Surjectivité de l'exponentielle

Leçons: 153, 156, 204, 214

Théorème 1

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Alors, $\exp(\mathbb{C}[A]) = \mathbb{C}[A] \cap \operatorname{GL}_n(\mathbb{C})$. En particulier, $\exp: \mathcal{M}_n(\mathbb{C}) \to \operatorname{GL}_n(\mathbb{C})$ est surjective et un antécédent de $A \in \operatorname{GL}_n(\mathbb{C})$ est un polynôme (complexe) en A.

Démonstration. Étape 1 : quelques résultats préliminaires

- On commence par observer l'égalité $\mathbb{C}[A]^{\times} = \mathbb{C}[A] \cap \operatorname{GL}_n(\mathbb{C})$ où $\mathbb{C}[A]^{\times}$ est le groupe des inversibles de $\mathbb{C}[A]$. Seule l'inclusion \supset pose question : il s'agit de voir que l'inverse d'une matrice M est un polynôme en M (en effet le coefficient constant de son polynôme minimal est non nul : $\mu_M = \alpha + XP$ et $M^{-1} = -P(M)/\alpha$). Ainsi, l'inverse d'un élément de $\mathbb{C}[A] \cap \operatorname{GL}_n(\mathbb{C})$ reste dans $\mathbb{C}[A]$ (c'est un polynôme de polynôme en A)
- Pour tout $M \in \mathcal{M}_n(\mathbb{C})$, $\exp(M) \in \mathbb{C}[M]$: en effet, c'est une limite dans $\mathcal{M}_n(\mathbb{C})$ (pour la norme d'algèbre) d'éléments de $\mathbb{C}[M]$ qui est un sous-espace vectoriel de dimension finie donc fermé. En conséquence, $\exp : \mathbb{C}[A] \to \mathbb{C}[A]^{\times}$ est un morphisme de groupes.
- $\mathbb{C}[A]^{\times} = \mathbb{C}[A] \cap \det^{-1}(\mathbb{R}^{*})$ est un ouvert de $\mathbb{C}[A]$. Il est aussi connexe par arcs (donc connexe) car si $M, N \in \mathbb{C}[A]^{\times}$, la fonction $z \in \mathbb{C} \mapsto \det(zM + (1-z)N)$ est polynomiale en z et non nulle donc admet un nombre fini de zéros. 0 et 1 ne sont pas des zéros de ce polynôme donc on peut construire une courbe $z(t) \in \mathbb{C}$ reliant 0 et 1 en évitant ces zéros z. Ainsi z in z in

Étape 2 : exp est localement un difféomorphisme

Comme la différentielle de $\exp: \mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ en 0 est l'identité de $\mathcal{M}_n(\mathbb{C})$, on a aussi en restreignant $\exp: \mathbb{C}[A] \to \mathbb{C}[A]^\times$, que $d \exp(0) = id_{\mathbb{C}[A]}$.

En particulier cette différentielle est bijective et le théorème d'inversion locale assure l'existence de deux ouverts $\mathscr{U} \subset \mathbb{C}[A]$ et $\mathscr{V} \subset \mathbb{C}[A]^{\times}$ contenant respectivement 0 et Id tel que $\exp: \mathscr{U} \to \mathscr{V}$ soit un difféomorphisme. Comme exp est un morphisme de groupes, le résultat demeure au voisinage de chaque point $M \in \mathbb{C}[A]$: $\exp: M + \mathscr{U} \to \exp(M)\mathscr{V}$ est un difféomorphisme.

Étape 3 : un argument de connexité pour conclure.

L'étape 2 implique en fait que $\exp(\mathbb{C}[A])$ est un ouvert de $\mathbb{C}[A]^{\times}$. Mais c'est aussi un fermé en remarquant que $\mathbb{C}[A]^{\times} \setminus \exp(\mathbb{C}[A]) = \bigcup_{M \in \mathbb{C}[A]^{\times} \setminus \exp(\mathbb{C}[A])} M \exp(\mathbb{C}[A])$ (l'inclusion \supset se prouve par contraposée). En vertu de la connexité de $\mathbb{C}[A]^{\times}$, on conclut que

$$\exp(\mathbb{C}[A]) = \mathbb{C}[A]^{\times} = \mathbb{C}[A] \cap \operatorname{GL}_n(\mathbb{C}).$$

Corollaire 2

L'image par l'application exponentielle de $\mathcal{M}_n(\mathbb{R})$ est l'ensemble

$$\exp(\mathcal{M}_n(\mathbb{R})) = \{A^2, A \in GL_n(\mathbb{R})\}.$$

1. On montre même que $\mathbb{R}^2 \setminus D$ où D est dénombrable est connexe par arcs

Démonstration. \subset : Il suffit de remarquer que $\exp(M) = \exp(\frac{1}{2}M)^2 \supset$: Soit $M = A^2$ où $A \in \operatorname{GL}_n(\mathbb{R})$. Il existe un polynôme $P \in \mathbb{C}[X]$ tel que $A = \exp(P(A))$. Comme A est réelle, on a aussi $\exp(\overline{P}(A)) = \overline{A} = A$ et donc

$$\exp((P + \overline{P})(A)) = A^2 = M.$$

Référence : Maxime Zavidovique (2013). *Un max de maths*. Calvage et Mounet. Merci à Antoine Diez pour ce développement.