Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №3

з дисципліни «Алгоритми і структури даних»

Виконав:

Перевірила:

студент групи ІМ-43

Молчанова А. А.

Олексійчук Станіслав Юрійович

номер у списку групи: 23

Постановка задачі

- 1. Написати програму розв'язання задачі пошуку (за варіантом) у двовимірному масиві (матриці) одним з алгоритмів методу лінійного пошуку.
 - 2. Розміри матриці *m* та *n* взяти самостійно у межах від 7 до 10.
- 3. Виконати тестування та налагодження програми на комп'ютері. При тестуванні програми необхідно підбирати такі вхідні набори початкових значень матриці, щоб можна було легко відстежити коректність виконання пошуку і ця коректність була б протестована для всіх можливих випадків. З метою тестування дозволяється використовувати матриці меншого розміру.

Варіант 23:

Задано матрицю дійсних чисел A[n,n]. У побочній діагоналі матриці знайти перший від'ємний і останній додатний елементи, а також поміняти їх місцями.

Тексти програм

Для виконування даної лабораторної я написав програму, яку використовував для 5 різних матриць (масивів), доданих до окремого коду. Ось усі приклади програм:

1) 1st_test

```
#include <stdio.h>
#include <stdlib.h>
int main(){
    double matrix[8][8] = \{ //  створення матриці
        \{23.56, -54.32, 12.78, -8.41, 44.67, -78.89, 19.45, -65.23\},\
        \{98.12, -33.67, 14.89, -57.22, 89.34, -14.45, -67.89, 11.43\},
        \{-72.45, 35.78, -49.34, 76.23, -9.87, -53.11, -61.73, 21.56\},
        \{66.43, -28.94, 85.13, -64.21, 37.45, -47.67, 91.25, -89.56\},\
        {54.98, -73.11, 33.56, 9.84, -88.67, 71.43, -92.21, 23.14},
        \{-31.67, 92.43, 18.56, 88.12, -57.31, 43.65, -69.78, 62.34\},\
        \{49.23, 91.76, 10.34, -75.43, 83.12, -35.43, 77.89, -23.56\},\
        {64.89, 18.23, -99.34, 29.67, -48.78, 58.12, -27.45, 73.11}
    };
    int i = 0; //створення змінної для індексів
    int j = 0; //створення змінної для індексів
    // вивід початкової матриці
    printf("{\n");
    for (i = 0; i < 8; i++){
        printf("{");
        for (j = 0; j < 8; j++){
            if (i != 7){
                printf("%.2f\t", matrix[i][j]);
            }
            else {
```

```
printf("%.2f", matrix[i][j]);
            }
        }
        printf("}");
        if (i != 7){
            printf("\n");
        }
        printf("\n");
   }
   printf("}\n");
   j = 0;
   while (j<8){ //пошук першого від'ємного елемента побічної діагоналі
        if (matrix[7-j][j]<0){</pre>
            break;
        }
        j++;
   }
    double first_element = matrix[7-j][j]; //присвоєння змінній значення
цього елемента
    printf("The first negative element of side diagonal is %.2f.\n",
first_element); //вивід елемента
   i = 0;
   while (i<8){ //пошук останнього додатнього елемента побічної
діагоналі
        if (matrix[i][7-i]>0) {
            break;
        }
        i++;
    }
    double second_element = matrix[i][7-i]; //присвоєння змінній значення
цього елемента
    printf("The last positive element of side diagonal is %.2f.\n",
second_element); //вивід елемента
```

```
// зміна елементів у матриці між собою
    matrix[7-j][j] = second_element;
    matrix[i][7-i] = first_element;
    // вивід зміненої матриці
    printf("{\n");
    for (i = 0; i < 8; i++){
        printf("{");
        for (j = 0; j < 8; j++){
            if (j != 7){
                printf("%.2f\t", matrix[i][j]);
            }
            else {
                printf("%.2f", matrix[i][j]);
            }
        }
        printf("}");
        if (i != 7){
            printf("\n");
        }
        printf("\n");
    }
    printf("}");
    return 0;
2) 2nd_test
#include <stdio.h>
#include <stdlib.h>
int main(){
    double matrix[7][7] = { // } створення матриці
        \{34.56, -72.14, 18.23, -93.78, 56.12, -21.45, 77.89\},\
```

}

```
\{-65.43, 14.67, -89.56, 23.12, -41.78, 92.34, -8.91\},\
    \{19.45, -58.67, 81.23, -17.56, 63.89, -32.12, 44.76\},
    \{78.91, -49.23, 27.89, -63.78, 90.34, -10.45, 52.78\},\
    \{-35.67, 61.23, -88.91, 49.78, -24.56, 84.45, -11.32\},
    \{93.12, -37.89, 15.67, -69.34, 72.23, -50.89, 38.56\},\
    \{-82.45, 47.12, -22.34, 85.78, -60.11, 13.67, -99.89\}
};
int i = 0; //створення змінної для індексів
int j = 0; //створення змінної для індексів
// вивід початкової матриці
printf("{\n");
for (i = 0; i < 7; i++){
    printf("{");
    for (j = 0; j < 7; j++){
        if (i != 6){
            printf("%.2f\t", matrix[i][j]);
        }
        else {
            printf("%.2f", matrix[i][j]);
        }
    }
    printf("}");
    if (i != 6){
        printf("\n");
    }
    printf("\n");
}
printf("}\n");
j = 0;
while (j < 7) { //пошук першого від'ємного елемента побічної діагоналі
    if (matrix[6-i][i]<0){</pre>
```

```
break;
        }
        j++;
   }
    double first_element = matrix[6-j][j]; //присвоєння змінній значення
цього елемента
    printf("The first negative element of side diagonal is %.2f.\n",
first_element); //вивід елемента
    i = 0;
   while (i < 7){ //пошук останнього додатнього елемента побічної
діагоналі
        if (matrix[i][6-i]>0) {
            break;
        }
        i++;
   }
    double second_element = matrix[i][6-i]; //присвоєння змінній значення
цього елемента
    printf("The last positive element of side diagonal is %.2f.\n",
second_element); //вивід елемента
   // зміна елементів у матриці між собою
   matrix[6-j][j] = second_element;
   matrix[i][6-i] = first_element;
   // вивід зміненої матриці
   printf("{\n");
    for (i = 0; i < 7; i++){
        printf("{");
        for (j = 0; j < 7; j++){
            if (j != 6){
                printf("%.2f\t", matrix[i][j]);
            }
            else {
                printf("%.2f", matrix[i][j]);
```

```
}
                                                                                              }
                                                                                             printf("}");
                                                                                             if (i != 6){
                                                                                                                                             printf("\n");
                                                                                              }
                                                                                              printf("\n");
                                             }
                                             printf("}");
                                              return 0;
}
3) 3rd_test
#include <stdio.h>
#include <stdlib.h>
int main(){
                                              double matrix[9][9] = { //  створення матриці
                                                                                                {45.23, -91.34, 23.67, -76.12, 58.89, -33.45, 82.56, -14.78, -
67.34},
                                                                                              \{-28.12, 72.45, -63.89, 49.78, -15.23, 96.34, -40.56, -29.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -9.89, -
85.12},
                                                                                              {53.67, -47.89, 92.12, -19.34, 64.45, -87.23, -36.78, -60.12,
83.45},
                                                                                                \{-17.89, 78.12, -31.23, 89.34, -55.67, -46.78, -92.45, 30.12, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45, -92.45
74.89},
                                                                                                \{61.34, -42.23, 15.78, -87.12, 93.45, -19.78, 54.12, -32.89, \}
85.67},
                                                                                              \{-29.45, 90.23, -76.34, 48.12, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, 27.56, -52.12, 83.34, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.89, -69.8
16.78},
                                                                                              {72.56, -14.23, 65.12, -88.45, 39.78, -57.89, 91.34, -26.67,
44.12},
                                                                                              \{-13.78, 82.45, -68.12, 97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -33.45, 55.67, -41.23, 78.12, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97.34, -97
 53.89},
```

```
\{66.34, -37.12, 21.78, -90.45, 83.23, -19.56, 47.89, -61.34,
38.12}
    };
    int i = 0; //створення змінної для індексів
    int j = 0; //створення змінної для індексів
    // вивід початкової матриці
    printf("{\n");
    for (i = 0; i < 9; i++){
        printf("{");
        for (j = 0; j < 9; j++){
            if (j != 8){
                printf("%.2f\t", matrix[i][j]);
            }
            else {
                printf("%.2f", matrix[i][j]);
            }
        }
        printf("}");
        if (i != 8){
            printf("\n");
        }
        printf("\n");
    }
    printf("}\n");
    j = 0;
    while (j < 9){ //пошук першого від'ємного елемента побічної діагоналі
        if (matrix[8-j][j]<0){</pre>
            break;
        }
        j++;
    }
```

```
double first_element = matrix[8-j][j]; //присвоєння змінній значення
цього елемента
   printf("The first negative element of side diagonal is %.2f.\n",
first_element); //вивід елемента
    i = 0;
   while (i < 9){ //пошук останнього додатнього елемента побічної
діагоналі
        if (matrix[i][8-i]>0) {
            break;
        }
        i++;
   }
    double second_element = matrix[i][8-i]; //присвоєння змінній значення
цього елемента
    printf("The last positive element of side diagonal is %.2f.\n",
second_element); //вивід елемента
   // зміна елементів у матриці між собою
   matrix[8-j][j] = second_element;
   matrix[i][8-i] = first_element;
   // вивід зміненої матриці
   printf("{\n");
    for (i = 0; i < 9; i++){
        printf("{");
        for (j = 0; j < 9; j++){
            if (j != 8){
                printf("%.2f\t", matrix[i][j]);
            }
            else {
                printf("%.2f", matrix[i][j]);
            }
        }
        printf("}");
        if (i != 8){
```

```
printf("\n");
                                                            }
                                                            printf("\n");
                             }
                             printf("}");
                             return 0;
}
4) 4th_test
#include <stdio.h>
#include <stdlib.h>
int main(){
                             double matrix[10][10] = { //створення матриці
                                                             {72.34, -58.12, 91.23, -49.56, 34.78, -83.67, 18.45, -75.12,
56.34, -20.78},
                                                            \{-37.89, 84.23, -61.12, 29.78, -94.34, 53.67, -22.45, 67.12, -94.34, 53.67, -22.45, 67.12, -94.34, 53.67, -22.45, 67.12, -94.34, 53.67, -22.45, 67.12, -94.34, 53.67, -22.45, 67.12, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34, -94.34,
89.34, 41.56},
                                                            \{19.45, -76.89, 62.34, -33.12, 85.78, -47.56, 92.23, 14.34, \}
64.45, -57.12,
                                                           \{-25.34, 68.45, -91.67, 34.12, -72.89, 46.78, -38.12, 93.56, -91.67, 34.12, -72.89, 46.78, -38.12, 93.56, -91.67, 34.12, -72.89, 46.78, -38.12, 93.56, -91.67, 34.12, -72.89, 46.78, -38.12, 93.56, -91.67, 34.12, -72.89, 46.78, -38.12, 93.56, -91.67, 34.12, -72.89, 46.78, -38.12, 93.56, -91.67, 34.12, -72.89, 46.78, -38.12, 93.56, -91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.67, 91.6
50.23, 17.89},
                                                            \{83.23, -19.12, 48.67, -66.34, 59.12, 32.45, 75.89, -22.34,
98.23, -55.67},
                                                            \{-41.56, 92.34, -27.89, 65.23, -73.45, 38.12, -49.34, 87.67, -
15.78, 54.12},
                                                            {31.45, -62.34, 99.12, 43.78, 71.23, -18.56, 52.78, -84.12,
66.34, -29.45,
                                                            \{-13.67, 77.89, -58.45, 40.12, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 35.67, -76.23, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, 19.78, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, -90.34, 
53.12, 68.45},
                                                            {54.12, 38.45, 87.23, -25.12, 61.34, -79.67, 93.45, -46.12,
32.78, -70.89,
                                                             {29.34, 55.78, -67.12, 98.23, -17.45, 82.56, -41.12, 74.89, -
12.67, 63.23}
                             };
```

```
int i = 0; //створення змінної для індексів
    int j = 0; //створення змінної для індексів
    // вивід початкової матриці
    printf("{\n");
    for (i = 0; i < 10; i++){
        printf("{");
        for (j = 0; j < 10; j++){
            if (j != 9){
                printf("%.2f\t", matrix[i][j]);
            }
            else {
                printf("%.2f", matrix[i][j]);
            }
        }
        printf("}");
        if (i != 9){
            printf("\n");
        }
        printf("\n");
    }
    printf("}\n");
    j = 0;
    while (j < 10){ //пошук першого від'ємного елемента побічної
діагоналі
        if (matrix[9-j][j]<0){</pre>
            break;
        }
        j++;
    }
    double first_element = matrix[9-j][j]; //присвоєння змінній значення
цього елемента
```

```
printf("The first negative element of side diagonal is %.2f.\n",
first_element); //вивід елемента
   i = 0;
   while (i < 10){ //пошук останнього додатнього елемента побічної
діагоналі
        if (matrix[i][9-i]>0) {
            break;
        }
        i++;
   }
    double second_element = matrix[i][9-i]; //присвоєння змінній значення
цього елемента
    printf("The last positive element of side diagonal is %.2f.\n",
second_element); //вивід елемента
   // зміна елементів у матриці між собою
   matrix[9-j][j] = second_element;
   matrix[i][9-i] = first_element;
   // вивід зміненої матриці
   printf("{\n");
    for (i = 0; i < 10; i++){
        printf("{");
        for (j = 0; j < 10; j++){
            if (j != 9){
                printf("%.2f\t", matrix[i][j]);
            }
            else {
                printf("%.2f", matrix[i][j]);
            }
        }
        printf("}");
        if (i != 9){
            printf("\n");
```

```
}
        printf("\n");
    }
    printf("}");
    return 0;
}
5) 5th_test
  #include <stdio.h>
  #include <stdlib.h>
  int main(){
       double matrix[8][8] = \{ //створення матриці
           \{88.45, -56.12, 72.34, -29.78, 41.56, -83.67, 64.12, -37.89\},\
           \{-27.45, 92.78, -64.34, 55.67, -11.23, 79.12, 36.78, 18.34\},\
           \{14.89, -48.56, 37.12, -82.45, 63.78, 95.12, 20.34, -49.67\},
           \{-19.34, 45.78, -72.89, 84.12, 60.23, 30.67, -77.45, 99.12\},\
           \{76.12, -11.34, 53.89, 88.67, 22.45, -32.78, 90.34, -5.12\},
           \{-82.12, 19.78, 74.56, 41.23, -17.89, 89.34, -61.12, 34.45\},
           \{67.89, 93.45, 15.67, -24.12, 54.78, -42.23, 80.12, -39.67\},\
           {35.67, 62.34, -88.12, 49.78, -7.23, 33.89, -66.34, 91.56}
      };
      int i = 0; //створення змінної для індексів
      int j = 0; //створення змінної для індексів
      // вивід початкової матриці
      printf("{\n");
      for (i = 0; i < 8; i++){
           printf("{");
           for (j = 0; j < 8; j++){
               if (j != 7){
                   printf("%.2f\t", matrix[i][j]);
               }
```

```
else {
                printf("%.2f", matrix[i][j]);
            }
        }
        printf("}");
        if (i != 7){
            printf("\n");
        }
        printf("\n");
    }
    printf("}\n");
    j = 0;
    while (j<8){ //пошук першого від'ємного елемента побічної діагоналі
        if (matrix[7-j][j]<0){</pre>
            break;
        }
        j++;
    }
    double first_element = matrix[7-j][j]; //присвоєння змінній
значення цього елемента
    printf("The first negative element of side diagonal is %.2f.\n",
first_element); //вивід елемента
    i = 0;
    while (i<8){ //пошук останнього додатнього елемента побічної
діагоналі
        if (matrix[i][7-i]>0) {
            break;
        }
        i++;
    }
    double second_element = matrix[i][7-i]; //присвоєння змінній
значення цього елемента
```

```
printf("The last positive element of side diagonal is %.2f.\n",
second_element); //вивід елемента
    // зміна елементів у матриці між собою
    matrix[7-j][j] = second_element;
    matrix[i][7-i] = first_element;
    // вивід зміненої матриці
    printf("{\n");
    for (i = 0; i < 8; i++){
        printf("{");
        for (j = 0; j < 8; j++){
            if (j != 7){
                printf("%.2f\t", matrix[i][j]);
            }
            else {
                printf("%.2f", matrix[i][j]);
            }
        }
        printf("}");
        if (i != 7){
            printf("\n");
        }
        printf("\n");
    }
    printf("}");
    return 0;
}
```

Результати тестування програм

{ {23.56	-54.32	12.78	-8.41	44.67	-78.89	19.45	-65.23}
{98.12	-33.67	14.89	-57.22	89.34	-14.45	-67.89	11.43}
{-72.45	35.78	-49.34	76.23	-9.87	-53.11	-61.73	21.56}
{66.43	-28.94	85.13	-64.21	37.45	-47.67	91.25	-89.56}
{54.98	-73.11	33.56	9.84	-88.67	71.43	-92.21	23.14}
{-31.67	92.43	18.56	88.12	-57.31	43.65	-69.78	62.34}
{49.23	91.76	10.34	-75.43	83.12	-35.43	77.89	-23.56}
{64.89 }	18.23	-99.34	29.67	-48.78	58.12	-27.45	73.11}
The fir		ive elem ve eleme					
{23.56	-54.32	12.78	-8.41	44.67	-78.89	19.45	-65.23}
{98.12	-33.67	14.89	-57.22	89.34	-14.45	-67.89	11.43}
{-72.45	35.78	-49.34	76.23	-9.87	37.45	-61.73	21.56}
{66.43	-28.94	85.13	-64.21	-53.11	-47.67	91.25	-89.56}
{54.98	-73.11	33.56	9.84	-88.67	71.43	-92.21	23.14}
{-31.67	92.43	18.56	88.12	-57.31	43.65	-69.78	62.34}
{49.23	91.76	10.34	-75.43	83.12	-35.43	77.89	-23.56}
{64.89 }	18.23	-99.34	29.67	-48.78	58.12	-27.45	73.11}

```
{34.56 -72.14
                                                   77.89}
                  18.23
                          -93.78
                                   56.12
                                           -21.45
  {-65.43 14.67
                  -89.56
                                   -41.78
                                           92.34
                                                   -8.91
                          23.12
  {19.45 −58.67
                  81.23
                          -17.56
                                   63.89
                                           -32.12
                                                   44.76}
  {78.91 −49.23
                  27.89
                          -63.78
                                   90.34
                                           -10.45
                                                   52.78}
  {-35.67 61.23
                  -88.91
                          49.78
                                   -24.56
                                           84.45
                                                   -11.32
  {93.12 −37.89
                  15.67
                          -69.34
                                   72.23
                                           -50.89
                                                   38.56}
  {-82.45 47.12
                  -22.34
                          85.78
                                   -60.11
                                           13.67
                                                   -99.89}
  The first negative element of side diagonal is -82.45.
   The last positive element of side diagonal is 77.89.
  {34.56 -72.14
                  18.23
                          -93.78
                                   56.12
                                           -21.45
                                                   -82.45
  {-65.43 14.67
                  -89.56
                          23.12
                                   -41.78
                                           92.34
                                                   -8.91
  {19.45 −58.67
                  81.23
                          -17.56
                                   63.89
                                           -32.12
                                                   44.76}
  {78.91
                                   90.34
          -49.23
                   27.89
                          -63.78
                                           -10.45
                                                   52.78}
  {-35.67 61.23
                  -88.91
                          49.78
                                   -24.56
                                           84.45
                                                   -11.32
  {93.12 −37.89
                  15.67
                          -69.34
                                   72.23
                                           -50.89
                                                   38.56}
  {77.89
          47.12
                   -22.34
                          85.78
                                   -60.11
                                           13.67
                                                   -99.89}
2)
```

{							,			
{45.23 -91.34	23.67	-76.12	58.89	-33.45	82.56	-14.78	-67.34}			
{-28.12 72.45	-63.89	49.78	-15.23	96.34	-40.56	-29.89	-85.12}			
{53.67 − 47.89	92.12	-19.34	64.45	-87.23	-36.78	-60.12	83.45}			
{-17.89 78.12	-31.23	89.34	-55.67	-46.78	-92.45	30.12	-74.89}			
{61.34 - 42.23	15.78	-87.12	93.45	-19.78	54.12	-32.89	85.67}			
{-29.45 90.23	-76.34	48.12	-69.89	27.56	-52.12	83.34	-16.78}			
{72.56 − 14.23	65.12	-88.45	39.78	-57.89	91.34	-26.67	44.12}			
{-13.78 82.45	-68.12	97.34	-33.45	55.67	-41.23	78.12	-53.89}			
{66.34 −37.12	21.78	-90.45	83.23	-19.56	47.89	-61.34	38.12}			
} The first negative element of side diagonal is -46.78. The last positive element of side diagonal is 93.45.										
{45.23 -91.34	23.67	-76.12	58.89	-33.45	82.56	-14.78	-67.34}			
{-28.12 72.45	-63.89	49.78	-15.23	96.34	-40.56	-29.89	-85.12}			
{53.67 - 47.89	92.12	-19.34	64.45	-87.23	-36.78	-60.12	83.45}			
{-17.89 78.12	-31.23	89.34	-55.67	93.45	-92.45	30.12	-74.89}			
{61.34 -42.23	15.78	-87.12	-46.78	-19.78	54.12	-32.89	85.67}			
{-29.45 90.23	-76.34	48.12	-69.89	27.56	-52.12	83.34	-16.78}			
{72.56 −14.23	65.12	-88.45	39.78	-57.89	91.34	-26.67	44.12}			
{-13.78 82.45	-68.12	97.34	-33.45	55.67	-41.23	78.12	-53.89}			
{66.34 −37.12 }	21.78	-90.45	83.23	-19.56	47.89	-61.34	38.12}			

٤ (-	,		, , , , , , , , , , , , , , , , , , , ,				, , , , , , , , , , , , , , , , , , , ,	, , ,		
{72.34	-58.12	91.23	-49.56	34.78	-83.67	18.45	-75.12	56.34	-20.78}	
{-37.89	84.23	-61.12	29.78	-94.34	53.67	-22.45	67.12	-89.34	41.56}	
{19.45	-76.89	62.34	-33.12	85.78	-47.56	92.23	14.34	64.45	-57.12}	
{-25.34	68.45	-91.67	34.12	-72.89	46.78	-38.12	93.56	-50.23	17.89}	
{83.23	-19.12	48.67	-66.34	59.12	32.45	75.89	-22.34	98.23	-55.67}	
{-41.56	92.34	-27.89	65.23	-73.45	38.12	-49.34	87.67	-15.78	54.12}	
{31.45	-62.34	99.12	43.78	71.23	-18.56	52.78	-84.12	66.34	-29.45}	
{-13.67	77.89	-58.45	40.12	-90.34	35.67	-76.23	19.78	-53.12	68.45}	
{54.12	38.45	87.23	-25.12	61.34	-79.67	93.45	-46.12	32.78	-70.89}	
{29.34	55.78	-67.12	98.23	-17.45	82.56	-41.12	74.89	-12.67	63.23}	
	} The first negative element of side diagonal is -58.45. The last positive element of side diagonal is 14.34.									
{ {72.34	-58.12	91.23	-49.56	34.78	-83.67	18.45	-75.12	56.34	-20.78}	
{-37.89	84.23	-61.12	29.78	-94.34	53.67	-22.45	67.12	-89.34	41.56}	
{19.45	-76.89	62.34	-33.12	85.78	-47.56	92.23	-58.45	64.45	-57.12}	
{-25.34	68.45	-91.67	34.12	-72.89	46.78	-38.12	93.56	-50.23	17.89}	
{83.23	-19.12	48.67	-66.34	59.12	32.45	75.89	-22.34	98.23	-55.67}	
{-41.56	92.34	-27.89	65.23	-73.45	38.12	-49.34	87.67	-15.78	54.12}	
{31.45	-62.34	99.12	43.78	71.23	-18.56	52.78	-84.12	66.34	-29.45}	
{-13.67	77.89	14.34	40.12	-90.34	35.67	-76.23	19.78	-53.12	68.45}	
{54.12	38.45	87.23	-25.12	61.34	-79.67	93.45	-46.12	32.78	-70.89}	
{29.34 }	55.78	-67.12	98.23	-17.45	82.56	-41.12	74.89	-12.67	63.23}	

)

5		` '									
{ 88.45	-56.12	72.34	-29.78	41.56	-83.67	64.12	-37.89}				
{-27.45	92.78	-64.34	55.67	-11.23	79.12	36.78	18.34}				
{14.89	-48.56	37.12	-82.45	63.78	95.12	20.34	-49.67}				
{-19.34	45.78	-72.89	84.12	60.23	30.67	-77.45	99.12}				
{76.12	-11.34	53.89	88.67	22.45	-32.78	90.34	-5.12}				
{-82.12	19.78	74.56	41.23	-17.89	89.34	-61.12	34.45}				
{67.89	93.45	15.67	-24.12	54.78	-42.23	80.12	-39.67}				
{35.67	62.34	-88.12	49.78	-7.23	33.89	-66.34	91.56}				
	} The first negative element of side diagonal is -37.89. The last positive element of side diagonal is 36.78.										
ine Last	c positiv	e eremei	nt of Si	de diago	nat 15 30	5.78.					
1 {88.45	-56.12	72.34	-29.78	41.56	-83.67	64.12	36.78}				
{-27.45	92.78	-64.34	55.67	-11.23	79.12	-37.89	18.34}				
{14.89	-48.56	37.12	-82.45	63.78	95.12	20.34	-49.67}				
{-19.34	45.78	-72.89	84.12	60.23	30.67	-77.45	99.12}				
{76.12	-11.34	53.89	88.67	22.45	-32.78	90.34	-5.12}				
{-82.12	19.78	74.56	41.23	-17.89	89.34	-61.12	34.45}				
{67.89	93.45	15.67	-24.12	54.78	-42.23	80.12	-39.67}				
{35.67 }	62.34	-88.12	49.78	-7.23	33.89	-66.34	91.56}				

)

Висновок: я навчився створювати двовимірні масиви у мові програмування С та далі опрацьовувати їх: знаходити будь-який елемент, знаючи індекси, змінювати місцями елементи масивів і виводити масиви у вигляді матриці; зрозумів, як працюють індекси у двовимірних масивах, як можна задати розмірність масиву, і, слухаючи та аналізуючи лекції до та після написання програм, зрозумів, як комп'ютер розглядає масиви; зміг проходити елементи масиву, використовуючи оператори циклу та розгалуження; зрозумів, як можна задати розмірність масиву.