南昌航空大学实验报告

二〇二二年四月二十日

课程	星名称:	数值计算方法		实验名称:	非线性方程的求解(一)
班级	ጀ፡ <u>190</u>	841 班	姓名:	李奕澄	
指导	身教师评	定:			签名:
-,	实验目	的			
	1、掌握	屋逐步搜索法求	解非线性	方程根区间	;
	2、掌握	屋二分法求解非:	线性方程	恨的近似解	;
	3、掌握	星迭代法求解非	线性方程	恨的解。	
二,	实验内	容			
	(1) 用	逐步搜索法求力	う程f(x) =	$= x^3 - x - $	1 = 0的一个有根区间,要求有根区间范围不
得超	超过 0.1				
	(2) 用	二分法求解方称		$1-x-\sin x$	x=0在区间 $[0,1]$ 内的一个实根,误差不大于
1/2	$*10^{-4}$.				
	(3) 用]迭代法求解方和	星 f(x) = x	$x^3 - x^2 - 1$	= 0在区间[1.4,1.6]上的根,要求至少保留
位有	效数字				
三、	实验设	备			
	Matlab	R2019a;			
四、	实验程	序			
	[x1,x2]=	=zhubu(0);z=[x1	.,x2];		
disp(['通过逐步搜索法求得区间为(',num2str(z(1)),',',num2str(z(2)),')']);					
disp(['通过二分法求得根为',num2str(erfen(0,1))]);					
disp(['通过迭代法求得根为',num2str(dieda(1.4))]);					
%逐;	步法				
fund	ction [lef	ft,right]=zhubu(a)		
left=	a;right=	=a+0.1;			
whil	e true				
	fx1=lef	t^3-left-1;			
	fx2=rig	ht^3-right-1;			
	if fx1*fx	<2<0			
	bre	eak;			
	else				
	lef	t=right;			
	rig	ht=right+0.1;			
	end				

```
end
end
%二分法
function [left,right]=erfen(a,b)
left=a;right=b;
while true
    middle=(left+right)/2;
    fx1=1-left-sin(left);
    fx2=1-right-sin(right);
    fx3=1-middle-sin(middle);
    if fx1*fx3>0
         left=middle;
    elseif fx2*fx3>0
         right=middle;
    end
    if right-left<0.00005
         break;
    end
end
end
%迭代法
function fx=dieda(x)
fx=nthroot((x^2+1),3);
while true
    fxx=nthroot((fx^2+1),3);
    if fx==fxx
        break;
    else
         fx=fxx;
    end
end
end
```

五、实验结果

>> test2

通过逐步搜索法求得区间为(1.3,1.4)通过二分法求得根为0.51096 通过迭代法求得根为1.4656

六、实验总结及心得

通过本次实验学习并掌握了逐步求解法、二分法和迭代法对于非线性方程的根的求解过程,并通过自己的理解用代码实现相关运算,加深了以上三种求解方法的了解和记忆,对以后实验有很大的帮助。