

Redes de Computadores

Prof. Me. Ricardo Girnis Tombi

Prof. Me. Ricardo Girnis Tombi

Email: ricardo.tombi@fei.edu.br

Linkedin: https://www.linkedin.com/in/ricardotombi/

Lattes: http://lattes.cnpq.br/3583733036106550

Profissional com 32 anos no mercado de TI, Redes e Telecom

- Diretor Global de Serviços (British Telecom)
- Gerente de Engenharia e Pré-Vendas, Especialista em Redes Ópticas (Anritsu)
- Engenheiro de Redes (HP)

Atualmente:

Embaixador da ONF (Open Network Foundation) no Brasil. Engenheiro Consultor na RNP – Rede Nacional de Pesquisas

Mestrado (Poli/USP) e doutorado em andamento Pós-graduações na USP como Arq e Redes de Computadores (Larc) e Eng da Qualidade (PECE) e MBA na FGV (CEAG).

AWS Certified Cloud Architect (ACA)

AWS Certified Cloud Practitioner (ACF)

Desenvolver a capacidade de aplicação de padrões, normas e modelos de referência das redes de computadores para interligação de dispositivos utilizando diversos tipos, tecnologias, protocolos e algoritmos disponíveis.

Plano de ensino:

Tecnologia de redes de computadores.
Arquiteturas de redes OSI & TCP/IP.
Pilha de protocolos TCP/IP.
Técnicas de switching
Tecnologia de interconexão de redes
Padronização para redes de alta velocidade.

Desempenho:

- Projeto de redes (30%)
- Atividades de laboratório (10%)
- Avaliação final (60%)

Bibliografia:

Kurose, James F. Redes de computadores e a Internet : uma nova abordagem. 6. ed. Cengage Learning. 2012. ISBN 9788522110742.

Tanenbaum, Andrew S. Redes de computadores. Campus. 1997. ISBN 8535201572.

Forouzan, Behrouz A. Comunicação de dados e redes de computadores. 4. ed. McGraw-Hill. 2010. ISBN 9788586804885.

Redes de Computadores

Sistema de comunicação de dados interconectando dois ou mais computadores e/ou outros dispositivos, através de um conjunto de regras (protocolo), possibilitando o compartilhamento de recursos (disco, impressora, etc) e informações (arquivos, dados, etc).

Uma Rede de Computadores é formada por um conjunto de um ou mais computadores, o software associado periféricos terminais, operadores humanos, processos físicos, meios de transferência de informação entre outros componentes, formando um conjunto autônomo capaz de executar o processamento e a transferência de informações.

ISO/IEC 7498-1

Redes de Computadores

Benefícios ?!???

Compartilhamento de recursos

Maior confiabilidade por meio de replicação de fontes de dados

Economia de recursos

Meio de comunicação eficiente (organizações / pessoas)

E-commerce, Internet Banking

Entretenimento (filmes, jogos, livros, etc ...)

Construindo uma rede

Parâmetros importantes:

- Escalabilidade crescimento global
- Diversidade de aplicações
- Confiabilidade
- Desempenho
- Segurança

Onde:

 Residências, escritórios, fábricas, hospitais, aeroportos, automóveis, zonas rurais, etc ...

- Os primeiros passos da disciplina de redes de computadores e da Internet podem ser traçados desde o início da década de 1960.
- Na imagem ao lado, um dos primeiros comutadores de pacotes.

Fonte: Redes de Computadores. Ed. Pearson

- Em 1972, a ARPAnet tinha cerca de 15 nós e foi apresentada publicamente pela primeira vez por Robert Kahn.
- A ARPAnet inicial era uma rede isolada, fechada.
- Do início a meados de 1970, surgiram novas redes independentes de comutação de pacotes.
- O trabalho pioneiro de interconexão de redes, sob o patrocínio da DARPA, criou basicamente uma *rede de redes* e o termo *internetting* foi cunhado para descrever esse trabalho.

Fonte: Redes de Computadores. Ed. Pearson

- Ao final da década de 1980, o número de máquinas ligadas à Internet pública alcançaria cem mil.
- O principal evento da década de 1990, no entanto, foi o surgimento da World Wide Web, que levou a Internet para os lares e as empresas de milhões de pessoas no mundo inteiro.
- A segunda metade da década de 1990 foi um período de tremendo crescimento e inovação.
- A inovação na área de redes de computadores continua a passos largos.

Fonte: Redes de Computadores. Ed. Pearson

Os seguintes desenvolvimentos merecem atenção especial:

- •Acesso à Internet por banda larga.
- •Wi-Fi público de alta velocidade e acesso à Internet por redes de telefonia celular 3G, 4G, 5G.
- •Redes sociais on-line.
- •Provedores de serviços on-line.
- •Empresas de comércio na Internet rodando suas aplicações na "nuvem".
- •NFV e SDN

Fonte: Redes de Computadores. Ed. Pearson

Cenário no Brasil:

LGT - 1997

Ano de 1998:

- Telefonia fixa: 19M

- Celulares: 5,6M

- Banda larga: 0

Acessar o site: https://www.teleco.com.br/

- 1. Atualizar os dados para os indicadores acima
- 2. Verificar o market share das operadoras de celulares Quais são as 3 primeiras posições?
- 3.Acessar https://www.teleco.com.br/operadoras/grupos.asp e verificar o market share para todas as tecnologias

O que é a Internet?

• Alguns componentes da Internet

Fonte: Redes de Computadores. Ed. Pearson

Componentes da Rede

- Sistemas finais são conectados entre si **por enlaces** (*links*) de **comunicação** e **comutadores** (*switches*) de pacotes.
- Eles acessam a Internet por meio de **Provedores de Serviços** de **Internet**.
- Os sistemas finais, os comutadores de pacotes e outras peças da Internet executam **protocolos** que controlam o envio e o recebimento de informações.
- O TCP e o IP são dois dos mais importantes da Internet.

Fonte: Redes de Computadores. Ed. Pearson

Uma descrição do serviço

- Os sistemas finais ligados à Internet oferecem uma Interface de Programação de Aplicação (API).
- Ela especifica como o programa solicita à infraestrutura da Internet que envie dados a um programa de destino específico.
- Essa API da Internet é um conjunto de regras que o software emissor deve cumprir para que a Internet seja capaz de enviar os dados ao programa de destino.

Fonte: Redes de Computadores. Ed. Pearson

• O que é um protocolo?

• Um protocolo humano e um protocolo de rede de computadores

Fonte: Redes de Computadores. Ed. Pearson

Aplicações diversas podem possuir requisitos de tráfefo distintos

- $\bullet V_{OZ}$
- •Vídeo
- Dados
- •Áudio armazenado e real time
- •Vídeo armazenado e real time
- •Páginas estáticas e dinâmicas
- •Games
- Internet banking

Application	Reliability	Delay	Jitter	Bandwidth
E-mail	High	Low	Low	Low
File transfer	High	Low	Low	Medium
Web access	High	Medium	Low	Medium
Remote login	High	Medium	Medium	Low
Audio on demand	Low	Low	High	Medium
Video on demand	Low	Low	High	High
Telephony	Low	High	High	Low
Videoconferencing	Low	High	High	High

App de dados - Taxa típica de utilização

App de vídeo conferência - Taxa típica de utilização

DSCP		Forwarding classes	
0	000000	Best Effort	
8	001000	Class 1	
	001010	AF11	
	001100	AF12	
	001110	AF13	
16	010000	Class 2	
	010010	AF21	
	010100	AF22	
	010110	AF23	
24	011000	Class 3	
	011010	AF31	
	011100	AF32	
	011110	AF33	
32	100000	Class 4	
	100010	AF41	
	100100	AF42	
	100110	AF43	
46	101110	Expedited Forwarding	
48	110000	Network Control	

	Class 1	Class 2	Class 3	Class 4
Low Drop Prec	001010	010010	011010	100010
Medium Drop Prec	001100	010100	011100	100100
High Drop Prec	001110	010110	011110	100110

Exemplo de um pedaço de código que cria uma conexão com QoS:

```
DatagramSocket socket = new DatagramSocket(new InetSocketAddress (InetAddress.getByName("0.0.0.0"), 0));
socket.setReuseAddress(false);
socket.setSoTimeout(15000);
```

//* Para configurar uma classe de serviços o valor de TrafficClass deve ser setado socket.setTrafficClass(0B101110)

//* EF — Expedited Forwarding

Utilizando Sistema Operacional

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-

<u>2008/dd919203(v=ws.10)?redirectedfrom=MSDN#advantages-of-policy-based-</u> gos

Utilizando nos equipamentos de rede

Artigos no Moodle

Mecanismos: Intserv & Diffserv

Atividade: QoS na Internet

Padrões e especificações

https://www.ietf.org/

https://www.ieee.org/

https://www.opennetworking.org/

Local Area Network

A LAN (*Local Area Networks*), ou Rede Local, interliga máquinas presentes dentro de um mesmo espaço físico.

Isso pode acontecer dentro de uma empresa, de uma escola ou dentro da sua própria casa, sendo possível a troca de informações e recursos

entre os dispositivos da rede.

Fonte: Redes de Computadores. Ed. Pearson

Local Area Network

Metropolitan Area Network

A MAN (*Metropolitan Area Network*), ou Rede Metropolitana, interliga várias LANs geograficamente próximas (no máximo, a algumas dezenas de quilômetros). Assim, uma MAN permite que dois pontos distantes se comuniquem como se fizessem parte de uma mesma rede local. Uma MAN é formada por comutadores ou roteadores conectados entre si com conexões de alta velocidade (em geral, cabos de fibra ótica).

Metropolitan Area Network

Fonte: Redes de Computadores. Ed. Pearson

Wide Area Network

A W AN (Wide Area Network) ou Rede de longa distância, vai um pouco além da MAN e abrange uma área maior, como um estado, país ou até mesmo um continente

Fonte: Redes de Computadores. Ed. Pearson

Wide Area Network

Wide Area Network

Cenário LAN, MAN e WAN

Topologias de Redes

O que é uma topologia?

Determina como os dispositivos estão conectados entre si e como os mesmos se comunicam.

Efeitos:

- **✓** Desempenho
- ✓ Organização
- **✓** Manutenção
- ✓ Segurança

Topologias de Redes

Existem duas categorias básicas de topologias de rede

A topologia lógica refere se à maneira como os sinais agem sobre os meios de rede, ou a maneira como os dados são transmitidos através da rede a partir de um dispositivo para o outro sem ter em conta a interligação física dos dispositivos.

A topologia física representa como as redes estão conectadas (layout físico) e o meio de conexão dos dispositivos de redes (nós). A forma com que os cabos são conectados, e que genericamente chamamos de topologia da rede (física), influencia em diversos pontos considerados críticos, como a flexibilidade, velocidade e segurança

Barramento

Anel

Estrela

Malha

Barramento

Vantagens:

- •Simples e relativamente confiável;
- •Fácil expansão.

Desvantagens:

- •Rede pode ficar extremamente lenta em situações de tráfego pesado;
- •Problemas são difíceis de isolar;
- •Falha no cabo paralisa a rede inteira.

Estrela

Vantagens:

- •A adição de novos dispositivos é simples;
- •Gerenciamento centralizado;
- •Falha de um dispositivos não afeta o restante da rede.

Desvantagem:

•Uma falha no dispositivo central paralisa a rede inteira.

Anel

Vantagens:

- •Todos os dispositivos acessam a rede igualmente;
- •Performance não é impactada com o aumento de usuários.

Desvantagens:

- •Falha de um dispositivos pode afetar o restante da rede;
- •Problemas são difíceis de isolar.

Malha

Vantagens:

- •Maior redundância e confiabilidade;
- •Facilidade de diagnóstico.

Desvantagem:

- •Maior quantidade de links;
- •Maior quantidade de interfaces por dispositivo;
- •Custos de instalação.

Exercício

- A topologia em malha total (full mesh) proporciona uma excelente redundância entretanto consome muitos recursos de conexão.
- A quantidade de conexões cresce exponencialmente de acordo com o acréscimo dos nós da rede.
- Determine uma expressão matemática que modela este comportamento.

$$C = \frac{N(N-1)}{2}$$

C –conexões

N – nós da rede

Exercício

$$C = \frac{N (N-1)}{2}$$
 C -conexões
N - nós da rede

Hierárquica

Nas empresas, a integração da rede de dados, voz e vídeo torna se essencial para os negócios. Logo, uma rede local (projetada corretamente é um requisito fundamental.

Uma rede construída de forma hierárquica torna mais fácil o gerenciamento, sua expansão e a detecção de problemas (troubleshooting).

O design de rede hierárquico envolve a divisão da rede em camadas discretas facilitando escalabilidade e desempenho São divididos em três camadas:

- ✓ Acesso (Access)
- ✓ Distribuição (Distribution)
- ✓ Núcleo (Core)

Modelo Hierárquico de 3 Níveis

Disponibilidade em TI

- **✓** Sevice Level Agreement
- ✓MTBF & MTTR
- ✓ Cálculo da disponibilidade / indisponibilidade:

I = tempo parado / tempo total do período

$$\mathbf{D} = (\mathbf{1} - \mathbf{I})$$

Onde:

I: Indisponibilidade

D: Disponibilidade

Disponibilidade em Redes

- ✓ Sevice Level Agreement
- ✓ MTBF & MTTR

✓ Cálculo da disponibilidade:

Ex. Um link parado por 3h no período de 1 semana. Disponibilidade = 98,21%

O que fazer para aumentar a disponibilidade?

Disponibilidade em Redes

Disponibilidade (SLA ou % uptime)	Tempo de downtime no período		
	Ano	Mês	
95%	438 h	36,5 h	
99,5%	43,8 h	3,7 h	
99,95%	4,38 h	21,9 min	
99,98%	1,75 h	8,75 min	
99 99%	52 & min	11 min	
Valores Típicos			
95% Testes	Testes / Protótipos		
99,95% Valor	Valor típico (recursos importantes)		
99,98% Missã	Missão crítica		

Exercícios

- 1. Um servidor ficou parado por 4 h por causa de uma fonte queimada.
- Calcule a indisponibilidade e disponibilidade deste servidor no período de 1mês e de 1 ano.
- 2. O SLA dos serviços de TI de um cliente em um datacenter é de 99,98%. Calcule quanto tempo um serviço qualquer pode ficar indispoível no período de 1ano para o provedor do datacenter não pagar multa a este cliente.
- 3. Periodicamente é necessário aplicar atualizações em um servidor, sendo que a cada atualização o mesmo fica indisponível para os usuários. As atualizações são quinzenais e duram 10min. Após cada atualização é preciso reinicializar o sistema, o que leva 5 min. Qual a disponibilidade anual deste servidor?

(Assuma que não ocorre nenhuma parada adicional por qualquer motivo).

Exercícios

- 4. O SLA para disponibilidade de um link foi acordado em 99,95% ao ano. Houve queda neste link no mês 7, e o mesmo ficou indisponível por 3h.
- a) Qual a disponibilidade deste link nestes 7 meses?
- b) Considerando-se o SLA anual acordado. O mesmo foi excedido? Se sim, calcule quanto excedeu (em horas). Se não, calcule quanto falta para exceder (em horas).

PERGUNTAS?

