Student Information

Full Name: Onur Can TIRTIR

Id Number: 2099380

Answer 1

P(i) is to be the truth value of the equation given in the question, when n = i:

1. Basis Step

When n = 1,

$$\sum_{j=1}^{1} j \cdot (j+1)(j+2) \dots (j+k-1) = 1 \cdot 2 \cdot 3 \dots k = k! = \frac{1 \cdot 2 \cdot 3 \dots k \cdot (k-1)}{(k-1)}.$$

Then P(1) is true.

2. Inductive Step

Say
$$f(j) = j.(j+1)(j+2)...(j+k-1)$$
.

I will try to prove P(t+1) is true, assuming that P(t) is true.

P(t) is true then

$$\sum_{j=1}^{t} f(j) = \frac{t \cdot (t+1) \cdot (t+2) \cdot \dots \cdot (t+k)}{(k+1)}.$$

Hence

$$\sum_{j=1}^{t+1} f(j) = \sum_{j=1}^{t} f(j) + (t+1)(t+2)\dots(t+k)$$

$$\stackrel{\text{IH}}{=} \frac{t \cdot (t+1)(t+2)\dots(t+k)}{(k+1)} + (t+1)(t+2)\dots(t+k)$$

$$= (t+1)(t+2)\dots(t+k)(\frac{t}{k+1}+1)$$

$$= \frac{(t+1)(t+2)\dots(t+k)(t+k+1)}{(k+1)}$$

Also if we substitute t + 1 in our assumption, we get again same result as below.

$$\sum_{j=1}^{t+1} f(j) = \frac{(t+1)(t+2)\dots(t+k)(t+k+1)}{(k+1)}.$$
 (1)

These two equations show that P(t+1) is true under the assumption that P(t) is true. Inductive step is done.

So by mathematical induction, we know that P(t) is true for all positive integers t. Proof is done.

Answer 2

Let P(n) be the proposition that $H_n \leq 7^n$:

1. Basis Step

P(0) is true: $n=0, H_0 = 1 \le 7^0$.

P(1) is true: $n=1, H_1 = 3 \le 7^1$.

P(2) is true: n=2, $H_2 = 5 \le 7^2$.

Basis step is done.

2. Inductive Step

Assume that for any j such that $0 \le j \le k$, P(j) is true, which means $H^j \le 7^j$. Now prove that $H^{k+1} < 7^{k+1}$.

P(k), P(k-1) and P(k-2) are true under our assumption since k, k-1 and k-2 are in the interval [0, n].

$$H_{k+1} = 7H_k + 5H_{k-1} + 63H_{k-2}$$

$$\leq 7^k + 5.7^{k-1} + 63.7^{k-2}$$

$$\leq 7^k + 5.7^{k-1} + 9.7^{k-1}$$

$$\leq 7^k + 14.7^{k-1}$$

$$\leq 7^k + 2.7^k$$

$$= 3.7^k$$

$$< 7^{k+1}$$

So we have proven P(k+1) is also true under our assumption by showing that $H_{k+1} \leq 7^{k+1}$. This completes inductive step.

Because we have completed basis and inductive steps, we know P(n) is true for any n such that $n \ge 0$. Proof is done.

Answer 3

a)

We have sets

E:{Options to choose 4 books from all 12 books}.

 $A: \{ \text{Options to choose 4 books from 7 Signals And Systems books} \}.$

We need to find the cardinality of the set $E \setminus A$. Answer is |E| - |A| = C(12, 4) - C(7, 4) = 460.

E:{Options to choose 4 books from all 12 books}.

A:{Options to choose 4 books from 7 Signals And Systems books}.

B:{Options to choose 4 books from 5 Discrete Mathematics books}.

Note: A and B are disjoint sets.

We need to find the cardinality of the set $E \setminus (A \cup B)$. Answer is |E| - (|A| + |B|) = C(12, 4) - C(7, 4) - C(5, 4) = 455.

Answer 4

 a_n is to be the number of strings having even number of 3's with the length n. We can generate n-strings by appending either a 3 or 2 to the valid n-1-strings.

1. We can generate an n-string having even number of 3's by appending 2 to an n-1-string having even number of 3's.

Then we can say $a_n = a_{n-1}$.

2. We can generate an n-string having even number of 3's by appending 3 to an n-1-string not having even number of 3's.

We can find *n-1-strings* **not** having even number of 3's by excluding valid strings form all possible strings with the length *n-1*. Then we can say $a_n = 2^{n-1} - a_{n-1}$.

Because all valid strings can be generated in one of these two ways, it follows that our recurrence relation is:

$$a_n = a_{n-1} + 2^{n-1} - a_{n-1} = 2^{n-1}.$$

Answer 5

In the equation given in the question, take the terms with a_{n-1} , a_{n-2} and a_{n-3} to the left side and get $a_n - 4a_{n-1} - a_{n-2} + 4a_{n-3} = 0$. Then we have the characteristic equation $r^3 - 4r^2 - r + 4 = 0$ if and only if (r-4)(r+1)(r-1) = 0. Then we get $r_1 = 4$, $r_2 = -1$ and $r_3 = 1$.

Now we have $a_n = \alpha_1 r_1 + \alpha_2 r_2 + \alpha_3 r_3$.

Substituting r_1 , r_2 and r_3 to this equation we get $a_n = \alpha_1 4^n + \alpha_2 (-1)^n + \alpha_3 (1)^n$.

Substituting n = 0, n = 1 and n = 2 in that equation, we have 3 equations with 3 unknowns such that

$$\alpha_1 + \alpha_2 + \alpha_3 = 4$$
$$4\alpha_1 - \alpha_2 + \alpha_3 = 8$$
$$16\alpha_1 + \alpha_2 + \alpha_3 = 34$$

Subtracting first equation from third equation we get $15\alpha_1 = 30$ and hence $\alpha_1 = 2$. Adding first two equations we get $5\alpha_1 + 2\alpha_3 = 12$ and hence $\alpha_3 = 1$. Putting α_1 and α_3 in the first equation we get $\alpha_2 = 1$. Then $a_n = 2.4^n + (-1)^n + 1$.

Answer 6

By the extended binomial theorem,

$$\sum_{n=0}^{\infty} C(10, n) x^n = C(10, 0) x^0 + C(10, 1) x^1 + C(10, 2) x^2 + \dots + C(10, 10) x^{10} + \dots$$
$$= (1 + x)^{10}$$

Then,

$$< C(10,0), C(10,1), C(10,2) \cdots > \longleftrightarrow (1+x)^{10}$$

Shift the sequence above left,

$$\frac{(1+x)^{10} - C(10,0)x^{0}}{x} = \frac{C(10,0)x^{0} + C(10,1)x^{1} + C(10,2)x^{2} + C(10,3)x^{3} + \cdots - C(10,0)x^{0}}{x}$$

$$= \frac{C(10,1)x^{1} + C(10,2)x^{2} + C(10,3)x^{3} + C(10,4)x^{4} + \cdots}{x}$$

$$= C(10,1)x^{0} + C(10,2)x^{1} + C(10,3)x^{2} + C(10,4)x^{4} + \cdots$$

$$= \sum_{n=0}^{\infty} C(10,n+1)x^{n}$$

$$= \sum_{n=0}^{\infty} a_{n}x^{n}$$

Then,

$$\{a_n\} = \frac{(1+x)^{10} - C(10,0)x^0}{x}$$
$$= \frac{(1+x)^{10} - 1}{x}$$