04-10-2023-shift-2(16-30)

1

EE24BTECH11055 - Sai Akhila Reddy Turpu

16) Let a dice be rolled *n* times. Let the probability of getting odd numbers seven times be equal to the probability of getting odd numbers nine times. If the probability of

17) Let a circle of radius 4 be concentric to the ellipse $15x^2 + 19y^2 = 285$. Then the common tangents are inclined to the minor axis of the ellipse at the angle

c) 90

d) 15

getting even numbers twice is $\frac{k}{215}$, then k is equal to

b) 30

a) 60

a) $\frac{\pi}{6}$	b) $\frac{\pi}{12}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{4}$	
			\hat{k} . Let \overrightarrow{d} be a vector when $(-\hat{i} + \hat{j} - \hat{k}) \cdot (\overrightarrow{c} \times \overrightarrow{d})$ is	
a) 24	b) 42	c) 48	d) 44	
19) Let $S = \left\{z = x + iy : \frac{2z - 3i}{4z + 2i} \text{ is a real number}\right\}$. Then which of the following is NOT correct?				
a) $y \in (-\infty,$ b) $(x, y) = (0, 0, 0)$	$-\frac{1}{2}\right) \cup \left(-\frac{1}{2}, \infty\right)$ $0, -\frac{1}{2}\right)$	c) $x = 0$ d) $y + x^2 + y$	$v^2 \neq -\frac{1}{4}$	
20) Let the line $\frac{x}{1} = \frac{6-y}{2} = \frac{z+8}{5}$ intersect the lines $\frac{x-5}{4} = \frac{y-7}{3} = \frac{z+2}{1}$ and $\frac{x+3}{6} = \frac{3-y}{3} = \frac{z-6}{1}$ at the points A and B respectively. Then the distance of the mid-point of the line segment AB from the plane $2x - 2y + z = 14$ is:				
a) 3	b) $\frac{10}{3}$	c) 4	d) $\frac{11}{3}$	
 21) The sum of all four-digit numbers that can be formed using all the digits 2, 1, 2, 3 is equal to 22) In the figure, θ₁ + θ₂ = π/2 and √3 (BE) = 4 (AB). If the area of ΔCAB is 2 √3 – 3unit², when θ₂/θ₁ is the largest, then the perimeter of ΔCED is equal to 				

- 23) Let the tangent at any point P on a curve passing through the points (1,1) and $(\frac{1}{10}, 100)$, intersect positive x-axis and y-axis at the points **A** and **B** respectively. If $PA: PB = 1: k \text{ and } y = y(x) \text{ is the solution of the differential equation } e^{\frac{dy}{dx}} = \frac{dy}{dx}$ $kx + \frac{k}{2}$, y(0) = k, then $4y(1) - \log e^3$ is equal to _____.
- 24) Suppose $a_1, a_2, 2, a_3, a_4$ be in an arithmetico-geometric progression. If the common ratio of the corresponding geometric progression is 2 and the sum of all 5 terms of the arithmetico-geometric progression is $\frac{49}{2}$, then a_4 is equal to
- 25) If the area of the region $\{(x,y): |x^2-2| \le \overline{x}\}$ is A, then $6A+16\sqrt{2}$ is equal to .
- 26) Let the foot of perpendicular from the point $\mathbf{A}(4,3,1)$ on the plane P: x-y+2z+3=0be N. If **B** $(5, \alpha, \beta)$, $\alpha, \beta \in \mathbb{Z}$ is a point on plane P such that the area of triangle ABN is $3\sqrt{2}$, then $\alpha^2 + \beta^2 + \alpha\beta$ is equal to
- 27) Let S be the set of values of λ , for which the system of equations

$$6\lambda x - 3y + 3z = 4\lambda^{2},$$

$$2x + 6\lambda y + 4z = 1,$$

$$3x + 2y + 3\lambda z = \lambda$$

- has no solution. Then $12 \sum_{\lambda \in S} |\lambda|$ is equal to ______. 28) If the domain of the function $f(x) = \sec^{-1}\left(\frac{2x}{5x+3}\right)$ is $[\alpha,\beta) \cup (\gamma,\delta]$, then $|3\alpha + 10(\beta + \gamma) + 21\delta|$ is equal to .
- 29) Let the quadratic curve passing through the point (-1,0) and touching the line y=xat (1,1) be y = f(x). Then the x-intercept of the normal to the curve at the point $(\alpha, \alpha + 1)$ in the first quadrant is
- 30) Let the equations of two adjacent sides of a parallelogram ABCD be 2x 3y = -23and 5x + 4y = 23. If the equation of one of its diagonal AC is 3x + 7y = 23 and the distance of A from the other diagonal is d, then $50d^2$ is equal to ...