MATHF-105 : Probabilités Résumé

R. Petit

Année académique 2015 - 2016

Contents

1	\mathbf{Esp}	aces de probabilités	1
	1.1	Rappel sur les séries	1
		1.1.1 Exemple sur les séries	1
		1.1.2 Conclusion de la suite géométrique	1
	1.2	Définition	1
		1.2.1 Loi uniforme sur un ensemble fini (ou dénombrable)	2
		1.2.2 Loi uniforme sur un ensemble infini (intervalle)	2
	1.3	Modèles	3
		1.3.1 Modèles discrets	3

1 Espaces de probabilités

1.1 Rappel sur les séries

Les fonctions logarithmique et exponentielle ont un développement de Taylor exact. Pour la fonction logarithmique, on a, pour $x \in (-1,1)$:

$$\log(1-x) = -\sum_{k>1} \frac{x^k}{k}.$$

Si on pose $S_n := \sum_{k=1}^n u_k$, on a $(S_n)_{n \in \mathbb{N}}$, la suite des sommes partielles, et $n \mapsto S_n$, une application croissante si (u_n) est une suite positive. Il y a donc deux situations distinctes possibles :

- (S_n) est une suite bornée $(\exists M \in \mathbb{R} \text{ t. q. } \forall n \in \mathbb{N} : S_n \leq M)$ et donc converge vers $S \in \mathbb{R}$;
- (S_n) n'est pas bornée $(\forall M \in \mathbb{R} : \exists n \in \mathbb{N} \text{ t. q. } S_n > M)$ et donc diverge vers $+\infty$.

1.1.1 Exemple sur les séries

Prenons $u_n := x^n$, avec x > 0.

- Si x = 1, on a $n \to +\infty \Rightarrow S_n \to +\infty$;
- si $x \neq 1$, on a $(1-x)S_n = x x^{n+1}$, et donc :

$$S_n := x \frac{1 - x^n}{1 - x}.$$

- Si x < 1, alors $x^n \to 0$ pour $n \to +\infty$, et donc $S_n \to \frac{x}{1-x}$;
- si x > 1, alors $x^n \to +\infty$ pour $n \to +\infty$, et donc $S_n \to +\infty$.

1.1.2 Conclusion de la suite géométrique

On voit alors:

$$\sum_{n>1} x^n = \begin{cases} \frac{x}{1-x} & \text{si } x \in [0,1) \\ +\infty & \text{sinon} \end{cases}.$$

Si la suite commene à l'indice 0, on a :

$$\sum_{n \ge 0} x^n = 1 + \sum_{n \ge 1} x^n = \begin{cases} 1 + \frac{x}{1-x} = \frac{1}{1-x} & \text{si } x \in [0,1) \\ +\infty & \text{sinon} \end{cases}.$$

1.2 Définition

Définition 1.1. L'ensemble Ω est l'espace des chances, l'ensemble des résultats possibles d'un phénomène aléatoire.

Remarque.

- Ω peut être fini (dénombrable) ou infini ;
- $\Omega = \{0,1\}^{\mathbb{N}}$ est l'ensemble des suites à valeur dans $\{0,1\}$;

 \bullet Ω peut être un espace dit fonctionnel quand le résultat d'une expérience est une fonction.

Définition 1.2. Un événement E est un ensemble de réalisations possibles à une expérience tel que $E \subseteq \Omega$.

Remarque. L'ensemble $\mathcal{P}(\Omega)$ n'est pas toujours dénombrable. Et donc l'ensemble $\mathcal{P}(\Omega)$ est-il le bon ensemble pour décrire les événements ?

- Si $|\Omega| \in \mathbb{N}$: oui;
- $\operatorname{si} |\Omega| \notin \mathbb{N}$: non.

Définition 1.3. \mathcal{F} est la classe des événements. On mesure la *probabilité d'occurrence* d'un événement $A \in \mathcal{F}$. On introduit une fonction d'ensemble \mathbb{P} où :

$$\mathbb{P}: \mathcal{F} \to [0,1]: A \mapsto \mathbb{P}(A).$$

On impose:

- $(i) \mathbb{P}(\emptyset) = 0$;
- $(ii) \mathbb{P}(\Omega) = 1;$
- (iii) $\forall A, B \in \mathcal{F} : A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

Proposition 1.4. Soient $A_1, \ldots, A_n \in \mathcal{F}$. On a :

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \le k_1 < \dots < k_i \le n} \mathbb{P}\left(\bigcap_{\gamma=1}^{i} A_{k_\gamma}\right).$$

1.2.1 Loi uniforme sur un ensemble fini (ou dénombrable)

Définition 1.5. Soient $m < n \in \mathbb{N}$. On définit l'intervalle entier [m, n] par :

$$[m, n] : \{x \in \mathbb{N} \text{ t. q. } m < x < n\}.$$

Définition 1.6. Soit $\Omega = [1, n]$. Soit $A \subseteq \Omega$. La loi uniforme est donnée par :

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{|A|}{n}.$$

Remarque. Il arrive que |A| soit difficile à déterminer et qu'il faille aller chercher du côté de l'analyse combinatoire.

1.2.2 Loi uniforme sur un ensemble infini (intervalle)

Définition 1.7. Soit $\Omega = [0,1]$ et soit $A = [a,b] \subseteq \Omega$. La loi uniforme est donnée par :

$$\mathbb{P}(A) = (b - a).$$

Remarque. La définition de loi uniforme sur un intervalle fait intervenir la notion de mesure et donc de mesurabilité. Or il existe des parties de Ω sur lesquelles la mesure n'a pas de sens. En général, $\mathcal{P}(\Omega)$ est trop grand, et il faut donc remplacer l'utilisation de l'ensemble des parties par la notion de tribu.

Définition 1.8. Soit Ω un ensemble de chances et $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ une famille de parties de Ω . On dit que \mathcal{F} est une tribu s'il respecte les trois propriétés suivantes :

- $\emptyset \in \mathcal{F}$;
- $\forall A: A \in \mathcal{F} \Rightarrow A^{\complement} \in \mathcal{F}:$
- $\forall A_1, \dots, A_n, \dots : A_1, \dots, A_n, \dots \in \mathcal{F} \Rightarrow \bigcup_{k \geq 1} A_k \in \mathcal{F}.$

Une autre appellation pour une tribu est une σ -algèbre.

Remarque.

- On remarque que $\mathcal{P}(\Omega)$ est une tribu, mais une tribu trop grande pour être intéressante ;
- Soit $A \in \mathcal{P}(\Omega)$. Alors $T := \{\emptyset, A, A^{\complement}, \mathcal{P}(\Omega)\}$ est une tribu. T est la plus petite tribu contenant A, et on l'appelle la **tribu engendrée par** A, que l'on note $\sigma(A)$.

Définition 1.9. Soit I une partie de $\mathcal{P}(\Omega)$. On appelle la *tribu engendrée par I* la plus petite tribu contenant I et on la note $\sigma(I)$.

En prenant $I := \{$ intervalles ouverts de $[0,1]\}$, on obtient $\sigma(I)$ que l'on appelle **tribu des boréliens**. ¹

Définition 1.10. Soit Ω un ensemble de chances et $\mathcal{F} \subset \mathcal{P}(\Omega)$ une tribu sur Ω . Une probabilité sur (Ω, \mathcal{F}) est une fonction \mathbb{P} définie par :

$$\mathbb{P}: \mathcal{F} \to [0,1]: A \mapsto \mathbb{P}(A),$$

où \mathbb{P} satisfait :

- $(i) \mathbb{P}(\emptyset) = 0 ;$
- (ii) $\forall A \in \mathcal{F} : \mathbb{P}(aA) + \mathbb{P}(A^{\complement}) = 1$;
- (iii) $\forall A_1, \ldots, A_n, \ldots$ disjoints deux à deux, on a :

$$\mathbb{P}\left(\bigcup_{k\geq 1} A_k\right) = \sum_{k\geq 1} \mathbb{P}(A_k).$$

Définition 1.11. On appelle $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités.

Remarque. Probabiliser un expérience revient à déterminer :

- Ω , l'espace des chances ;
- \mathcal{F} , la classe des événements ;
- \mathbb{P} , la fonction d'ensembles sur \mathcal{F} .

1.3 Modèles

1.3.1 Modèles discrets

Remarque. On prend Ω un ensemble fini ou dénombrable. On prend également $\mathcal{F} = \mathcal{P}(\Omega)$.

Si Ω est fini, on parle de tirages, et si Ω est infini dénombrable, on parle de populations.

¹Le nom de *borélien* vient du mathématicien français Émile Borel suite à ses travaux sur la théorie de la mesure.

On pose:

$$\mathbb{P}: \{k\} \mapsto p_k \in [0, 1],$$

où:

$$\sum_{k \in \Omega} p_k = 1$$

et pour $A = \{k_1, \ldots, k_n\} \in \mathcal{F}$:

$$\mathbb{P}(A) = \sum_{\gamma=1}^{n} p_{k_{\gamma}}.$$

Définition 1.12 (Modèle de Bernoulli). On prend $\Omega = \{0,1\}$ où :

$$\begin{cases} p_0 &= 1 - p \\ p_1 &= p \end{cases}.$$

Remarque. Il est évident que $p + (1 - p) = 1 = P(\Omega)$.

Définition 1.13 (Modèle binomial). On prend $\Omega = \llbracket 0, N \rrbracket$ (et donc $\mathcal{F} = \mathcal{P}(\Omega)$) et $p \in [0, 1]$. Le modèle binomial est défini par $p_k = \binom{n}{k} p^k (1-p)^{N-k}$ pour tout $k \in \llbracket 0, N \rrbracket$.

Remarque. On remarque que $\sum_{k\geq 1} p_k = 1$ car les p_k représentent les termes du binôme de Newton $(p+(1-p))^N = 1^N = 1$.

Définition 1.14 (Modèle géométrique). On prend $\Omega = \mathbb{N}$, $\mathcal{F} = \mathcal{F}(\Omega) \simeq \mathbb{R}$, et $p \in (0,1)$. Le modèle géométrique est défini par $p_k = (1-p)^{k-1}p$ pour tout $k \in \mathbb{N}$.

Remarque. On remarque que :

$$\sum_{k>1} p_k = \sum_{k>1} p(1-p)^{k-1} = p \sum_{k>0} (1-p)^k = p \frac{1}{1-(1-p)} = \frac{p}{p} = 1,$$

où on utilise la formule de la somme des termes d'une suite géométrique u définie par $u_n=u_{n-1}q$ pour $n\geq 1$ (avec 0< q< 1) qui donne :

$$\sum_{k=0}^{N} u_k = u_0 \frac{1 - q^{N+1}}{1 - q},$$

et pour la série, il suffit de passer à la limite :

$$\lim_{N \to +\infty} \sum_{k=0}^{N} u_k = \lim_{N \to +\infty} u_0 \frac{1 - q^{N+1}}{1 - q} = u_0 \frac{1}{1 - q}.$$

Définition 1.15 (Modèle de Poisson). On prend $\Omega = \mathbb{N}$, $\mathcal{F} = \mathcal{P}(\Omega)$, et un paramètre $\lambda \in \mathbb{R}_0^+$. Le modèle poissonien est défini par $p_k = \exp(-\lambda)\frac{\lambda^k}{k!}$ pour tout $k \in \mathbb{N}$.

Remarque. On remarque que $\mathbb{P}(\Omega)=1$ en utilisant la formule de Taylor de l'exponentielle :

$$\exp(x) = \sum_{k \ge 0} \frac{x^k}{k!}.$$

On a effectivement:

$$\mathbb{P}(\Omega) = \sum_{k \geq 0} \mathbb{P}(\{k\}) = \sum_{k \geq 0} p_k = \sum_{k \geq 0} \exp(-\lambda) \frac{\lambda^k}{k!} = \exp(-\lambda) \exp(\lambda) = 1.$$