Exploratory Data Analysis: Describing Sample Data

Johannes Wissel

School of Operations Research & Information Engineering Cornell University

Spring 2024

Reading: Devore Chapter 1

Visual Summaries (aka. Plots)

Use them to *summarize* & *understand* data, and to *detect outliers*.

Histogram of scores from the Matura exam (2013, Poland).

Boxplot of speed-of-light measurements; Michelson experiment (1882).

Stem & Leaf Plots

Stems from leading digits, and leaves from trailing digit.

Example: The income of 10 individuals (in thousands of dollars) is 49, 53, 57, 59, 61, 68, 68, 69, 72, 74. The stem & leaf plot for this data is:

- ► Advantage: Gives a sense of the distribution of the data values at a glance.
- Disadvantage: Only useful for small datasets.

Another stem & leaf example

Scatter Plots

Useful for understanding relationships between two variables.

To make a scatter plot for two sets of values $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$, plot the points $(x_1, y_1), \ldots, (x_n, y_n)$.

Example: For financial data like

$$P_t$$
 = price at t^{th} measurement time,

the log return is

$$R_t = \log \frac{P_t}{P_{t-1}} = \log P_t - \log P_{t-1},$$

which measures the change in price.

Scatter Plots Example: Exchange rate log-returns (relative to U.S. dollar)

What does the data say?

- A. There's no relationship between the currencies.
- B. The French & German currencies tend to move together, because they share a major border in Europe.
- C. The French & German currencies tend to move together more than the German & Japanese currencies.
- D. None of the above.

Scatter Plots

Warning: Correlation does not imply causation! See http://www.tylervigen.com/spurious-correlations.

Other examples: Nobel Prize vs. Chocolate, Murder vs. Internet Explorer. https://www.businessinsider.com/chocolate-consumption-vs-nobel-prizes-2014-4

Time Series Plots

Given data x_1, \ldots, x_T for times $1, \ldots, T$, its *time series plot* is the plot of the points $(1, x_1), \ldots, (T, x_T)$.

- ▶ Does it make sense to extrapolate?
- ▶ Is there a trend? Seasonality?

Dotplots

Draw a number line and place a dot for each data point, stacking if there're repeats.

Example: Birth years of 160 individuals.

Sometimes used for *small data sets*.

Bar Charts

For *qualitative* data.

Examples:

- Clicker responses;
- Numbers of people who use R, Python, Haskell, Scala, Java;
- What Trump supporters like about him.

Histograms

For quantitative data.

Procedure: For *n* real-valued data points:

- 1. Find the smallest value \underline{x} and largest value \overline{x} that the data takes.
- 2. Partition the interval $[\underline{x}, \overline{x}]$ into disjoint intervals

$$I_1 = [\underline{x}, a_2), \ I_2 = [a_2, a_3), \ldots, \ I_{k-1} = [a_{k-1}, a_k), \ I_k = [a_k, \overline{x}].$$

- 3. For each interval I_j , find the number of data points n_j that fall in I_j .
- 4. For each interval I_j , compute the *relative frequency* $f_j = n_j/n$.
- 5. For each interval I_j , draw a rectangle centered at I_j 's midpoint whose area is proportional to f_j .

Histograms

Example: Fuel efficiency (miles per gallon) of 19 small cars:

30.0 32.9 33.2 33.6 36.3 36.5 36.6 36.7 36.8 36.9 37.1 37.2 37.3 37.4 37.5 41.0 41.2 42.1 44.9

Bin choice: [28, 32), [32, 36), [36, 40), [40, 44), [44, 48]

Histograms: Bin Selection

Histograms

Note the following properties of relative frequencies f_j :

- ▶ $0 \le f_i \le 1$;
- $f_1 + f_2 + \cdots + f_{k-1} + f_k = 1.$

Questions: Suppose the width of each bin is 1.

- 1. If the height of each rectangle is relative frequency, what's the total area of the histogram's rectangles?
- 2. If the height of each rectangle is frequency, what's the total area of the histogram's rectangles?

Measures of Location

Measures that indicate where the data tends to be situated.

The measures of location that we'll cover are the:

- 1. Sample Mean;
- 2. Sample Median;
- 3. Sample Mode.

Notation: Consider a sample

$$x_1, \ldots, x_n$$

of size n from some population.

Sample Mean

The **sample mean** \bar{x} is the average of the observations:

$$\bar{x} = \frac{x_1 + \dots + x_n}{n}$$

Example: Class of 2015 mean starting salary. http:

//www.career.cornell.edu/resources/surveys/upload/2015_Navy_Camel.pdf

College	Salary \$000
Agriculture and Life Sciences	58
Architecture, Art, and Planning	51
Arts and Sciences	57
Engineering	75
Hotel	54
Human Ecology	45
Industrial and Labor Relations	58

$$\bar{x} = \frac{58 + 51 + 57 + 75 + 54 + 45 + 58}{7} = 56.9.$$

Sample Mean

Physical Interpretation: Center of mass (based on the dotplot of the data):

Question: Is the average we computed over the 7 Cornell colleges equal to the average salary of the Cornell Class of 2015 graduate?

Sample Mean: Caveats

- 1. It doesn't say much about *how the data is distributed*.
 - from http://flawofaverages.com/: "The average depth of the pool is 3 feet."

- 2. It's sensitive to extreme values.
 - ▶ If 1000 is added to the starting salary data, then \bar{x} increases from about 57 to about 175.

Sample Median

A measure of location that's less sensitive to extremes than the sample mean. (i.e., it's more *robust*)

List the sample values x_1, \ldots, x_n in increasing order. The sample median \tilde{x} is

$$\tilde{x} = \begin{cases} \text{middle value in the list} & \text{if } n \text{ is odd,} \\ \text{average of the two middle values} & \text{if } n \text{ is even.} \end{cases}$$

About 1/2 of the observations are above the sample median, and about 1/2 are below it.

Example: For the salary data on slide 15,

$$\tilde{x} = 57$$
.

If we add 1000 to this data, then $\tilde{x} =$

Sample Mode

The **sample mode** is the most frequently occurring value(s) in a sample.

Example: The mode of the salary sample from slide 15 is 58.

► The sample mode *might not be unique*; for example, for the sample

both 3 and 14 are sample modes.

Mean vs. Median vs. Mode

The mean, median, and mode differ when the data is **skewed**, i.e. when one "tail" of its histogram is heavier than the other:

Measures of Variability

Measures that indicate how spread out the data is.

The measures of variability that we'll cover are the:

- 1. Sample Range;
- 2. Sample Variance & Standard Deviation;
- 3. Interquartile Range.

Sample Range

The **sample range** is

(largest observation) - (smallest observation).

Example: The range of the salary sample

from slide 15 is 75 - 45 = 30.

- Crude measure of spread (only uses extremes).
- Often increases without bound as the sample size n grows not that useful as a general measure of variability.

Sample Variance & Standard Deviation

Idea: Measure the data's variability by quantifying how it's spread out around the mean \bar{x} .

The sample variance σ^2 is

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2,$$

and the sample standard deviation is

$$\sigma = \sqrt{\sigma^2}$$

Example: The sample variance of the dataset

is
$$\frac{1}{4-1}[(3-6)^2+(5-6)^2+(7-6)^2+(9-6)^2]=\frac{20}{3}$$
.

Scaling properties

The dataset

has sample variance $\frac{20}{3}$ and sample standard deviation $\sqrt{20/3}$.

The dataset

has sample variance and sample standard deviation

If you scale every value in a data set by a constant c (think of changing units from, e.g., inches to centimeters), then the sample mean is scaled by $\,$, the sample variance is scaled by $\,$ and the sample standard deviation is scaled by

Order Statistics

Given the data

$$x_1, x_2, \ldots, x_n,$$

 $x_{(i)}$ refers to the i^{th} largest value of the data. Note that

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}.$$

The $x_{(i)}$'s are called the **order statistics** of the data.

Quantiles: Rough Definition

Roughly, a q-quantile of the data x_1, \ldots, x_n is the smallest number greater than or equal to 100q percent of the values in the data.

A p-percentile is the smallest number that's greater than or equal to p percent of the values in the data (i.e. p-percentile = (p/100)-quantile).

Example: For the salary data

58 51 57 75 54 45 58

The 0.5 quantile = the 50th percentile is

Suppose this salary data gave the median (0.5 quantile) starting salary within each college, and not the mean. Question: Would \$57,000 be the median starting salary of Cornell graduates overall?

Quantiles: Standard Definition

For the i^{th} smallest value $x_{(i)}$ of the data, let

$$q_i=\frac{i-0.5}{n}.$$

The q-quantile is defined as follows:

- ▶ If there's an *i* where $q = q_i$, then the *q*-quantile is $x_{(i)}$.
- ▶ If q is between q_i and q_{i+1} , the q-quantile is

$$\frac{x_{(i)}+x_{(i+1)}}{2}.$$

▶ If $q \le q_1$, the q-quantile is $x_{(1)}$.

Quantiles: Example

Salary data:

i	$X_{(i)}$	$\frac{i-0.5}{n}$
1	45	0.071
2	51	0.214
3	54	0.357
4	57	0.5
5	58	0.643
6	58	0.786
7	75	0.929

0.5-quantile = 57; 0.25-quantile = (51+54)/2 = 52.5.

Interquartile Range (IQR)

The third measure of variability (others were range, sample variance & standard deviation) we'll cover.

The interquartile range (IQR) is

$$IQR = (0.75$$
-quantile) $- (0.25$ -quantile).

▶ Much less sensitive (i.e. more robust) to extreme values than the range and sample variance & standard deviation.

Boxplots

Summary

- ▶ We covered some basic data *visualization* techniques.
 - When you get some data, plot it every way you can think of.
- We went over three measures of location and three measures of variability.
- Watch out for how sensitive your measure is to extreme values.
- Don't rely on numerical summaries without visual ones!