Sorting II - Advanced

Learning Objectives

- Understand the basic principles and algorithms behind merge sort and quicksort.
- Compare and contrast the time complexity of merge sort, quick sort, bucket sort, and cyclic sort, including best-case, worst-case, and average-case scenarios.
- Identify the strengths and weaknesses of each sorting algorithm in terms of stability,
 adaptability to different data distributions, and ease of implementation.
- Explore potential optimizations and variations of merge sort, quick sort, bucket sort, and cyclic sort, such as parallelization, hybrid algorithms, and memory management techniques.

Lecture Flow

- 1) Pre-requisites
- 2) Revision
- 3) Part I
 - Merge Sort
 - Bucket Sort
- 4) Part II
 - Quick Sort
 - Cyclic Sort
- 5) Practice Questions
- 6) Resources
- 7) Quote of the Day

Pre-requisites

- Sorting Basics
- Asymptotic Analysis
- Arrays
- Willingness to learn

Revision

Bubble Sort

Bubble Sort

Time complexity ? _______

Space complexity ? ______

Time complexity: O(n²)

Space complexity: O(1)

Bubble Sort

Selection Sort

Time complexity ? _______

Space complexity ? ______

Time complexity: O(n²)

Space complexity: O(1)

Insertion Sort

Worst case ?

Best case ?

Average case ?

Time complexity: O(n²)

Space complexity: O(1)

Worst case O(n²)

Best case O(n)

Average case O(n²)

Counting Sort

Time complexity

Worst case ?

Best case ?

Average case ?

Time complexity

The time complexity of counting sort algorithm is O(n+k) where n is the number of elements in the array and k is the range of the elements.

 Worst case
 O(n+k)

 Best case
 O(n+k)

 Average case
 O(n+k)

Note: Counting sort is most efficient if the range of input values is not greater than the number of values to be sorted.

Time to get efficient!

Part I

Merge Sort

Merge Sort

A sorting algorithm that works by **dividing** an array into smaller subarrays, sorting each subarray, and then merging the sorted subarrays back together to form the final sorted array.

visualization from: VisuAlgo

Merge Sort

- Divide the array into two halves,
- Sort each half, and then
- Merge the sorted halves back together.

Q: Can you guess the next set of moves in the following dance?

Divide and Conquer

Divide

Divide the array into two

Conquer

- Sort both halves with merge sort
- Base case?

Combine

Merge the two sorted halves

Practice

Can you implement the function merge?

Implement Here

Implementation

```
def merge(left_half, right_half):
  left index = 0
  right_index = 0
  sorted_subarray = []
  while left_index < len(left_half) and right_index < len(right_half):
    if left_half[left_index] <= right_half[right_index]:</pre>
       sorted_subarray.append(left_half[left_index])
       left index += 1
    else:
       sorted_subarray.append(right_half[right_index])
       right index += 1
  sorted_subarray.extend(left_half[left_index:])
  sorted_subarray.extend(right_half[right_index:])
  return sorted_subarray
```


Implementation

```
def mergeSort(left, right, arr):
    if left == right:
        return [arr[left]]
    mid = left + (right - left) // 2
    left_half = mergeSort(left, mid, arr)
    right_half = mergeSort(mid + 1, right, arr)

return merge(left_half, right_half)
```


Q: Is Merge Sort a Stable Sorting Algorithm?

Q: What do you think is the time complexity for the aforementioned sorting Algorithm?

Worst case _____

Best case _____

Average case _____

Time complexity: O(nlogn)

Space complexity: O(n)

Worst case

Best case

O(nlogn)

O(nlogn)

Average case

O(nlogn)

YES

In-place NO

Pair Programming Question 1

A sorting algorithm that works by distributing the elements of an array into a number of buckets, and then sorting each bucket individually. It is an efficient algorithm for sorting elements that are evenly distributed across a range of values.

Here's how it works:

- 1. Determine the range of values in the array to be sorted.
- 2. **Divide** the range into a set of buckets.
- 3. For each element in the array, determine which bucket it **belongs** to and **insert** it into that bucket.
- 4. **Sort** each bucket **individually** using another sorting algorithm (usually insertion sort).
- 5. **Concatenate** the sorted buckets to obtain the final sorted array.

Problem:

Sort a large set of floating point numbers which are in **range** from **0.0** to **1.0** and are **uniformly** distributed across the range. How do we sort the numbers efficiently?

Approach:

bucket_sort(arr[], n)

- 1) Create n empty buckets (Or lists).
- 2) Do the following for every array element arr[i].
 - a) Insert arr[i] into bucket [n*array[i]]
- 3) Sort individual buckets using insertion sort.
- 4) Concatenate all sorted buckets.

Visualization Link

Can you implement the function bucket_sort ?

Implement Here

Vanilla Implementation

```
def bucketsort(arr, n):
    buckets = [[] for in range (n + 1)]
    min= min(arr)
    ans = []
    range = max(arr) - min
    if range == 0:
        return arr
    for num in arr:
        buckets[int(n*(num - min) // range)].append(num)
    for elements in buckets:
        ans.extend(insertion sort(elements))
    return ans
```


Worst case ?

Best case ?

Average case ?

Time complexity: O(n²)

Space complexity: O(n + k)

Worst case O(n²)

Best case O(n)

Average case O(n + k)

Pair Programming Question 2

Practice Problems

Sort List

Masha and Beautiful Tree

Count of Smaller Numbers After Self

Number of Pairs Satisfying Inequality

Create Sorted Array through Instructions

Quote of the Day

"The first step in crafting a life you want is to get rid of everything you don't."

- Joshua Becker

