SRM University Department of Mathematics Complex Integration- Multiple Choice questions UNIT V

Slot-B

- 1. A continuous curve which does not have a point of self-intersection is called a
 - a. Curve
 - b. Closed curve
 - c. Simple closed curve
 - d. Multiple curve

Answer: c. Simple closed curve

- 2. The zero's of $f(z) = \frac{z^2 + 1}{1 z^2}$ are
 - a. 0
 - b. ±*i*
 - c. ±1
 - d. 1

Answer: b. $\pm i$

- 3. If f(z) is analytic inside and on C, then the value of $\oint_C \frac{f(z)}{z-a} dz$, where C is the simple closed curve and a is any point within C is
 - a. f(a)
 - b. $2\pi i f(a)$
 - c. $\pi i f(a)$
 - d. 0

Answer: b. $2\pi i f(a)$

- 4. If f(z) is analytic inside and on C, then the value of $\oint_C \frac{f(z)}{(z-a)^5} dz$, where C is the simple closed curve and a is any point within C is
 - a. $2\pi i \frac{f^{v}(a)}{5!}$
 - b. $2\pi i f(a)$
 - c. $2\pi i \frac{f^{iv}(a)}{4!}$ d. 0

Answer:c. $2\pi i \frac{f^{i\nu}(a)}{4!}$

- 5. The value of $\oint_C \frac{e^{-z}}{z+1} dz$ where C is the circle $|z| = \frac{1}{3}$ is

 - b. 2*πie*
 - c. $\frac{\pi}{2}ie$
 - d. πie

Answer: a. 0

- 6. The value of $\oint_C \frac{e^{2z}}{(z+1)^3} dz$ where C is the circle |z| = 2 is
 - a. 0
 - b. $2\pi i e^{-2}$
 - c. $8\pi i e^{-2}$
 - d. $4\pi i e^{-2}$

Answer: d. $4\pi ie^{-2}$

- 7. The value of $\oint_C \frac{1}{2z-3} dz$ where C is the circle |z| = 1 is
 - a. 0
 - b. $2\pi i$
 - c. $\frac{\pi}{2}i$
 - d. πi

- 8. The value of $\oint_C \frac{z^2}{(z-2)^2} dz$ where C is the circle |z| = 3 is
 - a. 0
 - b. 2*πi*
 - c. $4\pi i$
 - d. 8πi

Answer: d. $8\pi i$

- 9. Let C_1 : $|z a| = R_1$ and C_2 : $|z a| = R_2$ be two concentric circles $(R_2 < R_1)$, the annular region is defined as
 - a. Within C_1
 - b. Within C_2
 - c. Within C_2 and outside C_1
 - d. Within C_1 and outside C_2

Answer: d. Within \mathcal{C}_1 and outside \mathcal{C}_2

- 10. The part $\sum_{n=1}^{\infty} b_n (z-a)^{-n}$ consisting of negative integral powers of (z-a) is called as
 - a. The analytic part of the Laurent's series
 - b. The principal part of the Laurent's series
 - c. The real part of the Laurent's series
 - d. The imaginary part of the Laurent's series

Answer: b. The principal part of the Laurent's series

- 11.Let C: |z a| = r be a circle, the f(z) can be expanded as a Taylor's series if
 - a. f(z) is a function on C
 - b. f(z) is an analytic function within C
 - c. f(z) is not an analytic function within C
 - d. f(z) is an analytic function outside C

Answer: b. f(z) is an analytic function within c

12. Expansion of $\frac{\sin z}{(z-\pi)}$ in Taylor's series about $z=\pi$ is

a.
$$\frac{(z-\pi)}{1!} - \frac{(z-\pi)^3}{3!} + \frac{(z-\pi)^5}{5!} - \cdots$$

b.
$$\frac{(z-\pi)^2}{2!} - \frac{(z-\pi)^4}{4!} + \frac{(z-\pi)^6}{6!} - \cdots$$

c.
$$-1 + \frac{(z-\pi)^2}{3!} - \frac{(z-\pi)^4}{5!} + \cdots$$

d.
$$\frac{(z-\pi)}{2!} + \frac{(z-\pi)^3}{4!} - \frac{(z-\pi)^5}{6!} + \cdots$$

Answer :c.
$$-1 + \frac{(z-\pi)^2}{3!} - \frac{(z-\pi)^4}{5!} + \cdots$$

13. The annular region for the function $f(z) = \frac{1}{z^2 - z - 6}$ is

a.
$$0 < |z| < 1$$

b.
$$1 < |z| < 2$$

c.
$$2 < |z| < 3$$

d.
$$|z| < 3$$

Answer :c.
$$2 < |z| < 3$$

14. The Laurent's series expansion $-\frac{1}{2}\sum \frac{(z+2)^n}{4^n} - \sum \frac{3^n}{(z+2)^n}$ for the function

$$f(z) = \frac{z}{(z-1)(z-2)}$$
 is valid in the region

a.
$$|z + 2| < 3$$

b.
$$1 < |z + 2| < 2$$

c.
$$3 < |z + 2| < 4$$

d.
$$|z + 2| > 4$$

Answer :c.
$$3 < |z + 2| < 4$$

15. If f(z) is not analytic at $z = z_0$ and there exists $\lim_{z \to z_0} f(z)$ and is finite then,

a. The point
$$z = z_0$$
 is isolated singularity of $f(z)$

b. The point
$$z = z_0$$
 is a removable singularity of $f(z)$

c. The point
$$z = z_0$$
 is essential singularity of $f(z)$

d. The point
$$z = z_0$$
 is non isolated singularity of $f(z)$

Answer: b. The point $z = z_0$ is a removable singularity of f(z)

16.Let z = a is a simple pole for f(z) and $b = \lim_{z \to a} (z - a) f(z)$, then

- a. b is a simple pole
- b. b is removable singularity
- c. b is a residue at a of order n
- d. b is a residue at z = a

Answer: d. b is a residue at z = a

17. Let z = a is a pole of order m for f(z), then the residue is

a.
$$\lim_{z \to a} [(z - a)f(z)]$$

a.
$$\lim_{z \to a} [(z - a)f(z)]$$
b.
$$\lim_{z \to a} [(z - a)f''(z)]$$

c.
$$\lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m f(z)]$$

d.
$$\lim_{z \to a} \frac{1}{m!} \frac{d^m}{dz^m} [(z-a)^m f(z)]$$

e. Answer: c.
$$\lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m f(z)]$$

18. The residue of $f(z) = \frac{z}{(z-1)^2}$ at z = 1 is

- b. 1
- c. -1
- d. 0

Answer: b. 1

19. The residue of $f(z) = \frac{z}{z^2 + 1}$ at z = i is

- a. 1
- b. -1
- c. 0
- d. 1/2

Answer : d. 1/2

$$20.\text{If } f(z) = \frac{\sin z}{z}, \text{ then}$$

a.
$$z = 0$$
 is a simple pole

b.
$$z = 0$$
 is a pole of order 2

c.
$$z = 0$$
 is a removable singularity

d.
$$z = 0$$
 is a zero of $f(z)$

Answer: c. z = 0 is a removable singularity

21. The value of the integral $\oint_C e^z dz$ where |z| = 1 is

a.
$$2\pi i$$

a.
$$2\pi i$$

b. $\frac{\pi}{2}i$

Answer: d. 0

22.If $f(z) = \frac{-1}{(z-1)} - 2[1 + (z-1) + (z-1)^2 + \cdots]$ then the residue of f(z)at z = 1is

Answer: b. -1

23. If the integral $\oint_0^{2\pi} \frac{d\theta}{5+3\cos\theta} = \oint_C f(z)dz$, C is |z| = 1, then

(A)
$$z = -\frac{1}{3}$$
 lies inside C and

(B) z = 3 lies outside C. Which of the following is true.

Answer: a. Both A and B

24. In Cauchy's Lemma for contour integration, if f(z) be continuous function such that $|zf(z)| \to 0$ as $|z| \to \infty$, for C is the circle |z| = R, then

a.
$$\oint f(z)dz \to \infty$$
 as $R \to \infty$.

b.
$$\oint_C f(z)dz \to 0 \text{ as } R \to \infty.$$
c.
$$\oint_C f(z)dz \to 0 \text{ as } R \to 0.$$

c.
$$\oint f(z)dz \to 0$$
 as $R \to 0$.

d.
$$\oint_C f(z)dz \to \infty \text{ as } R \to 0.$$

d. $\oint_C f(z)dz \to \infty \text{ as } R \to 0.$ Answer: b. $\oint_C f(z)dz \to 0 \text{ as } R \to \infty.$

25. If $\oint_C \frac{e^z}{z^2} dz = 0$, then C is

a.
$$|z| = 1$$

b.
$$|z - 1| = 2$$

c.
$$|z - 2| = 1$$

d.
$$|z| = 2$$

Answer: c. |z - 2| = 1