Введение

Общий вид задачи оптимизации:

1. Задача оптимального выбора

 $\min(\max)f(x), x \in X$ - множество операторов.

Если $X=R^n$ - задача безусловной минимизации (задача без ограничений)

2. Общая задача математического программирования

 $\min f_0(x)$ - функция m переменных. $x \in X_0 \subset R^n$

$$f_i(x) \le 0, i \in \overline{1, m_1}$$

 $f_i(x) = 0, i \in \overline{m_1 + 1, m}$

3. Задача вариационного исчисления

$$\min J(x) = \int_{t_0}^T L(t, x(t), x'(t))$$
$$x(t_0) = x_0, x(T) = x_1$$

Задача планирования производства

Переработка m видов ингредиентов (ресурсов)

 b_i – объем i-го ресурса

n технологий

 $a_{i,j}$ – затраты i-го ресурса при использовании j-ой технологии с единичной интенсивностью (например, за единицу времени)

 c_i – ценность за ед. времени j-го способа

Требуется спланировать производство так, чтобы не выходя за рамки отпущенных ресурсов получить конечную продукцию максимальной суммарной ценности.

Ищем интенсивность j-ого способа производства x_i .

Ищем x = (x1...xn) - план производства, который максимизирует суммарную ценность.

$$\begin{cases} \max \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j \le b_i, i \in \overline{1, m} \\ x_j \ge 0, j \in \overline{1, n} \end{cases}$$

Задача диеты

т полезных вешеств

 b_i - минимальное количество i-го вещества

п продуктов питания

 $a_{i,j}$ - количество i-го вещества в единице веса j-го продукта

 c_i - цена единицы j-го продукта

Требуется найти количество продуктов x_i

$$\begin{cases} \min \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j \ge b_i, i \in \overline{1, m} \\ x_j \ge 0, j \in \overline{1, n} \end{cases}$$

Транспортная задача

m пунктов производства

 a_i - количество продукта в i-м пункте

n потребителей

 b_{i} - потребность j-го потребителя

 $c_{i,j}$ - стоимость перевозки из пункта i в пункт j единицы продукта

Требуется организовать перевозки так, чтобы:

- 1. из каждого пункта производства вывезти весь имеющийся там продукт
- 2. полностью насытить потребности каждого потребителя
- 3. суммарные транспортные затраты были минимальны

Определить объемы перевозок $x_{i,j}$

$$\begin{cases} \min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i,j} x_{i,j} \\ \sum_{j=1}^{n} x_{i,j} = a_i, i \in \overline{1, m} \\ \sum_{i=1}^{m} x_{i,j} = b_j, j \in \overline{1, n} \\ x_{i,j} \ge 0, \forall i, j \end{cases}$$

Все три задачи оптимизационные, во всех надо найти оптимум линейной функции. Существуют ограничения в виде неравенств и равенств. В ограничениях левая часть – линейная функция. Есть условия неотрицательных переменных $(x_{i,j} > 0)$

Примеры задач линейного программирования вкладываются в общую схему задач математического программирования.

Общая задача линейного программирования

$$\begin{cases} \min(\max) \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j \{=, \leq, \geq\} b_i, i \in \overline{1, m} \\ x_j \geq 0, j \in \overline{1, m} \end{cases}$$

Целевая функция - функция, которая минимизируется или максимизируется.

Вектор цели $c = (c_1 \dots n)$ определяет целевую функцию.

Ограничения могут быть равенствами или неравенствами.

Матрица задачи (условий) $A = (a_{i,j})_{m \times n}$.

Вектор правых частей (ограничений) $B = (b_1 \dots b_m)$.

Условие неотрицательности переменных $x_i >= 0$.

План задачи $x = (x_1 \dots x_n)$ - допустимый, если удовлетворяет всем ограничениям.

Допустимое множество X – множество всех допустимых планов задачи.

$$\overline{x}=(\overline{x_1}\dots\overline{x_n})$$
 - Оптимальный план , если $\forall x\in X:\sum_{j=1}^n c_j\overline{x_j}\leq \sum_{j=1}^n c_jx_j$

 $\sum_{j=1}^n c_j \overline{x_j}$ - Оптимальное значение задачи

Pemenue задачи линейного программирования - найти хотя бы один оптимальный план и вычислить оптимальное значение.

Частные формы задачи ЛП

1. Планирования производства

$$\begin{cases} \max \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j = b_i, \forall i \\ x_j \ge 0, \forall j \end{cases}$$

2. Каноническая задача

$$\begin{cases} \min \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j = b_i, \forall i \\ x_j \ge 0, \forall j \end{cases}$$

3. Основная задача

$$\begin{cases} \min \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j \le b_i, \forall i \end{cases}$$

Существуют правила перехода от одной задачи к другой (формы эквивалентны).

- 1. важна с точки зрения приложений
- 2. решается алгебраическими методами, приводим задачи к этому виду для решения
- 3. важна при рассмотрении теоретических вопросов
- Матричная запись:

$$X,C,B$$
 - вектор-столбцы

$$\begin{cases} \max C^T X \\ AX \le B \\ X > 0 \end{cases}$$

• Векторная запись:

$$A = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$$
 - набор векторов (строк)

$$\begin{cases} \max(C, X) \\ (a_i, X) \leq b_i, \forall i \\ X \geq 0 \end{cases}$$

• Запись через столбцы:

$$A=(A_1\dots A_n)$$
 - набор столбцов
$$\begin{cases} \max(C,X) \\ \sum_{j=1}^n A_j x_j \leq B \\ X>0 \end{cases}$$

$$\sum_{j=1}^{n} A_j x_j \le 1$$

$$X > 0$$

Правила перехода

1.
$$\max_{x \in S} f(x) = -\min_{x \in S} (-f(x))$$
 x^* - точка максимума $f(x)$
 $\forall x \in S : f(x^*) \ge f(x)$
 $\forall x \in S : -f(x^*) \le -f(x)$
 x^* - точка минимума $-f(x)$

2.
$$f_i(x) \ge 0 \sim -f_i(x) \le 0$$

3.
$$(a_i, x) \leq b_i$$

Добавим переменную $x_{n+i} = b_i - (a_i, x) \ge 0$

$$(a_i, x) \le b_i \sim \begin{cases} (a_i, x) + x_{n+i} = b_i \\ x_{n+i} \ge 0 \end{cases}$$

4.
$$(a_i, x) = b_i \sim \begin{cases} (a_i, x) \le b_i \\ -(a_i, x) \le b_i \end{cases}$$

5.
$$a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$$

Пусть
$$a_{i,1} \neq 0$$

$$x_1 = \frac{1}{a_{i,1}}(b_i - a_{i,2}x_2 - \dots - a_{i,n}x_n)$$

$$x_i \ge 0 \Rightarrow a_{i,2}x_2 + \dots + a_{i,n}x_n \le b_i$$

Применим метод Жордана-Гаусса. Количество ограничений сократится.

6.
$$x_j \ge 0 \sim -x_j \le 0 \sim (a_j, x) \le b_j, b_j = 0, a_j = -1$$

7. x_j - свободная переменная.

Замена
$$x_j = x_j' - x_j'', x_j', x_j'' \ge 0$$

Геометрическая задача $\Pi\Pi$ на плоскости и графический метод решения

$$z = c_1 x_1 + c_2 x_2 \to \max \\ \begin{cases} a_{1,1} x_1 + a_{1,2} x_2 \le b_1 \\ \vdots \\ a_{m,1} x_1 + a_{m,2} x_2 \le b_m \\ x_i \ge 0 \forall i \end{cases}$$

1. Построение допустимого множества X.

$$a_{i,1}x_1 + a_{i,2}x_2 \le b_i$$

Множество точек, удовлетворяющих неравенству - полуплоскость. Построим прямую $a_{i,1}x_1 + a_{i,2}x_2 = b_i$. Вектор нормали $(a_{i,1}, a_{i,2})$ направлен в искомую полуплоскость.

Также учитываем условия неотрицательности переменных.

Множество X - пересечение всех полученных полуплоскостей. Возможны три случая:

- (a) X многоугольник
- (b) X неограниченное многоугольное множество
- (c) X пустое множество (решений нет)
- 2. Поиск $\max z = \max(c, x)$ с помощью линий уровня.

 $(c,x)=z_0$ - начальная прямая. Как правило, $z_0=0$.

c - её вектор нормали.

Возьмем $z_1 > z_0$. Прямая $(c, x) = z_1$ параллельно сдвинута в сторону вектора нормали (в задаче на min сдвигаем в обратную сторону).

Сдвигаем прямую до крайнего положения $(c, x) = f^*$. Множество оптимальных планов x^* - пересечение X и прямой $(c, x) = f^*$.

Если X - неограниченное множество, то возможна (зависит от направления вектора c) ситуация, когда $f^* = \infty$.

Геометрические свойства задачи ЛП в пространстве \mathbb{R}^n

Опр. Выпуклая комбинация

 $x - x_1$ - часть вектора $x_2 - x_1$.

 $x - x_1 = \alpha(x_2 - x_1).$

Значение α задает положение точки x на отрезке $[x_1, x_2]$.

 $x=(1-\alpha)x_1+\alpha x_2$ - уравнение отрезка $[x_1,x_2]$ при $0\leq \alpha\leq 1$ (выпуклая комбинация точек x_1,x_2).

Опр. Выпуклое множество

S - выпуклое, если любой отрезок с концами в S целиком содержится в S.

$$\forall x_1, x_2 \in S : [x_1, x_2] \subset S$$

Или:

$$\forall x_1, x_2 \in S, \alpha \in [0, 1] : x = (1 - \alpha)x_1 + \alpha x_2 \in S$$

Утв. Непустое пересечение выпуклых множеств - выпуклое.

Доказательство:

$$S = S_1 \cap S_2$$

Возьмем $x_1, x_2 \in S$

$$x_1, x_2 \in S_i \Rightarrow [x_1, x_2] \subset S_i \Rightarrow [x_1, x_2] \subset S_1 \cap S_2$$

Опр. Гиперплоскость

$$x \in \mathbb{R}^m$$

$$H = \{x | (a, x) = b\}$$
 - гиперплоскость

а - нормаль гиперплоскости

Утв. Гиперплоскость - выпуклое множество.

Доказательство:

$$x_1, x_2 \in H, \alpha \in [0, 1]$$

$$x = (1 - \alpha)x_1 + \alpha x_2$$

Скалярное произведение линейно ⇒

$$(a,x) = (1 - \alpha)(a,x_1) + \alpha(a,x_2) = (1 - \alpha)b + \alpha b = b$$

 $\Rightarrow x \in H$

H делит пространство на две полуплоскости:

$$H^+ = \{x | (a, x) \ge b\}$$

$$H^- = \{x | (a, x) < b\}$$

Утв. H^+ и H^- - выпуклые множества.

Доказательство:

$$x_1, x_2 \in H^+, \alpha \in [0, 1]$$

$$x = (1 - \alpha)x_1 + \alpha x_2$$

$$(a,x) = (1-\alpha)(a,x_1) + \alpha(a,x_2) = (1-\alpha)(b+\theta_1) + \alpha(b+\theta_2) = b + (1-\alpha)\theta_1 + \alpha\theta_2 \ge b$$
 где $\theta_1,\theta_2 \ge 0$

Для H^- аналогично.

$$H_i^- = \{x | (a_i, x) \le b_i\}$$

$$X = \bigcap_{i=1}^{m} H_{i}^{-}$$
 - допустимое множество основной задачи (многогранник решений)

Утв. X - выпуклое множество.

Опр. Предельная точка

$$\overline{x} \in X$$
 - предельная точка, если:

$$\exists \{x_k\} \subset X : \forall k \in N : x_k \neq \overline{x} \text{ if } x_k \xrightarrow[k \to \infty]{} \overline{x}$$

Скалярное произведение непрерывно \Rightarrow $(a_i, x_k) \xrightarrow[k \to \infty]{} (a_i, \overline{x}) \le b_i$

Значит X - замкнутое множество.

Опр. k-грань

x - k-грань, если:

$$\exists \{i_1 \dots i_k\} \subset \overline{1,n}$$
, такое, что:

- $1. \ a_{i_l}$ линейно независимы
- 2. $\forall l \in \overline{1,k} : (a_i,x) = b_{i,j}$
- 3. $\forall i \in \overline{1,n} : (a_i,x) < b_i$

Опр. Вершина - n-грань

$\mathbf{y}_{\mathbf{TB.}}$

Пусть $X \neq \emptyset$, r = r(A). Тогда $\forall k \in \overline{1,r} : \exists k$ -грань (Без доказательства)

Опр. Выпуклая комбинация

Выпуклая комбинация точек $x_1 \dots x_k$ - $\sum_{i=1}^k \alpha_i x_i$, где:

$$\forall i: \alpha_i = 0$$

$$\forall i : \alpha_i = 0 \\ \sum_{i=1}^k \alpha_i = 1$$

Утв. Выпуклое множество содержит все выпуклые комбинации своих точек.

Доказательство:

Пусть S - выпуклое множество, $x_1 \dots x_m \in S$

$$x = \sum_{i=1}^{m} \alpha_i x_i$$

Докажем, что $x \in S$ индукцией по числу точек m:

$$Б.И. k = 2$$

Множество значений x - отрезок. Из определения выпуклого множества $x \in S$.

Рассмотрим три случая:

1. $\alpha_m = 0$

Количество слагаемых - m-1. Выполнено П.И.

 $\sum_{i=1}^{m} \alpha_i = 1 \Rightarrow$ одно слагаемое, очевидно.

3. $0 < \alpha_m < 1$

$$x = (1 - \alpha_m) \sum_{i=1}^{m-1} \frac{\alpha_i}{1 - \alpha_m} x_i + \alpha_m x_m = (1 - \alpha_m) y + \alpha_m x_m$$

 $x=(1-\alpha_m)\sum_{i=1}^{m-1}rac{lpha_i}{1-lpha_m}x_i+lpha_mx_m=(1-lpha_m)y+lpha_mx_m$ $\sum_{i=1}^{m-1}lpha_i=1-lpha_m\Rightarrow\sum_{i=1}^{m-1}rac{lpha_i}{1-lpha_m}=1\Rightarrow y$ - выпуклая комбинация m-1 точек и по Π .И.

 $\Rightarrow x$ - выпуклая комбинация 2-х точек из $S \Rightarrow x \in S$

Опр. Выпуклая оболочка

Выпуклая оболочка множества M - множество всех выпуклых комбинаций точек из M. Свойства соМ:

1. coM - выпуклое множество.

 $x_1, x_2 \in coM$

$$x_1 = \sum_{i=1}^k \alpha_i x_i$$

$$x_2 = \sum_{j=1}^m \beta_j x_j^*$$

$$x = \lambda x_1 + (1 - \lambda)x_2$$

Легко проверить, что x - выпуклая комбинация $x_1 \dots x_k, x_1^* \dots x_m^*$

2. $M \subset coM$

Любая точка множества - выпуклая комбинация из одного слагаемого.

3. $\forall S$ - выпуклое множество: $M \subset S \Rightarrow coM \subset S$

S - выпуклое, значит, оно содержит все выпуклые комбинации своих точек.

 $M \subset S \Rightarrow S$ содержит все выпуклые комбинации точек из $M \Rightarrow coM \subset S$

Пример:

Треугольник - выпуклая оболочка его трех вершин.

Доказательство:

 x_1, x_2, x_3 - вершины.

$$y = \alpha x_1 + (1 - \alpha) x_2$$
 - отрезок $[x_1, x_2]$

$$x = \beta y + (1 - \beta)x_3$$
 - треугольник

$$x = \beta \alpha x_1 + \beta (1 - \alpha) x_2 + (1 - \beta) x_3$$

Сумма коэффициентов равна единице $\Rightarrow x$ - выпуклая комбинация.

Многоугольник - выпуклая оболочка своих вершин.

Опр. Крайняя точка

 $\overline{x} \in M$ - крайняя (угловая) точка, если ее нельзя представить в виде нетривиальной ($\alpha > 0$) выпуклой комбинации двух различных точек из M.

 Π ример:

Крайние точки многоугольника - его вершины. У сферы все точки являются крайними.

Теорема Любое непустое выпуклое замкнутое ограниченное множество из \mathbb{R}^n можно представить как выпуклую оболочку своих крайних точек.

Опр. Выпуклый многогранник - выпуклая оболочка конечного числа точек.

Свойства:

- 1. выпуклое множество
- 2. ограниченное
- 3. замкнутое

Доказательство:

M - выпуклый многогранник.

$$\{x_k\} \subset M$$

$$x_k \xrightarrow[k \to \infty]{\bar{x}}$$

$$x_k = \sum_{i=1}^m \alpha_i^k x^i$$

$$\forall k : \sum_{i=1}^{m} \alpha_i^k = 1$$

Последовательность $\{\alpha_i^k\}_{k=0}^{\infty}$ ограничена. Выделим сходящуюся подпоследовательность для кажлого i:

$$i = 1 : \exists \{x_{k_j^1}\} \subset \{x_k\} : \alpha_1^{k_j^1} \xrightarrow[j \to \infty]{} \overline{\alpha_1}$$

$$i = 2 : \exists \{x_{k_j^2}\} \subset \{x_{k_j^1}\} : \alpha_2^{k_j^2} \xrightarrow[j \to \infty]{} \overline{\alpha_2}$$

:

$$i = m : \exists \{x_{k_j^m}\} \subset \{x_{k_j^{m-1}}\} : \alpha_m^{k_j^m} \xrightarrow[j \to \infty]{} \overline{\alpha_m}$$

Имеем
$$x_{k_j^m} \xrightarrow[i\to\infty]{} \sum_{i=1}^m \overline{\alpha_i} x^i$$

При этом
$$\sum_{i=1}^{m} \overline{\alpha_i} = 1$$

Но $x_k \xrightarrow[k \to \infty]{} \overline{x}$, а $x_{k_j^m}$ - подпоследовательность x_k , значит $\overline{x} = \sum_{i=1}^m \overline{\alpha_i} x^i$ - выпуклая комбинация точек из M. Следовательно, $\overline{x} \in M$.

Из теоремы следует, что выпуклый многогранник - выпуклая оболочка своих крайних точек.

 $X=x|Ax\leq B$ - допустимое множество задачи ЛП.

X - выпуклое и замкнутое.

1. X - ограничено.

По теореме X можно представить как выпуклую оболочку своих крайних точек (вершин)

Количество вершин конечно, а точнее, не превосходит C_m^n , где n - размерность задачи, m - количество ограничений.

3начит X - выпуклый многогранник.

2. X - неограниченно.

Пусть $p_1 \dots p_s$ - вершины X.

У X есть два неограниченных ребра. Возьмем их направляющие векторы S_1, S_2 .

Тогда
$$x = \sum_{i=1}^{s} \alpha_i p_i + \beta_1 S_1 + \beta_2 S_2$$
.

Если X - ограничено и непусто, то задача ЛП имеет решение.

Признак разрешимости: Если целевая функция задачи ЛП на max (min) ограничена сверху (снизу) на допустимом множестве, то задача разрешима.

<u>Утв.</u> Если задача ЛП разрешима, то среди решений есть хотя бы одна вершина допустимого множества.

Доказательство:

$$\begin{cases} \max(c,x) & \leq b_i, i \in \overline{1,m} \\ (a_i,x) \leq b_i, i \in \overline{1,m} \end{cases} - \text{задача ЛП} \\ x_i \geq 0, i \in \overline{1,m} \end{cases}$$
 x^* - решение X - ограничено $\Rightarrow x^* = \sum_{i=1}^N \alpha_i p_i$, где $p_1 \dots p_N$ - вершины X . $f^* = (c,x^*) = \sum_{i=1}^N \alpha_i (c,p_i)$ Возьмем $p = \max_{1 \leq i \leq N} p_i$ Тогда $f^* \leq (c,p) \sum_{i=1}^N \alpha_i = (c,p)$ Но f^* - оптимальное значение функции $\Rightarrow \forall x \in X : f^* \geq (c,x)$ Отсюда, $(c,x^*) = (c,p) \Rightarrow x^* = p \Rightarrow x^*$ - вершина.

<u>Утв.</u> Любая выпуклая комбинация решений является решением.

Доказательство:

$$p_1 \dots p_k$$
 - решения $orall i \in \overline{1,k}$: $f^* = (c,p_i)$ $p = \sum_{i=1}^k \alpha_i p_i$ $(c,p) = \sum_{i=1}^k \alpha_i (c,p_i) = \sum_{i=1}^k \alpha_i f^* = f^*$

Опорный план

Определен для канонической задачи ЛП:

$$\begin{cases} \min(c, x) \\ \sum_{j=1}^{n} A_j x_j = B \\ x \ge 0 \end{cases}$$

Опр. Опорный план

План задачи $\overline{x} = (\overline{x_1} \dots \overline{x_n})$ является опорным, если столбцы $\{A_j | \overline{x_j} > 0\}$ линейно независимы. Если столбцов столько же, сколько и ограничений, то план - невырожденный.

 $\underline{\mathbf{y_{TB.}}}$ \overline{x} - опорный план $\Longleftrightarrow \overline{x}$ - крайняя точка.

Доказательство:

Необходимость

Пусть \overline{x} - опорный план.

Предположим от противного: \overline{x} - не крайняя точка.

Тогда
$$\exists \alpha_1, \alpha_2 > 0: \exists x', x'' \in X, x' \neq x'': \overline{x} = \alpha_1 x' + \alpha_2 x'', \alpha_1 + \alpha_2 = 1$$

x' и x'' удовлетворяют ограничениям задачи ЛП:

$$\begin{cases} \sum_{j=1}^{n} A_j x_j' = B \\ \sum_{j=1}^{n} A_j x_j'' = B \end{cases}$$

Пусть $I = \{j | \overline{x_j} > 0\}$ - множество индексов. Тогда $\forall j \notin I : x_j' = x_j'' = 0$. Вычитая одно равенство из другого получаем:

$$\sum_{j \in I} A_j (x_j' - x_j'') = 0$$

 A_j - линейно независимы, значит $\forall j \in I: x_j' = x_j''$. При этом $\forall j \notin I: x_j' = x_j'' = 0$. Отсюда, x' = x'', противоречие.

Достаточность

 $\overline{\Pi_{\text{усть }\overline{x}}}$ - крайняя точка, $I=\{j|\overline{x_j}>0\}$ - множество индексов при ненулевых компонентах.

 \overline{x} удовлетворяет ограничениям задачи ЛП: $\sum_{j\in I}A_j\overline{x_j}=B$

Предположим от противного: \overline{x} - не опорный план. Тогда $\{A_i\}_{i\in I}$ - линейно зависимы, то есть, существует нетривиальная линейная комбинация $d_1 \dots d_k$, такая, что:

$$\sum_{j\in I} d_j A_j = 0$$

Возьмем $\epsilon > 0$. Умножим обе части равенства на $\pm \epsilon$ и сложим с ограничением задачи ЛП.

$$\sum_{j \in I} A_j(\overline{x_j} \pm \epsilon d_j) = B$$

 $\sum_{j\in I}A_j(\overline{x_j}\pm\epsilon d_j)=B$ Выберем ϵ таким, что $\forall j\in I: x_j\pm\epsilon d_j\geq 0$

Пусть вектора x', x'' имеют координаты:

$$\forall j \in I : \begin{cases} x'_j = \overline{x_j} - \epsilon d_j \\ x''_j = \overline{x_j} + \epsilon d_j \end{cases}$$
$$\forall j \notin I : x'_j = x''_j = 0$$

 $\forall j \in I: \begin{cases} x_j' = \overline{x_j} - \epsilon d_j \\ x_j'' = \overline{x_j} + \epsilon d_j \end{cases}$ $\forall j \notin I: x_j' = x_j'' = 0$ x' и x'' имеют неотрицательные координаты и удовлетворяют ограничениям задачи лп, значит, являются планами задачи. Кроме того, $x' \neq x''$ и $\overline{x} = \frac{1}{2}x' + \frac{1}{2}x''$. Следовательно, \overline{x} - выпуклая комбинация различных точек из X, а значит, не является крайней, противоречие.

Симплекс метод

Условия применимости:

- 1. Задача в каноническом виде
- 2. Число уравнений строго меньше числа неизвестных
- 3. Все свободные члены $b_i \ge 0$
- 4. r(A) = m. Матрица A содержит единичную m-мерную подматрицу

Без ограничения общности будем считать, что $\forall k \in \overline{1,m} : A_{k,j} = \begin{cases} 0, j \neq k \\ 1, j = k \end{cases}$

 $x_1 \dots x_m$ - базисные компоненты, остальные - небазисные

Начальный опорный план $x^1 = (x_1^1 \dots x_m^1, 0 \dots 0), \quad x_i^1 = b_i$

Выразим столбцы матрицы A через столбцы при базисных компонентах:

$$\forall j \in \overline{1,n} : A_j = \chi_{1,j} A_1 + \dots + \chi_{m,j} A_m$$

Такое разложение существует, т.к. $A_1 \dots A_m$ - линейно независимы, а значит являются базисом т-мерного пространства столбцов.

 $X = \{\chi_{i,j}\}_{m \times n}$ - матрица коэффициентов разложения.

Разложение в матричном виде: $A = [A_1 \dots A_m]X$

Пусть $A_{m+1}=\chi_{1,m+1}A_1\ldots\chi_{m,m+1}A_m$ - разложение некоторого небазисного столбца A_{m+1} . Пусть $\chi_{1,m+1} > 0$.

Положим $\theta > 0$ - некоторый неопределенный множитель.

Умножим равенство выше на heta и вычтем из ограничений задачи. Получим:

$$A_1(x_1^1 - \theta\chi_{1,m+1}) + \dots + A_m(x_m^1 - \theta\chi_{m,m+1}) + A_{m+1}\theta = b$$
 Пусть $x_\theta = (x_1^1 - \theta\chi_{1,m+1}, \dots, x_m^1 - \theta\chi_{m,m+1}, \theta, 0, \dots, 0)$

Из полученного равенства следует, что x_{θ} удовлетворяет ограничениям задачи. Для того, чтобы x_{θ} был допустимым планом нужно, чтобы $\forall i: x_i^1 - \theta \chi_{i,m+1} \geq 0$

Если $\chi_{i,m+1} \leq 0$, то верно для любого $\theta > 0$. Если $\chi_{i,m+1} > 0$, то верно при $0 < \theta \leq \frac{x_i^1}{y_{i,m+1}}$.

Возьмем $\theta \leq \theta_0 = \min_{\chi_{i,m+1}>0} \frac{x_i^1}{\chi_{i,m+1}}.$ Пусть min достигается при i=1. Тогда, подставляя $\theta=\theta_0$, получим:

 $x^2 = (0, x_2^2, \dots, x_m^2, \theta_0, 0, \dots, 0)$ - новый допустимый план задачи.

Докажем, что x^2 является опорным.

От противного: пусть столбцы $A_2 \dots A_{m+1}$ - линейно зависимы. Значит:

 $\exists \alpha_2 \dots \alpha_{m+1}$ - нетривиальная л.к.: $\alpha_2 A_2 + \dots + \alpha_{m+1} A_{m+1} = 0$

 $A_1 \dots A_m$ - лин. независимы $\Rightarrow A_2 \dots A_m$ - лин. независимы $\Rightarrow lpha_{m+1}
eq 0$

Отсюда $A_{m+1} = \sum_{i=2}^m \beta_i A_i, \;\; \beta_i = \frac{\alpha_1}{\alpha_{m+1}}$

Вычтем это равенство из разложения A_{m+1} через базисные столбцы:

 $0 = \chi_{1,m+1}A_1 + (\chi_{2,m+1} - \beta_2)A_2 + \dots + (\chi_{m,m+1} - \beta_m)A_m$

 $A_1 \dots A_m$ - лин. независимы, значит коэффициенты равны нулю. В частности:

 $\chi_{1,m+1} = 0$

Но мы ранее положили, что $\chi_{1,m+1} > 0$, противоречие.

В итоге мы перешли к новому опорному плану. Теперь сравним значения целевой функции. Возьмем разложение $A_j=\chi_{1,j}A_1+\cdots+\chi_{m,j}A_m$ и подставим вместо $A_1\dots A_m$ коэффициенты целевого вектора с с базисными компонентами:

$$z_j = \sum_{i=1}^m \chi_{i,j} c_{B_i}$$

Или в матричной записи:

$$z^T = c_B X$$

Введем оценки опорного плана $\Delta_j=z_j-c_j$. Понятно, что $\forall j\in\overline{1,m}:\Delta_j=0$ $z_0^2=(c,x^2)=c_2x_2^2+\cdots+c_mx_m^2+c_{m+1}x_{m+1}^2=c_2(x_2^1-\theta_0\chi_{2,m+1})+\cdots+c_m(x_m^1-\theta_0\chi_{m,m+1})+c_{m+1}\theta_0$

Прибавим $c_1(x_1^1 - \theta_0 \chi_{1,m+1}) = 0$:

 $F^* = \dots + c_1(x_1^{1} - \theta_0\chi_{1,m+1}) = c_1x_1^{1} + \dots + c_mx_m^{1} - \theta_0(c_1\chi_{1,m+1} + \dots + c_m\chi_{m,m+1}) + c_{m+1}\theta_0 = 0$ $(c, x^1) - \theta_0(z_{m+1} - c_{m+1}) = z_0^1 - \theta_0 \Delta_{m+1}$

Как итог: $z_0^2 = z_0^1 - \theta_0 \Delta_{m+1}$

Утв. О сходимости симплекс метода

- 1. Пусть $\exists j : \Delta_i > 0$ и $\exists i : \chi_{i,j} > 0$. Тогда $z_0^2 < z_0^1$
- 2. Пусть $\exists j: \Delta_i > 0$ и $\forall i: \chi_{i,j} \leq 0$. Тогда $z_0 = -\infty$ (оптимального плана не существует)
- 3. Пусть $\forall j: \Delta_i \leq 0$. Тогда x^1 оптимальный план

Доказательство:

- 1. Мы это уже доказали, взяв б.о.о j = m + 1 и i = 1.
- 2. 6.0.0. j = m + 1

Мы доказывали, что $x_{\theta} = (x_1^1 - \theta \chi_{1,m+1}, \dots, x_m^1 - \theta \chi_{m,m+1}, \theta, 0, \dots, 0)$ удовлетворяет ограничениям задачи. Если $\forall i: \chi_{i,j} \leq 0$, то $\forall \theta > 0: x_{\theta}$ является допустимым планом задачи.

$$(c, x_{\theta}) = z_0^1 - \theta \Delta_{m+1} \xrightarrow[\theta \to \infty]{} -\infty$$

Целевую функцию можно уменьшать сколь угодно, значит оптимального плана не существует.

3.

Алгоритм симплекс метода

Шаг 0:

 $B^0=A_{i_1}\dots A_{i_m}$ - базисные столбцы. A_{i_k} - единица на k-ой позиции, все остальные - нули. $I^0_B=\{i_1\dots i_m\}$ - номера базисных векторов. $J^0_N=\overline{1,n}\setminus I^0_B$

$$x^0$$
 - начальный план. $x_i^0 = egin{cases} b_k, i = i_k \in I_B^0 \ 0, i \in J_N^0 \end{cases}$

Шаг к:

- 1. Разлагаем A_i по векторам из B^k . Получаем матрицу разложений X^k
- 2. Находим z_j^k . Матрица $(z^k)^T = c_{B_k} X^k$
- 3. Находим оценки $\Delta_j^k = z_j^k c_j$
- 4. Если $\forall j \in J_N^k : \Delta_j^k \leq 0$, то стоп. x^k является оптимальным планом задачи.
- 5. Введем множество $J_>^N = \{j | \Delta_j^k \geq 0\}$
- 6. Если $\exists j \in J^N_{>}: \forall i: \chi^k_{i,j} \leq 0$, то стоп. Оптимального плана не существует.
- 7. Введем p, равный такому $j \in J^N_>$, что Δ^k_j максимально. Это будет номер столбца, который мы добавим в базис.
- 8. Ведем l такой, что $\theta_0 = \frac{x_l^k}{\chi_{l,p}^k}$ (достигается минимум). Это будет номер столбца, который мы удалим из базиса.
- 9. $B^{k+1} = B^k \cup \{A_p\} \setminus \{A_l\}$ $\forall i \in I_B^{k+1} : x_i^{k+1} = x_i^k - \theta_0 \chi_{i,p}^k$

Примечание: возможно зацикливание симплекс метода, если $\theta_0 = \min_{\chi_{i,p}>0} \frac{x_i}{\chi_{i,p}}$ - минимум достигается при нескольких i. Для избежания этого необходимо в таких ситуациях выбирать наименьший из всех i.

Симплекс таблица

Выведем новое разложение матрицы A через базисные столбцы.

Старое разложение:

$$A_0 = x_1^1 A_1 + \dots + x_m^1 A_m$$
 $A_p = \chi_{1,p} A_1 + \dots + \chi_{l,p} A_l + \dots + \chi_{m,p} A_m$ $\forall j: A_j = \chi_{1,j} A_1 + \dots + \chi_{l,j} A_l + \dots + \chi_{m,j} A_m$ Из разложения A_p получаем: $A_l = \frac{1}{\chi_{l,p}} (A_p - \chi_{1,p} A_1 - \dots - \chi_{m,p} A_m)$

Подставляем A_l в разложение A_0 :

$$A_0 = A_1(x_1^1 - \frac{x_l^1}{\chi_{l,p}}\chi_{1,p}) + \dots + A_p \frac{x_l^1}{\chi_{l,p}} + \dots + A_m(x_m^1 - \frac{x_l^1}{\chi_{l,p}}\chi_{m,p})$$
 Получаем:

Получаем.
$$\begin{cases} \overline{x_i} = x_i - \frac{x_l}{\chi_{l,p}} \chi_{i,p}, i \neq l \\ \overline{x_l} = \frac{x_l}{\chi_{l,p}} \end{cases}$$
 - формулы для пересчета столбца A_0

Аналогично выводим формулы для пересчета остальных столбцов:

$$\begin{cases} \overline{\chi_{i,j}} = \chi_{i,j} - \frac{\chi_{l,j}}{\chi_{l,p}} \chi_{i,p}, i \neq l \\ \overline{\chi_{l,j}} = \frac{\chi_{l,i}}{\chi_{l,p}} \end{cases}$$
 Это - формулы прямоугольного метода Жордана-Гаусса.