2.2. Dynamical models

To model nongravitational perturbations we first considered the classical formulation by Marsden et al. (1973):

$$\mathbf{a}_{NG} = g(r)(A_1\hat{\mathbf{r}} + A_2\hat{\mathbf{t}} + A_3\hat{\mathbf{n}}) \quad , \quad g(r) = \alpha \left(\frac{r}{r_0}\right)^{-m} \left[1 + \left(\frac{r}{r_0}\right)^n\right]^{-k} \quad (1)$$

where r is the heliocentric distance, $m=2.15, n=5.093, k=4.6142, r_0=2.808$ au, and α is such that g(1 au)=1. $A_1, A_2, \text{ and } A_3$ are free parameters that give the nongravitational acceleration at 1 au in the radial-transverse-normal reference frame defined by $\hat{\mathbf{r}} = \mathbf{r}/r, \hat{\mathbf{t}} = \hat{\mathbf{n}} \times \hat{\mathbf{r}}, \hat{\mathbf{n}} = \mathbf{r} \times \mathbf{v}/|\mathbf{r} \times \mathbf{v}|,$ where \mathbf{r} and \mathbf{v} are the heliocentric position and velocity of the comet. It is common practice to ignore the out-of-plane component, i.e., $A_3=0$.

As of 2014 October 3, it was clear that nongravitational perturbations were needed to fit the observed data. We computed two different orbital solutions:

- Solution 95, where A_1 , A_2 , and A_3 are all determined as part of the least squares orbital fit;
- Solution 97, where A_1 and A_2 are determined from the orbital fit and A_3 is set to zero.

Table 1 shows the values of the nongravitational parameters for solutions 95 and 97, and Fig. 1 shows the corresponding *b*-plane predictions. Solution 95 corresponds to the more conservative approach where no assumptions are