REAL ANALYSIS QUALIFYING EXAM Spring 2003

Answer all eight questions. Throughout, (X, \mathcal{M}, μ) denotes a measure space, μ denotes a positive measure unless otherwise specified, and all functions are assumed to be measurable.

- **1.** Prove that $L^p(\mu)$ is complete for $1 \le p \le \infty$.
- **2.(a)** Let (X, \mathcal{M}, μ) be a measure space. Define what it means for μ to be σ -finite.
 - (b) Let (X, \mathcal{M}, μ) and (Y, \mathcal{A}, ν) be measure spaces. Show by example that we may have

$$\int_{X} \int_{Y} f(x, y) d\nu(y) d\mu(x) \neq \int_{Y} \int_{X} f(x, y) d\mu(x) d\nu(y)$$

for some $f \geq 0$ which is $\mathcal{M} \times \mathcal{A}$ measurable if we do not assume both μ and ν are σ -finite.

- **3.** Let λ denote Lebesgue measure on \mathbb{R}^n . Let $U \subseteq \mathbb{R}^n$ be open. Is it true that $\lambda(\overline{U} \setminus U) = 0$?
- **4.** Prove that the closed unit ball of $\ell^p(\mathbb{N})$, $1 \leq p \leq \infty$, is not compact.
- **5.** Suppose H is a Hilbert space, $\{e_1, \ldots, e_n\}$ an orthonormal set in H and $f \in H$. Prove that the quantity $\|f \sum_{j=1}^n a_j e_j\|$ is minimized by taking $a_j = \langle f, e_j \rangle$ for every j.
- **6.** Let $w: X \to [0, \infty)$ be measurable, and let $v(E) = \int_E w d\mu$ for $E \in \mathcal{M}$. Prove: (a) v is a measure on \mathcal{M} and (b) $\int f dv = \int f w d\mu$ for each nonnegative measurable function f on X.
- 7. Suppose $1 \le p \le \infty$, $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$. Prove $||f * g||_p \le ||f||_1 ||g||_p$.
- **8.** Let $E \subset \mathbb{R}$ be a Borel set. Prove that $E' = \{(x,y) \in \mathbb{R}^2 : x+y \in E\}$ is a Borel set.