Newtons 2. lov: masse \cdot akselerasjon = kraft (total ytre kraft)

Posisjon x [m]

Hastighet
$$v_x$$
 [m/s] $v_x = \frac{dx}{dt} \implies dx = v_x dt \implies x(t) - x(0) = \int_0^t v_x(t) dt$

Akselerasjon
$$a_x$$
 [m/s²]
$$a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2} \implies dv_x = a_x dt \implies v_x(t) - v_x(0) = \int_0^t a_x(t) dt$$

Bevegelsesmengde (impuls)
$$p_x$$
 [kg·m/s] $p_x = mv_x \implies \frac{dp_x}{dt} = F_x$

Kastbevegelse i gravitasjonsfelt

Kraft (i x-, y- og z-retning): $F_x = 0$, $F_y = 0$, $F_z = -mg$ $\vec{a} = \{0, 0, -g\}$ dvs. konstant akselerasjon i negativ z-retning

Dette gir hastighet $v_x(t) = v_x(0)$ $v_y(t) = v_y(0)$ $v_z(t) = v_z(0) - gt$ og posisjon $x(t) = x(0) + v_x(0)t$ $y(t) = y(0) + v_y(0)t$ $z(t) = z(0) + v_z(0)t - \frac{1}{2}gt^2$

Lodd som henger i spiralfjær

Fjærkraft
$$F_f = -k(z - z_0)$$
 hvor $k =$ fjærkonstanten og $z_0 =$ likevektsposisjon (uten lodd)

Med lodd med masse m blir total kraft i tyngdefeltet $F_z = -k(z-z_0) - mg$

Likevektsposisjonen finnes ved $F_z = 0$, som gir $\Delta l = -(z - z_0) = \frac{mg}{k}$ dvs. at effekten av tyngdekraften kan elimineres ved å justere nullpunktet for z-aksen.

Dermed kan vi skrive for Newtons 2. lov $m\ddot{z} = -kz$ hvor z har nullpunkt ved statisk likevekt med masse

Oppsummering Mekanikk

Side 2 av 6

Arbeid og kinetisk energi

 $Arbeid = kraft \cdot vei \left| dW = \overrightarrow{F} \cdot d\overrightarrow{s} \right|$ hvor dW er infinitesimal arbeid utført og $d\overrightarrow{s}$ er infinitesimal posisjonsendring.

Kinetisk energi til en punktmasse
$$m$$
 er $W_{kin} = \frac{1}{2}mv^2 = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2)$

Potensiell energi og konservative krefter

Fjærkraft
$$F = -kx$$
 gir $dW = -kxdx = -d\left(\frac{1}{2}kx^2\right)$ dvs. $W_{pot} = \frac{1}{2}kx^2$

Tyngdekraft
$$F = -mg$$
 gir $dW = -mgdh = -d(mgh)$ dvs. $W_{pot} = mgh$

Gravitasjon
$$F = -\frac{Gm_1m_2}{R^2}$$
 gir $dW = -\frac{Gm_1m_2}{R^2}dR = -d\left(\frac{Gm_1m_2}{R}\right)$ dvs. $W_{pot} = \frac{Gm_1m_2}{R}$

Krefter som kan avledes av et kraftpotensial V, slik at $F_r = -\frac{\partial V}{\partial r}$ kalles *konservative krefter*

Eksemplene overfor gir:
$$F_x = \frac{\partial V}{\partial x} = -\frac{\partial}{\partial x} \left(\frac{1}{2}kx^2\right)$$
 og $F_h = \frac{\partial V}{\partial h} = -\frac{\partial}{\partial h}(mgh)$ og $F_R = \frac{\partial V}{\partial R} = -\frac{\partial}{\partial R}\left(\frac{Gm_1m_2}{R}\right)$

For et system under påvirkning av konservative krefter gjelder at

summen av kinetisk og potensiell energi er konstant $E = \frac{1}{2}mv^2 + W_{pot} = konstant$

$$E = \frac{1}{2}mv^2 + W_{pot} = konstant$$

Friksjonskrefter (ikke-konservative)

Statisk friksjon $F_{II} = F_f = \mu_s F_{\perp}$ og glidende friksjon $F_{II} > F_f = \mu_k F_{\perp}$ hvor μ_s er den statiske og $\mu_k < \mu_s$ er den kinetiske (glidende) friksjonskoeffisienten

Fluid friksjon hvor friksjonskraften er proporsjonal med hastigheten og motsatt rettet.

$$F_f = -k_f v$$
 , hvor k_f er en positiv friksjonskonstant

Oppsummering Mekanikk

Side 3 av 6

Dreiemoment τ

Dreiemoment = $kraft \cdot arm$ $\overrightarrow{\tau} = \overrightarrow{l} \times \overrightarrow{F}$ tallverdien er $\tau = l \cdot F \cdot \sin \angle (\overrightarrow{l}, \overrightarrow{F})$ og retningen er gitt av høyrehåndsregelen. $Arbeid = dreiemoment \cdot vinkel$

Massefellespunkt (= tyngdepunkt når g er konstant) $r_M = \frac{i=1}{N}$

$$\dot{\vec{r}}_{M} = \frac{\sum_{i=1}^{m_{i}} m_{i} \dot{\vec{r}}_{i}}{\sum_{i=1}^{m_{i}} m_{i}}$$

Statisk likevekt

1) akselerasjonen = 0 betyr at $\left| \sum_{i} \overrightarrow{F}_{i} \right| = 0$ translasjonslikevekt

2) vinkelakselerasjon = 0 betyr at $\sum_{i} \vec{\tau}_{i} = \sum_{i} \vec{r}_{i} \times \vec{F}_{i} = 0$ rotasjonslikevekt

Topartikkelsystemer

Relativkoordinat $\vec{r} = \vec{r}_A - \vec{r}_B$ og tyngdepunktskoordinat $\vec{R}_M = \frac{m_A}{m_A + m_B} \vec{r}_A + \frac{m_B}{m_A + m_B} \vec{r}_B$

Hvis total ytre kraft $F_v = 0$ er bevegelsesmengde P i tyngdepunkt-systemet en bevegelseskonstant:

dvs.:
$$\frac{d\vec{P}}{dt} = 0$$
 hvor $\vec{P} = (m_A + m_B)\vec{V}_M$ og $V_M = \frac{d\vec{R}_M}{dt}$

- Bevaringslover for to-partikkel støt er: 1) total impuls er bevart i tyngdepunktssystemet
 - 2) total energi er bevart

Rotasjon av stive legemer

Legemet roterer om z-aksen.

Vinkelhastigheten $\omega = \frac{d\theta}{dt} = \dot{\theta}$ er den samme for alle punkt på legemet.

Vinkelakselerasjonen er $\alpha = \frac{d\omega}{dt} = \ddot{\theta}$

Rotasjonsretningen er definert som parallell til rotasjonsaksen: $\vec{\omega} = \omega \hat{e}_z$, $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$

hvor \hat{e}_z er enhetsvektor i z-retningen (høyrehåndsregelen definerer retningen)

Banehastighet $v = r\frac{d\theta}{dt} = r\dot{\theta} = r\omega$ $\nabla \vec{v}(\Delta\theta)$ Radialhastighet $\Delta \vec{v}_r = \vec{v}(\theta + \Delta\theta) - \vec{v}(\theta) = -2v\sin\frac{\Delta\theta}{2} \approx -v\Delta\theta$

Radialakselerasjonen er $a_r = \frac{dv_r}{dt} = -v\frac{d\theta}{dt} = -v\omega$

og sentripetalkraften blir $F_r = ma_r = -mv\omega = -m\frac{v^2}{r} = -m\omega^2 r$

Rotasjonsenergien $W_k = \frac{1}{2} \sum_i m_i v_i^2 = \frac{1}{2} \sum_i m_i r_i^2 \omega^2 = \frac{1}{2} \left(\sum_i m_i r_i^2 \right) \omega^2 = \frac{1}{2} I \omega^2$ hvor treghetsmomentet $I = \sum_i m_i r_i^2$

Total kinetisk energi $W_k = \frac{1}{2}Mv_T^2 + \frac{1}{2}I_T\omega^2$ når det er både translasjonsbevegelse og rotasjon om en akse gjennom tyngde-

punktet. Her er $I_T = \sum_i m_i r_i^2$ treghetsmomentet om aksen gjennom tyngdepunktet og $M = \sum_i m_i$ er total masse.

Steiners sats (parallell-akse teoremet)

Treghetsmomentet om en akse som er parallell med en akse gjennom tyngdepunktet er gitt ved $I = I_T + MR_T^2$ (Steiners sats). Rotasjonsaksen er z-aksen.

Spinn / rotasjonsmengde / dreieimpuls

Spinnet for en punktmasse er: $\vec{L} = \vec{r} \times m\vec{v}$ hvor $|\vec{L}| = rmv_{\perp}$

Dreiemomentet er $\overset{\rightarrow}{\tau} = \vec{r} \times \vec{F} = \vec{r} \times \frac{\mathrm{d}}{\mathrm{d}t} (m\vec{v}) = \frac{\mathrm{d}}{\mathrm{d}t} (\vec{r} \times m\vec{v}) - \frac{d\vec{r}}{dt} \times m\vec{v} = \frac{d\vec{L}}{dt}$

fordi $\frac{d\vec{r}}{dt} \times m\vec{v} = \vec{v} \times m\vec{v} = 0$

Spinnsatsen er dermed $\overrightarrow{\tau} = \frac{d\overrightarrow{L}}{dt}$

⇒ hvis totalt dreiemoment τ er lik null så er spinnet L en bevegelseskonstant

For et stivt legeme gjelder $\overrightarrow{L} = \sum_{i} \overrightarrow{r_i} \times \overrightarrow{m_i} \overrightarrow{v_i} = \sum_{i} \overrightarrow{m_i} \overrightarrow{r_i} \overrightarrow{\omega} = \overrightarrow{I} \overrightarrow{\omega}$, siden $|\overrightarrow{r_i} \times \overrightarrow{v_i}| = r_i v_{i\perp} = r_i^2 \omega$ $\Rightarrow \overrightarrow{r_i} \times \overrightarrow{v_i} = r_i^2 \overrightarrow{\omega}$

Dermed blir **dreiemomentligningen** (rotasjonsmengdeligningen for stivt legeme) $\overset{\rightarrow}{\tau} = I \frac{d\overset{\rightarrow}{\omega}}{dt}$

Oppsummering Mekanikk Side 6 av 6

Elastisitet

Strekkelastisitet.

Strekkspenning $T = E\varepsilon$ (Hookes lov), hvor E er strekk(elastisitets)modulen (også kalt Youngs modulus) og T = F/A (kraft pr. flate) og $\varepsilon = \Delta L/L$ (tøying = relativ forlengelse)

(strekkmodulen E er av ca. 10¹¹ Pa for vanlige konstruksjonsmaterialer)

Skjærelastisitet.

Skjærspenning $T = \mu \gamma$ (Hookes lov), hvor μ er skjær(elastisitets)modulen og T = F/A (kraft pr. flate) og $\gamma = \Delta x/y$ (skjærtøying, eller vinkeldeformasjon)

Volumelastisitet.

Trykkspenning $T = \Delta p = -B\varepsilon_V$ (Hookes lov), hvor B volum(elastisitets)modulen og $T = \Delta p$ er trykkspenningen og $\varepsilon_V = \Delta V/V$ (volumtøying, eller relativ volumendring)