A Supervised Fuzzy Online Sparse Streaming Feature Selection

Anonymous

I. INTRODUCTION

This is the supplementary file for the paper entitled "A Supervised Fuzzy Online Sparse Streaming Feature Selection". It mainly contains the figures of experimental results.

II. SUPPLEMENTARY TABLES

TARI	ES(I	SYMBOL	ANNOTATIONS
LADI	וופינוי	, o r wibidi.	ANNOLATIONS

Symbol	Explanation
F	The streaming features set, $F = \{F_1, F_2,, FT\}$.
F_t	The <i>t</i> -th column vector from F , $t \in \{1, 2,, T\}$.
$f_{m,t}$	The F_t of m -th row vector, $m \in \{1, 2,, M\}$.
F'_t	The sparse streaming feature F' of t -th column vector.
$f'_{m,t}$	The F'_t of m -th row vector.
Λ	The known values.
L	The buffer size of B.
w	The inertia weight of PSO-based feature evaluation.
α,β	The threshold value of three-way feature analysis.
$\chi_{m,k}$	The <i>X</i> of <i>m</i> -th row and <i>k</i> -th column vector.
$y_{j,k}$	The <i>Y</i> of <i>j</i> -th row and <i>k</i> -th column vector.
$\hat{\hat{\mathbf{B}}}_{t}^{y_{j,k}}$ $\hat{\hat{\mathbf{F}}}'_{t}$	The completed sparse streaming features matrix.
$\hat{F'}_t$	The $\hat{\mathbf{B}}$ of <i>t</i> -th column vector.

TABLE S(II) THE DETAILS OF SELECTED DATASETS.

Mark	Dataset	Dataset #(Features) #(Instances		#(Class)
D1	USPS	242	1500	2
D2	Madelon	501	2600	6
D3	COIL20	1025	1440	20
D4	Marti1	1025	500	2
D5	Colon	2001	62	2
D6	Lung	3313	83	5
D7	lymphoma	4027	96	9
D8	DriveFace	6401	606	3
D9	ALLAML	7130	72	2
D10	Lungcancer	12534	181	2

TABLE S(III) ALL THE ALGORITHM PARAMETERS USED IN THE EXPERIMENTS.

11101	TIBEE 5(III) THE TIBE REGORDING THE REPORT OF				
Mark	Algorithm	Parameter			
D1	SF-OS ² FS	Z test, Alpha is 0.05, L=200, w=1, β=0.5, and α=0.9.			
D2	LOSSA	Z test, Alpha is 0.05. (TSMC, 2022)			
D3	Fast-OSFS	Z test, Alpha is 0.05. (TPAMI, 2013)			
D4	SAOLA	Z test, Alpha is 0.05. (TKDD, 2016)			
D5	SFS-FI	Z test, Alpha is 0.01, γ =0.01. (TNNLS, 2021)			
D6	OFS-A3M	(Information Sciences, 2019)			
D7	RHOFS	(TPDS, 2023)			

TABLE S(IV) ALL THE CLASSIFIER PARAMETERS USED IN THE EXPERIMENTS.

Classifier	Parameter
KNN	The neighbors are 3.
Random Forest	6 decision trees.
CART	Default parameters values.

 $TABLE\ S(V)\ Using\ the\ selected\ features\ to\ train\ a\ classifier\ first\ and\ then\ testing\ its\ accuracy\ (\%)\ when\ missing\ data\ rate\ is\ 0.1$

Models /Datasets	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	Average	^Rank
M1	91.12 ±0.54	60.70 ±3.35	92.52 ±0.72	82.21 ±1.61	80.64 ±4.55	89.13 ±2.23	71.99 ±4.60	94.61 ±0.65	93.77 ±2.32	97.44 ±0.66	85.41±2.12	1.00
M2	84.33±0.64	54.97 ± 0.69	84.87 ± 2.63	81.90 ± 0.97	80.45 ± 2.59	84.79 ± 2.77	67.56±3.28	92.29 ± 0.58	92.87 ± 1.71	97.41 ± 0.70	$82.14{\scriptstyle\pm1.66}$	3.20
M3	85.48±0.63	54.83 ± 0.97	71.08 ± 2.22	79.17 ± 0.82	78.88 ± 2.59	84.40 ± 2.43	56.67 ± 2.79	93.14±0.67	92.47 ± 2.23	$97.00{\scriptstyle\pm0.89}$	79.31±1.62	4.30
M4	80.18±0.54	53.79 ± 0.80	88.59 ± 0.49	79.13 ± 1.05	77.65 ± 3.19	83.38 ± 2.32	61.05 ± 5.16	93.34±0.71	93.14±2.18	96.10±0.84	80.64±1.73	4.40
M5	72.18±0.54	49.33 ± 0.54	80.56 ± 3.48	79.15 ± 0.67	78.63 ± 2.66	62.49 ± 2.96	$45.57{\scriptstyle\pm1.06}$	85.51 ± 1.02	62.45 ± 5.53	83.21 ± 2.00	69.91±2.05	6.30
M6	86.90±0.51	50.09 ± 0.62	88.59 ± 0.49	82.20 ± 1.27	74.07 ± 5.52	85.47±3.11	71.03 ± 5.22	93.18 ± 0.85	83.00±5.81	92.99 ± 2.29	80.75±2.57	3.80
M7	84.13±0.71	52.68±0.84	81.38±3.67	81.93±1.34	79.82±2.68	86.78±3.00	49.16±1.78	93.83±0.46	93.47±2.96	96.13±1.18	79.93±1.86	3.60

[^] The Average rank.

 $TABLE\ S(VI)\ THE\ STATISTICAL\ RESULT\underline{S}\ OF\ THE\ WILCOXON\ SIGNED-RANKS\ TEST\ ON\ THE\ ACCURACIES\ RECORDED\ IN\ TABLES\ S(V)\ (ON\ ALL\ DATASETS).$

Our algorithm vs. Other algorithms	*R+	*R-	† p-value
M2	55	0	9.7656e-04
M3	55	0	9.7656e-04
M4	55	0	9.7656e-04
M5	55	0	9.7656e-04
M6	55	0	9.7656e-04
M7	55	0	9.7656e-04

^{*} A larger value denotes a higher accuracy.

TABLE S(VII) THE RANK SUM OF THE WILCOXON SIGNED-RANKS ON OSFS AND OS2FS MODELS.

	M	12	N	13	M	1 4	M	15	M	I 6	M	17
Ψ	*R ⁺	*R-	*R+	*R-	*R+	*R-	*R+	*R-	*R+	*R-	*R ⁺	*R-
0.3	53	2	55	0	55	0	55	0	55	0	55	0
0.5	55	0	55	0	55	0	55	0	55	0	55	0
0.7	53	2	55	0	54	1	55	0	55	0	55	0
0.9	52	3	45	10	46	9	55	0	55	0	42	13

III. SUPPLEMENTARY FIGURES

Fig.S1. Flowchart of $SF\text{-}OS^2FS$ model

Fig. S2. Mean number of selected features varying with different algorithms.

[†] There is no significant difference when ρ -value $\in [0.1, 0.9]$ at the 0.1 significance level.

Fig. S3. The average accuracy comparison of OSFS and OS2FS model on each dataset.

Fig. S4. The convergence curve of PSO-based feature evaluation

Fig. S5. The average accuracy of different parameter α and β .

Fig. S6. The average accuracy of different parameter L.

Fig. S7. The average accuracy of different parameter w.

IV. SUPPLEMENTARY ALGORITHM

```
Algorithm 1. Pseudocode of finding the optimal feature evaluation matrix
Input \gamma_{\text{max}}, c_1, c_2, N, L
  1:
         Initialize a cluster of particles, X_n (n=1,2,...,N)
  2:
         Initialize the fitness, Pb_n of particles, and set Gb
 3:
         for \gamma=1 to \gamma_{max}
  4:
          for n=1 to N
 5:
            for l=1 to L
  6:
               update the velocity of particle by (12)
  7:
              update the position of particle by (13)
  8:
            end for
 9:
            end for
 10:
            evaluate the fitness of particle using (16)
          update Pb_n and Gb by (14) and (15)
 11:
         end for
 12:
```

Output The optimal feature evaluation matrix Gb

```
Algorithm 2. The SF-OS<sup>2</sup>FS Algorithm
 1:
        initialize: L, w, \alpha, \beta
 2:
        repeat
 3:
        a new sparse streaming feature F'_t flows in B_t at timestamp t
 4:
        if L≠0
 5:
         \mathbf{B}_t = \mathbf{B}_t \cup F'_t, L=L-1
 6:
         end if
 7:
              repeat
 8:
              /* pre-estimate the sparse streaming features */
 9:
              while \Psi_T = maxT
10:
                for j=t to t+L-1
                 for \forall f'_{m,j} \in \Lambda_t
11:
                    pre-estimate x_{m,k}, y_{j,k} following (11)
12:
                   end for
13:
14:
              end for \Psi_T = \Psi_T - 1
              end while \hat{\mathbf{B}}_t = XY^{\mathrm{T}}
15:
16:
              /* online completed feature selection evaluation */
17:
              obtain the Gb according to Algorithm 1
18:
              /* online features redundancy analysis */
19:
              for l=1 to L
20:
                fetch gb_l form Gb
                 if gb_l \leq \beta discard \hat{F}'_{t+l-1}
21:
                else if gb_l \ge \alpha, S_t = S_t \cup \hat{F}'_{t+l-1}
22:
23:
                else accept \hat{F}'_{t+l-1} \in S_t following (18)
24:
               end if l=l+1
25:
           end for
26:
        S_T = S_T \cup S_t
27:
         for \forall \hat{F}'_{t+\psi-1} \in S_T
28:
         if \hat{F}'_{t+\psi-1} satisfies (18)
29:
            put \hat{F}'_{t+\psi,d} into S_T
30:
              for each feature \Omega_F \subseteq S_T - \hat{F}'_{t+\psi-1}
31:
              if \exists \delta \subseteq S_T - \hat{F}'_{t+\psi,d} s.t. Ind(C, \Omega_F | \delta)
32:
               S_T = S_T - \delta
33:
              end if
            end for
34:
35:
           end if
         end for
36
        until no features are available
37:
Output S_T
```

V. SUPPLEMENTARY APPENDIX

The actions a_P , a_B and a_E categorize the features in set X into the total counts of φ'_{PP} , φ'_{BP} , and φ'_{EP} , respectively. Likewise, these actions also partition the features in set X_C into the total counts of φ'_{PE} , φ'_{BE} , and φ'_{EE} , respectively. Table S(VIII) presents the cardinal number of three-way feature analysis. $\varphi^{\iota,(2)}$ (* $\in \{PP, PE, EP, EE\}$) denotes the cardinal number of two-way feature analysis.

Proposition 4. Based on the indicators mentioned earlier, the three-way relevance analysis and the two-way comparison are as follows: $Precision^{(2)}$ is less than Precision, $Recall^{(2)}$ equals Recall, $Accuracy^{(2)}$ equals Accuracy, and $F_1^{(2)}$ is less than F_1 . **Proof of Proposition 4.** According to Table S(VIII).

a) Given that $\varphi_{PP}^{t,(2)} = \varphi_{PP}^t$ and $\varphi_{PE}^{t,(2)} > \varphi_{PE}^t$, we can conclude:

$$Precision^{(2)} = \frac{\varphi_{PP}^{t,(2)}}{\varphi_{PP}^{t,(2)} + \varphi_{PE}^{t,(2)}} < \frac{\varphi_{PP}^{t}}{\varphi_{PP}^{t} + \varphi_{PE}^{t}} = Precision;$$

b) Considering $\varphi_{PP}^{t,(2)} = \varphi_{PP}^t$, and $\varphi_{EP}^{t,(2)} = \varphi_{EP}^t + \varphi_{BP}^t$, we can derive:

$$Recall^{(2)} = \frac{\varphi_{PP}^{t,(2)}}{\varphi_{PP}^{t,(2)} + \varphi_{EP}^{t,(2)}} = \frac{\varphi_{PP}^t}{\varphi_{PP}^t + \varphi_{BP}^t + \varphi_{EP}^t} = Recall \; ;$$

c) Based on $\varphi_{PP}^{t,(2)} = \varphi_{PP}^t$, and $\varphi_{EE}^{t,(2)} = \varphi_{EE}^t$, with the total number of samples being N, we can state:

$$Accuracy^{(2)} = \frac{\varphi_{pp}^{t,(2)} + \varphi_{EE}^{t,(2)}}{N} = \frac{\varphi_{pp}^{t} + \varphi_{EE}^{t}}{N} = Accuracy \; ;$$

d) According to $\varphi_{PP}^{t,(2)} = \varphi_{PP}^t$, $\varphi_{EP}^{t,(2)} = \varphi_{EP}^t + \varphi_{BP}^t$, and $\varphi_{PE}^{t,(2)} > \varphi_{PE}^t$, we can conclude:

$$F_{1}^{(2)} = \frac{2\varphi_{PP}^{t,(2)}}{2\varphi_{PP}^{t,(2)} + \varphi_{EP}^{t,(2)} + \varphi_{PE}^{t,(2)}} < \frac{2\varphi_{PP}^{t}}{2\varphi_{PP}^{t} + \varphi_{BP}^{t} + \varphi_{EP}^{t} + \varphi_{PE}^{t}} = F_{1}.$$

As a result, the three-way relevance analysis outperforms the two-way analysis in terms of *Precision* and F_1 score, while showing similar performance for *Recall* and *Accuracy*. Thus, *Proposition* 1 holds true. \Box

Action —	Cardin	al Number
Action	X	X_C
a_P	$\varphi_{\scriptscriptstyle PP}^{\scriptscriptstyle t}$	$oldsymbol{arphi}_{PE}^{t}$
a_B	$oldsymbol{arphi}^{^{t}}_{^{BP}}$	$oldsymbol{arphi}_{BE}^{t}$
a_E	$oldsymbol{arphi}_{\scriptscriptstyle EP}^{\scriptscriptstyle t}$	$oldsymbol{arphi}^{'}_{\scriptscriptstyle EE}$