Тема 1. Множества. Декартово произведение.

Релации. Функции

Конвенция: Понятието множество е първично и не се дефинира.

1. **Аксиоматизация на множествата** - аксиоми за обема, отделянето, степенното множество и индуктивно генерираните множества.

Аксиома за обема:

$$\forall x \forall y \ (\forall z \ (z \in x \Leftrightarrow z \in y) \Rightarrow x = y)$$

Ако две множества имат едни и същи елементи, то те са равни.

Схема за отделянето:

Нека $\varphi(x, u_1, ..., u_n)$ е теоретикомножествено свойство. Тогава за всяко множество A съществува множество B, чиито елементи са точно онези елементи от A, които имат свойство φ .

$$\forall u_1 \dots \forall u_n \forall A \exists B \ \forall x [x \in B \Leftrightarrow \Big(x \in A \& \varphi(x, u_1, \dots, u_n)\Big)]$$

Аксиома за степенното множество:

$$\forall A \exists B \forall x (x \subseteq A \Rightarrow x \in B)$$

За всяко множество A съществува множество B, измежду чиито елементи са всички подмножества на A.

Пример:
$$P(\emptyset) = \{\emptyset\}, A = \{a, b\}, \text{то } P(A) = \{\emptyset, \{a\}, \{b\}, A\}$$

Аксиома за индуктивно генерираните множества:

Нека M_0 е непразно множество, а F е множество от операции. Тогава M се строи по следния начин:

- 1. База: $M_0 \subseteq M$, т.е. в M са всички елементи на M_0
- 2. Инд. Предположение: Нека $M \neq \emptyset$ (така е, защото $\emptyset \neq M_0 \subseteq M$)
- 3. Инд. Стъпка: Включваме в M всички елементи, които се получават от досега съществуващите в M чрез прилагане на операциите от F.
- 4. Заключение: В M няма други елементи освен базовите и включението от инд. Стъпка $M \coloneqq < M_0, F >$

$$M_0 \subseteq M$$
, $M = \bigcup_{i=0}^n M_i$, $M_i = M_{i-1} \cup \{f(m_i) \mid f \in F \& m_{i-1} \in M_{i-1}\}$

2. Математическа индукция

Принцип на слабата математическа индукция:

Нека $m \in \mathbb{N}$. За всяко свойство $\varphi(n)$, ако:

- 1. $\varphi(m)$ е вярно и
- 2. $(\forall k \ge m) [\varphi(k) \Rightarrow \varphi(k+1)],$

To $(\forall n \in N)[\varphi(n)]$

Принцип на пълната математическа индукция:

Нека m ∈ N. За всяко свойство φ(n), ако:

- 1. $\varphi(m)$ е вярно и
- 2. $(\forall k > m)[\varphi(m) \& \varphi(m+1) \& ... \& \varphi(k-1) \Rightarrow \varphi(k)]$,

To $(\forall n \in N)[\varphi(n)]$

3. Основни операции върху множества и техните свойства

Нека А и В са множества

- \circ Обединение: $A \cup B = \{x \mid x \in B \cup x \in A\}$
- \circ Сечение: $A \cap B = \{x \mid x \in A \land x \in B\}$
- Допълнение: $\bar{A} = \{x \mid x \notin A \land x \in U\}$, U универсум (някакво надмножество на множествата, които ни интересуват)
- \circ Разлика: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- \circ Симетрична разлика: $A \Delta B = (A \setminus B) \cup (B \setminus A)$

 \circ Степенно множество: $\mathcal{P}(A) = \{ x \mid x \subseteq A \}$

За редицата от множества $\{A_1, \dots, A_n\}$ имаме следните операции:

$$\circ$$
 Обединение: $\bigcup_{i=1}^{n} A_i = \{ x \mid \exists i \ (1 \le i \le n \& x \in A_i \} \}$

$$\circ$$
 Обединение: $\bigcup_{i=1}^{n} A_i = \{ x \mid \exists i \ (1 \le i \le n \& x \in A_i) \}$
 \circ Сечение: $\bigcap_{i=1}^{n} A_i = \{ x \mid \forall i (1 \le i \le n \to x \in A_i) \}$

Пример: Нека $A = \{x \in \mathbb{N} \mid x > 1\}$ и $B = \{x \in \mathbb{N} \mid x > 3\}$. Тогава:

- $\circ \ A \cap B = \{x \in \mathbb{N} \mid x > 3\}$
- \circ $A \cup B = \{x \in \mathbb{N} \mid x > 1\}$
- \circ *A* / B = { $x \in \mathbb{N} \mid 1 < x \le 3$ }
- \circ B / A = \emptyset
- $\circ \ A \triangle B = \{x \in \mathbb{N} \mid 1 < x \le 3\}$

Св-ва: Нека А, В и С са множества:

- 1. $A \cup A = A$, $A \cap A = A$ идемпотентност
- 2. $A \cup B = B \cup A$, $A \cap B = B \cap A$, $A \triangle B = B \triangle A$ комутативност
- 3. $(A \sigma B) \sigma C = A \sigma (B \sigma C), \quad \sigma \in \{ \cup, \cap, \triangle \}$ асоциативност
- 4. $U \cup A = U$, $U \cap A = A$, $\emptyset \cup A = A$, $\emptyset \cap A = \emptyset$ 5. $A \cup \bar{A} = U$, $A \cap \bar{A} = \emptyset$ свойства на допълнението
- 6. $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$ Закон на Де Морган

4. Наредена двойка и наредена n-орка

Деф: Наредена двойка

За два елемента а и b въвеждаме операцията наредена двойка $\langle a,b \rangle$. Наредената двойка (a, b) има следното характеристично качество:

$$a_1 = a_2 \wedge b_1 = b_2 \leftrightarrow \langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle$$

Наредена двойка на Куратовски: $\langle a, b \rangle = \{\{a\}, \{a, b\}\}$

Деф: Наредена n-орка

Нека a_1, \dots, a_n са произволни елементи, $n \ge 2$. Тогава означаваме

$$\langle a_1, \dots, a_n \rangle = \langle a_1, \langle a_2, \langle \dots, a_n \rangle \rangle \rangle$$
 - наредена n-орка на елементите a_1, \dots, a_n

5. Декартово произведение и обобщено декартово произведение

Деф: Декартово произведение

За две множества А и В, определяме тяхното декартово произведение като $A \times B = \{\langle a, b \rangle \mid a \in A \& b \in B\}$

Деф: Обобщено декартово произведение

За краен брой множества $A_1, A_2, ..., A_n$, определяме

$$A_1 \times A_2 \times \cdots \times A_n = \{ \langle a_1, a_2, \dots, a_n \rangle \mid a_1 \in A_1 \& a_2 \in A_2 \& \dots \& a_n \in A_n \}$$

6. Релация над п домейна. Свойства на бинарни релации. Релации на еквивалентност и класове на еквивалентност. Релации на частична наредба.

Деф: Релация над n домейна

Нека $A_1, A_2, ..., A_n$ за $n \ge 2$ са множества. Всяко подмножество R на дек. произв. на $A_1, ..., A_n$ снаричаме n-местна релация над A_1 , ..., A_n . За n=2 казваме, че R е бинарна релация.

Деф: Нека $R \subseteq A \times B$

$$Dom(R) = \{a \mid a \in A \& (\exists b \in B) [\langle a, b \rangle \in R] \}$$
 — домейн $Rng(R) = \{b \mid b \in B \& (\exists a \in A) [\langle a, b \rangle \in R] \}$ — рейндж

Св-ва: Нека $R \subseteq A \times A$ за произволно множество A. Нека $a,b \in A$ и $\langle a,b \rangle \in R$.

- \circ R е рефлексивна $\leftrightarrow (\forall x \in A)[\langle x, x \rangle \in R]$
- \circ R е антирефлексивна \leftrightarrow ($\forall x \in A$)[$\langle x, x \rangle \notin R$] (ирефлексивна)
- \circ R е транзитивна \leftrightarrow $(\forall x, y, z \in A)[(x, y) \in R \& (y, z) \in R \rightarrow (x, z) \in R]$

- \circ R е симетрична $\leftrightarrow (\forall x, y \in A)[\langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R]$
- \circ R е антисиметрична $\leftrightarrow (\forall x, y \in A)[\langle x, y \rangle \in R \& \langle y, x \rangle \in R \rightarrow x = y]$
- \circ R е силно антисиметрична $\leftrightarrow (\forall x, y \in A)[x \neq y \Rightarrow \langle x, y \rangle \in R \ XOR \ \langle y, x \rangle \in R]$
- \circ R е асиметрична $\leftrightarrow (\forall x, y \in A)[(x, y) \in R \rightarrow (y, x) \notin R]$

Деф: Индексно множество

Множество, чиито елементи служат за индекси на друго множество като е прието бройката на елементите да се записва като долен ляв индекс:

$$I_n := \{x \in \mathbb{N} \mid 1 \le x \le n \}$$

$$J_n := \{x \in \mathbb{N} \mid 0 \le x \le n - 1 \}$$

Деф: Фамилия от множества

Нека $I \neq \emptyset$ индексно множество и с всеки елемент $i \in I$ е свързано множество A_i . Тогава $\{A_i \mid i \in I\} = \{A_i\}_{i \in I}$ наричаме фамилия от множества, индексирана с I.

Фамилията $\{A_i\}_{i\in I}$ е разбиване на A, ако:

1.
$$\forall i \in I (A_i \neq \emptyset)$$

$$2. \bigcup_{i \in I} A_i = A$$

3.
$$\forall i \in I \ \forall j \in I \ (A_i \cap A_j \neq \emptyset \rightarrow A_i = A_j)$$

Деф: Релация на еквивалентност

Нека $A \neq \emptyset$ е множество. Релация R над A наричаме релация на еквивалентност, ако R е симетрична, рефлексивна и транзитивна.

Деф: Клас на еквивалентност

Нека A е множество, $a \in A$ и R е релация на еквивалентност над A. Класът на еквивалентност на a по отношение на R е множеството:

$$[a]_R = \{ b \in A \mid \langle a, b \rangle \in R \}$$

Всяка релация на еквивалентност над множество поражда разбиване на множеството

Деф: Релация на (строга) частична наредба

- 1. Казваме, че R над A е релация на частична наредба, ако R е рефлексивна, антисиметрична и транзитивна.
- 2. Казваме, че R над A е релация на строга частична наредба, ако R е антирефлексивна, антисиметрична и транзитивна.

7. Диаграми на Хассе. Релации на пълна наредба. Минимален и максимален елемент в релация на частична наредба

Деф: Диаграми на Хассе - графично представяне на бинарна релация $R \subseteq A \times A$, в която:

- Всеки елемент на А се изобразява като връх
- \circ За всеки елемент $(a,b) \in R$ поставяме стрелка от a към b

Деф: Пълна наредба

Нека A е множество и R е релация над A. R е пълна наредба над A, ако е (строга) частична наредба и всеки два различни елемента от A са сравними по отношение на R $\forall a \in A \ \forall b \in A \ (a \neq b \to (\langle a,b \rangle \in R \lor \langle b,a \rangle \in R))$

(рефлексивна, транзитивна и силно антисиметрична)

Релациите ≤ и < над естествените числа са пример за пълна наредба.

Деф: Минимален и максимален елемент в частична наредба

Нека R е частична наредба над множеството A. Казваме, че $a \in A$ е:

- Минимален елемент по отношение на R, ако не съществува друг по-малък елемент $\forall b \in A \ (a \neq b \to \langle b, a \rangle \notin R)$
- Максимален елемент по отношение на R, ако не съществува друг по-голям елемент $\forall b \in A(a \neq b \rightarrow \langle a,b \rangle \neq R)$

Теорема: Всяка частична наредба $R \neq \emptyset$ над крайно множество A притежава минимален и максимален елемент.

8. Влагане на частична наредба в пълна наредба - топологично сортиране

Теорема

Нека $A \neq \emptyset$ е крайно множество и R е частична наредба над A. Съществува пълна наредба S над A, т.ч. $R \subseteq S$.

Д-во:

Нека за определеност *R* е нестрога частична наредба.

Нека |A| = n, по условие $A \neq \emptyset$ и |A| < ∞

Ще докажем, че елементите на A могат да се подредят в редица. Съгласно предната теорема, A има максимален и минимален елемент по отношение на R.

- База: Нека a_1 е един такъв минимален елемент на A.
- Предположение: Нека сме построили редицата $a_1, \dots, a_i i$ на брой различни елемента на A
- Стъпка: Ако i=n, край на конструкцията и $A=\{a_1,\ldots,a_n\}$. Иначе множеството $A_i=A\setminus\{a_1,\ldots,a_n\}$ е непразно, а $R\cap(A_i\times A_i)$ е частична наредба над A_i . Прилагаме предишната теорема, за да изберем минимален елемент a_{i+1} на A_i по отношение на $R\cap(A_i\times A_i)$.

След като сме подредили елементите на A като a_1, \dots, a_n дефинираме релацията $S = \left\{\left\langle a_i, a_j \right\rangle \middle| \ 1 \leq i \leq j \leq n \right\}$. Ще покажем, че S е пълна наредба над A.

- Всеки елемент $a \in A$ присъства някъде в редицата, т.е. $a = a_i$ за някое i и от $i \le i$, то $\langle a_i, a_i \rangle \in S \Rightarrow S$ е рефлексивна
- Антисиметричността и транзитивността на S следват от антисиметричността и транзитивността на \leq над $\mathbb N$
- Нека $a,b \in A$, тогава за някои i,j имаме, че $a=a_i$ и $b=a_j$. Ако $i \leq j$, то $\langle a,b \rangle \in S$, иначе $\langle b,a \rangle \in S$

Следователно S е пълно наредено множество.

Проверка, че $R \subseteq S$:

• Нека $\langle a,b \rangle \in R$. Тогава за някои i,j имаме, че $a=a_i$ и $b=a_j$. Допускаме, че j < i, т.е. $\langle b,a \rangle \in R$ и се връщаме на стъпка j в конструирането на редицата. Елементът b е избран като минимален на A_j спрямо $R \cap (A_i \times A_i)$ и не се среща в a_1, \dots, a_{j-1} . Също а не се среща в a_1, \dots, a_{j-1} , защото i > j, значи $a_i \in A_j = A \setminus \left\{a_1, \dots, a_{j-1}\right\}$. Така $\langle a,b \rangle \in R \cap (A_i \times A_i)$, но това противоречи на минималността на R. Следователно $i \leq j$ и $\langle a,b \rangle \in S$

9. Частични и тотални функции. Инекции, биекции, сюрекции

Деф: Тотална функция

Релацията $R \subseteq A \times B$ се нарича **тотална функция** от A в B, ако:

- Dom(R) = A, $\tau.e. (\forall a \in A) (\exists b \in B) [\langle a, b \rangle \in R]$
- За всеки елемент $a \in A$ съществува точно един елемент $b \in B$, т.е. $(\forall a \in A) (\forall b_1, b_2 \in B) [(\langle a, b_1 \rangle \in R \land \langle a, b_2 \rangle \in R) \rightarrow b_1 = b_2]$

Означаваме функциите като $f: A \to B$ и вместо $(a, b) \in f$ пишем f(a) = b

Деф: Казваме, че функцията f е:

- \circ Инекция, ако $(\forall a_1, a_2 \in A)[a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)]$
- \circ Сюрекция, ако $(\forall b \in B)(\exists a \in A)[f(a) = b]$
- Биекция, ако е инекция и сюрекция

10. Дефиниране на крайно множество, кардиналност на крайно множество, изброимо безкрайно множество. Принцип на Дирихле

Деф: Крайно множество, кардиналност

Множество A е **крайно**, ако $\exists n \in \mathbb{N} \setminus \{0\}$, т.ч. има биекция между A и $J_n = \{0, ..., n-1\}$ (вкл. и $A = \emptyset$). Числото n наричаме **кардиналност** на A и бележим с |A| = n

Деф: Изброимо безкрайно множество

Нека A е множество. Казваме, че A е изброимо безкрайно множество, ако има биекция между A и $w=\mathbb{N}$ естествените числа.

Принцип на Дирихле: Нека X и Y са крайни множества като |X| > |Y|. Тогава за всяка тотална функция $f: X \to Y$ съществува $a \neq b \in X$, т.ч. f(a) = f(b)