15-750: Graduate Algorithms

April 28, 2017

Lecture 37: Proving NP-Completeness via reductions

Lecturer: David Witmer Scribe: Ilaï Deutel

1 Review of Lecture 36

Definition 1.1. Language L_1 is **poly-time reducible** to language L_2 , $L_1 \leq_p L_2$, if there exists poly-time compatible $f: \{0,1\}^* \to \{0,1\}^*$ such that $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Definition 1.2. A language is **NP-complete** if:

- 1. $L \in NP$
- 2. $L' \leq_p L$ for all $L' \in NP$ (L is NP-hard)

Remark 1.3. If L is NP-hard and $L \leq_p L'$, then L' is NP-hard

Theorem 1.4. CNF·SAT is NP-complete.

Remark 1.5. Example of CNF·SAT problem: is there a tuple of boolean variables $(x_1, x_2, x_3, ...)$ such that $(x_1 \lor x_2 \lor \bar{x_3}) \land (x_7 \lor x_{10} \lor x_{15}) \land ...$ is true.

2 Outline of this lecture

First, we will show that 3 coloring is NP-complete. We will do this in two main steps: First, we will reduce from 3-SAT, CNF-SAT with three variables per clause, to a problem called NAE-SAT, which is a variant of SAT in which we require each clause to have both a true literal and a false literal. Then we will reduce from NAE-SAT to 3 coloring. We will also sketch a proof that 3-coloring planar graphs is NP-complete.

Second, we will show that the independent set problem is NP-complete. Unlike SAT, NAE-SAT, and 3-coloring, independent set is not a constraint satisfaction problem (CSP).

3 Preliminary definitions and results

Definition 3.1.

- 3.SAT: Every clause has at most 3 literals.
- E3·SAT: Every clause has exactly 3 literals.

Proposition 3.2. $CNF \cdot SAT \leq_p 3 \cdot SAT$

Proposition 3.3. $3 \cdot SAT \leq_p E3 \cdot SAT$

For technical reasons, it will be easier for us to reduce from 3.SAT and E3.SAT.

4 NAE-SAT

Definition 4.1.

- NAE·SAT (not-all-equal SAT): Like CNF·SAT, except clause is satisfied if at least one literal is true and one is false
- NAE- $k \cdot$ SAT: All clauses have length at most k
- NAE-Ek·SAT: All clauses have length exactly k

Remark 4.2. NAE-SAT is clearly in NP.

Example 4.3.

$$(x,y,z) \wedge (x,\bar{y}) \wedge \dots$$

is satisfied by x = T, y = T, z = F

Remark 4.4. If X satisfies NAE-SAT instance φ , then so does \bar{X} (negate every x_i)

Theorem 4.5. $3 \cdot SAT \leq_p NAE - 3 \cdot SAT$

We will reduce via NAE-4·SAT.

Theorem 4.6. $3 \cdot SAT \leq_p NAE - 4 \cdot SAT$

Proof. Given 3·SAT instance φ , make NAE-4·SAT instance ϕ' by adding new variable S to every clause (clearly in poly-time):

Example: $(x_3 \vee \bar{x_5} \vee \bar{x_5}) \to (x_3, \bar{x_5}, \bar{x_5}, S)$

Let's prove the following claim: φ satisfiable as 3·SAT $\Leftrightarrow \varphi'$ satisfiable as NAE-4·SAT

- (\Rightarrow) Say φ has satisfying assignment X. Then (X, S = F) satisfies φ' : since X satisfies φ , every clause has one T and one F(S).
- (\Leftarrow) Say φ' has satisfying assignment (X, S).
 - If S = F, set Y = X.
 - If S = T, then (\bar{X}, F) satisfies φ' . Set $Y = \bar{X}$.

Y satisfies φ .

Theorem 4.7. $NAE-4\cdot SAT \leq_p NAE-3\cdot SAT$

Proof. Create a new variable w_i for each input clause:

Convert the i^{th} NAE-4·SAT clause (a, b, c, d) to 2 clauses (a, b, w_i) , (\bar{w}_i, c, d) (clearly in polytime).

Let's prove the following claim: (a, b, c, d) is NAE \Leftrightarrow there exists $w_i \in \{F, T\}$ such that (a, b, w_i) is NAE and (\bar{w}_i, c, d) is NAE.

- (\Leftarrow) If (a,b,w_i) and (\bar{w}_i,c,d) are both NAE, then (a,b,c,d) is NAE (can't set w_i otherwise)
- (\Rightarrow) If (a, b, c, d) is NAE, then we can satisfy (a, b, w_i) and (\bar{w}_i, c, d) .
 - Case 1: If $a \neq b$, (a, b, w_i) is NAE, make (\bar{w}_i, c, d) NAE by setting $w_i = c$.
 - Case 2: If $a \neq c$, set $w_i = c \neq a$.
 - Other cases are similar

2

5 Coloring

Definition 5.1. 3·COL: Decision problem: Given G, does there exist a valid 3-coloring (each edge has different-colored endpoints) of G?

Again, 3·COL is clearly in NP.

Theorem 5.2. $NAE-E3\cdot SAT \leq_p 3\cdot COL$

Proof. Given NAE-E3·SAT instance φ , we want to construct a 3-coloring instance (graph) G_{φ} .

- 1. Start with 1 vertex ground G.
- 2. Add two vertices $x_i, \bar{x_i}$ for each variable i.
- 3. Draw triangles $(x_i, \bar{x_i}, G)$ for each variable i.

- 4. Without loss of generality, color Ground Y.
- 5. Force $x_i, \bar{x_i}$ to have different colors in $\{R, B\}$.

We can think of B = True, R = False. Any valid 3-coloring of G_{φ} induces a truth assignment to X.

We want to encode NAE constraint C as a "gadget": subgraph should be colorable \Leftrightarrow the corresponding assignment satisfies C. It turns out that a triangle satisfies this property. For each clause C, we can add a triangle on three new vertices. Then we add edges connecting the three triangle vertices to the vertices corresponding to the literals in C. See Example 5.3.

Example 5.3. $C_1 \wedge C_2$, where $C_1 = (x_1, x_2, x_3)$ and $C_2 = (\bar{x_1}, x_2, \bar{x_3})$

It is then easy to see that the vertices of the triangle for C have a valid 3-coloring if and only if the truth assignment corresponding to this 3-coloring satisfies C.

We can also consider the 3-coloring problem restricted to planar graphs.

Definition 5.4. PLANAR-3·COL: $3\cdot COL$, where G is planar

Planar 3-coloring is also NP-hard.

Theorem 5.5. $3 \cdot COL \leq_p PLANAR - 3 \cdot COL$

Proof. Given 3·COL instance G, we want to construct a PLANAR-3·COL instance G'. Draw G in the plane (with edge crossing), replace edge crossings with "crossover gadget"!

Properties 5.6.

- 1. Every valid 3-coloring χ has $\chi(a) = \chi(b)$, $\chi(c) = \chi(d)$
- 2. Given $c_1, c_2 \in \{R, B, Y\}$, \exists valid 3-coloring χ such that $c_1 = \chi(a) = \chi(b)$, $c_2 = \chi(c) = \chi(d)$

Theorem 5.7. Any PLANAR graph can be colored with 4 colors

Remark 5.8.

- PLANAR-3·COL is NP-hard
- PLANAR-4·COL is easy: always answer yes

6 Independent Set

So far, we have talked about constraint satisfaction problems (CSPs). Let's talk about a problem that is not a CSP.

Definition 6.1. Recall: An **independent set** is a subset S of vertices with no edge between any pair in S.

IND-SET: Decision problem: Given G, k, does G have an independent set of size $\geq k$?

IND-SET is clearly in NP.

Theorem 6.2. $E3 \cdot SAT \leq_p IND \cdot SET$

Proof. Given E3-SAT instance, we construct an IND-SET instance.

Say our E3·SAT instance has m clauses. In this reduction, we again use a triangle as our gadget. For each clause, we add a vertex for each literal and all three edges on these vertices. We then have m disjoint, disconnected triangles. Note that any independent set has size at most m: one vertex per triangle. Then add an edge between each pair of vertices corresponding to opposite literals. Consider Example 6.3.

Example 6.3. $(x_1 \lor x_2 \lor x_3) \land (\bar{x_1} \lor \bar{x_2} \lor \bar{x_3}) \land (\bar{x_1} \lor x_2 \lor x_3).$

We then claim that there is an independent set of size $m \Leftrightarrow$ there is a satisfying assignment for the E3·SAT instance.