Unsupervised Task Discovery in Multi-Task Acoustic Modeling

Josh Meyer*

* University of Arizona

Abstract

- Multi-Task Learning works (esp. in low-resource)
- However, tasks are hard to make
- ► Better to discover tasks automatically
- ► Experiment with k-means on MFCCs
- ► Initial results

Figure 1: Multi-Task Learning Architecture

1. Background

- Multi-Task Learning in Acoustic Modeling
 - Multilingual
 - new language == new task
 - Monolingual
 - new linguistic encoding == new task
 - Monophones vs. Triphones

Figure 2: Label Correspondance of Decision Tree / DNN

2. Alignment

- ► Feature Extraction
 - ▶ 13 PLP features, 25ms Hamming windows, 10ms shift, 16 frame left-context & 12 frame right-context, CMVN
- GMM Alignment
 - Monophones: 1,000 Gaussians, 25 iterations EM // Triphones: 2,000 leaves & 5,000 Gaussians, 25 iterations EM

Figure 3: GMM-aligned training examples

3. Clustering

- k-means Clustering
 - ▶ A set number of clusters is discovered via TensorFlow's standard k-means clustering.

Figure 4: k-means clustered training examples

4. Mapping Triphone States → **Clusters**

- ightharpoonup Mapping triphone states ightharpoonup k-means clusters
 - ▶ All training examples aligned to triphone state are mapped to most common k-means cluster.

Figure 5: GMM-aligned training examples

5. Cluster Contents

- ▶ 672 leaves in Kaldi and 1024 clusters in TF
- ▶ 185 new labels after mapping
 - ▶ 123 / 185 are interpretable
- ▶ 101 of new labels contain mixed phonemes
 - ▶ 39 / 101 contained either only vowels or only consonants
- ▶ 84 of new labels contain one phoneme
 - ▶ 9 / 84 contained more than one triphone of phoneme

Table 1: Discovered intelligible Phoneme Clusters

Vowels	5	Consonants		
a j	a u	k r	gnm	
ао	a ih	kр	s sh ch	
e j	e ih	r ng	tksp	
e y	o u	d ch	m ng	
u ih y	u ih	t k	tkh	
i e y	o ih	d z	tks	
a e oe j ih	j ih	Ιz	t ch d	
a ih o u y		пр	t k zh b	
			t g b s sh z zh	

6. Multi-Task DNN Training Set-up

- ► DNN Acoustic model training
 - Multi-Task Time-Delay Neural Network
 - ▶ 5-epochs, 11 hidden layers, ReLU activations
- ho $\alpha_{initial} = 0.0015 \rightarrow \alpha_{final} = 0.00015$
- Each task has penultimate + ultimate output layer

Figure 6: Model Accuracy During Training

7. Testing Setup

- \triangleright k-folds cross-validation (k == 5)
 - ▶ 511 utterances for train
- ▶ 100 utterances for test
- Decoded with 1-gram LM

8. Results: Traditional Weighting Scheme

- Loss = $((1 \alpha) * MAIN + \alpha * AUX)$
- ► WER better than Baseline in 4/9 experiments

Table 2: WER% for Traditional Weighting Scheme

lpha = 0.1	$\alpha = 0.2$	$\alpha = 0.3$
	57.55 ±1.82	
$57.93 \ \pm 1.63$	$57.04 \ \pm 1.58$	$57.66 \ \pm 1.24$
57.69 ± 3.78	56.99 ±3.08	$57.60~\pm 0.79$
$57.25~\pm 2.87$	$58.07 \ \pm 1.35$	$57.45\ \pm0.32$
	57.93 ±1.63 57.69 ±3.78	$lpha = 0.1$ $lpha = 0.2$ 57.55 ± 1.82 57.93 ± 1.63 57.04 ± 1.58 57.69 ± 3.78 56.99 ± 3.08 57.25 ± 2.87 58.07 ± 1.35

9. Results: Simple Weighting Scheme

- ightharpoonup Loss = $(MAIN + \alpha * AUX)$
- ► WER better than Traditional Loss
- \triangleright WER better than Baseline in 6/9 experiments

Table 3: WER% for Simple Weighting Scheme

	lpha = 0.1	$\alpha = 0.2$	$\alpha = 0.3$
Single Task Baseline		57.55 ± 1.82	
+ 256 k-means cluster targets	57.33 ± 2.49	$58.02 \ \pm 2.09$	$57.18\ \pm0.56$
+ 1024 k-means cluster targets	57.74 ± 3.06	56.88 ±1.33	$57.13\ \pm1.55$
+ 4096 k-means cluster targets	57.56 ± 2.53	57.49 ± 3.17	$57.31 \ \pm 1.31$

10. Discussion

- Good auxiliary tasks exist (we just need to find them)
- Initial Results show small improvements, given good hyper-parameters
- Clustering in high-dimensional feature space isn't great
- ▶ Find better projections: LDA, source DNN activations (from well-resourced lang)
- Big net overfits to both tasks
- add more tasks
- use smaller net

11. Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1746060). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.