ECON 1123 Section 11

Slides at github.com/cjleggett/1123-section

Outline

- Name Circle
- Last Problem Set
- Final Exam
- Lecture Recap + Exercises

Name Circle

Name Circle

- Name
- Favorite Cambridge Restaurant

Last Problem Set

Problem Set 11

- Forecasting Competition
- Very open-ended!
- Actually "Nowcasting"
- Don't worry if your forecast isn't the best!
- Feel free to use starter code!
- Make sure you complete the very short writeup
- Some processes will take a good amount of time

Final Exam

Logistics

- 9am on Tuesday, May 9
 - Please come a few minutes early!
- Will be in several rooms, so stay tuned for your assignment
- Bring:
 - A pen (not a pencil)
 - A simple calculator
 - 2 double-sided sheets of notes

Exam Format

- Two packets just like the midterm: one with info/tables, another with questions
- 4 sections (compared to two for the midterm)
- Similar types of questions as the midterm, but with Instrumental Variables, Fuzzy RD, and Time Series questions as well.

My Advice for Studying

- Make cheat sheet, then look at practice exams, then solutions, then update
- Look at problem set suggested solutions
- After the above 2, go to office hours or post on Slack!
- Learn how to use tables
- Go to review session (mine will be a practice exam 2 walkthrough!)
- Come to my exam walkthrough (midterm or final?)
- Review section notes
- Review lecture notes

My Advice for Taking the Exam

- Read from Packet 1 carefully
- Be careful about which table you're looking at!
- Unless otherwise specified, use bullet points!
- Practice Exam Solutions are much more detailed than necessary! Just write what you need to answer the question.
- Show work for partial credit!

Lecture Recap

Newey-West

One Step Ahead Forecasting

- Using Panel Data, we use clustered Standard Errors to account for serial correlation.
- If we choose lags using BIC, then we don't normally need our standard errors to account for serial correlation. Why?
- When do we need HAC standard errors?
 - Multi-step ahead forecasting models
 - Distributed Lag Models (no lags of Y)

One Step Ahead Forecasting

- Using past data to predict next data point
- Eg: Predicting Inflation in the month of April

Multi-step ahead forecasting

- Using past data to predict several data points ahead
- Eg: Predict inflation at this point next year
- In this case, errors will be serially correlated
- Intuitively, if we make a mistake in predicting the next month because of a large event, we will also make a mistake in predicting the next month
- We account for this using Newey-West Standard Errors

Newey-West Standard Errors

- Problem with normal clustered standard errors: not enough data
- Works by estimating standard errors using just m lags, and weighting using a triangular kernel
- *m* must be chosen. Too small leads to bias. Too large leads to variance.
- General rule of thumb is to choose $m = 1.3T^{1/2}$

Exercises: 1

Review: Stationarity Breaks

Chow Test (Structural Break)

- Decide on a time you want to test for a break (covid? 2008?)
 - Indicator D_t is 0 if t < r, and 1 if $t \ge r$
- Fully interact your model with indicator for after this time. (this is AR(1) model)
 - $Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 D_t + \beta_3 D_t \times T_{t-1} + u_t$
- Do normal F test for whether slope/intercept are equal before and after date

QLR Test (Structural Break)

- QLR is maximum Chow F statistic over all possible breaks in middle 70% of time span
- Why restrict this?

QLR Test (Structural Break)

- QLR is maximum Chow F statistic over all possible breaks in middle 70% of time span
- Why restrict this?
 - So we have enough data on either side

QLR Test Critical Values

- QLR = max(F tests)
- This is a distribution itself!
- Critical values of this are difficult, and were derived semi-recently (1993)
- We calculate this with a computer, but need to know # of restrictions:
 - 1 restriction for dummy variable
 - p restrictions for lags of Y
 - q restrictions for lags of X
 - total of 1 + p + q

What to do when we detect a break?

- Split data at the break
- Use only second-half data

Exercises: 1.1

TABLE 14.6 Critical Values of the QLR Statistic with 15% Trimming			
Number of Restrictions (q)	10%	5%	1%
1	7.12	8.68	12.16
2	5.00	5.86	7.78
3	4.09	4.71	6.02
4	3.59	4.09	5.12
5	3.26	3.66	4.53
6	3.02	3.37	4.12
7	2.84	3.15	3.82
8	2.69	2.98	3.57
9	2.58	2.84	3.38
10	2.48	2.71	3.23

Forecast Errors

Forecasting Terminology

- Forecasts are for observations not in our dataset
 - (Like fitted values)
- Forecast errors are the errors on out-of-sample data
 - (Like residuals)

Forecast Interval

- We want to quantify uncertainty around \hat{Y}_{T+1}
- We typically want to construct a 68% forecast interval
- To do this we need Root Mean Squared Forecast Error (RMSFE)

$$\hat{Y}_{T+1} \pm RMSFE$$

How do we find RMSFE?

Method 1: RMSE

- 1. Square all the residuals of your data
- 2. Take the mean of the square residuals
- 3. Multiply by the degrees of freedom $(\frac{T}{T-K})$
- 4. Take square root of the above

Method 1: RMSE

- Disadvantage: Assumes errors are constant throughout the distribution
- Disadvantage: backwards-looking

Method 2: POOS RMSFE

Method 2: POOS RMSFE

- 1. Choose a point at which to split your data
- 2. Train a model using just the first section of data
- 3. Use that model to make predictions for the second part of the data
- 4. Take the difference between the predictions and actual values
- 5. Square these differences and then take the average of them
- 6. Finally, take the square root of the average

Method 2: POOS RMSFE

- Advantage: predicts errors based on more recent values
- Disadvantages:
 - Still assumes errors are constant within a certain window
 - Still backwards-looking

Method 3: Time-Varying Volatility

- Idea: Use model to predict future errors
- 3 ways to do this:
 - Realized volatility
 - ARCH
 - GARCH

Realized Volatility

- Average of squared errors over last m days
- Uses constant weights on all previous m days

$$\frac{1}{m} \sum_{\tau=t-m+1}^{t} (\hat{u}_{\tau})^2$$

ARCH

- AutoRegressive Conditional Heteroskedasticity
- Fit a model where we predict variance at time t based on prior values:

$$\sigma_t^2 = \phi_0 + \phi_1 u_{t-1}^2 + \phi_2 u_{t-2}^2 + \phi_3 u_{t-3}^2$$

GARCH

- Generalized AutoRegressive Conditional Heteroskedasticity
- Fit a model where we predict variance at time t based on prior values and prior variances
- Very similar in practice to realized volatility

$$\sigma_t^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 + \phi_1 u_{t-1}^2$$

Great work this semester!

cjleggett19@gmail.com

Outline

- Name Circle
- Lecture Recap + Exercises
- Final Exam