运筹学第四次作业参考答案(20231018)

1. 给定线性规划问题:

min
$$5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 \ge b_1$
 $x_1 + x_2 + 2x_3 \ge 1$
 $x_j \ge 0, j = 1, 2, 3$

其中 b_1 是某一个正数,已知这个问题的一个最优解为 $(0.5, 0, 0.25)^{\mathsf{T}}$ 。

- (1) 写出对偶问题;
- (2) 求对偶问题的最优解.

解:

(1) 对偶问题为

$$\begin{cases} \max & b_1 y_1 + y_2 \\ \text{s.t.} & y_1 + y_2 \le 5 \\ -y_1 + y_2 \le 0 \\ 6y_1 + 2y_2 \le 21 \\ y_1, y_2 \ge 0 \end{cases}$$

(2) 原问题最优解中 $x_1, x_3 \neq 0$,根据互补松紧性条件有

$$\begin{cases} y_1 + y_2 = 5 \\ 6y_1 + 2y_2 = 21 \end{cases}$$

解得 $y_1 = \frac{11}{4}$, $y_2 = \frac{9}{4}$, 再根据最优目标值相同有

$$5 \times \frac{1}{2} + 21 \times \frac{1}{4} = \frac{11}{4}b_1 + \frac{9}{4}$$

得 $b_1 = 2$,因此对偶问题的最优解及最优值为

$$y^* = \left(\frac{11}{4}, \frac{9}{4}\right)^\mathsf{T}, z^* = \frac{31}{4}$$

2. 求解以下带参数的线性规划问题,并给出z(λ)与λ的变化关系:

(1)
$$\min z = (6 - \lambda)x_1 + (5 - \lambda)x_2 + (-3 + \lambda)x_3 + (-4 + \lambda)x_4$$
s. t. $x_1 - x_2 - x_3 \le 1$

$$-x_1 + x_2 - x_4 \le 1$$

$$-x_2 + x_3 \le 1$$

$$x_j \ge 0, \ j = 1, 2, 3, 4$$

(2)
$$\min z = 2x_1 + 6x_2 + 15x_3$$
s. t.
$$-2x_1 - 3x_2 - 5x_3 \le 6 - \lambda$$

$$x_1 + x_2 + x_3 \le -2 + \lambda$$

$$x_2 + 2x_3 \le -3 + 2\lambda$$

 $x_j \ge 0, \ j = 1, 2, 3$

解:

(1) 添加松弛变量,得到单纯形表

BV	x_1	x_2		x_4				
x_5	1	-1	-1	0	1	0	0	1
x_6	-1	1	0	-1	0	1	0	1
x_7	0	-1	-1 0 1	0	0	0	1	1
	6-λ	5-λ	-3+λ	-4+λ	0	0	0	

现对λ分类讨论:

- ② 若 $3 < \lambda < 4$,则 $6 \lambda > 0$, $5 \lambda > 0$, $-3 + \lambda > 0$, $-4 + \lambda < 0$,于是 x_4 进基,可知原问题无界, $z = -\infty$.
- ③ 若 $4 \le \lambda \le 5$,则 $6 \lambda > 0$, $5 \lambda \ge 0$, $-3 + \lambda > 0$, $-4 + \lambda \ge 0$,原问题达到最优解 $x^* = (0,0,0,0)^\mathsf{T}$, z = 0。
- ④ 若 $5 < \lambda \le 6$,则 $6 \lambda \ge 0$, $5 \lambda < 0$, $-3 + \lambda > 0$, $-4 + \lambda > 0$, 于是 x_2 进基, x_6 出基,单纯形表变为

BV	_	x_2	x_3				x_7	
x_5	0	0	-1	-1	1	1	0	2
x_2	-1	1	0	-1	0	1	0	1
x_7	-1	0	1	-1	0	1 1 1	1	2
	11-2λ					-5+λ		

此时-3+ λ >0, -5+ λ >0, 由于 11-2 λ 的符号在 λ =5.5 处发生变化。 进一步讨论有:

- 4.1: 若 $5 < \lambda \le 5.5$,有 $11 2\lambda \ge 0$ 。此时所有检验数非负,达到最优值 $z = 5 \lambda$:
- 4.2: 若 $5.5 < \lambda \le 6$,有 $11 2\lambda < 0$ 。 x_1 进基,但该列系数非正,原问题无界, $z = -\infty$ 。
- ⑤ 若 $\lambda > 6$,则 $6 \lambda < 0$, $5 \lambda < 0$, $-3 + \lambda > 0$, $-4 + \lambda > 0$,且 $6 \lambda > 5 \lambda$,还 是 x_2 进基, x_6 出基,情况与④中的 4.2 一致,故原问题无界, $z = -\infty$ 。

综上所述

$$z(\lambda) = \begin{cases} -\infty, & \lambda < 4 \text{ or } \lambda > 5.5\\ 0, & 4 \le \lambda \le 5\\ 5 - \lambda, & 5 < \lambda \le 5.5 \end{cases}$$

(2) 写出对偶问题

$$\max \ \omega = (\lambda - 6)y_1 + (2 - \lambda)y_2 + (3 - 2\lambda)y_3$$
 s. t.
$$2y_1 - y_2 \le 2$$

$$3y_1 - y_2 - y_3 \le 6$$

$$5y_1 - y_2 - 2y_3 \le 15$$

$$y_1, y_2, y_3 \ge 0$$

添加松弛变量,得到单纯形表

BV	y_1	y_2	y_3	y_4	y_5	y_6	RHS
y_4	2	-1	0	1	0	0	2
y_5	3	-1	-1	0	1	0	6
y_6	5	-1	0 -1 -2	0	0	1	15
	λ-6	2-λ	3-2λ	0	0	0	

现对λ分类讨论:

① 若 $\lambda > 6$,则 $\lambda - 6 > 0$, $2 - \lambda < 0$, $3 - 2\lambda < 0$, y_1 进基, y_4 出基

BV	y_1	y_2	y_3	y_4	y_5	y_6	RHS
y_4	1	-1/2	0	1/2	0	0	1
y_5	0	1/2	-1	-3/2	1	0	3
y_6	0	3/2	-2	-5/2	0	1	10
	0	$-\frac{\lambda}{2}-1$	$3-2\lambda$	$3-\frac{\lambda}{2}$	0	0	6 – λ

此时所有检验数非正,达到最优值 $\omega = \lambda - 6$

- ② 若 λ < 2,则 λ 6 < 0,2 λ < 0,但 y_2 , y_3 列均非正, ω 无界,原问题无可行解。
- ③ 若 $2 \le \lambda \le 6$,则 $\lambda 6 \le 0$, $2 \lambda \le 0$, $3 2\lambda < 0$,所有检验数非正,达到最优值 $\omega = 0$ 。

综上可得

$$z(\lambda) = \begin{cases} \overline{\mathcal{X}} & \text{if } \lambda < 2 \\ 0, & 2 \le \lambda \le 6 \\ \lambda - 6, & \lambda > 6 \end{cases}$$

3. 已知线性规划问题 A 和 B 如下

问题A

$$\max \sum_{j=1}^{n} c_j x_j$$
 影子价格

s. t.
$$\sum_{i=1}^{n} a_{1i} x_i = b_1$$
 y_1

$$\sum_{j=1}^{n} a_{2j} x_j = b_2 \qquad y_2$$

$$\sum_{j=1}^{n} a_{3j}x_j = b_3$$

$$x_i \ge 0, j = 1, 2, \dots, n$$

$$y_3$$

问题 B

$$\max \sum_{j=1}^{n} c_j x_j$$
 影子价格

s.t.
$$\sum_{j=1}^{n} k_1 a_{1j} x_j = k_1 b_1$$
 \hat{y}_1

$$\sum_{j=1}^{n} k_2 a_{2j} x_j = k_2 b_2 \qquad \hat{y}_2$$

$$\sum_{j=1}^{n} (a_{3j} + k_3 a_{1j}) x_j = b_3 + k_3 b_1 \qquad \hat{y}_3$$
$$x_j \ge 0, j = 1, 2, ..., n$$

求 y_i 与 \hat{y}_i (i = 1,2,3)的关系

解:

问题A的对偶问题为

$$\min \ b_1y_1 + b_2y_2 + b_3y_3$$
 s.t. $a_{1j}y_1 + a_{2j}y_2 + a_{3j}y_3 \ge c_j, j = 1,2,...,n$

问题 B 的对偶问题为

$$\min \ k_1b_1\hat{y}_1+k_2b_2\hat{y}_2+(b_3+k_3b_1)\hat{y}_3$$
 s. t. $k_1a_{1j}\hat{y}_1+k_2a_{2j}\hat{y}_2+(a_{3j}+k_3a_{1j})\hat{y}_3\geq c_j, j=1,2,\dots,n$

整理得

$$\min \ (k_1\hat{y}_1+k_3\hat{y}_3)b_1+k_2\hat{y}_2b_2+\hat{y}_3b_3$$
 s.t. $(k_1\hat{y}_1+k_3\hat{y}_3)a_{1j}+k_2\hat{y}_2a_{2j}+\hat{y}_3a_{3j}\geq c_j, j=1,2,...,n$

若 $(y_1,y_2,y_3)^{\mathsf{T}}$ 为问题 A 对偶问题的最优解,那么问题 B 对偶问题的最优解应满足

$$y_1 = k_1 \hat{y}_1 + k_3 \hat{y}_3$$

$$y_2 = k_2 \hat{y}_2$$

$$y_3 = \hat{y}_3$$

也可以写成

$$\hat{y}_1 = \frac{y_1 - k_3 y_3}{k_1}, \qquad \hat{y}_2 = \frac{1}{k_2} y_2, \qquad \hat{y}_3 = y_3$$

4. 用对偶单纯形算法求解以下线性规划问题

min
$$z = 6x_1 + 4x_2 + 8x_3$$

s. t. $3x_1 + 2x_2 + x_3 \ge 2$
 $4x_1 + x_2 + 3x_3 \ge 4$
 $2x_1 + 2x_2 + 2x_3 \ge 3$
 $x_1, x_2, x_3 \ge 0$

解:

将其转化为标准型

-max
$$w = -z = -6x_1 - 4x_2 - 8x_3$$

s.t. $3x_1 + 2x_2 + x_3 - x_4 = 2$
 $4x_1 + x_2 + 3x_3 - x_5 = 4$
 $2x_1 + 2x_2 + 2x_3 - x_6 = 3$
 $x_j \ge 0, j = 1, 2, ..., 6$

由标准形式可以看出 $(0,0,0,-2,-4,-3)^{\mathsf{T}}$ 是对偶问题的可行解,因此可建立对偶单纯形表如下

BV	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	RHS
x_4	-3	-2	-1	1	0	0	-2
x_5	-4	-1	-3	0	1	0	-4
x_6	-2	-2	-2	0	0	1	-3
	-6	-4	-8	0	0	0	W

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	RHS
x_4	0	-5/4	5/4	1	-3/4	0	1
x_1	1	1/4	3/4	0	-1/4	0	1
x_6	0	-3/2	-1/2	0	-1/2	1	-1
	0	-5/2	-7/2	0	-3/2	0	w+6

BV	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	0	0	5/3	1	-1/3	-5/6	11/6
x_1	1	0	2/3	0	-1/3	1/6	5/6
x_2	0	1	1/3	0	1/3	-2/3	2/3
	0	0	-8/3	0	-2/3	-5/3	w+23/3

此时 RHS 都是正数且检验数都不是正数,迭代停止。得到最优解与最优值为

$$x^* = \left(\frac{5}{6}, \frac{2}{3}, 0, \frac{11}{6}, 0, 0\right)^{\mathsf{T}}, z^* = -w^* = \frac{23}{3}$$

5. 用单纯形法求解以下线性规划问题

min
$$24y_1 + 6y_2 + 5y_3 + 3y_4 + 3y_5 + 2y_6 + 6y_7 + y_8 + y_9$$

s. t. $7y_1 + 6y_2 + 2.5y_3 + y_4 + 0.75y_5 + 0.4y_6 + y_7 + y_8 = 6$
 $7y_1 + y_2 + y_3 + 0.75y_4 + y_5 + y_6 + 6y_7 + y_9 = 7$
 $y_i \ge 0, i = 1, 2, ..., 9$

解: 生将目标函数转换为 max 形式, 列出单纯形表

BV	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	RHS
	7	6	2.5	1	0.75	0.4	1	1	0	6
	7	1	1	0.75	1	1	6	0	1	7
	-24	-6	-5	-3	-3	-2	-6	-1	-1	w

取 y_8, y_9 为基变量,即令这两列检验数为 0,得到

BV	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	RHS
y_8	7	6	2.5	1	0.75	0.4	1	1	0	6
y_9	7	1	1	0.75	1	1	6	0	1	7
	-10	1	-1.5	-1.25	-1.25	-0.6	1	0	0	w+13

				y_4						
y_2	7/6	1	5/12	1/6	1/8	1/15	1/6	1/6	0	1
y_9	35/6	0	7/12	7/12	7/8	14/15	35/6	-1/6	1	6
	-67/6	0	-23/12	-17/12	-11/8	-2/3	5/6	-1/6	0	w+12

BV	y_1	y_2	y_3	y_4	y_5	y_6	<i>y</i> ₇	y_8	y_9	RHS
y_2										29/35
y_7										36/35
	-12	0	-2	-3	-3/2	-4/5	0	-1/7	-1/7	w+78/7

此时检验数都为非负,得到最优解以及最优值为

$$\mathbf{y}^* = \left(0, \frac{29}{35}, 0, 0, 0, 0, 0, \frac{36}{35}, 0, 0\right)^\mathsf{T}, \quad z^* = -w^* = \frac{78}{7}$$