MATH2211 SPRING 2022 PROBLEM SET 5 SOLUTIONS

DUE WEDNESDAY, MARCH 16, 2022 AT 11:59 PM

Problem 1. Find a linear map $T: \mathbb{R}^5 \to \mathbb{R}^2$ with kernel

$$\{(x_1, x_2, x_3, x_4, x_5) : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}$$

or prove that no such T exists.

Solution

The desired kernel is the set $\{(3x, x, y, y, y) : x, y \in \mathbb{R}\}$, which is manifestly is a subspace of \mathbb{R}^5 of dimension 2. However, T has rank at most 2, implying that dim ker $T \geq 3$ by the rank-nullity theorem. This is incompatible with the desired kernel, so no such T exists.

Problem 2. Show that there is a unique linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ satisfying

$$T\begin{pmatrix}1\\2\\1\end{pmatrix}=\begin{pmatrix}1\\0\\1\end{pmatrix},\quad T\begin{pmatrix}1\\1\\0\end{pmatrix}=\begin{pmatrix}2\\1\\1\end{pmatrix},\quad T\begin{pmatrix}1\\-1\\0\end{pmatrix}=\begin{pmatrix}0\\1\\1\end{pmatrix},$$

and find the corresponding 3×3 matrix. Is this linear map an isomorphism?

Solution

Adding the latter two equations, then dividing by 2, says that $T\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$. Subtracting the latter two equations, then dividing by 2, says that $T\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$. Finally, we use the fact that $\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} - \begin{pmatrix} 1\\0\\0 \end{pmatrix} - 2\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ to obtain that $T\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \begin{pmatrix} 1\\1\\1 \end{pmatrix} - 2\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} -2\\-1\\0 \end{pmatrix}$. Therefore we have deduced that T is equal to

$$\begin{pmatrix} 1 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 0 & 0. \end{pmatrix}$$

This proves existence and uniqueness of T. This also proves that $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$, and $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$ is a basis of \mathbb{R}^3 . Since the vectors $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ are also a basis (by computation), this shows that the map T is an isomorphism because T sends a basis to a basis.

Solution

Let $U = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}$, the matrix formed from the input vectors. Let $S = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, the matrix formed from the desired output vectors. One sees that both matrices are invertible (their determinant is nonzero). Moreover, SU^{-1} satisfies the 3 desired equations. Therefore $T = SU^{-1} = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 0 & 0. \end{pmatrix}$ and T is an isomorphism since both S and U are isomorphisms.

Problem 3.

(a) Is there a linear map $T: \mathbb{R}^4 \to \mathbb{R}^4$ with $\operatorname{im}(T) = \ker(T)$?

Solution

Yes, an example is

$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

In this case, $\ker(T) = (*, *, 0, 0)$ and $\operatorname{im}(T)$ is also (*, *, 0, 0). (Here, (*, *, 0, 0) is defined to mean $\{(a, b, 0, 0) : a, b \in \mathbb{R}\}.$)

(b) Is there a linear map $T: \mathbb{R}^5 \to \mathbb{R}^5$ with $\operatorname{im}(T) = \ker(T)$?

Solution

No. By the rank-nullity theorem, $\dim T + \dim \ker T = 5$. On the other hand, if $\operatorname{im} T = \ker T$, then $\dim \operatorname{im} T + \dim \ker T$ must be an even number.

Problem 4. A linear functional on an F-vector space V means a linear map from V to F (the one-dimensional F-vector space). For example, $(x, y) \mapsto 2x + 3y$ is a linear functional on \mathbb{R}^2 .

(a) Suppose that T is a linear functional on a vector space V of dimension n. Prove that the kernel of T has dimension either n or n-1. When does the kernel have dimension n-1?

Solution

We know that the image of T is either F or 0. By the rank-nullity theorem, in the first case, the kernel of T has dimension n-1, and in the second case, the kernel of T has dimension n. We also see that the kernel has dimension n-1 precisely when T is not the zero map.

(b) Suppose S and T are two linear functionals on a vector space V with the same kernel. Prove that there exists a scalar $c \in F$ such that T = cS.

Solution

First, if $\ker S = \ker T = V$, then both S and T are the zero map, so any scalar works.

Now assume $K = \ker S = \ker T$ is a proper subspace of V. Pick some $w \notin K$. Then we have $V = K \oplus \operatorname{span}(w)$, and furthermore $Sw \neq 0$ and $Tw \neq 0$. Now, S sends an arbitrary vector v = k + aw ($k \in K, c \in F$) to $Sk + Saw = 0 + Scw = a(Sw) \in F$, and similarly T sends the same vector v = k + aw to $a(Tw) \in F$. Therefore, we can set c = (Tw)/(Sw) and we have T = cS.

Problem 5.

(a) Let $T: \mathbb{R}^5 \to \mathbb{R}^3$ be the linear map corresponding to

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 & 2 \\ -1 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Find bases for the kernel and image of T and find all solutions to $Tx = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Solution

The kernel is the set of all $x \in \mathbb{R}^5$ such that Ax = 0, so doing row operations (left multiplication by elementary matrices) will preserve the kernel. The rref

form of A is

$$\begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & 2 \\ 0 & 1 & 0 & -1 & -2 \\ 0 & 0 & 1 & \frac{3}{2} & 3 \end{pmatrix}.$$

Suppose that x = (a, b, c, d, e) is in the kernel of this matrix. This gives the equations $a = -\frac{1}{2}d - 2e$, b = d + 2e, and $c = -\frac{3}{2}d - 3e$. Thus ker A is completely parametrized by the pair (d, e), so setting d = 1, e = 0 and d = 0, e = 1 should give a basis of ker A. This yields

$$\left\{ \left(-\frac{1}{2}, 1, -\frac{3}{2}, 1, 0 \right), \left(-2, 2, -3, 0, 1 \right) \right\}$$

for a basis of $\ker A$.

The rref of A shows that the rank of A is 3. Therefore, A is surjective, so a basis of the image of T is $\{(1,0,0),(0,1,0),(0,0,1)\}$.

To find all solutions to $Tx = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, we first find that a particular solution

is $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ (since we notice that $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ is the third column of A). The set of all solutions is therefore

$$\left\{ \begin{pmatrix} 0\\0\\1\\0\\0 \end{pmatrix} + c_1 \begin{pmatrix} -1/2\\1\\-3/2\\1\\0 \end{pmatrix} + c_2 \begin{pmatrix} -2\\2\\-3\\0\\1 \end{pmatrix} : c_1, c_2 \in \mathbb{R} \right\}.$$

(b) Find bases for the kernel and image of the linear map $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by T(x,y) = (x+y,0,2x-y).

Solution

The same method as part (a) works here too. The following is a quick solution using some nice observations. The map $S:(x,y)\mapsto (x+y,2x-y)$ is an isomorphism. One can view T as the composition $U\cdot S$ where U(x,y)=(x,0,y). Since both U and S are injective, this shows that $\ker T=0$, so $\ker T$ has basis the empty set. Moreover, the image of T is the image of U which one easily sees is 2-dimensional with basis $\{(1,0,0),(0,0,1)\}$.

Problem 6.

(a) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear transformation. Prove that the matrix of T^{-1} is precisely the $n \times n$ matrix such that for i = 1, 2, ..., n, its *i*th column is the unique vector v such that $Tv = e_i$.

Solution

The *i*th column of the matrix of T^{-1} is $T^{-1}e_i$, where e_i denotes the *i*th standard basis vector. By definition $T^{-1}e_i$ is the unique vector v such that $Tv = e_i$.

(b) Using part (a), find the inverse of

$$\begin{pmatrix} 1 & 1 & 1 \\ 3 & -1 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

Try not to use any previously learned matrix inversion methods from high school or such.

Solution

Let A denote the given matrix. Part (a) suggests that we solve the three systems

$$x + y + z = 1$$

$$3x - y = 0$$

$$x + 2z = 0,$$

$$x + y + z = 0$$

$$3x - y = 1$$

$$x + 2z = 0,$$

$$x + y + z = 0$$

$$3x - y = 0$$

$$x + 2z = 1.$$

For the first system, we have x=-2z and y=3x=-6z, so that the first equation becomes -2z-6z+z=1, or $z=-\frac{1}{7}$, giving $x=\frac{2}{7}$ and $y=\frac{6}{7}$. Hence the first column of A^{-1} is $\binom{2/7}{6/7}$. For the second system, we have x=-2z and y=3x-1=-6z-1, so the

first equation becomes -2z - 6z - 1 + z = 0, or $z = -\frac{1}{7}$, giving $x = \frac{2}{7}$ and $y = -\frac{1}{7}$. Hence the second column of A^{-1} is $\begin{pmatrix} 2/7 \\ -1/7 \\ -1/7 \end{pmatrix}$.

For the third system, we have x=1-2z and y=3x=3-6z, so the first equation becomes 1-2z+3-6z+z=0, or $z=\frac{4}{7}$, giving $x=-\frac{1}{7}$ and $y=-\frac{3}{7}$. Hence the third column of A^{-1} is $\binom{-1/7}{-3/7}$. Therefore,

$$A^{-1} = \begin{pmatrix} \frac{2}{7} & \frac{2}{7} & -\frac{1}{7} \\ \frac{6}{7} & -\frac{1}{7} & -\frac{3}{7} \\ -\frac{1}{7} & -\frac{1}{7} & \frac{4}{7} \end{pmatrix}.$$