

## planetmath.org

Math for the people, by the people.

## uniform expansivity

Canonical name UniformExpansivity
Date of creation 2013-03-22 13:55:15
Last modified on 2013-03-22 13:55:15

Owner Koro (127) Last modified by Koro (127)

Numerical id 7

Author Koro (127) Entry type Theorem Classification msc 37B99 Let (X, d) be a compact metric space and let  $f: X \to X$  be an expansive homeomorphism.

**Theorem (uniform expansivity).** For every  $\epsilon > 0$  and  $\delta > 0$  there is N > 0 such that for each pair x, y of points of X such that  $d(x, y) > \epsilon$  there is  $n \in \mathbb{Z}$  with  $|n| \leq N$  such that  $d(f^n(x), f^n(y)) > c - \delta$ , where c is the expansivity constant of f.

**Proof.** Let  $K = \{(x,y) \in X \times X : d(x,y) \geq \epsilon/2\}$ . Then K is closed, and hence compact. For each pair  $(x,y) \in K$ , there is  $n_{(x,y)} \in \mathbb{Z}$  such that  $d(f^{n_{(x,y)}}(x), f^{n_{(x,y)}}(y)) \geq c$ . Since the mapping  $F : X \times X \to X \times X$  defined by F(x,y) = (f(x),f(y)) is continuous,  $F^{n_x}$  is also continuous and there is a neighborhood  $U_{(x,y)}$  of each  $(x,y) \in K$  such that  $d(f^{n_{(x,y)}}(u), f^{n_{(x,y)}}(v)) < c - \delta$  for each  $(u,v) \in U_{(x,y)}$ . Since K is compact and  $\{U_{(x,y)} : (x,y) \in K\}$  is an open cover of K, there is a finite subcover  $\{U_{(x_i,y_i)} : 1 \leq i \leq m\}$ . Let  $N = \max\{|n_{(x_i,y_i)}| : 1 \leq i \leq m\}$ . If  $d(x,y) > \epsilon$ , then  $(x,y) \in K$ , so that  $(x,y) \in U_{(x_i,y_i)}$  for some  $i \in \{1,\ldots,m\}$ . Thus for  $n = n_{(x_i,y_i)}$  we have  $d(f^n(x), f^n(y)) < c - \delta$  and  $|n| \leq N$  as required.