АиСД_дз13

 ${\bf Covariance Momentum}$

1term

1

4

Для начала заметим один очень важный факт—любое двоичное дерево высоты n+1 можно получить из какого-либо двоичного дерева высоты n при помощи операции "раздвоения" и "продления" вершины . Покажем от противного — пусть это не так и существует дерево, не получаемое такими, тогда "сольём" все вершины с глубиной n+1 в их родителей, и получим двоичное дерево с максимальной глубиной n, чтд.

Теперь докажем по индукции по глубине дерева.

База: для n=0 очевидно, так как это дерево либо пустое, либо в нём есть ровно одна вершина, глубина которой равна 0. Таким образом, в первом случае указанная сумма равна нулю, во втором же равна в точности единице.

Переход: пусть для глубин меньше n доказано. Докажем для произвольного дерева T_1 с максимальной глубиной n+1. Для этого рассмотрим дерево T_0 с максимальной глубиной n, из которого получается наше дерево. Для каждой вершины в T_0 , у которой есть дети в T_1 , заметим, что она сама теперь не участвует в сумме, зато её дети участвуют. Таким образом получаем, что в новом дереве сумма вершин не увеличится, так как даже если у этой вершины двое детей, то $2^{-n} = 2^{-n-1} + 2^{-n-1}$, а если один, то $2^{-n} > 2^{-n-1}$. Таким образом, при увеличении максимальной глубины указанная сумма для дерева не увеличивается, чтл.

Критерий для равенства указанной суммы единице прост—в дереве у каждой нелистовой вершины два ребёнка. Тогда в предыдущем доказательстве всегда соблюдается равенство при переходе на следующую глубину, а начальная сумма равна единице.

5

Заметим следующий факт:

$$\sum_{i=1}^{n} 2^{i} \cdot (n-i+1) = 2^{n+2} - 2n - 4 \tag{1}$$

Доказывается по индукции: **База:** при n=1 получаем $2 \cdot (1-1+1) = 8-2-5$, что верно.

Переход: пусть для n верно. Перейдем к n+1. В левой части в каждом слагаемом добавится один в скобочку, а ещё добавится 2^{n+1} . Итого сумма добавленного будет равна $\sum_{i=1}^{n+1} 2^i = 2^{n+2} - 2$. Что закономерно, в правой части добавится это же значение. Победа.

Рассмотрим то, как лежит наше множество из k вершин. Утверждается, что оно лежит в двух поддеревьях высотой не более, чем $\lceil \log_2 k \rceil - 1$ и, возможно, задевает одну высокую вершину между этими поддеревьями (одно из поддеревьев может быть пустым). Рассмотрим поддерево высотой $\lceil \log_2 k \rceil - 1$, в котором лежит стартовая вершина этого множества. Есть два варианта: если все множество лежит в этом поддереве и если переходит через высокую вершину. Оно не может перейти через высокую вершину больше одного раза потому, что тогда ему придется пройти полностью поддерево размером $\lceil \log_2 k \rceil - 1$ и еще хотя бы две вершины, а это уже k+1 посещенная вершина.

Поймём, что для обход поддерева высотой $\lceil \log_2 k \rceil - 1$ занимает $\mathcal{O}(k)$ переходов по ребрам. Рассмотрим вершину. Есть путь в неё и из неё, оба длиной h. Рассмотрим её детей. Для каждого из них суммарная длина путей в них и из них будет $2 \cdot (h-1)$, суммарно $4 \cdot (h-2)$. Получается сумма из первого равенства. Таким образом суммарное количество переходов по рёбрам будет не больше $2^{\lceil \log_2 k \rceil + 1} \leq 4 \cdot k$. Проход же по высокому разделителю точно будет выполнен за $2 \cdot \log_2 n$ переходов по рёбрам. Таким образом получаем, что суммарное количество переходов будет не больше, чем $8 \cdot k + 2 \cdot \log_2 n = \mathcal{O}(k + \log_2 n)$.