

Kapitel 3 Messtechnik

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

Abschnitt 3.1 Strom- und Spannungsmessung

GET-1: WS-2017 V2.01 Abschnitt 3.1 F

Messgeräte

- ► Ströme und Spannungen werden mit dafür vorgesehenen Messgeräten gemessen.
- Messgeräte werden charakterisiert durch ihren Messbereich und ihren Innenwiderstand.
- ▶ Ein Innenwiderstand von $R_i \neq R_{i,ideal}$ kann eine Messung stark verfälschen!
- Ströme werden mit Amperemetern, Spannungen mit Voltmetern gemessen.

Strommessung

$$I_R = \frac{U}{R}$$
 $I_R' = \frac{U}{R_i + R}$

$$I_{R} = \frac{U}{R} \qquad I'_{R} = \frac{U}{R_{i} + R}$$

$$\frac{I_{R}}{I'_{R}} = \frac{\frac{U}{R}}{\frac{U}{R_{i} + R}} = \frac{R_{L} + R_{i}}{R_{L}}$$

$$= 1 + \frac{R_{i}}{R}$$

$$I_R' = \frac{U}{R + R_i} < I$$

⇒ Der Innenwiderstand verfälscht den Messwert.

⇒ für kleinen Messfehler:

$$R_i \ll R_L$$

(Amperemeter mit kleinem Innenwiderstand, ideal

$$R_i = 0 \Omega$$
)

Strommessung (Beispiele)

Beispiel 1: $R_i \ll R$

$$U=10\,\mathrm{V}; \quad R=1000\,\Omega=1\,\mathrm{k}\Omega; \quad R_i=1\,\Omega$$

 $\Rightarrow \quad I_R=0.01\,\mathrm{A}=10\,\mathrm{mA}$
 $I_R'=0.0099900999\,\mathrm{A}\approx 10\,\mathrm{mA}$
 $\Rightarrow \mathrm{Fehler\ vernachl\"{assigbar}}$

Beispiel 2: $R_i = \frac{1}{10}R$

$$U = 10 \, \text{V}$$
 $R = 10 \, \Omega$ $R_i = 1 \, \Omega$
 \Rightarrow $I_R = U = 1 \, \text{A}$
 $I_R' = 0.9090909 \, \text{A} \approx 0.91 \, \text{A}$
 \Rightarrow Fehler nicht vernachlässigbar

Spannungsmessung I

ideal (links):
$$U_L = I_q R_L = I_{R_L} R_L$$

Messung (rechts): $U_L' = I_{R_L}' R_L = I_q \cdot (R_L \parallel R_i)$

$$= \underbrace{I_q R_L}_{EU_L} \cdot \underbrace{\frac{1}{1 + \frac{R_L}{R_i}}}_{\text{Fehlerfaktor}}$$

Durch den Innenwiderstand R_i des Strommessers entsteht ein zusätzlicher Strompfad. Der Strom durch die Last I_{R_L} verringert sich und der Meßwert U_I wird verfälscht.

GET-1: WS-2017 V2.01 Abschnitt 3.1 Folie 16

Spannungsmessung II

Spannungsmessung mit geringem Messfehler:

 $R_i \gg R_L$ Voltmeter mit möglichst hohem Innenwiderstand

 $R_i
ightarrow \infty \Omega$ Idealerweise unendlich hoher Innenwiderstand

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Spannungsmessung (Beispiele)

Beispiel 1: $R_i \gg R_L$

$$I_q=1\, \mathrm{mA}; \quad R_L=1\, \mathrm{k}\Omega; \quad R_i=10\, \mathrm{M}\Omega$$
 $\Rightarrow \quad U_L=1\, \mathrm{V}$ $U_L'=0,9999\, \mathrm{V}\approx 1\, \mathrm{V}$ \Rightarrow Fehler vernachlässigbar

Beispiel 2: $R_i \approx R_L$

$$I_q=1\,\mu \text{A}; \quad R_L=1\,\text{M}\Omega; \quad R_i=10\,\text{M}\Omega$$

$$\Rightarrow \quad U_L=1\,\text{V}$$

$$U_L'=0.9101\,\text{V}$$

$$\Rightarrow \text{Fehler ca. 9 \%; nicht vernachlässigbar}$$

Simultanmessung

Es ist nicht möglich, gleichzeitig Strom und Spannung exakt zu messen!

GET-1: WS-2017 V2.01

Simultanmessung

 $({\sf simultanmessung.asc})$

Widerstandsmessung

- Widerstandsmessung in digitalen Multimetern mittels Konstantstromquelle.
- ► Stromquelle in glatten Zehnerpotenzen.
- Spannung repräsentiert Zahlenwert des Widerstandes (ohne Zenerpotenz)
- Zusätzliche Anzeige der Zehnerpotenz (üblich: Kommaverschiebung und Präfix Milli, Kilo, Mega)

- ► Messung kleiner Widerstände mit Kelvin-Messung (nicht hier)
- ► Anderes Prinzip: Wheatstonebrücke (später)

Das dargestellte Messgerät kann Eingangsströme bis zu $I_{max}=100\,\mu\text{A}$ darstellen. Dieser Messbereich soll nun durch Einfügen eines Nebenwiderstandes (Shunt) auf Ströme $I>I_{max}$ erweitert werden.

Messbereichserweiterung beim Amperemeter II

Bei passender Auswahl des Shuntwiderstandes kann ein größerer Strom $I > I_{iA,max}$ gemessen werden. R_{Shunt} kann mit Hilfe des Stromteilers aus $I_{iA,max,neu}$ und $I_{iA,max,alt}$ berechnet werden.

$$\frac{I_{iA}}{I} = \frac{R_{Shunt}}{R_{Shunt} + R_{iA}}$$

$$\Rightarrow R_{Shunt} = \frac{I_{iA}}{I} \cdot (R_{Shunt} + R_{iA})$$

$$\Rightarrow R_{Shunt} = R_{iA} \cdot \frac{I_{iA}}{I - I_{iA}}$$
(2)

◆ロト ◆問ト ◆ヨト ◆ヨト ヨ めのや

$$I_{A,max}=100\,\mu ext{A}$$
 $R_{iA}=100\,\Omega$
 $R_1=?\,\Omega$
 $R_2=?\,\Omega$
 $R_3=?\,\Omega$

Der Messbereich soll durch das Schließen der Schalter $S_1 \dots S_3$ auf 500 μA , 1 mA, 5 mA vergrößert werden.

Links: Scalen für DC/AC Strom/Spannung, Widerstand, Leistung Rechts: Multiplikatoren oder

Rechts: Multiplikatoren oder Scalenendwerte je Messbereich

$$I_{A,max}=100~\mu A$$
 $R_{iA}=100~\Omega$ $R_1=?~\Omega$ $R_2=?~\Omega$ $R_3=?~\Omega$

Für den neuen Messbereich $I_{max}=500\,\mu\mathrm{A}$ berechnet sich der Shuntwiderstand R_1 zu

$$R_1 = R_{iA} \cdot \frac{100 \,\mu\text{A}}{500 \,\mu\text{A} - 100 \,\mu\text{A}} = 25 \,\Omega.$$

$$I_{A,max}=100\,\mu ext{A}$$
 $R_{iA}=100\,\Omega$
 $R_1=25\,\Omega$
 $R_2=?\,\Omega$
 $R_3=?\,\Omega$

Hier muss zunächst der Innenwiderstand der Parallelschaltung von R_{iA} und R_1 berechnet werden. Dieser ist

$$R_{iA}^* = R_{iA} \parallel R_1 = 20 \,\Omega.$$

Für den Messbereich $I_{max} = 1 \text{ mA}$ berechnet sich R_2 zu

$$R_2 = R_{iA}^* \cdot \frac{500 \,\mu\text{A}}{1 \,\text{mA} - 500 \,\mu\text{A}} = 20 \,\Omega.$$

◆ロト 4周ト 4 章 ト 4 章 ト 章 めなべ

$$egin{aligned} I_{A,max} &= 100~\mu\mathrm{A} \ R_{iA} &= 100~\Omega \ R_1 &= 25~\Omega \ R_2 &= 20~\Omega \ R_3 &= ?~\Omega \end{aligned}$$

Wieder muss zunächst der Innenwiderstand der Parallelschaltung von R_{iA} , R_1 und R_2 berechnet werden. Dieser ist

$$R_{\textit{iA}}^{**} = R_{\textit{iA}} \parallel R_1 \parallel R_2 = 10\,\Omega.$$

Für den Messbereich $I_{max}=5\,\mathrm{mA}$ berechnet sich R_3 zu

$$R_3 = R_{iA}^{**} \cdot \frac{1 \text{ mA}}{5 \text{ mA} - 1 \text{ mA}} = 2.5 \Omega.$$

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○

Messbereichserweiterung beim Voltmeter

Maximal messbare Spannung (Vollausschlag) eines Messgerätes: $U_{V,max}$. Beim Messen von Spannungen $U > U_{V,max}$ wird ein Vorwiderstand in Reihe mit dem Messgerät geschaltet:

Bei passender Auswahl des Vorwiderstandes kann nun jede Spannung $U > U_{V,max}$ gemessen werden.

$$U_M = U \cdot \frac{R_i}{R_i + R_V}$$
 (Spannungsteiler)

$$R_V = R_i \cdot (\alpha - 1). \tag{3}$$

$$U_{V,max}=10\,\mathrm{mV}$$
 $R_i=100\,\mathrm{k}\Omega$
 $R_1=?~\Omega$
 $R_2=?~\Omega$
 $R_3=?~\Omega$

Der Messbereich soll durch das Öffnen der Schalter $S_1 \dots S_3$ in Schritten erweitert werden.

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P

Für den Messbereich $U_{max}=100\,\mathrm{mV}$ berechnet sich R_1 zu $R_1=R_i\cdot(10-1)=900\,\mathrm{k}\Omega.$

$$U_{V,max}=10~ ext{mV}$$
 $R_i=100~ ext{k}\Omega$
 $R_1=900~ ext{k}\Omega$
 $R_2=?~\Omega$
 $R_3=?~\Omega$

Aus der Reihenschaltung von R_i und R_1 folgt

$$R_i^* = R_i + R_1 = 1 \,\mathrm{M}\Omega.$$

Für den Messbereich $U_{max}=1\,\mathrm{V}$ berechnet sich R_2 zu

$$R_2 = R_i^* \cdot (10 - 1) = 9 \,\mathrm{M}\Omega.$$

4□ ト 4団 ト 4 豆 ト 4 豆 ・ 夕 Q ○

$$U_{V,max}=10~ ext{mV}$$
 $R_i=100~ ext{k}\Omega$
 $R_1=900~ ext{k}\Omega$
 $R_2=9~ ext{M}\Omega$
 $R_3=?~\Omega$

Aus der Reihenschaltung von R_i , R_1 und R_2 folgt

$$R_i^{**} = R_i + R_1 + R_2 = 10 \,\mathrm{M}\Omega.$$

Für den Messbereich $U_{max}=10\,\mathrm{V}$ berechnet sich R_3 zu

$$R_3 = R_i^{**} \cdot (10 - 1) = 90 \text{ M}\Omega.$$

4□ ト 4団 ト 4 重 ト 4 重 ・ 9 9 (*)

Abschnitt 3.2 Wheatstonesche Messbrücke

GET-1: WS-2017 V2.01 Abschnitt 3.2 Folie 180

Bestimmung eines Widerstandes

Historische Widerstandsbestimmung:

- ▶ Unbekannten Widerstand an Messgerät anschließen.
- ► Anzeige (links) mittels Drehregler (rechts) auf null abgleichen.
- Wert an Skala ablesen (Skala rechts, Multiplikator Mitte).
- ▶ Messprinzip wird auch heute noch verwendet (z. B. in der Sensorik).
- ► Funktion?

Wheatstonesche Messbrücke

 R_1, R_2 : Werte irrelevant R_2/R_1 : Verältnis einstellbar, bekannt

Referenz, bekannt R4: unbekannt, gesucht

Das Verhältnis $\frac{R_2}{R_1}$ wird als Schleifkontakt über Widerstandsdraht realisiert. Einstellung von R_2/R_1 so, dass $U_{R_2} = U_{R_4}$ (kein Querstrom):

Mit $\frac{U_{R_4}}{U_{R_3}} = \frac{U_{R_2}}{U_{R_1}}$ und $I_1 = I_2$, $I_3 = I_4$ folgt: $R_4 = R_3 \cdot \frac{R_2}{R_1}$

$$R_4 = R_3 \cdot \frac{R_2}{R_1}$$

Wheatstonesche Messbrücke

(wheatstone_bruecke.asc)

Wheatstonesche Messbrücke - Anwendung

Abschnitt 3.2 Folie 184

Wheatstonesche Messbrücke

Anstelle des Amperemeters kann auch ein Voltmeter zur Messung des Nulldurchganges eingesetzt werden.

Beispiel: Dehnungsmesstreifen I

- $Arr R_{DMS} = R_1 \dots R_4 = 100 \Omega$ (ohne mechanische Belastung)
- ▶ $U_q = 10 \, \text{V}$
- Brücke ist abgeglichen für : $U_2 = U_4$
- ▶ Bei Dehnung ändert sich R_{DMS} (Annahme hier 1%)

$$I_1 = I_2 = \frac{10 \text{ V}}{200 \,\Omega} = 50 \text{ mA}$$
 $U_2 = 100 \,\Omega \cdot 50 \text{ mA} = 5 \text{ V}$
 $I_3 = I_4 = \frac{10 \,\text{ V}}{201 \,\Omega} \approx 49,751 \text{ mA};$
 $U_4 = 101 \,\Omega \cdot 49,751 \text{ mA} \approx 5,0249 \,\text{ V}$
 $\Rightarrow U_2 - U_4 \approx 24,9 \,\text{mV}$

401491471717

Beispiel: Dehnungsmesstreifen II

- ▶ Mit der Brückenschaltung muss ein Messgerät mit einem Messbereich von 100 mV Vollausschlag eingesetzt werden.
- ▶ Ohne Brückenschaltung müsste der Spannungsabfall über R_{DMS} selbst gemessen werden, d.h. der Vollausschlag des Messgerätes müsste, um 5,0249 V messen zu können 10 V sein.
- Ohne Brückenschaltung muss das Messgerät mehrere Stellen hinter dem Komma genau messen können, was für die Anwendung i. d. R. zu aufwändig ist.
- ⇒ Erhebliche Verbesserung mit der Brückenschaltung, da "einfaches" Messgerätes verwendet werden kann.

Allgemeiner Hinweis:

Sofern nicht ausdrücklich auf das Gegenteil hingewiesen wird, betrachten wir die verwendeten Messgeräte immer als ideal!

Das bedeutet im Einzelnen:

- ▶ Der Innenwiderstand von Amperemetern ist verschwindend gering: $R_{in,A} \rightarrow 0 \, \Omega$
- ▶ Der Innenwiderstand von Voltmetern strebt gegen unendlich: $R_{in,V} \to \infty \Omega$

Zusammenfassung Kapitel 3

- Messgeräte haben einen Innenwiderstand ungleich dem idealen $R_i \neq R_{i,ideal}$
- Das Messen mit dem Messgerät kann die Messung stark verfälschen
- Strommessgeräte sollen einen möglichst kleinen Innenwiderstand haben
- Spannungsmessgeräten sollen einen möglichst hohen Innenwiderstand haben
- Strom und Spannung können nicht gleichzeitig exakt gemessen werden
- Mit Hilfe einer Wheatstoneschen Messbrücke können kleine Widerstände genau bestimmt werden