Sistemas de Coordenadas e Transformações

Problemas Tipo:

- 1. Dois sistemas de coordenadas A e B estão fixos relativamente a um sistema inercial base e estão relacionados pela matriz de transformação ${}^A_B T$, a qual traduz a rotação de B sobre o eixo ${}^A \vec{r} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^T$ de um ângulo $\phi = 45^\circ$.
 - a. Represente numericamente a matriz de transformação ${}_B^AT$ e obtenha os ângulos de Roll-Pitch-Yaw equivalentes.
 - b. Qual a nova matriz de transformação que relaciona os sistemas de coordenadas $A \in B$ após se terem realizado os seguintes movimentos:
 - i. Rodar o sistema de coordenadas A de um ângulo igual a $\frac{\pi}{3}$ sobre o eixo de rotação $^{A}\vec{r}$;
 - ii. Deslocar o sistema de coordenadas B em 4 unidades segundo o eixo de rotação ${}^A\vec{r}$;
 - c. Qual o deslocamento a realizar, se na sequência de movimentos da alínea anterior substituir o deslocamento realizado segundo a direção $^A\vec{r}$ por deslocamentos realizados segundo os eixos do sistema referencial A.
 - d. Apresente graficamente as sequências de movimentos propostas nas alíneas b) e c).
 - e. Qual a expressão que representa a localização da origem do referencial *B* após ter realizado os movimentos propostos em b)? Qual a nova localização?
- 2. Dois sistemas de coordenadas A e B estão fixos relativamente a um sistema inercial base e estão relacionados pela matriz de transformação ${}^{A}_{B}T$. O sistema de coordenadas A encontra-se localizado em $t = \begin{bmatrix} -2 & 3 & -1 \end{bmatrix}^{T}$ relativamente ao sistema de coordenadas B e a matriz de rotação ${}^{A}_{B}R$ é representada pelos parâmetros de Euler que se apresentam

$$\varepsilon_1 = \frac{\sqrt{2}}{4}$$
 $\varepsilon_2 = \frac{2 - \sqrt{2}}{4}$ $\varepsilon_3 = \frac{2 + \sqrt{2}}{4}$ $\varepsilon_4 = \frac{\sqrt{2}}{4}$

- a) Represente numericamente a matriz de transformação ${}^{A}_{B}T$ e obtenha os ângulos de Roll-Pitch-Yaw equivalentes.
- b) Qual a nova matriz de transformação que relaciona os sistemas de coordenadas A e B após se terem realizado os seguintes movimentos:
 - 1. Rodar o sistema de coordenadas B de um ângulo igual a $\frac{\pi}{2}$ sobre o eixo de rotação $\vec{r} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$;
 - 2. Deslocar o sistema de coordenadas A em 4 unidades segundo o eixo de rotação $^{\it B}\vec{r}$;
 - 3. Rodar o atual sistema de coordenadas A de um ângulo igual a $-\frac{\pi}{2}$ sobre o eixo de rotação OY_B .
- c) Apresente graficamente a sequência de movimentos proposta na alínea b).
- d) Apresente uma sequência alternativa de movimentos que se traduza na mesma matriz de transformação.
- e) Qual a expressão que representa a localização da origem do sistema de coordenadas B no sistema de coordenadas A após ter realizado os movimentos propostos em b)? Qual a nova localização?
- 3. Dois sistemas de coordenadas $A \in B$ estão fixos relativamente a um sistema inercial base. Sabendo que $\hat{X}_B = \frac{\sqrt{2}}{2}\hat{X}_A \frac{\sqrt{2}}{2}\hat{Z}_A$, $\hat{Y}_B = \hat{Y}_A$, $\hat{Z}_B = \frac{\sqrt{2}}{2}\hat{X}_A + \frac{\sqrt{2}}{2}\hat{Z}_A$, e que $^At_{ori_B} = \begin{bmatrix} 5 & -3 & 1 \end{bmatrix}$, obtenha;
 - f) A sequência de movimento a realizar de modo a recolocar o sistema de coordenadas B coincidente com o sistema de coordenadas A, i.e., ${}_{B}^{A}T = I_{4x4}$.
 - g) Obtenha os valores do quaternião unitário da matriz ${}^{A}_{B}R$ ($[e_1,e_2,e_3,e_4]$), e com base nos valores obtidos calcule o eixo de rotação arbitrário ${}^{A}\vec{r}$ e correspondente ângulo de rotação ϕ .
 - h) Obtenha a transformação $_{B_N}^BT$ que resulta da rotação do sistema de coordenadas B sobre o eixo $^A\vec{r}$ de um ângulo ϕ igual a $^{7/3}$.
 - i) Considere o vector, ${}^{A}V = \begin{bmatrix} -3 & 4 & 1 \end{bmatrix}^{T}$, expresso no sistema de coordenadas A. De que forma o vector se altera se for expresso no referencial B? São ${}^{A}V$ e ${}^{B}V$ o mesmo vector? Comente do ponto de vista das suas magnitudes e direções. Caso sejam diferentes, de que forma se pode transformar o vector ${}^{A}V$ em ${}^{B}V$? Obtenha ${}^{B}V$ partindo do conhecimento de ${}^{A}V$.
- 4. Considere um espaço de trabalho constituído por um manipulador equipado com uma garra, cuja localização da garra é definida na sua base através da transformação ${}_G^0T = {}_6^0T{}_G^6T$. O manipulador está colocado num espaço de trabalho, sendo a pose do robot nesse espaço definida através de ${}_0^WT$. O espaço de trabalho é monitorizado por uma câmara definida por ${}_C^WT$, sendo a pose da peça a manusear obtida no referencial da câmara e definida por ${}_O^CT$.

Obtenha:

- a) A transformação ${}_{6}^{0}T$ que assegura a colocação da garra na posição de agarrar a peça;
- b) A nova transformação ${}_{0}^{c}T$ após o robot ter movido a peça através de uma rotação θ segundo o seu eixo OZ.

Se após ter movido a peça, rodar a câmara de um ângulo α sobre o eixo $\vec{r} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$, qual a expressão que representa a nova localização da câmara no referencial da garra $\binom{G}{C_N}T$?

- 5. Considere a existência de dois sistemas de coordenadas A e B, inicialmente coincidentes aos quais é aplicada a seguinte sequencia de movimentos:
 - Deslocação do sistema de coordenadas B em 4 unidades segundo o eixo ${}^{4}\overline{r} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{T}$.
 - Rotação do sistema de coordenadas B de um ângulo igual a $-\pi/2$ segundo o eixo $^{A}\overline{r}$.
 - Rotação do sistema de coordenadas A de um ângulo igual a $-\pi/2$ segundo o eixo $\hat{Z}_{\scriptscriptstyle R}$ do referencial B atual.
 - a) Obtenha a matriz de transformação que mapeia B em A, i.e., ${}^{A}_{B}T$.
 - b) Represente a sequência de movimentos realizada anteriormente através da conjugação de um movimento translacional puro t combinado com uma rotação sobre um eixo arbitrário ${}^{A}\overline{r}$ de um ângulo ϕ . Obtenha os valores para ϕ , t e ${}^{A}\overline{r}$.
- 6. Considere a existência de dois sistemas de coordenadas A e B, inicialmente coincidentes aos quais é aplicada a seguinte sequencia de movimentos:
 - 1. Rotação do sistema de coordenadas B de um ângulo igual a $\frac{\pi}{2}$ segundo o eixo $^B\overline{r}=\begin{bmatrix}0&1&1\end{bmatrix}^T$.
 - 2. Deslocação do sistema de coordenadas B em três unidades ao longo do eixo ${}^B \bar{r}$.
 - 3. Rotação do sistema de coordenadas A de um ângulo igual a $-\pi/4$ segundo o atual eixo $\hat{X}_{\scriptscriptstyle B}$.
 - a) Obtenha a matriz de transformação que mapeia B em A, i.e., ${}^{A}_{B}\!T$.
 - b) Considere agora a existência de um terceiro referencial C cuja orientação é idêntica à orientação de B e que se encontra localizado em $^Bt_{orig_C}=\begin{bmatrix} -2 & 5 & 3 \end{bmatrix}^T$. Obtenha a expressão que representa a origem do sistema de coordenadas C no sistema de coordenadas A, i.e., $^Ap_{orig_C}$. Obtenha a matriz de transformação A_CT .

- c) Se aplicar ao sistema de coordenadas C uma rotação igual a $\pi/4$ segundo $^B\bar{r}$ centrado na origem de A, qual a nova transformação A_cT . Considerando que os 3 sistemas de coordenadas {A,B,C}, representam, respectivamente, os sistemas de coordenadas *World*, *Robot* e *Gripper*, obtenha a transformação de movimento a realizar pelo robô para colocar a garra em condição de agarrar uma peça cuja transformação é dada por $^{Robot}_{Obj}T$. Qual o valor da rotação a realizar pela garra segundo o seu eixo de aproximação ($\hat{Z}_{Gripper}$) se $^{Robot}_{Obj}R = I_{3x3}$?
- 7. Dois sistemas de coordenadas A e B estão fixos relativamente a um sistema inercial base e estão relacionados pela matriz de transformação ${}_{B}^{A}T = I_{A \bowtie A}$.
 - a) Obtenha a matriz de transformação que relaciona os dois sistemas de coordenadas após se ter realizado a seguinte sequência de movimentos:
 - 1. Deslocação do sistema de coordenadas B em d unidades segundo o eixo OY_A .
 - 2. Rotação do sistema de coordenadas A de um ângulo α segundo o eixo $OZ_{\rm R}$.
 - 3. Rotação do sistema de coordenadas B de um ângulo β segundo o eixo $OX_{A_{nucus}}$.
 - b) Sabendo que a matriz de transformação que relaciona os dois sistemas de coordenadas, após a sequência de movimentos da alínea a), é representada por

$$\vec{A}_{B}T = \begin{bmatrix} 0 & 0 & -1 & -4 \\ -1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

obtenha os valores de (α, β, d) que conduzem à matriz apresentada.

c) Se após a realização dos movimentos descritos em a) realizar uma nova rotação do sistema de coordenadas B actual de um ângulo γ sobre o eixo OZ_B do sistema de coordenadas obtido após o movimento 1, indique qual é a nova expressão para a sequência de transformações global.

LABWORK #1

Data de Entrega: 08 de Outubro 2017

A componente laboratorial desta disciplina é realizada tirando partido da *toolbox ROBOTICS* desenvolvida pelo professor *Peter Corke*. Para tal deverá instalar a *toolbox* na sua plataforma de trabalho, a qual pode ser descarregada no endereço http://www.petercorke.com/Robotics_Toolbox.html.

Siga as instruções descritas na página de acesso para integrar as funções da toolbox no seu ambiente de trabalho MATLAB.

- 1. EXERCÍCIO MATLAB (Aula laboratorial #1)
 - a. Usando a convenção de **ângulos** de **Eules** Z-Y-X ($\alpha-\beta-\gamma$), escreva um programa em MATLAB que calcule a matriz de rotação A_BR tendo como parâmetros de entrada os ângulos de Euler $\alpha-\beta-\gamma$. Teste a funcionalidade do programa para:

i.
$$\alpha = 30^{\circ}, \beta = 20^{\circ}, \gamma = 10^{\circ}$$

ii.
$$\alpha = -35^{\circ}, \beta = -90^{\circ}, \gamma = 15^{\circ}$$

- 1. Para o caso (i) demonstre as seis restrições para matrizes ortonormadas unitárias (i.e. há 9 números numa matriz 3x3, mas apenas 3 são independentes). Demonstre também para o caso (i) que ${}_{A}^{B}R = {}_{R}^{A}R^{-1} = {}_{R}^{A}R^{T}$.
- b. Escreva um programa para calcular os ângulos de Euler $\alpha-\beta-\gamma$ tendo como parâmetros de entrada a matriz de rotação A_BR (problema inverso). Calcule as possíveis soluções. Demonstre esta solução inversa para os dois casos da alínea a). Utilize a validação circular para confirmar os resultados (i.e. Use o código desenvolvido em a) para obter a matriz de rotação e o código desenvolvido em b) para obter os parâmetros de entrada em a).
- c. Escreva uma função em matlab que permita obter o vector de rotação \vec{r} e respectivo ângulo de rotação ϕ , partindo do conhecimento da matriz de rotação. Escreva também a função inversa, i.e, obter a matriz de rotação partindo do conhecimento de \vec{r} e ϕ . Confirme a funcionalidade das respectivas funções através de validação circular.
- d. Replique o objectivo da alínea c), considerando agora o conhecimento do Quaternião Unitário. Compare o seu resultado com o obtido usando a função *Quaternion* da toolbox ROBOTICS.

e. Confirme os resultados obtidos anteriormente usando a toolbox ROBOTICS desenvolvida para MATLAB. Use as funções *rpy2tr()*, *tr2rpy()*, *rotx()*, *roty()*, *rotz()*, *trplot()* e *tranimate()*.

2. EXERCÍCIO MATLAB (Aula Laboratorial #2)

a. Escreva um programa em MATLAB para calcular a matriz de transformação homogénea ${}_B^AT$ tendo como parâmetros de entrada os ângulos de EULER Z-Y-X ($\alpha-\beta-\gamma$) e o vector de posição ${}^AP_{\beta}$. Teste para os exemplos

i.
$$\alpha = 30^{\circ}, \beta = 20^{\circ}, \gamma = 10^{\circ}$$
 $e^{-A}P_{B} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{T}$.

ii.
$$\alpha = 20^{\circ}, \beta = 0^{\circ}, \gamma = -10^{\circ}$$
 $e^{-A}P_{B} = \begin{bmatrix} 0 & 2 & -1 \end{bmatrix}^{T}$

- b. Para $\alpha = 20^{\circ} \left(\alpha = \gamma = 0^{\circ}\right)$, ${}^{A}P_{B} = \begin{bmatrix} 3 & 0 & 1 \end{bmatrix}^{T}$ e ${}^{B}P = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{T}$, use a função desenvolvida em a) para obter ${}^{A}P$. Verifique visualmente que o resultado está correto (tire partido da função trplot() da toolbox).. Demonstre as três interpretações da matriz de transformação homogénea.
- c. Escreva um programa em MATLAB que calcule a matriz homogénea de transformação inversa ${}_B^A T^{-1} = {}_A^B T$, usando a fórmula simbólica. Compare os resultados obtidos com os resultados obtidos usando a função do MATLAB *inv*. Demonstre que ambos os métodos devolvem resultados corretos.
- d. Defina ${}_B^AT$ como sendo o resultado obtido na alínea a) (i) e ${}_C^BT$ o resultado obtido em a) (ii).
 - i. Calcule ${}_{C}^{A}T$, e apresente o Grafo de Transformações. Faça o mesmo para ${}_{A}^{C}T$.
 - ii. Dadas ${}_{C}^{A}T$ e ${}_{C}^{B}T$, assuma que desconhece ${}_{B}^{A}T$, calcule-a, e compare o resultado com a resposta que conhece para ${}_{B}^{A}T$.
 - iii. Dadas ${}_{C}^{A}T$ e ${}_{B}^{A}T$, assuma que desconhece ${}_{C}^{B}T$, calcule-a, e compare o resultado com a resposta que conhece para ${}_{C}^{B}T$.
- e. Confirme os seus resultados usando a toolbox ROBOTICS desenvolvida para MATLAB por Peter Corke. Use as funções *rpy2tr()* e *transl()*.

3. EXERCÍCIO MATLAB (Aula Laboratorial #2 e #3)

Considere o ambiente de trabalho que se apresenta, onde o objectivo é usar a garra de uma manipulador colocada em **M** para executar a seguinte sequência de acções:

1. Pegar no objecto A;

- 2. Inseri-lo no objecto **B**;
- 3. Encaixar o conjunto no objecto **C**;
 - a) A partir da figura, convencionar os referenciais associados a M, A, B e C, representá-los, e indicar quais as transformações geométricas que os representam no referencial R.
 - b) Indicar uma sequência de transformações geométricas que permita cumprir os objectivos propostos $(M \to A \to B \to C)$ segundo o ponto de vista do manipulador, ou, em alternativa, do ponto de vista do referencial **R**.

Explore as funcionalidades das funções trinterp, ctraj e mtraj da toolbox ROBOTICS na realização do problema.

4. EXERCÍCIO MATLAB (Aula laboratorial #3)

NOTA : exercício avaliativo : A ser apresentado a funcionar na aula de 10 de Outubro

Construa um cubo a partir de <mark>8 quadrados adjacentes</mark> situados no plano XOY como mostra a figura a).

- a) Considere o cubo centrado na origem do sistema de coordenadas (figura b).
- b) Elabore a animação da rotação do cubo sobre o vértice situado na origem (figura c).