Eye-movement in Economic Games

Information search and decision rules in (non-)strategic choice

Jiří Munich

University of Amsterdam

Table of contents

- 1. Introduction
- 2. The plan
- 3. First model
- 4. Second model
- 5. Fitting the data
- 6. Future plans

Introduction

Experimental games

Game theory: The study of *strategic interactions* in situations where outcomes of *one's actions* are defined in respect to the *actions of others*

What it is amazing:

- Structural representation of social phenomena
- Complexity-friendly language
- Strong formal theory

Experimental games

Experimental game theory: Relaxes the *rationality* assumption of game theory and introduces *empirical* knowledge to the models

What it is even more amazing:

- Behavioural game theory (Crawford, 2002)
- Empirically-friendly while opened to formalization
- Bridges disciplines (for example see Traulsen, Semmann, Sommerfeld, Krambeck and Milinski, 2010)

Matrix-form games

 $N \times M$ games: Represent interactions between two players - one with N and the other with M available choices

Information search in matrix-form games

Polonio and Coricelli, 2019 tried to explain inconsistencies between choices and beliefs with information search

Focused on nine decision rules:

Non-strategic	Strategic
Optimist	K-1
Pessimist	K-2
Naive	D-1
Altruist	D-2
	Nash

Approach of Polonio and Coricelli, 2019

Look at transitions, movements between fixations, e.g. $A \rightarrow B$ **Group transitions** into five types by assumed function **Find clusters** based on type counts across trials (games)

The plan

To do list

Our aim was to:

- 1. Revisit the transition groups
- 2. Use a more informative representation of data (*meta-transitions*)
- 3. Formulate likelihood functions for a model that could serve as a generative model
 - 3.1 Likelihoods of meta-transitions
 - 3.2 Error and chance meta-transitions
- 4. Allow the decision rules to vary over items (within individual)

Transition groups

Transition types:

- 1. Intracell
- 2. Own-within
- 3. Own-between
- 4. Other-within
- 5. Otherbetween
- 6. Skip

Meta-transitions

Level-n meta-transition is a sequence of n+1 transitions. For instance, level-2 meta-transition is $A \to B \to C$

Meta-transitions

Level-2 meta-transition replace the six transition types with 6×6 meta-transition types, some of them impossible:

Likelihood function

The probability of observing particular frequencies of meta-transition types given a decision rule. We have used multinomial likelihood function.

$$P(M|k,\varepsilon_k) = \prod_{a=1}^{l} P(T_a|k,\varepsilon_k)^{M_a}$$
 (1)

$$P(T_a|k,\varepsilon_k)_t = (1-\varepsilon_k)P(T_a|k) + \varepsilon_k F_a$$
 (2)

- 1. No mistake with probability $(1 \varepsilon_k)$ and a meta-transition with rule-implied probability.
- 2. Mistake with probability (ε_k) and meta-transition with chance probability F_a .

Chance meta-transitions

Chance probability of a meta-transition is a proportion of such meta-transition to all n long walks in a fully connected game network

Chance metatransition proportions can be computed for any level meta-transition.

Chance meta-transitions

Introduction

$$\tau_0 = \begin{pmatrix} C^2 & C^2 - C & C^4 - C^3 & C^2 - C & C^4 - C^3 & C^4 + C^3 - 3C^2 + C \end{pmatrix}$$
(3)

$$\tau_{1} = \begin{array}{c} \textit{Intracell} \\ \textit{OwnW} \\ \textit{OwnB} \\ \textit{OtherW} \\ \textit{OtherB} \\ \textit{Skip} \end{array} \left(\begin{array}{ccccccc} 2 & C-1 & C^{2}-C & C-1 & C^{2}-C & 2C^{2}-2 \\ 1 & C-1 & C^{2}-C & 0 & 0 & C^{2}-1 \\ 1 & C-1 & C^{2}-C & 0 & 0 & C^{2}-1 \\ 1 & 0 & 0 & C-1 & C^{2}-C & C^{2}-1 \\ 1 & 0 & 0 & C-1 & C^{2}-C & C^{2}-1 \\ 2 & C-1 & C^{2}-C & C-1 & C^{2}-C & 2C^{2}-2 \end{array} \right)$$

First model

Procedure

Meta-transition groups

Two classes: Non-strategic and strategic

- 1. A: only NS
- 2. B: NS and S
- 3. C: only S
- 4. D: neither

(5)

Likelihoods

Introduction

$$P(A|k,\epsilon_k) = \epsilon_k f_a \tag{6}$$

$$P(B|k,\epsilon_k) = (1 - \epsilon_k) \left(\frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}} \right) + \epsilon_k f_b \tag{7}$$

$$P(C|k,\epsilon_k) = (1 - \epsilon_k) \left(\frac{1}{1 + e^{\beta_0 + \beta_1}}\right) + \epsilon_k f_c$$
 (8)

$$P(D|k,\epsilon_k) = \epsilon_k f_d \tag{9}$$

$$P(A|\neg k) = (1 - \epsilon_{\neg k}) \left(\frac{1}{1 + e^{\beta_0}}\right) + \epsilon_{\neg k} f_a \tag{10}$$

$$P(B|\neg k) = (1 - \epsilon_{\neg k}) \left(\frac{e^{\beta_0}}{1 + e^{\beta_0}}\right) + \epsilon_{\neg k} f_b \tag{11}$$

$$P(C|\neg k) = \epsilon_{\neg k} f_c \tag{12}$$

$$P(D|\neg k) = \epsilon_{\neg k} f_d \tag{13}$$

First product

We ended up with:

- 1. Guesstimated groupings of meta-transitions
- 2. A messy array of likelihood formulae
- 3. Only two detectable classes (strategic and non-strategic
- 4. Potential identification problems

Second model

General aim

The logic of falsification stands on the following proposition:

$$(t \rightarrow o) \rightarrow (\neg o \rightarrow \neg t)$$

In empirical research we test theoretical statements by assessing the truth value of *o*.

In this project we explore the premise that $(t \rightarrow o)$.

My beautiful robots (K-2)

My beautiful robots (all of them)

Introduction

```
c_own_own<-all_c_own_own[eye_retain_0[[2]]]
c_own_other<-all_c_own_other[eye_retain_0[[2]]]
c_other<-all_c_other[eye_retain_0[[2]]]
search_seq_bet<-sample(c_own_own,length(c_own_own),replace = FALSE)</pre>
possible_space<-search_seq_bet
retain<-eye_retain_0[[2]]
eve_movement<-list()
ind < -0
for(i in search_seq_bet){
  if(!i%in%possible_space){
  possible_space<-possible_space[-1]
  if(length(possible_space)==0){
  for(i in search_seq_bet){
    if(!j%in%possible_space){
    search seg in <- sample(c other.length(c other).replace = FALSE)
    memory<-c()
    equal<-c()
    lower<-c()
    counter<-0
    for(k in search_seg_in){
      loc < -c(k,i)
      loc1 < -c(k,j)
      counter<-counter+1
      memory[counter]\leftarrowgame[loc[1],loc[2]]>game[loc1[1],loc1[2]]
```

My beautiful robots (all of them)

Robot meta-transition simulations

Robot meta-transitions

To find new groups of meta-transitions, we ran a k-means clustering on a transposed data frame with decision rules as variables and meta-transitions as observations.

	Optimist	Pessimist	
Intracell intracell	.0	.0	
Intracell own-within	.0	.0	

Meta-transition groups

$$\Phi = \begin{array}{c} Intracell & A & A & A & A & A & A \\ OwnW & A & D & D & 0 & 0 & A \\ OwnB & A & D & B & 0 & 0 & A \\ OtherW & A & 0 & 0 & C & C & A \\ OtherB & A & A & A & A & A & A \end{array}$$

$$(14)$$

New expected proportions: new vs old groups

New expected proportions: meta-transitions vs transitions

New likelihoods

k	$P(A k, \varepsilon_k)$	$P(B k,\varepsilon_k)$	
Alt	F_A	F_B	
OPN	$\varepsilon_{OPN} F_A$	F_B	(15)
ND	$\varepsilon_{ND}F_{A}$	$(1-\varepsilon_{ND})+\varepsilon_{ND}F_{B}$	(15)
<i>K</i> 1	$\varepsilon_{K1}F_A$	F_B	
<i>K</i> 2	$(1-\varepsilon_{K2})\frac{e^{\beta_0}}{1+e^{\beta_0}}+\varepsilon_{K2}F_A$	F_B	

New likelihoods

k	$P(C k,\varepsilon_k)$	$P(D k, \varepsilon_k)$	
Alt	F _C	F_D	
OPN	F_C	$(1 - \varepsilon_{OPN}) + \varepsilon_{OPN} F_D$	(16)
ND	F_C	F_D	(10)
K1	$(1-\varepsilon_{K1})+\varepsilon_{K1}F_C$	F_D	
<i>K</i> 2	F_C	$(1-\varepsilon_{K2})\frac{1}{1+e^{\beta_0}}+\varepsilon_{K2}F_D$	

Fitting the data

Model classifying simulated data

Simulation process

- Use robots to generate small sample of data (100 trials per decision rules)
- Draw error probability separately for strategic and non-strategic decision rules from beta distributions $Beta(\alpha_k, 100)$
- Draw number of errors in each trial from the probability and number of meta-transitions and generate mistake meta-transition counts.
- Fit model at various α_S $\alpha_{\neg S}$ parameters.

Accuracy

Recall

Precision

Error S

Future plans

Future plans

What comes next

To do:

- 1. Resolve the OPN K misclassifications
 - 1.1 Number of transitions
 - 1.2 Player's choice
- 2. Nesting

$$P(k=z)_{it} = \frac{1}{1 + \sum_{z=1}^{Z-1} e^{\beta_{z0} + \beta_{zi} + \beta_{zt}}}$$
(17)

- 3. Explore new ways to work with/generate error
 - 3.1 Weights for the chance matrix
 - 3.2 Inside the robots
- 4. Try with empirical data
- 5. Modify the robots
 - 5.1 Adjust the algorithms
 - 5.2 Combine the decision rules

Conclusion

To recap:

- 1. Develop a model for identification of decision rules in economic games from information search
- 2. Fail at reasoning because it is hard
- 3. Emulate theoretical behaviour with robots
- 4. Use robots to reason about a better model
- 5. Does it work? We will see

References i

References

- Crawford, V. P. (2002). Introduction to experimental game theory. Journal of Economic Theory, 104(1), 1–15.
 - Polonio, L. & Coricelli, G. (2019). Testing the level of consistency between choices and beliefs in games using eye-tracking.
 - Games and Economic Behavior, 113, 566-586.

References ii

Traulsen, A., Semmann, D., Sommerfeld, R. D., Krambeck, H.-J. & Milinski, M. (2010). Human strategy updating in evolutionary games. *Proceedings of the National Academy of Sciences*, 107(7), 2962–2966.