

SEQUENCE LISTING

<110> Epstein, David
 Grate, Dilara
 Stanton, Martin
 Diener, John L.
 Wilson, Charles
 McCauley, Thomas
 DeSouza, Errol

- <120> Stabilized Aptamers to Platelet Derived Growth Factor and Their Use as Oncology Therapeutics
- <130> 23239-558A
- <140> 10/829,504
- <141> 2004-04-21
- <150> 10/762915
- <151> 2004-01-21
- <150> 60/441357
- <151> 2003-01-21
- <150> 60/463095
- <151> 2003-04-15
- <150> 60/464179
- <151> 2003-04-21
- <150> 60/465055
- <151> 2003-04-23
- <150> 60/469628
- <151> 2003-05-08
- <150> 60/474680
- <151> 2003-05-29
- <150> 60/491019
- <151> 2003-07-29
- <150> 60/512071
- <151> 2003-10-17
- <150> 60/537201
- <151> 2004-01-16
- <150> 60/537045
- <151> 2004-01-16
- <150> 10/718833
- <151> 2003-11-21
- <150> 60/428,102
- <151> 2002-11-21

```
<150> 10/826077
<151> 2004-04-15
<150> 60/464239
<151> 2003-04-21
<150> 60/465053
<151> 2003-04-23
<150> 60/474133
<151> 2003-05-29
<150> 60/486580
<151> 2003-07-11
<150> 60/489810
<151> 2003-07-23
<150> 60/503596
<151> 2003-09-16
<150> 60/523935
<151> 2003-11-21
<160> 98
<170> PatentIn version 3.2
<210> 1
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified base
<222> (6)..(6)
<223> 2'-Fluoro-Uracil
<220>
<221> modified_base
<222> (8)..(8)
<223> 2'-Fluoro-Cytosine
<220>
<221> modified_base
<222>
      (9)..(9)
<223> gm
```

<210> 2

<400> 1 caggcuacg

9

```
<211> 12
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (5)..(5)
<223> gm
<220>
<221> modified base
<222> (7)..(7)
<223> gm
<220>
<221> modified_base
<222> (10)..(10)
<223> 2' Fluoro-Uracil
<220>
<221> modified base
<222> (11)..(11)
<223> 2' Fluoro-Cytosine
<220>
<221> modified_base
<222> (12)..(12)
<223> 2'-O-methyl-Adenosine
<400> 2
cgtagagcau ca
                                                                    12
<210> 3
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (5)..(6)
<223> 2'-fluoro-Cytosine
<220>
<221> modified base
<222> (7)..(7)
<223> 2'-fluoro-Uracil
```

```
<221> modified_base
<222> (8)..(8)
<223> gm
<400> 3
tgatccugt
                                                                       9
<210> 4
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
                                                      ..
<220>
<221> modified_base
<222> (4)..(4)
<223> 2'-fluoro-Cytosine
<220>
<221> modified_base
<222> (4)..(4)
<223> 2'-fluoro-cytosine
<220>
<221> modified_base <222> (5)..(5)
<223> gm
<220>
<221> modified_base
<222> (6)..(6)
<223> 2'-fluoro-Uracil
<220>
<221> modified_base
<222> (8)..(8)
<223> 2'-fluoro-Cytosine
<220>
<221> modified_base
<222> (9)..(9)
<223> gm
<400> 4
cagcguacg
                                                                       9
<210> 5
<211> 12
<212> DNA
<213> Artificial
```

4

```
<223> aptamer
<220>
<221> modified base
<222> (7)..(7)
<223> gm
<220>
<221> modified_base
<222> (10)..(10)
<223> 2'-fluoro-Uracil
<220>
<221> modified_base
<222> (11)..(11)
<223> 2'-fluoro-Cytosine
<220>
<221> modified_base
<222> (12)..(1<del>2</del>)
<223> 2'-methyl-Adenosine
<220>
<221> modified base
<222> (12)..(12)
<223> 2'-O-methyl-adenosine
<400> 5
cgtaccgatu ca
                                                                      12
<210> 6
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
      (6) . . (6)
<223> 2'-fluoro-Cytosine
<220>
<221> modified_base
<222> (7)..(7)
<223> 2'-fluoro-Uracil
<220>
<221> modified base
<222>
      (8)..(8)
<223> gm
```

<400> 6

tgaagcugt 9

```
<210> 7
<211> 23
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (1)..(1)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222> (2)..(2)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
<222> (3)..(3)
<223> gm
<220>
<221> modified_base
      (4)..(4)
<222>
<223> cm
<220>
<221> modified base
<222> (5)..(5)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222> (6)..(6)
<223> gm
<220>
<221> modified_base <222> (7)..(9)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
<222>
      (10)..(10)
<223> gm
<220>
<221> modified base
<222> (11)..(11)
<223> 2'-O-methyl-adenosine
```

```
<220>
<221> modified_base
<222>
      (12)..(12)
<223>
      gm
<220>
<221> modified base
<222> (13)..(14)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222> (15)..(15)
<223> gm
<220>
<221> modified_base
<222> (16)..(16)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222> (17)..(17)
<223> cm
<220>
<221> modified base
<222> (18)..(18)
<223> gm
<220>
<221> modified base
<222>
      (19)..(19)
<223> cm
<220>
<221> modified_base
      (20)..(20)
<222>
<223> gm
<220>
<221> modified base
<222> (21)..(21)
<223> cm
<220>
<221> modified base
<222> (22)..(22)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222>
      (23)..(23)
<223> 2'-O-methyl-uracil
<400> 7
```

augcaguuug agaagucgcg cau

23

```
<210> 8
<211> 29
<212> DNA
<213> Artificial
<220>
<223>
      aptamer
<400> 8
caggetacge gtagageate atgatectg
                                                                             29
<210> 9
<211> 56
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified base
<222> (10)..(10)
<223> 2'-O-methyl-adenosine
<220>
<221> modified_base
<222> (11)..(11)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
\langle 222 \rangle (12)..(1\overline{2})
<223> gm
<220>
<221> modified base
<222> (13)..(13)
<223> cm
<220>
<221> modified base
\langle 222 \rangle (14)..(1\overline{4})
<223> 2'-O-methyl-adenosine
<220>
<221> modified_base
<222>
       (15)..(15)
<223> gm
<220>
<221> modified_base
<222> (16)..(18)
<223> 2'-O-methyl-uracil
```

```
<220>
<221> modified_base
<222>
      (19)..(19)
<223>
      gm
<220>
<221> modified base
<222> (20)..(20)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222>
      (21)..(21)
<223> gm
<220>
<221> modified_base
<222> (22)..(23)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222>
      (24)..(24)
<223> gm
<220>
<221> modified base
<222> (25)..(25)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222> (26)..(26)
<223> cm
<220>
<221> modified base
<222>
      (27)..(27)
<223> gm
<220>
<221> modified_base
<222>
      (28)..(28)
<223>
      cm
<220>
<221> modified base
<222>
      (29)..(29)
<223> gm
<220>
<221> modified base
      (30)..(30)
<222>
<223> cm
```

9

17: 1

```
<221> modified base
<222> (31)..(31)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222> (32)..(32)
<223> 2'-O-methyl-uracil
<400> 9
caggetacga ugcaguuuga gaaguegege auegtagage ateagaaatg ateetg
                                                                       56
<210>
       10
<211> 54
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (10)..(10)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222> (11)..(11)
<223> gm
<220>
<221> modified base
<222> (12)..(12)
<223> cm
<220>
<221> modified base
<222> (13)..(13)
<223> 2'-O-methyl-adenosine
<220>
<221> modified_base
<222> (14)..(14)
<223> gm
<220>
<221> modified_base.
<222> (15)..(17)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222>
      (18)..(18)
<223> gm
```

```
<220>
<221> modified_base
<222> (19)..(19)
<223> 2'-O-methyl-adenosine
<220>
<221> modified_base
<222> (20)..(20)
<223> gm
<220>
<221> modified_base
<222> (21)..(22)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222>
      (23)..(23)
<223> gm
<220>
<221> modified_base
<222> (24)..(24)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222>
      (25)..(25)
<223>
<220>
<221> modified base
<222>
      (26) ... (26)
<223> gm
<220>
<221> modified_base
<222> (27)..(27)
<223> cm
<220>
<221> modified_base
<222>
      (28)..(28)
<223> gm
<220>
<221> modified base
<222>
      (29)..(29)
<223> cm
<220>
<221> modified base
      (30)..(30)
<223> 2'-O-methyl-adenosine
<400> 10
caggetacgu geaguuugag aaguegegea egtagageat cagaaatgat eetg
                                                                      54
```

```
<210> 11
<211> 39
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 11
cacaggetac ggcacgtaga gcatcaccat gatcetgtg
                                                                     39
<210> 12
<211> 22
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> misc_feature
<222> (1)..(22)
<223> phosphorothioate backbone
<400> 12
tgactgtgaa cgttcgagat ga
                                                                     22
<210> 13
<211> 14
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> misc_feature
<222>
      (1)..(14)
<223> phosphorothioate backbone
<400> 13
tgaacgttcg agat
                                                                     14
<210> 14
<211> 12
<212> DNA
<213> Artificial
<220>
<223> aptamer
```

```
<220>
<221> misc_feature
<222> (1)..(12)
<223> phosphorothioate backbone
<400> 14
aacgttcgag at
                                                                     12
<210> 15
<211> 10
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> misc_feature
<222> (1)..(10)
<223> phosphorothioate backbone
<400> 15
aacgttcgag
                                                                     10
<210> 16
<211> 13
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> misc_feature
<222> (1)..(13)
<223> phosphorothioate backbone
<400> 16
gtgaacgttc gag
                                                                     13
<210> 17
<211> 24
<212> DNA
<213> Artificial
<220>
<223> aptamer
```

```
<221> misc_feature
<222> (1)..(24)
<223> phosphorothioate backbone
<400> 17
tcgtcgtttt gtcgttttgt cgtt
                                                                     24
<210> 18
<211> 18
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> misc_feature
<222> (1)..(18)
<223> phosphorothioate backbone
<400> 18
gtcgttttgt cgttttgt
                                                                     18
<210> 19
<211> 14
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> misc_feature
<222> (1)..(14)
<223> phosphorothioate backbone
<400> 19
gtcgttttgt cgtt
                                                                     14
<210> 20
<211> 46
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 20
aacgttcgag caggctacgg cacgtagagc atcaccatga tcctgc
                                                                     46
<210> 21
```

```
<211> 49
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 21
gtgaacgttc gagcaggcta cggcacgtag agcatcacca tgatcctgc
                                                                    49
<210> 22
<211> 64
<212> DNA
<213> Artificial
<220>
<223> aptamer
tgactgtgaa cgttcgagat gacaggctac ggcacgtaga gcatcaccat gatcctgttt
                                                                    60
tttt
                                                                     64
<210> 23
<211> 34
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 23
caggctacgt tcgtagagca tcaccatgat cctg
                                                                    34
<210> 24
<211> 35
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 24
caggctacgt ttcgtagagc atcaccatga tcctg
                                                                    35
<210> 25
<211>
      35
<212> DNA
<213> Artificial
<220>
<223> aptamer
```

<400>	25	2+42442	tasta	25
caggca	acgt ttcgttgagc	accaccatga	teetg	35
<210>	26			
<211>	34			
<212>				
	Artificial			
\Z1J/	ALCITICIAL			
<220>				
	aptamer			
(223)	aptamer			
<400>	26			
	acgt tcgttgagca	tcaccatcat	acta	34
caggca	acge ecgeegagea	ccaccacgac	cccg	34
<210>	27			
<211>				
<212>				
	Artificial			
(213)	ALCILICIAL			
<220>				
	aptamer		•	
(2237	apcamer		•	
<400>	27			
	acgt tttcgttgag	catcaccata	atorto	36
caggca	acge ceeegeegag	caccaccacg	acced	30
<210>	28			
<211>	35			
	DNA			
	Artificial			
1227				
<220>				
	aptamer			
<400>	28			
	acgt ttcgtagagc	atcaccatga	tcctq	35
33	JJJ	3	5	
<210>	29			
<211>	35			
<212>				
	Artificial			
<220>				
<223>	aptamer			
	_			
<400>	29			
	acgt ttcgtagagc	atcaccatga	teetg	35
		•	5	
<210>	30			
<211>	36			
<212>				
	Artificial			

```
<220>
<223> aptamer
<400> 30
caggcgtcgt tttcgacgag catcaccatg atcctg
                                                                    36
<210> 31
<211> 36
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 31
caggcgtcgt cgtcgacgag catcaccatg atcctg
                                                                    36
<210> 32
<211> 36
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 32
caggettegt egtegaagag cateaceatg atcetg
                                                                    36
<210> 33
<211> 36
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 33
caggetacgt cgtcgtagag catcaccatg atcctg
                                                                    36
<210> 34
<211> 35
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 34
caggcaagct ttgcttgagc atcaccatga tcctg
                                                                    35
<210> 35
<211> 36
```

```
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 35
caggcaagct tttgcttgag catcaccatg atcctg
                                                                    36
<210> 36
<211> 33
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 36
cacaggctac ggcacgtaga gcatcaccat gat
                                                                    33
<210> 37
<211> 10
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 37
aacgttcgag
                                                                    10
<210> 38
<400> 38
000
<210> 39
<400> 39
000
<210> 40
<400>
      40
000
<210> 41
<400>
      41
000
<210> 42
```

<400> 42

```
000
<210> 43
<400>
      43
000
<210> 44
<400> 44
000
<210>
      45
<400> 45
000
<210> 46
<400>
      46
000
<210> 47
<400> 47
000
<210> 48
<400> 48
000
<210> 49
<400> 49
000
<210> 50
<211> 93
<212> DNA
<213> Artificial
<220>
<223> pool
<220>
<221> misc_feature
<222> (25)..(54)
<223> n is a, c, g, t or u
<400> 50
categatget agtegtaacg atcommnnn nnnnnnnnn nnnnnnnnn nnnncgagaa
                                                                     60
                                                                     93
```

cgttctctcc tctccctata gtgagtcgta tta

```
<210> 51
<211> 92
<212> DNA
<213> Artificial
<220>
<223> pool
<220>
<221> misc_feature
<222> (24)..(53)
<223> n is a, c, g, t or u
<400> 51
catgcatcgc gactgactag ccgnnnnnnn nnnnnnnnn nnnnnnnnn nnngtagaac
                                                                     60
gttctctcct ctccctatag tgagtcgtat ta
                                                                     92
<210> 52
<211> 92
<212> DNA
<213> Artificial
<220>
<223> pool
<220>
<221> misc_feature
<222> (24)..(53)
<223> n is a, c, g, t or u
catcgatcga tcgatcgaca gcgnnnnnnn nnnnnnnnn nnnnnnnnn nnngtagaac
                                                                    60
gttctctcct ctccctatag tgagtcgtat ta
                                                                     92
<210> 53
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (9)..(9)
<223> gm
<400> 53
                                                                     9
caggctacg
```

```
<210> 54
<211> 12
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
      (5)..(5)
<223> gm
<220>
<221> modified_base
<222>
      (7)..(7)
<223> gm
<220>
<221> modified_base <222> (12)..(12)
<223> 2'-O-methyl-adenosine
<400> 54
                                                                       12
cgtagagcat ca
<210> 55
<211> 8
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified base
<222>
      (8)..(8)
<223> gm
<400> 55
tgatcctg
                                                                        8
<210> 56
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
```

```
<221> modified_base
<222> (6)..(6)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222> (8)..(8)
<223> cm
<220>
<221> modified_base
<222> (9)..(9)
<223> gm
<400> 56
                                                                      9
caggcuacg
<210> 57
<211> 12
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified base
<222>
      (5)..(5)
<223> gm
<220>
<221> modified base
<222> (7)..(7)
<223> gm
<220>
<221> modified_base
<222> (10)..(10)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
<222> (11)..(11)
<223> cm
<220>
<221> modified_base
<222> (12)..(12)
<223> 2'-O-methyl-adenosine
<400> 57
cgtagagcau ca
                                                                     12
```

<210> 58

```
<211> 8
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (5)..(6)
<223> cm
<220>
<221> modified_base
<222> (7)..(7)
<223> 2'-O-methyl-uracil
<400> 58
tgatccug
                                                                     8
<210> 59
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 59
                                                                     9
caggctacg
<210> 60
<211> 12
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 60
cgtagagcat ca
                                                                    12
<210> 61
<211> 8
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 61
tgatcctg
                                                                     8
```

```
<210> 62
 <211> 9
  <212> DNA
 <213> Artificial
 <220>
 <223> aptamer
 <220>
 <221> modified_base
  <222>
        (1)..(1)
 <223> cm
<220>
 <221> modified_base
 <222> (2)..(2)
 <223> 2'-O-methyl-adenosine
 <220>
 <221> modified_base
  <222> (3)..(4)
 <223> gm
 <220>
 <221> modified base
 <222>
        (5)..(5)
 <223> cm
 <220>
 <221> modified_base
 <222> (6)..(6)
 <223> 2'-O-methyl-uracil
 <220>
 <221> modified_base
        (7)..(7)
  <222>
 <223> 2'-O-methyl-adenosine
 <220>
 <221> modified base
 <222>
        (8)..(8)
 <223> cm
 <220>
 <221> modified_base
 <222>
        (9)..(9)
 <223>
        gm
 <400> 62
 caggcuacg
 <210> 63
 <211> 12
 <212> DNA
```

```
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified base
<222> (1)..(1)
<223> cm
<220>
<221> modified base
<222> (2)..(2)
<223> gm
<220>
<221> modified base
<222> (3)..(3)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base <222> (4)..(4)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222>
      (5)..(5)
<223>
      gm
<220>
<221> modified_base
<222> (6)..(6)
<223> 2'-O-methyl-adenosine
<220>
<221> modified_base
<222>
      (7)..(7)
<223> gm
<220>
<221> modified base
<222>
      (8)..(8)
<223> cm
<220>
<221> modified base
<222> (9)..(9)
<223> 2'-O-methyl-adenosine
<220>
<221> modified base
<222> (10)..(10)
<223> 2'-O-methyl-uracil
```

```
<221> modified base
<222> (11)..(11)
<223> cm
<220>
<221> modified base
<222> (12)..(12)
<223> 2'-O-methyl-adenosine
<400> 63
cguagagcau ca
                                                                      12
<210> 64
<211> 8
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base <222> (1)..(1)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222> (2)..(2)
<223> gm
<220> .
<221> modified_base
<222> (3)..(3)
<223> 2'-O-methyl-adenosine
<220>
<221> modified_base
<222> (4)..(4)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222>
      (5)..(6)
<223> cm
<220>
<221> modified_base
<222> (7)..(7)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222> (8)..(8)
<223> gm
```

<400>		_			
ugauccı	ugauccug 8				
<210>	65				
<211>					
<212>					
<213>	Artificial				
<220>					
	aptamer				
<443>	apcamer				
<400>	65				
acaggct	tacq	10			
<210>					
<211>					
<212>	DNA				
<213>	Artificial				
12207					
.000					
<220>					
<223>	aptamer				
<400>	66				
tgatcct		9			
cgaccc	-9-	-			
<210>	67				
<211>	11				
<212>					
	Artificial				
(213)	ALCILICIAL				
<220>					
<223>	aptamer				
<400>	67				
		11			
cacagg	ccac g	7.7			
<210>	68				
<211>	10				
<212>	DNA				
<213>	Artificial				
<220>					
<223>	aptamer				
<220>					
<221>	modified_base				
	(7)(7)				
<223>	2'-O-methyl-uracil				
\4437	2 -O-mcony1-uracii				
<400>	68				
tgatccı	ugtg	10			

```
<210> 69
<211> 8
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
      (5)..(6)
<223> cm
<220>
<221> modified_base
<222>
      (8)..(8)
<223> gm
<400> 69
tgatcctg
                                                                      8
<210> 70
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (1)..(1)
<223> cm
<220>
<221> modified_base
<222> (2)..(2)
<223> 2'-O-methyl-adenosine
<220>
<221> modified_base
<222>
      (3)..(4)
<223>
      gm
<400> 70
caggctacg
                                                                      9
<210> 71
<211> 9
<212> DNA
```

<213> Artificial

```
·<220>
<223> aptamer
<220>
<221> modified base
<222> (9)..(9)
<223> 2'-O-methyl-uracil
<400> 71
tgatcctgu
                                                                         9
<210> 72
<211> 10
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (5)..(6)
<223>
       cm
<220>
<221> modified base
<222> (7)..(7) 
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222>
      (8)..(8)
<223> gm
<220>
<221> modified_base
<222> (9)..(9)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
       (10)..(10)
<222>
<223> gm
<400> 72
tgatccugug
                                                                       10
<210> 73
<211> 9
<212> DNA
<213> Artificial
```

```
<223> aptamer
<220>
<221> modified base
<222> (8)..(8)
<223> cm
<220>
<221> modified_base
<222>
      (9)..(9)
<223> gm
<400> 73
caggctacg
                                                                      9
<210> 74
<211> 9
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (6)..(6)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
<222> (9)..(9)
<223> gm
<400> 74
caggcuacg
                                                                     9
<210> 75
<211> 12
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
      (5)..(5)
<223> gm
<220>
<221> modified_base
<222> (7)..(7)
```

```
<223> gm
<220>
<221> modified base
<222>
      (11)..(11)
<223> cm
<220>
<221> modified base
<222> (12)..(12)
<223> 2'-O-methyl-adenosine
<400> 75
cgtagagcat ca
                                                                       12
<210> 76
<211> 12
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified base
<222>
      (5)..(5)
<223> gm
<220>
<221> modified_base
<222>
      (7)..(7)
<223> gm
<220>
<221> modified_base <222> (10)..(10)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222> (12)..(12)
<223> 2'-O-methyl-adenosine
<400> 76
cgtagagcau ca
                                                                       12
<210> 77
<211> 9
<212> DNA
<213> Artificial
<220>
```

<223> aptamer

```
<220>
<221> modified base
<222>
      (5)..(5)
<223> cm
<220>
<221> modified_base
<222> (6)..(6)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222>
      (8)..(8)
<223>
      cm
<400> 77
caggcuacg
                                                                       9
<210> 78
<211> 12
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
      (1)..(1)
<223> cm
<220>
<221> modified base
<222> (3)..(3)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222>
      (8)..(8)
<223> cm
<220>
<221> modified_base
<222> (10)..(10)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
<222>
      (11) . . (11)
<223> cm
<400> 78
cguagagcau ca
                                                                     12
```

```
<210> 79
<211> 8
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (1)..(1)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
<222> (4)..(4)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base <222> (5)..(6)
<223> cm
<220>
<221> modified base
<222> (7)..(7)
<223> 2'-O-methyl-uracil
<400> 79
ugauccug
                                                                          8
<210> 80
<211> 8
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
       (6)..(6)
<223> cm
<220>
<221> modified_base <222> (7)..(7)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
<222> (8)..(8)
```

<223> gm

```
<400> 80
                                                                     8
tgatccug
<210> 81
<211> 11
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified base
<222> (11)..(11)
<223> gm
<400> 81
cacaggctac g
                                                                    11
<210> 82
<211> 10
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 82
                                                                    10
tgatcctgtg
<210> 83
<211> 10
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
     (6)..(6)
<223> cm
<220>
<221> modified_base
<222> (7)..(7)
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
```

<222> (9)..(9)

```
<223> 2'-O-methyl-uracil
<220>
<221> modified_base
<222>
      (10)..(10)
<223>
       gm
<400> 83
tgatccugug
                                                                       10
<210> 84
<211> 11
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base <222> (8)..(8)
<223> 2'-O-methyl-uracil
<220>
<221> modified base
<222> (10)..(10)
<223> cm
<220>
<221> modified base
      (11)..(11)
<222>
<223> gm
<400> 84
cacaggcuac g
                                                                       11
<210> 85
<211> 8
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
      (5)..(5)
<223>
       cm
<220>
<221> modified base
<222> (7)..(7)
```

<223> 2'-O-methyl-uracil

```
<220>
<221> modified_base
<222>
      (8)..(8)
<223> gm
<400> 85
tgatccug
                                                                       8
<210> 86
<211> 11
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222>
      (11)..(1\overline{1})
<223> gm
<400> 86
cccaggctac g
                                                                      11
<210> 87
<211> 10
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (5)..(5)
<223> cm
<220>
<221> modified base
      (8)..(10)
<222>
<223>
      gm
<400> 87
tgatcctggg
                                                                      10
<210> 88
<211> 10
<212> DNA
<213> Artificial
```

```
<223> aptamer
<220>
<221> modified_base
<222> (8)..(10)
<223> gm
<400> 88
tgatcctggg
                                                                    10
<210> 89
<211> 10
<212> DNA
<213> Artificial
<220>
<223> aptamer
<400> 89
tgatcctggg
                                                                    10
<210> 90
<211> 10
<212> DNA
<213> Artificial
<220>
<223> aptamer
<220>
<221> modified_base
<222> (5)..(5)
<223> cm
<400> 90
                                                                    10
tgatcctggg
<210> 91
<211> 88
<212> DNA
<213> Artificial
<220>
<223> pool
<220>
<221> misc_feature
<222> (25)..(64)
<223> n is a, c, g, t or u
```

<400> 91

gggaaaa	agcg	aaucauacac	aagannnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	60
nnnngcı	uccg	ccagagacca	accgagaa				88
<210><211><211><212><213>	DNA	ificial					
<220> <223>	apta	amer					
<400> taatac	92 gact	cactataggg	aaaagcgaat	catacacaag	a		41
<210><211><211><212><213>	DNA	ificial					
<220> <223>	apta	amer					
<400> ttctcgg	93 gttg	gtctctggcg	gagc				24
<210> <211> <212> <213>	87 DNA	ificial					
<220> <223>	apta	amer					
				ggagcaaagt	cacggaggag	tgggggtacg	60
aatgcto	ccgc	cagagaccaa	ccgagaa				87
<210> <211> <212> <213>		ificial					
<220> <223>	apta	amer					
<400> gggaaaa	95 agcg	aatcatacac	aagaccggga	actcggattc	ttcgcatgtg	gatgcgatca	60
gtatoct	בכפ	ccagagacca	асспапа				88

<210> <211> <212> <213>	96 88 DNA Arti	ificial					
<220> <223>	apta	amer					
<400> gggaaaa	96 agcg	aatcatacac	aagaccggga	actcggattc	ttcacatgtg	gatgtgatca	60
gtatgc	tccg	ccagagacca	accgagaa				. 88
<210><211><211><212><213>		ificial					
<220> <223>	apta	amer					
<400> gggaaaa	97 agcg	aatcatacac	aagaccggaa	actcggattc	ttcgcatgtg	gatgcgatca	60
gtatgc	teeg	ccagagacca	accgagaa				88
<210><211><211><212><213>	98 88 DNA Arti	ificial					
<220> <223>	apta	amer					
<400> gggaaaa	98 agcg	aatcatacac	aagagagtgg	aggaggtatg	tatggtttgt	gegtetggtg	60
cggtgcf	tccg	ccagagacca	accgagaa				88