3.4. Энергетические показатели АМ.

Определим среднюю мощность AM сигнала на сопротивление R за большой интервал времени:

$$U_{AM}(t) = U_m(1 + M_A \cos \Omega t) \cos \omega_0 t$$

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \frac{U_{AM}^{2}(t)dt}{R} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \frac{U_{m}^{2}}{R} (1 + M_{A} \cos \Omega t)^{2} \cos^{2} \omega_{0} t dt =$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left(\frac{U_m^2}{R} + \frac{2U_m^2 M_A}{R} \cos \Omega t + \frac{U_m^2 M_A^2}{R} \cos^2 \Omega t \right) (0.5 + 0.5 \cos 2\omega_0 t) dt =$$

Все слагаемые, содержащие $\cos \Omega t$, $\cos 2\omega_0 t$ после интегрирования и усреднения по времени уничтожаются, так что остаются два слагаемых:

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left(\frac{U_m^2}{R} + \frac{U_m^2 M_A^2}{2R} \right) \frac{1}{2} dt = \lim_{T \to \infty} \frac{1}{4T} \int_{-T}^{T} \left(\frac{U_m^2}{R} + \frac{U_m^2 M_A^2}{2R} \right) dt = \lim_{T \to \infty} \frac{1}{4T} \frac{U_m^2 M_A^2}{R} t \Big|_{-T}^{T} + \lim_{T \to \infty} \frac{1}{4T} \frac{U_m^2 M_A^2}{2R} t \Big|_{-T}^{T} = \frac{U_m^2}{2R} + \frac{U_m^2 M_A^2}{4R}$$
(3.8)

1-ое слагаемое – мощность несущей, 2-ое слагаемое – мощность боковых.

При амплитудной модуляции мощность боковых, которые переносят полезную информацию даже при M_A =1 составляют, только 1/3 средней мощности передатчика. 2/3 мощности передатчика тратится на излучение несущей, которая не несёт информацию. Т.е., АМ имеет плохие энергетические показатели. Поэтому используется более эффективные виды модуляции.

3.5. Балансная АМ (БАМ)

При БАМ не передают несущей частоты. Спектр БАМ при гармонической модуляции имеет вид:

2.3. Однополосная модуляция

Вид модуляции, при которой в спектре AM сигнала сохраняется лишь одна боковая полоса, называется однополосной модуляцией (OM), а само колебание называется однополосно-модулированным сигналом.