Standard Derivative & Integral

Function f(x)	Derivative f'(x)	Integral F(x)
1	0	x + C
x	1	$\frac{1}{2}x^2 + C$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\ln x + C$
$x^a \text{ with } a \in \mathbb{R}$	ax^{a-1}	$\frac{x^{a+1}}{a+1} + C$
$\sin(x)$	$\cos(x)$	$-\cos(x) + C$
$\cos(x)$	$-\sin(x)$	$\sin(x) + C$
tan(x)	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$-\ln \cos(x) + C$
$\cot(x)$	$-1 - \cot^2(x) = -\frac{1}{\sin^2(x)}$	$\ln(\sin(x)) + C$
e^x	e^x	$e^x + C$
a^x	$\ln(a) \cdot a^x$	$\frac{a^x}{\ln(a)} + C$
ln(x)	$\frac{1}{x}$	$x\ln(x) - x + C$
$\log_a(x)$	$\frac{1}{x \ln(a)}$	$x \log_a(x) - \frac{x}{\ln(a)} + C$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$x\arcsin(x) + \sqrt{1 - x^2} + C$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$	$x \arccos(x) - \sqrt{1 - x^2} + C$
$\arctan(x)$	$\frac{1}{1+x^2}$	$x\arctan(x) - \frac{1}{2}\ln(1+x^2) + C$

Partial Fraction Decomposition

- 1. The fractions numerator needs to be of a lower polynomial degree than the denominator
- 2. Guess one of the Zeros with the values: (-3, -2, -1, 1, 2, 3)

3.

Horners Method

begin by guessing one of the zero points with the values: (-3,-2,-1,1,2,3)

$$f(x) = 5x^3 - 8x^2 - 27x + 18 \rightarrow x = -2$$

factors before x go into table

$$5 -8 -27 18$$

$$5 \cdot (-2) = -10 -18 \cdot (-2) = 36 9 \cdot (-2) = -18$$

$$5 -8 + (-10) = -18 -27 + 36 = 9 18 + (-18) = 0$$