Project: Indycar Rank Prediction

Progress Report 10282019-11082019

**Abstract:** The major progress in the past two weeks is building a stage dataset and prediction model on it according to the methods proposed in NASCAR race prediction[1][2]. On the task of predicting rank changes for each 'stint', a machine learning model does exceed the baselines.

#### Problem:

Due to the dynamics of a race, the ranks of the cars change abruptly in the laps with pitstops, as in Fig.1. The rank of a car then is correlated with its team's strategy of pitstop and also other teams strategies. It is very complex to build a model to predict rank directly.



Fig.1 Ranks evolving along with the laps. Top 10 cars with the start position in Indy500. Red bar and the cross marker are pitstops. Yellow bars are caution laps.

Rank loss or gain in case of pitstop does not matter much. Because they are temporary. The car did pitstop will surpass the others who do pitstop later. It is not useful to predict accurately on these temporary rank values. Instead, paper[1][2] proposed to modeling the rank change in a larger scale, consecutive laps which start and end by a pitstop or a caution lap, as shown in the next Figure.



Figure 5. Composition of Race Performance based on Leg, Driver-Car, and Pit Crew based on a hypothetical

Race comprising 3 Stages

In IndyCar, 'stint' refers to the period of driving between pit stops, similar to the term 'stage'. We define our task to be the rank change prediction on stage dataset. A stage is defined as the laps between pit stops, adding a warmup period at the beginning denoted as 'trim'. We do not add separate stages for caution laps as they don't have many influences on rank.



Fig.2 A race split into stages.

The task is to predict the rank change for each stage. When a car goes into the pit lanes, the model can predict how well the car will perform in the coming stage, whether it would lose or gain in rank. With the support of this prediction model, it potentially enables the team to evaluate different strategies, such as when to pit stop.

## **Dataset:**

We have the timing and score log file of 2018 IndyCar series, which contains 17 events. Six of them are racing on the oval speedway, as Sfc=P in the following Table.

| #         | Date     | Site                     | Cars | Winner(s)          | St | C/E/T | Len   | Sfc | Miles | Purse | Pole    | Cau | Laps | Speed   | LC |
|-----------|----------|--------------------------|------|--------------------|----|-------|-------|-----|-------|-------|---------|-----|------|---------|----|
| 1         | 03/11/18 | St. Petersburg           | 24   | Sebastien Bourdais | 14 | DHF   | 1.800 | S   | 198   |       | 105.085 | 8   | 25   | 86.207  | 11 |
| 2         | 04/07/18 | <u>Phoenix</u>           | 23   | Josef Newgarden    | 7  | DCF   | 1.022 | Р   | 256   |       | 188.539 | 2   | 23   | 147.395 | 12 |
| <u>3</u>  | 04/15/18 | Long Beach               | 24   | Alexander Rossi    | 1  | DHF   | 1.968 | S   | 167   |       | 106.454 | 4   | 17   | 88.622  | 6  |
| 4         | 04/23/18 | <u>Birmingham</u>        | 23   | Josef Newgarden    | 1  | DCF   | 2.300 | R   | 189   |       | 122.773 | 2   | 14   | 93.335  | 4  |
| 5         | 05/12/18 | <u>Indianapolis G.P.</u> | 24   | Will Power         | 1  | DCF   | 2.439 | R   | 207   |       | 125.761 | 2   | 8    | 113.318 | 9  |
| <u>6</u>  | 05/27/18 | <u>Indianapolis</u>      | 33   | Will Power         | 3  | DCF   | 2.500 | Р   | 500   |       | 229.618 | 7   | 41   | 166.935 | 30 |
| 7         | 06/02/18 | Belle Isle               | 23   | Scott Dixon        | 2  | DHF   | 2.350 | 5   | 165   |       | 113.024 | 2   | 10   | 99.285  | 6  |
| 8         | 06/03/18 | Belle Isle               | 23   | Ryan Hunter-Reay   | 10 | DHF   | 2.350 | 5   | 165   |       | 90.661  | 1   | 3    | 105.176 | 6  |
| 9         | 06/09/18 | Fort Worth               | 22   | Scott Dixon        | 7  | DHF   | 1.500 | P   | 372   |       | 220.613 | 3   | 29   | 177.250 | 9  |
| 10        | 06/24/18 | Elkhart Lake             | 23   | Josef Newgarden    | 1  | DCF   | 4.014 | R   | 221   |       | 140.020 | 0   | 0    | 132.101 | 2  |
| 11        | 07/08/18 | <u>lowa</u>              | 22   | James Hinchcliffe  | 11 | DHF   | 0.894 | Р   | 268   |       | 182.391 | 2   | 17   | 149.737 | 4  |
| 12        | 07/15/18 | <u>Toronto</u>           | 23   | Scott Dixon        | 2  | DHF   | 1.786 | 5   | 152   |       | 108.068 | 3   | 12   | 93.898  | 9  |
| 13        | 07/29/18 | Mid-Ohio                 | 24   | Alexander Rossi    | 1  | DHF   | 2.258 | R   | 203   |       | 125.677 | 0   | 0    | 116.957 | 5  |
| 14        | 08/19/18 | Pocono                   | 22   | Alexander Rossi    | 3  | DHF   | 2.500 | Р   | 500   |       | 219.511 | 2   | 10   | 191.304 | 11 |
| <u>15</u> | 08/25/18 | <u>Gateway</u>           | 21   | Will Power         | 4  | DCF   | 1.250 | P   | 310   |       | NTT     | 2   | 16   | 155.644 | 10 |
| <u>16</u> | 09/02/18 | <u>Portland</u>          | 25   | Takuma Sato        | 20 | DHF   | 1.967 | R   | 207   |       | 123.292 | 4   | 18   | 102.971 | 9  |
| 17        | 09/16/18 | <u>Sonoma</u>            | 25   | Ryan Hunter-Reay   | 1  | DHF   | 2.385 | R   | 203   |       | 110.605 | 1   | 5    | 99.440  | 5  |

Extract from these events, we get a stage dataset with 805 stage records. Features for each stage including the initial start position, start rank, change of rank, rate of changes and information of its neighbors. Detailed descriptions can be found in the Appendix.

| Event   | Records |
|---------|---------|
| Phoenix | 114     |
| Indy500 | 225     |
| Texas   | 127     |
| Iowa    | 109     |
| Pocono  | 126     |
| Gateway | 104     |

# **Experiment Results:**

First, we have two types of tasks: predict the value of rank change for a stage which is a regression problem, and predict the sign of rank change for a stage which is a classification problem.

## We have three baselines:

| CurRank | predict the end rank with the current start rank of the stage, i.e., means change is always zero.                                                                  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AvgRank | predict the end rank with the average rank changes in previous stages.                                                                                             |
| Dice    | predict the rank change by randomly throw dice which follows the distribution of the training data. For the classification task, it is a three facets dice(+,0,-). |

We have two ways to split the dataset into training and test set.

| split by event | select 5 events to train, the other 1 to test                 |
|----------------|---------------------------------------------------------------|
| split by stage | select the beginning stages to train, the left stages to test |

Results of predicting the sign of rank change:



Fig.3 Sign of rank change prediction with split\_by\_events. Learning models are significantly better than the baselines, except one outlier currank is the best in Pocono, where more than no rank changes for 60% stages.



Fig.4 Sign of rank change prediction with split\_by\_stage. Learning models are significantly better than the baselines, and the gap increase when trained with more stages.

Results of predicting the value of rank change:



Fig.5 Rank change prediction with split\_by\_event. Learning models are only slightly better than the baselines.



Fig.6 Rank change value prediction with split\_by\_stage. Learning models are slightly better than the baselines, and the gap increase when trained with more stages.

#### **Conclusion:**

On the rank change prediction task, model can be learned on stage dataset to achieve better performance than the baselines. This is consistent with the results reported by paper[1][2]. Sign prediction achieves similar performance, but the value predicted are not as good as theirs(Fig.5,Fig.6). There should be space to improve, e.g., by incorporating more features.

#### Work TODO:

- 1. Most of importance. Communicate with IndyCar to have a discussion on whether the result of rank change prediction is useful to them? or potentially useful to them.
- 2. Need help to verify the code and results are correct.
- 3. Continue to improve the model, by adding more features.
- 4. Think about other prediction tasks. Because the dataset is still limited in its size. Considering to add extra information about the drivers, such as text, news, etc, could be another direction promising to explore.

## References

[1]T. Tulabandhula and C. Rudin, "Tire changes, fresh air, and yellow flags: challenges in predictive analytics for professional racing," Big data, vol. 2, no. 2, pp. 97–112, 2014.

[2]C. L. W. Choo, "Real-time decision making in motorsports: analytics for improving professional car race strategy," PhD Thesis, Massachusetts Institute of Technology, 2015.

## Appendix:

## 1. Features

| Туре        | Feature                   | Meaning             |
|-------------|---------------------------|---------------------|
|             | stageid                   |                     |
| gobal info  | firststage                | 1/0                 |
| gobal illio | pit_in_caution            | 1/0                 |
|             | start_position            | #                   |
|             | start_rank                | #rank               |
|             | start_rank_ratio          | #rank/carnum        |
| 0 order of  | top_pack                  | top5 1/0            |
| #rank       | bottom_pack               | bottom5 1/0         |
|             | average_rank              | previous stage      |
|             | average_rank_all          | all previous stages |
| 1 order of  | change_in_rank            | previous stage      |
| #rank       | change_in_rank_all        | all previous stages |
| 2 order of  | rate_of_change            | previous stage      |
| #rank       | rate_of_change_all        | all previous stages |
|             | prev_nb0_change_in_rank   | previous car        |
|             | prev_nb1_change_in_rank   |                     |
| neighbors   | prev_nb2_change_in_rank   |                     |
| Ineignbors  | follow_nb0_change_in_rank | following car       |
|             | follow_nb1_change_in_rank |                     |
|             | follow_nb2_change_in_rank |                     |

## 2. Results

Table: for Fig.3 Sign of rank change prediction with split\_by\_events.

|  | event | trainsi | testsi | testdi | curra | avgra | dice | lr | Irl1 | Isvc | lsvcl2 | rf | Irbias | xgb | ı |
|--|-------|---------|--------|--------|-------|-------|------|----|------|------|--------|----|--------|-----|---|
|--|-------|---------|--------|--------|-------|-------|------|----|------|------|--------|----|--------|-----|---|

|             | ze  | ze  | stribut<br>ion         | nk   | nk   |      |      |      |      |      |      |      |      |
|-------------|-----|-----|------------------------|------|------|------|------|------|------|------|------|------|------|
| Phoe<br>nix | 691 | 114 | +:38,<br>0:16,-<br>:60 | 0.14 | 0.32 | 0.37 | 0.54 | 0.55 | 0.50 | 0.49 | 0.52 | 0.54 | 0.44 |
| Indy5<br>00 | 580 | 225 | +:82,<br>0:47,-<br>:96 | 0.21 | 0.32 | 0.40 | 0.56 | 0.56 | 0.56 | 0.54 | 0.52 | 0.56 | 0.53 |
| Texas       | 678 | 127 | +:39,<br>0:34,-<br>:54 | 0.27 | 0.31 | 0.29 | 0.56 | 0.57 | 0.60 | 0.56 | 0.50 | 0.57 | 0.45 |
| Iowa        | 696 | 109 | +:42,<br>0:28,-<br>:39 | 0.26 | 0.29 | 0.26 | 0.35 | 0.36 | 0.36 | 0.43 | 0.39 | 0.36 | 0.30 |
| Poco<br>no  | 679 | 126 | +:29,<br>0:61,-<br>:36 | 0.48 | 0.28 | 0.24 | 0.37 | 0.37 | 0.35 | 0.47 | 0.33 | 0.36 | 0.46 |
| Gate<br>way | 701 | 104 | +:34,<br>0:28,-<br>:42 | 0.27 | 0.33 | 0.25 | 0.48 | 0.43 | 0.43 | 0.38 | 0.48 | 0.45 | 0.40 |

Table: for Fig.4 Sign of rank change prediction with split\_by\_stages.

| runid      | trainsi<br>ze | testsi<br>ze | testdi<br>stribut<br>ion      | curra<br>nk | avgra<br>nk | dice | lr   | Irl1 | Isvc | Isvcl2 | rf   | Irbias | xgb  |
|------------|---------------|--------------|-------------------------------|-------------|-------------|------|------|------|------|--------|------|--------|------|
| stage<br>0 | 153           | 652          | +:221<br>,0:16<br>7,-:26      | 0.26        | 0.31        | 0.36 | 0.46 | 0.45 | 0.44 | 0.27   | 0.40 | 0.45   | 0.36 |
| stage      | 288           | 517          | +:186<br>,0:13<br>6,-:19      | 0.26        |             | 0.35 | 0.44 | 0.45 |      | 0.45   | 0.45 |        |      |
| stage<br>2 | 421           | 384          | +:140<br>,0:11<br>2,-:13<br>2 | 0.29        | 0.26        | 0.32 | 0.44 | 0.43 | 0.46 | 0.42   | 0.45 | 0.44   | 0.43 |
| stage<br>3 | 547           | 258          | +:91,<br>0:89,-<br>:78        | 0.34        | 0.23        | 0.33 | 0.46 | 0.44 | 0.45 | 0.41   | 0.45 | 0.46   | 0.44 |
| stage<br>4 | 657           | 148          | +:48,<br>0:53,-<br>:47        | 0.36        | 0.21        | 0.34 | 0.50 | 0.50 | 0.47 | 0.43   | 0.47 | 0.51   | 0.45 |
| stage      | 725           | 80           | +:26,                         | 0.36        | 0.20        | 0.33 | 0.58 | 0.59 | 0.55 | 0.54   | 0.58 | 0.59   | 0.61 |

| 5          |     | 0:29,-<br>:25          |      |      |      |      |      |      |      |      |      |      |
|------------|-----|------------------------|------|------|------|------|------|------|------|------|------|------|
| stage<br>6 | 767 | +:11,<br>0:13,-<br>:14 | 0.34 | 0.24 | 0.26 | 0.45 | 0.45 | 0.47 | 0.37 | 0.50 | 0.47 | 0.53 |
| stage<br>7 | 789 | +:4,0:<br>4,-:8        | 0.25 | 0.19 | 0.31 | 0.31 | 0.38 | 0.31 | 0.25 | 0.69 | 0.31 | 0.63 |

Table: for Fig.5 Rank change prediction with split\_by\_event.

|        | trainsiz | testsiz | testdist |      | avgran |      |       |       |      |      |      |
|--------|----------|---------|----------|------|--------|------|-------|-------|------|------|------|
| runid  | е        | е       | ribution | k    | k      | dice | lasso | ridge | rf   | svr  | xgb  |
| Phoeni |          |         | +:38,0:  |      |        |      |       |       |      |      |      |
| x      | 691      | 114     | 16,-:60  | 4.73 | 5.61   | 7.01 | 4.44  | 4.42  | 4.53 | 4.70 | 4.26 |
| Indy50 |          |         | +:82,0:  |      |        |      |       |       |      |      |      |
| 0      | 580      | 225     | 47,-:96  | 6.17 | 6.94   | 7.55 | 5.69  | 5.51  | 5.76 | 6.14 | 5.82 |
|        |          |         | +:39,0:  |      |        |      |       |       |      |      |      |
| Texas  | 678      | 127     | 34,-:54  | 4.26 | 5.48   | 6.73 | 3.78  | 3.76  | 3.96 | 4.13 | 4.02 |
|        |          |         | +:42,0:  |      |        |      |       |       |      |      |      |
| Iowa   | 696      | 109     | 28,-:39  | 3.98 | 5.80   | 6.45 | 3.69  | 3.86  | 4.02 | 3.91 | 4.06 |
| Pocon  |          |         | +:29,0:  |      |        |      |       |       |      |      |      |
| 0      | 679      | 126     | 61,-:36  | 2.48 | 2.93   | 5.61 | 2.49  | 2.57  | 3.07 | 2.38 | 2.91 |
| Gatew  |          |         | +:34,0:  |      |        |      |       |       |      |      |      |
| ay     | 701      | 104     | 28,-:42  | 3.41 | 4.30   | 5.89 | 3.11  | 3.11  | 3.54 | 3.34 | 3.32 |

Table: for Fig.6 Rank change value prediction with split\_by\_stage.

| runid  | trainsiz<br>e | testsiz<br>e | testdist ribution         |      | avgran<br>k | dice | lasso | ridge | rf   | svr  | xgb  |
|--------|---------------|--------------|---------------------------|------|-------------|------|-------|-------|------|------|------|
| stage0 | 153           | 652          | +:221,<br>0:167,-<br>:264 | 4.75 | 5.87        | 6.16 | 4.85  | 4.96  | 4.98 | 4.76 | 5.13 |
| stage1 | 288           | 517          | +:186,<br>0:136,-<br>:195 | 4.68 | 5.53        | 6.86 | 4.45  | 4.69  | 4.55 | 4.78 | 4.92 |
| stage2 | 421           | 384          | +:140,<br>0:112,-<br>:132 | 4.90 | 5.68        | 7.05 | 4.74  | 4.62  | 4.64 | 5.00 | 4.80 |
| stage3 | 547           | 258          | +:91,0:<br>89,-:78        | 4.73 | 5.54        | 7.01 | 4.76  | 4.87  | 4.62 | 4.82 | 5.12 |
| stage4 | 657           | 148          | +:48,0:<br>53,-:47        | 4.91 | 5.65        | 6.45 | 4.51  | 4.56  | 4.43 | 4.95 | 4.69 |

|        |     |    | +:26,0: |      |      |      |      |      |      |      |   |
|--------|-----|----|---------|------|------|------|------|------|------|------|---|
| stage5 | 725 | 80 | 29,-:25 | 5.05 | 5.85 | 6.65 | 4.39 | 4.37 | 4.49 | 5.08 | l |
|        |     |    | +:11,0: |      |      |      |      |      |      |      | Ī |
| stage6 | 767 | 38 | 13,-:14 | 3.85 | 4.36 | 7.17 | 2.74 | 2.68 | 3.65 | 3.86 | ĺ |
|        |     |    | +:4,0:4 |      |      |      |      |      |      |      |   |
| stage7 | 789 | 16 | ,-:8    | 2.68 | 3.05 | 5.99 | 1.87 | 1.77 | 3.60 | 2.67 | ĺ |