MATH H113: Honors Introduction to Abstract Algebra

2016-03-07

• Even and odd permutations

∃ a handout

Theorem 1: Let $n \geq 2$. Then there is a *unique* homomorphism $\epsilon : S_n \to \{\pm 1\}$ (under multiplication) such that $\epsilon((a,b)) = -1$ \forall distinct $a,b \in \{1,2,\ldots,n\}$. It is surjective.

We'll do this differently from the book (see handout).

For today, let $n \geq 2$ and let $A = \{1, 2, ..., n\}$. We'll use the action of S_n on A given by $\sigma \cdot a = \sigma(a)$ ($\sigma \in S_n, a \in A$).

Ex. 18 in Sect. 17 (p. 45) says:

Let a group H act on a set A. Define a relation \sim by $a \sim b$ if $a = h \cdot b$ for some $h \in H$. Then \sim is an equivalence relation. The equivalence class \bar{a} of an element $a \in A$ is called the *orbit* of a under the action of H.

Definition: Let $\sigma \in S_n$ and $a \in A$. Let \sim be the above equivalence relation for the action of $H = \langle \sigma \rangle$ on A. Then the equivalence class \bar{a} of a is called the *orbit* of a for σ .

Proposition: Let $\sigma \in S_n$ and $a \in A$. Let d be the smallest positive integer for which $\sigma^d(a) = a$. Then the elements $\sigma^i(a)$, $i = 0, 1, \ldots, d-1$, are distinct, and the orbit of a under σ $\{a, \sigma(a), \sigma^2(a), \ldots, \sigma^{d-1}(a)\}$.

Proof: Let d be as above (this exists because if $m = |\sigma|$ then $m < \infty$ and $\sigma^m = 1$, so $\sigma^m(a) = a$. In general, though, d can be unequal to $|\sigma|$). The elements $\sigma^i(a)$, $i = 0, 1, \ldots, d-1$ are distinct because if $\sigma^i(a) = \sigma^j(a)$ for some $0 \le i < j < d$, then (cancelling σ^i) $\sigma^{j-i}(a) = a$ with 0 < j-i < d, contradicting the choice of d. Then $O = \{a, \sigma(a), \sigma^2(a), \ldots, \sigma^{d-1}(a)\}$; the orbit ecause:

- i. $O \in \text{the orbit (clear, since } 1, \sigma, \sigma^2 m \dots, \sigma^{d-1} \in \langle \sigma \rangle).$
- ii. if $b \in$ the orbit then $b = \tau(a)$ with $\tau \in \langle \sigma \rangle$.

Write $\tau = \sigma^i$ for some $i \in \mathbb{Z}$.

Write i = qd + j with $q, j \in \mathbb{Z}$ and $0 \le j < d$.

Then $b = \sigma^i(a) = \sigma^{qd+j}(a) = \sigma^j(\sigma^{qd}(a)) = a = \sigma^j(a) \in O$.

 \therefore the orbit $\subseteq O$, so they're equal.

Corollary: Let σ, a, d be as above, and let $\tau = (a \ \sigma(a) \ \sigma^2(a) \ \dots \ \sigma^{d-1}(a))$. Then $\tau(b) = \sigma(b) \ \forall b \in O$ and $\tau(b) = b \ \forall (b) \notin O$.

Example: $\sigma = (1\ 2\ 3)(4\ 6)(5\ 7) \in S_8$. Orbits are $\{1, 2, 3\}, \{4, 6\}, \{5, 7\}, \{8\}$.

Theorem 2: Every permutation in S_n can be written as a product of disjoint cycles. Such a representation is unique up to:

- 1. adding or removing 1-cycles,
- 2. permuting the disjoint cycles (which all commute with each other), and
- 3. choosing a different starting point for (some of) the cycles.

Proof: Existence: Given $\sigma \in S_n$, choose one element in each orbit of σ , and multiply the cycles as in the corollary for all such elements. The cycles are disjoint because the orbits are disjoint. Their product is σ because $\forall a \in A$, only on eof the cycles affects a or $\sigma(a)$, and that cycle maps a to $\sigma(a)$.

Uniqueness: Suppose $\sigma = \tau_1, \tau_2, \dots, \tau_k$ where τ_1, \dots, τ_k are disjoint cycles. Include extra 1-cycles so that each element of A occurs in exactly one of the cycles of τ . Then you have an equivalence relation \sim on A given by $a \sim b$ if they occur in the same cycle τ_i . This is the same equivalence relation as the one giving the orbits of σ . Then each τ_i is as in the corollary; if you choose a different "a", you just end starting the cycle at a different point.

Now we can prove Thm. 1 (about existence and uniqueness of $\epsilon: S_n \to \{\pm 1\}$). **Definition**: A transposition is a 2-cycle.

Proposition: Every element of S_n can be written as a product of transpositions (not uniquely).

Proof: For any d-cycle, you have: $(a_1 \ a_2 \ \dots \ a_d) = (a_1 \ a_2)(a_2 \ a_3) \dots (a_1 \ a_d) \ (\forall d \in \mathbb{R})$ $\mathbb{Z}_{>0}$). So a d-cycle is a product of d-1 transpositions.

For any $\sigma \in S_n$, write it as a product of (disjoint) cycles and apply the above to each cycle.

So if $\sigma = \tau_i \ \tau_2 \ \dots \tau_k$, where τ_1, \dots, τ_k are disjoint cycles and every element of aoccurs in some τ : (: in exactly one τ_i , how many transpositions do we get? Say τ_i has length d_i for each i. Then the number of transpositions is:

$$\sum_{i=1}^{k} (d_i - 1) = (\sum_{i=1}^{k} d_i) - (\sum_{i=1}^{k} 1) = n - k,$$
 where k is the number of orbits of σ .

If ϵ exists, then it has to equal $(-1)^{n-k}$ because it's a homomorphism, and ϵ of each transpositions is -1.

Definition: Define $\epsilon: S_n \to \{\pm 1\}$ by $\epsilon(\sigma) = (-1)^{n-k}$, where k is the number of orbits of σ . This is well defined (but we need to prove it's a homomorphism).

Lemma: Let $a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_s$ be distinct elements of A, with $r, s \in$ $\mathbb{Z}_{>0}$. Then:

a.
$$(a_1 \ a_2 \ \dots \ a_r)(b_1 \ b_2 \ \dots b_s)(a_r \ b_s) = (a_1 \ a_2 \ \dots \ a_r \ b_1 \ b_2 \ ldots \ b_s)$$
 and
b. $(a_1 \ a_2 \ \dots \ a_r \ b_1 \ b_2 \ \dots b_s)(a_r \ b_s) = (a_1 \ a_2 \ \dots \ a_r)(b_1 \ b_2 \ ldots \ b_s)$

Proof:

- a. Compute both sides and see that they're equal (see handout).
- b. Multiply both sides of (a) on the right by (a_r b_s).

Corollary: Multiplying an element of S_n by a transposition changes its number of orbits by ± 1 .

Proposition: If $\sigma \in S_n$ can be written as a product of m transpositions, then $\epsilon(\sigma) = (-1)^m$.

Proof: We showed that if $\rho, \tau \in S_n$ and τ is a transposition then $\epsilon(\rho\tau) = -\epsilon(\rho)$. Also $\epsilon(1) = 1$ (because 1 has n orbits).

Apply this m times, starting with $\epsilon(1) = 1$ to get $\epsilon(\sigma) = (-1)^m$.

Then $\epsilon(\tau) = -1 \ \forall$ transpositions τ (take m = 1), and ϵ is a homomorphism (if σ is a product of m transpositions and ρ is a product of k transpositions then $\sigma \rho$ is a product of m + k transpositions and $\therefore \epsilon(\sigma \rho) = (-1)^{m+k} = (-1)^m (-1)^k = \epsilon(\sigma)\epsilon(\rho)$. So ϵ exists.

And ϵ is unique because we said what it has to be.