Assignment 1

EE24Btech11024 - G. Abhimanyu Koushik

1) For which of the following ordered pairs (μ, δ) the system of linear equations

x + 2y + 3z = 1 $3x + 4y + 5z = \mu$ $4x + 4y + 4z = \delta$

is inconsistent?						
a) (4,6)	b) (3,4)	c) (1,0)	d) (4, 3)			
2) Let $y = f(x)$ be a solution to the differential equation $\sqrt{1 - x^2} \frac{dy}{dx} + \sqrt{1 - y^2} = 0$, $ x < 1$ If $y(\frac{1}{2}) = \frac{\sqrt{3}}{2}$, then $y(-\frac{1}{\sqrt{2}})$ is equal to						
a) $-\frac{1}{\sqrt{2}}$ b) $-\frac{\sqrt{3}}{2}$		c) $\frac{1}{\sqrt{2}}$ d) $\frac{\sqrt{3}}{2}$				
3) If a, b and c are the greatest values of ${}^{19}C_p$, ${}^{20}C_q$, ${}^{21}C_r$ respectively, then:						
a) $\left(\frac{a}{11}\right) = \left(\frac{b}{22}\right) = \left(\frac{c}{42}\right)$ b) $\left(\frac{a}{10}\right) = \left(\frac{b}{11}\right) = \left(\frac{c}{42}\right)$ c) $\left(\frac{a}{10}\right) = \left(\frac{b}{22}\right) = \left(\frac{c}{21}\right)$ d) $\left(\frac{a}{10}\right) = \left(\frac{b}{11}\right) = \left(\frac{c}{21}\right)$ 4) Which of the following is a tautology? a) $(P \land (P \rightarrow Q)) \rightarrow Q$ b) $P \land (P \lor Q)$ c) $(Q \rightarrow (\land (P \rightarrow Q)))$ d) $P \lor (P \land Q)$ 5) Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be such that for all $x \in \mathbb{R}$, $\left(2^{1+x} + 2^{1-x}\right)$, $f(x)$ and $(3^x + 3^{-x})$ are in A.P, then the minimum value of $f(x)$ is:						
a) 0	b) 4	c) 3	d) 2			
 6) The locus of a point which divides the line segment joining the point (0, -1) and a point on parabola x² = 4y, internally in the ration 1 : 2 is: a) 9x² - 12y = 8 b) 4x² - 3y = 2 c) x² - 3y = 2 d) 9x² - 3y = 2 7) For a > 0, let the curves C₁:y² = ax and C₂:x² = ay intersect at origin O and a point P. Let the line x = b (0 < b < a) intersect the chord OP and the x-axis at points Q and R, respectively. If the line x = b bisects the area bounded by the curves, C₁ and C₂, and the area of ΔOQR = ½, then a satisfies the equation a) x² - 12x³ + 4 = 0 b) x² - 12x³ - 4 = 0 b) x² - 12x³ - 4 = 0 						

	,						
	a) <i>e</i>	b) $\frac{1}{e^2}$	c) $\frac{1}{e}$	d) e^2			
10)	Let $f(x) = \left(\sin \tan^{-1} x\right)$ $\frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} \left(\sin^{-1} f(x)\right)$ and $y\left(\sqrt{3}\right) = \frac{\pi}{6}$, then y	$+\sin \cot^{-1} x$) ² – 1 where $(-\sqrt{3})$ is equal to:	absx > 1. If				
	a) $\frac{\pi}{3}$	b) $\frac{2\pi}{3}$	c) $-\frac{\pi}{6}$	d) $\frac{5\pi}{6}$			
11) If the equation, $x^2 + bx + 45 = 0$ ($b \in \mathbb{R}$) has conjugate complex roots and they satisfy $ z + 1 = 0$ then:							
	a) $b^2 + b = 12$ b) $b^2 - b = 42$		c) $b^2 - b = 30$ d) $b^2 + b = 72$				
12)	12) The mean and standard deviation of 10 observations are 20 and 2 respectively. Each of these 1 observations is multiplied by p and then reduced by q , where $p \neq 0$ and $q \neq 0$. If the new mean an standard deviation become half of their original values, then q is equal to:						
	a) -20	b) -5	c) 10	d) -10			
13)	3) If $\int \frac{\cos x}{\sin^3 x \left(1+\sin^6 x\right)^{\frac{2}{3}}} dx = f(x) \left(1+\sin^6 x\right)^{\frac{1}{4}} + c$, where c is a constant of integration, then $\lambda f\left(\frac{\pi}{3}\right)$ is equ to:						
	a) $-\frac{9}{8}$	b) 9/8	c) 2	d) -2			
14)	14) Let A and B be two independent events such that $P(A) = \frac{1}{3}$ and $P(B) = \frac{1}{6}$. Then which of the following is TRUE ?						
	a) $P\left(\frac{A}{A \cup B}\right) = \frac{1}{4}$ b) $P\left(\frac{A}{B'}\right) = \frac{1}{3}$		c) $P\left(\frac{A}{B}\right) = \frac{2}{3}$ d) $P\left(\frac{A'}{B'}\right) = \frac{1}{3}$				
15)	15) If volume of a parallelepiped whose coterminous edges are given by $\overrightarrow{u} = \hat{i} + \hat{j} + \lambda \hat{k}$, $\overrightarrow{v} = \hat{i} + \hat{j} + 3\hat{k}$ and $\overrightarrow{w} = 2\hat{i} + \hat{j} + \hat{k}$ be 1cu.unit. If θ is the angle between the edges \overrightarrow{u} and \overrightarrow{w} then, $\cos \theta$ will be:						
	a) $\frac{7}{6\sqrt{6}}$	b) \(\frac{5}{7}\)	c) $\frac{7}{6\sqrt{3}}$	$d) \frac{5}{3\sqrt{3}}$			

c) $\frac{1}{4}log_e\left(\frac{1+x}{1-x}\right)$ d) $\frac{1}{4}log_e\left(\frac{1-x}{1+x}\right)$

c) $x^6 + 6x^3 - 4 = 0$ d) $x^6 - 6x^3 + 4 = 0$

a) $\frac{1}{4} (log_8 e) log_e \left(\frac{1+x}{1-x}\right)$ b) $\frac{1}{4} (log_8 e) log_e \left(\frac{1-x}{1+x}\right)$

9) $\lim_{x\to 0} \left(\frac{3x^2+2}{7x^2+2}\right)^{\frac{1}{x^2}}$ is equal to

8) The inverse of the function $f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$ is