

SC1015 REP2_Team 5

By: Kirtana Nair & Aadya Gupta

Brain Stroke Prediction

SC1015 – Mini Project

By- Kirtana Nair and Aadya Gupta

Brain stroke

Kaggle - Brain Stroke Dataset
Brain Stroke Dataset Classification Prediction

•••••••••••

Why?

Mitigate long term effects of stroke

Removing Null sets

```
data.isnull().sum()
gender
age
hypertension
heart_disease
ever_married
work_type
Residence_type
avg_glucose_level
bmi
smoking_status
stroke
                      0
dtype: int64
```

- data.isnull() returns a DataFrame
 of the same shape as original
- True if the value is missing
- False otherwise
- .sum() then adds up the number of missing values for each column.

Data cleanup

Variables

- Gender
- Age
- Hypertension
- Heart disease
- Ever married

- Work type
- Residence type
- Avg glucose level
- BMI
- Smoking status
- Stroke

Data shape

- 11 columns
- 4981 rows

Variables

- Gender
- Age
- Hypertension
- Heart disease
- Avg glucose level
- BMI

- Smoking status
- Gender encoded
- Smoking status encoded

Data shape

- 9 columns
- 4981 rows

Encoding categorical variables

Encoding data is the process of converting categorical (non-numeric) values into a numeric format

Hypertension

Gender

for col in categorical_cols:
 data_cleaned[col + '_encoded'] = data_cleaned[col].astype('category').cat.codes

Heart disease

Smoking status

No Hypertension: Stroke rate = 4.04%

With Hypertension: Stroke rate = 13.78%

No heart disease: Stroke rate = 4.27% With heart disease: Stroke rate = 17.09%

Correlation heatmap

Prediction models

Naive Bayes

forest

Random forest

- An ensemble of decision trees that votes on the final prediction.
- It captures complex, nonlinear patterns in the multivariate data but tends to overfit without balancing.

```
=== Random Forest - Train ===
```

Accuracy: 1.0000

TPR (Recall): 1.0000

FNR: 0.0000

TNR: 1.0000

Random forest Test data

=== Random Forest - Test ===

Accuracy: 0.9478

TPR (Recall): 0.0000

FNR: 1.0000

TNR: 0.9979

NAIVE BAYES

Train data

- A probabilistic model based on Bayes' Theorem that assumes feature independence.
- It's simple, fast, and worked well with categorical and numerical data in the dataset.

=== Naive Bayes - Train ===

Accuracy: 0.8672

TPR (Recall): 0.4141

FNR: 0.5859

TNR: 0.8909

NAIVE BAYES

Test data

=== Naive Bayes - Test ===

Accuracy: 0.8736

TPR (Recall): 0.3200

FNR: 0.6800

TNR: 0.9029

Logistical regression

Train data

- A linear model used to predict binary outcomes.
- Uses class_weight='balanced'
 option to address class
 imbalance and improve
 sensitivity to the minority class
 (stroke cases).

```
=== Logistic Regression - Train ===
```

Accuracy: 0.7344

TPR (Recall): 0.8182

FNR: 0.1818

TNR: 0.7301

Logistical regression

Test data

=== Logistic Regression - Test ===

Accuracy: 0.7482

TPR (Recall): 0.8600

FNR: 0.1400

TNR: 0.7423

Logistical regression coefficients

Comparing models

Random forest

- Handles non-linearity
- High accuracy

- Can overfit
- Slower
- Less interpretable

Naive Baye's

- Simple
- Good with categorical features
- Assumes feature independence
- Lower accuracy

Logistical regression

- Works well with balanced data
- Fast training
- Struggles with nonlinear patterns
- Performance depends on feature scaling

Insight

Reccomendation

Stroke rates are much higher among people with heart disease and hypertension

Prioritize screening and early intervention for individuals with cardiovascular conditions.

Higher average glucose levels are linked to increased stroke risk.

Promote lifestyle interventions for those with pre-diabetes or diabetes to prevent strokes.

Reccomendation

Smoking status plays a role in stroke likelihood

Even people who have quit smoking need to be monitored.

Health campaigns should reinforce this fact.

Stroke risk increases
steadily with age, but not all
older individuals have equal
risk.

Use age plus other variables in screening tools instead.

Prevents overgeneralization and optimizes care.

Conclusion

- Developed problem statement for focus
- Cleaned and prepared data for neat analysis
- Analysed and interpreted given and derived data for insights
- Used machine learning and new learnings to analyse differnt models for prediciton
- Formulated our recommnedations for the best model that can be used through interepretation and analysis

