Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{8} = 2\sqrt{2}$, $\sqrt{18} = 3\sqrt{2}$	3 p
	$2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$	2p
2.	$f(a) = 3a - 2, \ f(-a) = -3a - 2$	2p
	6a = 12, de unde obținem $a = 2$	3 p
3.	$\frac{20}{100}$ · $x = 28$ de lei, deci $\frac{x}{5} = 28$ de lei, unde x este prețul inițial al obiectului	3 p
	x = 140 de lei	2p
4.	$4^{2x-1} = 4^3$	2p
	2x-1=3, deci $x=2$	3 p
5.	Panta unei drepte perpendiculare pe dreapta d este egală cu $-\frac{1}{2}$	3 p
	Ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d este $x + 2y - 8 = 0$	2p
6.	$AC = \frac{BC}{2} = 5 \text{ cm}, AB = \sqrt{BC^2 - AC^2} = 5\sqrt{3} \text{ cm}$	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{5 \cdot 5\sqrt{3}}{2} = \frac{25\sqrt{3}}{2} \text{ cm}^2$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$1*0=1\cdot 0-\sqrt{3}(1+0)+\sqrt{3}+3=$	2p
	$=0-\sqrt{3}+\sqrt{3}+3=3$	3 p
2.	$x * y = xy - \sqrt{3}x - \sqrt{3}y + 3 + \sqrt{3} =$	3p
	$= x\left(y - \sqrt{3}\right) - \sqrt{3}\left(y - \sqrt{3}\right) + \sqrt{3} = \left(x - \sqrt{3}\right)\left(y - \sqrt{3}\right) + \sqrt{3}, \text{ pentru orice numere reale } x \text{ și } y$	2p
3.	$(x-\sqrt{3})^2 + \sqrt{3} = 9 + \sqrt{3}$, deci $x - \sqrt{3} = \pm 3$	2p
	$x = 3 + \sqrt{3}$ sau $x = -3 + \sqrt{3}$	3 p
4.	$x*(\sqrt{3}+1)=(x-\sqrt{3})(\sqrt{3}+1-\sqrt{3})+\sqrt{3}=x$, pentru orice număr real x	2p
	$(\sqrt{3}+1)*x = (\sqrt{3}+1-\sqrt{3})(x-\sqrt{3})+\sqrt{3}=x$, pentru orice număr real x, deci $e=\sqrt{3}+1$ este	3р
	elementul neutru al legii de compoziție "*"	J.P
5.	$\sqrt{3} * x = (\sqrt{3} - \sqrt{3})(x - \sqrt{3}) + \sqrt{3} =$	2p
	$=0\cdot (x-\sqrt{3})+\sqrt{3}=\sqrt{3}$, pentru orice număr real x	3 p
6.	$\sqrt{3} * \sqrt{4} * \sqrt{5} * * \sqrt{2022} = \sqrt{3} * (\sqrt{4} * \sqrt{5} * * \sqrt{2022}) =$	3p
	$=\sqrt{3}$	2p

Probă scrisă la matematică *M_pedagogic*

Barem de evaluare și de notare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

SUBIECTUL al III-lea (30 de puncte)

	•	
1.	$\det A = \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 3 \cdot 0 =$	3p
	=1-0=1	2p
2.	$A \cdot A - 2A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 6 & 2 \end{pmatrix} =$	3p
	$ = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2 $	2 p
3.	$A - aI_2 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} - \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 1 - a & 0 \\ 3 & 1 - a \end{pmatrix}$	3p
	$\det(A - aI_2) = 0 \Leftrightarrow (1 - a)^2 = 0, \det a = 1$	2p
4.	$m \cdot (A+B) = \begin{pmatrix} 2m & 0 \\ 0 & 2m \end{pmatrix}, \det(m(A+B)) = 4m^2$	3p
	$m \cdot \det(A+B) = 4m$, deci $4m^2 = 4m$, de unde obținem $m = 0$ sau $m = 1$	2p
5.	$x \cdot A + y \cdot B = x \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} + y \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} x+y & 0 \\ 3x-3y & x+y \end{pmatrix}$	3p
	$ \begin{pmatrix} x+y & 0 \\ 3x-3y & x+y \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \text{ de unde obținem } x=y=1 $	2 p
6.	$A \cdot B = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
	$B \cdot A = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 = A \cdot B$	3р

Examenul de bacalaureat național 2022 Proba E. c)

Matematică M pedagogic

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{18} + \sqrt{8} = 5\sqrt{2}$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x 2. Determinați numărul real a pentru care f(a) f(2) = 12.
- **5p** 3. După o reducere cu 20% prețul unui obiect scade cu 28 de lei. Determinați prețul inițial al obiectului.
- **5p 4.** Rezolvați în mulțimea numerelor reale ecuația $4^{2x-1} = 64$.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(2,3) și dreapta d de ecuație y = 2x + 1. Determinați ecuația dreptei ce trece prin punctul A și este perpendiculară pe dreapta d.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A cu măsura unghiului B de 30° și BC=10. Calculați aria triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

- Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x * y = xy \sqrt{3}(x + y) + \sqrt{3} + 3$.
- **5p 1.** Arătați că 1*0=3.
- **5p** 2. Demonstrați că $x * y = (x \sqrt{3})(y \sqrt{3}) + \sqrt{3}$, pentru orice numere reale x și y.
- **5p** 3. Determinați numărul real x pentru care $x * x = \sqrt{3}$.
- **5p 4.** Arătați că $e = \sqrt{3} + 1$ este elementul neutru al legii de compoziție "*".
- **5p 5.** Arătati că $\sqrt{3} * x = \sqrt{3}$, pentru orice număr real x.
- **5p 6.** Determinați numărul natural *n* pentru care $\sqrt{3} * \sqrt{4} * \sqrt{5} * ... * \sqrt{2022} = \sqrt{n}$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **5p** \mid **1**. Arătați că $\det(A) = 1$.
- **5p 2.** Arătați că $A \cdot A 2A = -I_2$.
- **5p 3.** Arătați că $A \cdot B = B \cdot A = I_2$.
- **5p** | **4.** Determinați numărul real a pentru care $det(A-aI_2)=0$.
- **5p 5.** Determinați numerele reale m pentru care $\det(m(A+B)) = m \cdot \det(A+B)$.
- **5p** | **6.** Determinați numerele reale x și y, știind că $xA + yB = 2I_2$.

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_pedagogic* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\log_2 16 = 4$, $\log_2 8 = 3$, $\log_2 1 = 0$	3 p
	$\log_2 16 - \log_2 8 + \log_2 1 = 4 - 3 + 0 = 1$	2p
2.	f(m) = 2022	3p
	5m + 7 = 2022, de unde obținem $m = 403$	2p
3.	5x-2=3	3 p
	x = 1, care convine	2p
4.	$x + \frac{20}{100}x = \frac{6x}{5}$, unde x este prețul inițial	2p
	$\frac{6x}{5} + \frac{20}{100} \cdot \frac{6x}{5} = \frac{36x}{25} \Rightarrow \frac{36x}{25} = 180$, de unde obţinem $x = 125$ lei	3p
5.	Ecuația dreptei AB este $\frac{x-6}{2-6} = \frac{y-7}{5-7}$	3 p
	x-2y+8=0	2p
6.	$\sin 30^\circ = \frac{1}{2}, \sin 45^\circ = \frac{\sqrt{2}}{2}$	3р
	$\left(\frac{\sqrt{2}}{2} - \frac{1}{2}\right)\left(\frac{\sqrt{2}}{2} + \frac{1}{2}\right) = \frac{1}{4}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-2) \circ 2 = -2 \cdot 2 + 5(-2 + 2) + 7 =$	3p
	=-4+0+7=3	2p
2.	$x \circ y = xy + 5(x + y) + 7 = yx + 5(y + x) + 7 =$	3p
	$= y \circ x$, pentru orice numere reale x și y , deci legea de compoziție "o" este comutativă	2p
3.	$x \circ y = xy + 5x + 5y + 25 - 18 =$	3p
	= x(y+5)+5(y+5)-18=(x+5)(y+5)-18, pentru orice numere reale x şi y	2p
4.	$x^2 + 10x + 7 = 7$	2p
	$x^2 + 10x = 0$, de unde obținem $x = 0$ sau $x = -10$	3 p
5.	$(-x) \circ (-y) = xy - 5x - 5y + 7$, pentru orice numere reale $x \neq y$	2p
	(xy-5x-5y+7)+(-xy-5x+5y+7)+(-xy+5x-5y+7)+(xy+5x+5y+7)=28,	3p
	pentru orice numere reale x și y	
6.	(a+5)(b+5) = -1	3p
	Cum a și b sunt numere întregi, obținem perechile (a,b) de numere întregi $(-6,-4)$ și	2 p
	(-4,-6)	

Barem de evaluare și de notare

SUBIECTUL al III-lea (30 de puncte)

1.	$\det A = \begin{vmatrix} 5 & 5 \\ -4 & -4 \end{vmatrix} = 5 \cdot (-4) - 5 \cdot (-4) =$	3p
	=-20+20=0	2p
2.	(25-20 25-20)	3 p
	$A \cdot A = \begin{pmatrix} 25 - 20 & 25 - 20 \\ -20 + 16 & -20 + 16 \end{pmatrix} =$	
	(5 5)	2p
	$= \begin{pmatrix} 5 & 5 \\ -4 & -4 \end{pmatrix} = A$	
3.	$X\left(-1\right) = I_2 - A$	2p
	$X(1) = I_2 + A$, deci $X(-1) + X(1) = I_2 - A + I_2 + A = 2I_2$	3 p
4.	$X(a) \cdot X(-1) = (I_2 + aA) \cdot (I_2 - A) = I_2^2 - I_2 \cdot A + aA \cdot I_2 - aA^2 =$	3 p
	$=I_2-A=X(-1)$, pentru orice număr real a	2p
5.	$\det(X(a)) = \begin{vmatrix} 1+5a & 5a \\ -4a & 1-4a \end{vmatrix} = (1+5a)(1-4a) - 5a(-4a) = 1+a, \text{ pentru orice număr real } a$	3p
	$\det(X(a)) = 0$, de unde obținem $a = -1$	2p
6.	$\det(X(a^2)) = a^2 + 1$, pentru orice număr real a	3 p
	$a^2 + 1 \le 10$, de unde obținem $a \in [-3,3]$	2p

Examenul de bacalaureat național 2022 Proba E. c)

Matematică *M_pedagogic*

Varianta 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- 1. Arătați că $\log_2 16 \log_2 8 + \log_2 1 = 1$.
- 5p 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x + 7. Determinați numărul real m pentru care punctul A(m,2022) aparține graficului funcției f.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{5x-2} = \sqrt{3}$. **5p**
- 4. După două scumpiri succesive cu 20% prețul unui obiect este de 180 lei. Determinați prețul 5p inițial al obiectului.
- 5. În reperul cartezian xOy se consideră punctele A(6,7) si B(2,5). Determinati ecuatia dreptei AB.
- **6.** Arătați că $(\sin 45^{\circ} \sin 30^{\circ})(\sin 45^{\circ} + \sin 30^{\circ}) = \frac{1}{4}$.

SUBIECTUL al II-lea

Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 5(x + y) + 7$.

- **1.** Arătați că $(-2) \circ 2 = 3$. **5**p
- 2. Arătați că legea de compoziție "o" este comutativă. **5**p
- 5p 3. Demonstrați că $x \circ y = (x+5)(y+5)-18$, pentru orice numere reale x și y.
- **4.** Determinați numerele reale x pentru care $x \circ x = 7$. 5p
- 5. Demonstrați că $((-x) \circ (-y)) + ((-x) \circ y) + (x \circ (-y)) + (x \circ y) = 28$, pentru orice numere reale x 5p și y.
- **6.** Determinați perechile (a,b) de numere întregi pentru care $a \circ b = -19$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 5 & 5 \\ -4 & -4 \end{pmatrix}$ și $X(a) = I_2 + aA$, unde a este număr real.

- 5p **1.** Arătați că det A = 0.
- **2.** Arătați că $A \cdot A = A$. 5p
- 3. Arătați că $X(-1) + X(1) = 2I_2$. 5p
- **4.** Demonstrați că $X(a) \cdot X(-1) = X(-1)$, pentru orice număr real a. 5p
- 5p 5. Determinați valorile reale ale lui a pentru care matricea X(a) nu este inversabilă.
- **6.** Determinați valorile reale ale lui a pentru care $\det(X(a^2)) \le 10$. **5**p

Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3}(2-\sqrt{3})+3=2\sqrt{3}-\sqrt{3}\cdot\sqrt{3}+3=2\sqrt{3}$	3 p
	$\sqrt{12} = 2\sqrt{3}$, deci $\sqrt{3}(2-\sqrt{3}) + 3 = \sqrt{12}$	2p
2.	a+1 > 2a-1	2p
	a < 2 și cum a este număr natural, obținem $a = 0$ sau $a = 1$	3 p
3.	$3^{x} \cdot 3^{2} \cdot 2^{x} \cdot 2 + 2 \cdot 6^{x} = 120 \iff 18 \cdot 6^{x} + 2 \cdot 6^{x} = 120$, deci $20 \cdot 6^{x} = 120$	3 p
	$6^x = 6 \Rightarrow x = 1$	2p
4.	Mulțimea numerelor naturale nenule mai mici decât 114 are 113 elemente, deci sunt 113 cazuri posibile	2 p
	În mulțimea numerelor naturale nenule mai mici decât 114 sunt 28 numere divizibile cu 4, deci sunt 28 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{28}{113}$	1p
5.	$M(a,15) \in d \Rightarrow 15 = 3a + 2a$	3p
	$15 = 5a \Rightarrow a = 3$	2 p
6.	$BC = \sqrt{AB^2 + AC^2} = 5$, $AB^2 = BD \cdot BC \Rightarrow BD = \frac{9}{5}$	3p
	$\sin \angle BAD = \frac{BD}{AB} = \frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-1) \circ (-1) = 2 \cdot (-1) \cdot (-1) - (-1) - (-1) + 1 =$	2p
	=2+1+1+1=5	3 p
2.	$x \circ y = 2xy - x - y + \frac{1}{2} + \frac{1}{2} = 2x\left(y - \frac{1}{2}\right) - \left(y - \frac{1}{2}\right) + \frac{1}{2} =$	3р
	$= 2\left(x - \frac{1}{2}\right)\left(y - \frac{1}{2}\right) + \frac{1}{2}, \text{ pentru orice numere reale } x \text{ și } y$	2 p
3.	$x \circ 1 = 2\left(x - \frac{1}{2}\right)\left(1 - \frac{1}{2}\right) + \frac{1}{2} = x - \frac{1}{2} + \frac{1}{2} = x$, pentru orice număr real x	2p
	$1 \circ x = 2\left(1 - \frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \frac{1}{2} = x - \frac{1}{2} + \frac{1}{2} = x = x \circ 1$, pentru orice număr real x, deci $e = 1$ este	3p
	elementul neutru al legii de compoziție "o"	

4.	$x \circ \frac{1}{2} = 2\left(x - \frac{1}{2}\right)\left(\frac{1}{2} - \frac{1}{2}\right) + \frac{1}{2} = \frac{1}{2}, \text{ pentru orice număr real } x$ $\frac{1}{2} \circ x = 2\left(\frac{1}{2} - \frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \frac{1}{2} = \frac{1}{2}, \text{ deci } x \circ \frac{1}{2} = \frac{1}{2} \circ x = \frac{1}{2}, \text{ pentru orice număr real } x$	2p 3p
5.	$\frac{1}{3} \circ \frac{2}{4} \circ \frac{3}{5} \circ \dots \circ \frac{2020}{2022} = \left(\frac{1}{3} \circ \frac{1}{2}\right) \circ \frac{3}{5} \circ \dots \circ \frac{2020}{2022} =$	2 p
	$= \frac{1}{2} \circ \left(\frac{3}{5} \circ \dots \circ \frac{2020}{2022} \right) = \frac{1}{2}$	3 p
6.	$\left(\log_2 x + \frac{1}{2}\right) \circ \left(\log_3 x + \frac{1}{2}\right) = 2\left(\log_2 x + \frac{1}{2} - \frac{1}{2}\right) \left(\log_3 x + \frac{1}{2} - \frac{1}{2}\right) + \frac{1}{2} = 2 \cdot \log_2 x \cdot \log_3 x + \frac{1}{2},$	3p
	$2 \cdot \log_2 x \cdot \log_3 x + \frac{1}{2} = \frac{1}{2} \iff \log_2 x \cdot \log_3 x = 0$, de unde obținem $x = 1$, care convine	2 p

SUBIECTUL al III-lea (30 de puncte)

1.	$A \cdot A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	3p
	$4I_2 = 4 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \text{ deci } A \cdot A = 4I_2$	2p
2.	$aI_2 + A = a \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} =$	3p
	$= \begin{pmatrix} a & 2 \\ 2 & a \end{pmatrix} = M(a)$, pentru orice număr real a	2p
3.	$M(2) \cdot M(4) = (2I_2 + A)(4I_2 + A) = 8I_2 + 6A + 4I_2 =$	3 p
	$=12I_2+6A=6(2I_2+A)=6\cdot M(2)$	2p
4.	$M(a) \cdot M(b) = (ab+4) \cdot I_2 + (a+b) \cdot A = 7 \cdot I_2 + 4 \cdot A \Longrightarrow$	3p
	$\Rightarrow ab = 3$ şi $a + b = 4$ şi cum a şi b sunt numere naturale, obţinem perechile (3,1) şi (1,3)	2 p
5.	$M(k+2) = \begin{pmatrix} k+2 & 2 \\ 2 & k+2 \end{pmatrix} \Rightarrow \det(M(k+2)) = (k+2)^2 - 4 = k^2 + 4k$	3p
	$k^2 + 4k \le 0$ și k număr natural, obținem $k = 0$	2 p
6.	$M(a) - 2 \cdot A = \begin{pmatrix} a & 2 \\ 2 & a \end{pmatrix} - \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} a & -2 \\ -2 & a \end{pmatrix}$	2p
	$M(a) \cdot (M(a) - 2 \cdot A) = (M(a) - 2 \cdot A) \cdot M(a) = I_2$, deci $a^2 = 5$, și cum $a < -2$, obținem că $a = -\sqrt{5}$	3p

Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_pedagogic*

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{3}(2-\sqrt{3})+3=\sqrt{12}$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = x+1 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 2x-1. Determinați numerele naturale a pentru care f(a) > g(a).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $3^{x+2} \cdot 2^{x+1} + 2 \cdot 6^x = 120$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr *n* din mulțimea numerelor naturale nenule mai mici decât 114, acesta să fie divizibil cu 4.
- **5p** | **5.** Determinați numărul real a, știind că punctul M(a,15) aparține dreptei d de ecuație y = 3x + 2a.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A, cu AB = 3, AC = 4 și înălțimea AD, unde punctul D aparține laturii BC. Arătați că $\sin \angle BAD = \frac{3}{5}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 2xy - x - y + 1$.

- **5p 1.** Arătați că $(-1) \circ (-1) = 5$.
- **5p** 2. Demonstrați că $x \circ y = 2\left(x \frac{1}{2}\right)\left(y \frac{1}{2}\right) + \frac{1}{2}$, pentru orice numere reale x și y.
- **5p 3.** Arătați că e = 1 este elementul neutru al legii de compoziție " \circ ".
- **5p 4.** Arătați că $x \circ \frac{1}{2} = \frac{1}{2} \circ x = \frac{1}{2}$, pentru orice număr real x.
- **5p 5.** Calculați $\frac{1}{3} \circ \frac{2}{4} \circ \frac{3}{5} \circ ... \circ \frac{2020}{2022}$
- **5p 6.** Determinați numărul real strict pozitiv x, pentru care $\left(\log_2 x + \frac{1}{2}\right) \circ \left(\log_3 x + \frac{1}{2}\right) = \frac{1}{2}$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$ și $M(a) = \begin{pmatrix} a & 2 \\ 2 & a \end{pmatrix}$, unde a este număr real.

- **5p 1.** Arătați că $A \cdot A = 4I_2$.
- **5p** 2. Arătați că $aI_2 + A = M(a)$, pentru orice număr real a.
- **5p 3.** Arătați că $M(2) \cdot M(4) = 6M(2)$.
- **5p 4.** Determinați perechile (a,b) de numere naturale pentru care $M(a) \cdot M(b) = 7 \cdot I_2 + 4 \cdot A$.
- **5p 5.** Determinați numărul natural k pentru care $det(M(k+2)) \le 0$.
- **5p 6.** Determinați numărul real a, a < -2, știind că inversa matricei M(a) este matricea $M(a) 2 \cdot A$.

Exame nul național de bacalaure at 2022 Proba E. c) Mate matică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice solutie corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_3 = a_1 + 2r$	2p
	$a_3 = 7$, $S_3 = \frac{(a_1 + a_3) \cdot 3}{2} = 15$	3 p
2.	f(1) = 2 - 2a, $f(-1) = 2a$	2p
	$2 - 2a = 2a \implies 4a = 2 \implies a = \frac{1}{2}$	3 p
3.	$1 + \log_2(2x + 1) = 2$	2 p
	$\log_2(2x+1) = 1 \Rightarrow 2x+1 = 2 \Rightarrow x = \frac{1}{2}$, care convine	3p
4.	Numerele naturale de o cifră, pătrate perfecte sunt: 0,1,4,9, deci sunt patru cazuri favorabile	2p
	Numerele naturale de o cifră sunt 0,1,2,,9, deci sunt zece cazuri posibile	2 p
	$P = \frac{\text{număr cazuri favorabile}}{\text{număr cazuri posibile}} = \frac{2}{5}$	1p
5.	AM mediană \Rightarrow M mijlocul laturii $BC \Rightarrow x_M = \frac{x_B + x_C}{2} = 1$, $y_M = \frac{y_B + y_C}{2} = 2$	2p
	$AM = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2} = \sqrt{4} = 2$	3p
6.	$\sin 30^\circ = \frac{1}{2}, \ \sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}, \ \sin 60^\circ = \frac{\sqrt{3}}{2}$	3p
	$\sqrt{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - 3 \cdot \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = 0$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$3*4 = -\frac{(3-1)\cdot(4-1)}{3} + 1 =$	2p
	$= -\frac{2 \cdot 3}{3} + 1 = -2 + 1 = -1$	3 p
2.	$x*(-2) = -\frac{(x-1)\cdot(-3)}{3} + 1 = x - 1 + 1 = x$, pentru orice număr real x	2 p
	$(-2)*x = -\frac{(-2-1)\cdot(x-1)}{3} + 1 = x - 1 + 1 = x$, pentru orice număr real x, deci $e = -2$ este	3 p
	elementul neutru al legii de compoziție "*"	
3.	$-\frac{(a-1)\cdot(7-1)}{3} + 1 = 5$	2p
	$-(a-1)\cdot 2+1=5$, de unde obţinem $a=-1$	3 p

4.	$x*(1+x) = -\frac{(x-1)\cdot(1+x-1)}{3} + 1 = -\frac{x(x-1)}{3} + 1$	2p
	$-\frac{x(x-1)}{3} + 1 \ge -3$, deci $x^2 - x - 12 \le 0$, de unde obţinem $x \in [-3, 4]$	3p
5.	$n*n = -\frac{(n-1)^2}{3} + 1, \ n*n*n = (n*n)*n = \left(-\frac{(n-1)^2}{3} + 1\right)*n = \frac{(n-1)^3}{9} + 1$	3p
	$\frac{(n-1)(n-4)(n+2)}{9} \le 0, n \text{ număr natural } \Rightarrow n=4 \text{ este cel mai mare număr natural căutat}$	2p
6.	$-\frac{(m-1)(n-1)}{3}+1=-1 \Rightarrow (m-1)(n-1)=6$	2p
	Perechile (m,n) de numere naturale sunt: $(2,7)$; $(3,4)$; $(4,3)$; $(7,2)$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.	$\det A = \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = 2 \cdot (-2) - 1 \cdot 3 =$	3 p
	=-4-3=-7	2p
2.	$A + xI_2 = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix} + \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = \begin{pmatrix} 2+x & 3 \\ 1 & -2+x \end{pmatrix}$	2p
	$\det(A + xI_2) = x^2 - 7$, $\det x^2 - 7 \ge -7 \Leftrightarrow x^2 \ge 0$, pentru orice număr real x	3 p
3.	$A \cdot A = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}, aI_2 = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	3 p
	$ \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \Rightarrow a = 7 $	2p
4.	$\det(mA - I_2) = 1 - 7m^2$, $\det(A + I_2) = -6$	2p
	$7m^2 - 6m - 1 = 0$, de unde obținem $m = -\frac{1}{7}$ sau $m = 1$	3 p
5.	$A \cdot M = \begin{pmatrix} 2x + 3y & 3x + 2y \\ x - 2y & -2x + y \end{pmatrix}, \ M \cdot A = \begin{pmatrix} 2x + y & 3x - 2y \\ x + 2y & -2x + 3y \end{pmatrix}$	3p
	$2x + 3y = 2x + y \Rightarrow y = 0$ care verifică	2p
6.	$\det(aA) = -7a^2$	2p
	$-7a^2 \ge -28 \Rightarrow a^2 \le 4$, și cum $a \in \mathbb{Z}$, obținem $a = -2$, $a = -1$, $a = 0$, $a = 1$ sau $a = 2$ deci a poate avea 5 valori	3p

Examenul de bacalaure at național 2022 Proba E. c)

Matematică M_pedagogic

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte

- **5p 1.** Determinați suma primilor trei termeni ai progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=3$ și r=2.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = (1-2a)x+1, unde a este număr real. Determinați numărul real a pentru care f(1) = f(-1).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $1 + \log_2(2x+1) = \log_2 4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de o cifră, acesta să fie pătrat perfect.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,4), B(-3,2) și C(5,2). Determinați lungimea medianei triunghiului ABC construită din vârful A.
- **5p** | **6.** Calculați $\sqrt{3} \cdot \sin 60^{\circ} \cdot \sin 45^{\circ} 3 \cdot \sin 30^{\circ} \cdot \cos 45^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x * y = -\frac{(x-1)(y-1)}{3} + 1$.

- **5p 1.** Arătați că 3*4=-1.
- **5p 2.** Verificați dacă e = -2 este elementul neutru al legii de compoziție ,, *".
- **5p 3.** Determinați numărul real a pentru care a*7=5.
- **5p 4.** Determinați valorile reale ale lui x pentru care $x*(1+x) \ge -3$.
- **5p 5.** Determinați cel mai mare număr natural n pentru care $n*n*n \le n$.
- **5p 6.** Determinați perechile (m,n) de numere naturale pentru care m*n=-1.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **5p 1.** Arătați că $\det(A) = -7$.
- **5p** 2. Arătați că $\det(A + xI_2) \ge -7$, pentru orice număr real x.
- **5p 3.** Determinați numărul real a pentru care $A \cdot A = aI_2$.
- **5p 4.** Determinați numerele reale m pentru care $\det(mA I_2) = m \cdot \det(A + I_2)$.
- **5p 5.** Se consideră matricea $M = \begin{pmatrix} x & y \\ y & x \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$, astfel încât $A \cdot M = M \cdot A$. Arătați că y = 0.
- **5p 6.** Determinați pentru câte valori întregi ale lui a obținem $\det(aA) \ge -28$.

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\sqrt{3}+1\right)^2 = 4+2\sqrt{3}, \left(\sqrt{3}-1\right)^2 = 4-2\sqrt{3}$	3 p
	$(4+2\sqrt{3})-(4-2\sqrt{3})=4\sqrt{3}=\sqrt{48}$	2p
2.	2x+1=-2x+5, deci $x=1$	2p
	f(1) = 3, deci coordonatele punctului de intersecție sunt $(1,3)$	3 p
3.	$3^{x-2} = 3^{2x}$, de unde obținem $x - 2 = 2x$	3 p
	x = -2	2p
4.	Cifra unităților poate fi aleasă în 4 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 8 moduri, deci se pot forma $4.8 = 32$ de numere naturale impare de două cifre	3p
5.	$x_M = 3$ și $y_M = 4$, unde M este mijlocul segmentului AC	3 p
	$BM = \sqrt{(3-5)^2 + (4-2)^2} = 2\sqrt{2}$	2p
6.	$AB^2 + AC^2 = BC^2$, deci triunghiul ABC este dreptunghic în A	3 p
	$\sin B + \sin C = \frac{4}{5} + \frac{3}{5} = \frac{7}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$4*2 = -\frac{1}{3} \cdot 4 \cdot 2 + \frac{1}{3} (4+2) + \frac{2}{3} =$	3p
	$=-\frac{8}{3}+\frac{6}{3}+\frac{2}{3}=0$	2p
2.	$x * y = -\frac{1}{3}xy + \frac{1}{3}x + \frac{1}{3}y + \frac{2}{3} = -\frac{1}{3}x(y-1) + \frac{1}{3}(y-1) + \frac{1}{3} + \frac{2}{3} =$	3p
	$=-\frac{1}{3}x(y-1)+\frac{1}{3}(y-1)+1=-\frac{1}{3}(x-1)(y-1)+1$, pentru orice numere reale x și y	2p
3.	$4 * x = -\frac{1}{3}(4-1)(x-1)+1=-x+2$, pentru orice număr real x	2p
	-x+2=x, deci $x=1$	3 p
4.	$(-2)*x = -\frac{1}{3}(-2-1)(x-1)+1 = x-1+1 = x$, pentru orice număr real x	2p
	$x*(-2) = -\frac{1}{3}(x-1)(-2-1)+1 = x-1+1 = x$, pentru orice număr real x, deci $e = -2$ este	3p
	elementul neutru al legii de compoziție "*"	_

5.	$x*x = -\frac{1}{3}(x-1)^2 + 1$, pentru orice număr real x	2p
	$-\frac{1}{3}(x-1)^2 + 1 = -2 \iff (x-1)^2 = 9, \text{ de unde obținem } x = -2 \text{ sau } x = 4$	3p
6.	$-\frac{1}{3}\left(\frac{1}{x}-1\right)^2 + 1 \le 1 \Leftrightarrow -\frac{1}{3}\left(\frac{1}{x}-1\right)^2 \le 0$	3p
	$\left(\frac{1}{x}-1\right)^2 \ge 0$, deci $\frac{1}{x} * \frac{1}{x} \le 1$, pentru orice număr real nenul x	2p

SUBIECTUL al III-lea (30 de puncte)

1.	$\begin{vmatrix} \det B = \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} = 1 \cdot 0 - 2 \cdot (-1) = \\ = 0 + 2 = 2 \end{vmatrix}$	3p
	-0+2-2	2p
2.	$A(2n,2n+1) = \begin{pmatrix} 2n & 2n+1 \\ 1 & 2 \end{pmatrix}, \text{ de unde obținem } \det(A(2n,2n+1)) = 2n-1, \text{ pentru orice}$	3 p
	număr natural nenul <i>n</i>	
	2n-1 este număr natural impar, pentru orice număr natural nenul n	2p
3.	$A(2x,0) + A(0,2x) = \begin{pmatrix} 2x & 0 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 2x \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2x & 2x \\ 2 & 4 \end{pmatrix} =$	3p
	$= 2 \cdot \begin{pmatrix} x & x \\ 1 & 2 \end{pmatrix} = 2A(x,x), \text{ pentru orice număr real } x$	2p
4.	$ \begin{pmatrix} x & y \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 1 & 2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x - y & 2x \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} x + 2 & y + 4 \\ -x & -y \end{pmatrix} $	3 p
	x=1 și $y=-2$	2p
5.	· ·	
3.	$A(\log_3 x, 1) = \begin{pmatrix} \log_3 x & 1 \\ 1 & 2 \end{pmatrix}, \text{ deci suma elementelor matricei este } 4 + \log_3 x$	3 p
	$4 + \log_3 x = 5 \iff \log_3 x = 1$, de unde obținem $x = 3$, care convine	2p
6.	$A(x,y) \cdot A(x,y) = \begin{pmatrix} x^2 + y & xy + 2y \\ x + 2 & y + 4 \end{pmatrix}, \ 2I_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	2p
	$ \begin{pmatrix} x^2 + y & xy + 2y \\ x + 2 & y + 4 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \text{ de unde obținem } x = -2 \text{ și } y = -2 $	3 p

Examenul de bacalaureat național 2022 Proba E. c)

Matematică M pedagogic

Varianta 3

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(\sqrt{3}+1)^2 (\sqrt{3}-1)^2 = \sqrt{48}$.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = -2x + 5.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $3^{x-2} = \left(\frac{1}{3}\right)^{-2x}$.
- **5p 4.** Determinați câte numere naturale impare de două cifre se pot forma cu cifrele 1, 2,3, 4, 5, 6, 7 și 8.
- 5p 5. În reperul cartezian xOy se consideră punctele A(0,2), B(5,2) și C(6,6). Determinați distanța de la punctul B la mijlocul segmentului AC.
- **5p 6.** Se consideră triunghiul *ABC* cu *AB* = 9, *AC* = 12 și *BC* = 15. Arătați că $\sin B + \sin C = \frac{7}{5}$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție $x * y = -\frac{1}{3}xy + \frac{1}{3}(x+y) + \frac{2}{3}$.

- **5p 1.** Arătați că 4*2=0.
- **5p** 2. Demonstrați că $x * y = -\frac{1}{3}(x-1)(y-1)+1$, pentru orice numere reale x și y.
- **5p** | **3.** Determinați numărul real x pentru care 4*x=x.
- **5p 4.** Arătați că e = -2 este elementul neutru al legii de compoziție "*".
- **5p 5.** Determinați numerele reale x pentru care x * x = -2.
- **5p 6.** Arătați că $\frac{1}{x} * \frac{1}{x} \le 1$, pentru orice număr real nenul x.

SUBIECTUL al III-lea

(30 de puncte)

Se consideră matricele $A(x,y) = \begin{pmatrix} x & y \\ 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, unde x și y sunt numere reale.

- **5p 1.** Arătați că $\det B = 2$.
- **5p** 2. Arătați că $\det(A(2n,2n+1))$ este număr natural impar, pentru orice număr natural nenul n.
- **5p** 3. Arătați că A(2x,0) + A(0,2x) = 2A(x,x), pentru orice număr real x.
- **5p** | **4.** Determinați numerele reale x și y, astfel încât $A(x, y) \cdot B = B \cdot A(x, y)$.
- **5p 5.** Determinați numărul real strict pozitiv x, știind că suma elementelor matricei $A(\log_3 x, 1)$ este egală cu 5.
- **5p 6.** Determinați numerele reale x și y, știind că $A(x,y) \cdot A(x,y) = 2I_2$.