

Final Project

DS 5110 - Fall 2021 Big Data Systems

Dr. Adam Tashman

"How much influence does the opening move have on the game of chess?"

Group 10

- Antoine Edelman < <u>ae4k@virginia.edu</u>>
- Xin Huang <xh2jq@virginia.edu>
- Robert Knuuti < uqq5zz@virqinia.edu>

Executive Summary

- ELO is the strongest influencer of a player winning or losing a match
- When removing ELO score that there were <u>no strongly correlated parameters</u>, showing that all other parameters are significant, but only minimally influence the prediction accuracy.
- No one opening appears to be stronger than another, although the King's pawn game appears to be fairly popular among the chess players.
- Overall, this shows that from our collected predictors that one <u>cannot reliably predict the</u> <u>outcome of a chess match</u> when training a model based on moves, skill level, and match types.

Code Structure and Methods

- Followed Microsoft's Team Data Science Process for collaboration
 - Provided structure for files to be located.
 - Helped in thinking about caching models or datasets in a multi data scientist way.
 - Start with the dataprep folder and run notebooks in numerical order
 - Then, pick an experiment and run the notebooks in numerical order
- Each experiment follows a similar pattern
 - Create various transforms to support modeling for features and label columns (StringIndexer, OneHotEncoder and CountVectorizer)
 - o Group all transformations into a pipeline
 - Build a ParamGridBuilder for setting hyperparameter tuning
 - Build a CrossValidation model and Select the best
 CrossValidation model using training then test data.
 - Evaluate the performance of the model using the test data

Data Science Lifecycle Start **Understanding** On-Premises vs Cloud Data Source Transform, Binning Database vs Files emporal, Text, Image Engineering Feature Selection Data Algorithms, Ensemble Modeling **Acquisition &** Parameter Tuning Training Understanding On-premises vs Cloud Retraining Model management Small vs Medium vs Big Data Cross Validation Structured vs Unstructured Model Reporting Data Validation and Cleanup Evaluation Customer Deployment End Acceptance Performance monitoring, etc

Image Credit: Microsoft (2021).

Data Summary

AN	Termination	meControl	Opening Ti	RatingDiff ECO	eRatingDiff Bla	lackElo Wh	WhiteElo B	CDate UTCTime	result U	blac	: white	event
c4 c5 2. Nc3 N	Normal 1.	300+0	nglish Opening:	-5.0 A34 I	11.0	1846	2068	01-26 18:03:38	1-0 2016	Misha 4	Nippis	Blitz
d4 b6 2. c4 Bb	Normal 1.	180+0	English Defense #2		3.0	1399	1708	01-26 18:03:39	1-0 2016	andremoni	abracadaver	Blitz
e4 Nc6 2. d4 d	Time forfeit 1.	600+0	imzowitsch Defen	5.0 B00 N	-6.0	1790	1542	01-26 18:03:39	0-1 2016	mohamad900	tewarisachin	Classical
e4 e5 2. d4 ex	Normal 1.	180+1	Danish Gambit	-17.0 C21	18.0	1679	1467	01-26 18:03:42	1-0 2016	kbsanswei	shamshi	Blitz
e4 e5 2. d4 ex	Normal 1.	300+0	enter Game: Paul	14.0 C22 C	-15.0	1174	1249	01-26 18:03:40	0-1 2016	BurneyX	yourkingismine	Blitz

Kaggle Dataset collected from LiChess Record of all Matches in one month

Total Observations: 6,256,184 (4.38GB)

Columns: 15

https://www.kaggle.com/arevel/chess-games

Transformations and Preprocessing

Event Categorial White, Black Categorial Result Categorial UTCDate, UTCTime WhiteElo, BlackElo Integer
Result Categorial UTCDate, Datetime UTCTime
UTCDate, Datetime UTCTime
UTCTime
WhiteElo, BlackElo Integer
WhiteRatingDiff, Integer BlackRatingDiff
ECO Categorical
Opening Categorial
TimeControl Complex (string)
Termination Complex (string)
AN Complex (string)

Feature Engineering

- Limit events to
 Classic and Blitz
- Drop abandoned games
- Expanded AN to array of moves
- Calculated difference between WhiteElo and BlackElo
- Converted number of terms to Bins to represent Complexity.
- Created indicator where White wins (1-0)

Feature
Event
ECO
Opening
moves
result_moves
complexity
EloDiff
white_result (label)
Class_Type

Final Count: 3,850,385 (1.3GB in parquet)

Resulting Dataframe

```
def movetype(x):
    import re
   moves = re.split('\d+\.', x)[1:]
    return [x.strip() for x in moves]
```

df filtered = df filtered.withColumn("white_result",

```
event white result
                           first two | ECO | EloDiff |
                                                                Opening game complexity
Blitz
               win [c4 c5, Nc3 Nf6] A34
                                              222 English Opening: ...
Blitz
                     [d4 b6, c4 Bb7] A40
                                                    English Defense #2
               win
                     [e4 Nc6, d4 d5]|B00
                                             -248 Nimzowitsch Defen...
              loss
Blitz
               win [e4 e5, d4 exd4] C21
                                             -212
                                                          Danish Gambit
Blitz
              loss [e4 e5, d4 exd4] C22
                                               75 | Center Game: Paul...
```

```
Classical
udf_movetype = F.udf(lambda x: movetype(x), T.ArrayType(T.StringType()),
df_filtered = df_filtered.withColumn('moves', udf_movetype(F.col('AN')))
# Convert result column into seperate white/black win columns
white win udf = F.udf(lambda result: float(frac(result.split('-')[0])), T.DoubleType())
df filtered = df filtered.withColumn("white_games_won", white_win_udf(F.col("result")))
black win udf = F.udf(lambda result: float(frac(result.split('-')[1])), T.DoubleType())
df filtered = df filtered.withColumn("black games won", black win udf(F.col("result")))
df filtered = df filtered.withColumn("tie", F.col("white games won") == F.col("black games won"))
# Identify the total number of moves in a game
df_filtered = df_filtered.withColumn("result_moves", F.size(F.col("moves")))
# Categorize games based upon total move size.
df filtered = df filtered.withColumn("game_complexity",
                                     F.when(F.col("result moves") == 1, 1)\
                                      .when(F.col("result moves") <= 10, 2)\
                                      .when(F.col("result moves") <= 20, 3)\
                                      .when(F.col("result moves") <= 30, 4)\
                                      .when(F.col("result moves") <= 40, 5)\
                                      .when(F.col("result moves") <= 50, 6)\
                                      .otherwise(7))
df filtered = df filtered.withColumn("EloDiff", F.col("WhiteElo") - F.col("BlackElo"))
# Collect only the first subset of moves in a game
df filtered = df filtered.withColumn("first ten", F.slice(F.col("moves"), 1, 10))
df filtered = df filtered.withColumn("first two", F.slice(F.col("moves"), 1, 2))
# We establish a formal win column that we'll be using as a logistical response
# We will not consider a tie as a win for white.
```

F.when(F.col("white games won") > 0.5, "win")

Label

Visualizing Data - EDA

ELO Frequency by Class

Models

Experiment -

Naive Bayes

Experiment -

Random Forest

Experiment -

• Gradient Boosted Trees

Experiment - Naive Bayes Model

- Built four models using different predictor sets:
 - full_features

→ ECO, EloDiff, Event, and First two actions

moveless_features

→ EloDiff and Event

only_moves_features

- → First two actions
- game_and_skill_features
- → ECO and EloDiff
- Utilized CrossValidation and BinaryClassificationEvaluator to find the best models using the AUROC as its metric.
- Only one tuning parameter: Smoothing (corrects "wiggly" lines).
 - Created a ParamGrid using a range from 0 to 1 in 0.2 steps.
 - Interestingly, the model performed best when smoothing was set to 0

Best Model Performance

Measures	full	moveless	only_moves	game_and _skill
AUROC	0.506093	0.496643	0.51368	0.49655
Accuracy	0.535799	0.531085	0.533177	0.531128
Precision	0.533898	0.529331	0.531427	0.529431
Recall	0.516721	0.506458	0.510157	0.505604
F1	0.525169	0.517642	0.520575	0.517244

Experiment - Conclusion

Conclusion: Naive Bayes *does not provide statistical evidence of significant predictors* to determining a match win (only 0.01-0.015% performance difference). Additionally, the model performs slightly better than random guessing, with the best AUROC being 0.5137. *This model is ill suited for this dataset.*

Experiment - Random Forest

The best combination of hyperparameters is numTrees = 30; maxDepth = 8; impurity = "entropy"; maxBins = 28; subsamplingRate = 1, which generates an AUC of 0.645.

Based on the optimal hyperparameter, we obtain the top 3 influential variables.

EloDiff is the most influential variable.

Experiment - Gradient Boosted Tree

- Utilized CrossValidation and BinaryClassificationEvaluator to find the best models using the AUROC as its metric. (Same as before)
- Tuning parameters
 - stepSize (1) learning rate from (0, 1]
 - o minInstancesPerNode (25) if a split causes the number of nodes to be less then this value, it is dropped
 - subsamplingRate (1) Fraction of the training data used for learning each decision tree, in range (0, 1].
 - o maxDepth (8) depth of the tree

Feature predictivity

GBT Predictive Ability by Feature

Variable Type	AUC	AUC filtered	Variable Type	AUC	AUC filtered
EloDiff	68.77%	57.06%	EloDiff, ECO_Type, & Class_Type	68.83%	57.19%
ECO_Type	53.46%	51.62%	EloDiff & ECO_Type	68.82%	57.16%
Class_Type	51.47%	50.85%	EloDiff & Class_Type	68.79%	57.09%
event_vector	50.14%	50.10%	Class_Type & ECO_Type	53.74%	51.81%

The ELO difference seems to be the driving force behind the models.

Gradient Boosted Tree

Results

GBT Final Model Metrics

Metric	Measure
AUC	68.79%
Accuracy	63.09%
Precision	63.16%
Recall	61.66%
F1 Score	62.24%

Conclusion

While Gradient Boosted Trees perform the best, they are mostly driven by the ELO difference. However, other features have a small impact on the model and further investigation into those variables is recommended.

Conclusions and Next Steps

- Our models have shown that the <u>strongest indicator</u> of a win is a <u>player's rated skill</u>.
 - This defends the ELO scoring system
- Overall our models do not perform well enough to state we have "solved chess", but we did
 find a model that is ~19% better than random guessing.
- Model selection is significant in the analysis of chess, as demonstrated by measured gains between each models.
- An interesting next step would be to map each ECO to a particular sentiment.
 - That is, are aggressive players more likely to win or lose?
 - This would need a lexicon of chess openings to support.

GitHub Repo

https://github.com/uva-ds5110-fa21-g10/ semester-project

Code is located on Github for all analysis.

Data used in analysis can be obtained from kaggle at

https://www.kaggle.com/arevel/chess-games

