

PDP SWITCH

IRFI4228PbF

Features

- Advanced Process Technology
- Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications
- Low E_{PULSE} Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications
- Low Q_G for Fast Response
- High Repetitive Peak Current Capability for Reliable Operation
- Short Fall & Rise Times for Fast Switching
- •150°C Operating Junction Temperature for Improved Ruggedness
- Repetitive Avalanche Capability for Robustness and Reliability

Key Parameters				
V _{DS} max	150	V		
V _{DS (Avalanche)} typ.	180	V		
R _{DS(ON)} typ. @ 10V	12.2	mΩ		
I _{RP} max @ T _C = 100°C	61	Α		
T _J max	150	°C		

G	D	S
Gate	Drain	Source

Description

This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low E_{PULSE} rating. Additional features of this MOSFET are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	±30	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	34	А
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	21	
I _{DM}	Pulsed Drain Current ①	130	
I _{RP} @ T _C = 100°C	Repetitive Peak Current ®	61	
P _D @T _C = 25°C	Power Dissipation	46	W
P _D @T _C = 100°C	Power Dissipation	18	
	Linear Derating Factor	0.37	W/°C
TJ	Operating Junction and	-40 to + 150	°C
T_{STG}	Storage Temperature Range		
	Soldering Temperature for 10 seconds	300	
	Mounting Torque, 6-32 or M3 Screw	10lb·in (1.1N·m)	N

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case 4		2.73	°C/W
$R_{\theta JA}$	Junction-to-Ambient		65	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}/\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		190		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		12.2	16	mΩ	V _{GS} = 10V, I _D = 20A ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-12		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 150V, V_{GS} = 0V$
				1.0	mA	$V_{DS} = 150V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
g _{fs}	Forward Transconductance	64			S	$V_{DS} = 25V, I_{D} = 20A$
Q_g	Total Gate Charge		73	110	nC	$V_{DD} = 75V, I_D = 20A, V_{GS} = 10V$
Q_{gd}	Gate-to-Drain Charge		20			
t _{st}	Shoot Through Blocking Time	100			ns	$V_{DD} = 120V, V_{GS} = 15V, R_{G} = 5.1\Omega$
			62			$L = 220$ nH, $C = 0.3$ µF, $V_{GS} = 15$ V
E _{PULSE}	Energy per Pulse		02		μJ	$V_{DS} = 120V, R_{G} = 5.1\Omega, T_{J} = 25^{\circ}C$
			110			$L = 220$ nH, $C = 0.3$ µF, $V_{GS} = 15$ V
			110			$V_{DS} = 120V, R_{G} = 5.1\Omega, T_{J} = 100^{\circ}C$
C _{iss}	Input Capacitance		4560			$V_{GS} = 0V$
C _{oss}	Output Capacitance		560		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		110			f = 1.0MHz
C _{oss} eff.	Effective Output Capacitance		460			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 120V$
L _D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5]	from package
						and center of die contact

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		170	mJ
E _{AR}	Repetitive Avalanche Energy ①		4.6	mJ
V _{DS(Avalanche)}	Repetitive Avalanche Voltage ①	180		V
I _{AS}	Avalanche Current ②		20	A

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S @ T _C = 25°C	Continuous Source Current			34		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			130		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 20A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		74	110	ns	$T_J = 25^{\circ}C, I_F = 20A, V_{DD} = 50V$
Q _{rr}	Reverse Recovery Charge		230	350	nC	di/dt = 100A/µs ③

2 www.irf.com

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical E_{PULSE} vs. Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical E_{PULSE} vs. Drain Current

Fig 7. Typical E_{PULSE} vs.Temperature

Fig 9. Typical Capacitance vs.Drain-to-Source Voltage

Fig 11. Maximum Drain Current vs. Case Temperature

Fig 8. Typical Source-Drain Diode Forward Voltage

Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 12. Maximum Safe Operating Area

Fig 13. On-Resistance vs. Gate Voltage

Fig 15. Threshold Voltage vs. Temperature

Fig 14. Maximum Avalanche Energy vs. Temperature

Fig 16. Typical Repetitive peak Current vs. Case temperature

Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 19a. Unclamped Inductive Test Circuit

Fig 19b. Unclamped Inductive Waveforms

Fig 20a. Gate Charge Test Circuit

Fig 20b. Gate Charge Waveform

6 www.irf.com

Fig 21a. t_{st} and $E_{\text{PULSE}} \, \text{Test Circuit}$

 $\textbf{Fig 21b.} \quad t_{st} \, \text{Test Waveforms}$

Fig 21c. E_{PULSE} Test Waveforms

www.irf.com 7

TO-220AB Full-Pak Package Outline (Dimensions are shown in millimeters (inches))

TO-220AB Full-Pak Part Marking Information

TO-220AB Full-Pak packages are not recommended for Surface Mount Application.

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by $\ensuremath{\mathsf{max}}.$ junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.85mH, $R_G = 25\Omega$, $I_{AS} = 20$ A.
- $\center{3}$ Pulse width $\le 400 \mu s$; duty cycle $\le 2\%$.
- 4 R₀ is measured at T_J of approximately 90°C.
- ⑤ Half sine wave with duty cycle = 0.25, ton=1µsec.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 06/06

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/