Gengshuo TIAN

gtian@uchicago.edu

EDUCATION

2020 – present	PhD Program in Computational and Applied Mathematics at the University of Chicago Advisor: Prof. Brent Doiron
2019 - 2020	PhD Program in Mathematics at the University of Pittsburgh Advisor: Prof. Brent Doiron
2015 - 2019	BSc in Mathematics and Applied Mathematics, Beijing Normal University

EXPERIENCE

Current SEP 2019	Research in Doiron Theoretical Neuroscience Group at the University of Pittsburgh and the University of Chicago Instructor: Prof. Brent Doiron	
	Studying the geometry of neural variability using random matrix theory and collaborating with experimental neuroscientists to verify the theoretical predictions.	
Jun 2019	Undergraduate thesis project in Neural Information Processing Lab	
SEP 2018	at Peking University	
	Instructor: Prof. Si Wu	
	Studied the fast response property of balanced networks.	
Aug 2018	Volunteering in Computational Neurobiology Laboratory	
Jun 2018	at Salk Institute	
	Instructor: Prof. Terrence Sejnowski	
	Worked with Dr. Dongsung Huh to analyze the mechanisms of a spiking neural network trained with gradient descent.	
MAR 2018	Undergraduate research in Neural Information Processing Lab	
SEP 2017	at Beijing Normal University	
	Instructor: Prof. Si Wu	
	Worked on the theoretical analysis of a model of hierarchical memory retrieval with feedback modulation in hierarchical Hopfield networks.	

PUBLICATIONS

- [1] **Tian, G.**, Huang, T., & Wu, S. (2019). Excitation-Inhibition Balanced Spiking Neural Networks for Fast Information Processing. In *IEEE International Conference on Systems, Man and Cybernetics* (pp. 249-252).
- [2] Liu, X., Zou, X., Ji, Z., **Tian, G.**, Mi, Y., Huang, T., Wong, K. M., & Wu, S. (2019). Push-pull Feedback Implements Hierarchical Information Retrieval Efficiently. In *Advances in Neural Information Processing Systems* (pp. 5702-5711).
- [3] **Tian, G.**, Li, S., Huang, T., & Wu, S. (2020). Excitation-inhibition Balanced Neural Networks for Fast Signal Detection. *Frontiers in Computational Neuroscience*, 14, 79.
- [4] Liu, X., Zou, X., Ji, Z., **Tian, G.**, Mi, Y., Huang, T., Wong, K. M., & Wu, S. (2022). Neural feedback facilitates rough-to-fine information retrieval. *Neural Networks*.