Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет «Высшая Школа Экономики»» Факультет компьютерных наук Департамент программной инженерии

Микропроект. Пояснительная записка.

Выполнила студент БПИ196-2 Филиппова Мария

Москва

СОДЕРЖАНИЕ

1.	Постановка задачи	2
2.	Применяемые расчетные методы	2
3.	Входные данные	3
4.	Испытание программы	3
ПР	РИЛОЖЕНИЕ 1	11
ПР	РИЛОЖЕНИЕ 2	27
ПР	РИЛОЖЕНИЕ 3	29

1. Постановка задачи

Разработать программу реализации 4-х действий арифметики комплексных чисел, представленных дробями (использовать целые со знаком, обеспечить максимальную простоту результата).

2. Применяемые расчетные методы

Комплексное число – число вида $\frac{a}{b} + \frac{c}{d} * i$, где $\frac{a}{b}$ – действительная часть, $\frac{c}{d}$ – мнимая часть.

Сложение комплексных чисел:

$$\left(\frac{a_1}{b_1} + \frac{c_1}{d_1} * i\right) + \left(\frac{a_2}{b_2} + \frac{c_2}{d_2} * i\right) = \frac{a_1 * b_2 + a_2 * b_1}{b_1 * b_2} + \frac{c_1 * d_2 + c_2 * d_1}{b_2 * d_2} * i$$

Вычитание комплексного числа:

$$\left(\frac{a_1}{b_1} + \frac{c_1}{d_1} * i\right) - \left(\frac{a_2}{b_2} + \frac{c_2}{d_2} * i\right) = \frac{a_1 * b_2 - a_2 * b_1}{b_1 * b_2} + \frac{c_1 * d_2 - c_2 * d_1}{b_2 * d_2} * i$$

Вычитание можно привести к сложению, этот способ использован в программе:

$$\left(\frac{a_1}{b_1} + \frac{c_1}{d_1} * i\right) - \left(\frac{a_2}{b_2} + \frac{c_2}{d_2} * i\right) = \left(\frac{a_1}{b_1} + \frac{c_1}{d_1} * i\right) + \left(-\frac{a_2}{b_2} - \frac{c_2}{d_2} * i\right)$$

Умножение комплексных чисел:

Умножение можно свести к сложению 2-х комплексных чисел, что и используется в программе:

$$\left(\frac{a_1 * a_2}{b_1 * b_2} + \frac{a_1 * c_2}{b_1 * d_2} * i\right) + \left(\frac{-c_1 * c_2}{d_1 * d_2} + \frac{a_2 * c_1}{b_2 * d_1} * i\right) \\
= \left(\frac{a_1 * a_2}{b_1 * b_2} - \frac{c_1 * c_2}{d_1 * d_2}\right) + \left(\frac{a_1 * c_2}{b_1 * d_2} + \frac{a_2 * c_1}{b_2 * d_1} * i\right)$$

Деление комплексных чисел:

$$\frac{\frac{\mathbf{a}_{1}}{\mathbf{b}_{1}} + \frac{\mathbf{c}_{1}}{\mathbf{d}_{1}} * \mathbf{i}}{\frac{\mathbf{a}_{2}}{\mathbf{b}_{2}} + \frac{\mathbf{c}_{2}}{\mathbf{d}_{2}} * \mathbf{i}} = \frac{\left(\frac{a_{1} * a_{2}}{b_{1} * b_{2}} - \frac{c_{1} * c_{2}}{d_{1} * d_{2}}\right) + \left(\frac{a_{1} * c_{2}}{b_{1} * d_{2}} + \frac{a_{2} * c_{1}}{b_{2} * d_{1}} * \mathbf{i}\right)}{\frac{a_{2}^{2}}{b_{2}^{2}} + \frac{c_{2}^{2}}{d_{2}^{2}}}$$

Операции в числителе можно свести к сложению, а затем поделить дроби действительной и мнимой частей на значение знаменателя.

Для обеспечения максимальной простоты результата числители и знаменатели дробей сокращаются на наибольший общий делитель этих чисел. Для нахождения наибольшего общего делителя был использован алгоритм Евклида:

Дано 2 натуральных числа а, b.

 Π OKA a \ll b

ЕСЛИ а > b

a = a - b

ИНАЧЕ

b = b - a

КОНЕЦ

По окончанию алгоритма получится, a = b =значение наибольшего общего делителя.

3. Входные данные

При запросе ввода числителя или знаменателя чисел — целые числа со знаком, лежащие в диапазоне [-1000000; 1000000]. При запросе ввод операции — один из символов '+' — для сложения, '-' — для вычитания, '*' — для умножения, '/' — для деления.

4. Испытание программы

4.1 Область допустимых входных параметров - целочисленные значения из диапазона [-1000000; 1000000]. Пользователь будет уведомлен о попытке введения числа не из допустимых значений.

Входные данные: 2000000

Результат:

■ C:\Users\admin\Documents\FASM\Микропроект\Microproject.EXE

Input complex number A

Input real part of the complex number

Input numerator from [-1000000, 1000000]

2000000

The value is out of allowed range.

4.2 Попытка ввести дробь с 0 в знаменателе.

Входные данные:

1

Результат:

```
■ C:\Users\admin\Documents\FASM\Микропроект\Microproject.EXE

Input complex number A

Input real part of the complex number

Input numerator from [-1000000, 1000000]

I

Input denominator from [-1000000, 1000000]

Attempt to divide by zero.
```

4.3 Попытка ввести операцию, отличную от '+', '-'. '/', '*'.

Входные данные:

1

1

2

3?

```
Input complex number A
Input real part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input complex number B
Input real part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input imaginary part of the complex number
Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input operation
Undefined operation.
```

4.4 Сложение комплексных чисел.

Входные данные:

1

2

3

19

4

7

3

2

+

Результат:

```
C:\Users\admin\Documents\FASM\Микропроект\Microproject.EXE
```

```
Input complex number A
Input real part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input complex number B
Input real part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input operation
 Result:
(1/2 + 3/19 * i) + (4/7 + 3/2 * i) = (15/14 + 63/38 * i)
```

4.5 Сложение комплексных чисел с 0 в результате

Входные данные:

1

4

-3

5

1

-4

3

5

+

Результат:

```
C:\Users\admin\Documents\FASM\Muxponpoexr\Microproject.EXE

Input complex number A
Input real part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input complex number B
Input real part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input operation
Result:

(1/4 - 3/5 * i) + (-1/4 + 3/5 * i) = (0/1 + 0/1 * i)
```

4.6 Вычитание комплексных чисел

Входные данные:

1

2

3

19

4

7

3

J

2

```
Input complex number A
Input real part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input complex number B
Input real part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input denominator from [-1000000, 1000000]

Input operation
Result:

(1/2 + 3/19 * i) - (4/7 + 3/2 * i) = (-1/14 - 51/38 * i)
```

4.7 Умножение комплексных чисел

Входные данные:

15

16

3

19

-7

8

0

1

*

```
■ C:\Users\admin\Documents\FASM\Микропроект\Microproject.EXE
Input complex number A
Input real part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
16
Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
19
Input complex number B
Input real part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input operation
 Result:
(15/16 + 3/19 * i) * (-7/8 + 0/1 * i) = (-105/128 - 21/152 * i)_{-}
```

4.8 Деление комплексных чисел

Входные данные:

2

17

-3

1

2

9

5

30

■ Выбрать C:\Users\admin\Documents\FASM\Микропроект\Microproject.EXE

```
Input complex number A
Input real part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input complex number B
Input real part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
30
Input operation
    Result:
(2/17 - 3/1 * i) / (2/9 + 5/30 * i) = (-522/85 - 756/85 * i)
```

4.9 Деление комплексных чисел с попыткой деления на 0.

Входные данные:

4

18

3

9

0

-2

-∠

0

6

C:\Users\admin\Documents\FASM\Микропроект\Microproject.EXE

```
Input complex number A
Input real part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
18
Input imaginary part of the complex number
Input numerator from [-1000000, 10000000]
Input denominator from [-1000000, 1000000]
Input complex number B
Input real part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
-2
Input imaginary part of the complex number
Input numerator from [-1000000, 1000000]
Input denominator from [-1000000, 1000000]
Input operation
Attempt to divide by zero.
```

Код программы

Microproject.ASM

```
; Выполнила: Филиппова Мария, БПИ-196.
; Задание.
; Разработать программу реализации 4-х действий
; арифметики комплексных чисел, представленных дробями
; (использовать целые со знаком, обеспечить максимальную
; простоту результата).
format PE console
entry start
include 'win32a.inc'
include 'Microproject.inc'
section '.data' data readable writable
       ; подсказки пользователю при вводе данных
       strInputA db 'Input complex number A', 10, 0
       strInputB db 'Input complex number B', 10, 0
       strInputRe db 'Input real part of the complex
number',10, 0
       strInputIm db 'Input imaginary part of the complex
number',10, 0
       strInputNumerator db 'Input numerator from [-
1000000, 1000000]',10, 0
       strInputDenominator db 'Input denominator from [-
1000000, 1000000]', 10, 0
       strIncorrectVal db 'Attempt to divide by zero.',10,
0
       strIncorrectOp db 'Undefined operation.', 10, 0
       strOutOfRange db 'The value is out of allowed
range.', 10, 0
       strScanInt db '%d', 0
       strEmpty db ' ', 0
       strOp db 'Input operation', 10, 0
       d dd?; HOД
```

```
; Зранение числителей, знаменателей дробей,
        ; входящих в состав комплексных чисел.
        ; A:
        a re num dd ?
        a re den dd ?
        a im num dd ?
        a_im_den dd ?
        ; B:
        b_re_num dd ?
        b re den dd?
        b_im_num dd ?
        b im den dd ?
        ; С, здесь же хранится результат операций:
        c re num dd ?
        c_re_den dd ?
        c_im_num dd ?
        c im den dd ?
        ; Резервирование места для хранения кода операциию
        op rd 1
        ; Строки оформления результата.
        strRes db 'Result: ', 10, 0
        strOpAdd db ' + ', 0
        strOpSub db ' - ', 0
        strOpMul db ' * ', 0
        strOpDiv db ' / ', 0
        str0pEq db ' = ', 0
        strCNPosIm db '(%d/%d + %d/%d * i)', 0
        strCNNegIm db '(%d/%d - %d/%d * i)', 0
        ; Промежуточные значения при операциях
умножения/деления.
        x re num dd ?
        x_re_den dd ?
        x_im_num dd ?
        x im den dd ?
        y_re_num dd ?
        y re den dd ?
        y_im_num dd ?
        y_im_den dd ?
```

```
section '.code' code readable executable
start:
  ;Ввод комплексных чисел А и В.
 CNInputMacro strInputA, a_re_num, a_re_den, a_im_num,
a im den
 CNInputMacro strInputB, b re num, b re den, b im num,
b im den
  ;Ввод действия.
 Print strOp
 call [getch]
 mov [op], eax
  ; 43 = '+', 45 = '-', 42 = '*', 47 = '/'
  ; Выполнить действие в зависимости от введенного действия.
  cmp [op], 43; +
 jne @notAdd
      CNAddMacro
      jmp printResult
@notAdd:
      cmp [op], 45;-
      jne @notSub
          CNSubMacro
          jmp printResult
@notSub:
      cmp [op], 42; *
      jne @notMul
          CNMulMacro
          jmp printResult
@notMul:
      cmp [op], 47; /
      jne @notDiv
          CNDivMacro
          jmp printResult
@notDiv:
```

```
; В случае нкорректно введенного оператора, выводится
ссобщение об ошибке.
    Print strIncorrectOp
    jmp finish
; Вывод результата.
printResult:
    ; проверить, не появился ли 0 в дробях знаменателя
результата
    cmp [c_re_den], 0
    je DivByZero
    cmp [c_im_den], 0
    je DivByZero
    ; Приводим дроби к формату, где знаменатель
положителен, а
    ; знак числителя отображает знак всей дроби.
    formatFractions a re num, a re den, a im num, a im den
    formatFractions b_re_num, b_re_den, b_im_num, b_im_den
    formatFractions c re num, c re den, c im num, c im den
    ; Вывод результата.
    Print strRes
    OutputResult
    jmp finish
; Уведомление о попытке деления на 0.
DivByZero:
    Print strIncorrectVal
finish:
       call [getch]
       push 0
       call [ExitProcess]
;-----
section '.idata' import data readable
```

```
library kernel, 'kernel32.dll',\
                msvcrt, 'msvcrt.dll'
        import kernel,\
           ExitProcess, 'ExitProcess'
        import msvcrt,\
           printf, 'printf',\
           scanf, 'scanf',\
           getch, '_getch'
Microproject.inc
; Вывод значений.
macro Print [args] {
  reverse
    push args
  common
    call [printf]
; Ввод значений.
macro Scan [args] {
  reverse
    push args
  common
    call [scanf]
; Ввод дроби.
macro GetFraction num, den {
 local getFraction, outOfRange,endGetFraction
 getFraction:
      ; Ввод числителя.
      Print strInputNumerator
      Scan strScanInt, num
      ; Проверка чилителя на корректность.
      cmp [num], 1000000
      jg outOfRange
      cmp [num], -1000000
```

}

}

```
jl outOfRange
      ; Ввод знаменателя.
      Print strInputDenominator
      Scan strScanInt, den
      ; Проверка знаменателя на корректность.
      cmp [den], 1000000
      jg outOfRange
      cmp [den], -1000000
      jl outOfRange
        ; Проверка на неравенство знаменателя 0.
        cmp [den], 0
        jne endGetFraction
        Print strIncorrectVal
        call [getch]
        push 0
        call [ExitProcess]
outOfRange:
        Print strOutOfRange
        call [getch]
        push 0
        call [ExitProcess]
 endGetFraction:
}
; Ввод одного комплексного числа.
macro CNInputMacro strInput, n_re_num, n_re_den, n_im_num,
n_im_den {
      Print strInput
      Print strInputRe
      ; Ввод действительной части.
      GetFraction n_re_num, n_re_den
```

```
Print strInputIm
      ; Ввод мнимой части.
      GetFraction n_im_num, n_im_den
}
;Сокращение дроби.
macro ReduceFraction first, second{
local startNOD, negB, negA, negBB, @greaterB, NODLoop,
negDivA, negDivB, negDivBB, reduceFraction, redIfZeroNum,
endNOD
startNOD:
        ; НОД - это целое натуральное число,
        ; поэтому проверяем числа на отрицательность и на
равенство 0,
        ; чтобы искать НОД для 2-х положительных чисел.
        cmp [first],0
        je redIfZeroNum
        mov eax, [first]
        mov ebx, [second]
        cmp [first], 0
        jl negA
           cmp [second], 0
           jl negB
             jmp NODLoop
           negB:
              neg ebx
              jmp NODLoop
        negA:
          neg eax
          cmp [second], 0
          jl negBB
              jmp NODLoop
           negBB:
              neg ebx
              jmp NODLoop
; Алгоритм Евклида.
NODLoop:
        cmp eax, ebx
```

```
je reduceFraction
        cmp eax, ebx
        jl @greaterB
           sub eax, ebx
           jmp NODLoop
        @greaterB:
           sub ebx, eax
        jmp NODLoop
; Сокращение числителя и знаменателя на их НОД.
reduceFraction:
        mov [d], eax
        Print strEmpty
        ;поделить на d оба числа
        ;положительное число делится адекватно,
        ;отрицательное нужно сделать положительным, а затем
        ;поменяь знакрезультата.
        cmp [first], 0
        jl negDivA
           mov eax, [first]
           div [d]
           mov [first], eax
           cmp [second], 0
           jl negDivB
              mov eax, [second]
              div [d]
              mov [second], eax
              jmp endNOD
           negDivB:
              mov eax, [second]
              neg eax
              div [d]
              neg eax
              mov [second], eax
              jmp endNOD
        negDivA:
```

```
mov eax, [first]
           neg eax
           div [d]
           neg eax
           mov [first], eax
           cmp [second], 0
           jl negDivBB
              mov eax, [second]
              div [d]
              mov [second], eax
              jmp endNOD
           negDivBB:
              mov eax, [second]
              neg eax
              div [d]
              neg eax
              mov [second], eax
              jmp endNOD
; В случае равенства числителя дроби 0,
; присвоим знаменателю значение 0.
redIfZeroNum:
         mov [second], 1
endNOD:
}
; Сложение дробей.
macro AddFractions a, b, c, d, num, den{
     ; Расчет числителя.
     mov eax,[a]
     imul eax, [d]
     mov ebx, [b]
     imul ebx, [c]
     add eax, ebx
     mov [num], eax
```

```
; Расчет знаменателя.
     mov eax, [b]
     imul eax, [d]
     mov [den], eax
}
; Сложение комплексных чисел.
macro CNAddMacro{
     ; Сложение действительных частей.
     AddFractions a_re_num, a_re_den, b_re_num, b_re_den,
c re num, c re den
     ReduceFraction c_re_num, c_re_den
     ; Сложение мнимых частей.
     AddFractions a_im_num, a_im_den, b_im_num, b_im_den,
c im num, c im den
     ReduceFraction c im num, c im den
}
; Отрицание числа.
macro negNum num{
     mov eax, [num]
     neg eax
     mov [num], eax
}
; Вычитание комплексных чисел.
macro CNSubMacro{
     ; - это тот же плюс, только с отрицанием b_re_num и
b im num
     negNum b_re_num
     negNum b im num
     CNAddMacro
     negNum b_re_num
     negNum b_im_num
```

```
}
; Присвоить secondValue значение firstValue.
macro changeValues firstValue, secondValue{
      mov eax, [firstValue]
      mov [secondValue], eax
}
;Присваиваем одному кумплексному числу значение другого.
macro modify s re num, s re den, s im num, s im den,
d re num, d re den, d im num, d im den {
    changeValues s re num, d re num
    changeValues s_re_den, d_re_den
    changeValues s_im_num, d_im_num
    changeValues s im den, d im den
}
; Умножение комплексных чисел.
macro CNMulMacro{
    ; Сохраним значения чисел a, b в x, y, чтобы потом можно
было их восстановить
    ; В силу реализации сложения, мы можем оперировать
только а и b
    ; Можно было, конечно, добавить параметры в сложение,
    ; но показалось неразумным нагромождать операции
сложения и вычитания.
    ; Сохраняем а в х, b в у.
    modify a_re_num, a_re_den, a_im_num, a_im_den, x_re_num,
x re den, x im num, x im den
    modify b re num, b re den, b im num, b im den, y re num,
y re den, y im num, y im den
    ; Дествительная часть новых дробей.
    mov eax, [a_re_num]
    imul eax, [b_re_num]
    mov [a_re_num], eax
    mov eax, [a_re_den]
    imul eax, [b_re_den]
```

```
mov [a re den], eax
    negNum a im num
    mov eax, [a_im_num]
    imul eax, [b im num]
    mov [b_re_num], eax
    negNum a_im num
    mov eax, [a_im_den]
    imul eax, [b im den]
    mov [b_re_den], eax
    ; Мнимая часть новых дробей.
    mov eax, [x_re_num]
    imul eax, [y_im_num]
    mov [a im num], eax
    mov eax, [x_re_den]
    imul eax, [y_im_den]
    mov [a_im_den], eax
    mov eax, [x_im_num]
    imul eax, [y_re_num]
    mov [b im num], eax
    mov eax, [x_im_den]
    imul eax, [y_re_den]
    mov [b_im_den], eax
    CNAddMacro
   ; Возвращение первоначальных значений а и b.
   modify x_re_num, x_re_den, x_im_num, x_im_den, a_re_num,
a_re_den, a_im_num, a_im_den
   modify y_re_num, y_re_den, y_im_num, y_im_den, b_re_num,
b_re_den, b_im_num, b_im_den
```

; Деление комплексных чисел.

```
macro CNDivMacro{
      ; Числитель - умножение а и сопряженного к b.
      negNum b im num
      CNMulMacro
      negNum b im num
      ; Знаменатель сумма квадратов действительной и мнимой
части b.
      ; Проверяем, не равен ли b 0, в таком случае, деление
на 0 невозможно.
      cmp [b_re_num], 0
      je divByZero
      cmp [b im num], 0
      je divByZero
      mov eax, [b re num]
      imul eax, [b re num]
      mov [x_re_num], eax
      mov eax, [b_re_den]
      imul eax, [b re den]
      mov [x re den], eax
      mov eax, [b im num]
      imul eax, [b_im_num]
      mov [y re num], eax
      mov eax, [b_im_den]
      imul eax, [b im den]
      mov [y re den], eax
      AddFractions x_re_num, x_re_den, y_re_num, y_re_den,
x im_num, x_im_den
      ; Делим чиситель на знаменатель
      mov eax, [c_re_num]
      imul eax, [x im den]
      mov [c re num], eax
```

```
mov eax, [c_re_den]
      imul eax, [x_im_num]
      mov [c_re_den], eax
      mov eax, [c im num]
      imul eax, [x_im_den]
      mov [c im num], eax
      mov eax, [c_im_den]
      imul eax, [x im num]
      mov [c_im_den], eax
      ; Сокращаем дроби результатов.
      ReduceFraction c_re_num, c_re_den
      ReduceFraction c_im_num, c_im_den
      jmp endDiv
divByZero:
        Print strIncorrectVal
        call [getch]
        push 0
        call [ExitProcess]
endDiv:
}
; Форматирование дроби по правилу sqn(num * den)*|num| /
den
macro checkFraction num, den{
local startCheckFract,@denLess, endCheckFraction
startCheckFract:
             cmp [den], 0
             jl @denLess
                jmp endCheckFraction
            @denLess:
               mov eax, [num]
               neg eax
               mov [num], eax
               mov eax, [den]
```

```
endCheckFraction:
}
; Форматирование дробей комплексного числа.
macro formatFractions re num, re den, im num, im den{
      ; Приводим дроби к виду sqn(num, den)*|num| / |den|
      checkFraction re num, re den
      checkFraction im_num, im_den
}
; Вывод комплексного числа.
macro outputCN re num, re den, im num, im den{
local startOutputCN, negIm, endOutputCN
startOutputCN:
       ; Выбор строки формата, в зависимость от знака мнимой
части.
       cmp [im_num], 0
       jl negIm
           Print strCNPosIm, [re_num], [re_den], [im_num],
[im den]
           jmp endOutputCN
       negIm:
           mov eax, [im num]
           neg eax
           mov [im_num], eax
           Print strCNNegIm, [re_num], [re_den], [im_num],
[im_den]
           jmp endOutputCN
endOutputCN:
```

neg eax

mov [den], eax

jmp endCheckFraction

}

```
; Вывод результата в формате А ор В = С, где А, В, С -
комплексные числа,
; а ор - введенный оператор.
macro OutputResult{
startOutput:
     ; Вывод первого введенного числа.
     outputCN a re num, a re den, a im num, a im den
     ; Выбор строкового представления оператора в
зависимости от кода.
     ; 43 = '+', 45 = '-', 42 = '*', 47 = '/'
     cmp [op], 43
     jne notAddOp
         Print strOpAdd
         jmp endOutput
     notAddOp:
        cmp [op], 45
        ine notSubOp
            Print strOpSub
            jmp endOutput
        notSubOp:
            cmp [op], 42
            jne notMultOp
            Print strOpMul
            jmp endOutput
            notMultOp:
                Print strOpDiv
endOutput:
    ; Вывод второго введенного числа.
    outputCN b re num, b re den, b im num, b im den
    Print strOpEq
    ; Вывод результата.
    outputCN c_re_num, c_re_den, c_im_num, c_im_den
}
```

ПРИЛОЖЕНИЕ 2

Переменные

Название	назначение
1	Знаменатель дроби мнимой части первого введенного
a_im_den	комплексного числа.
. :	Числитель дроби мнимой части первого введенного
a_im_num	комплексного числа.
1	Знаменатель дроби действительной части первого
a_re_den	введенного комплексного числа.
	Числитель дроби действительной части первого
a_re_num	введенного комплексного числа.
h : 4	Знаменатель дроби мнимой части второго введенного
b_im_den	комплексного числа.
1. :	Числитель дроби мнимой части второго введенного
b_im_num	комплексного числа.
h ma dam	Знаменатель дроби действительной части второго
b_re_den	введенного комплексного числа.
h	Числитель дроби действительной части второго
b_re_num	введенного комплексного числа.
c_im_den	Знаменатель дроби мнимой части результата.
c_im_num	Числитель дроби мнимой части результата.
c_re_den	Знаменатель дроби действительной части результата.
c_re_num	Числитель дроби действительной части результата.
d	Наибольшее общий делитель
op	Код введенной операции
	Строка вывода комплексного числа при
strCNNegIm	отрицательной мнимой части.
CND	Строка вывода комплексного числа при
strCNPosIm	положительной мнимой части.
strEmpty	Пустая строка.
strIncorrectOp	Уведомление о введенной некорректной операции.
strIncorrectVal	Уведомление о попытке деления на 0.
strInputA	Уведомление о вводе первого комплексного числа.
strInputB	Уведомление о вводе второго комплексного числа.
strInputDenominator	Уведомление о вводе знаменателя дроби.
ota In and Inc	Уведомление о вводе мнимой части комплексного
strInputIm	числа.
strInputNumerator	Уведомление о вводе числителя.
ctrInnutDo	Уведомление о вводе действительной части
trInputRe	комплексного числа.
strOp	Уведомление о вводе оператора.
strOpAdd	Строковое представление операции сложения.
strOpDiv	Строковое представление операции деления.

strOpEq	Строковое представление равенства.
strOPMul	Строковое представление операции умножения.
strOpSub	Строковое представление операции вычитания.
strOutOfRange	Уведомление о вводе числа вне допустимого
4 D	диапазона.
strRes	Уведомление о выводе результата.
strScanInt	Строка для отображения вводимого числа.
x_im_den	Значения числителей и знаменателей дробей
x_im_num	комплексных чисел, используемых для хранения
x_re_den	первоначальных введенных чисел во время операций
x_re_num	умножения и деления.
y_im_den	
y_im_num	
y_re_den	
y_re_num	

приложение 3

Макроопределения

Название	назначение
AddFractions	Сложение дробей.
changeValues	Присваивание одному числу значение другого числа.
	Форматирование дроби, при котором числителю
	присваивается знак дроби, а знаменатель становится
checkFraction	положителен.
CNAddMacro	Сложение комплексных чисел.
CNDivMacro	Деление комплексных чисел.
CNInputMacro	Ввод одного комплексного числа.
CNMulMacro	Умножение комплексных чисел.
CNSubMacro	Вычитание комплексных чисел.
formatFractions	Форматирование дробей комплексного числа.
	Ввод дроби, проверка на корректность значений
GetFraction	числителя и знаменателя.
	Присваивание одного комплексному комплексному
modify	числу значения другого.
negNum	Перемена знака числа.
outputCN	Вывод комплексного числа.
	Вывод строки, состоящей из действия и результата
OutputResult	действия.
Print	Вывод переданных значений в консоль.
	Сокращение дроби путем деления числителя и
ReduceFraction	знаменателя на рассчитанный НОД.
Scan	Ввод значений с консоли.