NCF

Neural Collaborative Filtering

CONTENTS

O1
INTRODUCTION

PRELIMINARIES
Learn from Implicit data
MF

NEURAL CF
General Framework
GMF
MLP
Fusion

O4EXPERIMENTS

Setting Result 01

Introduction

01. Introduction Why NCF

연구 진행 이유 = MF is not sufficient for implicit data

1. user-item 간 latent feature modeling

2. Show MF \subset NCF

3. NCF's nonlinearity

02

PRELIMINARIES

Learn from Implicit data

$$y_{ui} = \begin{cases} 1, & \text{if interaction (user } u, \text{ item } i) \text{ is observed;} \\ 0, & \text{otherwise.} \end{cases}$$

Learn from Implicit data

$$\hat{y}_{ui} = f(u, i|\Theta)$$

Learn from Implicit data

$$\hat{y}_{ui} = f(u, i | \Theta)$$

How to get

- 1. Pointwise loss *
 - 2. Pairwise loss
 - +) Listwise loss

MF

$$\hat{y}_{ui} = f(u, i | \mathbf{p}_u, \mathbf{q}_i) = \mathbf{p}_u^T \mathbf{q}_i = \sum_{k=1}^n p_{uk} q_{ik},$$

03

NEURAL CF

General Framework

General Framework

$$f(\mathbf{P}^T \mathbf{v}_u^U, \mathbf{Q}^T \mathbf{v}_i^I) = \phi_{out}(\phi_X(...\phi_2(\phi_1(\mathbf{P}^T \mathbf{v}_u^U, \mathbf{Q}^T \mathbf{v}_i^I))...))$$

General Framework

$$f(\mathbf{P}^T \mathbf{v}_u^U, \mathbf{Q}^T \mathbf{v}_i^I) = \phi_{out}(\phi_X(...\phi_2(\phi_1(\mathbf{P}^T \mathbf{v}_u^U, \mathbf{Q}^T \mathbf{v}_i^I))...))$$

$$L_{sqr} = \sum_{(u,i)\in\mathcal{Y}\cup\mathcal{Y}^-} w_{ui} (y_{ui} - \hat{y}_{ui})^2$$

General Framework

$$p(\mathcal{Y}, \mathcal{Y}^- | \mathbf{P}, \mathbf{Q}, \Theta_f) = \prod_{(u,i) \in \mathcal{Y}} \hat{y}_{ui} \prod_{(u,j) \in \mathcal{Y}^-} (1 - \hat{y}_{uj}).$$

$$L = -\sum_{(u,i)\in\mathcal{Y}} \log \hat{y}_{ui} - \sum_{(u,j)\in\mathcal{Y}^{-}} \log(1 - \hat{y}_{uj})$$

$$= -\sum_{(u,i)\in\mathcal{Y}\cup\mathcal{Y}^{-}} y_{ui} \log \hat{y}_{ui} + (1 - y_{ui}) \log(1 - \hat{y}_{ui})$$

GMF

$$\phi_1(\mathbf{p}_u, \mathbf{q}_i) = \mathbf{p}_u \odot \mathbf{q}_i$$

$$\hat{y}_{ui} = a_{out}(\mathbf{h}^T(\mathbf{p}_u \odot \mathbf{q}_i))$$

MLP

$$\mathbf{z}_{1} = \phi_{1}(\mathbf{p}_{u}, \mathbf{q}_{i}) = \begin{bmatrix} \mathbf{p}_{u} \\ \mathbf{q}_{i} \end{bmatrix},$$

$$\phi_{2}(\mathbf{z}_{1}) = a_{2}(\mathbf{W}_{2}^{T}\mathbf{z}_{1} + \mathbf{b}_{2}),$$
.....
$$\phi_{L}(\mathbf{z}_{L-1}) = a_{L}(\mathbf{W}_{L}^{T}\mathbf{z}_{L-1} + \mathbf{b}_{L}),$$

$$\hat{y}_{ui} = \sigma(\mathbf{h}^{T}\phi_{L}(\mathbf{z}_{L-1})),$$

Fusion

$$\hat{y}_{ui} = \sigma(\mathbf{h}^T a(\mathbf{p}_u \odot \mathbf{q}_i + \mathbf{W} \begin{bmatrix} \mathbf{p}_u \\ \mathbf{q}_i \end{bmatrix} + \mathbf{b}))$$

Fusion

Fusion

$$\phi^{GMF} = \mathbf{p}_{u}^{G} \odot \mathbf{q}_{i}^{G},$$

$$\phi^{MLP} = a_{L}(\mathbf{W}_{L}^{T}(a_{L-1}(...a_{2}(\mathbf{W}_{2}^{T}\begin{bmatrix}\mathbf{p}_{u}^{M}\\\mathbf{q}_{i}^{M}\end{bmatrix} + \mathbf{b}_{2})...)) + \mathbf{b}_{L}),$$

$$\hat{y}_{ui} = \sigma(\mathbf{h}^{T}\begin{bmatrix}\phi^{GMF}\\\phi^{MLP}\end{bmatrix}),$$

$$\mathbf{h} \leftarrow \begin{bmatrix} \alpha \mathbf{h}^{GMF} \\ (1 - \alpha) \mathbf{h}^{MLP} \end{bmatrix}$$

04

Experiments

04. Experiments Setting

1. NCF is better than new implicit CF model

2. optimization framework fits well for recommendation

3. Deeper layer is good for find interaction

04. Experiments Setting

Data set => MovieLens, Pinterest

Dataset	Interaction#	Item#	$\mathbf{U}\mathbf{ser} \#$	Sparsity
MovieLens	1,000,209	3,706	6,040	95.53%
Pinterest	1,500,809	9,916	55,187	99.73%

Score => leave-one-out (with sampling 100 random item) HR + NDCG

$$\begin{aligned} \textit{Cumulative Gain}(\textit{CG}) &= \sum_{i=1}^{n} \textit{relevance}_{i} \\ g_{uj} &= 2^{rel_{uj}} - 1 \\ DCG &= \frac{1}{m} \sum_{u=1}^{m} \sum_{j \in I_{u}, v_{j} \leq L} \frac{g_{uj}}{\log_{2}(v_{j} + 1)} \end{aligned}$$

04. Experiments Setting

Comparison model:

ItemPop

ItemKNN

BPR

eALS

Result

Result

Result

	With P	re-training	Without Pre-training					
Factors	HR@10	NDCG@10	HR@10	NDCG@10				
	MovieLens							
8	0.684	0.403	0.688	0.410				
16	0.707	0.426	0.696	0.420				
32	0.726	0.445	0.701	0.425				
64	0.730	0.447	0.705	0.426				
Pinterest								
8	0.878	0.555	0.869	0.546				
16	0.880	0.558	0.871	0.547				
32	0.879	0.555	0.870	0.549				
64	0.877	0.552	0.872	0.551				

Result

Result

Result

Factors	MLP-0	MLP-1	MLP-2	MLP-3	MLP-4	Factors	MLP-0	MLP-1	MLP-2	MLP-3	MLP-4
MovieLens				MovieLens							
8	0.452	0.628	0.655	0.671	0.678	8	0.253	0.359	0.383	0.399	0.406
16	0.454	0.663	0.674	0.684	0.690	16	0.252	0.391	0.402	0.410	0.415
32	0.453	0.682	0.687	0.692	0.699	32	0.252	0.406	0.410	0.425	0.423
64	0.453	0.687	0.696	0.702	0.707	64	0.251	0.409	0.417	0.426	0.432
	Pinterest				Pinterest						
8	0.275	0.848	0.855	0.859	0.862	8	0.141	0.526	0.534	0.536	0.539
16	0.274	0.855	0.861	0.865	0.867	16	0.141	0.532	0.536	0.538	0.544
32	0.273	0.861	0.863	0.868	0.867	32	0.142	0.537	0.538	0.542	0.546
64	0.274	0.864	0.867	0.869	0.873	64	0.141	0.538	0.542	0.545	0.550

Result

User_embedding = tf.keras.layers.Embedding(n_users, embedding_dim,embeddings_regularizer=tf.keras.regularizers.<u>l2(</u>1e-6))(user_input)

```
u = tf.keras.layers.Reshape((embedding_dim,))(User_embedding)
v = tf.keras.layers.Reshape((embedding_dim,))(Product_embedding)
s = tf.keras.layers.Dot(axes=1)([u, v])
```


Result

```
mlpl = tf.keras.layers.Dense(16, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(1e-6))(mlpl)
mlpl = tf.keras.layers.Dense(8, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(1e-6))(mlpl)
output_mlp = tf.keras.layers.Dense(1, activation='sigmoid', kernel_initializer="lecun_uniform")(mlpl)
```


Result

```
ncf = tf.keras.layers.Concatenate(axis=1)([output_mlp, output_gmf])
output = tf.keras.layers.Dense(1, activation='sigmoid', kernel_initializer="he_normal")(ncf)
```


Thank you