CPE232 Data Models

Introduction

โปรเจกต์นี้เป็นการนำข้อมูล จากคลังข้อมูลสาธารณะของ GHO (Global Health Observatory) ภายใต้องค์การอนามัยโลก (WHO) เพื่อติดตามสถานะด้าน สุขภาพและปัจจัยที่เกี่ยวข้องอื่นๆ สำหรับทุกประเทศ ข้อมูลเหล่านี้ถูกเผยแพร่ให้สาธารณะเพื่อการวิเคราะห์ข้อมูลทางสุขภาพ ข้อมูลที่เกี่ยวกับอายุขัยชีวิตและ ปัจจัยสุขภาพสำหรับ 193 ประเทศได้รับการเก็บรวบรวมจากเว็บไซต์เดียวกันของคลังข้อมูล WHO และข้อมูลเศรษฐกิจที่เกี่ยวข้องถูกเก็บรวบรวมจากเว็บไซ ต์ของสหประชาชาติ จากหมวดหมู่ที่เกี่ยวข้องกับปัจจัยสุขภาพทั้งหมด ในช่วง 15 ปี ตั้งแต่ปี 2000-2015 จำนวน 193 ประเทศเพื่อวิเคราะห์ และทำนายอายุ จากข้อมูลที่มี

Data explanation each column

Column Name	Describtion
Country	ชื่อประเทศ
Year	ปีที่เก็บขอมูล
Status	เป็นประเทศที่พัฒนาแล้ว หรือ กำลังพัฒนา
Life expectancy	การคาดประมาณจำนวนอายุโดยเฉลี่ยของการมีชีวิตอยู่ของประชากร
Adult Mortality	อัตราการเสียชีวิตของคนอายุ 15-60 ต่อ 1000 คน
Infant Deaths	จำนวนทารกแรกเกิดที่เสียชีวิต ต่อ 1000 คน
Alcohol	จำนวนการบริโภคแอลกอฮอร์ เป็นลิตรต่อคน (อายุ 15 ขึ้นไป)
Percentage Expenditure	ค่าใช้จ่ายด้านสุขภาพคิดเป็นเปอร์เซ็นต์ของผลิตภัณฑ์รวมในประเทศต่อหัว (%)
Hepatitis B	ความครอบคลุมการฉีดวัคชีนป้องกันไวรัสตับอักเสบบี (HepB) ในเด็กอายุ 1 ปี (%)
Measles	จำนวนรายงานผู้ป่วยโรคหัดต่อประชากร 1,000 คน
Bmi	ดัชนีมวลกายเฉลี่ยของประชากรทั้งหมด
Under-Five Deaths	อัตราการเสียชีวิตอายุที่ต่ำกว่า 5 ปีต่อประชากร 1,000 คน
Polio	ความครอบคลุมการฉีดวัคซีนป้องกันโรคโปลิโอ ในเด็กอายุ 1 ปี (%)
Total Expenditure	รายจ่ายด้านสุขภาพของรัฐบาลคิดเป็นเปอร์เซ็นต์ของรายจ่ายภาครัฐทั้งหมด (%)
Diphtheria	ความครอบคลุมการฉีดวัคซีนป้องกันโรคคอตีบ บาดทะยัก และไอกรน ในเด็กอายุ 1 ปี (%)
Hiv/Aids	อัตราการเสียชีวิตต่อการเกิดเอชไอวี/เอดส์ที่ต่ำกว่า 5 ปี ต่อประชากร 1,000 คน
Gdp	ผลิตภัณฑ์มวลรวมภายในประเทศต่อคน (หน่วยเป็น USD)
Population	จำนวนประชากร
Thinness 10-19 Years	ภาวะผอมของเด็กอายุ 10 - 19 ปี

Thisness 5-9 Years	ภาวะผอมของเด็กอายุ 5 - 9 ปี
Income Composition Of Resources	ดัชนีการพัฒนามนุษย์ในแง่ของรายได้ของทรัพยากร (ดัชนีตั้งแต่ 0 ถึง 1)
Schooling	จำนวนปีการศึกษา(ปี)

Data preparation process and results

ขั้นแรกเราจะทำการ import library ที่เราต้องการที่จะใช้มาก่อน

```
data = pd.read_csv(r"C:\kmutt\2.2\CPE232\finalpj\Life Expectancy Data.csv")
pd.set_option('display.max_columns', None)
data.head()
```

ต่อไปจะอ่านข้อมูลจากไฟล์ CSV เก็บข้อมูลไว้ใน data ตั้งค่าให้แสดงทุกคอลัมน์ของข้อมูลและแสดงข้อมูลหน้าต่อหน้าของตาราง

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	вмі	under- five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1-19 years	thinness 5-9 years	Income composition of resources	Schooling
0 Afg	hanistan		Developing					71.279624									584.259210	33736494.0			0.479	10.1
1 Afg	hanistan		Developing														612.696514				0.476	10.0
2 Afg	hanistan		Developing		268.0			73.219243	64.0						64.0		631.744976	31731688.0			0.470	9.9
3 Afg	hanistan		Developing					78.184215									669.959000	3696958.0			0.463	9.8
4 Afg	hanistan		Developing					7.097109	68.0				68.0		68.0			2978599.0			0.454	9.5

อันนี้เป็น output ของ dataที่เรานั้นได้มา

ต่อไปจะดูข้อมูลทางเทคนิคของ dataframe เช่น จำนวนแถวและคอลัมน์ทั้งหมด ชนิดของข้อมูลในแต่ละคอลัมน์

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):
     Column
                                      Non-Null Count
 #
                                                     Dtype
    Country
                                      2938 non-null
                                                     object
 0
 1
    Year
                                      2938 non-null
                                                     int64
                                      2938 non-null
 2
    Status
                                                     object
    Life expectancy
                                     2928 non-null
                                                      float64
 4
    Adult Mortality
                                     2928 non-null
                                                     float64
    infant deaths
                                                     int64
                                     2938 non-null
    Alcohol
                                     2744 non-null
                                                     float64
 6
     percentage expenditure
                                     2938 non-null
                                                     float64
 8
    Hepatitis B
                                     2385 non-null
                                                     float64
 9
    Measles
                                                     int64
                                     2938 non-null
 10
     BMT
                                     2904 non-null
                                                     float64
    under-five deaths
                                     2938 non-null
                                                     int64
 11
                                     2919 non-null
                                                     float64
 12
    Polio
   Total expenditure
                                                     float64
 13
                                     2712 non-null
 14 Diphtheria
                                                     float64
                                      2919 non-null
 15
     HIV/AIDS
                                      2938 non-null
                                                     float64
 16
                                     2490 non-null
                                                     float64
 17
    Population
                                     2286 non-null
                                                     float64
    thinness 1-19 years
                                     2904 non-null
                                                     float64
 18
     thinness 5-9 years
 19
                                     2904 non-null
                                                     float64
 20 Income composition of resources 2771 non-null
                                                      float64
                                                      float64
     Schooling
                                      2775 non-null
dtypes: float64(16), int64(4), object(2)
memory usage: 505.1+ KB
```

ข้อมูลที่ได้จาก data.info()

```
data.isnull().any()
```

ต่อไปเราจะใช้ data.isnull().any() เพื่อดูว่าข้อมูลของเรานั้น มี column ไหนบ้างที่มี NULL โดยที่ output ขงอเราจะได้ออกมาในรูปแบบของ boolean

Country	False
Year	False
Status	False
Life expectancy	True
Adult Mortality	True
infant deaths	False
Alcohol	True
percentage expenditure	False
Hepatitis B	True
Measles	False
BMI	True
under-five deaths	False
Polio	True
Total expenditure	True
Diphtheria	True
HIV/AIDS	False
GDP	True
Population	True
thinness 1-19 years	True
thinness 5-9 years	True
Income composition of resources	True
Schooling	True
dtype: bool	11 4
acype: boot	

ข้อมูลที่ได้จาก data.isnull().any()

```
data[data['Life expectancy '].isnull()]
```

หลังจากนั้นเราจะมาดูตารางในแถวที่มีค่า Life expectancy เป็น NULL ว่ามันเกิดจากอะไร

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BMI	under- five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1-19 years	thinness 5-9 years	Income composition of resources	Schooling
624	Cook Islands		Developing	NaN	NaN			0.000000							98.0		NaN	NaN			NaN	NaN
769	Dominica	2013	Developing	NaN	NaN			11.419555	96.0		58.4		96.0		96.0		722.756650	NaN				12.7
1650	Marshall Islands		Developing	NaN	NaN			871.878317									3617.752354	NaN			NaN	0.0
1715	Monaco		Developing	NaN	NaN			0.000000	99.0		NaN		99.0		99.0		NaN	NaN	NaN	NaN	NaN	NaN
1812	Nauru		Developing	NaN	NaN			15.606596										NaN			NaN	9.6
1909	Niue		Developing	NaN	NaN			0.000000	99.0				99.0		99.0		NaN	NaN			NaN	NaN
1958	Palau		Developing	NaN	NaN		NaN	344.690631														14.2
2167	Saint Kitts and Nevis		Developing	NaN	NaN			0.000000							96.0		NaN	NaN			0.749	13.4
2216	San Marino		Developing	NaN	NaN			0.000000			NaN						NaN	NaN	NaN	NaN	NaN	15.1
2713	Tuvalu		Developing	NaN	NaN			78.281203						16.61			3542.135890				NaN	0.0

เมื่อเราได้ข้อมูลออกมา เราก็จะทำการวิเคราะห์ข้อมูลที่เราได้ออกมาว่าเราควรจะทำอย่างไร โดยที่แถวที่ Life expectancy เป็น NULL นั้น มันเป็น NaN ซึ่งค่า Life expectancy นั้น จะเป็นค่าที่เราเอามาใช้เป็นค่าที่เราจะนำมาเรียนรู้เพื่อที่จะทำนาย เราจึงตัดสินใจที่จะลบแถวที่ Life expectancy นั้นเป็น NULL ทิ้งไป

```
new=data[data['Life expectancy '].isnull()]
data.drop(new.index,inplace=True)
```

โค้ดนี้จะเป็นการลบแถวที่ Life expectancy นั้นเป็น NULL ทิ้งไป โดยที่จะสร้าง dataframe ใหม่มาอันนึง

โดยเลือกแถวที่มีคอลัมน์ Life expectancy เป็น NULL จากนั้นจะ drop แถวใน data ที่มี index เดียวกันกับ new ออกไปโดยไม่ต้องกำหนด DataFrame ใหม่

```
data.isnull().any()
```

ต่อไปก็ดู column ที่เป็น NULL อีกรอบ

Country	False
Year	False
Status	False
Life expectancy	False
Adult Mortality	False
infant deaths	False
Alcohol	True
percentage expenditure	False
Hepatitis B	True
Measles	False
BMI	True
under-five deaths	False
Polio	True
Total expenditure	True
Diphtheria	True
HIV/AIDS	False
GDP	True
Population	True
thinness 1-19 years	True
thinness 5-9 years	True
Income composition of resources	True
Schooling	True
dtype: bool	

ข้อมูลที่ได้จาก data.isnull().any()

ต่อไปจะดูตารางในแถวที่มีค่า Alcohol เป็น NULL ว่ามันเกิดจากอะไร

ต่อไปเป็นการวิเคราะห์ข้อมูลที่แถวที่มีค่า Alcohol เป็น NULL โดยที่เราได้ดูว่า column Alcohol นั้นใช้อธิบายหน่วยการบริโภคแอลกอฮอล์ต่อคน ซึ่งในตาราง นี้ ไม่มีค่าที่เป็น 0.0 ซึ่งเป็นไปไม่ได้ที่จะไม่มีคนที่ไม่บริโภคแอลกอฮอล์ ดังนั้นเราจึงเลือกวิธีการเปลี่ยนเป็น 0 ในช่องที่เป็น NULL

```
data['Alcohol'].fillna('0.0', inplace=True)
```

โค้ดนี้เป็นการเติมค่า NULL ในคอลัมน์ Alcohol ด้วยค่า 0.0

```
data[data['Hepatitis B'].isnull()]
```

ต่อไปจะดูตารางในแถวที่มีค่า Hepatitis B เป็น NULL ว่ามันเกิดจากอะไร

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ	under- five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1-19 years	thinness 5-9 years	Income composition of resources	Schooling
44	Algeria	2003	Developing		146.0			25.018523	NaN								294.335560	3243514.0			0.663	11.5
45	Algeria	2002	Developing					148.511984	NaN	5862								3199546.0				11.1
46	Algeria	2001	Developing					147.986071	NaN	2686			89.0		89.0		1732.857979				0.644	10.9
47	Algeria	2000	Developing					154.455944	NaN		44.4			3.49				3118366.0				10.7
57	Angola	2006	Developing					25.086888	NaN						34.0		262.415149	2262399.0			0.439	7.2
2917	Zambia	2004	Developing		578.0		2.46	8.369852	NaN				84.0					11731746.0			0.456	10.5
2918	Zambia	2003	Developing		64.0			65.789974	NaN								429.158343	11421984.0			0.443	10.2
2919	Zambia	2002	Developing					54.043480	NaN	25036					84.0	18.4	377.135244	111249.0			0.433	10.0
2920	Zambia	2001	Developing	44.6				46.830275	NaN	16997							378.273624	1824125.0			0.424	9.8
2921	Zambia	2000	Developing		614.0			45.616880	NaN	30930							341.955625				0.418	9.6
553 rov	vs × 22 colu	ımns																				

ต่อไปเป็นการวิเคราะห์ข้อมูลที่แถวที่มีค่า Hepatitis B เป็น NULL โดยที่เราได้ดูว่า column Hepatitis B นั้นใช้อธิบายหน่วยการการฉีดวัคซีนป้องกันไวรัสตับ อักเสบบีในเด็กอายุ 1 ปีคิดเป็นเปอร์เซ็นต์ ซึ่งในตารางนี้ ไม่มีค่าที่เป็น 0.0 ซึ่งมันสามารถมีการรฉีดวัคซีนป้องกันไวรัสตับอักเสบบีเป็น 0 เปอร์เซ็นต์ได้ ดังนั้นเรา จึงเลือกวิธีการเปลี่ยนเป็น 0 ในช่องที่เป็น NULL

```
data['Hepatitis B'].fillna('0.0', inplace=True)
```

โค้ดนี้เป็นการเติมค่า NULL ในคอลัมน์ Hepatitis B ด้วยค่า 0.0

```
data.isnull().any()
```

Country	False
Year	False
Status	False
Life expectancy	False
Adult Mortality	False
infant deaths	False
Alcohol	False
percentage expenditure	False
Hepatitis B	False
Measles	False
BMI	True
under-five deaths	False
Polio	True
Total expenditure	True
Diphtheria	True
HIV/AIDS	False
GDP	True
Population	True
thinness 1-19 years	True
thinness 5-9 years	True
Income composition of resources	True
Schooling	True
dtype: bool	

ข้อมูลที่ได้จาก data.isnull().any()

ต่อไปจะดูตารางในแถวที่มีค่า BMI เป็น NULL ว่ามันเกิดจากอะไร

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ	under- five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1-19 years	thinness 5-9 years	Income composition of resources	Schooling
2409	South Sudan	2015	Developing					0.000000			NaN			NaN				11882136.0	NaN	NaN	0.421	4.9
2410	South Sudan		Developing					46.074469			NaN								NaN	NaN	0.421	4.9
2411	South Sudan		Developing					47.444530			NaN							1117749.0	NaN	NaN		4.9
2412	South Sudan		Developing					38.338232			NaN		64.0				958.455810	1818258.0	NaN	NaN	0.419	4.9
2413	South Sudan		Developing					0.000000			NaN			NaN			176.971300	1448857.0	NaN	NaN	0.429	4.9
2414	South Sudan		Developing					0.000000			NaN		NaN	NaN	NaN		1562.239346		NaN	NaN	0.000	0.0
2415	South Sudan	2009	Developing		369.0			0.000000			NaN		NaN	NaN	NaN		1264.789980	967667.0	NaN	NaN	0.000	0.0
2416	South Sudan	2008	Developing					0.000000			NaN		NaN	NaN	NaN		1678.711862	9263136.0	NaN	NaN	0.000	0.0
2417	South Sudan	2007	Developing					0.000000			NaN		NaN	NaN	NaN		NaN	88568.0	NaN	NaN	0.000	0.0
2418	South Sudan	2006	Developing					0.000000			NaN		NaN	NaN	NaN		NaN	8468152.0	NaN	NaN	0.000	0.0
2419	South Sudan	2005	Developing					0.000000			NaN		NaN	NaN	NaN		NaN	818877.0	NaN	NaN	0.000	0.0
2420	South Sudan	2004	Developing					0.000000			NaN		NaN	NaN	NaN		NaN		NaN	NaN	0.000	0.0
2421	South Sudan	2003	Developing					0.000000			NaN		NaN	NaN	NaN		NaN	751642.0	NaN	NaN	0.000	0.0
2422	South Sudan	2002	Developing					0.000000			NaN		NaN	NaN	NaN		NaN		NaN	NaN	0.000	0.0
2423	South Sudan		Developing					0.000000			NaN		NaN	NaN	NaN		NaN	6974442.0	NaN	NaN	0.000	0.0
2424	South Sudan	2000	Developing					0.000000			NaN		NaN	NaN	NaN		NaN	67656.0	NaN	NaN	0.000	0.0

2457	Sudan 20	015	Developing	64.1	225.0	58	0.0	0.000000	93.0	3585	NaN	85	93.0	NaN	93.0	0.3	2513.884661	3864783.0	NaN	NaN	0.488	7.2
2458	Sudan 20		Developing					253.608651	94.0		NaN		94.0	8.43	94.0		2176.898290		NaN	NaN	0.485	7.2
2459	Sudan 20		Developing								NaN			8.42			1955.667990	36849918.0	NaN	NaN	0.478	7.0
2460	Sudan 20		Developing								NaN						1892.894352	3599192.0	NaN	NaN	0.468	6.8
2461	Sudan 20		Developing					196.689215			NaN						1666.857757	35167314.0	NaN	NaN	0.463	7.0
2462	Sudan 20	010	Developing					172.009788			NaN						1476.478870	34385963.0	NaN	NaN	0.461	7.0
2463	Sudan 20	009	Developing		248.0			17.053693			NaN			8.40			1226.884381	3365619.0	NaN	NaN	0.456	6.8
2464	Sudan 20	800	Developing					128.636271			NaN						1291.528826	32955496.0	NaN	NaN	0.444	6.3
2465	Sudan 20	007	Developing		254.0			86.131669			NaN		84.0		84.0		1115.695200	32282526.0	NaN	NaN	0.440	6.4
2466	Sudan 20	006	Developing					60.336857			NaN						893.879364	316764.0	NaN	NaN	0.430	6.2
2467	Sudan 20	005	Developing					37.590396			NaN						679.753995	3911914.0	NaN	NaN	0.423	6.1
2468	Sudan 20	004	Developing					37.044800			NaN						565.569459	3186341.0	NaN	NaN	0.415	5.7
2469	Sudan 20	003	Developing					35.352647		4381	NaN						477.738478	29435944.0	NaN	NaN	0.409	5.6
2470	Sudan 20	002	Developing					30.622875			NaN							28679565.0	NaN	NaN	0.403	5.6
2471	Sudan 20	001	Developing					28.880697		4362	NaN						377.525445	279455.0	NaN	NaN	0.399	5.6
2472	Sudan 20	000	Developing		284.0			30.860010			NaN						361.358430		NaN	NaN		5.5

ต่อไปเป็นการวิเคราะห์ข้อมูลที่แถวที่มีค่า BMI เป็น NULL โดยที่เราได้ดูว่า column BMI นั้น เป็นค่าดัชนีมวลกาย โดยที่ดัชนีมวลกายนั้น จะไม่มีทางเป็นค่า 0 และไม่สามารถคำนวณจาก column อื่นได้ เราเลยเลือกที่จะลบแถสนั้นออกไป

```
new=data[data[' BMI '].isnull()]
data.drop(new.index,inplace=True)
```

โค้ดนี้จะเป็นการลบแถวที่ BMI นั้นเป็น NULL ทิ้งไป โดยที่จะสร้าง dataframe ใหม่มาอันนึง

โดยเลือกแถวที่มีคอลัมน์ BMI เป็น NULL จากนั้นจะ drop แถวใน data ที่มี index เดียวกันกับ new ออกไปโดยไม่ต้องกำหนด DataFrame ใหม่

```
data.isnull().any()
```

```
False
Country
Year
                                    False
Status
                                    False
Life expectancy
                                    False
Adult Mortality
                                    False
infant deaths
                                    False
Alcohol
                                    False
percentage expenditure
                                    False
Hepatitis B
                                    False
Measles
                                    False
BMI
                                    False
under-five deaths
                                    False
Polio
                                     True
Total expenditure
                                     True
Diphtheria
                                     True
HIV/AIDS
                                    False
GDP
                                     True
Population
                                     True
thinness 1-19 years
                                    False
thinness 5-9 years
                                    False
Income composition of resources
                                     True
Schooling
                                     True
dtype: bool
```

ข้อมูลที่ได้จาก data.isnull().any()

```
data[data['Polio'].isnull()]
data['Polio'].fillna('0.0', inplace=True)
```

ต่อไปเป็นการวิเคราะห์ข้อมูลที่แถวที่มีค่า Polio เป็น NULL โดยที่เราได้ดูว่า column Polio นั้นใช้อธิบายหน่วยการการฉีดวัคซีนป้องกัน Polio ในเด็กอายุ 1 ปี คิดเป็นเปอร์เซ็นต์ ซึ่งในตารางนี้ ไม่มีค่าที่เป็น 0.0 ซึ่งมันสามารถมีการรฉีดวัคซีนป้องกันไวรัสตับอักเสบบีเป็น 0 เปอร์เซ็นต์ได้ ดังนั้นเราจึงเลือกวิธีการเปลี่ยน เป็น 0 ในช่องที่เป็น NULL

```
data.isnull().any()
```

Country	False
Year	False
Status	False
Life expectancy	False
Adult Mortality	False
infant deaths	False
Alcohol	False
percentage expenditure	False
Hepatitis B	False
Measles	False
BMI	False
under-five deaths	False
Polio	False
Total expenditure	True
Diphtheria	True
HIV/AIDS	False
GDP	True
Population	True
thinness 1-19 years	False
thinness 5-9 years	False
Income composition of resources	True
Schooling	True
dtype: bool	

ข้อมูลที่ได้จาก data.isnull().any()

บรรทัดนี้ใช้ฟังก์ชัน isnull() เพื่อกรองแถวที่มีค่าว่างในคอลัมน์ Total expenditure ผลลัพธ์ของโค้ดนี้จะเป็นชุดข้อมูลใหม่ที่ประกอบด้วยเฉพาะแถวที่มีค่าสำหรับ Total expenditure

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	вмі	under- five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1-19 years	thinness 5-9 years	Income composition of resources	Schooling
32	Algeria		Developing											NaN			4132.762920	39871528.0				14.4
48	Angola		Developing						64.0					NaN	64.0		3695.793748	2785935.0				11.4
64	Antigua and Barbuda		Developing						99.0				86.0	NaN	99.0		13566.954100	NaN				13.9
80	Argentina		Developing											NaN			13467.123600	43417765.0				17.3
96	Armenia		Developing						94.0					NaN	94.0		369.654776	291695.0				12.7
2858	Venezuela (Bolivarian Republic of)	2015	Developing											NaN			NaN	NaN				14.3
2874	Viet Nam		Developing											NaN			NaN	NaN				12.6
2890	Yemen		Developing		224.0					468				NaN			NaN	NaN			0.499	9.0
2906	Zambia		Developing											NaN			1313.889646					12.5
2922	Zimbabwe		Developing										88.0	NaN			118.693830	15777451.0				10.3
212 row	s × 22 columns	;																				

ต่อไปเป็นการวิเคราะห์ข้อมูลที่แถวที่มีค่า Total expenditure เป็น NULL โดยที่เราได้ดูว่า column Total expenditure นั้นใช้อธิบายรายจ่ายด้านสุขภาพ ของรัฐบาลทั่วไปคิดเป็นเปอร์เซ็นต์ซึ่งไม่มีทางที่จะเป็นค่า NULL ได้อย่างแน่นอนเพราะอย่างน้อยรัฐบาลต้องมีงบประมาณเกี่ยวกับด้านนี้แน่นอน ดังนั้นเราจึง ตัดสินใจที่จะลบแถวที่มีค่า Total expenditure เป็น NULL ออกไป

```
data[data['Total expenditure'].isnull()]
data.dropna(subset=['Total expenditure'],inplace=True)
```

data[data['Total expenditure'].isnull()]

โค้ดนี้ใช้ data เป็นตัวแปรที่อ้างอิงถึง Pandas DataFrame และ data['Total expenditure'] เป็นตัวแปรที่อ้างอิงถึงคอลัมน์ "Total expenditure" ใน DataFrame โค้ดนี้จะค้นหาแถวทั้งหมดใน DataFrame ที่ค่าในคอลัมน์ "Total expenditure" เป็นค่าว่าง ผลลัพธ์จะแสดงเป็น DataFrame ใหม่ที่ ประกอบด้วยแถวเหล่านั้น

data.dropna(subset=['Total expenditure'], inplace=True)

โค้ดนี้ใช้ data.dropna() เมธอดเพื่อลบแถวที่มีค่า "Total expenditure" เป็นค่าว่างออกจาก DataFrame data โค้ดนี้ใช้พารามิเตอร์ subset=['Total expenditure'] เพื่อระบุว่าต้องการลบแถวที่มีค่าว่างในคอลัมน์ "Total expenditure" เท่านั้น พารามิเตอร์ inplace=True บอกให้ dropna() เมธอดแก้ไข DataFrame data ต้นฉบับแทนที่จะสร้าง DataFrame ใหม่

ที่เอาออกเพราะว่า เราไม่สามารถทราบได้ว่ารัฐบาลจะให้เงินค่ารักษาเท่าไหร่

Country	False
Year	False
Status	False
Life expectancy	False
Adult Mortality	False
infant deaths	False
Alcohol	False
percentage expenditure	False
Hepatitis B	False
Measles	False
BMI	False
under-five deaths	False
Polio	False
Total expenditure	False
Diphtheria	True
HIV/AIDS	False
GDP	True
Population	True
thinness 1-19 years	False
thinness 5-9 years	False
Income composition of resources	True
Schooling	True
dtype: bool	

```
data[data['Diphtheria '].isnull()]
```

ต่อไปจะดูตารางในแถวที่มีค่า Diptheria เป็น NULL ว่ามันเกิดจากอะไร

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	вмі	under- five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1-19 years	thinness 5-9 years	Income composition of resources	Schooling
1742	Montenegro	2005	Developing	73.6	133.0			527.307672						8.46	NaN		3674.617924	614261.0			0.746	12.8
1743	Montenegro	2004	Developing		134.0									8.45	NaN		338.199535				0.740	12.6
1744	Montenegro	2003	Developing		134.0			495.078296							NaN		2789.173500				0.000	0.0
1745	Montenegro	2002	Developing					36.480240							NaN		216.243274	69828.0			0.000	0.0
1746	Montenegro	2001	Developing					33.669814							NaN		199.583957	67389.0			0.000	0.0
1747	Montenegro	2000	Developing		144.0			274.547260							NaN		1627.428930	6495.0			0.000	0.0
2615	Timor-Leste	2001	Developing		269.0			6.556583							NaN		56.424987	892531.0			0.470	9.8
2616	Timor-Leste	2000	Developing		276.0			49.069672							NaN		422.286330	87167.0			0.000	0.0

ต่อไปเป็นการวิเคราะห์ข้อมูลที่แถวที่มีค่า Diptheria เป็น NULL โดยที่เราได้ดูว่า column Diptheria นั้นใช้อธิบายหน่วยการการฉีดวัคซีนป้องกันโรคคอตีบ บาดทะยัก และไอกรนในเด็กอายุ 1 ปีคิดเป็นเปอร์เซ็นต์ ซึ่งในตารางนี้ ไม่มีค่าที่เป็น 0.0 ซึ่งมันสามารถมีการรฉีดวัคซีนป้องกันวัคซีนป้องกันโรคคอตีบ บาดทะยัก และไอกรนเป็น 0 เปอร์เซ็นต์ได้ ดังนั้นเราจึงเลือกวิธีการเปลี่ยนเป็น 0 ในช่องที่เป็น NULL

```
data['Diphtheria '].fillna('0.0',inplace=True)
```

โค้ดนี้เป็นการเติมค่า NULL ในคอลัมน์ Diphtheria ด้วยค่า 0.0

```
data[data['GDP'].isnull()]
```

ต่อไปจะดูตารางในแถวที่มีค่า GDP เป็น NULL ว่ามันเกิดจากอะไร

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	вмі	under- five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1- 19 years	thinness 5-9 years	Income composition of resources	Schooling
161	Bahamas		Developing				9.45										NaN	NaN			0.789	12.6
162	Bahamas		Developing				9.42										NaN	NaN				12.6
163	Bahamas		Developing												98.0		NaN	NaN				12.6
164	Bahamas		Developing												98.0		NaN	NaN				12.6
165	Bahamas	2010	Developing						98.0						99.0		NaN	NaN			0.788	12.6
																						_
2901	Yemen	2004	Developing							12708							NaN	NaN			0.464	8.4
2902	Yemen	2003	Developing		249.0												NaN	NaN			0.457	8.2
2903	Yemen	2002	Developing							890			64.0				NaN	NaN			0.450	8.0
2904	Yemen	2001	Developing				80.0										NaN	NaN			0.444	7.9
2905	Yemen	2000	Developing														NaN	NaN			0.436	7.7
375 row	s × 22 colu	mns																				

ต่อไปเป็นการวิเคราะห์ข้อมูลที่แถวที่มีค่า GDP เป็น NULL โดยที่เราได้ดูว่า column GDP นั้นใช้อธิบายผลิตภัณฑ์มวลรวมภายในประเทศต่อหัวซึ่งไม่มีทางที่จะ เป็นค่า NULL ได้อย่างแน่นิน ดังนั้นเราจึงตัดสินใจที่จะลบแถวที่มีค่า GDP เป็น NULL ออกไป

```
new=data[data['GDP'].isnull()]
data.drop(new.index,inplace=True)
```

new = data[data['GDP'].isnull()]

บรรทัดนี้สร้าง DataFrame ใหม่ชื่อ new ซึ่งประกอบด้วยแถวทั้งหมดจาก DataFrame data ที่มีค่า GDP เป็น null

data.drop(new.index, inplace=True) บรรทัดนี้ลบแถวทั้งหมดจาก DataFrame data ที่มีดัชนีอยู่ใน DataFrame new

```
data.isnull().any()
```

ต่อไปก็ดู column ที่เป็น NULL อีกรอบ

Country	False
Year	False
Status	False
Life expectancy	False
Adult Mortality	False
infant deaths	False
Alcohol	False
percentage expenditure	False
Hepatitis B	False
Measles	False
BMI	False
under-five deaths	False
Polio	False
Total expenditure	False
Diphtheria	False
HIV/AIDS	False
GDP	False
Population	True
thinness 1-19 years	False
thinness 5-9 years	False
Income composition of resources	False
Schooling	False
dtype: bool	

ข้อมูลที่ได้จาก data.isnull().any()

```
data.dropna(subset=['Population'],inplace=True)
```

เราไม่สามารถวัดจำนวนประชากรจากข้อมูลที่เรามีอยู่ได้

```
data.isnull().any()
```

```
data.to_csv("data.csv")
```

นำ ข้อมูลจาก data ไปทำเป็นไฟล์ csv

```
data.info()
```

ต่อไปจะดูข้อมูลทางเทคนิคของ dataframe เช่น จำนวนแถวและคอลัมน์ทั้งหมด ชนิดของข้อมูลในแต่ละคอลัมน์

```
<class 'pandas.core.frame.DataFrame'>
Index: 2102 entries, 0 to 2937
Data columns (total 22 columns):
    Column
                                      Non-Null Count Dtype
0
                                      2102 non-null
                                                     object
    Country
                                     2102 non-null
                                                     int64
 1
    Year
                                     2102 non-null
                                                     object
 2
    Status
 3
   Life expectancy
                                     2102 non-null
                                                     float64
    Adult Mortality
                                     2102 non-null
                                                     float64
 4
                                                     int64
 5
    infant deaths
                                     2102 non-null
                                     2102 non-null
    Alcohol
                                                     object
 7
    percentage expenditure
                                     2102 non-null
                                                     float64
8
    Hepatitis B
                                     2102 non-null
                                                     object
9
    Measles
                                     2102 non-null
                                                     int64
 10
     BMI
                                     2102 non-null
                                                     float64
 11 under-five deaths
                                     2102 non-null
                                                     int64
                                     2102 non-null
 12 Polio
                                                     object
 13 Total expenditure
                                     2102 non-null
                                                     float64
                                     2102 non-null
 14 Diphtheria
                                                     object
     HIV/AIDS
                                      2102 non-null
                                                     float64
 15
   GDP
                                     2102 non-null
                                                     float64
 16
 17
    Population
                                     2102 non-null
                                                     float64
     thinness 1-19 years
                                     2102 non-null
                                                   float64
 18
     thinness 5-9 years
                                      2102 non-null
                                                     float64
 19
 20 Income composition of resources 2102 non-null
                                                     float64
 21 Schooling
                                      2102 non-null
                                                     float64
dtypes: float64(12), int64(4), object(6)
memory usage: 377.7+ KB
```

```
def clean_column_name(column_name):
    column_name = column_name.strip()
    column_name = column_name.replace(' ', '_')
    column_name = column_name.title()
    return column_name
df = df.rename(columns=clean_column_name)
```

ทำการแก้ ชื่อ columns เพื่อทำให้งานง่ายต่อการ Train Model

```
Iife.info()

Class 'pandas.core.frame.DataFrame'>
Index: 2102 entries, 0 to 2937

Data columns (total 22 columns):

# Column
Country
```

หลังจากเราได้ทำการ cleaning data แล้ว จะทำการ drop columns ที่มี data type เป็น object ให้ data set มีเพียงข้อมูล ที่เป็น int และ float เพื่อนำไปหา correlation ในที่นี้เรา drop column Country , Year และ Status

life.corr()															
	Life_Expectancy	Adult_Mortality	Infant_Deaths	Alcohol	Percentage_Expenditure	Hepatitis_B	Measles	Bmi	Under- Five_Deaths	Polio	Total_Expenditure	Diphtheria	Hiv/Aids	Gdp	Populati
Life_Expectancy	1.000000			0.429032	0.428922	0.189429					0.233668	0.449848			
Adult_Mortality	-0.672928	1.000000	0.048754		-0.262638	-0.065946	-0.001904	-0.381666	0.063221	-0.224261	-0.125904	-0.225058	0.539379		-0.0143
Infant_Deaths							0.508678								
Alcohol	0.429032			1.000000			-0.038761	0.398463					-0.056067		-0.0350
Percentage_Expendit	ire 0.428922		-0.092846		1.000000				-0.095461	0.168842		0.169564			-0.0271
Hepatitis_B	0.189429	-0.065946	-0.128399		-0.135855	1.000000	-0.108079		-0.140927				-0.095201	-0.112996	-0.0303
Measles															
Bmi		-0.381666		0.398463				1.000000						0.306628	
Under-Five_Deaths															0.5498
Polio		-0.224261	-0.156345		0.168842					1.000000		0.695677			
Total_Expenditure															
Diphtheria	0.449848	-0.225058	-0.159548		0.169564		-0.120254		-0.180035	0.695677	0.174435	1.000000		0.195240	-0.0258
Hiv/Aids				-0.056067									1.000000		
Gdp	0.465955					-0.112996		0.306628	-0.106635		0.236585	0.195240		1.000000	-0.0305
Population									0.549806				-0.028486		1.0000
Thinness_1-19_Year	s -0.485611	0.303865	0.483636	-0.423803	-0.282519	-0.082155		-0.564588	0.486185	-0.222943	-0.254290	-0.240375	0.205399	-0.308819	0.2626
Thinness_5-9_Years	-0.478483				-0.284505	-0.084091									
Income_Composition_Of_R	esources 0.749653	-0.440299	-0.149267	0.562073	0.426417			0.544893	-0.168532		0.234323	0.447336	-0.256278		-0.0109
Schooling															

ภาพนี้แสดงถึงค่า correlation ของทุก attributed

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(font_scale=0.6)
sns.clustermap(life.corr(),annot=True ,cmap='Wistia', vmin=-1, vmax=1)
plt.show()
```


ทำการใช้ Seaborn และ Matplotlib เพื่อทำ heat map มาดูค่า correlation ที่เกี่ยวข้องกับสิ่งที่เราต้องการหา ในที่นี้ เราต้องการหา correlation ที่สัมพันธ์กับ Life_Expectancy ทุกตัวที่มีค่า correlation มากกว่า 0.5 แต่ไม่ถึง 1 และ น้อยกว่า -0.5 แต่ไม่ถึง -1 เพื่อให้ได้เป็น positive relationship และ negative relationship

จาก correlation heatmap ทำให้เราทราบว่า มี attributed Adult_Mortality, Bmi , Hiv/Aids , Income_Composition_Of_Resources และ Schooling ที่มี correlation ที่สัมพันธ์กับ Life_Expectancy และมีค่าตรงกับที่เราต้องการ จากนั้นนำ attributed ที่เราได้มาไปทำ scatter plot กับ Life_Expectancy

```
c = life['Life_Expectancy'].corr(life['Adult_Mortality'])
print("Correlation = %0.2f"%life['Life_Expectancy'].corr(life['Adult_Mortality']))
sns.regplot(data=life, x='Life_Expectancy', y='Adult_Mortality')
plt.show()
```


Scatter plot Negative relationship , Adult_Mortality vs Life_Expectancy

```
c = life['Life_Expectancy'].corr(life['Bmi'])
print("Correlation = %0.2f"%life['Life_Expectancy'].corr(life['Bmi']))
sns.regplot(data=life, x='Life_Expectancy', y='Bmi')
plt.show()
```


Scatter plot Positive relationship , Bmi vs Life_Expectancy

```
c = life['Life_Expectancy'].corr(life['Hiv/Aids'])
print("Correlation = %0.2f"%life['Life_Expectancy'].corr(life['Hiv/Aids']))
sns.regplot(data=life, x='Life_Expectancy', y='Hiv/Aids')
plt.show()
```


Scatter plot Negative relationship , Hiv/Aids vs Life_Expectancy

```
c = life['Life_Expectancy'].corr(life['Schooling'])
print("Correlation = %0.2f"%life['Life_Expectancy'].corr(life['Schooling']))
sns.regplot(data=life, x='Life_Expectancy', y='Schooling')
plt.show()
```


Scatter plot Positive relationship , Schooling vs Life Expectancy

```
c = life['Life_Expectancy'].corr(life['Income_Composition_Of_Resources'])
print("Correlation = %0.2f"%life['Life_Expectancy'].corr(life['Income_Composition_Of_Resources']))
sns.regplot(data=life, x='Life_Expectancy', y='Income_Composition_Of_Resources')
plt.show()
```


Scatter plot Positive relationship , Income_Composition_Of_Resources vs Life_Expectancy

จากการพิจารณา Scatter plot ที่เราหามาจะนำเอา attributed ที่สัมพันธ์กับ Life_Expectancy ทั้งหมดเพื่อไปทำขั้นตอนการ Modeling โดย เลือกใช้เป็น Linear regression

Modeling method

เราได้ใช้ linear regression เพื่อที่จะมาทำนาย life expectancy(อายุขัย)

โดยเริ่มต้นที่ import libary คือ

1.numpy

2.ols (ordinary least squares regression)

3.mean absolute error, mean squared error, r2 score

```
import numpy as np
from statsmodels.formula.api import ols
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

ถัดมาทำการสร้าง Model 1 โดยเลือกใช้ Attribute ที่มีค่า Correlation มากกว่า 50 เมื่อนำมาเทียบกับ Attribute Life Expectancy และ ทำ การแสดงผลโมเดล

```
life.rename(columns={'Hiv/Aids': 'HivAids'}, inplace=True)
model1 = ols('Life_Expectancy ~ Adult_Mortality+Bmi+HivAids+Schooling+Income_Composition_Of_Resources', life).fit()
model1.summary()
```

```
∓
                         OLS Regression Results
                                         R-squared:
      Dep. Variable: Life_Expectancy
                                                       0.821
          Model:
                      OLS
                                       Adj. R-squared: 0.820
         Method:
                      Least Squares
                                         F-statistic:
                                                       1916.
           Date:
                      Mon, 13 May 2024 Prob (F-statistic): 0.00
                                       Log-Likelihood: -5992.9
           Time:
                      06:49:19
     No. Observations: 2102
                                            AIC:
                                                       1.200e+04
       Df Residuals:
                      2096
                                                       1.203e+04
                                            BIC:
         Df Model:
     Covariance Type: nonrobust
                                                             P>|t| [0.025 0.975]
                                        coef std err
                                                        t
                                       51.4395 0.452 113.893 0.000 50.554 52.325
                 Intercept
               Adult_Mortality
                                       -0.0168 0.001 -18.423 0.000 -0.019 -0.015
                    Bmi
                                       0.0560 0.006 9.564 0.000 0.045 0.068
                  HivAids
                                       -0.4859 0.019 -26.115 0.000 -0.522 -0.449
                 Schooling
                                       1.0390 0.051 20.348 0.000 0.939 1.139
     Income_Composition_Of_Resources 10.7542 0.783 13.731 0.000 9.218 12.290
        Omnibus:
                    130.089 Durbin-Watson: 0.616
     Prob(Omnibus): 0.000 Jarque-Bera (JB): 565.576
                               Prob(JB):
                                             1.54e-123
         Skew:
                    -0.020
                               Cond. No.
        Kurtosis:
                    5.541
                                             1.85e + 03
```

ถัดมาหลังจากที่เราได้ Model ที่ 1 เราทำการเช็คค่า

1.R Squared

2.Mean Absolute Error

3.Mean Squared Error

4.root Mean Squared Error
เพื่อตรวจสอบความแม่นยำของ Model นี้

```
# Predicting the target variable 'Life_expectancy' using the model
predicted_life_expectancy = model1.predict(life[['Adult_Mortality','Bmi','HivAids','Schooling','Income_Composition_Of_Resources']])

# Calculating R-squared
r_squared = r2_score(life['Life_Expectancy'], predicted_life_expectancy)

# Calculating Mean Absolute Error (MAE)
mae = mean_absolute_error(life['Life_Expectancy'], predicted_life_expectancy)

# Calculating Mean Squared Error (MSE)
mse = mean_squared_error(life['Life_Expectancy'], predicted_life_expectancy)

# Calculating Root Mean Squared Error (RMSE)
rmse = np.sqrt(mse)

print("R-squared:", r_squared)
print("Mean Absolute Error:", mae)
print("Mean Squared Error:", mse)

print("Root Mean Squared Error:", rmse)
```

โดยที่ Model 1 ได้ผลลัพธ์ดังนี้

R-squared: 0.8205156260201248

Mean Absolute Error: 3.1120271603328495 Mean Squared Error: 17.53593317517557 Root Mean Squared Error: 4.187592766157613 ถัดมาทำการสร้าง Model 2 โดยเลือกใช้ Attribute ที่มีค่า Correlation มากกว่า 70 เมื่อนำมาเทียบกับ Attribute Life Expectancy และ ทำ การแสดงผลโมเดล

model2 = ols('Life_Expectancy ~ Schooling+Income_Composition_Of_Resources', life).fit()
model2.summary()

OLS Regression Results

Dep. Variable:Life_ExpectancyR-squared:0.630Model:OLSAdj. R-squared:0.630Method:Least SquaresF-statistic:1789.Date:Mon, 13 May 2024 Prob (F-statistic):0.00

Time: 06:57:34 **Log-Likelihood:** -6752.4 **No. Observations:** 2102 **AIC:** 1.351e+04

Df Residuals: 2099 **BIC:** 1.353e+04

Df Model: 2

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

 Intercept
 41.5937 0.488 85.266 0.000 40.637 42.550

 Schooling
 1.3706 0.070 19.692 0.000 1.234 1.507

Income_Composition_Of_Resources 17.3489 1.101 15.756 0.000 15.189 19.508

 Omnibus:
 169.020
 Durbin-Watson:
 0.314

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 664.951

 Skew:
 -0.306
 Prob(JB):
 4.05e-145

Kurtosis: 5.687 **Cond. No.** 104.

ถัดมาหลังจากที่เราได้ Model ที่ 2 เราทำการเช็คค่า

1.R Squared

2.Mean Absolute Error

3.Mean Squared Error

4.root Mean Squared Error

เพื่อตรวจสอบความแม่นยำของ Model นี้โดยใช้โค้ดแบบเดียวกับ Model1

โดยที่ Model 2 ได้ผลลัพธ์ดังนี้

R-squared: 0.6302833167641191

Mean Absolute Error: 4.381143497351642 Mean Squared Error: 36.12195818059854 Root Mean Squared Error: 6.010154588743832

Modeling results and discussion

หลังจากการทดลองได้ผลลัพธ์ดังนี้

1. Model 1 มีผลลัพธ์ดังนี้

R-squared: 0.8205156260201248

Mean Absolute Error: 3.1120271603328495 Mean Squared Error: 17.53593317517557

Root Mean Squared Error: 4.187592766157613

2. Model 2 มีผลลัพธ์ดังนี้

R-squared: 0.6302833167641191

Mean Absolute Error: 4.381143497351642
Mean Squared Error: 36.12195818059854

Root Mean Squared Error: 6.010154588743832

จากผลลัพธ์การทดลองทำให้เห็นถึงความแตกต่างของ Model ทั้ง 2

Conclusion

หลังจากทำการทดลองใช้ ols (ordinary least squares regression) เพื่อในการทำนาย

Life Expectancy(อายุขัย) จากข้อมูลที่ได้มาโดยทำการสร้าง Model 2 ตัวที่มีการเลือก Correlation ที่ต่างกันโดย Model 1 เลือกค่า Correlation ที่มากกว่า 0.5 และ Model 2 เลือกค่า Correlation ที่มากกว่า 0.7 โดยได้ผลลัพธ์คือ Model 1 ที่มีจำนวน Attribute มากกว่าเพราะจากช่วงของค่า Correlation ที่มากกว่า 0.5 ทำให้มี Attribute มากถึง 5 ตัว นั้นมีผลลัพธ์ที่ดีกว่าในทุก ๆ ด้านโดยเช็คจากค่า

1.R Squared

2.Mean Absolute Error

3.Mean Squared Error

4.root Mean Squared Error