

Fundamentos Físicos y Tecnológicos

Curso 2020/2021

Relación de problemas 5

- 1. Escribe las tablas de verdad para las siguientes funciones donde las variables son binarias:
 - a) $f(A, B, C) = A + B \cdot C$
 - b) $f(A, B, C) = \overline{A + B \cdot C}$
 - c) $f(A,B) = \overline{A \cdot (A+B)}$
 - $d) f(A, B, C) = \overline{A \cdot (B + C)}$
- 2. Suponiendo que la respuesta del inversor de una cierta tecnología es la representada en la Figura 1, determinar los márgenes de ruido en estado alto y bajo si $V_{IL}=0.5~{\rm V},$ $V_{IH}=4.5~{\rm V},$ $V_{OL}=0.2~{\rm V}$ y $V_{OH}=4.7~{\rm V}.$

Figura 1:

3. Dentro de la familia CMOS se han desarrollado distintas series para obtener mejoras en algunas de las características de los circuitos integrados. En la Tabla 1 se muestran los niveles de entrada-salida para dichas series CMOS cuando $V_{DD}=5$ V. Calcular los márgenes de ruido para cada serie y determinar, en base a estos cálculos, la que ofrece mejor inmunidad frente al ruido.

	4000	74HC	74HCT	74AC	74ACT	74AHC	74AHCT
V_{OH} (V)	4.95	4.9	4.9	4.9	4.9	4.4	3.15
V_{OL} (V)	0.05	0.1	0.1	0.1	0.1	0.44	0.1
V_{IH} (V)	3.5	3.5	2.0	3.5	2.0	3.85	2.0
V_{IL} (V)	1.5	1.0	0.8	1.5	0.8	1.65	0.8

Tabla 1:

- 4. En la Figura 2 se muestran tanto la entrada como la salida de un inversor creado con cierta tecnología Determina:
 - (a) Los tiempos de subida y bajada de la señal de entrada.

Figura 2:

- (b) Los tiempos de subida y bajada de la señal de salida.
- (c) El tiempo de propagación de nivel alto a bajo.
- (d) El tiempo de propagación de nivel bajo a alto.
- (e) El retardo de la puerta.
- 5. Una posibilidad para construir un inversor con un transistor NMOS es usar una resistencia como carga. Si a la resistencia se coloca una fuente de V_{DD} =15V, calcula V_{OL} , V_{OH} , el margen de ruido en estado alto y el margen de ruido en estado bajo si:
 - a) $R_D = 1k\Omega$
 - b) $R_D = 1M\Omega$

Datos: $k = 10^{-3} \frac{A}{V^2}$, $V_T = 2V$.

6. Una posibilidad para construir un inversor con un transistor NMOS es usar un transistor NMOS con la puerta y el drenador cortocircuitados como carga. Si al drenador de este segundo transistor se le coloca una fuente de $V_{DD}=15\mathrm{V}$, calcula V_{OL} , V_{OH} y la expresión de la característica de transferencia si la entrada se pone en la puerta del primer transistor NMOS y la salida en el drenador del mismo.

Datos: $k_1 = 10^{-3} \frac{A}{V^2}$, $k_2 = 0.2 \cdot 10^{-3} \frac{A}{V^2}$ y $V_{T_1} = V_{T_2} = 2V$.

- 7. Calcula los márgenes de ruido en estado alto y en estado de bajo de un inversor CMOS construido con un transistor NMOS $(k_n = 10^{-3} \frac{A}{V^2} \text{ y } V_T = 2V)$ y un transistor PMOS $(k_p = 10^{-3} \frac{A}{V^2} \text{ y } V_T = -2V)$ con sus drenadores y puertas cortocircuitados, la fuente del transistor NMOS conectada a tierra y la del PMOS a una fuente de valor 15V.
- 8. Diseñar con tecnología CMOS una puerta que realice la función lógica $f(A, B) = \overline{A \cdot B}$. Obtener razonadamente la tabla de verdad del circuito resultante comentando el estado de cada transistor para cada combinación de entradas.

- 9. Diseñar con tecnología CMOS, comentando el estado de cada transistor, una puerta que realice la función lógica $f(A, B, C) = A \cdot B + C$.
- 10. Diseñar con tecnología CMOS, comentando el estado de cada transistor, una puerta que realice la función lógica $f(A, B) = A \cdot \overline{B} + \overline{A} \cdot B$.
- 11. Diseñar usando el mínimo número de transistores y ocupando el mínimo espacio, comentando el estado de cada transistor, una puerta que realice la función lógica $f(A, B, C) = (\overline{A} + \overline{B}) \cdot C$.
- 12. Diseñar con tecnología CMOS, comentando el estado de cada transistor, una puerta que realice la función lógica $f(A, B, C) = \overline{A + B} + \overline{A} \cdot \overline{C}$.
- 13. Diseñar con el mínimo número de transistores posibles un circuito que realice la función lógica $f(A, B, C, D) = A \cdot (B + C) + D$. Indicar y analizar el estado de cada transistor para las distintas combinaciones de entradas.
- 14. En el circuito de la Figura 3 determinar el estado de cada transistor y el valor (analógico) de salida cuando $V_i = 0V$ y cuando $V_i = 5V$.

 Datos: $R = 1 \text{ k}\Omega$, $k_n = k_p = 2 \cdot 10^{-3} \frac{\text{A}}{\text{V}^2}$ y $V_{T_n} = |V_{T_p}| = 2 \text{ V}$ y $V_{DD} = 5 \text{ V}$.

Figura 3:

15. ¿Qué función realiza el circuito de la Figura 4 en el ámbito de la lógica positiva, teniendo en cuenta que $V_{DD} > 0$? Explica razonadamente el estado en el que se encuentran cada uno de los transistores representados.

Figura 4:

16. Dado el circuito lógico de la Figura 5, determinar la función lógica que realiza. Pintar la tabla de verdad para las combinaciones de entrada (1,0,1) y (0,1,0), comentando razonadamente el estado de cada uno de los transistores.

Figura 5:

17. Dado el circuito lógico de la Figura 6, determinar la función lógica que realiza. Pintar la tabla de verdad para las combinaciones de entrada (1,0,1,0) y (0,1,1,1), comentando razonadamente el estado de cada uno de los transistores.

Figura 6: