STATISTICAL PATTERN RECOGNITION ASSIGNMENT 2

Ali Gholami

Department of Computer Engineering & Information Technology Amirkabir University of Technology

 $http://ceit.aut.ac.ir/\sim aligholamee$ aligholamee@aut.ac.ir

Abstract

In this assignment, we'll be focusing on the *Bayes Classifier*. We'll work with *Bayesian Discriminators* and *Bayes Error*. The *Bhattacharyya* error bound is also analyzed as an upper bound for the *Bayes Classifier* error. The detailed computations of *Bayesian Discriminators* are also given in an exact definition. Finally, we'll be going through a more practical example of a linear discriminator by classifying the flowers in the *Iris* dataset.

Keywords. Linear Discriminator, Quadratic Discriminator, Bayes Classification, Bayes Error, Optimal Classification, Bhattacharyya Distance, Bhattacharyya Upper Bound, Iris Dataset, Iris Classification.

1 Quadratic & Linear Discriminant Analysis

We consider a classification problem in dimension d=2, with k=3 classes where:

$$p(x \mid w_i) \sim N(\mu_i, \Sigma_i), \quad i = 1, 2, 3$$

and

$$\mu_1 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \mu_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ \mu_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_i = \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{bmatrix},$$

- (a) Calculate the discriminant function $g_i(x)$ for each class.
- (b) Express your discriminant functions in the form of linear discriminant functions.
- (c) Determine and plot the decision boundaries.

Solution

(a) The general form of a Bayesian discriminator is given below.

$$g_i(\underline{x}) = -\frac{1}{2}(\underline{x} - \underline{\mu}_i)^T \Sigma_i^{-1}(\underline{x} - \underline{\mu}_i) - \frac{1}{2}\log|\Sigma_i| + \log P(\omega_i)$$
(1.1)

In the problem case, the classes have the same covariance matrix, but the features have different variances. Since the Σ_i is diagonal, we'll have

$$g_i(\underline{x}) = -\frac{1}{2} (\underline{x} - \underline{\mu}_i)^T \begin{bmatrix} \sigma_1^{-2} & 0 & 0 & \dots & 0 \\ 0 & \sigma_2^{-2} & 0 & \dots & 0 \\ 0 & 0 & \sigma_3^{-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \sigma_N^{-2} \end{bmatrix} (\underline{x} - \underline{\mu}_i) - \frac{1}{2} \log \begin{vmatrix} \sigma_1^{-2} & 0 & 0 & \dots & 0 \\ 0 & \sigma_2^{-2} & 0 & \dots & 0 \\ 0 & 0 & \sigma_3^{-2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 0 & \sigma_N^{-2} \end{vmatrix} + \log(P(\omega_i))$$

Since we have the following criteria:

$$(x - \mu_i)^T = \begin{bmatrix} x[1] - \mu_i[1] \\ x[2] - \mu_i[2] \\ x[3] - \mu_i[3] \\ x[4] - \mu_i[4] \\ \vdots \\ x[N] - \mu_i[N] \end{bmatrix}$$

where μ_{iN} denotes the N'th feature of class i. Removing the constant term for different classes, which is $x[k]^2$, we'll have the following results after the matrix multiplication and determinant computation:

$$g_i(\underline{x}) = -\frac{1}{2} \sum_{k=1}^{N} \frac{2x[k]\mu_i[k] + \mu_i[k]^2}{\sigma_k^2} - \frac{1}{2} \log \prod_{k=1}^{N} \sigma_k^2 + \log(P(\omega_i))$$
 (1.2)

One can simply find each discriminator, $g_i(x)$, by replacing the given information in the problem description in the formula given above. Thus we'll have the following results for the section (a).

$$g_1(\underline{x}) = -\frac{1}{2} \left(\frac{2x[1] * 0 + 2}{1} + \frac{2x[2] * 2 + 4}{\frac{1}{9}} \right) - \frac{1}{2} \log(1 * \frac{1}{9}) + ?$$

$$g_2(\underline{x}) = -\frac{1}{2} \left(\frac{2x[1] * 3 + 3}{1} + \frac{2x[2] * 1 + 1}{\frac{1}{9}} \right) - \frac{1}{2} \log(1 * \frac{1}{9}) + ?$$

$$g_3(\underline{x}) = -\frac{1}{2} \left(\frac{2x[1] * 1 + 1}{1} + \frac{2x[2] * 0 + 0}{\frac{1}{9}} \right) - \frac{1}{2} \log(1 * \frac{1}{9}) + ?$$

The simplified results are

$$g_1(\underline{x}) = -18x[2] - \frac{1}{2}\log\frac{1}{9} - 19$$

$$g_2(\underline{x}) = -3x[1] + 9x[2] - \frac{1}{2}\log\frac{1}{9} - 6$$

$$g_3(\underline{x}) = -x[1] - \frac{1}{2}\log\frac{1}{9} - \frac{1}{2}$$

(b) The final results given above where in the format of a linear discriminant already. In order to lighten everything up, just assume the linear discriminant function as:

$$g_i(\underline{x}) = W_2 x[2] + W_1 x[1] + W_0$$

where the value of W_i is different for each of the discriminators.

$$g_1(\underline{x})$$
 $W_2 = -18$ $W_1 = 0$ $W_0 = -\frac{1}{2}\log\frac{1}{9} - 19$

$$g_2(\underline{x})$$
 $W_2 = 9$ $W_1 = -3$ $W_0 = -\frac{1}{2}\log\frac{1}{9} - 6$

$$g_1(\underline{x})$$
 $W_2 = 0$ $W_1 = -1$ $W_0 = -\frac{1}{2}\log\frac{1}{9} - \frac{1}{2}$

Each of the $g_i(\underline{x})$ represent a discriminator plane in the 3D space.

(c) Here are the plots of distributions and discriminators below. These are coded in Python using PyLab.

Figure 1.1: Distributions of three classes described in the problem description.

Figure 1.2: Linear discriminators of Figure 1.1 distributions.

2 Bayes Decision Rule & Bayes Error Boundaries

Consider the following 2-class classification problem involving a single feature x. Assume equal class priors and 0-1 loss function.

$$p(x \mid w_1) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & otherwise \end{cases} \quad p(x \mid w_2) = \begin{cases} 2 - 2x & 0 \le x \le 1 \\ 0 & otherwise \end{cases}$$

- (a) Sketch the two densities.
- (b) State the Bayes decision rule and show the decision boundary.
- (c) What is the Bayes classification error?
- (d) How will the decision boundary change if the prior for class w1 is increased to 0.7?

Solution

(a) Figure 2.1, illustrates the density functions of these two classes. I've used the *Seaborn* library to generate these density functions.

Figure 2.1: Illustration of density functions of $w_1(Blue)$ and $w_2(Orange)$.

⁽b) We drive the Bayes decision rule for these two classes below. $g_1(x)$ and $g_2(x)$ represent the decision function for the classes 1 and 2 respectively.

$$g_i(x) \stackrel{\omega_i}{\underset{<}{\sim}} g_j(x)$$

which is our decision baseline for the Bayes classifier. Since $g_i(x) = p(\omega_1 \mid x)$, expanding the equation according to the Bayes rule and we get:

$$g_i(x) = \frac{p(\underline{x} \mid \omega_i)P(\omega_i)}{p(x)}$$

Replacing the $g_i(x)$ in the decision baseline and we'll have the following results.

$$\frac{p(\underline{x} \mid \omega_i)P(\omega_i)}{p(\underline{x})} \stackrel{\omega_i}{\underset{\omega_j}{>}} \frac{p(\underline{x} \mid \omega_j)P(\omega_j)}{p(\underline{x})}$$

Omitting the constant parts from both sides and replacing the equations from the problem description will result in the following decision function.

$$g(x) = 4x - 2 \underset{\leq}{\overset{\omega_i}{>}} 0 \tag{2.1}$$

Thus, the linear discriminant function can be displayed as so:

$$g(x) = 4x - 2$$

in which the point $x = \frac{1}{2}$ is the separation point of two classes. The values greater than $\frac{1}{2}$ are assigned a label from class i. The values less the $\frac{1}{2}$ are assigned a label of class j.

(c) Here is the Bayes classification error given in (2.2).

$$\varepsilon = \varepsilon_1 P(\omega_1) + \varepsilon_2 P(\omega_2) \tag{2.2}$$

in which the ε_1 and ε_2 represent the probability of class 1 error by integrating the class 1 density over the region of class 2 and the probability of class 2 error by integrating the class 2 density over the region of class 1 respectively.

$$\varepsilon_1 = \int_{R_2} p(\underline{x} \mid \omega_1) d\underline{x}$$

$$\varepsilon_2 = \int_{R_1} p(\underline{x} \mid \omega_2) d\underline{x}$$

According the section (b), the discriminating point is x = 0.5. Correspondingly, the regions R_1 and R_2 can be easily driven like so:

$$R_1 = [0 \ 0.5] \quad R_2 = [0.5 \ 1]$$

By integrating the given equation (2.2) over the boundaries of these two regions, we'll have the following:

$$\varepsilon_1 = \int_0^{0.5} (2x)dx = \frac{1}{4}$$

$$\varepsilon_2 = \int_0^1 (2-2x)dx = \frac{1}{4}$$

The final value for the Bayes error will be:

$$\varepsilon = \frac{1}{4} * \frac{1}{2} + \frac{1}{4} * \frac{1}{2} = \frac{1}{4}$$

(d) Changing the prior probabilities for classes ω_1 and ω_2 , the bias will be changed. We'll have the following biases as the prior probabilities.

$$P(\omega_1) = 0.7$$

$$P(\omega_2) = 0.3$$

Rewriting the likelihood ratio for these two classes, we'll have the following results:

$$\frac{p(\underline{x} \mid \omega_1)}{p(\underline{x} \mid \omega_2)} \stackrel{\omega_1}{\stackrel{\omega_2}{<}} \frac{P(\omega_2)}{P(\omega_1)}$$

$$\frac{2x}{2-2x} \stackrel{\omega_1}{\stackrel{\omega_2}{<}} \frac{3}{7}$$

which changes the final discriminant function, g(x) to

$$g'(x) = 10x - 3 \overset{\omega_1}{\underset{<}{>}} 0$$

3 Bayes Decision Boundary & Bhattacharyya Error Bound

Consider a two-category classification problem in two dimensions with

$$p(x \mid w_1) \sim N(0, I), \quad p(x \mid w_2) \sim N(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, I)$$

and

$$P(\omega_1) = P(\omega_2) = \frac{1}{2}$$

- (a) Calculate the Bayes Decision Boundary.
- (b) Calculate the Bhattacharyya error bound.
- (c) Repeat the above for the same probabilities, but

$$p(x \mid w_1) \sim N(0, \begin{bmatrix} 2 & 0.5 \\ 0.5 & 2 \end{bmatrix}), \quad p(x \mid w_2) \sim N(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix})$$

Solution

(a) The genera for of a Bayesian discriminator was discussed in (1.1). Comparing this to the linear classifier which can be displayed as below:

$$g_i(\underline{x}) = W_{i1}^T \underline{x} + W_{i0}$$

where the weights are also given below:

$$W_{i1} = \frac{\mu_i}{\sigma^2}$$

$$W_{i0} = \frac{-1}{2\sigma^2} \mu_i^T \mu_i + \log P(\omega_i)$$

Since $\Sigma_i = \sigma^2 I$ with $\sigma^2 = 1$ (according to problem description) with equal prior probabilities $(P(\omega_1) = P(\omega_2) = \frac{1}{2})$, the discriminator can be derived using the *Euclidean Distance* of x and μ .

$$g_i(\underline{x}) = (\underline{x} - \mu_i)^T (\underline{x} - \mu_i)$$

we can simply find the $g_1(\underline{x})$ and $g_2(\underline{x})$ by replacing the parameters in the problem description. We'll get:

$$g_1(x) = (x - 0)^T (x - 0) = (x)^2$$

$$g_2(x) = (x - \begin{bmatrix} 1 \\ 1 \end{bmatrix})^T (x - \begin{bmatrix} 1 \\ 1 \end{bmatrix}) = (x - 1)^2$$

In order to find the decision boundary, we'll coincide the two discriminators:

$$\underline{x} = \frac{1}{2}$$

Meaning that the decision boundary is the plane $\underline{x} = \frac{1}{2}$.

(b) The *Bhattacharyya* error bound is an specific condition of *Chernoff* error bound. This condition happens when $s = \frac{1}{2}$ in the *Chernoff* bound formula. The *Bhattacharyya* formula is given below.

$$\varepsilon_{n-B} = \sqrt{P(\omega_1)P(\omega_2)} \int \sqrt{p(\underline{x} \mid \omega_1)p(\underline{x} \mid \omega_2)} d\underline{x} = e^{-\mu(s=\frac{1}{2})}$$
(3.1)

If we have access to the parameters of two distributions we can derive the *Bhattacharyya* error bound by computing the $\mu(s=\frac{1}{2})$ and replacing the result in the $e^{-\mu(s=\frac{1}{2})}$.

$$\mu(\frac{1}{2}) = \frac{1}{8}(\underline{m}_2 - \underline{m}_1)^T (\frac{\Sigma_1 + \Sigma_2}{2})^{-1} (\underline{m}_2 - \underline{m}_1) + \frac{1}{2} \ln \frac{|\frac{\Sigma_1 + \Sigma_2}{2}|}{\sqrt{|\Sigma_1||\Sigma_2|}}$$

after some minor matrix multiplication, we'll get the following results:

$$\mu(\frac{1}{2}) = (\frac{1}{8})(4) = \frac{1}{2}$$

The *Bhattacharyya* error bound will be $\varepsilon_{n-B} = e^{-\frac{1}{2}}$.