HW02 Solutions

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c = c \left[\sum_{i=1}^{n-1} n - \sum_{i=4}^{n-1} i \right]$$

$$= c \cdot \left[n \cdot (n-1) - \frac{(n-1) \cdot n}{2} \right]$$

$$=\frac{C_{1}(n-1)_{1}}{2}=\Theta(n^{2})$$

$$= \frac{1}{c_{2}n^{2}-1} \leq c_{1}n^{2} \qquad \text{[formal def]} \qquad \text{for } (---) \qquad \text{[n^{2}]}$$

$$= \frac{1}{c_{2}n^{2}-1} \leq c_{1}n^{2} \qquad \text{[formal def]} \qquad \text{for } (---) \qquad \text{[n^{2}]}$$

$$= \frac{1}{c_{2}n^{2}-1} \leq c_{1}n^{2} \qquad \text{[formal def]} \qquad \text{[for (----)]} \qquad \text{[for (----)]}$$

$$\frac{n^2 \leq n^2 - n \quad n > 1 \quad \checkmark$$

$$= \sum_{i=1}^{n-1} \frac{1}{i^2 + i} = c \left(\sum_{i=1}^{n-1} n^2 - n^{-1} \right)$$

$$= \sum_{i=1}^{n-1} \frac{1}{i^2 + i} = c \left(\sum_{i=1}^{n-1} n^2 - n^{-1} \right)$$

$$= c \left(\frac{(n-1) \cdot n^2 - \frac{n \cdot (n-1)}{2}}{2} \right)$$

$$= \frac{n^2(n-1)}{2} = \Theta(n^3) = warst$$

n²¹⁵⁶, logn!, nlogn, loglogn²

 $n^{2.56} -) 2^{\log 4^{2.56}} -) 2$

logni -) logn! > log2"=n=2logn logn! < logn = nlogn = 2logn + loglogn

nlogn -) 2log(n.logn) -) 2logn + loglogn

 $\log \log n^2 \rightarrow 2 \log \log \log n^2$ -> 2^{log2} + logloglagn

growth rate

loglagn 2 Llogn! Lnlagn Ln 2.56

$$(3)$$
 (3) n^2 is is $O(2^n)$

b) of is in
$$\mathcal{Q}(2^n)$$

$$2^{n} \cdot c \leq n! \longrightarrow \lim_{n \to \infty} \frac{2^{n}}{n!} \cdot c \leq 1 \qquad c=1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 =$$

no =1

$$c_{1} \cdot \frac{\log n}{\log 64} \ge \frac{\log n}{\log 64} \le \frac{\log n}{\log 64}$$
 $c_{2} = 1$
 $c_{3} = 1$
 $c_{4} = 1$
 $c_{5} = 1$
 $c_{6} = 1$

$$n_{2}k+1$$
 $c_{1}(k+1)^{2} \leq 2(k+1)^{2} - 4(k+1) + 3 \leq c_{1}(k+1)^{2}$
 $c_{1}(k+1)^{2} \leq 2(k+1)^{2} - 4(k+1) + 3 \leq c_{1}(k+1)^{2}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2k^{2} + 4k + 2 - 4k - 4 + 9 \leq c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2k^{2} - 4k + 9 + 4k - 2 \leq c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2k^{2} - 4k + 9 + 4k - 2 \leq c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2k^{2} - 4k + 9 + 4k - 2 \leq c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2k^{2} - 4k + 9 + 4k - 2 \leq c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2k^{2} - 4k + 9 + 4k - 2 \leq c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2k^{2} - 4k + 2 \leq c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2c_{1}k^{2} + 2c_{1}k + c_{1}$
 $c_{1}k^{2} + 2c_{1}k + c_{1} \leq 2c_{1}k^{2} + 2c_{1}k + c_{1}$

C1=1/2. no=1

Equivalence Relation

V Reflexive

V Symmetrix

V Transitive

Big-O is not on equivalence relation

- Transitive (if aRb and bRc then aRc) if
$$n = O(n^2)$$
 and $n^2 = O(n^3)$ $n = O(n^3)$

- Symmetric

$$n = O(n^2)$$

$$n^2 \neq O(n)$$

_ Leflexive

b) inner
$$\sum_{j=0}^{i} (loop time)$$

b) inner $\sum_{j=0}^{i} c$ | '2n olocale [n]

puter i lending a kate harle bijantle

Lica i $k=i \rightarrow log_{i} = k$

3. Den 16

i $2n$ 'e de jan

bijayeeck

 $leg_{i} = leg_{i}$
 $leg_{i} = leg_{i}$

$$\frac{1}{1000} \frac{1+3}{3-i} = \frac{12}{k=1}$$

$$= \frac{\log n}{i-1} = \frac{\log n}{i-1}$$

$$= \frac{\log n}{i-1} = \frac{\log n}{i-1}$$

$$= \frac{\log n}{i-1}$$