Estimação da volatilidade via McCormick 2012

Valores iniciais

$$n = 1.461,$$
 $\mu = -5.4,$ $\phi = 0.99,$ $\sigma^2 = 0.5^2,$ $m_0 = 0,$ $C_0 = \frac{\sigma^2}{1 - \phi^2} = \frac{0.5^2}{0.01}$ e $\lambda_0 = 1.$

Funções auxiliares

$$l'(h_t^*|y_t, \mu, \phi, m_{t-1}, C_{t-1}, \lambda_t) = -\frac{1}{2} + \frac{y_t^2}{2e^{h_t^* + \mu}} - \frac{(h_t^* - \phi m_{t-1})\lambda_t}{\phi^2 C_{t-1}}$$
(1)

e

$$l''(h_t^*|y_t, \mu, \phi, C_{t-1}, \lambda_t) = -\frac{y_t^2}{2e^{h_t^* + \mu}} - \frac{\lambda_t}{\phi^2 C_{t-1}}.$$
 (2)

Estimando λ_t

Achar λ_t que maximize $f(\lambda_t)$, onde:

$$f(\lambda_t) \approx \sqrt{2\pi} \sqrt{\left|\frac{1}{l''(\hat{h}_t^*)}\right|} f\left(y_t | D_{t-1}, \hat{h}_t^*\right) f\left(\hat{h}_t^* | D_{t-1}\right),$$

$$\approx \sqrt{2\pi} \sqrt{\left|\frac{1}{-\frac{y_t^2}{2e^{m_t+\mu}} - \frac{\lambda_t}{\phi^2 C_{t-1}}}\right|} \times \mathcal{N}\left(0, e^{m_t+\mu}\right) \times \mathcal{N}\left(m_t, \frac{\phi^2 C_{t-1}}{\lambda_t}\right). \tag{3}$$

Note que $\hat{h}_t^* = m_t$ e portanto $f(\lambda_t) = f(\lambda_t | y_t, \mu, \phi, m_t, C_{t-1})$.

Estimando h_t^*

A distribuição de $(h_t^*|D_t)$ será:

$$(h_t^*|D_t) \sim \mathcal{N}(m_t, C_t), \tag{4}$$

onde

$$m_t = m_{t-1} - \frac{l'(m_{t-1})}{l''(m_{t-1})}$$
 e (5)

$$C_t = -\frac{1}{l''(m_{t-1})}. (6)$$

Então $\hat{h}_t^* = m_t$. Note porém que, no tempo t os valores de m_t e C_t dependem do λ_t da maximização através das derivadas. Entretanto λ_t depende, do mesmo modo, de m_t e C_{t-1} , dando origem a um dependência cíclica entre m_t e λ_t .

Algumas considerações

Eu programei o algoritmo de maneira que, durante a busca pelo λ_t , o valor de m_t é sempre recalculado. Isto é, eu substituí a equação (5) em (3), numa tentativa de corrigir a dependência cíclica. O resultado da estimação pode ser visto na Figura 1.

Figura 1: Valores estimados v
s valores reais de h_t^* .

Eu notei que frequentemente os valores ótimos de λ_t eram iguais a um, e os gráficos da função preditora era algo semelhante a Figura 2. Assim tive a ideia de estender o eixo x do gráfico, como na Figura 3.

Figura 2: Função preditora.

Figura 3: Função preditora.