

HEXFET® Power MOSFET

Applications

- High Frequency 3.3V and 5V input Pointof-Load Synchronous Buck Converters for **Netcom and Computing Applications**
- Power Management for Netcom, Computing and Portable Applications
- Lead-Free

Benefits

- Ultra-Low Gate Impedance
- Very Low R_{DS(on)}
- Fully Characterized Avalanche Voltage and Current

* DSS	R _{DS(on)} max	ID
12V 15	$m\Omega @V_{GS} = 4.5V$	10A

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{DS}	Drain-Source Voltage	12	V
V _{GS}	Gate-to-Source Voltage	± 12	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	10	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	7.9	Α
I _{DM}	Pulsed Drain Current①	79	
P _D @T _A = 25°C	Maximum Power Dissipation	2.0	W
P _D @T _A = 70°C	Maximum Power Dissipation [®]	1.3	W
	Linear Derating Factor	16	mW/°C
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		42	°C/W
$R_{\theta JA}$	Junction-to-Ambient @		62.5	0,

Static @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	12			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.01		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		11.5	15	mΩ	V _{GS} = 4.5V, I _D = 8.0A ③
			20	50		$V_{GS} = 2.8V, I_D = 5.0A$
V _{GS(th)}	Gate Threshold Voltage	0.6		2.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			100	μА	$V_{DS} = 9.6V, V_{GS} = 0V$
				250	μΛ	$V_{DS} = 9.6V, V_{GS} = 0V, T_J = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	- Λ	V _{GS} = 12V
.000	Gate-to-Source Reverse Leakage			-200	nA	V _{GS} = -12V

Dynamic @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9 fs	Forward Transconductance	18			S	V _{DS} = 6.0V, I _D = 8.0A
Qg	Total Gate Charge		17	26		I _D = 8.0A
Q _{gs}	Gate-to-Source Charge		4.4		nC	$V_{DS} = 6.0V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		5.2			$V_{GS} = 4.5V$
Q _{oss}	Output Gate Charge		16			$V_{GS} = 0V$, $V_{DS} = 10V$
t _{d(on)}	Turn-On Delay Time		9.4			$V_{DD} = 6.0V$
t _r	Rise Time		22		ns	$I_{D} = 8.0A$
t _{d(off)}	Turn-Off Delay Time		16] '''	$R_G = 1.8\Omega$
t _f	Fall Time		6.3			V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		1730			V _{GS} = 0V
Coss	Output Capacitance		1340			$V_{DS} = 6.0V$
C _{rss}	Reverse Transfer Capacitance		330		pF	f = 1.0MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		100	mJ
I _{AR}	Avalanche Current①		8.0	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			1.8		MOSFET symbol	
	(Body Diode)			1.0	A	showing the	
I _{SM}	Pulsed Source Current			70	^	integral reverse	
	(Body Diode) ①			79		p-n junction diode.	
V _{SD}	Diode Forward Voltage		0.85	1.3	V	$T_J = 25^{\circ}C$, $I_S = 8.0A$, $V_{GS} = 0V$ 3	
V 5D	Blode Forward Vollage		0.70			$T_J = 125^{\circ}C$, $I_S = 8.0A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		50	75	ns	$T_J = 25^{\circ}C$, $I_F = 8.0A$, $V_R = 12V$	
Q _{rr}	Reverse Recovery Charge		60	90	nC	di/dt = 100A/µs ③	
t _{rr}	Reverse Recovery Time		51	77	ns	$T_J = 125^{\circ}C$, $I_F = 8.0A$, $V_R = 12V$	
Q _{rr}	Reverse Recovery Charge		60	90	nC	di/dt = 100A/µs ③	

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance Vs. Drain Current

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

6

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information

8X 1.78 [.070]

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com

International IOR Rectifier

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_{.1} = 25$ °C, L = 3.2mH $R_G = 25\Omega$, $I_{AS} = 8.0A$.
- ③ Pulse width \leq 300 μ s; duty cycle \leq 2%.
- 4 When mounted on 1 inch square copper board, t<10 sec

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/2008

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRF7910PBF IRF7910TRPBF