Banach & Hilbert Spaces: An Introduction to Functional Analysis

Nilay Tripathi

December 2023

Introduction To The Topic

Banach spaces and Hilbert spaces are studied in functional analysis.

- Functional analysis itself is a cool mix of:
 - Linear algebra (vector spaces)
 - Topology
 - Real analysis
- It has a ton of applications in physics, particularly in quantum mechanics
- We are primarily interested in sets called function spaces.
 - A vector space where the vectors are functions
 - We also put a topology on the space

Objectives

In this presentation, I hope to accomplish

- High-level review of relevant concepts
 - Metric spaces, completeness
 - Linear algebra (vector spaces, basis, dimension)
- Discussion of continuous linear operators.
 - From vector spaces, we get *linear maps*
 - From topology, we study continuous maps
 - In functional analysis, we study both. How do we combine them together?
- One of the "four important theorems" in functional analysis
 - The Hahn-Banach Theorem
 - The Uniform Boundedness Principle (Banach-Steinhaus Theorem)
 - The Open Mapping Theorem
 - The Closed Graph Theorem

Converging Sequence, Cauchy Sequence

Definition (Converging Sequence)

If X is a metric space, a sequence $(x_n)_{n\in\mathbb{N}}\subseteq X$ is said to converge to $x_0\in X$ if for all $\varepsilon>0$ there exists $N_\varepsilon\in\mathbb{N}$ such that $d(x_n,x)<\varepsilon$ whenever $n\geq N_\varepsilon$.

Definition (Cauchy Sequence)

If X is a metric space, a sequence $(x_n)_{n\in\mathbb{N}}\subseteq X$ is said to be a Cauchy sequence if for all $\varepsilon>0$ there exists $N_\varepsilon\in\mathbb{N}$ such that $d(x_n,x_m)<\varepsilon$ when $m,n\geq N_\varepsilon$.

Convergent Sequence ⇒ Cauchy Sequence

Theorem

All convergent sequences are also Cauchy sequences.

Proof.

Suppose that $(x_n) \to x$. Let $\varepsilon > 0$ be arbitrary. Then, there are $N_1, N_2 \in \mathbb{N}$ such that

$$n \ge N_1 \implies d(x_n, x) < \frac{\varepsilon}{2}$$

 $n \ge N_2 \implies d(x_m, x) < \frac{\varepsilon}{2}$

Let $N = \max\{N_1, N_2\}$ and note that $n \geq N$ means

$$d(x_n, x_m) \le d(x_n, x) + d(x_m, x)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Complete Metric Space

The converse of the previous theorem is the definition of completeness.

Definition (Complete Metric Space)

A metric space X is complete if every Cauchy sequence of entries in X has a limit in X.

This characterization of completeness works in the most general of metric spaces.

The metric space $\mathbb Q$ (with the usual metric) is not a complete metric space. Consider the sequence

$$(x_n) = (3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ...)$$

- This is the sequence of rational approximations to π .
- Note that $x_n \in \mathbb{Q}$ for all n.
- The limit is $\pi \notin \mathbb{Q}$.

Thus, \mathbb{Q} is not a complete metric space.

Another Example

If X is any set under the discrete metric, then X is complete.

- Let (x_n) be a Cauchy sequence in X.
- We claim that (x_n) is eventually constant. This happens say for $\varepsilon = \frac{1}{2}$, for example.
- A sequence which is eventually constant is convergent.

Thus, any Cauchy sequence in X converges, and so X is complete.

Function Space

Definition (Function Space)

We define the function space C[a,b] to be the set of all continuous functions from [a,b] to \mathbb{R} .

We can define a metric on the function space as follows

$$d(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|$$

- Note that the maximum exists since [a, b] is compact.
- Conditions 1, 2, and 3 of a metric space are easy to show. The triangle inequality follows from

$$|f(t)-g(t)| \leq |f(t)-h(t)|+|h(t)-g(t)|$$

and so

$$\max_{t \in [a,b]} |f(t) - g(t)| \le \max_{t \in [a,b]} |f(t) - h(t)| + \max_{t \in [a,b]} |h(t) - g(t)|$$

Linear Independence, Generating Set

Definition (Linear Independence)

Let V be a vector space over a field \mathbb{F} . A set $|V| < \infty$ is linearly independent if

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0 \implies c_1 = c_2 = \cdots = c_n = 0$$

where $c_1,...,c_n \in \mathbb{F}$ and $v_1,...,v_n \in V$. An infinite set is linear independent if all of its finite subsets are linearly independent.

Definition (Spanning Set)

Let V be a vector space.

- If $|S| < \infty \subseteq V$, then the span of S is the set of all linear combinations of elements in S.
- $oldsymbol{\circ}$ The span of an infinite set S is the union of the span of all its finite subsets.
- ① If $Y \subseteq X$ is a subspace and S is a set such that span S = Y, then S is a generating set (or spanning set) of Y.

Basis & Dimension

Definition (Basis & Dimension)

Let V be a vector space.

- lacktriangle A basis of V is a linearly independent generating set of V.
- ② If β is a basis of V, then the dimension of V is defined to be dim $V = |\beta|$.
- **1** If dim $V < \infty$, then V is finite-dimensional. Otherwise, it is infinite dimensional.

In functional analysis, we often consider infinite dimensional vector spaces over finite dimensional ones.

Function Space Is A Vector Space

The function space C[a, b] may be turned into a vector space by defining vector addition and scalar multiplication as follows:

$$(f+g)(t) = f(t) + g(t)$$
$$(\alpha f)(t) = \alpha f(t)$$

The additive identity is the zero function, which maps everything in [a, b] to 0.

We remark that the function space C[a, b] is an infinite dimensional vector space.

Linear Map

Fundamental maps between vector spaces are linear maps.

Definition (Linear Map)

Suppose X and Y are vector spaces. A map $T: X \to Y$ is said to be linear if it preserves linear combinations. That is,

$$T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1Tv_1 + c_2Tv_2 + \cdots + c_nTv_n$$

Note that we use the notation Tx to mean T(x). This is a common shorthand used in functional analysis.

For function spaces C[a, b] the differentiation operator given by

$$Tf = f'(t)$$

is a linear operator. This follows from elementary calculus, where we proved

$$(f+g)'(t) = f'(t) + g'(t)$$
$$(\alpha f)'(t) = \alpha f'(t)$$

Norm, Normed Space

Definition (Norm & Normed Space)

Suppose that V is a vector space. A norm on V is a function which maps each $x \in V$ to a scalar in \mathbb{F} , denoted ||x|| which satisfies the following properties

- $||x|| \ge 0$
- ② ||x|| = 0 if and only if x = 0
- $\|x + y\| \le \|x\| + \|y\|$

If $\|\cdot\|$ is a norm on a vector space X, then the ordered pair $(V, \|\cdot\|)$ is a normed space. If the norm is inferred from context, we often don't write it explicitly.

Normed Spaces Are Metric Spaces

Every norm induces a metric. If V is a normed space, we may define a metric on V as

$$d(x,y) = \|x - y\|$$

A lot of the axioms of the metric follow from those of a norm. Symmetry is the only one that requires some work. We note that

$$d(y,x) = ||y - x||$$

$$= || - (x - y)||$$

$$= || - 1(x - y)||$$

$$= |-1|||x - y||$$

$$= ||x - y||$$

$$= d(x,y)$$

In this case, d is the metric induced by the norm. We conclude that every normed space is a metric space.

① Consider the space \mathbb{R}^n . The L^p -norm is defined as

$$||x||_p = \left[\sum_{i=1}^n |x_i|^p\right]^{1/p}$$

If p = 2, this is the usual Euclidean norm on \mathbb{R}^n . It induces the usual Euclidean metric on \mathbb{R}^n .

ullet In general, the L^p -norm induces the L^p -distance on \mathbb{R}^n

① Consider the space \mathbb{R}^n . The L^p -norm is defined as

$$||x||_p = \left[\sum_{i=1}^n |x_i|^p\right]^{1/p}$$

If p = 2, this is the usual Euclidean norm on \mathbb{R}^n . It induces the usual Euclidean metric on \mathbb{R}^n .

- In general, the L^p -norm induces the L^p -distance on \mathbb{R}^n
- ② Consider the function space C[a, b]. We define a norm on this space by

$$||f|| = \max_{t \in [a,b]} |f(t)|$$

This norm induces the same metric on the function space we defined earlier.

1 Consider the space \mathbb{R}^n . The L^p -norm is defined as

$$||x||_p = \left[\sum_{i=1}^n |x_i|^p\right]^{1/p}$$

If p = 2, this is the usual Euclidean norm on \mathbb{R}^n . It induces the usual Euclidean metric on \mathbb{R}^n .

- In general, the L^p -norm induces the L^p -distance on \mathbb{R}^n
- ② Consider the function space C[a, b]. We define a norm on this space by

$$||f|| = \max_{t \in [a,b]} |f(t)|$$

This norm induces the same metric on the function space we defined earlier.

 $\ \, \mbox{\bf @}$ A metric space need not be a normed space. The discrete metric on $\mathbb R$ is not induced by any norm.

Banach Space

Definition (Banach Space)

A normed space V is a Banach space if V is a complete metric space under the metric induced by the norm of V.

Examples:

- The space \mathbb{R}^n is a Banach space.
- The function space C[a, b] is a Banach space (proof omitted in interest of time)

Normed Space That Is Not A Banach Space

Consider the function space C[0,1] with this norm

$$||f||=\int_0^1|f(t)|\ dt$$

This norm induces the metric

$$d(f,g) = \int_0^1 |f(t) - g(t)| dt$$

This metric does not make C[a, b] a complete space.

Inner Product, Inner Product Space

Definition (Inner Product)

Let V be a vector space over a field \mathbb{F} . An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that

- $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (complex conjugation)
- $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ iff x = 0.

If $\langle \cdot, \cdot \rangle$ is an inner product on a vector space V, then the ordered pair $(V, \langle \cdot, \cdot \rangle)$ is an inner product space. Once again, we don't often write the inner product explicitly if it is implied from context.

Inner Product Space Is A Normed Space

If V is an inner product space, we may define a norm on V as follows: if $x \in V$, then

$$||x|| = \sqrt{\langle x, x \rangle}$$

One can verify that this is a norm on V (only the triangle inequality is non-trivial). This norm is called the norm induced by the inner product.

From the observations and examples stated previously, we see

inner product space \implies normed space \implies metric space

But the reverse implications need not be true.

• If $X = \mathbb{R}^n$, the standard inner product on \mathbb{R}^n is

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

This is often called the *dot product*. It induces the L^2 -norm on \mathbb{R}^n (and, consequently, induces the L^2 distance on \mathbb{R}^n).

• If $X = \mathbb{R}^n$, the standard inner product on \mathbb{R}^n is

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

This is often called the *dot product*. It induces the L^2 -norm on \mathbb{R}^n (and, consequently, induces the L^2 distance on \mathbb{R}^n).

• If $X = \mathbb{C}^n$, then the standard inner product becomes

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y}_i$$

Inner Product Space Need Not Be Normed Space

Not every norm can be induced by an inner product

- The L^p norm for p=2 is the usual Eucidean norm
 - It can be induced by the standard inner product
- However, for $p \neq 2$, the L^p -norm cannot be induced by any inner product

Hilbert Space

Definition (Hilbert Space)

An inner product space V is a Hilbert space if V is a complete metric space under the metric induced by the inner product of V.

- Since every inner product space is a normed space, it follows that every Hilbert space is a Banach space.
- The converse need not hold. For instance, the norm we defined on C[a, b] is not induced by any inner product. Hence, it cannot be a Hilbert space (but it is a Banach space).
- \mathbb{R}^n is a Hilbert space.

Topological Vector Space

So far, we have given results on two seemingly disjoint parts of math

- Linear algebra, which gives us linear maps
- Topology, which gives us continuous operators

We combine the two concepts in some forthcoming definitions

Definition (Topological Vector Space)

Suppose V is a vector space and let \mathcal{T} be a topology on V. We say (V, \mathcal{T}) is a topological vector space if

- lacksquare All one-point sets in $\mathcal T$ are closed
 - **②** The vector space operations + and \cdot are continuous in \mathcal{T} .

Continuous Linear Map

Definition (Continuous Linear Map)

Let X, Y be normed spaces and let $T: X \to Y$ be linear. We say T is continuous at a point $x_0 \in X$ if for all $\varepsilon > 0$, there is a $\delta > 0$ such that

$$||x - x_0|| < \delta \implies ||Tx - Tx_0|| < \varepsilon$$

If T is continuous at all points in X, we simply say T is continuous.

Bounded Operator

Definition (Bounded Linear Operator)

Let X, Y be normed spaces and let $T: X \to Y$ be linear. The operator T is said to be bounded if there exists $M \in \mathbb{R}$ such that

$$||Tx|| \leq M||x||$$

It is useful to find the *smallest possible* value for which the inequality holds. Excluding the case when x = 0 (which is trival and boring), we see that

$$\frac{\|Tx\|}{\|x\|} \le M$$

To make this inequality hold for all $x \in X$, we simply take the *supremum* over all nonzero values of x. This leads to another useful definition

Norm Of Operator

Definition (Norm Of Operator)

Let X,Y be normed spaces and $T:X\to Y$ linear. Then, the norm of T, denoted $\|T\|$, is defined using two (equivalent) formulations

$$||T|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||}{||x||} = \sup_{\substack{x \in X \\ ||x|| = 1}} ||Tx||$$

Some important facts:

- The operator T is bounded if $||T|| < \infty$
- Using the definition of norm of an operator, we may write the boundedness condition as

$$||Tx|| \leq ||T||||x||$$

• The norm on an operator does indeed satisfy the norm axioms (proof omitted, in the interest of time)

Norm Of Operator, Examples

① The zero operator $\mathbf{0}: X \to Y$ which sends everything to 0 is bounded and has norm 0.

Norm Of Operator, Examples

- **①** The zero operator $\mathbf{0}: X \to Y$ which sends everything to 0 is bounded and has norm 0.
- The identity operator on a nontrivial subspace is bounded and has norm 1.

Norm Of Operator, Examples

- **①** The zero operator $\mathbf{0}: X \to Y$ which sends everything to 0 is bounded and has norm 0.
- ② The identity operator on a nontrivial subspace is bounded and has norm 1.
- **②** Let $\mathcal{P}[0,1]$ be the space of all polynomials on [0,1] with the usual "max" norm. Then, the differentiation operator

$$Tx(t) = x'(t)$$

is unbounded. If $x_n(t) = t^n$, then we have $||x_n|| = 1$ but

$$||Tx_n|| = ||nt^{n-1}|| = n$$

which is unbounded.

Characterization Of Continuous Linear Maps

Now, we have this theorem which completely characterizes all continuous linear maps.

Theorem

Let X, Y be normed spaces and let $T: X \to Y$ be linear. Then T is continuous if and only if T is bounded.

We first prove the backwards direction. Assume T is bounded, then $||T|| < \infty$. Let $\varepsilon > 0$ and $x_0 \in X$ be arbitrary. Let

$$\delta = \frac{\varepsilon}{\|T\|}$$

Assume $||x - x_0|| < \delta$. Then, by properties of linearity and boundedness, we get

$$||Tx - Tx_0|| = ||T(x - x_0)||$$

$$\leq ||T|| ||x - x_0||$$

$$< ||T|| \cdot \frac{\varepsilon}{||T||}$$

$$= \varepsilon$$

This shows T is continuous and establishes the backward direction.

Proof (Forward Direction)

Now, assume that T is continuous. Then T is continuous everywhere, so we consider the case when x=0. Then, we know there exists $\delta>0$ such that

$$||x|| < \delta \implies ||Tx|| < 1$$

Note that we may write x as follows

$$x = \frac{2x}{\|x\|} \delta \cdot \frac{\|x\|}{2\delta}$$

So we conclude

$$Tx = T\left(\frac{2x\delta}{\|x\|} \cdot \frac{\|x\|}{2\delta}\right)$$
$$= \frac{2\|x\|}{\delta} T\left(\underbrace{\frac{x}{2\|x\|}\delta}_{v}\right)$$

Proof, Forward Direction (Cont.)

Note that $\|v\| = \frac{\delta}{2} < \delta$. Hence, by the continuity condition, we have

And thus, we conclude

$$||Tx|| < \frac{2}{\delta}||x||$$

Hence, we see T is bounded, completing the proof.

Graphs & Closed Operators

Definition (Graph & Closed Operator)

Let X, Y be normed spaces and $T: X \to Y$ be linear. The graph of T is the set

$$G_T := \{(x, Tx) : x \in X\}$$

If the set G_T is closed in the product space $X \times Y$, the linear operator T is a closed linear operator.

Let X and Y be normed spaces. We define a norm on the product space $X \times Y$ as follows:

$$||(x,y)|| = ||x||_X + ||y||_Y$$

Product Of Banach Spaces Is Banach Space

Theorem

Let X and Y be Banach spaces. Then, $X \times Y$ is a Banach space.

Let $z_n = (x_n, y_n)$ be an arbitrary Cauchy sequence in $X \times Y$. Then, for some $N \in \mathbb{N}$ we note that $m, n \geq N$ implies

$$||z_n - z_m|| = ||x_n - x_m|| + ||y_n - y_m|| < \varepsilon$$

Thus, this shows that $(x_n), (y_n)$ are also Cauchy sequences. Since X, Y are complete, these Cauchy sequences converge. Say $(x_n) \to x$ and $(y_n) \to y$. We claim that $z_n \to (x,y) = z$.

Product Of Banach Spaces (cont.)

Since (x_n) , (y_n) converge, there exists $N_1, N_2 \in \mathbb{N}$ such that

$$n \ge N_1 \implies ||x_n - x|| < \frac{\varepsilon}{2}$$

 $n \ge N_2 \implies ||y_n - y|| < \frac{\varepsilon}{2}$

So we get

$$||z_n - z|| = ||x_n - x|| + ||y_n - y||$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Thus, we have $(z_n) \to z$. So, all Cauchy sequences in $X \times Y$ converge; so $X \times Y$ is a complete space.

Open Mapping Theorem, Bounded Inverse Theorem

Definition (Open Mapping)

If X and Y are metric spaces, then $T: X \to Y$ is an open mapping if the image of open sets in X is open in Y.

Theorem (Open Mapping Theorem)

Every surjective bounded linear operator between two Banach spaces is an open mapping.

Theorem (Bounded Inverse Theorem)

If T is a bijective linear operator satisfying the conditions of the open mapping theorem, then T^{-1} is bounded.

Closed Graph Theorem

Theorem (Closed Graph Theorem)

Let X and Y be Banach spaces and $D \subseteq X$. Let $T : D \to Y$ be a closed linear operator. Then T is bounded if D is closed in X.

We consider a "natural" mapping $P: G_T \to D$ defined by

$$P(x, Tx) = x$$

The map P is linear since

$$P(x + cy, T(x + cy)) = P(x + cy, Tx + cTy) = P[(x, Tx) + c(y, Ty)]$$

The map P is bounded since

$$||P(x, Tx)|| = ||x|| \le ||x|| + ||Tx|| = ||(x, Tx)||$$

Closed Graph Theorem, Proof (cont.)

Note that P is bijective. The inverse mapping is

$$P^{-1}(x) = (x, Tx)$$

Note that G_T and D are both complete spaces (G_T and D are closed subsets of complete metric spaces). The **bounded inverse theorem** holds and we get that P^{-1} is bounded i.e. there exists M such that $\|P^{-1}(x)\| \le M\|x\|$.

Closed Graph Theorem, Proof (cont.)

We finish the proof by noting that

$$||Tx|| \le ||x|| + ||Tx||$$

= $||(x, Tx)||$
= $||P^{-1}(x)||$
 $\le M||x||$

Hence $||Tx|| \le M||x||$, and so T is bounded.

References

- Kreyszig, Introductory Functional Analysis with Applications
- Rudin, Functional Analysis