

Koko Eating Bananas Problem

Koko Eating Bananas:

> Koko is a monkey who loves to eat bananas.

You're given a list of banana pile sizes and hours H in which Koko has to eat all the piles of bananas.

Koko Eating Bananas:

Piles				The same of the sa
3	6	7	11	

- > The Monkey has to eat all the piles of Bananas at a certain rate.
- ➤ Given hours H = 8 hours

Input Constraints

Number of Banana Piles (n):

$$1 < n < 10^4$$

Number of Bananas in Each Pile (piles[i]):

$$1 <= piles[i] <= 10^9$$

Total Hours Available (H):

$$n <= H <= 10^9$$

Data Types:

piles is a **list of integers**.

H is an **integer**.

	Pil	es		Time
3	6	7	11	H = 8 Hours

> Koko eats bananas at certain rate (k bananas / hour)

> Minimum eating Speed = the minimum integer k such that Koko can eat all the bananas within H hours.

Given							
Piles							
3	6	7	11	H = 8 Hours			

Given							
	Pil	es		Time			
3	6	7	11	H = 8 Hours			

Find
Speed (k) = bananas/hour ? Such that hours_taken <= H

Piles	3 6		7	11
hours_taken	3	6	7	11

Brute Force Approach: Speed(k)=bananas/hour

Piles	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10	k=11
3	3	2	1	1	1	1	1	1	1	1	1
6	6	3	2	2	2	1	1	1	1	1	1
7	7	4	3	2	2	2	1	1	1	1	1
11	11	6	4	3	3	2	2	2	2	2	1
hours_taken	27	15	10	8	8	6	5	5	5	5	4
hours_taken <= H	NO	NO	NO	YES	YES						

Time Complexity - Brute Force:

O(max(Piles) * n)

Can we optimise this?

Observation:

k values are ascending in nature

k value can vary from 1 to max(piles)

Can we apply binary search on this range?

Piles	3	6	7	11	
hours_taken at k = 6	1	1	2	2	

Is K = 6 bananas / hour is the minimum speed of eating bananas with the condition hours_taken <= H?

Answer: Try for slower speed for k.

Piles	3	6	7	11
hours_taken at k = 3	1	2	3	4

Since hours_taken > 8, So mid(k) = 3 banana/hour can not be the eating rate.

Answer: Try for faster speed for k.

Piles	3	6	7	11
hours_taken at k = 4	1	2	2	3

Is K = 4 bananas / hour is the minimum speed of eating bananas with the condition hours_taken <= H?

Answer: Try for slower speed for k.

Stop the search here as Left > Right

So K = 4 bananas/hour is the minimum eating rate of koko

such that hours_taken <= H</pre>

TIME COMPLEXITY: BINARY SEARCH APPROACH

Solving Quadratic Equation Problem: Using Binary Search

$$f(x) = x+5$$

Given
$$f(x) = 13$$
, find $x = ?$

Definition:

Functions are known as monotonic if **they are increasing or decreasing** in their entire domain.

Monotonically Increasing Function: The function never decreases as the input increases.

Mathematically: If x1 < x2, then $f(x1) \le f(x2)$

Example of Monotonically Increasing Function:

$$f(x) = 2x + 3$$
, $f(x) = log(x)$, $f(x) = e^x$

 \longrightarrow As x increases, f(x) also increases.

Monotonically Decreasing Function: The function never increases as the input increases.

Mathematically: If x1 < x2, then $f(x1) \ge f(x2)$

Example of Monotonically Decreasing Function:

$$f(x) = -x^5$$
 and $f(x) = e^{-x}$

 \longrightarrow As x increases, f(x) decreases.

Graph Representation:

Increasing Function: Rises steadily from left to right.

Decreasing Function: Falls steadily from left to right.

Graph Representation

Solving Quadratic Equation Problem: Using Binary Search

Question:

Given: An integer K, **find a positive integer x** such that

$$K = 2x^2 + 5x.$$

If no such positive integer x exists, return -1.

Input Constraints:

K is a positive integer

$$\rightarrow$$
 1 \leq K \leq 10²

• If a valid integer x exists that satisfies the equation:

Return the integer value of x.

• if no valid integer x exists:

Return -1

• The output must be **produced within I second** for large values of K

 Precision is not required as the solution demands an exact integer match.

Given: An integer K, **find a positive integer x** such that

$$K = 2x^2 + 5x.$$

 \rightarrow Minimum x: 1 (since x is a positive integer).

> Maximum x: A value where $2x^2 + 5x$ exceeds K. This can be initially set to a value like K (since $2x^2 + 5x$ grows faster than linear).

Monotonic Relationship:

> The function $f(x) = 2x^2 + 5x$ is strictly increasing for x > 0.

 \rightarrow Thus, as x increases, f(x) increases.

Given: An integer K = 18, find a positive integer x such that $K = 2x^2 + 5x$.

	Minimum	Maximum (x = k)
X]	18

Observation:

x values are ascending in nature

x value can vary from 1 to 18

Can we apply binary search on this range?

Find value of k for
$$x = 9$$

$$calculated_k = 2*9^2 + 5*9 = 207$$

Since calculated_k > given_k

Try for smaller value of x.

Find value of k for
$$x = 9$$

$$calculated_k = 2*4^2 + 5*4 = 52$$

Since calculated_k > given_k

Try for smaller value of x.

Find value of k for
$$x = 9$$

calculated_k = $2*2^2 + 5*2 = 18$

Since calculated_k == given_k at x=2

Stop the search process here.

Return x = 2

Complexity Analysis:

O(log k)

Thank You!