作业 8

李邹 人工智能一班 (2020 级)

最优化方法 课程作业

2022年5月25日

作业题 1

考虑优化问题

$$\begin{array}{ll} \text{minimize} & f_0\left(x_1,x_2\right) \\ \text{subject to} & 2x_1+x_2\geq 1 \\ & x_1+3x_2\geq 1 \\ & x_1\geq 0, \quad x_2\geq 0. \end{array}$$

对其可行集进行概述。对下面的每个目标函数,给出最优集和最优值。

- (a) $f_0(x_1, x_2) = x_1 + x_2$.
- (b) $f_0(x_1, x_2) = -x_1 x_2$.
- (c) $f_0(x_1, x_2) = x_1$.
- (d) $f_0(x_1, x_2) = \max\{x_1, x_2\}.$
- (e) $f_0(x_1, x_2) = x_1^2 + 9x_2^2$.

解答

由约束条件,可作出可行集如图 1 所示的多面体。 其中各顶点为 $(0,+\infty)$, (0,1), $(\frac{2}{5},\frac{1}{5})$, (1,0), $(+\infty,0)$.

图 1: 约束范围图

(a) 利用数形结合的思路解答本问: 令 $x_2 = -x_1 + z$,其中 z 为变量。 在二维空间中移动该直线,如图 2 所示

图 2: $x_2 = -x_1 + z$ 移动图

显然,当经过点 $\left(\frac{2}{5},\frac{1}{5}\right)$ 时,取得最优值。 所以, $x^* = \left(\frac{2}{5},\frac{1}{5}\right)$,最优值为 $\frac{3}{5}$.

(b) 同(a)理,构造直线在二维空间中移动,如图3所示

图 3: $x_2 = -x_1 - z$ 移动图

持续向上移动, $f_0(x_1,x_2)$ 均在可行集内,而 $f_0(x_1,x_2)$ 的值逐渐减小。显然, $f_0(x_1,x_2)$ 无下界,因此最优值不存在。

- (c) 最优值应满足 $x_1 = 0$ 且 $(0, x_2)$ 在可行集内 因此 $x^* = \{(0, x_2) \mid x_2 \ge 1\}$,最优值为 0.
- (d) 不妨设 $x_1 \ge x_2$,则问题可转化为如下形式:

minimize
$$x_1$$

subject to $2x_1 + x_2 \ge 1$
 $x_1 + 3x_2 \ge 1$ (1)
 $x_1 \ge x_2$
 $x \ge 0, \quad x_2 \ge 0$

做出该情况下的可行集如图 4 所示。

图 4: (1) 式对应的可行集图

显然, $x^*=\left(\frac{1}{3},\frac{1}{3}\right)$,最优值为 $\frac{1}{3}$. 讨论另一种情况,即 $x_1 \leq x_2$ 时,问题可转化为如下形式:

minimize
$$x_1$$

subject to $2x_1 + x_2 \ge 1$
 $x_1 + 3x_2 \ge 1$
 $x_1 \le x_2$
 $x \ge 0, \quad x_2 \ge 0$ (2)

做出该情况下的可行集如图 5 所示。

图 5: (2) 式对应的可行集图

最优集与最优值与前一致。综上, $x^* = \left(\frac{1}{3}, \frac{1}{3}\right)$,最优值为 $\frac{1}{3}$.

(e) 考虑 KKT 条件,

$$\nabla_x L(x,\lambda) = \mathbf{0} \Longrightarrow \begin{cases} 2x_1 - 2\lambda_1 - \lambda_2 = 0\\ 18x_2 - \lambda_1 - 3\lambda_2 = 0 \end{cases}$$
 (3)

假设 $\lambda_1 = 0$,且 $\nabla_x L(x, \lambda) = \mathbf{0}$, $\lambda^{\top} g(x) = \mathbf{0}$ 不难求得一组满足 KTT 条件的值为 $x^* = (\frac{1}{2}, \frac{1}{6})$,而 $\left(\frac{1}{2}\right)^2 + 9 \cdot \left(\frac{1}{6}\right)^2 = \frac{1}{2}$. 因此, $x^* = (\frac{1}{2}, \frac{1}{6})$,最优值为 $\frac{1}{2}$.