 	[<	[٤	E	j. '	h
Ho		-	٠	٠		

- How to work with data in R?

- Stored in R [data frame]

- Read in data into R

- Simulate samples from a given distribution.

Recall - Weck 1 and 2

- How to work with R and R studio?

- Data Visualisation:
- goplet

plat

Recall:-Layered Grammae of graphics $ggplot(data = \langle DATA \rangle)$ + < GEOM_FUNCTION > (- Each template takes 7 statements | Parameters mapping = aes(<MAPPINGS>), Specify data frame $stat = \langle STAT \rangle$, geom-point, ... [Type of geonetry] position = <POSITION> map veuables to an) +acsthetic <COORDINATE_FUNCTION> + statistical franctornation flie, polae <FACET_FUNCTION> faceting

Data Types in R

- > Course = "B.Sc."
- > Number = 40
- > Smart = TRUE
- > mode(Course)
- [1] "character"
- > mode(Number)
- [1] "numeric"
- > mode(Smart)
- [1] "logical"

- R has many data types Focus on three
- · Character data = Surrounded by double quotes
- · logical data = TRUE or FALSE
- · numeric data
- · Another in potant characteristic is class. For this we can use the class function.

Creating Vectors in R


```
> KA_D = c(215,620,558, 1109,8813,350, 780, 420,
                                                                 Karnataka Covid 19
                  144,478,816,242,1051,249,1238, 315,
+
                  807, 185, 1993, 515, 1997, 2886, 371, 156,
                                                                  Bulletin
                  589,1746,838,964,296,128)
> KA_D[c(1,3,5)]
                                                                 . Entered it physically
    215 558 8813 -
                                                                   into 12 - as a vertor
> KA_D[-c(1:20)]
 [1] 1997 2886 371
                    156
                         589 1746
                                   838
                                        964
                                             296
                                                  128
                                                                 · Select
> KA_Dp = (KA_D)/sum(KA_D)*100
                                                                       · Delete
> KA_Dp
 [1]
      0.6964916
                                      3.5926010 28.5496777
                2.0084875
                           1.8076387
 [6]
     1.1338236
                2.5268068
                           1.3605883
                                      0.4664874
                                                 1.5484791
     2.6434287
[11]
                0.7839580
                           3.4047102
                                      0.8066345
                                                 4.0104960
                                                                function to the vector
[16]
     1.0204412
                2.6142732
                           0.5993067
                                      6.4563154
                                                 1.6683404
     6.4692734
[21]
                9.3491853
                           1.2018530
                                      0.5053614
                                                 1.9080631
[26]
     5.6561599
                2.7146976
                           3.1228741
                                      0.9588908
                                                 0.4146555
```



```
All elements is the
> A = matrix(seq(3,5, by=1/10), 7,3)
> A
                                               matrix have the same
    [,1] [,2] [,3]
[1,] 3.0 3.7 4.4
                                                mode
    3.1 3.8 4.5
[2,]
                                             Specify rows & columns
[3,] 3.2 3.9 4.6
[4,] 3.3 4.0 4.7
[5,] 3.4 4.1 4.8
[6,] 3.5 4.2 4.9
[7,] 3.6 4.3 5.0
                                                     fill the entres
> B = matrix(seq(3,5, by=1/10), ncol=3)
                                                     vou wie.
> C = matrix(seq(3,5, by=1/10), ncol=3, byrow=TRUE)
> A[4,1]
[1] 3.3
```

> xd = c("Siva", "looser", 3, 5)

The Ruill Convert

all elements of the vector

> xd

[1] "Siva" "looser" "3" "5"

```
District names
                                                                          Data frame
> KA_District=c("Bagalakote", "Ballari", "Belagavi",
+ "Bengaluru Rural", "Bengaluru Urban", "Bidar", "Chamarajanagara",
+ "Chikkaballapura", "Chikkamagaluru", "Chitradurga", "Dakshina Kannada",
                                                                             - elements can
+ "Davanagere", "Dharwada", "Gadag", "Hassana", "Haveri", "Kalaburagi",
                                                                              be in defferent
+ "Kodagu", "Kolara", "Koppala", "Mandya", "Mysuru", "Raichuru",
+ "Ramanagara", "Shivamogga", "Tumakuru", "Udupi", "Uttara Kannada",
                                                                               mode
+ "Vijayapura", "Yadagiri")
> KA_Discharge = data.frame(KA_District, KA_D)
> class(KA_Discharge)
   "data.frame"
> mode(KA_Discharge)
                               sapply - simplifies
[1] "list"
> sapply(KA_Discharge, mode)
KA District
                  KA D
"character"
              "numeric"
```

Data Frames as Matrix in R

```
Change the names
> names(KA_Discharge)=c("District", "Recovered")
                                                                of the variables in
                                                                   the Latafrance
> KA_Discharge$Recovered-
 [1]
      215 620
               558 1109 8813
                               350
                                    780
                                         420
                                              144
                                                   478 816
[12]
     242 1051
               249 1238 315
                               807
                                    185 1993
                                              515 1997 2886
                                                                          various wourd
of selecting
objects in a
data frame
[23]
          156
               589 1746
                         838
                               964
                                    296
                                        128
> KA_Discharge[3,2]
[1] 558
> KA_Discharge[3,]
 District Recovered
3 Belagavi
                 558
> KA_Discharge[, "Recovered"]
 [1]
          620
               558 1109 8813
                               350
                                    780
                                         420
                                              144
[12]
     242 1051
               249 1238 315
                               807
                                    185 1993
                                             515 1997 2886
[23]
          156
               589 1746
                         838
                               964
                                    296
                                        128
```

```
> Deaths= c(346, 1712, 975, 903, 16593, 407,515, 446, 400,221,
    1750, 611,1333,328,1291,652,856, 343, 647, 530, 673,
    2494, 346, 338, 1105, 1172, 509, 793, 500, 206
+ )
> KA_Discharge$Deaths = Deaths
> head(KA_Discharge)
         District Recovered Deaths
       Bagalakote
                        215
                               346
          Ballari
                        620
                              1712
         Belagavi
                        558
                               975
4 Bengaluru Rural
                       1109
                               903
5 Bengaluru Urban
                       8813
                             16593
            Bidar
6
                        350
                                407
```

Death counts from

Created a new
voui able
name = Dealts

- assigned values from vector created earlier.

head (1) - displays of the datatrane

Reading Data Frames into R

>	head(kabulldf)			
	District	Today	s.Positives To	otal.Positives
1	Bagalakote	:	325	39150
2	Ballari		502	111730
3	Belagavi		900	91717
4	Bengaluru Rural		517	77877
5	Bengaluru Urban	L	10692	1720890
6	Bidar		84	28865
	Today.s.Dischar	ges Tot	cal.Discharges	Total.Active.Cases
1		215	36541	2263
2		620	104268	5750
3		558	83958	6784
4	1	109	72741	4233
5	8	813	1570258	134038
6		350	27619	835
	Today.s.Deaths	Deaths		
1	0	346		
2	5	1712		
3	6	975		
4	0	903		
5	12	16593		
6	0	407		

head()
- 8 variables

- Ex:

• mode (Kaballdf)

• Sapply (Kaballdf, mode)

Selecting from Data Frames in R

```
> kabulldf[which.max(kabulldf$"Today.s.Positives"),]
  District Today.s.Positives Total.Positives
                        24172
32
      Total —
                                      3809467
   Today.s.Discharges Total.Discharges Total.Active.Cases
                30869
32
                               3526108
                                                    244331
  Today.s.Deaths Deaths
32
               56
                  38998
> hpkabulldf = subset(kabulldf,
                                          Today.s.Positives > 1000)
> head(hpkabulldf,2)
          District Today.s.Positives Total.Positives
  Bengaluru Urban
                                              1720890
                               10692
13
          Dharwada
                                1044
                                                80274
   Today.s.Discharges Total.Discharges Total.Active.Cases
5
                 8813
                               1570258
                                                    134038
13
                 1051
                                 72514
                                                      6425
  Today.s.Deaths Deaths
               12 16593
                    1333
13
```

Selects the

district that

nos the maximon

"Today.s. Postives"

(3) Total is largest

Queries

· find objects

hat have certain properties

Two arguments

· 18t = data frame

 $\frac{2nQ}{2} = Condition$

that you want to use to create subset

Selecting from Data Frames in R

>	head(IRDkabulldi	=)	
	Total.Positives	Total.Discharges	Deaths
1	39150	36541	346
2	111730	104268	1712
3	91717	83958	975
4	77877	72741	903
5	1720890	1570258	16593
6	28865	27619	407

Ordering Data Frames in R

Goal :

 $X \sim \text{Uniform}(\{1,2,\ldots,n\})$:

Let $n \ge 1$ be an integer. If X is a random variable such that

$$P(X = k) = \frac{1}{n}$$
 for all $1 \le k \le n$

> sample(1:6,10, replace=T)

[1] 6 3 3 1 1 2 1 2 4 5

Rolling a dice lo times

> sample(c(0,1), 10, replace =TRUE, prob = c(0.3,0.7))

Tossing a bland (0.7)
Coin 10 times

· Generate samples from a given distribution.

 $\frac{n=6}{100}$ - Experiment is rolling a tair dice

vector to sample from \$1,2,3,4,5,6}

"# of samples to generate

Sample with replacement

C-o with probability o.)

for with pobability o.)

 $X \sim \mathbf{Binomial}(n,p)$: Let $0 \le p \le 1$ and let $n \ge 1$ be an integer. If X is a random variable taking values in $\{0,1,\ldots,n\}$ having a probability mass function

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

for all $0 \le k \le n$.

> rbinom(10, 6, 0.5)

- > rbinom(m, size,prob)
- > rbinom(10, 30,0.3)
 - [1] 13 11 8 8 8 7 11 9 6 11

- n Bernoulli trials

- C Tossing a ain ntines)

- # of successes

(# of Head of 1's)

Binomial Experiment

of samples required # of Bernalli trials (n) Prob of success (P)

Ex:- dbinom ()

check a binom ()

p binom ()

Work shed-

Exercisc

- 6 henerate 1000 samples of Binomial (10,0.5)
- · Histogram of Obserated Lata (proportion)
- · line plot of true frue Binomial Propabilities

 $X \sim \text{Normal}(\mu, \sigma^2)$: Let $\mu \in \mathbb{R}$ and let $\sigma > 0$. Then X is said to be normally distributed with parameters μ and σ^2 if it has the density

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad (1)$$

for all $x \in \mathbb{R}$.

> rnorm(1,10,5)

> rnorm(n, mean, sd) Standard deviation randon variable

> rnorm(10, 3, 5)

[1] 7.529100 7.972982 -7.149743 6.655984 2.105155

[6] 1.114047 9.126808 7.754853 7.459944 4.858321

Normal distribution

dnorm () arnoin ()

Work shed

Exercisc

o Generate 1000 samples of Normal (0,1)

> Histogran of Obserated Lata (proportions)

· line plot of true roue noinal density

 $X \sim \text{Exp}(\lambda)$: Suppose $\lambda > 0$. If X is a random variable with its probabilty density function given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

it is said to be distributed exponentially with parameter λ .

> rexp(10, 1/2500)

[9] 1390.32837 83.46584

> rexp(10, 3)

Exponential distribution

Ex:

