一. 如果要调 4.3 双电机有感霍尔程序

首先安装上位机软件,

📔 en.stsw-stm32100 4.3安装软件.zip

下载我配置好的 4.3HALL 工程

Double motor hall 4.3 double serial.stmcx 无感配置软件一样,只需要打开对应工程即可

安装 4.3 软件后界面如下图

然后从 File 里面 open project 里面 打开刚 才下载的

Double motor hall 4.3 double serial.stmcx

注:由于双电机是两个电机组成,单电机配置参数一样,下面只说明一个参数配置,另一个一样。

二. 介绍一下这里面各个项的作用

这个图标点击进去显示电机参数和反馈速度传感器参数

- 1.1 选择电机类型,Internal PMSM 内嵌式电机和 Surface Mounted PMSM 表贴式电机
- 1.2 配置电机相关参数

Pole Pairs 电机极对数 3				
Max Application Speed	最大速度	3000	rpm	
Nominal Current	正常电流	1.8	4	
Nominal DC Voltage	正常电压	24	V	
Rs	相电阻	1.54 0	hm	
Ld	d 轴相电感	0.6	5 mH	
Lq	q 轴相电感	0.6	5 mH	
Ld/Lq ratio	d 轴电感跟 d	q轴电源	戍 比率	1
B-Emf constant	反电动势	6.3 Vri	ns/krpm	

1.3 配置传感器相关参数

Hall sensors 霍尔传感器 接的是霍尔电机

Sensors displacement 传感器安装角度 120 deg (这里面分 60 度跟 120 度)

Placement electrical angle 霍尔安装偏移角度 320 度 (这个参数根据电机参数或者根据文档说明去测)

Quadrature encoder 增量光电编码器 接的是编码器电机

Pulses per mechanical 光电编码器线数 400 (这个买电机时都会有码盘什么线数)

设置好后 Done 就可以

2. Power Stage 这里面设置电机供电,MOS 驱动,温度保护,电流保护相关参数点开后如下图所示

2.1 因为我们用的直流电所以前面的 AC 不需要设置

2.2 点开这个出现

这个设置保护电压

Min rated voltage 2 V (最低电压)

Max rated voltage 32 V (最高电压)
Nominal voltage 24 V (正常电压)

Temperature sensing - VO	290	₩V	这个是 25℃时 采集端电压
Temperature sensing - TO	25.0	° C	这个是设置参考温度值
$\Delta V/\Delta T$	25.0	⊕ mV/° C	这个是没改变一个温度 电压

改变多少 相当于系数

这个是硬件保护,默认不打开,需要打开时把 Enable 使能

下面可以设置保护最大温度 和迟滞温度 就是超过 70 度时保护, 然后温度降到 60 度时恢复, 迟滞温度 10 度

2.4 设置过流值

在这里面可以设置一些过流相关参数

这个是过流系数,也就是电流每改变 1A,电压变化 0.14V

这个是期望保护电流值 也就是 0.5/0.14 (这里若是想改变过流值可以改变过流电压和减小功率电阻)

这个是过流值发生后,BREAK 引脚的电平,这里面选择 Active low ,就是没发生过流时是高电平,发生过流后,引脚变低触发过流保护,关断 PWM 输出

2.5 设置电流采集参数

urrent sensor and signal cond	
Current reading topology	Three Shunt Resistors ▼
ICS gain	1.000 × V/A
Shunt resistor(s) value	0.050 ohm
Amplification on board	V
Amplifying network gain	5.00 Calculat
T-rise	2550 ns
T-noise	2550 ns
Max Readble Current:	6.600 A
	Done

这个是电阻采集方式,选择三电阻采集

上升下降沿都设置为 2550 ns

在这里面设置功率电阻值,运放采集电阻相关参数,首先这个是一个典型的反相放大器,放大器这里不多说,配置好后就会出现刚才那个放大 5 倍的界面。若配置好后跟自己硬件设置的放大倍数不一样,可以直接在放大倍数那个地方改这个值就可以。

2.6 设置 MOS 相关参数

2.7 设置每个相输出极性

下桥输出极性选择高

这个钩点上是强制每一相极性都一样

3. Drive Management 这个里面设置速度反馈方式 ,速度力矩 PID 设置,硬件保护,控制方式等参数 打开后页面如

3.1 设置速度位置反馈方式

Main sensor Auxiliary sen	s∳r		
Sensor selection	 Hall sensors		•
Max measurement errors number Hall Sensors	r before 255	*	
Average speed FIFO depth		6	A
Input Capture filter durat	ion	1.3	usec
nsor selection	Hall sensors		

这个是选择反馈传感器 由于用的是霍尔 方式 这里选择 Hall sensors 还可以选择

集个数

集滤波时间

3.2 设置驱动 pwm 相关参数 频率 死区时间 电流环时间 速度环时间 速度环和电流环相关 PID 参数等

面设置 1000NS

这个是设置速度环参数

参数

这里设置 力矩和励磁 PID 参数

Execution rate	1 ▼ PWM periods
力矩环执行周期 每个 PWM 周期	
Cut-off frequency	6000 🛊 rad/s 切断频率
Torque	Flux
129 🖨 / 4096 🗘 P	129 🛊 / 4096 🛊 P
459 🚔 / 16384 🚔 I	459 🛊 / 16384 🛊 I

这里设置 力矩和 励磁 PID 参数 电机运行不平稳时可以调下这里参数

3.3 设置 感应使能和固件保护

这里面主要是这个保护后 pwm 关闭

过压后关闭 PWM 输出 , 其它按默认点上就可以

3.4 设置用户接口 按钮还是屏幕 还是串口通信

这里面选择

串口双向通信方式 选择后就可以通过上位机控制板子电机运行和查看相应的参数

4. 设置 MCU 硬件引脚相关参数

4.1 设置 MCU 型号 和频率

Clock 时钟选择 8M 外部晶振 CPU 工作频率设置为 72MHz

这里设置 MCU 工作电压 3.3V

4.2 设置电流采集引脚 电压采集引脚和温度采集引脚

4.2.1 首先设置 相电流采集

设置采集电流引脚

这里面得跟原理图引脚一致

4.2.2 设置电压采集引脚

这两个电阻设置跟板子上一致就可以 R1 10K R2 1K

4.2.3 设置温度采集

这里跟母线电压设置一样

4.3 设置外部示波器看相关驱动参数

然后可以选择相关的参数接到示波器去显示。

4.4 设置 驱动输出和速度反馈传感器相关引脚

可以设置驱动引脚和关断输出引脚

MOTOR1:

这里面选择 TIM1 高级定时器 ,然后没有映射其它引脚 ,注意引脚和原理图上应该一致。

PA8 TIM1_CH1 41	PA8	PB8 61	HALL_C PB8
PA9 TIM1 CH2 42		62	I2C SDA1 PB9
PA10TIM1 CH3 43	PA9	PB9 (29)	UARS3TX PB10
PA11 CS 44.	PA10	PB10 30	UARS3RX PB11
PA12 DC 45	PA11	PB11 ⊲ 33 3	BREAK PB12
PA13 SWDAT 46		PB12 34	TIM1 CH1N PB13
PA14 SWCLK 49	PA13/JTMS/SWDIO	PB13	TIM1 CH2N PB14
PA15 JTDI 50	PA14/JTCK/SWCLK	PB14 36	TIM1 CH3N PB15
	PA15/JTDI	PB15 ⊲⊳ °	

设置 霍尔传感器采集引脚

这里设置 TIM2 然后引脚没有映射,注意引脚应该跟原理图上一致

设置串口采集 引脚配置

MOTOR2:

这里面选择 TIM8 高级定时器 ,然后没有映射其它引脚 ,注意引脚和原理图上应该一致。

设置 霍尔传感器采集引脚

这里设置 TIM4 然后引脚没有映射,注意引脚应该跟原理图上一致

串口部分一致:

这里选择串口 3, 波特率 115200 , 没有引脚映射 , 引脚分别为 TX B10 RX B11

4.5 设置用户接口

这个前面已经说过,选择串口双向方式通信

到这里 FOC4.3 库霍尔设置完了,若设置无感方式继续朝下看

设置无感方式

5. 设置无感方式

5.1 首先在 Motor 里选择 sensors 把霍尔和 编码器模式都去掉

5.2 在 Drive Management 里面设置速度反馈方式

启动时可以设置下 Observer 和 PLL 相关参数

5.3 无感启动参数设置 (这个设置很重要,一般都会调多少次)

力矩电流值

这些参数调整跟自己电机所带的负载有关

这个里面设置电机启动时速度和力矩值,速度和电流都有个到最大值设置时间,起到加速拖动目的,实际根据调试时负载和现象去调参数

根据设置会显示这张图, 直观客观的反应速度和力矩设置曲线情况

有时调这些参数感觉电机一直启动不了,这时就应该去调一下 PID 参数和 PLL 相关参数

Speed regulator Execution rate 2.0 ms	Torque and flux regulators Execution rate	1 ▼ PWM periods
1000	Torque 129	Flux P 129
M marian envine	✓ Manual editing enabled	Done

和

如下图所示:

server		PLL			
-22473	×	319	⊕ / 10	5384	P P
19289	*	15	<u></u> ∮ ∫ 65	5536	A I

最终调好现象是一起动就可以转起来,然后可以调速,有的是转一下就停机,一直在转但是不能调速都属于启动不成功,需要继续调这些参数,可能是 ST 无感程序不好还是怎么的,发现 ST 的无感调起来确实麻烦而且不太好调。有客户要是有一定方法可以跟我说下,谢谢。

6. 设置 编码器模式

这个编码器模式主要用在伺服控制上或者对速度要求很高的应用,就可以使用编码器模式,接下来看看如何设置,这里面只说下跟霍尔设置不同的地方,相同的地方,不再叙述

6.1 设置速度反馈方式为编码器模式

器线数 1000

6.2 设置速度反馈方式为编码器

Sensor selection	Quadrati	ure enc	oder	•	这个国	里面选择编码器
模式						
Max measurement errors number	before	255	<u>*</u>	最大测量	量误差个	数 255
Quadrature Encoder						
Average speed FIFO depth			16	*		
Input Capture filter durati	on		0.7	÷ 1	isec	
Reverse counting direction			Project Control			

这个设置速度统计个数和捕获时间

6.3 设置编码器引脚 A B

然后选择对应的引脚

这里面选择 tim2 的 PAO PA1 做为采集引脚,注意要跟原理图一致

到这里 FOC4.3 配置设置参数全部讲解完,有不清楚的地方可以沟通。

三. 如何生成配置文件和如何加载到工程

上面说了如何配置 FOC4.3 霍尔模式,编码器模式,无感模式相关参数,下面说一下如何把设置的参数下载到板子中运行,这也是很多客户问的问题,真是会的不难,不会的在简单感觉都难。所以有个人去引导,会事半工倍。

1. 如何生成头文件

首先,设置文件路径,这个路径应好找

然后点击 会在桌面上生成头文件 会在路径文件里生成相应头文件

C:\Users\Administrator\Desktop\sys\

名称	修改日期	类型
n Control stage parameters.h	2018/7/3 11:10	C/C++ Heade
n Drive parameters.h	2018/7/3 11:10	C/C++ Heade
n PMSM motor parameters.h	2018/7/3 11:10	C/C++ Heade
n Power stage parameters.h	2018/7/3 11:10	C/C++ Heade
stm32f10x_MC_it.c	2018/7/3 11:10	C Source

再把刚生成的头文件放进工程里的 SystemDriveParams 文件夹下替换原先的配置文件就可以

如果替换时发生另一个软件正在使用,可以把打开的 Keil 工程关掉。

2. 如何编译下载程序

上面把头文件替换过,下面开始编译下载程序

程序路径在

STM32 PMSM FOC 4.3 -DOUBLE HALL - OLED\Web\Project\MDK-ARM 打开

STM32F10x_Workspace.uvmpw	2017/1/9 22:22	礦ision4 Multi-Pr	1 KB
---------------------------	----------------	------------------	------

打开后如下

然后设置单片机型号 板子上是 103RCT6, 很多问我要不要改成 103RBT6,这个不需要改默认 就可以 103RCT6

再选择下载工具(J-LINK)

设置下单片机 FLASH

选择 SSTM32F10X Med-density 128k 这个 flash

很多客户安装 keil 时,系统不会带这个 128k flash,这时可以参考我的那个 客户反应问题文档里面有说。

还有关于硬件 JLINK swd 接线 , 那个文档也有说

下载时,一般我会应 jlink swd 给板子供电,有的客户电源杂波太多,下载线过长,下载时会出错,用 jlink 给板子供电,效果很好。

3. 利用 ST Motor Control Workbench v4.3 监控

电机板子程序下载好后,就可以通电测试,接上 USB 转串口,打开电源,板子上有个小灯会点亮。

没问题软件会成功连接到上位机

电机启动成功后,这个里面可以设置电机转速

若转动不平滑或者启动时抖动太大,可以设置下面 PID

这几个参数,都是在线时,实时改相应变量,掉电后不保存的,参数调好后,可以按照前面步骤去修改下载即可。