Chicago Micro-mobility Analysis

February 22, 2024

1 Chicago Micro-mobility Analysis (Divvy)

2 1 - Data setup and preliminary analysis

You can fetch the data from the API by using the City of Chicago Data Portal URL (https://dev.socrata.com/foundry/data.cityofchicago.org/fg6s-gzvg). You need to sign up in order to create an APP token and then use your token for authentication to access the data of Divvy trips. Below are the codes you can use for this purpose:

```
[2]:  # First you need to install sodapy  #pip install sodapy
```

For this exercise, I have downloaded the csv dataset directly from City of Chicago Data Portal (https://data.cityofchicago.org/Transportation/Divvy-Trips/fg6s-gzvg/about_data) and read the file from that csv file

```
[1]: # The path of input files
```

```
[7]: # The file of Divvy trips input_micro_mobility = "Divvy_Trips_20240103.csv"
```

```
[8]: # The file of city wards that we are going to use further in geopandas input_boundaries = "Boundaries_-_Wards__2023-__20240103.csv"
```

```
[5]: import pandas as pd
      # Reading csv file
 [7]: df_micro_mobility = pd.read_csv(input_micro_mobility, on_bad_lines = 'warn',__
       ⇔sep=',')
      df_boundaries = pd.read_csv(input_boundaries, on_bad_lines = 'warn', sep=',')
     # Showing a few rows of the tables
[13]: # Micro Mobolity
      df_micro_mobility.head()
         TRIP ID
                                                       STOP TIME BIKE ID \
[13]:
                              START TIME
      0 8546790 12/31/2015 05:35:00 PM
                                          12/31/2015 05:44:00 PM
                                                                       979
      1 8546793 12/31/2015 05:37:00 PM
                                          12/31/2015 05:41:00 PM
                                                                      1932
      2 8546795 12/31/2015 05:37:00 PM
                                          12/31/2015 05:40:00 PM
                                                                      1693
      3 8546797 12/31/2015 05:38:00 PM
                                          12/31/2015 05:55:00 PM
                                                                      3370
      4 8546798 12/31/2015 05:38:00 PM
                                         12/31/2015 05:41:00 PM
                                                                      2563
         TRIP DURATION
                        FROM STATION ID
                                                  FROM STATION NAME
                                                                     TO STATION ID
      0
                   521
                                           Wilton Ave & Belmont Ave
                                    117
                                                                                229
                   256
                                    301
      1
                                             Clark St & Schiller St
                                                                                138
      2
                   134
                                    465
                                             Marine Dr & Ainslie St
                                                                                251
      3
                   995
                                    333
                                         Ashland Ave & Blackhawk St
                                                                                198
                                         Larrabee St & Kingsbury St
                   177
                                                                                111
                            TO STATION NAME
                                              USER TYPE GENDER BIRTH YEAR \
      0
                  Southport Ave & Roscoe St Subscriber Female
                                                                      1991.0
                                             Subscriber
      1
                 Clybourn Ave & Division St
                                                           Male
                                                                      1992.0
      2
                 Clarendon Ave & Leland Ave
                                             Subscriber Female
                                                                      1987.0
         Green St (Halsted St) & Madison St
                                             Subscriber
                                                           Male
                                                                      1975.0
                     Sedgwick St & Huron St
                                             Subscriber
                                                           Male
                                                                      1990.0
         FROM LATITUDE FROM LONGITUDE
                                                       FROM LOCATION
                                                                      TO LATITUDE \
                                          POINT (-87.65304 41.94018)
      0
             41.940180
                            -87.653040
                                                                         41.943739
                                       POINT (-87.631501 41.907993)
      1
             41.907993
                            -87.631501
                                                                         41.904613
      2
             41.971600
                            -87.650154
                                          POINT (-87.650154 41.9716)
                                                                         41.967968
      3
                            -87.667252 POINT (-87.667252 41.907066)
             41.907066
                                                                         41.881892
             41.897764
                            -87.642884
                                        POINT (-87.642884 41.897764)
                                                                         41.894666
         TO LONGITUDE
                                        TO LOCATION
           -87.664020
                        POINT (-87.66402 41.943739)
      0
      1
           -87.640552 POINT (-87.640552 41.904613)
      2
           -87.650001 POINT (-87.650001 41.967968)
      3
           -87.648789 POINT (-87.648789 41.881892)
```

4 -87.638437 POINT (-87.638437 41.894666)

```
[15]: # Boundaries
      df_boundaries.head()
[15]:
         Ward
                                                                    objectid \
                                                         the_geom
               MULTIPOLYGON (((-87.68777205374418 41.92858465...
            1
                                                                        51
      1
               MULTIPOLYGON (((-87.62517201063106 41.90399836...
                                                                        52
      2
            5 MULTIPOLYGON (((-87.56030308695986 41.76635735...
                                                                        55
      3
              MULTIPOLYGON (((-87.61794321281114 41.77292489...
                                                                        56
      4
               MULTIPOLYGON (((-87.54393108740227 41.76029599...
                                                                        57
          edit_date
                     ward_id
                                                              globalid
                                                                          st_area_sh
                               {DB2A2A7D-FAF1-42A4-B061-AE18C31A80BB}
        06/01/2022
                                                                        6.589346e+07
                            1
      1
         06/01/2022
                           2
                               {88F300F6-D6DF-4337-8DE3-0C2D27A5B338}
                                                                        3.128511e+07
      2 06/01/2022
                           5
                               {OA109A41-9DED-47D7-934E-1EA1CC7EE025}
                                                                        1.120803e+08
      3 06/01/2022
                               {FD74A999-4BBA-4CE3-BEBB-CC76423037E8}
                                                                        1.392022e+08
                           6
         06/01/2022
                               {279FCBD9-EA0D-4FFC-A8CA-EDA2676C0721}
                                                                        1.414924e+08
           st length
         61878.821587
         74175.949239
      2 88207.690241
         80779.851890
      3
         98906.567862
```

In this section, I am trying to do some pre-processing and clean the data and also do some exploratory analysis to know better the dataset and basic information hidden behind the micromobility data. I am going to answer simple questions such as: - The number of records before and after data cleaning. - When did collection of data start(start-date and time) for micro-mobility dataset and what is the most recent date and time available. - Number of records per year and month in micro-mobility dataset. - identify patterns e.g.,: - Are there more vehicles as years go on ? - Is there some change in usage patterns among different days of the week , months is there a trend – seasonal or weekly ? - Are there any trends based on the gender and age of the user ?

```
Г16]:
      # Using count() method to see the missing values in schema of the dataframe.
[17]:
      df_micro_mobility.count()
[17]: TRIP ID
                            21242740
      START TIME
                            21242740
      STOP TIME
                            21242740
      BIKE ID
                            21242740
      TRIP DURATION
                            21242740
      FROM STATION ID
                            21242740
      FROM STATION NAME
                            21242740
      TO STATION ID
                            21242740
```

TO STATION NAME	21242740
USER TYPE	21242740
GENDER	16347870
BIRTH YEAR	16376026
FROM LATITUDE	21242476
FROM LONGITUDE	21242476
FROM LOCATION	21242476
TO LATITUDE	21242063
TO LONGITUDE	21242063
TO LOCATION	21242063
dtype: int64	

.....

• The number of records before and after data cleaning.

As observed, prior to data cleaning, there are 21,242,740 rows (TRIP ID). However, it is evident that certain columns contain missing values (LATITUDE, LONGITUDE, GENDER, BIRTH YEAR), requiring attention. The most important column for us to calculate OD matrix in further sections are LATITUDE and LONGITUDE, so in this level I am cleaning data based on these columns, however I will clean data based on GENDER and BIRTH YEAR separately. Various approaches exist for handling missing data, and for this exercise, I have decided to address it by removing the rows with missing values.

```
[18]:
      # Removing null values
     df_MM_clean = df_micro_mobility.dropna(subset=["FROM LATITUDE", "TO LATITUDE"])
[20]:
     df_MM_clean.count()
[20]: TRIP ID
                            21241850
      START TIME
                            21241850
      STOP TIME
                            21241850
      BIKE ID
                            21241850
      TRIP DURATION
                            21241850
      FROM STATION ID
                            21241850
      FROM STATION NAME
                            21241850
      TO STATION ID
                            21241850
      TO STATION NAME
                            21241850
      USER TYPE
                            21241850
      GENDER
                            16347237
      BIRTH YEAR
                            16375343
      FROM LATITUDE
                            21241850
      FROM LONGITUDE
                            21241850
      FROM LOCATION
                            21241850
      TO LATITUDE
                            21241850
      TO LONGITUDE
                            21241850
      TO LOCATION
                            21241850
```

dtype: int64

Following the data cleaning process, the dataset now consists of 21,241,850 rows for each column, and all necessary columns are non-null except for "GENDER" and "BIRTH YEAR".

.....

• When did collection of data start(start-date and time) for micro-mobility dataset and what is the most recent date and time available.

```
[21]: # Turning "Start Time" column to datetime object
```

```
[10]: df_MM_clean_time = pd.to_datetime(df_MM_clean['START TIME'], format="%m/%d/%Y_\( \times \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f
```

```
[23]: # Find the minimum value in the "Start Time" column
```

```
[24]: print("Minimum Start Time:", df_MM_clean_time.min())
```

Minimum Start Time: 2013-06-27 01:06:00

Collection of data start(start-date and time) for micro-mobility dataset starts from 01:06:00 of 27th of June 2013.

```
[25]: print("Most Recent Start Time:", df_MM_clean_time.max())
```

Most Recent Start Time: 2019-12-31 23:57:17

The most recent date and time available in dataset is 23:57:17 of 31st December 2019.

.....

• Number of records per year and month in micro-mobility dataset.

```
[10]: # Create new columns that we need for further analysis (Year, Season, Month, \square \square Week, etc.)
```

```
[11]: import datetime as dt
```

```
[12]: df_MM_clean["YEAR"] = df_MM_clean_time.dt.strftime("%Y")
```

/usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy from ipykernel.kernelbase import Kernel

```
[13]: df_MM_clean["MONTH"] = df_MM_clean_time.dt.strftime("%m")
```

```
/usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:1:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
       from ipykernel.kernelbase import Kernel
[14]: # Function for seasons
      def get_season(month):
          if 3 <= month <= 5:</pre>
              return 'Spring'
          elif 6 <= month <= 8:
              return 'Summer'
          elif 9 <= month <= 11:
             return 'Autumn'
          else:
              return 'Winter'
[15]: df_MM_clean["SEASON"] = df_MM_clean_time.dt.month.apply(get_season)
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:1:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       from ipykernel.kernelbase import Kernel
[16]: df_MM_clean["DAY OF WEEK"] = df_MM_clean_time.dt.strftime("%A")
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:1:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       from ipykernel.kernelbase import Kernel
```

[20]: # See the final result

[21]: df MM clean.head()

```
[21]:
         TRIP ID
                              START TIME
                                                        STOP TIME BIKE ID \
      0 8546790 12/31/2015 05:35:00 PM 12/31/2015 05:44:00 PM
                                                                       979
      1 8546793 12/31/2015 05:37:00 PM
                                          12/31/2015 05:41:00 PM
                                                                      1932
      2 8546795 12/31/2015 05:37:00 PM
                                          12/31/2015 05:40:00 PM
                                                                      1693
      3 8546797 12/31/2015 05:38:00 PM
                                          12/31/2015 05:55:00 PM
                                                                      3370
      4 8546798 12/31/2015 05:38:00 PM
                                          12/31/2015 05:41:00 PM
                                                                      2563
         TRIP DURATION FROM STATION ID
                                                  FROM STATION NAME
                                                                      TO STATION ID
                   521
                                           Wilton Ave & Belmont Ave
      0
                                    117
                                                                                229
                   256
                                    301
      1
                                              Clark St & Schiller St
                                                                                138
      2
                   134
                                    465
                                             Marine Dr & Ainslie St
                                                                                251
      3
                   995
                                    333
                                         Ashland Ave & Blackhawk St
                                                                                198
      4
                   177
                                         Larrabee St & Kingsbury St
                                     48
                                                                                111
                            TO STATION NAME
                                              USER TYPE
                                                         ... FROM LATITUDE
      0
                  Southport Ave & Roscoe St Subscriber
                                                                41.940180
                                                         ...
      1
                 Clybourn Ave & Division St
                                             Subscriber
                                                                41.907993
      2
                 Clarendon Ave & Leland Ave
                                             Subscriber ...
                                                                41.971600
         Green St (Halsted St) & Madison St
                                             Subscriber
                                                                41.907066
      3
                     Sedgwick St & Huron St
                                             Subscriber ...
                                                                41.897764
         FROM LONGITUDE
                                        FROM LOCATION TO LATITUDE TO LONGITUDE
                           POINT (-87.65304 41.94018)
      0
             -87.653040
                                                          41.943739
                                                                      -87.664020
             -87.631501 POINT (-87.631501 41.907993)
                                                          41.904613
      1
                                                                      -87.640552
      2
             -87.650154
                           POINT (-87.650154 41.9716)
                                                          41.967968
                                                                      -87.650001
      3
             -87.667252 POINT (-87.667252 41.907066)
                                                                      -87.648789
                                                          41.881892
                         POINT (-87.642884 41.897764)
             -87.642884
                                                          41.894666
                                                                      -87.638437
                          TO LOCATION YEAR MONTH SEASON DAY OF WEEK
      0
          POINT (-87.66402 41.943739)
                                       2015
                                                12 Winter
                                                              Thursday
      1 POINT (-87.640552 41.904613)
                                       2015
                                                12 Winter
                                                              Thursday
      2 POINT (-87.650001 41.967968)
                                       2015
                                                12 Winter
                                                              Thursday
      3 POINT (-87.648789 41.881892)
                                       2015
                                                12 Winter
                                                              Thursday
      4 POINT (-87.638437 41.894666)
                                       2015
                                                12 Winter
                                                              Thursday
      [5 rows x 22 columns]
[11]: # Number of trips per year
[28]: year_groups = df_MM_clean.groupby(["YEAR"]).size()
[37]: print(year_groups)
     YEAR
     2013
              759788
     2014
             2454634
             3183236
     2015
```

```
2016 3595317
2017 3828984
2018 3602180
2019 3817711
dtype: int64
```

[38]: bp_year_groups = year_groups.plot(kind="bar")

It is shown that there is an increasing trend for years and this growth was dramatic from 2013 to 2014 and one of the reasons is that our data start from the June 2013. Also, there was a litle decrease from 2017 to 2018.

```
02
       546764
03
       856606
04
      1300373
05
      2058411
      2682608
06
07
      3204041
80
      3220608
      2792511
09
10
      2149156
11
      1173737
       755178
12
dtype: int64
```

```
[42]: bp_month_groups = month_groups.plot(kind="bar")
```


It shows that the majority of trips occur from June to October and it is less in cold months.

```
[13]: # Number of trips per year and month
[17]: month_year_groups = df_MM_clean.groupby(["YEAR", "MONTH"]).size()
```

[18]: print(month_year_groups)

YEAR	MONTH						
2013	06	4005					
	07	74867					
	80	170508					
	09	201030					
	10 174695						
		•••					
2019	80	590125					
	09	493192					
	10	371761					
	11	177155					
	12	155079					
- .							

Length: 79, dtype: int64

[46]: # Bar plot to show the year-month pattern of data

[19]: bp_month_year_groups = month_year_groups.plot(kind="bar", figsize=(30, 20))

Number of records per year and month in micro-mobility dataset is shown above. It can be seen that majority of data belong to the middle of each year (from June to October) and generally every year the trend was increasing.

.....

• identify patterns e.g.,:

YEAR BIKE ID

397

2013 1

- Are there more vehicles as years go on?
- \bullet Is there some change in usage patterns among different days of the week , months is there a trend seasonal or weekly ?
- Are there any trends based on the gender and age of the user?

```
[48]: df_MM_clean.info()
```

```
<class 'pandas.core.frame.DataFrame'>
     Int64Index: 21241850 entries, 0 to 21242739
     Data columns (total 22 columns):
          Column
                              Dtype
          ____
      0
          TRIP ID
                              int64
      1
          START TIME
                              object
      2
          STOP TIME
                              object
      3
          BIKE ID
                              int64
      4
          TRIP DURATION
                              int64
      5
          FROM STATION ID
                              int64
          FROM STATION NAME
                              object
      7
          TO STATION ID
                              int64
          TO STATION NAME
                              object
      9
          USER TYPE
                              object
      10
          GENDER
                              object
      11
          BIRTH YEAR
                              float64
          FROM LATITUDE
                              float64
      12
      13 FROM LONGITUDE
                              float64
      14 FROM LOCATION
                              object
          TO LATITUDE
                              float64
          TO LONGITUDE
                              float64
      17
         TO LOCATION
                              object
      18
          YEAR
                              object
      19
          MONTH
                              object
      20
          SEASON
                              object
      21 DAY OF WEEK
                              object
     dtypes: float64(5), int64(5), object(12)
     memory usage: 3.6+ GB
[14]: # Comparing used bicycles in different years
[50]: vehicle_groups = df_MM_clean.groupby(["YEAR", "BIKE ID"]).size()
[51]: | print(vehicle_groups)
```

```
2
                       342
           3
                       430
           4
                       352
           5
                       346
     2019 6929
                       111
           6931
                       91
           6941
                       16
           6942
                       99
           6946
                       67
     Length: 34712, dtype: int64
[52]: # Analyzing seasonal trends
[18]: season_groups = df_MM_clean.groupby(["SEASON"]).size()
[19]: print(season_groups)
     SEASON
     Autumn
               6115404
               4215390
     Spring
     Summer
               9107257
     Winter
               1803799
     dtype: int64
[20]: bp_season_groups = season_groups.plot(kind="bar")
```


It shows that most of the trips happened on Summer and after that on Autumn

```
vehicle_season_groups = df_MM_clean.groupby(["SEASON", "BIKE ID"]).size()
     print(vehicle_season_groups)
[54]:
     SEASON
             BIKE ID
     Autumn
             1
                          995
              2
                         1026
              3
                         1016
              4
                          904
              5
                          803
     Winter
             6913
                           11
              6929
                           41
              6931
                           21
                           35
              6942
              6946
                            8
```

```
Length: 25647, dtype: int64
[56]: vehicle_month_groups = df_MM_clean.groupby(["YEAR", "MONTH", "BIKE ID"]).size()
[57]: print(vehicle_month_groups)
     YEAR MONTH BIKE ID
     2013 06
                              7
                  1
                  4
                              3
                  5
                              4
                  8
                              4
                              2
                  19
     2019 12
                  6913
                             11
                  6929
                             41
                             21
                  6931
                  6942
                             35
                  6946
                              8
     Length: 324337, dtype: int64
[59]: # Analyzing weekly trends
[24]: week_groups = df_MM_clean.groupby(["DAY OF WEEK"]).size()
[25]: print(week_groups)
     DAY OF WEEK
     Friday
                  3125963
     Monday
                  3114367
     Saturday
                  2949008
     Sunday
                  2700688
     Thursday
                  3100101
     Tuesday
                  3164302
     Wednesday
                  3087421
     dtype: int64
[26]: bp_week_groups = week_groups.plot(kind="bar")
```


It shows that most of the trips happened on weekdays but the difference is not very significant

[60]: vehicle_week_groups = df_MM_clean.groupby(["DAY OF WEEK", "BIKE ID"]).size()
[61]: print(vehicle_week_groups)

DAY OF WEEK BIKE ID Friday Wednesday 6946 13
Length: 45556, dtype: int64

[13]: # Now I am going to clean the data again based on GENDER and BIRTH YEAR df_MM_clean_GB = df_MM_clean.dropna(axis=0)

[65]: df_MM_clean_GB.count()

[65]: TRIP ID 16346709 START TIME 16346709 STOP TIME 16346709 BIKE ID 16346709 TRIP DURATION 16346709 FROM STATION ID 16346709 FROM STATION NAME 16346709 TO STATION ID 16346709 TO STATION NAME 16346709 USER TYPE 16346709 **GENDER** 16346709 BIRTH YEAR 16346709 FROM LATITUDE 16346709 FROM LONGITUDE 16346709 FROM LOCATION 16346709 TO LATITUDE 16346709 TO LONGITUDE 16346709 16346709 TO LOCATION YEAR 16346709 MONTH 16346709 SEASON 16346709 DAY OF WEEK 16346709 dtype: int64

Now there are 16,346,709 rows for all the columns.

[66]: df_MM_clean_GB['GENDER'].value_counts()

[66]: Male 12234473 Female 4112236

Name: GENDER, dtype: int64

[67]: gender_year_groups = df_MM_clean_GB.groupby(["YEAR", "GENDER"]).size()

[68]: print(gender_year_groups)

YEAR GENDER

2013 Female 84450 Male 318459

2014	Female	407621
	Male	1255655
2015	Female	567305
	Male	1685970
2016	Female	689757
	Male	2047132
2017	Female	746633
	Male	2245291
2018	Female	758533
	Male	2281309
2019	Female	857937
	Male	2400657
dtype	: int64	

[69]: bp_gender_year_groups = gender_year_groups.plot(kind="bar")

It is shown that in general through these years the number of trips increased but the share of males have been always way more than females

```
[70]:
      # Evaluating the gender trends within months
[71]: gender_month_groups = df_MM_clean_GB.groupby(["MONTH", "GENDER"]).size()
[72]: print(gender_month_groups)
     MONTH
            GENDER
     01
            Female
                         89020
            Male
                        392150
     02
            Female
                         96448
            Male
                        407178
     03
            Female
                        157775
            Male
                        598513
     04
            Female
                        239797
            Male
                        798489
     05
            Female
                        381690
            Male
                       1128445
     06
            Female
                        534988
            Male
                       1415071
     07
            Female
                        621202
            Male
                       1576116
     80
            Female
                        633053
            Male
                       1663349
     09
            Female
                        555491
            Male
                       1531561
            Female
     10
                        432367
            Male
                       1336743
     11
            Female
                        229574
            Male
                        820540
     12
            Female
                        140831
            Male
                        566318
     dtype: int64
[73]: bp_gender_month_groups = gender_month_groups.plot(kind="bar")
```


The same pattern is here for both males and females, warmer months are more delightful to use these modes of transport.

.....

```
[74]: # Calculating the minimum and maximum of "BIRTH YEAR" in order to find out the data

[75]: df_MM_clean_GB['BIRTH YEAR'].min()

[75]: 1759.0

[76]: df_MM_clean_GB['BIRTH YEAR'].max()

[76]: 2017.0

[77]: # Check the "birth year" column to find out "bad data"
```

```
[78]: df_MM_clean_GB['BIRTH YEAR'].value_counts()
[78]: 1989.0
                 928536
      1988.0
                 850181
      1990.0
                 837904
      1987.0
                 823726
      1986.0
                 789516
      1925.0
                      2
      1895.0
                      1
      2005.0
                      1
                      1
      1759.0
      1790.0
                      1
      Name: BIRTH YEAR, Length: 103, dtype: int64
     It is shown that there are some data which are obviously incorrect such as 1790. So, I am getting
     rid of these data.
[14]: # Drop incorrect rows
      df_MM_clean_B = df_MM_clean_GB[df_MM_clean_GB['BIRTH YEAR'] >= 1925]
[80]: df_MM_clean_B.count()
[80]: TRIP ID
                             16340176
      START TIME
                             16340176
      STOP TIME
                             16340176
      BIKE ID
                             16340176
      TRIP DURATION
                             16340176
      FROM STATION ID
                            16340176
      FROM STATION NAME
                            16340176
      TO STATION ID
                             16340176
      TO STATION NAME
                             16340176
      USER TYPE
                             16340176
      GENDER
                             16340176
      BIRTH YEAR
                             16340176
      FROM LATITUDE
                             16340176
      FROM LONGITUDE
                             16340176
      FROM LOCATION
                            16340176
      TO LATITUDE
                             16340176
      TO LONGITUDE
                             16340176
      TO LOCATION
                             16340176
      YEAR
                             16340176
      MONTH
                             16340176
      SEASON
                             16340176
      DAY OF WEEK
                             16340176
      dtype: int64
```

```
[81]: 1925.0
     Now we can say that the minimum of BIRTH YEAR is 1925 and the maximum of it is 2017.
 []: df MM clean B = df MM clean B.dropna(subset=['BIRTH YEAR'])
[15]: # Convert BIRTH YEAR and YEAR to integer
      df_MM_clean_B['BIRTH YEAR'] = df_MM_clean_B['BIRTH YEAR'].astype('int')
      df_MM_clean_B['YEAR'] = df_MM_clean_B['YEAR'].astype('int')
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:2:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
       from ipykernel.ipkernel import IPythonKernel
     /usr/local/share/jupyter/kernels/pyspark yarn/bdkernelyarn.py:3:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
[16]: # Create age groups based on the age distribution of users
      df_MM_clean_B['age'] = df_MM_clean_B['YEAR'] - df_MM_clean_B['BIRTH YEAR']
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:2:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       from ipykernel.ipkernel import IPythonKernel
[17]: # Define age groups
      age_bins = [0, 18, 30, 40, 50, 60, float('inf')] # Define age bins/ranges
      age_labels = ['0-18', '19-30', '31-40', '41-50', '51-60', '61+'] # Define_
       ⇔corresponding labels
```

[81]: df_MM_clean_B['BIRTH YEAR'].min()

```
[18]: # Create 'age group' column using pd.cut
      df_MM_clean_B['age group'] = pd.cut(df_MM_clean_B['age'], bins=age_bins,__
       →labels=age_labels, right=False)
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:2:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       from ipykernel.ipkernel import IPythonKernel
[19]: age_groups = df_MM_clean_B.groupby("age group").size()
[20]: print(age_groups)
     age group
     0-18
                15967
     19-30
              6058860
     31-40
              5759775
     41-50
              2366332
     51-60
              1584683
     61+
               554559
     dtype: int64
[21]: bp_age_groups = age_groups.plot(kind="bar")
```


It can be seen that the majority of users belong to the age group between 19-40 years old.

```
[89]:
      # Evaluating the age trend within years
[90]: age_year_groups = df_MM_clean_B.groupby(["YEAR", "age group"]).size()
[91]: print(age_year_groups)
     YEAR BIRTH YEAR RANGE
     2013
           1925-1936
                                     71
           1936-1947
                                   1961
           1947-1957
                                  17987
           1957-1967
                                  52476
           1967-1977
                                  86489
     2019
           1967-1977
                                 363921
           1977-1987
                                 816792
           1987-1997
                                1632355
           1997-2007
                                 125920
```

2007-2017 5

Length: 63, dtype: int64

```
[]: bp_age_year_groups = age_year_groups.plot(kind="bar", figsize=(30, 20))
```

It is observed that the same pattern exists for each year.

3 2 - OD Matrices

In this section, I am going to do these tasks: - Associate each trip in the dataset to an origin and destination ward by combining the trip information with the information about the wards. Check which wards the FROM_LOCATION and TO_LOCATION fields belong to. - Compute then the O-D matrix, i.e., the number of bookings starting in ward i and ending in ward j. - Prepare OD matrices for different years and different age groups(3 OD matrices for each age-group of 3 consecutive years). Are there any periodicity or trends noticed? Is there a difference between the OD matrices for different age groups? - Based on observation, visualise selected OD matrices that show some trends/periodicity on a map. - Create a flowmap for the OD matrices.

[14]: pip install geopandas

```
Collecting geopandas
  Using cached geopandas-0.10.2-py2.py3-none-any.whl (1.0 MB)
Collecting shapely>=1.6
 Using cached
shapely-2.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB)
Collecting fiona>=1.8
 Using cached fiona-1.9.5-cp37-cp37m-manylinux2014_x86_64.whl (15.6 MB)
Collecting pyproj>=2.2.0
 Using cached pyproj-3.2.1-cp37-cp37m-manylinux2010_x86_64.whl (6.3 MB)
Requirement already satisfied: pandas>=0.25.0 in /opt/conda/lib/python3.7/site-
packages (from geopandas) (1.3.5)
Requirement already satisfied: setuptools in /opt/conda/lib/python3.7/site-
packages (from fiona>=1.8->geopandas) (59.8.0)
Collecting cligj>=0.5
 Using cached cligj-0.7.2-py3-none-any.whl (7.1 kB)
Requirement already satisfied: attrs>=19.2.0 in /opt/conda/lib/python3.7/site-
packages (from fiona>=1.8->geopandas) (22.1.0)
Requirement already satisfied: importlib-metadata in
/opt/conda/lib/python3.7/site-packages (from fiona>=1.8->geopandas) (4.11.4)
Requirement already satisfied: click~=8.0 in /opt/conda/lib/python3.7/site-
packages (from fiona>=1.8->geopandas) (8.0.4)
Collecting click-plugins>=1.0
```

Using cached click_plugins-1.1.1-py2.py3-none-any.whl (7.5 kB) Requirement already satisfied: certifi in /opt/conda/lib/python3.7/site-packages (from fiona >= 1.8 -> geopandas) (2023.7.22) Requirement already satisfied: six in /opt/conda/lib/python3.7/site-packages (from fiona>=1.8->geopandas) (1.16.0) Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/lib/python3.7/site-packages (from pandas>=0.25.0-yeopandas) (2.8.2) Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.7/sitepackages (from pandas>=0.25.0->geopandas) (2022.4) Requirement already satisfied: numpy>=1.17.3 in /opt/conda/lib/python3.7/sitepackages (from pandas>=0.25.0->geopandas) (1.21.6) Requirement already satisfied: typing-extensions>=3.6.4 in /opt/conda/lib/python3.7/site-packages (from importlibmetadata->fiona>=1.8->geopandas) (4.4.0) Requirement already satisfied: zipp>=0.5 in /opt/conda/lib/python3.7/sitepackages (from importlib-metadata->fiona>=1.8->geopandas) (3.9.0) Installing collected packages: shapely, pyproj, cligj, click-plugins, fiona, geopandas Successfully installed click-plugins-1.1.1 cligj-0.7.2 fiona-1.9.5 geopandas-0.10.2 pyproj-3.2.1 shapely-2.0.2 Note: you may need to restart the kernel to use updated packages.

[11]: pip install rtree

Requirement already satisfied: rtree in /opt/conda/lib/python3.7/site-packages (1.0.1)

Requirement already satisfied: typing-extensions>=3.7 in /opt/conda/lib/python3.7/site-packages (from rtree) (4.4.0)

Note: you may need to restart the kernel to use updated packages.

[15]: pip install pygeos

Collecting pygeos

Using cached

pygeos-0.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB) Requirement already satisfied: numpy>=1.13 in /opt/conda/lib/python3.7/site-packages (from pygeos) (1.21.6)

Installing collected packages: pygeos Successfully installed pygeos-0.14

Note: you may need to restart the kernel to use updated packages.

- [16]: # In this part, because the size of the file is too much large and I_{\square} \rightarrow encountered memory issues for spatial joining, I decided to select only 3_{\square} \rightarrow years to work on.
- [92]: df_MM_clean_2016 = df_MM_clean[df_MM_clean['YEAR'] == '2016']

```
[14]: import geopandas as gpd from shapely import wkt
```

/opt/conda/lib/python3.7/site-packages/geopandas/_compat.py:115: UserWarning: The Shapely GEOS version (3.11.2-CAPI-1.17.2) is incompatible with the GEOS version PyGEOS was compiled with (3.10.4-CAPI-1.16.2). Conversions between both will be slow.

shapely_geos_version, geos_capi_version_string

```
[93]: # Convert 'the_geom' in wards_chicago from WKT(Well Known text) to shapely_
→objects

# 'the_geom' column contains MULTIPOLYGON data in text format

df_boundaries['the_geom'] = df_boundaries['the_geom'].apply(wkt.loads)

wards_gdf = gpd.GeoDataFrame(df_boundaries, geometry='the_geom')
```

```
TypeError
                                           Traceback (most recent call last)
/tmp/ipykernel_4041/1687105298.py in <module>
      1 # Convert 'the_geom' in wards_chicago from WKT(Well Known text) to⊔
 ⇔shapely objects
      2 # 'the geom' column contains MULTIPOLYGON data in text format
---> 3 df_boundaries['the geom'] = df_boundaries['the geom'].apply(wkt.loads)
      4 wards gdf = gpd.GeoDataFrame(df boundaries, geometry='the geom')
/opt/conda/lib/python3.7/site-packages/pandas/core/series.py in apply(self, ___

→func, convert_dtype, args, **kwargs)
                dtype: float64
   4355
   4356
                11 11 11
-> 4357
                return SeriesApply(self, func, convert_dtype, args, kwargs).
 →apply()
   4358
   4359
            def _reduce(
/opt/conda/lib/python3.7/site-packages/pandas/core/apply.py in apply(self)
   1041
                    return self.apply_str()
   1042
-> 1043
                return self.apply_standard()
   1044
   1045
            def agg(self):
/opt/conda/lib/python3.7/site-packages/pandas/core/apply.py in_
 →apply standard(self)
   1099
                            values,
   1100
                            f, # type: ignore[arg-type]
                            convert=self.convert_dtype,
-> 1101
   1102
                        )
   1103
```

```
/opt/conda/lib/python3.7/site-packages/pandas/_libs/lib.pyx in pandas. libs.lib
        →map_infer()
      /opt/conda/lib/python3.7/site-packages/shapely/wkt.py in loads(data)
                  Shapely geometry object
           21
       ---> 22
                  return shapely.from_wkt(data)
           23
           24
      /opt/conda/lib/python3.7/site-packages/shapely/io.py in from wkt(geometry, __
        ⇔on_invalid, **kwargs)
                  invalid_handler = np.uint8(DecodingErrorOptions.
        281
       --> 282
                  return lib.from_wkt(geometry, invalid_handler, **kwargs)
          283
          284
      TypeError: Expected bytes or string, got MultiPolygon
[94]: | # Convert 'FROM LOCATION' and 'TO LOCATION' in df_chicago from WKT to shapely...
      →Point objects
      # These columns contain POINT data in text format
      df_MM_clean_2016['from_point'] = df_MM_clean_2016['FROM_LOCATION'].apply(wkt.
       →loads)
      df_from_gdf_2016 = gpd.GeoDataFrame(df_MM_clean_2016, geometry='from_point')
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:3:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
[95]: df_MM_clean_2016['to_point'] = df_MM_clean_2016['TO LOCATION'].apply(wkt.loads)
      df to gdf 2016 = gpd.GeoDataFrame(df MM clean 2016, geometry='to point')
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:1:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
```

docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
from ipykernel.kernelbase import Kernel

```
[96]: # Ensure the CRS for both GeoDataFrames are the same
      # This can be done by setting the CRS(Co-ordinate\ Reference\ System) of \Box
       \rightarrow df\_from\_gdf and df\_to\_gdf to match that of wards\_gdf
      df_from_gdf_2016 = df_from_gdf_2016.set_crs('EPSG:4326',__
       →inplace=True,allow_override = True)
      df_to_gdf_2016 = df_to_gdf_2016.set_crs('EPSG:4326',__
       →inplace=True,allow_override = True)
      wards_gdf = wards_gdf.set_crs('EPSG:4326', inplace=True,allow_override = True)
 []: # Perform spatial joins
       \textit{\# Join df\_from\_gdf and df\_to\_gdf with wards\_gdf to find the corresponding wards } \\
      from_joined_2016 = gpd.sjoin(df_from_gdf_2016, wards_gdf, how="left", u
       ⇔op='within')
     /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3472:
     FutureWarning: The `op` parameter is deprecated and will be removed in a future
     release. Please use the `predicate` parameter instead.
       if (await self.run_code(code, result, async_=asy)):
[34]: to_joined_2016 = gpd.sjoin(df_to_gdf_2016, wards_gdf, how="left", op='within')
     /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3472:
     FutureWarning: The `op` parameter is deprecated and will be removed in a future
     release. Please use the `predicate` parameter instead.
       if (await self.run_code(code, result, async_=asy)):
[35]: # Add the ward information back to the original df_chicago DataFrame
      df_MM_clean_2016['FROM WARD'] = from_joined_2016['Ward'] # Replace 'Ward' with_
       ⇔the actual column name in wards_qdf
      df_MM_clean_2016['TO WARD'] = to_joined_2016['Ward']
                                                                 # Replace 'Ward' with
       → the actual column name in wards qdf
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:2:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       from ipykernel.ipkernel import IPythonKernel
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:3:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

```
[36]: df_MM_clean_2016.to_csv("df_MM_clean_2016", index=False)
[30]: # Display the first few rows of the updated df_chicago to check the results
      df_MM_clean_2016.head()
[30]:
                TRIP ID
                                     START TIME
                                                               STOP TIME
                                                                          BIKE ID
      6397658
               10000000
                         06/09/2016 06:24:00 PM
                                                  06/09/2016 06:33:00 PM
                                                                                 5
      6397659
               10000001
                         06/09/2016 06:24:00 PM
                                                  06/09/2016 06:27:00 PM
                                                                              4201
               10000002
                                                  06/09/2016 06:41:00 PM
      6397660
                        06/09/2016 06:25:00 PM
                                                                              1976
                         06/09/2016 06:25:00 PM
                                                  06/09/2016 06:33:00 PM
                                                                              5354
      6397661
               10000003
      6397662
               10000005 06/09/2016 06:25:00 PM
                                                  06/09/2016 06:38:00 PM
                                                                              4365
               TRIP DURATION FROM STATION ID
                                                                FROM STATION NAME
      6397658
                         516
                                            26
                                                         McClurg Ct & Illinois St
      6397659
                         163
                                           238
                                                Ravenswood Ave & Montrose Ave (*)
      6397660
                         987
                                            91
                                                     Clinton St & Washington Blvd
                                                        Damen Ave & Charleston St
      6397661
                         518
                                           310
      6397662
                                            20
                                                     Sheffield Ave & Kingsbury St
                         813
               TO STATION ID
                                              TO STATION NAME
                                                                USER TYPE
      6397658
                          90
                                              Millennium Park Subscriber
                         234
                                     Clark St & Montrose Ave
      6397659
                                                               Subscriber
      6397660
                         289
                                        Wells St & Concord Ln Subscriber
      6397661
                         327
                                  Sheffield Ave & Webster Ave
                                                               Subscriber
      6397662
                         153
                              Southport Ave & Wellington Ave
                                                               Subscriber
              FROM LONGITUDE
                                              FROM LOCATION TO LATITUDE
      6397658
                  -87.617300
                                 POINT (-87.6173 41.89102)
                                                               41.881032
      6397659
                  -87.674365
                              POINT (-87.674365 41.961615)
                                                               41.961588
                                POINT (-87.64117 41.88338)
      6397660
                  -87.641170
                                                               41.912133
      6397661
                  -87.677855
                              POINT (-87.677855 41.920082)
                                                               41.921540
      6397662
                  -87.653106 POINT (-87.653106 41.910522)
                                                               41.935733
               TO LONGITUDE
                                               TO LOCATION
                                                            YEAR
                 -87.624084 POINT (-87.624084 41.881032)
      6397658
                                                            2016
      6397659
                 -87.666036 POINT (-87.666036 41.961588)
                                                            2016
      6397660
                 -87.634656 POINT (-87.634656 41.912133)
                                                            2016
      6397661
                 -87.653818
                              POINT (-87.653818 41.92154)
                                                            2016
      6397662
                 -87.663576 POINT (-87.663576 41.935733)
                                                            2016
                               from_point
                                                              to_point FROM WARD
      6397658 POINT (-87.61730 41.89102) POINT (-87.62408 41.88103)
                                                                             42.0
```

```
6397659 POINT (-87.67436 41.96162) POINT (-87.66604 41.96159)
                                                                            47.0
      6397660 POINT (-87.64117 41.88338) POINT (-87.63466 41.91213)
                                                                            42.0
      6397661 POINT (-87.67785 41.92008) POINT (-87.65382 41.92154)
                                                                            32.0
      6397662 POINT (-87.65311 41.91052) POINT (-87.66358 41.93573)
                                                                            27.0
              TO WARD
      6397658
                 42.0
                 47.0
      6397659
      6397660
                 2.0
      6397661
                 43.0
      6397662
                 32.0
      [5 rows x 23 columns]
[14]: df MM clean 2017 = df MM clean[df MM clean['YEAR'] == '2017']
[18]: | # Convert 'FROM LOCATION' and 'TO LOCATION' in df chicago from WKT to shapely |
      ⇔Point objects
      # These columns contain POINT data in text format
      df_MM_clean_2017['from_point'] = df_MM_clean_2017['FROM_LOCATION'].apply(wkt.
       →loads)
      df_from_gdf_2017 = gpd.GeoDataFrame(df_MM_clean_2017, geometry='from_point')
      df_MM_clean_2017['to_point'] = df_MM_clean_2017['TO_LOCATION'].apply(wkt.loads)
      df_to_gdf_2017 = gpd.GeoDataFrame(df_MM_clean_2017, geometry='to_point')
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:3:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:5:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       def init(spark_master="local"):
[19]: # Ensure the CRS for both GeoDataFrames are the same
      # This can be done by setting the CRS(Co-ordinate\ Reference\ System) of
       \hookrightarrow df_from_gdf and df_to_gdf to match that of wards_gdf
      df_from_gdf_2017 = df_from_gdf_2017.set_crs('EPSG:4326',__
       →inplace=True,allow_override = True)
```

```
df_to_gdf_2017 = df_to_gdf_2017.set_crs('EPSG:4326',__
       →inplace=True,allow_override = True)
      wards_gdf = wards_gdf.set_crs('EPSG:4326', inplace=True,allow_override = True)
[20]: # Perform spatial joins
      # Join df_from_qdf and df_to_qdf with wards_qdf to find the corresponding wards
      from_joined_2017 = gpd.sjoin(df_from_gdf_2017, wards_gdf, how="left",_
      ⇔op='within')
      to_joined_2017 = gpd.sjoin(df_to_gdf_2017, wards_gdf, how="left", op='within')
     /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3472:
     FutureWarning: The `op` parameter is deprecated and will be removed in a future
     release. Please use the `predicate` parameter instead.
       if (await self.run_code(code, result, async_=asy)):
     /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3472:
     FutureWarning: The `op` parameter is deprecated and will be removed in a future
     release. Please use the `predicate` parameter instead.
       if (await self.run_code(code, result, async_=asy)):
[21]: # Add the ward information back to the original df_chicago DataFrame
      df_MM_clean_2017['FROM WARD'] = from_joined_2017['Ward'] # Replace 'Ward' with_
      →the actual column name in wards_qdf
      df_MM_clean_2017['TO WARD'] = to_joined_2017['Ward'] # Replace 'Ward' with_
       ⇔the actual column name in wards qdf
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:2:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       from ipykernel.ipkernel import IPythonKernel
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:3:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
```

```
[22]: df_MM_clean_2017.to_csv("df_MM_clean_2017", index=False)
```

docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

[24]: # Display the first few rows of the updated df_chicago to check the results df_MM_clean_2017.head()

```
[24]:
               TRIP ID
                                    START TIME
                                                              STOP TIME BIKE ID \
      9992991 12979230 01/01/2017 12:00:00 AM 01/01/2017 12:06:00 AM
                                                                            2511
      9992992 12979231 01/01/2017 12:02:00 AM 01/01/2017 12:08:00 AM
                                                                            3660
      9992993 12979232 01/01/2017 12:06:00 AM
                                                01/01/2017 12:18:00 AM
                                                                            4992
     9992994 12979233 01/01/2017 12:07:00 AM 01/01/2017 12:12:00 AM
                                                                            5637
     9992995 12979234 01/01/2017 12:07:00 AM 01/01/2017 12:20:00 AM
                                                                            2209
               TRIP DURATION FROM STATION ID
                                                                  FROM STATION NAME \
      9992991
                         356
                                                               Canal St & Taylor St
                                          414
      9992992
                         327
                                           28
                                                         Larrabee St & Menomonee St
                         745
                                          620
                                               Orleans St & Chestnut St (NEXT Apts)
      9992993
      9992994
                         323
                                          287
                                                            Franklin St & Monroe St
                         776
                                          300
      9992995
                                                               Broadway & Barry Ave
               TO STATION ID
                                           TO STATION NAME
                                                             USER TYPE
      9992991
                         191
                                  Canal St & Monroe St (*)
                                                             Customer
      9992992
                          20
                             Sheffield Ave & Kingsbury St
                                                            Subscriber ...
                                Ashland Ave & Blackhawk St
     9992993
                         333
                                                            Subscriber ...
      9992994
                         68
                                    Clinton St & Tilden St
                                                            Subscriber
      9992995
                         118
                                   Sedgwick St & North Ave
                                                            Subscriber ...
             FROM LONGITUDE
                                                           TO LATITUDE
                                             FROM LOCATION
                                                            41.880884
      9992991
                 -87.639474 POINT (-87.639474 41.870257)
      9992992
                  -87.643320
                               POINT (-87.64332 41.91468)
                                                             41.910522
      9992993
                 -87.637536 POINT (-87.637536 41.898203)
                                                            41.907066
                 -87.635185
                             POINT (-87.635185 41.880317)
      9992994
                                                             41.875885
      9992995
                 -87.644095 POINT (-87.644095 41.937725)
                                                             41.911386
               TO LONGITUDE
                                              TO LOCATION
                                                         YEAR \
      9992991
                -87.639525 POINT (-87.639525 41.880884)
                                                           2017
      9992992
                -87.653106 POINT (-87.653106 41.910522)
                                                          2017
                -87.667252 POINT (-87.667252 41.907066)
      9992993
                                                           2017
                -87.640795 POINT (-87.640795 41.875885)
      9992994
                                                           2017
      9992995
                -87.638677 POINT (-87.638677 41.911386)
                                                           2017
                               from_point
                                                             to point FROM WARD
      9992991 POINT (-87.63947 41.87026) POINT (-87.63953 41.88088)
                                                                           28.0
     9992992 POINT (-87.64332 41.91468) POINT (-87.65311 41.91052)
                                                                           43.0
      9992993 POINT (-87.63754 41.89820) POINT (-87.66725 41.90707)
                                                                            2.0
      9992994 POINT (-87.63519 41.88032) POINT (-87.64079 41.87588)
                                                                           42.0
      9992995 POINT (-87.64409 41.93773) POINT (-87.63868 41.91139)
                                                                           44.0
              TO WARD
                42.0
      9992991
                27.0
      9992992
      9992993
                 1.0
      9992994
                28.0
```

```
9992995 2.0
```

[5 rows x 23 columns]

```
[23]: df_MM_clean_2018 = df_MM_clean[df_MM_clean['YEAR'] == '2018']
[24]: | # Convert 'FROM LOCATION' and 'TO LOCATION' in df chicago from WKT to shapely |
      ⇔Point objects
      # These columns contain POINT data in text format
      df_MM_clean_2018['from_point'] = df_MM_clean_2018['FROM_LOCATION'].apply(wkt.
       ⊸loads)
      df from gdf 2018 = gpd.GeoDataFrame(df MM clean 2018, geometry='from point')
      df_MM_clean_2018['to_point'] = df_MM_clean_2018['TO LOCATION'].apply(wkt.loads)
      df_to_gdf_2018 = gpd.GeoDataFrame(df_MM_clean_2018, geometry='to_point')
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:3:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
     /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:5:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       def init(spark master="local"):
[25]: # Ensure the CRS for both GeoDataFrames are the same
      # This can be done by setting the CRS(Co-ordinate Reference System) of L
       \rightarrow df\_from\_gdf and df\_to\_gdf to match that of wards\_gdf
      df_from_gdf_2018 = df_from_gdf_2018.set_crs('EPSG:4326',__
       ⇔inplace=True,allow_override = True)
      df to gdf 2018 = df to gdf 2018.set crs('EPSG:4326',11
       →inplace=True,allow_override = True)
      wards_gdf = wards_gdf.set_crs('EPSG:4326', inplace=True,allow_override = True)
[26]: # Perform spatial joins
      # Join df_from_gdf and df_to_gdf with wards_gdf to find the corresponding wards
      from_joined_2018 = gpd.sjoin(df_from_gdf_2018, wards_gdf, how="left",_
       ⇔op='within')
      to_joined_2018 = gpd.sjoin(df_to_gdf_2018, wards_gdf, how="left", op='within')
```

/opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3472: FutureWarning: The `op` parameter is deprecated and will be removed in a future release. Please use the `predicate` parameter instead. if (await self.run_code(code, result, async_=asy)): /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3472: FutureWarning: The `op` parameter is deprecated and will be removed in a future release. Please use the `predicate` parameter instead. if (await self.run code(code, result, async =asy)): [27]: # Add the ward information back to the original df_chicago DataFrame df_MM_clean_2018['FROM_WARD'] = from_joined_2018['Ward'] # Replace 'Ward' with_ ⇔the actual column name in wards_gdf df MM clean 2018['TO WARD'] = to joined 2018['Ward'] # Replace 'Ward' with →the actual column name in wards_gdf /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy from ipykernel.ipkernel import IPythonKernel /usr/local/share/jupyter/kernels/pyspark_yarn/bdkernelyarn.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy [28]: df_MM_clean_2018.to_csv("df_MM_clean_2018", index=False) [30]: # Display the first few rows of the updated df_chicago to check the results df_MM_clean_2018.head() [30]: TRIP ID START TIME STOP TIME BIKE ID \ 11544487 18511623 05/21/2018 05:07:29 PM 05/21/2018 05:11:48 PM 153 11546857 18002370 04/01/2018 02:24:43 PM 04/01/2018 02:38:54 PM 3101 11546858 18002371 04/01/2018 02:25:30 PM 04/01/2018 02:32:41 PM 5226

106

18002373 04/01/2018 02:25:58 PM 04/01/2018 02:42:23 PM

04/01/2018 02:42:22 PM

51 Clark St & Randolph St

State St & Pearson St

FROM STATION NAME \

4861

4706

18002372 04/01/2018 02:25:51 PM

TRIP DURATION FROM STATION ID

259

851

11546859

11546860

11544487 11546857

```
11546858
                    431
                                     426
                                              Ellis Ave & 60th St
                                            Dearborn St & Erie St
                    991
                                      110
11546859
11546860
                    985
                                      214
                                            Damen Ave & Grand Ave
          TO STATION ID
                                      TO STATION NAME
                                                         USER TYPE
                         Clinton St & Washington Blvd
                     91
                                                        Subscriber
11544487
                                Canal St & Madison St
                    174
                                                        Subscriber
11546857
11546858
                    322
                                Kimbark Ave & 53rd St
                                                        Subscriber
11546859
                            Franklin St & Chicago Ave
                     31
                                                        Subscriber
                                 State St & Kinzie St
11546860
                     47
                                                        Subscriber
         FROM LONGITUDE
                                                  FROM LOCATION
                                                                 TO LATITUDE
11544487
             -87.631890
                             POINT (-87.63188991 41.884576228)
                                                                   41.883380
11546857
             -87.628722
                                  POINT (-87.628722 41.897448)
                                                                   41.882091
11546858
             -87.601073 POINT (-87.6010727606 41.78509714636)
                                                                   41.799568
11546859
             -87.629318
                                  POINT (-87.629318 41.893992)
                                                                   41.896776
11546860
             -87.676860
                                    POINT (-87.67686 41.89122)
                                                                   41.889187
          TO LONGITUDE
                                          TO LOCATION
                                                       YEAR
            -87.641170
                          POINT (-87.64117 41.88338)
                                                       2018
11544487
11546857
            -87.639833 POINT (-87.639833 41.882091)
                                                       2018
                        POINT (-87.594747 41.799568)
11546858
            -87.594747
                                                       2018
            -87.635633 POINT (-87.635633 41.896776)
11546859
                                                       2018
            -87.627754 POINT (-87.627754 41.889187)
11546860
                                                       2018
                          from_point
                                                         to_point FROM WARD
                                                                        42.0
11544487 POINT (-87.63189 41.88458)
                                      POINT (-87.64117 41.88338)
         POINT (-87.62872 41.89745)
                                      POINT (-87.63983 41.88209)
                                                                       42.0
11546857
11546858 POINT (-87.60107 41.78510)
                                      POINT (-87.59475 41.79957)
                                                                        5.0
11546859 POINT (-87.62932 41.89399)
                                      POINT (-87.63563 41.89678)
                                                                       42.0
11546860 POINT (-87.67686 41.89122)
                                      POINT (-87.62775 41.88919)
                                                                       36.0
         TO WARD
11544487
            42.0
            42.0
11546857
11546858
             4.0
            27.0
11546859
            42.0
11546860
[5 rows x 23 columns]
```

• Compute then the O-D matrix, i.e., the number of bookings starting in ward i and ending in ward j.

```
[42]: # OD Matrix 2016 calculation using pivot table matrix_2016 = (
```

[42]:	TO WARD FROM WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	\
	1.0	42043	4799	36	470	4	0	0	0	11	4	
	2.0	5666	29050	1399	3143	11	0	0	0	62	0	
	3.0	46	1328	5832	10919	1165	2	0	1	2519	29	
	4.0	482	3534	12072	26365	9868	0	4	2	2880	24	
	5.0	3	7	1107	9704	32426	48	126	212	32	0	
	6.0	0	0	3	1	46	133	0	61	0	0	
	7.0	0	0	0	3	114	3	356	29	0	0	
	8.0	0	0	1	1	207	68	36	147	0	0	
	11.0	34	45	2365	2742	19	0	0	0	11505	431	
	12.0	2	1	51	38	0	0	0	0	414	199	
	15.0	0	0	1	17	0	0	0	0	67	45	
	16.0	1	0	3	1	3	5	0	0	4	2	
	17.0	1	0	0	0	0	0	0	0	1	0	
	20.0	0	0	617	342	1086	37	2	17	196	7	
	22.0	4	0	0	0	0	0	0	0	3	4	
	24.0	45	0	1	2	0	0	0	0	0	6	
	25.0	560	104	906	1067	16	0	0	0	1637	252	
	26.0	6498	357	1	7	0	0	0	0	3	2	
	27.0	15413	20016	457	2271	2	0	0	0	408	145	
	28.0	777	556	907	2774	1	0	0	0	1470	37	
	29.0	1	0	1	0	0	0	0	0	0	0	
	30.0	232	2	0	1	0	0	0	0	0	0	
	32.0	16348	3622	6	101	28	0	0	0	5	3	
	33.0	460	56	0	0	0	0	0	0	0	0	
	34.0	8598	21895	12189	21173	32	0	0	0	2331	86	
	35.0	5596	102	0	8	0	0	0	0	1	1	
	36.0	6557	822	9	43	0	0	0	0	11	5	
	37.0	0	0	0	0	0	0	0	0	0	0	
	39.0	92	5	0	0	0	0	0	0	0	0	
	40.0	86	16	0	7	0	0	0	0	0	1	
	42.0	17588	63031	9717	26721	114	1	0	0	1426	4	
	43.0	5807	30248	134	1050	9	0	0	0	11	0	
	44.0	1821	6400	8	95	3	0	0	0	2	0	
	45.0	114	3	0	0	0	0	0	0	0	0	
	46.0	244	2562	9	26	0	0	0	0	0	0	
	47.0	1663	892	0	34	0	0	0	0	0	0	

48.0		39	230	2	7	1	0	0	0	0	0
49.0		2	12	1	2	0	0	0	0	0	0
50.0		2	0	0	0	0	0	0	0	0	0
TO WARD FROM WARD		40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	\
1.0		45	16561	5696	1931	103	332	1834	41	4	
2.0		21	58381	34166	7603	2	3214	832	395	20	
3.0		0	9427	199	3	1	8	3	2	0	
4.0		9	27605	1154	125	2	43	24	8	1	
5.0	•••	0	132	3	2	0	2	0	2	0	
6.0	•••	0	0	0	0	0	0	0	0	0	
7.0	•••	0	0	0	0	0	0	0	0	0	
8.0	•••	0	0	0	0	0	0	0	0	0	
11.0		0	1589	23	5	0	2	1	1	0	
12.0		0	2	1	0	0	0	0	0	0	
15.0	•••	0	1	0	0	0	0	0	0	0	
16.0	•••	0	0	0	0	0	0	0	0	0	
17.0		0	0	0	0	0	0	0	0	0	
20.0		0	1	0	0	0	0	0	0	0	
22.0		0	1	0	0	0	0	0	0	0	
24.0		0	5	0	0	9	0	2	0	0	
25.0	•••	2	3185	119	18	0	4	0	14	0	
26.0	•••	2	1302	304	51	6	15	82	4	0	
27.0	•••	14	62672	16815	4424	3	1151	802	31	7	
28.0	•••	0	7875	341	56	1	8	7	3	3	
29.0	•••	0	1	0	0	0	0	0	0	0	
30.0	•••	12	3	2	54	113	14	107	0	0	
32.0	•••	343	5527	25166	15397	122	2545	9112	297	14	
33.0	•••	577	10	165	275	230	422	1803	124	7	
34.0	•••	8	123180	9069	1435	0	233	171	18	13	
35.0	•••	135	332	708	709	377	138	1025	56	4	
36.0	•••	6	3573	369	90	3	26	109	2	0	
37.0	•••	0	0	0	0	0	0	0	0	0	
39.0	•••	324	0	7	18	179	116	463		14	
40.0	•••	3329	33	284	493	64	840	6624		1807	
42.0	•••	27	234102	42308	7507	6	2077	815	425	44	
43.0	•••	240	34691	99908	27845	8	12764	5195		56	
44.0	•••	502	5601	24680	37549	56	20203	10325	2724	145	
45.0	•••	36	0	19	72	702	73	317	7	0	
46.0	•••	880	1524	12065	20376	63	44674	11799	6453	397	
47.0	•••	7206	382	4469	9372	253	11695	40315		467	
48.0	•••	2935	179	2826	2556	4	5665	5096		2308	
49.0	•••	1871	26	58	138	0	366	474		8675	
50.0	•••	181	13	1	4	0	13	94	93	170	

TO WARD 50.0

```
FROM WARD
1.0
               1
2.0
               0
3.0
               0
4.0
               2
5.0
               0
6.0
               0
7.0
               0
8.0
               0
11.0
               0
12.0
               0
15.0
               0
16.0
               0
17.0
               0
20.0
               0
22.0
               0
24.0
               0
25.0
               0
26.0
               0
27.0
28.0
               0
29.0
               0
30.0
               0
32.0
               5
33.0
              21
34.0
               6
35.0
               2
36.0
               0
37.0
               0
39.0
              19
40.0
             189
42.0
              12
43.0
               1
44.0
               4
45.0
               0
46.0
              12
47.0
              94
48.0
             137
49.0
             187
50.0
              21
```

```
[17]: # OD Matrix 2017 calculation using pivot table
matrix_2017 = (
    df_MM_clean_2017.assign(count=1)
    .pivot_table(index='FROM WARD', columns='TO WARD',
```

```
values="count", aggfunc="count")
.fillna(0)
.astype(int)
).sort_values('FROM WARD')
matrix_2017
```

[17]:	TO WARD FROM WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	\
	1.0	43441	5944	48	495	10	0	0	0	23	8	
	2.0	6570	55925	1693	8216	151	0	0	0	128	3	
	3.0	57	1535	8353	19513	1729	4	0	3	3523	68	
	4.0	547	8826	21660	80686	14984	6	9	1	5316	20	
	5.0	12	123	1632	15477	41837	27	167	216	82	4	
	6.0	0	0	4	3	28	881	10	220	1	0	
	7.0	0	0	1	8	158	2	970	74	0	0	
	8.0	0	0	2	5	221	220	70	383	0	0	
	11.0	39	115	2918	4898	66	2	0	0	12175	485	
	12.0	1	1	140	28	2	0	0	0	458	480	
	15.0	2	0	14	17	2	0	0	0	202	74	
	16.0	7	0	21	5	10	21	1	0	23	19	
	17.0	0	0	0	0	0	0	0	0	0	0	
	20.0	0	5	782	506	1751	47	2	27	264	33	
	22.0	0	0	0	6	0	0	0	0	1	6	
	24.0	7	1	2	6	0	0	0	0	9	16	
	25.0	568	289	1286	1626	35	0	0	0	1843	388	
	26.0	7367	359	3	24	0	0	0	0	3	5	
	27.0	18166	25614	444	2634	38	0	0	0	328	129	
	28.0	690	765	1394	4419	8	0	0	0	1418	43	
	29.0	1	1	0	1	0	0	0	0	0	0	
	30.0	230	5	0	1	0	0	0	0	0	0	
	32.0	18910	4774	8	216	29	0	0	0	7	2	
	33.0	476	49	0	2	0	0	0	0	0	0	
	34.0	10811	29154	14630	32089	172	2	1	0	2960	117	
	35.0	6198	213	3	11	1	0	0	0	2	1	
	36.0	8051	1071	15	89	0	0	0	2	13	2	
	37.0	2	0	0	0	0	0	0	0	0	0	
	39.0	103	8	0	0	1	0	0	0	1	0	
	40.0	126	51	1	16	0	0	0	0	0	0	
	42.0	20908	108470	11556	70192	1047	5	5	2	2010	21	
	43.0	7680	49991	207	2540	65	0	0	0	33	2	
	44.0	2254	9500	33	290	8	0	0	0	6	1	
	45.0	213	17	1	1	0	0	0	0	0	0	
	46.0	324	3777	14	153	4	0	0	0	5	0	
	47.0	1724	968	2	63	0	0	0	0	5	0	
	48.0	94	663	6	63	6	0	0	0	4	0	
	49.0	91	69	0	8	1	0	0	0	1	0	

50.0		3	3	0	1	1	0	0	0	0 0)
TO WARD FROM WARD		40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	\
1.0	•••	81	19523	7921	2268	206	405	1989	89	110	
2.0		42	98255	54460	11373	15	4576	988	762	95	
3.0	•••	0	11604	302	50	0	15	5	6	0	
4.0		8	77324	3330	438	2	210	70	78	11	
5.0	•••	0	1075	61	17	0	7	0	4	0	
6.0	•••	0	3	0	0	0	0	0	0	0	
7.0	•••	0	1	1	0	0	0	0	0	0	
8.0	•••	0	1	0	0	0	0	0	0	0	
11.0	•••	0	1975	40	7	0	3	2	2	0	
12.0	•••	0	9	0	0	0	0	0	0	0	
15.0	•••	0	0	0	0	0	0	0	0	0	
16.0	•••	0	0	0	0	0	0	0	0	0	
17.0	•••	0	0	0	0	0	0	0	0	0	
20.0	•••	0	14	5	0	0	0	0	0	0	
22.0	•••	0	2	0	0	0	0	0	0	0	
24.0	•••	0	14	6	1	0	0	0	0	0	
25.0	•••	1	3363	104	39	0	8	5	2	0	
26.0	•••	21	1167	543	92	17	15	238	5	0	
27.0	•••	18	69599	20149	4852	7	1034	845	81	16	
28.0	•••	1	9782	327	133	3	16	10	1	0	
29.0	•••	0	1	1	0	2	0	0	0	1	
30.0	•••	6	3	22	54	310	8	88	2	0	
32.0	•••	392	6445	29296	16283	253	2752	9532	328	69	
33.0	•••	655	20	212	355	440	539	2003	143	11	
34.0	•••	17	152442	11483	2147	11	354	203	70	19	
35.0	•••	203	450	1058	756	475	167	1071	49	7	
36.0	•••	5	3527	587	209	6	45	199	11	1	
37.0	•••	0	0	0	0	1	0	0	0	0	
39.0	•••	362	3	16	28	187	67	554	175	24	
40.0	•••	4156	60	323	685	88	1024	7172	3376	1885	
42.0	•••	62	371506	77950	12228	21	3951	991	972	106	
43.0	•••	263	66598	141220	39999	19	18595	5670	4707	180	
44.0	•••	739	10069	37410	48755	85	24818	10522	4701	397	
45.0	•••	57	9	21	93	1166	86	406	31	4	
46.0	•••	994	3293	17842	24189	84	48647	11836	8914	666	
47.0	•••	7668	664	5251	10085	436	11738	41035	6310	626	
48.0	•••	3566	793	4320	4605	37	7642	5508	15243	3297	
49.0	•••	1987	106	165	198	2	602	595	3130	15682	
50.0	•••	281	4	3	12	1	17	94	339	191	

TO WARD 50.0 FROM WARD 1.0 1

```
2.0
               2
3.0
               0
4.0
               1
5.0
               0
6.0
               0
7.0
               0
8.0
               0
11.0
               0
12.0
               0
15.0
               0
16.0
               0
17.0
               0
20.0
               0
22.0
               0
24.0
               0
25.0
               0
26.0
               2
27.0
               3
28.0
               0
29.0
30.0
               1
32.0
               2
33.0
               9
34.0
               1
35.0
               3
36.0
               0
37.0
               0
39.0
              20
40.0
             299
42.0
              12
43.0
              10
44.0
              18
45.0
               0
46.0
              14
47.0
             105
48.0
             404
49.0
             231
50.0
              64
```

```
.astype(int)
).sort_values('FROM WARD')
matrix_2018
```

[18]: TO WARD FROM WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	\
1.0	42245	5377	148	699	37	0	0	2	123	137	
2.0	5974	50698	1541	7276	457	2	5	1	251	10	
3.0	167	1637	8206	15103	1756	11	0	7	3276	92	
4.0	671	7861	17104	52161	14150	16	21	31	4240	47	
5.0	25	283	1731	14741	50077	94	233	179	173	4	
6.0	0	0	7	6	96	906	18	221	0	0	
7.0	0	6	1	19	193	9	1176	53	0	0	
8.0	0	0	4	33	200	218	78	335	1	0	
11.0	115	259	2858	3930	155	1	0	1	11983	420	
12.0	36	3	152	66	5	0	0	0	385	533	
15.0	1	0	11	32	17	2	0	0	167	226	
16.0	1	1	13	7	9	51	0	13	19	10	
17.0	0	0	0	1	0	10	0	0	0	0	
20.0	2	7	516	482	1835	102	10	62	155	26	
22.0	2	19	1	34	0	0	0	0	5	0	
24.0	17	8	3	24	1	1	0	1	2	13	
25.0	637	461	984	1347	94	2	0	2	1730	380	
26.0	6368	374	2	37	3	0	0	0	12	1	
27.0	20261	24788	776	2914	80	1	0	0	528	175	
28.0	1067	879	1510	3587	42	3	1	0	1302	101	
29.0	10	6	0	3	0	0	0	0	1	0	
30.0	164	23	0	1	1	0	0	0	0	0	
32.0	17092	5131	35	271	16	0	0	0	17	2	
33.0	515	73	0	7	0	0	0	0	0	0	
34.0	11486	25822	15017	29069	418	16	0	5	3003	148	
35.0	5351	329	5	52	3	0	0	0	8	1	
36.0	6793	979	22	224	4	0	0	0	40	3	
37.0	6	0	0	0	0	0	0	0	0	1	
39.0	40	30	0	2	0	0	0	0	0	0	
40.0	140	92	5	15	0	0	0	0	1	0	
42.0	22568				2161	8	12	10	2367	47	
43.0	7586	39065	445	3688	228	0	0	0	126	5	
44.0	2674	9276	85	846	64	1	0	0	43	1	
45.0	138	20	0	7	0	0	0	0	0	0	
46.0	723	4416	34	368	28	0	2	0	12	1	
47.0	1508	1277	4	109	6	0	0	0	1	0	
48.0	157	1184	15	207	30	0	0	0	7	0	
49.0	78	126	7	26	5	0	0	0	4	0	
50.0	0	8	0	0	1	0	0	0	0	0	

TO WARD		40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	\
FROM WARD	•••										
1.0	•••	166	20375	7525	2511	187	751	1715	143	97	
2.0	•••	131	83062	42812	10784	11	5531	1514	1182	177	
3.0	•••	4	12094	667	111	1	59	7	23	4	
4.0	•••	14	57861	4433	921	7	472	130	236	27	
5.0	•••	4	2565	196	41	0	29	3	25	9	
6.0	•••	0	7	0	0	0	0	0	0	0	
7.0	•••	0	10	2	0	0	0	0	0	0	
8.0	•••	0	6	1	1	0	0	0	0	0	
11.0	•••	0	2279	135	39	0	7	3	12	0	
12.0	•••	0	35	2	0	0	0	0	0	0	
15.0		0	1	0	0	0	0	0	0	0	
16.0	•••	0	8	0	0	0	0	0	0	0	
17.0	•••	0	0	0	0	0	0	0	0	0	
20.0	•••	0	43	3	0	0	0	0	2	0	
22.0	•••	0	12	1	0	0	0	0	0	0	
24.0		0	55	3	1	0	0	1	0	0	
25.0		2	3584	230	48	0	30	17	9	1	
26.0	•••	15	1363	629	204	13	53	126	20	0	
27.0		75	76685	19879	5316	36	1402	1277	227	31	
28.0	•••	5	9288	411	94	12	34	27	12	2	
29.0	•••	0	10	3	0	3	0	0	0	0	
30.0	•••	12	23	21	85	510	22	61	9	0	
32.0	•••	425	8394	28219	15832	142	3120	8691	480	90	
33.0	•••	473	121	216	373	340	479	1818	189	35	
34.0	•••	46	144664	14344	3480	32	1090	615	235	63	
35.0	•••	154	1129	1056	823	529	255	1132	106	12	
36.0	•••	16	3869	603	212	13	63	186	8	2	
37.0	•••	0	0	1	0	1	0	0	0	0	
39.0	•••	280	21	34	56	184	137	635	155	24	
40.0	•••	3509	230	506	725	122	1008	6846	3294	1915	
42.0	•••	171		65682	16282	59	7802	2337	2079	305	
43.0			57386		34299				3777		
44.0	•••	770		31623			22656		3523	462	
45.0	•••	130	32		90	1387		420	72	1	
46.0	•••	1137	6441	12972		110		10764	7625	725	
47.0		7579	1797		9259	391		38031	5620	522	
48.0		3301	1727	3562	3252	86	6629	5012	15465	2513	
49.0		2107	219	484	330	5	524	535	2261	15411	
50.0	•••	139	5	29	16	11	23	83	193	330	
00.0	•••	100	9	20	10	11	20	00	100	000	

TO WARD 50.0 FROM WARD 1.0 4 2.0 4 3.0 0

```
4.0
                2
5.0
                0
6.0
                0
7.0
                0
8.0
                0
11.0
                0
12.0
                0
15.0
                0
16.0
                0
17.0
                0
20.0
                0
22.0
                0
24.0
                0
25.0
                0
26.0
                1
27.0
               27
28.0
                0
29.0
                0
30.0
                2
                7
32.0
33.0
               11
34.0
                2
35.0
               10
36.0
                0
37.0
                0
39.0
              14
40.0
              143
42.0
                9
43.0
              22
44.0
               16
45.0
              13
46.0
              23
47.0
              110
48.0
              235
49.0
              284
50.0
              76
```

```
[19]: # Saving OD Matrices
matrix_2016.to_csv("matrix_2016", index=False)
matrix_2017.to_csv("matrix_2017", index=False)
matrix_2018.to_csv("matrix_2018", index=False)
```

• Prepare OD matrices for different years and different age groups (3 OD matrices for each age-group of 3 consecutive years). Are there any periodicity or trends noticed? Is there a

difference between the OD matrices for different age groups?

```
[2]: import pandas as pd
[3]: # Using saved dataframes with "from wards" and "to wards" to avoid kernel,
      \hookrightarrow disconnecting.
     df_MM_clean_2016 = pd.read_csv("df_MM_clean_2016", on_bad_lines = 'warn', __
      →sep=',')
     df_MM_clean_2017 = pd.read_csv("df_MM_clean_2017", on_bad_lines = 'warn', u
      ⇔sep=',')
     df_MM_clean_2018 = pd.read_csv("df_MM_clean_2018", on_bad_lines = 'warn', __
      ⇔sep=',')
[4]: # Drop null values
     df_MM_clean_2016 = df_MM_clean_2016.dropna(subset=['BIRTH YEAR'])
[5]: # Convert BIRTH YEAR to integer
     df_MM_clean_2016['BIRTH YEAR'] = df_MM_clean_2016['BIRTH YEAR'].astype('int')
[6]: # Create age groups based on the agr distribution of users
     df_MM_clean_2016['age'] = df_MM_clean_2016['YEAR'] - df_MM_clean_2016['BIRTH_U
      ⇔YEAR']
[7]: # Define age groups
     age_bins = [0, 18, 30, 40, 50, 60, float('inf')] # Define age bins/ranges
     age_labels = ['0-18', '19-30', '31-40', '41-50', '51-60', '61+'] # Define_
      ⇔corresponding labels
[8]: # Create 'age group' column using pd.cut
     df_MM_clean_2016['age group'] = pd.cut(df_MM_clean_2016['age'], bins=age_bins,__
      ⇔labels=age_labels, right=False)
[9]: age_group_under_18_2016 = df_MM_clean_2016[df_MM_clean_2016['age group'] ==_
      - 18'−18']
     # OD Matrix
     matrix_age_under_18_2016 = (
         age_group_under_18_2016.assign(count=1)
         .pivot_table(index='FROM WARD', columns='TO WARD',
                      values="count", aggfunc="count")
         .fillna(0)
         .astype(int)
     ).sort values('FROM WARD')
     matrix_age_under_18_2016
[9]: TO WARD
                1.0
                      2.0 3.0 4.0
                                        5.0
                                              7.0
                                                    8.0
                                                          11.0 12.0 20.0 ... \
    FROM WARD
```

1 0	4	^	^	^	^	0	0	0	0	^	
1.0	1	0	0	0	0	0	0	0	0	0	•••
2.0	3	22	0	0	0	0	0	0	0	0	
											•••
3.0	0	0	4	4	3	0	0	4	0	0	•••
							^				
4.0	0	0	0	43	24	1	0	6	0	1	•••
5.0	0	0	2	8	57	2	2	0	0	0	
5.0	U	U		O		2	2	U	U	U	•••
7.0	0	0	0	0	5	0	1	0	0	0	•••
8.0	0	0	0	0	3	0	0	0	0	0	•••
	_		40			0	^	474	0		
11.0	0	0	12	3	0	0	0	171	2	1	•••
12.0	0	0	0	0	0	0	0	3	4	0	
							U				•••
20.0	0	0	0	0	0	0	0	0	0	2	•••
24.0	0	0	0	0	0	0	0	0	0	0	•••
25.0	0	0	0	3	0	0	0	3	0	0	
	U						U		U	U	•••
26.0	0	0	0	0	0	0	0	0	0	0	•••
27.0	4	9	0	0	0	0	0	2	0	0	•••
00 0	^	^	^	4	^	0	0	4	0	^	
28.0	0	0	0	1	0	0	0	4	0	0	•••
32.0	1	6	0	0	0	0	0	0	0	0	•••
											•••
33.0	0	0	0	0	0	0	0	0	0	0	•••
34.0	0	3	0	38	0	0	0	12	0	0	•••
35.0	0	0	0	0	0	0	0	0	0	0	
		U	U	U	U	U	U	U	U	U	•••
36.0	18	0	0	0	0	0	0	0	0	0	•••
											•••
39.0	0	0	0	0	0	0	0	0	0	0	•••
10 0	^	^	^	^	^	0	0	0	0	^	
40.0	0	0	0	0	0	0	0	0	0	0	•••
42.0	0	30	0	26	0	0	0	0	0	0	
											•••
43.0	4	62	0	1	0	0	0	0	0	0	•••
44.0	1	3	0	0	0	0	0	0	0	0	•••
45.0	0	0	0	0	0	0	0	0	0	0	•••
										U	•••
46.0	0	0	0	0	0	0	0	0	0	0	•••
47.0	1	0	0	0	0	0	0	0	0	0	•••
48.0	0	0	0	0	0	0	0	0	0	0	
40.0	U	U	U	U	U	U	U	U	U	U	•••
49.0	0	0	0	0	0	0	0	0	0	0	•••
10.0	ŭ	ŭ	ŭ	Ŭ	Ŭ	Ū	Ŭ	Ū	Ŭ	Ū	•••
TO WARD	39.0	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	
IU WARD	39.0	40.0	42.0	43.0	44.0	45.0	40.0	47.0	40.0	49.0	
FROM WARD											
	_	_		_	_	_	_	_	_	_	
1.0	0	0	1	3	0	0	0	1	0	0	
2.0	0	0	31	65	1	0	1	2	0	0	
3.0	0	0	2	0	0	0	0	0	0	0	
4.0	0	0	29	1	0	0	0	0	0	0	
5.0	0	0	0	0	0	0	0	0	0	0	
7.0	\wedge	\wedge		\wedge	\wedge	0	^	0	^	^	
1.0	0	0	0	0	0	U	0	U	0	0	
8.0	0	0	0	0	0	0	0	0	0	0	
11.0	0	0	0	0	0	0	0	0	0	0	
12.0	0	0	0	0	0	0	0	0	0	0	
20.0	0	0	0	0	0	0	0	0	0	0	
24.0	0	0	0	0	0	0	0	0	0	0	
25.0	0	0	1	0	0	0	0	0	0	0	
26.0	0	0	0	0	0	0	0	0	0	0	
20.0	U	U	U		U	U	U	U	U	U	
27.0	0	0	7	13	0	0	0	1	0	0	
21.0	U	V	'	10	U	J	U	_	U	v	

```
28.0
                                                    0
                                                                   0
                0
                        0
                               2
                                      0
                                             0
                                                            0
                                                                          0
                                                                                 0
32.0
                0
                        0
                               2
                                     31
                                            21
                                                    0
                                                            1
                                                                  70
                                                                          0
                                                                                 0
33.0
                               0
                                      0
                                                                                 0
                 1
                        0
                                             0
                                                   15
                                                            1
                                                                   1
                                                                          0
                        0
                                                                   0
                                                                          0
34.0
                0
                              22
                                      0
                                             0
                                                    0
                                                            0
                                                                                 0
35.0
                0
                        0
                               0
                                      0
                                             0
                                                    1
                                                            0
                                                                   2
                                                                          0
                                                                                 0
36.0
                0
                        0
                               0
                                      0
                                             0
                                                    0
                                                            0
                                                                   0
                                                                          0
                                                                                 0
39.0
                        0
                               0
                                                            0
                                                                          0
                 1
                                      0
                                             0
                                                    0
                                                                   1
                                                                                 0
40.0
                0
                        0
                               0
                                      0
                                             0
                                                    1
                                                            0
                                                                   0
                                                                          0
                                                                                 0
42.0
                0
                        0
                                     29
                                             1
                                                    0
                                                            0
                                                                   0
                                                                          0
                                                                                 0
                              56
43.0
                0
                        0
                              32
                                     93
                                            28
                                                    0
                                                           14
                                                                   5
                                                                          1
                                                                                 0
44.0
                        0
                               4
                                            63
                                                            5
                                                                          0
                0
                                     18
                                                    0
                                                                  81
                                                                                 0
45.0
                 1
                        1
                               0
                                      0
                                             0
                                                    2
                                                            0
                                                                   3
                                                                          0
                                                                                 0
46.0
                                                            7
                0
                        0
                               0
                                     14
                                             1
                                                    0
                                                                  11
                                                                          0
                                                                                 0
47.0
                0
                        2
                               0
                                      7
                                           170
                                                    5
                                                            9
                                                                  49
                                                                          0
                                                                                 0
48.0
                0
                        0
                               0
                                      2
                                             0
                                                    0
                                                            1
                                                                   0
                                                                          0
                                                                                 0
49.0
                0
                        0
                               0
                                      0
                                             0
                                                    0
                                                            0
                                                                   0
                                                                          0
                                                                                 1
```

It shows the OD matrix of under-18 age group users in 2016

[10]: TO WARD FROM WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	\
1.0	20052	2388	7	163	1	0	0	0	7	2	
2.0	2913	11535	309	962	4	0	0	0	21	0	
3.0	14	351	1883	5250	321	0	0	1	1324	9	
4.0	122	1079	5768	10836	4338	0	1	0	1242	20	
5.0	1	4	390	4367	16485	6	51	46	4	0	
6.0	0	0	0	1	7	31	0	18	0	0	
7.0	0	0	0	0	50	3	55	9	0	0	
8.0	0	0	1	0	40	14	12	18	0	0	
11.0	13	13	1291	1073	4	0	0	0	6040	191	
12.0	2	1	10	11	0	0	0	0	204	78	
15.0	0	0	0	2	0	0	0	0	5	5	

16.0	0	0	0	4	4	2	0	0	0	0
16.0 17.0	0	0	0	1 0	1 0	3 0	0 0	0	2 1	2 0
	0		228							7
20.0		0		215	541	1	0	6	15	
22.0	4	0	0	0	0	0	0	0	2	1
24.0	44	0	0	0	0	0	0	0	0	0
25.0	231	30	338	407	1	0	0	0	556	71
26.0	3032	73	1	4	0	0	0	0	1	1
27.0	7156	7824	206	650	0	0	0	0	122	14
28.0	355	237	265	1193	0	0	0	0	776	3
29.0	0	0	0	0	0	0	0	0	0	0
30.0	106	0	0	0	0	0	0	0	0	0
32.0	6569	1470	0	32	1	0	0	0	3	0
33.0	189	10	0	0	0	0	0	0	0	0
34.0	3276	5943	2916	5624	13	0	0	0	1003	13
35.0	2247	58	0	1	0	0	0	0	0	0
36.0	2381	287	3	17	0	0	0	0	2	1
37.0	0	0	0	0	0	0	0	0	0	0
39.0	33	0	0	0	0	0	0	0	0	0
40.0	28	6	0	5	0	0	0	0	0	1
42.0	6786	20661	2197	7664	48	1	0	0	524	2
43.0	3001	13692	62	375	3	0	0	0	4	0
44.0	1015	2614	3	53	2	0	0	0	1	0
45.0	57	1	0	0	0	0	0	0	0	0
46.0	138	856	0	7	0	0	0	0	0	0
47.0	698	214	0	3	0	0	0	0	0	0
48.0	16	68	0	1	0	0	0	0	0	0
49.0	1	10	1	0	0	0	0	0	0	0
50.0	2	0	0	0	0	0	0	0	0	0
TO WARD	40	0 42.	0 43	.0 44.0	0 45.0	46.0	47.0	48.	0 49	.0 50.0
FROM WARD										
1.0		l4 614	2 304	14 100	6 49	204	942	1	.0	2 (
2.0	•••	6 1930			9 0			11		4 (
3.0	•••	0 194			1 0	1	0		1	0 (
4.0		3 803		78 6		21	2		3	0 (
5.0		0 6			2 0	0	0		2	0 (
6.0			0		0 0	0	0		0	0 (
7.0			0		0 0	0	0		0	0 (
8.0	•••		0		0 0	0	0		0	0 (
11.0	•••	0 45			1 0	1	0		0	0 (
12.0	•••		0		0 0	0	0		0	0 0
15.0	•••		0		0 0	0	0		0	0 0
16.0	•••		0		0 0	0	0		0	0 0
17.0	•••		0		0 0	0	0		0	0 (
20.0	•••		1		0 0	0	0		0	0 (
	•••									
22.0	•••		1		0 0	0	0		0	0 (
24.0	•••	0	1	0	0 0	0	2		0	0 (

```
25.0
                    1
                         746
                                   22
                                            4
                                                   0
                                                            2
                                                                   0
                                                                          0
                                                                                 0
                                                                                        0
26.0
                         426
                                  160
                                           23
                                                   3
                                                           11
                                                                  30
                                                                          1
                                                                                 0
                                                                                        0
                    1
27.0
                                                                                        0
                    3
                       18163
                                8666
                                         2202
                                                   0
                                                         560
                                                                 197
                                                                         13
                                                                                 0
            •••
28.0
                        2273
                                  246
                                           31
                                                                          2
                                                                                 0
                                                                                        0
                    0
                                                   0
                                                            1
                                                                   4
29.0
                   0
                            0
                                    0
                                            0
                                                   0
                                                            0
                                                                   0
                                                                          0
                                                                                 0
                                                                                        0
30.0
                                    0
                                            8
                                                            0
                                                                          0
                                                                                 0
                                                                                        0
                   0
                            0
                                                  13
                                                                   9
32.0
                  84
                        1779
                               12884
                                         7957
                                                  47
                                                        1256
                                                               2478
                                                                        133
                                                                                 5
                                                                                        2
33.0
                                           79
                                                  81
                                                         187
                                                                362
                                                                         15
                                                                                 1
                                                                                       10
                 141
                            4
                                   43
                                                                          7
                                                                                 0
34.0
                       29315
                                3319
                                          505
                                                   0
                                                          68
                                                                                        0
                   5
                                                                  18
            •••
35.0
                  38
                           52
                                  224
                                          294
                                                 140
                                                          46
                                                                311
                                                                          4
                                                                                 4
                                                                                        1
            •••
36.0
                                                                                 0
                   0
                        1299
                                  169
                                           40
                                                   0
                                                           10
                                                                  40
                                                                          1
                                                                                        0
            •••
37.0
                   0
                            0
                                    0
                                            0
                                                   0
                                                            0
                                                                   0
                                                                          0
                                                                                 0
                                                                                        0
39.0
                 110
                            0
                                    0
                                            1
                                                  13
                                                          52
                                                                121
                                                                         20
                                                                                 1
                                                                                        4
            •••
40.0
                                                                                       46
                 635
                            4
                                  158
                                          192
                                                  12
                                                         268
                                                               1441
                                                                        668
                                                                               385
42.0
                   7
                       61306
                               17914
                                         2675
                                                   1
                                                         675
                                                                123
                                                                        106
                                                                                14
                                                                                        0
43.0
                       14456
                 117
                               53347
                                        14609
                                                   7
                                                        5722
                                                               1758
                                                                        996
                                                                                14
                                                                                        0
44.0
                 232
                        2236
                               13252
                                        18954
                                                        8930
                                                               3790
                                                                       999
                                                                                86
                                                                                        1
                                                  10
            •••
45.0
                  11
                            0
                                   15
                                                 118
                                                          33
                                                                112
                                                                          1
                                                                                 0
                                                                                        0
                                           11
                                                                                        7
46.0
                                                               3851
                 337
                         475
                                5620
                                         9341
                                                  29
                                                       18050
                                                                      1872
                                                                               157
47.0
                1485
                           75
                                1675
                                         3413
                                                  57
                                                        3822
                                                               9403
                                                                      1488
                                                                               162
                                                                                       42
48.0
                 690
                           87
                                  861
                                         1043
                                                   0
                                                        1775
                                                               1218
                                                                      2855
                                                                               733
                                                                                       53
49.0
                 413
                           13
                                   23
                                           88
                                                   0
                                                         137
                                                                246
                                                                       571
                                                                             2025
                                                                                       34
50.0
                  45
                            0
                                    0
                                            1
                                                   0
                                                            9
                                                                  59
                                                                         30
                                                                                18
                                                                                        7
```

[11]: TO WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	•••	\
FROM WARD											•••	
1.0	15373	1675	18	226	2	0	0	0	1	2		
2.0	2048	9473	663	1284	2	0	0	0	33	0		
3.0	18	561	2398	2985	406	0	0	0	644	3		
4.0	293	1516	3404	7516	2940	0	1	1	1164	3		
5.0	1	2	324	2761	9099	28	12	137	27	0		
6.0	0	0	2	0	29	27	0	4	0	0		

7.0	0	0	0	0	15	0	11	7	0	0	•••
8.0	0	0	0	0	136	4	11	73	0	0	•••
11.0	17	29	623	1051	14	0	0	0	3393	120	•••
12.0	0	0	0	2	0	0	0	0	92	65	•••
15.0	0	0	1	12	0	0	0	0	59	38	•••
16.0	1	0	1	0	1	1	0	0	2	0	
17.0	0	0	0	0	0	0	0	0	0	0	
20.0	0	0	199	67	287	7	1	4	10	0	
22.0	0	0	0	0	0	0	0	0	1	3	
24.0	1	0	0	0	0	0	0	0	0	4	
25.0	265	34	323	520	13	0	0	0	626	55	
26.0	2425	255	0	2	0	0	0	0	2	1	
27.0	5955	7215	112	811	2	0	0	0	130	21	
28.0	363	208	378	815	0	0	0	0	459	9	•••
29.0	1	0	1	0	0	0	0	0	0	0	
30.0	89	2	0	1	0	0	0	0	0	0	
32.0	6782	1222	3	35	1	0	0	0	2	0	•••
33.0	203	15	0	0	0	0	0	0	0	0	
34.0	3787	8111	5064	6796	10	0	0	0	702	34	
35.0	2544	30	0	7	0	0	0	0	1	1	
36.0	2588	429	3	19	0	0	0	0	8	4	
37.0	2000	0	0	0	0	0	0	0	0	0	
39.0	54	0	0	0	0	0	0	0	0	0	
40.0	42	5	0	1	0	0	0	0	0	0	
42.0	8213	22561	3891	9766	38	0	0	0	660	0	
43.0	2055	8958	47	240	4	0	0	0	6	0	
44.0	562	2157	3	22	1	0	0	0	1	0	•••
45.0	22	2	0	0	0	0	0	0	0	0	•••
46.0	90	1044	6	13	0	0	0	0	0	0	•••
47.0	627	348	0	31	0	0	0	0	0	0	
48.0	11	96	1	1	1	0	0	0	0	0	
49.0	1	1	0	1	0	0	0	0	0	0	•••
50.0	0	0	0	0	0	0	0	0	0	0	
TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.	0 49	.0 5	0.0
FROM WARD											
1.0	18	7907	1903	654	26	111	658		8	2	1
2.0	9	20354	10586	2638	1	1387	344	19		7	0
3.0		4060	91	2030		5	3	13			0
	0				1				1	0	
4.0	6	9573	297	42	2	14	20		3	0	0
5.0	0	36	0	0	0	1	0		0	0	0
6.0	0	0	0	0	0	0	0		0	0	0
7.0	0	0	0	0	0	0	0		0	0	0
8.0	0	0	0	0	0	0	0		0	0	0
11.0	0	886	17	2	0	1	1		1	0	0
12.0	0	1	0	0	0	0	0		0	0	0
15.0	0	1	0	0	0	0	0		0	0	0

```
16.0
                0
                         0
                                 0
                                          0
                                                 0
                                                          0
                                                                  0
                                                                         0
                                                                                0
                                                                                        0
17.0
                0
                         0
                                 0
                                          0
                                                 0
                                                          0
                                                                  0
                                                                         0
                                                                                 0
                                                                                        0
20.0
                0
                         0
                                 0
                                          0
                                                 0
                                                          0
                                                                  0
                                                                         0
                                                                                 0
                                                                                        0
22.0
                0
                         0
                                 0
                                          0
                                                 0
                                                          0
                                                                  0
                                                                                 0
                                                                                        0
                                                                         0
24.0
                0
                         0
                                 0
                                          0
                                                 0
                                                          0
                                                                  0
                                                                         0
                                                                                 0
                                                                                        0
25.0
                     1801
                                75
                                         14
                                                 0
                                                         0
                                                                  0
                                                                         3
                                                                                        0
                1
                                                                                 0
26.0
                1
                      560
                                80
                                         24
                                                 3
                                                         3
                                                                 36
                                                                         2
                                                                                 0
                                                                                        0
27.0
                7
                              5424
                                      1688
                                                 2
                                                       440
                                                                495
                                                                        14
                                                                                 0
                                                                                        0
                    25314
                                                                                        0
28.0
                0
                     3272
                                74
                                         20
                                                 0
                                                         5
                                                                  2
                                                                         0
                                                                                 3
29.0
                0
                                 0
                                          0
                                                 0
                                                         0
                                                                  0
                                                                         0
                                                                                 0
                                                                                        0
                         1
30.0
                2
                                  2
                                         42
                                                45
                                                        14
                                                                 71
                                                                         0
                                                                                0
                                                                                        0
                         1
32.0
              139
                     2393
                              6895
                                      5048
                                                29
                                                       903
                                                               3852
                                                                        95
                                                                                5
                                                                                        1
                                                                                        2
33.0
              187
                                75
                                       160
                                                68
                                                       180
                                                                857
                                                                        60
                                                                                 3
                    44024
34.0
                3
                              3238
                                       606
                                                 0
                                                       127
                                                                 74
                                                                         6
                                                                               10
                                                                                        5
35.0
               39
                      257
                               367
                                       330
                                               175
                                                        75
                                                                512
                                                                        41
                                                                                0
                                                                                        0
36.0
                                                                                0
                                                                                        0
                1
                     1458
                               156
                                        41
                                                 3
                                                         5
                                                                 50
                                                                         0
37.0
                0
                                                 0
                                                         0
                                                                         0
                                                                                0
                                                                                        0
                         0
                                 0
                                          0
                                                                  0
39.0
              121
                         0
                                 3
                                          8
                                                55
                                                        46
                                                                169
                                                                        69
                                                                               10
                                                                                        6
40.0
              915
                        26
                                                                              848
                                                                                       39
                               100
                                       195
                                                41
                                                       420
                                                               2837
                                                                      1088
42.0
               15
                    83533
                            15170
                                      3023
                                                 1
                                                      1024
                                                                468
                                                                       260
                                                                                6
                                                                                       10
43.0
               96
                    11421
                            26725
                                      7852
                                                      4493
                                                              2279
                                                                      1213
                                                                               24
                                                                                        0
                                                 1
44.0
              160
                     2045
                              6589
                                     11882
                                                26
                                                      6893
                                                              4030
                                                                       997
                                                                               35
                                                                                        3
45.0
               21
                         0
                                 4
                                         32
                                               418
                                                        27
                                                                131
                                                                         5
                                                                                0
                                                                                        0
46.0
                                                                                        3
              341
                      726
                              3922
                                      6939
                                                28
                                                     14462
                                                              4932
                                                                     2411
                                                                              181
47.0
             3096
                      150
                              1683
                                      3602
                                               141
                                                      4879
                                                             18727
                                                                      2523
                                                                              135
                                                                                       25
48.0
             1064
                        63
                               932
                                       897
                                                 3
                                                      2029
                                                              2368
                                                                      4726
                                                                              787
                                                                                       35
49.0
                                                       174
              926
                         7
                                18
                                         35
                                                 0
                                                                136
                                                                       639
                                                                             2944
                                                                                       84
50.0
               39
                        13
                                  1
                                          2
                                                 0
                                                          2
                                                                 13
                                                                        40
                                                                              111
                                                                                        2
```

```
[12]: TO WARD
                                                                   8.0
                                                                          11.0
                   1.0
                          2.0
                                3.0
                                       4.0
                                              5.0
                                                     6.0
                                                            7.0
                                                                                12.0 ...
      FROM WARD
                                    5
                                          54
                                                               0
                                                                      0
                                                                             3
      1.0
                   4836
                           473
                                                  1
                                                        0
                                                                                    0
```

2.0	449	3549	222	400	2	0	0	0	2	0	
3.0	11	251	768	1342	207	0	0	0	260	4	•••
4.0	29	417	1458	3812	1114	0	0	1	252	1	•••
5.0	1	1	160	1117	3175	11	6	16	1	0	•••
6.0	0	0	0	0	4	10	0	0	0	0	•••
7.0	0	0	0	0	6	0	3	4	0	0	•••
8.0	0	0	0	1	15	0	2	6	0	0	•••
11.0	3	0	238	265	1	0	0	0	1002	57	•••
12.0	0	0	4	0	0	0	0	0	32	33	•••
15.0	0	0	0	3	0	0	0	0	0	1	•••
16.0	0	0	1	0	1	0	0	0	0	0	•••
20.0	0	0	77	26	159	2	0	4	6	0	•••
22.0	0	0	0	0	0	0	0	0	0	0	•••
24.0	0	0	1	1	0	0	0	0	0	0	•••
25.0	41	32	151	79	1	0	0	0	255	42	•••
26.0	764	25	0	1	0	0	0	0	0	0	•••
27.0	1564	2484	100	437	0	0	0	0	10	109	•••
28.0	33	48	154	334	0	0	0	0	101	24	•••
29.0	0	0	0	0	0	0	0	0	0	0	•••
30.0	31	0	0	0	0	0	0	0	0	0	•••
32.0	2002	394	3	24	0	0	0	0	0	3	•••
33.0	41	6	0	0	0	0	0	0	0	0	•••
34.0	1249	4391	2107	4376	4	0	0	0	427	39	•••
35.0	585	10	0	0	0	0	0	0	0	0	•••
36.0	1224	68	3	4	0	0	0	0	1	0	•••
37.0	0	0	0	0	0	0	0	0	0	0	•••
39.0	4	4	0	0	0	0	0	0	0	0	•••
40.0	9	1	0	1	0	0	0	0	0	0	•••
42.0	2008	8876	1992	4431	10	0	0	0	159	1	•••
43.0	516	3801	13	243	0	0	0	0	0	0	•••
44.0	212	809	1	15	0	0	0	0	0	0	•••
45.0	32	0	0	0 5	0	0	0	0	0	0	•••
46.0	11	434	0	Ū	0	0	0	0	0	0	•••
47.0 48.0	199 10	162 22	0	0 5	0	0	0	0	0	0	•••
49.0	0	1	0 0	1	0	0	0	0	0 0	0	•••
50.0	0	0	0	0	0	0	0	0	0	0	•••
50.0	U	U	U	U	U	U	U	U	U	U	•••
TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0)
FROM WARD											
1.0	5	1790	518	227	25	15	173	20	0	0)
2.0	1	8050	3970	847	1	424	124	46	5	0)
3.0	0	1860	15	1	0	1	0	0	0	0)
4.0	0	4856	176	17	0	6	1	2	1	2)
5.0	0	10	0	0	0	0	0	0	0	0)
6.0	0	0	0	0	0	0	0	0	0	0)
7.0	0	0	0	0	0	0	0	0	0	0)

8.0	0	0	0	0	0	0	0	0	0	0
11.0	0	187	0	2	0	0	0	0	0	0
12.0	0	1	0	0	0	0	0	0	0	0
15.0	0	0	0	0	0	0	0	0	0	0
16.0	0	0	0	0	0	0	0	0	0	0
20.0	0	0	0	0	0	0	0	0	0	0
22.0	0	0	0	0	0	0	0	0	0	0
24.0	0	4	0	0	9	0	0	0	0	0
25.0	0	537	16	0	0	2	0	11	0	0
26.0	0	266	37	3	0	0	14	1	0	0
27.0	3	10430	1522	344	1	93	65	2	5	4
28.0	0	1220	3	3	1	2	1	1	0	0
29.0	0	0	0	0	0	0	0	0	0	0
30.0	8	2	0	3	16	0	26	0	0	0
32.0	56	770	3007	1278	38	217	1282	45	1	0
33.0	49	1	30	14	27	36	223	15	1	6
34.0	0	24950	1426	210	0	29	43	3	3	1
35.0	15	10	53	57	33	10	103	3	0	1
36.0	0	563	23	7	0	2	11	0	0	0
37.0	0	0	0	0	0	0	0	0	0	0
39.0	54	0	3	9	20	15	134	16	0	6
40.0	573	3	12	62	3	69	1326	562	419	26
42.0	4	42810	4968	1102	4	240	152	47	23	2
43.0	10	4662	9822	2837	0	1262	785	598	13	1
44.0	64	882	2557	3335	11	1900	1257	396	16	0
45.0	2	0	0	8	101	10	40	0	0	0
46.0	100	127	1228	2073	6	6023	1557	1196	30	1
47.0	1560	132	666	1184	24	1591	7091	1001	111	17
48.0	581	14	561	354	0	954	930	3131	509	26
49.0	378	6	16	9	0	29	51	604	1881	43
50.0	38	0	0	1	0	2	14	14	22	3

2.0 196 3083 170 312 2 0 0 0 5 3.0 3 127 563 1071 191 0 0 0 206 4.0 13 325 1137 2924 1156 0 1 0 127 5.0 0 0 214 1105 2281 1 52 7 0 6.0 0 0 1 0 0 14 0 4 0 7.0 0 0 0 3 35 0 279 7 0 8.0 0 0 0 0 9 1 10 38 0 11.0 1 2 122 261 0 0 0 744 3 12.0 0 0 2 4 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 0 16.0 0 0	0 \	
2.0 196 3083 170 312 2 0 0 0 5 3.0 3 127 563 1071 191 0 0 206 4.0 13 325 1137 2924 1156 0 1 0 127 5.0 0 0 214 1105 2281 1 52 7 0 6.0 0 0 0 1 0 0 14 0 4 0 7.0 0 0 0 3 35 0 279 7 0 8.0 0 0 0 0 9 1 10 38 0 11.0 1 2 122 261 0 0 0 744 3 12.0 0 0 2 4 0 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 0 0 0 0 <		
3.0 3 127 563 1071 191 0 0 0 206 4.0 13 325 1137 2924 1156 0 1 0 127 5.0 0 0 214 1105 2281 1 52 7 0 6.0 0 0 1 0 0 14 0 4 0 7.0 0 0 0 3 35 0 279 7 0 8.0 0 0 0 0 9 1 10 38 0 11.0 1 2 122 261 0 0 0 744 3 12.0 0 0 2 4 0 0 0 0 43 1 15.0 0	0	
4.0 13 325 1137 2924 1156 0 1 0 127 5.0 0 0 214 1105 2281 1 52 7 0 6.0 0 0 0 1 0 0 14 0 4 0 7.0 0 0 0 3 35 0 279 7 0 8.0 0 0 0 0 9 1 10 38 0 11.0 1 2 122 261 0 0 0 744 3 12.0 0 0 2 4 0 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 0 1 0	0	
5.0 0 0 214 1105 2281 1 52 7 0 6.0 0 0 1 0 0 14 0 4 0 7.0 0 0 0 0 33 35 0 279 7 0 8.0 0 0 0 0 9 1 10 38 0 11.0 1 2 122 261 0 0 0 744 3 12.0 0 0 2 4 0 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 0 1 0	3	
6.0 0 0 1 0 0 14 0 4 0 7.0 7.0 0 0 0 0 0 3 35 0 279 7 0 8.0 0 0 0 0 0 9 1 10 38 0 11.0 1 2 122 261 0 0 0 0 0 744 3 12.0 0 0 0 2 4 0 0 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 1 16.0 0 0 0 1 0 0 0 0 0 0 0 1 16.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	
7.0 0 0 0 3 35 0 279 7 0 8.0 0 0 0 0 9 1 10 38 0 11.0 1 2 122 261 0 0 0 0 744 3 12.0 0 0 2 4 0 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 1 0	0	
8.0 0 0 0 0 9 1 10 38 0 11.0 1 2 122 261 0 0 0 744 3 12.0 0 0 2 4 0 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0	0	
11.0 1 2 122 261 0 0 0 744 3 12.0 0 0 0 2 4 0 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 1 0 0 0 1 0	0	
12.0 0 0 2 4 0 0 0 0 43 1 15.0 0 0 0 0 0 0 0 0 0 1 16.0 0 0 1 0	0	
15.0 0 0 0 0 0 0 0 1 16.0 0 0 1 0 0 1 0 0 0 17.0 0 0 0 0 0 0 0 0 0 20.0 0 0 103 30 82 5 1 1 162 22.0 0 0 0 0 0 0 0 0	4	
16.0 0 0 1 0	5 	
17.0 0 0 0 0 0 0 0 0 0 20.0 0 0 103 30 82 5 1 1 162 22.0 0 0 0 0 0 0 0 0	1	
20.0 0 0 103 30 82 5 1 1 162 22.0 0 0 0 0 0 0 0 0	0	
22.0 0 0 0 0 0 0 0 0	0	
	0	
24.0 0 0 0 1 0 0 0 0	0	
	1	
25.0 16 6 71 44 1 0 0 156 1	4	
	0	
	0	
	0	
	0	
30.0 6 0 0 0 0 0 0 0	0	
	0	
	^	
	^	
35.0 203 4 0 0 0 0 0 0 0	^	
	^	
	^	
	0	
	0	
	0	
43.0 195 2849 11 151 2 0 0 0 1	0	
44.0 24 662 1 5 0 0 0 0	0	
45.0 2 0 0 0 0 0 0 0	0	
46.0 5 194 2 1 0 0 0 0	0	
	0	
	0	
49.0 0 0 0 0 0 0 0	0	
50.0 0 0 0 0 0 0 0	0	
TO WARD 40.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50 FROM WARD	.0	
1.0 8 437 184 37 3 2 56 3 0	^	
2.0 4 7880 2885 656 0 282 55 37 3	0	
3.0 0 1078 10 0 0 1 0 0 0	0	

4.0	0	3607	150	1	0	1	1	0	0	0
5.0	0	24	0	0	0	1	0	0	0	0
6.0	0	0	0	0	0	0	0	0	0	0
7.0	0	0	0	0	0	0	0	0	0	0
8.0	0	0	0	0	0	0	0	0	0	0
11.0	0	52	0	0	0	0	0	0	0	0
12.0	0	0	0	0	0	0	0	0	0	0
15.0	0	0	0	0	0	0	0	0	0	0
16.0	0	0	0	0	0	0	0	0	0	0
17.0	0	0	0	0	0	0	0	0	0	0
20.0	0	0	0	0	0	0	0	0	0	0
22.0	0	0	0	0	0	0	0	0	0	0
24.0	0	0	0	0	0	0	0	0	0	0
25.0	0	83	1	0	0	0	0	0	0	0
26.0	0	50	24	1	0	1	2	0	0	0
27.0	1	6809	919	142	0	41	39	1	2	0
28.0	0	721	16	0	0	0	0	0	0	0
29.0	0	0	0	0	0	0	0	0	0	0
30.0	2	0	0	1	37	0	1	0	0	0
32.0	56	324	1701	868	8	139	842	21	2	2
33.0	178	3	17	21	25	12	300	34	2	2
34.0	0	19273	823	61	0	7	36	2	0	0
35.0	41	13	59	26	25	5	84	8	0	0
36.0	5	166	20	2	0	9	8	1	0	0
37.0	0	0	0	0	0	0	0	0	0	0
39.0	31	0	1	0	91	3	30	10	2	3
40.0	1115	0	13	31	7	70	916	392	111	76
42.0	1	34839	3210	598	0	96	61	10	0	0
43.0	16	3084	7598	1906	0	933	328	326	3	0
44.0	36	355	1608	1974	9	1609	925	212	6	0
45.0	0	0	0	21	60	3	24	1	0	0
46.0	83	148	925	1239	0	4693	965	701	26	1
47.0	902	24	352	772	19	947	4025	608	41	10
48.0	534	8	304	192	1	653	462	1759	228	20
49.0	102	0	1	5	0	23	30	246	1260	23
50.0	58	0	0	0	0	0	5	7	16	8

```
.astype(int)
).sort_values('FROM WARD')
matrix_age_above_61_2016
```

[14]: TO WARD FROM WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0		\
1.0	355	26	0	13	0	0	0	0	0	0	•••	
2.0	57	1388	35	185	1	0	0	0	1	0	•••	
3.0	0	38	216	267	37	2	0	0	81	10	•••	
4.0	25	197	305	1234	296	0	0	0	89	0		
5.0	0	0	17	346	1329	2	3	4	0	0	•••	
6.0	0	0	0	0	6	51	0	35	0	0		
7.0	0	0	0	0	3	0	8	1	0	0		
8.0	0	0	0	0	4	49	1	12	0	0		
11.0	0	1	79	89	0	0	0	0	155	27		
12.0	0	0	35	21	0	0	0	0	40	4		
15.0	0	0	0	0	0	0	0	0	2	0		
16.0	0	0	0	0	0	0	0	0	0	0		
17.0	0	0	0	0	0	0	0	0	0	0		
20.0	0	0	10	4	17	22	0	2	3	0		
22.0	0	0	0	0	0	0	0	0	0	0		
24.0	0	0	0	0	0	0	0	0	0	1		
25.0	7	2	23	14	0	0	0	0	41	70		
26.0	37	1	0	0	0	0	0	0	0	0		
27.0	291	655	8	35	0	0	0	0	137	1		
28.0	8	11	43	200	0	0	0	0	40	1		
29.0	0	0	0	0	0	0	0	0	0	0		
30.0	0	0	0	0	0	0	0	0	0	0		
32.0	250	62	0	1	0	0	0	0	0	0		
33.0	2	0	0	0	0	0	0	0	0	0		
34.0	72	1013	478	1675	0	0	0	0	36	0		
35.0	17	0	0	0	0	0	0	0	0	0	•••	
36.0	65	6	0	0	0	0	0	0	0	0		
37.0	0	0	0	0	0	0	0	0	0	0	•••	
39.0	0	0	0	0	0	0	0	0	0	0	•••	
40.0	0	0	0	0	0	0	0	0	0	0	•••	
42.0	177	2628	401	1127	2	0	0	0	19	1	•••	
43.0	36	886	1	40	0	0	0	0	0	0		
44.0	7	155	0	0	0	0	0	0	0	0	•••	
45.0	1	0	0	0	0	0	0	0	0	0		
46.0	0	34	1	0	0	0	0	0	0	0	•••	
47.0	32	96	0	0	0	0	0	0	0	0	•••	
48.0	0	1	0	0	0	0	0	0	0	0	•••	
49.0	0	0	0	0	0	0	0	0	0	0	•••	
50.0	0	0	0	0	0	0	0	0	0	0	•••	

TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0
FROM WARD	0	004	4.4	7	0	0	4	0	0	0
1.0	0 1	284 2759	44 791	7 122	0 0	0 23	4 84	0 3	0 1	0
3.0	0	2759 478	791 5	0		23 0	04	0		
					0				0	0
4.0	0	1502	52	0	0	1	0	0	0	0
5.0	0	2	1	0	0	0	0	0	0	0
6.0 7.0	0	0	0	0	0	0	0	0	0	0
8.0	0	0	0	0	0	0	0	0	0	0
11.0	0	6	0 1	0	0	0	0	0	0	0
12.0	0	0	0	0	0	0	0	0	0	0
15.0	0	0	0	0	0	0	0	0	0	0
16.0		0		0	0		0	0	0	
17.0	0	0	0	0	0	0	0	0	0	0
20.0	0	0	0	0	0	0	0	0	0	0
20.0	0	0	0	0	0	0	0	0	0	0
24.0	0	0	0	0	0	0	0	0	0	0
25.0	0	17	5	0	0	0	0	0	0	0
26.0	0	0	3	0	0	0	0	0	0	0
27.0	0	1949	271	48	0	17	5	1	0	0
28.0	0	387	2	2	0	0	0	0	0	0
29.0	0	0	0	0	0	0	0	0	0	0
30.0	0	0	0	0	2	0	0	0	0	0
32.0	8	259	648	225	0	29	588	3	1	0
33.0	22	0	0	1	14	6	60	0	0	1
34.0	0	5596	263	53	0	2	0	0	0	0
35.0	2	0	5	2	3	2	13	0	0	0
36.0	0	87	1	0	0	0	0	0	0	0
37.0	0	0	0	0	0	0	0	0	0	0
39.0	8	0	0	0	0	0	8	14	1	0
40.0	91	0	1	13	0	13	104	61	44	2
42.0	0	11558	1017	108	0	42	11	2	1	0
43.0	1	1036	2323	613	0	340	40	89	2	0
44.0	10	79	656	1341	0	866	242	120	2	0
45.0	1	0	0	0	3	0	7	0	0	0
46.0	19	48	356	783	0	1439	483	273	3	0
47.0	161	1	86	231	7	447	1020	145	18	0
48.0	66	7	166	70	0	253	118	417	51	3
49.0	52	0	0	1	0	3	11	36	564	3
50.0	1	0	0	0	0	0	3	2	3	1

.....

```
[15]: # Drop null values
      df_MM_clean_2017 = df_MM_clean_2017.dropna(subset=['BIRTH YEAR'])
[16]: # Convert BIRTH YEAR to integer
      df MM clean 2017['BIRTH YEAR'] = df MM clean 2017['BIRTH YEAR'].astype('int')
[17]: # Create age groups based on the agr distribution of users
      df_MM_clean_2017['age'] = df_MM_clean_2017['YEAR'] - df_MM_clean_2017['BIRTH_
       ⇔YEAR']
[18]: # Define age groups
      age_bins = [0, 18, 30, 40, 50, 60, float('inf')] # Define age bins/ranges
      age_labels = ['0-18', '19-30', '31-40', '41-50', '51-60', '61+'] # Define_
       ⇔corresponding labels
[19]: # Create 'age group' column using pd.cut
      df MM clean 2017['age group'] = pd.cut(df MM clean 2017['age'], bins=age bins,
       →labels=age_labels, right=False)
[20]: age group_under_18_2017 = df_MM_clean_2017[df_MM_clean_2017['age group'] ==__
      \0-18'\
      # OD Matrix
      matrix age under 18 2017 = (
          age_group_under_18_2017.assign(count=1)
          .pivot_table(index='FROM WARD', columns='TO WARD',
                       values="count", aggfunc="count")
          .fillna(0)
          .astype(int)
      ).sort_values('FROM WARD')
      matrix_age_under_18_2017
[20]: TO WARD
                       2.0
                                    4.0
                                          5.0
                                                                         24.0 ...
                 1.0
                             3.0
                                                11.0 12.0 15.0 20.0
                                                                                  \
      FROM WARD
                                                   0
      1.0
                   35
                          3
                                 0
                                       0
                                             0
                                                          0
                                                                0
                                                                      0
                                                                            0
      2.0
                    2
                         23
                                 0
                                       3
                                             0
                                                   0
                                                          0
                                                                0
                                                                      0
      3.0
                    0
                          0
                                 1
                                      45
                                             0
                                                          0
                                                                0
                                                                      0
                                                   1
                          2
      4.0
                                35
                                      75
                                             8
                                                                0
                    0
                                                   1
                                                          0
                                                                              •••
      5.0
                    0
                          0
                                 0
                                      11
                                            87
                                                   0
                                                          0
                                                                0
                                                                      3
      7.0
                          0
                                                          0
                                                                0
                                                                      0
                    0
                                 0
                                       0
                                             1
                                                   0
                                                                            0
      11.0
                    0
                          0
                                 0
                                       0
                                             0
                                                   3
                                                          0
                                                                0
                                                                      0
                                                                            0
      12.0
                    0
                          0
                                 0
                                       0
                                             0
                                                   0
                                                          1
                                                                2
                                                                      0
                                                                            0 ...
      16.0
                    0
                          0
                                 0
                                       0
                                             0
                                                   0
                                                          0
                                                                0
                                                                      1
                                                                            0
      20.0
                    0
                          0
                                 0
                                       2
                                             0
                                                   0
                                                          0
                                                                0
                                                                      0
                                 0
                                                                0
      24.0
                    0
                          0
                                       0
                                             0
                                                   0
                                                          0
                                                                      0
      25.0
                    0
                           0
                                 3
                                       1
                                             0
                                                   0
                                                          0
                                                                0
                                                                      0
                                                                            0 ...
      26.0
                           0
                                       0
                                             0
                                                   0
                                                          0
                                                                0
```

27.0 28.0 29.0 30.0 32.0 33.0 34.0 35.0 36.0 37.0 39.0 40.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0	3 0 0 0 8 0 0 1 3 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 2 0 4 0 1 0 0 68 24 1 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	3 18 0 0 0 0 16 0 0 0 0 43 1 0 0 0 0 0						1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	
FROM WARD											
	0	6	3	0	0	0	0	0	0	0	
FROM WARD 1.0						0		0	0		
FROM WARD 1.0 2.0	0	59	15	2	0		0 1 0		0	0	
FROM WARD 1.0 2.0 3.0	0	59 0	15 0	2	0	0	1	0	0 0	0 0	
FROM WARD 1.0 2.0 3.0 4.0	0 0 0	59 0 21	15 0 0	2 0 0	0 0 0	0 0 0	1 0 0	0 0 0	0 0 0	0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0	0 0 0 0	59 0 21 0	15 0 0 0	2 0 0 0	0 0 0	0 0 0	1 0 0	0 0 0	0 0 0	0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0	0 0 0 0 0	59 0 21 0	15 0 0 0	2 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0	0 0 0 0 0	59 0 21 0 0	15 0 0 0 0 0	2 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0	0 0 0 0 0	59 0 21 0	15 0 0 0	2 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0	0 0 0 0 0 0	59 0 21 0 0 0 0	15 0 0 0 0 0 0	2 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	1 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0	0 0 0 0 0 0 0	59 0 21 0 0 0 0	15 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	1 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0	0 0 0 0 0 0 0	59 0 21 0 0 0 0 0 0	15 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	1 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0	0 0 0 0 0 0 0 0	59 0 21 0 0 0 0 0 0	15 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0	0 0 0 0 0 0 0 0	59 0 21 0 0 0 0 0 0 0	15 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0 27.0	0 0 0 0 0 0 0 0	59 0 21 0 0 0 0 0 0 0 10 0	15 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0 27.0 28.0		59 0 21 0 0 0 0 0 0 0 10 0 15 42	15 0 0 0 0 0 0 0 0 0 0 0 23	2 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0 27.0 28.0 29.0	0 0 0 0 0 0 0 0	59 0 21 0 0 0 0 0 0 0 10 0 15 42 0	15 0 0 0 0 0 0 0 0 0 0 0 23 0	2 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0		59 0 21 0 0 0 0 0 0 0 10 0 15 42	15 0 0 0 0 0 0 0 0 0 0 0 23 0 0	2 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0 27.0 28.0 29.0		59 0 21 0 0 0 0 0 0 0 10 0 15 42 0	15 0 0 0 0 0 0 0 0 0 0 0 23 0	2 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0				
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 32.0		59 0 21 0 0 0 0 0 0 0 10 0 15 42 0 0	15 0 0 0 0 0 0 0 0 0 0 23 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0				
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 32.0 33.0	0 0 0 0 0 0 0 0 0 0 0 0	59 0 21 0 0 0 0 0 0 10 0 15 42 0 0	15 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0				
FROM WARD 1.0 2.0 3.0 4.0 5.0 7.0 11.0 12.0 16.0 20.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 32.0 33.0 34.0	0 0 0 0 0 0 0 0 0 0 0 0 0	59 0 21 0 0 0 0 0 0 0 10 0 15 42 0 0 0	15 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 18 0 3	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

39.0	3	1	0	0	0	0	0	4	1	0
40.0	0	0	0	0	0	0	1	1	0	1
42.0	0	92	10	1	0	1	0	0	0	0
43.0	0	38	21	9	0	1	4	1	0	0
44.0	0	1	14	52	0	0	40	2	0	0
45.0	0	0	0	0	1	0	0	0	0	0
46.0	0	0	1	0	0	15	3	7	1	0
47.0	2	0	3	51	1	2	22	0	3	0
48.0	2	0	0	2	0	5	1	35	1	0
49.0	0	0	0	0	0	1	0	3	46	1
50.0	0	0	0	0	0	0	0	0	5	0

As it is shown, the number of under 18 years old users are low and the most trips happened inside ward 28.

[21]:	TO WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	\
	1.0	17739	2541	4	105	0	0	0	0	3	3	
	2.0	2803	15176	351	1193	9	0	0	0	27	0	
	3.0	7	365	2641	10080	410	1	0	0	1761	32	
	4.0	131	1326	11562	19516	4644	0	0	0	2483	5	
	5.0	1	9	465	4745	18066	7	36	48	10	0	
	6.0	0	0	2	0	16	444	5	101	0	0	
	7.0	0	0	0	0	33	2	361	50	0	0	
	8.0	0	0	0	1	52	98	55	139	0	0	
	11.0	7	26	1491	2073	8	0	0	0	5127	190	
	12.0	0	0	28	10	0	0	0	0	158	140	
	15.0	1	0	6	1	0	0	0	0	17	21	
	16.0	7	0	0	2	5	10	0	0	7	14	
	17.0	0	0	0	0	0	0	0	0	0	0	
	20.0	0	0	178	231	792	13	1	4	42	24	
	22.0	0	0	0	0	0	0	0	0	0	0	

24.0	2	0	0	4	0	0	0	0	1	2
25.0	233	101	208	444	3	0	0	0	506	98
26.0	2600	97	0	8	0	0	0	0	0	1
27.0	7566		77	692	1	0	0	0	105	5
28.0	256		439	1482	0	0	0	0	609	3
29.0	0	0	0	1	0	0	0	0	0	0
30.0	24	. 0	0	1	0	0	0	0	0	0
32.0	6130	1510	1	23	0	0	0	0	3	0
33.0	128		0	0	0	0	0	0	0	0
34.0	4457		3367	7522	11	0	0		167	6
35.0	2272		0	0	0	0	0	0	0	0
36.0	2578		0	20	0	0	0	0	1	0
37.0	0	0	0	0	0	0	0	0	0	0
39.0	18	2	0	0	0	0	0	0	0	0
40.0	37	0	0	0	0	0	0	0	0	0
42.0	7678		2013	9485	93	0	0	0	542	2
					6					
43.0	3226		65 -	419		0	0	0	4	0
44.0	1076		5	32	1	0	0	0	0	0
45.0	101	13	0	0	0	0	0	0	0	0
46.0	106	735	4	14	0	0	0	0	1	0
47.0	579	213	0	0	0	0	0	0	0	0
48.0	17		0	1	0	0	0	0	0	0
49.0	50			0		0	0			
			0		0			0	0	0
50.0	1	0	0	1	0	0	0	0	0	0
TO										
TO WARD	40	.0 42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.	0 \
TO WARD FROM WARD	40 	.0 42.0	43.0	44.0	45.0	46.0	47.0	48.0) 49.	0 \
FROM WARD	•••									
FROM WARD		37 7552	3402	1082	99	170	832	20) 1	3
FROM WARD 1.0 2.0		37 7552 2 24534	3402 17745	1082 3810	99 6	170 1058	832 262	20 101) 1	3
FROM WARD 1.0 2.0 3.0		37 7552 2 24534 0 1856	3402 17745 64	1082 3810 8	99 6 0	170 1058 5	832 262 1	20 101 1) 1	3 4 0
FROM WARD 1.0 2.0 3.0 4.0		37 7552 2 24534 0 1856 0 9665	3402 17745 64 553	1082 3810 8 52	99 6 0	170 1058 5 17	832 262 1 1	20 101 1) 1	3 4 0 1
FROM WARD 1.0 2.0 3.0		37 7552 2 24534 0 1856	3402 17745 64	1082 3810 8	99 6 0	170 1058 5	832 262 1	20 101 1) 1	3 4 0
FROM WARD 1.0 2.0 3.0 4.0		37 7552 2 24534 0 1856 0 9665	3402 17745 64 553	1082 3810 8 52	99 6 0	170 1058 5 17	832 262 1 1	20 101 1) 1	3 4 0 1
FROM WARD 1.0 2.0 3.0 4.0 5.0		37 7552 2 24534 0 1856 0 9665 0 60	3402 17745 64 553 2	1082 3810 8 52 3	99 6 0 0	170 1058 5 17	832 262 1 1	20 101 1 8) 1	3 4 0 1
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0	3402 17745 64 553 2 0	1082 3810 8 52 3 0	99 6 0 0 0	170 1058 5 17 0 0	832 262 1 1 0 0	20 101 1 8 0) 1 1 3))	3 4 0 1 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0	3402 17745 64 553 2 0 0	1082 3810 8 52 3 0 0	99 6 0 0 0 0	170 1058 5 17 0 0 0	832 262 1 1 0 0	20 101 1 8 0 0	1	3 4 0 1 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0	3402 17745 64 553 2 0 0	1082 3810 8 52 3 0 0	99 6 0 0 0 0 0	170 1058 5 17 0 0 0	832 262 1 1 0 0 0 0	20 101 1 8 0 0	1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 4 0 1 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0 0 424 0 0	3402 17745 64 553 2 0 0 0	1082 3810 8 52 3 0 0 0	99 6 0 0 0 0 0	170 1058 5 17 0 0 0 0	832 262 1 1 0 0 0 0	20 101 1 8 0 0) 1	3 4 0 1 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0 0 424 0 0 0	3402 17745 64 553 2 0 0 0 2	1082 3810 8 52 3 0 0 1 0	99 6 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0	832 262 1 1 0 0 0 0 0	20 101 1 8 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 4 0 1 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0 0 424 0 0	3402 17745 64 553 2 0 0 0	1082 3810 8 52 3 0 0 0	99 6 0 0 0 0 0	170 1058 5 17 0 0 0 0	832 262 1 1 0 0 0 0	20 101 1 8 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 4 0 1 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0 0 424 0 0 0	3402 17745 64 553 2 0 0 0 2	1082 3810 8 52 3 0 0 1 0	99 6 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0	832 262 1 1 0 0 0 0 0	20 101 1 8 0 0 0) 1 	3 4 0 1 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 424 0 0 0 0 0 0	3402 17745 64 553 2 0 0 0 2 0	1082 3810 8 52 3 0 0 0 1 0	99 6 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0	832 262 1 1 0 0 0 0 0 0	20 101 1 8 0 0 0) 1 	3 4 0 1 0 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 424 0 0 0 0 0 0 0 0 0 0 0 0	3402 17745 64 553 2 0 0 0 2 0 0	1082 3810 8 52 3 0 0 0 1 0 0 0	99 6 0 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0 0 0	832 262 1 1 0 0 0 0 0 0 0 0	20 101 1 8 0 0 0 0 0) 1 	3 4 0 1 0 0 0 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0 0 424 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3402 17745 64 553 2 0 0 0 0 0 0	1082 3810 8 52 3 0 0 0 0 0 0 0 0	99 6 0 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0 0 0	832 262 1 1 0 0 0 0 0 0 0 0	20 101 1 8 0 0 0 0 0) 1 	3 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0 0 424 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8	3402 17745 64 553 2 0 0 0 2 0 0 0 0	1082 3810 8 52 3 0 0 0 1 0 0 0 0 0	99 6 0 0 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0 0 0 0	832 262 1 1 0 0 0 0 0 0 0 0 0	20 101 1 8 0 0 0 0 0 0 0 0) 1 	3 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0 25.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 424 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3402 17745 64 553 2 0 0 0 0 0 0 0 0 1 29	1082 3810 8 52 3 0 0 0 1 0 0 0 0 0 0 0 7	99 6 0 0 0 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0 0 0 0 0 0	832 262 1 1 0 0 0 0 0 0 0 0 0 0	201011111111111111111111111111111111111) 1 	3 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0 25.0 26.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3402 17745 64 553 2 0 0 0 2 0 0 0 0 1 29 138	1082 3810 8 52 3 0 0 0 1 0 0 0 0 0 0 0 7 43	99 6 0 0 0 0 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0 0 0 0 0 4 6	832 262 1 1 0 0 0 0 0 0 0 0 0 0 0	20 101 1 8 0 0 0 0 0 0 0 0) 1 	3 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0 25.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 424 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3402 17745 64 553 2 0 0 0 2 0 0 0 0 1 29 138	1082 3810 8 52 3 0 0 0 1 0 0 0 0 0 0 0 7	99 6 0 0 0 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0 0 0 0 0 0	832 262 1 1 0 0 0 0 0 0 0 0 0 0	201011111111111111111111111111111111111		3 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0 25.0 26.0		37 7552 2 24534 0 1856 0 9665 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3402 17745 64 553 2 0 0 0 2 0 0 0 0 1 29 138 9516	1082 3810 8 52 3 0 0 0 1 0 0 0 0 0 0 0 7 43	99 6 0 0 0 0 0 0 0 0 0 0	170 1058 5 17 0 0 0 0 0 0 0 0 0 4 6	832 262 1 1 0 0 0 0 0 0 0 0 0 0 0	20 101 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 1	3 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29.0		0	0	0	0	1	0	0	0	1
30.0		1	1	7	11	52	1	23	1	0
32.0		120	1371	12316	7030	147	983	2121	126	46
33.0		117	1	46	131	170	149	354	53	3
34.0	•••	0	31751	3618	704	0	90	16	7	1
35.0		39	76	262	253	152	44	211	9	1
36.0	•••	0	1031	198	72	3	25	63	2	1
37.0	•••	0	0	0	0	1	0	0	0	0
39.0	•••	113	0	2	3	64	20	162	80	4
40.0	•••	449	2	69	101	8	277	1068	537	468
42.0	•••	10	67588	20363	3587	2	780	143	90	5
43.0	•••	48	15275	54209	15503	7	5296	1790	984	17
44.0	•••	128	2756	14617	20737	22	8896	3152	1285	64
45.0	•••	13	1	10	23	80	18	78	20	1
46.0	•••	305	616	4705	8642	14	15010	3452	1912	152
47.0	•••	1145	92	1639	3218	94	3560	10007	1464	199
48.0	•••	597	61	913	1157	25	1598	1408	2830	820
49.0	•••	355	12	20	43	0	125	179	671	2914
50.0	•••	64	1	0	1	0	1	19	186	38

TO WARD FROM WARD	50.0
1.0	1
2.0	0
3.0	0
4.0	0
5.0	0
6.0	0
7.0	0
8.0	
	0
11.0	0
12.0	0
15.0	0
16.0	0
17.0	0
20.0	0
22.0	0
24.0	0
25.0	0
26.0	1
27.0	1
28.0	0
29.0	0
30.0	0
32.0	0
33.0	1
34.0	0

```
35.0
               0
36.0
               0
37.0
               0
39.0
               6
40.0
              45
42.0
               0
43.0
               2
44.0
               2
45.0
               0
46.0
               2
47.0
              30
48.0
             226
49.0
              55
50.0
               8
```

Because the siz of the matrix is too large, it is hard to conclude here, so we will wait untile the next part for further analysis.

\

[22]:	TO WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0		١
	FROM WARD												
	1.0	15564	1728	28	223	0	0	0	0	14	1	•••	
	2.0	1940	12849	802	1382	7	0	0	0	49	2		
	3.0	21	719	2382	3234	429	0	0	0	720	17		
	4.0	225	1605	3741	8920	3663	0	1	0	1073	1		
	5.0	2	6	378	3599	9537	5	19	74	17	1		
	6.0	0	0	1	0	1	250	0	39	1	0		
	7.0	0	0	0	2	19	0	45	9	0	0		
	8.0	0	0	0	0	75	45	1	73	0	0		
	11.0	17	16	590	932	18	2	0	0	3712	124		
	12.0	0	0	12	0	0	0	0	0	139	48		
	15.0	0	0	0	1	2	0	0	0	19	24		
	16.0	0	0	0	1	0	4	0	0	1	2		

17.0	0	0	0	0	0	0	0	0	0	0	•••
20.0	0	0	386	82	275	10	0	2	5	1	•••
22.0	0	0	0	0	0	0	0	0	0	2	•••
24.0	2	0	0	0	0	0	0	0	0	4	•••
25.0	191	123	469	456	5	0	0			136	
											•••
26.0	2516	160	2	4	0	0	0	0	3	2	•••
27.0	6430	8281	171	618	3	0	0	0	121	13	•••
28.0	246	277	560	1138	1	0	0	0	407	9	•••
29.0	0	0	0	0	0	0	0	0	0	0	•••
30.0	102	1	0	0	0	0	0	0	0	0	•••
32.0	7606	1544	3	109	0	0	0	0	2	0	•••
33.0	218	8	0	2	0	0	0	0	0	0	•••
34.0	4205	9417	6059	7659	13	0	0		894	28	
											•••
35.0	2366	74	0	5	0	0	0	0	2	1	•••
36.0	3259	264	5	17	0	0	0	0	6	0	•••
37.0	0	0	0	0	0	0	0	0	0	0	•••
39.0	70	0	0	0	0	0	0	0	0	0	•••
40.0	37	15	0	0	0	0	0	0	0	0	•••
42.0	8392	28669	4266	9422	54	0	0	0	764	5	•••
43.0	1982	10664	41	364	3	0	0	0	8	0	
44.0	519	2011	5	27	0	0	0	0	1	0	•••
45.0	79	0	0	0	0	0	0	0	0	0	
											•••
46.0	106	1399	1	19	0	0	0	0	0	0	•••
47.0	532	352	0	38	0	0	0	0	0	0	•••
48.0	19	116	3	1	0	0	0	0	0	0	•••
49.0	38	6	0	0	0	0	0	0	0	0	•••
50.0	0	0	0	0	0	0	0	0	0	0	•••
TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50	0.0
FROM WARD											
1.0	17	7293	2023	580	58	114	639	21	90		0
2.0	10	24487	12291	2652	1	1438	296	118	9		0
3.0	0	3983	72	8	0	2	0	0	0		0
4.0	2	9837	484	56	1	23	22	8	0		0
5.0	0	51	6	2	0	3	0	1			0
6.0	0	0	0	0	0	0	0	0			0
7.0	0	0	0	0	0	0	0	0			0
8.0		0	0	0	0		0	0			0
	0					0					
11.0	0	687	16	0	0	0	0	0			0
12.0	0	1	0	0	0	0	0	0			0
15.0	0	0	0	0	0	0	0	0	0		0
16.0	0	0	0	0	0	0	0	0	0		0
17.0	0	0	0	0	0	0	0	0	0		0
20.0	0	1	1	0	0	0	0	0	0		0
22.0	0	0	0	0	0	0	0	0	0		0
24.0	0	2	2	0	0	0	0	0			0
25.0	0	1699	36	22	0	0	2	0			0
	J	_000	30		•	v	_	J	O		•

```
26.0
                      294
                               148
                6
                                        14
                                                 0
                                                         3
                                                               131
                                                                         0
                                                                                0
                                                                                       0
27.0
                    24559
                              5864
                                                 2
                                                               493
                                                                                6
                                                                                       0
                8
                                      1645
                                                       414
                                                                        18
28.0
                0
                     3260
                                58
                                        90
                                                 0
                                                         7
                                                                 4
                                                                         0
                                                                                0
                                                                                       0
29.0
                0
                                                         0
                                                                 0
                                                                         0
                                                                                0
                                                                                       0
                         1
                                 0
                                         0
                                                 0
30.0
                2
                         2
                                 2
                                        17
                                              203
                                                         2
                                                                29
                                                                         1
                                                                                0
                                                                                       0
32.0
              145
                                                                       75
                                                                                       1
                     2846
                              7338
                                      4858
                                               67
                                                       853
                                                              3846
                                                                                8
33.0
              310
                               105
                                       153
                                              128
                                                       235
                                                               950
                                                                       37
                                                                                4
                                                                                       3
                         4
34.0
                                                       102
                                                                                7
                                                                                       0
                5
                    45858
                              3456
                                       810
                                                 0
                                                                83
                                                                       12
                                                                                       0
35.0
                      280
                               509
                                       284
                                              203
                                                        55
                                                               425
                                                                                0
               66
                                                                       13
36.0
                3
                     1440
                               234
                                        56
                                                        10
                                                                97
                                                                         2
                                                                                0
                                                                                       0
                                                 1
37.0
                0
                                 0
                                         0
                                                 0
                                                         0
                                                                         0
                                                                                0
                                                                                       0
                         0
                                                                 0
39.0
               89
                         0
                                 5
                                        12
                                               68
                                                        19
                                                               206
                                                                       19
                                                                                7
                                                                                       3
40.0
             1170
                        19
                                91
                                       383
                                               36
                                                       351
                                                              3152
                                                                     1486
                                                                              586
                                                                                      99
42.0
               15
                    83880
                            15447
                                      3061
                                                 6
                                                       973
                                                               412
                                                                      280
                                                                               12
                                                                                       2
43.0
                    11406
                            29066
                                      8679
                                                 6
                                                     4603
                                                              1841
                                                                     1225
                                                                               59
                                                                                       2
              112
44.0
                                     12520
                                                                                       5
              324
                     1993
                              7293
                                               24
                                                     7453
                                                              3423
                                                                     1037
                                                                               92
45.0
               25
                                                        42
                                                                                2
                                                                                       0
                                        16
                                              845
                                                               219
                                                                         7
                         1
                                 1
46.0
              333
                      610
                              4061
                                      6631
                                               30
                                                    14801
                                                              4387
                                                                     2571
                                                                              193
                                                                                       5
47.0
                      202
                                                     4253
             3333
                              1566
                                      3181
                                              234
                                                             16479
                                                                     2760
                                                                              187
                                                                                      26
48.0
             1371
                        71
                               928
                                       918
                                                 4
                                                      1911
                                                              2343
                                                                     4880
                                                                             821
                                                                                      44
49.0
              684
                                        41
                                                       185
                                                               218
                                                                      736
                                                                            4821
                                                                                      59
                         5
                                12
                                                 1
50.0
               99
                         0
                                 0
                                         2
                                                 0
                                                         4
                                                                28
                                                                       55
                                                                               59
                                                                                       6
```

```
[23]: TO WARD
                    1.0
                             2.0
                                    3.0
                                           4.0
                                                  5.0
                                                          6.0
                                                                 7.0
                                                                        8.0
                                                                                11.0 12.0
                                                                                                \
       FROM WARD
                                                                                   2
       1.0
                    3548
                              295
                                       4
                                              34
                                                      0
                                                             0
                                                                     0
                                                                            0
                                                                                           0
                                                                                              •••
                                            390
       2.0
                     314
                             3761
                                     141
                                                      3
                                                             0
                                                                     0
                                                                            0
                                                                                   1
                                                                                           0
       3.0
                       11
                               72
                                     950
                                           1107
                                                    292
                                                             0
                                                                     0
                                                                            2
                                                                                 209
                                                                                           3
       4.0
                                    1375
                                                    580
                                                             0
                                                                                 144
                                                                                           0
                       18
                              380
                                           3834
                                                                     0
                                                                            1
       5.0
                        2
                                2
                                                   3625
                                     196
                                            617
                                                             0
                                                                    16
                                                                           26
                                                                                  18
                                                                                           0
       6.0
                        0
                                                                                   0
                                0
                                       0
                                               1
                                                      1
                                                            18
                                                                     1
                                                                           26
                                                                                           0
                                                                                              ...
                                0
       7.0
                        0
                                        0
                                               0
                                                     17
                                                             0
                                                                    97
                                                                            1
                                                                                   0
                                                                                           0
```

8.0	0	0	2	0	25	10	1	42	0	0	
11.0	2	8	172	304	4	0	0	0	863	61	
12.0	1	0	4	2	0	0	0	0	38	32	
15.0	1	0	3	15	0	0	0	0	149	9	•••
16.0	0	0	0	0	0	1	0	0	7	0	•••
17.0	0	0	0	0	0	0	0	0	0	0	•••
20.0	0	0	47	28	144	5	0	8	10	6	
22.0	0	0	0	4	0	0	0	0	0	1	•••
24.0	0	0	1	0	0	0	0	0	1	0	•••
25.0	45	25	158	144	2	0	0	0	225	31	•••
26.0	656	14	0	2	0	0	0	0	0	0	•••
27.0	1448	2341	91	407	0	0	0	0	26	109	•••
28.0	57	68	140	421	1	0	0	0	123	12	•••
29.0	0	0	0	0	0	0	0	0	0	0	•••
30.0	48	0	0	0	0	0	0	0	0	0	•••
32.0	1854	464	0	42	0	0	0	0	0	0	•••
33.0	38	0	0	0	0	0	0	0	0	0	•••
34.0	1169	4303	2358	4678	5	0	0	0	179	70	•••
35.0	603	3	0	0	0	0	0	0	0	0	•••
36.0	1179	176	9	15	0	0	0	0	0	0	•••
37.0	0	0	0	0	0	0	0	0	0	0	•••
39.0	6	0	0	0	0	0	0	0	0	0	•••
40.0	7	0	0	14	0	0	0	0	0	0	•••
42.0	2235	10162	1619	4169	21	0	1	0	110	2	•••
43.0	462	3502	8	310	3	0	0	0	0	1	•••
44.0	105	691	3	10	1	0	0	0	0	0	•••
45.0	14	1	0	0	0	0	0	0	0	0	•••
46.0	27	387	2	4	2	0	0	0	1	0	•••
47.0	278	61	0	6	0	0	0	0	0	0	•••
48.0	35	17	0	3	1	0	0	0	0	0	•••
49.0	0	4	0	0	0	0	0	0	0	0	•••
50.0	0	1	0	0	1	0	0	0	0	0	•••
TO WARD FROM WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	
1.0	7	2196	353	130	16	38	252	30	1	0	
2.0	3	8840	3798	775	0	524	110	30	3	0	
3.0	0	1647	14	3	0	0	0	0	0	0	
4.0	1	4564	224	19	1	6	2	5	0	1	
5.0	0	26	3	2	0	1	0	0	0	0	
6.0	0	3	0	0	0	0	0	0	0	0	
7.0	0	0	0	0	0	0	0	0	0	0	
8.0	0	1	0	0	0	0	0	0	0	0	
11.0	0	134	4	2	0	0	0	0	0	0	
12.0	0	0	0	0	0	0	0	0	0	0	
15.0	0	0	0	0	0	0	0	0	0	0	
16.0	0	0	0	0	0	0	0	0	0	0	

```
17.0
                 0
                         0
                                0
                                       0
                                               0
                                                      0
                                                             0
                                                                     0
                                                                            0
                                                                                   0
20.0
                 0
                                0
                                       0
                                               0
                                                      0
                                                             0
                                                                     0
                                                                            0
                                                                                   0
                         1
22.0
                 0
                         1
                                0
                                       0
                                               0
                                                      0
                                                             0
                                                                     0
                                                                            0
                                                                                   0
                         2
24.0
                 0
                                0
                                       0
                                               0
                                                      0
                                                             0
                                                                     0
                                                                            0
                                                                                   0
25.0
                 0
                       446
                               20
                                        2
                                               0
                                                      0
                                                             0
                                                                     1
                                                                            0
                                                                                   0
26.0
                       212
                               54
                                       4
                                               3
                                                      2
                                                            17
                                                                            0
                                                                                   0
                 1
                                                                     1
27.0
                    11144
                 2
                             1491
                                     333
                                               1
                                                     79
                                                            31
                                                                     6
                                                                            0
                                                                                   1
28.0
                 0
                      1365
                                       3
                                               0
                                                      0
                                                             2
                                                                     0
                                                                            0
                                                                                   0
                               15
29.0
                                0
                                       0
                                               0
                                                                            0
                                                                                   0
                0
                         0
                                                      0
                                                             0
                                                                     0
30.0
                 1
                         0
                                2
                                       2
                                              16
                                                      0
                                                            21
                                                                     0
                                                                            0
                                                                                   1
32.0
               32
                                                                            3
                     1043
                            3360
                                    1630
                                              13
                                                    343
                                                          1555
                                                                    51
                                                                                   0
33.0
               51
                         0
                               20
                                      15
                                              26
                                                     40
                                                           241
                                                                    25
                                                                            1
                                                                                   1
                    26390
34.0
                0
                             1742
                                     259
                                              10
                                                     42
                                                            31
                                                                     2
                                                                            3
                                                                                   0
35.0
               30
                                              50
                                                                            3
                        11
                               60
                                       36
                                                     11
                                                           193
                                                                    12
                                                                                   1
36.0
                1
                       434
                               31
                                       27
                                               1
                                                      6
                                                             7
                                                                     6
                                                                            0
                                                                                   0
37.0
                0
                                0
                                       0
                                               0
                                                      0
                                                                            0
                                                                                   0
                         0
                                                             0
                                                                     0
39.0
               54
                                       3
                                                      9
                                                                   25
                                                                            2
                                                                                   3
                         0
                                0
                                              11
                                                            86
40.0
              480
                        15
                               64
                                       51
                                              10
                                                     69
                                                          1586
                                                                  495
                                                                          499
                                                                                  28
                                                                            7
42.0
                    42411
                                    1038
                                               3
                                                    272
                                                           135
                                                                   44
               11
                             5617
                                                                                   1
43.0
               20
                     5604
                            9199
                                    2727
                                               1
                                                   1144
                                                           785
                                                                  480
                                                                           21
                                                                                   1
44.0
              128
                       883
                             2363
                                    4375
                                               5
                                                   2438
                                                          1357
                                                                  483
                                                                           95
                                                                                   2
45.0
                 2
                         6
                                2
                                       8
                                              95
                                                      7
                                                            27
                                                                     0
                                                                            0
                                                                                   0
46.0
              103
                       252
                             1144
                                    2476
                                              13
                                                  6197
                                                          1236
                                                                 1036
                                                                           49
                                                                                   0
47.0
             1794
                                                                                  29
                        93
                              680
                                    1330
                                              27
                                                   1377
                                                          7224
                                                                  945
                                                                           70
48.0
              538
                        27
                              357
                                     435
                                               1
                                                    802
                                                           819
                                                                 2226
                                                                          430
                                                                                  31
49.0
              488
                         1
                               11
                                       15
                                               0
                                                     41
                                                            59
                                                                   366
                                                                        3252
                                                                                  46
50.0
                                2
                                               0
               27
                         1
                                       1
                                                      1
                                                            15
                                                                    13
                                                                           28
                                                                                   8
```

```
[24]: TO WARD
                          2.0
                                 3.0
                                        4.0
                                               5.0
                                                      6.0
                                                             7.0
                                                                    8.0
                                                                           11.0
                                                                                 12.0 ...
                                                                                           \
                   1.0
      FROM WARD
      1.0
                           233
                                    3
                                                                       0
                                                                              0
                   1018
                                           6
                                                  0
                                                         0
                                                                0
                                                                                     0
                                                  7
      2.0
                                         407
                                                         0
                                                                0
                                                                       0
                                                                              4
                                                                                     0
                    189
                          3727
                                  136
```

3.0	1	106	513	1220	198	0	0	0	200	2	
4.0	10	362	1151	3193	1362	1	1	0	156	1	
5.0	0	8	229	1351	2629	3	39	18	2	0	
6.0	0	0	0	0	2	80	0	38	0	0	
7.0	0	0	0	0	22	0	375	13	0	0	
8.0	0	0	0	0	18	47	5	51	0	0	•••
11.0	0	3	135	248	6	0	0	0	710	26	•••
12.0	0	0	5	1	0	0	0	0	25	36	•••
15.0	0	0	5	0	0	0	0	0	7	12	
16.0	0	0	20	1	0	2	0	0	4	1	•••
20.0	0	0	100	50	199	8	0	6	196	2	•••
22.0	0	0	0	0	0	0	0	0	0	0	•••
24.0	0	0	0	0	0	0	0	0	0	2	•••
25.0	6	6	78	33	0	0	0	0	182	20	
26.0	285	5	0	0	0	0	0	0	0	0	•••
27.0	515	1804	26	283	12	0	0	0	7	0	•••
28.0	18	23	77	210	0	0	0	0	86	4	•••
29.0	0	0	0	0	0	0	0	0	0	0	
30.0	9	0	0	0	0	0	0	0	0	0	
32.0	909	560	1	4	26	0	0	0	0	0	
33.0	34	29	0	0	0	0	0	0	0	0	
34.0	195	2851	1566	3196	8	0	0	0	276	0	•••
35.0	120	5	0	1	0	0	0	0	0	0	•••
36.0	294	45	0	6	0	0	0	0	0	0	•••
37.0	0	0	0	0	0	0	0	0	0	0	
39.0	0	0	0	0	0	0	0	0	0	0	•••
40.0	6	6	0	0	0	0	0	0	0	0	•••
42.0	365	7636	1200	4014	22	0	0	0	124	0	•••
43.0	212	2767	4	94	3	0	0	0	4	0	•••
44.0	65	499	0	7	0	0	0	0	0	0	
45.0	0	0	0	0	0	0	0	0	0	0	
46.0	8	161	0	1	0	0	0	0	0	0	
47.0	57	74	0	0	0	0	0	0	0	0	•••
48.0	4	87	0	0	0	0	0	0	0	0	•••
49.0	0	0	0	1	0	0	0	0	0	0	•••
50.0	0	0	0	0	0	0	0	0	0	0	•••
TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	
FROM WARD											
1.0	2	307	250	59	4	6	43	2	0	0	
2.0	5	6801	2992	675	0	187	58	57	0	0	
3.0	0	1059	12	2	0	0	0	0	0	0	
4.0	0	4162	113	15	0	7	1	0	0	0	
5.0	0	29	2		0	0	0	0	0	0	
6.0	0	0	0	0	0	0	0	0	0	0	
7.0	0	0	0	0	0	0	0	0	0	0	
8.0	0	0	0	0	0	0	0	0	0	0	

11.0	0	156	1	0	0	0	1	0	0	0
12.0	0	2	0	0	0	0	0	0	0	0
15.0	0	0	0	0	0	0	0	0	0	0
16.0	0	0	0	0	0	0	0	0	0	0
20.0	0	0	0	0	0	0	0	0	0	0
22.0	0	0	0	0	0	0	0	0	0	0
24.0	0	0	0	0	0	0	0	0	0	0
25.0	0	73	0	0	0	0	0	0	0	0
26.0	1	30	19	8	0	0	3	2	0	0
27.0	0	6398	1000	285	0	57	48	5	0	0
28.0	1	895	15	2	0	0	0	0	0	0
29.0	0	0	0	0	1	0	0	0	0	0
30.0	0	0	2	3	11	0	2	0	0	0
32.0	42	500	1941	1005	6	205	882	19	2	0
33.0	115	1	11	10	32	14	230	10	0	3
34.0	2	21794	861	87	0	10	32	6	0	0
35.0	50	16	14	14	10	4	51	4	0	0
36.0	0	273	11	3	0	3	10	0	0	0
37.0	0	0	0	0	0	0	0	0	0	0
39.0	36	0	2	0	32	2	35	4	4	0
40.0	1280	0	22	26	6	77	835	392	134	64
42.0	1	34192	3746	605	1	141	74	16	0	0
43.0	15	3391	7254	1902	0	716	473	266	0	0
44.0	24	372	1500	2693	5	1788	1019	323	38	8
45.0	3	0	1	12	44	5	22	0	0	0
46.0	66	138	763	1498	2	3808	1064	800	44	0
47.0	747	34	422	721	19	1024	4159	606	76	8
48.0	580	12	225	261	1	672	470	1797	401	52
49.0	235	0	1	25	0	58	57	415	2575	30
50.0	30	0	0	6	0	2	21	35	28	10

[25]: TO WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	•••	\
FROM WARD											•••	
1.0	422	34	0	3	0	0	0	0	0	0	•••	
2.0	49	1508	18	98	0	0	0	0	0	0	•••	
3.0	1	20	256	645	94	0	0	0	56	3	•••	
4.0	4	93	403	1575	442	0	0	0	32	1	•••	
5.0	0	0	73	418	1413	1	4	1	0	0	•••	
6.0	0	0	0	0	0	2	1	0	0	0	•••	
7.0	0	0	0	0	3	0	3	0	0	0	•••	
8.0	0	0	0	0	0	0	0	3	0	0	•••	
11.0	0	0	71	57	0	0	0	0	231	34	•••	
12.0	0	0	84	2	0	0	0	0	47	8	•••	
15.0	0	0	0	0	0	0	0	0	2	2	•••	
17.0	0	0	0	0	0	0	0	0	0	0	•••	
20.0	0	0	9	15	10	0	1	0	1	0	•••	
22.0	0	0	0	0	0	0	0	0	0	0	•••	
24.0 25.0	0 7	0	0	0 54	0 0	0	0	0	1 76	5 70	•••	
26.0		0 2	29 0	0	0	0	0	0	76 0	78 0	•••	
27.0	61 247	789	6	38	0	0	0	0	4	0	•••	
28.0	10	16	39	237	0	0	0	0	23	1	•••	
29.0	0	10	0	0	0	0	0	0	0	0	•••	
30.0	2	0	0	0	0	0	0	0	0	0	•••	
32.0	189	48	0	0	0	0	0	0	0	0	•••	
33.0	3	0	0	0	0	0	0	0	0	0	•••	
34.0	79	1434	435	1533	0	0	0	0	20	0	•••	
35.0	61	2	0	0	0	0	0	0	0	0		
36.0	61	4	0	0	0	0	0	0	0	0		
37.0	1	0	0	0	0	0	0	0	0	0		
39.0	0	0	0	0	0	0	0	0	0	0	•••	
40.0	0	0	0	0	0	0	0	0	0	0		
42.0	180	3109	455	1317	22	0	0	0	5	0		
43.0	39	1057	2	19	0	0	0	0	0	0		
44.0	8	222	0	7	0	0	0	0	0	0		
45.0	4	0	0	0	0	0	0	0	0	0		
46.0	3	40	0	1	0	0	0	0	0	0		
47.0	10	74	0	0	0	0	0	0	0	0		
48.0	0	3	0	2	0	0	0	0	0	0		
49.0	0	0	0	0	0	0	0	0	0	0		
50.0	0	0	0	0	0	0	0	0	0	0	•••	
TO WARD FROM WARD	40.0	42.0	43.0	44.0	45.0	46.0		48.0	49.0	50.0		
1.0	0	150	28	6	4		14	0	0	0		
2.0	0	3212	1009	232	0	31	64	6	0	0		
3.0	0	447	3	0	0	0	0	0	0	0		
4.0	0	1555	50	3	0	0	0	1	0	0		

5.0	0	18	0	0	0	0	0	0	0	0
6.0	0	0	0	0	0	0	0	0	0	0
7.0	0	0	0	0	0	0	0	0	0	0
8.0	0	0	0	0	0	0	0	0	0	0
11.0	0	7	0	0	0	0	0	0	0	0
12.0	0	0	0	0	0	0	0	0	0	0
15.0	0	0	0	0	0	0	0	0	0	0
17.0	0	0	0	0	0	0	0	0	0	0
20.0	0	0	0	0	0	0	0	0	0	0
22.0	0	0	0	0	0	0	0	0	0	0
24.0	0	0	0	0	0	0	0	0	0	0
25.0	0	18	4	1	0	0	0	0	0	0
26.0	0	5	6	0	0	0	1	0	0	0
27.0	0	2066	366	29	0	64	13	8	0	0
28.0	0	454	0	5	0	0	0	0	0	0
29.0	0	0	0	0	0	0	0	0	0	0
30.0	0	0	2	0	5	0	2	0	0	0
32.0	7	133	723	171	2	31	571	2	0	0
33.0	20	0	1	1	47	5	61	1	1	0
34.0	0	7184	358	66	0	3	0	2	0	0
35.0	1	3	4	4	15	1	62	0	0	0
36.0	0	75	5	0	0	0	0	0	0	0
37.0	0	0	0	0	0	0	0	0	0	0
39.0	10	0	0	0	3	0	8	13	0	1
40.0	196	0	5	14	20	27	172	139	71	36
42.0	0	13327	1263	127	0	31	0	7	0	0
43.0	6	1271	2387	784	0	229	97	125	0	0
44.0	12	119	707	1499	1	882	347	284	0	0
45.0	7	0	0	0	22	2	7	0	0	0
46.0	31	30	309	809	1	1878	537	358	8	0
47.0	265	2	119	337	6	440	1310	110	10	2
48.0	137	4	146	188	0	395	78	464	104	7
49.0	65	0	0	0	0	1	4	128	927	16
50.0	25	0	0	0	0	0	2	3	15	9

```
[26]: # Drop null values
df_MM_clean_2018 = df_MM_clean_2018.dropna(subset=['BIRTH YEAR'])
```

```
[27]: # Convert BIRTH YEAR to integer

df_MM_clean_2018['BIRTH YEAR'] = df_MM_clean_2018['BIRTH YEAR'].astype('int')
```

[31]: # Create age groups based on the agr distribution of users

```
df_MM_clean_2018['age'] = df_MM_clean_2017['YEAR'] - df_MM_clean_2017['BIRTH_

YEAR'
]
[32]: # Define age groups
      age_bins = [0, 18, 30, 40, 50, 60, float('inf')] # Define age bins/ranges
      age_labels = ['0-18', '19-30', '31-40', '41-50', '51-60', '61+'] # Define_
       ⇔corresponding labels
[33]: # Create 'age group' column using pd.cut
      df_MM_clean_2018['age group'] = pd.cut(df_MM_clean_2018['age'], bins=age_bins,__
        →labels=age_labels, right=False)
[34]: age group_under_18_2018 = df_MM_clean_2018[df_MM_clean_2018['age group'] ==___
       # OD Matrix 2018 calculation using pivot table
      matrix_age_under_18_2018 = (
          age_group_under_18_2018.assign(count=1)
           .pivot_table(index='FROM WARD', columns='TO WARD',
                        values="count", aggfunc="count")
           .fillna(0)
           .astvpe(int)
      ).sort_values('FROM WARD')
      matrix_age_under_18_2018
[34]: TO WARD
                        2.0
                                     4.0
                                            5.0
                                                         11.0 16.0 20.0
                                                                            25.0 ...
                  1.0
                               3.0
                                                  8.0
                                                                                     \
      FROM WARD
                    23
      1.0
                           2
                                                     0
                                  1
                                        0
                                               0
                                                            0
                                                                  0
                                                                         0
                                                                               0
      2.0
                     2
                          16
                                  1
                                        1
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
                                                            2
      3.0
                                  3
                     0
                            1
                                       10
                                               1
                                                     0
                                                                  0
      4.0
                     0
                            1
                                 10
                                       17
                                               1
                                                     0
                                                            2
                                                                  0
                                                                               0
      5.0
                     0
                            0
                                  0
                                       11
                                              28
                                                     0
                                                            0
                                                                  0
                                                            0
                                                                  0
      8.0
                     0
                            0
                                  0
                                        0
                                               0
                                                     0
                                                                         1
                                                                               0
      11.0
                     0
                            1
                                  1
                                        2
                                               0
                                                     0
                                                           11
                                                                  0
                                                                         0
                                                                               1
      12.0
                     0
                            0
                                  0
                                        0
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
      16.0
                                  0
                                        0
                                               0
                                                                  1
                     0
                            0
                                                     1
                                                            0
                                                                         0
                                                                               0
      20.0
                            0
                                  0
                                        0
                                                            1
                                                                  0
                                                                         3
                     0
                                               1
                                                     0
      25.0
                                               0
                     1
                           1
                                  1
                                        0
                                                     0
                                                            3
                                                                  0
                                                                         0
                                                                                  •••
      26.0
                     9
                           0
                                        0
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
                                                                               0
      27.0
                    12
                          12
                                  1
                                        4
                                               0
                                                            0
                                                                  0
                                                                         0
                                                                               5
                                                     0
      28.0
                     0
                           0
                                  1
                                        1
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
                                                                               2
      29.0
                     0
                           0
                                  0
                                        0
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
                                                                               0
      30.0
                     0
                            0
                                  0
                                        1
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
                                                                               0
      32.0
                    12
                           4
                                  0
                                        0
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
      33.0
                     0
                           0
                                  0
                                        0
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
                                                                               0 ...
      34.0
                     5
                          15
                                  8
                                       17
                                               0
                                                     0
                                                            0
                                                                  0
                                                                         0
                                                                               3
      35.0
                     1
                                        0
                                               0
                                                     0
                                                            0
                                                                  0
                            1
```

36.0	1	1	0	0	0	0	0	0	0	0	•••
40.0	0	0	0	0	0	0	0	0	0	0	•••
42.0	13	36	12	19	0	0	0	0	0	0	
43.0	7	22	0	2	0	0	0	0	0	0	•••
44.0	0	1	0	1	0	0	0	0	0	0	•••
46.0	1	2	0	0	0	0	0	0	0	0	•••
47.0	1	2	0	0	0	0	0	0	0	0	•••
48.0	0	2	0	0	0	0	0	0	0	0	•••
49.0	0	0	0	0	0	0	0	0	0	0	•••
TO WARD	36.0	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	
FROM WARD											
1.0	2	0	8	1	0	0	0	1	0	0	
2.0	0	0	46	21	3	0	1	0	0	0	
3.0	0	0	2	0	0	0	0	0	0	0	
4.0	0	0	11	1	1	0	0	0	0	0	
5.0	0	0	0	1	0	0	0	0	0	0	
8.0	0	0	0	0	0	0	0	0	0	0	
11.0	0	0	2	0	0	0	0	0	0	0	
12.0	0	0	0	0	0	0	0	0	0	0	
16.0	0	0	0	0	0	0	0	0	0	0	
20.0	0	0	0	0	0	0	0	0	0	0	
25.0	0	0	3	0	0	0	0	0	0	0	
26.0	1	0	0	0	0	0	0	0	0	0	
27.0 28.0	3 0	0	33 4	11 0	3	0	3	1 0	0	0	
29.0	0	0	0	0	0	0	0	0	0	0	
30.0	0	0	0	0	0	0	0	0	0	0	
32.0	0	0	5	14	11	0	1	4	0	0	
33.0	0	1	0	0	0	0	0	2	0	0	
34.0	1	0	70	5	0	0	0	0	0	0	
35.0	0	0	1	0	0	0	0	1	0	0	
36.0	3	0	3	0	0	0	0	0	0	0	
40.0	0	2	0	0	1	1	1	4	0	1	
42.0	1	0	149	33	3	0	2	2	1	2	
43.0	0	0	23	53	12	0	3	1	0	0	
44.0	1	0	5	12	13	1	17	4	2	0	
46.0	0	0	2	4	11	0	16	4	2	0	
47.0	0	3	1	2	5	0	5	20	1	0	
48.0	0	1	0	1	0	0	2	1	5	0	
49.0	0	2	0	1	0	0	0	0	3	6	

[29 rows x 28 columns]

```
[35]: age_group_19_30_2018 = df_MM_clean_2018[df_MM_clean_2018['age group'] ==_\_

\( \rightarrow' 19-30' \]
# OD Matrix 2018 calculation using pivot table
```

[35]: TO WARD FROM WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	•••	\
1.0	11006	1266	41	138	3	0	0	0	31	36		
2.0	1418	10717	378	1134	57	0	0	0	47	3		
3.0	35	355	1853	3849	461	0	0	2	913	27		
4.0	159	1175	4362	8888	3609	2	2	3	1001	9	•••	
5.0	3	26	424	3640	12776	11	48	43	23	0		
6.0	0	0	2	0	15	231	7	35	0	0		
7.0	0	1	0	2	40	0	319	9	0	0	•••	
8.0	0	0	0	5	38	40	20	76	0	0	•••	
11.0	23	43	734	940	29	0	0	0	3104	108	•••	
12.0	12	1	34	18	0	0	0	0	88	128		
15.0	0	0	3	8	6	0	0	0	63	53	•••	
16.0	0	0	5	2	2	15	0	2	6	2	•••	
17.0	0	0	0	0	0	3	0	0	0	0		
20.0	0	0	128	131	464	23	1	16	48	7	•••	
22.0	0	3	0	5	0	0	0	0	0	0		
24.0	2	0	0	2	0	0	0	0	0	4	•••	
25.0	145	125	256	285	23	1	0	2	438	109	•••	
26.0	1613	78	0	8	1	0	0	0	0	0	•••	
27.0	5354	6613	202	682	13	0	0	0	139	52	•••	
28.0	270	219	394	912	12	1	0	0	314	22	•••	
29.0	1	2	0	0	0	0	0	0	1	0	•••	
30.0	30	2	0	0	0	0	0	0	0	0	•••	
32.0	4506	1268	7	50	3	0	0	0	4	1	•••	
33.0	114	19	0	0	0	0	0	0	0	0	•••	
34.0	3139	6542	4185	7230	50	1	0	0	740	32	•••	
35.0	1337	73	0	11	0	0	0	0	0	0	•••	
36.0	1756	298	5	65	0	0	0	0	7	0	•••	
37.0	3	0	0	0	0	0	0	0	0	0	•••	
39.0	7	7	0	0	0	0	0	0	0	0	•••	
40.0	31	16	1	1	0	0	0	0	0	0	•••	
42.0	5906	21950	2957	8741	222	0	4	0	493	8	•••	
43.0	1726	9091	79	516	28	0	0	0	22	0	•••	
44.0	602	1940	20	127	10	0	0	0	4	1	•••	
45.0	43	4	0	1	0	0	0	0	0	0	•••	
46.0	147	921	4	43	0	0	0	0	2	0	•••	

47.0	410	317	0	21	0	0	0	0	1	0
48.0	32		6	21	3	0	0	0	1	0
49.0	18		1	0	0	0	0	0	0	0
50.0	0		0	0	0	0	0	0	0	0
30.0	U	Z	O	O	U	O	O	U	U	0
TO WARD FROM WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0
1.0	37	5189	1689	577	44	158	429	30	21	0
2.0	21	19454	9919	2346	3	1212	376	205	19	1
3.0	0	2770	121	19	0	6	1	6	0	0
4.0	3	9159	669	163	2	69	26	30	2	0
5.0	0	259	18	2	0	0	1	5	0	0
6.0	0	1	0	0	0	0	0	0	0	0
7.0	0	2	0	0	0	0	0	0	0	0
8.0	0	0	1	1	0	0	0	0	0	0
11.0	0	420	18	4	0	1	0	0	0	0
12.0	0	5	0	0	0	0	0	0	0	0
15.0	0	0	0	0	0	0	0	0	0	0
16.0	0	2	0	0	0	0	0	0	0	0
17.0	0	0	0	0	0	0	0	0	0	0
20.0	0	5	0	0	0	0	0	0	0	0
22.0	0	4	0	0	0	0	0	0	0	0
24.0	0	5	1	0	0	0	0	0	0	0
25.0	1	875	44	10	0	3	2	1	0	0
26.0	6	363	144	40	2	9	26	5	0	0
27.0	19	20546	5291	1378	4	405	363	61	3	0
28.0	2	2442	81	21	2	5	9	4	0	0
29.0	0	2	0	0	2	0	0	0	0	0
30.0	4	1	7	19	137	5	13	2	0	1
32.0	109	2175	7320	4086	35	784	2394	119	19	1
33.0	128	29	47	80	81	120	476	42	5	3
34.0	9	38439	3622	842	6	253	170	38	13	0
35.0	38	261	239	181	134	57	296	25	5	0
36.0	6	1061	153	55	3	16	56	0	1	0
37.0	0	0	1	0	1	0	0	0	0	0
39.0	61	2	7	9	48	29	194	40	5	2
40.0	797	43	129	198	20	244	1846	871	533	39
42.0	25	74245	13911	3642	13	1591	589	378	31	0
43.0	109	11763	27243	8180	5	2963	1423	844	72	6
44.0	189	2472	7444	12027	19	5928	2536	839	89	3
45.0	22	4	12	11	343	22	106	16	1	0
46.0	277	1194	2725	5793	15	11584	2806	1807	171	2
47.0	2074	413	1234	2342	97	2737	10360	1524	125	24
48.0	917	207	714	721	16	1664	1318	3658	638	69
49.0	559	10	81	57	0	118	128	554	4065	63
50.0	29	0	5	5	1	3	22	44	46	14

40.0

```
[36]: age group 31 40 2018 = df MM_clean 2018[df MM_clean 2018['age group'] ==_
        # OD Matrix 2018 calculation using pivot table
       matrix age 31 40 2018 = (
           age_group_31_40_2018.assign(count=1)
            .pivot_table(index='FROM WARD', columns='TO WARD',
                           values="count", aggfunc="count")
            .fillna(0)
            .astype(int)
       ).sort_values('FROM WARD')
       matrix_age_31_40_2018
                                    3.0
                                                   5.0
                                                           6.0
                                                                  7.0
[36]: TO WARD
                     1.0
                             2.0
                                           4.0
                                                                         8.0
                                                                                11.0
                                                                                       12.0
                                                                                                  \
      FROM WARD
                                                                                  24
       1.0
                    10622
                             1249
                                       36
                                             147
                                                       7
                                                              0
                                                                     0
                                                                            0
                                                                                         40
       2.0
                     1365
                            10389
                                     348
                                           1122
                                                      37
                                                              0
                                                                     0
                                                                             0
                                                                                  50
                                                                                           3
       3.0
                                                     399
                                                              4
                                                                     0
                       43
                              360
                                    1859
                                           3613
                                                                            0
                                                                                 832
                                                                                          15
       4.0
                      153
                             1080
                                    4223
                                           8664
                                                   3363
                                                              2
                                                                     6
                                                                            6
                                                                                1010
                                                                                           9
                        7
                                     407
                                           3507
       5.0
                               13
                                                   12128
                                                             13
                                                                    61
                                                                           38
                                                                                  30
                                                                                           1
       6.0
                        0
                                 0
                                                      24
                                                            226
                                                                     2
                                                                           38
                                                                                    0
                                        1
                                               0
                                                                                           0
       7.0
                        0
                                 0
                                        0
                                               2
                                                                                    0
                                                      50
                                                              2
                                                                   287
                                                                           12
                                                                                           0
                                                                                              •••
       8.0
                        0
                                 0
                                        0
                                               7
                                                      45
                                                             44
                                                                           74
                                                                    11
                                                                                    1
                                                                                           0
       11.0
                       32
                               41
                                     727
                                             875
                                                      33
                                                              0
                                                                     0
                                                                                2879
                                                                                         97
                                                                             1
       12.0
                        6
                                 1
                                       37
                                              19
                                                       2
                                                              0
                                                                     0
                                                                             0
                                                                                  90
                                                                                         98
                        0
       15.0
                                 0
                                        4
                                              11
                                                       6
                                                              0
                                                                     0
                                                                             0
                                                                                  37
                                                                                          68
       16.0
                        0
                                 0
                                        2
                                               1
                                                       2
                                                              8
                                                                     0
                                                                             2
                                                                                    2
                                                                                           3
       17.0
                        0
                                 0
                                        0
                                               0
                                                       0
                                                              2
                                                                     0
                                                                            0
                                                                                    0
                                                                                           0
       20.0
                        0
                                 1
                                     139
                                              95
                                                     457
                                                                     2
                                                                           17
                                                                                  37
                                                             27
                                                                                           5
                                                                                              •••
                                 2
       22.0
                        0
                                                                            0
                                        0
                                              12
                                                       0
                                                              0
                                                                     0
                                                                                    2
                                                                                           0
                                                                                              •••
                                                                     0
       24.0
                        5
                                 1
                                        0
                                               9
                                                       1
                                                              0
                                                                             0
                                                                                    1
                                                                                           3
                                                                                              ...
       25.0
                      162
                              111
                                     213
                                             288
                                                      19
                                                              0
                                                                     0
                                                                             0
                                                                                 372
                                                                                         91
       26.0
                     1500
                                                                     0
                               90
                                        1
                                               7
                                                       0
                                                              0
                                                                             0
                                                                                    3
                                                                                           0
       27.0
                     5090
                             6353
                                     188
                                             693
                                                      12
                                                              0
                                                                     0
                                                                             0
                                                                                 116
                                                                                          41
       28.0
                      256
                              205
                                     400
                                             871
                                                       4
                                                              0
                                                                     0
                                                                             0
                                                                                 277
                                                                                          20
       29.0
                                 0
                                                       0
                                                              0
                                                                     0
                                                                             0
                                                                                           0
                        3
                                        0
                                               1
                                                                                    0
                                                                                              •••
       30.0
                       40
                                 2
                                        0
                                               0
                                                       0
                                                              0
                                                                     0
                                                                             0
                                                                                    0
                                                                                           0
                                                                                              •••
       32.0
                     4179
                                        5
                                              53
                                                       5
                                                              0
                                                                     0
                                                                             0
                                                                                    6
                             1223
                                                                                           0
                                                                                              ...
       33.0
                      148
                               21
                                        0
                                               0
                                                       0
                                                              0
                                                                     0
                                                                             0
                                                                                    0
                                                                                           0
                                                                                              •••
       34.0
                     2955
                             6286
                                    3966
                                           6825
                                                      56
                                                              0
                                                                     0
                                                                             1
                                                                                 724
                                                                                          40
       35.0
                     1367
                               61
                                        0
                                               7
                                                       0
                                                              0
                                                                     0
                                                                             0
                                                                                    0
                                                                                           0
       36.0
                     1702
                              219
                                        4
                                                       1
                                                              0
                                                                     0
                                                                             0
                                                                                  12
                                              55
                                                                                           1
       37.0
                                 0
                                        0
                                               0
                                                              0
                                                                     0
                                                                             0
                                                                                    0
                        2
                                                       0
                                                                                           0
       39.0
                        9
                                 6
                                        0
                                               0
                                                                     0
                                                                             0
                                                                                    0
                                                       0
                                                              0
                                                                                           0
```

42.0	5548	21153	2821	8176	203	4	1	0	506	13	•••
43.0	1661	8553	63	553	11	0	0	0	15	1	•••
44.0	619	1963	12	141	3	0	0	0	7	0	•••
45.0	30	5	0	1	0	0	0	0	0	0	•••
46.0	144	833	5	31	0	0	0	0	0	1	•••
47.0	321	284	0	17	0	0	0	0	0	0	•••
48.0	32	184	1	18	1	0	0	0	0	0	•••
49.0	18	17	0	2	0	0	0	0	0	^	•••
50.0	0	1	0	0	0	0	0	0	0	0	•••
TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	
FROM WARD											
1.0	31	5187	1571	556	40	162	427	27	24	2	
2.0	21	18249	9543	2231	1	1142	353	170	19	0	
3.0	0	2819	126	12	0	5	4	1	0	0	
4.0	1	8489	682	148	0	38	19	24	2	0	
5.0	0	219	16	7	0	2	1	2	0	0	
6.0	0	1	0	0	0	0	0	0	0	0	
7.0	0	2	0	0	0	0	0	0	0	0	
8.0	0	2	0	0	0	0	0	0	0	0	
11.0	0	443	16	5	0	0	2	0	0	0	
12.0	0	8	1	0	0	0	0	0	0	0	
15.0	0	0	0	0	0	0	0	0	0	0	
16.0	0	1	0	0	0	0	0	0	0	0	
17.0	0	0	0	0	0	0	0	0	0	0	
20.0	0	6	0	0	0	0	0	0	0	0	
22.0	0	4	0	0	0	0	0	0	0	0	
24.0	0	21	0	0	0	0	0	0	0	0	
25.0	0	859	39	6	0	3	3	3	0	0	
26.0	5	322	117	28	2	8	29	3	0	0	
27.0	17	19623	4965	1346	6	325	301	53	6	0	
28.0	0	2311	101	21	3	7	5	2	0	0	
29.0	0	5	0	0	0	0	0	0	0	0	
30.0	4	4	1	9	136	7	18	2	0	0	
32.0	112	2038	7091	3976	33	719	2252	88	24	0	
33.0	113	27	41	68	79	103	471	44	4	2	
34.0	9	36308	3349	816	8	237	172	42	10	0	
35.0	37	271	248	159	136	52	281	24	3	0	
36.0	4	953	136	46	3	16	44	1	1	0	
37.0	0	0	0	0	0	0	0	0	0	0	
39.0	70	3	7	11	38	34	161	31	1	5	
40.0	771	40	99	161	22	235	1771	848	494	26	
42.0	26	71162	13149	3442	4	1421	540	350	35	1	
43.0	88	11087		7633		2852	1317	845		3	
44.0			6916		15	5601	2521	768		2	
45.0	23		8	19	334		96	15		0	
46.0	282		2649							2	

```
47.0
           2085
                   415
                         1173
                                 2218
                                         90
                                              2586 10077
                                                           1461
                                                                   108
                                                                          24
48.0
            849
                   204
                          690
                                 714
                                         25
                                              1517
                                                     1302
                                                           3500
                                                                   607
                                                                          55
49.0
                                  65
                                               124
            551
                    25
                           76
                                                      124
                                                            526
                                                                  3824
                                                                          60
                                          1
50.0
             36
                            6
                                    1
                                          0
                                                 2
                                                       24
                                                             46
                                                                           6
                     1
                                                                    42
```

[37]:	TO WARD FROM WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0		١
	1.0	4266	519	14	42	1	0	0	0	11	13		
	2.0	546	4343	130	424	15	0	0	0	17	1		
	3.0	20	140	754	1490	166	0	0	0	343	8		
	4.0	50	435	1752	3598	1424	3	0	0	390	2		
	5.0	0	8	174	1456	5071	7	27	16	10	0		
	6.0	0	0	1	1	4	92	2	16	0	0		
	7.0	0	0	0	2	22	0	98	5	0	0		
	8.0	0	0	2	2	15	14	5	27	0	0		
	11.0	6	18	272	414	12	1	0	0	1154	47		
	12.0	1	0	12	5	0	0	0	0	46	39		
	15.0	1	0	1	4	2	1	0	0	22	24		
	16.0	0	0	1	0	1	8	0	1	2	0		
	17.0	0	0	0	0	0	0	0	0	0	0		
	20.0	0	0	57	42	180	10	1	3	24	3		
	22.0	0	3	0	5	0	0	0	0	0	0		
	24.0	1	0	0	0	0	0	0	0	1	1		
	25.0	58	33	82	113	3	0	0	0	185	37		
	26.0	652	31	1	6	0	0	0	0	1	0		
	27.0	2116	2574	79	272	4	0	0	0	47	12		
	28.0	107	84	164	305	2	0	0	0	141	6		
	29.0	2	2	0	0	0	0	0	0	0	0		
	30.0	12	1	0	0	0	0	0	0	0	0		
	32.0	1775	495	2	19	2	0	0	0	1	0		
	33.0	35	7	0	0	0	0	0	0	0	0		
	34.0	1152	2597	1552	2776	21	1	0	0	294	17	•••	

35.0	518	30	0	2	0	0	0	0	0	0
36.0	681	102	1	19	0	0	0	0	4	1
37.0	0	0	0	0	0	0	0	0	0	0
39.0	4	3	0	0	0	0	0	0	0	0
40.0	15	6	1	0	0	0	0	0	0	0
42.0	2391	8583	1178	3351	103	0	0	1	191	3
43.0	705	3476	27	216	6	0	0	0	4	0
44.0	234	801	5	44	0	0	0	0	1	0
45.0	10	1	0	1	0	0	0	0	0	0
46.0	79	360	3	23	0	0	0	0	0	0
47.0	151	113	0	8	1	0	0	0	0	0
48.0	13	68	1	12	2	0	0	0	0	0
49.0	15	5	1	0	0	0	0	0	1	0
50.0	0	0	0	0	0	0	0	0	0	0
TO WARD FROM WARD	40.0	42.0	43.0		45.0	46.0	47.0	48.0	49.0	50.0
1.0	25	2149	701		15	62	157	14	9	0
2.0	6	7888	3985		3	457	131	84	8	0
3.0	0	1128	41		0	5	0	1	0	0
4.0	1	3537	280		0	22	7	10	0	0
5.0	0	91	2		0	0	0	1	0	0
6.0	0	0	C		0	0	0	0	0	0
7.0	0	1	C		0	0	0	0	0	0
8.0	0	0	C		0	0	0	0	0	0
11.0	0	198	7		0	1	0	1	0	0
12.0	0	1	C		0	0	0	0	0	0
15.0	0	0	(0	0	0	0	0	0
16.0	0	0	C		0	0	0	0	0	0
17.0	0	0	(0	0	0	0	0	0
20.0	0	4	(0	0	0	0	0	0
22.0	0	1	1		0	0	0	0	0	0
24.0	0	4	00		0	0	0	0	0	0
25.0	0	359	20		0	0 2	1	1 4	1	0
26.0 27.0	5	123 8324	52 1927		2	137	16 149	17	1	1 0
28.0		927	36		0	0	2		0	
29.0	1 0	921	(0		0	0	0	0
30.0	1	2	2		59	0 2	8	0	0	0 0
32.0	44	851	2860		11	304	922	51	6	0
33.0	52	12	2600		42	34	183	22	2	
34.0	3	15200	1326		42	96	61	16	5	0
35.0	16	108	97		54	21	102	6	1	0
36.0	0	381	51		1	2	18	0	0	0
37.0	0	0	(0	0	0	0	0	0
39.0	29	0	3		23	13	62	14	1	2
40.0	318	18	40		10	96	758	334	208	21
1 0.0	310	10	40	, 00	10	90	100	334	200	Z 1

```
42.0
             15 29632
                         5259 1419
                                        4
                                            635
                                                   226
                                                         131
                                                                16
                                                                       1
43.0
             38
                  4547
                        10589 3243
                                        2 1160
                                                   529
                                                         329
                                                                24
                                                                       1
44.0
             74
                   980
                               4747
                                           2270
                                                   957
                                                         298
                                                                41
                                                                       2
                         2948
                                        8
45.0
                                                                 0
             14
                     1
                            3
                                  7
                                                    45
                                                         10
                                                                       0
                                      136
                                              13
46.0
             89
                   444
                         1130
                               2246
                                        8 4549
                                                 1140
                                                         726
                                                                50
                                                                       5
47.0
            812
                   151
                          462
                                917
                                       29 1117 4215
                                                         584
                                                                54
                                                                      13
48.0
                          250
                                                        1406
                                                                      24
            357
                    79
                                269
                                       14
                                            579
                                                   558
                                                               241
49.0
            212
                     6
                           36
                                 27
                                        1
                                              49
                                                    52
                                                         217
                                                              1666
                                                                      18
50.0
                            4
                                                    9
                                                                22
                                                                       6
             11
                     0
                                  0
                                        0
                                              4
                                                          18
```

[38]:	TO WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0		\
	FROM WARD											•••	
	1.0	2826	322	9	40	0	0	0	0	8	10	•••	
	2.0	369	2921	108	292	15	0	0	0	9	0	•••	
	3.0	9	77	501	1083	114	1	0	0	227	3	•••	
	4.0	44	305	1180	2427	951	0	2	4	263	2	•••	
	5.0	0	5	98	1016	3439	3	13	13	5	0		
	6.0	0	0	0	1	4	57	0	16	0	0		
	7.0	0	0	0	0	8	0	69	2	0	0		
	8.0	0	0	0	1	14	11	5	20	0	0		
	11.0	7	14	204	298	8	0	0	0	801	37		
	12.0	6	0	7	8	1	0	0	0	26	38		
	15.0	0	0	0	4	1	0	0	0	9	18		
	16.0	0	0	0	1	1	7	0	0	3	1		
	17.0	0	0	0	0	0	1	0	0	0	0		
	20.0	0	0	27	35	120	1	2	2	6	1		
	22.0	0	2	0	3	0	0	0	0	0	0		
	24.0	0	0	1	3	0	0	0	0	0	0		
	25.0	51	30	57	58	4	0	0	0	108	16		
	26.0	475	17	0	0	0	0	0	0	0	0	•••	
	27.0	1440	1742	54	170	3	0	0	0	43	24		
	28.0	81	52	108	237	2	0	0	0	88	2		

29.0	0	0	0	0	0	0	0	0	0	0.	••
30.0	11	1	0	0	0	0	0	0	0	0.	••
32.0	1226	372	2	15	2	0	0	0	0	0.	••
33.0	52	5	0	0	0	0	0	0	0	0.	••
34.0	854	1743	1147	1832	13	0	0	0	210	8.	••
35.0	370	18	0	0	0	0	0	0	0	0.	••
36.0	484	59	2	7	0	0	0	0	2		••
37.0	0	0	0	0	0	0	0	0	0		••
39.0	2	0	0	0	0	0	0	0	0	^	•••
40.0	10	6	0	0	0	0	0	0	0	•	••
42.0	1558	5762	747	2267	52	1	2	0	120		••
43.0	472	2349	18	165	8	0	0	0	8	_	••
44.0	157	527	3	26	0	0	0	0	0	^	••
45.0	10	0	0	0	0	0	0	0	0	0.	
46.0	40	227	0	12	1	0	0	0	1	0.	
47.0	67	86	0	4	0	0	0	0	0	_	••
48.0	8	59	0	2	1	0	0	0	0	^	•••
49.0	8	2	0	1	0	0	0	0	0	•	•••
50.0	0	1	0	0	0	0	0	0	0	0.	••
TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	
FROM WARD	10.0	12.0	10.0	11.0	10.0	10.0	11.0	10.0	10.0	00.0	
1.0	10	1355	466	154	11	43	124	10	7	0	
2.0	2	5253	2519	599	1	308	120	67	7	0	
3.0	0	737	28	4	0	3	2	0	0	0	
4.0	0	2329	199	46	0	12	7	5	2	0	
5.0	0	78	3	1	0	0	0	0	0	0	
6.0	0	0	0	0	0	0	0	0	0	0	
7.0	0	0	0	0	0	0	0	0	0	0	
8.0	0	0	0	0	0	0	0	0	0	0	
11.0	0	130	3	0	0	0	1	0	0	0	
12.0	0	1	0	0	0	0	0	0	0	0	
15.0	0	0	0	0	0	0	0	0	0	0	
16.0	0	1	0	0	0	0	0	0	0	0	
17.0	0	0	0	0	0	0	0	0	0	0	
20.0	0	0	0	0	0	0	0	0	0	0	
22.0	0	1	0	0	0	0	0	0	0	0	
24.0	0	5	0	0	0	0	0	0	0	0	
25.0	0	227	13	1	0	1	1	0	0	0	
26.0	0	91	28	7	1	3	8	1	0	0	
27.0	4	5527	1389	388	1	76	88	13	0	0	
28.0	0	643	22	3	1	3	0	0	0	0	
29.0	0	043	0	0	0	0	0	0	0	0	
30.0	2	0	1	2	37	0	3	1	0	0	
32.0	29	579	1897	1081	11	218	631	33	5	2	
33.0	23	519	1091	1001	11	210	001	55	J	2	
	23	7	Q	1Ω	10	23	120	11	2	\cap	
34.0	23 3	7 10119	8 912	18 210	19 0	23 65	132 39	11 6	3 1	0 0	

```
35.0
                      76
                             54
                                   52
                                          38
               9
                                                 21
                                                       65
                                                               8
                                                                      0
                                                                            0
36.0
               1
                     285
                             33
                                    9
                                           0
                                                  6
                                                       14
                                                               0
                                                                      0
                                                                             0
37.0
                                    0
               0
                       0
                             0
                                           0
                                                  0
                                                        0
                                                               0
                                                                      0
                                                                             0
39.0
                                                  7
                                                       37
                                                                      2
                       2
                             1
                                    4
                                          14
                                                              12
                                                                            1
              11
40.0
             227
                       9
                             36
                                   49
                                          12
                                                 59
                                                      500
                                                             245
                                                                    135
                                                                            15
42.0
                  19778
                          3548
                                  927
                                           1
                                                417
                                                      156
                                                              95
                                                                     10
                                                                            0
               6
43.0
              29
                                                                            2
                   3142
                          6975
                                 2051
                                           3
                                               757
                                                      389
                                                             224
                                                                     22
44.0
              52
                     649
                          1859
                                 3156
                                           2
                                               1585
                                                      653
                                                             197
                                                                     27
                                                                             1
45.0
               7
                       3
                                    4
                                                       26
                                                                      0
                                                                             0
                             2
                                          98
                                                  6
                                                               7
46.0
              69
                     336
                           754
                                 1566
                                           4 3003
                                                      717
                                                             501
                                                                     39
                                                                             0
47.0
                                                     2670
                                                             421
                                                                            7
             517
                     113
                           361
                                  658
                                          21
                                                697
                                                                     36
48.0
             217
                      54
                           194
                                  163
                                           5
                                                423
                                                      323
                                                            1001
                                                                    169
                                                                            16
                                                 23
49.0
             151
                       1
                             22
                                   14
                                           0
                                                       34
                                                             156
                                                                  1090
                                                                            17
50.0
               9
                       0
                             3
                                    1
                                           0
                                                       10
                                                  3
                                                              10
                                                                     16
                                                                            3
```

[39]: TO WARD	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	11.0	12.0	•••	\
FROM WARD											•••	
1.0	1102	130	7	20	1	0	0	0	3	5	•••	
2.0	137	1091	41	121	5	0	1	0	6	0		
3.0	5	39	191	371	48	0	0	0	84	0		
4.0	15	124	421	893	347	0	0	1	102	0		
5.0	1	0	30	364	1265	1	8	5	4	0		
6.0	0	0	1	0	1	19	0	1	0	0		
7.0	0	0	1	0	6	0	27	2	0	0		
8.0	0	0	0	0	6	2	2	5	0	0		
11.0	3	3	83	86	4	0	0	0	307	6		
12.0	0	0	7	2	0	0	0	0	10	9		
15.0	0	0	0	1	0	0	0	0	3	6		
16.0	0	0	0	0	0	1	0	0	0	0		
17.0	0	0	0	0	0	1	0	0	0	0		
20.0	0	0	13	14	54	2	0	2	2	0		
22.0	0	0	0	1	0	0	0	0	0	0	•••	

04.0	•	4	_	0	_	_	•	_	•	•	
24.0	0	1	0	2	0	0	0	0	0	0	•••
25.0	17	9	23	34	3	0	0	0	42	9	•••
26.0	149	6	0	4	0	0	0	0	0	0	•••
27.0	554	696	17	74	2	0	0	0	17	7	•••
28.0	25	18	39	97	0	0	0	0	28	4	•••
29.0	0	1	0	0	0	0	0	0	0	0	
30.0	2	1	0	0	0		0	0	0		
						0				0	•••
32.0	498	123	2	5	0	0	0	0	0	0	•••
33.0	17	0	0	0	0	0	0	0	0	0	•••
34.0	315	628	364	749	9	0	0	0	86	1	•••
35.0	148	7	0	1	0	0	0	0	0	0	•••
36.0	182	31	0	2	0	0	0	0	0	0	•••
37.0	0	0	0	0	0	0	0	0	0	0	•••
39.0	1	2	0	0	0	0	0	0	0	0	
40.0	2	1	0	2	0	0	0	0	0	0	
											•••
42.0	606	2098	298	907	17	0	0	0	50	1	•••
43.0	167	919	6	61	2	0	0	0	1	0	•••
44.0	66	210	1	13	1	0	0	0	0	0	•••
45.0	5	1	0	0	0	0	0	0	0	0	•••
46.0	19	102	0	4	0	0	0	0	0	0	•••
47.0	45	25	0	3	0	0	0	0	0	0	•••
48.0	6	20	0	2	0	0	0	0	0	0	•••
49.0	2	2	0	0	0	0	0	0	0	0	
50.0	0	1	0	0	0	0	0	0	0	0	•••
00.0	0				- 0	- 0	0	0	0	0	•••
TO WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	
TO WARD FROM WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	
TO WARD							47.0 54		49.0		
TO WARD FROM WARD	40.0	42.0	43.0	44.0	45.0	46.0	47.0	48.0	49.0	50.0	
TO WARD FROM WARD 1.0	40.0	42.0 529	43.0 162	44.0	45.0 4	46.0	47.0 54	48.0	49.0	50.0	
TO WARD FROM WARD 1.0 2.0	40.0	42.0 529 1925	43.0 162 1018	44.0 61 255	45.0 4 0	46.0 14 118	47.0 54 37	48.0 1 18	49.0 3 3	50.0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0	40.0 1 1 0 0	42.0 529 1925 287 867	43.0 162 1018 14 61	44.0 61 255 1	45.0 4 0 0	46.0 14 118 0 6	47.0 54 37 0	48.0 1 18 0 2	49.0 3 3 0 0	50.0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0	40.0 1 1 0 0	42.0 529 1925 287 867 20	43.0 162 1018 14 61 0	44.0 61 255 1 10 0	45.0 4 0 0 1	46.0 14 118 0 6	47.0 54 37 0 0	48.0 1 18 0 2	49.0 3 3 0 0	50.0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0	40.0 1 1 0 0 0	42.0 529 1925 287 867 20 0	43.0 162 1018 14 61 0	44.0 61 255 1 10 0	45.0 4 0 0 1 0	46.0 14 118 0 6 0	47.0 54 37 0 0 0	48.0 1 18 0 2 0	49.0 3 3 0 0 0	50.0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0	40.0 1 1 0 0 0	42.0 529 1925 287 867 20 0	43.0 162 1018 14 61 0 0	44.0 61 255 1 10 0	45.0 4 0 0 1 0 0	46.0 14 118 0 6 0	47.0 54 37 0 0 0	48.0 1 18 0 2 0 0 0	49.0 3 3 0 0 0	50.0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	40.0 1 1 0 0 0 0	42.0 529 1925 287 867 20 0	43.0 162 1018 14 61 0 0	44.0 61 255 1 10 0 0	45.0 4 0 0 1 0 0 0	46.0 14 118 0 6 0 0	47.0 54 37 0 0 0 0	48.0 1 18 0 2 0 0 0	49.0 3 3 0 0 0 0	50.0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0	40.0 1 1 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 39	43.0 162 1018 14 61 0 0 0	44.0 61 255 1 10 0 0 0	45.0 4 0 0 1 0 0 0 0	46.0 14 118 0 6 0 0 0	47.0 54 37 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0	49.0 3 3 0 0 0 0 0	50.0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0	40.0 1 1 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 39 0	43.0 162 1018 14 61 0 0 0 0	44.0 61 255 1 10 0 0 0	45.0 4 0 0 1 0 0 0 0	46.0 14 118 0 6 0 0 0 0	47.0 54 37 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0	49.0 3 3 0 0 0 0 0	50.0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0	40.0 1 1 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 39 0	43.0 162 1018 14 61 0 0 0 3 0 0	44.0 61 255 1 10 0 0 0 1	45.0 4 0 0 1 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0	40.0 1 1 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 39 0	43.0 162 1018 14 61 0 0 0 0	44.0 61 255 1 10 0 0 0	45.0 4 0 0 1 0 0 0 0	46.0 14 118 0 6 0 0 0 0	47.0 54 37 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0	49.0 3 3 0 0 0 0 0	50.0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0	40.0 1 1 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 39 0	43.0 162 1018 14 61 0 0 0 3 0 0	44.0 61 255 1 10 0 0 0 1	45.0 4 0 0 1 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0	40.0 1 1 0 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 39 0 0	43.0 162 1018 14 61 0 0 0 3 0 0	44.0 61 255 1 10 0 0 0 1 0 0	45.0 4 0 0 1 0 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0	40.0 1 1 0 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 0 0 0	43.0 162 1018 14 61 0 0 0 0 0 0 0	44.0 61 255 1 10 0 0 0 1 0 0 0	45.0 4 0 0 1 0 0 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0	40.0 1 1 0 0 0 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 0 0 0 0	43.0 162 1018 14 61 0 0 0 0 0 0 0 0	44.0 61 255 1 10 0 0 0 1 0 0 0 0	45.0 4 0 0 1 0 0 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0	40.0 1 1 0 0 0 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 0 0 0 0 0 1	43.0 162 1018 14 61 0 0 0 0 0 0 0 0 0	44.0 61 255 1 10 0 0 0 0 0 0 0 0	45.0 4 0 0 1 0 0 0 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0 25.0	40.0 1 1 0 0 0 0 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 0 0 0 0 0 1 94	43.0 162 1018 14 61 0 0 0 0 0 0 0 0 0 0 0 0 0	44.0 61 255 1 10 0 0 0 0 0 0 0 0 0	45.0 4 0 0 1 0 0 0 0 0 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0 25.0 26.0	40.0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	529 1925 287 867 20 0 0 0 39 0 0 0 0 0 1 94 35	43.0 162 1018 14 61 0 0 0 0 0 0 0 0 0 0 0 0 0	44.0 61 255 1 10 0 0 0 0 0 0 0 0 0 0	45.0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0 0 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0 25.0 26.0 27.0	40.0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	42.0 529 1925 287 867 20 0 0 0 0 0 0 0 0 1 94 35 2128	43.0 162 1018 14 61 0 0 0 0 0 0 0 0 0 0 0 17 516	44.0 61 255 1 10 0 0 0 0 0 0 0 0 0 0 1 7 145	45.0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0 0 0 0 0 0 0 2 33	48.0 1 18 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0 0 0 0 0	
TO WARD FROM WARD 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 12.0 15.0 16.0 17.0 20.0 22.0 24.0 25.0 26.0	40.0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	529 1925 287 867 20 0 0 0 39 0 0 0 0 0 1 94 35	43.0 162 1018 14 61 0 0 0 0 0 0 0 0 0 0 0 0 0	44.0 61 255 1 10 0 0 0 0 0 0 0 0 0 0	45.0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0	46.0 14 118 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	47.0 54 37 0 0 0 0 0 0 0 0 0 0 0 0 0	48.0 1 18 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	49.0 3 3 0 0 0 0 0 0 0 0 0 0	50.0 0 0 0 0 0 0 0 0 0 0 0	

```
29.0
                0
                        0
                               0
                                      0
                                              0
                                                     0
                                                            0
                                                                    0
                                                                           0
                                                                                   0
30.0
                        0
                               0
                                       1
                                                            0
                                                                    0
                                                                           0
                                                                                   0
                0
                                             11
                                                     1
32.0
               15
                     249
                             738
                                    396
                                              5
                                                    87
                                                          232
                                                                   14
                                                                           0
                                                                                   0
33.0
                21
                               4
                                              6
                                                                    9
                                                                                   0
                        4
                                     10
                                                    13
                                                           44
                                                                           1
34.0
                4
                    3861
                             352
                                     74
                                              3
                                                    21
                                                           15
                                                                    4
                                                                           2
                                                                                   0
35.0
                                                                           0
                1
                       31
                              27
                                     17
                                             16
                                                     9
                                                           41
                                                                    1
                                                                                   0
36.0
                0
                      102
                              18
                                       2
                                              0
                                                     0
                                                            3
                                                                    0
                                                                           0
                                                                                   0
37.0
                0
                        0
                               0
                                              0
                                                     0
                                                            0
                                                                    0
                                                                           0
                                                                                   0
                                      0
                               1
                                                     2
                                                                    2
39.0
                10
                        1
                                      0
                                              6
                                                           22
                                                                           1
                                                                                   0
40.0
               77
                        3
                              15
                                     18
                                              2
                                                    34
                                                          196
                                                                   91
                                                                          52
                                                                                   0
42.0
                0
                    7697
                            1396
                                    367
                                              0
                                                   148
                                                           59
                                                                   38
                                                                           5
                                                                                   0
43.0
               14
                    1178
                            2683
                                    804
                                              1
                                                   272
                                                          133
                                                                   97
                                                                           8
                                                                                   0
44.0
               14
                     255
                             749
                                   1195
                                              1
                                                   556
                                                          287
                                                                   87
                                                                          11
                                                                                   1
45.0
                2
                        0
                               2
                                      0
                                             32
                                                     2
                                                            7
                                                                    0
                                                                           0
                                                                                   0
46.0
               34
                      116
                             260
                                              2
                                                  1162
                                                          265
                                                                  193
                                                                          20
                                                                                   0
                                    622
47.0
              190
                       38
                             118
                                    230
                                              5
                                                   279
                                                         1040
                                                                  123
                                                                          12
                                                                                   1
48.0
                              74
                                              3
                                                                  350
                                                                          69
                                                                                   5
               90
                       26
                                     69
                                                   153
                                                          139
49.0
               51
                        3
                              12
                                       9
                                              0
                                                     3
                                                           15
                                                                   56
                                                                         401
                                                                                   6
50.0
                 5
                               1
                                              0
                                                     0
                                                            0
                                                                    2
                                                                                   2
                        0
                                       1
                                                                           6
```

.....

• Based on observation, visualise selected OD matrices that show some trends/periodicity on a map.

```
[40]: import seaborn as sns

[43]: # Heatmap general 2016
sns.heatmap(matrix_2016,cmap='crest')
```

[43]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that in general in 2016, most of the trips happened in ward 42. After that there are wards 34 and 43 and also the trips among these three wards.

```
[61]: # Heatmap 0-18 in 2016
sns.heatmap(matrix_age_under_18_2016,cmap='crest')
```

[61]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that most of the teenagers' trips (under 18) in 2016 happened in ward 10 and 44. after that there are wards 27, 30, etc.

```
[44]: # Heatmap 19-30 in 2016
sns.heatmap(matrix_age_19_30_2016,cmap='crest')
```

[44]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that most of the young people's trips (19-30) in 2016 happened in wards 42 and 43.

```
[45]: # Heatmap 31-40 in 2016
sns.heatmap(matrix_age_31_40_2016,cmap='crest')
```

[45]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that most of 31-40 people's trips in 2016 happened in ward 42. After that there are wards 43, 34 and 27 and also the trips among these wards.

```
[46]: # Heatmap 41-50 in 2016 sns.heatmap(matrix_age_41_50_2016,cmap='crest')
```

[46]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

Almost the same pattern exists for 41-50 travelers.

```
[47]: # Heatmap 51-60 in 2016
sns.heatmap(matrix_age_51_60_2016,cmap='crest')
```

[47]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

Almost the same pattern exists for 51-60 travelers.

```
[48]: # Heatmap above 61 in 2016
sns.heatmap(matrix_age_above_61_2016,cmap='crest')
```

[48]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

Almost the same pattern exists for above 61 years old travelers.

In conclusion, we can say that wards 42, 34, and 27 are the most important wards for most of the age groups but ward 5 is only attractive for young people and most of their trips happened there.

```
[70]. # Hestman comens 2017
```

```
[78]: # Heatmap general 2017
sns.heatmap(matrix_2017,cmap='crest')
```

[78]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

In general, for whole 2017, the most trips happened inside ward 42 and after that from ward 42 to ward 34. insode ward 34 and from ward 34 to 42 are comming after them.

```
[49]: # Heatmap 0-18 in 2017 sns.heatmap(matrix_age_under_18_2017,cmap='crest')
```

[49]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that in 2017, teenagers' trips mostly happened inside the ward 5 and 42. also from ward 42 to 2.

```
[50]: # Heatmap 19-30 in 2017 sns.heatmap(matrix_age_19_30_2017,cmap='crest')
```

[50]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that most of the yung people's trips (19-30) in 2017 happened in ward 5 and after that there are ward 42, 43, and 34.

```
[51]: # Heatmap 31-40 in 2017 sns.heatmap(matrix_age_31_40_2017,cmap='crest')
```

[51]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that most of the 31-40 people trips in 2017 happened in ward 42. After that there are 43, 34 and also among these wards.

```
[52]: # Heatmap 41-50 in 2017 sns.heatmap(matrix_age_41_50_2017,cmap='crest')
```

[52]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that most of 42-50 people's trips in 2017 happened in wards 42 and 34 and among these two wards.

```
[53]: # Heatmap 51-60 in 2017 sns.heatmap(matrix_age_51_60_2017,cmap='crest')
```

[53]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

The same pattern exists for 51-60 people.

```
[54]: # Heatmap above 61 in 2017
sns.heatmap(matrix_age_above_61_2017,cmap='crest')
```

[54]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

The same pattern exists for old people (above 61).

.....

```
[37]: # Heatmap general 2018
sns.heatmap(matrix_2018,cmap='crest')
```

[37]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>


```
[55]: # Heatmap 0-18 in 2018 sns.heatmap(matrix_age_under_18_2018,cmap='crest')
```

[55]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that in 2018, the most of the teenagers' trips happened inside ward 42 and 34 and also between these two wards.

```
[56]: # Heatmap 19-30 in 2018
sns.heatmap(matrix_age_19_30_2018,cmap='crest')
```

[56]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that the most of the young people's trips (19-30) in 2018 happened inside ward 5. The rest of places respectively belong to ward 42, 34, and 44.

```
[57]: # Heatmap 31-40 in 2018 sns.heatmap(matrix_age_31_40_2018,cmap='crest')
```

[57]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that most of 31-40 travelers' trips in 2018 happened in ward 42. The second place belongs to ward 44. Thus, we can see that ward 5 is not very attractive for this group however it was attractive for young people.

```
[58]: # Heatmap 41-50 in 2018 sns.heatmap(matrix_age_41_50_2018,cmap='crest')
```

[58]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that 41-50 people's trips in 2018 happened in ward 42 and after that inside the ward 34. Additionally, the trips among these two wards (both ways) are also high.

```
[59]: # Heatmap 51-60 in 2018 sns.heatmap(matrix_age_51_60_2018,cmap='crest')
```

[59]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that the same pattern exists for people between 51-60.

```
[60]: # Heatmap above 61 in 2018
sns.heatmap(matrix_age_above_61_2018,cmap='crest')
```

[60]: <AxesSubplot:xlabel='TO WARD', ylabel='FROM WARD'>

It shows that, traveler above 61 years old, mostly travel inside ward 42 and after that from ward 42 to ward 34.

In conclusion, It can be said that ward 42 is one of the most important zones in micromobility and ward 34 comes after that. Also, most of the young people's mobility happened in ward 5 but this ward is not very bold for other age groups.

.....

• Create a flowmap for the OD matrices.

```
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns

matrix_2016.index = matrix_2016.index.astype(int)
matrix_2016.columns = matrix_2016.columns.astype(int)

# Create a directed graph from the OD matrix
G = nx.DiGraph()
```

```
# Add nodes
for node in matrix_2016.index:
    G.add_node(node)
# Add edges
for from_node in matrix_2016.index:
    for to_node in matrix_2016.columns:
        weight = matrix_2016.loc[from_node, to_node]
        if weight > 0:
            G.add_edge(from_node, to_node, weight=weight)
# Draw the graph with a circular layout
pos = nx.circular_layout(G)
# Set node colors based on degree (number of connections)
node_colors = [G.degree(node) for node in G.nodes]
# Set edge colors based on weights
edge_colors = [G[from_node][to_node]['weight'] for from_node, to_node in G.
 ⊶edges]
# Draw nodes
nx.draw_networkx_nodes(G, pos, node_size=700, node_color=node_colors, cmap=plt.
 ⇔cm.Blues)
# Draw edges with weights
nx.draw networkx edges(G, pos, width=1, edge color=edge colors, edge cmap=plt.
 ⇔cm.Greens, arrowsize=10)
# Add labels
nx.draw_networkx_labels(G, pos, font_size=8, font_color='black',__

¬font_weight='bold')
# Add colorbar for edge weights
edge_weights = nx.get_edge_attributes(G, 'weight')
cbar = plt.colorbar()
cbar.set_label('Flow Counts')
plt.title("Flowmap for OD Matrix 2017")
plt.show()
```

```
RuntimeError Traceback (most recent call last)

/tmp/ipykernel_5137/1446145611.py in <module>

45 # Add colorbar for edge weights

46 edge_weights = nx.get_edge_attributes(G, 'weight')

---> 47 cbar = plt.colorbar()
```

```
48 cbar.set_label('Flow Counts')
     49
/opt/conda/lib/python3.7/site-packages/matplotlib/pyplot.py in ⊔
 ⇔colorbar(mappable, cax, ax, **kw)
   2101
                mappable = gci()
   2102
                if mappable is None:
-> 2103
                    raise RuntimeError('No mappable was found to use for⊔
 ⇔colorbar '
   2104
                                       'creation. First define a mappable such
 ⇔as '
   2105
                                       'an image (with imshow) or a contour set
 (¹
RuntimeError: No mappable was found to use for colorbar creation. First define
 mappable such as an image (with imshow) or a contour set (with contourf).
```



```
[44]: import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import seaborn as sns

matrix_2017.index = matrix_2017.index.astype(int)
```

```
matrix_2017.columns = matrix_2017.columns.astype(int)
# Create a directed graph from the OD matrix
G = nx.DiGraph()
# Add nodes
for node in matrix_2017.index:
   G.add_node(node)
# Add edges
for from_node in matrix_2017.index:
   for to_node in matrix_2017.columns:
        weight = matrix_2017.loc[from_node, to_node]
        if weight > 0:
            G.add_edge(from_node, to_node, weight=weight)
# Draw the graph with a circular layout
pos = nx.circular_layout(G)
# Set node colors based on degree (number of connections)
node_colors = [G.degree(node) for node in G.nodes]
# Set edge colors based on weights
edge_colors = [G[from_node][to_node]['weight'] for from_node, to_node in G.
 ⊶edges]
# Draw nodes
nx.draw_networkx_nodes(G, pos, node_size=700, node_color=node_colors, cmap=plt.
⇔cm.Blues)
# Draw edges with weights
nx.draw_networkx_edges(G, pos, width=1, edge_color=edge_colors, edge_cmap=plt.
 ⇔cm.Greens, arrowsize=10)
# Add labels
nx.draw_networkx_labels(G, pos, font_size=8, font_color='black',_

¬font_weight='bold')
# Add colorbar for edge weights
edge_weights = nx.get_edge_attributes(G, 'weight')
cbar = plt.colorbar()
cbar.set_label('Flow Counts')
plt.title("Flowmap for OD Matrix 2017")
plt.show()
```

```
RuntimeError
                                           Traceback (most recent call last)
/tmp/ipykernel_5137/758526037.py in <module>
     41 # Add colorbar for edge weights
     42 edge_weights = nx.get_edge_attributes(G, 'weight')
---> 43 cbar = plt.colorbar()
     44 cbar.set_label('Flow Counts')
/opt/conda/lib/python3.7/site-packages/matplotlib/pyplot.py in_
 ⇔colorbar(mappable, cax, ax, **kw)
   2101
                mappable = gci()
   2102
                if mappable is None:
-> 2103
                    raise RuntimeError('No mappable was found to use for \sqcup
 ⇔colorbar '
   2104
                                        'creation. First define a mappable such⊔
 ⇔as '
                                        'an image (with imshow) or a contour set
   2105
 \hookrightarrow (1
RuntimeError: No mappable was found to use for colorbar creation. First define
 →mappable such as an image (with imshow) or a contour set (with contourf).
```



```
[46]: import pandas as pd
      import networkx as nx
      import matplotlib.pyplot as plt
      import seaborn as sns
      matrix_2018.index = matrix_2018.index.astype(int)
      matrix_2018.columns = matrix_2018.columns.astype(int)
      # Create a directed graph from the OD matrix
      G = nx.DiGraph()
      # Add nodes
      for node in matrix 2018.index:
          G.add_node(node)
      # Add edges
      for from_node in matrix_2018.index:
          for to_node in matrix_2018.columns:
              weight = matrix_2018.loc[from_node, to_node]
              if weight > 0:
                  G.add_edge(from_node, to_node, weight=weight)
      # Draw the graph with a circular layout
      pos = nx.circular_layout(G)
      # Set node colors based on degree (number of connections)
      node_colors = [G.degree(node) for node in G.nodes]
      # Set edge colors based on weights
      edge_colors = [G[from_node][to_node]['weight'] for from_node, to_node in G.
       ⊶edges]
      # Draw nodes
      nx.draw_networkx_nodes(G, pos, node_size=700, node_color=node_colors, cmap=plt.
       ⇔cm.Blues)
      # Draw edges with weights
      nx.draw_networkx_edges(G, pos, width=1, edge_color=edge_colors, edge_cmap=plt.
       ⇔cm.Greens, arrowsize=10)
      # Add labels
      nx.draw_networkx_labels(G, pos, font_size=8, font_color='black',__

¬font_weight='bold')
      # Add colorbar for edge weights
      edge_weights = nx.get_edge_attributes(G, 'weight')
      cbar = plt.colorbar()
```

```
cbar.set_label('Flow Counts')

plt.title("Flowmap for OD Matrix 2017")
plt.show()
```

```
RuntimeError
                                      Traceback (most recent call last)
/tmp/ipykernel_5137/3227053325.py in <module>
    41 # Add colorbar for edge weights
    42 edge_weights = nx.get_edge_attributes(G, 'weight')
---> 43 cbar = plt.colorbar()
    44 cbar.set_label('Flow Counts')
    45
/opt/conda/lib/python3.7/site-packages/matplotlib/pyplot.py in_
 ⇔colorbar(mappable, cax, ax, **kw)
  2101
             mappable = gci()
  2102
             if mappable is None:
-> 2103
                  ⇔colorbar '
  2104
                                    'creation. First define a mappable such
 ⇔as '
  2105
                                    'an image (with imshow) or a contour set
 (¹
RuntimeError: No mappable was found to use for colorbar creation. First define
 mappable such as an image (with imshow) or a contour set (with contourf).
```


4 3 - Relation to Public transport line

In this sectoin, I am going to do again some pre-processing on micro-mobility data (Divvy) and extract the csv files with coordinations. Also, I have downloaded the kml files of public transport in Chicago (such as bus stops, bus routes, subway rails, etc.). Thus, I will import the output of this section and those kml files into QGIS software to create some maps for further analysis.

```
[16]: number of start trips_2017 = df_MM_clean_2017.groupby("FROM_WARD").size().
       →reset_index(name='number_of_start_trips_2017')
[17]: number_of_start_trips_2017.to_csv("number_of_start_trips_2017", index=False)
[18]: number_of_start_trips_2018 = df_MM_clean_2018.groupby("FROM WARD").size().
       ⇔reset_index(name='number_of_start_trips_2018')
[19]: number_of_start_trips_2018.to_csv("number_of_start_trips_2018", index=False)
[20]: number_of_end_trips_2016 = df_MM_clean_2016.groupby("TO WARD").size().
       →reset_index(name='number_of_end_trips_2016')
[21]:
     number_of_end_trips_2016.to_csv("number_of_end_trips_2016", index=False)
[22]: number_of_end_trips_2017 = df_MM_clean_2017.groupby("TO WARD").size().

→reset_index(name='number_of_end_trips_2017')
[23]: number_of_end_trips_2017.to_csv("number_of_end_trips_2017", index=False)
[24]: number_of_end_trips_2018 = df_MM_clean_2018.groupby("TO WARD").size().
       →reset_index(name='number_of_end_trips_2018')
[25]: number_of_end_trips_2018.to_csv("number_of_end_trips_2018", index=False)
[82]: df_MM_clean_2019 = pd.read_csv('df_2019.csv', on_bad_lines = 'warn', sep=',')
[27]: number of start trips_2019 = df_MM_clean_2019.groupby("FROM_WARD").size().
       →reset_index(name='number_of_start_trips_2019')
[28]:
     number_of_start_trips_2019.to_csv("number_of_start_trips_2019", index=False)
[29]: number_of_end_trips_2019 = df_MM_clean_2019.groupby("TO WARD").size().

→reset_index(name='number_of_start_trips_2019')
[30]: number_of_end_trips_2019.to_csv("number_of_end_trips_2019", index=False)
```

Here, I am dividing a day into 3 day times (Day, Evening and Night) to do some analysis based on the time of trips in QGIS software.

```
df_MM_clean_2018_time = pd.to_datetime(df_MM_clean_2018['START TIME'],_
       →format="%m/%d/%Y %I:%M:%S %p")
[63]: import datetime as dt
      df_MM_clean_2016["HOUR"] = df_MM_clean_2016_time.dt.strftime("%H")
      df_MM_clean_2017["HOUR"] = df_MM_clean_2017_time.dt.strftime("%H")
      df_MM_clean_2018["HOUR"] = df_MM_clean_2018_time.dt.strftime("%H")
[64]: # Function for day time
      def day_time(hour):
          if hour=='00' or hour=='01' or hour=='02' or hour=='03' or hour=='04' or
       ⇔hour=='05' or hour=='06' or hour=='07':
             return 'Night'
          elif hour=='08' or hour=='09' or hour=='10' or hour=='11' or hour=='12' or_
       ⇔hour=='13' or hour=='14' or hour=='15':
             return 'Day'
          elif hour=='16' or hour=='17' or hour=='18' or hour=='19' or hour=='20' or
       ⇔hour=='21' or hour=='22' or hour=='23':
             return 'Evening'
[65]: df_MM_clean_2016["DAY_TIME"] = df_MM_clean_2016["HOUR"].apply(day_time)
      df MM clean 2017["DAY TIME"] = df MM clean 2017["HOUR"].apply(day time)
      df MM clean 2018["DAY TIME"] = df MM clean 2018["HOUR"].apply(day time)
[67]: df_MM_clean_2016.head()
[67]:
          TRIP ID
                               START TIME
                                                        STOP TIME BIKE ID \
       10000000 06/09/2016 06:24:00 PM 06/09/2016 06:33:00 PM
                                                                         5
      0
      1 10000001 06/09/2016 06:24:00 PM 06/09/2016 06:27:00 PM
                                                                      4201
      2 10000002 06/09/2016 06:25:00 PM
                                           06/09/2016 06:41:00 PM
                                                                      1976
      3 10000003 06/09/2016 06:25:00 PM
                                           06/09/2016 06:33:00 PM
                                                                      5354
      4 10000005 06/09/2016 06:25:00 PM 06/09/2016 06:38:00 PM
                                                                      4365
        TRIP DURATION FROM STATION ID
                                                         FROM STATION NAME \
      0
                   516
                                     26
                                                  McClurg Ct & Illinois St
                   163
                                    238 Ravenswood Ave & Montrose Ave (*)
      1
      2
                   987
                                              Clinton St & Washington Blvd
                                     91
                                    310
                                                 Damen Ave & Charleston St
      3
                   518
                   813
                                     20
                                              Sheffield Ave & Kingsbury St
        TO STATION ID
                                       TO STATION NAME
                                                         USER TYPE ...
                                                                       SEASON \
                    90
                                                                       Summer
      0
                                       Millennium Park Subscriber ...
                   234
                               Clark St & Montrose Ave
                                                        Subscriber ...
                                                                       Summer
      1
      2
                   289
                                 Wells St & Concord Ln
                                                        Subscriber ...
                                                                       Summer
                   327
                           Sheffield Ave & Webster Ave
      3
                                                        Subscriber ...
                                                                       Summer
                        Southport Ave & Wellington Ave Subscriber ...
                                                                       Summer
```

```
DAY OF WEEK
                                         from_point
                                                                          to_point
      0
                                                     POINT (-87.624084 41.881032)
            Thursday
                         POINT (-87.6173 41.89102)
      1
            Thursday
                     POINT (-87.674365 41.961615)
                                                     POINT (-87.666036 41.961588)
      2
            Thursday
                        POINT (-87.64117 41.88338)
                                                     POINT (-87.634656 41.912133)
      3
            Thursday
                      POINT (-87.677855 41.920082)
                                                      POINT (-87.653818 41.92154)
            Thursday
                      POINT (-87.653106 41.910522)
                                                     POINT (-87.663576 41.935733)
        FROM WARD
                   TO WARD
                             age age group
                                            HOUR
                                                  DAY_TIME
      0
             42.0
                      42.0
                             28
                                     19-30
                                              18
                                                   Evening
      1
             47.0
                      47.0
                                                   Evening
                             32
                                     31 - 40
                                              18
      2
             42.0
                       2.0
                                                   Evening
                              27
                                     19-30
                                              18
      3
             32.0
                      43.0
                              29
                                     19-30
                                              18
                                                   Evening
             27.0
                      32.0
                             35
                                     31-40
                                              18
                                                   Evening
      [5 rows x 30 columns]
[69]: group_day_time_2016 = df_MM_clean_2016.groupby(["FROM WARD", "DAY_TIME"]).
       ⇒size().reset index(name='group day time 2016')
[71]: group day time 2017 = df_MM_clean_2017.groupby(["FROM WARD", "DAY_TIME"]).
       size().reset_index(name='group_day_time_2017')
[72]: group day_time_2018 = df_MM_clean_2018.groupby(["FROM_WARD", "DAY_TIME"]).
       size().reset_index(name='group_day_time_2018')
[73]:
      group_day_time_2016.to_csv("group_day_time_2016", index=False)
      group_day_time_2017.to_csv("group_day_time_2017", index=False)
     group_day_time_2018.to_csv("group_day_time_2018", index=False)
```

5 4 – Utilization of bicycles and costs

In this section, I am going to calculate the utilization percentage of bicycles and also assess the cost and benefit of the bike-sharing company. For this purpose, I have made a rough estimation of bicycle maintenance costs and the revenue from each bike based on the trip duration. This is just a simple simulation of this kind of analysis.

```
[2]: # Create datetime from "START TIME", "STOP TIME"
      df_MM_clean_2019['START TIME'] = pd.to_datetime(df_MM_clean_2019['START TIME'])
      df_MM_clean_2019['STOP_TIME'] = pd.to_datetime(df_MM_clean_2019['STOP_TIME'])
 [3]: # Geoup by "BIKE ID"
      group_bikes = df_MM_clean_2019.groupby("BIKE ID").agg({"TRIP DURATION": "sum",
                                                            "START TIME": "min",
                                                            "STOP TIME": "max"})
 [4]: # Convert from seconds to minutes
      group bikes["TRIP DURATION (MINUTES)"] = group bikes["TRIP DURATION"]/60
 [6]: # Classic bike price of divvy = 0.17$/min
 [5]: # Calculate the revenue
      group_bikes["REVENUE (USD)"] = group_bikes["TRIP DURATION (MINUTES)"] * 0.17
 [6]: # Calculate the total time that each bicycle exists on the streets
      group_bikes["ACTIVE TIME"] = (group_bikes["STOP TIME"] - group_bikes["START_
       →TIME"]).dt.total_seconds() / 60
 [7]: # Calculate the utilization percentage of each bike
      group_bikes["utilization_percentage"] = ((group_bikes["TRIP DURATION_
       →(MINUTES)"] / group bikes["ACTIVE TIME"]) * 100)
[10]: group_bikes.head()
[10]:
               TRIP DURATION
                                      START TIME
                                                           STOP TIME \
     BIKE ID
                      674786 2019-01-14 07:54:08 2019-12-28 22:32:06
      1
                     6618706 2019-02-25 00:59:06 2019-12-31 07:36:02
      2
                      834957 2019-02-22 07:04:14 2019-11-09 21:42:37
      3
                      939373 2019-04-11 17:25:27 2019-12-29 16:14:28
      4
                      391873 2019-01-08 13:13:01 2019-12-30 14:47:56
               TRIP DURATION (MINUTES) REVENUE (USD)
                                                         ACTIVE TIME \
     BIKE ID
      1
                          11246.433333
                                          1911.893667 501997.966667
      2
                         110311.766667
                                         18753.000333 445356.933333
      3
                          13915.950000
                                         2365.711500 375278.383333
      4
                          15656.216667
                                          2661.556833 377209.016667
      5
                           6531.216667
                                         1110.306833 512734.916667
               utilization_percentage
     BIKE ID
      1
                             2.240334
      2
                            24.769294
```

```
3
                             3.708167
      4
                             4.150541
      5
                              1.273800
[11]: group_bikes["utilization_percentage"].mean()
[11]: 3.843668012819399
     The average of utilization percentage of bikes is about 3.8%.
[12]: group_bikes["utilization_percentage"].median()
[12]: 3.055378640027452
 [8]: group_bikes["utilization_percentage"].max()
 [8]: 100.0
 [9]: group_bikes["utilization_percentage"].min()
 [9]: 0.0031177561471445667
[22]: group_bikes.sort_values("REVENUE (USD)", ascending = False).head()
[22]:
               TRIP DURATION
                                       START TIME
                                                             STOP TIME \
      BIKE ID
                    11124484 2019-01-14 08:01:04 2019-10-09 14:29:43
      3846
      1229
                     9550031 2019-01-02 09:57:50 2019-12-29 19:20:44
      6232
                     9287412 2019-03-06 11:50:03 2020-01-13 21:55:24
      1083
                     9098417 2019-01-01 12:47:38 2020-01-21 13:54:35
                     8538863 2019-01-05 18:27:43 2019-10-25 10:56:54
      773
               TRIP DURATION (MINUTES) REVENUE (USD)
                                                          ACTIVE TIME
      BIKE ID
      3846
                         185408.066667
                                          31519.371333 386308.650000
      1229
                         159167.183333
                                          27058.421167 520402.900000
      6232
                         154790.200000
                                          26314.334000 451325.350000
      1083
                         151640.283333
                                          25778.848167 554466.950000
      773
                         142314.383333
                                          24193.445167 421469.183333
               utilization_percentage
      BIKE ID
      3846
                            47.994801
      1229
                             30.585376
      6232
                             34.296810
      1083
                            27.348841
      773
                             33.766261
```

We can see that Bike 3846 with 48% utilization percentage, made about 31,519 dolar with 185,408 minutes trip.

```
[21]: total_revenue = group_bikes["REVENUE (USD)"].sum()
[22]: print(f'the total revenue is {total_revenue}')
     the total revenue is 15687834.081500001
     The revenue that we hav calculated, shows that in 2019, divvy made at least 15.68 M$.
[15]: # Costs for classic bikes per ye
      bikes_price = 300
      maintenance = 50
      infrastructure = 800
      technology = 30
      insurance = 10
      operations = 60
      marketing = 20
      unexpected_costs = 20
[16]: # Calculate the total cost for divvy per each bike
      cost = bikes_price + maintenance + infrastructure + technology + insurance + <math>_{\sqcup}
       →operations + marketing + unexpected_costs
[23]: print(f'the cost for each bike in 2019 is {cost}')
     the cost for each bike in 2019 is 1290
[18]: group_bikes.count()
[18]: TRIP DURATION
                                  6017
      START TIME
                                  6017
      STOP TIME
                                  6017
      TRIP DURATION (MINUTES)
                                  6017
      REVENUE (USD)
                                  6017
      ACTIVE TIME
                                  6017
      utilization_percentage
                                  6017
      dtype: int64
[19]: total_cost = 6017 * cost
[24]: print(f'the total cost in 2019 is {total_cost}')
     the total cost in 2019 is 7761930
[25]: interest = total_revenue - total_cost
[26]: print(f'the interest in 2019 is {interest}')
```

```
the interest in 2019 is 7925904.081500001
```

I have estimated that there was about 8 M\$ benefit for Divvy in 2019.

```
.....
```

```
[99]: # During different day of week
[10]: group_bikes_week = df_MM_clean_2019.groupby(["BIKE ID", "Day_of_Week"]).
       →agg({"TRIP DURATION": "sum",
                                                                                ш

¬"START TIME": "min",
                                                                                 "STOP ...

¬TIME": "max"})
[11]: # Convert from seconds to minutes
      group_bikes_week["TRIP_DURATION (MINUTES)"] = group_bikes_week["TRIP_DURATION"]/
[12]: # Calculate the total time that each bicycle exists on the streets in each day.
      group_bikes_week["ACTIVE TIME"] = (group_bikes_week["STOP TIME"] -_
       ogroup_bikes_week["START TIME"]).dt.total_seconds() / 60
[13]: # Calculate the utilization percentage of each bike in each day of week
      group_bikes_week["utilization_percentage"] = ((group_bikes_week["TRIP_DURATION_
       ⇔(MINUTES)"] / group_bikes_week["ACTIVE TIME"]) * 100)
[42]: group_bikes_week.head(14)
[42]:
                           TRIP DURATION
                                                  START TIME
                                                                       STOP TIME \
     BIKE ID Day_of_Week
                                  131254 2019-02-22 14:34:53 2019-12-27 06:02:59
              Friday
              Monday
                                  89813 2019-01-14 07:54:08 2019-09-09 18:53:30
              Saturday
                                  131591 2019-03-16 17:03:42 2019-12-28 22:32:06
                                  83157 2019-03-10 19:59:49 2019-09-08 12:07:21
              Sunday
                                   64400 2019-01-17 16:40:10 2019-09-12 18:36:49
              Thursday
              Tuesday
                                  105962 2019-02-26 09:06:35 2019-10-15 23:47:58
              Wednesday
                                   68609 2019-02-27 17:55:27 2019-10-09 18:52:46
      2
                                   43249 2019-03-15 11:36:32 2019-12-06 09:07:14
              Friday
                                   55960 2019-02-25 00:59:06 2019-12-30 18:30:04
              Monday
                                  107622 2019-03-02 16:02:50 2019-12-07 12:11:52
              Saturday
              Sunday
                                   97991 2019-03-03 14:14:48 2019-12-29 13:54:59
              Thursday
                                   37374 2019-03-07 17:30:22 2019-12-12 11:27:22
                                  296018 2019-03-05 04:51:18 2019-12-31 07:36:02
              Tuesday
                                 5980492 2019-02-27 21:10:52 2019-12-04 17:31:56
              Wednesday
                           TRIP DURATION (MINUTES)
                                                     ACTIVE TIME \
```

```
BIKE ID Day_of_Week
                                       2187.566667 443008.100000
      1
              Friday
              Monday
                                       1496.883333 343379.366667
              Saturday
                                       2193.183333 413608.400000
              Sunday
                                       1385.950000 261607.533333
              Thursday
                                       1073.333333 342836.650000
              Tuesday
                                       1766.033333 333521.383333
              Wednesday
                                       1143.483333 322617.316667
      2
                                        720.816667 382890.700000
              Friday
              Monday
                                        932.666667 444570.966667
              Saturday
                                        1793.700000 402969.033333
              Sunday
                                       1633.183333 433420.183333
              Thursday
                                        622.900000 402837.000000
              Tuesday
                                       4933.633333 433604.733333
                                       99674.866667 402981.066667
              Wednesday
                           utilization_percentage
      BIKE ID Day_of_Week
              Friday
      1
                                         0.493798
              Monday
                                         0.435927
              Saturday
                                         0.530256
              Sunday
                                         0.529782
              Thursday
                                         0.313074
              Tuesday
                                         0.529511
              Wednesday
                                         0.354440
      2
              Friday
                                         0.188257
              Monday
                                         0.209790
              Saturday
                                         0.445121
              Sunday
                                         0.376813
              Thursday
                                         0.154628
              Tuesday
                                         1.137818
                                        24.734380
              Wednesday
      group_bikes_week.sort_values('utilization_percentage', ascending=False).head()
[20]:
                           TRIP DURATION
                                                   START TIME
                                                                        STOP TIME \
     BIKE ID Day_of_Week
                                     439 2019-05-01 14:16:17 2019-05-01 14:23:36
      56
              Wednesday
      3973
              Monday
                                     578 2019-03-18 18:28:14 2019-03-18 18:37:52
      6206
              Monday
                                     150 2019-06-17 13:54:49 2019-06-17 13:57:19
      2581
              Monday
                                  212030 2019-07-15 09:03:03 2019-07-17 19:56:53
              Thursday
                                   27338 2019-04-11 19:09:46 2019-04-12 02:45:24
      3973
                           TRIP DURATION (MINUTES) ACTIVE TIME
      BIKE ID Day_of_Week
              Wednesday
                                           7.316667
                                                        7.316667
      56
      3973
              Monday
                                           9.633333
                                                        9.633333
```

```
6206
              Monday
                                            2.500000
                                                         2.500000
      2581
              Monday
                                         3533.833333 3533.833333
      3973
              Thursday
                                          455.633333
                                                        455.633333
                            utilization_percentage
      BIKE ID Day_of_Week
              Wednesday
                                              100.0
      56
      3973
              Monday
                                              100.0
      6206
              Monday
                                              100.0
      2581
              Monday
                                              100.0
      3973
                                              100.0
              Thursday
[15]: week_days = group_bikes_week.groupby("Day_of_Week").
       →agg({"utilization_percentage": "mean"})
[36]: week_days.head(7)
[36]:
                   utilization_percentage
      Day_of_Week
      Friday
                                  0.713160
      Monday
                                  0.662425
      Saturday
                                   1.043443
      Sunday
                                  0.803796
      Thursday
                                  0.739848
      Tuesday
                                  0.821461
      Wednesday
                                  0.724842
     It shows that the average of utilization of bikes was more on weekends.
```

```
[17]: # The bar plot of average of utilization percentage within each day of week:
      bp_week_days = week_days.plot(kind = "bar")
```



```
[37]: week_days_median = group_bikes_week.groupby("Day_of_Week").
       →agg({"utilization_percentage": "median"})
[39]:
     week_days_median.head(7)
[39]:
                   utilization_percentage
      Day_of_Week
      Friday
                                  0.429317
      Monday
                                  0.408524
      Saturday
                                  0.553881
      Sunday
                                  0.462633
      Thursday
                                  0.408802
      Tuesday
                                  0.397998
      Wednesday
                                  0.397965
[40]: group_bikes.to_csv("group_bikes_2019_2", index=False)
```

```
[41]: group_bikes_week.to_csv("group_bikes_week_2019_2", index=False)
```

This is the end of this Analysis. More analysis can be done in further efforts.