1 Обязательная часть

1. $\Gamma pu\partial$.

Представляем наше поле графом. Клетка = вершина. Если две клетки смежны - проводим между ними ребро. Заметим, что мы получили двудольный граф. Хотим макс. количество попарно несмежных клеток. В треминах графа... хотим максимальное Independent Set. В двудольном графе умеем решать задачу $\mathcal{O}(V + E + T(maxMatching)) = \mathcal{O}(VE)$.

2. Ребра обязаны.

Находим макс. парсоч. Как это делать быстро на произвольном графе? Куном, но запускать не свою функцию вероятностную, а данный с небес поиск дчц за $\mathcal{O}(E)$. Теперь перебираем все ребра парсоча. Каждое пытаемся удалить, а затем найти дчц. Если нашли, то ребро не обязано лежать. Не нашли — обязано (док-но на лекции).

3. Лексикографички.

Находим minVertexCover. Запоминаем его размер С. Теперь пытаемся брать в ответ вершинки. Берем первую. Удаляем ее саму и ее ребра из графа. Ищем в остатке minVertexCover. Если его размер оказался равен C-1, то мы можем взять первую вершину в ответ спокойно, запускаемся от остатка, пытаемся брать 2 и тд. Если же размер больше C-1 (а меньше он быть не может, иначе в начале взяли не минмальное), то 1 взять в ответ не можем. Возвращаем ее, удаляем 2, продолжаем пати. Работает за полилог.

4. Избиение.

Сделаем из этого чуда двудольный граф: продублируем каждую вершину и запишем дубли в разные доли. Получится две равные доли. И каждое ребро записываем так, что его "исток"в левой доле. Утверждение: если макс. парсоч на таком графе - полный, то вершины можно разбить на циклы. Иначе нельзя.

Почему это так. Мы можем проследить по этим долям путь. Выходим из вершины у левой доли, идем в и' правой. Теперь прыгаем в левую долю в вершину и, ходим из нее и тд. Заметим, что если парсоч полный, то в каждую вершину мы зашли и вышли ровно один раз, то есть все вершины ровно на одном цикле. Если же не полный, то мы в какуюто вершину либо зайти вообще не смогли, тогда все плохо, либо зашли и не вышли, то есть в ней закончился путь (причем не цикл, иначе в ней мы уже были бы), тогда тоже все плохо.

5. *D-Регулярный*.

Выберем из левой доли п вершин. Возьмем все смежные им из правой, пусть их m. Заметим, что степени вершин в левой доле все D. В правой же $\leq D$. Количество ребер между ними -nD, тк они все выходят из левой доли и больше нет. Из правой же доли (если смотреть на полную картину) выходит ребер точно не меньше. Получаем: $nD \leq mD$. Откуда вывод $n \leq m$. То есть для любого подмножества из левой соответствующее ему из правой не меньше. Это теорема Холла, получаем наше чтд.

6. Степень не более двух.

Берем наш граф и удваиваем его. Оригиналы в левую долю, жалкие пародии в правую. Проводим между вершинами соответстующие ребра (неор). Теперь ищем парсоч. Нашли парсоч — нашли ответ. Почему? По свойствам парсоча в нашем двудольнике из каждой вершнины будет выходить не более одного ребра. А так как у каждой вершины изначального графа есть дуль в двудольнике, то степень каждой вершины при таком множестве ребер будет не более двух.

Почему такое множество максимально? Ну пусть не максимально. То есть есть какое-то множество, в котором ребер больше. Сделаем опять тот же двудольник и отметим ребра из этого множества в нем. Степень каждой врешины не более двух, значит в двудольнике у каждой вершины степень не более одного. То есть мы получили паросоч. Но размер этого парсоча больше выбранного нами. То есть мы выбрали не максимальный. Противоречие.

7. Множество прямых.

Заметим, что любая прямая однозачно задается парой (k, b). Воспользуемся этим. Наберем классы. Первый класс эквивалентности — прямые с одинаковыми коэффами (то есть они параллельны), второй — одинаковыми константами (то есть пересекаются в x=0). Первый класс будет левой долей графа, второй будет правой. Теперь задача свелась к поиску максимального паросочетания.