EECS 127/227AT Discussion 1 Slides

Druv Pai

September 2, 2020

About Me

- 3rd year undergrad, CS/Stats major
- Interested in:
 - Statistical learning theory, specifically:
 - Robust estimation
 - High dimensional statistics
 - All of these require optimization!
- Other: Playing basketball, running, reading
- Email: druvpaiberkeley.edu
- Office hours: 5-6 PM PST on Monday please stop by!

Definition (Vector)

Element of vector space (has scalar multiplication and vector addition defined in ways you would expect)

Example

Element of \mathbb{R}^n (*n*-tuple (x_1, \ldots, x_n)); matrices; more exotic objects

Definition (Inner Product)

Inner product of x and y, $\langle x, y \rangle$, is any function which has properties:

- 1. (Conjugate) symmetry: $\langle x,y\rangle = \overline{\langle y,x\rangle}$ (in $\mathbb{R}^n \langle x,y\rangle = \langle y,x\rangle$)
- 2. (Bi)linearity: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$; $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- 3. Positiveness: $\langle x, x \rangle > 0$ for x > 0

Example

If
$$x = (x_1, \dots, x_n)$$
, $y = (y_1, \dots, y_n)$ then $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

Definition (Norm)

Norm of vector x, ||x||, is any function which has properties:

- ► Homogeneity: $\|\alpha x\| = |\alpha| \|x\|$ for $\alpha \in \mathbb{R}$
- ▶ Positiveness: ||x|| > 0 for $x \neq 0$
- ► Triangle Inequality: $||x + y|| \le ||x|| + ||y||$

Example

$$\|(x_1,\ldots,x_m)\|_p=\left(\sum_{i=1}^n|x_i|^p\right)^{1/p};$$
 matrix norms (covered later).

Norm induced from inner product: $||x|| = \sqrt{\langle x, x \rangle}$. (Though we can consider non-induced norms as well, for $p \neq 2$ then $||x||_p$ isn't induced by an inner product).

Theorem (Cauchy-Schwarz)

$$|\langle x, y \rangle| \le \|x\|_2 \|y\|_2.$$

Proof.

Problem 1!

- Partial derivatives "like regular derivatives, but hold everything except the variable you want constant"
- Matrix calculus: Homework 0 Problem 6 for basics
- Small trick to find the gradient: Suppose $f: \mathbb{R}^n \to \mathbb{R}$, then $f(x + \varepsilon) = f(x) + \varepsilon^{\mathsf{T}}(\nabla_x f(x)) + \frac{1}{2}\varepsilon^{\mathsf{T}}(\nabla_x^2 f(x))\varepsilon + \cdots$
- Get gradient and Hessian by pattern matching! Very fast.
- ▶ Can be applied to $f: \mathbb{R}^n \to \mathbb{R}^m$ Jacobian if careful

Definition

Angle θ between two vectors: $\langle x, y \rangle = ||x|| ||y|| \cos(\theta)$

Definition (Orthogonality)

x, y orthogonal if $\langle x,y \rangle$ = 0 $\rightarrow \theta$ = $\frac{\pi}{2}$ (radians)

Definition (Linear Independence)

Set *S* of vectors is *linearly independent* if $\sum_{x \in S} \alpha_x x = 0 \rightarrow \alpha_x = 0$ for all x; if *S* is finite of size n then $\sum_{i=1}^{n} \alpha_i x_i = 0 \rightarrow \alpha_i = 0$

Definition (Span, Linear Combination)

If *S* is set of vectors, then span(*S*) = $\{\sum_{x \in S} \alpha_x x \mid \forall x, \alpha_x \in \mathbb{R}\}$ = set of all *linear combinations* of vectors in *S*

Definition (Basis, Dimension)

Set of vectors S is basis for X if span(S) = X and S is linearly independent; dimension: dim(X) = number of vectors in S

Definition (Orthogonal Basis)

S is orthogonal basis for *X* if *S* is basis for *X* and $\langle x, y \rangle = 0$ for $x \neq y, x, y \in S$ (pairwise orthogonality)

Definition (Normalized Vector)

Vector where ||x|| = 1.

Definition (Orthonormal Basis)

Orthogonal basis where every vector in the basis is normalized.

Definition (Projection)

Suppose X is vector space and $V \subseteq X$ is a subspace (subset that is itself a vector space) has orthonormal basis $\{v_1, \ldots, v_n\}$. Then $\text{proj}_V(x) = \sum_{i=1}^n \langle v_i, x \rangle v_i$. "Closest point in V to X."

Definition (Gram-Schmidt Process)

Suppose we have basis $U = \{u_1, \dots, u_n\}$. We want to find an orthonormal basis $V = \{v_1, \dots, v_n\}$.

- 1. Set $v_1 \leftarrow \frac{u_1}{\|u_1\|}$.
- 2. For $i \in \{2, ..., n\}$:
 - 2.1 Set $s_i \leftarrow u_i \text{proj}_{\text{span}(v_1,...,v_{i-1})}(u_i)$ "subtract non-orthogonal part from u_i "
 - 2.2 Set $v_i \leftarrow \frac{s_i}{\|s_i\|}$ "normalize"

NB: projection defined on previous slide.