РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

V1.4

m-DAQ12 m-DAQ14

микросистема сбора данных с интерфейсом USB

ВВЕДЕНИЕ

Микросистемы сбора данных m-DAQ12 и m-DAQ14 предназначены для ввода/вывода аналоговых и дискретных сигналов. Микросистемы могут быть применены как в составе мобильных измерительных комплексов, так и в лабораторных или промышленных условиях.

m-DAQ12 и m-DAQ14 являются многофункциональными измерительными модулями, подсоединяемыми к ПК через USB-интерфейс (USB 2.0 HighSpeed). Подключение сигналов осуществляется через разъем, расположенный на боковой стенке модуля.

Микросистемы включает в себя:

- 12-ти разрядный (в m-DAQ12) либо 14-ти разрядный (в m-DAQ14) аналогово-цифровой преобразователь с мультиплексированием входных аналоговых каналов;
 - порт ввода-вывода дискретных сигналов;
 - 16-разрядный счетчик;
 - 2-х канальный 12-ти разрядный цифро-аналоговый преобразователь (опция).

Микросистемы позволяют работать с 4-мя дифференциальными или 8-ю каналами с общей землей для ввода аналоговых сигналов.

Каждый из аналоговых каналов подключается к АЦП через программно управляемый усилитель, позволяющий задавать один из четырех диапазонов измерения напряжения (± 10 B, ± 5 B, ± 2.5 B, ± 1.25 B).

Модули обеспечивают непрерывный (синхронизированный по внутреннему таймеру) сбор данных на частотах дискретизации АЦП от 65 Гц до 100 КГц.

Цифровой ввод-вывод представлен в виде 8-ми цифровых линий, индивидуально конфигурируемых на ввод или вывод и совместимых с ТТЛ уровнями.

На контактах внешнего разъема присутствуют напряжения питания для внешних устройств +5 В и ±15 В.

Базовые модели микросистем m-DAQ12 и m-DAQ14 выполнены в виде модуля в компактном корпусе из ABC-пластика, подключение к внешним устройствам осуществляется через разъем DB-25. ОЕМ-версии микросистем, выполненные в виде платы, ориентированы на встраиваемые применения. Для подключения к внешним устройствам в ней используется двухрядный штыревой соединитель типа IDC-26.

Программное обеспечение микросистем содержит драйверы, DLL-библиотеку и примеры работы с ней, IIb-библиотеку для среды графического программирования LabVIEW, и программу «Осциллограф-регистратор».

Комплект поставки m-DAQ12:

- 1. Модуль m-DAQ12;
- 2. Кабель связи по USB тип A-B, 28AWG/1PR-24AWG/2C, 1.8...2.0 м;
- 3. Кабельная часть разъема DB-25M;
- 4. CD-диск с программным обеспечением и руководством пользователя.

Комплект поставки m-DAQ14:

- 1. Модуль m-DAQ14;
- 2. Кабель связи по USB тип A-B, 28AWG/1PR-24AWG/2C, 1.8...2.0 м;
- 3. Кабельная часть разъема DB-25M;
- 4. CD-диск с программным обеспечением и руководством пользователя.

ИНСТАЛЯЦИЯ

Системные требования

	Для корректной работы устройства	Для корректной работы по∂ NI LabVIEW 7.1 и выше
Процессор	не ниже Pentium III	не ниже Pentium IV
Интерфейс	USB 2.0 с возможностью работы в режиме HighSpeed (480Mb/s)	
Оперативная память	не менее 512 МВ	
Свободное место на жестком диске	не менее 10 МВ	не менее 100 МВ
Операционная система	не ниже Місго	soft® Windows XP

Порядок подключения к ПК

Спецификация USB разрешает как горячее подключение устройств к шине USB, с их автоматическим распознаванием, так и включение ПК с уже подключенным внешним модулем.

- включить ПК и загрузить одну из операционных систем, поддерживающих работу с USBустройством;
- соединить USB разъем модуля и свободный USB-порт ПК с помощью USB-кабеля, входящего в комплект поставки.

Установка драйвера

Шина USB предоставляет пользователям возможность работать с периферийными устройствами в режиме Plug & Play. Инициализация программных драйверов шины осуществляется операционной системой после распознавания нового устройства.

При первом подсоединении модуля к ПК операционная система запросит файлы драйвера для подключенного устройства. Пользователю необходимо указать расположение файла *mdaq2ldr.inf* и *mdaq2.inf* . В случае успешной инициализации информация о драйвере будет занесена в реестр Windows, и при повторных сеансах работы устройство будет инициализироваться автоматически. В случае необходимости следует произвести перезагрузку ПК. Чтобы проконтролировать правильность распознавания операционной системой подключенного модуля необходимо выполнить:

Start -> Settings -> Control Panel -> System -> Devices -> Device Manager (Старт -> Настройка -> Панель управления -> Система -> Оборудование -> Диспетчер устройств).

В разделе «Контроллеры универсальной последовательной шины USB» должно отображаться устройство под названием «uDAQ2 Driver».

АППАРАТНАЯ ЧАСТЬ

Обзор аппаратной части

Микросистемы m-DAQ12 и m-DAQ14 содержат восемь каналов аналогового ввода $A_{IN}0$... $A_{IN}7$. Диапазон входных напряжений устанавливается программно для каждого канала и составляет ±10 B, ±5 B, ±2.5 B, ±1.25 B. Аналого-цифровой тракт содержит 8-канальный коммутатор выбора опрашиваемого канала, коммутатор режима подключения, инструментальный усилитель с изменяемым коэффициентом усиления, собственно сам 12-ти либо 14-ти разрядный АЦП. Буфер FIFO и автомат управления, реализованы на основе микроконтроллера.

Гарантированное максимальное значение частоты дискретизации в одноканальном режиме составляет 150 кГц, в многоканальном режиме – 100 кГц. Запуск АЦП осуществляется от внутреннего программируемого генератора, а начало процесса оцифровки может быть синхронизировано с внешним событием.

Аналоговый тракт АЦП выполняет функцию входной коммутации каналов и поканальной установки коэффициента усиления. Каждый входной канал имеет индивидуальные настройки: режим коммутации и индивидуальный коэффициент усиления аналогового тракта (который соответствует четырем диапазонам входных напряжений).

Программируемая входная коммутация позволяет гибко настроить модуль на необходимый режим, определяемый способом подключения входных сигналов:

- 1. Дифференциальный режим подключения от 1 до 4 каналов.
- 2. Однопроводный режим подключения от 1 до 8 каналов.
- 3. Внутреннее соединение входа АЦП с аналоговой землей модуля.

В первом режиме модуль позволяет опросить до 4 дифференциальных каналов. Оцифрованный отсчет представляет собой разность сигналов (A_{IN} 0..3 – A_{IN} 4..7) относительно земли (A_{GND}).

Во втором режиме модуль позволяет опросить до 8 каналов. Оцифрованный отсчет представляет собой уровень сигнала (A_{IN} 0..7) относительно земли (A_{GND}).

В третьем режиме коммутатор позволяет подать на вход АЦП (через усилитель с изменяемым коэффициентом усиления) нулевое напряжение и измерить фактическое входное напряжение смещения нуля АЦП модуля. В этом режиме коммутатор отключает входные сигнальные цепи всех каналов.

АППАРАТНАЯ ЧАСТЬ

Таким образом, устанавливая необходимый режим подключения, количество опрашиваемых входных каналов может быть гибко настроено от 1 до 8. Соответственно частота запуска АЦП делится между опрашиваемыми каналами в соответствии с их количеством и порядком (кратностью) опроса.

Аналоговый вывод $A_{OUT}0$ и $A_{OUT}1$ реализован в m-DAQ12 и m-DAQ14 в виде двух независимых каналов ЦАП с программно устанавливаемым выходным диапазоном напряжений ± 5 B, ± 10 B, ± 10.8 B, 0...5 B, 0...10 B и 0...10,8 B и током нагрузки 5 мА.

Дискретный В/В (ТТЛ) в микросистемах представлен одним 8-битовым портом $D_{I/O}A0...D_{I/O}A7$, причем каждая линия $D_{I/O}$ может быть сконфигурирована индивидуально на ввод или вывод. Линия СLК является входом (ТТЛ) 16-разрядного таймера-счетчика внешних событий, а линия TRIG может использоваться для запуска оцифровки данных трактом АЦП.

Каждая из линий $D_{I/O}A0...D_{I/O}A7$, TRIG, CLK содержит встроенный токоограничивающий резистор сопротивлением 430 Ом и встроенный «подтягивающий» (Pull-Up) резистор сопротивлением 10 кОм к линии +5 В.

Питание аналоговых цепей микросистем осуществляется напряжением ±15 В от встроенного DC/DC-преобразователя. Напряжение ±15 В выведено на входной разъем устройства через самовосстанавливаемые предохранители и может быть использовано для питания внешних слаботочных устройств, например, нормализаторов сигналов датчиков. На контактах входного разъема присутствует также и напряжение +5 В шины USB, выведенное через плавкий предохранитель в интегральном исполнении.

Аналоговый и дискретный тракты не имеют гальванической развязки от шины USB!

5

АППАРАТНАЯ ЧАСТЬ

Функциональные возможности

Микросистемы сбора данных m-DAQ12 и m-DAQ14, как комплекс аппаратных и программных средств, обеспечивают:

- синхронный ввод данных с одного или нескольких аналоговых входов в массив, заданный пользователем;
- асинхронный и синхронный ввод (вывод) данных с (на) линий дискретного В/В D_{I/O} A0..A7;
- побитовую асинхронную установку и чтение линий дискретного B/B портов D_{I/O} A0..A7;
- подсчет импульсов импульсного сигнала на входе СLК.

Функциональные возможности микросистем реализуются системой команд:

- установка частоты дискретизации АЦП;
- установка номеров опрашиваемых каналов АЦП, режимов их подключения и входных диапазонов;
- чтение массива данных с АЦП;
- чтение массивов данных с АЦП в непрерывном режиме;
- чтение состояния линий порта дискретного В/В;
- установка данных в порт дискретного В/В;
- установка частоты чтения/записи данных с (на) линий порта дискретного В/В;
- чтение массива данных с линий дискретного В/В;
- запись массива данных в порт дискретного В/В;
- запуск счетчика внешних событий;
- останов счетчика внешних событий;
- чтение результатов счетчика внешних событий;
- установка выходных диапазонов ЦАП (аналоговых выводов A_{OUT} 0 и A_{OUT} 1);
- вывод данных на ЦАП;
- конфигурация и назначение линий портов дискретного В/В.

Максимальное количество устройств m-DAQ12 и m-DAQ14, которые можно одновременно подключить к ПК -16 шт.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Общие технические характеристики

Напряжение питания	От шины USB 2.0 с возможностью работы в режиме HighSpeed (480Mb/s)
Ток потребления без нагрузки на ЦАП и линиях дискретного В/В, не более	250 mA
Рабочая температура	om 5 °C до +40 °С
Относительная влажность воздуха	5~90 % без конденсации влаги
Температура хранения	om −30 °C до +70 °C
Тип разъема для подключения аналоговых и дискретных сигналов	DB-25F (базовая модель); IDC-26 (ОЕМ-версия)
Материал корпуса	Пластик АВС
Габаритные размеры	60х100х28 мм
Масса, не более	0,35 кг

Технические характеристики аналоговых каналов АЦП m-DAQ12

Количество аналоговых входов	4 дифференциальных канала или 8 однопроводных каналов с общей землей
Входной диапазон	± 10 B, ± 5 B, ± 2.5 B, ± 1.25 B
Предельное входное напряжение	\pm 15 В относительно A_{GND}
Предельное входное напряжение при отключенном питании модуля	\pm 10 В относительно A_{GND}
Разрядность АЦП	12 бит
Дифференциальная нелинейность преобразования	Макс1+1.5 M3P
Интегральная нелинейность преобразования	Макс. ± 1.5 M3P
Частота дискретизации (многоканальный режим / одноканальный режим)	65 Γц100 κΓц / 65 Γц150 κΓц
Межканальное прохождение синусоидального сигнала 1 кГц на диапазоне ±10 В, и внутреннем сопротивлении источников сигналов 50 Ом	98 ∂Б при частоте преобразования АЦП 10,0 кГц 93 ∂Б при частоте преобразования АЦП 100,0 кГц
Подавление синфазной составляющей при дифференциальном подключении	92 дБ для диапазона ± 10 В, 96 дБ для диапазона ± 5 В, 100 дБ для диапазонов ± 2.5 В, ± 1.25 В

Технические характеристики аналоговых каналов АЦП m-DAQ14

Количество аналоговых входов	4 дифференциальных канала или 8 однопроводных каналов с общей землей
Входной диапазон	± 10 B, ± 5 B, ± 2.5 B, ± 1.25 B
Предельное входное напряжение	\pm 15 В относительно A_{GND}
Предельное входное напряжение при отключенном питании модуля	\pm 10 В относительно A_{GND}
Разрядность АЦП	14 бит
Дифференциальная нелинейность преобразования	Макс1+1.5 M3P

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Интегральная нелинейность преобразования	Макс. ± 1.5 M3P
Частота дискретизации (многоканальный режим / одноканальный режим)	65 Γц100 κΓц / 65 Γц150 κΓц
Межканальное прохождение синусоидального сигнала 1 кГц на диапазоне ±10 В, и внутреннем сопротивлении источников сигналов 50 Ом	95 ∂Б при частоте преобразования АЦП 10,0 кГц 80 ∂Б при частоте преобразования АЦП 100,0 кГц
Подавление синфазной составляющей при дифференциальном подключении	92 дБ для диапазона ± 10 В, 96 дБ для диапазона ± 5 В, 100 дБ для диапазонов ± 2.5 В, ± 1.25 В

Технические характеристики аналоговых каналов ЦАП

Количество аналоговых выходов	2
Разрядность ЦАП	12 бит
Время установления	10 мкс
Выходной диапазон	05 B, 010 B, 010.8 B, ±5 B, ±10 B, ±10.8 B
Сопротивление нагрузки	не менее 2 кОм
Максимальный ток нагрузки	± 5 мА

Технические характеристики каналов дискретного ввода/вывода

Общее число линий В/В	8
Тип логики	TTL (3.3 B)
Выходной ток лог. «1» (относительно земли D _{GND})	7 мА
Выходной ток лог. «0» (относительно питания 5 В)	10 mA
Напряжение лог. «1» (конфигурация как выход)	3.3 B
Напряжение лог. «1» (конфигурация как вход)	3.3 – 5.0 B
Напряжение лог. «0»	не более 0.1 В
Выходное сопротивление канала (конфигурация как выход)	430 Ом
Входное сопротивление канала (конфигурация как вход)	10.5 кОм (внутренний Pull-Up к +5 В)
Частота синхронного В/В	50 κΓц 5 ΜΓц

Технические характеристики каналов CLK, TRIG, ±V, +5V

Тип логики по каналам CLK, TRIG	TTL (3.3 B)
Ток, напряжение, сопротивление каналов CLK, TRIG	Аналогично каналам дискретного ввода/вывода
Емкость счетчика событий	65535
Выходы для питания внешних цепей ±V, +5V	±15 В/30 мА, +5 В/100 мА (суммарная мощность по выходам +5 В и ± 15 В не должна превышать 1 Вт)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Информация для заказа

m-DAQ12	АЦП 12 бит, 4/8 кан., 100 кГц, ±10 B, ± 5 B, ± 2.5 B, ± 1.25 B, 8 TTL (3.3 B) вх./вых., интерфейс USB 2.0. HighSpeed (480Mb/s).
m-DAQ12/DAC	АЦП 12 бит, 4/8 кан., 100 кГц, ±10 B, ± 5 B, ± 2.5 B, ± 1.25 B, 8 TTL (3.3 B) вх./вых., интерфейс USB 2.0. HighSpeed (480Mb/s). + ЦАП 12 бит, 2 канала, 05 B, 010 B, ±5 B, ±10 B.
m-DAQ12/OEM	АЦП 12 бит, 4/8 кан., 100 кГц, ±10 B, ± 5 B, ± 2.5 B, ± 1.25 B, 8 TTL (3.3 B) вх./вых., интерфейс USB 2.0. HighSpeed (480Mb/s). Поставка микросистемы сбора данных без корпуса.
m-DAQ12/DAC/OEM	АЦП 12 бит, 4/8 кан., 100 кГц, ±10 B, ± 5 B, ± 2.5 B, ± 1.25 B, 8 TTL (3.3 B) вх./вых., интерфейс USB 2.0. HighSpeed (480Mb/s). + ЦАП 12 бит, 2 канала, 05 B, 010 B, ±5 B, ±10 B. Поставка микросистемы сбора данных без корпуса.

m-DAQ14	АЦП 14 бит, 4/8 кан., 100 кГц, ±10 B, ± 5 B, ± 2.5 B, ± 1.25 B, 8 TTL (3.3 B) вх./вых., интерфейс USB 2.0. HighSpeed (480Mb/s).
m-DAQ14/DAC	АЦП 14 бит, 4/8 кан., 100 кГц, \pm 10 B, \pm 5 B, \pm 2.5 B, \pm 1.25 B, 8 TTL (3.3 B) вх./вых., интерфейс USB 2.0. HighSpeed (480Mb/s). \pm ЦАП 12 бит, 2 канала, 05 B, 010 B, \pm 5 B, \pm 10 B.
m-DAQ14/OEM	АЦП 14 бит, 4/8 кан., 100 кГц, ±10 B, ± 5 B, ± 2.5 B, ± 1.25 B, 8 TTL (3.3 B) вх./вых., интерфейс USB 2.0. HighSpeed (480Mb/s). Поставка микросистемы сбора данных без корпуса.
m-DAQ14/DAC/OEM	АЦП 14 бит, 4/8 кан., 100 кГц, ±10 B, ± 5 B, ± 2.5 B, ± 1.25 B, 8 TTL (3.3 B) вх./вых., интерфейс USB 2.0. HighSpeed (480Mb/s). + ЦАП 12 бит, 2 канала, 05 B, 010 B, ±5 B, ±10 B. Поставка микросистемы сбора данных без корпуса.

В m-DAQ12 и m-DAQ14 подключение источников/приемников сигналов выполняется через соединитель типа DB25F:

В версиях m-DAQ12/OEM и m-DAQ14/OEM подключение источников/приемников сигналов выполняется через соединитель типа IDC26:

В обозначениях контактов соединителей: A_{GND} – общий аналоговых сигналов, D_{GND} – общий дискретных сигналов.

Подключение сигналов и распайка разъема возлагаются на пользователя. Монтаж сигнальных цепей с подключением источников сигнала, датчиков и т.п. к модулю должен выполнять специалист соответствующей квалификации.

Подключения, значения уровней токов и напряжений при которых превышают предельно допустимые значения, влекут за собой ухудшение параметров модуля или выход из строя компьютера, модуля, или присоединенного оборудования.

Цепи A_{GND} и D_{GND} , выведенные на контакты разъема, связаны между собой внутри модуля, а также с общим проводом USB и корпусом компьютера. При подключении микросистем к внешним цепям следует помнить, что правильным подключением является то, которое не приводит к протеканию сквозных токов по цепям D_{GND} – A_{GND} , D_{GND} –корпус компьютера или D_{GND} – A_{GND} –корпус компьютера. Наличие вышеуказанных токов может ухудшить соотношение сигнал-шум в каналах модуля, вызвать неустойчивую работу шины USB, а при сквозном токе более 200 мА вызвать неисправность модуля или USB-порта компьютера. Если же такие токи при использовании модуля по какой-либо причине неизбежны, то следует принять меры по их минимизации и подавлению их высокочастотной составляющей.

Примеры подключения к аналоговым каналам

Рассмотрим типовые схемы подключения сигналов.

Подключение источников напряжения в режиме 4-х дифференциальных каналов.

Пример подключения источников напряжения

Подключение источников напряжения в режиме 8-и однопроводных каналов.

Пример подключения источников напряжения

Подключение приемников сигналов к выходам ЦАП

а) Пример подключения «мощной» нагрузки.

Пример подключения приемников сигналов

Как показывает опыт, более 80 % проблем, возникающих при эксплуатации модуля, связаны с неправильным подключением источников сигналов.

При дифференциальной схеме подключения сигнала измеряется разность напряжений между двумя входами (A_{IN} 0..3 - A_{IN} 4..7) канала относительно A_{GND} . При таком подключении обеспечивается оптимальное подавление помех от внешней среды, наводимых на соединительные провода. Однопроводная схема подключения более чувствительна к фактору внешних помех.

Модули m-DAQ12 и m-DAQ14 не имеет внутренней гальванической развязки, поэтому цепь земли (A_{GND} и D_{GND}) имеет внутреннее соединение с общим проводом USB и, следовательно, с заземлением ПК.

Следует помнить, что для корректной работы входного тракта модуля необходимо, чтобы потенциал каждого входа A_{IN} 0..3 и A_{IN} 4..7 относительно земли A_{GND} – т.н. синфазное напряжение – не превышал установленного входного диапазона.

Неподключенные аналоговые входы необходимо заземлять (т.е. подсоединить к AGND).

Следует также учитывать, что полоса пропускания входного тракта модуля выше максимальной частоты дискретизации АЦП. Для достижения спектральной верности преобразования сигнала следует ограничить полосу входного сигнала в соответствии с критерием Найквиста. Это означает, что необходимо ограничить высокочастотную составляющую сигнала до приемлемого уровня шумов, начиная с частоты 0,5•Fs (где Fs – частота дискретизации АЦП) и выше. В противном случае все шумы и помехи, имеющие частоту выше 0.5•Fs, будут накладываться на полезный сигнал в рабочей полосе частот и не смогут быть отделены от него при последующей обработке.

В случае многоканального ввода сигналов приходится учитывать наличие входной емкости коммутаторов аналогового тракта $C_{in} \sim 100 \; n\Phi$.

Паразитное межканальное прохождение не превысит погрешности преобразования АЦП если выполняется следующее условие:

$$R_s * C_{in} \le 0.1 * (1 / F_s),$$

где Rs – выходное сопротивление источника сигнала. Для случаев большого уровня входного сигнала (вне установленного диапазона модуля), а также в случае коммутации каналов с разным установленным входным диапазоном, следует применять более жесткий критерий, учитывающий увеличение межканального прохождения в этих случаях.

При отключенном интерфейсе USB или отключенном питании ПК уменьшаются предельно допустимые входные напряжения модулей.

Программное обеспечение т-DAQ12 и т-DAQ14 содержит USBдрайвер, DLL-библиотеку, библиотеку функций и пример (осциллографрегистратор) в среде графического программирования LabVIEW.

Шина USB предоставляет возможность работать периферийными устройствами в режиме Plug&Play. Это означает, стандартом USB предусмотрено подключение устройства к работающему компьютеру, автоматическое распознавание сразу же после подключения и последующая загрузка операционной системой соответствующих данному устройству драйверов.

Интерфейс USB компьютера должен соответствовать спецификации USB 2.0 и поддерживать режим HighSpeed (480Mb/s).

DRIVER\	mdaq2.spt
	cyusb.sys
	mdaq2.inf
	mdaq2ldr.inf
	mdaq12.dll
DLL\	mdaq12.lib
	mdaq12.h
DEMO\	console_test.exe
	mdaq2dll.dll
	console_src\
LV LIBRARY\	m-DAQ12 library.llb
LV_LIDRART\	mdaq12.dll
C++ 2008 SP1\	vcredist_x86.exe
LV_RUN-TIME\	LabVIEW821RuntimeEngine.exe
LV_INSTRUMENT\	Oscilloscope-logger\

При первом подключении модуля к компьютеру операционная система запросит файлы драйвера для модуля. При этом подразумевается, что на компьютере уже установлена операционная система, способная корректно поддерживать функционирование USB-шины. Пользователю необходимо указать расположение файлов mdaq2ldr.inf и mdaq2.inf (последовательно). В случае успешной инициализации информация о драйвере будет занесена в реестр Windows, и при повторных сеансах работы модуль будет инициализироваться автоматически. При необходимости следует выполнить перезагрузку компьютера.

DLL-библиотека

DLL-библиотека mDAQ12.dll содержит набор функций, с помощью которых можно реализовывать различные алгоритмы ввода/вывода. Для вызова функций DLL-библиотеки из приложения пользователя необходимо выполнить следующее:

- создать проект в какой либо из сред разработки;
- подключить к проекту файлы mdaq2.lib и mdaq2.h;
- создать и добавить в проект файл с исходным текстом будущей программы;
- с помощью функции GetDIIVersion(), желательно сравнить версию используемой dIIбиблиотеки с версией текущего программного обеспечения;
- вызвать функцию GetUsbDeviceCount(), чтобы определить количество подключенных m-DAQ12 и m-DAQ14;
- вызвать функцию OpenDevice(), чтобы открыть требуемое устройство;
- вызвать другие функции, которые необходимы для работы.

Все интерфейсные функции не обеспечивают "потокобезопасную" работу dll-библиотеки. Поэтому, во избежание недоразумений, в многопоточных приложениях пользователь должен сам организовывать, если необходимо, корректную синхронизацию вызовов интерфейсных функций в различных потоках (используя, например, критические участки, мютексы и т.д.).

В файл библиотеки mdaq12.dll включена информация о текущей версии dll. Для получения сведений о текущей версии DLL библиотеки следует использовать функцию GetDllVersion(). Если версии совпадают, то необходимо вызвать функции GetUsbDeviceCount() и OpenDevice(), чтобы открыть модуль. После этого можно управлять всей доступной периферией на модуле с помощью соответствующих интерфейсных функций DLL-библиотеки.

В случае получения следующей ошибки ОС при работе с dll-библиотекой: «Приложение не было запущено, поскольку оно некорректно настроено. Повторная установка приложения может решить данную проблему», необходимо предварительно установить распространяемый пакет Microsoft Visual C++ 2008 SP1 Redistributable Package из папки C++ 2008 SP1\ поставляемого диска.

DLL-библиотека

Используемые термины и форматы данных

DevN	номер открываемого устройства
id	указатель на устройство
ParN	номер возвращаемого параметра
*ParString	указатель на буфер, принимающий заданную информацию
*Name	указатель на строку, содержащую задаваемое имя
On	булева переменная для управления светодиодом
freq	частота дискретизации
Count	количество опрашиваемых каналов
*_array	указатель на массив кодов каналов
Chan	номер опрашиваемого канала
Amp	код входного диапазона АЦП
Mode	код режима подключения
*OutVal	указатель на переменную, принимающую код канала
*inBuf	указатель на буфер, принимающий массив данных
Length	размер массива (в отсчетах)
Timeout	таймаут ожидания окончания работы функции
WaitComplete	булева переменная для задания режима ожидания данных
dac	номер канала ЦАП
diap	код диапазона ЦАП
val	преобразуемый код ЦАП
enable	булева переменная для запуска либо останова счетчика
*data	указатель на переменную, принимающую байт данных
data	байт данных
DOorDI	переменная для задания цифрового ввода либо вывода
*OutBuf	указатель на массив данных, заданных пользователем

DLL-библиотека

Функции DLL-библиотеки

GetDIIVersion()	получение версии DLL-библиотеки
GetUsbDeviceCount()	получение количества подключенных устройств
OpenDevice(int DevN = -1)	открытие требуемого устройства и получение указателя на него
CloseDevice(unsigned char id = -1)	закрытие устройства
GetDeviceInfo(unsigned char id, unsigned char ParN, char *ParString);	получение информации об устройстве (наименование, серийный номер)
isDeviceOpen(unsigned char id)	проверка открытия устройства
SetDeviceUserName(char *Name)	установка наименования устройства
*ErrorToText(signed char ErrN)	преобразование кода ошибки в соответствующий текст
AltErrorToText(signed char ErrN, char *ErrStr)	преобразование кода ошибки в соответствующий текст
LedOnOff(unsigned char id, bool On)	управление установленным на модуле светодиодным индикатором
SetADCFreq(unsigned char id, unsigned long freq)	установка частоты дискретизации АЦП
SetADCChannels(unsigned char id, unsigned char *_array, unsigned char Count)	установка параметров опроса каналов АЦП
ConvertADCChannelToVal(unsigned char Chan, unsigned char Mode, unsigned char Amp, unsigned char *OutVal)	преобразование номера канала, режима подключения и входного диапазона АЦП в код канала, используемый при вызове SetADCChannels
ReadADCFrame(unsigned char id, signed short *inBuf, LONG Length, unsigned long Timeout = 1000, bool WaitComplete = true, unsigned char ExtTrig = 0)	чтение массива данных с АЦП
ReadADCFrameMaxFreq(unsigned char id, unsigned char Chan, signed short *inBuf, LONG Length, unsigned long Timeout = 1000, bool WaitComplete = true, unsigned char ExtTrig = 0)	чтение массива данных с одного канала АЦП с максимальной скоростью
isADCXferComplete(unsigned char id)	проверка, закончена ли передача данных от устройства к PC при выполнении функций ReadADCFrame, ReadADCFrameMaxFreq либо ContinuousReadADCFrame
StartContinuousReadADC(unsigned char id)	запуск АЦП в режиме непрерывного чтения
ContinuousReadADCFrame(unsigned char id, signed short *inBuf, LONG Length)	чтение массива данных с АЦП в режиме непрерывного чтения
ContinuousReadADCFrame_OVL(unsigned char id,signed short *inBuf,LONG Length, unsigned int OvIN,bool WaitComplete = true,unsigned long Timeout = 1000);	чтение массива данных с АЦП в режиме непрерывного чтения (альтернативная ContinuousReadADCFrame функция)
isADCXferComplete_OVL(unsigned char id,unsigned int OvIN)	проверка, закончена ли передача данных от устройства к PC при выполнении функции ContinuousReadADCFrame_OVL
StopContinuousReadADC(unsigned char id)	останов режима непрерывного чтения АЦП

DLL-библиотека

SetDacRange(unsigned char id, unsigned char dac, unsigned char diap)	установка выходного диапазона канала ЦАП
SetDacValue(unsigned char id, unsigned char dac, int val)	установка напряжения на канале ЦАП
PowerUpDac(unsigned char id, unsigned char dac)	включение канала ЦАП после срабатывания защиты от перегрузки по току
ClearDACs(unsigned char id)	сброс каналов ЦАП
EnableCounter(unsigned char id, BOOL enable)	запуск либо останов счетчика событий
ReadCounter(unsigned char id, unsigned int *data)	чтение значений счетчика событий
ClearCounter(unsigned char id)	сброс счетчика событий
ConfigureDigitalPort(unsigned char data)	конфигурирование линий порта дискретного B/B для однократного B/B
ReadDIValue(unsigned char id, unsigned char *data)	однократный ввод данных с порта дискретного В/В
SetDOValue(unsigned char id, unsigned char data)	однократный вывод данных в порт дискретного В/В
SetFastDIOFreq(unsigned char id, unsigned long freq, unsigned char DOorDI)	установка частоты опроса порта дискретного В/В
FastReadDI(unsigned char id, unsigned char *InBuf, LONG Length, unsigned long Timeout, bool WaitComplete = true)	чтение массива данных с порта дискретного В/В
FastWriteDO(unsigned char id, unsigned char *OutBuf, LONG Length, unsigned long Timeout, bool WaitComplete = true)	вывод массива данных в порт дискретного В/В
isReadDIXferComplete(unsigned char id, unsigned char *InBuf)	проверка, закончена ли передача данных от устройства к PC при выполнении функции FastReadDI
isWriteDOXferComplete(unsigned char id)	проверка, закончена ли передача данных от PC к устройству при выполнении функции FastWriteDO

Описание кодов ошибок

Код ошибки	Описание ошибки
-1	Устройство не подключено к USB
-2	Некорректный указатель на открываемое устройство
-3	Более 16-ти подключенных к РС устройств
-4	Ошибка открытия
-5	В устройство не загружена прошивка
-6	Внутренняя ошибка прошивки устройства
-7	Устройство не открыто
-8	Устройство уже открыто
-9	К интерфейсу USB подключено отличное от m-DAQ12 и m-DAQ14 устройство

DLL-библиотека

Функции общего назначения

USHORT stdcall GetDIIVersion()

Получение версии DLL библиотеки. Возвращает версию DLL-библиотеки - двухбайтное число, обозначающее номер версии, передаваемые параметры отсутствуют.

USHORT __stdcall GetUsbDeviceCount()

Получение количества подключенных к шине USB устройств.

int __stdcall OpenDevice(int DevN = -1)

Открытие устройства, подключенного к интерфейсу USB компьютера, и получение указателя на него. Подсоединенный к компьютеру модуль m-DAQ12 либо m-DAQ14 можно рассматривать как устройство, подключенное к некоему виртуальному слоту с индивидуальным номером. Основное назначение функции состоит в том, чтобы определить, что именно m-DAQ12/m-DAQ14 находится в заданном виртуальном слоте. Если выполнение функции OpenDevice прошло успешно для заданного виртуального слота, то можно переходить к последующему управлению работой модуля. **int DevN** — номер модуля, который необходимо открыть (нумерация начинается с 0 в порядке подключения устройств к USB). При задании DevN = -1 функция выполняет открытие всех подключенных устройств и возвращает их количество, а индексы нумеруются, начиная с 0. Отрицательное возвращаемое значение функции свидетельствует об ошибке выполнения и одновременно является кодом ошибки.

bool stdcall CloseDevice(unsigned char id = -1)

Закрытие устройства – закрывается дескриптор требуемого устройства. Здесь и далее unsigned char id – указатель на данное устройство, с помощью которого производится адресация команд. Здесь и далее возвращаемое значение: TRUE – функция выполнена успешно, FALSE – ошибка при выполнении функции.

bool __stdcall isDeviceOpen(unsigned char id)

Проверка открытия устройства. Если устройство заданным іd открыто, возвращаемое значение функции – TRUE.

bool __stdcall SetDeviceUserName(char *Name)

Установка наименования устройства. Передаваемый параметр char *Name - указатель на строку, содержащую задаваемое имя (не более 16 символов).

char __stdcall *ErrorToText(signed char ErrN)

Преобразование кода ошибки в соответствующий текст. Передаваемый параметр signed char ErrN – код ошибки.

DLL-библиотека

AltErrorToText(signed char ErrN, char *ErrStr)

Преобразование кода ошибки в соответствующий текст. Передаваемый параметр signed char ErrN – код ошибки. char *ErrStr – указатель на буфер, в который будет помещена строка ошибки

bool __stdcall LedOnOff(unsigned char id, bool On)

Управление установленным на модуле светодиодным индикатором. Передаваемый параметр bool On служит для включения (в случае On = TRUE) либо выключения светодиода.

bool stdcall GetDeviceInfo(unsigned char id, unsigned char ParN, char *ParString)

Получение информации устройстве. Передаваемые параметры: unsigned char id, unsigned char ParN номер возвращаемого параметра (соответствие номеров и параметров представлено в соотв. таблице ниже) char *ParString – указатель на буфер, принимающий заданную информацию.

Номер параметра ParN	Параметр
1	Наименование устройства, заданное пользователем
2	Серийный номер устройства
3	Наименование устройства, записанное в inf-файле
4	Код производителя, записанный в inf-файле
5	Код устройства, записанный в inf-файле
6	Версия микропрограммы устройства
10	Скорость подключения по шине USB, «HS» (HighSpeed) либо «FS» (FullSpeed)
11	Разрядность АЦП, бит

Функции работы с АЦП

bool stdcall SetADCFreq(unsigned char id, unsigned long freq)

Установка частоты дискретизации. Данную функцию необходимо использовать перед началом сбора данных. Значение частоты задается с помощью внутреннего таймера в диапазоне 65 Γ ц..100 κ Γ ц и вычисляется по формуле: $F=4\cdot10^6/k$, где k - целое число 40..61538. Передаваемые параметры: unsigned char id, unsigned long freq - частота дискретизации (65..100000).

bool __stdcall SetADCChannels(unsigned char id, unsigned char *_array, unsigned char Count)

Установка параметров опроса каналов АЦП. Передаваемые параметры: unsigned char id, unsigned char *_array - указатель на массив кодов каналов, размером 8 байт (размер кода каждого канала – 1 байт). unsigned char Count — количество опрашиваемых каналов. При чтении данных с АЦП каналы опрашиваются циклически в соответствии с информацией в массиве кодов каналов. Код канала зависит от номера опрашиваемого канала, кода режима подключения и кода входного диапазона АЦП и вычисляется с использованием функции ConvertADCChannelToVal.

bool __stdcall ConvertADCChannelToVal(unsigned char Chan, unsigned char Mode, unsigned char Amp, unsigned char *OutVal)

Преобразование номера канала, режима подключения и входного диапазона АЦП в код канала, используемый при вызове SetADCChannels. Передаваемые параметры: unsigned char id — указатель на устройство, unsigned char Chan, unsigned char Mode, unsigned char Amp — номер опрашиваемого канала, код режима подключения, код входного диапазона АЦП соответственно (см. таблицу ниже), unsigned char &OutVal - указатель на переменную, принимающую код канала.

DLL-библиотека

Переменная	Описание	Диапазон устанавливаемых значений	Описание значений
Chan	Номер опрашиваемого канала	для дифф. подключения — 03; для однопроводного подключения — 07	Используемые входы для дифф. подключения: $Ch = 0 - A_{IN} \ 0 \ u \ A_{IN} \ 4;$ $Ch = 1 - A_{IN} \ 1 \ u \ A_{IN} \ 5;$ $Ch = 2 - A_{IN} \ 2 \ u \ A_{IN} \ 6;$ $Ch = 3 - A_{IN} \ 3 \ u \ A_{IN} \ 7;$ для однопроводного подключения: $Ch = i - A_{IN} \ i \ .$
Mode	Код режима подключения	02	0 — режим с заземленным входом; 1 — дифф. подключение; 2 — однопроводное подключение
Amp	Код входного диапазона АЦП	14	1 – 010 B; 2 – 05 B; 3 – 02,5 B; 4 – 01,25 B

bool __stdcall ReadADCFrame(unsigned char id, signed short *inBuf, LONG Length, unsigned long Timeout = 1000, bool WaitComplete = true, unsigned char ExtTrig = 0)

Чтение данных с АЦП в массив, размер которого задается пользователем. В многоканальном режиме данные записываются в возвращаемый массив в соответствии с порядком опроса каналов. Передаваемые параметры: unsigned char id, signed short *inBuf – указатель на буфер, принимающий массив данных (размер массива должен быть кратным 512 и не должен превышать 2*10⁶), LONG Length – размер массива в отсчетах, unsigned long Timeout – таймаут ожидания окончания чтения данных (в ms, по умолчанию равен 1000, при превышении установленного значения чтение АЦП прерывается), bool WaitComplete – режим ожидания данных, unsigned char ExtTrig – режим внешней синхронизации (по линии TRIG, 0 – отключить, 1 – запуск АЦП по фронту сигнала на TRIG, 2 – запуск по спаду). При WaitComplete = TRUE функция ожидает завершения передачи данных, в противном случае выход из функции происходит сразу после начала передачи и пользователь имеет возможность обрабатывать ранее полученные данные (по умолчанию TRUE). Для проверки окончания передачи данных (при WaitComplete = FALSE) необходимо использовать функцию isADCXferComplete.

Во время передачи данных с АЦП обращение к устройству (кроме isADCXferComplete) недопустимо.

Для корректной работы данной функции необходимо равенство переданного по *inBuf значения и размера массива. заданного в Length.

При включенной внешней синхронизации (ExtTrig = 1 либо 2) значение на входе Timeout игнорируется.

bool __stdcall ReadADCFrameMaxFreq(unsigned char id, unsigned char Chan, signed short *inBuf, LONG Length, unsigned long Timeout = 1000,bool WaitComplete = true, unsigned char ExtTrig = 0)

Чтение данных с одного канала АЦП с максимальной частотой (150 кГц). Передаваемые параметры: unsigned char id, unsigned char Chan – код канала, signed short *inBuf, LONG Length, unsigned long Timeout, bool WaitComplete, unsigned char ExtTrig – идентичные одноименным передаваемым параметрам функции ReadADCFrame.

DLL-библиотека

bool stdcall isADCXferComplete(unsigned char id)

Проверка, закончена ли передача данных от устройства к PC при выполнении функций ReadADCFrame, ReadADCFrameMaxFreq либо ContinuousReadADCFrame. Передаваемый параметр – unsigned char id. Возвращаемое значение: FALSE – передача данных не закончена, TRUE – передача данных закончена.

bool __stdcall StartContinuousReadADC(unsigned char id)

Запуск АЦП в режиме непрерывного чтения. Режим непрерывного чтения характеризуется непрерывной работой АЦП. Вследствие этого пропуски информации между несколькими последовательно полученными с АЦП массивами данных отсутствуют. Передаваемый параметр – unsigned char id.

Так как емкость внутреннего буфера устройства (FIFO) ограничена 512 словами, вызовы функции ContinuousReadADCFrame должны происходить с такой периодичностью, чтобы не допускать переполнения внутреннего буфера на выбранной частоте дискретизации АЦП.

bool __stdcall ContinuousReadADCFrame(unsigned char id, signed short *inBuf, LONG Length)

Передача массива данных с АЦП в режиме непрерывного чтения. Выход из функции происходит сразу после начала передачи и пользователь имеет возможность обрабатывать ранее полученные данные. Для проверки окончания передачи данных необходимо использовать функцию isADCXferComplete. Функция может быть вызвана многократно (последовательно), при этом пропуски информации между несколькими последовательно полученными с АЦП массивами данных будут отсутствовать. Передаваемые параметры: unsigned char id, signed short *inBuf — указатель на буфер, принимающий массив данных (размер массива должен быть кратным 512 и не должен превышать 2*10⁶), LONG Length — размер массива в отсчетах.

Перед передачей данных с АЦП в режиме непрерывного чтения необходимо предварительно выполнить запуск АЦП в соответствующем режиме с помощью функции StartContinuousReadADC. После окончания передачи необходимо выполнить останов АЦП (вызвать StopContinuousReadADC)

Повторный запуск ContinuousReadADCFrame необходимо выполнять только после окончания передачи предыдущих данных (при isADCXferComplete = TRUE).

DLL-библиотека

bool __stdcall ContinuousReadADCFrame_OVL(unsigned char id, signed short *inBuf, LONG Length, unsigned int OvIN, bool WaitComplete = true, unsigned long Timeout = 1000);

Передача массива данных с АЦП в режиме непрерывного чтения (альтернативная ContinuousReadADCFrame функция). Выход из функции происходит сразу после начала передачи и пользователь имеет возможность обрабатывать ранее полученные данные. Для проверки окончания передачи данных необходимо использовать функцию isADCXferComplete. Функция может быть вызвана многократно, при этом пропуски информации между несколькими последовательно полученными с АЦП массивами данных будут отсутствовать. Передаваемые параметры: unsigned char id, signed short *inBuf, LONG Length, unsigned long Timeout, bool WaitComplete, unsigned char ExtTrig – идентичные одноименным передаваемым параметрам функции ContinuousReadADCFrame(). unsigned int OvIN — условный номер (0..1023) для функции в массиве ее очередности (также используется в функции isADCXferComplete OVL()).

Перед передачей данных с АЦП в режиме непрерывного чтения необходимо предварительно выполнить запуск АЦП в соответствующем режиме с помощью функции StartContinuousReadADC. После окончания передачи необходимо выполнить останов АЦП (вызвать StopContinuousReadADC)

Последующую функцию ContinuousReadADCFrame_OVL можно вызвать сразу (с измененным значением OvIN), без ожидания окончания приема данных для ранее вызванной функции ContinuousReadADCFrame_OVL (при условии, что ее параметр WaitComplete = FALSE).

bool stdcall isADCXferComplete OVL(unsigned char id,unsigned int OvlN)

Проверка, закончена ли передача данных от устройства к РС при выполнении функции ContinuousReadADCFrame_OVL. Передаваемый параметр – unsigned char id. Возвращаемое значение: FALSE – передача данных не закончена, TRUE – передача данных закончена.

bool __stdcall StopContinuousReadADC(unsigned char id)

Останов режима непрерывного чтения АЦП. Передаваемый параметр – unsigned char id.

DLL-библиотека

Функции работы с ЦАП

bool __stdcall SetDacRange(unsigned char id, unsigned char dac, unsigned char diap)

Установка выходного диапазона ЦАП. Передаваемые параметры: unsigned char id, unsigned char

dac — номер канала ЦАП (0 — A_{OUT} 0, 1 — A_{OUT} 1), diap - код диапазона. Значения кодов представлены в таблице справа. Соответствие кодов и выходных напряжений для различных типов каналов представлено в таблице ниже (U_{np} — предельное напряжение канала).

Код	Однополярный режим	Биполярный режим
-2048	0	-U _{пр}
2047	U _{np}	U _{np}

Значение diap	Выходной диапазон канала, В	
0	05	
1	010	
2	010.8	
3	-55	
4	-1010	
5	-10.810.8	

bool __stdcall SetDacValue(unsigned char id, unsigned char dac, int val)

Однократный вывод данных на ЦАП. Преобразование выполняется в момент обращения к данной функции из приложения. Передаваемые параметры: unsigned char id, unsigned char dac – установка номера канала $(0 - A_{OUT} \ 0, 1 - A_{OUT} \ 1)$, int val – переменная, содержащая преобразуемый код.

bool stdcall PowerUpDac(unsigned char id, unsigned char dac)

Включение канала ЦАП после срабатывания защиты от перегрузки по току. Передаваемые параметры: unsigned char id, unsigned char DAC – номер ЦАП $(0 - A_{OUT} \ 0, \ 1 - A_{OUT} \ 1)$.

bool __stdcall ClearDACs(unsigned char id)

Сброс каналов ЦАП (установка на обоих каналах нулевого напряжения). Передаваемый параметр – unsigned char id.

Функции работы со счетчиком событий

bool __stdcall EnableCounter(unsigned char id, BOOL enable)

Запуск либо останов счетчика событий. Передаваемые параметры: unsigned char id, BOOL Enable (TRUE – запуск, FALSE – останов).

bool __stdcall ReadCounter(unsigned char id, unsigned int *data)

Чтение значений счетчика событий. Передаваемые параметры: unsigned char id, и указатель на переменную, принимающую данные unsigned int *data.

bool __stdcall ClearCounter(unsigned char id)

Сброс счетчика событий. Передаваемый параметр – unsigned char id.

DLL-библиотека

Функции дискретного В/В

bool __stdcall ConfigureDigitalPort(unsigned char id, unsigned char data)

Конфигурация линий дискретного B/B $D_{I/O}$ A0..A7 для использования в однократном режиме. Передаваемые параметры: unsigned char id, unsigned char data (состояние бита для каждой линии: 0 – вывод, 1 – ввод).

bool __stdcall ReadDIValue(unsigned char id,unsigned char *data)

Однократный ввод данных из порта дискретного В/В. Передаваемые параметры: unsigned char id, и указатель на переменную, принимающую байт данных unsigned char *data.

bool __stdcall SetDOValue(unsigned char id,unsigned char data)

Однократный вывод данных в порт дискретного В/В. Передаваемые параметры: unsigned char id и данные unsigned char data.

bool __stdcall SetFastDIOFreq(unsigned char id, unsigned long freq, unsigned char DOorDI)

Установка частоты В/В дискретных сигналов. Значение частоты задается с помощью внутреннего таймера в диапазоне 50 кГц..8 МГц (верхняя граница диапазона в действительности может быть меньше из-за низкой производительности РС). Передаваемые параметры: unsigned char id, unsigned long freq — частота В/В (50000..8000000), unsigned char DOorDI — переменная для задания частоты цифрового ввода (DOorDI = 1) либо вывода (DOorDI = 2).

bool __stdcall FastReadDl(unsigned char id, unsigned char *InBuf, LONG Length, unsigned long Timeout, bool WaitComplete = true)

Ввод массива данных из порта дискретного B/B $D_{I/O}$ A0..A7. Передаваемые параметры: unsigned char id, unsigned char *InBuf – указатель на массив, принимающий данные; LONG Length – размер массива (должен быть кратным 512 и не должен превышать $2*10^6$), unsigned long Timeout – таймаут ожидания окончания чтения данных (в ms, по умолчанию равен 1000, при превышении установленного значения чтение АЦП прерывается), bool WaitComplete – режим ожидания данных (по умолчанию TRUE). При WaitComplete = TRUE функция ожидает завершения передачи данных, в противном случае выход из функции происходит сразу после начала передачи и пользователь имеет возможность обрабатывать ранее полученные данные (по умолчанию TRUE). Для проверки окончания передачи данных (при WaitComplete = FALSE) необходимо использовать функцию isReadDIXferComplete.

Во время передачи данных с дискретных входов обращение к устройству (кроме isReadDIXferComplete) не допустимо.

Для корректной работы функции необходимо равенство переданного с помощью Length значения, и размера массива InBuf.

DLL-библиотека

bool __stdcall FastWriteDO(unsigned char id, unsigned char *OutBuf, LONG Length, unsigned long Timeout, bool WaitComplete = true)

Вывод массива данных в порт дискретного B/B $D_{I/O}$ A0..A7. Передаваемые параметры: unsigned char id, unsigned char *pOutBuf – указатель на массив данных, заданных пользователем; LONG Length – размер массива (должен быть кратным 512 и не должен превышать $2*10^6$), unsigned long Timeout – таймаут ожидания окончания чтения данных (в ms, по умолчанию равен 1000, при превышении установленного значения вывод данных прерывается), bool WaitComplete – режим ожидания данных (по умолчанию TRUE). При WaitComplete = TRUE функция ожидает завершения передачи данных, в противном случае выход из функции происходит сразу после начала передачи и пользователь имеет возможность обрабатывать ранее полученные данные (по умолчанию TRUE). Для проверки окончания передачи данных (при WaitComplete = FALSE) необходимо использовать функцию isWriteDOXferComplete.

Во время передачи данных на дискретные выходы обращение к устройству (кроме isWriteDOXferComplete) не допустимо.

Для корректной работы функции необходимо равенство переданного с помощью Length значения и размера массива OutBuf.

bool __stdcall isReadDIXferComplete(unsigned char id, unsigned char *InBuf)

Проверка, закончена ли передача данных от устройства к PC при выполнении функции FastReadDI. Передаваемые параметры: unsigned char id, unsigned char *InBuf – указатель на массив данных, используемый в функции FastReadDI. Возвращаемое значение: FALSE – передача данных не закончена, TRUE – передача данных закончена.

bool __stdcall isWriteDOXferComplete(unsigned char id)

Проверка, закончена ли передача данных от PC к устройству при выполнении функции FastWriteDO. Передаваемый параметр – unsigned char id. Возвращаемое значение: FALSE – передача данных не закончена, TRUE – передача данных закончена.

LabVIEW

Библиотека подпрограмм m-DAQ12 library.llb

Для использования подпрограмм библиотеки в LabVIEW-программе необходимо выбрать пункт Select a VI... палитры функций панели блок-диаграммы, после чего указать местонахождение m-DAQ12 library.llb и требуемую подпрограмму.

В случае получения следующей ошибки ОС при работе с LabVIEW-библиотекой: «Приложение не было запущено, поскольку оно некорректно настроено. Повторная установка приложения может решить данную проблему», необходимо предварительно установить распространяемый пакет Microsoft Visual C++ 2008 SP1 Redistributable Package из папки C++ 2008 SP1\ поставляемого диска.

m-DAQ12 get version.vi

Получение номера версии DLL-библиотеки.

m-DAQ12 get number devices.vi

Получение количества подключенных к РС устройств.

Здесь и далее значение, возвращаемое на выходе **Ошибка** (TRUE либо FALSE) предназначено для контроля успешного выполнения subVI.

LabVIEW

m-DAQ12 open.vi

Открытие подключенного к шине USB устройства.

Вход **Номер устройства** задает номер модуля, который необходимо открыть (нумерация начинается с 0 в порядке подключения устройств к USB). Здесь и далее **Указатель на устройство** – переменная, с помощью которой производится последующая адресация команд.

m-DAQ12 close.vi

Закрытие подключенного к шине USB устройства.

m-DAQ12 get info.vi

Получение информации о подключенном к шине USB устройстве.

LabVIEW

m-DAQ12 ADC single channel.vi

Циклический опрос одного из входов АЦП.

На вход **Частота дискретизации** необходимо подать значение соответствующей частоты, Гц, по умолчанию оно равно 100000 Гц. На вход **Размер данных** необходимо подать значение соответствующей величины (кратное 512, по умолчанию — 512). На вход **Режим подключения** необходимо подать кластер, содержащий три целочисленных переменных в формате **U8** (см. соответствующую таблицу ниже). Выходы **Массив кодов** и **Массив напряжений** (в В) содержат полученные данные.

Содержание кластера Режим подключения		
Переменная	Описание	Диапазон устанавливаемых значений
Номер	Номер опрашиваемого канала	для дифф. подключения— 03; для однопроводного подключения— 07
Режим	Режим подключения	0 — режим с заземленным входом; 1 — дифф. подключение; 2 — однопроводное подключение
Диапазон	Входной диапазон АЦП	1 – 010 B; 2 – 05 B; 3 – 02,5 B; 4 – 01,25 B

Подпрограммы m-DAQ12 ADC single channel.vi и m-DAQ12 ADC multi channel.vi непригодны для чтения данных в режиме реального времени.

m-DAQ12 ADC multi channel.vi

Циклическое считывание данных с нескольких входов АЦП.

От subVI **m-DAQ12 ADC single channel.vi** отличается следующими входами: частота дискретизации устанавливается из расчета на один канал с использованием входа **Частота дискретизации на канал**; на вход **Режимы подключения каналов** необходимо подать массив кластеров, идентичных переменной **Режим подключения**. Максимальное количество устанавливаемых каналов – 8, очередность их опроса соответствует очередности задания кластеров в массиве. Выход **Массивы кодов** содержит матрицу полученных данных, каждая строка которой – массив кодов с отдельного входа АЦП. Выход **Массивы напряжений** содержит аналогичную матрицу полученных данных, в В.

LabVIEW

m-DAQ12 DAC.vi

Вывод данных на ЦАП.

Вход **Номер канала** определяет канал ЦАП: A_{OUT} 0 (0, по умолчанию), A_{OUT} 1 (1). На вход **Диапазон** нужно подать значение для программной установки выходного диапазона канала ЦАП (см. соответствующую таблицу справа). На вход **Код** необходимо подать соответствующее значение в диапазоне -2048..2047, по умолчанию – 0.

Значение	Выходной
переменной	диапазон
Диапазон	ЦАП
0	05 B
1	010 B
2	010,8 B
3	-55 B
4	-1010 B
5	-10,810,8 B

m-DAQ12 counter.vi

Счетчик событий.

Счетчик событий срабатывает по переднему или заднему фронту входного сигнала в зависимости от состояния входа **Фронт** (передний – 0, задний – 1). Его значение по умолчанию – 0.

Вход Запуск / останов задает временной интервал счета от момента установки на нем 0 (запуск) до момента установки 1 (останов). Корректный результат счета может быть получен только после останова счетчика.

Выход Результат содержит результат счета.

m-DAQ12 DIO single.vi

Чтение / запись состояний линий портов дискретного В/В.

Вход Чтение / запись определяет направление данными: чтение – 0 (по умолчанию), запись – 1.

Осциллограф-регистратор

Oscilloscope_logger.exe

Для функционирования виртуального осциллографа на основе m-DAQ12/m-DAQ14 необходимы LabVIEW 8.2.1 или LabVIEW Run-Time Engine 8.2.1 Виртуальный осциллограф рассчитан на подключение к компьютеру одного m-DAQ12/m-DAQ14.

Осциллограф-регистратор

Осциллограф-регистратор

Последовательность работы с виртуальным осциллографом-регистратором

Подготовка к работе

- 1. Включить компьютер.
- 2. Присоединить с помощью поставляемого кабеля связи по USB модуль m-DAQ12 либо m-DAQ14 к компьютеру.
- 3. Используя кабельную часть разъема DB 25-M, подключить источники либо приемники сигналов к соответствующим каналам модуля.
- 4. Загрузить с использованием приложения LabVIEW 8.2.1 либо LabVIEW Run-Time Engine 8.2.1 исполняемый файл Oscilloscope_logger.exe. Программа будет автоматически запущена на выполнение в циклическом режиме.
- В случае, если устройство не было опознано программной средой (при свечении соответствующего индикатора 5) необходимо проверить корректность его подключения либо установки драйвера. После чего запустить программу на выполнение.
 - 5. Остановка программы осуществляется с помощью кнопки 6.

Управление АЦП

- 1. Перейти на закладку «АЦП» программы, нажав на ее название в перечне закладок 1.
- 2. Ввести в поле 8 количество N_{ch} опрашиваемых каналов (диапазон возможных значений N_{ch} 1..8), а в поле 10 размер считываемой за один цикл работы выборки данных (задается в отсчетах).
- 3. Ввести в поле 9 частоты опроса требуемое значение F_{s_1ch} частоты дискретизации входного сигнала (из расчета на один канал). Данную процедуру необходимо выполнять до старта чтения данных. При необходимости изменения частоты дискретизации необходимо остановить чтение. В случае $N_{ch}*F_{s-1ch} > 100$ кГц выполняется автоматическая установка $F_{s-1ch} = 100$ кГц / N_{ch} .
- 4. С помощью полей ввода 13 установить требуемые параметры чтения для опрашиваемых каналов (номер входа АЦП, режим подключения, входной диапазон).
- 5. Перевести АЦП в режим циклического чтения данных путем нажатия кнопки 11. Визуальное представление данных осуществляется с помощью осциллографа 7. Останов АЦП осуществляется с помощью кнопки 6.
- 6. При необходимости записи результатов работы АЦП в файл нажать соответствующую кнопку 12. После нажатия кнопки указать путь и название файла (расширение по умолчанию *.dat, возможно задание расширения пользователем).

Результаты записываются в текстовый файл в следующем виде. Данные с каждого логического канала содержатся в отдельном столбце (количество столбцов в файле соответствует количеству выбранных каналов). Первые 4 значения в столбце содержат параметры чтения (описание параметров представлено в соотв. таблице ниже), 5-е и последующие значения — массив считанных данных (полученные коды).

Осциллограф-регистратор

Содержание столбца файле результатов чтения с АЦП		
Положение в столбце	Описание	Диапазон устанавливаемых значений
1	Номер входа	для дифф. подключения — 03; для однопроводного подключения — 07
2	F _{s_1ch}	0100000
3	Режим подключения	0 – режим с заземленным входом; 1 – дифф. подключение; 2 – однопроводное подключение
4	Входной диапазон	1 – 010 B; 2 – 05 B; 3 – 02,5 B; 4 – 01,25 B
5 и ниже	Считанные данные (коды)	-

- 7. После записи результатов в файл необходим повторный запуск чтения данных.
- 8. В процессе работы возможна смена всех установленных ранее настроек, для чего необходим останов АЦП.

Управление ЦАП

- 1. Перейти на закладку «ЦАП» программы, нажав на ее название в перечне закладок 1.
- 2. Установить выходные диапазоны каналов ЦАП A_{OUT} 0 и A_{OUT} 1 с помощью выпадающих списков 15 и 14 соответственно.
- 3. Установить преобразуемые коды с помощью элементов управления 16 19 (ползунки и соответствующие поля цифрового ввода синхронизированы).

Управление линиями дискретного В/В

- 1. Перейти на закладку «Дискретный В/В» программы, нажав на ее название в перечне закладок 1.
 - 2. Выбрать направление передачи данных с помощью переключателя 20.
- 3. Для записи данных на дискретные линии использовать кнопки 21 (записываемые данные представляются в десятичном цифровом виде в поле 23).
- 4. Считанные данные представляются с помощью световых индикаторов 22 и в десятичном цифровом виде в поле 24.