Currying, Function Application and Partial Application

Doh Young Mo Seoul National University

July 2, 2014

What is Functional Programming?

- Function as 1st class value
 - Function as
 - argument
 - return
 - data type
- ► Function can be placed in anywhere, e.g., the position of the variable.

Higher order function

a function of a function of a \dots = Higher order function

This concept is used in the currying.

Let the f(x, y) = x + y: multivariable function.

Evaluation procedure is

$$f(x,y) = x + y$$

 $g(y) \equiv f(x_0, y)$
 $f(x_0, y_0) = g(y_0) = x_0 + y_0$
 $x \mapsto (y \mapsto (x + y)).$

Higher order function

a function of a function of a \dots = Higher order function

This concept is used in the currying.

Let the f(x, y) = x + y: multivariable function.

This evaluation procedure can be generalized into

$$f :: a \rightarrow (b \rightarrow c).$$

This technique is called currying.

Because -> is right associative, we can drop the parenthesis.

Currying and Uncurrying

$$f(x,y) = x + y$$

Currying:

Uncurrying:

$$f :: (Num a) = >a - >a - >a$$

 $f x y = x + y$

f ::
$$(Num a) = > (a,a) - > a$$

f $(x,y) = x + y$

Uncurrying is a dual transformation of currying:

$$f \times y \sim f(x,y)$$

Mathematical View

Tuple is the cartesian product :

$$X \times Y = \{(x, y) | x \in X, y \in Y\}.$$

We define the following set

$$B^A \equiv \{f|f :: A \to B\}.$$

This notation is good because it satisfies the properties of the exponential function. It can be proved formally, but I want to give some heuristic justification.

Mathematical View

Let
$$A = \{a_1, a_2, ..., a_n\}$$
 and $B = \{0, 1\}$.

$$\{f|f::A\to B\}=B^A=\{(x_1,x_2,...,x_n)|x_i=0 \text{ or } 1,i=[1..n]\}$$

In B^A , |B| represents possible values of each element of the tuple, |A| means the length of the tuple.

$${f|f:: B \to A} = A^B \sim A^2 = A \times A = {(a_1, a_2)|a_i \in A}$$

It can be easily generalized to $B = \{b_1, b_2, ..., b_m\}$.

Mathematical View

(uncurrying
$$f :: (A, B) \rightarrow C) = C^{(A \times B)} = (C^B)^A$$

= $A \rightarrow C^B = A \rightarrow B \rightarrow C$
 $f \times y \sim f(x, y)$

More stuff...

 $A \times B = \{(a, b)\}$ is like a and b. Then what is A + B? The answer is a or b. Then by the previous notation,

 $A+B \rightarrow C = C^{(A+B)} = C^A \times C^B = (A \rightarrow C, B \rightarrow C)$ This is implemented in Haskell as Either.

either ::
$$(a\rightarrow c) \rightarrow (b\rightarrow c) \rightarrow$$
 Either a b \rightarrow c

What is the virtue of the currying?

Function application in haskell

$$f x y = ((f x) y)$$

This means function application is done by infix operator $_{\sqcup}$, and $_{\sqcup}$ is left associative.

- currying is automatically done.
- defining a new function naturally.
- From now we think the function add.

add ::
$$(Num a)=>a->a->a$$

add x y = x + y

Currying the add function

We can make a function with fewer arguments by just giving some arguments.

```
(add 3) :: (Num a)=>a->a
(add 3) x = 3 + x
map :: (a -> b) -> [a] -> [b]
map (add 3) [1,2,3,4]
= [4,5,6,7]
```

How the currying can be useful?

The key is the type system.

- Type system provides two advantages:
 - Safety
 - Convenience

How the currying can be useful?

The key is the type system.

Safety:

print :: Show a=>a->IO()

print add 3 4 (X) print (add 1) (X)

print (add 1 2 3) (X)

Convenience:

add :: a -> a -> a (add 3) :: a -> a

-- You have to put

-- this in your code

Currying is good, but is it good enough?

Let's think about following example.

```
add3 = add 3
add3 (add3 (add3 (add3 3)))
= 15
```

What I did is just 3 + 3 + 3 + 3 + 3.

Many parantheses, so we adopt function application operator (\$).

It makes the function application right associtative.

Function Application Operator

```
add3 add3 add3 3 = (((add3 add3) add3) 3 (X) add3 $ add3 $ add3 $ add3 $ 3 = add3 (add3 (add3 (add3 3)))
```

Second expression is much more readable because there's no parantheses and it's similar to our notation for math!

Function composition operator (.)

Let's think about f(g(h(x))).

$$f(g(h(x))) = (f \circ g \circ h)(x)$$

x can be drop out because we know types of functions f,g,h.

For this purpose, we adopt (.).

$$(.)$$
 :: $(b\rightarrow c)$ \rightarrow $(a\rightarrow b)$ \rightarrow $(a\rightarrow c)$

add3 (add3 (add3 3)))

= add3 \$ add3 \$ add3 \$ 3

= add3 . add3 . add3 \$ 3

= (add3 . add3 . add3) 3

In haskell, we use ++ operator to combine lists.

In haskell, we use ++ operator to combine lists.

It's $\mathcal{O}(n)$ operaton, which is expensive.

In haskell, we use ++ operator to combine lists.

```
DList :: [a] -> [a]
(cons a) = (cons a) .
(snoc a lst) = lst . (cons x)
```

Function composition is stored as a thunk due to lazy evaluation. It's $\mathcal{O}(1)$ operation.

In haskell, we use ++ operator to combine lists.

```
DList :: [a] -> [a]
cons a lst = a . lst
snoc lst b = lst . b
(DList [a]) [] = [a]
```

Function composition is stored as a thunk due to lazy evaluation. It's $\mathcal{O}(1)$ operation.

If we want to know the value of the list, we should apply this function to the empty list.

Conclusion

- ► We have learned (->), (\$) and (.).
- (->) is right associative. It naturally gives currying.
- ▶ (\$) makes the function application right associative.
- (.) makes the point-free expression possible.

End

Thank you for your attention!