Toplotna prevodnost

Urh Trinko

22. november 2020

1 UVOD

V sredstvu z neeneakomerno temperaturo teče tolpotni tok iz predelov z višjo temperaturo na tiste z nižjo. Toplotni tok lahko v vsaki točki opišemo kot:

$$\vec{j} = -\lambda gradT \tag{1}$$

 $(\lambda - \text{koeficient toplotne prevodnosti})$

Povezavo med tolplotno in električno prevodnost predstavlja zveza:

$$\frac{\lambda}{\sigma T} = 3(\frac{k_B}{e})\tag{2}$$

 $(\sigma - \text{električna prevodnost})$

Toplotni tok merejn v palici ali pločči opiše enačba:

$$j = -\lambda \frac{\Delta T}{l} \tag{3}$$

 $(\Delta T$ - razlika temperature na dolžini palice)

Temperatura znotraj telesa pa se spreminja v skladu z difuzijskim zakonom:

$$\frac{\partial T}{\partial t} = D\nabla^2 T \tag{4}$$

(toplotna difuzija - $D=\frac{\lambda}{\rho c_p},~\rho$ - gostota, c_p - specifična toplotna kapaciteta)

2 POTREBŠCINE

- merjenec valj kovine
- posoda za hlajenje vode
- ledomat in kuhalnik za vodo
- eleltrični kuhalnik za olje, variak, bojler
- termočlen baker-konstantan (konstantan je zlitina 60 % Cu in 40 % Ni)
- mikrovoltmeter
- \bullet dva termometra do 50 °C, natančnost ± 0.1 °C

3 NALOGA

- 1. Umeri termočlen izmeri zvezo med temperaturno razliko in napetostjo na termočlenu.
- 2. Izmeri koeficient toplotne prevodnosti dane kovine.

4 MERITVE

- PREMER MERJENCA: $d = 44.70 \text{ mm} \pm 0.02 \text{ mm}$
- RAZDALJA MED LUKNJICAMA: l = 56.96 mm \pm 0.02 mm
- DOLŽINA MERJENCA: L = 97.64 mm \pm 0.02 mm

Temperaturna razlika v odvisnosti od napetosti

T vroce vode	[stopinj celzija]	Napetost [mV]
	92.2	3.75
	83	3.41
	74.3	3.05
	70.1	2.87
	64	2.62
	59.7	2.43
	54.4	2.21
	50.3	2.03
	45.7	1.836
	40.2	1.609
	35.3	1.405
	29.2	1.155
	24.4	0.959
	19.7	0.771
	14	0.539
	0.1	0.003

Temperaturna razlika v odvisnosti od moči

Moc [W]	Napetost [mV]
30	0.2318
36.5	0.272
42	0.315
47	0.359
54	0.402
60.1	0.456

5 IZRAČUNI

5.1 Umiritev termočlena

V prvem delu vaje se termočlen iz bakra in konstantana umiri tako, da se meri napetost, ki se ustvari med obema koncema, ko je en konec v ledeni vodi(pri 0 °C), drug pa v vroči vodi. Pri tem je dana napaka termometra enaka 0.1 °C.

Slika 1: Odvisnost temperaturne razlike od napetosti na termočlenu.

Na osi y grafa na sliki 1 sem navedel kar temepraturno razliko, v podatkih so sicer podane le temperature v vroči posodi, vendar je temperatura v ledeni vedno enaka 0 °C, zato je dana temperatura kar enaka temperaturni razliki. Hkrati sem opazil, da je napaka termometra precej majhna v primerjavi z merjenimi temperaturnimi razlikami. Na graf (slika 1) sem narisal tudi intervale zaupanja ("error bars"), vendar so ti tako majhni v primerjavi z merjenimi temperaturami, da se na sliki sploh ne vidijo.

Iz obratne vrednosti naklona grafa na sliki 1 lahko izračunamo termonapetost - faktor, ki pove glavno lastnost termočlena, kakšno napetost povzroči določena temperaturna razlika. Iz izmerjenih podatkov ta znaša $\frac{41.32}{K} \pm 0.04 \frac{\mu V}{K}$, kjer je napaka enaka napaki nalkona premice na grafu 1, ki sem jo določil s kodo.

5.2 Meritev toplotne prevodnosti valjastega merjenca

V drugem delu naloge se z umerjenim termočlenom meri temperaturno razliko med dvema deloma kovinskega valja, ki se z ene strani greje s konstantno močjo, na drugi pa hkrati hladi s tokom hladne vode. Pri meritvi se opazuje napetost, ki se pojavi na termočlenu ob določeni moči grelca.

Slika 2: Temperaturna razlika v odvisnosti od moči.

Na ordinatno os grafa na sliki 2 sem nanesel kar temperaturno razliko, ki sem jo izračunal na podlagi dane napetosti ter naklona grafa na sliki 1. Koeficient toplotne prevodnosti se lahko izračuna na podlagi enačbe (3). Velja:

$$\frac{P}{S} = |j| = \lambda \frac{\Delta T}{l}$$

$$\frac{l}{\lambda S} = \frac{\Delta T}{P} = k$$

(kjer k pomeni naklon premice na sliki 2)

Končno sledi:

$$\lambda = \frac{l}{kS} = \frac{4l}{\pi d^2 k}$$

Iz zbranih podatkov in meritev znaša toplotna prevodnost merjenca $\frac{200 \text{ } \frac{W}{mK} \pm 20 \text{ } \frac{W}{mK}}{k}$ kar se iz tabele v navodilih najbolj ujema s podatkom za aluminij. Napako pa sem določil s seštevanjem relativnih napak razdalje med luknjicama, premera merjenca ter naklona grafa na sliki 2. Skoraj ves prispevek k tej napaki je prinesel naklon, saj sta napaki drugih dveh količin zelo majhni.

V zadnjem delu naloge pa sem moral izračunati karakteristični čas t_D za merjenec. To je čas v katerem temperaturna motnja prepotuje neko dolžino materiala. Pri tem velja difuzijska relacija:

$$L^2 = 2Dt_D$$

Na podlagi rezultata o toplotni prevosnosti sem sklepal, da je merjenec iz aluminija, zato sem uporabil difuzijsko konstanto za ta material, ki je tudi navedena v navodilih(pri 25 °C znaša $8.418\cdot 10^{-5}~\frac{m^2}{s}~\pm~0.001\cdot 10^{-5}~\frac{m^2}{s}$).

$$t_D = \frac{L^2}{2D}$$

Karakteristični čas je tako znašal $56.63 \text{ s} \pm 0.03 \text{ s}$, napako pa sem spet določil s šestevanjem relativnih napak števca in imenovalca.

ZAKLJUČEK

V prvem delu naloge sem na podlagi danih podatkov izračunal termonapetost termočlena, ki je znašala 41.32 $\frac{\mu V}{K} \pm 0.04 \frac{\mu V}{K}$. Dobljen podatek se malo razlikuje od tistega v navodilih, ki je zanšal 43 $\frac{\mu V}{K}$. V drugem delu naloge pa sem določil toplotno prevodnost merjenca, ki je znašala 200 $\frac{W}{mK} \pm 20 \frac{W}{mK}$. Na podlagi tega podatka sem sklepal, da je naznana kovina alumiji. Tako sem lahko iz podatka o difuzijski konstanti izračunal še karakterištični čas, 56.6 s \pm 0.03 s.