DOBAD Package: Gibbs Sampling MCMC of Linear Birth-Death Chain with Partial Data

Charles Doss

September 2009

Part I

Estimating Rates for Linear Birth-Death chain via Gibbs Sampler MCMC by Exact Conditional Simulation

We are demonstrating the use of the DOBAD package's capability to do Bayesian estimation of the rate parameters for a linear Birth-Death chain, given partial observations, using the methods of Doss et al. (2010). Call the chain $\{X(t)\}_{t\in\mathbb{R}}$, and its birth rate la and its death rate μ . We fix $\beta \in \mathbb{R}$ and constrain ν , the immigration rate, to be $\nu = \beta la$. We will denote $\theta = (la, \mu)$. The data is the value of the process at a finite number of discrete time points. That is, for some fixed times $0 = t_0, t_1, \ldots, t_n$, we see the state of the process, $X(t_i)$. Thus the data, D, is 2 parts: a vector of the times t_i , $i = 0, \ldots, n$ and a vector of states at each of those times, s_i , for $i = 0, \ldots, n$ (where $X(t_i) = s_i$. The gamma prior is the conjugate prior if we observed the chain continuously instead of partially. The way we proceed, then, is to use independent Gamma priors on the λ and μ and augment the state space for our MCMC to include the entire chain $\{X_t\}_{t\in[0,t_n]}$ by conditionally sampling $\{X_t\}_{t\in[0,t_n]}; \theta|D$.

First we generate the underlying process and the "data", set our prior parameters, and compute some summary statistics of the fully observed and partially observed processes.

```
> library(DOBAD)
> initstate = 7
> set.seed(112)
> T = 5
> L <- 0.2
> mu <- 0.4
> beta.immig <- 0.987</pre>
```

```
> trueParams <- c(L, mu, beta.immig)</pre>
> names(trueParams) <- c("lambda", "mu", "beta")</pre>
> dr <- 1e-10
> n.fft <- 1024
> delta <- 1
> dat <- birth.death.simulant(t = T, lambda = L, mu = mu, nu = L *
     beta.immig, X0 = initstate)
> fullSummary <- BDsummaryStats(dat)</pre>
> fullSummary
   Nplus
           Nminus Holdtime
12.00000 14.00000 26.73947
> MLEs <- M.step.SC(EMsuffStats = fullSummary, T = T, beta.immig = beta.immig)
> MLEs
lambdahat
              muhat
0.3788540 0.5235706
> partialData <- getPartialData(seq(0, T, delta), dat)</pre>
> observedSummary <- BDsummaryStats.PO(partialData)</pre>
> observedSummary
   Nplus
           Nminus Holdtime
       3
                5
                         28
> L.mean <- 1
> M.mean <- 1.1
> aL <- 0.02
> bL <- aL/L.mean
> aM <- 0.022
> bM <- aM/M.mean
> print(paste("Variances are", aL/bL^2, "and", aM/bM^2))
```

```
[1] "Variances are 50 and 55"
> N = 100
> burn = 0
   Now we run the MCMC. It is set to run only 100 iterations, which is obviously not enough
for estimation, but does demonstrate the code.
> timer <- system.time(theMCMC <- BD.MCMC.SC(Lguess = L.mean, Mguess = M.mean,
     alpha.L = aL, beta.L = bL, alpha.M = aM, beta.M = bM, beta.immig = beta.immig,
     data = partialData, burnIn = burn, N = N))
[1] "BD.MCMC.SC: On the 30 th iteration params are 0.50525582705533 0.643698845152378"
[1] "BD.MCMC.SC: On the 60 th iteration params are
                                                      0.408368213696412 0.406325363782436"
[1] "BD.MCMC.SC: On the 90 th iteration params are
                                                      0.271395764173334 0.513698779398225"
> mean(theMCMC[, 1])
[1] 0.4252525
> mean(theMCMC[, 2])
[1] 0.5536474
> L
[1] 0.2
> mu
[1] 0.4
> timer
         system elapsed
   user
```

11.253

0.060 13.002

```
> options(continue = " ")
> hist(theMCMC[, 1], freq = FALSE, breaks = 20, xlab = "Lambda",
     ylab = "Density", main = "Posterior of Lambda")
> Lmean <- mean(theMCMC[, 1])</pre>
> abline(col = "red", v = Lmean)
> abline(col = "purple", v = L.mean)
> x < - seq(from = 0, to = 1, by = 0.01)
> y <- dgamma(x, shape = aL, rate = bL)
> lines(x, y, col = "blue")
> hist(theMCMC[, 2], freq = FALSE, breaks = 20, xlab = "Mu", ylab = "Density",
     main = "Posterior of Mu")
> Mmean <- mean(theMCMC[, 2])</pre>
> abline(col = "red", v = Mmean)
> abline(col = "purple", v = M.mean)
> x < - seq(from = 0, to = 1, by = 0.01)
> y <- dgamma(x, shape = aM, rate = bM)
> lines(x, y, col = "blue")
```

References

Doss, C., Suchard, M., Holmes, I., Kato-Maeda, M., and Minin, V. (2010). Great Expectations: EM Algorithms for Discretely Observed Linear Birth-Death-Immigration Processes.

Arxiv preprint arXiv:1009.0893.

Figure 1: Posterior Density Estimation of Lambda

Figure 2: Posterior Density Estimation of Mu