Transient Analysis: RL Circuit

When switch (SW) in Position 1:

$$i_1 = \frac{V}{R} \left(1 - e^{-\frac{tR}{L}} \right)$$

$$V_L = V e^{-\frac{tR}{L}}$$

Sajjad Haidar

LT SPICE Simulation: Adding components and directive

Run: Simulation

Switch > Position 2: Stored energy in the inductor is released

Now the switch is in Position 2

$$i_{2(t=0)} = V/R$$

$$i_2 = i_{2(t=0)} e^{-\frac{iR}{L}}$$

In practice whenever a switch like this breaking the contact from position 1, V_L = L di/dt becomes very high energy stored in the inductor is dissipated as electrical arc at the contact. However by electronic devices (replacing the mechanical switch) it is possible to make a smooth transition (I'll discuss it later)

$$V_L = L \frac{di_2}{dt}$$

LT SPICE Simulation: Stored inductor-energy dissipating

Sajjad Haidar

RUN: Simulation

Calculating Power and Energy

When the switch is in position 1 for a long time, current i₁ takes the steady state value: $i_1 = V/R$

The switch is then on to position 2: Power dissipated by the resistor R is:

$$P = i_2^2 R = \frac{V^2}{R} e^{-\frac{2tR}{L}}$$

Total energy consumed by the resistor R is

$$E = \int P.dt = \frac{V^2}{R} \int_0^\infty e^{-\frac{2tR}{L}}$$

LTSpice to find Power and energy

