$\overline{}$				
/	INSERT	STA	PLE	HERE

Section H J Subsection left center right Row number 1 2 3 4 5 6 7 8

Mathematics 1553 Written Homework 6 Prof. Margalit 4 March 2016

1. We defined the dimension of a subspace V to be the number of vectors in a basis for V. There's one problem: we haven't shown that all bases have the same number of vectors! The goal of this exercise is to explain why any two bases for V must have the same number of vectors.

Suppose $\{b_1, \ldots, b_k\}$ is a basis for the subspace V of \mathbb{R}^n . Let $\{a_1, \ldots, a_\ell\}$ be a set of vectors in V with $\ell > k$. We want to show that $\{a_1, \ldots, a_\ell\}$ is not a basis for V and we will do this by showing that $\{a_1, \ldots, a_\ell\}$ is linearly dependent.

Let A be the matrix $(a_1 \cdots a_\ell)$ and let B be the matrix $(b_1 \cdots b_k)$.

Step 1. For each a_i in A, explain why there is a vector c_i in \mathbb{R}^k so that $Bc_i = a_i$. Hint: think about converting vector equations to matrix equations.

Now let C be the matrix $(c_1 \cdots c_\ell)$.

Step 2. Explain why Cx = 0 has a nonzero solution. Hint: use the fact that $k < \ell$.

Now let $u = (u_1, \dots, u_\ell)$ be a nonzero solution to Cx = 0.

Step 3. Show that Au = 0. Hint: Write Au as a linear combination of the a_i and then replace each a_i in the vector equation with Bc_i and then factor out the B.

Step 4. Conclude that $\{a_1, \ldots, a_\ell\}$ is linearly dependent and that any two bases for V have the same number of elements.