IS4303 Week 6 Model Tuning & Ensemble Learning

Agenda

- Model Tuning
 - Hyperparameter Optimization: Grid-Search
 - Cross-Validation
- Alternative Performance Metrics
 - Confusion Matrix: Sensitivity v.s. Precision
 - ROC and AUC

- Tree-Based Models
 - Decision Tree and Ensemble Learning Methods

1. Decision Tree 2. Lasso/Ridge Regression **Model Prediction** 3. K Nearest Neighbor More..... **♦** What hyperparameters are you choosing? TRAINING Train Untrained Labeled input Labeled output data Model Labeled data TESTING Predictive Labeled input Predicted output Model Test data performance Labeled output

Hyperparameter Optimization

Lasso:
$$\min_{\beta_0,...,\beta_j} L(\beta) = RSS(\beta) + \lambda \sum_{j=1}^p |\beta_j| = \sum_{i=1}^N (y_i - \beta_0 - \sum_{j=1}^p x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^p |\beta_j|$$

- Case:
 - Finding the BEST lambda value (regularization parameter value) in Lasso regression
 - BEST: This lambda results in best performance (e.g., highest accuracy)
- Grid Search on hyperparameters (e.g., exhaustive method):
 - Fix a subset of possible hyperparameter values
 - Specify the performance metrics (e.g., accuracy, or others)
 - Simple validation (or cross-validation) on all these values
 - Select the BEST hyperparameter value

Hyperparameter Optimization

- Fix a subset of possible hyperparameter values
 - Use: numpy.logspace(start, stop, number)
 - https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html
 - Example: lbd = numpy.logspace(-3, 3, 5)
 - First, generate 5 values that are evenly spaced between -3 and 3 (i.e., arithmetic sequence): [-3, -1.5, 0, 1.5, 3]
 - Then, return their exponential values [10⁻³, 10^{-1.5}, 10⁰, 10^{1.5}, 10³] as "lbd" values
- > # Fix a subset of possible hyperparameter values
- > import numpy as np
- > lbd = np.logspace(-9, 9, 1000)
- > print(lbd) # Show values

Hyperparameter Optimization

- Specify the performance metrics (e.g., accuracy, or others)
- Simple validation (or cross-validation) on all these values
- Select the BEST hyperparameter value

Please check "Step 3.2" in the Jupyter Notebook

Cross Validation

• K-Fold Cross Validation (e.g., K=10)

- Model Evaluation
- Model Comparison
- Model Tuning

$$E = \frac{1}{10} \sum_{i=1}^{10} E_i$$
 $K = 3: \approx 70/30 \text{ split};$ $K = 5: = 80/20 \text{ split};$ $K = 10: = 90/10 \text{ split}$

Model Prediction

- Problems of Accuracy/Error metrics:
- Example: Cancer Detection
 - Class 1 (Positive): Having cancer
 - Class 0 (Negative): Being Healthy
- What if your model misclassified all the "Class 1" cases but correctly classified all the "Class 0" cases?
- ♦ Your model accuracy is 97%, but do you think this is a good model?

• Confusion Matrix:

	Predicted: NO	Predicted: YES
Actual: NO	TN = ??	FP = ??
Actual: YES	FN = ??	TP = ??

Sensitivity (or Recall, TPR) = $TP \div (TP+FN)$ Precision (or PPR, PPV) = $TP \div (TP+FP)$

4				
	True Positive	TP/P	The proportion of	
	Rate		positive instances that	
	or Hit Rate		are correctly classified as	
	or Recall		positive	
	or Sensitivity or			
	TP Rate			
Ī	False Positive	FP/N	The proportion of	
	Rate		negative instances that	
	or False Alarm		are erroneously classified	
	Rate		as positive	
	or FP Rate			
Ī	False Negative	FN/P	The proportion of	
	Rate		positive instances that	
	or FN Rate		are erroneously classified	
			as negative $= 1 - \text{True}$	
			Positive Rate	
H				

True Negative	TN/N	The proportion of	
Rate		negative instances that	
or Specificity		are correctly classified as	
or TN Rate		negative	
Precision	TP/(TP+FP)	Proportion of instances	
or Positive		classified as positive that	
Predictive Value		are really positive	
F1 Score	$(2 \times \text{Precision} \times \text{Recall})$	A measure that combines	
	/(Precision + Recall)	Precision and Recall	
Accuracy or	(TP + TN)/(P + N)	The proportion of	
Predictive		instances that are	
Accuracy		correctly classified	
Error Rate	(FP + FN)/(P + N)	The proportion of	
		instances that are	
		incorrectly classified	

Sensitivity v.s. Precision

Sensitivity (or Recall, TPR) = $TP \div (TP + FN)$

Precision (or PPR, PPV) = $TP \div (TP + FP)$

Do you care more about **FN** or **FP**?

Case I: New HIV Test Method

	Predicted: NO	Predicted: YES
Actual: NO	TN=900	FP=o
Actual: YES	FN=90	TP=10

- 1000 people: 100 are real HIV patients, 900 are healthy people
- Accuracy = (900+10)/1000=91%
- Sensitivity = 10/(10+90) = 10% •
- Precision = 1/(1+0) = 100%
- ♥ FN in HIV test kills people!

Case II: Advertising Target on Credit Card Users

	Predicted: NO	Predicted: YES	
Actual: NO	TN=909	FP=81	
Actual: YES	FN=1	TP=9	

- 1000 people: 10 are really interested in, 900 are not interested at all
- Accuracy=(909+9)/1000=91.8%
- Sensitivity = 9/(9+1) = 90%
- Precision = 9/(9+81) = 10% •
- **♥** FP in advertising target wastes money!

- Confusion Matrix in Python (See notebook):
- > # Import packages
- > from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix
- > # Fit a model
- > # Get predicted labels for test data
- > y_pred = model.predict(X_test)
- > cm = confusion_matrix(y_test, y_pred) # Confusion matrix
- > tn, fp, fn, tp = cm.ravel() # Get values of tn, fp, fn, and tp

• Confusion Matrix in Python (See notebook):

```
> # You have another way to plot confusion matrix
> plt.figure(figsize=(5, 5))
                                                                                          TN = 11695
                                                                              Not Default
> plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia) # 2-by-2 matrix
> labels = ['Not Default', 'Default'] # 1=Default, 0=Not Default
> plt.title('Confusion Matrix on Test Data')
> plt.ylabel('True label')
> plt.xlabel('Predicted label')
                                                                                          FN = 3304
                                                                                Default
> tick_marks = np.arange(len(labels)) # [0, 1]
> plt.xticks(tick_marks, labels, rotation=45)
> plt.yticks(tick_marks, labels)
> s = [['TN','FP'], ['FN', 'TP']]
> for i in range(2):
    for j in range(2):
       plt.text(j, i, str(s[i][j])+" = "+str(cm[i][j]), horizontalalignment="center")
> plt.show()
```


- Sensitivity and Precision in Python (See notebook):
- > # Import packages
- > from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix
- > print("Sensitivity (True positive rate, or Recall): ", recall_score(y_test, y_pred)) # Get sensitivity/recall score
- > print("Precision (Positive predictive value): ", precision_score(y_test, y_pred)) # Get precision score

- The upper left-hand triangle corresponds to classifiers that are better than "random guessing".
- The lower right-hand triangle corresponds to classifiers that are worse than "random guessing"
- The closer the curve follows the left-hand border and the top border of the ROC space (i.e., closer to the upper left-hand circle), the more accurate the test.
- The closer the curve comes to the **45-degree** diagonal of the ROC space, the less accurate the test.

ROC and AUC

Set Threshold:

If Score >= Threshold: Predict 1; If Score < Threshold: Predict 0.

TPR=2/6, FPR=1/4 TPR=6/6, FPR=3/4

ID	True Output	Score: P(y=1 Data, β)	Predicted Output (Threshold 90%)	Predicted Output (Threshold 70%)	•••	Predicted Output (Threshold 10%)
1	1	0.9	1	1	•••	1
2	1	0.8	О	1	•••	1
3	0	0.7	О	1	•••	1
4	1	0.6	О	O	•••	1
5	1	0.55	О	O	•••	1
6	1	0.47	O	O	•••	1
7	0	0.39	O	O	•••	1
8	0	0.21	O	O	•••	1
9	1	0.19	O	O	•••	1
10	0	0.03	0	0	•••	0

- ROC and AUC in Python (See notebook):
- > # Import packages
- > from sklearn.metrics import roc_curve, auc
- > # Get predicted scores Pr(y=1): Used as thresholds for calculating TP Rate and FP Rate
- > scores = Lasso_model.predict_proba(X_test)[:, 1]
- > # fpr: FP Rate, tpr: TP Rate, thresholds: Pr(y=1)
- > fpr, tpr, thresholds = roc_curve(y_test, scores)
- > roc_auc = auc(fpr, tpr) # Area under curve

• ROC and AUC in Python (See notebook):

```
> # Visualize ROC and AUC of test data
> plt.figure(figsize=(10,5))
> plt.grid(True)
> plt.plot(fpr, tpr, 'g*', label='Lasso Model: AUC = \%0.2f'\% roc_auc)
> plt.plot([0,1], [0,1], 'r--', label='Reference Line')
> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
> plt.xlim([-0.1,1.1])
> plt.ylim([-0.1,1.1])
> plt.title('Receiver operating characteristic of Lasso Model')
> plt.ylabel('True Positive Rate')
> plt.xlabel('False Positive Rate')
> plt.show()
```

• ROC and AUC in Python (See notebook):

Hyperparameter Tuning and Model Performance

• How does model performance change with hyperparameters (See notebook):

Please drag and slide:

lambdas: 1.00

Receiver operating characteristic (ROC) of Lasso model

Tree-Based Models

Making Predictions With Regression

• Problems:

• Nonlinear Data Pattern

• Exclusive-OR:

How about Tree Method?

- (1) If x1>0.5 and x2>0.5, then y=0 (Red); (2) If x1>0.5 and x2<=0.5, then y=1 (Blue);
- (3) If $x1 \le 0.5$ and $x2 \ge 0.5$, then y=1 (Blue); (4) If $x1 \le 0.5$ and $x2 \le 0.5$, then y=0 (Red);

Decision Tree

Predicted output label: 1

• Example: Build a tree with **training data samples** and get:

Predicted output label: 0

ID	Age	Salary	Output: Default
1	20	3000	1
2	25	4000	0
3	50	1500	0
4	45	2500	1
5	33	4500	1
•••	•••	•••	•••

Underfit And Overfit

☐ Finding a single model that performs well on prediction is not so easy.

☐ Data Scientists focus more on overfit issue.

How To Make Better Predictions?

- What we've learned from previous weeks:
 - Regularization: Penalized regression
 - Cross-Validation
 - Feature Selection (Week4 Tutorial)
 - Pruning in decision tree (e.g., early-stopping when training a tree)
 - Ensemble Learning methods (This Tutorial)
 - Dropout in deep learning and neural network
 - More...

Ensemble learning

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

Yes! Schapire (1990)

Ensemble Learning Method

Amazing impact: • simple approach • widely used in industry • wins most Kaggle competitions

Learn from not just one learner/model but a set of base learners/models, and **combine** their predictions for the unseen instances using some **aggregation methods** (e.g., taking average, majority voting, logistic regression, etc.)

A set of weak models are combined to create a strong model

History of Ensemble Learning

1980s

- Hansen and Salamon 1989: Basic Concepts
- Schapire 1990: Boosting

1990s

- Breiman 1994: Bagging
- Tin K.H. 1995: Random Forest
- Schapire and Freund 1997: Adaptive Boosting (Adaboost)

2000s

- Friedman 1999: Gradient Boosting Machine
- Chen Tianqi 2016: XGBoost
- Microsoft 2017: LightGBM

Ensemble Method

Ensemble Method

- Parallel Learning
 - Bagging (Bootstrapping Aggregation)
 - Random Forest
 - Stacking: Combination of different-type base models
- Sequential Learning (Error-Based or Residual-Based)
 - Adaboost (Adaptive Boosting): Increase weights on misclassified data
 - Gradient Boosting: Fit base models on residuals
 - XGBoost: An extension from Gradient Boosting

Bagging

Explanation:

Bootstrap sampling (with replacement) from the original dataset B times

You get B bootstrap samples

Each bootstrap sample size is N (usually same size as original dataset)

Random Forest

Explanation:

Create n base models: Each time, randomly select a subset of original features (m) to get the base model

Suppose you have p features in total, each time select:

$$m = \sqrt{p}$$

features

Bagging v.s. Random Forest

Bagging

- Bootstrap Resampling
- Subsample dimension is the same as original data

They can be combined

- Random Forest
- Randomly Select Features
- Subsample dimension is different from original data

Random Forest With Bootstrapping

- A Random Forest Tree (See notebook):
- > # Import packages
- > from sklearn.ensemble import RandomForestClassifier
- > # Random Forest model: By default, bootstrap=True
- > # https://scikit-

<u>learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html</u>

- > N = 100 # Number of base tree models
- > RF = RandomForestClassifier(n_estimators=N, random_state=12345)
- > RF_model = RF.fit(X_train, y_train)

Boosting

Gradient Boosting

Difference?

Gradient Boost

- A Gradient Boost Tree (See notebook):
- > # Import packages
- > from sklearn.ensemble import GradientBoostingClassifier
- > # Gradient Boost model
- > # https://scikit-

<u>learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassi</u> fier.html

- > N = 100 # Number of base tree models
- > GDB = GradientBoostingClassifier(n_estimators=N, random_state=12345)
- > GDB_model = GDB.fit(X_train, y_train)

Comparison

• A single Decision Tree v.s. Ensemble Methods (See notebook):

Model	Accuracy	Sensitivity	Precision	AUC
Single Tree	0.7807	0.0978	0.4861	0.6977
Random Forest	0.7907	0.1905	0.5590	0.7077
Gradient Boost	0.7926	0.1651	0.5870	0.7263

• Ensemble Methods are effective in improving model performance

Comparison

• A single Decision Tree v.s. Ensemble Methods (See notebook):

• Ensemble Methods are effective in improving model performance

Any Questions?

Thank You!