Feuille d'exercices 6

2 novembre 2019

Partie 1. Droites et plans dans l'espace

Exercice 1. Soit les six points suivants de l'espace :

$$A = (-2, 1, 4)$$
 $B = (1, 1, -4)$ $C = (3, 2, -1)$
 $D = (-8, 1, 20)$ $E = (-3, -1, 11)$ $F = (2, 7, -1)$

- 1. Déterminer des équations paramétriques de la droite \mathcal{D}_{AB} passant par les points A et B.
- 2. Montrer que les points A, B et C ne sont pas colinéaires.
- 3. Est-ce que les points A, B et D sont colinéaires? (Justifier.)
- 4. Déterminer des équations paramétriques du plan \mathcal{P}_{ABC} passant par les points A, B et C.
- 5. Est-ce que les points D et E appartiennent au plan \mathcal{P}_{ABC} ?
- 6. Est-ce que la droite \mathcal{D}_{EF} passant par les points E et F intersecte le plan \mathcal{P}_{ABC} ?
- 7. Calculer la distance entre le point F et le plan \mathcal{P}_{ABC} .
- 8. Déterminer une équation paramétrique du plan \mathcal{P} passant par A et de vecteur normal \overrightarrow{BC} .
- 9. Déterminer des équations paramétriques de la droite définie par l'intersection des plans \mathcal{P}_{ABC} et \mathcal{P} .

Exercice 2. Considérons les trois points suivants, donnés par leurs coordonnées dans un système orthonormé d'origine O = (0,0,0):

$$P = (2, -4, 6)$$
 $Q = (-1, 1, 1)$ $S = (2, -5, 10)$

- 1. Soit \mathcal{P} le plan déterminé par \overrightarrow{OP} et \overrightarrow{OQ} et passant par O. Déterminer l'équation vectorielle de la droite orthogonale au plan \mathcal{P} et passant par le point S.
- 2. Déterminer les équations paramétriques du plan $\mathcal P$ et montrer que le point S appartient à $\mathcal P$.
- 3. Exprimer le vecteur \overrightarrow{OS} comme une combinaison linéaire de \overrightarrow{OP} et \overrightarrow{OQ} .
- 4. Calculer l'aire du triangle PQS.

Partie 2. Inversion de matrices

Exercice 3. Donner la matrice élémentaire $E_4(\mathcal{O}_p)$ associée les opérations élémentaires suivants :

1.
$$\mathcal{O}_p = L_1 \leftarrow 2L_1$$

$$2. \ \mathbb{O}_p = L_3 \leftarrow -L_3$$

3.
$$\mathfrak{O}_p = L_2 \leftrightarrow L_4$$

4.
$$\mathfrak{O}_p = L_4 \leftarrow L_4 - 2L_1$$

$$5. \ \mathcal{O}_p = L_2 \leftarrow L_2 + 5L_4$$

6.
$$\mathcal{O}_p = L_1 \leftarrow L_1 + \frac{1}{2}L_3$$

Exercice 4. Donner l'opération élémentaire associées à chacune des matrices élémentaires suivantes :

1.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{7} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$2. \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$3. \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$4. \begin{bmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exercice 5. Pour chacune des matrices carrées suivantes, déterminer si elle est inversible ou pas et si elle est inversible, calculer son inverse.

$$1. \left(\begin{array}{rrr} 1 & -2 & 3 \\ 2 & -3 & 7 \\ 1 & -4 & 2 \end{array} \right)$$

$$3. \left(\begin{array}{rrr} -3 & 2 & -1 \\ 5 & 1 & 3 \\ 4 & 0 & 2 \end{array} \right)$$

$$4. \, \left(\begin{array}{ccc} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array}\right)$$