Chapter 10: Root Finding

- Starting values
- Closed interval methods (roots are searched within an interval)
 - o Bisection
- Open methods (no interval)
 - Fixed Point
 - Newton-Raphson
 - Secant Method

10.1 Introduction

Roots are solutions for solving f(x) = 0. We can distinguish:

- Closed methods
 - o convergence guaranteed
- Open methods
 - o Divergence may occur
 - o if convergence occurs, it is usually faster (rate is higher)

To approximate a root, the starting value is important: if possible, first draw a graph

Starting Values

```
Code
f <- function(x) {x-2*sin(x^2)}
plot(f,from=-2,to=2)
grid()</pre>
```


10.5 Bisection

Assumption: interval [a, b] contains one root

In this method, the interval is split in two:

- if the function changes sign (+ to or to +), then the function is evaluated in the middle
- the location of the root should lie in the subinterval in which the product changes sign

Algorithm: start with $x_l < x_r$ such that $f(x_l)f(x_r) < 0$

- 1. put $x_m = (x_l + x_r)/2$; if $f(x_m) = 0$, then stop
- 2. if $f(x_l)f(x_m) < 0$, then put $x_r = x_m$; otherwise put $x_l = x_m$
- 3. if $x_r x_l \le \varepsilon$ then stop, otherwise go back to 1

The absolute error is halved in each iteration:

- length interval after *n* iterations: $\frac{b-a}{2^n}$
- if ε is a given tolerance, then $n > \frac{\log(\frac{b-a}{\varepsilon})}{\log 2}$

10.5 Bisection - Example

10.5 Bisection – Another Example

10.2 Fixed Point

Rewrite equation f(x) = 0 in x = g(x)

This can usually be done is several ways: for instance $f(x) = x - 2\sin(x^2)$

- (i) $x = 2\sin(x^2) \to g < -2*\sin(x^2)$
- (ii) $x = \sqrt{\sin^{-1}(x/2)} \rightarrow g \leftarrow \operatorname{sqrt}(\operatorname{asin}(x/2))$

Scheme: $x_{n+1} = g(x_n)$ n = 0,1,...

- Starting value: x_0 (how to choose?)
- When to stop?
 - $\circ f(x_n) \approx 0 \text{ if } x_{n+1} \approx g(x_n) : |x_{n+1} x_n| < \varepsilon \text{ (ε small)}$
 - o maximum number of iterations (to prevent infinite loop)

Method only works if |g'(x)| < 1

$$g \leftarrow 2*sin(x^2) \rightarrow finds root 0$$

 $g \leftarrow sqrt(asin(x/2)) \rightarrow finds root close to 0.5$

10.2 Fixed Point: example

$$f(x) = \log(x) - \exp(-x)$$
; $g_1(x) = \exp(\exp(-x))$

10.2 Fixed Point: example

$$f(x) = \log(x) - \exp(-x)$$
; $g_2(x) = x - \log(x) + \exp(-x)$

10.2 Fixed Point: example

$$f(x) = \log(x) - \exp(-x)$$
; $g_3(x) = x + \log(x) - \exp(-x)$

10.2 Fixed Point: another example

10.2 Fixed Point: convergence

- a) Convergent: $0 \le g' < 1$
- b) Convergent: $-1 < g' \le 0$
- c) Divergent: g' > 1
- d) Divergent: g' < -1

Figure 6.3 from Chapra, S. C. (2007) Applied Numerical Methods With Matlab: For Engineers And Scientists. McGraw Hill

10.2 Fixed Point: convergence

Definition fixed point: g(x) = x

- If (i) g is a continuous function on the closed interval [a,b]
 - (ii) $g: [a, b] \to [a, b]$
- (iii) g is differentiable with $|g'(x)| \le k < 1$ for all $x \in (a, b)$, then the sequence $\{x_{n+1} = g(x_n)\}$ converges to the fixed point x for every $x_0 \in [a, b]$. Proof:

$$|x_{n+1} - x| = |g(x_n) - g(x)|$$
 by definition of x_{n+1} and x

$$= |g'(c)||x_n - x|$$
 Mean value theorem
$$\leq k|x_n - x|$$
 g' bounded by k

$$\leq k^2|x_{n-1} - x|$$
 repeat previous 3 steps
$$\leq k^{n+1}|x_0 - x|$$

Because 0 < k < 1, we get $\lim_{n \to \infty} |x_{n+1} - x| \le \lim_{n \to \infty} k^{n+1} |x_0 - x| = 0$.

Mean value theorem: if $f \in C[a, b]$ and differentiable, then there exists a point $c \in (a, b)$ such that $f'(c) = (f(b) - f(a))/(b - a) \to f(b) - f(a) = f'(c)(b - a)$

10.3 Newton-Raphson

Taylor approximation:

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + O(h^2)$$

Suppose
$$f(x_{i+1}) = 0 \& O(h^2) = 0$$
,
then

$$0 = f(x_i) + f'(x_i)h, h$$

= $(x_{i+1} - x_i)$

Solving for *h*:
$$(x_{i+1} - x_i) = -\frac{f(x_i)}{f'(x_i)}$$

Iteration scheme Newton-Raphson:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Figure 4.7 from Chapra, S. C. (2007) Applied Numerical Methods With Matlab: For Engineers And Scientists. McGraw Hill

10.3 Newton-Raphson - Graphical

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Figure 6.3 from Chapra, S. C. (2007) Applied Numerical Methods With Matlab: For Engineers And Scientists. McGraw Hill

10.3 Newton-Raphson - Example

$$f(x) = \log(x) - \exp(-x)$$
; $f'(x) = 1/x + \exp(-x)$

10.4 Secant Method

Approximate the derivative f'(x) numerical:

- def. $f'(x) = \lim_{\delta \to 0} \frac{f(x+\delta) f(x)}{\delta}$
- finite difference: $f'(x_i) \approx \frac{f(x_i) f(x_{i-1})}{x_i x_{i-1}}$ [forward difference]

Newton Raphson:
$$x_{i+1} = x_i - f(x_i) \frac{1}{f'(x_i)}$$

• forward difference: $\frac{1}{f'(x_i)} \approx \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$

Secant Method:
$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

now: i = 1, 2, ...

- no derivative needed
- now, two starting values: x_0 , x_1
- variations:
 - o backwards/central differences