Correction exercice nº8

- 1. On a:
 - $a_1 = a_0 \frac{15}{100}a_0 + \frac{10}{100}b_0 = 1700 255 + 130 = 1575$
 - $b_1 = b_0 \frac{10}{100}b_0 + \frac{15}{100}a_0 = 1300 130 + 255 = 1425$
- 2. Comme on suppose que durant l'étude, aucun sportif ne quitte le groupe, on a, pour tout entier naturel *n*,

$$a_n + b_n = 3000$$

3. Pour tout entier naturel n on a $a_{n+1} = a_n - \frac{15}{100}a_n + \frac{10}{100}b_n$. Or $a_n + b_n = 3000$ donc $b_n = 3000 - a_n$.

Il vient alors:

$$a_{n+1} = a_n - \frac{15}{100}a_n + \frac{10}{100}(3000 - a_n)$$

$$= a_n - \frac{15}{100}a_n + \frac{10}{100} \times 3000 - \frac{10}{100}a_n$$

$$= 0.75a_n + 300$$

- 4. (a) Soit \mathcal{P}_n : $1200 \le a_{n+1} \le a_n \le 1700$.
 - **Initialisation** : $a_0 = 1700$ et $a_1 = 1575$ donc $1200 \le a_1 \le a_0 \le 1700$ donc \mathcal{P}_0 est vraie.
 - **Hérédité :** soit $n \in \mathbb{N}$. Supposons \mathscr{P}_n vraie, soit $1200 \le a_{n+1} \le a_n \le 1700$ et montrons que \mathscr{P}_{n+1} est vraie c'est-à-dire $1200 \le a_{n+2} \le a_{n+1} \le 1700$.

Par hypothèse de récurrence :

$$1200 \le a_{n+1} \le a_n \le 1700$$

- \implies 0,75 × 1200 \le 0,75 × $a_{n+1} \le$ 0,75 × $a_n \le$ 0,75 × 1700
- \Longrightarrow 900 \leq 0,75 \times $a_{n+1} \leq$ 0,75 \times $a_n \leq$ 1275
- \implies 900 + 300 \le 0,75 \times a_{n+1} + 300 \le 0,75 \times a_n + 300 \le 1275 + 300
- \implies 1200 $\le a_{n+2} \le a_{n+1} \le 1575$

Or $1575 \le 1700 \text{ donc } 1200 \le a_{n+2} \le a_{n+1} \le 1700 \text{ donc } \mathcal{P}_{n+1} \text{ est vraie.}$

- Conclusion : \mathcal{P}_0 est vraie au rang 0 et \mathcal{P}_n est héréditaire à partir du rang n=0 donc on en déduit que \mathcal{P}_n est vraie pour tout entier naturel n c'est-à-dire : $1200 \le a_{n+1} \le a_n \le 1700$.
- (b) Pour tout $n \in \mathbb{N}$, $a_{n+1} \le a_n$ donc la suite (a_n) est décroissante.
 - Pour tout $n \in \mathbb{N}$, $1200 \le a_n$ donc la suite (a_n) est minorée par 1200.

La suite $(a_n)_{n\in\mathbb{N}}$ est décroissante et minorée donc, d'après le théorème de la convergence monotone, elle est convergente. vers une limite ℓ telle que $\ell \ge 1200$.

5. (a) $\forall n \in \mathbb{N}$,

$$\nu_{n+1} = a_{n+1} - 1200
= 0,75 a_n + 300 - 1200
= 0,75 a_n - 900
= 0,75 \left(a_n - \frac{900}{0,75} \right)
= 0,75 (a_n - 1200)
= 0,75 \nu_n$$

$$v_0 = a_0 - 1200 = 1700 - 1200 = 500$$

Donc (v_n) est la suite géométrique de premier terme v_0 = 500 et de raison q = 0,75.

- (b) Pour tout entier naturel n, on a : $v_n = v_0 \times q^n$ soit $v_n = 500 \times 0.75^n$.
- (c) On sait que, pour tout entier naturel n, $a_n = v_n + 1200$, donc $a_n = 500 \times 0.75^n + 1200$.
- 6. (a) -1 < 0.75 < 1 donc $\lim_{n \to +\infty} 0.75^n = 0$; On en déduit que $\lim_{n \to +\infty} 500 \times 0.75^n = 0$ puis $\lim_{n \to +\infty} a_n = 1200$.
 - (b) On peut donc dire qu'à long terme, le nombre de sportifs dans le club A va se limiter à 1200 adhérents, et donc que le nombre de sportifs dans le club B se limitera à 3000 1200 = 1800 adhérents.
- 7. (a) On complète le programme Python ci-dessous afin qu'il renvoie la plus petite valeur de *n* à partir de laquelle le nombre de membres du club A est strictement inférieur à 1280.

```
def seuil():
    n = 0
    A = 1700
    while A>=1280:
    n=n+1
    A = 0.75*A + 300
    return n
```

(b) La valeur renvoyée lorsqu'on appelle la fonction seuil est la plus petite valeur de n telle que $a_n < 1280$.

À la calculatrice on a $a_6 > 1280$ et $a_7 < 1280$ donc la valeur de n renvoyée par la fonction seuil est 7.