

데이터구조

11주차: 이진탐색트리 개선 알고리즘 AVL

AVL 트리

※ 이진 탐색 트리

- 자료를 탐색하는데 최적화된 트리
- 자료가 오름차순이나 내림차순과 같은 순서대로 입력 될 경우 연결리스트와 같은 형태 => 빠른 검색속도를 이용하지 못함.

→ 해결알고리즘 : 완전 이진 탐색 트리

※ 완전 이진 탐색 트리

- 트리에 자료가 삽입될 때 마다 완전 이진 탐색 트리 형태 유지를 위해 모양 변경 동작 발생
- 삽입할 때 많은 시간 소요
- 삽입이 적고 탐색이 많은 경우 유리 => 삽입동작이 빈도수가 높아질수록 효율성 감소
- → 해결알고리즘 : AVL 트리

AVL 트리

※ AVL 트리

- 1962년 Adelson-Velskii 와 Landis에 의해 제안
- 트리 내의 모든 노드에 대해 왼쪽 서브 트리의 높이와 오른쪽 서브 트리의 높이가 1이상 차이가 나지 않는 균형 이진 트리 (height balanced binary tree)
- 이진 탐색 트리 내의 임의의 노드 N에 대해서 균형 인수 BF(N)가-1, 0, 1 의 값을 갖는 트리

※ AVL 균형인수

- 왼쪽 서브트리의 높이와 오른쪽 서브트리의 높이 차를 말함
- 균형인수는 보통 BF(T)로 표기
- BF(T) = height(left tree) height(right tree)

• AVL 트리의 회전 연산

- AVL 트리에서의 삽입, 삭제 과정은 이진 탐색 트리에서의 삽입 삭제 과정과 동일
- 삽입, 삭제 후 균형 인수에 따라 트리를 재조정하는 과정이 필요
- 균형인수(BF)를 -1이상에서 1 이하로 조절하는 재조정 동작

회전 유형	설명	삽입에 따른 회전 종류 / 방식
LL 회전	노드 N이 A의 왼쪽 서브 트리의 왼쪽 서브 트리에 삽입되는 경우	Single Right Rotation A를 기준으로 한번의 시계 방향 회전
LR 회전	노드 N이 A의 왼쪽 서브 트리의 오른쪽 서브 트리에 삽입되는 경우	Left-Right Rotation A의 왼쪽 자식을 기준으로 반시계 방향 회전 후 A를 기준으로 시계 방향 회전
RR 회전	노드 N이 A의 오른쪽 서브 트리의 오른쪽 서브 트리에 삽입되는 경우	Single Left Rotation A를 기준으로 한번의 반시계 방향 회전
RL 회전	노드 N이 A의 오른쪽 서브 트리의 왼쪽 서브 트리에 삽입 되는 경우	Right-Left Rotation A의 오른쪽 자식을 기준으로 시계 방향 회전 후 A를 기준으로 반시계 방향 회전

● LL 회전

- 왼쪽 서브 트리의 왼쪽 서브 트리에 노드가 추가되면서 불균형이 발생했을 때 사용

● RR 회전

- 오른쪽 서브 트리의 오른쪽 서브 트리에 노드가 추가되면서 불균형이 발생했을 때 사용

● LR 회전

- 오른쪽 서브 트리의 왼쪽 서브 트리에 노드가 추가되면서 불균형이 발생했을 때 사용

● RL 회전

- 왼쪽 서브 트리의 오른쪽 서브 트리에 노드가 추가되면서 불균형이 발생했을 때 사용

AVL 트리의 예시

Try

다음의 데이터를 AVL트리 알고리즘을 이용하여 트리를 구성하는 과정을 보여라. -데이터: 43, 49, 84, 12, 63, 69, 96, 89

트리 분류

■ 2-3트리, B-트리에 대해 자료조사 후 각 트리에 대해 설명(장단점 포함)하고, 실제 예시(삽입 동작) 를 작성하여 제출하세요.

- 작성방법: 수기(자필)
- 분량: 4Page 이상
- 제출마감: 5월 23일 까지 제출
- 제출방법 : 5월 23일 강의시작 전 제출
- 각 트리에 대한 설명, 장단점, 각 트리 별 실제 예시(그림 표기)
- 주의사항: 실제 삽입 동작 예시가 타 학생과 동일할 경우 레포트 점수 0점

[레포트 표지양식]

2024년 1학기 데이터구조 3차과제 제목: 2-3트리, B-트리

제출일자: 2024년 xx월 xx일

학 번: 1234567 성 명: 홍길동