AP Computer Science A

Java Programming Essentials [Ver.4.0]

Unit 1: Using Objects and Methods

CHAPTER 4: APPLICATION PROGRAMMING INTERFACE

DR. ERIC CHOU
IEEE SENIOR MEMBER

AP Computer Science Curriculum

- Wrapper Classes (T 4.7)
- Method Signatures (T 1.9)
- Calling Class Methods (T 1.10)
- Math Class (T 1.11)
- Application Program Interface (API) and Libraries (T 1.7)

Objectives:

- Boolean Data Type, Logic Operators
- Character Data Type
- Math/Number Classes
- Random Number Generation (Integer/Floating Point)
- Random Class
- Basic Java Application Programming Interface

Boolean Data Type

Lecture 1

Java API Overview

Java boolean values boolean constants

- Only two boolean value: true, false.
- They are also called boolean constants.
- Very useful for use in program conditional code or compilation configurations.

```
private static final boolean YES = true;
private static final boolean NO = false;
private static final boolean DEBUG = true;
```

Java boolean Expressions

A basic Boolean expression has this form:

expression relational-operator expression

• Java evaluates a Boolean expression by first evaluating the expression on the left, then evaluating the expression on the right, and finally applying the relational operator to determine whether the entire expression evaluates to true or false.

The boolean Type and Operators

- •Often in a program you need to compare two values, such as whether i is greater than j. Java provides six comparison operators (also known as relational operators) that can be used to compare two values.
- •The result of the comparison is a Boolean value: true or false.

```
boolean b = (1 > 2);
```

Boolean Data Type

The Boolean data type declares a variable with the value either true or false.

Relational Operators									
Java Operato r	Math Symbol	Name	Example	Result					
<	<	Less than	radius < 0	false					
<=	≤	Less than or Equal to	radius <= 0	false					
>	>	Greater than	radius > 0	true					
>=	>	Greater than or equal to	radius >= 0	true					
==	=	Equal to	radius == 0	false					
!=	≠	Not Equal to	radius!=0	true					

Boolean literals: true and false. These are the only values that will be returned by the Boolean expressions.

Java boolean Expressions

For example, suppose you have declared two variables: int i = 5; int j = 10;

Expression	Value	Explanation			
i == 5	true	The value of i is 5 .			
i == 10	false	The value of i is not 10 .			
i == j	false	i is 5, and j is 10, so they are not equal.			
i == j - 5	true	i is 5, and j - 5 is 5.			
i > 1	true	\mathtt{i} is $\mathtt{5}$, which is greater than $\mathtt{1}$.			
j == i * 2	true	j is 10, and i is 5, so i * 2 is also 10.			

boolean function (methods)

```
public class Test {
 public static void main(String args[]) {
System.out.println(Character.isLetter('c'));
System.out.println(Character.isLetter('5'));
```

boolean values

Logic Operators

Lecture 2

Logical Operators for Implementation of Boolean Logic

Boolean Operators								
Operator	Name	Description						
!	not	Logical negation						
&&	and	Logical conjunction						
	or	Logical disjunction						
^	exclusive or	Logical exclusion (non-AP)						

a	!a	a	Ь	a && b	a b	
true	false	false	false	false	false	
false	true	false	true	false	true	
		true	false	false	true	
		true	true	true	true	

Truth Table for Operator!

р	! p	Example (assume age = 24, gender = 'M')
true	false	!(age $>$ 18) is false, because (age $>$ 18) is true.
false	true	!(gender != 'M') is true, because (grade != 'M') is false.

Truth Table for Operator &&

p1	р2	p1 && p2	Example (assume age = 24, gender = 'F')
false	false	false	(age > 18) && $(gender == 'F')$ is true, because (age)
false	true	false	> 18) and (gender == 'F') are both true.
true	false	false	(age > 18) && (gender != 'F') is false, because
true	true	true	(gender != 'F') is false.

Truth Table for Operator | |

p1	p2	p1 p2	Example (assume age = 24, gender = 'F')
false	false	false	$(age > 34) \parallel (gender == 'F')$ is true, because $(gender)$
false	true	true	== 'F') is true.
true	false	true	$(age > 34) \parallel (gender == 'M')$ is false, because $(age >$
true	true	true	34) and (gender == 'M') are both false.

Truth Table for Operator ^

p1	р2	p1 ^ p2	Example (assume age = 24, gender = 'F')
false	false	false	$(age > 34) \land (gender == 'F')$ is true, because (age)
false	true	true	> 34) is false but (gender == 'F') is true.
true	false	true	$(age > 34) \parallel (gender == 'M')$ is false, because $(age$
true	true	false	> 34) and (gender == 'M') are both false.

boolean data application

<condition> if a decision box

```
boolean wartime = true;
if (a.gender.isMale() && (a.age <=25 && a.age >= 18)
    && wartime){
      armyDraft(a);
}
```

Boolean class (non-AP)

(Wrapper Class for boolean)

- The Boolean class wraps a value of the primitive type boolean in an object. An object of type Boolean contains a single field whose type is boolean.
- In addition, this class provides many methods for converting a boolean to a String and a String to a boolean, as well as other constants and methods useful when dealing with a boolean.

Character Data Type

Lecture 3

Character Data Type (char)

- A character data type (1 byte = 8 bits) represents a single character.
- For Java, it is 16bits (2 bytes) to accommodate Unicode. (UTF-16)

```
char letter = 'A';
char numChar = '4';

char letter = '\u00041';

char numChar = '\u00034';

(ASCII)

(Unicode)
```

- char is one primitive data type.
- char is a data type for symbols.
- char is also an unsigned integer type

String Literal

- A string literal must be enclosed in quotation marks (""). A character literal is a single character enclosed in a single quotations marks ("). Therefore, "A" is a string, but 'A' is a character.
- **NOTE:** The increment and decrement operators can also be used on <u>char</u> variables to get the next or preceding Unicode character. For example, the following statements display character <u>b</u>.

```
char ch = 'a';
System.out.println(++ch);
```

Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	0	Null	NUL	CTRL-@	32	20	Space	64	40	@	96	60	,
1	1	Start of heading	SOH	CTRL-A	33	21	1	65	41	A	97	61	a
2	2	Start of text	STX	CTRL-B	34	22	"	66	42	В	98	62	b
3	3	End of text	ETX	CTRL-C	35	23	#	67	43	С	99	63	c
4	4	End of xmit	EOT	CTRL-D	36	24	\$	68	44	D	100	64	d
5	5	Enquiry	ENQ	CTRL-E	37	25	%	69	45	E	101	65	e
6	6	Acknowledge	ACK	CTRL-F	38	26	8.	70	46	F	102	66	f
7	7	Bell	BEL	CTRL-G	39	27		71	47	G	103	67	g
8	8	B ackspace	BS	CTRL-H	40	28	(72	48	н	104	68	h
9	9	Horizontal tab	HT	CTRL-I	41	29)	73	49	I	105	69	i
10	0A	Line feed	LF	CTRL-J	42	2A		74	4A)	106	64	j
11	OB	Vertical tab	VT	CTRL-K	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	FF	CTRL-L	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage feed	CR	CTRL-M	45	2D	-	77	4D	M	109	6D	m
14	Œ	Shift out	SO	CTRL-N	46	2E		78	4E	N	110	6E	n
15	0F	Shift in	SI	CTRL-O	47	2F	/	79	4F	0	111	6F	0
16	10	Data line escape	DLE	CTRL-P	48	30	0	80	50	P	112	70	р
17	11	Device control 1	DC1	CTRL-Q	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	DC2	CTRL-R	50	32	2	82	52	R	114	72	r
19	13	Device control 3	DC3	CTRL-S	51	33	3	83	53	S	115	73	s
20	14	Device control 4	DC4	CTRL-T	52	34	4	84	54	Т	116	74	t
21	15	Neg acknowledge	NAK	CTRL-U	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	SYN	CTRL-V	54	36	6	86	56	V	118	76	٧
23	17	End of xmit block	ETB	CTRL-W	55	37	7	87	57	W	119	77	w
24	18	Cancel	CAN	CTRL-X	56	38	8	88	58	X	120	78	×
25	19	End of medium	EM	CTRL-Y	57	39	9	89	59	Υ	121	79	У
26	1A	Substitute	SUB	CTRL-Z	58	ЗА	:	90	5.4	Z	122	7A	2
27	18	Escape	ESC	CTRL-[59	38	;	91	58	[123	7B	{
28	1C	File separator	FS	CTRL-\	60	3C	<	92	5C	1	124	7C	1
29	1D	Group separator	GS	CTRL-]	61	3D	-	93	5D]	125	7D	}
30	1E	Record separator	RS	CTRL-^	62	3E	>	94	5E	^	126	7E	~
31	1F	Unit separator	US	CTRL	63	3F	?	95	5F	_	127	7F	DEL

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
128	80	Ç	160	A0	á	192	CO	L	224	E0	α
129	81	ü	161	A1	í	193	C1	Τ.	225	E1	ß
130	82	é	162	A2	ó	194	C2	_	226	E2	Γ
131	83	â	163	A3	Ú	195	C3	ŀ	227	E3	π
132	84	ă	164	A4	ń	196	C4	-	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	A6	a	198	C6	F	230	E6	μ
135	87	ç ê	167	A7	۰	199	C7	ŀ	231	E7	1
136	88	ê	168	A8	٤	200	C8	F	232	E8	Φ
137	89	ĕ	169	A9	_	201	C9	Ī	233	E9	Θ
138	8A	è	170	AA	7	202	CA	쓰	234	EA	Ω
139	8B	ĭ	171	AB	1/2	203	CB	₹	235	EB	δ
140	8C	î	172	AC	1/4	204	CC	Ŧ	236	EC	00
141	8D	ì	173	AD	i	205	CD	=	237	ED	φ
142	8E	Ä	174	AE	≪	206	CE	Ť	238	EE	3
143	8F	A	175	AF	>	207	CF	T	239	EF	Π
144	90	Ė	176	B0	26 14	208	D0	Τ.	240	F0	≡
145	91	39	177	B1		209	D1	=	241	F1	±
146	92	Æ	178	B2		210	D2	τ	242	F2	2
147	93	ô	179	B3	1	211	D3		243	F3	≤
148	94	ŏ	180	B4	4	212	D4	Ö	244	F4	ſ
149	95	ò	181	B5	4	213	D5	F	245	F5	J
150	96	û	182	B6	1	214	D6	г	246	F6	+
151	97	ù	183	B7	7	215	D7	+	247	F7	N
152	98	ÿ	184	B8	7	216	D8	+	248	F8	Ré
153	99	Ő	185	B9	1 1	217	D9	J	249	F9	
154	9A	Ü	186	BA	1	218	DA	г	250	FA	
155	9B	¢	187	BB	a a	219	DB		251	FB	4
156	9C	£	188	BC		220	DC		252	FC	n
157	9D	¥	189	BD	1	221	DD	ı	253	FD	2
158	9E	Pts	190	BE	7	222	DE		254	FE	•
159	9F	f	191	BF	1	223	DF		255	FF	

Unicode Format

Java characters use *Unicode*, a 16-bit encoding scheme established by the Unicode Consortium to support the interchange, processing, and display of written texts in the world's diverse languages. Unicode takes two bytes, preceded by \u, expressed in four hexadecimal numbers that run from '\u0000' to '\uFFFF'. So, Unicode can represent 65535 + 1 characters.

Unicode \u03b1 \u03b2 \u03b3 for three Greek letters

Display Greek Letters

\(\alpha \\ \eta \)

Unicode

- International standard for representing written language in computers
- Latest version 5.2 adds 6648 new characters including support for Vedic Sanskrit
- Maintained in sync with ISO 10646
- Three main encodings: UTF-8, UTF-16 and UTF-32
- Address space of 21 bits

ASCII Code, Unicode, UTF-8, UTF-16, UTF-32

Unicode
Basic
Multilingual
Plane
1st 2Hexa-digits

\u2EXX to \u9FXX

Almost for Chinese (East Asian CJKV)

The Character Class (Wrapper Class)

java.lang.Character

+Character(value: char)

+charValue(): char

+compareTo(anotherCharacter: Character): int

+equals(anotherCharacter: Character): boolean

+isDigit(ch: char): boolean

+isLetter(ch: char): boolean

+isLetterOrDigit(ch: char): boolean

+isLowerCase(ch: char): boolean

+isUpperCase(ch: char): boolean

+toLowerCase(ch: char): char

+toUpperCase(ch: char): char

Constructs a character object with char value Returns the char value from this object

Compares this character with another

Returns true if this character equals to another

Returns true if the specified character is a digit

Returns true if the specified character is a letter

Returns true if the character is a letter or a digit

Returns true if the character is a lowercase letter

Returns true if the character is an uppercase letter

Returns the lowercase of the specified character

Returns the uppercase of the specified character

Examples

Character charObject = new Character('b');

charObject.compareTo(new Character('a')) returns 1 charObject.compareTo(new Character('b')) returns 0 charObject.compareTo(new Character('c')) returns -1 charObject.compareTo(new Character('d') returns -2 charObject.equals(new Character('b')) returns true charObject.equals(new Character('d')) returns false

Demonstration Program

YesNoHappy.java

Math/Number Classes

Lecture 4

Number Classes Overview

Math Class

• The java.lang.Math class contains methods for performing basic numeric operations such as the elementary exponential, logarithm, square root, and trigonometric functions.

Mathematical Methods

- The mathematical Functions are methods in the class Math. Math class is a object class with many methods. The object itself does not seem to represent much of the meaning. We can view this Math class as a library of functions instead.
- The methods can be categorized as trigonometric methods, exponent methods, and service methods.
- Service methods including rounding, minimum, maximum, absolute, and random methods.

Mathematical Constants

- In addition to methods, the Math class provides tow useful double constants, PI and E (the base of natural logarithms. You can use these constants as Math.PI and Math.E in any program.
- Math.PI = 3.141592...
- **Math.E** = 2.718...
- Integer.MIN_VALUE = -2147483648
- Integer.MAX_VALUE = 2147483647
- Double.MIN_VALUE = 4.9E-324
- Double.MAX_VALUE = 1.7976931348623157E308
- Double.POSITIVE_INFINITY (∞)
- Double.NEGATIVE_INFINITY (-∞)
- Double.NaN (Not a Number)

The Service Methods

Rounding Methods	Description
ceil(x)	x is rounded up to its nearest integer. This integer is returned as a double value.
floor(x)	x is rounded down to its nearest integer. This integer is returned as a double value.
rint(x)	x is rounded up to its nearest integer. If x is equally close to two integers, the even one is returned as a double value
round(x)	Returns (int) Math.floor(x+0.5) if x is a float and returns (long) Math.floor(x+0.5) if x is a double.
Min Max Abs Methods	Description
max(x, y)	Return the greater number between x and y.
max(x, y) min(x, y)	Return the greater number between x and y. Return the less number between x and y
, ,	
min(x, y)	Return the less number between x and y

Rounding Methods

Math.Random

- Usage:
- final int ELEMENT_COUNT = 10;
- final int STEPS = 2;
- final int BASELINE = 11;
- int randNum = (int) (Math.random()*ELEMENT_COUNT) * STEPS + BASELINE;

(13-11) = 2

This generates a random number in SET = [11, 13, 15, 17, 19, 21, 23, 25, 27, 29]

The Exponent Methods

Methods	Description	
exp(x)	Returns e raised to power of x	(e^x)
log(x)	Return the natural logarithm of x	$(ln(x) = log_e(x)).$
log10(x)	Returns the base 10 algorithm of x	(log ₁₀ (x)).
pow(a, b)	Returns a raised to the power of b	(a^b)
sqrt(x)	Returns the square root of x	(\sqrt{x}) for x >= 0

Trigonometric Methods

Methods	Description						
sin(radians)	Returns the trigonometric sine of an angle in radians						
cos(radians)	Returns the trigonometric cosine of an angle in radians						
tan(radians)	Returns the trigonometric tan of an angle in radians						
toRadians(degree)	Return the angle in radians for the angle in degree.						
toDegree(radians)	Return the angle in degrees for the angle in radians.						
asin(a)	Return the angle in radians for the inverse of sine.						
acos(a)	Return the angle in radians for the inverse of cosine.						
atan(a)	Return the angle in radians for the inverse of tangent.						

Case Study Computing Angles of Triangle

Cosine Rule:

$$a^2 = b^2 + c^2 - 2bc cos A$$

To find an angle:

A =
$$\cos^{-1}(\frac{a^2 - b^2 - c^2}{-2bc})$$
 = $a\cos(\frac{a^2 - b^2 - c^2}{-2bc})$
B = $\cos^{-1}(\frac{b^2 - a^2 - c^2}{-2ac})$ = $a\cos(\frac{b^2 - a^2 - c^2}{-2ac})$
C = $\cos^{-1}(\frac{c^2 - b^2 - a^2}{-2ab})$ = $a\cos(\frac{c^2 - b^2 - a^2}{-2ab})$

Try ComputeAngles.java

Demonstration Program

ComputeAngle.java

Random Class (Non-AP)

Lecture 5

Random class Example

```
import java.util.Random;
/** Generate 10 random integers in the range 0..99. */
public final class RandomInteger {
  public static final void main(String... aArgs) {
    log("Generating 10 random integers in range 0..99.");
    //note a single Random object is reused here
    Random randomGenerator = new Random();
    for (int idx = 1; idx \leq 10; ++idx) {
      int randomInt = randomGenerator.nextInt(100);
      log("Generated : " + randomInt);
    log("Done.");
  private static void log(String aMessage) {
    System.out.println(aMessage);
```

Random class Example

Example run of this class:

Generating 10 random integers in range 0..99.

Generated: 44

Generated: 81

Generated: 69

Generated: 31

Generated: 10

Generated: 64

Generated: 74

Generated: 57

Generated: 56

Generated: 93

Done.

Demonstration Program

RandomInteger.java

Random Class

- Create a Random input stream:
- int seed = 1125;
- Random randGen = new Random(seed);
- Get a integer:

```
int a = randGen.nextInt(100);
```

// 100 is ELEMENT_COUNT equivalent in our previous lecture.

Proper seed needed.

Math.random()

- No constructor needed.
- No integer return. Only double return.
- Randomness by System clock. No need to input proper seed.

Demonstration Program

RandomDemo.java

Lab

Subtraction Quiz

Lab: SubtractionQuiz.java

- Write a program to generate two random integers, calculate the difference between the two numbers. Then, ask user to input the answer.
- If the input value equals the difference by calculation, then print out a message to notify user the answer is correct.
- Otherwise, print out a message to notify the user that his answer is wrong and provide the correct answer for the difference.

Lab: Work on your own.

- 1. Download SubtractionQuiz.java to work on your own.
- 2. After you finish this lab, download SubtractionQuizAnswer.java for your own reference.

Good Luck !!!

Project: SubtractionQuiz.java

Student should work on this project in Class.

Demonstration Program

ScannerRandom.java

Basic Java API Overview

Lecture 6

Java programming environment Hello.class Hello.java Java program runs inside Java source code made text editor the Java virtual machine by the programmer Java SDK My.class (Software Development Kit) Java language compiler Keyboard.class JRE (Java Run-Time Environment) API (Application Programming Own classes may Interface) tells how to use also provide services ready-made Java services for our new applications System.class Java virtual machine System.out.print() Java AP Java virtual machine (Java VM) makes it possible to run the same Java program in different Environment variable tells where to XYZ operating system systems look for Java classes: CLASSPATH= in ZYX machine .;C:\java\keyboard\;D:\.....

		Java Language		Java Language									
			java	jav	javac		doc	jar	javap	Scripting	ripting		
	Tools Tool AP	Tools &	Security Monitoring		oring	JConsole		VisualVM	JMC	JFR			
		Tool APIs	JPDA	JVI	A TI	ID	L	RMI	Java DB	Dep	loyment		
			Internationalization			W	Web Services Troubleshooting						
JDK .	- 56	Deployment	Já	ıva Wel	Start			Appl	et / Java Pl	ug-in			
	<u>User</u>			JavaFX									
		User Interface Toolkits	Swing Ja			ava 2D	a 2D AWT		Accessibility				8
	<u>JRE</u>		Drag and Drop Input Me			Meth	ods	Image I/O	O Print Service Sound				
		Integration Libraries	IDL	JDBC	J	JNDI I		II RMI	II-IIOP Scripting				
			Beans	Security			Serialization		Extension Mechanism				
		Other Base Libraries	JMX XML JA		JAXP	IAXP Netwo		orking	Override Mechanism		Compact	Java SE	
		JNI Date and Ti		and Tin	ne	Input	/Output	Internationalization				API	
			lang and util						Profiles				
		lang and util	Math	Collections		ns	Ref Objects		Regular Expressions				
		Base Libraries	Logging Management			ent	Instrumentation Concurrency Utilities			Utilities			
			Reflection	ion Versioning		ng	Preferences AP		I JAR		Zip		
	<u>J</u> :	ava Virtual Machine		Java HotSpot Client and Server VM								75	

java.lang

String StringBuilder StringBuffer Math Integer Double System Object java.util

Random Scanner Formatter Arrays

System Class

Lecture 7

The System class

- We have been using System.out.println for a while, but you might not have thought about what it means. System is a class that provides methods related to the "system" or environment where programs run. It also provides System.out, which is a special value that has additional methods (like println) for displaying output.
- In fact, we can use System.out.println to display the value of System.out:

```
System.out.println(System.out);
```

• The result is:

```
java.io.PrintStream@685d72cd
```

Package

- This output indicates that System.out is a **PrintStream**, which is defined in a package called java.io. A **package** is a collection of related classes; java.io contains classes for "I/O" which stands for input and output.
- The numbers and letters after the @ sign are the address of System.out, represented as a hexadecimal (base 16) number. The address of a value is its location in the computer's memory, which might be different on different computers. In this example the address is 685d72cd, but if you run the same code you will likely get something else.

Package

• System is defined in a file called **System.java**, and **PrintStream** is defined in PrintStream.java. These files are part of the Java **library**, which is an extensive collection of classes that you can use in your programs. The source code for these classes is usually included with the compiler.

```
Hello.java
public class Hello {
   public static void main(String[] args) {
      System.out.println("Hello, World!");
                                                   System.java
                      public class System {
                         public final static PrintStream out;
                                                                       PrintStream.java
                                            public class PrintStream {
                                                ...
                                                public void println(String x) {
                                                4.0
```


Scanner Class

Lecture 8

The Scanner Class

- •The **System** class also provides the special value **System.in**, which is an **InputStream** that has methods for reading input from the keyboard. These methods are not convenient to use, but fortunately Java provides other classes that make it easy to handle common input tasks.
- •For example, **Scanner** is a class that provides methods for inputting words, numbers, and other data. **Scanner** is provided by **java.util**, which is a package that contains various "utility classes". Before you can use **Scanner**, you have to import it like this:

```
import java.util.Scanner;
```

The Scanner Class

- This **import** statement tells the compiler that when you refer to Scanner, you mean the one defined in **java.util**. Using an import statement is necessary because there might be another class named Scanner in another package. Import statements can't be inside a class definition. By convention, they are usually at the beginning of the file.
- Next you have to initialize the **Scanner**. This line declares a Scanner variable named in and creates a Scanner that reads input from System.in:
- Scanner in = new Scanner(System.in);

```
import java.util.Scanner;
public class Echo {
    public static void main(String[] args) {
       String line;
       Scanner in = new Scanner(System.in);
       System.out.print("Type something: ");
       line = in.nextLine();
        System.out.println("You said: " + line);
       System.out.print("Type something else: ");
       line = in.nextLine();
        System.out.println("You also said: " + line);
```


Demonstration Program

echo.java

The Scanner Class

- If you omit the import statement at the top of the file, you will get a compiler error saying "cannot find symbol". That means the compiler doesn't know where to find the definition for **Scanner**.
- You might wonder why we can use the **System** class without importing it. **System** belongs to the java.lang package, which is imported automatically.
- According to the documentation, java.lang "provides classes that are fundamental to the design of the Java programming language." The String class is also part of the java.lang package