

8

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Instructor Details</u>

☆ Course / Assessments / Quiz 3

✓ Previous
✓ Previous

Quiz 3

 $\hfill\square$ Bookmark this page

1.0/1.0 point (graded)

Three urns contain 6 red, 4 black; 4 red, 6 black, and 5 red, 5 black balls respectively. One of the urns is selected at random and a ball is drawn from it. If the ball drawn is red, find the probability that it is drawn from the first urn

Tandon and a bail is arawn nomice. If the bail arawn is rea, and the probability that it is arawn nomitine instant
\bigcirc $\frac{2}{5}$
$\bigcirc \frac{1}{5}$
$\bigcirc \frac{3}{5}$
$\bigcirc \frac{1}{3}$
Submit
2
1.0/1.0 point (graded) The Naïve Bayes assumption can be verbally expressed as
The features are independent
The features are conditionally independent given the label
The labels are independent
The labels are conditionally independent given the feature
✓
Submit
3
1.0/1.0 point (graded) The probability $p(y=1)$ can be evaluated as
$\frac{1-\frac{\sum_{i=1}^{M}1(y(i)=1)}{N}}{N}$
$ \sum_{i=1}^{M} 1(y(i)=0) $ M
$\sum_{i=1}^{M} 1(x_j(i)=1,y(i)=1)$ N
$1 - \frac{\sum_{i=1}^{M} 1(y(i)=0)}{M}$

~

4												
	point (gra		on $\bar{\mathbf{x}} = \bar{\mathbf{v}}$	it can be	e labele	d as belonging to the class $y = 1$ if						
$\bigcap_{j=1}^{N} p(x_{j} = v_{j} y = 1) > \prod_{j=1}^{N} p(x_{j} = v_{j} y = 0)$												
11]=1 = (") - ')												
	$ \frac{\prod_{j=1}^{N} p(x_{j} = v_{j} y = 1) \times p(y = 1)}{p(\bar{\mathbf{x}} = \bar{\mathbf{v}})} > \frac{\prod_{j=1}^{N} p(x_{j} = v_{j} y = 0) \times p(y = 0)}{p(\bar{\mathbf{x}} = \bar{\mathbf{v}})} $											
$\frac{\prod_{j=1}^{N} p(x_j = v_j y = 1)}{p(y = 1)} > \frac{\prod_{j=1}^{N} p(x_j = v_j y = 0)}{p(y = 0)}$												
$\bigcap \frac{p(y=1)}{\prod_{j=1}^{N} p(x_j=v_j y=1)} > \frac{p(y=0)}{\prod_{j=1}^{N} p(x_j=v_j y=0)}$												
_												
Suk	omit											
5												
	point (gra	ded)										
SNo.	ute Q1 fo	r accident	occurring Traffic	with rain	y weath	er over a bad road with high traffic and no engine problem						
SNO.	condition Rain	condition	condition	problem	yes							
2	snow	average	normal	yes	yes							
4	clear clear	bad good	light light	no yes	no yes							
5	snow	good average	normal light	no no	no							
7	rain	good	normal	no	no							
9	snow	bad good	high high	no yes	yes							
10	clear	bad	high	yes	yes							
\bigcirc	12 1250											
•	18 1250											
\bigcirc	18 2500											
	12											
_	2500											
Sul	omit											
Jul	Simil.											
5												
	point (gra pervised l											
		data, but	NO labels	i								
_												
\bigcirc	Both dat	a and labe	els									

Neither data nor labels

C Labels but not data	
•	
Submit	
7	
1.0/1.0 point (graded) The cluster assignment indicators $\alpha_i(j)$ for K-means satisfy	
$\sum_{i=1}^{K} \alpha_i(j) = 1, 0 \le \alpha_i(j) \le 1$	
$\sum_{j=1}^{M} \alpha_i(j) = 1, 0 \le \alpha_i(j) \le 1$	
$\sum_{j=1}^{M} \alpha_i(j) = 1, \alpha_i(j) \in \{0,1\}$	
✓	
Submit	
8	
1.0/1.0 point (graded) The K-means algorithm is imported in PYTHON as	
from sklearn.algorithms import KMeans	
from sklearn import KMeans	
from sklearn.datasets import KMeans	
from sklearn.cluster import KMeans	
✓	
Submit	
9	
1.0/1.0 point (graded) Given the data below, determine the centroids	
$\bar{\mathbf{x}}(1) = \begin{bmatrix} -2 \\ -4 \end{bmatrix}, \bar{\mathbf{x}}(2) = \begin{bmatrix} -4 \\ -2 \end{bmatrix} \in \mathcal{C}_0$	
$\bar{\mathbf{x}}(3) = \begin{bmatrix} 4\\1 \end{bmatrix}, \bar{\mathbf{x}}(4) = \begin{bmatrix} 2\\3 \end{bmatrix} \in \mathcal{C}_1$	
$\overline{\boldsymbol{\mu}}_1 = \begin{bmatrix} 1 \\ -\frac{3}{2} \end{bmatrix}, \overline{\boldsymbol{\mu}}_0 = \begin{bmatrix} -1 \\ \frac{1}{2} \end{bmatrix}$	

 $\mu_1 - \lfloor -3 \rfloor$, $\mu_0 - \lfloor 2 \rfloor$

 $\bigcirc \quad \overline{\mu}_0 = \begin{bmatrix} -2 \\ -3 \end{bmatrix}, \, \overline{\mu}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

 $\bigcirc \quad \overline{\mu}_0 = \begin{bmatrix} -6 \\ -6 \end{bmatrix}, \overline{\mu}_1 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$

Submit

10

1.0/1.0 point (graded)

Given the data $\bar{\mathbf{x}}(1) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and centroids below

$$\overline{\mu}_0 = \begin{bmatrix} -2 \\ -1 \end{bmatrix}, \overline{\mu}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

It follows that

 $\alpha_0(0) = 0, \alpha_1(0) = 1$

 $\alpha_0(1) = 1, \alpha_1(1) = 0$

 $\alpha_0(0) = 1, \alpha_1(0) = 0$

Submit

Previous

Next >

