Übungsblatt 9 - mit Lösungen

Turing-Maschinen

Grundlagen der theoretischen Informatik / Theoretische Informatik

Studiengang Gesundheitsinformatik / Angewandte Informatik

Wintersemester 2015/2016

Prof. Barbara Staehle, HTWG Konstanz

Hinweise für alle Übungsaufgaben:

- Sie können und sollten alle in der Vorlesung vorgestellten Turing-Maschinen als Inspiration für die zu bearbeitenden Aufgaben nutzen.
- Insbesondere können Sie den bei der TM T_V verwendeten Trick nutzen, welcher die Bewegungsanweisung "nicht bewegen" ermöglicht. Ihre Bewegungsanweisungen vergrößern sich also auf \leftarrow , \rightarrow , \circlearrowleft (nach link, nach rechts, stehenbleiben).

AUFGABE 9.1 DIE VORVORGÄNGERFUNKTION

Teilaufgabe 9.1.1 Die Turing-Maschine T_{-2} , 3 Punkte

Erstellen Sie die Turingmaschine T_{-2} welche die Vorvorgängerfunktion $f: \mathbb{N}_0 \to \mathbb{N}_0, n \mapsto \left\{ \begin{array}{ll} n-2 & \text{falls } n \geq 2 \\ 0 & \text{falls } n < 2 \end{array} \right.$ berechnet.

Geben Sie die Zustandsübergangsfunktion δ sowohl in tabellarischer Form, als auch in Form eines erweiterten Zustandsübergangsdiagrammes an.

Achten Sie darauf, dass T_{-2}

- für die unär codierte Eingabe n die unär codierte Ausgabe f(n) ausgibt und erfolgreich terminiert,
- auch f(0), f(1), f(2) korrekt berechnet werden.

LÖSUNG

$$T_{-2} = (S, \Sigma, \Pi, \delta, s_0, \square, F)$$
 mit

- $S = \{s_0, s_1, s_2, s_3, s_4\}$
- $\Sigma = \{1\}$
- $\Pi = \{1, \square\}$
- $F = \{s_4\}$
- δ siehe Abbildung 1.

Teilaufgabe 9.1.2 Arbeitsweise von T_{-2} , 2 Punkte

Berechnen Sie die Endkonfiguration für T_{-2} unter der Eingabe von

- 1. $\omega = \varepsilon$
- 2. $\omega = 1$

δ	1	
s_0	$(s_0,1,\rightarrow)$	$(s_1, \square, \leftarrow)$
s_1	$(s_2, \square, \leftarrow)$	$(s_4, \square, \rightarrow)$
s_2	$(s_3, \square, \leftarrow)$	$(s_4, \square, \rightarrow)$
s_3	$(s_3,1,\leftarrow)$	$(s_4, \square, \rightarrow)$
s ₄	-	-

Abbildung 1: Zustandsübergangsfunktion von T_{-2}

- 3. $\omega = 11$
- 4. $\omega = 111$

Geben Sie alle Konfigurationen an, welche, ausgehend von der Startkonfiguration, durchlaufen werden.

LÖSUNG

- 1. $(\Box, s_0, \Box) \vdash (\Box, s_1, \Box\Box) \vdash (\Box\Box, s_4, \Box)$
- 2. $(\Box, s_0, 1) \vdash (\Box 1, s_0, \Box) \vdash (\Box, s_1, 1\Box) \vdash (\Box, s_2, \Box\Box) \vdash (\Box\Box, s_4, \Box)$
- 3. $(\Box, s_0, 11) \vdash (\Box 1, s_0, 1) \vdash (\Box 11, s_0, \Box) \vdash (\Box 1, s_1, 1\Box) \vdash (\Box, s_2, 1\Box\Box) \vdash (\Box, s_3, \Box\Box\Box\Box) \vdash (\Box\Box, s_4, \Box\Box\Box\Box)$
- 4. $(\Box, s_0, 111) \vdash (\Box 1, s_0, 11) \vdash (\Box 11, s_0, 1) \vdash (\Box 11, s_0, \Box) \vdash (\Box 11, s_1, 1\Box) \vdash (\Box, s_2, 11\Box\Box) \vdash (\Box, s_3, 1\Box\Box\Box\Box) \vdash (\Box, s_4, 1\Box\Box\Box\Box)$

Teilaufgabe 9.1.3 Die Maschinen T_{-m} , 1 Punkt

Welche Idee würden Sie nutzen, um T_{-2} zur Maschine T_{-m} zu erweitern, welche für ein festes $2 < m \in \mathbb{N}$ die Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0, n \mapsto \left\{ \begin{array}{ll} n-m & \text{falls } n \geq m \\ 0 & \text{falls } n < m \end{array} \right.$ berechnet? Wie unterscheiden sich T_{-m} und T_{-2} ?

LÖSUNG

Einfach statt bisher 2 "Rückwärtszuständen" wo die 1
er gelöscht werden, m Rückwärtszustände nutzen. T_{-m} hätte also 3 + m Zustände.

AUFGABE 9.2 BINÄRE ADDITION

Ziel dieser Aufgabe ist die Erstellung der TM T_{b+1} , welche zu einer *im Binärformat* angegeben Zahl n eine 1 addiert. Hierzu sollten Sie vorab zwei andere Teilaufgaben lösen.

TEILAUFGABE 9.2.1 1 PUNKT

Rechnen Sie die Zahlen 0-15 ins Binärformat um und addieren Sie jeweils 1 zu jeder Zahl. Um den Additionsvorgang besser analysieren zu können, wäre es vorteilhaft, die Rechnungen alle untereinander zu schreiben, bzw. eine Tabelle mit den Spalten n und n+1 anzulegen.

LÖSUNG

n	n+1
0	1
1	10
10	11
11	100
100	101
101	110
110	111
111	1000
1000	1001
1001	1010
1010	1011
1011	1100
1100	1101
1101	1110
1110	1111
1111	10000

TEILAUFGABE 9.2.2 2 PUNKTE

Analysieren Sie Ihre Additionstabelle und leiten Sie eine allgemeine Regel ab, wie sich die Zahl n+1 binär geschrieben von der Zahl n binär geschrieben unterscheidet. Nutzen Sie diese Regel, um grundlegende, für die TM T_{b+1} wichtige Mechanismen anzugeben und die Arbeitsweise von T_{b+1} zu beschreiben.

LÖSUNG

Beobachtungen:

- Wenn die letzte Stelle von n eine 0 ist, dann verändert sich diese bei n+1 einfach zur 1.
- Wenn die letzte Stelle von *n* eine 1 ist, dann verändert sich diese zur 0 und man wiederholt diese Betrachtung bei der vorletzten Stelle usw.
- Wenn n nur aus 1en besteht, dann ist n + 1 eine um eine Stelle längere Zahl mit einer führenden 1 gefolgt von 0en.

Arbeitsweise von T_{b+1}

- 1. Laufe über das Eingabewort, kehre um, sobald das erste Blank gefunden ist
- 2. Sieh dir das letzte Zeichen X an.
- 3. Falls X = 0, dann ersetze diese durch eine 1, laufe zum linken Wortanfang, fertig.
- 4. Falls X = 1, dann ersetze diese durch eine 0, merke dir 1 im Übertrag gehe zu 2.
- 5. Falls $X = \square$ und noch ein Übertrag da ist, dann schreibe eine 1 und halte an.

TEILAUFGABE 9.2.3 3 PUNKTE

Nutzen Sie nun Ihre Überlegungen aus Aufgabe 9.2.2, um die TM T_{b+1} zu konstruieren, welche $f: \mathbb{N}_0 \to \mathbb{N}_0, f(n) = n+1$ mit binär codierter Eingabe n und Ausgabe n+1 berechnet.

Geben Sie die Zustandsübergangsfunktion δ in tabellarischer Form *oder* in Form eines erweiterten Zustandsübergangsdiagrammes an.

Abbildung 2: Zustandsübergangsfunktion von T_{b+1}

LÖSUNG

 $T_{b+1} = (S, \Sigma, \Pi, \delta, s_0, \square, F)$ mit

- $S = \{s_0, s_1, s_2, s_3\}$
- $\Sigma = \{0, 1\}$
- $\Pi = \{0, 1, \square\}$
- $F = \{s_3\}$
- δ siehe Abbildung 2.

Teilaufgabe 9.2.4 Arbeitsweise von T_{b+1} , 2 Punkte

Berechnen Sie die Endkonfiguration für \mathcal{T}_{b+1} unter der Eingabe von

- 1. $\omega = \varepsilon$
- 2. $\omega = 0$
- 3. $\omega = 1$
- 4. $\omega = 111$

Geben Sie alle Konfigurationen an, welche, ausgehend von der Startkonfiguration durchlaufen werden.

LÖSUNG

- 1. $(\Box, s_0, \Box) \vdash (\Box, s_1, \Box\Box) \vdash (\Box, s_3, 1\Box)$
- 2. $(\Box, s_0, 0) \vdash (0, s_0, \Box) \vdash (\Box, s_1, 0\Box) \vdash (\Box, s_2, \Box 1\Box) \vdash (\Box\Box, s_3, 1\Box)$
- 3. $(\square, s_0, 1) \vdash (\square 1, s_0, \square) \vdash (\square, s_1, 1\square) \vdash (\square, s_1, \square 0\square) \vdash (\square, s_3, 10\square)$
- 4. $(\Box, s_0, 111) \vdash (\Box 1, s_0, 11) \vdash (\Box 11, s_0, 1) \vdash (\Box 111, s_0, \Box) \vdash (\Box 11, s_1, 1\Box) \vdash (\Box 1, s_1, 10\Box) \vdash (\Box, s_1, 100\Box) \vdash (\Box, s_1, 100\Box) \vdash (\Box, s_1, 100\Box) \vdash (\Box, s_1, 100\Box)$

Frohe Weihnachten und erholsame Ferien ohne allzu viel Arbeit! (Quelle: xkcd.com)