Final Exam - FEM

Problem sets

1. Consider the boundary value problem

$$-\Delta u + b \cdot \nabla u + cu = f \quad \text{in } \Omega \subset \mathbb{R}^2$$
$$u = 0 \quad \text{on } \partial \Omega,$$

where $b = (b_1, b_2)$ is a constant vector and $c = c(x) \ge c_0 > 0$ in Ω .

- (a) Derive a weak formulation for the problem and specify V, $a(\cdot, \cdot)$, and $F(\cdot)$.
- (b) Prove that there is a unique solution to the weak formulation using Lax-Milgram Theorem.
- 2. State and prove Ceá lemma for Abstract Galerkin Method.
- 3. Consider the Poisson problem

$$-\Delta u = f$$
 in $\Omega := [0, 1] \times [0, 1]$
 $u = 0$ on $\partial \Omega$,

where f and g are two given continuous functions. Let \mathcal{T}_h denotes the square/rectangular mesh of size $h = \frac{1}{N+1}$ over Ω , where N is a positive integer. If the above Poisson problem is solved by the bilinear finite element method,

- (a) Find the local stiffness matrix on the element on $[0, h] \times [0, h]$;
- (b) Find explicitly the global stiffness matrix A. (The mesh points are labeled by row.)

Choose one out of the following two problems

- 4. Prove that the 2-norm condition number of A (defined in Problem 3) satisfies $cond_2(A) = \mathcal{O}(h^{-2})$.
- 5. Let \mathcal{T}_h be a triangular mesh of a polygonal domain $\Omega \subset \mathbb{R}^2$. Prove that a picewise r-th order $(r \geq 1)$ polynomial function $v_h \in H^1(\Omega)$ if and only if $v_h \in C^0(\overline{\Omega})$.