# Física II

# Propiedades Térmicas de la Materia



# Fundamentó Teórico:

#### Temperatura y Calor

- La magnitud que nos indica si un cuerpo está más frío o caliente que otro es la Temperatura.
  - El calor es la energía que se transfiere de un sistema a otro, debido a su diferencia de temperaturas.





Lic. Cesar Vladimir Arancibia

"Meal, Intonio, José de Guere"
Prestigio, Disciplina y Meiores Opertunidades

## Dilatación Térmica:

Cuando un material incrementa su temperatura incrementa sus dimensiones,

= Denómeno denominado DILATACIÓN TÉRMICA.

esto se debe al incremento de las oscilaciones entre las Moléculas (o Átomos) del Material.







# Dilatación Térmica:







## Dilatación Térmica:

#### **Expansión Térmica Lineal**

Si una barra de longitud  $L_O$  a temperatura  $T_O$  se calienta a una temperatura  $T_f$  su longitud Incrementa:



#### **Ecuación Térmica Lineal**

$$L_f = L_0 \left( 1 + \alpha \, \Delta T \right)$$

> El cambio en la temperatura medido en [°C].

$$\Delta T = T_F - T_0$$

$$L_f = L_0 + \alpha L_0 \Delta T$$

 $\succ \alpha$  es el coeficiente de expansión lineal y se mide en[°C<sup>-1</sup>].

$$L_f - L_o = \alpha L_0 \Delta T$$

$$\Delta L = \alpha L_0 \Delta T$$

| iviateriai   | α (°C ¯)              |
|--------------|-----------------------|
| Aluminio     | 2,40×10 <sup>-5</sup> |
| Latón        | 1,90×10 <sup>-5</sup> |
| Concreto     | 1,20×10 <sup>-5</sup> |
| Cobre        | 1,70×10 <sup>-5</sup> |
| Vidrio       | 90,0×10 <sup>-5</sup> |
| Vidrio Pyrex | 33,0×10 <sup>-5</sup> |
| Oro          | 5,20×10 <sup>-5</sup> |
| Acero        | 1,20×10 <sup>-5</sup> |

cambio en la longitud en [m]

$$\Delta L = L_F - L_0$$

Material

# Dilatación Térmica Superficial:

#### **Expansión Térmica Superficial**

Si una PLACA de área  $A_0$  a temperatura  $T_0$  se calienta a una Temperatura  $T_f$  su nueva **ÁREA** será:





#### La Variación del Área es:

$$A_f = A_0 \left( 1 + 2\alpha \Delta T \right)$$





La dilatación se realiza en dos  $2\alpha$ direcciones y son iguales en proporción





 $\Delta A = 2\alpha A_0 \Delta T$ 



### Dilatación Térmica volumétrica:

#### Expansión Térmica de volumen

Si un sólido o fluido de volumen  $V_0$  a temperatura  $T_0$  se calienta a una temperatura  $T_f$  su nuevo volumen será:

$$\Delta V = \beta V_0 \Delta T$$



caso liquidos

#### La variación del volumen es:

$$V_f = V_0 (1 + 3\alpha \Delta T)$$

$$\Delta V = 3\alpha V_0 \Delta T$$

caso solidos



 $\beta = 3\alpha$  es coeficiente de expansión volumétrica del material.

| Solidos          | $\beta = \left[ K^{-1} o (C^{\circ})^{-1} \right]$ |
|------------------|----------------------------------------------------|
| Aluminio         | $7,2 \times 10^{-5}$                               |
| Latón            | $6.0 \times 10^{-5}$                               |
| Cobre            | $5,1 \times 10^{-5}$                               |
| Vidrio           | $1,2 - 2,7 \times 10^{-5}$                         |
| Invar            | $0.27 \times 10^{-5}$                              |
| Cuarzo (Fundido) | $0.12 \times 10^{-5}$                              |
| acero            | $3.6 \times 10^{-5}$                               |

| Líquidos             | $\beta = \left[ K^{-1} o (C^{\circ})^{-1} \right]$ |
|----------------------|----------------------------------------------------|
| Etanol               | $75 \times 10^{-5}$                                |
| Disulfuro de carbono | $115 \times 10^{-5}$                               |
| Glicerina            | $49 \times 10^{-5}$                                |
| Mercurio             | $18 \times 10^{-5}$                                |

