

Ayudantía Repaso I1

12 de abril de 2024

Martín Atria, Paula Grune, Caetano Borges

1. Inducción Estructural

Sea S el conjunto de palabras formadas por a's y b's recursivamente de la siguiente manera:

- 1. $a \in S, b \in S$
- 2. Si $\mu \in S$ y $\nu \in S$, entonces $\mu \nu \in S$.
- 3. Solo los elementos generados mediante las reglas 1 y 2 pertenecen a S.

También se define la función reverso $R:S\longrightarrow S$ de la siguiente manera:

- 1. R(a) = a, R(b) = b.
- 2. Si $\mu \in S$, entonces $R(a\mu) = R(\mu)a$, y $R(b\mu) = R(\mu)b$.
- a) Demuestre que para todo par de palabras $\mu, \nu \in S$ se tiene que

$$R(\mu\nu) = R(\nu)R(\mu)$$

b) Demuestre que para toda palabra $\mu \in S$ se cumple que

$$R(R(\mu)) = \mu$$

2. Lógica proposicional

Demuestre que el conjunto $\{\land, \lor, \rightarrow, \leftrightarrow\}$ no es funcionalmente completo.

3. Modelamiento de Lógica de Predicados

Sea \leq y = símbolos de predicado binario y P un símbolo de predicado unario. Considere la interpretación $\mathcal I$ definida como:

 $\mathcal{I}(\mathrm{dom}) := \mathbb{N}$

 $\mathcal{I}(=) := n = m \text{ si y solo si } n \text{ es igual a } m.$

 $\mathcal{I}(\leq) := n \leq m$ si y solo si n es menor o igual que m.

 $\mathcal{I}(P) := P(n)$ si y solo si nes primo

Escriba la siguiente expresión en lógica de predicados sobre la interpretación \mathcal{I} :

"Para todo par de números primos distintos de 2 y 3, hay un número natural entre ellos que no es primo"