	PAGE
(a) y-an=0	dy = f'(n) = a loga
$y = a^n = f(n)$	hence by the formula
$\frac{dy}{dn} = f'(n) = \frac{d}{dn}a^{n}$	$K(n) = \left \frac{n f'(n)}{f(n)} \right $
let $a^n = t$ $\frac{\log t}{dx} = \frac{1}{\log a}$ $\frac{d \log t}{dx} = \frac{1}{\log a}$	= n. axloga ax
$\frac{d \log t = d n \log a}{dn}$	K(n) = Indogal
1 dt = loga t dr	
$\frac{dt}{dx} = t \log a$	
dt = arloga	
b. n+1-y=0 y=n+1	
y= n+1 dy = f'(n) = 1	

or

dn By the for mula

2 9'(n) f(n)

K(n) =

Kows =

2. Given: Vector morms neir" and y eir"
To obrave:
Proof: For us to show [11x11-11y11] < [12-y1]
it is sufficient to show these 2 conditions
a. x-y > x - y + x, EIR" and yeIR"
b. x-y > y - x + x, ∈ R" and g'e R"
Case-I To Yorane: 1x-y11 > 1x11-11y1
XEIR" and YEIR" [given]
=> x-y e 1Rn [given]
11x-y11+11y11> 11x-y+x11 [Triangular cinequality Of weather normo]
Of wester normo]
$=> \chi-y + y >> x $
$\Rightarrow x-y > x - y - (1)$
Case-I To Grove: 11x-y11 > 11511 - 11x11
MEIR' 4 yeir' [quies]
=> y-n GIRn
Hence
y-xi + x > y-x+xi [Triangular inequal
=> 119-211 + 1/211 > 11911
= $ y-y > y - x $
=> 1x-y1 >, 1411 - 11x11 [Homogene, ity bringible]
=> 1x-y1 >, 1y11 - 1x11 [Homogene ity principle] (1)
= -1 x-y
= [1x-x1]
Hence from (1) (1) will com some
Hence from 1 10 my con say
=> Nection norms are Lipschitz continuous
Hence proved

Ans-3
Ans-3 (a) Given: $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ $\{x \otimes y = [xy] \}$ $[xym]_{mn}$
To find: walus of 1120 yll in terms of 11211 f 11y11, for \$ = 1, 2 and so
for $y = 1$ for $x \in \mathbb{R}^n$ $ x _p = \left(\sum_{i=1}^n x_i ^{\frac{n}{2}}\right)^{1/p}$
$\frac{1 \chi \otimes y _{\mathbf{p}} = 9[\chi_{1}y_{1} + \chi_{2}y_{2} + \chi_{1}y_{3} + \chi_{1}y_{m} + \chi_{2}y_{1} + \chi_{2}y_{2} + \chi_{2}y_{3} + \chi_{2}y_{m} + \chi_{$
[2ny1] + 2ny2 + 2n y3 2nyn
$\Rightarrow y_1 (x_1 + x_2 + x_n)+ y_2 (x_2 + x_2 + x_n)+\\+ y_n (x_1 + x_2 + x_n)$
$= > (n_1 + n_2 + n_1)(y_1 + y_2 + + y_n)$
$= > \frac{\sum_{i=1}^{n} y_i }{\sum_{j=1}^{n} y_j }$
=> x1 1y1 [from defination]

107 p= 00
1/x@yllo= man(élnigil wher isisn & isjsm)
=> max(xi yj) + i & I ton 4 + j & I ton
=> (man (12i) + i e Iton) (man /yil tje Ito,
=> x 00 y 00 [: x 00 = max(12)
1128 yll= 112/100/119/100

5. Given: Matrices A and B s.t A, BEIR and AlBane nonsingul
To shows: bone) & bon bon
Proof: fox a matrin Auchichis nonoigular & eRnan & (A) = A A
k(A) = 11 A 1111 A 1
Similarly (18) - 11811 118-111
simularly k(B) = 1811 11B-11
has hear wall had held held —
$k(A) k(B) = A A^{-1} B B^{+1} - (1)$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
also k (AB) = k AB
=> AB B ⁻¹ A ⁻¹ -(V)
also MABI < MAII MBH — (1) Continuente price
also AB < A B - (1) [submultiplic similarly B^A^- < B^ A^- - (11) property]
from (w) (1) 4(1) we get
110011110-10-111 5 [141] [18] [14-11 [18]
=> & (AB) < 14 B B ⁻¹ [from [v]]
- b(22) < A A ⁻ B B'
=> k(AB) < k(A)k(B) [from (D]
3) (40) (40)
k(AB) (k(A) k(B)
RIAB (Section 200)
Hence proved
700100 0100000

Answer-6

a. For the first part the output is as follows:

```
0.25
                                 2.590327e-318
0.125
                                1.295163e-318
0.0625
                                6.4758e-319
0.03125
                                3.2379e-319
0.015625
0.0078125
                                1.61895e-319
0.00390625
                                8.095e-320
0.001953125
                                4.0474e-320
0.0009765625
                                2.0237e-320
0.00048828125
                                 1.012e-320
0.000244140625
0.0001220703125
                                5.06e-321
6.103515625e-05
                                2.53e-321
3.0517578125e-05
                                1.265e-321
1.52587890625e-05
                                6.3e-322
7,62939453125e-06
                                3.16e-322
3.814697265625e-06
1.9073486328125e-06
                                1.6e-322
9.5367431640625e-07
                               8e-323
4.76837158203125e-07
                                4e-323
2.384185791015625e-07
                                2e-323
1.1920928955078125e-07
                                1e-323
5.960464477539063e-08
2.9802322387695312e-08
                                5e-324
1,4901161193847656e-08
                               0.0
7.450580596923828e-09
```

We are dividing 1 by 2 in each iteration of the loop and we are looping till the input doesn't become zero. The 64-bit machine follows Double Precision IEEE 756 floating-point standards in which the numbers are stored in 64 bits. Since we can continuously divide 1 infinite times till we reach 0 but in double precision, we can divide up to a minimum number, and any number smaller than that number would be considered as 0. This is called the underflow of the floating-point number.

b. For the second part the input is as follows:

```
1.1102230246251565e-16
```

In the code above the value of a is not changing and is always 1.0. Hence the code can be simplified as follows

```
[ ] eps = 1.
    b = 1. + eps
    while b!=1.0:
        eps /=2
        b = 1. + eps
    print(eps)

1.1102230246251565e-16
```

In the above simplified code, we are dividing eps by 2 continuously till the value of 1.0+eps does not become equal to 1.0. This is only possible when the value of eps becomes 0. The machine epsilon value for Double-precision is 2.220446049250313e-16. The value of eps at the end of the loop is 1.1102230246251565e-16. If further computation is carried out(let say hypothetically) then the value of eps would get in the order of 10^-17 which is smaller than machine epsilon and can't be represented by the machine and hence would be rounded to 0.

c. The output of the third part is as follows:

```
2.0
                           2.1944496275174755e+304
4.0
                           4.388899255034951e+304
8.0
                            8.777798510069902e+304
16.0
                           1.7555597020139804e+305
32.0
                            3.511119404027961e+305
64.0
                           7.022238808055922e+305
128.0
                           1.4044477616111843e+306
256.0
                            2.8088955232223686e+306
512.0
                            5.617791046444737e+306
1024.0
                            1.1235582092889474e+307
2048.0
                            2.247116418577895e+307
4096.0
                           4.49423283715579e+307
8192.0
                           8.98846567431158e+307
16384.0
                            inf
32768.0
```

The explanation is similar to the first part. In Double Precision IEEE 756 floating point standards the numbers are stored in 64 bits and the largest possible number which can be stored by a machine is 1.7976931348623157e+308. Any number greater than this would be considered as infinity. Hence in the code where we are doubling the number by 2 the largest possible number will be 8.98846567431158e+307 and after this the numbers would overflow.

Answer-7

a. The most accurate approximation of e is obtained when the value of $n = 10^8$. The value of relative error is 1.1077470720850393e-08. Ideally, the approximation value should increasingly become more accurate on increasing the value of n. But in this case, the max accuracy is achieved for $n = 10^8$ which is not the max value of n considered (max value considered was $n = 10^{15}$). Let us try to understand with the help of an example:

Consider $n = 10^{15}$

Using the formula $y = (1 + (1/n))^n$ for $n = 10^{15}$. On computing with computer we get y = 3.035035206549262 [Computed Using Python3] ------(1)

Machine Epsilon($\varepsilon_{\rm M}$) is a fixed number such that for any ${\rm x}\in{\rm R}$ and its fl(x) $\in{\rm F}$ we have $|x-fl(x)|/|x|={\rm O}(\varepsilon_{\rm M})$ ------(2)

For 64bit computer the the value of ε_{M} = 2.220446049250313e-16 [Double point precision computed using python] ----- (3)

Substituting the value of (1) and (3) in equation (2) and using equality we get the value of $x = 2.7182818284590446 \approx e$

Hence the precision is hampered due to machine epsilon. For the value $n = 10^{15}$ the

calculated value comes out to be $\left(1+\frac{1}{10^{15}}\right)^{10^{15}}$ = 2.7182818284590 (calculated using wolfram alpha) the value is rounded off to 3.035035206549262 because of machine epsilon. Machine epsilon can be understood as the unit roundoff.

b. The stopping criteria can be understood as follows: we are calculating 1/(x!) where $1 \le x \le \infty$. But in Double point precision the machine epsilon(ϵ_M) value is 2.220446049250313e-16. Hence any value smaller than ϵ_M would be considered as zero. So on reaching the smallest possible value that can be stored by machine the further values would become 0 and the loop will break