Name – MINA TILGAME

PRN - 202201040044

Batch - C4

Roll No - 365

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas import Series, DataFrame

Reading the tips.csv file
df1=pd.read_csv('/content/tips.csv')

df1.head()

				1	to 5 of 5	entries Filter	
index	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.5	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Show 25 ♥ per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

df1.tail()

	total_bill	tip	sex	smoker	day	time	size	1
239	29.03	5.92	Male	No	Sat	Dinner	3	
240	27.18	2.00	Female	Yes	Sat	Dinner	2	
241	22.67	2.00	Male	Yes	Sat	Dinner	2	
242	17.82	1.75	Male	No	Sat	Dinner	2	
243	18.78	3.00	Female	No	Thur	Dinner	2	

df1.columns

Index(['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size'], dtype='object')

df1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 244 entries, 0 to 243 Data columns (total 7 columns): # Column Non-Null Count Dtype total_bill 244 non-null 0 float64 1 tip 244 non-null float64 2 244 non-null object sex 244 non-null object 3 smoker 244 non-null object 4 day time 244 non-null object 244 non-null 6 size int64 dtypes: float64(2), int64(1), object(4) memory usage: 13.5+ KB

df1.describe()

	total_bill	tip	size	1
count	244.000000	244.000000	244.000000	
mean	19.785943	2.998279	2.569672	
std	8.902412	1.383638	0.951100	
min	3.070000	1.000000	1.000000	
25%	13 347500	2 000000	2 000000	

a=pd.DataFrame(df1['day'].value_counts())
a.reset_index(inplace=True)
plt.bar(a['index'],a['day'])

<BarContainer object of 4 artists>

plt.scatter(df1['total_bill'],df1['tip'])
plt.show()

plt.scatter(x='total_bill',y='tip',data=df1)
fig=plt.figure(figsize=(5,4))
ax=fig.add_axes([1,1,1,1])
ax.legend(labels=('sun','mon','tue'))
plt.show()

Customization that is available for the Bar Chart -color: For

the bar faces

edgecolor: Color of edges of the bar linewidth: Width of the bar edges

width: Width of the bar

 $\begin{array}{ll} \text{import matplotlib.pyplot as plt} \\ \text{import pandas as pd} \end{array}$

Histogram A histogram is basically used to represent data provided in a form of some groups. It is a type of bar plot where the X-axis represents the bin ranges while the Y-axis gives information about frequency. The hist() function is used to compute and create histogram of x.

```
# initializing the data
x = data['total_bill']

# plotting the data
plt.hist(x)

# Adding title to the plot
plt.title("Tips Dataset")

# Adding label on the y-axis
plt.ylabel('Frequency')

# Adding label on the x-axis
plt.xlabel('Total Bill')

plt.show()
```

import matplotlib.pyplot as plt

 $Customization\ that\ is\ available\ for\ the\ Histogram-$

import matplotlib.pyplot as plt

bins: Number of equal-width bins color: For changing the face color edgecolor: Color of the edges linestyle: For the edgelines alpha: blending value, between 0 (transparent) and 1 (opaque)

```
# Adding label on the x-axis
plt.xlabel('Total Bill')
plt.show()
```


Scatter Plot Scatter plots are used to observe relationships between variables. The scatter() method in the matplotlib library is used to draw a scatter plot.

```
\begin{array}{ll} \text{import matplotlib.pyplot as plt} \\ \text{import pandas as pd} \end{array}
```

```
# initializing the data
x = data['day']
y = data['total_bill']

# plotting the data
plt.scatter(x, y)

# Adding title to the plot
plt.title("Tips Dataset")

# Adding label on the y-axis
plt.ylabel('Total Bill')

# Adding label on the x-axis
plt.xlabel('Day')
plt.show()
```


Pie Chart Pie chart is a circular chart used to display only one series of data. The area of slices of the pie represents the percentage of the parts of the data. The slices of pie are called wedges. It can be created using the pie() method.

Customizations that are available for the Pie chart are -

explode: Moving the wedges of the plot autopct: Label the wedge with their numerical value. color: Attribute is used to provide color to the wedges. shadow: Used to create shadow of wedge.

→ Saving a Plot

For saving a plot in a file on storage disk, savefig() method is used. A file can be saved in many formats like .png, .jpg, .pdf, etc.

✓ 0s completed at 2:44 PM