

Praktikantenbericht

über das praktische Studiensemester im Wintersemester 2023/2024

Name, Vorname:	David Linhardt				
Studiengang, Semester:	Informatik (Bachelor) 5. Semester BMW Group AG Bremer Straße 6 80807 München				
Ausbildungsbetrieb:					
Straße:					
PLZ, Ort:					
1 Dauer des Praktikums					
vom 04.09.2023 bis 05.01.2	2024 = 18 Wochen				
2 Unterbrechungen (Krankhe	eit, Betriebsferien	usw.)			
vom 11.12. bis 15.12. Grur	nd: Krankheit				
vom 27.12. bis 29.12. Grur	nd: Betriebsferien*				
vom 02.01. bis 05.01. Grur	nd: Betriebsferien*				
*Betriebsferien wurden dur	ch Überstunden aus	geglichen			
Die Ausbildungsstelle bestät	igt die Angaben de	es Berichts.			
(Ort, Datum)					
(Unterschrift des Ausbildungs	beauftragten)	(Firmenstempel)			

Der Praktikumsbericht wird von der Technischen Hochschule Ingolstadt vertraulich behandelt und nur dem /der Beauftragten für das Praktische Studiensemester zur Prüfung und Genehmi-

Abstract

Contents

1	Introduction							
	1.1	Problem Statement and Motivation	5					
	1.2	Objectives and Scope	5					
	1.3	Structure of the Thesis	5					
2	Fun	Fundamentals						
	2.1	Kubernetes and Multi-Tenancy	5					
	2.2	Kubernetes Control Plane (KCP)	5					
	2.3	SaaS Architecture and Automation	5					
3	State of the Art and Related Work 5							
	3.1	Zero-Downtime Deployment Strategies	5					
	3.2	Kubernetes Scaling Methods	5					
	3.3	Multi-Tenancy Concepts in the Cloud	5					
4	Conceptual Design							
	4.1	System Requirements	5					
	4.2	Architecture Design with KCP for SaaS	5					
	4.3	Automated Deployment Strategies	5					
5	Pro	totypical Implementation	5					
	5.1	Infrastructure with KCP	5					
	5.2	Tenant Provisioning	5					
	5.3	Scaling Mechanisms	5					
	5.4	Monitoring and Logging	5					
6	Eva	luation	5					
	6.1	Performance Measurements	5					
	6.2	Scaling Scenarios & Optimizations						
	6.3	Discussion of Results	5					
	6.4	Related Work	5					
7	Con	nclusion and Outlook	5					
	7.1	Summary	5					
	7.2	Personal Conclusion	5					
	7.3	Future Outlook	5					
Re	fere	nces	5					
Lis	st of	Figures	5					

Glossary

1 Introduction

- 1.1 Problem Statement and Motivation
- 1.2 Objectives and Scope
- 1.3 Structure of the Thesis

2 Fundamentals

- 2.1 Kubernetes and Multi-Tenancy
- 2.2 Kubernetes Control Plane (KCP)
- 2.3 SaaS Architecture and Automation

3 State of the Art and Related Work

- 3.1 Zero-Downtime Deployment Strategies
- 3.2 Kubernetes Scaling Methods
- 3.3 Multi-Tenancy Concepts in the Cloud

4 Conceptual Design

- 4.1 System Requirements
- 4.2 Architecture Design with KCP for SaaS
- 4.3 Automated Deployment Strategies

5 Prototypical Implementation

- 5.1 Infrastructure with KCP
- 5.2 Tenant Provisioning (Automation, Multi-Tenancy)
- 5.3 Scaling Mechanisms (Horizontal Pod Autoscaler)
- 5.4 Monitoring and Logging (Prometheus, Grafana)

6 Evaluation

- 6.1 Performance Measurements (Downtime, Latency, Scaling)
- 6.2 Scaling Scenarios & Optimizations
- 6.3 Discussion of Results
- 6.4 Related Work

7 Conclusion and Outlook

7.1 Summary

Appendix