

# SDM670/SDM710 Linux Android 软件架构 概述

80-PD126-1SC 版本 C

机密和专有信息 – Qualcomm Technologies, Inc.

禁止公开披露:如若发现本文档在公共服务器或网站上发布,请报告至: DocCtrlAgent@qualcomm.com。

**限制分发**:未经 Qualcomm 配置管理部门的明确批准,不得向 Qualcomm Technologies, Inc. 或其关联公司的员工之外的任何人分发。



### 机密和专有信息 – Qualcomm Technologies, Inc.



机密和专有信息 – Qualcomm Technologies, Inc.

禁止公开披露:如若发现本文档在公共服务器或网站上发布,请报告至: DocCtrlAgent@qualcomm.com。

限制分发: 未经 Qualcomm 配置管理部门的明确批准,不得向 Qualcomm Technologies, Inc. 或其关联公司的员工之外的任何人分发。

未经 Qualcomm Technologies, Inc. 的明确书面许可,不得使用、复印、复制或修改其全部或部分内容,或以任何方式向其他人泄露其内容。

本文档中所提及的所有 Qualcomm 产品为 Qualcomm Technologies, Inc. 和/或其子公司的产品。

Qualcomm、Kryo、Hexagon、MSM 和 Snapdragon 是 Qualcomm Incorporated 在美国及其他国家/地区所注册的商标。Qualcomm ChipCode 是 Qualcomm Incorporated 的商标。其他产品和品牌名称可能是其各自所有者的商标或注册商标。本技术资料可能受美国和国际出口、再出口或转让(统称"出口")法律的约束。严禁违反美国和国际法律。

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2017–2018 Qualcomm Technologies, Inc. 和/或其子公司。保留所有权利。

页码 2 80-PD126-1SC 版本 C 2018 年 4 月 可能包含美国和国际出口管制信息

# 修订历史记录

页码 3

| 版本 | 日期       | 说明                                          |
|----|----------|---------------------------------------------|
| Α  | 2017年8月  | 初始版本                                        |
| В  | 2017年11月 | 本文档进行了编辑性修改;务必通篇阅读                          |
| С  | 2018年4月  | 更新了文档,与 SDM710 和 SDM670 CS 的详细信息和配置相匹配。通篇阅读 |

80-PD126-1SC 版本 C 2018 年 4 月 机密和专有信息 – Qualcomm Technologies, Inc.

可能包含美国和国际出口管制信息

### 目录

- 目标
- SDM670/SDM710 应用程序处理器
- 启动序列
- 内核 4.9
- Android O
- APPS 启动加载程序
- 分区变更
- 进程间通信 (IPC)
- 电源管理
- 软件交付内容
- 调试概述
- 支持
- 参考资料
- 问题?





# 目标

### 目标

- OEM 管理人员和工程师可用本文档来:
  - 了解 SDM670/SDM710 芯片组 HLOS 的新功能及产品改进
  - 了解应用启动加载程序、内核和 Android BSP 的新功能
  - 了解硬件和软件迁移的详细信息,帮助规划开发工作
  - 了解支持 SDM670/SDM710 芯片组进行开发和产品化而不可或缺的新工具、工具版本、Qualcomm Technologies Inc. (QTI) 软件交付内容
  - 了解为 SDM670/SDM710 芯片组提供的新调试支持
  - 高级软件组件
  - 参考文档
- 本文档是 OEM 工程师和管理人员了解 SDM670/SDM710 芯片组内核、应用启动加载程序和 Android BSP 新增功能以及项目规划信息的切入点

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc. 可能包含美国和国际出口管制信**息



SDM670/SDM710 应用程序处理器

页码 7 80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

## SDM670/SDM710 应用程序处理器子系统

页码 8

|                  | SDM6          | 60          | SD                                | M670                  | SDN              | <b>/</b> 1710         |
|------------------|---------------|-------------|-----------------------------------|-----------------------|------------------|-----------------------|
| 硬件参数             | Qualcomm® Kry | o™ 200 CPU  | Kry                               | о 360                 | Kryo 360         |                       |
|                  | Kryo 200 大核   | Kryo 200 小核 | Kryo 360 大核                       | Kryo 360 小核           | Kryo 360 大核      | Kryo 360 小核           |
| <br>架构           | ARM v8        | ARM v8      | ARM v8                            | ARM v8                | ARM v8           | ARM v8                |
| F <sub>max</sub> | 2.2 GHz       | 1.843 GHz   | 约 2.0 GHz                         | 约 1.7 GHz             | 约 2.2 GHz        | 约 1.7 GHz             |
| CPU 数量           | 4             | 4           | 2                                 | 6                     | 2                | 6                     |
| 二级缓存             | 1 MB 二级缓存     | 1 MB 二级缓存   | 256 KB/核心                         | 128 KB/核心             | 256 KB/核心        | 128 KB/核心             |
| 三级缓存             | 不适戶           | FI .        | 1:200 1                           | MB                    | 11               | MB                    |
| 系统缓存             | 不适戶           | H .         | 51                                | 2 KB                  | 512              | ? KB                  |
| NEON/Crypto、VFP  | 有             | 有           | 入 <sup>2</sup> /11 <sup>2</sup> 有 | 有                     | 有                | 有                     |
| 注释               | _             | 0018        |                                   | 专用二级缓存,<br>总缓存 > 1 MB | 每个核心的专<br>单线程操作: | ·用二级缓存,<br>总缓存 > 1 MB |

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

### CPU 时钟和电压控制

- 高性能大核群集和低功耗 小核 群集连同相应二级缓存以不同频率在不同时钟源中运行: 在同一群集中,所有核 心和 L2 保持同步。
- 1 MB 共享三级缓存(与 APC0 共享电源,但 L3 频率可与 小核不同)。





# 启动序列

页码 10 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 



- 1. Kryo/Cortex A53 应用程序 CPU 已退出复位模式。
- 2. 在 Kryo/Cortex A53 中, APPS PBL 执行以下操作:
  - a. 将 XBL SEC (区域 0) 从存储设备加载到 OCIMEM 并进行鉴权。
  - b. 将 XBL(区域 1)从存储设备加载到 L2TCM 并进行鉴权。
  - c. 将 XBL SDI(系统调试映像)(区域 2)加载到 OCIMEM 并进行鉴权, 然后跳转至 XBL 区域 1。
- 3. XBL SEC 在 EL3 模式下运行安全配置,然后在 EL1 模式下执行 XBL。
- 4. XBL 按以下顺序加载其它固件:
  - a. 将 Qualcomm® 受信任执行环境 (QTEE) 映像从启动设备加载到 pIMEM 并进行验证。
  - b. 将 QHEE 映像从启动设备加载到 DDR 并进行鉴权。S
  - c 将 XBL 核心(区域 3)和 ABL 映像从启动设备加载到 DDR 并进行鉴权。
  - d. 将 RPM 固件映像从启动设备加载到 RPM 代码 RAM 并进行鉴权。
  - e. XBL SEC 将执行传输到 QTEE。

页码 12

- 5. QTEE 使 RPM 脱离复位模式,以执行 RPM 固件。
- 6. QTEE 建立安全环境,然后执行 QHEE 映像。
- 7. QHEE 执行 XBL 核心(或 XBL 区域 3)和 XBL 核心安装,然后运行 UEFI 应用 (abl.elf)。

页码 13

- 8. Linux 加载程序应用程序(ABL 的组成部分)通过验证启动加载 HLOS 内核并进行验证。
- 9. HLOS 内核通过外设映像加载程序 (PIL) 将 MBA 加载到 DDR。
- 10. HLOS 内核使 Qualcomm® Hexagon™ DSP Modem 脱离复位模式。
- 11. Modem PBL 将 MBA 从 DDR 复制到 Modem TCM、对 MBA 进行鉴权,然后跳转到 MBA 映像。
- 12. HLOS 通过 PIL 将 AMSS Modem 映像加载到 DDR。
- 13. MBA 对 Modem 映像进行鉴权,然后跳转至 Modem。
- 14. HLOS 通过 PIL 将 Venus 和 LPASS 映像加载到 DDR。
- 15. HLOS 使 Venus 和 LPASS 脱离复位模式,然后通过安全 SMC 调用启动执行。

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 - Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信**息

页码 14

| 组件                                  | 基于处理器                           | 加载源      | ZI/RW 分配位置                         | 执行位置                      | 功能                                                                                                                                                                                                                                                      |
|-------------------------------------|---------------------------------|----------|------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 应用程序主启动加载程序<br>(APPS PBL)           | Kryo 小核 0/性能<br>群集 A53 Core0    | _        | L2TCM、RPM<br>CodeRAM、VMEM          | ROM                       | <ul> <li>建立 APPS 安全 RoT、支持 APPS 安全启动和 XBL 加载器、启动设备解密以及紧急下载模式。</li> <li>在 L2 TCM、片上内存 (OCIMEM) 和 RPM CodeRAM 中加载和并检验 XBL1 ELF 段。</li> </ul>                                                                                                              |
| 可扩展启动加载程序 (XBL)                     | Kryo 小核 0/性能<br>群集 A53 Core0    | eMMC/UFS | L2 TCM、VMEM、<br>LPDDR4X、<br>OCIMEM | L2 TCM、VMEM               | <ul> <li>启动内存子系统(总线、DDR、时钟和 CDT)、加载/鉴权QTEE、QHEE、RPM_FW、XBL 核心映像、通过 USB 和Sahara 进行内存转储、支持看门狗调试保持、支持 RAM 转储到SD、支持 USB 驱动程序、USB 充电、热检查、支持 PMIC 驱动程序和 DDR 定型。</li> <li>以单个 ELF 区段的形式包含 XBL SEC,以锁定 xPU,并在执行其余 XBL 之前将控制从安全 EL3 切换为非安全 EL2 或 EL1。</li> </ul> |
| QTEE                                | Kryo 小核/<br>大核/Cortex A53<br>核心 | eMMC/UFS | OCIMEM,<br>LPDDR4X                 | OCIMEM、<br>LPDDR4 (pIMEM) | <ul> <li>等同于 TrustZone BSP</li> <li>建立安全运行系统执行环境</li> <li>配置 xPU</li> <li>支持熔丝驱动程序</li> </ul>                                                                                                                                                           |
| Qualcomm Hypervisor 执行<br>环境 (QHEE) | Kryo 小核 0/<br>Cortex A53<br>核心  | eMMC/UFS | LPDDR4X                            | LPDDR4X                   | ■ 配置 SMMU<br>■ 提供虚拟化支持                                                                                                                                                                                                                                  |
| RPM_FW                              | Cortex M3                       | eMMC/UFS | RPM DataRAM/<br>MessageRAM         | RPM CodeRAM               | 发挥资源电源管理器的作用。                                                                                                                                                                                                                                           |

页码 15

| 组件                     | 基于处理器                        | 加载源      | ZI/RW 分配位置  | 执行位置        | 功能                                                                                      |
|------------------------|------------------------------|----------|-------------|-------------|-----------------------------------------------------------------------------------------|
| XBL 核心(UEFI 或 LK)      | Kryo 小核 0/性能<br>群集 A53 Core0 | eMMC/UFS | LPDDR4X     | LPDDR4X     | HLOS 特有的功能丰富的启动加载程序(UEFI 功能)                                                            |
| HLOS                   | Kryo 小核/大核<br>/Cortex A53 核心 | eMMC/UFS | LPDDR4X     | LPDDR4X     | HLOS 内核和应用程序                                                                            |
| Modem 主启动加载程序<br>(PBL) | Modem Hexagon                | -        | Hexagon TCM | ROM         | <ul><li>建立 Modem 安全 RoT</li><li>将 MBA 从 DDR 加载到 Hexagon TCM</li><li>鉴权/解密 MBA</li></ul> |
| Modem 启动鉴权程序<br>(MBA)  | Modem Hexagon                | eMMC/UFS | Hexagon TCM | Hexagon TCM | 启用对 Modem 固件的安全鉴权和解密                                                                    |
| Modem AMSS             | Modem Hexagon                | eMMC/UFS | LPDDR4X     | LPDDR4X     | Modem 固件                                                                                |

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 



# 内核 4.9

页码 16 80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

### Linux 内核 4.9

页码 17

- SDM670/SDM710 芯片组使用 Linux 内核 4.9: 作为 Android O Treble 项目的组成部分,所有电路板和厂商驱动程序均以可加载内核模块 (LKM)的形式加载。
- SDM660 使用内核 4.4
- 与内核 4.4 相比,内核 4.9 的主要变更包括:

| 更改产生影响的设备驱动程序                      | 说明                                                                                              | OEM<br>产生影响<br>(是/否) |
|------------------------------------|-------------------------------------------------------------------------------------------------|----------------------|
| dma_attrs 为无符号长整型,而非结构体            | <ul><li>将驱动程序移植到内核 4.9 时,务必使用 dma_attrs</li><li>QTI 驱动程序已更新,可使用新数据结构类型</li></ul>                | 有                    |
| 工作队列锁定检测器                          | QTI 已在内核 4.4 中向后移植                                                                              | 否                    |
| CPU 热插拔基础架构                        | <ul><li>在内核 4.9 中重新编写,但向后兼容</li><li>内核 4.10+ 中取消了向后兼容,未来的内核版本必须遵循新接口或<br/>API – 目前无影响</li></ul> | 否                    |
| SLUB 空闲列表随机化                       | 减弱攻击者对内核堆状态的控制,但 QTI 目前不会启用此功能,否则<br>将破坏解析程序                                                    | 否                    |
| 硬件固化的 usercopy (copy_to/from_user) | 防止内核写入错误或恶意写入内核驱动程序                                                                             | 否                    |

# Linux 内核 4.9(续)

页码 18

| 调试工具          | 说明                  | OEM<br>产生影响<br>(是/否) |
|---------------|---------------------|----------------------|
| dtx_diff tool | 调试工具以源格式和二进制格式比较设备树 | 否                    |

| 其它变更             | 为                                                                      | OEM<br>产生影响<br>(是/否) |
|------------------|------------------------------------------------------------------------|----------------------|
| GPIO 芯片是真实器件     | 除非写入 GPIO 控制器,否则不产生影响                                                  | 否                    |
| kallsyms 为相对地址   | 在 64 位 架构中,kallsyms 地址表缩小一半,因为内核符号之间的偏移以 32 位形式表示。平均节省数百千字节的永久 .rodata | 否                    |
| GCC 插件支持         | <ul><li>取决于 GCC 版本</li><li>开发人员向编译程序添加新功能时无需修改编译程序本身</li></ul>         | 否                    |
| ro_after_init 部分 | 模块布局中具有 更多页面对齐部分                                                       | 否                    |

### 可加载内核模块

- Treble (Android O) 要求厂商、ODM 分别实现内核 4.9
  - 所有内核必须在内部支持启动和安装分区
  - 所有电路板外设驱动程序必须以内核模块形式加载
  - 所有 SoC 内核必须支持 LKM
    - CONFIG\_MODULES=y
    - CONFIG\_MODULE\_UNLOAD=y
    - CONFIG\_MODVERSIONS=y
    - CONFIG\_MODULE\_SRCVERSION\_ALL=y
  - 对于要求支持验证启动的设备,内核模块必须位于验证分区中
  - 内核模块必须位于只读分区中
  - 不强制进行内核模块签名

页码 19

80-PD126-1SC 版本 C 2018 年 4 月 **可能包含美国和国际出口管制信**息

### 可加载内核模块(续)

### • LKM 位置:

页码 20

- 模块必须从经过验证的只读分区载入
- 模块不得位于 /system 路径, 从而保持独立框架空中下载升级 (FOTA) 目标
- 来自 SoC 厂商的模块必须位于 /vendor/lib/modules 位置。这些模块不得依赖于 ODM 模块
- 来自 ODM 的模块必须位于 /odm/lib/modules
- 恢复需要使用的模块(来自 SoC 厂商和 ODM)必须位于 /lib/modules 的恢复 rootfs 中
- 建议通过连续加载或卸载测试运行模块

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

### 可加载内核模块(续)

• LKM 添加方式:

页码 21

1 要在厂商映像中创建 LKM,则将以下代码添加到 BoardConfig.mk(以 LKM 的名称代替 module\_name):

```
BOARD_VENDOR_KERNEL_MODULES := \
$(KERNEL_MODULES_OUT)/module_name.ko
```

2. 如果在恢复模式下需要使用模块,则添加以下代码:

```
BOARD_RECOVERY_KERNEL_MODULES := `$ (KERNEL_MODULES_OUT) / module_a.ko
```

3 要通过 init 进程加载模块,将以下代码添加到 init.target.rc(对于恢复模式,则添加到 /bootable/recovery/etc/init.rc):

```
on early-init
exec -- /system/bin/modprobe -a -d /vendor/lib/modules module_name
```

- 驱动程序转换为 LKM 的示例:
  - snd-soc-wsa881x.ko 扬声器放大驱动程序 wsa881x

## 设备树叠加 (DTO)

- 分为用于 SoC 特定数据的基础设备树 (DT) 文件和用于电路板特定数据的叠加 DT 文件。
  - 基础 DT 位于启动分区,叠加 DT 位于新 DTBO 分区。
  - 启动加载程序从相应分区中查找 DT blob。
  - 启动加载程序使用设备树编译器 (DTC) 对包含叠加 blob 的主 DT blob 进行修补。合并 DT 传递到内核。
  - DT 源文件位置: /kernel/arch/arm/boot/dts/。
  - 叠加 DT 源文件将 "-overlay.dts" 作为文件名后缀。
- 例如

页码 22

- sdm845.dts -- SoC 的基本 DT 源文件。DT 源文件包含的所有 DTSI 文件不得包含任何电路板特定绑定。
- sdm845-mtp-overlay.dts -- MTP 板的叠加 DT 源文件。此文件包含的所有 DTSI 文件不得包含任何 SoC 特定 绑定。
- OEM 板特有的数据应添加到叠加 DT 源文件。不包含具有 SoC 特定绑定的 DTSI。

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信**息



# Android O

页码 23 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

### **Android O**

Treble

页码 24

- Android 框架更改拆分系统和厂商映像
- 针对 LKM 的内核 4.9 变更
- 针对 DTO 的内核 4.9 变更
- 启动加载程序: Verified Boot 2.0 和 DTO 的变更

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc. 可能包含美国和国际出口管制信息** 

### Android O(续)

- Treble Android 框架变更
  - C/C++ 头文件中HAL 声明用HAL 接口定义语言 (HIDL) 重新。
  - HAL接口变为进程间 binder通信。框架在客户端侧运行,厂商实施方案在服务器侧的独立进程(HAL 守护进程)中运行。
  - VNDK 包含厂商接口使用的通用基础库。厂商 HAL 不得与 VNDK 以外的 ASOP 框架存在任何依赖性。
  - 对于修改 QTI HAL 或实现自有 HAL 的 OEM:
    - HAL 进行了重新设计、将实际功能从其接口中分离(输入/输出和类型)。
    - 确定 Android 框架的所有 HAL 链接。
    - 确保所有链接仅对照 VNDK 库,不参考其它任何库。
    - 如果在QTI HAL 中进行更改或使用QTI 库,应与QTI 工程团队合作协调变更事宜。
    - QTI HAL 版本编号已与 QTI 协调。
- 系统和厂商映像分离
  - 之前的 AOSP 更新与系统映像中的厂商模块捆绑在一起
  - Treble 中的映像分为两个映像:
    - 包含核心框架的系统映像
    - 厂商映像

页码 25



# APPS 启动加载程序

页码 26 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

### UEFI APPS 启动加载程序变更

### DTO

页码 27

- Android O 通过 DTO 方案将设备树分为主 SoC 特定组件和电路板特定组件。
  - 主 DT: 仅SoC部分和默认配置,由 SoC 厂商提供。
  - 叠加 DT:设备特定配置,由 ODM/OEM 提供。
- 统一可扩展固件接口 (UEFI) 负责:
  - 从相应分区(DTBO 和启动)中查找 SoC 特定(主 DT blob)和电路板特定(叠加 DT blob)设备树 blob。
  - 使用 DTC 对包含叠加 blob 的主 DT blob 进行修补。
  - 创建一个传递到内核的组合 DT。

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

### **Verified Boot 2.0**

- 密钥管理: Android 现在允许对每个分区单独签名。
  - 每个分区使用由分区所有者生成的自有私钥签名。
  - 各分区可能有不同的所有者。例如、Google 可能对系统分区签名、OEM 对厂商分区签名。
- 各分区的公钥提供给 OEM 并保存在密钥存储分区。密钥存储分区由 OEM 使用 其私钥签名。
- 在启动过程中:

页码 28

- UEFI 使用 OEM 公钥验证密钥存储分区以及获取所有分区的公钥。
- UEFI 使用 Google 提供的 libavb 验证所有分区的元数据。
- UEFI 验证所有分区的签名。
- UEFI 从 KERNEL\_CMDLINE 描述符中读取 dm-verity 参数并将其传递给内核。

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc. 可能包含美国和国际出口管制信息** 

### Verified Boot 2.0 (续)

### 防回滚

页码 29

- Android 现在分配与 OS 版本相关的非负数 (rollback\_index)。
- 每个分区均有专属回滚索引。
  - 每个分区的 A 和 B 插槽共享回滚索引。
  - 例如, boot\_a/boot\_b、system\_a/system\_b、vendor\_a/vendor\_b 和 odm\_a/odm\_b 是共享四个回滚索引的八条插槽。
- 回滚索引以单调递增(即从不减小)。如果修改需要回滚索引递增(即回滚索引与新补丁、安全补丁等级或API等级更改一同发布时),则回滚索引递增。
- 防回滚通过将允许的回滚索引定义为 min\_rollback\_index 进行启用。
- 防回滚的 UEFI 支持:
  - 跟踪每个分区的 min\_rollback 索引值。
  - 如果分区的回滚索引小于其 min\_rollback\_index,设备启动。



# 分区变更

# 分区变更

| 特性                          | 添加分区                                                                                          |
|-----------------------------|-----------------------------------------------------------------------------------------------|
| A/B 分区(默认)                  | <ul><li>添加A和B分区</li><li>system_a.img、system_b.img</li><li>vendor_a.img、vendor_b.img</li></ul> |
| Treble 框架                   | 分离 system.img 和 vendor.img                                                                    |
| Verified Boot 2.0<br>(回滚保护) | 添加 vbmeta_a 和 vbmeta_b 分区                                                                     |
| DTO, LKM                    | 添加 dtbo_a.img、dtbo_b.img (DT) odm_a.img、odm_b.img (DLKM)                                      |

| vbmeta_a  |
|-----------|
| boot_a    |
| system_a  |
| vendor_a  |
| odm_a     |
| dtbo_a    |
| product_a |
|           |

| vbmeta_b  |
|-----------|
| boot_b    |
| system_b  |
| vendor_b  |
| odm_b     |
| dtbo_b    |
| product_b |
|           |

userdata

. . .

## 编译和封装变更





# 进程间通信 (IPC)

### IPC 机制

页码 34

- 共享内存 (SMEM): 所有处理器共享的物理内存
- Qualcomm MSM™ 芯片组接口:采用 IDL 定义的消息传递框架
- G-Link 通用链路:点对点链路层传输

2018-07-29-20-21-12-tom

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

## 通用链路 (G-Link)

- 点对点链路层传输,代替 SMD:客户端包括 Linux 内核、Modem、RPM、LPASS 和 SLPI
- 功能
  - 一路或多路物理传输的多路复用逻辑通道
  - 支持的物理传输
    - 共享存储器
    - 基于复本(如 UART)
    - 基于 DMA
  - 添加新传输句柄的插件架构

- ▶ 性能可扩展
- 占用空间可扩展,适用于 RPM 等资源受限 的系统
- 发生错误或子系统重启时出现故障缓冲区所 有权返回给所有者
- 带内信号传输
- QoS 流量优先级确定



虚拟命令和数据队列将始终存在,但可能在单次物理传输中多路复用。

## 通用链路 (G-Link)(续)

• 主要概念

页码 36

- 异步 API
- 反向压力流量控制机制;避免在客户端未准备好接收时发送数据包
- 基于传输特定 MTU 的透明数据包分片
- 循环数据包调度
- 更多详细信息,参见 G-Link (Generic Link) Overview (80-P2598-1)

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc. 可能包含美国和国际出口管制信息** 

### QMI 背景知识

- 采用接口描述语言 (IDL) 定义的消息传递框架
  - Android 无线接口层 (RIL) 通过其传递 Modem 消息
    - 执行方
      - 客户端 发出请求
      - 服务 处理请求、发送响应和指示
    - 消息类型
      - 请求 设置/获取参数值并配置指示
      - 响应 已请求操作的结果及关联数据
      - ▶ 指示 通知客户端状态更改
    - IDL

页码 37

- 通过 IDL 定义的 QMI 消息
- IDL 编译器为服务和客户端生成 C 头文件和源文件
- 更多详细信息,参见 QMI Framework Overview (80-P4684-6)

80-PD126-1SC 版本 C 2018 年 4 月

### QMI 和服务



### QMI 高级架构

- QMI 多路复用器 (QMUX)(传统): 传统点对点路由
- QMI 通用客户端接口 (QCCI):
   连接注册的 QMI 服务、发送请求以及接收响应或指示
- QMI 通用客户端接口 (QCSI):
   用于实现服务
- IPC 路由器 (QMUX v2): 点对点消息路由、名称服务发现和 流量控制
- QMI 服务访问代理 (QSAP):
   允许传统 QMUC 点对点客户端通过
   IPC 路由器进行通信





# 电源管理

页码 40 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

# CPU 低功耗模式

页码 41

| 低功耗模式 | 说明                                                                      |
|-------|-------------------------------------------------------------------------|
| C1    | 核心时钟选通                                                                  |
| C2    | ■ 核心内存保持<br>■ L1/L2 保持并开启                                               |
| C3    | <ul><li>核心电源深度睡眠</li><li>L1 和 L2 关闭</li><li>核心关闭</li><li>探测关闭</li></ul> |
| C4    | C3 状态 + PLL 关闭(群集)+ Vdd 关闭(仅限大核)                                        |

# L3 低功耗模式

页码 42

| 低功耗模式 | 说明                                            |
|-------|-----------------------------------------------|
| D1    | L3 时钟选通                                       |
| D2    | <ul><li>L3 和 GNOC 时钟选通</li><li>探测开启</li></ul> |
| D4    | ■ L3 时钟/探测关闭<br>■ L3 缓存清空并由硬件关闭               |

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc. 可能包含美国和国际出口管制信息** 

# Linux Android 支持的系统低功耗模式

| 模式索引 | 说明                                |
|------|-----------------------------------|
| 1    | 应用 L3 缓存深度睡眠 (D4) + 系统休眠(RSC 握手)+ |
|      | Cx 关闭 + Mx 保持                     |
| 2    | 模式 1 + 系统缓存关闭 + AOSS 休眠           |



# 软件交付内容

### 软件组件

专有软件交付内容: <a href="https://chipcode.qti.qualcomm.com">https://chipcode.qti.qualcomm.com</a>



### 软件工具和补丁

- 文档和工具门户以及新芯片组项目起点: <a href="https://createpoint.qti.qualcomm.com">https://createpoint.qti.qualcomm.com</a>
- 关于使用 Git 存储库存储软件代码的 Qualcomm ChipCode™ 门户, 访问:
   <a href="https://chipcode.qti.qualcomm.com">https://chipcode.qti.qualcomm.com</a>
- 补丁

页码 46

- 专有软件补丁分发: <a href="https://chipcode.qti.qualcomm.com">https://chipcode.qti.qualcomm.com</a>
- 开源软件补丁分发:
   <a href="https://www.codeaurora.org/patches/quic/la">https://www.codeaurora.org/patches/quic/la</a>

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies**, Inc. **可能包含美国和国际出口管制信息** 

### 软件交付内容 – 应用程序处理器



# 软件交付内容 - 应用程序处理器(续)



### 编译环境

页码 49

- Linux 内核和用户空间
  - Ubuntu 14.04
  - Java 8 (OpenJDK)
  - gcc 4.9.0 工具链
  - Qualcomm® Snapdragon™ 处理器 64 LLVM
- 启动和安全环境(TrustZone (TZ)和安全监视器)
  - ARM 工具 (LLVM)
- 调试 来自Lauterbach 的 64 位 TRACE32

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 - Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 



# 调试概述

### 调试

- 嵌入式 USB 调试 (EUD)
  - 允许 OEM 使用无适配器的低成本调试器
  - 允许 OEM 继续使用无适配器的 Lauterbach 调试器
- EUD 硬件支持下列三种主要工作模式:
  - 旁路模式 EUD 有效关闭或禁用
  - 调试模式 EUD (usb-hub) 存在且处于激活状态
  - 安全模式 EUD 允许受限访问
- 出于安全目的, EUD 由熔丝引导

| EUD 熔丝        |   | 熔丝说明                                         |
|---------------|---|----------------------------------------------|
| fuse_eud_dis  | 1 | EUD 处于激活状态                                   |
| (具有覆盖功能) 0    | 0 | EUD 保持非激活状态,且处于旁路模式                          |
| fuse_ignr_csr | 1 | 向 csr_eud_en 写入 1 可避免 EUD 进入调试(忽略)           |
|               | 0 | 插入 HSUSB 电缆后,向 csr_eud_en 写入 1 导致 EUD 进入调试模式 |

### 调试(续)

页码 52

- APB 扫描转储机制适用于当前支持 JTAG 扫描转储机制的所有核心。例如 GPU、WCSS、Hexagon 处理器和 BIMC
- AOSS/RPMh 调试支持
  - 无论 CX 处于何种状态,调试器均可与 DFD 基础架构进行通信
  - 采集位于 CX 之外的模块(即 AOSS 中的模块)中的跟踪和分析数据,与 CX 电源状态无关
  - RPM 硬件固化调试,例如硬件事件、CTI、AO 处理器调试和 PCB 监视器
  - APB 扫描转储到 RPMh HM
- 崩溃调试流程过程中的应用程序启动处理器 APB 扫描转储可提取或保存通用寄存器值

80-PD126-1SC 版本 C 2018 年 4 月 **机密和专有信息 – Qualcomm Technologies, Inc. 可能包含美国和国际出口管制信息** 





页码 53 **机密和专有信息 – Qualcomm Technologies, Inc.** | **可能包含美国和国际出口管制信息** 

## 参考资料

页码 54

| 文档                                                        |              |  |
|-----------------------------------------------------------|--------------|--|
| 标题                                                        | 文档号          |  |
| Qualcomm Technologies, Inc.                               | <u>.</u>     |  |
| SDM670/SDM710 Linux Android Software User Manual          | SP80-PD126-4 |  |
| SDM670/SDM710 Boot and CoreBSP Architecture Overview      | 80-PD126-2   |  |
| SDM670/SDM710 RPM Hardening Overview and Debug            | 80-PD126-21  |  |
| SDM670/SDM710 Linux Peripherals (UART, SPI, I2C) Overview | 80-PD126-5   |  |
| SDM670/SDM710 Power Overview                              | 80-PD126-6   |  |
| SDM670/SDM710 Security Overview                           | 80-PD126-3   |  |
| SDM670/SDM710 APSS Software Migration Overview            | 80-PD126-37  |  |
| Android O Migration Guide                                 | 80-PC301-1   |  |
| GLINK (Generic Link) Overview                             | 80-P2598-1   |  |

### 缩略词

| 缩略词或术语 | 定义                                                |  |
|--------|---------------------------------------------------|--|
| AOSS   | 实时响应子系统 (Always on subsystem)                     |  |
| APB    | 高级外设总线 (Advanced peripheral bus)                  |  |
| BW     | 广播窗口 (Broadcast window)                           |  |
| CCI    | 缓存一致性互连 (Cache coherency interconnect)            |  |
| DFD    | 调试设计 (Design for debug)                           |  |
| EUD    | 嵌入式 USB 调试 (Embedded USB debug)                   |  |
| FOTA   | 固件空中下载 (Firmware over the air)                    |  |
| GUID   | 全局唯一标识符 (Globally unique identifier)              |  |
| LKM    | 可加载内核模块 (Loadable kernel module)                  |  |
| NoC    | 片上网络 (Network on chip)                            |  |
| QMUX   | QMI 多路复用器 (QMI multiplexor)                       |  |
| RPM    | 资源和电源管理器 (Resource power manager)                 |  |
| RPMh   | 资源电源管理器硬件固化(Resource power manager hardening)     |  |
| SMD    | 共享内存驱动程序 (Shared memory driver)                   |  |
| SMEM   | 共享存储器 (Shared memory)                             |  |
| SMSM   | 共享内存状态机 (Shared memory state machine)             |  |
| SMMU   | 系统内存管理单元 (System memory management unit)          |  |
| UEFI   | 统一可扩展固件接口 (Unified Extensible Firmware Interface) |  |



ole of 29 20:27: Lepf

# 问题?

https://createpoint.qti.qualcomm.com