Grafika Komputerowa. Rzutowanie

Aleksander Denisiuk
Polsko-Japońska Akademia Technik Komputerowych
Wydział Informatyki w Gdańsku
ul. Brzegi 55
80-045 Gdańsk

denisjuk@pja.edu.pl

Rzutowanie

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów Najnowsza wersja tego dokumentu dostępna jest pod adresem

http://users.pja.edu.pl/~denisjuk

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Rzutowanie

Dwa typy rzutowania

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie

perspektywiczne

Macierze

w modelowaniu

Case study: modelowanie cienia

- Równoległe
- Perspektywiczne

Figure II.18: The cube on the left is rendered with an orthographic projection. The one on the right with a perspective transformation. With the orthographic projection, the rendered size of a face of the cube is independent of its distance from the viewer; compare, for example, the front and back faces. Under a perspective transformation, the closer a face is, the larger it is rendered.

Ukryte powierzchnie

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie

perspektywiczne

Macierze

w modelowaniu

Case study:

modelowanie cienia

- Algorytm malarza
- Algorytm buforu głębokości

Figure I.12: Three triangles. The triangles are turned obliquely to the viewer so that the top portions of each triangle is in front of the base portion of another.

Rzutowanie równoległe

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

Macierz rzutowania równoległego

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

$$l\leqslant x\leqslant r,$$
 left, right $b\leqslant y\leqslant t,$ bottom, top $n\leqslant -z\leqslant f,$ near, far

$$\begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rzutowanie perspektywiczne

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

Rzutowanie perspektywiczne

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

Figure II.19: Perspective projection onto a viewscreen at distance d. The viewer is at the origin, looking in the direction of the negative z axis. The point $\langle x, y, z \rangle$ is perspectively projected onto the plane z = -d, which is at distance d in front of the viewer at the origin.

Funkcja głębokości

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Figure II.20: The undesirable transformation of a line to a curve. The mapping used is $\langle x, y, z \rangle \mapsto \langle -d \cdot x/z, -d \cdot y/z, z \rangle$. The points A and C are fixed by the transformation and B is mapped to B'. The dotted curve is the image of the line segment AC. (The small unlabeled circles show the images of A and B under the mapping of figure II.19.)

 \blacksquare głębokość $(z)=A+rac{B}{z}$

Macierz rzutowania

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

- $(x, y, z) \mapsto \left(-\frac{dx}{z}, -\frac{dy}{z}, A + \frac{B}{z}\right)$
- we współrzędnych jednorodnych

$$(x:y:z:1) \mapsto (dx:dy:-Az-B:-z)$$

macierz:

$$\begin{pmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & -A & -B \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Bryła widzenia

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

- macierz: $\begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{pmatrix}$

Macierz rzutowania

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

- lacksquare kąt widzenia
- \blacksquare $a = \frac{w}{h}$ aspect ratio, format obrazu
- macierz:

$$\begin{pmatrix} \frac{1}{a} \operatorname{ctg}(\theta/2) & 0 & 0 & 0\\ 0 & \operatorname{ctg}(\theta/2) & 0 & 0\\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Macierze w modelowaniu

Rzutowanie

Dwa typy rzutowania

Ukryte powierzchnie

Rzutowanie równoległe

Rzutowanie

perspektywiczne

Macierze w modelowaniu

Case study: modelowanie cienia

- Macierz ModelMatrix
- Macierz ViewMatrix
- Macierz ProjectionMatrix

Rzutowanie

Case study: modelowanie cienia

Cień

Z-fighting

Case study: przekształcenie rzutowe obrazów

Case study: modelowanie cienia

Zastosowanie rzutowania: cień

Rzutowanie

Case study: modelowanie cienia

Cień

Z-fighting

Figure II.22: A light is positioned at $\langle 0, y_0, 0 \rangle$. An object is positioned at $\langle x, y, z \rangle$. The shadow of the point is projected to the point $\langle x', 0, z' \rangle$, where $x' = x/(1-y/y_0)$ and $z' = z/(1-y/y_0)$.

Cień

Rzutowanie

Case study: modelowanie cienia

Cień

Z-fighting

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{y_0} & 0 & 1 \end{pmatrix}$$

Z-fighting

Rzutowanie

Case study: modelowanie cienia

Cień

Z-fighting

Z-fighting. Przykład w blenderze

Rzutowanie

Case study: modelowanie cienia

Cień

Z-fighting

Case study: przekształcenie rzutowe obrazów

Przykład w blenderze

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

Transformacja perspektywiczna

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

- \square zazwyczaj wymaga się $\det A \neq 0$.
 - czemu?

Transformacja po czterech punktach

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

Dane są dwie czwórki punktów na płaszczyźnie:

$$P = (P_0, P_1, P_2, P_3)$$
 oraz $Q = (Q_0, Q_1, Q_2, Q_3)$.

$$\square$$
 $P_j = (x_j, y_j), Q_j = (s_j, t_j), j = 0, \dots, 3.$

Znaleźć taką transformację perspektywiczną $A: \mathbb{R}^2 \to \mathbb{R}^2$, że $A(P_j) = Q_j, j = 0, \dots, 3$.

Metoda algebraiczna

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

- Rozwiązywanie jednorodnego układu równań liniowych
 - □ 8 równań
 - ☐ 9 zmiennych

Metoda geometryczna

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

 \blacksquare Przekształcenie pomocnicze $W(P):\mathbb{R}^2\to\mathbb{R}^2$

$$\Box A = (W(Q))^{-1}W(P)$$

Przekształacenie ${\cal W}$

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

- $\blacksquare \quad \text{Rozkładamy } W \text{ w iloczyn } W(P) = V(P)U(P), \text{gdzie}$
 - \square U(P) będzie przekształceniem afinicznym,
 - \square V(P) rzutowym.

Przekształcenie U

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

Przekształcenie U to zamiana standardowego układu współrzędnych (O,i,j) na (P_0,e_1,e_2) .

Przekształcenie U

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

$$(e_1 \quad e_2) = \begin{pmatrix} i \quad j \end{pmatrix} M = \begin{pmatrix} i \quad j \end{pmatrix} \begin{pmatrix} dx_1 & dx_2 \\ dy_1 & dy_2 \end{pmatrix}, \text{ gdzie}$$

$$dx_k = x_k - x_0, dy_k = y_k - y_0, k = 1, 2, 3.$$

$$(i \quad j) = \begin{pmatrix} e_1 & e_2 \end{pmatrix} M^{-1} = \begin{pmatrix} e_1 & e_2 \end{pmatrix} \cdot \frac{1}{\Delta} \begin{pmatrix} dy_2 & -dx_2 \\ -dy_1 & dx_1 \end{pmatrix}, \text{ gdzie}$$

$$\Box \quad \Delta = \det M = dx_1 dy_2 - dy_1 dx_2.$$

■ W szczególności,

$$\mathbf{OP_0} = \begin{pmatrix} e_1 & e_2 \end{pmatrix} M^{-1} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} e_1 & e_2 \end{pmatrix} \begin{pmatrix} x_0' \\ y_0' \end{pmatrix}$$
, gdzie

$$\Box x_0' = (x_0 dy_2 - y_0 dx_2)/\Delta,$$

$$\Box y_0' = (-x_0 dy_1 + y_0 dx_1)/\Delta.$$

$$\blacksquare \quad \text{Więc } U: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto M^{-1} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} = M^{-1} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x_0' \\ y_0' \end{pmatrix}$$

Macierz przekształcenia ${\cal U}$

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

$$U = \begin{pmatrix} \frac{dy_2}{\Delta} & -\frac{dx_2}{\Delta} & \frac{-x_0dy_2 + y_0dx_2}{\Delta} \\ -\frac{dy_1}{\Delta} & \frac{dx_1}{\Delta} & \frac{x_0dy_1 - y_0dx_1}{\Delta} \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\qquad \text{W szczególności, } P_3 \mapsto \begin{pmatrix} x_3' \\ y_3' \end{pmatrix} = \frac{1}{\Delta} \begin{pmatrix} dx_3 dy_2 - dy_3 dx_2 \\ -dx_3 dy_1 + dy_3 dx_1 \end{pmatrix}$$

Przekształcenie odwrotne
$$U^{-1}=\begin{pmatrix} dx_1 & dx_2 & +x_0 \\ dy_1 & dy_2 & +y_0 \\ 0 & 0 & 1 \end{pmatrix}$$

lacktriangle Stosowanie współrzędnych jednorodnych pozwala zamienić U na

prostszą macierz:
$$\begin{pmatrix} dy_2 & -dx_2 & -x_0dy_2 + y_0dx_2 \\ -dy_1 & dx_1 & x_0dy_1 - y_0dx_1 \\ 0 & 0 & \Delta \end{pmatrix}.$$

Przekształcenie V

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

 $lacksquare P_3'=(x_3',y_3')$, określone na slajdzie 28

Równania na macierz ${\cal V}$

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

$$\blacksquare$$
 $(0,0) \mapsto (0,0)$:

$$\Box$$
 $a_{13} = a_{23} = 0, a_{33} = 1.$

$$\blacksquare$$
 (1,0) \mapsto (1,0):

$$\Box$$
 $a_{11} = \lambda_1, a_{21} = 0, a_{31} + 1 = \lambda_1.$

$$a_{31} = a_{11} - 1.$$

$$\blacksquare$$
 $(1,0) \mapsto (1,0)$:

$$\Box$$
 $a_{12} = 0, a_{22} = \lambda_2, a_{32} + 1 = \lambda_2.$

$$a_{32} = a_{22} - 1.$$

$$\blacksquare P_3' \mapsto (1,1)$$

$$\Box \ a_{11}x_3' = \lambda, \ a_{22}y_3' = \lambda, \ -x_3' - y_3' + 1 = -\lambda.$$

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

Inna postać macierzy V:

$$\begin{pmatrix}
\begin{vmatrix}
x_2 - x_3 & y_2 - y_3 \\
x_1 - x_3 & y_1 - y_3
\end{vmatrix} & 0 & 0 \\
\begin{vmatrix}
x_3 - x_0 & y_3 - y_0 \\
x_2 - x_0 & y_2 - y_0
\end{vmatrix} & 0 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
x_2 - x_3 & y_2 - y_3 \\
x_1 - x_3 & y_1 - y_3
\end{vmatrix} & 0 & 0$$

$$\begin{vmatrix}
x_2 - x_3 & y_2 - y_3 \\
x_1 - x_0 & y_1 - y_0 \\
x_3 - x_0 & y_3 - y_0
\end{vmatrix}$$

$$\begin{vmatrix}
x_2 - x_3 & y_2 - y_3 \\
x_1 - x_0 & y_1 - y_0 \\
x_3 - x_0 & y_3 - y_0
\end{vmatrix}$$

$$\begin{vmatrix}
x_2 - x_0 & y_2 - y_0 \\
x_1 - x_3 & y_1 - y_3
\end{vmatrix}$$

$$\begin{vmatrix}
x_1 - x_0 & y_1 - y_0 \\
x_1 - x_3 & y_1 - y_3
\end{vmatrix}$$

$$\begin{vmatrix}
x_1 - x_0 & y_1 - y_0 \\
x_1 - x_3 & y_1 - y_3
\end{vmatrix}$$

$$\begin{vmatrix}
x_1 - x_0 & y_1 - y_0 \\
x_1 - x_3 & y_1 - y_0
\end{vmatrix}$$

$$\begin{vmatrix}
x_1 - x_0 & y_1 - y_0 \\
x_1 - x_0 & y_1 - y_0
\end{vmatrix}$$

$$\begin{vmatrix}
x_1 - x_0 & y_1 - y_0 \\
x_3 - x_0 & y_3 - y_0
\end{vmatrix}$$

Macierz V^{-1}

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

$$(V^t)^{-1} = S^{-1}T^{-1}$$

$$V^{-1} = ((V^t)^{-1})^t = (S^{-1}T^{-1})^t$$

$$V^{-1} = \begin{pmatrix} \frac{x_3'}{x_3' + y_3' - 1} & 0 & 0 \\ 0 & \frac{y_3'}{x_3' + y_3' - 1} & 0 \\ \frac{1 - y_3'}{x_3' + y_3' - 1} & \frac{1 - x_3'}{x_3' + y_3' - 1} & 1 \end{pmatrix} \sim \begin{pmatrix} x_3' & 0 & 0 \\ 0 & y_3' & 0 \\ 1 - y_3' & 1 - x_3' & x_3' + y_3' - 1 \end{pmatrix}$$

Algorytm obliczenia przekształcenia

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

$$P_j = (x_j, y_j), Q_j = (s_j, t_j), j = 0, \dots, 3$$

1.
$$dx_j = x_j - x_0$$
, $dy_j = y_j - y_0$, $j = 1, 2, 3$

$$2. \quad \Delta_p = dx_1 dy_2 - dy_1 dx_2$$

3.
$$x_3' = \frac{dx_3dy_2 - dy_3dx_2}{\Delta_p}, y_3' = \frac{-dx_3dy_1 + dy_3dx_1}{\Delta_p}$$

4.
$$U(P) = \begin{pmatrix} dy_2 & -dx_2 & -x_0dy_2 + y_0dx_2 \\ -dy_1 & dx_1 & x_0dy_1 - y_0dx_1 \\ 0 & 0 & \Delta_p \end{pmatrix}$$

5.
$$V(P) = \begin{pmatrix} \frac{x_3' + y_3' - 1}{x_3'} & 0 & 0\\ 0 & \frac{x_3' + y_3' - 1}{y_3'} & 0\\ \frac{y_3' - 1}{x_3'} & \frac{x_3' - 1}{y_3'} & 1 \end{pmatrix}$$

Algorytm obliczenia przekształcenia, cd

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

6.
$$ds_j = s_j - s_0$$
, $dt_j = t_j - t_0$, $j = 1, 2, 3$

7.
$$\Delta_q = ds_1 dt_2 - dt_1 ds_2$$

8.
$$s_3' = \frac{ds_3dt_2 - dt_3ds_2}{\Delta_q}, t_3' = \frac{-ds_3dt_1 + dt_3ds_1}{\Delta_q}$$

9.
$$V^{-1}(Q) = \begin{pmatrix} s_3' & 0 & 0 \\ 0 & t_3' & 0 \\ 1 - t_3' & 1 - s_3' & t_3' + s_3' - 1 \end{pmatrix}$$

10.
$$U^{-1}(Q) = \begin{pmatrix} ds_1 & ds_2 & +s_0 \\ dt_1 & dt_2 & +t_0 \\ 0 & 0 & 1 \end{pmatrix}$$

11.
$$A = U^{-1}(Q)V^{-1}(Q)V(P)U(P)$$

12.
$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} \lambda s \\ \lambda t \\ \lambda \end{pmatrix} = A \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} s \\ t \end{pmatrix}$$

Rzutowanie

Case study: modelowanie cienia

Case study: przekształcenie rzutowe obrazów

Transformacja perspektywiczna

Cztery punkty

 \blacksquare Jeżeli punkty P tworzą kwadrat $[0,1]\times[0,1],$ to

$$\square \quad U(P) = V(P) = I$$

$$\Box \quad A = U^{-1}(Q)V^{-1}(Q)$$

lacksquare Jeżeli punkty Q tworzą kwadrat [0,1] imes [0,1], to

$$\Box U^{-1}(Q) = V^{-1}(Q) = I$$

$$\Box$$
 $A = V(P)U(P)$