

FCC Test Report (Part 96: LTE Band 48)

Report No.: RF190625C09

FCC ID: W9V-OT235-GP

Test Model: OT-235

Received Date: Jun. 25, 2019

Test Date: Jul. 10 ~ Jul. 11, 2019

Issued Date: Jul. 26, 2019

Applicant: Green Packet Berhad, Taiwan

Address: 2F, No. 23, Lane 583, Rueiguang Road, Neihu District, Taipei City

11492 Taiwan, ROC

Manufacturer: Green Packet Berhad, Taiwan

Address: 2F, No. 23, Lane 583, Rueiguang Road, Neihu District, Taipei City

11492 Taiwan, ROC

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan

Hsien 333, Taiwan, R.O.C.

FCC Registration/ 788550 / TW0003

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record4						
1	C	Certificate of Conformity	. 5				
2	S	Summary of Test Results	. 6				
	2.1 2.2	Measurement Uncertainty Modification Record					
3		Seneral Information					
	3.1	General Description of EUT					
	3.1 3.2	Test Mode Applicability and Tested Channel Detail					
	3.3	Description of Support Units					
	3.3.1	Configuration of System under Test					
	3.4	General Description of Applied Standards					
4		est Types and Results					
	4.1	Maximum Output Power Measurement					
		Limits of Maximum Output Power Measurement					
		Test Setup					
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		EUT Operating Conditions					
		Test Results					
	4.2	Frequency Stability Measurement	19				
	4.2.1	Limits of Frequency Stability Measurement	19				
	4.2.2	Test Procedure	19				
		Test Setup					
		Test Results					
	4.3	Emission Bandwidth Measurement					
		Emission Bandwidth Measurement					
		Test Setup					
		Test Instruments					
		Test Procedure					
		Deviation fromTest Standard					
		EUT Operating Conditions Test Result (-26dB Bandwidth)					
			25 27				
	4.3.0 4.4	Peak to Average Ratio Measurement					
		Limits of Peak to Average Ratio Measurement					
		Test Setup					
		Test Procedures					
		Test Results					
	4.5	Conducted Spurious Emissions					
	4.5.1	Limits of Conducted Spurious Emissions Measurement					
		Test Setup					
		Test Procedure					
		Test Results					
	4.6	Radiated Emission Measurement					
		Limits of Radiated Emission Measurement					
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		Test Set Up					
	0.0.	Test Results	บษ				

5 Pictures of Test Arrangements	67
Appendix – Information of the Testing Laboratories	

Release Control Record

Issue No.	Description	Date Issued
RF190625C09	Original release.	Jul. 26, 2019

Certificate of Conformity

Product: LTE Cat.4 Outdoor Gateway

Brand: GreenPacket

Test Model: OT-235

Sample Status: Engineering sample

Applicant: Green Packet Berhad, Taiwan

Test Date: Jul. 10 ~ Jul. 11, 2019

Standards: 47 CFR FCC Part 96

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Polly Chier / Specialist , Date: Jul. 26, 2019

Bruce Chen / Senior Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 96							
FCC Clause	Test Item	Result	Remarks					
2.1046 96.41(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
2.1046 96.41(b) Maximum Power Spectral Density		Pass	Meet the requirement of limit.					
96.41(g)	Peak to Average Ration	Pass	Meet the requirement of limit.					
2.1049	2.1049 Emission Bandwidth		Meet the requirement of limit.					
2.1055	Frequency Stability	Pass	Meet the requirement of limit.					
2.1051 96.41(e)	Conducted Spurious Emissions	Pass	Meet the requirement of limit.					
2.1053 96.41(e)	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -2.7dB at 82.01MHz.					

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
	9 kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	3.59 dB
	200 MHz ~ 1000 MHz	3.60 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.29 dB
Radiated Ellissions above 1 GHZ	18 GHz ~ 40 GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	LTE Cat.4	LTE Cat.4 Outdoor Gateway					
Brand	GreenPa	GreenPacket					
Test Model	OT-235	OT-235					
Status of EUT	Engineeri	ng sample					
Modulation Type	QPSK, 16	6QAM					
		Channel Bandwidth 5MHz	TX: 3552.5 ~ 3697.5 MHz				
		Charmer Dandwidth Sivil 12	RX: 3552.5 ~ 3697.5	5 MHz			
		Channel Bandwidth 10MHz	TX: 3555 ~ 3695 MI	Hz			
Onerating Fraguesia	LTE	Charmer Dandwidth 10mm2	RX: 3555 ~ 3695 MI	Hz			
Operating Frequency	Band 48	Channel Bandwidth 15MHz	TX: 3557.5 ~ 3692.5	5 MHz			
		Charmer Dandwidth 15101112	RX: 3557.5 ~ 3692.5	5 MHz			
		Channel Bandwidth 20MHz	TX: 3560 ~ 3690 MI	Hz			
		Charmer Dandwidth 20101112	RX: 3560 ~ 3690 MI	Hz			
			QPSK	16QAM			
		Channel Bandwidth 5MHz	198.609mW (22.98dBm)	199.067mW (22.99dBm)			
Max. EIRP Power	LTE	Channel Bandwidth 10MHz	195.884mW	198.153mW			
IVIAX. LIIXI TOWEI	Band 48	Chamici Banawiath 10101112	(22.92dBm)	(22.97dBm)			
		Channel Bandwidth 15MHz	193.642mW (22.87dBm)	190.108mW (22.79dBm)			
		01 15 1 111 001411	180.717mW	196.336mW			
		Channel Bandwidth 20MHz	(22.57dBm)	(22.93dBm)			
		Channel Bandwidth 5MHz	4M46G7D	4M47D7W			
	LTE	Channel Bandwidth 10MHz	8M92G7D	8M93D7W			
Emission Designator	Band 48	Channel Bandwidth 15MHz	13M3G7D	13M3D7W			
		Channel Bandwidth 20MHz	17M9G7D	17M8D7W			
Antenna Type	Internal a	ntenna with 8.6dBi gain	1	1			
Antenna Connector							
Accessory Device PoE							
Data Cable Supplied	NA						
Note:							

Note:

1. The EUT uses following PoE.

Model	ZZU1588-150120
Input Power	100-240Vac~50-60Hz, 1.5A
Output Power	12Vdc / 1.5A
Power Cord	1.4m power cable without core

2. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports

The worst case was found when positioned on Z-plane. Following channel(s) was (were) selected for the final test as listed below:

Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation
	55265 to 56715	55265 (3552.5MHz), 55990 (3625.0MHz), 56715 (3697.5MHz)	5MHz	QPSK, 16QAM
Mayirayan Outrut Daylar	55290 to 56690	55290 (3555.0MHz), 55990 (3625.0MHz), 56690 (3695.0MHz)	10MHz	QPSK, 16QAM
Maximum Output Power	55315 to 56665	55315 (3557.5MHz), 55990 (3625.0MHz), 56665 (3692.5MHz)	15MHz	QPSK, 16QAM
	55340 to 56640	55340 (3560.0MHz), 55990 (3625.0MHz), 56640 (3690.0MHz)	20MHz	QPSK, 16QAM
	55265 to 56715	55265 (3552.5MHz), 56715 (3697.5MHz)	5MHz	QPSK
Frequency Stability	55290 to 56690	55290 (3555.0MHz), 56690 (3695.0MHz)	10MHz	QPSK
Frequency Stability	55315 to 56665	55315 (3557.5MHz), 56665 (3692.5MHz)	15MHz	QPSK
	55340 to 56640	55340 (3560.0MHz), 56640 (3690.0MHz)	20MHz	QPSK
	55265 to 56715	55265 (3552.5MHz), 55990 (3625.0MHz), 56715 (3697.5MHz)	5MHz	QPSK, 16QAM
Occupied Denduidth	55290 to 56690	55290 (3555.0MHz), 55990 (3625.0MHz), 56690 (3695.0MHz)	10MHz	QPSK, 16QAM
Occupied Bandwidth	55315 to 56665	55315 (3557.5MHz), 55990 (3625.0MHz), 56665 (3692.5MHz)	15MHz	QPSK, 16QAM
	55340 to 56640	55340 (3560.0MHz), 55990 (3625.0MHz), 56640 (3690.0MHz)	20MHz	QPSK, 16QAM
	55265 to 56715	55265 (3552.5MHz), 55990 (3625.0MHz), 56715 (3697.5MHz)	5MHz	QPSK, 16QAM
Dock to Aviana a Datin	55290 to 56690	55290 (3555.0MHz), 55990 (3625.0MHz), 56690 (3695.0MHz)	10MHz	QPSK, 16QAM
Peak to Average Ratio	55315 to 56665	55315 (3557.5MHz), 55990 (3625.0MHz), 56665 (3692.5MHz)	15MHz	QPSK, 16QAM
	55340 to 56640	55340 (3560.0MHz), 55990 (3625.0MHz), 56640 (3690.0MHz)	20MHz	QPSK, 16QAM

Test Item	Test Item Available Channel		Channel Bandwidth	Modulation
	55265 to 56715	55265 (3552.5MHz), 55990 (3625.0MHz), 56715 (3697.5MHz)	5MHz	QPSK
Conducted Emission	55290 to 56690	55290 (3555.0MHz), 55990 (3625.0MHz), 56690 (3695.0MHz)	10MHz	QPSK
Conducted Emission	55315 to 56665	55315 (3557.5MHz), 55990 (3625.0MHz), 56665 (3692.5MHz)	15MHz	QPSK
	55340 to 56640	55340 (3560.0MHz), 55990 (3625.0MHz), 56640 (3690.0MHz)	20MHz	QPSK
Radiated Emission	55265 to 56715	55265 (3552.5MHz)	5MHz	16QAM
Below 1GHz	55340 to 56640	55340 (3560.0MHz)	20MHz	16QAM
Radiated Emission	55265 to 56715	55265 (3552.5MHz), 55990 (3625.0MHz), 56715 (3697.5MHz)	5MHz	QPSK
Above 1GHz	55340 to 56640	55340 (3560.0MHz), 55990 (3625.0MHz), 56640 (3690.0MHz)	20MHz	QPSK

Note:

- 1. This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in 16QAM modulation.
- 2. For radiated emission below 1GHz, low, mid and high channels were pre-tested in chamber. Low channel in 5MHz, 20MHz were found to be the worst cases and therefore had been chosen for all final tests.
- 3. For radiated emission above 1GHz, according to 3GPP 36.521 Section 6.6.3.1.4, choose the lowest, 5MHz & highest channel bandwidth for final test.

Test Condition:

Test Item	Test Item Environmental Conditions		Tested By
Maximum Output Power	25deg. C, 63%RH	12Vdc	Jones Chang
Frequency Stability	25deg. C, 63%RH	12Vdc	Jones Chang
Occupied Bandwidth	25deg. C, 63%RH	12Vdc	Jones Chang
Peak to Average Ratio	25deg. C, 63%RH	12Vdc	Jones Chang
Condcudeted Emission	25deg. C, 63%RH	12Vdc	Jones Chang
Radiated Emission	22deg. C, 66%RH	12Vdc	Han Wu

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Wideband Radio Communication Tester	R&S	CMW500	151084	N/A	-

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items A acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ45 Cable	1	1.5	N	0	-

3.3.1 Configuration of System under Test

PCB antenna mode

Remote site

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2

FCC 47 CFR Part 96

KDB 971168 D01 Power Meas License Digital Systems v03r01

KDB 940660 D01 Part 96 CBRS Eqpt v02

ANSI/TIA/EIA-603-D-2010

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Maximum Output Power Measurement

4.1.1 Limits of Maximum Output Power Measurement

	Device	Maximum Output Power (dBm/10 MHz)
\boxtimes	End User Device	23
	Category A CBSD	30
	Category B CBSD	47

4.1.2 Test Setup Radiated Measurement Method

Conducted Measurement Method

4.1.3 Test Instruments

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver KEYSIGHT	N9038A	MY55420137	Apr. 15, 2019	Apr. 14, 2020
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Jun. 04, 2019	Jun. 03, 2020
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	Nov. 21, 2018	Nov. 20, 2019
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-1169	Nov. 25, 2018	Nov. 24, 2019
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 25, 2018	Nov. 24, 2019
Preamplifier Agilent (Below 1GHz)	8447D	2944A10638	Aug. 08, 2018	Aug. 07, 2019
Preamplifier Agilent (Above 1GHz)	8449B	3008A02367	Feb. 19, 2019	Feb. 18, 2020
RF signal cable HUBER+SUHNER&EMCI	SUCOFLEX 104 & EMC104-SM-SM80 00	CABLE-CH9-02 (248780+171006)	Jan. 19, 2019	Jan. 18, 2020
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250 795/4)	Aug. 08, 2018	Aug. 07, 2019
RF signal cable Woken	8D-FB	Cable-CH9-01	Jul. 31, 2018	Jul. 30, 2019
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn BV ADT	AT100	AT93021705	NA	NA
Turn Table BV ADT	TT100	TT93021705	NA	NA
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
WIT Standard Temperature And Humidity Chamber	TH-4S-C	W981030	Jun. 03, 2019	Jun. 02, 2020
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

^{2.} The test was performed in HwaYa Chamber 9.

4.1.4 Test Procedures

Radiated Measurement Method

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to peak and/or average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- 6. EIRP = Output power level of S.G + Correction Factor (including Cable loss, Antenna gain, etc...)

Conducted Measurement Method

- 1. Connect the DUT transmitter output to the spectrum analyzer via coaxial cable while ensuring proper impedance matching.
- 2. Set span to at least 1.5 times the OBW.
- 3. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- 4. Set VBW ≥ 3 × RBW.
- 5. Set number of points in sweep ≥ 2 × span / RBW.
- 6. Sweep time = auto-couple.
- 7. Detector = RMS (power averaging).
- 8. If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98%), then set the trigger to free run.
- 9. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.
- 10. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 11. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

4.1.5 Deviation from Test Standard

No deviation.

4.1.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.1.7 Test Results

Conducted Output Power (dBm)

				QPSK		16QAM		
			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH
Band / BW	RB Size	RB Offset	55265	55990	56715	55265	55990	56715
	0.20	Onser	3552.5	3625	3697.5	3552.5	3625	3697.5
			MHz	MHz	MHz	MHz	MHz	MHz
	1	0	12.96	13.71	14.27	13.12	13.86	14.39
	1	12	13.25	14.12	14.36	13.46	14.34	13.76
	1	24	12.85	13.76	14.26	13.06	13.98	11.04
48 / 5M	12	0	13.03	13.64	14.25	13.04	13.89	14.39
	12	6	13.08	13.75	14.38	13.20	14.00	14.38
	12	13	12.95	13.68	14.28	13.08	13.92	14.32
	25	0	12.85	13.60	14.12	12.84	13.75	14.26

				QPSK		16QAM		
			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH
Band / BW	RB Size	RB Offset	55290	55990	56690	55290	55990	56690
	0.20		3555	3625	3695	3555	3625	3695
			MHz	MHz	MHz	MHz	MHz	MHz
	1	0	12.38	13.09	13.68	12.79	13.40	13.83
	1	24	13.15	14.14	14.32	13.40	14.36	14.37
	1	49	12.23	13.34	13.85	12.64	13.51	14.03
48 / 10M	25	0	12.55	13.38	13.96	12.57	13.47	13.95
	25	12	12.74	13.79	14.24	12.70	13.77	14.22
	25	25	12.47	13.63	14.03	12.46	13.59	14.09
	50	0	11.80	12.89	13.37	11.80	12.99	13.37

				QPSK		16QAM		
			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH
Band / BW	RB Size	RB Offset	55315	55990	56665	55315	55990	56665
	0.20		3557.5	3625	3692.5	3557.5	3625	3692.5
			MHz	MHz	MHz	MHz	MHz	MHz
	1	0	12.02	12.50	12.98	11.80	12.25	12.71
	1	37	12.99	13.92	14.27	12.77	13.68	14.19
	1	74	11.76	12.81	13.26	11.52	12.60	13.09
48 / 15M	36	0	12.06	12.77	13.21	11.58	12.34	12.82
	36	19	12.30	13.23	13.66	11.75	12.75	13.23
	36	39	11.85	12.93	13.35	11.40	12.44	12.94
	75	0	10.58	12.94	12.02	10.07	11.11	11.45

				QPSK		16QAM		
			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH
Band / BW	RB Size	RB Offset	55340	55990	56640	55340	55990	56640
	0.20	0001	3560	3625	3690	3560	3625	3690
			MHz	MHz	MHz	MHz	MHz	MHz
	1	0	13.14	13.45	13.97	13.44	13.71	14.20
	1	50	12.48	13.35	13.76	12.81	13.69	13.99
	1	99	12.85	13.87	13.72	13.13	14.19	14.33
48 / 20M	50	0	11.66	12.35	12.76	11.83	12.47	12.84
	50	25	11.49	12.48	12.79	11.58	12.55	12.85
	50	50	11.52	12.64	13.07	11.62	12.70	13.11
	100	0	9.23	10.23	10.62	9.31	10.33	10.61

EIRP Power

				QPSK			16QAM	
			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH
Band / BW	RB Size	RB Offset	55265	55990	56715	55265	55990	56715
	O.ZC	Onser	3552.5	3625	3697.5	3552.5	3625	3697.5
			MHz	MHz	MHz	MHz	MHz	MHz
	1	0	21.56	22.31	22.87	21.72	22.46	22.99
	1	12	21.85	22.72	22.96	22.06	22.94	22.36
	1	24	21.45	22.36	22.86	21.66	22.58	19.64
48 / 5M	12	0	21.63	22.24	22.85	21.64	22.49	22.99
	12	6	21.68	22.35	22.98	21.80	22.60	22.98
	12	13	21.55	22.28	22.88	21.68	22.52	22.92
	25	0	21.45	22.20	22.72	21.44	22.35	22.86

				QPSK		16QAM		
	-		Low CH	Mid CH	High CH	Low CH	Mid CH	High CH
Band / BW	RB Size	RB Offset	55290	55990	56690	55290	55990	56690
	0.20		3555	3625	3695	3555	3625	3695
			MHz	MHz	MHz	MHz	MHz	MHz
	1	0	20.98	21.69	22.28	21.39	22.00	22.43
	1	24	21.75	22.74	22.92	22.00	22.96	22.97
	1	49	20.83	21.94	22.45	21.24	22.11	22.63
48 / 10M	25	0	21.15	21.98	22.56	21.17	22.07	22.55
	25	12	21.34	22.39	22.84	21.30	22.37	22.82
	25	25	21.07	22.23	22.63	21.06	22.19	22.69
	50	0	20.40	21.49	21.97	20.40	21.59	21.97

				QPSK		16QAM		
			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH
Band / BW	RB Size	RB Offset	55315	55990	56665	55315	55990	56665
	0.20	0.1001	3557.5	3625	3692.5	3557.5	3625	3692.5
			MHz	MHz	MHz	MHz	MHz	MHz
	1	0	20.62	21.10	21.58	20.40	20.85	21.31
	1	37	21.59	22.52	22.87	21.37	22.28	22.79
	1	74	20.36	21.41	21.86	20.12	21.20	21.69
48 / 15M	36	0	20.66	21.37	21.81	20.18	20.94	21.42
	36	19	20.90	21.83	22.26	20.35	21.35	21.83
	36	39	20.45	21.53	21.95	20.00	21.04	21.54
	75	0	19.18	21.54	20.62	18.67	19.71	20.05

				QPSK		16QAM		
			Low CH	Mid CH	High CH	Low CH	Mid CH	High CH
Band / BW	RB Size	RB Offset	55340	55990	56640	55340	55990	56640
	0.20	0001	3560	3625	3690	3560	3625	3690
			MHz	MHz	MHz	MHz	MHz	MHz
	1	0	21.74	22.05	22.57	22.04	22.31	22.80
	1	50	21.08	21.95	22.36	21.41	22.29	22.59
	1	99	21.45	22.47	22.32	21.73	22.79	22.93
48 / 20M	50	0	20.26	20.95	21.36	20.43	21.07	21.44
	50	25	20.09	21.08	21.39	20.18	21.15	21.45
	50	50	20.12	21.24	21.67	20.22	21.30	21.71
	100	0	17.83	18.83	19.22	17.91	18.93	19.21

4.2 Frequency Stability Measurement

4.2.1 Limits of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency band.

4.2.2 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the AC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 $^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.3 Test Setup

Report No.: RF190625C09 Page No. 19 / 68 Report Format Version: 6.1.1

4.2.4 Test Results

Frequency Error vs. Voltage

	LTE Band 48, Channel Bandwidth: 5MHz							
Voltage (Volts)	Low C	hannel	High Channel					
,	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)				
12.0	3552.500002	0.000	3697.500002	0.000				
10.2	3552.500002	0.000	3697.500002	0.000				
13.8	3552.500001	0.000	3697.500003	0.001				

Note: The applicant defined the normal working voltage is from 10.2Vdc to 13.8Vdc.

Frequency Error vs. Temperature

, ,	LTE Band 48, Channel Bandwidth: 5MHz							
Temp. (°C)	Low C	hannel	High C	Channel				
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)				
-20	3552.500003	0.001	3697.500004	0.001				
-10	3552.500003	0.001	3697.500004	0.001				
0	3552.500001	0.000	3697.500004	0.001				
10	3552.500003	0.001	3697.500003	0.001				
20	3552.499997	-0.001	3697.499998	-0.001				
30	3552.499996	-0.001	3697.499996	-0.001				
40	3552.499997	-0.001	3697.499998	-0.001				
50	3552.499998	0.000	3697.499998	-0.001				

Frequency Error vs. Voltage

	LTE Band 48, Channel Bandwidth: 10MHz				
Voltage (Volts)	Low C	hannel	High C	Channel	
, ,	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
12.0	3555.000004	0.001	3695.000003	0.001	
10.2	3555.000002	0.001	3695.000002	0.001	
13.8	3555.000001	0.000	3695.000002	0.001	

Note: The applicant defined the normal working voltage is from 10.2Vdc to 13.8Vdc.

Frequency Error vs. Temperature

Frequency Em	LTE Band 48, Channel Bandwidth: 10MHz			
Temp. (°C)	Low Channel		High C	Channel
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)
-20	3555.000001	0.000	3695.000001	0.000
-10	3555.000002	0.001	3695.000003	0.001
0	3555.000003	0.001	3695.000003	0.001
10	3555.000003	0.001	3695.000002	0.001
20	3554.999997	-0.001	3694.999997	-0.001
30	3554.999999	0.000	3694.999996	-0.001
40	3554.999998	-0.001	3694.999998	0.000
50	3554.999997	-0.001	3694.999998	-0.001

Frequency Error vs. Voltage

Troquoncy En	LTE Band 48, Channel Bandwidth: 15MHz				
Voltage (Volts)	Low C	hannel	High C	Channel	
,	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
12.0	3557.500003	0.001	3692.500003	0.001	
10.2	3557.500004	0.001	3692.500002	0.000	
13.8	3557.500004	0.001	3692.500001	0.000	

Note: The applicant defined the normal working voltage is from 10.2Vdc to 13.8Vdc.

Frequency Error vs. Temperature

Frequency Em	LTE Band 48, Channel Bandwidth: 15MHz			
Temp. (°C)	Low Channel		High C	Channel
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)
-20	3557.500002	0.001	3692.500001	0.000
-10	3557.500002	0.000	3692.500003	0.001
0	3557.500003	0.001	3692.500004	0.001
10	3557.500002	0.000	3692.500001	0.000
20	3557.499998	-0.001	3692.499999	0.000
30	3557.499999	0.000	3692.499997	-0.001
40	3557.499997	-0.001	3692.499997	-0.001
50	3557.499997	-0.001	3692.499997	-0.001

Frequency Error vs. Voltage

	LTE Band 48, Channel Bandwidth: 20MHz				
Voltage (Volts)	Low C	hannel	High C	Channel	
,	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
12.0	3560.000002	0.001	3690.000002	0.001	
10.2	3560.000002	0.001	3690.000003	0.001	
13.8	3560.000002	0.000	3690.000004	0.001	

Note: The applicant defined the normal working voltage is from 10.2Vdc to 13.8Vdc.

	LTE Band 48, Channel Bandwidth: 20MHz				
Temp. (°C)	Low C	hannel	High Channel		
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-20	3560.000001	0.000	3690.000002	0.001	
-10	3560.000003	0.001	3690.000004	0.001	
0	3560.000003	0.001	3690.000003	0.001	
10	3560.000002	0.000	3690.000003	0.001	
20	3559.999997	-0.001	3689.999996	-0.001	
30	3559.999998	-0.001	3689.999996	-0.001	
40	3559.999997	-0.001	3689.999998	-0.001	
50	3559.999997	-0.001	3689.999998	-0.001	

4.3 Emission Bandwidth Measurement

4.3.1 Emission Bandwidth Measurement

Reference only

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.3 to get information of above instrument.

4.3.4 Test Procedure

Occupied Bandwdith:

All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

26dBc Bandwidth:

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW =100 kHz (5 MHz bandwidth), 200 kHz (10 MHz bandwidth), 300 kHz (15 MHz bandwidth), 430 kHz (20 MHz bandwidth). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result (-26dB Bandwidth)

LTE Band 48

LTE Band 48 LTE Band 48, Channel Bandwidth 5MHz					
	Frequency (MHz)	26dB Bandwidth (MHz)			
Channel		QPSK	16QAM		
55265	3552.5	4.93	4.87		
55990	3625.0	5.12	5.07		
56715	3697.5	5.00	5.17		
	LTE Band 4	18, Channel Bandwidth 10MHz			
Channel	Fraguency (MHz)	26dB Bandy	width (MHz)		
Channel	Frequency (MHz)	QPSK	16QAM		
55290	3555.0	9.40	9.33		
55990	3625.0	9.47	9.46		
56690	3695.0	9.35	9.62		
	LTE Band 4	48, Channel Bandwidth 15MHz			
Channel	- 441	26dB Bandwidth (MHz)			
Channel	Frequency (MHz)	QPSK	16QAM		
55315	3557.5	14.21	13.91		
55990	3625.0	13.97	14.04		
56665	3692.5	14.16	13.99		
	LTE Band 48, Channel Bandwidth 20MHz				
Channel	Fraguency (MHz)	26dB Bandy	width (MHz)		
Charmer	Frequency (MHz)	QPSK	16QAM		
55340	3560.0	18.59	18.56		
55990	3625.0	18.61	18.57		
56640	3690.0	18.59	18.95		

4.3.8 Test Result (Occupied Bandwidth)

LTE Band 48, Channel Bandwidth 5MHz					
Channal	Francisco de (MILE)	99% Occupied Bandwidth (MHz)			
Channel	Frequency (MHz)	QPSK	16QAM		
55265	3552.5	4.46	4.46		
55990	3625.0	4.45	4.46		
56715	3697.5	4.46	4.47		
	LTE Band 4	48, Channel Bandwidth 10MHz			
Channel	Frequency (MHz)	99% Occupied B	andwidth (MHz)		
Channel	Frequency (MH2)	QPSK	16QAM		
55290	3555.0	8.90	8.92		
55990	3625.0	8.92	8.91		
56690	3695.0	8.91	8.93		
	LTE Band 48, Channel Bandwidth 15MHz				
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)			
Channel	Frequency (MH2)	QPSK	16QAM		
55315	3557.5	13.35	13.34		
55990	3625.0	13.34	13.32		
56665	3692.5	13.33	13.35		
	LTE Band 4	18, Channel Bandwidth 20MHz			
Channel	Fraguency (MHz)	99% Occupied Bandwidth (MHz)			
Channel	Frequency (MHz)	QPSK	16QAM		
55340	3560.0	17.87	17.84		
55990	3625.0	17.90	17.86		
56640	3690.0	17.91	17.87		

4.4 Peak to Average Ratio Measurement

4.4.1 Limits of Peak to Average Ratio Measurement

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

4.4.2 Test Setup

4.4.3 Test Procedures

- a. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- b. Set the number of counts to a value that stabilizes the measured CCDF curve;
- c. Record the maximum PAPR level associated with a probability of 0.1%.

4.4.4 Test Results

LTE Band 48

TE Band 48				
LTE Band 48, Channel Bandwidth 5MHz				
Fragueney (MHz)	Peak To Average Ratio (dB)			
r requericy (ivii iz)	QPSK	16QAM		
3552.5	5.99	6.00		
3625.0	5.90	5.95		
3697.5	6.01	6.00		
LTE Band 4	8, Channel Bandwidth 10MHz			
Fraguesov (MHz)	Peak To Avera	age Ratio (dB)		
Frequency (MHZ)	QPSK	16QAM		
3555.0	6.16	6.07		
3625.0	6.03	6.03		
3695.0	5.27	5.32		
LTE Band 48, Channel Bandwidth 15MHz				
	Peak To Average Ratio (dB)			
Frequency (MHZ)	QPSK	16QAM		
3557.5	5.74	5.92		
3625.0	5.62	5.83		
3692.5	5.90	5.91		
LTE Band 4	8, Channel Bandwidth 20MHz			
Fraguency (MIII-)	Peak To Avera	age Ratio (dB)		
Frequency (MHz)	QPSK	16QAM		
3560.0	6.21	6.23		
3625.0	6.11	6.04		
3690.0	6.18	6.02		
	Frequency (MHz) 3552.5 3625.0 3697.5 LTE Band 4 Frequency (MHz) 3555.0 3625.0 3695.0 LTE Band 4 Frequency (MHz) 3557.5 3625.0 3692.5 LTE Band 4 Frequency (MHz) 3560.0 3625.0	Frequency (MHz) Peak To Average QPSK 3552.5 5.99 3625.0 5.90 3697.5 6.01 LTE Band 48, Channel Bandwidth 10MHz Peak To Average QPSK 3555.0 6.16 3625.0 6.03 3695.0 5.27 LTE Band 48, Channel Bandwidth 15MHz Peak To Average Aver		

4.5 Conducted Spurious Emissions

4.5.1 Limits of Conducted Spurious Emissions Measurement

Power of any emissions outside the Fundamental	Limit	
Within 0-10MHz above the Assigned Channel	42 dDm/M1 =	
Within 0-10MHz below the Assigned Channel	-13 dBm/MHz	
Greater than 0-10MHz above the Assigned Channel	-25 dBm/MHz	
Greater than 0-10MHz below the Assigned Channel		
Power of any emission below 3530MHz	-40 dBm/MHz	
Power of any emission above 3720MHz		

4.5.2 Test Setup

4.5.3 Test Procedure

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 9 kHz to 40 GHz. 20dB attenuation pad is connected with spectrum. RBW=300kHz and VBW=1MHz (For 9kHz~1GHz) and RBW=1MHz and VBW=3MHz (For 1GHz~40GHz) is used for conducted emission measurement.
- c. Measuring frequency band edge, 20dB attenuation pad is connected with spectrum. 1% of the fundamental emission bandwidth is used for conducted emission measurement.
- d. Any failure RF emission signal shall Integrated its channel power for 1MHz bandwidth as below test method
 - (i) Resolution bandwidth: 1% of fundamental emission bandwidth, Vedio bandwidth: 3 x RB
 - (ii) Set center frequency to failure frequency points, to measure Integrated channel power of 1MHz bandwidth.

4.5.4 Test Results

4.6 Radiated Emission Measurement

4.6.1 Limits of Radiated Emission Measurement

The power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

4.6.2 Test Instruments

Refer to section 4.1.3 to get information of above instrument.

4.6.3 Test Procedures

- a. Substitution method is used for EIRP measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP power can be calculated form EIRP power by subtracting the gain of dipole, ERP power = EIRP power 2.15dBi.

Note: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.6.4 Deviation from Test Standard

No deviation.

4.6.5 Test Set Up

<Frequency Range below 1GHz>

<Frequency Range above 1GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.6 Test Results

Test was done with 50ohm terminator on antenna port.

Below 1GHz Data:

LTE Band 48

Channel Bandwidth: 5 MHz / 16QAM

Mode	TX channel 55265 (3552.5MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M								
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)		
1	32.81	-52.3	-31.3	-17.8	-49.1	-40.0	-9.1		
2	84.83	-38.1	-44.7	0.4	-44.3	-40.0	-4.3		
3	152.30	-45.6	-47.0	-2.8	-49.8	-40.0	-9.8		
4	174.80	-51.6	-56.3	-2.8	-59.1	-40.0	-19.1		
5	209.94	-55.4	-61.9	-2.0	-63.9	-40.0	-23.9		
6	312.57	-62.5	-70.6	4.0	-66.6	-40.0	-26.6		

- 1. EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Mode TX channel 55265 (3552.5MHz)		Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Vertical at 3 M								
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)		
1	32.81	-43.5	-36.3	-17.8	-54.1	-40.0	-14.1		
2	82.01	-38.2	-43.2	0.5	-42.7	-40.0	-2.7		
3	145.28	-46.5	-45.5	-3.1	-48.6	-40.0	-8.6		
4	209.94	-59.4	-60.6	-2.0	-62.6	-40.0	-22.6		
5	268.99	-64.7	-61.5	-1.5	-63.0	-40.0	-23.0		
6	325.22	-67.4	-71.7	4.1	-67.6	-40.0	-27.6		

- 1. EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Channel Bandwidth: 20MHz / 16QAM

Mode	TX channel 55340 (3560.0MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M								
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)		
1	32.81	-52.8	-31.8	-17.8	-49.6	-40.0	-9.6		
2	84.83	-38.3	-44.9	0.4	-44.5	-40.0	-4.5		
3	150.90	-46.3	-47.9	-2.9	-50.8	-40.0	-10.8		
4	184.64	-51.8	-57.3	-2.9	-60.2	-40.0	-20.2		
5	239.46	-57.8	-63.2	-1.5	-64.7	-40.0	-24.7		
6	316.78	-63.7	-71.8	4.1	-67.7	-40.0	-27.7		

- 1. EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Mode	TX channel 55340 (3560.0MHz)	Frequency Range	Below 1000 MHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Vertical at 3 M									
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)			
1	45.46	-41.6	-39.5	-10.4	-49.9	-40.0	-9.9			
2	83.42	-38.2	-43.5	0.5	-43.0	-40.0	-3.0			
3	145.28	-46.0	-45.0	-3.1	-48.1	-40.0	-8.1			
4	208.54	-60.0	-61.0	-2.0	-63.0	-40.0	-23.0			
5	276.01	-64.6	-59.7	-1.6	-61.3	-40.0	-21.3			
6	325.22	-67.1	-71.4	4.1	-67.3	-40.0	-27.3			

- 1. EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Above 1GHz

LTE Band 48, Channel Bandwidth 5MHz

Mode	TX channel 55265 (3552.5MHz)	Frequency Range	1GHz ~ 40GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M								
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)		
1	7105.00	-63.9	-45.8	0.7	-45.1	-40.0	-5.1		
		Anter	na Polarity & T	est Distance: \	Vertical at 3 M				
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)		
1	7105.00	-65.4	-47.7	0.7	-47.0	-40.0	-7.0		

Remarks:

- 1. EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Mode	TX channel 55990 (3625.0MHz)	Frequency Range	1GHz ~ 40GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M								
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)		
1	7250.00	-63.0	-45.2	0.9	-44.3	-40.0	-4.3		
		Anter	na Polarity & T	est Distance: \	Vertical at 3 M				
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)		
1	7250.00	-65.3	-47.4	0.9	-46.5	-40.0	-6.5		

- 1. EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Mode	TX channel 56715 (3697.5MHz)	Frequency Range	1GHz ~ 40GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

Antenna Polarity & Test Distance: Horizontal at 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	7395.00	-63.6	-45.0	0.9	-44.1	-40.0	-4.1
		Anter	na Polarity & T	est Distance: '	Vertical at 3 M		
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	7395.00	-64.6	-46.9	0.9	-46.0	-40.0	-6.0

- EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
 Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

LTE Band 48, Channel Bandwidth 20MHz

Mode	TX channel 55340 (3560.0MHz)	Frequency Range	1GHz ~ 40GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	7120.00	-63.2	-45.2	0.7	-44.5	-40.0	-4.5
		Anter	na Polarity & T	est Distance: \	Vertical at 3 M		
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	7120.00	-64.9	-47.2	0.7	-46.5	-40.0	-6.5

Remarks:

- 1. EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Mode	TX channel 55990 (3625.00MHz)	Frequency Range	1GHz ~ 40GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	7250.00	-63.3	-45.5	0.9	-44.6	-40.0	-4.6
	Antenna Polarity & Test Distance: Vertical at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	7250.00	-65.3	-47.4	0.9	-46.5	-40.0	-6.5

- 1. EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Mode	TX channel 56640 (3690.00MHz)	Frequency Range	1GHz ~ 40GHz
Environmental Conditions	22deg. C, 66%RH	Input Power	120Vac, 60Hz
Tested By	Han Wu		

	Antenna Polarity & Test Distance: Horizontal at 3 M						
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	7380.00	-63.6	-45.1	0.9	-44.2	-40.0	-4.2
		Anter	na Polarity & T	Test Distance: \	Vertical at 3 m		
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	7380.00	-64.6	-46.9	0.9	-46.0	-40.0	-6.0

- EIRP (dBm) = S.G Value (dBm) + Correction Factor (dB).
 Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Hsin Chu EMC/RF Lab/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---