

Автоматическое дифференцирование

I think the first 40 years or so of automatic differentiation was largely people not using it because they didn't believe such an algorithm could possibly exist.

11:36 PM · Sep 17, 2019

1 3. 26

159

Рис. 2: Это не autograd

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

Предположим, что мы хотим решить следующую задачу:

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

• Такие задачи обычно возникают в машинном обучении, когда нам нужно найти подходящие параметры w модели (например, обучить нейронную сеть).

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

- Такие задачи обычно возникают в машинном обучении, когда нам нужно найти подходящие параметры w модели (например, обучить нейронную сеть).
- Существуют разные методы решения этой задачи. Однако, размерность задач сегодня может достигать сотен миллиардов или даже триллионов переменных. Такие задачи очень тяжело решать без знания градиентов, то есть методами нулевого порядка.

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

- ullet Такие задачи обычно возникают в машинном обучении, когда нам нужно найти подходящие параметры wмодели (например, обучить нейронную сеть).
- Сушествуют разные методы решения этой задачи. Однако, размерность задач сегодня может достигать сотен миллиардов или даже триллионов переменных. Такие задачи очень тяжело решать без знания градиентов, то есть методами нулевого порядка.
- ullet Поэтому было бы полезно уметь вычислять вектор градиента $abla_w L = \left(rac{\partial L}{\partial w}, \dots, rac{\partial L}{\partial w}
 ight)^T$.

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

- ullet Такие задачи обычно возникают в машинном обучении, когда нам нужно найти подходящие параметры wмодели (например, обучить нейронную сеть).
- Сушествуют разные методы решения этой задачи. Однако, размерность задач сегодня может достигать сотен миллиардов или даже триллионов переменных. Такие задачи очень тяжело решать без знания градиентов, то есть методами нулевого порядка.
- ullet Поэтому было бы полезно уметь вычислять вектор градиента $abla_w L = \left(rac{\partial L}{\partial w_-}, \dots, rac{\partial L}{\partial w_-}
 ight)^T$.
- Обычно методы первого порядка работают лучше в больших задачах, в то время как методы второго порядка требуют слишком много памяти.

Пример: задача многомерного шкалирования

Предположим, что у нас есть матрица расстояний для N d-мерных объектов $D \in \mathbb{R}^{N \times N}$. Используя эту матрицу, мы хотим восстановить исходные координаты $W_i \in \mathbb{R}^d, \ i=1,\dots,N.$

Пример: задача многомерного шкалирования

Предположим, что у нас есть матрица расстояний для N d-мерных объектов $D \in \mathbb{R}^{N \times N}$. Используя эту матрицу, мы хотим восстановить исходные координаты $W_i \in \mathbb{R}^d, \ i=1,\dots,N.$

$$L(W) = \sum_{i,j=1}^N \left(\|W_i - W_j\|_2^2 - D_{i,j} \right)^2 \rightarrow \min_{W \in \mathbb{R}^{N \times d}}$$

Пример: задача многомерного шкалирования

Предположим, что у нас есть матрица расстояний для N d-мерных объектов $D \in \mathbb{R}^{N \times N}$. Используя эту матрицу, мы хотим восстановить исходные координаты $W_i \in \mathbb{R}^d, \ i=1,\dots,N.$

$$L(W) = \sum_{i,j=1}^N \left(\|W_i - W_j\|_2^2 - D_{i,j}\right)^2 \rightarrow \min_{W \in \mathbb{R}^{N \times d}}$$

Ссылка на визуализацию 🚣, где можно увидеть, что безградиентные методы оптимизации решают эту задачу намного медленнее, особенно в пространствах большой размерности.

i Question

Связано ли это с РСА?

Пример: многомерное масштабирование

Рис. 3: Ссылка на анимацию

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

Предположим, что мы хотим решить следующую задачу:

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

с помощью алгоритма градиентного спуска (GD):

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Предположим, что мы хотим решить следующую задачу:

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

с помощью алгоритма градиентного спуска (GD):

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Можно ли заменить $\nabla_w L(w_k)$ используя только информацию нулевого порядка?

Предположим, что мы хотим решить следующую задачу:

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

с помощью алгоритма градиентного спуска (GD):

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Можно ли заменить $\nabla_w L(w_k)$ используя только информацию нулевого порядка?

Да, но за определенную цену.

¹рекомендуется хорошая презентация о безградиентных методах

Предположим, что мы хотим решить следующую задачу:

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

с помощью алгоритма градиентного спуска (GD):

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Можно ли заменить $\nabla_w L(w_k)$ используя только информацию нулевого порядка?

Да, но за определенную цену.

Рассмотрим двухточечную оценку градиента G:

$$G = d\frac{L(w + \varepsilon v) - L(w - \varepsilon v)}{2\varepsilon}v,$$

где v сферически симметричен.

¹рекомендуется хорошая презентация о безградиентных методах

Предположим, что мы хотим решить следующую задачу:

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

с помощью алгоритма градиентного спуска (GD):

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Можно ли заменить $\nabla_w L(w_k)$ используя только информацию нулевого порядка?

Да, но за определенную цену. Рассмотрим двухточечную оценку градиента G:

$$G = d\frac{L(w + \varepsilon v) - L(w - \varepsilon v)}{2\varepsilon}v,$$

где v сферически симметричен.

Рис. 4: "Иллюстрация двухточечной оценки градиентного спуска"

¹рекомендуется хорошая презентация о безградиентных методах

Пример: конечные разности

$$w_{k+1} = w_k - \alpha_k G$$

Пример: конечные разности

$$w_{k+1} = w_k - \alpha_k G$$

Также рассмотрим идею конечных разностей:

$$G = \sum_{i=1}^d \frac{L(w+\varepsilon e_i) - L(w-\varepsilon e_i)}{2\varepsilon} e_i$$

Открыть в Colab 弗

Рис. 5: "Иллюстрация работы метода оценки градиента с помощью метода конечных разностей"

Проклятие размерности для методов нулевого порядка 2

$$\min_{x \in \mathbb{R}^n} f(x)$$

Проклятие размерности для методов нулевого порядка 2

$$\min_{x\in\mathbb{R}^n} f(x)$$

$$\text{GD: } x_{k+1} = x_k - \alpha_k \nabla f(x_k) \qquad \qquad \text{Zero order GD: } x_{k+1} = x_k - \alpha_k G,$$

где G - оценка градиента 2-точечная или многоточечная.

²Оптимальные скорости для нулевого порядка выпуклой оптимизации: сила двух оценок функции

Проклятие размерности для методов нулевого порядка 2

$$\min_{x \in \mathbb{R}^n} f(x)$$

GD:
$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$
 Zero order GD: $x_{k+1} = x_k - \alpha_k G$,

где G - оценка градиента 2-точечная или многоточечная.

	f(x) FRARKOS	f(m) FRARKAG M BURNKRAG	f(x) FRANKAS M CHRI HA RI HRVKRAS
	f(x) - гладкая	f(x) - гладкая и выпуклая	f(x) - гладкая и сильно выпуклая
GD	$\ \nabla f(x_k)\ ^2 \approx \mathcal{O}\left(\frac{1}{k}\right)$	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{1}{k}\right)$	$\ x_k - x^*\ ^2 \approx \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
GD нулевого порядка	$\ \nabla f(x_k)\ ^2 \approx \mathcal{O}\left(\frac{n}{k}\right)$	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{n}{k}\right)$	$\ x_k - x^*\ ^2 \approx \mathcal{O}\left(\left(1 - \frac{\mu}{nL}\right)^k\right)$

Для 2-точечных оценок, мы не можем сделать зависимость лучше, чем от \sqrt{n} !

²Оптимальные скорости для нулевого порядка выпуклой оптимизации: сила двух оценок функции $f \to \min_{x,y,z}$ Автоматическое дифференцирование

Наивный подход к получению приблизительных значений градиентов - это подход **конечных разностей**. Для каждой координаты, можно вычислить приближенное значение частной производной:

$$\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w+\varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0,\dots,\frac{1}{k},\dots,0)$$

³Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 1970.

Наивный подход к получению приблизительных значений градиентов - это подход **конечных разностей**. Для каждой координаты, можно вычислить приближенное значение частной производной:

$$\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w+\varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0,\dots,\frac{1}{k},\dots,0)$$

Question

Если время, необходимое для одного вычисления L(w) равно T, то какое время необходимо для вычисления $\nabla_w L$ с этим подходом?

Наивный подход к получению приблизительных значений градиентов - это подход конечных разностей. Для каждой координаты, можно вычислить приближенное значение частной производной:

$$\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w+\varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0,\dots,\frac{1}{k},\dots,0)$$

i Question

Если время, необходимое для одного вычисления L(w) равно T, то какое время необходимо для вычисления $\nabla_w L$ с этим подходом?

Ответ 2dT, что очень долго для больших задач. Кроме того, этот метод нестабилен, что означает, что нам придется выбирать между точностью и стабильностью.

Наивный подход к получению приблизительных значений градиентов - это подход **конечных разностей**. Для каждой координаты, можно вычислить приближенное значение частной производной:

$$\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w+\varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0,\dots,\frac{1}{k},\dots,0)$$

i Question

Если время, необходимое для одного вычисления L(w) равно T, то какое время необходимо для вычисления $\nabla_w L$ с этим подходом?

Ответ 2dT, что очень долго для больших задач. Кроме того, этот метод нестабилен, что означает, что нам придется выбирать между точностью и стабильностью.

Теорема

Существует алгоритм для вычисления $\nabla_w L$ за $\mathcal{O}(T)$. ³

³Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 1970.

Чтобы глубже понять идею автоматического дифференцирования, рассмотрим простую функцию для вычисления производных:

$$L(w_1,w_2) = w_2\log w_1 + \sqrt{w_2\log w_1}$$

Чтобы глубже понять идею автоматического дифференцирования, рассмотрим простую функцию для вычисления производных:

$$L(w_1, w_2) = w_2 \log w_1 + \sqrt{w_2 \log w_1}$$

Давайте нарисуем *вычислительный граф* этой функции:

$$L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}$$

Рис. 6: Иллюстрация вычислительного графа для функции $L(w_1,w_2)$

Чтобы глубже понять идею автоматического дифференцирования, рассмотрим простую функцию для вычисления производных:

$$L(w_1,w_2) = w_2\log w_1 + \sqrt{w_2\log w_1}$$

Давайте нарисуем *вычислительный граф* этой функции:

$$L(w_1,w_2) = w_2\log w_1 + \sqrt{w_2\log w_1}$$

Рис. 6: Иллюстрация вычислительного графа для функции $L(w_1, w_2)$

Давайте пойдем от начала графа к концу и вычислим производную $\frac{\partial L}{\partial w_1}$.

⊕ ი

Рис. 7: Иллюстрация прямого режима автоматического дифференцирования

Функция

$$w_1 = w_1, w_2 = w_2$$

Рис. 7: Иллюстрация прямого режима автоматического дифференцирования

Функция

$$w_1 = w_1, w_2 = w_2$$

Производная
$$rac{\partial w_1}{\partial w_1}=1, rac{\partial w_2}{\partial w_1}=$$

Рис. 8: Иллюстрация прямого режима автоматического дифференцирования

Рис. 8: Иллюстрация прямого режима автоматического дифференцирования

Функция

 $v_1 = \log w_1$

Рис. 8: Иллюстрация прямого режима автоматического дифференцирования

Функция

$$v_1 = \log w_1$$

$$\frac{\partial v_1}{\partial w_1} = \frac{\partial v_1}{\partial w_1} \frac{\partial w_1}{\partial w_1} = \frac{1}{w_1} \mathbf{1}$$

Рис. 9: Иллюстрация прямого режима автоматического дифференцирования

⊕ ∩ ∅

Рис. 9: Иллюстрация прямого режима автоматического дифференцирования

Функция

$$v_2 = w_2 v_1$$

⊕ 0 0

Рис. 9: Иллюстрация прямого режима автоматического дифференцирования

$$v_2 = w_2 v_1$$

$$\frac{\partial v_2}{\partial w_1} = \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial w_1} + \frac{\partial v_2}{\partial w_2} \frac{\partial w_2}{\partial w_1} = w_2 \frac{\partial v_1}{\partial w_1} + v_1 \frac{\partial w_2}{\partial w_1}$$

Рис. 10: Иллюстрация прямого режима автоматического дифференцирования

Рис. 10: Иллюстрация прямого режима автоматического дифференцирования

$$v_3 = \sqrt{v_2}$$

Рис. 10: Иллюстрация прямого режима автоматического дифференцирования

$$v_3 = \sqrt{v_2}$$

$$\frac{\partial v_3}{\partial w_1} = \frac{\partial v_3}{\partial v_2} \frac{\partial v_2}{\partial w_1} = \frac{1}{2\sqrt{v_2}} \frac{\partial v_2}{\partial w_1}$$

Рис. 11: Иллюстрация прямого режима автоматического дифференцирования

Рис. 11: Иллюстрация прямого режима автоматического дифференцирования

$$L = v_2 + v_3$$

Рис. 11: Иллюстрация прямого режима автоматического дифференцирования

$$L = v_2 + v_3$$

Производная
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_1} + \frac{\partial L}{\partial v_3} \frac{\partial v_3}{\partial w_1} = 1 \frac{\partial v_2}{\partial w_1} + 1 \frac{\partial v_3}{\partial w_1}$$

Сделайте аналогичные вычисления для

$$L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}$$

Рис. 12: Иллюстрация вычислительного графа для функции $L(w_1,w_2)$

Рис. 13: Иллюстрация прямого режима автоматического дифференцирования

Функция

$$w_1 = w_1, w_2 = w_2$$

$$\frac{\partial w_1}{\partial w_2} = 0, \frac{\partial w_2}{\partial w_2} =$$

Автоматическое дифференцирование

Рис. 14: Иллюстрация прямого режима автоматического дифференцирования

$$v_1 = \log w_1$$

$$\frac{\partial v_1}{\partial w_2} = \frac{\partial v_1}{\partial w_1} \frac{\partial w_1}{\partial w_2} = \frac{1}{w_1} \cdot 0$$

Рис. 15: Иллюстрация прямого режима автоматического дифференцирования

$$v_2 = w_2 v_1$$

$$\frac{\partial v_2}{\partial w_2} = \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial w_2} + \frac{\partial v_2}{\partial w_2} \frac{\partial w_2}{\partial w_2} = w_2 \frac{\partial v_1}{\partial w_2} + v_1 \frac{\partial w_2}{\partial w_2}$$

Рис. 16: Иллюстрация прямого режима автоматического дифференцирования

$$v_3 = \sqrt{v_2}$$

$$\frac{\partial v_3}{\partial w_2} = \frac{\partial v_3}{\partial v_2} \frac{\partial v_2}{\partial w_2} = \frac{1}{2\sqrt{v_2}} \frac{\partial v_2}{\partial w_2}$$

Рис. 17: Иллюстрация прямого режима автоматического дифференцирования

$$L = v_2 + v_3$$

Производная
$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_2} + \frac{\partial L}{\partial v_3} \frac{\partial v_3}{\partial w_2} = 1 \frac{\partial v_2}{\partial w_2} + 1 \frac{\partial v_3}{\partial w_2}$$

Предположим, что у нас есть вычислительный граф $v_i, i \in [1; N]$. Наша цель - вычислить производную выхода этого графа по некоторой входной переменной w_k , т.е. $\dfrac{\partial v_N}{\partial w_k}$. Эта идея предполагает распространение градиента по входной переменной от начала к концу, поэтому мы можем ввести обозначение:

Предположим, что у нас есть вычислительный граф $v_i, i \in [1;N]$. Наша цель - вычислить производную выхода этого графа по некоторой входной переменной w_k , т.е. $\frac{\partial v_N}{\partial w_k}$. Эта идея предполагает распространение градиента по входной переменной от начала к концу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

$$x_1, \cfrac{\partial x_1}{\partial w_k}$$
 $x_2, \cfrac{\partial x_2}{\partial w_k}$
 $v_i = v_i(x_1, \dots, x_{t_i})$
 $v_i = v_i(x_1, \dots, x_{t_i})$

Предположим, что у нас есть вычислительный граф $v_i, i \in [1;N]$. Наша цель - вычислить производную выхода этого графа по некоторой входной переменной w_k , т.е. $\frac{\partial v_N}{\partial w_k}$. Эта идея предполагает распространение градиента по входной переменной от начала к концу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

$$x_{1}, \frac{\partial x_{1}}{\partial w_{k}}$$

$$x_{2}, \frac{\partial x_{2}}{\partial w_{k}}$$

$$v_{i} = v_{i}(x_{1}, \dots, x_{t_{i}})$$

$$\frac{\partial v_{i}}{\partial w_{k}} = \sum_{j=1}^{t_{i}} \frac{\partial v_{i}}{\partial x_{j}} \frac{\partial x_{j}}{\partial w_{k}}$$

• Для i = 1, ..., N:

Предположим, что у нас есть вычислительный граф $v_i, i \in [1; N]$. Наша цель - вычислить производную выхода этого графа по некоторой входной переменной w_k , т.е. $\dfrac{\partial v_N}{\partial w_k}$. Эта идея предполагает распространение градиента по входной переменной от начала к концу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

- Для i = 1, ..., N:
 - Вычислить v_i как функцию его предков x_1, \dots, x_t :

$$v_i = v_i(x_1, \dots, x_{t_i})$$

Предположим, что у нас есть вычислительный граф $v_i, i \in [1;N]$. Наша цель - вычислить производную выхода этого графа по некоторой входной переменной w_k , т.е. $\dfrac{\partial v_N}{\partial w_k}$. Эта идея предполагает распространение градиента по входной переменной от начала к концу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

- Для $i=1,\ldots,N$:
 - Вычислить v_i как функцию его предков x_1,\dots,x_{t_i} :

$$v_i = v_i(x_1, \dots, x_{t_i})$$

• Вычислить производную $\overline{v_i}$ используя формулу производной сложной функции:

$$\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}$$

Предположим, что у нас есть вычислительный граф $v_i, i \in [1;N]$. Наша цель - вычислить производную выхода этого графа по некоторой входной переменной w_k , т.е. $\dfrac{\partial v_N}{\partial w_k}$. Эта идея предполагает распространение градиента по входной переменной от начала к концу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

- Для $i=1,\ldots,N$:
 - Вычислить v_i как функцию его предков x_1,\dots,x_{t_i} :

$$v_i = v_i(x_1, \dots, x_{t_i})$$

• Вычислить производную $\overline{v_i}$ используя формулу производной сложной функции:

$$\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}$$

Предположим, что у нас есть вычислительный граф $v_i, i \in [1;N]$. Наша цель - вычислить производную выхода этого графа по некоторой входной переменной w_k , т.е. $\frac{\partial v_N}{\partial w_k}$. Эта идея предполагает распространение градиента по входной переменной от начала к концу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

- Для i = 1, ..., N:
 - ullet Вычислить v_i как функцию его предков x_1,\dots,x_{t_i} :

$$v_i = v_i(x_1, \dots, x_{t_i})$$

• Вычислить производную $\overline{v_i}$ используя формулу производной сложной функции:

$$\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}$$

Обратите внимание, что этот подход не требует хранения всех промежуточных вычислений, но можно видеть, что для вычисления производной $\dfrac{\partial L}{\partial w_k}$ нам нужно $\mathcal{O}(T)$ операций. Это означает, что для всего градиента, нам нужно $d\mathcal{O}(T)$ операций, что то же самое, что и для конечных разностей, но теперь у нас нет проблем со стабильностью или неточностями(формулы выше точны).

Обратный режим автоматического дифференцирования

Мы рассмотрим ту же функцию с вычислительным графом:

$$L(w_1,w_2) = w_2\log w_1 + \sqrt{w_2\log w_1}$$

Рис. 18: Иллюстрация вычислительного графа для функции $L(w_1,w_2)$

Обратный режим автоматического дифференцирования

Мы рассмотрим ту же функцию с вычислительным графом:

$$L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}$$
 w_1 w_2 w_3 w_4 w_2 w_4 w_4 w_5 w_4 w_5 w_6 w_7 w_8 w_8 w_9 w_9

Рис. 18: Иллюстрация вычислительного графа для функции $L(w_1,w_2)$

Предположим, что у нас есть некоторые значения параметров w_1,w_2 и мы уже выполнили прямой проход (т.е. вычисление значений всех промежуточных узлов вычислительного графа). Предположим также, что мы как-то сохранили все промежуточные значения v_i . Давайте пойдем от конца графа к началу и вычислим производные $\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}$:

Рис. 19: Иллюстрация обратного режима автоматического дифференцирования

Рис. 19: Иллюстрация обратного режима автоматического дифференцирования

Рис. 19: Иллюстрация обратного режима автоматического дифференцирования

$$\frac{\partial L}{\partial L} = 1$$

Рис. 20: Иллюстрация обратного режима автоматического дифференцирования

Рис. 20: Иллюстрация обратного режима автоматического дифференцирования

Рис. 20: Иллюстрация обратного режима автоматического дифференцирования

$$\frac{\partial L}{\partial v_3} = \frac{\partial L}{\partial L} \frac{\partial L}{\partial v_3} = \frac{\partial L}{\partial L} 1$$

Рис. 21: Иллюстрация обратного режима автоматического дифференцирования

Рис. 21: Иллюстрация обратного режима автоматического дифференцирования

Рис. 21: Иллюстрация обратного режима автоматического дифференцирования

$$\frac{\partial L}{\partial v_2} = \frac{\partial L}{\partial v_3} \frac{\partial v_3}{\partial v_2} + \frac{\partial L}{\partial L} \frac{\partial L}{\partial v_2} \quad = \frac{\partial L}{\partial v_3} \frac{1}{2\sqrt{v_2}} + \frac{\partial L}{\partial L} \mathbf{1}$$

Рис. 22: Иллюстрация обратного режима автоматического дифференцирования

Рис. 22: Иллюстрация обратного режима автоматического дифференцирования

Рис. 22: Иллюстрация обратного режима автоматического дифференцирования

Производные

$$\frac{\partial L}{\partial v_1} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial v_1} \quad = \frac{\partial L}{\partial v_2} w_2$$

Рис. 23: Иллюстрация обратного режима автоматического дифференцирования

Рис. 23: Иллюстрация обратного режима автоматического дифференцирования

Производные

Рис. 23: Иллюстрация обратного режима автоматического дифференцирования

Производные

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial v_1} \frac{\partial v_1}{\partial w_1} = \frac{\partial L}{\partial v_1} \frac{1}{w_1} \qquad \qquad \frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_2} = \frac{\partial L}{\partial v_1} v_1$$

Обратный режим автоматического дифференцирования

i Question

Обратите внимание, что для того же количества вычислений, что и в прямом режиме, мы получаем полный вектор градиента $\nabla_w L$. Какова стоимость ускорения?

Обратный режим автоматического дифференцирования

i Question

Обратите внимание, что для того же количества вычислений, что и в прямом режиме, мы получаем полный вектор градиента $\nabla_m L$. Какова стоимость ускорения?

Ответ Обратите внимание, что для использования обратного режима AD вам нужно хранить все промежуточные вычисления из прямого прохода. Эта проблема может быть частично решена с помощью чекпоинтинга, при котором мы сохраняем только часть промежуточных значений, а остальные пересчитываем заново по мере необходимости. Это позволяет значительно уменьшить объём требуемой памяти при обучении больших моделей машинного обучения.

Предположим, что у нас есть вычислительный граф $v_i, i \in [1; N]$. Наша цель - вычислить производную выхода этого графа по всем входным переменным w, т.е. $\nabla_w v_N = \left(rac{\partial v_N}{\partial w_1}, \dots, rac{\partial v_N}{\partial w_J}
ight)^T$. Эта идея предполагает распространение градиента функции по промежуточным переменным от конца к началу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}$$

• прямой проход Для i = 1, ..., N:

Предположим, что у нас есть вычислительный граф $v_i, i \in [1;N]$. Наша цель - вычислить производную выхода этого графа по всем входным переменным w, т.е. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d}\right)^T$. Эта идея предполагает распространение градиента функции по промежуточным переменным от конца к началу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}$$

• прямой проход

Для
$$i = 1, ..., N$$
:

• Вычислить и сохранить значения v_i как функцию его предков

Предположим, что у нас есть вычислительный граф $v_i, i \in [1;N]$. Наша цель - вычислить производную выхода этого графа по всем входным переменным w, т.е. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d}\right)^T$. Эта идея предполагает распространение градиента функции по промежуточным переменным от конца к началу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}$$

• прямой проход

Для i = 1, ..., N:

• Вычислить и сохранить значения v_i как функцию его предков

Для
$$i=N,\ldots,1$$
:

Предположим, что у нас есть вычислительный граф $v_i, i \in [1;N]$. Наша цель - вычислить производную выхода этого графа по всем входным переменным w, т.е. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \ldots, \frac{\partial v_N}{\partial w_d} \right)^T$. Эта идея предполагает распространение градиента функции по промежуточным переменным от конца к началу, поэтому мы можем ввести обозначение:

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}$$

• прямой проход

Для i = 1, ..., N:

• Вычислить и сохранить значения v_i как функцию его предков

• ОБРАТНЫЙ ПРОХОД

Для $i=N,\ldots,1$:

• Вычислить производную $\overline{v_i}$ используя формулу производной сложной функции и информацию от всех потомков (выходов):

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \sum_{j=1}^{t_i} \frac{\partial L}{\partial x_j} \frac{\partial x_j}{\partial v_i}$$

i Question

Какой из режимов AD вы бы выбрали (прямой/обратный) для следующего вычислительного графа арифметических операций? Предположим, что вам нужно вычислить якобиан

Рис. 24: Какой режим вы бы выбрали для вычисления градиентов?

i Question

Какой из режимов AD вы бы выбрали (прямой/обратный) для следующего вычислительного графа арифметических операций? Предположим, что вам нужно вычислить якобиан $J=\left\{rac{\partial L_i}{\partial \ldots}
ight\}$

Ответ Обратите внимание, что время вычислений в обратном режиме пропорционально количеству выходов, тогда как время работы прямого режима пропорционально количеству входов. Поэтому было бы хорошей идеей рассмотреть прямой режим AD.

Рис. 24: Какой режим вы бы выбрали для вычисления градиентов?

⊕ n ø

Рис. 25: \clubsuit График иллюстрирует идею выбора между режимами автоматического дифференцирования. Размерность входа n=100 фиксирована, измерено время вычисления якобиана в зависимости от соотношения размерностей выхода и входа для разных размерностей выхода m.

i Question

Какой из режимов AD вы бы выбрали (прямой/обратный) для следующего вычислительного графа арифметических операций? Предположим, что вам нужно вычислить якобиан $J \ = \ \left\{ \frac{\partial L_i}{\partial w_j} \right\}_{i,j} .$ Обратите внимание, что G - это

произвольный вычислительный граф

Рис. 26: Какой режим вы бы выбрали для вычисления градиентов?

i Question

Какой из режимов AD вы бы выбрали (прямой/обратный) для следующего вычислительного графа арифметических операций? Предположим, что вам нужно вычислить якобиан $J = \left\{ rac{\partial L_i}{\partial w_i}
ight\}_{i=1}^{n}$. Обратите внимание, что G - это

$$=\left\{rac{\partial w_j}{\partial w_j}
ight\}_{i,j}$$
.
Вроизвольный вычис.

произвольный вычислительный граф

Ответ В общем случае невозможно ответить без некоторого знания о конкретной структуре графа G. Следует отметить, что существуют продвинутые подходы, смешивающие прямой и обратный режим AD в зависимости от конкретной структуры графа G.

Рис. 26: Какой режим вы бы выбрали для вычисления градиентов?

прямой проход

• $v_0=x$ на вход обычно подаётся батч данных x

Weights v_1 v_2 v_1 v_2 v_2 v_3 v_4 v_4 v_4 v_5 v_6 v_8 v_8

Рис. 27: Архитектура прямого распространения нейронной сети

прямой проход

- $v_0=x$ на вход обычно подаётся батч данных x
- Для $k=1,\ldots,t-1,t$:

Рис. 27: Архитектура прямого распространения нейронной сети

прямой проход

- ullet $v_0=x$ на вход обычно подаётся батч данных x
- Для k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Обратите внимание, что на практике, данные имеют размерность $x \in \mathbb{R}^{b \times d}$, где b размер батча (для одного объекта из выборки b=1). В то время как матрица весов w_k k слоя имеет размер $n_{k-1} \times n_k$, где n_k размер внутреннего представления данных.

Рис. 27: Архитектура прямого распространения нейронной сети

прямой проход

- ullet $v_0=x$ на вход обычно подаётся батч данных x
- Для k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Обратите внимание, что на практике, данные имеют размерность $x \in \mathbb{R}^{b \times d}$, где b размер батча (для одного объекта из выборки b=1). В то время как матрица весов w_k k слоя имеет размер $n_{k-1} \times n_k$, где n_k размер внутреннего представления данных.
- $L=L(v_t)$ вычислить функцию потерь.

Рис. 27: Архитектура прямого распространения нейронной сети

прямой проход

- $v_0=x$ на вход обычно подаётся батч данных x
- Для $k = 1, \dots, t 1, t$:
 - $v_k = \sigma(v_{k-1}w_k)$. Обратите внимание, что на практике, данные имеют размерность $x \in \mathbb{R}^{b \times d}$, где b размер батча (для одного объекта из выборки b=1). В то время как матрица весов w_k k слоя имеет размер $n_{k-1} \times n_k$, где n_k размер внутреннего представления данных.
- ullet $L=L(v_t)$ вычислить функцию потерь.

ОБРАТНЫЙ ПРОХОД

• $v_{t+1} = L, \frac{\partial L}{\partial L} = 1$

Рис. 27: Архитектура прямого распространения нейронной сети

прямой проход

- ullet $v_0=x$ на вход обычно подаётся батч данных x
- Для k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Обратите внимание, что на практике, данные имеют размерность $x \in \mathbb{R}^{b \times d}$, где b размер батча (для одного объекта из выборки b=1). В то время как матрица весов w_k k слоя имеет размер $n_{k-1} \times n_k$, где n_k размер внутреннего представления данных.
- $L=L(v_t)$ вычислить функцию потерь.

ОБРАТНЫЙ ПРОХОД

- $v_{t+1} = L, \frac{\partial L}{\partial L} = 1$
- Для k = t, t-1, ..., 1:

Рис. 27: Архитектура прямого распространения нейронной сети

прямой проход

- ullet $v_0=x$ на вход обычно подаётся батч данных x
- Для k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Обратите внимание, что на практике, данные имеют размерность $x \in \mathbb{R}^{b \times d}$, где b размер батча (для одного объекта из выборки b=1). В то время как матрица весов w_k k слоя имеет размер $n_{k-1} \times n_k$, где n_k размер внутреннего представления данных.
- $L=L(v_t)$ вычислить функцию потерь.

ОБРАТНЫЙ ПРОХОД

- $v_{t+1} = L, \frac{\partial L}{\partial L} = 1$
- Для $k = t, t 1, \dots, 1$:
 - $\begin{array}{c} \bullet \\ \frac{\partial L}{\partial v_k} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_k} \\ \bullet \times n_k \\ \bullet \times n_{k+1} \\ n_{k+1} \times n_k \\ \end{array}$

Рис. 27: Архитектура прямого распространения нейронной сети

прямой проход

- $v_0 = x$ на вход обычно подаётся батч данных x
- Для k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Обратите внимание, что на практике, данные имеют размерность $x \in \mathbb{R}^{b \times d}$, где b - размер батча (для одного объекта из выборки b=1). В то время как матрица весов $w_k \ k$ слоя имеет размер $n_{k-1} \times n_k$, где n_k - размер внутреннего представления данных.
- $L = L(v_t)$ вычислить функцию потерь.

ОБРАТНЫЙ ПРОХОД

•
$$v_{t+1} = L, \frac{\partial L}{\partial L} = 1$$

• Для k = t, t-1, ..., 1:

$$\begin{array}{l} \bullet \ \, \frac{\partial L}{\partial v_k} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_k} \\ _{b \times n_k} \ \, \frac{\partial v_{k+1}}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_k} \end{array}$$

$$\frac{\partial L}{\partial w_k} = \frac{\partial L}{\partial v_{k+1}} \cdot \frac{\partial v_{k+1}}{\partial w_k}$$

 $b \times n_{k-1} \cdot n_k$ $b \times n_{k+1}$ $n_{k+1} \times n_{k-1} \cdot n_k$

Рис. 27: Архитектура прямого распространения нейронной сети

Когда вам нужна некоторая информация о кривизне функции, обычно вам нужно работать с гессианом. Однако, это трудно делать, когда размерность задачи велика. Для скалярной функции $f:\mathbb{R}^n o\mathbb{R}$, гессиан в точке $x \in \mathbb{R}^n$ записывается как $\nabla^2 f(x)$. Тогда произведение вектора на гессиан можно записать как

Когда вам нужна некоторая информация о кривизне функции, обычно вам нужно работать с гессианом. Однако, это трудно делать, когда размерность задачи велика. Для скалярной функции $f:\mathbb{R}^n o\mathbb{R}$, гессиан в точке $x \in \mathbb{R}^n$ записывается как $\nabla^2 f(x)$. Тогда произведение вектора на гессиан можно записать как

$$v \mapsto \nabla^2 f(x) \cdot v$$

Когда вам нужна некоторая информация о кривизне функции, обычно вам нужно работать с гессианом. Однако, это трудно делать, когда размерность задачи велика. Для скалярной функции $f:\mathbb{R}^n o\mathbb{R}$, гессиан в точке $x \in \mathbb{R}^n$ записывается как $\nabla^2 f(x)$. Тогда произведение вектора на гессиан можно записать как

$$v \mapsto \nabla^2 f(x) \cdot v$$

для любого вектора $v \in \mathbb{R}^n$. Мы можем использовать тождество

$$\nabla^2 f(x) v = \nabla [x \mapsto \nabla f(x)^T \cdot v] = \nabla g(x),$$

где $q(x) = \nabla f(x)^T \cdot v$ - новая функция, которая скалярно умножает градиент f в x на вектор v.

Когда вам нужна некоторая информация о кривизне функции, обычно вам нужно работать с гессианом. Однако, это трудно делать, когда размерность задачи велика. Для скалярной функции $f:\mathbb{R}^n o\mathbb{R}$, гессиан в точке $x \in \mathbb{R}^n$ записывается как $\nabla^2 f(x)$. Тогда произведение вектора на гессиан можно записать как

$$v \mapsto \nabla^2 f(x) \cdot v$$

для любого вектора $v \in \mathbb{R}^n$. Мы можем использовать тождество

$$\nabla^2 f(x)v = \nabla[x \mapsto \nabla f(x)^T \cdot v] = \nabla g(x),$$

где $q(x) = \nabla f(x)^T \cdot v$ - новая функция, которая скалярно умножает градиент f в x на вектор v.

import jax.numpy as jnp

def hvp(f, x, v):

return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Динамика обучения нейронной сети через спектр Гессиана и hvp ⁴

Рис. 28: Большие по модулю отрицательные собственные значения гессиана исчезли после обучения ResNet-32

⁴Некоторые исследования в оптимизации нейронных сетей через спектр собственных значений Гессиана

Идея Хадчинсона для оценки следа матрицы ⁵

Метод Хатчинсона позволяет оценить след гессиана с помощью операций вычисления умножения гессиана на произвольный вектор:

Пусть $X \in \mathbb{R}^{d \times d}$ и $v \in \mathbb{R}^d$ - случайный вектор такой, что $\mathbb{E}[vv^T] = I$. Тогда,

$$\operatorname{Tr}(X) = \mathbb{E}[v^T X v] = \frac{1}{V} \sum_{i=1}^{V} v_i^T X v_i.$$

Рис. 29: Источник

⁵A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990

Чекпоинтинг

Анимация вышеуказанных подходов 😱

Пример использования контрольных точек градиента 🕥

Чекпоинтинг

Анимация вышеуказанных подходов 😱

Пример использования контрольных точек градиента 😱

В качестве примера рассмотрим обучение **GPT-2** 6 :

 Активации в простом режиме могут занимать гораздо больше памяти: для последовательности длиной 1К и размера батча 32, 60 GB нужно для хранения всех промежуточных активаций.

⁶ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Чекпоинтинг

Анимация вышеуказанных подходов 😱

Пример использования контрольных точек градиента 🗬

В качестве примера рассмотрим обучение **GPT-2** 6 :

- Активации в простом режиме могут занимать гораздо больше памяти: для последовательности длиной 1К и размера батча 32, 60 GB нужно для хранения всех промежуточных активаций.
- Чекпоинтинг может снизить потребление до 8 GB, пересчитывая их (33% дополнительных вычислений)

⁶ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

 AD не является методом конечных разностей

DIFFERENTIATION

- AD не является методом конечных разностей
- AD не является символьным вычислением производных

DIFFERENTIATION

- AD не является методом конечных разностей
- AD не является символьным вычислением производных
- AD не является только правилом вычисления производной сложной функции

DIFFERENTIATION

- AD не является методом конечных разностей
- AD не является символьным вычислением производных
- AD не является только правилом вычисления производной сложной функции
- AD (обратный режим) является времяэффективным и численно стабильным

DIFFERENTIATION

- AD не является методом конечных разностей
- AD не является символьным вычислением производных
- AD не является только правилом вычисления производной сложной функции
- AD (обратный режим) является времяэффективным и численно стабильным
- AD (обратный режим) не является эффективным по памяти (нужно хранить все промежуточные вычисления из прямого прохода)

DIFFERENTIATION

• Рекомендую прочитать официальную книгу по Jax Autodiff. Open In Colab 🜲

- Рекомендую прочитать официальную книгу по Jax Autodiff. Open In Colab 🗍
- Распространение градиента через линейные наименьшие квадраты [семинар]

- Рекомендую прочитать официальную книгу по Jax Autodiff. Open In Colab 🖡
- Распространение градиента через линейные наименьшие квадраты [семинар]
- Распространение градиента через SVD [семинар]

- Рекомендую прочитать официальную книгу по Jax Autodiff. Open In Colab 🕹
- Распространение градиента через линейные наименьшие квадраты [семинар]
- Распространение градиента через SVD [семинар]
- Контрольные точки активаций [семинар]

Итоги

Итоги

Итоги

Определения

- 1. Формула для приближенного вычисления производной функции $f(x):\mathbb{R}^n \to \mathbb{R}$ по k-ой координате с помощью метода конечных разностей.
- 2. Пусть $f=f(x_1(t),\dots,x_n(t))$. Формула для вычисления $\frac{\partial f}{\partial t}$ через $\frac{\partial x_i}{\partial t}$ (Forward chain rule).
- 3. Пусть L функция, возвращающая скаляр, а v_k функция, возвращающая вектор $x \in \mathbb{R}^t$. Формула для вычисления $\frac{\partial L}{\partial v_k}$ через $\frac{\partial L}{\partial x_i}$ (Backward chain rule).
- Идея Хатчинсона для оценки следа матрицы с помощью matvec операций.

Теоремы

 Автоматическое дифференцирование.
 Вычислительный граф. Forward/ Backward mode (в этом вопросе нет доказательств, но необходимо подробно описать алгоритмы).

