BDSIM Documentation

Release 0.64

L. Nevay, S. Boogert, L. Deacon, H. Garcia-Morales, J. Snuverink

March 04, 2015

CONTENTS

1	Introduction 1.1 Purpose of BDSIM 1.2 General Simulation Steps	3 3 3
2	Installation 2.1 Downloading BDSIM	5 5 5
3	Getting Started	7
4	Lattice Elements	9
5	Lattice Sequence	11
6	Samplers - Output	13
7	Physics Lists	15
8	Options	17
9	Beam Parameters	19
10	Distributions	21
11	Model Preparation11.1 Manual Preparation11.2 MADX Conversion11.3 MAD8 Conversion11.4 Python Builder	23 23 23 23 23
12	Output Analysis 12.1 ROOT Output	25 25 25
13	Appendix 1 - Tracking Routines 13.1 Quadrupole	27 27
14	Appendix 2 - Geometry Input 14.1 Mokka	29 29
15	Indices and tables	31

Contents:

CONTENTS 1

2 CONTENTS

ONE

INTRODUCTION

- 1.1 Purpose of BDSIM
- 1.2 General Simulation Steps

TWO

INSTALLATION

- 2.1 Downloading BDSIM
- 2.2 Compiling SL6

CHAPTER
THREE

GETTING STARTED

СНАР	TER
FO	UR

LATTICE ELEMENTS

CHAPTER	
FIVE	

LATTICE SEQUENCE

СНАРТЕ	ER
SI	IX

SAMPLERS - OUTPUT

CHAPTER SEVEN

PHYSICS LISTS

CHAPTER EIGHT

OPTIONS

CHAPTER	
NINE	

BEAM PARAMETERS

DISTRIBUTIONS

- gauss
- gaussTwiss
- reference

Aperture	# of	aper1	aper2	aper3	aper4
Model	parameters				
circular	1	radius	NA	NA	NA
rectangular	2	x half width	y half width	NA	NA
elliptical	2	x semi-axis	y semi-axis	NA	NA
lhcscreen-	3	x half width of	y half width of	radius of circle	NA
simple		rectangle	rectangle		
lhcscreen	3	x half width of	y half width of	radius of circle	NA
		rectangle	rectangle		
rectellipse	4	x half width of	y half width of	x semi-axis of	y semi-axis of
		rectangle	rectangle	ellipse	ellipse
racetrack	3	horizontal offset of	vertical offset of	radius of	NA
		circle	circle	circular part	
octagon	4	x half width	y half width	angle 1 [rad]	angle 2 [rad]

after reading this, go back to the top in Distributions

You can also have a look in another document at Output Analysis

These parameters can be set with the *option* command as the default parameters and also on a per element basis, that overrides the defaults for that specific element. Up to four parameters can be used to specify the aperture shape (*aper1*, *aper2*, *aper3*, *aper4*). These are used differently for each aperture model and match the MADX aperture definitions. The required parameters and their meaning are given in the following table.

Currently, only circular and rectangular are implemented. More models will be completed shortly.

The outer volume is represented (with the exception of the *drift* element) by a cylinder with inner radius equal to the beampipe outer radius and with outer radius given by default by the global *boxSize* option, which can usually be overridden with the *outR* option.

In Geant4 it is possible to drive different *regions* each with their own production cuts and user limits. In BDSIM three different regions exist, each with their own user defined production cuts (see *Physics*). These are the default region, the precision region and the approximation region. Beamline elements can be set to the precision region by setting the attribute *precisionRegion* equal to 1. For example:

ELEVEN

MODEL PREPARATION

- 11.1 Manual Preparation
- 11.2 MADX Conversion
- 11.3 MAD8 Conversion
- 11.4 Python Builder

TWELVE

OUTPUT ANALYSIS

- 12.1 ROOT Output
- 12.2 ASCII Output

CHAPTER
THIRTEEN

APPENDIX 1 - TRACKING ROUTINES

13.1 Quadrupole

FOURTEEN

APPENDIX 2 - GEOMETRY INPUT

14.1 Mokka

FIFTEEN

INDICES AND TABLES

- genindex
- modindex
- search