

Escuela de Ciencias exactas e Ingeniería

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

- 1. Encontrar la transformada de Fourier de tiempo continuo (CTFT) de la siguiente señal:
 - Dibujar la señal x(t) (0.5 pts.)
 - Encontrar la señal $X(\omega)$ (4.0 pts.)
 - Encontrar la magnitud $|X(\omega)|$ (0.5 pts.)

$$x(t) = \begin{cases} 1, & \text{si } |t| \leq 2\\ 0, & \text{si } |t| > 2 \end{cases}$$

Escuela de Ciencias exactas e Ingeniería

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

- 1. Encontrar la transformada de Fourier de tiempo continuo (\mathbf{CTFT}) de la señal:
 - Dibujar la señal x(t) (0.5 pts.)
 - Encontrar la señal $X(\omega)$ (4.0 pts.)
 - Encontrar la magnitud $|X(\omega)|$ (0.5 pts.)

$$x(t) = 2\cos(2\pi t + 4\pi) [u(t) - u(t-1)]$$

Escuela de Ciencias exactas e Ingeniería

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

- 1. Encontrar la transformada de Fourier de tiempo continuo (CTFT) de la señal:
 - Dibujar la señal x(t) (0.5 pts.)
 - Encontrar la señal $X(\omega)$ (4.0 pts.)
 - Encontrar la magnitud $|X(\omega)|$ (0.5 pts.)

$$x\left(t\right) = e^{-|t|}$$

Escuela de Ciencias exactas e Ingeniería

Deadline: 26 de abril
Profesor: Marco Teran
E

- 1. Encontrar la transformada de Fourier de tiempo continuo (CTFT) de la señal:
 - Dibujar la señal x(t) (0.5 pts.)
 - Encontrar la señal $X(\omega)$ (4.0 pts.)
 - Encontrar la magnitud $|X(\omega)|$ (0.5 pts.)

$$x(t) = e^{-\alpha t} \cos(\omega_0 t) u(t)$$
 donde $a > 0$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre: _____ Deadline: 26 de abril
Grupo: ____ Profesor: Marco Teran

- 1. Si $x(t) = X(\omega)$, determine la transformada de Fourier de:
 - (a) x(1-t)

(c) $x(\frac{t}{2}-2)$

(b) $\frac{\mathrm{d}x(t)}{\mathrm{d}t}\cos t$

(d) $\frac{d[x(-2t)]}{dt}$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre: _____ Deadline: 26 de abril
Grupo: _____ Profesor: Marco Teran

- 1. Si $x(t) = X(\omega)$, determine la transformada de Fourier de:
 - (a) x(1-t)

(c) $x(\frac{t}{2}-2)$

(b) $\frac{\mathrm{d}x(t)}{\mathrm{d}t}\cos t$

(d) $\frac{d[x(-2t)]}{dt}$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre:	_ Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Mediante las diversas propiedades de la transformada de Fourier de tiempo continuo, encuentre la transformada de Fourier de la siguiente señal a partir de la transformada original de $u\left(t\right)$:

$$x\left(t\right) = te^{-at}u\left(t\right)$$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Mediante las diversas propiedades de la transformada de Fourier de tiempo continuo, encuentre la transformada de Fourier de la siguiente señal a partir de la transformada original de $u\left(t\right)$:

$$x(t) = e^{-5\pi t} \cos(\omega_0 t) u(t)$$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Encontrar y dibujar la transformada inversa de Fourier (IFT) para la siguiente señal

$$X\left(\omega\right) = 1 - e^{-2|\omega|}$$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Encontrar y dibujar la transformada inversa de Fourier (IFT) para la siguiente señal

$$X\left(\omega\right) = \omega \sin^2\left(2\omega\right)$$

Escuela de Ciencias exactas e Ingeniería

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

- 1. Encontrar la transformada de Fourier de tiempo discreto (DTFT) para la siguiente señal
 - Dibujar la señal x[n] (0.5 pts.)
 - Encontrar la señal $X(\Omega)$ (4.0 pts.)
 - Encontrar la magnitud $|X(\Omega)|$ (0.5 pts.)

$$x[n] = u[n] - u(n - N)$$

Escuela de Ciencias exactas e Ingeniería

Nombre:	_ Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

- 1. Encontrar la transformada de Fourier de tiempo discreto (DTFT) para la siguiente señal
 - Dibujar la señal x[n] (0.5 pts.)
 - Encontrar la señal $X(\Omega)$ (4.0 pts.)
 - Encontrar la magnitud $|X(\Omega)|$ (0.5 pts.)

$$x[n] = a^{|n|}, \text{ para } |a| < 1$$

Escuela de Ciencias exactas e Ingeniería

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

- 1. Encontrar la transformada de Fourier de tiempo discreto (\mathbf{DTFT}) para la siguiente señal
 - Dibujar la señal x[n] (0.5 pts.)
 - Encontrar la señal $X(\Omega)$ (4.0 pts.)
 - Encontrar la magnitud $|X(\Omega)|$ (0.5 pts.)

$$x[n] = \{\dots, 0, 1, 2, \overset{\downarrow}{3}, 2, 1, 0, \dots\}$$

Escuela de Ciencias exactas e Ingeniería

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

- 1. Encontrar la transformada de Fourier de tiempo discreto (\mathbf{DTFT}) para la siguiente señal
 - Dibujar la señal x[n] (0.5 pts.)
 - Encontrar la señal $X(\Omega)$ (4.0 pts.)
 - Encontrar la magnitud $|X(\Omega)|$ (0.5 pts.)

$$x[n] = \frac{1}{3}\cos(0.5\pi n)$$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Encontrar la transformada inversa de Fourier de tiempo discreto (DTiFT) para la siguiente señal

$$X(\Omega) = \cos(2\Omega)$$

Escuela de Ciencias exactas e Ingeniería Código: SA2018I TTQ02

Nombre: _____ Deadline: 26 de abril Profesor: Marco Teran

1. Encontrar y dibujar la transformada inversa de Fourier de tiempo discreto (DTiFT) para la siguiente señal

$$X\left(\Omega\right) = \left\{ \begin{array}{ll} \beta, & \mathrm{si} \; |\Omega| \leqslant W \\ 0, & W \leqslant |\Omega| \leqslant \pi \end{array} \right.$$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Encontrar y dibujar la transformada inversa de Fourier de tiempo discreto (DTIFT) de la siguiente señal:

$$X\left(\Omega\right) = \left\{ \begin{array}{ll} 3\Omega, & \mathrm{si} \; |\Omega| \leqslant W \\ 0, & W \leqslant |\Omega| \leqslant \pi \end{array} \right.$$

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) en la forma trigonométrica de la siguiente señal:

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) en la forma exponencial de la siguiente señal:

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) en la forma exponencial de la siguiente señal:

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Usando la serie trigonométrica de Fourier, represente la señal de salida de un rectificador de media onda (y(t)) en la siguiente figura), si la señal de entrada es $x(t) = \sin(\pi t)$:

Escuela de Ciencias exactas e Ingeniería Código: SA2018I_TTQ02

Nombre:	_ Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Determinar la representación de la Serie de Fourier de tiempo discreto (DTFS) para la siguiente secuencia:

$$x[n] = \frac{1}{8}\cos\left(\frac{2n\pi}{N}\right)$$
 para $N = 7$

Escuela de Ciencias exactas e Ingeniería

Código: $SA2018I_TTQ02$

Nombre:	Deadline: 26 de abril
Grupo:	Profesor: Marco Teran

1. Determinar la representación de la Serie de Fourier de tiempo discreto (DTFS) para la siguiente secuencia:

$$x[n] = \sum_{k=-\infty}^{\infty} \delta[n-4k]$$