Assignment -5

Date: 17/09/2020 Deadline:19/09/2020 (7 pm)

- a. You have an array A on total N integers: x_1 , x_2 , x_3 , ..., x_N . You have to develop a dynamic programming to find the longest-alternating-increasing-subsequence and its length in the given array. A sequence $(y_1, y_2, y_3,...y_k,$ where k >= 1) is called alternating-increasing when following two properties are there
 - 1. $|y_1| < |y_2| < |y_3| < \dots < |y_k|$
 - 2. The adjacent elements should have alternate signs. i.e., if $y_1 > 0$ then $y_2 < 0$, $y_3 > 0$ and so on. Similarly, if $y_1 < 0$, then $y_2 > 0$ $y_3 < 0$ and so on.

In array A, there would be no element equal to 0.

Constraints:

 $1 \le N \le 500 |x_i| \le 50$, x_i not equal to 0.

Input:

The first line contains a single integer N, denoting the size of the array. The next line contains N integers, denoting N elements of array A.

Output:

Print the longest alternating sub-sequence and its length.

Example:

Input:

13-2-16-6-711

Output:

[1, -2, 6, -7, 11]

Submit 5a.c

- **b.** You have an array A on total N positive integers: x_1 , x_2 , x_3 , ..., x_N . We are supposed to find longest decreasing-increasing subsequence ((y_1 , y_2 ,..., y_m ,... y_k , where k >=1)) from it which follows following criteria.
 - 1. $y_1, y_2,..., y_m$ is a strictly decreasing sequence $(y_1, y_2,..., y_{m-1} \text{ may not be present in this sequence})$
 - 2. $y_m,...y_k$ is a strictly increasing sequence $(y_{m+1},...y_k \text{ may not be present in this sequence})$

Constraints:

 $1 <= N <= 500 |x_i| <= 1000$

Input:

The first line contains a single integer N, denoting the size of the array. The next line contains N positive integers, denoting N elements of array A.

Output:

Print the longest decreasing-increasing sub-sequence and its length.

Example:

Input:

1734685910

Output:

 $73468910 => element 3 is y_m here.$

Length = 7

Alternative output

1 3 4 6 8 9 10 => element 1 is y_m here. $(y_1, y_2, ..., y_{m-1})$ are not there in this sequence)

Length = 7

Submit 5b.c