电子电路与系统基础Ⅱ

理论课第十一讲 晶体管电路的回顾与拓展 单晶体管放大器回顾 差分对放大器分析 寄生电容效应

李国林 清华大学电子工程系

大纲

- 晶体管电阻电路回顾
 - 上学期内容回顾
- 差分对放大器分析
 - 如果上学期讲则属必考重点,本学期讲则属背景知识
- 晶体管寄生电容效应
 - 导致晶体管放大器的有源性降低

一、晶体管电阻电路回顾

• 1.1 晶体管分区特性及其电路模型

• 1.2 反相器电路

• 1.3 电流镜电路

• 1.4 三种组态放大器

1.1 晶体管伏安特性具有分区特性

MOS分区描述

	二端口定义	截止区	有源区(恒流区,饱和区)	欧姆区
NMOS 电路 符号	G o M VDS VGS S O S	G o vos vos s	$G \xrightarrow{i_{G}} D$ $\downarrow_{VGS} \qquad \downarrow_{THn}^{2} D$ $S \xrightarrow{i_{D} = \beta_{n}(v_{GS} - V_{THn})^{2}} S$	$G \xrightarrow{i_{G}} D$ $V_{GS} \downarrow \qquad \qquad \downarrow $
端口描述	$egin{bmatrix} V_{ ext{GS}}, i_{ ext{G}} \ V_{ ext{DS}}, i_{ ext{D}} \end{bmatrix}$	未形成导电沟道 $ v_{GS} < V_{THh}, i_G = 0 $ $ v_{DS} > 0, i_D = 0 $	沟道夹断 $ v_{GS} > V_{THh} $ $ v_{DS} > v_{GS} - V_{THh} $	沟道畅通 $ v_{\rm GS} > V_{T \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
PMOS 电路 符号	S VSG M VSD ID D	S vsG VsD VsD iD	$S \xrightarrow{i_D = \beta_p(v_{SG} - V_{THp})^2} S$ $G \xrightarrow{i_G} D$ $i_D = \beta_p(v_{SG} - V_{THp})^2$ r_{sd}	$\begin{array}{c c} S & & & & & & \\ \hline r_{on}=1/(2\beta_p \text{ VSG-V}_{THp})) & & & & \\ \hline VSG & & & & & \\ \hline G & & & & & \\ \hline i_G & & & & \\ \hline i_D & & & \\ \end{array}$
端口描述	$egin{bmatrix} V_{ ext{SG}},i_{ ext{G}}\ V_{ ext{SD}},i_{ ext{D}} \end{bmatrix}$	未形成导电沟道 $v_{SG} < V_{Thp}, i_G = 0$ $v_{SD} > 0, i_D = 0$	沟道夹断 $v_{SG} > V_{TH_0}$ $v_{SD} > v_{SG} - V_{TH_0}$	沟道畅通 $V_{SG} > V_{THp}$ $V_{SD} < V_{SG} - V_{fhp}$

恒流区交直流分析电路模型 $y_{MOSFET} = \begin{bmatrix} 0 & 0 \\ g_m & g_{ds} \end{bmatrix}$

$$\mathbf{y}_{MOSFET} = \begin{bmatrix} 0 & 0 \\ g_m & g_{ds} \end{bmatrix}$$

- (a) 二端口网络表述

- (b) 直流分析电路模型
- (c) 交流分析y参量等效电路

NPN PNP 结构 发射极 集电极 collector emitter \mathbf{P}^{+} N 基极 基极 电路 base base 符号 P N N^{+} P Q 发射极 集电极 emitter collector 口定义 **V**CE $\mathbf{v}_{\mathbf{EC}}$ **V**BE 有源 $\begin{cases} i_{B} = A_{J}J_{BS0,n}\left(e^{\frac{v_{BE}}{v_{T}}} - 1\right) \\ i_{C} = \beta_{n}A_{J}J_{BS0,n}\left(e^{\frac{v_{BE}}{v_{T}}} - 1\right)\left(1 + \frac{v_{CE}}{V_{A,n}}\right) \end{cases} \qquad \begin{cases} i_{B} = A_{J}J_{BS0,p}\left(e^{\frac{v_{EB}}{v_{T}}} - 1\right) \\ i_{C} = \beta_{p}A_{J}J_{BS0,p}\left(e^{\frac{v_{EB}}{v_{T}}} - 1\right)\left(1 + \frac{v_{EC}}{V_{A,p}}\right) \end{cases}$ 区元 件约束

BJT 當述

BJT分区描述

	二端口定义	截止区	有源区(恒流区)	饱和区
NPN 电路 符号	B O VCE VCE E	v_{BE} v_{CE} v_{CE}	$\begin{array}{c c} & i_{B} & i_{C} \\ \hline 0.7V & I_{C0} = \beta_{n}I_{B0} & r_{cc} \\ \hline E & E & E \end{array}$	$\begin{array}{c} B \\ \downarrow \\ V_{BE} = 0 \end{array} \begin{array}{c} i_{C} \\ \downarrow \\ V_{CE} = 0.2V \end{array}$
端口描述	$egin{bmatrix} v_{BE}, i_B \ v_{CE}, i_C \end{bmatrix}$	BE结反偏,BC结 反偏 $v_{BE} < 0.7V, i_B = 0$ $v_{CE} > 0, i_C = 0$	BE结正偏,BC结反偏 $v_{BE}=0.7V, i_B>0$ $v_{CE}>v_{CE,sat}, i_C=\beta_n i_B$	BE结正偏,BC结 正偏 $v_{BE}=0.7V, i_B>0$ $v_{CE}=v_{CE,sat}, i_C<\beta_n i_B$
PNP 电路 符号	E O E V _{EB} V _{EC} i _B C i _C	E v _{EB} V _{EC} V _{EC}	$\begin{array}{c c} E & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c} E & \longrightarrow & E \\ \downarrow & \downarrow & \downarrow \\ V_{EB} = 0.2V \\ B & \downarrow & \downarrow \\ I_{B} & \longrightarrow & C \end{array} $
端口描述	$egin{bmatrix} v_{EB}, i_B \ v_{EC}, i_C \end{bmatrix}$	EB结反偏,CB结 反偏 $v_{EB} < 0.7V, i_B = 0$ $v_{EC} > 0, i_C = 0$	EB结正偏,CB结反偏 $v_{EB}=0.7V, i_B>0$ $v_{EC}>v_{EC,sat}, i_C=\beta_p i_B$	EB结正偏,CB结 正偏 $v_{EB} = 0.7V, i_B > 0$ $v_{EC} = v_{EC,sat}, i_C^9 < \beta_p i_B$

恒流区交直流分析电路模型

$$\mathbf{y}_{BJT} = \begin{bmatrix} g_{be} & 0 \\ g_{m} & g_{ce} \end{bmatrix}$$

(a) 二端口网络表述

- (b) 直流分析电路模型
- (c) 交流分析y参量等效电路

清华大学电子工程系 2020年秋季学期

1.2 反相器电路 反相特性及其数字非门应用

及 其反 放 应

NPN-BJT反相器

NMOS反相器

14

CMOS反相器

CMOS 反相器主要用于数字非门: 低功耗 在逻辑0,1状态,两个晶体管中有一个是截止的,故而无静态功耗

1.3 电流镜电路

$$\begin{split} &\frac{I_{D2}}{I_{D1}} = \frac{\frac{1}{2}\mu_{p}C_{ox}\left(\frac{W}{L}\right)_{2}(V_{SG2} - V_{TH})^{2}\left(1 + \frac{V_{SD2}}{V_{E}}\right)}{\frac{1}{2}\mu_{p}C_{ox}\left(\frac{W}{L}\right)_{1}(V_{SG1} - V_{TH})^{2}\left(1 + \frac{V_{SD1}}{V_{E}}\right)} \\ &= \frac{\left(\frac{W}{L}\right)_{2}\left(1 + \frac{V_{SD2}}{V_{E}}\right)}{\left(\frac{W}{L}\right)_{1}\left(1 + \frac{V_{SD1}}{V_{E}}\right)} \approx \frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}} \end{split}$$

$$\begin{split} &\frac{I_{OUT}}{I_{IN}} = \frac{I_{C2}}{I_{C1} + I_{B1} + I_{B2}} \approx \frac{I_{C2}}{I_{C1}} \\ &= \frac{\beta A_{J2} J_{BS0} \cdot \left(e^{\frac{V_{BE2}}{v_T}} - 1\right) \left(1 + \frac{V_{CE2}}{V_A}\right)}{\beta A_{J1} J_{BS0} \cdot \left(e^{\frac{V_{BE1}}{v_T}} - 1\right) \left(1 + \frac{V_{CE1}}{V_A}\right)} \approx \frac{A_{J2}}{A_{J1}} \end{split}$$

电流镜原理

电流镜电路利用的是同工艺同基片位置同时完成制作的晶体管的一致性,两晶体管的工艺参量可以对消,从而电流电量之比完全由晶体管尺寸之比决定,也就实现了相对精准的电流控制

• 电流镜电路是集成电路的特征电路之一

1.4 三种组态

晶体管位于恒流导通区

电流缓冲器 $i_o pprox i_i$

Common Emitter CE: 共射组态

Common Base CB: 共基组态

Common Collector CC: 共集组态

Common Source CS: 共源组态

Common Gate CG: 共栅组态

CD: 共漏组态

三种组态放大器基本参量

	CE	СВ	CC
输入阻抗	r_{be}	$r_{be} \parallel \frac{R_L + r_{ce}}{1 + g_m r_{ce}} \qquad r_{be} + r_{ce}$	$r_{ce} \parallel R_L + g_m r_{be} (r_{ce} \parallel R_L)$
输出阻抗	r_{ce}	$r_{be} \parallel R_S + r_{ce} + g_m (r_{be} \parallel R_S) r_{ce}$	$r_{ce} \parallel \frac{r_{be} + R_S}{1 + g_m r_{be}}$
最大功率增益	$\frac{1}{4}g_{m}r_{ce}\cdot\beta$	$\sim \prec g_m r_{ce}$	$\sim \prec \beta = g_m r_{be}$
理想模型	反相跨导 G _{m0} =-g _m	电流缓冲 A _{i0} =1	电压缓冲 A_{v0}=1
输入输出阻抗	r_{be} r_{ce}	$r_{in} \approx 1/g_m$	$r_{out} \approx 1/g_m$
单向化条件		$R_L << r_{ce}$ 充分	上必要 $R_S << r_{be}$

跨导器模型及其简化

20

三种组态

 晶体管放大器可能是晶体管三种组态之一, 也可能是三种组态的组合,或者是三种组态的级联等形态,因此晶体管的三种组态 分析是晶体管放大器分析的核心

二、差分对 Differential Pairs

- 差分对是集成电路的特征电路之一
 - 数模混合电路必须采用
 - 运放电路的基本单元
- 2.1 差分对结构
- 2.2 MOSFET差分对共模特性
- 2.3 MOSFET差分对差模特性
- 2.4 小信号电路模型
- 2.5 双端输出转单端输出
 - 差分电流的合成

2.1 差分对结构

设计中,结构是完全对称的,输出差模电压中,只有对差模输入电压v_{id}的放大,而没有对共模电压v_{ic}的放大,故称差分对

$$v_o = A_{dd}v_{id} + A_{dc}v_{ic} = A_{dd}v_{id} = A_0v_{id}$$
 $CMRR = 20\log_{10}\left|\frac{A_{dd}}{A_{dc}}\right| \rightarrow \infty$ 李国林 电子电路与系统基础 清华大学电子工程系 2020年秋季学期 北韓地紀と

差分端口 共模与差模

2.2 MOSFET差分对: 共模输入范围

确保所有晶体管均工作在恒流区的共模信号范围

$$v_{ip} = v_{in} = v_{ic}$$

$$v_{ip} = v_{in} = v_{ic}$$
 $R_{D1} = R_{D2} = R_{D}$

$$0.5I_{SS} = \beta_n V_{od0}^2$$

$$V_{od0} = \sqrt{\frac{I_{SS}}{2\beta_n}}$$

$$\beta_n = \frac{1}{2} \mu_n C_{ox} \frac{W}{L}$$

$$V_{od} = V_{GS} - V_{TH}$$

$$v_{D1} = v_{D2} = V_{DD} - 0.5I_{SS}R_{D}$$

$$v_o = v_{D2} - v_{D1} = 0$$
 对称差分对不放大共模信号

为了实现有效的差模放大,应确保晶体管始终工作在有源区

$$v_{GD} < V_{TH}$$
 $v_{ic} = v_G < v_D + V_{TH} = V_{DD} - 0.5I_{SS}R_D + V_{TH} = V_{I,CM,max}$ $v_{ic} = v_G = v_S + V_{GS} > V_{CS} + V_{TH} + V_{od0} = V_{I,CM,min}$ 25

2.3 MOSFET 差分对: 差模输入范围

确保两个差分对管同时工作在恒流区的差模信号范围

$$v_{id} > +v_{id,\text{max}}$$

$$\mathbf{M_1}$$
恒流 V_{co}

$$I_{D1} = I_{SS} & I_{D2} = 0 \\ V_{GS1} = \sqrt{2} V_{od0} + V_{TH} & V_{GS2} < V_{TH}$$

$$I_{D2} = 0$$

$$V_{GS2} < V_{TH}$$

$$v_{id} < -v_{id, \max}$$

$$M_{f 1}$$
截止 $I_{D1} = 0$ $V_{GS1} < V_{TH}$

$$I_{D2} = I_{SS}$$
 $V_{GS2} = \sqrt{2}V_{od0} + V_{TH}$

在共模、差模信号范围内,差分对管工作在恒流区

大信号电流电压转移关系

$$V_{GS1} - V_{GS2} = v_{id}$$

$$\left| v_{id} \right| \le + v_{id, \text{max}} = \sqrt{2} V_{od0}$$

$$i_d \le I_{SS}$$

$$0.5I_{SS} + 0.5i_d = \beta_n (V_{GS1} - V_{TH})^2$$

$$0.5I_{SS} - 0.5i_d = \beta_n (V_{GS2} - V_{TH})^2$$
 晶体管工作在恒流区

$$V_{GS1} - V_{TH} = \sqrt{\frac{0.5I_{SS} + 0.5i_d}{\beta_n}}$$

$$V_{GS2} - V_{TH} = \sqrt{\frac{0.5I_{SS} - 0.5i_d}{\beta_n}}$$

大信号跨导转移特性

$$V_{GS1} = \sqrt{\frac{I_{SS} + i_d}{2\beta_n}} + V_{TH}$$

$$V_{GS2} = \sqrt{\frac{I_{SS} - i_d}{2\beta_n} + V_{TH}}$$

$$V_{GS1} - V_{GS2} = v_{id}$$

$$v_{id} = \sqrt{\frac{I_{SS} + i_d}{2\beta_n}} - \sqrt{\frac{I_{SS} - i_d}{2\beta_n}} = \sqrt{V_{od0}^2 + \frac{i_d}{2\beta_n}} - \sqrt{V_{od0}^2 - \frac{i_d}{2\beta_n}}$$

$$i_d = \beta_n v_{id} \sqrt{4V_{od0}^2 - v_{id}^2} = I_{SS} \frac{v_{id}}{V_{od0}} \sqrt{1 - \frac{1}{4} \left(\frac{v_{id}}{V_{od0}}\right)^2}$$

$$\left|v_{id}\right| \le +v_{id,\text{max}} = \sqrt{2}V_{od0} = \sqrt{\frac{I_{SS}}{\beta_n}}$$

$$V_{od0} = \sqrt{\frac{I_{SS}}{2\beta_n}}$$

非线性转移特性曲线 [][

$$-\sqrt{2}V_{od0} \qquad v_{id} \qquad V_{E} \to \infty \qquad \text{忽略厄利效应} \\ +\sqrt{2}V_{od0} \\ -I_{SS} \qquad i_{d} = \begin{cases} +I_{SS} & v_{id} \geq +\sqrt{2}V_{od0} \\ I_{SS} \frac{v_{id}}{V_{od0}} \sqrt{1 - \frac{1}{4} \left(\frac{v_{id}}{V_{od0}}\right)^{2}} & |v_{id}| \leq \sqrt{2}V_{od0} \\ -I_{SS} & v_{id} \leq -\sqrt{2}V_{od0} \end{cases}$$

清华大学电子工程系 2020年秋季学期
$$V_{od0}=\sqrt{rac{I_{SS}}{2eta_n}}$$

MOSFET差分对 双管工作状态

$$V_{od0} = \sqrt{\frac{I_{SS}}{2\beta_n}}$$

 $i_d = I_{D1} - I_{D2}$

BJT差分对电流电压转移特性曲线

2.4 差分对的源极电压不变?

$$V_{od0} = \sqrt{\frac{I_{SS}}{2\beta_n}} \qquad |v_{id}| \le \sqrt{2}V_{od0}$$

上述公式推导的前提会

$$V_{GS1} - V_{TH} = \sqrt{\frac{0.5I_{SS} + 0.5i_d}{\beta_n}}$$

$$V_{GS2} - V_{TH} = \sqrt{\frac{0.5I_{SS} - 0.5i_d}{\beta_n}}$$

$$v_{ic} - V_S - V_{TH} = \frac{1}{2} \left(\sqrt{\frac{I_{SS} + i_d}{2\beta_n}} + \sqrt{\frac{I_{SS} - i_d}{2\beta_n}} \right)$$

对差分信号而言
电压不变点
$$V_S = v_{ic} - V_{TH} - \frac{V_{od0}}{2} \left(\sqrt{1 + \frac{i_d}{I_{SS}}} + \sqrt{1 - \frac{i_d}{I_{SS}}} \right)$$

$$V_{S0} = v_{ic} - V_{TH} - V_{od0}$$

$$\begin{split} V_{S} &= V_{S0} + \frac{V_{od0}}{2} \bigg(2 - \sqrt{1 + \frac{i_{d}}{I_{SS}}} - \sqrt{1 - \frac{i_{d}}{I_{SS}}} \bigg) \\ i_{d} &= I_{SS} \frac{v_{id}}{V_{od0}} \sqrt{1 - \frac{1}{4} \bigg(\frac{v_{id}}{V_{od0}} \bigg)^{2}} \end{split}$$
 作业4: 求1dB线性范围

线性范围内,差分对源极 视为差模交流地

$$\left| v_{id} \right| \le 0.53 V_{od0}$$

$$|v_{id}| \le 0.53 V_{od0}$$
 $V_S - V_{S0} \le 0.036 V_{od0}$ $V_S \approx V_{S0}$

差模放大器: 差模交流小信号分析

差模小信号电路分析

$$v_{od} = 0.5g_{m0}v_{id} \cdot (2r_{ds} \parallel 2R_D) = g_{m0}(r_{ds} \parallel R_D)v_{id}$$

$$A_{vd} = \frac{v_{od}}{v_{id}} = g_{m0} (r_{ds} || R_D)$$

$$g_{m0} = \frac{2I_{D0}}{V_{od0}} = \frac{I_{SS}}{V_{od0}}$$

$$r_{ds} = \frac{V_E}{0.5I_{SS}}$$

2.6 单端输出,差分电流合成

要求掌握原理性描述分析

交流小信号 差分电流合成 原理分析

 $V_A \rightarrow \infty$ $\beta \rightarrow \infty$

三、晶体管寄生电容效应

自学10.4节,了解基本概念,不必深入探索

一频域寄不不电则晶频性带旦高晶效回虑效法管速、流生可考容无体高延、宽速体应避寄应理的特计。则,生,解高

交流小信号高频模型

放大器效应一: 高频增益下降

高频增益下降

$$A(s) = \frac{v_L}{v_S'} = -g_m R_L' \frac{1 - \frac{s}{\omega_z}}{1 + s(C_{b'e}R_S' + C_{b'c}(R_S' + R_L' + g_m R_S'R_L') + C_{ce}R_L')} + s^2 R_S' R_L'(C_{b'c}C_{b'e} + C_{b'e}C_{ce} + C_{ce}C_{b'c})$$

$$\omega_z = \frac{g_m}{C_{b'c}}$$

放大器效应二:极高频失却有源性 失去功率放大能力

• 最高振荡频率f_{max}

$$f_{max} = \frac{1}{4\pi} \sqrt{\frac{g_{m}^{2} - 4g_{be}g_{ce}(1 + g_{be}r_{b})}{\left(g_{m}C_{bc}(C_{be} + C_{bc}) + g_{be}C_{bc}^{2} + g_{ce}(C_{be} + C_{bc})^{2}\right)r_{b}}}$$

$$\approx \frac{1}{4\pi} \sqrt{\frac{g_{m}}{C_{bc}(C_{be} + C_{bc})r_{b}}}$$

$$f_{\text{max}} = \frac{g_m}{4\pi C_{gs}} \sqrt{\frac{r_{ds}}{r_{gs}}}$$

最高振荡频率与最大功率增益

$$f < \frac{1}{4} f_{\text{max}}$$

放大器和振荡器 的工作频率范围

放大器效应三: 高频稳定性变差 放大器变振荡器

$$k = \frac{2ReY_{11}ReY_{22} - Re(Y_{12}Y_{21})}{|Y_{12}Y_{21}|} < 1$$

作业1 为何晶体管需要工作在恒流区

- 当晶体管做放大管使用时,需要将其偏置 在恒流导通区,此区晶体管具有最大增益
 - 分析CS组态晶体管在不同工作区的跨导增益和 电压增益
 - · 交流小信号分析,分析其y参量矩阵及其模型

$$i_G = 0$$

$$i_{D} = \begin{cases} 0 \\ 2\beta_{n} \left((v_{GS} - V_{TH}) v_{DS} - 0.5 v_{DS}^{2} \right) \\ \beta_{n} (v_{GS} - V_{TH})^{2} \left(1 + \lambda v_{DS} \right) \end{cases}$$

$$\begin{aligned} v_{GS} < V_{TH} \\ v_{GS} > V_{TH}, v_{GD} > V_{TH} \\ v_{GS} > V_{TH}, v_{GD} < V_{TH} \end{aligned}$$

$$\beta_n = \frac{1}{2} \,\mu_n C_{ox} \, \frac{W}{L}$$

作业2: BJT差分对跨导转移特性

证明BJT差分对跨导控制关系:

$$i_d = i_{C1} - i_{C2} = f(v_{id}) = I_{EE} \tanh \frac{v_{id}}{2v_T}$$

已知BJT跨导控制关系

$$i_b \approx 0$$
 忽略 β 、 V_A 的影响 $i_c \approx I_{CS0}e^{\frac{v_{BE}}{v_T}}$ $\beta \rightarrow \infty$, $V_A \rightarrow \infty$

作业3: 差分放大器单端转双端

• 电源电压为±10V,差分对管参数一致,R_c=3kΩ,画出如下三种输入情况下的两个输出电压v_{o1},v_{o2}的波形示意图

$$v_i = 10\sin(2\pi \times 10^3 t)(mV)$$

$$v_i = 0.5 \sin(2\pi \times 10^3 t)(V)$$

$$v_i = 50 + 100\sin(2\pi \times 10^3 t)(mV)$$

作业4: 1dB线性范围

· 求差分对管的1dB线性范围

$$i_{d} = \begin{cases} +I_{SS} & v_{id} \geq +\sqrt{2}V_{od0} \\ I_{SS} \frac{v_{id}}{V_{od0}} \sqrt{1 - \frac{1}{4} \left(\frac{v_{id}}{V_{od0}} \right)^{2}} & |v_{id}| \leq \sqrt{2}V_{od0} \end{cases}$$

$$|v_{id}| \leq \sqrt{2}V_{od0} \qquad \approx \qquad I_{SS} \frac{v_{id}}{V_{od0}} = \frac{I_{SS}}{V_{od0}} v_{id}$$

$$|v_{id}| \leq -\sqrt{2}V_{od0} \qquad = g_{m0}v_{id}$$

8.3.2节: 相量域的有源和无源定义

• 线性时不变网络在相量域的有源性描述为:端口描述方程为线性代数方程的线性时不变网络,如果其端口总吸收实功恒不小于零,

$$P = \sum_{k=1}^{n} P_k = \frac{1}{2} \operatorname{Re} \sum_{k=1}^{n} \dot{V}_k \dot{I}_k^* = \frac{1}{2} \operatorname{Re} \dot{\mathbf{V}}^T \dot{\mathbf{I}}^* \ge 0 \qquad (\forall \dot{\mathbf{v}}, \dot{\mathbf{i}}, \mathbf{f}(\dot{\mathbf{v}}, \dot{\mathbf{i}}) = 0)$$

该网络就是无源网络。如果存在某种负载条件,使得端口总吸收实功 小于0的情况可以出现,该网络则是有源的

$$P = \sum_{k=1}^{n} P_k = \frac{1}{2} \operatorname{Re} \sum_{k=1}^{n} \dot{V}_k \dot{I}_k^* = \frac{1}{2} \operatorname{Re} \dot{\mathbf{V}}^T \dot{\mathbf{I}}^* < 0 \qquad (\exists \dot{\mathbf{V}}, \dot{\mathbf{I}}, \mathbf{f}(\dot{\mathbf{V}}, \dot{\mathbf{I}}) = 0)$$

- Ÿi是关联参考方向定义的端口电压和端口电流列向量
- $\mathbf{f}(\dot{\mathbf{v}},\dot{\mathbf{I}})=0$ 则是该线性时不变网络在相量域的端口描述线性代数方程。

作业5: 晶体管的有源性

- 请分析如下网络的有源性条件
 - 列写其y参量矩阵
 - 由有源性定义证明有源性条件为f<f_{max}

$$f_{\text{max}} = \frac{g_m}{4\pi C_{gs}} \sqrt{\frac{r_{ds}}{r_{gs}}}$$

作业6: 晶体管放大器不稳定的原因

• 练习10.4.10:图E10.4.6是用来考察CE组态晶体管 C_{bc} 对输入阻抗和输出阻抗影响的原理性电路,其中只剩下晶体管原本设计的压控流源和跨接在压控流源输出和输入之间的寄生电容 C_{bc} ,考察当 $Z_{c}=R_{c}$, $j\omega L_{2}$ 两种负载情况下,输入阻抗 Z_{in} 的性质;考察当 $Z_{s}=R_{s}$, $j\omega L_{1}$ 两种负载情况下,输出阻抗 Z_{out} 的性质。

作业7:寄生电容对放大的影响

· 仅考虑寄生电容 C_{be}影响,求传 递函数表达式

$$H = \frac{i_d}{v_{id}}$$

作业8:寄生电容的回旋对偶变换导致阻容电路出现谐振现象

- 证明:考虑了晶体管的寄生电容效应后,从V。端口看入,其等效电路为RLC并联谐振回路
 - 给出等价RLC

CAD仿真: N型负阻

加压求流,确认该端口具有N型负阻特性加流求压?

