Автоматическая настройка параметров BigARTM под широкий класс задач

Гришанов А. В.

Московский физико-технический институт Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

Задачу поставил д.ф.-м.н., К. В. Воронцов Консультант Виктор Булатов

> Москва, 2019 г.

Автоматизация настройки параметров BigARTM

Проблема

Настройка параметров BigARTM требует работы эксперта. Требуется автоматизировать этот процесс.

Цель работы

Проверить гипотезу о существовании конфигураций, хорошо работающих на широком классе задач.

Метод решения

Предлагается использовать относительные коэффициенты регуляризации.

Относительные коэффициенты регуляризации

Литература

- Описание подхода ARTM Konstantin Vorontsov, Anna Potapenko. Additive Regularization of Topic Models.
- Относительные коэффициенты регуляризации
 Дойков Н.В. Адаптивная регуляризация вероятностных тематических моделей.
- Модель PLSA
 David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine Learning research, 2003.

Задача тематического моделирования

 $d \in D$ — документы, $w \in W$ — слова, $t \in T$ — темы

$$p(w|d) = \sum_{t \in T} p(w|t)p(t|d) = \sum_{t \in T} \varphi_{wt}\theta_{td}$$

Ставится задача $F \approx \Phi \Theta$

Пришли к следующей модели:

PLSA

$$L(\Phi,\Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \sum_{t \in T} \phi_{wt} \theta_{td} \to \max_{\Phi,\Theta}$$
 (1)

Постановка задачи ARTM

Разложение матрицы F в произведение матриц Φ и Θ не единственно. В частности, для любой невырожденной матрицы S размера TxT верно, что $F=(\Phi S)(S^{-1}\Theta)$. При наложении на модель дополнительных требований (регуляризаторов $R_i(\Phi,\Theta)$) получим:

Аддитивная регуляризация тематических моделей

$$L(\Phi,\Theta) + \sum_{i=1}^{n} \tau_{i} R_{i}(\Phi,\Theta) \to \max_{\Phi,\Theta}$$
 (2)

Переход от абсолютных au к относительных

Формула М-шага, сглаживающего или разреживающего $arphi_{wt}$:

$$\varphi_{wt} = \underset{w \in W}{\mathsf{norm}} (n_{wt} + \tau), \quad \mathsf{norm}(x_t) = \frac{\max\{x_t, 0\}}{\sum_{s \in T} \max\{x_s, 0\}}$$
(3)

Проведём репараметризацию. Пусть $\beta_w = \frac{1}{|W|}$ — равномерное распределение.

$$\varphi_{wt} = \underset{w \in W}{\text{norm}} (n_{wt} + \tau) = \frac{n_{wt} + \tau}{\sum_{w \in W} n_{wt} + \tau} = \frac{n_{wt} + \tau}{n_t + \tau |W|}$$
(4)

Представим это в виде выпуклой комбинации $rac{n_{wt}}{n_t}$ и $rac{1}{|W|}.$

$$\frac{n_{wt} + \tau}{n_t + \tau |W|} = (1 - \lambda) \frac{n_{wt}}{n_t} + \lambda \frac{1}{|W|} \Rightarrow \tau = \frac{n_t \lambda}{(1 - \lambda)|W|}$$
 (5)

Значит, сглаживание Фи можно трактовать, как нахождение компромисса между $\varphi_{wt} = \frac{n_{wt}}{n_t}$ и $\varphi_{wt} = \frac{1}{|W|}$.

Решение задачи

- Рассмотрим набор датасетов $\{\mathfrak{D}_{\mathsf{ex}},\mathfrak{D}_{\mathsf{in}}\}$, где $\mathfrak{D}_{\mathsf{ex}}$ имеют внешний критерий качества, а $\mathfrak{D}_{\mathsf{in}}$ только внутренние.
- Необходимо проверить гипотезу о том, что существуют общие коэффициенты регуляризации $au_{general}$, которые не хуже чем PLSA и лучше PLSA по нескольким критериям.
- Для каждого из первых найдём лучшие параметры, затем будем искать общие.
- В конце проверим выполнение гипотезы на всех данных.

Результаты эксперимента

Фиксируем следующие относительных коэффициеты: декоррелирование — 0.04; разреживание тем в документах — 0.1; разреживание слов в темах — 0.2 20news groups

	perplexity	Φ sparsity	Θ sparsity
PLSA	2580	0.882	0.001
BigARTM (with relative regularizers)	2560	0.900	0.860
(with relative regularizers)			

NIPS

	perplexity	Φ sparsity	Θ sparsity
PLSA	1000	0.800	0.890
BigARTM	995	0.850	0.920
(with relative regularizers)	995	0.650	0.920