1 Proofs

1.1 Conics in a nutshell

*

Proof. Consider the ellipse E centered at the origin and oriented as in $\ref{eq:constraint}$.

Figure 1: Reference frame centered at the center of the ellipse. Source: [Ag217].

From ?? one can check that it can be parametrized by $(x,y)=(a\cos t,b\sin t)$ with $t\in[0,2\pi)$. This parametrization satisfies:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\tag{1}$$

Hence, the area enclosed in the ellipse can be parametrized by $(x,y) = (ar\cos t, br\sin t)$, with $r \in [0,1]$ and $t \in [0,2\pi)$. The Jacobian of the transformation $(r,t) \to (x,y)$ transformation is abr. Therefore, from the change of variable theorem we have that:

$$Area(E) = \iint_E dx dy = \int_0^{2\pi} \int_0^1 abr dr dt = \pi ab$$
 (2)

1.2 Introduction to astrodynamics and satellite tracking

*

Proof. Cross-multiplying ?? by h we obtain

$$\frac{\mathrm{d}(\dot{\mathbf{r}} \times \mathbf{h})}{\mathrm{d}t} = \ddot{\mathbf{r}} \times \mathbf{h} = -\frac{\mu}{r^3} \mathbf{r} \times \mathbf{h} = -\frac{\mu}{r^3} \mathbf{r} \times (\mathbf{r} \times \dot{\mathbf{r}}) = \frac{\mu}{r^3} [(\mathbf{r} \cdot \mathbf{r})\dot{\mathbf{r}} - (\mathbf{r} \cdot \dot{\mathbf{r}})\mathbf{r}]$$
(3)

where in the last equality we have used the vector equality $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ for $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$. Now note that:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathbf{r}}{r}\right) = \frac{\dot{\mathbf{r}}}{r} - \frac{\dot{r}}{r^2}\mathbf{r} = \frac{1}{r^3}[(\mathbf{r}\cdot\mathbf{r})\dot{\mathbf{r}} - (\mathbf{r}\cdot\dot{\mathbf{r}})\mathbf{r}] \tag{4}$$

because $\frac{d(r^2)}{dt} = \frac{d(\mathbf{r} \cdot \mathbf{r})}{dt} = 2\mathbf{r} \cdot \dot{\mathbf{r}}$. Thus:

$$\frac{\mathrm{d}(\dot{\mathbf{r}} \times \mathbf{h})}{\mathrm{d}t} = \mu \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathbf{r}}{r}\right) \tag{5}$$

Integrating with respect to the time yields

$$\dot{\mathbf{r}} \times \mathbf{h} = \frac{\mu}{r} \mathbf{r} + \mathbf{B} \tag{6}$$

where $\mathbf{B} \in \mathbb{R}^3$ is the constant of integration. Observe that since $\dot{\mathbf{r}} \times \mathbf{h}$ is perpendicular to \mathbf{h} , $\dot{\mathbf{r}} \times \mathbf{h}$ lies on the orbital plane and so does \mathbf{r} . Hence, \mathbf{B} lies on the orbital plane too. Now, dot-multiplying this last equation by \mathbf{r} and using that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} \ \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ we obtain

$$h^{2} = \mathbf{h} \cdot \mathbf{h} = (\mathbf{r} \times \dot{\mathbf{r}}) \cdot \mathbf{h} = \mathbf{r} \cdot (\dot{\mathbf{r}} \times \mathbf{h}) = \frac{\mu}{r} \mathbf{r} \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{B} = \mu r + rB \cos \nu$$
 (7)

where $h := \|\mathbf{h}\|$, $B := \|\mathbf{B}\|$ and ν denotes the angle between \mathbf{r} and \mathbf{B} , called *true anomaly*. Rearranging the terms we finally obtain the equation of a conic section

$$r = \frac{h^2/\mu}{1 + (B/\mu)\cos(\nu)}\tag{8}$$

with $p := h^2/\mu$ and $e := B/\mu$.

*

Proof. Recall that the area of a parallelogram generated by two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ is given by $\|\mathbf{u} \times \mathbf{v}\|$. Thus, approximating the difference A(t+k) - A(t) by half of the area of the parallelogram generated by $\mathbf{r}(t)$ and $\mathbf{r}(t+k)$ (see ??) we obtain:

$$\frac{\mathrm{d}A(t)}{\mathrm{d}t} = \lim_{k \to 0} \frac{A(t+k) - A(t)}{k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \mathbf{r}(t+k)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times (\mathbf{r}(t+k) - \mathbf{r}(t))\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to 0} \frac{\|\mathbf{r}(t) \times \dot{\mathbf{r}}(t+k) - \mathbf{r}(t)\|}{2k} = \lim_{k \to$$

where the penultimate equality is due to the continuity and linearity of the cross product.

Figure 2: Graphical representation of the error made (red region) when approximating the area swept by the radius vector by half the area of the parallelogram generated by $\mathbf{r}(t)$ and $\mathbf{r}(t+k)$ (green region).

*

¹Bear in mind that in general $\dot{r} \neq ||\dot{\mathbf{r}}||$. Indeed, if β denotes the angle between \mathbf{r} and $\dot{\mathbf{r}}$ we have that $\dot{r} = ||\dot{\mathbf{r}}|| \cos \beta$. In particular \dot{r} may be negative.

Proof. Integrating ?? with respect to time between 0 and T (the period) yields:

$$\pi ab = A(T) = \int_{0}^{T} A'(t) dt = \int_{0}^{T} \frac{h}{2} dt = \frac{hT}{2} \implies n = \frac{2\pi}{T} = \frac{h}{ab} = \frac{h}{a^2 \sqrt{1 - e^2}} = \sqrt{\frac{\mu}{a^3}}$$
 (10)

where we have used ????.

*

Proof. We first prove the uniqueness. Clearly $f \in \mathcal{C}^1(\mathbb{R})$ and $f'(E) = 1 - e \cos E > 0$ for all $E \in [0, 2\pi)$ because e < 1. Thus, f is strictly increasing and so it has at most one zero. Now, if $0 \le \overline{M} < \pi$, then:

$$f(M) = -e \sin M \le 0$$
 and $f(M+e) = e(1 - \sin(M+e)) \ge 0$ (11)

So by Bolzano's theorem, f has a solution in [M,M+e]. If $\pi \leq \bar{M} < 2\pi$, then:

$$f(M) = -e \sin M \ge 0$$
 and $f(M - e) = -e(1 + \sin(M - e)) \le 0$ (12)

So again by Bolzano's theorem, f has a solution in [M-e,M].

1.3 Earth's gravitational field and other perturbations

*

Proof. An easy computation shows that fixed $\mathbf{s} \in \mathbb{R}^3$ we have:

$$\nabla \left(\frac{1}{\|\mathbf{r} - \mathbf{s}\|} \right) = -\frac{1}{\|\mathbf{r} - \mathbf{s}\|^3} (\mathbf{r} - \mathbf{s})$$
(13)

So we need to justify whether the following exchange between the gradient and the integral is correct:

$$\mathbf{g} = -\int_{\Omega} \frac{G\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|^3} (\mathbf{r} - \mathbf{s}) d^3 \mathbf{s} = \int_{\Omega} G\rho(\mathbf{s}) \nabla \left(\frac{1}{\|\mathbf{r} - \mathbf{s}\|} \right) d^3 \mathbf{s} = \nabla \int_{\Omega} \frac{G\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|} d^3 \mathbf{s}$$
(14)

Without loss of generality it suffices to justify that

$$\frac{\partial}{\partial x} \int_{\Omega} \frac{\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|} d^3 \mathbf{s} = \int_{\Omega} \frac{\partial}{\partial x} \left(\frac{\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|} \right) d^3 \mathbf{s}$$
 (15)

assuming $\mathbf{r}=(x,y,z)$ and $\mathbf{s}=(x',y',z')$. In order to apply the theorem of derivation under the integral sign we need to control $\frac{\partial}{\partial x}\left(\frac{\rho(\mathbf{s})}{\|\mathbf{r}-\mathbf{s}\|}\right)=-\rho(\mathbf{s})\frac{x-x'}{\|\mathbf{r}-\mathbf{s}\|^3}$ by an integrable function $h(\mathbf{s})$. Using spherical coordinates centered at \mathbf{r} and writing $(\mathbf{r}-\mathbf{s})_{\mathrm{sph}}=(\rho_{\mathbf{r}},\theta,\phi)$, the integrand to bound becomes (in spherical coordinates):

$$\left| -\rho(\mathbf{s}) \frac{x - x'}{\|\mathbf{r} - \mathbf{s}\|^3} \rho_{\mathbf{r}}^2 \sin \phi \right| = |\rho(\mathbf{s})| \left| \frac{\rho_{\mathbf{r}} \cos \theta \sin \phi}{\rho_{\mathbf{r}}^3} \rho_{\mathbf{r}}^2 \sin \phi \right| \le |\rho(\mathbf{s})| \le K$$
 (16)

where the last inequality follows for certain $K \in \mathbb{R}$ by Weierstrass theorem (ρ is continuous and Ω is compact). Thus, since $h(\mathbf{s}) = K$ is integrable, because Ω is bounded, the equality of ?? is correct.

*

Proof. Recall that $\Delta V = \mathbf{div}(V)$. So since $\mathbf{g} = \nabla V$ it suffices to prove that $\mathbf{div}(\mathbf{g}) = 0$. Note that if $\mathbf{r} \in \Omega^c$, then $\exists \delta > 0$ such that $\|\mathbf{r} - \mathbf{s}\| \ge \delta > 0 \ \forall \mathbf{s} \in \Omega$ because Ω is closed. As a result, $\frac{\mathbf{r} - \mathbf{s}}{\|\mathbf{r} - \mathbf{s}\|^3}$ is differentiable and:

$$\mathbf{div}\left(\frac{\mathbf{r} - \mathbf{s}}{\|\mathbf{r} - \mathbf{s}\|^{3}}\right) = \frac{\partial}{\partial x} \left(\frac{x - x'}{\|\mathbf{r} - \mathbf{s}\|^{3}}\right) + \frac{\partial}{\partial y} \left(\frac{y - y'}{\|\mathbf{r} - \mathbf{s}\|^{3}}\right) + \frac{\partial}{\partial z} \left(\frac{z - z'}{\|\mathbf{r} - \mathbf{s}\|^{3}}\right) =$$

$$= \frac{\|\mathbf{r} - \mathbf{s}\|^{2} - 3(x - x')^{2}}{\|\mathbf{r} - \mathbf{s}\|^{5}} + \frac{\|\mathbf{r} - \mathbf{s}\|^{2} - 3(y - y')^{2}}{\|\mathbf{r} - \mathbf{s}\|^{5}} + \frac{\|\mathbf{r} - \mathbf{s}\|^{2} - 3(z - z')^{2}}{\|\mathbf{r} - \mathbf{s}\|^{5}} = 0$$

Hence, as in ??, we have that:

$$\left| \rho(\mathbf{s}) \frac{\left\| \mathbf{r} - \mathbf{s} \right\|^2 - 3(x - x')^2}{\left\| \mathbf{r} - \mathbf{s} \right\|^5} \right| \le \frac{4|\rho(\mathbf{s})|}{\left\| \mathbf{r} - \mathbf{s} \right\|^3} \le \frac{4|\rho(\mathbf{s})|}{\delta^3}$$

$$(17)$$

which is integrable by Weierstrass theorem. Thus, by the theorem of derivation under the integral sign:

$$\mathbf{div}(\mathbf{g}) = -\mathbf{div} \int_{\Omega} \frac{G\rho(\mathbf{s})}{\|\mathbf{r} - \mathbf{s}\|^{3}} (\mathbf{r} - \mathbf{s}) d^{3}\mathbf{s} = -\int_{\Omega} G\rho(\mathbf{s}) \, \mathbf{div} \left(\frac{\mathbf{r} - \mathbf{s}}{\|\mathbf{r} - \mathbf{s}\|^{3}} \right) d^{3}\mathbf{s} = 0$$
 (18)

*

Proof. Suppose we have two solutions V_1 , V_2 of $\ref{eq:condition}$. Then, $W:=V_1-V_2$ is harmonic in Ω^c , W=0 on $\partial\Omega$ and $\lim_{\|\mathbf{r}\|\to\infty}W=0$. So $\forall \varepsilon>0$, $\exists n\in\mathbb{N}$ large enough such that $\Omega\subseteq B(0,n)$ and $|W|\leq\varepsilon$ on $\mathbb{R}^3\setminus\overline{B(0,n)}$.

Thus, by the maximum principle, $|W| \leq \varepsilon$ on $\overline{B(0,n)} \cap \Omega^c$. Since the ε is arbitrary, we must have W = 0 on Ω^c , that is, $V_1 = V_2$.

*

Proof. Let N_{n_1,m_1} , N_{n_2,m_2} be the normalization factors of the spherical harmonics Y_{n_1,m_1} , Y_{n_2,m_2} respectively. Note that we can separate the variables in the integral of ??. So if $i \neq j$, the integral over θ becomes $\int_0^{2\pi} \cos(m_1\theta) \sin(m_2\theta) d\theta$ which is equal to 0 regardless of the values of m_1 and m_2 . So from now on assume that i = j. Due to the symmetry between the cosine and the sine we can suppose that i = c. Thus:

$$\int_{0}^{2\pi} \int_{0}^{\pi} Y_{n_{1},m_{1}}^{i}(\theta,\phi) Y_{n_{2},m_{2}}^{j}(\theta,\phi) d\Omega =
= N_{n_{1},m_{1}} N_{n_{2},m_{2}} \int_{0}^{\pi} P_{n_{1},m_{1}}(\cos\phi) P_{n_{2},m_{2}}(\cos\phi) \sin\phi d\phi \int_{0}^{2\pi} \cos(m_{1}\theta) \cos(m_{2}\theta) d\theta \quad (19)$$

An easy check shows that if $m_1 \neq m_2$ then the integral over θ is zero (and the same applies with sines). So suppose $m_1 = m_2 = m$. In that case, if $m \neq 0$ we have $\int_0^{2\pi} (\cos m\theta)^2 d\theta = \int_0^{2\pi} (\sin m\theta)^2 d\theta = \pi$ and if m = 0, the cosine integral evaluates to 2π whereas the sine integral is 0. We can omit this latter case because $Y_{n,0}^{s}$ is identically zero. Thus:

$$\frac{2\pi}{2 - \delta_{0,m}} N_{n_1,m} N_{n_2,m} \int_{0}^{\pi} P_{n_1,m}(\cos\phi) P_{n_2,m}(\cos\phi) \sin\phi d\phi = \frac{2\pi}{2 - \delta_{0,m}} N_{n_1,m} N_{n_2,m} \int_{-1}^{1} P_{n_1,m}(x) P_{n_2,m}(x) dx$$
(20)

By ?? this latter integral is $\frac{2}{2n_1+1}\frac{(n_1+m)!}{(n_1-m)!}\delta_{n_1,n_2}$. Finally, if $n_1=n_2=n$, putting all normalization factors together we get:

$$\frac{2\pi}{2 - \delta_{0,m}} N_n^m N_n^m \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} = 4\pi$$
 (21)

*

Proof. Let $f(r, \theta, \phi)$ be a solution of the Laplace equation:

$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial f}{\partial \phi} \right) + \frac{1}{r^2 (\sin \phi)^2} \frac{\partial^2 f}{\partial \theta^2}$$
 (22)

Using separation variables $f(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$ we can write:

$$\frac{\Theta\Phi}{r^2}(r^2R')' + \frac{R\Theta}{r^2\sin\phi}(\sin\phi\Phi')' + \frac{R\Phi}{r^2(\sin\phi)^2}\Theta'' = 0$$
(23)

Here, we are making and abuse of notation denoting all the derivatives with a prime, but the reader should have no confusion with it. Isolating R from Θ and Φ yields:

$$\frac{\left(r^2R'\right)'}{R} = -\frac{1}{\sin\phi\Phi}\left(\sin\phi\Phi'\right)' - \frac{1}{\left(\sin\phi\right)^2\Theta}\Theta''$$
(24)

Since the left-hand side depends entirely on r and the right-hand side does not, it follows that both sides must be constant. Therefore:

$$\frac{\left(r^2R'\right)'}{R} = \lambda \tag{25}$$

$$\frac{1}{\sin\phi\Phi}(\sin\phi\Phi')' + \frac{1}{(\sin\phi)^2\Theta}\Theta'' = -\lambda \tag{26}$$

with $\lambda \in \mathbb{R}$. Similarly, separating variables from ?? we obtain that the equations

$$\frac{1}{\Theta}\Theta'' = -m^2 \tag{27}$$

$$\frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + \lambda(\sin\phi)^2 = m^2 \tag{28}$$

must be constant with $m \in \mathbb{C}$ (a priori). The solution to the well-known ?? is a linear combination of the $\cos(m\theta)$ and $\sin(m\theta)$. Note, though, that since Θ must be a 2π -periodic function, that is satisfying $\Theta(\theta + 2\pi) = \Theta(\theta) \ \forall \theta \in \mathbb{R}$, m must be an integer. On the other hand making the change of variables $x = \cos \phi$ and $y = \Phi(\phi)$ in ?? and using the chain rule, that equation becomes:

$$(1 - x^2) \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\lambda - \frac{m^2}{1 - x^2}\right) y = 0$$
 (29)

which is the associate Legendre equation. We have argued in ?? that we need $\lambda = n(n+1)$ and $m \le n$ in order to obtain regular solutions at $x = \cos \phi = \pm 1$. Moreover, these solutions are $P_{n,m}(\cos \phi)$.

Finally, note that equation ?? is a Cauchy-Euler equation (check [Wik]) and so the general solution of it is given by

$$R(r) = c_1 r^n + c_2 r^{-n-1} (30)$$

because $\lambda = n(n+1)$ (the reader may check that r^n and r^{-n-1} are indeed two independent solutions of ??). So the general solution becomes a linear combination of each solution found varying $n \in \mathbb{N} \cup \{0\}$ and $m \in \{0, 1, \dots, n\}$:

$$f(r,\theta,\phi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} (a_n r^n + b_n r^{-n-1}) P_{n,m}(\cos\phi) (c_{n,m}\cos(m\theta) + s_{n,m}\sin(m\theta))$$
(31)