблиц в клетки карты, соответствующие номерам предыдущих состояний автомата, вписываются 2-разрядные двоичные числа, выражающие переход триггера при изменении состояния автомата. В этих таблицах прочёркнутые клетки соответствуют исключённым состояниям счётчика.

$Q_1 \xrightarrow{Q_1^t \to Q_1^{t+1}} Q_2 \qquad Q_2 \qquad \overline{Q}_2 \qquad \overline{Q}_2$	$Q_{\bullet}^{t} \rightarrow Q_{\bullet}^{t+1}$	Q_2	Q_2	\overline{Q}_2	\overline{Q}_2
--	---	-------	-------	------------------	------------------

Q_3	01	10	10	01
\overline{Q}_3	-	11	-	-
	$\overline{\overline{Q}_1}$	Q_1	Q_1	\overline{Q}_1

Таблица 2 – Прикладная таблица для Q₁.

$Q_2^t \rightarrow Q_2^{t+1}$	Q_2	Q_2	\overline{Q}_2	\overline{Q}_2
Q_3	10	11	00	01
\overline{Q}_3	-	11	-	-
	\overline{Q}_1	Q_1	Q_1	$\overline{\overline{Q}_1}$

Таблица 3 – Прикладная таблица для Q₂.

$Q_3^t \rightarrow Q_3^{t+1}$	Q_2	Q_2	\overline{Q}_2	\overline{Q}_2
Q_3	11	11	11	10
\overline{Q}_3	-	01	-	-
	\overline{Q}_{1}	Q_1	Q_1	\overline{Q}_1

Таблица 4 – Прикладная таблица для Q₃.

В качестве элементной базы были выбраны триггеры J-K типа K155TB1 (SN7472). J-K триггеры имеют следующую характеристическую таблицу (Таблица 5):

$Q^t \rightarrow Q^{t+1}$	J^t	K^{t}
00	0	*
01	1	*
10	*	1
11	*	0

Таблица 5 – Характеристическая таблица для Ј-К-триггера.

На основании полученных прикладных таблиц и характеристической таблицы J-K триггера были составлены карты Карно для J- и K- входов каждого триггера (Таблицы 6-11). Для этого 2-разрядные двоичные числа в прикладных таблицах были заменены соответствующими обобщёнными значениями из клеток характеристической таблицы для каждого входа триггера.

J_1	Q_2	Q_2	\overline{Q}_2	\overline{Q}_2
Q_3	1	*	*	1
\overline{Q}_3	-	*	-	-
	\overline{Q}_{1}	Q_1	Q_1	\overline{Q}_{1}

Таблица 6 – Карта Карно для входа Ј₁.

J_2	Q_2	Q_2	\overline{Q}_2	\overline{Q}_2
Q_3	*	*	0	1
\overline{Q}_3	-	*	-	-
	\overline{Q}_1	Q_1	Q_1	$\overline{Q_1}$

Таблица 7 – Карта Карно для входа J₂.

J_3	Q_2	Q_2	\overline{Q}_2	\overline{Q}_2
Q_3	*	*	*	*
\overline{Q}_3	-	1	-	-
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_1

Таблица 8 – Карта Карно для входа J₃.

K_1	Q_2	Q_2	\overline{Q}_2	\overline{Q}_2
Q_3	*	1	1	*
\overline{Q}_3	-	0	-	-
	\overline{Q}_{1}	Q_1	Q_1	$\overline{\overline{Q}_1}$

Таблица 9 – Карта Карно для входа К₁.

K_2	Q_2	Q_2	\overline{Q}_2	\overline{Q}_2
Q_3	1	0	*	*
\overline{Q}_3	-	0	-	-
	\overline{Q}_{1}	Q_1	Q_1	\overline{Q}_{1}

Таблица 10 – Карта Карно для входа K_2 .

1 77			<u> </u>	
I K 2			_	^
113	l (),	l (),	l ()	l U
	Q_2	\mathbf{Q}_2	V 2	· 2
			l	_

Q_3	0	0	0	1
\overline{Q}_3	-	*	-	-
	\overline{Q}_1	Q_1	Q_1	\overline{Q}_{1}

Таблица 11 – Карта Карно для входа К₃.

В результате был получен набор карт Карно, отражающих значения логических функций на всех входах каждого триггера в зависимости от состояний счётчика. Было учтено, что в прочёркнутых клетках, как и в клетках со звёздочками, функция не определена, а значит при проведении контуров (красные границы в Таблицах 6-11) в картах Карно данные клетки можно доопределить по своему усмотрению.

Из полученного набора карт Карно были составлены логические уравнения входов триггеров, которые связывают между собой входы и выходы всех триггеров счётчика:

$$\begin{split} &J_{1}^{t}=1;\ K_{1}^{t}=Q_{3};\\ &J_{2}^{t}=\overline{Q_{1}};\ K_{2}^{t}=\overline{Q_{1}};\\ &J_{3}^{t}=1;\ K_{3}^{t}=\overline{Q_{1}}\,\overline{Q_{2}}; \end{split}$$

По полученным уравнениям был в Multisim был построен требуемый счётчик (Рисунок 1):

Рисунок 1 – Синтезированный недвоичный вычитающий счётчик.

2. Счётчик на ИС К155ИЕ6 (SN74192).

Счётчик на ИС К155ИЕ6 является синхронным, т. е. у него все триггеры переключаются одновременно от одного счётного импульса. Счётный разряд построен на основе типового Ј-К триггера. Направление счёта определяется тем, на какой из счётных входов («+1» или «-1») будет подан импульс с активным низким уровнем. По положительному перепаду этого импульса $(0 \rightarrow 1)$ выполняется счёт. В это время на другом счётном входе должен быть высокий уровень напряжения, т. е. логическая «1». Для исследования работы ИС К155ИЕ6 была предоставлена специальная схема (Рисунок 2):

Рисунок 2 – Схема для исследования ИС К155ИЕ6.

Данная схема была перенесена в Multisim для проверки её работы в различных режимах. Вместо ИС К155ИЕ6 использовался его аналог – 74192N.

Исследование работы заключалось в выполнении следующих действий:

• По R-входу счётчик был установлен в «0», выполнение операции представлено на Рисунке 3:

Рисунок 3 – Установка счётчика в «0».

• по С- и D-входам в счётчик было записано число «5», выполнение операции представлено на Рисунке 4:

Рисунок 4 – Установка счётчика на «5».

• С помощью подачи на входы «+1» и «-1» счётные импульсы была проверена правильность функционирования счётчика. На Рисунке 5 представлено увеличение значения на единицу (с «5» до «6»):

Рисунок 5 – Увеличение значения на единицу.

Далее была исследована работа счётчика при суммировании в динамике. Для этого его вход «+1» был подключен к выходу функционального генератора, а его выходы всех четырёх разрядов были подключены к входам логического анализатора (Рисунок 6). С помощью логического анализатора были получены осциллограммы сигналов на выходах счётчика в последовательности разрядов от младшего к старшему (1-2-4-8) (Рисунок 7), соответствующие ожидаемым.

Рисунок 6 – Схема с функциональным генератором и логическим анализатором.

Logic Analyzer-XLA1 X

Рисунок 7 – Осциллограммы сигналов. Clock_Int соответствует C, 9 – 1-му разряду, 10 – 2-му, 11 – 3-му, 12 – 4-му.

3. Суммирующий счётчик с $K_{cy} = 6$.

Чтобы сконструировать на базе ИС К155ИЕ6 суммирующий счётчик с коэффициентом пересчёта равным 6 был синтезирован дешифратор, распознающий на счётчике число 6 представляемое в двоичной системе кодом «0110». Легко видеть, что на выходе такого дешифратора высокий уровень сигнала будет только на одном наборе входных сигналов. Такой схеме соответствует следующая переключательная функция:

$$Y = \overline{X_1} X_2 X_3 \overline{X_4}.$$

Видоизменение раннее собранной схемы заключалось в добавлении такого дешифратора, состоящего из элементов «И» и «НЕ», подачу на его вход выходов всех четырёх разрядов сумматора в соответствующем порядке и подключение его выхода к входу сумматора, отвечающего за обнуление. Так как к обнуляющему входу уже был подключён другой провод, был добавлен элемент «ИЛИ». В результате был получен требуемый суммирующий счётчик с $K_{cq} = 6$ (Рисунок 8):

Рисунок 8. Суммирующий счётчик с $K_{c4} = 6$.

Вывод.

В ходе лабораторной работы была синтезирована схема недвоичного вычитающего счётчика с коэффициентом пересчёта, равным 5, затем внесённая в Multisim. Также был изучен принцип работы счётчика на ИС К155ИЕ6 (SN74192). Помимо этого, на базе счётчика ИС К155ИЕ6 (SN74192) была синтезирована схема счётчика с коэффициентом пересчёта, равным 6, был осуществлён её ввод в Multisim. Таким образом, был изучен принцип работы синтезированного счётчика.