

Universidade Estadual de Feira de Santana PGCC – Programa de Pós-Graduação em Ciência da Computação PGCC015 Inteligência Computacional Prof. Matheus Giovanni Pires

EPC 6

Data de Entrega: 10/11/2020

Conforme já estudamos, um problema de classificação de padrões consiste em associar um padrão de entrada (amostra, exemplo, instância) para uma das classes previamente conhecidas. Portanto, este é um problema de aprendizado supervisionado, pois já sabemos qual a resposta que o classificador precisa fornecer.

A tarefa de classificação (ou reconhecimento) de padrões pode ser encontrada em muitas aplicações práticas, como por exemplo, a identificação de nossa impressão digital para liberar o acesso ao nosso *smartphone*, a identificação (facial) de um foragido pelo sistema da Secretaria da Segurança Pública da Bahia (SSP-BA)ⁱ, o reconhecimento de um comando de voz feito pela Alexa, Siri ou Cortona, a realização de diagnóstico de várias patologias (câncer, dislexia, etc.) por meio de sistemas de apoio ao diagnóstico médico, enfim, muitas aplicações práticas consistem em reconhecer um determinado padrão, tornando evidente a importância desta tarefa.

Neste EPC, você irá desenvolver um sistema de classificação fuzzy para a resolução do problema de classificação *Iris Plants*. Para isso, siga os seguintes passos:

- 1. Construa a base de regras utilizando o algoritmo de Wang-Mendel. As regras serão construídas usando os dados de treinamento.
- 2. Calcule o peso das regras utilizando a proposta de Hisao Ishibuchi, Ken Nozaki e Hideo Tanaka (1992)ⁱⁱ.
- 3. Classifique, utilizando os dados de teste, com os métodos de Raciocínio Fuzzy Clássico e Geral, e registre os resultados de acerto (%), média e desvio padrão na seguinte tabela:

Fold	MRFC-sem peso	MRFC-com peso	MRFG-sem peso	MRFG-com peso
Fold 1				
Fold 2				
Fold 3				
Fold 4				
Fold 5				
Fold 6				
Fold 7				
Fold 8				
Fold 9				
Fold 10				
Média				
Desvio Padrão				

Universidade Estadual de Feira de Santana PGCC – Programa de Pós-Graduação em Ciência da Computação PGCC015 Inteligência Computacional Prof. Matheus Giovanni Pires

OBSERVAÇÕES

- 1. O EPC deve ser realizado individualmente.
- 2. Pode ser utilizado bibliotecas para a implementação do sistema fuzzy.
- 3. **ATENÇÃO**: Este EPC será enviado somente via CLASSROOM, portanto, o código-fonte e o relatório devem estar em somente UM ARQUIVO ZIPADO, com o seguinte nome: **EPC06-SeuNome.zip**

ⁱ https://www.correio24horas.com.br/noticia/nid/presos-pela-cara-polemico-sistema-de-reconhecimento-facial-identificou-109-foragidos-na-ba/

ii Hisao Ishibuchi, Ken Nozaki and HideoTanaka. Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets and Systems, vol.52, no.1, pp.21-32, https://doi.org/10.1016/0165-0114(92)90032-Y, 1992.