Solutions

Problem Set 5, Math 54-Lec 3, Linear Algebra, Fall 2017

SEPTEMBER 13TH, 2017

Problem 1. Let \mathbb{P}^n be the set of polynomials with real coefficients with degree less than or equal to n. That is, if $f \in \mathbb{P}^n$, then f is of the form: $f(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n$, where the c_i 's are real numbers. For $f,g \in \mathbb{P}^n$ we define addition as (f+g)(x) = f(x) + g(x) and scalar multiplication by a constant k as $kf(x) = kc_0 + kc_1 x \ldots kc_n x^n$. Verify that \mathbb{P}^n is a vector space by showing it satisfies the vector space axioms.

Let f= an +aix + ... + anx", g= bn+ ...+bnx", h= co+ ...+cnx"
and let M,S be constants. Then

i) ftg= (aot bo)+ -.. + (ant b.) xn = gtf /

3) r(f+g)= r(antbn) + -- + r(antbn) = rf+ rg

4) (+5) f= ((+5) a0+ . . + (1+5) an x"=

= (a0+Sa0+...+(anx"+Sanx" = +f+sf. /

s) ((st)= (san+ ... + (son x" = (1s) }

6) 1 f = an + - - + an x = f

7) $\vec{f} + (-1)\vec{f} = (\alpha_0 - \alpha_0) + ... + (\alpha_n - \alpha_n)x^n = \vec{O}$

8) ++(0)= +, oso 0=0.

Finally, note sur of 2 polynomials of deg &n is still a polynomial of deg &n, so the set is closed.

-. Pr is a vector space.

Problem Set 5, Math 54-Lec 3, Linear Algebra, Fall 2017

Problem 2. For \mathbb{P}^n as in Problem 1, let U be the set of all functions f in \mathbb{P}^n such that the coefficient of x^n in f is non-zero. That is, $f(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n$ is in U if and only if $c_n \neq 0$. Determine if U is a subspace of \mathbb{P}^n (you may assume that \mathbb{P}^n is a vector space).

No, because the zero vector is not in U.