Plotting Techniques

Team	Round 1	Round 2	Round 3
Α	38	15	18
В	58	57	28
С	14	79	49
D	95	43	28
Е	68	92	83

Noise	X2		
2.01	-7.09	4.20	10.80
9.90	-6.07	18.71	37.51
1.73	8.53	11.43	25.62
9.36	5.96	37.53	37.76
		0.52	7.14
34.55	20.02	23.50	38.78
39.66	6.70	30.05	19.07
17.70	17.38	39.48	21.85
20.39	12.60	32.44	19.82
39.82	-10.25	25.85	12.66
23.02	16.85	1.21	20.79
10.91	13.54	22.09	18.53
		29.89	10.12
28.44	13.96	25.53	15.66
14.93	20.62	13.46	33.86
12.98	26.66	11.30	50.47
31.48	33.70	26.01	42.72
17.50	17.77	0.30	46.51
23.46	35.35	18.92	35.51

- Data visualization deals with a visual representation of data and is part of data analysis.
- It is the process of translating data into a chart, graph, or other visual components.

☐ Data visualization can be used for:

- Making data engaging and easily digestible
- Identifying trends and outliers within a set of data
- Highlighting the important parts of a set of data

Variables

- Variables refer to characteristics, properties, or attributes that can be measured, observed, or recorded for a particular entity or unit within a dataset
- Types of Variables: Dependent Variables, Independent Variables
- ☐ Based on the nature:

Qualitative (Categorical): It describes the quality of something or someone. It is descriptive information. For e.g., skin color, eye color gives us qualitative information about a person.

Quantitative (Numerical): It provides numerical information, like how much, how many, or how often. Can be continuous or discrete. For e.g., the height and weight of a person.

Univariate Analysis

 Univariate Analysis is used in statistics to describe a data type that contains only one attribute or characteristic

```
Data = [0.49,-1.13,2.64,0.15,-1.23,-0.24,1.58,0.77,-0.47, 0.54, -2.46, -0.44, 0.22, 0.76,1.24, -0.54,-2.11,0.12,0.02,-1.15,...., 0.32,-0.12,0.19]
```

 Includes checking the central tendency (mean, median and mode), the range, the maximum and minimum values and the standard deviation of a variable

Univariate Analysis

Data = [0.49,-1.13,2.64,0.15,-1.23,-0.24,1.58,0.77,-0.47, 0.54, -2.46, -0.44, 0.22, 0.76,1.24, -0.54,-2.11,0.12,0.02,-1.15,...., 0.32,-0.12,0.19]

Histogram: Frequency distribution graph

Box Plot: Compare the spread of the variables and get an insight into outlier

Bivariate Analysis

- The bivariate analysis is mainly used to compare two sets of data to find a relationship between the two variables.
- Remember, that if one variable influences the because in another variable, then you have an independent and dependent variable.
- Ex:- Scatter Plot, Heatmap, Contour Plot, Bivariate Line Chart, Pair Plot, etc.

Scatter Plot: Captures the correlation between the two

Multivariate Analysis

- Multivariate analysis is used to reveal the relationship among several variables simultaneously.
- Assists in making informed decisions by considering multiple variables and their interactions simultaneously.
- Ex: Grouped Box Plot, Multivariate Scatter Plot, and
 3D scatter plot.

Visualization Techniques

- Distribution of data points: Box plot, Histogram
- Comparison of data points: Multi-line chart, Bar plot, Line chart [to show trends in data]
- Relationship/Correlation of data points: Scatter plot
- Composition of data points: Pie chart, Stacked Area chart, Stacked Bar chart

Violin Plot

Data = [0.49,-1.13,2.64,0.15,-1.23,-0.24,1.58,0.77,-0.47, 0.54, -2.46, -0.44, 0.22, 0.76,1.24, -0.54,-2.11,0.12,0.02,-1.15,...., 0.32,-0.12,0.19]

- The box plot is convenient for comparing summary statistics (such as range and quartiles), but it doesn't let you see variations in the data.
- Are most of the values clustered around the median, or around the minimum/maximum?
- The histogram and kernel density estimation helps you in seeing the variations in the data, but you miss the outliers

Can we combine both?

Violin Plot

- It is a combination of box plot and a kernel density plot, which shows peaks in the data
- It depicts the summary statistics and the density of each variable

Violin Plot

Vertical violins, grouped by two variables

Split violins to take up less space

Plot Courtesy: Seaborn Documentation [seaborn.pydata.org]

Pair Plot

- Pair plot visualizes given data to find the relationship between them and plots pairwise relationships in a data-set
- It is used for exploring the relationship between multiple variables at once
- Plots in a matrix format
 - Diagonal subplots are the univariate histograms for each attribute
 - Off-diagonal entries are the scatter plots

Plot Courtesy: Seaborn Documentation [seaborn.pydata.org] iHub-Data-FMML 2023

Joint Plot

- Joint plot combines univariate and bivariate plots to visualize relationship between two variables
- It consists of a scatter plot for the bivariate relationship, with additional marginal plots for each variable
- Helps in understanding the correlations and distributions of two variables simultaneously

Plot Courtesy: Seaborn Documentation [seaborn.pydata.org]

Heatmap

- A heatmap is a color-coded representation of a 2-dimensional data, representing the magnitude of individual values within a dataset
- Colours are used to represent the magnitude, intensity, with the colour gradient scheme ranging from a lighter colour (low values) to a darker colour (high values)
- Displays the correlations or relationships in a correlation matrix

Plot Courtesy: Seaborn Documentation [seaborn.pydata.org]

Parallel Co-ordinates

- Parallel Co-ordinates allows for the comparison of multiple data records, by using parallel lines to connect points based on multiple numerical variables
 - Each vertical line is a dimension
 - A data item is connected by line segments
 - Large number of samples clutters the visualization

Dimensionality Reduction

Dimensionality

- The number of input variables or features for a dataset is referred to as its dimensionality.
- The difficulties related to training machine learning models due to high dimensional data is referred to as 'Curse of Dimensionality'.
- When dealing with high dimensional data, it is often useful to reduce the dimensionality by projecting the data to a lower dimensional subspace which captures the "essence" of the data. This is called dimensionality reduction.

— Page 11, <u>Machine Learning: A Probabilistic Perspective</u>, 2012.

Dimensionality Reduction

Feature Selection

Select the most relevant subset of features

Reducing the number of irrelevant or redundant features

Feature Extraction

 extracting/deriving information from the original features set to create a new features subspace

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 2.5 & 0.6 & 1.3 & 0.8 \\ 3 & -1 & 0.7 & 4.2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$$

 compress the data with the goal of maintaining most of the relevant information

Feature Selection Techniques

Forward-Feature Selection

- □ Iteratively selects one feature at a time, evaluating the model's performance after adding each feature and keeping the best subset of features that maximizes or minimizes the chosen performance metric.
 - ❖ Step 1: Initialization: Initialize an empty set S to store the selected features
 - ❖ Step 2: Loop over Features: For each feature X_i to be added to S
 - Find X_i that best improves the model's performance metric when added to S
 - Update the selected X_i to S
 - **Step 3**: Termination:
 - Repeat Step 2 until adding any remaining feature does not improve the model's performance.
 - Return S as the selected feature subset

Forward Feature Selection

Sr. no	Feature_idx	Avg_Score
1	(10,)	0.541
2	(5,10)	0.638
3	(5,8,10)	0.682
4	(5,7,8,10)	0.696
5	(4,5,7,8,10)	0.715
6	(3,4,5,7,8,10)	0.721
7	(3,4,5,7,8,9,10)	0.724
8	(1,3,4,5,7,8,9,10)	0.728
9	(0,1,3,4,5,7,8,9,10)	0.729
10	(0,1,2,3,4,5,7,8,9,10)	0.730
11	(0,1,2,3,4,5,6,7,8,9,10)	0.732

Backward Feature Elimination

- Start with all available features, iteratively remove one feature at a time, and evaluate the model's performance.
- If the performance improves, we keep the feature removed; otherwise, we add it back.
- The final set of features that maximizes or minimizes the chosen performance metric is returned as the selected feature subset.

```
BackwardFeatureElimination(X, y):
 S = {all features} # Initialize with all features
  best score = EvaluateModel(X, y, S) # Evaluate initial model
using all features
 while there are remaining features in S:
    for feature in S:
      Remove feature from S
      Train a model using the features in S
      Evaluate model performance using a chosen metric
      If model performance improves compared to
best score:
         Update best score to the new performance
        Add feature back to S
 return S # Return the remaining features after elimination
```

Backward Elimination

Sr. no	Feature_idx	Avg_Score
11	(0,1,2,3,4,5,6,7,8,9,10)	0.732
10	(0,1, <mark>2</mark> ,3,4,5,7,8,9,10)	0.730
9	(0,1,3,4,5,7,8,9,10)	0.729
8	(<mark>1</mark> ,3,4,5,7,8,9,10)	0.728
7	(3,4,5,7,8, <mark>9</mark> ,10)	0.724
6	(3,4,5,7,8,10)	0.721
5	(4,5,7,8,10)	0.715
4	(5,7,8,10)	0.696
3	(5,8,10)	0.682
2	(5,10)	0.638
1	(10,)	0.541

Bi-directional Elimination

- Combines forward and backward feature selection techniques to iteratively select a subset of features that optimizes a model performance metric
- ❖ Step 1: Initialization: Initialize an empty set S to store the selected features and choose direction
- Step 2: Loop over Features: For direction chosen as 'forward' or 'backward'
 - If 'forward': Perform forward selection adding the best feature that improves the model's performance metric
 - If 'backward': Perform backward elimination, removing the least significant feature
- **Step 3**: Termination:
 - Repeat Step 2 until adding/eliminating any remaining feature does not improve the model's performance.
 - Return S as the selected feature subset

Feature Extraction

- Aims to reduce the number of features in a dataset by creating new features from the existing ones (discarding the original ones)
- Feature Extraction Techniques:
 - Principal Component Analysis: Linear transformation techniques by finding orthogonal axes that capture the most variance

Feature Extraction

 Aims to reduce the number of features in a dataset by creating new features from the existing ones (discarding the original ones)

Feature Extraction Techniques:

 Isomap, t-SNE(t-distributed Stochastic Neighbor Embedding): Non-linear dimensionality reduction technique that emphasizes the local structure of the data

