行列輪講: 練習問題

杉浦 圭祐

慶應義塾大学理工学部情報工学科 松谷研究室

October 29, 2023

目次

- 1 練習問題
- 2 解答

第1回: 行列の基本処理, 逆行列

1 以下の行列積の (i,j) 成分を、各行列の成分を用いて書いてください。

$$egin{aligned} \mathbf{AB} \\ \mathbf{A}^{ op} \mathbf{B} \\ \mathbf{ABC} \\ \mathbf{ABCD} \\ \mathbf{AB}^{ op} \mathbf{CD}^{ op} \\ \mathbf{A}^n \\ \mathbf{\emptyset} \colon \left(\mathbf{ABA}^{ op}
ight)_{ij} = \sum_k \sum_l a_{ik} b_{kl} a_{jl} \end{aligned}$$

2 対称行列, エルミート行列, 正定値行列, 直交行列, ユニタリ行列とは何か, 確認しましょう.

第1回: 行列の基本処理, 逆行列

Sherman-Morrison-Woodbury の公式があります. どのようなときに, この公式が役に立つでしょうか.

$$\left(\mathbf{A}^{-1} + \mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)^{-1} = \mathbf{A} - \mathbf{A}\mathbf{B}\left(\mathbf{D} + \mathbf{C}\mathbf{A}\mathbf{B}\right)^{-1}\mathbf{C}\mathbf{A}$$

4 上式から,以下の式を導出してください.

$$\left(\mathbf{A} + \mathbf{b}\mathbf{c}^{\top}\right)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{b}\mathbf{c}^{\top}\mathbf{A}^{-1}}{1 + \mathbf{c}^{\top}\mathbf{A}^{-1}\mathbf{b}}$$

5 シューア補行列による以下の式を,確認してください.

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{C}\mathbf{A}^{-1} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

同じ列ベクトルを 2 箇所に含んだ行列の, 行列式が 0 になることを確認してください.

$$\det\left(\left(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n\right)\right)=0$$

2 n 次正方行列 \mathbf{A} を c 倍したとき、行列式は元の c^n 倍になることを確認してください (置換による行列式の定義を用いる).

$$\det(c\mathbf{A}) = c^n \det(\mathbf{A})$$

③ 上を用いて, i 列目に j 列目の c 倍を足しても $(i \neq j)$, 行列式が変わらないことを確認してください.

$$\det\left(\left(\mathbf{a}_{1},\ldots,\mathbf{a}_{i}+c\mathbf{a}_{j},\ldots,\mathbf{a}_{j},\ldots,\mathbf{a}_{n}\right)\right)$$

$$=\det\left(\left(\mathbf{a}_{1},\ldots,\mathbf{a}_{i},\ldots,\mathbf{a}_{j},\ldots,\mathbf{a}_{n}\right)\right)$$

4 以下を確認してください (1 行目から 2 行目を引き, 2 列目に 1 列目を 足す).

$$\det \left(\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \right) = \det(\mathbf{A} + \mathbf{B}) \det(\mathbf{A} - \mathbf{B})$$

5 以下を確認してください. ${f A}$ の余因子行列 ${
m adj}$ ${f A}$, 行列式 ${
m det}({f A})$, 逆行列 ${f A}^{-1}$ について,

$$(\operatorname{adj} \mathbf{A}) \mathbf{A} = (\det(\mathbf{A})) \mathbf{I}$$

6 以下を確認してください.

$$\mathrm{tr}\big(\mathbf{X}^{-1}\mathbf{A}\mathbf{X}\big)=\mathrm{tr}(\mathbf{A})$$

1 \mathbf{x}, \mathbf{y} を n, m 次縦ベクトルとします. 以下の微分の形 (サイズ) を確認しましょう. 分子レイアウト, 分母レイアウトの双方で考えてください.

$$\frac{\partial \mathbf{y}}{\partial x}, \ \frac{\partial y}{\partial \mathbf{x}}, \ \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

2 以下を確認してください (成分ごとに書き下す).

$$\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}^{\top}$$

③ 以下を確認してください $\left(rac{\partial \mathbf{x}^{ op} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^{ op} \left(\mathbf{A} + \mathbf{A}^{ op} \right)$ を用いる).

$$rac{\partial \left(\mathbf{a}^{ op}\mathbf{x}
ight)\left(\mathbf{b}^{ op}\mathbf{x}
ight)}{\partial \mathbf{x}} = \mathbf{x}^{ op}\left(\mathbf{a}\mathbf{b}^{ op} + \mathbf{b}\mathbf{a}^{ op}
ight)$$
 (a, b は定数)

4 以下を確認してください (A,B,C は定数, C は対称行列).

$$\frac{\partial \left(\mathbf{x} - \mathbf{A}\mathbf{b}\right)^{\top} \mathbf{C} \left(\mathbf{x} - \mathbf{A}\mathbf{b}\right)}{\partial \mathbf{x}} = 2 \left(\mathbf{x} - \mathbf{A}\mathbf{b}\right)^{\top} \mathbf{C}$$

5 以下を確認してください (A, B, C は定数, C は対称行列).

$$\frac{\partial \left(\mathbf{b} - \mathbf{A}\mathbf{x}\right)^{\top} \mathbf{C} \left(\mathbf{b} - \mathbf{A}\mathbf{x}\right)}{\partial \mathbf{x}} = -2 \left(\mathbf{b} - \mathbf{A}\mathbf{x}\right)^{\top} \mathbf{C} \mathbf{A}$$

上の2つの導出では、以下の式を用いること.

$$\frac{\partial \left(\mathbf{x} + \mathbf{A}\mathbf{b}\right)^{\top} \mathbf{C} \left(\mathbf{x} + \mathbf{D}\mathbf{e}\right)}{\partial \mathbf{x}} = \left(\mathbf{x} + \mathbf{A}\mathbf{b}\right)^{\top} \mathbf{C} + \left(\mathbf{x} + \mathbf{D}\mathbf{e}\right)^{\top} \mathbf{C}^{\top}$$

6 以下を確認してください (成分ごとに書き下す).

$$rac{\partial \mathbf{A}\mathbf{u}}{\partial \mathbf{x}} = \mathbf{A} rac{\partial \mathbf{u}}{\partial \mathbf{x}}$$
 ($\mathbf{u} = \mathbf{u}(\mathbf{x})$, A は定数)

分子レイアウトに関する以下の式を,分母レイアウトに直してください。

$$\frac{\partial \mathbf{A}\mathbf{u}}{\partial x} = \mathbf{A} \frac{\partial \mathbf{u}}{\partial x}$$
$$\frac{\partial (\mathbf{A}\mathbf{x} + \mathbf{b})^{\top} \mathbf{C} (\mathbf{D}\mathbf{x} + \mathbf{e})}{\partial \mathbf{x}} = (\mathbf{D}\mathbf{x} + \mathbf{e})^{\top} \mathbf{C}^{\top} \mathbf{A} + (\mathbf{A}\mathbf{x} + \mathbf{b})^{\top} \mathbf{C} \mathbf{D}$$
$$\frac{\partial (\mathbf{x} - \mathbf{b})^{\top} \mathbf{C} (\mathbf{x} - \mathbf{b})}{\partial \mathbf{x}} = 2 (\mathbf{x} - \mathbf{b})^{\top} \mathbf{C}$$
$$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}} = \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

1 2 次元の回転行列 $\mathbf{R}(\theta)$ と, その逆行列 $\mathbf{R}(\theta)^{-1}$ は, 次のように表される.

$$\mathbf{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \mathbf{R}(\theta)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

 $\mathbf{R}(\theta)^{-1} = \mathbf{R}(\theta)^{\top} = \mathbf{R}(-\theta)$ であることを確認してください. また, $\frac{\partial \mathbf{R}(\theta)^{-1}}{\partial \theta}$ を 2 通りの方法で求めてください (上式を直接微分する方法と, 逆行列の微分の式を用いる方法).

$$\frac{\partial \mathbf{U}^{-1}}{\partial x} = -\mathbf{U}^{-1} \frac{\partial \mathbf{U}}{\partial x} \mathbf{U}^{-1} \qquad (\mathbf{U} = \mathbf{U}(x))$$

2 2次元の回転行列を用いた,次のような式を考える (2次元ロボットの動作を記述している).

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} \mathbf{R}(\theta) & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{pmatrix} \begin{pmatrix} u \\ v \\ \omega \end{pmatrix} = \begin{pmatrix} x + u\cos\theta - v\sin\theta \\ y + u\sin\theta + v\cos\theta \\ \theta + \omega \end{pmatrix}$$

$$\mathbf{x}' = \begin{pmatrix} x' & y' & \theta \end{pmatrix}^{\mathsf{T}}, \mathbf{x} = \begin{pmatrix} x & y & \theta \end{pmatrix}^{\mathsf{T}}, \mathbf{u} = \begin{pmatrix} u & v & \omega \end{pmatrix}^{\mathsf{T}}$$
 としたとき、 $\frac{\partial \mathbf{x}'}{\partial \mathbf{x}}$ と $\frac{\partial \mathbf{x}'}{\partial \mathbf{u}}$ を求めてください.

● 2次元ロボットの姿勢推定を拡張カルマンフィルタで行うとき,必要になる微分です.

3 以下を確認してください.

$$rac{\partial \left(\mathbf{X}^{ op}\mathbf{a}
ight)^{ op}\mathbf{X}^{ op}\mathbf{b}}{\partial \mathbf{X}} = rac{\partial \mathbf{a}^{ op}\mathbf{X}\mathbf{X}^{ op}\mathbf{b}}{\partial \mathbf{X}} = \mathbf{X}^{ op}\left(\mathbf{a}\mathbf{b}^{ op} + \mathbf{b}\mathbf{a}^{ op}
ight)$$
 (a, b は定数)

4 以下を確認してください.

$$\frac{\partial \operatorname{tr}(\mathbf{X} \mathbf{A} \mathbf{X}^{\top})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{A} \mathbf{X}^{\top} \mathbf{X})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{X}^{\top} \mathbf{X} \mathbf{A})}{\partial \mathbf{X}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{X}^{\top}$$
(A は定数)

5 以下を確認してください.

$$\frac{\partial \operatorname{tr} \left(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^{\top} \mathbf{C} \right)}{\partial \mathbf{X}} = \mathbf{B} \mathbf{X}^{\top} \mathbf{C} \mathbf{A} + \mathbf{B}^{\top} \mathbf{X}^{\top} \mathbf{A}^{\top} \mathbf{C}^{\top} \quad (\mathbf{A}, \mathbf{B}, \mathbf{C} \text{ は定数})$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

⑥ 以下の微分を $, \, \frac{\partial \mathbf{Y}}{\partial x}, \, \mathbf{Y}^{-1}, \, \mathbf{A}, \, \mathbf{B}, \, \mathbf{C} \,$ を用いて表してください.

$$\frac{\partial \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1} \mathbf{C} \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1}}{\partial x} \quad (\mathbf{A}, \mathbf{B}, \mathbf{C} \text{ は定数, } \mathbf{Y} = \mathbf{Y}(x))$$

7 以下を確認してください.

$$\frac{\partial \exp(x\mathbf{A})}{\partial x} = \mathbf{A} \exp(x\mathbf{A}) = \exp(x\mathbf{A})\mathbf{A}$$

ただし、 $\exp(\mathbf{A})$ は行列指数関数で、次のように定義されます.

$$\exp(\mathbf{A}) \equiv \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{A}^n = \mathbf{I} + \mathbf{A} + \frac{1}{2!} \mathbf{A}^2 + \frac{1}{3!} \mathbf{A}^3 + \cdots$$

1 以下を確認してください.

$$\frac{\partial \det(a\mathbf{X})}{\partial \mathbf{X}} = a \operatorname{adj}(a\mathbf{X}) = \det(a\mathbf{X})\mathbf{X}^{-1}$$
 (a は定数)

2 以下を確認してください. A,B が正方行列であるとき,

$$\frac{\partial \det(\mathbf{AXB})}{\partial \mathbf{X}} = \det(\mathbf{AXB})\mathbf{X}^{-1}$$
 (A, B は定数)

③ 以下を確認してください. A が対称行列であるとき,

$$\frac{\partial \det(\mathbf{X}^{\top} \mathbf{A} \mathbf{X})}{\partial \mathbf{X}} = 2 \det(\mathbf{X}^{\top} \mathbf{A} \mathbf{X}) (\mathbf{X}^{\top} \mathbf{A} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{A} \quad (\mathbf{A} \text{ は定数})$$

4 2次元の回転行列 $\mathbf{R}(\theta)$ について、 $\frac{\partial\det(\mathbf{R}(\theta))}{\partial\theta}$ を計算し、ヤコビの公式を確認してください。

$$\mathbf{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \mathbf{R}(\theta)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

ただし、
$$2$$
 次正方行列 $\mathbf{A}=\begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$ に対する行列式は、 $\det(\mathbf{A})=a_{11}a_{22}-a_{12}a_{21}$ です.

5 疑似逆行列に関する、次の微分を確認してください。 行列 ${f U}$ は、x の関数であるとします。

$$\frac{\partial \mathbf{U}^{\dagger}}{\partial x} \equiv \frac{\partial \left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\mathbf{U}^{\top}}{\partial x} \\
= -\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}}{\partial x}\mathbf{U}\mathbf{U}^{\dagger} - \mathbf{U}^{\dagger}\frac{\partial \mathbf{U}}{\partial x}\mathbf{U}^{\dagger} + \left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}}{\partial x}$$

 $oldsymbol{6}$ ガウス分布 $\mathcal{N}(\mathbf{x} \mid oldsymbol{\mu}, oldsymbol{\Sigma})$ の, 平均 $oldsymbol{\mu}$, 共分散の逆行列 $oldsymbol{\Sigma}^{-1}$, 共分散 $oldsymbol{\Sigma}$ に関する, 次の微分を確認してください (自然対数 ln に注意).

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}$$

$$\frac{\partial}{\partial \boldsymbol{\Sigma}^{-1}} \ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{2} \left(\boldsymbol{\Sigma} - (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \right)$$

$$\frac{\partial}{\partial \boldsymbol{\Sigma}} \ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{1}{2} \boldsymbol{\Sigma}^{-1} \left(\mathbf{I} - (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} \right)$$

ただし、ガウス分布 $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ は次のように定義されます.

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \equiv \frac{1}{(2\pi)^{\frac{D}{2}} \sqrt{\det \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu} \right)^{\top} \boldsymbol{\Sigma}^{-1} \left(\mathbf{x} - \boldsymbol{\mu} \right) \right)$$

∑ に関する微分では、トレースの循環性を思い出しましょう。

October 29, 2023

第6回:確率分布,ガウス積分

1 変数 x と, ある定数 A について, 次が成り立つことを, 要素ごとに確認してください.

$$\mathbb{E}\left[\mathbf{A}\mathbf{x}\right] = \mathbf{A}\,\mathbb{E}\left[\mathbf{x}\right], \quad \mathbb{E}\left[\mathbf{x}\mathbf{A}\right] = \mathbb{E}\left[\mathbf{x}\right]\mathbf{A}$$

- ② 確率分布 $p(\mathbf{x})$ の共分散が $\Sigma = \mathrm{Var}\left[\mathbf{x}\right]$ であるとき, $\mathbf{y} = \mathbf{A}\mathbf{x}$ の分布 $p(\mathbf{y})$ の共分散が $\mathbf{A}\Sigma\mathbf{A}^{\top}$ となることを示してください.
- 3 確率分布 $p(\mathbf{x})$ の共分散 $\mathbf{\Sigma} = \mathrm{Var}\left[\mathbf{x}\right]$ について, 次が成り立つことを示してください.

$$\mathbf{\Sigma} = \mathrm{Var}\left[\mathbf{x}
ight] = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{ op}
ight] - \mathbb{E}\left[\mathbf{x}
ight]\mathbb{E}\left[\mathbf{x}
ight]^{ op} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{ op}
ight] - oldsymbol{\mu}oldsymbol{\mu}^{ op}$$

第6回:確率分布,ガウス積分

- \mathbf{z}, \mathbf{y} が独立, すなわち $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$ であれば, 無相関, すなわち $\mathbb{E}\left[\mathbf{x}\mathbf{y}^{\top}\right] = \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{y}\right]^{\top}$ となることを示してください.
- **5** 次を示してください.

$$\begin{split} & \mathbb{E}\left[\left(\mathbf{A}\mathbf{x} + \mathbf{b}\right)\left(\mathbf{C}\mathbf{x} + \mathbf{d}\right)^{\top}\right] \\ & = \mathbf{A} \operatorname{Var}\left[\mathbf{x}\right] \mathbf{C}^{\top} + \left(\mathbf{A} \mathbb{E}\left[\mathbf{x}\right] + \mathbf{b}\right) \left(\mathbf{C} \mathbb{E}\left[\mathbf{x}\right] + \mathbf{d}\right)^{\top} \end{split}$$

- ⑤ カルバック-ライブラーダイバージェンスが非負, すなわち $\mathrm{KL}\left(p\parallel q\right)\geq 0$ となることを示してください.
- **7** エントロピーと相互情報量に関する,次の式を示してください.

$$I(\mathbf{x}, \mathbf{y}) = H[\mathbf{x}] + H[\mathbf{y}] - H[\mathbf{x}, \mathbf{y}]$$

第6回:確率分布,ガウス積分

8 次の積分を求めてください.

$$\int_0^\infty x^4 \exp(-ax^2) dx, \quad \int_0^\infty x^5 \exp(-ax^2) dx$$

1 次の積分を計算してください:

$$\int_{-\infty}^{\infty} (x - \mu)^2 \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right) dx$$

② ガウス分布 $\mathcal{N}(x\mid\mu,\sigma^2)$ のモーメント母関数 $M_X(t)=\mathbb{E}\left[\exp(tX)\right]$ について, $\exp(\cdot)$ の中身を平方完成させてください:

$$M_X(t) = \mathbb{E}\left[\exp(tX)\right] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(tx - \frac{1}{2\sigma^2} (x - \mu)^2\right) dx$$

3 モーメント母関数を使って, ガウス分布の平均と分散を求めてください.

$$\mathbb{E}\left[x\right] = \frac{\mathrm{d}}{\mathrm{d}t} \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right) \Big|_{t=0}$$

$$\mathbb{E}\left[x^2\right] = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right) \Big|_{t=0}$$

$$\operatorname{Var}\left[x\right] = \mathbb{E}\left[x^2\right] - \mathbb{E}\left[x\right]^2$$

4 ガウス分布 $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ のモーメント母関数 $M_{\mathbf{X}}(\mathbf{t}) = \mathbb{E}\left[\exp\left(\mathbf{t}^{\top}\mathbf{X}\right)\right]$ について, $\exp(\cdot)$ の中身を平方完成させてください:

$$M_{\mathbf{X}}(\mathbf{t}) = \mathbb{E}\left[\exp\left(\mathbf{t}^{\top}\mathbf{x}\right)\right]$$

$$= \frac{1}{(2\pi)^{\frac{D}{2}}\sqrt{\det \mathbf{\Sigma}}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}\left(\mathbf{x} - \boldsymbol{\mu}\right)^{\top} \mathbf{\Sigma}^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right) + \mathbf{t}^{\top}\mathbf{x}\right) d\mathbf{x}$$

ヒントはスライドに載っているので、適宜参考にしてください。

5 モーメント母関数を使って, 多変量ガウス分布の平均と共分散を求めてください.

$$\mathbb{E} \left[\mathbf{x} \right]^{\top} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{t}} \exp \left(\boldsymbol{\mu}^{\top} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t} \right) \Big|_{\mathbf{t} = \mathbf{0}}$$

$$\mathbb{E} \left[\mathbf{x} \mathbf{x}^{\top} \right] = \frac{\mathrm{d}^{2}}{\mathrm{d}\mathbf{t}^{\top} \mathrm{d}\mathbf{t}} \exp \left(\boldsymbol{\mu}^{\top} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t} \right) \Big|_{\mathbf{t} = \mathbf{0}}$$

$$\operatorname{Var} \left[\mathbf{x} \right] = \mathbb{E} \left[\mathbf{x} \mathbf{x}^{\top} \right] - \mathbb{E} \left[\mathbf{x} \right] \mathbb{E} \left[\mathbf{x} \right]^{\top}$$

第8回: ガウス分布2

1 \mathbf{x} , \mathbf{y} は互いに独立で、ガウス分布 $\mathcal{N}(\boldsymbol{\mu}_x, \boldsymbol{\Sigma}_{xx})$ 、 $\mathcal{N}(\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_{yy})$ に従うとき、和 $\mathbf{z} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}$ が次のガウス分布に従うことを示してください.

$$\mathbf{z} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu}_x + \mathbf{B}\boldsymbol{\mu}_y, \mathbf{A}\boldsymbol{\Sigma}_{xx}\mathbf{A}^{ op} + \mathbf{B}\boldsymbol{\Sigma}_{yy}\mathbf{B}^{ op})$$

第8回: ガウス分布2

2 K 個の独立な確率変数 \mathbf{x}_k があり, ガウス分布 $\mathcal{N}(\mu_k, \Sigma_k)$ に従うとき, 重み付き和 $\mathbf{x} = \sum_k w_k \mathbf{x}_k$ が, 次のガウス分布に従うことを示してください.

$$\mathbf{x} \sim \mathcal{N}\left(\sum_k w_k \boldsymbol{\mu}_k, \sum_k w_k^2 \boldsymbol{\Sigma}_k\right)$$

第8回: ガウス分布2

3 次が成り立つことを示してください:

$$\prod_{k} \exp \left(-\frac{1}{2} \left(\mathbf{G}_{k} \mathbf{x} - \boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \left(\mathbf{G}_{k} \mathbf{x} - \boldsymbol{\mu}_{k}\right)\right)$$

$$\propto \exp \left(-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}\right) \boldsymbol{\Sigma}^{-1} \left(\mathbf{x} - \boldsymbol{\mu}\right)\right)$$

ただし,

$$oldsymbol{\Sigma}^{-1} = \sum_k \mathbf{G}_k^ op oldsymbol{\Sigma}_k^{-1} \mathbf{G}_k \ oldsymbol{\Sigma}^{-1} oldsymbol{\mu} = \sum_k \mathbf{G}_k^ op oldsymbol{\Sigma}_k^{-1} oldsymbol{\mu}_k$$

目次

1 練習問題

第1回: 行列の基本処理, 逆行列

以下のようになる.

$$(\mathbf{A}\mathbf{B})_{ij} = \sum_{k} a_{ik} b_{kj}$$

$$(\mathbf{A}^{\top}\mathbf{B})_{ij} = \sum_{k} a_{ki} b_{kj}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C})_{ij} = \sum_{k} \sum_{m} a_{ik} b_{km} c_{mj}$$

$$(\mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D})_{ij} = \sum_{k} \sum_{m} \sum_{n} a_{ik} b_{km} c_{mn} d_{nk}$$

$$(\mathbf{A}\mathbf{B}^{\top}\mathbf{C}\mathbf{D}^{\top})_{ij} = \sum_{k} \sum_{m} \sum_{n} a_{ik} b_{mk} c_{mn} d_{kn}$$

$$(\mathbf{A}^{n})_{ij} = \sum_{u_{1}} \sum_{u_{2}} \cdots \sum_{u_{n-1}} a_{i,u_{1}} a_{u_{1},u_{2}} \cdots a_{u_{n-2},u_{n-1}} a_{u_{n-1},j}$$

第1回: 行列の基本処理, 逆行列

- 2 省略.
- 3 A, B, C, D を, $m \times m$, $m \times n$, $n \times m$, $n \times n$ 行列とする. ここで $m \gg n$ とすると, 左辺を計算するためには, 大きな m 次行列の逆行列 が必要である. 一方, 左辺の代わりに右辺を計算することにすれば, 小さな n 次行列の逆行列を求めるだけでよい.

$$\left(\mathbf{A}^{-1} + \mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)^{-1} = \mathbf{A} - \mathbf{A}\mathbf{B}\left(\mathbf{D} + \mathbf{C}\mathbf{A}\mathbf{B}\right)^{-1}\mathbf{C}\mathbf{A}$$

- 4 省略.
- 5 省略.

- 1 $\lambda=\det\left(\left(\mathbf{a}_1,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_i,\ldots,\mathbf{a}_n\right)\right)$ とする. 列を交換すると, 行列式の符号は反転する. しかし, 列を交換しても, 元と同じ行列であるから, $\lambda=-\lambda$ である. よって, $\lambda=0$ である.
- 2 省略.
- 3 以下のように示せる. 最初の式変形では, 列の線形変換と行列式との関係を用いる. 最後の式変形では, 同じ列を含んでいれば行列式が () となることを用いる.

$$det((\mathbf{a}_1, \dots, \mathbf{a}_i + c\mathbf{a}_j, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n))$$

$$= det((\mathbf{a}_1, \dots, \mathbf{a}_i, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n)) + c det((\mathbf{a}_1, \dots, \mathbf{a}_j, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n))$$

$$= det((\mathbf{a}_1, \dots, \mathbf{a}_i, \dots, \mathbf{a}_j, \dots, \mathbf{a}_n))$$

4 以下のように示せる。最後の式変形では、ブロック下三角行列の関係を 用いる。

$$\det \begin{pmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{B} - \mathbf{A} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \end{pmatrix}$$
$$= \det \begin{pmatrix} \begin{pmatrix} \mathbf{A} - \mathbf{B} & \mathbf{0} \\ \mathbf{B} & \mathbf{A} + \mathbf{B} \end{pmatrix} \end{pmatrix}$$
$$= \det \begin{pmatrix} (\mathbf{A} - \mathbf{B}) \det (\mathbf{A} + \mathbf{B}) \end{pmatrix}$$

5 $(\operatorname{adj} \mathbf{A}) \mathbf{A}$ の (i,j) 要素は、次のようになる。 δ_{ij} は、クロネッカーのデルタである。余因子行列 $\operatorname{adj} \mathbf{A}$ の (i,k) 要素は、 \mathbf{A} の (k,i) 余因子 Δ_{ki} となることに注意する。

$$((\operatorname{adj} \mathbf{A}) \mathbf{A})_{ij} = \sum_{k} (\operatorname{adj} \mathbf{A})_{ik} a_{kj} = \sum_{k} \Delta_{ki} a_{kj}$$
$$= \delta_{ij} \det(\mathbf{A}) = (\det(\mathbf{A})\mathbf{I})_{ij}$$

6 トレースの循環性を用いる.

$$\operatorname{tr}(\mathbf{X}^{-1}\mathbf{A}\mathbf{X}) = \operatorname{tr}(\mathbf{A}\mathbf{X}\mathbf{X}^{-1}) = \operatorname{tr}(\mathbf{A})$$

1 以下のようになる (x は n 次, y は m 次縦ベクトル).

,		,
	分子レイアウト	分母レイアウト
$\frac{\partial \mathbf{y}}{\partial x}$	$m \times 1$	$1 \times m$
$\frac{\partial y}{\partial \mathbf{x}}$	$1 \times n$	$n \times 1$
$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$m \times n$	$n \times m$

- 2 省略.
- 3 省略.
- 4 省略.

- 5 省略.
- 6 省略.
- 以下のようになる.

$$\begin{split} \frac{\partial \mathbf{A}\mathbf{u}}{\partial x} &= \frac{\partial \mathbf{u}}{\partial x} \mathbf{A}^{\top} \\ \frac{\partial \left(\mathbf{A}\mathbf{x} + \mathbf{b}\right)^{\top} \mathbf{C} \left(\mathbf{D}\mathbf{x} + \mathbf{e}\right)}{\partial \mathbf{x}} &= \mathbf{A}^{\top} \mathbf{C} \left(\mathbf{D}\mathbf{x} + \mathbf{e}\right) + \mathbf{D}^{\top} \mathbf{C}^{\top} \left(\mathbf{A}\mathbf{x} + \mathbf{b}\right) \\ \frac{\partial \left(\mathbf{x} - \mathbf{b}\right)^{\top} \mathbf{C} \left(\mathbf{x} - \mathbf{b}\right)}{\partial \mathbf{x}} &= 2 \mathbf{C}^{\top} \left(\mathbf{x} - \mathbf{b}\right) \\ \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}} &= \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \end{split}$$

 $oxed{ \frac{\partial \mathbf{R}(heta)^{-1}}{\partial heta}}$ を 2 通りの方法で求めると、以下のようになる.

$$\frac{\partial \mathbf{R}(\theta)^{-1}}{\partial \theta} = \frac{\partial}{\partial \theta} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} -\sin \theta & \cos \theta \\ -\cos \theta & -\sin \theta \end{pmatrix}$$

$$\frac{\partial \mathbf{R}(\theta)^{-1}}{\partial \theta} = -\mathbf{R}(\theta)^{-1} \frac{\partial \mathbf{R}(\theta)}{\partial \theta} \mathbf{R}(\theta)^{-1}$$

$$= -\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \frac{\partial}{\partial \theta} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$= -\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} -\sin \theta & -\cos \theta \\ \cos \theta & -\sin \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$= -\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} -\sin \theta & \cos \theta \\ -\cos \theta & -\sin \theta \end{pmatrix}$$

2 次のようになる.

$$\frac{\partial \mathbf{x}'}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial y} & \frac{\partial x'}{\partial \theta} \\ \frac{\partial y'}{\partial x} & \frac{\partial y'}{\partial y} & \frac{\partial y'}{\partial \theta} \\ \frac{\partial \theta'}{\partial x} & \frac{\partial \theta'}{\partial y} & \frac{\partial \theta'}{\partial \theta} \end{pmatrix} = \begin{pmatrix} 1 & 0 & -u\sin\theta - v\cos\theta \\ 0 & 1 & u\cos\theta - v\sin\theta \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{\partial \mathbf{x}'}{\partial \mathbf{u}} = \begin{pmatrix} \frac{\partial x'}{\partial u} & \frac{\partial x'}{\partial v} & \frac{\partial x'}{\partial \omega} \\ \frac{\partial y'}{\partial u} & \frac{\partial y'}{\partial v} & \frac{\partial y'}{\partial \omega} \\ \frac{\partial \theta'}{\partial x} & \frac{\partial \theta'}{\partial y} & \frac{\partial \theta'}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{R}(\theta) & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$

3 次のように、要素ごとに確認できる.

$$\left(\frac{\partial \left(\mathbf{X}^{\top} \mathbf{a}\right)^{\top} \mathbf{X}^{\top} \mathbf{b}}{\partial \mathbf{X}}\right)_{ij} = \frac{\partial \left(\mathbf{X}^{\top} \mathbf{a}\right)^{\top} \mathbf{X}^{\top} \mathbf{b}}{\partial x_{ji}} = \frac{\partial}{\partial x_{ji}} \sum_{k} \left(\mathbf{X}^{\top} \mathbf{a}\right)_{k} \left(\mathbf{X}^{\top} \mathbf{b}\right)_{k}$$

$$= \frac{\partial}{\partial x_{ji}} \sum_{k} \left(\sum_{l} x_{lk} a_{l}\right) \left(\sum_{m} x_{mk} b_{m}\right)$$

$$= \sum_{k} \sum_{l} a_{l} \sum_{m} b_{m} \left(x_{mk} \frac{\partial x_{lk}}{\partial x_{ji}} + x_{lk} \frac{\partial x_{mk}}{\partial x_{ji}}\right)$$

$$= \sum_{k} \sum_{l} a_{l} \sum_{m} b_{m} \left(x_{mk} \delta_{lj} \delta_{ki} + x_{lk} \delta_{mj} \delta_{ki}\right)$$

$$= a_{j} \sum_{m} b_{m} x_{mi} + b_{j} \sum_{l} a_{l} x_{li} = a_{j} \left(\mathbf{X}^{\top} \mathbf{b}\right)_{i} + b_{j} \left(\mathbf{X}^{\top} \mathbf{a}\right)_{i}$$

$$= \left(\mathbf{X}^{\top} \mathbf{b} \mathbf{a}^{\top}\right)_{ij} + \left(\mathbf{X}^{\top} \mathbf{a} \mathbf{b}^{\top}\right)_{ij} = \left(\mathbf{X}^{\top} \mathbf{b} \mathbf{a}^{\top} + \mathbf{X}^{\top} \mathbf{a} \mathbf{b}^{\top}\right)_{ij}$$

4□▶ 4團▶ 4 ≣ ▶ 4 ≣ ▶ 9 Q @

4 次のように,要素ごとに確認できる.

$$\left(\frac{\partial \operatorname{tr}(\mathbf{X}^{\top} \mathbf{X} \mathbf{A})}{\partial \mathbf{X}}\right)_{ij} = \frac{\partial \operatorname{tr}(\mathbf{X}^{\top} \mathbf{X} \mathbf{A})}{\partial x_{ji}} = \frac{\partial}{\partial x_{ji}} \sum_{k} \sum_{l} \left(\mathbf{X}^{\top} \mathbf{X} \mathbf{A}\right)_{kk}$$

$$= \frac{\partial}{\partial x_{ji}} \sum_{k} \sum_{l} x_{lk} \left(\mathbf{X} \mathbf{A}\right)_{lk} = \frac{\partial}{\partial x_{ji}} \sum_{k} \sum_{l} x_{lk} \sum_{m} x_{lm} a_{mk}$$

$$= \sum_{k} \sum_{l} \sum_{m} a_{mk} \left(x_{lm} \frac{\partial x_{lk}}{\partial x_{ji}} + x_{lk} \frac{\partial x_{lm}}{\partial x_{ji}}\right)$$

$$= \sum_{k} \sum_{l} \sum_{m} a_{mk} \left(\delta_{ki} \delta_{lj} x_{lm} + \delta_{lj} \delta_{mi} x_{lk}\right)$$

$$= \sum_{m} a_{mi} x_{jm} + \sum_{k} a_{ik} x_{jk} = \left(\mathbf{A}^{\top} \mathbf{X}^{\top}\right)_{ij} + \left(\mathbf{A} \mathbf{X}^{\top}\right)_{ij}$$

5 次のように, 要素ごとに確認できる.

$$\begin{split} &\frac{\partial \operatorname{tr} \left(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^{\top} \mathbf{C} \right)}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr} \left(\mathbf{X} \mathbf{B} \mathbf{X}^{\top} \mathbf{C} \mathbf{A} \right)}{\partial \mathbf{X}} \quad (∵ 循環性) \\ &= \mathbf{B} \mathbf{X}^{\top} \left(\mathbf{C} \mathbf{A} \right) + \mathbf{B}^{\top} \mathbf{X}^{\top} \left(\mathbf{C} \mathbf{A} \right)^{\top} \quad (∵ 文字の置き換え) \\ &= \mathbf{B} \mathbf{X}^{\top} \mathbf{C} \mathbf{A} + \mathbf{B}^{\top} \mathbf{X}^{\top} \mathbf{A}^{\top} \mathbf{C}^{\top} \\ &= \left(\mathbf{A}^{\top} \mathbf{C}^{\top} \mathbf{X} \mathbf{B}^{\top} + \mathbf{C} \mathbf{A} \mathbf{X} \mathbf{B} \right)^{\top} \end{split}$$

⑤ 次のようになる. 合成関数の微分, 逆行列の微分を用いる. $\mathbf{Z} = \mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}$ とおいて,

$$\begin{split} &\frac{\partial \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1}\mathbf{C}\left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1}}{\partial x} \\ &= \frac{\partial \mathbf{Z}^{-1}\mathbf{C}\mathbf{Z}^{-1}}{\partial x} = \frac{\partial \mathbf{Z}^{-1}}{\partial x}\mathbf{C}\mathbf{Z}^{-1} + \mathbf{Z}^{-1}\mathbf{C}\frac{\partial \mathbf{Z}^{-1}}{\partial x} \\ &= -\mathbf{Z}^{-1}\frac{\partial \mathbf{Z}}{\partial x}\mathbf{Z}^{-1}\mathbf{C}\mathbf{Z}^{-1} - \mathbf{Z}^{-1}\mathbf{C}\mathbf{Z}^{-1}\frac{\partial \mathbf{Z}}{\partial x}\mathbf{Z}^{-1} \\ &= -\mathbf{Z}^{-1}\left(\frac{\partial \mathbf{Z}}{\partial x}\mathbf{Z}^{-1}\mathbf{C} + \mathbf{C}\mathbf{Z}^{-1}\frac{\partial \mathbf{Z}}{\partial x}\right)\mathbf{Z}^{-1} \end{split}$$

 $rac{\partial {f Z}}{\partial x}$ は以下のようになるから、

$$\frac{\partial \mathbf{Z}}{\partial x} = \frac{\partial \mathbf{Y}^{-1} \mathbf{A} + \mathbf{B}}{\partial x} = \frac{\partial \mathbf{Y}^{-1}}{\partial x} \mathbf{A} = -\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \mathbf{Y}^{-1} \mathbf{A}$$

次が得られる.

$$\frac{\partial \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1} \mathbf{C} \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1}}{\partial x}$$

$$= \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1} \left(\mathbf{Y}^{-1}\frac{\partial \mathbf{Y}}{\partial x}\mathbf{Y}^{-1}\mathbf{A} \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1} \mathbf{C}\right)$$

$$+ \mathbf{C} \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1} \mathbf{Y}^{-1}\frac{\partial \mathbf{Y}}{\partial x}\mathbf{Y}^{-1}\mathbf{A} \left(\mathbf{Y}^{-1}\mathbf{A} + \mathbf{B}\right)^{-1}$$

7 次のように示せる.

$$\frac{\partial \exp(x\mathbf{A})}{\partial x} = \frac{\partial}{\partial x} \sum_{n=0}^{\infty} \frac{1}{n!} (x\mathbf{A})^n = \sum_{n=1}^{\infty} \frac{1}{n!} n x^{n-1} \mathbf{A}^n$$

$$= \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{n-1} \mathbf{A}^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \mathbf{A}^{n+1}$$

$$= \left(\sum_{n=0}^{\infty} \frac{1}{n!} x^n \mathbf{A}^n\right) \mathbf{A} = \mathbf{A} \left(\sum_{n=0}^{\infty} \frac{1}{n!} x^n \mathbf{A}^n\right)$$

$$= \exp(x\mathbf{A}) \mathbf{A} = \mathbf{A} \exp(x\mathbf{A})$$

1 次のように示せる. Y = aX とおいて、各成分について確かめると、

$$\left(\frac{\partial \det(a\mathbf{X})}{\partial \mathbf{X}}\right)_{ij} = \frac{\partial \det(\mathbf{Y})}{\partial x_{ji}} = \operatorname{tr}\left(\frac{\partial \det(\mathbf{Y})}{\partial \mathbf{Y}} \frac{\partial \mathbf{Y}}{\partial x_{ji}}\right)
= \det(\mathbf{Y}) \operatorname{tr}\left(\mathbf{Y}^{-1} \frac{\partial a\mathbf{X}}{\partial x_{ji}}\right) = \det(a\mathbf{X}) \operatorname{tr}\left(a^{-1}\mathbf{X}^{-1}a\mathbf{J}^{ji}\right)
= \det(a\mathbf{X}) \operatorname{tr}\left(\mathbf{X}^{-1}\mathbf{J}^{ji}\right) = \det(a\mathbf{X}) \sum_{k} \left(\mathbf{X}^{-1}\mathbf{J}^{ji}\right)_{kk}
= \det(a\mathbf{X}) \sum_{k} \sum_{l} \left(\mathbf{X}^{-1}\right)_{kl} \left(\mathbf{J}^{ji}\right)_{lk}
= \det(a\mathbf{X}) \sum_{k} \sum_{l} \left(\mathbf{X}^{-1}\right)_{kl} \delta_{ik} \delta_{jl} = \det(a\mathbf{X}) \left(\mathbf{X}^{-1}\right)_{ij}$$

ただし、以下を用いている.

$$\frac{\partial \mathbf{X}}{\partial x_{ji}} = \mathbf{J}^{ji}, \quad (\mathbf{J}^{ji})_{lk} = \delta_{ik}\delta_{jl}, \quad \frac{\partial g(\mathbf{U})}{\partial x_{ij}} = \operatorname{tr}\left(\frac{\partial g(\mathbf{U})}{\partial \mathbf{U}}\frac{\partial \mathbf{U}}{\partial x_{ij}}\right)$$

2 次のように示せる.

$$\begin{split} \frac{\partial \det(\mathbf{A} \mathbf{X} \mathbf{B})}{\partial \mathbf{X}} &= \det(\mathbf{A}) \det(\mathbf{B}) \frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} \\ &= \det(\mathbf{A}) \det(\mathbf{B}) \det(\mathbf{X}) \mathbf{X}^{-1} \\ &= \det(\mathbf{A} \mathbf{X} \mathbf{B}) \mathbf{X}^{-1} \end{split}$$

3 省略.

4 次のようになる.

$$\frac{\partial \det(\mathbf{R}(\theta))}{\partial \theta} = \frac{\partial}{\partial \theta} \det \left(\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \right) = \frac{\partial}{\partial \theta} \left(\cos^2 \theta + \sin^2 \theta \right) = 0$$

また,

$$\det(\mathbf{R}(\theta))\operatorname{tr}\left(\mathbf{R}(\theta)^{-1}\frac{\partial\mathbf{R}(\theta)}{\partial\theta}\right)$$

$$= 1 \cdot \operatorname{tr}\left(\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}\frac{\partial}{\partial\theta}\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}\right)$$

$$= \operatorname{tr}\left(\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}\begin{pmatrix} -\sin\theta & -\cos\theta \\ \cos\theta & -\sin\theta \end{pmatrix}\right)$$

$$= \operatorname{tr}\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right) = 0$$

5 次のように示せる. 合成関数の微分, 逆行列の微分を思い出そう.

$$\frac{\partial \mathbf{U}^{\dagger}}{\partial x} \equiv \frac{\partial \left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\mathbf{U}^{\top}}{\partial x} \\
= \frac{\partial \left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}}{\partial x}\mathbf{U}^{\top} + \left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}}{\partial x} \\
= -\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}\mathbf{U}}{\partial x}\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\mathbf{U}^{\top} + \left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}}{\partial x} \\
= -\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}}{\partial x}\mathbf{U}\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\mathbf{U}^{\top} \\
-\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\mathbf{U}^{\top}\frac{\partial \mathbf{U}}{\partial x}\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\mathbf{U}^{\top} + \left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}}{\partial x} \\
= -\left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}}{\partial x}\mathbf{U}\mathbf{U}^{\dagger} - \mathbf{U}^{\dagger}\frac{\partial \mathbf{U}}{\partial x}\mathbf{U}^{\dagger} + \left(\mathbf{U}^{\top}\mathbf{U}\right)^{-1}\frac{\partial \mathbf{U}^{\top}}{\partial x}$$

6 最初に, ガウス分布 $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ の対数を調べる:

$$\ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln(\det \boldsymbol{\Sigma}) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

平均 μ についての微分は,

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}$$

共分散の逆行列 Σ^{-1} についての微分は,

$$\frac{\partial}{\partial \Sigma^{-1}} \ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})
= -\frac{1}{2} \frac{\partial}{\partial \Sigma^{-1}} \ln(\det \boldsymbol{\Sigma}) - \frac{1}{2} \frac{\partial}{\partial \Sigma^{-1}} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})
= \frac{1}{2} \frac{\partial}{\partial \Sigma^{-1}} \ln \left(\frac{1}{\det \boldsymbol{\Sigma}} \right) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top}
= \frac{1}{2} \frac{\partial}{\partial \Sigma^{-1}} \ln(\det \boldsymbol{\Sigma}^{-1}) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top}
= \frac{1}{2} \boldsymbol{\Sigma} - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top}
= \frac{1}{2} \left(\boldsymbol{\Sigma} - (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \right)$$

共分散 Σ についての微分は,

$$\frac{\partial}{\partial \Sigma} \ln \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= -\frac{1}{2} \frac{\partial}{\partial \Sigma} \ln(\det \boldsymbol{\Sigma}) - \frac{1}{2} \frac{\partial}{\partial \Sigma} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

$$= -\frac{1}{2} \boldsymbol{\Sigma}^{-1} - \frac{1}{2} \frac{\partial}{\partial \Sigma} \operatorname{tr} \left((\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

$$= -\frac{1}{2} \boldsymbol{\Sigma}^{-1} - \frac{1}{2} \frac{\partial}{\partial \Sigma} \operatorname{tr} \left((\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} \right)$$

$$= -\frac{1}{2} \boldsymbol{\Sigma}^{-1} + \frac{1}{2} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}$$

$$= -\frac{1}{2} \boldsymbol{\Sigma}^{-1} \left(\mathbf{I} - (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} \right)$$

1 変数 x と, ある定数 A について, 次が成り立つことを, 要素ごとに確認してください.

$$\mathbb{E}\left[\mathbf{A}\mathbf{x}\right] = \mathbf{A}\,\mathbb{E}\left[\mathbf{x}\right], \quad \mathbb{E}\left[\mathbf{x}\mathbf{A}\right] = \mathbb{E}\left[\mathbf{x}\right]\mathbf{A}$$

 \mathbf{A} の (i,j) 成分を a_{ij} とする. $\mathbb{E}[\mathbf{A}\mathbf{x}]$ の第 i 成分は,

$$(\mathbb{E} \left[\mathbf{A} \mathbf{x} \right])_i = \mathbb{E} \left[\sum_j a_{ij} x_j \right] = \sum_j \mathbb{E} \left[a_{ij} x_j \right] = \sum_j a_{ij} \, \mathbb{E} \left[x_j \right] = (\mathbf{A} \, \mathbb{E} \left[\mathbf{x} \right])_i$$

より, $\mathbf{A}\mathbb{E}[\mathbf{x}]$ の第 i 成分に等しいので, 最初の式が成り立つ.

ただし、 $\mathbb{E}\left[x+y\right]=\mathbb{E}\left[x\right]+\mathbb{E}\left[y\right]$ 、 $\mathbb{E}\left[ax\right]=a\,\mathbb{E}\left[x\right]$ を用いた.

 $\mathbb{E}\left[\mathbf{x}\mathbf{A}\right] = \mathbb{E}\left[\mathbf{x}\right]\mathbf{A}$ についても同様に示せる.

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

2 確率分布 $p(\mathbf{x})$ の共分散が $\Sigma = \mathrm{Var}\left[\mathbf{x}\right]$ であるとき, $\mathbf{y} = \mathbf{A}\mathbf{x}$ の分布 $p(\mathbf{y})$ の共分散が $\mathbf{A}\Sigma\mathbf{A}^{\top}$ となることを示してください. 次のように示せる:

$$\begin{aligned} \operatorname{Var}\left[\mathbf{y}\right] &= \mathbb{E}\left[\left(\mathbf{y} - \mathbb{E}\left[\mathbf{y}\right]\right)\left(\mathbf{y} - \mathbb{E}\left[\mathbf{y}\right]\right)^{\top}\right] \\ &= \mathbb{E}\left[\left(\mathbf{A}\mathbf{x} - \mathbb{E}\left[\mathbf{A}\mathbf{x}\right]\right)\left(\mathbf{A}\mathbf{x} - \mathbb{E}\left[\mathbf{A}\mathbf{x}\right]\right)^{\top}\right] \\ &= \mathbb{E}\left[\mathbf{A}\left(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right]\right)\left(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right]\right)^{\top}\mathbf{A}^{\top}\right] \\ &= \mathbf{A}\,\mathbb{E}\left[\left(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right]\right)\left(\mathbf{x} - \mathbb{E}\left[\mathbf{x}\right]\right)^{\top}\right]\mathbf{A}^{\top} = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top} \end{aligned}$$

3 確率分布 $p(\mathbf{x})$ の共分散 $\mathbf{\Sigma} = \mathrm{Var}\left[\mathbf{x}\right]$ について, 次が成り立つことを示してください.

$$\boldsymbol{\Sigma} = \operatorname{Var}\left[\mathbf{x}\right] = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right] - \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{x}\right]^{\top} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right] - \boldsymbol{\mu}\boldsymbol{\mu}^{\top}$$

次のように示せる:

$$\begin{split} \boldsymbol{\Sigma} &= \mathbb{E}\left[\left(\mathbf{x} - \boldsymbol{\mu} \right) \left(\mathbf{x} - \boldsymbol{\mu} \right)^{\top} \right] \\ &= \mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top} \right] - \mathbb{E}\left[\mathbf{x} \boldsymbol{\mu}^{\top} \right] - \mathbb{E}\left[\boldsymbol{\mu} \mathbf{x}^{\top} \right] + \mathbb{E}\left[\boldsymbol{\mu} \boldsymbol{\mu}^{\top} \right] \\ &= \mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top} \right] - \mathbb{E}\left[\mathbf{x} \right] \boldsymbol{\mu}^{\top} - \boldsymbol{\mu} \, \mathbb{E}\left[\mathbf{x} \right]^{\top} + \boldsymbol{\mu} \boldsymbol{\mu}^{\top} \\ &= \mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top} \right] - \boldsymbol{\mu} \boldsymbol{\mu}^{\top} - \boldsymbol{\mu} \boldsymbol{\mu}^{\top} + \boldsymbol{\mu} \boldsymbol{\mu}^{\top} \\ &= \mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top} \right] - \boldsymbol{\mu} \boldsymbol{\mu}^{\top} \end{split}$$

4 \mathbf{x}, \mathbf{y} が独立, すなわち $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$ であれば, 無相関, すなわち $\mathbb{E}\left[\mathbf{x}\mathbf{y}^{\top}\right] = \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{y}\right]^{\top}$ となることを示してください. 次のように示せる:

$$\mathbb{E}\left[\mathbf{x}\mathbf{y}^{\top}\right] = \iint \mathbf{x}\mathbf{y}^{\top}p(\mathbf{x}, \mathbf{y}) \,d\mathbf{x} \,d\mathbf{y}$$

$$= \iint \mathbf{x}\mathbf{y}^{\top}p(\mathbf{x})p(\mathbf{y}) \,d\mathbf{x} \,d\mathbf{y} \,(\cdot \cdot \mathbf{y}\mathbf{z})$$

$$= \int \mathbf{x}p(\mathbf{x}) \,d\mathbf{x} \int \mathbf{y}^{\top}p(\mathbf{y}) \,d\mathbf{y}$$

$$= \mathbb{E}\left[\mathbf{x}\right] \mathbb{E}\left[\mathbf{y}\right]^{\top}$$

5 次を示してください.

$$\begin{split} & \mathbb{E}\left[\left(\mathbf{A}\mathbf{x} + \mathbf{b}\right)\left(\mathbf{C}\mathbf{x} + \mathbf{d}\right)^{\top}\right] \\ & = \mathbf{A} \operatorname{Var}\left[\mathbf{x}\right] \mathbf{C}^{\top} + \left(\mathbf{A} \mathbb{E}\left[\mathbf{x}\right] + \mathbf{b}\right) \left(\mathbf{C} \mathbb{E}\left[\mathbf{x}\right] + \mathbf{d}\right)^{\top} \end{split}$$

次のようになる:

$$\mathbb{E}\left[\left(\mathbf{A}\mathbf{x} + \mathbf{b}\right) \left(\mathbf{C}\mathbf{x} + \mathbf{d}\right)^{\top}\right]$$

$$= \operatorname{Cov}\left(\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{C}\mathbf{x} + \mathbf{d}\right) + \mathbb{E}\left[\mathbf{A}\mathbf{x} + \mathbf{b}\right] \mathbb{E}\left[\mathbf{C}\mathbf{x} + \mathbf{d}\right]^{\top}$$

$$= \operatorname{Cov}\left(\mathbf{A}\mathbf{x}, \mathbf{C}\mathbf{x}\right) + \left(\mathbf{A}\mathbb{E}\left[\mathbf{x}\right] + \mathbf{b}\right) \left(\mathbf{C}\mathbb{E}\left[\mathbf{x}\right] + \mathbf{d}\right)^{\top}$$

$$= \mathbf{A}\operatorname{Cov}\left(\mathbf{x}, \mathbf{x}\right) \mathbf{C}^{\top} + \left(\mathbf{A}\mathbb{E}\left[\mathbf{x}\right] + \mathbf{b}\right) \left(\mathbf{C}\mathbb{E}\left[\mathbf{x}\right] + \mathbf{d}\right)^{\top}$$

$$= \mathbf{A}\operatorname{Var}\left[\mathbf{x}\right] \mathbf{C}^{\top} + \left(\mathbf{A}\mathbb{E}\left[\mathbf{x}\right] + \mathbf{b}\right) \left(\mathbf{C}\mathbb{E}\left[\mathbf{x}\right] + \mathbf{d}\right)^{\top}$$

- ⑥ カルバック-ライブラーダイバージェンスが非負, すなわち $\mathrm{KL}\left(p\parallel q\right)\geq 0$ となることを示してください.
 - $-\ln x$ は下に凸だから、イェンセンの不等式より $\left(\mathbb{E}\left[f(x)
 ight] \leq f(\mathbb{E}\left[x
 ight]
 ight)$

$$KL (p || q) = -\mathbb{E} \left[\ln \frac{q(\mathbf{x})}{p(\mathbf{x})} \right]$$

$$\geq -\ln \mathbb{E} \left[\frac{q(\mathbf{x})}{p(\mathbf{x})} \right]$$

$$= -\ln \int p(\mathbf{x}) \frac{q(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}$$

$$= -\ln \int q(\mathbf{x}) d\mathbf{x} = -\ln 1 = 0$$

7 エントロピーと相互情報量に関する, 次の式を示してください.

$$I(\mathbf{x}, \mathbf{y}) = H[\mathbf{x}] + H[\mathbf{y}] - H[\mathbf{x}, \mathbf{y}]$$

次のように示せる:

$$I(\mathbf{x}, \mathbf{y}) = \iint p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})p(\mathbf{y})} d\mathbf{x} d\mathbf{y}$$

$$= \iint p(\mathbf{x}, \mathbf{y}) (\ln p(\mathbf{x}, \mathbf{y}) - \ln p(\mathbf{x}) - \ln p(\mathbf{y})) d\mathbf{x} d\mathbf{y}$$

$$= -H[\mathbf{x}, \mathbf{y}] - \int \ln p(\mathbf{x}) \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y} d\mathbf{x} - \int \ln p(\mathbf{y}) \int p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

$$= -H[\mathbf{x}, \mathbf{y}] - \int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x} - \int p(\mathbf{y}) \ln p(\mathbf{y}) d\mathbf{y}$$

$$= H[\mathbf{x}] + H[\mathbf{y}] - H[\mathbf{x}, \mathbf{y}]$$

8 次の積分を求めてください.

$$\int_0^\infty x^4 \exp(-ax^2) dx, \quad \int_0^\infty x^5 \exp(-ax^2) dx$$

$$I_n = \int_0^\infty x^n \exp(-ax^2) \, \mathrm{d}x$$
 とすると, $I_2 = \frac{1}{4} \sqrt{\frac{\pi}{a^3}}$, $I_3 = \frac{1}{2a^2}$ である.

$$I_{n+2}=rac{n+1}{2a}I_n$$
 の関係を使えば、

$$I_4 = I_{2+2} = \frac{2+1}{2a}I_2 = \frac{3}{2a}\frac{1}{4}\sqrt{\frac{\pi}{a^3}} = \frac{3}{8}\sqrt{\frac{\pi}{a^5}}$$
$$I_5 = I_{3+2} = \frac{3+1}{2a}I_3 = \frac{4}{2a}\frac{1}{2a^2} = \frac{1}{a^3}$$

1 次の積分を計算してください:

$$\begin{split} \int_{-\infty}^{\infty} (x-\mu)^2 \exp\left(-\frac{1}{2\sigma^2} \left(x-\mu\right)^2\right) \mathrm{d}x \\ y &= \frac{x-\mu}{\sqrt{2\sigma^2}} \, \mathbf{Z} \, \mathbf{J} \, \mathbf{J}$$

② ガウス分布 $\mathcal{N}(x \mid \mu, \sigma^2)$ のモーメント母関数 $M_X(t) = \mathbb{E}\left[\exp(tX)\right]$ について, $\exp(\cdot)$ の中身を平方完成させてください:

$$M_X(t) = \mathbb{E}\left[\exp(tX)\right] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(tx - \frac{1}{2\sigma^2} (x - \mu)^2\right) dx$$

次のようになる:

$$tx - \frac{1}{2\sigma^2} (x - \mu)^2 = -\frac{1}{2\sigma^2} (x^2 - 2\mu x - 2\sigma^2 tx + \mu^2)$$
$$= -\frac{1}{2\sigma^2} ((x - (\mu + \sigma^2 t))^2 - 2\mu\sigma^2 t - \sigma^4 t^2)$$
$$= (\mu t + \frac{\sigma^2 t^2}{2}) - \frac{1}{2\sigma^2} (x - (\mu + \sigma^2 t))^2$$

3 モーメント母関数を使って, ガウス分布の平均と分散を求めてください.

$$\mathbb{E}\left[x\right] = \frac{\mathrm{d}}{\mathrm{d}t} \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right) \Big|_{t=0}$$

$$\mathbb{E}\left[x^2\right] = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right) \Big|_{t=0}$$

$$\operatorname{Var}\left[x\right] = \mathbb{E}\left[x^2\right] - \mathbb{E}\left[x\right]^2$$

平均は,

$$\mathbb{E}[x] = \frac{\mathrm{d}}{\mathrm{d}t} \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right) \Big|_{t=0}$$
$$= \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right) \left(\mu + \sigma^2 t\right) \Big|_{t=0} = \mu$$

分散は,

$$\begin{split} \mathbb{E}\left[x^2\right] &= \left.\frac{\mathrm{d}^2}{\mathrm{d}t^2} \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)\right|_{t=0} \\ &= \left.\exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)\sigma^2 + \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)\left(\mu + \sigma^2 t\right)^2\right|_{t=0} \\ &= \sigma^2 + \mu^2 \\ \mathrm{Var}\left[x\right] &= \mathbb{E}\left[x^2\right] - \mathbb{E}\left[x\right]^2 = \sigma^2 \end{split}$$

4 ガウス分布 $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ のモーメント母関数 $M_{\mathbf{X}}(\mathbf{t}) = \mathbb{E}\left[\exp\left(\mathbf{t}^{\top}\mathbf{X}\right)\right]$ について, $\exp(\cdot)$ の中身を平方完成させてください:

$$M_{\mathbf{X}}(\mathbf{t}) = \mathbb{E}\left[\exp\left(\mathbf{t}^{\top}\mathbf{x}\right)\right]$$

$$= \frac{1}{(2\pi)^{\frac{D}{2}}\sqrt{\det \mathbf{\Sigma}}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}\left(\mathbf{x} - \boldsymbol{\mu}\right)^{\top} \mathbf{\Sigma}^{-1} \left(\mathbf{x} - \boldsymbol{\mu}\right) + \mathbf{t}^{\top}\mathbf{x}\right) d\mathbf{x}$$

最初に,

$$\begin{split} &-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}\right)^{\top}\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}\right)+\mathbf{t}^{\top}\mathbf{x} \\ &=-\frac{1}{2}\left(\mathbf{x}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x}-\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x}-\mathbf{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}+\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}-2\mathbf{t}^{\top}\mathbf{x}\right) \\ &=-\frac{1}{2}\left(\mathbf{x}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x}-\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x}-\mathbf{t}^{\top}\mathbf{x}-\mathbf{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}-\mathbf{x}^{\top}\mathbf{t}+\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}\right) \end{split}$$

平方根 $\mathbf{\Sigma}^{rac{1}{2}}, \mathbf{\Sigma}^{-rac{1}{2}}$ を使い (対称性に注意), さらに平方完成すると,

$$\begin{split} &-\frac{1}{2}\left(\mathbf{x}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x} - \boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x} - \mathbf{t}^{\top}\mathbf{x} - \mathbf{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} - \mathbf{x}^{\top}\mathbf{t} + \boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}\right) \\ &= -\frac{1}{2}\bigg(\mathbf{x}^{\top}\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x} - \left(\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-\frac{1}{2}} + \mathbf{t}^{\top}\boldsymbol{\Sigma}^{\frac{1}{2}}\right)\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x} \\ &- \mathbf{x}^{\top}\boldsymbol{\Sigma}^{-\frac{1}{2}}\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{t}\right) + \boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}\bigg) \\ &= -\frac{1}{2}\bigg(\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x}\right)^{\top}\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x} - \left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{t}\right)^{\top}\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x} \\ &- \left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x}\right)^{\top}\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{t}\right) + \boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}\bigg) \quad (:: \boldsymbol{\eta}\boldsymbol{\eta}\boldsymbol{\eta}\boldsymbol{t}) \\ &= -\frac{1}{2}\bigg(\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x} - \left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{t}\right)\right)^{\top}\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x} - \left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\mu} + \boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{t}\right)\right) \\ &- \boldsymbol{\mu}^{\top}\mathbf{t} - \mathbf{t}^{\top}\boldsymbol{\mu} - \mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\bigg) \end{split}$$

これを整理すれば、

$$\begin{split} &-\frac{1}{2}\bigg(\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x}-\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\mu}+\boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{t}\right)\right)^{\top}\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\mathbf{x}-\left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\mu}+\boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{t}\right)\right)\\ &-\boldsymbol{\mu}^{\top}\mathbf{t}-\mathbf{t}^{\top}\boldsymbol{\mu}-\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\bigg)\\ &=-\frac{1}{2}\left(\mathbf{x}-(\boldsymbol{\mu}+\boldsymbol{\Sigma}\mathbf{t})\right)^{\top}\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\Sigma}^{-\frac{1}{2}}\left(\mathbf{x}-(\boldsymbol{\mu}+\boldsymbol{\Sigma}\mathbf{t})\right)\quad \left(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\Xi}\boldsymbol{\zeta}\boldsymbol{\zeta}\boldsymbol{\zeta}\boldsymbol{\beta}\boldsymbol{\Box}\boldsymbol{\Xi}\boldsymbol{\delta}\right)\\ &+\boldsymbol{\mu}^{\top}\mathbf{t}+\frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\quad \left(\boldsymbol{\omega}\boldsymbol{\mu}^{\top}\mathbf{t}=\mathbf{t}^{\top}\boldsymbol{\mu}\right)\\ &=-\frac{1}{2}\left(\mathbf{x}-(\boldsymbol{\mu}+\boldsymbol{\Sigma}\mathbf{t})\right)^{\top}\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-(\boldsymbol{\mu}+\boldsymbol{\Sigma}\mathbf{t})\right)+\boldsymbol{\mu}^{\top}\mathbf{t}+\frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t} \end{split}$$

5 モーメント母関数を使って,多変量ガウス分布の平均と共分散を求めてください.

$$\mathbb{E} \left[\mathbf{x} \right]^{\top} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{t}} \exp \left(\boldsymbol{\mu}^{\top} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t} \right) \Big|_{\mathbf{t} = \mathbf{0}}$$

$$\mathbb{E} \left[\mathbf{x} \mathbf{x}^{\top} \right] = \frac{\mathrm{d}^{2}}{\mathrm{d}\mathbf{t}^{\top} \mathrm{d}\mathbf{t}} \exp \left(\boldsymbol{\mu}^{\top} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t} \right) \Big|_{\mathbf{t} = \mathbf{0}}$$

$$\operatorname{Var} \left[\mathbf{x} \right] = \mathbb{E} \left[\mathbf{x} \mathbf{x}^{\top} \right] - \mathbb{E} \left[\mathbf{x} \right] \mathbb{E} \left[\mathbf{x} \right]^{\top}$$

平均は、

$$\mathbb{E} \left[\mathbf{x} \right]^{\top} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{t}} \exp \left(\boldsymbol{\mu}^{\top} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t} \right) \Big|_{\mathbf{t} = \mathbf{0}}$$

$$= \exp \left(\boldsymbol{\mu}^{\top} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t} \right) \frac{\mathrm{d}}{\mathrm{d}\mathbf{t}} \left(\boldsymbol{\mu}^{\top} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t} \right) \Big|_{\mathbf{t} = \mathbf{0}}$$

$$= \exp \left(\boldsymbol{\mu}^{\top} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t} \right) \left(\boldsymbol{\mu}^{\top} + \mathbf{t}^{\top} \boldsymbol{\Sigma} \right) \Big|_{\mathbf{t} = \mathbf{0}} = \boldsymbol{\mu}^{\top}$$

分散は,

$$\begin{split} \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right] &= \frac{\mathbf{d}^{2}}{\mathbf{d}\mathbf{t}^{\top}\mathbf{d}\mathbf{t}} \exp\left(\boldsymbol{\mu}^{\top}\mathbf{t} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right) \bigg|_{\mathbf{t}=\mathbf{0}} \\ &= \frac{\partial}{\partial\mathbf{t}^{\top}} \exp\left(\boldsymbol{\mu}^{\top}\mathbf{t} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right) \left(\boldsymbol{\mu}^{\top} + \mathbf{t}^{\top}\boldsymbol{\Sigma}\right) \\ &+ \exp\left(\boldsymbol{\mu}^{\top}\mathbf{t} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right) \frac{\partial}{\partial\mathbf{t}^{\top}} \left(\boldsymbol{\mu}^{\top} + \mathbf{t}^{\top}\boldsymbol{\Sigma}\right) \bigg|_{\mathbf{t}=\mathbf{0}} \\ &= \exp\left(\boldsymbol{\mu}^{\top}\mathbf{t} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right)^{2} \left(\boldsymbol{\mu} + \boldsymbol{\Sigma}\mathbf{t}\right) \left(\boldsymbol{\mu}^{\top} + \mathbf{t}^{\top}\boldsymbol{\Sigma}\right) \\ &+ \exp\left(\boldsymbol{\mu}^{\top}\mathbf{t} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right) \boldsymbol{\Sigma} \bigg|_{\mathbf{t}=\mathbf{0}} &= \boldsymbol{\mu}\boldsymbol{\mu}^{\top} + \boldsymbol{\Sigma} \end{split}$$

$$Var\left[\mathbf{x}\right] = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right] - \mathbb{E}\left[\mathbf{x}\right]\mathbb{E}\left[\mathbf{x}\right]^{\top} &= \boldsymbol{\mu}\boldsymbol{\mu}^{\top} + \boldsymbol{\Sigma} - \boldsymbol{\mu}\boldsymbol{\mu}^{\top} &= \boldsymbol{\Sigma} \end{split}$$

第8回: ガウス分布 2

1 \mathbf{x} , \mathbf{y} は互いに独立で、ガウス分布 $\mathcal{N}(\boldsymbol{\mu}_x, \boldsymbol{\Sigma}_{xx})$, $\mathcal{N}(\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_{yy})$ に従うとき、和 $\mathbf{z} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}$ が次のガウス分布に従うことを示してください.

$$\mathbf{z} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu}_x + \mathbf{B}\boldsymbol{\mu}_y, \mathbf{A}\boldsymbol{\Sigma}_{xx}\mathbf{A}^\top + \mathbf{B}\boldsymbol{\Sigma}_{yy}\mathbf{B}^\top)$$

x,y は互いに独立だから、それらを線形変換した Ax, By も独立である. x,y はガウス分布に従うから、それらの線形変換 Ax, By もまたガウス分布に従う. 従って、2 つの和 z も、ガウス分布に従う. 平均と分散は、次のように求まる:

$$\mathbb{E}[\mathbf{z}] = \mathbb{E}[\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}] = \mathbf{A}\mathbb{E}[\mathbf{x}] + \mathbf{B}\mathbb{E}[\mathbf{y}] = \mathbf{A}\boldsymbol{\mu}_x + \mathbf{B}\boldsymbol{\mu}_y$$

$$\operatorname{Var}[\mathbf{z}] = \operatorname{Var}[\mathbf{A}\mathbf{x}] + \operatorname{Var}[\mathbf{B}\mathbf{y}] + \operatorname{Cov}(\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y}) + \operatorname{Cov}(\mathbf{B}\mathbf{y}, \mathbf{A}\mathbf{x})$$

$$= \operatorname{Var}[\mathbf{A}\mathbf{x}] + \operatorname{Var}[\mathbf{B}\mathbf{y}] = \mathbf{A}\boldsymbol{\Sigma}_{xx}\mathbf{A}^{\top} + \mathbf{B}\boldsymbol{\Sigma}_{yy}\mathbf{B}^{\top}$$

第8回: ガウス分布2

2 K 個の独立な確率変数 \mathbf{x}_k があり, ガウス分布 $\mathcal{N}(\mu_k, \Sigma_k)$ に従うとき, 重み付き和 $\mathbf{x} = \sum_k w_k \mathbf{x}_k$ が, 次のガウス分布に従うことを示してください.

$$\mathbf{x} \sim \mathcal{N}\left(\sum_k w_k \boldsymbol{\mu}_k, \sum_k w_k^2 \boldsymbol{\Sigma}_k\right)$$

地道に導出してもよいが, スライドの例 $(62 extstyle{-}63\ extstyle{\mathcal{H}}-2)$ について, $\mathbf{W}_k=w_k\mathbf{I}$ とおけばよい.

第8回: ガウス分布2

3 次が成り立つことを示してください:

$$\prod_{k} \exp \left(-\frac{1}{2} \left(\mathbf{G}_{k} \mathbf{x} - \boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \left(\mathbf{G}_{k} \mathbf{x} - \boldsymbol{\mu}_{k}\right)\right)$$

$$\propto \exp \left(-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}\right) \boldsymbol{\Sigma}^{-1} \left(\mathbf{x} - \boldsymbol{\mu}\right)\right)$$

ただし,

$$oldsymbol{\Sigma}^{-1} = \sum_k \mathbf{G}_k^ op oldsymbol{\Sigma}_k^{-1} \mathbf{G}_k \ oldsymbol{\Sigma}^{-1} oldsymbol{\mu} = \sum_k \mathbf{G}_k^ op oldsymbol{\Sigma}_k^{-1} oldsymbol{\mu}_k$$

スライドの例 (68-69 ページ) を参考に, 導出してみてください.