Introduction to Machine Learning

Instructor: Lara Dolecek

TA: Zehui (Alex) Chen, Ruiyi (John) Wu

Please upload your homework to Gradescope by May 14, 11:59 pm.

Please submit a single PDF directly on Gradescope

You may type your homework or scan your handwritten version. Make sure all the work is discernible.

1. Show that a kernel function $K(x_1, x_2)$ satisfies the following generalization of the Cauchy-Schwartz inequality:

$$K(x_1, x_2)^2 \le K(x_1, x_1)K(x_2, x_2).$$

Hint: The Cauchy-Schwartz inequality states that: for two vectors u and v, $|u^T v|^2 \le ||u||^2 ||v||^2$.

Solution 1: From the definition of kernel, we have

$$K(x_1, x_2)^2 = (\phi(x_1)^T \phi(x_2))^2$$

$$\leq (\phi(x_1)^T \phi(x_1))(\phi(x_2)^T \phi(x_2))$$

$$= K(x_1, x_1)K(x_2, x_2).$$

The inequality comes from the Cauchy-Schwartz inequality.

Solution 2: For an alternative solution, we consider the 2×2 Gram matrix

$$\mathbf{K} = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) \\ K(x_2, x_1) & K(x_2, x_2) \end{bmatrix}$$

Since $K(x_1, x_2)$ is a valid kernel, \mathbf{K} is positive definite with $|\mathbf{K}| \ge 0$. This shows that $K(x_1, x_2)^2 \le K(x_1, x_1)K(x_2, x_2)$.

- 2. Given valid kernels $K_1(x, x')$ and $K_2(x, x')$, show that the following kernels are also valid:
 - (a) $K(x, x') = K_1(x, x') + K_2(x, x')$.

Solution: Suppose $K_1(x, x')$ has positive semi-definite Kernel matrix \mathbf{K}_1 and $K_2(x, x')$ has positive semi-definite Kernel matrix \mathbf{K}_2 with same dimension. Then it is easy to show that K(x, x') has Kernel matrix $\mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2$ which is also positive semi-definite. In another word, if $z^T \mathbf{K}_1 z \geq 0, \forall z$ and $z^T \mathbf{K}_2 z \geq 0, \forall z$, then $z^T \mathbf{K}_2 z \geq 0, \forall z$.

(b) $K(x, x') = K_1(x, x')K_2(x, x')$.

Solution: We assume the mapping function for $K_1(x, x')$ is $\phi^{(1)}(x)$ and similarly $\phi^{(2)}(x)$ for $K_2(x, x')$. Moreover, we further assume the dimension of $\phi^{(1)}(x)$ is M and the dimension of $\phi^{(2)}(x)$ is N. We can then expand K(x, x').

$$K(x, x') = K_{1}(x, x')K_{2}(x, x')$$

$$= \phi^{(1)}(x)^{T}\phi^{(1)}(x')\phi^{(2)}(x)^{T}\phi^{(2)}(x')$$

$$= \sum_{i=1}^{M} \phi_{i}^{(1)}(x)\phi_{i}^{(1)}(x')\sum_{j=1}^{N} \phi_{j}^{(2)}(x)\phi_{j}^{(2)}(x')$$

$$= \sum_{i=1}^{M} \sum_{j=1}^{N} \left[\phi_{i}^{(1)}(x)\phi_{j}^{(2)}(x)\right] \left[\phi_{i}^{(1)}(x')\phi_{j}^{(2)}(x')\right]$$

$$= \sum_{k=1}^{MN} \phi_{k}(x)\phi_{k}(x') = \phi(x)^{T}\phi(x').$$

In the above equation, $\phi(x)$ is a $MN \times 1$ column vector with the k-th element given by $\phi_i^{(1)}(x) \times \phi_j^{(2)}(x)$. For a given k, the corresponding i and j are calculated as follows: $i = \lfloor (k-1)/N \rfloor + 1$, and $j = (k-1) \mod N + 1$.

(c) $K(x, x') = \exp(K_1(x, x'))$. Hint: use your results in (a) and (b).

Solution: Consider the Taylor series expansion for the exponential function:

$$K(x, x') = \sum_{n=0}^{\infty} \frac{K_1(x, x')^n}{n!}.$$

Using results from (a) and (b) repeatedly on across terms and with each term respectively shows that K(x, x') is a valid kernel.

3. In class, we learned that the soft margin SVM has the primal problem:

$$\min_{\xi, w, b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i$$
s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi_i, \quad i = 1, \dots, m$

$$\xi_i \ge 0, \quad i = 1, \dots, m,$$

and the dual problem:

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle$$

$$s.t. \quad 0 \le \alpha_i \le C, i = 1, \dots, m,$$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0.$$

Note that $\langle z, s \rangle$ is an alternative expression for the inner product $z^T s$. As usual, $y^{(i)} \in \{+1, -1\}$.

Now suppose we have solved the dual problem and have the optimal α . Show that the parameter b can be determined using the following equation:

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(y^{(n)} - \sum_{m \in \mathcal{S}} \alpha_m y^{(m)} \langle x^{(n)}, x^{(m)} \rangle \right). \tag{1}$$

In (1), \mathcal{M} denotes the set of indices of data points having $0 < \alpha_n < C$, parameter $N_{\mathcal{M}}$ denotes the size of the set \mathcal{M} , and \mathcal{S} denotes the set of indices of data points having $\alpha_n \neq 0$.

Solution: From the KKT condition (complementary slackness), we find that for each data points with $0 < \alpha_n < C$, i.e., $n \in \mathcal{M}$, we have

$$y^{(n)}(w^T x^{(n)} + b) = 1.$$

Multiplying by $y^{(n)}$ on both sides and then summing over \mathcal{M} (note that the square of $y^{(n)}$ is always 1), we have:

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(y^{(n)} - w^T x^{(n)} \right).$$

Rewrite w in terms of α by using $w = \sum_{m \in \mathcal{S}} \alpha_m y^{(m)} x^{(m)}$. We find

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(y^{(n)} - \sum_{m \in \mathcal{S}} \alpha_m y^{(m)} \langle x^{(n)}, x^{(m)} \rangle \right).$$

4. Consider 3 random variables A,B and C with joint probabilities P(A,B,C) listed in the following table.

	C=0		C=1	
	B=0	B=1	B=0	B=1
A=0	0.096	0.024	0.27	0.03
A=1	0.224	0.056	0.27	0.03

(a) Calculate P(A|C=0), P(B|C=0), and P(A,B|C=0). Solution:

$$P(A|C=0) = \begin{cases} 0.3, A=0\\ 0.7, A=1 \end{cases} \qquad P(B|C=0) = \begin{cases} 0.8, B=0\\ 0.2, B=1 \end{cases}$$

$$P(A,B|C=0) = \begin{cases} 0.24, A=0, B=0\\ 0.06, A=0, B=1\\ 0.56, A=1, B=0\\ 0.14, A=1, B=1 \end{cases}$$

(b) Calculate P(A|C=1), P(B|C=1), and P(A,B|C=1). Solution:

$$P(A|C=1) = \begin{cases} 0.5, A=0\\ 0.5, A=1 \end{cases} \qquad P(B|C=1) = \begin{cases} 0.9, B=0\\ 0.1, B=1 \end{cases}$$

$$P(A,B|C=1) = \begin{cases} 0.45, A=0, B=0\\ 0.05, A=0, B=1\\ 0.45, A=1, B=0\\ 0.05, A=1, B=1 \end{cases}$$

(c) Is A conditionally independent of B given C? Solution: Yes. From the above, we can verify P(A|C=1)P(B|C=1) = P(A,B|C=1) and P(A|C=0)P(B|C=0) = P(A,B|C=0).

(d) Calculate P(A), P(B), and P(A, B).

Solution:

$$P(A) = \begin{cases} 0.42, A = 0 \\ 0.58, A = 1 \end{cases} \qquad P(B) = \begin{cases} 0.86, B = 0 \\ 0.14, B = 1 \end{cases}$$
$$P(A, B) = \begin{cases} 0.366, A = 0, B = 0 \\ 0.034, A = 0, B = 1 \\ 0.494, A = 1, B = 0 \\ 0.086, A = 1, B = 1 \end{cases}$$

(e) Is A independent of B? Solution: No. It is easy to verify that $P(A)P(B) \neq P(A, B)$.

5. Let us revisit the restaurant selection problem in HW3. You are trying to choose between two restaurants (sample 9 and sample 10) to eat at. To do this, you will train a classifier based on your past experiences (sample 1-8). The features for each restaurants and your judgment on the goodness of sample 1-8 are summarized by the following chart. In this exercise, instead of a decision tree, you will use the Naïve

Sample #	HasOutdoorSeating	HasBar	IsClean	HasGoodAtmosphere	IsGoodRestaurant
1	0	0	0	1	1
2	1	1	0	0	0
3	0	1	1	1	1
4	1	0	0	1	1
5	1	1	1	0	0
6	1	0	1	0	1
7	1	1	0	1	1
8	0	0	1	1	1
9	0	1	0	1	?
10	1	1	1	1	?

Bayes classifier to decide whether restaurant 9 and 10 are good or not. For clarity, we abbreviate the names of the features and label as follows: HasOutdoorSeating $\to O$, HasBar $\to B$, IsClean $\to C$, HasGoodAtmosphere $\to A$, and IsGoodRestaurant $\to G$.

(a) Train the Naïve Bayes classifier by calculating the maximum likelihood estimate of class priors and class conditional distributions. Namely, calculate the maximum likelihood estimate of the following: P(G), and P(X|G), $X \in \{O, B, C, A\}$. Solution: The maximum likelihood of class priors are just the relative frequency of each class. We therefore have:

$$P(G=0) = \frac{2}{8} = \frac{1}{4}, P(G=1) = \frac{6}{8} = \frac{3}{4}.$$

The class conditional distribution can be estimated similarly by calculating the relative frequency of the features conditional on the class. We get:

$$P(O = 0|G = 0) = 0, P(O = 0|G = 1) = \frac{3}{6} = \frac{1}{2};$$

$$P(B = 0|G = 0) = 0, P(B = 0|G = 1) = \frac{4}{6} = \frac{2}{3};$$

$$P(C = 0|G = 0) = \frac{1}{2}, P(C = 0|G = 1) = \frac{3}{6} = \frac{1}{2};$$

$$P(A = 0|G = 0) = 1, P(A = 0|G = 1) = \frac{1}{6}.$$

(b) For Sample #9 and #10, make the decision using

$$\hat{G}_i = \underset{G_i \in \{0,1\}}{\operatorname{argmax}} \quad P(G_i) P(O_i, B_i, C_i, A_i | G_i),$$

where O_i, B_i, C_i , and A_i are the feature values for the *i*-th sample.

Solution: Using previous results, for i = 9:

$$P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0) = \frac{1}{4} \times 0 \times 1 \times \frac{1}{2} \times 0 = 0,$$

and

$$P(G_i = 1)P(O_i, B_i, C_i, A_i | G_i = 1) = \frac{3}{4} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} \times \frac{5}{6} > P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0).$$

We then decide $\hat{G}_9 = 1$.

For i = 10:

$$P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0) = \frac{1}{4} \times 1 \times 1 \times \frac{1}{2} \times 0 = 0,$$

and

$$P(G_i = 1)P(O_i, B_i, C_i, A_i | G_i = 1) = \frac{3}{4} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} \times \frac{5}{6} > P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0).$$

We then decide $\hat{G}_{10} = 1$.

(c) We use Laplace smoothing to avoid having class conditional probabilities that are strictly 0. To use Laplace smoothing for a binary classifier, add 1 to the numerator and add 2 to the denominator when calculating the class conditional distributions. Let us re-calculate the class conditional distributions with Laplace smoothing. Namely, calculate the maximum likelihood estimate of $P(X|G), X \in \{O, B, C, A\}$. Solution: The class conditional distribution are:

$$P(O = 0|G = 0) = \frac{1}{4}, P(O = 0|G = 1) = \frac{4}{8} = \frac{1}{2};$$

$$P(B = 0|G = 0) = \frac{1}{4}, P(B = 0|G = 1) = \frac{5}{8};$$

$$P(C = 0|G = 0) = \frac{2}{4} = \frac{1}{2}, P(C = 0|G = 1) = \frac{4}{8} = \frac{1}{2};$$

$$P(A = 0|G = 0) = \frac{3}{4}, P(A = 0|G = 1) = \frac{2}{8} = \frac{1}{4}.$$

(d) Repeat (b) with the class conditional distributions you get from (c). **Solution:** Using previous results, for i = 9:

$$P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0) = \frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} \times \frac{1}{2} \times \frac{1}{4} = 0.0059,$$

and

$$P(G_i = 1)P(O_i, B_i, C_i, A_i | G_i = 1) = \frac{3}{4} \times \frac{1}{2} \times \frac{3}{8} \times \frac{1}{2} \times \frac{3}{4} = 0.0527.$$

We then decide $\hat{G}_9 = 1$.

For i = 10:

$$P(G_i = 0)P(O_i, B_i, C_i, A_i | G_i = 0) = \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{1}{2} \times \frac{1}{4} = 0.0176,$$

 $\quad \text{and} \quad$

$$P(G_i = 1)P(O_i, B_i, C_i, A_i | G_i = 1) = \frac{3}{4} \times \frac{1}{2} \times \frac{3}{8} \times \frac{1}{2} \times \frac{3}{4} = 0.0527$$

We then decide $\hat{G}_{10} = 1$.

6. In class, we learned a Naïve Bayes classifier for binary feature values, i.e., $x_j \in \{0, 1\}$ where we model the class conditional distribution to be Bernoulli. In this exercise, you are going to extend the result to the case where features that are non-binary.

We are given a training set $\{(x^{(i)}, y^{(i)}); i = \{1, \dots, m\}\}$, where $x^{(i)} \in \{1, 2, \dots, s\}^n$ and $y^{(i)} \in \{0, 1\}$. Again, we model the label as a biased coin with $\theta_0 = P(y^{(i)} = 0)$ and $1 - \theta_0 = P(y^{(i)} = 1)$. We model each non-binary feature value $x_j^{(i)}$ (an element of $x^{(i)}$) as a biased dice for each class. This is parameterized by:

$$P(x_j = k | y = 0) = \theta_{j,k|y=0}, k = 1, \dots, s-1;$$

$$P(x_j = s | y = 0) = \theta_{j,s|y=0} = 1 - \sum_{k=1}^{s-1} \theta_{j,k|y=0};$$

$$P(x_j = k | y = 1) = \theta_{j,k|y=1}, k = 1, \dots, s-1;$$

$$P(x_j = s | y = 1) = \theta_{j,s|y=1} = 1 - \sum_{k=1}^{s-1} \theta_{j,k|y=1};$$

Notice that we do not model $P(x_j = s|y = 0)$ and $P(x_j = s|y = 1)$ directly. Instead we use the above equations to guarantee all probabilities for each class sum to 1.

(a) Using the **Naïve Bayes (NB) assumption**, write down the joint probability of the data:

$$P(x^{(1)}, \cdots, x^{(m)}, y^{(1)}, \cdots, y^{(m)})$$

in terms of the parameters θ_0 , $\theta_{j,k|y=0}$ and $\theta_{j,k|y=1}$. You may find the indicator function $\mathbf{1}(\cdot)$ useful.

Solution:

$$P(x^{(i)}, \dots, x^{(m)}, y^{(i)}, \dots, y^{(m)})$$

$$= \prod_{i=1}^{m} P(x^{(i)}, y^{(i)})$$

$$= \prod_{i=1}^{m} \theta_0^{\mathbf{1}(y^{(i)}=0)} (1 - \theta_0)^{\mathbf{1}(y^{(i)}=1)} \prod_{j'=1}^{n} \prod_{k'=1}^{s} \theta_{j',k'|y=0}^{\mathbf{1}(x_{j'}^{(i)}=k' \wedge y^{(i)}=0)} \theta_{j',k'|y=1}^{\mathbf{1}(x_{j'}^{(i)}=k' \wedge y^{(i)}=1)}.$$
(2)

(b) Now, maximize the joint probability you get in (a) with respect to each of θ_0 , $\theta_{j,k|y=0}$, and $\theta_{j,k|y=1}$. Write down your resulting θ_0 , $\theta_{j,k|y=0}$ and $\theta_{j,k|y=1}$ and show intermediate steps. Explain in words the meaning of your results.

Solution: Take the negative log of Equation (1) and we get:

$$J(\theta_0, \theta_{j,k|y=0}, \theta_{j,k|y=1}) = -\sum_{i=1}^{m} \left\{ \mathbf{1}(y^{(i)} = 0) \log(\theta_0) + \mathbf{1}(y^{(i)} = 1) \log(1 - \theta_0) + \sum_{j'=1}^{n} \sum_{k'=1}^{s} \left[\mathbf{1}(x_{j'}^{(i)} = k' \wedge y^{(i)} = 0) \log(\theta_{j',k'|y=0}) + \mathbf{1}(x_{j'}^{(i)} = k' \wedge y^{(i)} = 1) \log(\theta_{j',k'|y=1}) \right] \right\}.$$

We first find θ_0 that minimize J.

$$\frac{\partial J}{\partial \theta_0} = -\frac{\sum_{i=1}^m \mathbf{1}(y^{(i)} = 0)}{\theta_0} + \frac{\sum_{i=1}^m \mathbf{1}(y^{(i)} = 1)}{1 - \theta_0}.$$

Setting the derivative to 0 we get

$$\theta_0 = \frac{\sum_{i=1}^m \mathbf{1}(y^{(i)} = 0)}{m}.$$

Next we find $\theta_{j,k|y=0}$ for a particular j and $k \neq s$. We first take the derivative with respect to $\theta_{j,k|y=0}$. Notice that in J, we also have $\theta_{j,s|y=0}$ that also depends on $\theta_{j,k|y=0}$.

$$\frac{\partial J}{\partial \theta_{j,k|y=0}} = -\frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = k \wedge y^{(i)} = 0)}{\theta_{j,k|y=0}} + \frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = s \wedge y^{(i)} = 0)}{\theta_{j,s|y=0}}.$$

Setting the derivative to 0 we get

$$\theta_{j,k|y=0} = \frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = k \land y^{(i)} = 0)}{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = s \land y^{(i)} = 0)} \theta_{j,s|y=0}.$$

Using the above equation for all $k \neq s$ and $\theta_{j,s|y=1} = 1 - \sum_{k=1}^{s-1} \theta_{j,k|y=1}$ we get:

$$\theta_{j,k|y=0} = \frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = k \land y^{(i)} = 0)}{\sum_{i=1}^{m} \mathbf{1}(y^{(i)} = 0)}.$$

Similarly, we have:

$$\theta_{j,k|y=1} = \frac{\sum_{i=1}^{m} \mathbf{1}(x_j^{(i)} = k \land y^{(i)} = 1)}{\sum_{i=1}^{m} \mathbf{1}(y^{(i)} = 1)}.$$

These result shows that the maximum likelihood estimate of the class conditional probability is the fraction of data in each class that belongs to class k.