KALEIDOSCODE

SWEDESIGNER

SOFTWARE PER DIAGRAMMI UML

PIANO DI QUALIFICA V1.0.0

Informazioni sul documento

1.0.0
09/03/2017
Bonato Enrico
Bonolo Marco
Pace Giulio
Sovilla Matteo
Pezzuto Francesco
Sanna Giovanni
Esterno
Prof. Vardanega Tullio
Prof. Cardin Riccardo
$Zucchetti\ s.p.a.$

kaleidos.codec6@gmail.com

Diario delle Modifiche

Versione	Data	Autore	Descrizione
0.0.1	09/03/2017	Bonolo Marco	Creazione scheletro del documento e stesura della sezione Introduzione

Indice

1	Intr	ntroduzione				
	1.1	Scopo del documento				
	1.2	Scopo del prodotto				
	1.3	Glossario				
	1.4	Riferimenti utili				
		1.4.1 Riferimenti normativi				
		1.4.2 Riferimenti informativi				
2		Necessarie				
		Disponibili				
3		sure e metriche				
	3.1	Metriche per i processi				
		3.1.9 Rudget Variance				

1 Introduzione

1.1 Scopo del documento

Questo documento definisce gli obbiettivi e le metodologie che ogni membro del gruppo Kaleidos Code adotterà per garantire un determinato livello di qualità del prodotto. A tal proposito ogni membro del gruppo è tenuto a leggere, perseguire e raggiungere gli obbiettivi definiti in esso.

1.2 Scopo del prodotto

Lo scopo del progetto è la realizzazione di un software di costruzione di diagrammi UML_G con la relativa generazione di codice Java_G e Javascript_G utilizzando tecnologie web. Il prodotto deve essere conforme ai vincoli qualitativi richiesti dal committente.

1.3 Glossario

Al fine di evitare ogni ambiguità di linguaggio e massimizzare la comprensione dei documenti, i termini tecnici, di dominio, gli acronimi e le parole che necessitano di essere chiarite, sono riportate nel documento $Glossario\ v1.0.0$.

Ogni occorrenza di vocaboli presenti nel *Glossario* è marcata da una "G" maiuscola in pedice.

1.4 Riferimenti utili

1.4.1 Riferimenti normativi

• Capitolato d'appalto: http://www.math.unipd.it/~tullio/IS-1/2016/Progetto/C6.pdf (09/03/2017).

1.4.2 Riferimenti informativi

- Qualità del software (Slide del Corso di Ingegneria del Software): http://www.math.unipd.it/~tullio/IS-1/2016/Dispense/L10.pdf (09/03/2017);
- Qualità di Processo (Slide del Corso di Ingegneria del Software): http://www.math.unipd.it/~tullio/IS-1/2016/Dispense/L11.pdf (09/03/2017);
- Glossario: Glossario v1.0.0.

Kaleidos Code Pagina 2 di 4

2 Risorse

2.1 Necessarie

per la realizzazione del prodotto sono necessarie le risorse umane e tecnologiche citate di seguito.

- risorse umane: sono descritte dettagliatamente nel Piano di progetto.
 - Responsabile di progetto;
 - Amministratore;
 - Analista;
 - Progettista;
 - Programmatore;
 - Verificatore.
- risorse software: sono descritte dettagliatamente nelle *Norme di progetto*. Si tratta di software che permettano:
 - la comunicazione e la condivisione del lavoro tra gli elementi del team;
 - la stesura della documentazione in formato LaTeX;
 - la creazione di diagrammi UML;
 - la codifica nei linguaggi di programmazione scelti;
 - la semplificazione delle attività di verifica;
 - la gestione dei test sul codice.
- risorse hardware: ciascun componente del gruppo ha bisogno di un computer con tutti i software necessari. È necessario avere a disposizione almeno un luogo dove poter effettuare le riunioni del team.

2.2 Disponibili

Ogni membro del team ha a disposizione uno o più computer personali dotati degli strumenti necessari.

Le riunioni interne si svolgono presso le aule del dipartimento di Matematica dell'Università degli Studi di Padova.

3 Misure e metriche

Il processo di verifica deve essere quantificabile per fornire informazioni utili, bisogna quindi stabilire le metriche da adottare per le misurazioni. Si definiranno due intervalli di misure:

• range di accettazione: intervallo di valori vincolante per l'accettazione del prodotto;

Kaleidos Code Pagina 3 di 4

• range ottimale: intervallo di valori entro cui è consigliabile rientri la misurazione. Il mancato rispetto di questa condizione non pregiudica l'accettazione del prodotto, ma richiede verifiche più approfondite in merito.

3.1 Metriche per i processi

3.1.1 Schedule Variance

È una metrica di progetto standard, indica se si è in linea, in anticipo o in ritardo rispetto alla schedulazione pianificata delle attività di progetto. È pari alla differenza tra il valore delle attività pianificate e il valore delle attività svolte alla data corrente.

Parametri utilizzati

- Range di accettazione: $\geq -(preventivo * 5\%);$
- Range ottimale: ≥ 0 .

3.1.2 Budget Variance

È una metrica di progetto standard, indica se si spende di più o di meno rispetto a quanto preventivato alla data corrente. È pari alla differenza tra costo pianificato e costo effettivamente sostenuto alla data corrente.

Parametri utilizzati

- Range di accettazione: $\geq -(preventivo * 10\%)$;
- Range ottimale: ≥ 0 .