# Dynamic Programming IV: Shortest Path Revisited

#### Admin

- Additional office hours tomorrow: 12.30 2 pm
- Purpose of help hours today and tomorrow:
  - Come with any questions you have about topics so far
  - Or any topic that you'd want reviewed
- No lecture on Friday: 24-hour open-book midterm
  - Can be turned in latest by 10 am Sunday
  - No late work permitted on exam
- Review item: Solving recurrences with an O() term
  - By definition, constants do not change as input size changes

# Partitioning Books

Reading: Linked on GLOW

# Partitioning Work

- Suppose we have to scan through a shelf of books, and each book has a different size
- We want to divide the shelf into k region of books, and each region is assigned one of the workers
- Order of books fixed by cataloging system: cannot reorder/ rearrange the books
- Goal: divide the work is a fair way among the workers



#### Linear Partition Problem

- **Input.** A input arrangement S of nonnegative integers  $\{s_1, ..., s_n\}$  and an integer k
- **Problem.** Partition S into k ranges such that the **maximum** sum over all the ranges is **minimized**
- Example.
  - Consider the following arrangement

100 200 300 400 500 600 700 800 900

• If k = 3, a partition that minimizes the maximum sum:

100 200 300 400 500 | 600 700 | 800 900

# Subproblem

#### Subproblem

M(i,j) be the optimal cost of partitioning elements  $s_1, s_2, ..., s_i$  using j partitions, where  $1 \le i \le n, \ 1 \le j \le k$ 

#### Final answer

M(n,k)

#### Base Cases

- Let us think about which rows/columns can we fill initially
- What about the first row corresponding to item 1?
- Remember that optimal cost is max sum over all partitions
- M(1,j): optimal cost of partitioning  $s_1$  across j partitions
- For j = 1, 2, ..., k we can fill out the first column as:

$$M(1, j) = s_1$$

#### Base Cases

- Let us think about which rows/columns can we fill initially
- What about the first row corresponding to item 1?
- Remember that optimal cost is max sum over all partitions
- M(i, 1): optimal cost of partitioning  $s_1, s_2, \ldots, s_i$  using only 1 partition
- For i = 1, 2, ..., n we can fill out the first column as:

$$M(i, 1) = \sum_{\ell=1}^{i} s_{\ell}$$

# Base Cases Summary

• For j = 1, 2, ..., k we can fill out the first column as:

$$M(1, j) = s_1$$

• For i = 1, 2, ..., n we can fill out the first column as:

$$M(i, 1) = \sum_{\ell=1}^{i} s_{\ell}$$

- Want a recurrence for M(i, j)
- Notice that the jth partition starts after we place the (j-1)st "divider"
- Where can we place the j-1st divider?



- Where can we place the j-1st divider?
  - Between books i' and i' + 1 for some i' < i



- Finally: for to choose the partition point i' for starting the jth partition
  - Let us consider all possibilities  $1 \le i' < i$
  - Take min cost option among them



#### Final Recurrence

• For  $2 \le i \le n$  and  $2 \le j \le k$ , we have:

 $M(i, j) = \min_{1 \le i' < i}$  cost of starting jth parition at book i' + 1

- Cost of this way of partitioning?
  - (Remember cost is max sum across all partitions)



Cost of *j*th partition itself:  $\sum_{t=i'+1}^{\infty} s^{t}$ 

• Cost of remaining partitions? M[i', j-1]



#### Final Recurrence

• For  $2 \le i \le n$  and  $2 \le j \le k$ , we have:

$$M(i, j) = \min_{1 \le i' < i} \max\{M(i', j - 1), \sum_{\ell=i'+1}^{l} s_{\ell}\}\$$

- Memoization structure: We store M[i,j] values in a 2-D array or table using space O(nk)
- Evaluation order: In what order should we fill in the table?

#### Final Pieces

- Evaluation order.
  - To fill out M[i,j], I need the previous column filled in for rows less than i, that is, M[i',j-1] for all  $1 \le i' < i$
  - Can compute using column major order: column by column
- Running time?
  - Size of table (space):  $O(k \cdot n)$
  - How long to compute a single cell?
    - Depends on n other cells
    - O(n) time to fill in one cell

# Running Time

- Running time
  - $O(n^2 \cdot k)$
- Is this a polynomial running time?
  - Not as stated, not polynomial in k
  - But lets think if we can upper bound k using n
- How big can k get?
  - At most n non-empty partitions of n elements
  - $O(n^3)$  algorithm in the worst case

# Last Topic in Dynamic Programming: Shortest Paths Revisited

#### Shortest Path Problem

- Single-Source Shortest Path Problem
  - Given a directed graph G = (V, E) with edge weights  $w_e$  on each  $e \in E$  and a a source node s, find the shortest path from s to to all nodes in G.
- Negative weights. The edge-weights  $w_e$  in G can be negative. (When we studied Dijkstra's, we assumed non-negative weights.)
- Let P be a path from s to t, denoted  $s \sim t$ .
  - The **length** of P is the number of edges in P
  - The cost or weight of P is  $w(P) = \sum_{e \in P} w_e$
- Goal: cost of the shortest path from s to all nodes

# Negative Weights & Dijkstra's

- Dijkstra's Algorithm. Does the greedy approach work for graphs with negative edge weights?
  - Dijkstra's will explore s's neighbor and add t, with  $d[t] = w_{sv} = 2$  to the shortest path tree
  - Dijkstra assumes that there cannot be a "longer path" that has lower cost (relies on edge weights being non-negative)



Dijkstra's will find  $s \to t$  as shortest path with cost 2 But the shortest path is  $s \to v \to w \to t$  with cost 1

# Negative Cycles

- **Definition**. A negative cycle is a directed cycle C such that the sum of all the edge weights in C is less than zero
- Question. How do negative cycles affect shortest path?



a negative cycle W : 
$$\ \ell(W) = \sum_{e \in W} \ell_e < 0$$

### Negative Cycles & Shortest Paths

• Claim. If a path from s to some node v contains a negative cycle, then there does not exist a shortest path from s to v.

#### Proof.

- Suppose there exists a shortest  $s \sim v$  path with cost d that traverses the negative cycle t times for  $t \geq 0$ .
- Can construct a shorter path by traversing the cycle t+1 times

$$\Rightarrow \Leftarrow \blacksquare$$

- Assumption. G has no negative cycle.
- Later in the lecture: how can we detect whether the input graph G contains a negative cycle?

## Dynamic Programming Approach

- First step to a dynamic program? Recursive formulation
  - Subproblem with an "optimal substructure"
- Structure of the problem. With negative edge weights, the optimal cost can have any length
  - Let's keep track of length of paths considered so far
- How long can the shortest path from s to any node u be, assuming no negative cycle?
- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most n-1 edges.

# No. of Edges in Shortest Path

- Claim. If G has no negative cycles, then exists a shortest path from s to any node u that uses at most n-1 edges.
- **Proof**. Suppose there exists a shortest path from s to u made up of n or more edges
- A path of length at least n must visit at least n+1 nodes
- There exists a node x that is visited more than once (pigeonhole principle). Let P denote the portion of the path between the successive visits.
- Can remove P without increasing cost of path.



# Shortest Path Subproblem

- Subproblem. D[v, i]: (optimal) cost of shortest path from s to v using  $\leq i$  edges
- Base cases.
  - D[s, i] = 0 for any i
  - $D[v,0] = \infty$  for any  $v \neq s$
- Final answer for shortest path cost to node v
  - D[v, n-1]

#### Recurrence

- Suppose we have found shortest paths to all nodes of length at most i-1
- We are now considering shortest paths of length i
- Cases to consider for the **recurrence** of D[v, i]
  - Case 1. Shortest path to v was already found (is same as D[v,i-1])
  - Case 2. Shortest path to v is "longer" than paths found so far:
    - Look at all nodes u that have incoming edges to v
    - Take minimum over their distances and add  $w_{\mu\nu}$



# Bellman-Ford-Moore Algorithm

• Recurrence. For all nodes  $v \neq s$ , and for all  $1 \leq i \leq n-1$ ,

$$D[v, i] = \min\{D[v, i - 1], \min_{(u,v) \in E} \{D[u, i - 1] + w_{uv}\}\}\$$

Called the Bellman-Ford-Moore algorithm



# Bellman-Ford-Moore Algorithm

- Subproblem. D[v, i]: (optimal) cost of shortest path from s to v using  $\leq i$  edges
- Recurrence.

$$D[v, i] = \min\{D[v, i - 1], \min_{(u,v) \in E} \{D[u, i - 1] + w_{uv}\}\}$$

- Memoization structure. Two-dimensional array
- Evaluation order
  - $i: 1 \rightarrow n-1$  (column major order)
  - Starting from s, the row of vertices can be in any order

# Running Time

- Recurrence.  $D[v, i] = \min\{D[v, i-1], \min_{(u,v) \in E} \{D[u, i-1] + w_{uv}\}\}$
- Naive analysis.  $O(n^3)$  time
  - Each entry takes O(n) to compute, there are  $O(n^2)$  entries
- Improved analysis. For a given i, v, d[v, i] looks at each incoming edge of v
  - Takes indegree(v) accesses to the table
  - For a given i, filling d[-,i] takes  $\sum_{v \in V}$  indegree(v) accesses
  - At most O(n+m)=O(m) accesses for connected graphs where  $m\geq n-1$
- Overall running time is O(nm)



# Dynamic Programming Shortest Path: Bellman-Ford-Moore Example

• D[s, i] = 0 for any i

•  $D[v,0] = \infty$  for any  $v \neq s$ 

|   | 0   | 1 | 2 | 3 |
|---|-----|---|---|---|
| S | 0   | 0 | 0 | 0 |
| а | inf |   |   |   |
| b | inf |   |   |   |
| С | inf |   |   |   |



•  $D[v,1] = \min\{D[v,0], \min_{u,v \in E} \{D[u,0] + w_{uv}\}$ 

|   | 0   | 1 | 2 | 3 |
|---|-----|---|---|---|
| S | 0   | 0 | 0 | 0 |
| а | inf |   |   |   |
| b | inf |   |   |   |
| С | inf |   |   |   |



•  $D[v,1] = \min\{D[v,0], \min_{u,v \in E} \{D[u,0] + w_{uv}\}$ 

|   | 0   | 1  | 2 | 3 |
|---|-----|----|---|---|
| S | 0   | 0  | 0 | 0 |
| а | inf | -3 |   |   |
| b | inf |    |   |   |
| С | inf |    |   |   |



•  $D[v,1] = \min\{D[v,0], \min_{u,v \in E} \{D[u,0] + w_{uv}\}$ 

|   | 0   | 1  | 2 | 3 |
|---|-----|----|---|---|
| S | 0   | 0  | 0 | 0 |
| а | inf | -3 |   |   |
| b | inf | 2  |   |   |
| С | inf |    |   |   |



|   | 0   | 1   | 2 | 3 |
|---|-----|-----|---|---|
| S | 0   | 0   | 0 | 0 |
| a | inf | -3  |   |   |
| b | inf | 2   |   |   |
| С | inf | inf |   |   |



|   | 0   | 1   | 2 | 3 |
|---|-----|-----|---|---|
| S | 0   | 0   | 0 | 0 |
| а | inf | -3  |   |   |
| b | inf | 2   |   |   |
| С | inf | inf |   |   |



|   | 0   | 1   | 2  | 3 |
|---|-----|-----|----|---|
| S | 0   | 0   | 0  | 0 |
| a | inf | -3  | -3 |   |
| b | inf | 2   |    |   |
| С | inf | inf |    |   |



|   | 0   | 1   | 2  | 3 |
|---|-----|-----|----|---|
| S | 0   | 0   | 0  | 0 |
| а | inf | -3  | -3 |   |
| b | inf | 2   | 2  |   |
| С | inf | inf |    |   |



|   | 0   | 1   | 2  | 3 |
|---|-----|-----|----|---|
| S | 0   | 0   | 0  | 0 |
| a | inf | -3  | -3 |   |
| b | inf | 2   | 2  |   |
| С | inf | inf | -2 |   |



|   | 0   | 1   | 2  | 3  |
|---|-----|-----|----|----|
| S | 0   | 0   | 0  | 0  |
| a | inf | -3  | -3 | -3 |
| b | inf | 2   | 2  |    |
| С | inf | inf | -2 |    |



|   | 0   | 1   | 2  | 3  |
|---|-----|-----|----|----|
| S | 0   | 0   | 0  | 0  |
| a | inf | -3  | -3 | -3 |
| b | inf | 2   | 2  | -1 |
| С | inf | inf | -2 |    |



|   | 0   | 1   | 2  | 3  |
|---|-----|-----|----|----|
| S | 0   | 0   | 0  | 0  |
| а | inf | -3  | -3 | -3 |
| b | inf | 2   | 2  | -1 |
| С | inf | inf | -2 | -2 |



# Dynamic Programming Shortest Path: Detecting a Negative Cycle

# Negative Cycle

- **Definition**. A negative cycle is a directed cycle C such that the sum of all the edge weights in C is less than zero
- Claim. If a path from s to some node v contains a negative cycle, then there does not exist a shortest path from s to v.



a negative cycle W : 
$$\ \ell(W) = \sum_{e \in W} \ell_e < 0$$

## Detecting a Negative Cycle

- **Question.** Given a directed graph G=(V,E) with edgeweights  $w_e$  (can be negative), determine if G contains a negative cycle.
- Now, we don't a specific source node given to us
- Let's change this problem a little bit
- Problem. Given G and source s, find if there is negative cycle on a  $s \leadsto v$  path for any node v.

# Detecting a Negative Cycle

- Problem. Given G and source s, find if there is negative cycle on a  $s \sim v$  path for any node v.
- D[v,i] is the cost of the shortest path from s to v of length at most i
- Suppose there is a negative cycle on a  $s \sim v$  path

. Then 
$$\lim_{i\to\infty} D[v,i] = -\infty$$

- If D[v, n] = D[v, n 1] for every node v then G has no negative cycles exists!
  - Table values converge, no further improvements possible

## Detecting a Negative Cycle

- **Lemma.** If D[v, n] < D[v, n-1] then any shortest  $s \sim v$  path contains a negative cycle.
- **Proof**. [By contradiction] Suppose G does not contain a negative cycle
- Since D[v, n] < D[v, n-1], the shortest  $s \sim v$  path that caused this update has exactly n edges
- By pigeonhole principle, path must contain a repeated node, let the cycle between two successive visits to the node be P
- If P has non-negative weight, removing it would give us a shortest path with less than n edges  $\Rightarrow \leftarrow$



#### Problem Reduction

- Now we know how to detect negative cycles on a shortest path from s to some node v.
- How do we detect a negative cycle anywhere in G?
- Reduction. Given graph G, add a source s and connect it to all vertices in G with edge weight 0. Let the new graph be G'
- Claim. G has a negative cycle iff G' has a negative cycle from s to some node v.
- **Proof**.  $\Rightarrow$  If G has a negative cycle, then this cycle lies on the shortest path from s to a node on the cycle in G'
- $\Leftarrow$  If G' has a negative cycle on a shortest path from s to some node, then that node is on a negative cycle in G

## Acknowledgments

- Some of the material in these slides are taken from
  - Kleinberg Tardos Slides by Kevin Wayne (<a href="https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf">https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</a>)
  - Jeff Erickson's Algorithms Book (<a href="http://jeffe.cs.illinois.edu/">http://jeffe.cs.illinois.edu/</a>
     teaching/algorithms/book/Algorithms-JeffE.pdf)