On canonical isomorphisms $TT^*M = T^*TM = T^*T^*M$

Let M be manifold. Establish and study canonical isomorphisms $TT^*M = T^*TM = T^*T^*M$

Calculations in coordinates

It may sounds surprising but calculations in coordinates are transparent and illuminating.

First consider local coordinates on TM and T^*M corresponding to local coordinates (x^i) on M.

Local coordinates for TM are (x^i, t^j) : every vector $\mathbf{r} \in TM$ is a vector $t^i \frac{\partial}{\partial x^i}$, $t^i(\mathbf{r}) = dx^i(\mathbf{r})$. If $\tilde{x}^{\mu} = \tilde{x}^{\mu}(x^i)$ are new local coordinates on M then

$$d\tilde{x}^{\mu}\left(t^{i}\frac{\partial}{\partial x^{i}}\right) = \frac{\partial \tilde{x}^{\mu}(x^{i})}{\partial x^{i}}dx^{i}\left(t^{i}\frac{\partial}{\partial x^{i}}\right) = \frac{\partial \tilde{x}^{\mu}(x^{i})}{\partial x^{i}}t^{i}.$$

Hence changing of local coordinates in TM is

$$(x^i, t^j) \mapsto (\tilde{x}^\mu, \tilde{t}^\nu), \quad \tilde{x}^\mu = \tilde{x}^\mu(x^i), \quad \tilde{t}^\mu = \begin{pmatrix} \mu \\ i \end{pmatrix} t^i,$$
 (1)

where we denote $\frac{\partial \tilde{x}^{\mu}(x^{i})}{\partial x^{i}}$ by $\begin{pmatrix} \mu \\ i \end{pmatrix}$.

Respectively local coordinates for T^*M are (x^i, p_j) . For every 1-form $\omega \in T^*M$ $p_i = \omega\left(\frac{\partial}{\partial x^i}\right)$. Under changing of local coordinates on M $\tilde{x}^{\mu} = \tilde{x}^{\mu}(x^i)$, coordinates (p_i) change to new coordinates (p_{μ}) :

$$p_{\mu} = w \left(\frac{\partial}{\partial \tilde{x}^{\mu}} \right) = w \left(\frac{\partial x^{i}(\tilde{x}^{\mu})}{\partial \tilde{x}^{\mu}} \frac{\partial}{\partial x^{i}} \right) = \frac{\partial x^{i}(\tilde{x}^{\mu})}{\partial \tilde{x}^{\mu}} p_{i}$$

Hence changing of local coordinates in T^*M is

$$(x^i, p_k) \mapsto (\tilde{x}^\mu, \tilde{p}_\nu), \quad \tilde{x}^\mu = \tilde{x}^\mu(x^i), \ p_\mu = \begin{pmatrix} i \\ \mu \end{pmatrix} p_i,$$
 (2)

where we denote $\frac{\partial x^i(\tilde{x}^{\mu})}{\partial \tilde{x}^{\mu}}$ by $\begin{pmatrix} i \\ \mu \end{pmatrix}$

Now using (1),(2) we define coordinates on the spaces TT^*M , T^*TM and T^*T^*M .

The space TT^*M is tangent space to the space T^*M . The local coordinates on TT^*M corresponding to local coordinates (x^i, p_j) on T^*M are coordinates $(x^i, p_j; \xi^k, \rho_m)$; $\xi^k = dx^i(\mathbf{r}), \rho_m = dp_m(\mathbf{r})$. Under changing of local coordinates (x^i) to coordinates $\tilde{x}^{\mu} = \tilde{x}^{\mu}(x^i)$