

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4 «Работа со стеком»

Студент Егорова Полина Александровна

Группа ИУ7 - 34Б

Преподаватель Силантьева Александра Васильевна

Описание условия задачи

Разработать программу работы со стеком, реализующую операции добавления и удаления элементов из стека и отображения текущего состояния стека. Реализовать стек: а) массивом; б) списком.

Все стандартные операции со стеком должны быть оформлены отдельными подпрограммами. В случае реализации стека в виде списка при отображении текущего состояния стека предусмотреть возможность просмотра адресов элементов стека и создания дополнительного собственного списка свободных областей (адресов освобождаемой памяти при удалении элемента, который можно реализовать как списком, так и массивом) с выводом его на экран. Список свободных областей необходим для того, чтобы проследить, каким образом происходит выделение памяти менеджером памяти при запросах на нее и убедиться в возникновении или отсутствии фрагментации памяти.

Указания к выполнению работы:

Интерфейс программы должен быть понятен неподготовленному пользователю. При разработке интерфейса программы следует предусмотреть:

- указание формата и диапазона вводимых данных,
- блокирование ввода данных, неверных по типу,
- указание операции, производимой программой:
 - добавление элемента в стек,
 - удаление элемента из стека,
 - вычисление (обработка данных);
- наличие пояснений при выводе результата.

Кроме того, нужно вывести на экран время выполнения программы при реализации стека списком и массивом, а также указать требуемый объем памяти. Необходимо так же выдать на экран список адресов освобождаемых элементов при удалении элементов стека.

При тестировании программы необходимо:

- проверить правильность ввода и вывода данных (в том числе, отследить попытки ввода данных, неверных по типу);
- обеспечить вывод сообщений при отсутствии входных данных («пустой ввод»);
- проверить правильность выполнения операций;
- обеспечить вывод соответствующих сообщений при попытке удаления элемента из пустого стека;
- отследить переполнение стека.

При реализации стека в виде списка необходимо:

- ограничить доступный объем оперативной памяти путем указания: о максимального количества элементов в стеке; максимального адреса памяти, превышение которого будет свидетельствовать о переполнении стека;
- следить за освобождением памяти при удалении элемента из стека.

Описание технического задания

Ввести целые числа в 2 стека. Используя третий стек отсортировать все введенные данные.

Входные данные:

- 1. Целое число, представляющее собой номер команды: целое число в диапазоне от 0 до 12 включительно.
- 2. **Командно-зависимые** данные: максимальное количество элемента стека, количество элементов первого/второго стека, элементы первого/второго стека, команда выбор стека, над которым будет производится операция: число в диапазоне от 1 до 2.

Выходные данные:

- 1. Результат выполнения выбранной команды.
- 2. Характеристика сравнения вариантов дополнения стека элементом, удаления элемента из стека и сортировки стеков, при реализации стека в виде односвязного списка и в виде массива.

Функции программы:

```
For arrays:

1 - Input elements into two stacks.

2 - Add element to the stack.

3 - Remove an element from the stack.

4 - Output the current state of the stacks.

5 - Sort.

For lists:

6 - Input elements into two stacks.

7 - Add element to the stack.

8 - Remove an element from the stack.

9 - Output the current state of the stacks.

10 - Output arrays of freed addresses.

11 - Sort.

12 - Statistics of the operation of functions.

0 - Exit.
```

Обращение к программе:

Запуск через терминал (./арр.ехе)

Аварийные ситуации:

1. Некорректный ввод номера команды.

На вход: число, большее чем 12 или меньшее, чем 0.

На выход: «Incorrect number.»

2. Некорректный ввод номера команды.

На вход: строковый литерал.

На выход: «Incorrect input.»

3. Некорректный ввод максимального размера стека.

На вход: ноль, отрицательное число, строковый литерал.

На выход: «Incorrect input.»

4. Некорректный ввод размера стека.

На вход: отрицательное число, нуль, число, превышающее максимально допустимое число для количества элементов стека, строковый литерал.

На выход: «Incorrect input.»

5. Совершение команды над несозданным стеком.

На вход: команда 2, 3, 4, 5, 7, 8, 9, 11.

На выход: «Stack is NULL.»

6. Создание нового стека при уже наличии введенного в программу стека (для одного типа создания стека).

На вход: команда 1 или 6.

На выход: «Stack already exist.»

7. Добавление элемента в заполненный стек.

На вход: команда 2 или 7.

На выход: «Stack is full.»

8. Добавление элемента в заполненный стек.

На вход: команда 3 или 8.

На выход: «Stack is empty.»

9. Вывод пустого стека.

На вход: команда 4 или 9.

На выход: «Stack is empty.»

Описание структуры данных

Реализация стека с помощью линейного односвязного списка:

```
// стек в виде линейного односвязного списка
typedef struct list_stack list_stack_r;
struct list_stack
{
   int data; // элемент стека
   int ind; // индекс узла списка
   list_stack_r *next; // указатель на следующий элемент
};
```

Реализация стека с помощью массива:

```
// стек в виде массива

typedef struct
{
   int top; // голова стека
   int cap; // количество элементов стека
   int *arr; // указатель на массив элементов стека
} array_stack_r;
```

Реализация массива освобожденных адресов:

```
// массив освобожденных адресов
typedef struct
{
    size_t *arr; // указатель на массив
    int cap; // количество элементов
    int ind; // индекс текущего элемента списка
} addresses_r;
```

Описание алгоритма

- 1. Вывод меню программы.
- 2. Ввод номера команды из предложенного меню.
- 3. Пока не будет введен 0 (команда выхода из программы), выполнение операций в соответствии с набранной командой.

НАБОР ТЕСТОВ

СТЕК РЕАЛИЗОВАН В ВИДЕ МАССИВА (И ОБЩИЕ ТЕСТЫ):

	Название теста	Пользовательский ввод	Результат
1	Некорректный ввод команды	100 abc	Incorrect number.
2	Пустой ввод	Пустой ввод.	Вывод меню.

4	Создание стека (команда 1). Неверный ввод максимального размера стека. Создание стека (команда 1). Неверный ввод размера одного из двух стеков.	0 -1 Abc & 0 -1 Abc & Число, более, чем максимальный размер стека	Incorrect number. Incorrect number.
5	Создание стека (команда 1). Неверный ввод элемента стека.	A &	Incorrect element of stack.
6	Добавление элемента в стек (команда 2). Неверный выбор стека.	4 A &	You have to enter 1 or 2.
7	Добавление элемента в стек (команда 2).	A &	Incorrect element of stack.
8	Добавление элемента в переполненный стек (команда 2).		Stack is full.
9	Удаление элемента из стека (команда		Stack is empty.

	3). Удаление из пустого стека.		
10	Не существует стека (при вводе команд 2-5 и 7-11).		Stack is NULL.
11	Создание стека (команда 1).	Ввод верных размеров, элементов.	Стек успешно создан.
12	Добавление элемента в стек (команда 2).	Введен элемент.	Элемент добавлен в стек.
13	Удаление элемента из стека (команда 3).	Вызов команды.	Элемент удален и выведен на экран.
14	Вывод стека на экран (команда 4).	Вызов команды.	Стек выведен на экран.
15	Сортировка стеков (команда 5).	Первый стек: 4 6 3 9 Второй стек: 0 1 -4 8	-40134689

Стек реализован в виде списка (и общие тесты):

16	Создание стека	0	Incorrect number.
	(команда 6).	-1	
	Неверный ввод максимального	Abc	
	размера стека.	&	
17	Создание стека (команда 6).	0	Incorrect number.

	Неверный ввод размера одного из двух стеков.	-1 Abc & Число, более, чем максимальный размер стека	
18	Создание стека (команда 6). Неверный ввод элемента стека.	A &	Incorrect element of stack.
19	Добавление элемента в стек (команда 7). Неверный выбор стека.	4 A &	You have to enter 1 or 2.
20	Добавление элемента в стек (команда 7).	A &	Incorrect element of stack.
21	Добавление элемента в переполненный стек (команда 7).		Stack is full.
22	Удаление элемента из стека (команда 8). Удаление из пустого стека.		Stack is empty.
23	Сортировка стеков (команда 11). Один из стеков пустой.	Первый стек: Второй стек: 9 3 5	One of the stacks is empty.

24	Создание стека (команда 6).	Ввод верных размеров, элементов.	Стек успешно создан.
25	Добавление элемента в стек (команда 7).	Введен элемент.	Элемент добавлен в стек.
26	Удаление элемента из стека (команда 8).	Вызов команды.	Элемент удален и выведен на экран.
27	Вывод стека на экран (команда 9).	Вызов команды.	Стек выведен на экран.
28	Вывод массива свободных адресов на экран (команда 10).	Вызов команды.	Массив выведен на экран.
29	Сортировка стеков (команда 11).	Первый стек: 4 6 3 9 Второй стек: 0 1 -4 8	-40134689

ПРИМЕР ВЫВОД МАССИВА ОСВОБОЖДЕННЫХ АДРЕСОВ

1. Ввод элементов стеков (в виде линейных односвязных списков).

```
Enter the number of command: 6

Input elements into two stacks.

Enter maximum capacity: 100
Enter the capacity of the FIRST array: 10
Enter the capacity of the SECOND array: 5
Enter the elements of first array: 1 3 5 7 9 0 8 6 4 2
Enter the elements of second array: -1 -3 -2 -4 -5
```

2. Вывод текущего состояния стеков.

```
Enter the number of command: 9
Output the current state of the stacks.
State of FIRST stack:
2: 7fe9f6504160
4: 7fe9f6504150
6: 7fe9f6504140
8: 7fe9f6504130
0: 7fe9f6504120
9: 7fe9f6504110
7: 7fe9f6504100
5: 7fe9f65040f0
3: 7fe9f65040e0
1: 7fe9f65040d0
State of SECOND stack:
-5: 7fe9f65041c0
-4: 7fe9f65041b0
-3: 7fe9f65041a0
-2: 7fe9f6504190
-1: 7fe9f6504180
```

3. Удаление двух элементов из первого стека и одного элемента из второго стека.

```
Enter the number of command: 8

Remove an element from the stack.

1 - Remove elements from the first stack
2 - Remove elements from the second stack.
Enter 1 or 2: 1
Element '2' has been deleted.
```

```
Enter the number of command: 8

Remove an element from the stack.

1 - Remove elements from the first stack
2 - Remove elements from the second stack.
Enter 1 or 2: 1
Element '4' has been deleted.
```

```
Enter the number of command: 8

Remove an element from the stack.

1 - Remove elements from the first stack
2 - Remove elements from the second stack.
Enter 1 or 2: 2
Element '-5' has been deleted.
```

4. Вывод текущего состояния стеков.

```
Enter the number of command: 9
Output the current state of the stacks.
State of FIRST stack:
2: 7fe9f6504160
4: 7fe9f6504150
6: 7fe9f6504140
8 : 7fe9f6504130
0: 7fe9f6504120
9: 7fe9f6504110
7 : 7fe9f6504100
5 : 7fe9f65040f0
3 : 7fe9f65040e0
1 : 7fe9f65040d0
State of SECOND stack:
-5: 7fe9f65041c0
-4: 7fe9f65041b0
-3: 7fe9f65041a0
-2: 7fe9f6504190
-1: 7fe9f6504180
```

5. Вывод массива освобожденных адресов.

```
Enter the number of command: 10

Output an array of freed addresses.

Freed address-array of FIRST stack: 7fe9f6504160 7fe9f6504150

Freed address-array of SECOND stack: 7fe9f65041c0
```

Оценка эффективности времени (в тактах)

Команда добавления элемента в стек.

Размер	Список	Массив
10	3	1
100	3	1
500	3	1
1000	3	1

Команда удаления элемента из стека.

Размер	Список	Массив
10	3	1
100	3	1
500	3	1
1000	3	1

Команда сортировки двух стеков при помощи третьего.

Размер	Список	Массив
10	27	6
100	1830	26
500	23330	81
1000	93605	134

Оценка эффективности по памяти (в байтах)

Добавление элемента:

Макс. размер	Размер	Список	Массив
10	10	176	48
100	100	1616	408
500	500	8016	2008
1000	1000	16016	4008

Удаление элемента:

Макс. размер	Размер	Список	Массив
10	10	160	48
100	100	1600	408
500	500	8000	2008
1000	1000	13600	4008

Сортировка (размер результирующего стека):

Макс. размер	Размер	Список	Массив
10	10	320	88
100	100	3200	808
500	500	16000	4008
1000	1000	32000	8008

Расчет памяти:

Стек в виде массива: (указатель на int (8 байт)) + максимальное кол-во элементов * int (4 байта).

Стек в виде списка: (указатель на следующий элемент (8 байт) + (int * 2, 8 байт)) * кол-во элементов

Можно сделать вывод, что стек в виде списка проигрывает и по времени, и по памяти стеку, реализованному в виде массива. Но при неполном заполнении стека, например, не на 100%, а на 25%, то стек в виде списка будет выигрывать по памяти у стека в виде массива.

Для примера - операция добавления элемента в стек:

Макс. размер	Размер	Список	Массив
100	10	176	408
100	20	336	408
100	26	432	408
100	30	496	408
100	40	656	408

ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое стек?

Стек — это последовательный список с переменной длиной, в котором включение и исключение элементов происходит только с его вершины. Стек работает по принципу LIFO: последним пришел — первым ушел.

2. Каким образом и сколько памяти выделяется под хранение стека при различной его реализации?

При включении элемента в стек в виде списка сначала происходит выделение области памяти, адрес которой записывается в указатель стека, а затем по значению этого указателя в стек помещается информация. Если стек реализован в виде статического или динамического массива (вектора), то для его хранения обычно отводится непрерывная область памяти ограниченного размера, имеющая нижнюю и верхнюю границу

Если хранить стек как список, то память выделяется в куче. Если хранить как массив — либо в куче, либо на стеке (зависит от того, динамически или статический массив используется). Для каждого элемента стека, который хранится как список, выделяется на 4 или 8 байт (если брать современные ПК) больше, чем для элемента стека, который хранится как массив. Данные байты использованы для хранения указателя на следующий элемент списка.

3. Каким образом освобождается память при удалении элемента стека при различной реализации стека?

Если хранить стек как список, то верхний элемент удаляется при помощи операции освобождения памяти для него и смещением указателя, который указывает на начало стека.

При хранении стека как массив, память очищается при завершении программы.

4. Что происходит с элементами стека при его просмотре?

Элементы стека удаляются, так как каждый раз достается верхний элемент стека, чтобы посмотреть следующий.

5. Каким образом эффективнее реализовывать стек? От чего это зависит?

Стек эффективнее реализовать с помощью массива, так как он выигрывает в количестве занимаемой памяти (роль играет процент заполнения) и во времени обработки стека.

Хранение с помощью списка может выигрывать, если только стек реализован с помощью статического массива, так как в данном случае размер памяти под список ограничен размером оперативной памяти (хранится в куче), а для статического массива — ограничен размером стека функции.

Вывод

Возможны две реализации стека: в виде списка и в виде массива.

Если стек представлен в виде массива, он будет выигрывать по памяти. Это связанно с тем, что в данной реализации необходимо выделить память для указателя на массив целых чисел и для максимально возможного количества хранящихся в нем чисел. При для хранения стека в виде списка требуется память, чтобы хранить указатели на последующие элемент и сами целочисленные элементы. Но если заполненность не превышает 25%, то стек в виде списка будет выигрывать (см. таблицы).

Так же реализация в виде массива требуется меньше времени на обработку: в случае операции сортировки стеков, время увеличивается в разы (при количестве элементов, равном 10, выигрыш в 2 раза, при 1000 элементах — в 700 раз). Это связанно с тем, что при реализации массивом доступ к нужному элементу получить проще, требуется лишь передвинуть указатель, в то время, если реализовать в виде списка, то требуется время для удаления верхнего элемента (верхушки стека), а также для перестановки указателя.

Вывод таков: для хранения стека самым оптимальным решением будет использование массива (если процент заполнения от 25 до 100), — это выгоднее и по памяти, и по времени. Если же стек заполнен менее, чем на 25%, затраты по памяти уменьшатся при использовании списка.