### Dạng 2. Đường thẳng

## > Viết phương trình của đường thẳng.

- Để viết phương trình tổng quát của đường thẳng  $\Delta$  ta cần xác định
  - Điểm  $A(x_0; y_0) \in \Delta$
  - Một vecto pháp tuyến  $\vec{n}(a;b)$  của  $\Delta$

Khi đó phương trình tổng quát của  $\Delta$  là  $a(x-x_0)+b(y-y_0)=0$ 

- Để viết phương trình tham số của đường thẳng  $\Delta$  ta cần xác định
  - Điểm  $A(x_0; y_0) \in \Delta$
  - Một vectơ chỉ phương  $\overrightarrow{u}(a;b)$  của  $\Delta$

Khi đó phương trình tham số của  $\Delta$  là  $\begin{cases} x=x_0+at \\ y=y_0+bt \end{cases}$  ,  $t\in\mathbb{R}$  .

- Để viết phương trình chính tắc của đường thẳng  $\Delta$  ta cần xác định
  - Điểm  $A(x_0; y_0) \in \Delta$
  - Một vecto chỉ phương  $\vec{u}(a;b)$ ,  $ab \neq 0$  của  $\Delta$

Phương trình chính tắc của đường thẳng  $\Delta$  là  $\frac{x-x_0}{a} = \frac{y-y_0}{b}$ 

#### Chú ý:

- Nếu hai đường thẳng song song với nhau thì chúng có cùng VTCP và VTPT.
- Hai đường thẳng vuông góc với nhau thì VTCP của đường thẳng này là VTPT của đường thẳng kia và ngược lại
- o Phương trình đường thẳng  $\Delta\,$  qua điểm  $\,M\big(x_0^{};y_0^{}\big)\,$  có dạng

$$\Delta : a(x-x_0) + b(y-y_0) = 0 \text{ v\'oi } a^2 + b^2 > 0$$

- 0 Phương trình đường thẳng đi qua A(a;0), B(0;b) với  $ab \neq 0$  có dạng  $\frac{x}{a} + \frac{y}{b} = 1$
- xét vị trí tương đối của hai đường thẳng.

Để xét vị trí tương đối của hai đường thẳng

$$d_1: a_1x + b_1y + c_1 = 0; \ d_2: a_2x + b_2y + c_2 = 0.$$

Ta xét hệ 
$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases} (I)$$

+ Hệ (I) vô nghiệm suy ra  $d_1 \parallel d_2$ .

+ Hệ (I) vô số nghiệm suy ra  $d_1 \equiv d_2$ 

+ Hệ (I) có nghiệm duy nhất suy ra d<sub>1</sub> và d<sub>2</sub> cắt nhau và nghiệm của hệ là tọa độ giao điểm.

*Chú ý*: Với trường hợp  $a_2.b_2.c_2 \neq 0$  khi đó:

+ Nếu  $\frac{a_1}{b_1} \neq \frac{a_2}{b_2}$  thì hai đường thẳng cắt nhau.

+ Nếu  $\frac{a_1}{b_1} = \frac{a_2}{b_2} \neq \frac{c_1}{c_2}$  thì hai đường thẳng song song nhau.

+ Nếu  $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{c_1}{c_2}$  thì hai đường thẳng trùng nhau.

#### Ví du 1.

1. Trong mặt phẳng toạ độ đề các vuông góc 0xy, cho các đường thẳng  $d_1: x+y+3=0, \ d_2: x-y-4=0, \ d_3: x-2y=0 \ .$  Tìm tọa độ điểm M nằm trên đường thẳng  $d_3$  sao cho khoảng cách từ M đến đường thẳng  $d_1$  bằng hai lần khoảng cách từ M đến đường thẳng  $d_2$ 

**2.** Trong mặt phẳng Oxy, cho hai đường thẳng  $d_1$ : 3x + y + 5 = 0,  $d_2$ : 3x + y + 1 = 0 và điểm I(1;-2). Viết phương trình đường thẳng đi qua I và cắt  $d_1$ ,  $d_2$  lần lượt tại A và B sao cho  $AB = 2\sqrt{2}$ .

3. Trong mặt phẳng Oxy, tìm toạ độ các đỉnh của một tam giác vuông cân, biết đỉnh C(3;-1) và phương trình của cạnh huyền là 3x-y+2=0.

## Lời giải

**1.** Ta có 
$$M \in d_3 \Rightarrow M(2m;m)$$
. Suy ra  $d(M,d_1) = \frac{|3m+3|}{\sqrt{2}}$ ,  $d(M,d_2) = \frac{|m-4|}{\sqrt{2}}$ 

Theo giả thiết ta có:  $d(M,d_1) = 2d(M,d_2) \Leftrightarrow \frac{|3m+3|}{\sqrt{2}} = 2 \cdot \frac{|m-4|}{\sqrt{2}}$ 

$$\Leftrightarrow \begin{bmatrix} 3m+3=2m-8 \\ 3m+3=-2m+8 \end{bmatrix} \Leftrightarrow m=-11 \text{ hoặc } m=1.$$

• Với  $m = -11 \Rightarrow M(-22;-11)$ .

• Với  $m=1 \Rightarrow M(2;1)$ .

**2.** 
$$A \in d_1 \Rightarrow A(a; -3a - 5), B \in d_2 \Rightarrow B(b; -3b - 1)$$

$$\overrightarrow{IA} = (a-1; -3a-3) \neq \overrightarrow{0}, \overrightarrow{IB} = (b-1; -3b+1)$$

I, A, B thẳng hàng 
$$\Rightarrow \overrightarrow{IB} = k\overrightarrow{IA} \Leftrightarrow \begin{cases} b-1 = k(a-1) \\ -3b+1 = k(-3a-3) \end{cases}$$

Nếu  $a = 1 \Rightarrow b = 1 \Rightarrow AB = 4$  (không thỏa mãn)

Nếu 
$$-3b+1=\frac{b-1}{a-1}(-3a-3) \Leftrightarrow a=3b-2$$

$$AB = \sqrt{\left(b-a\right)^2 + \left[3\left(a-b\right) + 4\right]^2} = 2\sqrt{2} \iff t^2 + \left(3t+4\right)^2 = 8, \text{ v\'oi } t = b-a$$

$$\Leftrightarrow 5t^2 + 12t + 4 = 0 \Leftrightarrow t = -2 \text{ hoặc } t = -\frac{2}{5}$$

Với 
$$t = -2 \Rightarrow b - a = -2 \Rightarrow b = 2, a = 4 \Rightarrow \Delta: 5x + y - 3 = 0$$

Với 
$$t = -\frac{2}{5} \Rightarrow b - a = -\frac{2}{5} \Rightarrow b = \frac{6}{5}, a = \frac{8}{5} \Rightarrow \Delta: 13x + y - 11 = 0$$

**3.** Gọi hai đỉnh còn lại là A,B. Toạ độ điểm C không thoả mãn phương trình cạnh huyền nên tam giác ABC vuông cân tại C.

Gọi I là hình chiếu vuông góc của C lên cạnh huyền (I là trung điểm của AB).

Phương trình đường thẳng CI là  $\frac{x-3}{3} = \frac{y+1}{-1} \Leftrightarrow x+3y=0$ .

Toạ độ điểm I là nghiệm của hệ: 
$$\begin{cases} x+3y=0\\ 3x-y+2=0 \end{cases} \Rightarrow I\left(-\frac{3}{5};\frac{1}{5}\right)$$

A,B nằm trên đường tròn tâm I, bán kính  $CI = \sqrt{\frac{72}{5}}$  có phương trình:

$$\left(x + \frac{3}{5}\right)^2 + \left(y - \frac{1}{5}\right)^2 = \frac{72}{5}$$

Toạ độ hai điểm A,B là nghiệm của hệ:  $\begin{cases} 3x - y + 2 = 0 \\ \left(x + \frac{3}{5}\right)^2 + \left(y - \frac{1}{5}\right)^2 = \frac{72}{5} \end{cases}.$ 

Giải hệ ta được 
$$(x;y) = (\frac{3}{5}; \frac{19}{5}), (-\frac{9}{5}; -\frac{17}{5}).$$

Vậy, toạ độ hai đinh cần tìm là :  $(x;y) = (\frac{3}{5}; \frac{19}{5}), (-\frac{9}{5}; -\frac{17}{5})$ 

Ví dụ 2. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho tam giác ABC.

- 1. Xác định tọa độ đỉnh C, biết H(-1;-1)hình chiếu vuông góc của C trên đường thẳng AB, đường phân giác trong của góc A có phương trình x-y+2=0 và đường cao kẻ từ B có phương trình 4x+3y-1=0.
- **2.** Xác định tọa độ đỉnh B,C. Phương trình đường trung trực d của cạnh BC, đường trung tuyến CC' lần lượt là x+y-6=0 và 2x-y+3=0
- 3. Trong mặt phẳng Oxy, cho tam giác ABC cân tại C có phương trình cạnh AB là x-2y=0, điểm I(4;2)là trung điểm của AB, điểm M(4; $\frac{9}{2}$ ) thuộc cạnh BC, diện

tích tam giác ABC bằng 10. Tìm tọa độ các đỉnh của tam giác ABC biết tung độ điểm  $\,$ Blớn hơn hoặc bằng  $\,$ 3 $\,$ .

#### Lời giải

**1.** Kí hiệu  $d_1: x-y+2=0$ ,  $d_2: 4x+3y-1=0$ .

Gọi H' là điểm đối xứng với H qua d₁. Khi đó H'∈ AC.

 $\Delta$  là đường thẳng đi qua H và vuông góc với  $d_1$ , nên có:  $\Delta: x+y+2=0$ 

Gọi I là giao điểm của  $d_1$  và  $\Delta$  nên tọa độ I thỏa:  $\begin{cases} x+y+2=0 \\ x-y+2=0 \end{cases} \Rightarrow I\left(-2;0\right)$ 

Vì I là trung điểm của HH' nên H'(-3;1).

Đường thẳng AC đi qua H' và vuông góc với  $d_2$  nên có phương trình : 3x-4y+13=0 .

AC cắt d
$$_1$$
 tại A. Tọa độ A là nghiệm hệ: 
$$\begin{cases} x-y+2=0\\ 3x-4y+13=0 \end{cases} \Rightarrow A (5;7)$$

Do CH đi qua H và vuông với AH, suy ra phương trình của CH:3x+4y+7=0

Tọa độ điểm C là nghiệm hệ : 
$$\begin{cases} 3x + 4y + 7 = 0 \\ 3x - 4y + 13 = 0 \end{cases} \Rightarrow C\left(-\frac{10}{3}; \frac{3}{4}\right)$$

**2.** Gọi  $C(c;2c+3) \in CC'$ . Khi đó: phương trình BC:x-y+c+3=0

Gọi M là trung điểm của BC, suy ra

$$M: \begin{cases} x+y-6=0 \\ x-y+c+3=0 \end{cases} \Leftrightarrow \begin{cases} x=\frac{3-c}{2} \\ y=\frac{c+9}{2} \end{cases}$$

$$\Rightarrow$$
 B(3-2c;6-c) $\Rightarrow$  C' $\left(4-c;4-\frac{c}{2}\right)$ 

Vì C' 
$$\in$$
 CC' nên  $2(4-c)-(4-\frac{c}{2})+3=0$ 

$$\Leftrightarrow -\frac{3}{2}c + 7 = 0 \Rightarrow c = \frac{14}{3}$$

Vậy, B
$$\left(-\frac{19}{3}; \frac{4}{3}\right)$$
, C $\left(\frac{14}{3}; \frac{37}{3}\right)$  là tọa độ cần tìm.



3. Gọi tọa độ điểm  $B(2y_B; y_B), y_B \ge 3 \Rightarrow A(8-2y_B; 4-y_B) \Rightarrow |\overrightarrow{AB}| = \sqrt{20}|y_B-2|$ 

Gọi tọa độ điểm 
$$C(x_C; 10-2x_C) \Rightarrow \left| \overrightarrow{CI} \right| = \sqrt{5} \left| 4 - x_C \right|$$

Diện tích tam giác ABC là :  $S_{ABC} = \frac{1}{2}CI.AB = 10 \Leftrightarrow |4y_B + 2x_C - x_Cy_B - 8| = 2$ 

$$\Leftrightarrow x_C y_B - 4 y_B - 2 x_C = -6 \ (1) \ \text{hoặc} \ x_C y_B - 4 y_B - 2 x_C = -10 \ (2)$$

$$\overrightarrow{Vi} \ M \in BC \Rightarrow \overrightarrow{CM} = \overrightarrow{kMB} \Leftrightarrow \begin{cases} 4 - x_C = k \left( 2y_B - 4 \right) \\ -\frac{11}{2} + 2x_C = k \left( y_B - \frac{9}{2} \right) \end{cases}$$

$$\Rightarrow 2x_C y_B - 6y_B - 5x_C + 16 = 0 \quad (3)$$

$$\begin{array}{l} \text{T\'er} \left(1\right) \text{ và } \left(3\right) \colon \begin{cases} x_C y_B - 4 y_B - 2 x_C = -6 \\ 2 x_C y_B - 6 y_B - 5 x_C + 16 = 0 \end{cases} \Rightarrow \begin{cases} y_B = -1 - \sqrt{2} \\ y_B = -1 + \sqrt{2} \end{cases} \text{ không thỏa } y_B \geq 3 \end{cases}$$

$$\begin{array}{l} \text{T\'er} \ \left(2\right) \ v\grave{a} \ \left(3\right) \colon \begin{cases} x_{C}y_{B} - 4y_{B} - 2x_{C} = -10 \\ 2x_{C}y_{B} - 6y_{B} - 5x_{C} + 16 = 0 \end{cases} \Leftrightarrow \begin{cases} y_{B} = 3 \\ x_{C} = 2 \end{cases} \end{array}$$

Vậy, tọa độ các đỉnh của tam giác ABC là: A(2;1), B(6;3), C(2;6)

 $\mathbf{V}\mathbf{i}$  dụ 3. Trong mặt phẳng toạ độ đề các vuông góc 0xy, cho  $\Delta ABC$ , biết:

1. A(-2;1), B(2;3), C(1;-5). Lập phương trình đường thẳng đi qua hai điểm D,G với D là chân đường phân giác trong góc A và G là trọng tâm của  $\Delta ABC$ 

2. A(4;-1), đường cao kẻ từ B có phương trình  $\Delta: 2x-3y=0$ , trung tuyến đi qua đỉnh C có phương trình  $\Delta': 2x+3y=0$ . Lập phương trình các cạnh của  $\Delta ABC$ 

#### Lời giải

1. Gọi  $D(x_D; y_D)$  là chân đường phân giác hạ từ A của  $\Delta ABC$ 

Ta có AB = 
$$\sqrt{(-2-2)^2 + (3-1)^2} = 2\sqrt{5}$$
, AC =  $\sqrt{(1+2)^2 + (-5-1)^2} = 3\sqrt{5}$ 

Do đó 
$$\overrightarrow{BD} = \frac{AB}{AC}\overrightarrow{DC} = \frac{2}{3}\overrightarrow{DC} \Leftrightarrow \begin{cases} x_D - 2 = \frac{2}{3}(1 - x_D) \\ y_D - 3 = \frac{2}{3}(-5 - y_D) \end{cases} \Leftrightarrow \begin{cases} x = \frac{8}{5} \\ y = \frac{-1}{5} \end{cases} \Rightarrow D\left(\frac{8}{5}; -\frac{1}{5}\right)$$

$$G\left(\frac{1}{3}; -\frac{1}{3}\right)$$
 là trọng tâm của  $\Delta ABC$ 

Ta có  $\overrightarrow{DG}\left(-\frac{19}{15}; -\frac{2}{15}\right)$  suy ra đường thẳng DG nhận  $\overrightarrow{u}(19;2)$  làm VTCP nên có

phương trình là 
$$\begin{cases} x = \frac{1}{3} + 19t \\ y = -\frac{1}{3} + 2t \end{cases}$$

**2**. Ta có AC đi qua A(4;-1) và vuông góc với  $\Delta$  nên nhận  $\vec{u}(3;2)$  làm VTPT nên có phương trình là 3(x-4)+2(y+1)=0 hay 3x+2y-10=0

Suy ra toạ độ C là nghiệm của hệ: 
$$\begin{cases} 3x + 2y - 10 = 0 \\ 2x + 3y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ y = -4 \end{cases} \Rightarrow C\left(6; -4\right)$$

Giả sử B $\left(x_B;y_B\right)$  suy ra trung điểm I $\left(\frac{x_B+4}{2};\frac{y_B-1}{2}\right)$  của AB thuộc đường thẳng

$$\Delta'$$
 do đó:  $2.\frac{x_B + 4}{2} + 3.\frac{y_B - 1}{2} = 0$  hay  $2x_B + 3y_B + 5 = 0$  (1)

Mặt khác  $B \in \Delta$  suy ra  $2x_B - 3y_B = 0$  (2)

Từ (1) và (2) suy ra 
$$B\left(-\frac{5}{4}; -\frac{5}{6}\right)$$

Ta có 
$$\overrightarrow{AB}\left(-\frac{21}{4};\frac{1}{6}\right)$$
,  $\overrightarrow{BC}\left(-\frac{31}{4};\frac{19}{6}\right)$ .

$$Phương trình đường thẳng AB: \begin{cases} x=4-\frac{21}{4}t\\ y=-1+\frac{1}{6}t \end{cases}, BC: \begin{cases} x=6-\frac{31}{4}t'\\ y=-4+\frac{19}{6}t' \end{cases}$$

**Ví dụ 4**. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho hình chữ nhật ABCD có tâm  $I\left(\frac{1}{2};0\right)$ . Phương trình đường thẳng AB ;à: x-2y+2=0 và AB=2AD. Tìm tọa độ các đỉnh A,B,C,D; biết rằng A có hoành độ âm.

#### Lời giải

#### Cách 1:

- Durng IH  $\perp$  AB  $\Rightarrow$  AD = 2IH  $\Rightarrow$  AH = 2HI = 2d(I; AB) =  $\sqrt{5}$
- Xét tam giác vuông AIH :  $AI^2 = AH^2 + HI^2 = \frac{25}{4}$
- Gọi A(a;b), a < 0 thì  $b = \frac{a+2}{2}$ . Do  $A \in AB$

Nên 
$$IA^2 = \left(a - \frac{1}{2}\right)^2 + \left(\frac{a+2}{2}\right)^2 = \frac{25}{4} \Rightarrow a = -2 \Rightarrow A\left(-2;0\right)$$

Tương tự B(2;2). Dựa vào tính chất trung điểm tìm được C(3;0), D(-1;-2)

#### Cách 2:

$$(AB): x-2y+2=0 \Rightarrow y=\frac{x+2}{2}=\frac{x}{2}+1$$
 Gọi  $A\left(a;\frac{a}{2}+1\right)$ ,  $B\left(b;\frac{b}{2}+1\right)$ ,  $a<0$ ,  $a\neq b$ . I là trung điểm AC và BD nên  $C\left(1-a;-\frac{a}{2}-1\right)$ ,  $D\left(1-b;-\frac{b}{2}-1\right)$ 

**Cách 3:** Khoảng cách từ I đến AB là IH=d(I;AB)= $\frac{\sqrt{5}}{2}$   $\Rightarrow$  AD=2IH= $\sqrt{5}$ 

Và  $IA = IB = \frac{5}{2} \Rightarrow A$ , B là các giao điểm của đường thẳng AB với đường tròn tâm I và

$$b \text{ an } \quad k \text{ inh } \quad R = \frac{5}{2} \,. \quad \text{To a} \quad \text{$d\hat{o}$} \quad \text{A,B} \quad \text{là} \quad \text{nghiệm} \quad \text{hệ} \quad \left\{ \left( x - \frac{1}{2} \right)^2 + y^2 = \left( \frac{5}{2} \right)^2 \right\}$$

$$\Leftrightarrow \begin{cases} x=-2 \\ y=0 \end{cases} \Rightarrow A\left(-2;0\right), \;\; B\left(2;2\right), \;\; C\left(3;0\right), \;\; D\left(-1;-2\right) \;\; là \; tọa \; độ \; cần \; tìm.$$

**Ví dụ 5**. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho hình vuông ABCD, có tâm  $I\left(\frac{5}{2};\frac{5}{2}\right)$ , phương trình cạnh AB là: 4x+3y-5=0. Tìm tọa độ các đỉnh A,B,C,D biết rằng C có hoành độ dương.

#### Lời giải

$$(AB): 4x + 3y - 5 = 0 \Rightarrow y = -\frac{4}{3}x + \frac{5}{3} \Rightarrow A\left(a; -\frac{4}{3}a + \frac{5}{3}\right), B\left(b; -\frac{4}{3}b + \frac{5}{3}\right)$$

Do I là giao điểm 2 đường chéo  $\Rightarrow$  C $\left(5-a; \frac{4}{3}a+\frac{10}{3}\right)$ , D $\left(5-b; \frac{4}{3}b+\frac{10}{3}\right)$ 

 $\label{eq:BI_AC} \text{Theo tinh chất hình vuông}: \begin{cases} BI \perp AC \\ BI = \frac{1}{2}AC \end{cases} \Leftrightarrow \begin{cases} \overline{BI.\overrightarrow{AC}} = 0 \\ BI^2 = \frac{1}{4}AC^2 \end{cases} \quad \text{$(I)$}$ 

$$\vec{AR} = \left(\frac{5}{2} - b; \frac{4}{3}b + \frac{5}{6}\right); \vec{AC} = \left(5 - 2a; \frac{8}{3}a + \frac{5}{3}\right)$$

$$T\hat{\mathbf{v}}\left(\mathbf{I}\right) \Leftrightarrow \begin{cases} \left(a-b\right)^2 = 25 \\ 50b^2 - 50b + 125 = \frac{1}{4}\left(2a^2 - 2a + 5\right) \end{cases} \Rightarrow \begin{bmatrix} a = 2 \\ a = 10 \end{cases} \Rightarrow \begin{bmatrix} b = -1 \\ b = 7 \end{bmatrix}$$

$$V_{\text{ay}}, \begin{bmatrix} A(2;-1), B(-1;3), C(3;6), D(6;2) \\ A\left(10; -\frac{35}{3}\right), B\left(7; -\frac{23}{3}\right), C\left(-5; \frac{50}{3}\right), D\left(-2; \frac{38}{3}\right) \end{bmatrix}$$

 $\label{eq:main_continuity} \text{Mà } x_{\text{C}} > 0 \ \Rightarrow \text{A}\big(2;-1\big), \text{B}\big(-1;3\big), \text{C}\big(3;6\big), \text{D}\big(6;2\big) \text{ là tọa độ cần tìm.}$ 

**Ví dụ 6**. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho  $\triangle$ ABC vuông tại A, phương trình đường thẳng BC là:  $\sqrt{3}x - y - \sqrt{3} = 0$ , các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm G của  $\triangle$ ABC.

#### Lời giải

**Cách 1**: Vì 
$$B = (BC) \cap Ox$$
 nên  $B(1;0)$ 

(BC): 
$$y = \sqrt{3}x - \sqrt{3} \Rightarrow \text{hệ số góc của (BC) là } k = \tan \hat{B} = \sqrt{3}$$

hay 
$$\hat{B} = 60^0 \Rightarrow \hat{C} = 30^0$$

Giả sử 
$$A(a;0),C(a;\sqrt{3}a-\sqrt{3})\in (BC)$$

Khi đó: 
$$AB = r\left(\cot\frac{A}{2} + \cot\frac{B}{2}\right)$$
 hay  $|a-1| = 2\left(1 + \sqrt{3}\right)$ .

**TH1:** 
$$a-1=2(1+\sqrt{3}) \Rightarrow a=2\sqrt{3}+3 \Rightarrow \begin{cases} A(2\sqrt{3}+3;0) \\ C(2\sqrt{3}+3;6+2\sqrt{3}) \end{cases}$$

Khi đó 
$$G\left(\frac{7+4\sqrt{3}}{3}; \frac{6+2\sqrt{3}}{3}\right)$$

**TH2:** 
$$a-1 = -2(1+\sqrt{3}) \Rightarrow a = -2\sqrt{3}-1 \Rightarrow \begin{cases} A(-2\sqrt{3}-1;0) \\ C(-2\sqrt{3}-1;-6-2\sqrt{3}) \end{cases}$$

Khi đó G' = 
$$\left(\frac{-1 - 4\sqrt{3}}{3}; \frac{-6 - 2\sqrt{3}}{3}\right)$$

**Cách 2 :** Phương trình đường  $(d_1)$  phân giác trong của góc A là : y = -x + a

Phương trình đường  $(d_2)$  phân giác trong của góc B là:  $y = \frac{\sqrt{3}}{3}x - \frac{\sqrt{3}}{3}$ 

Tọa độ tâm 
$$I_1$$
 là giao điểm  $(d_1)$ , $(d_2)$  nên  $I\left(\frac{1+\sqrt{3}a}{1+\sqrt{3}};\frac{a-1}{1+\sqrt{3}}\right)$ 

Theo giả thiết:  $d(I;AB)=d(I;Ox)=2 \Rightarrow tìm \ a \Rightarrow ycbt$  (Cách 1)

**Cách 3:** ta có 
$$AB = |a-1|$$
,  $AC = \sqrt{3}|a-1|$ ,  $BC = 2|a-1|$ 

$$S = \frac{1}{2} \cdot AB \cdot AC = \frac{\sqrt{3}}{2} (a - 1)^{2}$$

$$P = \frac{3|a - 1| + \sqrt{3}|a - 1|}{2}$$

$$\Rightarrow r = \frac{S}{P} = \frac{|a - 1|}{\sqrt{3} + 1} = 2 \Rightarrow |a - 1| = 2(\sqrt{3} + 1)$$

\* 
$$a = 2\sqrt{3} + 3 \Rightarrow G\left(\frac{7 + 4\sqrt{3}}{3}; \frac{6 + \sqrt{3}}{3}\right)$$

\* 
$$a = -2\sqrt{3} - 1 \Rightarrow G\left(\frac{-4\sqrt{3} - 1}{3}; \frac{-6 - 2\sqrt{3}}{3}\right)$$

**Cách 4 :** Gọi I là tâm đường tròn nội tiếp  $\triangle ABC$  vì  $r=2 \Rightarrow y=\pm 2$ 

Phương trình BI:  $y = \tan 30^{\circ} (x-1) = \frac{x-1}{\sqrt{3}} \Leftrightarrow \pm 2 = \frac{x-1}{\sqrt{3}} \Rightarrow x = 1 \pm 2\sqrt{3}$ 

\* Nếu A và O khác phía đối với  $B \Rightarrow x = 1 + 2\sqrt{3}$  và  $d(I;AC) = 2 \Rightarrow a = x + 2$ 

$$\Rightarrow$$
 G $\left(\frac{7+4\sqrt{3}}{3};\frac{6+\sqrt{3}}{3}\right)$ 

\* Nếu A và 0 cùng phía đối với  $B \Rightarrow x = 1 - 2\sqrt{3} \Rightarrow a = x - 2$ 

Ví dụ 7. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- 1. Cho  $\triangle ABC$  với  $AB = \sqrt{5}$ , đỉnh C(-1;-1), đường thẳng (AB): x + 2y 3 = 0 và trọng tâm G của  $\triangle ABC$  thuộc đường thẳng x + y 2 = 0. Xác định tọa độ A, B của tam giác.
- **2.** Cho hình chữ nhật ABCD có phương trình cạnh AB: x-2y-1=0, đường chéo BD: x-7y+14=0 và đường chéo AC đi qua điểm E(2;1). Tìm tọa độ các đỉnh của hình chữ nhật.

### Lời giải

1. Gọi I là trung điểm AB,  $G(x_G; y_G)$  là tọa độ trọng tâm  $\Delta ABC$ 

$$\Rightarrow \overrightarrow{CG} = \frac{2}{3}\overrightarrow{CI} \iff \begin{cases} x_G = \frac{2x-1}{3} \\ y_G = \frac{2y-1}{3} \end{cases}$$

$$G \in x + y - 2 = 0$$
 nên có:  $\frac{2x - 1}{3} + \frac{2y - 1}{3} - 2 = 0$ 

Tọa độ điểm I thỏa mãn hệ: 
$$\begin{cases} x+2y-3=0\\ \frac{2x-1}{3}+\frac{2y-1}{3}-2=0 \end{cases} \Rightarrow I\left(5;-1\right)$$

Gọi 
$$A(x_A; y_A) \Rightarrow IA^2 = (x_A - 5)^2 + (y_A + 1)^2 = \left(\frac{AB}{2}\right)^2 = \frac{5}{4}$$

Hơn nữa  $A \in x + 2y - 3 = 0$  suy ra tọa độ điểm A là nghiệm của hệ:

$$\begin{cases} x_A + 2y_A - 3 = 0 \\ (x_A - 5)^2 + (y_A + 1)^2 = \frac{5}{4} \end{cases} \Leftrightarrow \begin{cases} x_A = 4 \\ y_A = -\frac{1}{2} \end{cases} \text{ hoặc } \begin{cases} x_A = 6 \\ y_A = -\frac{3}{2} \end{cases}$$

Vậy,  $A\left(4,-\frac{1}{2}\right)$ ,  $B\left(6;-\frac{3}{2}\right)$  hoặc ngược lại là tọa độ cần tìm.

**2.**  $B = AB \cap BD \Rightarrow$  toạ độ điểm B là nghiệm của hệ:

$$\begin{cases} x - 2y - 1 = 0 \\ x - 7y + 14 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 7 \\ y = 3 \end{cases} \Rightarrow B = (7; 3)$$

Giả sử: 
$$A = (2a + 1; a) \in AB : 2 - 2y - 1 = 0$$
,

$$D(7d-14; d) \in BD: x-7y+14=0$$

$$\Rightarrow \overrightarrow{AB} = (6-2a; 3-a), \overrightarrow{BD} = (7d-21; d-3), \overrightarrow{AD} = (7d-2a-15; d-a)$$

Vì 
$$\overrightarrow{AB} \perp \overrightarrow{AD} \Rightarrow \overrightarrow{AB}.\overrightarrow{AD} = 0 \Leftrightarrow (3-a)(15d-5a-30) = 0 \Leftrightarrow a = 3$$
 (không thỏa)

hoặc 
$$3d-a-6=0$$

$$\Rightarrow$$
 a = 3d - 6  $\Rightarrow$   $\overrightarrow{AD}$  = (d - 3; 6 - 2d). Hon nữa:  $\overrightarrow{BC}$  = ( $x_C$  - 7;  $y_C$  - 3)

ABCD là hình chữ nhật nên

$$\overrightarrow{AD} = \overrightarrow{BC} \begin{cases} d - 3 = x_C - 7 \\ 6 - 2d = y_C - 3 \end{cases} \Rightarrow \begin{cases} x_C = d + 4 \\ y_C = 9 - 2d \end{cases} \Rightarrow C = (d + 4; 9 - 2d)$$

$$\Rightarrow \overrightarrow{EA} = (6d-13; 3d-7), \overrightarrow{EC} = (d+2; 8-2d)$$
 và  $d \neq 3$ 

Lại có:  $E(2;1) \in AC \Rightarrow \overrightarrow{EA}, \overrightarrow{EC}$  cùng phương

$$\Leftrightarrow$$
  $(6d-13)(8-2d) = (d+2)(3d-7) \Leftrightarrow d^2-5d+6=0$ 

$$\Leftrightarrow$$
 d = 2  $\Rightarrow$  a = 0  $\Rightarrow$  A(1; 0), B(7; 3), C(6; 5), D(0; 0)

Vậy, A(1; 0), B(7; 3), C(6; 5), D(0; 0) là các đỉnh của hình chữ nhật cần tìm.

**Ví dụ 8**. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho hai đường thắng  $d_1: x+y-1=0$ ,  $d_2: 3x-y+5=0$ . Tìm tọa độ các đỉnh của hình bình hành ABCD, biết I(3;3) là giao điểm của hai đường chéo, hai cạnh của hình bình hành nằm trên hai đường thẳng  $d_1, d_2$  và giao điểm của hai đường thẳng đó là một đỉnh của hình bình hành.

#### Lời giải

Tọa độ giao điểm của  $d_1$  và  $d_2$  là nghiệm của hệ:  $\begin{cases} x+y-1=0 \\ 3x-y+5=0 \end{cases} \Leftrightarrow \begin{cases} x=-1 \\ y=2 \end{cases}.$ 

Ta giả sử A(-1;2) và  $AB \equiv d_1$ ,  $AD \equiv d_2$ , suy ra C(7;4).

Gọi d là đường thẳng đi qua I và song song với AB, suy ra phương trình d: x+y-6=0.



Tọa độ giao điểm của d và AD:

$$\begin{cases} x+y-6=0 \\ 3x-y+5=0 \end{cases} \Leftrightarrow \begin{cases} x=\frac{1}{4} \\ y=\frac{23}{4} \end{cases} \Rightarrow M\left(\frac{1}{4};\frac{23}{4}\right)$$

M là trung điểm của AD. Khi đó  $D\left(\frac{3}{2};\frac{19}{2}\right)$ , suy ra  $B\left(\frac{9}{2};-\frac{7}{2}\right)$ .

Ví dụ 9. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- 1. Cho hình chữ nhật ABCD có cạnh AB: x-3y+5=0, đường chéo BD: x-y-1=0 và đường chéo AC đi qua điểm  $M\left(-9;2\right)$ . Tìm tọa độ các đinh của hình chữ nhật ABCD.
- **2.** Cho 3 đường thẳng  $d_1: x-3y=0$ ,  $d_2: 2x+y-5=0$ ,  $d_3: x-y=0$ . Tìm tọa độ các điểm  $A \in d_1$ ,  $B \in d_2$ , C,  $D \in d_3$  để tứ giác ABCD là một hình vuông.

#### Lời giải

 $\textbf{1.} \ \, \text{Tọa độ điểm} \, \, \text{B là nghiệm hệ phương trình:} \, \begin{cases} x-3y+5=0 \\ x-y-1=0 \end{cases} \Leftrightarrow \begin{cases} x=4 \\ y=3 \end{cases} \Rightarrow \text{B}\big(4;3\big) \, .$ 

Gọi 
$$A(-5+3a;a) \in AB \Rightarrow \overrightarrow{MA} = (4+3a;-2+a) \Rightarrow \overrightarrow{n_{AC}} = (2-a;4+3a)$$

Ta có:  $\overrightarrow{n_{AB}} = (1;-3)$ ,  $\overrightarrow{n_{BD}} = (1;-1)$ ,  $\overrightarrow{n_{AC}} = (2-a;4+3a)$  lần lượt là vecto pháp tuyến của AB, BD, AC. Hơn nữa  $\widehat{ABD} = \widehat{BAC} \Rightarrow \widehat{cos ABD} = \widehat{cos BAC}$ 

Mà 
$$\cos \widehat{ABD} = \frac{2}{\sqrt{5}}$$
,  $\cos \widehat{BAC} = \frac{10|a+1|}{\sqrt{10}\sqrt{(2-a)^2 + (4+3a)^2}}$ 

Nên có:  $\frac{10|a+1|}{\sqrt{10}\sqrt{(2-a)^2+(4+3a)^2}} = \frac{2}{\sqrt{5}}$ , bình phương 2 vế, rút gọn ta được

phương trình :  $a^2 + 2a - 3 = 0 \Leftrightarrow a = -3$  hoặc a = 1

\* Với a = -3 không thỏa vì  $AC \parallel BD$ 

\* Với  $a=1 \Rightarrow A(-2;1)$ . Đường thẳng AD đi qua A và vuông góc với AB nên có phương trình : 3x+y+5=0

Tọa độ điểm D là nghiệm của hệ: 
$$\begin{cases} x-y-1=0\\ 3x+y+5=0 \end{cases} \Leftrightarrow \begin{cases} x=-1\\ y=-2 \end{cases} \Rightarrow D\left(-1;-2\right)$$

Gọi 
$$I\left(\frac{3}{2};\frac{1}{2}\right)$$
 là trung điểm BD do đó I cũng là trung điểm  $AC \Rightarrow C(5;0)$ 

Vậy, A(-2;1), B(4;3), C(5;0), D(-1;-2) là tọa độ cần tìm.

2. Gọi B(b;5-2b)  $\in$  d $_2$ . Đường thẳng  $\Delta_1$  qua B và vuông góc d $_3$  cắt d $_3$  tại C. Phương trình  $\Delta_1: x+y+b-5=0$ 

Tọa độ của C là nghiệm hệ 
$$\begin{cases} x-y=0\\ x+y+b-5=0 \end{cases} \Rightarrow C\left(\frac{5-b}{2};\frac{5-b}{2}\right)$$

Đường thẳng  $AB \parallel d_3$  nên có phương trình x-y+5-3b=0.

Tọa độ A là nghiệm hệ 
$$\begin{cases} x - y + 5 - 3b = 0 \\ x - 3y = 0 \end{cases} \Rightarrow A\left(\frac{9b - 15}{2}; \frac{3b - 5}{2}\right)$$

Đường thẳng  $\,\Delta_{2}\,$  qua  $\,$  A và vuông góc  $\,d_{3}$  cắt  $d_{3}$  tại  $\,$  D .

Phương trình  $\Delta_1: x + y - 6b + 10 = 0$ 

Tọa độ của D là nghiệm của hệ 
$$\begin{cases} x-y=0 \\ x+y-6b+10=0 \end{cases} \Rightarrow D \Big(3b-5;3b-5 \Big)$$

ABCD là hình vuông 
$$\Leftrightarrow$$
 AD = CD  $\Leftrightarrow$  2 $b^2$  - 9 $b$  + 10 = 0  $\Leftrightarrow$   $b$  = 2 hoặc  $b = \frac{5}{2}$ 

$$b = 2 \Rightarrow A\left(\frac{3}{2}; \frac{1}{2}\right), B(2;1), C\left(\frac{3}{2}; \frac{3}{2}\right), D(1;1)$$
 hoặc

$$b = \frac{5}{2} \Rightarrow A\left(\frac{15}{4}; \frac{5}{4}\right), B\left(\frac{5}{2}; 0\right), C\left(\frac{5}{4}; \frac{5}{4}\right), D\left(\frac{5}{2}; \frac{5}{2}\right)$$

Ví dụ 10. Trong mặt phẳng toạ độ đề các vuông góc Oxy

- 1. Cho đường thẳng (d): x+2y-1=0, (d'): 3x+y-7=0 cắt nhau tại I. Viết phương trình đường thẳng đi qua M(1;2), đồng thời cắt 2 đường thẳng (d) và (d') lần lượt tại A và B sao cho  $AI = \sqrt{2}AB$ .
- **2.** Cho các điểm A(1;0), B(-2;4), C(-1;4), D(3;5) và đường thẳng d: 3x-y-5=0. Tìm điểm M trên (d) sao cho hai tam giác MAB, MCD có diện tích bằng nhau.

#### Lời giải

1. Tọa độ điểm I là nghiệm của hệ phương trình:

$$\begin{cases} x + 2y - 1 = 0 \\ 3x + y - 7 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -3 \\ y = 2 \end{cases} \Rightarrow I(-3; 2).$$

Lấy H(1;0)  $\in$  (d) và K  $\in$  (d')  $\Rightarrow$  K(a;-7-3a) sao cho IH =  $\sqrt{2}$ KH.

Ta có, 
$$\overrightarrow{HI} = (-4,2)$$
 và  $\overrightarrow{HK} = (-1+a,-7-3a)$ 

Mà 
$$IH = \sqrt{2}KH \Leftrightarrow IH^2 = KH^2 \Leftrightarrow 20 = 2\left[\left(a - 1\right)^2 + \left(7 + 3a\right)^2\right] \Rightarrow a = -2$$

Ta có: 
$$\begin{cases} AI = \sqrt{2}AB \\ IH = \sqrt{2}KH \end{cases} \Rightarrow \frac{IH}{AI} = \frac{HK}{AB} \Rightarrow HK \parallel AB$$

Vậy, đường thẳng cần tìm là đường thẳng đi qua M và có vecto chỉ phương là  $\overrightarrow{KH} = (3;1)$  có phương trình:  $\frac{x-1}{3} = \frac{y-2}{1}$ .

**2.**  $M(x;y) \in d \Leftrightarrow 3x - y - 5 = 0$ . AB = 5,  $CD = \sqrt{17}$ 

Ta có:  $\overrightarrow{AB}(-3;4) \Rightarrow \overrightarrow{n_{AB}}(4;3) \Rightarrow$  phương trình đường thẳng AB: 4x + 3y - 4 = 0  $\overrightarrow{CD}(4;1) \Rightarrow \overrightarrow{n_{CD}}(1;-4) \Rightarrow$  phương trình đường thẳng CD: x - 4y + 17 = 0

$$\begin{split} S_{MAB} = S_{MCD} &\Leftrightarrow AB.d \left( M, AB \right) = CD.d \left( M, CD \right) \Leftrightarrow 5 \cdot \frac{\left| 4x + 3y - 4 \right|}{5} = \sqrt{17} \cdot \frac{\left| x - 4y + 17 \right|}{\sqrt{17}} \\ &\Leftrightarrow \left| 4x + 3y - 4 \right| = \left| x - 4y + 17 \right| \end{split}$$

Tọa độ M cần tìm là nghiệm của hệ:

$$\begin{cases} 3x - y - 5 = 0 \\ |4x + 3y - 4| = |x - 4y + 17| \\ \Leftrightarrow \begin{cases} 3x - y - 5 = 0 \\ 3x + 7y - 21 = 0 \\ 3x - y - 5 = 0 \end{cases} \Rightarrow M_1\left(\frac{7}{3}; 2\right), M_2\left(-9; -32\right) \\ 5x - y + 13 = 0 \end{cases}$$

Ví dụ 11. Trong mặt phẳng toạ độ đề các vuông góc Oxy

1. Cho tam giác ABC có diện tích bằng 96. Gọi M(2;0) là trung điểm của AB, phân giác trong của góc A có phương trình: (d): x-y-10=0. Đường thẳng AB

tạo với (d) một góc  $\phi$  thỏa mãn  $\cos\phi\!=\!\frac{3}{5}.$  Xác định của các đỉnh của tam giác ABC .

2. Cho 3 điểm A(1;1), B(3;2), C(7;10). Viết phương trình đường thẳng Δ đi qua A sao cho tổng các khoảng cách từ B và C tới đường thẳng Δ lớn nhất.

### Lời giải

1. M' đối xứng với M(2;0) qua  $(d): x-y-10=0 \Rightarrow M'(10;-8)$ .

Đường thẳng qua M(2;0) với vecto pháp tuyến  $\vec{n}(a;b)$  có phương trình:

$$a(x-2) + by = 0$$
 tạo với  $(d): x-y-10 = 0$  một góc

$$\phi \Rightarrow \frac{|a-b|}{\sqrt{a^2+b^2}\sqrt{2}} = \cos\phi = \frac{3}{5} \Leftrightarrow \begin{bmatrix} a=7b\\b=7a \end{bmatrix}$$

\* Với  $a = 7b \Rightarrow (AB)$ : 7x + y - 14 = 0

AB cắt d tại  $A \Rightarrow A(3;-7)$  và B đối xứng A qua  $M \Rightarrow B(1;7)$ 

$$\Rightarrow AB = 10\sqrt{2} \Rightarrow S_{\Delta AM'B} = \frac{1}{2}AB.d[M', AB] = 48 = \frac{1}{2}S_{\Delta ABC} \Rightarrow \overrightarrow{AC} = 2\overrightarrow{AM'}$$
$$\Rightarrow C(17; -9)$$

\* Với  $b = 7a \Rightarrow (AB)$ : x + 7y - 2 = 0

AB cắt d tại A  $\Rightarrow$  A(9;–1) và B đối xứng A qua M  $\Rightarrow$  B(–5;1)

$$\Rightarrow AB = 10\sqrt{2} \Rightarrow S_{\Delta AM'B} = \frac{1}{2}AB.d[M',AB] = 48 = \frac{1}{2}S_{\Delta ABC} \Rightarrow \overrightarrow{AC} = 2\overrightarrow{AM'}$$
$$\Rightarrow C(11;-15)$$

Vậy, A(3;-7), B(1;7), C(17;-9) hoặc A(9;-1), B(-5;1), C(11;-15) là tọa độ cần tìm

- Nếu đường thẳng Δ cắt đoạn BC tại 1 điểm M. Khi đó:
   d[B,Δ]+d[C,Δ]≤BM+CM=BC. Đẳng thức xảy ra khi đường thẳng Δ vuông góc với BC.
- Nếu đường thẳng Δ không cắt đoạn BC. Gọi I(5;6) là trung điểm BC.
   Ta có: d[B,Δ]+d[C,Δ]≤2d[I,Δ]≤2AI. Đẳng thức xảy ra khi đường thẳng Δ vuông góc với AI

Vì  $\triangle ABC$  nhọn nên 2AI > BC, do đó d $\left[B,\Delta\right] + d\left[C,\Delta\right]$  lớn nhất khi và chỉ khi đường thẳng  $\triangle$  đi qua A và có vecto pháp tuyến  $\overrightarrow{AI} = \left(4;5\right)$ 

Đường thẳng cần tìm: 4(x-1)+5(y-1)=0 hay 4x+5y-9=0

- **Ví dụ 12**. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường thẳng  $\Delta$ : x-2y-3=0 và hai điểm A(3;2), B(-1;4).
- 1. Tìm điểm M thuộc đường thẳng  $\Delta$  sao cho MA+MB nhỏ nhất.
- 2. Viết phương trình đường thẳng d' sao cho đường thẳng d:3x+4y+1=0 là đường phân giác của góc tạo bởi hai đường thẳng d và d'.

#### Lời giải

1. Nhận thấy A và B nằm về một phía so với đường thẳng Δ. Gọi A' là điểm đối xứng với A qua Δ. Khi đó với mọi điểm M thuộc Δ, luôn có: MA=MA' Do đó: MA+MB=A'M+MB≥A'B. Đẳng thức xảy ra khi và chỉ khi M=A'B∩Δ. Vì A'A⊥Δ nên AA' có phương trình: 2x+y-8=0

$$Goi H = \Delta \cap AA' \Rightarrow H : \begin{cases} 2x + y - 8 = 0 \\ x - 2y - 3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{19}{5} \\ y = \frac{2}{5} \end{cases} \Rightarrow H\left(\frac{19}{5}; \frac{2}{5}\right).$$



Vì H là trung điểm của AA' nên

$$\begin{cases} x_{A'} = 2x_H - x_A = \frac{23}{5} \\ y_{A'} = 2y_H - y_A = -\frac{6}{5} \end{cases} \Rightarrow A' \left(\frac{23}{5}; -\frac{6}{5}\right)$$

Suy ra  $\overline{A'B} = \left(-\frac{28}{5}; \frac{26}{5}\right)$ , khi đó phương trình A'B: 13x + 14y - 43 = 0

Tọa độ M thỏa hệ phương trình:  $\begin{cases} x - 2y - 3 = 0 \\ 13x + 14y - 43 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{16}{5} \\ y = \frac{1}{10} \end{cases}$ 

$$\Rightarrow M\left(\frac{16}{5}; \frac{1}{10}\right)$$

**2.** Gọi I là giao điểm của  $\Delta$  và d nên tọa độ điểm I thỏa hệ phương trình :

$$\begin{cases} x - 2y - 3 = 0 \\ 3x + 4y + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = -1 \end{cases} \Rightarrow I(1; -1)$$

Vì d là phân giác của góc hợp bởi giữa hai đường thẳng  $\Delta$  và d' nên d và d' đối xứng nhau qua d, do đó  $I \in d'$ .

Lấy  $E(3;0) \in \Delta$ , tìm được  $F(\frac{3}{5};-\frac{16}{5})$  là điểm đối xứng với E qua d và  $F \in d'$ 

Suy ra  $\overrightarrow{FI} = \left(\frac{2}{5}; \frac{11}{5}\right)$ , khi đó phương trình d':11x-2y-13=0.

Ví dụ 13. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho tam giác ABC

- 1. M(-1;-1), N(0;2) lần lượt là trung điểm của AB, AC và D(1;0) là chân đường phân giác trong góc A. Tìm tọa độ các đỉnh của tam giác.
- 2. M(1;4), N(-1;3) là trung điểm của BC,CA và  $H\left(\frac{1}{3};-\frac{5}{3}\right)$  là trực tâm tam giác ABC.
- 3. D(2;-1), E(2;2), F(-2;2) là chân đường cao hạ từ A, B, C. Xác định tọa độ các đỉnh của tam giác ABC.

#### Lời giải

1. Gọi 
$$A(a;b) \Rightarrow B(-2-a;-2-b), C(-a;4-b)$$
.

Suy ra 
$$\overrightarrow{BD} = (a+3;b+2)$$
,  $\overrightarrow{CD} = (a+1;b-4)$ .

Vì B,C,D thẳng hàng nên 
$$\frac{a+3}{a+1} = \frac{b+2}{b-4} \Leftrightarrow 3a-b+7=0 \Rightarrow b=3a+7$$
 (1).

Mặt khác D là chân đường phân giác trong góc A nên  $(\overrightarrow{AD}, \overrightarrow{AB}) = (\overrightarrow{AD}, \overrightarrow{AC})$ 

$$\Leftrightarrow \cos\left(\overrightarrow{AD}, \overrightarrow{AB}\right) = \cos\left(\overrightarrow{AD}, \overrightarrow{AC}\right) \Leftrightarrow \frac{\overrightarrow{AD}.\overrightarrow{AB}}{AB} = \frac{\overrightarrow{AD}.\overrightarrow{AC}}{AC} \quad (*)$$

Mà 
$$\overrightarrow{AD} = (1-a;-b), \overrightarrow{AB} = (-2a-2;-2b-2), \overrightarrow{AC} = (-2a;4-2b)$$

Nên  $(*) \Leftrightarrow \frac{(a-1)(a+1)+b(b+1)}{\sqrt{(a+1)^2+(b+1)^2}} = \frac{(a-1)a+(b-2)b}{\sqrt{a^2+(b-2)^2}}$  (2)

Thay (1) vào (2) ta có:  $\frac{a^2-1+(3a+7)(3a+8)}{\sqrt{(a+1)^2+(3a+8)^2}} = \frac{a^2-a+(3a+5)(3a+7)}{\sqrt{a^2+(3a+5)^2}}$ 
 $\Leftrightarrow \frac{2a^2+9a+11}{\sqrt{2a^2+10a+13}} = \frac{2a^2+7a+7}{\sqrt{2a^2+6a+5}}$ 
 $\Leftrightarrow (2a^2+9a+11)^2(2a^2+6a+5)-(2a^2+7a+7)^2(2a^2+10a+13)=0$ 
 $\Leftrightarrow a^3+6a^2+12a+8=0 \Leftrightarrow (a+2)(a^2+4a+4)=0 \Leftrightarrow a=-2,b=1$ .

Vậy,  $A(-2;1), B(0;-3), C(2;3)$ .

#### Gợi ý cách khác:

Gọi M' là điểm đối xứng của M qua AD và AC≡M'N Gọi N' là điểm đối xứng của N qua AD và AB≡MN'

2. Gọi 
$$C(x;y) \Rightarrow B(2-x;8-y)$$
,  $A(-2-x;6-y)$   
Vì  $H\left(\frac{1}{3};-\frac{5}{3}\right)$  là trực tâm tam giác ABC nên  $\left\{\overrightarrow{AH.BC} = 0\atop \overrightarrow{CH.MN} = 0\right\}$  (\*)  
Mà  $\overrightarrow{AH} = \left(\frac{7}{3} + x; -\frac{23}{3} + y\right)$ ,  $\overrightarrow{BC} = \left(2x - 2; 2y - 8\right)$ ,  
 $\overrightarrow{CH} = \left(\frac{1}{3} - x; -\frac{5}{3} - y\right)$ ,  $\overrightarrow{MN} = \left(-2; -1\right)$ 

Nên (\*) 
$$\Leftrightarrow$$
 
$$\begin{cases} \left(\frac{7}{3} + x\right) \left[2x - 2\right] + \left(-\frac{23}{3} + y\right) \left(2y - 8\right) = 0 & (1) \\ 2\left(x - \frac{1}{3}\right) + y + \frac{5}{3} = 0 & (2) \end{cases}$$

 $(2) \Leftrightarrow 2x + y + 1 = 0 \Rightarrow y = -1 - 2x$  thay vào (1) ta được:

$$\left(\frac{7}{3} + x\right)(2x - 2) + \left(\frac{26}{3} + 2x\right)(10 + 4x) = 0 \Leftrightarrow 15x^2 + 86x + 123 = 0$$

$$\Leftrightarrow$$
 x = -3 hoặc x =  $-\frac{41}{15}$ .

• 
$$x = -3 \Rightarrow y = 5 \Rightarrow A(1;1), B(5;3), C(-3;5)$$

$$\bullet \ x = -\frac{41}{15} \Rightarrow y = \frac{67}{15} \Rightarrow A\left(\frac{11}{15}; \frac{23}{15}\right), \ B\left(\frac{71}{15}; \frac{53}{15}\right), \ C\left(-\frac{41}{15}; \frac{76}{15}\right).$$

3. Gọi H(a;b) là trực tâm tam giác ABC.

Ta có tứ giác BDHF, CDHE, BCEF là các tứ giác nội tiếp nên suy ra

$$\widehat{HDF} = \widehat{HBF}$$
;  $\widehat{HDE} = \widehat{HCE}$ ;  $\widehat{HBF} = \widehat{HCE} \Rightarrow \widehat{HDF} = \widehat{HDE} \Rightarrow AH$  là phân giác trong góc  $\widehat{EDF}$ .

Tương tự, ta có BH là phân giác trong của góc  $\widehat{DEF}$ . Suy ra H là tâm đường tròn nội tiếp tam giác DEF.

Ta có : 
$$\begin{cases} \overrightarrow{\overrightarrow{EH}.\overrightarrow{EF}} = \overrightarrow{\overrightarrow{EH}.\overrightarrow{ED}} \\ \overrightarrow{FH}.\overrightarrow{FE} \\ \overrightarrow{EF} = \overrightarrow{\overrightarrow{FH}.\overrightarrow{FD}} \end{cases}, \text{ giải hệ này ta}$$



tìm được a = 1, b = 1 hay H(1;1).

Suy ra  $\overrightarrow{HD} = (1,-2)$  nên phương trình BC : x-2y-4=0.

$$\overrightarrow{HE} = (1;1)$$
 nên phương trình AC:  $x + y - 4 = 0$ 

 $\overrightarrow{HF} = (-3;1)$  nên phương trình AB : 3x - y + 8 = 0.

$$\text{Vi } A = AB \cap AC \Rightarrow A: \begin{cases} 3x - y + 8 = 0 \\ x + y - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = 5 \end{cases} \Rightarrow A(-1;5)$$

Tương tự, ta tìm được B(-4,-4),C(4,0).

Ví dụ 14. Trong mặt phẳng toạ độ đề các vuông góc 0xy, cho điểm A(3;2), các

đường thẳng  $d_1: x+y-3=0$  và:  $d_2: x+y-9=0$ . Tìm tọa độ điểm  $B\in d_1$ , và  $C\in d_2$  sao cho tam giác ABC vuông cân tại A.

#### Lời giải

Vì 
$$B \in d_1 : x + y - 3 = 0$$
 nên  $B(b; 3 - b)$ ,  $C \in d_2 : x + y - 9 = 0$  nên  $C(c; 9 - c)$ .

Tam giác ABC vuông cần tại A khi và chỉ khi  $\begin{cases} AB = AC \\ AB \perp AC \end{cases} \Leftrightarrow \begin{cases} AB^2 = AC^2 \\ \overrightarrow{AB.AC} = 0 \end{cases}$ 

Hay 
$$\begin{cases} (b-3)^2 + (b-1)^2 = (c-3)^2 + (c-7)^2 \\ (b-3)(c-3) + (b-1)(c-7) = 0 \end{cases}.$$

Đặt 
$$u = b - 3$$
,  $v = c - 2$ , ta có: 
$$\begin{cases} u^2 + (u + 2)^2 = (v - 1)^2 + (v - 5)^2 \\ u(v - 1) + (u + 2)(v - 5) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (u+1)^2 = (v-3)^2 + 3 \\ uv - 3u + v - 5 = 0 \end{cases} \Leftrightarrow \begin{cases} v = \frac{3u+5}{u+1} \\ (u+1)^2 = \frac{4}{(u+1)^2} + 3 \end{cases} \Leftrightarrow \begin{cases} v = \frac{3u+5}{u+1} \\ (u+1)^2 = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} u = 1 \\ v = 4 \end{cases} \begin{cases} u = -3 \\ v = 2 \end{cases}$$

Vậy có hai cặp điểm thỏa yêu cầu bài toán là: B(4;-1),C(6;3) hoặc B(0;3),C(4;5).

Chú ý: Ngoài cách trên, ta có thể giải theo cách khác như sau:

Tịnh tiến hệ trục tọa độ Oxy về hệ tục XAY theo véc tơ OA, ta có công thức dòi trục:  $\begin{cases} x = X + 3 \\ y = Y + 2 \end{cases}$ 

Trong hệ trục mới, ta có phương trình của  $d_1: X+Y+2=0, d_2: X+Y-4=0$ .

Vì tam giác ABC vuông cân tại A nên phép quay  $Q_{(A,\pm 90^0)}: B \to C$ 

$$\label{eq:main_continuous} \text{M\`a } B \in d_1 \Rightarrow C \in \dot{d_1} = Q_{\left(A; \pm 90^0\right)}(d_1) \,, \, \text{do \'d\'o } C \equiv d_2 \cap \dot{d_1}.$$

• Xét phép quay  $Q_{(A:90^0)}$ , ta có phương trình  $d_1: X-Y-2=0$ 

Do đó tọa độ của C là nghiệm của hệ:  $\begin{cases} X-Y-2=0 \\ X+Y-4=0 \end{cases} \Leftrightarrow \begin{cases} X=3 \\ Y=1 \end{cases} \Rightarrow \begin{cases} x=6 \\ y=3 \end{cases}.$ 

• Xét phép quay  $Q_{(A;-90^0)}$ , ta có phương trình  $d_1: X-Y+2=0$ 

Do đó tọa độ của C là nghiệm của hệ:  $\begin{cases} X - Y + 2 = 0 \\ X + Y - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} X = 1 \\ Y = 3 \end{cases} \Rightarrow \begin{cases} x = 4 \\ y = 5 \end{cases}.$ 

Từ đó ta tìm được B, C.

**Ví dụ 15**. Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có diện tích bằng 18, đáy lớn CD nằm trên đường thẳng có phương trình: x-y+2=0. Biết hai đường chéo AC, BD vuông góc với nhau và cắt nhau tại điểm I(3;1). Hãy viết phương trình đường thẳng BC biết điểm C có hoành độ âm.

### Lời giải

$$\Delta ICD \ c\hat{a}n \ tai \ I(3;1), \ C(t;t+2) \in (d) \ v\acute{o}i \ t<0, \ IC = \sqrt{2t^2 - 4t + 10},$$
 
$$IH = d(I,CD) = 2\sqrt{2} \Rightarrow CI = 4 = \sqrt{2t^2 - 4t + 10} \Rightarrow t = 3 \quad (kh\hat{o}ng \ th\acute{o}a \ ) \ hoặc \\ t = -1 \Rightarrow C(-1;1)$$
 
$$H(a;a+2) \in (d), \ \overrightarrow{IH} = (a-3;a+1), \ \overrightarrow{IH} \perp \overrightarrow{CD} \Leftrightarrow a-3+a+1=0 \Leftrightarrow a=1$$
 
$$H(1;3) \Rightarrow D(3;5) \Rightarrow CD = 4\sqrt{2}$$
 
$$(IC): y = 1, \ A(x;1) \in IC \ (x>3) \Rightarrow IA = |x-3| \ IK = |x-3| \frac{\sqrt{2}}{2} \Rightarrow AB = |x-3| \sqrt{2}$$
 
$$\Delta IAB \ vu\hat{o}ng \ c\hat{a}n$$
 
$$S_{ABCD} = \frac{(AB+CD).(IH+IK)}{2} \Leftrightarrow 36 = (|x-3|\sqrt{2}+4\sqrt{2}) \left(2\sqrt{2}+|x-3|\frac{\sqrt{2}}{2}\right)$$
 
$$\Leftrightarrow 36 = (|x-3|+4)^2 \Leftrightarrow |x-3| = 2 \Leftrightarrow x=1 \ (kh\hat{o}ng \ th\acute{o}a) \ hoặc \ x=5 \Rightarrow A(5;1)$$
 
$$AB \ ||d:x-y-4=0|$$
 
$$DI:x=3$$
 
$$\Rightarrow B(3;-1) = AB \cap DI \Rightarrow BC:x+2y-1=0$$