CAPÍTULO 5 Linearidade e o Princípio da Superposição, o Equivalente Thévenin e a Máxima Transferência de Potência

5.1 Introdução

Em análise de circuitos, às vezes queremos apenas verificar o que ocorre entre um par de terminais. Para isso foram criados os equivalentes de Thévenin e Norton. Um circuito equivalente de Thévenin é formado pela fonte de tensão de Thévenin em série com a resistência de Thévenin. Um circuito equivalente de Norton é formado pela fonte de corrente de Norton em paralelo com a resistência de Thévenin. Tais técnicas são importantes em uma aplicação específica: na determinação da máxima transferência de potência, pois através da resistência equivalente de Thévenin podemos determinar qual carga deve ser ligada no circuito para obter o máximo aproveitamento da energia.

Nessa prática também verificaremos uma importante propriedade dos circuitos lineares que diz que: quando um sistema linear é alimentado por mais de uma fonte independente, a resposta total é igual à soma das respostas individuais de cada fonte.

Pré-relatório: Elabore uma introdução teórica sobre Princípio da Superposição, Teoremas de Thévenin e Norton, e Máxima Transferência de Potência.

Na análise de circuitos elétricos lineares, diferentes técnicas teóricas são utilizadas para simplificar e otimizar a compreensão do comportamento do circuito. Uma delas é o Princípio da Superposição, que afirma que, em um circuito linear com múltiplas fontes independentes, a resposta total em um ponto específico é a soma das respostas individuais de cada fonte atuando sozinha. Matematicamente, podemos expressar isso como:

$$v = v_1 + v_2 + ... + v \square$$
 $i = i_1 + i_2 + ... + i \square$

onde v e i são a tensão e corrente totais, respectivamente, e $v \square$, $i \square$ são as respostas individuais de cada fonte analisada separadamente, considerando as demais fontes desligadas (fontes de tensão substituídas por curto-circuitos e fontes de corrente substituídas por circuitos abertos).

Os teoremas de Thévenin e Norton também são métodos fundamentais para simplificar circuitos elétricos complexos. O Teorema de Thévenin estabelece que qualquer circuito linear, observado através de dois terminais, pode ser reduzido a uma fonte de tensão equivalente V_{TH} em série com uma resistência equivalente R_{TH} . Por outro lado, o Teorema de Norton indica que esse mesmo circuito pode ser representado por uma fonte de corrente equivalente I_N em paralelo com a resistência equivalente R_{TH} . Essas relações são dadas pelas fórmulas:

$$V_{\mathit{TH}} = V_{\mathit{AB}}$$

$$R_{TH} = V_{AB} / I_{AB}$$

$$I_N = V_{TH} / R_{TH}$$

Por fim, a Máxima Transferência de Potência ocorre quando a resistência da carga R_L conectada aos terminais do circuito é igual à resistência de Thévenin (ou Norton). Nessas condições, a potência transferida para a carga é máxima, expressa matematicamente por:

$$R_L = R_{TH}$$

$$P_{max} = (V_{TH})^2 / (4 * R_{TH})$$

Neste relatório, realizaremos experimentos práticos no laboratório para demonstrar e validar esses conceitos teóricos.

5.1.1 Objetivos

- 1. Investigar a propriedade da linearidade dos componentes de um circuito e verificar o Princípio da Superposição.
- 2. Verificar o teorema de Thévenin, obtendo o circuito equivalente (Tensão de Thévenin e Resistência Equivalente de Thévenin).
- 3. Verificar o Teorema de Máxima Transferência de Potência.

5.2 Materiais e Métodos

5.2.1 Pré-relatório: Análise e Memória de Cálculo

Parte A - Linearidade e Princípio da Superposição

1. Dado o circuito da Figura 5.1, calcule os valores da tensão de saída V_{out} para cinco valores da tensão de entrada V_{in} : 2V, 4V, 5V, 8V e 10V. (Preenchendo a Tabela 5.1).

Figura 5.1: Circuito 1

Memória de Cálculo:

Pela LCK

$$\frac{V_{out}}{3.3k}+\frac{V_{out}}{1k}+\frac{V_{out}-V_{in}}{2.2k}=0$$

Escrevendo V_{out} em função de V_{in}

$$\begin{split} \frac{V_{out}}{3.3k} + \frac{V_{out}}{1k} + \frac{V_{out}}{2.2k} &= \frac{V_{in}}{2.2k} \\ \frac{11.6 \cdot V_{out}}{6.6k} &= \frac{V_{in}}{2.2k} \\ V_{out} &= \frac{3 \cdot V_{in}}{11.6} \end{split}$$

Variando V_{in} com os valores de 2, 4, 5, 8 e 10 V

$$\begin{split} V_{out_{2V}} &= \frac{3 \cdot 2}{11.6} = 0.517 \text{ V} \\ V_{out_{4V}} &= \frac{3 \cdot 4}{11.6} = 1.034 \text{ V} \\ V_{out_{5V}} &= \frac{3 \cdot 5}{11.6} = 1.293 \text{ V} \\ V_{out_{8V}} &= \frac{3 \cdot 8}{11.6} = 2.068 \text{ V} \\ V_{out_{10V}} &= \frac{3 \cdot 10}{11.6} = 2.586 \text{ V} \end{split}$$

2. Dado o circuito da figura 5.2, calcule o valor da tensão de saída V_{out} . Note que a fonte de tensão é fixa e igual a 5V. (Preencha a Tabela 5.2).

Figura 5.2: Circuito 2

Memória de Cálculo:

Pela LCK

$$\frac{V_{out}}{3.3k} + \frac{V_{out}}{2.2k} + \frac{V_{out} - V_{in}}{1k} = 0$$

Escrevendo V_{out} em função de V_{in}

$$\begin{split} \frac{V_{out}}{3.3k} + \frac{V_{out}}{2.2k} + \frac{V_{out}}{1k} &= \frac{V_{in}}{1k} \\ \frac{11.6 \cdot V_{out}}{6.6k} &= \frac{V_{in}}{1k} \\ V_{out} &= \frac{6.6 \cdot V_{in}}{11.6} \end{split}$$

Substituindo para $V_{in} = 5 \text{ V}$

$$V_{out} = \frac{6.6 \cdot 5}{11.6} = 2.844 \text{ V}$$

3. Com base nos resultados anteriores, utilize o Princípio da Superposição para determinar os valores da tensão de saída V_{out} no circuito da Figura 5.3, novamente considerando V_{in} = 2V, 4V, 5V, 8V e 10V. (Preencha a Tabela 5.3).

Figura 5.3: Circuito 3

Memória de Cálculo:

Desligando a fonte de 5V

$$\begin{split} \frac{V_{out}}{3.3k} + \frac{V_{out}}{1k} + \frac{V_{out}}{2.2k} &= \frac{V_{in}}{2.2k} \\ &= \frac{11.6 \cdot V_{out}}{6.6k} &= \frac{V_{in}}{2.2k} \\ &V_{out} &= \frac{3 \cdot V_{in}}{11.6} \end{split}$$

Desligando a fonte V_{in}

$$\begin{split} \frac{V_{out}}{3.3k} + \frac{V_{out}}{2.2k} + \frac{V_{out}}{1k} &= \frac{V_{in_5 \text{V}}}{1k} \\ \frac{11.6 \cdot V_{out}}{6.6k} &= \frac{V_{in_5 \text{V}}}{1k} \\ V_{out} &= \frac{6.6 \cdot V_{in_5 \text{V}}}{11.6} \\ V_{out} &= \frac{6.6 \cdot 5}{11.6} &= 2.844 \text{ V} \end{split}$$

Por superposição

$$V_{out} = \frac{3 \cdot V_{in}}{11.6} + 2.844$$

Variando V_{in} com os valores de 2, 4, 5, 8 e 10 V

$$\begin{split} V_{out_{2V}} &= \frac{3 \cdot 2}{11.6} + 2.844 = 3.362 \text{ V} \\ V_{out_{4V}} &= \frac{3 \cdot 4}{11.6} + 2.844 = 3.879 \text{ V} \\ V_{out_{5V}} &= \frac{3 \cdot 5}{11.6} + 2.844 = 4.137 \text{ V} \\ V_{out_{8V}} &= \frac{3 \cdot 8}{11.6} + 2.844 = 4.913 \text{ V} \\ V_{out_{10V}} &= \frac{3 \cdot 10}{11.6} + 2.844 = 5.431 \text{ V} \end{split}$$

Parte B - Teorema de Thévenin

Dado o circuito mostrado na Figura 5.4,

Figura 5.4: Circuito 4

1. Calcule a tensão V_L . (Preencha a Tabela 5.5)

Memória de Cálculo:

Pela LCK

$$\frac{V_a - 10}{300} + \frac{V_a}{560} + \frac{V_a - V_b}{1200} = 0$$
$$\frac{V_b - V_a}{1200} + \frac{V_b}{560} + \frac{V_b}{1120} = 0$$

Reorganizando

$$\frac{56(V_a - 10)}{16800} + \frac{30 \cdot V_a}{16800} + \frac{14(V_a - V_b)}{16800} = 0$$
$$56V_a - 560 + 30V_a + 14V_a - 14V_b = 0$$
$$100V_a - 14V_b = 560$$

$$\frac{28(V_b - V_a)}{33600} + \frac{60 \cdot V_b}{33600} + \frac{30 \cdot V_b}{33600} = 0$$
$$28 \cdot V_b - 28 \cdot V_a + 90 \cdot V_b = 0$$
$$118 \cdot V_b = 28 \cdot V_a \Rightarrow V_b = \frac{14}{59}V_a$$

Substituindo (2) em (1):

$$100V_a - 14 \cdot \frac{14}{59}V_a = 560$$

$$100V_a - \frac{196}{59}V_a = 560$$

$$\frac{5704}{59}V_a = 560$$

$$V_a = \frac{560 \cdot 59}{5704} \approx 5.794 \text{ V}$$

$$V_b = \frac{14}{59} \cdot 5.794 \approx 1.375 \text{ V}$$

Definindo e calculando V_L

$$V_L = V_a - V_b$$

 $V_L = 5.794 - 1.375$
 $V_L = 4.419 \text{ V}$

2. Calcule a tensão e a resistência de Thévenin vistos a partir dos terminais do resistor R_L . (Preencha a Tabela 5.5)

Memória de Cálculo:

Calculando a R_T

$$R_{\text{eq}} = (R_1 \parallel R_2) + (R_3 \parallel (R_4 + R_5))$$

$$R_{\text{eq}} = (300 \parallel 560) + (560 \parallel (820 + 300))$$

$$R_{\text{eq}} = (300 \parallel 560) + (560 \parallel 1120)$$

$$R_{\text{eq}} = \frac{300 \cdot 560}{300 + 560} + \frac{560 \cdot 1120}{560 + 1120}$$

$$R_{\text{eq}} = 195.348 + 373.333 = 568.681 \Omega$$

Calculando a V_T

Como não existe fluxo de corrente em fio único, $V_b=0$ Pela LCK

$$\begin{split} \frac{V_a - 10}{300} + \frac{V_a}{560} &= 0 \\ \frac{V_a}{300} + \frac{V_a}{560} &= \frac{10}{300} \\ 560 \cdot V_a + 300 \cdot V_a &= 560 \cdot 10 \\ 860 \cdot V_a &= 5600 \\ V_a &= \frac{5600}{860} &= 6.511 \text{ V} \end{split}$$

Logo

$$\begin{aligned} V_T &= V_a - V_b \\ V_T &= 6.511 - 0 \\ V_T &= 6.511 \text{ V} \end{aligned}$$

3. Faça o diagrama do circuito equivalente de Thévenin e determine a queda de tensão sobre o resistor R_L . Compare o resultado com o calculado no item 1.

Memória de Cálculo:

O resultado é exatamente o mesmo do resultado calculado no item 1.

5.2.2 Parte prática

Material necessário: Fontes de tensão contínua, multímetro e resistores.

Parte A - Linearidade e o Princípio da Superposição

- 1. Monte o circuito da Figura 5.1. Meça, com o voltímetro, o valor da tensão de saída V_{out1} para os cinco valores da tensão de entrada V_{in} : 2V, 4V, 5V, 8V e 10V. (Preencha a Tabela 5.1)
- 2. Monte o circuito da Figura 5.2. Meça, com o voltímetro, a tensão de saída V_{out2} . (Preencha a Tabela 5.2)
- 3. Monte o circuito da Figura 5.3. Meça, com o voltímetro, a tensão V_{out3} para $V_{in} = 2V$, 4V, 5V, 8V e 10V. (Preencha a Tabela 5.3)
- 4. Some os valores de V_{out} obtidos com o circuito da Figura 5.1 com os valores obtidos com o circuito da Figura 5.2. (Preencha V_{out4} na Tabela 5.4)

Parte B - Teorema de Thévenin

- 1. Monte o circuito da Figura 5.5, utilizando os valores de resistores indicados.
- 2. Meça o valor da tensão V_L utilizando o multímetro. (Preencha a Tabela 5.5).
- 3. Determinação da tensão de Thévenin V_{TH} : retire o resistor R_L e meça a tensão de circuito aberto V_{OC} , conforme mostrado na Figura 5.5. (Preencha a Tabela 5.5).

Figura 5.5: Circuito 5

4. Determinação do resistor de Thévenin RTH: retire a fonte de tensão V_s , curto-circuite os terminais a ela ligados, e meça a resistência equivalente vista entre os nós de interesse (Figura 5.6). (Preencha a Tabela 5.5).

Figura 5.6: Circuito 6

5. Monte o circuito equivalente de Thévenin (Figura 5.7) utilizando a fonte de tensão ajustável com valor igual a V_{TH} obtida no item 3, um resistor igual ao valor de R_{TH} determinado no item 4 e o mesmo valor de R_L anterior.

Figura 5.7: Circuito 7

6. Meça o valor da tensão em R_L, utilizando o multímetro e compare com o valor obtido no item 2. Analise os resultados e descreva suas observações em "Discussão e Conclusão".

Parte C - Máxima Transferência de Potência

- 1. Monte novamente o circuito da Figura 5.7, mas agora utilizando 7 valores diferentes para R_L , sendo três resistores menores do que R_{TH} determinado na parte B, três maiores, e o último resistor de valor igual a R_{TH} .
- 2. Meça a potência dissipada em R_L para cada resistor utilizado. (Preencha a Tabela 5.6)
- 3. Faça um gráfico da potência dissipada em função de R_L.

5.3 Resultados

Parte A - Linearidade e o Princípio da Superposição

Tabela 5.1: V_{out1}

V _{in} (V)	Calculado (V)	Simulado (V)	Medido (V)	E (%)
2	0,517	0,517	0,528	2,12
4	1,034	1,034	1,03	0,38
5	1,293	1,293	1,30	0,54
8	2,068	2,068	2,08	0,58
10	2,586	2,586	2,60	0,54

Tabela 5.2: V_{out2}

	Calculado (V)	Simulado (V)	Medido (V)	E (%)
5	2,844	2,844	2,83	0,49

Tabela 5.3: V_{out3}

V _{in} (V)	Calculado (V)	Simulado (V)	Medido (V)	E (%)
2	3,362	3,362	3,36	0,05
4	3,879	3,879	3,87	0,23
5	4,137	4,137	4,13	0,16
8	4,913	4,913	4,90	0,26
10	5,431	5,431	5,43	0,01

Tabela 5.4: Princípio de Superposição: $V_{\text{out4}} = V_{\text{out1}} + V_{\text{out2}}$

V _{in} (V)	Calculado (V)	Simulado (V)	Medido (V)	E (%)
2	3,362	3,362	3,358	0,11
4	3,879	3,879	3,86	0,48
5	4,137	4,137	4,13	0,16
8	4,913	4,913	4,91	0,06
10	5,431	5,431	5,43	0,01

Parte B - Teorema de Thévenin

Tabela 5.5: Teorema de Thévenin

	Calculado	Simulado	Medido	E (%)
$V_{L}(V)$	4,418	4,418	4,42	0,04
$V_{TH}(V)$	6,511	6,511	6,52	0,13
$R_{TH}(\Omega)$	568,681	568,681	562	1,17

Parte C - Máxima Transferência de Potência

Tabela 5.6: Potência dissipada em $R_{\rm L}$

4.431

$R_L(\Omega)$	Potência (mW)
150	12,696
300	17,328
450	18,818
562	18,913
750	18,650
900	17,956
1050	17,283

150 m = 1.38 V 300 m = 2.28 V 450 m = 2.91 V 600 m = 3.38 V 750 m = 3.74 V 900 m = 4.02 V 4.26 V

Gráfico "Potência (mW) vs R_L (Ω)"

5.4 Discussão e Conclusão

Parte A - Linearidade e o Princípio da Superposição

Compare os resultados da tabela 5.3 com os da tabela 5.4. Compare os valores medidos com os calculados. Justifique eventuais discrepâncias.

Medido 5.3 (V)	Medido 5.4 (V)	Diferença (V)
3,36	3,358	0,002
3,87	3,86	0,01
4,13	4,13	0
4,90	4,91	-0,01
5,43	5,43	0

As eventuais discrepâncias nos resultados medidos podem ser explicadas principalmente pela precisão de arredondamento da escala do multímetro.

Parte B - Teorema de Thévenin

Compare os valores calculados, medidos e simulados.

Os resultados calculados, medidos e simulados do Teorema de Thévenin são considerados adequados e o erro medido pode ser explicado pela imprecisão dos resistores utilizados em sala de aula em se adequar exatamente ao valor calculado.

Parte C - Máxima Transferência de Potência

Explique os resultados e descreva como o teorema da Máxima Transferência de Potência se aplica.

O teorema da Máxima Transferência de Potência, que afirma que a potência máxima dissipada em R_L será alcançada quando $R_L = R_{TH}$ é verificada pelos cálculos, descrevendo uma parábola aproximadamente em torno deste ponto. As resistências medidas menores que R_{TH} estão aquém do valor máximo de potência dissipada e cresce rapidamente, já os valores maiores do que R_{TH} além de estar aquém decrescem mais devagar. Sendo a resistência de maior dissipação de potência a calculada em 600Ω , sendo a mais próxima de R_{TH} .

5.5 Questões para o relatório

1. Linearidade e o Princípio da Superposição

Considere novamente o circuito mostrado na Figura 5.3. Faça um gráfico da tensão $V_{\text{out}3}$ em função da tensão V_{in} . Indique se a propriedade de linearidade se verifica neste circuito. Explique.

Gráfico " $V_{out3}(V)$ em função da tensão $V_{in}(V)$ " e explicação.

Sim, a propriedade de linearidade se verifica neste circuito, dado que o gráfico montado pelo par ordenado (V_{out3} , V_{in}) é uma reta, o que pode ser verificado também pela equação que descreve a relação entre esses pontos serem lineares nas faixas de temperatura e no ambiente observados, sendo V_{out3} definida como: $3 \cdot V_{in}/11.6 + 2.844$