1 目的

油回転ポンプの排気速度及び、到達真空度の測定を行う.ガイスラー管放電観察による真空度の推定を経験する.また、油回転ポンプの原理や取り扱う方法に触れる.

2 真空装置

図1 真空装置の図

図1に真空装置の図を示す.

油回転ポンプが真空容器 V 内の空気を排気する. リークコック V_1 を閉じることで真空容器を,可変リークバルブ LV とリークコック V_2 を閉じることでガス溜を外部と遮断し,真空にすることが出来る. 逆に実験終了時に開くことで,常圧に戻す.

ピラニ真空計は圧力を測定する. 低真空領域ではレンジを L に設定し、排気がすすみ、高真空領域になればレンジを H にする. 当実験で用いるピラニ真空計では、0.01[Torr] から 30[Torr] まではかることが出来る.

ガイスラー管は、目視により圧力を推定することが出来る. ガラスの中にアルミニウム電極が設置されており、数 kV 程度の高電圧を印加し、圧力の違いによる放電の様子を見ることが出来る.

3 実験

3.1 排気速度の測定

ビュレット内を上昇する油の速度を測定することにより、排気速度を調べる.

まず、 V_1, V_2 を開き、容器及びガス溜内を常圧にし、LVを閉じ真空容器をガス溜と分離しておく.

 V_1 を閉じ、油回転ポンプのスイッチを入れ、真空容器内の空気を排気する.

次に可変リークバルブを開き,真空容器内に流れ込む空気の量を調節する.ピラニゲージを読み,真空容器内の圧力が定常になることを確かめ,その値を P_2 とし読み取る.この状態で V_2 を開くと油がビュレット内を上昇する.

この上昇速度 $Q[\text{Torr} \cdot L/s]$ は、圧力差に比例することが知られており、大気圧を $P_1 = 760[\text{Torr}]$ とすると、

$$Q = \frac{\Delta V}{\Delta t} (P_1 - P_2) \tag{3.1}$$

となる。ここで, ΔV は上昇した油の体積で Δt はそれに要する時間である。体積はビュレットの目盛りで読み取り,体積を fix して要する時間を計測する。真空ポンプの性能は排気速度

$$S := \frac{Q}{P_2} = \frac{\Delta V}{\Delta t} \left(\frac{P_1}{P_2} - 1 \right) \tag{3.2}$$

で評価する.

我々の実験では 2.45[Torr] までは $\Delta V=10$ [cm³] とし、それ以降は $\Delta V=20$ [cm³] で行った。これは高圧では油が上昇するスピードが非常に大きくなり、油が 10[cm³] 上るのにかかる時間が短く、測定が難しくなったためである.

排気速度 S と、到達真空度 $P_{\min} \coloneqq \min P_2$ を求める.

3.2 真空度の時間変化の測定

この実験ではピラニゲージのレンジをS にしておく。また、ガス溜は用いないので、可変リークバルブを完全に閉じておく。

油回転ポンプを始動し、十分排気した後、V1 を少し開け、真空度を 10[Torr] から 20[Torr] とする.ここに達したら、 V_1 を閉め、初期状態 $P_0=10[Torr]$ からの圧力の時間変化を見る.

今,真空容器の体積をV,容器内の圧力P,到達真空度 P_{\min} とする.排気速度Sが圧力に依らない領域では,真空容器の気体の減少分と,排気量の関係

$$-V\frac{\mathrm{d}P}{\mathrm{d}t} = S(P - P_{\min}) \tag{3.3}$$

から,

$$P - P_{\min} = (P_0 - P_{\min}) \exp\left(-\frac{Vt}{S}\right)$$
(3.4)

となる.

3.3 ガイスラー管による真空度の測定

n とおりの真空度において、ガイスラー管を放電させ、スケッチを行う。実験装置は、交流、高電圧を印加している。

4 結果

本実験では、解析には Python を用いた.

4.1 排気速度の測定

実験結果を以下の表にまとめる.

表1 圧力と時間の測定及び、排気速度の計算結果. ただし、時間は5回測定したものの平均値をとっている.

データ番号	圧力 [Torr]	$\log_{10} P_2$	時間 [s]	排気速度 [L/s]	Sの誤差
0	0.072	-1.14	339	0.310	0.00314
1	0.095	-1.0223	236	0.339	0.00342
2	0.151	-0.821	129	0.389	0.00391
3	0.17	-0.770	113	0.395	0.00459
4	0.23	-0.638	72.2	0.457	0.00503
5	0.27	-0.569	59.4	0.473	0.00511
6	0.40	-0.398	39.3	0.484	0.00514
7	0.49	-0.310	31.6	0.491	0.00525
8	0.81	-0.0915	16.8	0.559	0.00655
9	1.55	0.190	8.65	0.566	0.00865
10	1.9	0.279	6.97	0.572	0.0100
11	2.45	0.389	5.64	0.548	0.0112
12	4.4	0.64	5.17	0.664	0.0134
13	6.0	0.778	4.41	0.569	0.0132
14	7.1	0.851	3.96	0.535	0.013
15	10	1.00	3.12	0.480	0.0138
16	11	1.04	2.94	0.463	0.0138
17	13	1.11	2.60	0.442	0.0138
18	16	1.20	2.40	0.387	0.0138

各圧力 P_2 について,データ番号 0 から 11 にかんしては $10[\mathrm{cm}^3]$,12 から 18 にかんしては $20[\mathrm{cm}^3]$ のぼる 時間を 5 回ずつ測定し,表には平均値を示した. $\mathrm{Eq.}(3.4)$ を用い,排気速度 S を求め,誤差は実験書の指示に 従い,圧力,体積の誤差は最小目盛りの 1/10,時間の誤差は 0.1[s] として,計算した.各圧力における圧力の 誤差及び fix した体積を表 2 にまとめた.

表 2 各圧力における圧力誤差と, fix した体積.

データ番号	圧力の誤差 $\sigma_{P_2}[\mathrm{Torr}]$	体積 V[L]
0-2	0.0001	0.01
3-11	0.001	0.01
12-14	0.01	0.02
15-18	0.1	0.02

表 2 の値と、各誤差 $\sigma_V = 0.0001, \sigma_t = 0.1$ を用いて、式

$$\sigma_S = \sqrt{\left(\frac{\partial S}{\partial V}\sigma_V\right)^2 + \left(\frac{\partial S}{\partial t}\sigma_t\right)^2 + \left(\frac{\partial S}{\partial P_2}\sigma_{P_2}\right)^2} \tag{4.1}$$

により, 誤差の伝播を計算した. ここで, Eq.(3.2) より

$$\frac{\partial S}{\partial V} = \frac{1}{\Delta t} \left(\frac{P_1}{P_2} - 1 \right),\tag{4.2}$$

$$\frac{\partial S}{\partial t} = -\frac{\Delta V}{\left(\Delta t\right)^2} \left(\frac{P_1}{P_2} - 1\right),\tag{4.3}$$

$$\frac{\partial S}{\partial t} = -\frac{\Delta V}{(\Delta t)^2} \left(\frac{P_1}{P_2} - 1\right),$$

$$\frac{\partial S}{\partial P_2} = -\frac{\Delta V P_1}{\Delta t (P_2)^2}$$
(4.3)

である. $\log_{10} P_2$ と排気速度 S および誤差を図 2 に示す.

図 2 各真空度による排気速度. 横軸は常用対数を取ってプロットした. $\log_{10} P$ の正負でわけて、最小二 乗法を用いて線形回帰した. ただし, 正の領域では, 一部のデータを除き fitting している.

真空度の時間変化の測定 4.2

真空度の時間変化を表3に示す.

表 3 真空度の時間変化.

時間 [s]	$\log \frac{P - P_0}{P_0 - P_{\min}}$
0.0	0.0
1.184	-0.511
2.332	-0.918
3.468	-1.20
5.166	-1.61
6.404	-2.31
7.838	-2.82
9.226	-3.23
11.878	-3.93
15.786	-4.67
21.365	-5.36
24.768	-5.60
30.876	-5.92
62.266	-6.38
	0.0 1.184 2.332 3.468 5.166 6.404 7.838 9.226 11.878 15.786 21.365 24.768 30.876

結果をプロットしたものを図3に示す.

図 3 真空度の時間変化. 時間は 5 回測定した平均値を用い,縦軸の対数の底は e である. t<10 のデータに対し,最小二乗法を用い線形回帰した.

5 課題への解答

1. 図 2.

2. 最小二乗法により、線形回帰したところ、破線の方程式は y = -0.0154x + 0.564 であった。ただし、この fitting に用いたデータは、0.50 < S < 0.60[L/s] のものである。圧力が大きい範囲では、油が上るスピードが速かったため、指定されている誤差より大きな時間の誤差ができたと考え、残りのデータは除外した。 すると、およそエラーバーに収まっていることがわかる。ゆえに、排気速度は x = 0 として、

$$S = y = 0.564[L/s] \tag{5.1}$$

である. また、点線の方程式は y=0.232x+0.582 であった. 到達真空度は y=0 として

$$\log_{10} P_{\min} = x = -\frac{0.582}{0.232} \tag{5.2}$$

より,

$$P_{\min} = 3.10 \times 10^{-3} [\text{Torr}]$$
 (5.3)

となる.

3. 以下の主に課題は [1] を参考にする. 油拡散ポンプは 4 のような構造をしており、下部のヒーターにより噴出した油蒸気のジェットが傘に当たり、下部に向かう際に真空容器中のガスを巻きこむ. ⁱⁱ

図4 油拡散ポンプの図

使用上の注意として、油拡散ポンプは大気圧から排気を行うことが出来ず、真空容器及び装置そのものを別のポンプにより排気し 10[Pa] 以下の真空にしてから動作させることが必要である。特に、真空装置は基本的に大気圧に曝してはいけない.

4. 電離真空計は、0.1[Pa] 以下の高真空を測定できる真空計である。高真空では、かなり厳密に理想気体の 状態方程式に従うため、圧力は物質量に比例する。これを用い、気体分子と衝突した際イオンと電子の ペアによる電流を測定し、物質量に換算することで圧力を測定している。注意点は、1[Pa] 以上の高圧 ではフィラメントが焼損してしまうため、あらかじめ別の方法、e.g.、ピラニゲージなど、で十分低圧で あることを確認したうえで使用しなければならない。また、電離を利用しているため気体の種類により 精度がかわることも念頭に置く必要がある。

 $^{^{}i}$ ただし、除外したデータは傾きが負の直線に乗っているように見える。油の上る速度を測定したが、ある速度以上になると、ビュレットと油の摩擦などの要因が支配的になることが考え得る。

ii この原理に関しては [1] に記述がみられなかったので、真空容器の会社のインターネット記事 [2] を参考にした.

6 考察

図 2 で、予想される結果から大きくずれているいくつかのデータを外したが、 $\log_{10} P$ の値がおおきい点は直線でフィットできそうである。これらの点は、破線のフィットから外したが、その要因としてビュレットと油の間の摩擦などが要因で、油の上昇速度に制限がかかるとすれば、それは $\log_{10} P$ に比例することが予想できる。

図 3 で直線に乗っているのは、排気速度 S が一定の場合で、すなわち、図 2 で破線の部分がそれに該当する。Section 5 で議論するように、その値は $S=0.564[{
m Torr}]$ であり、

$$\frac{P - P_0}{P_0 - P_{\min}} = \exp\left(-\frac{St}{V}\right) \tag{6.1}$$

で, 両辺自然対数を取って,

$$\log\left(\frac{P-P_0}{P_0}\right) = -\frac{S}{V}t\tag{6.2}$$

となる. 故に、真空容器の体積は、図 3 の点線の傾き a = -0.348 を用いて

$$V = -\frac{S}{a} \tag{6.3}$$

$$= 1.63[L]$$
 (6.4)

となる. 目視での大きさを考えても妥当であろう.

Sec.??のガイスラー管の放電観察では、気体分子が邪魔をして放電が起きにくくなる、という直感とよく合う様子が観察された.

参考文献

- [1] 堀越源一"真空技術 [第三版]"東京大学出版会
- [2] アリオス株式会社 真空ポンプの種類 https://qr.paps.jp/s0FdU 2021/05/10 閲覧