Convolutional neural networks

Lecture 8

Changho Suh

January 24, 2024

Conv layer and Pooling layer

Outline

- 1. Will study further on "feature map".
- 2. Will study 2nd building block: **Pooling** layer

Example: How filter works

Vertical filter

 $f_w = 7$

Role: Detect a vertical line pattern.

Visualization

Use of multiple filters

Recall the role of a filter: Detect a certain pattern.

Note: May wish to detect multiple patterns.

Hence: Employ multiple filters, e.g., vertical filter, horizontal filter, edge-detect filter, ...

Visualization examples

Stacking multiple feature maps

filter w 3D tensor

input x

conv z **3D** tensor

Channels

Computation of a neuron value

Dimension of weights?

Pooling layer

Serious memory issue

For training: Employ backpropagation.

Backpropagation requires:

Caching everything computed before.

Each conv layer requires ~ 10MB for one example.

Suppose a training batch contains 100 examples.

- → Requires ~ 1GB per conv layer.
- → Requires much more with many layers.

Motivates us to reduce complexity

This is where **Pooling** layer kicks in.

Role of Pooling layer:

Downsample to reduce # parameters and therefore memory size.

Two types of **Pooling**:

- 1. Max Pooling (most common)
- 2. Average Pooling

Max Pooling

pooling filter (or kernel)

Suppose: stride=2

A feature map

max pooling

Visualization example

2*2 pooling filter stride=2

Note: Works on each channel independently!

Typical CNN architecture

Repeat the following stack module:

As the network gets deeper:

- 1. Feature map size gets smaller;
- 2. # of feature maps gets bigger.

At the end of the stacks:

Fully-connected (FC) layers

+ output layer (e.g., softmax)

Typical CNN architecture in picture

Two popular CNNs

1. **AlexNet** (2012)

Alex Krizhevsky Ilya Sutskever Geoffrey Hinton

Anchored the deep learning revolution.

2. **ResNet** (2015)

Currently the most powerful & arguably the simplest.

Kaiming He

Look ahead

Will study details on AlexNet & ResNet.