Додаток 1

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 23

Виконав студент III-15, Мочалов Дмитро Юрійович Перевірив

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 23

Задача. З точністью 10^{-5} обчислити значення суми

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2^k k!)}.$$

Визначити кількість доданків

Змінна	Тип	Ім'я	Призначення
Член послідовності	Дійсний	X	Вхідні данні
Індекс сумування	Цілий	k	Лічильник
Факторіал	Цілий	fact	Проміжні данні
Кількість доданків	Цілий	n	Результат
Сума	Дійсний	suma	результат
Різниця теперішнього елемента з минулим	дійсний	res	Проміжні данні

Таким чином, математичне модулювання зводится до додвання членів послідовності до моменту поки різниця останнього і перед останнього елементу буде більша або рівна 10^{-5} .Для обчислення степеня використовуємо функцію pow(), для модуля abs().

Крок1: визначитись з алгоритмом

Крок2: деталізуємо дію обчислення факторіала

Крок2: деталізуємо дію обчислення суми

Псевдокод

Крок1

Початок

Обчислюємо факторіал

Обчислюємо суму

Кінець

Крок2

```
Початок
  n = 0;
  k:=1;
  suma:= 1;
  fact := 1;
   повторити
     fact = fact *k
     Обчислюємо суму
   поки res >= 10<sup>-5</sup>
  все повторити
Кінець
Крок3
Початок
  n = 0;
  k:=1;
  suma:= 1;
  fact := 1
  повторити
     fact = fact *k
     suma := suma + (pow(x,2*k)/pow(2,k)*fact)
     res = abs((pow(x, 2 * k) / (pow(2, k) * fact)) - (pow(x, 2 * (k-1)) / (pow(2, (k-1)) * fact/k)))
     k = k + 1
     n = n + 1
   поки res >= 10<sup>-5</sup>
  все повторити
```

Блок-схема

Кінець

Випробовування алгоритму

Крок	Дія	
	Початок	
1	x =2	
2	k = 1	
3	fact = 1	
4	Suma = 2	
5	Res = 1	
6	n = 1	
7	k = 2	
8	fact = 2	
9	suma = 4	
10	Res = 2	
11	n =2	
12	k = 3	
13	fact = 6	
14	suma = 16/3	
15	res = 4/3	
16	n = 3	
17	k = 4	
	Кінець	

Висновок:Ми дослідити подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій.