3

4

9 10

What is claimed is:

1	1.	An addition circuit for producing a sum of four redundant binary numbers, wherein each
2	numbe	r includes an operand field and a sparse carry-save field, comprising:

- a 4:2 compression adder for receiving each of the operand fields of the four redundant binary numbers, and producing a first sum field and a first carry field therefrom;
- a 4:3 compression adder for receiving each of the sparse carry-save fields of the fourredundant binary numbers, and producing a second sum field therefrom;
- a 3:2 compression adder for receiving the first sum field, the first carry field and the second sum field, and producing a third sum field and a second carry field therefrom;
 - wherein the third sum field and the second carry field are the sum of the four redundant binary numbers.
- 1 2. An addition circuit according to claim 1, wherein the 4:2 compression adder includes a
- 2 cascade of a first full adder and a second full adder.
- 1 3. An addition circuit according to claim 1, wherein the 4:3 compression adder includes a
- 2 binary summer for receiving four input bits of equal weight, and producing a three bit binary
- 3 output word representative of the sum of the four input bits.
- 1 4. An addition circuit according to claim 1, wherein the 3:2 compression adder includes a
- 2 full adder.
- 1 5. An addition circuit according to claim 1, wherein the 4:3 compression adder distributes
- 2 bits within the second sum field so as to correspond to the significance of the sparse carry-save
- 3 field.

7

8

9.

10

2

1	6.	An addition circuit according to claim 1, wherein each of the four redundant binary
2	กนฑ๖	ers is in radix-16 format, so as to include a sparse carry-save bit for every four operand bits

- An addition circuit for producing a sum of four redundant binary numbers, wherein each 7. 1 number includes an operand field and a sparse carry-save field, comprising: 2
- means for receiving each of the operand fields of the four redundant binary numbers, and 3 producing a first sum field and a first carry field therefrom; 4
- means for receiving each of the sparse carry-save fields of the four redundant binary 5 numbers, and producing a second sum field therefrom; б
 - means for receiving the first sum field, the first carry field and the second sum field, and producing a third sum field and a second carry field therefrom;
 - wherein the third sum field and the second carry field are the sum of the four redundant binary numbers.
- An addition circuit according to claim 7, wherein the means for receiving each of the 1 operand fields includes a cascade of a first full adder and a second full adder. 2
- An addition circuit according to claim 7, wherein the means for receiving each of the 1 9. carry-save fields includes a binary summer for receiving four input bits of equal weight, and
- producing a three bit binary output word representative of the sum of the four input bits. 3
- An addition circuit according to claim 7, wherein the means for receiving the first sum 1 10.
- field, the first carry field and the second sum field includes a full adder. 2
- An addition circuit according to claim 7, wherein the means for receiving each of the 1 11.
- carry-save fields distributes the second sum field so as to correspond to the significance of the 2
- 3 sparse carry-save field.

11

BCM-2

- 1 12. An addition circuit according to claim 7, wherein each of the four redundant binary
- 2 numbers is in radix-16 format, so as to include a sparse carry-save bit for every four operand bits.
- 1 13. A method of producing a sum of four redundant binary numbers, wherein each number
- 2 includes an operand field and a sparse carry-save field, comprising:
- 3 receiving each of the operand fields of the four redundant binary numbers, and producing
- 4 a first sum field and a first carry field therefrom;
- 5 receiving each of the carry-save fields of the four redundant binary numbers, and
- 6 producing a second sum field therefrom;
- 7 receiving the first sum field, the first carry field and the second sum field, and producing
- 8 a third sum field and a second carry field therefrom;
- wherein the third sum field and the second carry field are the sum of the four redundant
- 10 binary numbers.
- 1 14. A method according to claim 13, further including using a 4:2 compression adder to
- 2 produce the first sum field and the first carry field.
- 1 15. A method according to claim 13, further including using a 4:3 compression adder to
- 2 produce the second sum field.
- 1 16. A method according to claim 13, further including using a 3:2 compression adder to
- 2 produce the third sum field and the second carry field.
- 1 17. A method according to claim 13, further including distributing bits within the second sum
- 2 field so as to correspond to the significance of bits within the sparse carry-save field.

10

1	18. An addition circuit for producing a sum of four redundant binary numbers, wherein each
2	number includes an operand field and a sparsc carry-save field, comprising:
3	a 4:2 compression adder, including a cascade of a first full adder and a second full adder,
4	for receiving each of the operand fields of the four redundant binary numbers, and producing a
5	first sum field and a first carry field therefrom;
6	a 4:3 compression adder, including a binary summer for receiving four input bits of equal
7	weight and producing a three bit binary output word representative of the sum of the four input
8	bits, for receiving each of the carry-save fields of the four redundant binary numbers, and
9	producing a second sum field therefrom;
10	a 3:2 compression adder, including a full adder, for receiving the first sum field, the first
11	carry field and the second sum field, and producing a third sum field and a second carry field
12	therefrom;
13	wherein the third sum field and the second carry field are the sum of the four redundant
14	binary numbers.
1	19. A method of producing a sum of four redundant binary numbers, wherein each number
2	includes an operand field and a sparse carry-save field, comprising:
3	receiving each of the operand fields of the four redundant binary numbers, and producing
4	via a 4:2 compression adder, a first sum field and a first carry field therefrom;
5	receiving each of the carry-save fields of the four redundant binary numbers, and
6	producing, via a 4:3 compression adder, a second sum field therefrom;
7	receiving the first sum field, the first carry field and the second sum field, and producing,
8	via a 3:2 compression adder a third sum field and a second carry field therefrom;
0	expension the third own field and the goesed corn, field are the sum of the four redundant

binary numbers.

	•
I	20. A method of producing a sum of at least two redundant binary numbers, wherein each
2	number includes an operand field and a sparse carry-save field, comprising:
3	receiving each of the operand fields of the at least two redundant binary numbers, and
4	producing a first sum field and a first carry field therefrom;
5	receiving each of the sparse carry-save fields of the four redundant binary numbers, and
6	producing a second sum field therefrom, wherein a distribution of bits within the second sum
7	field corresponds to a sparse distribution within the sparse carry-save fields;
8	receiving the first sum field, the first carry field and the second sum field, and producing
9	a third sum field and a second carry field therefrom;
10	wherein the third sum field and the second carry field are the sum of the four redundant
11	binary numbers.