Problem 1

Subproblem A

Show that $\lim_{n\to\infty} \frac{n}{n+1} \neq 2$.

Let's suppose that $\lim_{n o \infty} rac{n}{n+1} = 2$ and try to find a contradiction:

$$\lim_{n o \infty} rac{n}{n+1} = 2 \Rightarrow \lim_{n o \infty} (rac{n}{n+1} - 2) = 0 \Rightarrow \lim_{n o \infty} (rac{(n+1)-1}{n+1} - 2) = 0 \Rightarrow$$
 $\lim_{n o \infty} (1 - rac{1}{n+1} - 2) = 0 \Rightarrow \lim_{n o \infty} (-rac{1}{n+1} - 1) = 0$

Since $-\frac{1}{n+1}<0$ and -1<0, then the sum of these components cannot physically be equal to 0. Therefore, $\lim_{n\to\infty}\frac{n}{n+1}\neq 2$, q. e. d.

Afterwards, show that $\lim_{n\to\infty}\frac{n}{n+1}=1$. Similarly as above:

$$\lim_{n o\infty}\left(1-rac{1}{n+1}-1
ight)=\lim_{n o\infty}\left(-rac{1}{n+1}
ight)$$

Therefore, as per the limit definition, $\forall \varepsilon > 0, \exists N \in \mathbb{N} \colon \forall n > N, |x_n - x| < \varepsilon$. For any ε :

$$\left|-rac{1}{n+1}
ight|$$

Since n+1>n, $\frac{1}{n+1}<\frac{1}{n}$:

$$\frac{1}{n+1} < \frac{1}{n} < \varepsilon$$

Now $\forall n>N$, we can find some $N=\left[\frac{1}{arepsilon}
ight]$, which means that $\forall n>N$, $\left|-\frac{1}{n+1}\right|<arepsilon$, q. e. d.

Show after which number all elements of the sequence would fall into the (0.99, 1.01) interval. In this interval, $\varepsilon = 0.01$. As per the equation above,

$$N = \left[\frac{1}{\varepsilon}\right] = \left[\frac{1}{0.01}\right] = 100$$

Using Python for calculations, we may check that, truly, starting from the 100th element, all

elements of the sequence fall within ε of the limit:

```
98 0.989898989899

99 0.99

100 0.990099009901

101 0.9901960784313726

102 0.9902912621359223

103 0.9903846153846154

104 0.9904761904761905
```

Answer: 100

Subproblem B

Assume sequence $\{x_n\}$, where $x_n=\frac{5n^2+10n-3}{8n^2+n+2}$. Show that $\lim_{n\to\infty}x_n\neq 0$.

Similarly as above, assume that $\lim_{n\to\infty} x_n = 0$ and try to find such ε for which there would not be a number after which an infinite number of elements would be less than ε .

Say that
$$arepsilon=0.5$$
, then $\left|rac{5n^2+10n-3}{8n^2+n+2}
ight|<0.5\Rightarrow -0.5<rac{5n^2+10n-3}{8n^2+n+2}<0.5.$

Consider the rightmost part of the equation:

$$egin{align} rac{5n^2+10n-3}{8n^2+n+2} < rac{1}{2} \ & 10n^2+20n-6 < 8n^2+n+2 \ & 2n^2+19n-8 < 0 \ & n \in \left(\left[-rac{19}{4} - rac{5\sqrt{17}}{4}
ight], \left[-rac{19}{4} + rac{5\sqrt{17}}{4}
ight]
ight) \Rightarrow n \in [-9,0] \, , \end{aligned}$$

which means that there are no $n \ge 1$, for which there would be a single element within 0.5 range from $0 \Rightarrow \lim_{n \to \infty} x_n \ne 0$, q. e. d.

Assume that $\lim_{n\to\infty} x_n = \frac{5}{8}$. Then,

$$egin{split} \lim_{n o\infty} \left(rac{5n^2+10n-3}{8n^2+n+2}-rac{5}{8}
ight) &= \lim_{n o\infty} \left(rac{40n^2+80n-24-40n^2-5n-10}{8(8n^2+n+2)}
ight) &= \ &= \lim_{n o\infty} \left(rac{75n-34}{8(8n^2+n+2)}
ight) \end{split}$$

Now, for all ε :

$$\frac{75n-34}{8(8n^2+n+2)}<\frac{75n}{8(8n^2+n+2)}<\frac{75n}{64n^2}=\frac{75}{64n}<\varepsilon$$

Therefore, $\forall n > N$:

$$N = \left[rac{75}{64arepsilon}
ight]$$

It can be concluded that $\lim_{n \to \infty} x_n = \frac{5}{8}$, q. e. d.

Subproblem C

Prove that $\lim_{n \to \infty} 2^{\frac{n-1}{n^2}} = 1$.

Similarly as above, assume:

$$\lim_{n o\infty}\left(2^{rac{n-1}{n^2}}-1
ight)=0$$

Then, for all ε :

$$2^{\frac{n-1}{n^2}}-1<\varepsilon$$

Logarithmize:

$$egin{align} 2^{rac{n-1}{n^2}} < 2^{\log_2(arepsilon+1)} &\Rightarrow rac{n-1}{n^2} < \log_2(arepsilon+1) \Rightarrow \ rac{n-1}{n^2} < rac{n}{n^2} = rac{1}{n} < \log_2(arepsilon+1) = rac{\ln(arepsilon+1)}{\ln 2} \Rightarrow \ rac{1}{n} < rac{\ln(arepsilon+1)}{\ln 2} \Rightarrow n > rac{\ln 2}{\ln(arepsilon+1)} \Rightarrow \ n > \log_{arepsilon+1} 2 \ \end{cases}$$

Logarithm base is always larger than 1 and it would never be undefined since $\varepsilon > 0$. Therefore, $\forall n > N$:

$$N = [\log_{\varepsilon+1} 2]$$

As a result, $\lim_{n o \infty} 2^{\frac{n-1}{n^2}} = 1$, q. e. d.

Subproblem D

Prove that

$$\lim_{n \to \infty} \frac{6n^4 + n^3 + 3}{2n^4 - n + 1} = 3$$

Similarly as above,

$$\begin{split} \lim_{n \to \infty} \left(\frac{6n^4 + n^3 + 3}{2n^4 - n + 1} - 3 \right) &= \lim_{n \to \infty} \left(\frac{6n^4 + n^3 + 3 - 6n^4 + 3n - 3}{2n^4 - n + 1} \right) = \\ &= \lim_{n \to \infty} \left(\frac{n^3 + 3n}{2n^4 - n + 1} \right) \end{split}$$

Then, $\forall \varepsilon$:

$$\frac{n^3+3n}{2n^4-n+1}<\varepsilon$$

We need to estimate this equation somehow, for all $n \in \mathbb{N}$, assume some $k_1 = 5$:

$$n^3 + 3n < k_1 n^3 = 5n^3 \Rightarrow 4n^3 - 3n > 0 \Rightarrow 4n(n^2 - rac{3}{4}) > 0,$$

which is always true. The following equation with $k_2 = 1$ would be true for n = 1 and onwards:

$$2n^4 - n + 1 \ge n^4 = k_2 n^4$$

Therefore, the following estimation would be true:

$$\frac{n^3 + 3n}{2n^4 - n + 1} < \frac{5n^3}{n^4} = \frac{5}{n} < \varepsilon$$

And $\forall n > N$:

$$N = \left[rac{5}{arepsilon}
ight]$$

In the end,

$$\lim_{n o \infty} rac{6n^4 + n^3 + 3}{2n^4 - n + 1} = 3,$$

q. e. d.

Problem 2

Calculate limits:

Subproblem A

$$egin{aligned} \lim_{n o \infty} rac{n!}{n^n} &= \lim_{n o \infty} rac{1 imes 2 imes 3 imes \cdots imes (n-2) imes (n-1) imes n}{n imes n imes n imes \cdots imes n imes n imes n} &= \\ &= \lim_{n o \infty} \left(rac{1}{n} imes rac{2}{n} imes rac{3}{n} imes \cdots imes rac{n-2}{n} imes rac{n-1}{n} imes 1
ight) \end{aligned}$$

Each (except for the last one) of the terms above is < 1. Therefore, the multiplication of all these elements will be less (for n > 1) than any (!) of the product components, so:

$$0 \le \frac{n!}{n^n} \le \frac{1}{n}$$

Since we know that $\lim_{n \to \infty} \frac{1}{n} = 0$, then according to the squeeze principle:

$$\lim_{n\to\infty}0=\lim_{n\to\infty}\frac{n!}{n^n}=\lim_{n\to\infty}\frac{1}{n}=0$$

Alternatively, just use limit arithmetic: since $\lim_{n\to\infty}\frac{1}{n}=0$, the entire limit is equal to 0.

Answer: $\lim_{n \to \infty} rac{n!}{n^n} = 0$

Subproblem B

$$\lim_{n o\infty}\sqrt[n^2]{n!}=\lim_{n o\infty}\sqrt[n^2]{1}\sqrt[n^2]{2}\sqrt[n^2]{3}\dots\sqrt[n^2]{n}$$

From the binomial formula, we know that $\lim_{n\to\infty} \sqrt[n]{n} = 1$. According the squeeze theorem once again,

$$1 \leq \sqrt[n^2]{n} \leq \sqrt[n]{n}$$
 $\lim_{n o \infty} 1 = \lim_{n o \infty} \sqrt[n^2]{n} = \lim_{n o \infty} \sqrt[n]{n} = 1$

and $\forall k \in \mathbb{N}$:

$$1 \leq \sqrt[n^2]{k} \leq \sqrt[n]{k}$$
 $\lim_{n o \infty} 1 = \lim_{n o \infty} \sqrt[n^2]{k} = \lim_{n o \infty} \sqrt[n]{k} = 1$

Limit of a multiplication is equal to the multiplication of limits, which are all defined and are equal to 1. Therefore,

$$\lim_{n o \infty} \sqrt[n^2]{n!} = \lim_{n o \infty} \sqrt[n^2]{1} imes \lim_{n o \infty} \sqrt[n^2]{2} imes \lim_{n o \infty} \sqrt[n^2]{3} imes \cdots imes \lim_{n o \infty} \sqrt[n^2]{n} = 1 imes 1 imes 1 imes 1 imes 1 imes 1$$

Answer: $\lim_{n \to \infty} \sqrt[n^2]{n!} = 1$

Subproblem C

$$\lim_{n o\infty}\sqrt[n]{3^n+1}=\lim_{n o\infty}3\sqrt[n]{1+rac{1}{3^n}}$$

Looking a little bit closer, we can use the squeeze theorem (for $n \ge 5$, as it approaches ∞) to evaluate $\lim_{n\to\infty}\frac{1}{3^n}$:

$$0 \leq \frac{1}{3^n} \leq \frac{1}{n!}$$

$$\lim_{n o\infty}0=\lim_{n o\infty}rac{1}{3^n}=\lim_{n o\infty}rac{1}{n!}=0$$

Substitute the limit back into the original equation:

$$\lim_{n\to\infty}\sqrt[n]{3^n+1}=\lim_{n\to\infty}3\sqrt[n]{1+0}=3$$

Answer: $\lim_{n\to\infty} \sqrt[n]{3^n+1}=3$

Subproblem D

$$\lim_{n o \infty} \sqrt{2} \sqrt[4]{2} \sqrt[8]{2} \dots \sqrt[2^n]{2} = \lim_{n o \infty} 2^{rac{1}{2} + rac{1}{4} + rac{1}{8} + \dots + rac{1}{2^n}}$$

Notice that the exponent is almost equal to 1 and for any finite n it would evaluate to:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

Therefore,

$$\lim_{n o\infty}\sqrt{2}\sqrt[4]{2}\sqrt[8]{2}\dots \sqrt[2^n]{2}=\lim_{n o\infty}2^{1-rac{1}{2^n}}$$

Same as above, looking a little bit closer, we can use the squeeze theorem (for $n \ge 3$, as it approaches ∞) to evaluate $\lim_{n\to\infty} \frac{1}{2^n}$:

$$0 \le \frac{1}{2^n} \le \frac{1}{n!}$$

$$\lim_{n\to\infty}0=\lim_{n\to\infty}\frac{1}{2^n}=\lim_{n\to\infty}\frac{1}{n!}=0$$

Because of this,

$$\lim_{n o \infty} \sqrt{2} \sqrt[4]{2} \sqrt[8]{2} \dots \sqrt[2^n]{2} = \lim_{n o \infty} 2^{1 - rac{1}{2^n}} = \lim_{n o \infty} 2^{1 - 0} = 2$$

Answer: $\lim_{n o\infty}\sqrt{2}\sqrt[4]{2}\sqrt[8]{2}\dots\sqrt[2^n]{2}=2$