桦甸市地下水循环特征及开发利用

答辩人: 睢鑫昕

指导教师: 梁秀娟教授

目录 CONTENTS

- 1 研究意义
- 2 研究内容
- 3 研究区概况
- 4 研究成果
- 5 结论与建议

研究意义

桦甸市矿产资源丰富,区内大规模的开采活动会对地下水水量、水质产生影响。通过本次研究,掌握区域地下水分布特征及循环特征,进行地下水资源评价,提出开发利用方案,为桦甸市地下水资源保护管理提供依据。

1 对研究区水文地质条件进行分析。

2 分析地下水的循环特征。

3 提出地下水开发利用方案。

研究内容

自然地理概况

- 交通位置
- 水文气象
- 地形地貌

区域地质条件

• 区域地层

水文地质条件

- 含水层与地下水类型
- 补径排条件
- 地下水位动态特征

桦甸市位 于吉林省东南部,处于松花沿上游。地理位置优越,交通较为便捷。

境内有二道 松花江、松花 江、辉发河贯 穿全境。 年平均气温 为4℃。降雨 多集中七、八 月份, 年平均 降水量为

748mm。

桦甸市全 境起伏不平 。东南和西 北高、中部 低。 主要的地

貌形态有中 山低山、丘 陵及河谷平 原。

古近系 桦甸组($E_{1-3}h$) 新近系 船底山玄武岩($\beta N_2 c$) 第四系(Q)

龙岗群(Ar) 四道砬子河组(Ar₂s) 杨家店组(Ar₁y) 株罗系 板石顶子组(J₁b) 义合组(J₁y) 长安组(J₃c) 安民组(J₃a) 色洛河岩群(Pt₂s)

区域地质条件 • 区域地层

- 1 第四系松散岩类孔隙水
- 2 碎屑岩类孔隙裂隙水
- 3 碳酸盐岩类岩溶水
- 4 玄武岩孔洞裂隙水
- 5 基岩裂隙水

水文地质条件 • 含水层与地下水类型

从总体上看, 主要补给量为大 气降水。主要径 流方向为从两侧 低山丘陵向低洼 处径流。研究区 的主要排泄量为 河谷平原的人工 开采量,旱季地 下水对地表水体 的补给量,以及 山区以泉的形式 排出地表。

年内变化•大气降水入渗型-蒸发型

大气降水入渗型—蒸发型为研究区主要的地下水动态类型。该类型地下水位随大气降水增加而增大,且滞后性明显,水位变幅较大。

年内变化• 水文型

本区地下水与地表水体的水力联系密切。四月份由于春季融雪补给地下水, 出现地下水位峰值。年内第二个峰值是随着雨季到来, 地表水位抬升对地下水 的补给作用。

水文地质条件 • 地下水位动态特征

年内变化•大气降水入渗-人工开采型

从一月到六月, 地下水位埋深受人工开采影响, 呈现下降态势。雨季地下水位曲线抬升, 但并没恢复到开采期之前的高水位状态。年末的地下水水位明显低于年初, 说明该地区已经出现地下水超采。

年际变化•1997-2000年地下水位动态曲线图

地下水位与降水量关系密切,且服从地下水位动态曲线<mark>滞后于</mark>降水曲线的特征。

地下水循环特征

- 各区地下水循环特征
- 水化学循环特征

地下水的开发利用

- 地下水资源评价
- 开发潜力分析
- 地下水开发利用方案

地下水循环特征分析• 第四系松散岩类孔隙水循环特征

- 1 由于研究区四季分明的水文气象特征,四季降水量变化较大,因此本区域地下水循环过程随季节变化波动较大。
- 本区地下水与地表水的水力联系较为紧密,一方面促使地下水与地表水的交换量增加,另一方面致使地下水的水质受河水的影响较大。
- 由于本区含水层渗透性好等特点,本区地下水的径流、蒸发 和人工排泄作用强烈,促使地下水的循环速度加快。

地下水循环特征分析•碎屑岩类孔隙裂隙水循环特征

本区含水层透水性较差,地下水循环较缓慢。

2 由于本区采矿的基坑降水,人工开采量较大,局部地区地下水径流较快,对地下水的循环有一定的影响。

玄武岩类孔洞裂隙水•碳酸盐岩类岩溶水•基岩裂隙水循环特征

水力坡度大,且裂隙发育良好的地区,地下水循环速度快。 水力坡度较小且裂隙不发育地区,地下水循环速度较慢。

2 碳酸盐岩类岩溶水区地下水的<mark>溶滤作用</mark>较强,对本区和下游 河谷平原区的水化学循环有一定影响。

研究内容

研究区概况

研究成果

结论与建议

研究区地下水阳离子以 $Ca^2+nMg^2+为主$,阴离子以 $SO_4^2-为主$ 。研究区主要的地下水类型为 SO_4-Ca 型,局部地区为 SO_4-Mg 型。

地下水循环特征•地下水化学循环特征

时间变化:

地下水化学成 分由单一到复杂, 且离子总量及矿化 度升高。春季测得 的矿化度远超秋季

空间变化:

从补给区到排 泄区,离子浓度更 高化学成分更复杂 。一是由于溶滤作 用,二是受人类活 动影响。

其中,黑色点反映了在1998年从各观测井所得样本测得的水化学成分分布状态,红色点则反映了2005年的水化学成分分布状态。

研究意义 研究内容

研究区概况

研究成果

计算区	计算亚区	区号	面积(km²)
第四系松散岩类	第四系松散岩类孔隙水区单井涌水量<100m³/d	I −1⊠	760. 85
孔隙水区 (I区)	第四系松散岩类孔隙水区单井涌水量100-1000m³/d	I −2区	82.78
碎屑岩类孔隙裂隙水及	碎屑岩类孔隙裂隙水区单井涌水量<100m³/d	II −1 🔀	280. 02
裂隙孔隙水区 (Ⅱ区)	碎屑岩类孔隙裂隙水区单井涌水量100-1000m³/d	II −2区	599. 47
	碳酸盐岩类裂隙溶洞水区泉流量1.0-10.0L/s	III−1 ⊠	394. 12
碳酸盐岩类岩溶水区 (III区)	碳酸盐岩与碎屑岩互层裂隙溶洞水区泉流量<1.0L/s	III−2⊠	594. 66
	碎屑岩夹碳酸盐岩裂隙溶洞水区泉流量0.1-1.0L/s	III−3⊠	101. 32
玄武岩孔洞裂隙水区	玄武岩孔洞裂隙水区泉流量<1.0L/s	IV−1⊠	511. 49
$([\![N[\overline{X}]\!])$	玄武岩孔洞裂隙水区泉流量1.0-10.0L/s	IV−2⊠	576. 28
甘山别鸣小豆 / 仅豆 /	构造裂隙水区泉流量<1.0L/s	V −1 X	676. 84
基岩裂隙水区(V区)	构造裂隙水区泉流量1.0-10.0L/s	V -2 🔀	1672. 16
合计			6250

地下水的开发利用·地下水资源评价

研究意义	研究内容	研究区概况	 研究成果	结论与建议
------	------	-------	------------	-------

区号	μ	К	а	β
I -1⊠	0.10	16.48	0.13	0.15
I -2⊠	<mark>0.1</mark> 5	27.81	0.18	0.18
Ⅱ-1 区	0.03	2	0.05	-
П-2⊠	0.05	3	0.08	-
Ⅲ-1区	0.05	5	0.05	-
Ⅲ-2区	0.08	6	0.07	-
Ⅲ-3区	0.10	8	0.09	-
IV-1⊠	0.02	4	0.06	-
IV-2⊠	0.07	>10	0.08	-
V-1⊠	0.008	-	0.03	-
V-2⊠	0.01	-	0.05	-

地下水的开发利用·<mark>地下水资源评价</mark>

地下水资源量计算•河谷平原区

$$Q_{\text{m}} = \beta \times B \times F/100$$

$$Q_{\text{res}} = 365 \times B \times K \times I \times H / 10^4$$

$$Q_{\mathbb{K}} = \alpha \times P \times F/10$$

$$Q_{\text{poly}} = K \times I \times L \times H \times t/10^4$$

$$Q_{\text{ff}} = \alpha \times P_{\text{ff}} \times F / 10$$

地下水资源量计算•河谷平原区

I-1区、I-2区地下水资源量计算表

区号	大气降水 入渗补给量	灌溉渗漏 补给量	河流入渗 补给量	地下水侧向 径流补给量	重复计算量	地下水 资源量
I -1⊠	7527.88	9843.50	324.62	301.63	6398.28	11599.35
I -2⊠	1134.04	1285.16	60.00	55.38	835.36	1699.22

地下水资源量计算。低山丘陵区

地下水基流量

区号	<u> </u>	П-2⊠	Ⅲ-1区	Ⅲ-2区	Ⅲ-3区
基流量 (10 ⁴ m³/a)	845.66	2595.71	1190.24	1795.87	305.99
区号	IV-1⊠	IV-2⊠	V-1⊠	V-2 <u>⊠</u>	
基流量 (10 ⁴ m³/a)	1544.70	2063.08	2044.06	5986.33	

地下水资源量计算•结果

区号	面积 (km²)	地下水资源量 (10 ⁴ m³/a)	地下水资源量模数
I -1 <u>×</u>	760.85	11602.96	15.25
I-2 <u>×</u>	82.78	1699.47	20.53
 □-1 ×	280.02	845.66	3.02
П-2⊠	599.47	2595.71	4.33
Ⅲ-1 ×	394.12	1190.24	3.02
Ⅲ-2区	594.66	1795.87	3.02
Ⅲ-3区	101.32	305.99	3.02
IV-1 <u>⊠</u>	511.49	1544.70	3.02
IV-2⊠	576.28	2063.08	3.58
V -1 <u>⊠</u>	676.84	2044.06	3.02
V-2 <u>×</u>	1672.16	5986.33	3.58
合计	6250	31674.08	5.07

研究意义

地下水可开采量计算•开采系数

区号	I -1⊠	I-2⊠	Ⅱ-1区	Ⅱ-2 区	Ⅲ-1区
开采系数ρ	0.5	0.75	0.3	0.4	0.3
区号	Ⅲ-2区	Ⅲ-3区	IV-1⊠	IV-2⊠	
开采系数ρ	0.3	0.3	0.3	0.4	

由于研究区内大面积的基岩裂隙水不易集中开采的特点,不计入地下水可开采量的计算。

地下水可开采量计算•计算结果

区号	面积 (km²)	地下水资源量 (10 ⁴ m³/a)	地下水可开采量 (10 ⁴ m³/a)
I -1⊠	760.85	11602.96	5801.48
I-2 <u>×</u>	82.78	1699.47	1274.60
 □-1 	280.02	845.66	253.70
П-2⊠	599.47	2595.71	1038.28
Ⅲ-1 区	394.12	1190.24	357.07
Ⅲ-2区	594.66	1795.87	538.76
Ⅲ-3区	101.32	305.99	91.80
IV-1⊠	511.49	1544.70	463.41
IV-2⊠	576.28	2063.08	825.23
合计	6250	23643.68	10644.34

地下水开发潜力评价• 地下水开发潜力指数

研究区地下水开发潜力指数计算表

地下水可开采量 (10 ⁸ m³/a)	地下水实际开采量 (10 ⁸ m³/a)	地下水开采潜力指数P
1.06	0.44	2.41

总体上研究区地下水量丰富且类型齐全,开发程度较低,开发 潜力较大,但开发程度不均。 研究意义

- 研究区内<mark>第四系松散岩类孔隙水</mark>开发程度较高,为了防止区 域地下水超采,建议结合地表水以及在临近的碎屑岩类孔隙裂 隙水打井取水。
- 碳酸盐岩类岩溶水区宜采用井泉结合的模式开采地下水。
- 玄武岩类孔洞裂隙水区采用少井多泉的地下水开采模式。
- 基岩裂隙水区地下水不宜集中开采应尽量截取地表水加以利用,辅以取用部分构造裂隙处出露的泉水。

1

研究意义

研究区<mark>含水层</mark>有第四系松散岩类孔隙含水层、碎屑岩类孔隙裂隙含水层、碳酸盐岩岩溶裂隙含水层、玄武岩类孔洞裂隙含水层及基岩裂隙含水层。

研究区地下水循环方面中,第四系松散岩类孔隙水循环速度较快。碎屑岩类孔隙裂隙水循环速度较慢。其余地下水循环特征都与地区构造裂隙发育程度有关。

研究区地下水资源量3.2亿m³,地下水可开采量为1.06亿m³。从整体上看开发程度较低,开采潜力较大,但开发程度不均。在中部平原区,建议结合地表水供水。低山丘陵区宜采用井泉结合的开采模式。

研究意义

研究区第四系松散岩类孔隙含水层埋藏潜,与地表水力联系密切,且地处研究区中部平原人口密集易受污染区,建议在进行本区的地下水开发利用时警惕工业污染。

谢谢指导