2017 DA Lecture 3: Data pre-processing and Interpretation of clusters by comparing centers with grand means

Contents:

Scale types and quantification of categories

Data standardization

What is center: Minkowski's family

Validation of center using bootstrap

Comparing centers using bootstrap

Quantification of categories: Illustrative Data case

Companies characterized by mixed scale features; first three companies making product A, next three making product B, and the last two product C.

Company	Income,	MShare,%	NSup	AA	Sector
name	\$mIn				
Aversiona	19.0	43.7	2	No	Utility
Antyops	29.4	36.0	3	No	Utility
Astonite	23.9	38.0	3	No	Manufacture
Bayermart	18.4	27.9	2	Yes	Utility
Breaktops	25.7	22.3	3	Yes	Manufacture
Bumchista	12.1	16.9	2	Yes	Manufacture
Civiok	23.9	30.2	4	Yes	Retail
Cyberdam	27.2	58.0	5 BacData	Yes Analysis	Retail

Company Dataset

Metadata: Object names, Features and Domain knowledge

- 1) Income, \$ Mln;
- 2) MShare Market share, per cent;
- 3) NSup Number of principal suppliers;
- 4) Affirmative Action (AA) Yes or No;
- 5) Sector (a) Retail, (b) Utility, and (c) Manufacture.

Feature: Maps entities to feature values (unlike variable in math. statistics or m.l.)

Quantitative scale: Arithmetic mean makes sense Examples: 1) Income, 2) MShare, 3) Nsup

Binary scale: I/O coding makes it quantitative

(mean=proportion)

Company Dataset

Metadata: Object names, Features and Domain knowledge

- 1) Income, \$ Mln;
- 2) MShare Market share, per cent;
- 3) NSup Number of principal suppliers;
- 4) Affirmative Action (AA) Yes or No;
- 5) Sector (a) Retail, (b) Utility, and (c) Manufacture.

Feature: Maps entities to feature values

Quantitative scale: Arithmetic mean makes sense

Nominal scale: categories are exclusive, no relations (corresponds to partition of the set of objects)

Other scales (orders, non-alternative) not taken into account

Company dataset

Case 1: Companies 5

Company name	Income, \$mIn	MShare,%	NSup	AA	Sector
Aversiona	19.0	43.7	2	No	Utility
Antyops	29.4	36.0	3	No	Utility
Astonite	23.9	38.0	3	No	Manufacture
Bayermart	18.4	27.9	2	Yes	Utility
Breaktops	25.7	22.3	3	Yes	Manufacture
Bumchista	12.1	16.9	2	Yes	Manufacture
Civiok	23.9	30.2	4	Yes	Retail
Cyberdam	27.2	58.0	5	Yes	Retail

Data analysis issues:

- How to map companies to the screen with their similarity reflected in distances between points? (Summarization/visualization)
- Would clustering of companies reflect the product? What features would be involved then? (Summarization)
- Can rules be derived to predict the product for another company, coming outside of the table? (Correlation)
- Is there any relation between the structural features (Nsup,AA,Sector) and market related features (Income, MShare)? (Correlations): s_2017_3

Company Dataset: Quantification

Case 1: Companies 4

Company name	Income, \$mIn	MShare,%	NSup	AA	Sector
Aversiona	19.0	43.7	2	No	Utility
Antyops	29.4	36.0	3	No	Utility
Astonite	23.9	38.0	3	No	Manufacture
Bayermart	18.4	27.9	2	Yes	Utility
Breaktops	25.7	22.3	3	Yes	Manufacture
Bumchista	12.1	16.9	2	Yes	Manufacture
Civiok	23.9	30.2	4	Yes	Retail
Cyberdam	27.2	58.0	5	Yes	Retail

Quantitative coding: Each category is made into a I/0 binary (dummy) feature "Does it hold? I if Yes, 0 if No."

Entity	Income	MShar	NSup	AA?	Util?	Manu?	Retail?
- 1	19.0	43.7	2	0	I	0	0
2	29.4	36.0	3	0	1	0	0
3	23.9	38.0	3	0	0	1	0
4	18.4	27.9	2	1	1	0	0
5	25.7	22.3	3	1	0	1	0
6	12.1	16.9	2	1	0	1	0
7	23.9	30.2	4	1	0	0	1
8	27.2	58.0	5	1	0	0	I

Pre-processing:

- quantification
- filling in missings
- standardization
- Standardisation:
 - shift of the origin to compare data with a norm
 - rescaling to make features comparable

$$Y_{iv} = (X_{iv} - a_v)/b_v$$

- X original data
- Y standardized data
- a_v shift of the origin, typically, the average
- b_v rescaling factor, traditionally the standard deviation (from statistics perspective), but range may be better

Company Dataset: Standardization

Company data 8×5 converted to the quantitative format 8×7

388	00000						
66/A 11	1	NAC - I-	K IC		Let L.	1 D	- 4 -
#	Inco	MSch	NSup	AA	Util	Man	Reta
- 1	19.0	43.7	2	0	1	0	0
2	29.4	36.0	3	0	1	0	0
3	23.9	38.0	3	0	0	1	0
4	18.4	27.9	2	1	1	0	0
5	25.7	22.3	3	1	0	1	0
6	12.1	16.9	2	1	0	1	0
7	23.9	30.2	4	1	0	0	1
8	27.2	58.0	5	1	0	0	1
Mean	22.45	34.12	3.00	.625	.375	.375	0.25

Three standardizations:

(i). (ii) and (iii)

Why are that many, and what is the need in data standardization?

Goal: to sharpen the data structure

Data standardization in DA (unlike in Math. Stat.):

- A. Feature centering: to look at feature values against a "normal" backdrop
- B. Feature normalization: to balance feature weights

Company Dataset: Standardization (i)

-3.45	9.58	-1	-0.62	0.62	-0.38	-0.25
6.95	1.88	0	-0.62	0.62	-0.38	-0.25
1.45	3.88	0	-0.62	-0.38	0.62	-0.25
-4.05	-6.22	-1	0.38	0.62	-0.38	-0.25
3.25	-11.82	0	0.38	-0.38	0.62	-0.25
-10.35	-17.22	-1	0.38	-0.38	0.62	-0.25
1.45	-3.92	1	0.38	-0.38	-0.38	0.75
4.75	23.88	2	0.38	-0.38	-0.38	0.75

Cyberdam

Structure of data at standardization (i): centering

Color/shape corresponds

This structure has nothing

to do with product

Company Dataset: Standardization (ii)

-0.20	0.23	-0.33	-0.62	0.62	-0.38	-0.25
0.40	0.05	0	-0.62	0.62	-0.38	-0.25
0.08	0.09	0	-0.62	-0.38	0.62	-0.25
-0.23	-0.15	-0.33	0.38	0.62	-0.38	-0.25
0.19	-0.29	0	0.38	-0.38	0.62	-0.25
-0.60	-0.42	-0.33	0.38	-0.38	0.62	-0.25
0.08	-0.10	0.33	0.38	-0.38	-0.38	0.75
0.27	0.58	0.67	0.38	-0.38	-0.38	0.75

Antyos

Aversi

Structure of data at standardization (ii), centering and normalizing by range Color/shape correspond to the product (A,B,C)

This structure somewhat corresponds to product

Company Dataset: Standardization (iii)

-0.20	0.23	-0.33	-0.62	0.36	-0.22	-0.14
0.40	0.05	0	-0.62	0.36	-0.22	-0.14
0.08	0.09	0	-0.62	-0.22	0.36	-0.14
-0.23	-0.15	-0.33	0.38	0.36	-0.22	-0.14
0.19	-0.29	0	0.38	-0.22	0.36	-0.14
-0.60	-0.42	-0.33	0.38	-0.22	0.36	-0.14
0.08	-0.10	0.33	0.38	-0.22	-0.22	0.43
0.27	0.58	0.67	0.38	-0.22	-0.22	0.43

Structure of data at standardization (iii): (ii)+ further normalizing ivok Sector features by sqrt(3)

Color/shape corresponds to the product (A,B,C)

This structure corresponds to product quite well!

Breakto

Baver

Bumc

Week2. What is center, I

Consider a feature over N entities (transposed)

$$x = (x_1, x_2, ..., x_N)$$

Data analysis view

Def. Center of x is a value c satisfying equations

 $x_i = c + e_i$, for all i=1,2,...,Nat as small residuals e_i as possible

Def.

$$L_p^p = [|e_1|^p + |e_2|^p + ... + |e_N|^p]/N$$

Minkowski criterion: $\min L_p$ or $\min L_p^p$

Week2. What is center, 2

Data analysis view: Minkowski p-center ($p \ge 1$)

Minimize $L_p^{\ p} = [|c-x_1|^p + |c-x_2|^p + ... + |c-x_N|^p]/N$

with respect to all possible c

At different p, different solutions!

Week2. What is center, 2

Data analysis view: Minkowski p-center (p \geq I)

Minimize $L_p^p = [|c-x_1|^p + |c-x_2|^p + ... + |c-x_N|^p]/N$ with respect to all possible c

Take p=2. Then L_p is quadratic. First-order minimum condition can be applied, it leads to optimal

c=Mean(x)!

At this c,

L₂ is the square of the standard deviation!

(The minimum L_2 is referred to as the variance, and its square root, as the standard deviation.)

Week2. What is center: Minkowski p-center

$$(p \ge 1)$$

Minimize
$$L_p^p = [|c-x_1|^p + |c-x_2|^p + ... + |c-x_N|^p]/N$$

Take p=1. Then

$$L_1 = [|c-x_1| + |c-x_2| + ... + |c-x_N|]/N$$

the median! Then the minimum of L_i is reached at **c** being the median! Then the minimum of L_i should be used as the corresponding spread.

Take p tending to infinity and the p-th root of Lp, then c tends to midrange.

Minkowski distance: curve xp+yp=I at different p

Week2. What is center, 5

Feature (transposed)

19.0 29.4 23.9 18.4 25.7 12.1 23.9 27.2

Minkowski p Spread

Center

Infinity Half-range

Midrange

8.65

20.75

2 Standard

deviation

Mean

5.26

22.45

I Average

deviation

Median

4. I

23.9 acDataAnalysis 2017 3

Week 2. What is center, 6

At Minkowski p=2, Given $x = (x_1, x_2, ..., x_N)$,

Spread Standard deviation std

Center Mean $\overline{x} = \sum_{i=1}^{N} x_i/N$

Consider definition

$$var = std^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{N} x_i^2 - N\overline{x}^2}{N}$$

Reformulate

$$\sum_{i=1}^{N} x_i^2 = N(\overline{x}^2 + std^2) \tag{*}$$

Week 2. What is center, 6

At Minkowski p=2, Given
$$\mathbf{x} = (\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_N}),$$

$$std^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{N} x_i^2 - N\overline{x}^2}{N}$$

Data scatter= $\sum_{i=1}^{N} x_i^2$ decomposed in a Pythagorean way

Data scatter=
$$N(\overline{x}^2 + std^2)$$
 (*)
Explained part (by the model $x_i = c + e_i$)

std Unexplained part

 $N\overline{x}^2$

The greater the mean, the greater the explained part Similar decompositions hold at multivariate summarizations

Week 2. What is center, 7

Center Comment

Mean Intuitive;

Gaussian

Sensitive to removal/addition of outliers

Median Stable over removal/addition of outliers

Midrange Does not depend on the distribution shape Sensitive to change of range boundary points

Other values of p can be beneficial too, but we know very little of this

Week2. What is center: Probabilistic perspective

Gaussian density function

$$p(x)=C \exp[-(x-a)^2/2\sigma^2]$$

Week2. What is center: Probabilistic perspective Gaussian density function

Week2. What is center: Probabilistic perspective

Estimates of parameters in the Gaussian density

$$p(x) = C \exp\left[-(x-a)^2/2\sigma^2\right]$$

Mean, of a:

$$\mathbf{m} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Variance σ^2 (Standard deviation squared)

$$s^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - a)^2$$
 or

$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - m)^2$$

Bootstrapping

Week 2. Computational validation of Mean using bootstrap I

Consider a feature, say x=iris(:, I) % Ist column of Iris

data

Its histogram hist(x, 15):

rather far from Gaussian

Its mean
$$m = 5.8433$$

std = 0.8253

Week 2. Computational validation of Mean using bootstrap I

Consider a feature, say x=iris(:,I)

Its mean m = 5.8433

std=0.8253

If one wants to reasonably speculate of plausible boundaries within which Mean should be expected at any possible set of iris specimen,

what should they suggest?

m±std? Or m±2*std? Or m±3*std? Or what?

bootstrap 2

Plausible boundaries for mean?

One way to go: using classical math statistics

Say, assume x is a random independent sample from a

Gaussian distribution with a=5.8433 and $\sigma=0.8253$

Proven: is Gaussian too, with a= and $\sigma=$ std/ \sqrt{N}

Consider a feature, say x=iris(:,1)

Its mean m = 5.8433, std=0.8253

Plausible boundaries for m? 95%

One way to go: using classical math statistics

Assume x is a random independent sample from a Gaussian distribution with a=5.8433 and $\sigma=0.8253$:

m is Gaussian too, with a=m and $\sigma=std/N^{1/2}$ (N=150)

Therefore, with 95% confidence

Lb= a - 1.96*std $/N^{1/2}$ = 5.7108

Rb= a + 1.96*std $/N^{1/2}$ = 5.9759

Conclusion:

m within [5.7108, 5.9759] with confidence 95% (under Gaussian assumption)

BacDataAnalysis 2017 3

bootstrap 4

Plausible boundaries for m?

Another way to go: using computing power

Bootstrap

Multiple entity samples of same size N (with replacement)

Meaning: indices are sampled

MatLab:

(twice),

2 3 I entity 2 (entity 4 is missed: why?)

Consider a feature, say x=iris(:, I)

Its mean = 5.8433, std=0.8253

Plausible boundaries for m?

Bootstrap

MatLab:

>> N=150;M=5000; r=ceil(N*rand(N,M));

>> xr=x(r);

>> mx=mean(xr);

This gives M=5000 means of random samples of

bootstrap 6

Plausible boundaries for m?

Bootstrap

- >> N=150;M=5000; r=ceil(N*rand(N,M));
- >> xr=x(r); mr=mean(xr);

Histogram of M=5000 means

bootstrap 8

Feature x=iris(:,I); = 5.8433, std=0.825

Plausible boundaries for m?

Bootstrap Histogram of M=5000 means mr

A. Pivotal method (95% confidence)

Assume mr be Gaussian

- >> mmr=mean(mr); % 5.8444
- >> smr=std(mr); % 0.0675
- >> lbp=mmr-1.96*smr; % 5.71
- >> rbp=mmr+1.96*smr; % 5.9767

bootstrap 8

Feature x=iris(:,I); = 5.8433, std=0.825

Plausible boundaries for m?

Bootstrap Histogram of M=5000 means mr

B. Nonpivotal method (95% confidence)

Take 2.5% and 97.5% percentile as the boundaries

1% of 5000 is 50;

2.5% is 125; 97.5% is 4875

>> smr=sort(mr); % sorting

>> lbn=somr(126); % 5.7120

>> rbn=somr(4875); % 5.9773

Consider a feature, say x=iris(:,1)

Its mean = 5.8433, std=0.8253

Plausible boundaries for m with confidence 95%?

Three different methods - m must be within:

- [5.7108, 5.9759] (under Gaussian assumption)
- [5.7121, 5.9767] (Bootstrap pivotal)
- [5.7120, 5.9773] (Bootstrap nonpivotal) with 95% confidence

I can see no difference in these; there is an issue with the choice of 95%, too...

Comparison of means using Bootstrap

Compare mean Sepal width in Taxons 2 and 3:

- Bootstrap distributions of M trial means in T1 and in T2
- Quotients Q=M(T1)/M(T2) or
- Differences D=M(T1)-M(T2) over all M trials
- 95% confidence interval I for Q or D
- Checking whether unity, for Q, or zero, for D, is in I or not. If not, one M is greater than the other.

Lecture's summary

- Three scale types
- Quantification of a mixed scale data table
- Data standardization
- Minkowski's center
- Minkowski's centers at $p=1, 2, \infty$
- Decomposition of the data scatter at p=2
- Gaussian distribution and its parameters
- Confidence interval
- Bootstrap: what is it?
- Bootstrap for validating the mean: pivotal, nonpivotal
- Bootstrap for comparing two means

Quiz for the courageous:

- Give an algorithm for finding Minkowski's center at any p>1.
- Prove that the median is a Minkowski's center at p=1.
- Consider a zero-one feature f; given a cluster partition of the object set, put down a formula for cluster centers.
- Can you explain the meaning of a confidence interval to the user?
- I recommend comparing within-cluster centers with grand mean. Is there any problem about deriving a 95% confidence interval for the difference between them?

Home-work 2

- Reasonably select several features in your dataset
- Apply K-Means at two or three different K
- Take a clustering of your liking and interpret all the clusters by comparing their centers with grand mean
- Answer this question in your report: is it an interesting partition?

Home-work 3

- Reasonably select two clusters in the clustering you dealt with in HW2
- Take one of the features at one of the clusters and validate its within-cluster mean using bootstrap
- Take one more cluster and compare the within-cluster means of the feature by using bootstrap