CONVOLUTION: 1D AND 2D

Math Tools Lab #5 October 11th, 2019

CONVOLUTION RECAP

A mathematical operation on two functions, f and g, that produces a third function expressing how the shape of one is modified by the other. Functionally, this means sliding one function on top of the other, multiplying and then adding.

More formally, it is the integral of the product of two functions after one has been reversed and shifted:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(x)g(t - x)dx$$

PADDING

Let's take an arbitrary 1D signal. We don't know the values before we started or after we stopped recording...how can we pad our signal?

Zeros

Constant (i.e. mean)

Reflectance

Circular (MATLAB default)

3

Makes use padding, rightmost part of kernel starts at input

October 11th, 2019 Math Tools Lab: Convolution

October 11th, 2019 Math Tools Lab: Convolution

October 11th, 2019 Math Tools Lab: Convolution

October 11th, 2019 Math Tools Lab: Convolution

October 11th, 2019 Math Tools Lab: Convolution

$$k = 3$$
Kernel $1 \quad 1 \quad 1$

October 11th, 2019

Doesn't make use of padding, leftmost part of kernel starts at input

October 11th, 2019 Math Tools Lab: Convolution

October 11th, 2019 Math Tools Lab: Convolution

October 11th, 2019 Math Tools Lab: Convolution

$$k = 3$$
Kernel $1 \quad 1 \quad 1$

$$r = n - k + 1$$
Output $6 9 12$

Output is <u>shorter</u> than input

Makes use of padding such that input and output size are identical

October 11th, 2019 Math Tools Lab: Convolution

$$k = 3$$
Kernel $1 \quad 1$

Output is same length r = n as input Output $3 \ 6 \ 9 \ 12 \ 9$

FMRI ANALYSIS: 1D CONVOLUTION

We can measure brain activity in awake, behaving humans with fMRI. Most fMRI analyses measure the changes in blood oxygen level dependent (BOLD) response

BOLD response is slow

- Peaks ~6 seconds after neural activity
- Is roughly reliable within the same area
- Hemodynamic response is canonical

22

MATLAB PARTS 1-2

October 11th, 2019 Math Tools Lab: Convolution

IMAGE PROCESSING: 2D CONVOLUTION

Think of 2D convolutions the same way as 1D convolutions: sliding on function on top of another, multiplying and adding

30	3	2_2	1	0
02	0_2	1_0	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

Otherwise, the same ideas that we've already been talking about apply

Padding

Striding

24

MATLAB PARTS 3-4

October 11th, 2019 Math Tools Lab: Convolution

A PROBABILISTIC EXAMPLE

Let's say we're dropping a ball from a fixed height and are only considering how far the ball travels after it hits the ground in one dimension.

How likely is it that the ball will go a distance c if you drop it once, and then drop it a second time from the point at which it lands?

After the first drop: f(a) units from start After the second drop: g(b) units from a

If we fix a and b and a + b = c, the probability that the ball will go a distance c is just $f(a) \cdot g(b)$

26

A PROBABILISTIC EXAMPLE

Here's a specific discrete example: if we want c to be 3 and the ball rolls a distance a=2 on the first drop, then it must roll b=1 on the second roll.

The probability of this is $f(2) \cdot g(1)$. But, we could've gotten a distance of 3 in many combinations: a=1 and b=2, a=0 and b=3, etc.

To find the total likelihood of the ball reaching distance c, we have to consider all of these partitions and sum the probability.

This is a convolution!

...
$$f(0) \cdot g(3) + f(1) \cdot g(2) + f(2) \cdot g(1) \dots$$

$$(f * g)(c) = \sum_{a+b=c} f(a) \cdot g(b)$$

$$(f * g)(c) = \sum_{a} f(a) \cdot g(c - a)$$

HIGHER DIMENSIONALITY

The idea of convolutions generalizes to higher dimensions. Consider our example from before, but the position of the ball shifts in two dimensions rather than one.

$$(f * g)(c) = \sum_{a+b=c} f(a) \cdot g(b)$$

Except now a and c are vectors

$$(f * g)(c_1, c_2) = \sum_{\substack{a_1 + b_1 = c_1, \\ a_2 + b_2 = c_2}} f(a_1, a_2) \cdot g(b_1, b_2)$$

$$(f * g)(c_1, c_2) = \sum_{a_1, a_2} f(a_1, a_2) \cdot g(c_1 - a_1, c_2 - a_2)$$