KIRTI KHATTAR ABOUT ME

Development researcher blending historical context and criminological theory with modern data analysis skills. Enthusiastic about supporting social programs through data-driven insights, and contextualized understanding of urban and rural challenges.

ABOUT THE DATA ANALYSIS PROJECT

The data analysis project is about the health activity data that provides the basic information about gender, age, height, weight, BMI, daily steps, calories intake, hours of sleep, heart rate, blood pressure, exercise hour per week, smoker, alcohol consumption per week, diabetic and heart disease. This project is analysed through MYSQL queries based on questions to be analysed.

What is the average age of all individuals in the dataset?

```
-- What is the average age of all
-- individuals in the dataset?

SELECT

TRUNCATE(AVG(age), 0) AS avg_age

FROM

health.health_activity_data;
```


How many individuals are males and how many are females?

```
-- How many individuals are males
  and how many are females?
SELECT
   gender, COUNT(id)
FROM
    health.health_activity_data
GROUP BY gender;
```


How many individuals are males and how many are females?

```
-- How many individuals are males
  and how many are females?
SELECT
   gender, COUNT(id)
FROM
    health.health_activity_data
GROUP BY gender;
```


Find the minimum, maximum and average of Daily Steps, Hours of Sleep and Calories Intake?

```
-- Find the mininum, maximum and average values for Daily_Steps
-- hours_of_sleep and calories intake.

Select min(Daily_Steps),

max(Daily_Steps),

truncate(avg(Daily_Steps),0) as avg_Daily_Steps

from health.health_activity_data;
```

Res	sult Grid 🔡 💎	Filter Rows:	Export
	min(Daily_Steps)	max(Daily_Steps)	avg_Daily_Steps
-	1016	19931	10717

```
-- Find the mininum, maximum and average values for Daily_Steps
-- hours_of_sleep and calories intake.

Select min(Hours_of_Sleep),

max(Hours_of_Sleep),

truncate(avg(Hours_of_Sleep),0) as avg_Hours_Of_Sleep

from health.health_activity_data;
```



```
-- Find the mininum, maximum and average values for Daily_Steps
-- hours_of_sleep and calories intake.

Select min(calories_intake),

max(calories_intake),

truncate(avg(calories_intake),0) as avg_Calories_Intake

from health.health_activity_data;
```

Res	sult Grid 🛮 🚻 🛮 💎 F	ilter Rows:	Export:	Vrap C
	min(calories_intake)	max(calories_intake)	avg_Calories_Intake	
•	1201	3498	2327	

Count the number of individuals who are smokers and non-smokers

```
-- count the number of individuals who
-- are smokers and non-smokers
select smoker, count(id)
from health.health_activity_data
group by smoker;
```

Re	sult Grid	**	Filt
	smoker	count(id)	
•	No	809	
	Yes	191	

What is the average BMI of all the individuals?

```
-- What is the average BMI of all individuals?

SELECT TRUNCATE(AVG(BMI), 0) as avg_BMI

FROM health.health_activity_data;
```


Calculate the average daily steps of males and females seperately.

```
-- Calculate the average daily steps
-- for males and females seperately

SELECT gender, TRUNCATE(AVG(daily_steps), 0) as daily_steps

FROM health.health_activity_data group by gender;
```

Res	sult Grid	Filter R	lo
	gender	daily_steps	
•	Male	10960	
	Female	10450	

Determine the average hours of sleep for individuals categorized into age groups.

```
-- Determine the average hours of sleep for
-- individuals categorized into age groups

SELECT

CASE

WHEN age BETWEEN 0 AND 12 THEN 'Children (0-12)'
WHEN age BETWEEN 13 AND 17 THEN 'Teenagers (13-17)'
WHEN age BETWEEN 18 AND 25 THEN 'Young Adults (18-25)'
WHEN age BETWEEN 26 AND 64 THEN 'Adults (26-64)'
WHEN age >= 65 THEN 'Seniors (65+)'END AS age_group,truncate( AVG(hours_of_sleep),0) AS average_sleep_hours
FROM health.health_activity_data GROUP BY age_group;
```

Re	sult Grid 🔢 🙌 Filt	ter Rows:
	age_group	average_sleep_hours
•	Adults (26-64)	6
	Seniors (65+)	6
	Young Adults (18-25)	6

Find the average BMI of individuals based on their daily steps activity levels.

```
-- Find the average BMI for individuals based on their Daily_Steps
-- activity levels (e.g., less than 5000 steps = 'Low',
-- 5000-10000 = 'Medium', over 10000 = 'High'

SELECT CASE WHEN Daily_Steps < 5000 THEN 'Low' WHEN Daily_Steps

BETWEEN 5000 AND 10000 THEN 'Medium' ELSE 'High' END AS ActivityLevel,
round(AVG(BMI), 2) as avg_BMI FROM health.health_activity_data GROUP BY ActivityLevel;
```

Re	sult Grid	Filter Rows:
	ActivityLevel	avg_BMI
•	Medium	26.78
	High	26.69
	Low	26.78
	2011	20.70

Calculate the average heart rate of individuals who have heart disease and those who do not have.

```
-- Calculate the average Heart_Rate for individuals
-- who have heart disease and those who do not
Select heart_disease, round(avg(heart_rate), 2) as avg_heart_rate
from health.health_activity_data group by Heart_Disease;
```


Determine the percentage of smokers who have heart disease and non-smokers who have heart disease.

```
-- Determine the percentage of smokers who have Heart_Disease
-- versus non-smokers who have Heart_Disease

SELECT

Smoker AS Smoking_Status,

(SUM(CASE WHEN Heart_Disease = 'Yes' THEN 1 ELSE 0 END) * 100.0) / COUNT(*) AS Percentage_With_Heart_Disease

FROM

health.health_activity_data

GROUP BY

Smoking_Status;
```

Res	sult Grid 🔡 💎	Filter Rows:
	Smoking_Status	Percentage_With_Heart_Disease
•	No	9.64153
	Yes	7.85340

Identify the top 10 individuals by ID, Age, Gender with the highest daily steps who also have a BMI greater than 25.

```
-- Identify the top 10 individuals (by ID, Age, Gender)
-- with the highest Daily_Steps who also have a BMI greater than 25.

SELECT ID, Age, Gender, Daily_Steps, BMI

FROM health.health_activity_data WHERE BMI > 25

ORDER BY Daily_Steps DESC LIMIT 10;
```

IX.	out one			NOWS.	
	ID	Age	Gender	Daily_Steps	BMI
•	113	79	Male	19931	25.64
	430	76	Female	19925	30.07
	325	33	Female	19816	32.8
	707	46	Female	19748	27.42
	649	43	Male	19734	27
	270	66	Male	19725	34.63
	521	67	Male	19714	28.46
	93	59	Female	19678	26.65
	729	24	Male	19621	31.58
	460	34	Male	19581	32.78