BCA 607 Hareket Analiz Sistemleri Ara Sınavı

Çağın AĞIRDEMİR

SORULAR

 Elde ettiğiniz yansıtıcı işaretlerin görüntü koordinat sisteminden dünya koordinat sistemine geciriniz (2 Boyutlu Kalibrasyon). Kısaca ünitemiz piksel [px] den metre [m] ye cevirelecek. Hatırlatma: 5 Hafta ders notlarına bakınız. Kalibrasyon düzlemi değerlerini BAG_Kalibrasyon.pdf dosyayında bulabilirsiniz. (%15)

Kalibrasyon Görüntüsü: fettah kalibrasyon.jpg

- Ayak Ucu, Topuk, Ayak Bileği, Diz ve Kalçanın yerleştirilen yansıtıcı işaretlerden elde edilen konum değerlerinin hız ve ivme değerlerini hesaplayınız, gürültüyü filtre kullanarak ortadan kaldırınız ve zamana göre grafiğini çiziniz. (%15)
- 7. Dizin açısal hız değişimin hesaplayınız ve zamana göre grafiğini çiziniz. (%10)

CEVAP 5. Dünya koordinat sistemine geçiş

```
S = [ 2.5 30;
2.5 60;
2.5 130;
2.5 190;
108 10;
108 80;
108 120;
108 180];
load calib_im.txt;
x = calculate_conformal(calib_im, S, 1);
```

BAG_kalibirasyon.pdf dosyasından alınan dikey çalışma koordinatları.

File Edit Format View Help

405.97,197.05

405.01,295.11

403.03,525.44

400.00,722.62

753.73,130.39

752.95,359.78

751.95,492.35

749.16,691.07

Kalibrasyon.jpg dosyasından alınan koordinatlar ile oluşturulmuş calib_im.txt dosyası

Koordinat sırası BAG_kalibrasyon.pdf dosyasındaki sıralama ile aynıdır.

Bu koordinatlar sınav sorularında bulunan koordinatlarla karşılaştırılmıştır.

```
RGB = imread(sprintf('C:\\fettah_sut2_C001H001S00010000%d.jpg',i));
mask=255*zeros(size(RGB));
mask=insertShape(mask,'FilledRectangle',[0 0 1024 250],'Color','white');
mask=uint8(mask);
RGB(mask ~= 0) = mask(mask ~= 0);
```

Bu soruda imcrop yerine insertShape fonksiyonu kullanılarak diğer yansıtıcı nesneler çıkartılmıştır.

```
for i=1:105
  centroids_data(:,2,i) = 1024 - centroids_data(:,2,i);
  hip(i,:) = centroids_data(1,:,i);
  knee(i,:) = centroids_data(2,:,i);
  heel(i,:) = centroids_data(3,:,i);
  ankle(i,:) = centroids_data(4,:,i);
  toe(i,:) = centroids_data(5,:,i);
  end
```

centroids_data değişkenindeki veriler marker pozisyon adları ile isimlendirilmiş değişkenlere ayrılmıştır.

y koordinatları frame boyutu olan 1024 ten çıkartılarak yukarıdan aşağı doğru olan koordinat hesaplanmıştır.

Bu değişkenler calculate_reconformal fonksiyonu ile cm olarak tekrar hesaplanmıştır.

Bu değişkenlerin (hip,heel,ankle,knee,toe) plot edilmiş hali.

CEVAP 6. Hız ve ivme değerlerinin grafikleri

Örnek olarak diz hesaplama kodları anlatıldıktan sonra direct marker hız, ivme grafikleri eklenmiştir.

Hız hesaplama

$$Vi = \frac{S_{i+1} - S_{i-1}}{2\Delta t}$$

Video 500 fps olduğundan dolayı $\Delta t = \frac{1}{500}$ alınmıştır.

İvme hesaplama

$$a_i = \frac{V_{i+1} - V_{i-1}}{2\Delta t}$$

Örnek Filtre komutu

```
[b,a]= butter(2,10/250,'low');
%filtrelenecek marker degiskenini giriniz
filtering_marker = toe_cm;
filterData(:,1) = filtfilt(b,a,(filtering_marker(:,1)));
filterData(:,2) = filtfilt(b,a,(filtering_marker(:,2)));
```

Örnek Hız hesaplama

```
for p=1:length(filterData)
if p <= 103
filterData(p+1,3)=(filterData(p+2,1)-filterData(p,1))/(2/500);
filterData(p+1,4)=(filterData(p+2,2)-filterData(p,2))/(2/500);
end
end
figure(1), plot(filterData(:,3),'.');axis([0 120 -1 3.5]);grid on;
xlabel('frames');
ylabel('meters/seconds');
hold on
figure(1), plot(filterData(:,4),'.');axis([0 120 -1 3.5]);grid on;
legend('Vx','Vy');</pre>
```

Örnek İvme hesaplama

```
for p=3:length(filterData)
if p <= 102
filterData(p,5)=(filterData(p+1,3)-filterData(p-1,3))/(2/500);
filterData(p,6)=(filterData(p+1,4)-filterData(p-1,4))/(2/500);
end
end
figure(2), plot(filterData(:,5),'-');axis([0 100 -60 60]);grid on;
xlabel('frame');
ylabel('meters/seconds');
hold on
figure(2), plot(filterData(:,6),'-');axis([0 100 -60 60]);grid on;
legend('Vx','Vy');</pre>
```


CEVAP 7. Açısal hız hesaplama

```
[h ,w] = freqz(b,a,filterData(:,1));
figure(3),plot(w);grid on;
hold on
title('knee angular velocity');
xlabel('frames');
ylabel('w');
[h ,w] = freqz(b,a,filterData(:,2));
figure(3),plot(w);grid on;
legend('Vx','Vy');
```

fps bilindiği için saniye frame dönüşümü yapılabilir.

Ek arasinav_5_7.m