Experiment 9 Brewster's Angle

Aumshree P. Shah 20231059* (Dated: March 24, 2025)

In this experiment reflective index of a transparent material is measured using Brewster's angle.

I. THEORY AND PROCEDURE

A. Apparatus

- Breadboard
- Laser diode
- Polariser rotator
- Glass slide
- Rotation stage
- Photodetector
- Detector output unit

B. Theory

A beam of light incident oon a dielectric transparent material can be resolved into parallel(P) and orthogonal(S) components. These components have different reflection coefficients and Brewster discovered that at a particular angle of incidence ∂_B (called Brewster's angle), the reflection coefficient of P-component goes to zero. At this angle direction of reflectied and transmitted beam are orthogonal to each other.

By Snell's law,

$$\tan \partial_B = n \tag{1}$$

where n is the refractive index of the material

C. Procedure

- 1. Read the user manual ENTER A REFRNCE 4 HERE
- 2. Mount diode laser to the laser mount.
- Switch on the laser and place the polariser rotator analyser in front of it so as to make the E field parallel to breadboard.
- 4. Mount the glass slide on the rotation stage.
- 5. Orient the microscope slide to reflect the laser beam back into the laser output aperture.
- Rotate the glass slide slowly and note the corresponding degree with intensity of the reflected beam from the glass slide.
- 7. The intensity has a minimum (almost zero) at Brewster's angle ∂_B .
- 8. Using Equation-1, calculate the reflective index n.

1. Precautions

• Make sure the laser output is larger than the photo detector's input area.

II. OBSERVATIONS

	T_i (°C)	Length (cm)	$\Delta L \ (10^{-5} \ {\rm m})$
Copper	24.0	59.8	75
Copper	25.5-24.5-25.5	59.7	74
Aluminium	24.0-23.0-24.7	59.9	105
Brass	24.1-23.2-24.3	59.7	85
Steel	22.1-24.8-20.5	-	74
Aluminium	24.3-23.7-24.3	59.8	104
Brass	23.7-22.4-24.3	60.0	85
Steel	24.6-25.3	59.9	76
Brass	24.8-25.3	60.1	86
Steel	23.3-23.5	59.7	76

TABLE I. Data taken on 11 Mar 2025, the variables represents the property as described in the theory. The '-' value is assumed to be 60.0 cm.

Least count of scale: 0.1 cm

Least count of thermometer: $0.1 \,^{\circ}\text{C}$ Least count of spherometer: $10^{-5} \,\text{m}$

III. UNCERTAINTIES AND ERROR SOURCES

A. Measurement Uncertainties

- Length Measurements: Estimated uncertainty of ± 0.1 cm due to not proper method of viewing, expansion uncertainty of $\pm 5 \times 10^{-6}$ m.
- Temperature Measurements: Uncertainty of ± 0.05 K due to instrument resolution.

IV. CALCULATION AND ERROR ANALYSIS

A. Error Propagation

From the length and temperature uncertainty, and using Equation-1 uncertainty in α , by the basic formula for error

^{*} aumshree.pinkalbenshah@students.iiserpune.ac.in

 $propagation^{[1]}$ will propogate as .:

$$\sigma_{\alpha} = \alpha \sqrt{\left(\frac{\sigma_{\Delta L}}{\Delta L}\right)^2 + \left(\frac{\sigma_{L}}{L}\right)^2 + \left(\frac{\sigma_{\Delta T}}{\Delta T}\right)^2}$$

where $\sigma_{\Delta L}$, σ_{L} , $\sigma_{\Delta T}$ are the uncertainties in expansion length, initial length, and temperature difference, respectively.

B. Calculation

We calculate the value of α of all data points and their uncertainty from hte above formul, we get (Refer to [3] for calculations):

Material	$\alpha (1/^{\circ}C)$
Aluminium	$(2.33 \pm 0.02) \times 10^{-5}$
Aluminium	$(2.32 \pm 0.02) \times 10^{-5}$

TABLE II. Calculated expansion coefficients

V. RESULT

The final expansion values by weighted average^[1] are:

Material	α (1/°C)	Uncertainty (1/°C)	χ^2_{ν}
Aluminium	2.328×10^{-5}	6.1×10^{-8}	0.15
Brass	1.90×10^{-5}	1.73×10^{-7}	2.70
Copper	1.674×10^{-5}	3.60×10^{-8}	0.10
Steel	1.67×10^{-5}	3.07×10^{-7}	11.14

Appendix A: Temperature of rod

The temperature of rod measured with the application of thermal paste is found to be ranging between 98 $^{\circ}$ C – 99 $^{\circ}$ C (measured on 19 Mar 2025)

^[1] Preston, Daryl W. and Dietz, Eric R., The Art of Experimental Physics. Available at: http://ilide. //en.wikipedia.org/wiki/Brewster%27s_angle info-daryl-w-preston-eric-r-dietz-the-art-of-experimental physics. Available at: http://ilide. //en.wikipedia.org/wiki/Brewster%27s_angle info-daryl-w-preston-eric-r-dietz-the-art-of-experimental physics. Available at: github.com/LAUGHINGCATMEME/PH2233