Deep Learning

Lecture 9: Flow models and implicit networks

Chris G. Willcocks

Durham University

Lecture overview

- 1 Flow models
- definition
- the determinant
- the change of variables theorem
- 2 Normalising flows
- definition
- triangular Jacobians
- normalising flow layers
- 3 Implicit representation networks
 - definition
- SIREN
- GONs

Recap generative models

Definition: Generative models learn a joint distribution over the entire dataset. They are mostly used for sampling applications or density estimation:

Inference: sampling

A generative model learns to fit a model distribution over observations so we can sample novel data from the model distribution, $\mathbf{x}_{\text{new}} \sim p_{\text{model}}(\mathbf{x})$

Inference: density estimation

Density estimation is estimating the probability of observations. Given a datapoint \mathbf{x} , what is the probability assigned by the model, $p_{\mathrm{model}}(\mathbf{x})$?

Flow models definition

Definition: flow models

Flow models restrict our function to be a chain of invertible functions, called a flow, therefore the whole function is invertible.

Definition: the Jacobian matrix

The collection of all first-order partial derivatives of a vector-valued function $f:\mathbb{R}^n \to \mathbb{R}^m$

$$J_f = \nabla_{\mathbf{x}} f = \frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix},$$
$$J_f(i,j) = \frac{\partial f_i}{\partial x_j}$$

Flow models the determinant

Definition: the determinant

The determinant of an $n \times n$ square matrix M is a scalar value that determines the factor of how much a given region of space increases or decreases by the linear transformation of M:

$$\det M = \det \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \sum_{j_1 j_2 \dots j_n} (-1)^{\tau(j_1 j_2 \dots j_n)} a_{1j_1} a_{2j_2} \dots a_{nj_n}$$

Watch a 3Blue1Brown's video here 🗗

PyTorch: torch.det(M), for example: torch.det(torch.eye(3,3)) returns 1.0 and torch.det(torch.tensor([[3.,2.],[0.,2.]])) returns 6.0

Definition: the change of variables theorem

Given $p_Z(\mathbf{z})$ where $\mathbf{x} = f(\mathbf{z})$ and $\mathbf{z} = f^{-1}(\mathbf{x})$ we ask what is $p_X(\mathbf{x})$?

$$p_X(\mathbf{x}) = p_Z(f^{-1}(\mathbf{x})) \left| \det \left(\frac{\partial f^{-1}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

Normalising flows definition

Definition: normalising flows

Normalising flows $f: \mathbb{R}^n \to \mathbb{R}^n$ transform and renormalise a sample $\mathbf{z} \sim p_{\theta}(\mathbf{z})$ through a chain of bijective transformations f, where:

$$\mathbf{x} = f_{\theta}(\mathbf{z}) = f_K \circ \cdots \circ f_2 \circ f_1(\mathbf{z})$$
$$\log p_{\theta}(\mathbf{x}) = \log p_{\theta}(\mathbf{z}) + \sum_{i=1}^K \log \left| \det \left(\frac{\partial f_i^{-1}}{\partial \mathbf{z}_i} \right) \right|$$

Normalising flows triangular Jacobians

Easy to compute determinants

We have a sequence of high-dimensional bijective functions, where we need to compute the Jacobian determinants.

Computing the determinants can be expensive, so most of the literature focuses on restricting the function f^{-1} to those with easy-to-compute Jacobian determinants.

This is done by ensuring the Jacobian matrix of the functions is triangular.

Definition: triangular Jacobian

If the Jacobian is lower triangular:

$$J = \begin{bmatrix} a_{1,1} & & & & 0 \\ a_{2,1} & a_{2,2} & & & \\ a_{3,1} & a_{3,2} & \ddots & & \\ \vdots & \vdots & \ddots & \ddots & \\ a_{n,1} & a_{n,2} & \dots & a_{n,n-1} & a_{n,n-1} \end{bmatrix}$$

then the determinant is simply the product of its diagonals.

Normalising flows normalising flow layers

Description	Function	Log-Determinant
Additive Coupling [1]	$\mathbf{y}^{(1:d)} = \mathbf{x}^{(1:d)}$ $\mathbf{y}^{(d+1:D)} = \mathbf{x}^{(d+1:D)} + f(\mathbf{x}^{(1:d)})$	0
Planar [2]	$\mathbf{y} = \mathbf{x} + \mathbf{u}h(\mathbf{w}^T\mathbf{z} + b)$ With $\mathbf{w} \in \mathbb{R}^D$, $\mathbf{u} \in \mathbb{R}^D$, $\mathbf{b} \in \mathbb{R}$	$\ln 1 + \mathbf{u}^T h'(\mathbf{w}^T \mathbf{z} + b)\mathbf{w} $
Affine Coupling [3]	$\mathbf{y}^{(1:d)} = \mathbf{x}^{(1:d)}$ $\mathbf{y}^{(d+1:D)} = \mathbf{x}^{(d+1:D)} \odot f_{\sigma}(\mathbf{x}^{(1:d)}) + f_{\mu}(\mathbf{x}^{(1:d)})$	$\sum_{1}^{d} \ln f_{\sigma}(x^{(i)}) $
Batch Normalization [3]	$\mathbf{y} = \frac{\mathbf{x} - \tilde{\mu}}{\sqrt{\tilde{\sigma}^2 + \epsilon}}$	$-\frac{1}{2}\sum_{i}\ln(\tilde{\sigma}_{i}^{2}+\epsilon)$
1x1 Convolution [4]	With $h \times w \times c$ tensor $\mathbf{x} \& c \times c$ tensor $\mathbf{W} \\ \forall i,j: \mathbf{y}_{i,j} = \mathbf{W} \\ \mathbf{x}_{i,j}$	$h \cdot w \cdot \ln \det \mathbf{W} $
i-ResNet [5]	$\mathbf{y} = \mathbf{x} + f(\mathbf{x})$ where $\ f\ _L < 1$	$\operatorname{tr}(\ln(\mathbf{I} + \nabla_{\mathbf{x}} f)) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\operatorname{tr}((\nabla_{\mathbf{x}} f)^k)}{k}$
Emerging Convolutions [6]	$egin{aligned} \mathbf{k} &= \mathbf{w}_1 \odot \mathbf{m}_1, & \mathbf{g} &= \mathbf{w}_2 \odot \mathbf{m}_2 \ \mathbf{y} &= \mathbf{k} \star_l \left(\mathbf{g} \star_l \mathbf{x} ight) \end{aligned}$	$\sum_{c} \ln \left \mathbf{k}_{c,c,m_y,m_x} \mathbf{g}_{c,c,m_y,m_x} \right $

Implicit representation networks definition

Definition: implicit networks

Consider data $\Phi\colon\mathbb{R}^m\to\mathbb{R}^n$, like a single image, as a function of coordinates $\mathbf{c}\in\mathbb{R}^m$. The aim is to learn a neural approximation of Φ that satisfies an implicit equation:

$$R(\mathbf{c}, \Phi, \nabla_{\Phi}, \nabla_{\Phi}^{2}, \dots) = 0, \quad \Phi \colon \mathbf{c} \mapsto \Phi(\mathbf{c}).$$

Equations with this structure arise in a myriad of fields, namely 3D modelling, image, video, and audio representation.

Example: implicit network

Implicit representation networks siren

Definition: SIREN

SInusoidal REpresentation Networks (SIREN) are a simple implicit representation network with fully connected layers, but use sin (with clever initialisation to scale it appropriately) as their choice of non-linearity [7].

sin is periodic, so it allows to capture patterns over all of the coordinate space (it's translation invariant, like convolutions).

Example: SIREN (implicit network)

Implicit representation networks gradient origin networks

Definition: gradient origin networks

Gradient origin networks (GON) treat the derivative of the decoder as an encoder [8]. This allows us to compute the latents:

$$\mathbf{z} = -\nabla_{\mathbf{z}_0} \mathcal{L}(\mathbf{x}, F(\mathbf{z}_0))$$

which are then jointly optimised, giving the GON objective:

$$G_{\mathbf{x}} = \mathcal{L}(\mathbf{x}, F(-\nabla_{\mathbf{z}_0} \mathcal{L}(\mathbf{x}, F(\mathbf{z}_0)))).$$

Link to project page ☑

References I

- [1] Laurent Dinh, David Krueger, and Yoshua Bengio. "Nice: Non-linear independent components estimation". In: arXiv preprint arXiv:1410.8516 (2014).
- [2] Danilo Jimenez Rezende and Shakir Mohamed. "Variational inference with normalizing flows". In: arXiv preprint arXiv:1505.05770 (2015).
- [3] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. "Density estimation using real nvp". In: arXiv preprint arXiv:1605.08803 (2016).
- [4] Durk P Kingma and Prafulla Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions". In: Advances in neural information processing systems. 2018, pp. 10215–10224.
- [5] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen. "Invertible residual networks". In: International Conference on Machine Learning. 2019, pp. 573–582.
- [6] Emiel Hoogeboom, Rianne van den Berg, and Max Welling. "Emerging convolutions for generative normalizing flows". In: arXiv:1901.11137 (2019).

References II

- [7] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. "Implicit neural representations with periodic activation functions". In: Advances in Neural Information Processing Systems 33 (2020).
- [8] Sam Bond-Taylor and Chris G Willcocks. "Gradient Origin Networks". In: arXiv preprint arXiv:2007.02798 (2020).