WEISHUN ZHONG

www.weishunzhong.com

Cambridge, Massachusetts, 02138 wszhong@mit.edu

EDUCATION

Massachusetts Institute of Technology, Cambridge, MA

Sep.2017-May.2023(expected)

Ph.D. Department of Physics

Advisors: Haim Sompolinsky (Harvard) and Mehran Kardar (MIT)

University of Chicago, Chicago, IL

M.S., Physical Sciences Division, Physics

Sep.2016-Jun.2017 GPA: 3.93/4.0

University of Michigan

B.S., highest distinction, Physics and Mathematics

Sep.2013-May.2016 GPA: 3.97/4.0

RESEARCH BACKGROUND

My research area lies in the intersection between statistical physics, neuroscience, and machine learning.

PUBLICATIONS

- 1. "A Theory of Weight Distribution-constrained Learning", **Weishun Zhong**, Ben Sorscher, Daniel D Lee, Haim Sompolinsky, arXiv:2206.08933; accepted to NeurIPS 2022
- 2. "Many-body Localized Hidden Born Machine", **Weishun Zhong**, Xun Gao, Susanne Yelin, Khadijeh Najafi, arXiv: 2207.02346; under review
- 3. "Quantifying Many-body Learning far from Equilibrium with Representation Learning", **Weishun Zhong***, Jacob M Gold*, Sarah Marzen, Jeremy L England, Nicole Yunger Halpern, arXiv: 2001.03623; Scientific reports 11.1 (2021): 1-11
- 4. "Learning about Learning by Many-body Systems", **Weishun Zhong***, Jacob M Gold*, Sarah Marzen, Jeremy L England, Nicole Yunger Halpern, arXiv:2004.03604; ICML workshop ML Interpretability for Scientific Discovery (2020)
- 5. "Non-equilibrium Statistical Mechanics of Continuous Attractors", **Weishun Zhong**, Zhiyue Lu, David J. Schwab, and Arvind Murugan, arXiv: 1809.11167; Neural computation (2020) 32 (6)
- 6. "A Closer Look at Disentangling in β -VAE", Harshvardhan Sikka*, **Weishun Zhong***, Jun Yin, Cengiz Pehlevan, arXiv:1912.05127; 53rd Asilomar Conference on Signals, Systems, and Computers (2019)
- 7. "Associative Pattern Recognition in Macro-Molecular Self-Assembly", **Weishun Zhong**, David J. Schwab, and Arvind Murugan, arXiv: 1701.01769; J Stat Phys (2017) 167: 806
- 8. "A Holographic c-Theorem for Schrödinger Spacetimes", James T. Liu and **Weishun Zhong**, arXiv: 1510.06975; JHEP 1512 (2015) 179

RESEARCH EXPERIENCE

Harvard University

Cambridge, MA

Fellow in the Center for Brain Sciences

Project: Weight distribution-constrained learning

- \cdot Developed an theoretical framework for learning with weight distribution constraint
- · Derived a learning algorithm from information geometry for weight distribution-constrained learning in neural networks
- · Applied our theory and algorithm to study capacity and generalization in both feed-forward and recurrent neural networks

Project: Disentangling in β -VAE

- · Established a theoretical trade-off between disentangling ability and Bayesian inference error in β -VAE
- · Demonstrated the trade-offs on the rotated MNIST dataset
- · Calculated optimal β for toy model β -VAEs

Massachusetts Institute of Technology

Cambridge, MA

Graduate Researcher in Department of Physics

Project: Learning about learning by many-body systems

- · Applied representation learning (VAEs) to study statistical mechanical learning by many-body systems
- · Developed machine learning toolkits to measure classification ability, memory capacity, discrimination ability, and novelty detection in many-body system's learning
- · Demonstrated machine learning approaches outperform traditional thermodynamic approaches in diagnosing many-body system's learning

Project: Non-equilibrium statistical mechanics of continuous attractors

- · Found an analog of gravitational equivalence principle in neural networks
- · Derived an absolute upper bound on how fast recurrent networks can track input signals
- · Derived an analytical formula for capacity of non-equilibrium neural networks

IBM Research (Quantum)

Cambridge, MA

Research Intern at IBM Quantum Computing Theory Group

Project: Many-body localized hidden Born machine

- · Proposed a novel hidden architecture for the MBL Born machine
- · Established a proof for the trainability and expressibility advantage of the hidden architecture
- · Demonstrated the superiority of MBL hidden Born machine on both classical and quantum datasets

Project: Decoding quantum error-correcting codes with quantum neural networks

- · Proved that logical decoding error in imperfect stabilizer codes are code distance-independent
- · Proved an architecture-independent lower bound for QNNs decoding corrupted states
- · Demonstrated QNNs outperform standard decoding procedure in imperfect stabilizer codes

AWARDS & HONORS

• NeurIPS Scholar Award, Neural Information Processing Systems Foundation	2022
• First-year Graduate Fellowship, Massachusetts Institute of Technology	2017
• Physical Sciences Division Tuition Award, University of Chicago	2016
• George Eugene Uhlenbeck Award, University of Michigan	2016
• Division of Particle and Fields Travel Award, American Physical Society	2016
• Division of Gravitational Physics Travel Award, American Physical Society	2016
• Otto Graf Scholarship, University of Michigan	2015
• James B. Angell Scholar, University of Michigan	2015

TEACHING EXPERIENCE

• Teaching assistant for MIT graduate physics course Statistical Physics in Biology (8.592)	2021
• Teaching assistant for various MIT undergraduate physics course (8.01-8.03)	2018-2020

SKILLS

Programming Python, Mathematica

Tools Quspin, Quskit, Tensorflow, High Performance Computing (Slurm), Numerical Methods