Съвместни, маргинални и условни (дискретни) разпределения.

- Съвместно разпределение на X и Y: $f_{XY}(x,y) = P(X=x,Y=y),$ $f_{XY}(x,y) \ge 0, \sum_x \sum_y f_{XY}(x,y) = 1$
- Маргинални разпределения на двумерно (X,Y) разпределение със съвместна плътност $f_{XY}(x,y)$: $f_X(x) = \sum_y f_{XY}(x,y)$, $f_Y(y) = \sum_x f_{XY}(x,y)$
- ullet Независимост: ако $f_{XY}(x,y)=f_X(x)f_Y(y)$ за всяко x и y.
- Математическо очакване: $E(H(X,Y)) = \sum_{x} \sum_{y} H(x,y) f_{XY}(x,y)$, ако съществува $\sum_{x} \sum_{y} |H(x,y)| f_{XY}(x,y)$.
- Ковариация: $Cov(X,Y) = E((X-\mu_x)(Y-\mu_y)) = E(XY)-E(X)E(Y)$. Ако X и Y са независими ковариацията им е 0, обратното НЕ E вярно.
- Корелационен коефициент: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{VarX}\sqrt{VarY}}$
- Условна плътност: $f_{X|y}(x) = f_{X|Y=y}(x) = \frac{f_{XY}(x,y)}{f_{Y}(y)}$

ЗАДАЧИ:

1. В автомобилен завод се изпълняват от роботи две задачи: заваряване на два шева и затягане на три болта. Нека с X означим броя на дефектните заварки, а с Y - броя дефектно затегнатите болтове на един автомобил. Съвместната плътност е определена в следната таблица:

/ •	0	1	2	3
0	$\begin{array}{c} 0.840 \\ 0.060 \\ 0.010 \end{array}$	0.030	0.020	0.010
1	0.060	0.010	0.008	0.002
2	0.010	0.005	0.004	0.001

Определете маргиналните разпределения. Независими ли са X и Y? Намерете EX, EY, E(X+Y), EXY, Cov(X,Y), ρ_{XY} , $f_{X|y}$.