1.目的

コイル, コンデンサを含む直列共振回路と並列共振回路の共振曲線を求め, 共振回路の 性質を理解する.

2.原理

図1 共振回路概念図

図 1 において Z は直列共振回路または並列共振回路である.図 1 で r の両端電圧を E_b , Z の両端電圧を E_a とすれば

$$\frac{E_b}{r} = \frac{E_a}{Z}$$

となる. この式より,

$$Z = \frac{1}{Y} = \frac{E_a}{E_b} r[\Omega]$$

となる. ここで、YはZの逆数であるアドミタンスである.

2.1 直列共振回路

図2 直列共振回路

図2に示す直列共振回路でインピーダンス Z は

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

である. 共振した場合は,

$$\omega_0 L = rac{1}{\omega_0 \mathcal{C}}$$
 , $\omega_0 = 2\pi f_0$, $f_0 rac{1}{2\pi \sqrt{L \mathcal{C}}}$

となり、共振時のインピーダンス Z₀ またはアドミタンス Y₀ は

$$Z_0 = \frac{1}{Y_0} = R$$

となる. ここで, R はコイルの抵抗である.

また、鋭さ Q は図 3 に示す共振回路の f_0 , f_1 , f_2 から

$$Q = \frac{\omega_0 L}{R} = \frac{f_0}{f_2 - f_1}$$

として求められる.

図3 共振曲線

2.2 並列共振回路

図 4 並列共振時回路

図4で並列共振時のインピーダンスは

$$Z_a = \frac{1}{Y_a} = \frac{L}{CR}$$

になる. これより, コイルの抵抗 R は

$$R = \frac{1}{Z_a} \cdot \frac{1}{C} = \frac{{\omega_0}^2 L^2}{Z_a} = \frac{Z_a}{Q^2} [\Omega]$$

ここで,

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 , $Q = \frac{\omega_0 L}{R}$

また, 並列共振時の共振周波数(反共振周波数)faは

$$f_a = \frac{1}{2\pi} \sqrt{\frac{1}{LC} \left(1 - \frac{CR^2}{L} \right)} = f_0 \sqrt{1 - \frac{CR^2}{L}} = f_0 \sqrt{1 - \frac{R}{Z_a}}$$

となる. 一般に、 $R << Z_a$ なので、 $f_a = f_0$ として扱われる.

3. 実験方法

3.1 使用実験装置・器具・材料・デバイス

目的の共振曲線を作成するための回路を実現するため、切り替えスイッチ、固定抵抗、コイル、コンデンサ、ファンクションジェネレータを用いた。また、インピーダンスやアドミタンスの導出に必要な E_a 、 E_b を測定するため、テスタを用いた。これらの型や形式を表 1 に示す。

使用機器	規格,形式	個数
切り替えスイッチ		1個
固定抵抗	100[Ω] 金属皮膜抵抗 誤差±1%	1個
コイル	10[mH] リードインダクタ	1個
コンデンサ	0.1[μF](104) 積層セラミックコンデンサ	1個
テスタ	sanwa PC 710	1個
ファンクションジェネレータ	FG-274 (TEXIO製)	1個

表 1 使用機器

3.2 測定法

3.2.1 直列共振回路

図 5 直列共振特性測定回路

- (1) 図5の回路を作成する. この時、 $r=100[\Omega]$,L=10[mH], $C=0.1[\mu F]$ とする.
- (2) 発振器 e の出力振幅を調整し、1[kHz]で $E_a=1450[mV]$ となるように設定する。この時 $E_b=50[mV]$ 前後である。
- (3) 周波数を 1[kHz]から 10[kHz]まで変化させ, E_a と E_b の値を測定する.特に共振時付近での周波数は細かく測定する.

- (4) インピーダンス Z とアドミタンス Y を E_a と E_b の値から各々の周波数 f について計算する。また、その結果を用いて共振曲線をグラフに表す。
- (5) 実験原理を参考にしてコイルの抵抗 R を Z_0 より求める. また、共振曲線より鋭さ Q を求める.

3.2.2 並列共振回路

図 6 並列共振特性測定回路

- (1) 図6の回路を作成する. この時, $r=100[\Omega]$,L=10[mH], $C=0.1[\mu F]$ とする.
- (2) 発振器 e の出力振幅を調整し、1[kHz]で E_a =280[mV]前後となるように設定する。 この時 E_b =410[mV]前後である。
- ※ (3), (4), (5) は直列共振回路と同様の操作を行う.

4. 結果考察

4.1 実験結果

4.1.1 直列共振回路

各周波数の E_a と E_b コイルの抵抗 R, 鋭さ Q を表 2 に、共振曲線を図 7 に示す.

表 2 直列共振回路の各値

周波数[kHz]	Ea[mV]	Eb[mV]	インピーダンス[Ω]	アドミタンス[mS]	求めた抵抗[Ω]
1	1449	160	905.625	0.00110421	21.89
1.3	1430	210	680.952381	0.001468531	
1.6	1400	270	518.5185185	0.001928571	求めた鋭さ[Ω]
1.9	1360	335	405.9701493	0.002463235	10.5
2.2	1305	410	318.2926829	0.003141762	
2.5	1225	490	250	0.004	
2.8	1116	578	193.0795848	0.005179211	
3.1	965	663	145.5505279	0.006870466	
3.4	765	755	101.3245033	0.009869281	
3.7	515	820	62.80487805	0.01592233	
4	270	861	31.35888502	0.031888889	
4.1	210	867	24.22145329	0.041285714	
4.2	190	868	21.88940092	0.045684211	
4.3	215	870	24.71264368	0.040465116	
4.4	280	858	32.63403263	0.030642857	
4.5	340	855	39.76608187	0.025147059	
4.6	395	845	46.74556213	0.021392405	
4.9	585	780	75	0.013333333	
5.2	740	730	101.369863	0.009864865	
5.5	860	680	126.4705882	0.007906977	
5.8	970	625	155.2	0.006443299	
6.1	1035	575	180	0.005555556	
6.4	1085	536	202.4253731	0.004940092	
6.7	1125	505	222.7722772	0.004488889	
7	1165	465	250.5376344	0.003991416	
7.3	1190	435	273.5632184	0.003655462	
7.6	1210	405	298.7654321	0.003347107	
7.9	1225	380	322.3684211	0.003102041	
8.2	1235	355	347.8873239	0.002874494	

図7 直列共振回路の共振曲線

この時のコイルの抵抗 R の値は、実験原理より

$$R = Z_0 = 21.89[\Omega]$$

である. さらに、共振曲線より鋭さ Qを導出する.

アドミタンスが $\frac{Y_0}{\sqrt{2}} = 0.03230$ と最も近い値をとる周波数 $f_{1,}$ f_2 の値は,

$$f_1 = 4.0[kHz]$$
, $f_2 = 4.4[kHz]$

であった. 実験原理より,

$$Q = \frac{f_0}{f_2 - f_1} = \frac{4.2}{(4.4 - 4.0)} = 10.5$$

また、抵抗およびリアクタンスを用いた鋭さ Q は、実験原理より

$$Q = \frac{\omega_0 L}{R} = \frac{2\pi \times 4.2 \times 10}{21.89} = 12.55$$

となった.

4.1.2 並列共振回路

各周波数の E_a と E_b コイルの抵抗 R,鋭さ Q を表 3 に,共振曲線を図 8 に示す.

表 3 並列共振回路の各値

周波数[kHz]	Ea[mV]	Eb[mV]	インピーダンス $[\Omega]$		求めた抵抗[Ω]
1	285	445	64.04494382	0.015614035	10.62
1.3	355	420	84.52380952	0.011830986	
1.6	425	395	107.5949367	0.009294118	求めた鋭さ[Ω]
1.9	490	360	136.1111111	0.007346939	22
2.2	545	320	170.3125	0.00587156	
2.5	595	275	216.3636364	0.004621849	
2.8	635	230	276.0869565	0.003622047	
3.1	665	185	359.4594595	0.002781955	
3.4	690	140	492.8571429	0.002028986	
3.7	710	95	747.3684211	0.001338028	
4	720	50	1440	0.000694444	
4.1	720	35	2057.142857	0.000486111	
4.2	720	25	2880	0.000347222	
4.3	720	20	3600	0.000277778	
4.4	720	10	7200	0.000138889	
4.5	720	15	4800	0.000208333	
4.6	720	20	3600	0.000277778	
4.7	720	30	2400	0.000416667	
4.8	715	40	1787.5	0.000559441	
4.9	715	55	1300	0.000769231	
5.2	705	85	829.4117647	0.001205674	
5.5	695	115	604.3478261	0.001654676	
5.8	680	140	485.7142857	0.002058824	
6.1	670	160	418.75	0.00238806	
6.4	655	185	354.0540541	0.002824427	
6.7	635	200	317.5	0.003149606	
7	620	225	275.555556	0.003629032	
7.3	600	240	250	0.004	
7.6	585	255	229.4117647	0.004358974	
7.9	570	265	215.0943396	0.004649123	
8.2	550	275	200	0.005	
8.5	540	280	192.8571429	0.005185185	
8.8	525	290	181.0344828	0.00552381	
9.1	510	300	170	0.005882353	
9.4	490	305	160.6557377	0.00622449	
9.7	475	310	153.2258065	0.006526316	
10	465	315	147.6190476	0.006774194	

図8 並列共振回路の共振曲線

この時のコイルの抵抗 R の値は、実験原理より

$$R = \frac{{\omega_0}^2 L^2}{Z_a} = \frac{(2 \times \pi \times 4.4)^2 \times 10^2}{7200} = 10.62[\Omega]$$

である. さらに、共振曲線より鋭さ Qを導出する.

インピーダンスが $\frac{Z_0}{\sqrt{2}}$ = 5091と最も近い値をとる周波数 f_1 , f_2 の値は,

$$f_1 = 4.3[kHz], f_2 = 4.5[kHz]$$

であった. 実験原理より,

$$Q = \frac{f_0}{f_2 - f_1} = \frac{4.4}{(4.5 - 4.3)} = 22$$

また、抵抗およびリアクタンスを用いた鋭さ Q は,実験原理より

$$Q = \frac{\omega_0 L}{R} = \frac{2\pi \times 4.4 \times 10}{10.62} = 26.04$$

となった.

4.2 考察

4.2.1 直列共振回路

E_a, E_b が大きな値のずれがなかったため滑らかな共振曲線が得られた.この結果は、課題で考察する、鋭さの理想値と実測値の比較において、近い値が出ると考えられる.

4.2.2 並列共振回路

直列共振回路と同様に Ea, Eb が大きな値のずれがなかったため滑らかな共振曲線が得ら

れた.この結果は、課題で考察する、鋭さの理想値と実測値の比較において、近い値が出る と考えられる.

5. 課題

(1) 直列共振と並列共振それぞれから求めたコイルの抵抗 R を比較、考察せよ

表 2 より,直列共振では $21.89[\Omega]$,表 3 より並列共振では $10.62[\Omega]$ という結果が得られた。

直列共振回路の抵抗 R の値は周波数、 E_a 、 E_b の有効数字が 2 桁であるとすると 22[Ω]となる.並列共振回路の抵抗 R の値は周波数、 E_a が有効数字 2 桁、 E_b が有効数字 1 桁とすると $10[\Omega]$ となるが、共振曲線から求めた Q を用いると

$$R = \frac{Z_a}{O^2} = \frac{7200}{22^2} = 15[\Omega]$$

となり、こちらも同様に周波数、 E_a が有効数字 2 桁、 E_b が有効数字 1 桁とすると $20[\Omega]$ となる。このことから、R の理想値は直列共振回路、並列共振回路共に $20[\Omega]$ に近い値となり、直列共振回路は誤差の範囲で一致しているといえる。並列共振回路に関しては、4.0~4.7kHz にかけて E_a の値が変化しなかったため、理想値と異なる値になったと考えられる.

- (2)共振曲線より求めた Q の値を,抵抗及びリアクタンスから求めた値と比較検討せよ. 表 2 より, 直列共振では 10.5,表 3 より並列共振では 22 という結果が得られた. こちらはほぼ誤差はなく,正しい値が得られたと考えられる.
- (3)直列共振, 並列共振それぞれにおいて抵抗 r を変化させたときの Q の値について考察せ s .

直列共振の Q の値は、原理より

$$Q = \frac{f_0 L}{r}$$

で与えられるため、直列共振において抵抗 r の値が小さいほど Q の値が大きくなることがわかる.

並列共振の Q の値は、原理より

$$Q = \frac{r}{f_0 L}$$

で与えられるため、並列共振において抵抗 r の値が大きくなるほど Q の値が大きくなることがわかる.

(4) 実験原理(並列共振)における式

$$f_a = \frac{1}{2\pi} \sqrt{\frac{1}{LC} \left(1 - \frac{CR^2}{L} \right)} = f_0 \sqrt{1 - \frac{CR^2}{L}} = f_0 \sqrt{1 - \frac{R}{Z_a}}$$

を証明せよ.

$$f_a = \frac{1}{2\pi} \sqrt{\frac{1}{LC} \left(1 - \frac{CR^2}{L} \right)} = \frac{1}{2\pi} \frac{1}{\sqrt{LC}} \sqrt{\left(1 - \frac{CR^2}{L} \right)}$$

ここで、

$$\omega_0 = \frac{1}{\sqrt{LC}} = 2\pi f_0$$

より、

$$\frac{1}{2\pi} \frac{1}{\sqrt{LC}} \sqrt{\left(1 - \frac{CR^2}{L}\right)} = f_0 \sqrt{\left(1 - \frac{CR^2}{L}\right)}$$

また、実験原理

$$Z_a = \frac{L}{CR}$$

より、

$$f_0\sqrt{\left(1-\frac{CR^2}{L}\right)}=f_0\sqrt{\left(1-\frac{CR}{L}\times R\right)}=f_0\sqrt{\left(1-\frac{1}{Z_a}\times R\right)}=f_0\sqrt{1-\frac{R}{Z_a}}$$

以上の結果より、

$$f_a = \frac{1}{2\pi} \sqrt{\frac{1}{LC} \left(1 - \frac{CR^2}{L} \right)} = f_0 \sqrt{1 - \frac{CR^2}{L}} = f_0 \sqrt{1 - \frac{R}{Z_a}}$$

が示された。

6. 感想・意見

今回の実験で、共振回路を通してインピーダンスやアドミタンスについての理解を深めることができた。また、実験器具の使い方の正しい使い方を理解することができた。