Problem Set 8 GIT Spring 2021

1. Let \mathbb{C}^* act on $\mathbb{C}^{n+1} \setminus 0$ by the rule

$$\lambda(x_0,\ldots,x_n)=(\lambda x_0,\ldots,\lambda x_n).$$

Let \mathbb{P}^n denote the topological quotient by this action. The goal of this problem is to understand the structure of \mathbb{P}^n as a variety.

Let U_k denote the subset of \mathbb{P}^n described by

$$U_k = \{ [x_0, \dots, x_n] : x_k \neq 0 \}.$$

The map

$$\varphi_k : \mathbb{C}^n \to U_k$$

$$(y_1, \dots, y_n) \mapsto [y_1, \dots, \overbrace{1}^k, \dots, y_n]$$

is a homeomorphism onto U_k .

(a) Show that the inverse of φ_k can be described by

$$[x_0,\ldots,x_n]\mapsto \left(\frac{x_0}{x_k},\ldots,\frac{\widehat{x_k}}{x_k},\ldots,\frac{x_n}{x_k}\right).$$

This suggests that we define the ring $\mathcal{O}(U_k)$ of holomorphic functions on $\mathcal{O}(U_k)$ to be the ring

$$\mathcal{O}(U_k) := \mathbb{C}\left[\frac{x_0}{x_k}, \dots, \frac{\widehat{x_k}}{x_k}, \dots, \frac{x_n}{x_k}\right].$$

(b) The overlap $U_k \cap U_j$ is a copy of $\mathbb{C}^* \times \mathbb{C}^{n-1}$. For simplicity, let's reorder indices so we are considering $U_0 \cap U_1$. The ring associated to U_0 via φ_0 is

$$\mathcal{O}(U_0) = \mathbb{C}\left[\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}\right].$$

If V_1 denotes the variety inside

Spec
$$\mathbb{C}\left[\frac{x_1}{x_0},\dots,\frac{x_n}{x_0}\right]$$

determined by the vanishing of $\frac{x_1}{x_0}$, then the complement of V_1 corresponds to the intersection $U_0 \cap U_1$. This means that the ring of the intersection $U_0 \cap U_1$ corresponds, via φ_0 , to the ring where we can invert $\frac{x_1}{x_0}$:

$$\mathbb{C}\left[\frac{x_1}{x_0}, \frac{x_0}{x_1}, \frac{x_2}{x_0}, \dots, \frac{x_n}{x_0}\right].$$

On the other hand, the intersection also has a ring, via φ_1 , that can be identified with

$$\mathbb{C}\left[\frac{x_0}{x_1}, \frac{x_1}{x_0}, \frac{x_2}{x_1}, \dots, \frac{x_n}{x_1}\right].$$

There is an obvious isomorphism from the first ring to the second described by

$$\frac{x_1}{x_0} \mapsto \frac{x_0}{x_1}$$

$$\frac{x_k}{x_0} \mapsto \frac{x_k}{x_1} \qquad 2 \leqslant k \leqslant n.$$

Show that this is the isomorphism corresponding to the transition map

$$\varphi_0^{-1} \circ \varphi_1 : U_0 \cap U_1 \to U_0 \cap U_1.$$

2. Let \tilde{L} denote the subset of $(\mathbb{C}^{n+1} \setminus 0) \times \mathbb{C}^{n+1}$ described by

$$\tilde{L} = \{(x, w) : x_i w_j - x_j w_i = 0\}.$$

(a) Show that the action of \mathbb{C}^* on $(\mathbb{C}^{n+1} \setminus 0) \times \mathbb{C}^{n+1}$ described by

$$\lambda \cdot (x, w) = (\lambda \cdot x, w)$$

restricts to an action on \tilde{L} .

- (b) Let L denote the topological quotient of \tilde{L} by the action of \mathbb{C}^* . Show that L is the total space of the tautological line bundle $\mathcal{O}(-1)$ over \mathbb{P}^n .
- (c) Let $p_2: L \to \mathbb{C}^{n+1}$ denote the projection map onto the second factor. The morphism p_2 is often called the blow-up of \mathbb{C}^{n+1} at the origin. Let E denote the preimage of the origin. Show that $E \simeq \mathbb{P}^n$.
- (d) Show that E is exceptional in the sense that p_2 is an isomorphism away from E.
- **3.** Let $\varphi: \mathbb{C}^{n+1} \longrightarrow \mathbb{P}^n$ denote the rational map

$$(x_0,\ldots,x_n)\mapsto [x_0,\ldots,x_n]$$

which is defined on the dense open subset away from the origin. By the graph of φ , we mean the closure of the graph of φ when restricted to the dense open subset on which it is regular. Show that the graph of φ is L, that is, the blow-up of \mathbb{C}^{n+1} at the origin.

4. Let X be the subvariety of $\mathbb{C}[x_1, \ldots, x_n]$ determined by k coprime polynomials f_1, \ldots, f_k . Assembling the polynomials together gives a map

$$F:\mathbb{C}^n\to\mathbb{C}^k$$

with components $F = (f_1, \ldots, f_k)$. For a point x, the derivative is a linear map

$$dF_x:\mathbb{C}^n\to\mathbb{C}^k$$
.

When the point x belongs to X and the map dF_x is surjective, then the tangent space T_xX can be identified with the kernel of dF_x so that we have the exact

$$0 \to T_x X \to \mathbb{C}^n \to \mathbb{C}^k \to 0.$$

In particular, when dF_x is surjective, the tangent space is (n-k)-dimensional. In such a case, we say that the point $x \in X$ is nonsingular. On the other hand, the point x is called singular if the linear map dF_x has less than full rank, which is equivalent to a determinantal condition expressed by the simultaneous vanishing of $\binom{n}{k}$ minors of size k-by-k. Writing $\Omega(dF)$ for this collection of $\binom{n}{k}$ new polynomials, the singular set of X can be expressed as the subvariety

$$V(f_1,\ldots,f_k,\Omega(dF)).$$

(a) Suppose that X = V(f) is determined by a single polynomial. Show that the set of singular points in X is the subariety

$$V\left(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right).$$

(b) Show that the singular set of the nodal cubic

$$X = \{(x, y) : x^3 + x^2 = y^2\}$$

is the origin.

- (c) For the nodal cubic X, there is the usual rational map $\varphi: X \to \mathbb{P}^1$ defined away from the origin by $(x,y) \mapsto [x,y]$. Define the blow-up of X at the origin to be the graph Γ of φ , which is a closed subvariety of $X \times \mathbb{P}^1$. In this way, there is a natural projection map $\pi: \Gamma \to X$ back down to X. Show that π is an isomorphism away from the origin of X.
- (d) Show that the preimage of the origin under the projection π consists of two points.
- (e) Show that Γ is nonsingular. (Hint: The blow-up is covered by charts, so work with respect to an affine chart, such as $X \times U_0$. In this chart use the coordinate [1,t] on U_0 , where $t = x_1/x_0$. Write down all the equations involved, and express the portion of the blow-up Γ in this chart as the variety corresponding to two polynomials. Verify that the derivative of these two polynomials has full rank.)
- (f) On the other hand, show that the blow up of the curve $y^2 = x^4 x^5$ at the origin is still

singular (and that, upon blowing up again, the singularity is resolved).

5. Let f denote the homogeneous polynomial

$$f(x_0,\ldots,x_n)=x_0,$$

and let \tilde{X} denote the zero locus of f inside \mathbb{C}^{n+1} .

- (a) Show that the origin belongs to \tilde{X} .
- (b) Let $G = \mathbb{C}^*$ act on \mathbb{C}^{n+1} by the rule

$$\lambda \cdot (x_0, \dots, x_n) = (\lambda x_0, \dots, \lambda x_n).$$

Show that this action restricts to one on \tilde{X} .

- (c) Show that a point \tilde{x} in \tilde{X} determines an orbit that is dimension 1 if and only if \tilde{x} is not the origin. (I think you can look at the stabilizer of \tilde{x} .)
- (d) Let X denote the moduli space of 1-dimensional orbits of \tilde{X} . In other words, X is the topological quotient $(\tilde{X} \setminus 0)/\mathbb{C}^*$. There is a tautological bundle $\mathcal{O}_X(-1)$ over X whose fiber over an orbit is its corresponding closure (which is a line) in $\tilde{X} \subset \mathbb{C}^{n+1}$. Show that $\mathcal{O}_X(-1)$ is the blow-up of \tilde{X} at the origin.

- (e) Let x_k denote the usual linear function on \mathbb{C}^{n+1} . Show that each x_k determines a global section of the dual bundle $\mathcal{O}_X(1)$.
- (f) In particular, $f = x_0$ is a global section of $\mathcal{O}_X(1)$. Show that f is equivalent to zero (along X).
- (g) In fact, it is possible to show that we have the exact sequence (of C-modules)

$$0 \to \mathbb{C}f \to \bigoplus_{k=0}^n \mathbb{C}x_k \to H^0(X, \mathcal{O}_X(1)) \to 0.$$

Show that this is equivalent to the exact sequence

$$0 \to \mathbb{C} \xrightarrow{e_1} \mathbb{C}^{n+1} \xrightarrow{A} \mathbb{C}^n \to 0$$

where e_1 is the first standard basis vector and A is the matrix

$$A = \begin{bmatrix} \mathbf{0} & I_n \end{bmatrix}.$$

(h) Any point $x \in X$ determines an evaluation map

$$\operatorname{ev}_x: H^0(X, \mathcal{O}_X(1)) \to \mathbb{C}$$

 $s \mapsto s(x),$

or equivalently, an element of the dual space $H^0(X, \mathcal{O}_X(1))^*$. It follows that we have a map

$$\varphi: X \to H^0(X, \mathcal{O}_X(1))^*$$

 $x \mapsto \operatorname{ev}_x.$

Provided the image of φ does not intersect zero, we in fact obtain a well-defined map

$$X \to \mathbb{P}(H^0(X, \mathcal{O}_X(1))^*).$$

From the previous part, provided the image of φ does not intersect zero, we in fact have a map

$$X \to \mathbb{P}^{n-1}$$
.

Show that this map is equivalent to the map obtained from

$$\psi: \tilde{X} \setminus 0 \to \mathbb{P}^{n-1}$$
$$(x_0, \dots, x_n) \mapsto [x_1, \dots, x_n].$$

In fact, the map $X \to \mathbb{P}^{n-1}$ should be an isomorphism, but I don't really see how to prove this efficiently.

6. Let $G = \mathbb{C}^*$ act on $\mathbb{C}^3 \setminus 0$ by the rule

$$\lambda \cdot (x_0, x_1, x_2) = (\lambda x_0, \lambda^{-1} x_1, x_2).$$

- (a) Show that the action descends to one on \mathbb{P}^2 .
- (b) Show that the action on \mathbb{P}^2 is not proper.
- (c) Let L denote the total space of the line bundle $\mathcal{O}(-1)$, and let $\pi: L \to \mathbb{P}^2$ denote the projection map. Show that there is an action of G on L so that π is G-equivariant:

$$\pi(g \cdot x) = g \cdot \pi(x).$$

- (d) Is the action of G on L unique?
- (e) Show that an action of G on L determines an action of G on the total space of $\mathcal{O}(1)$.
- (f) Show that an action of G on L determines an action of G on the total space of $\mathcal{O}(r)$.
- (g) Show that an action of G on the total space of $\mathcal{O}(r)$ determines one on $H^0(\mathbb{P}^2, \mathcal{O}(r))$.
- (h) The space $H^0(\mathbb{P}^2, \mathcal{O}(r))$ can be identified with the space of homogeneous polynomials of degree r in the variables x_0, x_1, x_2 . So, when graded in the usual way, we have an identification

$$\bigoplus_{r=0}^{\infty} H^0(\mathbb{P}^2, \mathcal{O}(r)) \simeq \mathbb{C}[x_0, x_1, x_2].$$

Show that the induced action of G on this ring can be described by

$$\lambda \cdot x_0 = \lambda x_0$$
$$\lambda \cdot x_1 = \lambda^{-1} x_1$$
$$\lambda \cdot x_2 = x_2.$$

(i) Show that there is an identification of the G-invariant piece with

$$\mathbb{C}[x_0x_1,x_2].$$