Describe the transformations of $y = x^n$.

1.
$$y = x^3$$

a.
$$f(x) = (x-4)^3$$

2.
$$y = x^6$$

2.
$$y = x^6$$

a. $f(x) = -(x-5)^6$

b.
$$f(x) = -x^3 - 4$$

b.
$$f(x) = \frac{1}{8}x^6$$

c.
$$f(x) = -\frac{1}{4}x^3$$

c.
$$f(x) = (x+3)^6 - 4$$

d.
$$f(x) = (x+2)^3 - 4$$

d.
$$f(x) = -\frac{1}{4}x^6 + 1$$

Describe the left and right-hand behavior of the graph of the polynomial function. Make sure the polynomial is written in standard form.

3.
$$f(x) = 12x^3 + 4x$$

4.
$$f(x) = 6x - 9x^3 + x^2$$

4.
$$f(x) = 6x - 9x^3 + x^2$$
 5. $f(x) = \frac{1}{4}x^5 - x^4 + 8$

How many local maxima and minima does the polynomial have?

6.
$$y = -9x^2 + 7x + 6$$

6.
$$y = -9x^2 + 7x + 6$$
 7. $y = x^4 - 3x^2 + 9$ 8. $y = -2x^2 + 7x + 6$ 9. $y = x^4 - 9x^2 + 7$

$$8. \ \ y = -2x^2 + 7x + 6$$

9.
$$v = x^4 - 9x^2 + 7$$

Find all real zeros of the polynomial function, determine the multiplicity of each zero, end behavior, x and y-intercepts, number of maximum turning points, graph the function. Check your answer using a graphing calculator.

10.
$$f(x) = x^2 - 9$$

11.
$$P(x) = (x - 1)(x + 1)(x - 2)$$

12.
$$P(x) = x^3 (x+2)(x-2)^2$$

Zeros:

Zeros:

Zeros:

End Behavior:

End Behavior:

End Behavior:

x-intercepts:

x-intercepts:

x-intercepts:

y-intercept:

y-intercept:

y-intercept:

Max Turns:

Max Turns:

Max Turns:

13.
$$P(x) = x^3 + 2x^2 - 3x$$

14.
$$P(x) = x^4 - 4x^2 - 12$$

15.
$$P(x) = x^3 + 2x^2 - 9x - 18$$

Zeros:

Zeros:

Zeros:

End Behavior:

End Behavior:

End Behavior:

x-intercepts:

x-intercepts:

x-intercepts:

y-intercept:

y-intercept:

y-intercept:

Max Turns:

Max Turns:

