Ep. 4: Basis

LetsSolveMathProblems: Navigating Linear Algebra

Let V, W be vector spaces over a field F.

Problem 1. Let \mathbb{R} be a vector space over \mathbb{Q} (as in Problem 1 of Ep. 2). Think about why this space should be infinite-dimensional. In the sketch of a proof provided below, Step 1 is the only part that you are asked to prove. If you know basic set theory, prove Step 2, as well!

- (1) Show that if the space \mathbb{R} over \mathbb{Q} is finite-dimensional, then there would be a bijection from \mathbb{R} to \mathbb{Q}^n for some $n \geq 1$.
- (2) Show that there cannot be a bijection from \mathbb{R} to \mathbb{Q}^n .

Problem 2. Suppose that V and W are finite-dimensional and have different dimensions. Show that there cannot be an isomorphism from V to W.

Problem 3. Let us modify the definition of a vector space to allow for vector spaces over \mathbb{Z} (even though \mathbb{Z} is not a field). Show that the two definitions of linear dependence we talked about in this episode are **not** equivalent for the "vector space" \mathbb{Z}^2 over \mathbb{Z} .

Problem 4. Let $V^* = \text{Hom}(V, F)$, the algebraic dual space of V from Ep. 3 problems. Find a basis of $(\mathbb{R}^2)^*$.

Problem 5. Does there exist a 3×3 real matrix A (with respect to the standard basis $e_1, e_2, e_3 \in \mathbb{R}^3$) such that $\ker A \neq \ker A^2$ and $\ker A^2 \neq \ker A^3$?