Yao Yao

Rest in Peace

www.youtube.com/watch?v=etIBZInTE-I

M. Morris Mano • Michael D. Ciletti

DIGITAL

Sieth Edition

DESIGN

With An Introduction to the Verilog HDL, VHDL, and System Verilog

Pearson

Chapter 1 Digital Systems and Binary Numbers

SIGNED MAGNITUDE SIGNED COMPLEMENT

r ⁿ⁻¹	r ⁿ⁻²	r ⁿ⁻³	•••	r ²	r ¹	r ⁰		
0	Positive Numbers							
Nonzero		Negative Numbers						

Signed

Magnitude

SIGNED MAGNITUDE ARITHMETIC

SIGNED MAGNITUDE OVERFLOW

POLL

http://etc.ch/6pac

WHY NOT SIGNED MAGNITUDE

Give up left most position for sign! What are the wastes?

r ⁿ⁻¹	r ⁿ⁻²	r ⁿ⁻³	•••	r ²	r ¹	r ⁰		
0		Positive Numbers						
Nonzero		Negative Numbers						

$$+0 \rightarrow Max = r^{n-1}-1 = r^{n-1}$$
Min= $-(r^{n-1}-1) \leftarrow -0$

SIGNED MAGNITUDE SIGNED COMPLEMENT

DIMINISHED RADIX COMPLEMENT

Given $(N)_r$ with n digits, the (r-1)'s complement of N, i.e., its diminished radix complement, is defined as $(r^n-1) + N$.

Base-2	25	24	23	22	21	20
2 ⁵ –1=		1	1	1	1	1
N=		1	0		0	
$(2^{5}-1)-N=$		0	1	0	> 1	0

1's complement of $(10101)_2 = (01010)_2 = NOT$ on each digit

(r-1)'s COMP. BASE-r

Base-r		rn-1	•••	r ²	r ¹	r ⁰	
r ⁿ —1=		r-1	• • •	r-1	r-1	r-1	
N=		d_{n-1}	•••	d_2	d_1	d_0	
$(r^{n}-1)-N=$		r-1-d _{n-1}	•••	r-1-d _{n-1}	r-1-d _{n-1}	r-1-d _{n-1}	
$(r-1)$'s complement of $(N)_r = (r-1) - Each digit$							

RADIX COMPLEMENT

SIGNED COMPLEMENT

RADIX COMPLEMENT

Given $(N)_r$ with n digits, the r's complement of N, i.e., its radix complement, is defined as $r^n - N$.

Diminished Complement + 1 (r-1)'s Complement + 1 = $[(r^n - 1) - N] + 1 = r^n - N$

SIGNED 10's COMP. Base-10

Signed Radix Complement Base-10 10^{n-1} 10^{n-2} 10^{n-3} ... 10^2 10^1 10^0 $(10^n-1)\div 2+1<=$ Negative Numbers $<=(10^n-1)$

Although we see positive numbers, we must interpret them negative! How?

Surface != Meaning

Signed Radix Complement Base-10 10^{n-1} 10^{n-2} 10^{n-3} ... 10^2 10^1 10^0 $(10^n-1)\div 2+1 <=$ Negative Numbers $<=(10^n-1)$ -(10's comp. of the number we see)

106	10 ⁵	104	10 ³	10 ²	10 ¹	100
<u>5</u>	8	_0	5	0	7	4

$$n = 7$$

$$0 <= Positive Numbers <= (10^7 - 1) \div 2$$

$$(10^7 - 1) \div 2 + 1 <= \text{Negative Numbers} <= (10^7 - 1)$$

10 ⁶	10 ⁵	104	10 ³	10 ²	10 ¹	100
5	8	0	5	0	7	4

$$n = 7$$

 $(10^7 - 1) \div 2 = 9,999,999 \div 2 = 4,999,999$
 $5,805,074 > 4,999,999$
This number must be interpreted negative!

10 ⁶	10 ⁵	104	10 ³	10 ²	10 ¹	10 ⁰
5	8	0	5	0	7	4

Signed Radix Complement Base-10 106 105 104 103 102 101 100 Y Y Y Y Y Y

-3,450,256

Signed Radix Complement Base-10 106 105 104 103 102 101 100 X X X X X X X

- 3,450,256

We must find its positive complement to represent it! How?

10 ⁶	10 ⁵	104	10 ³	10 ²	10 ¹	10 ⁰
6	5	4	9	7	4	4

$$= 10's comp (3,450,256)$$

$$= 9$$
's comp $(3,450,256) + 1$

$$= 9,999,999 - 3,450,256 + 1$$

$$= 6,549,743 + 1$$

$$= 6,549,744$$

SIGNED 16's COMP. Base-16

Base-16 E B F 2 B 4

Is this a negative number or positive?

Base-16	Е	В	F	2	В	4			
	What is the maximum positive number?								
$(16^6-1) \div 2 = (8,388,608)_{10} = (776,766)_{16}$									

Base-16	Е	В	F	2	В	4						
	= - (16's comp. (EBF, 2B4)) = $- (15's comp. (FBF, 2B4) (+ 1))$											
	= - (15's comp. (EBF,2B4) + 1)											
	= - (FFF, FFF - EBF2B4) + 1) $= - (140.D4B) + 1)$											
= - (140, D40)												

Base-16	X	X	X	X	X	X
			- (140	,D4C)		

Base-16	Е	В	F	2	В	4						
	- 140,D4C											
		=	16's com	p(140,D40	C)							
		= 1!	5's comp(140,D4C)	+ 1							
		= F	FFF,FFF —	140,D4C	+ 1							
	= EBF,2B3 + 1											
	= EBF,2B4											

SIGNED r's COMP. Base-r

Dasc I III Kaaix Complement										
rn-1	r ⁿ⁻²	r ⁿ⁻³	•••	r ²	r ¹	r ⁰				
	$(r^{n}-1) \div 2 +$	1 <= Ne	gative Nur	mbers <= (ı	rn −1)					
Base-2: 1,000 Base-4: 2,000 Base-8: 4,000 Base-10: 5,00 Base-16: 8,00	0,,000 0,,000	725 cm (500) (-500)		7 999 0 - 5000						
				+ 4990						
	We see po	sitive nur	mber, but v	ve interpret	negative!					

= - (r's comp. (#)) = - ((r-1)'s comp. (#) + 1)

SIGNED 2'S COMPLEMENT BASE-2

6. Show that in 2's complement binary system, the highest significant position acts like a sign (not the same) as in signed-magnitude binary system. Is this true for any radix-r number system? Justify your answer.

POLL

http://etc.ch/6pac

SIGNED r'S COMPLEMENT ARITHMETIC

One adder for both addition and subtraction!

SIGNED r'S COMPLEMENT ADDITION

+	1	0	1	0	1	1
Base-2	0	0	1	1	1	0

6 P —

				•		
+	1	0	1	0	1	1
Base-2	> (26-1)	$)\div 2 = (0$	11,111) ₂			
	= -(2's)	comp(#))			
	= $-(010)$	101) ₂				
	= $-(21)$	10				

+						
Base-2	. 0	0	1	1	1	0
	$< (2^{6}-1)$ = $+(001)$	$\div 2 = (0^{2})^{2}$	11,111) ₂			

			1	1	1		
+	$-(21)_{10}$	1	0	1	0	1	1
Base-2	+(14) ₁₀	0	0	1	1	1	0
		<u> </u>	1	1	0	0	1

			1	1	1					
+	$-(21)_{10}$	1	0	1	0	1	1			
Base-2	$+(14)_{10}$	0	0	1	1	1	0			
		1	1	1	0	0	1			
	$> (2^6-1) \div 2 = (011,111)_{10}$									
	= -(2's comp(#))									
		= $-(000)$	111) ₂							
		$= -(/)_{10}$								

SIGNED r'S COMPLEMENT SUBTRACTION

	$-(21)_{10}$	1	0	1	0	1	1
Base-2	+(8)10	0	0	1	0	0	0

/

	$-(21)_{10}$	1	0	1	0	1	1			
Base-2	+(8) ₁₀	0	0	1	0	0	0			
		We must convert the subtraction to addition.								
			Eq.,	addition and addition and additional additional additional additional additional additional additional addition	with - (<mark>(8)₁₀!</mark>)				

$-(21)_{10}$	1	0	1	0	1	1			
+(8) ₁₀	$\rightarrow 0$	0	1	0	0	0			
= - (2's comp. (001000))									
	-	•	-	1)					
= - (110111 + 1)									
$=\frac{111000}{111000}$									
	10	$+(8)_{10}$ $= -(2's)_{10}$ = -(1's) $= -(NC)$	$+(8)_{10}$ = $-(2's comp. ($ = $-(1's comp(0))$ = $-(NOT(00100))$	$+(8)_{10}$ $\rightarrow 0$ 0 1 = $-(2's comp. (001000))$ = $-(1's comp(001000) + (001000))$ = $-(NOT(001000) + 1)$	$+(8)_{10}$ 0 0 1 0 = $-(2's comp. (001000))$ = $-(1's comp(001000) + 1)$ = $-(NOT(001000) + 1)$	$+(8)_{10}$ 0 0 1 0 0 = $-(2's comp. (001000))$ = $-(1's comp(001000) + 1)$ = $-(NOT(001000) + 1)$			

+	$(-(21)_{10})$	1	0	1	0	1	1
Base-2	$-(8)_{10}$	1	1	1	0	0	0

Last Carry → Ignore

	X	1	1				
+	$-(21)_{10}$	1	0	1	0	1	1
Base-2	$-(8)_{10}$	1	1	1	0	0	0
		7 1	0	0	0	1	1

		1	1					
+	$-(21)_{10}$	1	0	1	0	1	1	
Base-2	$-(8)_{10}$	1	1	1	0	0	0	
		1	0	0	0	1	1	
		Done! This is the Result.						

		1	1						
4	$-(21)_{10}$	1	0	1	0	1	1		
Base-2	$-(8)_{10}$	1	1	1	0	0	0		
		1	0	0	0	1	1		
			-2 = (011)						
The number is negative:									
= - (2's comp. (100011))									
$=$ $\frac{2}{(011101)}$ $+$ $\frac{2}{3}$									

		1	1				
+	$-(21)_{10}$	1	0	1	0	1	1
Base-2	$-(8)_{10}$	1	1	1	0	0	0
	$-(29)_{10}$	1	0	0	0	1	1

SIGNED r'S COMPLEMENT OVERFLOW

The + result of two <u>negative</u> numbers \rightarrow positive The + result of two <u>positive</u> numbers \rightarrow negative

The + result of two negative numbers \rightarrow positive The + result of two positive numbers \rightarrow negative

OVERFLOW Example

	$-(21)_{10}$	1	0	1	0	1	1
Base-2	+(14) ₁₀	77 0	0	1	1	1	0

	$-(21)_{10}$	1	0	1	0	1	1		
Base-2	$+(14)_{10}$	7 7 0	0	1	1	1	0		
	We must convert the subtraction to addition. Eq., addition with $-(14)_{10}!$								
					(· · / ·			

_	$-(21)_{10}$	1	0	1	0	1	1
Base-2	+(14) ₁₀	0	0	1	1	1	0
		= (1's cc	(001110)	110) + 1)			

Last Carry → Ignore

	1				1		
	$-(21)_{10}$	1	0	1	0	1	1
Base-2	$-(14)_{10}$	1	1	0	0	1	0
		0	1	1	1	0	1

					1				
4	<mark>-</mark> (21) ₁₀	1	0	1	0	1	1		
Base-2	$-(14)_{10}$	1	1	0	0	1	0		
		0	1	1	1	0	1		
		$< 2^{6}-1 \div 2 = (011,111)_{10}$ = $(011101)_{2}$ Positive Number							

BINARY CODE Will be covered later. Stay tuned!