En/中

Youzhe Song 的研究演进图谱

从高维特征分布优化的奠基,迈向多模态感知与潜空间推理的未来。

过去 (Past Research) — 高维特征分布优化的奠基

核心主题	项目/工作	关键问题与方法	核心产出与认知	关键论文参考
理论启发	自监督对比 学习	如何在无标签数据中学习判别性特征?通过数据增强构造正负样本 对,在特征空间中拉近正推远负。	深刻理解"通过塑造特征分布来学习表示"的核心思想,成为后 续工作的底层逻辑。	SimSiamMoCoSupCon
实践探索	CoReFace (PR, 2024)	如何在有监督任务中进一步提升特征鲁棒性?将对比学习作为正则项引入,利用Dropout在特征层构造正样本对。	完成从0到1的研究闭环,实现从"学生"到"研究者"的身份转 变。证明了分类与度量学习融合的有效性。	• Arcface • SimCLR
问题拓展	QGFace (FG, 2024)	如何设计统一框架来处理真实世界的异构质量数据?根据图像质量动态调度不同的监督信号(分类 vs 对比)。	从生活观察中发现研究问题。证明了"单一模型,多重监督"范 式的潜力,并开始思考单模态内部对齐。	• AdaFace

认知之桥 (The Bridge) — 关于智能本质的思考

从自身的"内在矛盾"和"自我审视"中获得灵感,我意识到**:真正的智能系统,其标志不应是完美的单向推理,而是处理内部冲突、进行自我审视和迭代修正的能力。**这正是人 类"反思"和"犹豫"的本质,也是通往更高级智能的基石。

未来 (Future Research) — 融合多模态感知与潜空间推理

未来方向	核心目标	与过去的联系	研究路径与方法	关键论文参考
1. 多模态对 齐 (Multimodal Alignment)	构建支撑推理的多模态概念空间 :超越表层特征图配,构建一个统一的潜空间,其中的多模态表示不仅对齐,更具备支持复杂逻辑推理的结构和组合性。	()(Jeace坝自中外埋异构里程态数	 深层概念对齐:研究如何对齐跨模态的抽象概念、属性与关系(例如,图像中的"动态"与文本中的"奔跑"),形成结构化的世界知识表示。 构建可组合的潜空间:设计对齐策略,使潜空间中的表示具备组合性,现实概念应当是多个模态的组合信息。 	 基础: CLIP , Flamingo 结构化概念: PalM-E 图表 示学习 VinVL
2. 潜空间推 理 (Latent Reasoning)	重构潜空间推理结构,赋予模型内部思考能力 : 核心目标是设计并实现全新的模型内部计算流,使其能进行自主、迭代、可修正的"思考",而不是简单地将外部推理过程压缩进模型。	"认知之桥"的顿悟——AI需要"目 支 我审视和迭代修正"的能力,直接	 从显式推理到隐式思考:探索如何将外部的、符号化的推理链(如CoT)转化为模型内部的、连续的、动态的计算流,使其成为模型内生的能力。 设计内生的推理架构:构建具备循环和动态计算能力的模型(如垂直/水平循环),使其能根据问题复杂性进行"深思熟虑",而非固定的前向传播。 	 起点: wei2022cot 架构设计: Universal Transformer, Mamba, Recurrent- Depth 可解释性指导 架构: Circuit 2022 Memory3