Questão 1.1: Quantização Áudio

A quantidade de bits mais comumente para áudios é de 16 bits.

Questão 1.2: Aliasing

Aliasing são "falsas" freqüências que são geradas na amostragem do sinal e podem causar problemas. Para saná-los utiliza-se um filtro anti-aliasing, o qual, segundo o teorema da amostragem, corta todas as freqüências que sejam maiores que o dobro da maior freqüência do sinal original.

Questão 1.3: SNR

A relação sinal-ruído é um conceito muito usado que define uma razão entre a potência do sinal e a potência do ruído, medida em decibel (dB). Essa informação é de extrema importância em um projeto de conversores ou qualquer aplicação que trabalhe com sinais para, que no mesmo, o ruído não atrapalhe a comunicação.

Ouestão 1.4: ENOB

Este parâmetro informa a quantidade de bits efetivos que não serão afetados pelo ruído durante a transmissão. O bits afetados são sempre os menos significativos.

Questão 1.5: Tipos de Conversores

Na figura 1 temos um diagrama de blocos que representa este tipo de conversor e por onde faremos a análise de seu funcionamento.

Conforme a figura acima observa-se que existe um registrador nas aproximações sucessivas, fazendo com que seja muito mais rápido, uma vez que torna o tempo de conversão iguais independentemente do ponto da escala em que o sinal de entrada se encontre.

O sinal aplicado a entrada é retido pelo circuito de amostragem e retenção, aplicado à entrada do comparador e ao mesmo tempo dispara o circuito de clock do setor de conversão digital.

Ao iniciar a conversão o registrador de aproximações sucessivas começa colocando a 1 o bit mais significativo (MSB) da saída, aplicando este sinal no conversor D/A.

Se com este procedimento, a tensão aplicada pelo conversor D/A à entrada de referência do comparador for maior que a de entrada, isso será um sinal que o valor que este bit representa é maior que o que se deseja converter.

O comparador informa isso ao registro de aproximações, que então volta o MSB a zero e coloca o bit que o segue imediatamente a 1.

Uma nova comparação é feita. Se agora o valor da tensão for menor que a de entrada, este bit é mantido, e testa-se o seguinte, colocando a 1.

Se novamente o valor for ultrapassado, o comparador informa isso ao registro e o bit volta a zero passando o seguinte a 1 que é testado.

Quando todos os bits forem testados, teremos na saída do registro um valor binário muito próximo do desejado, dependendo da resolução do circuito. Testando todos os bits desta forma, a conversão se torna muito rápida, já que não será preciso esperar a contagem até o final.

Questão 2.1: 1 MHz

Com uma taxa de amostragem de 1MHz, podemos amostrar um sinal com no máximo 500kHz, segundo o teorema da amostragem.

Questão 2.2: Pinos

PIO MUXING

PIOA	USAGE	PIOA	USAGE	PIOB	USAGE	PIOC	USAGE	PIOC	USAGE	
PAD	TSLIDR_SL_SNS	PA16	TSC_IRQ/ZB_IRQ0	PB0	MIC INPUT	PC0	D0	PC16	NAND_ALE	
PA1	TSLIDR_SL_SNSK	PA17	TSC_BUSY/ZB_IRQ1	PB1	ANA INPUT	PC1	D1	PC17	NAND_CLE	
PA2	TSLIDR_SM_SNS	PA18	ZB_RSTN	PB2	ZB_NPCS2	PC2	D2	PC18	NAND_RDYBSY	
PA3	TSLIDR_SM_SNSK	PA19	LED_BLUE	PB3	USER_PB1	PC3	D3	PC19	REGSEL_LCD	
PA4	TSLIDR_SR_SNS	PA20	LED_GREEN	PB4	JTAG	PC4	D4	PC20	LED_RED(POWER)	
PA5	TSLIDR_SR_SNSK	PA21	RXD1	PB5	JTAG	PC5	D5	PC21	USB CNX	
PA6	MCI_CD	PA22	TXD1	PB6	JTAG	PC6	D6	PC22	TVALID_SNS	
PA7	CLK_32K	PA23	COM1EN	PB7	JTAG	PC7	D7	PC23	TVALID_SNSK	
PA8	CLK_32K	PA24	RTS1	PB8	CLK_12M	PC8	WR_LCD	PC24	TUP_SNS	
PA9	RX_UART0	PA25	CTS1	PB9	CLK_12M	PC9	NAND_OE	PC25	TUP_SNSK	
PA10	TX_UART0	PA26	MCI	PB10	USB_DDM	PC10	NAND_WE	PC26	TDWN_SNS	
PA11	TSC_CS	PA27	MCI	PB11	USB_DDP	PC11	RD_LCD	PC27	TDWN_SNSK	
PA12	MISO	PA28	MCI	PB12	ERASE	PC12	USER_PB2	PC28	TLEFT_SNS	
PA13	MOSI	PA29	MCI	PB13	AUDIO OUT R	PC13	EN_LCD	PC29	TLEFT SNSK	
PA14	SPCK	PA30	MCI	PB14	AUDIO OUT L	PC14	NAND_NCS0	PC30	C30 TRIGHT_SNS	
PA15	ZB_SLPTR	PA31	MCI			PC15	NSC1_LCD	PC31	TRIGHT_SNSK	

Temos o diagrama de bloco do ADC:

Com ele observa-se as entradas dos Mux que podem ser negativas ou positivas, listadas abaixo:

SELMINUS: Selection for Minus Comparator Input

0..7: Selects the input to apply on analog comparator SELMINUS comparison input.

Value	Name	Description
0	TS	Select TS
1	ADVREF	Select ADVREF
2	DAC0	Select DAC0
3	DAC1	Select DAC1
4	AD0	Select AD0
5	AD1	Select AD1
6	AD2	Select AD2
7	AD3	Select AD3

SELPLUS: Selection For Plus Comparator Input

0..7: Selects the input to apply on analog comparator SELPLUS comparison input.

Value	Name	Description
0	AD0	Select AD0
1	AD1	Select AD1
2	AD2	Select AD2
3	AD3	Select AD3
4	AD4	Select AD4
5	AD5	Select AD5
6	AD6	Select AD6
7	AD7	Select AD7

ACEN: Analog Comparator Enable

Questão 2.3: Consumo

Segundo o manual, a corrente mínima consumida é de $50\mu\mathrm{A}$, a típica de $70\mu\mathrm{A}$ e a máxima é $80\mu\mathrm{A}$.

Questão 2.4: Tensão de Referência

- Pino 1
- Máximo: 3,6V Mínimo: 2,4V
- 2,5V

Questão 2.5: Diagrama de Blocos

Note: DMA may be referred to as PDC (Peripheral DMA Controller).

Questão 2.6: ADC Timings

Table 44-41. ADC Timing Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fado	Clock Frequency		1	20	22	MHz
t _{CP_ADC}	Clock Period		45	50	1000	ns
f ₈	Sampling Frequency		0.05	1	1.1	MHz
t _{START}	ADC Startup time	Sleep mode to Normal mode Fast Wake-up mode to Normal mode	20 4	30 8	40 12	μs
t _{TRACKTIM}	Tracking Time	Refer to notes 1 and 2.	15 ⁽¹⁾	-	_(2)	t _{CP_ADC}
t _{conv}	Conversion Time (3)	Number of ADC clock pulses to perform a conversion. TRACKTIM < 15	-	20	-	t _{CP_ADC}
t _{CAL}	Calibration time	Calibration time given for one channel and one gain/one offset.	-	306	-	t _{CP_ADC}

Notes:
1. If ADC_MR.TRACKTIM is programmed with a value < 15, then the min. value is applied by default.
2. Refer to Figure 44-21 "Simplified Acquisition Path" for the max. tracking time computation.
3. Sampling frequency f_s=1/t_{CONV} in FREERUN mode. Oherwise, f_s is defined by the trigger timing.

If TRACKTIM >14: t_{CONV} = t_{HOLD} +(TRACKTIM+1) × t_{CP_ADC} with hold time t_{HOLD}=5 t_{CP_ADC}.