BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

WORK INTEGRATED LEARNING PROGRAMMES

Part A: Content Design

Course Title	Introduction to Data Science
Course No	DSE ZG523
Credit Units	3
Last Revised by	Pravin Y Pawar
Version / Date	1.2 , 15/04/2020

Course Objectives

#	Course Objectives
1	Gain basic understanding of the role of Data Science in various scenarios in the real-world of business, industry and government
2	Understand various roles and stages in a Data Science Project and ethical issues to be considered.
3	Explore the processes, tools and technologies for collection and analysis of structured and unstructured data
4	Appreciate the importance of techniques like data visualization, storytelling with data for the effective presentations of the outcomes with the stakeholders

Text Books/References

ID	Text Book			
T1	Introducing Data Science by Cielen, Meysman and Ali			
T2	Storytelling with Data, A data visualization guide for business professionals, by Cole			
	Nussbaumer Knaflic; Wiley			
Т3	Introduction to Data Mining, by Tan, Steinbach and Vipin Kumar			
	References			
R1	The Art of Data Science by Roger D Peng and Elizabeth Matsui			
R2	Ethics and Data Science by DJ Patil, Hilary Mason, Mike Loukides			
R3	Python Data Science Handbook: Essential tools for working with data by Jake VanderPlas			
R4	KDD, SEMMA and CRISP-DM: A Parallel Overview , Ana Azevedo and M.F. Santos , IADS-DM, 2008			

^{*} The above materials are reference only and are neither conclusive nor exhaustive. However, the student is advised to refer latest content from online sources or instructor supplied materials for more thorough understanding of the topics

Content Structure

1. Introduction to Data Science

- 1.1. Fundamentals of Data Science
- 1.2. Real World applications
- 1.3. Data Science vs BI
- 1.4. Data Science vs Statistics
- 1.5. Roles and responsibilities of a Data Scientist
- 1.6. Software Engineering for Data Science
- 1.7. Data Scientists Toolbox
- 1.8. Data Science Challenges

2. Data Analytics

- 2.1. Defining Analytics
- 2.2. Types of data analytics
 - 2.2.1. Descriptive, Diagnostic
 - 2.2.2. Predictive, Prescriptive
- 2.3. Data Analytics methodologies
 - 2.3.1. CRISP-DM Methodology
 - 2.3.2. SEMMA
 - 2.3.3. BIG DATA LIFE CYCLE
 - 2.3.4. SMAM
- 2.4. Analytics Capacity Building
- 2.5. Challenges in Data-driven decision making

3. Data Science Process

- 3.1. Data Science methodology
 - 3.1.1. Business understanding
 - 3.1.2. Data Requirements
 - 3.1.3. Data Acquisition
 - 3.1.4. Data Understanding
 - 3.1.5. Data preparation
 - 3.1.6. Modelling
 - 3.1.7. Model Evaluation
 - 3.1.8. Deployment and feedback
- 3.2. Case Study
- 3.3. Data Science Proposal
 - 3.3.1. Samples
 - 3.3.2. Evaluation
 - 3.3.3. Review Guide

4. Data Science Teams

- 4.1. Defining Data Team
- 4.2. Roles in a Data Science Team
- 4.3. Data Scientists
- 4.4. Data Engineers
- 4.5. Managing Data Team
 - 4.5.1. Onboarding and evaluating the success of team
 - 4.5.2. Working with other teams
 - 4.5.3. Common difficulties

5. Data and Data Models

- 5.1. Types of Data and Datasets
- 5.2. Data Quality
- 5.3. Epicycles of Data Analysis
- 5.4. Data Models

- 5.4.1. Model as expectation
- 5.4.2. Comparing models to reality
- 5.4.3. Reactions to Data
- 5.4.4. Refining our expectations
- 5.5 Six Types of the Questions
- 5.6 Characteristics of Good Question
- 5.7 Formal modeling
 - 5.7.1. General Framework
 - 5.7.2. Associational Analyses
 - 5.7.3. Prediction Analyses

6.Data wrangling and Feature Engineering

- 6.1 Data cleaning
- 6.2 Data Aggregation, Sampling,
- 6.2. Handling Numeric Data
 - 6.2.1 Discretization, Binarization
 - 6.2.2 Normalization
 - 6.2.3 Data Smoothening
- 6.3. Dealing with textual Data
- 6.4. Managing Categorical Attributes
 - 6.4.1 Transforming Categorical to Numerical Values
 - 6.4.2 Encoding techniques
- 6.5 Feature Engineering
 - 6.5.1 Feature Extraction (Dimensionality Reduction)
 - 6.5.2 Feature Construction
 - 6.5.3 Feature Subset selection
 - 6.5.3.1 Filter methods
 - 6.5.3.2 Wrapper methods
 - 6.5.3.3 Embedded methods
 - 6.5.4 Feature Learning
- 6.6 Case Study involving FE tasks

7. Data visualization

- 7.1. Need for visualization
- **7.2.** Exploratory vs Explanatory Analysis
- 7.3. Tables, Axis based Visualization and Statistical Plots
- **7.4.** The Data Visualization Design Process
- 7.5. Lessons in Data Visualization Design
- **7.6.** Stories and Dashboards

8. Storytelling with Data

- 8.1. The final deliverable
- 8.2. The Narrative report / presentation structure
- 8.3. Building narrative with Data
- 8.4. Effective storytelling

9. Ethics for Data Science

- 9.1. Bias and Fairness
 - 9.1.1 Types of Bias
 - 9.1.2 Identifying Bias
 - 9.1.3 Evaluating Bias
- 9.2 Being a data skeptic examples of misuse of Data
- 9.3 Doing Good Science
- 9.4. Five C's
- 9.5 Ethical guidelines for Data Scientist
- 9.6 Ethics of data scraping and storage
- 9.7 Case Study: IBM AI Fairness 360

Contents & Session delivery

Session (2 hrs)	Topics to cover	Content Reference	
1.	Introduction to Data Science	+	
1	Fundamentals of Data Science	T1 – Chapter 1	
	Real World applications	•	
	Data Science vs BI	Class Room Discussion	
	Data Science vs Statistics	Class Notes	
	 Roles and responsibilities of a Data Scientist 		
	 Software Engineering for Data Science 	Additional Reading (AR) material	
	Data Scientists Toolbox	provided on Canvas LMS	
		Class Room Discussion	
	Data Science Challenges	Class Room Discussion	
2.			
	 Defining Analytics 	Class Notes	
	 Types of data analytics 	Beginners Guide to Analytics	
	 Descriptive, Diagnostic 	Data Analytics Tutorial	
	 Predictive, Prescriptive 		
	Data Analytics – methodologies	R4 and Class Notes	
3.	 CRISP-DM Methodology 	K4 and Class Notes	
3.	o SEMMA		
	 BIG DATA LIFE CYCLE 		
	o SMAM		
	Analytics Capacity Building	Class Room Discussions	
	Challenges in Data-driven decision making		
4.	Data Science Process	T1 C1 2	
	Data Science methodology	T1 - Chapter 2	
	Business understanding	R1 – Chapter 2	
	o Data Requirements		
	Data Acquisition		
	o Data Understanding		
	Data preparation		
	o Modelling		
5.	Model Evaluation		
	Deployment and feedback		
	• Case Study	Class Room Discussion	
	Data Science Proposal	Class Notes and AR	
	o Samples		
	o Evaluation		
	o Review Guide		
6.	Data Science Teams		
	Defining Data Team	Class Room Discussion	
	 Roles in a Data Science Team 		
	 Data Scientists 		
	 Data Engineers 		
	Managing Data Team	Class Notes and AD	
	 On boarding and evaluating the 	Class Notes and AR	
	success of team		
	 Working with other teams 		
	 Common difficulties 		

7.	Data and Data Models	1	
/.	 Types of Data and Datasets 	T3 – Chapter 2	
	* *	13 – Chapter 2	
	Data Quality		
	 Epicycles of Data Analysis 	R1 – Chapter 2	
	 Data Models 	R1 – Chapter 5	
	 Model as expectation 		
	 Comparing models to reality 		
-	 Reactions to Data 		
8.	 Refining our expectations 		
	 Six Types of the Questions 	R1 – Chapter 3	
	 Characteristics of Good Question 		
	 Formal modelling 		
	 General Framework 	R1 – Chapter 7	
	 Associational Analyses 		
	 Prediction Analyses 		
9.	Data wrangling and Feature Engineering		
	 Data cleaning 	T3 – Chapter 2	
	 Data Aggregation, Sampling, 		
	 Handling Numeric Data 	Tro. Cl	
	 Discretization, Binarization 	T3 – Chapter 2	
	 Normalization 		
	 Data Smoothening 	Class Notes and AR	
	 Dealing with textual Data 	Class Notes and AR	
10.	Managing Categorical Attributes		
10.	 Transforming Categorical to 	R3 – Chapter 5.4	
	Numerical Values	RS Chapter 5.1	
	Encoding techniques		
	Feature Engineering		
	Feature Extraction (Dimensionality)	Class Notes and AR	
	Reduction)	T3 – Appendix B	
	Feature Construction		
	 Feature Construction Feature Subset selection 		
1.1	Filter methods	AR	
11.	Wrapper methods	Class Room Discussions	
	 Wrapper methods Embedded methods 		
	 Feature Learning 		
	 Case Study involving FE tasks 	Class Room Discussions	
	, ,	Class Room Discussions	
12.	Data Visualizations		
12.	Data Need for visualization	Why Visual Analytics?	
	 Exploratory vs Explanatory Analysis 	Visual Analysis for Everyone	
	Exploratory vs Explanatory Timerysis	T2 – Chapter 1	
13.	Tables , Axis based Visualization and		
13.	Statistical Plots	T2 – Chapter 2	
	 Lessons in Data Visualization Design 		
	_	T2 – Chapter 8	
	The Data Visualization Design ProcessStories and Dashboards	Class Notes	
1 4		Class Room Discussion	
14.	Storytelling with Data The final deliverable	AR	
	• The final deliverable	Class Room Discussion	
	• The Narrative - report / presentation structure	Ciass Room Discussion	
	 Building narrative with Data 	T2 – Chapter 10	
		12 - Chapter 10	

	Effective storytelling	R1 – Chapter 10
15.	Ethics for Data Science • Bias and Fairness ○ Types of Bias ○ Identifying Bias ○ Evaluating Bias	AR Hidden Biases in Big Data
	Being a data skeptic – examples of misuse of Data	On Being a Data Skeptic
16.	 Doing Good Science Five C's Ethical guidelines for Data Scientist Ethics of data scraping and storage 	R2 – Chapter 1 R2 – Chapter 3 Class Room Discussion
	Case Study: IBM AI Fairness 360	Credit Decisions Medical Expenditures

Evaluation Scheme:

Legend: EC = Evaluation Component; AN = After Noon Session; FN = Fore Noon Session

	Name	Type	Duration	Wt.	Date/Deadl
					ine
EC1	Quiz-I (Pre-Mid)	Online (30 mins)	5 days open	5%	TBA
	Quiz-II (Post-Mid)	Online (30 mins)	5 days open	5%	
	Assignment	Take-home	10 days open	20%	
EC2	Mid-Semester Exam	Closed Book	1.5 hours	30%	Per
					Schedule
EC3	Comprehensive	Open Book	2.5 hours	40%	Per
	Exam				Schedule

Notes:

- → The release dates of Quiz-1/2 and assignments will be 5 days (for Quiz) and 10 days (for assignments) before the completion/submission deadline.
- → Deadlines will NOT be extended for whatever reason and the student is requested not to wait for the deadline to start working on Quiz/Assignment
- → Syllabus for Quiz-I: Sessions: 1 to 3 / Quiz-II: Session 9 to 12
- → Syllabus for Assignment: Hands-on Python-based Exercise (real-world problem, for individual group of 3 / 4 students). Group formation procedure will be announced before Assignment release
- → All Quiz/Assignments will be released and to be answered/submitted in Canvas LMS
- → Syllabus for Mid-Semester Test (Closed Book): Topics in Session Nos. 1 to 8
- → Syllabus for Comprehensive Exam (Open Book): All topics (Session Nos. 1 to 16)
- → The student is strictly advised to stick to regular schedule of Mid-Sem and Compre examinations, and Makeup examinations will be only for those students with business-related absence/health related issues.
- → Strictly NO MAKEUPS for Quiz and Assignments and all submissions after the above stated deadlines will not be considered/evaluated.
- → All students should conform to BITS students' ethical code-of-conduct and all assignments will be subjected to plagiarism check, and if violated will be subject to disciplinary action apart from nullifying all the marks/grades assigned.

Important links and information:

<u>Canvas LMS:</u> All materials/announcements/discussions forums/Online Quizs/Assignment submissions will be via Canvas LMS portal. Students are expected to monitor this portal regularly for any content or announcements.

<u>Contact sessions:</u> Students should attend the online lectures as per the schedule provided in the Course Handout (posted on Canvas LMS)

Evaluation Guidelines:

- 1. EC-1 consists of 2 Quizzes and 1 Assignments. Students will attempt them through the course pages on the Canvas portal. Announcements will be made on the portal, in a timely manner.
- 2. For Closed Book tests: No books or reference material of any kind will be permitted.
- 3. For Open Book exams: Use of books and any printed / written reference material (filed or bound) is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 4. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam which will be made available on the Elearn portal. The Make-Up Test/Exam will be conducted only at selected exam centers.

It shall be the responsibility of the individual student to be regular in attending the contact-session schedule as given in the course handout, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout