PD -91884

 I_D

14A

SMPS MOSFET

VDSS

500V

IRFP450A

HEXFET® Power MOSFET

Rds(on) max

 0.40Ω

Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptable Power Supply
- High speed power switching

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Coss Specified (See AN 1001)

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	14	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	8.7	A
I _{DM}	Pulsed Drain Current ①	56	
P _D @T _C = 25°C	Power Dissipation	190	W
	Linear Derating Factor	1.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	4.1	V/ns
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Typical SMPS Topologies:

- Two Transistor Forward
- Half Bridge, Full Bridge
- PFC Boost

Notes ① through ⑤ are on page 8 www.irf.com

International IOR Rectifier

IRFP450A Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.58		V/°C	Reference to 25°C, I _D = 1mA®
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.40	Ω	V _{GS} = 10V, I _D = 8.4A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
1	Drain-to-Source Leakage Current			25	uА	$V_{DS} = 500V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μΛ	$V_{DS} = 400V$, $V_{GS} = 0V$, $T_{J} = 125$ °C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	7.8			S	$V_{DS} = 50V, I_D = 8.4A$
Qg	Total Gate Charge			64		I _D = 14A
Q _{gs}	Gate-to-Source Charge			16	nC	$V_{DS} = 400V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			26		V_{GS} = 10V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		15			V _{DD} = 250V
t _r	Rise Time		36		ns	$I_D = 14A$
t _{d(off)}	Turn-Off Delay Time		35			$R_G = 6.2\Omega$
t _f	Fall Time		29			$R_D = 17\Omega$, See Fig. 10 ④
C _{iss}	Input Capacitance		2038			$V_{GS} = 0V$
Coss	Output Capacitance		307			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		10		pF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		2859		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		81]	$V_{GS} = 0V$, $V_{DS} = 400V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		96]	V _{GS} = 0V, V _{DS} = 0V to 400V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		760	mJ
I _{AR}	Avalanche Current®		14	Α
E _{AR}	Repetitive Avalanche Energy①		19	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.65	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current	Current		14		MOSFET symbol
	(Body Diode)		14		A	showing the
I _{SM}	Pulsed Source Current				1 ^	integral reverse
	(Body Diode) ①	- 56		p-n junction diode.		
V _{SD}	Diode Forward Voltage			1.4	V	$T_J = 25^{\circ}C$, $I_S = 14A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		487	731	ns	T _J = 25°C, I _F = 14A
Qrr	Reverse RecoveryCharge		3.9	5.8	μC	$di/dt = 100A/\mu s$ ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

IRFP450A

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

IRFP450A

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFP450A International Interna

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

IRFP450A

International

Rectifier

Package Outline

TO-247AC Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-247AC

EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 3A1Q

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25$ °C, L =7.8mH $R_G = 25\Omega$, $I_{AS} = 14A$. (See Figure 12)
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $^{\circ}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
http://www.irf.com/ Data and specifications subject to change without notice. 6/99