MA 109 Recap Week 3 Recap Slides

Rohan Nafde Hrishikesh Jedhe Deshmukh

https://github.com/RohanNafde

Global Maxima and Minima

The function f is said to attain a global maximum (resp. global minimum) at a point $x_0 \in X$ if $f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0)$) for all $x \in X$

Local Maxima and Minima

Let $f: X \to \mathbb{R}$ be a function and x_0 be in X. Suppose there is a sub-interval $x_0 \in (c,d) \subset X$ such that $f(x_0) \geq f(x)$ (resp. $f(x_0) \leq f(x)$) for all $x \in (c,d)$, then f is said to have a local maximum (resp. local minimum) at x_0

Note - In a closed bounded interval, a continuous function always attains a maximum and minimum.

Rolle's Theorem

Suppose $f:[a,b]\to\mathbb{R}$ is a continuous function which is differentiable in (a,b) and f(a)=f(b). Then there is a point x_0 in (a,b) such that $f'(x_0)=0$.

Mean Value Theorem

Suppose that $f:[a,b]\to\mathbb{R}$ is a continuous function and that f is differentiable in (a,b). Then there is a point x_0 in (a,b) such that

$$\frac{f(b)-f(a)}{b-a}=f'(x_0)$$

Fermat's Theorem

If $f:[a,b]\to\mathbb{R}$ is differentiable and has a local minimum or maximum at a point $x_0\in(a,b)$, then $f'(x_0)=0$.

Darboux Theorem

Let $f:(a,b) \to \mathbb{R}$ be a differentiable function. If c,d (c < d) are points in (a,b), then for every u between f'(c) and f'(d), there exists an x in [c,d] such that f'(x)=u.

Stationary Points

A point x_0 in (a, b) such that $f'(x_0) = 0$ is called a stationary point

Second Derivative Test

If $f'(x_0) = 0$ and : -

- If $f''(x_0) > 0$, the function has a local minimum at x_0
- ② If $f''(x_0) < 0$, the function has a local maximum at x_0
- 3 If $f''(x_0) = 0$, nothing can be said. Check further.

Concavity and Convexity

A function $f: I \to \mathbb{R}$ (for an interval I) is said to be concave (or concave downwards) if

$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2)$$

Replace the \geq sign above with

- ullet \leq for convex or concave upwards
- > for strictly concave
- < for strictly convex

Theorem

A differentiable function is convex (resp. concave) if and only if its derivative is monotonically increasing (resp. decreasing)

Theorem

A twice differentiable function on an interval will be convex if its second derivative is everywhere non-negative. If the second derivative is positive, the function will be strictly convex

Converse is not true

Point of Inflection

A point of inflection x_0 for a function f is a point where the function changes its behavior from concave to convex or vice-versa. At such a point $f''(x_0) = 0$

But this is only a necessary, not a sufficient condition. Sufficient is lowest order non-zero derivative is odd.

Some Notations

- The space $C^k(I)$, will denote the space of k times continuously differentiable functions on an interval I, for some fixed $k \in \mathbb{N}$, that is, the space of functions for which k derivatives exist and such that the k^{th} derivative is a continuous function
- The space $C^{\infty}(I)$ will consist of functions that lie in $C^k(I)$ for every $k \in N$. Such functions are called smooth or infinitely differentiable functions
- The k^{th} derivative of a function f(x) is denoted by $f^{(k)}(x)$

Taylor Polynomials

Given a function f(x) which is n times differentiable at x_0 We define Taylor polynomials of degree k $(0 \le k \le n, k \in \mathbb{N})$ at x_0

$$P_k(x_0) = \sum_{i=0}^n \frac{f^{(i)}(x_0)}{i!} (x - x_0)^k$$

Remainder

Let $f \in C^n([a, b])$ and suppose that $f^{(n+1)}$ exists on (a, b). Then there exists $c \in (a, b)$ such that

$$f(x) = P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{(n+1)}$$

and $R_n(x) = f(x) - P_n(b)$

Taylor Series

Just make $n = \infty$ in Taylor Polynomials.

This means Taylor's Polynomials are just partial sums of Taylor Series

Power Series

If the Taylor Series converges in a given range, we call it Power Series E.g. e^x and $\frac{1}{1-x}$

Approximation

We can approximate such functions upto n^{th} degree Taylor Polynomials and the error can be given by $R_n(x)$