Unequal Probability Sampling: One-Stage with Replacement

Survey Sampling
Statistics 4234/5234
Fall 2018

October 30, 2018

Example (page 219): Consider the population of nursing home residents in a large metropolitan area. Suppose there are 294 such homes, with a total of 37,652 beds.

A two-stage cluster sample (with equal selection probabilities) would take an SRS of nursing homes, then another SRS of residents within each selected home.

In a cluster sample with equal probabilities, however, a nursing home with 20 beds is as likely to be chosen for the sample as a nursing home with 1000 beds.

This approach (sampling homes with equal probabilities) has three major shortcomings:

- 1. Because we expect the t_i to be proportional to the M_i , the estimators of t and \bar{y}_U may have large variance.
- 2. A self-weighting equal-probability sample $(m_i \propto M_i)$ may be cumbersome to administer, e.g., may require visiting a home just to interview one or two residents.
- 3. The cost of the sample is unknown in advance.

Instead of taking a cluster sample of homes with equal probabilities, the investigators randomly drew a sample of 57 nursing homes with probabilities proportional to the number of beds. Then they took an SRS of 30 occupants from each sampled home.

Assuming a perfect alignment between *beds* and *occupants* (which of course there isn't), every resident has the same probability of being included in the sample.

The cost is known before selecting the sample, and the estimator of a population total will likely have a smaller variance.

Unequal-probability sampling

We can use unequal inclusion probabilities to decrease variance.

In unequal-probability sampling, we deliberately vary the probabilities of selecting different psus for the sample, then compensate by providing suitable weights in the estimation.

Notation:

$$P(\text{unit } i \text{ selected on first draw}) = \psi_i$$

and

$$P(\text{unit } i \text{ in sample}) = \pi_i$$

You might think sampling with unequal probabilities results in selection bias. But because these probabilities are known, we can compensate for the unequal probabilities in the weighting.

Sampling only one psu

Suppose we wish to estimate the population total $t = \sum_{i=1}^{N} t_i$ based on observation of one randomly selected (not necessarily with probability 1/N) psu total t_i .

Then $\pi_i = \psi_i = P(\text{psu } i \text{ is selected}) \text{ for } i = 1, 2, \dots, N.$

We compensate for the unequal probability of selection by also using ψ_i in the estimator, so

$$w_i = \frac{1}{P(\text{unit } i \text{ is sample})} = \frac{1}{\psi_i}$$

and the estimator is

$$\hat{t}_{\psi} = \sum_{i \in \mathcal{S}} w_i t_i = \sum_{i \in \mathcal{S}} \frac{t_i}{\psi_i}$$

Properties of estimator:

ullet Of course \widehat{t}_{ψ} is unbiased, since

$$E(\hat{t}_{\psi}) = \sum_{\mathcal{S}} \hat{t}_{\psi}(\mathcal{S}) P(\mathcal{S}) = \sum_{i=1}^{N} \frac{t_i}{\psi_i} \psi_i = \sum_{i=1}^{N} t_i = t$$

ullet The variance of \widehat{t}_{ψ} is

$$V(\hat{t}_{\psi}) = E\left[(\hat{t}_{\psi} - t)^{2}\right]$$

$$= \sum_{\mathcal{S}} \left[\hat{t}_{\psi}(\mathcal{S}) - t\right]^{2} P(\mathcal{S})$$

$$= \sum_{i=1}^{N} \left(\frac{t_{i}}{\psi_{i}} - t\right)^{2} \psi_{i}$$

Unequal-probability sampling is more efficient than equal probability sampling if the selection probabilities are positively correlated to the cluster totals.

If they are perfectly correlated, $\psi_i \propto t_i$, then $V(\hat{t}_{\psi}) = 0$, even for n = 1.

One-stage sampling with replacement

We will continue to let

$$\psi_i = P(\text{select unit } i \text{ on first draw})$$

for each i = 1, 2, ..., N.

The idea here is to estimate the population total for each psu drawn, that is

$$\left\{\frac{t_i}{\psi_i}: i \in \mathcal{R}\right\}$$

represent n independent estimates of t. (Some of which may be duplicates; in that case we keep them all.)

Estimate the population total by the average of the n independent estimates.

The variance of this estimator is

$$\frac{1}{n}$$
 × (the variance for $n = 1$)

Letting \mathcal{R} denote our sample without replacement of n out of N psus, with selection probabilities $(\psi_1, \psi_2, \dots, \psi_N)$:

The estimator described above comes down to

$$\hat{t}_{\psi} = \frac{1}{n} \sum_{i \in \mathcal{R}} \frac{t_i}{\psi_i}$$

and its variance

$$V(\hat{t}_{\psi}) = \frac{1}{n} \sum_{i=1}^{N} \left(\frac{t_i}{\psi_i} - t \right)^2 \psi_i$$

is estimated by

$$\widehat{V}(\widehat{t}_{\psi}) = \frac{1}{n} \frac{1}{n-1} \sum_{i \in \mathcal{R}} \left(\frac{t_i}{\psi_i} - \widehat{t} \right)^2$$

Estimating the population mean

We estimate

$$\bar{y}_U = \frac{t}{M_0} = \frac{\sum_{i=1}^{N} t_i}{\sum_{i=1}^{N} M_i}$$

by ratio estimation

$$\widehat{y}_{\psi} = \frac{\widehat{t}_{\psi}}{\widehat{M}_{0\psi}} = \frac{\sum\limits_{i \in \mathcal{R}} \frac{t_i}{\psi_i}}{\sum\limits_{i \in \mathcal{R}} \frac{M_i}{\psi_i}}$$

Applying the results from Chapter 4 on ratio estimation:

We have

$$\hat{V}\left(\hat{\bar{y}}_{\psi}\right) = \frac{s_r^2}{n\hat{M}_{0\psi}} \quad \text{(no fpc!)}$$

where

$$s_r^2 = \frac{1}{n-1} \sum_{i \in \mathcal{R}} \left(\frac{t_i}{\psi_i} - \hat{\bar{y}}_{\psi} \frac{M_i}{\psi_i} \right)^2$$

the sample variance of $\left\{\frac{t_i}{\psi_i} - \hat{\bar{y}}_\psi \frac{M_i}{\psi_i} : i \in \mathcal{R}\right\}$.