19.01.2021. A Prezime, ime, br. indeksa: **KOLOKVIJUM 2** SV (zaokruži) PR E2Studijski program $\mathbf{E1}$ U zadatku je dato više odgovora, a treba zaokružiti brojeve ispred tačnih odgovora. U jednom istom zadatku broj tačnih odgovora može biti 0,1,2,3,...,svi. U nekim zadacima ostavljena su prazna mesta za upisivanje odgovora.

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0	Izraziti vektor $\vec{x} = (4, 4, 4)$ kao linearnu kombinaciju vektora $\vec{r}_A = (1, 0, 1)$, $\vec{r}_B = (0, 1, 1)$ i $\vec{r}_C = (1, 1, 0)$
4	$\vec{x} = \frac{2}{\vec{r}_A} + \frac{2}{\vec{r}_B} + \frac{2}{\vec{r}_C}$ i zapreminu tetraedra $OABC$, gde je $O(0,0,0)$ tj. $V_{OABC} = \frac{1}{\sqrt{2}}$
(1+1)	

Ako su vektori \vec{s} i \vec{t} jedinični, a $\vec{p} = \vec{s} + 2\vec{t}$ i $\vec{q} = 5\vec{s} - 4\vec{t}$ uzajamno normalni, tada je

1) $\langle (\vec{s}, \vec{t}) = \frac{\pi}{6}$ 2) $\langle (\vec{s}, \vec{t}) = \frac{\pi}{4}$ 3) $\langle (\vec{s}, \vec{t}) = \frac{\pi}{3}$ 4) $\langle (\vec{s}, \vec{t}) = \frac{\pi}{2}$ 5) $\langle (\vec{s}, \vec{t}) = \arccos \frac{1}{2}$ 6) $\langle (\vec{s}, \vec{t}) = \arccos \frac{\sqrt{3}}{2}$

• Neka je p prava čija je jednačina $p: x+y=3 \land y=3$. Napisati bar jedan jedinični vektor pravca \vec{p} prave $p: \vec{p} = (O, O, A)$ i koordinate tačke A prave p koja je najbliža koordinatnom početku O(0,0,0): A(O,3,O)

• Neka je $\vec{r}_A = (1,0,1), \ \vec{r}_B = (0,1,1) \ \text{i} \ \vec{r}_C = (1,1,0) \ \text{tada je: 1)} \ |\vec{r}_A| = \frac{\sqrt{2}}{2} \ 2) \ \vec{r}_A \cdot \vec{r}_B = \frac{\sqrt{2}}{2} \ 3) \ P_{\triangle ABC} = \frac{\sqrt{2}}{2} \ 2$ 4) $\forall (\vec{r}_A, \vec{r}_B) = \frac{\sqrt{3}}{3}$ 5) $|\vec{r}_A - \vec{r}_B| = \frac{\sqrt{3}}{3}$ 6) $|\vec{r}_A \times \vec{r}_B| = \frac{\sqrt{3}}{3}$ 7) $(\vec{r}_A \times \vec{r}_B) \vec{r}_C = \frac{\sqrt{3}}{3}$ 8) $\overrightarrow{BA} = (\sqrt{3} - \sqrt{3})$

ullet Za koje vrednosti parametra $a\in\mathbb{R}$ sistem linearnih jednačina $x-ay=1 \ \land \ ax+y=1$ nad poljem realnih brojeva je: 1) određen: 3) jednostruko neodređen: 2) kontradiktoran:

• Zavisne uređene trojke u vektorskom prostoru $(\mathbb{R}^3, \mathbb{R}, +, \cdot)$ su: 1) ((6, 3, -1), (9, 3, 1), (7, 3, 0))

Ispod svake matrice napisati broj koji predstavlja njen rang.

3

 $\left[\begin{array}{cccc} 1 & 0 & 0 & 4 \\ 2 & 3 & 1 & 2 \\ 1 & 0 & 0 & 2 \end{array} \right] \left[\begin{array}{cccc} 1 & 3 & 2 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{cccc} -1 & 1 \\ 1 & -1 \\ -1 & 0 \end{array} \right] \left[\begin{array}{cccc} 2 & -1 & 1 \\ 0 & 4 & 2 & -2 \end{array} \right] \left[\begin{array}{cccc} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -2 \end{array} \right] \left[\begin{array}{cccc} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{array} \right] \left[\begin{array}{cccc} 2 & 2 \\ 2 & 2 \end{array} \right]$

Napisati bar jednu, ukoliko postoji, linearnu transformaciju $f:\mathbb{R}^2 \to \mathbb{R}^3$ za koju važi da

1) je injektivna f(x,y)=(\times , y , o) 2) nije injektivna f(x,y)=(o , o , o , o 3) je sirjektivna f(x,y)=(o , o , o , o , o)

• Neka su ABCDEF uzastopna temena pravilnog šestougļa i T njegov centar (težište). Izraziti vektore \overrightarrow{BT} , \overrightarrow{BE} i \overrightarrow{AE} kao linearne kombinacije vektora $\overrightarrow{a} = \overrightarrow{AB}$ i $\overrightarrow{b} = \overrightarrow{BC}$. $\overrightarrow{BT} = \overrightarrow{b} - \overrightarrow{c}$ $\overrightarrow{BE} = 2\overrightarrow{b} - 2\overrightarrow{c}$ $\overrightarrow{AE} = 2\overrightarrow{b} - 2\overrightarrow{c}$

• Koordinate normalne projekcije A' tačke A(3,3,0) na ravan određenu sa 2x + 2y - z = 3 su: $A'(\bigwedge, \bigwedge, \bigwedge)$

• Normalna projekcija vektora $\vec{x} = 3\vec{i} + 2\vec{j} - \vec{k}$ na pravu $\ell : \frac{x-1}{1} = \frac{y-1}{1} = \frac{z-4}{-1}$ je vektor: $\mathbf{pr}_{\ell}(\vec{x}) = (2, 2, 7, 2)$

• Odrediti vektor $\vec{x}' = \mathbf{pr}_{\alpha, \vec{a}}(\vec{x})$ koji je kosa projekcija vektora $\vec{x} = 3\vec{i} - 2\vec{j} + 2\vec{k}$ na ravan $\alpha : x + y + 4z = 5$ ako Su zraci projektovanja paralelni sa pravom $a: \frac{x-6}{3} = \frac{y-1}{4} = \frac{z+7}{-1}$. $\vec{x}' = \begin{pmatrix} -6 & -14 & 5 \end{pmatrix}$

• Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ su kolinearni ako je: (1) $\vec{a} \times \vec{b} = 0$ 2) $\vec{a} \cdot \vec{b} = 0$ (3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ 4) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 2$ (5) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 1$ 6) \vec{a} i \vec{b} su nezavisni (7) $(\exists \lambda \in \mathbb{R}) \ \vec{a} = \lambda \vec{b}$ 8) $\vec{a} \not\parallel \vec{b}$ 9) $(\forall \lambda \in \mathbb{R}) \ (\vec{a} \neq \lambda \vec{b} \wedge \lambda \vec{a} \neq \vec{b})$ (10) $(\exists \alpha, \beta \in \mathbb{R}) \ \alpha \vec{a} + \beta \vec{b} = 0 \wedge \alpha^2 + \beta^2 \neq 0$

• Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ i $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$ su nekomplanarni ako i samo ako je:

1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 2$ 2) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 3$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$ 4) $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$ 5) $\vec{a}(\vec{b} \times \vec{c}) \ne 0$ 6) $(\exists \alpha, \beta \in \mathbb{R})$ $\vec{a} = \alpha \vec{b} + \beta \vec{a}$ 7) $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = 0$ 8) $(\vec{a}, \vec{b}, \vec{c})$ je zavisna.

• Linearna transformacija $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x-y,2x+ay) je izomorfizam akko $a \in \mathbb{R} \setminus \{-2\}$

ALGEBRA, KOLOKVIJUM 2

19.01.2021.

- 1. Prava p sadrži tačku P i paralelna je sa vektorom \vec{p} . Tačka A ne pripada pravoj p. Preko \vec{r}_A , \vec{r}_P i \vec{p} izraziti vektore položaja temena B, C i D kvadrata ABCD čija je ravan normalna na pravu p, i centar (presek dijagonala) kvadrata pripada pravoj p.

nad \mathbb{R} po nepoznatim $x, y, z \in \mathbb{R}$.

- (a) Dokazati da je S potprostor vektorskog prostora \mathbb{R}^3 i odrediti jednu bazu potprostora S.
- (b) Neka je $V = \{v \in \mathbb{R}^3 \mid \forall s \in S, \ v \cdot s = 0\}$. Dokazati da je V potprostor vektorskog prostora \mathbb{R}^3 i odrediti jednu bazu potprostora V.
- 3. Neka je $a_1=(2,-1),\ a_2=(-3,2),\ b_1=(0,-1,1)$ i $b_2=(2,2,-1)$. Za linearnu transformaciju $f:\mathbb{R}^2\to\mathbb{R}^3$ važi $f(a_1)=b_1$ i $f(a_2)=b_2$.
 - (a) Odrediti matricu linearne transformacije f i njen rang.
 - (b) Ispitati injektivnost i sirjektivnost linearne transformacije f.
 - (c) Odrediti skup $V = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = (0, 0, 0)\}.$

- 1. Prva p sadrži tačku P i paralelna je sa vektorom \vec{p} . Tačka A ne pripada pravoj p. Preko \vec{r}_A , \vec{r}_P i \vec{p} izraziti vektore položaja temena B, C i D kvadrata ABCD čija je ravan normalna na pravu p, i centar (presek dijagonala) kvadrata pripada pravoj p.

nad \mathbb{R} po nepoznatim $x, y, z \in \mathbb{R}$.

- (a) Dokazati da je S podprostor vektorskog prostora \mathbb{R}^3 i odrediti jednu bazu podprostora S.
- (b) Neka je $V = \{v \in \mathbb{R}^3 \mid \forall s \in S, \ v \cdot s = 0\}$. Dokazati da je V podprostor vektorskog prostora \mathbb{R}^3 i odrediti jednu bazu podprostora V.
- 3. Neka je $a_1=(2,-1),\ a_2=(-3,2),\ b_1=(0,-1,1)$ i $b_2=(2,2,-1)$. Za linearnu transformaciju $f:\mathbb{R}^2\to\mathbb{R}^3$ važi $f(a_1)=b_1$ i $f(a_2)=b_2$.
 - (a) Odrediti matricu linearne transformacije f i njen rang.
 - (b) Ispitati injektivnost i sirjektivnost linearne transformacije f.
 - (c) Odrediti skup $V = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = (0, 0, 0)\}.$

REŠENJA:

- 1. Centar T kvadrata ABCD je projekcija tačke A na pravu p te je $\vec{r}_T = \vec{r}_P + \frac{(\vec{r}_A \vec{r}_P)\vec{p}}{\vec{p}\vec{p}}\vec{p}$. Vektor položaja temena C dobijamo iz $\overrightarrow{AT} = \overrightarrow{TC}$, dakle $\vec{r}_C = 2\vec{r}_T \vec{r}_A$. Dijagonala BD je ortogonalna i na p i na dijagonalu AC, te je $BD \parallel \vec{p} \times \overrightarrow{AC}$. Pri tome je TB = TD = AT, te tako dobijamo $\vec{r}_{B,D} = \vec{r}_T \pm |\overrightarrow{AT}| \frac{\vec{p} \times \overrightarrow{AC}}{|\vec{p} \times \overrightarrow{AC}|}$.
- 2. (a) Iz trougaonog oblika -x+y+2z=0 polaznog sistema jednačina dobijamo da je njegov y+z=0 skup rečenja $S=\{(z,-z,z)\mid y\in\mathbb{R}\}=\{z(1,-1,1)\mid y\in\mathbb{R}\}=Lin((1,-1,1)).$ Po teoremi je lineal podprostor polaznog prostora, a jedan nenula vektor b=(1,-1,1) čini linearno nezavisan skup, te je $\{(1,-1,1)\}$ baza podprostora S.
 - (b) Jednodimenzionalni podprostor S generisan vektorom b = (1, -1, 1) je prava koja prolazi kroz koordinatni početak i ima vektor pravca b = (1, -1, 1). Kako je $v \cdot s = 0 \Leftrightarrow v \perp s$, sledi da je V skup svih vektora ortogonalnih na pravu S, a to je ravan koja prolazi kroz koordinatni početak i ima vektor normale b = (1, -1, 1). Poznato je da je ravan koja prolazi kroz koordinatni početak dvodimenzionalni podprostor prostora \mathbb{R}^3 , te jednu njegovu bazu čine bilo koja dva nekolinearna vektora koji su ortogonalni na b = (1, -1, 1). Kako npr. za $v_1 = (1, 1, 0)$ i $v_2 = (0, 1, 1)$ važi $b \cdot v_1 = 0$ i $b \cdot v_2 = 0$, sledi da $v_1, v_2 \in V$. Pri tome su v_1 i v_2 očigledno linearno nezavisni jer su im koordinate neproporcionalne, te sledi da je $\{v_1, v_2\}$ jedna baza podprostora V.
- 3. (a) Rešavanjem jednačine $(x,y) = \alpha a_1 + \beta a_2$ po $\alpha, \beta \in \mathbb{R}$ dobijamo $(x,y) = \alpha(2,-1) + \beta(-3,2) = (2\alpha 3\beta, -\alpha + 2\beta)$ $\Leftrightarrow 2\alpha 3\beta = x \Leftrightarrow \beta = x + 2y \Leftrightarrow \beta = x + 2y \Leftrightarrow \alpha = 2x + 3y$, dakle $(x,y) = (2x+3y)a_1 + (x+2y)a_2$. Koristeći da je f lineana tranformacija dobijamo $f(x,y) = f((2x+3y)a_1 + (x+2y)a_2) = (2x+3y)f(a_1) + (x+2y)f(a_2) = (2x+3y)b_1 + (x+2y)b_2 = (2x+3y)(0,-1,1) + (x+2y)(2,2,-1) = (2x+4y,y,x+y)$.

Matrica linearne transformacije f je $M=\left[\begin{array}{cc} 2 & 4 \\ 0 & 1 \\ 1 & 1 \end{array}\right]$. Njene kolone su neproporcionalne te je $rang\ M=2$.

- (b) Kako je dim $\mathbb{R}^2 = 2 < 3 = \dim \mathbb{R}^3$, linearna transformacija ne može biti sirjektivna, a injektivna jeste jer je dim $\mathbb{R}^2 = 2 = rang M$.
- (c) Kako je f injektivna linearna transformacija, mora biti $V = \{(0,0)\}.$