Delay and Rate-Optimal Control in a Multi-Class Priority Queue

Chih-ping Li

Massachusetts Institute of Technology

joint work with Michael Neely (USC)

INFOCOM 2012

Revisit a classical queue control problem

An M/G/I queue serves N traffic classes

Pick a class, serve a job (nonpreemptively) one at a time

The service rate may be controllable (with costs)

Goal: Solve convex delay optimization problems

Feasibility

$$\overline{W_I} \leq 2$$

$$\overline{W_2} \leq 5$$

$$\overline{W_N} \leq 3$$

Q2: Providing delay fairness

Fairly treat two types of patients

Convex delay penalty

Minimize: $\sum_{n=1}^{N} f_n(\overline{W_n})$

subject to: $\overline{W_n} \leq d_n, \ \forall n$

Q3: Minimizing service cost

(update service rates across busy periods)

Rate control

Minimize: P_{av}

subject to: $\overline{W_1} \leq 2$

• • • • •

 $\overline{\mathsf{W}_{\mathsf{N}}} \leq 3$

Optimization approach

- (i) Compute performance region
- (ii) Solve optimization problem

Minimize: $\sum_{n=1}^{N} c_n \overline{W_n}$

subject to: $(\overline{W_n})_{n=1}^N \in \Lambda$

Gelenbe, Mitrani, Federgruen, Groenevelt, Shanthikumar, Tsoucas, Bertsimas, Dacre, Glazebrook, Garbe, Nino-mora, Yao, Coffman,

Linear optimization is elegantly solved

Minimize:
$$\sum_{n=1}^{N} c_n \lambda_n \overline{W}_n$$

subject to:
$$(\overline{W_n})_{n=1}^N \in \Lambda$$

Delay region (with fixed rate) is the base of a polymatroid [Federgruen-Groenevelt '88]

The $c\mu$ rule:

Assign priorities to job classes in the decreasing order of $C_n \mu_n$

More good news

Linear program

Minimize:
$$\sum_{n=1}^{N} c_n \overline{W}_n$$

subject to:
$$(\overline{\mathbf{W}_n})_{n=1}^N \in \Lambda$$

Every vertex = a priority policy

However, in general cases.....

Offline solution doesn't reveal the optimal scheduling policy

Complex performance region

A new methodology to solve these problems

Feasibility

$$\overline{W_I} \leq 2$$

$$\overline{W_2} \leq 5$$

$$\overline{W_N} \leq 3$$

Convex delay penalty

Minimize:
$$\sum_{n=1}^{N} f_n(\overline{W_n})$$

subject to:
$$\overline{W_n} \leq d_n, \ \forall n$$

Rate control

Minimize: P_{av}

subject to: $\overline{W_I} \leq 2$

.

$$\overline{W_N} < 3$$

Optimal policies are as simple as the $c\mu$ rule

A new methodology

Performance region = a set of inequalities

Performance region = all convex combinations of vertices

A new methodology

A new methodology

The optimal solution

= an optimal time-sharing of vertex-achieving policies

Minimize: I

subject to:
$$\overline{W_n} \le d_n, \ n \in \{1, \dots, N\}$$

$$(\overline{W_n})_{n=1}^N \in \Lambda$$

One priority policy per busy (renewal) period

I. initial priority ordering

3. compute the delay debt owed to each class and re-prioritize

$$Z_1 \leftarrow \max [Z_1 + (8 - d_1) + (7 - d_1), 0]$$

 $Z_2 \leftarrow \max [Z_2 + (5 - d_2), 0]$
 $Z_3 \leftarrow \max [Z_3 + (4 - d_3) + (2 - d_3), 0]$

Re-prioritize job classes in the decreasing order of Z_n

amount of delay exceeding the desired bound

No statistical knowledge, low complexity

Theorem:

For every feasible $\{d_1, d_2, \ldots, d_n\}$, we have $\overline{W_n} \leq d_n$ for all n.

Intuition

$$Z_n \leftarrow \max \left[Z_n + \sum_{i \in \text{class n}} (w_n^{(i)} - d_n), 0 \right]$$

class-n delay
$$w_n^{(i)} \longrightarrow Z_n \longrightarrow d_n$$
 virtual queue

If queue Z_n is stable, then $\overline{W_n} \leq d_n$

The dynamic priority policy stabilizes all virtual queues (a max-weight policy in this context)

Providing delay fairness

Minimize:
$$\sum_{n=1}^{N} f_n(\overline{W_n})$$

subject to: $\overline{W_n} \leq d_n, \ \forall n$

Providing delay fairness

In every busy period, prioritize job classes by sorting $\frac{Z_n + Z_n}{S_n}$

Two virtual queues:

$$Z_n \leftarrow \max \left[Z_n + \sum_{i \in \text{class } n} (w_n^{(i)} - d_n), 0 \right]$$

$$Y_n \leftarrow \max \left[Y_n + \sum_{i \in class \ n} (w_n^{(i)} - \gamma_n), 0 \right]$$

 γ_n is the solution to:

Minimize: $Vf_n(\gamma_n) - Y_n \lambda_n \gamma_n$

subject to: $0 \le \gamma_n \le d_n$

Intuition

$$Z_{n} \leftarrow \max \left[Z_{n} + \sum_{i \in class \ n} (w_{n}^{(i)} - d_{n}), \ 0 \right]$$

$$Y_{n} \leftarrow \max \left[Y_{n} + \sum_{i \in class \ n} (w_{n}^{(i)} - \gamma_{n}), \ 0 \right]$$

$$virtual \ queue$$

If queue Z_n is stable, then $W_n \leq d_n$ If queue Y_n is stable, then $\overline{W_n} \leq \overline{\gamma_n}$

$$\sum_{n=1}^{N} f_n(\overline{W_n}) \leq \sum_{n=1}^{N} f_n(\overline{\gamma_n})$$

Keep queues Z_n and Y_n stable, and minimize $\sum f_n(\overline{\gamma_n})$

$$\sum_{n=1}^{N} f_n(\overline{\gamma_n})$$

Providing delay fairness

Theorem:

For every feasible $\{d_1, d_2, \ldots, d_n\}$, we have $\overline{W_n} \leq d_n$ for all n.

optimal
$$\leq \sum_{n=1}^{N} f_n(\overline{W_n}) \leq \text{optimal} + \frac{B}{V}$$

V: a positive control parameter

Simulation

2-class M/M/I queue:

Minimize:
$$\frac{I}{2}(\overline{W_1})^2+2(\overline{W_2})^2$$
 subject to: $\overline{W_1}+\overline{W_2}=2.4$ $0.4\leq \overline{W_1}\leq 1.95,\ 0.4\leq \overline{W_2}\leq I$

V	\overline{W}_1	\overline{W}_2	Mean delay penalty
100	$1.6607 \ (0.0055)$	$0.7424 \ (0.0052)$	$2.4814 \ (0.0239)$
1000	1.7977 (0.0057)	$0.5984 \ (0.0043)$	$2.3321 \ (0.0199)$
2000	$1.8339 \ (0.0056)$	$0.5639 \ (0.0053)$	$2.3176 \ (0.0217)$
5000	$1.8679 \ (0.0073)$	$0.5276 \ (0.0050)$	$2.3014 \ (0.0222)$
Optimal value:	1.92	0.48	2.304

Class 2

Class N

Rate=
$$\mu(P)$$

M/G/I

Minimize: P_{av}

subject to: $\overline{W_n} \leq d_n, \ \forall n$

 $P(t) \in [P_{min}, P_{max}]$

In every busy period,

Assign priorities by sorting
$$\frac{Z_n}{\overline{S_n}}$$

$$Z_n \leftarrow \max \left[Z_n + \sum_{i \in \text{class } n} (w_n^{(i)} - d_n), \, 0 \right]$$

Spend cost P minimizing

$$cV\frac{P}{\mu(P)} + \sum_{n=1}^{N} Z_n \lambda_n \overline{W_n}(P)$$

Theorem:

For every feasible $\{d_1, d_2, \ldots, d_n\}$, we have $\overline{W_n} \leq d_n$ for all n.

optimal
$$\leq P_{av} \leq optimal + \frac{B}{V}$$

V: a positive control parameter

2-class M/G/I queue

$$\mu(P) = \sqrt{P}, P(t) \in \{16, 25\}$$

Minimize: \overline{P}

subject to: $\overline{W_I} \leq 0.4$

 $\overline{W_2} < 0.325$

V	$\overline{W}_1^{DynRate}$	$\overline{W}_2^{DynRate}$	Average cost
1	$0.3562 \ (0.00078)$	$0.3029 \ (0.00032)$	$13.8018 \ (0.01806)$
10	$0.3984 \ (0.00022)$	$0.3247 \ (0.00005)$	$13.5101 \ (0.02626)$
100	$0.4003 \ (0.00013)$	$0.3252 \ (0.00010)$	$13.5044 \ (0.02197)$
Optimal value:	0.4	0.325	13.5

Dynamic index policies

	Delay guarantees	Delay Fairness	Rate control
Index	Z_{n}	$(Z_n + Y_n)/\overline{S_n}$	$Z_n/\overline{S_n}$
Statistical	none	$\lambda_n, \overline{S_n}$	$\lambda_n, \ \overline{S_n}, \ \overline{W_n}(P)$

$$Z_n \leftarrow \max \left[Z_n + \sum_{i \in \text{class } n} (w_n^{(i)} - d_n), 0 \right]$$
$$Y_n \leftarrow \max \left[Y_n + \sum_{i \in \text{class } n} (w_n^{(i)} - \gamma_n), 0 \right]$$

knowledge

Summary

Convex programs over a polymatroid can be solved by online adaptive policies as simple as the $c\mu$ rule

These policies require limited or no statistics by learning from the past

Caveat: large delay variance when queue is heavily loaded (controls are updated over busy periods)

Applications to other queueing systems with polymatroid-type performance regions?

Job-level scheduling using imperfect virtual-queue length information to reduce delay variance?