# **ELETRÓNICA DIGITAL E CIRCUITOS 2017**

Modelo de exame

Nome: L:CE □ L:CC □ MI:ERS □

Este exame contém 8 grupos de problemas, cada um com 2 problemas. Em cada grupo, <u>deverá resolver apenas 1</u> <u>problema</u>. Os dois tipos de problemas (A, B) em cada grupo têm as seguintes cotações: **A = 2.0 valores** (total = 16.0 valores); **B = 2.5 valores** (total = 20.0 valores). Na página 3, é fornecida informação adicional.

### **GRUPO 1**

# 1A. [2.0 valores]

- a) Converta o número decimal 134 para o sistema binário.
- b) Calcule o complemento de dois do número binário 11010110.
- c) Codifique em BCD o decimal 147.

## 1B. [2.5 valores]

- a) Converta o número decimal 247.351 para o sistema binário.
- **b)** Calcule a subtração 11010101 11100101 usando aritmética de complemento de dois e apresentando o resultado em notação de sinal.
- c) Converta para o sistema decimal o código BCD 111010100111010.

#### **GRUPO 2**

## 2A. [2.0 valores]

- a) Simplifique a expressão lógica  $Y = ABC + A\bar{B} + AB\bar{C}$  recorrendo às regras da lógica Booleana; indique todos passos de resolução.
- **b)** Desenhe um circuito lógico que execute a função  $F = \bar{A}\bar{B} + \bar{A}D + \bar{B}\bar{C} + \bar{B}D + ABC\bar{D}$  recorrendo a portas lógicas AND, OR e NOT.
- c) Determine a função Booleana do circuito lógico da figura ao lado, na forma de soma de produtos.



### 2B. [2.5 valores]

- a) Simplifique a expressão lógica  $Y = AB + A\bar{B}(\bar{A} + \bar{C})$  recorrendo às regras da lógica Booleana; indique todos passos de resolução.
- **b)** Desenhe um circuito lógico que execute a função  $F = \bar{A}\bar{B} + \bar{A}D + \bar{B}\bar{C} + \bar{B}D$  recorrendo, apenas, a portas lógicas NAND.
- c) Determine a função Booleana do circuito lógico da figura ao lado, na forma de soma de produtos.



### **GRUPO 3**

## 3A. [2.0 valores]

Um circuito lógico ativa um alarme sempre que dois de três sinais A, B e C estiverem ativos.

- a) Escreva a tabela de verdade do circuito.
- b) Obtenha a expressão lógica simplificada usando um mapa de Karnaugh.
- c) Desenhe o circuito lógico simplificado.

# 3B. [2.5 valores]

Um circuito lógico deverá ter uma entrada de 4 bits representando o número binário  $A_3A_2A_1A_0$  e uma saída com valor 1 se o número de entrada for divisível por 3. Suponha que o circuito é aplicado apenas aos dígitos 0-9 e que os restantes valores 10-15 podem ser considerados condições "don't care".

- a) Escreva a tabela de verdade do circuito.
- b) Obtenha a expressão lógica simplificada usando um mapa de Karnaugh.
- c) Desenhe o circuito lógico simplificado.

### **GRUPO 4**

# 4A. [2.0 valores]

Considere a seguinte tabela de verdade:

| Α | В | C | Υ |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

- a) Implemente a função Y(A, B, C) usando um multiplexador 8:1.
- **b)** Implemente a função Y(A, B, C) usando um multiplexador 4:1.

# 4B. [2.5 valores]

Considere a seguinte expressão lógica:  $Y = ABC + A\bar{B}\bar{C} + \bar{A}B\bar{C}$ .

- a) Implemente a expressão dada usando um multiplexador 4:1 e um inversor.
- b) Implemente a expressão dada usando um descodificador e uma porta OR.

## **GRUPO 5**

# 5A. [2.0 valores]

O código Excess-3 é um código de 4 bits relacionado com o código BCD. Para converter um número decimal na forma Excess-3, soma-se 3 a cada dígito decimal e converte-se a soma para BCD.

- a) Obtenha a tabela do código Excess-3 para os dígitos decimais 0:9.
- b) Desenhe um circuito codificador decimal-Excess-3.

## 5B. [2.5 valores]

Desenhe um circuito lógico que tem como saída o máximo de dois números inteiros de 4 bits, a partir de um comparador de 4 bits como o representado abaixo e portas AND e OR.



### **GRUPO 6**

# 6A. [2.0 valores]

| Address | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|---------|------|------|------|------|------|------|------|------|
| Word    | 0110 | 0011 | 1010 | 1101 | 0101 | 1110 | 1111 | 0001 |

- a) Desenhe um circuito ROM construído com díodos que seja capaz de armazenar a informação da tabela acima, em que os endereços são selecionados com um descodificador 1-de-8.
- b) Especifique as funções Booleanas geradas pela ROM.

## 6B. [2.5 valores]

- a) Desenhe um circuito somador para realizar a operação aritmética 45 + 33.
- b) Desenhe um circuito somador para realizar a operação aritmética 57 28.

#### **GRUPO 7**

# 7A. [2.0 valores]

Considere o seguinte circuito sequencial composto por dois flip-flops T.



- a) Deduza a tabela de estados do circuito.
- **b)** Trace as formas de onda dos sinais  $Y_0$  e  $Y_1$ .

# 7B. [2.5 valores]

Converta um flip-flop D num flip-flop JK.

### **GRUPO 8**

## 8A. [2.0 valores]

Desenhe um circuito contador síncrono mod-4 com flip-flops T capaz de gerar a sequência binária "1011".

### 8B. [2.5 valores]

Desenhe um circuito contador assíncrono mod-6 decrescente, usando flip-flops JK. Trace as formas de onda de saída.

| Informação adicional                     |                    |     |                  |   |                  |                  |  |  |
|------------------------------------------|--------------------|-----|------------------|---|------------------|------------------|--|--|
|                                          | S                  | R   | Q <sub>n+1</sub> | J | K                | Q <sub>n+1</sub> |  |  |
|                                          | 0                  | 0   | Qn               | 0 | 0                | Q <sub>n</sub>   |  |  |
|                                          | 0                  | 1   | 0                | 0 | 1                | 0                |  |  |
|                                          | 1                  | 0   | 1                | 1 | 0                | 1                |  |  |
| Tabelas de verdade de vários flip-flops: | 1                  | 1   | ?                | 1 | 1                | Qn'              |  |  |
|                                          | D Q <sub>n+1</sub> |     | Т                |   | Q <sub>n+1</sub> |                  |  |  |
|                                          | 0                  |     | 0                | 0 |                  | Q <sub>n</sub>   |  |  |
|                                          | 1                  | 1 1 |                  | 1 |                  | Q <sub>n</sub> ' |  |  |