Tutorial 9

Formal Language and Automata Theory

March 16, 2023

We defined the rotational closure of language A to be $RC(A) = \{yx \mid xy \in A\}$. Show that the class of CFLs is closed under rotational closure.

We defined the rotational closure of language A to be $RC(A) = \{yx \mid xy \in A\}$. Show that the class of CFLs is closed under rotational closure.

HINT 1: The class of CFLs is closed under the concatenation operation *Can this property be useful here?*

We defined the rotational closure of language A to be $RC(A) = \{yx \mid xy \in A\}$. Show that the class of CFLs is closed under rotational closure.

HINT 2: Consider a string in the language A. Apply RC property there?

We defined the rotational closure of language A to be $RC(A) = \{yx \mid xy \in A\}$. Show that the class of CFLs is closed under rotational closure.

SOLUTION:

Consider a string s = xy in the language A. It can be formed from the concatenation of two languages X and Y, such that $x \in X$ and $y \in Y$. As the language A = X.Y is a CFL, the languages X and Y will also be CFLs. The rotational closure of the string s = xy will be

RC(s) = RC(xy) = yx. It can be formed by concatenating Y and X.

$$RC(s) = Y.X$$

As both Y and X are context-free languages, the language RC(s) is a context-free language for any string $s \in A$. The rotational closure has been proven for the class of CFLs.

Show that the class of CFLs is not closed under NOEXTEND. $NOEXTEND(P) = \{ w \in P \mid w \text{ is not a proper prefix of any string in P } \}$

Show that the class of CFLs is not closed under NOEXTEND. $NOEXTEND(P) = \{w \in P \mid w \text{ is not a proper prefix of any string in P } \}$

HINT 1: Can the Union property of CFLs be used in this case?

Show that the class of CFLs is not closed under NOEXTEND. $NOEXTEND(P) = \{w \in P \mid w \text{ is not a proper prefix of any string in P } \}$

HINT 2: Assume strings
$$P_1 = \{x^a y^b z^c \mid a \neq b, a, b, c \geq 1\}$$
, $P_2 = \{x^a y^b z^b \mid a, b \geq 1\}$, and $P = P_1 \cup P_2$

SOLUTION: Consider the language $P=P_1\cup P_2$, where $P_1=\{x^ay^bz^c\mid a\neq b,a,b,c\geq 1\}$ and $P_2=\{x^ay^bz^b\mid a,b\geq 1\}$. Consider the string $x^ay^bz^c\in P_1$, the given string is not in NOEXTEND(P), since the extension of the string $x^ay^bz^{c+1}$, also belongs to P.

Now the string $x^ay^bz^b$ is considered. Any extension of this string in P should belong to P_1 . Hence this string will not exist in NOEXTEND(P), if and only if an extension of it belongs to P_1 and $a \neq b$. Therefore, the string of the form $x^ay^az^a$ belongs to NOEXTEND(P). Hence NOEXTEND(P) = $\{x^ay^az^a \mid a \geq 1\}$. We now see that P is a CFL but NOEXTEND(P) is not. Therefore from the above explanation, it can be said that the context-free language are not closed under NOEXTEND operation.

Using CYK Algorithm, verify whether the string w = abbb belongs to the language generated by the grammar: $S \to AB$, $A \to BB|a$, $B \to AB|b$.

Using CYK Algorithm, verify whether the string w=abbb belongs to the language generated by the grammar: $S \to AB$, $A \to BB|a$, $B \to AB|b$. **Hint 1**: Convert the grammar to CNF form

Using CYK Algorithm, verify whether the string w=abbb belongs to the language generated by the grammar: $S \to AB$, $A \to BB|a$, $B \to AB|b$. The grammar is already in the CNF form.

Hint 2: We need to fill the table with non-terminals. Start with substrings of length 1.

Solution:

The CNF : $S \rightarrow AB, \ A \rightarrow BB|a, \ B \rightarrow AB|b$

Table: Step 1

а	b	b	b
Α			
	В		
		В	
			В

Solution:

The CNF : $S \rightarrow AB, \ A \rightarrow BB|a, \ B \rightarrow AB|b$

Table: Step 2

a	b	b	b
Α			
S,B	В		
	Α	В	
		Α	В

Solution:

The CNF : $S \rightarrow AB, \ A \rightarrow BB|a, \ B \rightarrow AB|b$

Table: Step 3

а	b	b	b	
Α				
S,B	В			
Α	Α	В		
	S,B	Α	В	

Solution:

The CNF : $S \rightarrow AB, \ A \rightarrow BB|a, \ B \rightarrow AB|b$

Table: Step 4

а	b	b	b
Α			
S,B	В		
Α	Α	В	
S,B	S,B	Α	В

Question 4 (Submit to the TAs)

Consider the following context-free grammar for the English language

$$S->NP\ VP$$
 $NP->Det\ Nom|PropN$
 $Nom->Adj\ Nom|N$
 $VP->V\ Adj|V\ NP|V\ S|V\ NP\ PP$
 $PP->P\ NP$
 $PropN->'Buster'|'Chatterer'|'Joe'$
 $Det->'the'|'a'$
 $N->'bear'|'squirrel'|'tree'|'fish'|'log'|'dog'|'man'|'park'$
 $Adj->'angry'|'frightened'|'little'|'tall'$
 $V->'chased'|'saw'|'said'|'thought'|'was'|'put'$
 $P->'in'$

Using CYK Algorithm, verify whether "the dog saw a man in the park" is a valid English sentence.

Solution: The CNF form of the given grammar is:

$$S->NP\ VP$$
 $NP->Det\ Nom|'Buster'|'Chatterer'|'Joe'$
 $Nom->Adj\ Nom|'bear'|'squirrel'|'tree'|'fish'|'log'|'dog'|'man'|'park'$
 $VP->V\ Adj|V\ NP|V\ S|V1\ PP$
 $V1->V\ NP$
 $PP->P\ NP$
 $Det->'the'|'a'$
 $Adj->'angry'|'frightened'|'little'|'tall'$
 $V->'chased'|'saw'|'said'|'thought'|'was'|'put'$
 $P->'in'$

Solution:

the	dog	saw	а	man	in	the	park
Det							
NP	Nom						
-	-	V					
-	-	-	Det				
S	-	VP, V1	NP	Nom			
-	-	-	-	-	Р		
-	-	-	-	-	-	Det	
S	-	VP	-	-	PP	NP	Nom

Since the left bottom cell contains the start symbol S, the given sentence is a valid English sentence.

Homework

Prove or disprove:

- OFL is closed under substitution.
- OFL is closed under inverse homomorphism.

Upload the solutions of the above problems in a single PDF in the following link by Monday (20.3.2023): https://drive.google.com/drive/folders/1XyJ71KrYsby7ty1dvjJm3ziW8stsYjoz?usp=share_link

Note: Name of the file should be roll_no.pdf