

Nile

Вы хотите перевезти по Нилу N артефактов. Артефакты пронумерованы от 0 до N-1. Вес артефакта i ($0 \le i < N$) равен W[i].

Чтобы перевезти артефакты вы используете специальные лодки. Каждая лодка может перевезти **не более двух** артефактов.

- Если вы перевозите один артефакт на лодке, его вес может быть любым.
- Если вы перевозите на лодке два артефакта, вам необходимо добиться того, чтобы лодка была отбалансирована. А именно, можно перевезти артефакты p и q ($0 \le p < q < N$) на одной лодке, только если модуль разности между их весами не превышает D, то есть $|W[p] W[q]| \le D$.

Чтобы перевезти артефакт, вам необходимо заплатить стоимость, которая зависит от числа артефактов, которые перевозятся на этой лодке. Стоимость перевозки артефакта i ($0 \le i < N$) равна:

- A[i], если вы перевозите этот артефакт на отдельной лодке, либо
- B[i], если вы перевозите на лодке два артефакта: этот и какой-либо еще.

Обратите внимание, что во втором случае вам необходимо оплатить перевозку обоих артефактов на этой лодке. А именно, если вы решите перевезти артефакты p и q ($0 \le p < q < N$) на одной лодке, за это суммарно необходимо заплатить B[p] + B[q].

Перевезти артефакт на отдельной лодке всегда дороже, чем перевезти его вместе с другим артефактом, так что B[i] < A[i] для всех i, таких что 0 < i < N.

К сожалению, река ведет себя очень непредсказуемо, поэтому значение D часто меняется. Ваша задача — ответить на Q запросов, пронумерованных от 0 до Q-1. Запросы описаны массивом E длиной Q. Ответ на запрос j ($0 \le j < Q$) — это минимальная стоимость перевозки всех N артефактов, если значение D равно E[j].

Implementation Details

Вам необходимо реализовать следующую функцию:

```
std::vector<long long> calculate_costs(
    std::vector<int> W, std::vector<int> A,
    std::vector<int> B, std::vector<int> E)
```

- W, A, B: целочисленные массивы длины N, описывающие веса артефактов и стоимость их перевозки.
- E: целочисленный массив длины Q, задающий значения D для запросов.
- Функция должна вернуть массив R, содержащий Q целых чисел минимальные стоимости перевозки артефактов, где R[j] равно стоимости перевозки артефактов для запроса, в котором D равно E[j] (для всех j, таких что $0 \le j < Q$).
- Эта функция будет вызвана ровно один раз для каждого теста.

Constraints

- $1 \le N \le 100\,000$
- 1 < Q < 100 000
- ullet $1 \leq W[i] \leq 10^9$ для всех i, таких что $0 \leq i < N$
- $1 \leq B[i] < A[i] \leq 10^9$ для всех i, таких что $0 \leq i < N$
- ullet $1 \leq E[j] \leq 10^9$ для всех j, таких что $0 \leq j < Q$

Subtasks

Подзадача	Баллы	Дополнительные ограничения
1	6	$Q \leq$ 5; $N \leq$ 2000; $W[i] = 1$ для всех i , таких что $0 \leq i < N$
2	13	$Q \leq 5$; $W[i] = i+1$ для всех i , таких что $0 \leq i < N$
3	17	$Q \leq 5$; $A[i] = 2$ и $B[i] = 1$ для всех i , таких что $0 \leq i < N$
4	11	$Q \leq$ 5; $N \leq 2000$
5	20	$Q \leq 5$
6	15	$A[i] = 2$ и $B[i] = 1$ для всех i , таких что $0 \leq i < N$
7	18	Нет дополнительных ограничений.

Example

Рассмотрим следующий вызов

В этом примере N=5 артефактов и Q=3 запроса.

В первом запросе D=5. Вы можете перевезти артефакты 0 и 3 на одной лодке (так как $|15-10|\leq 5$), а остальные артефакты на отдельной лодке каждый. При этом получается минимальная стоимость перевозки всех артефактов, она равна 1+4+5+3+3=16.

Во втором запросе D=9. Вы можете перевезти артефакты 0 и 1 на одной лодке (так как $|15-12|\leq 9$), и перевезти артефакты 2 и 3 на одной лодке (так как $|2-10|\leq 9$). Оставшийся артефакт придется отправить на отдельной лодке. При этом получается минимальная стоимость перевозки всех артефактов, она равна 1+2+2+3+3=11.

В последнем запросе D=1. Необходимо отправить каждый артефакт на отдельной лодке. При этом получается минимальная стоимость перевозки всех артефактов, она равна 5+4+5+6+3=23.

Таким образом функция должна вернуть [16, 11, 23].

Sample Grader

Input format:

```
N
W[0] A[0] B[0]
W[1] A[1] B[1]
...
W[N-1] A[N-1] B[N-1]
Q
E[0]
E[1]
...
E[Q-1]
```

Output format:

```
R[0]
R[1]
...
R[S-1]
```

Здесь S это длина массива R, который вернул вызов calculate_costs.