CENTRO DE ESTATÍSTICA APLICADA – CEA – USP RELATÓRIO DE CONSULTA

TÍTULO: "Avaliação visual longitudinal em pacientes diabéticos em estados pré e pós retinopatia"

PESQUISADORA: Mirella Gualtieri

ORIENTADORA: Dora Fix Ventura

INSTITUIÇÃO: Instituto de Psicologia - USP

FINALIDADE DO PROJETO: Doutorado

PARTICIPANTES DA ENTREVISTA: Mirella Gualtieri

Dora Fix Ventura

Júlia Maria Pavan Soler

Lúcia Pereira Barroso

Tatiana Terabayashi Melhado

José Adolfo de Almeida Schultz

Victor Fossaluza

DATA: 31/05/2005

FINALIDADE DA CONSULTA: Sugestão de dimensionamento da amostra e de análise

estatística dos dados

RELATÓRIO ELABORADO POR: José Adolfo de Almeida Schultz

Victor Fossaluza

1. Introdução

Funções visuais como a sensibilidade ao contraste, visão de cores e adaptação a diferentes níveis de iluminação ambiente, têm sido cada vez mais consideradas como aspectos de grande importância para a qualidade de vida em pessoas na terceira idade. Para o presente estudo, é importante considerar que a visão é constituída por um conjunto de funções altamente complexas, que processam e integram, diferentes dimensões da cena visual, como forma, cor, movimento, textura, esteopsia e orientação espacial.

Entre os diabéticos sabe-se dos prejuízos visuais e que esses têm origem na retina, pois dados de eletroretinograma (ERG) mostram alterações de sua atividade elétrica. Trabalhos de avaliação psicofísica têm mostrado alterações sensoriais que podem ser devidas a alterações em estruturas posteriores à retina, como a diminuição da sensibilidade ao contraste em pacientes diabéticos.

Entretanto, pouco se sabe sobre os mecanismos responsáveis por esses prejuízos desde a fase inicial da diabete. Assim, acredita-se que a aplicação isolada de técnicas eletrofisiológicas e psicofísicas tende, inevitavelmente, a trazer resultados insuficientes sobre o estabelecimento das alterações visuais decorrentes da patologia.

Os objetivos desse estudo são: verificar qual dos métodos de avaliação propostos é mais sensível para detectar alterações na retina, identificar quais mecanismos funcionais da retina são alterados e, principalmente, conseguir um diagnóstico precoce, ou seja, antes do paciente diabético apresentar a retinopatia.

O objetivo deste relatório é determinar o dimensionamento amostral e sugerir uma análise estatística para os dados.

2. Descrição de Estudo e das Variáveis

Para este estudo serão selecionados pacientes do Hospital Universitário da USP (HU-USP) dispostos a participar do estudo. Os indivíduos serão diagnosticados quanto à presença ou não de diabetes e de retinopatia. Após o diagnóstico, eles serão divididos em três grupos: controle (sem diabete e sem retinopatia), com diabete e sem retinopatia e com diabete e retinopatia. Para detectar se esses pacientes apresentam alterações na retina serão usados quatro métodos:

- eletrorretinograma multifocal: são obtidas respostas de latência (ms) e amplitude (μV) em 103 pontos da retina;
- campimetria visual computadorizada: são avaliados 68 pontos da retina dos quais são calculados 2 índices numéricos;
- teste do pedestal: s\u00e3o obtidos 28 valores de sensibilidade ao contraste;
- monitoramento do status morfológico da retina: são medidos 7 valores da espessura da retina (µm).

Metade dos pacientes de cada grupo (escolhidos aleatoriamente) terão o olho esquerdo avaliado enquanto os pacientes restantes serão avaliados através do olho direito. Todos os pacientes serão submetidos a três avaliações anuais para cada um desses quatro métodos.

Nesses pacientes ainda serão observadas outras características como: sexo, idade (anos), há quanto tempo foi diagnosticado a diabetes (anos) e o nível de glicose no sangue (mg/dL).

4. Situação do Projeto

O projeto encontra-se na fase de planejamento, necessitando de orientação para o tamanho amostral e uma possível sugestão de análise estatística dos dados a serem coletados no experimento.

5. Sugestão do CEA

Para comparar os métodos nos diferentes grupos ao longo do tempo sugerimos a utilização de uma análise de variância com medidas repetidas. O dimensionamento amostral para esse caso pode ser encontrado na Tabela 1, onde Δ é a menor variação relevante para diferenciar 2 grupos quanto à média da variável resposta de interesse (que pode ser uma medida resumo das variáveis obtidas através de algum dos quatro métodos), σ é o desvio padrão dessa variável resposta, o *nível de significância* é a probabilidade de detectar diferenças entre grupos quando, na verdade, não existe diferença entre eles e o *poder do teste*, nesse caso, é a probabilidade de detectar diferenças entre grupos quando realmente existem diferenças entre eles (Neter et al., 1996).

Tabela 1 – Tamanho amostral para medidas repetidas

-		Δ/σ = 1				Δ/σ = 1,5				Δ/σ = 2			
		Nível de Significância				Nível de Significância				Nível de Significância			
		0,2	0,1	0,05	0,01	0,2	0,1	0,05	0,01	0,2	0,1	0,05	0,01
Poder do teste	0,7	9	11	14	21	5	7	8	12	3	4	5	8
	0,8	12	17	21	30	6	8	10	14	4	5	6	9
	0,9	17	22	27	37	8	11	13	18	5	7	8	11
	0,95	22	27	32	43	10	13	15	20	6	8	9	12

Por exemplo, para comparar grupos adotando $\Delta/\sigma=1$, um poder de 90% e um nível de significância de 5%, obtemos o valor 27. Isto significa que deve-se escolher 27 indivíduos para cada um dos três grupos.

Para identificar o método mais sensível uma possível abordagem seria a análise discriminante ou regressão logística (Hair et al., 1998). Através dessa análise, utilizaríamos as repostas dos diferentes métodos de avaliação para classificar os indivíduos de acordo com a presença ou não de retinopatia. Para isso, a literatura sugere que o tamanho amostral deve ser em torno de 20 observações para cada variável (Hair et al., 1998). Alguns autores sugerem que o número de observações deve ser no mínimo 5 vezes o número de variáveis, além disso, indicam que,

preferencialmente, a análise seja feita com pelo menos 100 observações (Artes e Barroso, 2003). Por exemplo, se for possível resumir as variáveis observadas para os métodos já descritos em 5 váriáveis, teríamos que o tamanho amostral seria de 100 observações.

6. Referência Bibliográficas

ARTES, R., BARROSO, L.P. (2003). **Tópicos de análise multivariada.** 10º SEAGRO – Simpósio de Estatística Aplicada à Experimentação Agronômica e 48º Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria, Lavras, MG.

DOBKINS, K.R., GUNTHER, K.L. and PETERZELL, D.H. (1999). What covariance mechanisms underlie green/red equiluminance, luminance contrast sensivity and chromatic (green/red) contrast sensivity?. **Vision Research**, **40**, 613-628.

HAIR J.F., ANDERSON, R.E., TATHAM, R.L. and BLACK, W.C. (1998). **Multivariate** data analysis, 5.ed. Prentice Hall. 258p.

NETER, J., KUTNER, M.H., NACHTSHEIM, C.J. and WASSERMAN, W. (1996). **Aplied linear statiscal models,** 5. ed. McGraw Hill. 1060p.