SEQUENCE LISTING

<110> Li et al.	
<120> G-Protein Receptor HTNAD29	
<130> PF191D1C1	
<150> US95/07288 <151> 1995-06-06	
<150> 08/468,534 <151> 1995-06-06	
<150> 09/399,095 <151> 1999-09-20	
<160> 9	
<170> PatentIn Version 3.1	
<210> 1 <211> 1753 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (523)(1533) <223>	
<400> 1	
ctgcacgaga ggcacagatt tatcaagctc ctcagtcaac aaacacatca ccggaagaaa	60
catggaagga aaggaatttt aaaaggaaat accaatctct gtgcaaacaa agccttgtat	120
attcatgttt gcaccaatct actgtgagat ttatgaagaa aaacaaattg cggacaactc	180
tetatgtaca ettacaaatg eetcagttga tgettgtggg etgtttgtca gegttetgtg	240
ataatgaaca catggactte tgtttattaa attcagttga cccctttagc caattgccag	300
gageetggat tittaettee aactgetgat atetgtgtaa aaattgatet acateeacee	360
tttaaaagca ttgatgaatt aattagaact ttagacaaca agaaaaattg aaaagaattc	420
tcagtaaaag cgaattcgat gttcaaaaca aactacaaag agacaagact tctctgttta	480
ctttctaaga actaatataa ttgctacctt aaaaaggaaa aa atg aac agc aca $$\operatorname{Met}$$ Asn Ser Thr 1	534
tgt att gaa gaa cag cat gac ctg gat cac tat ttg ttt ccc att gtt Cys Ile Glu Glu Gln His Asp Leu Asp His Tyr Leu Phe Pro Ile Val 5 10 20	582
tac atc ttt gtg att ata gtc agc att cca gcc aat att gga tct ctg Tyr Ile Phe Val Ile Ile Val Ser Ile Pro Ala Asn Ile Gly Ser Leu	630

25 30 35

tgt Cys	gtg Val	tct Ser	ttc Phe 40	ctg L e u	caa Gln	ccc Pro	aag Lys	aag Lys 45	gaa Glu	agt Ser	gaa Glu	cta Leu	gga Gly 50	att Ile	tac Tyr	678
ctc Leu	ttc Phe	agt Ser 55	ttg Leu	tca Ser	cta Leu	tca Ser	gat Asp 60	tta Leu	ctc Leu	tat Tyr	gca Ala	tta Leu 65	act Thr	ctc Leu	cct Pro	726
tta Leu	tgg Trp 70	att Ile	gat Asp	tat Tyr	act Thr	tgg Trp 75	aat Asn	aaa Lys	gac Asp	aac Asn	tgg Trp 80	act Thr	ttc Phe	tct Ser	cct Pro	774
gcc Ala 85	ttg Leu	tgc Cys	aaa Lys	gly ggg	agt Ser 90	gct Ala	ttt Phe	ctc Leu	atg Met	tac Tyr 95	atg Met	aag Lys	ttt Phe	tac Tyr	agc Ser 100	822
agc Ser	aca Thr	gca Ala	ttc Phe	ctc Leu 105	acc Thr	tgc Cys	att Ile	gcc Ala	gtt Val 110	gat Asp	cgg Arg	tat Tyr	ttg Leu	gct Ala 115	gtt Val	870
gtc Val	tac Tyr	cct Pro	ttg Leu 120	aag Lys	ttt Phe	ttt Phe	ttc Phe	cta Leu 125	agg Arg	aca Thr	aga Arg	aga Arg	att Ile 130	gca Ala	ctc Leu	918
atg Met	gtc Val	agc Ser 135	ctg Leu	tcc Ser	atc Ile	tgg Trp	ata Ile 140	ttg Leu	gaa Glu	acc Thr	atc Ile	ttc Phe 145	aat Asn	gct Ala	gtc Val	966
atg Met	ttg Leu 150	tgg Trp	gaa Glu	gat Asp	gaa Glu	aca Thr 155	gtt Val	gtt Val	gaa Glu	tat Tyr	tgc Cys 160	gat Asp	gcc Ala	gaa Glu	aag Lys	1014
tct Ser 165	aat Asn	ttt Phe	act Thr	tta Leu	tgc Cys 170	Tyr	gac Asp	aaa Lys	tac Tyr	cct Pro 175	tta Leu	gag Glu	aaa Lys	tgg Trp	caa Gln 180	1062
atc Ile	aac Asn	ctc Leu	aac Asn	ttg Leu 185	ttc Phe	agg Arg	acg Thr	tgt Cys	aca Thr 190	Gly	tat Tyr	gca Ala	ata Ile	cct Pro 195	ttg Leu	1110
gtc Val	acc	atc Ile	ctg Leu 200	Ile	tgt Cys	aac Asn	cgg Arg	aaa Lys 205	gtc Val	tac Tyr	caa Gln	gct Ala	gtg Val 210	Arg	cac His	1158
			Thr					Lys					Lys		ctt Leu	1206
gtc Val	ago Ser 230	Ile	aca Thr	gtt Val	act Thr	Phe 235	· Val	tta Lev	tgc Cys	ttt Phe	act Thr 240	Pro	ttt Phe	cat His	gtg Val	1254
	Let					Ile					va]				gac Asp 260	1302
cac	ago	aat	tet	ggg	g aag	g ega	a act	tac	aca	ato	tat	aga:	ato	aco	gtt	1350

His Ser Asn Ser Gly Lys Arg Thr Tyr Thr Met Tyr Arg Ile Thr Val $$265$$	
gca tta aca agt tta aat tgt gtt gct gat cca att ctg tac tgt ttt Ala Leu Thr Ser Leu Asn Cys Val Ala Asp Pro Ile Leu Tyr Cys Phe 280 285 290	1398
gtt acc gaa aca gga aga tat gat atg tgg aat ata tta aaa ttc tgc Val Thr Glu Thr Gly Arg Tyr Asp Met Trp Asn Ile Leu Lys Phe Cys 295 300 305	1446
act ggg agg tgt aat aca tca caa aga caa aga aaa cgc ata ctt tct Thr Gly Arg Cys Asn Thr Ser Gln Arg Gln Arg Lys Arg Ile Leu Ser 310 315 320	1494
gtg tct aca aaa gat act atg gaa tta gag gtc ctt gag tagaaccaag Val Ser Thr Lys Asp Thr Met Glu Leu Glu Val Leu Glu 325 330 335	1543
gatgttttga agggaaggga agtttaagtt atgcattatt atatcatcaa gattacattt	1603
tgaaaaggaa atctagcatg tgaggggact aagtgttctc agagtgatgt tttaatccag	1663
tccaataaaa atatcttaaa actgcattgt acagctccct ccctgcgttt tattaaatga	1723
tgtatattaa acaaagatca atattttctt	1753
<210> 2 <211> 337 <212> PRT <213> Homo sapiens <400> 2	
Met Asn Ser Thr Cys Ile Glu Glu Gln His Asp Leu Asp His Tyr Leu 1 5 10	
Phe Pro Ile Val Tyr Ile Phe Val Ile Ile Val Ser Ile Pro Ala Asn 20 25 30	
Ile Gly Ser Leu Cys Val Ser Phe Leu Gln Pro Lys Lys Glu Ser Glu 35 40 45	
Leu Gly Ile Tyr Leu Phe Ser Leu Ser Leu Ser Asp Leu Leu Tyr Ala 50 55 60	
Leu Thr Leu Pro Leu Trp Ile Asp Tyr Thr Trp Asn Lys Asp Asn Trp 65 70 75 80	
Thr Phe Ser Pro Ala Leu Cys Lys Gly Ser Ala Phe Leu Met Tyr Met	

Lys Phe Tyr Ser Ser Thr Ala Phe Leu Thr Cys Ile Ala Val Asp Arg

Tyr Leu Ala Val Val Tyr Pro Leu Lys Phe Phe Phe Leu Arg Thr Arg 115 120 125

Arg Ile Ala Leu Met Val Ser Leu Ser Ile Trp Ile Leu Glu Thr Ile 130 \$135\$

Phe Asn Ala Val Met Leu Trp Glu Asp Glu Thr Val Val Glu Tyr Cys 145 150 155 160

Asp Ala Glu Lys Ser Asn Phe Thr Leu Cys Tyr Asp Lys Tyr Pro Leu 165 170 170 175

Glu Lys Trp Gln Ile Asn Leu Asn Leu Phe Arg Thr Cys Thr Gly Tyr 180 185 190

Ala Ile Pro Leu Val Thr Ile Leu Ile Cys Asn Arg Lys Val Tyr Gln 195 200 205

Ala Val Arg His Asn Lys Ala Thr Glu Asn Lys Glu Lys Lys Arg Ile 210 215 220

Ile Lys Leu Leu Val Ser Ile Thr Val Thr Phe Val Leu Cys Phe Thr 225 230235235

Pro Phe His Val Met Leu Leu Ile Arg Cys Ile Leu Glu His Ala Val \$245\$ \$250\$ \$255\$

Asn Phe Glu Asp His Ser Asn Ser Gly Lys Arg Thr Tyr Thr Met Tyr 260 265 270

Arg Ile Thr Val Ala Leu Thr Ser Leu Asn Cys Val Ala Asp Pro Ile

Leu Tyr Cys Phe Val Thr Glu Thr Gly Arg Tyr Asp Met Trp Asn Ile 290 295 300

Leu Lys Phe Cys Thr Gly Arg Cys Asn Thr Ser Gln Arg Gln Arg Lys 305 310 315

Arg Ile Leu Ser Val Ser Thr Lys Asp Thr Met Glu Leu Glu Val Leu 325

Glu

<2	10>	3

<211> 327

<212> PRT

<213> Homo sapiens

<400> 3

Asp Ser Ser His Met Asp Ser Glu Phe Arg Tyr Thr Leu Phe Pro Ile 1 $$ 10 $$ 15

Leu Trp Val Phe Ala Arg Leu Tyr Pro Cys Lys Lys Phe Asn Glu Ile 35 40

Lys Ile Phe Met Val Asn Leu Thr Met Ala Asp Met Leu Phe Leu Ile $50 \hspace{1cm} 55 \hspace{1cm} 60 \hspace{1cm}$

Thr Leu Pro Leu Trp Ile Val Tyr Tyr Gln Asn Gln Gly Asn Trp Ile 65 7075 80

Leu Pro Lys Phe Leu Cys Asn Val Ala Gly Cys Leu Phe Phe Ile Asn 85 90

Thr Tyr Cys Ser Val Ala Phe Leu Gly Val Ile Thr Tyr Asn Arg Phe 100 $$105\$

Gln Ala Val Thr Arg Pro Ile Lys Thr Ala Gln Ala Asn Thr Arg Lys \$115\$ \$120\$ \$125\$

Arg Gly Ile Ser Leu Ser Leu Val Ile Trp Val Ala Ile Val Gly Ala 130 135 140

Ala Ser Tyr Phe Leu Ile Leu Asp Ser Thr Asn Thr Val Pro Asp Ser 145 150 155

Ala Gly Ser Gly Asn Val Thr Arg Cys Phe Glu His Tyr Glu Lys Gly
165 170 175

Ser Val Pro Val Leu Ile Ile His Ile Phe Ile Val Phe Ser Phe Phe 180 185 190

Leu	Val	Phe 195	Leu	Ile	Ile	Leu	Phe 200	Cys	Asn	Leu	Val	11e 205	Ile	Arg	Thr	
Leu	Leu 210	Met	Gln	Pro	Val	Gln 215	Gln	Gln	Arg	Asn	Ala 220	Glu	Val	Thr	Gly	
Arg 225	Ala	Leu	Trp	Met	Val 230	Cys	Thr	Val	Leu	Ala 235	Val	Phe	Ile	Ile	Cys 240	
Phe	Val	Pro	His	His 245	Val	Val	Gln	Leu	Pro 250	Trp	Thr	Leu	Ala	Glu 255	Leu	
Gly	Phe	Gln	Asp 260	Ser	Lys	Phe	His	Gln 265	Ala	Ile	Asn	Asp	Ala 270	His	Gln	
Val	Thr	Leu 275	Cys	Leu	Leu	Ser	Thr 280	Asn	Cys	Val	Leu	Asp 285	Pro	Val	Ile	
Tyr	Cys 290	Phe	Leu	Thr	Lys	Lys 295	Phe	Arg	Lys	His	Leu 300	Thr	Glu	Lys	Phe	
Tyr 305	Ser	Met	Arg	Ser	Ser 310	Arg	Lys	Cys	Ser	Arg 315	Ala	Thr	Thr	Asp	Thr 320	
Val	Thr	Glu	Val	Val 325	Val	Pro										
<212	> 2 > I > F	29 ONA	icia	al se	equer	ice										
<223		Conta	ins	an E	COR1	res	tric	tion	enz	yme	site	:				
<400 cgaa		-	atga	acag	jc ac	atgt	att									29
<210 <211 <212 <213	.> 2 :> I	9 NA	icia	al se	equer	ıce										
<220 <223		ont:	ins	comp	leme	ntar	v se	mer	ces	to =	Him	יודה	ei+			
<400	> 5	;		aggac				-100		20 0			. 510			29

<210> <211> <212>		
	Artificial sequence	
<220> <223>	Contains a HindIII site	
<400> gtccaa	6 gctt gccaccatga acagcacatg tatt	34
<210> <211> <212>		
<213>	Artificial sequence	
	Contains complementary sequences to an XhoI site, ation stop codon, and an HA tag	
<400> ctagct	7 gag tcaagogtag totgggaogt ogtatgggta gcaaggaoot otaattocat	60
a		61
<210> <211> <212> <213>	30	
nucleo	Contains a BamHI restriction enzyme site followed by 4 cides resembling an efficient signal for the initiation islation in eukaryotic cells	
<400> cgggate	8 coct coatgaacag cacatgtatt	30
<210> <211> <212> <213>	32	
<220> <223> endonue	Contains the cleavage site for the restriction clease BamHI	
<400>	9 cog otcaaggaco totaattoca ta	32