Reg. No.								

B.Tech/M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

Fourth Semester

21AIS201J - FOUNDATION OF ARTIFICIAL INTELLIGENCE

(For the candidates admitted from the academic year 2022-2023 onwards)

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

Time: 3	Hours		Max.	Ma	rks:	75
	_	0 × 1 = 20Marks) LL Questions	Marks	BL	со	PO
1.		nsidered the most straight forward?	1	4	1	4
41	(A) Best first search(C) Depth first search	(B) State space search(D) Hill climbing search				
2.	Though local search algorithm include	are not systematic, key advantage	would 1	2	1	1
	(A) Less memory	(B) More time				
	(C) Finds a solution in large in space	finite (D) Both (A) and (C)				
3.	Hill climbing algorithm is son grabs a good neighbor state wit	e times called algorithm become thinking ahead about where to go		3	1	3

4. What is heuristic function?

(A) A function to solve mathematical problems

(D) Optical local search

- (B) A function which takes parameters of types string and returns an integer
- value
- (C) A function whose return type is nothing

(C) Greedy local search

over to hall invigilator at the end of 40th minute.

Part - B and Part - C should be answered in answer booklet.

- (D) A function that maps from problem state descriptions to measure of desirability
- 5. If A then B this can be considered to have a similar logical meaning as the following
 - (A) $A \rightarrow B$

(B) A < -> B

(C) $A \le -B$

- (D) A = B
- 6. Which of the following illustrates a mental event in an AI system?
 - (A) Processing sensory data to (B) Storing information in long-recognize objects in an image term memory
 - (C) Sending a signal to actuate a (D) Displaying information on a robotic arm computer screen

Note:

(i)

(ii)

1

7.	State the purpos	se of the training proc	ess in	n a neural network	1	1	2	1		
	(A) To prove	ide network with		To adjust the weights of						
	labeled da		(T)	connections between neurons						
	function	ppropriate activation	(D)	To visualize the data distribution						
8.	How new states	are generated in gen	etic a	lgorithm?	1	3	2	3		
	(A) Compositi		(B)	Mutation						
	(C) Cross over		(D)	Both (B) and (C)						
9.	What is the obje	1	1	3	1					
	(A) Maximize	the time taken by	(B)	Maximize the distance traveled						
	salesman			by salesman						
		the time taken by	(D)	Minimize the distance traveled						
	salesman			by salesman						
10	To141	1 1 0 0 4					2			
10.		ystems belief of anoth	-		1	4	3	4		
	(A) Trust(C) Arguments		` '	Reputation						
	(C) Arguments		(D)	Strategic approach						
11.	If agent can ma	ake a mutually bene	ficial	agreement, but have conflict of	1	4	3	4		
	interest about w	hich agreement to ma	ike th	en it is called						
	(A) Strategic a	• •	(B)	Negotiation						
	(C) Bargaining	5	(D)	Argument among multi agent						
12.	If you do α, I will do β is an example of which of the following types of						3	4		
	arguments	-		5 71						
	(A) Explanation	ns	(B)	Threats						
	(C) Rewards		(D)	Assumption attacks						
13.	Which of the fo	ollowing statement c	an be	represented using propositional	1	2	4	1		
	Which of the following statement can be represented using propositional 1 2 4 1 logic?									
	(A) Rohan is in			Some boys like cricket						
	(C) Some apple	es are sweet	(D)	All boys like cricket						
14.	Which of the fo	ollowing theorem pro	ving	technique is called as proofs by	1	2	4	1		
	contradictions?		U	1 · · · · · · · · · · · · · · · · · · ·						
	(A) Forward ch	naining	(B)	Prolog						
	(C) Resolution		(D)	Backward chaining						
15.	Machine translat	tion is used to			1	1	4	1		
				Convert human language to						
	human lang		()	machine language						
	(C) Convert h	uman language to	(D)	Convert one human language to						
	English			local language						
16.	Automated taxi	driver can be related t	to	environment.	1	2	5	1		
	(A) Determinis			Stochastic						
	(C) Non determ	ninistic	` '							

	17.	Robot navigation is an			1	3	5	3
		(A) Toy problem (I	B)	Real world problem				
		(C) Combination of toy and real (I world problem	D)	Greedy approach				
	18.	Identify the search technique that combi			1	3	5	3
				Uniform cost search				
		(C) Bidirectional search (I	D)	Iterative search				
	19.	DFS is efficient and BFS is _			1	4	5	4
		· / 1	B)	1 ,				
		(C) Time, space (I	D)	Time, time				
	20.	Which of the following places would be robots?	be 1	least likely to include operations	1	4	5	4
			B)	Factory				
		· ·	,	Private homes				
		(-)	11					
		$PART - B (5 \times 8 = 40)$	0 M	(arks)	Marks	BL	CO	PO
		Answer ALL Ques	stic	ons				
21	l . a.	List the characteristics of artificial intelligent agents used in artificial intelligent		-	8	1	1	1
		(OR)						
	h	With a suitable AI game, explain the back	ckt	racking search technique	8	2	1	1
	υ.	with a suitable 1st game, explain the ba-	CK	racking scaren teeminque.				
22	2. a.	Demonstrate alpha-beta pruning algorith	hm	with suitable example.	8	3	2	3
		(OR)				•		
	b.	Discuss the concept of conceptual grap			8	2	2	1
		their structure, components and how	th	ey are utilized for knowledge				
		representation.						
23	3 a.	For any real time application, sketch	and	d explain the architecture of an	8	3	3	3
		intelligent agent.						
		(OR)						
	b.	Demonstrate the concept of multi agent	sys	tems, and describe how trust and	8	3	3	3
		reputation are achieved in multi agent sy						
24	1. a.	Illustrate the concept of frames and	se	mantic networks in knowledge	8	4	4	4
		representation.						
	•	(OR)		•				
	b.	Experiment ant colony optimization with	h re	eal-time AI problem with suitable	8	4	4	4
	- •	illustrations.	-	1				
25	5. a.	Implement neural networks in arti		-	8	3	5	3
		architecture, learning algorithms and a		_				
		how neural networks are used in real wo	JIIU	scollarios.				

(OR)

b. In detail explain the process of hill climbing and simulated annealing with 8 1 5 1 example.

PART - C (1 × 15 = 15 Marks) Answer **ANY ONE** Question

Marks BL CO PO

- 26. Consider the following axioms:
 - (i) Ravi likes all kind of food
 - (ii) Apples and chicken are food
 - (iii) Anything anyone eats and its not killed is food
 - (iv) Ajay eats peanuts and is still alive
 - (v) Rita eats everything and is still alive

Prove by resolution that Ravi likes peanuts.

27. Demonstrate the challenges and future directions of formal concept analysis

in the context of artificial intelligence research. Identify potential areas for
improvement and expansion of FCA techniques and applications. Describe
a scenario where formal concept analysis might face challenges or
limitations an AI applications.

* * * * *