Álgebra Superior II Tarea 02: Divisibilidad

Mora Espinosa Miroslava Rendón Ávila Jesús Mateo Rubio Pérez Ángel Damián Valencia Morales Indra Gabriel

April 4, 2025

Facultad de Ciencias Universidad Nacional Autónoma de México

Profesor: Dr. Gerardo Miguel Tecpa Galván

•1. Sean a un número par y b un número impar. Muestra que mcd(a, b) es impar.

Respuesta

Procedemos por contradicción. Supongamos que mcd(a, b) es par.

Por definición de mcd, entonces $mcd(a, b) \mid a \ y \ mcd(a, b) \mid b$.

Por ser mcd(a, b) par, entonces $mcd(a, b) \nmid b$!

De lo anterior debe ser mcd(a, b) es impar.

• 2. Un grupo de 23 viajeros llega a un campamento y encuentra 63 montones de sacos, cada montón con el mismo número de sacos, y un montón adicional con 7 sacos (en total hay 64 montones). Si sabemos que los viajeros no podían cargar con más de 50 sacos cada uno y pudieron repartírselos por igual y sin abrirlos, ¿cuántos sacos había en cada uno de los montones?

Respuesta

Como un viajero puede llevar a lo mas 50 sacos y hay x sacos en 63 montones y 7 sacos sueltos, podemos obtener lo siguiente:

$$23 \mid 63x + 7$$

$$i.e \ 63x \equiv -7 \ mod \ 23$$

Propongamos x = 5 tendriamos entonces:

$$23 \mid 63 \cdot 5 + 7$$
$$23 \mid 315 + 7$$
$$23 \mid 322$$

Por definición de divisibilidad $Existe * \in \mathbb{N}$ tal que $23 \cdot * = 322$.

Si * = 14, entonces
$$23 \cdot 14 = 322$$

Así, concluimos que habia 5 sacos por monton \blacksquare

• 3. Demuestra que si a y b son enteros no nulos, entonces mcd(a,b)|mcm(a,b).

Respuesta

Sean a y b enteros no nulos Sabemos que por definicion de mínimo comun múltiplo $a \mid mcm(a,b)$ y $b \mid mcm(a,b)$ De igual manera, sabemos que por definición de maximo común divisor $mcd(a,b) \mid a \ y \ mcd(a,b) \mid b$

Por transitividad de la divisibilidad.

Como $mcd(a, b) \mid a \ y \ a \mid mcm(a, b)$, entonces $mcd(a, b) \mid mcm(a, b)$ Como $mcd(a, b) \mid b \ y \ b \mid mcm(a, b)$, entonces $mcd(a, b) \mid mcm(a, b)$

 $\therefore mcd(a,b)|mcm(a,b)$.

• 4. Muestra que si p y q son dos primos distintos, entonces para todo $a, b \in \mathbb{Z}^+$ se cumple que $mcd(p^a, q^b) = 1$.

Respuesta

Sabemos que p y q son primos y ademas $p \neq q$

Sean entonces $a,b\in\mathbb{Z}^+$ tal que $mcd(p^a,q^b)\neq 1$ y $mcd(p^a,q^b)=r$

Por definición de mcd, entonces:

$$r \mid p^a \ y \ r \mid q^b$$

De $r \mid p^a$ podemos concluir que $r \mid p$

De $r \mid q^b$ podemos concluir que $r \mid q$

Pero sabemos que $p \neq q,$ por lo que debe ser $mcd(p^a,q^b) = 1$!

Por lo tanto debe ser $mcd(p^a, q^b) = 1$

• 5. Sean $a_1, \ldots, a_n \in \mathbb{Z}$ una colección de enteros Muestra que si para todo $i, j \in \{1, ..., k\}$ con $i \neq j$ se satisface que $mcd(a_i, a_j) = 1$, entonces $mcd(a_k, a_1 \cdot a_2 \cdots a_{k-1}) = 1$.

Respuesta

Procedemos por inducción.

Sea p primo, por ser primo $p \ge 2$ y supongamos que $p \mid mcd(a_k, a_1 \cdot a_2 \cdots a_{k-1})$. y sea a_l con $l \in \{1, \dots, k-1\}$

Por definición enotnces $mcd(a_k, a_1 \cdot a_2 \cdots a_{k-1}) \mid a_k \text{ y } mcd(a_k, a_1 \cdot a_2 \cdots a_{k-1}) \mid a_l$.

Así $p \mid a_k \ y \ p \mid a_l$. Por definición de mcd, entonces $p \leq mcd(a_k, a_l)$.

Por hipótesis sabemos que $mcd(a_k, a_l) = 1$!

Como no puede ser p > 1 y $p \le 1$, entonces debe ser $mcd(a_k, a_1 \cdot a_2 \cdots a_{k-1}) = 1$

• 6. Sean $a_1, \ldots, a_n, b \in \mathbb{Z}$ una colección de enteros tales que para todo $i, j \in \{1, \ldots, k\}$ con $i \neq j$ se satisface que $mcd(a_i, a_j) = 1$. Muestra por inducción que si para todo $i \in \{1, \ldots, k\}$ se cumple que $a_i | b$, entonces $a_1 \cdot a_2 \cdots a_k | b$.

Respuesta

Mostraremos mediante inducción matematica que si para todo $i \in \{1, ..., k\}$ se cumple que $a_i \mid b$, entonces $a_1 \cdot a_2 \cdot ... \cdot a_k \mid b$.

Base de inducción: Mostraremos para k=2 que si para todo $i \in \{1,2\}$ se cumple que $a_i \mid b$, entonces $a_1 \cdot a_2 \mid b$.

Sean $a_1, a_2, b \in \mathbb{Z}$ una colección de enteros tales que para todo $i, j \in \{1, 2\}$ con $i \neq j$ se satisface que $mcd(a_i, a_j) = 1$.

Como $i, j \in \{1, 2\}$, entonces se cumple que $a_i \mid b$ y $a_j \mid b$.

Tomemos i = 1 y como $i \neq j$ sea j = 2.

Como $a_1 \mid b, a_2 \mid b$ y por hipótesis $mcd(a_i, a_j) = mcd(a_1, a_2) = 1$, por lema:

 $\therefore a_1 \cdot a_2 \mid b$

∴ Se cumple el enunciado para la base inductiva. ■

Hipotesis de inducción: Supongamos para k=n que si para todo $i \in \{1, ..., n\}$ se cumple que $a_i \mid b$, entonces $a_1 \cdot a_2 \cdot ... \cdot a_n \mid b$

Paso de inducción: Mostraremos para k=n+1 que si para todo $i \in \{1, ..., n+1\}$ se cumple que $a_i \mid b$, entonces $a_1 \cdot a_2 \cdots a_n \cdot a_{n+1} \mid b$

Sean $a_1, \ldots, a_n, a_{n+1}, b \in \mathbb{Z}$ una colección de enteros tales que para todo $i, j \in \{1, \ldots, n, n+1\}$ con $i \neq j$ se satisface que $mcd(a_i, a_j) = 1$, por el ejercicio **5** tenemos que $mcd(a_{n+1}, a_1 \cdot a_2 \cdot \cdots \cdot a_n) = 1$

Veamos que $mcd(a_1 \cdot a_2 \cdot \cdots \cdot a_n, a_{n+1}) = mcd(a_{n+1}, a_1 \cdot a_2 \cdot \cdots \cdot a_n)$ por lema, entonces $mcd(a_1 \cdot a_2 \cdot \cdots \cdot a_n, a_{n+1}) = 1$

Además, como $i, j \in \{1, ..., n, n+1\}$, entonces $a_i \mid b$ y $a_j \mid b$.

Notemos que $i \in \{1,..,n\}$ y además se cumple que $a_i \mid b$, entonces por hipótesis de inducción $a_1 \cdot a_2 \cdots a_n \mid b$

Como $j \in \{1, ..., n, n+1\}$, $a_i \mid b \in i \neq j$, en particular $a_{n+1} \mid b$.

Como $mcd(a_1 \cdot a_2 \cdot \cdot \cdot a_n, a_{n+1}) = 1, a_1 \cdot a_2 \cdot \cdot \cdot a_n \mid b \ y \ a_{n+1} \mid b,$ por lema:

 $\therefore a_1 \cdot a_2 \cdot a_n \cdot a_{n+1} \mid b$

... Se cumple el enunciado para el Paso inductivo.

 \therefore Si para todo $i \in \{1, \dots, k\}$ se cumple que $a_i | b$, entonces $a_1 \cdot a_2 \cdots a_k | b$.

• 7. Sea p un número primo. Muestra que si $k \in \mathbb{Z}$ es tal que k < p, entonces $p \nmid k!$

Respuesta

Supongamos por contradicción que $p \mid k!$, es decir

$$p \mid \prod_{i=1}^{k} i$$

entonces, existe $m \in \{1,...,k\}$ tal que $p \mid m$ Pero, como k < p y m < k, entonces m < p, pero eso implica que $p \nmid m$ ya que no existe $w \in \mathbb{Z}$ tal que wp = m

- $\therefore p \nmid m$!
- $\therefore p \nmid k! \blacksquare$
- 8. Sean $c \neq 0$ y $k \geq 2$. Muestra mediante inducción matemática que si a_1, \ldots, a_k es una colección de enteros no nulos, entonces $mcm(ca_1, ca_2, \ldots, ca_k) = |c|mcm(a_1, a_2, \ldots, a_k)$.

Respuesta

Mostraremos mediante inducción matematica que si $a_1, ..., a_k$ es una colección de enteros no nulos, entonces $mcm(ca_1, ca_2, ..., ca_k) = |c| \cdot mcm(a_1, a_2, ..., a_k)$.

Caso base: Probaremos para k=2 y $c \neq 0$, que si a_1, a_2 es una colección de enteros no nulos, entonces $mcm(ca_1, ca_2) = |c| \cdot mcm(a_1, a_2)$

Sea a_1, a_2 una colección de enteros no nulos, entonces notemos que

$$mcm(ca_1, ca_2)$$
 $= \frac{|ca_1 \cdot ca_2|}{mcd(ca_1, ca_2)}$ Por teorema $= \frac{|c^2a_1 \cdot a_2|}{mcd(ca_1, ca_2)}$ Por aritmética $= \frac{|c^2||a_1 \cdot a_2|}{|c| \cdot mcd(a_1, a_2)}$ Por propiedad de valor absoluto $= \frac{|c| \cdot |c| \cdot |a_1 \cdot a_2|}{|c| \cdot mcd(a_1, a_2)}$ Por propiedad de valor absoluto $= |c| \cdot \frac{|a_1 \cdot a_2|}{mcd(a_1, a_2)}$ Por hipótesis $c \neq 0$ y por prop de mcd $= |c| \cdot mcm(a_1, a_2)$

 $\therefore mcm(ca_1, ca_2) = |c| \cdot mcm(a_1, a_2)$, el caso base se cumple.

Hipótesis inductiva: Supondremos para k=n y $c \neq 0$, que si $a_1, ..., a_n$ es una colección de enteros no nulos, entonces $mcm(ca_1, ..., ca_n) = |c| \cdot mcm(a_1, ..., a_n)$

Paso inductivo: Mostraremos para k = n + 1 y $c \neq 0$, que si $a_1, ..., a_n, a_{n+1}$ es una colección de enteros no nulos, entonces $mcm(ca_1, ..., ca_n, a_{n+1}) = |c| \cdot mcm(a_1, ..., a_n, a_{n+1})$

Sea $a_1, ..., a_n, a_{n+1}$ una colección de enteros no nulos, en particular,

 $a_1, ..., a_n$ es una colección de enteros no nulos, entonces $mcm(ca_1, ..., ca_n) = |c| \cdot mcm(a_1, ..., a_n)$ por hipótesis de inducción.

Así
$$mcm(ca_1, ..., ca_n, ca_{n+1}) = mcm(mcm(ca_1, ..., ca_n), ca_{n+1})$$
 Por teorema
$$= mcm(|c| \cdot mcm(a_1, ..., a_n), ca_{n+1}) \quad \text{Por hip. inductiva}$$

$$= \frac{|(|c| \cdot mcm(a_1, ..., a_n)) \cdot ca_{n+1}|}{mcd(|c| \cdot mcm(a_1, ..., a_n), ca_{n+1}|} \quad \text{Por teorema}$$

$$= \frac{|c \cdot mcm(a_1, ..., a_n) \cdot ca_{n+1}|}{mcd(|c| \cdot mcm(a_1, ..., a_n), ca_{n+1}|} \quad \text{Simplificando}$$

Observación

Notemos que para $mcd(|c| \cdot mcm(a_1, ..., a_n), ca_{n+1})$:

• Si c < 0 entonces $mcd(|c|mcm(a_1, ..., a_n), ca_{n+1}) = mcd((-c) \cdot mcm(a_1, ..., a_n), ca_{n+1})$, pero por propiedad de máximo común divisor, $mcd((-c) \cdot mcm(a_1, ..., a_n), ca_{n+1}) = mcd(c \cdot mcm(a_1, ..., a_n), ca_{n+1})$

Por hipotesis como $c \neq 0$, entonces $mcd(c \cdot mcm(a_1, ..., a_n), ca_{n+1}) = |c| \cdot mcd(mcm(a_1, ..., a_n), a_{n+1})$ por lema.

• Si c > 0 entonces $mcd(|c|mcm(a_1, ..., a_n), ca_{n+1}) = mcd(c \cdot mcm(a_1, ..., a_n), ca_{n+1})$

Por hipotesis como $c \neq 0$, entonces $mcd(c \cdot mcm(a_1, ..., a_n), ca_{n+1}) = |c| \cdot mcd(mcm(a_1, ..., a_n), a_{n+1})$ por lema.

Con lo anterior, entonces

$$mcm(ca_1,...,ca_n,ca_{n+1}) = \frac{|c^2 \cdot mcm(a_1,...,a_n) \cdot a_{n+1}|}{|c| \cdot mcd(mcm(a_1,...,a_n) \cdot a_{n+1}|}$$

$$= \frac{|c||c| \cdot |mcm(a_1,...,a_n) \cdot a_{n+1}|}{|c| \cdot mcd(mcm(a_1,...,a_n),a_{n+1})} \qquad \text{Por propiedad de valor absoluto}$$

$$= \frac{|(|c| \cdot mcm(a_1,...,a_n) \cdot ca_{n+1}|}{mcd(|c| \cdot mcm(a_1,...,a_n),ca_{n+1}|} \qquad \text{Por teorema}$$

$$= |c| \cdot \frac{|mcm(a_1,...,a_n) \cdot a_{n+1}|}{|mcd(mcm(a_1,...,a_n),a_{n+1})|} \qquad \text{Por hipótesis}, c \neq 0 \text{ y por prop de mcd}$$

$$= |c| \cdot mcm(mcm(a_1,...,a_n),a_{n+1}) \qquad \text{Por teorema}$$

$$= |c| \cdot mcm(mcm(a_1,...,a_n),a_{n+1}) \qquad \text{Por propiedad de mínimo común múltiplo}$$

$$\therefore mcm(ca_1,...,ca_n,a_{n+1}) = |c| \cdot mcm(a_1,...,a_n,a_{n+1}), \text{ por lo anterior, se cumple el paso inductivo.}$$

 \therefore Es cierto que si a_1,\ldots,a_k es una colección de enteros no nulos, entonces $mcm(ca_1,ca_2,\ldots,ca_k)=|c|mcm(a_1,a_2,\ldots,a_k)$ para $c\neq 0$ y $k\geq 2$.

• 9. Sean $a,b\in\mathbb{Z}$ no ambos nulos y $c\neq 0$. Muestra que mcd(ca,cb)=|c| si y sólo si mcd(a,b)=1.

Respuesta

$$\Rightarrow$$
 | Si $mcd(ca, cb) = |c|$, entonces $mcd(a.b) = 1$

Como mcd(ca, cb) = |c|, por propiedad sabemos que $mcd(ca, cb) = |c| \cdot mcd(a, b)$

Por transitividad,

 $|c| = |c| \cdot mcd(a, b)$ y además como $c \neq 0$, entonces

 $1 = 1 \cdot mcd(a, b)$

Asi, mcd(a, b) = 1

 \therefore Si mcd(ca, cb) = |c|, entonces mcd(a.b) = 1

 \Leftarrow Si mcd(a.b) = 1, $entonces\ mcd(ca, cb) = |c|$

Sabemos que mcd(a.b) = 1, como $c \neq 0$, entonces

 $|c| = |c| \cdot mcd(a, b)$

Por propiedad,

 $|c| \cdot mcd(a,b) = mcd(ca,cb)$

Asi, por transitividad,

|c| = mcd(ca, cb)

 \therefore Si mcd(a.b) = 1, entonces $mcd(ca, cb) = |c| \blacksquare$

Por definición de doble contención.

Sean $a, b \in \mathbb{Z}$ no ambos nulos y $c \neq 0$, entonces mcd(ca, cb) = |c| si y sólo si mcd(a, b) = 1

• 10. Muestra que si p es un número primo y $k \in \{1, \dots, p-1\}$, entonces $p|\binom{p}{k}$.

Respuesta

Sea p un número primo y $k \in \{1, \dots, p-1\}$, notemos que por propiedad de divisibilidad $p \mid p$. De lo anterior podemos afirmar que:

$$p \mid p \cdot \frac{(p-1)!}{(k-1)!((p-1)-(k-1))!}$$

Ahora hacemos notar que p>k y además son naturales, podemos afirmar que:

$$k\binom{p}{k} = p\binom{p-1}{k-1}$$

Luego, podemos decir de igual forma que:

$$p \mid k \cdot \begin{pmatrix} p \\ k \end{pmatrix}$$

Notemos entonces que $p \mid k$ debido a que, como habíamos establecido por nuestra hipótesis p > k, por lo que este término no lo tomaremos en cuenta ya que es imposible que p sea su divisor. Dicho esto concluimos que:

$$p \mid \binom{p}{k}_{\blacksquare}$$

• 11. Sean $a, b, t \in \mathbb{Z}$ con $t \neq 0$. Muestra que si mcd(k, t) = 1 y $at \equiv bt \mod k$, entonces $a \equiv b \mod k$.

Respuesta

Como $at \equiv bt \mod k$, entonces por definición de congruencia $k \mid at-bt$, entonces $k \mid t(a-b)$

Como mcd(k,t)=1 y $k\mid t(a-b)$, entonces por propiedad (*Lema 2.2.8*), $k\mid a-b$, por definición de congruencia, entonces $a\equiv b \mod k$

• 12. Muestra que si $a \equiv b \mod k$, entonces mcd(a, k) = mcd(b, k).

Respuesta

Hipotésis. $a \equiv b \mod k$, entonces $k \mid a - b$

Tenemos que $k \mid a \ge k \mid b$.

 $mcd(a, k) \mid a \text{ y } mcd(a, k) \mid k$

 $mcd(b, k) \mid b \text{ y } mcd(b, k) \mid k$

Como $mcd(a, k) \mid k$ y $k \mid b$, entonces $mcd(a, k) \mid b$

Como $mcd(b, k) \mid k \ y \ k \mid a$, entonces $mcd(b, k) \mid a$

De lo anterior sabemos que $mcd(b,k) \mid a$ y $mcd(b,k) \mid b$, tambien $mcd(a,k) \mid a$ y $mcd(a,k) \mid b$

 $\therefore mcd(a,k) = mcd(b,k) \blacksquare$

• 13. Sea k = mcd(m, n). Muestra que si $a \equiv b \mod m$ y $c \equiv d \mod n$, entonces $a + c \equiv b + d \mod k$.

Respuesta

Hipotésis 1: $a \equiv b \mod m$, entonces $m \mid a - b$

Hipotésis 2: $c \equiv d \mod n$, entonces $n \mid c - d$

Como k = mcd(m, n), entonces $k \mid m \neq k \mid n$

Como $k \mid m \neq m \mid a - b$, entonces:

$$k \mid a - b$$

Como $k \mid n \text{ y } n \mid c - d$, entonces:

$$k \mid c - d$$

Así:

$$k \mid (a-b) + (c-d)$$

$$= k \mid (a+c) - b - d$$

$$= k \mid (a+c) - (c+d)$$

$$a+c \equiv b+d \mod k$$

• 14. Sean $a, b \neq k$ enteros tales que $a \equiv b \mod k$. Muestra que si $0 \le a < k \neq 0 \le b < k$, entonces a = b.

Respuesta

Sean a, b, k enteros tal que $a \equiv b \mod k$, por definición de congruencia $k \mid a - b$, por definición de divisibilidad existe $n \in \mathbb{Z}$ tal que $k \cdot n = a - b$

Como $0 \le a < k$ y $0 \le b < k$, entonces restando ambas desigualdades 0 - k < a - b < k, entonces -k < a - b < k

Dado que $a-b=k\cdot n$ y $k\cdot n\in\mathbb{Z}$, es decir, un múltiplo de k, pero sabemos que -k< a-b< k, por lo que n=0, entonces $a-b=k\cdot 0=0$ a-b=0, despejando a=b

• 15. Considera la ecuación diofantina 56x + 378y = k. Calcula todos los valores de k entre 100 y 200 para los cuales dicha ecuación tiene solución entera. Calcula la solución para el caso en que k = 154.

Respuesta

Para calcular los valores solicitados tenemos que sacar en primer lugar el mcd(56, 378) notemos entonces por algortimo de Euclides:

 $378 = 56 \cdot 6 + 42$ $56 = 42 \cdot 1 + 14$

 $42 = 14 \cdot 3 + 0$

Así, tomando el ultimo residuo distinto de 0, el mcd(56, 378) = 14

Ahora para saber si 14 | k expresemos la combinación líneal de 14 respeto de 56 y 378 Por lo anterior, supongamos que exiten $s, t \in \mathbb{Z}$ tales que 56t + 378s = 14

Tambien, debemos calcular un $r \in \mathbb{Z}$ tal que $14 \cdot r = k$

Notemos que por hipotesis, k puede tomar valores entre 100 y 200, si sacamos los multiplos de 14 entre ese rango tenemos el caso particular de $14 \cdot 11 = 154$, asi r = 11 y k = 154

$$mcd(56, 378) = 14$$

Notemos entonces que para encontrar las soluciones enteras de la ecuación diofantina se debe cumplir que $mcd(56, 378) \mid K$ que entonces está en un rango 100 < k < 200, notemos entonces que por definición todos los números enteros que sean múltiplos de 14 tendrán solución entera, obviamente en el rango impuesto:

Ahora notemos que el único múltiplo de 14 que es mayor a 100 es:

 $14 \times 8 = 112$ de aquí lo único que resta para conseguir las soluciones es sumar a 112 de 14 en 14.

$$14 \times 9 = 126$$
 $14 \times 10 = 140$
 $14 \times 11 = 154$
 $14 \times 12 = 168$
 $14 \times 13 = 182$
 $14 \times 14 = 196$

Estos serán los únicos números para los cuales la ecuación diofantina tendrá soluciones enteras. Para el caso específico de k=154, como ya sabemos que es divisor entre el mcd, entonces ahora sacamos la ecuación lineal tal que:

$$56s + 378t = 14$$

esta será:

$$56 \times 7 + 378 \times (-1) = 14$$

Notemos que $14 \times 11 = 154$ por tanto para finalizar nuestra ecuación:

$$(11 \times 7, 11 \times -1) = (77, -11)$$

Comprobando:

$$56 \times 77 + 378 \times (-11) = 154$$

Ejercicios extra

• Extra 1. Demuestra que todo número natural $n = p_1^{a_1} \cdots p_k^{a_k}$ no puede tener más de un factor primo p_i mayor a \sqrt{n} .

Como tenemos que demostrar una existencia única, procederemos por contradicción. Supongamos que existen dos factores primos $p_i > \sqrt{n}$ y $p_j > \sqrt{n}$ distintos.

Dado que p_i y p_j son dos factores primos distintos, tenemos:

$$p_i \cdot p_j > \sqrt{n} \cdot \sqrt{n} = n$$

De lo anterior, y considerando que por hipótesis tanto p_i como p_j son menores que n (pues son factores primos de n), llegamos a una contradicción. Por definición de divisibilidad:

$$n \mid p_i \cdot p_j$$

lo que implica por propiedades que:

$$n \ge p_i \cdot p_j > n$$

Esto demuestra la contradicción n > n. De esto último concluimos que en la factorización:

$$n = p_1^{a_1} \cdots p_k^{a_k}$$

no puede haber más de un factor primo p_i mayor que \sqrt{n} .

• Extra 2. Sean $a_1, ..., a_n$ una colección de enteros no nulos. Muestra que si $mcd(a_1, ..., a_n) = 1$, entonces se satisface que $mcm(a_1, ..., a_n) =$

$$\prod_{i=1}^{n} a_i$$

Respuesta

Sean $a_1, ..., a_n$ una colección de enteros no nulos tales que $mcd(a_1, ..., a_n) = 1$.

Por teorema, $mcm(a_1,...,a_n)=\frac{|a_1\cdots a_n|}{mcd(a_1,...,a_n)}$, pero esto es lo mismo que: $mcm(a_1,...,a_n)=|a_1\cdots a_n|$ ya que, $mcd(a_1,...,a_n)=1$.

Entonces, como $mcm(a_1, ..., a_n) \ge 1$ por definición de mínimo común múltiplo, y $mcm(a_1, ..., a_n) = |a_1 \cdots a_n|$ entonces, por definición de valor absoluto:

$$mcm(a_1, ..., a_n) = a_1 \cdot \cdot \cdot a_n$$

$$\therefore mcm(a_1,...,a_n) =$$

$$\prod_{i=1}^{n} a_i$$

 \therefore Se cumple que si $mcd(a_1,...,a_n)=1$, entonces se satisface que $mcm(a_1,...,a_n)=1$

$$\prod_{i=1}^{n} a_i \blacksquare$$