Zhejiang University – University of Illinois at Urbana-Champaign Institute

ECE-210 Analog Signal Processing Spring 2022 Homework #10: Submission Deadline 4th May (10:00 PM)

1. Determine the 3-dB bandwidth and the 95%-bandwidth of signals f(t) and g(t) with the following energy spectra:

2. Let $f(t) = f_1(t) + f_2(t)$ such that $f_1(t) \leftrightarrow F_1(\omega)$ and $f_2(t) \leftrightarrow F_2(\omega)$, and let $H(\omega) = |H(\omega)|e^{j\chi(\omega)}$. The functions $F_1(\omega)$, $F_2(\omega)$, $F_2(\omega)$, $F_2(\omega)$ and $F_2(\omega)$ are given graphically below. The signal $F_2(\omega)$ is the input to an LTI system with a frequency response $H(\omega)$. Express the output y(t) of the system as a superposition of scaled and/or shifted Y(W)=H(W).F(W) = H(W) IF(W)+E(W)] versions of $f_1(t)$ and $f_2(t)$.

3. Determine the response y(t) of the circuit shown below with an arbitrary input f(t) in the form of an inverse Fourier transform and then evaluate y(t) for the case $f(t) = e^{-\frac{t}{6}}u(t)$ V.

$$f(t)$$
 $\stackrel{2\Omega}{=}$ 3 F $\stackrel{+}{=}$ $y(t)$

with shown below with an arbitrary input
$$f(t)$$
 in the form of an inverse $f(t)$ for the case $f(t) = e^{-\frac{t}{6}}u(t) \, V$.

LT1 $f(w) = \int_{0}^{\infty} f(w) \, dw$

$$Z_{R} = \int_{0}^{\infty} Z_{C} = \int_{0}^{\infty} \frac{1}{\sqrt{3}w} \, dw$$

$$\Rightarrow f(w) = \int_{0}^{\infty} f(w) \, dw$$

- 4. Given that $f(t)\cos(\omega_o t) \leftrightarrow \frac{1}{2}F(\omega-\omega_0) + \frac{1}{2}F(\omega+\omega_0)$, determine the Fourier transform of $g(t) = f(t + \frac{\delta}{\omega_o})\cos(\omega_o t + \frac{\delta}{\omega_o})\cos(\omega_o t)$ θ) in terms of scaled and/or shifted versions of $F(\omega)$. (Hint: use the time-shift property.)

⇒ Using Time shift propority.

g(t+ to) =
$$G(w)e^{\int w \, dv}$$

⇒ $g(t)$ → $G(w) = G'(w) \cdot e^{\int w \, dv}$

= $\int [F(w - w_0) + F(w + w_0)] \cdot e^{\int w \, dv}$

- (a) Sketch the Fourier transform $Y(\omega)$ of the system output y(t) and calculate the energy W_y of y(t).
- (b) It is observed that output q(t) of the following system equals y(t) determined in part (a).

6. Consider the system

where $F(\omega)$ and $H(\omega)$ are as follows:

- (a) Express q(t) in terms of p(t).
- (b) Sketch the Fourier transforms $G(\omega)$, $P(\omega)$, $Q(\omega)$, and $Y(\omega)$.

