

703650 VO Parallel Systems WS2020/2021 Introduction & Administrative Stuff

Philipp Gschwandtner

Where are the Slides?

https://github.com/philippgs/uibk parsys 20

https://git.io/JUbVN

Where is the Instructor?

Organizational Stuff

lecturer information

- Philipp Gschwandtner PhD
- philipp.gschwandtner@uibk.ac.at
- room 2W05, ICT building
- no fixed office hours (send an e-mail, I'm quite responsive)

dates and location

- see <u>lfu:online</u> for exact dates
- generally:
 - lecture every Tuesday08:15-10:00 in HS B 7 the Internet
 - proseminar every Monday12:15-15:00 in RR 26 the Internet

More Organizational Stuff

prerequisites

- interest in parallel programing and high performance computing
- lecture: very little beyond that
- proseminar: programming in C/C++
- a working headset/microphone/etc.
- language
 - English-ish?

content

- general concepts of parallel programming and its intricacies
 - concepts apply to almost all parallel programming models
 - as an example, we will mainly discuss MPI
 - there are countless others (OpenMP, OpenCL, CUDA, TBB, Cilk, Pthreads, C++ STL, Charm++, X10, PGAS, ...)

Grading: Lecture

- no mandatory attendance
 - Note: not everything I say will be on the slides...
- ▶ single, written exam on February 2nd 2021
 - multiple exercises with multiple points
 - > standard grading scheme, ≥ 50 % for positive grade
 - ▶ Covid-19-specific: could be online, could be on another day ¯_(ツ)_/

Grading: Proseminar

- weekly assignments, published on GitHub
 - https://github.com/philippgs/uibk parsys 20
- teamwork is permitted and encouraged
 - 3 people max. per team
 - every team member must be able to present and discuss solution
- solutions have to be handed in before the PS starts!
 - solutions must work on the LCC2 cluster
 - copying solutions (e.g. off the Internet) is acceptable if properly cited and understood
 - prade is 50 % solutions, 50 % presentations/discussion both must be ≥ 50 %!

Literature

www.internet.com

- MPI: A Message-Passing Interface Standard, Version 3.1 (hardcover book, PDF available via https://www.mpi-forum.org/)
- Stackoverflow
- Google
- ...

old school: Printed books

▶ Let me know and I will look up some references...

What do I do when I am not teaching?

- Senior Scientist at Research Center HPC (Forschungszentrum Hochleistungsrechnen)
 - www.uibk.ac.at/fz-hpc
 - aid researchers at UIBK in developing and optimizing parallel applications
 - formerly Distributed and Parallel Systems Group (DPS), https://dps.uibk.ac.at
- research interests in and around HPC
 - measurement/optimization/modeling of performance, energy, efficiency, ...
 - APIs, programming models, runtime systems, compilers, ...
 - interested in master thesis topics?

What are we all doing here?

- discuss key concepts of parallel computing
 - hardware and software aspects
 - multiple non-functional aspects there's more than just speed
 - portability, usability, maintainability, sustainability
- we still need to actually do some concrete work
 - (mostly) MPI for implementing and evaluating distributed-memory parallelism concepts
 - we'll use LCC2 for running experiments

What are we Going to Discuss?

- crash course on hardware and programming models
- introduction to MPI (and a bit of OpenMP)
- tons of generic concepts at the example of MPI (and OpenMP) programs
 - metrics: performance, efficiency, scalability
 - problem partitioning, scheduling and load balancing
 - parallel program classification and characteristics
 - programmer productivity, debugging, profiling
 - ...

Hints (not only) for this Course

- choose a suitable source code editor/ IDE and choose it wisely!
- get acquainted with your toolchain
 - debuggers, version control (git), etc.
- use common sense and sanity checks!

Questions?

Image Sources

- ▶ LCC2: https://www.uibk.ac.at/zid/systeme/hpc-systeme/lcc/hardware/
- ► Sandbox: http://www.googblogs.com/open-sourcing-sandboxed-api/