Sprawozdanie

MOwNiT - Laboratorium 8 - DFT

Paweł Maczuga

Google doc:

https://docs.google.com/document/d/1vvUAMIhTarfrygm-nPouJy4AcVCxxRDBspWJMJd5YHI/edit?usp=sharing

Github z kodem:

https://github.com/pmaczuga/mowinit/tree/master/lab8

1.Zadanie 1

Odszumianie zdjęcia

Najlepsze rezultaty - zerowanie wszystkich wartości poniżej średniej:

Wycięcie ostatniej kolumny:

Wycięcie ostatniego wiersza:

2. Zadanie 2

Zaimplementowałem część procesu kompresji obrazu do JPEG (z użyciem DFT).

Czyli kroki:

- konwersja RGB do YCbCr
- podział na bloki 8x8
- na każdym bloku DFT
- kwantyzacja

Następnie odwracam proces, aby dostać z powrotem obraz wejściowy

Program nie zwraca orazu JPEG (brakuje kodowania wyniku i zapisu odpowienio z formatem JPEG), tylko zdekodowany obraz PNG

Kod programu na githubie

3. Zadanie 3

Znajdowanie wzorca

Jedyny sposób jaki znalazłem to odwrócenie wzorca o 180 stopni a następnie zasosowanie konwolucji.

To z kolei sprawia, że konwolucja działa identycznie jak korelacja (porównałem użycie konwolucji z odwróconym wzorcem z użyciem korelacji - wyniki identyczne).

Dodatkowo na początku obraz jest nieco modyfikowany (również z użyciem konwolucji) - wydobycie głębi.

Po użyciu konwolucji aby znaleźć dopasowanie szukam maksimum

Wyniki:

Bez odwracania wzorca:

Bez wydobycia głębi (ale z odwróconym wzorcem):

4. Zadanie 4

Rozpoznawanie tekstu.

Rozpoznawanie działa **częściowo**.

Mając przykładowy tekst wyciąłem litery, aby służyły jako wzorce do użycia konwolucji (jak w zadaniu 3).

Skrót algorytmu:

- wczytanie tekstu i liter (jako obrazy png)
- odwrócenie kolorów
- rotacja wzorców (liter)
- konwolucja

- dla każdej litery przeprowadzam konwolucję na tekście, po czym szukam wszystkich punktów z wartością większą niż pewna stała
- sortowanie wyników
- zapis jako string

Dla tesktu i liter

zaproponuj metode rozpoznawania tekstu pisanego w plikach graficznych

<u>a</u>	\mathbf{b}	C	\underline{d}	e,png
\mathbf{f}	g.png	\mathbf{h}	i.png	j.png
k.png	l.png	m.png	n,png	O o.png
p.png	q q,png	r,png	S s,png	tpng
u.png	V.png	W.png	X x.png	y.png
Z				

Wynik:

zaproponujnetoqde rozpoznawaniatexkstu pisanegowplixkacbbbh graficznvycbbbh

Nie rozpoznaje wszystkich liter, natomiast niektóre widzi tam gdzie nie powinien.

Rezultaty dla niektórych liter:

Oryginalny obraz z odwróconymi kolorami:

