Kernel Methods in Quantum Machine Learning

Alex Della Schiava

Università degli Studi di Udine (DMIF) - Foundations of Neural Networks

September 9th, 2022

Quantum Machine Learning (QML): Learning from data exploiting Quantum Computing.

Quantum Machine Learning (QML): Learning from data exploiting Quantum Computing.

• Herein the focus is on learning from **classical data** through **quantum algorithms**.

Quantum Machine Learning (QML): Learning from data exploiting Quantum Computing.

- Herein the focus is on learning from classical data through quantum algorithms.
- Initially all about forcing Quantum Computing into Deep Learning techniques.

Quantum Machine Learning (QML): Learning from data exploiting Quantum Computing.

- Herein the focus is on learning from classical data through quantum algorithms.
- Initially all about forcing Quantum Computing into Deep Learning techniques.

Is there an alternative solution?

Quantum Machine Learning (QML): Learning from data exploiting Quantum Computing.

- Herein the focus is on learning from **classical data** through **quantum algorithms**.
- Initially all about *forcing* Quantum Computing into Deep Learning techniques.

Is there an alternative solution?

M. Schuld, N. Killoran (2018), Quantum machine learning in feature Hilbert spaces

Yes, Kernel Methods.

Current QML Computations (on classical data) work very much **similarly** to Kernel Methods:

Current QML Computations (on classical data) work very much **similarly** to Kernel Methods:

• Encode data into a higherdimensional space.

Map

Current QML Computations (on classical data) work very much **similarly** to Kernel Methods:

- Encode data into a higherdimensional space.

 Map
- **2** Implicitly manipulate higher-dimensional data.

Current QML Computations (on classical data) work very much **similarly** to Kernel Methods:

- Encode data into a higher-dimensional space.
- 2 Implicitly manipulate higherdimensional data.
- **Measure** higher-dimensional metrics over the initial data.

Map

Inner product

Current QML Computations (on classical data) work very much **similarly** to Kernel Methods:

- Encode data into a higher-dimensional space.
- 2 Implicitly manipulate higherdimensional data.
- **Measure** higher-dimensional metrics over the initial data.

Map

Inner product

The **goal** of this talk is to formalize this apparent similarity.

Current QML Computations (on classical data) work very much **similarly** to Kernel Methods:

- Encode data into a higher-dimensional space.
- 2 Implicitly manipulate higherdimensional data.
- **Measure** higher-dimensional metrics over the initial data.

Map

Inner product

The **goal** of this talk is to formalize this apparent similarity.

₩

Free-pass to exploit Kernel Theory in QML.

Outline

- 1 Quantum Mechanics
- 2 Overview on Kernel Methods
- 3 Kernel Methods for Quantum Machine Learning
 - Quantum encodings are feature maps
 - Quantum Kernels are valid kernels
 - Quantum Models are Linear Models
 - Where to search Quantum Models
 - Finding Optimal Quantum Models

Dirac Notation

Given a vector $\psi \in \mathbb{C}^2$:

$$\boldsymbol{\psi} = |\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}; \quad \boldsymbol{\psi}^{\dagger} = \langle \psi| = \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix}$$

Dirac Notation

Given a vector $\psi \in \mathbb{C}^2$:

$$\boldsymbol{\psi} = |\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}; \quad \boldsymbol{\psi}^{\dagger} = \langle \psi| = \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix}$$

• Quantum mechanics talks about quantum systems.

Dirac Notation

Given a vector $\psi \in \mathbb{C}^2$:

$$\boldsymbol{\psi} = |\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}; \quad \boldsymbol{\psi}^{\dagger} = \langle \psi| = \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix}$$

- Quantum mechanics talks about quantum systems.
- A quantum system is *fully described* by a **unit column vector**:

$$\psi = |\psi\rangle \in \mathbb{C}^n \qquad ||\psi\rangle| = 1$$

Dirac Notation

Given a vector $\psi \in \mathbb{C}^2$:

$$\boldsymbol{\psi} = |\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}; \quad \boldsymbol{\psi}^{\dagger} = \langle \psi | = \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix}$$

- Quantum mechanics talks about quantum systems.
- A quantum system is fully described by a unit column vector:

$$\psi = |\psi\rangle \in \mathbb{C}^n \qquad ||\psi\rangle| = 1$$

- \mathbb{C}^n is a complex-valued Hilbert space.
 - Comes, for free, with an **inner product** (dot product):

$$(|\psi\rangle, |\varphi\rangle)_{\mathbb{C}^n} = \langle \varphi | \psi \rangle_{\mathbb{C}^n}$$

Two ways to formulate quantum mechanics:

Example (A Qubit)

Consider a qubit described by the state vector $|\psi\rangle \in \mathbb{C}^2$.

Two ways to formulate quantum mechanics:

Example (A Qubit)

Consider a qubit described by the state vector $|\psi\rangle \in \mathbb{C}^2$.

State vector

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$\| |\psi\rangle \| = \sqrt{|\alpha|^2 + |\beta|^2} = 1$$

• Note:
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Two ways to formulate quantum mechanics:

Example (A Qubit)

Consider a qubit described by the state vector $|\psi\rangle \in \mathbb{C}^2$.

State vector

$$|\psi\rangle = \alpha \,|0\rangle + \beta \,|1\rangle$$

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$\| |\psi\rangle \| = \sqrt{|\alpha|^2 + |\beta|^2} = 1$$

Density matrix

$$\rho = |\psi\rangle \langle \psi| \in \mathbb{C}^{2\times 2}$$

$$\rho = \begin{bmatrix} |\alpha|^2 & \alpha \cdot \beta^* \\ \beta \cdot \alpha^* & |\beta|^2 \end{bmatrix}$$

$$\operatorname{tr}(\rho) = |\alpha|^2 + |\beta|^2 = 1$$

- Note: $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- $\rho = \rho^{\dagger}$: Is **Hermitian**.

- The evolution of a quantum system is described in terms of unitary transformations U.
 - $U^{\dagger}U = UU^{\dagger} = I_{\mathbb{C}^{n \times n}}$
- Given a state $\rho = |\psi\rangle \langle \psi|$:

$$|\psi'\rangle = U |\psi\rangle \quad \rho' = U\rho U^{\dagger}$$

• where $\rho' = |\psi'\rangle \langle \psi'|$ is the post-evolution state.

• A projective measurement over a quantum state is described by a Hermitian operator $\mathcal{M} = \mathcal{M}^{\dagger}$.

- A projective measurement over a quantum state is described by a Hermitian operator $\mathcal{M} = \mathcal{M}^{\dagger}$.
- \mathcal{M} has spectral decomposition: $\mathcal{M} = \sum_{\lambda} \lambda P_{\lambda} = PDP^{\dagger}$
 - λ are the possible **outcomes** of the measurement.
 - P_{λ} are projectors over eigenspace λ .

- A projective measurement over a quantum state is described by a Hermitian operator $\mathcal{M} = \mathcal{M}^{\dagger}$.
- \mathcal{M} has spectral decomposition: $\mathcal{M} = \sum_{\lambda} \lambda P_{\lambda} = PDP^{\dagger}$
 - λ are the possible **outcomes** of the measurement.
 - P_{λ} are projectors over eigenspace λ .
- Measurement is a **probabilistic operation** which **alters the state** of the system.

- A projective measurement over a quantum state is described by a Hermitian operator $\mathcal{M} = \mathcal{M}^{\dagger}$.
- \mathcal{M} has spectral decomposition: $\mathcal{M} = \sum_{\lambda} \lambda P_{\lambda} = PDP^{\dagger}$
 - λ are the possible **outcomes** of the measurement.
 - P_{λ} are projectors over eigenspace λ .
- Measurement is a **probabilistic operation** which **alters the state** of the system.
- Since it is probabilistic, one can compute the expected outcome:

$$\mathbf{E}(\mathcal{M}) = \langle \psi | \, \mathcal{M} \, | \psi \rangle \qquad \qquad \mathbf{E}(\mathcal{M}) = \mathsf{tr} \big[\rho \mathcal{M} \big]$$

- Herein it is best to focus on **density matrices**.
 - It will make results prettier.

- Herein it is best to focus on density matrices.
 - It will make results prettier.
- The space of density matrices $\mathbb{C}^{n\times n}$ is equipped with the **Hilbert-Schmidt inner product** $\langle \cdot | \cdot \rangle_{\mathbb{C}^{n\times n}}$.

- Herein it is best to focus on density matrices.
 - It will make results prettier.
- The space of density matrices $\mathbb{C}^{n\times n}$ is equipped with the **Hilbert-Schmidt inner product** $\langle \cdot | \cdot \rangle_{\mathbb{C}^{n\times n}}$.
- Given $\rho = |\psi\rangle \langle \psi|$ and $\sigma = |\varphi\rangle \langle \varphi|$ where $|\psi\rangle, |\varphi\rangle \in \mathbb{C}^n$:

$$\langle \sigma | \rho \rangle = \mathrm{tr}[\sigma^\dagger \rho] = \mathrm{tr}[\sigma \rho]$$

- Herein it is best to focus on density matrices.
 - It will make results prettier.
- The space of density matrices $\mathbb{C}^{n\times n}$ is equipped with the **Hilbert-Schmidt inner product** $\langle \cdot | \cdot \rangle_{\mathbb{C}^{n\times n}}$.
- Given $\rho = |\psi\rangle \langle \psi|$ and $\sigma = |\varphi\rangle \langle \varphi|$ where $|\psi\rangle, |\varphi\rangle \in \mathbb{C}^n$:

$$\langle \sigma | \rho \rangle = \mathrm{tr}[\sigma^\dagger \rho] = \mathrm{tr}[\sigma \rho]$$

• Does it recall something? (Hint: $\mathbf{E}(\mathcal{M}) = \mathsf{tr}[\rho \mathcal{M}]$)

- Herein it is best to focus on density matrices.
 - It will make results prettier.
- The space of density matrices $\mathbb{C}^{n\times n}$ is equipped with the **Hilbert-Schmidt inner product** $\langle \cdot | \cdot \rangle_{\mathbb{C}^{n\times n}}$.
- Given $\rho = |\psi\rangle \langle \psi|$ and $\sigma = |\varphi\rangle \langle \varphi|$ where $|\psi\rangle, |\varphi\rangle \in \mathbb{C}^n$:

$$\langle \sigma | \rho \rangle = \mathrm{tr}[\sigma^\dagger \rho] = \mathrm{tr}[\sigma \rho]$$

- Does it recall something? (Hint: $\mathbf{E}(\mathcal{M}) = \operatorname{tr}[\rho \mathcal{M}]$)
- With a little bit of calculation:

$$\operatorname{tr}[\sigma\rho] = |\langle \varphi | \psi \rangle_{\mathbb{C}^n}|^2$$

Outline

- Quantum Mechanics
- 2 Overview on Kernel Methods
- 3 Kernel Methods for Quantum Machine Learning
 - Quantum encodings are feature maps
 - Quantum Kernels are valid kernels
 - Quantum Models are Linear Models
 - Where to search Quantum Models
 - Finding Optimal Quantum Models

Kernel Methods

- Consider a domain set \mathcal{X} and a label set $\mathcal{Y} = \{\pm 1\}$.
- A possibly non-linearly separable training set:

$$\mathcal{D} = \left\{ (x^1, y^1), \dots, (x^M, y^M) \in \mathcal{X} \times \mathcal{Y} \right\}$$

Kernel Methods

- Consider a domain set \mathcal{X} and a label set $\mathcal{Y} = \{\pm 1\}$.
- A possibly non-linearly separable training set:

$$\mathcal{D} = \left\{ (x^1, y^1), \dots, (x^M, y^M) \in \mathcal{X} \times \mathcal{Y} \right\}$$

- Consider a **feature map** $\phi : \mathcal{X} \to \mathcal{F}$.
 - \mathcal{F} is the **feature space** with inner product $\langle \cdot, \cdot \rangle_{\mathcal{F}}$.

Kernel Methods

- Consider a domain set \mathcal{X} and a label set $\mathcal{Y} = \{\pm 1\}$.
- A possibly non-linearly separable training set:

$$\mathcal{D} = \left\{ (x^1, y^1), \dots, (x^M, y^M) \in \mathcal{X} \times \mathcal{Y} \right\}$$

- Consider a **feature map** $\phi : \mathcal{X} \to \mathcal{F}$.
 - \mathcal{F} is the **feature space** with inner product $\langle \cdot, \cdot \rangle_{\mathcal{F}}$.
- Define the **kernel function**:

$$\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{C}, \qquad \kappa(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{F}}$$

• κ implicitly exploits the **feature map**.

Kernel Methods (cont'd)

• Goal: Learn a linear model f in the feature space \mathcal{F} of the form:

$$f(x) = \langle \phi(x), w \rangle_{\mathcal{F}}$$
, for some $w \in \mathcal{F}$

Kernel Methods (cont'd)

• Goal: Learn a linear model f in the feature space \mathcal{F} of the form:

$$f(x) = \langle \phi(x), w \rangle_{\mathcal{F}}$$
, for some $w \in \mathcal{F}$

- w defines the linear decision boundary in \mathcal{F} ...
- ...but there is no need to explicitly learn it!

Kernel Methods (cont'd)

• Goal: Learn a linear model f in the feature space \mathcal{F} of the form:

$$f(x) = \langle \phi(x), w \rangle_{\mathcal{F}}$$
, for some $w \in \mathcal{F}$

- w defines the linear decision boundary in \mathcal{F} ...
- ...but there is no need to explicitly learn it!
- **Key point:** $f(\cdot)$ can be expressed through calls of the kernel κ over x from the training set \mathcal{D} .

Outline

- Quantum Mechanics
- 2 Overview on Kernel Methods
- 3 Kernel Methods for Quantum Machine Learning
 - Quantum encodings are feature maps
 - Quantum Kernels are valid kernels
 - Quantum Models are Linear Models
 - Where to search Quantum Models
 - Finding Optimal Quantum Models

Kernel Methods for QML

- Following the work done in:
 - M. Schuld (2021), Supervised quantum machine learning models are kernel methods
- Show that elements of Kernel Theory can be *extended* to a Quantum Computation on classical data.
- Don't get lost. Map data so that kernel functions may be executed on quantum machinery.

Outline

- Quantum Mechanics
- 2 Overview on Kernel Methods
- 3 Kernel Methods for Quantum Machine Learning
 - Quantum encodings are feature maps
 - Quantum Kernels are valid kernels
 - Quantum Models are Linear Models
 - Where to search Quantum Models
 - Finding Optimal Quantum Models

Encoding classical data into quantum systems

Feature map ϕ

Done through quantum computation (circuit)

Encoding classical data into quantum systems

Feature map ϕ

Done through quantum computation (circuit)

Encoding classical data into quantum systems

Feature map ϕ

Done through quantum computation (circuit)

Encoding classical data into quantum systems

Feature map ϕ

Done through quantum computation (circuit)

- 2 With $x \in \mathcal{X}$ apply $U(x) |0\rangle^{\otimes n}$. • U(x) depends on x.
- **3** Denote output as $|\phi(x)\rangle \in \mathbb{C}^{2^n}$.
- Seems like we made it! Just define the **feature map** as:

$$\phi: \mathcal{X} \to \mathbb{C}^{2^n}, \quad \phi(x) = |\phi(x)\rangle$$

- 2 With $x \in \mathcal{X}$ apply $U(x) |0\rangle^{\otimes n}$. • U(x) depends on x.
- **3** Denote output as $|\phi(x)\rangle \in \mathbb{C}^{2^n}$.
- Seems like we made it! Just define the **feature map** as:

$$\phi: \mathcal{X} \to \mathbb{C}^{2^n}, \quad \phi(x) = |\phi(x)\rangle$$

• This works fine, but for the sake of a better representation:

$$\phi: \mathcal{X} \to \mathbb{C}^{2^n \times 2^n}, \quad \phi(x) = |\phi(x)\rangle \langle \phi(x)| = \rho(x)$$

- 2 With $x \in \mathcal{X}$ apply $U(x) |0\rangle^{\otimes n}$. • U(x) depends on x.
- **3** Denote output as $|\phi(x)\rangle \in \mathbb{C}^{2^n}$.
- Seems like we made it! Just define the **feature map** as:

$$\phi: \mathcal{X} \to \mathbb{C}^{2^n}, \quad \phi(x) = |\phi(x)\rangle$$

• This works fine, but for the sake of a better representation:

$$\phi: \mathcal{X} \to \mathbb{C}^{2^n \times 2^n}, \quad \phi(x) = |\phi(x)\rangle \langle \phi(x)| = \rho(x)$$

- Denote ϕ as the data-encoding feature map.
 - $\mathbb{C}^{2^n \times 2^n}$ is our new feature space \mathcal{F} .

Data-encoding example

Example (Basis encoding)

- Assume $\mathcal{X} = \{0, 1\}^3$.
- Consider the state space \mathbb{C}^{2^3} , with computational basis:

$$|0\rangle = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}; \quad |1\rangle = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}; \quad \dots \quad |7\rangle = \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}$$

- Denoting i_x as the decimal conversion of x.
- Define $\phi: \mathcal{X} \to \mathbb{C}^{2^3 \times 2^3}$ as:

$$\phi(x) = |i_x\rangle \langle i_x|$$

Outline

- Quantum Mechanics
- 2 Overview on Kernel Methods
- 3 Kernel Methods for Quantum Machine Learning
 - Quantum encodings are feature maps
 - Quantum Kernels are valid kernels
 - Quantum Models are Linear Models
 - Where to search Quantum Models
 - Finding Optimal Quantum Models

- $\mathcal{F} = \mathbb{C}^{2^n \times 2^n}$ was shown to be a legit **feature space**...
 - ...but does it give rise to a legit **kernel**?

- $\mathcal{F} = \mathbb{C}^{2^n \times 2^n}$ was shown to be a legit **feature space**...
 - ...but does it give rise to a legit **kernel**?

Definition (Quantum Kernel)

Given a data-encoding feature map $\phi: \mathcal{X} \to \mathcal{F}$, a quantum kernel is a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ such that, for any $x, x' \in \mathcal{X}$:

$$\kappa(x, x') = \langle \rho(x') | \rho(x) \rangle_{\mathcal{F}}$$

- $\mathcal{F} = \mathbb{C}^{2^n \times 2^n}$ was shown to be a legit **feature space**...
 - ...but does it give rise to a legit **kernel**?

Definition (Quantum Kernel)

Given a data-encoding feature map $\phi: \mathcal{X} \to \mathcal{F}$, a quantum kernel is a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ such that, for any $x, x' \in \mathcal{X}$:

$$\kappa(x, x') = \langle \rho(x') | \rho(x) \rangle_{\mathcal{F}}$$

• The Hilbert-Schmidt inner product induces the following quantum kernel:

$$\kappa(x,x') = \left< \rho(x') | \rho(x) \right>_{\mathcal{F}} = \mathrm{tr} \big[\rho(x') \rho(x) \big]$$

- $\mathcal{F} = \mathbb{C}^{2^n \times 2^n}$ was shown to be a legit **feature space**...
 - ...but does it give rise to a legit **kernel**?

Definition (Quantum Kernel)

Given a data-encoding feature map $\phi: \mathcal{X} \to \mathcal{F}$, a quantum kernel is a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ such that, for any $x, x' \in \mathcal{X}$:

$$\kappa(x, x') = \langle \rho(x') | \rho(x) \rangle_{\mathcal{F}}$$

• The Hilbert-Schmidt inner product induces the following quantum kernel:

$$\kappa(x,x') = \left< \rho(x') | \rho(x) \right>_{\mathcal{F}} = \mathrm{tr} \big[\rho(x') \rho(x) \big]$$

• By definition of inner product, it's a valid kernel.

Outline

- Quantum Mechanics
- 2 Overview on Kernel Methods
- 3 Kernel Methods for Quantum Machine Learning
 - Quantum encodings are feature maps
 - Quantum Kernels are valid kernels
 - Quantum Models are Linear Models
 - Where to search Quantum Models
 - Finding Optimal Quantum Models

Linear Models

• A linear model is the hypothesis of our learning machinery.

Linear Models

- A linear model is the hypothesis of our learning machinery.
- More formally, in the case of **feature spaces**:

Definition (Linear Model)

Given a feature map $\phi: \mathcal{X} \to \mathcal{F}$ and $w \in \mathcal{F}$, a **linear model** is any function $f_w: \mathcal{X} \to \mathbb{C}$ of the form:

$$f_w(x) = \langle \phi(x), w \rangle_{\mathcal{F}}$$

Linear Models

- A linear model is the hypothesis of our learning machinery.
- More formally, in the case of **feature spaces**:

Definition (Linear Model)

Given a feature map $\phi: \mathcal{X} \to \mathcal{F}$ and $w \in \mathcal{F}$, a **linear model** is any function $f_w: \mathcal{X} \to \mathbb{C}$ of the form:

$$f_w(x) = \langle \phi(x), w \rangle_{\mathcal{F}}$$

• How to translate such concept in the quantum case?

Goal: Make a prediction onto the state of a quantum system.

Goal: Make a prediction onto the state of a quantum system.

 \Downarrow

Tool: A projective measurement \mathcal{M} .

Goal: Make a prediction onto the state of a quantum system.

 \Downarrow

Tool: A projective measurement \mathcal{M} .

 \Downarrow

Idea: Define the prediction as the **expected outcome** of \mathcal{M} .

Goal: Make a prediction onto the state of a quantum system.

 \Downarrow

Tool: A projective measurement \mathcal{M} .

 \Downarrow

Idea: Define the prediction as the **expected outcome** of \mathcal{M} .

Definition (Quantum Model)

Given the data-encoding feature map $\phi: \mathcal{X} \to \mathcal{F}$ and \mathcal{M} a projective measurement on the density matrices space \mathcal{F} . A quantum model is a function $f_{\mathcal{M}}$ of the form:

$$f_{\mathcal{M}}(x) = \operatorname{tr}[\rho(x)\mathcal{M}]$$

Definition (Quantum Model)

Given the data-encoding feature map $\phi: \mathcal{X} \to \mathcal{F}$ and \mathcal{M} a projective measurement on the density matrices space \mathcal{F} . A quantum model is a function $f_{\mathcal{M}}$ of the form:

$$f_{\mathcal{M}}(x) = \operatorname{tr}[\rho(x)\mathcal{M}]$$

The definition has not only a semantic value, it is also very convenient:

Definition (Quantum Model)

Given the data-encoding feature map $\phi: \mathcal{X} \to \mathcal{F}$ and \mathcal{M} a projective measurement on the density matrices space \mathcal{F} . A quantum model is a function $f_{\mathcal{M}}$ of the form:

$$f_{\mathcal{M}}(x) = \operatorname{tr}[\rho(x)\mathcal{M}]$$

The definition has not only a semantic value, it is also very convenient:

lacktriangledown $\mathcal{M} \in \mathcal{F}$ ("onto the density matrices space")

Definition (Quantum Model)

Given the data-encoding feature map $\phi: \mathcal{X} \to \mathcal{F}$ and \mathcal{M} a projective measurement on the density matrices space \mathcal{F} . A quantum model is a function $f_{\mathcal{M}}$ of the form:

$$f_{\mathcal{M}}(x) = \operatorname{tr}[\rho(x)\mathcal{M}]$$

The definition has not only a semantic value, it is also very convenient:

- $oldsymbol{0}$ $\mathcal{M} \in \mathcal{F}$ ("onto the density matrices space")

Definition (Quantum Model)

Given the data-encoding feature map $\phi: \mathcal{X} \to \mathcal{F}$ and \mathcal{M} a projective measurement on the density matrices space \mathcal{F} . A quantum model is a function $f_{\mathcal{M}}$ of the form:

$$f_{\mathcal{M}}(x) = \operatorname{tr}[\rho(x)\mathcal{M}]$$

The definition has not only a semantic value, it is also very convenient:

- $oldsymbol{0}$ $\mathcal{M} \in \mathcal{F}$ ("onto the density matrices space")

Consequence of (1) and (2): $f_{\mathcal{M}}$ is a linear model.

Outline

- Quantum Mechanics
- 2 Overview on Kernel Methods
- 3 Kernel Methods for Quantum Machine Learning
 - Quantum encodings are feature maps
 - Quantum Kernels are valid kernels
 - Quantum Models are Linear Models
 - Where to search Quantum Models
 - Finding Optimal Quantum Models

Goal: Search for a specific quantum model.

Goal: Search for a specific quantum model. Where?

Goal: Search for a specific quantum model. Where?

- Classical Kernel Theory: **RKHS** (Reproducing Kernel Hilbert Space).
 - Is generated by a valid kernel.
 - Corresponds to the space of linear models.

Goal: Search for a specific quantum model. Where?

- Classical Kernel Theory: **RKHS** (Reproducing Kernel Hilbert Space).
 - Is generated by a valid kernel.
 - Corresponds to the space of linear models.
- Quantum Kernel Theory:

Quantum Kernel κ is a valid kernel.

Goal: Search for a specific quantum model. Where?

- Classical Kernel Theory: **RKHS** (Reproducing Kernel Hilbert Space).
 - Is generated by a valid kernel.
 - Corresponds to the space of linear models.
- Quantum Kernel Theory:

Quantum Kernel κ is a valid kernel.

It generates a RKHS F.

Goal: Search for a specific quantum model. Where?

- Classical Kernel Theory: **RKHS** (Reproducing Kernel Hilbert Space).
 - Is generated by a valid kernel.
 - Corresponds to the space of linear models.
- Quantum Kernel Theory:

Quantum Kernel κ is a valid kernel.

It generates a RKHS F.

Is *F* the space of quantum models?

How to build the RKHS F of the quantum kernel κ :

• Elements. Functions of the form $f: \mathcal{X} \to \mathbb{R}$.

How to build the RKHS F of the quantum kernel κ :

- **Elements.** Functions of the form $f: \mathcal{X} \to \mathbb{R}$.
- Building blocks. For each $x \in \mathcal{X}$ put into F the function f:

$$f(\cdot) = \kappa(x, \cdot)$$

How to build the RKHS F of the quantum kernel κ :

- Elements. Functions of the form $f: \mathcal{X} \to \mathbb{R}$.
- Building blocks. For each $x \in \mathcal{X}$ put into F the function f:

$$f(\cdot) = \kappa(x, \cdot) = \langle \cdot | \rho(x) \rangle_{\mathcal{F}}$$

• Note: These are quantum models induced by elements of \mathcal{X} .

How to build the RKHS F of the quantum kernel κ :

- Elements. Functions of the form $f: \mathcal{X} \to \mathbb{R}$.
- Building blocks. For each $x \in \mathcal{X}$ put into F the function f:

$$f(\cdot) = \kappa(x, \cdot) = \langle \cdot | \rho(x) \rangle_{\mathcal{F}}$$

- Note: These are quantum models induced by elements of \mathcal{X} .
- \bullet F is the **space** spanned by such functions:

$$f(\cdot) = \sum_{i} \alpha_{i} \kappa(x_{i}, \cdot)$$

with $\alpha_i \in \mathbb{R}$ and $x_i \in \mathcal{X}$.

• Last ingredient: Inner product $\langle \cdot, \cdot \rangle_F$.

- Last ingredient: Inner product $\langle \cdot, \cdot \rangle_F$.
- Given $f, g \in F$ such that:

$$f(\cdot) = \sum_{i} \alpha_{i} \kappa(x_{i}, \cdot),$$
 $g(\cdot) = \sum_{j} \beta_{j} \kappa(x_{j}, \cdot)$

- Last ingredient: Inner product $\langle \cdot, \cdot \rangle_F$.
- Given $f, g \in F$ such that:

$$f(\cdot) = \sum_{i} \alpha_i \kappa(x_i, \cdot),$$
 $g(\cdot) = \sum_{j} \beta_j \kappa(x_j, \cdot)$

• Define $\langle f, g \rangle_F$ as:

$$\langle f, g \rangle_F = \sum_{i,j} \alpha_i \beta_j \kappa(x_i, x_j)$$

- Last ingredient: Inner product $\langle \cdot, \cdot \rangle_F$.
- Given $f, g \in F$ such that:

$$f(\cdot) = \sum_{i} \alpha_i \kappa(x_i, \cdot),$$
 $g(\cdot) = \sum_{j} \beta_j \kappa(x_j, \cdot)$

• Define $\langle f, g \rangle_F$ as:

$$\langle f, g \rangle_F = \sum_{i,j} \alpha_i \beta_j \kappa(x_i, x_j)$$

• Reproducing property:

$$\langle f, \kappa(x, \cdot) \rangle_F = \sum_i \alpha_i \kappa(x_i, x) = f(x)$$

The RKHS is the space of Quantum Models

Finally, it is all set for the following result:

Theorem

The RKHS F is the space of Quantum Models. That is, any $f \in F$ is a quantum model.

$$f(x) = \sum_{i} \alpha_{i} \kappa(x_{i}, x) = \text{tr}[\mathcal{M}\rho(x)]$$

The RKHS is the space of Quantum Models

Finally, it is all set for the following result:

Theorem

The RKHS F is the space of Quantum Models. That is, any $f \in F$ is a quantum model.

$$f(x) = \sum_{i} \alpha_{i} \kappa(x_{i}, x) = \text{tr}[\mathcal{M}\rho(x)]$$

- Side-note: The structure of the RKHS is key in the definition of Universal Kernel.
 - Just like NNs, quantum models can be Universal approximators.

Data-encoding is all you need!

Outline

- Quantum Mechanics
- 2 Overview on Kernel Methods
- 3 Kernel Methods for Quantum Machine Learning
 - Quantum encodings are feature maps
 - Quantum Kernels are valid kernels
 - Quantum Models are Linear Models
 - Where to search Quantum Models
 - Finding Optimal Quantum Models

Assessing a Quantum Model

In order to find an optimal model, a metric is required. cost/risk.

Assessing a Quantum Model

In order to find an **optimal model**, a metric is required. **cost/risk**.

• Loss function: $L: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to [0, \infty)$

Assessing a Quantum Model

In order to find an **optimal model**, a metric is required. **cost/risk**.

• Loss function: $L: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to [0, \infty)$

This allows to define the **Empirical Risk** of a quantum model f.

• Given the training set $\mathcal{D} = \{(x^1, y^1), \dots, (x^M, y^M)\}$:

$$\hat{\mathcal{R}}_L(f) = \frac{1}{M} \sum_{i=1}^{M} L(x^i, y^i, f(x^i))$$

• We want to *minimize* this quantity.

Minimizing the Risk

Goal: Minimize the regularized empirical risk:

$$\inf_{\mathcal{M} \in \mathcal{F}} \lambda \|\mathcal{M}\|_{\mathcal{F}}^2 + \hat{\mathcal{R}}_L(\mathsf{tr}\big[\rho(x)\mathcal{M}\big]) \tag{1}$$

• $\lambda \|\mathcal{M}\|_{\mathcal{F}}^2$ is the regularization term, with $\lambda \in \mathbb{R}^+$.

Minimizing the Risk

Goal: Minimize the regularized empirical risk:

$$\inf_{\mathcal{M} \in \mathcal{F}} \lambda \|\mathcal{M}\|_{\mathcal{F}}^2 + \hat{\mathcal{R}}_L(\mathsf{tr}\big[\rho(x)\mathcal{M}\big]) \tag{1}$$

• $\lambda \|\mathcal{M}\|_{\mathcal{F}}^2$ is the regularization term, with $\lambda \in \mathbb{R}^+$.

It would be convenient to rewrite Eq. (1) in terms of $f \in F$.

• ⇒ This would become an optimization over the RKHS, allowing to exploit the structure just defined.

$$\lambda \|\mathcal{M}\|_{\mathcal{F}}^2 + \hat{\mathcal{R}}_L(\operatorname{tr}[\rho(x)\mathcal{M}])$$

$$\lambda \|\mathcal{M}\|_{\mathcal{F}}^2 + \hat{\mathcal{R}}_L(\operatorname{tr}[\rho(x)\mathcal{M}])$$

• Second term. Easy, a quantum model is a function $f \in F$ so:

$$\hat{\mathcal{R}}_L(\mathsf{tr}\big[\rho(x)\mathcal{M}\big]) = \hat{\mathcal{R}}_L(f)$$

$$\lambda \|\mathcal{M}\|_{\mathcal{F}}^2 + \hat{\mathcal{R}}_L(\operatorname{tr}[\rho(x)\mathcal{M}])$$

• Second term. Easy, a quantum model is a function $f \in F$ so:

$$\hat{\mathcal{R}}_L(\mathsf{tr}\big[\rho(x)\mathcal{M}\big]) = \hat{\mathcal{R}}_L(f)$$

• First term. Slightly more involved but still:

$$\|\mathcal{M}\|_{\mathcal{F}}^2 = \|f\|_F^2$$

$$\lambda \|\mathcal{M}\|_{\mathcal{F}}^2 + \hat{\mathcal{R}}_L(\mathsf{tr}[\rho(x)\mathcal{M}])$$

• Second term. Easy, a quantum model is a function $f \in F$ so:

$$\hat{\mathcal{R}}_L(\mathsf{tr}\big[\rho(x)\mathcal{M}\big]) = \hat{\mathcal{R}}_L(f)$$

• First term. Slightly more involved but still:

$$\|\mathcal{M}\|_{\mathcal{F}}^2 = \|f\|_F^2$$

• Finally leading to:

$$\inf_{f \in F} \lambda \|f\|_F^2 + \hat{\mathcal{R}}_L(f)$$

• The search for an optimal quantum model can be done over the RKHS F of κ .

- The search for an optimal quantum model can be done over the RKHS F of κ .
- But F is spanned by $[\kappa(x,\cdot)]_{x\in\mathcal{X}}$
 - ...it's too large (possibly infinite-dimensional).

- The search for an optimal quantum model can be done over the RKHS F of κ .
- But F is spanned by $[\kappa(x,\cdot)]_{x\in\mathcal{X}}$
 - ...it's too large (possibly infinite-dimensional).

Is it possible to **reduce** this search space?

- The search for an optimal quantum model can be done over the RKHS F of κ .
- But F is spanned by $[\kappa(x,\cdot)]_{x\in\mathcal{X}}$
 - ...it's too large (possibly infinite-dimensional).

Is it possible to **reduce** this search space?

Representer Theorem

Representer Theorem (cont'd)

Theorem (Representer Theorem)

Given a training set $\mathcal{D} = \{(x^1, y^1), \dots, (x^M, y^M)\}$, the optimal model f_{opt} such that:

$$f_{opt} = \inf_{f \in F} \lambda ||f||_F^2 + \hat{\mathcal{R}}_L(f)$$

can be fully expressed in the span of $[\kappa(x^i,\cdot)]_{1\leq i\leq M}$:

$$f_{opt}(\cdot) = \sum_{i=1}^{M} \alpha_i \kappa(x^i, \cdot)$$

• The optimization problem is at most M-dimensional!

Finding the optimal model

Consequence:

Finding
$$f_{\text{opt}}(\cdot) = \sum_{i=1}^{M} \alpha_i \kappa(x^i, \cdot)$$
 Finding $\boldsymbol{\alpha} \in \mathbb{R}^M$

• The optimization problem can be conveniently expressed with respect to α :

$$\inf_{oldsymbol{lpha} \in \mathbb{R}^M} \! \lambda oldsymbol{lpha}^T \mathbf{K} oldsymbol{lpha} + \hat{\mathcal{R}}_L(f_{opt})$$

- Supposing L to be a convex function: Complexity $\mathcal{O}(M^2)$.
 - $\mathcal{O}(M)$ on quantum computers!

Kernel Methods **extend** to Supervised QML problems!

Kernel Methods **extend** to Supervised QML problems!

...but is it a good idea to use them?

Kernel Methods **extend** to Supervised QML problems!

...but is it a good idea to use them?

Do quantum kernels offer an actual advantage?

Kernel Methods **extend** to Supervised QML problems!

...but is it a good idea to use them?

Do quantum kernels offer an actual advantage?

Two ways to analyze the question:

Kernel Methods **extend** to Supervised QML problems!

...but is it a good idea to use them?

Do quantum kernels offer an actual advantage?

Two ways to analyze the question:

• Compared to the classical case.

Kernel Methods **extend** to Supervised QML problems!

...but is it a good idea to use them?

Do quantum kernels offer an actual advantage?

Two ways to analyze the question:

- Compared to the classical case.
- ② Compared to other QML techniques.

Quantum Kernels vs. Classical Kernels

Quantum Kernels vs. Classical Kernels

Open problem.

- There are efficient procedures to compute similarity between quantum states (SWAP test) ...
 - ...but no actual speed-up.

Quantum Kernels vs. Classical Kernels

Open problem.

- There are efficient procedures to compute similarity between quantum states (SWAP test) ...
 - ...but no actual speed-up.
- There exist *classically intractable kernels* that are efficiently computable through quantum algorithms:
 - Y. Liu, S. Arunachalam, K. Temme (2021), A rigorous and robust quantum speed-up in supervised machine learning

Quantum Kernels vs. Variational Circuits

Variational Circuits:

- ✓ Training complexity: $\mathcal{O}(|\theta|M)$.
- X Not always find an **optimal** model.
- ✗ Training: Classical.

Quantum Kernels vs. Variational Circuits

Variational Circuits:

- ✓ Training complexity: $\mathcal{O}(|\theta|M)$.
- X Not always find an **optimal** model.
- **✗** Training: Classical.

Kernel Methods:

- ✓ Guaranteed to find an optimal model.
- ✓ Training: Possibly Quantum.
- ✓ Training complexity: $\mathcal{O}(M^2)$.
- **X** Prediction complexity: $\mathcal{O}(M^2)$!

Quantum Kernels vs. Variational Circuits

Variational Circuits:

- ✓ Training complexity: $\mathcal{O}(|\theta|M)$.
- X Not always find an **optimal** model.
- X Training: Classical.

Kernel Methods:

- Guaranteed to find an optimal model.
- ✓ Training: Possibly Quantum.
- ✓ Training complexity: $\mathcal{O}(M^2)$.
- **X** Prediction complexity: $\mathcal{O}(M^2)$!

What's best?

The End

Thank you for your attention.