BUSINESS CASE USING SQL

This case study is about one of the world's most recognized brands and one of America's leading retailers. This brand makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation, and an exceptional guest experience that no other retailer can deliver.

This business case has information of 100k orders from 2016 to 2018 made by the brand in Brazil. Its features allow viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

- 1. Import the dataset and do the usual exploratory analysis steps like checking the structure & characteristics of the dataset.
 - 1.1 Data type of columns in a table
 - 1.2 Time period for which the data is given.
 - 1.3 Cities and States of customers ordered during the given period.

Solution:

We can know about the Data Type of the columns from Table SCHEMA. The following table SCHEMA shows that the whole dataset contains data types such as **STRING, INTEGER, FLOAT, TIMESTAMP**, etc.

					Field name	Туре	
					order_id	STRING	
Field name	Туре		Field name	Туре	order_item_id	INTEGER	2
customer_id	STRING		geolocation_zip_code_prefix	INTEGER	product_id	STRING	
customer_unique_id	STRING		geolocation_lat	FLOAT	seller_id	STRING	
customer_zip_code_prefix	INTEGER		geolocation_lng		shipping_limit_date	TIMEST	AMP
customer_city	STRING		geolocation_city	STRING	price	FLOAT	
customer_state	STRING		geolocation_state	STRING	freight_value	jht_value FLOAT	
					 		-
					Field name		Туре
Field name	Туре				 product_id		STRING
order_id	STRING		Field name	Type			STRING
customer_id	STRING						INTEGER
order_status	STRING		order_id	STRING			INTEGER
order_purchase_timestamp	TIMESTAMP		payment_sequential	INTEGER	product_photos_qt	Ϋ́	INTEGER
order_approved_at	TIMESTAMP		payment_type	STRING			INTEGER
order_delivered_carrier_date	TIMESTAMP	$\overline{\Box}$	payment_installments	INTEGER			INTEGER
order_delivered_customer_date	TIMESTAMP	=		INTEGER	product_height_cm		INTEGER
order_estimated_delivery_date	TIMESTAMP		payment_value	FLOAT	product_width_cm		INTEGER
			Field name	Туре			
			review_id	STRING			
Field name	Туре		order_id	STRING			
seller_id	STRING		review_score	INTEGER			
seller_zip_code_prefix	INTEGER		review_comment_title	STRING			
seller_city	STRING		review_creation_date	TIMESTAMP			
seller_state	STRING		review_answer_timestamp	TIMESTAMP			

The time period for which the data is given -

From min(order_purchase_timestamp) and max(order_purchase_timestamp), we can get the total period for which the data is given.

The data is given from 4th September 2016 to 17th October 2018.

Cities and States of customers ordered during the given period –

To get the cities and states of the customers who were active during the time period, let's join the customer and order table over the customer_id and get the distinct customer_city and customer_state from which we got the orders.

INSIGHT:

- The dataset consists of the data types such as **STRING, INTEGER, FLOAT, and TIMESTAMP.**
- We received the dataset from the period September 2016 to October 2018.

2. In-depth Exploration:

- 2.1 Is there a growing trend in e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
- 2.2 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon, or Night)?

0-7: Dawn

7-12: Morning

12-18: Afternoon

18-23:Night

Solution:

To see if there is a growing trend or not, we need to see if there is any increase in the number of orders over the years.

Query results

Query results

JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS	JOB INFORMATION		RESULTS	JSON	EXECUTION DE
Row	year	month	no_of_orders	orders_per_year	Row	year	month	no_of_orders	orders_per_year
1	2016	10	324	329					
2	2016	9	4	329	14	2017	2	1780	45101
3	2016	12	1	329	15	2017	1	800	45101
			7544	100000000000000000000000000000000000000	16	2018	1	7269	54011
4	2017	11	7544	45101	17	2018	3	7211	54011
5	2017	12	5673	45101	18	2018	4	6939	54011
6	2017	10	4631	45101	19	2018	5	6873	54011
7	2017	8	4331	45101	20	2018	2	6728	54011
8	2017	9	4285	45101	21	2018	8	6512	54011
9	2017	7	4026	45101	22	2018	7	6292	54011
10	2017	5	3700	45101	23	2018	6	6167	54011
11	2017	6	3245	45101	24	2018	9	16	54011
12	2017	3	2682	45101	25	2018	10	4	54011

Insight:

- As we do not have sufficient data for the year 2016 (data of only 3 months have been given), we cannot infer
 that there is growth in e-commerce, but from the overall growth of 2017 to 2018, we can say that there is
 growth in e-commerce in Brazil.
- We can see from the 2nd query that the highest number of orders were towards the end of the year 2017 and the start of the year 2018, i.e., during the winter season.
- But in 2018, the number of orders was decreasing over the year.
 - 2.1 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon, or Night)?
 - 0-7: Dawn
 - 7-12: Morning
 - 12-18: Afternoon
 - 18-23:Night

Insight:

We can clearly see from the result that the customers tend to buy more during the afternoon time.

- 3. Evolution of E-commerce orders in the Brazil region:
 - 3.1 Get month-on-month orders by state.
 - 3.2 Distribution of customers across the states in Brazil.

- 4 Impact on the Economy: Analyze the money movement by e-commerce by looking at order prices, freight, and others.
 - 4.1 Get a % increase in the cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use the "payment_value" column in the payments table.
 - 4.2 Mean & Sum of price and freight value by customer states.

```
Business case: 2: 1

    RUN

                                             ¥ SAVE ▼
                                                           +º SHARE ▼

    SCHEDULE ▼

                                                                                             MORE -
         4.1 Get a % increase in the cost of orders from 2017 to 2018 (include months between Jan to Aug only)
      payments table.
 59
     SELECT:
     b2.month, ROUND(b2.payment_value_2018, 2) cost_of_order_2018,
     ROUND(b2.payment_value_2017, 2) cost_of_order_2017,
     ROUND((((b2.payment_value_2018'-'b2.payment_value_2017)/payment_value_2017)*100), 2) AS growth_in_cost
 63
      (SELECT
 64
 65 b1.month, b1.payment_value AS payment_value_2018,
     LAG(b1.payment_value) · OVER(partition · by · month · ORDER · BY · year) · AS · payment_value_2017
 66
     FROM
 67
      EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,
 70
     EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,
     AVG(p.payment_value) payment_value
     FROM 'target.orders' o
 72
 73
      INNER JOIN `target.payments` p
     ON o.order_id = p.order_id
      GROUP BY 1, 2
 75
     ORDER BY 1, 2) AS b1
 76
      WHERE bl.year IN (2017, 2018) AND bl.month IN (1, 2, 3, 4, 5, 6, 7, 8)
 78
      ORDER BY 2) AS b2
 79
      WHERE NOT b2.payment_value_2017 IS null
      ORDER - BY - 1
```


Insight:

For the first four months of 2018, the cost of orders decreased, but after that, it increased.

Mean & Sum of price and freight value by customer states -

Query results EXECUTION GRAPH PREVIEW JOB INFORMATION **RESULTS JSON EXECUTION DETAILS** total_frieght_value · avg_freight_value • customer_state ▼ total_price ▼ avg_price ▼ Row SU 520553.34 124.05 89000.20 21.4/ 5 5202955.05 109.65 718723.07 15.15 120.75 20.63 MG 1585308.03 270853.46 7 BA 511349.99 134.6 100156.68 26.36 125.12 20.96 8 RJ 1824092.67 305589.31 9 GO 294591.95 126.27 53114.98 22.77 10 MA 119648.22 145.2 31523.77 38.26 PE 262788.03 145.51 59449.66 32.92 11 PB 25719.73 42.72 12 115268.08 191.48 ES 275037.31 121.91 49764.6 22.06 13 14 PR 683083.76 119.0 117851.68 20.53 15 RO 46140.64 165.97 11417.38 41.07 142.63 23.37 16 MS 116812.64 19144.03 165.69 35.83 17 PA 178947.81 38699.3

5. Analysis of sales, freight, and delivery time

5.1 Calculate the days between purchasing, delivery, and estimated delivery.

INSIGHT:

- For some orders there is actually delivery time was much more than the estimated delivery time
- 5.2 Find time to delivery & diff estimated delivery.

The formula for the same is given below:

time_to_delivery = order_delivered_customer_date-order_purchase_timestamp diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

5.3 Group data by state, take a mean of freight_value, time_to_delivery, and diff_estimated_delivery.

- 5.4 Sort the data to get the following:
 - i. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5.

States with lowest average freight value -

States with highest average freight value -

ii. Top 5 states with highest/lowest average time to delivery

States with the highest average time to delivery –

States with the lowest average time to delivery –

iii. Top 5 states where delivery is really fast/ not so fast compared to the estimated date.

States with fast delivery -

States with slow delivery -

6. Payment type analysis:

6.1 Month over Month count of orders for different payment types

6.2 Count of orders based on the no. of payment installments.

Insight:

- Most people tend to buy from credit cards.
- Most of the orders are with payment installment 1.