Logic & Proofs (Lecture – 4)

Dr. Nirnay Ghosh

Rules of Inference

- Rules of inference are the basic tools for establishing the proofs.
- Proofs in mathematics are valid arguments that establish the truth of mathematical statements.
- By an **argument**, we mean a sequence of statements that end with a conclusion.
- By **valid**, we mean that the conclusion, or final statement of the argument, must follow from the truth of the preceding statements, or **premises**, of the argument.
- To deduce new statements from the available statements, we use *rules* of inference which are templates for constructing valid arguments.

Valid Arguments in Propositional Logic

- Consider the following argument involving propositions (which, by definition, is a sequence of propositions):
 - "If you have a current password, then you can log onto the network." (premise)
 - "You have a current password." (premise)
 - Therefore, "You can log onto the network." (conclusion)
- Determine whether this is a valid argument.
 - Determine whether the conclusion must be true if both the premises are true

An *argument* in propositional logic is a sequence of propositions. All but the final proposition in the argument are called *premises* and the final proposition is called the *conclusion*. An argument is *valid* if the truth of all its premises implies that the conclusion is true.

An *argument form* in propositional logic is a sequence of compound propositions involving propositional variables. An argument form is *valid* no matter which particular propositions are substituted for the propositional variables in its premises, the conclusion is true if the premises are all true.

9/4/2020

Rules of Inference for Propositional Logic

- Use of truth tables to show that an argument form is valid becomes tedious when the number of propositional variables becomes large.
- Instead, we can first establish the validity of some relatively simple argument forms, called **rules of inference**. These rules of inference can be used as building blocks to construct more complicated valid argument forms.
- The tautology $(p \land (p \rightarrow q)) \rightarrow q$ is the basis of the rule of inference called **modus ponens**, or the **law of detachment**. (Modus ponens is Latin for *mode that affirms*.)
- This tautology leads to the following valid argument form:

$$\begin{array}{c}
p \\
p \to q \\
\therefore \overline{q}
\end{array}$$

Rules of Inference

TABLE 1 Rules of Inference.		
Rule of Inference	Tautology	Name
$ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$ \begin{array}{c} p \\ q \\ \therefore \overline{p \wedge q} \end{array} $	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

Resolution

- Computer programs have been developed to automate the task of reasoning and proving theorems.
- Many of these programs make use of a rule of inference known as resolution: $((p \ Vq) \ \Lambda \ (\neg p \ Vr)) \rightarrow (q \ Vr)$
- Resolution plays an important role in programming languages based on the rules of logic, such as Prolog (where resolution rules for quantified statements are applied).
- To construct proofs in propositional logic using resolution as the only rule of inference, the hypotheses and the conclusion must be expressed as **clauses**, where a clause is a disjunction of variables or negations of these variables.
- We can replace a statement in propositional logic that is not a clause by one or more equivalent statements that are clauses.

Fallacies

- Several common fallacies arise in incorrect arguments. These fallacies resemble rules of inference, but are based on contingencies rather than tautologies.
 - <u>Fallacy of affirming the conclusion</u>: They treat the argument with premises $p \to q$ and q and conclusion p as a valid argument form, which it is not because $((p \to q) \land q) \to p$ is not a tautology.
 - Fallacy of denying the hypothesis: The proposition $((p \rightarrow q) \land \neg p) \rightarrow \neg q$ is not a tautology, because it is false when p is false and q is true. Many incorrect arguments use this incorrectly as a rule of inference.

Rules of Inference for Quantified Statements

- <u>Universal instantiation</u> is the rule of inference used to conclude that P(c) is true, where c is a particular member of the domain, given the premise $\forall x P(x)$.
 - Example: Universal instantiation is used when we conclude from the statement "All women are wise" that "Lisa is wise," where Lisa is a member of the domain of all women.
- <u>Universal generalization</u> is the rule of inference that states that $\forall x P(x)$ is true, given the premise that P(c) is true for all elements c in the domain.
 - This is used when we show that $\forall x P(x)$ is true by taking an arbitrary element c from the domain and show that P(c) is true. The element c that we select must be an arbitrary, and not a specific, element of the domain.

Rules of Inference for Quantified Statements

- Existential instantiation is the rule that allows us to conclude that there is an element c in the domain for which P(c) is true if we know that $\exists x P(x)$ is true.
 - We cannot select an arbitrary value of c here, but rather it must be a c for which P(c) is true. Usually we have no knowledge of what c is, only that it exists. Because it exists, we may give it a name (c) and continue our argument
- Existential generalization is the rule of inference that is used to conclude that $\exists x P(x)$ is true when a particular element c with P(c) true is known. That is, if we know one element c in the domain for which P(c) is true, then we know that $\exists x P(x)$ is true.

Rules of Inference for Quantified Statements

TABLE 2 Rules of Inference for Quantified Statements.		
Rule of Inference	Name	
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation	
$P(c) \text{ for an arbitrary } c$ $\therefore \forall x P(x)$	Universal generalization	
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation	
$P(c) \text{ for some element } c$ $\therefore \exists x P(x)$	Existential generalization	