Unimodal speech perception predicts stable individual differences in audiovisual benefit for phonemes, words and sentences^a

Jacqueline von Seth, 1,b, Máté Aller and Matthew H. Davis 1

¹ Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom

Individuals differ substantially in the benefit they can obtain from visual cues during speech perception. Here, 113 normally-hearing participants between ages 18 and 60 completed a threepart experiment investigating the reliability and predictors of individual audiovisual benefit for acoustically degraded speech. Audiovisual benefit was calculated as the relative intelligibility (at the individual-level) of approximately matched (at the group-level) auditory-only and audiovisual speech for materials at three levels of linguistic structure: meaningful sentences, monosyllabic words, and consonants in minimal syllables. This measure of audiovisual benefit was stable across sessions and materials, suggesting that a shared mechanism of audiovisual integration operates across levels of linguistic structure. Information transmission analyses suggested that this may be related to simple phonetic cue extraction: sentence-level audiovisual benefit was reliably predicted by the relative ability to discriminate place of articulation at the consonant-level. Finally, while unimodal speech perception was related to cognitive measures (matrix reasoning, vocabulary) and demographics (age, gender), audiovisual benefit was predicted uniquely by unimodal speech perceptual abilities: Better lipreading ability and subclinically poorer hearing (speech reception thresholds) independently predicted enhanced audiovisual benefit. This work has implications for best practices in quantifying audiovisual benefit and research identifying strategies to enhance multimodal communication in hearing loss.

-

^a Portions of this work were presented in "Inter-individual variability and correlates of audiovisual speech benefit in behaviour and MEG" at the 15th Annual Meeting of the Society for the Neurobiology of Language in Marseille, France, October 2023, in "Stable individual differences in audiovisual benefit for speech perception: Exploring the role of perceptual and cognitive abilities" at the 15th Speech-in-Noise workshop in Potsdam, Germany, January 2024, in "Perceptual and cognitive predictors of stable individual differences in audiovisual and unimodal speech perception" at the EPS Meeting in Nottingham, UK, April 2024. A preprint is now available under: https://osf.io/preprints/psyarxiv/kj59f

b Email: <u>Jacqueline.vonSeth@mrc-cbu.cam.ac.uk</u>

1 I. INTRODUCTION

Speech production is inherently linked to observable motion in the face: jaw, lips, and tongue of the speaker. Throughout the course of our lives, we acquire substantial experience with these signals during face-to-face conversation. It is well-established that when the acoustic speech signal is degraded, speech cues encoded in facial movements can provide a significant benefit to speech perception (Sumby and Pollack, 1954). Yet, despite the ubiquity of these signals in our everyday perceptual experience, not everyone benefits equally. Previous work has reported substantial individual differences in measures of the audiovisual advantage across a wide range of speech materials: from minimal non-sense syllables to meaningful sentences (Aller et al., 2022; Grant et al., 1998; Grant and Seitz, 1998; Sommers et al., 2005; Tye-Murray et al., 2016; Van et al., 2014; Van Engen et al., 2017).

A. What accounts for individual differences in audiovisual speech perception?

The reasons for this variability remain poorly understood: Only measures of lipreading ability have been reliably linked to individual differences in audiovisual speech perception (see Bernstein, 2022, for review). Some research has also suggested the degree of acquired hearing loss (HL), in mild-to-moderate hearing impaired (HI) listeners, may predict both better lipreading ability (e.g. Bernstein et al., 2000; Suess et al., 2022; Tillberg et al., 1996) and enhanced audiovisual integration for speech perception (e.g. Altieri & Hudock, 2014; Puschmann et al., 2019). However, this effect is not always found (Rosemann and Thiel, 2018; Spehar et al., 2008; Tye-Murray et al., 2007a) and substantial individual differences remain, meaning that too few of those with age-related hearing loss can use visual speech to mitigate the negative consequences of HL (e.g. Punch et al., 2019). Additionally, lipreading ability and audiovisual integration for speech perception are notoriously difficult to train (Preminger and Ziegler, 2008; Richie and Kewley-Port, 2008). The small improvements in phoneme-level recognition obtained in some lipreading programmes may not generalise to more natural or audiovisual speech stimuli (see Bernstein et al., 2022, for review).

Explanations for individual differences in lipreading and audiovisual speech perception have also been sought in terms of non-speech cognitive abilities. Feld and Sommers (2009) suggested that processing speed and visuo-spatial working memory may account for a large amount of the substantial individual variability in lipreading ability, in both younger and older adults. They argued that if fundamentally stable cognitive traits underlie individual differences in lipreading and audiovisual speech perception, this may explain why training programmes often show limited success. It is well-established that cognitive abilities play a significant role in auditory-only speech perception in noise (Akeroyd, 2008; Dryden et al., 2017; Heinrich et al., 2015), especially when the signal is degraded (Pichora-Fuller et al., 1995). However, for measures of audiovisual speech perception, and audiovisual integration for speech perception specifically, the picture is less clear. Dual task demands seem to impair performance on audiovisual speech tasks (Fraser et al., 2010; Alsius et al., 2005; 2014; Buchan & Munhall, 2012). However, susceptibility to the McGurk effect (McGurk & MacDonald, 1976), which is frequently used as a measure of audiovisual integration for speech perception, is not related to processing speed, working memory, or attentional control (Brown et al., 2018). Similarly, visual enhancement of speech perception (i.e. enhanced report for auditory-visual compared to auditory-only speech) in school-aged children is also not predicted by performance on cognitive tasks measuring vocabulary knowledge, working memory or attentional control (Lalonde and McCreery, 2020).

B. Quantifying individual differences in audiovisual benefit

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

A key challenge in this line of research is the lack of reliable measures of audiovisual integration for speech perception. The lack of correlations among different audiovisual integration measures, including both speech- and non-speech illusions have been taken to suggest that only measures derived from congruent speech materials may be useful in predicting an individual's ability to use visual cues in ecological conditions (Wilbiks et al., 2022; but see Dong et al., 2024; Magnotti et al., 2020; for arguments that susceptibility to the McGurk effect may be related to audiovisual speech-in-noise perception). Previous research has most frequently compared unimodal and auditory-

visual performance at the same level of acoustic clarity or background noise, taking the auditory condition as a baseline (hereafter *Visual enhancement*). The choice of audiovisual integration measure has significant implications regarding the conclusions that may be drawn, for example, concerning the question of whether audiovisual integration for speech perception declines, or increases with age (Dias et al., 2021; Sommers et al., 2005; Tye-Murray et al., 2007a). However, even within the same measure establishing stable individual differences across different speech materials has proven difficult: visual enhancement of consonant report does not seem to predict visual enhancement for word or sentence report tasks (Grant and Seitz, 1998; Sommers et al., 2005), whereas individual differences in unimodal speech perception are highly related across levels of linguistic structure (Grant et al., 1998; Humes et al., 1994; Sommers et al., 2005; but for lipreading ability see: Bernstein et al., 2000).

These inconsistencies pose problems for traditional models of audiovisual speech perception, which propose a separate stage of multisensory integration for speech, which should account for a significant amount of variability in audiovisual outcomes (Altieri and Hudock, 2014; Grant et al., 1998; Huyse et al., 2014). If individual differences in audiovisual speech perception are related to a domain-general audiovisual integration ability, measures of visual enhancement should generalise across materials and levels of linguistic structure. In a review of shortcomings of the McGurk effect as a measure of audiovisual speech integration ability, Van Engen et al., (2017) suggested a potential explanation for the lack of correlations: could audiovisual integration rely on different mechanisms at different levels of linguistic structure (e.g. minimal syllables versus meaningful sentences)? In line with this, Sommers (2021) proposed that audiovisual integration for speech perception may not be conceived of as an individual differences measure in the traditional sense: unlike working memory or processing speed, which may be tapped into by different tasks. However, shortcomings of the currently predominant visual enhancement measure provide an alternative explanation for these inconsistent results: (1) it may not adequately capture integration (see Sommers, 2021, for review; Sommers et al., 2005; Tye-Murray et al., 2010), (2) is confounded by differences in

intelligibility between conditions, and (3) is susceptible to both ceiling- and floor-effects, truncating the individual variability that is measured. So far, however, the development of more sophisticated capacity or efficiency measures to model individual differences has not yielded promising results in terms of predicting the ability to use visual cues at the sentence-level (Altieri and Hudock, 2014; Blamey et al., 1989; Braida, 1991; Grant and Seitz, 1998; Massaro and Cohen, 1983; Sommers et al., 2005; Wilbiks et al., 2022).

Here, we apply a relatively simple measure of individual differences in audiovisual speech perception, following Aller et al. (2022), based on approaches estimating speech-reception thresholds at 50% accuracy (e.g. Macleod & Summerfield, 1987). By comparing audiovisual and auditory-only speech perception in materials approximately equated for intelligibility, we avoid confounds introduced by differences in intelligibility between conditions, as well as floor- and ceiling-effects which appear in the visual enhancement measure depending on which level of acoustic clarity is chosen for experimental conditions. We also assess whether our measure is stable across sessions (and items), as well as levels of linguistic structure (and speakers).

C. The current study

Rapid advances in software tools for online experiments in recent years (De Leeuw et al., 2023; de Leeuw, 2015; Rodd, 2024), combined with online participant panels allow us to quickly collect reliable data from a balanced sample across age groups and gender. These include older participants with more diverse educational backgrounds who may not be easily targeted by university-based recruitment. This is especially useful for individual differences research, which require larger samples to achieve sufficient power in testing for cross-condition correlations (for example, comparing audiovisual benefit across levels of linguistic structure in consonant, word and sentence report tasks). In the current study, we aimed at quantifying the degree of audiovisual benefit using an intelligibility-matched measure in normally-hearing, working-age adults (18-60 years). We measured the relative intelligibility of matched auditory-only and audiovisual speech for materials

at three levels of linguistic structure: meaningful sentences, monosyllabic words, and minimal consonant-vowel syllables. Isolating individual variability across speech materials, we tested the degree to which variability in lipreading ability, hearing status, linguistic and cognitive ability alongside demographic variables (age and self-reported gender) explain individual differences in unimodal outcomes and audiovisual benefit in speech perception.

II. METHODS

A. Participants

142 British English native speakers were recruited via Prolific Academic (www.prolific.com). Participants provided informed consent using an online consent form approved by the Cambridge Psychology Research Ethics Committee (application number PRE.2022.056). Participants were screened at the beginning of each session using Wood's headphone test (Woods, 2017), excluding 14 participants who were compensated for their time.

113 participants successfully completed all audiovisual speech perception tasks across two sessions and 103 participants (55 female, 48 male, age range = 18-60, mean age \pm SD = 38.54 \pm 11.55) successfully completed all tasks across three sessions, not meeting any outlier exclusion criteria. The target sample size (n=101) was estimated using G*Power 3.1.9.4 (Faul et al., 2009) based on pooled effect sizes (weighted for sample size, Hedge's g) from previous studies investigating the reliability of lipreading ability and visual enhancement across speech materials (g = .26), and Pearson's product correlations of audiovisual benefit and enhancement measures with lipreading ability (g = .76) and hearing status (g = .33) to achieve power \geq 0.8 to test each of our three main hypotheses.

1. Outlier exclusion and data quality

We administered self-report questionnaires of attention, technical difficulties, and task comprehension to identify any issues that might require participants to be excluded after each speech perception task and the cognitive and hearing tests. For any ratings of >3 (on 6-point Likert

scales for 1) attention, 2) technical difficulties and b) clarity of task instructions) typed responses were manually reviewed (n=22). Data from participants with a rating of >3 and no typed responses or responses substantiating difficulties were excluded (n=6), but we decided to retain participants whose responses indicated task comprehension, engagement and attention (for example, correctly describing task instructions) while acknowledging that they found the task difficult. Additional preset outlier exclusion criteria for the cognitive and speech perception tasks included: <80% in catch trials (n=4) and lapse rate of >0.0625 (n=2) as well as performance of 1.5 interquartile ranges (IQRs) below the first or above the third quartile (n=5). Additional data quality checks leading to the exclusion of individual trials (but not participants) are detailed in individual task descriptions below.

B. Stimuli

1. General description

Consonants in minimal syllables, monosyllabic words, and meaningful sentences were presented to participants in separate audiovisual speech perception tasks across two sessions. Video recordings were drawn from Aller et al. (2022), Krason et al. (2023) and Pimperton et al. (2019) for sentence-, word-, and consonant-level materials, each produced by a different level. Videos were cropped to show only the face of the speakers, who performed minimal head movements. Example images and links to video recordings can be found in the original publications.

We manipulated the availability of visual speech cues and the degree of acoustic clarity using noise vocoding (Shannon et al., 1995) to create five conditions: visual-only (VO), auditory-only low acoustic clarity (AO_{low}), auditory-only high acoustic clarity (AO_{high}), auditory-visual low acoustic clarity (AV_{low}) and auditory-visual high acoustic clarity (AV_{high}). The availability of visual speech was manipulated by either presenting the originally recorded video, or a video of a largely static face produced by repeating frames prior to visual speech onset. Acoustic clarity was manipulated following the same procedure described in Aller et al. (2022) based on a protocol developed by

Zoefel et al. (2020), whereby each of the 16 narrowband envelopes env(b), extracted at logarithmically spaced frequency bands b (70-5000Hz, half-wave rectified, low-pass filtered 30 Hz) is mixed with the broadband envelope env(broadband) at proportion p, following:

$$env_{final}(b) = env(b) * p + env(broadband) * (1 - p)$$
 (1)

The resulting envelopes $env_{final}(b)$ were used to modulate noise in each respective frequency band. Recombined signals yielded a mix of 16-/1-channel vocoded speech, ranging from p=0.1 to p=1. The level of acoustic clarity was calibrated separately for each task in order to match two

FIG. 1. Experimental paradigms and conditions for audiovisual speech tasks. a) Video stimuli are presented at three levels of linguistic structure: meaningfull sentences, monosyllabic words and minimal consonant-vowel syllables, each produced by a different speaker. Participants perform word report in the sentence-and word-level tasks, and a 20 alternative forced choice for the consonant-level task. b) Pilot data for each task illustrates the acoustic clarity levels chosen in the main expriment, matching intelligibility in intermediate auditory-only (blue) and auditory-visual (purple) conditions, seperately for each level of linguistic structure. Audiovisual benefit is calculated as the difference between intermediate intelligibility conditions (50% accuracy for sentences and words, 60% for consonants). A fifth condition included in the experiment, silent videos (visual-only) is not illustrated here.

conditions AV_{low} and AO_{high} for intelligibility and to ensure that they fall at an intermediate level of intelligibility (40-60%) in order to avoid floor- or ceiling effects in either the audiovisual or the auditory-only condition (see Figure 1). Mixing proportions p were chosen based on visual inspection and psychometric curves fit to pilot data collected for each task (n=9 for reporting isolated words and forced-choice identification of minimal syllables, 8 female and 1 male, *mean age* \pm $SD = 31.11 \pm 5.15$) using the *quickpsy* package in R (Linares and López-Moliner, 2016). This resulted in p=0 (low clarity) and p=1 (high clarity) for consonants, p=0.47 (low clarity) and p=1 (high clarity) for words. Additionally, we retained the p=0.2 and p=0.7 conditions for sentences based on a previous pilot study in Aller et al. (2022). The difference between these measures was intended to show a mean of 0 and a spread of positive and negative values indicating the degree of audiovisual benefit obtained by individual participants.

2. Item characteristics

a. Consonants

Recordings of 20 consonants in minimal syllables followed by /9/ spoken by a single female speaker, with a neutral (mouth closed) start and end position were presented in the consonant identification tasks. Participants were instructed to classify the sounds as if they occurred at the start of words, with each consonant followed by a variation of /acd/, /act/, /ct/, or /cd/, or a closely related syllable (with the exception of "thaw" for /0/), to form a real monosyllabic word. These words, with the initial sound highlighted made up the closed-set response options for the task. Clear speech auditory-only recordings of the same sounds produced by a male speaker were presented in the practice phase to familiarise participants with the isolated speech sounds and their corresponding word contexts, while preventing participants from learning lip configurations associated with each sound. Identical recordings of the 20 consonants, presented once in each of the five conditions, were repeated across both sessions.

b. Words

Video recordings of 200 common, monosyllabic words, spoken in isolation by a single female speaker were selected from a set of items previously used in Krason et al. (2023) and Krason et al. (2022). Orthographic responses were cleaned by removing spaces and non-alphabetic symbols, as well as responses where participants indicated they could not identify the target word (by typing "dk"). Responses were then scored using the Levenshtein ratio calculated using the fast Levenshtein edit distance implemented in the *PanPhon* package for Python (Mortensen et al., 2016). The edit distance measure for each target stimulus—response pair was expressed as a percentage of the length of the longer string, and then subtracted from 100 in order to convert the metric into a ratio measure of word report accuracy. Previous work has indicated that using the Levenshtein distance to automatically score orthographic transcriptions is highly consistent with manually scored responses (e.g. Themistocleus et al., 2020), as spelling errors are not unduly penalised when manual scoring is not feasible due to the large number of responses to be evaluated (see Baese-Berk et al., 2023).

c. Sentences

Recordings of 100 meaningful sentences (number of words: $M\pm SD$ =13.97±2.20, length: $M\pm SD$ =5.11±0.71 seconds), a subset of the stimuli used in Aller et al. (2022), were presented across two sessions in the sentence-level word report tasks. Participant responses were cleaned in the same way as responses in the isolated word report task, removing extraneous spaces and symbols. Responses were scored using the Token Sort Ratio (TSR) fuzzy logic string matching metric (Bosker, 2021) as implemented in the Fuzzy Wuzzy Python package (SeatGeek Inc, 2014). We decided to use fuzzy string-matching metrics to score word report over more conservative item-correct measures as they provide a more fine-grained measure of individual differences in perceptual recognition, allowing for partial matches and not unduly penalising spelling errors and homophones (compared to scoring the more stringent %words correct as originally pre-registered, see Bosker, 2021).

3. Counterbalancing and randomisation

Item-session and item-condition assignments were counterbalanced across participants for the word- and sentence-level audiovisual speech perception tasks. Individual items were randomly assigned to sessions, resulting in 5 splits of items for each task. Ten item-condition assignments were created across all splits, and each participant was assigned to a split (item-session assignment) and version (item-version assignment). Additionally, in each audiovisual speech perception task, the presentation order of individual items was shuffled for each participant while ensuring an equal number of conditions per block (2 blocks in each task for consonants, 5 blocks in each task for words and sentences) was retained.

C. Procedure

1. General Procedure

Participants completed three experimental sessions over a period of 2-3 weeks, with at least 7 days between the first two sessions. All tasks were coded in *jsPsych* versions 6.3 or 7.3 (De Leeuw et al., 2023). At the start of each session participants adjusted their volume to a comfortable level and completed a headphone test using anti-phase sounds designed by Woods et al. (2017) to ensure that they were all wearing binaural headphones.

FIG. 2. Procedure. Participants completed three sessions, with session 1 and 2 set at least 7 days apart. At the start of each session, Wood's headphone test was used to ensure participants were wearing working headphones. At the start of session 1, participants additionally completed a language background questionnaire, and a practice session was used to familiarise participants with vocoded speech. In sessions 1 and two, participants completed three audiovisual speech tasks each, and in session 3 they completed three hearing and speech perception tasks and two cognitive tasks. Task order was randomised for each participants, and the item-session and item-conditions assignments were counterbalanced.

In the first two sessions, participants performed three audiovisual speech perception tasks with materials at one of three levels of linguistic structure (sentences, words and consonants in minimal syllables) with items presented in 5 different conditions varying in the availability of visual speech cues and acoustic clarity. In both sessions, completion of these tasks was preceded by a period of vocoded speech training, in which 10 sentences of degraded speech were presented in auditory-and auditory-visual conditions (mixing proportions *p* varying from 0.2-1), each preceded by a written transcription of the sentence. This was to ensure that the initial rapid perceptual learning that occurs with vocoded speech was completed by the start of the main experiment (Sohoglu and Davis, 2016).

At the start of session 1, participants additionally completed a short language questionnaire which screened for language and hearing difficulties, non-native British English speakers and collected (voluntarily disclosed) demographic data on age, gender identity, regional accent familiarity, proficiency in languages other than English as well as significant periods of time (>6 months) spent abroad.

In session 3, participants completed the Digits-in-Noise Test (Smits et al., 2013) to assess individual speech-in-noise perception thresholds and completed section one of the Abbreviated Profile of Hearing Aid Benefit (APHAB) (Cox, 1997). Additionally, the Listen-Up Task (Davis et al., 2019) was administered to assess phonological discrimination thresholds. The Matrix Reasoning Task (MaRs) (Chierchia et al., 2019), a non-proprietary version of the Raven's progressive matrices test, and the Spot-the-Word (STW) lexical decision task (Baddeley et al., 1993), were used to assess domain-general and verbal IQ, respectively. The order of tasks was randomised for each participant.

Finally, at the end of each audiovisual speech perception task, and at the end of each of the three sessions participants were asked to rate their comprehension of the instructions, ability to pay attention and technical difficulties during the task or session on a scale of 1-6 and provided with a textbox to provide further details if any issues that had occurred.

2. Audiovisual speech perception tasks

For each task, participants first completed a clear speech practice block, introducing the paradigm, and for consonants, the target stimuli. For the sentence-level and word-level tasks, participants first viewed three example items and were then asked to type back the words they understood into a textbox to the best of their ability. They were encouraged to guess if unsure and warned that some of the trials may appear very difficult. They then completed 5 blocks of word report tasks in sentence- and word-level audiovisual speech tasks consisting of 50 and 100 unique items and trials per session, respectively. Each item (sentence or word) was only presented once to

each participant across the entire experiment. At the level of consonants, participants performed a forced-choice task, and were asked to select the target consonant out of all 20 possible options, presented in the context of a monosyllabic real word. Participants heard a male speaker pronouncing each target consonant during practice trials and were provided with feedback on their responses, to ensure participants could correctly match each consonant to the answer options available. After this, they completed 2 blocks of AFC trials each of which contained one presentation of each item per each of the five conditions, for a total number of 100 trials per session.

3. Subjective hearing experience

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

The first section of the revised Form A of the Abbreviated Profile of Hearing Aid Benefit (APHAB) (Cox, 1997) was administered to assess individual participant's subjective experience of the frequency of hearing and speech-in-noise perception difficulties in everyday life. The APHAB includes 24 items which can be summarised into four subscales relating to hearing difficulties in everyday situations: Ease of Communication (EC), Reverberation (RV), Background Noise (BN) and Aversiveness (AV). The overall APHAB score for each individual participant was derived from the mean of the first three of these scales. Participants are asked to rate statements such as: "I miss a lot of information when I'm listening to a lecture" (BN) from Never (1% of the time) to Always (99% of the time). Six items were scored in reverse order, where 99% indicates no difficulties and 1% severe difficulties. Participant's attention was drawn to that fact to ensure they answer each item carefully. Higher overall scores indicate more substantial hearing difficulties. This task was included as previous work had indicated that when including participants with known hearing loss, scores correlate with individual lipreading ability (Suess et al., 2022). Additionally, including a subjective measure may diverge from an objective measure of hearing difficulties especially in mild cases or early-onset while perceived listening effort may predict everyday face-viewing behaviour which could be linked to lipreading ability or individual audiovisual benefit (Puschmann et al., 2019; Rennig et al., 2020).

4. Speech reception threshold

The Digits-in-Noise (DiN) test is an established measure of speech-in-noise reception thresholds (SRT), first introduced by Smits et al. (2013) as a task to screen SRTs over the telephone. In our implementation we followed the procedure described and validated in Smits et al. (2013). Digit triplets consisting of a randomly chosen combination sampled from digits 0-9 were presented in long-term average speech-spectrum noise, modulated via a 1-up, 1-down adaptive procedure with a step size of 2dB. In each of the 24 trials, participants were asked to report all three heard digits using a number pad presented on the screen, and answers were scored as triplets. SRTs are calculated as the mean SNR (dB) in the final 20 trials. The DiN was chosen as it has a high test-retest reliability, correlates significantly with pure tone audiometry thresholds and is highly sensitive to mild-moderate hearing loss (Van den Borre et al., 2021), which is indicated by an SRT of $-7.4 \, \mathrm{dB}$ SNR or above (Smits et al., 2013). Since none of our participants reported a clinical diagnosis of hearing loss, and our online version is not yet sufficiently validated, we refer to any differences in hearing measured here as "subclinical".

5. Categorical speech perception

Individual phonological speech discrimination thresholds were measured using the Listen-Up Task (Davis et al., 2019). Monosyllabic, common target words (e.g. "fan" in a female voice) were accompanied by a picture of the target word, followed by presentation of two real-word audiomorphed stimuli using the target word and a minimal-pair foil ("fan" and "van" spoken by a male voice). Participants were asked to indicate which of the two words was closer to the target word. The acoustic difference between both words was progressively reduced, using an adaptive procedure (3 down: 1 up, Levitt, 1971). Trials started with a 100% acoustic difference between the foil stimuli (i.e. resynthesised versions of the original speech) and the acoustic form of each token was reduced by 16% following three correct responses (i.e. 84% and 16% tokens were presented, subsequently reducing to 68% and 32% etc). Step size was reduced by 1/sqrt(2) at each turning

point. Therefore, the difficulty of this two-alternative forced choice task (2AFC) increased progressively throughout the task until step size reached 2% and performance converged on thresholds for distinguishing target and foil spoken words. The outcome measure is the minimum proportion of acoustic difference (PADRI) between speech sounds allowing an individual to identify the spoken words with 79.4% accuracy (PADRI threshold). Each participant completed two blocks of the Listen Up task and the PADRI threshold was averaged across two blocks. Where performance in only one of the blocks met outlier exclusion criteria, the PADRI threshold estimated in the other block was retained. The inclusion of the Listen-Up task was not originally preregistered, but we decided to include it as an exploratory predictor as it provides a brief complementary test of participant-level variability in speech perception in addition to auditory perceptual acuity.

6. Verbal IQ

Linguistic skill was assessed using the Spot-the-Word (STW) lexical decision task, developed by Baddeley et al. (1993). In the STW task, participants were presented with 60 pairs of words and non-words and asked to identify each real word in a pair. Real words ranged from frequent to obscure words, whereas non-words were plausible and followed English orthographic conventions. A practice trial consisting of 6 word-nonword pairs preceded the task, and participants were instructed to complete each trial page consisting of 6 word-non word pairs as quickly as possible. Vocabulary knowledge as a proxy measure of verbal IQ was scored as % correct identification of the real word in non-word-word pairs. Participants were re-assured that perfect performance in this task was not expected. Additionally, trials for which reaction times significantly exceeded the expected completion time (1.5 IQRs > Q3 across all participants) were excluded from analyses.

7. Non-verbal IO

Domain-general cognitive abilities were assessed using the MaRs reasoning task (https://sites.google.com/site/blakemorelab/research/mars-ib), with individual items drawn

from the open-source MaRs-IB item bank (Chierchia et al., 2019). Each item of the MaRs-IB was made up of a 3x3 matrix, with eight cells containing abstract shapes. Participants were asked to "complete the puzzle" by selecting the missing shape from four options presented below within 30s of trial onset, indicated by a countdown presented for the entire 30s. Relationships between items may be uni- or three-dimensional, and relate to the colour, shape and positions between cells. Participants saw up to 80 items, depending on how many items they manage to complete within 8 minutes at which time the task finished automatically. All participants were shown the same randomly sampled items and distractor types (we used a paired difference strategy for all items) in identical order to ensure that individual differences in task performance did not arise from item-level variation in difficulty (Zorowitz et al., 2024).

Trials with rapid responses (<250ms) were excluded from analyses. We computed the measures described in Chierchia et al. (2019): (i) productivity (absolute number of puzzles completed), (ii) median response time (RT) for correctly completed items, (iii) accuracy (items correct divided by items attempted), and (iv) inverse efficiency (median response times divided by accuracy). For interpretability, and to index accuracy and processing speed separately, our main measures of interest to be included as predictors were reaction time for correctly completed items and accuracy of items attempted.

D. Statistical Analysis

The study was pre-registered under: https://aspredicted.org/34C_Z4L. Data were pre-processed and scored in R (version 4.2.2), Matlab (version 2020b) and Python (version 3.11), while statistical analyses were performed in R (version 4.2.2). Anonymised data and analysis scripts are available under: https://osf.io/j56v4/.

Linear/logistic mixed effects models were used to estimate main effects of acoustic clarity, modality (added visual speech) and session on accuracy measures in all three audiovisual speech perception tasks using the *lme4* package in R. Audiovisual benefit was calculated by taking the

difference between intelligibility-matched audiovisual and auditory-only listening conditions AV_{low} - AO_{high} . For completeness, we estimated three different measures of test-retest reliability across sessions: the Spearman-Brown formula, Cohen's α , and the intra-class correlation coefficient (ICC) (even though only two of these measures were pre-registered we report all three; ICC allowed us to compare consistency across three levels in our cross-task comparison). Cronbach's α was computed using the *psych* package in α (Revelle, 2024), while the Intraclass Correlation Coefficient (ICC) was calculated using a two-way mixed-effects model for absolute agreement, treating separate sessions as individual raters, according to:

$$ICC = \frac{Variance\ between\ participants}{Variance\ between\ participants + Error\ variance\ + Variance\ between\ sessions}\ (2)$$

To assess across-task reliability, we calculated correlations which were ceiling-corrected for within-level test-retest reliability using the Spearman-Brown formula (adjusted by the square root of the product of the test-retest reliability of both tasks), and estimated consistency across all three tasks using a two-way mixed-effects ICC.

Finally, in order to isolate condition-specific rather than level-specific variance as the independent variable in the regression analysis, and given the significant correlations we observed across levels, we decided to perform principal component analysis (PCA) on standardised unimodal and audiovisual benefit measures across levels of linguistic structure. PCA scores (isolating variability in audiovisual benefit across tasks) were then predicted using multiple linear regression analysis including standardised perceptual and cognitive measures as well as demographic variables (age and self-reported gender) as independent predictors.

We additionally performed information transmission analysis (Miller and Nicely, 1955) to explore the role of phonetic feature perception (voicing, manner and place of articulation) in predicting sentence-level audiovisual benefit. This analysis was not pre-registered; therefore, we deem it exploratory here. Due to the small number of presentations per item per subject, confusion

matrices for phonetic features of interest: voicing, manner and place of articulation (see Table 1 for classification scheme), were pooled across participants prior to the calculation of relative transmitted feature information according to the following formula:

$$IT_{rel} = \frac{I(U,V)}{H(U)} \tag{3}$$

Here, I(U,V) describes the mutual information between the discrete variables describing presented and identified features, also known as the absolute information transmitted (IT_{abs}) , and H(U) describes the feature entropy of the target variable (see Oosthuizen and Hanekom, 2016, for a detailed methodological description of the classic FITA approach). Analyses were conducted using functions from the *entropy* package in R (Hausser and Strimmer, 2009). To estimate subject-level variability, a jackknife resampling procedure was used to produce subaverage IT_{rel} scores for 115 confusion matrices for n-1. Individual estimates o_i were then retrieved from the set of subaverage scores j_i using the following formula (Smulders, 2010):

$$o_i = n\bar{J} - (n-1)j_i \tag{4}$$

Here \bar{J} represents the mean of subaverage scores across n participants. In words, we computed the information transmission for an individual participant as the difference between information transmission for all participants, and information transmission for all participants except that individual. We refer to this dependent measure as retrieved relative information transmission (Retrieved IT_{rel}) and investigated the effect of added visual speech (modality) and acoustic clarity on this dependent measure using one-way analyses of variance (ANOVAs) on ranks (Kruskal-Wallis tests, as assumptions of normality were not met, see Results E). We also computed pairwise comparisons of interest and investigated the relationship of Retrieved IT_{rel} values to sentence-level measures of lipreading ability and audiovisual benefit.

III. RESULTS

A. Substantial individual differences in audiovisual benefit for sentences, words

410 and phonemes

As in previous work (Aller et al., 2022; Grant et al., 1998; Grant and Seitz, 1998; Sommers et al., 2005; Van et al., 2014; Van Engen et al., 2017), we observed substantial inter-individual variability in lipreading ability and audiovisual speech processing across all three audiovisual speech tasks (Figure 3). In each of the tasks, performance was lowest in the AO_{low} condition (Sentences: $M\pm SD=0.08\pm0.09$:, Words: $M\pm SD=0.19\pm0.07$, Consonants: $M\pm SD=0.23\pm0.08$), as expected, and increased with added acoustic clarity and added visual speech (see Figure 3a), as indicated by improved fit when including fixed effects of clarity and modality in logistic (for consonants) and linear (for words and sentences) mixed effects models according to the following specification (in the Wilkinson notation, Wilkinson & Rogers (1973):

$$Accuracy \sim 1 + Modality + Clarity + Modality: Clarity + Session$$

$$+ (1 + Modality + Clarity | Participant) + (1 | Item)$$
(5)

For sentences, model comparisons using Kenward-Roger's F-tests suggested that a model including clarity, F(1,112.12)=1282, p<.001, and modality, F(1,112.12)=667.83, p<.001, provided a better fit than models without. Examination of the summary output indicated that added acoustic clarity improved word report by 33% (low versus high acoustic clarity: $\beta=0.36$, SE=0.006, t=55.246) while the audiovisual modality improved word report by 36% (auditory-only versus auditory-visual condition: $\beta=0.360$, SE=0.015, t=24.15). There was a small, but significant interaction between clarity and modality, F(1,8584)=4.87, p=.027, $\beta=0.02$, SE=0.008, t=2.207, possibly driven by non-linearities in the data introduced by floor effects in the AO_{low} condition. There was also a significant improvement in overall accuracy between sessions, F(1,8556.59)=141.90, $\beta=0.05$, SE=0.004, t=11.912.

We observed a similar pattern of results for the word-level task, with an increased accuracy of word report with added clarity, F(1,113.43)=4703.83, p<.001, $\beta=0.62$, SE=0.01, t=112.74, and added visual speech, F(1,112.98)=1743.60, p<0.001, $\beta=0.42$, SE=0.01, t=55.99, as well as a very

FIG. 3. Individual differences in audio-visual speech perception. a) Results of the sentence-, word- and consonant-level audiovisual speech perception tasks (mean \pm SEM), as well as marginal probability densities. Asterisks (***) indicate significant main effects of clarity and modality, p < 0.001. b) Audiovisual benefit for individual benefits is calculated as the difference in performance between auditory-visual low clarity and auditory-only high clarity conditions (grey lines). c) Individual audiovisual benefit is significantly correlated with within-level visual-only perception, with marginal distributions displayed at the right- and top- of the plot, respectively. The dashed grey horizontal line shows the median audiovisual benefit over participants, and the dashed black horizontal line shows zero audiovisual benefit – i.e. equivalent accuracy for AV_{low} and AO_{high}.

small decrease in performance between sessions, F(1,17548.61)=13.37, p<.001, $\beta=0.01$, SE=0.003, t=-3.656. There was a significant interaction of clarity and modality also in the word-level task, F(1,17551.58)=1537.32, p<.001, $\beta=-0.30$, SE=0.008, t=-39.209, p<.001. This interaction effect is likely driven by a trend towards the ceiling in the word-level task (AO_{high}).

For the consonant-level task, we used mixed-effects logistic regression to explore the effect of clarity, modality and session on the binary accuracy measure. Since each participant saw each consonant per condition, by-item random slopes were also included in this model for a full random effects structure (see Barr, 2013). Model comparisons using likelihood ratio tests indicated that models including both acoustic clarity and modality provided the best fit to the data (Clarity: $\chi 2(1)=12.837$, p<.001, $\beta=1.78$, SE=0.43, $\chi=4.20$, Modality: $\chi 2(1)=17.295$, p<0.001, $\beta=2.12$, SE=0.41, $\chi=5.18$. There was no significant interaction between clarity and modality in the consonant-level task, $\chi 2(1)=0.01$, p=.939. Additionally, including session as a fixed effect improved model fit, suggesting a significant improvement in performance between sessions, $\chi 2(1)=13.26$, p<0.001, $\beta=0.19$, SE=0.02, $\chi=9.746$. Finally, there were substantial individual differences in both effects of acoustic clarity and modality on accuracy.

Our measure of audiovisual benefit was calculated as the difference in performance between the intermediate-intelligibility conditions AV_{low} and AO_{high} . This measure demonstrates substantial differences between individual participants: some benefitted more from added visual speech than increased acoustic clarity levels, and vice versa (as indicated by the slopes of lines in column b, i.e., positive slopes indicating more benefit from visual speech, whereas negative slope means more benefit from increased acoustic clarity). For example, in the sentence level task, 59 out of 113 participants benefitted more from added visual speech than increase acoustic clarity i.e. showed better performance in the AV_{low} condition than the AO_{high} conditions (for words and consonants these proportions were less balanced, with 6 and 68 out of 113 benefitting more from added visual speech, respectively). Over all participants, these measures of audiovisual benefit significantly differed from zero for words and consonants; but this difference was not reliable for sentence-level report (Sentences: MD=0.030, t(112)= 1.57, p= .119; Words: MD=-0.19, t(112)= -16.72, p<.001; Consonants: MD= 0.038, t(113)= 3.59, p=.001, see Figure 3b). Nonetheless, all three differences straddle zero, and are largely unaffected by floor or ceiling effects in the underlying data. For all three speech tasks, the degree of audiovisual benefit (i.e. difference between AV_{low}

and AO_{high}) was significantly correlated with lipreading ability measured using performance in the visual-only condition (Sentences: r(111)=.59, p<.001, Words: r(111)=.57, p<.001, Consonants: r(111)=.35, p<.001 see Figure 3c).

B. Audiovisual benefit is stable across sessions and consistent across levels of linguistic structure

In order to establish whether our measure of audiovisual benefit can be considered a stable difference between individuals, we calculated test-retest reliability across two sessions (set at least one week apart, containing different items) and consistency across three levels of linguistic structure, adjusted for within-task test-retest reliability (sentences, words and consonants, produced by different speakers). According to standard interpretations of test-retest metric values (Hedge et al., 2018), audiovisual benefit for the sentence-level task shows good test-retest reliability, while the word-level task shows moderate and the consonant-level task shows poor-moderate test-retest reliability (see Table I for a comparison of different measures and Figure 4a).

FIG. 4. Test-retest reliability of audiovisual benefit a) across sessions and b) across levels of linguistic structure. Values shown represent the Spearman-Brown measure, ceiling corrected for within-task re-test reliability in the across-task measure in b).

TABLE I. Test-retest reliability measures for within-task audiovisual benefit.

	Sentences	Words	Consonants
Cronbach's α	.83 [.76 .89] ^a	.68 [.56 .80]	.54 [.37 .71]
ICC	.71 [.60 .79]	.51 [.36 .64]	.37 [.20 .52]

^aConfidence intervals for α were estimated using the Duhachek method (Duhachek and Iacobucci, 2004).

To assess whether audiovisual benefit is also consistent across the three tasks, we calculated pairwise ceiling-corrected Spearman-Brown correlations (accounting for within-task test-retest reliability, see Figure 4b), as well as Cronbach's α and ICC_{3,k} across all three levels in order to assess consistency (two-way mixed for consistency rather than absolute agreement due to magnitude differences between different scores, using the average across two sessions, making ICC identical to alpha), which yielded values of α =.65, 95% CI [.53 .75].

Further assessing pairwise correlations between these three measures of audiovisual benefit demonstrates moderate consistency between monosyllabic words and sentences (α =.69 or ϱ =.75, where ϱ is corrected for within-task test-retest reliability), and poor to moderate consistency of audiovisual benefit measures for words and sentences with the consonant-level measure (Words: α =.35, ϱ =.31, Sentences: α =.49, ϱ =55). Low correlations may be driven by the moderate test-retest reliability of the consonant-level task (due to the relatively small number of trials presented). Nonetheless, these results show that across different items, stimulus types, and speakers we find meaningful correlations in the magnitude of audiovisual benefit individuals derive: A linear regression model including word- (β =0.693, SE=0.121, p<.001) and consonant-level audiovisual benefit (β =0.370, SE=0.125, p<.001) explained 33% of the variance in sentence-level audiovisual benefit, F(2,112)=28.32, p<.001, R²=0.324.

^{***} p < .001

Previous studies have provided inconsistent results regarding whether measures of lipreading ability measured for materials at different levels of linguistic structure are positively correlated (Bernstein et al., 2000). Exploring this here, we observed that lipreading ability was reliably and positively correlated across tasks (Sentences-Words: r(111)=.57, p<.001, Sentences-Consonants: r(111)=.43, p<.001, Words-Consonants: r(111)=.53, p<.001).

C. Audiovisual benefit is independently predicted by relatively poorer hearing and better lipreading ability

Having confirmed that our measure of audiovisual benefit shows sufficient convergent validity, we performed principal component analysis (PCA) using the *principal* function in the *psych* package on standardised audiovisual benefit scores to isolate participant-level variability across tasks. All three benefit measures loaded on one component, which explained 60% of the variance in the data, with loading strengths of 0.88 for sentences, 0.80 for words and 0.63 for consonants. Multiple linear regression was then used to predict variability in this PCA score from cognitive and hearing measures, as well as demographic variables (see Table II).

TABLE II. Summary of results for cognitive and perceptual measures

Measure	N	M	SD
Vocabulary knowledge (Spot-the-Word Accuracy)	103	0.675	0.191
Matrix Reasoning (RT correct in s)	103	8.283	3.650
Matrix Reasoning (Accuracy for items attempted)	103	0.805	0.084
Frequency of hearing difficulties (% APHAB)	103	0.323	0.049
Speech reception threshold (Digits-in-Noise dB SNR)	103	-10.233	0.933
PADRI threshold (Listen Up)	103	0.165	0.056
Age	103	38.544	11.549

Note. This table includes the measures and participants included in the multiple regression analysis.

We decided to include response times (for correct items) and accuracy (for attempted items) for the matrix reasoning task as separate predictors to improve interpretability (compared to a trade-off measure such as inverse efficiency) and to index both processing speed (RT) and reasoning ability (accuracy). Both response time (RT) and accuracy (%) in the matrix reasoning task were weakly correlated with age (RT: r(101)=.26, p=.011, %: r(101)=.20, p=.038) indicating declines in reasoning speed, but increases in reasoning accuracy with age (but neither of those correlations survived correction for multiple comparisons, see Figure 5). Both these measures of matrix reasoning ability were positively associated with performance on the Spot the Word task (RT: r(101)=.34, p<.001, %: r(101)=.35, p<.001). As expected, Spot the Word performance was moderately positively correlated with age (r(101)=.49, p<.001) in line with previous observations of increased verbal IQ in older individuals (Hartshorne and Germine, 2015). There were no significant relationships between the hearing or speech perception measures, and none of these measures were correlated with age (see Figure 5).

FIG. 5. Correlation matrix of cognitive, perceptual and demographic predictors included in multiple linear regression analyses. *** p < .001, ** p < .01, * p < .05, corrected for multiple comparisons using the Holm-Bonferroni adjustment. %=Accuracy, RT=Reaction time, MaRs=Matrix Reasoning, STW=Spot the Word, APHAB=Abbreviated Profile of Hearing Aid Benefit (Subjective Hearing), DiN = Digits-in-Noise speech reception thresholds (SRTs; Objective Hearing), PADRI=Percentage of Acoustic Difference Required for Identification (Listen Up).

A series of model comparison F-tests suggested that only poorer hearing, as indicated by higher speech reception thresholds (worse performance) estimated using the Digits-in-Noise test (F(1)=4.298, p=.041) and better lipreading ability, measured as the mean of (standardised) visual-only performance across all three tasks (F(1)=87.845, p<.001) predicted individual differences in audiovisual benefit, F(9,93)=12.33, $R^2=49.9\%$; dropping either of these, but none of the other predictors, significantly affected model fit (see Figure 6a).

FIG. 6. Results of multiple linear regression analysis predicting audiovisual benefit. a) Forest plot illustrating results for the full regression model predicting audiovisual benefit PCA scores across levels. Filled circles indicate a significant predictor. b) Partial regression plot for the two predictors which significantly contribute to model fit. c) Variance partitioning results indicate that hearing and lipreading ability independently explain variability in audiovisual benefit. Significance of partitions was tested using regularized discriminant analysis (RDA) across 999 permutations. *** p < .001, ** p < .01, * p < .05.

Previously, it has been suggested that speech-in-noise perception may explain some variability in lipreading ability (Bernstein, 2018; Watson et al., 1996). However, variance partitioning analysis indicated that lipreading ability and speech reception thresholds independently predicted

audiovisual benefit. Lipreading ability uniquely explained 45% (F(1,100)=77.448, p<.001) of the variance in audiovisual benefit, while speech perception thresholds explained 7% (F(1,100)=8.644, p=.006) with only 2% of variance shared between the two predictors (Figure 6C). A third variable included in this analysis, age, which has been associated previously with a decline in both lipreading ability and speech reception thresholds, and trended towards significance in the full regression model, did not explain any joint or unique variance in audiovisual benefit, F(1,100)=0.294, p=.589.

D. Unimodal speech perception is associated with demographic variables and domain-general cognitive abilities

We also explored whether hearing status, verbal and non-verbal cognitive abilities, age and gender explained any of the variability observed in performance in two unimodal conditions not used to calculate audiovisual benefit: Visual-Only and Auditory-Only_{low} (Figure 7).

We again extracted variability across levels using PCA to isolate modality-specific, level-independent variability. Auditory-only_{low} performance loaded on one component, explaining 53% of the overall variance, with loading strengths of 0.76 for sentences, 0.82 for words and 0.57 for consonants. Model comparisons revealed that better performance in the auditory-only modality was associated with younger age (F(1)=12.724, p<.001), and predicted by matrix reasoning accuracy (F(1)=5.106, p=.026) and performance in the Spot the Word task (F(1)=9.085, p=.003), explaining 31.6% of the variance in performance, F(8,94)=6.886, p<.001. Due to some (but not substantial) indication of multicollinearity this model (VIF=2.3), we also performed variance partitioning here to explore potential associations between age, and measures of verbal and non-verbal IQ. This suggested that matrix reasoning accounted for 16% of the variance (F(1,100)=21.047, p=.001), with 9% variance shared between the two cognitive measures and a non-significant unique contribution of Spot the Word performance (F(1,100)=2.949, p=0.087), while age independently explained 8% of the variance in auditory-only word report, F(1,100)=5.05, p=.020.

FIG. 7. Results of multiple linear regression analysis predicting speech perception performance in unimodal conditions. Forest plots illustrating multiple regression results for the unimodal conditions not used to calculate audiovisual benefit: Auditory-Only_{low} and Visual-Only (PCA scores across levels of linguistics structure). Colour coding and significance testing as in Fig. 6. *** p < .01, ** p < .01, * p < .05.

All three measures of lipreading ability loaded on a single PCA component, explaining 67% of the variance in the data, with loading strengths of 0.81 for sentences, 0.86 for words and 0.79 for consonants. Visual-only perception was related only to our two demographic measures, F(8,94)=2.662, p=.011, $R^2=11.5\%$. Model comparisons suggested that lipreading ability decreased with age (F(1)=5.812, p=0.017), and participants identifying as female were overall better at lipreading than those identifying as male (F(1)=4.675, p=.033). None of the other measures predicted individual differences in lipreading ability. Unlike for audiovisual benefit, including Speech Reception Thresholds estimated in the Digits-in-Noise task did not meaningfully contribute to model fit, F(1)=0.939, p=0.335. Overall, these results suggest that while audiovisual benefit is related to perceptual abilities, unimodal speech perception (both audio and visual-only) is associated with demographic variables (such as age/gender) and (for auditory speech perception)

FIG. 8. Partial regression plots for cognitive and demographic predictors of unimodal speech perception. a) Partial regression plots and variance partitioning results for the regression analysis predicting auditory-only low clarity. b) Predictors of visual-only speech perception. *** p < .001, * p < .05.

E. Exploratory: Sentence-level audiovisual benefit is predicted by visual perception of place and manner of articulation features

Our previous analyses have indicated that perceptual, rather than non-signal-related cognitive variables predict individual differences in audiovisual benefit for all three levels of linguistic structure tested. We therefore embarked on exploratory analyses to identify the perceptual cues that are most relevant to audiovisual speech perception and that may be better exploited by participant showing enhanced audiovisual benefit. Our focus here is on perception of specific articulatory features that might explain variability in consonant identification. To this end, we used a classic information theoretic approach to quantify transmission of phonetic cues in unimodal and audiovisual perception of consonants: feature information transmission analysis (FITA) (Files et

al., 2015; Grant et al., 1998; Jesse and Massaro, 2010; Lalonde and Werner, 2019; Miller and Nicely, 1955; Walden et al., 1975).

Consistent with the previous literature (e.g. Grant et al., 1998), we expected that place of articulation would be most easily transmitted in the visual- or audiovisual modality, whereas voicing and manner would be more easily recognised in the auditory modality. We statistically assessed two comparisons of interest: (1) Auditory-Only_{low} compared to Visual-Only (i.e. which features are better transmitted in two low intelligibility conditions that convey only auditory or only visual information; (2) Auditory-Only_{high} compared to Auditory-Visual_{low}, (i.e. which features are better transmitted in intermediate intelligibility, auditory-only and auditory-visual conditions, see Figure 9). We additionally conducted a factorial analysis to investigate main effects of auditory clarity (low/high) and visual information (absent/present) for the four auditory conditions (excluding VO). Since the data analysed are retrieved relative information transmission values, assumptions of normality are violated (as confirmed by Shapiro-Wilk tests, Voicing: W=0.821, p<.001, Manner: W=0.778, p<.001, Place: W=0.705, p<.001), therefore, non-parametric tests were used for statistical analysis.

Kruskal-Wallis H tests indicated that there was a main effect of modality ($\chi^2(1)$ =16.543, p<.001), as well as a main effect of clarity ($\chi^2(1)$ =231.299, p<.001) for transmission of the voicing feature (see Figure 9a). Transmission was significantly better in the Auditory-Only_{low} condition than the Visual-Only condition (MD=0.00871, χ =4403, p=.001 corrected for multiple comparisons using the Holm method), and better in the Auditory-Only_{high} condition compared to the Auditory-Visual_{low} condition (MD=0.0348, χ =6101, p<.001). These observations suggest an overall auditory advantage for transmission of voicing information. These findings are consistent with the existing literature indicating that voicing information is typically considered to be absent in visual speech signals (Lisker et al., 1977; but see: Raphael, 1972, 1975; Van Son et al., 1994). Nonetheless, the presence of a main effect of modality is interesting since it suggests that visual information can enhance perception of consonantal voicing contrasts when combined with auditory signals – for

instance, because visual information can signal the timing of closure for stop consonants.

FIG. 9. Results of the feature information transmission analysis (FITA) a) Retrieved values reflecting relative information transmitted for a) voicing, b) manner of articulation and c) place of articulation features across five conditions, including significance levels for pairwise comparisons for conditions of interest, *** p<.001. d) Correlations of sentence-level lip-reading ability (accuracy in the visual-only condition) with visual transmission of voicing, manner and place of articulation features. e) Relationship of sentence-level audiovisual benefit with visual feature transmission. f) Correlation of audiovisual benefit calculated using retrieved IT_{rel} with sentence-level audiovisual benefit. Correlations are corrected for multiple comparisons using the Holm adjustment.

For manner of articulation, the picture was more complex: There was a main effect of modality $(\chi^2(1)=85.506, p<.001)$ and clarity $(\chi^2(1)=206.027, p<.001)$ on relative information transmission (see Figure 9b). Manner cues were better transmitted in the Visual-Only than the Auditory-Only_{low} condition $(MD=0.0434, \chi=537, p<.001)$, but more easily transmitted in the Auditory-Only_{high} than the Auditory-Visual_{low} condition $(MD=0.0274, \chi=5472, p<.001)$, suggesting that while some manner information is available in the visual-only condition, at higher levels of acoustic clarity, the

auditory modality contains more reliable cues to the manner feature.

For place of articulation, there was a main effect of modality $\chi^2(1)$ =251.617, p<.001), as well as a main effect of clarity ($\chi^2(1)$ =37.419, p<.001) (see Figure 9c). Transmission was lowest in the Auditory-Onlylow condition, which was significantly worse than transmission in the Visual-Only condition according to a Wilcoxon sign-rank test (MD=0.0597, χ =177, p<.001). Finally, transmission of the place feature was better in the Auditory-Visual_{low} than the Auditory-Onlylow condition (MD=0.0467, χ =513, p<.001), indicating an overall advantage of the visual modality for transmitting place of articulation information. As for voicing, this is largely consistent with the existing literature; showing that visual speech provides valuable cues to place of articulation. Previous studies have pointed to the importance of place of articulation extraction for audiovisual speech perception (e.g. Grant et al., 1998). For instance, ability to extract place information is a significant predictor of individual susceptibility to the McGurk effect (Brown et al., 2018; Strand et al., 2014)

Finally, we explored a possible relationship between our retrieved IT_{rel} values for lipreading ability (VO) and audiovisual benefit (Retrieved IT_{rel}(Λ V_{low}) — Retrieved IT_{rel}(Λ O_{bieb})) at the

Finally, we explored a possible relationship between our retrieved IT_{rel} values for lipreading ability (VO) and audiovisual benefit (Retrieved IT_{rel}(AV_{low}) – Retrieved IT_{rel}(AO_{high})) at the consonant-level for each feature, and sentence-level lipreading and audiovisual benefit measures (see Figure 9d-f). These analyses suggested that the ability to extract both manner and place of articulation features in the visual modality predicted individual differences in sentence-level lipreading ability (Manner: $\varrho(111)=.46$, p<.001, Place: $\varrho(111)=.42$, p<.001) and audiovisual benefit (Manner: $\varrho(111)=.36$, p<.001, Place: $\varrho(111)=.39$, p<.001), while the visual transmission of voicing did not explain any variability in either measure at the sentence-level (VO: $\varrho(111)=.11$, p=.712, Benefit: $\varrho(111)=.01$, p=.888). Furthermore, the relative transmission of place of articulation information in the matched AV_{low} and AO_{high} conditions was meaningfully related to individual differences in sentence-level audiovisual benefit ($\varrho(111)=.27$, p=.016), while this was not the case for audiovisual benefit for either voicing ($\varrho(111)=.09$, p=.741) or manner ($\varrho(111)=.12$, p=.616) feature transmission. Therefore, despite the small number of presentations our estimates are based

on, we find a reliable relationship between perception of consonantal place and manner features and sentence-level measures of individual differences in visual and audiovisual speech. Overall, these results indicate that ability to extract manner and place of articulation cues visually, and the ability to extract place information audio-visually, relative to a participant's auditory-only performance when identifying individual consonants, is related to audiovisual benefit for sentence-level speech.

IV. DISCUSSION

Not all listeners can benefit equally from visual information to enhance speech perception (Grant et al., 1998). Here, we investigated individual differences in audiovisual speech perception using a matched, intermediate-intelligibility measure of audiovisual benefit. Macleod & Summerfield (1987) similarly compared speech-in-noise reception thresholds (SRTs) at 50% accuracy in auditory-only (AO) and auditory-visual (AV) conditions, respectively. Measuring the relative intelligibility of matched auditory-only and audiovisual speech, rather than comparing changes in intelligibility due to added visual cues better avoids floor and ceiling effects and confirms that audiovisual benefit is stable across time. Crucially, unlike previous studies using more conventional visual enhancement measures (Grant et al., 1998; Sommers et al., 2005; Tye-Murray et al., 2010) we found that this audiovisual benefit measure is correlated across different speech materials (sentences, words, consonants), suggesting that audiovisual integration relies on common mechanisms across levels of linguistic structure.

Isolating participant-level variability across levels of linguistic structure, we found that individual differences in audiovisual benefit were predicted by perceptual, rather than cognitive abilities: better lipreading abilities and higher Digits-in-Noise SRTs (relatively poorer hearing) independently predicted enhanced audiovisual benefit. Conversely, unimodal speech perception was associated with both cognitive measures (matrix reasoning, vocabulary) and demographic variables (age, gender). Using information transmission analyses, we further showed that visual speech perception and audiovisual benefit for sentence perception are

predicted by individual differences in the perception of place of articulation (and to a lesserdegree, manner of articulation) features during a consonant identification task. These findings point to common speech perception mechanisms that support audiovisual benefit in speech listening.

A. A common mechanism underlying audiovisual benefit across levels of linguistic structure

In the present study, we find reliable correlations for our measure of audiovisual benefit across speech materials probed at different levels of linguistic structure. That is, the degree of benefit obtained at the level of minimal syllables predicts the relative magnitude of benefit obtained at the level of monosyllabic words and meaningful sentences (each of which were additionally produced by a different speaker). Previous work has most commonly not been able to establish such relationship, for example using the Visual Enhancement (VE) measure (Grant & Seitz, 1998; Sommers et al., 2005). Grant et al. (1998) found no reliable correlations between consonant- and sentence-level VE in older hearing-impaired (HI) listeners, while Sommers et al. (2005) found only one moderate correlation between word- and sentence-level VE in younger, normally-hearing (NH) but not older (NH and HI) listeners, while no statistically reliable association could be established for consonant-level VE to higher-level measures. These limited or null findings for AV speech are surprising given that in unimodal conditions similar cross-task correlations are typically reliable (Bernstein et al., 2000; Grant et al., 1998; Humes et al., 1994; Sommers et al., 2005).

A potential explanation for this lack of correlations proposed previously (Sommers, 2021; Sommers et al., 2005; Van Engen et al., 2017) is that audiovisual integration for speech perception may rely on different mechanisms across levels of linguistic structure. In a multistage model of audiovisual speech perception (Peelle and Sommers, 2015), mechanisms relying on the complementarity of audiovisual information at the level of phonetic features (e.g.

Summerfield et al., 1997), or whole words (e.g. auditory and visual neighbourhoods: Tye-Murray et al., 2007b) could be differentially engaged depending on the linguistic complexity of the speech materials presented. This account might also extend to sentence perception – for example, if visually-mediated cortical entrainment is a mechanism that enhances sensitivity to upcoming, quasi-rhythmic continuous speech (Peelle and Sommers, 2015), this might not easily apply to isolated syllables or single words.

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

However, other speech perception mechanisms – e.g. predictive processing of mouthleading speech - more plausibly operate at multiple levels of linguistic structure (Chandrasekaran et al., 2009; Karas et al., 2019). Mouth-leading speech refers to cases in which visual cues precede corresponding acoustic speech in time. For example, when articulating the phoneme "m", a preparatory gesture of closing the lips can provide a visual speech cue before auditory cues to place are apparent; a "visual speech head start" (Karas, 2019) that may facilitate audiovisual speech perception (van Wassenhove et al., 2005). However, the frequency of these mouth-leading events in natural speech remains unclear (Schwartz and Savariaux, 2014). By this view, perception of visual articulation activates phonological representations which can support speech perception when auditory cues are degraded or absent. This shared mechanism, relying on simple phonetic representations may explain common sources of variability that we observe when combining multiple levels of linguistic structure, and our finding of a link between perception of consonantal features and audiovisual benefit. That our observations also generalise across different speakers (which may introduce additional noise in across task comparisons: e.g. Hazan et al., 2010; Heald & Nusbaum, 2014) is striking and suggests that similar effects might also be observed in ecological listening situations.

Of course, the amount of lexical and semantic context available to listeners may impact speech recognition in both unimodal and audiovisual conditions (e.g. Iverson et al., 1998; Smayda et al., 2016). In our work, this is evident in the pilot data, explaining why our intermediate conditions of interest are created using different levels of acoustic clarity.

Measuring audiovisual benefit based on matched, intermediate-intelligibility conditions thus alleviates intelligibility confounds in comparing across both modalities and tasks. Unlike other measures used in studying audiovisual speech perception, our intelligibility-matched measure of AV benefit shows moderate or good test-retest reliability. Previous work has noted the apparent lack of success of audiovisual speech training at the group-level (e.g. Preminger & Ziegler, 2008), and commented that audiovisual benefit may implicitly be assumed to be stable within an individual. However, this assumption has not explicitly been tested, especially in research specifically designed to investigate individual differences (Grant et al., 1998; Sommers et al., 2005; Tye-Murray et al., 2007a, 2016). Here, we show that our measure of individual differences generalises across time, when participants are tested on different items, and furthermore show reliable cross-task correlations even for tests assessing different levels of linguistic structure, with measures adjusted for within-task test-retest reliability. This approach, of (a) estimating audiovisual benefit at comparable, intermediate levels of acoustic clarity across materials, (b) avoiding floor and ceiling effects (c) estimating test-retest reliability and (d) taking task reliability into account for cross-task correlations was successful in showing consistent AV benefits for speech materials. We therefore encourage future studies of audiovisual speech training to consider the methods proposed here when testing for changes in the use of visual speech to support degraded speech perception.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

A natural next step for this work will be to test whether individual differences in AV benefit are similarly apparent in hearing impaired individuals. However, in populations with more variable hearing abilities (e.g. in hearing loss, where acoustic degradation levels similar to the ones used here are likely to introduce floor-effects) we recommend the investigation of individual speech perception thresholds determined using an adaptive procedure to quantify the relative visual benefit (Macleod and Summerfield, 1987). Alternatively, researchers should consider testing a range of levels (guided by pilot experiments) rather than limiting their experiment to one or two levels of degradation determined a-priori. Where automatic scoring

methods are more challenging – for example when working with sentence-level word reports tasks in online experiments (but see Borrie et al., 2019; Bosker, 2021 for recent advances in this area) – sampling at multiple levels would present an alternative option to prevent floor- and ceiling effects.

B. The role of cognitive, perceptual, and demographic variables in explaining individual differences

Having confirmed that individual differences in audiovisual benefit are stable over time, and consistent across levels of linguistic structure, we set out to investigate the role of cognitive, perceptual and demographic variables in explaining these individual differences. Importantly, we do not attempt to isolate the integration stage here, but instead take a holistic approach to understanding individual differences in audiovisual speech benefit, across levels of linguistic complexity. This represents a more ecological approach: assessing audiovisual speech perception in general, rather than understanding audiovisual integration as a discrete, separable part of the process. To understand the role of linguistic and cognitive abilities as well as auditory perceptual acuity we administered several well-established psychometric tests in our final session. We also recruited a balanced sample across the adult age range (18-60 years, mean = 38 years), and recorded participant's self-identified gender.

While auditory speech perception was predicted by demographic (age, gender) and domaingeneral cognitive abilities, we found that only unimodal perceptual abilities predicted individual differences in audiovisual benefit. This is in line with previous research: it is well-established that cognitive abilities correlate with performance on speech perception tasks (especially at the sentence-level: Heinrich et al., 2015), and that both auditory speech perception and lipreading ability decline with age (Tye-Murray et al., 2010, 2016). A common finding in previous work is a lipreading advantage for female participants (which may be due to differences in strategy or gaze behaviour, e.g. see Bernstein, 2018), which we also find here. Finally, the idea that individual differences in audiovisual enhancement is a consequence of differences in unimodal perceptual abilities has been suggested previously (Sommers, 2021; Tye-Murray et al., 2016). We extend these previous findings by using a number of speech task-external measures, capturing different aspects of auditory perceptual acuity. We also explored the role of phonetic feature information across modalities, and how individual variability in their transmission at the consonant-level generalise to higher levels of linguistic structure. We will discuss our findings with regard to each of these factors in turn.

1. Cognitive and linguistic abilities

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

Our results suggest that measures of language and domain-general cognition are associated with individual differences in auditory, but not visual speech perception or audiovisual benefit. This is in line with previous work: It is well-established that individual differences in cognitive measures and language proficiency predict performance on auditory-only speech recognition tasks, even after accounting for individual differences in audibility, in consonant-, word- and sentence-level tasks (Akeroyd, 2008; Besser et al., 2013; Humes et al., 1994; Moradi et al., 2013, 2014). While more specific measures have previously been linked to speech recognition (specifically: measures of working memory such as n-back tasks, see Besser et al., 2013), we find that shared, domain-general, variance between our cognitive and linguistic tasks predicts better auditory-only performance across levels of linguistic structure. Specifically, after accounting for the unique variance in the matrix reasoning task and shared variance with the Spot-the-Word vocabulary measure, vocabulary knowledge itself no longer significantly explained variability in auditory-only performance. This finding could reflect influences of fluid intelligence on performance in working memory tasks (Harrison et al., 2015; Wiley et al., 2011), or the influence of domain general neural mechanisms shown by impaired perception of degraded speech in individuals with brain lesions affecting fluid intelligence (MacGregor et al., 2022). Alternatively, scoring word report tasks using more granular string-matching metrics (Bosker, 2021) might have attenuated the influence of linguistic knowledge on relative

performance (Stevenson et al., 2015).

Previous studies, however, have been less clear on whether cognitive and linguistic abilities predict individual differences in audiovisual enhancement. One aspect of this debate concerns whether the addition of visual speech leads to increased or decreased computational demands in speech recognition tasks (Fraser et al., 2010; Moradi et al., 2013, 2017). In a dual-task paradigm, Fraser et al. (2010) found that, compared to intelligibility-matched auditory-only speech, performance in an audiovisual speech recognition task was more disrupted by the presence of a secondary task. Like our intelligibility-matched method, this approach avoids a pitfall of traditional methods based on comparing conditions where the audiovisual task is naturally more intelligible, i.e. less cognitively demanding. However, for Fraser et al. (2010), this effect was only apparent in RTs, but not in accuracy scores or subjective listening effort ratings. In the current study, we also compare matched conditions to avoid intelligibility-related confounds and found no evidence of any relationship between audiovisual benefit and domain-general cognitive or linguistic abilities.

It might be that variability in visual speech perception, and by extension, audiovisual benefit, relies on more domain-specific cognitive abilities, such as visuo-verbal or visuo-spatial working memory and processing speed, which had previously been linked to lipreading ability (Feld & Sommers, 2009; Lyxell & Holmberg, 2000; Tye-Murray et al., 2014). However, here, we found no evidence of a relationship to either of the MaRs measures, suggesting that – to the extent that processing speed and perceptual synthesis (Watson et al., 1996) are measured by this non-verbal reasoning task, then neither, was related to lipreading ability or audiovisual benefit. Another explanation of the somewhat conflicting findings in the literature could be that proposals tying (audio-)visual speech perception to higher-level cognitive and linguistic abilities might be specific to research with special populations (i.e. school-aged children, or individuals with hearing loss that occurred early in life) (Lyxell and Holmberg, 2000; Lyxell and Rönnberg, 1989). More recent work generally confirms the idea that individual differences in

cognitive or linguistic abilities are not correlated with audiovisual enhancement, even in these populations (Lalonde and McCreery, 2020). In a sample of school-aged children, with and without hearing loss, Lalonde and McCreery (2020) found no relationship of vocabulary, working memory and executive function measures with audiovisual enhancement in a sentence-recognition task: Only the degree of hearing loss predicted the magnitude of audiovisual enhancement, consistent with our findings.

2. Unimodal speech perception abilities

We found that relatively poorer hearing and better lipreading ability independently predicted individual differences in audiovisual benefit across levels of linguistic structure. As expected (Bernstein et al., 2022, for review), lipreading ability itself accounted for a large amount of the variance in audiovisual benefit. The idea that variability in unimodal perceptual abilities explain individual differences in the audiovisual speech advantage is not a new proposition: Tye-Murray et al. (2016) for example, conducted a principal component analysis on a closed-set word identification task in 11 conditions of auditory-only, visual-only and auditory-only speech which returned only two components, suggesting that variability was entirely explained by two unimodal variability factors, rather than requiring a third, distinct integration ability. Importantly, when using the term "perceptual" here, we refer to "speech perception", which involves modality-specific phonetic categorisation (e.g. Holt, 2010). Our use of this term is therefore not limited to pre-linguistic perceptual processes. This is to distinguish accounts which consider auditory-visual integration as a distinct ability (similar to working memory or processing speed, as addressed in Tye-Murray et al., 2016) which might be associated with supramodal cognitive abilities.

A key result from our regression analysis is that variability in SRTs estimated in the Digitsin-Noise test (Smits et al., 2013) predicted individual differences in audiovisual benefit. It is well-established that hearing impairment is associated with improved lipreading ability (likely due to early developmental experiences: Auer & Bernstein, 2007; Bernstein et al., 2000; Tye et al., 2014). Older adults with age-related hearing loss also generally show increased audiovisual enhancement (Altieri & Hudock, 2014; Moradi et al., 2017; Puschmann et al., 2019, but see: Rosemann & Thiel, 2018; Spehar et al., 2008; Tye-Murray et al., 2007a). Since we find that mild differences in hearing predict audiovisual benefit *independently* of lipreading ability, we interpret this in line with a re-weighting of visual perceptual cues during audiovisual speech processing as information conveyed through the auditory modality becomes less reliable (even though visual cues in isolation are not necessarily more reliably identified, as we find no evidence of a relationship here). This is in line with Causal Inference Models of audiovisual perception (Körding et al., 2007; Ma et al., 2009), whereby the sensory uncertainty introduced by poorer hearing induces shifts in perceptual weighting. For example, relatedly, a recent study has suggested that children with developmental dyslexia (DD) may increasingly rely on the visual modality to compensate for (auditory) phonological processing difficulties compared to children without DD (Gijbels et al., 2024).

Of course, the cross-sectional nature of our study, and lack of longitudinal data, limits the strength of the conclusions that we can draw. We do not find for instance that individual differences in our hearing measures are correlated with age, and thus cannot draw any conclusions regarding the onset and length of relative difficulties in speech-in-noise perception, or by extension, any role of cross-modal plasticity, which has been proposed to underlie increase audiovisual enhancement in age-related hearing loss (Campbell & Sharma, 2014; Puschmann & Thiel, 2017). Nonetheless, it is interesting that even mild differences in speech-in-noise perception are reliably associated with enhanced audiovisual benefit.

At the same time, we find no evidence that audiovisual benefit is related to subjective experiences of hearing impairment (which may result to intentional changes in gaze behaviour, e.g. Rennig et al., 2020), or phonetic perceptual gradiency specifically (see also: Brown et al., 2018, for a similar lack of evidence that categorical perception accounts for individual

differences in the McGurk effect). It might be that additional self-report measures, such as the more extensive speech, spatial and qualities of hearing scale (SSQ, Gatehouse and Noble, 2004) would provide a more reliable score. Alternatively, perhaps such mild differences in hearing are not subjectively noticeable by participants. Suess et al. (2022) found that subjective hearing impairment measured using the APHAB predicted enhanced lipreading abilities in a sample including participants with moderate hearing-loss.

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

To better understand the role of phonetic feature recognition in explaining variability in lipreading ability and audiovisual benefit, we conducted exploratory information transmission analyses. While, overall, our results are in line with previous work (Grant et al., 1998; Lalonde and Werner, 2019) in showing an auditory advantage for voicing and manner, as well as increased transmission of place information in the visual modality, we also successfully identify a directly relationship between phonetic feature recognition and sentence-level listening benefit. We find that while place of articulation is predominantly transmitted through the visual modality, manner is more easily transmitted through the auditory modality, in line with the classic VPAM framework (Binnie et al., 1974; Summerfield, 1979), emphasising the complementarity of visual and auditory cues to phonetic perception. This is also in line with what we know from incongruent contexts: in minimal syllables, Lalonde & Werner (2019) showed that consonant identification was most likely determined by auditory manner and voicing information, or visual place information. Interestingly, we see a main effect of added visual speech even for voicing, for which transmission in the visual modality alone was negligible. We explain this effect, which is super-additive in nature, via temporal cues to voiceonset time (Raphael, 1972, 1975), transmitted in combination by combining visual cues for the timing of stop-release with auditory cues to voicing.

In line with the VPAM framework, Grant et al. (1998) set out to show that cue complementarity, i.e. the ability to extract manner information in the auditory modality, and place information in the visual modality explains a significant amount of variance in individual

differences in audiovisual speech perception. While this was true for nonsense syllables, it failed to generalise to their measure of audiovisual enhancement at the level of sentences. By contrast, we found that ability to extract both manner and place of articulation cues positively predicted individual differences in lipreading ability and audiovisual benefit at the sentence-level. This suggests that better perception of place and manner cues in visual speech (independent of speech perception differences in auditory-only conditions) generalises to improved lipreading and to the use of visual cues at the sentence-level. Interestingly, only for place information did relative feature transmission at the consonant-level (AV_{low} > AO_{high}) predict individual differences in sentence-level audiovisual benefit. This suggests that the complementary nature of visual relative to auditory cue extraction for place of articulation plays a role in an individual's ability to benefit from visual cues in more ecological listening conditions. Our findings therefore confirm that place of articulation perception is an important avenue for audiovisual speech rehabilitation. Item transmission analysis is usually performed on datasets containing a large number of presentations in a small sample (e.g. Lalonde & Werner, 2019: n=9). Here we show that based on only two presentation of each item we can retrieve sufficiently reliable measures of individual differences in feature transmission to be predictive of audiovisual performance in more ecological speech stimuli.

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

3. Demographic variables and clinical implications

As expected, in our speech perception task we replicate the well-documented age-related decline in both auditory speech perception (Füllgrabe et al., 2014; Gordon-Salant, 2014) and in lipreading (Feld and Sommers, 2009; Tye-Murray et al., 2007a, 2016). A combination of sensory, perceptual and cognitive changes likely contribute to this effect (Füllgrabe et al., 2014; Roberts and Allen, 2016). In our sample, older adults were no more likely to have poorer speech reception thresholds than younger adults and did not provide subjective reports of a higher incidence of hearing difficulties. This may be because we intentionally recruited participants without known hearing difficulties and recruited a younger sample (aged ≤60 years) than studies

explicitly aimed at investigating age-related changes in (audiovisual) speech perception. This may also explain why we found matrix reasoning performance to remain largely intact in older individuals, whereas previous studies including older adults reported a linear decline in scores (Der et al., 2009; Salthouse, 1993). However, as expected, linguistic skills (performance in the Spot-the-Word task) improved with age (Hartshorne and Germine, 2015). The age-related decline in unimodal speech perception we observe here may therefore be a combined consequence of both perceptual and cognitive changes throughout the lifespan, including changes to more domain-specific cognition, for example working memory. For example, Füllgrabe et al. (2014) found that performance in digit span tests accounted for some age-related deficits in speech-in-noise identification).

Previous suggestions that deficits in unimodal speech perception could be compensated for by an audiovisual integration capacity (Freiherr et al., 2013; Laurienti et al., 2006), in line with the principle of inverse effectiveness (Stein and Meredith, 1993) have been of great clinical interest. However, this proposal has not been substantiated by the literature on audiovisual speech perception (Spehar et al., 2008; Stevenson et al., 2015; Tye-Murray et al., 2007a; Winneke & Phillips, 2011, but see Dias et al., 2021), or found in the current study. We found no agerelated changes in audiovisual benefit. At similar, intermediate levels of intelligibility for auditory-only and audiovisual speech, it therefore seems that, unlike unimodal speech perception, audiovisual benefit is generally preserved with age.

Understanding determiners of individual differences in lipreading and audiovisual benefit can help to further our understanding of the mechanisms underlying audiovisual speech perception (Kidd et al., 2018) and also identify potential rehabilitative strategies to restore speech communication in hearing loss, by helping us understand what participants with better recognition "do right". Our results support the notion that improvements in visual phonemic perception can have substantial positive implications for sentence-level speech perception. Recent advances in lipreading training are especially promising in this regard, even though

lipreading training has traditionally been notoriously challenging (Bernstein et al., 2022, 2023). Files et al. (2015) suggest that while sub-visemic contrasts are not usually processed, they are available to participants i.e. normally hearing adults can discriminate between phonemes that are usually grouped into the same viseme class, such as /3a/ and /da/, suggesting this as a potential avenue for training which can generalise to natural speech (e.g. Bernstein, 2023). Additionally, lipreading training targeted specifically at the phonemic contrasts that are increasingly degraded in the auditory modality may be especially beneficial in supporting speech communication in multimodal environments.

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

Additionally, in our study, we observed a slight lipreading advantage for female participants, which had been reported previously (Bernstein, 2018; Johnson et al., 1988; Watson et al., 1996); but see: Auer & Bernstein, 2007; Tye-Murray et al., 2007a). The source of these gender differences, and whether they can provide insights for potential avenues for rehabilitation, however, remain elusive. Bernstein (2018) speculates that differences in response strategies – specifically, increased guessing - may underlie better lipreading scores. Gender differences in face processing may also underlie this effect: women tend to rate faces as more salient (Proverbio, 2017), which may in turn affect face viewing behaviour, in line with the idea that "social tuning", a measure of the frequency of mouth and eye fixations, predicts enhanced visual speech identification in children with and without HL (Worster et al., 2018). When speech is degraded, participants have a general tendency to fixate the mouth (Rennig et al., 2020), therefore, simply encouraging mouth-looking behaviour in adults is unlikely to make a sustained difference. Overcoming selection bias (Awh et al., 2012), towards prioritising the encoding of social rather than phonetic information from the face may also play a role (Bernstein et al., 2023). Finally, the effect of visual acuity on audiovisual speech perception remains unclear and understudied, despite well-documented age-related declines in visual abilities (Andersen, 2012). Mild differences in general visual acuity in older adults do not seem to predict audiovisual speech (Hickson et al., 2004), while early visual deprivation in congenital

cataract patients permanently impairs lipreading ability (Putzar et al., 2010). In our study, we do not explicitly investigate the role of visual acuity and its relationship with lipreading ability and audiovisual speech perception. Future work employing a similar paradigm, measuring the relative intelligibility of auditory- and audiovisual speech, combined with assessment of domain-general visual abilities would be well-suited to address this question.

4. Effects of different types of acoustic clarity manipulations

In our work we used a form of artificially-degraded speech – noise vocoded speech – that allows for careful matching of intelligibility (necessary for our comparison of visual and audiovisual speech perception) and provides an approximate simulation of speech transduced by a cochlear implant (Shannon et al, 1995). However, our use of this form of artificial degradation leaves unanswered important questions concerning the relationship between our findings and effects of background noise or competing talkers on audiovisual speech perception in ecological listening situations. Visual speech can both a) provide information about the content of speech (object formation) and b) aid the listener in segregating target speech from background noise or distractor speakers (object selection) (e.g. Devergie et al., 2011). Our use of noise-vocoded speech focused predominantly on the first case, whereas different types of background noise may introduce additional task demands related to sound source segregation and selective attention to the target sound source.

It is important to consider whether our results might also apply to more typical listening challenges, such as a speech in noise. It is possible that audiovisual integration for speech perception may not follow the same principles where it is needed to segregate target speech from background noise (Blackburn et al., 2019; Micula et al., 2024). Future work is needed to determine how demands related to object selection in ecological settings are affected by the presence of visual speech in listeners with hearing loss or CIs – and its association with supramodal abilities including attention. However, energetic masking introduced by

background noise or distractor speakers also leads to the physical degradation of the target signal (Brungart, 2001), which can be compensated for by visual speech. For this aspect (i.e. object formation) we believe our results should hold true independent of the type of auditory manipulation. Additionally, our work is not inconsistent with conclusions drawn from studies investigating audiovisual speech-in-noise perception (see Sommers, 2021, for review). Importantly, ceiling effects can introduce confounds when studying predictors of individual differences regardless of the type of acoustic manipulation. It is therefore an important detail that floor/ceiling effects did not contribute to our critical audiovisual benefit measure.

V. CONCLUSION

Substantial individual differences in lipreading and audiovisual speech perception exist in the general population. Therefore, only for some can the negative consequences of hearing loss be alleviated substantially via increased reliance on visual cues. In our study, added visual cues improved speech scores at the sentence-level by an average of 36% (AV > AO) with a range of 0 to 86%. However, rather than investigating individual differences using these estimates, we used the relative benefit obtained by comparing matched, intermediate-intelligibility auditory-only and auditory-visual speech (AV $_{\rm low}$ > AO $_{\rm high}$). We found that this measure of audiovisual benefit was stable across sessions and correlated across speech materials: meaningful sentences, monosyllabic words and minimal syllables. This suggests that if we avoid intelligibility confounds, we find evidence that audiovisual speech benefit relies on a shared mechanism across levels of linguistic structure. Information transmission analysis suggested that even at the sentence-level, audiovisual benefit relies fundamentally on the ability to perceive simple articulatory features (such as place of articulation) in visual speech.

Additionally, we found that individual differences in audiovisual benefit were predicted by better lipreading ability and subclinical indicators of poorer hearing (speech reception thresholds in the Digits-in-Noise task). Overall, this is in line with the idea that variability in unimodal perceptual abilities underlies individual differences in audiovisual speech processing.

Future research exploring how to best to support older individuals with declining hearing would be best served by focusing on supporting their declining unimodal perceptual abilities (specifically those most relevant in ecological, multimodal contexts, as can be identified using for example information transmission analysis). Rather than resulting from a simple linear combination of auditory and visual speech perception skills (e.g. Tye-Murray et al., 2016), however, it seems that individuals with mild speech-in-noise recognition difficulties are more adept at using visual cues in audiovisual context. This was independent of any improvements in lipreading ability. We interpret this in line with a causal inference framework, which has previously been applied to explain perception of incongruent AV stimuli. While we do not find any other behavioural correlates of this enhanced audiovisual benefit, our conclusions are perhaps limited by the cross-sectional nature of this study. Future research adopting a longitudinal approach, or carefully controlled and validated neuroimaging measures (considering intelligibility explicitly as a potentially confounding variable), may be better suited to identifying strategies to aid multimodal speech communication in individuals with hearing loss.

ACKNOWLEDGMENTS

This research was funded by an MRC DTP Studentship (Reference: MR/N013433/1) and a Cambridge Trust Scholarship to J.V.S, and MRC funding of the Cognition and Brain Sciences Unit (Reference: MC_UU_00030/6 supporting M.H.D and M.A). The authors would like to thank Thu Ngan Dang, Shangqiguo Wang and Tobias Goehring for providing stimuli for the Digits-in-Noise Task; Anna Krason, Ye Claudia Zhang and Gabriella Vigliocco, and Elizabeth Buchanan-Worster and Mairéad MacSweeney for sharing video recordings for the speech stimuli. Finally, we would like to thank Lucy MacGregor, Adam Attahari and Harriet J. Smith for sharing jsPsych scripts for the Spot-the-Word and Listen Up tasks.

AUTHOR DECLARATIONS

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Ethics approval was obtained by the Cambridge Psychology Research Ethics Committee (application number PRE.2022.056).

DATA AVAILABILITY

The data that support the findings of this study are openly available at:

https://osf.io/j56y4/, DOI: 10.17605/OSF.IO/J56Y4.

Further details on the on the speech stimuli used in this study are available in the original publications for which they were recorded. Sentence-level stimuli have been made available by Aller et al. (2020) under: https://osf.io/st6fe/. Clear speech recordings from which our word-level stimuli were drawn (Krason et al., 2022, 2023) are available under: https://osf.io/gudj6/. Examples of consonant-level stimuli have been printed in Pimperton et al. (2019) and Buchanan-Worster et al. (2021).

APPENDIX

See tables III-IV for further details and summary statistics of consonant- and word stimuli. A full list of stimuli can be found in the OSF repository.

TABLE III. Feature classification scheme for consonants.

Consonant	Context ^a	Voicing ^b	Manner ^c	Place ^d	
b	<u>b</u> ad	1	0	0	
Þ	<u>p</u> et	0	0	0	
m	<u>m</u> et	1	1	0	
f	<u>f</u> at	0	2	0	
ν	<u>v</u> et	1	2	0	
θ	<u>th</u> aw	0	2	1	
t	<u>t</u> ad	0	0	1	
d	<u>d</u> ad	1	0	1	
п	<u>n</u> et	1	1	1	
k	<u>c</u> at	0	0	2	
g	g et	1	0	2	
Z Z	<u>z</u> ed	1	2	1	
\int	<u>sh</u> ed	0	2	2	
tf .	<u>ch</u> at	0	3	2	
d3	į et	1	3	2	
h	<u>h</u> at	0	2	2	

j	y et	1	4	2	
l	<u>1</u> et	1	4	1	
r	<u>r</u> at	1	4	1	
w	<u>w</u> et	1	4	2	

^aThe written context in which each response option was presented in the consonant AFC task.

In the video recording, each consonant was embedded in a minimal CV syllable: each consonant was followed by a /ə/.

TABLE IV. Summary statistics for the word stimuli presented.

1067

1068

1069

	Mouth and	Frequency	Phonological	Age of	Number of	Number of
	Facial	HAL	Neighbourhood	Acquisition	Phonemes	Letters
	Informativeness ^a		Density	(AoA)		
M	0.82	160094.8	23.60	5.26	3.35	4.30
SD	0.38	262900.4	14.45	1.51	0.73	0.91

Note. All lexical variables were calculated from data in Krason et al. (2023), including the Hyperspace Analogue to Language (HAL) frequency norms (Balota et al., 2007; Lund and Burgess, 1996), Phonological Neighbourhood Density (Luce and Pisoni, 1998) and Age of Acquisition (AoA) (Kuperman et al., 2012).

^a Mouth and Facial Informativeness (MaFI) is a normed measure quantifying the degree of visual informativeness for each word, based on the phonological distance between target word and speechreading guess (Krason et al., 2023).

See tables V-VII for detailed statistics on model comparisons performed via stepwise deletion as reported in Sections III.C and III.D.

^b Describes whether the voicing feature is present (1) or absent (0) for a given consonant.

^c Manner of articulation was grouped into five categories: (0) stop, (1) nasal, (2) fricative, (3) affricate and (4) approximant.

^d Place of articulation was grouped into three categories: (0) front place (bilabial and labiodental) (1) mid place (dental and alveolar), (2) back place (remaining consonants), after Miller & Nicely (1955) as reported in Jesse & Massaro (2010).

TABLE V. Stepwise deletion to compare models predicting audiovisual benefit.

	df	SS	RSS	AIC	F	Þ
			43.916	-67.803		
MaRs %	1	0.989	44.905	-67.509	2.095	0.151
MaRs RT	1	0.255	44.171	-69.207	0.540	0.464
STW	1	1.18	45.095	-67.073	2.498	0.117
APHAB	1	0.277	44.193	-69.155	0.587	0.445
DiN SRT	1	2.03	45.946	-65.149	4.298	0.041*
PADRI	1	0.005	43.921	-69.791	0.011	0.916
Age	1	1.731	45.647	-65.82	3.666	0.059.
Gender	1	0.236	44.152	-69.251	0.499	0.482
Visual-Only	1	41.481	85.397	-1.304	87.845	<0.001***

Note. *** p<.001, * p<.05, . p<.06. All predictor variables are scaled.

TABLE VI. Stepwise deletion to compare models predicting performance in AO_{low.}

	df	SS	RSS	AIC	F	Þ
			66.722	-26.722		
MaRs %	1	1.548	68.27	-26.36	2.181	0.143
MaRs RT	1	3.625	70.346	-23.274	5.106	0.026*
STW	1	6.449	73.171	-19.219	9.085	0.003**
APHAB	1	0.659	67.381	-27.71	0.928	0.338
DiN SRT	1	0.024	66.746	-28.686	0.034	0.855
PADRI	1	0.983	67.704	-27.216	1.384	0.242
Age	1	9.032	75.753	-15.646	12.724	0.001***
Gender	1	0.104	66.826	-28.562	0.146	0.703

Note. *** p<.001, ** p<.01, * p<.05. All predictor variables are scaled.

TABLE VII. Stepwise deletion to compare models predicting performance in VO.

	df	SS	RSS	AIC	F	Þ
			79.594	-8.552		
MaRs %	1	2.931	82.525	-6.828	3.461	0.066
MaRs RT	1	0.000	79.594	-10.552	0.000	0.988
STW	1	1.748	81.342	-8.314	2.065	0.154
APHAB	1	0.578	80.172	-9.808	0.682	0.411
DiN SRT	1	0.795	80.389	-9.529	0.939	0.335
PADRI	1	0.238	79.832	-10.245	0.280	0.598
Age	1	4.921	84.515	-4.373	5.812	0.018*
Gender	1	3.959	83.553	-5.553	4.675	0.033*

Note. * p<.05. All predictor variables are scaled.

REFERENCES

Akeroyd, M. A. (2008). "Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults," Int. J. Audiol., 47, S53–S71. doi:10.1080/14992020802301142
Aller, M., Økland, H. S., MacGregor, L. J., Blank, H., and Davis, M. H. (2022). "Differential Auditory and Visual Phase-Locking Are Observed during Audio-Visual Benefit and Silent Lip-Reading for Speech Perception," J. Neurosci., 42, 6108–6120. doi:10.1523/JNEUROSCI.2476-21.2022
Altieri, N., and Hudock, D. (2014). "Assessing variability in audiovisual speech integration skills using capacity and accuracy measures," Int. J. Audiol., 53, 710–718. doi:10.3109/14992027.2014.909053
Andersen, G. J. (2012). "Aging and vision: changes in function and performance from optics to perception," WIREs Cogn. Sci., 3, 403–410. doi:10.1002/wcs.1167
Auer, E. T., and Bernstein, L. E. (2007). "Enhanced Visual Speech Perception in Individuals With Early-Onset Hearing Impairment," J. Speech Lang. Hear. Res., 50, 1157–1165. doi:10.1044/1092-4388(2007/080)
Awh, E., Belopolsky, A. V., and Theeuwes, J. (2012). "Top-down versus bottom-up attentional control: a failed theoretical dichotomy," Trends Cogn. Sci., 16, 437–443. doi:10.1016/j.tics.2012.06.010

1087	Baddeley, A., Emslie, H., and Nimmo-Smith, I. (1993). "The Spot-the-Word test: A robust estimate of
1088	verbal intelligence based on lexical decision," Br. J. Clin. Psychol., 32, 55-65. doi:10.1111/j.2044-
1089	8260.1993.tb01027.x
1090	Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., et al. (2007)
1091	"The English Lexicon Project," Behav. Res. Methods, 39, 445–459. doi:10.3758/BF03193014
1092	Bernstein, L. E. (2018). "Response Errors in Females' and Males' Sentence Lipreading Necessitate
1093	Structurally Different Models for Predicting Lipreading Accuracy," Lang. Learn., 68, 127–158.
1094	doi:10.1111/lang.12281
1095	Bernstein, L. E., Auer, E. T., and Eberhardt, S. P. (2023). "Modality-Specific Perceptual Learning of
1096	Vocoded Auditory versus Lipread Speech: Different Effects of Prior Information," Brain Sci., 13,
1097	1008. doi:10.3390/brainsci13071008
1098	Bernstein, L. E., Jordan, N., Auer, E. T., and Eberhardt, S. P. (2022). "Lipreading: A Review of Its
1099	Continuing Importance for Speech Recognition With an Acquired Hearing Loss and Possibilities
1100	for Effective Training," Am. J. Audiol., 31 , 453–469. doi:10.1044/2021_AJA-21-00112
1101	Bernstein, L. E., Tucker, P. E., and Demorest, M. E. (2000). "Speech perception without hearing,"
1102	Percept. Psychophys., 62, 233–252. doi:10.3758/BF03205546
1103	Besser, J., Koelewijn, T., Zekveld, A. A., Kramer, S. E., and Festen, J. M. (2013). "How Linguistic Closure
1104	and Verbal Working Memory Relate to Speech Recognition in Noise—A Review," Trends
1105	Amplif., 17, 75–93. doi:10.1177/1084713813495459
1106	Binnie, C. A., Montgomery, A. A., and Jackson, P. L. (1974). "Auditory and Visual Contributions to the
1107	Perception of Consonants," J. Speech Hear. Res., 17, 619-630. doi:10.1044/jshr.1704.619
1108	Blackburn, C. L., Kitterick, P. T., Jones, G., Sumner, C. J., and Stacey, P. C. (2019). "Visual Speech Benefit
1109	in Clear and Degraded Speech Depends on the Auditory Intelligibility of the Talker and the
1110	Number of Background Talkers," Trends Hear., 23, 2331216519837866.
1111	doi:10.1177/2331216519837866
1112	Blamey, P. J., Cowan, R. S., Alcantara, J. I., Whitford, L. A., and Clark, G. M. (1989). "Speech perception
1113	using combinations of auditory, visual, and tactile information," J. Rehabil. Res. Dev., 26, 15–24.
1114	Borrie, S. A., Barrett, T. S., and Yoho, S. E. (2019). "Autoscore: An open-source automated tool for
1115	scoring listener perception of speech," J. Acoust. Soc. Am., 145, 392–399. doi:10.1121/1.5087276

1116	Bosker, H. R. (2021). "Using fuzzy string matching for automated assessment of listener transcripts in
1117	speech intelligibility studies," Behav. Res. Methods, 53, 1945–1953. doi:10.3758/s13428-021-
1118	01542-4
1119	Braida, L. D. (1991). "Crossmodal integration in the identification of consonant segments," Q. J. Exp.
1120	Psychol. Sect. A, 43, 647–677. doi:10.1080/14640749108400991
1121	Brown, V. A., Hedayati, M., Zanger, A., Mayn, S., Ray, L., Dillman-Hasso, N., and Strand, J. F. (2018).
1122	"What accounts for individual differences in susceptibility to the McGurk effect?," PloS One, 13
1123	e0207160. doi:10.1371/journal.pone.0207160
1124	Brungart, D. S. (2001). "Informational and energetic masking effects in the perception of two
1125	simultaneous talkers," J. Acoust. Soc. Am., 109, 1101–1109. doi:10.1121/1.1345696
1126	Buchanan-Worster, E., Hulme, C., Dennan, R., and MacSweeney, M. (2021). "Speechreading in hearing
1127	children can be improved by training," Dev. Sci., 24, e13124. doi:10.1111/desc.13124
1128	Campbell, J., and Sharma, A. (2014). "Cross-Modal Re-Organization in Adults with Early Stage Hearing
1129	Loss," PLOS ONE, 9, e90594. doi:10.1371/journal.pone.0090594
1130	Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A., and Ghazanfar, A. A. (2009). "The natural
1131	statistics of audiovisual speech," PLoS Comput. Biol., 5, e1000436.
1132	doi:10.1371/journal.pcbi.1000436
1133	Chierchia, G., Fuhrmann, D., Knoll, L. J., Pi-Sunyer, B. P., Sakhardande, A. L., and Blakemore, SJ.
1134	(2019). "The matrix reasoning item bank (MaRs-IB): novel, open-access abstract reasoning items
1135	for adolescents and adults," R. Soc. Open Sci., 6, 190232. doi:10.1098/rsos.190232
1136	Cox, R. M. (1997). "Administration And Application Of The APHAB," Hear. J., 50, 32.
1137	Davis, M. H., Evans, S., McCarthy, K., Evans, L., Giannakopoulou, A., and Taylor, J. S. H. (2019).
1138	"Lexical learning shapes the development of speech perception until late adolescence,", doi:
1139	10.31234/osf.io/ktsey. doi:10.31234/osf.io/ktsey
1140	De Leeuw, J. R., Gilbert, R. A., and Luchterhandt, B. (2023). "jsPsych: Enabling an Open-Source
1141	CollaborativeEcosystem of Behavioral Experiments," J. Open Source Softw., 8, 5351.
1142	doi:10.21105/joss.05351

L143	Der, G., Allerhand, M., Starr, J. M., Hoter, S. M., and Deary, I. J. (2009). "Age-related Changes in Memory
L144	and Fluid Reasoning in a Sample of Healthy Old People," Aging Neuropsychol. Cogn., 17, 55-70.
L145	doi:10.1080/13825580903009071
L146	Devergie, A., Grimault, N., Gaudrain, E., Healy, E. W., and Berthommier, F. (2011). "The effect of lip-
L147	reading on primary stream segregation," J. Acoust. Soc. Am., 130, 283-291.
L148	doi:10.1121/1.3592223
L149	Dias, J. W., McClaskey, C. M., and Harris, K. C. (2021). "Audiovisual speech is more than the sum of its
1150	parts: Auditory-visual superadditivity compensates for age-related declines in audible and lipread
1151	speech intelligibility," Psychol. Aging, 36, 520-530. doi:10.1037/pag0000613
1152	Dong, C., Noppeney, U., and Wang, S. (2024). "Perceptual uncertainty explains activation differences
L153	between audiovisual congruent speech and McGurk stimuli," Hum. Brain Mapp., 45, e26653.
L154	doi:10.1002/hbm.26653
1155	Dryden, A., Allen, H. A., Henshaw, H., and Heinrich, A. (2017). "The Association Between Cognitive
1156	Performance and Speech-in-Noise Perception for Adult Listeners: A Systematic Literature Review
L157	and Meta-Analysis," Trends Hear., 21, 2331216517744675. doi:10.1177/2331216517744675
1158	Duhachek, A., and Iacobucci, D. (2004). "Alpha's Standard Error (ASE): An Accurate and Precise
L159	Confidence Interval Estimate," J. Appl. Psychol., 89, 792–808. doi:10.1037/0021-9010.89.5.792
1160	Faul, F., Erdfelder, E., Buchner, A., and Lang, AG. (2009). "Statistical power analyses using G*Power
1161	3.1: Tests for correlation and regression analyses," Behav. Res. Methods, 41, 1149–1160.
1162	doi:10.3758/BRM.41.4.1149
1163	Feld, J. E., and Sommers, M. S. (2009). "Lipreading, Processing Speed, and Working Memory in Younger
L164	and Older Adults," J. Speech Lang. Hear. Res., 52, 1555–1565. doi:10.1044/1092-4388(2009/08-
1165	0137)
1166	Files, B. T., Tjan, B. S., Jiang, J., and Bernstein, L. E. (2015). "Visual speech discrimination and
L167	identification of natural and synthetic consonant stimuli," Front. Psychol., Retrieved from
1168	https://www.frontiersin.org/article/10.3389/fpsyg.2015.00878. Retrieved from
1169	https://www.frontiersin.org/article/10.3389/fpsyg.2015.00878

L170	Fraser, S., Gagn, é JP., Alepins, M., and Dubois, P. (2010). "Evaluating the Effort Expended to
L171	Understand Speech in Noise Using a Dual-Task Paradigm: The Effects of Providing Visual
L172	Speech Cues," J. Speech Lang. Hear. Res., 53, 18–33. doi:10.1044/1092-4388(2009/08-0140)
L173	Freiherr, J., Lundström, J. N., Habel, U., and Reetz, K. (2013). "Multisensory integration mechanisms
L174	during aging," Front. Hum. Neurosci., , doi: 10.3389/fnhum.2013.00863.
L175	doi:10.3389/fnhum.2013.00863
L176	Füllgrabe, C., Moore, B. C. J., and Stone, M. A. (2014). "Age-group differences in speech identification
L177	despite matched audiometrically normal hearing: contributions from auditory temporal processing
L178	and cognition," Front. Aging Neurosci., 6, 347. doi:10.3389/fnagi.2014.00347
L179	Gatehouse, S., and Noble, W. (2004). "The Speech, Spatial and Qualities of Hearing Scale (SSQ)," Int. J.
1180	Audiol., , doi: 10.1080/14992020400050014. doi:10.1080/14992020400050014
1181	Gijbels, L., Lee, A. K. C., and Yeatman, J. D. (2024). "Children with developmental dyslexia have
1182	equivalent audiovisual speech perception performance but their perceptual weights differ," Dev.
1183	Sci., 27, e13431. doi:10.1111/desc.13431
L184	Gordon-Salant, S. (2014). "Aging, Hearing Loss, and Speech Recognition: Stop Shouting, I Can't
L185	Understand You," In A. N. Popper and R. R. Fay (Eds.), Perspect. Audit. Res., Springer, New
1186	York, NY, pp. 211–228. doi:10.1007/978-1-4614-9102-6_12
L187	Grant, K. W., and Seitz, P. F. (1998). "Measures of auditory-visual integration in nonsense syllables and
1188	sentences," J. Acoust. Soc. Am., 104, 2438–2450. doi:10.1121/1.423751
L189	Grant, K. W., Walden, B. E., and Seitz, P. F. (1998). "Auditory-visual speech recognition by hearing-
1190	impaired subjects: Consonant recognition, sentence recognition, and auditory-visual integration,"
1191	J. Acoust. Soc. Am., 103, 2677–2690. doi:10.1121/1.422788
1192	Harrison, T. L., Shipstead, Z., and Engle, R. W. (2015). "Why is working memory capacity related to
1193	matrix reasoning tasks?," Mem. Cognit., 43, 389–396. doi:10.3758/s13421-014-0473-3
L194	Hartshorne, J. K., and Germine, L. T. (2015). "When Does Cognitive Functioning Peak? The
1195	Asynchronous Rise and Fall of Different Cognitive Abilities Across the Life Span," Psychol. Sci.,
1196	26 , 433–443. doi:10.1177/0956797614567339
L197	Hausser, J., and Strimmer, K. (2009). "Entropy Inference and the James-Stein Estimator, with Application
L198	to Nonlinear Gene Association Networks," J. Mach. Learn. Res., 10, 1469–1484.

1199	Hazan, V., Kim, J., and Chen, Y. (2010). "Audiovisual perception in adverse conditions: Language, speaker
1200	and listener effects," Speech Commun., Non-native Speech Perception in Adverse Conditions,
1201	52 , 996–1009. doi:10.1016/j.specom.2010.05.003
1202	Heald, S. L. M., and Nusbaum, H. C. (2014). "Talker variability in audio-visual speech perception," Front.
1203	Psychol., , doi: 10.3389/fpsyg.2014.00698. doi:10.3389/fpsyg.2014.00698
1204	Hedge, C., Powell, G., and Sumner, P. (2018). "The reliability paradox: Why robust cognitive tasks do not
1205	produce reliable individual differences," Behav. Res. Methods, 50, 1166-1186.
1206	doi:10.3758/s13428-017-0935-1
1207	Heinrich, A., Henshaw, H., and Ferguson, M. A. (2015). "The relationship of speech intelligibility with
1208	hearing sensitivity, cognition, and perceived hearing difficulties varies for different speech
1209	perception tests," Front. Psychol., , doi: 10.3389/fpsyg.2015.00782.
1210	doi:10.3389/fpsyg.2015.00782
1211	Hickson, L., Hollins, M., Lind, C., Worrall, L., and Lovie-Kitchin, J. (2004). "Auditory-visual Speech
1212	Perception in Older People: The Effect of Visual Acuity," Aust. N. Z. J. Audiol., 26, 3–11.
1213	doi:10.1375/audi.26.1.3.55988
1214	Humes, L. E., Watson, B. U., Christensen, L. A., Cokely, C. G., Halling, D. C., and Lee, L. (1994).
1215	"Factors Associated With Individual Differences in Clinical Measures of Speech Recognition
1216	Among the Elderly," J. Speech Lang. Hear. Res., 37, 465-474. doi:10.1044/jshr.3702.465
1217	Huyse, A., Leybaert, J., and Berthommier, F. (2014). "Effects of aging on audio-visual speech integration,"
1218	J. Acoust. Soc. Am., 136, 1918–1931. doi:10.1121/1.4894685
1219	Iverson, P., Bernstein, L. E., and Auer Jr, E. T. (1998). "Modeling the interaction of phonemic
1220	intelligibility and lexical structure in audiovisual word recognition," Speech Commun., 26, 45-63.
1221	doi:10.1016/S0167-6393(98)00049-1
1222	Jesse, A., and Massaro, D. W. (2010). "The temporal distribution of information in audiovisual spoken-
1223	word identification," Atten. Percept. Psychophys., 72, 209-225. doi:10.3758/APP.72.1.209
1224	Johnson, F. M., Hicks, L. H., Goldberg, T., and Myslobodsky, M. S. (1988). "Sex differences in
1225	lipreading," Bull. Psychon. Soc., 26, 106–108. doi:10.3758/BF03334875
1226	Karas, P. J., Magnotti, J. F., Metzger, B. A., Zhu, L. L., Smith, K. B., Yoshor, D., and Beauchamp, M. S.
1227	(2019). "The visual speech head start improves perception and reduces superior temporal cortex

L228	responses to auditory speech," (T. Pasternak, A. J. King, and B. Mahon, Eds.) eLife, 8, e48116.
1229	doi:10.7554/eLife.48116
1230	Kidd, E., Donnelly, S., and Christiansen, M. H. (2018). "Individual Differences in Language Acquisition
L231	and Processing," Trends Cogn. Sci., 22, 154-169. doi:10.1016/j.tics.2017.11.006
L232	Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., and Shams, L. (2007). "Causal
1233	Inference in Multisensory Perception," PLOS ONE, 2, e943. doi:10.1371/journal.pone.0000943
L234	Krason, A., Fenton, R., Varley, R., and Vigliocco, G. (2022). "The role of iconic gestures and mouth
L235	movements in face-to-face communication," Psychon. Bull. Rev., 29, 600-612.
1236	doi:10.3758/s13423-021-02009-5
L237	Krason, A., Zhang, Y., Man, H., and Vigliocco, G. (2023). "Mouth and facial informativeness norms for
1238	2276 English words," Behav. Res. Methods, , doi: 10.3758/s13428-023-02216-z.
L239	doi:10.3758/s13428-023-02216-z
L240	Kuperman, V., Stadthagen-Gonzalez, H., and Brysbaert, M. (2012). "Age-of-acquisition ratings for 30,000
L241	English words," Behav. Res. Methods, 44, 978–990. doi:10.3758/s13428-012-0210-4
L242	Lalonde, K., and McCreery, R. W. (2020). "Audiovisual Enhancement of Speech Perception in Noise by
L243	School-Age Children Who Are Hard of Hearing," Ear Hear., 41, 705.
L244	doi:10.1097/AUD.0000000000000830
L245	Lalonde, K., and Werner, L. A. (2019). "Perception of incongruent audiovisual English consonants,"
L246	PLOS ONE, 14, e0213588. doi:10.1371/journal.pone.0213588
L247	Laurienti, P. J., Burdette, J. H., Maldjian, J. A., and Wallace, M. T. (2006). "Enhanced multisensory
L248	integration in older adults," Neurobiol. Aging, 27, 1155–1163.
L249	doi:10.1016/j.neurobiolaging.2005.05.024
L250	de Leeuw, J. R. (2015). "jsPsych: A JavaScript library for creating behavioral experiments in a Web
L251	browser," Behav. Res. Methods, 47, 1-12. doi:10.3758/s13428-014-0458-y
L252	Levitt, H. (1971). "Transformed Up-Down Methods in Psychoacoustics," J. Acoust. Soc. Am., 49, 467–
1253	477. doi:10.1121/1.1912375
L254	Linares, D., and López-Moliner, J. (2016). "quickpsy: An R Package to Fit Psychometric Functions for
L255	Multiple Groups," R J., 8, 122. doi:10.32614/RJ-2016-008

1256	Lisker, L., Liberman, A. M., Erickson, D. M., Dechovitz, D., and Mandler, R. (1977). "On Pushing the
1257	Voice-Onset-Time (Vot) Boundary About," Lang. Speech, 20, 209-216.
1258	doi:10.1177/002383097702000303
1259	Luce, P. A., and Pisoni, D. B. (1998). "Recognizing Spoken Words: The Neighborhood Activation
1260	Model," Ear Hear., 19, 1.
1261	Lund, K., and Burgess, C. (1996). "Producing high-dimensional semantic spaces from lexical co-
1262	occurrence," Behav. Res. Methods Instrum. Comput., 28, 203-208. doi:10.3758/BF03204766
1263	Lyxell, B., and Holmberg, I. (2000). "Visual speechreading and cognitive performance in hearing-impaired
1264	and normal hearing children (11-14 years)," Br. J. Educ. Psychol., 70, 505-518.
1265	doi:10.1348/000709900158272
1266	Lyxell, B., and Rönnberg, J. (1989). "Information-processing skill and speech-reading," Br. J. Audiol.,
1267	Retrieved from https://www.tandfonline.com/doi/abs/10.3109/03005368909076523. Retrieved
1268	from https://www.tandfonline.com/doi/abs/10.3109/03005368909076523
1269	Ma, W. J., Zhou, X., Ross, L. A., Foxe, J. J., and Parra, L. C. (2009). "Lip-Reading Aids Word Recognition
1270	Most in Moderate Noise: A Bayesian Explanation Using High-Dimensional Feature Space," PLoS
1271	ONE, , doi: 10.1371/journal.pone.0004638. doi:10.1371/journal.pone.0004638
1272	MacGregor, L. J., Gilbert, R. A., Balewski, Z., Mitchell, D. J., Erzinçlioğlu, S. W., Rodd, J. M., Duncan, J.,
1273	et al. (2022). "Causal Contributions of the Domain-General (Multiple Demand) and the
1274	Language-Selective Brain Networks to Perceptual and Semantic Challenges in Speech
1275	Comprehension," Neurobiol. Lang., 3, 665–698. doi:10.1162/nol_a_00081
1276	Macleod, A., and Summerfield, Q. (1987). "Quantifying the contribution of vision to speech perception in
1277	noise," Br. J. Audiol., 21 , 131–141. doi:10.3109/03005368709077786
1278	Magnotti, J. F., Dzeda, K. B., Wegner-Clemens, K., Rennig, J., and Beauchamp, M. S. (2020). "Weak
1279	observer-level correlation and strong stimulus-level correlation between the McGurk effect and
1280	audiovisual speech-in-noise: A causal inference explanation," Cortex J. Devoted Study Nerv. Syst.
1281	Behav., 133, 371–383. doi:10.1016/j.cortex.2020.10.002
1282	Massaro, D. W., and Cohen, M. M. (1983). "Evaluation and integration of visual and auditory information
1283	in speech perception," J. Exp. Psychol. Hum. Percept. Perform., 9, 753–771. doi:10.1037/0096-
128/	1523 0 5 753

1285	Mcgurk, H., and Macdonald, J. (1976). "Hearing lips and seeing voices," Nature, 264, 746–748.
1286	doi:10.1038/264746a0
1287	Micula, A., Holmer, E., Ning, R., and Danielsson, H. (2024). "Relationships Between Hearing Status,
1288	Cognitive Abilities, and Reliance on Visual and Contextual Cues," Ear Hear., , doi:
1289	10.1097/AUD.000000000001596. doi:10.1097/AUD.000000000001596
1290	Miller, G. A., and Nicely, P. E. (1955). "An Analysis of Perceptual Confusions Among Some English
1291	Consonants," J. Acoust. Soc. Am., 27, 338–352. doi:10.1121/1.1907526
1292	Moradi, S., Lidestam, B., Danielsson, H., Ng, E. H. N., and R, önnberg J. (2017). "Visual Cues Contribute
1293	Differentially to Audiovisual Perception of Consonants and Vowels in Improving Recognition
1294	and Reducing Cognitive Demands in Listeners With Hearing Impairment Using Hearing Aids," J.
1295	Speech Lang. Hear. Res., 60, 2687–2703. doi:10.1044/2016_JSLHR-H-16-0160
1296	Moradi, S., Lidestam, B., and Rönnberg, J. (2013). "Gated audiovisual speech identification in silence vs.
1297	noise: effects on time and accuracy," Front. Psychol., , doi: 10.3389/fpsyg.2013.00359.
1298	doi:10.3389/fpsyg.2013.00359
1299	Moradi, S., Lidestam, B., Saremi, A., and Rönnberg, J. (2014). "Gated auditory speech perception: effects
1300	of listening conditions and cognitive capacity," Front. Psychol., , doi: 10.3389/fpsyg.2014.00531.
1301	doi:10.3389/fpsyg.2014.00531
1302	Mortensen, D. R., Littell, P., Bharadwaj, A., Goyal, K., Dyer, C., and Levin, L. (2016). "PanPhon: A
1303	Resource for Mapping IPA Segments to Articulatory Feature Vectors," In Y. Matsumoto and R.
1304	Prasad (Eds.), Proc. COLING 2016 26th Int. Conf. Comput. Linguist. Tech. Pap., The COLING
1305	2016 Organizing Committee, Osaka, Japan, 3475–3484. Presented at the COLING 2016.
1306	Retrieved from https://aclanthology.org/C16-1328
1307	Oosthuizen, D. J. J., and Hanekom, J. J. (2016). "Information transmission analysis for continuous speech
1308	features," Speech Commun., 82, 53-66. doi:10.1016/j.specom.2016.06.003
1309	Peelle, J. E., and Sommers, M. S. (2015). "Prediction and constraint in audiovisual speech perception,"
1310	Cortex J. Devoted Study Nerv. Syst. Behav., 68, 169–181. doi:10.1016/j.cortex.2015.03.006
1311	Pichora-Fuller, M. K., Schneider, B. A., and Daneman, M. (1995). "How young and old adults listen to
1312	and remember speech in noise," J. Acoust. Soc. Am., 97, 593–608. doi:10.1121/1.412282

1313	Pimperton, H., Kyle, F., Hulme, C., Harris, M., Beedle, I., Kalph-Lewis, A., Worster, E., et al. (2019).
1314	"Computerized Speechreading Training for Deaf Children: A Randomized Controlled Trial," J.
1315	Speech Lang. Hear. Res., 62, 2882–2894. doi:10.1044/2019_JSLHR-H-19-0073
1316	Preminger, J. E., and Ziegler, C. H. (2008). "Can auditory and visual speech perception be trained within a
1317	group setting?," Am. J. Audiol., 17, 80–97. doi:10.1044/1059-0889(2008/009)
1318	Proverbio, A. M. (2017). "Sex differences in social cognition: The case of face processing," J. Neurosci.
1319	Res., 95, 222–234. doi:10.1002/jnr.23817
1320	Punch, J. L., Hitt, R., and Smith, S. W. (2019). "Hearing loss and quality of life," J. Commun. Disord., 78,
1321	33–45. doi:10.1016/j.jcomdis.2019.01.001
1322	Puschmann, S., Daeglau, M., Stropahl, M., Mirkovic, B., Rosemann, S., Thiel, C. M., and Debener, S.
1323	(2019). "Hearing-impaired listeners show increased audiovisual benefit when listening to speech in
1324	noise," NeuroImage, 196, 261–268. doi:10.1016/j.neuroimage.2019.04.017
1325	Puschmann, S., and Thiel, C. M. (2017). "Changed crossmodal functional connectivity in older adults with
1326	hearing loss," Cortex, Is a "single" brain model sufficient?, 86, 109–122.
1327	doi:10.1016/j.cortex.2016.10.014
1328	Putzar, L., Goerendt, I., Heed, T., Richard, G., Büchel, C., and Röder, B. (2010). "The neural basis of lip-
1329	reading capabilities is altered by early visual deprivation," Neuropsychologia, 48, 2158–2166.
1330	doi:10.1016/j.neuropsychologia.2010.04.007
1331	Raphael, L. J. (1972). "Preceding Vowel Duration as a Cue to the Perception of the Voicing Characteristic
1332	of Word-Final Consonants in American English," J. Acoust. Soc. Am., 51, 1296–1303.
1333	doi:10.1121/1.1912974
1334	Raphael, L. J. (1975). "The physiological control of durational differences between vowels preceding
1335	voiced and voiceless consonants in English," J. Phon., 3, 25-33. doi:10.1016/S0095-
1336	4470(19)31284-7
1337	Rennig, J., Wegner-Clemens, K., and Beauchamp, M. S. (2020). "Face viewing behavior predicts
1338	multisensory gain during speech perception," Psychon. Bull. Rev., 27, 70–77.
1339	doi:10.3758/s13423-019-01665-y
1340	Revelle, W. (2024). "psych: Procedures for Psychological, Psychometric, and Personality Research.,"
1341	Retrieved from https://cran.r-project.org/web/packages/psych/index.html

1342	Richie, C., and Rewiey-Port, D. (2008). The effects of auditory-visual vowel identification training on
1343	speech recognition under difficult listening conditions," J. Speech Lang. Hear. Res. JSLHR, 51,
1344	1607–1619. doi:10.1044/1092-4388(2008/07-0069)
1345	Roberts, K. L., and Allen, H. A. (2016). "Perception and Cognition in the Ageing Brain: A Brief Review of
1346	the Short- and Long-Term Links between Perceptual and Cognitive Decline," Front. Aging
1347	Neurosci., , doi: 10.3389/fnagi.2016.00039. doi:10.3389/fnagi.2016.00039
1348	Rodd, J. M. (2024). "Moving experimental psychology online: How to obtain high quality data when we
1349	can't see our participants," J. Mem. Lang., 134, 104472. doi:10.1016/j.jml.2023.104472
1350	Rosemann, S., and Thiel, C. M. (2018). "Audio-visual speech processing in age-related hearing loss:
1351	Stronger integration and increased frontal lobe recruitment," NeuroImage, 175, 425–437.
1352	doi:10.1016/j.neuroimage.2018.04.023
1353	Salthouse, T. A. (1993). "Influence of working memory on adult age differences in matrix reasoning," Br.
1354	J. Psychol., 84 , 171–199. doi:10.1111/j.2044-8295.1993.tb02472.x
1355	SeatGeek Inc (2014). "{fuzzywuzzy}: Fuzzy String Matching in Python}.," Retrieved from
1356	https://github.com/seatgeek/fuzzywuzzy
1357	Shannon, R. V., Zeng, FG., Kamath, V., Wygonski, J., and Ekelid, M. (1995). "Speech Recognition with
1358	Primarily Temporal Cues," Science, 270, 303–304. doi:10.1126/science.270.5234.303
1359	Smayda, K. E., Engen, K. J. V., Maddox, W. T., and Chandrasekaran, B. (2016). "Audio-Visual and
1360	Meaningful Semantic Context Enhancements in Older and Younger Adults," PLOS ONE, 11,
1361	e0152773. doi:10.1371/journal.pone.0152773
1362	Smits, C., Theo Goverts, S., and Festen, J. M. (2013). "The digits-in-noise test: Assessing auditory speech
1363	recognition abilities in noise," J. Acoust. Soc. Am., 133, 1693-1706. doi:10.1121/1.4789933
1364	Sohoglu, E., and Davis, M. H. (2016). "Perceptual learning of degraded speech by minimizing prediction
1365	error," Proc. Natl. Acad. Sci., 113, E1747–E1756. doi:10.1073/pnas.1523266113
1366	Sommers, M. S. (2021). "Santa Claus, the Tooth Fairy, and Auditory-Visual Integration," Handb. Speech
1367	Percept., John Wiley & Sons, Ltd, pp. 517-539. doi:10.1002/9781119184096.ch19
1368	Sommers, M. S., Tye-Murray, N., and Spehar, B. (2005). "Auditory-Visual Speech Perception and
1369	Auditory-Visual Enhancement in Normal-Hearing Younger and Older Adults," Ear Hear., 26,
1370	263–275.

Spehar, B. P., Tye-Murray, N., and Sommers, M. S. (2008). "Intra- versus intermodal integration in young 1371 1372 and older adults," J. Acoust. Soc. Am., 123, 2858-2866. doi:10.1121/1.2890748 Stein, B. E., and Meredith, M. A. (1993). The Merging of the Senses, MIT Press, 231 pages. 1373 Stevenson, R. A., Nelms, C. E., Baum, S. H., Zurkovsky, L., Barense, M. D., Newhouse, P. A., and 1374 1375 Wallace, M. T. (2015). "Deficits in audiovisual speech perception in normal aging emerge at the 1376 level of whole-word recognition," Neurobiol. Aging, 36, 283–291. 1377 doi:10.1016/j.neurobiolaging.2014.08.003 1378 Strand, J., Cooperman, A., Rowe, J., and Simenstad, A. (2014). "Individual differences in susceptibility to 1379 the McGurk effect: links with lipreading and detecting audiovisual incongruity," J. Speech Lang. 1380 Hear. Res. JSLHR, 57, 2322–2331. doi:10.1044/2014_JSLHR-H-14-0059 1381 Suess, N., Hauswald, A., Zehentner, V., Depireux, J., Herzog, G., Rösch, S., and Weisz, N. (2022). 1382 "Influence of linguistic properties and hearing impairment on visual speech perception skills in 1383 the German language," PLOS ONE, 17, e0275585. doi:10.1371/journal.pone.0275585 1384 Sumby, W. H., and Pollack, I. (1954). "Visual Contribution to Speech Intelligibility in Noise," J. Acoust. 1385 Soc. Am., 26, 212–215. doi:10.1121/1.1907309 1386 Summerfield, Q. (1979). "Use of Visual Information for Phonetic Perception," Phonetica, 36, 314–331. doi:10.1159/000259969 1387 Summerfield, Q., Bruce, V., Cowey, A., Ellis, A. W., and Perrett, D. I. (1997). "Lipreading and audio-visual 1388 1389 speech perception," Philos. Trans. R. Soc. Lond. B. Biol. Sci., 335, 71–78. 1390 doi:10.1098/rstb.1992.0009 1391 Tillberg, I., Rönnberg, I., Svärd, I., and Ahlner, B. (1996). "Audio-visual Speechreading in a Group of 1392 Hearing Aid Users the Effects of Onset Age, Handicap Age, and Degree of Hearing Loss," 1393 Scand. Audiol., 25, 267–272. doi:10.3109/01050399609074966 1394 Tye, -Murray Nancy, Hale, S., Spehar, B., Myerson, J., and Sommers, M. S. (2014). "Lipreading in School-1395 Age Children: The Roles of Age, Hearing Status, and Cognitive Ability," J. Speech Lang. Hear. 1396 Res., 57, 556–565. doi:10.1044/2013 JSLHR-H-12-0273 1397 Tye-Murray, N., Sommers, M. S., and Spehar, B. (2007a). "Audiovisual Integration and Lipreading Abilities of Older Adults with Normal and Impaired Hearing," Ear Hear., 28, 656. 1398 1399 doi:10.1097/AUD.0b013e31812f7185

1400	Tye-Murray, N., Sommers, M., and Spenar, B. (2007b). "Auditory and Visual Lexical Neighborhoods in
1401	Audiovisual Speech Perception," Trends Amplif., 11, 233-241. doi:10.1177/1084713807307409
1402	Tye-Murray, N., Sommers, M., Spehar, B., Myerson, J., and Hale, S. (2010). "Aging, Audiovisual
1403	Integration, and the Principle of Inverse Effectiveness," Ear Hear., 31, 636.
1404	doi:10.1097/AUD.0b013e3181ddf7ff
1405	Tye-Murray, N., Spehar, B., Myerson, J., Hale, S., and Sommers, M. (2016). "Lipreading and audiovisual
1406	speech recognition across the adult lifespan: Implications for audiovisual integration," Psychol.
1407	Aging, 31, 380–389. doi:10.1037/pag0000094
1408	Van den Borre, E., Denys, S., van Wieringen, A., and Wouters, J. (2021). "The digit triplet test: a scoping
1409	review," Int. J. Audiol., 60, 946–963. doi:10.1080/14992027.2021.1902579
1410	Van, E. K. J., Phelps, J. E. B., Smiljanic, R., and Chandrasekaran, B. (2014). "Enhancing Speech
1411	Intelligibility: Interactions Among Context, Modality, Speech Style, and Masker," J. Speech Lang
1412	Hear. Res., 57, 1908–1918. doi:10.1044/JSLHR-H-13-0076
1413	Van Engen, K. J., Xie, Z., and Chandrasekaran, B. (2017). "Audiovisual sentence recognition not
1414	predicted by susceptibility to the McGurk effect," Atten. Percept. Psychophys., 79, 396–403.
1415	doi:10.3758/s13414-016-1238-9
1416	Van Son, N., Huiskamp, T. M. I., Bosman, A. J., and Smoorenburg, G. F. (1994). "Viseme classifications
1417	of Dutch consonants and vowels," J. Acoust. Soc. Am., 96, 1341–1355. doi:10.1121/1.411324
1418	Walden, B. E., Prosek, R. A., and Worthington, D. W. (1975). "Auditory and Audiovisual Feature
1419	Transmission in Hearing-Impaired Adults," J. Speech Hear. Res., 18, 272–280.
1420	doi:10.1044/jshr.1802.272
1421	van Wassenhove, V., Grant, K. W., and Poeppel, D. (2005). "Visual speech speeds up the neural
1422	processing of auditory speech," Proc. Natl. Acad. Sci., 102, 1181-1186.
1423	doi:10.1073/pnas.0408949102
1424	Watson, C. S., Qiu, W. W., Chamberlain, M. M., and Li, X. (1996). "Auditory and visual speech
1425	perception: Confirmation of a modality-independent source of individual differences in speech
1426	recognition," J. Acoust. Soc. Am., 100, 1153–1162. doi:10.1121/1.416300

L427	Wilbiks, J. M. P., Brown, V. A., and Strand, J. F. (2022). "Speech and non-speech measures of audiovisual
L428	integration are not correlated," Atten. Percept. Psychophys., 84, 1809–1819. doi:10.3758/s13414-
L429	022-02517-z
L430	Wiley, J., Jarosz, A. F., Cushen, P. J., and Colflesh, G. J. H. (2011). "New rule use drives the relation
L431	between working memory capacity and Raven's Advanced Progressive Matrices," J. Exp. Psychol.
L432	Learn. Mem. Cogn., 37, 256–263. doi:10.1037/a0021613
L433	Wilkinson, G. N., and Rogers, C. E. (1973). "Symbolic Description of Factorial Models for Analysis of
L434	Variance," J. R. Stat. Soc. Ser. C Appl. Stat., 22, 392–399. doi:10.2307/2346786
L435	Winneke, A. H., and Phillips, N. A. (2011). "Does audiovisual speech offer a fountain of youth for old
L436	ears? An event-related brain potential study of age differences in audiovisual speech perception,"
L437	Psychol. Aging, 26, 427–438. doi:10.1037/a0021683
L438	Woods, K. J. P., Siegel, M. H., Traer, J., and McDermott, J. H. (2017). "Headphone screening to facilitate
L439	web-based auditory experiments," Atten. Percept. Psychophys., 79, 2064–2072.
L440	doi:10.3758/s13414-017-1361-2
L441	Worster, E., Pimperton, H., Ralph-Lewis, A., Monroy, L., Hulme, C., and MacSweeney, M. (2018). "Eye
L442	Movements During Visual Speech Perception in Deaf and Hearing Children," Lang. Learn., 68,
L443	159–179. doi:10.1111/lang.12264
L444	Zoefel, B., Allard, I., Anil, M., and Davis, M. H. (2020). "Perception of Rhythmic Speech Is Modulated by
L445	Focal Bilateral Transcranial Alternating Current Stimulation," J. Cogn. Neurosci., 32, 226–240.
L446	doi:10.1162/jocn_a_01490
L447	Zorowitz, S., Chierchia, G., Blakemore, SJ., and Daw, N. D. (2024). "An item response theory analysis o
L448	the matrix reasoning item bank (MaRs-IB)," Behav. Res. Methods, 56, 1104–1122.
L449	doi:10.3758/s13428-023-02067-8
L450	