SEQUENCE LISTING

<110> Johnson & Johnson Research Pty Ltd

<120> MODULATION OF CYTOCHROME P-450 REDUCTASE ACTIVITY IN POPPY

PLANTS

5 <130> 02 1377 1495

<160> 12

<170> PatentIn version 3.3

<210> 1

10 <211> 2318

<212> DNA

<213> Papaver somniferum

<400> 1

60 120 15 aggaaccatc acgactcttt ctctctctaa aatccgctca cgctttcttc ttcttcttgt tcttcaatca gagctcacct gaatcaaaac acacagacac acaaaaaaat cattttctgg 180 tgattttttt gtttgaattt ttgggtgaag atttgaattc gatggagtca aattcgatga 240 300 aactattgat agttgattta atgtctgcaa ttttaaatgg gaaattagat caagcagatt caattttaat agagaatcgt gagattttga tgatattgac tacagctata gccgttttta 360 420 20 ttggttgtgg tttcctttat atttggagaa gatcttttcg gaaatccagt aaaattgttg aggacctaaa actggttgtt actaaagaac ctgaacctga aattgacgat ggtaaaaaga 480 540 aagttactat cttctttggt actcaaactg gtactgctga aggtttcgct aaagcacttt 600 ctgaagaagc aaaagcaaga tatgacaaag ctgtctttaa agtggttgat ctggatgatt 660 acgcagcaga tgatgatgag tttgaggaga aactaaaaaa agaaaattta gcgcttttct 720 25 ttttagctac gtacggagat ggtgaaccaa cagataatgc tgccagattt tataaatggt 780 ttacggaagt ggctaaagag aaggaaccat ggcttccgaa tcttaacttt ggtgtgtttg 840 gattgggaaa tagacagtat gagcatttca ataaggttgc aaaggttgtt gatgagatta ttgttgaact gggtgggaaa cgtcttgttc ctgtgggtct tggagacgac gaccaatgta 900 tagaagatga ctttacagca tggcgagagt tggtatggcc tgaattggat cagttgctcc 960 30 ttgatgaaaa tgattcaacg agtgtttcaa ccccttacgc tgctgctgta gcagaatata 1020

	gggtggtatt	ccatgattct	tcggatgcat	ccctacaaga	caagaactgg	agtaatgcca	1080
	atggctatgc	tgtctatgat	gctctgcacc	catgcagaac	caatgtggct	gtaagaaggg	1140
	agcttcacac	tccagcttct	gatcgttctt	gtattcatct	ggaatttgac	atatcaggca	1200
	ctgggcttac	gtatgaaact	ggagatcatg	ttggtgtcta	ctctgaaaac	tgcatggaaa	1260
5	ctgtggagga	agcggaaaga	ttgttgggtc	tttcatcgga	cactgtattt	tctattcacg	1320
	tcgataacga	ggatgggaca	ccgatcgccg	gaagcgcatt	acctccccct	tttccctctc	1380
	ccagcacttt	aagaactgca	cttaccaaat	atgctgatct	attgaatttc	cccaagaagg	1440
	ctgctctaca	tgctctagct	gctcatgcat	ctgatccaaa	ggaagctgag	cgattaagat	1500
	ttcttgcatc	tcctgctgga	aaggatgaat	atgcacagtg	ggtagttgca	agtcagagaa	1560
10	gtctgctaga	agtcatggct	gaatttccat	cagctaaacc	tccacttggg	gtgttctttg	1620
	cagcaatagc	acctcggctg	cagcctagat	tctattcgat	ttcgtcctcc	aacaggatgg	1680
	caccctctag	aattcatgtc	acatgtgcgc	tagtgaatga	gagaacacca	gctggtcgaa	1740
	ttcataaagg	agtctgttca	acctggatga	agaattctgt	tccttcggaa	gaaagccgtc	1800
	actgcagctg	ggcaccagtt	tttgtgagac	aatctaactt	caaactgcct	gctgattcta	1860
15	cagtaccaat	tatcatgatt	ggccctggta	ctgggttggc	tcctttcaga	ggattcatgc	1920
	aggaacgact	tgctcttaag	gaagctggtg	tagaattggg	agctgcggtc	ctgttctttg	1980
	gatgcagaaa	cagaagcatg	gatttcattt	atgaagacga	gctgaacaac	tttgtcgagt	2040
	caggtgctat	ctctgagttg	gtggtcgctt	tctcacgtga	gggtcctacc	aaagaatacg	2100
	tacaacataa	gatgacagag	aaggcttccg	acatctggaa	tatgatctct	cagggtgctt	2160
20	atctttacgt	ctgtggtgat	gccaaaggca	tggccaagga	tgtgcatcga	actcttcaca	2220
	caattgttca	agagcaggga	tctttagaca	gctccaagac	tgaaatgttg	gtgaagaatc	2280
	tgcagatgga	tggaaggtat	ctacgtgatg	tctggtga			2318

<210> 2

25 <211> 698

<212> PRT

<213> Papaver somniferum

<400> 2

Met Glu Ser Asn Ser Met Lys Leu Leu Ile Val Asp Leu Met Ser Ala

30 1 5 10 15

	Ile	Leu	Asn	Gly	Lys	Leu	Asp	Gln	Ala	Asp	Ser	Ile	Leu	Ile	Glu	Asn
				20					25					30		
	Arg	Glu	Ile	Leu	Met	Ile	Leu	Thr	Thr	Ala	Ile	Ala	Val	Phe	Ile	Gly
			35					40					45			
5	Cys	Gly	Phe	Leu	Tyr	Ile	Trp	Arg	Arg	Ser	Phe	Arg	Lys	Ser	Ser	Lys
		50					55					60				
	Ile	Val	Glu	Asp	Leu	Lys	Leu	Val	Val	Thr	Lys	Glu	Pro	Glu	Pro	Glu
	65					70					75					80
	Ile	Asp	Asp	Gly	Lys	Lys	Lys	Val	Thr	Ile	Phe	Phe	Gly	Thr	Gln	Thr
10					85					90					95	
	Gly	Thr	Ala	Glu	Gly	Phe	Ala	Lys	Ala	Leu	Ser	Glu	Glu	Ala	Lys	Ala
				100					105					110		
	Arg	Tyr	Asp	Lys	Ala	Val	Phe	Lys	Val	Val	Asp	Leu	Asp	Asp	Tyr	Ala
			115					120					125			
15	Ala	qaA	Asp	Asp	Glu	Phe	Glu	Glu	Lys	Leu	Lys	Lys	Glu	Asn	Leu	Ala
		130					135					140				
	Leu	Phe	Phe	Leu	Ala	Thr	Tyr	Gly	Asp	Gly	Glu	Pro	Thr	Asp	Asn	Ala
	145					150					155					160
	Ala	Arg	Phe	Tyr	Lys	Trp	Phe	Thr	Glu	Val	Ala	Lys	Glu	Lys	Glu	Pro
20					165					170					175	
	Trp	Leu	Pro	Asn	Leu	Asn	Phe	Gly	Val	Phe	Gly	Leu	Gly	Asn	Arg	Gln
				180					185					190		
	Tyr	Glu	His	Phe	Asn	Lys	Val	Ala	Lys	Val	Val	Asp	Glu	Ile	Ile	· Val
			195					200					205			
25	Glu	Leu	Gly	Gly	Lys	Arg	. Leu	Val	Pro	Val	Gly	Leu	Gly	Asp	Asp	Asp
		210					215					220				
	Gln			Glu	Asp	Asp) Phe	Thr	Ala	Trp	Arg	Glu	Lev	ı Val	. Trp	Pro
	225					230					235					240

	Glu	Leu	qaA	Gln	Leu	Leu	Leu	Asp	Glu	Asn	Asp	Ser	Thr	Ser	Val	Ser
					245					250					255	
	Thr	Pro	Tyr	Ala	Ala	Ala	Val	Ala	Glu	Tyr	Arg	Val	Val	Phe	His	Asp
				260					265					270		
5	Ser	Ser	Asp	Ala	Ser	Leu	Gln	Asp	Lys	Asn	Trp	Ser	Asn	Ala	Asn	Gly
			275					280					285			
	Tyr	Ala	Val	Tyr	Asp	Ala	Leu	His	Pro	Cys	Arg	Thr	Asn	Val	Ala	Val
		290					295					300				
	Arg	Arg	Glu	Leu	His	Thr	Pro	Ala	Ser	Asp	Arg	Ser	Сув	Ile	His	Leu
10	305					310					315					320
	Glu	Phe	Asp	Ile	Ser	Gly	Thr	Gly	Leu	Thr	Tyr	Glu	Thr	Gly	Asp	His
					325					330					335	
	Val	Gly	Val	Tyr	Ser	Glu	Asn	Cys	Met	Glu	Thr	Val	Glu	Glu	Ala	Glu
		•		340					345					350		
15	Arg	Leu	Leu	Gly	Leu	Ser	Ser	Asp	Thr	Val	Phe	Ser	Ile	His	Val	Asp
			355					360					365			
	Asn	Glu	Asp	Gly	Thr	Pro	Ile	Ala	Gly	Ser	Ala	Leu	Pro	Pro	Pro	Phe
		370					375					380				
	Pro	Ser	Pro	Ser	Thr	Leu	Arg	Thr	Ala	Leu	Thr	Lys	Tyr	Ala	Asp	Leu
20	385					390					395					400
	Leu	Asn	Phe	Pro	Lys	Lys	Ala	Ala	Leu	His	Ala	Leu	Ala	Ala	His	Ala
					405					410)				415	
	Ser	Asp	Pro	Lys	Glu	Ala	Glu	Arg	Leu	Arg	Phe	Leu	. Ala	Ser	Pro	Ala
				420	1				425					430		
25	Gly	Lys	Asp	Glu	Туг	Ala	Gln	Trp	Val	. Val	Ala	Ser	Gln	Arg	Ser	Leu
			435	;				440	•				445	,		
	Leu	Glu	Val	. Met	: Ala	Glu	. Phe	Pro	Ser	Ala	Lys	Pro	Pro	Leu	Gly	Val
		450)				455	5				460)			

WO 2005/053382 5/10

	Phe	Phe	Ala	Ala	Ile	Ala	Pro	Arg	Leu	Gln	Pro	Arg	Phe	Tyr	Ser	Ile
	465					470					475					480
	Ser	Ser	Ser	Asn	Arg	Met	Ala	Pro	Ser	Arg	Ile	His	Val	Thr	Суѕ	Ala
					485					490					495	
5	Leu	Val	Asn	Glu	Arg	Thr	Pro	Ala	Gly	Arg	Ile	His	Lys	Gly	Val	Суз
				500					505					510		
	Ser	Thr	Trp	Met	Lys	Asn	Ser	Val	Pro	Ser	Glu	Glu	Ser	Arg	His	Cys
			515					520					525			
	Ser	Trp	Ala	Pro	Val	Phe	Val	Arg	Gln	Ser	Asn	Phe	Lys	Leu	Pro	Ala
10		530					535					540				
	Asp	Ser	Thr	Val	Pro	Ile	Ile	Met	Ile	Gly	Pro	Gly	Thr	Gly	Leu	Ala
	545					550					555					560
	Pro	Phe	Arg	Gly	Phe	Met	Gln	Glu	Arg	Leu	Ala	Leu	Lys	Glu	Ala	Gly
					565					570					575	
15	Val	Glu	Leu	Gly	Ala	Ala	Val	Leu	Phe	Phe	Gly	Cys	Arg	Asn	Arg	Ser
				580					585					590		
	Met	Asp	Phe	Ile	Tyr	Glu	Asp	Glu	Leu	Asn	Asn	Phe	Val	Glu	Ser	Gly
			595					600					605			
	Ala	Ile	Ser	Glu	Leu	Val	Val	Ala	Phe	Ser	Arg	Glu	Gly	Pro	Thr	Lys
20		610					615					620				
	Glu	Tyr	Val	Gln	His	Lys	Met	Thr	Glu	Lys	Ala	Ser	Asp	Ile	Trp	Asn
	625					630					635					640
	Met	Ile	Ser	Gln	Gly	Ala	Tyr	Leu	Tyr	Val	Cys	Gly	Asp	Ala	Lys	Gly
					645					650	•				655	
25	Met	Ala	Lys	Asp	Val	His	Arg	Thr	Leu	His	Thr	Ile	Val	Gln	Glu	Gln
				660					665					670		
	Gly	Ser	Leu	Asp	Ser	Ser	Lys	Thr	Glu	Met	Leu	Val	Lys	Asn	Leu	Gln
			675					680					685			

Met Asp Gly Arg Tyr Leu Arg Asp Val Trp
690 695

<210> 3

5 <211> 26

<212> PRT

<213> Artificial

<220>

<223> ECPR 1056F

10 <400> 3

Gly Ala Ala Gly Gly Ala Gly Cys Thr Thr Cys Ala Cys Ala Cys Thr

1 5 10 15

Cys Cys Ala Gly Thr Ala Thr Cys Thr Gly

20 25

15

<210> 4

<211> 27

<212> PRT

<213> Artificial

20 <220>

<223> ECPR 2241R

<400> 4

Thr Cys Ala Cys Cys Ala Cys Ala Cys Ala Thr Cys Ala Cys Gly Thr

1 5 10 15

25 Ala Gly Ala Thr Ala Cys Cys Thr Thr Cys Cys

20 25

<210> 5

<211> 30

15

30

10

25

```
<212>
           PRT
           Artificial
    <213>
    <220>
           CNRAS1
    <223>
   <400>
5
           5
    Gly Gly Thr Thr Cys Thr Gly Gly Cys Ala Thr Gly Gly Gly Thr Gly
    1
                    5
    Cys Ala Gly Ala Gly Cys Ala Thr Cys Ala Thr Ala Gly Cys
                20
10
    <210> 6
    <211>
          31
    <212>
          PRT
```

Artificial

15 <220>

<213>

<223> CNRS1 <400> 6

> Gly Cys Gly Cys Thr Ala Gly Thr Gly Ala Ala Thr Gly Ala Gly Ala 5 10 15 1

Gly Ala Ala Cys Ala Cys Cys Ala Gly Cys Thr Gly Gly Thr Cys 20 30 25 20

<210> 7

<211> 33

25 <212> PRT

<213> Artificial

<220>

CPR2_1F <223>

<400> 7

(

30

Gly Ala Thr Thr Thr Cys Ala Gly Ala Ala Thr Thr Thr Cys Thr Cys

1 5 5 5 10 5 5 15

Ala Cys Cys Ala Cys Ala Ala Ala Ala Cys Cys Ala Gly Ala Gly Ala

20 25 5 30

5 Cys

<210> 8

<211> 30

10 <212> PRT

<213> Artificial

<220>

<223> CNTGAAS

<400> 8

Thr Cys Ala Cys Cys Ala Gly Ala Cys Ala Thr Cys Ala Cys Gly Thr

1 5 10 15

Ala Gly Ala Thr Ala Cys Cys Thr Cys Cys Cys Ala Thr Cys

25

20 <210> 9

<211> 48

<212> PRT

<213> Artificial

20

<220>

25 <223> CPR2_1FHpaISnaBI

<400> 9

Thr Ala Gly Thr Thr Ala Ala Cys Thr Ala Cys Gly Thr Ala Ala Thr

1 5 10 15

15

1

5

Gly Gly Ala Thr Thr Cys Ala Gly Ala Ala Thr Thr Cys Thr 20 25 30 Cys Ala Cys Cys Ala Cys Ala Ala Ala Cys Cys Ala Gly Ala Gly 35 40 45 5 <210> 10 <211> 48 <212> PRT <213> Artificial 10 <220> <223> CPR2_354RAvrIIXhoI <400> 10 Thr Ala Cys Cys Thr Ala Gly Gly Cys Thr Cys Gly Ala Gly Cys Gly 1 5 10 15 15 Gly Cys Thr Ala Thr Ala Gly Cys Thr Gly Thr Ala Gly Thr Cys Ala 20 25 30 Ala Thr Ala Thr Cys Ala Thr Cys Ala Ala Ala Ala Thr Cys Thr Cys 35 40 45 20 <210> 11 <211> 46 <212> PRT <213> Artificial <220> 25 <223> CPR1_1FHpaISnaBI <400> 11 Thr Ala Gly Thr Thr Ala Ala Cys Thr Ala Cys Gly Thr Ala Cys Gly

10

5

10

Gly Cys Ala Cys Gly Ala Gly Cys Thr Thr Gly Thr Thr Ala Gly Thr 30 25 20 Ala Thr Cys Thr Thr Cys Thr Ala Gly Gly Gly Thr Thr Thr 45 40 35 <210> 12 <211> 48 <212> PRT <213> Artificial <220> <223> CPR1_232RAvrIIXhoI <400> 12

Thr Ala Cys Cys Thr Ala Gly Gly Cys Thr Cys Gly Ala Gly Thr Thr 1 5 10 15 15 Gly Ala Ala Gly Cys Thr Ala Cys Ala Gly Thr Thr Gly Ala

15 Gly Ala Ala Gly Cys Thr Ala Cys Ala Gly Thr Thr Gly Ala
20 25 30

Chr Cys Ala Thr Ala Ala Ala Ala Ala Thr Thr Gly Gly

Cys Cys Ala Thr Ala Ala Thr Gly Ala Ala Ala Ala Thr Thr Gly Gly
35 40 45