M10 - Table of Contents

M10 - 4.1 - Negative Exponents

M10 - 5.1 - FOIL M10 - Table of Contents M10 - 5.2 - Factoring GCF M10 - Methods M10 - 5.3 - A , B , C M10 - Remember M10 - Factoring Trinomials a M10 - Factoring Trinomials a M10 - Factoring Trinomials a	≠ 1
M10 - Conversion Factors M10 - 2.0 - Surface Area Volume Review M10 - 3.0 - Trig Theory M10 - 3.0 - Trig Review M10 - 4.0 - Expansive Review	
M10 - 4.0 - Exponents Review M10 - 4.0 - Radicals Review M10 - 4.0 - Radical Tables M10 - 5.0 - Factoring Review M10 - 7.0 - Graphing Review M10 - 7.0 - Formula Theory M10 - 9.0 - Solving Systems Review M10 - 4.0 - Radical Review M10 - 6.1 - Linear M10 - 6.2 - Slope M10 - 6.3 - Domain and Range M10 - 6.4 - Vertical Line Test	
M10 - 7.1 - Standard Form x,y Inte M10 - 7.1 - Slope Intercept Form M10 - 7.1 - Slope Point Form M10 - 7.1 - Converting Forms M10 - 7.1 - Converting Forms M10 - 7.1 - Parallel/Perpendicular M10 - 7.1 - Parallel/Perpendicular	
M10 - 8.1 - # of Intersections M10 - 8.2 - Solving Systems Graphic M10 - 2.2 - Rect Prism/Sphere Surface Area M10 - 2.3 - Cone/Sphere Volume M10 - 2.3 - Pyramid Volume M10 - 8.1 - # of Intersections M10 - 8.2 - Solving Systems M10 - 8.3 - Algebra Systems M10 - 8.4 - 2 Variable Word Problem	,
M10 - 9.1 - Substitution M10 - 9.1 - Elimination M10 - 3.1 - Trigonometry	
M10 - 4.1 - Entire to Mixed Radicals M10 - 4.2 - Mixed to Entire Radicals	
M10 - 4.3 - Exponent Laws	

M10 - Methods

Exponent

Mistakes

Laws

$$x + x = x^2$$
$$x \times x = 2x$$

Radical

Laws

Measurement

Conversion Factors

Surface area and volume

Formulas

Polynomials

Distribution

FOIL
GCF

$$a = 1$$

 $a \neq 1$
 $a^2 - b^2$
Let $m =$

$$X = ac$$

$$+ = b$$

GCF of "1" and "(-1)"

Greatest Common Factor -1:

$$\begin{array}{rcl}
-2x + 3 &=& 5 - x = \\
-1(2x - 3) & -1(-5 + x) = \\
& -(x - 5)
\end{array}$$

Trigonometry

SOH CAH TOA

$$\sin \theta = \frac{opp}{hyp} \qquad \theta = \sin^{-1}(\frac{opp}{hyp})$$

$$\cos \theta = \frac{adj}{hyp} \qquad \theta = \cos^{-1}(\frac{adj}{hyp})$$

$$\tan \theta = \frac{opp}{adj} \qquad \theta = \tan^{-1}(\frac{opp}{adj})$$

Domain:x/Range:y

Words: Any real number less than 10

Interval Notation: $(-\infty, 10)$ Set Notation: $\{x | x < 10, x \in R\}$ Number Line: ← →

List: y = 1, 2, 3, 4, 5 or (2,4)(5,6)

Graphing

$$(x_1, y_1)$$
 (x_2, y_2)
 $(2, -4)$ $(-1, -2)$

$$Slope = m = \frac{rise}{run}$$

Slope Forumla

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope Intercept

$$y = mx + b$$

Slope Point

$$y - y_1 = m(x - x_1)$$

General/Standard Ax + By + C = 0

Function Notation

f(x) = mx + b

Word Problems

'Let' Statements **Equations**

Systems

Substitution

Substitution:

$$a = b$$
 $c = a$ EQ1
 $b = c$ - EQ2 \times 2
EO3

Elimination:

Elimination

Get rid of the fractions Line up the terms

Multiply Isolate

Add or subtract Substitute

Solve Solve Substitute Substitute Solve Solve

Intersection (x, y)Intersection (x, y)

One Solution

No Solution # ≠ #

Infinite # = #

x = 2

M10 - Remember

Exponent

Laws

Radical

Laws

$$\sqrt{3^2 + 4^2} = \sqrt{25} = 5$$
 $\sqrt{3^2 + 4^2} \neq 3 + 4 = 7$ Undefined slopes are Vertical $\sqrt{9 + 16} = \sqrt{25} = 5$ $\sqrt{x^2 + 4} \neq x + 2$ $\sqrt{9} + \sqrt{16} = 3 + 4 = 7$

$$\sqrt{(-3)^2} \neq \sqrt{-3}^2$$

Measurement

Make units cancel

Surface area and volume

Formulas

Width of rectangle in Cylinder is Circumference $v = A_b \times h$; Base must be same as top.

Polynomials

$$(x + 3)^2 = (x + 3)(x + 3)$$

 $(3 + 4)^2 = (3 + 4)(3 + 4) = 7 \times 7 = 7^2 = 49$

Common Mistakes:

$$(x + 3)^2 \neq x^2 + 3^2$$

 $(3 + 4)^2 \neq 3^2 + 4^2 = 25$

Linear Relations

Positive slopes go up to the right Negative slopes go up to the left. Zero slopes are horizontal Undefined slopes are Vertical

Domain Range

When working with domain and range make sure you use your hands to cover the included part of the graph to help narrow out for domain and range

Graphing

Slope Intercept TOV "b, m" Slope Point (x,y), mGeneral TOV (x,0) x-int and (0,y)y-intGeneral Form: No fractions No decimals +x, y, #=0Perpendicular Slope: The Negative Reciprocal: $m=-\frac{1}{m}$

Word Problems

general form is for two multiplications
Slope intercept form is for one multiplication
and an addition
Negatives

Trigonometry

We can't multiply into sine, cosine or tangent. Calculator Degree or Radian mode?

$$\theta = \cos^{-1}(0.8)$$
 OR $\theta = \cos^{-1}(\frac{4}{5})$
 $\theta = 36.9^{\circ}$ $\theta = 36.9^{\circ}$

It doesn't matter if you abc⁻¹() decimals or fractions

$$sin\theta \ge 1$$
$$\theta = DNE$$

$$cos\theta \ge 1 \\ \theta = DNE$$

Sin or Cos can't be larger than 1.

Linear Systems

(x, y)One Solution: x = #

No Solutions: # # # Infinite Solutions: # = #

Substitution
Put brackets around
what you're subtracting

Elimination LCM Priciple

Functions:

 $f(x) \neq f \times x$ f(x) means f is a function of x.

$$f(x) = y$$

Use the ratio that uses information you have and are looking for.

M10 - Function Notation

$$y = f(x) = y$$

$$f(x) = x + 2$$

$$y = x + 2$$

$$y(3) = 3 + 2$$

$$f(3) = ?$$

What is y when x is 3. Put 3 in for x.

$$f(x) = x + 2$$

$$f(3) = 3 + 2$$

$$f(3) = 5$$

Put whatever is inside the brackets in for x! So simple.

$$f(x)=6$$

What is x when y is 6. Put 6 in for f(x).

$$f(x) = x + 2$$

 $6 = x + 2$
 -2 -2

$$4 = x$$

$$x = 4$$

$$f(x + 2) = ?$$

$$f(x) = x + 2$$

 $f(x + 2) = (x + 2) + 2$

$$f(x+2)=x+4$$

Put x + 2 in for f's x

$$f(2x) = ?$$

$$f(x)=x+2$$

$$f(2x) = (2x) + 2$$

$$f(2x) = 2x + 2$$

Put 2x in for f's x

M10 - 1.0 - Conversion Factors

_	Units	Conversions	Conversion Factors
	Metric Millimeter (mm)	10mm = 1cm	$\begin{array}{ c c c c c }\hline 10mm \\ \hline 1cm \\ \hline \hline 10mm \\ \hline \end{array}$
	Centimeter (cm)	100cm = 1m	$\begin{array}{ c c c c c }\hline 100cm \\\hline 1m \\\hline \hline 100cm \\\hline \end{array}$
	Meter (m) Kilometer (km)	1000m = 1km	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	<u>Imperial</u>		
Centimeters	Inch (in)	12in = 1ft	$\begin{array}{c c} 12in \\ \hline 1ft \\ \hline \end{array} \qquad \begin{array}{c c} 1ft \\ \hline 12in \\ \end{array}$
	Foot (ft) Yard (yd)	3ft = 1yd	$\begin{array}{ c c }\hline\hline 3ft \\\hline 1yd \\\hline \end{array} \qquad \boxed{\begin{array}{c}1yd \\\hline 3ft \\\hline \end{array}}$
	Mile (mi)	1760yd = 1mi	$ \frac{1760yd}{1mi} \qquad \frac{1mi}{1760yd} $
	etric to Imperial es (cm) to Inches (in)	2.54cm = 1in	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	ters (m) to Feet (ft)	3.3ft = 1m	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
•	<u>Time</u>		
	Second (s)	60s = 1min	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Minute (min)	60min = 1hr	60min $1hr$
	Hour (hr)		1hr 60min
-	<u>Rates</u>	$\frac{km}{hr}$	$\frac{m}{s}$

M10 - 2.0 - Surface Area Volume Review

Shape	Surface Area	Volume
Cube	$SA = s^2 \times 6$	$V = Area_{base} \times height$ V = lwh
Rectangular Prism h u	SA = 2(lw + lh + wh)	$V = Area_{base} \times height$ V = lwh
Cylinder	$SA = 2\pi r^2 + 2\pi rh$	$V = Area_{base} \times height$ $V = \pi r^2 h$
Triangular Prism S h H	$SA = 2\left(\frac{bh}{2}\right) + 2(s \times H) + bH$	$V = Area_{base} \times height$ $V = \frac{bh}{2} \times H$
Cone	$SA = \pi r^2 + \pi rs$	$V = \frac{1}{3} Area_{base} \times height$ $V = \frac{1}{3} \times (\pi r^{2}) \times h$
Square-Based Pyramid s h b	$SA = 2bs + b^2$	$V = \frac{1}{3} Area_{base} \times height$ $V = \frac{1}{3} \times l \times w \times h$
Sphere	$SA = 4\pi r^2$	$V = \frac{4}{3}\pi r^3$
General Right Pyramid	SA = sum of areas of faces	$V = \frac{1}{3} Area_{base} \times height$ $V = \frac{1}{3} \times l \times w \times h$

M10 - 3.0 - Trigonometry Review

Hypotenuse: Always the longest side, opposite of the 90° angle.

Adjacent: The side touching angle θ . **Opposite**: The side opposite of angle θ .

 180^0 in a triangle.

SOH CAH TOA

$$sin\theta = \frac{Opposite}{Hypotenuse}$$

$$cos\theta = \frac{Adjacent}{Hypotenuse}$$

$$tan\theta = \frac{Opposite}{Adjacent}$$

$$sin\theta = \frac{opp}{hyp}$$

$$cos\theta = \frac{adj}{hyp}$$

$$tan\theta = \frac{opp}{adj}$$

$$sin\theta = \frac{O}{H}$$

$$sin\theta = \frac{3}{5}$$

$$sin\theta = 0.6$$

$$\theta = \sin^{-1}(0.6)$$

$$\theta = 36.9^{\circ}$$

$$cos\theta = \frac{A}{H}$$

$$cos\theta = \frac{4}{5}$$

$$cos\theta = \frac{1}{5}$$

$$cos\theta = 0.8$$

$$\theta = 36.9^{\circ}$$

 $\theta = \cos^{-1}(0.8)$

Tangent Ratio

$$tan\theta = \frac{O}{A}$$

$$tan\theta = \frac{3}{4}$$

$$tan\theta = 0.75$$

$$\theta = \tan^{-1}(0.75)$$

$$\theta = 36.9^{\circ}$$

Notice how they are all the same. That is because it is the same angle, just found using different ratios.

$$a = \frac{b}{c}$$
 Times both sides by "c"

$$\frac{c \times a}{a} = \frac{b}{a}$$
 Divide both sides by "a"

Or!
$$a = \frac{b}{c}$$

$$c = \frac{b}{a}$$
 Switch "a" and "c"

Want to choose the part of SOH CAH TOA that has 2 pieces of info that we have, and one we are looking for.

$$sin\theta = \frac{O}{H}$$

$$sin\theta = \frac{3}{5}$$

$$sin\theta = 0.6$$

$$cos\theta = \frac{A}{H}$$

$$cos\theta = \frac{A}{5}$$

$$cos\theta = 0.8$$

$$tan\theta = \frac{3}{4}$$

$$tan\theta = \frac{3}{4}$$

$$tan\theta = 0.75$$

$$tan\theta = 0.75$$

$$tan\theta = \frac{Opp}{Adj}$$

$$sin\theta = \frac{6}{10}$$

$$sin\theta = 0.6$$

$$cos\theta = \frac{8}{10}$$

$$cos\theta = 0.8$$

$$tan\theta = \frac{6}{8}$$

$$tan\theta = 0.75$$

Notice the ratios of similar triangles for each trig ratio is the same respectively.

M10 - 3.0 - Trig Summary

$$tan30 = 8$$
 $x = 8$
 $tan30$
 $x = 13.8$

M10 - 5.0 - Factoring Review

"a" is the number in front of the x^2 term. "b" is the number in front of the x term.

"c" is the number by itself.

Don't Forget To Check By Distribution/FOIL

1) Factoring: bx + c

$$12x + 8$$
$$4(3x + 2)$$

Remove Greatest Common Factor "GCF."

2) Factoring: $ax^2 + bx + c$

$$\begin{array}{c}
x^{2} + 5x + 6 \\
x^{2} + 2x + 3x + 6 \\
(x^{2} + 2x) | (+3x + 6) \\
x(x + 2) + 3(x + 2) \\
(x + 2)(x + 3)
\end{array}$$

Decompose Group GCF Switch

a = 1

<u>2</u> + <u>3</u> = ½ 5

*ac = c 1,2,3,6

 $x^2 + 5x + 6$ (x+2)(x+3)

3) Factoring: $ax^2 + bx + c$

 $a \neq 1$

$$3 \times 4 = ac 12$$
 $3 + 4 = b 7$

Decompose Group GCF Switch

$$2x^2 + 7x + 6$$

(x + 2)(2x + 3)

4) Factoring: $a^2 - b^2$

$$x^2 - 9$$

(x + 3)(x - 3)

Differences of Squares

$$a^{2} - b^{2} = (a + b)(a - b)$$

= $a^{2} - ab + ab - b^{2}$

5) Factoring: $ax^2 + bxy + cy^2$

$$x^{2} + 2xy + y^{2}$$
$$(x + y)(x + y)$$
$$(x + y)^{2}$$

M10 - 7.0 - Graphing Review

(x, y)

$$y = f(x) = y$$

Slope-Intercept

$$y = mx + b$$
slope y-intercept

$$m = \text{slope}$$

 $b = y - \text{intercept}$

y = mx + b				
x	y			
-2				
-1				
0				
1				
2				

Ax + By = C

y

0

$$y = \frac{2}{3}x + 1$$

Increments of x by denominator of slope away from zero

+ <i>D</i>
y

Slope-Point

$$y - y_1 = m(x - x_1)$$

y coordinate slope x coordinate

Plot Point Use Slope

Find Slope Find Point

General/Standard

$$Ax + By = C$$

$$Ax + By + C = 0$$

$$m = -\frac{A}{B}$$
$$y - int = \pm \frac{C}{B}$$

Finding y-intercept (0, y): Set x = 0, Solve for y

Finding x-intercept (x, 0): Set y = 0, Solve for x

M10 - 7.0 - Formula Theory

Point Slope Form

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{y - y_1}{x - x_1}$$

$$m \times (x_2 - x_1) = \frac{y - y_1}{x - x_1} \times (x - x_1)$$

$$m(x - x_1) = y - y_1$$

$$y - y_1 = m(x - x_1)$$
Point Slope

 $y - y_1 = m(x - x_1)$ $y - y_1 = mx - mx_1$ $+ y_1$ $y = mx - mx_1 + y_1$ $y = mx + (-mx_1 + y_1)$

y - intercept

General Form

$$y - y_{1} = m(x - x_{1})$$

$$y - y_{1} = \frac{rise}{run}(x - x_{1})$$

$$y - y_{1} = \frac{B}{A}(x - x_{1})$$

$$(y - y_{1}) \times A = \frac{B}{A}(x - x_{1}) \times A$$

$$Ay - Ay_{1} = Bx - Bx_{1}$$

$$Ay - Bx - Ay_{1} + Bx_{1} = 0$$

$$Ay + (-Bx) + (-Ay_{1} + Bx_{1}) = 0$$

y = mx + b

Ay + Bx + C = 0

M10 - 9.0 - Sub, Elim, Graph Review

Substitution

$$y = (x + 1)$$

$$(y) = 2x - 2$$

$$(y) = 2x - 2$$

 $(x + 1) = 2x - 2$
 $1 = x - 2$

x = 3

$$y = x + 1$$
$$y = 3 + 1$$
$$y = 4$$

Elimination

$$y = x + 1$$

$$y = 2x - 2$$

$$y = 2x - 2$$

$$y = x + 1$$

$$0 = x - 3$$

$$(-2) - 1 =$$

 $(-2) - 1 = -3$

$$x = 3$$

$$y = x + 1$$
$$y = 3 + 1$$
$$y = 4$$

Graphing

Substitution:

Isolate

Substitute

Solve

Substitute

Solve

Intersection

Elimination:

Get rid of the fractions Line up the terms

Multiply

Add or subtract

Solve

Substitute

Solve

Intersection

Check Your Answer

$$y = x + 1$$

 $4 = 3 + 1$
 $4 = 4$

$$y = 2x - 2$$

 $4 = 2(3) - 2$
 $4 = 6 - 2$
 $4 = 4$

One Solution

x = 2

No Solution # ≠ #

Infinite # = #

$$60x+by=C$$
 $fries 3
 $coxe 2
 $HAV£ 24$$
 $C=-3F+12$
 $C=-3F+12$

y=mx+b \$50/hv \$1000 RENT D=50h-1000