COMP232 - Cyber Security

Week 1

Goals of Network Security

Confidentiality, Integrity, and Availability

- Security Architecture for OSI
 - ITU-T Recommendation X.800
 - Concepts
 - Security attack any actions compromising security of information
 - Passive make use of data but does not affect system resources
 - Active attempts to alter system resources or alter operation
 - Attacks
 - Interruption -availability
 - Interception confidentiality
 - Modification integrity
 - Fabrication authenticity
 - Security mechanism a mechanism to detect, prevent or recover from a security attack
 - Used to implement security services, including

- Encipherment or encryption
- Digital signature
- Access control
- Data integrity
- Authentication exchange
- Traffic padding
- Routing control
- Notarisation
- Security service a service that enhances security of the data processing and transfer
 - Categories
 - Authentication
 - Access Control
 - Data confidentiality
 - Data integrity
 - Non-repudiation
 - Availability

Week 2

- Identification Associating identity with a subject (who are you)
- Authentication- Establishing validity of identity (are you who you claim you are)
- Authorisation Associating rights with a subject (what can you do)

Authentication

- Password-based authentication
 - Based on what you know
- Token-based authentication
 - Based on what you have
- Biometrics-based authentication
 - Based on what you are

Cryptography

- Two types
 - Symmetric key Same key used to decrypt and encrypt message
 - Asymmetric key One key used to encrypt and one to decrypt
- Types of operations used
 - Substitutions Each element of text is mapped to another
 - Transposition Rearrange elements in text
- Way plaintext is processed
 - Block cipher input block to be transformed at once
 - Stream cipher continuous processing of input
- Cryptanalysis The process of attempting to discover plaintext or key
- Feistel cipher most blocks algorithms have similar structure to it (symmetric key)
 - Input is divided into blocks of even number of elements
 - Multiple stages of substitutions and transpositions applied to it with different keys (derived from master key)
- Symmetric encryption algorithms
 - DES

- Block 64 bits
- Key 56 bits
- Rounds 16
- Sub keys 16
- Only way to bypass is by brute force, but relatively easy to due to key size
- o 3DES
 - DES but done three times, with different keys each time
- AES
 - Blocks of 128 bits
 - Every round
 - · Bytes substituted
 - · Rows shifted
 - · Columns mixed
 - Each byte combined with round key

Week 3

Symmetric encryption

- Electronic codebook mode (ECB)
 - Each block is encrypted with the same key
- Cipher block chaining (CBC)
 - A block of the plaintext of the current block is XOR'ed with the ciphertext of the previous block

- Each cipher is unique
- First block encrypted by initialisation vector
- Cipher feedback mode (CFB)
 - Transform a block cipher to stream cipher

Key distribution is tricky, since it needs to be secure also

Asymmetric encryption

- Public and private key
- Public key used for encryption and private for decryption
- Private key can also be used as a mean of digital signature
- More computationally expensive than symmetric key
 - Normally symmetric key encrypted by public key and used for exchange of messages (solve key distribution problem)

Week 4

RSA (Asymmetric encryption)

• Encryption: A message M (represented as a number) is encrypted as

$$C = M^e \mod n$$

· Decryption: To retrieve M, compute

$$M' = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$$

- Key generation
 - Select two prime numbers p and q
 - Calc n = p * q
 - Calc phi(n) = (p-1)*(q-1)
 - Select e less that phi of n and relatively prime with it
 - Calculate d s.t d*e = 1mod(phi(n))
 - Public key = {e, n}, Private key = {d, n}
- How to break
 - Brute force (Too long)
 - Try to find p and q given n
 - N should be a number very hard to factorize
 - Common factors attack
 - Due to lack of good random number generators, some good amount of keys have common factors

Diffie-Hellman key exchange

Most known algo for key exchange

- Users generate secret key based on public + private info
- Method
 - Two publicly known numbers:
 prime number q
 primitive root α of q
 - Let A and B wish to exchange a key, then they do the following:

A selects a random integer $X_A < q$ and keeps it in secret B selects a random integer $X_B < q$ and keeps it in secret

A computes
$$Y_A = \alpha^{X_A} \mod q$$
 and sends it to B B computes $Y_B = \alpha^{X_B} \mod q$ and sends it to A

· Both know can calculate common secret key

A calculates
$$K = (Y_B)^{X_A} \mod q$$

B calculates $K = (Y_A)^{X_B} \mod q$

Neural Key Exchange Protocol

- Use synchronization of neural networks instead of traditional math
- Method
 - Both parties start neural networks
 - They process shared inputs to generate outputs
 - Match outputs and update weight until identical weights

 Potential resilience to quantum attacks and efficient in resource-constrained devices, but some versions are vulnerable to certain attacks and still in research phase

MAC

- Authentication code generated from a common secret key to prove identity of sender
- Does not need to be reversible (less vulnerable)

One-way hash functions

- Alternative method for message authentication
- Don't use secret key
- Easy to first compute, but reverse is very hard to compute
- Hash function (H) properties for message authentication
 - Can be applied to any data size
 - Fixed-length outptut
 - Easy to compute
 - Infeasible to compute reverse
 - Hard to try to match the result by matching output from a known input (Weak collision resistance)
 - Hard to find a pair of inputs that give same output (strong collision resistance)
- SHA-1 (Secure Hash Algorithm)
 - Take input with a max length
 - Process input in 512-bit blocks
 - Each bit of output uses all bits of input

• Deprecated, now SHA-2 or 3 is used.