Gramatici (exerciții)

Exercițiul 3.1. Se dau următoarele limbaje formale:

- a) $L_1 = \{a^n | n \ge 1\};$
- b) $L_2 = \{a^n b^n a^m b^m | n, m \ge 1\};$
- c) $L_3 = \{a^n b^n a^n | n \ge 1\}.$

Pentru fiecare limbaj să se construiască gramatica care îl generează și să se precizeze tipul gramaticii și tipul limbajului, conform clasificării lui Chomsky.

Răspuns.

- a) $G_1 = (\{S\}, \{a\}, S, \{S \to aS, S \to a\})$, gramatică regulată, limbaj regulat.
- b) $G_2 = (\{S,A\}, \{a,b\}, S, \{S \to AA, A \to aAb, A \to ab\})$, gramatică independentă de context, limbaj independent de context.
 - c) $G_3 = (\{S, B\}, \{a, b\}, S, \{S \rightarrow aSBa, S \rightarrow aba, aB \rightarrow Ba, bB \rightarrow bb\}),$ gramatică dependentă de context, limbaj dependent de context.

Se știe că o gramatică G = (N, T, S, P) este gramatică regulată dacă orice producție a sa este fie de forma $A \to aB$, fie de forma $A \to a$ cu $A, B \in N$ și $a \in T$.

Propoziția 3.1. Fie o gramatică G = (N, T, S, P) în care producțiile au forma $A \rightarrow a$, fie au forma $A \rightarrow a_1 a_2 \dots a_n B$ cu $A, B \in N$ și $a_1, a_2, \dots, a_n \in T$. Atunci G = (N, T, S, P) este o gramatică regulată.

Demonstrație (pe scurt).

Construim G' o gramatică regulată cu L(G') = L(G) astfel:

- Producțiile $A \rightarrow a$ se păstrează;
- Producția $A \rightarrow a_1 a_2 \dots a_n B$:
 - i. Dacă n = 1, producția se păstrează
 - ii. Dacă $n \geq 2$, este înlocuită cu $A \rightarrow a_1 X_1, X_1 \rightarrow a_2 X_2, ..., X_{n-1} \rightarrow a_n B$, unde $X_1, X_2, ..., X_{n-1}$ sunt neterminale noi.

Exercițiul 3.2. Să se construiască gramatica regulată echivalentă cu gramatica G = (N, T, S, P), unde $N = \{S, A, B\}$, $T = \{a, b, c\}$, iar mulțimea producțiilor P este următoarea:

$$S \rightarrow aA|bB$$
 (1)

$$A \rightarrow b \mid abcB$$
 (2)

$$B \to abA$$
 (3).

Rezolvare.

Se introduc X_1, X_2, X_3 neterminalele noi, iar producțiile sunt:

$$S \rightarrow aA|bB \qquad (1)$$

$$A \rightarrow b \qquad (2)$$

$$A \rightarrow aX_1 \qquad (3)$$

$$X_1 \rightarrow bX_2 \qquad (4)$$

$$X_2 \rightarrow cB \qquad (5)$$

$$B \rightarrow aX_3 \qquad (6)$$

$$X_3 \rightarrow bA \qquad (7)$$

Propoziția 3.2. Fie o gramatică G = (N, T, S, P) în care producțiile au forma $A \to Bb$, fie de forma $A \to a$ cu $A, B \in N$ și $a,b \in T$. Atunci există G' o gramatică regulată cu L(G') = L(G).

Demonstrație (pe scurt).

Construim G' o gramatică regulată cu L(G') = L(G) astfel:

Fie **S'** un nou neterminal, care este simbol inițial în **G'**. Se fac următoarele transformări:

- Producția $A \rightarrow a$ se transformă astfel: Se introduce $S' \rightarrow aA$; Dacă A = S atunci se adaugă si $S' \rightarrow a$;
- Producția $A \rightarrow Ba$ se transformă în $B \rightarrow aA$;
- Producția $S \rightarrow Aa$: se introduce și $A \rightarrow a$.

Exercițiul 3.3. Să se aplice transformările de la propoziția 3.2. pentru gramatica G = (N, T, S, P), unde $N = \{S, A, B\}$, $T = \{a, b\}$, cu mulțimea producțiilor P:

$$S \to Aa|b$$
 (1)

$$A \rightarrow Sb|a$$
 (2)