Implementacja population protocols oraz testy wydajnościowe

Grams, Stanisław Jezierski, Maciej Korczakowski, Juliusz MFI UG Algorytmy Numeryczne

11 stycznia 2019

1 Operacje na macierzach

1.1 O implementacji

Program "protocols" został napisany w języku C++, a wyniki działania programu zapisywane są do poszczególnych plików *.csv.

1.2 Zaimplementowane algorytmy

- (PG Partial Gauss) Algorytm Gaussa z częściowym wyborem elementu
- (PGS Partial Gauss for Sparse Matrices) Algorytm Gaussa z optymalizacją dla macierzy rzadkich
- Algorytm Jacobiego
- Algorytm Gaussa-Seidela
- Metoda Monte Carlo

2 Implementacja i jej poprawność

2.1 Generowanie układu równań dla danej liczby agentów

Generowanie układu równań dla danej liczby agentów N odbywa się w sposób następujący:

- 1. Określenie wszystkich możliwych przypadków (ilość agentów #Y oraz ilość agentów #N),
- 2. Wyliczenie wszystkich możliwych kombinacji bez powtórzeń za pomocą Symbolu Newtona $\binom{N}{2}$,
- 3. Wygenerowanie równań dla poszczególnych przypadków,
- 4. Osadzenie równań w macierzy,
- 5. Wypełnienie wektora B zerami.

2.2 Prawidłowość implementacji

By zweryfikować poprawność implementacji zarówno generowania macierzy jak i obliczania stworzonego w ten sposób układu równań, wszelkie obliczenia porównywane były z wynikami wyliczonymi metodą Monte Carlo. Poniższy wykres obrazuje dokładność wszystkich zaimplementowanych algorytmów względem metody Monte Carlo na podstawie, którego można wnioskować o poprawności zaimplementowanych metod.

3 Analiza wyników i wydajność zaimplementowanych algorytmów

3.1 Analiza wyników

3.1.1 Gauss oraz Gauss z optymalizacją dla macierzy rzadkich

Przeanalizujmy poniższy wykres. Wynika z niego jednoznacznie, że optymalizacja nie wpływa na dokładność. Wyraźnie widać, że na całej długości wykresu błąd wynosi 0.

3.1.2 Algorytmy iteracyjne

Obie zaimplementowane przez nasz zespół metody oferują jednakową dokładność.

3.2 Wydajność

3.2.1 Wydajność względem wielkości planszy

Analizując pierwszy wykres w tym tekście oraz poniższy można wyciągnąć następujące wnioski:

1. Pod względem błędów obliczeń wszystkie metody są bardzo podobne, przy małej wymaganej dokładności wręcz identyczne. 2. Pod względem czasu wykonania wyraźnie wygrywają obie metody na podstawie metody Gaussa jednak wersja z usprawnieniem z racji swojej specyfikacji jest zdecydowanie najszybsza.

Powyższe wnioski wyraźnie wskazują, że w klasie wydajności względem wielkości planszy jako optymalny wybór należy wskazać metodę Gaussa z ulepszeniem dla macierzy rzadkich.

3.2.2 Wydajność względem zadanej dokładności

W przypadku tego kryterium porównujemy tylko metody Jacobiego oraz Gaussa-Seidela. Na pierwszym wykresie widzimy różnicę błędów między powyższymi metodami, widać że metody te dają wręcz identyczną dokładność. W kwestii czasu wykonania oba algorytmy także plasują się bardzo podobnie jest jednak widoczna różnica na korzyść metody Gaussa-Seidela.

Podsumowując, metody są bardzo do siebie zbliżone jednak ze względu na delikatnie lepszy czas wykonania bardziej optymalna jest metoda Gaussa-Seidela.

4 Podział pracy

Stanisław Grams	Juliusz Korczakowski	Maciej Jezierski
Implementacja algorytmu	Implementacja algorytmu Jaco-	Implementacja algorytmu PG
Gaussa-Seidela	biego	oraz PGS
Implementacja symulacji Monte	Przygotowanie testów i ich uru-	Analiza wykresów oraz przygoto-
Carlo	chomienie	wanie sprawozdania
Implementacja algorytmu gene-	Przygotowanie wykresów końco-	Praca nad strukturą projektu
rowania macierzy	wych	