Printed Pages:02 Paper Id: 238248

Sub Code:KCS-402 Roll No.

B.TECH (SEM IV) THEORY EXAMINATION 2022-23 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- (a) What do you understand by grammar?
- (b) What do you mean by ε-Closure in FA?
- (c) State Arden's Theorem.
- (d) State Kleen's Theorem.
- (e) Derive the CFG for (a+b)*.
- (f) Explain Chomsky Hierarchy.
- (g) Explain pumping lemma for context free language.
- (h) Draw the graphical representation for PDA.
- (i) Explain Halting Problem of Turing Machine.
- (j) Explain Linear bounded Automata.

SECTION B

2. Attempt any three of the following:

10x3=30

- (a) Construct a DFA for ternary number divisible by 4.
- (b) Determine the FA accepted by the language described by the regular expression: (0+1)*0(0+1)*0(0+1)* over the alphabet {0,1} and also mention the accepted language
- (c) Consider the grammar with following production rules:

S-ABD | AC

A→aA I bAa la

B→bbA | aB | AB

C→aCa laD

D→aD | bC

Convert the above grammar into Chomsky Normal Form.

- (d) Design a PDA for the language $L = \{WW^T \mid W = (a+b)^*\}$
- (e) Write short notes on:
 - i) Church's Thesis
 - ii) Recursive and Recursive Enumerable Language

SECTION C

3. Attempt any one part of the following:

10x1=10

(a) Construct a DFA equivalent to the NFA

OP231 P2 109 105 08 2023 13 27 53 1 45 64 R 220

(b) Construct a minimum state automata equivalent to a DFA whose transition table is as follows where q3 and q4 are final state.

State/∑	Input	
	A	b
→ Q0	Ql	Q2
QI	Q4	Q3
Q2 Q3	Q4	Q3
Q3	Q4 Q5	Q3 Q6
Q4 Q5	Q7	Q6 Q6 Q6
Q5	Q3	Q6
Q6	Q6	Q6
Q7	Q4	Q6

Attempt any one part of the following:

10x1=10

(a) Find the regular expression corresponding to the finite automata given below:

- (b) State pumping lemma for regular language. Prove that the language L= {a^p | p is prime} is not regular.
- 5. Attempt any one part of the following:

10x1=10

(a) A context free grammar G is given by the following productions:

E→E+EIE-EIE*EIE^EIN

N→0111213141516171819

Determine whether the grammar G is ambiguous or not.If ambiguous then construct an unambiguous grammar equivalent to G.

(b) Explain Closure properties of regular language.

6. Attempt any one part of the following:

10x1=10

- (a) Design a two stack PDA for the language $L=\{a^n b^n c^n \mid n>=1\}$
- (b) Generate CFG for the given PDA M is defined as

 $M = (\{q0, q1\}, \{0,1\} \{x, z0\}, \delta, q0, z0, q1)$ where δ is given as follows: δ (q0,1, z0) = (q0, xz0)

 $\delta(q0,1,x) = (q0,xx)$

 $\delta(q0,0, x) = (q0, x)$

 $\delta(q0, \varepsilon, x) = (q1, \varepsilon)$

 $\delta(q1, \varepsilon, x) = (q1, \varepsilon)$

 $\delta(q_1, 0, x) = (q_1, x_1)$

 $\delta(q1,0,z0) = (q1,\epsilon)$

7. Attempt any one part of the following:

10x1=10

- (a) Design a Turing Machine for the language: L={a^bb^c^1 n>=1}
- (b) Write short notes on:
 - (i) Variants of Turing Machine
 - (ii) Post Correspondence problem
 - (iii) Universal Turing Machine