FGV EMAp

João Pedro Jerônimo e Arthur Rabello Oliveira

Algebra Linear Numérica

Revisão para A2

Contents

1	Lecti	ure 16 - Estabilidade da Triangularização de Householder	
	1.1	O Experimento	. 6
	1.2	Teorema	
	1.3	Algoritmo para resolver $Ax = b$. 7
2	Lecti	ure 17 - Estabilidade da Back Substitution	10
	2.1	Teorema da Estabilidade Retroativa (Backward Stability)	11
3	Lect	ure 18 - Condicionando Problemas de Mínimos Quadrados	14
	3.1	O Teorema	15
4	Lect	ure 19 - Estabilidade de Algoritmos de Mínimos Quadrados	20
	4.1	Primeira Etapa	21
	4.2	Householder	21
	4.3	Ortogonalização de Gram-Schmidt	22
	4.4	Equações Normais	22
	4.5	SVD	23
	4.6	Problemas de Mínimos Quadrados com Posto-Incompleto	23
5	Lect	ure 24 - Problemas de Autovalores	24
	5.1	Definições	25
	5.2	Decomposição em Autovalores	25
	5.3	Multiplicidades Algébrica e Geométrica	25
	5.4	Transformações Similares	
	5.5	Autovalores e Matrizes Deficientes	27
	5.6	Diagonalizabilidade	27
	5.7	Determinante e Traço	
	5.8	Diagonalização Unitária	27
	5.9	Forma de Schur	
	5.10	Fatoração de Cholesky	29
6		ure 25 - Algoritmos de Autovalores	
	6.1	Algoritmos óbvios (Ou nem tanto)	31
	6.2	Uma dificuldade fundamental	31
	6.3	Fatoração e Diagonalização de Schur	31
	6.4	Duas fases da computação de Autovalores	31
7	Lect	ure 26 - Redução à forma de Hessenberg	33
	7.1	Uma ideia de Girico	
	7.2	Uma boa ideia	34
	7.3	Hermitiana	34
	7.4	Estabilidade	34
8	Lecti	ure 27 - Quociente de Rayleigh e Iteração Inversa	35
	8.1	Restrição à matrizes reais e simétricas	36
	8.2	Quociente de Rayleigh	36
	8.3	Iteração por Potências	37
	8.4	Iteração Inversa	38
	8.5	Iteração do Quociente de Rayleigh	39
9	Lecti	ure 28 - Algoritmo QR sem Shift	41
	9.1	O Algoritmo QR	42
	9.2	Iterações Simultâneas Não-normalizadas	42
	9.3	Iteração Simultânea	
	9.4	Iteração Simultânea ⇔ Algoritmo QR	
	9.5	Convergência do algoritmo QR	
10		ure 29 - Algoritmo QR com Shifts	
		Conexao com a Iteração Reversa	
		Conexão com o Algoritmo de Iteração Reversa com Shifts	
		Conexão com a Iteração do Quociente de Rayleigh	

	10.4 Wilkinson Shift	. 49
	10.5 Estabilidade e Precisão	. 50
11	Discos de Gershgorin	. 51
12	Lecture 30 - Outros algoritmos de Autovalores	. 54
	12.1 Algoritmo de Jacobi	. 55
	12.2 Bisection	. 55
	12.3 Dividir para Conquistar	. 57
13	Lecture 31 - Calculando a SVD	
	13.1 SVD de A via autovalores de $A*A$. 60
	13.2 Redução para um problema de Autovalores	. 60
	13.3 Divisão em duas fases	. 61
	13.4 Bidiagonalização de Galub-Kahan	. 61
	13.5 Métodos de Bidiagonalização mais eficientes	
	13.6 Fase 2	

Nota: Os **computadores ideais** que mencionaremos, são computadores nos quais o *axioma fundamental* da aritmética de ponto flutuante é satisfeito. Convidamos o leitor a ler sobre isso no resumo anterior (A1), especificamente na **lecture 13**

Esse é um resumo feito por João Pedro Jerônimo (Ciência de Dados) e Arthur Rabello (Matemática Aplicada) com objetivo de traduzir os hieróglifos contidos no livro de Álgebra Linear Numérica do Trefthen e do Bau

1 Lecture 16 - Estabilidade da Triangularização de Ho	nuseholder
1 Lecture 10 - Estabilidade da 111angularização de 110	,uscholuci

Nesse capítulo, a gente tem uma visão mais aprofundada da análise de **erro retroativo** (Backwards Stable). Dando uma breve recapitulada, para mostrar que um algoritmo $\tilde{f}: X \to Y$ é **backwards stable**, você tem que mostrar que, ao aplicar \tilde{f} em uma entrada x, o resultado retornado seria o mesmo que aplicar o problema original $f: X \to Y$ em uma entrada levemente perturbada $x + \Delta x$, de forma que $\Delta x = O(\varepsilon_{\text{machine}})$.

1.1 O Experimento

O livro nos mostra um experimento no matlab para demonstrar a estabilidade em ação e alguns conceitos importantes, irei fazer o mesmo experimento, porém, utilizarei código em python e mostrarei meus resultados aqui.

Primeiro de tudo, mostraremos na prática que o algoritmo de **Householder** é **backwards stable**. Vamos criar uma matriz A com a fatoração QR conhecida, então vamos gerar as matrizes Q e R. Aqui, temos que $\varepsilon_{\rm machine} = 2.220446049250313 \times 10^{-16}$:

```
import numpy as np
                                                                                        Python
     np.random.seed(0) # Ter sempre os mesmos resultados
2
3
     # Crio R triangular superior (50 \times 50)
     R_1 = np.triu(np.random.random_sample(size=(50, 50)))
5
     # Crio a matriz Q a partir de uma matriz aleatória
     Q_1, _ = np.linalg.qr(np.random.random_sample(size=(100, 50)), mode='reduced')
7
     # Crio a minha matriz com fatoração QR conhecida (A = Q_1 R_1)
     A = Q_1 @ R_1
8
9
     # Calculo a fatoração QR de A usando Householer
     Q_2, R_2 = householder_qr(A)
10
```

Sabemos que, por conta de erros de aproximação, a matriz A que temos no código não é **exatamente** igual a que obteríamos se tivéssemos fazendo Q_1R_1 na mão, mas é preciso o suficiente. Podemos ver aqui que elas são diferentes:

```
    CÓDIGO
    Python

    11 print(np.linalg.norm(Q_1 - Q_2))
    1 7.58392

    12 print(np.linalg.norm(R_1 - R_2))
    2 8.75766
```

```
SAÍDA

1 7.58392995752057e-8

2 8.75766271246312e-9
```

Perceba que é um erro muito grande, não é tão próximo de 0 quanto eu gostaria, se eu printasse as matrizes Q_2 e R_2 eu veria que, as entradas que deveriam ser 0, tem erro de magnitude $\approx 10^{17}$. Bem, se ambas tem um erro tão grande, então o resultado da multiplicação delas em comparação com A também vai ser grande, correto?

```
CÓDIGO  

Python

Python

Python

Response Python

Response Python
```

```
SAÍDA
1 3.8022328832723555e-14
```

Veja que, mesmo minhas matrizes Q_2 e R_2 tendo erros bem grandes com relação às matrizes Q_1 e R_2 , conseguimos uma aproximação de A bem precisa com ambas. Vamos agora dar um destaque nessa acurácia de Q_2R_2 :

```
SAÍDA
1 0.05197521348918455
```

Perceba o quão grande é esse erro, é **enorme**, então: Q_2 não é melhor que Q_3 , R_2 não é melhor que R_3 , mas Q_2R_2 é muito mais preciso do que Q_3R_3

1.2 Teorema

Vamos ver que, de fato, o algoritmo de **Householder** é **backwards stable** para toda e qualquer matriz A. Fazendo a análise de backwards stable, nosso resultado precisa ter esse formato aqui:

$$\tilde{Q}\tilde{R} = A + \delta A \tag{1}$$

 $\operatorname{com} \|\delta A\| \ / \ \|A\| = O(\varepsilon_{\operatorname{machine}}).$ Ou seja, calcular a QR de A pelo algoritmo é o mesmo que calcular a QR de $A+\delta A$ da forma matemática. Mas aqui temos uns adendos.

A matriz \tilde{R} é como imaginamos, a matriz triangular superior obtida pelo algoritmo, onde as entradas abaixo de 0 podem não ser exatamente 0, mas **muito próximas**.

Porém, \tilde{Q} não é aproximadamente ortogonal, ela é perfeitamente ortogonal, mas por quê? Pois no algoritmo de Householder, não calculamos essa matriz diretamente, ela fica "implícita" nos cálculos, logo, podemos assumir que ela é perfeitamente ortogonal, já que o computador não a calcula, ou seja, não há erros de arredondamento. Vale lembrar também que \tilde{Q} é definido por:

$$\tilde{Q} = \tilde{Q}_1 \tilde{Q}_2 ... \tilde{Q}_n \tag{2}$$

De forma que \tilde{Q} é perfeitamente unitária e cada matriz \tilde{Q}_j é definida como o refletor de householder no vetor de floating point $\tilde{v_k}$ (Olha a página 73 do livro pra você relembrar direitinho o que é esse vetor $\tilde{v_k}$ no algoritmo). Lembrando que \tilde{Q} é perfeitamente ortogonal, já que eu não calculo ela no computador diretamente, se eu o fizesse, então ela não seria perfeitamente ortogonal, teriam pequenos erros.

Teorema 1.2.1 (Householder's Backwards Stability): Deixe que a fatoração QR de $A \in \mathbb{C}^{m \times n}$ seja dada por A = QR e seja computada pelo algoritmo de **Householder**, o resultado dessa computação são as matrizes \tilde{Q} e \tilde{R} definidas anterioremente. Então temos:

$$\tilde{Q}\tilde{R} = A + \delta A \tag{3}$$

Tal que:

$$\frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{4}$$

para algum $\delta A \in \mathbb{C}^{m \times n}$

1.3 Algoritmo para resolver Ax = b

Vimos que o algoritmo de householder é backwards stable, show! Porém, sabemos que não costumamos fazer essas fatorações só por fazer né, a gente faz pra resolver um sistema Ax=b, ou outros tipos de problemas. Certo, mas, se fizermos um algoritmo que resolve Ax=b usando a fatoração QR obtida com householder, a gente precisa que Q0 e Q1 seja precisa? O bom é que precisamos apenas que Q2 seja precisa! Vamos mostrar isso para a resolução de sistemas Q3 mão singulares.

```
1 function ResolverSistema(A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m \times 1}) {
2 | QR = \text{Householder}(A)
3 | y = Q^*b
4 | x = R^{-1}y
5 | return x
6 }
```

Algoritmo 1: Algoritmo para calcular Ax = b

Esse algoritmo é **backwards stable**, e é bem passo-a-passo já que cada passo dentro do algoritmo é **backwards stable**.

Teorema 1.3.1: O Algoritmo 1 para solucionar Ax = b é backwards stable, satisfazendo

$$(A + \Delta A)\tilde{x} = b \tag{5}$$

com

$$\frac{\|\Delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{6}$$

para algum $\Delta A \in \mathbb{C}^{m \times n}$

Demonstração: Quando computamos \tilde{Q}^*b , por conta de erros de aproximação, não obtemos um vetor y, e sim \tilde{y} . É possível mostrar (Não faremos) que esse vetor \tilde{y} satisfaz:

$$(\tilde{Q} + \delta Q)\tilde{y} = b \tag{7}$$

satisfazendo $\frac{\|\delta Q\|}{\|\tilde{Q}\|} = O(\varepsilon_{\mathrm{machine}})$

Ou seja, só pra esclarecer, aqui (nesse passo de y) a gente ta tratando o problema f de calcular Q^*b , ou seja $f(Q)=Q^*b$, então usamos um algoritmo comum $\tilde{f}(Q)=Q^*b$ (Não matematicamente, mas usando as operações de um computador), daí reescrevemos isso como $\tilde{f}(Q)=(Q+\delta Q)^*b$, por isso podemos reescrever como a equação que falamos anteriormente.

No último passo, a gente usa **back substitution** pra resolver o sistema $x = R^{-1}y$ e esse algoritmo é **backwards stable** (Isso vamos provar na próxima lecture). Então temos que:

$$(\tilde{R} + \delta R)\tilde{x} = \tilde{y} \tag{8}$$

satisfazendo $\frac{\|\delta R\|}{\|\tilde{R}\|} = O(\varepsilon_{\mathrm{machine}})$

Agora podemos ir pro algoritmo em si, temos um problema f(A): Resolver Ax=b, daí usamos $\tilde{f}(A)$: Usando householder, resolve Ax=b. Então, se o algoritmo nos dá as matrizes perturbadas que citei anteriormente $(Q+\delta Q$ e $R+\delta R)$, ao substituir isso por A, eu tenho que ter um resultado $A+\Delta A$ com $\frac{\|\Delta A\|}{\|A\|}=O(\varepsilon_{\mathrm{machine}})$, vamos ver:

$$b = (\tilde{Q} + \delta Q)(\tilde{R} + \delta R)\tilde{x}$$
(9)

$$b = (A + \delta A + \tilde{Q}(\delta R) + (\delta Q)\tilde{R} + (\delta Q)(\delta R))\tilde{x}$$
(10)

$$b = (A + \Delta A)\tilde{x} \Leftrightarrow \Delta A = \delta A + \tilde{Q}(\delta R) + (\delta Q)\tilde{R} + (\delta Q)(\delta R) \tag{11}$$

Como ΔA é a soma de 4 termos, temos que mostrar que cada um desses termos é pequeno com relação a A (Ou seja, mostrar que $\frac{\|X\|}{\|A\|} = O(\varepsilon_{\text{machine}})$ onde X é um dos 4 termos de ΔA).

- δA : Pela própria definição que o algoritmo de householder é backwards stable nós sabemos que δA satisfaz a condição de $O(\varepsilon_{\mathrm{machine}})$
- $(\delta Q)\tilde{R}$:

$$\frac{\|(\delta Q)\tilde{R}\|}{\|A\|} \le \|(\delta Q)\| \frac{\|\tilde{R}\|}{\|A\|} \tag{12}$$

Perceba que

$$\frac{\|\tilde{R}\|}{\|A\|} \le \frac{\|\tilde{Q}^*(A + \delta A)\|}{\|A\|} \le \|\tilde{Q}^*\| \frac{\|A + \delta A\|}{\|A\|} \tag{13}$$

Lembra que, quando trabalhamos com $O(\varepsilon_{\rm machine})$, a gente ta trabalhando com um limite implícito que, no caso, aqui é $\varepsilon_{\rm machine} \to 0$. Ou seja, se temos que $\varepsilon_{\rm machine} \to 0$, o erro de arredondamento diminui cada vez mais, certo? Então $\delta A \to 0$ ou seja:

$$\frac{\|\tilde{R}\|}{\|A\|} = O(1) \tag{14}$$

O que nos indica que

$$\|\delta Q\| \frac{\|\tilde{R}\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{15}$$

• $\tilde{Q}(\delta R)$: Provamos de uma forma similar

$$\frac{\|\tilde{Q}(\delta R)\|}{\|A\|} \le \|\tilde{Q}\| \frac{\|\delta R\|}{\|A\|} = \|\tilde{Q}\| \frac{\|\delta R\|}{\|\tilde{R}\|} \frac{\|\tilde{R}\|}{\|A\|} \le \|\tilde{Q}\| \frac{\|\delta R\|}{\|\tilde{R}\|} = O(\varepsilon_{\text{machine}}) \tag{16}$$

• $(\delta Q)(\delta R)$: Por último:

$$\frac{\|(\delta Q)(\delta R)\|}{\|A\|} \le \|\delta Q\| \frac{\|\delta R\|}{\|A\|} = O(\varepsilon_{\text{machine}}^2)$$
(17)

Ou seja, todos os termos de ΔA são da ordem $O(\varepsilon_{\text{machine}})$, ou seja, provamos que resolver Ax=b usando householder é um algoritmo **backwards stable**. Se a gente junta alguns teoremas e temos que:

Teorema 1.3.2: A solução \tilde{x} computada pelo algoritmo satisfaz:

$$\frac{\|\tilde{x} - x\|}{\|x\|} = O(\kappa(A)\varepsilon_{\text{machine}})$$
(18)

2 Lecture 17 - Estabilidade da Back Substitution

Só para esclarecer, o termo **back substitution** se refere ao algoritmo de resolver um sistema triangular superior

$$\begin{pmatrix} r_{11} & r_{12} & \dots & r_{1m} \\ & r_{22} & \dots & r_{2m} \\ & & \ddots & \vdots \\ & & r_{mm} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$(19)$$

E é aquele esquema, a gente vai resolvendo de baixo para cima, o que resulta nesse algoritmo (A gente escreve como uma sequência de fórmulas por conveniência, mas é o mesmo que escrever um loop):

```
1 function BackSubstitution(R \in \mathbb{C}^{m \times m}, b \in \mathbb{C}^{m \times 1}) {
    |x_m = b_m/r_{mm}
        x_{m-1} = (b_{m-1} - x_m r_{m-1,m}) / r_{m-1,m-1}
       x_{m-2} = \left(b_{m-2} - x_{m-1}r_{m-2,m-1} - x_mr_{m-2,m}\right)/r_{m-2,m-2}
\begin{array}{c|c} 5 & \vdots \\ 6 & x_j = \Big(b_j - \sum_{k=j+1}^m x_k r_{jk}\Big)/r_{jj} \\ \hline \\ 7 & \end{array} Algoritmo 2: Algoritmo de Back Substitution
```

2.1 Teorema da Estabilidade Retroativa (Backward Stability)

A gente viu no último tópico (Estabilidade de Householder) que a back substitution era um dos passos para chegar no resultado final, porém, nós apenas assumimos que ela era backward stable, mas a gente não provou isso! Porém, antes de provarmos isso, vamos estabelecer que as subtrações serão feitas da esquerda para a direita (Sim, isso pode influenciar). Mas, como o livro não explica muito bem o porquê de isso influenciar, vou dar uma breve explicação e exemplificação:

Quando realizamos uma sequência de subtrações pela direita, caso os números sejam muito próximos, pode ocorrer o chamado cancelamento catastrófico, que é a perca de muitos dígitos significativos, veja um exemplo:

```
CÓDIGO
                                                                           SAÍDA
                                         Python
1
    a = 1e16
                                                       1 -1.0
2
    b = 1e16
3
    c = 1
    print((a-b)-c)
```

O que parece correto! Mas veja o que acontece se invertermos a ordem e executarmos a-(b-c)

```
CÓDIGO
                                         Python
                                                                           SAÍDA
1
    a = 1e16
                                                       1 0.0
2
    b = 1e16
3
    c = 1
    print(a-(b-c))
```

Veja que houve um problema no arredondamento! Então os sistemas, por convenção, utilizam o esquema de subtrações pela esquerda.

Voltando ao algoritmo de **back substitution**, temos o seguinte teorema:

Teorema 2.1.1: Deixe o Algoritmo 2 ser aplicado a um problema de Rx = b com R triangular superior em um **computador ideal**. Esse algoritmo é **backward stable**, ou seja, a solução \tilde{x} computada satisfaz:

$$(R + \Delta R)\tilde{x} = b \tag{20}$$

para alguma triangular superior $\Delta R \in \mathbb{C}^{m \times m}$ satisfazendo

$$\frac{\|\Delta R\|}{\|R\|} = O(\varepsilon_{\text{machine}}) \tag{21}$$

Demonstração: Essa prova não será muito rigorosa matematicamente, vamos montar a prova para matrizes $1 \times 1, 2 \times 2$ e 3×3 , de forma que o raciocínio que aplicarmos poderá ser aplicado para matrizes de tamanhos maiores.

- 1 \times 1: Nesse caso, R é um único número escalar e, pelo **Algoritmo 2**, temos que:

$$\widetilde{x_1} = b_1 \oplus r_{11} \tag{22}$$

E nós **já sabemos** que essa divisão é backward stable, mas vamos analisar melhor. Queremos manter b fixo, então temos que expressar $\widetilde{x_1}$ como o r_{11} original vezes uma leve perturbação. Expressamos então

$$\widetilde{x_1} = \frac{b_1}{r_{11}} (1 + \varepsilon_1) \tag{23}$$

Se definirmos $\varepsilon_1'=\frac{-\varepsilon_1}{1+\varepsilon_1}$, podemos reescrever a equação assim:

$$\widetilde{x_{1}} = \frac{b_{1}}{r_{11}(1+\varepsilon_{1}')} \Leftrightarrow \widetilde{x_{1}} = \frac{b_{1}}{r_{11}\left(1-\frac{\varepsilon_{1}}{1+\varepsilon_{1}}\right)} \Leftrightarrow \widetilde{x_{1}} = \frac{b_{1}}{r_{11}\frac{1+\varepsilon_{1}-\varepsilon_{1}}{1+\varepsilon_{1}}}$$

$$\Leftrightarrow \widetilde{x_{1}} = \frac{b_{1}}{r_{11}\frac{1}{1+\varepsilon_{1}}} \Leftrightarrow \widetilde{x_{1}} = \frac{b_{1}}{r_{11}}(1+\varepsilon_{1})$$
(24)

Se fizermos a expansão de taylor de ε_1' , conseguimos ver:

$$-\frac{\varepsilon_1}{1+\varepsilon_1} = -\varepsilon_1 + \varepsilon_1^2 - \varepsilon_1^3 + \varepsilon_1^4 - \dots \tag{25}$$

Ou seja, $-\varepsilon_1 + O(\varepsilon_1^2)$, o que mostra que $1 + \varepsilon_1'$ é uma perturbação válida para o teorema da estabilidade backwards, o que nos mostra também que

$$(r_{11} + \delta r_{11})\widetilde{x_1} = b_1 \tag{26}$$

Com

$$\frac{\|\delta r_{11}\|}{\|r_{11}\|} \le \varepsilon_{\text{machine}} + O(\varepsilon_{\text{machine}}^2) \tag{27}$$

 2 × 2: Beleza, no caso 2 × 2, o primeiro passo do algoritmo nós já vimos que é backwards stable, vamos para o segundo passo:

$$\widetilde{x_1} = (b_1 \ominus (\widetilde{x_2} \otimes r_{12})) \oplus r_{22} \tag{28}$$

Ai meu Deus, fórmula grande do djabo :(. Relaxa, vamo transformar em fórmulas normais com umas perturbações pra gente falar de matemática normal né

$$\widetilde{x_1} = \frac{(b_1 - \widetilde{x_2}r_{12}(1 + \varepsilon_2))(1 + \varepsilon_3)}{r_{22}}(1 + \varepsilon_4) \tag{29}$$

Aqui eu não iniciei os epsilons em ε_1 porque eu estou tomando intrínseco que esse ε_1 ta no $\widetilde{x_2}$ que a gente computa antes de computar o $\widetilde{x_1}$ (A gente computa igual o caso 1×1)

Podemos definir $\varepsilon_3'=-rac{\varepsilon_3}{1+\varepsilon_3}$ e $\varepsilon_4'=-rac{\varepsilon_4}{1+\varepsilon_4}$, assim, podemos reescrever:

$$\widetilde{x}_{1} = \frac{b_{1} - \widetilde{x}_{2} r_{12} (1 + \varepsilon_{2})}{r_{22} (1 + \varepsilon_{3}') (1 + \varepsilon_{4}')}$$
(30)

(Mesmo racicocínio que usamos no caso 1×1). A gente viu em alguns exercícios da lista que $(1+O(\varepsilon_{\mathrm{machine}}))(1+O(\varepsilon_{\mathrm{machine}}))=1+O(\varepsilon_{\mathrm{machine}})$, com isso em mente, podemos reescrever a equação como

$$\widetilde{x_1} = \frac{b_1 - \widetilde{x_2} r_{12} (1 + \varepsilon_2)}{r_{22} (1 + 2\varepsilon_5')} \tag{31}$$

Esse $2\varepsilon_5$ se dá pois, como vimos no caso 1×1 :

$$\begin{aligned} 1 + \varepsilon_3' &= 1 - \varepsilon_3 + O(\varepsilon_3^2) \\ 1 + \varepsilon_4' &= 1 - \varepsilon_4 + O(\varepsilon_4^2) \\ \Rightarrow (1 + \varepsilon_3')(1 + \varepsilon_4') &= (1 - \varepsilon_3 + O(\varepsilon_3^2))(1 - \varepsilon_4 + O(\varepsilon_4^2)) \\ \Rightarrow 1 - \varepsilon_4 + O(\varepsilon_4^2) - \varepsilon_3 + \varepsilon_3 \varepsilon_4 - \varepsilon_3 O(\varepsilon_4^2) + O(\varepsilon_3^2) - \varepsilon_4 O(\varepsilon_3^2) + O(\varepsilon_4^2) O(\varepsilon_3^2) \end{aligned}$$

$$(32)$$

Os termos diferentes de 1, ε_3 e ε_4 são irrelevantes, pois são **MUITO** pequenos, o que nos dá

$$1 - \varepsilon_4 - \varepsilon_3 = 1 - 2\varepsilon_5 \tag{33}$$

Voltando ao foco, acabamos de mostrar que, se r_{11} , r_{12} e r_{22} fossem perturbados por fatores $2\varepsilon_5$, ε_2 e ε_1 respectivamente, a conta feita para calcular b_1 , no computador, seria exata. Podemos expressar isso na forma

$$(R + \delta R)\widetilde{x_1} = b_1 \tag{34}$$

De forma que

$$\delta R = \begin{pmatrix} 2|\varepsilon_5| & |\varepsilon_2| \\ & |\varepsilon_1| \end{pmatrix} \tag{35}$$

• A Indução: Suponha que, no (j-1)-ésimo passo do algoritmo, eu sei que o \tilde{x}_{j-1} é gerado com um algoritmo backward stable. Nós já mostramos, pelos casos bases, que os primeiros dois passos são backward stable. Vamos relembrar o Algoritmo 2 para m colunas:

$$\tilde{x}_j = \left(b_j \ominus \sum_{k=j+1}^m x_k \otimes r_{jk}\right) \oplus r_{jj} \tag{36}$$

Usando o Axioma Fundamental do Ponto Flutuante:

$$\tilde{x}_{j} = \frac{\left(b_{j} - \sum_{k=j+1}^{m} x_{k} r_{jk} (1 + \varepsilon_{k})\right) (1 + \varepsilon_{m+1})}{r_{jj}} (1 + \varepsilon_{m+2})$$

$$(37)$$

Definindo ε_{m+1}' e ε_{m+2}' de forma análoga a que fizemos anteriormente:

$$\tilde{x}_{j} = \frac{b_{j} - \sum_{k=j+1}^{m} x_{k} r_{jk} (1 + \varepsilon_{k})}{r_{jj} (1 + \varepsilon'_{m+1}) (1 + \varepsilon'_{m+2})}$$
(38)

Novamente, estamos expressando \tilde{x}_j como operações em x_k e b_j e com entradas **perturbadas** de R, mostrando que o algoritmo do **back substitution** é sim **backward stable**

3 Lecture 18 - Condicionando Problemas de Mínimos Q	uadrados

Nota: Nessa lecture, quando escrevemos $\|\cdot\|$, estamos nos referindo a norma 2, **não a qualquer norma**, logo, $\|\cdot\| = \|\cdot\|_2$

Vamos relembrar o problema dos mínimos quadrados?

Dada
$$A \in \mathbb{C}^{m \times n}$$
 de posto completo, $m \ge n$ e $b \in \mathbb{C}^m$,
ache $x \in \mathbb{C}^n$ tal que $||b - Ax||_2$ seja a menor possível (39)

No resumo passado, vimos que o x que satisfaz esse problema é

$$x = (A^*A)^{-1}A^*b \Rightarrow y = A(A^*A)^{-1}A^*b \Leftrightarrow y = Pb$$
 (40)

Ou seja, a projeção ortogonal de b em A resulta no vetor y. Queremos então saber o condicionamento de (39) de acordo com perturbações em b, A, y e x. Tenha em mente que o problema recebe dois parâmetros, A e b e retorna as soluções x e y

3.1 O Teorema

Antes de estabelecer de fato o teorema, vamos relembrar alguns fatores-chave aqui. Vamos rever a imagem que representa o problema de mínimos quadrados visualmente (Mesma imagem do resumo anterior)

Vamos relembrar algumas coisas que já vimos antes e algumas novas. Primeiro é lembrar que, como A não é quadrada, definimos seu número de condicionamento como

$$\kappa(A) = ||A|| \, ||A^+|| = ||A|| \, ||(A^*A)^{-1}A^*|| \tag{41}$$

Não está explicito na imagem, mas podemos, também, definir o ângulo θ entre b e y

$$\theta = \arccos\left(\frac{\|y\|}{\|b\|}\right) \tag{42}$$

(A gente define assim pois b é a hipotenusa do triangulo retângulo formado por b e y-b)

E a segunda medida é η , que representa por quanto y não atinge seu valor máximo

$$\eta = \frac{\|A\| \|x\|}{\|y\|} = \frac{\|A\| \|x\|}{\|Ax\|} \tag{43}$$

Show! E esses parâmetros tem esses domínios:

$$\kappa(A) \in [1, \infty] \qquad \quad \theta \in \left[0, \frac{\pi}{2}\right] \qquad \eta \in [1, \kappa(A)] \tag{44}$$

Teorema 3.1.1 (Condicionamento de Mínimos Quadrados): Deixe $b \in \mathbb{C}^m$ e $A \in \mathbb{C}^{m \times n}$ de posto completo serem **fixos**. O problema de mínimos quadrados (<u>39</u>) possui a seguinte tabela de condicionamentos em norma-2:

	y	x
b	$\frac{1}{\cos(\theta)}$	$\frac{\kappa(A)}{\eta\cos(\theta)}$
A	$\frac{\kappa(A)}{\cos(\theta)}$	$\kappa(A) + rac{\kappa(A)^2 \tan(heta)}{\eta}$

Figura 1: Sensibilidade de x e y com relação a perturbações em A e b

Vale dizer também que a primeira linha são igualdades exatas, enquanto a linha de baixo são arredondamentos para cima

Demonstração: Antes de provar para cada tipo de perturbação, temos em mente que estamos trabalhando com a norma-2, correto? Então nós vamos reescrever A para ter uma análise mais fácil. Seja $A=U\Sigma V^*$ a decomposição S.V.D de A, sabemos que $\|A\|_2=\|\Sigma\|_2$ (As matrizes unitárias não afetam a norma), então podemos, sem perca da generalidade, lidar diretamente com Σ , então podemos assumir que $A=\Sigma$ (Não literalmente, mas como vamos ficar analisando as normas, isso vai nos facilitar bastante)

$$A = \begin{pmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_n \end{pmatrix} = \begin{pmatrix} A_1 \\ 0 \end{pmatrix} \tag{45}$$

Reescrevendo os outros termos, temos:

$$b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \qquad y = \begin{pmatrix} b_1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} A_1 \\ 0 \end{pmatrix} x = \begin{pmatrix} b_1 \\ 0 \end{pmatrix} \Leftrightarrow x = A_1^{-1}b_1 \tag{46}$$

• Sensibilidade de y com perturbações em b: Vimos anteriormente na equação ($\underline{40}$) que y = Pb, e podemos tirar o condicionamento disso se associarmos com a equação **genérica** Ax = b. Lembra que em estabilidade vimos que o condicionamento desse sistema genérico quando perturbamos x é:

$$\frac{\|A\|}{\|x\|/\|b\|}\tag{47}$$

Então, fazendo simples substituições:

$$\frac{\|P\|}{\|y\|/\|b\|} = \frac{1}{\cos \theta} \tag{48}$$

O que até que faz sentido na intuição. Se fazemos com que b fique muito próximo a um ângulo de 90° com C(A), na hora que formos projetar, a projeção será minúscula, o que pode acarretar erros numéricos dependendo da precisão usada pelo computador

• Sensibilidade de x com perturbações em b: Também tem uma relação bem direta pela equação ($\underline{40}$): $x=A^+b$. Assim, temos o mesmo de antes:

$$\frac{\|A^+\|}{\|x\|/\|b\|} = \|A^+\| \frac{\|b\|}{\|y\|} \frac{\|y\|}{\|x\|} = \|A^+\| \frac{1}{\cos \theta} \frac{\|A\|}{\eta} = \frac{\kappa(A)}{\eta \cos \theta}$$

$$\tag{49}$$

Antes de continuar o resto da demonstração, temos que entender um pouco como as perturbações em A podem afetar C(A), porém, isso é um problema não-linear. Até daria pra fazer um monte de jacobiano algébrico, mas é melhor se manter numa pegada não muito formal e ter uma visão geométrica.

Primeiro, quando perturbamos A, isso afeta o problema de mínimos quadrados de dois modos: 1 - As perturbações afetam como vetores em \mathbb{C}^n ($A \in \mathbb{C}^{m \times n}$) são mapeados em C(A). 2 - Elas alteram C(A) em si. A gente pode imaginar as perturbações em C(A) como pequenas inclinações que a gente faz, coisa bem pouquinha mesmo. Então fazemos a pergunta: Qual é o maior ângulo de inclinação $\delta \alpha$ (O quão inclinado eu deixei em comparação a como tava antes) que pode ser causado por uma pequena perturbação δA ? Aí a gente pode seguir do seguinte modo:

Figura 1: Perturbação em C(A). v_1 é o vetor que está na divisão entre o plano azul e o vermelho, v_2 é o vetor mais destacado no plano azul e v_3 é o vetor pontilhado

Na Figura 1, a gente consegue ver isso um pouco melhor. Nosso plano original é o **azul**, formado por v_1 e v_2 , enquanto o plano **vermelho** é formado por v_1 e v_3 , onde v_3 é o $v_2 + \delta v_2$. Percebam que os planos tem uma abertura entre si, medimos aquela abertura por meio de $\delta \alpha$ que mostra a diferença de inclinação entre os dois planos. A segunda mostra mais explicitamente esse ângulo aplicado a outros dois planos diferentes, eu aumentei a diferença entre um e outro apenas para ilustrar melhor a visualização do ângulo, mas normalmente queremos trabalhar com ângulos minúsculos.

Quando a gente projeta uma n-esfera unitária em C(A), temos uma hiperelipse. Pra mudar C(A) da forma mais eficiente possível, pegamos um ponto p=Av que está na hiperelipse ($\|v\|=1$) e cutucamos ela em uma direção δp ortogonal a C(A). A perturbação que melhor faz isso é $\delta A=(\delta p)v^*$, que resulta em $(\delta A)v=\delta p \Rightarrow \|\delta A\|=\|\delta p\|$. Essa perturbação é a melhor por conta da norma 2 de um produto externo:

$$A = uv^* \Rightarrow ||Ax|| = ||uv^*x|| < ||u|| ||v||| x||$$
(50)

Daí **para ter a igualdade**, basta pegar x=v. Agora a gente pode perceber que, se a gente quer a maior inclinação possível dado uma perturbação $\|\delta p\|$ a gente tem q fazer com que p fique perto da origem o máximo possível. Ou seja, queremos o menor p possível com base na definição, que seria $p=\sigma_n u_n$ onde σ_n é o menor valor valor singular de A e u_n a n-ésima coluna de U. Se tomarmos $A=\Sigma$, p é a última coluna de A, $v^*=e_n^*=(0,0,...,1)$ e δA são perturbações na entrada de A. Essa perturbação inclina C(A) pelo ângulo δA dado por $\tan(\delta\alpha)=\|\delta p\|/\|\sigma_n\|$, temos então:

$$\delta \alpha \le \frac{\|\delta A\|}{\sigma_n} = \frac{\|\delta A\|}{\|A\|} \kappa(A) \tag{51}$$

Agora sim podemos continuar a demonstração

• Sensibilidade de y com perturbações em A: Podemos ver uma propriedades geométricas interessantes quando fixamos b e mexemos A. Lembra que y é a projeção **ortogonal** de b em C(A), ou seja, y sempre é **ortogonal** a y-b.

Figura 2: Círculo de projeção de y. O círculo maior representa a inclinação de C(A) no plano 0yb e o círculo menor é quando inclinamos C(A) em uma direção ortogonal a ele

Como eu posso rotacionar C(A) em 360°, eu posso visualizar todos os possíveis locais de y estando nessa esfera. Quando eu inclino C(A) por um ângulo $\delta\alpha$ no círculo maior, o meu ângulo 2θ vai ser alterado. Mais especificamente, vai ser alterado em $2\delta\alpha$. Ou seja, a perturbação δy que eu vou obter ao inclinar C(A) será a base de um triângulo isóceles.

Figura 3: C(A) após rotação de $\delta \alpha$

Podemos ver que o raio da esfera é ||b||/2, ou seja, podemos chegar que:

$$\|\delta y\| \le \|b\| \sin(\delta \alpha) \le \|b\| (\delta \alpha) \le \|b\| \frac{\|\delta A\|}{\|A\|} \kappa(A)$$

$$\cos(\theta) = \frac{\|y\|}{\|b\|} \Leftrightarrow \|b\| = \frac{\|y\|}{\cos(\theta)}$$

$$\Rightarrow \|\delta y\| \le \frac{\|y\|}{\cos(\theta)} \frac{\|\delta A\|}{\|A\|} \kappa(A) \Leftrightarrow \frac{\|\delta y\|}{\|\delta A\|} = \frac{\kappa(A)}{\cos(\theta)}$$
(52)

Concluímos assim, o 3º condicionamento

• Sensibilidade de x com perturbações em A: Quando a gente faz uma perturbação δA em A, podemos separar essa perturbação em duas outras: δA_1 que ocorre nas primeiras n linhas de A e δA_2 que ocorre nas m-n linhas restantes.

$$A = \begin{pmatrix} \delta A_1 \\ \delta A_2 \end{pmatrix} \tag{53}$$

Vamos ver δA_1 primeiro. Quando vemos essa perturbação específica, pelo que vimos em (46), temos que b não é alterado, então estamos mantendo b fixo e tentando calcular x com perturbação δA_1 em A. Esse condicionamento já vimos no último resumo:

$$\left(\frac{\|\delta x\|}{\|x\|}\right) / \left(\frac{\|\delta A_1\|}{\|A\|}\right) \le \kappa(A_1) = \kappa(A) \tag{54}$$

Já quando perturbamos por δA_2 (Estamos perturbando C(A) por inteiro, não somente A_2), acaba que o vetor y e, consequentemente, o vetor b_1 são perturbados, porém, sem perturbação em A_1 . Isso é a mesma coisa que a gente perturbar b_1 sem perturbar A_1 . O condicionamento disso é:

$$\left(\frac{\|\delta x\|}{\|x\|}\right)/\left(\frac{\|\delta b_1\|}{\|b_1\|}\right) \leq \frac{\kappa(A_1)}{\eta(A_1;x)} = \frac{\kappa(A)}{\eta} \tag{55}$$

Agora precisamos relacionar δb_1 com δA_2 . Sabemos que b_1 é y expresso nas coordenadas de C(A). Ou seja, as únicas mudanças em y que podem ser vistas como mudanças em b_1 são aquelas paralelas a C(A). Se C(A) é inclinado por um ângulo $\delta \alpha$ no plano 0by, δy não está em C(A), mas tem um ângulo de $\frac{\pi}{2}-\theta$. Ou seja, as mudanças em b_1 satisfazem:

$$\|\delta b_1\| = \sin(\theta) \|\delta y\| \le (\|b\|\delta\alpha) \sin(\theta) \tag{56}$$

Curiosamente se a gente inclina C(A) na direção ortogonal ao plano 0by (Círculo menor na Figura 2) obtemos o mesmo resultado por motivos diferentes.

Como vimos antes: $\cos(\theta) = \|y\|/\|b\| \Leftrightarrow \|b_1\| = \cos(\theta)\|b\|$, então podemos reescrever (<u>56</u>) como:

$$\frac{\|\delta b_1\|}{\|b_1\|} \le \frac{\|b\|\delta\alpha\sin(\theta)}{\|b\|\cos(\theta)} \Leftrightarrow \frac{\|\delta b_1\|}{\|b_1\|} \le \delta\alpha\tan(\theta) \tag{57}$$

Assim, podemos relacionar $\delta \alpha$ com $\|\delta A_2\|$ da equação (51)

$$\delta\alpha \leq \frac{\|\delta A_{2}\|}{\|A\|} \kappa(A) \Leftrightarrow \frac{\|\delta b_{1}\|}{\|b_{1}\|} \leq \frac{\|\delta A_{2}\|}{\|A\|} \kappa(A) \tan(\theta)$$

$$\left(\frac{\|\delta x\|}{\|x\|}\right) / \left(\frac{\|\delta b_{1}\|}{\|b_{1}\|}\right) \leq \frac{\kappa(A)}{\eta} \Leftrightarrow \frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{\eta} \frac{\|\delta b_{1}\|}{\|b_{1}\|} \Leftrightarrow \frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{\eta} \frac{\|\delta A_{2}\|}{\|A\|} \kappa(A) \tan(\theta)$$

$$\Leftrightarrow \left(\frac{\|\delta x\|}{\|x\|}\right) / \left(\frac{\|\delta A_{2}\|}{\|A\|}\right) \leq \frac{\kappa(A)^{2} \tan(\theta)}{\eta}$$

$$(58)$$

Combinando os condicionamentos de A_1 e A_2 temos $\kappa(A) + \frac{\kappa(A)^2 \tan(\theta)}{\eta}$

4 Lecture 19 - Estabilidade de Algo	oritmos de Mínimos Quadrados

A gente viu quem tem um monte de jeito de se resolver os problemas de mínimos quadrados (Resumo 1). Com isso, a gente pode calcular e estimar a estabilidade dos algoritmos que já vimos.

4.1 Primeira Etapa

Vamos fazer isso na prática. Vamos montar um cenário para a aplicação de cada um dos algoritmos. Vamos pegar m pontos igualmente espaçados entre 0 e 1, montamos a <u>matriz de vandermonde</u> desses pontos e aplicamos uma função que tentaremos prever com polinômios:

```
CÓDIGO

import numpy as np

m = 100

n = 15

t = np.linspace(0, 1, m)

A = np.vander(t, n, True)

b = np.exp(np.sin(4*t))/2.00678728e+03
```

Oxe, por que que tem essa divisão esquisita no final? Quando a gente não faz essa divisão, ao fazer a previsão dos coeficientes que aproximam a função, temos que o último coeficiente previsto (x_{15}) é igual a 2.00678728e+03, então, nós dividimos b por esse valor para que o último coeficiente seja igual a 1 no caso matematicamente correto (Sem erros numéricos), assim poderemos fazer comparações apenas visualizando o último número dos coeficientes calculados.

4.2 Householder

O algoritmo padrão para problemas de mínimos quadrados. Vejamos:


```
SAÍDA
1 1.9845992627054443e-09
```

Temos um erro de grandeza 10^9 , porém, no Python, trabalhamos com precisão IEEE 754 ($\varepsilon=2.220446049250313e-16$), o que nos mostra um erro de precisão MUITO grande (Ordem de 10^7 de diferença). Porém, aqui nós calculamos Q explicitamente e, no resumo 1, foi comentado que isso normalmente não acontece, então vamos ver se o erro muda ao trocarmos Q por uma versão implícita

```
CÓDIGO

7  Q, R = householder_qr(np.c_[A, b])
8  print(R.shape)
9  Qb = R[0:n, n]
10  R = R[0:n, 0:n]
11  x = np.linalg.solve(R, Qb)
12  print(1-x[-1])
```

```
SAÍDA
1 1.989168163518684e-09
```

Deu pra ver que da quase a mesma coisa do resultado anterior, ou seja, os erros da fatoração de A são maiores que os de Q. Pode ser provado que essas duas variações são **backward stable**. O mesmo vale para uma terceira variação que utiliza do **pivotamento** de colunas (Não é discutido nem no livro, tampouco nesse resumo)

Teorema 4.2.1: Deixe um problema de mínimos quadrados em uma matriz de posto completo *A* ser resolvida por fatoração **Householder** em um computador ideal. O algoritmo é **backward stable** tal que:

$$\|(A + \delta A)\tilde{x} - b\| = \min, \quad \frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}})$$
 (59)

para algum $\delta A \in \mathbb{C}^{m \times n}$.

4.3 Ortogonalização de Gram-Schmidt

A gente também pode tentar resolver pelo método de Gram-Schmidt modificado, vamos ver o que a gente consegue:

```
CÓDIGO
7  Q, R = modified_gram_schmidt(A)
8  x = np.linalg.solve(R, Q.T @ b)
9  print(1-x[-1])
```

```
SAÍDA
1 -0.01726542
```

Meu amigo, esse erro é **terrível**. O resultado obtido é tenebroso de ruim. O livro comenta também de outro método que envolve fazer umas manipulações em Q, mas como o próprio diz que envolve trabalho extra, desnecessário e não deveria ser usado na prática, nem vou comentar sobre aqui.

Mas a gente pode usar um método parecido com o que fizemos antes em unir A e b numa única matriz:


```
SAÍDA
1 -1.3274502852489434e-07
```

Olha só! Já deu uma melhorada no algoritmo!

Teorema 4.3.1: Solucionar o problema de mínimos quadrados de uma matriz A com posto completo utilizando o algoritmo de Gram-Schmidt (Fazendo de acordo como o código anterior mostra em que Q^*b é implícito) é **backward stable**

4.4 Equações Normais

A gente pode resolver por equações normais, que é o passo inicial para todos os outros métodos né? Vamos ver o que obtemos:

```
SAÍDA
1 1.35207472
```

Meu amigo, esse erro é **TENEBROSO**, não chegou nem **PERTO** do resultado. Claramente as equações normais são um método **instável** de calcular mínimos quadrados. Vamos dar uma visualizada no porquê isso ocorre:

Suponha que nós temos um algoritmo **backward stable** para o problema de mínimos quadrados com uma matriz A de posto-completo que retorna uma solução \tilde{x} satisfazendo $\|(A+\delta A)\tilde{x}-b\|=\min$ para algum δA com $\|\delta A\|/\|A\|=O(\varepsilon_{\mathrm{machine}})$. Pelo teorema da acurácia de algoritmos backward stable (Resumo 1) e o Teorema 3.1.1 temos:

$$\frac{\|\tilde{x} - x\|}{\|x\|} = O\left(\left(\kappa + \frac{\kappa^2 \tan(\theta)}{\eta}\right) \varepsilon_{\text{machine}}\right)$$
(60)

Suponha que A é mal-condicionada. Dependendo dos valores dos híperparâmetros, podem acontecer duas situações diferentes. Se $\tan(\theta)$ for de ordem 1, então o lado direito da equação (60) troca e fica $O(\kappa^2 \varepsilon_{\mathrm{machine}})$. Porém, se $\tan(\theta)$ é próximo de 0, ou η é próximo de κ , então então a equação muda para $O(\kappa \varepsilon_{\mathrm{machine}})$ (Usa um teorema mais la pra frente, mas é engraçado ver como tudo tá muito interconectado). Porém, a matriz A^*A tem número de condicionamento $\kappa(A)^2$, então o máximo que podemos esperar do problema é $O(\kappa^2 \varepsilon_{\mathrm{machine}})$

Teorema 4.4.1: A solução de um problema de mínimos quadrados com uma matriz A de posto-completo utilizando de equações normais é **instável**. Porém a estabilidade pode ser alcançada ao restringir para uma classe de problemas onde $\kappa(A)$ é pequeno ou $\frac{\tan(\theta)}{\eta}$ é pequeno.

4.5 SVD

O último algoritmo a ser mencionado foi utilizando a SVD de A, que nós vimos (no resumo 1) que parecia ser um algoritmo interessante:

```
CÓDIGO

7 U, S, Vh = np.linalg.svd(A, full_matrices=False)

8 S = np.diag(S)

9 x = (Vh.T * 1/S) @ (U.T @ b)

10 print(1-x[-1])
```

Olha só! Temos uma precisão ótima! (O algoritmo da SVD é o mais confiável e estável, mesmo que o erro mostrado seja maior do que alguns que obtivemos anteriormente)

Teorema 4.5.1: A solução do problema de mínimos quadrados com uma matriz A de posto-completo utilizando o algoritmo de SVD é **backward stable**.

4.6 Problemas de Mínimos Quadrados com Posto-Incompleto

A gente viu a aplicação de algoritmos em problemas de mínimos quadrados utilizando matrizes de posto-completo, mas pode ter outros casos de matrizes com posto < n, ou até m < n. Para essa classe de problemas, é necessário definirmos outro tipo de solução, já que nem todos tem o mesmo comportamento. As vezes precisamos restringir a solução com uma condição. Por conta disso, nem todo algoritmo que vimos ser estável até agora vai ser estável nesse tipo de problema, na verdade, apenas o de SVD será e o de Gram-Schmidt com pivotamento nas colunas.

Nota: Esse capítulo é uma revisão bem superficial sobre autovalores e autovetores, se quiser uma visão mais aprofundada sobre o tema, leia os resumos sobre Álgebra Linear do segundo período (Se já estiverem disponíveis)

5.1 Definições

Dada uma matriz $A \in \mathbb{C}^{m \times n}$, pela decomposição SVD $A = U\Sigma V^*$ sabemos que A é uma transformação que **estica** e **rotaciona** vetores. Por isso, estamos interessados em subespaços de \mathbb{C}^m nos quais a matriz age como uma multiplicação escalar, ou seja, estamos interessados nos $x \in \mathbb{C}^n$ que são somente esticados pela matriz. Como $Ax \in \mathbb{C}^m$ e $\lambda x \in \mathbb{C}^n$, concluimos que m = n: A matriz **deve ser quadrada**. Afinal, não faz sentido se λx e Ax estiverem em conjuntos distintos. Com isso, prosseguimos com a definição:

Definição 5.1.1 (Autovalores e Autovetores): Dada $A \in \mathbb{C}^{m \times m}$, um **autovetor** de A é $x \in \mathbb{C}^m \setminus \{0\}$ que satisfaz:

$$Ax = \lambda x \tag{61}$$

 $\lambda \in \mathbb{C}$ é dito **autovalor** associado a x.

5.2 Decomposição em Autovalores

Uma decomposição em autovalores de uma matriz $A \in \mathbb{C}^{m \times n}$ é uma fatoração:

$$A = X\Lambda X^{-1} \tag{62}$$

Onde Λ é diagonal e $\det(X) \neq 0$.

Isso é equivalente a:

Da (63) e da Definição 5.1.1, decorre que $Ax_i = \lambda_i x_i$, então a i-ésima coluna de X é um autovetor de A e λ_i é o autovalor associado a x_i .

A decomposição apresentada pode representar uma mudança de base: Considere Ax = b e $A = X\Lambda X^{-1}$, então:

$$Ax = b \Leftrightarrow X\Lambda X^{-1}x = b \Leftrightarrow \Lambda(X^{-1}x) = X^{-1}b \tag{64}$$

Então para calcular Ax, podemos expandir x como combinação das colunas de X e aplicar Λ . Como Λ é diagonal, o resultado ainda vai ser uma combinação das colunas de X.

5.3 Multiplicidades Algébrica e Geométrica

Como mencionado anteriormente, definimos os conjuntos nos quais a matriz atua como multiplicação escalar:

Definição 5.3.1 (Autoespaço): Dada $A \in \mathbb{C}^{m \times n}, \lambda \in \mathbb{C}$, definimos $S_{\lambda} \in \mathbb{C}^m$ como sendo o **autoespaço** gerado por todos os $v \in \mathbb{C}^m$ tais que $Av = \lambda v$

Interpretaremos $\dim(S_{\lambda})$ como a maior quantidade de autovetores L.I associados a um único λ , e chamaremos isso de multiplicidade geométrica de λ . Então temos:

Definição 5.3.2: (Multiplicidade Geométrica) A multiplicidade geométrica de λ é dim (S_{λ})

Note que da equação (<u>61</u>):

$$Ax = \lambda x \Leftrightarrow Ax - \lambda x = 0 \Leftrightarrow (A - \lambda I)x = 0 \tag{65}$$

Mas como $x \neq 0$ e $x \in N(A - \lambda I)$, $(A - \lambda I)$ não é injetiva. Logo não é inversível:

$$\det(A - \lambda I) = 0 \tag{66}$$

Definição 5.3.3 (Polinômio Característico): A equação (<u>66</u>) se chama **polinômio característico** de A e é um polinômio de grau m em λ . Pelo teorema fundamental da Álgebra, se $\lambda_1,...,\lambda_n$ são raízes de (<u>66</u>), então podemos escrever isso como:

$$p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n) \tag{67}$$

(Nota: λ é uma variável, enquanto λ_i é uma raíz do polinômio, fique atento)

Com isso, prosseguimos com:

Definição 5.3.4 (Multiplicidade Algébrica): A multiplicidade algébrica de λ é a multiplicidade de λ como raiz do polinômio característico de A

A definição de polinômio característico e de multiplicidade algébrica faz a gente ter um jeito muito fácil de contar a quantidade de autovalores de uma matriz

Teorema 5.3.1: Se $A \in \mathbb{C}^{m \times m}$, então A tem m autovalores, contando com a multiplicidade algébrica.

Isso mostra que toda matriz possui pelo menos 1 autovalor

5.4 Transformações Similares

Definição 5.4.1 (Transformação Similar): Se $X \in \mathbb{C}^{m \times m}$ é inversível, então o mapeamento $A \mapsto X^{-1}AX$ é chamado de **transformação similar** de A.

Dizemos que duas matrizes A e B são **similares** se existe uma matriz inversível X que relacione as transformações similares entre A e B, i.e:

$$A = X^{-1}BX \tag{68}$$

Teorema 5.4.1: Se $A \in \mathbb{C}^{m \times m}$ é inversível, então A e $X^{-1}AX$ o mesmo polinômio característico, os mesmos autovalores e multiplicidades geométrica e algébrica.

Demonstração:

$$\begin{split} p_{X^{-1}AX}(z) &= \det \left(zI - X^{-1}AX\right) = \det \left(X^{-1}(zI - A)X\right) \\ &= \det \left(X^{-1}\right) \det (zI - A) \det (X) = \det (zI - A) = p_{A(z)}) \end{split} \tag{69}$$

Suponha que E_{λ} é o autoespaço de A, então $X^{-1}E_{\lambda}$ é autoespaço de $X^{-1}AX$, ou seja, ambos tem mesma multiplicidade geométrica

Agora podemos correlacionar a multiplicidade geométrica e a algébrica

Teorema 5.4.2: A multiplicidade algébrica de um autovalor λ é sempre maior ou igual a sua multiplicidade geométrica

Demonstração: Deixe n ser a multiplicidade gemétrica de λ para a matriz A. Forme uma matriz $\hat{V} \in \mathbb{C}^{m \times n}$ de tal forma que as suas n colunas formam uma base ortonormal do autoespaço $\{x: Ax = \lambda x\}$. Se extendermos \tilde{V} para uma matriz ortogonal quadrada, temos:

$$B = V^*AV = \begin{pmatrix} \lambda I & C \\ 0 & D \end{pmatrix} \tag{70}$$

Pela definição e propriedades do determinante (Não cabe mostrá-las aqui), temos que:

$$\det(\mu I - B) = \det(\mu I - \lambda I) \det(\mu I - D) = (\mu - \lambda)^n \det(\mu I - D) \tag{71}$$

Ou seja, a multiplicidade algébrica de λ como um autovalor de B é, no mínimo, B. Como transformações similares mantém a multiplicidade, o mesmo vale para A

5.5 Autovalores e Matrizes Deficientes

Um autovalor é deficiente quando sua MA é maior que sua MG. Se uma matriz A tem autovalor deficiente, ela é uma matriz deficiente. Matrizes deficientes não podem ser diagonalizáveis (Próximo tópico)

5.6 Diagonalizabilidade

Teorema 5.6.1 (Diagonalizabilidade): Uma matriz $A \in \mathbb{C}^{m \times m}$ é não-deficiente \Leftrightarrow ela tem uma decomposição $A = X \Lambda X^{-1}$

Demonstração: \Leftarrow) Dada uma decomposição $A=X\Lambda X^{-1}$, sabemos, pelo <u>Teorema 5.4.1</u>, que Λ sendo similar a A, logo, A tem os mesmos autovalores, MA e MG de Λ . Como Λ é diagonal, eu tenho que Λ é não-deficiente, logo, o mesmo vale para A

 \Rightarrow) Uma matriz não-deficiente deve ter m autovetores linearmente independentes, pois autovetores com diferentes autovalores precisam ser L.I, e cada autovalor pode se associar com autovetores a quantidade de vezes que sua MA permitir. Se esses m autovetores independentes formam as colunas de uma matriz X, então X é inversível e $A = X\Lambda X^{-1}$

5.7 Determinante e Traço

Teorema 5.7.1: Seja λ_j um autovalor de $A \in \mathbb{C}^{m \times m}$:

$$\det(A) = \prod_{j=1}^{m} \lambda_{j}$$

$$\operatorname{tr}(A) = \sum_{j=1}^{m} \lambda_{j}$$
(72)

Demonstração:

$$\det(A) = (-1)^m \det(-A) = (-1)^m p_{A(0)} = \prod_{j=1}^m \lambda_j$$
 (73)

Olhando a equação (<u>67</u>), podemos observar que o coeficiente do termo λ^{m-1} é igual a $-\sum_{j=1}^m \lambda_j$ e na equação (<u>66</u>) o termo é o negativo da soma dos termos da diagonal, ou seja, $-\operatorname{tr}(A)$, ou seja, $\operatorname{tr}(A) = \sum_{i=1}^m \lambda_i$

5.8 Diagonalização Unitária

Acontece as vezes que, ao fazer a diagonalização de uma matriz, nós podemos cair com um conjunto de autovetores ortogonais entre si.

Definição 5.8.1: A é diagonalizável unitariamente quando $A=Q\Lambda Q^*$ com Q ortogonal e Λ diagonal (Pode ter entradas complexas)

Teorema 5.8.1 (Teorema Espectral): Uma matriz hermitiana é diagonalizável unitariamente e seus autovalores são reais.

Não cabe aqui a prova desse teorema, porém um resumo de Álebra Linear do 2º período será feito e essa demonstração estará lá.

Definição 5.8.2 (Matrizes Normais): Uma matriz A é normal se $A^*A = AA^*$

Teorema 5.8.2: Uma matriz é diagonalizável unitariamente ⇔ ela é normal

5.9 Forma de Schur

Essa forma é muito útil em análise numérica tendo em vista que toda matriz quadrada pode ser fatorada assim

Definição 5.9.1 (Fatoração de Schur): Dada uma matriz $A \in \mathbb{C}^{m \times m}$, sua fatoração de schur é tal que:

$$A = QTQ^* \tag{74}$$

onde Q é ortogonal e T é triangular superior

Teorema 5.9.1: Toda matriz quadrada A tem uma fatoração de Schur

Demonstração: Vamos fazer indução em m.

- Casos base: m=1 é trivial, então suponha que $m\geq 2$.
- Passo Indutivo: Deixe x ser um autovetor de A com autovalor λ . Normalize x e faça com que seja a primeira coluna de uma matriz ortogonal U. Então podemos fazer as contas e conferir que o produto U^*AU é tal que:

$$U^*AU = \begin{pmatrix} \lambda & B \\ 0 & C \end{pmatrix} \tag{75}$$

Pela hipótese indutiva, existe uma fatoração VTV^* de C, agora escrevemos:

$$Q = U \begin{pmatrix} 1 & 0 \\ 0 & V \end{pmatrix} \tag{76}$$

Q é uma matriz unitária e temos que

$$Q^*AQ = \begin{pmatrix} \lambda & BV \\ 0 & T \end{pmatrix} \tag{77}$$

Essa era a fatoração de Schur que procurávamos

5.10 Fatoração de Cholesky

Ainda na vibe da forma de Schur, temos também a fatoração de Cholesky. A ideia é que, dado uma matriz A simétrica e definida positiva, podemos escrever:

$$A = LL^* (78)$$

onde L é triangular inferior com diagonal positiva.

6 Lecture 25 - Algoritmos de Autovalores

Essa Lecture é focada em mostrar a ideia geral dos algoritmos que são divididos em duas fases

- 1. Redução da forma completa para uma forma estrategicamente estruturada
- 2. Aplicação de um processo iterativo que leva à convergência dos autovalores

Ela também foca em explicar as vantagens desses métodos

6.1 Algoritmos óbvios (Ou nem tanto)

Por mais que os autovetores e autovalores tenham propriedades bonitas e simples, calcular eles de uma maneira numericamente estável não é algo tão simples e os algoritmos não são os mais óbvios. O mais óbvio que pensamos é calcular o polinômio característico da matriz e achar suas raízes, acontece que isso é uma péssima ideia, já que achar as raízes de um polinômio é um problema mal-condicionado.

Agora a gente pode tirar vantagem do fato que a sequência

$$\frac{x}{\|x\|}, \frac{Ax}{\|Ax\|}, \frac{A^2x}{\|A^2x\|}, ..., \frac{A^nx}{\|A^nx\|}$$
 (79)

converge, sobre certas condições, para o maior autovalor (Em valor absoluto) de A. Esse método é chamado de **Iteração sob Potências**, mas não é um método muito eficiente e não é utilizado em situações muito usuais.

Ao invés dessas ideias, é mais comum, para propósitos gerais, os algoritmos seguirem um princípio diferente: A computação de uma fatoração explícita de autovalores de A, onde um dos fatores da fatoração tem os autovalores de A como entradas. A gente viu 3 desses métodos na última lecture (Diagonalização, Diagonalização Unitária e Fatoração de Schur). Na prática, os algoritmos vão aplicando transformações em A de forma que eles inserem 0 nas colunas e entradas corretas (Tipo o que a gente viu no método de Householder)

6.2 Uma dificuldade fundamental

Acontece que **todo algoritmo para calcular autovalores deve ser iterativo**. Ué, por quê? Lembra que problemas de autovalores podem ser reduzidos a problemas de achar as raízes de um polinômio? Pois é, o inverso também é válido. O livro mostra isso criando um polinômio e expressando ele como o determinante de uma matriz e que as raízes do polinômio são os **autovalores** dessa matriz, mas isso não é o foco aqui. O foco é fazer a associação.

É bem conhecido o fato de que, para polinômios com grau maior ou igual a 5, não existe uma sequência de fórmulas com somas, subtrações, etc. (Fórmula fechada) que encontre suas raízes. O que isso quer dizer? Quer dizer que, se o problema de raízes de polinômios pode ser reduzido para um problema de autovalores, matrizes com dimensão maior ou igual a 5 não podem ter seus autovalores expressos em uma sequência finita de passos.

Por issos que os algoritmos de autovalores devem ser algoritmos iterativos que convergem para a solução

6.3 Fatoração e Diagonalização de Schur

A maioria dos algoritmos de fatoração atuais envolvem o uso da fatoração de Schur de uma matriz. A gente pega a matriz A e vai aplicando transformações nela com matrizes unitárias Q_j (Transformação $X\mapsto Q_j^*XQ_j$) de forma que o produto:

$$Q_i^* ... Q_2^* Q_1^* A Q_1 Q_2 ... Q_i \tag{80}$$

Converja para uma matriz triangular superior T conforme $j \to \infty$

O livro fala também que é possível utilizar de alguns truques para computar os autovalores complexos e que os algoritmos que veremos também podem ser usados, em matrizes Hermitianas, para obter sua diagonalização unitária.

6.4 Duas fases da computação de Autovalores

A sendo Hermitiana ou não, a gente separa a sequência (80) em duas partes.

- 1. A primeira fase consiste em produzir diretamente uma matriz **upper-Hessenberg**, isto é, uma matriz com zeros em baixo da primeira subdiagonal
- 2. Uma iteração é aplicada para que uma sequência formal de matrizes de Hessenberg converjam para uma matriz triangular superior. O processo se parece com isso:

Se A é hermitiana, isso fica ainda mais rápido já que vamos ter uma matriz tri-diagonal e, logo depois, uma diagonal

Beleza, vimos antes a importância da redução de Hessenberg, mas como ela funciona?

7.1 Uma ideia de Girico

A gente pode começar pensando "Macho, essa fatoração é mamão com açúcar, só eu multiplicar pelo refletor de Householder que eu vou ter 0 abaixo da diagonal que eu quiser". Só que isso tem um problema, a gente precisa que o refletor multiplique de ambos os lados, ou seja:

$$Q_1^* A Q_1 \tag{83}$$

Isso faz com que os zeros que a gente colocou antes se percam, e a gente obtem uma matriz que a gente não queria :(.

7.2 Uma boa ideia

A gente vai fazer o seguinte: Vamos multiplicar A por um refletor de householder Q_1^* que mantém as duas primeiras linhas inalteradas, ou seja, vamos fazer combinações lineares das duas primeiras linhas de forma que todas as outras fiquem com 0 na primeira entrada, depois, ao multiplicar Q_1^*A por Q_1 , a primeira coluna se mantém **inalterada**:

Essa ideia continua a ser repetida para colunas subsequentes. Temos um algoritmo da forma:

```
 \begin{array}{c|c} 1 \  \, \textbf{function} \  \, \text{HessenbergReduction}(A \in \mathbb{C}^{m \times m}) \, \{ \\ 2 \  \, | \  \, \textbf{for} \  \, k = 1 \  \, \textbf{to} \  \, m - 2 \\ 3 \  \, | \  \, x = A_{k+1:m,k} \\ 4 \  \, | \  \, v_k = \text{sign}(x_1) \| x \|_2 e_1 + x \\ 5 \  \, | \  \, v_k = v_k / \  \, \| v_k \| \\ 6 \  \, | \  \, A_{k+1:m,k:m} = A_{k+1:m,k:m} - 2 v_k \big( v_k^* A_{k+1:m,k:m} \big) \\ 7 \  \, | \  \, A_{1:m,k+1:m} = A_{1:m,k+1:m} - 2 \big( A_{1:m,k+1:m} v_k \big) v_k^* \\ 8 \  \, \} \end{array}
```

Algoritmo 3: Redução de Householder para forma de Hessenberg

7.3 Hermitiana

É bem tranquilo de ver que o Algoritmo 3 gera uma matriz tri-diagonal no caso em que A é hermitiana, já que QAQ^* é hermitiana. Inclusive, essa propriedade pose gerar uma redução de custo, tendo em vista que podemos realizar as operações apenas da diagonal para cima, ignorando a parte de baixo das operações.

7.4 Estabilidade

Assim como o algoritmo de Householder, para a fatoração QR, esse algoritmo é **backward stable**. Seja \hat{H} a matriz de Hessenberg computada pelo computador ideal, \tilde{Q} seja a matriz exatamente unitária que reflete os vetores v_k , então o resultado a seguir pode ser demonstrado:

Teorema 7.4.1: Deixe a redução de Hessenberg $A=QTQ^*$ de uma matriz A ser computada pelo Algoritmo 3 em um computador ideal e sejam as matrizes \tilde{Q} e \tilde{H} definidas como falamos anteriormente, então:

$$\tilde{Q}\tilde{H}\tilde{Q}^* = A + \delta A$$
, tal que $\frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}})$ (85)

para algum $\delta A \in \mathbb{C}^{m \times m}$

8 Lecture	27 - Quociente d	e Rayleigh e Ite	eração Inversa

8.1 Restrição à matrizes reais e simétricas

Aqui nós iremos fazer essa restrição por questões que, ao compararmos os casos gerais e hermitianos, eles tem diferenças consideráveis, então por simplificação, falaremos apenas sobre o caso onde A é real e simétrica, ou seja:

- Autovalores reais
- Autovetores ortonormais

Isso vai continuar pelas próximas lectures até que se especifique que não vai mais continuar. Também vale ressaltar que a maioria das ideias descritas nas próximas lectures se referem a parte 2 das duas fases mencionadas na lecture 25. Ou seja, quando vamos aplicar as ideias que veremos aqui, A já terá sido transformada em uma tri-diagonal. Vale citar que também utilizaremos $\|\cdot\| = \|\cdot\|_2$

8.2 Quociente de Rayleigh

Definição 8.2.1 (Quociente de Rayleigh): O Quociente de Rayleigh de um vetor $x \in \mathbb{R}^m$ é o escalar

$$r(x) = \frac{x^T A x}{x^T x} \tag{86}$$

Perceba que se x é um autovetor de A com autovalor λ associado, então $r(x)=\lambda$. Uma motivação para essa fórmula é pensarmos no seguinte: Dado um x, qual escalar α "mais se comporta como um autovalor" no sentido de minimizar $\|Ax-\alpha x\|$? Isso é um problema de mínimos quadrados $m\times 1$ da forma $\alpha x\approx Ax$. Se escrevermos as equações normais:

$$x^T \alpha x = x^T A x \Rightarrow \alpha = r(x) \tag{87}$$

A gente pode fazer essas ideias mais quantitativas se tomarmos $r(x): \mathbb{R}^m \to \mathbb{R}$, então podemos tomar interesse no comportamento local de r(x) quando x está perto de um autovalor. A gente pode calcular as derivadas parciais para isso:

$$\frac{\partial r(x)}{\partial x_j} = \frac{\frac{\partial}{\partial x_j} (x^T A x)}{x^T x} - \frac{(x^T A x) \frac{\partial}{\partial x_j} (x^T x)}{(x^T x)^2}$$

$$= \frac{2(Ax)_j}{x^T x} - \frac{(x^T A x) 2x_j}{(x^T x)^2} = \frac{2}{x^T x} (Ax - r(x)x)_j$$
(88)

Podemos então expressar o gradiente como:

$$\nabla r(x) = \frac{2}{x^T x} (Ax - r(x)x) \tag{89}$$

É bem fácil de ver que, se a gente tem $\nabla r(x) = 0$, com $x \neq 0$ então x é um autovetor de A (Tenta fazer mentalmente e lembra que $r(x) \in \mathbb{R}$) e o inverso também, se x é autovetor de A então $\nabla r(x) = 0$.

Expressando geometricamente, os autovetores de A são pontos estacionários (pontos críticos) de r(x) e os autovalores de A são os valores de r(x) nesses pontos críticos.

Figura 4: r(x) em função dos vetores no \mathbb{R}^2 para a matriz $\left(\begin{smallmatrix} 5 & 4 \\ 0 & 3 \end{smallmatrix}\right)$

Mas algo interessante que podemos perceber é que, aparentemente, não há apenas **um** ponto crítico nessa função, mas uma **reta**. Ué, mas por quê? O que acontece se, dado que $Ax = \lambda x$, eu pego um múltiplo μx de x?

$$A(\mu x) = \lambda(\mu x) \tag{90}$$

 μx ainda é autovetor de A. O que isso quer dizer? Quer dizer que, se um vetor x faz com que r(x) seja igual a um autovalor de A, então αx também o fará $\forall \alpha \in \mathbb{R}$. Não acredita em mim? Veja por conta própria:

Dado que
$$Ax = \lambda x$$

$$r(\alpha x) = \frac{(\alpha x)^T A(\alpha x)}{(\alpha x)^T (\alpha x)} = \frac{\alpha^2 x^T A x}{\alpha^2 x^T A x} = \frac{\lambda x^T x}{x^T x} = \lambda$$

$$(91)$$

Mas podemos contornar isso **limitando** o domínio de r(x). Podemos fazer isso fazendo com $r(x): \mathbb{R}^m \to \mathbb{R}$ tal que $\|x\| = 1$, dessa forma, limitamos a m-esfera unitária em \mathbb{R}^m (No exemplo da Figura 4, seria uma circunferência em \mathbb{R}^2). Dessa forma, em vez de serem retas com infinitos valores possíveis para zerar $\nabla r(x)$, temos pontos isolados **na** esfera.

Figura 5: Mesma função da Figura 4 limitada dentro do cilíndro $x^2+y^2\leq 1$. Só não coloquei = 1 pois o Geogebra não conseguia fazer a plotagem

Seja q_i um autovetor de A, do fato que $\nabla r(q_i) = 0$ nós chegamos que:

$$r(x) - r\left(q_j\right) = O\left(\|x - q_j\|^2\right), x \to q_j \tag{92}$$

Não precisamos entender o passo-a-passo até chegar nesse resultado, o importante dele é que o quociente de Rayleigh é uma $\acute{o}tima$ aproximação dos autovalores de A.

Um jeito mais explícito de vermos isso é expressar x como uma combinação linear dos autovetores de A (A gente pode fazer isso já que todos os autovetores de uma matriz são L.I), ou seja: $x = \sum_{j=1}^m a_j q_j$, o que significa que $r(x) = \sum_{j=1}^m a_j^2 \lambda_j / \sum_{j=1}^m a_j^2$, que é uma média ponderada dos autovalores de A.

8.3 Iteração por Potências

Agora nós invertemo as bola. Suponha que $v^{(0)}$ é um vetor com $\|v^{(0)}\|=1$. O processo de iteração por potência, citado antes como não muito bom, é esperado para convergir para o maior autovalor de A

```
1 function PowerIteration(A \in \mathbb{C}^{m \times m}, v^{(0)} com \|v^{(0)}\| = 1) {
2 | for k = 1, 2, 3, ...
3 | w = Av^{(k-1)}
4 | v^{(k)} = w/\|w\|
5 | \lambda^{(k)} = (v^{(k)})^T Av^{(k)}
6 }
```

Algoritmo 4: Iteração por potências

Teorema 8.3.1: Suponha que $|\lambda_1|>|\lambda_2|\geq ...\geq |\lambda_m|>0$ e $q_1^Tv^{(0)}\neq 0$. Então as iterações do Algoritmo 4 satisfazem:

$$\|v^k - (\pm q_1)\| = O\left(|\frac{\lambda_2}{\lambda_1}|^k\right), |\lambda^{(k)} - \lambda_1| = O\left(|\frac{\lambda_2}{\lambda_1}|^{2k}\right) \tag{93}$$

Conforme $k \to \infty$. O sinal \pm significa que, a cada passo k, um dos dois sinais será escolhido para melhor estabilidade numérica

 $\textit{Demonstração}\colon$ Escreva $v^{(0)}=a_1q_1+\ldots+a_mq_m.$ Como $v^{(k)}$ é múltiplo de $A^kv^{(0)}$ temos que, para algumas contantes c_k

$$\begin{split} v^{(k)} &= c_k A^k v^{(0)} \\ &= c_k \big(a_1 \lambda_1^k q_1 + \ldots + a_m \lambda_m^k q_m \big) \\ &= c_k \lambda_1^k \Big(a_1 q_1 + \ldots + a_m (\lambda_1 / \lambda_m)^k q_m \Big) \end{split} \tag{94}$$

A primeira equação se da ao fato de que, quando $\lim_{k \to \infty} \left(\frac{\lambda_j}{\lambda_1}\right)^k = 0$, porém, como λ_2 é o maior entre λ_j , acaba que $\left(\frac{\lambda_2}{\lambda_1}\right)^k$ domina o fator de erro $v^{(k)} - (\pm q_1)$.

A segunda envolve uma análise complicada que não há necessidade prática de visualizarmos

O método de iteração por potências é bem ruim pois depende de alguns fatores específicos.

- 1. Só pode encontrar o maior autovalor de uma matriz
- 2. Se os dois maiores autovalores são próximos, a convergência demora muito
- 3. Se os dois maiores autovalores possuem mesmo valor, então o algoritmo não converge

8.4 Iteração Inversa

Antes de entendermos o que a iteração inversa faz, vamos conferir um teorema:

Teorema 8.4.1: Dado $\mu \in \mathbb{R}$ tal que μ **não é** autovalor de A, então os autovetores de $(A-\mu I)^{-1}$ são os mesmos de A, onde os autovalores correspondentes são $\left\{\left(\lambda_j-\mu\right)^{-1}\right\}$ de tal forma que λ_j são os autovalores de A

Demonstração: Muito importante ressaltar que, como μ não é autovalor de A, então $A - \mu I$ é inversível.

$$Av = \lambda v$$

$$Av - \mu I v = \lambda v - \mu I v$$

$$(A - \mu I)v = (\lambda - \mu)v$$

$$(A - \mu I)^{-1}(A - \mu I)v = (A - \mu I)^{-1}(\lambda - \mu)v$$

$$\frac{1}{\lambda - \mu}v = (A - \mu I)^{-1}v$$

$$(95)$$

E isso nos dá uma ideia! Se aplicarmos a iteração de potências em $(A-\mu I)^{-1}$, o valor convergirá rapidamente para q_i (Autovetor de A)

```
 \begin{array}{c|c} 1 \  \, \mathbf{function} \  \, \mathrm{ReverseIteration}(A \in \mathbb{C}^{m \times m}, v^{(0)} \  \, \mathrm{com} \  \, \|v^{(0)}\| = 1) \, \{ \\ 2 \  \, \Big| \  \, \mathbf{for} \  \, k = 1, 2, 3, \dots \\ 3 \  \, \Big| \  \, \mathrm{Resolva} \  \, (A - \mu I) w = v^{(k-1)} \  \, \mathrm{para} \  \, w \\ 4 \  \, \Big| \  \, v^{(k)} = w/\|w\| \\ 5 \  \, \Big| \  \, \lambda^{(k)} = \left(v^{(k)}\right)^T A v^{(k)} \\ 6 \  \, \Big\}
```

Algoritmo 5: Iteração Inversa

Você pode estar se perguntando: "Mas e se μ for um autovalor de A? Isso vai fazer com que $A-\mu I$ não seja inversível! Ou de μ for muito próximo de um autovalor de A, se isso acontecer, $A-\mu I$ vai ser **muito** malcondicionada e vai ser quase impossível uma inversa precisa! Isso não vai quebrar o algoritmo?". São perguntas válidas, mas não, isso não quebra o algoritmo! Há um exercício no livro que aborda isso (Se eu conseguir resolver antes da A2, eu coloco aqui).

Aqui o algoritmo também é um pouco mais interessante pois, dependendo do μ que escolhermos, podemos encontrar um autovalor diferente, ou seja, podemos escolher qual autovalor encontrar se fizermos a escolha certa de μ

Teorema 8.4.2: Suponha que λ_J é o autovalor **mais próximo** de μ e λ_K é o **segundo** mais próximo. Suponha então que $q_J^T v^{(0)} \neq 0$, então as iterações do Algoritmo 5 satisfazem:

$$\begin{split} \|v^{(k)} - (\pm q_J)\| &= O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^k\right) \\ |\lambda^{(k)} - \lambda_J| &= O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^{2k}\right) \end{split} \tag{96}$$

Conforme $k \to \infty$ e \pm tem o mesmo significado que <u>Teorema 8.3.1</u>

Esse algoritmo, como mencionado, é muito útil se os autovalores são conhecidos ou se tem uma noção de quanto eles valem aproximadamente (μ converge para o mais próximo)

8.5 Iteração do Quociente de Rayleigh

Beleza, a gente ja bisoiou 2 métodos, um que a gente tem uma estimativa inicial de autovetor, e vai aproximando o autovalor, depois uma que a gente tem uma aproximação de um autovalor e vamos aproximando um autovetor, combinar as duas ideias me parece uma **boa ideia**.

Figura 6: Iteração do Quociente de Rayleigh

A ideia é a gente ficar melhorando a estimativa de autovalores que temos pra que o algoritmo de iteração reversa tenha uma convergência muito mais rápida

```
1 function RayleighQuotientIteration(A \in \mathbb{C}^{m \times m}) {
   |v^{(0)} \text{ com } ||v^{(0)}|| = 1
   \lambda^{(0)} = (v^{(0)})^T A v^{(0)}
   for k = 1, 2, 3, ...
   | Resolva (A - \lambda^{(k-1)}I)w = v^{(k-1)} para w
Algoritmo 6: Iteração do Quociente de Rayleigh
```

A convergência do algoritmo é ótima, a cada iteração o valor de precisão triplica.

Teorema 8.5.1: Quando o algoritmo de iteração do quociente de rayleigh converge para um autovalor λ_J e um autovetor q_J de A de forma que:

$$\begin{split} \|v^{(k+1)} - (\pm q_J)\| &= O\big(\|v^{(k)} - (\pm q_J)\|^3\big) \\ |\lambda^{(k+1)} - \lambda_J| &= O\big(|\lambda^{(k)} - \lambda_J|^3\big) \end{split} \tag{97}$$

Não há necessidade de uma demonstração formal, apenas a ideia de que há uma ótima conversão do algoritmo

Agora vamos ver que o algoritmo de QR pode ser utilizado como um algoritmo estável para computar a fatoração QR de potências de $\cal A$

9.1 O Algoritmo QR

A versão mais simplificada parece coisa de doido.

```
1 function QRIteration(A \in \mathbb{C}^{m \times m}) {
2 | A^{(0)} = A
3 | for k = 1, 2, 3, ...
4 | Q^{(k)}, R^{(k)} = \operatorname{qr}(A^{(k-1)})
5 | A^{(k)} = R^{(k)}Q^{(k)}
6 }
```

Algoritmo 7: Algoritmo QR

É um algoritmo estupidamente simples, mas sobre certas circunstâncias, esse algoritmo converge para a forma de Schur de uma matriz (Triangular superior se for arbitrária e diagonal se for simétrica). Por questão de simplicidade, vamos continuar assumindo que A é simétrica

Pra que a redução a forma diagonal seja útil pra achar autovalor, a gente precisa que transformações similares estejam envolvidas. "Oxe, daonde?". Quando a gente faz $A^{(k)} = R^{(k)}Q^{(k)}$, a gente pode substituir $R^{(k)}$ por $\left(Q^{(k)}\right)^TA^{(k-1)}$, ou seja: $A^{(k)} = \left(Q^{(k)}\right)^TA^{(k-1)}Q^{(k)}$ (Mesmo que $M^{-1}AM$). O Algoritmo 7 converge cubicamente assim como o do Algoritmo 6, porém, para o algoritmo ser prático, precisamos introduzir **shifts**. Introdução de **shifts** é 1 de 3 modificações que fazemos nesse algoritmo para que ele fique prático.

- 1. Antes de iniciar a iteração, A é reduzida a forma tridiagonal
- 2. Em vez de $A^{(k)}$, usamos uma matriz trocada $A^{(k)} \mu^{(k)}I$ que é fatorada a cada iteração e $\mu^{(k)}$ é uma estimativa de autovalor
- 3. Quando possível (Especialmente quando um autovalor é encontrado) nós quebramos $A^{(k)}$ em submatrizes

Algoritmo 8: Algoritmo QR com shifts

Esse é um algoritmo muito usado desde 1960. Mas perceba que precisamos ter uma noção prévia de quanto vale os autovalores da matriz, pois necessitamos ter aproximações particularmente boas de $\mu^{(k)}$ para que o algoritmo tenha uma boa convergência. Porém, nos anos 1990 um competidor surgiu (Vai ser discutido na lecture 30 e a gente detalha o algoritmo com shifts na próxima lecture).

9.2 Iterações Simultâneas Não-normalizadas

A gente vai tentar relacionar (Eu vou tentar traduzir o que o livro fala né) o Algoritmo 7 com um algoritmo chamado **iterações simultâneas** que tem um comportamento mais simples de visualizar (De acordo com o livro, pq tudo pra ele é fácil né)

A ideia do algoritmo é aplicar o Algoritmo 4 (Iteração por Potências) para vários vetores simultaneamente. Vamo supor que a gente tem n vetores LI iniciais $v_1^{(0)},...,v_n^{(0)}$. Se a gente aplica $A^kv_1^{(0)}$, conforme $k\to\infty$, isso converge para o autovetor correspondente ao autovalor de maior valor absoluto (Com algumas condições adequadas), meio que parece plausível que span $\left\{A^kv_1^{(0)},A^kv_2^{(0)},...,A^kv_n^{(0)}\right\}$ converge para span $\{q_1,...,q_n\}$ que é o espaço formado pelos autovetores associados aos n (Novamente com condições adequadas). Ué, mas quando eu aplico o método a um único vetor ele não converge pro maior? Como que aplicar a vários muda isso? Vou primeiro definir uma estrutura importante no algoritmo e depois faço uma explicação mais simplificada e uma analogia pra entender isso melhor

Na notação matricial, fazemos:

$$V^{(0)} = \begin{pmatrix} & | & | \\ v_1^{(0)} & | \dots & | & v_n^{(0)} \\ & | & | & | \end{pmatrix}$$

$$(98)$$

E definimos

$$V^{(k)} = A^k V^{(0)} = \begin{pmatrix} v_1^{(k)} & | & | \\ v_1^{(k)} & | & \dots & | \\ | & | & | \end{pmatrix}$$
 (99)

Vamos tentar entender a pergunta que fiz antes. Quando a gente aplica o algoritmo a um único vetor, ele vai se alinhando ao vetor dominante, porém, se a gente faz o mesmo com vários vetores **ao mesmo tempo**,ou seja, eu aplico na matriz, não faz muito sentido isso ocorrer. Pensa que se isso acontecesse, eu ia ter como resultado uma matriz que todas as colunas fossem iguais (Meio esquisito isso). O que acontece é que o espaço das colunas de $V^{(0)}$ vai "girando" e se alinhando ao espaço que falei dos autovetores de A

Imagine 3 agulhas em 3 direções diferentes (De forma que as agulhas representem vetores LI, e to falando apenas 3 pra representar \mathbb{R}^3 , mas se aplica pra outros espaços). Aplicar o método de potência em um único vetor é como se aplicássemos um campo magnético que direciona todas as agulhas pra direção norte (Que seria a direção do autovetor associado ao maior autovalor). Aplicar na matriz $V^{(0)}$ seria aplicar um campo magnético complexo, em que cada vetor $v_i^{(0)}$ fica virado pra direção que ele "sente mais"

Beleza, vamos continuar então. A gente ta interessado em $C(V^{(k)})$. Que tal a gente pegar uma boa base desse espaço? Uma boa ideia é a fatoração QR dessa matriz né? Já que as colunas de Q são uma base ortonormal de $C(V^{(k)})$

$$\hat{Q}^{(k)}\hat{R}^{(k)} = V^{(k)} \tag{100}$$

Aqui estamos vendo a fatoração reduzida, logo, $\hat{Q}^{(k)}$ é $m \times n$ e $\hat{R}^{(k)}$ é $n \times n$. Bem, se as colunas de $\hat{Q}^{(k)}$ vão formando uma base do span dos autovetores que eu comentei antes, então faz sentido elas irem convergindo para os próprios autovetores de A ($\pm q_1, ..., \pm q_n$). A gente pode argumentar melhor sobre isso fazendo uma expansão das colunas de $V^{(0)}$ e $V^{(k)}$ como combinação linear dos autovetores de A que nem a gente fez em uma lecture anterior

$$\begin{split} v_{j}^{(0)} &= a_{1j}q_{1} + \ldots + a_{mj}q_{m} \\ v_{j}^{(k)} &= \lambda_{1}^{k}a_{1j}q_{1} + \ldots + \lambda_{m}^{k}a_{mj}q_{m} \end{split} \tag{101}$$

Mas não precisamos entrer em detalhes mais aprofundados. Assim como na lecture anterior, resultados vão convergir quando satisfazemos duas condições.

1. A primeira é que, ao calcularmos n autovalores, todos tenham valor absoluto distintos

$$|\lambda_1| > |\lambda_2| > \dots > |\lambda_n| > |\lambda_{n+1}| \ge |\lambda_{n+2}| \ge \dots \ge |\lambda_m| \tag{102}$$

2. A segunda condição é que os valores a_{ij} na decomposição dos $v_j^{(i)}$ que comentei antes sejam, de certa forma, não-singulares. O que isso quer dizer? Significa que eu preciso formar uma boa mistura dos meus autovetores originais. Tipo, se eu formar $v_j^{(i)}$ ortogonal a algum autovetor, ele não vai ser muito bem aproximado pelo meu

algoritmo. Vou formarlizar essa condição um pouco. Vamos definir \hat{Q} como a matriz $m \times n$ que as colunas são os autovetores $q_1, ..., q_n$ de A. Então podemos formalizar isso escrevendo:

Todas as submatrizes consequentes de
$$\hat{Q}^T V^{(0)}$$
 são inversíveis (103)

Eu posso definir como essa multiplicação pois eu vou ter que o elemento ij dessa matriz vai ser $q_i^T v_i^{(0)}$, que ao olharmos para a Equação (101), é igual a a_{ij}

Teorema 9.2.1: Suponha que a iteração (98) e (100) é realizada e as condições (102) e (103) são satisfeitas. Conforme $k \to \infty$, as colunas da matriz $Q^{(k)}$ vão convergindo linearmente para os autovetores de A:

$$||q_i^{(k)} - \pm q_i|| = O(C^k) \tag{104}$$

para cada j com $1 \leq j \leq n$ e C < 1é a constante $\max_{1 < k < n} \left(|\lambda_{k+1}|/|\lambda_k| \right)$

Demonstração: Vamos transformar $\hat{Q} \in \mathbb{R}^{m \times n}$ em $Q \in \mathbb{R}^{m \times m}$, de forma que Q tenha como colunas todos os autovetores de A. Definimos também Λ como a matriz de autovalores de A de tal forma que $A=Q\Lambda Q^T$. Defina também $\hat{\Lambda}$ como sendo o bloco $n \times n$ de Λ com os autovalores associados a matriz \hat{Q} .

$$V^{(k)} = A^k V^{(0)} = Q \Lambda^k Q^T V^{(0)} = \hat{Q} \Lambda^k \hat{Q}^T V^{(0)} + O(|\lambda_{k+1}|)$$
(105)

Se a condição (103) for satisfeita, podemos fazer uma manipulação simples

$$V^{(k)} = \left(\hat{Q}\Lambda^k + O(|\lambda_{k+1}|) \left(\hat{Q}^T V^{(0)}\right)^{-1}\right) \hat{Q}^T V^{(0)}$$
(106)

Como $\hat{Q}^TV^{(0)}$ é inversível, $C\big(V^{(k)}\big)=C\Big(\hat{Q}\Lambda^k+O\big(|\lambda_{k+1}|\big)\Big(\hat{Q}^TV^{(0)}\big)^{-1}\Big).$ Ou seja, a gente consegue perceber que o espaço vai convergindo para o span dos autovetores de A. A gente pode até tentar quantificar a convergência, mas não tem necessidade

9.3 Iteração Simultânea

Conforme $k \to \infty$, os vetores $v_j^{(k)}$ vão convergindo para múltiplos do autovetor dominante (Associado ao autovalor). Quando eu digo múltiplos, eu quero dizer muito próximos. Por mais que o span deles converja para algo útil, eles em si formam uma base muito mal condicionada.

Vamos fazer uma alteração então, vamos construir uma sequência de matrizes $Z^{(k)}$ tal que $C(Z^{(k)}) = C(V^{(k)})$

```
1 function SimultaniousAlgorithm(A \in \mathbb{C}^{m \times m}) {
2 | Escolha \hat{Q}^{(0)} \in \mathbb{R}^{m \times n} com colunas ortonormais
      for k = 1, 2, 3, ...
4 \mid \; \mid Z = A\hat{Q}^{(k-1)}
5 | \hat{Q}^{(k)}, \hat{R}^{(k)} = \operatorname{qr}(Z)# Fatoração Reduzida 6 } Algoritmo 9: Iteração Simultânea
```

Assim é mais tranquilo de ver que $C(Z^{(k)}) = C(\hat{Q}^{(k)}) = C(A^k\hat{Q}^{(0)})$. Matematicamente falando, esse novo método converge igual o método anterior (Sob as mesmas circunstâncias)

Teorema 9.3.1: O Algoritmo 9 gera as mesmas matrizes $\hat{Q}^{(k)}$ que os passos de iteração (98) ~ (100) considerados no Teorema 9.2.1 e sob as mesmas condições (102) e (103)

9.4 Iteração Simultânea ⇔ Algoritmo QR

Beleza, agora a gente pode tentar entender o algoritmo QR (Não é um algoritmo pra calcular a fatoração QR, mas usa ela para calcular os autovalores e autovetores de A). A gente vai aplicar a iteração simultânea na identidade, assim, a gente até remove os acentos de $\hat{Q}^{(k)}$ e $\hat{R}^{(k)}$. A gente vai fazer umas substituições que eu vou explicar direitinho depois.

Primeiro de tudos, temos um algoritmo de iteração simultânea com uma leve adaptação, mostraremos que ele e o algoritmo qr são equivalentes

```
\begin{array}{ll} \textbf{1} & \textbf{function} \ \text{ModifiedSimultaniousAlgorithm} (A \in \mathbb{C}^{m \times m}) \ \{ \\ 2 & | \underline{Q}^{(0)} = I \\ 3 & | \textbf{for} \ k = 1, 2, 3, \dots \\ 4 & | Z = A\underline{Q}^{(k-1)} \\ 5 & | \underline{Q}^{(k)}, R^{(k)} = \operatorname{qr}(Z) \\ 6 & | \underline{Q}^{(k)}, R^{(k)} = (\underline{Q}^{(k)})^T A\underline{Q}^{(k)} \\ 7 & | \underline{R}^{(k)} = R^{(k)} R^{(k-1)} \dots R^{(1)} \\ 8 & \} \end{array}
```

Algoritmo 10: Iteração Simultânea Modificada

Aqui, a gente colocou $\underline{Q}^{(k)}$ com esse traço em baixo só pra diferenciar o Q do algoritmo de iteração simultânea e do algoritmo QR

```
 \begin{array}{c|c} \mathbf{1} \  \, \mathbf{function} \  \, \mathbf{UnshiftedQRAlgorithm}(A \in \mathbb{C}^{m \times m}) \, \{ \\ 2 & A^{(0)} = A \\ 3 & \mathbf{for} \  \, k = 1, 2, 3, \dots \\ 4 & Q^{(k)}, R^{(k)} = \mathrm{qr} \big( A^{(k-1)} \big) \\ 5 & A^{(k)} = R^{(k)} Q^{(k)} \\ 6 & Q^{(k)} = Q^{(1)} Q^{(2)} \dots Q^{(k)} \\ 7 & R^{(k)} = R^{(k)} R^{(k-1)} \dots R^{(1)} \\ 8 \  \, \} \end{array}
```

Algoritmo 11: Algoritmo QR sem Shift

Agora podemos visualizar a convergência de ambos os algoritmos.

Teorema 9.4.1: O Algoritmo 10 e Algoritmo 11 geram a mesma sequência de matrizes $\underline{Q}^{(k)}$, $\underline{R}^{(k)}$ e $A^{(k)}$, de tal forma que:

$$A^k = \underline{Q}^{(k)} \underline{R}^{(k)} \tag{107}$$

junto da projeção

$$A^{(k)} = \left(\underline{Q}^{(k)}\right)^T A \underline{Q}^{(k)} \tag{108}$$

Demonstração: Vamos fazer indução em k

- Caso base (k=1): Trivial, já que $A^{(0)}=Q^{(0)}=\underline{R}^{(0)}=I$ e $A^{(0)}=A$
- Passo indutivo (k > 1): A parte de que $A^{(k)} = \left(\underline{Q}^{(k)}\right)^T A \underline{Q}^{(k)}$ por definição de A^k (Algoritmo 10). Então só precisamos conferir que $A^k = \underline{Q}^{(k)} \underline{R}^{(k)}$, e fazemos isso, primeiro, considerando o algoritmo de iteração simultânea (Assumindo que isso é válido para A^{k-1}):

$$A^k = A\underline{Q}^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}R^{(k)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}\underline{R}^{(k)} \tag{109}$$

Agora, faremos o mesmo assumindo o algoritmo QR

$$A^k = A\underline{Q}^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k-1)}A^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}\underline{R}^{(k)} \tag{110}$$

Então verificamos que

$$A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$
(111)

9.5 Convergência do algoritmo QR

Show, agora a gente pode entender melhor como que esse algoritmo acha os autovalores e autovetores. A parte dos autovetores a gente consegue visualizara pela equação (107), e pelo Teorema 9.4.1, já que, se o método de iteração simultânea converge para autovetores e tanto ele quanto o algoritmo QR geram as mesmas matrizes, obviamente ambos vão ter as matrizes Q convergindo para a matriz de colunas sendo os autovetores. Como Q converge pra matriz de autovetores, por consequência, se eu faço Q^TAQ , isso vai convergir pra matriz com os autovalores de A na diagonal (Diagonalização)

Teorema 9.5.1: Deixe que o Algoritmo 11 seja aplicado em uma matriz real simétrica A que os autovalores satisfazem $|\lambda_1|>|\lambda_2|>...>|\lambda_m|$ e que a matriz de autovetores correspondente Q não tem blocos singulares (Todos os blocos da matriz formam matrizes inversíveis). Então, conforme $k\to\infty$, $A^{(k)}$ converge linearmente com constante $\max_{j\left(|\lambda_{j+1}|/|\lambda_j|\right)}$ para a matriz com os autovalores na diagonal e $Q^{(k)}$ converge na mesma velocidade para Q

A ideia aqui é a inserção dos shifts $A \to A - \mu I$ e discutir por que que essa ideia nada intuitiva funciona e leva a uma convergência cúbica.

10.1 Conexao com a Iteração Reversa

A gente tinha visto que o algoritmo QR unshifted (Algoritmo 11) era a mesma coisa que aplicar a iteração reversa na matriz identidade. Tem um porém, o Algoritmo 11 também é equivalente a aplicar a iteração inversa simultânea numa matriz identidade "invertida" P. Vamo tentar desenvolver melhor essa ideia:

Seja $Q^{(k)}$, assim como na última lecture, o fator ortogonal no k-ésimo passo da iteração do algoritmo QR. Mostramos antes que o produto acumulado dessas matrizes forma:

$$\underline{Q}^{(k)} = \prod_{j=1}^{k} Q^{(j)} = \left(q_1^{(k)} \mid \dots \mid q_m^{(k)} \right) \tag{112}$$

É a mesma matriz ortogonal que aparece no k-ésimo passo do algoritmo de iteração simultânea.

$$A^k = Q^{(k)}\underline{R}^{(k)} \tag{113}$$

Se a gente inverte essa fórmula, temos

$$A^{-k} = \left(\underline{R}^{(k)}\right)^{-1} \left(\underline{Q}^{(k)}\right)^{T} = \underline{Q}^{(k)} \left(\underline{R}^{(k)}\right)^{-T} \tag{114}$$

Essa segunda igualdade a gente tira porque A^{-1} é simétrica (Ainda tamo usando que A é simétrica). Deixe P ser a matriz de permutação que troca a ordem de todas as linhas e colunas:

$$P = \begin{pmatrix} & 1\\ & \ddots\\ & 1\\ 1 & \end{pmatrix} \tag{115}$$

Bem, como $P^2=I$, a gente pode reescrever a equação que tinhamos anteriormente como:

$$A^{-k}P = \left(\underline{Q}^{(k)}P\right)\left(P\left(\underline{R}^{(k)}\right)^{-T}P\right) \tag{116}$$

Perceba que $\underline{Q}^{(k)}P$ é ortogonal ($\underline{Q}^{(k)}$ é ortogonal e P também) e $P(\underline{R}^{(k)})^{-T}P$ é triangular superior ($(\underline{R}^{(k)})^{-T}$ é triangular inferior, daí eu inverto a ordem das colunas, e depois a ordem das linhas, aí fica triangular superior), ou seja, a equação anterior pode ser interpretada como uma fatoração QR de $A^{-k}P$. Isso que fizemos é a mesma coisa que aplicar o agloritmo QR na matriz A^{-1} usando a matriz P como ponto de partida do algoritmo.

10.2 Conexão com o Algoritmo de Iteração Reversa com Shifts

Ok, a gente viu então que o algoritmo QR é tipo uma mistureba da iteração reversa e da iteração simultânea reversa. O negócio é que a gente viu em umas lectures anteriores que o último que mencionei pode ser melhorado com o uso de shifts (Algoritmo 8). Isso é como inserir shifts nos dois algoritmos que comentei anterioremente. Vou escrever o algoritmo aqui novamente (Omiti a parte final de obter as submatrizes):

```
 \begin{array}{c|c} \mathbf{1} \  \, \mathbf{function} \  \, \mathbf{ShiftedQR}(A \in \mathbb{C}^{m \times m}) \, \{ \\ \mathbf{2} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{7} \end{array} \right. \left. \begin{array}{c} \left(Q^{(0)}\right)^T A^{(0)} Q^{(0)} = A \\ \mathbf{6} \\ \mathbf{1} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \end{array} \right. \left. \begin{array}{c} \left(Q^{(0)}\right)^T A^{(0)} Q^{(0)} = A \\ \mathbf{6} \\ \mathbf{1} \\ \mathbf{7} \\ \mathbf{7} \\ \mathbf{7} \\ \mathbf{7} \\ \mathbf{7} \\ \mathbf{7} \end{array} \right. \left. \begin{array}{c} \left(Q^{(0)}\right)^T A^{(0)} Q^{(0)} = A \\ \mathbf{1} \\ \mathbf{1}
```

Deixe que $\mu^{(k)}$ seja a aproximação de autovalor que a gente escolhe no k-ésimo passo do algoritmo QR. De acordo com o Algoritmo 8, a relação entre os passos k-1 e k do algoritmo é:

$$A^{(k-1)} - \mu^{(k)}I = Q^{(k)}R^{(k)}$$

$$A^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$$
(117)

Isso nos dá o seguinte (Só fazer umas substituições):

$$A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)}$$
(118)

Aí se a gente aplica uma indução, temos:

$$A^{(k)} = \left(\underline{Q}^{(k)}\right)^T A \underline{Q}^{(k)} \tag{119}$$

Se você para pra olhar, é a mesma coisa que a gente definiu no <u>Teorema 9.4.1</u> (Segunda equação). O problema é que a primeira equação não vale mais, ela vai ser substituida por:

$$\prod_{j=k}^{1} \left(A - \mu^{(j)} I \right) = \underline{Q}^{(k)} \underline{R}^{(k)} \tag{120}$$

Aí a gente não precisa entrar em detalhes da prova dessa equivalência. Isso acarreta que as colunas de $\underline{Q}^{(k)}$ aos poucos vão convergindo para autovetores de A. O livro da uma ênfase na primeira e na última coluna, onde cada uma é equivalente a apliar o algoritmo da iteração reversa com shifts nos vetores canônicos e_1 e e_m respectivamente.

10.3 Conexão com a Iteração do Quociente de Rayleigh

Beleza, vimos que os shifts são bem poderosos para o cálculo das matrizes, mas aí tu pode tá se perguntando: "Q djabo eu faço pra escolher meus shift? Eu tenho q ser Mãe de Ná?". E você está corretíssimo, precisamos de um método para escolher shifts interessantes para o algoritmo.

Faz sentido a gente tentar usar o quociente de Rayleigh pra isso. A gente quer tentar fazer com que a última coluna de $Q^{(k)}$ converja. Então faz sentido a gente usar o Quociente de Rayleigh com essa última coluna né?

$$\mu^{(k)} = \frac{\left(q_m^{(k)}\right)^T A q_m^{(k)}}{q_m^{((k))^T} q_m^{(k)}} = \left(q_m^{(k)}\right)^T A q_m^{(k)}$$
(121)

Se escolhermos esse valor, as estimativas $\mu^{(k)}$ (Estimativa de autovalor) e $q_m^{(k)}$ estimativa de autovetor são identicos àqueles computados pela iteração do quociente de rayleigh com o vetor inicial sendo e_m

Tem um negócio bem massa que a gente pode ver com isso. Que o valor $A_{mm}^{(k)}$ é igual a $r\left(q_m^{(k)}\right)$ (r sendo a função do quociente de rayleigh), a gente pode visualizar assim:

$$A_{mm}^{(k)} = e_m^T A^{(k)} e_m = e_m^T \left(\underline{Q}^{(k)} \right)^T A \underline{Q}^{(k)} e_m = q_m^{((k))^T} A q_m^{(k)}$$
(122)

Ou seja, escolher $\mu^{(k)}$ como sendo o coeficiente de rayleigh de $q_m^{(k)}$ é a mesma coisa que escolher ele como sendo a última entrada de $A^{(k)}$. A gente chama isso de **Shift do Quociente de Rayleigh**.

10.4 Wilkinson Shift

A gente tem um problema com o método anterior. Nem sempre escolhermos $A_{mm}^{(k)}$ ou $r\left(q_m^{(k)}\right)$ como os shifts para convergência funciona. Um exemplo disso é a matriz:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{123}$$

Isso ocorre porque temos uma simetria nos autovalores (1 e -1) e $A_{mm}^{(k)}=0$, o que acarreta que ao escolhermos esse valor como shift, o algoritmo tende a beneficiar ambos os autovalores igualmente (Ou seja, eu não tá mais próximo de nenhum, vou ta igualmente distante dos dois). A gente precisa de uma estimativa que quebre a simetria, vamo fazer o seguinte então:

Deixe B ser definida pelo bloco 2×2 inferior direito da matriz $A^{(k)}$

$$B = \begin{pmatrix} a_{m-1} & b_{m-1} \\ b_{m-1} & a_m \end{pmatrix} \tag{124}$$

O **Shift de Wilkinson** é definido como o autovalor mais próximo de a_m . Em caso de empate, eu seleciono qualquer um dos dois autovalores arbitrariamente. Aqui tem uma fórmula numericamente estável pra achar esses autovalores:

$$\mu = a_m - \frac{\text{sign}(\delta)b_{m-1}^2}{|\delta| + \sqrt{\delta^2 + b_{m-1}^2}}$$
 (125)

onde $\delta = \frac{a_{m-1} - a_m}{2}$. Se $\delta = 0$, eu posso definir $\operatorname{sign}(\delta)$ como sendo 1 ou -1 arbitrariamente. O **Shift de Wilkinson** também atinge convergência cúbica e, nos piores casos, pelo menos quadrática (Pode ser mostrado). Em partiular, o algoritmo QR com shift de Wilkinson sempre converge.

10.5 Estabilidade e Precisão

Como esperado, os algoritmos vistos anteriormente são **backward stable**, ou seja, calcular os autovalores de uma matriz A com os algoritmos é o mesmo que calcular os autovalores de uma matriz levemente perturbada \tilde{A} do modo puramente matemático. O teorema a seguir pode ser provado, mas não é o intuito:

Teorema 10.5.1: Deixe uma matriz real, simétrica e tridiagonal $A \in \mathbb{R}^{m \times m}$ ser diagonalizada pelo algoritmo QR (Algoritmo 8) em um computador ideal. Deixe $\tilde{\Lambda}$ ser a matriz de autovalores de A computada por aritmética de ponto flutuante e \tilde{Q} a matriz exatamente ortogonal associada ao produto dos refletores de householder e rotações utilizadas nos algoritmos, temos que:

$$\tilde{Q}\tilde{\Lambda}\tilde{Q} = A + \delta A \tag{126}$$

onde

$$\frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{127}$$

para algua $\delta A \in \mathbb{C}^{m \times m}$

Isso mostra que temos resultados muito bom! Inclusive, juntando com alguns outros teoremas que vimos (Teorema 10.5.1 e Teorema 7.4.1), temos que, para todo autovalor λ_j , o autovalor computado $\tilde{\lambda_j}$ satisfaz:

$$\frac{|\tilde{\lambda_j} - \lambda_j|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{128}$$

Os Discos de Gershgorin é um método de estimar **onde** estão os autovalores de uma matriz complexa no plano de **Argand-Gauss** (Aquele plano que representa os complexos). Como assim? Vamos pegar uma matriz aleatória $A \in \mathbb{C}^{3\times 3}$, eu sei que ela tem, no máximo, 3 autovalores. Aplicando o teorema dos discos (Vou explicar posteriormente como aplicar, vamos só entender a ideia) eu obtive o seguinte resultado:

Figura 7: Ilustração dos Discos de Gershgorin de uma matriz 3×3

Isso significa que os autovalores da minha matriz A estão em **algum lugar** dentro desses círculos roxos. Mas qual é a utilidade disso? Na verdade é muito útil, pois nos dá uma noção de **shifts** para utilizarmos em algoritmos

Teorema 11.1: Os autovalores de uma matriz complexa $A = \begin{bmatrix} a_{ij} \end{bmatrix} \in \mathbb{C}^{m \times m}$ estão contidos na união dos discos:

$$\bigcup_{i=1}^{m} \left\{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}| \right\}$$
 (129)

Demonstração: Dada uma matriz $A \in \mathbb{C}^{m \times m}$ e um autovetor v de A tal que $Av = \lambda v$ e seja v_i a entrada de maior magnitude de v, temos:

$$\begin{split} \sum_{j=1}^m A_{ij} v_j &= \lambda v_i \\ A_{ii} v_i + \sum_{j \neq i}^m A_{ij} v_j &= \lambda v_i \\ \sum_{j \neq i}^m A_{ij} v_j &= \lambda v_i - A_{ii} v_i \\ \frac{1}{v_i} \sum_{j \neq i}^m A_{ij} v_j &= \lambda - A_{ii} \\ |\frac{1}{v_i} \sum_{j \neq i}^m A_{ij} v_j| &= |\lambda - A_{ii}| \end{split}$$

$$(130)$$

Por desigualdade triangular, reescrevemos como:

$$\sum_{j\neq i}^{m} |A_{ij} \frac{v_j}{v_i}| \ge |\lambda - A_{ii}| \tag{131}$$

Veja que, como v_i é a entrada de maior magnitude de v, temos que $|\frac{v_j}{v_i}| \leq 1 \ \forall j$. Isso quer dizer que:

$$\sum_{j \neq i}^{m} |A_{ij} \frac{v_j}{v_i}| \le \sum_{j \neq i}^{m} |A_{ij}| \tag{132}$$

Ou seja, podemos reescrever como:

$$\sum_{i \neq i}^{m} |A_{ij}| \ge |\lambda - A_{ii}| \tag{133}$$

Isso quer dizer que o autovalor λ está localizado dentro de um disco com centro A_{ii} e raio $\sum_{j \neq i}^m |A_{ij}|$

12 Lecture 30 - Outros algoritmos de Autovalores

12.1 Algoritmo de Jacobi

A gente pode imaginar uma matriz A como uma representação de um elipsóide num plano. Tente imaginar no plano 3D. Se a gente conseguir rotacionar essa matriz A (Rotacionar a elipe) até o ponto de que os eixos da elipse se alinhem com os eixos do plano, então A seria diagonal (Ou seja, a gente obteria uma diagonalização de A).

Para uma melhor vizualisação desse conceito, veja esse vídeo

Ok, então o que podemos fazer pra ir fazendo isso? Vamos aplicando pequenas rotações 2×2 até obter o resultado designado, as rotações são do tipo:

$$\begin{pmatrix} c & s \\ -s & c \end{pmatrix} \tag{134}$$

onde $c=\cos(\theta)$ e $s=\sin(\theta)$ para algum θ . Vale dizer também que essa rotação é para o caso de $A\in\mathbb{R}^{2\times 2}$. Se A é uma matriz de dimensão maior, então a matriz de rotação é a identidade com um bloco do tipo que apresentei antes em algum lugar (Qualquer lugar da matriz). No final a gente teria uma matriz J tal que:

$$J^T A J = Diagonal (135)$$

12.2 Bisection

Antes de tudo, vou explicar o que é o algoritmo de Bisection. Ele é um algoritmo pra estimar as raízes de uma função.

Temos uma função f(x) e queremos estimar suas raízes. Então pegamos uma região [a,b] de forma que f(a)<0 e f(b)>0 (Ou o contrário). Pelo TVI, isso significa que uma raíz $f(\delta)=0$ é tal que $\delta\in[a,b]$. Pegamos então o ponto médio do intervalo $c=\frac{a+b}{2}$ e calculamos f(c). Daí, fazemos a seguinte análise:

- Se f(a)f(c) < 0, então a raíz δ está a esquerda de c, então eu vou fazer o processo novamente no intervalo [a,c]. Se não, então a raíz não está no intervalo [a,c]
- Se f(b)f(c) < 0, então a raíz δ está a direita de c, então eu vou fazer o processo novamente no intervalo [c,b]. Se não, então a raíz não está no intervalo [c,b]

Essa é a ideia para achar os autovalores, aplicamos isso no polinômio característico. Ué, mas usar o polinômio não era uma ideia ruim de autovalor? Na real que a ideia ruim é achar a raíz do polinômio pelos seus **coeficientes**, isso sim é instável. No método de bisection a gente não precisa calcular isso.

Vamos definir algumas coisas antes de continuar com o algoritmo.

Chame de $A^{(j)}$ a submatriz principal de A com tamanho $j \times j$ e tenha que $A \in \mathbb{R}^{m \times m}$ é tridiagonal, simétrica e não-redutível (0 fora da diagonal, com exceção das diagonais superior e inferior)

$$A = \begin{pmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & & \\ & b_2 & a_3 & \ddots & & \\ & \ddots & \ddots & b_{m-1} \\ & & b_{m-1} & a_m \end{pmatrix}$$
 (136)

Tenha também o seguinte teorema (É um exercício do livro)

Teorema 12.2.1: Se $A \in \mathbb{C}^{m \times m}$ é tridiagonal, hermitiana e as entradas acima e abaixo da diagonal são diferentes de 0, então os autovalores de A são todos distintos

Esse ponto é muito importante. Por conta dele, podemos organizar os autovalores de $A^{(k)}$ como:

$$\lambda_1^{(k)} < \lambda_2^{(k)} < \ldots < \lambda_m^{(k)} \tag{137}$$

Então é possível provar que $\lambda_j^{(k+1)} < \lambda_j^{(k)} < \lambda_{j+1}^{(k+1)}$, veja a figura para ter uma noção visual:

Por conta disso eu consigo dizer quantos autovalores de uma matriz são positivos ou negativos, etc. Imagina a seguinte matriz:

$$\begin{pmatrix}
1 & 1 & & & \\
1 & 0 & 1 & & & \\
& 1 & 2 & 1 & & \\
& & 1 & -1
\end{pmatrix}$$
(138)

E vamos analisar a seguinte sequência (Lembre-se que $\det(A) = \prod_{i=1}^m \lambda_i$):

- $\det(A^{(1)}) = 1 \Rightarrow 0$ autovalores negativos
- $\det(A^{(2)}) = -1 \Rightarrow 1$ autovalor negativo
- $\det(A^{(3)}) = -3 \Rightarrow 1$ autovalor negativo
- $\det(A^{(4)}) = 4 \Rightarrow 2$ autovalores negativos

Definição 12.2.1 (Sequência de Sturm): A sequência de Sturm é definida por:

$$1, \det(A^{(1)}), \det(A^{(2)}), ..., \det(A^{(m)})$$
 (139)

É fácil notar que a quantidade de autovalores negativos de A está ligado a quantas vezes o sinal do determinante muda na sequência de Sturm (de 0 e + para - ou de - para 0 ou +). Mas por que isso é interessante? Eu falei e falei mas não estou vendo muito a utilidade disso.

Por conta dessas estimações, conseguimos, por exemplo, saber quantos autovalores estão dentro de um intervalo [a,b]. Vamos fazer a inserção de um shift xI. Vamos calcular os autovalores de A-xI, mas por quê? Acontece que os autovalores de A-xI são $\lambda-x$, ou seja, se eu pegar todos os valores de $\lambda-x<0 \Leftrightarrow \lambda < x$, logo, eu consigo estimar a quantidade de autovalores de A no intervalo $[-\infty,x]$

Também podemos fazer uma pequena troca e fazer um passo-a-passo mais conciso. Se vermos como A é formada, temos que:

$$\det(A^{(k)}) = a_k \det(A^{(k-1)}) - b_{k-1}^2 \det(A^{(k-2)})$$
(140)

Se trocarmos $\det \left(A^{(k)}\right)$ por $\det \left(A^{(k)}-xI\right)=p^{(k)}(x)$

$$p^{(k)}(x) = (a_k - x)p^{(k-1)}(x) - b_{k-1}^2 p^{(k-2)}(x)$$
(141)

E se definirmos $p^{(-1)}(x)=0$ e $p^{(0)}(x)=1$, conseguimos, uma fórmula de recorrência para k=1,2,...,m

12.3 Dividir para Conquistar

Esse método consiste em pegar a matriz tridiagonal e subdividi-la em matrizes menores que são mais fáceis de se trabalhar. A ideia principal é a seguinte. Temos $T \in \mathbb{R}^{m \times m}$ com $m \geq 2$ simétrica, tridiagonal e irredutível (No sentido que os valores fora da diagonal são diferentes de 0). Então podemos dividir a matriz T da seguinte forma:

Fazemos essa divisão em que T_1 é $n \times n$ e T_2 é $m-n \times m-n$. A diferença de T_1 para \hat{T}_1 é que o elemento t_{nn} foi substituido por $t_{nn}-\beta$ e a diferença de T_2 para \hat{T}_2 é que o elemento t_{n+1n+1} foi trocado por $t_{n+1n+1}-\beta$. Após fazer essa divisão, a gente vai subdividindo \hat{T}_j da mesma forma que fizemos com T, de forma que no final vamos ter uma matriz 1×1 (A qual sabemos com certeza quem é o autovalor).

Beleza, mas como que isso vai me ajudar? É possível mostrar que, sabendo os autovalores de \hat{T}_j , conseguimos achar os autovalores de T. Mostrando isso, acaba que isso vira um caso de recursão, já que, ao acharmos o autovalor da matriz 1×1 (Trivial), vamos subindo até o caso $m \times m$ (T).

Vamos supor que conhecemos os autovalores de \hat{T}_j . Vamos então supor a seguinte diagonalização: $\hat{T} = Q_j D_j Q_j^T$. Podemos então fazer a seguinte transformação de similaridade:

$$T = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} D_1 \\ D_2 \end{pmatrix} + \beta z z^T \end{pmatrix} \begin{pmatrix} Q_1^T \\ Q_2^T \end{pmatrix}$$
 (142)

Onde $z^T=(q_1^T \ q_2^T)$, onde q_1^T é a última linha de Q_1 e q_2^T é a última linha de Q_2 . O segundo termo do interior da matriz pode ser dificil de visualizar. O primeiro é bem intuitivo de que vai se transformar em $\begin{pmatrix} \hat{T}_1 \\ \hat{T}_2 \end{pmatrix}$, mas o segundo não é tão intuitivo. Vou tentar explicar melhor.

Pelo que definimos antes, podemos visualizar Q_1 e Q_2 como

$$Q_1 = \begin{pmatrix} \vdots \\ -q_1 \end{pmatrix} \quad \text{e} \quad Q_2 = \begin{pmatrix} -q_2 \\ \vdots \end{pmatrix} \tag{143}$$

Vamos ver o que acontece com a multiplicação:

$$\begin{pmatrix} Q_{1} & \\ & Q_{2} \end{pmatrix} \beta \begin{pmatrix} q_{1} \\ q_{2} \end{pmatrix} (q_{1}^{T} & q_{2}^{T}) \begin{pmatrix} Q_{1}^{T} \\ & Q_{2}^{T} \end{pmatrix}$$

$$\beta \begin{pmatrix} Q_{1}q_{1} & \\ & Q_{2}q_{2} \end{pmatrix} \begin{pmatrix} q_{1}^{T}Q_{1}^{T} \\ & q_{2}^{T}Q_{2}^{T} \end{pmatrix}$$

$$\beta \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 1 \\ \vdots \\ 0 \end{pmatrix} (0.... \ 1 \ 1 \ ... \ 0)$$

$$\begin{pmatrix} 0 \\ & \ddots \\ & \beta & \beta \\ & \beta & \beta \end{pmatrix}$$

$$\vdots \\ & \ddots \\ & & 0 \end{pmatrix}$$

$$(144)$$

Que é justamente a matriz que tinhamos antes, então a fatoração está correta! Beleza, então eu só preciso achar os autovalores de

$$\begin{pmatrix} D_1 & \\ & D_2 \end{pmatrix} + \beta z z^T \tag{145}$$

já que ela é similar a T $\binom{Q_1^T}{Q_2^T}\binom{Q_1}{Q_2}=I$). Mas como que eu faço isso? Em vez de trabalhar com o caso especifico de z, vamos generalizar para qualquer vetor w.

Teorema 12.3.1 (Equação Secular): Queremos achar os autovalores de $D + ww^T$ onde D é uma matriz diagonal com entradas distintas (<u>Teorema 12.2.1</u>), então esses autovalores são as raízes da função

$$f(\lambda) = 1 + \sum_{j=1}^{m} \frac{w_j^2}{d_j - \lambda} \tag{146}$$

Onde d_i são as entradas de D e w_i as entradas de w

Demonstração: Vamos supor que q é um autovetor de $D+ww^T$, então temos:

$$(D + ww^{T})q = \lambda q$$

$$Dq - \lambda q + ww^{T}q = 0$$

$$(D - \lambda I)q + ww^{T}q = 0$$

$$q + (D - \lambda I)^{-1}ww^{T}q = 0$$

$$w^{T}q + w^{T}(D - \lambda I)^{-1}w(w^{T}q) = 0$$

$$(147)$$

$$(147)$$

$$(147)$$

Se abrirmos $1+w^{T(D-\lambda I)^{-1}}w$ na mão vamos obter $f(\lambda)$ que falei anteriormente, ou seja, a expressão total fica $f(\lambda)(w^Tq)=0$, porém, se $w^Tq=0$, então q seria autovetor de D (Só olhar a primeira equação), ou seja, $f(\lambda)=0$

13.1 SVD de A via autovalores de A^*A

Calcular a SVD de A usando que $A^*A = V\Sigma^*\Sigma V$ igual a um sagui disléxico não é a melhor ideia. O algoritmo padrão seria:

- 1. Calcule A^*A
- 2. Calcular $A^*A = V\Lambda V$
- 3. Defina Σ como a matriz $m\times n$ não-negativa que é a raíz de Λ
- 4. Resolva $U\Sigma = AV$ para uma U unitária

Só que a gente pode mostrar que esse algoritmo não é ideal é instável. Pelo Exercício 26.3 (b) do livro, temos o seguinte:

Teorema 13.1.1: Suponha que A é normal. Para cada autovalor $\tilde{\lambda}_j$ de $A+\delta A$, existe um autovalor λ_j de A tal que

$$|\tilde{\lambda}_j - \lambda_j| < \|\delta A\|_2 \tag{148}$$

Usando esse teorema, fazemos uma perturbação δB em A^*A , de forma que:

$$|\lambda_k(A^*A + \delta B) - \lambda_k(A^*A)| \le \|\delta B\|_2 \tag{149}$$

Agora vamos supor um algoritmo **backward stable** que calcula os valores singulares de A. Esse algoritmo vai retornar valores $\tilde{\sigma}$ tais que:

$$\tilde{\sigma}_k = \sigma_k(A + \delta A), \ \frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}})$$
 (150)

ou seja, temos que

$$|\tilde{\sigma}_k - \sigma_k| = O(\varepsilon_{\text{machine}} \cdot ||A||) \tag{151}$$

Porém, a gente também pode supor um algoritmo **backward stable** para calcular os autovalores de A^*A , então esse algoritmo nos daria valores $\tilde{\lambda}$ tais que:

$$|\tilde{\lambda}_k - \lambda_k| = O(\varepsilon_{\text{machine}} \cdot ||A^*A||) = O(\varepsilon_{\text{machine}} \cdot ||A||^2)$$
(152)

Então a gente pode tirar a raíz desses valores computados, correto?

$$|\widetilde{\sigma_k} - \sigma_k| = O(|\widetilde{\lambda}_k - \lambda_k|/\sqrt{\lambda_k}) = O(\varepsilon_{\text{machine}} \|A\|^2 / \sigma_k)$$
(153)

E isso é pior do que antes, ou seja, mesmo que utilizemos algoritmos estáveis para calcular os autovalores de A^*A e tirar sua raíz quadrada, ainda teríamos erros maiores do que algoritmos diretos para calcular os valores singulares.

13.2 Redução para um problema de Autovalores

Por conta disso, reduzimos o problema de SVD a um problema de autovalores, que é sensível à perturbações.

Um algoritmo estável para calcular a SVD de A, usa a matriz

$$H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \tag{154}$$

Se $A=U\Sigma V^*$ é uma SVD de A, então $AV=\Sigma U$ e $A^*U=\Sigma^*V=\Sigma V$, portanto

$$\begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \cdot \begin{pmatrix} V & V \\ U & -U \end{pmatrix} = \begin{pmatrix} V & V \\ U & -U \end{pmatrix} \cdot \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix}$$
 (155)

Ou:

$$H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} = \begin{pmatrix} V & V \\ U & -U \end{pmatrix} \cdot \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix} \cdot \begin{pmatrix} V & V \\ U & -U \end{pmatrix}^{-1}$$
(156)

É uma decomposição em autovalores de H, e fica claro que os autovalores de H são os valores singulares de A, em módulo.

Agora note que ao calcular os autovalores de H, pagamos $\kappa(A)$, e não $\kappa^2(A)$, Pois

$$\kappa(H) = \|H\|_2 \cdot \|H^{-1}\|_2 = \frac{\sigma_1(H)}{\sigma_m(H)} = \frac{\sigma_1(A)}{\sigma_m(A)} = \kappa(A). \tag{157}$$

13.3 Divisão em duas fases

Porém, nós vimos algoritmos de autovalores para matrizes tridiagonais, e H não é tridiagonal, como podemos ver. Então o que fazemos? Nós dividimos o processo de achar a SVD em duas etapas, uma de tridiagonalização (Ou bidiagonalização, como veremos), e uma de diagonalização (Achar os autovalores da matriz bidiagonalizada)

$$\begin{bmatrix} \times \times \times \times \times \\ \times \times \times \times \times \end{bmatrix} \xrightarrow{\text{Phase 1}} \begin{bmatrix} \times \times \\ \times \times \\ \times \times \\ \times \times \times \times \\ \times \times \times \times \end{bmatrix} \xrightarrow{\text{Phase 2}} \begin{bmatrix} \times \\ \times \\ \times \times \\ \times \end{bmatrix} \xrightarrow{\text{Phase 2}} \begin{bmatrix} \times \\ \times \\ \times \\ \times \end{bmatrix}$$

Figura 8: As fases de um algoritmo de SVD

13.4 Bidiagonalização de Galub-Kahan

A ideia é aplicar matrizes unitárias distintas na esquerda de A e na sua direita, e advinha que tipo de matrizes usamo? Exatamente: **Refletores de Householder**. A ideia é aplicar refletores a esquerda de A para colocar zeros abaixo da diagonal principal e a direita para aplicar zeros após a diagonal superior de A:

$$\begin{bmatrix} \times \times \times \times \times \\ \times \times \times \times \times \end{bmatrix} \qquad \begin{bmatrix} X & X & X & X \\ 0 & X & X & X$$

Figura 9: Bidiagonalização de Galub-Kahan exemplificada

13.5 Métodos de Bidiagonalização mais eficientes

Um método mais rápido que podemos aplicar quando m > n é a Bidiagonalização de Lawson-Hanson-Chan, que consiste em aplicar a bidiagonalização de Galub-Kahan em R da fatoração QR de A. Pois assim reduzimos o problema para uma bidiagonalização numa matriz triangular, veja:

Figura 10: Bidiagonalização LHC exemplificada

Isso gera uma redução na quantidade de operações gastas para fazer o algoritmo. O problema é que, de acordo com o livro, isso só vale a pena quando $m>\frac{5}{3}n$. O interessante seria generalizar isso para o caso m>n. E isso é possível!

A ideia para essa generalização é não fazer a fatoração QR no inicio do algoritmo, mas em pontos adequados do algoritmo. Mas que pontos são esses? Conforme vamos fazendo a bidiagonalização, a proporção de m e n vai alterando a cada passo do algoritmo, como assim? Imagine que estamos aplicando o algoritmo numa matriz 10000×30 , no segundo passo do algoritmo, perceba que vamos aplicar na matriz 9999×29 , se fizermos a proporção de ambos:

$$\frac{10000}{30} \approx 333, 33$$

$$\frac{9999}{29} \approx 344, 79$$

$$\frac{9998}{28} \approx 357, 07$$
(158)

Perceba que a proporção só aumenta pois eu estou sempre aplicando em matrizes com m muito grande. O livro fala que o que fazemos é aplicar a fatoração QR no k-ésimo passo quando:

$$\frac{m-k}{n-k} = 2 \tag{159}$$

Veja a ilustração do processo:

Figura 11: Aplicação da QR em pontos-chave da iteração

13.6 Fase 2

A fase 2 é aplicar algum algoritmo de autovalores na matriz que encontramos. Os dois principais algoritmos que são utilizados é uma versão modificada do algoritmo QR e o dividir e conquistar