Optik 1

Diverses

Konstanten

Farbenlehre Kuchling 386

Vakuumgeschwindigkeit: $c = 299'792'458 \frac{m}{s} \approx 3 \cdot 10^8 \frac{m}{s}$

Geometrische Optik $_{\mbox{\scriptsize Kuchling 360 St\"{o}cker~309}}$ 1.2

Brechungsgesetz Kuchling 365 Stöcker 320	$\frac{\sin \varepsilon_1}{\sin \varepsilon_2} = \frac{n_2}{n_1} \qquad n_1 \sin \varepsilon_1 = n_2 \sin \varepsilon_2 \qquad \varepsilon_1 = \varepsilon_1'$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Brechungsindex Kuchling 365 Stöcker 320	$n = \frac{c}{u} \qquad \begin{array}{l} \text{[c]=Vakumgeschwindigkeit}} \\ \text{[u]=Lichtgeschwindigkeit} \end{array}$	Medium n Medium n Luft 1,000292 Kronglas (K13) 1,522 Wasser 1,333 Flintglas (K2) 1,620 Diamant 2,417
Totalreflexion Kuchling 366 Stöcker 322	Für $n_1 > n_2$ $\varepsilon = \varepsilon_g \Rightarrow$ Grenzfall (ausgezogene Linie) $\varepsilon = \arcsin \frac{n_2}{n_1}$ $\varepsilon < \varepsilon_g \Rightarrow$ Brechung (gepunktete Linie) $\varepsilon > \varepsilon_g \Rightarrow$ Reflexion (gestrichelte Linie)	$n_1 > n_2$ $n_2 > n_3 > n_4$
Brennweite Kuchling 362 Stöcker 316	Spiegel: $f = \frac{r}{2} \text{(für kleine } h \text{ gilt } a = b \approx \frac{r}{2}\text{)}$ Linse: $\rightarrow \text{Linsenschleifergleichung}$	μ α F f
Brechkraft, Linsenschleifer- gleichung Kuchling 370	$D = \frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{r_1} + \frac{1}{r_2}\right) \qquad \underbrace{D_{tot} = D_1 + D_2}_{\text{Abstand von Linsen} \ll f}$ $r_1, r_2 > 0 \text{: Konvex}$ $\frac{1}{r_1}; \frac{1}{r_2} = 0 \text{: Plan} r_1, r_2 < 0 \text{: Konkav}$	$D=$ Brechwert in Dioptrie [dpt] $n_1=$ B.index d. umgebenden Mediums $n_2=$ B.index der Linse
Brillengleichung	$D_B = D'_{min} - D_{min} = \frac{1}{g'_{min}} - \frac{1}{g_{min}}$	D_B : Brechwert der Brille g'_{min} :neue Entfernung zum Scharf sehen g_{min} : alte Entfernung zum Scharf sehen
Abbildungs- gleichungen Kuchling 363	$G = Gegenstandshöhe$ $g = Gegenstandsweite$ $B = Bildhöhe$ $b = Bildweite$ $F = Brennpunkt$ $f = Brennweite$ $\alpha_{tot} = \alpha_1 \cdot \alpha_2$	G F B B
Stöcker 373	$\begin{array}{c} \underline{\text{Vorzeichenkonventionen}} \\ \circ \text{ Spiegel konkav / Linse konvex (sammelnd)} \Rightarrow f > 0 \\ \circ \text{ Spiegel konvex / Linse konkav (zerstreuend)} \Rightarrow f < 0 \\ \circ \text{ Bild virtuell} \Rightarrow b < 0 \& B < 0 \\ \circ \text{ Gegenstand virtuell} \Rightarrow g < 0 \& G < 0 \\ \end{array}$	Bei reelem Gegenstand: $B > 0$: invertiertes Bild $B < 0$: aufrecht, seitenrichtig

1.3 Spiegel Kuchling 362 Stöcker 315

Gegenstand ausserhalb der Brennweite \Rightarrow reelles, verkleinertes & verkehrtes Bild (b>0)

Gegenstand innerhalb der Brennweite \Rightarrow virtuelles, vergrössertes & aufrechtes Bild (b < 0)

Gegenstand hat stets virtuelles, verkleinertes & aufrechtes Bild (b < 0)

Bild ist virtuell und gleich gross wie Gegenstand, Bildweite ist gleich Gegenstandsweite. Brennpunkt liegt im Unendlichen. (b < 0)

1.4 Linsen Kuchling 369 Stöcker 331

Gegenstand ausserhalb der Brennweite \Rightarrow reelles, verkleinertes & verkehrtes Bild (b>0)

Gegenstand innerhalb der Brennweite \Rightarrow virtuelles, vergrössertes & aufrechtes Bild (b < 0)

Gegenstand hat stets virtuelles, aufrechtes & verkleinertes Bild (b<0)

1.5 Strahlengänge

Planspiegel

1.6 Optische Systeme

1.6.1 Lupe Kuchling 381 Stöcker 345

Bild ist im Unendlichen, wenn g=fErzeugt virtuelles, vergrössertes & aufrechtes Bild

V Vergrösserung s deutliche Sehweite (Auge: 25cm) ε Sehwinkel mit Lupe $\varepsilon' = \varepsilon_0$ Sehwinkel ohne Lupe $= 1/60^\circ$ $V = \frac{s}{f} = \frac{\tan(\varepsilon)}{\tan(\varepsilon_0)} \Rightarrow \frac{s}{g} > V_{\text{normal}}$

Kamera Kuchling 378 Stöcker 343 1.6.2

Objektiv Film

Erzeugt reelles, verkleinertes & umgekehrtes

- g Schärfentiefe
- g_0 Mittlere Gegenstandsweite
- Z Blendenzahl
- E Belichtung
- u Unschärfekreisdurchmesser
- q Öffnungsverhältnis (Lichtstärke)
- d Blenden-Durchmesser
- f Brennweite (z.B. 35mm-Objektiv)

Projektor Kuchling 377

1.6.4 Mikroprojektor

Erzeugt reelles, vergrössertes & umgekehr-

$$\beta = \frac{b}{g} = \frac{b}{f} - 1 \text{ mit } \beta \text{ Abbildungsmasstab}$$

Erzeugt reelles Bild auf Schirm mit

$$V = \frac{B}{G} = \frac{b}{g}$$

Mikroskop Kuchling 382 Stöcker 345

Erzeugt reelles, vergrössertes & umgekehrtes Bild.

$$V_1 = \frac{\Delta}{f_1}$$
 Vergrösserung des Objektivs
 $V_2 = \frac{\delta}{f_2}$ Vergrösserung des Okulars

$$\Delta = \overline{F_1 \, F_2} = b_1 - f_1 \quad \text{Tubuslänge}$$

$$V = V_1 \, V_2 = \frac{f_1}{f_2} = \frac{\Delta}{f_1} \frac{s}{f_2} = \frac{B}{G} \frac{s}{f_2}$$

1.6.6 Keplersches (Astronomisches) Fernrohr Kuchling 383 Stöcker 347

Erzeugt reelles, vergrössertes & umgekehrtes Bild. Dies ist ein Spezialfall des Mikroskops, wo die Gegenstandsweite auf unendlich $(g \rightarrow \infty)$ eingestellt ist.

- D Durchmesser Objektiv
- V Vergrösserung
- a Abstand Okular-Austrittspupille
- l Abstand Objektiv-Okular
- d Grösse Austrittspup.

L Lichtstärke
$$\frac{1}{f_1+f_2} + \frac{1}{a} = \frac{1}{f_2} \qquad a = \frac{l}{V} \qquad d = \frac{D}{V} \qquad L = d^2 = \left(\frac{D}{V}\right)^2$$

Bezeichnung auf Fernrohren, Ferngläser (z.B. 10x50) entspricht VxD

Diverse Kuchling 384 Stöcker 347

 $V = \frac{f_1}{|f_2|}$ Länge: $l = f_1 - |f_2|$ (evt. mit Umkehrlinse (ZF), Prismen oder Streul. zur Umkehrung) Terrestr. Fernr. Reflexion↔Brechung (weniger Lichtv.), k. Dispersion (k. chrom. Abberation), Verzug durch Masse Spiegelteleskope

Abbildungsfehler

Sphärische Abberation Brennweite ist Funktion des Abstands zur optischen Achse

Koma beim schiefen Einfall (\rightarrow Schweifförmiger Fehler) Astigmatismus, Bildfeldwölbung vertikal und horizontal \rightarrow andere Brennweite (Auge)

Verzeichnung tonnen- oder kissenförmige Verzeichnung eines Quadrates (\rightarrow Photogrammetrie)

Chromatische Abberation wegen Dispersion \Rightarrow Brennweite ist Funktion von λ (Farbe)

$2 \quad \text{Schwingungen} \ _{\text{Kuchling 192 St\"{o}cker 235}}$

2.1 Ungedämpfte Schwingungen

Harmonische Schwingung Kuchling 193 Stöcker 236	$y = A \sin(\omega t + \varphi) \qquad \omega = \frac{2\pi}{T} = 2\pi f$ $\ddot{y} + \omega^2 y = 0 \qquad v(t) = \dot{y} \qquad a(t) = \ddot{y}$	$A = \text{Amplitude [1]}$ $\omega = \text{Kreisfrequenz } \left[\frac{1}{s}\right]$ $v(t) = \text{Geschwindigkeit } \left[\frac{m}{s}\right]$ $a(t) = \text{Beschleunigung } \left[\frac{m}{s^2}\right]$
${\it Tr\"{a}gheitskraft/Moment}$	Trans. : $F_T(y) = m \cdot \ddot{y}$ Rot.: $M_T(\varphi) = J \cdot \ddot{\varphi}$	$J = [kg \cdot m^2]$
Schwingungsenergie Kuchling 203 Stöcker 240	$E = E_{\text{pot}} + E_{\text{kin}} = \frac{cy^2}{2} + \frac{mv^2}{2} = \frac{c}{2} \cdot A$ $\frac{m\omega^2 A^2}{2} (\sin(\omega t + \varphi)^2 + \cos(\omega t + \varphi)^2) = \frac{m\omega^2 A^2}{2}$	$E = \text{Energie} [J]$ $v = \dot{y} = \text{Geschwindigkeit} [\frac{m}{s}]$ $m = \text{Masse} [kg]$
Federpendel Kuchling 198 Stöcker 238	$\frac{\text{ohne Federmasse:}}{m\ddot{y} + cy = 0} \qquad \omega_0 = \sqrt{\frac{c}{m}} = \sqrt{\frac{c_1 + c_2}{m_1 + m_2}}$ $T = 2\pi\sqrt{\frac{m}{c}}$ $\text{rücktr. Kraft: } F = -cy = m\ddot{y} = F_T$ $\frac{\text{mit Federmasse:}}{\omega_0 = \sqrt{\frac{c}{m + \frac{m_F}{3}}}} \qquad T = 2\pi\sqrt{\frac{m + \frac{m_F}{3}}{c}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Drehpendel Kuchling 199 Stöcker 245	$J\ddot{\varphi}+c_{_{D}}\varphi=0 \qquad \omega_{0}=\sqrt{\frac{c_{_{D}}}{J}} \qquad T=2\pi\sqrt{\frac{J}{c_{_{D}}}}$ rücktr. Drehm.: $M=-c_{_{D}}\varphi=J\ddot{\varphi}$ (Bewegung)	$c_{D} = \left[\frac{N \cdot m}{rad}\right]$
Fadenpendel, Mathematisches Pendel Kuchling 200 Stöcker 240	$l\ddot{\varphi} + g\sin(\varphi) = 0 \xrightarrow{\lim(\varphi \ll 1)} l\ddot{\varphi} + g\varphi = 0$ $\omega_0 = \sqrt{\frac{g}{l}} \qquad T = 2\pi\sqrt{\frac{l}{g}} \qquad v = l\dot{\varphi} \qquad a = l\ddot{\varphi}$! \phi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Physisches Pendel Kuchling 201 Stöcker 243 Massenträgheitsmomente Kuchling 131 Stöcker 103	$J_{A}\ddot{\varphi} + mga\sin(\varphi) = 0 \xrightarrow{\lim} J_{A}\ddot{\varphi} + mga\varphi = 0$ $\omega_{0} = \sqrt{\frac{mga}{J_{A}}} = \sqrt{\frac{g}{l^{*}}} \qquad T = 2\pi\sqrt{\frac{J_{A}}{mga}} = 2\pi\sqrt{\frac{l^{*}}{g}}$ $l^{*} = \frac{J_{A}}{ma} = \frac{J_{M}}{mx} = \frac{J_{S}}{m\cdot a} + a$ bei mehreren Elementen: $J_{A} = \sum J_{A_{i}}$ $m = \sum m_{i}$ Satz von Steiner: $J_{A} = J_{S} + ma^{2}$ $J_{M} = J_{S} + mx^{2}$ Perkussionszentrum Trifft ein Schlag den Schwingungsmittelpunkt M wirken keine Kräfte auf den Punkt A & umgekehrt Minimale Schwingungsdauer $l^{*}_{min} = 2\sqrt{\frac{J_{S}}{m}} \text{ wenn } a = x = a_{min}$	$\begin{array}{c} A \\ \downarrow \\ \varphi \\ \downarrow \\ M \end{array}$ $* = \text{reduzierte Pendellänge}$ $^*_A = l_M^*$
Schwerpunkt berechnen Kuchling 66 Stöcker 84	$\vec{R} = \frac{\sum_{i} \vec{r_i} \Delta m_i}{m}$ $m = \sum_{i} \Delta m_i$	$ec{R}= ext{Ortsvektor des Schwerpunkts} \ ec{r_i}= ext{Koordinate des }i ext{-ten Elements} \ \Delta m_i= ext{Masse des }i ext{-ten Elements}$

2.2 Gedämpfte Schwingungen

Konstante Reibung Kuchling 205 Stöcker 249	$m\ddot{y}+cy+F_R=0 \qquad F_R=\muF_N \qquad \Delta A=4\frac{F_R}{c}$ Masse bleibt stehen, wenn $c\cdot A_n < F_R$	
Geschwindigkeitsprop. Dämpfung Kuchling 205 Stöcker 250	$\begin{split} &\frac{D < 1: \text{Schwingfall}}{m \ddot{y} + b \dot{y} + c y = \ddot{y} + \underbrace{\frac{b}{m}}_{2\delta} \cdot \dot{y} + \underbrace{\frac{c}{m}}_{\omega_0^2} \cdot y = 0 \\ &F_d = -b \dot{y} \end{split}$ $&\text{Ansatz abklingende Schwingung:} \\ &y(t) = Ae^{-\delta t} \sin(\omega_d t + \varphi_0) \end{split}$ $&\delta = \frac{b}{2m} \\ &\omega_0 = \sqrt{\frac{c}{m}} \\ &\omega_d = \omega_0 \sqrt{1 - D^2} = \sqrt{\frac{c}{m} - \delta^2} = \sqrt{\omega_0^2 - \delta^2} \\ &\omega_r = \omega_0 \sqrt{1 - 2 \cdot D^2} = \sqrt{\omega_0^2 - 2\delta^2} \\ &D = \frac{\delta}{\omega_0} = \frac{\frac{\Delta}{2\pi}}{\sqrt{1 + \left(\frac{\Delta}{2\pi}\right)^2}} \approx \frac{\Lambda}{2\pi} \text{ (für kleine } D) \\ &\Lambda = \delta T = \frac{2\pi D}{\sqrt{1 - D^2}} = \ln \frac{\hat{A}_n}{\hat{A}_{n+1}} \qquad \frac{\hat{A}_n}{\hat{A}_{n+1}} = e^{\delta T} \\ &\frac{A_{n+1}}{A_n} = \sqrt[k]{\frac{A_{n+k}}{A_n}} \\ &\frac{E_t}{E_{t+\Delta t}} = \frac{A_t^2}{A_{t+\Delta t}^2} \qquad \frac{A_t}{A_{t+\Delta t}} = e^{\delta \Delta t} \\ &D > 1: \text{ Kriechfall (keine Schwingung mehr)} \\ &y(t) = b_1 e^{\lambda_1 t} + b_2 e^{\lambda_2 t} \\ &\lambda_1 = -\omega_0 (D + \sqrt{D^2 - 1}) \lambda_2 = -\omega_0 (D - \sqrt{D^2 - 1}) \\ &D = 1: \text{ Aperiodischer Grenzfall } (\delta = \omega_0) \\ &y = (b_1 + b_2 t) e^{-\delta t} \qquad \omega_0^2 = \frac{c}{m} = \frac{b^2}{4m^2} = \delta^2 \end{split}$	$m = \text{Mitschwingende Masse } [kg]$ $b = \text{Dämpfungskonstante } \left[\frac{kg}{s}\right]$ $c = \text{Federkonstante } \left[\frac{N}{m}\right]$ $F_d = \text{Geschwindigkeits-proportionale}$ Dämpfungskraft $\omega_0 = \text{Eigen-Kreisfr. } \left[\frac{1}{s}\right]$ $\omega_d = \text{gedämpfte Kreisfr. } \left[\frac{1}{s}\right]$ $\omega_r = \text{Resonanzkreisfrequenz } \left[\frac{1}{s}\right]$ $T = \text{Periodendauer } [s]$ $A = \text{Amplitude } [1]$ $\varphi_0 = \text{Phasenwinkel } [rad]$ $E = \text{Energie } [J]$ $\delta = \text{Abklingkostante } [1/s]$ $D = \text{Dämpfungsgrad } [1]$ $\Lambda = \text{logarithmisches Dekrement } [1]$ $\hat{A}_n = A_{max} \text{ zu Zeitpunkt } t_n [1]$ $\hat{A}_{n+1} = A_{max} \text{ zu Zeitpunkt } t_n [1]$ $E_t = E \text{ zu Zeitpunkt } t [J]$ $E_{t+\Delta t} = E \text{ zu Zeitpunkt } t [1]$ $A_t = A \text{ zu Zeitpunkt } t [1]$ $A_{t+\Delta t} = A \text{ zu Zeitpunkt } t [1]$ $A_{t+\Delta t} = A \text{ zu Zeitpunkt } t [1]$ $A_{t+\Delta t} = A \text{ zu Zeitpunkt } t [1]$

2.3 Diverse Formeln

Translation	Rotation	Diverses
x = Weg	$\varphi = \text{Weg}$	$F = m \cdot a$
$v = \dot{x}$	$\omega = \dot{\varphi}$	$F = m \cdot \alpha \cdot r$
$a = \dot{v} = \ddot{x}$	$\alpha = \dot{\omega} = \ddot{\varphi}$	$M = J \cdot \alpha = J \cdot \ddot{\varphi}$

2.4 Federn in Serie und Parallel

Parallel: $c = c_1 + c_2$ Serie: $\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} \longrightarrow c = \frac{c_1 c_2}{c_1 + c_2}$

Fremderregte Schwingungen Kuchling 213 Stöcker 254 2.5

Die Erregungsschwingung ist jeweils das Störglied der DGL.

Allgemein

Dimensionslose Frequenz $\eta = \frac{\omega}{\omega_0}$ $\omega = \text{Erregerkreisfrequenz}$

Eigenkreisfrequenz

 $\omega_0 = \sqrt{\frac{c}{\sum m}}$ Federn parallel: $\omega_0 = \sqrt{\frac{\sum c}{\sum m}}$

 $m \ddot{y} + b \dot{y} + cy = \underbrace{c u_0}_{F_0} \sin(\omega t)$ Differentialgleichung

 $A = \frac{c u_0}{m\sqrt{(\omega_0^2 - \omega^2)^2 + (2D \omega_0 \omega)^2}}$ $\varphi = \arctan\left(\frac{2D \omega_0 \omega}{\omega_0^2 - \omega^2}\right)$ Amplitude

Phase zw. $\omega_0 \& \omega$

 $\omega_r = \omega_0 \sqrt{1 - 2D^2} \quad \omega_r < \omega_d < \omega_0$ Resonanzkreisfrequenz

 $A_r = \frac{u_0}{2D\sqrt{1 - D^2}} = \frac{c \cdot u_0}{2m\sqrt{(\delta\omega_0)^2 - \delta^4}}$ Resonanzamplitude

 $V = \frac{1}{\sqrt{(1 - \eta^2)^2 + (2D\eta)^2}} = \frac{A(\omega)}{u_0}$ Vergrösserungsfunktion

Vergrösserung bei Resonanz $V_r = \frac{1}{\sqrt{1 - \eta_r^4}}$ mit $\eta_r = \sqrt{1 - 2D^2}$

Überkritische Dämfpung, wenn $D > \frac{1}{\sqrt{2}} \Rightarrow$ Auch bei Resonanz bleibt Amplitude stets unter statischer Auslenkung $(V \le 1)$

Unwuchterregung

 m_R Rotormasse (bewegt) e Exzentrizität (Distanz Achse⇔SP) F_0 Kraft auf Fundament ohne Federung F_{B0} verringerte Kraft

 $F(t) = F_0 \cdot \sin(\omega t)$

 $F_0 = m \cdot a_r = m \cdot \frac{v^2}{r} = m \cdot r \cdot \omega^2 = m_R \cdot e \cdot \omega^2$

 $m\ddot{y} + b\dot{y} + cy = m_R e\omega^2 \sin(\omega t)$ Differentialgleichung

 $A = \frac{m_R e \,\omega^2}{m\sqrt{(\omega_0^2 - \omega^2)^2 + (2D \,\omega_0 \,\omega)^2}}$ Amplitude

 $\varphi = \arctan\left(\frac{2D\,\omega_0\,\omega}{\omega_0^2 - \omega}\right)$ Phase zw. $\omega_0 \& \omega$

 $\omega_r = \frac{\omega_0}{\sqrt{1 - 2D^2}}$ Resonanzkreisfrequenz

 $A_r = \frac{m_R}{m} \frac{e}{2D\sqrt{1 - D^2}}$ Resonanzamplitude

Kraftamplitude **ohne** Fed. $F_0 = m_R e \,\omega^2 \sin(\omega t)$

$$\begin{split} F_{B0} &= \frac{m_R \, e \, \omega^2 \, \sqrt{1 + 4D^2 \eta^2}}{\sqrt{(1 - \eta^2)^2 + 4D^2 \eta^2}} = F(\eta) \\ \frac{F_{B0}}{F_0} &= \sqrt{\frac{1 + 4D^2 \eta^2}{(1 - \eta^2)^2 + 4D^2 \eta^2}} \end{split}$$
Kraftamplitude mit Fed.

Verhältnis

Indirekte Federkrafterregung

Differentialgleichung

 $m \ddot{y} + b \dot{y} + cy = c_2 u_0 \sin(\omega t)$

 $A = \frac{c_2}{c} \frac{c u_0}{m\sqrt{(\omega_0^2 - \omega^2)^2 + (2D \omega_0 \omega)^2}}$ $\varphi = \arctan\left(\frac{2D \omega_0 \omega}{\omega_0^2 - \omega^2}\right)$ Amplitude

Phase zw. $\omega_0 \& \omega$

 $\omega_r = \omega_0 \sqrt{1 - 2D^2}$ Resonanzkreisfrequenz

Resonanzamplitude

 $A_r = \frac{u_0}{2D\sqrt{1 - D^2}}$ $V = \frac{c_2}{c} \cdot \frac{1}{\sqrt{(1 - \eta^2)^2 + (2D\eta)^2}}$ Vergrösserungsfunktion

	Differentialgleichung	$m\ddot{y} + b\dot{y} + cy = c u_0 \sin(\omega t) + b\omega u_0 \cos(\omega t)$
G. W.		$m \ddot{q} + b \dot{q} + c q = m \omega^2 u_0 \sin(\omega t)$
Stützenerregung † y	Amplitude	$A = \frac{\omega^2 u_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2D \omega_0 \omega)^2}}$
	Phase zw. ω_0 & ω	$\varphi = \arctan\left(\frac{2D\omega_0\omega}{\omega_0^2 - \omega^2}\right) - \pi$
	Resonanzkreisfrequenz	$\omega_r = \frac{\omega_0}{\sqrt{1 - 2D^2}}$
	Resonanzamplitude	$A_r = \frac{u_0}{2D\sqrt{1 - D^2}}$
	Vergrösserungsfunktion	$V = \frac{\eta^2}{\sqrt{(1-\eta^2)^2 + (2D\eta)^2}}$
Dämpferregung	Differentialgleichung	$m\ddot{y} + b\dot{y} + cy = b\omega u_0 \sin(\omega t + \frac{\pi}{2})$
	Amplitude	$A = \frac{b\omegau_0}{m\sqrt{(\omega_0^2 - \omega^2)^2 + (2D\omega_0\omega)^2}}$
	Phase zw. ω_0 & ω	$\varphi = \arctan\left(\frac{2D\omega_0\omega}{\omega_0^2 - \omega^2}\right) - \frac{\pi}{2}$
	Resonanzkreisfrequenz	$\omega_r = \omega_0 \to \text{max. bei } \eta = 1$
		$A_r = u_0 \to V(1) = 1$
→ †u	Vergrösserungsfunktion	$V = \frac{2 D \eta}{\sqrt{(1 - \eta^2)^2 + (2D\eta)^2}}$

${\bf 2.6}\quad {\bf Elektrische~Schwingkreise~{\color{red}{\bf Kuchling~530~St\"{o}cker~253}}}$

	Serienschwingkreis	Parallelschwingkreis
Diffgl:	$\vec{L}\ddot{I} + R_S \dot{I} + \frac{1}{C}I = \omega U_0 \sin(\omega t + \frac{\pi}{2})$	$C\ddot{U} + \frac{1}{R_P}\dot{U} + \frac{1}{L}U = \omega I_0 \sin(\omega t + \frac{\pi}{2})$
Amplitude:	$I_0 = \frac{\omega U_0}{L\sqrt{(\omega_0^2 - \omega^2)^2 + (2D\omega_0\omega)^2}}$	$U_0 = \frac{\omega I_0}{C\sqrt{(\omega_0^2 - \omega^2)^2 + (2D\omega_0\omega)^2}}$
Phase:	$\varphi = \arctan\left(\frac{2D\omega_0\omega}{\omega_0^2 - \omega^2}\right) - \frac{\pi}{2}$	$\varphi = \arctan\left(\frac{2D\omega_0\omega}{\omega_0^2 - \omega^2}\right) - \frac{\pi}{2}$
Resonanzfrequenz:	$\omega_r = \omega_0 = \frac{1}{\sqrt{LC}} \qquad \omega_d = \omega_0 \sqrt{1 - D^2}$	$\omega_r = \omega_0 = \frac{1}{\sqrt{LC}}$
Resonanzamplitude:	$I_{0_r} = \frac{U_0}{R_S}$	$U_{0_r} = I_0 \cdot R_P \qquad \text{mit } R_P = \frac{\omega^2 L^2}{R_S}$
Vergrösserungsfunktion:	$V(\eta) = \frac{\eta^2}{\sqrt{(1 - \eta^2)^2 + (2D \eta)^2}}$ Max: $V_m = \frac{1}{2D\sqrt{1 - D^2}}$	$V(\eta) = \frac{1}{\sqrt{(1 - \eta^2)^2 + (2D \eta)^2}}$ Max: $V_m = \frac{1}{2D\sqrt{1 - D^2}}$
Phasenverschiebung:	$\varphi_{\scriptscriptstyle U} = \arctan\left(\frac{2D\eta}{1-\eta^2}\right) - \pi$	$\varphi_{\scriptscriptstyle I} = \arctan\left(\frac{2D\eta}{1-\eta^2}\right)$
Dämpfungsgrad:	$D = \frac{R_S}{2} \sqrt{\frac{C}{L}}$	$D = \frac{1}{2 R_P} \sqrt{\frac{L}{C}}$

2.6.1 Güte

$$Q = 2\pi \frac{E(t)}{E(t) - E(t+T)} = \frac{1}{2D} = V_m = \frac{\omega_0}{\Delta \omega} \quad \text{wobei} \quad E = \frac{CU^2}{2} + \frac{LI^2}{2} = \frac{LI_0^2}{2} = \frac{L\omega_0^2 C^2 U_0^2}{2} = \frac{CU_0^2}{2}$$

3 Wellen / Akustik $_{\text{Kuchling 229 Stöcker 265}}$

3.1 Definitionen räumlicher Elemtarwellen

Wellengleichung:	$\ddot{\xi}= ext{Zweite Ableitung nach der Zeit}$
$\ddot{\xi} = u^2 \cdot \xi''(x)$	$\xi'' = $ Zweite Ableitung nach dem Ort
Ebene harmonische Welle:	$\xi(\vec{r},t) = \text{Auslenkung am Ort } \vec{r} \text{ zur Zeit } t$
$\xi(\vec{r},t) = \xi_0 \sin(\omega t - k\vec{r} + \varphi)$	$\xi_0 = \text{Amplitude [1]}$
	$k = \text{Wellenzahl}\left[\frac{1}{m}\right]$
$\xi(\vec{r},t) = \xi_0 e^{-j(\omega t - k\vec{r})}$	$\vec{r} = ext{Ortsvektor} [m]$
	$\omega = \text{Kreisfrequenz}\left[\frac{1}{s}\right]$
Harmonische Kugelwelle:	$\varphi = ext{Phasenverschiebung} [rad]$
$\xi(\vec{r},t) = \frac{\xi_0}{ \vec{r} } \sin(\omega t - k \vec{r} + \varphi)$	$\lambda = ext{Wellenlänge} [m]$
$ \vec{r} ^{s=1}$	$u = \text{Wellengeschwindigkeit } \left[\frac{m}{s} \right]$
$\xi(\vec{r},t) = \frac{\xi_0}{ \vec{r} } e^{-j(\omega t - k \vec{r})}$	f = Frequenz $[Hz]$
$\xi(r,t) \equiv \frac{1}{ \vec{r} }e^{-\zeta(r-r)}$	T = Periodendauer $[s]$

3.2 Wichtige Beziehungen

$$\boxed{k = \frac{\omega}{u} = \frac{2\pi}{\lambda}} \quad \boxed{u = \frac{\omega}{k} = \lambda \cdot f} \quad \boxed{\lambda = \frac{2\pi}{k} = \frac{u}{f}} \quad \boxed{\omega = 2\pi f = \frac{2\pi}{T}} \quad \boxed{f = \frac{\omega}{2\pi} = \frac{u}{\lambda} = \frac{1}{T}} \quad \boxed{T = \frac{1}{f} = \frac{2\pi}{\omega}} \quad \boxed{\varphi = \omega t - k|\vec{r}|}$$

3.3 Wellengeschwindigkeit $_{\text{Kuchling 233 Stöcker 267}}$

Elastische Längs-/ Longitudinalwelle $u = \sqrt{\frac{E}{\varrho}}$	Elastische Quer-/ Transversalwelle $u = \sqrt{\frac{G}{\varrho}} \text{mit } G = \frac{E}{2(1+\mu)}$	Transversalwellen bei Saite oder Seil $u = \sqrt{\frac{F}{\varrho A}} = \sqrt{\frac{F}{\varrho} + \frac{\pi E A}{\varrho \lambda^2}}$
$E \colon Elastizit \ddot{at s modul}, \rho = Dichte$	G : Schubmodul, $\mu = Poisson-Zahl$	F: Spannkraft, E: Elastizitätsmodul
Schwerewellen in tiefem Wasser	Schwerewellen in flachem Wasser	Kapillarwellen
$u = \sqrt{\frac{g\lambda}{2\pi}}$	$u = \sqrt{g h}$	$u = \sqrt{\frac{2\pi \sigma}{\varrho \lambda}}$
$(\lambda \ll h)$	$(\lambda \gg h)$	σ : Oberflächenspannung
Schallwellen in Fluide n	Schallwellen in Gasen	Elektromagnetische Wellen
$u = \sqrt{\frac{1}{\varrho \kappa}}$	$u = \sqrt{\frac{\kappa p}{\varrho}} = \sqrt{\frac{\kappa R T}{M}}$	$u = \frac{c}{n}$
κ : Kompressibilität	p: Druck, M : Molmasse	n= Brechungsindex
	ж: Adiabatenexponent	
$M_{Luft} = 0.02883 \frac{kg}{mol} = 28.83 \frac{g}{mol}$	$R = 8.3145 \frac{J}{mol \cdot K} \qquad \varkappa_{Luft} = 1$	1.4 T: $C^{\circ} + 273, 15K$

3.4 Eigenschwingungen Allg. / Akustik Kuchling 334 Stöcker 294

Allgemein	Eigenfrequenz:	$f_n = \frac{1}{T_n} = n \cdot \frac{u}{2 \cdot l}$	Wellenlänge:	$\lambda_n = \frac{u}{f_n} = \frac{2 \cdot l}{n}$
Saiten	Grundfrequenz:	$f_n = n \cdot \frac{1}{2l} \sqrt{\frac{F}{\varrho A}} = n \cdot \frac{1}{2l} \sqrt{\frac{\sigma}{\varrho}}$		$\lambda_n = \frac{2l}{n} (n = 1, 2, 3, \dots)$
Pfeifen	Offen:	$f_n = n \cdot \frac{1}{2l} u_{\text{Gas}} = n \cdot \frac{1}{2l} \sqrt{\frac{\varkappa RT}{M}}$		$\lambda_n = \frac{2l}{n} (n = 1, 2, 3, \dots)$
	Gedeckt:	$f_{(2n-1)} = \frac{2n-1}{4l} \sqrt{\frac{\varkappa RT}{M}}$		$\lambda_n = \frac{4l}{2n-1}$ ((2n-1) = 1,3,5,)
Membranen		$f_{mn} = \frac{1}{2} \sqrt{\frac{F}{\mu}} \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b}}$		perwellen und a, b : Länge/Breite äche; F : Spannkraft / Länge

3.5 Doppler-Effekt Kuchling 342 Stöcker 277

Ruhende & bewegte Punkt-

Bewegte Punktquelle

Bewegter Beobachter bewegte Quelle

$$\begin{aligned} & \textbf{Bewegte Quelle, ruhender Beobachter} \\ & f_B = \frac{1}{1 \mp \frac{v_Q}{u}} f_Q & - \text{ auf H\"orer zu} \\ & + \text{ von H\"orer weg} \end{aligned} \\ & f_B = \frac{1}{1 - \frac{v_Q}{u} \cos(\vartheta_Q)} f_Q \end{aligned}$$

Ruhende Quelle, bewegter Beobachter

$$f_B = \left(1 \pm \frac{v_B}{u}\right) f_Q + ext{auf Quelle zu}$$
 $f_B = \left(1 + \frac{v_B}{u}\cos(\vartheta_B)\right) f_Q$

$$Allgemein \\ f_B = \frac{u + v_B \cos(\vartheta_B)}{u - v_Q \cos(\vartheta_Q)} f_Q$$

Optischer (transversaler) Dop.-Effekt

Optischer (transversaler) Dop.
$$f_B = \frac{\sqrt{1-eta^2}}{1-eta\cos\vartheta_{rel}} f_Q \qquad eta = \frac{v_{rel}}{c} \ ec{v}_{rel} = ec{v}_B - ec{v}_Q$$

Schwebungsfrequenz

$$\Delta f = |f_{Empfangen} - f_{Gesendet}|$$

 f_B gehörte Frequenz

 f_Q gesendete Frequenz

 v_B Geschwindigkeit Beobachter

 v_Q Geschwindigkeit Quelle

u Schallgeschwindigkeit

 v_{rel} Relativgeschwindigkeit zw. Q und B

 ϑ_{rel} Winkel zwischen \vec{v}_{rel} und \overline{BQ}

Machscher Kegel Kuchling 344 Stöcker 278 3.6

$$\sin(\vartheta) = \frac{u}{v} = \frac{1}{M}$$

Machzahl:
$$M = \frac{v}{u}$$

Lichtwellen

Lichtgeschwindigkeit: $c = \frac{1}{\sqrt{\mu_0 \cdot \epsilon_0}}$ Intensität: $I = \frac{1}{2} \cdot \sqrt{\frac{\epsilon_0}{\mu_0}} \cdot E_0^2$ in $[W/m^2]$

3.8 Optische Länge

Durchqueren Wellen Medien, muss mit optischen Längen gerechnet werden. s wird zu ns λ wird zu $\frac{\lambda}{n}$

Überlagerung / Interferenz $_{ ext{Kuchling 233, 235 Stöcker 272, 354}}$ 3.9

Interferenzbedingungen 3.9.1

	Phase	Weg
Konstruktiv:	$k_0(n \cdot \Delta x) = m 2\pi$	$n\Delta x = m\lambda$
Destruktiv:	$k_0(n \cdot \Delta x) = (2m+1)\pi$	$n \Delta x = (2m+1)\frac{\lambda}{2}$

 $k_0 = \frac{2\pi}{\lambda_0} =$ Wellenzahl im Vakuum $\lambda_0 =$ Wellenlänge im Vakuum

n = Brechungsindex, Kuchling Tab 39, S.653

 $n \cdot \Delta x = \text{optische Gangdifferenz}$

Phasensprung: Ein Phasensprung um π bzw. $\frac{\lambda}{2}$ findet bei **Reflektion** an einem härteren oder optisch dichterem Material (höheres n) statt.

3.10 Remission/Transmission

Remission
$$R = \left(\frac{f-1}{f+2}\right)^2$$
 mit $f = \frac{n_1}{n_2}$

Transmission T = 1 - R

3.11 Schallmessung Kuchling 348 Stöcker 287

Welle: $\xi = \xi_0 \sin(\omega t - kx)$ ξ_0 Schallausschlag $[\xi]$: m

Schallschnelle: $v = v_0 \cos(\omega t - kx)$ \rightarrow $v = \dot{\xi} = \omega \xi_0 \cos(\omega t - kx) \rightarrow \frac{v_0}{\omega} = \xi_0$

Schall(wechsel)druck: $\tilde{p} = \Delta p_0 \cos(\omega t - kx)$

Druckamplitude: $\Delta p_0 = Z \cdot v_0$ Schallimpedanz $Z = \varrho \cdot u$

Effektivwert: $p_{\text{eff}} = \frac{\Delta p_0}{\sqrt{2}}$

Schallintensität: $I = \frac{1}{2} \varrho v_0^2 u = \frac{1}{2} \varrho \omega^2 \xi_0^2 u = \frac{\Delta p_0^2}{2 \cdot Z}$ ξ_0 Schallausschlag; ϱ Dichte des Mediums

Schallpegel [dB] : $L_I = 10 \cdot \log \left(\frac{I}{I_0} \right)$ $I_0 = 10^{-12} \text{ W/m}^2$ $L_I = L_p \text{ für Z=400kg/m}^2 \text{s @ 20°C}$

Schalldruckpegel: $L_p = 20 \cdot \log \left(\frac{p_{\text{eff}}}{p_{\text{eff}_0}} \right) = 20 \cdot \log \left(\frac{\Delta p_0}{\sqrt{2} \cdot p_{\text{eff}_0}} \right)$ $p_{\text{eff}_0} = 2 \cdot 10^{-5} \text{ Pa}$

Schallschnellenpegel: $L_v = 20 \cdot \log \left(\frac{v_{\rm eff}}{v_{\rm eff_0}} \right)$ $v_{\rm eff_0} = 5 \cdot 10^{-8} {\rm m/s}$

Schallleistungspegel: $L_P = 10 \cdot \log \left(\frac{P}{P_0}\right)$ $P_0 = 10^{-12} \text{W}$

Schallfluss: $\vec{q} = \int_A \vec{v} \cdot dA$

Wellengeschwindigkeit: $u = \sqrt{\frac{1}{\varrho \, \kappa}} = \underbrace{\sqrt{\frac{\varkappa p}{\varrho}} = \sqrt{\frac{\varkappa R \, T}{M}}}_{\text{für Gase}}$ (Schallgeschwindigkeit) κ : Kompressibilität

 $\Rightarrow \frac{\Delta V}{V} = -\kappa \cdot \Delta p \qquad (p \cdot V = \text{const @ T_{const} bzw. } p \cdot V^{\varkappa} = \text{const})$

Lautstärke: $S=2^{0.1\cdot(L_S-40)}$ $L_S=$ Lautstärkepegel [phon] = L_P @ 1kHz, Hörschwelle 4phon

Ebene Welle $(z.B. Parabolspiegel) \rightarrow konstantes I, keine geom. Dämpfung nur Luftdämpfung$

 $\boxed{L_2 = L_1 - K \cdot (r_2 - r_1)} \text{ für } d << r \quad \rightarrow \quad I_2 = \frac{P}{4\pi (r + d)^2} \approx \frac{P}{4\pi r^2} = I_1 \quad I = \text{konstant}$

Kugelwellen (Punktquellen) : $I = \frac{P}{4\pi r^2} \rightarrow \sim \frac{1}{r^2} \text{ und } \frac{I_2}{I_1} = \frac{r_1^2}{r_2^2}$

 $L_2 = L_1 - \underbrace{20 \cdot \log\left(\frac{r_2}{r_1}\right)}_{\text{geom. Dämpfung}} - \underbrace{K \cdot (r_2 - r_1)}_{\text{Luftdämpfung}} \quad \text{mit } K: \text{Schalldämpfung } [\text{dB/m}]$

Zylinderwellen (Linienquellen) : $I = \frac{P}{l \, 2\pi r} \quad \rightarrow \quad \sim \frac{1}{r} \quad \Rightarrow \boxed{L_2 = L_1 - 10 \cdot \log\left(\frac{r_2}{r_1}\right) - K \cdot (r_2 - r_1)}$

Schalldämmung: $R = 10 \log \left(\frac{P_1}{P_2} \right)$

Phasensprung um $\lambda/2$, π bei Reflexion während Übergang von gasförmig \to fest

Infraschall Infraschall < 16Hz...20kHz < Ultraschall ...10GHz < Hyperschall

3.12Wellenoptik

Prinzip von Huygens Kuchling 229 3.12.1

Jeder Punkt einer Welle ist Zentrum einer neuen Kugelwelle (sogenannte Huygens'sche Elementarwelle). Die Wellenfront zu einem späteren Zeitpunkt ist die Einhüllende dieser Huygens'schen Elementarwellen.

3.12.2 Beugung am Doppelspalt

Minimum n-ter Ordnung $\sin(\varphi_n) \cdot s = (2n+1) \cdot \frac{\lambda}{2}$ Maximum n-ter Ordnung $\sin(\varphi_n) \cdot s = n \cdot \lambda$

 λ = Wellenlänge des Lichts s =Spalt-Abstand $\varphi_n = \text{Winkel n-ter Ordnung}$

n = 0,1,2,... = Ordnung

Beugung am Einfachspalt 3.12.3

Minimum n-ter Ordnung $\sin(\varphi_n) \cdot s = n \cdot \lambda$ Maximum n-ter Ordnung $\sin(\varphi_n) \cdot s = (2n+1) \cdot \frac{\lambda}{2}$

 $\lambda = \text{Wellenlänge des Lichts}$ s =Spalt-Abstand $\varphi_n = \text{Winkel n-ter Ordnung}$

n = 0,1,2,... = Ordnung

3.12.4 Beugung am Gitter

Hauptmaximum n-ter Ordnung

$$\sin(\varphi_n) \cdot d = n \cdot \lambda$$

 $\lambda = \text{betrachtete Lichtwellenlänge}$

d = konstanter Spaltenabstand

 $\varphi_n = \text{Maximumwinkel n-ter Ordnung}$

n = 0,1,2,... = Ordnung

Bedingungen für optimales optisches Gitter

- 1. Möglichst kleine Gitterkonstante \mathbf{d}
- 2. Möglichst grosse Gitter-Zahl z
- 3. Möglichst kleine Gitter-Breite ${f s}$

Intentitäts-Verteilung **Gitter**

Formfaktor = Intensitätsverteilung Einzelspalt

Dabei entsteht immer z-2 Neben-Maxima.

Babinet-Theorem

Komplemetäre Strukturen (also Negativ und Positiv) liefern gleiche Beugungsbilder

4 Idiotenseite

4.1 SI-Vorsätze

Symbol	Name	Wert	Binär
da	Deka	10^{1}	
h	Hekto	10^{2}	
k	Kilo	10^{3}	$2^{10} = 1024$
M	Mega	10^{6}	2^{20}
G	Giga	109	2^{30}
Т	Tera	10^{12}	2^{40}
Р	Peta	10^{15}	2^{50}

Symbol	Name	Wert
d	Dezi	10^{-1}
С	Centi	10^{-2}
m	Milli	10^{-3}
y, μ	Mikro	10^{-6}
n	Nano	10^{-9}
p	Piko	10^{-12}
f	Femto	10^{-15}

4.2 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

deg	rad	sin	cos
90	$\frac{\pi}{2}$	1	0
120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
135	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
150	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$

deg	rad	sin	cos
180	π	0	-1
210	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
225	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
240	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$

deg	rad	sin	cos
270	$\frac{3\pi}{2}$	-1	0
300	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
315	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
330	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

4.3 Periodizität

$$cos(a + k \cdot 2\pi) = cos(a)$$
 $sin(a + k \cdot 2\pi) = sin(a)$ $(k \in \mathbb{Z})$

4.4 Grichisches Alphabet

4.4.1 klein

α	Alpha	θ	Theta	О	О	τ	Tau
β	Beta	ϑ	Theta	π	Pi	v	Ypsilon
γ	Gamma	γ	Gamma	$\overline{\omega}$	Pi	ϕ	Phi
δ	Delta	κ	Kappa	ρ	Roh	φ	Phi
ϵ	Epsilon	λ	Lambda	ρ	Roh	χ	Chi
ε	Epsilon	μ	Mu	σ	Sigma	ψ	Psi
ζ	Zeta	ν	Nu	ς	Sigma	ω	Omega
η	Eta	ξ	Xi				

4.4.2 gross

Γ	Gamma	Λ	Lambda	Σ	Sigma	Ψ	Psi
Δ	Delta	Ξ	Xi	Υ	Ypsilon	Ω	Omega
Θ	Theta	П	Pi	Φ	Phi		

4.5 Volumen

 $\begin{array}{ll} {\bf Kugel} & \frac{4}{3}\pi r^3 \\ {\bf Zylinder} & \pi r^2 \cdot h \end{array}$