

Chapter 4 (Part 2) Simplification of Logic Circuits

CD AB	00	01	11	10
00				
01				
11				
10				

CD AB	00	01	11	10
00	1		1	1
01	1			1
11	1			1
10	1		1	1

AB CD	00	01	11	10
00	$1 \setminus $		1	/ 1
01	1			1
11	1			1
10	1		1	1

AB	00	01	11	10
00	1		1	1
01	1			1
11	1			1
10	1		1	1

CD AB	00	01	11	10
00				
01				
11				
10				

CD				
AB	00	01	11	10
00	0			
01				
11				
10	0			

AB CD	00	01	11	10
00	0			0
01				
11				
10	0			

CD AB	00	01	11	10
00	0			0
01				
11				
10	0	0		

AB CD	00	01	11	10
00	0			0
01	0			
11				
10	0	0		

AB CD	00	01	11	10
00	0			0
01	0			
11	0			
10	0	0		

CD	, ,		•	
AB	00	01	11	10
00	0			0
01	0			
11	0			
10	0	0		

CD AB	00	01	11	10
00	0	J .	••	0
01	0			
11	0			
10	0	0		

CD AB			44	40
00 00	00	01	11	10
01	0			
11	0			
10	0	0		

• Simplify: (B+C+D)(A+B+C'+D)(A'+B+C+D')(A+B'+C+D)(A'+B'+C+D)=(A+B+D)(C+D)(A'+B+C)00 01 11 10 A+B+D 00 01 C+D 11

10

A'+B+C

Advantages of using K-map

- Can be done more systematically
- Much simpler to find minimum solutions
- Easier to see what is happening

Simplification: Quine-McCluskey

Advantages

- Specific step by step procedure
- Can be applied to problems with many variables
- Suitable for machine computation

Steps

- Construct prime implicants table
- Construct prime implicants chart
- Select all essential prime implicants
- Select a minimum cover from the remaining prime implicants

Constructing Prime Implicants Table

- List terms in a column using their binary representation
 - Group terms so that each group contains minterms with the same number of 1's
 - Place groupings which differ by only one literal adjacent to one another

```
1 0001
```

- 3 0011
- 7 0111
- 8 1000
- 14 1110
- 15 1111

```
Column 1
    0001
                0001
3
          8
   0011
                1000
   0111
8
    1000
             3
                0011
14
    1110
15
    1111
                0111
                1110
           14
                1111
            15
```


- Perform exhaustive search for logically adjacent terms between adjacent groups
 - Each term should be checked off
 - Combine each pair of terms into a single term replacing the differing literal with '-'
 - Repeat procedure until no further terms can be created
 - All unchecked terms are prime implicants

		Co	olumn 1	Column 2
1	0001	1	0001	
3	0011	8	1000	
7	0111			
8	1000	3	0011	
14	1110			
15	1111	7	0111	
		14	1110	
		15	1111	

		Co	Column 1		nn 2
1	0001	1	0001 🗸	1,3	00-1
3	0011	8	1000		
7	0111				
8	1000	3	0011 v		
14	1110				
15	1111	7	0111		
		14	1110		
		15	1111		

		Column 1		Colur	nn 2
1	0001	1	0001 🗸	1,3	00-1
3	0011	8	1000		
7	0111			3,7	0-11
8	1000	3	0011 🗸		
14	1110				
15	1111	7	0111 🗸		
		14	1110		
		15	1111		

		Column 1		Colum	ın 2
1	0001	1	0001 🗸	1,3	00-1
3	0011	8	1000		
7	0111			3,7	0-11
8	1000	3	0011 v		
14	1110			7,15	-111
15	1111	7	0111 v		
		14	1110		
		15	1111 v		

		Column 1		Colum	n 2
1	0001	1	0001 🗸	1,3	00-1
3	0011	8	1000		
7	0111			3,7	0-11
8	1000	3	0011 v		
14	1110			7,15	-111
15	1111	7	0111 🗸	14,15	111-
		14	1110 v		
		15	1111 v		

• Simplify: $F = \Sigma m(1,3,7,8,14,15)$

		Co	olumn 1	Column 2
1	0001	1	0001 v	1,3 00-1
3	0011	8	1000	
7	0111			3,7 0-11
8	1000	3	0011 v	
14	1110			7,15 –111
15	1111	7	0111 v	14,15 111-
		14	1110 v	

Prime

Implicants:

AB'C'D'

A'B'D

A'CD

BCD

ABC

Construct Prime Implicants Chart

- Terms are listed horizontally
- Prime implicants are listed vertically
- Place an X whenever a prime implicant covers a minterm

1 3 7 8 14 15

8 1000

1,3 00-1

3,7 0-11

7,15 –111

14,15 111-

1 3 7 8 14 15 8 1000 **x**

1,3 00-1 **x x**

7,15 –111

3,7 O-11 **x x**

14,15 111- x x

 \mathbf{X}

 \mathbf{X}

Select Essential Prime Implicants

Select Essential Prime Implicants

Select Essential Prime Implicants

Select Minimum Cover

- Essential prime implicants + the prime implicants that cover the columns that were not removed
- Hence
 - -F = AB'C'D' + A'B'D + ABC

Select Minimum Cover

- Essential prime implicants + the prime implicants that cover the columns that were not removed
- Hence
 - -F = AB'C'D' + A'B'D + ABC + BCD

•
$$(A'+B'+C+D)(A+B'+C+D)(A+B+C+D')$$

 $(A+B+C'+D')(A'+B+C+D')(A+B+C'+D)$

ABCD	00	01	11	10
00				
01				
11				
10				

ABCD	00	01	11	10
00		0	0	0
01	0			
11	0			
10		0		

ABCD	00	01	11	10
00	1	0	0	0
01	0	1	1	1
11	0	1	1	1
10	$\overline{1}$	0	1	1

ABCD	00	01	11	10
00	1	0	0	0
01	0	1	1	1
11	0	1	1	1
10	1	0	1	1

ABCD	00	01	11	10
00	1	0	0	0
01	0	1	1	1
11	0	1	1	1
10	$\overline{1}$	0	1	1

AB CD	00	01	11	10
00	1	0	0	0
01	0	1	1	1
11	0	1	1	1
10	$\overline{1}$	0	1	1/

AB CD	00 4	01	11	10
00	1	0	0	0
01	0	1	1	1
11	0	1	1	1
10	$\overline{1}$	0	1	1

•
$$(A'+B'+C+D)(A+B'+C+D)(A+B+C+D')$$

 $(A+B+C'+D')(A'+B+C+D')(A+B+C'+D)$

Don't Care Conditions

- The unspecified minterms (maxterms) of an incompletely specified function
- An X inside a map represents a don't care condition

- There are 2 cases when this occurs.
 - The input combination never occurs
 - e.g. the BCD code does not use the 6 remaining codes.
 - The input combinations are expected to occur, but we do not care what the outputs are

Representation of Don't Cares

• e.g.

$$F(W,X,Y,Z) = \sum m(0,1,2,4,6,7,8,10)$$

$$d(W,X,Y,Z) = \sum d(12,13,14,15)$$

• It could also be represented as:

$$F(W,X,Y,Z) = \sum m(0,1,2,4,6,7,8,10) + \sum d(12,13,14,15)$$

• Simplify $F = \sum m(1,3,7,14,15) + d(8)$

• Simplify $F = \Sigma m(1,3,7,14,15) + d(9,11)$

ABCD	00	01	11	10
00				
01				
11				
10				

AB CD	00	01	11	10
00	1			1
01	1			
11	1			
10	1	1		

AB CD	00	01	11	10
00	1			1
01	1			X
11	1	X	X	
10	1	1		

ABCD	00	01	11	10
00	$\sqrt{1}$			1
01				X
11	1	X	X	
10	1	1		

AB CD	00	01	11	10
00	1			1
01	1/			X
11		X	X	
10	1	1		

AB CD	00	01	11	10
00	1			1
01	1/			X
11	1	X	X	
10	1	1/		

AB CD	00	01	11	10
00	1			1
01	1			X
11	1	X	X	
10	1	1		

• $F(A,B,C,D) = \sum m(0,2,4,8,9,12) +$ $\sum d(6,13,15) = A'D' + AC'$

