# 数据库系统原理

李瑞轩 华中科技大学计算机学院 http://idc.hust.edu.cn/rxli/

# 第二章 关系数据库



# → 2.1 关系模型概述

- 2.2 关系数据结构及形式化定义
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

■ E.F.Codd于70年代初提出**关系数据理论**, 他因此获得1981年的ACM图灵奖

1970年提出关系数据模型

E.F.Codd, "A Relational Model of Data for Large Shared Data Banks", Communications of the ACM, 1970

之后提出了关系代数和关系演算的概念

1972年提出了关系的第一、第二、第三范式

1974年提出了关系的BC范式(BCNF)

- 关系理论是建立在集合代数理论基础上的,有 着坚实的数学基础
- 早期代表系统
  - System R: 由IBM研制
  - INGRES: 由加州Berkeley分校研制
- 目前主流的商业数据库系统
  - Oracle, Informix, Sybase, SQL Server, DB2
  - Access, Foxpro, Foxbase
  - 达梦 (DM), 金仓, 神州通用, 南大通用
  - 开源数据库: MySQL

- 数据结构: 二维表
- 关系操作:
  - 查询(Query):
    - 选择(select)、投影(project)、连接(join)
    - •除(divide)、并(union)、交(intersection)
    - 差(difference)
  - 增加(insert)、删除(delete)、修改(updated)
  - 关系代数,关系演算,SQL
- 关系的三类完整性约束:
  - 实体完整性、参照完整性、用户自定义的完整性

•关系代数是用对关系的运算来表达查询要求的方式。

- •关系演算是用谓词表达查询要求的方式。
  - •按谓词变元的基本对象是元组变量还是域变量分为

#### 元组关系演算和域关系演算

具体系统中的实际语言

#### • SQL

介于关系代数和关系演算之间,由IBM公司研制system R时提出

#### QUEL

基于Codd提出的元组关系演算语言ALPHA,在INGRES上实现

#### QBE

基于域关系演算,由IBM公司研制,在IBM370上实现

- 域 (Domain)
  - 一组值的集合,这组值具有相同的数据类型如:整数的集合、字符串的集合、全体学生的集合
- 笛卡尔积 (Cartesian Product)
  - 一组域 $D_1, D_2, ..., D_n$ 的笛卡尔积为:  $D_1 \times D_2 \times ... \times D_n = \{(d_1, d_2, ..., d_n) \mid d_i \in D_i, i=1,...,n\}$
  - 笛卡尔积的每个元素 $(d_1, d_2, ..., d_n)$ 称作一个n-元组(n-tuple)
  - 元组的每一个值d<sub>i</sub>叫做一个分量(Component)
  - = 若 $D_i$ 的基数为 $m_i$ ,则笛卡尔积的基数为  $\prod_{i=1}^{m_i} m_i$



• 例: 设

 $D_1$ 为学生集合  $(T) = { 张群, 徐晶, 王刚 }$ 

 $D_2$ 为性别集合(S)={男,女}

则D<sub>1</sub>×D<sub>2</sub>是个二元组集合,元组个数为3×2,是所有可能的(学生,性别)元组集合

 $D_1 \times D_2 =$ 

| S |
|---|
| 男 |
| 女 |
| 男 |
| 女 |
| 男 |
| 女 |
|   |

• 例: 设

 $D_1$ 为教师集合(T) =  $\{t_1, t_2\}$ 

 $D_2$ 为学生集合(S) =  $\{s_1, s_2, s_3\}$ 

 $D_3$ 为课程集合 (C) = { $c_1$ ,  $c_2$ }

则 $D_1 \times D_2 \times D_3$ 是个三元组集合,元组个数为 $2 \times 3 \times 2$ ,是

所有可能的(教师,学生,课程)元组集合

• 笛卡尔积可表示为二维表的形式

|     |                | the state of the s |                |
|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|     | T              | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C              |
|     | $t_1$          | $s_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{c_1}$ |
| e ) | $t_1$          | $s_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{c_2}$ |
|     | $t_1$          | $\mathbf{s_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{c_1}$ |
|     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••            |
|     | $\mathbf{t_2}$ | $s_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{c_2}$ |

#### 关系

- 笛卡尔积 $D_1 \times D_2 \times ... \times D_n$ 的子集叫做在域 $D_1$ , $D_2$ ,..., $D_n$ 上的关系,用 $R(D_1, D_2, ..., D_n)$ 表示
- R是关系的名字, n是关系的度或目
- 关系是笛卡尔积中有意义的子集
- 关系也可以表示为二维表

关系TEACH(T, S, C)

|            | T     | S              | C              |
|------------|-------|----------------|----------------|
|            | $t_1$ | $s_1$          | $\mathbf{c_1}$ |
| <b></b> 1组 | $t_1$ | $s_1$          | $\mathbf{c}_2$ |
|            | $t_1$ | $\mathbf{s}_2$ | $\mathbf{c_1}$ |
|            | $t_2$ | $s_3$          | $\mathbf{c}_2$ |

#### 关系的性质

- 列是同质的
- 行列的顺序无关紧要
- 任意两个元组不能完 全相同
- 每一分量必须是不可再分的数据
- 不同的属性,属性名 不能相同



#### ■ 数据结构

- 单一的数据结构——关系
- 实体集、联系都表示成关系



#### ■ 候选码 (Candidate Key)

关系中的一个属性组,其值能唯一标识一个元组。若从属性组中去掉任何一个属性,它就不具有这一性质了,这样的属性组称作候选码

如DEPT中的D#, DN都可作为候选码

- 任何一个候选码中的属性称作**主属性** 如SC中的S#, C#
- 主码 (Primary Key)
  - 若一个关系有多个候选码,则选定其中一个作为主码 如可选定D#作为DEPT的主码
- 外码 (Foreign Key)
  - 关系R中的一个属性组,它不是R的码,但它与另一个关系S的码相对应,则称这个属性组为R的外码如S关系中的D#属性

### • 关系模式

- 关系的描述称作关系模式,包括关系名、关系中的属性名、属性向域的映象、属性间的数据依赖 关系等,记作R(A<sub>1</sub>,A<sub>2</sub>,...,A<sub>n</sub>)
- 属性向域的映象一般直接说明为属性的类型、长度等
- 某一时刻对应某个关系模式的内容(元组的集合)称 作关系
- 关系模式是型,是稳定的关系是某一时刻的值,是随时间不断变化的

### ■ 关系数据库

- 其型是关系模式的集合,即数据库描述,称作数据库的内涵(Intension),或关系数据库模式
- 其值是某一时刻关系的集合,称作数据库的外延 (Extension),或关系数据库

#### 2.3 关系的完整性

### • 关系模型的完整性约束

- 实体完整性
  - 关系的主码中的属性值不能为空值
  - 空值: 不知道或无意义
  - 意义:关系对应到现实世界中的实体集,元组对应到实体,实体是相互可区分的,通过主码来唯一标识,若主码为空,则出现不可标识的实体,这是不容许的

| 学号   | 姓名 | 性别 | 系名 |
|------|----|----|----|
| 0101 | 张  | 男  | CS |
| 0102 | 李  | 女  | CS |
| 0203 | 赵  | 男  | MA |
|      |    |    |    |

#### ■ 参照完整性

- 如果关系 $R_2$ 的外码 $F_k$ 与关系 $R_1$ 的主码 $P_k$ 相对应,则 $R_2$ 中的每一个元组的 $F_k$ 值或者等于 $R_1$ 中某个元组的 $P_k$ 值,或者为空值
- 意义: 如果关系 $R_2$ 的某个元组 $t_2$ 参照了关系 $R_1$ 的某个元组  $t_1$ , 则 $t_1$ 必须存在
- · 例如,关系S在D#上的取值有两种可能
  - · 空值,表示该学生尚未分到任何系中
  - · 若非空值,则必须是DEPT关系中某个元组的D#值,表示该学生不可能分到一个不存在的系中

DEPT(D#, DN, DEAN)

S(S#, SN, SEX, AGE, D#)

| 学号   | 姓名 | 性别 | 系名 |
|------|----|----|----|
| 0101 | 张  | 男  | CS |
| 0102 | 李  | 女  | CS |
| 0203 | 赵  | 男  | MA |
|      |    |    |    |

| 学号   | 课号    | 成绩 |
|------|-------|----|
| 0101 | CS145 | 88 |
| 0101 | CS148 | 90 |
| 0102 | CS180 | 87 |
| 0203 | CS145 | 78 |

| 课号    | 课名   |
|-------|------|
| CS145 | 数据库  |
| CS148 | 操作系统 |
| CS180 | 数据结构 |
|       |      |

#### 供应商关系5(主码是"供应商号")

| 供应商号 | 供应商名 | 所在城市 |
|------|------|------|
| B01  | 红星   | 北京   |
| S10  | 宇宙   | 上海   |
| T20  | 黎明   | 天津   |
| Z01  | 立新   | 重庆   |

零件关系P(主码是"零件号",外码是"供应商号")

| <u>零件号</u> | 颜色 | 供应商号 |
|------------|----|------|
| 010        | 红  | B01  |
| 312        | 白  | S10  |
| 201        | 蓝  | T20  |

今要向关系P中插入新行, 新行的值分别列出如下。请问 哪些行能够插入?为什么?

- A、('037', '绿', null)
- B、(null,'黄','T20')
- C、('201', '红', 'T20')
- D、('105','蓝', 'B01')
- E、('101','黄','T11')

- 用户定义的完整性
  - 用户针对具体的应用环境定义的完整性约束条件
  - ·如S#要求是8位整数,SEX要求取值为"男"或"女"
- 系统支持
  - 实体完整性和参照完整性由系统自动支持
  - 系统应提供定义和检验用户定义的完整性的机制

# 2.4 关系代数

- 属于关系操作的一种
- 关系代数是一种抽象的查询语言
- 通过对关系的运算来表达查询操作
- 运算对象、结果均为关系
- 运算包括四类:
  - 集合运算、关系运算、比较运算、逻辑运算

#### 2.4 关系代数

- 基本运算
  - 一元运算
    - 选择、投影
  - 多元运算
    - 笛卡尔积、并、差
- 其他运算
  - 交、连接、除、赋值
- 扩展运算
  - ■广义投影、外连接、聚集
- 修改操作
  - ■插入、删除、更新

# 关系代数——运算符

| 运力    | 算 符 | 含义     | 运り    | 单 符      | 含义            |
|-------|-----|--------|-------|----------|---------------|
| 集合    | U   | 并      | 比 较   | >        | 大 于           |
|       |     | 差      |       | ≥        | 大于 <b>等于</b>  |
| 运算符   | n   | 交      | 运算符   | <        | 小 于           |
|       |     | ,      |       | < <      | 小于 <b>等</b> 于 |
|       |     |        |       | =        | 等 于           |
|       |     |        |       | <b>≠</b> | 不等于           |
| 专门的   | ×   | 广义笛卡尔积 | 逻辑    | -        | 非             |
| 关 系   | σ   | 选择     |       | ·        | 与             |
| 运 算 符 | π   | 投 影    | 运 算 符 | V        | 或             |
|       | ×   | 连接     |       | li.      |               |
|       | ÷   | 除      |       |          |               |

# 并运算

- 定义
  - 所有至少出现在两个关系中之一的元组集合  $R \cup S = \{r \mid r \in R \lor r \in S\}$



- ■两个关系R和S若进行并运算,则它们必须是相容的:
  - ·关系R和S必须是同元的,即它们的属性数目必须相同
  - ·对∀i, R的第i个属性的域必须和S的第i个属性的域相同

R

| A | В | C |
|---|---|---|
| 3 | 6 | 7 |
| 2 | 5 | 7 |
| 7 | 2 | 3 |
| 4 | 4 | 3 |

# 并运算

S

| A | В | C |
|---|---|---|
| 3 | 4 | 5 |
| 7 | 2 | 3 |

# RUS

| A | В | C |
|---|---|---|
| 3 | 6 | 7 |
| 2 | 5 | 7 |
| 7 | 2 | 3 |
| 4 | 4 | 3 |
| 3 | 4 | 5 |

| R       |       |         |
|---------|-------|---------|
| A       | В     | C       |
| $a_1$   | $b_1$ | $c_1$   |
| $a_1$   | $b_2$ | $c_2$   |
| $a_2$   | $b_2$ | $c_1$   |
| S       |       |         |
| A       | В     | С       |
| $a_{I}$ | $b_2$ | $c_2$   |
| $a_{I}$ | $b_3$ | $c_2$   |
| $a_2$   | $b_2$ | $c_{I}$ |

| $R \cup S$ |                  |         |
|------------|------------------|---------|
| A          | В                | C       |
| $a_I$      | $b_I$            | $c_{I}$ |
| $a_I$      | $b_2$            | $c_2$   |
| $a_2$      | - b <sub>2</sub> | $c_{i}$ |
| $a_{I}$    | b <sub>3</sub>   | $c_2$   |

| R | 1 |   |
|---|---|---|
| A | В | C |
| a | Ъ | С |
| b | a | f |
| c | ь | d |

| A | В | C |
|---|---|---|
| b | g | a |
| b | a | f |



| RUS |   |   |
|-----|---|---|
| A   | В | C |
| a   | ь | c |
| b   | a | f |
| c   | b | d |
| b   | g | a |

# 差运算

- 定义
  - 所有出现在一个关系而不在另一关系中的元组集合  $R-S = \{r \mid r \in R \land r \notin S\}$



■ R和S必须是相容的

R

| A | В | C |
|---|---|---|
| 3 | 6 | 7 |
| 2 | 5 | 7 |
| 7 | 2 | 3 |
| 4 | 4 | 3 |

R-S

| A | В | C |
|---|---|---|
| 3 | 6 | 7 |
| 2 | 5 | 7 |
| 4 | 4 | 3 |

差运算

| A | В | C |
|---|---|---|
| 3 | 4 | 5 |
| 7 | 2 | 3 |

S-R

| A | В | C |
|---|---|---|
| 3 | 4 | 5 |

| R     |       |       |
|-------|-------|-------|
| A     | В     | С     |
| $a_1$ | $b_1$ | $c_1$ |
| $a_1$ | $b_2$ | $c_2$ |
| $a_2$ | $b_2$ | $c_1$ |

| S       |                |         |
|---------|----------------|---------|
| A       | В              | С       |
| $a_{I}$ | $b_2$          | $c_2$   |
| $a_{I}$ | $b_3$          | $c_2$   |
| $a_2$   | b <sub>2</sub> | $c_{I}$ |



| R |   | 1 |
|---|---|---|
| A | В | C |
| a | b | c |
| b | a | f |
| c | b | d |

| 200 | 1988 |   |
|-----|------|---|
| A   | В    | C |
| b   | g    | a |
| b   | a    | f |



# 交运算

- 定义
  - 所有同时出现在两个关系中的元组集合

$$R \cap S = \{ r \mid r \in R \land r \in S \}$$



• 交运算可以通过差运算来重写

$$R \cap S = R - (R - S)$$

### 交运算

R

| A | В | C |
|---|---|---|
| 3 | 6 | 7 |
| 2 | 5 | 7 |
| 7 | 2 | 3 |
| 4 | 4 | 3 |

S

| A | В | C |
|---|---|---|
| 3 | 4 | 5 |
| 7 | 2 | 3 |

RNS

| A | В | C |
|---|---|---|
| 7 | 2 | 3 |

| R       |       |         |
|---------|-------|---------|
| A       | В     | C       |
| $a_1$   | $b_1$ | $c_1$   |
| $a_1$   | $b_2$ | $c_2$   |
| $a_2$   | $b_2$ | $c_1$   |
| S       |       |         |
| A       | В     | С       |
| $a_{I}$ | $b_2$ | $c_2$   |
| $a_{I}$ | $b_3$ | $c_2$   |
| $a_2$   | $b_2$ | $c_{I}$ |

| $R \cap S$ |                       |         |
|------------|-----------------------|---------|
| . A        | <b>B</b>              | C       |
| $a_{I}$    | <b>b</b> <sub>2</sub> | $c_2$   |
| $a_2$      | $b_2$                 | $c_{I}$ |

R

| A | В | C |
|---|---|---|
| a | b | c |
| b | a | f |
| c | ь | d |

S

| A | В | C |
|---|---|---|
| b | g | a |
| b | a | f |

Ø,

| D | Е | F |
|---|---|---|
| g | h | i |
| j | k | 1 |

 $R \cap S$ 

| A | В | С |
|---|---|---|
| b | a | f |

# 广义笛卡尔积

- 元组的连串(Concatenation)
  - 若 $r = (r_1, ..., r_n)$ ,  $s = (s_1, ..., s_m)$ , 则定义 $r = (s_1, ..., s_m)$

$$\widehat{rs} = (r_1, \ldots, r_n, s_1, \ldots, s_m)$$

- 定义
  - 两个关系R, S, 其度分别为n, m, 则它们的笛卡尔积是所有这样的元组集合: 元组的前n个分量是R中的一个元组, 后m个分量是S中的一个元组

### $R \times S = \{ \widehat{rs} \mid r \in R \land s \in S \}$

 R×S的度为R与S的度之和, R×S的元组个数为R和 S的元组个数的乘积







| R |   |   |
|---|---|---|
| A | В | C |
| a | b | c |
| b | a | f |
| c | ь | d |

|   | THE STATE OF |   |
|---|--------------|---|
| A | В            | C |
| b | g            | a |
| ь | a            | f |

| 12.5 | Tree- |   |
|------|-------|---|
| D    | Е     | F |
| g    | h     | i |
| j    | k     | 1 |

 $R \times S$ 

| R.A | R.B | R.C | S.A | S.B | S.C |
|-----|-----|-----|-----|-----|-----|
| a   | b   | c   | ь   | g   | a   |
| a   | b   | c   | ь   | a   | f   |
| ь   | a   | f   | ь   | g   | a   |
| ь   | a   | f   | b   | a   | f   |
| С   | b   | d   | ь   | g   | a   |
| С   | b   | d   | ь   | a   | f   |

#### • 记号说明

给定关系模式 $R(A_1, A_2, ..., A_n)$ ,设R是它的一个具体的关系, $t \in R$ 是关系的一个元组

#### ・分量

设t∈R,则t[A:]表示元组t中相应于属性A:的一个分量

#### ・属性列 (或属性组)

 $A = \{A_{i1}, A_{i2}, ..., A_{ik}\} \subseteq \{A_1, A_2, ..., A_n\}$ ,称A为属性列 Ā表示 $\{A_1, A_2, ..., A_n\}$ 中去掉A后剩余的属性组  $t[A] = (t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 

#### ・象集

给定关系R(X, Z), X和Z为属性组。当t[X]=x时, x在R中的象集 (Images Set) 为:  $Z_x=\{t[Z]|t\in R, t[X]=x\}$ , 它表示R中属性组X上值为x的诸元组在Z上分量的集合。

 $\mathbf{Z}$   $\mathbf{X}$ 

| 学号   | 姓名 | 性别 | 系别 |
|------|----|----|----|
| 0101 | 张  | 男  | CS |
| 0102 | 李  | 女  | CS |
| 0203 | 赵  | 男  | MA |
| 0103 | 吴  | 女  | CS |

关系模式: 学生(学号,姓名,性别,系别)

元组t: (0102,李,女,CS)

t[性别]: 女

属性列X: {性别,系别}

t[X]: (女,CS)

属性组Z: {学号,姓名}

t[X] = x = (女,CS)

象集Z<sub>x</sub>=?CS系全部女生的学号,姓名

$$x = ($$
女,CS $)$ ,  $Z_x = ?$ 

| X  | Z  |
|----|----|
| 姓名 | 课程 |
| 张蕊 | 物理 |
| 王红 | 数学 |
| 张蕊 | 数学 |

x=张蕊  $Z_x=?$ 

从R中选出在X上取值 为x的元组,去掉X上的 分量,只留Z上的分量



张蕊同学所 选修的全部 课程

# 选择运算

■ 基本定义

在关系R中选择满足给定条件的元组(从行的角度)

$$\sigma_{\mathbf{F}}(\mathbf{R}) = \{t \mid t \in \mathbf{R}, \mathbf{F}(t) = '真' \}$$

F是选择的条件, $\forall t \in R$ ,F(t)要么为真,要么为假;

F的形式: 由逻辑运算符连接算术表达式而成。

逻辑运算符: ^, \, ¬

算术表达式: XθY

X,Y是属性名、常量、或简单函数  $\theta$ 是比较算符, $\theta \in \{>, \geq, <, \leq, =, \neq\}$ 

■ 选择运算



R

| A | В | C |
|---|---|---|
| 3 | 6 | 7 |
| 2 | 5 | 7 |
| 7 | 2 | 3 |
| 4 | 4 | 3 |

 $\sigma_{A<5}(R)$ 

| A | В | C |
|---|---|---|
| 3 | 6 | 7 |
| 2 | 5 | 7 |
| 4 | 4 | 3 |

 $\sigma_{A<5} \wedge c=7(R)$ 

| A | В | C |
|---|---|---|
| 3 | 6 | 7 |
| 2 | 5 | 7 |

S

| SNO  | SNA | SEX | DEPT |
|------|-----|-----|------|
| 0101 | 张   | 男   | CS   |
| 0102 | 李   | 女   | CS   |
| 0203 | 赵   | 男   | MA   |
| 0103 | 吴   | 女   | CS   |

$$\sigma_{\text{4='CS'}}(S)$$
 或  $\sigma_{\text{Dept='CS'}}(S)$ 

| SNO  | SNA | SEX | DEPT |
|------|-----|-----|------|
| 0101 | 张   | 男   | CS   |
| 0102 | 李   | 女   | CS   |
| 0103 | 吴   | 女   | CS   |

S

| SNO  | SNA | SEX | DEPT |
|------|-----|-----|------|
| 0101 | 张   | 男   | CS   |
| 0102 | 李   | 女   | CS   |
| 0203 | 赵   | 男   | MA   |
| 0103 | 吴   | 女   | CS   |

- 示例: 用关系表达式表达下列查询
  - 找关系S中计算机系(代号: 'CS')的全部男生

# 关系运算——选择(σ)

| Student |       |      | · .  |       |
|---------|-------|------|------|-------|
| 学 号     | 姓名    | 性别   | 年 龄  | 所在系   |
| Sno     | Sname | Ssex | Sage | Sdept |
| 95001   | 李勇    | 男    | 20   | CS    |
| 95002   | 刘晨    | 女    | 19   | IS    |
| 95003   | 王敏    | 女    | 18   | MA    |
| 95004   | 张立    | 男    | 19   | IS    |

## 投影运算

- 定义
  - 从关系R中取若干列组成新的关系(从列的角度)  $\Pi_A(R) = \{t[A] \mid t \in R\}, A \subseteq R$
  - 投影的结果中要去掉相同的行



### 投 影

R

| A | В | C |
|---|---|---|
| a | b | c |
| d | e | f |
| c | b | C |

$$\Pi_{2,3}(R)$$
 或  $\Pi_{B,C}(R)$ 

| В | C |
|---|---|
| Ъ | c |
| e | f |

Student(S#,SN,Age) Course(C#,CN)

SC(C#,S#,Score)

- 示例

列出所有学生的姓名和年龄

 $\Pi_{SN,Age}$  (Student)

找001号学生所选修的课程号

$$\Pi_{C\#}(\sigma_{S\#=001}(SC))$$

投影

# 关系运算——投影(π)

- 例: π<sub>Ssex</sub>, sage(Student)

| Student |       |      |      |       |
|---------|-------|------|------|-------|
| 学 号     | 姓名    | 性别   | 年 龄  | 所在系   |
| Sno     | Sname | Ssex | Sage | Sdept |
| 95001   | 李勇    | 男    | 20   | CS    |
| 95002   | 刘晨    | 女    | 19   | IS    |
| 95003   | 王敏    | 女    | 18   | MA    |
| 95004   | 张立    | 男    | 19   | IS    |

选择与投影的区别



S

| SNO  | SNA | SEX | DEPT |
|------|-----|-----|------|
| 0101 | 张   | 男   | CS   |
| 0102 | 李   | 女   | CS   |
| 0203 | 赵   | 男   | MA   |
| 0103 | 吴   | 女   | CS   |

- 示例
  - 列出CS系和MA系学生学号和姓名

#### 方案1:

$$\prod_{SNO,\;SNA}(\sigma_{DEPT\,=\,`CS\,`v\;DEPT\,=\,`MA'}(S))$$

#### 方案2:

$$\prod_{SNO, \, SNA} (\sigma_{DEPT\,='CS'}(S)) \cup \prod_{SNO, \, SNA} (\sigma_{DEPT\,='MA'}(S))$$

### θ连接

- 定义
  - 从两个关系的广义笛卡尔积中选取给定属性间满足 一定条件的元组

 $R \bowtie S = \{ \widehat{rs} \mid r \in R \land s \in S \land r[A]\theta s[B] \}$ 

A,B为R和S上度数相等且可比的属性列 θ为算术比较符, θ为等号时称为等值连接

 $\begin{array}{c} \mathbf{R} \bowtie \mathbf{S} = \sigma_{\mathbf{R}[\mathbf{A}] \boldsymbol{\theta} \mathbf{S}[\mathbf{B}]} (\mathbf{R} \times \mathbf{S}) \\ \mathbf{A} \boldsymbol{\theta} \mathbf{B} \end{array}$ 



E

D

3

6

6

## 自然连接

- 定义
  - 从两个关系的广义笛卡尔积中选取在相同属性列B 上取值相等的元组,并去掉重复的列。

 $R \bowtie S = \{ \widehat{rs}[\overline{B}] \mid r \in R \land s \in S \land r[B] = s[B] \}$ 

- 自然连接与等值连接的不同
  - 自然连接中相等的分量必须是相同的属性组,并且要在 结果中去掉重复的属性,而等值连接则不必。
- 当R与S无相同属性时,R⋈S = R×S

R

| A | В | C |
|---|---|---|
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

S

| C | D |
|---|---|
| 3 | 1 |
| 6 | 2 |

 $R\bowtie S$ 

| A | В | C | D |
|---|---|---|---|
| 1 | 2 | 3 | 1 |
| 4 | 5 | 6 | 2 |





# 外连接

### • 外连接

在自然连接的基础上,如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)

### ■ 左外连接

如果只把左边关系R中要舍弃的元组保留就叫做 左外连接(LEFT OUTER JOIN或LEFT JOIN)

### ■ 右外连接

■ 如果只把右边关系S中要舍弃的元组保留就叫做 右外连接(RIGHT OUTER JOIN或RIGHT JOIN)

R

| A | В | C |
|---|---|---|
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

S

| C | D |
|---|---|
| 3 | 1 |
| 6 | 2 |
| 8 | 5 |

RMS

| A | В | C | D |
|---|---|---|---|
| 1 | 2 | 3 | 1 |
| 4 | 5 | 6 | 2 |

#### 外连接

| A    | В    | C | D    |
|------|------|---|------|
| 1    | 2    | 3 | 1    |
| 4    | 5    | 6 | 2    |
| 7    | 8    | 9 | NULL |
| NULL | NULL | 8 | 5    |

### - 除

• 给定关系R(X, Y)和S(Y, Z), 其中X, Y, Z为属性组。R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。R和S的除运算得到一个新的关系P(X), P是R中满足下列条件的元组在X属性列上的投影:元组在X上分量值x的象集 Y<sub>x</sub>包含S在Y上投影的集合。记作:

 $R \div S = \{t_r[X] \mid t_r \in R \land \Pi_y(S) \subseteq Y_x\}$ 其中, $Y_x$ 为x在R中的象集, $x=t_r[X]$ 



R

| A  | В  | C  |
|----|----|----|
| a1 | bl | c2 |
| a2 | b3 | c7 |
| a3 | b4 | c6 |
| a1 | b2 | c3 |
| a4 | b6 | c6 |
| a2 | b2 | c3 |
| a1 | b2 | c1 |

S

| В  | C  | D  |
|----|----|----|
| b1 | c2 | d1 |
| b2 | c1 | d1 |
| b2 | c3 | d2 |

$$R \div S = \frac{A}{a1}$$

# 2.4 关系代数(续) R÷S = $\Pi_X(R) - \Pi_X(\Pi_X(R) \times \Pi_Y(S) - R)$

R

| A | В | C | D |
|---|---|---|---|
| a | Ъ | С | d |
| a | Ъ | e | f |
| a | ь | d | e |
| b | С | e | f |
| e | d | c | d |
| e | d | e | f |

S

| C | D |
|---|---|
| c | d |
| e | f |

| A | В |
|---|---|
| a | b |
| b | c |
| e | d |

 $\Pi_{AB}(R) \qquad \Pi_{AB}(R) \times \Pi_{CD}(S)$ 

| A | В | C | D |
|---|---|---|---|
| a | b | С | d |
| a | b | e | f |
| b | c | c | d |
| b | c | e | f |
| e | d | c | d |
| e | d | e | f |

 $\Pi_{AB}(R) \times \Pi_{CD}(S) - R$ 

| A | В | C | D |
|---|---|---|---|
| b | c | c | d |

$$R \div S = \begin{bmatrix} A & B \\ a & b \\ b & c \\ e & d \end{bmatrix}$$

|       | A | В |
|-------|---|---|
| - A B | a | b |
| b c   | e | d |

#### 除法的现实意义:

|      |    |    |    | 课程的学生的姓名 |
|------|----|----|----|----------|
|      | 姓名 | 课程 | 课程 |          |
|      | 张军 | 物理 |    | 业名       |
|      | 王红 | 数学 | 数学 | 张军       |
| 1000 | 张军 | 数学 | 物理 |          |

# 2.4 关系代数(续) R÷S = $\Pi_X(R) - \Pi_X(\Pi_X(R) \times \Pi_Y(S) - R)$



例题:

S

C

| 课程号 | 课程名    | 先行课  | 学分      |
|-----|--------|------|---------|
| Cno | Cname  | Cpno | Ccredit |
| 1   | 数据库    | 5    | 4       |
| 2   | 数学     |      | 2       |
| 3   | 信息系统   | 1    | 4       |
| 4   | 操作系统   | 6    | 3       |
| 5   | 数据结构   | 7    | 4       |
| 6   | 数据处理   |      | 2       |
| 7   | PASCAL | 6    | 4       |

| 学号    | 姓名    | 性别   | 年龄   | 系别    |
|-------|-------|------|------|-------|
| Sno   | Sname | Ssex | Sage | Sdept |
| 95001 | 李勇    | 男    | 20   | CS    |
| 95002 | 刘晨    | 女    | 19   | IS    |
| 95003 | 王敏    | 女    | 18   | MA    |
| 95004 | 张立    | 男    | 19   | IS    |

| 学号    | 课程号 | 成绩    |
|-------|-----|-------|
| Sno   | Cno | Grade |
| 95001 | 1   | 92    |
| 95001 | 2   | 85    |
| 95001 | 3   | 88    |
| 95002 | 2   | 90    |
| 95002 | 3   | 80    |

SC

- 查询信息系(IS)的全体学生
  σ<sub>Sdept='IS'</sub>(S) 或 σ<sub>5='IS'</sub>(S)
- 查询年龄小于20岁的学生
  σ<sub>Sage <20</sub>(S) 或 σ<sub>4 <20</sub>(S)
- 查询学生的姓名和所在系  $\Pi_{Sname, Sdept}(S)$  或  $\Pi_{2,5}(S)$
- 查选修了2号课程的学生的学号  $\Pi_{Sno}(\sigma_{Cno='2},(SC))$
- 查2号课程的学生学号和成绩
  Π<sub>Sno.Grade</sub>(σ<sub>Cno='2'</sub>(SC))

- 查2号课程的学生姓名和成绩
  - $\Pi_{\text{Sname,Grade}}(\sigma_{\text{Cno}='2},(S\bowtie SC))$  或
  - $\Pi_{Sname,Grade}(\Pi_{Sno,Grade}(\sigma_{Cno}='2',(SC))\bowtie S)$
- 查选修"数学"的学生学号,姓名及该课程的成绩
  - $\Pi_{Sno,Sname,Grade}(\sigma_{Cname='数学'}(S \bowtie SC \bowtie C))$
- 查选修1号或2号课程的学生学号

$$\Pi_{Sno}(\sigma_{Cno} = 1, V_{Cno} = 2, (SC))$$

■ 查没学2号课程的学生姓名

$$\Pi_{\text{Sname}}(\sigma_{\text{Cno} \neq '2'}, (S \bowtie SC)) \times$$

$$\Pi_{\text{Sname}}(S) - \Pi_{\text{Sname}}(\sigma_{\text{Cno}=2}, (S \bowtie SC))$$

• 查询选修了全部课程的学生学号

$$\Pi_{\text{Sno,Cno}}(\text{SC}) \div \Pi_{\text{Cno}}(\text{C})$$

- 5种基本运算
  - 并、差、笛卡尔积、投影、选择
- 其他运算
  - 交、连接、除
  - 均可用5种基本运算来表达,引进它们并不增加语言的能力,但可以简化表达
    - $R \cap S = R (R S)$
    - $R \bowtie S = \prod_{\text{属性列表}} (\sigma_{\text{相同的属性列值相等}} (R \times S))$
    - $R \div S = \Pi_X(R) \Pi_X(\Pi_X(R) \times \Pi_Y(S) R)$
- 关系代数中,这些运算经有限次复合后 形成的式子称为关系代数表达式

### 2.6 小结

- 关系模型
- 关系数据结构及定义
- 完整性约束
- 关系代数:5个基本运算
- 关系演算:元组、域

#### 相近概念汇总

- ▶ 关系,表,实体集
- 元组,记录,实体
- ▶ 关系模式, 记录型, 实体型
- ▶ 关键字,码,标识符
- 主关键字, 主码
- 候选关键字,候选码
- ▶ 外关键字, 外码
- 分量,属性值,数据项
- 属性,字段
- 模式,外模式,视图
- ▶ 数据库,数据集,文件

# 下课了。。。



#### 休息一会儿。。。

