الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

يحتوي كيس على 8 كريات متماثلة ولا نفرّق بينها باللّمس، موزعة كما يلي:

3 كريات بيضاء مرقمة بـ: 0 ، 1 ، 1 و 3 كريات حمراء مرقمة بـ: 1 ، 1 ، 2

و كريتين خضراوين مرقمتين بـ: 2 ، 2

نسحب عشوائيا وفي آن واحد كريتين من الكيس ونعتبر الحوادث A الآتية:

" كا يساوي 3 يساوي " الحصول على كريتين تحملان رقمين مجموعهما يساوي $^{\prime\prime}$ $^{\prime\prime}$

 $\frac{9}{14}$ يساوي B وأنّ احتمال الحدث B يساوي أنّ احتمال الحدث B يساوي (أ (1

P(C) احسب الاحتمال (ب

2) نعتبر المتغيّر العشوائي X الذي يرفق بكلّ عملية سحب لكريتين مجموع الرقمين المسجلين عليهما.

 $\{1;2;3;4\}$ هي X المتغيّر العشوائي المجموعة قيم المتغيّر العشوائي

E(X) عيّن قانون احتمال المتغيّر العشوائي X ثم احسب أمله الرياضياتي E(X)

التمرين الثاني: (04 نقاط)

 $u_{n+1} = \frac{2}{3}u_n + 1$ ، n ومن أجل كلّ عدد طبيعي $u_0 = 1$: المنتالية العددية المعرّفة ب $u_0 = 1$

 $u_n < 3$ ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (1

. متزایدة تماما متزایدة بین أنّ (u_n)

 $v_n = u_n - 3$ بنالية العددية المعرّفة على (v_n) (3

 v_0 أ) بيّن أنّ المتتالية (v_n) هندسية أساسها $\frac{2}{3}$ يُطلب تعيين حدّها الأول

 $u_n = -2\left(\frac{2}{3}\right)^n + 3$ ، n عيّن عبارة الحدّ العام v_n بدلالة v_n ثمّ استنتج أنّه: من أجل كلّ عدد طبيعي v_n الحسب v_n احسب v_n احسب (ج

 $T_n = u_0 + u_1 + \dots + u_n$ و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (4 $T_n = 3n - 3 + 4 \left(\frac{2}{3}\right)^n$ ، n عدد طبيعي S_n نصب S_n احسب S_n

اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2023

التمرين الثالث: (05 نقاط)

مين حسب قيم العدد الطبيعي
$$n$$
 بواقي القسمة الإقليدية للعدد 2^n على 7 أ) أ) عين حسب قيم العدد الطبيعي

$$1962n + 1444^{3n+1} \equiv 0$$
 [7] عيّن قيم العدد الطبيعي n التي من أجلها يكون:

$$y$$
 و x نعتبر المعادلة (E) نعتبر المعادلة (x خات المجهولين الصحيحين (E) نعتبر الثنائية (x خال المعادلة (x

$$2^{3x} + 2^y \equiv 3$$
 من الأعداد الطبيعية حلول المعادلة (E) من الأعداد الطبيعية حلول المعادلة (3) من الأعداد الطبيعية حلول المعادلة (3)

التمرين الرابع: (07 نقاط)

$$g(x) = 2\ln(x+1) - \frac{x}{x+1}$$
 بـ: $g(x) = 2\ln(x+1) - \frac{x}{x+1}$ بـ: $g(x) = 2\ln(x+1) - \frac{x}{x+1}$ بـ: $g(x) = 2\ln(x+1) - \frac{x}{x+1}$

تمثیلها البیاني، یقطع حامل محور الفواصل في النقطتین اللتین (
$$C_g$$
) فاصلتاهما α و α (لاحظ الشكل المقابل)

$$g(x)$$
 بقراءة بيانية ، حدّد حسب قيم x إشارة (1

$$-0.72 < \alpha < -0.71$$
 :تحقّق أنّ (2

$$f(x) = (2x+3)\ln(x+1) - 3x$$
 بادّالة المعرّفة على المجال $f(x) = (2x+3)\ln(x+1) - 3x$ بادّالة المعرّفة على المجال $f(x) = (2x+3)\ln(x+1) - 3x$

(
$$2cm$$
 وحدة الطول) ($O; \vec{i}, \vec{j}$ وحدة الطول) وحدة الطول) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس

اً) احسب النتيجة هندسيا. النتيجة هندسيا ال
$$\int_{x \to -1}^{>} f(x)$$

$$[-1;+\infty[$$
 من أجل كلّ عدد حقيقي غير معدوم x من المجال عدد حقيقي غير عدوم

$$\lim_{x \to +\infty} f(x) = +\infty \quad \text{id} \quad f(x) = x \left[\left(2 + \frac{3}{x} \right) \ln(x+1) - 3 \right]$$

$$f'(x) = g(x)$$
 ، $]-1;+\infty[$ من المجال x من الحل عدد حقيقي من أجل كل عدد حقيقي (1 (2

$$[0\,;+\infty[$$
و $]-1\,;lpha$ ا ستنتج أنّ f متناقصة تماما على $[lpha\,;0]$ ومتزايدة تماما على كلّ من المجالين و $[lpha\,;0]$

$$f$$
 شكّل جدول تغيّرات الدّالة f

$$(f(\alpha) \simeq 0.2) = f(4) \simeq 5.7$$
 ، $f(3) \simeq 3.5$ و $[-1;4]$ و $[-1;4]$ و (3) (3) ارسم ($[-1;4]$ و $[-1;4]$

ب عيّن بيانيا قيم الوسيط الحقيقي
$$m$$
 التي من أجلها تقبل المعادلة $f\left(x
ight)=m$ ثلاثة حلول بالضبط،

$$F(x) = (x^2 + 3x + 2) \ln(x+1) - 2x^2 - 2x$$
 بـ $]-1; +\infty[$ بـ الدّالة المعرّفة على المجال $F(x) = (x^2 + 3x + 2) \ln(x+1) - 2x^2 - 2x$

$$]-1;+\infty[$$
 على المجال f أصلية للدّالة المجال f أصلية الدّالة المجال المجال

ب) استنتج بالسنتيمتر المربّع
$${\mathcal A}$$
 مساحة الحيّز المستوي المحدّد بالمنحني (C_f) والمستقيمات التي معادلاتها

$$x=0$$
 $y=\alpha$, $y=0$

$$\mathcal{A} = (6\alpha^2 + 4\alpha)cm^2$$
 تحقّق أنّ (ج

اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2023

الموضوع الثانى

التمرين الأول: (04 نقاط)

يحتوي كيس على 11 كريّة متماثلة ولا نفرّق بينها باللّمس، موزعة كما يلي:

2 كريات تحمل الرقم 3 ، 3 كريات تحمل الرقم 3 ، 3 كريات تحمل الرقم 3

نسحب عشوائيا وفي آن واحد كريتين من الكيس ونعتبر الحوادث A ، B ، A الآتية:

" الحصول على كريّة واحدة تحمل رقما عدد أوّلي " B ، " الحصول على كريّة واحدة تحمل رقما فرديا " A

" الحصول على كريتين جُداء رقميهما معدوم $^{\prime\prime}$

 $\frac{24}{55}$ يساوي $\frac{2}{11}$ وأنّ احتمال الحدث $\frac{2}{11}$ يساوي وأنّ احتمال الحدث $\frac{2}{11}$

P(C) احسب الاحتمال (ب

2) نعتبر المتغيّر العشوائي X الذي يرفق بكل عملية سحب لكريتين جُداء الرقمين المسجلين عليهما.

 $\{0;1;2;4\}$ هي X المتغيّر العشوائي X هي المتغيّر العشوائي المجموعة قيم المتغيّر

E(X) عين قانون احتمال المتغيّر العشوائي X ثم احسب أمله الرياضياتي E(X)

" $e^{X+6} < 2023$ " :ج) احسب احتمال الحدث

التمرين الثاني: (04 نقاط)

عيّن الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات الآتية مع التبرير.

ب: y'=y-2 الذي يحقّق y'=y-1 هو الدّالة y'=y-1 بـ:

 $h(x) = 1444e^{-x} + 2$ (\Rightarrow $h(x) = 1444e^{x} + 2$ (\Rightarrow $h(x) = 1444e^{x} - 2$ (\Rightarrow

:ساوي $\lim_{x\to+\infty} \left[-x+\ln x-\ln(x+1)\right]$ تساوي (2

 $-\infty$ (ب \rightarrow

:يساوي: $I = \int_0^{\ln 2} (e^{-x} + 1) dx$ يساوي: (3

 $-\frac{1}{2} + \ln 2$ ($\frac{1}{2} - \ln 2$ ($\frac{1}{2} + \ln 2$ ($\frac{1}{2} +$

یساوي: $PGCD(2n^2+n; 3n^2+n)$ ، ن أجل كل عدد طبيعي n أكبر تماما من 1 ، وي

 $2n \leftarrow n \leftarrow 1$ (i

التمرين الثالث: (05 نقاط)

 $u_{n+1}=1-rac{1}{3u_n+1}$ ، n عدد طبيعي $u_0=1$ ومن أجل كلّ عدد طبيعي (u_n

 $u_n > \frac{2}{3}$ ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (1

. بیّن أنّ (u_n) متناقصة تماما (2

اختبار في مادة: الرياضيات / الشعبة: تقنى رياضي / بكالوريا 2023

$$v_n = 3 - \frac{2}{u_n}$$
 :ب \mathbb{N} بندية المعرّفة على المتتالية العددية المعرّفة على (v_n) (3

$$v_0$$
 أنّ المتتالية (v_n) هندسية أساسها أ $\frac{1}{3}$ يُطلب تعيين حدّها الأول أ

$$u_n=rac{2}{3-\left(rac{1}{3}
ight)^n}$$
 ، n عيّن عبارة الحدّ العام v_n بدلالة v_n ثمّ استنتج أنّه: من أجل كلّ عدد طبيعي v_n الحسب v_n احسب (ج

$$T_n = \frac{2}{u_0} + \frac{2}{u_1} + \dots + \frac{2}{u_n}$$
 و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (4

$$T_n = 3n + \frac{1}{2} \left[3 + \left(\frac{1}{3} \right)^n \right]$$
 ، n عدد طبیعي S_n عدد شریعی S_n احسب S_n

التمرين الرابع: (07 نقاط)

ب:
$$\mathbb{R}$$
 المعرّفة على g المعرّفة على (I الجدول المقابل يُمثّل تغيّرات الدّالة $g(x) = -1 + (2x - 1)e^x$

أثبت أنّ المعادلة
$$g(x)=0$$
 تقبل حلا وحيدا α حيث (1 $0.7 < \alpha < 0.8$

$$\mathbb{R}$$
 على على $g(x)$ استنتج حسب قيم x إشارة

$$f(x) = -x + 4 + (2x - 3)e^x$$
 بـ: \mathbb{R} بـن الدّالة المعرّفة على f

$$\left(O; \overrightarrow{i}, \overrightarrow{j} \,
ight)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f \,
ight)$

$$\lim_{x \to +\infty} f(x) = +\infty$$
 ثمّ بيّن أنّ: $\lim_{x \to -\infty} f(x)$ احسب (1)

$$-\infty$$
 عند (C_f) عند $y=-x+4$ مقارب مائل لـ (Δ) عند (Δ) عند (Δ)

$$(\Delta)$$
ادرس وضعية (C_f) بالنسبة إلى

$$f'(x) = g(x)$$
، بیّن أنّه: من أجل كلّ عدد حقیقي (1) (2)

ب) استنتج أنّ
$$f$$
 متناقصة تماما على $]-\infty;\alpha$ ومتزايدة تماما على $[lpha;+\infty[$ ثمّ شكّل جدول تغيّراتها.

له. معادلة له. معادلة اله. (
$$C_f$$
) يُطلب تعيين معادلة له. (C_f) أثبت أنْ (Δ) يقبل مماسا (Δ) يقبل مماسا (Δ) يقبل مماسا (Δ)

$$(f(lpha) \simeq 0.1)$$
 و $f(2) \simeq 9.4$: نأخذ (C_f) و (T) ، (Δ) و (T)

جا عيّن بيانيا قيم الوسيط الحقيقي
$$m$$
 التي من أجلها تقبل المعادلة $f(x) = -x + m$ حلّين بالضبط.

$$F(x) = (-2x+5)e^x$$
 بالدّالة المعرّفة على \mathbb{R} بالدّالة المعرّفة على F

$$\mathbb{R}$$
 على $x\mapsto (-2x+3)e^x$ على أصلية للدّالة F أصلية للدّالة أ

ب) استنتج مساحة الحيّز المستوي المحدّد بـ
$$(C_f)$$
 والمستقيمات التي معادلاتها

$$x = 0$$
 $y = -x + 4$

الإجابة النموذجية. مادة الرباضيات. الشعبة تقنى رباضى. بكالوربا 2023

ريا 2023			مادة الرياضيات.	الإجابه النموذجيه.		
العلامة		/ 1.5	الاحدادة المحمضية	u al ic		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)				
		(14 نقاط)	التمرين الأول			
	0.5 + 0.25		P(A)=	$\frac{C_3^2 + C_3^2 + C_2^2}{C_8^2} = \frac{1}{4} \left(\int_{-\infty}^{\infty} f ^2 \right)$		
2	0.5 + 0.25			$P(\overline{B}) = 1 - \frac{C_5^2}{C_8^2} = \frac{9}{14}$	1	
	2 × 0.25		P(0)	$C) = \frac{C_5^1 \times C_2^1}{C_8^2} = \frac{5}{14} (\mathbf{y})$		
	0.5	أ) تبرير عناصر المجموعة {1;2;3;4}				
2	4 × 0.25	$\begin{bmatrix} x_i & 1 & 2 \\ y_i & 5 & 12 \end{bmatrix}$	3 4	ب) قانون الاحتمال	2	
2	0.5	$P(X = x_i) \qquad \frac{5}{28} \qquad \frac{12}{28}$	$\begin{array}{c c} 10 \\ \hline 28 \end{array} \qquad \begin{array}{c c} 1 \\ \hline 28 \end{array}$	$E(X) = \frac{9}{4}$		
		، (04 نقاط)	التمرين الثاني			
	0.25	لابتدائية		البرهان بالتراجع: التحقق	_	
1	0.75	نية)	إثبات أنّ الخاصية وراث	إثبات صحّة الاستلزام (1	
0.25	0.25	من أجل كلّ n من \mathbb{N} ، \mathbb{N} من أجل كلّ n من u_{n+1} من $u_n=-rac{1}{3}(u_n-3)$ ، من أجل كلّ n			2	
	0.75		$v_{n+1} = \frac{2}{3}v_n \cdot \mathbb{I}$	$rac{1}{n}$ أ) من أجل كلّ n من		
	0.25			$v_0 = -2$		
1.75	2 × 0.25	$u_n = -2\left(\frac{2}{3}\right)^n + 3$ $v_n = -2\left(\frac{2}{3}\right)^n + 3$	$=-2\left(\frac{2}{3}\right)^n$ بعي n	ب) من أجل كلّ عدد طبي	3	
	0.25		$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$	$\lim_{n\to+\infty}u_n=3$ (ج		
1	0.75		$S_n = v_0 \frac{1 - q^{n+1}}{1 - q}$	$-=-6\left[1-\left(\frac{2}{3}\right)^{n+1}\right]$	4	
	0.25	$T_n = S_n + 3(n+1) = -6 \left[1 \right]$	$1 - \left(\frac{2}{3}\right)^{n+1} + 3n +$	$-3 = 3n - 3 + 4\left(\frac{2}{3}\right)^n$	•	

الإجابة النموذجية. مادة الرياضيات. الشعبة تقني رياضي. بكالوريا 2023

التمرين الثالث (05 نقاط)				
	2 × 0.75	$2^{3} \equiv 1[7]$, $2^{2} \equiv 4[7]$, $2^{1} \equiv 2[7]$, $2^{0} \equiv 1[7]$ (i) $k \in \mathbb{N} \begin{array}{c cccc} n & 3k & 3k+1 & 3k+2 \\ \hline 2^{n} \equiv & 1 & 2 & 4 & [7] \end{array}$	1	
3	3 × 0.25	$1444^{2023} \equiv 2[7]$ ب) لدينا $[7] \equiv 1444$ ومنه $[3] \equiv 1[3] \equiv 1444$		
	0.25	$1444^{3n+1} \equiv 2[7]$ و $2n[7]$ و $1962n \equiv 2n[7]$		
	0.25	n \equiv 6 $\begin{bmatrix} 7 \end{bmatrix}$ أي $2n+2$ \equiv 0 $\begin{bmatrix} 7 \end{bmatrix}$ معناه $2n+2$ أي $2n+2$ أي		
	0.25	$lpha\in\mathbb{N}$ مع $n=7lpha+6$ وعليه		
	0.5	(E) لدينا $6(4) = 7$ ومنه $(4;4)$ ومنه $(4;4)$ حلّ للمعادلة		
1.5	0.5	$7(x-4) = 6(y-4)$ ومنه $\begin{cases} 7x-6y=4\\ 7(4)-6(4)=4 \end{cases}$	2	
	0.5	$\{(6k+4;7k+4)/k\in\mathbb{Z}\}$ وباستعمال مبرهنة غوص: مجموعة الحلول هي		
	0.25	$2^k \equiv 1[7]$ معناه $2^{3x} + 2^{7k+4} \equiv 1 + 2^{k+1}[7]$ ومنه $2^{3x} + 2^y \equiv 3[7]$		
0.5	0.25	$(x;y)$ \in $\{(18\lambda+4;21\lambda+4)/\lambda\in\mathbb{N}\}$ ، وعليه $k=3\lambda$	3	
		التمرين الرابع (07 نقاط)		
0.75	0.75	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	(1 (I	
0.5	0.5	$g(-0.71) \approx -0.027$ $g(-0.72) \approx 0.025$	(2	
0.5		$g\left(-0.72 ight)\!\! imes\!g\left(-0.71 ight)\!<\!0$ ومنه		
	0.25+0.25	(C_f) المستقيم ذو المعادلة $x=-1$ مقارب له المستقيم ذو المعادلة $x = -\infty$ ، المستقيم ألم المعادلة $x = -\infty$ ، المستقيم ألم المعادلة $x = -\infty$ ، المعادلة $x = -\infty$	(1 (II	
1	0.25+0.25	$\lim_{x \to +\infty} f(x) = +\infty \text{oais} f(x) = x \left[\left(2 + \frac{3}{x} \right) \ln(x+1) - 3 \right] $ (ب)		
	0.75	$f'(x) = g(x)$ ، $]-1;+\infty[$ من أجل كلّ x من المجال أ		
	0.25	[lpha;0]ب) متناقصة تماما على f		
2	0.25	$[0;+\infty[$ و $]-1;lpha$ ومتزايدة تماما على كلّ من المجالين	(2	
_	0.75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

الإجابة النموذجية. مادة الرياضيات. الشعبة تقني رياضي. بكالوريا 2023

1	0.75	أ) الرسم: (C _f)	(3	
	0.25	0 < m < f(lpha) ب) المعادلة $f(x) = m$ تقبل ثلاثة حلول بالضبط من أجل		
	1	$F'(x) = f(x)$ ، $]-1;+\infty[$ من أجل كلّ x من أجل كلّ (أ		
1.75	0.25+0.25	$\mathcal{A} = \left[F(0) - F(\alpha) \right] = \left[2\alpha^2 + 2\alpha - \left(\alpha^2 + 3\alpha + 2\right) \ln(\alpha + 1) \right] u.a (\because)$		
	0.25	$\mathcal{A} = (6\alpha^2 + 4\alpha)cm^2$ ومنه: $\ln(\alpha+1) = \frac{\alpha}{2(\alpha+1)}$ البينا:		

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط

الإجابة (الموضوع الثاني) مجراة مجموع التمرين الأول (04 نقاط)	عناصر		
التمرين الأول (04 نقاط)			
0.5 + 0.25	$P(A) = \frac{C_5^2}{C_{11}^2} = \frac{2}{11} \text{ (f)}$		
P($B) = \frac{C_3^2 \times C_8^1}{C_{11}^2} = \frac{24}{55}$		
$P(C) = 1 - \frac{C_8^2}{C_{11}^2} = \frac{27}{55}$ if $P(C) = \frac{C_8^2}{C_{11}^2}$	$\frac{\frac{1}{3} \times C_8^1 + C_3^2}{C_{11}^2} = \frac{27}{55} $		
وعة {0;1;2;4} وعة	أ) تبرير عناصر المجم		
	ب) قانون الاحتمال		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 4 2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{5}{5}$ $\frac{10}{55}$		
0.25	$E(X) = \frac{73}{55}$		
$0.25 P(e^{X+6} < 2023) = P(X=0)$	$+P(X=1)=\frac{6}{11} \left(\Rightarrow \right)$		
التمرين الثاني (04 نقاط)			
01 $h(0) = 1446$ و $h(0) = 1446$ و $h(x) = ke^{x} + 2$	1 الاقتراح الصحيح هو ب		
$0.5 + 0.5 \qquad \lim_{x \to +\infty} \left[-x + \ln x - \ln(x+1) \right] = \lim_{x \to +\infty} \left(-x + \ln \frac{x}{x+1} \right) $	2 الاقتراح الصحيح هو جـ		
01 0.5 + 0.5 $I = \int_0^{\ln 2} (e^{-x} + 1) dx = \left[-e^{-x} + x \right]_0^{\ln 2}$	3 الاقتراح الصحيح هو أ)		
لأنّ $n+1$ و $n+1$ أوليّان فيما بينهما $2n+1$	الاقتراح الصحيح هو ب		
01 $PGCD(2n^2+n; 3n^2+n) = n \times PGCD($	(2n+1; 3n+1) $(2n+1)$		
التمرين الثالث (05 نقاط)			
0.25 الخاصية الابتدائية (إثبات أنّ الخاصية وراثية)	- 1		
0.5 $u_{n+1} - u_n < 0$ ومنه $u_{n+1} - u_n = \frac{(2-3u_n)u_n}{3u_n+1}$			
n n	نستنتج أنّ (u_n) متناقص		

الإجابة النموذجية. مادة الرياضيات. الشعبة تقني رياضي. بكالوريا 2023

2.5	0.75	$v_{n+1}=rac{1}{3}v_n$ ، $\mathbb N$ من أجل كلّ n من أجل كلّ أ	
	0.25	$v_0 = 1$	
	2 × 0.25	$v_n=v_0 imes q^n=\left(rac{1}{3} ight)^n$ ، $\mathbb N$ من أجل كلّ n من أجل كلّ	
	2 × 0.25	$u_n = \frac{2}{3 - v_n} = \frac{2}{3 - \left(\frac{1}{3}\right)^n}$	3
	0.5	$\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0 \forall \lim_{n \to +\infty} u_n = \frac{2}{3} (\Rightarrow$	
	0.75	$S_n = v_0 \frac{1 - q^{n+1}}{1 - q} = S_n = \frac{3}{2} \left[1 - \left(\frac{1}{3} \right)^{n+1} \right]$	4
1	0.25	$T_n = 3(n+1) - S_n = 3n + 3 - \frac{3}{2} \left[1 - \left(\frac{1}{3} \right)^{n+1} \right] = 3n + \frac{1}{2} \left[3 + \left(\frac{1}{3} \right)^n \right]$	•
		التمرين الرابع (07 نقاط)	
0.5	2 × 0.25	$g(0,7){ imes}g(0,8){<}0$ و $g(0,7){ imes}g(0,8)$ مستمرة ومتزايدة تماما على و	1 (I
		$(g(0,8) \approx 0.34 \text{ g}(0,7) \approx -0.19)$	
0.75	0.75	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	2
	2 × 0.25	$\lim_{x \to +\infty} f(x) = +\infty \text{o} \lim_{x \to -\infty} f(x) = +\infty \text{o}$	1 (II
	0.25	$\lim_{x \to -\infty} \left[f(x) - (-x + 4) \right] = 0 (-x + 4)$	
		$ig(\Deltaig)$ ج) على $ig]rac{3}{2};+\inftyig[$ أسفل $ig(\Deltaig)$ أسفل $ig(C_f)$: $ig]-\infty;rac{3}{2}$	
1.5	3 × 0.25	$A\!\!\left(\!rac{3}{2};rac{5}{2} ight)$ في النقطة $\left(\Delta ight)$ في النقطة $\left(C_{\!f} ight)$	

الإجابة النموذجية. مادة الرياضيات. الشعبة تقني رياضي. بكالوريا 2023

	0.75	f'(x) = g(x) ، x عدد حقیقی $g(x)$		
	2 × 0.25			
		$[lpha ; +\infty [$ متناقصة تماما على $]-\infty ; lpha [$ ومتزايدة تماما على f	2	
1.5		$x - \infty$ $\alpha + \infty$ α		
	0.25	$f'(x)$ - ϕ + $+\infty$		
		$f(x)$ $+\infty$ $+\infty$		
		$f(\alpha)$		
	2 × 0.25	$y=-x+4-2\sqrt{e}:(T)$ ومعادلة لـ $f'(x)=-1$		
		اب) الرسم:		
	0.25	Δ		
	0.25		3	
	0.25	(C_{α}) (C_{α})		
	0.23			
	0.50	رسم (C_f) رسم		
1.75		-		
	0.25	$4-2\sqrt{e} < m < 4$ جـ للمعادلة $f(x) = -x + m$ حـ لان بالضبط من أجل		
	0.5	$F'(x) = (-2x+3)e^x$ ، \mathbb{R} من أجل كلّ x من x من أجل كلّ	4	
1	2 × 0.25	$\int_{-1}^{0} \left[\left(-x + 4 \right) - f(x) \right] dx = \left[F(x) \right]_{-1}^{0} = \frac{5e - 7}{e} \ u.a \ \left(-\frac{1}{e} \right)$		

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط