

Natural language processing & language modelling

Content

How do we model:

- Language
- Words
- Sequences
- Context

Transformers LLMs

Sequential data

Universe seems to be inherently sequential

How can we model this?

Is there one (sequential) model to rule them all?

How does modelling language differ from other sequences?

Language is a process of free creation; its laws and principles are **fixed**, but the manner in which the principles of generation are used is free and **infinitely varied**.

~ Noam Chomsky

Sequential data

Modelling *natural language*

We have the innate ability for language (Universal Grammar) Syntactic Structures

(Chomsky, N. 1957)

Different ways to model language:

- Finite State Automata
- Generative Grammars
- Deep Learning + Data
- •

Human Activity Recognition

Human Activity Recognition

Can we use a CNN?

CNNs work here because they take **nearby** tokens into account

Human Activity Recognition

Can we use a CNN?

CNNs work here because they take **nearby** tokens into account

How to model language?

Language model objective:

- Model the **probability** of the next symbol given the previous context by creating a probability distribution over language
- Language models like ChatGPT model language *left to right:* one word at a time

$$P(w_1, w_2, \dots w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1, w_2) \dots P(w_n \mid w_1, \dots w_{n-1})$$

How to model language?

Language model objective:

- Model the **probability** of the next symbol given the previous context by creating a probability distribution over language
- ☐ Language models like ChatGPT model language *left to right:* one word at a time

$$P(w_1, w_2, \dots w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1, w_2) \dots P(w_n \mid w_1, \dots w_{n-1})$$

The cat

How to model language?

Use CNNs for modelling language?

CNN's context size is small and does **not** remember past context

Language is very noisy and heavily (long-distance) context dependent

$$P(w_1, w_2, \dots w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1, w_2) \dots P(w_n \mid w_1, \dots w_{n-1})$$

The cat

Neural representations

Language is **discrete**!

One cat ate a tuna, one cat ate a chicken, one weird cat ate a human.

Language is **discrete**!

One cat ate a tuna, one cat ate a chicken, one weird cat ate a human.

Vocabulary

A vocabulary is the set of unique tokens in your language (dataset)

Language is **discrete**!

One cat ate a tuna, one cat ate a chicken, one weird cat ate a human.

Vocabulary

A vocabulary is the set of unique tokens in your language (dataset)

one cat ate tuna chicken weird human a

Language is **discrete**!

One cat ate a tuna, one cat ate a chicken, one weird cat ate a human.

Vocabulary

A vocabulary is the set of unique tokens in your language (dataset)

one	ľ
cat	1
ate	2
tuna	3
chicken	4
weird	5
human	6
a	7
	_

Language is **discrete**!

One cat ate a tuna, one cat ate a chicken, one weird cat ate a human.

Language is **discrete**!

One cat ate a tuna, one cat ate a chicken, one weird cat ate a human.

Easy to **compose** and easy to **vectorize**

- Most basic: one hot encoding [0, 0, 1, 0,, 0, 0]
 No meaningful distance between vectors
- Word2Vec

Distributional hypothesis

- The context surrounding a given word provides information about its meaning
- Words are similar if they share similar contexts (semantic + syntactic)
- Semantic similarity ≈ distributional similarity

King - Man + Woman = Queen

Each word has a numerical vector representation learnt by a language model

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Mikolov et al. 2013. Efficient Estimation of Word Representations in Vector Space

How do we model sequences?

Unsupervised learning

How do we model sequences?

Unsupervised learning

The Transformer

Attention

Attention is all you need: self-attention

Transformers

What is the **importance** of every element in the input sequence with respect to **itself?**

Every word directly connected to every other word

More parallelization!

Dissection of the Transformer

Encoder

Understanding the input

Dissection of the Transformer

Output

Decoder

Generating the output

Dissection of the Transformer

$$\begin{array}{c|c} \mathbf{Q} & \mathbf{K}^\mathsf{T} & \mathbf{V} \\ \\ \mathbf{Softmax} \left(\begin{array}{c} & \times & & \\ \hline & \sqrt{d_k} & & \\ \end{array} \right) \end{array}$$

$$\operatorname{softmax}(\frac{QK^{T}}{\sqrt{d_{k}}})V$$

$$\operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Self Attention

$$\operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$\begin{bmatrix} 1.3 \\ 5.1 \\ 2.2 \\ 0.7 \\ 1.1 \end{bmatrix} \qquad \underbrace{\sum_{j=0}^{K} e^{x_j}}_{j=0} \begin{bmatrix} 0.02 \\ 0.90 \\ 0.05 \\ 0.01 \\ 0.02 \end{bmatrix}$$

Dissection of the Transformer

Layer Normalization

Skip Connections

Positional Encoding

Byte Pair Encodings

Layer Stacking

Cross Attention

Model types

Encoder

BERT

Sequence classification

Encoder-decoder: T5

Sequence-to-sequence e.g. machine translation

Decoder

GPT

Text generation

Generative Pre-Trained Transformers

From language models to chatbots

GPT: language model

ChatGPT: aligned language model

Alignment: what type of response is desirable? How can we make model behaviour be *aligned* with human norms and values?

Alignment and instruction finetuning

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior

This data is used to fine-tune GPT-3 with supervised learning.

Alignment and instruction finetuning

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

This data is used to train our reward model.

A labeler ranks the outputs from best to worst.

Alignment and instruction finetuning

Explain the moon

landing to a 6 year old

D > G > A = B

Explain war.

Explain gravity

C

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Scaling Transformers

Cambrian Explosion of LMs

In comparison: the "big" model in original attention paper had only 213M parameters

Transformer Explosion

GPT-3 Trained on ~350 Billion tokens

GPT-3 has 175B parameters!

Transformer Explosion

GPT-3 Trained on ~350 Billion tokens

GPT-3 has 175B parameters!

GPT4: in the range of 1.8T parameters, trained on >1T tokens.

3 months at 20.000 A100s...

Chinchilla Scaling Laws

Chinchilla Scaling Laws

Finetuning LLMs at scale

From training to finetuning

From training to finetuning

Current era of LLMS: few parties with enough data and compute to train large models

What can you do without requiring 1000 H100 GPUs? ☺

From training to finetuning

Current era of LLMS: few parties with enough data and compute to train large models

What can you do without requiring 1000 H100 GPUs? ☺

No training

Use foundation models as they are:

- In-context learning
- Retrieval augmented generation

Finetuning

Transfer learning: finetune model to adapt to specific task

Often not necessary to change **all** parameters

^{*} The pretrained model could be any LLM, e.g., an encoder-style LLM (like BERT) or a generative decoder-style LLM (like GPT)

Often not necessary to change **all** parameters

The pretrained model could be any LLM, e.g., an encoder-style LLM (like BERT) or a generative decoder-style LLM (like GPT)

Alternative formulation (regular finetuning)

Often not necessary to change **all** parameters

LoRA weights, W_A and W_B , represent ΔW

Often not necessary to change **all** parameters

LoRA weights, W_A and W_B , represent ΔW

Reduces parameters in vram by about 4x!

Example: LLama 7B in FP: 4 (bytes) x 7 = 28GB (inference)

8 (bytes) x 7 = 56GB (training)

This can go down to 14GB with PEFT!

Considerations

Social bias
Legal limitations
Trust and reliability
Confident talking parrot
Disinformation

Environmental impact

Transformers for other modalities

Transformers for other modalities: ViT

Transformers for other modalities: EvoFormer

Transformers for other modalities: Whisper

Want to learn more?

Use existing (efficient!) frameworks

Hugging Face

Make use of SURF guides for efficient finetuning:

https://servicedesk.surf.nl/wiki/display/W IKI/LLM+finetuning+on+Snellius

Fin

Introduction Series

