

12. Comparing numerical and experimental data

Structural Dynamics part of 4DM00

dr.ir. R.H.B. (Rob) Fey, ir. D.W.M. (Daniël) Veldman

Introduction

If FE-model is used to predict and/or improve the dynamic behaviour, it should reflect the real (measured) dynamic behaviour!

Is it necessary to update a model based on experimental data?

First **compare** experimental results from prototype structures with numerical results e.g. from Finite Element Analyses

Comparison of:

- 1) eigenvalues,
- 2) eigenmodes,
- 3) FRF's.

In this course: focus on comparison of experimental and numerical eigenmodes

General problems when comparing:

- 1) modelling of damping is difficult,
- 2) differences in number of dof.

Comparing experimental and numerical eigenvalues

Problems:

- FEM calculations usually result in undamped eigenfrequencies ω_{Oi}^n (sorting: $\omega_{O,i}^n \leq \omega_{O,i+1}^n$), i.e. imaginary eigenvalues $\lambda_i^n = j\omega_{Oi}^n$ Experiments usually lead to measured, complex eigenvalues $\lambda_i^e = \mu_i^e + j\nu_i^e$ (sorting: $|\nu_i^e| \leq |\nu_{i+1}^e|$ or $|\lambda_i^e| \leq |\lambda_{i+1}^e|$)
- Number of numerical eigenvalues may differ from number of experimental eigenvalues
- Complex situations occur when comparing clusters of experimental eigenvalues to clusters of numerical eigenvalues.
 Mode shapes are needed to pair the correct numerical and experimental eigenvalues!

Summarizing:

Just numbering eigenvalues in increasing order may lead to wrong conclusions

Comparing experimental and numerical eigenvalues

Visualization: Plot points (ω_{0i}^n, ν_i^e) or $(\omega_{0i}^n, |\lambda_i^e| = |\mu_i^e + j\nu_i^e|)$.

Ideally: all points on straight line y = x

Typical deviations with specific reasons:

- All points approx. on $y = \alpha x$, but $\alpha \neq 1$ Cause: E-modulus or density in numerical model wrong?
- First points on y = x, then sudden deviation to one side Cause: some num. or exp. eigenvalues may be missing
- Randomly distributed points in high frequency range
 Cause: higher eigenfrequencies are less accurate
 Experimental eigenvalues: measurement or fit errors (EMA)
 Numerical eigenvalues: modelling errors, discretisation errors

Comparing experimental and numerical eigenmodes

 u_i^e : experimental mode i

 u_i^n : numerical mode j

Tools for scaling:

MSF: Modal Scale Factor

Tools for comparing:

- Visual inspection (plot real and imaginary parts)
- MAC: Modal Assurance Criterion
- COMAC: Coordinate Modal Assurance Criterion

General problem in comparing eigenmodes

The number of DOFs in u_i^e (experimental mode i) is usually much lower than the number of DOFs in u_i^n (numerical mode j)

Solutions:

- 1. Reduce u_i^n by deleting non-measured DOFs
- 2. Expand u_{im}^e by solving non-measured u_{io}^e from second row of

$$\left\{-\omega_{mi}^{2}\begin{bmatrix}M_{mm} & M_{mo}\\M_{om} & M_{oo}\end{bmatrix} + \begin{bmatrix}K_{mm} & K_{mo}\\K_{om} & K_{oo}\end{bmatrix}\right\}\begin{bmatrix}u_{im}^{e}\\u_{io}^{e}\end{bmatrix} = \begin{bmatrix}0_{m}\\0_{o}\end{bmatrix}$$

$$u_{io}^{e} = \left(-\omega_{mi}^{2} M_{oo} + K_{oo}\right)^{-1} \left(-\omega_{mi}^{2} M_{om} + K_{om}\right) u_{im}^{e}.$$

Modal Scale Factor (MSF)

Assume: u_i^e and u_i^n have same number of DOFs.

To account for the difference in normalization, multiply u_i^e by

$$MSF_e[i,j] = \frac{u_i^{eH} u_j^n}{u_i^{eH} u_i^e}.$$

Alternatively, multiply u_j^n by

$$MSF_n[i,j] = \frac{u_i^{nH} u_j^e}{u_i^{nH} u_i^n}.$$

Note: $x^H = \bar{x}^T$ denotes the Hermitian transpose.

Example 1:
$$u_1^e = [1,1+j]^T$$
, $u_1^n = [j,j-1]^T$, $MSF_e[1,1] = (MSF_n[1,1])^{-1} = j$.

Example 2:
$$u_2^e = [1,2-j]^T$$
, $u_2^n = [2,4-2j]^T$, $MSF_e[2,2] = (MSF_n[2,2])^{-1} = 2$

Visual inspection

Generally viscously damped system, complex eigenmodes! Right eigenvalue problem: $(\lambda_k C + D)v_k = 0$ $v_k = \begin{bmatrix} u_k \\ \lambda_k u_k \end{bmatrix}$

Process the numerical eigenmode as follows:

- 1. Only consider the 'displacement' part u_k
- 2. Delete non-measured DOFs in u_k
- 3. Search for (complex) entry in u_k with highest modulus
- 4. Divide u_k by this (complex) entry
- 5. Plot real and imaginary part of u_k

Rescale the experimental mode by **MSF**_e and plot the corresponding DOFs.

Modal Assurance Criterion (MAC)

$$MAC[i,j] = \frac{\left|u_i^{eH} u_j^n\right|^2}{\left(u_i^{eH} u_i^e\right) \left(u_i^{nH} u_i^n\right)}$$

- $0 \le MAC[i, j] \le 1$
- $\mathrm{MAC}[i,j]$ gives the degree of correlation between u_i^e and u_j^n
- MAC[i,j] = 1 if and only if u_i^e is a multiple of u_i^n
- Normalisation/scaling does not influence the MAC number!
- u_i^e and u_i^n should have the same number of DOFs

Modal Assurance Criterion (MAC)

$$MAC[i,j] = \frac{\left|u_i^{eH} u_j^n\right|^2}{\left(u_i^{eH} u_i^e\right) \left(u_i^{nH} u_i^n\right)}$$

In general we have n experimental modes and m numerical modes: MAC matrix is $n \times m$.

If n=m, the MAC-matrix indicates a good correspondence between the experimental and numerical eigenmodes if

- MAC[i, i] ≈ 1 for i = 1, ..., n
- MAC[i,j] is small (say < 0.1) for $i \neq j$. However, even when experimental and numerical eigenmodes are equal, MAC[i,j] for $i \neq j$ will generally not be zero.

Literature

Allemang, R.J., The Modal Assurance Criterion, Twenty years of use and abuse, Sound and Vibration, pp. 14-21, August 2003.

Coordinate Modal Assurance Criterion (COMAC)

Warning:

- u_i^e now denotes the *i*-th **row** of the matrix with experimental eigenmodes.
- u_i^n now denotes the *i*-th **row** of the matrix with numerical eigenmodes.

 u_i^e and u_i^n thus contains the mode shape values of all modes at DOF i

$$COMAC[i,j] = \frac{\left|u_i^e u_j^{nH}\right|^2}{\left(u_i^e u_i^{eH}\right)\left(u_j^n u_j^{nH}\right)}$$

- $0 \le COMAC[i, j] \le 1$
- COMAC can be used for identifying a badly working sensor

General viscous damping, underdamped.

- Numerical modes u_j^n derived according to above model
- 'Experimental' modes derived according to above model, but with $k_1=1.2\cdot 10^6$ N/m, $b_1=1200$ Ns/m, $b_2=800$ Ns/m, $b_3=1100$ Ns/m.

Eigenvalue	Experimental eigenvalues	Numerical eigenvalues
number	(*1000)	(*1000)
1	-0.0169 + 0.5984i	-0.0188 + 0.5931i
2	-0.6724 + 0.9086i	-0.7203 + 0.8570i
3	-0.3049 + 0.9927i	-0.2520 + 0.9529i
4	-0.6779 + 1.4367i	-0.7087 + 1.4477i
5	-0.0280 + 1.7467i	-0.0255 + 1.7460i
6	-0.0248 + 2.4619i	-0.0247 + 2.4643i

Experimental and numerical eigenvalues match quite well.

• u_1^e and u_1^n match well

• u_2^e and u_2^n match well

MAC	num 1	num 2	num 3	num 4	num 5	num 6
exp 1	0.9988	0.0047	0.0801	0.0521	0.0023	0.0271
exp 2	0.0003	0.9594	0.1631	0.0488	0.1074	0.0056
ехр 3	0.0632	0.1847	0.9917	0.0332	0.0305	0.0001
exp 4	0.0502	0.0453	0.0168	0.9313	0.1428	0.0365
exp 5	0.0026	0.0882	0.0245	0.1069	0.9991	0.0021
ехр 6	0.0264	0.0051	0.0002	0.0506	0.0021	0.9999

Inspection of the MAC matrix:

- Diagonal elements of MAC matrix is showing values close to 1:
 Good match between experimental mode i and numerical mode i
- Off-diagonal terms almost all have values < 0.1

Example: COMAC

COMAC: all sensors are working perfectly

COMAC:

numbers

sensor number 3 is giving low random

COMAC	n DOF 1	n DOF 2	n DOF 3	n DOF 4	n DOF 5	n DOF 6
e DOF 1	0.9453	0.2658	0.0851	0.1935	0.1934	0.1752
e DOF 2	0.2725	0.2850	0.8499	0.6288	0.5495	0.1115
e DOF 3	0.1185	0.8693	0.6711	0.7907	0.4880	0.1716
e DOF 4	0.2534	0.6485	0.7558	0.7201	0.8031	0.4241
e DOF 5	0.2824	0.5776	0.4801	0.8222	0.8465	0.7931
e DOF 6	0.2869	0.1133	0.1441	0.4141	0.7630	0.2975

COMAC	n dof 1	n dof 2	n dof 3	n dof 4	n dof 5	N dof 6
e dof 1	0.9453	0.2658	0.0851	0.1935	0.1934	0.1752
e dof 2	0.2725	0.2850	0.8499	0.6288	0.5495	0.1115
e dof 3	0.1065	0.0238	0.1638	0.0469	0.0140	0.1409
e dof 4	0.2534	0.6485	0.7558	0.7201	0.8031	0.4241
e dof 5	0.2824	0.5776	0.4801	0.8222	0.8465	0.7931
e dof 6	0.2869	0.1133	0.1441	0.4141	0.7630	0.2975

