

1. Features

KNX3403B is an N-channel enhancement mode power Mosfet field effect transistor which is produced using KIA's LVMosfet technology.the improved process and cell structure have been especially tailored to minimize on-state resistance, provide superior switching performance. This device is widely used in UPS, Power Management for Inverter Systems.

2. Features

- **85A**, 30V, R_{DS} (on) typ. = 4.5m Ω (typ.)@V_{GS} = 10 V
- Low gate charge
- Low Crss
- Fast switching
- Improved dv/dt capability

3. Pin configuration

Pin DFN5*6	Pin TO-252	Function
4	1	Gate
5,6,7,8	2	Drain
1,2,3	3	Source

4. Ordering Information

Part Number	Package	Brand
KND3403B	TO-252	KIA
KNY3403B	DFN5*6	KIA

5. Absolute maximum ratings

(T_C= 25°C , unless otherwise noted)

Symbol	Parameter	Value	Units
V _{DSS}	Drain-Source Voltage	30	V
I _D	Drain Current -Continuous (T _C = 25 °C)	85	Α
	-Continuous (T _C = 100 °C)	61	Α
I _{DM}	Drain Current -Pulsed	340	Α
V _{GSS}	Gate-Source Voltage	±20	V
E _{AS}	Single Pulsed Avalanche Energy (Note 1)	156	mJ
P _D	Power Dissipation (T _C = 25 °C) -Derate above 25 °C	71	W
		0.47	W/°C
T _J ,T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C

6. Thermal Characteristics

Symbol	Parameter	Value	Units
R ₀ JC	Thermal Resistance, Junction-to-Case	2.1	°C /W
R _{θJA}	Thermal Resistance, Junction-to-Ambient	62	°C /W

7. Electrical characteristics

(T_C= 25°C, unless otherwise noted)

	(1c= 25°C, unless otherwise noted)						
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Char	acteristics						
B _{VDSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \text{ uA}$	30			V	
I _{DSS}	Drain-Source Leakage Current	V _{DS} = 30 V, V _{GS} = 0 V			1	uA	
I _{GSS}	Gate- Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA	
On Char	On Characteristics						
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	0.8	1.3	2.5	V	
Б	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 20 A		4.5	5.5	mΩ	
$R_{DS(on)}$		V _{GS} = 4.5V, I _D = 15 A		5.5	7.2	mΩ	
R _G	Gate Resistance	f = 1.0 MHz		5.0		Ω	
Dynamic	: Characteristics						
C _{iss}	Input Capacitance			2200		pF	
Coss	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$		270		pF	
Crss	Reverse Transfer Capacitance	1 1.0 141112		205		pF	
	Switchi	ing Characteristics					
t _{d(on)}	Turn-On Delay Time			11		ns	
t _r	Turn-On Rise Time	$V_{DD} = 20 \text{ V}, V_{GS} = 4.5 \text{ V},$ $I_{D} = 60 \text{ A}, R_{G} = 1.8 \Omega$ (Note2.3)		87		ns	
$t_{d(off)}$	Turn-Off Delay Time			140		ns	
t _f	Turn-Off Fall Time			82		ns	
Qg	Total Gate Charge			47		nC	
Q _{gs}	Gate-Source Charge	$V_{DD} = 24 \text{ V}, I_D = 30\text{A},$ $V_{GS} = 10 \text{ V}^{\text{(Note 2,3)}}$		8.5		nC	
Q_{gd}	Gate-Drain Charge	, v _G G 10 v		9.9		nC	
Drain-So	ource Diode Characteristics and Maximu	ım Ratings	-		-		
Is	Continuous Source Current	Integral Reverse P-N Junction Diode in the MOSFET			85	Α	
I _{SM}	Pulsed Source Current				340	Α	
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S =20 A			1.4	V	
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 30 A,		15		ns	
Qrr	Reverse Recovery Charge	$dI_F / dt = 100 \text{ A/us}^{(Note 2)}$		7.0		uC	
	•	•					

Notes:

- 1. L = 0.5mH, V_{DD} = 15V, V_{GS} = 10V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 2. Pulse Test : Pulse width \leq 300us, Duty cycle \leq 2%
- 3. Essentially independent of operating temperature

8. Typical Characteristics

Figure 3. On-Resistance vs. Drain Current

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage

Figure 6. Gate Charge

Figure 9 . Max. Safe Operating Area

