

Introduction

Description of Data

1. Data variables

Data set is from Kaggle (generated from Spotify API); ~40,000 observations with 11 variables.

- **Popularity**: a number ranged from 0 to 100 representing how popular the song is; larger value means more popular.
- Danceability: a number ranged from 0 to 1 representing how likely can we dance through the music; larger value means more possible to dance.
- **Acousticness**: a number ranged from 0 to 1 measuring if the song uses instruments and no electronic components; larger value means more instruments.
- Energy: a number ranged from 0 to 1 measuring if the song makes you want to move forward; larger value means more energy.
- **Instrumental**: a number between 0 to 1 representing if the music is instrumental versus vocal; the higher the more instrumental the music is.
- **Liveness**: A number interpreting if the music is "live"; higher means more possibility.

1. Data variables

- **Valence**: measures positiveness; higher value means more positive.
- Loudness: records loudness in dB.
- Speechiness: Measures the presence of spoken words in a song.
- Tempo: How fast the song is in BPM (beats per minute).
- Music Genre:
 - We encode this data three times:
 - When we do the music classification models, we will have variable = 1 for classical music, 0 otherwise.
 - When we do K-means model for predicting music popularity (spoiler alert!), we will encode 1 for blues, 2 for anime, 3 for alternative, 4 for rock, 5 for rap, 6 for jazz, 7 for hip-hop, 8 for electronic, 9 for country, and 10 for classical
 - When we do other models for predicting music popularity, we treat it more like "time," so that we can see how new and past music genres affect popularity. So 1 for classical, 2 for blues, rock, jazz, country, and 3 for anime, alternative, rap, hip-hop, electronic.

2. Correlation plot

(for music_genre takes value of 0 & 1)

- Music genre does not show significant relationship between any variables - not determined by one variable.
- Potential models: logit, kNN, classification trees, and more.
- Strong relationship between loudness and instrumentalness.
- Instrumentalness and valence seem to have strong relationship with other variables.
- Interesting: valence and music genre has a positive relationship (maybe subject to particular songs)

1111.7

Music genre classification

Logit model - analysis

```
Coefficients:
                  Estimate Std. Error z value
                                                  Pr(>|z|)
                                      4.244
 (Intercept)
               1.1203048813 0.2639513331
                                                   0.00002192
popularity
             acousticness
             -0.5871963587 0.1293019729 -4.541
                                                            * * *
                                                   0.00000559
duration ms 0.000010078 0.0000002168
                                      4.649
                                                   0.00000334
                                                            ***
              -1.9516031187 0.2350871971 -8.302 < 0.0000000000000000
 energy
 * * *
               1.1959095785 0.1383227257 8.646 < 0.0000000000000000
                                                            * * *
 liveness
                                                            * * *
 loudness
           0.0312907082 0.0091158989 3.433
                                                    0.000598
 speechiness
           -4.6914480005 0.4387415952 -10.693 < 0.0000000000000000
 valence
              3.5800010113 0.1383572598 25.875 < 0.0000000000000000
 Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
                                                         Popularity
                                                                         Duration
 (Dispersion parameter for binomial family taken to be 1)
                                                         Acousticness
                                                                         Liveness
                                                         Danceability
    Null deviance: 13163 on 20279 degrees of freedom
                                                                         Loudness
                                                         Energy
 Residual deviance: 10651 on 20269 degrees of freedom
                                                                         valence
                                                         instrumentalness
AIC: 10673
                                                         speechiness
Number of Fisher Scoring iterations: 6
```

Results of logit model & LDA

Results of QDA & kNN

Results of logit model, LDA, QDA, kNN

Correction Rate in Predicting Classical Songs

Logit	0.050
LDA	0.056
QDA	0.490
KNN (k=1)	0.166
KNN (k=10)	0.001
KNN (k=100)	0

Classification Tree

(Popularity plays an important role!)

Conclusion:

- Tree Model has best training error rate
- Best performing model is LDA, which has highest correct up rate in predicting classical songs.
- Popularity is essential in classifying → move next

III.2

Predicting popularity

K-means

Blues	Anime	Alternative	Rock	Rap	Jazz	Нір-Нор	Electronic	Country	Classical
1	2	3	4	5	6	7	8	9	10

Rearrange Music Genre Signal

Blues	Anime	Alternative	Rock	Rap	Jazz	Нір-Нор	Electronic	Country	Classical
2	3	3	2	3	2	3	3	2	1

Regression Tree

Pruned

Cross Validation

Test MSE: 185.4912

Random Forest

Call:

randomForest(formula = popularity ~ ., data = data2, mtry = 10, importance = TRUE, subset = train) Type of random forest: regression Number of trees: 500 No. of variables tried at each split: 10

Mean of squared residuals: 143.3584 % Var explained: 40.13

Comment:

- Does not fit data well only 40% var explained;
- However, MSE is lower than regression tree
- In general, yields similar results with regression tree in terms of importance of variables

mse.rf10 = 142.3174mse.rf6 = 141.7925

	%IncMSE	IncNodePurity
acousticness	53.12549	428671.5
danceability	89.21148	449387.1
duration_ms	88.58486	418156.8
energy	77.70694	386965.2
instrumentalness	177.41350	797470.0
liveness	44.20859	316378.6
loudness	59.45598	534698.1
speechiness	115.41905	410276.7
tempo	45.94167	298115.9
valence	64.56217	322327.5
music genre	119.83352	333873.3

Random Forest

Importance /

GAM

Analysis of Deviance Table

Model 1: popularity ~ s(speechiness, 2) + instrumentalness Model 2: popularity ~ s(speechiness, 2) + instrumentalness + music_genre Model 3: popularity ~ s(speechiness, 10) + instrumentalness + music_genre

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 20276 4097281

2 20275 4046752 1.0000 50529 253.8285 < 0.00000000000000022 ***

3 20267 4034474 7.9996 12278 7.7103 0.0000000002265 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model	Test RMSE		
Model 1	16.60855		
Model 2	16.69624		
Model 3	16.70890		

Conclusion + Further work

Conclusion and Further work

- For predicting music genre:
 - o LDA performs best.
 - Random forecast gives desirable prediction in popularity.
 - Even though tree models have straightforward presentation, their accuracy is not well enough to be considered.
- For predicting popularity:
 - o Random forest is the best in terms of MSE.
- Need more data! Perhaps data on years of release.
- May cause more confusion if one song has more than one genre.

Thank you!

Data set from Kaggle: https://www.kaggle.com/vicsuperman/prediction-ofmusic-genre