Assignment No. 1

EECS 658

Introduction to Machine Learning

Due: 11:59 PM, Thursday, September 1, 2022

Submit deliverables in a single zip file to Canvas

Name of the zip file: FirstnameLastname_Assignment1 (with your first and last name) Name of the Assignment folder within the zip file: FirstnameLastname Assignment1

Deliverables:

- 1. Copy of Rubric1.docx with your name and ID filled out (do not submit a PDF)
- 2. Python source code for CheckVersions
- 3. Screen print showing the successful execution of CheckVersions
- 4. Python source code for NBClassifier
- 5. Screen print showing the successful execution of NBClassifier
- 6. Answers to the following questions:
 - a. How many samples in NBClassifer were in the training set?
 - b. How many samples in NBClassifer were in the test set?
 - c. Using the confusion matrix, manually calculate the Accuracy value. Does it match the value calculated by your program? If not, why? (Manually includes using a spreadsheet).
 - d. Using the confusion matrix, manually calculate the Precision values for each iris variety. Do they match the values calculated by your program? If not, why?
 - e. Using the confusion matrix, manually calculate the Recall values for each iris variety. Do they match the values calculated by your program? If not, why?
 - f. Using the confusion matrix, manually calculate the F1 values for each iris variety. Do they match the values calculated by your program? If not, why?

Assignment:

- Install Python on your system if it is not already.
 - See "Python for Windows Primer" on Canvas (under Assignment 1) for help on Windows
 - o For help on Linux, see:
 - https://wiki.ittc.ku.edu/ittc_wiki/index.php/EECS168:SSH_Instruct
 ions
 - Virtual Box: https://www.virtualbox.org/wiki/Downloads
 - Ubuntu install: https://ubuntu.com/download/desktop
 - See "Beginner's Python Cheat Sheet" on Canvas (under Assignment 1) for help with Python.
- Install the following Python libraries.
 - o scipy
 - o numpy
 - o pandas
 - o sklearn

- The scipy installation page provides excellent instructions for installing the above libraries on multiple different platforms, such as Linux, mac OS X and Windows. If you have any doubts or questions, refer to this guide, it has been followed by thousands of people.
- To verify you have installed Python and the SciPy libraries write a Python program called CheckVersions that 1) prints out the versions of Python, scipy, numpy, pandas, and sklearn and 2) prints out "Hello World!"

```
O Hint: use this code for part 1):
    # Python version
    import sys
    print('Python: {}'.format(sys.version))
    # scipy
    import scipy
    print('scipy: {}'.format(scipy. version ))
    # numpy
    import numpy
    print('numpy: {}'.format(numpy. version ))
    # pandas
    import pandas
    print('pandas: {}'.format(pandas. version ))
    # scikit-learn
    import sklearn
    print('sklearn: {}'.format(sklearn. version ))
```

- Write a Python program called NBClassifier that does the following:
 - Loads the iris data set (located in iris.csv file in the Canvas Assignment 1 folder)
 - Creates a training set with half of the 150 samples and a test set with the rest.
 - Note: In class we talked about 2-fold cross-validation, but in this assignment, we are only using 1-fold instead of 2-fold. We will begin using 2-fold cross-validation in Assignment 2
 - Classifies the iris data set using the Python built-in Naïve Bayesian classifier, GaussianNB.
 - o Prints out the overall accuracy of the classifier.
 - o Prints out the confusion matrix.
 - o Prints out the P, R, and F1 score for each of the 3 varieties of iris.
 - O You may (and probably should) use the Python built-in programs.

Remember:

- Your Programming Assignments are individual-effort.
- You can brainstorm with other students and help them work through problems in their programs, but everyone should have their own unique assignment programs.