Расчет циклограммы движения привода и тормозного резистора

Электромеханизм DA14.525576.001

Проект ід4633

Автор: Тихонов Е.Н.

Привод NGV

Исходные данные:

Mn := 21Nm Номинальный момент двигателя

n := 2500об/мин Номинальная скорость двигателя (из pdf)

 $Wn := n \cdot \frac{\pi}{30} = 261.799$ rad/sek Номинальная скорость двигателя (из n)

Гшток := 30000 N усилие на штоке (из ТЗ)

прямой КПД РВП электромеханизма η gear1 := 0.6

обратное КПД РВП электромеханизма $\eta gear2 := 0.38$

обратное КПД электродвигателя η двиг := 0.88

MM коэфф передачи РВП, мм/об (из КД на РВП ЭМП) Kрвп := 2.5

tраз тор := 0.5 Время разгона и Сек торможения

Wмакс := $27.2 \cdot 60 \cdot \frac{\pi}{30} = 170.903$ Максимальная скорость перемещения

 $Kt_mot := 2.2 \quad \frac{H_M}{A}$ Постоянная момента Rphase := $\frac{0.88}{2} = 0.44$ Ом Сопротивлеине фазы мотора

Приведенные моменты инерции к валу двигателя

Jрвп := 0.007335

 $_{
m K\Gamma \cdot M}^{2}$ момент инерции РВП (от Анспука, уточненный) момент инерции двигателя (из РDF на мотор, **Ј**двиг := 0.0 не учитываю, т.к. он включен в Јрвп)

суммарный момент инерции на валу

Јсумм := Јрвп + Јдвиг = 7.335×10^{-3} кг · м²

Момент инерции нагрузки неизвестен. Принимаем его равным нулю

Jнагр := 0

Uac := 440 макс. переменное напряжение питания БУП (rms) (из ТЗ) В

Udc := $Uac \cdot \sqrt{2} = 622.254$ выпрямленное напряжение в ЗПТ

Выбираем ограничение по максимальному напряжению в ЗПТ. Самое слабое место конденсаторы. Их номинал и будет являться ограничением.

U := 800максимально допустимое напряжение ЗПТ

$$T_{move} := 3.0$$
 с Время перекладки на рабочий ход (из T3)

$$C_{3\Pi T} := 1800 \cdot 10^{-6} \cdot 1.1$$
 F Емкость звена пост. тока + 10% (из pdf)

РАСЧЕТЫ

1. Расчет циклограмм

Здесть мы определяем время разгона и торможения в различных режимах

1.1 Генераторный режим (работа по нагрузке, т.е. нагрузка работает на нас, вытягивая или вдавливая шток)

1.1.1 Разгон

$$M$$
стат $1 := \frac{\mathrm{Fiii} \, \mathrm{Tok} \cdot \mathrm{Kpbii} \cdot 10^{-3}}{2 \cdot \pi} \cdot \eta \mathrm{gear} 2 = 4.536$ Nm стат. момент на валу двигателя

2й закон Ньютона: M-Mc = J dw/dt

$$arepsilon_1 := rac{\left| \, Mn + \, Mctat1 \, \right|}{ \, Jcymm} = 3.481 imes 10^3 \qquad \qquad rac{ \, paд}{ \, cek \cdot \, cek} \qquad \qquad$$
 максимальное угловое ускорение разгона привода

$$a1 := \varepsilon 1 \cdot {\rm Kp}{
m B}\Pi \cdot 0.159 = 1.384 imes 10^3$$
 $\frac{{
m MM}}{{
m ce}{
m K} \cdot {
m ce}{
m K}}$ максимальное линейное ускорение разгона штока

$$t1:=rac{Wn}{arepsilon 1}=0.075$$
 s минимально возможное время разгона

От Бормотова

$$\epsilon_{\text{MM}}^{1} := \frac{\text{Mn} + \text{Mctat1}}{\text{Jcymm}} = 3.481 \times 10^{3}$$
 $\frac{\text{рад}}{\text{сек} \cdot \text{сек}}$ максимальное угловое ускорение разгона привода

$$a1 := \varepsilon 1 \cdot \mathrm{Kpb}\Pi \cdot 0.159 = 1.384 \times 10^3$$
 $\frac{\mathrm{MM}}{\mathrm{ce}\kappa \cdot \mathrm{ce}\kappa}$ максимальное линейное ускорение разгона штока

$$t_{\text{M}}^{1} := \frac{Wn}{\varepsilon 1} = 0.075$$
 s минимально возможное время разгона

1.1.2 Торможение

Мстат2 :=
$$\frac{\text{Fшток} \cdot \text{Крвп} \cdot 10^{-3}}{2 \cdot 3.14} \cdot \eta \text{gear2} = 4.538$$

стат. момент на валу двигателя Nm

$$a2 := \varepsilon 2 \cdot \text{Крвп} \cdot 0.159 = 892.101$$

максимальное линейное ускорение сек ⋅ сек замедления штока

$$t2 := \frac{Wn}{\varepsilon 2} = 0.117$$

 $t2 := \frac{Wn}{\varepsilon^2} = 0.117$ s минимально возможное время торможения

От

$$M_{\text{CTaT2}} := \frac{\text{Fшток} \cdot \text{Крвп} \cdot 10^{-3}}{2 \cdot \pi} \cdot \eta \text{gear2} = 4.536$$
 Nm стат. момент на валу двигателя

$$\epsilon_{\text{WW}}^2 := \frac{-2 \text{Mn} - \text{McTat2}}{\text{J}_{\text{CYMM}}} = -6.344 \times 10^3$$
 $\frac{\text{рад}}{\text{сек} \cdot \text{сек}}$ макс. угловое ускорение замедления

$$a^2 := \varepsilon^2 \cdot \mathrm{K} \mathrm{pb\pi} \cdot 0.159 = -2.522 \times 10^3$$
 максимальное линейное ускорение замедления штока

$$t^{2} := \frac{Wn}{\epsilon^{2}} = -0.041$$

 $\frac{t^2}{s^2} = \frac{Wn}{s^2} = -0.041$ s минимально возможное время торможения

1.2 Двигательный режим (работа на нагрузку, не провелял Бормотов)

1.2.1 Разгон

$$M$$
стат $3 := \frac{\mathrm{Fiii} \mathrm{Tok} \cdot \mathrm{KpB\Pi} \cdot 10^{-3}}{2 \cdot 3.14} \cdot \frac{1}{\eta \mathrm{gear1}} = 19.904$ Nm стат. момент на валу двигателя

$$\varepsilon 3 := \frac{\left|Mn - McTat3\right|}{J_{CYMM}} = 149.358$$

 $\frac{\mathrm{pag}}{\mathrm{cek}\cdot\mathrm{cek}}$ максимальное угловое ускорение разгона

а
$$3 := \varepsilon 3 \cdot \text{Крвп} \cdot 0.159 = 59.37$$

 $_{
m cek \cdot cek}$ максимальное линейное ускорение разгона штока

$$t3 := \frac{Wn}{\varepsilon 3} = 1.753$$

минимально возможное время

разгона

1.2.2 Торможение

$$Mcтат4 := rac{Fшток \cdot Kpвп \cdot 10^{-3}}{2 \cdot 3.14} \cdot rac{1}{\eta gear1} = 19.904$$
 Nm стат. момент на валу двигателя $\varepsilon 4 := rac{\left| Mn + Mcтат4 \right|}{J cymm} = 5.577 \times 10^3$ $rac{paд}{ce\kappa \cdot cek}$ максимальное угловое ускорение замедления $a4 := \varepsilon 4 \cdot Kpвп \cdot 0.159 = 2.217 \times 10^3$ $rac{MM}{ce\kappa \cdot ce\kappa}$ максимальное линейное ускорение разгона штока $t4 := rac{Wn}{\varepsilon^4} = 0.047$ s минимально возможное время

2. РАСЧЕТ ОПТИМАЛЬНОЙ СКОРОСТИ РАВНОМЕРНОГО ДВИЖЕНИЯ ДЛЯ ГЕНЕРАТОРНОГО РЕЖИМА

2.1 Оптимизация ускорения разгона и номинальной скорости под условия заказчика. Ускорение замедления не меняем для возможности быстро остановится в случае аварийной ситуации. Добиваемся запаса по времени перекладки в 20% (2,8 сек)

$$\varepsilon11_$$
опт := 54.4 об / сек^2 Выбираем оптимальное ускорение в пределах допустимых $\varepsilon22_$ опт := 54.4 об / сек^2 Выбираем оптимальное ускорение в пределах допустимых $\varepsilon22_$ опт := $\varepsilon11_$ опт · $6.283=341.795$ рад / сек^2 $\varepsilon2_$ опт := $\varepsilon22_$ опт · $6.283=341.795$ рад / сек^2 $\varepsilon2_$ опт := $\varepsilon22_$ опт · $6.283=341.795$ рад / сек^2 $\varepsilon2_$ опт := $\varepsilon20_$ опт · $0.159=135.864$ мм / сек^2 $\varepsilon2_$ опт := $\varepsilon2_$ опт · $0.159=135.864$ мм / сек^2

торможения

Подбираем скорость равномерного движения в генераторном режиме

$$n_gen_oпт := 1632$$
 ВВОДИ СЮДА об/мин подобранная утлоая скорость штока ЭМП $W_gen_oпт := n_gen_oпт \cdot \frac{\pi}{30} = 170.903$ рад/сек подобранная утловая скорость штока ЭМП $WW_dvig_oпт := \frac{W_gen_oпт}{6.283} = 27.201$ об/сек $v_gen_oпт := \frac{n_gen_oпт \cdot Kpbп}{60} = 68$ мм/с подобранная линейная скорость штока ЭМП

об/мин

Вычисляем новое время разгона

$$t1_$$
опт := $\dfrac{W_gen_$ опт}{ $\epsilon 1_$ опт} = 0.5 с новое время разгона до v_gen_опт

Вычисляем новое время торможения

$$t2_oпт := \frac{W_gen_oпт}{\varepsilon 2 \ oпт} = 0.5$$

новое время торможения с v_gen_опт до 0

Вычисляем пройденные пути

S_paзг_опт_gen :=
$$\frac{a1_oпт \cdot t1_oпт^2}{2} = 16.984$$

мм новый пройденный путь на участке разгона

$$S_{\text{торм_опт_gen}} := \frac{a2_{\text{опт}} \cdot t2_{\text{опт}}^2}{2} = 16.984$$

мм новый пройденный путь на участке торможения

$$S_{BUЖ_0\Pi T_gen} := S_{rab} - (S_{pasr_0\Pi T_gen} + S_{topm_0\Pi T_gen}) = 136.032$$
 мм пройденный путь на участке равном. движения

Вычисляем новое время равномерного движения

tравн_опт_gen :=
$$\frac{S_{движ_oпт_gen}}{v_{gen_ont}} = 2$$
 с

новое время равномерно движения со скоростью v_gen_опт

Вычисляем новое время перекладки в генераторном режиме

Tsumm_oпт_gen :=
$$t1$$
_oпт + $t2$ _oпт + $tpabh$ _oпт_gen = 3.001

с НОВОЕ ВРЕМЯ ПЕРЕКЛАДКИ со скоростью v_gen_опт

<u>3. РАСЧЕТ ОПТИМАЛЬНОЙ СКОРОСТИ РАВНОМЕРНОГО ДВИЖЕНИЯ ДЛЯ ДВИГАТЕЛЬНОГО РЕЖИМА</u>

3.1 Оптимизация ускорения разгона и номинальной скорости под условия заказчика. Ускорение замедления не меняем для возможности быстро остановится в случае аварийной ситуации. Добиваемся запаса по времени перекладки в 20% (2,8 сек)

Выбираем оптимальное ускорение в пределах допустимых

$$\varepsilon$$
44 опт := 50

$$\varepsilon 3_{\text{-}}$$
опт := $\varepsilon 33_{\text{-}}$ опт · 6.283 = 314.15 рад / сек^2

$$\epsilon 4_{\text{OПТ}} := \epsilon 44_{\text{OПТ}} \cdot 6.283 = 314.15$$
 рад/сек^2

$$a3$$
_опт := $\varepsilon 3$ _опт · Крвп · $0.159 = 124.875$ мм / сек^2

а4 опт :=
$$\epsilon$$
4 опт · Крвп · $0.159 = 124.875$ мм / сек^2

Подбираем скорость равномерного движения

$$W_{dvig_off} := \frac{n_{dvig_off}}{9.55} = 141.361$$

рад/сек

об/сек

подобранная углоая скорость штока ЭМП

WW dvig off =
$$\frac{W_{dvig_{off}}}{6.283}$$
 = 22.499

мм/с

подобранная линейная скорость штока ЭМП

 $v_dvig_oпт := \frac{n_dvig_oпт \cdot Kpвп}{60}$

00

Вычисляем новое время разгона

$$t3$$
_ont := $\frac{W_dvig_ont}{\varepsilon 3 \text{ ont}} = 0.45$

новое время разгона до v_dvig_опт

Вычисляем новое время торможения

$$t4_ont := \frac{W_dvig_ont}{\epsilon 4_ont} = 0.45$$

новое время торможения с v_dvig_опт до 0

Вычисляем пройденные пути

S_paзг_oпт_dvig :=
$$\frac{a3_oпт \cdot t3_oпт^2}{2} = 12.642$$
 мм

новый пройденный путь на участке разгона

$$S_{\text{торм_опт_dvig}} := \frac{a4_{\text{-ont}} \cdot t4_{\text{-ont}}^2}{2} = 12.642$$

_{мм} новый пройденный путь на участке торможения

$$S_{\text{движ_ont_dvig}} := S_{\text{rab}} - (S_{\text{pasr_ont_dvig}} + S_{\text{торм_ont_dvig}}) = 144.715$$
 мм

c

пройденный путь на участке равном. движения

Вычисляем новое время равномерного движения

$$tpabh_ont_dvig := \frac{S_движ_ont_dvig}{v_dvig_ont} = 2.57\,c$$

новое время равномерно движения со скоростью v dvig опт

Вычисляем новое время перекладки в генераторном режиме

$$Tsumm_ont_dvig := t3_ont + t4_ont + tpabh_ont_dvig = 3.473$$

HOBOE ВРЕМЯ ПЕРЕКЛАДКИ со скоростью v_dvig_om

4. Расчет электрической мощности торможения, вырабатываемой двигателем при остановке при движения по нагрузке (ген. режим)

Здесь мы рассчитываем приведенные моменты инерции на валу двигателя и переводим механическую энергию торможения в электрическую

$$ext{Mcтат} := rac{ ext{Fшток} \cdot ext{Kpвп} \cdot 10^{-3}}{2 \cdot \pi} \cdot \eta ext{gear2} = 4.536 \qquad ext{H} \cdot ext{M}$$
 стат. момент на валу двигателя

$$M$$
дин := J сумм · $\frac{n_gen_oпт}{t2_oпт}$ · $\frac{1}{9.55}$ = 2.507 H · $_{M}$ динамический момент на валу двигателя

$$M := Mcтат + Mдин = 7.043$$

$$H \cdot M$$
 Суммарный момент на валу двигателя

Pbrake :=
$$\frac{n_gen_ofit}{9.55}$$
 · M = 1.204×10^3

$$P := Pbrake \cdot \eta$$
двиг = 1.059×10^3

От БОРМОТОВА

Эл. мощность на участке разгона - генераторный режим

$$M$$
дин_разг := J сумм · $\frac{W_gen_oпт}{t1_oпт}$ = 2.507 $H \cdot M$ динамический момент на валу двигателя

$${
m Mpa}_{3\Gamma} := {
m M}_{{
m Z}{
m H}}{
m _pa}_{3\Gamma} - {
m M}_{{
m CTa}{
m T}} = -2.029$$
 ${
m H}\cdot{
m _M}$ Суммарный момент на валу двигателя

$$P_{\text{Mex_Makc_pa3}\Gamma} := W_{\text{gen_oft}} \cdot M_{\text{pa3}\Gamma} = -346.73 \; B_{\text{T}}$$
 максимальная механическая мощность

$$P_{\text{Mex_cpeдH_pa3}\Gamma} := \frac{W_{\text{_gen_o}\Pi T}}{2} \cdot M_{\text{pa3}\Gamma} = -173.368 \quad B_{\text{T}}$$
 Средняя мощность

$$I$$
раз $\Gamma := \frac{Mраз\Gamma}{Kt_mot} = -0.922$ A Ток на участке разгона

$$Pohm_paз \Gamma := 1.5 \cdot Rphase \cdot Іраз \Gamma \cdot Іраз \Gamma = 0.561$$
 Вт Мощность, которая выделится на обмотке мотора

$$Pshunt_AVG_gen := \frac{t1_oпт \cdot Pshunt_cpeдн_paзr}{Tsumm_oпт_gen} + \frac{tpaвн_oпт_gen \cdot Pshunt_cpeдн_прям}{Tsumm_oпт_gen} + \frac{t2_oпт \cdot Pshunt_cpeдн_npsm}{Tsumm_oпт_gen} + \frac{t2_oпт \cdot Pshunt_cpeдn}{Tsumm_oпт_gen} + \frac{t2_onn \cdot Pshunt_cpeдn}{Tsumm_onn \cdot Pshunt_cpedn} + \frac{t2_onn \cdot Pshunt_cpedn}{Tsumm_onn \cdot Pshunt_cpedn} + \frac{t2_onn \cdot Pshunt_cpedn}{Tsumm_on$$

$$Pshunt_AVG := \frac{Pshunt_AVG_gen}{2} = -324.555$$
 Вт Ото усредненная мощность шунта за время, хода до другого по заданному циклу и обратно.

5. Расчет тормозного резистора

$${
m Rbr} := rac{{
m U}^2}{{
m P}} = 604.276$$
 Ом максимально допустимое значение тормозного резистора

$$ED := \frac{t2_oпт}{T \text{ move}} \cdot 100 = 16.667$$
 продолжительность включения (для поиска Fk по графику)

Fk := 7 коэфф, зависящий от ED. Выбираем из графика

$$P_{T}b := rac{P}{Fk} = 151.303$$
 B_{T} мощность резистора. Используется, если резистор будет работать только в течение времени $t2$ _опт (время торможения в ген. режиме)

$$Pr_peak := \frac{U^2}{Rbr} = 1.059 \times 10^3$$
 мгновенная мощность на резисторе. Эта мощность будет рассеиваться все время пока резистор будет подключен к ЗПТ. Эта мощность будет рассеиваться в виде тепла все время движения привода в генераторном режиме (Tgen)

Tgen := tpaвн_oпт_gen + t2_oпт = 2.5 с время в течение которого двигатель работает в генераторном режиме

От Бормотова

$$\frac{\text{Rbr}}{\text{Pshunt}} = \frac{\text{U}^2}{\text{Pshunt}} = -528.738$$
 Ом Максимально допустимое значение тормозного резистора

6. Перенапряжение в звене постоянного тока при отсутствии тормозного резистора

6.1 Расчет энергии, требуемой на зяряд емкости ЗПТ

Рассмотрим случай питания БУП номинальным напряженим

питание БУП Uin := 400VAC

Udc nom := $\sqrt{2} \cdot \text{Uin} = 565.685$ Выпрямленное напряжение ЗПТ

U = 800Макс напряжение в ЗПТ

Расчитаем энергию, необходимую для заряда емкости ЗПТ за время генераторного режима до напряжения U

Tsumm_опт_gen = 3.001 время перемещения = времени работы в ген.режиме

$$\mathrm{Ec} := rac{\mathrm{C}_{3\Pi\mathrm{T}} \cdot 750^2}{2} - rac{\mathrm{C}_{3\Pi\mathrm{T}} \cdot 560^2}{2} = 246.411$$
 Ј Энергия для заряда банок

6.2 Расчет энергии в генераторном режиме

6.2.1 Разгон

$$M_{\text{ДИН разг}}:= \text{Јсумм} \cdot \frac{0-\text{n_gen_опт}}{\text{t1 опт}} \cdot \frac{1}{9.55} = -2.507$$
 $H \cdot \text{м}$ динамический момент на валу двигателя при разгоне

 ${
m M_pa_{3\Gamma}}:={
m Mctat}+{
m M_{ДИH_pa_{3\Gamma}}}=2.029$ ${
m H\cdot M}$ Суммарный момент на валу двигателя при разгоне

Pbrake_paзг := $\frac{\text{n_gen_ont}}{9.55} \cdot \text{M_paзr} = 346.742$ Вт механическая мощность при разгоне

Вт электрическая мощность торможения Рразг := Pbrake_разг · ηдвиг = 305.133

энергия торможения Еразг := $Ppaзr \cdot t1_oпт = 152.571$ J

Uразг := $\sqrt{\left(\text{Еразг} + \frac{\text{Сзпт} \cdot \text{Udc_nom}^2}{2}\right) \cdot \frac{2}{\text{Сзпт}}} = 688.558$ напряжение до которого зарядятся банки во время разгона без резистора

6.2.2 Равномерное движение

Mстат_рав $_{\text{-}} := \frac{F$ шток \cdot Kрв $_{\text{-}} \cdot 10^{-3}$ \cdot η gear $_{\text{-}} = 4.536$ $H \cdot M$ стат. момент на валу двигателя

динамический момент

М разг равн := Мстат равн + Мдин равн = 4.536

суммарный момент Η·м на валу двигателя

$$Pbrake_pabh := \frac{n_gen_oпт}{9.55} \cdot M_pasr_pabh = 775.143$$
 B_T механическая мощность при разтоне

электрическая мощность торможения Рразг равн := Pbrake равн · η двиг = 682.126 Вт

Еравн := Рразг_равн \cdot tравн_опт_gen = $1.365 \times 10^3 \; \text{J}$ энергия торможения

$$\mbox{Uравн} := \sqrt{\left(\mbox{Epавн} + \frac{\mbox{C}_{3\Pi T} \cdot \mbox{Udc}_{nom}^2}{2}\right) \cdot \frac{2}{\mbox{C}_{3\Pi T}}} = 1.303 \times 10^3 \qquad \mbox{ напряжение до которого зарядятся банки во время равн. движения без резистора}$$

6.2.3 Торможение

$$ext{Mcтат_торм} := rac{ ext{Fшток} \cdot ext{Kpвп} \cdot 10^{-3}}{2 \cdot \pi} \cdot \eta ext{gear2} = 4.536$$
 $ext{H} \cdot ext{M}$ стат. момент на валу двигателя

$$M$$
лин торм := J сумм · $\frac{n_gen_oпт - 0}{t2_oпт}$ · $\frac{1}{9.55} = 2.507$ H · м динамический момент на валу двигателя при разгоне

М торм равн := Мстат торм + Мдин торм = 7.043

$$Pbrake_торм := \frac{n_gen_опт}{9.55} \cdot M_торм_равн = 1.204 \times 10^3 \ B_T$$
 механическая мощность при разгоне

Рторм равн := Pbrake торм \cdot $\eta_{\rm ДВИГ} = 1.059 \times 10^3$ Вт электрическая мощность торможения

Ј энергия торможения Еторм := Рторм равн · t2 опт = 529.575

$$U_{TOPM} := \sqrt{\left(E_{TOPM} + \frac{C_{3\Pi T} \cdot Udc_nom^2}{2} \right) \cdot \frac{2}{C_{3\Pi T}}} = 924.621$$
 напряжение до которого зарядятся банки во время торможения без резистора

 $Esumm := Epasr + Epabh + Etopm = 2.047 \times 10^3$ J суммарная энергия генератора во всех режимах

$$U_{\text{MAKC}} := \sqrt{\left(\text{Esumm} + \frac{\text{C3ПТ} \cdot \text{Udc_nom}^2}{2}\right) \cdot \frac{2}{\text{C3ПТ}}} = 1.545 \times 10^3$$

$$\frac{\text{напряжение до которого}}{\text{зарядятся банки в генераторном режиме без резистора}}$$

RATED DATA

Motor type

motor type	N5 2400	25 560	
* 1	110 2100		
Rated Speed	na	2500 min ⁻¹	
DC Bus Voltage	Udc	560 V	
Nominal AC Voltage	Un	380 V	
Rated Motor Voltage	Um	321 V	
Rated Torque	Mn	21,0 Nm	
Rated AC Current	In	11,6 A	
Stall Torque	Mo	24,0 Nm	
Stall AC Current	lo	11,1 A	
Peak Torque	Mmax	72 Nm	
Peak Current	Imax	38 A	
Max. Speed	Птах	nmax 9000 min ⁻¹	
EMF Constant	KE	131,0 V/1000	
Torque Constant	KT	2,2 Nm/A	
Terminal Resistance	R _{2ph}	0,88 Ω	
Terminal Inductance	L2ph	7,8 mH	
Number of poles	2p	10	

No Load Speed	No	2900 min ⁻¹
Torque at Imax/Un	Mz	71 Nm
Speed at Imax/Un	Πz	1740 min ⁻¹
Max. Torque at nn	Mx	33 Nm

El. Time Constant	Tel	8,9	ms
Mech. Time Constant	T _{mech}	0,61	ms
Thermal Time Constant	T _{th}	75	min
Rotor Inertia	J	18,7	kgcm*

Torque/speed curves

Эл. мощность на прямолинейном участке - генераторный режим

$$ext{Mcтат} := rac{ ext{Fiiitok} \cdot ext{Kpb} \cdot ext{I} \cdot ext{0}^{-3}}{2 \cdot \pi} \cdot \eta ext{gear} ext{2} = 4.536 \qquad ext{H} \cdot ext{M}$$
 стат. момент на валу двигателя

$${
m M}_{
m ДИH}_{
m \Pi}{
m psm} := 0$$
 ${
m H}\cdot{
m M}$ динамический момент на валу двигателя

$$M \pi p \pi M := M \pi u H_{\pi} p \pi M - M c T a T = -4.536$$
 $H \cdot M$ Суммарный момент на валу двигателя

$$P_{\text{Mex_Makc_прям}} := W_{\text{gen_опт}} \cdot M_{\text{прям}} = -775.2 \ B_{\text{T}}$$
 максимальная механическая мощность

Рмех_средн_прям := W_gen_опт
$$\cdot$$
 Мпрям = -775.2 Вт Средняя мощность

$$\mbox{ Іпрям} := \frac{\mbox{Мпрям}}{\mbox{Kt_mot}} = -2.062 \qquad \mbox{ A} \qquad \qquad \mbox{Ток на прямолин} \label{eq:Normalization}$$

Pohm_прям :=
$$1.5 \cdot \text{Rphase} \cdot \text{Іпрям} \cdot \text{Іпрям} = 2.806$$
 Вт Мощность, которая выделится на обмотке мотора

 $\frac{\text{H_TOPM}}{\text{PD}} = -649.109$

Это усредненная мощность шунта за время, когда привод перемещается хода до другого по заданному циклу и находится все время в генераторном реж

когда привод перемещается от одного конца

Вт

Эл. мощность на участке торможения - *женераторный* режим

$$ext{Mcтат} := rac{ ext{Fiiitok} \cdot ext{Kpвп} \cdot 10^{-3}}{2 \cdot \pi} \cdot \eta ext{gear2} = 4.536 \qquad ext{H} \cdot ext{M}$$
 стат. момент на валу двигателя

$$M$$
дин_торм := J сумм · $\frac{W_gen_oпт}{t2_oпт} = 2.507$ $H \cdot M$ динамический момент на валу двигателя

$$M_{TOPM} := -M_{JUH_TOPM} - M_{CTAT} = -7.043$$
 $H \cdot M$ Суммарный момент на валу двигателя

$$P_{\text{Mex_Makc_Topm}} := W_{\text{gen_oft}} \cdot M_{\text{Topm}} = -1.204 \times 1^{\circ} \hat{B}_{\text{T}}$$
 максимальная механическая мощ

$$P_{\text{Mex_средн_торм}} := \frac{W_gen_oпт}{2} \cdot M_{\text{Торм}} = -601.832 \;\; B_{\text{T}}$$
 Средняя мощность

$$I ext{Topm} := rac{ ext{MTopm}}{ ext{Kt_mot}} = -3.201$$
 А Ток на участке разгона

$$Pohm_торм := 1.5 \cdot Rphase \cdot Іторм \cdot Іторм = 6.764$$
 Вт Мощность, которая выделится обмотке мотора

от одного конца

киме

ность

на