太原理工大学 线性代数 E 试卷(A)

适用专业: 2020 级软件专业 考试日期: 2021.7.7 时间: 120 分钟 共 4 页

题 号	_	=	111	四	总 分
得 分					

一、本题共15小题,1-10题为选择题,每小题2分11-15题为填空题,每小题3分,共 35分。

1、设
$$A = \begin{pmatrix} 3 & -1 \\ 4 & a \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 5 & 2 \end{pmatrix}$, 若 $|AB| = 8$, 则 $a = (D)$ 。
A、 $\frac{4}{3}$; B、 $\frac{16}{3}$; C、 $\frac{8}{3}$; D、0。

- 2、设A是方阵,则下列结论错误的是(D)。
 - $A \times A = A^T$ 的行列式的值相等; $B \times A = A^T$ 的秩相等;

 - C、A与 A^T 特征值相同; D、A与 A^T 特征向量相同。
- 3、3维向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 中任意三个向量都线性无关,则向量组中(A)。
 - A、每一个向量都能由其余三个向量线性表示;
 - B、只有一个向量能由其余三个向量线性表示;
 - C、只有一个向量不能由其余三个向量线性表示;
 - D、每一个向量都不能由其余三个向量线性表示。

4、已知齐次线性方程组
$$\begin{cases} \lambda x + y + z = 0 \\ \lambda x + 3y - z = 0 \text{ 仅有零解,则(A)} \\ -y + \lambda z = 0 \end{cases}$$

- A、 $\lambda \neq 0$ 且 $\lambda \neq 1$; B、 $\lambda = 0$ 或 $\lambda = 1$; C、 $\lambda \neq 0$ 且 $\lambda \neq -1$; D、 $\lambda = 0$ 或 $\lambda = -1$ 。
- C、 $\lambda \neq 0$ 且 $\lambda \neq -1$;

5、 已知A为n阶可逆矩阵, A^{-1} 是A的逆矩阵,则 $|A^{-1}|A|$ = (B)

B, $|A|^{1-n}$; C, $(-1)^n$; D, $|A|^{n-1}$.

6、 若矩阵 A_{3x3} 的特征值为 1, -2, 3 ,则下列矩阵可逆的是 (C)

A, A-E; B, A+2E; C, A-2E; D, A-3E

7、设A为 4×3 矩阵, η_1,η_2,η_3 是非齐次线性方程组Ax=b的3个线性无关的解, k_1, k_2 为任意常数,则 Ax = b的通解为 C

A, $\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1)$; B, $\frac{\eta_2 - \eta_3}{2} + k_1(\eta_2 - \eta_1)$;

C, $\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$; D, $\frac{\eta_2 - \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$

8、设n阶方阵A、B满足AB=0,B≠0,则必有(D)。

A、A=0; B、A 为可逆方阵; C、 $|B| \neq 0$; D、|A|=0。

9、若A为n阶实对称矩阵,且二次型 $f(x_1,x_2,\cdots,x_n)=x^TAx$ 正定,则下列结论**不正** 确的是(D).

 $A \times A$ 的特征值全为正;

B、 A的一切顺序主子式全为正;

 $C \setminus A$ 的主对角线上的元素全为正; $D \setminus M$ 可M 维列向量 $X \setminus X^T A X$ 全为正。

10、 设 $\alpha = (1, 2, k)$ 可由(1, 1, 1),(1, -1, 2),(-1, 1, -2) 线性表示,则k = (B)。

A. 1; B. $\frac{1}{2}$; C. $\frac{1}{3}$; D. $\frac{1}{4}$.

11、设 3 阶矩阵 A 的特征值为 1,1,2,则 $|4A^{-1}-E| = 9$ 。

12、已知 A 的伴随矩阵 $A^* = \begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix}$,则 $A = \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix}$ 。

13、 已知 $D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$,则代数余子式 $A_{23} = \underline{a^2 - b^2}$ ____。

系 专业班级

14、若
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 4 \\ 0 & 0 & k \end{pmatrix}$$
的秩为 2,则常数 $k = \underline{\quad 0 \quad}$ 。

15、 设四阶方阵 $A = (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4)$,且 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\alpha_4 = \alpha_1 + \alpha_2 + \alpha_3$, $\beta = \alpha_1 + 2\alpha_2 - 3\alpha_3 + 4\alpha_4$,则线性方程组 $Ax = \beta$ 的通解为 $k(1,1,1,-1)^T + (1,2,-3,4)^T$ 。

二、本题共2小题,满分24分。

16. (12 分) 已知
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$$
, 求 A^{-1} 。

解:

$$(AE) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 4 & 0 & 0 & 1 \end{pmatrix} \cdots 4$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 1 & 4 & 0 & 0 & 1 \end{pmatrix} \cdots 8$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{4}{5} & \frac{1}{5} & -\frac{1}{5} \\ 0 & 1 & 0 & -\frac{4}{5} & \frac{4}{5} & \frac{1}{5} \\ 0 & 0 & 1 & \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \end{pmatrix} \cdots 11$$

$$\therefore A^{-1} = \begin{pmatrix} \frac{4}{5} & \frac{1}{5} & -\frac{1}{5} \\ -\frac{4}{5} & \frac{4}{5} & \frac{1}{5} \\ \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \end{pmatrix} \dots 12$$

17. (12分) 求线性方程组
$$\begin{cases} x_1 - x_2 + x_3 = 2 \\ 2x_1 + x_2 - x_3 = 1 \end{cases}$$
的通解.
$$4x_1 + 5x_2 - 5x_3 = -1$$

解:

$$\overline{A} = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 4 & 5 & -5 & -1 \end{pmatrix} \dots 4$$

$$= \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \dots 9$$

对应线性方程组为
$$\begin{cases} x_1=1\\ x_2=x_3-1 \end{cases}, \ \ \mathbf{R}\ x_3=0 \ , \ \ \text{得特解}\ \eta=\begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix} \cdots 10$$

对应齐次线性方程组为 $\begin{cases} x_1=0\\ x_2=x_3 \end{cases}, \ \ \text{取}\ x_3=1 \ , \ \ \text{得基础解系为}\ \xi=\begin{pmatrix} 0\\1\\1 \end{pmatrix} \cdots 11$

$$\therefore 通解为 x = k \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdots 12$$

三、本题共2小题,满分24分。

18. (12分) 设矩阵 $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$, 求可逆矩阵 P,使得 $P^{-1}AP$ 为对角矩阵。

解:

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 2 & 3 - \lambda & 0 \\ 4 & 5 & 6 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(3 - \lambda)(6 - \lambda) \cdots \cdots 5$$

所以特征值为 $\lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = 6$8.

当
$$\lambda_1=1$$
,求得特征向量为 $x=k_1$ $\begin{pmatrix} 5\\-5\\1 \end{pmatrix}$; 当 $\lambda_2=3$,求得特征向量为 $x=k_2$ $\begin{pmatrix} 0\\-3\\5 \end{pmatrix}$;

系 专业班级

$$\therefore 取 P = \begin{pmatrix} 5 & 0 & 0 \\ -5 & -3 & 0 \\ 1 & 5 & 1 \end{pmatrix}, \ \ \text{使得 } P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}.\dots 12$$

19. (12 分) 讨论参数
$$t$$
 的取值,求向量组 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 2 \\ 0 \\ t \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ -4 \\ 5 \\ 0 \end{pmatrix}$ 的秩和

一个最大线性无关组。

四、本题共2小题,满分17分。

解:
$$\begin{vmatrix} 1 & 0 & 1 & 2 \\ -1 & 1 & 0 & 3 \\ 1 & 1 & 1 & 0 \\ -1 & 2 & 5 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 5 \\ 0 & 1 & 0 & -2 \\ 0 & 2 & 6 & 6 \end{vmatrix}$$

.....4

21. (5分) 若 $A \neq n$ 阶矩阵,且满足 $AA^T = E$, |A| = -1, 试证 A + E 不可逆。证明:

因为
$$AA^T + A = E + A$$
 ···············2

所以
$$A(A^T + E) = E + A$$
 两边同取行列式得

$$|A||A^T + E| = |E + A|, \qquad \cdots 3$$

又因为
$$|A^T + E| = |E + A|$$
且 $|A| = -1$,4

所以
$$|E+A|=0$$
,所以 $A+E$ 不可逆 ··········5