Oefeningen

1 Druk uit in radialen:

- $1.\ 108,17^{\circ}$
- $2. 12^{\circ}40'33''$
- 3. 190 gon

Oplossingen: 1,887923 rad; 0,221235 rad; 2,984513 rad (of ook: $\frac{19}{20}\pi$ rad)

2 Reken uit:

- 1. $267,83^{\circ} 117,85^{\circ}$
- $2. \ 12^{\circ}02'58'' + 4^{\circ}13'07''$
- 3. $\frac{5}{3}\pi$ rad $5^{\circ}12'57''$ (in radialen)
- 4. 15,15 gon + 15,15° (in decimale graad)

Oplossingen: 149,98°; 16°16′05″; 5,144954 rad; 31,9833 gon

3 Rekenen met driehoeken:

1. Om de hoogte van een mast te bepalen plaatst een landmeter een theodoliet in het punt P op een hoogte h=1,65 m. Ze meet dan de hoeken α en β met de horizontale: $\alpha=78,12^\circ$ en $\beta=4,71^\circ$. Bereken de hoogte H van de mast.

Oplossing: H = 96,85 m

2. De lengte van elke zijde van de gegeven driehoek zijn gekend: a=53 cm, b=18 cm en c=41 cm. Bereken de hoek α .

Oplossing: $\alpha = 123,01^{\circ}$

3. Bereken de lengte van zijde c van de gegeven driehoek. Gegevens: a=13 mm, b=20 mm, $\alpha=21^{\circ}$.

Oplossing: c = 7,83 mm

4. Op de figuur is een schets van een stuk weiland met de gekende gegevens weergegeven.

Bereken de lengte van zijde d en de hoeken α en β .

Oplossing: d=33,17 m; $\alpha=147,02^\circ;\,\beta=56,98^\circ$