13 January - MATH 345

January 13, 2015

1:57 PM

- · homework I due Thursday, 22 January
- · midlerm Twesday, 24 February
- · get XPPAUT onto computer
- · files are on website for homework and installing XPPAUT
- · can get account on lab computers in LSK building; can't access remotely
- · lab time reserved for this class wednesdays 3-4 PM; class has priority

Linear Slability Analysis

for
$$\dot{x} = f(x)$$
, $x \in \mathbb{R}'$

· calculate derivative
$$\lambda = \int (x^*) = \frac{df}{dx}(x^*)$$
 at

fixed point x*

$$\lambda > 0$$
 , x^* is unstable

$$\frac{df(x)}{dx} = 1-2x$$

fixed points:
$$0=\times(1-x) \rightarrow x^*=0,1$$

$$x^*=0: \lambda = \frac{df}{dx}(0) = 1 > 0$$

$$x^*_{=1}$$
: $\lambda = \frac{df}{dx}(1) = -1 < 0$

· looking at the example geometrically

- · if $\lambda=f'(x^*)\neq 0$ then the fixed point x^* is called <u>hyperbolic</u> and the sign of λ determines stability
- if $\lambda=0$ then x^* is nonhyperbolic and linear stability analysis fails; the linearisation $\dot{\eta}=\lambda\eta$ cannot be used to determine stability of x^*

Exercise

- (a) Find fixed points, do linear stability analysis for
 - $(1) \dot{x} = x^{a}, \dot{x}) \dot{x} = x^{3}, \dot{x} \dot{y} \dot{x} = -x^{3}, \dot{y} \dot{y} \dot{x} = 0$

(b) sketch phase portraits, determine stability

Existence and Uniqueness

Theorem (p.27 in text book)

If f and f' are both continuous on an open interval R of x-values and is X. ER, then the initial value problem

/ this Ris NOT THE SAME as TR

 $\dot{X} = f(x)$, $X(0) = X^{\circ}$

has a (differentiable) solution x(t) defined for all t belonging to some maximal open interval that includes t=c and this solution is unique · notice that this theorem doesn't guarantee x(1) exists for all tell e.g. $\dot{x} = x(1-x)$, $x(0) = x_0$ where $x_0 < 0$ or $x_0 > 1$

Solving Equations on a Computer

· pre-requisite: simple explicit methods Euler's method, "improved "Euler's method, fourtn-order Runge-kutla method (RK4)

- · default method used by XPPAUT is RK4
- default step size is fine for homework!
- but not always appropriate
- · adaptive methods: user provides accuracy requirement, program chooses step size
- · adaptive methods take longer to run
- . XPPAUT can use Gear's method, an adaptive method (to be used in later homework)

Bifurcations

· parameter dependent vector field

for each r, get phase portrait . for special, critical parameter values rc, called bifurcation points, the phase portraits qualitatively change

these qualitative changes are called bifurcations

Saddle-node Bifurcations

 $\dot{X} = Y + X^2$ Example 1.3

fixed points: $G = r + x^2$ X*==1(-r), only for r=0 i.e. if r>0, there are no fixed points Plot of $\mathcal{Z} = \{(r,x): r+x^2=0\}$

phase portraits (and x vs. x) for different

- · bifurcation point re= 0 (in this example)
- . this type of bifurcation is called a saddle-node bifurcation
- · collect phase portraits and plot x vs. r (r honzonlal)

summanise with bifurcation diagram (enhanced plot of χ)

- other names: fold bifurcation, limit point, turning point
- at the bifurcation point re=0, the fixed point is nonhyperbolic-we can find bifurcations by looking for nonhyperbolic fixed points

Normal Forms

 $x = f(x,r), x \in \mathbb{R}, r \in \mathbb{R}$

- · how to verify if a saddle-node bifurcation occurs: first, find a fixed point x* that is nonhyperbolic at ro
 - (SNI) $f(x^*, r_c) = 0$, $x=x^*$ is a fixed point when $r=r_c$
 - (SN2) $\frac{\partial f}{\partial x}(x^*, r_c) = 0$, x^* is nonhyperbolic when $r = r_c$