Online learning in repeated matrix games

Yoav Freund

January 31, 2011

Repeated Games

Repeated Games

Fictitious play

Hannan Consistency

Repeated Games

Fictitious play

Hannan Consistency

Hannan set

Repeated Games

Fictitious play

Hannan Consistency

Hannan set

Online strategies that converge to a correlated equilibrium

Repeated Games

Fictitious play

Hannan Consistency

Hannan set

Online strategies that converge to a correlated equilibrium

Repeated Zero-sum Games

Repeated Games

Fictitious play

Hannan Consistency

Hannan set

Online strategies that converge to a correlated equilibrium

Repeated Zero-sum Games

The basic algorithm

Repeated Games

Fictitious play

Hannan Consistency

Hannan set

Online strategies that converge to a correlated equilibrium

Repeated Zero-sum Games

The basic algorithm

The basic analysis

Repeated Games

Fictitious play

Hannan Consistency

Hannan set

Online strategies that converge to a correlated equilibrium

Repeated Zero-sum Games

The basic algorithm

The basic analysis

Proof of minmax theorem

Game between two players.

- Game between two players.
- Defined by two n × m matrices ,C

- Game between two players.
- Defined by two n × m matrices ,C
- ▶ Row player chooses $i \in \{1, ..., n\}$

- Game between two players.
- ▶ Defined by two $n \times m$ matrices ,**C**
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$

- Game between two players.
- Defined by two n × m matrices ,C
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- Players Observe each other's action.

- Game between two players.
- Defined by two n × m matrices ,C
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- Players Observe each other's action.
- ▶ Row player gains $(i, j) \in [0, 1]$

- Game between two players.
- Defined by two n × m matrices ,C
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- Players Observe each other's action.
- ▶ Row player gains $(i, j) \in [0, 1]$
- ► Column player gains $C(i, j) \in [0, 1]$

- Game between two players.
- Defined by two n × m matrices ,C
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- Players Observe each other's action.
- ▶ Row player gains $(i, j) \in [0, 1]$
- ► Column player gains $C(i,j) \in [0,1]$
- Game repeated many times.

- Game between two players.
- Defined by two n × m matrices ,C
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- Players Observe each other's action.
- ▶ Row player gains $(i, j) \in [0, 1]$
- ► Column player gains $C(i,j) \in [0,1]$
- Game repeated many times.
- Player choices can depend on the past.

▶ 1 The players have diminising regret (External or internal)

- ▶ 1 The players have diminising regret (External or internal)
- ▶ 2 The empirical distributions over the actions converge to a set of distributions over action k-tuples $\langle i_1, i_2, i_3, \dots, i_k \rangle$

- ▶ 1 The players have diminising regret (External or internal)
- ▶ 2 The empirical distributions over the actions converge to a set of distributions over action k-tuples $\langle i_1, i_2, i_3, \dots, i_k \rangle$
- ► The set of Nash Equilibria.

- ▶ 1 The players have diminising regret (External or internal)
- ▶ 2 The empirical distributions over the actions converge to a set of distributions over action k-tuples $\langle i_1, i_2, i_3, \dots, i_k \rangle$
- ► The set of Nash Equilibria.
- The set of Correlated equilibria.

▶ **Strategy:** Use best response to the empirical distribution of the actions of the opponent so far.

- Strategy: Use best response to the empirical distribution of the actions of the opponent so far.
- Same as "follow the leader".

- Strategy: Use best response to the empirical distribution of the actions of the opponent so far.
- Same as "follow the leader".
- If both sides use fictitious play and the game is two-player zero sum game, then empirical distribution converges to the set of Nash Equilibria.

- Strategy: Use best response to the empirical distribution of the actions of the opponent so far.
- Same as "follow the leader".
- If both sides use fictitious play and the game is two-player zero sum game, then empirical distribution converges to the set of Nash Equilibria.
- If each player has only two actions, then covergence to Nash set also guaranteed.

- Strategy: Use best response to the empirical distribution of the actions of the opponent so far.
- Same as "follow the leader".
- If both sides use fictitious play and the game is two-player zero sum game, then empirical distribution converges to the set of Nash Equilibria.
- If each player has only two actions, then covergence to Nash set also guaranteed.
- Convergence to Nash set is not guaranteed in general.

- Strategy: Use best response to the empirical distribution of the actions of the opponent so far.
- Same as "follow the leader".
- If both sides use fictitious play and the game is two-player zero sum game, then empirical distribution converges to the set of Nash Equilibria.
- If each player has only two actions, then covergence to Nash set also guaranteed.
- Convergence to Nash set is not guaranteed in general.
- What if the other side does not follow fictitious play?

- Strategy: Use best response to the empirical distribution of the actions of the opponent so far.
- Same as "follow the leader".
- If both sides use fictitious play and the game is two-player zero sum game, then empirical distribution converges to the set of Nash Equilibria.
- If each player has only two actions, then covergence to Nash set also guaranteed.
- Convergence to Nash set is not guaranteed in general.
- What if the other side does not follow fictitious play?
- Conforming player can suffer non-diminishing regret.

Approximation to Bayes risk in reapeated play, Contributions to the theory of Games, 1957.

- Approximation to Bayes risk in reapeated play, Contributions to the theory of Games, 1957.
- ▶ 1957: IBM announces it will no longer be using vacuum tubes and releases its first computer that had 2000 transistors.

- Approximation to Bayes risk in reapeated play, Contributions to the theory of Games, 1957.
- ▶ 1957: IBM announces it will no longer be using vacuum tubes and releases its first computer that had 2000 transistors.
- ▶ Instead of using "follow the leader" use "follow the perturbed leader", i.e. add a small amount of noise to the cumulative utility of each action, *then* pick the leader.

- Approximation to Bayes risk in reapeated play, Contributions to the theory of Games, 1957.
- ▶ 1957: IBM announces it will no longer be using vacuum tubes and releases its first computer that had 2000 transistors.
- ▶ Instead of using "follow the leader" use "follow the perturbed leader", i.e. add a small amount of noise to the cumulative utility of each action, *then* pick the leader.
- ▶ Hannan consistency: Cumulative regret / Cumulative utility \rightarrow 0.

Hannan's Set

Diminishing regret relative to playing a fixed pure strategy.

Hannan's Set

- Diminishing regret relative to playing a fixed pure strategy.
- Hannan's set contains all joint distributions over player's action where all players have no external regret.

Hannan's Set

- Diminishing regret relative to playing a fixed pure strategy.
- Hannan's set contains all joint distributions over player's action where all players have no external regret.
- ► Hannan's set contains the set of correlated equilibrium which contains the set of Nash Equilibria.

Online strategies that converge to a correlated equilibrium

Reaching correlated equilibrium

By all players minimizing internal regret.

Reaching correlated equilibrium

- By all players minimizing internal regret.
- By making a calibrated predictions of the opponent's next move and playing best response.

Game between two players.

- Game between two players.
- ▶ Defined by n × m matrix M

- Game between two players.
- Defined by n x m matrix M
- ▶ Row player chooses $i \in \{1, ..., n\}$

- Game between two players.
- Defined by n x m matrix M
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$

- Game between two players.
- Defined by n x m matrix M
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- ▶ Row player gains $M(i,j) \in [0,1]$

- Game between two players.
- Defined by n x m matrix M
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- ▶ Row player gains $M(i,j) \in [0,1]$
- ▶ Column player looses M(i,j)

- Game between two players.
- Defined by n x m matrix M
- ▶ Row player chooses $i \in \{1, ..., n\}$
- ▶ Column player chooses $j \in \{1, ..., m\}$
- ▶ Row player gains $M(i,j) \in [0,1]$
- ▶ Column player looses M(i,j)
- Game repeated many times.

► Choosing a single action = pure strategy.

- Choosing a single action = pure strategy.
- Choosing a Distribution over actions = mixed strategy.

- Choosing a single action = pure strategy.
- Choosing a Distribution over actions = mixed strategy.
- Row player chooses dist. over rows P

- Choosing a single action = pure strategy.
- Choosing a Distribution over actions = mixed strategy.
- Row player chooses dist. over rows P
- Column player chooses dist. over columns Q

- Choosing a single action = pure strategy.
- Choosing a Distribution over actions = mixed strategy.
- Row player chooses dist. over rows P
- Column player chooses dist. over columns Q
- ► Row player gains M(P, Q).

- Choosing a single action = pure strategy.
- Choosing a Distribution over actions = mixed strategy.
- Row player chooses dist. over rows P
- Column player chooses dist. over columns Q
- ► Row player gains M(P, Q).
- ► Column player looses M(P, Q).

Mixed strategies in matrix notation

$$(A \times B)_{12} = \sum_{r=1}^{4} a_{1r} b_{r2} = a_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32} + a_{14} b_{42}$$

Mixed strategies in matrix notation

$$(A \times B)_{12} = \sum_{r=1}^{4} a_{1r} b_{r2} = a_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32} + a_{14} b_{42}$$

 \mathbf{Q} is a column vector. \mathbf{P}^T is a row vector.

Mixed strategies in matrix notation

$$(A \times B)_{12} = \sum_{r=1}^{4} a_{1r} b_{r2} = a_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32} + a_{14} b_{42}$$

 \mathbf{Q} is a column vector. \mathbf{P}^{T} is a row vector.

$$\mathbf{M}(\mathbf{P}, \mathbf{Q}) = \mathbf{P}^T \mathbf{M} \mathbf{Q} = \sum_{i=1}^n \sum_{j=1}^m \mathbf{P}(i) \mathbf{M}(i, j) \mathbf{Q}(j)$$

The basic algorithm

Choose an initial distribution P₁

Choose an initial distribution P₁

$$\mathbf{P}_{t+1}(i) = \mathbf{P}_t(i) \frac{e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}}{Z_t}$$

Choose an initial distribution P₁

•

$$\mathbf{P}_{t+1}(i) = \mathbf{P}_t(i) \frac{e^{-\eta \mathbf{M}(i, \mathbf{Q}_t)}}{Z_t}$$

▶ Where $Z_t = \sum_{i=1}^n \mathbf{P}_t(i)e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}$

Choose an initial distribution P₁

$$\mathbf{P}_{t+1}(i) = \mathbf{P}_t(i) \frac{e^{-\eta \mathbf{M}(i, \mathbf{Q}_t)}}{Z_t}$$

- ▶ Where $Z_t = \sum_{i=1}^n \mathbf{P}_t(i)e^{-\eta \mathbf{M}(i,\mathbf{Q}_t)}$
- ▶ η > 0 is the learning rate.

Main Theorem

► For any game matrix M.

Main Theorem

- ► For any game matrix M.
- ▶ Any sequence of mixed strat. Q₁,...,Q_T

Main Theorem

- For any game matrix M.
- ▶ Any sequence of mixed strat. Q₁,...,Q_T
- ► The sequence $P_1, ..., P_T$ produced by basic alg using $\eta > 0$ satisfies

$$\sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \left(\frac{1}{1 - e^{-\eta}}\right) \min_{\mathbf{P}} \left[\eta \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + \text{RE}\left(\mathbf{P} \parallel \mathbf{P}_{1}\right)\right]$$

Corollary

▶ Setting
$$\eta = \ln\left(1 + \sqrt{\frac{2 \ln n}{T}}\right)$$

Corollary

- Setting $\eta = \ln\left(1 + \sqrt{\frac{2 \ln n}{T}}\right)$
- the average per-trial loss is

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_t) + \Delta_{T,n}$$

Corollary

- ▶ Setting $\eta = \ln\left(1 + \sqrt{\frac{2 \ln n}{T}}\right)$
- the average per-trial loss is

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}_t) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_t) + \Delta_{T,n}$$

Where

$$\Delta_{T,n} = \sqrt{\frac{2 \ln n}{T}} + \frac{\ln n}{T} = O\left(\sqrt{\frac{\ln n}{T}}\right).$$

Main Lemma

On any iteration t

Main Lemma

On any iteration t

For any mixed strategy P

Main Lemma

On any iteration t

For any mixed strategy P

$$\operatorname{RE}\left(\tilde{\boldsymbol{\mathsf{P}}} \ \| \ \boldsymbol{\mathsf{P}}_{t+1}\right) - \operatorname{RE}\left(\tilde{\boldsymbol{\mathsf{P}}} \ \| \ \boldsymbol{\mathsf{P}}_{t}\right) \leq \eta \boldsymbol{\mathsf{M}}(\tilde{\boldsymbol{\mathsf{P}}}, \boldsymbol{\mathsf{Q}}_{t}) - (1 - e^{-\eta}) \boldsymbol{\mathsf{M}}(\boldsymbol{\mathsf{P}}_{t}, \boldsymbol{\mathsf{Q}}_{t})$$

Visual intuition

$$\mathrm{RE}\left(\tilde{\mathbf{P}} \ \| \ \mathbf{P}_{t+1}\right) - \mathrm{RE}\left(\tilde{\mathbf{P}} \ \| \ \mathbf{P}_{t}\right) \leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) - (1 - e^{-\eta})\mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})$$

Visual intuition

$$\operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - \operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right) \leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) - (1 - e^{-\eta})\mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})$$

Proof of Lemma (1)

$$\operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - \operatorname{RE}\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right)$$

Proof of Lemma (1)

$$RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right)$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t+1}(i)} - \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t}(i)}$$

$$RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right)$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t+1}(i)} - \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t}(i)}$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\mathbf{P}_{t}(i)}{\mathbf{P}_{t+1}(i)}$$

$$RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t+1}\right) - RE\left(\tilde{\mathbf{P}} \parallel \mathbf{P}_{t}\right)$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t+1}(i)} - \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\tilde{\mathbf{P}}(i)}{\mathbf{P}_{t}(i)}$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{\mathbf{P}_{t}(i)}{\mathbf{P}_{t+1}(i)}$$

$$= \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \ln \frac{Z_{t}}{e^{\eta \mathbf{M}(i, \mathbf{Q}_{t})}}$$

$$= \eta \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \mathbf{M}(i, \mathbf{Q}_{t}) + \ln Z_{t}$$

$$= \eta \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \mathbf{M}(i, \mathbf{Q}_{t}) + \ln Z_{t}$$

$$\leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left[\sum_{i=1}^{n} \mathbf{P}_{t}(i) \left(1 - (1 - e^{-\eta}) \mathbf{M}(i, \mathbf{Q}_{t}) \right) \right]$$

$$= \eta \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \mathbf{M}(i, \mathbf{Q}_{t}) + \ln Z_{t}$$

$$\leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left[\sum_{i=1}^{n} \mathbf{P}_{t}(i) \left(1 - (1 - e^{-\eta}) \mathbf{M}(i, \mathbf{Q}_{t}) \right) \right]$$

$$= \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left(1 - (1 - e^{-\eta}) \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \right)$$

$$= \eta \sum_{i=1}^{n} \tilde{\mathbf{P}}(i) \mathbf{M}(i, \mathbf{Q}_{t}) + \ln Z_{t}$$

$$\leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left[\sum_{i=1}^{n} \mathbf{P}_{t}(i) \left(1 - (1 - e^{-\eta}) \mathbf{M}(i, \mathbf{Q}_{t}) \right) \right]$$

$$= \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + \ln \left(1 - (1 - e^{-\eta}) \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \right)$$

$$\leq \eta \mathbf{M}(\tilde{\mathbf{P}}, \mathbf{Q}_{t}) + (1 - e^{-\eta}) \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t})$$

The minmax Theorem

John von Neumann, 1928.

The minmax Theorem

John von Neumann, 1928.

$$\min_{\textbf{P}} \max_{\textbf{Q}} \textbf{M}(\textbf{P},\textbf{Q}) \leq \max_{\textbf{Q}} \min_{\textbf{P}} \textbf{M}(\textbf{P},\textbf{Q})$$

The minmax Theorem

John von Neumann, 1928.

$$\min_{\textbf{P}} \max_{\textbf{Q}} \textbf{M}(\textbf{P},\textbf{Q}) \leq \max_{\textbf{Q}} \min_{\textbf{P}} \textbf{M}(\textbf{P},\textbf{Q})$$

In words: for mixed strategies, choosing second gives no advantage.

Row player chooses P_t using learning alg.

Row player chooses P_t using learning alg. Column player chooses Q_t after row player so that $Q_t = \arg \max_{Q} M(P_t, Q)$

Row player chooses P_t using learning alg. Column player chooses Q_t after row player so that $Q_t = \arg \max_{Q} M(P_t, Q)$

$$\mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q})$$
Let $\overline{\mathbf{P}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_t$ and $\overline{\mathbf{Q}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{Q}_t$

Row player chooses P_t using learning alg. Column player chooses Q_t after row player so that

$$\begin{array}{l} \mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}) \\ \mathrm{Let} \ \overline{\mathbf{P}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_t \ \mathrm{and} \ \overline{\mathbf{Q}} \doteq \frac{1}{T} \sum_{t=1}^{T} \mathbf{Q}_t \end{array}$$

$$\min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{P}^{T} \mathbf{M} \mathbf{Q} \leq \max_{\mathbf{Q}} \overline{\mathbf{P}}^{T} \mathbf{M} \mathbf{Q}$$

Row player chooses \mathbf{P}_t using learning alg. Column player chooses \mathbf{Q}_t after row player so that

$$\begin{array}{l} \mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}) \\ \mathrm{Let} \ \overline{\mathbf{P}} \doteq \frac{1}{T} {\sum_{t=1}^T} \mathbf{P}_t \ \mathrm{and} \ \overline{\mathbf{Q}} \doteq \frac{1}{T} {\sum_{t=1}^T} \mathbf{Q}_t \end{array}$$

$$\begin{aligned} \min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} &\leq \max_{\mathbf{Q}} \overline{\mathbf{P}}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \\ &= \max_{\mathbf{Q}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \quad \text{by definition of } \overline{\mathbf{P}} \end{aligned}$$

Row player chooses \mathbf{P}_t using learning alg. Column player chooses \mathbf{Q}_t after row player so that

$$\begin{array}{l} \mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q}) \\ \mathrm{Let} \ \overline{\mathbf{P}} \doteq \frac{1}{T} {\sum_{t=1}^T} \mathbf{P}_t \ \mathrm{and} \ \overline{\mathbf{Q}} \doteq \frac{1}{T} {\sum_{t=1}^T} \mathbf{Q}_t \end{array}$$

$$\begin{aligned} \min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} &\leq \max_{\mathbf{Q}} \overline{\mathbf{P}}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \\ &= \max_{\mathbf{Q}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \quad \text{by definition of } \overline{\mathbf{P}} \\ &\leq \frac{1}{T} \sum_{\mathbf{Q}} \max_{\mathbf{Q}} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \end{aligned}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t}$$

by definition of \mathbf{Q}_t

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t}$$
 by definition of \mathbf{Q}_{t}

$$\leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t} + \Delta_{T,n}$$
 by the Corollary

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{T} \mathbf{M} \mathbf{Q}_{t}$$
 by definition of \mathbf{Q}_{t}
$$\leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}^{T} \mathbf{M} \mathbf{Q}_{t} + \Delta_{T,n}$$
 by the Corollary
$$= \min_{\mathbf{P}} \mathbf{P}^{T} \mathbf{M} \overline{\mathbf{Q}} + \Delta_{T,n}$$
 by definition of $\overline{\mathbf{Q}}$

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{T} \mathbf{M} \mathbf{Q}_{t} \qquad \text{by definition of } \mathbf{Q}_{t}$$

$$\leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}^{T} \mathbf{M} \mathbf{Q}_{t} + \Delta_{T,n} \quad \text{by the Corollary}$$

$$= \min_{\mathbf{P}} \mathbf{P}^{T} \mathbf{M} \overline{\mathbf{Q}} + \Delta_{T,n} \quad \text{by definition of } \overline{\mathbf{Q}}$$

$$\leq \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{P}^{T} \mathbf{M} \mathbf{Q} + \Delta_{T,n}.$$

$$= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{T} \mathbf{M} \mathbf{Q}_{t}$$
 by definition of \mathbf{Q}_{t}

$$\leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}^{T} \mathbf{M} \mathbf{Q}_{t} + \Delta_{T,n}$$
 by the Corollary
$$= \min_{\mathbf{P}} \mathbf{P}^{T} \mathbf{M} \overline{\mathbf{Q}} + \Delta_{T,n}$$
 by definition of $\overline{\mathbf{Q}}$

$$\leq \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{P}^{T} \mathbf{M} \mathbf{Q} + \Delta_{T,n}.$$

but $\Delta_{T,n}$ can be set arbitrarily small.

The minmax theorem proves the existence of an Equilibrium.

- The minmax theorem proves the existence of an Equilibrium.
- Learning guarantees no regret with respect to the past.

- The minmax theorem proves the existence of an Equilibrium.
- Learning guarantees no regret with respect to the past.
- If all sides use learning, then game will converge to minmax equilibrium.

- The minmax theorem proves the existence of an Equilibrium.
- Learning guarantees no regret with respect to the past.
- If all sides use learning, then game will converge to minmax equilibrium.
- If opponent is not optimally adversarial (limited by knowledge, computationa power...) then learning gives better performance than min-max.

- The minmax theorem proves the existence of an Equilibrium.
- Learning guarantees no regret with respect to the past.
- If all sides use learning, then game will converge to minmax equilibrium.
- If opponent is not optimally adversarial (limited by knowledge, computationa power...) then learning gives better performance than min-max.
- Is it realistic to assume that markets are at equilibrium?

- The minmax theorem proves the existence of an Equilibrium.
- Learning guarantees no regret with respect to the past.
- If all sides use learning, then game will converge to minmax equilibrium.
- If opponent is not optimally adversarial (limited by knowledge, computationa power...) then learning gives better performance than min-max.
- Is it realistic to assume that markets are at equilibrium?
- If game is not zero sum (allows incentives to collaborate) and all players use learning then game converges to correlated equilibrium.