```
In [1]:
        import pandas as pd
         import numpy as np
         df = pd.read_csv('cars.csv')
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 100 entries, 0 to 99
         Data columns (total 13 columns):
              Column
                                  Non-Null Count
                                                   Dtype
              ----
          0
              Car_ID
                                  100 non-null
                                                    int64
          1
              Brand
                                  100 non-null
                                                   object
          2
              Model
                                                   object
                                  100 non-null
          3
              Year
                                  100 non-null
                                                   int64
                                                   int64
          4
              Kilometers_Driven 100 non-null
              Fuel_Type
                                  100 non-null
          5
                                                   object
          6
              Transmission
                                  100 non-null
                                                   object
          7
              Owner_Type
                                  100 non-null
                                                   object
          8
              Mileage
                                  100 non-null
                                                   int64
          9
              Engine
                                  100 non-null
                                                   int64
          10
              Power
                                  100 non-null
                                                   int64
          11
              Seats
                                  100 non-null
                                                   int64
          12 Price
                                  100 non-null
                                                    int64
         dtypes: int64(8), object(5)
         memory usage: 10.3+ KB
In [2]:
        df.head()
Out[2]:
        ilometers_Driven Fuel_Type Transmission Owner_Type
                                                         Mileage Engine Power Seats
                                                                                       Pric
                 50000
                                                                                      30000
                           Petrol
                                      Manual
                                                    First
                                                             15
                                                                   1498
                                                                          108
                                                                                  5
                 40000
                           Petrol
                                                                   1597
                                                                                    100000
                                    Automatic
                                                  Second
                                                             17
                                                                          140
                                                                                  5
```

First

Third

Second

10

23

18

4951

1248

1999

395

74

194

250000

60000

85000

5

5

data preprocessing

Petrol

Diesel

Diesel

Automatic

Automatic

Manual

20000

30000

60000

```
In [3]: df.isnull().any()
Out[3]: Car_ID
                              False
        Brand
                              False
        Model
                              False
        Year
                              False
        Kilometers_Driven
                              False
        Fuel_Type
                              False
        Transmission
                              False
        Owner_Type
                              False
        Mileage
                              False
        Engine
                              False
        Power
                              False
        Seats
                              False
        Price
                              False
        dtype: bool
In [4]: | df.duplicated().any()
Out[4]: False
```

What are the different car brands in the dataset?

How many cars are there in the dataset?

```
In [6]: total_cars = len(df)
total_cars

Out[6]: 100

In [ ]: SELECT COUNT(*) AS total_cars FROM dataset_table;
```

What is the average price of cars in the dataset?

```
In [7]: average_price = df['Price'].mean()
average_price
```

Out[7]: 1574000.0

```
In [ ]: SELECT AVG(Price) AS average_price FROM dataset_table;
```

Which car has the highest mileage?

```
In [8]: max_mileage_car = df.loc[df['Mileage'].idxmax()]
max_mileage_car[['Brand', 'Model']]

Out[8]: Brand Honda
    Model City
    Name: 15, dtype: object

In []: SELECT Brand, Model FROM dataset_table ORDER BY Mileage DESC LIMIT 1;
```

How many cars have automatic transmission (Transmission = 'Automatic')?

```
In [10]: automatic_cars_count = df[df['Transmission'] == 'Automatic']
automatic_cars_count
```

	Car_ID	Brand	Model	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_
1	2	Honda	Civic	2019	40000	Petrol	Automatic	S
2	3	Ford	Mustang	2017	20000	Petrol	Automatic	
4	5	Hyundai	Sonata	2016	60000	Diesel	Automatic	S
6	7	Mahindra	Scorpio	2018	45000	Diesel	Automatic	S
7	8	Volkswagen	Polo	2020	25000	Petrol	Automatic	
8	9	Audi	A4	2017	30000	Diesel	Automatic	
9	10	BMW	X1	2019	20000	Diesel	Automatic	S
10	11	Mercedes	C-Class	2018	28000	Petrol	Automatic	
11	12	Ford	Endeavour	2017	35000	Diesel	Automatic	S
13	14	Tata	Harrier	2018	40000	Diesel	Automatic	
16	17	Volkswagen	Tiguan	2018	32000	Diesel	Automatic	
17	18	Audi	Q3	2016	38000	Petrol	Automatic	S
18	19	BMW	5 Series	2019	24000	Diesel	Automatic	
19	20	Mercedes	GLC	2017	26000	Petrol	Automatic	S
22	23	Hyundai	Verna	2019	26000	Diesel	Automatic	S
25	26	Volkswagen	Passat	2017	32000	Diesel	Automatic	S
26	27	Audi	A6	2018	28000	Petrol	Automatic	
27	28	BMW	Х3	2019	22000	Diesel	Automatic	S
28	29	Mercedes	E-Class	2017	30000	Diesel	Automatic	
29	30	Toyota	Fortuner	2018	38000	Diesel	Automatic	S
31	32	Hyundai	Elantra	2017	32000	Diesel	Automatic	S
35	36	Volkswagen	Ameo	2020	15000	Petrol	Automatic	
36	37	Audi	А3	2017	38000	Petrol	Automatic	S
37	38	BMW	7 Series	2019	22000	Diesel	Automatic	
38	39	Mercedes	GLE	2018	26000	Petrol	Automatic	S
43	44	Maruti	S-Cross	2020	15000	Petrol	Automatic	S
45	46	Volkswagen	T-Roc	2019	22000	Petrol	Automatic	S
46	47	Audi	Q7	2017	30000	Diesel	Automatic	
47	48	BMW	X5	2018	28000	Petrol	Automatic	S
48	49	Mercedes	GLA	2019	24000	Diesel	Automatic	
49	50	Toyota	Camry	2016	38000	Petrol	Automatic	S
50	51	Ford	Mustang	2019	22000	Petrol	Automatic	
55	56	Audi	A5	2018	28000	Diesel	Automatic	
56	57	BMW	3 Series	2020	15000	Petrol	Automatic	S
57	58	Mercedes	C-Class	2019	22000	Diesel	Automatic	
60	61	Hyundai	Verna	2019	24000	Petrol	Automatic	S
63	64	Volkswagen	Passat	2017	32000	Diesel	Automatic	S
64	65	Audi	A6	2018	28000	Petrol	Automatic	

	65 6	6 BMW	Х3	X3 2019		Diesel	Automatic	S		
	66 6	7 Mercedes	E-Class	2017	30000	Diesel	Automatic			
	67 6	8 Toyota	Fortuner	2018	38000	Diesel	Automatic	S		
	69 7	0 Hyundai	Elantra	2017	32000	Diesel	Automatic	S		
	73 7	4 Volkswagen	Ameo	2020	15000	Petrol	Automatic			
	74 7	5 Audi	A3	2017	38000	Petrol	Automatic	S		
	75 7	6 BMW	7 Series	2019	22000	Diesel	Automatic			
	76 7	7 Mercedes	GLE	2018	26000	Petrol	Automatic	S		
	81 8	2 Maruti	S-Cross	2020	15000	Petrol	Automatic	S		
	83 8	4 Volkswagen	T-Roc	2019	22000	Petrol	Automatic	S		
	84 8	5 Audi	Q7	2017	30000	Diesel	Automatic			
	85 8	6 BMW	X5	2018	28000	Petrol	Automatic	S		
	86 8	7 Mercedes	GLA	2019	24000	Diesel	Automatic			
	87 8	8 Toyota	Camry	2016	38000	Petrol	Automatic	S		
	88 8	9 Ford	Mustang	2019	22000	Petrol	Automatic			
	93 9	4 Audi	A5	2018	28000	Diesel	Automatic			
	94 9	5 BMW	3 Series	2020	15000	Petrol	Automatic	S		
	95 9	6 Mercedes	C-Class	2019	22000	Diesel	Automatic			
	98 9	9 Hyundai	Verna	2019	24000	Petrol	Automatic	S		
In [15]:	<pre>automatic_cars_count = df[df['Transmission'] == 'Automatic'].shape automatic_cars_count</pre>									
Out[15]:	(57, 13)									
In [16]:	<pre>automatic_cars_count = df[df['Transmission'] == 'Automatic'].shape[0] automatic_cars_count</pre>									
Out[16]:	57									
In []:	SELECT COUNT(*) FROM dataset_table WHERE Transmission = 'Automatic';									

Model Year Kilometers_Driven Fuel_Type Transmission Owner_

Car_ID

Brand

What is the average kilometers driven per year for each brand?

```
avg_kms_per_year = df.groupby('Brand')['Kilometers_Driven'].mean()
In [17]:
         avg_kms_per_year
Out[17]: Brand
                        31600.000000
         Audi
         BMW
                        21800.000000
         Ford
                        26727.272727
         Honda
                        32333.333333
         Hyundai
                        30545.454545
         Mahindra
                        23400.000000
         Maruti
                       21000.000000
         Mercedes
                       25800.000000
         Tata
                        30272.727273
         Toyota
                        36400.000000
                       25900.000000
         Volkswagen
         Name: Kilometers_Driven, dtype: float64
 In [ ]: | SELECT Brand, AVG(Kilometers_Driven) AS avg_kms_per_year FROM dataset_table
```

Which fuel type is most common among the cars?

```
In [19]: common_fuel_type = df['Fuel_Type'].mode()[0]
common_fuel_type

Out[19]: 'Petrol'

In [ ]: SELECT Fuel_Type, COUNT(*) AS count FROM dataset_table GROUP BY Fuel_Type OR

In [ ]:
```

What is the maximum power output of a car in the dataset?

```
In [20]: max_power = df['Power'].max()
max_power

Out[20]: 396
In [ ]: SELECT MAX(Power) AS max_power FROM dataset_table;
```

How many cars were manufactured each year?

```
In [21]: | cars_per_year = df['Year'].value_counts()
         cars_per_year
Out[21]: Year
         2018
                 28
         2019
                  28
         2017
                 21
                 17
         2020
         2016
                  4
         2021
         Name: count, dtype: int64
In [ ]: SELECT Year, COUNT(*) AS car_count FROM dataset_table GROUP BY Year;
```

What is the average number of seats for each brand?

```
In [24]: avg_seats_per_brand = df.groupby('Brand')['Seats'].mean().astype(int)
         avg_seats_per_brand
Out[24]: Brand
         Audi
                       5
         BMW
                       5
         Ford
                       4
         Honda
         Hyundai
                       5
         Mahindra
         Maruti
         Mercedes
         Tata
         Toyota
                      5
         Volkswagen
         Name: Seats, dtype: int32
 In [ ]: SELECT Brand, AVG(Seats) AS avg_seats FROM dataset_table GROUP BY Brand;
```

Which car has the highest engine capacity?

What is the most common owner type among the cars?

What is the range of prices for cars in the dataset?

```
In [27]: price_range = (df['Price'].min(), df['Price'].max())
price_range
Out[27]: (450000, 4000000)
In []: SELECT MIN(Price) AS min_price, MAX(Price) AS max_price FROM dataset_table;
```

How many unique car models are there in the dataset?

```
In [28]: unique_models_count = df['Model'].nunique()
unique_models_count

Out[28]: 58
In []: SELECT COUNT(DISTINCT Model) AS unique_models_count FROM dataset_table;
```

What is the average mileage for each fuel type?

In [-]:	SELECT	Fuel_Type,	AVG(Mileage)	AS	avg_mileage	FROM	dataset	_table	GROUP	BY I	Fu
			1									ļ	>
In [-]:											