Project 3: "Today's episode of Sesame Street has been brought to you by the letter ..."

Andrew Bernath, Heather Kitada, Ethan Edwards

Oregon State University

June 1, 2014

Contents

- 1 Introduction and Overview
 - Data Set Information
 - Variables
- 2 Description of Methods
 - Logistic Regression BST Algorithm

- 3 Summary of Findings
- Discussion
 - Logistic Regression Assumptions
- Questions

Question of Interest

Classify an image of a letter to one of the 26 capital letters in the English alphabet.

http://imagebank.osa.org/getImage.xqy?img = dTcqLmxhcmdlLGFvLTlzLTEwLTE1MDktZzAxMAllowered and the state of the state of

Data Set Information

- All 26 uppercase English letters
- 20 fonts for each letter
- Randomly distorted
 - File of 20,000 unique observations
- Each observation converted into 16 primitive numerical attributes

16 Variables Used:

- **1 lettr**: True capital letter (26 values from A to Z)
- **2 x-box**: Horizontal position of box (integer)
- **y-box**: Vertical position of box (integer)
- 4 width: Width of box (integer)5 high: Height of box (integer)
- 6 onpix: Total number on pixels (integer)
- **7 x-bar**: Mean x of on pixels in box (integer)
- **8 y-bar**: Mean y of on pixels in box (integer)
- **9** $\mathbf{x2bar}$: Mean x variance (integer)
- **y2bar**: Mean y variance (integer)
- **II xybar**: Mean *xy* correlation (integer)
- 12 x2ybr: Mean of xxy (integer)
- xy2br: Mean of xyy (integer)
- x-ege: Mean edge count left to right (integer)xegvy: Correlation of x-ege with y (integer)
- 16 y-ege: Mean edge count bottom to top (integer)
- y-ege. Wear edge count bottom to top (integer)

Description of Methods

Algorithms for:

- Logistic Regression Binary Search Tree (BST)
- Decision Trees for Classification
 - 1 CART Method
 - 2 Bag Method

Logistic Regression BST Algorithm

Preparing Binary Tree (Using Learning Set):

- Summarize by unique letter (average over observations from a given letter for each of the metrics)
- Find distance between letters (uses Euclidean distance)
- Use hclust() with "complete" method to create dendrogram

Logistic Regression BST Algorithm

Introduction and Overview

Logistic Regression BST Algorithm

Traversing Binary Tree with Logistic Regression Models:

- 1 Subset letters are to the left and right of current intersection location. Right letters = 1, Left letters = 0
- 2 Create logistic regression model for probability of right (uses all 15 explanatory variables)
- 3 Evaluate logistic regression model with new covariates from observation in validation set.

$$\left\{ \begin{array}{ll} \text{move right} & : \text{if } \hat{\pi} \geq 0.5 \\ \text{move left} & : \text{if } \hat{\pi} < 0.5 \end{array} \right.$$

- 4 Keep track of path traversed
- 5 Repeat steps 1-4 until you arrived at an end node, which is the predicted letter

Logistic Regression BST Algorithm

Logistic Regression BST Algorithm Example

New observation: (T, 2, 6, 3, 4, 2, 7, 12, 2, 7, 7, 11, 8, 1,11, 1, 8)

$$\begin{array}{l} log(\frac{\pi_{i}}{1-\pi_{i}}) = -.5 + .32x_{1} - .08x_{2} + .07x_{3} - .1x_{4} + .11x_{5} - .05x_{6} + .41x_{7} - .09x_{8} - .3x_{9} - .05x_{10} + .54x_{11} - .68x_{12} + .56x_{13} + .23x_{14} - .58x_{15} - .24x_{16} \rightarrow \hat{\pi} = 0.929 \end{array}$$

Move right!

Logistic Regression BST Algorithm Example

New observation: (T, 2, 6, 3, 4, 2, 7, 12, 2, 7, 7, 11, 8, 1,11, 1, 8)

$$log(\frac{\pi_i}{1-\pi_i}) = 4.12 - .37x_1 + .15x_2 + .83x_3 - 1.07x_4 + .3x_5 - .64x_6 + .23x_7 + 1.17x_8 + .58x_9 - .39x_{10} - .83x_{11} + .88x_{12} + 1.87x_{13} - .51x_{14} - 2x_{15} - .57x_{16} \rightarrow \hat{\pi} = 0.0007$$

Move left!

Logistic Regression BST Algorithm Example

New observation: (T, 2, 6, 3, 4, 2, 7, 12, 2, 7, 7, 11, 8, 1,11, 1, 8)

$$log(\frac{\pi_i}{1-\pi_i}) = -23.41 + .16x_1 + .17x_2 + .04x_3 - .25x_4 - .49x_5 + .38x_6 + .67x_7 - .65x_8 + .69x_9 + .23x_{10} + .91x_{11} + 1.79x_{12} + .36x_{13} - .1x_{14} + .07x_{15} - .29x_{16} \rightarrow \hat{\pi} = 0.999$$

Move right!

Logistic Regression BST Algorithm Example

New observation: (T, 2, 6, 3, 4, 2, 7, 12, 2, 7, 7, 11, 8, 1,11, 1, 8)

$$\begin{array}{l} log(\frac{\pi_{i}}{1-\pi_{i}}) = -13.86 - .61x_{1} + .5x_{2} - .96x_{3} - .49x_{4} + 1.57x_{5} + .57x_{6} + 1.64x_{7} + .69x_{8} + 1.56x_{9} + .85x_{10} - \\ 1.71x_{11} + .32x_{12} - .65x_{13} - .96x_{14} - .55x_{15} + .58x_{16} \rightarrow \hat{\pi} = 0.991 \end{array}$$

Move right!

Logistic Regression BST Algorithm

Logistic Regression BST Algorithm Example

New observation: (T, 2, 6, 3, 4, 2, 7, 12, 2, 7, 7, 11, 8, 1,11, 1, 8)

$$\log(\frac{\pi_i}{1-\pi_i}) = -33.85 + .99x_1 + .77x_2 - .59x_3 - 1.36x_4 - .04x_5 + 1.5x_6 + 2.41x_7 + 1.22x_8 + 3.35x_9 - 1.96x_{10} - .87x_{11} + 1.61x_{12} + .33x_{13} + .66x_{14} - 1.25x_{15} - 1.32x_{16} \rightarrow \hat{\pi} = 0.999$$

Move right! and STOP

Logistic Regression BST Algorithm Example

New observation: (T, 2, 6, 3, 4, 2, 7, 12, 2, 7, 7, 11, 8, 1,11, 1, 8)

Prediction: T

Conclusion: Correctly classified! Yay!

Summary of Findings

Findings for:

- 1 Logistic Regression BST Confusion Matrix
- 2 Decision Trees for Classification
 - 1 CART Method Confusion Matrix
 - 2 Bag Method Confusion Matrix

Logistic Regression BST Distribution of Specification

Logistic Regression BST Confusion Matrix

Logistic Regression Binary Search Tree Confusion Matrix

CART Method Distribution of Specification

CART Method Confusion Matrix

BAG Method Confusion Matrix

Overall Findings

- 1 Logistic Regression BST : 74.8% Correct Specification Overall
 - Highest Correct Classification: **W** with 94%
 - Lowest Correct Classification: **H** with 40%
- **2** CART Method: 47.1% Correct Specification Overall
 - Highest Correct Classification: I with 78%
 - Lowest Correct Classification: **E,F,K,O,R,S,Y** with 0%
- 3 Bag Method: 60.6% Correct Specification Overall
 - Highest Correct Classification: **V** with 82%
 - Lowest Correct Classification: **S** with 22%

Discussion

Discussion

Usual Logistic Regression Assumptions

- The true conditional probabilities are a logistic function of the independent variables
- No important variables are omitted.
- No extraneous variables are included.
- The independent variables are measured without error.
- The observations are independent.
- The independent variables are not linear combinations of each other.

Source: IDRE UCLA (Institute for Digital Research and Education

Questions