

VoIP & SIP

Summary

- What is VoIP
- Real Time Protocol
- SIP
 - Servers, proxies, registrars
 - NAT traversal
 - mobility
 - Android support

Voice over IP (VoIP)

- Did you know that:
 - Most telephony today is transported with VoIP?
 - Most PBX-es installed use VoIP?
 - In Ethiopia, Oman VoIP use is a criminal offence?
 - Hangouts, Whatsapp, Skype, TeamSpeak, TeamViewer, Viber, Yahoo Mesg all use VoIP?

Seven Myths About VoIP

- 1. VoIP is free
- The only difference between VoIP and regular telephony is the price
- 3. Quality of service isn't an issue nonadways, because there's plenty of bandwidth in the network
- 4. VoIP can't replace regular telephony, because it still can't guarantee quality of service
- 5. VoIP is just another data application
- VolP isn't secure
- 7. A Phone is a Phone is a Phone

What is VoIP?

- VoIP is an end-to-end architecture
 - Voice transported in IP packets
- Comparison with PSTN
 - Circuit switch vs. Packet switch
 - Latency
 - Dataplane, control plane
 - Mobility
- VoIP headsets
 - Physical, Software
 - Built into Android

Packet Encapsulation

• Encapsulate 10-20ms of speech in a packet

RTP, RTCP, RTSP

audio/video applications	signaling and control			streaming applications		
video, audio, CODECs	RTCP	SDP CODECs		Cs		
RTP		SIP		RTSP		
UDP			TO	UDP		
IP						

6

Packet Encapsulation

Realtime delivery

- Realtime app = maintain time relationship at receiver
 - Play in same order as original (sequence number)
 - Play time to reproduce original (time stamp)
 - Once decided p1, all packets have deadlines!

Jitter =
$$(r_i-r_{i-1})-(s_i-s_{i-1})$$

Realtime delivery

- What is jitter?
 - Packet delay variance = $(r_i-r_{i-1})-(s_i-s_{i-1})$
 - Negative jitter: late packet
 - Positive jitter: early packet
- How to shield listener from jitter?
 - Playout buffer (extra delay)

Dealing with jitter

Playout buffer = delay at receiver to smooth jitter

25.04.2016 ¹⁰

Delay and jitter

Audio end-to-end delay components

playout buffer ADDS delay

Voice quality metrics

- Listening quality
- Conversational quality
- Network quality
 - Delay, loss, jitter
 - Delay limits
 - < 150ms acceptable</p>
 - < 400ms tolerable</p>
 - > 400ms unacceptable
- Mean Opinion Score (MOS)
 - Excellent = 5, Good = 4, Fair = 3, Poor = 2
 - Functions derived using human listeners to assign MOS to a given (loss,delay) conversation¹

¹Cole, Rosenbluth "Voice over IP Performance Monitoring", http://ccr.sigcomm.org/archive/2001/apr01/ccr-200104-cole.pdf

voice codecs

Codec	bitrate	Framesize [ms]	codec Delay[ms]	MOS ideal cond.
G.711	64kbps	10, 20,30	25	4.1
G.729	8kbps	10, 20,30	15, 25,35	3.92
GSM-FR	14kbps	22.5	20	3.5
SILK (skype)	6-40Kbps	20	?	5

MOS(delay, loss)

- Conditions: 25ms vocoder delay, 60ms playout buffer
- Used known MOS(delay, loss) functions to generate curves
- G.729 = high compression, less resilient to loss
- G.711 = needs more bandwidth, more loss resilient