

The Spectrometer/Telescope for Imaging X-rays on-board Solar Orbiter: from photon to electron visibilities.

Università di Genova DIMA | Dipartimento di Matematica

Anna Volpara

Potsdam, AIP

September, 2023

Potsdam OUTLINE

Outline

- 1. From photon to electron visibilities
- 2. Visibility inversion algorithm
- 3. Application to STIX visibilities
- 4. Conclusions and future works

Potsdam OUTLINE

Outline

- 1. From photon to electron visibilities
- 2. Visibility inversion algorithm
- 3. Application to STIX visibilities
- 4. Conclusions and future works

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int I(x, y; \epsilon) e^{2\pi i(xu + yv)} dx dy \tag{1}$$

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int I(x, y; \epsilon) e^{2\pi i(xu + yv)} dx dy \tag{1}$$

Intensity of the X-ray photon flux emitted from (x, y) on the Sun

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int \int I(x, y; \epsilon) e^{2\pi i (x u + y v)} dx dy$$

The Fourier Transform

(1)

STIX sub-collimators.

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int I(x, y; \epsilon) e^{2\pi i (x u + y v)} dx dy$$

Array containing the N_V complex values of the visibilities measured by STIX

STIX sub-collimators.

Anna Volpara | MIDA Group

(1)

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int I(x, y; \epsilon) e^{2\pi i(xu + yv)} dx dy \tag{1}$$

Electron visibilities:

$$W(u, v; E) = \frac{a}{4\pi R^2} \int \int N(x, y) \bar{F}(x, y; E) e^{2\pi i(xu + yv)} dx dy$$
 (2)

Prato et al., A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy, SIAM Journal on Imaging Sciences, (2009)

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int I(x, y; \epsilon) e^{2\pi i(xu + yv)} dx dy \tag{1}$$

Electron visibilities:

$$W(u, v; E) = \frac{a}{4\pi R^2} \int \int N(x, y) \bar{F}(x, y; E) e^{2\pi i(xu + yv)} dx dy$$
 (2)

Prato et al., A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy, SIAM Journal on Imaging Sciences, (2009)

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int I(x, y; \epsilon) e^{2\pi i(xu + yv)} dx dy \tag{1}$$

Electron visibilities:

$$W(u,v;E) = \frac{a}{4\pi R^2} \int \int N(x,y) \overline{F}(x,y;E) e^{2\pi i(xu+yv)} dx dy$$
 (2)

$$N(x,y) = \int_0^{\ell(x,y)} n(x,y,z) dz$$

n(x,y,z) is the local density of target particles along the line-of-sight depth $\ell(x,y)$

$$\bar{F}(x,y;E) = \frac{1}{N(x,y)} \int_0^{\ell(x,y)} n(x,y,z) F(x,y,z;E) \, dz$$

F(x,y,z;E) is the differential electron flux spectrum at the point (x,y,z)

Prato et al., A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy, SIAM Journal on Imaging Sciences, (2009)

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int I(x, y; \epsilon) e^{2\pi i(xu + yv)} dx dy \tag{1}$$

Electron visibilities:

$$W(u, v; E) = \frac{a}{4\pi R^2} \int \int N(x, y) \bar{F}(x, y; E) e^{2\pi i(xu + yv)} dx dy$$
 (2)

Bremsstralhung equation for visibilities:

$$V(u, v; \epsilon) = \int_{\epsilon}^{\infty} W(u, v; E) Q(\epsilon, E) dE$$
 (3)

Prato et al., A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy, SIAM Journal on Imaging Sciences, (2009)

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

From photon to electron visibilities

Photon visibilities:

$$V(u, v; \epsilon) = \mathcal{F}(I(x, y; \epsilon)) = \int \int I(x, y; \epsilon) e^{2\pi i(xu + yv)} dx dy$$
 (1)

Electron visibilities:

$$W(u,v;E) = \frac{a}{4\pi R^2} \int \int \underbrace{N(x,y)\bar{F}(x,y;E)} e^{2\pi i(xu+yv)} dx dy \tag{2}$$

Bremsstralhung equation for visibilities:

$$V(u, v; \epsilon) = \int_{\epsilon}^{\infty} W(u, v; E) Q(\epsilon, E) dE$$
(3)

Prato et al., A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy, SIAM Journal on Imaging Sciences, (2009)

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

Potsdam OUTLINE

Outline

- 1. From photon to electron visibilities
- 2. Visibility inversion algorithm
- 3. Application to STIX visibilities
- 4. Conclusions and future works

 Potsdam
 Visibilities inversion

Visibility inversion algorithm - Photon visibilities

Photon visibilities

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

Visibility inversion algorithm - Photon visibilities

Photon visibilities

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

Visibility inversion algorithm - Photon visibilities

Photon visibilities

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

Visibility inversion algorithm - Photon visibilities

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007)

Visibility inversion algorithm

Photon visibilities

Piana et al., *Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities,* The Astrophysical Journal, (2007) Prato et al., *A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy*, SIAM Journal on Imaging Sciences, (2009)

Visibility inversion algorithm

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007) Prato et al., A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy, SIAM Journal on Imaging Sciences, (2009)

Visibility inversion algorithm

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007) Prato et al., A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy, SIAM Journal on Imaging Sciences, (2009)

Visibility inversion algorithm

Piana et al., Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities, The Astrophysical Journal, (2007) Prato et al., A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy, SIAM Journal on Imaging Sciences, (2009)

Visibility inversion algorithm

Figure: Reconstruction provided by MEM_GE, from electron visibilities.

Piana et al., *Electron flux spectral imaging of solar flares through regularized analysis of hard x-ray source visibilities,* The Astrophysical Journal, (2007) Prato et al., *A Regularized Visibility-Based Approach to Astronomical Imaging Spectroscopy*, SIAM Journal on Imaging Sciences, (2009)

Potsdam OUTLINE

Outline

- 1. From photon to electron visibilities
- 2. Visibility inversion algorithm
- 3. Application to STIX visibilities
- 4. Conclusions and future works

Photon images

Electron flux images

Figure: Photon images (*left panels*) compared with the electron flux images corresponding to the regularized electron visibilities (*right panels*) for the energy intervals shown. The maps are produced using the MEM-GE algorithm.

Photon and regularized photon maps

September 29, 2022

Photon images

Regularized photon images

Figure: Photon images (*left panels*) for the energy intervals shown, compared with the regularized photon maps (*right panels*) in the same energy range. The maps are produced using the MEM-GE algorithm.

Figure: Pixel-wise spectrum obtained from photon maps and regularized photon maps. *Top left panel*: selected pixels are indicated with colored crosses. The other panels show the pixel-wise spectrum obtained from photon maps (*solid line*) and regularized photon maps (*dotted line*). The pixels selected in the top left panel and their respective spectra are indicated with the same colour. Plots are logarithmic scaled on the y-axis.

Figure: Pixel-wise spectrum obtained from photon maps and regularized photon maps. *Top left panel*: selected pixels are indicated with colored crosses. The other panels show the pixel-wise spectrum obtained from photon maps (*solid line*) and regularized photon maps (*dotted line*). The pixels selected in the top left panel and their respective spectra are indicated with the same colour. Plots are logarithmic scaled on the y-axis.

Figure: Pixel-wise spectrum obtained from photon maps and regularized photon maps. *Top left panel*: selected pixels are indicated with colored crosses. The other panels show the pixel-wise spectrum obtained from photon maps (*solid line*) and regularized photon maps (*dotted line*). The pixels selected in the top left panel and their respective spectra are indicated with the same colour. Plots are logarithmic scaled on the y-axis.

Validation

Event	OSPEX	electron maps	photon maps	regularized photon maps
May 08, 2021	$\gamma = 5.25$	$\delta = 4.53$	$\gamma = 4.94$	$\gamma = 5.50$
August 26, 2021	$\gamma = 5.47$	$\delta = 4.59$	y = 5.27	$\gamma = 5.57$
January 20, 2022	$\gamma = 6.35$	$\delta = 4.91$	$\gamma = 6.25$	$\gamma = 6.36$
August 28, 2022	$\gamma = 6.94$	$\delta = 4.97$	$\gamma = 6.88$	$\gamma = 6.81$
September 29, 2022	$\gamma = 4.49$	$\delta = 3.68$	$\gamma = 4.24$	$\gamma = 4.42$

Table: Global spectral indices provided by OSPEX, electron maps, photon maps, and regularized photon maps.

Validation

Event	OSPEX	electron maps	photon maps	regularized photon maps
May 08, 2021	$\gamma = 5.25$	$\delta = 4.53$	$\gamma = 4.94$	$\gamma = 5.50$
August 26, 2021	$\gamma = 5.47$	$\delta = 4.59$	$\gamma = 5.27$	$\gamma = 5.57$
January 20, 2022	$\gamma = 6.35$	$\delta = 4.91$	$\gamma = 6.25$	$\gamma = 6.36$
August 28, 2022	$\gamma = 6.94$	$\delta = 4.97$	$\gamma = 6.88$	$\gamma = 6.81$
September 29, 2022	$\gamma = 4.49$	$\delta = 3.68$	$\gamma = 4.24$	$\gamma = 4.42$

Table: Global spectral indices provided by OSPEX, electron maps, photon maps, and regularized photon maps.

Validation

Event	OSPEX	electron maps	photon maps	regularized photon maps
May 08, 2021	$\gamma = 5.25$	$\delta = 4.53$	$\gamma = 4.94$	$\gamma = 5.50$
August 26, 2021	$\gamma = 5.47$	$\delta = 4.59$	y = 5.27	y = 5.57
January 20, 2022	y = 6.35	$\delta = 4.91$	y = 6.25	y = 6.36
August 28, 2022	$\gamma = 6.94$	$\delta = 4.97$	y = 6.88	y = 6.81
September 29, 2022	$\gamma = 4.49$	$\delta = 3.68$	y = 4.24	$\gamma = 4.42$

Table: Global spectral indices provided by OSPEX, electron maps, photon maps, and regularized photon maps.

STIX vs RHESSI

	STIX	RHESSI			
Distance from the Sun	Variable	Fixed			
Energy sampling	Non-uniform	Uniform			
Gaps	provides its set of visibility values at all count energies \rightarrow no (u,v) point gaps	gaps due to insufficient signal-to-noise as the visibility value in question → different energy bins have different number of samples			

Table: Differences between STIX and RHESSI inversion software.

 Potsdam
 STIX vs RHESSI

STIX vs RHESSI

Figure: Ratio between the maximum of the residual map and the maximum of the Clean map at different energies. Red: STIX; blue: RHESSI. *Top row*: Comparison between January 11, 2023 event (STIX) and December 02, 2003 event (RHESSI). *Bottom row*: Comparison between November 11, 2022 event (STIX) and February 20, 2002 event (RHESSI)

Potsdam OUTLINE

Outline

- 1. From photon to electron visibilities
- 2. Visibility inversion algorithm
- 3. Application to STIX visibilities
- 4. Conclusions and future works

Potsdam Electron maps

Conclusions and future works

- ☑ We have described an approach to solar hard X-ray imaging spectroscopy:
 - two-dimensional Fourier transforms of the image in the photon domain are transformed into Fourier transforms of the electron flux maps.
 - This tool also provides regularized photon visibilities corresponding to the regularized electron visibilities.

Conclusions and future works

- ☑ We have described an approach to solar hard X-ray imaging spectroscopy:
 - two-dimensional Fourier transforms of the image in the photon domain are transformed into Fourier transforms of the electron flux maps.
 - This tool also provides regularized photon visibilities corresponding to the regularized electron visibilities.
- ☑ We have shown that STIX inversion software seem to work better than RHESSI inversion software.
 - ☐ We are working to investigate why.

Electron maps

Potsdam Electron maps

Conclusions and future works

- ☑ We have described an approach to solar hard X-ray imaging spectroscopy:
 - two-dimensional Fourier transforms of the image in the photon domain are transformed into Fourier transforms of the electron flux maps.
 - This tool also provides regularized photon visibilities corresponding to the regularized electron visibilities.
- ☑ We have shown that STIX inversion software seem to work better than RHESSI inversion software.
 - ☐ We are working to investigate why.
- We are working on electron spectra for analizing the electron transport effects.
- ☐ We are working to obtain:
 - the average density along the line of sight;
 - number spectrum of accelerated electrons.

THANK YOU FOR THE ATTENTION!

volpara@dima.unige.it

Università di Genova
DIMA | Dipartimento di Matematica
MIDA group

