Interpretable Machine Learning

Correlation and Dependencies

Learning goals

- Difference of dependence vs. correlation
- Role of feature dependence in IML

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1, X_2 = x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

Marginal distribution

$$p_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

→ In continuous case with integrals

JOINT, MARGINAL AND CONDITIONAL DISTRIBUTION

For two discrete random variables X_1, X_2 :

Joint distribution

$$p_{X_1,X_2}(x_1,x_2) = \mathbb{P}(X_1 = x_1,X_2 = x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1
•			

Marginal distribution

$$p_{X_1}(x_1) = \mathbb{P}(X_1 = x_1) = \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2)$$

p_{X_1,X_2}	$\mathbb{P}(X_2=0)$	$\mathbb{P}(X_2=1)$	p_{X_1}
$\mathbb{P}(X_1=0)$	0.2	0.3	0.5
$\mathbb{P}(X_1=1)$	0.1	0.4	0.5
p_{X_2}	0.3	0.7	1

→ In continuous case with integrals

Conditional distribution

$$p_{X_1|X_2}(x_1|x_2) = \mathbb{P}(X_1 = x_1|X_2 = x_2)$$

$$= \frac{p_{X_1,X_2}(x_1,x_2)}{p_{X_2}(x_2)}$$

	$x_2 = 0$	$x_2 = 1$
$\mathbb{P}(X_1=0 X_2=x_2)$	0.67	0.43
$\mathbb{P}(X_1=1 X_2=x_2)$	0.33	0.57
\sum	1	1

PEARSON'S CORRELATION COEFFICIENT ρ

Correlation often refers to Pearson's correlation (measures only **linear relationship**)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

- Numerator is sum of rectangle's area with width $x_1^{(i)} \bar{x}_1$ and height $x_2^{(i)} \bar{x}_2$
- Areas enter numerator with positive (+) or negative (-) sign, depending on position
- Denominator scales the sum

PEARSON'S CORRELATION COEFFICIENT ρ

Correlation often refers to Pearson's correlation (measures only **linear relationship**)

$$\rho(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1) \cdot (x_2^{(i)} - \bar{x}_2)}{\sqrt{\sum_{i=1}^{n} (x_1^{(i)} - \bar{x}_1)^2 \sum_{i=1}^{n} (x_2^{(i)} - \bar{x}_2)^2}} \in [-1, 1]$$

Geometric interpretation of ρ :

- Numerator is sum of rectangle's area with width $x_1^{(i)} \bar{x}_1$ and height $x_2^{(i)} \bar{x}_2$
- Areas enter numerator with positive (+) or negative (-) sign, depending on position
- Denominator scales the sum

- ullet ho > 0 if positive areas dominate negative areas $\leadsto X_1, X_2$ positive correlated
- ullet $\rho < 0$ if negative areas dominate positive areas $\leadsto X_1, X_2$ negative correlated
- $\rho = 0$ if area of rectangles cancels out $\rightsquigarrow X_1, X_2$ linearly uncorrelated

COEFFICIENT OF DETERMINATION R²

Another method to evaluate **linear dependency** between features is R^2

Idea for two-dimensional case:

• Fit a linear model:

$$\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$$

- \rightsquigarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence
- $\rightsquigarrow \ \, \text{Large slope} \Rightarrow \text{strong dependence}$

COEFFICIENT OF DETERMINATION R²

Another method to evaluate **linear dependency** between features is R^2

Idea for two-dimensional case:

• Fit a linear model:

$$\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$$

 \rightsquigarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence

 $\rightsquigarrow \ \, \text{Large slope} \Rightarrow \text{strong dependence}$

• Exact θ_1 score problematic

 \rightsquigarrow Re-scaling of x_1 or x_2 changes θ_1

$$\rightsquigarrow$$
 °F \rightarrow °C $\Rightarrow \theta_1 = 78.5 \rightarrow \theta_1^* = 141.3$

COEFFICIENT OF DETERMINATION R²

Another method to evaluate **linear dependency** between features is R^2

Idea for two-dimensional case:

• Fit a linear model:

$$\hat{x}_2 = \hat{f}_{LM}(x_1) = \theta_0 + \theta_1 x_1$$

- \rightsquigarrow Slope $\theta_1 = 0 \Rightarrow$ no dependence
- $\rightsquigarrow \ \, \text{Large slope} \Rightarrow \text{strong dependence}$
- Exact θ_1 score problematic
- \rightsquigarrow Re-scaling of x_1 or x_2 changes θ_1
 - Set SSE_{LM} in relation to SSE of a constant model $\hat{f}_c = \bar{x}_2$

$$SSE_{LM} = \sum_{i=1}^{n} (x_{2}^{(i)} - \hat{f}_{LM}(x_{1}^{(i)}))^{2}$$

$$SSE_{c} = \sum_{i=1}^{n} (x_{2}^{(i)} - \bar{x}_{2})^{2}$$

⇒ Measure of fitting quality of LM:
$$R^2 = 1 - \frac{SSE_{LM}}{SSE_c} \in [-1, 1]$$

$$\Rightarrow \rho(X_1, X_2) = R$$

MUTUAL INFORMATION

- MI describes amount of information about one random variable obtained through another one or how different the joint distribution is from pure independence
- $MI(X_1; X_2)$ is the Kullback-Leibler distance between joint distribution $p(x_1, x_2)$ and the product of their marginal distribution $p(x_1)p(x_2)$:

$$MI(X_1; X_2) = \sum_{x_1 \in \mathcal{X}_1} \sum_{x_2 \in \mathcal{X}_2} p(x_1, x_2) log \left(\frac{p(x_1, x_2)}{p(x_1)p(x_2)} \right)$$

$$= D_{KL} \left(p(x_1, x_2) || p(x_1)p(x_2) \right)$$

$$= \mathbb{E}_{p(x_1, x_2)} \left[log \left(\frac{p(x_1, x_2)}{p(x_1)p(x_2)} \right) \right]$$

- Unlike (Pearson) correlation, MI is not limited to continuous random variables

X ₁	 Υ
yes	 yes
yes	 yes
yes	 yes
yes	 no
yes	 no
no	 no

$ \begin{array}{c cccc} \mathbb{P}(Y = \text{yes}) & 0.5 & 0 & 0.5 \\ \mathbb{P}(Y = \text{no}) & 0.333 & 0.167 & 0.5 \\ \hline p_{X_1} & 0.833 & 0.167 & 1 \\ \hline \end{array} $		$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p _Y
7 0 000 0 107 1		0.5	0	0.5
p_{X_1} 0.833 0.167 1	$\mathbb{P}(Y = no)$	0.333	0.167	0.5
	p_{X_1}	0.833	0.167	1

X ₁	 Υ
yes	 yes
yes	 yes
yes	 yes
yes	 no
yes	 no
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p _Y
$\mathbb{P}(Y = \text{yes})$	0.5	0	0.5
$\mathbb{P}(Y = no)$	0.333	0.167	0.5
p_{X_1}	0.833	0.167	1

$$\begin{aligned} \mathit{MI}(X_1;Y) &= \sum_{x_1 \in \mathcal{X}_1} \sum_{y \in \mathcal{Y}} p(x_1,y) log \left(\frac{p(x_1,y)}{p(x_1)p(y)} \right) \\ &= \mathbb{P}(X_1 = \mathsf{yes}, Y = \mathsf{yes}) log \left(\frac{\mathbb{P}(X_1 = \mathsf{yes}, Y = \mathsf{yes})}{\mathbb{P}(X_1 = \mathsf{yes})\mathbb{P}(Y = \mathsf{yes})} \right) \\ &+ \mathbb{P}(X_1 = \mathsf{yes}, Y = \mathsf{no}) log \left(\frac{\mathbb{P}(X_1 = \mathsf{yes}, Y = \mathsf{no})}{\mathbb{P}(X_1 = \mathsf{yes})\mathbb{P}(Y = \mathsf{no})} \right) \\ &+ \mathbb{P}(X_1 = \mathsf{no}, Y = \mathsf{yes}) log \left(\frac{\mathbb{P}(X_1 = \mathsf{no}, Y = \mathsf{yes})}{\mathbb{P}(X_1 = \mathsf{no})\mathbb{P}(Y = \mathsf{yes})} \right) \\ &+ \mathbb{P}(X_1 = \mathsf{no}, Y = \mathsf{no}) log \left(\frac{\mathbb{P}(X_1 = \mathsf{no}, Y = \mathsf{no})}{\mathbb{P}(X_1 = \mathsf{no})\mathbb{P}(Y = \mathsf{no})} \right) \end{aligned}$$

X ₁	 Υ
yes	 yes
yes	 yes
yes	 yes
yes	 no
yes	 no
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p _Y
$\mathbb{P}(Y = \text{yes})$	0.5	0	0.5
$\mathbb{P}(Y = no)$	0.333	0.167	0.5
p_{X_1}	0.833	0.167	1

$$MI(X_1; Y) = 0.5 \log \left(\frac{0.5}{0.833 \cdot 0.5}\right) + 0.333 \log \left(\frac{0.833}{\cdot 0.5}\right) + 0 \log \left(\frac{0}{0.167 \cdot 0.5}\right) + 0.167 \log \left(\frac{0.167}{0.167 \cdot 0.5}\right) = 0.133$$

Note:
$$\lim_{x\to 0} x \log\left(\frac{x}{c}\right) = 0, \ c \in \mathbb{R}$$

X ₁	 Υ
yes	 yes
yes	 no
no	 yes
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p _Y
$\mathbb{P}(Y = \text{yes})$	0.25	0.25	0.5
$\mathbb{P}(Y = no)$	0.25	0.25	0.5
p_{X_1}	0.5	0.5	1

X ₁	 Υ
yes	 yes
yes	 no
no	 yes
no	 no

	$\mathbb{P}(X_1 = \text{yes})$	$\mathbb{P}(X_1 = no)$	p_Y
$\mathbb{P}(Y = \text{yes})$	0.25	0.25	0.5
$\mathbb{P}(Y = no)$	0.25	0.25	0.5
p_{X_1}	0.5	0.5	1
		•	

$$MI(X_1; Y) = 0.25 \log \left(\frac{0.25}{0.5 \cdot 0.5}\right) + 0.25 \log \left(\frac{0.25}{0.5 \cdot 0.5}\right)$$

$$= 0.25 \log \left(\frac{0.25}{0.25}\right) \cdot 4$$

$$= 0.25 \log (1) \cdot 4$$

$$= 0$$

Scatterplot with multivariate distribution (contour lines) and marginal density $X_1,\,X_2\sim N(0,1)$

Scatterplot with multivariate distribution (contour lines) and marginal density $X_1,\,X_2\sim N(0,1)$

Examples with Pearson's correlation $\rho = 0$ but non-linear dependencies (MI $\neq 0$):

$$\rho(X_1,X_2) = 0 \; , \; \; \text{MI}(X_1,X_2) = 0.52 \qquad \rho(X_1,X_2) = 0.01 \; , \; \; \text{MI}(X_1,X_2) = 0.37 \quad \rho(X_1,X_2) = -0.06 \; , \; \; \text{MI}(X_1,X_2) = 0.61 \; , \; \; \text{MI}(X_1,X_2) = 0.01 \; , \; \;$$

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k)=\mathbb{P}(X_j)\cdot\mathbb{P}(X_k)$$

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k)=\mathbb{P}(X_j)\cdot\mathbb{P}(X_k)$$

 Equivalent definition (knowing X_k does not say anything about X_j and vice versa):

$$\mathbb{P}(X_j|X_k)=\mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j)=\mathbb{P}(X_k)$ (follows from cond. probability)

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k)=\mathbb{P}(X_j)\cdot\mathbb{P}(X_k)$$

 Equivalent definition (knowing X_k does not say anything about X_j and vice versa):

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from cond. probability)

- Measuring complex dependencies is difficult but different measures exist, e.g.,
 - → Spearman correlation (measures monotonic dependencies via ranks)
 - → Information-theoretical measures like mutual information

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j, X_k) = \mathbb{P}(X_j) \cdot \mathbb{P}(X_k)$$

• Equivalent definition (knowing X_k does not say anything about X_j and vice versa):

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from cond. probability)

- → Spearman correlation (measures monotonic dependencies via ranks)
- → Information-theoretical measures like mutual information
- → Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)

• N.B.:
$$X_j$$
, X_k independent $\Rightarrow \rho(X_j, X_k) = 0$
but $\rho(X_j, X_k) = 0 \Rightarrow X_j$, X_k independent
Equivalency holds if distribution is jointly normal

Dependence: Describes general dependence structure (e.g., non-lin. relationships)

• Definition: X_j , X_k independent \Leftrightarrow joint distribution is product of marginals:

$$\mathbb{P}(X_j,X_k)=\mathbb{P}(X_j)\cdot\mathbb{P}(X_k)$$

 Equivalent definition (knowing X_k does not say anything about X_j and vice versa):

$$\mathbb{P}(X_j|X_k) = \mathbb{P}(X_j)$$
 and $\mathbb{P}(X_k|X_j) = \mathbb{P}(X_k)$ (follows from cond. probability)

- → Spearman correlation (measures monotonic dependencies via ranks)
- → Information-theoretical measures like mutual information
- → Kernel-based measures like Hilbert-Schmidt Independence Criterion (HSIC)

• N.B.:
$$X_j$$
, X_k independent $\Rightarrow \rho(X_j, X_k) = 0$
but $\rho(X_j, X_k) = 0 \Rightarrow X_j$, X_k independent
Equivalency holds if distribution is jointly normal

•
$$MI(X_i, X_k) = 0$$
 if and only if X_i, X_k independent

Example:

Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$
$$\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$$

Example:

Conditional distributions at different vertical and horizontal slices (after normalizing area to 1) match their marginal distributions

$$\Rightarrow \mathbb{P}(X_1|X_2) = \mathbb{P}(X_1)$$
$$\mathbb{P}(X_2|X_1) = \mathbb{P}(X_2)$$

Conditional distributions do not match their marginal distributions

INTERPRETATIONS WITH DEPENDENT FEATURES

- Highly correlated features contain similar information
 - \leadsto Model might pick only 1 feat. (regularization), even if it is causally irrelevant
 - → Produced explanations can be misleading (true to model, but not to data)
 - \rightsquigarrow E.g., different interpretable models produce different results

INTERPRETATIONS WITH DEPENDENT FEATURES

- Highly correlated features contain similar information
 - → Model might pick only 1 feat. (regularization), even if it is causally irrelevant
 - → Produced explanations can be misleading (true to model, but not to data)
 - \rightsquigarrow E.g., different interpretable models produce different results
- **Example:** Simulate 100 obs. from DGP $Y = 0.2(X_1 + \cdots + X_5) + \epsilon, \epsilon \sim N(0, 1)$

- $X_5 = X_4 + \delta, \delta \sim N(0, 0.3) \Rightarrow \rho(X_4, X_5) = 0.98$ (highly correlated)
- LASSO: Shrinks coef. of X_5 to zero, coef. of X_4 about 1.5× higher
- Ridge: Similar coef. for X_4 and X_5 for higher lambda

EXTRAPOLATION DUE TO DEPENDENCIES

- Many interpretation methods are based on artificially created data points
 - \rightsquigarrow Many points lie in low-density regions if features are dependent
 - → Predictions in such regions have high uncertainty
 - → Explanations can be biased if they rely on pred. where model extrapolated

EXTRAPOLATION DUE TO DEPENDENCIES

- Many interpretation methods are based on artificially created data points
 - → Many points lie in low-density regions if features are dependent
 - → Predictions in such regions have high uncertainty
 - → Explanations can be biased if they rely on pred. where model extrapolated
- There is no definition of when a model extrapolates and to what degree
 - → Severity of extrapolation depends on model
 - Density of train data may helps identify regions where extrapolation is likely But: Density estimation in many dimensions is often infeasible