MTH 442: Time Series Analysis Problem Set # 2

- [1] Let $\{Y_t\}$ be a stationary process with mean zero, finite variance σ^2 and ACVF $\gamma_Y(h)$. Define $X_t = (\alpha + \beta t)s_t + Y_t$, where α , β are constants and s_t is a seasonal component with period 4. Applying appropriate lag difference operators on $\{X_t\}$ to reduce $\{X_t\}$ to a stationary process and express the ACVF of the resulting stationary process in terms of that of $\{Y_t\}$.
- [2] Suppose the time series $\{X_t\}$ is given by $X_t = A + Bt$, where A and B are random variables such that E(A) = E(B) = 0 and have the covariance matrix $\begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$. Is $\{X_t\}$ covariance stationary?
- [3] The time series $\{X_t\}$ is such that $X_t = \mu + X_{t-1} + \varepsilon_t$, suppose $X_1 = \mu + \varepsilon_1$ with $\varepsilon_t \sim N(0, \sigma^2)$
 - (a) Is $\{X_t\}$ a mean stationary or/and a covariance stationary process?
 - (b) Consider the special case that $\mu = 0$, does the conclusion of (a) change under this special case?
- [4] Consider the time series $\{X_t\}$ given by $X_t = \varepsilon_t \cos(\omega_0 t) + \varepsilon_{t-1} \sin(\omega_0 t) + \varepsilon_{t-2}$; where, ω_0 is a fixed constant, $\{\varepsilon_t\}$ is a sequence of independent and identically distributed $N(0, \sigma^2)$ random variables.
 - (a) Find $Cov(X_{t+h}, X_t)$; $h = 0, \pm 1, \pm 2, ...$
 - (b) Is $\{X_t\}$ mean stationary?
 - (c) Is $\{X_t\}$ covariance stationary?
 - (d) Is $\{X_t\}$ a Gaussian time series?
 - (e) Is $\{X_t\}$ strict stationary?
- [5] Let $\{X_t\}$ be a time series given by $X_t = \alpha + \beta t + S_t + Y_t$; where, α and β are real constants, S_t is a seasonal component with period 6 and $Y_t = \varepsilon_t \varepsilon_{t-1}$; $\{\varepsilon_t\}$ is a sequence of independent and identically distributed $N(0, \sigma^2)$ random variables.

Prove or disprove the following statements:

- (a) $Cov(X_t, X_{t+h}) = 0; \forall |h| \ge 2$
- (b) $\{X_t\}$ is covariance stationary
- (c) $\{X_t\}$ is a Gaussian time series
- (d) $\{\nabla X_t\}$ is covariance stationary
- (e) $Cov(\nabla_6 X_t, \nabla_6 X_{t+h}) = 0; h = \pm 2, \pm 3, \pm 4$
- (f) $\{\nabla_6 X_t\}$ is covariance stationary

- (g) $\{\nabla_6 X_t\}$ is strict stationary
- [6] Let $\{X_t\}$ be a stationary process with mean μ_X and ACVF $\gamma_X(h)$. Consider the following process generated by $\{X_t\}$ $Z_t = X_t X_{t-1}$. Verify whether $\{Z_t\}$ is covariance stationary.
- [7] A covariance stationary time series $\{Z_t\}$ is given by $Z_t = X_t + Y_t$. Prove or give a counter example " $\{X_t\}$ and $\{Y_t\}$ are also covariance stationary".
- [8] Let $\{\mathcal{E}_t\}$ be a sequence of independent normal random variables, each with mean 0 and variance 1, and let a, b and c be constants. Verify whether the following processes are covariance stationary or not.
 - (i) $X_t = a + b\varepsilon_t + c\varepsilon_{t-2}$
 - (ii) $X_t = \varepsilon_t \cos(at) + \varepsilon_{t-1} \sin(at)$
 - (iii) $X_t = \varepsilon_t \varepsilon_{t-1}$
- [9] Let $\{X_t\}$ be a time series given by

$$X_{t} = A\cos(\omega_{0}t) + B\sin(\omega_{0}t) + Z_{t}; t=1,..., n$$

- (a) Suppose A, B, ω_0 are fixed constants $(A, B \in \Re; \omega_0 \in (0, \pi))$ and $\{Z_t\}$ be a sequence of independent $(0, \sigma^2)$ random variables. Is $\{X_t\}$ covariance stationary?
- (b) Suppose A and B are independently distributed random variable $(0, \sigma_0^2)$ and $\{Z_t\}$ be a sequence of independent $(0, \sigma^2)$ random variables, independent of A and B. ω_0 is a fixed constant $\in (0, \pi)$. Is $\{X_t\}$ covariance stationary?
- [10] Identify the stationary time series $\{X_t\}$ for which $Cov(X_{t+h}, X_t) = (-1)^{|h|} + cos(\frac{\pi}{4}h)$.
- [11] Let $\{X_t\}$ be time series defined by $X_t = \varepsilon_{t-1} \varepsilon_t \varepsilon_{t+1}$, where $\{\varepsilon_t\}$ is a sequence of independently and identically distributed $N(0, \sigma^2)$ random variables. Verify whether $\{X_t\}$ is covariance stationary.
- [12] Let $X_t = Y_t \left(\cos\left(\omega_0 t + \theta\right)\right) + Z_t$; where $\{Y_t\}$ and $\{Z_t\}$ are independent covariance stationary processes with auto covariance functions $\gamma_Y(h)$ and $\gamma_Z(h)$ respectively, ω_0 is a fixed constant. Verify covariance stationarity of $\{X_t\}$ when $\theta \sim U(-\pi,\pi)$ (a continuous uniform distribution on $(-\pi,\pi)$) and is independent of $\{Y_t\}$ and $\{Z_t\}$.
- [13] Let $\{X_t\}$ be a covariance stationary time series with zero mean and auto covariance function, $\gamma_X(h)$; and define $Y_t = I_t X_t + (1 I_t) X_{t-1}$, where $\{I_t\}$ is an i.i.d. sequence, independent of $\{X_t\}$, with $P(I_t = 1) = 1 P(I_t = 0)$. Find $Cov(Y_t, Y_{t+h}), h = 0, \pm 1, \pm 2, ...$, and verify whether $\{Y_t\}$ is covariance stationary.

- [14] Let $\{X_t\}$ be a time series given by $X_t = e^Y t^2 + \varepsilon_t$; $\varepsilon_t \sim WN(0, \sigma^2)$ and $Y \sim U(0, 1)$. Y and ε_t are independently distributed. If $Z_t = \nabla^2 X_t$, find $Cov(Z_t, Z_{t+h})$ for $h = 0, \pm 1, \pm 2, ...$ and verify whether $\{Z_t\}$ is covariance stationary or not.
- [15] Consider a Gaussian process $\{X_t\}$ with $E(X_t) = 0 \,\forall t$ and $Cov(X_t, X_{t+s}) = e^{-|t-s|} \,\forall t, s$. Let $Y_t = e^{X_t}$. Prove or disprove the following statements:
 - (i) $\{\nabla X_t\}$ is strict stationary.
 - (ii) $\{Y_t\}$ is a Gaussian process.
 - (iii) $\{Y_t\}$ is covariance stationary.
- [16] Let $\{X_t\}$ be an MA(1) process $X_t = \varepsilon_t + \varepsilon_{t-1}$; $\{\varepsilon_t\}$ is a sequence of independently and identically distributed $N(0,\sigma^2)$ random variables. Consider the exponentially weighted moving average obtained from $\{X_t\}$ as $Y_1 = X_1$ and for $2 \le t \le n, Y_t = \alpha X_t + (1-\alpha)Y_{t-1}$ with $\alpha = 3/4$.
 - (a) Find the joint distribution of (Y_1, Y_2, Y_3) .
 - (b) Is $\{Y_t : t \ge 1\}$ a Gaussian process?
 - (c) Is $\{Y_t : t \ge 1\}$ a strict stationary process?