线性方程组的迭代法

- ◆迭代法的一般形式
 - ➤ Richardson迭代
 - ➤ Jacob i 迭代
 - ➤ Gauss-Seidel 迭代
 - ➤ 连续过松弛 (SOR) 迭代
- ◆迭代法的收敛性

线性方程组的迭代法

• 引例: 求解方程组
$$\begin{cases} 3u + v = 5 \\ u + 2v = 5 \end{cases}$$

迭代1:
$$\begin{cases} u_{k+1} = \frac{5-v_k}{3} \\ v_{k+1} = \frac{5-u_k}{2} \end{cases}$$

迭代2:
$$\begin{cases} u_{k+1} = 5 - 2v_k \\ v_{k+1} = 5 - 3u_k \end{cases}$$

• 需要回答的问题:

- 1. 为什么需要迭代法?
- 2. 如何设计通用的迭代法?
- 3. 迭代的收敛性?

迭代法的一般形式

- $Qx_{k+1} = (Q A)x_k + b$, Q是分裂矩阵
- 设计原则:易算、收敛
- (定义) 赋范线性空间(V, $\|\cdot\|$)向量序列($v_0,v_1,...,v_k,...$)收敛: $\lim_{k\to\infty} \|v_k-v\|=0$

Richardson迭代

•
$$Qx_{k+1} = (Q - A)x_k + b$$
, $Q = I$, $G = I - A$

• 例:
$$\begin{cases} 3u + v = 5 \\ u + 2v = 5 \end{cases}$$

系数矩阵
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

Richardson迭代:
$$\begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} u_k \\ v_k \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

Richardson迭代

迭代过程:
$$x_0 = [0,0]^T$$

$$\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} -10 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} u_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -10 \\ -5 \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 30 \\ 20 \end{bmatrix}$$

k	u v
0	0.00000 0.00000
1	5.00000 5.00000
2	-10.00000 -5.00000
3	30.00000 20.00000
4	-75.00000 -45.00000
5	200.00000 125.00000
6	-520.00000 -320.00000
7	1365.00000 845.00000
8	-3570.00000-2205.00000
9	9350.00000 5780.00000
10	-24475.00000 -15125.00000

•
$$Qx_{k+1} = (Q - A)x_k + b$$
, $Q = D$, $G = -D^{-1}(L + U)$

$$D = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

$$L = \begin{bmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & 0 \end{bmatrix}, \qquad U = \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \ddots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

• 例:
$$\begin{cases} 3u + v = 5 \\ u + 2v = 5 \end{cases}$$

系数矩阵
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

Jacobi 迭代: $Qx_{k+1} = (Q - A)x_k + b$, Q = D

$$\begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} u_k \\ v_k \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 & -1/3 \\ -1/2 & 0 \end{bmatrix} \begin{bmatrix} u_k \\ v_k \end{bmatrix} + \begin{bmatrix} 5/3 \\ 5/2 \end{bmatrix}$$

$$D^{-1} \qquad D - A \qquad D^{-1}$$

$$= \begin{bmatrix} (5 - v_k)/3 \\ (5 - u_k)/2 \end{bmatrix}$$

迭代过程: $x_0 = [0,0]^T$

$$\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} (5 - v_0)/3 \\ (5 - u_0)/2 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 5/2 \end{bmatrix}$$

$${\begin{bmatrix} u_2 \\ v_2 \end{bmatrix}} = {\begin{bmatrix} (5 - v_1)/3 \\ (5 - u_1)/2 \end{bmatrix}} = {\begin{bmatrix} 5/6 \\ 5/3 \end{bmatrix}}$$

$$\begin{bmatrix} u_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} (5 - v_2)/3 \\ (5 - u_2)/2 \end{bmatrix} = \begin{bmatrix} 10/9 \\ 25/12 \end{bmatrix}$$

k	u	v
0	0.00000	0.00000
1	1.66667	2.50000
2	0.83333	1.66667
3	1.11111	2.08333
4	0.97222	1.94444
5	1.01852	2.01389
6	0.99537	1.99074
7	1.00309	2.00231
8	0.99923	1.99846
9	1.00051	2.00039
10	0.99987	1.99974

• Jacob i 迭代与Richardson迭代的关系

•
$$Qx_{k+1} = (Q - A)x_k + b$$
, $Q = D + L$, $G = -(L + D)^{-1}U$

$$D = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

$$L = \begin{bmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & 0 \end{bmatrix}, \qquad U = \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \ddots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

• 例:
$$\begin{cases} 3u + v = 5 \\ u + 2v = 5 \end{cases}$$

系数矩阵
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

Gauss-Seidel 迭代: $Qx_{k+1} = (Q - A)x_k + b$, Q = L + D

$$\begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_k \\ v_k \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \end{bmatrix} \implies \begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} \frac{5 - v_k}{3} \\ \frac{5 - u_{k+1}}{2} \end{bmatrix}$$

$$L + D \qquad -U$$

• Gauss-Seidel 迭代与Jacobi 迭代的区别与联系

Jacobi迭代:
$$Dx_{k+1} = (D-A)x_k + b$$
, $\begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} \frac{5-v_k}{3} \\ \frac{5-u_k}{2} \end{bmatrix}$

Gauss-Seidel 迭代:
$$(D + L)x_{k+1} = (D + L - A)x_k + b, \begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} \frac{5-v_k}{3} \\ \frac{5-u_{k+1}}{2} \end{bmatrix}$$

• 迭代过程: $x_0 = [0,0]^T$

$$\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} \frac{5 - v_0}{3} \\ \frac{5 - u_1}{2} \end{bmatrix} = \begin{bmatrix} \frac{5}{3} \\ \frac{5}{3} \end{bmatrix}$$

$${\begin{bmatrix} u_2 \\ v_2 \end{bmatrix}} = {\begin{bmatrix} \frac{5 - v_1}{3} \\ \frac{5 - u_2}{2} \end{bmatrix}} = {\begin{bmatrix} \frac{10}{9} \\ \frac{35}{18} \end{bmatrix}}$$

k	и	v
0	0.00000	0.00000
1	1.66667	1.66667
2	1.11111	1.94444
3	1.01852	1.99074
4	1.00309	1.99846
5	1.00051	1.99974
6	1.00009	1.99996

Gauss-Seidel 迭代通常收敛比Jacobi 迭代快 Jacobi 迭代更适合并行计算

• 对于一般的线性迭代

$$x_{k+1} = Gx_k + c$$

采用外推(松弛)法得到新的迭代

$$x_{k+1} = \gamma(Gx_k + c) + (1 - \gamma)x_k, \gamma \neq 0$$

即:

$$x_{k+1} = G_{\gamma}x_k + \gamma c, G_{\gamma} = \gamma G + (1 - \gamma)I$$

- SOR迭代: $x_{k+1}=(1-\omega)x_k+\omega D^{-1}(b-Ux_k-Lx_{k+1})$ Gauss-Seidel
 - 1. $\omega = 1$, Gauss-Seidel
 - 2. $\omega > 1$, 超松弛
 - 3. ω < 1, 欠松弛
- 不动点形式: $Qx_{k+1} = (Q A)x_k + b$

分裂矩阵: $Q = \frac{1}{\omega}(D + \omega L)$

迭代矩阵: $G = (D + \omega L)^{-1}[(1 - \omega)D - \omega U]$

• 例:
$$\begin{cases} 3u + v = 5 \\ u + 2v = 5 \end{cases}$$

Gauss-Seidel迭代:
$$\begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} \frac{5-v_k}{3} \\ \frac{5-u_{k+1}}{2} \end{bmatrix}$$

SOR迭代:
$$\begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = (1-\omega) \begin{bmatrix} u_k \\ v_k \end{bmatrix} + \omega \begin{bmatrix} \frac{5-v_k}{3} \\ \frac{5-u_{k+1}}{2} \end{bmatrix}$$

迭代过程

 $\omega = 0.8$,欠松弛

k	и	v
0	0.00000	0.00000
1	1.33333	1.33333
2	1.24444	1.77778
3	1.10815	1.92593
4	1.04138	1.97531
5	1.01486	1.99177
6	1.00517	1.99726
7	1.00176	1.99909
8	1.00060	1.99970
9	1.00020	1.99990

 $\omega = 1$, Gauss-Seidel

k	и	v
0	0.00000	0.00000
1	1.66667	1.66667
2	1.11111	1.94444
3	1.01852	1.99074
4	1.00309	1.99846
5	1.00051	1.99974
6	1.00009	1.99996

 $\omega = 1.2$,超松弛

k	u	v
0	0.00000	0.00000
1	2.00000	2.00000
2	0.80000	2.00000
3	1.04000	2.00000
4	0.99200	2.00000
5	1.00160	2.00000
6	0.99968	2.00000
7	1.00006	2.00000

 ω 取值对收敛步数 N_{iter} 的影响 $(TOL = 10^{-5})$

ω	0.5	0.6	0. 7	0.8	0.9	1.0	1.1	1. 2	1. 3	1.4	1.5
N_{iter}	15	12	10	9	7	6	5	7	9	11	14

对比不同迭代法

• 例:

$$\begin{bmatrix} 3 & -1 & 0 & 0 & 0 & \frac{1}{2} \\ -1 & 3 & -1 & 0 & \frac{1}{2} & 0 \\ 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & 0 \\ 0 & \frac{1}{2} & 0 & -1 & 3 & -1 \\ \frac{1}{2} & 0 & 0 & 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ \frac{5}{2} \end{bmatrix}$$

真解: $x = [1,1,1,1,1,1]^T$

对比不同迭代法

$$x_0 = [0,0,0,0,0,0]^T$$

Jacobi	Gauss-Seidel	SOR
0.9879	0.9950	0.9989
0.9846	0.9946	0.9993
0.9674	0.9969	1.0004
0.9674	0.9996	1.0009
0.9846	1.0016	1.0009
0.9879	1.0013	1.0004
	0.9879 0.9846 0.9674 0.9674 0.9846	0.9879 0.9950 0.9846 0.9946 0.9674 0.9969 0.9846 0.9996 0.9846 1.0016

6步迭代(SOR取 $\omega = 1.1$)

6步SOR迭代误差的∞范数

迭代法的代码

• 伪代码

```
integer k, kmax
real array (x^{(0)})_{1:n}, (b)_{1:n}, (c)_{1:n}, (x)_{1:n}, (y)_{1:n}, (A)_{1:n\times 1:n}, (Q)_{1:n\times 1:n}
x \leftarrow x^{(0)}
for k = 1 to kmax do
                            迭代法则Qx_{k+1} = (Q - A)x_k + b
     solve Qx = c
     output k, x
     if ||x - y|| < \varepsilon then
         output "convergence"
                                     收敛判别
          stop
     end if
end for
output "maximum iteration reached"
```

迭代法的代码

10

13

14

15

16

19

20

23 24

26

27

30

31

33

34

```
#include <stdio.h>
                                       Gauss-Seidel C Code示例
#include <math.h>
#include <stdlib.h>
#define Ndim 2
#define TOL 1E-3
#define MAX(x, y) (((x)>(y))?(x):(y))
#define MIN(x, y) (((x)<(y))?(x):(y))
double A[Ndim][Ndim]={{3, 1}, {1, 2}};
                                                      问题定义
double b[Ndim] = \{5, 5\}:
void VectorTransformation_Gauss_Seidel(double x[], double y[]);
void Solve_Linear_System_Lower_Tri(double x[], double c[]);
void VectorAdd(double x[], double y[], double z[]);
void VectorSubtraction(double x[], double y[], double z[]);
void VectorCopy(double x[], double y[]);
double VectorInfinityNorm(double x[]);
void VectorTransformation_Gauss_Seidel(double x[], double y[])//y=(D+L-A)x
   int i, j:
   for (i=0: i < Ndim: i++)
       v[i]=0:
                                                 计算(D + L - A)x
       for(j=i+1; j<Ndim; j++)
           y[i]=A[i][j]*x[j];
```

```
void Solve_Linear_System_Lower_Tri(double x[], double c[])//solve (L+D) x=c
   int i, j:
   for (i=0: i < Ndim: i++)
                                             求解(D+L)x=c
       x[i]=c[i]:
       for(j=0; j<i; j++) x[i]-=A[i][j]*x[j];
       x[i]/=A[i][i]:
void VectorAdd(double x[], double y[], double z[])//z=x+y
    int i:
                                             向量加法
   for (i=0: i < Ndim: i++)
       z[i]=x[i]+y[i];
void VectorSubtraction(double x[], double v[], double z[])//z=x-v
   int i:
                                             向量减法
   for (i=0; i < Ndim; i++)
       z[i]=x[i]-y[i];
void VectorCopy(double x[], double y[])//y=x
    int i:
                                             向量复制
   for (i=0: i < Ndim: i++)
       y[i]=x[i]:
double VectorInfinityNorm(double x[])
    int i:
   double norm=0;
                                             向量无穷范数
    for (i=0: i < Ndim: i++)
       norm=MAX(norm, fabs(x[i])):
   return norm:
```

36 37

46 47

50

51

52

53

54

55

56

57

58 59

60

62

63

64

65 66

68

70

74

75

76 77

迭代法的代码

```
int main()
 81
           int i, Niter=0;
 83
           double Error=1E40;
           double c[Ndim], y[Ndim], tem[Ndim];
 84
 85
           double x[Ndim] = \{0, 0\};
 86
          FILE *fp;
          fp=fopen("result.txt", "w+");
fprintf(fp, "%d", Niter);
 87
 88
           for(i=0;i<Ndim;i++) fprintf(fp, "\t%.5f", x[i]);</pre>
 89
           fprintf(fp, "\n"):
 90
          while (Error>TOL&&Niter<100)
 91
 92
 93
              VectorCopy (x, tem); tem = x
              94
 95
 96
 97
 98
 99
              Niter++:
100
               fprintf(fp, "%d", Niter);
               for(i=0; i < Ndim; i++) fprintf(fp, "\t%. 5f", x[i]);</pre>
101
              fprintf(fp, "\n");
102
103
104
           if(Error<=TOL) printf("Convergence!\n");</pre>
           else printf("Maximum iteration reached!\n");
105
106
           fclose(fp);
107
           return 1:
108
```

• 引理(诺伊曼级数定理): 若对某个算子范数||G|| < 1,则I - G可逆,且

$$(I - G)^{-1} = \sum_{k=0}^{\infty} G^k$$

• 迭代收敛定理: 若迭代矩阵的某个算子范数 $\|I - Q^{-1}A\| = \delta < 1$, 则 $x_{k+1} = (I - Q^{-1}A)x_k + Q^{-1}b$ 收敛于Ax = b的解。并且

$$||x - x_k|| \le \frac{\delta}{1 - \delta} ||x_k - x_{k-1}|| \le \cdots \frac{\delta^k}{1 - \delta} ||x_1 - x_0||$$

• 推论1: 如果A是单位严格行/列对角占优矩阵,即

$$a_{ii} = 1 > \sum_{j=1, j \neq i}^{n} |a_{ij}|, (1 \le i \le n)$$

或

$$a_{jj} = 1 > \sum_{i=1, i \neq j}^{n} |a_{ij}|, (1 \le j \le n)$$

则Richardson迭代 $x_{k+1} = (I - A)x_k + b$ 收敛。

• 例: 求解Ax = b, Richardson迭代能否保证收敛?

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \qquad \mathbf{X}$$

$$A = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1 & 1/3 \\ 1/3 & 1/2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/3 \\ 1/3 & 1/3 & 1 \end{bmatrix}$$

• 推论2: 如果A是严格行对角占优矩阵,即

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, (1 \le i \le n)$$

则Jacob i 迭代 $x_{k+1} = -D^{-1}(L + U)x_k + D^{-1}b$ 收敛。

• 例: 求解Ax = b, Jacobi 迭代能否保证收敛?

$$\begin{cases} 3u + v = 5 \\ u + 2v = 5 \end{cases} \Rightarrow A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\begin{cases} u - v + 3w = b_1 \\ -5u + 2v + 2w = b_2 \Rightarrow A = \begin{bmatrix} 1 & -1 & 3 \\ -5 & 2 & 2 \\ 6u + 8v + w = b_3 \end{cases} \times A$$

$$\begin{cases}
-5u + 2v + 2w = b_2 \\
6u + 8v + w = b_3 \\
u - v + 3w = b_1
\end{cases} \Rightarrow A = \begin{bmatrix}
-5 & 2 & 2 \\
6 & 8 & 1 \\
1 & -1 & 3
\end{bmatrix}$$

• Gauss-Seidel 迭代收敛性? $\frac{Q}{Q}x_{k+1} = (\frac{Q}{Q} - A)x_k + b, \qquad \frac{Q}{Q} = \frac{D}{Q} + \frac{L}{L}, \qquad \frac{G}{Q} = -(L + D)^{-1}U$

- Schur 酉三角化定理:每个方阵A酉相似于一个上三角阵T,即: $A = UTU^*, \qquad (UU^* = I, U^* \neq U)$ 的共轭转置)
- Schur 酉三角化定理的推论:每个方阵A相似于非对角元是任意小(可能为复数)的上三角阵。

- 谱半径定理:
 - ▶矩阵A的谱半径满足 $\rho(A) \leq ||A||, ||\cdot||为 "任意算子范数"$
 - ightharpoonup存在算子范数 $\|\cdot\|^*$ 任意接近 $\rho(A)$,即:

 $||A||^* \leq \rho(A) + \epsilon, \epsilon$ 为任意正数

- 迭代收敛定理2: 迭代 $x_{k+1} = Gx_k + c$ (c为任意向量)对任意初始向量 x_0 收敛于 $(I G)^{-1}c$ 的充要条件是 $\rho(G) < 1$.

• 例:
$$\begin{cases} 3u + v = 5 \\ u + 2v = 5 \end{cases}$$

• Richardson迭代:
$$G = I - A = \begin{bmatrix} -2 & -1 \\ -1 & -1 \end{bmatrix}$$
, $\rho(G) = \frac{3 + \sqrt{5}}{2}$

• Jacobi 迭代:
$$G = I - D^{-1}A = \begin{bmatrix} 0 & -\frac{1}{3} \\ -\frac{1}{2} & 0 \end{bmatrix}, \rho(G) = \frac{1}{\sqrt{6}}$$

• Gauss-Seidel 迭代:
$$G = -(L+D)^{-1}U = \begin{bmatrix} 0 & -\frac{1}{3} \\ 0 & \frac{1}{6} \end{bmatrix}$$
, $\rho(G) = \frac{1}{6}$

为什么需要迭代方法?

- Gauss消元/LU分解复杂度 $O(n^3)$, 矩阵乘法 $O(n^2)$, 迭代法复杂度 $O(kn^2)$, k为迭代步数。
- 对于稀疏矩阵, 非零元个数为O(n), 迭代法优势明显: 更少的内存更快的速度!

```
A = \begin{bmatrix} 3 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ -1 & 3 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & -1 & 3 & -1 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 3 & -1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & -1 & 3 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & -1 & 3 & -1 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 3 & -1 \end{bmatrix}
```

肖元

```
0.500
                                      0.500
                                                0.165
                                      0.187
                                                0.062
                                                0.024
                                      0.071
                   0.191
                                                0.009
                            0.073
                                      0.027
                   0.073
                            0.028
                                      0.010
                                                0.004
2.618
       -0.927
                   0.028
                                      0.004
                                                0.001
                                               -0.001
```

为什么需要迭代方法?

- 例: 稀疏矩阵大规模计算: $n = 10^5$
- 1. Gauss消元:双精度内存 $8 \times n^2 = 8 \times 10^{10} = 80$ G字节;操作数的量级 $n^3 = 10^{15}$, CPU频率几个GHz(每秒 10^8 次浮点数操作),计算时间量级 10^7 秒(1年 3×10^7 秒)
- 2. 迭代法: 内存O(n), 每步迭代操作数O(n), 100次迭代的计算时间在秒量级

为什么需要迭代方法?

• 稀疏矩阵求解, 精确解为[0,1,2,...,n-1]: Gauss消元与Gauss-Seidel对比

Gauss-Seidel 迭代次数 N_{iter} 随矩阵维度n的变化($TOL = 10^{-7}$)

n	10	10 ²	10 ³	10 ⁴	10^{5}	10 ⁶	10 ⁷
N_{iter}	28	56	64	71	78	84	91

计算时间随矩阵维度n的变化(Gauss – Seidel取 $TOL = 10^{-7}$)

n	10	10 ²	10^{3}	10 ⁴	10 ⁵	10 ⁶	10 ⁷
Gauss消元	0s	0.001s	1. 02s	1483. 46s	-	-	-
Gauss-Seidel迭代	0s	0s	0.002s	0. 02s	0. 20s	2. 73s	22. 65s

思考与练习

• 对方程重新组织,得到一个严格行对角占优系数矩阵,并推导相应的Jacobi 迭代和Gauss-Seidel 迭代公式

$$\begin{cases} u - 8v - 2w = 1\\ u + v + 5w = 4\\ 3u - v + w = -2 \end{cases}$$

- 编程实现Jacobi 迭代、Gauss-Seidel 迭代和SOR迭代,并迭代求解以上方程组。所有迭代初始向量取0,误差限取10⁻⁶,结果保留8位小数。
- (选做)编程实现Jacobi迭代求解课件中的稀疏系数矩阵的线性方程组,并 与之前实现的Gauss消元进行比较。