Econ 301 - Microeconomic Theory 2

Winter 2018

Lecture 6: January 22, 2018

Lecturer: Jean Guillaume Forand Notes By: Harsh Mistry

6.1 Consumer Choice Continued

6.1.1 Optimal consumer choice

- FOC $(L1) (L\lambda)$ are only necessary for x^* to be optimal. (i.e any solution x^* to (PE) must be a solution to $(L1) (L\lambda)$ but some solutions to $(L1) (L\lambda)$ are not solutions to (PE))
- Need sufficient or second order conditions that guarantee that solutions to $(L1)-(L\lambda)$ are also solutions to (PE)
- Result if the consumers preferences are monotone and convex then any solution to $(L1) (L\lambda)$ must be a solution to (PE)

Example 6.1 Suppose $U(x_1, x_2) = \sqrt{x_1} + x_2$ and solve for $\sqrt{x} + x_2 = c$

1. Consumer UMP

$$max_{x_1,x_2>0} \sqrt{x_1} + x_2 \ s.t \ p_1x_1 + p_2x_2 \le m$$

2. Preferences are monotone if $x_1 > y_1$ and $x_2 > y_2$

$$U(x_1, x_2) = \sqrt{x_1} + x_2$$

$$> \sqrt{y} + y_2$$

$$= U(y_1, y_2) \implies x \succ y$$

Therefore, budget constraint holds as an equality at any solution to UMP

3. Lagrangian

$$L(x_1, x_2, \lambda) = \sqrt{x_1} + x_2 + \lambda [m - p_1 x_1 - p_2 x_2]$$

4. Any solution to UMP such that $x_1^*, x_2^* \neq 0$ must solve FOC (First Order Conditions)

$$\frac{d}{dx_1}L(x_1, x_2, \lambda) = \frac{1}{2\sqrt{x}} - \lambda p_1 = 0 \ (L1)$$

$$\frac{d}{dx_2}L(x_1, x_2, \lambda) = 1 - \lambda p_2 = 0 \ L(2)$$

$$\frac{d}{d\lambda}L(x_1, x_2, \lambda) = m - p_1 x_2^* - p_2 x_2^* = 0 \ (L\lambda)$$

Divide (L1) by (L2)

$$\frac{1}{2\sqrt{x_1}} = \frac{p_1}{p_2}$$
$$x_1^* = \frac{1}{4} (\frac{p_2}{p_1})^2 \quad (\star)$$

Substitute (\star) into $L(\lambda)$:

$$x_2^* = \frac{m}{p_2} - \frac{1}{4} \frac{p_2}{p_1}$$

There is a condition though. $(L1) - (L\lambda)$ only has a solution if $\frac{m}{p_2} > \frac{1}{4} \frac{p_2}{p_1}$

5. At a corner solution with $x_1^* = 0$, necessary condition

$$\frac{\frac{d}{dx_1}U(0,m/p_2)}{\frac{d}{dx_2}U(0,m/p_2)} \le \frac{p_1}{p2}$$

Unfortunately

$$\lim_{x \to \infty} \frac{\frac{1}{2\sqrt{x}}}{1} = \infty$$

This inequality is never satisfied, so the equation never holds.

Therefore, at $x_1 = 0$, teh slope of the IC will never be greater than the budget line

6. At corner solution with $x_2^* = 0$, necessary condition

$$\frac{\frac{d}{dx_1}U(m/p_1,0)}{\frac{d}{dx_2}U(m/p_1,0)} \ge \frac{p_1}{p_2}$$

So,

$$\frac{\frac{1}{2\sqrt{m/p_1}}}{1} \ge \frac{p_1}{p_2} \implies \frac{m}{p_2} \le \frac{1}{4} \frac{p_1}{p_2}$$

- 7. Consumer preferences are convec so that any solution to necessary conditions must be solution to UMP
- 8. Demand function

$$(x_1(p_1m), x_2(p_2m)) = \begin{cases} \left(\frac{1}{4}(\frac{m}{p_2})^2, \frac{m}{p_2} - \frac{1}{4}\frac{p_2}{p_1}\right) & \text{if } \frac{m}{p_2} > \frac{1}{4}\frac{p_2}{p_1} \\ \left(\frac{m}{p_2}, 0\right) & \text{if } \frac{m}{p_2} \le \frac{1}{4}\frac{p_2}{p_1} \end{cases}$$

• If consumers utility function is not differentiable, then the Lagrangian does not apply

Example 6.2 Consider perfect compliments where $U(x_1, x_2) = min\{x_1, x_2\}$

1. Consumers UMP

$$max_{x_1,x_2\geq 0}min\{x_1,x_2\}$$
 such that $p_1x_1+p_2x_2\leq m$

2. Consumer preferences are monotone. Let $x_1 > y_1$ and $x_2 > y_2$

$$U(x_1, x_2) = min\{x_1, x_2\}$$

$$> min\{y_1, y_2\}$$

$$= U(y_1, y_2)$$

Therefore, budget constraint holds as an equality at any solution to UMP

- 3. Any optimal bundle x^* must be such that $x_1^* = x_2^*$. (I.e any bundle with $x_1 > x_2$ is worse than bundles $\left(\frac{m}{p_1 + p_2} + \frac{m}{p_1 + p_2}\right)$
- 4. Demand Function

$$(x_1(p_1m), x_2(p_2m)) = \left(\frac{m}{p_1 + p_2}, \frac{m}{p_1 + p_2}\right)$$