

Pre-trained Models for Natural Language Processing: A Survey 自然语言处理预训练模型综述

周梅、周雨慧、陈悦 2021年10月28日

2. Classification

3. Main models

4. Conclusion

CONTENTS

1.1 为什么需要预训练模型

- 从CV领域中来
- 标注数据昂贵
- 性能极大提升

- 在庞大的无标注数据上进行预训练可以获取更通用的语言表示,并有利于下游任务
- 为模型提供了一个更好的初始化参数,在目标任务上具备更好的泛化性能、并加速收敛
- 是一种有效的正则化手段,避免在小数据集上过拟合(一个随机初始化的深层模型容易对小数据集 过拟合)

1.2 词嵌入(word embedding)

	o_ENE	o_ESE	o_East	o_NE	o_NNE	o_NNW	o_NW	o_North	o_SE	o_SSE	o_SSW	o_SW	o_South	o_Variable	o_WSW
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
10	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0

One-Hot

Projection of the embedding vectors to 2-D

- 机器学习时代: 矩阵分解 (SVD)、LSA、LDA
- 深度学习时代: Word2Vec、Bert、GPT

1.3 预训练模型两大范式

1. 浅层词嵌入(Non-Contextual Embeddings)

词嵌入	训练目标	全局/局部语料
NNLM	语言模型	局部语料
word2vec	非语言模型 (窗口上下文)	局部语料
Glove	非语言模型 (词共现矩阵)	全局语料

浅层词嵌入的主要缺陷为: 词嵌入与上下文无关, 每个单词的嵌入向量始终是相同, 因此不能解决一词多义的问题。

2.预训练编码器(Contextual Embeddings)

编码器	PTMs代表	计算方式
MLP	NNLM/word2vec	前馈+并行
CNNs		前馈+并行
RNNs	ELMO	循环+串行
Transformer	GPT (Decoder) BERT (Encoder)	前馈+并行
Transformer-XL	XLNet	循环+串行
K	距离依赖建模能力	

预训练编码器通常采用LSTM和Transformer两种特征提取器

1.4 PTMs的发展历程

2.Classification

2. Classification

2.1 预训练任务类型

Task	Loss Function	Description
LM	$\mathcal{L}_{LM} = -\sum_{t=1}^{T} \log p(x_t \mathbf{x}_{< t})$ $\mathcal{L}_{MLM} = -\sum_{t=1}^{T} \log p(\hat{x} \mathbf{x}_{\setminus m(\mathbf{x})})$	$\mathbf{x}_{< t} = x_1, x_2, \cdots, x_{t-1}.$
MLM	$\mathcal{L}_{\text{MLM}} = -\sum_{\hat{x} \in m(\mathbf{x})} \log p(\hat{x} \mathbf{x}_{\backslash m(\mathbf{x})})$	$m(\mathbf{x})$ and $\mathbf{x}_{\backslash m(\mathbf{x})}$ denote the masked words from \mathbf{x} and the rest words respectively.
Seq2Seq MLM	$\mathcal{L}_{\text{S2SMLM}} = -\sum_{t=i}^{j} \log p(x_t \mathbf{x}_{\setminus \mathbf{x}_{i:j}}, \mathbf{x}_{i:t-1})$	$\mathbf{x}_{i:j}$ denotes an masked n-gram span from i to j in \mathbf{x} .
PLM	$\mathcal{L}_{\text{S2SMLM}} = -\sum_{t=i}^{J} \log p(x_t \mathbf{x}_{\setminus \mathbf{x}_{i:j}}, \mathbf{x}_{i:t-1})$ $\mathcal{L}_{\text{PLM}} = -\sum_{t=1}^{T} \log p(z_t \mathbf{z}_{< t})$	$\mathbf{z} = perm(\mathbf{x})$ is a permutation of \mathbf{x} with random order.
DAE	$\mathcal{L}_{DAE} = -\sum_{t=1}^{T} \log p(x_t \hat{\mathbf{x}}, \mathbf{x}_{< t})$	$\hat{\mathbf{x}}$ is randomly perturbed text from \mathbf{x} .
DIM	$\mathcal{L}_{DAE} = -\sum_{t=1}^{T} \log p(x_t \hat{\mathbf{x}}, \mathbf{x}_{< t})$ $\mathcal{L}_{DIM} = s(\hat{\mathbf{x}}_{i:j}, \mathbf{x}_{i:j}) - \log \sum_{\tilde{\mathbf{x}}_{i:j} \in \mathcal{N}} s(\hat{\mathbf{x}}_{i:j}, \tilde{\mathbf{x}}_{i:j})$	$\mathbf{x}_{i:j}$ denotes an n-gram span from i to j in \mathbf{x} , $\hat{\mathbf{x}}_{i:j}$ denotes a sentence masked at position i to j , and $\tilde{\mathbf{x}}_{i:j}$ denotes a randomly sampled negative n-gram from corpus.
NSP/SOP	$\mathcal{L}_{\text{NSP/SOP}} = -\log p(t \mathbf{x}, \mathbf{y})$	t = 1 if x and y are continuous segments from corpus.
RTD	$\mathcal{L}_{\text{NSP/SOP}} = -\log p(t \mathbf{x}, \mathbf{y})$ $\mathcal{L}_{\text{RTD}} = -\sum_{t=1}^{T} \log p(y_t \hat{\mathbf{x}})$	$y_t = 1(\hat{x}_t = x_t), \hat{\mathbf{x}} \text{ is corrupted from } \mathbf{x}.$

¹ $\mathbf{x} = [x_1, x_2, \dots, x_T]$ denotes a sequence.

2. Classification

2.2 预训练模型分类

3.1 AllenNLP ELMo: Embeddings from Language Models

- ✓ Embedding size: 512
 - ✓ 2048 character n-gram convolutional filters
- ✓ BiLSTM layers: 2
- ✓ BiLSTM hidden states : 4096
- ✓ Residual Connection

分别训练前向语言模型和反向语言模型

Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations. arXiv preprint arXiv:1802.05365, 2018.

3.2 自注意力(Self- Attention)

3.3 Transformer: 可能是目前为止最适合NLP的模型

- ◆广义的Transformer指一种基于自注意力的 全连接神经网络
- □核心组件
 - 自注意力(Self-Attention)
- □ 仅仅自注意力还不够,包括其它操作
 - 位置编码
 - 层归一化
 - 直连边
 - 逐位的FNN

3.3 Transformer完整结构

3.4 OpenAI GPT: Generative Pre-Training

✓ BPE tokens: 7,000

✓ Embedding size: 512

✓ Transformer layers: 12

✓ Attention heads: 12

✓ Attention hidden states: 768

✓ FFN hidden states: 3072

Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training. 2018.

3.4 GPT-3: Language Models are Few-Shot Learners

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

3.5 Bert

Task1. Masked Language Model

```
80%: my dog is hairy -> my dog is [mask]
10%: my dog is hairy -> my dog is apple
10%: my dog is hairy -> my dog is hairy
```

Task2. Next Sentence Prediction

目的是让模型理解两个句子之间的联系。训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,模型预测B是不是A的下一句。

3.5 Bert

- ◆单个序列文本分类任务(SST-2, CoLA)
- ◆两个序列文本分类任务(MNLI, QQP, QNLI, STS-B, MRPC, RTE)
- ◆阅读理解任务(SQuAD)
- ◆序列标注任务(CoNLL-2003 NER)

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

3.6 T5——Seq2Seq Masked Language Modeling

Text-to-Text Transfer Transformer (T5)

Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer, 2019. https://arxiv.org/abs/1910.10683

3.7 XLNet——Permutation Language Modeling

Yang Z, Dai Z, Yang Y, et al. XInet: Generalized autoregressive pretraining for language understanding. Advances in neural information processing systems. 2019.

3.7 XLNet

Figure 2: (a): Content stream attention, which is the same as the standard self-attention. (b): Query stream attention, which does not have access information about the content x_{z_t} . (c): Overview of the permutation language modeling training with two-stream attention.

Yang Z, Dai Z, Yang Y, et al. XInet: Generalized autoregressive pretraining for language understanding. Advances in neural information processing systems. 2019.

3.7 XLNet

阅读理解(RACE): 性能比较

Portが用	RACE	Accuracy	Middle	High
Deitox	GPT [25]	59.0	62.9	57.4
\neg	BERT [22]	72.0	76.6	70.1
	BERT+OCN* [28]	73.5	78.4	71.5
	BERT+DCMN* [39]	74.1	79.5	71.8
	XLNet	81.75	85.45	80.21

阅读理解(SQuAD): 性能比较

			较长文	档:效果	提升明显
SQuAD1.1	EM	F1	SQuAD2.0	EM	F1
Dev set result.	s without	data aug	mentation		
BERT [10]	84.1	90.9	BERT† [10]	78.98	81.77
XLNet	88.95	94.52	XLNet	86.12	88.79
Test set result.	s on lead	erboard,	with data augmentation (as of June 19,	2019)	
Human [27]	82.30	91.22	BERT+N-Gram+Self-Training [10]	85.15	87.72
ATB	86.94	92.64	SG-Net	85.23	87.93
BERT* [10]	87.43	93.16	BERT+DAE+AoA	85.88	88.62
XLNet	89.90	95.08	XLNet	86.35	89.13

XLNet效果: 效果提升明显

综合NLP任务(GLUE): 性能比较

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNL
Single-task single	e models on de	ev							
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-
Single-task single	e models on te	st							102
BERT [10]	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1
Multi-task ensem	bles on test (fi	rom leade	rboard a	s of June	19, 2019)	W. C. C. C.	7938.35X	0000000
Snorkel* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1
ALICE*	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
XLNet*	90.2/89.7	98.6 [†]	90.3 [†]	86.3	96.8 [†]	93.0	67.8	91.6	90.4

3.7 XLNet

文本分类任务: 性能比较

Model	IMDB	Yelp-2	Yelp-5	DBpedia	AG	Amazon-2	Amazon-5
CNN [14]	-	2.90	32.39	0.84	6.57	3.79	36.24
DPCNN [14]	-	2.64	30.58	0.88	6.87	3.32	34.81
Mixed VAT [30, 20]	4.32	-	-	0.70	4.95	-	-
ULMFiT [13]	4.6	2.16	29.98	0.80	5.01	-	-
BERT [35]	4.51	1.89	29.32	0.64	-	2.63	34.17
XLNet	3.79	1.55	27.80	0.62	4.49	2.40	32.26

重点看这组数据:效果有提升,幅度不算大

信息检索任务: 性能比较

Model	NDCG@20	ERR@20
DRMM [12]	24.3	13.8
KNRM [8]	26.9	14.9
Conv [8]	28.7	18.1
BERT [†]	30.53	18.67
XLNet	31.10	20.28

重点看这组数据:效果有提升,幅度不算大

3.7 XLNet

- 1. 与Bert采取De-noising Autoencoder方式不同的新的预训练目标: Permutation Language Model(简称PLM); 打开了NLP中两阶段模式潮流的一个新思路。
- 2. 引入了Transformer-XL的主要思路:相对位置编码以及分段RNN机制。实践已经证明这两点对于长文档任务是很有帮助的;
- 3. 加大增加了预训练阶段使用的数据规模; Bert使用的预训练数据是BooksCorpus和英文Wiki数据,大小13G。XLNet除了使用这些数据外,另外引入了Giga5,ClueWeb以及Common Crawl数据,并排掉了其中的一些低质量数据,大小分别是16G,19G和78G。

XLNet与Bert纯粹模型比较: 性能比较

#	Model	RACE	SQuA	AD2.0	MNLI	SST-2
			F1	EM	m/mm	
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60
3	XLNet-Base ($K = 7$)	66.05	81.33	78.46	85.84/85.43	92.66
4	XLNet-Base $(K = 6)$	66.66	80.98	78.18	85.63/85.12	93.35
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89

◆ 与Bert相比: 长文档阅读理解提升幅度大, 其它任务还好。

<u>哈工大讯飞联合实验室(HFL)——中文XLNet: https://github.com/ymcui/Chinese-XLNet</u>

3.8 小结

3.8 小结

PTMs	Architecture [†]	Input	Pre-Training Task	Corpus	Params	GLUE [‡]	FT?
ELMo [14]	LSTM	Text	BiLM	WikiText-103			No
GPT [15]	Transformer Dec.	Text	LM	BookCorpus	117M	72.8	Yes
GPT-2 [58]	Transformer Dec.	Text	LM	WebText	117M ~ 1542M		No
BERT [16]	Transformer Enc.	Text	MLM & NSP	WikiEn+BookCorpus	110M ~ 340M	81.9*	Yes
InfoWord [55]	Transformer Enc.	Text	DIM+MLM	WikiEn+BookCorpus	=BERT	81.1*	Yes
RoBERTa [43]	Transformer Enc.	Text	MLM	BookCorpus+CC- News+OpenWebText+ STORIES	355M	88.5	Yes
XLNet [49]	Two-Stream Transformer Enc.	Text	PLM	WikiEn+ BookCorpus+Giga5 +ClueWeb+Common Crawl	≈BERT	90.5\$	Yes
ELECTRA [56]	Transformer Enc.	Text	RTD+MLM	same to XLNet	335M	88.6	Yes
UniLM [44]	Transformer Enc.	Text	MLM ⁴ NSP	WikiEn+BookCorpus	340M	80.8	Yes
MASS [41]	Transformer	Text	Seq2Seq MLM	*Task-dependent			Yes
BART [50]	Transformer	Text	DAE	same to RoBERTa	110% of BERT	88.4*	Yes
T5 [42]	Transformer	Text	Seq2Seq MLM	Colossal Clean Crawled Corpus (C4)	220M ~ 11B	89.7*	Yes
ERNIE(THU) [76]	Transformer Enc.	Text+Entities	MLM+NSP+dEA	WikiEn + Wikidata	114M	79.6	Yes
KnowBERT [77]	Transformer Enc.	Text	MLM+NSP+EL	WikiEn + WordNet/Wiki	$253M \sim 523M$		Yes
K-BERT [78]	Transformer Enc.	Text+Triples	MLM+NSP	WikiZh + WebtextZh + CN-DBpedia + HowNet + MedicalKG	=BERT		Yes
KEPLER [80]	Transformer Enc.	Text	MLM+KE	WikiEn + Wikidata/WordNet			Yes
WKLM [57]	Transformer Enc.	Text	MLM+ERD	WikiEn + Wikidata	=BERT		Yes
CoLAKE [81]	Transformer Enc.	Text+Triples	MLM	WikiEn + Wikidata	=RoBERTa	86.3	Yes

4. Prospect

4. Prospect

4.1如何对预训练模型进行迁移学习?

1) 选择合适的预训练任务:

语言模型PTM是最为流行的预训练任务;预训练任务有其自身的偏置,并且对不同的任务会产生不同的效果。例如,NSP任务可以使诸如问答(QA)和自然语言推论(NLI)之类的下游任务受益。

2) 选择合适的模型架构:

例如BERT采用的MLM策略和Transformer-Encoder结构,导致其不适合直接处理生成任务。

3) 选择合适的数据:

下游任务的数据应该近似于PTMs的预训练任务,现在已有有很多现成的PTMs可以方便地用于各种特定领域或特定语言的下游任务。

4) 选择合适的layers进行transfer:

主要包括Embedding迁移、top layer迁移和all layer迁移。如word2vec和Glove可采用Embedding迁移,BERT可采用top layer迁移,Elmo可采用all layer迁移。

5) 特征集成还是fine-tune?

对于特征集成预训练参数是freeze的,而fine-tune是unfreeze的。特征集成方式却需要特定任务的体系结构,fine-tune方法通常比特征提取方法更为通用和方便。

4. Prospect

4.2 预训练模型还有哪些问题需要解决?

1、PTMs的上限

大多数的PTMs可通过使用更长训练步长和更大数据集来提升其性能。

2、面向任务的预训练和模型压缩

在实践中,不同的目标任务需要 PTMs拥有不同功能。而 PTMs与下游目标任务间的差异通常在于两方面:模型架构与数据分布。

3、PTMs的架构设计

对于PTMs, Transformer 已经被证实是一个高效的架构。然而 Transformer 最大的局限在于其计算复杂度(输入序列长度的平方倍)。

4、finetune中的知识迁移

finetune是目前将PTM 的知识转移至下游任务的主要方法,但效率却很低,每个下游任务都需要有特定的finetune参数。

5、PTMs 的解释性与可靠性

PTMs 的可解释性与可靠性仍然需要从各个方面去探索,它能够帮助我们理解 PTM 的工作机制,为更好的使用及性能改进提供指引。

Pre-trained Models for Natural Language Processing: A Survey 自然语言处理预训练模型综述

Thanks!