

Algoritmos e Lógica de Programação

II - Tabela-Verdade

Resumo da unidade:

- Mapas de Karnaugh
 - Método de preenchimento numérico
- Diagramação de Tabelas-verdade
 - Teorema da geração numérica

Mapas de Karnaugh

- Estruturas matriciais;
- Responsáveis por gerar as combinações possíveis para um conjunto de proposições;
- Possui processo de distribuição e preenchimento das proposições;
- Método de distribuição não é obrigatório, desde que todas as combinações sejam geradas;

Mapas de Karnaugh: Método de distribuição de valores

- 1. Analisar a expressão lógica e identificar suas proposições atômicas;
- 2. Elaborar uma tabela, estruturando a quantidade de colunas com o mesmo número de proposições identificadas na expressão.
- 3. As linhas da tabela representam as combinações possíveis entre as proposições. Por isso, a quantidade de linhas geradas ficará na ordem de (2^z), sendo "z" a quantidade de proposições identificadas na tabela.
- 4. A plotagem da série de valores acontece na ordem crescente, ou seja, de 0 para 1. A série da obedece a regra 2^(i-1), sendo "i" o índice da coluna do operando.

Mapas de Karnaugh: Método de distribuição de valores

1. Analisar a expressão lógica e identificar suas proposições atômicas:

$$p' \cdot (q \rightarrow s)$$

Proposições (operandos):

Mapas de Karnaugh: Método de distribuição de valores

2. Elaborar uma tabela, estruturando a quantidade de colunas com o mesmo número de proposições identificadas na expressão.

Р	Q	S

Mapas de Karnaugh: Método de distribuição de valores

3. As linhas da tabela representam as combinações possíveis entre as proposições. Por isso, a quantidade de linhas geradas ficará na ordem de (2^z), sendo "z" a quantidade de proposições identificadas na tabela.

73	0
4	O

Р	Q	S

Mapas de Karnaugh: Método de distribuição de valores

4. A plotagem da série de valores acontece na ordem crescente, ou seja, de 0 para 1. A série da obedece a regra 2^(i-1), sendo "i" o índice da coluna do operando.

série 3^{a} coluna = $2^{(3-1)}$ = 4

Р	Q	S
0		
0		
0		
0		

2a

2

1

Mapas de Karnaugh: Método de distribuição de valores

4. A plotagem da série de valores acontece na ordem crescente, ou seja, de 0 para 1. A série da obedece a regra 2^(i-1), sendo "i" o índice da coluna do operando.

série 3^{a} coluna = $2^{(3-1)}$ = 4

Q	S
	Q

3^a

2ª

11

Mapas de Karnaugh: Método de distribuição de valores

4. A plotagem da série de valores acontece na ordem crescente, ou seja, de 0 para 1. A série da obedece a regra 2^(i-1), sendo "i" o índice da coluna do operando.

série
$$3^a$$
 coluna = $2^(3-1) = 4$
série 2^a coluna = $2^(2-1) = 2$

Р	Q	S
0	0	
0	0	
0	1	
0	1	
1		
1		
1		
1		

Mapas de Karnaugh: Método de distribuição de valores

4. A plotagem da série de valores acontece na ordem crescente, ou seja, de 0 para 1. A série da obedece a regra 2^(i-1), sendo "i" o índice da coluna do operando.

série
$$3^a$$
 coluna = $2^(3-1) = 4$
série 2^a coluna = $2^(2-1) = 2$

Р	Q	S
0	0	
0	0	
0	1	
0	1	
1	0	
1	0	
1	1	
1	1	

2ª

 3^a

1¹

Mapas de Karnaugh: Método de distribuição de valores

4. A plotagem da série de valores acontece na ordem crescente, ou seja, de 0 para 1. A série da obedece a regra 2^(i-1), sendo "i" o índice da coluna do operando.

Р	Q	S
0	0	0
0	0	1
0	1	
0	1	
1	0	
1	0	
1	1	
1	1	

1¹

Mapas de Karnaugh: Método de distribuição de valores

4. A plotagem da série de valores acontece na ordem crescente, ou seja, de 0 para 1. A série da obedece a regra 2^(i-1), sendo "i" o índice da coluna do operando.

Р	Q	S
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Mapas de Karnaugh: Resolução da Tabela-verdade

Р	Q	S	$(Q \rightarrow S)$	P'	P' (Q → S)
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

Diagramação das tabelas-verdade

É possível representar as combinações obtidas em uma tabela-verdade e representá-las em formato de diagrama de árvore:

Diagramação das tabelas-verdade

Em proposições compostas, que possuem mais de um operando ou proposição combinada, o número de linhas do diagrama de árvores é determinado pelo número de linhas de uma tabela-verdade.

Р	Q
0	0
0	1
1	0
1	1

Diagramação das tabelas-verd	lade
------------------------------	------

Р	Q	S
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Diagramação das tabelas-verdade

O número de linhas de uma tabela-verdade é dado por (2^n), onde n é o número de proposições componentes.

Exemplos:

- a) Dada p, n = 1, a tabela-verdade terá 2^1 = 2 linhas.
- b) Dada p, n = 2, a tabela-verdade terá 2^2 = 4 linhas.
- c) Dada p, n = 3, a tabela-verdade terá 2^3 = 8 linhas.

fb.com/faculdade.vincit

linkedin.com/school/faculdade_vincit

instagram.com/faculdade_vincit