PROJECT # 01 : CAR PRICE PREDICTION

LINEAR REGRESSION VS RANDOM FOREST REGRESSION MODEL

Submitted by

- Rangarajan Srinivasan IIT Madras

I. Overview

• Types of Car models and its available features was provided - Limited set of data

2. Problem

 Predict car "price" – with given set of data (features) by using different regression method – Linear Regression & Random Forest.

3. Objective

• Identify Independent variables (features) which are closely associated with car price and its "Error – Predict vs Actual".

4. Methodolgy

Problem Definition

• Car "Price" prediction

Data Understanding • Number of variables (features) available in data file

Exploratory Data Analysis

• Understanding Categorical and quantitative variables

4. Methodolgy

Data Preparation • Data cleaning and conversion of additional data variables.

Model Building & Evaluation

• Data splitting technique, model using regression technique and evaluate model in terms of its accuracy.

Recommendati on • Features highly dependent on car "price" predictions.

Features

4.Data Overview

Data Understanding

- 26 set of variables and 205 data
 points of different car models were provided.
- 25 variables treated as Independent
- 26th Variable "Price" treated as Dependent.

		Features - Independent Variables
	ı	car_ID
	2	symbolling
	3	Car Name
	4	fuel type
	5	aspiration
	6	door number
	7	carboy
	8	drive wheel
	9	engine location
	10	wheelbase
	П	car length
	12	car width
	13	Car height
_		

	Features - Independent Variables
14	Curb weight
15	engine type
16	cylinder number
17	engine size
18	fuel system
19	bore ratio
20	stroke
21	compression ratio
22	horsepower
23	peakrpm
24	citympg
25	highway

4.Data Overview

- Price Influencing on different set of variables
- Data relation understanding -
- Dependent variable Vs. Independent variables
 - A → Linear
 - B → Exponential
 - C → Scattered
 - D → Segregated

5. Data Manipulation

✓ Categorical Data conversion and manipulation – "String" to "Integer"

Categorical Data into Integer data

- 26. Fuel type (Gasoline & Diesel)
- 27. Aspiration (Standard & Turbo)
- 28. Number of doors (2-"Coupe", 4 Normal)
- 29. Car Body (Sedan, Hatchback, Wagon, Hardtop & Convertible)
- 30. Wheel Drive (Front wheel, Rear wheel, Four Wheel)
- 31. Engine Location (Front side, Rear Side)
- 32. Engine Type (DOHC, OHCV, OHC, L –ROTOR, OHCF, DOHCV)
- 33. Number of Cylinders (2, 3,4,5,6,8 & 12)
- 34. Fuel System (MPFI, 2BBL, MFI, IBBL, SPFI, 4BBL, IDI, SPDI)

5. Data Manipulation

- ✓ Generating more variables using existing variables based on formulation
 - → Adding more data features will enhance in better accuracy

Adding more data Features

- 35. cars_data['area_car'] = cars_data['carlength'] * cars_data['carwidth']
- 36. cars_data['volume_car'] = cars_data['carlength'] * cars_data['carwidth']*cars_data['carheight']
- 37. cars_data['weight_to_volume ratio'] = cars_data['curbweight'] / cars_data['volume_car']
- 38. cars_data['enginesize_to_powerratio'] = cars_data['horsepower'] / cars_data['enginesize']
- 39. cars_data['avg_milage'] = (cars_data['citympg']+cars_data['highwaympg'])/2
- ✓ Removing features from data set ("Superfluous data")
 - Car Model
 - Car ID

5. Data Manipulation

1	Car_ID
2	fueltype
3	aspiration
4	doornumber
5	enginelocation
6	wheelbase
7	carlength
8	carwidth
9	carheight
	curbweight
Ш	cylindernumber
12	enginesize
13	boreratio
14	stroke
15	compressionratio
16	horsepower
17	peakrpm
18	citympg
19	highwaympg
20	CarModel
	area_car
	volume_car
23	weight_to_volume ratio
24	enginesize_to_powerratio

avg_milage
symbolingI
symboling_0
symboling_I
symboling_2
symboling_3
carbody_HARDTOP
carbody_HATCHBACK
carbody_SEDAN
carbody_WAGON
drivewheel_FWD
drivewheel_RWD
enginetype_DOHCV
enginetype_L
enginetype_OHC
enginetype_OHCF
enginetype_OHCV
enginetype_ROTOR
fuelsystem_2BBL
fuelsystem_4BBL
fuelsystem_IDI
fuelsystem_MFI
fuelsystem_MPFI
fuelsystem_SPDI

Final Data Set

49	fuelsystem_SPFI
50	CarCompany_AUDI
51	CarCompany_BMW
52	CarCompany_BUICK
53	CarCompany_CHEVROLET
54	CarCompany_DODGE
55	CarCompany_HONDA
56	CarCompany_ISUZU
57	CarCompany_JAGUAR
58	CarCompany_MAZDA
59	CarCompany_MERCURY
60	CarCompany_MITSUBISHI
61	CarCompany_NISSAN
62	CarCompany_PEUGEOT
63	CarCompany_PLYMOUTH
64	CarCompany_PORSCHE
65	CarCompany_RENAULT
66	CarCompany_SAAB
67	CarCompany_SUBARU
68	CarCompany_TOYOTA
69	CarCompany_VOLKSWAGEN
70	CarCompany_VOLVO
71	CarCompany_VOLVO

5. Preparing Training & Test Data Set

☐ Preparing Independent variables

features = cars_data.columns.tolist()

☐ Preparing dependent variables

features.remove('price')

☐ Putting feature variable to X

X = cars_data[features]

☐ Putting response variable to y

y = cars_data['price']

☐ Split into train and test from sklearn.model selection import train test split

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size = 0.3, random_state=100)

6.Model Building - Linear Regression

<u>Linear Regression - Ordinary Least Squares & ranking based on Recursive Feature Elimination.</u>

```
R-squared:
 Dep. Variable:
                                              0.930
                 OLS
                                Adi. R-squared: 0.925
                 Least Squares
                                  F-statistic:
                                              176.4
    Method:
                 Fri. 11 Oct 2019 Prob (F-statistic): 2.89e-71
                                Loa-Likelihood: -1293.6
                 11:37:08
                                                2609.
No. Observations: 143
 Df Residuals: 132
                                                2642.
Covariance Type: nonrobust
                      1.319e+04 180.641 73.039 0.000 1.28e+04 1.36e+04
    enginelocation
                       -1853.3711 337.510 -5.491 0.000 -2521.000 -1185.742
                       -3.671e+04 5605.222 -6.548 0.000 -4.78e+04 -2.56e+04
       carlength
                       -1.521e+04 2801.370 -5.430 0.000 -2.08e+04 -9670.647
       carwidth
      carheight
                       8206.6102 1993.989 4.116 0.000 4262.302 1.22e+04
                       3996.0829 462.346 8.643 0.000 3081.517 4910.649
      curbweight
                       7.32e+04 1.05e+04 6.966 0.000 5.24e+04 9.4e+04
       area car
     volume car
                       -2.659e+04 5631.189 -4.721 0.000 -3.77e+04 -1.54e+04
 CarCompany BMW 2147.0989 179.803 11.941 0.000 1791.431 2502.766
 CarCompany BUICK 881.3579 236.023 3.734 0.000 414.480
CarCompany PORSCHE 820.7856 282.008 2.911 0.004 262.947 1378.625
                      Durbin-Watson: 1.903
Prob(Omnibus): 0.000 Jarque-Bera (JB): 33.775
              0.764
                         Prob(JB):
                        Cond. No.
```


- ✓ Mean Absolute Error (OLS): 1863.34 price.
- ✓ Accuracy OLS: 86.37 %.
- ✓ r2 score: 0.9056

6.Model Building - Random Forest Regression

Using Skikit-learn to split data into training and testing sets

from sklearn.model_selection import train_test_split

Split the data into training and testing sets

train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.25, random_state = 42)

- Training Features Shape: (153, 68); Training Labels Shape: (153,)
- Testing Features Shape: (52, 68); Testing Labels Shape: (52,)

Limit depth of tree to 3 levels

```
rf_small = RandomForestRegressor(n_estimators=10, max_depth = 3)
rf_small.fit(train_features, train_labels)
```

Get numerical feature importance

```
importances = list(rf.feature_importances_)
```

- ✓ Mean Absolute Error (RFE): 1278.39 price.
- ✓ Accuracy RFE: 90.24 %.

Feature: Importance

```
Variable: enginesize
                               Importance: 0.61
Variable: curbweight
                               Importance: 0.17
Variable: highwaympg
                               Importance: 0.07
Variable: avg milage
                               Importance: 0.05
Variable: horsepower
                               Importance: 0.03
Variable: carlength
                               Importance: 0.01
Variable: carwidth
                              Importance: 0.01
Variable: area car
                               Importance: 0.01
Variable: enginesize to powerratio Importance: 0.01
Variable: CarCompany BMW
                               Importance: 0.01
```


6. Model Building - Results Comparison

Linear Regression - OLS & RFE

Random Forest Regression - Depth of tree:03

6.Model Building - Results Comparison

Linear Regression - OLS & RFE

Number of Features	Linear Regression with OLS & RFE	P> t
reatures	const	
1	enginelocation	0
2	carlength	0
3	carwidth	0
4	carheight	0
5	curbweight	0
6	area_car	0
7	volume_car	0
8	CarCompany_BMW	0
9	CarCompany_BUICK	0
10	CarCompany_PORSCHE	0

Random Forest Regression - Depth of tree:03

Number of Features	Random Forest Regression & Tree depth level :03	Importance
1	enginesize	0.61
2	curbweight	0.17
3	highwaympg	0.07
4	avg_milage	0.05
5	horsepower	0.03
6	carlength	0.01
7	carwidth	0.01
8	area_car	0.01
9	enginesize_to_powerratio	0.01
10	CarCompany_BMW	0.01

7. Recommendation

- ☐ Prediction of "CAR PRICE" based on given set of data was carried out using Linear Regression (OLS& RFE) and compared with Random Forest Regression Model with number of tree level :03.
- ☐ Random Forest Regression Model gives better prediction in terms of accuracy than Linear Regression Model.

Linear Regression (OLS & RFE)	Random Forest – Tree Level :03
Mean Absolute Error OLS:	Mean Absolute Error RFE:
1863.34 price	1278.39 price.
Accuracy OLS: 86.37 %.	Accuracy RFE: 90.24 %.

Prediction of Car price depends on following features as tabulated below.

S.No	Features
1	enginesize
2	curbweight
3	highwaympg
4	avg_milage
5	horsepower
6	carlength
7	carwidth
8	area_car
9	enginesize_to_powerratio
10	CarCompany_BMW