PENDAHULUAN

Materi kuliah hingga UTS:

Minggu ke-	Kemampuan Akhir Sesuai Tahapan Belajar (Sub- CPMK)	Materi Pembelajaran	
(1)	(2)	(3)	
1	Sub-CPMK 1 : Pendahuluan & Pengenalan Sistem Telekomunikasi [CLO 1]	Pengenalan Silabus, sasaran pengajaran, referensi Kontrak belajar dan Aturan penilaian: Quis, Ujian,	
		Rengenalan sistem dan blok sistem telekomunikasi	
		5. Review Parameter Telekomunikasi (tegangan, Arus, Daya, Energi, Bandwidth)	
	Sub-CPMK 2 : Transformasi Fourier [CLO 1]	Pemahaman dan arti penting domain waktu dan domain frekuensi	
		2. Review deret Fourier, transformasi Fourier	
		3. Contoh transform sinyal rectangular	
		4. Sifat-sifat Transformasi Fourier	
		5. Contoh transformasi Fourier dan aplikasi sifat- sifatnya	
	Sub-CPMK-3: Sistem AM [CLO 2]	1. Pemahaman arti dan fungsi Modulasi dan Demodulasi	
		2. Modulator AM-DSB-SC : Modulator dan Demodulator (Blok, persamaan), Gambar spektral, bandwidth, perhitungan daya	
		3. Konsep translasi frekuensi	
2,3,4		4. AM-SSB: Modulator-demodulator, Gambar spektral, bandwidth, perhitungan daya	
		5. AM-DSB-FC: Modulator-demodulator, persamaan, indeks modulasi, konstanta modulasi, Detektor selubung, Gambar spektral, bandwidth, perhitungan daya	
	Sub-CPMK-4: Sistem FM [CLO 2]	1. Modulator FM: Persamaan, indeks modulasi, fungsi Bessel, Spektral, Daya, BW, blok sistem	
		2. Demodulator FM: Persamaan, blok sistem	
		3. Superheterodyne pada FM	

5	Sub-CPMK-5 : Noise pada Sistem	1. Jenis-jenis noise dalam sistem komunikasi		
		2. AWGN : sifat, persamaan		
	Telekomunikasi [CLO 2]	3. Gambaran distribusi noise yang bukan AWGN (mis : uniform)		
	Sub-CPMK-6: Sistem Pradeteksi dan Kinerja Pradeteksi [CLO 2]	1. Struktur rangkaian pradeteksi dan blok penyusun		
		 Parameter rangkaian pradeteksi: Gain, Redaman, Temperatur Noise ekuivalen, Rapat spektral daya noise, daya noise, BW 		
		3. Kinerja rangkaian Pradeteksi		
		4. Sistem Cascade, parameter cascade, perhitungan kinerja dalam bentuk Cascade		
6	Sub-CPMK-7: Kinerja AM [CLO 2]	1. Kinerja AM-DSB-SC		
		2. Kinerja AM-SSB		
		3. Kinerja AM-DSB-FC		
		4. Kinerja Sistem Modulasi AM (digabung dengan rangkaian pradeteksi)		
7	Sub-CPMK-8 : Kinerja FM [CLO 2]	1. Kinerja Modulasi FM		
		2. Figure of Merit		
		3. Kinerja Sistem Modulasi FM (digabung dengan rangkaian pradeteksi)		

Text Book:

- 1). Comm Sys , Bruce Carlson , 5^{th} ed
- 2). Digital Communication for Practicing Engineer 2020 1th ed

Penilaian:

NILAI AKHIR = 35% UTS + 35 % UAS + 30 % (Tugas + Kuis)

Sinyal dalam banyak text Book sistem komunikasi maka *maksudnya sinyal tegangan*

Misal disebutkan sinyal x(t) serta tak ada keterangan tambahan maka yang dimaksud adalah sinyal tegangan dengan satuan Volt, kecuali ada penjelasan tambahan yang menyertainya.

Sinyal Sinussoidal

$$frekuensi = f = \frac{1}{T_0}$$

Sinyal pd gambar di atas dapat dituliskan : $x(t) = 4\sin(2\pi \times 300 t - 30^{\circ})$ Volt

atau :
$$x(t) = 4\sin(2\pi \times 300 t - 0.5236)$$
 Volt

Perhatikan bahwa :
$$30^{\circ}$$
 ($30 \ derajat$) = $\frac{30}{180} \times \pi \ rad = 0,5236 \ rad$

Dapat juga dituliskan :
$$x(t) = 4\cos(2\pi \times 300 t + 60^{\circ}) \text{ Volt}$$

$$atau : x(t) = 4 \sin(2 \pi \times 300 t + 1,0472) Volt$$

Sinyal dalam format sinus selalu dapat dinyatakan dalam format cosinus

Bila dalam literatur atau text book disebutkan **sinyal sinussoidal** maka yang dimaksud adalah sinyal dalam format sinus atau cosinus

$$x(t) = 4 \sin(2\pi \times 300 \ t - 30^{\circ}) \ Volt$$

Sinyal tersebut memiliki amplituda = 4 Volt , frekuensi = 300 Hz

Bentuk umum sinyal sinusoidal frekuensi tunggal:

$$s(t) = A \sin(2\pi f t + \theta)$$
 atau $s(t) = A \cos(2\pi f t + \emptyset)$

Energi, Daya rata-rata, Daya puncak

Misal suatu sinyal x(t) pada beban resistif R

Energi sinyal
$$x(t) = E_s = \frac{1}{R} \int_{-\infty}^{+\infty} [x(t)]^2$$

Daya rata – rata sinyal
$$x(t) = P_{av} = \frac{1}{TR} \int_{-\frac{T}{2}}^{+\frac{T}{2}} [x(t)]^2$$

Pada bahasan sistem komunikasi bila nilai beban R tak disebutkan berarti diasumsikan R = 1 Ohm sehingga :

Energi sinyal
$$x(t) = E_s = \int_{-\infty}^{+\infty} [x(t)]^2$$

Daya rata – rata sinyal
$$x(t) = P_{av} = \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} [x(t)]^2$$

Misalkan sinyal sinussoidal s(t) tersebut pada beban resistif murni sebesar R Ohm

Daya rata-rata sinyal sinusoidal pada beban ${\it R} = P_{av} = {A^2 \over 2R}$ watt

Daya puncak sinyal sinusoidal pada beban ${m R} = P_{peak} = rac{A^2}{R}$ watt

Bila nilai R tak disebutkan maka asumsikan R = 1 Ohm, sehingga:

$$P_{av} = rac{A^2}{2}$$
 watt dan $P_{peak} = A^2$ watt

Misalkan suatu sinyal dc sebesar A Volt

Daya rata-rata sinyal dc tsb pada beban \mathbf{R} = daya puncaknya $P = \frac{A^2}{R}$ watt

Bila nilai R tak disebutkan maka asumsikan R = 1 Ohm , sehingga : $P = A^2$ watt

Satuan dB

Rumus konversi dari bilangan real kedalam dB:

$$B \ kali = 10 \times {}^{10}\log(B) \ dB$$

Contoh:

$$1 \, kali = 10 \times {}^{10}\log(1) = 10 \times 0 = 0 \, dB$$

$$100 \ kali = 10 \times {}^{10}\log(100) = 10 \times 2 = 20 \ dB$$

$$1000 \ kali = 10 \times {}^{10}\log(100) = 10 \times 3 = 30 \ dB$$

$$2 \ kali = 10 \times {}^{10}\log(2) \approx 10 \times 0.30103 = 3.0103 \ dB \approx 3 \ dB \ (pembulatan)$$

$$4 \text{ kali} = 10 \times {}^{10}\log(4) \approx 6 \text{ dB}$$
 (pembulatan)

$$8 \, kali = 10 \times {}^{10}log(8) \approx 9 \, dB$$
 (pembulatan)

$$\frac{1}{2} kali = 10 \times {}^{10} \log \left(\frac{1}{2}\right) \approx -3,0103 \ dB \approx -3 \ dB \quad (pembulatan)$$

$$\frac{1}{4} kali = 10 \times {}^{10} \log \left(\frac{1}{4}\right) \approx -6,0201 \ dB \approx -6 \ dB \quad (pembulatan)$$

$$\frac{1}{8} kali = 10 \times {}^{10} \log \left(\frac{1}{8}\right) \approx -9,031 \ dB \approx -9 \ dB \quad (pembulatan)$$

2000
$$kali = 10 \times {}^{10}log(2 \times 1000) = 10 \times {}^{10}log(2) + 10 \times {}^{10}log(1000) =$$

$$\approx$$
 3 dB + 30 dB = 33 dB

5000
$$kali = 10 \times {}^{10}\log\left(\frac{1}{2} \times 10000\right) = 10 \times {}^{10}\log\left(\frac{1}{2}\right) + 10 \times {}^{10}\log(10000) =$$

$$\approx -3 dB + 40 dB = 37 dB$$

4000
$$kali = 10 \times {}^{10}\log(2 \times 2 \times 10000) = 10 \times {}^{10}\log(2) + 10 \times {}^{10}\log(10000) =$$

$$\approx -3 dB + 40 dB = 37 dB$$

Satuan dBm (dB mWatt) , dBW (dB Watt)

Rumus konversi:

$$B watt = 10 \times {}^{10}\log(B) dBW$$
 $X mWatt = 10 \times {}^{10}\log(X) dBm$
 $C dBW = (C + 30) dBm$

Contoh:

$$1 Watt = 10 \times {}^{10}\log(1) = 10 \times 0 = 0 \ dBW$$

$$100 W = 10 \times {}^{10}\log(100) = 10 \times 2 = 20 \ dBW$$

$$20 W = 10 \times {}^{10}\log(20) \approx 13 \ dBW$$

$$0.25 W = 10 \times {}^{10}\log(0.25) \approx -6 \ dBW$$

$$0.2 W = 10 \times {}^{10}\log(0.2) \approx -7 \ dBW$$

$$20 W = 10 \times {}^{10}\log(20) \approx 13 \ dBW = (13 + 30) = 43 \ dBm$$

 $0.2 W = 10 \times {}^{10}\log(0.2) \approx -7 \ dBW = (-7 + 30) = 23 \ dBm$
 $0.2 W = 200 \ mW = 10 \times {}^{10}\log(200) \approx 23 \ dBm$

$$10^{-9} Watt = -90 \ dBW = (-90 + 30) dBm = -60 \ dBm$$

Suatu sinyal dengan daya $P_i = -70 \; dBm$ diperkuat oleh Amplifier dengan Gain sebesar 13 dB maka daya sinyal dioutput Amplifier :

$$P_{o} = (-70 + 13) dBm = -57 dBm$$

$$-57 dBm = (-60 + 3) dBm = 10^{-6} mWatt \times 2 = 2 \times 10^{-6} mWatt$$

$$-53 \ dBm = (-50 - 3) \ dBm = 10^{-6} \ mWatt \times 0.5 = 0.5 \times 10^{-6} \ mWatt$$

Bahan diskusi:

- 1) Apa yang dimaksud 13 dB , apa bedanya dengan 13 dBm
- 2) Mana yang benar : Faktor penguatan = 20 dBW , Faktor Penguatan = 20 kali , Faktor penguatan = 20 dB , daya sinyal = $4 \times 10^{-6}~Watt$, daya = 7 dBm , Daya sinyal = 5 dBm , daya sinyal = 5 dB

1. DERET FOURRIER

Tiap sinyal periodik x(t) dapat dinyatakan dalam bentuk deret sinyal sinusoidal .

$$x(t) = a_0 + a_1 \cos(\omega_0 t) + a_2 \cos(2\omega_0 t) + a_3 \cos(3\omega_0 t) + \dots + b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + b_3 \sin(3\omega_0 t) + \dots ; \quad \boldsymbol{\omega_0} = 2\pi f_0$$

$$x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$$

Contoh 1: Mendapatkan deret Fourrier sinyal periodic segiempat Unipolar

a). Menghitung koefisien Cosinus yaitu: a_0 , a_1 , a_2 , $\ldots a_n$

$$a_0=rac{1}{T_0}\int\limits_{t_x}^{t_x+T_0}x(t)\;dt\;\;;\;lihat\;gambar\;
ightarrow T_0\;$$
adalah nilai perioda $a_1=rac{2}{T_0}\int\limits_{t}^{t_x+T_0}x(t)\;\cos(\omega_0 t)\;dt\;\;;\;\;f_0=rac{1}{T_0}\;,\;\;\omega_0=2\pi\;f_0$

$$a_2 = \frac{2}{T_0} \int_0^{t_x + T_0} x(t) \cos(2 \omega_0 t) dt$$
 ; $a_n = \frac{2}{T_0} \int_0^{t_x + T_0} x(t) \cos(n \omega_0 t) dt$

Nilai $m{t}_{m{x}}$ dapat dipilih sembarang $\,$, jadi biasanya dipilih yang memudahkan perhitungan integral

Pada contoh ini dipilih $oldsymbol{t}_x = oldsymbol{0}$ sehingga: (lihat gambar)

$$a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt = \frac{1}{T_0} \int_0^{\tau} V dt = \frac{V}{T_0} t \Big|_{t=0}^{t=\tau} = \frac{V}{T_0} \tau$$

$$a_{n} = \frac{2}{T_{0}} \int_{0}^{\tau} V \cos(n\omega_{0}t) dt = \frac{2V}{n\omega_{0} T_{0}} \sin(n\omega_{0}t) \Big|_{0}^{\tau} = \frac{2V}{n\omega_{0} T_{0}} \sin(n\omega_{0}\tau) ; n > 0$$

b). Menghitung koefisien Sinus yaitu: b_1 , b_2 , b_3 , ... b_n

$$b_n = \frac{2}{T_0} \int_{t_x}^{t_x+T_0} x(t) \sin(n \omega_0 t) dt$$
; dipilih $t_x = 0$, maka:

$$b_{n} = \frac{2}{T_{0}} \int_{0}^{T_{0}} x(t) \sin(n \omega_{0} t) dt = \frac{2}{T_{0}} \int_{0}^{\tau} x(t) \sin(n \omega_{0} t) dt \dots (lihat gambar)$$

$$b_{n} = -\frac{2V}{n\omega_{0}} \frac{1}{T_{0}} \cos(\omega_{0} t) \Big|_{0}^{\tau} = -\frac{2V}{n\omega_{0}} \frac{1}{T_{0}} \left[\cos(n\omega_{0} \tau) - \cos(0)\right]$$

$$b_{n} = \frac{2V}{n\omega_{0}} \frac{1}{T_{0}} \left[1 - \cos(n\omega_{0} \tau)\right] ; n > 0$$

Dari hasil perhitungan di atas maka sinyal segiempat pada gb.1 dapat dituliskan dalam bentuk :

$$x(t) = \frac{V}{T_0} \tau + \sum_{n=1}^{\infty} \frac{2V}{n \omega_0} \sin(n\omega_0 \tau) \cos(n\omega_0 t)$$

$$+ \sum_{n=1}^{\infty} \frac{2V}{n \omega_0} \left[1 - \cos(n\omega_0 \tau) \right] \sin(n\omega_0 t)$$

$$\omega_0 \tau = 2\pi f_0 \tau = 2\pi \frac{\tau}{T_0} \qquad ; \quad \omega_0 T_0 = 2\pi f_0 T_0 = 2\pi \frac{1}{T_0} T_0 = 2\pi$$

$$x(t) = \frac{V}{T_0} \tau + \frac{V}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(n 2\pi \frac{\tau}{T_0}\right) \cos(n\omega_0 t)$$

$$+ \frac{V}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left[1 - \cos\left(n 2\pi \frac{\tau}{T_0}\right) \right] \sin(n\omega_0 t)$$

$$a_0 = \frac{V}{T_0} \tau$$
; $a_n = \frac{V}{\pi n} \sin \left(n \, 2\pi \, \frac{\tau}{T_0} \right)$; $b_n = \frac{V}{\pi n} \left[1 - \cos \left(n \, 2\pi \, \frac{\tau}{T_0} \right) \right]$

Bentuk : $x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$, dapat dituliskan sbb:

$$x(t) = a_0 + \sum_{n=1}^{\infty} d_n \cos(n\omega_0 t - \theta_n)$$
, $d_n = \sqrt{(a_n)^2 + (b_n)^2}$

Beberapa literatur menuliskan symbol d_n dengan c_n

Pada bahasan disini symbol $\it c_n$ digunakan untuk Deret Fourrier bentuk Eksponensial

$$(a_n)^2 + (b_n)^2 = V^2 \left(\frac{1}{\pi n}\right)^2 \left(\sin\left(n \, 2\pi \, \frac{\tau}{T_0}\right)\right)^2 + V^2 \left(\frac{1}{2\pi n}\right)^2 \left(1 - \cos\left(n \, 2\pi \, \frac{\tau}{T_0}\right)\right)^2$$

$$d_n = \frac{V}{\pi n} \sqrt{\left(\sin\left(n \, 2\pi \, \frac{\tau}{T_0}\right)\right)^2 + \left(1 - \cos\left(n \, 2\pi \, \frac{\tau}{T_0}\right)\right)^2}$$

$$d_{n} = \frac{V}{\pi n} \sqrt{\left(\sin\left(n \, 2\pi \, \frac{\tau}{T_{0}}\right)\right)^{2} + \left(\cos\left(n \, 2\pi \, \frac{\tau}{T_{0}}\right)\right)^{2} + 1 - 2 \, \cos\left(n \, 2\pi \, \frac{\tau}{T_{0}}\right)}$$

$$d_{n} = \frac{V}{\pi n} \sqrt{2 - 2 \, \cos\left(n \, 2\pi \, \frac{\tau}{T_{0}}\right)} \quad ; \quad a_{0} = \frac{V}{T_{0}} \tau$$

$$x(t) = a_{0} + \sum_{n=1}^{\infty} d_{n} \, \cos(n\omega_{0}t - \theta_{n}) \quad , \quad \theta_{n} = \tan^{-1}\left(\frac{b_{n}}{a_{n}}\right)$$

Kurva nilai d_n versus nilai n atau nf_0 dinamakan spektrum deret Fourrier (Kurva spektrum deret fourrier dibawah ini hasil perhitungan menggunakan excel)

Nilai a_0 pada kurva ditunjukkan pada n = 0

Sumbu vertical = nilai $\,d_n\,$, sumbu horizontal = $\,n\,f_0\,=rac{n}{T_0}$

$$x(t) = a_0 + \sum_{n=1}^{\infty} d_n \cos(n\omega_0 t - \theta_n)$$
, $\theta_n = \tan^{-1} \left(\frac{b_n}{a_n}\right)$

$$Phasa \ sinyal \ harmonik \ (\boldsymbol{\theta_n}) = \begin{cases} \tan^{-1}\left(\frac{b_n}{a_n}\right) \ ; \ \boldsymbol{a_n} > \boldsymbol{0} \\ \tan^{-1}\left(\frac{-b_n}{a_n}\right) \ ; \ \boldsymbol{a_n} < \boldsymbol{0} \end{cases}$$

Sampai pada bahasan ini telah dibuktikan bahwa sinyal segiempat Unipolar pada Gamabr 1 terbentuk dari (terdiri dari) sinyal dc dan sejumlah tak hingga sinyal-sinyal sinusoidal dalam bentuk deret:

$$x(t) = a_0 + \sum_{n=1}^{\infty} d_n \cos(n\omega_0 t - \theta_n)$$

Dari Spektrum Deret Fourrier tampak bahwa sinyal x(t) tersebut menduduki Band Width yang sangat lebar .

Bagaimana bila jumlah deret dibatasi sbb:

$$x(t) = a_0 + \sum_{n=1}^{M} d_n \cos(n\omega_0 t - \theta_n)$$
; $M = positif berhingga$

Perhatikan contoh berikut:

$$a_0(t) = a_0$$
; $d_1(t) = d_1 \cos(\omega_0 t - \theta_1)$; $d_2(t) = d_2 \cos(2\omega_0 t - \theta_2)$

$$d_3(t) = d_3 \cos(3\omega_0 t - \theta_3)$$
 ; $x(t) = a_0 + \sum_{n=1}^{M=3} d_n \cos(n\omega_0 t - \theta_n)$

Bila komponen harmonic diperbanyak akan menghasilkan x(t) mendekati bentuk sinyal x(t) dg BW yang sangat besar (tak hingga)

Band Widh yang dibutuhkan = $BW = M f_0 = \frac{M}{T_0}$

Contoh 2: Mendapatkan deret Fourrier sinyal periodic segiempat bipolar

a). Menghitung koefisien Cosinus yaitu: a_0 , a_1 , a_2 , ... a_n

$$a_0=rac{1}{T_0}\int\limits_{t_x}^{t_x+T_0}x(t)\;dt=0\;\;\;\;;\; extit{lihat gambar}\;\; o T_0\;$$
adalah nilai perioda

$$a_n = \frac{2}{T_0} \int_{t_r}^{t_x+T_0} x(t) \cos(n \, \omega_0 t) \, dt$$
 ; $f_0 = \frac{1}{T_0}$, $\omega_0 = 2\pi \, f_0$

Nilai $oldsymbol{t}_x$ dapat dipilih sembarang ,dipilih $oldsymbol{t}_x = oldsymbol{0}$ sehingga : (lihat gambar)

$$a_{n} = \frac{2}{T_{0}} \int_{0}^{\tau_{1}} V \cos(n\omega_{0}t) dt + \frac{2}{T_{0}} \int_{\tau_{1}+\tau_{2}}^{\tau_{1}+\tau_{2}+\tau_{1}} (-V) \cos(n\omega_{0}t) dt$$

$$a_{n} = \frac{2V}{n\omega_{0}} \sin(n\omega_{0}t) \Big|_{0}^{\tau_{1}} + \frac{(-2V)}{n\omega_{0}} \sin(n\omega_{0}t) \Big|_{\tau_{1}+\tau_{2}}^{\tau_{1}+\tau_{2}+\tau_{1}} ; n > 0$$

$$a_{n} = \frac{2V}{n \omega_{0} T_{0}} \sin(n\omega_{0} \tau_{1}) + \frac{2V}{n \omega_{0} T_{0}} \left(\sin(n\omega_{0} [\tau_{1} + \tau_{2}]) - \sin(n\omega_{0} [2\tau_{1} + \tau_{2}]) \right)$$

$$a_n = \frac{2V}{n \omega_0 T_0} \left(\sin(n\omega_0 \tau_1) + \sin(n\omega_0 [\tau_1 + \tau_2]) - \sin(n\omega_0 [2\tau_1 + \tau_2]) \right)$$

$$a_n = \frac{V}{n\pi} \left(\sin\left(2n\pi\frac{\tau_1}{T_0}\right) + \sin\left(2n\pi\frac{[\tau_1 + \tau_2]}{T_0}\right) - \sin\left(2n\pi\frac{[2\tau_1 + \tau_2]}{T_0}\right) \right)$$

$$a_n = \frac{V}{n\pi} \left(\sin\left(2n\pi\frac{\tau_1}{T_0}\right) - \sin\left(2n\pi\frac{[2\tau_1 + \tau_2]}{T_0}\right) \right)$$

b). Menghitung koefisien Sinus yaitu: b_1 , b_2 , b_3 , \ldots b_n

$$b_n = \frac{2}{T_0} \int_0^{T_0} x(t) \sin(n \omega_0 t) dt = \dots (lihat gambar)$$

$$b_n = \frac{2}{T_0} \int_0^{\tau_1} V \sin(n\omega_0 t) dt + \frac{2}{T_0} \int_{\tau_1 + \tau_2}^{\tau_1 + \tau_2 + \tau_1} (-V) \sin(n\omega_0 t) dt$$

$$b_n = -\frac{2V}{n\omega_0 T_0} \cos(\omega_0 t) \Big|_0^{\tau_1} + \frac{2V}{n\omega_0 T_0} \cos(\omega_0 t) \Big|_{\tau_1 + \tau_2}^{\tau_1 + \tau_2 + \tau_1}$$

$$b_{n} = \frac{2V}{n \omega_{0} T_{0}} ([1 - \cos(n\omega_{0} \tau_{1})] + [\cos(n\omega_{0} [2\tau_{1} + \tau_{2}]) - \cos(n\omega_{0} [\tau_{1} + \tau_{2}])])$$

$$b_n = \frac{2V}{n \omega_0 T_0} (1 - \cos(n\omega_0 \tau_1) + \cos(n\omega_0 [2\tau_1 + \tau_2]) - \cos(n\omega_0 [\tau_1 + \tau_2]))$$

$$b_n = \frac{V}{n \pi} \left(1 + \cos \left(2n \pi \frac{[2\tau_1 + \tau_2]}{T_0} \right) - \cos \left(2n \pi \frac{[\tau_1 + \tau_2]}{T_0} \right) - \cos \left(2n \pi \frac{\tau_1}{T_0} \right) \right)$$

$$b_n = \frac{V}{n \pi} \left(1 - \cos(n \pi) + \cos \left(2n \pi \frac{[2\tau_1 + \tau_2]}{T_0} \right) - \cos \left(2n \pi \frac{\tau_1}{T_0} \right) \right)$$

Dari kurva spektrum $: a_0(t) = d_2(t) = d_3(t) = d_4(t) = d_6(t) = d_8(t) = d_9(t) = 0$

Perhatikan bahwa sinyal x(t) untuk M=5 dengan $\frac{\tau_2}{\tau_1}=0,5$ adalah dibentuk oleh 2 buah sinyal sinussoidal

Sumbu vertical = nilai d_n , sumbu horizontal = $n f_0 = rac{n}{T_0}$

Perhatikan bahwa sinyal x(t) untuk M=5 dengan $\frac{\tau_2}{\tau_1}=1$ adalah dibentuk oleh 3 buah sinyal sinusoidal

Tabel berikut adalah contoh hasil perhitungan untuk nilai $\frac{\tau_2}{\tau_1} = 1$ dan V = 1 Volt:

n	Nilai a_n	Nilai b_n	Nilai d_n	Fasa d_n (radian)	Fasa d_n (derajat)
0	0,0000	0,0000	0	0	0
1	0,6366	0,6366	0,9003163	0,7854	45,0000
2	0,0000	0,0000	0	0,0000	0,0000
3	-0,2122	0,2122	0,3001054	0,7854	45,0000
4	0,0000	0,0000	0	0,0000	0,0000
5	0,1273	0,1273	0,1800633	0,7854	45,0000
6	0,0000	0,0000	0	0,0000	0,0000
7	-0,0909	0,0909	0,1286166	0,7854	45,0000
8	0,0000	0,0000	0	0,0000	0,0000
9	0,0707	0,0707	0,1000351	0,7854	45,0000
10	0,0000	0,0000	0	0,0000	0,0000
11	-0,0579	0,0579	0,0818469	0,7854	45,0000
12	0,0000	0,0000	0	0,000	0,0000
13	0,0490	0,0490	0,0692551	0,7854	45,0000
14	0,0000	0,0000	0	0,000	0,0000

Untuk
$$M = 5$$
 maka : $x(t) = a_0 + \sum_{n=1}^{M=5} d_n \cos(n\omega_0 t - \theta_n)$

Atau:

$$\mathbf{x}(\mathbf{t}) = a_0 + \sum_{n=1}^{M=5} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$$

2. DERET FOURRIER EKSPONENSIAL

Dari rumus identitas Euleur : $\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$

Maka Deret Fourrier dapat dinyatakan sbb:

$$x(t) = a_0 + \sum_{n=1}^{\infty} d_n \cos(n\omega_0 t - \theta_n)$$

$$= a_0 + \sum_{n=1}^{\infty} d_n \left[\frac{e^{j(n\omega_0 t - \theta_n)} + e^{-j(n\omega_0 t - \theta_n)}}{2} \right]$$

$$= \sum_{n=-\infty}^{\infty} \left(\frac{d_n}{2} e^{j\theta_n}\right) e^{j(n\omega_0 t)} ; \quad (Buktikan sebagai latihan)$$

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{j(n\omega_0 t)} ; \quad c_n = \frac{\sqrt{(a_n)^2 + (b_n)^2}}{2} e^{j\theta_n}$$

$$c_n = \frac{\sqrt{(a_n)^2 + (b_n)^2}}{2} e^{j\theta_n} = \frac{a_n - jb_n}{2} ; |c_n| = \frac{\sqrt{(a_n)^2 + (b_n)^2}}{2}$$

$$c_n = \frac{1}{T_0} \int_{t_x}^{t_x+T_0} x(t) e^{-j(n\omega_0 t)} dt$$
; (Buktikan sebagai latihan – buka text Book)

$$d_n = ext{koefisien}$$
 Deret Fourrier sinusoidal = $\sqrt{(a_n)^2 + (b_n)^2}$

$$|c_n|$$
 = koefisien Deret Fourrier eksponensial = $\frac{d_n}{2}$

Deret Fourrier Eksponensial
$$\rightarrow x(t) = \sum_{n=-\infty}^{\infty} c_n e^{j(n\omega_0 t)}$$

3. TRANSFORMASI FOURRIER

Dari Deret Fourrier Eksponensial:

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{j(n\omega_0 t)} = \sum_{n=-\infty}^{\infty} \left[\frac{1}{T_0} \int_{t_x}^{t_x + T_0} x(t) e^{-j(n\omega_0 t)} dt \right] e^{j(n\omega_0 t)}$$

$$= \sum_{n=-\infty}^{\infty} \left[\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{+\frac{T_0}{2}} x(t) e^{-j(n\omega_0 t)} dt \right] e^{j(n\omega_0 t)} =$$

$$= \sum_{n=-\infty}^{\infty} \left[f_0 \int_{-\frac{T_0}{2}}^{+\frac{T_0}{2}} x(t) e^{-j(n\omega_0 t)} dt \right] e^{j(n\omega_0 t)}$$

$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[2\pi f_0 \int_{-\frac{T_0}{2}}^{+\frac{T_0}{2}} x(t) e^{-j(n\omega_0 t)} dt \right] e^{j(n\omega_0 t)}$$

$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\omega_0 \int_{T_0}^{+\frac{T_0}{2}} x(t) e^{-j(n\omega_0 t)} dt \right] e^{j(n\omega_0 t)}$$

Bila
$$T_0 \rightarrow +\infty$$
 maka: $X(t) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\Delta \omega \int_{-\infty}^{+\infty} x(t) e^{-j(n\Delta \omega t)} dt \right] e^{j(n\Delta \omega t)}$

Dari Kalkulus maka:
$$X(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[d\omega \int_{-\infty}^{+\infty} x(t) e^{-j(\omega t)} dt \right] e^{j(\omega t)}$$

Dapat dituliskan :
$$X(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} x(t) e^{-j(\omega t)} dt \right] e^{j(\omega t)} d\omega$$

Dapat juga dituliskan :
$$X(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) e^{-j(2\pi f t)} dt e^{j(2\pi f t)} df$$

$$\int_{-\infty}^{+\infty} x(t) e^{-j(2\pi f t)} dt = hasilnya fungsi (f) \rightarrow X(f)$$

X(f) inilah yang disebut Trans Fourrier dari x(t)

Perhatikan : $x(t) = \int_{-\infty}^{\infty} [X(f)]e^{j(2\pi f t)} df \rightarrow disebut invers Trans Fourrier$

Trans Fourrier dari
$$s(t)$$
: $TF[s(t)] = S(f) = \int_{-\infty}^{+\infty} s(t) e^{-j(2\pi f t)} dt$

Invers TF dari
$$S(f)$$
 adalah: $s(t) = \int_{-\infty}^{+\infty} S(f) e^{j(2\pi f t)} df$

Beberapa contoh menghitung Trans Fourrier .

1). Sinyal pulsa segi empat

$$x(t) = \begin{cases} A ; & -\frac{\tau}{2} \le t \le +\frac{\tau}{2} \\ 0 ; & |t| > \frac{\tau}{2} \end{cases}$$

sering ditulikan :

$$x(t) = A rect \left(\frac{t}{\tau}\right)$$

Gambar. 1A

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi f t} dt = \int_{-0.5\tau}^{+0.5\tau} A e^{-j2\pi f t} dt$$

$$X(f) = \frac{A}{-j2\pi f} \int_{-0.5\tau}^{+0.5\tau} e^{-j2\pi f t} d(-j2\pi f t) ; \quad ingat \to \int e^{x} dx = e^{x} + C$$

$$X(f) = \frac{A}{-j2\pi f} \left(e^{-j2\pi f [+0.5\tau]} - e^{-j2\pi f [-0.5\tau]} \right) = X(f) = \frac{A}{-j2\pi f} \left(e^{-j\pi f \tau} - e^{j2\pi f \tau} \right) = C$$

$$\left(e^{jx} = \cos x + j \sin x \right)$$

$$X(f) = \frac{A}{j2\pi f} \left(e^{j\pi f\tau} - e^{-j\pi f\tau} \right) \quad ; \quad Euleur \quad \Rightarrow \begin{cases} e^{jx} = \cos x + j \sin x \\ e^{-jx} = \cos x - j \sin x \\ \cos x = \frac{(e^{jx} + e^{-jx})}{2} \\ \sin x = \frac{(e^{jx} - e^{-jx})}{2j} \end{cases}$$

 $maka: X(f) = \frac{A \sin(\pi f \tau)}{\pi f}$; Definisi fungsi $Sinc(x) \rightarrow Sinc(x) = \frac{\sin(\pi x)}{\pi x}$

$$TF\left[Arect\left(\frac{t}{\tau}\right)\right] = A\tau \frac{\sin(\pi f\tau)}{\pi f\tau} = A\tau Sinc(f\tau) \dots (1)$$

Misal nilai A = 10 Volt, $\tau = 0.002$ detik, atau dpt dituliskan: $x(t) = 10 \ rect \left(\frac{t}{0.002}\right)$

$$X(f) = 10 \times 0.002 \frac{\sin(0.002 \pi f)}{0.002 \pi f}$$

$$= 0.02 \frac{\sin(0.002 \pi f)}{0.002 \pi f}$$

BW satu sisi (frek positif saja) pada kasus gambar di atas adalah Null BW satu sisi

$$BW = \frac{1}{0.002} = 500 \ Hz$$

Jadi bila: $x(t) = 10 \operatorname{rect}\left(\frac{t}{\tau}\right)$

Null BW satu sisi =
$$\frac{1}{\tau}$$
 Hz

Perhatikan bahwa besar Null Band Width hanya dipengaruhi oleh lebat pulsa (au)

Bandingkan dengan spektrum Deret Fourrier sinyal periodic Unipolar berikut ini

Sumbu vertical = nilai d_n , sumbu horizontal = $n f_0 = rac{n}{T_0}$

$$\frac{d_n}{d_n} = \frac{V}{\pi n} \sqrt{2 - 2 \cos \left(n \, 2\pi \, \frac{\tau}{T_0}\right)} \quad ; \ a_0 = \frac{V}{T_0} \tau$$

Perhatikan bahwa bila nilai T_0 semakin besar akan menghasilkan spektrum makin rapat

Bandingkan antara spektrum Deret Fourrier dengan Spektrum Transformasi Fourrier

Tabel-1. Pasangan transformasi Fourier.

Sinyal	f(t)	F (ω)
Impuls	$\delta(t)$	1
Sinyal searah (konstan)	1	2π δ(ω)
Fungsi anak tangga	u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
Signum	sgn(t)	$\frac{2}{j\omega}$
Exponensial (kausal)	$(e^{-\alpha t})u(t)$	$\frac{1}{\alpha + j\omega}$
Eksponensial (dua sisi)	$e^{-\alpha t }$	$\frac{2\alpha}{\alpha^2 + \omega^2}$
Eksponensial kompleks	$e^{j\beta t}$	$2\pi \delta(\omega - \beta)$
Cosinus	cosβt	$\pi \left[\delta(\omega - \beta) + \delta(\omega + \beta) \right]$
Sinus	sinβt	$-j\pi \left[\delta(\omega-\beta)-\delta(\omega+\beta)\right]$

Tabel-2. Sifat-sifat transformasi Fourier.

Sifat	Kawasan Waktu	Kawasan Frekuensi
Sinyal	f(t)	F (ω)
Kelinieran	$A f_1(t) + B f_2(t)$	$AF_1(\omega) + BF_2(\omega)$
Diferensiasi	$\frac{df(t)}{dt}$	<i>jω</i> F (ω)
Integrasi	$\int_{-\infty}^{t} f(x) dx$	$\frac{F(\omega)}{j\omega} + \pi F(0) \delta(\omega)$
Kebalikan	f (-t)	F (-ω)
Simetri	F (t)	$2\pi f(-\omega)$
Pergeseran waktu	f(t-T)	$e^{-j\omega T}F(\omega)$
Pergeseran frekuensi	$e^{j\beta t}f(t)$	$F(\omega - \beta)$
Penskalaan	a f (at)	$F\left(\frac{\omega}{a}\right)$

Contoh berkaitan dengan :

- 1). Materi pergeseran waktu
- 2). Materi pergeseran frekuensi