东北大学研究生院考试试卷(闭卷)

2023-2024 学年 秋 季学期

课程名称:	数值分析	(A)

- 一、简答题(每题5分,共30分)
- 1. 建立一种稳定的递推算法计算定积分 $I_n = \int_0^1 \frac{x^n+1}{4x+1} dx$ 的值,并说明算法稳定的理由.
- 2. 利用平方根法求下列线性方程组的解

$$\begin{bmatrix} 4 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 4 \end{bmatrix}$$

- 3. 设 $l_0(x)$, $l_1(x)$, …, $l_6(x)$ 是以 $x_0, x_1, …x_6$ 为节点的6次Lagrange插值基函数,求 $\Sigma_{j=0}^{6}(x_{j}-x)^{4}l_{j}(x)$ 的值.
- 试计算积分 I 的值, 并说明理由.
- 5.已知 $A = \begin{pmatrix} 4 & 6 \\ 8 & 9 \end{pmatrix}$, $x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, 计算 $Cond_2(A)$ 的值并估计 $||Ax||_{\infty}$.
- 6.设 $f(x) \in C^2(\mathbb{R})$,证明: $\frac{d}{dx}f[a,x] = f[a,x,x]$.
- 二、解答题(10分)

已知 y = f(x)的函数值表

T	x_i	0	1	2	3	4	5	6	7	8
	y_i	4.9	7.3	11.9	13.4	15.5	20.1	24.3	36.7	41.6

利用如上数据,请选用至少两种复化求积公式求 $\int_0^8 f(x) dx$ 的近似值.

三、解答题(10分)

试确定A₀, A₁, x₀, x₁的值, 使如下公式为高斯型求积公式

$$\int_0^1 \frac{1}{\sqrt{x}} f(x) \, dx \approx A_0 f(x_0) + A_1 f(x_1).$$

四、解答题 (10分)

试确定三次插值多项式 $H_3(x)$,使其满足 $H_3(1)=f(1)=1$, $H_3(2)=f(2)=0$, $H_3(3) = f(3) = -1$, $H_3(2) = f(2) = 2$, 并写出插值余项.

总分		四	五	六	七	1

五、解答题(10分)

设函数f(x)在其零点附近充分光滑,请写出求解f(x) = 0的 m 重根 α 的含参牛 顿迭代格式,给出此迭代方法是二阶收敛的条件,并加以证明.

六、解答题(10分)

给定线性方程组
$$\binom{3}{1}\binom{1}{3}\binom{x}{y} = \binom{5}{-6}$$
,考虑如下迭代格式
$$\begin{cases} x^{(k+1)} = (1-\omega)x^{(k)} + \frac{\omega(5-y^{(k)})}{3} \\ y^{(k+1)} = (1-\omega)y^{(k)} + \frac{\omega(-6-x^{(k)})}{3} \end{cases}$$

试确定实参数ω的取值范围, 使迭代格式对任意初始向量都收敛.

七、解答题 (10分)

己知一组实验数据

	x_i	-2	-1	0	1	2
-	yi	2	2.5	4	6	6.5
	Pi	1	2	1	3	2

用最小二乘方法求线性拟合曲线.

八、解答题(10分)

对于一阶常微分方程初值问题

$$\begin{cases} \frac{dy}{dx} = f(x, y(x)), & \alpha \le x \le b, \\ y(\alpha) = \alpha. \end{cases}$$

- (1) 试写出如上方程有解的充分条件.
- (2) 证明: 求解上述初值问题的差分方法

$$\begin{cases} y_{n+1} = y_n + \frac{1}{4}h(K_1 + K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f\left(x_n + \frac{2}{3}h, y_n + \frac{2}{3}hK_1\right) \\ y_0 = \alpha \end{cases}$$

是2阶方法。