

SEQUENCE LISTING

<110> NEELAM, Beena et al

<120> ISOLATED HUMAN RAS-LIKE PROTEINS,
NUCLEIC ACID MOLECULES ENCODING THESE HUMAN RAS-LIKE
PROTEINS, AND USES THEREOF

<130> CL001112

<140> 09/778,963

<141> 2001-02-08

<160> 9

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 3082

<212> DNA

<213> Homo sapiens

<400> 1

ggcgtcgccg cgccccggaga aagaagccgc gcccagcccc gggtccccgag cagcgcagg 60
gaggatcccc gcgcagtgac ccggggagcca ccacagactc tggggaggctc ggcggctgga 120
gcagcaggca gctcccccga gctcccccggcg ctccaggca gctctctgag ccgtgccaga 180
ggccggcccg gccattccca gccccggagcc atgatgaaga ctttgcgtccag cgggaactgc 240
acgctcagtg tgcccgccaa aaactcatac cgcatggtg tgctgggtgc ctctcgggtg 300
ggcaagagct ccacatcggtc tcgcttcctc aatggccgct ttgaggacca gtacacaccc 360
accatcgagg acttccaccc taaggtaaac aacatccgcg gcgacatgta ccagctcgac 420
atccggata cctctggcaa ccaccccttc cccgcctgc gcaggctgtc catccctcaca 480
ggggatgtct tcacatcctggt gttcagctg gataaccggg agtccttcga tgaggtaag 540
cgcccttcaga agcagatcct ggagggtcaag tcctgcctga agaacaagac caaggaggcg 600
gcccggctgc ccacatggcat ctgtggcaac aagaacgacc acggcgagct gtgcggccag 660
gtgcccacca cccggggccga gctgctggtg tcggggcgacg agaactccgc ctacttcgag 720
gtgtcgccca agaagaacac caacatcggtc gagatgttct acgtgctctt cagcatggcc 780
aagctgccac acgagatgag ccccgccctg catcgcaaga tctccgtgca gtacgggtgac 840
gccttccacc ccaggccctt ctgcacatgcgc cgcgtcaagg agatggacgc ctatggcatg 900
gtctcgccct tcgccccggcg ccccaagcgac aacagtgacc tcaagtacat caaggccaag 960
gtccttcggg aaggccaggc ccgtgagagg gacaagtgc ccacatcccg agcgaggat 1020
gctggggccg ggcttggcca gtgccttcag ggagggtggcc ccagatgccc actgtgcgca 1080
tctcccccacc gaggccccgg cagcagtctt gttcacagac cttaggcacc agactggagg 1140
ccccccggcg ctggcctccg cacattcgac tgccttcata cagcttcctt gagtccgctt 1200
gtccacagct ccttgggttgt ttcatctctt ctgtggggagg acacatctct gcagcctcaa 1260
gagttaggca gagactcaag ttacacccctt ctctccctggg gttgaaatggaa atgttgcgt 1320
cagaggggtg aggattgctg cgtcatatgg agcctccctgg gacaagcctc aggtgaaaa 1380
ggacacagaa ggccagatga gaaaggcttc ctctctccgt gcataaacacc cagcttgggt 1440
tgggtggcg ctgggagaac ttctctccca gccctgcaac tcttacgctc tggttcagct 1500
gcctctgcac cccctccac ccccaagcaca cacacaagtt ggccccccagc tgcgcctgac 1560
attgagccag tggactctgt gtctgaagggg ggcgtggcca cacctccctag accacgccc 1620
ccacttagac cacccccacc tcctgaccgc gttcctcagc ctcctctccctt aggtccctcc 1680
gcccggacagt tggctttgt tgggttgca gctgtttcg tgtcatgtat agtagtagaa 1740
atggaaatca ttgtactgta aaaggcttagt gactccctcc ttggccaggc cctcaccac 1800
ttcagatcca cggccctccac cggggacgccc ttccctccct gctcccaaac agggttccg 1860
tggcctgttt gcagctagac attgacccctt gccattgagc tccacgggtt acagacaatt 1920
gcacaaggcg ggggtggca gggcaggact gctttttttt aatgctccca tttcacagag 1980

gataccacg agactcgag gggacacgt gaggcaccagg ccccacctt gtcccttagc 2040
 aaattcaggg tacagctcca cctagaacca ggctgcctc tactgtgctc gttcctaag 2100
 catttattaa gcacctactg ggtgctgggt tcactgtgtc ctaggaaacc aagagggtcc 2160
 ccagtctgg cctctgccc cccctgctc cccaccacct tctgcacaca cagcgggtggg 2220
 gaggcgggaa ggagcagctg ggacccagaa ctgagcctgg gagggatccg acagaaaagc 2280
 tcagggcggg tcttcctt gtgcccggg ttggctatg ctgggtacca ccatgtactc 2340
 aggcatggtg ggtttgaac ccataaacc aaggccctt tcatacgctc ttaacaagta 2400
 tattttgtat ttaatctct ctaaacatat tgaagttta gggccctaag gaaccttagt 2460
 gatcttctat tgggtcttc tgaggttcag agagggttaag taacttcctc caggtcacac 2520
 agcaagtctg tgggtggcag aagcaagcta gcgcgtggca ttcaagtacat accacgatgt 2580
 gctccctctc ttgatgctt gcccctggg cttcaggc ttgggacat cttgtcctca 2640
 accctctccc tagatcagtc tgtgagggtc cctgtagata ttgtgtacac catgcccatt 2700
 tatatacaag tacacacaga tgtacacaca gatgtacaca tgctccagcc ccagctctgc 2760
 atacctgcac ctgcacccca gccttggccc ctgcctgcgt ctgtgctcaa agcagcagct 2820
 ccaaccctgc ctctgtcccc ttccccaccc actgcctgag cttctgagc agaccaggt 2880
 ccttggctgc accggtgtgt ggcccgctc cacccaggca cagcccgcc accatggatc 2940
 tccgttaca ctatcaataa aagtgggtt gttacaaaaaa aaaaaaaaaaa aaaaaaaaaaa 3000
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3060
 aaaaaaaaaa aaaaaaaaaa aa 3082

<210> 2
 <211> 266
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Met Lys Thr Leu Ser Ser Gly Asn Cys Thr Leu Ser Val Pro Ala
 1 5 10 15
 Lys Asn Ser Tyr Arg Met Val Val Leu Gly Ala Ser Arg Val Gly Lys
 20 25 30
 Ser Ser Ile Val Ser Arg Phe Leu Asn Gly Arg Phe Glu Asp Gln Tyr
 35 40 45
 Thr Pro Thr Ile Glu Asp Phe His Arg Lys Val Tyr Asn Ile Arg Gly
 50 55 60
 Asp Met Tyr Gln Leu Asp Ile Leu Asp Thr Ser Gly Asn His Pro Phe
 65 70 75 80
 Pro Ala Met Arg Arg Leu Ser Ile Leu Thr Gly Asp Val Phe Ile Leu
 85 90 95
 Val Phe Ser Leu Asp Asn Arg Glu Ser Phe Asp Glu Val Lys Arg Leu
 100 105 110
 Gln Lys Gln Ile Leu Glu Val Lys Ser Cys Leu Lys Asn Lys Thr Lys
 115 120 125
 Glu Ala Ala Glu Leu Pro Met Val Ile Cys Gly Asn Lys Asn Asp His
 130 135 140
 Gly Glu Leu Cys Arg Gln Val Pro Thr Thr Glu Ala Glu Leu Leu Val
 145 150 155 160
 Ser Gly Asp Glu Asn Ser Ala Tyr Phe Glu Val Ser Ala Lys Lys Asn
 165 170 175
 Thr Asn Val Asp Glu Met Phe Tyr Val Leu Phe Ser Met Ala Lys Leu
 180 185 190
 Pro His Glu Met Ser Pro Ala Leu His Arg Lys Ile Ser Val Gln Tyr
 195 200 205
 Gly Asp Ala Phe His Pro Arg Pro Phe Cys Met Arg Arg Val Lys Glu
 210 215 220
 Met Asp Ala Tyr Gly Met Val Ser Pro Phe Ala Arg Arg Pro Ser Val
 225 230 235 240
 Asn Ser Asp Leu Lys Tyr Ile Lys Ala Lys Val Leu Arg Glu Gly Gln

245 250 255
Ala Arg Glu Arg Asp Lys Cys Thr Ile Gln
260 265

<210> 3
<211> 11221
<212> DNA
<213> Homo sapiens

<400> 3
ctctctgact ctttgccctcc tctctgactc cctgcctcct ctctctgtct ccctgcctcc 60
tctgtctgac tccctgcctc ccctctctgt ctcactgcct cctctctctg actctctgcc 120
tcctctctct gactccctgc ctccctctctc tgattccctg cctctttgac cctctgcctc 180
ctctctttga ctcccctgcct cctctctccg attctctgcg tctttactc cctgcctccct 240
ctctctgact ccctgaagct cattcagtca ttgctatcaa ctcgtctgta ccaagctcta 300
ggctggaggc tgggcaggag aatgatggag acaaatactg tccctggagag cttctggccc 360
ctttccatc ctgttttagac agaagtgcacc gccagcagag tcaagctgtc tgcagaagga 420
cttggggagg gggctgtcat gggtagggc ttctttcccc ccatctctgc tgaaggccca 480
ggctggctga gacagccccg gcagagactg agaagggttc ctgtctgtgg tctggcagcc 540
ccctctccac ctcctctctc tcatttcct gcctccaca cgtatgcctt gggcacctca 600
tcagggctgc ctcaggggag ggccctccctt ggcacagccc ctggccagt caggtggttg 660
aggctgagga gagaagggtcc cagagtgggg cttcaggcaa acccaaagac agagcccttt 720
gccatttgat gaatgcacag accctttatt gagccctgc tctgttcatg gcatggcagt 780
tttgtggat aaattcaaag acagctttag gtggagactg ggtgggggat gtgggggtct 840
taggcttcaa ctactaccca gcctcctttg ttaaccaaatg agctagtcac gtgccttct 900
gagctcgggg cagaccaccc gggatcaaac ctctccctgc ctggttactg gctgtgcaac 960
tgtaagcaag taatttaacc tctctgtgcc tcagttcct catctgtaaa ttggagaata 1020
acaccacctg ctttctgggg ttatgaaggg agaaataggt taacatgtgt gcagcactta 1080
gaacactctg gcatattttt gctgaaaaat gaatgcacgc tatgattatt tctataactta 1140
gtgcggggct tggcacactg catggctca agtggcagca gttgtcgtcc ttgtggctcc 1200
aggcctgggg tccgcccgtgt gctgagctgg cttattgtgc aegtccctt gtgattcatt 1260
catcgaagtc acatttagtag cttagaagtgc accgtatgttgg gagcatttac gccatggaaa 1320
ttggcaatag ggcttttaac aaaggatattt ttgagagccg gttccctgca cagaggctgg 1380
tagttggca gggtagcag atccagatgt gtgccaggaa ctgcacgcgaa ggcaatctct 1440
ccacctccag tggccatctc agacccatgc ttcatgatag ccaggaagcg atgggtttgg 1500
aaagcgcctt gggtaatgg gcgaggact caagggaaacc gacttggggc atcctgggg 1560
ggggaccggag ttgggcaca tacagccctt tgtgtgaatt taaaaacagt gcctttccct 1620
ctacacaaga tggccatcc tctggatac agccccacc tctggatgc agccccact 1680
tgcccaccca gccatgcgc tttgcagta tccaaacctgc acaacctgtg gcagcctgtg 1740
gaagaccggag gggattgata tttcagcagg cctgtgccc tttgcagttc aggggctgga 1800
aagctctctt ctggagaggg gagggattcc tgcaagggtg aggagatcag agaggccttc 1860
agagagcagg tggcaacttgc gccagaccct gaaacataag gggaaagaggg ttttctgcag 1920
aggggtggca tgagcaaagg agtggaggct gatctcagca gagctcaaac tgacgagggt 1980
gactggggctc aggggttctg gggcggggat tctgggtggc gctaaggtag gaaaggaggg 2040
agggctgggc tgtgaagagc ctttggggatg agcctgggttgg agcctgcggg tttgcttata 2100
caagagcttgc gatccatgtc ggctctttc atgaggtcaa gaggctccca tagaaagctc 2160
tgagtttgc ccagaaccat aacccttggaa gatggggaggg aagcttgcgc cagccatggg 2220
tcgttccca ttccacatcc tctactccgg gcctctgggt ctccctggagg caagtaaaca 2280
ccttagggctt gggaggccaa aatatccggg caggtcatgg agcggagggg gcccggccaga 2340
tgcagagcac aggtctaaag gtgggtcctc ctgaggtggc tgcaggagca accccaggca 2400
ttgggcttgg agcatgcgggt gtggacatag cttcccttc ttcccaggag ggctgaatgg 2460
ccacagaacc accccctgccc ccaggcttaa gaaatgcatg ctgtgcctt ccccatgtct 2520
tatccatgaa tcacaggttc cgggaaagcc agatggatga accaggaa gaaacggattc 2580
tcaccatgaa taccattttt gagatttcac catgtgctga gccccttgca acaactctat 2640
gaattggggctt cattttgcag atgagaaaag tgacttctag agaggttaag ctactagccc 2700
aagatcgttgc gctagaggca aggcaaggat tcaaatccca ggagtccggc gcttgcataa 2760

atgaaaggat gaatgaacgg atattgagtg agtgagtgga tgaaggaagg agtaaaggag 2820
agggcatgaa tgaatgagag ggtagaactc caagaccct tagaacctcg tctgatgttc 2880
ccattttaca gacagaaaac tgagtccctag acagaggcct agaggaggcc aagaggtggt 2940
ggggccaggt cggggggcc ctgatgcctg cttctctcg tttgttgcag ccccgagcca 3000
tcatgtaaac tttgtccagc gggaaactgca cgctcagtgt gcccgc当地 aactcatacc 3060
gcatgggtgt gctgggtgcc tctcggtgg gcaagagctc catcgtgtct cgcttcctca 3120
atggccgctt tgaggaccag tacacaccca ccatcgagga cttccacccgt aaggtataca 3180
acatcccgccg cgacatgtac cagctcgaca tcctggatac ctctggcaac caccccttcc 3240
ccgccccatgcg caggctgtcc atcctcacag gtgaggccc ctgggtgcgg ggctggggcg 3300
gcagggccag ggcattgggtg cgagggtgtc tgggcaacttgcagtttgc当地 tagacttgca 3360
tagccatcgat ctgagacagg cgtcatccct gcacaatgag gctcagagag gtttgccat 3420
gtgtggaaa tagtgtatgaa gtggggggcc ccgattccat tctgttagac tccagatcga 3480
ttactcatgg ctgtcgcccccc cgccttcagc atcaggagct gataccagca tgccccagg 3540
atattccctt ctagggaaaca gaatgatgccc ctggctgtct cttcccttcc ccggaagatg 3600
accaccaga gctccaggcc ccaaggtcag tccacggggc tcaggtctcc cacacccccag 3660
gcctttgcca cctccttagag aggtaaaggc aggacccagg cagtgtatcac caaagggaag 3720
ggggcttgggt catggtcata gtatgggtga tggcaacttgc tgacacttat cagaagctat 3780
gggcctggcc ctgttcttag agcttggcat gtatgggtttt ttgaaacaga gtctcgctct 3840
gtcaccagg ctggagtgca gtggcgcgtat ctgggtcactc tgcaacctct gcctccccc 3900
ttcaagcgat tctcctgcct cagtc当地 cactacaggca cgtggccacca 3960
tgccccgcta atttttgtat ttttacttag agacgggatt tcaccatgtt agccaggatg 4020
gtctcgatct cctgacccctg tgatctgcct acctcagctt cccaaagtgc tgagattaca 4080
ggcgtcagcc accgcggcca gccagcatgt agttattna ccctcactt aaatagttat 4140
tcattccctt ttacaggtg gggaaactgaa agccagaga ggttaagtaa ctcactccag 4200
tggtagcaca gctcgtaaag gcagtctgtt tttgtgc当地 cagacaagc cataccacag 4260
cctctcagcc ctgctggaa gggtagggag ggacaggag gttggggggg agaagggggtg 4320
agtggagctg aggggctgtg cccttgc当地 cactgcatta gcatggtagc taagaggaca 4380
agcccgggac ccagcacccctg ggtgtgagcc ctgggtccgc tgcttcctgg ctttgc当地 4440
cgaggcaagg gattttatct ctttgc当地 cagcactctc atctgtatcga ctgcaccaca 4500
tcaacactca tcctaaaggc actgtgagac ttaaatgaaat gatataatgt aaggcgctt 4560
gtgagcagat agtaaatgca caataaatcc ccaagtcttgc tggtggatca gcatttgc当地 4620
gtgggctgc tacgggttac acgatcattt cccaaatgc当地 gcccctgaag ttgctgagca 4680
gggataaggg aaggagtgag caggcaactc tctaggcatc attcagatcaa cccccc当地 4740
gaggtacttc tatacagaga aaccatgccc actcccagcc ctgctgc当地 cttgaggcca 4800
agactgaggg tgcgggggtgg cccctcccttgc agtgc当地 cttccaggct ggctttccg 4860
agcatctgac ccagacacca gtc当地 agttcttcc cccgttggg gagaaggggc 4920
atgttagatg gagagccctg ggtgc当地 ctttgc当地 ctttgc当地 ctcttggctt 4980
aaatgtgtga ccagaggcac atgc当地 ctttgc当地 tctgagtc当地 agcctcccca gccacacag 5040
gggcttaacc tcataaccccg cagggaggct gtgaggactg caagaaggct tttggggg 5100
gcttccagca cgtgacgggtt attcatttgc当地 tttgc当地 cccaggcttgg gggaggggg 5160
tgggtacccg ctgcaatgaa taaggctaat gacagaggga aggagagggg agatgttagag 5220
aggaagcaca tgc当地 attttgc当地 cagcattaaat tttcactgtgac acaagtaata cccaaacaca 5280
ccctccctgca aacgctacag ataaagctaa tgc当地 ctttgc当地 acccatgtcc ccaatccag 5340
gctccctgccc ctggccccc当地 ggtggccacc ctggcacttgc当地 ggc当地 ggcccttcc 5400
tccgtgacta caccggcatt cgtatggat tccccacaat ggagagttt tttgtctgtc 5460
tctttttat ggccatatac attctgatc当地 cagctgtcttgc atgcttgc当地 ttttttgc当地 5520
caccaccccg tgc当地 cattt tccaaacctgg tggaaacctca ttttttcaac ctc当地 tttcc 5580
tgctgctc当地 gaaattctgaa aagccattaa ttccactgtcc agtcttctt ccagctgcca 5640
gacggggccgat tctctgatgc ttggcatgc当地 agtctcgat tttgc当地 ttttgc当地 5700
agtcctcagg ggccccggat tagcctaaacg ggtatgggggtt tggcaggccca agcaggaaaga 5760
gttgc当地 aacgctgccc tc当地 ctttgc当地 agtctc当地 ttttgc当地 agccc当地 5820
ccatcaccc ccatccatttcc aggttcccttggtaaacttgc当地 gactgtgtcc caggccctgg 5880
ggagaccagg acgactgggtt gatggaaaccttgc当地 cccaggcttgg tggaggccac 5940
ctttgtatctg gacaccattt tgaatgtgccc atgtgccattt aaatgggggtt aaatgtatgt 6000
ctctgggggtt gcagaggaaat gttgc当地 ctttgc当地 agtctggacttgc当地 gtttgc当地 6060
cttctcaaga atttggggccatcatttgc当地 ctttgc当地 ttttgc当地 catctgtgag 6120
acagggatct tgc当地 caccacca caaggcttgc当地 aagatgttgc当地 gcaaaaagg 6180

tggctcatgc ctgtaatccc agctttgg gaggccgagg tggcagatc tctttaggtc 6240
 aggagttcaa gaccagcctg gctaacacag taaaacaccg tctctactaa aaaataaaaa 6300
 aaattagcca ggtgtggtga tggcacctg taatccagt tactcgggag gctgaggcag 6360
 gagaatctct tgaacccagg aggtggaggt tgcaatgagc tgagatctt ccattgcatt 6420
 ccaggctggg caacaagagt gaaactctgt ctcagaaaaat aaataaataa ataaataaaa 6480
 aatagctagg catggatgaca ggcgcctgta atcccagctg ctccagaggg tgaggcagga 6540
 gaatcgctta aacccaggag gtggaaatgg cagttagcca agatcacacc actgcactcc 6600
 agcctggcc acagagaaaag actccatctc aaaaaaaaaa aaaaaaaaaa aaaaagttt 6660
 agcaaaaatg aggaagggtgc ttattaaaag ctggaaatca ggatggaggt accagtccag 6720
 acagcctccc caccacccca ccgtctccac agcagccccct gttcagatt cacaagcctg 6780
 ccttgagtga tgcaatgagttat tattttggag gcagttgtggg ccttggaggg cagcactcac 6840
 ttttcatcc tatgattttat ttgagaagca gagagcacct accgggtgcc aggaacgagc 6900
 taggtgagaa cagaatcagg tagaaatctc agcctagcca cacggaagct gtgtgatctt 6960
 gggcaggctg catacccttt ctgagcctca gtttgcac ctgtaatgca aaggttaacaa 7020
 aatcttgaca gaggcatagt gaggaaatcaa gagaacaacg ggcctggagc atacacccag 7080
 tgcttagccc ccagtaggccc ctcactctca tcattactga cacctgaggt cactgagcat 7140
 gtgccactgt ccattcatta tcttcataa ctcccaaaaat catcctgcaa ggtatattt 7200
 catcttcatg aaacagacag agaaaactgag gttacagagg tttcgtgatc tgcccaagtc 7260
 tgctggcagc taagcggatg aggccagatg caaacttaggc attgagcaag acaggcagga 7320
 cccctgctt catagaaatg atttttatta ttatctgaac acagtccaca caagtgcacct 7380
 acccctctcc agccctgcaa agaaaatgtga agtgagttaa ctgtatatttga accaagtgg 7440
 ccacgtgtta gctatgcgac tgtgaacagg ggcttcaacc ccctcagccct cagtttcctg 7500
 tcctggaaaa taatcgcagg gagaataatc gcagctaccc cgaagagtcg ctgtgttagt 7560
 taaagcagtt atgcccgcata actgcttcag ggcacccctgtg actcccaatctttagggctg 7620
 atgttctgtg gccagaggag ggcagggggtt gcagctggcc ggtgaactca ctacctggc 7680
 tctctccctg cagggatgtt cttcatcctg gtgttcagcc tggataaccg ggagtccctt 7740
 gatgaggtca agcgccttca gaagcagatc ctggaggtca agtcctgcct gaagaacaag 7800
 accaaggagg cggcggagct gcccattggc atctgtggca acaagaacga ccacggcggag 7860
 ctgtccgc aggtgcccac caccgaggcc gagctgctgg tgtcgccgca cgagaactgc 7920
 gcctacttcg aggtgtccgc caagaagaac accaacgtgg acgagatgtt ctacgtgctc 7980
 ttcagcatgg ccaagctgcc acacgagatg agcccccccccc tgcattgcata gatctccgt 8040
 cagtagggc acgccttcca ccccaaggcccc ttctgcattgc gccgcgtcaa ggagatggac 8100
 gcctatggca tggctcgcc cttcgccgc cggcccaagcg tcaacagtga cctcaagtac 8160
 atcaaggcca aggtccttcg ggaaggccag gcccgtgaga gggacaagtg caccatccag 8220
 tgagcgaggg atgctggggc ggggcttggc cagtccttc agggaggtgg ccccaagatgc 8280
 ccactgtcg catctccca ccgaggcccc ggcagcagtc ttgttcacag acctttaggca 8340
 ccagacttgg aggccccccgg cgctggccctc cgcacattcg tctgccttc cacagcttc 8400
 ctgagtcgc ttgtccacag ctcccttggc gtttcatctc ctctgtgggaa ggacacatct 8460
 ctgcagccctc aagagtttagg cagagactca agttacaccc tcccttcctg gggtttggaaag 8520
 aaatgttcatg gccagagggg tgaggattgc tgcaatgatcat gggccctccctt gggacaagcc 8580
 tcaggatgaa aaggacacag aaggccagat gagaagggtc tccctcttc tggcataaca 8640
 cccagcttgg tttgggtggc agctgggaga acttctctcc cagccctgca actcttacgc 8700
 tctggttcag ctgcctctgc acccccctccc acccccagca cacacacaag ttggccccc 8760
 gctgcgcctg acattgagcc agtggactct gtgtctgaag ggggcgtggc cacacctcc 8820
 agaccacgcc caccacttag accacgccc cctccctgacc gcgttccctca gcctccctcc 8880
 cttagtccctt ccgcggcaca gttgtgtttt gttgtgggtt cagctgtttt cgtgtcatgt 8940
 atagtagtag aaatggaaat cattgtactg taaaagccta gtgactccct cttggccag 9000
 gccctcaccc agttcagatc cacggcctcc acccgggacg cttccctccct ctgctcccaa 9060
 acagggtttc cgtggccctgt ttgcagctag acattgaccc tccgcattga gctccacgg 9120
 ttacagacaa ttgcacaagc gtgggggtggg caggccagga ctgtttttt ttaatgctcc 9180
 catttcacag aggataccac cgagactcgg aggggacacg atgagcacca gggccaccc 9240
 ttgtccctta gcaaatttcg ggtacagctc cacctagaac caggctgccc tctactgtgc 9300
 tcgttccctca agcattttt aagcacctac tgggtgtgg gttcaatgtgc tccttaggaaa 9360
 ccaagagggt ccccaagtcctt ggcctctgcc cggccctgtct gcccacccat cttctgcaca 9420
 cacagcggtg gggaggccggg gaggagcagc tgggaccctt aactgagccctt gggagggtac 9480
 cgacagaaaaa gctcaggccgg ggtttctcc ttgtggccgg gattgggcta tgctgggtac 9540
 caccatgtac tcaggcatgg tgggtttga acccataaaac caaaggccctt tgcattcagc 9600

tcttaacaag tatattttgt attttaatct ctctaaacat attgaagttt tagggcccta 9660
 aggaaccta gtgatcttctt attinggtctt tctgagggtc agagagggtt agtaacttcc 9720
 tccaggcac acagcaagtc tgggggtggc agaagcaagc tagcgctggg cattcagttac 9780
 ataccacat gtgctccctc tcttgatgtctt ggccttcagg gctttggac 9840
 atcttgtctt caaccctctc cctagatcag tctgtgaggg tccctgtaga tatttgtac 9900
 accatgccca tgtatataca agtacacaca gatgtacaca cagatgtaca catgtccag 9960
 ccccgctct gcataacctgc acctgcaccc cagccttgc ccctgcctgc gtctgtgctc 10020
 aaagcagcag ctccaacccct gcctctgtcc ccttccccac ccactgcctg agccttctga 10080
 gcagaccagg taccttggct gcacccgggt gtggcccgct ctcacccagg cacagccccg 10140
 ccaccatgga tctccgtgtt cactatcaat aaaagtgggt ttgttacaaa gccgtgtcct 10200
 tgcccatgtt tattttttgtt atttccaaga ggaggtgtgc cccttccag accaaagctg 10260
 gccttcctt cccaaaatgc acctgcccgtg tacccttggcc ctgagggtca gcactgagtc 10320
 caccttcaag tgtaagtgtg gggagagggg gataagtccc ccagatggaa ggtgatgccc 10380
 tccttcagcc tggccctccctt gggccttcccg ggtgtgttgc ccgagggtgtc tttgtccaca 10440
 aagaaggggc ccccggtggac cattagctcc aggaggatct ccgtgtctga gttctttgt 10500
 attcctgtac agcagcaatt tcaccccgag gggacagttt gcaatctctg gaaacctttt 10560
 ccaagcctgg ggctggggct gctactctca tctgggggtt ggaggccagg gacaccattc 10620
 agtacccctcc aacgcacagg atgcccctcc accccccaccc cactgagaat tatctggcct 10680
 caaatgcca gctggggcag ccttacttag actcacccca ggggctggga cacgccccca 10740
 cctgcgtgtg atggattttgt tggaccacat tctggacgga acccacagca taagcactcc 10800
 tgtgaagtga gacaggatgt gggtgaggat ggaaagtggaa ggctgaggga gaaggcttgg 10860
 gcccgtgacca acacggaaatg tgccccctgg gactgaggg cttccctggg cagaggaaaa 10920
 ggaggaagtc agtgaggtaa aatactccctt gtgtttta cccagcgagt ctcacgccccat 10980
 cctatcaccc agccccggagg gaageccactt catgttccacc ccatctgagc atttaggctc 11040
 agagagctca atatcttgc caagatggca cagctggta agtggcagat cagagattca 11100
 acaccagagg ctgtctgatt tccgtctggc tgaagaaaaga ttttgcattca gggaggtgg 11160
 aaccatctgt gctttgtatc agcaaatgcc accagcagga tcagggagcc aggccataaaa 11220
 g 11221

<210> 4
 <211> 266
 <212> PRT
 <213> Homo sapiens

<400> 4
 Met Met Lys Thr Leu Ser Ser Gly Asn Cys Thr Leu Ser Val Pro Ala
 1 5 10 15
 Lys Asn Ser Tyr Arg Met Val Val Leu Gly Ala Ser Arg Val Gly Lys
 20 25 30
 Ser Ser Ile Val Ser Arg Phe Leu Asn Gly Arg Phe Glu Asp Gln Tyr
 35 40 45
 Thr Pro Thr Ile Glu Asp Phe His Arg Lys Val Tyr Asn Ile Arg Gly
 50 55 60
 Asp Met Tyr Gln Leu Asp Ile Leu Asp Thr Ser Gly Asn His Pro Phe
 65 70 75 80
 Pro Ala Met Arg Arg Leu Ser Ile Leu Thr Gly Asp Val Phe Ile Leu
 85 90 95
 Val Phe Ser Leu Asp Asn Arg Glu Ser Phe Asp Glu Val Lys Arg Leu
 100 105 110
 Gln Lys Gln Ile Leu Glu Val Lys Ser Cys Leu Lys Asn Lys Thr Lys
 115 120 125
 Glu Ala Ala Glu Leu Pro Met Val Ile Cys Gly Asn Lys Asn Asp His
 130 135 140
 Gly Glu Leu Cys Arg Gln Val Pro Thr Thr Glu Ala Glu Leu Leu Val
 145 150 155 160
 Ser Gly Asp Glu Asn Cys Ala Tyr Phe Glu Val Ser Ala Lys Lys Asn
 165 170 175

Thr	Asn	Val	Asp	Glu	Met	Phe	Tyr	Val	Leu	Phe	Ser	Met	Ala	Lys	Leu
					180				185					190	
Pro	His	Glu	Met	Ser	Pro	Ala	Leu	His	Arg	Lys	Ile	Ser	Val	Gln	Tyr
					195				200					205	
Gly	Asp	Ala	Phe	His	Pro	Arg	Pro	Phe	Cys	Met	Arg	Arg	Val	Lys	Glu
					210				215				220		
Met	Asp	Ala	Tyr	Gly	Met	Val	Ser	Pro	Phe	Ala	Arg	Arg	Pro	Ser	Val
					225				230				235		240
Asn	Ser	Asp	Leu	Lys	Tyr	Ile	Lys	Ala	Lys	Val	Leu	Arg	Glu	Gly	Gln
					245				250				255		
Ala	Arg	Glu	Arg	Asp	Lys	Cys	Thr	Ile	Gln						
					260				265						

<210> 5
<211> 266
<212> PRT
<213> Rattus norvegicus

<400>	5														
Met	Met	Lys	Thr	Leu	Ser	Ser	Gly	Asn	Cys	Thr	Leu	Asn	Val	Pro	Ala
								1	5		10			15	
Lys	Asn	Ser	Tyr	Arg	Met	Val	Val	Leu	Gly	Ala	Ser	Arg	Val	Gly	Lys
								20	25				30		
Ser	Ser	Ile	Val	Ser	Arg	Phe	Leu	Asn	Gly	Arg	Phe	Glu	Asp	Gln	Tyr
								35	40		45				
Thr	Pro	Thr	Ile	Glu	Asp	Phe	His	Arg	Lys	Val	Tyr	Asn	Ile	His	Gly
								50	55		60				
Asp	Met	Tyr	Gln	Leu	Asp	Ile	Leu	Asp	Thr	Ser	Gly	Asn	His	Pro	Phe
								65	70		75			80	
Pro	Ala	Met	Arg	Arg	Leu	Ser	Ile	Leu	Thr	Gly	Asp	Val	Phe	Ile	Leu
								85	90				95		
Val	Phe	Ser	Leu	Asp	Ser	Arg	Glu	Ser	Phe	Asp	Glu	Val	Lys	Arg	Leu
								100	105				110		
Gln	Lys	Gln	Ile	Leu	Glu	Val	Lys	Ser	Cys	Leu	Lys	Asn	Lys	Thr	Lys
								115	120				125		
Glu	Ala	Ala	Glu	Leu	Pro	Met	Val	Ile	Cys	Gly	Asn	Lys	Asn	Asp	His
								130	135		140				
Ser	Glu	Leu	Cys	Arg	Gln	Val	Pro	Ala	Met	Glu	Ala	Glu	Leu	Leu	Val
								145	150		155			160	
Ser	Gly	Asp	Glu	Asn	Cys	Ala	Tyr	Phe	Glu	Val	Ser	Ala	Lys	Lys	Asn
								165	170				175		
Thr	Asn	Val	Asn	Glu	Met	Phe	Tyr	Val	Leu	Phe	Ser	Met	Ala	Lys	Leu
								180	185				190		
Pro	His	Glu	Met	Ser	Pro	Ala	Leu	His	His	Lys	Ile	Ser	Val	Gln	Tyr
								195	200				205		
Gly	Asp	Ala	Phe	His	Pro	Arg	Pro	Phe	Cys	Met	Arg	Arg	Thr	Lys	Val
								210	215		220				
Ala	Gly	Ala	Tyr	Gly	Met	Val	Ser	Pro	Phe	Ala	Arg	Arg	Pro	Ser	Val
								225	230		235			240	
Asn	Ser	Asp	Leu	Lys	Tyr	Ile	Lys	Ala	Lys	Val	Leu	Arg	Glu	Gly	Gln
								245	250				255		
Ala	Arg	Glu	Arg	Asp	Lys	Cys	Ser	Ile	Gln						
					260				265						

<210> 6

<211> 7
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (1) ... (7)
<223> Xaa = Any Amino Acid

<400> 6
Gly Xaa Xaa Xaa Xaa Gly Lys
1 5

<210> 7
<211> 5
<212> PRT
<213> Homo sapiens

<400> 7
Asp Thr Ala Gly Gln
1 5

<210> 8
<211> 4
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (1) ... (4)
<223> Xaa = Any Amino Acid

<400> 8
Asn Lys Xaa Asp
1

<210> 9
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (1) ... (5)
<223> Xaa = Any Amino Acid

<400> 9
Glu Xaa Ser Ala Xaa
1 5