AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 3: Matrix Norms; Singular Value Decomposition

Xiangmin Jiao

SUNY Stony Brook

Outline

1 Matrix Norms (NLA §3)

Singular Value Decomposition (NLA§4-5)

Xiangmin Jiao Numerical Analysis I 2 / 14

Frobenius Norm

- One can define a norm by viewing $m \times n$ matrix as vectors in \mathbb{R}^{mn}
- One useful norm is Frobenius norm (a.k.a. Hilbert-Schmidt norm)

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2} = \sqrt{\sum_{j=1}^n ||a_j||_2^2}$$

i.e., 2-norm of (mn)-vector

• Furthermore,

$$||A||_F = \sqrt{\operatorname{tr}(A^T A)}$$

where tr(B) denotes trace of B, the sum of its diagonal entries

• Note that for $A \in \mathbb{R}^{n \times \ell}$ and $B \in \mathbb{R}^{\ell \times m}$,

$$||AB||_F \le ||A||_F ||B||_F$$

because

$$||AB||_F^2 = \sum_{i=1}^n \sum_{j=1}^m |a_i^T b_j|^2 \le \sum_{i=1}^n \sum_{j=1}^m (||a_i^T||_2 ||b_j||_2)^2 = ||A||_F^2 ||B||_F^2$$

General Definition of Matrix Norms

- However, viewing $m \times n$ matrix as vectors in \mathbb{R}^{mn} is not always useful, because matrix operations do not behave this way
- Similar to vector norms, general matrix norms has the following properties (for $A, B \in \mathbb{R}^{m \times n}$)

(1)
$$||A|| \ge 0$$
, and $||A|| = 0$ only if $A = 0$,
(2) $||A + B|| \le ||A|| + ||B||$,
(3) $||\alpha A|| = |\alpha| ||A||$.

• In addition, a matrix norm for $A, B \in \mathbb{R}^{n \times n}$ typically satisfies

$$||AB|| \le ||A|| ||B||$$
, (submultiplicativity)

which is a generalization of Cauchy-Schwarz inequality

Norms Induced by Vector Norms

 Matrix norms can be induced from vector norms, which can better capture behaviors of matrix-vector multiplications

Definition

Given vector norms $\|\cdot\|_{(n)}$ and $\|\cdot\|_{(m)}$ on domain and range of $A \in \mathbb{R}^{m \times n}$, respectively, the induced matrix norm $\|A\|_{(m,n)}$ is the smallest number $C \in \mathbb{R}$ for which the following inequality holds for all $x \in \mathbb{R}^n$:

$$||Ax||_{(m)} \leq C||x||_{(n)}.$$

- In other words, it is supremum of $||Ax||_{(m)}/||x||_{(n)}$ for all $x \in \mathbb{R}^n \setminus \{0\}$
- Maximum factor by which A can "stretch" $x \in \mathbb{R}^n$

$$||A||_{(m,n)} = \sup_{x \in \mathbb{R}^n, x \neq 0} ||Ax||_{(m)} / ||x||_{(n)} = \sup_{x \in \mathbb{R}^n, ||x||_{(n)} = 1} ||Ax||_{(m)}.$$

• Is vector norm consistent with matrix norm of $m \times 1$ -matrix?

Xiangmin Jiao Numerical Analysis I 5 / 14

• By definition

$$||A||_1 = \sup_{x \in \mathbb{R}^n, ||x||_1 = 1} ||Ax||_1$$

• What is it equal to?

By definition

$$||A||_1 = \sup_{x \in \mathbb{R}^n, ||x||_1 = 1} ||Ax||_1$$

- What is it equal to?
 - Maximum of 1-norm of column vectors of A
 - Or maximum of column sum of absolute values of A, "column-sum norm"
- ullet To show it, note that for $x\in\mathbb{R}^n$ and $\|x\|_1=1$

$$||Ax||_1 = \left\|\sum_{j=1}^n x_j a_j\right\|_1 \le \sum_{j=1}^n |x_j| ||a_j||_1 \le \max_{1 \le j \le n} ||a_j||_1 ||x||_1$$

• Let $k = \arg \max_{1 \le j \le n} \|a_j\|_1$, then $\|Ae_k\|_1 = \|a_k\|_1$, so $\max_{1 \le j \le n} \|a_j\|_1$ is tight upper bound

∞ -norm

By definition

$$||A||_{\infty} = \sup_{x \in \mathbb{R}^n, ||x||_{\infty} = 1} ||Ax||_{\infty}$$

• What is $||A||_{\infty}$ equal to?

By definition

$$||A||_{\infty} = \sup_{x \in \mathbb{R}^n, ||x||_{\infty} = 1} ||Ax||_{\infty}$$

- What is $||A||_{\infty}$ equal to?
 - Maximum of 1-norm of column vectors of A^T
 - ▶ Or maximum of row sum of absolute values of A, "row-sum norm"
- To show it, note that for $x \in \mathbb{R}^n$ and $||x||_{\infty} = 1$

$$||Ax||_{\infty} = \max_{1 \le i \le m} |a_{i,:}x| \le \max_{1 \le i \le m} ||a_{i,:}^T||_1 ||x||_{\infty}$$

where $a_{i,:}$ denotes ith row vector of A and $||a_{i,:}^T||_1 = \sum_{i=1}^n |a_{ij}|$

- Furthermore, $||a_{i::}^T||_1$ is a tight bound.
- Which vector can we choose for x for equality to hold?

• What is 2-norm of a matrix?

- What is 2-norm of a matrix?
 Answer: Its largest singular value, which we will explain in later lectures
- What is 2-norm of a diagonal matrix *D*?

- What is 2-norm of a matrix? Answer: Its largest singular value, which we will explain in later lectures
- What is 2-norm of a diagonal matrix D? Answer: $||D||_2 = \max_{i=1}^n \{|d_{ii}|\}$
- What is 2-norm of rank-one matrix uv^T ? Hint: Use Cauchy-Schwarz inequality.

- What is 2-norm of a matrix?
 Answer: Its largest singular value, which we will explain in later lectures
- What is 2-norm of a diagonal matrix D? Answer: $||D||_2 = \max_{i=1}^n \{|d_{ii}|\}$
- What is 2-norm of rank-one matrix uv^T? Hint: Use Cauchy-Schwarz inequality.

Answer: $||uv^T||_2 = ||u||_2 ||v||_2$.

Bounding Matrix-Matrix Multiplication

• Let A be an $I \times m$ matrix and B an $m \times n$ matrix, then

$$||AB||_{(I,n)} \le ||A||_{(I,m)} ||B||_{(m,n)}$$

• To show it, note for $x \in \mathbb{R}^n$

$$||ABx||_{(I)} \le ||A||_{(I,m)} ||Bx||_{(m)} \le ||A||_{(I,m)} ||B||_{(m,n)} ||x||_{(n)},$$

- In general, this inequality is not an equality
- In particular, $||A^p|| \le ||A||^p$ but $||A^p|| \ne ||A||^p$ in general for $p \ge 2$

Invariance under Orthogonal Transformation

- Given matrix $Q \in \mathbb{R}^{\ell \times m}$ with $\ell \geq m$. If $Q^TQ = I$, then Qx for $x \in \mathbb{R}^m$ corresponds to orthogonal transformation to coordinate system in \mathbb{R}^ℓ
- If $Q \in \mathbb{R}^{m \times m}$, then Q is said to be an *orthogonal* matrix

Theorem

For any $A \in \mathbb{R}^{m \times n}$ and $Q \in \mathbb{R}^{\ell \times m}$ with $Q^TQ = I$ and $\ell \geq m$, we have

$$||QA||_2 = ||A||_2$$
 and $||QA||_F = ||A||_F$.

In other words, 2-norm and Frobenius norms are invariant under orthogonal transformation.

Proof for 2-norm: $||Qy||_2 = ||y||_2$ for $y \in \mathbb{R}^m$ and therefore

 $\|QAx\|_2 = \|Ax\|_2$ for $x \in \mathbb{R}^n$. It then follows from definition of 2-norm.

Proof for Frobenius norm:

$$||QA||_F^2 = \operatorname{tr}((QA)^T QA) = \operatorname{tr}(A^T Q^T QA) = \operatorname{tr}(A^T A) = ||A||_F^2.$$

Outline

1 Matrix Norms (NLA §3)

2 Singular Value Decomposition (NLA§4-5)

Xiangmin Jiao Numerical Analysis I 11 / 14

Singular Value Decomposition (SVD)

• Given $A \in \mathbb{R}^{m \times n}$, its *SVD* is

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal

- If $A \in \mathbb{C}^{m \times n}$, then its SVD is $A = U \Sigma V^H$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal
- Singular values are diagonal entries of Σ , with entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$
- Left singular vectors of A are column vectors of U
- Right singular vectors of A are column vectors of V and are the preimages of the principal semiaxes of AS
- SVD plays prominent role in data analysis and matrix analysis

Geometric Observation

- Image of unit sphere under any $m \times n$ matrix is a hyperellipse
- Give unit sphere S in \mathbb{R}^n , AS denotes shape after transformation
- Singular values correspond to the principal semiaxes of hyerellipse
- Left singular vectors are oriented in directions of principal semiaxes of AS
- Right singular vectors are preimages of principal semiaxes of AS
- $Av_j = \sigma_j u_j$ for $1 \le j \le n$

Two Different Types of SVD

• Full SVD: $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ is

$$A = U\Sigma V^T$$

Two Different Types of SVD

• Full SVD: $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ is

$$A = U\Sigma V^T$$

• Thin SVD (Reduced SVD): $\hat{U} \in \mathbb{R}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \ge n$)

$$A = \hat{U}\hat{\Sigma}V^T$$

Two Different Types of SVD

• Full SVD: $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$, and $V \in \mathbb{R}^{n \times n}$ is

$$A = U\Sigma V^T$$

• Thin SVD (Reduced SVD): $\hat{U} \in \mathbb{R}^{m \times n}$, $\hat{\Sigma} \in \mathbb{R}^{n \times n}$ (assume $m \ge n$)

$$A = \hat{U}\hat{\Sigma}V^T$$

Furthermore, notice that

$$A = \sum_{i=1}^{\min\{m,n\}} \sigma_i u_i v_i^T$$

so we can keep only entries of U and V corresponding to nonzero σ_i .