INF1600 Architecture des micro-ordinateurs

TP2 Architecture à deux bus et introduction à l'assembleur IA-32

Adam Martin-Côté - 1798345 Abdoulaye Fall - 1825176 Groupe 1

Débuté : 3 octobre 2016 Remis : 16 octobre 2016

Polytechnique Montréal

Exercice 1 #1

RTN concret	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	hexa
MA <- PC ;	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0x3060
MD <- M[MA] : PC <- PC + 4;	0	1	1	0	1	1	0	0	1	1	0	0	0	0	0	0	0x6CC0
IR <- MD ;	1	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0x8260

#2

RTN concret	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	hexa
A<- R[IR<<1612>	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	0	0X0037
MA<- A+IR<110>	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0X10C1
MD <- M[MA]	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0xC80
A<-MD	0	0	0	0	0	0	1	0	1	1	1	0	0	0	1	0	0X02E2
R[IR<2622>]< R[IR<2117>] oper A	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0X0019

NAND = 0x0D

#5

a) Les 2 derniers octets représentent une valeur immédiate (IR<11..0>), ainsi qu'une partie de valeur de d'un registre (r3 = IR<16..12> i.e. les 2 derniers octets de l'instruction englobent les 4 bits moins significatifs de ce registre)

Cette instruction porte l'opcode "0", ce qui suit est donc sans reel importance Instruction equivalente : 0x 00 00 DE AD

- b) exécution plus rapide, on gaspille moins de coup d'horloge pour incrémenter le PC. Nous avons utilisé cette propriété dans le premier microprogramme qui effectue le chargement des instruction
- c) Cette architecture est plus flexible que la précédente: les microprogrammes peuvent être utilisés pour différentes instructions. (exemple: ADD et NAND utiliser le même microprogramme).

La mémoire unique de l'architecture Von Neumann donne plus de flexibilite