Kiran Rao 902891012 CS 3600-A 12/04/2016 Project 4: Questions 5 and 6

Project 4

Question 5

Written code (can also be found in question5.py):

```
from Testing import testPenData, testCarData, average, stDeviation
penList = []
carList = []
for i in range(5):
    penResults = testPenData()
    penList.append(penResults[1])
    carResults = testCarData()
    carList.append(carResults[1])
print 'Pen', penList
print 'Car', carList
penAverage = average(penList)
penStDev = stDeviation(penList)
penMax = max(penList)
carAverage = average(carList)
carStDev = stDeviation(carList)
carMax = max(carList)
print 'Pen:', penAverage, penStDev, penMax
print 'Car:', carAverage, carStDev, carMax
```

Raw Data:

	Testing Accuracies					
Pen	0.88421955403	0.89079473985	0.89908519153	0.90651801029	0.90337335620	
Car	0.87696335078	0.88350785340	0.87565445026	0.8874345549	0.88219895287	

Results:

	Average	Standard Deviation	Maximum
Pen	0.896798170383	0.00821220542448	0.906518010292
Car	0.881151832461	0.00433323176891	0.887434554974

Question 6

Written code (can also be found in question6.py):

```
from Testing import testPenData, testCarData, average, stDeviation

finalPenList = []
finalCarList = []

for i in range(0,45,5):
    tempPenList = []
    tempCarList = []
    for j in range(5):
        penResults = testPenData([i])
        carResults = testCarData([i])
        tempPenList.append(penResults[1])
        tempCarList.append(carResults[1])
        finalPenList.append(tuple([i, average(tempPenList), stDeviation(tempPenList), max(tempPenList)]))
    finalCarList.append(tuple([i, average(tempCarList), stDeviation(tempCarList), max(tempCarList)]))

print 'Pen List:', finalPenList
print 'Car List:', finalPenList
```

Results:

Pen						
Hidden Layer	Average	Standard	Maximum			
Perceptrons		Deviation				
0	0	0	0			
5	0.848770726	0.013512067	0.872784448			
10	0.880960549	0.002382237	0.882504288			
15	0.898913665	0.006490367	0.905660377			
20	0.901086335	0.007088382	0.910806175			
25	0.901086335	0.005950102	0.9053745			
30	0.903259005	0.001123321	0.9053745			
35	0.903544883	0.003573356	0.907661521			
40	0.897484277	0.007697703	0.906232133			

Car						
Hidden Layer	Average	Standard	Maximum			
Perceptrons		Deviation				
0	0.70026178	0	0.70026178			
5	0.860471204	0.003734383	0.865183246			
10	0.853272251	0.017183028	0.878926702			
15	0.845811518	0.014602309	0.859947644			
20	0.84986911	0.015969659	0.867801047			
25	0.85026178	0.011702771	0.863874346			
30	0.848560209	0.007661262	0.859947644			
35	0.84908377	0.009597017	0.859293194			
40	0.841884817	0.006945811	0.85013089			

Learning Curves for Car and Pen Data

Within the first 10 hidden layer perceptrons for each data set, there appears to be a positive correlation between the number of hidden layer perceptrons and the testing accuracy of the neural net. That is to say, increasing the number of hidden layer perceptrons will increase the accuracy of the neural net within the domain of the first 10 perceptrons. After the first 10 hidden layer perceptrons, there appears to be no change in the testing accuracy of the neural nets for both data sets. The neural network for the pen data set approaches an asymptote around 0.9 (90% accuracy), and the neural network for the car data set approaches an asymptote around 0.85 (85%). One noticeable difference between the two data sets is that just before reaching its steady-state asymptotic value, the accuracy of the pen data neural net appears to slightly decrease (at around 10 hidden layer perceptrons) before slightly increasing to the steady-state value, whereas the accuracy of the car data neural net appears to slightly increase (between 5 and 10 hidden layer perceptrons) before slightly decreasing to the steady-state value.