

Fakultät Mathematik Institut für Stochastik, Professur für Stoch. Analysis und Finanzmathematik

VERTIEFUNG IN DER STOCHASTIK

Prof. Dr. Martin Keller-Ressel

Wintersemester 2019/20

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Inhaltsverzeichnis

1	Einführung	2
	1.1 Zentrale Fragestellungen der Finanzmathematik	2
	1.2 Mathematisches Finanzmodell	3
	1.3 Anleihen und grundlegende Beispiele für Derivate	5
	1.4 Elementare Replikations- und Arbitrageargumente	7
	1.5 Bedingte Erwartungswerte und Martingale	8

— Kapitel 1 — EINFÜHRUNG

1.1 Zentrale Fragestellungen der Finanzmathematik

1.1.1 Bewertung von Derivaten und Abischerung gegen aus deren Kauf/Verkauf entstehende Risiken

Definition 1.1 (Derivat)

Ein **Derivat** ist ein Finanzprodukt, dessen Auszahlung sich vom Preis eines oder mehrerer Basisgüter [underlying] ableitet.

Beispiel 1.2

- Recht in drei Monaten 100.000 GBP gegen 125.000 EUR zu erhalten (Call-Option; underlying: Wechselkurs GBP in EUR)
- Recht innerhalb des nächsten Jahres 100.000 MWh elektrische Energie zum Preis von 30 EUR/MWh zu konsumieren mit Mindestabnahme 50.000 MWh (Swing-Option; underlying: Strompreis)
- Kauf- und Verkaufsoptionen auf Aktien (underlying: Aktienkurs)

Fragestellungen:

- Was ist der "faire" Preis für solch ein Derivat? ("Pricing" / Bewertung)
- Wie kann sich der Verkäufer gegen die eingegangenen Risiken absichern? ("Hedging" / Absicherung)

1.1.2 Optimale Investition: Zusammenstellen von nach Risiko-/ Ertragsgesichtspunkten optimalen Portfolios

- Wie wäge ich Risiko gegen Ertrag ab?
- Was bedeutet optimal?
- Lösung des resultierenden Optimierungsproblems

1.1.3 Risikomanagement und Risikomessung

gesetzliche Vorschriften (Basel und Solvency) sollen Stabilität des Banken- und Versicherungssystems angesichts verschiedener Risiken sicherstellen

→ mathematische Theorie der konvexen und kohärenten Risikomaße

Mathematische Werkzeuge: Wahrscheinlichkeitstheorie und stochastische Prozesse (Dynamik in der Zeit), zusätzlich etwas lineare Algebra, Optimierung, Maßtheorie

1.2 Mathematisches Finanzmodell

Wir betrachten

- (1) einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$, später auch weitere Maße \mathbb{Q}, \ldots auf demselben Maßraum (Ω, \mathcal{F}) . Die $\omega \in \Omega$ werden als **Elementarereignisse** oder "Szenarien" bezeichnet.
- (2) Zeitachse I entweder $I = \{t_1, t_2, \dots t_N = T\}$ (N-Perioden-Modell; diskretes Modell) oder I = [O, T] (stetiges Modell) Dabei wird T als **Zeithorizont** bezeichnet.

Definition 1.3 (stochastischer Prozess)

Ein stochastischer Prozess S ist eine messbare Abbildung

$$S: \left\{ \begin{array}{ccc} (\Omega \times I) & \to & \mathbb{R}^d \\ (\omega, t) & \mapsto & S_t(\omega) \end{array} \right.$$

Insbesondere ist

- $t \mapsto S_t(\omega)$ eine Funktion $I \to \mathbb{R}^d$ für jedes $\omega \in \Omega$
- ullet $\omega \mapsto S_t(\omega)$ eine Zufallsvariable $\Omega \to \mathbb{R}^d$ für jedes $t \in I$

(3) **Definition 1.4 (Filtration)**

Eine Filtration ist eine Folge von σ -Algebren $(\mathcal{F}_t)_{t\in I}$ mit der Eigenschaft

$$\mathcal{F}_s \subseteq \mathcal{F}_t \quad \forall s, t \in I, s \le t \quad \text{und} \quad \mathcal{F}_t \subseteq \mathcal{F} \quad \forall t \in I$$

Interpretation. \mathcal{F}_t beschreibt die den Marktteilnehmern zum Zeitpunkt t bekannte bzw. verfügbare Information. Ein Ereignis $A \in \mathcal{F}_t$ gilt als "zum Zeipunkt t bekannt".

Erinnerung. Eine \mathbb{R}^d -wertige Zufallsvariable X heißt \mathcal{F}_t -messbar, wenn

$$X^{-1}(B) \in \mathcal{F}_t \quad \forall \text{ Borelmengen } B \subseteq \mathbb{R}^d$$

Beispiel 1.5

Sei S ein stochastischer Prozess. Dann heißt

$$\mathcal{F}_t^S = \sigma(\{(S_r) : r \in I, r \le t\})$$

von S erzeugte Filtration.

Definition 1.6 (adaptierter Prozess)

Ein stochastischer Prozess $(S_t)_{t\in I}$ auf (Ω, \mathcal{F}) heißt **adapiert** bezüglich einer Filtration $(\mathcal{F}_t)_{t\in I}$, wenn gilt S_t ist \mathcal{F}_t -messbar für alle $t\in I$.

Interpretation: Der Wert S_t ist zum Zeitpunkt t "bekannt".

Warum Filtrationen in der Finanzmathematik?

- Unterscheidung Zunkunft/Vergangenheit
- Unterscheidung Informationen (Insider/Outsider) Unterscheidung Filtration $(\mathcal{F}_t)_{t\in I}$ bzw. $(\mathcal{G}_t)_{t\in I}$
- (4) Anlagegüter [assets]: \mathbb{R}^{d+1} -wertiger stochastischer Prozess mit Komponenten

$$S^{i} \colon \left\{ \begin{array}{ccc} (\Omega \times I) & \to & \mathbb{R} \\ (\omega, t) & \mapsto & S^{i}_{t}(\omega) \end{array} \right. \quad (i \in \{0, 1, \dots, d\})$$

 S_t^i beschreibt dabei den Preis des *i*-ten Anlageguts zum Zeitpunkt $t. S^i$ $(i \in \{1, ..., d\})$ ist typischerweise

- Aktien [stock], Unternehmensanteil
- Währung [currency] bzw. Wechselkurs
- Rohstoff [commodity] wie z.B. Öl, Edelmetall, Elektrizität
- Anleihe [bond] ... Schuldverschreibung

Hauptannahme: S^i ist liquide gehandelt (z.B. Börse), d.h. der Kauf und Verkauf zum Preis S^i_t ist jederzeit möglich. Der "Numeraire" S^0 hat eine Sonderrolle und beschreibt die Verzinsung von nicht in (S^1, \ldots, S^d) angelegtem Kapital. Er wird als risikolos betrachtet.

Definition 1.7

Ein Finanzmarktmodell (FFM) mit Zeitachse I ist gegeben durch

- (1) einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ mit Filtration $(\mathcal{F}_t)_{t \in I}$
- (2) einem an $(\mathcal{F}_t)_{t\in I}$ adaptierten, \mathbb{R}^{d+1} -wertigen stiochastischen Prozess $S_t = (S_t^0, S_t^1, \dots, S_t^d)$ mit $t \in I$.

Beispiel 1.8 (Cox-Ross-Rubinstein-Modell)

Das CRR-Modell ist ein zeitdiskretes Modell beschrieben durch

- $S_n^0 = (1+r)^n$... Verzinsung mit konstanter Rate r
- $S_n^1 = S_0^1 \prod_{k=1}^n (1+R_k)$, wobei (R_1, R_2, \dots) unabhängige Zufallsvariablen mit zwei möglichen Werten a < b sind

 \hookrightarrow rekombinierender Baum,

Abbildung 1.1: Cox-Ross-Rubinstein-Modell Ereignisse ω entsprechen Pfaden im Baum

Beispiel 1.9 (Black-Scholes-Modell, zeitstetig)

Beim Black-Scholes-Modell handelt es sich um ein zeitstetiges Modell auf einem unendlichen Wahrscheinlichkeitsraum.

$$S_t^0 = e^{rt}$$
 (Verzinsung mit konstanter Rate r)
$$S_t^1 = S_0^1 \cdot \exp\left((\mu - \frac{\sigma^2}{2}) + \sigma B_t\right)$$
 mit $\mu \in \mathbb{R}, \sigma > 0, S_0^1 > 0$

Der Term $\mu - \frac{\sigma^2}{2}$ beschreibt dabei eine Trendkomponenten, B_t eine "Brownsche Bewegung" (zeitstetiger Prozess).

Abbildung 1.2: Black-Scholes-Modell

1.3 Anleihen und grundlegende Beispiele für Derivate

Hier betrachten wir immer nur ein Basisgut $S_t = S_t^1$.

(a) Anleihe [bond] (genauer: Null-Kupon-Anleihe [zero-coupon bond])

Der Emittent (Herausgeber) einer Anleihe mit Endfälligkeit [maturity] T garantiert dem Käufer zum Zeitpunkt T den Betrag N (EUR/USD/...) zu zahlen. Typische Emittenten sind z.B. Staaten [government bond] oder Unternehmen (als Alternative zur Kreditaufnahme). Nach Emission werden Anleihen auf dem Sekundärmarkt weiterverkauft, d.h. liquide gehandelte Wertpapiere.

Preis bei Emission: B(0,T)

Preis bei Weiterverkauf zum Zeitpunkt $t \leq T$: B(t,T)

Es ist B(T,T) = N und wir normieren stets $N = 1 \implies B(T,T) = 1$.

Anleihen von West-/ Nord-/ Mitteleuropäischen Staaten und den USA sowie Kanada werden als risikolos betrachtet (sichere Zahlung). Sonst: Kreditrisiko

Risikofreie Anleihen können als Numeraire $S_t^0 = B(t,T)$ genutzt werden.

Abbildung 1.3: Zahlungsstrom einer Anleihe

(b) **Terminvertrag** [forward contract]

aus Käufersicht: Vereinbarung zu bestimmtem zukünftigen Zeitpunkt T eine Einheit des Basisguts S zum Preis K zu kaufen (Kaufverpflichtung). Beliebt ist dieser bei Rohstoffen und Elektrizität.

Auszahlungsprofil: ${\cal F}_T = {\cal S}_T - {\cal K}$ Preis zum Zeitpunkt $t{:}~{\cal F}_t$

Abbildung 1.4: Auszahlungsprofil eines Terminvertrags

(c) (Europäische) Put- bzw. Call-Option

Recht zu einem zukünftigen Zeitpunkt T eine Einheit des Basisguts S zum Preis K zu verkaufen (put) bzw. zu kaufen (call) \rightarrow keine Kaufverpflichtung!

Auszahlungsprofil:

■ Call:
$$C_T = \begin{cases} S_T - K & S_T \ge K \\ 0 & S_T < K \end{cases} = (S_T - K)_+$$

■ Put:
$$P_T = \begin{cases} 0 & S_T \ge K \\ K - S_T & S_T < K \end{cases} = (K - S_T)_+$$

(d) Amerikanische Put- bzw. Call-Option

wie Put/Call, aber mit Ausübung zu beliebigem Zeitpunkt $\tau \in [0, T]$.

Preis zum Zeitpunkt t: P_t^{AM} , C_t^{AM}

Auszahlungsprofil zum Zeitpunkt τ : $(S_{\tau} - K)_{+}, (K - S_{\tau})_{+}$

Der Zeitpunkt τ muss im Allgemeinen als Lösung eines stochastischen Optimierungsproblems bestimmt werden (optimales Stopp-Problem).

1.4 Elementare Replikations- und Arbitrageargumente

Was können wir (mit elementaren Mitteln) über die "fairen" Preise $B(t,T), F_t, C_t, P_t$ aussagen? Wir verwenden:

- Replikationsprinzip: zwei identische, zukünftige Zahlungsströme haben auch heute denselben Wert (ein Zahlungsstrom "repliziert" den anderen)
- No-Arbitrage-Prinzip: "Ohne Kapitaleinsatz kann kein sicherer Gewinn ohne Verlustrisiko erzielt werden." (Arbitrage = risikofreier Gewinn)
- Superreplikationsprinzip (schwächere Form des Replikationsprinzips): Ist ein Zahlungsstrom in jedem Fall größer als ein anderer, so hat er auch heute den größeren Wert.

stark	Replikationsprinzip	eingeschränkt anwendbar
\	Superreplikationsprinzip	<u> </u>
schwach	No-Arbitrage-Prinzip	immer anwendbar

Lemma 1.10

Für den Preis C_T des europäischen Calls gilt:

$$(S_t - KB(t,T))_{\perp} \le C_t \le S_t$$

Beweis. untere Schranke: Für Widerspruch nehme an, dass $S_t - KB(t,T) - C_t = \varepsilon > 0$.

Portfolio	Wert in t	Wert in T	
FOLCIOIIO		$S_T \leq K$	$S_T > K$
Kaufe Call	C_t	0	$S_T - K$
Verkaufe Basisgut	$-S_T$	$-S_T$	$-S_T$
Kaufe Anleihe	$\varepsilon + KB(t,T)$	$\frac{\varepsilon}{B(t,T)} + K$	$\frac{\varepsilon}{B(t,T)} + K$
Σ	0	$K - S_T + \frac{\varepsilon}{B(t,T)} > 0$	$\frac{\varepsilon}{B(t,T)} > 0$
	kein Anfangskapital	sicherer Gewinn	

Dies steht jedoch im Widerspruch zum No-Arbitrage-Prinzip. Somit ist $S_t - KB(t,T) \leq C_T$. Außerdem ist $C_t \geq 0$, d.h. $C_t \geq (S_t - KB(t,T))_+$.

obere Schranke: ↗ Übung

Lemma 1.11 (Put-Call-Parität)

Für Put P_t , Call C_t mit selbem Ausübungspreis K und Basisgut S_t gilt

$$C_t - P_t = S_t - B(t, T) \cdot K$$

Beweis. Mit Replikationsprinzip:

Portfolio 1	737	Wert in T	
Portiono 1	Wert in t	$S_T \leq K$	$S_T > K$
Kaufe Call	C_t	0	$S_T - K$
Kaufe Anleihe	$K \cdot B(t,T)$	K	K
Wert Portfolio 1	$C_t + K \cdot B(t,T)$	K	S_T

Portfolio 2	Wert in t	Wert in T	
		$S_T \leq K$	$S_T > K$
Kaufe Put	P_t	$K-S_T$	0
Kaufe Basisgut	S_t	S_T	S_T
Wert Portfolio 2	$P_t + S_t$	K	S_T

Replikationsprinzip: $C_t + K \cdot B(t,T) = P_t + S_t \implies C_t + P_t = S_t - K \cdot B(t,T)$

1.5 Bedingte Erwartungswerte und Martingale

1.5.1 Bedingte Dichte und bedingter Erwartungswert

Motivation: Gegeben seien zwei Zufallsvariablen (X, Y) mit Werten in $\mathbb{R}^m \times \mathbb{R}^n$ und gemeinsamer Dichte $f_{XY}(x, y)$.

Aus Dichte f_{XY} können wir ableiten:

- $f_Y(y) := \int_{\mathbb{R}^m} f_{XY}(x,y) \, dx$, die Randverteilung von Y
- $\blacksquare \ S_y := \{y \in \mathbb{R}^n : f_Y(y) > 0\},$ der Träger von Y

Definition 1.12

Die bedingte Dichte von X bzgl. Y ist definiert als

$$f_{X|Y}(x,y) = \begin{cases} \frac{f_{XY}(x,y)}{f_Y(y)} & y \in S_y \\ 0 & \notin S_y \end{cases}$$

Betrachte folgende Problemstellung: Was ist die beste Vorhersage von X gegeben eine Beobachtung Y = y?

Kriterium: Minimiere quadratischen Abstand bzw. das zweite Moment bzw. die L_2 -Norm.

Vorhersage: messbare Funktion $g: \mathbb{R}^n \to \mathbb{R}^m, y \mapsto g(y)$.

$$\min \left\{ \mathbb{E}\left[(X - g(y))^2 \right] : g \text{ messbar } \mathbb{R}^n \to \mathbb{R}^m \right\}$$
 (min-1)

Proposition 1.13

Wenn (X,Y) eine gemeinsame Dichte besitzen und $\mathbb{E}\left[|X|^2\right]<\infty$ gilt, dann wird (min-1) minimiert durch die bedingte Erwartung

$$g(y) = \mathbb{E}[X|Y = y] := \int_{\mathbb{R}^m} x f_{X|Y}(x, y) dx$$

Wir bezeichnen $\mathbb{E}[X|Y=y]$ als Erwartungswert von X bedingt auf Y=y.

Allgemeiner gilt:

Theorem 1.14

eien (X,Y) Zufallsvariablen mit gemeinsamer Dichte auf $\mathbb{R}^m \times \mathbb{R}^n$ und $h \colon \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ messbar mit $\mathbb{E}[h(X,Y)^2]$. Dann wird das Minimierungsproblem

$$\min \left\{ \mathbb{E} \left[(h(X, Y) - g(Y))^2 \right] : g \text{ messbar } \mathbb{R}^n \to \mathbb{R} \right\}$$

gelöst durch

$$g(y) = \mathbb{E}\left[h(X,Y)|Y=y\right] = \int_{\mathbb{R}^m} h(x,y) \cdot f_{X|Y}(x,y) \ \mathrm{d}x$$

Beweis (nur Proposition für m=1, Theorem analog). Setze $g(y)=\int_{\mathbb{R}}xf_{X|Y}(x,y)~\mathrm{d}x$. Sei $p\colon\mathbb{R}^n\to\mathbb{R}$ eine beliebige messbare Funktion mit $\mathbb{E}\left[p(Y)^2\right]<\infty$. Setze weiter $g_\varepsilon(y)=g(y)+\varepsilon p(y)$. Minimiere $F(\varepsilon):=\mathbb{E}\left[(X-g(y))^2\right]=\mathbb{E}\left[(X-g(y)-\varepsilon p(y))^2\right]=\mathbb{E}\left[(X-g(Y))^2\right]-2\varepsilon\mathbb{E}\left[(X-g(Y))p(Y)\right]+\varepsilon^2\mathbb{E}\left[p(Y)^2\right]$.

$$\begin{split} \frac{\partial F}{\partial \varepsilon}(\varepsilon) &= 2\varepsilon \mathbb{E}\left[p(Y)^2\right] - 2\mathbb{E}\left[(X - g(Y))p(Y)\right] \ \Rightarrow \ \varepsilon_* := \frac{\mathbb{E}\left[(X - g(Y))p(Y)\right]}{\mathbb{E}\left[p(Y)^2\right]} = \frac{A}{B} \\ A &= \mathbb{E}\left[Xp(Y)\right] - \mathbb{E}\left[g(Y)p(Y)\right] \\ &= \int_{\mathbb{R}\times\mathbb{R}^n} xp(y)f_{XY}(x,y) \ \mathrm{d}x \ \mathrm{d}y - \int_{S_y} g(y)p(y)f_Y(y) \ \mathrm{d}y \\ &= \int_{\mathbb{R}\times\mathbb{R}^n} xp(y)f_{XY}(x,y) \ \mathrm{d}x \ \mathrm{d}y - \int_{\mathbb{R}\times S_y} xp(y)\underbrace{f_{X|Y}(x,y)f_Y(y)}_{=f_{XY}(x,y)} \ \mathrm{d}y = 0 \end{split}$$

Damit ist $\varepsilon^* = 0$ unabhängig von p und g(y) minimiert (min-1).

Beispiel

Seien (X,Y) normalverteilt auf $\mathbb{R} \times \mathbb{R}$ mit

$$\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix} \qquad \Sigma = \begin{pmatrix} Var[X] & \mathbb{C}\text{ov}\left(X,Y\right) \\ \mathbb{C}\text{ov}\left(X,Y\right) & \mathbb{V}\text{ar}\left(Y\right) \end{pmatrix} = \begin{pmatrix} \sigma_x^2 & \rho\sigma_x\sigma_y \\ \rho\sigma_x\sigma_y & \sigma_y^2 \end{pmatrix} \qquad \rho \in [-1,1]$$

Dann ist die bedingte Dichte $f_{X|Y}(x,y)$ wieder die Dichte einer Normalverteilung mit

$$\mathbb{E}[X|Y=y] = \mu_X + \rho \frac{\sigma_X}{\sigma_Y} (y - \mu_Y)$$

$$\mathbb{V}\text{ar}(X|Y=y) = \sigma_X^2 (1 - \rho^2)$$

 \rightarrow siehe Übung.

Die Abbildung $y \mapsto \mu_X + \rho \frac{\sigma_X}{\sigma_Y} (Y - \mu_Y)$ heißt Regressionsgerade für X gegeben Y = y.

Die Steigung wird im Wesentlichen durch ρ bestimmt.

Für diskrete Zufallsvariablen, d.h. wenn X,Y nur endliche viele Werte $\{x_1,\ldots,x_m\}$ bzw. $\{y_1,\ldots,y_n\}$ annehmen, dann erhalten wir mit ähnlichen Überlegungen als Lösung von (min-1)

$$\mathbb{E}\left[X|Y=y_j\right] = \sum_{i=1}^m x_i \mathbb{P}(X=x_i|Y=y_j)$$

wobei direkt die bedingten Wahrscheinlichkeiten

$$\mathbb{P}(X = x_i | Y = y_j) = \begin{cases} \frac{\mathbb{P}(X = x_i \land Y = y_j)}{\mathbb{P}(Y = y_j)} & \text{wenn } \mathbb{P}(Y = y_j) > 0\\ 0 & \text{wenn } \mathbb{P}(Y = y_j) = 0 \end{cases}$$

folgen.

1.5.2 Bedingte Erwartung: Maßtheoretischer Zugang

Wir betrachten den Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Für eine Zufallsvariable $X : \Omega \to \mathbb{R}$ und $p \in [1, \infty)$ definieren wir, doe L_p -Norm

$$\|X\|_p := \mathbb{E}\left[|X|^p\right]^{\frac{1}{p}} = \left(\int_{\Omega} |X(\omega)|^p \ \mathrm{d}\mathbb{P}(\omega)\right)^{\frac{1}{p}}$$

und den L_p -Raum

$$L_p(\Omega, \mathcal{F}, \mathbb{P}) := \left\{ X \colon \Omega \to \mathbb{R} \mid \mathcal{F}\text{-messbar}, \|X\|_p < \infty \right\}$$

Dabei identifizieren wir Zufallsvariablen, die sich nur auf \mathbb{P} -Nullmengen unterscheiden miteinander, d.h. $\mathbb{P}(X \neq X') = 0 \Rightarrow X = X'$ in L_p . Aus der Maßtheorie bekannt: Die Räume $L_p(\Omega, \mathcal{F}, \mathbb{P})$ mit Norm $\|...\|_p$ mit $p \in [1, \infty)$ sind

- Banachräume, d.h. vollständige, normierte Vektorräume.
- \blacksquare für p=2 auch Hilbertraum mit inneren Produkt

$$\langle X, Y \rangle = \mathbb{E}[XY] = \int_{\Omega} X(\omega)Y(\omega) d\mathbb{P}(\omega)$$

Für $\mathcal{G} \subseteq \mathcal{F}$ Unter- σ -Algebra ist $L_p(\Omega, \mathcal{G}, \mathbb{P}) \subseteq L_p(\Omega, \mathcal{F}, \mathbb{P})$ ein abgeschlossener Unterraum.

KAPITEL 1. EINFÜHRUNG

Wir verallgemeinern das "Vorhersageproblem" als dem letzten Abschnitt: Gegeben sei ein Zufallsvariale X aus $L_2(\Omega, \mathcal{F}, \mathbb{P})$ und $\mathcal{G} \subseteq \mathcal{F}$ eine Unter- σ -Algebra. Was ist die beste \mathcal{G} -messbare Vorhersage für X?

$$\min \left\{ \mathbb{E}\left[(X - G)^2 \right] : G \in L_2(\Omega, \mathcal{G}, \mathbb{P}) \right\}$$
 (min-2)

Aus Hilbertraumtheorie folgt, dass (min-2) besitzt eine eindeutige Lösung $G_* \in L_(\Omega, \mathcal{G}, \mathbb{P})$. G_* ist die Orthogonalprojektion (bzgl. $\langle \cdot, \cdot \rangle$) von $X \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ auf den abgeschlossenen Unterraum $L_2(\Omega, \mathcal{G}, \mathbb{P})$.

Wir bezeichnen G_* mit $\mathbb{E}[X|\mathcal{G}]$ als bedingten Erwartunswert von X bezüglich \mathcal{G} .

Theorem 1.15

Seien $X, Y \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ und $\mathcal{G} \subseteq \mathcal{F}$ eine Unter- σ -Algebra. Dann gilt

- Linearität: $\mathbb{E}[aX + bY|\mathcal{G}] = a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}]$
- Turmregel: Für jede weitere σ -Algebra $\mathcal{H} \subseteq \mathcal{G}$ gilt $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]|\mathcal{H}\right] = \mathbb{E}\left[X|\mathcal{H}\right]$
- Pull-out-Property: $\mathbb{E}[XZ|\mathcal{G}] = Z \cdot \mathbb{E}[X|\mathcal{G}]$ für alle beschränkten und \mathcal{G} -messbaren Zufallsvariablen Z. Für Z \mathcal{G} -messbar mit $\mathbb{E}[|XZ|] < \infty$ gilt $\mathbb{E}[XZ|\mathcal{G}] = Z \cdot \mathbb{E}[X|\mathcal{G}]$. Insbesondere gilt für \mathcal{G} -messbare X schon $\mathbb{E}[X|\mathcal{G}] = X$.
- Monotonie: $X \leq Y \implies \mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}]$
- Dreiecksungleichung: $|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}]$
- Unabhängigkeit: X unabhängig von $\mathcal{G} \Rightarrow \mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$
- triviale σ -Algebra: $\mathcal{G} = \{\emptyset, \Omega\} \Rightarrow \mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$

Beweis. siehe VL "Wahrscheinlichkeitstheorie mit Martingalen"

Die für $X \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ definierte bedingte Erwartung $\mathbb{E}[X|\mathcal{G}]$ lässt sich durch Approximation auf alle $X \in L_1(\Omega, \mathcal{F}, \mathbb{P})$ erweitern. Alle Eigenschaften aus Theorem 1.5 bleiben erhalten.

Sei Y eine Zufallsvariable und $\mathcal{G} = \sigma(Y)$ die von Y erzeugte σ -Algebra. Wir schreiben $\mathbb{E}[X|Y] = \mathbb{E}[X|\sigma(Y)]$; dies ist eine \mathcal{G} -messbare Zufallsvariable.

Aus der Maßtheorie sag uns das Doob-Dynkin-Lemma, dass eine messbare Funktion $g: \mathbb{R}^n \to \mathbb{R}$ existiert, sodass $\mathbb{E}[X|Y] = g(Y)$. Dabei ist g genau die Funktion aus (min-1).

Zusammenfassung

Sei X, Y aus $L_1(\Omega, \mathcal{F}, \mathbb{P})$ und $\mathcal{G} \subseteq \mathcal{F}$ eine Unter- σ -Algebra.

- (a) $\mathbb{E}[X|Y=y]$ ist eine messbare Funktion $g\colon \mathbb{R}^n\to\mathbb{R}^m$ und falls eine bedingte Dichte existiert, dann gilt $\mathbb{E}[X|Y=y]=\int_{\mathbb{R}^m}xf_{X|Y}(x,y)$ dx.
- (b) $\mathbb{E}[X|Y]$ ist eine $\sigma(Y)$ -messbare Zufallsvariable und kann als g(Y) dargestellt werden. Falls eine bedingte Dichte existiert, dann gilt $\mathbb{E}[X|Y](\omega) = \int_{\mathbb{R}}^{n} x f_{X|Y}(x, Y(\omega)) dx$.
- (c) $\mathbb{E}[X|\mathcal{G}]$ ist eine \mathcal{G} -messbare Zufallsvariable. Falls $\mathcal{G} = \sigma(Y)$ tritt Fall (b) ein.

In allen Fällen kann $\mathbb{E}[X|\cdot]$ interpretiert werden als beste Vorhersage für X gegeben

- (a) eine punktweise Betrachtung Y = y
- (b) die Beobachtung Y
- (c) die Information \mathcal{G}

1.5.3 Martingale

Prototyp eines "neutralen" stochastischen Prozesses, der weder Aufwärts- noch Abwärtstrend besitzt. Wir betrachten hier den Prozess nur in diskreter Zeit $I = \mathbb{N}_0$.

Definition 1.16

Sei $(X)_{n\in\mathbb{N}_0}$ ein stochastischer Prozess. Wenn gilt

$$\mathbb{E}[|X_n|] < \infty \qquad \forall n \in \mathbb{N}$$

$$\mathbb{E}[X_{n+1}|X_1, \dots, X_n] = X_n \qquad \forall n \in \mathbb{N}$$
(1.1)

dann heißt $(X_n)_{n\in\mathbb{N}}$ Martingal.

Wenn wir $\mathcal{F}_n^X = \sigma(X_1, \dots, X_n)$ definieren, können wir (b) schreiben als

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n^X\right] = X_n \qquad \forall n \in \mathbb{N}$$

Konvention: Alle stochastischen Prozesse $(X_n)_{n\in\mathbb{N}_0}$ haben deterministischen Startwert X_0 .

Interpretation: Beste Vorhersage für zukünftigen Wert X_{n+1} basierend auf Vergangenheit $\sigma(X_1, \dots, X_n)$ ist der momentane Wert X_n . Aus der Turmregel folgt:

$$\mathbb{E}\left[X_{n+k}|\mathcal{F}_n^X\right] = X_n \qquad \forall n, k \in \mathbb{N}_0$$

denn

$$\mathbb{E}\left[X_{n+k}|\mathcal{F}_n^X\right] = \mathbb{E}\left[\underbrace{\mathbb{E}\left[X_{n+k}|\mathcal{F}_{n+k-1}^X\right]}_{=X_{n+k-1}}|\mathcal{F}_n^X\right] = \mathbb{E}\left[X_{n+k-1}|\mathcal{F}_n^X\right] \stackrel{k \text{ mal }}{=} X_n$$

Man kann von $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ auf beliebige Filtrationen $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ erweitert werden.

Definition

Sei $(X_n)_{n\in\mathbb{N}_0}$ ein stochastischer Prozess, adaptiert an eine Filtration $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$. Wenn gilt

$$\mathbb{E}\left[|X_n|\right] < \infty \ \forall n \in \mathbb{N}_0$$

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = X_n \forall n \in \mathbb{N}_0$$

dann heißt $(X_N)_{n\in\mathbb{N}}$ Martingal bezüglich der Filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

Interpretation: Beste Vorhersage für zukünftigen Wert X_{n+1} , basierend auf verfügbarer Infor-

mation \mathcal{F}_n ist der momentane Wert X_n .

Definition

Falls in Punkt (b) statt "=" die Ungleichung " \leq " oder " \geq " gilt, so heißt $(X_n)_{n\in\mathbb{N}}$ Super- bzw. Submartingal.

■ Wenn $X = (X_n)_{n \in \mathbb{N}}$ ein Martingal ist, dann gilt $\mathbb{E}[X_n] = X_0$, d.h. $n \mapsto \mathbb{E}[X_n]$ ist konstant. Begründung:

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = X_n \quad \Rightarrow \quad \underbrace{\mathbb{E}\left[\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right]\right]}_{=\mathbb{E}\left[X_{n+1}\right]} = \mathbb{E}\left[X_n\right] \stackrel{n \text{ mal }}{\Rightarrow} \mathbb{E}\left[X_n\right] = X_0$$

- $\blacksquare \ X$ Submartingal $\Rightarrow n \mapsto \mathbb{E}\left[X_n\right]$ ist monoton steigend
- X Supermartingal \Rightarrow $n \mapsto \mathbb{E}[X_n]$ ist monoton fallend

"Das Leben ist ein Supermartingal – die Erwartungen fallen mit der Zeit" ©

Beispiel 1.17

■ Seien $(Y_n)_{n\in\mathbb{N}}$ unabhängige Zufallsvariablen in $L_1(\Omega, \mathcal{F}, \mathbb{P})$ mit $\mathbb{E}[Y_n] = 0$. Betrachten wir die Partialsummen $X_n := \sum_{k=1}^n Y_k$ und $X_0 = 0$. Dann ist $(X_n)_{n\in\mathbb{N}_0}$ ein Martingal, denn

$$\mathbb{E}\left[|X_n|\right] \le \sum_{k=1}^n \mathbb{E}\left[|Y_k|\right] < \infty \qquad \forall n \in \mathbb{N}$$

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n^X\right] = \mathbb{E}\left[Y_{n+1} + X_n \mid \mathcal{F}_n^X\right]$$

$$= \mathbb{E}\left[y_{n+1} \mid \mathcal{F}_n^X\right] + \mathbb{E}\left[X_n \mid \mathcal{F}_n^X\right] = \underbrace{\mathbb{E}\left[Y_{n+1}\right]}_{=0} + X_n$$

$$= X_n$$

Definition

Sei $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ eine Filtration. Ein stochastischer Prozess $(H_n)_{n\in\mathbb{N}}$ heißt **vorhersehbar** [predictable] bezüglich $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ wenn gilt

$$H_n$$
 ist \mathcal{F}_{n-1} -messbar $\forall n \in \mathbb{N}$

Bemerkung

Vorhersehbarkeit ist eine stärkere Eigenschaft als Adaptiertheit.

Definition

Sei X ein adaptierter und H ein vorhersehbarer stochastischer Prozess bezüglich $(\mathcal{F}_n)_{n\in\mathbb{N}}$. Dann heißt

$$(H \bullet X)_n := \sum_{k=1}^n H_k(X_k - X_{k-1}) \tag{*}$$

diskretes stochastisches Integral von H bezüglich X.

Bemerkung

Summen (\star) heißen in der Analysis Riemann-Stieltjes-Summen und werden für die Konstruktion des Riemann-Stieltjes-Integrals $\int h \ d\rho$ verwendet.

KAPITEL 1. EINFÜHRUNG

Definition

Ein stochastischer Prozess $(H_n)_{n\in\mathbb{N}}$ heißt lokal beschränkt, wenn eine deterministische Folge $c_n\in\mathbb{R}_{\geq 0}$ existiert, sodass

$$|H_n| \le c_n$$
 fast sicher $\forall n \in \mathbb{N}$

Satz 1.18

Sei X adaptierter stochastischer Prozess (bezüglich Filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$). Dann sind äquivalent:

- (1) X ist Martingal.
- (2) $(H \bullet X)$ ist Martingal für alle lokal beschränkten, vorhersbaren $(H_n)_{n \in \mathbb{N}}$

Das heißt, dass das stochastische Integral die Martingaleigenschaft erhält.