Kernel Methods

Lecture 25

1/36

Kernel Machine

Stores a subset of its training examples (instance-based learning)

Can learn implicitly **alternative feature spaces** without explicitly transforming the data into that space

Relies on a similarity measure, the **kernel function**, to compare test points to the training data

K. Bradbury & L. Collins Kernel Methods Lecture 25 2 / 36

Perceptron → kernel perceptron (the kernel trick)

Kernel functions

(making features space transforms easy)

Maximum margin classifier

(explicit feature space, linearly separable)

Support vector classifier

(explicit feature space, not linearly separable)

Support vector machine

(kernel-transformed implicit feature space, not linearly separable)

Recall linear models and the perceptron

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right) = sign(\mathbf{w}^T \mathbf{x})$$

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$
 (intercept)

Source: Abu-Mostafa, Learning from Data, Caltech

K. Bradbury & L. Collins Kernel Methods Lecture 25 4 / 36

Perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$
$$= sign(\mathbf{w}^T \mathbf{x})$$

Idea: draw a line that separates the classes

Perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$
$$= sign(\mathbf{w}^T \mathbf{x})$$

Training data:
$$(x_n, y_n)$$
, $n = 1, ..., N$ with binary $y_n = \{-1, 1\}$

Decision rule based on $sign(\mathbf{w}^T\mathbf{x})$: if $\mathbf{w}^T\mathbf{x}_n > 0$, then $\hat{y}_n = +1$ if $\mathbf{w}^T\mathbf{x}_n < 0$, then $\hat{y}_n = -1$

For correctly classified points: $y_n w^T x_n > 0$ (and no error is assigned if correctly classified)

The perceptron classifier

$$\hat{f}(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x})$$

Decision rule based on $sign(\mathbf{w}^T\mathbf{x})$: if $\mathbf{w}^T\mathbf{x}_n > 0$, then $\hat{y}_n = +1$ if $\mathbf{w}^T\mathbf{x}_n < 0$, then $\hat{y}_n = -1$

For correctly classified points: $y_n w^T x_n > 0$ (and no error is assigned if correctly classified)

K. Bradbury & L. Collins Kernel Methods Lecture 25 7 / 36

Perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$

$$= sign(\mathbf{w}^T \mathbf{x})$$

Training data: (x_n, y_n) , n = 1, ..., N with binary $y_n = \{-1,1\}$

Decision rule based on $sign(\mathbf{w}^T\mathbf{x})$: if $\mathbf{w}^T\mathbf{x}_n > 0$, then $\hat{y}_n = +1$ if $\mathbf{w}^T\mathbf{x}_n < 0$, then $\hat{y}_n = -1$

For correctly classified points: $y_n w^T x_n > 0$ (and no error is assigned if correctly classified)

Our cost (error) function to minimize:

$$C = -\sum_{\substack{n \in \{\text{mistakes}\}\\ \hat{y}_n \neq y_n}} y_n \mathbf{w}^T \mathbf{x}_n$$

Perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$

$$= sign(\mathbf{w}^T \mathbf{x})$$

Our cost (error) function to minimize:

$$C = -\sum_{n \in \{\text{mistakes}\}} y_n \mathbf{w}^T \mathbf{x}_n$$

The gradient with respect to \boldsymbol{w} :

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{n \in \{\text{mistakes}\}} y_n \mathbf{x}_n$$

Applying stochastic gradient:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \, \frac{\partial E}{\partial \boldsymbol{w}}$$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

process one mistake at a time and assume a learning rate of 1

9/36

Pick a misclassified point and use it to update the weights:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

2 Reclassify all the data: $\hat{y}_n = sign(\mathbf{w}^T \mathbf{x}_n)$

3 Repeat until no mistakes

Limitations of linear decision boundaries

Classify the features in this *X*-space

$$\hat{f}_{x}(x) = \operatorname{sign}(w^{T}x)$$

K. Bradbury & L. Collins Kernel Methods

Transformations of features

Recall our digits example...

$$\mathbf{x} = [x_1, x_2, x_3, ..., x_{64}]$$

We could create features based on the raw features. For example:

$$\mathbf{z} = [x_1 x_2, x_3^2, \frac{x_{64}}{x_{42}}]$$

Which can be written simply as variables in a new feature space:

$$\mathbf{z} = [z_1, z_2, z_3]$$

We can transform the feature space

Transform the feature space

Perceptron Classifier

$$z = \Phi(x)$$

$$\hat{y} = \hat{f}(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{z})$$

Perceptron Learning Algorithm still applies

$$1 w \leftarrow w + y_n z_n$$

$$\hat{\mathbf{y}}_n = sign(\mathbf{w}^T \mathbf{z}_n)$$

K. Bradbury & L. Collins Kernel Methods Lecture 25 14 / 36

For example, a polynomial feature space

$$\boldsymbol{x} = [x_1 \quad x_2]^T$$

$$\mathbf{z} = \Phi(\mathbf{x}) = [1 \quad x_1 \quad x_2 \quad x_1^2 \quad x_2^2 \quad x_1 x_2]^{\mathrm{T}}$$

Transform into a 2nd-order polynomial feature space

This second order polynomial space with 2 features is simple enough

What about a 100th order polynomial space with 25 features?

That would be more than 10²⁶ terms!

K. Bradbury & L. Collins Kernel Methods Lecture 25 15 / 36

Transformations into alternative feature spaces may make the prediction problem easier

Can be **computationally challenging** to complete the transformation into those feature spaces explicitly...

Solution: kernel functions / the kernel trick

Perform learning in the feature space without explicitly transforming features into it

K. Bradbury & L. Collins Kernel Methods Lecture 25 16 / 36

Pick a misclassified point and use it to update the weights:

$$w \leftarrow w + y_n x_n$$
 $a_n \leftarrow a_n + 1$
(mistake counter)

- Reclassify all the data: $\hat{y}_n = sign(\mathbf{w}^T \mathbf{x}_n)$
- 3 Repeat until no mistakes

Update weights

$$w \leftarrow w + y_n x_n$$
 $a_n \leftarrow a_n + 1$
(mistake counter)

We can rewrite an expression for our weights:

$$\boldsymbol{w} = \sum_{n} a_{n} y_{n} \boldsymbol{x}_{n}$$

If we store our mistake counter, we can update our weights as a sum over all observations, but only the mistakes that were considered will have a nonzero value for a_n

Bishop, Pattern Recognition and Machine Learning, 2006

 χ_2

Update weights
$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$
 $a_n \leftarrow a_n + 1$ (mistake counter)

We can rewrite an expression for our weights:

$$\mathbf{w} = \sum_{n} a_{n} y_{n} \mathbf{x}_{n}$$

If we store our mistake counter, we can update our weights as a sum over all observations, but only the mistakes that were considered will have a nonzero value for a_n

Let's plug this new expression into our classifier:

$$\hat{y} = \hat{f}(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x})$$

$$= sign\left(\left(\sum_{n} a_n y_n \mathbf{x}_n\right)^T \mathbf{x}\right)$$

$$= sign\left(\sum_{n} \underline{a_n} y_n \mathbf{x}_n^T \mathbf{x}\right)$$

new model parameters inner product

Our classifier **stores training data**, but it only depends on an **inner product**

Kernel perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x} = sign\left(\sum_{n} a_{n} y_{n} \mathbf{x}_{n}^{T} \mathbf{x}\right)$$

Our classifier **stores training data**, but it only depends on an **inner product**

$$\hat{f}(\mathbf{x} = sign\left(\sum_{n} a_{n} y_{n} \mathbf{x}_{n}^{T} \mathbf{x}\right)$$

We can write this inner product as a **kernel** function, $K(x, x') = x^T x'$

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{n} a_{n} y_{n} K(\mathbf{x}_{n}, \mathbf{x})\right)$$

We can replace this with any valid kernel

Kernel function

Definition for kernel methods

Similarity measure between two points x and x'

A kernel function, K(x, x'), represents an inner product in some feature space

$$\langle \mathbf{z}, \mathbf{z}' \rangle = \mathbf{z} \cdot \mathbf{z}' = \mathbf{z}^T \mathbf{z}'$$
 $\mathbf{z} = \Phi(\mathbf{x})$ for Euclidean spaces

For a valid kernel, there is some feature transformation, $z = \Phi(x)$, where:

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^T \mathbf{z}$$

Simplest example: the linear kernel $K(x, x') = x^T x'$

K. Bradbury & L. Collins Kernel Methods Lecture 25 21 / 36

Kernel function example

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$$

$$\mathbf{z} = \Phi(\mathbf{x}) = [1 \quad x_1 \quad x_2 \quad x_1^2 \quad x_2^2 \quad x_1 x_2]^{\mathrm{T}}$$

Transform into a 2nd-order polynomial feature space

The kernel function is:

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^T \mathbf{z}' = 1 + x_1 x_1' + x_2 x_2' + x_1^2 x_1'^2 + x_2^2 x_2'^2 + x_1 x_1' x_2 x_2'$$

Compute K(x, x') without the explicit $z = \Phi(x)$ feature space transformation:

Kernel Trick

Kernel trick

$$\mathbf{x} = [x_1 \quad x_2]^T$$

Compute K(x, x') without the $z = \Phi(x)$ feature space transformation

Example:

$$K(x, x') = (1 + x^T x')^2$$
 This is not an inner product in X-space
$$= (1 + x_1 x_1' + x_2 x_2')^2$$

$$= 1 + x_1 x_1' + x_2 x_2' + 2x_1^2 x_1'^2 + 2x_2^2 x_2'^2 + 2x_1 x_1' x_2 x_2'$$

Similar to the inner product in *X*-space...

This **IS** an inner product in Z-space

$$\mathbf{z} = \Phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1 & x_2 & \sqrt{2}x_1^2 & \sqrt{2}x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix}^{\mathrm{T}}$$

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^T \mathbf{z}'$$

Source: Abu-Mostafa, Learning from Data, Caltech

Computing

$$K(x, x') = (1 + x^T x')^2$$

Is much easier than the full *Z*-space transform.
Imagine if this was $(1 + x^T x')^{100}$!

Common kernel functions

Linear kernel:

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Polynomial kernels:

(all polynomials up to degree d)

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^d$$

Radial basis function kernel:
$$K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$$

(infinite dimensional)

Kernel function properties

Symmetric:

$$K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x})$$

All kernels are symmetric

Stationary kernels:

$$K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x} - \mathbf{x}')$$

Invariant to translation in the input space Only a function of the difference between arguments

Homogeneous kernels: K(x,x') = K(||x-x'||)

$$K(\mathbf{x}, \mathbf{x}') = K(\|\mathbf{x} - \mathbf{x}'\|)$$

Depend only on the magnitude of the distance between arguments

Kernel perceptron classifier

No need to explicitly transform the feature space

$$z = \Phi(x)$$

We only need the kernel function

Now we need to store our training data

We have to use all the training data in each prediction

K. Bradbury & L. Collins Kernel Methods Lecture 25 26 / 36

How can we improve on the perceptron

 χ_2

Assume our data are linearly separable

How do we pick the "best" separating line (hyperplane)?

Maximize the margin

Margin = the smallest distance between the **decision boundary** and **any** of the samples

Maximum margin classifier

The decision boundary is determined by the weight, \boldsymbol{w} , as with the perceptron

Pick w to maximize the margin

Assumes linear separability

Hard margin classifier

Support vector classifier

Penalty term for violating the margin:

 $\xi_n = |y_n - \boldsymbol{w}^T \boldsymbol{x}|$

The decision boundary is determined by the weight, \mathbf{w} , as with the perceptron

Pick w to maximize the margin

Does not assume linear separability

Soft margin classifier

Support vector machine

Penalty term for violating the margin:

 $\xi_n = |y_n - \boldsymbol{w}^T \boldsymbol{x}|$

The decision boundary is determined by the weight, \boldsymbol{w} , as with the perceptron

Pick w to maximize the margin

Does not assume linear separability

Soft margin classifier

Use the **kernel trick** to classify in other feature spaces

Support vector machine

Penalty term for violating the margin:

$$\xi_n = |y_n - \mathbf{w}^T \mathbf{x}|$$

Use the **kernel trick** to classify in other feature spaces

Sparse kernel machine

Prediction: kernel comparisons with weighted support vectors (very similar to the perceptron):

$$\hat{f}(\mathbf{x}) = \sum_{n} a_{n} y_{n} K(\mathbf{x}_{n}, \mathbf{x}) + b$$
support vectors
Bias term (we usually write x_{0}) that controls the decision threshold

SVM Margin Violation Penalty

SVMs can also be extended for use with regression

Relevance Vector Machines (RVMs)

Bayesian extension of the SVM

Produces sparser models, faster performance

Provides probabilistic predictions

Perceptron → kernel perceptron (the kernel trick)

Kernel functions

(making features space transforms easy)

Maximum margin classifier

(explicit feature space, linearly separable)

Support vector classifier

(explicit feature space, not linearly separable)

Support vector machine

(kernel-transformed implicit feature space, not linearly separable)

K. Bradbury & L. Collins Kernel Methods Lecture 25 36 / 36