Poglavje 15

Potence in koreni

15.1 Koreni poljubnih stopenj

Za sodo naravno število n je n-ti koren $\sqrt[n]{a}$ realnega števila $a \ge 0$ tisto nenegativno realno število x, za katerega velja $a = x^n$.

$$\sqrt[n]{a} = x \Leftrightarrow a = x^n; \quad a, x \in \mathbb{R}^+$$

Za liho naravno število n je n-ti koren $\sqrt[n]{a}$ realnega števila a tisto realno število x, za katerega velja $a = x^n$.

$$\sqrt[n]{a} = x \Leftrightarrow a = x^n; \quad a, x \in \mathbb{R}$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ korenski znak, število n pa korenski eksponent.

Pravila za računanje s koreni poljubnih stopenj

•
$$(\sqrt[n]{a})^n = a$$

•
$$(\sqrt[n]{a})^n = a$$

• $\sqrt[n]{a^n} = \begin{cases} |a|, & n = 2k, k \in \mathbb{N} \\ a, & n = 2k - 1, k \in \mathbb{N} \end{cases}$
• $\sqrt[n]{a^w} = (\sqrt[n]{a})^w$
• $\sqrt[n]{a^w} = \sqrt[nz]{a^{wz}}$

•
$$\sqrt[n]{a^w} = (\sqrt[n]{a})^w$$

•
$$\sqrt[n]{a^w} = \sqrt[nz]{a^{wz}}$$

•
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$

•
$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

•
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}; \ b \neq 0$$

$$\bullet \quad \sqrt[n]{a^w} \cdot \sqrt[n]{a^z} = \sqrt[n]{a^{w+z}}$$

•
$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

• $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}; \ b \neq 0$
• $\sqrt[n]{a^w} \cdot \sqrt[n]{a^z} = \sqrt[n]{a^{w+z}}$
• $\frac{\sqrt[n]{a^w}}{\sqrt[n]{a^z}} = \sqrt[n]{a^{w-z}}; \ a \neq 0$

Pri tem za sode korenske stopnje n privzamemo $a, b \in [0, \infty)$; za lihe stopnje n pa $a, b \in \mathbb{R}$.

Naloga 15.1. Poenostavite izraz in ga delno korenite.

•
$$\sqrt[3]{xy^2\sqrt{x^5y}}$$

$$\begin{array}{ccc}
\sqrt{a\sqrt{a^2\sqrt{a^3}}} \\
 & \sqrt[4]{a^3b^2\sqrt{ab^5}}
\end{array}$$

•
$$\sqrt[4]{a^3b^2\sqrt{ab^5}}$$

•
$$\sqrt[4]{ab^2\sqrt[3]{ab}}$$

•
$$\sqrt[3]{a\sqrt[4]{a\sqrt[5]{a}}}$$

•
$$\sqrt[5]{x^4y\sqrt[4]{x^5y^3}}$$

•
$$\sqrt[6]{a^2b^3\sqrt{a^8\sqrt[3]{b}}}$$

•
$$\sqrt[3]{a\sqrt[4]{a\sqrt[5]{a}}}$$
• $\sqrt[5]{x^4y\sqrt[4]{x^5y^3}}$
• $\sqrt[6]{a^2b^3\sqrt{a^8\sqrt[3]{b}}}$
• $\sqrt[3]{x\sqrt{y^3\sqrt[4]{x^3\sqrt[5]{y^6y^{-1}}}}}$

Naloga 15.2. Izračunajte.

•
$$\sqrt[5]{\frac{1}{32}}$$
 $\sqrt[4]{16}$

•
$$\sqrt[3]{-8}$$

• $\sqrt[4]{-625}$

•
$$\sqrt[4]{0.0016}$$

Naloga 15.3. Poenostavite.

•
$$\sqrt[18]{x^{15}}$$

•
$$\sqrt[30]{y^{18}}$$

Naloga 15.4. Racionalizirajte ulomke.

•
$$\frac{1}{2 - \sqrt[4]{3}}$$
• $\frac{1}{\sqrt[4]{2} - 1}$
• $\frac{\sqrt[4]{y}}{2 - \sqrt[4]{y}}$
• $\frac{3}{1 + \sqrt[5]{2}}$

Naloga 15.5. Poenostavite in delno korenite izraz.

•
$$\frac{\sqrt[4]{2}}{\sqrt{2\sqrt{8}}}$$
• $\frac{\sqrt[3]{9}}{\sqrt[5]{3}\sqrt{27}}$
• $\frac{\sqrt{\sqrt{1}}}{\sqrt[17]{1}}$
• $\frac{\sqrt{\sqrt{a}}}{\sqrt[3]{a^2}}$
• $\frac{\sqrt{a\sqrt[3]{a^{-1}} \cdot \sqrt[3]{a^2\sqrt[5]{a}}}}{\sqrt[5]{a\sqrt{a^{-5}}}}$

Naloga 15.6. Izračunajte natančno vrednost korena.

•
$$\sqrt{31 - 12\sqrt{3}}$$

• $\sqrt{18 + 8\sqrt{2}}$

•
$$\sqrt{9-4\sqrt{5}}$$
• $\sqrt{17+2\sqrt{2}}$

Naloga 15.7. Poenostavite izraz in ga delno korenite.

$$\bullet \frac{\sqrt[5]{xy^3 \sqrt[4]{x^2y^3}}}{\sqrt[10]{\sqrt{x}}} \\
\bullet \frac{\sqrt[4]{ab^3 \sqrt[3]{a^2b^3}}}{\sqrt[6]{a}}$$

•
$$\left(\frac{1-z}{1-\sqrt[3]{z}} - \sqrt[3]{z}\right) \left(1 - \sqrt[6]{z^4}\right)$$

• $\sqrt[3]{\sqrt{\sqrt{4096}}} + \sqrt{\sqrt{\sqrt{16}}} - \sqrt[5]{32}$
• $\frac{\sqrt[6]{ab^3\sqrt{a^3b}}}{\sqrt[4]{b^{-3}\sqrt[3]{a}}}$