Want more revision exercises? Get MathsFit - New from projectmaths.

O9 6a The diagram shows the region bounded by the curve $y = \sec x$, the lines $x = \frac{\pi}{3}$ and $x = -\frac{\pi}{3}$, and the x-axis.

The region is rotated about the x-axis.

Find the volume of the solid of revolution formed.

Volume =
$$\pi \int y^2 dx$$
. As $y = \sec x$, then $y^2 = \sec^2 x$. Also, $y = \sec x$ is even function.
= $2\pi \int_0^{\frac{\pi}{3}} \sec^2 x dx$
= $2\pi \left[\tan x\right]_0^{\frac{\pi}{3}}$
= $2\pi \left[\tan \frac{\pi}{3} - \tan 0\right]$
= $2\pi \left[\sqrt{3} - 0\right]$
= $2\pi \sqrt{3}$
 \therefore volume is $2\pi \sqrt{3}$ units³

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

This part of the question was generally done well, with most candidates beginning with $\pi \int y^2 dx$ and almost all of these successfully progressing to the correct answer. About half the candidates utilised the fact that the area required was symmetrical about the y-axis.

Those candidates who attempted this part but did not score full marks often did not correctly evaluate $\tan \frac{\pi}{3}$ or were careless with negative signs in the evaluation of either $\tan \left(-\frac{\pi}{3}\right)$ or

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/