

TSV630, TSV630A, TSV631, TSV631A

Rail-to-rail input/output, 60 µA, 880 kHz, 5 V CMOS operational amplifiers

Datasheet - production data

Features

- Low offset voltage: 500 μV max (A version)
- Low power consumption: 60 μA typ at 5 V
- Low supply voltage: 1.5 V 5.5 V
- Gain bandwidth product: 880 kHz typ
- Unity gain stability
- Low power shutdown mode: 5 nA typ
- High output current: 63 mA at V_{CC} = 5 V
- Low input bias current: 1 pA typ
- Rail-to-rail input and output
- Extended temperature range: -40 °C to 125 °C
- Automotive qualification

Related products

- See the TSV521 series for higher merit factor (1.15 MHz for 45 μA)
- See the TSV611 (120 kHz for 9 μA) or the TSV621 (420 kHz for 29 μA) for more power savings

Applications

- Battery-powered applications
- Portable devices
- Active filtering
- Medical instrumentation

Description

The TSV630 and TSV631 devices are single operational amplifiers offering low voltage, low power operation, and rail-to-rail input and output.

These devices have a very low input bias current and a low offset voltage making them ideal for applications that require precision. They can operate at power supplies ranging from 1.5 V to 5.5 V, and are therefore very suitable for battery-powered devices, extending battery life.

These op-amps feature an excellent speed/power consumption ratio, offering an 880 kHz gain bandwidth while consuming only 60 μ A at a 5 V supply voltage. They are unity gain stable for capacitive loads up to 100 pF.

The devices are internally adjusted to provide very narrow dispersion of AC and DC parameters. The TSV630 provides a shutdown function. All devices are offered in micropackages and are guaranteed for industrial temperature ranges from -40 ° C to 125 ° C.

These features combined make the TSV630 and TSV631 ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

Contents

1	Packag	e pin connections	3
2	_	te maximum ratings and operating conditions	
3	Electric	al characteristics	5
4	Applica	tion information	13
	4.1	Operating voltages	
	4.2	Rail-to-rail input	13
	4.3	Rail-to-rail output	13
	4.4	Shutdown function (TSV630)	14
	4.5	Optimization of DC and AC parameters	15
	4.6	Driving resistive and capacitive loads	15
	4.7	PCB layouts	15
	4.8	Macromodel	16
5	Packag	e information	17
	5.1	DFN6 1.2x1.3 package information	18
	5.2	DFN8 2x2 package information	20
	5.3	SC70-6 (or SOT323-6) package information	22
	5.4	SOT23-6 package information	24
	5.5	SC70-5 (or SOT323-5) package information	25
	5.6	SOT23-5 package information	26
6	Orderin	g information	27
7	Povisio	n history	29

1 Package pin connections

Figure 1: Pin connections for each package (top view)

1. The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating.

2 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parameter	i illaxiillulli ratiliy	Value	Unit
Vcc	Supply voltage (1)		6	
Vid	Differential input voltage (2)		±Vcc	V
Vin	Input voltage (3)		(Vcc-) - 0.2 to (Vcc+) + 0.2	
l _{in}	Input current (4)		10	mA
SHDN	Shutdown voltage (3)		6	V
T _{stg}	Storage temperature		-65 to 150	°C
		DFN6 1.2x1.3	232	°C/W
		DFN8 2x2	57	
R _{thja} (5) (6)	Thermal resistance junction-to-	SC70-6	232	
Rthja (9) (9)	ambient	SOT23-6	240	
		SC70-5	205	
		SOT23-5	250	
Tj	Maximum junction temperature		150	°C
	HBM: human body model (7)		4	kV
ESD	MM: machine model (8)		300	V
	CDM: charged device model (9)	1.5	kV	
	Latch-up immunity		200	mA

Table 2: Operating conditions

Symbol	Parameter	Value	Unit					
Vcc	Supply voltage	1.5 to 5.5	\/					
V _{icm}	Common mode input voltage range	(V_{CC-}) - 0.1 to (V_{CC+}) + 0.1	V					
T _{oper}	Operating free air temperature range	-40 to 125	°C					

⁽¹⁾All voltage values, except the differential voltage are with respect to the network ground terminal.

⁽²⁾The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

⁽³⁾V_{CC} - V_{in} must not exceed 6 V

⁽⁴⁾Input current must be limited by a resistor in series with the inputs.

⁽⁵⁾Rth are typical values.

⁽⁶⁾Short-circuits can cause excessive heating and destructive dissipation.

 $^{^{(7)}}$ 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating

 $^{^{(8)}}$ A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating

⁽⁹⁾All pins plus package are charged together to the specified voltage and then discharged directly to the ground

3 Electrical characteristics

Table 3: Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C and RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
DC perfo	rmance				ı	II.		
		TSV630, TSV631			3			
		TSV630A, TSV631A			0.5			
V_{io}	Offset voltage	-40 °C < T _{op} < 125 °C, TSV630, TSV631			4.5	m∨		
		-40 °C < T _{op} < 125 °C, TSV630A, TSV631A			2			
ΔV _{io} /ΔΤ	Input offset voltage drift			2		μV/°C		
1.	Input offset current,			1	10 ⁽¹⁾			
l _{io}	$V_{out} = V_{CC}/2$	-40 °C < T _{op} < 125 °C		1	100	. . Λ		
L.	Input bias current,			1	10 (1)	рA		
l _{ib}	V _{out} = V _{CC} /2	-40 °C < T _{op} < 125 °C		1	100			
CMR	Common mode rejection	0 V to 1.8 V, V _{out} = 0.9 V	53	74				
CIVIR	ratio 20 log, ΔV _{ic} /ΔV _{io}	-40 °C < T _{op} < 125 °C	51			dB		
^	Large signal voltage gain	$R_L=10~k\Omega,~V_{out}=0.5~V~to~1.3~V$	85	95		uБ		
A_{vd}	Large signal voltage gain	-40 °C < T _{op} < 125 °C	80					
V	High level output voltage, VoH = Vcc - Vout	$R_L = 10 \text{ k}\Omega$		5	35			
V _{OH}		-40 °C < T _{op} < 125 °C			50	m)/		
V	Low lovel output voltage	$R_L = 10 \text{ k}\Omega$		4	35	mV		
Vol	Low level output voltage	-40 °C < T _{op} < 125 °C			50			
	1	V _o = 1.8 V	6	12				
1 .	Isink	-40 °C < T _{op} < 125 °C	4			m Λ		
lout		V _o = 0 V	6	10		mA		
	Isource	-40 °C < T _{op} < 125 °C	4					
	Supply current,	No load, V _{out} = V _{CC} /2	40	50	60			
Icc	SHDN = V _{CC+}	-40 °C < T _{op} < 125 °C			62	μA		
AC perfo	rmance							
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, f = 100 \text{ kHz}$	700	790		kHz		
фm	Phase margin	D 240 C 400 pF		48		Degree		
Gm	Gain margin	$R_L = 2 k\Omega$, $C_L = 100 pF$		11		dB		
SR	Slew rate	$R_L = 2 k\Omega$, $C_L = 100 pF$, $Av = 1$	0.2	0.27		V/µs		
_	Equivalent input noise	f = 1 kHz		67		n\//a/LI=		
en	voltage	f = 10 kHz		53		mV/√Hz		

⁽¹⁾Guaranteed by design.

Table 4: Shutdown characteristics VCC = 1.8 V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance										
	Icc Supply current in shutdown mode (all operators)	SHDN = Vcc-		2.5	50	nA				
Icc		-40 °C < T _{op} < 85 °C			200	.,,				
		-40 °C < T _{op} < 125 °C			1.5	μΑ				
ton	Amplifier turn-on time	$R_L = 2 k\Omega$, Vout = (V _{CC-}) + 0.2 V to (V _{CC+}) - 0.2 V		300						
t _{off}	Amplifier turn-off time	$R_L = 2 k\Omega$, $Vout = (V_{CC-}) + 0.2 V$ to (V_{CC+}) - 0.2 V		20		ns				
VIH	SHDN logic high		1.3							
VIL	SHDN logic low				0.5	V				
Іін	SHDN current high	SHDN = V _{CC+}		10						
lι∟	SHDN current low	SHDN = V _{CC} -		10		pA				
l _{OLeak}	Output leakage in shutdown	SHDN = Vcc-		50						
IOLeak	mode	-40 °C < T _{op} < 125 °C		1		nA				

Table 5: Electrical characteristics at VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
DC perfor	mance				<u>'</u>	11		
		TSV630, TSV631			3			
		TSV630A, TSV631A			0.5			
V_{io}	Offset voltage	-40 °C < T _{op} < 125 °C, TSV630, TSV631			4.5	mV		
		-40 °C < T _{op} < 125 °C, TSV630A, TSV631A			2			
ΔV _{io} /ΔΤ	Input offset voltage drift			2		μV/°C		
ı.	Input offeet ourrent			1	10 (1)			
lio	Input offset current	-40 °C < T _{op} < 125 °C		1	100	~ ^		
	land him amount			1	10 (1)	pA		
lib	Input bias current	-40 °C < T _{op} < 125 °C		1	100			
OMP	Common mode rejection	0 V to 3.3 V, V _{out} = 1.75 V	57	79				
CMR	ratio 20 log, ΔV _{ic} /ΔV _{io}	-40 °C < T _{op} < 125 °C	53			dB		
A_{vd}	Large signal voltage gain	$R_L = 10 \text{ k}\Omega, V_{out} = 0.5 \text{ V to } 2.8 \text{ V}$	88	98				
		-40 °C < T _{op} < 125 °C	83					
.,	High level output voltage,	$R_L = 10 \text{ k}\Omega$		6	35	35		
Vон	V _{OH} = V _{CC} - V _{out}	-40 °C < T _{op} < 125 °C			50			
.,		$R_L = 10 \text{ k}\Omega$		7	35	mV		
V_{OL}	Low level output voltage	-40 °C < T _{op} < 125 °C			50			
		V _o = 3.3 V	30	45				
	Isink	-40 °C < T _{op} < 125 °C	25	42				
lout		V ₀ = 0 V	30	38		mA		
	Isource	-40 °C < T _{op} < 125 °C	25					
	Supply current,	No load, V _{out} = 1.75 V	43	55	64			
Icc	SHDN = V _{CC+}	-40 °C < T _{op} < 125 °C			66	μA		
AC perfor	mance	-1	- I		I			
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	710	860		kHz		
φm	Phase margin	B 010 0 100 5		50		Degree		
Gm	Gain margin	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}$		11		dB		
SR	Slew rate	$R_L = 2 k\Omega$, $C_L = 100 pF$, $Av = 1$	0.22	0.29		V/µs		
	Equivalent input noise	f = 1 kHz		64		!		
e n	voltage	f = 10 kHz		51		nV/√H		

⁽¹⁾Guaranteed by design.

Table 6: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C and RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	mance					
•		TSV630, TSV631			3	
		TSV630A, TSV631A			0.5	-
V_{io}	Offset voltage	-40 °C < T _{op} < 125 °C, TSV630, TSV631			4.5	mV
		-40 °C < T _{op} < 125 °C, TSV630A, TSV631A			2	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	Input offset current,			1	10 (1)	
l _{io}	V _{out} = V _{CC} /2	-40 °C < T _{op} < 125 °C		1	100	1 .
	Input bias current,			1	10 (1)	рA
l _{ib}	V _{out} = V _{CC} /2	-40 °C < T _{op} < 125 °C		1	100	
OMB	Common mode rejection ratio	0 V to 5 V, V _{out} = 2.5 V	60	80		
CMR	20 log, ΔV _{ic} /ΔV _{io}	-40 °C < T _{op} < 125 °C	55			
0) (D	Supply voltage rejection ratio 20 log, ΔV _{CC} /ΔV _{io}	V _{CC} = 1.8 to 5 V	75	102		<u></u>
SVR		-40 °C < T _{op} < 125 °C				dB
	Lorgo signal voltago gain	$R_{L}=10 \text{ k}\Omega, V_{out}=0.5 \text{ V to } 4.5 \text{ V}$	89	98		
A_{vd}	Large signal voltage gain	-40 °C < T _{op} < 125 °C	84			
	High level output voltage, V _{OH} = V _{CC} - V _{out}	$R_L = 10 \text{ k}\Omega$		7	35	
Vон		-40 °C < T _{op} < 125 °C			50	
.,		$R_L = 10 \text{ k}\Omega$		6	35	mV
Vol	Low level output voltage	-40 °C < T _{op} < 125 °C			50	
		V _o = 5 V	40	69		
	Isink	-40 °C < T _{op} < 125 °C	35	65		^
l _{out}		V _o = 0 V	40	74		mA mA
	Isource	-40 °C < T _{op} < 125 °C	36	68		
	Supply current	No load, V _{out} = V _{CC} /2	50	60	69	
Icc	SHDN = V _{CC+}	-40 °C < T _{op} < 125 °C			72	μA
AC perfor	mance	,	T.	l.		1
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	730	880		kHz
Fu	Unity gain frequency			830		1
φm	Phase margin	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$,		50		Degrees
Gm	Gain margin			12		dB
SR	Slew rate	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, Av = 1$	0.25	0.34		V/µs
_	Equivalent input noise	f = 1 kHz		60		m\//:/LL
еn	voltage	f = 10 kHz		47		nV/√Hz

8/29 DocID15242 Rev 8

TSV630, TSV630A, TSV631, TSV631A

Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
THD+e _n	Total harmonic distortion	$ f = 1 \text{ kHz}, \ A_V = 1, \ R_L = 100 \text{ k}\Omega, $ $V_{icm} = V_{CC}/2, \ Vout = 2 \ V_{PP} $		0.0017		%

Table 7: Shutdown characteristics VCC = 5 V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance										
	Supply current in shutdown	SHDN = Vcc-		5	50	nA				
Icc	mode (all operators)	-40 °C < T _{op} < 85 °C			200					
		-40 °C < T _{op} < 125 °C			1.5	μΑ				
ton	Amplifier turn-on time	$R_L = 2 k\Omega$, Vout = (V _{CC-}) + 0.2 V to (V _{CC+}) - 0.2 V		300		20				
t _{off}	Amplifier turn-off time	$R_L = 2 k\Omega$, Vout = (V _{CC-}) + 0.2 V to (V _{CC+}) - 0.2 V		30		ns				
VIH	SHDN logic high		4.5			V				
V_{IL}	SHDN logic low				0.5	V				
Іін	SHDN current high	SHDN = Vcc+		10						
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pA				
l _{OLeak}	Output leakage in shutdown	SHDN = Vcc-		50						
2 20an	mode	-40 °C < T _{op} < 125 °C		1		nA				

⁽¹⁾Guaranteed by design.

47/

Figure 10: Positive slew rate vs. supply voltage Vcc=5V, Rl=2kohms, Cl=100pF Vin: from 0.4V to Vcc-0.4V 0.4 SR calculated from 10% to 90% Positive Slew Rate (V/µs) T=25°C 0.3 T=125°C T=-40°C 0.1 0.0 L 2.5 3.0 3.5 5.5 Supply voltage (V)

4 Application information

4.1 Operating voltages

The TSV630 and TSV631 can operate from 1.5 V to 5.5 V. Their parameters are fully specified for 1.8-V, 3.3-V, and 5-V power supplies. However, the parameters are very stable in the full $V_{\rm CC}$ range and several characterization curves show the TSV63x characteristics at 1.5 V. In addition, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.

4.2 Rail-to-rail input

The TSV630 and TSV631 are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) + 0.1 V. The transition between the two pairs appears at (V_{CC+}) - 0.7 V. In the transition region, the performance of CMRR, PSRR, V_{io} and THD is slightly degraded (as shown in *Figure 17* and *Figure 18* for V_{io} vs. V_{icm}).

The device is guaranteed without phase reversal.

4.3 Rail-to-rail output

The operational amplifiers' output levels can go close to the rails: to a maximum of 35 mV above and below the rail when a 10 k Ω resistive load is connected to $V_{CC}/2$.

4.4 Shutdown function (TSV630)

The operational amplifier is enabled when the \overline{SHDN} pin is pulled high. To disable the amplifier, the \overline{SHDN} must be pulled down to V_{CC} . When in shutdown mode, the amplifier output is in a high impedance state. The \overline{SHDN} pin must never be left floating, but must be tied to V_{CC} or V_{CC} .

The turn-on and turn-off time are calculated for an output variation of ±200 mV (*Figure 19* and *Figure 20* show the test configurations).

Figure 21 and Figure 22 show the amplifier output voltage behavior when the SHDN pin is toggled high and low.

4.5 Optimization of DC and AC parameters

These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (60 μ A typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and AVd, benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 730 kHz minimum and SR = 0.25 V/ μ s minimum).

4.6 Driving resistive and capacitive loads

These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 2 k Ω . For lower resistive loads, the THD level may significantly increase.

In a *follower* configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding an in-series resistor at the output can improve the stability of the devices (see *Figure 23* for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on the bench and simulated with the simulation model.

4.7 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.8 Macromodel

An accurate macromodel of the TSV630 and TSV631 is available on STMicroelectronics' web site at **www.st.com**. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV63x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, *but it* does not replace on-board measurements.

16/29 DocID15242 Rev 8

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

5.1 DFN6 1.2x1.3 package information

Figure 24: DFN6 1.2x1.3 package outline

Table 8: DFN6 1.2x1.3 mechanical data

	Dimensions								
Ref	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.31	0.38	0.40	0.012	0.015	0.016			
A1	0.00	0.02	0.05	0.000	0.001	0.002			
b	0.15	0.18	0.25	0.006	0.007	0.010			
С		0.05			0.002				
D		1.20			0.047				
Е		1.30			0.051				
е		0.40			0.016				
L	0.475	0.525	0.575	0.019	0.021	0.023			
L3	0.375	0.425	0.475	0.015	0.017	0.019			

Figure 25: DFN6 1.2x1.3 recommended footprint

5.2 DFN8 2x2 package information

Figure 26: DFN8 2x2 package outline

Table 9: DFN8 2x2 mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.51	0.55	0.60	0.020	0.022	0.024			
A1			0.05			0.002			
А3		0.15			0.006				
b	0.18	0.25	0.30	0.007	0.010	0.012			
D	1.85	2.00	2.15	0.073	0.079	0.085			
D2	1.45	1.60	1.70	0.057	0.063	0.067			
Е	1.85	2.00	2.15	0.073	0.079	0.085			
E2	0.75	0.90	1.00	0.030	0.035	0.039			
е		0.50			0.020				
L			0.425			0.017			
ddd			0.08			0.003			

DocID15242 Rev 8

0.45mm 0.75mm 2.80mm

Figure 27: DFN8 2x2 recommended footprint

<u>Q1</u>

5.3 SC70-6 (or SOT323-6) package information

Figure 28: SC70-6 (or SOT323-6) package outline

Table 10: SC70-6 (or SOT323-6) mechanical data

	Dimensions								
Ref		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.80		1.10	0.031		0.043			
A1			0.10			0.004			
A2	0.80		1.00	0.031		0.039			
b	0.15		0.30	0.006		0.012			
С	0.10		0.18	0.004		0.007			
D	1.80		2.20	0.071		0.086			
Е	1.15		1.35	0.045		0.053			
е		0.65			0.026				
HE	1.80		2.40	0.071		0.094			
L	0.10		0.40	0.004		0.016			
Q1	0.10		0.40	0.004		0.016			

Figure 29: SC70-6 (or SOT323-6) recommended footprint

5.4 SOT23-6 package information

Figure 30: SOT23-6 package outline

Table 11: SOT23-6 mechanical data

	Dimensions						
Ref.		Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.90		1.45	0.035		0.057	
A1			0.10			0.004	
A2	0.90		1.30	0.035		0.051	
b	0.35		0.50	0.013		0.019	
С	0.09		0.20	0.003		0.008	
D	2.80		3.05	0.110		0.120	
Е	1.50		1.75	0.060		0.069	
е		0.95			0.037		
Н	2.60		3.00	0.102		0.118	
L	0.10		0.60	0.004		0.024	
θ	0°		10°	0°		10 °	

5.5 SC70-5 (or SOT323-5) package information

Figure 31: SC70-5 (or SOT323-5) package outline

Table 12: SC70-5 (or SOT323-5) mechanical data

	Dimensions					
Ref.		Millimeters		Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80		1.10	0.032		0.043
A1			0.10			0.004
A2	0.80	0.90	1.00	0.032	0.035	0.039
b	0.15		0.30	0.006		0.012
С	0.10		0.22	0.004		0.009
D	1.80	2.00	2.20	0.071	0.079	0.087
Е	1.80	2.10	2.40	0.071	0.083	0.094
E1	1.15	1.25	1.35	0.045	0.049	0.053
е		0.65			0.025	
e1		1.30			0.051	
L	0.26	0.36	0.46	0.010	0.014	0.018
<	0°		8°	0°		8°

5.6 SOT23-5 package information

Figure 32: SOT23-5 package outline

Table 13: SOT23-5 mechanical data

	Dimensions						
Ref.		Millimete	rs	Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.014	0.016	0.020	
С	0.09	0.15	0.20	0.004	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
Е	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.014	0.024	
K	0 degrees		10 degrees	0 degrees		10 degrees	

6 Ordering information

Table 14: Order codes

Order code	Temperature range	Package	Packing	Marking
TSV630IQ1T		DFN6 1.2x1.3 (1)	Tape and reel	K4
TSV630IQ2T		DFN8 2x2		K1A
TSV630ILT		SOT23-6		K108
TSV630ICT	-40 °C to 125 °C	SC70-6		K18
TSV631ILT		SOT23-5		K109
TSV631ICT		SC70-5		K19
TSV630AILT		SOT23-6		K141
TSV630AICT		SC70-6		K41
TSV631AILT		SOT23-5		K142
TSV631AICT		SC70-5		K42
TSV631IYLT (2)	-40 °C to 125 °C automotive grade	SOT23-5		K10C

⁽¹⁾Package available on request. Please contact your local sales office for further information.

 $^{^{(2)}}$ Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

7 Revision history

Table 15: Document revision history

Date	Revision	Changes
19-Dec-2008	1	Initial release.
17-Aug-2009	2	Added root part numbers TSV630A and TSV631A on cover page.
13-Aug-2012	3	Corrected the "Equivalent input noise voltage" values in Table 3, Table 4, and Table 6. Updated Figure 16: "Noise vs. frequency".
22-Mar-2013	4	Features: added "automotive qualification" Added Related products Description: updated Updated titles of Figure 14 and Figure 15 Updated Section 4.4: "Shutdown function (TSV630)" Updated Table 13: "Order codes"
02-Oct-2013	5	Added DFN6 1.2 x 1.3 package details Table 3, Table 5, and Table 6: replaced DV $_{io}$ with $\Delta V_{io}/\Delta T$. Figure 3: updated title Updated disclaimer
21-Nov-2014	6	Related products: updated Table 3, Table 4, Table 5, Table 6, and Table 7: updated some of the "conditions". Figure 25: "DFN6 1.2x1.3 recommended footprint": updated Table 12: "SOT23-5 mechanical data": updated some of the "inches" dimensions.
01-Jul-2015	7	Table 3, Table 5, and Table 6: V _{OH} "min" values changed to "max" values.
20-Sep-2016	8	Added "on request" to DFN6 1.2x1.3 silhouette. Added DFN8 2x2 silhouette, pinout and package. Table 1: "Absolute maximum ratings (AMR)": updated thermal resistance junction-to-ambient parameter for DFN8 2x2 package. Table 14: "Order codes": added footnote concerning package availability to DFN6 1.2x1.3, added TSV630IQ2T.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

