MATEMATIČKA ANALIZA 1

Granične vrednosti nizova i funkcija

1. Odrediti sledeće granične vrednosti:

(a)
$$\lim_{n \to \infty} \left(\frac{2n^3 + 2n^2 + 1}{2n^3 + n^2 + 2n + 1} \right)^{3n};$$

(b)
$$\lim_{n \to \infty} \left(\frac{n^3 + 3n^2 + 1}{n^3 + n + 2} \right)^{\frac{n^2}{n+1}};$$

(c)
$$\lim_{n \to \infty} \left(\frac{3n^2}{2n+1} - \frac{(2n-1)(3n^2+n+2)}{4n^2} \right);$$

(d) $\lim_{n \to \infty} \frac{\sqrt{n^2+1} - \sqrt[3]{n^2+1}}{\sqrt[4]{n^4+1} - \sqrt[5]{n^4+1}}$

(d)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 1} - \sqrt[3]{n^2 + 1}}{\sqrt[4]{n^4 + 1} - \sqrt[5]{n^4 + 1}}$$

(e)
$$\lim_{n \to \infty} n(\ln(n+1) - \ln n)$$

(f)
$$\lim_{x\to+\infty} (\sqrt{x^2+x}-x);$$

(g)
$$\lim_{x \to 1} \frac{\ln(3x^3 + 2x + 1) - \ln(2x^2 + 3x + 1)}{x - 1}$$
;

(h)
$$\lim_{x \to 1} \frac{\sin(1-x)}{x^3 - 1}$$
;

(i)
$$\lim_{x \to 2} \frac{2x^5 - 5x^4 - 2x^3 + 7x^2 - 4x + 12}{3x^5 - 8x^4 + x^2 + 12x + 4};$$

(j)
$$\lim_{x\to 0} (\cos x)^{\cot^2 x}$$
;

(k)
$$\lim_{x \to 0} (1 + x^2)^{\cot x}$$
.

2. Dati su nizovi $\{a_n\}$ i $\{b_n\}$ sa opštim članovima $a_n = \frac{1}{\sqrt[3]{27n^3+1}} + \frac{1}{\sqrt[3]{27n^3+2}} + \ldots + \frac{1}{\sqrt[3]{27n^3+2n}}$, $b_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \ldots + \frac{1}{\sqrt{n^2+3n}}$. Proveriti da li nizovi $\{a_n\}$, $\{b_n\}$ i $\{\frac{a_n}{b_n}\}$ imaju graničnu vrednost. Da li su nizovi Košijevi u prostoru \mathbf{R} ? Odrediti tačke nagomilavanja datih nizova.

Neprekidnost funkcije

3. Odrediti konstante A i B tako da funkcija f bude neprekidna u svim tačkama definisanosti, ako je:

$$f(x) = \begin{cases} Ax + e^{\frac{1}{x-1}}, x < 1\\ A, x = 1\\ \arctan \frac{1}{1-x}, x > 1 \end{cases}$$

$$f(x) = \begin{cases} (\sin x)^{\tan^2 x}, x < \frac{\pi}{2} \\ A, x = \frac{\pi}{2} \\ Ae + \frac{B}{x}, x > \frac{\pi}{2} \end{cases}$$

$$f(x) = \begin{cases} -\sin x, x \le -\frac{\pi}{2} \\ A\sin x + B, -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \cos x, x \ge \frac{\pi}{2} \end{cases}$$

4. Ispitati da li su sledeće funkcije neprekidne. Ukoliko funkcije imaju prekid odrediti vrstu prekida.

(a)

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

(b)

$$f(x) = \begin{cases} 2x + 1, & x \le 1 \\ 3x - 1, & x > 1 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2\\ 3, & x = 2 \end{cases}$$

$$f(x) = \begin{cases} 2x + 1, x \le 3\\ (x - 2)^{\frac{1}{(x - 3)^2}}, x > 3 \end{cases}$$

Diferencijalni račun

5. Odrediti prvi izvod sledećih funkcija:

(a)
$$y = (\cos^4 x)\sin(x^2 + 3)$$
;

(b)
$$y = \arctan \frac{x+1}{x-1}$$
;

(c)
$$y = \sin\left(\ln\frac{x}{x^2+1}\right);$$

(d)
$$y = (x^x)^x$$
;

(e)
$$y = (\tan x)^{\cot(\frac{x}{2})};$$

(f)
$$y = x^{\ln x}$$
.

6. Odrediti drugi izvod sledećih funkcija, koristeći izvod inverzne funkcije:

(a)
$$y = \arccos x \quad (-1 < x < 1);$$

(b)
$$y = \log x \quad (x > 0).$$

7. Odrediti drugi izvod parametarski zadatih funkcija:

(a)
$$x = \sin t, y = \cos t;$$

(b)
$$x = \ln t, y = t + \frac{1}{t}$$
;

(c)
$$x = e^{-t}, y = e^{2t};$$

(d)
$$x = \frac{1}{1+t^2}, y = (\frac{t}{t+1})^2$$
.

8. Odrediti drugi izvod implicitno zadatih funkcija:

(a)
$$x^2 + y^2 = a^2$$
;

(b)
$$e^{y^2} = \arccos(x+y);$$

(c)
$$\ln \frac{x}{u} + \frac{x}{u} = c$$
.

9. Dokazati da:

(a) funkcija
$$y = (x + \sqrt{x^2 + 1})^n$$
 zadovoljava jednačinu $(1 + x^2)y'' + xy' - n^2y = 0$;

(b) funkcija
$$y = e^{\sqrt{x}} + e^{-\sqrt{x}}$$
 zadovoljava jednačinu $xy'' + \frac{1}{2}y' - \frac{1}{4}y = 0$;

(c) vfunkcija
$$y = e^{4x} + 2e^{-x}$$
 zadovoljava jednačinu $y''' - 13y' - 12y = 0$

10. Izračunati graničnu vrednost:

(a)
$$\lim_{x\to 0} \frac{e^x - 1}{\ln(x+1)}$$
;

(b)
$$\lim_{x\to 0} \frac{\ln(\sin(ax))}{\ln(\sin(bx))}, (a, b > 0);$$

(c)
$$\lim_{x \to \inf} x(e^{\frac{1}{x}} - 1);$$

(d)
$$\lim_{x \to +\infty} \left(\frac{\pi}{2} - \operatorname{arctg} x\right)^{\frac{1}{\ln x}}$$
.

11. Detaljno ispitati sledeće funkcije i nacrtati njihove grafike:

(a)
$$y = \frac{x^2 - 1}{(x+2)^2}$$
;

(b)
$$y = \frac{x^2}{\sqrt[3]{x^3 - 4}};$$

(c)
$$y = \frac{1 - \ln x^2}{1 + \ln x^2}$$
;

(d)
$$y = \ln \frac{2x}{x^2 + 1}$$
;

(e)
$$y = e^{\frac{2x+1}{x-1}}$$
;

(f)
$$y = x + \arcsin \frac{2x}{1+x^2}$$
;

(g)
$$y = \sqrt{\frac{x^3}{x+2}};$$

(h)
$$y = \arctan(1 + \frac{1}{x})$$
.

Funkcije više promenljivih

- 12. Za funkciju $z(x,y) = x^3 + 5xy + y^3 7$ izračunati parcijalne izvode prvog, drugog, trećeg reda, kao i totalni diferencijal prvog i drugog reda.
- 13. Za funkciju $z(x,y) = x \ln(xy)$ odrediti:

(a)
$$\frac{\partial^2 z}{\partial x \partial y}$$
;

(b)
$$\frac{\partial^3 z}{\partial^2 x \partial y}$$
.

14. Naći ekstremne vrednosti funkcije:

(a)
$$z = x^3 + y^3 - 3xy$$
;

(b)
$$z = x^3 + 2x^2y + 3xy^2 + y^3$$
.

15. Naći ekstremne vrednosti funkcije:

(a)
$$z = x^2 + y^2$$
 pod uslovom da je $2x + y = 2$;

(b)
$$z = 3 \ln \frac{x}{6} + 2 \ln y + \ln 12 - x - y$$
 pod uslovom da je $x + y = 10$;

(c)
$$z = e^{xy}$$
 pod uslovom da je $x + y - 10 = 0$.

Katedra za matematiku

Univerzitet u Novom Sadu Fakultet tehničkih nauka Elektroenergetski softverski inženjering

predmet: Matematička analiza 1

datum: 17. Maj 2014. **PRVI KOLOKVIJUM**

Predispitne obaveze

1. Izračunati:

a)
$$\lim_{x\to 0} \left(\frac{x^2+2x}{x^2-3x}\right)^{\frac{1}{x^2}};$$

b)
$$\lim_{x\to 0} \frac{bx}{\sin ax}$$
, $a, b \in \mathbb{R}$;

c)
$$\lim_{n \to \infty} \frac{4^n + 9^{n+1}}{5^n + 9^{n+2}}$$
.

2. Ako je niz $\{a_n\}$ dat opštim članom $a_n = \frac{n^n}{n!}$ izračunati $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

3. Odrediti prvi izvod funkcije y=y(x)zadate sa $x\sin y + e^{x^2+y^2} = \sqrt{x}y^3.$

4. Odrediti drugi izvod funkcije zadate sa $x=e^{-t}$ i $y=e^{2t}.$

5. Za funkciju $u(x,y,z)=x^3f(\sqrt{x}e^yz)$, gde je funkcija f diferencijabilna funkcija, odrediti $\frac{\partial u}{\partial x}$.

6. Za funkciju $z(x,y)=x^2y+2xy$ odrediti jednačinu tangentne ravni u tački A(1,1,3).

Univerzitet u Novom Sadu Fakultet tehničkih nauka Elektroenergetski softverski inženjering

predmet: Matematička analiza 1

datum: 14. maj 2015

DRUGI KOLOKVIJIM

Predispitne obaveze

- 1. (1 poen) Da li je funkcija $f(x) = \begin{cases} x+1 & x \leq 0 \\ x & x > 0 \end{cases}$ monotono rastuća?
- 2. (1 poen) Da li funkcija $f(x) = \frac{\sin x}{x}$ ima horizontalnu asimptotu kad $x \to \infty$?
- 3. (1 poen) Za funkciju $u(x,y)=x^2f(\frac{y}{x})$ naći $\frac{\partial u}{\partial x}.$
- 4. (1 poen) Napisati jednačinu tangentne ravni na površ $z = x \ln y$ u tački M(1,1,a).
- 5. (1 poen) Ispitati ekstreme funkcije $f(x,y) = x^2 y^2$.
- 6. (1 poen) Da li funkcija $f(x,y) = x^2 y^2$ u tački (0,0) ima ekstrem uz uslov y = 0?
- 7. Data je funkcija $f(x) = \begin{cases} \frac{xy^3}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$.
 - (1 poen) Ispitati neprekidnost funkcije f u tački (0,0).
 - (1 poen) Da li data funkcija ima $\frac{\partial f}{\partial x}$ u tački (0,0)?
 - $(1~{\rm poen})$ Da li je funkcija diferencijabilna u tački (0,0)?

${\bf Elektroenergets ki\ softverski\ in\check{\bf z}enjering/Primenjeno\ softversko\ in\check{\bf z}enjerstvo}$

predmet: Matematička analiza

Prvi kolokvijum (probni) - Ispitni zadaci

- 1. a) (5 bodova) U zavisnosti od realnog parametra a odrediti graničnu vrednost niza $a_n = \frac{2^n + a^n}{2^{n+1} 5a^n}$.
 - b) (5 bodova) Odrediti konstante A i B tako da funkcija $f(x) = \begin{cases} \frac{\sin{(2020\,x)}}{x} &, x < 0 \\ Ax + B &, 0 \leq x \leq 1 \\ \frac{\ln{x^2}}{x 1} &, x > 1. \end{cases}$ bude neprekidna na \mathbb{R} .
 - c) (4 boda) Izračunati

$$\lim_{x \to 1} \frac{\sqrt[3]{8x} - 2}{\sqrt{x^2 + 3} - 2}$$

Napomena: Zadatke raditi bez korišćenja Lopitalovog pravila.

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza datum: 15. jun 2020. godine

PRVI KOLOKVIJUM (Prvi deo) Rešenja predispitnih obaveza

Sve odgovore obrazložiti.

1. (2 poena) Da li je funkcija $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ data sa d(x,y) = |x-y| za $x,y \in \mathbb{R}$ metrika (rastojanje)?

Rešenje

Jeste (po definiciji rastojanja) zbog osobina apsolutne vrednosti.

- $d(x,y) = |x y| \ge 0$.
- $d(x,y) = |x-y| = 0 \Leftrightarrow x-y = 0 \Leftrightarrow x = y$
- d(x,y) = |x y| = |y x| = d(y,x)
- $d(x,y) = |x-y| = |x-z+z-y| \le |x-z| + |z-y| = d(x,z) + d(z,y)$
- 2. (1 poen) Da li je tačka 0 tačka nagomilavanja skupa $A = [-1,0) \cup (0,1)$?

Rešenje

Jeste, jer svaka lopta L(0,r), r > 0, sadrži tačke iz skupa A različite od 0. Ekvivalentno, ne postoji lopta L(0,r) takva da je $A \cap L(0,r) \setminus 0 = \emptyset$.

3. Dat je niz $a_n = \frac{2 + (-1)^n}{n^2}$.

(1 poen) Odrediti
$$a = \lim_{n \to \infty} a_n$$
.

Rešenje

$$a=0$$
, jer je $2+(-1)^n$ ograničeno i $n^2\to\infty$ kad $n\to\infty$.

(1 poen) Da li dati niz zadovoljava sve uslove principa monotonosti? Navesti i proveriti uslove.

Rešenje

Svaki monotono neopadajuci (nerastući) niz ograničen sa gornje (donje) strane konvergira ka svom supremumu (infimumu). Dati niz je ograničen (jer je konvergentan), ali nije monoton. Za n=2k-1 je $a_n=a_{2k-1}=\frac{1}{(2k-1)^2}=\frac{1}{4k^2-2k+1}<\frac{3}{4k^2}=\frac{3}{(2k)^2}=a_{2k}=a_{n+1}$ dok je za $n=2k,\ a_n=a_{2k}=\frac{3}{4k^2}>\frac{1}{4k^2+2k+1}=a_{2k+1}=a_{n+1}$.

4. Data je funkcija $f(x)=\left\{\begin{array}{cc} 1+x & x\neq 0\\ 2 & x=0 \end{array}\right.$

(1 poen) Odrediti
$$A = \lim_{x \to 0} f(x)$$
.

Rešenje

$$A = 1$$
.

(1 poen) Odrediti
$$\delta$$
 tako da je $|f(x) - A| < 10^{-2}$ za $|x| < \delta$, $x \neq 0$.

Rešenje

$$|f(x) - A| = |1 + x - 1| = |x| < 10^{-2} \text{ za } |x - 0| < 10^{-2}, \text{ tj. } \delta = 10^{-2}.$$

5. (1 poen) Odrediti vrstu prekida funkcije $f(x) = e^{-\frac{1}{x^2}}$ u tački 0.

Rešenje

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} e^{-\frac{1}{x^2}} = 0$$
, pa funkcija ima prividan prekid u tački 0.

6. (2 poena) Pokazati da funkcija $f(x) = x^3 - 2x + 3$ na intervalu [-3,1] ima bar jednu nulu. Gde se ta nula nalazi u odnosu na tačku -1?

Rešenje

Funkcija je neprekidna na [-3,1], f(-3) < 0, f(1) > 0, pa na intervalu [-3,1] funkcija ima bar jednu nulu. Kako je f(-1) > 0, nula se nalazi levo od tačke 1.

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza datum: 15. jun 2020. godine

Prvi kolokvijum (drugi deo) Rešenja predispitnih obaveza

Sve odgovore obrazložiti.

1. (2 poena) Data je funkcija $y=x^2$. Čemu je jednak priraštaj Δy a čemu diferencijal dy date funkcije u tački x=1 ako je $\Delta x=0.1$?

Rešenje

$$\Delta y = f(x + \Delta x) - f(x) = f(1.1) - f(1) = 1.1^2 - 1^2 = 0.21.$$
 $dy = y'dx = 2 \cdot 0.1 = 0.2.$

2. (1 poen) Odrediti prvi izvod funkcije y = y(x) date sa $x(t) = \ln t$, $y(t) = e^t$, t > 0.

Rešenje

$$\frac{dx}{dt}=\frac{1}{t},\,\frac{dy}{dt}=e^t,\,y'(t)=\frac{e^t}{\frac{1}{t}}=te^t,\,x(t)=\ln t$$
 (ovo je izvod u parametarskom obliku).

Drugi način: $y(x) = e^{e^t}$, $y'(x) = e^t e^{e^t}$ (ovo je izvod u eksplicitnom obliku).

3. (1 poen) Za funkciju $f(x) = \frac{1}{2+x}$ napisati Tejlorov polinom prvog stepena u tački a = 1, kao i formulu za grešku.

Rešenje

Domaći.

- 4. Data je funkcija $f(x)=\left\{ egin{array}{ccc} \frac{\sin x}{x} & x<0 \\ 1 & x=0 \\ \ln x & x>0 \end{array} \right.$
 - (a) (1 poen) Da li ova funkcija ima ekstrem u x = 0?

Rešenje

Da, jer je f(1) = 1, $f(x) = \ln x < 1$ za $x \in (0, r)$ za svako 0 < r < e, i $f(x) = \frac{\sin x}{x} < 1$ za x < 0 (jer je $\sin x > x$ za x < 0, sto se vidi iz grafika funkcija $y = \sin x$ i y = x).

(b) (1 poen) Da li ima vertikalnu asimptotu u tački x = 0?

Rešenje

Da, jer je
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \ln x = -\infty$$
.

(c) (1 poen) Da li ima horizontalnu asimptotu kad $x \to -\infty$?

Rešenje

Da, jer je
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\sin x}{x} = 0$$
. Horizontalna asimptota je prava $y = 0$ tj. x-osa.

5. (1 poen) Za funkciju $z(x,y)=x^2h(u,v),\,u=xy,\,v=x+y,$ gde je h diferencijabilna funkcija, naći $\frac{\partial z}{\partial x}$.

Rešenje

$$\frac{\partial z}{\partial x} = 2xh(u,v) + x^2(\frac{\partial h}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial h}{\partial v}\frac{\partial v}{\partial x}) = 2xh(u,v) + x^2(\frac{\partial h}{\partial u}y + \frac{\partial h}{\partial v}).$$

- 6. Data je funkcija z(x,y) = (x+1)(y-1).
 - (a) (1 poen) Ispitati po definiciji da li je data funkcija diferencijabilna na \mathbb{R}^2 .

Rešenje

$$\Delta z = z(x + \Delta x, y + \Delta y) - z(x, y) = (x + \Delta x + 1)(y + \Delta y - 1) - (x + 1)(y - 1) = (y - 1)\Delta x + (x + 1)\Delta y + \Delta x \Delta y,$$
 pa je $D_1 = (y - 1), D_2 = x + 1$ i npr. $\alpha_1 = \Delta y$ (ili $\alpha_2 = \Delta x$).

(b) (1 poen) Da li funkcija ima ekstrem u tački T(-1,1)?

Rešenje

Ne, jer u tački T je $\Delta z = \Delta x \Delta y$ što nije stalnog znaka ni u jednoj okolini tačke T.

(c) (1 poen) Naći ekstreme ove funkcije pod uslovom $x-y+1=0. \label{eq:constraint}$

Rešenje

iz x-y+1=0 je y=x+1 pa je $z=y(y-1)=y^2-y$. Ova kvadratna funkcija ima minimum za $y=\frac{1}{2}$ (onda je $x=-\frac{1}{2}$), pa polazna funkcija ima uslovni ekstrem u tački $(-\frac{1}{2},\frac{1}{2})$.

Elektroenergetski softverski inženjering/Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza

15. Jun 2020.

Kolokvijum 1a - Rešenja ispitnih zadataka

1. a) (7 poena) U zavisnosti od realnih parametara p i q, $p \ge 0$, $q \ge 0$, diskutovati graničnu vrednost niza datog sa

$$a_n = \frac{1}{\sqrt{pn^3 + qn^2 + 1}} + \frac{1}{\sqrt{pn^3 + qn^2 + 2}} + \dots + \frac{1}{\sqrt{pn^3 + qn^2 + n}}.$$

Rešenje. Zadatak rešavamo primenom teoreme o uklještenim nizovima (T.O.U).

$$b_n = \frac{n}{\sqrt{pn^3 + qn^2 + n}} \le a_n \le \frac{n}{\sqrt{pn^3 + qn^2 + 1}} = c_n$$

U nastavku diskutujemo tri slučaja u zavisnosti od realnih parametra p i q:

1. za p>0 i $q\geq 0$ dobijamo sledeće granične vrednosti:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n}{\sqrt{pn^3 + qn^2 + n}} / n = \lim_{n \to \infty} \frac{1}{\sqrt{pn + q + \frac{1}{n}}} = 0 \quad i$$

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{n}{\sqrt{pn^3 + qn^2 + 1}} / = \lim_{n \to \infty} \frac{1}{\sqrt{pn + q + \frac{1}{n^2}}} = 0$$

Primenom T.O.U. možemo da zaključimo da je $\lim_{n\to\infty} a_n = 0$.

2. za p = 0 i q > 0 dobijamo sledeće granične vrednosti:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n}{\sqrt{qn^2 + n}} / \int_{-\infty}^{\infty} \frac{1}{\sqrt{q + \frac{1}{n}}} = \frac{1}{\sqrt{q}} \quad i$$

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{n}{\sqrt{qn^2 + 1}} / = \lim_{n \to \infty} \frac{1}{\sqrt{q + \frac{1}{n^2}}} = \frac{1}{\sqrt{q}}$$

Primenom T.O.U. možemo da zaključimo da je $\lim_{n\to\infty}a_n=\frac{1}{\sqrt{q}}$

3. za p=0 i q=0 dobijamo $b_n=\frac{n}{\sqrt{n}}=\sqrt{n}\leq a_n\leq n=c_n$ odakle sledi da je

$$\lim_{n \to \infty} b_n = +\infty \Rightarrow \lim_{n \to \infty} a_n = +\infty.$$

b) (7 poena) Odrediti konstante
$$A$$
 i B tako da funkcija $f(x)=\left\{\begin{array}{ll} \frac{x^3-2x^2-x+2}{x^2+x} &, x<-1\\ Ax+B &, -1\leq x\leq 0\\ \frac{\sin 2x}{\sqrt{x+1}-1} &, x>0 \end{array}\right.$

bude neprekidna na R. Raditi bez korišćenja Lopitalovog pravila.

Rešenje. Za zadatu funkciju f(x) uslovi za neprekidnost su:

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) = f(-1)$$
 (1)

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$
 (2)

Iz uslova (1) dobijamo da je:

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{x^{3} - 2x^{2} - x + 2}{x^{2} + x} = \lim_{x \to -1^{-}} \frac{(x+1)(x^{2} - 3x + 2)}{x(1+x)} = \lim_{x \to -1^{-}} \frac{x^{2} - 3x + 2}{x} = \frac{1+3+2}{-1} = -6,$$

$$\lim_{x \to -1^{+}} f(x) = f(-1) = -A + B,$$

odakle dobijamo da je A + B = -6. Iz uslova (2) dobijamo da je:

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin(2x)}{\sqrt{x+1} - 1} = \lim_{x \to 0^+} \frac{\sin(2x)}{\sqrt{x+1} - 1} \cdot \frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1} = \lim_{x \to 0^+} \frac{\sin(2x)}{2x} \cdot 2 \cdot (\sqrt{x+1} + 1) = 4,$$

$$\lim_{x \to 0^-} f(x) = f(0) = B,$$

odakle dobijamo da je B=4 i $-A+4=-6 \Rightarrow A=10$

- 2. (13 poena) Detaljno ispitati tok i nacrtati grafik funkcije $f(x) = \frac{\ln |x| + 1}{x}$. Rešenje.
 - (1) oblast definisanosti: je skup $\mathcal{D} = \{x \in \mathbb{R} \mid x \neq 0\}$ (ili $x \in (-\infty, 0) \cup (0, +\infty)$).
 - (2) parnost: $f(-x) = \frac{\ln|-x|+1}{-x} = -\frac{\ln|x|+1}{x} = -f(x) \Rightarrow \text{funkcija } f(x) \text{ je } naparna \text{ tako da u nastavku zadatka ispitujemo funkciju za } x > 0$, tj. posmatramo $f(x) = \frac{\ln x + 1}{x}$.
 - (3) nule funkcije: $f(x) = 0 \Leftrightarrow \ln x + 1 = 0 \Leftrightarrow \ln x = -1 \Leftrightarrow x = e^{-1} \approx 0,37.$
 - (4) asimptote funkcije:
 - V.A. je prava x = 0 jer

$$\lim_{x \to 0^+} \frac{\ln x + 1}{x} = \frac{(-\infty) + 1}{0^+} = \frac{-\infty}{0^+} = -\infty.$$

 \cdot H.A. je prava y = 0 jer

$$\lim_{x \to +\infty} \frac{\ln x + 1}{x} = \left(\frac{\infty}{\infty}\right) \stackrel{\text{L.P.}}{=} \lim_{x \to +\infty} \frac{\frac{1}{x}}{1} = 0.$$

- · K.A. ne postoji, jer funkcija ima horizontalnu asimptotu.
- (5) monotonost i ekstremne vrednosti:

$$f'(x) = \left(\frac{\ln x + 1}{x}\right)' = \frac{\frac{1}{x} \cdot x - (\ln x + 1) \cdot 1}{x^2} = -\frac{\ln x}{x^2}$$

$$f'(x) > 0 \Leftrightarrow \ln x < 0 \Leftrightarrow x < 1.$$

$$f'(x) < 0 \Leftrightarrow \ln x > 0 \Leftrightarrow x > 1.$$

Funkcija je rastuća na intervalu (0,1), a opadajuća na intervalu $(1,+\infty)$.

Funkcija ima maksimum u tački $T_{max}(1,1)$.

(6) konveksnost, konkavnost i prevojne tačke:

$$f''(x) = -\frac{\frac{1}{x} \cdot x^2 - \ln x \cdot 2x}{x^4} = \frac{2 \ln x - 1}{x^3};$$

$$\begin{array}{l} f''(x)>0 \Leftrightarrow 2\ln x -1>0 \Leftrightarrow \ln x>\frac{1}{2} \Leftrightarrow x>\sqrt{e}\approx 1,65 \text{ i} \\ f''(x)<0 \Leftrightarrow 0< x<\sqrt{e}, \text{ a } f''(x)=0 \Leftrightarrow x=\sqrt{e}. \end{array}$$

Funkcija je konveksna na intervalu $(\sqrt{e}, +\infty)$, konkavna na intervalu $(0, \sqrt{e})$. Funkcija ima prevojnu tačku $P(\sqrt{e}, \frac{3}{2\sqrt{e}})$, gde je $\frac{3}{2\sqrt{e}} \approx 0,91$.

- (7) tangente funkcije u tačkama gde ne postoji prvi izvod: nema tačaka za ispitivanje.
- 3. (7 poena) Naći ekstremne vrednosti funkcije $z(x,y)=e^{x-y}(x^2-2xy+2y^2)$ Rešenje.

$$\frac{\partial z}{\partial x} = e^{x-y}(x^2 - 2xy + 2y^2 + 2x - 2y) = 0$$
$$\frac{\partial z}{\partial y} = e^{x-y}(-x^2 + 2xy - 2y^2 - 2x + 4y) = 0.$$

Sistem je dalje ekvivalentan sa sistemom

pa dolazimo do jednačine

$$x^{2} - 2x \cdot 0 + 2 \cdot 0^{2} + 2x - 2 \cdot 0 = 0 \Leftrightarrow x^{2} + 2x = 0 \Leftrightarrow x(x+2) = 0 \Leftrightarrow \boxed{x_{1} = 0, \ \boxed{x_{2} = -2}}$$

Stacionarne tačke su A(0,0) i B(-2,0). Pre ispitivanja karaktera stacionarnih tačaka potrebni su parcijalni izvodi drugog reda

Slika 1: Grafik funkcije $f(x) = \frac{\ln |x| + 1}{x}$

$$r = \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(e^{x-y} (x^2 - 2xy + 2y^2 + 2x - 2y) \right) = e^{x-y} (x^2 - 2xy + 2y^2 + 4x - 4y + 2);$$

$$t = \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(e^{x-y} (-x^2 + 2xy - 2y^2 - 2x + 4y) \right) = e^{x-y} (x^2 - 2xy + 2y^2 + 4x - 8y + 4);$$

$$s = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial}{\partial y} \left(e^{x-y} (x^2 - 2xy + 2y^2 + 2x - 2y) \right) = e^{x-y} (-x^2 + 2xy - 2y^2 - 4x + 6y - 2).$$

Tačka $A(0,0)$:	Tačka $B(-2,0)$:
r = 2, t = 4, s = -2	$r = -2e^{-2}, \ t = 0, \ s = 2e^{-2}$
$rt - s^2 = 4 > 0$	$rt - s^2 = -4e^{-4} < 0$
r > 0	Funkcija $z(x,y)$ nema ekstrem u tački B .
Funkcija $z(x,y)$ ima minimum $z(0,0)=0$ u tački A .	

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza

PRVI KOLOKVIJUM Predispitne obaveze

Sve odgovore obrazložiti.

- 1. (1 poen) U metričkom prostoru (\mathbb{R}^2 , d), gde je d Euklidska metrika, date su tačke A(-1,2) i B(1,2). Naći $r \in \mathbb{R}^+$ tako da su lopte $L_1(A,r)$ i $L_2(B,r)$ disjunktne.
- 2. (1 poen) Kakva je tačka 0 za skup $A = [-1, 0) \cup \{1\}$?
- 3. (1 poen) Da li je tačka 0 adherentna tačka skupa $[-1,0) \cup (0,1]$?
- 4. (1 poen) Da li je tačka 0 rubna tačka skupa $[-1,0) \cup (0,1]$?
- 5. (1 poen) Dat je niz $a_n = \frac{n+1}{n!}$. Odrediti $a = \lim_{n \to \infty} \frac{a_{n+1}}{a}$.
- 6. (1 poen) Ako je $a_n=n^2+n+1$, izračunati $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$.
- 7. (1 poen) Naći $\lim_{n\to\infty}\frac{1+(-1)^n}{n}.$
- 8. Dat je niz $a_n = \frac{\sin \frac{n\pi}{2}}{n^2}$.
 - (1 poen) Odrediti $a = \lim_{n \to \infty} a_n$.
 - (1 poen) Naći indeks n_0 počevši od kog je rastojanje izmedju a i a_n manje od 10^{-2} .
- 9. Dat je niz $a_n = \frac{(-1)^n}{n^2}$.
 - (1 poen) Odrediti $a = \lim_{n \to \infty} a_n$.
 - (1 poen) Koliko tačaka nagomilavanja ima dati niz?
 - (1 poen) Naći indeks n_0 počevši od kog je rastojanje izmedju a i a_n manje od 10^{-2} .
- 10. (1 poen) Da li je niz $a_n = \frac{(-1)^n}{n}$ konvergentan? Da li je ograničen? Da li je monoton?
- 11. (1 poen) Da li je niz $a_n = e^{\frac{(-1)^n}{n}}$ konvergentan? Da li je ograničen? Da li je monoton?
- 12. Dat je niz $a_n = \frac{\cos n\pi}{n}$.
 - (1 poen) Odrediti $a = \lim_{n \to \infty} a_n$.
 - (1 poen) Koliko tačaka nagomilavanja ima dati niz?
 - (1 poen) Naći indeks n_0 počevši od kog je rastojanje izmedju a i a_n manje od 10^{-2} .
- 13. Dat je niz $a_n = \frac{\sin n}{n}$. Odrediti $a = \lim_{n \to \infty} a_n$.

Odrediti
$$a = \lim_{n \to \infty} a_n$$

Da li je dati niz Košijev?

Naći indeks n_0 počevši od kog je rastojanje izmedju a i a_n manje od 10^{-2} .

- 14. Dat je niz $a_n = \frac{(-1)^n}{2^{n+1}}$.
 - (1 poen) Odrediti $a = \lim_{n \to \infty} a_n$.
 - (1 poen) Da li je dati niz Košijev u \mathbb{R} ?
 - (1 poen) Naći indeks n_0 počevši od kog je rastojanje izmedju a i a_n manje od 10^{-2} .
- 15. (1 poen) Da li je $\{[-\frac{1}{\sqrt{n}}, \frac{1}{n^2}] : n \in N\}$ niz umetnutih intervala?
- 16. (1 poen) Koliko realnih brojeva je sadržano u svakom od datih intervala?
- 17. (1 poen) Neka je $a_n = -1$ i $b_n = \frac{1}{n}$. Odrediti skup tačaka koji leži u svakom od intervala $[a_n, b_n]$.

18. Data je funkcija
$$f(x) = \begin{cases} 2x - 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$$
.

(1 poen) Odrediti
$$A = \lim_{x \to 0} f(x)$$
.

(1 poen)
 Odrediti
$$\delta$$
tako da je $|f(x)-A|<10^{-2}$ za $|x|<\delta.$

19. (1 poen) Data je funkcija
$$f(x) = \left\{ \begin{array}{cc} 1-x^2 & x \neq 0 \\ 2 & x=0 \end{array} \right.$$
. Odrediti $A = \lim_{x \to 0} f(x)$.

20. Data je funkcija
$$f(x) = \left\{ \begin{array}{ll} 1+x & x \neq 0 \\ 0 & x=0 \end{array} \right.$$

(1 poen) Odrediti
$$A = \lim_{x \to 0} f(x)$$
.

(1 poen)
 Odrediti
$$\delta$$
tako da je $|f(x)-A|<10^{-2}$ za $|x|<\delta.$

21. (1 poen) Odrediti parametar
$$A$$
 tako da funkcija $f(x) = \begin{cases} 1-x & x < 0 \\ A & x = 0 \\ x^2 + 1 & x > 0 \end{cases}$ bude neprekidna na \mathbb{R} .

- 22. (1 poen) Da li su funkcije $f(x) = \sin^2 x$ i g(x) = x beskonačno male veličine kad $x \to 0$? Ako jesu, uporediti njihovu brzinu teženja ka nuli.
- 23. (1 poen) Da li su $f(x) = x\sqrt{x}$ i $g(x) = x^2$ beskonačno velike veličine kad $x \to \infty$? Ako jesu, uporediti ih.
- 24. (1 poen) Da li su $f(x) = 100x^2$ i $g(x) = x^2$ beskonačno velike veličine kad $x \to \infty$? Ako jesu, uporediti ih.

25. Data je funkcija
$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}$$
.

(1 poen)
 Da li je data funkcija neprekidna na
$$\mathbb{R}?$$

26. (1 poen)
 Data je funkcija
$$f(x) = \left\{ \begin{array}{ll} x \sin \frac{1}{x} & x < 0 \\ x & x \geq 0 \end{array} \right.$$

Da li je data funkcija neprekidna na
$$\mathbb{R}$$
?

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza

DRUGI KOLOKVIJUM Predispitne obaveze

Sve odgovore obrazložiti.

1. (1 poen) Naći po definiciji izvod funkcije $f(x) = \frac{1}{x}$.

Rešenje

$$f'(x) = \lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{x - (x + \Delta x)}{x \Delta x (x + \Delta x)} = -\frac{1}{x^2}$$

2. (1 poen) Odrediti realnu konstantu c tako da postoji funkcija f(x) za koju je $f'(x) = \begin{cases} 1 & , & x \leq 0 \\ x+c & , & x>0 \end{cases}$

Rešenje

Prvi izvod ne može imati prekid prve vrste. Data funkcija f' ne može imati ni prekid druge vrste, pa mora biti neprekidna, tj. c = 1.

3. Funkcija y = y(x) je data sa $\ln(x + y) = xy$.

(a) (1 poen) Odrediti njen prvi izvod.

Rešenje

$$\frac{1}{x+y}(1+y') = y + xy', \text{ pa je } y'(x) = \frac{xy+y^2-1}{1-x^2-xy}.$$

(b) (1 poen) Naći jednačinu tangente na grafik date funkcije u tački (0,1).

Rešenje

$$x_0 = 0, y_0 = 1, y'(0, 1) = -1$$
, pa je jednačina tangente $t: y - 1 = -x$, tj. $y = 1 - x$.

4. Funkcija y = y(x) je data sa $y^2 = \ln(x+2y) + \frac{1}{4}$.

- (a) (1 poen) Odrediti njen prvi izvod.
- (b) (1 poen) Naći jednačinu tangente na grafik date funkcije u tački $(a, \frac{1}{2})$.

Rešenje

Domaći.

- 5. Funkcija y = y(x) je data sa $x(t) = t^2 + 1$, y(t) = 2t, t > 0.
 - (a) (1 poen) Odrediti njen prvi izvod.

Rešenje

$$\frac{dy}{dt}=2,\,\frac{dx}{dt}=2t,\,\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2}{2t}=\frac{1}{t},$$
 pa je prvi izvod dat takodje u parametarskom obliku $x(t)=t^2+1,\,y_x'(t)=\frac{1}{t}.$

(b) (1 poen) Odrediti realan parametar a tako da tačka A(a,2) leži na grafiku date funkcije.

Rešenie

$$y = 2t = 2$$
 pa je $t = 1$ i $x(1) = 1^2 + 1 = 2$, $A(2, 2)$.

(c) (1 poen) Naći jednačinu tangente na grafik date funkcije u tački A.

Rešenje

$$y'(1) = \frac{1}{1} = 1$$
, pa je jednačina tangente $t: (y-2) = (x-2)$ odnosno $y=x$.

6. Funkcija y = y(x) je data sa $x(t) = t^2 + 1$, y(t) = 2t, $t \in \mathbb{R}$.

- (a) (1 poen) Odrediti njen domen.
- (b) (1 poen) Odrediti njen prvi izvod.

- (c) (1 poen) Odrediti realan parametar a tako da tačka A(a,2) leži na grafiku date funkcije.
- (d) (1 poen) Naći jednačinu tangente na grafik date funkcije u tački A.

Rešenje

Za domaći.

7. (1 poen) Odrediti jednačinu tangente na grafik funkcije y = f(x) u tački x = 2 ako je f(2) = -1 i f'(2) = 3.

Rešenje

$$t: y + 1 = 3(x - 2)$$
, tj. $y = 3x - 7$.

8. (1 poen) Odrediti jednačinu tangente na parabolu $y = 3x^2 - 5x$ u tački (2,2).

Rešenje

Za domaći.

9. (1 poen) Da li funkcija f(x) = |x| zadovoljava uslove Rolove teoreme na intervalu [-1,1]?

Rešenje

Funkcija nema izvod u tački $x = 0 \in (-1, 1)$, pa ne zadovoljava uslove Rolove teoreme.

10. (1 po
en) Da li postoji tačka $c \in (1,2)$ takva da je tangenta u tački
 $T(c,c^2)$ na krivu $y=x^2$ paralelna sa pravom y=3x?

Rešenje

Da, jer je funkcija $f(x) = x^2$ neprekidna na [1,2] (i na \mathbb{R}) i ima izvod na (1,2) (i na \mathbb{R}), tj. f zadovoljava uslove Lagranžove teoreme na [1,2], a prava y=3x je paralelna sa sečicom funkcije kroz tačke A(1,1) i B(2,4).

11. (1 poen) Pokazati da funkcija $f(x) = x^3 + 3x + 1$ ima tačno jednu nulu na intervalu [-1,0].

Rešenje Funkcija je polinom, pa je neprekidna i diferencijabilna na svakom intervalu. f(-1) = -3 < 0, f(0) = 1 > 0, $f'(x) = 3x^2 + 3 > 0$, pa funkcija ima tačno jednu nulu na [-1, 0].

12. (1 poen) Za funkciju $f(x) = \frac{1}{2-x}$ napisati Tejlorov polinom prvog stepena u tački a = 1, kao i formulu za grešku.

Rešenje

$$f(x) = \frac{1}{2-x}, f'(x) = \frac{1}{(2-x)^2}, f''(x) = \frac{2}{(2-x)^3}, f(1) = 1, f'(1) = 1 \text{ pa je}$$

$$T(x) = 1 + (x-1), R(x) = \frac{1}{(2-(1+\theta(x-1))^3}(x-1)^2, 0 < \theta < 1.$$

13. (2 poena) Za funkciju $f(x) = \sqrt{x}$ napisati Tejlorov polinom drugog stepena u tački a=1, kao i formulu za grešku.

Rešenje

$$f(x) = \sqrt{x}, f'(x) = \frac{1}{2\sqrt{x}}, f''(x) = -\frac{1}{4\sqrt{x^3}}, f'''(x) = \frac{3}{8\sqrt{x^5}}.$$

$$f(1) = 1, f'(1) = \frac{1}{2}, f''(1) = -\frac{1}{4}, f'''(1 + \theta(x - 1)) = \frac{3}{8\sqrt{(1 + \theta(x - 1))^5}}, \text{ pa je}$$

$$T_2(x) = 1 + \frac{1}{2}(x - 1) - \frac{1}{8}(x - 1)^2, R = \frac{1}{16\sqrt{(1 + \theta(x - 1))^5}}(x - 1)^3.$$

14. (1 poen) Da li je greška Maklorenovog polinoma drugog stepena za funkciju $f(x) = e^x$ na intervalu [0,1] manja od 0.5?

Rešenje

Da.
$$0 < R(x) = \frac{e^{\theta x}}{3!}x^3 \le \frac{e}{6} < \frac{3}{6} = \frac{1}{2}$$
, za $0 < \theta < 1$, $x \in [0, 1]$.

15. (1 poen) Naći minimum funkcije $f(x) = x^3 + 3x$ na intervalu [1, 3].

Rešenje

Funkcija je neprekidna na [1,3] (neprekidna je na \mathbb{R}), pa dostiže ekstreme na tom intervalu (i minimum i maksimum). Kako je $f'(x) = 3x^2 + 3 > 0$, funkcija je rastuća na [1,3] (rastuća je i na \mathbb{R}), pa dostiže ekstreme u krajnjim tačkama intervala [1,3]: maksimum u tački x=3, a minimum (minimalnu vrednost) 2 dostiže u u tački x=1.

- 16. Data je funkcija $f(x) = \begin{cases} \arctan x & x \leq 0 \\ -\frac{1}{x} & x > 0 \end{cases}$.
 - (a) (1 poen) Da li je data funkcija diferencijabilna u tački x = 0?

Rešenje

Nije, jer nije neprekidna: $\lim_{x\to 0^-}f(x)=\lim_{x\to 0^-}\arctan x=0=f(0)\neq \lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}-\frac{1}{x}=-\infty.$

(b) (1 poen) Da li je rastuća u tački x = 0?

Rešenje Ne. $f(0) = \operatorname{arctg} 0 = 0$, $f(x) = \operatorname{arctg} x < 0$ za x < 0, ali je $f(x) = -\frac{1}{x} < 0$ za x > 0.

(c) (1 poen) Da li je rastuća na \mathbb{R} ?

Rešenje

Nije. Ako je npr. $x_1 = 0$, $x_2 = \frac{1}{2}$, onda je $x_1 \le x_2$ a $f(x_1) = f(0) = 0 \ge -2 = f(\frac{1}{2}) = f(x_2)$.

(d) (1 poen) Da li ima ekstrem u x = 0?

Rešenje

Da, ima maksimum, jer je f(0) = 0 i f(x) < 0 za $x \neq 0$.

(e) (1 poen) Da li ima vertikalnu asimptotu u tački x = 0?

Rešenje

Da, jer je $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{1}{x} = -\infty$.

(f) (1 poen) Da li ima horizontalnu asimptotu?

Rešenje

 $\lim_{x\to -\infty} \operatorname{arctg} x = -\frac{\pi}{2}, \text{ pa funkcija ima horizontalnu asimptotu } y = -\frac{\pi}{2} \text{ kad } x \to -\infty.$ $\lim_{x\to \infty} -\frac{1}{x} = 0, \text{ pa funkcija ima horizontalnu asimptotu } y = 0 \text{ kad } x \to \infty.$

- 17. Data je funkcija $f(x) = \begin{cases} e^x & x \le 0 \\ \ln x & x > 0 \end{cases}$.
 - (a) (1 poen) Da li je data funkcija diferencijabilna u tački x = 0?
 - (b) (1 poen) Da li je rastuća u tački x = 0?
 - (c) (1 poen) Da li je rastuća na \mathbb{R} ?
 - (d) (1 poen) Da li ima ekstrem u x = 0?
 - (e) (1 poen) Da li ima vertikalnu asimptotu u tački x = 0?
 - (f) (1 poen) Da li ima horizontalnu asimptotu?

Rešenje

Domaći.

18. (1 poen) Za funkciju $z(x,y) = x^2 h(xy)$, gde je h diferencijabilna funkcija, naći $\frac{\partial z}{\partial x}$.

Rešenje

$$\frac{\partial z}{\partial x} = 2xh(xy) + x^2yh'(xy).$$

19. (1 poen) Za funkciju $z(x,y) = x^2 h(xy)$, gde je h diferencijabilna funkcija, naći $\frac{\partial z}{\partial y}$.

Rešenje

Domaći.

20. (1 poen) Za funkciju $z(x,y) = xyf(x^2y)$, gde je f diferencijabilna funkcija, naći $\frac{\partial z}{\partial x}$.

Rešenje

Domaći.

- 21. Data je funkcija $z(x,y) = xy^2$.
 - (a) (1 poen) Čemu je jednak priraštaj Δz date funkcije u tački T(1,1)?

Rešenje

$$\Delta z(1,1) = z(1 + \Delta x, 1 + \Delta y) - z(1,1) = (1 + \Delta x)(1 + \Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 2\Delta x \Delta y + (1 + \Delta x$$

(b) (1 poen) Da li je data funkcija diferencijabilna na \mathbb{R}^2 .

Rešenje

Jeste, jer je polinom po obe promenljive.

(c) (1 poen) Čemu je jednak njen diferencijal dz u tački T?

Rešenje

$$\frac{\partial z}{\partial x} = y^2$$
, $\frac{\partial z}{\partial y} = 2xy$, $\frac{\partial z}{\partial x}(1,1) = 1$, $\frac{\partial z}{\partial y}(1,1) = 2$, pa je $dz(1,1) = dx + 2dy$.

(d) (1 poen) Ispitati uslovne ekstreme funkcije uz uslov $y = x^2$.

Rešenje

Ako je $y=x^2$, onda je $z=z(x)=x^5$. Ova funkcija nema ekstrema.

- 22. Data je funkcija $z(x,y) = x^2y$.
 - (a) (1 poen) Da li je data funkcija neprekidna u tački (0,0)?

Rešenje

Jeste, jer je data funkcija polinom po obe promenljive, pa je neprekidna u svakoj tački iz \mathbb{R}^2 . Na drugi način: $\Delta z(0,0) = z(0+\Delta x,0+\Delta y) - z(0,0) = (\Delta x)^2(\Delta y) - 0 = (\Delta x)^2\Delta y \to 0$, kad $\Delta x, \Delta y \to 0$.

(b) (1 poen) Naći po definiciji $\frac{\partial z}{\partial x}$.

Rešenie

$$\frac{\partial z}{\partial x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{z(x + \Delta x, y) - z(x, y)}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x + \Delta x)^2 y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x$$

(c) (1 poen) Da li funkcija ima ekstrem u tački (0,0)?

Rešenje

Nema, jer je z(0,0) = 0, a u svakoj okolini tačke (0,0) ima i tačaka u kojima je vrednost funkcije z pozitivna (tačke u prvom i četvrtom kvadrantu) i tačaka u kojima je vrednost funkcije negativna (tačke u drugom i trećem kvadrantu).

- 23. Data je funkcija $z(x,y) = x^2(1-y)$.
 - (a) (1 poen) Da li je data funkcija neprekidna u tački (0,1)?
 - (b) (1 poen) Naći po definiciji $\frac{\partial z}{\partial x}$
 - (c) (1 poen) Da li funkcija ima ekstrem u tački (0,1)?

Rešenje

Ne. z(0,1)=0, a u svakoj okolini tačke (0,1) ima i tačaka za koje je z>0 (tačke za koje je y<1) i tačaka za koje je z<0 (tačke za koje je y>1).

(d) (1 poen) Ispitati ekstreme date funkcije uz uslov $y = 1 - x^2$.

Rešenje

Iz uslova, $1 - y = x^2$, pa je $z = z(x) = x^4$. Ova funkcija ima minimum za x = 0, a polazna funkcija ima uslovni minimum za (x, y) = (0, 1).

24. (1 poen) Ispitati ekstreme funkcije $f(x,y) = x^2 - y^2$.

Rešenje

Domaći.

25. (1 poen) Da li funkcija $f(x,y) = x^2 - y^2$ u tački (0,0) ima ekstrem uz uslov y = 0?

Rešenje

Domaći.

26. (1 poen) Ispitati ekstreme funkcije $f(x,y) = x^3 - 3xy^2$.

Rešenje

 $f_x = 3x^2 - 3y^2 = 0$, $f_y = -6xy = 0$, pa je T(0,0) jedina stacionarna tačka date funkcije. Kako je f(T) = 0 i $f(x,y) = x(x^2 - 3y^2)$, to u svakoj okolini tačke T ima tačaka u kojima je f > 0 (one tačke u kojima je x > 0, y = 0) i onih u kojima je f < 0 (one za koje je x = 0), pa funkcija nema ekstrem u T.

27. (2 poena) Naći stacionarne tačke i ekstreme funkcije $f(x,y) = x^2 + y^2$ pod uslovom x + y = 1.

Rešenje

Domaći.

28. (1 poen) Da li funkcija $f(x,y) = x^2 - y^2$ u tački (0,0) ima ekstrem uz uslov y = x?

Rešenje

Ne. Za y = x je f = f(x) = 0 (funkcija je identički jednaka nuli), pa nema ekstreme.

29. Data je funkcija $z = \ln x^2 y$.

(1 poen) Da li data funkcija ima ekstrem uz uslov $x^2 + (y+2)^2 = 1$?

Rešenje

Tačke koje zadovoljavaju uslov $x^2 + (y+2)^2 = 1$ se nalaze na kružnici sa centrom u (0,-2), poluprečnika 1, pa sve one imaju negativnu y koordinatu. U takvim tačama funkcija z nije definisana, pa nema ni uslovni ekstrem.

- 30. Data je funkcija $z(x,y) = e^{xy}$.
 - (a) (1 poen) Da li je data funkcija neprekidna na \mathbb{R}^2 ?

Rešenje

Da, jer je kompozicija elementarnih funkcija i definisana je na \mathbb{R}^2 .

(b) (1 poen) Naći po definiciji $\frac{\partial z}{\partial x}$ u tački (0,0).

Rešenje

$$z_x = \lim_{\Delta x \to 0} \frac{e^{\Delta x \cdot 0} - e^0}{\Delta x} = 0.$$

(c) (1 poen) Da li funkcija ima ekstrem u tački (0,0)?

Rešenje

Domaći.

(d) (1 poen) Ispitati ekstreme date funkcije uz uslov y = x.

Rešenje

Domaći.

31. (1 poen) Dat je problem: Od svih kutija površine P, čija je osnova kvadratna, naći onu koja ima najveću zapreminu. Odrediti funkcije f i φ tako da je uslovni ekstrem funkcije f uz uslov $\varphi=0$ rešenje datog problema.

Rešenje

Neka je x stranica osnove, a y visina kutije. Onda je $f(x,y)=x^2y, \ \varphi(x,y)=2x^2+4xy-P$.

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza

DRUGI KOLOKVIJUM Predispitne obaveze

Sve odgovore obrazložiti.

1. (1 poen) Naći po definiciji izvod funkcije $f(x) = \frac{1}{x}$.

Rešenje

$$f'(x) = \lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{x - (x + \Delta x)}{x \Delta x (x + \Delta x)} = -\frac{1}{x^2}$$

2. (1 poen) Odrediti realnu konstantu c tako da postoji funkcija f(x) za koju je $f'(x) = \begin{cases} 1 & , & x \leq 0 \\ x+c & , & x>0 \end{cases}$

Rešenje

Prvi izvod ne može imati prekid prve vrste. Data funkcija f' ne može imati ni prekid druge vrste, pa mora biti neprekidna, tj. c = 1.

3. Funkcija y = y(x) je data sa $\ln(x + y) = xy$.

(a) (1 poen) Odrediti njen prvi izvod.

Rešenje

$$\frac{1}{x+y}(1+y') = y + xy', \text{ pa je } y'(x) = \frac{xy+y^2-1}{1-x^2-xy}.$$

(b) (1 poen) Naći jednačinu tangente na grafik date funkcije u tački (0,1).

Rešenje

$$x_0 = 0, y_0 = 1, y'(0, 1) = -1$$
, pa je jednačina tangente $t: y - 1 = -x$, tj. $y = 1 - x$.

4. Funkcija y = y(x) je data sa $y^2 = \ln(x+2y) + \frac{1}{4}$.

- (a) (1 poen) Odrediti njen prvi izvod.
- (b) (1 poen) Naći jednačinu tangente na grafik date funkcije u tački $(a, \frac{1}{2})$.

Rešenje

Domaći.

- 5. Funkcija y = y(x) je data sa $x(t) = t^2 + 1$, y(t) = 2t, t > 0.
 - (a) (1 poen) Odrediti njen prvi izvod.

Rešenje

$$\frac{dy}{dt}=2,\,\frac{dx}{dt}=2t,\,\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2}{2t}=\frac{1}{t},$$
 pa je prvi izvod dat takodje u parametarskom obliku $x(t)=t^2+1,\,y_x'(t)=\frac{1}{t}.$

(b) (1 poen) Odrediti realan parametar a tako da tačka A(a,2) leži na grafiku date funkcije.

Rešenie

$$y = 2t = 2$$
 pa je $t = 1$ i $x(1) = 1^2 + 1 = 2$, $A(2, 2)$.

(c) (1 poen) Naći jednačinu tangente na grafik date funkcije u tački A.

Rešenje

$$y'(1) = \frac{1}{1} = 1$$
, pa je jednačina tangente $t: (y-2) = (x-2)$ odnosno $y=x$.

6. Funkcija y = y(x) je data sa $x(t) = t^2 + 1$, y(t) = 2t, $t \in \mathbb{R}$.

- (a) (1 poen) Odrediti njen domen.
- (b) (1 poen) Odrediti njen prvi izvod.

- (c) (1 poen) Odrediti realan parametar a tako da tačka A(a,2) leži na grafiku date funkcije.
- (d) (1 poen) Naći jednačinu tangente na grafik date funkcije u tački A.

Rešenje

Za domaći.

7. (1 poen) Odrediti jednačinu tangente na grafik funkcije y = f(x) u tački x = 2 ako je f(2) = -1 i f'(2) = 3.

Rešenje

$$t: y + 1 = 3(x - 2)$$
, tj. $y = 3x - 7$.

8. (1 poen) Odrediti jednačinu tangente na parabolu $y = 3x^2 - 5x$ u tački (2,2).

Rešenje

Za domaći.

9. (1 poen) Da li funkcija f(x) = |x| zadovoljava uslove Rolove teoreme na intervalu [-1,1]?

Rešenje

Funkcija nema izvod u tački $x = 0 \in (-1, 1)$, pa ne zadovoljava uslove Rolove teoreme.

10. (1 po
en) Da li postoji tačka $c \in (1,2)$ takva da je tangenta u tački
 $T(c,c^2)$ na krivu $y=x^2$ paralelna sa pravom y=3x?

Rešenje

Da, jer je funkcija $f(x) = x^2$ neprekidna na [1,2] (i na \mathbb{R}) i ima izvod na (1,2) (i na \mathbb{R}), tj. f zadovoljava uslove Lagranžove teoreme na [1,2], a prava y=3x je paralelna sa sečicom funkcije kroz tačke A(1,1) i B(2,4).

11. (1 poen) Pokazati da funkcija $f(x) = x^3 + 3x + 1$ ima tačno jednu nulu na intervalu [-1,0].

Rešenje Funkcija je polinom, pa je neprekidna i diferencijabilna na svakom intervalu. f(-1) = -3 < 0, f(0) = 1 > 0, $f'(x) = 3x^2 + 3 > 0$, pa funkcija ima tačno jednu nulu na [-1, 0].

12. (1 poen) Za funkciju $f(x) = \frac{1}{2-x}$ napisati Tejlorov polinom prvog stepena u tački a = 1, kao i formulu za grešku.

Rešenje

$$f(x) = \frac{1}{2-x}, f'(x) = \frac{1}{(2-x)^2}, f''(x) = \frac{2}{(2-x)^3}, f(1) = 1, f'(1) = 1 \text{ pa je}$$

$$T(x) = 1 + (x-1), R(x) = \frac{1}{(2-(1+\theta(x-1))^3}(x-1)^2, 0 < \theta < 1.$$

13. (2 poena) Za funkciju $f(x) = \sqrt{x}$ napisati Tejlorov polinom drugog stepena u tački a=1, kao i formulu za grešku.

Rešenje

$$f(x) = \sqrt{x}, f'(x) = \frac{1}{2\sqrt{x}}, f''(x) = -\frac{1}{4\sqrt{x^3}}, f'''(x) = \frac{3}{8\sqrt{x^5}}.$$

$$f(1) = 1, f'(1) = \frac{1}{2}, f''(1) = -\frac{1}{4}, f'''(1 + \theta(x - 1)) = \frac{3}{8\sqrt{(1 + \theta(x - 1))^5}}, \text{ pa je}$$

$$T_2(x) = 1 + \frac{1}{2}(x - 1) - \frac{1}{8}(x - 1)^2, R = \frac{1}{16\sqrt{(1 + \theta(x - 1))^5}}(x - 1)^3.$$

14. (1 poen) Da li je greška Maklorenovog polinoma drugog stepena za funkciju $f(x) = e^x$ na intervalu [0,1] manja od 0.5?

Rešenje

Da.
$$0 < R(x) = \frac{e^{\theta x}}{3!}x^3 \le \frac{e}{6} < \frac{3}{6} = \frac{1}{2}$$
, za $0 < \theta < 1$, $x \in [0, 1]$.

15. (1 poen) Naći minimum funkcije $f(x) = x^3 + 3x$ na intervalu [1, 3].

Rešenje

Funkcija je neprekidna na [1,3] (neprekidna je na \mathbb{R}), pa dostiže ekstreme na tom intervalu (i minimum i maksimum). Kako je $f'(x) = 3x^2 + 3 > 0$, funkcija je rastuća na [1,3] (rastuća je i na \mathbb{R}), pa dostiže ekstreme u krajnjim tačkama intervala [1,3]: maksimum u tački x=3, a minimum (minimalnu vrednost) 2 dostiže u u tački x=1.

- 16. Data je funkcija $f(x) = \begin{cases} \arctan x & x \leq 0 \\ -\frac{1}{x} & x > 0 \end{cases}$.
 - (a) (1 poen) Da li je data funkcija diferencijabilna u tački x = 0?

Rešenje

Nije, jer nije neprekidna: $\lim_{x\to 0^-}f(x)=\lim_{x\to 0^-}\arctan x=0=f(0)\neq \lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}-\frac{1}{x}=-\infty.$

(b) (1 poen) Da li je rastuća u tački x = 0?

Rešenje Ne. $f(0) = \operatorname{arctg} 0 = 0$, $f(x) = \operatorname{arctg} x < 0$ za x < 0, ali je $f(x) = -\frac{1}{x} < 0$ za x > 0.

(c) (1 poen) Da li je rastuća na \mathbb{R} ?

Rešenje

Nije. Ako je npr. $x_1 = 0$, $x_2 = \frac{1}{2}$, onda je $x_1 \le x_2$ a $f(x_1) = f(0) = 0 \ge -2 = f(\frac{1}{2}) = f(x_2)$.

(d) (1 poen) Da li ima ekstrem u x = 0?

Rešenje

Da, ima maksimum, jer je f(0) = 0 i f(x) < 0 za $x \neq 0$.

(e) (1 poen) Da li ima vertikalnu asimptotu u tački x = 0?

Rešenje

Da, jer je $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{1}{x} = -\infty$.

(f) (1 poen) Da li ima horizontalnu asimptotu?

Rešenje

 $\lim_{x\to -\infty} \operatorname{arctg} x = -\frac{\pi}{2}, \text{ pa funkcija ima horizontalnu asimptotu } y = -\frac{\pi}{2} \text{ kad } x \to -\infty.$ $\lim_{x\to \infty} -\frac{1}{x} = 0, \text{ pa funkcija ima horizontalnu asimptotu } y = 0 \text{ kad } x \to \infty.$

- 17. Data je funkcija $f(x) = \begin{cases} e^x & x \le 0 \\ \ln x & x > 0 \end{cases}$.
 - (a) (1 poen) Da li je data funkcija diferencijabilna u tački x = 0?
 - (b) (1 poen) Da li je rastuća u tački x = 0?
 - (c) (1 poen) Da li je rastuća na \mathbb{R} ?
 - (d) (1 poen) Da li ima ekstrem u x = 0?
 - (e) (1 poen) Da li ima vertikalnu asimptotu u tački x = 0?
 - (f) (1 poen) Da li ima horizontalnu asimptotu?

Rešenje

Domaći.

18. (1 poen) Za funkciju $z(x,y) = x^2 h(xy)$, gde je h diferencijabilna funkcija, naći $\frac{\partial z}{\partial x}$.

Rešenje

$$\frac{\partial z}{\partial x} = 2xh(xy) + x^2yh'(xy).$$

19. (1 poen) Za funkciju $z(x,y) = x^2 h(xy)$, gde je h diferencijabilna funkcija, naći $\frac{\partial z}{\partial y}$.

Rešenje

Domaći.

20. (1 poen) Za funkciju $z(x,y) = xyf(x^2y)$, gde je f diferencijabilna funkcija, naći $\frac{\partial z}{\partial x}$.

Rešenje

Domaći.

- 21. Data je funkcija $z(x,y) = xy^2$.
 - (a) (1 poen) Čemu je jednak priraštaj Δz date funkcije u tački T(1,1)?

Rešenje

$$\Delta z(1,1) = z(1 + \Delta x, 1 + \Delta y) - z(1,1) = (1 + \Delta x)(1 + \Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 1 = \Delta x + 2\Delta y + 2\Delta x \Delta y + (1 + \Delta x)(\Delta y)^2 - 2\Delta x \Delta y + (1 + \Delta x$$

(b) (1 poen) Da li je data funkcija diferencijabilna na \mathbb{R}^2 .

Rešenje

Jeste, jer je polinom po obe promenljive.

(c) (1 poen) Čemu je jednak njen diferencijal dz u tački T?

Rešenje

$$\frac{\partial z}{\partial x} = y^2$$
, $\frac{\partial z}{\partial y} = 2xy$, $\frac{\partial z}{\partial x}(1,1) = 1$, $\frac{\partial z}{\partial y}(1,1) = 2$, pa je $dz(1,1) = dx + 2dy$.

(d) (1 poen) Ispitati uslovne ekstreme funkcije uz uslov $y = x^2$.

Rešenje

Ako je $y=x^2$, onda je $z=z(x)=x^5$. Ova funkcija nema ekstrema.

- 22. Data je funkcija $z(x,y) = x^2y$.
 - (a) (1 poen) Da li je data funkcija neprekidna u tački (0,0)?

Rešenje

Jeste, jer je data funkcija polinom po obe promenljive, pa je neprekidna u svakoj tački iz \mathbb{R}^2 . Na drugi način: $\Delta z(0,0) = z(0+\Delta x,0+\Delta y) - z(0,0) = (\Delta x)^2(\Delta y) - 0 = (\Delta x)^2\Delta y \to 0$, kad $\Delta x, \Delta y \to 0$.

(b) (1 poen) Naći po definiciji $\frac{\partial z}{\partial x}$.

Rešenie

$$\frac{\partial z}{\partial x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{z(x + \Delta x, y) - z(x, y)}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x + \Delta x)^2 y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x + (\Delta x)^2)y - x^2 y}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x \to 0}} \frac{(x^2 + 2\Delta x$$

(c) (1 poen) Da li funkcija ima ekstrem u tački (0,0)?

Rešenje

Nema, jer je z(0,0) = 0, a u svakoj okolini tačke (0,0) ima i tačaka u kojima je vrednost funkcije z pozitivna (tačke u prvom i četvrtom kvadrantu) i tačaka u kojima je vrednost funkcije negativna (tačke u drugom i trećem kvadrantu).

- 23. Data je funkcija $z(x,y) = x^2(1-y)$.
 - (a) (1 poen) Da li je data funkcija neprekidna u tački (0,1)?
 - (b) (1 poen) Naći po definiciji $\frac{\partial z}{\partial x}$
 - (c) (1 poen) Da li funkcija ima ekstrem u tački (0,1)?

Rešenje

Ne. z(0,1)=0, a u svakoj okolini tačke (0,1) ima i tačaka za koje je z>0 (tačke za koje je y<1) i tačaka za koje je z<0 (tačke za koje je y>1).

(d) (1 poen) Ispitati ekstreme date funkcije uz uslov $y = 1 - x^2$.

Rešenje

Iz uslova, $1 - y = x^2$, pa je $z = z(x) = x^4$. Ova funkcija ima minimum za x = 0, a polazna funkcija ima uslovni minimum za (x, y) = (0, 1).

24. (1 poen) Ispitati ekstreme funkcije $f(x,y) = x^2 - y^2$.

Rešenje

Domaći.

25. (1 poen) Da li funkcija $f(x,y) = x^2 - y^2$ u tački (0,0) ima ekstrem uz uslov y = 0?

Rešenje

Domaći.

26. (1 poen) Ispitati ekstreme funkcije $f(x,y) = x^3 - 3xy^2$.

Rešenje

 $f_x = 3x^2 - 3y^2 = 0$, $f_y = -6xy = 0$, pa je T(0,0) jedina stacionarna tačka date funkcije. Kako je f(T) = 0 i $f(x,y) = x(x^2 - 3y^2)$, to u svakoj okolini tačke T ima tačaka u kojima je f > 0 (one tačke u kojima je x > 0, y = 0) i onih u kojima je f < 0 (one za koje je x = 0), pa funkcija nema ekstrem u T.

27. (2 poena) Naći stacionarne tačke i ekstreme funkcije $f(x,y) = x^2 + y^2$ pod uslovom x + y = 1.

Rešenje

Domaći.

28. (1 poen) Da li funkcija $f(x,y) = x^2 - y^2$ u tački (0,0) ima ekstrem uz uslov y = x?

Rešenje

Ne. Za y = x je f = f(x) = 0 (funkcija je identički jednaka nuli), pa nema ekstreme.

29. Data je funkcija $z = \ln x^2 y$.

(1 poen) Da li data funkcija ima ekstrem uz uslov $x^2 + (y+2)^2 = 1$?

Rešenje

Tačke koje zadovoljavaju uslov $x^2 + (y+2)^2 = 1$ se nalaze na kružnici sa centrom u (0,-2), poluprečnika 1, pa sve one imaju negativnu y koordinatu. U takvim tačama funkcija z nije definisana, pa nema ni uslovni ekstrem.

- 30. Data je funkcija $z(x,y) = e^{xy}$.
 - (a) (1 poen) Da li je data funkcija neprekidna na \mathbb{R}^2 ?

Rešenje

Da, jer je kompozicija elementarnih funkcija i definisana je na \mathbb{R}^2 .

(b) (1 poen) Naći po definiciji $\frac{\partial z}{\partial x}$ u tački (0,0).

Rešenje

$$z_x = \lim_{\Delta x \to 0} \frac{e^{\Delta x \cdot 0} - e^0}{\Delta x} = 0.$$

(c) (1 poen) Da li funkcija ima ekstrem u tački (0,0)?

Rešenje

Domaći.

(d) (1 poen) Ispitati ekstreme date funkcije uz uslov y = x.

Rešenje

Domaći.

31. (1 poen) Dat je problem: Od svih kutija površine P, čija je osnova kvadratna, naći onu koja ima najveću zapreminu. Odrediti funkcije f i φ tako da je uslovni ekstrem funkcije f uz uslov $\varphi=0$ rešenje datog problema.

Rešenje

Neka je x stranica osnove, a y visina kutije. Onda je $f(x,y)=x^2y, \ \varphi(x,y)=2x^2+4xy-P$.

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza

PRVI KOLOKVIJUM (Probni) Predispitne obaveze

Sve odgovore obrazložiti.

1. U metričkom prostoru (\mathbb{R}, d) , gde je d Euklidska metrika, data je lopta L(0, 2) i tačka $b = 1.5 \in L(0, 2)$. Naći r tako da je lopta L(b, r) sadržana u lopti L(0, 2).

Rešenje: Lopta u \mathbb{R} je otvoren interval, L(0,2) je lopta sa centrom u a=0 poluprečnika s=2, pa je L(0,2)=(-2,2). Rastojanje izmedju a i b je 1.5 (d(a,b)=|b-a|=|1.5-0|=1.5), pa je r bilo koji pozitivan broj manji ili jednak s-d(a,b)=2-1,5=0.5. Dakle, r može biti bilo koji broj iz intervala (0,0.5].

Moguće vrednosti za r se mogu lako videti ako se data lopta i tačka b predstave grafički na realnoj osi (i to se priznaje kao tačan odgovor).

2. Da li je tačka 0 tačka nagomilavanja skupa $[-1,0) \cup \{1\}?$

Rešenje: Jeste, jer u svakoj okolini tačke 0 (konkretno, levo od tačke 0) ima tačaka iz datog skupa.

3. Dat je niz $a_n = \frac{\cos n\pi}{n^2}$.

Odrediti $a = \lim_{n \to \infty} a_n$.

Rešenje: Funkcija $\cos x$ je ograničena, pa je $a = \lim_{n \to \infty} \frac{\cos n\pi}{n^2} = 0.$

Da li je dati niz Košijev u \mathbb{R} ?

Rešenje: Niz je realan i konvergentan, pa je Košijev.

Da li je Košijev u Q?

Rešenje: Elementi niza su i racionalni brojevi (jer je $\cos n\pi = 1$ za n parno, $\cos n\pi = -1$ za n neparno, i n^2 je prirodan broj), rastojanje izmedju dva racionalna broja u metričkom prostoru $\mathbb Q$ je isto kao i njihovo rastojanje u $\mathbb R$, pa je niz Košijev i u $\mathbb Q$.

4. Data je funkcija $f(x)=\left\{\begin{array}{cc} 1-x & x\neq 0\\ 2 & x=0 \end{array}\right.$

Odrediti $A = \lim_{x \to 0} f(x)$.

Rešenje: A=1.

Odrediti δ tako da je $|f(x) - A| < 10^{-2}$ za $|x| < \delta$, $x \neq 0$.

Rešenje: $|f(x) - A| = |(1 - x) - 1| = |-x| = |x| < 10^{-2}$ za $\delta = 10^{-2}$.

5. Odrediti vrstu prekida funkcije $f(x) = e^{\frac{1}{x}}$ u tački 0.

Rešenje: $\lim_{x\to 0^+} e^{\frac{1}{x}} = +\infty$, $\lim_{x\to 0^-} e^{\frac{1}{x}} = 0$, pa funkcija ima prekid druge vrste u tački 0.

6. Data je funkcija $f(x) = \ln \frac{e^x + (2 + \sin x)^2}{x^4 + 1}$. Da li je data funkcija ograničena na [-1, 1]?

Rešenje: Funkcija f je kompozicija elementarnih funkcija pa je neprekidna na svom domenu definisanosti (na skupu \mathbb{R}). Sledi da je f neprekidna i na [-1,1]. Neprekidna funkcija na zatvorenom intervalu je ograničena, pa je i f ograničena na [-1,1].

7. Da li su funkcije $f(x) = (x-2) \ln x$ i $g(x) = (x^2-2x) \ln x$ beskonačno male veličine kad $x \to 2$? Ako jesu, uporediti brzinu kojom one teže nuli.

Rešenje: $\lim_{x\to 2} f(x) = \lim_{x\to 2} g(x) = 0$, pa su f i g beskonačno male veličine kad $x\to 2$.

 $\lim_{x\to 2}\frac{f(x)}{g(x)}=\lim_{x\to 2}\frac{1}{x}=\frac{1}{2}, \text{ pa su } f \text{ i } g \text{ beskonačo male veičine istog reda kad } x\to 2.$

Elektroenergetski softverski inženjering/Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza

Probni prvi kolokvijum - Ispitni zadaci

1. a) U zavisnosti od realnog parametra a odrediti graničnu vrednost niza $a_n = \frac{2^n + a^n}{2^{n+1} - 5a^n}$.

b) Odrediti konstante
$$A$$
 i B tako da funkcija $f(x) = \begin{cases} \frac{\sin 2020x}{x} & , x < 0 \\ Ax + B & , 0 \le x \le 1 \\ \frac{\ln x^2}{x - 1} & , x > 1. \end{cases}$

bude neprekidna na \mathbb{R} . c) Izračunati

$$\lim_{x \to 1} \frac{\sqrt[3]{8x} - 2}{\sqrt{x^2 + 3} - 2}$$

Napomena: Zadatke raditi bez korišćenja Lopitalovog pravila.

Rešenje.

1. a) Koristimo $\lim_{n \to \infty} q^n = 0,$ za -1 < q < 1.Razlikujemo sledeća četiri slučaja:

• |a| > 2, odnosno $a \in (-\infty, -2) \cup (2, +\infty)$:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2^n + a^n}{2^{n+1} - 5a^n} = \lim_{n \to \infty} \frac{\left(\frac{2}{a}\right)^n + 1}{2\left(\frac{2}{a}\right)^n - 5} = -\frac{1}{5}.$$

• |a| < 2, odnosno $a \in (-2, 2)$:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2^n + a^n}{2^{n+1} - 5a^n} = \lim_{n \to \infty} \frac{1 + \left(\frac{a}{2}\right)^n}{2 - 5\left(\frac{a}{2}\right)^n} = \frac{1}{2}.$$

• a = -2:

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{2^n+(-2)^n}{2^{n+1}-5(-2)^n}=\lim_{n\to\infty}\frac{1+(-1)^n}{2-5\cdot(-1)^n}\quad\text{- granična vrednost ne postoji},$$

zato što je

$$a_n = \frac{1 + (-1)^n}{2 - 5 \cdot (-1)^n} = \begin{cases} \frac{1 + (-1)}{2 - 5 \cdot (-1)}, & n = 2k - 1\\ \frac{1 + 1}{2 - 5 \cdot 1}, & n = 2k \end{cases} = \begin{cases} 0, & n = 2k - 1\\ -\frac{2}{3}, & n = 2k \end{cases}.$$

• a = 2:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2^n + 2^n}{2^{n+1} - 5 \cdot 2^n} = \lim_{n \to \infty} \frac{2 \cdot 2^n}{-3 \cdot 2^n} = -\frac{2}{3}.$$

b) Kako je f(x) neprekidna na intervalima $(-\infty,0),\ (0,1)$ i $(1,+\infty)$ kao kompozicija neprekidnih funkcija, odredićemo A i B iz uslova $f(0) = \lim_{x \to 0} f(x)$ i $f(1) = \lim_{x \to 1} f(x)$.

• Neprekidnost funkcije f(x) u tački x = 0:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin 2020x}{x} = \lim_{x \to 0^{-}} \frac{\sin 2020x}{2020x} \cdot 2020 = 2020.$$
$$f(0) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} Ax + B = B.$$

Sledi da je B = 2020.

• Neprekidnost funkcije f(x) u tački x = 1:

$$f(1) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (Ax + B) = A + B.$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{\ln x^2}{x - 1} \stackrel{t = x - 1}{=} \lim_{t \to 0^+} \frac{2 \ln (t + 1)}{t} = 2.$$

Kako je B = 2020, iz A + B = 2 sledi da je A = -2017.

c) Vidimo da ako u funkciju, čija se granična vrednost traži, zamenimo x=1 dobijamo neodređeni izraz $\frac{0}{0}$. Tako da ćemo koristiti dozvoljene transformacije

$$\lim_{x \to 1} \frac{\sqrt[3]{8x} - 2}{\sqrt{x^2 + 3} - 2} = \lim_{x \to 1} \left(\frac{\sqrt[3]{8x} - 2}{\sqrt{x^2 + 3} - 2} \cdot \frac{\sqrt{x^2 + 3} + 2}{\sqrt{x^2 + 3} + 2} \cdot \frac{(\sqrt[3]{8x})^2 + 2 \cdot \sqrt[3]{8x} + 2^2}{(\sqrt[3]{8x})^2 + 2 \cdot \sqrt[3]{8x} + 2^2} \right)$$

$$= \lim_{x \to 1} \frac{((\sqrt[3]{8x})^3 - 2^3)(\sqrt{x^2 + 3} + 2)}{((\sqrt{x^2 + 3})^2 - 2^2)((\sqrt[3]{8x})^2 + 2 \cdot \sqrt[3]{8x} + 2^2)} = \lim_{x \to 1} \frac{(8x - 8)(\sqrt{x^2 + 3} + 2)}{(x^2 - 1)((\sqrt[3]{8x})^2 + 2 \cdot \sqrt[3]{8x} + 2^2)}$$

$$= \lim_{x \to 1} \frac{8 \cdot (\sqrt{x^2 + 3} + 2)}{(x + 1)((\sqrt[3]{8x})^2 + 2 \cdot \sqrt[3]{8x} + 2^2)} = \frac{8 \cdot 4}{2 \cdot (2^2 + 2 \cdot 2 + 2^2)} = \frac{32}{24} = \frac{4}{3}.$$

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza

PRVI KOLOKVIJUM (Probni) Predispitne obaveze

Sve odgovore obrazložiti.

- 1. U metričkom prostoru (\mathbb{R}, d) , gde je d Euklidska metrika, data je lopta L(0, 2) i tačka $b = 1.5 \in L(0, 2)$. Naći r tako da je lopta L(b, r) sadržana u lopti L(0, 2).
- 2. Da li je tačka 0 tačka nagomilavanja skupa $[-1,0) \cup \{1\}$?
- 3. Dat je niz $a_n = \frac{\cos n\pi}{n^2}$.

Odrediti $a = \lim_{n \to \infty} a_n$.

Da li je dati niz Košijev u \mathbb{R} ?

Da li je Košijev u Q?

4. Data je funkcija $f(x)=\left\{\begin{array}{cc} 1-x & x\neq 0\\ 2 & x=0 \end{array}\right.$

Odrediti $A = \lim_{x \to 0} f(x)$.

Odrediti δ tako da je $|f(x) - A| < 10^{-2}$ za $|x| < \delta$, $x \neq 0$.

- 5. Odrediti vrstu prekida funkcije $f(x) = e^{\frac{1}{x}}$ u tački 0.
- 6. Data je funkcija $f(x) = \ln \frac{e^x + (2+\sin x)^2}{x^4+1}$. Da li je data funkcija ograničena na [-1,1]?
- 7. Da li su funkcije $f(x) = (x-2) \ln x$ i $g(x) = (x^2-2x) \ln x$ beskonačno male veličine kad $x \to 2$? Ako jesu, uporediti brzinu kojom one teže nuli.

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza

DRUGI KOLOKVIJUM Predispitne obaveze

Sve odgovore obrazložiti.

- 1. Funkcija y = y(x) je data sa $x(t) = t^2 + 1$, y(t) = 2t, t > 0.
 - (1 poen) Odrediti njen prvi izvod.
 - (1 poen) Odrediti realan parametar a tako da tačka A(a,2) leži na grafiku date funkcije.
 - (1 poen) Naći jednačinu tangente na grafik date funkcije u tački A.
- 2. (1 poen) Za funkciju $f(x) = \frac{1}{2-x}$ napisati Tejlorov polinom prvog stepena u tački a=1, kao i formulu za grešku.
- 3. Data je funkcija $f(x) = \begin{cases} \arctan x & x \leq 0 \\ -\frac{1}{x} & x > 0 \end{cases}$.
 - (1 poen) Da li je data funkcija diferencijabilna u tački x=0?
 - (1 poen) Da li je rastuća na \mathbb{R} ?
 - (1 poen) Da li ima ekstrem u x = 0?
 - (1 poen) Da li ima vertikalnu asimptotu u tački x = 0?

Elektroenergetski softverski inženjering / Primenjeno softvesrko inženjerstvo

predmet: Matematička analiza datum: 3. jul 2020. godine

DRUGI KOLOKVIJUM, Predispitne obaveze

Napomena: Sve odgovore obrazložiti.

1. (1 poen) Odrediti realnu konstantu c tako da postoji funkcija f(x) za koju je $f'(x) = \begin{cases} c-x &, & x \leq 1 \\ x &, & x > 1 \end{cases}$ Rešenje

2. (1 poen) Da li postoji $\int \sin \frac{1}{x} dx$ na $[\pi, 2\pi]$? **Rešenje**

3. (1 poen) Da li je funkcija $f(x) = \begin{cases} 1/x & x \in (0,1] \\ 1 & x = 0 \end{cases}$ integrabilna na intervalu [0,1]? **Rešenje**

4. (1 po
en) Napisati gornju Darbuovu sumu za funkciju $f(x)=\arctan x$ na interval
u $[0,\sqrt{3}]$ za ekvidistantnu podelu.

Rešenje

5. (1 poen) Ako je funkcija f(x) integrabilna na intervalu [-1,1] i $\int_{-1}^{1} f(x)dx = A$, naći $\int_{-1}^{1} g(x)dx$ ako je

$$g(x) = \begin{cases} f(x) & x \in (-1,1) \\ f(x) + 1 & x = -1 \\ f(x) + 2 & x = 1 \end{cases}$$

Rešenje

6. (1 poen) Neka je $f(x) = \int\limits_0^x \sin t dt$. Naći primitivnu funkciju F(x) funkcije f(x).

Rešenje

7. (1 poen) Ispitati konvergenciju nesvojstvenog integrala $\int\limits_{[1,\infty)} \arctan \frac{1}{\sqrt{x}} \, dx.$

Rešenje

8. (1 po
en) Naći sva rešenja početnog problema $y'=\sqrt[3]{y},\,y(0)=0.$

Rešenje

9.	(1 poen) Da li se može odrediti parametar a tako da jednačina $\ln y dx + a \frac{x}{y} dy = 0$ bude diferencijalna jednačina totalnog diferencijala na \mathbb{R}^2 ? Rešenje
	(1 poen) Da li su funkcije $f_1(x)=1$ i $f_2(x)=e^x$ linearno nezavisne na \mathbb{R} ? Rešenje
11.	Data je diferencijalna jednačina $L_n[y]=f(x)$ sa konstantnim koeficijentima. Neka su $k_1=k_2=0,k_3=-2,k_4=k_5=-i$ koreni karakteristične jednačine. a) (1 poen) Odrediti opšte rešenje homogenog dela date jednačine. Rešenje
	b) (1 poen) Za $f(x) = x \cos x$ odrediti oblik partikularnog rešenja jednačine $L_n[y] = f(x)$. Rešenje

12. (1 poen) Ispitati konvergenciju reda $\sum_{n=1}^{\infty} \sin n\pi.$

Rešenje

13. (2 poena) Pokazati da red $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{(2)^{n+1}}$ konvergira i naći njegovu sumu.

Rešenje

14. (2 poena) Ispitati običnu i apsolutnu konvergenciju reda $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[3]{n^2}}.$

Elektroenergetski softverski inženjering/Primenjeno softversko inženjerstvo

3.7.2020.

Ispitni zadaci

a) (6 poena) Odrediti vrednost konstane $A \in \mathbb{R}$ tako da niz $\{a_n\}_{n \in \mathbb{N}}$

$$a_n = (\sqrt[3]{n+1} - \sqrt[3]{n}) + A \cdot \frac{1 - (-1)^n}{2}$$

bude konvergentan izračunati njegovu graničnu vrednost.

b) (6 poena) Proveriti da li je niz
$$a_n = \frac{\cos 1!}{1 \cdot 2} + \frac{\cos 2!}{2 \cdot 3} + \ldots + \frac{\cos n!}{n \cdot (n+1)}$$
 Košijev.

2. (12 poena) Detaljno ispitati tok i nacrtati grafik funkcije
$$f(x) = \frac{x}{\sqrt{x^2 + 2x + 2}}$$
.

3. (6 poena) Da li funkcija u=xyz ima ekstremnu vrednost, uz uslov $x+y+z=9,\,x>0,y>0,z>0.$

4. a) (8 poena) Izračunati
$$\int \left(\frac{\sin x}{\sin x + 2\cos x} + e^x \arctan \frac{e^x - 1}{e^x - 2}\right) dx$$
.

b) (6 poena) Dat je niz
$$\{a_n\}_{n\in\mathbb{N}}$$
 sa opštim članom $a_n = 3 \cdot \frac{3^4 + 6^4 + 9^4 + \ldots + (3n)^4}{n^5}$. Odrediti graničnu vrednost niza $\{a_n\}$ primenom definicije određenog integrala.

5. Odrediti opšte rešenje diferencijalne jednačine:

a) (8 poena)
$$\left(\frac{y}{x+y}\right)^2 dx + \left(\frac{x}{x+y}\right)^2 dy = 0;$$

b) (8 poena)
$$(x+1)^3y''' - 3(x+1)^2y'' + 7(x+1)y' - 8y = 0$$
, ako je $x > -1$.

Elektroenergetski softverski inženjering/Primenjeno softversko inženjerstvo predmet: Matematička analiza

3.7.2020.

Ispitni zadaci - Drugi kolokvijum

1. a) (8 poena) Izračunati
$$\int \left(\frac{\sin x}{\sin x + 2\cos x} + e^x \arctan \frac{e^x - 1}{e^x - 2}\right) dx$$
.

b) (6 poena) Dat je niz
$$\{a_n\}_{n\in\mathbb{N}}$$
 sa opštim članom $a_n = 3 \cdot \frac{3^4 + 6^4 + 9^4 + \ldots + (3n)^4}{n^5}$. Odrediti graničnu vrednost niza $\{a_n\}$ primenom definicije određenog integrala.

2. Odrediti opšte rešenje diferencijalne jednačine:

a) (8 poena)
$$\left(\frac{y}{x+y}\right)^2 dx + \left(\frac{x}{x+y}\right)^2 dy = 0;$$

b) (8 poena)
$$(x+1)^3 y''' - 3(x+1)^2 y'' + 7(x+1)y' - 8y = 0$$
, ako je $x > -1$.

MATEMATIČKA ANALIZA 1

Integralni račun

1. Izračunati:

(a)
$$\int \frac{1}{\sqrt{1-4x^2}} dx;$$

(b)
$$\int \frac{(\arcsin x)^2}{\sqrt{1-x^2}} \ dx;$$

(c)
$$\int \frac{\ln 2x}{x \ln 4x} \ dx;$$

(d)
$$\int \frac{x - \sqrt{\arctan 2x}}{1 + 4x^2} dx.$$

2. Izračunati:

(a)
$$\int (x^2 + x) \ln(x) \ dx;$$

(b)
$$\int x^5 \sqrt{x^3 + 1} \ dx;$$

(c)
$$\int x^3 e^{x^2} dx;$$

(d)
$$\int \sin(\ln x) dx$$
;

(e)
$$\int (x^2 + 2x) \cos x \ dx;$$

(f)
$$\int \frac{3x+1}{x^2+4x+5} dx$$
;

(g)
$$\int \frac{3x-6}{x^2-4x+5} dx;$$

(h)
$$\int \frac{2x^2 + 2x + 13}{(x-2)(x^2+1)^2} dx;$$

(i)
$$\int \frac{1}{\sqrt{2x-1} - \sqrt[4]{2x-1}} dx;$$

(j)
$$\int \frac{1}{\sqrt[3]{(x-1)(x+2)^2}} dx;$$

(k)
$$\int \frac{x^3}{1+\sqrt[3]{x^4+1}} dx;$$

3. Izračunati:

(a)
$$\int \frac{1}{x^6 \sqrt{x^2 - 1}} dx;$$

(b)
$$\int \frac{\sqrt{x^3 + x^4}}{x^4} dx;$$

(c)
$$\int \sqrt[3]{3x - x^3} \ dx;$$

(d)
$$\int \sqrt{\frac{x}{1 - x\sqrt{x}}} \ dx;$$

- 4. Izračunati:
 - (a) $\int \sin x \cos 3x \sin 3x \ dx;$
 - (b) $\int \frac{1}{3 + 5\cos x} \, dx;$
 - (c) $\int \frac{1}{\sin x 2\cos x + 3} dx;$
 - (d) $\int \frac{1}{\sin^4 x \cos^2 x} dx;$
 - (e) $\int \frac{\sin^2 x \cos x}{\sin x + \cos x} dx;$
 - (f) $\int \frac{\cos^3 x}{\sin^4 x} \, dx;$
 - (g) $\int \frac{e^{3x} e^x}{e^{2x} + 1} dx$.
- 5. Izračunati:
 - (a) $\int_{2}^{e+1} x \ln(x-1) \ dx;$
 - (b) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1+\operatorname{tg}^2 x}{(1+\operatorname{tg} x^2)} dx;$
 - (c) $\int_{0}^{4} |x^2 5x + 6| dx$.
- 6. Primenom određenog integrala odrediti graničnu vrednost niza $\{a_n\}$, gde je:
 - (a) $a_n = n(\frac{1}{1+4n^2} + \frac{1}{2^2+4n^2} + \frac{1}{3^2+4n^2} + \dots + \frac{1}{5n^2});$
 - (b) $a_n = \frac{1}{\sqrt{2n^2 + 2n + 1}} + \frac{1}{\sqrt{2n^2 + 4n + 4}} + \frac{1}{2n^2 + 6n + 9} + \dots + \frac{1}{n\sqrt{5}}$
- 7. Izračunati površinu figure ograničene:
 - (a) parabolom $y = \frac{x^2}{2}$ i kružnicom $x^2 + y^2 = 8$;
 - (b) pravama $y=x,\,y=-x$ i tangentom krive $y=\sqrt{x^2-5}$ u tački A(3,2);

Diferencijalne jednačine

- 8. Rešiti diferencijalne jednačine:
 - (a) $y(1-x^2)dy x(1-y^2)dx = 0$
 - (b) $xydx + (1+y^2)\sqrt{1+x^2}dy = 0$
- 9. Odrediti partikularno rešenje diferencijalne jednačine koja zadovoljava zadati uslov:
 - (a) $y' xy' = 2(1 + x^2y'), y(1) = 0;$
 - (b) $(1 + e^x)yy' = e^x$, y(0) = 1.
- 10. Naći opšte rešenje diferencijalne jednačine:
 - (a) $xydy y^2dx = (x+y)^2 e^{-\frac{y}{x}} dx;$
 - (b) (x+y-2)dx + (x-y+4)dy = 0;
 - (c) $y' = \frac{2x+y-1}{4x+2y+5}$;
 - (d) $(1+x^2)y' 2xy = (1+x^2)^2$;
 - (e) $(y^2 + 1)dx = (xy + y^2 + 1)dy$;
 - (f) $xy' 4y x^2\sqrt{y} = 0$;
 - (g) $2y' \ln x + \frac{y}{x} = \frac{\cos x}{y}$;
 - (h) $(3y^2 + 2xy + 2x)dx + (6xy + x^2 + 3)dy = 0$;
 - (i) $(x \sin y + y)dx + (x^2 \cos y + x \ln x)dy = 0$ (Integracioni množitelj je oblika $\mu(x)$).
- 11. Naći opšte rešenje diferencijalne jednačine:

- (a) $xy'' y' = e^x x^2$;
- (b) $yy'' + y'^2 = 2e^{-y}$;
- (c) $xyy'' + xy'^2 = 3yy';$
- (d) y'' + 6y' + 8y = 0;
- (e) y''' + 2y'' + y = 0;
- (f) y''' + 5y'' + y' + 5y = 0.
- 12. Naći opšte rešenje diferencijalne jednačine:
 - (a) y'' + 2y' + 2y = 1 + x;
 - (b) $y'' 3y' + 2y = (x^2 + x)e^{3x}$;
 - (c) $y'' + 2y' + 5y = e^{-x} \sin 2x;$
 - (d) $y'' + 2y' + 2y = \frac{1}{1+\sin x}$;
 - (e) $(2x+1)^2y'' + (4x+2)y' 4y = x^2 \text{ za } 2x+1 > 0.$
- 13. Pokazati da se diferencijalna jednačina $(xy'' + y')x \ln^2 x + y = \ln^2 \ln x$ smenom x = x(t) može svesti na jednačinu sa konstantnim koeficijentima i naći njeno opšte rešenje.

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Elektroenergetski softverski inženjering

predmet: Matematička analiza 1

datum: 17. Jun 2014. DRUGI KOLOKVIJUM

Predispitne obaveze

- 1. (1 poen) Naći onu primitivnu funkciju F(x) funkcije $f(x) = \begin{cases} 2x+1, & x<1\\ 3, & x\geq 1 \end{cases}$ za koju je F(0) = 0.
- 2. (1 poen) Izračunati $\int_{0}^{\pi} |\cos x| dx$.
- 3. (1 poen) Izračunati $\int_{-2014}^{2014} \frac{\sin x}{3x^8 + 17x^6 + 5} dx$.
- 4. (1 poen) Da li smena t
gx=t može da se uvede u integral $\int_0^{2\pi} \frac{1}{\sin^6 x + \cos^6 x} dx$? Obrazložiti.
- 5. (1 poen) Da li je integral $\int_{(0,\frac{\pi}{2}]} \frac{1}{\sin^2 x} dx$ konvergentan?
- 6. (1 poen) Pokazati da je funkcija $x^2 + y^2 = r^2$ ($r \in \mathbb{R}$, $r \neq 0$) rešenje diferencijalne jednačine x + yy' = 0. Naći ono rešenje date jednačine koje prolazi kroz tačku (1, -1).
- 7. (1 poen) Pokazati da se smenom y'=z, z=z(y) diferencijalna jednačina $yy''=y^2y'+(y')^2$ svodi na linearnu diferencijalnu jednačinu.
- 8. (1 poen) Da li je $\frac{y+1}{y}dx + \frac{y^2-x}{y^2}dy = 0$ diferencijalna jednačina totalnog diferencijala? Ako jeste, na kojoj oblasti?
- 9. Data je diferencijalna jednačina $L_n[y] = f(x)$. Neka su $k_1 = k_2 = 0, k_3 = -2, k_4 = 2 i$ koreni karakteristične jednačine.
 - a) (1 poen) Odrediti opšte rešenje homogenog dela $L_n[y] = 0$ date jednačine.
 - b) (1 poen) Za $f(x) = x^2 \sin x$ odrediti oblik partikularnog rešenja jednačine $L_n[y] = f(x)$.

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Elektroenergetski softverski inženjering / Primenjeno softversko inženjerstvo /

predmet: Matematička analiza

Ispitni zadaci

datum: 11. Jul 2017.

1. a) (5 poena) U zavisnosti od realnog parametra a naći graničnu vrednost (bez korišćenja lopitalovog pravila):

$$\lim_{n \to \infty} \frac{2a^{n+1} + 3 \cdot 5^n}{2a^n + 5^{n+1}}.$$

- b) (7 poena) Naći graničnu vrednost $\lim_{x\to\infty} (\sqrt{2x+\sqrt{x+\sqrt{x}}}-\sqrt{2x})$.
- 2. (12 poena) Detaljno ispitati tok i nacrtati grafik funkcije $f(x) = \frac{2x^2}{2x+1}e^{\frac{1}{x}}$.
- 3. (7 poena) Naći ekstreme funkcije u = x 2y + 2z uz uslov $x^2 + y^2 + z^2 = 9$.
- 4. a) (8 poena) Izračunati $\int \left(\frac{x \ln x}{(x^2 + 1)^{\frac{3}{2}}} + \frac{\sin x \cos x}{(\sin x)^4 + (\cos x)^4} \right) dx$.
 - b) (6 poena)Izračunati površinu površi koja nastaje rotacijom luka parabole $y^2 = 4x$ oko x ose na segmentu [0,3].
- 5. a) (8 poena) Rešiti difrencijalnu jednačinu $xy^2dy = (x^3 + y^3)dx$.
 - b) (8 poena) Rešiti difrencijalnu jednačinu $(x-1)y'' (x+1)y' + 2y = (x-1)^3 e^x$, x > 1, znajući da njen homogeni deo ima jedno partikularno rešenje oblika $y_1 = e^{ax}$.

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Elektroenergetski softverski inženjering / Primenjeno softversko inženjerstvo /

Inženjerstvo informacionih sistema

predmet: Matematika analiza / Matematika 2

Ispitni zadaci

datum: 11. Jul 2017.

a) (5 poena) U zavisnosti od realnog parametra a naći graničnu vrednost (bez korišćenja lopitalovog pravila):

$$\lim_{n \to \infty} \frac{2a^{n+1} + 3 \cdot 5^n}{2a^n + 5^{n+1}}.$$

- b) (5 poena) (7 poena) Naći graničnu vrednost $\lim_{x\to\infty} (\sqrt{2x+\sqrt{x+\sqrt{x}}}-\sqrt{2x})$.
- 2. (12 poena) Detaljno ispitati tok i nacrtati grafik funkcije $f(x) = \frac{2x^2}{2x+1}e^{\frac{1}{x}}$.
- 3. (7 poena) Naći ekstreme funkcije u = x 2y + 2z uz uslov $x^2 + y^2 + z^2 = 9$.
- 4. a) (8 poena) Izračunati $\int \left(\frac{x \ln x}{(x^2 + 1)^{\frac{3}{2}}} + \frac{\sin x \cos x}{(\sin x)^4 + (\cos x)^4} \right) dx$.
 - b) (6 poena)Izračunati površinu površi koja nastaje rotacijom luka parabole $y^2 = 4x$ oko x ose na segmentu [0,3].
- 5. a) (8 poena) Rešiti difrencijalnu jednačinu $xy^2dy = (x^3 + y^3)dx$.
 - b) (8 poena) Rešiti difrencijalnu jednačinu $(x-1)y'' (x+1)y' + 2y = (x-1)^3 e^x, x > 1$, znajući da njen homogeni deo ima jedno partikularno rešenje oblika $y_1 = e^{ax}$.

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Elektroenergetski softverski inženjering / Primenjeno softversko inženjerstvo /

Inženjerstvo informacionih sistema

predmet: Matematika analiza / Matematika 2

Teorijska pitanja

datum: 11. Jul 2017.

- 1. Pacijalni izvodi i diferencijabilnost funkcije više promenljivih.
- 2. Neodređen integral.

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Elektroenergetski softverski inženjering / Primenjeno softversko inženjerstvo /

Inženjerstvo informacionih sistema

predmet: Matematika analiza / Matematika 2

Teorijska pitanja

datum: 11. Jul 2017.

- 1. Pacijalni izvodi i diferencijabilnost funkcije više promenljivih.
- 2. Neodređen integral.

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Elektroenergetski softverski inženjering / Primenjeno softversko inženjerstvo /

Inženjerstvo informacionih sistema

predmet: Matematika analiza / Matematika 2

Teorijska pitanja

datum: 11. Jul 2017.

- 1. Pacijalni izvodi i diferencijabilnost funkcije više promenljivih.
- 2. Neodređen integral.

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Elektroenergetski softverski inženjering / Primenjeno softversko inženjerstvo /

Inženjerstvo informacionih sistema

predmet: Matematika analiza / Matematika 2

Teorijska pitanja

datum: 11. Jul 2017.

- 1. Pacijalni izvodi i diferencijabilnost funkcije više promenljivih.
- 2. Neodređen integral.

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Elektroenergetski softverski inženjering / Primenjeno softversko inženjerstvo /

Inženjerstvo informacionih sistema

predmet: Matematička analiza / Matematika 2

Teorijska pitanja

datum: 11. Jul 2017.

- 1. Pacijalni izvodi i diferencijabilnost funkcije više promenljivih.
- 2. Neodređen integral.