Réception et décodage SSTV avec SDRconnect

Table des matières

1. Le context	1
2. Installation des drivers VB-Cable	
3. Rediriger le flux audio SDRconnect vers le câble virtuel	
4. Configuration côté YONIQ	
5. Tester la réception	
6. Réglage fin de la fréquence	
7. Tout mettre sur le même écran	
8. Aligner la fréquence reçue avec la fréquence attendue	

1. Le context

Je souhaite décoder un signal SSTV sur mon PC Windows 10/11 en utilisant SDRconnect avec une clé SDR RSP1B, sans recourir à un pont physique entre la sortie audio et l'entrée micro. Pour cela, j'envisage d'utiliser **VB-Cable**, un câble audio virtuel, afin de rediriger le flux audio de SDRconnect directement vers le logiciel de décodage SSTV YONIQ.

SDRPLAY RSP1B

YONIQ, est la nouvelle version du logiciel **MMSSTV** pour la communication par télévision à balayage lent. Il n'existe pas de version pour OS linux.

2. Installation des drivers VB-Cable

- Téléchargez et décompressez l'archive. <u>téléchargeable ici</u>.
- Une fois l'archive décompressée, exécutez VBCABLE_Setup_x64.exe pour installer le driver.
- Redémarrer l'ordinateur pour finaliser l'installation.
- Ouvrir le gestionnaire de périphériques, pour constater la présence du câble virtuel.

Figure 1: Gestionnaire de périphériques

Maintenant que le câble audio virtuel VB-Cable est installé, il ne reste plus qu'à configurer **SDRconnect** pour qu'il utilise VB-Cable en sortie audio, puis à paramétrer le logiciel de décodage **Yoniq** pour qu'il prenne ce même périphérique en entrée.

3. Rediriger le flux audio SDRconnect vers le câble virtuel

Dans l'interface de SDRconnect, localiser la section Audio.

Figure 2: Section Audio de SDRconnect

Comme le montre la capture d'écran ci-dessus, Dans le panneau **Audio** choisir pour **Audio Device** Cable Input (VB-Cable)

Puis dans la section **Control** sélectionner le **Mode** USB (bande latérale inférieure) et **Filter Preset** sur 2,8 Khz

Régler la fréquence par exemple sur 144,500 Mhz.

Figure 3: Section Controle de SDRconnect

4. Configuration côté YONIQ

Yoniq utilise **uniquement** les paramètres par défaut de **windows**. L'onglet Option permet d'ouvrir la fenêtre de paramétrage entrée son de Windows.

Dans le menu **Option** sélectionner **Soundcard Input level,** pour ouvrir la fenêtre Son de windows. Désactiver le microphone et sélectionner par défaut CABLE Output.

Figure 4: YONIQ paramétrage de l'entrée son

Dans l'onglet **Enregistrement** désactivé le Microphone

Propriétés de Microphone puis dans Utilisation du périphérique sélectionner Ne pas utiliser ce périphérique.

5. Tester la réception

- Attendre qu'un signal SSTV soit reçu par SDRconnect.
- Yoniq devrait automatiquement commencer à décoder l'image.

6. Réglage fin de la fréquence

Pendant la réception d'une image ajuster la fréquence afin que la première bosse dans le waterfall corresponde à 1200 Hz.

Figure 5: YONIQ Ajustement de la fréquence

Si le marqueur rouge 1200 est à gauche de la bosse il faut augmenter la fréquence dans SDR.

Si le marqueur rouge 1200 est à droite de la bosse il faut au contraire diminuer la fréquence.

7. Tout mettre sur le même écran

Afin de simplifier les manipulations il est possible de scinder la fenêtre de YONIQ en plusieurs petites fenêtres indépendantes. View → Design → Separate all views

Figure 6: YONIQ Séparation des vues

Figure 7: Écran complet SDRconnect & YONIQ

8. Aligner la fréquence reçue avec la fréquence attendue

Le « PPM correction dans SDRconnect (et en général dans les logiciels SDR) concerne l'ajustement de la dérive de fréquence due à l'oscillateur interne du matériel.

Qu'est-ce que le « PPM » ?

- **PPM** = *Parts Per Million*. C'est une mesure de précision/de dérive : 1 ppm signifie une erreur de 1 partie par million, donc à 100 MHz, cela correspond à une erreur de 100 Hz.
- Tous les oscillateurs ne sont pas parfaits. Quand vous demandez une fréquence de réception de, disons, 100 MHz, l'oscillateur peut être légèrement "hors" — la réception se fera alors à 100 MHz ± un offset.
- La dérive peut venir de plusieurs sources : tolérance de fabrication, température.

La fonctionnalité **PPM correction** a été introduite depuis une version 5 de SDRconnect. Elle permet d'entrer manuellement un offset en PPM pour corriger la fréquence reçue.

(utile pour la réception de signaux précis, appels numériques, décodage de données, etc)

- Trouver un **signal de référence stable** à une fréquence connue.
- Dans SDRconnect, accéder aux paramètres de PPM en cliquant sur Device Settings (icône deux engrenages)
- Entrer manuellement l'offset dont vous avez mesuré la dérive.

Figure 8: Ajustement de la fréquence ppm

Index des figures

Gestionnaire de périphériques	Ξ.
Section Audio de SDRconnect	
Section Controle de SDRconnect	
YONIQ paramétrage de l'entrée son	
YONIQ Ajustement de la fréquence	
YONIQ Séparation des vues	
Écran complet SDRconnect & YONIQ	
Aiustement de la fréquence ppm	