Lemma 2.4 Let X and Y be Tychonoff spaces, and $\pi_X: X \times Y \to X$ be the projection map. If π_X is z-closed, Z is a zero-set in $X \times Y$, and $(x,p) \in \overline{Z}^{X \times \beta Y}$, then $(x,p) \in \overline{Z} \cap (\{x\} \times Y)^{X \times \beta Y}$.

Proof: Assume that $(x,p) \notin \overline{Z \cap (\{x\} \times Y)}^{X \times \beta Y}$. Since $X \times \beta Y$ is Tychonoff, there exists a continuous function $f: X \times \beta Y \to [0,1]$ such that $f\left[\overline{Z \cap (\{x\} \times Y)}^{X \times \beta Y}\right] \subseteq \{1\}$ and f(x,p) = 0.

Let $Z_f = f^{\leftarrow}(0)$. So Z_f contains (x,p). Since $(x,p) \in \overline{Z}^{X \times \beta Y}$, we have $(x,p) \in \overline{Z}^{X \times \beta Y} \cap Z_f$. Thus,

$$x \in \pi_{X}\left[\overline{Z}^{X \times \beta Y} \cap Z_{f}\right] \subseteq \pi_{X}\left[\overline{Z \cap Z_{f}}^{X \times \beta Y}\right] \subseteq \overline{\pi_{X}\left[Z \cap Z_{f}\right]}^{X}.$$

On the other hand, since $\overline{Z \cap (\{x\} \times Y)}^{X \times \beta Y} \cap Z_f = \emptyset$, we have $Z \cap (\{x\} \times Y) \cap Z_f = \emptyset$. Now, if $x \in \pi_X [Z \cap Z_f]$, then $Z \cap Z_f \neq \emptyset$ and hence $Z \cap Z_f \cap (\{x\} \times Y) \neq \emptyset$, contradiction. So, $x \notin \pi_X [Z \cap Z_f]$.

Hence,

$$x \in \overline{\pi_X [Z \cap Z_f]}^X \backslash \pi_X [Z \cap Z_f]$$
.

As $Z \cap Z_f$ is a zero-set in $X \times Y$, $\pi_X [Z \cap Z_f]$ is closed in X, we have $\overline{\pi_X [Z \cap Z_f]}^X = \pi_X [Z \cap Z_f]$, contradiction.