Data Compression

Enrico Marchionni enrico.marchionni@studio.unibo.it

December 10, 2024

Abstract

Data compression is intended as the practice of reducing the size of binary digital data. It could be considered as a procedure that takes a bit-stream in input and returns another bit-stream as output. The output stream may be of equal length or shorter than the input.

The key to understand data compression is to discuss the distinction between data and information. It can be said that data is how information is represented¹. In simple terms, data can be compressed because its original representation is not the shortest possible. The goal of data compression is to reduce data by maintaining the same information.

The counterpart is that in our time data is intrinsically redundant. And this redundancy is needed. So data compression isn't only a procedure that goes from a bit-stream to another one not longer, but it requires also another procedure that regenerates the original bit-stream of data, necessary for practical use, from the previously given output bit-stream of information.

. . .

 $^{^1}$ ex. the number 0 can be expressed in binary as a sequence of a certain number of zeros, from 1 to ∞ , and we know that calculators use at least 8 bits, let's say n (considering it as a multiple of 8), to represent an integer number. So at the end n-1 bits are redundant in the 0 representation on a calculator.

Contents

1	Information Theory	2
	1.1 Quantifying Information	2
2 Entropy		4
	2.1 Quantifying Entropy	4

Chapter 1

Information Theory

In 1948, Shannon¹, while working at the Bell Telephone Laboratories, published "A Mathematical Theory of Communication" [Sha48], a seminal paper that marked the birth of information theory. In that paper, Shannon defined the concept of "information" and proposed a precise way to quantify it-in his theory, the fundamental unit of information is the bit.

Moreover, this discipline plays behind the concepts of entropy, randomness and data compression, all topics that will be discussed later on.

1.1 Quantifying Information

For what concerns data compression, information of theory has developed a usable measure of the information we get from observing the occurrence of an event having probability p. Therefore information is defined in terms of the probability.

The information measure I(p) has to match the following axioms (from [Car07]):

- Information is non negative: $I(p) \ge 0$.
- If an event has probability 1, we get no information: I(1) = 0.
- If two independent events occur (whose probability is the product of their individual probabilities), then the information we get from observing the events is the sum of the two computed individually: $I(p_1 \cdot p_2) = I(p_1) + I(p_2)$.
- Information measure must be continuous and monotonic (slight changes in probability should result in slight changes in information).

Considering the previous properties as axioms it can be said that: $I(p^2) = I(p \cdot p) = I(p) + I(p) = 2 \cdot I(p)$. Thus: $I(p^n) = n \cdot I(p)$ (by induction). Then: $I(p) = I(p^{(\frac{1}{m})^m}) = m \cdot I(p^{\frac{1}{m}})$, so $I(p^{\frac{1}{m}}) = \frac{1}{m} \cdot I(P)$, therefore: $I(p^{\frac{n}{m}}) = \frac{n}{m} \cdot I(p)$. In general, considering r as a real number: $I(p^a) = a \cdot I(p)$.

From this analysis it was discovered that:

$$I(p) = -\log_b p \ (= \log_b \frac{1}{p}) \tag{1.1}$$

¹Claude Elwood Shannon (1916–2001) was an American mathematician, electrical engineer, computer scientist, cryptographer and inventor known as the "father of information theory".

Where: $p = b_1^{\log_{b_1} p}$ and therefore: $\log_{b_2} p = \log_{b_2} b_1^{\log_{b_1} p} = \log_{b_2} b_1 \cdot \log_{b_1} p$. So: $\log_{b_2} b_1$ is a constant, a scaling factor. From another point of view it is a simple change in the unit of measurement.

For this reason:

$$I(p) = -\log_2 p \tag{1.2}$$

Equation 1.2 is the same expression of Equation 1.1 where the unit of measurement is called bits (look at Table 1.1). Equation 1.1 was first introduced by Hartley² in 1928 trying to measure uncertainty, without talking about probability, and lately reviewed by Shannon.

Unit of measurement	Base
bit (or shannon)	2
trit	3
nat (natural unit of information)	e
hartley (or dit)	10

Table 1.1: Information units of measurement

Example 1. Let's talk about flipping a fair coin n times. It gives us: $-\log_2 \frac{1}{2}^n = \log_2 2^n = n \cdot \log_2 2 = n$ bits of information. In fact a sequence of heads (coded as 1) and tails (coded as 0) could be expressed as: 010010111..., these are the n bits of information.

²Ralph Vinton Lyon Hartley (1888-1970) was an American electronics researcher. He invented the Hartley oscillator and the Hartley transform, and contributed to the foundations of information theory.

Chapter 2

Entropy

Entropy is a concept that was explained in many fields. Previously defined by Clausius¹ and Boltzmann² was later used by Shannon. It is believed that these three definitions are indeed equivalent although no formal proof of this is available (as discussed in [Ben19]).

2.1 Quantifying Entropy

Here is how Shannon introduced the measure of Information:

Suppose we have a set of possible events whose probabilities of occurrence are p_1, p_2, \ldots, p_n . These probabilities are known but that is all we know concerning which event will occur. Can we find a measure of how much "choice" is involved in the selection of the event or how uncertain we are of the outcome?

If there is such a measure, say, $H(p_1, p_2, \dots, p_n)^3$, it is reasonable to require of it the following properties:

- H should be continuous in the p_i .
- If all the p_i are equal, $p_i = \frac{1}{n}$ then H should be a monotonic increasing function of n. With equally likely events there is more choice, or uncertainty, when there are more possible events.
- If a choice be broken down into two successive choices, the original H should be the weighted sum of the individual values of H.

Then Shannon proved that the only H satisfying the three assumptions above has the form:

$$H = -K\sum_{i=1}^{n} p_i \ln p_i \tag{2.1}$$

Equation 2.1 includes a constant K, in the Shannon article it is any constant. In application to thermodynamics K turns into Boltzmann Constant. It is simply a scaling factor. Note that

¹Rudolf Julius Emanuel Clausius (1822–1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics.

²Ludwig Eduard Boltzmann (1844–1906) was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics and the statistical explanation of the second law of thermodynamics.

 $^{^{3}}$ Where H refers to Hartley.

if K is $\frac{1}{\ln b}$ or equivalently $\log_b e$, the formula, considering only K and the logarithm, becomes $\log_b e \cdot \ln p$ that is the same of $\log_b e^{\ln p}$ that can be simply written as $\log_b p$.

So *H* can be simply reformulated as:

$$H(P) = -\sum_{i=1}^{n} p_i \log_2 p_i$$
 (2.2)

Where $P = p_1, p_2, \dots, p_n$ is the distribution of probability considered. remind that in Equation 2.2 base 2 could be a general base b and it can be simply view as a simple change in the unit of measurement (as it was seen in Table 1.1).

An intuitive way to explain the origin of this formula is now discussed. We want to obtain the average amount of information from each symbol we see in a stream. Let's suppose we start from n symbols a_1, a_1, \ldots, a_n . A stream of these symbols is provided with probabilities p_1, p_1, \ldots, p_n respectively. As it was seen in Equation 1.2 for a symbol a_i we get $-\log_2 p_i$ information. In a long run, say N observations, we will see (approximately) $N \cdot p_i$ occurrences of the symbol a_i . Thus in the N independent observations, we will get total information of:

$$I = -\sum_{i=1}^{n} (N \cdot p_i) \log_2 p_i$$
 (2.3)

So then, from Equation 2.3 the average information is:

$$\frac{I}{N} = -\frac{1}{N} \sum_{i=1}^{n} (N \cdot p_i) \log_2 p_i = -\sum_{i=1}^{n} p_i \log_2 p_i$$
 (2.4)

At this point we get Equation 2.4 that is the same as Equation 2.2. Furthermore, it is shown in Equation 2.5 that H(P) is bounded (for further information see [Car07]):

$$0 \le H(P) \le \log_2 n \tag{2.5}$$

Example 2. Returning to the example of the coin, in Figure 2.1 it is shown an example of the entropy in function of the probability of heads or tails when flipping a fair coin.

Figure 2.1: Graph of entropy $H(p) = -p \log_2(p) - (1-p) \log_2(1-p)$ for a fair coin toss.

Bibliography

- [Ben19] Arieh Ben-Naim. "Entropy and Information Theory: Uses and Misuses". In: *Entropy* 21.12 (2019). ISSN: 1099-4300. DOI: 10.3390/e21121170. URL: https://www.mdpi.com/1099-4300/21/12/1170.
- [Car07] Tom Carter. "An introduction to information theory and entropy". In: *Complex systems summer school, Santa Fe* (2007).
- [Sha48] C. E. Shannon. "A mathematical theory of communication". In: *The Bell System Technical Journal* 27.3 (1948), pp. 379–423. DOI: 10.1002/j.1538-7305. 1948.tb01338.x.