Universidad Nacional de Río Negro Int Partículas, Astrofísica & Cosmología - 2021

Unidad O1 – El modelo estándar

Clase U01 C02 - 02/16

Fecha 11 Ago 2021

Cont Cuántica y relatividad, 1ra parte

Cátedra Asorey

Puntos de contacto

- 16 encuentros semanales, desde el 04/Ago hasta el 17/Nov
 - Google Meet: Miércoles 16 a 20, disponibles en YouTube
 - Trabajo en casa: 3 horas semanales (mínimo)
 - Campus Bimodal UNRN
- Bibliografía
 - Depende de la unidad, ver en aula bimodal
 - Apuntes de clase
 - Wikipedia

Regularización

- No se toman parciales → evaluación continua
 - Participación activa en los encuentros semanales (30%)
 - P Auto-evaluación conceptual semanal (se completa antes de la próxima clase) (30%)
 - P Entregas de trabajos mensuales (fecha máxima de entrega de todos los trabajos: 12/Nov/2021) y charla tema a elección (40%)

Nota: ® significa que es condición necesaria para la promoción

Aprobación y Promoción

Promoción ®:

- Si habiendo cumplido las condiciones de regularización y promoción, la nota de evaluación continua es 8 o más
 - → Promoción de la materia con la nota de la evaluación continua

Ó

Aprobación:

- Instancia de final en las fechas previstas por la Universidad.
- La nota final de la materia es:
 O.7 x nota evaluación continua + O.3 x nota del final

Contenidos: un viaje en el tiempo y el espacio

U1:Partículas, lo más pequeño 4 encuentros, del 04/Ago al 25/Ago

andidate Event:

- Dinámica Relativista.
- Física de particulas
 - Particulas fundamentales: leptones, hadrones, bosones mensajeros
 - El modelo estándar
 - Interacciones fundamentales
 - Simetrías y leyes de conservación
- Trabajo unidad → fecha máxima de entrega 12/Nov Para el viernes 13/Ago → proponer tema (campus)

Dilatación temporal y Contracción espacial

 El lapso de tiempo entre dos eventos no es invariante de un observador a otro en distintos marcos de referencia

$$\Delta t' = \gamma \Delta t$$
 para eventos $\Delta x = 0$

"el reloj que se mueve es más lento"

 La distancia espacial entre dos eventos no es invariante de un observador a otro en distintos marcos de referencia

$$\Delta x' = \frac{\Delta x}{\gamma}$$
 para eventos $\Delta t' = 0$

"la regla que se mueve es más corta"

Tiempo propio

- Dado que cada marco de referencia tiene su propio tiempo, podemos definir un marco de referencia adherido a un objeto en movimiento.
- El tiempo de ese marco es el tiempo que "percibe" un observador que se mueve junto con el objeto.
 Llamaremos a este marco "comóvil".
- El tiempo del marco comóvil es el tiempo propio: es independiente de las coordenadas.

$$ds^{2} = c^{2}dt^{2} - dr^{2} = ds^{2} = c d \tau^{2}$$
 Tiempo propio

$$\Rightarrow c^{2}dt^{2} - dr^{2} = c^{2}d\tau^{2}$$

$$dt = \gamma d \tau$$
H. Asorey - Física IV E

Hasta aquí...

- Los postulados de Einstein implican cambios profundos en la concepción de la Naturaleza.
 - Estos afectan nuestra percepción de distancia y lapso temporal, de espacio y tiempo.
- Las transformaciones de Lorentz indican como transforman las leyes de la física entre dos marcos de referencia inerciales.
 - Son las transformaciones válidas entre marcos de referencia.
- La mecánica Newtoniana es una aproximación válida para velocidades bajas respecto a la velocidad de la luz.
 - ¿Cómo puede ser generalizada?

Richard Feynman dijo:

- "For those who want to learn just enough about it so they can solve problems, that is all there is to the [special] theory of relativity - it just changes Newton's laws by introducing a correction factor to the mass"
- Luego:

$$\vec{F} = \frac{d(m\vec{v})}{dt}$$

donde

$$m \rightarrow m \gamma = \frac{m}{\sqrt{1-\beta^2}}$$

La relatividad es fácil

		Find & I	Replace		(
Find:	m				•
	Match case	Whole wo	rds only		-
Replace:	m %gamma				_
Find	Previous	Find Next	Replace	Re	eplace All
• Other	options				•
Current selection only		Replace ba	ackwards		
Simi	larity search	Similarities)		
☑ Diac	ritic-sensitive				
Help					Close

La conservación de p es un principio básico

 Alberto lo dijo: al derivar, el tiempo depende del marco de referencia:

Clásico:
$$\vec{p} = \frac{d}{dt}(m\vec{r})$$
 y $\vec{p}' = \frac{d}{dt}(m\vec{r}')$

Correcto:
$$\vec{p} = \frac{d}{dt}(m\vec{r})$$
 y $\vec{p}' = \frac{d}{dt'}(m\vec{r}')$

 Y como todos los marcos son equivalentes, ¡podemos usar el marco comovil!

Cant. de movimiento $\vec{p} = \frac{d}{d\tau} m(\tau) \vec{r}(\tau)$ Recordar a Feynmann:

$$\vec{p} = \frac{d}{d\tau} m(\tau) \vec{r}(\tau)$$

dado que: $\Delta \tau = \gamma \Delta t$

$$\frac{dr}{d\tau} = \gamma \frac{d\vec{r}}{dt}$$

$$\vec{p} = m \gamma \frac{d\vec{r}}{dt} = m(\gamma \vec{v})$$

Una nueva magnitud conservada

Una nueva magnitud conservada surge naturalmente:

$$E = \gamma m c^2$$

Energía total

A bajas energías, si v<<c, obtenemos la visión clásica:

$$E = \gamma mc^{2} - mc^{2} + \frac{1}{2}mv^{2}$$
Energía cinética clásica
Equiv. masa energía

En general, y en ausencia de otras interacciones:

$$E_{\kappa} \equiv E - mc^2 = (\gamma - 1)mc^2$$

Energía cinética (en ausencia de otras interacciones)

Gracias Isaac, seguí participando....

Un nuevo invariante

Cout de monimonte relativista:
$$\vec{\beta} = V m \vec{x}$$

Resumen hasta aquí

Cantidad de movimiento relativista (correcto siempre):

$$\vec{p} = \gamma m \vec{v}$$

• Energía relativista (correcta siempre):

$$E = \gamma mc^2$$

Un nuevo invariante relativista:

$$E^{2}-(pc)^{2}=(mc^{2})^{2}$$

Invariante relativista

ty si no la partícula no tiene masa?

 ¡No importa, tiene energía y tiene cantidad de movimiento!

$$m=0 \rightarrow E^2 - (pc)^2 = (mc^2)^2 \Rightarrow E^2 - (pc)^2 = 0$$
Cantidad de
movimiento de
partículas sin masa
$$E = pc$$

• Por ejemplo, un fotón violeta:

$$\lambda$$
=420 nm \rightarrow E = hc/ λ = 0.473 aJ (attojoules, atto=10⁻¹⁸)

$$\rightarrow$$
 p = 1.58 x 10⁻²⁷ kg m/s

Comentario sobre unidades

- Es conveniente trabajar en otro sistema de unidades
- 1 eV es la energía ganada por un electrón en una diferencia de potencial de 1 V

$$E = qV \rightarrow E = (1.602 \times 10^{-19} \text{C})(1\text{V}) \rightarrow E = 1.602 \times 10^{-19} \text{J}$$

electronvolt

$$\Rightarrow$$
1eV=1.602×10⁻¹⁹ J

meV eV k
Microndas
Visible

keV R X

MeV GeV TeV
Partículas

Gamma C.

eV PeV

PeV EeV

R.C. Gal

C. Galáctico R.C.E.G.

Nuevas unidades

Magnitud	Ecuación	Unidad
Energía	Е	eV
Cant. de movimiento	p = E/c	eV/c
Masa	$m = E / c^2$	eV/c²

A veces, se usan las unidades naturales:

$$h=c=1$$

• Entonces, todo se mide en eV y \rightarrow $E^2 - p^2 = m^2$

Masa y energía

¿Cómo funciona la conservación?

 Y todo por pedir que c tiene que tener el mismo valor para todos los observadores inerciales.

Así funciona la Naturaleza

La Energía total se conserva

$$E^{\text{inicial}} = \sum_{j}^{n^{\text{inicial}}} E_{j}^{\text{inicial}} = \sum_{j} m_{j} \gamma_{j} c^{2}$$

$$E^{\text{final}} = \sum_{k}^{n^{\text{final}}} E_{k}^{\text{final}} = \sum_{k} m_{k} \gamma_{k} c^{2}$$

$$E^{\text{final}} = \sum_{k}^{n^{\text{final}}} E_{k}^{\text{final}} = \sum_{k} m_{k} \gamma_{k} c^{2}$$

La cantidad de movimiento total se conserva

$$\vec{p}^{\text{inicial}} = \sum_{j}^{n^{\text{inicial}}} \vec{p}_{j}^{\text{inicial}} = \sum_{j} m_{j} \gamma_{j} \vec{v}_{j}$$

$$\vec{p}^{\text{final}} = \sum_{k}^{n^{\text{final}}} \vec{p}_{k}^{\text{final}} = \sum_{k} m_{k} \gamma_{k} \vec{v}_{k}$$

$$\vec{p}^{\text{final}} = \sum_{k}^{n^{\text{final}}} \vec{p}_{k}^{\text{final}} = \sum_{k} m_{k} \gamma_{k} \vec{v}_{k}$$

Resumen hasta aquí

Cantidad de movimiento relativista (correcto siempre):

$$\vec{p} = \gamma m \vec{v}$$

• Energía total y cinética relativista (correcta siempre):

$$E = \gamma m c^2$$

$$E_K \equiv E - mc^2 = (\gamma - 1)mc^2$$

• Un nuevo invariante relativista:

$$E^{2}-(pc)^{2}=(mc^{2})^{2}$$

Invariante relativista

¿Cuántica + Relatividad?

- Del invariante $E^2 (pc)^2 = (mc^2)^2 \rightarrow E^2 = (pc)^2 + (mc^2)^2 \rightarrow E = \pm \sqrt{(pc)^2 + (mc^2)^2}$
- La relatividad anticipa estados con energía total negativa... → PROBLEMAS
- Y encima son infinitos → MÁS PROBLEMAS
- Por ejemplo, para la partícula en una caja los estados están acotados a E>O:

$$E_n = \left(\frac{h^2}{8 \, m \, L^2}\right) n^2$$

Solución

- Dirac (1928) obtiene la versión relativista de la ec. de Schrödinger y observa ese problema
- Propone que todos los estados de energía negativa están ocupados
- Los electrones obedecen el principio de exclusión de Pauli
- Solución

el "vacío" es el estado en el cual todos los estados de energía negativos están "llenos"

Felicidad

No hay colapso porque no hay estados vacíos

E<0

$$E = 2 m c^2 = 1.022 \text{MeV}$$

E<0

E>0

$$E = \pm mc^2$$

La felicidad tiene un precio...

- El espacio está lleno con infinitas partículas
- Energía infinita
- Energía de punto O (como el oscilador armónico)

No olvidar que son Modelos

Materia-Antimateria

- En una interacción EM (scattering) es posible sacar un electrón del mar
- El "hueco" se ve como un electrón positivo

$$E_{\gamma} \geqslant 1.022 \, MeV$$

Hasta aquí, teníamos al electrón

- Electrón, e⁻
 - masa: $m_e = 0.511 \text{ MeV/c}^2$
 - Espín: ½
 - Carga eléctrica: -1
 - Número leptónico: +1
 - Número lep. electrónico: +1
 - Vida media: infinita (estable)

PARTICLE Z00

https://www.particlezoo.net/

ewing the fabric of spacetime

Y ahora

- Positrón (antielectrón), e⁺
 - masa: $m_e = 0.511 \text{ MeV/c}^2$
 - Espín: ½
 - Carga eléctrica: +1
 - Número leptónico: -1
 - Número lep. electrónico: -1
 - Vida media: infinita (estable)

Y si se juntan....

$$e^{-}+e^{+}\rightarrow y+y$$

En esa época

- Se conocían cuatro partículas:
 - Protón (+)
 - Electrón (-)
 - Fotón (O) ← interacciones cargadas
 - Neutrón (O)
- Si existía el antielectrón, ¿por qué no un antiprotón?
- ¿O el antineutrón? (que es neutro)

El modelo atómico

- Un simple modelo atómico
- Radio atómico: a0 ~ 53 pm = 53000 fm
- Radio núcleo: fO ~ 1.2 fm
- Relación: ~ 44200
- Núcleo 4 mm → electrones 177 m
- La naturaleza es escencialmente vacío

El núcleo es estable

 Tiene que haber una fuerza más fuerte que la fuerza eléctrica

$$F_{E} = \left(\frac{1}{4\pi\epsilon_{0}}\right) \frac{e^{2}}{f_{0}^{2}}$$

$$F_{E} = 160N$$

$$F_{E} = 1.2 \times 10^{36} F_{G}$$

Ayuda: En general el núcleo tiene más neutrones que protones

$$A=Z+N$$
 $N \geqslant Z$

Energía de Ligadura (cuán ligado está el núcleo)

H. Asorey - Física IV B

Tiempo de vida media (cuán estable)

H. Asorey - Física IV B

Tipo de decaimiento (que le sobra)

H. Asorey - Física IV B

Si sobra, se va....

- Celeste oscuro: emisión de neutrones
- Celeste claro: beta- (n → p)
- Verde claro: beta+ $(p \rightarrow n)$

Como funciona

 Hay una proporción de estabilidad (curva negra) entre el número de neutrones y protones

Entonces

- Hay una proporción de estabilidad (curva negra) entre el número de neutrones y protones
- La fuerza eléctrica ~ Z²
- Los neutrones no tienen carga eléctrica
- Z pequeños, N/Z~1, luego N>Z \rightarrow N/Z ~ 1 + α A^{2/3}
- Los neutrones aportan a la cohesión nuclear

Interacción fuerte

Interacción "Fuerte" (próximamente)

- Hay una proporción de estabilidad (curva negra) entre el número de neutrones y protones
- La fuerza eléctrica ~ Z²
- Los neutrones no tienen carga eléctrica
- Z pequeños, N/Z~1, luego N>Z \rightarrow N/Z ~ 1 + α A^{2/3}
- Los neutrones aportan a la cohesión nuclear

ísica IV B 41/61

Un proceso que se observó hace casi 100 años

Propuesta para el decaimiento beta del Bismuto-210

$$^{210}_{127} \text{Bi}_{83} \to ^{210}_{126} \text{Po}_{84} + e^{-} + Q_{\beta^{-}}$$

$$\left(n \to p^{+} + e^{-} + Q_{\beta^{-}} \right)$$

Luego, la energía liberada debería ser

$$m_{\text{Bi}}c^2 = (m_{\text{Po}} + m_e)c^2 + Q^{\#_e}$$

$$Q = (m_{\text{Bi}} - m_{\text{Po}} - m_e)c^2 \approx T_e$$

$$T_e \approx 1.16 \,\text{MeV}$$

T_e E

La medición

- Bohr: "La energía no se conserva"
- Pauli: La energía se conserva si existe otra partícula: "neutrino"
- Decaimiento beta correcto:

$$^{210}_{127} \text{Bi}_{83} \rightarrow ^{210}_{126} \text{Po}_{84} + e^{-} + \overline{v}_{e} + Q_{\beta^{-}}$$

$$\left(n \rightarrow p^{+} + e^{-} + \overline{v}_{e} + Q_{\beta^{-}} \right)$$

$$Q = \left(m_{\text{Bi}} - m_{\text{Po}} - m_{e} - m_{\overline{v}_{e}} \right) c^{2}$$

$$Q \approx T_{e} + T_{v}$$
orey - Física IV B

Mientras tanto en la atmósfera

- ... caen rayos cósmicos
- Anderson descubre una partícula m/q ~ 200 m_e/e
- → m ~ 100 MeV
- Luego, se observa $\pi^{\pm} \rightarrow \mu^{\pm}$

que también violaba la E

$$\Rightarrow \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$$

El muón

- Muón (μ⁻)
 - masa: m_e = 105,6 MeV/c²
 - Espín: 1/2
 - Carga eléctrica: -1
 - Número leptónico: +1
 - Número lep. electrónico: O
 - Número lep. muónico: +1
 - Vida media: 2,196 μs

El antimuón

- Antimuón (μ⁺)
 - masa: m_e = 105,6 MeV/c²
 - Espín: ½
 - Carga eléctrica: +1
 - Número leptónico: -1
 - Número lep. electrónico: O
 - Número lep. muónico: -1
 - Vida media: 2,196 μs

Y si se juntan....

Probemos esto

Sección eficáz neutrinos

$$\sigma_v \simeq 10^{-44} cm^2$$

~250 años luz de agua (~2 x 10^20 cm)

 Usemos 10^20 neutrinos en 1 cm de agua

$$\overline{v} p^{+} \rightarrow n e^{+}$$

$$\overline{v} p^{+} \rightarrow n \mu^{+}$$

 Tiempos "largos": Corto alcance. Interaccion Débil H. Asorey - Física IV B

$$p^+ \rightarrow ne^+ v_e$$

 $\pi^+ \rightarrow n\mu^+ v_\mu$

- Existen dos partículas que son muy similares: e⁻ y μ⁻
- Tienen la misma carga eléctrica "negativa"
- Tienen espín semientero → s=1/2,
 - Son fermiones y cumplen con el ppio de exclusión de Pauli
- Sólo se diferencia en su masa:
 - $m_e^- = 0.511 \text{ MeV/c}^2$ y $m_\mu^- = 105.6 \text{ MeV/c}^2$
- Asociados a estas, existen dos partículas eléctricamente neutras, y aparentemente sin masa:
 - neutrinos, ν_e y ν_μ.

Tenemos los primeros ladrillos

Sabor muónico

Con ustedes, los Leptones

(leptón → liviano, delicado)

Tenemos los primeros ladrillos

Con ustedes, los Leptones

(leptón → liviano, delicado)

Y los antileptones

Con ustedes, los Leptones

(leptón → liviano, delicado)

Con ustedes, los AntiLeptones

Todos los números cuánticos cambiados de signo

Y las primeras principios de conservación

Conservación de la energía y cantidad de movimiento,
 (es una sóla regla) → E² = p² + m² ← ¡invariante!

$$Q = \left(m_{\rm Bi} - m_{\rm Po} - m_e - m_{\bar{\nu}_e} \right) c^2$$

2) Conservación de la carga eléctrica

$$n \rightarrow p^{+} + e^{-} + \overline{v} + Q_{\beta^{-}}$$

3) Conservación del número leptónico

$$n \rightarrow p^{\dagger} + e^{\overline{}} + \overline{v} + Q_{\beta^{-}}$$

4) Conservación del número leptónico por sabor

$$v_e + n \rightarrow p^+ + e^- + Q_{\beta^-}$$

$$v_e + n \rightarrow p^+ + \mu + Q_{\beta^-}$$

Conservación del número leptónico

- A cada leptón se le asigna una unidad de número leptónico (+1) y a su antileptón lo contrario (-1)
- Es una magnitud conservada
 - el número leptónico total (cantidad de leptones) antes y después de la reacción debe ser el mismo
- Se asignan números leptónicos por sabor:
 - Numéro leptónico electrónico: e^- : (+1); v_e : (+1); e^+ : (-1); $< v_e >$: (-1)
 - Numéro leptónico muónico: μ^- : (+1); ν_{μ} : (+1); μ^+ : (-1); $\langle \nu_{\mu} \rangle$: (-1)

$n \rightarrow p^+ + e^-$

Inicial	Magnitudes partícula	Energía	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número leptónico muónico
	n		0	0	0	0
	p⁺		+1	0	0	0
final	e⁻		-1	+1	+1	0
						0
	Final	8	0 🗸	+1	+1	0 /

$n \rightarrow p^{\dagger} + e^{-} + v_{e}$

nicial	Magnitudes partícula	Energía	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número leptónico muónico
2	n		0	0	0	0
final	p⁺		+1	0	0	0
	e⁻		-1	+1	+1	0
	$ u_{e}$		O	+1	+1	0
	Final		0 🗸	+2,000	+2,000	0 🗸

$$n \rightarrow p^{\dagger} + e^{-} + \nu_{\mu}$$

Inicial	Magnitudes partícula	Energía	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número leptónico muónico
	n		0	0	0	0
final	p⁺		+1	0	0	0
	e⁻		-1	+1	+1	0
	$oldsymbol{ u}_{\mu}$		0	+1	0	+1
	Final		0 🗸	+2	+1	+1

$$n \rightarrow p^{\dagger} + e^{-} + \overline{\nu}_{\mu}$$

Inicial	Magnitudes partícula	Energía	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número leptónico muónico
	n		0	0	0	0
	p⁺		+1	0	0	0
final	e⁻		-1	+1	+1	0
	<η _μ >		0	-1	0	-1
	Final		0 🗸	0 🗸	+1	-1/60

$n \rightarrow p^{\dagger} + e^{-} + \overline{v}_{e}$

nicial	Magnitudes partícula	Energía	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número leptónico muónico
	n		0	0	0	0
final	p⁺		+1	0	0	0
	e⁻		-1	+1	+1	0
	<n<sub>e></n<sub>		0	-1	-1	0
	Final		0 🗸	0 🗸	0 🗸	0

$n \rightarrow p^{\dagger} + e^{-} + \overline{v}_{e}$

lal	Magnitudes	Ene
nici	partícula	
	n	
	p⁺	
inal	e⁻	
Ę	<n<sub>e></n<sub>	
	Final	V

ero nico nico	Número leptónico muónico
	0
	0
	O
	0
	0
	60/61

Algunas preguntas....

Proponer un decaimiento posible para el muón

¿Puede decaer el electrón?