Segunda avaliação Economia de Energia

Prof. Rudi van Els

Orientação

- A avaliação pode ser realizado em grupos de até 3 pessoas ou individualmente.
- Deve ser escrito na forma de uma monografia obedecendo as normas de escrita científica com uma folha de rosto com os dados dos autores, introdução, desenvolvimento, resultados, conclusão e anexos
- O desenvolvimento deve ter a memória de cálculo
- Os resultados e conclusões devem se basear nos dados calculados e devem ser substanciados com figuras, tabelas ou gráficos.
- O algoritmo usado para fazer as projeções deve ser listado no anexo. Recomende-se o uso de uma linguagem de programação (python, C, matlab, octave, R etc) e não o uso de planilha de cálculo;
- O trabalho deve ter entre 10 e 15 páginas.

Introdução

- Considere um país representado por meio de sistema de energia de referencia com um setor de transporte de carga e um setor de transporte de pessoas e uma demanda de eletricidade para diversos usos.
- A energia elétrica é fornecida por um complexo de geração termoelétrica a partir de óleo combustível (HFO) e uma pequena parte (5%) com centrais termelétricas a diesel. O combustível para alimentar o transporte de carga e passageiros são representados pelo diesel e gasolina respectivamente.
- O Sistema de referência (RES) tem o seguinte estrutura:

Dados do BEN

- A partir dos dados do Balanço Energético Nacional (BEN) obtém-se os dados do consumo de energia pelo setor de transporte.
- Para simplificar o modelo vamos contabilizar para o transporte de carga e geração termoelétrica o diesel e biodiesel, enquanto para transporte de passageiros vamos juntar a gasolina e álcool etílico anidro e hidratado.
- A demanda de eletricidade é tirada das tabelas de consumo final por fonte do BEN

Dados do BEN Interativo

- Consumo de Energia por setor
 - Setor transporte rodoviário

Fonte	2020	2021	2022
Biodiesel	4.007,2	4.282,9	4.005,2
Gasolina Automotiva	20.136,5	22.100,3	24.192,4
Gás Natural	1.658,7	1.907,9	1.991,4
Álcool Etílico Anidro	5.221,7	5.893,5	6.513,6
Álcool Etílico Hidratado	10.115,5	8.946,1	8.641,8
Óleo Diesel	33.946,3	37.160,3	38.595,5

Tabela: dados em $10^6 tep$

Dados do BEN Interativo

 Consumo Final por fonte

Grupo	2020	2021	2022
► Alcatrão (1)	0,2	0,2	0,2
▶ Bagaço de Cana (1)	32,1	28,3	28,0
▶ Biodiesel (1)	5,0	5,2	4,9
► Carvão Mineral (1)	3,2	3,6	3,6
► Carvão Vegetal (1)	4,3	4,6	4,4
► Coque de Carvão Mineral (1)	6,9	7,8	7,4
► Derivados de Petróleo (9)	96,0	102,9	108,9
► Eletricidade (1)	47,1	49,3	50,4
► Gás Natural (1)	14,6	16,7	17,1
► Gás de Coqueria (1)	1,2	1,5	1,4
► Lenha (1)	17,7	18,3	18,4
▶ Outras Fontes Primárias (1)	9,3	9,9	10,8
► Álcool Etílico (1)	16,1	15,5	15,8

Tabela: dados em $10^6 tep$

Scenário Bussiness as Usual (BaU)

- Monta as equações do sistema e a partir disso pode-se calcular a energia total que será necessário para atender a demanda de eletricidade e transporte deste país.
- A partir dos dados de 2020, 2021 e 2022 é possível fazer uma projeção dos consumo de 2023 a 2030, assumindo que o crescimento anual será a média do crescimento dos anos anteriores.
- Faça um programa de computador que calcula e plota a evolução da consumo de energia por setor

Scenário Eletrificação do transporte

- Considere a entrada de uma opção de transporte de passageiros por meio de veículos elétricos para transporte de pessoas e carga neste modelo. Isso é representado no RES a seguir, onde a energia elétrica para movimentar esses veículos é produzido pelo complexo termoelétrico do pais.
- Uma parcela p (em %) da demanda de transporte de pessoas é realizada pelos veículos elétricos pessoas e uma parcela q (em %) da demanda de carga é realizada por veículos elétricos de carga.
- A proposta é avaliar o impacto dessa introdução de uma tecnologia nova na demanda de energia
- Cada grupo pode escolher o valor de p ou q

Perguntas

- Qual é o impacto de **p** e **q** porcento de transporte de pessoas e cargas com veículos elétricos na demanda de geração de energia elétrica do pais?
- Quanto é o impacto no custo sabendo que:
- 1 m3 de óleo diesel = 0,848 TEP
- 1 m3 de Gasolina = 0,770 TEP
- 1 m3 de Óleo combustível = 0,959 TEP
- Pesquisa o custo dos combustíveis e coloca a fonte dos dados no texto.

Impacto nas Emissões

Fatores de emissão de CO2

Combustível	TCO2/mil TEP
Gasolina	2901
Oleo diesel	3102

Fatores de emissão de CO2 para a geração de energia elétrica @ 37%

Combustível	TCO2/ GWh
Óleo combustível	773,88

Quanto é o impacto de p e q % de penetração de veículos elétricos de transporte de pessoas nas emissões de CO2 ?

Pode usar outras metodologias de cálculo, desde que apontem a fonte dos dados.