Normed Spaces

1 Definition Of A Normed Space

If X is a vector space and $||\cdot||$ is a norm on X then the pair $(X, ||\cdot||)$ is said to be a Normed Space.

It is common to simply refer to the "normed space of X" when referring to the normed space $(X, ||\cdot||)$ where $||\cdot||$ is the typical norm on X. For instance, when dealing with \mathbb{R}^n , it is usual to refer to $(\mathbb{R}^n, ||\cdot||_2)$ as "the normed space of \mathbb{R}^n .

2 Convex Sets

Let X be a vector space. A subset of X, $K \subset X$, is said to be convex if when $x, y \in K$ and $0 \le \lambda \le 1$, $\lambda x + (1 - \lambda)y \in K$.

Less formally, K is convex if the line segment connecting any two points in K is fully contained within K.

3 Closed (Unit) Ball In $(X, ||\cdot||)$

The Closed (Unit) Ball in $(X, ||\cdot||)$ is defined as

$$\mathcal{B}_X := \{ x \in X : ||x|| \le 1 \}$$

Lemma: In any normed space $(X, ||\cdot||)$, the Closed Unit Ball \mathcal{B}_X is convex.

To prove this, suppose that $(X, ||\cdot||)$ is a normed space with \mathcal{B}_X the Closed Unit Ball in the normed space.

Let $x, y \in \mathcal{B}_X$. By definition, $||x|| \leq 1$, $||y|| \leq 1$. For any $0 \leq \lambda \leq 1$, we have

$$||\lambda x + (1 - \lambda)y|| \le |\lambda|||x|| + |1 - \lambda|||y|| \le \lambda + (1 - \lambda) = 1$$

Since $||\lambda x + (1 - \lambda)y|| \le 1$, it must be in \mathcal{B}_X , and thus \mathcal{B}_X is convex.

4 Balls Prove Norms

Lemma: Suppose that a function, $N:X\to\mathbb{R}^+$, satisfies the first two criteria to be a norm (discussed in the Introducing Norms section), and the set $\mathcal{B}:=\{x\in X:N(x)\leq 1\}$ is convex. Then N satisfies the Triangle Inequality and is thus a norm.

Proof:

Suppose that the function $N: X \to \mathbb{R}^+$ satisfies the above conditions, and $\mathcal{B} := \{x \in X : N(x) \leq 1\}.$

Let $x, y \in X$ such that N(x) > 0, N(y) > 0. The points $\frac{x}{N(x)}, \frac{y}{N(y)} \in \mathcal{B}$. Since \mathcal{B} is convex, we know that

$$\frac{N(x)}{N(x) + N(y)} \left(\frac{x}{N(x)}\right) + \frac{N(y)}{N(x) + N(y)} \left(\frac{y}{N(y)}\right) \in \mathcal{B}$$

By Homogeneity, we know that $N\left(\frac{1}{N(x)+N(y)}k\right)=\frac{1}{N(x)+N(y)}N(k)$ for all $k\in X$.

$$\implies N\left(\frac{x+y}{N(x)+N(y)}\right) = \frac{N(x+y)}{N(x)+N(y)} \le 1$$

$$\implies N(x+y) \le N(x)+N(y)$$

And thus N satisfies the Triangle Inequality. Further, since N satisfies all three conditions to be a norm, N is a norm of X.

Note that when trying to apply this lemma, it is often necessary to show

that a real-valued function is convex. A function $f:[a,b]\to\mathbb{R}$ is said to be convex if, for all $x,y\in[a,b],\ f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)$. A sufficient condition for $f\in C^2((a,b))\cap C^1([a,b])$ is that $f''(c)\geq 0$ for all $x\in(a,b)$.