Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao January 11, 2023

Today's topics

- (Euclidean) Division Algorithm
- (Binary) linear Diophantine equation
- Greatest common divisor

(Euclidean) Division Algorithm

Now, we apply the (Euclidean) Division Algorithm to our example. (133, 85)

$$133 = (1) \cdot 85 + 48$$

$$85 = (1) \cdot 48 + 37$$

$$48 = (1) \cdot 37 + 11$$

$$37 = (3) \cdot 11 + 4$$

$$11 = (2) \cdot 4 + 3$$

$$4 = (1) \cdot 3 + 1$$

$$3 = (3) \cdot 1 + 0$$

Linear Diophantine equation

Linear Diophantine equation

two unknowns

Question (Binary linear Diophantine equation)

Given integers a, b, c, find integers x, y such that

$$a \cdot x + b \cdot y = c$$
.

When c is the output of the division algorithm of (a, b), then we can use the (Euclidean) division algorithm to find a solution (x_0, y_0) .

Some observations

$$\alpha x_0 + b y_0 = c$$

1. By the **2-out-of-3 principle** of divisibility of integers, if the problem has a solution (x_0, y_0) , then for any common divisor d of a and b, we must have $d \mid c$. has solution $\Rightarrow \forall d$; $d \mid c$ Conversely, if c is not a multiple of common divisors of a and b, then the problem has no solution. At $c \Rightarrow has$ no solution!

Some observations

2. If we can find a solution (x, y) to the Diophantine equation

$$a \cdot x + b \cdot y = c$$
.

Then for any integer z, (zx_0, zy_0) is a solution of the Diophantine equation

$$a \cdot x + b \cdot y = zc.$$

$$azx_{o} + bzY_{o} = zc$$

Greatest common divisor

A: the largest common divisor.

Q: Is this largest common divisor a multiple of other common divisors?

Greatest common divisor

Definition 2.1 (Greatest common divisor)

Let a, b be two integers (not all zero). Then a positive integer g is called a greatest common divisor of a and b if it satisfies the following two defining properties:

- 1. $g \mid a$ and $g \mid b$, i.e. g is a common divisor of a and b; and
- 2. if d is any common divisor of a and b, then $d \mid g$.

3' | 8, 8 | 3' = 9 | 3'= 9

For a given pair (a, b), the greatest common divisor is unique, we use gcd(a, b) to denote it. In particular, we use gcd(a, b) = g to mean the greatest common divisor exists and equals to g.

Rmk: By 1 & 2, gcd (a,b) is the largest common divisor of a and b.

(Euclidean) division algorithm and greatest common divisor

Theorem 2.2

Let a, b be two positive integers. The output (namely, the last non-zero remainder r) of the (Euclidean) division algorithm of (a,b) is a greatest common divisor of a and b.

In particular, since the (Euclidean) division algorithm always halts in finite steps, the greatest common divisor of any pairs of positive integers always exists.

(Euclidean) division algorithm and greatest common divisor

Theorem 2.2

Let a, b be two positive integers. The output (namely, the last non-zero remainder r) of the (Euclidean) division algorithm of (a,b) is a greatest common divisor of a and b.

If we combine this theorem with our observations before, we see that: the Diophantine equation

$$a \cdot x + b \cdot y = c$$

has a solution (in \mathbb{Z}) if and only if c is a multiple of gcd(a, b).

Proof of the theorem

Let's start with a lemma.

Lemma 2.3

Let a, b be two positive integers. If there are integers q and r such that a = qb + r, then we have

$$gcd(a,b) = g \iff gcd(b,r) = g.$$
 $gcd(a,b) = gcd(b,r)$

Proof of the theorem

Lemma 2.3

Let a, b be two positive integers. If there are integers q and r such that a = qb + r, then we have

$$gcd(a, b) = g \iff gcd(b, r) = g.$$

Proof. (\Rightarrow) Suppose gcd(a, b) = g, let's prove gcd(b, r) = g by verifying the two defining properties.

- 1. Since $gcd(a, b) = \mathcal{L}$, we have $\mathcal{L} \mid a$ and $\mathcal{L} \mid b$. Since a = qb + r, by the 2-out-of-3 principle, we have $\mathcal{L} \mid r$.
- 2. Let $\frac{d}{d} \mid b$ and $\frac{d}{d} \mid r$. Since $\underline{a} = a\underline{b} + \underline{r}$, by the 2-out-of-3 principle, we have $\frac{d}{d} \mid a$. Since $\gcd(a,b) = g$, we have $\frac{d}{d} \mid g$.

A very similar argument gives you (\Leftarrow).

Proof of the theorem

Let's assume $a \ge b$. The division algorithm gives us the following

$$a = q_1b + r_1$$
 (Step 1)
 $b = q_2r_1 + r_2$ (Step 2)
 \vdots
 $r_{n-3} = q_{n-1}r_{n-2} + r$ (Step $n-1$)
 $r_{n-2} = q_nr + 0$ (Step n)

Our lemma 2.3 tells us that

$$\gcd(a,b) = \gcd(b, n) = \gcd(r, n) = \gcd(r, n) = \gcd(r, n) = r.$$

$$= \gcd(r, n) = \gcd(r, n) = \gcd(r, n) = r.$$

$$\gcd(r, n) = \gcd(r, n) = \gcd(r, n) = r.$$

$$\gcd(r, n) = \gcd(r, n) = \gcd(r, n) = r.$$

(Euclidean) division algorithm, backward

Note that, if we work the division algorithm backward, we have

$$r = r_{n-3} + (-q_{n-1}) \cdot r_{n-2}$$

$$= r_{n-3} + (-q_{n-1}) \cdot (r_{n-4} - q_{n-2}r_{n-3}) \qquad \text{substitute in } r_{n-2}$$

$$= (\cdots) \cdot r_{n-4} + (\cdots) \cdot r_{n-3} \qquad \text{collect the coefficients}$$

$$\vdots$$

$$= x_0 \cdot a + y_0 \cdot b.$$

Hence, the division algorithm gives us a solution (x_0, y_0) of the Diophantine equation $a \cdot x + b \cdot y = \gcd(a, b)$.

Bézout's identity

Theorem 2.4 (Bézout's identity)

Given non-zero integers a, b, there exist integers x_0 , y_0 such that

$$a \cdot x_0 + b \cdot y_0 = \gcd(a, b).$$

Bézout's identity

Theorem 2.4 (Bézout's identity)

Given non-zero integers a, b, there exist integers x_0 , y_0 such that

$$a \cdot x_0 + b \cdot y_0 = \gcd(a, b).$$

Proof. When a, b are both positive, the integers x_0 , y_0 are obtained by working the division algorithm backward.

In general, we solve this problem for the positive integers |a|, |b|, producing integers x_0 , y_0 , then we have

$$a \cdot (\underline{\operatorname{sign}(a)x_0}) + b \cdot (\underline{\operatorname{sign}(b)y_0}) = \gcd(a,b),$$

where $sign(\cdot)$ eats an integer and gives its signature, is a solution for our Diophantine equation.

Summarizing

Summarizing

Let a, b be two nonzero integers. The Diophantine equation

$$a \cdot x + b \cdot y = c$$

has a solution (in \mathbb{Z}) if and only if c is a multiple of gcd(a, b).

- If this is the case, the **Bézout's identity** gives a pair of integers (x_0, y_0) such that $ax_0 + by_0 = \gcd(a, b)$. Suppose $c = m \gcd(a, b)$. Then (mx_0, my_0) is a solution of our Diophantine equation.
- It remains to study what are all the solutions. Namely, to study the solution set

$$\{(\mathbf{x},\mathbf{y})\in\mathbb{Z}^2\ |\ a\cdot\mathbf{x}+b\cdot\mathbf{y}=c\}.$$

After Class Work

Terminology

Terminology

- **Diophantine equation** = equations in multiple unknowns and the interesting solutions are in a given set of numbers (e.g \mathbb{Z}).
- **Linear** = the expression only contains linear combinations of unknowns. Namely, no higher terms, no strange functions.

Example 2.5

- $x^2 + y^2 = 1$ is Diophantine equation but not a linear one.
- 18x 27y + 39z = 4 is a linear Diophantine equation with three unknowns.

Terminology

Terminology

Given some objects X, Y, \dots, Z , a *linear combination* of them is an **expression** of the form

$$aX + bY + \cdots + cZ$$
,

where a, b, \dots, c are called the **coefficients**. If all the coefficients are contained in a set S, then we say it is an S-linear combination.

Sometimes, we also call $Xa + Yb + \cdots + Zc$ a **linear combination** of the objects X, Y, \cdots, Z . The two definitions are equivalent as long as we are free to interchange the coefficient a and the object X.

Terminology

Example 2.6

- X is a linear combination of X itself, while X^2 is not.
- $\frac{1}{2}X$ is not a \mathbb{Z} -linear combination of X since $\frac{1}{2}$ is not an integer.
- $(+2) \cdot 133 + (-3) \cdot 85$ is a \mathbb{Z} -linear combination of 133 and 85. The equation $(+2) \cdot 133 + (-3) \cdot 85 = 11$ should be read as the *value* of the linear combination $(+2) \cdot 133 + (-3) \cdot 85$ is 11, or the integer 11 *can be expressed* as the linear combination $(+2) \cdot 133 + (-3) \cdot 85$. It *shouldn't* read as "11 *is* the linear combination $(+2) \cdot 133 + (-3) \cdot 85$ ".

Remark. Distinguish an expression and a value.

Notations

When elements of a set are obtained as outputs of operations, we often use a shorthand notations to denote this set.

Example 2.7

- Let A, B be two sets. Then A+B denotes the set of elements a+b, where $a\in A$, $b\in B$. Similarly, $AB:=\{ab\mid a\in A,b\in b\}$.
- Let A be a set and x be an object (e.g. a number, an unknown, etc.). Then $A + x := \{a + x \mid a \in A\}$. Similarly, $Ax := \{ax \mid a \in A\}$.
- Given objects x, y, \dots, z and a set S, what does the notation $Sx + Sy + \dots + Sz$ mean?

Exercises

Exercise 2.1

Let a, b be two integers. Show that

- 1. gcd(a, b) = gcd(|a|, |b|);
- 2. gcd(a, 0) = |a|;
- 3. if $a \mid b$, then gcd(a, b) = |a|;

Exercise 2.2 (substitution of \mathbb{Z}-linear combinations)

If an integer n can be expressed as a \mathbb{Z} -linear combination of the integers a and b, while the integer b can be expressed as a \mathbb{Z} -linear combination of the integers c and d, then n can be expressed as a \mathbb{Z} -linear combination of the integers a, c, and d.