ML Project - Tech Stock Market Analysis and Prediction

We will look at a few tech stock from the data source and its history. By applying some basic analysis and then use these insight to track patterns. We will also be predicting future stock prices through a Long Short Term Memory (LSTM) method! This will help us determine the risk of the stock

1. What was the change in price of the stock overtime?

```
In [68]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import seaborn as sns
In [69]: # FAANG STOCK, FB, AMZN, AAPL, NFLX, GOOG
# Other Major Tech Stock CRM, MSFT
```

```
In [69]: # FAANG STOCK, FB, AMZN, AAPL, NFLX, GOOG
# Other Major Tech Stock CRM, MSFT

AAPL = pd.read_csv("stock_data/tech/AAPL.csv")
# AMZN = pd.read_csv("stock_data/tech/AMZN.csv")
# FB = pd.read_csv("stock_data/tech/FB.csv")
# GOOG = pd.read_csv("stock_data/tech/GOOG.csv")
# NFLX = pd.read_csv("stock_data/tech/NFLX.csv")
CRM = pd.read_csv("stock_data/tech/CRM.csv")
MSFT = pd.read_csv("stock_data/tech/MSFT.csv")
```

In [3]: AAPL

Out[3]:

	Date	High	Low	Open	Close	Volume	Adj Close
0	2006-01-03	2.669643	2.580357	2.585000	2.669643	807234400.0	2.284267
1	2006-01-04	2.713571	2.660714	2.683214	2.677500	619603600.0	2.290990
2	2006-01-05	2.675000	2.633929	2.672500	2.656429	449422400.0	2.272961
3	2006-01-06	2.739286	2.662500	2.687500	2.725000	704457600.0	2.331634
4	2006-01-09	2.757143	2.705000	2.740357	2.716071	675040800.0	2.323994
3744	2020-11-16	120.989998	118.150002	118.919998	120.300003	91183000.0	120.300003
3745	2020-11-17	120.669998	118.959999	119.550003	119.389999	74271000.0	119.389999
3746	2020-11-18	119.820000	118.000000	118.610001	118.029999	76322100.0	118.029999
3747	2020-11-19	119.059998	116.809998	117.589996	118.639999	74113000.0	118.639999
3748	2020-11-20	118.769997	117.290001	118.639999	117.339996	73391400.0	117.339996

 $3749 \text{ rows} \times 7 \text{ columns}$

```
In [4]: # Let's see a historical view of the closing price

fig, (pl1, pl2, pl3) = plt.subplots(3)
   pl1.plot(AAPL['Date'], AAPL['Adj Close'])
   pl2.plot(CRM['Date'], CRM['Adj Close'])
   pl3.plot(MSFT['Date'], MSFT['Adj Close'])
   plt.ylabel('Adj Close')
   plt.xlabel('Date')
```

Out[4]: Text(0.5, 0, 'Date')


```
In [5]: # Now let's plot the total volume of stock being traded each day

fig2, (plv1, plv2, plv3) = plt.subplots(3)
plv1.plot(AAPL['Date'], AAPL['Volume'])
plv2.plot(CRM['Date'], CRM['Volume'])
plv3.plot(MSFT['Date'], MSFT['Volume'])
plt.ylabel('Volume')
plt.xlabel('Date')
```

Out[5]: Text(0.5, 0, 'Date')

All three tech stock seems to have a pattern and the closing price trend seems to mirror one another. The volumn trade slighly differs.

2. What was the moving average of the various stocks?

```
In [12]: AAPL['Adj Close'].rolling(10).mean().hist(figsize=(12, 12));
AAPL['Adj Close'].rolling(20).mean().hist(figsize=(12, 12));
AAPL['Adj Close'].rolling(30).mean().hist(figsize=(12, 12));
```



```
In [13]: CRM['Adj Close'].rolling(10).mean().hist(figsize=(12, 12));
    CRM['Adj Close'].rolling(20).mean().hist(figsize=(12, 12));
    CRM['Adj Close'].rolling(30).mean().hist(figsize=(12, 12));
```



```
In [14]: MSFT['Adj Close'].rolling(10).mean().hist(figsize=(12, 12));
MSFT['Adj Close'].rolling(20).mean().hist(figsize=(12, 12));
MSFT['Adj Close'].rolling(30).mean().hist(figsize=(12, 12));
```


3. What was the daily return of the stock on average?

Now that we've done some baseline analysis, let's go ahead and dive a little deeper. We're now going to analyze the risk of the stock. In order to do so we'll need to take a closer look at the daily changes of the stock, and not just its absolute value.

```
# We'll use pct change to find the percent change for each day
In [74]:
         AAPL['Daily Return'] = AAPL['Adj Close'].pct change()
         CRM['Daily Return'] = AAPL['Adj Close'].pct_change()
         MSFT['Daily Return'] = AAPL['Adj Close'].pct_change()
         # Then we'll plot the daily return percentage
         fig, axes = plt.subplots(nrows=3, ncols=1)
         fig.set figheight(8)
         fig.set_figwidth(15)
         AAPL['Daily Return'].plot(ax=axes[0], legend=True, linestyle='--', marke
         r='o')
         axes[0].set_title('APPLE')
         CRM['Daily Return'].plot(ax=axes[1], legend=True, linestyle='--', marker
         ='o')
         axes[1].set_title('SALESFORCE')
         MSFT['Daily Return'].plot(ax=axes[2], legend=True, linestyle='--', marke
         r='o')
         axes[2].set_title('MICROSOFT')
         # AMZN['Daily Return'].plot(ax=axes[1,1], legend=True, linestyle='--', m
         arker='o')
         # axes[1,1].set title('AMAZON')
         fig.tight layout()
```


4. What was the correlation between different stocks closing prices?

Now what if we wanted to analyze the returns of all the stocks in our list? Let's go ahead and build a DataFrame with all the ['Close'] columns for each of the stocks dataframes.

```
In [52]: # Grab all the closing prices for the tech stock list into one DataFrame
closing_df = pd.concat([AAPL['Adj Close'], CRM['Adj Close'], MSFT['Adj C
lose']], axis=1, keys=['AAPL', 'CRM', 'MSFT'])
closing_df
```

Out[52]:

	AAPL	CRM	MSFT
0	2.284267	8.560000	19.504198
1	2.290990	8.992500	19.598677
2	2.272961	9.015000	19.613205
3	2.331634	9.962500	19.555077
4	2.323994	9.632500	19.518734
3744	120.300003	249.889999	216.662766
3745	119.389999	256.170013	213.900009
3746	118.029999	257.160004	211.080002
3747	118.639999	264.649994	212.419998
3748	117.339996	258.040009	210.389999

3749 rows × 3 columns

Now that we have all the closing prices, let's go ahead and get the daily return for all the stocks, like we did for the Apple stock.

```
In [53]: # Make a new tech returns DataFrame
    tech_rets = closing_df.pct_change()
    tech_rets.head()
```

Out[53]:

	AAPL	CRM	MSFT
0	NaN	NaN	NaN
1	0.002943	0.050526	0.004844
2	-0.007869	0.002502	0.000741
3	0.025813	0.105103	-0.002964
4	-0.003277	-0.033124	-0.001858

Now we can compare the daily percentage return of two stocks to check how correlated. First let's see a sotck compared to itself.

```
In [54]: # Comparing Google to itself should show a perfectly linear relationship
sns.jointplot('AAPL', 'AAPL', tech_rets, kind='scatter', color='seagree
n')
```

Out[54]: <seaborn.axisgrid.JointGrid at 0x7fa949ec2e50>


```
In [35]: # We'll use joinplot to compare the daily returns of AAPL and Microsoft
sns.jointplot('AAPL', 'MSFT', tech_rets, kind='scatter')
```

Out[35]: <seaborn.axisgrid.JointGrid at 0x7fa92d582a10>

So now we can see that if two stocks are perfectly (and positivley) correlated with each other a linear relationship bewteen its daily return values should occur.

Seaborn and pandas make it very easy to repeat this comparison analysis for every possible combination of stocks in our technology stock ticker list. We can use sns.pairplot() to automatically create this plot

Out[55]: <seaborn.axisgrid.PairGrid at 0x7fa949f9b650>

Out[56]: <seaborn.axisgrid.PairGrid at 0x7fa94e8fc5d0>

Finally, we could also do a correlation plot, to get actual numerical values for the correlation between the stocks' daily return values. By comparing the closing prices, we see an interesting relationship.

```
In [57]: # Let's go ahead and use sebron for a quick correlation plot for the dai
    ly returns
    sns.heatmap(tech_rets.corr(), annot=True, cmap='summer')
Out[57]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa90f57cfd0>
```



```
In [58]: sns.heatmap(closing_df.corr(), annot=True, cmap='summer')
```

Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa90f7ab390>

Fantastic! Just like we suspected in our PairPlot we see here numerically and visually that Microsoft and Amazon had the strongest correlation of daily stock return. It's also interesting to see that all the technology comapnies are positively correlated.

5. How much value do we put at risk by investing in a particular stock?

There are many ways we can quantify risk, one of the most basic ways using the information we've gathered on daily percentage returns is by comparing the expected return with the standard deviation of the daily returns.

6. Predicting the closing price stock price of Tech Stock:

```
In [ ]:
```

```
In [75]: plt.figure(figsize=(16,8))
  plt.title('Close Price History')
  plt.plot(CRM['Close'])
  plt.xlabel('Date', fontsize=18)
  plt.ylabel('Close Price USD ($)', fontsize=18)
  plt.show()
```



```
In [76]: #Create a new dataframe with only the 'Close column
    data = CRM.filter(['Close'])
    #Convert the dataframe to a numpy array
    dataset = data.values
    #Get the number of rows to train the model on
    training_data_len = int(np.ceil( len(dataset) * .8 ))
    training_data_len
```

Out[76]: 3000

```
In [77]: #Scale the data
    from sklearn.preprocessing import MinMaxScaler

    scaler = MinMaxScaler(feature_range=(0,1))
    scaled_data = scaler.fit_transform(dataset)

    scaled_data
```

```
In [78]: #Create the training data set
         #Create the scaled training data set
         train_data = scaled_data[0:int(training_data_len), :]
         #Split the data into x train and y train data sets
         x_train = []
         y_train = []
         for i in range(60, len(train data)):
             x_train.append(train_data[i-60:i, 0])
             y_train.append(train_data[i, 0])
             if i<= 61:
                 print(x_train)
                 print(y_train)
                 print()
         # Convert the x_train and y_train to numpy arrays
         x_train, y_train = np.array(x_train), np.array(y_train)
         #Reshape the data
         x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
         # x train.shape
```

```
[array([0.01123147, 0.01279971, 0.0128813 , 0.01631691, 0.01512034,
       0.01486652, 0.01488465, 0.01486652, 0.01475774, 0.01553733,
       0.01789421, 0.01763133, 0.01638943, 0.01636224, 0.01642569,
       0.01601777, 0.01661605, 0.01790328, 0.0188551 , 0.0174047 ,
       0.01654353, 0.01598151, 0.01484839, 0.01570956, 0.01477587,
       0.01502062, 0.01588179, 0.01201106, 0.0112496 , 0.01160314,
       0.01110456, 0.01175724, 0.01132212, 0.01066038, 0.01137651,
       0.01102298, 0.01082355, 0.01107737, 0.01178443, 0.01356117,
       0.01347958, 0.01467616, 0.01316231, 0.01398722, 0.01447673,
       0.01419571, 0.01448579, 0.01544667, 0.01625345, 0.01551013,
       0.015492 , 0.01568237, 0.01526537, 0.01425917, 0.01375153,
       0.01418665, 0.01428636, 0.01490278, 0.01364275, 0.01344332])
[0.013570230085238753]
[array([0.01123147, 0.01279971, 0.0128813 , 0.01631691, 0.01512034,
       0.01486652, 0.01488465, 0.01486652, 0.01475774, 0.01553733,
       0.01789421, 0.01763133, 0.01638943, 0.01636224, 0.01642569,
       0.01601777, 0.01661605, 0.01790328, 0.0188551 , 0.0174047 ,
       0.01654353, 0.01598151, 0.01484839, 0.01570956, 0.01477587,
       0.01502062, 0.01588179, 0.01201106, 0.0112496, 0.01160314,
       0.01110456, 0.01175724, 0.01132212, 0.01066038, 0.01137651,
       0.01102298, 0.01082355, 0.01107737, 0.01178443, 0.01356117,
       0.01347958, 0.01467616, 0.01316231, 0.01398722, 0.01447673,
       0.01419571, 0.01448579, 0.01544667, 0.01625345, 0.01551013,
       0.015492 , 0.01568237, 0.01526537, 0.01425917, 0.01375153,
       0.01418665, 0.01428636, 0.01490278, 0.01364275, 0.01344332]), ar
ray([0.01279971, 0.0128813 , 0.01631691, 0.01512034, 0.01486652,
       0.01488465, 0.01486652, 0.01475774, 0.01553733, 0.01789421,
       0.01763133, 0.01638943, 0.01636224, 0.01642569, 0.01601777,
       0.01661605, 0.01790328, 0.0188551 , 0.0174047 , 0.01654353,
       0.01598151, 0.01484839, 0.01570956, 0.01477587, 0.01502062,
       0.01588179, 0.01201106, 0.0112496, 0.01160314, 0.01110456,
       0.01175724, 0.01132212, 0.01066038, 0.01137651, 0.01102298,
       0.01082355, 0.01107737, 0.01178443, 0.01356117, 0.01347958,
       0.01467616, 0.01316231, 0.01398722, 0.01447673, 0.01419571,
       0.01448579, 0.01544667, 0.01625345, 0.01551013, 0.015492
       0.01568237, 0.01526537, 0.01425917, 0.01375153, 0.01418665,
       0.01428636, 0.01490278, 0.01364275, 0.01344332, 0.01357023
[0.013570230085238753, 0.013126049453467025]
```

```
from keras.models import Sequential
In [80]:
     from keras.layers import Dense, LSTM
     #Build the LSTM model
     model = Sequential()
     model.add(LSTM(50, return sequences=True, input shape= (x train.shape[1
     model.add(LSTM(50, return sequences= False))
     model.add(Dense(25))
     model.add(Dense(1))
     # Compile the model
     model.compile(optimizer='adam', loss='mean_squared error')
     #Train the model
     model.fit(x_train, y_train, batch_size=10, epochs=5)
     Epoch 1/5
     45e-04
     Epoch 2/5
     61e-05
     Epoch 3/5
     77e-05
     Epoch 4/5
     9e-05
     Epoch 5/5
     2e-05
```

Out[80]: <keras.callbacks.callbacks.History at 0x7fa7d27aea10>

```
In [81]: | #Create the testing data set
         #Create a new array containing scaled values from index 1543 to 2002
         test_data = scaled_data[training_data_len - 60: , :]
         #Create the data sets x test and y test
         x_test = []
         y_test = dataset[training_data_len:, :]
         for i in range(60, len(test_data)):
             x_test.append(test_data[i-60:i, 0])
         # Convert the data to a numpy array
         x_test = np.array(x_test)
         # Reshape the data
         x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1 ))
         # Get the models predicted price values
         predictions = model.predict(x test)
         predictions = scaler.inverse_transform(predictions)
         # Get the root mean squared error (RMSE)
         rmse = np.sqrt(np.mean(((predictions - y_test) ** 2)))
         rmse
```

Out[81]: 6.904925980311818

```
In [82]: # Plot the data
    train = data[:training_data_len]
    valid = data[training_data_len:]
    valid['Predictions'] = predictions
# Visualize the data
    plt.figure(figsize=(16,8))
    plt.title('Model')
    plt.xlabel('Date', fontsize=18)
    plt.ylabel('Close Price USD ($)', fontsize=18)
    plt.plot(train['Close'])
    plt.plot(valid[['Close', 'Predictions']])
    plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
    plt.show()
```

/Users/jig728/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launc her.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy after removing the cwd from sys.path.

In [83]: #Show the valid and predicted prices
valid

Out[83]:

	Close	Predictions
3000	103.830002	106.234474
3001	99.849998	105.603096
3002	100.690002	104.537247
3003	102.919998	103.477379
3004	104.070000	102.823532
3744	249.889999	249.451370
3745	256.170013	248.996063
3746	257.160004	249.229095
3747	264.649994	249.860077
3748	258.040009	251.608292

749 rows × 2 columns

In []: