JLX384160G-973-BN 使用说明书

序号	内 容 标 题	页码
1	概述	2
2	特点	2
3	外形及接口引脚功能	3-4
4	电路框图	5
5	背光参数	5
6	技术参数	6
7	时序特性	7-10
8	指令表及硬件接口、编程案例	11-末页

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX384160G-973-BN 型液晶模块由 于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX384160G-973-BN

JLX384160G-973-BN 可以显示 384 列*160 行点阵单色或 4 灰度级的图片,或显示 12 个/行*5 行 32*32 点阵或显示 16 个/行*6 行 24*24 点阵的汉字,或显示 24 个/行*10 行 16*16 点阵的汉字, 或显示 8*16 点阵的英文、数字、字符 48 个*10 行,或显示 5*8 点阵的英文、数字、字符 64 个*20 行。

2. JLX384160G-973-BN 图像型点阵液晶模块的特性

- 2.1 结构牢。
- 2.2 IC 采用矽创公司 ST7586S, 功能强大, 稳定性好
- 2.3 功耗低。
- 2.4接口简单方便:可采用4线SPI串行接口,或选择并行接口。
- 2.5 工作温度宽:-20℃ 70℃;
- 2.6 储存温度宽:-30℃ 80℃;
- 2.7 显示内容:
 - ●可 384*160 点阵单色或 4 灰度级图片:
 - ●可显示 12 个×5 行 32*32 点阵的汉字:
 - ●可显示 16 个×6 行 24*24 点阵的汉字;
 - ●可显示 24 个×10 行 16*16 点阵的汉字;
 - ●可显示 32 个×13 行 12*12 点阵的汉字:
 - ●可显示 48 个*10 行 8*16 点阵的英文、数字、字符;
 - ●可显示 64 个*20 行 5*8 点阵的英文、数字、字符:
 - ●可显示其他的 ASCII 码等:

3. 外形尺寸及接口引脚功能:

图 1. 液晶模块外形尺寸

模块的接口可选择并行或串口接口:

引线号	符号	名 称			J	功 能					
1	ESD	空脚	空脚								
2	VG	升压电容	vg—								
3	XV0	升压电容	XV0-]							
4	V0	升压电容	V0 —	$^{L_{C}}$							
5	VM	升压电容	VM——	-vss							
6	VDD	电路电源	3. 3V								
7	VSS	接地	OV								
8	VD1	电路电源	3.3V								
9	CSB	片选	低电平片	先							
10	IF3	IF3	IF3	IF2	IF1	MPU interface type					
11	IF2	IF2	Н	Н	L	80 series 8-bit parallel					
12	IF1	IF1	Н	L	L	68 series 8-bit parallel					
			L	Н	Н	8-bit serial (4-Line)					
			L	Н	L	9-bit serial (3-Line)					
13	RST	复位	低电平复位	位,复位第	 完成后,						
14	E (RD)	使能信号	6800 时序	时: E:使	能信号						
		(读)	8080 时序	时:读信	号						
15	D7	10	数据总线								
16	D6	10	数据总线								
17	D5	10	数据总线								
18	D4	10	数据总线								
19	D3	10	数据总线								
20	D2	10	数据总线								
21	D1	10	数据总线	(串口时)	为 RS)						
22	D0	10	数据总线	(串口时)	为 SDA)						
23	R/W (WR)	读/写	6800 时序	时: RW:	H:读信号	L:写信号					
		(写)	8080 时序时: 写信号								
24	AO (RS)	寄存器选择信号	H:数据寄	存器 0: 指	令寄存器	片(串口时为 SCK)					
25	ESD	空脚	空脚								

4. 基本原理

4.1 液晶屏(LCD)

在 LCD 上排列着 384×160 点阵, 384 个列信号与驱动 IC 相连, 160 个行信号也与驱动 IC 相连, IC 邦定在 LCD 玻璃上(这种加工工艺叫 COG).

JLX384160G-973-BN

4.2 电路框图

电路框图

图 2: JLX384160G-973-BN 图像点阵型液晶模块的电路框图

4.3 背光参数

该型号液晶模块带 LED 背光源。它的性能参数如下:

工作温度:-20° C∽+70° C;

背光颜色: 白色。

正常工作电流为: (8∽15)×6=48~120mA (LED 灯数共 6 颗);

工作电压: 3.0 V:

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

<u> </u>	~ MIN2 MIN2	77 7 7 7 7 7 7 7 7 7								
名称	符号		标准值							
		最小	典型	最大						
电路电源	VDD	-0.3	3. 3	3.6	V					
电路电源	VD1	-0.3	3. 3	3.6	V					
LCD 驱动电压	V0-XV0	-0.3	15.6	19	V					
LCD 驱动电压	VG	-0.3		5. 5	V					
LCD 驱动电压	VM	-0.3		VDD+0.3	V					
工作温度		-20		+70	$^{\circ}$					
储存温度		-30		+80	$^{\circ}$					

表 2: 最大极限参数

5.2 直流 (DC) 参数

名 称	符号	测试条件		标准值		单位
			MIN	TYPE	MAX	
工作电压	VDD		2. 7	3. 3	3. 4	V
输入高电平	V _{IHC}	_	0.7xVDD	_	VDD	V
输入低电平	VILC	_	VSS	_	0.3xVDD	V
输出高电平	Vohc	IOH = 0.2 mA	0.8xVDD	_	VDD	V
输出低电平	Vohc	100 = 1.2 mA	VSS	_	0.2xVDD	V
背光工作电压	VLED		2.8	3. 0	3. 1	V
模块工作电流	$\mathbf{I}_{ ext{DD}}$	VDD = 3.3V	-		0.3	mA
背光工作电流	ILED	V LED=3. 0V	56	105	140	mA

表 3: 直流 (DC) 参数

6. 读写时序特性

6.1 串行接口:

从 CPU 写到 ST7586S(Writing Data from CPU to ST7586S)

System Bus Timing for 4-Line SPI MCU Interface

图 4. 从 CPU 写到 ST7586S(Writing Data from CPU to ST7586S)

6.2 串行接口: 时序要求(AC参数):

写数据到 ST7586S 的时序要求:

项 目	符号	测试条件		极限值		单位
			MIN	TYPE	MAX	
4线 SPI串口时钟周期	Tscyc		100			
(4-line SPI Clock Period)						
保持SCK高电平脉宽	Tshw	引脚: SCK	45			
(SCK "H" pulse width)						
保持SCK低电平脉宽	Tslw		45			
(SCK "L" pulse width)						
地址建立时间	Tsas		20			
(Address setup time)		 引脚: RS				
地址保持时间	Tsah	7 Jap: NO	10			ns
(Address hold time)						
数据建立时间	Tsds		20			
(Data setup time)		引脚: SDA				
数据保持时间	TsdH		20			
(Data hold time)						
片选信号建立时间	Tcss		20			
(CS-SCL time)		引脚: CS				
片选信号保持时间	Tcsh		40			
(CS-SCL time)						

VDD =3.3V, Ta = 25 ℃

6.3 并行接口:

从 CPU 写到 ST7586S(Writing Data from CPU to ST7586S) System Bus Timing for 8080 MCU Interface

图 5. 从 CPU 写到 ST7586S(Writing Data from CPU to ST7586S)

System Bus Timing for 6800 MCU Interface

图 6. 从 CPU 写到 ST7586S(Writing Data from CPU to ST7586S)

6.4 并行接口: 时序要求(AC 参数):

写数据到 ST7586S 的时序要求: (8080 系列 MPU)

项 目	符号	测试条件		极限值		单位
			MIN	TYPE	MAX	
地址建立时间	A0	tAW8	0	_	_	
地址保持时间	AU	tAH8	0	_	_	
系统循环时间		tCYC8	240	_	_	
使能"低"脉冲(写)	WR	tCCLW	100	_	_	
使能"高"脉冲(写		tCCHW	100	_	_	
系统循环时间		tCYC8	500			ns
使能"低"脉冲(读)	RD	tCCLR	220	_	—	
使能"高"脉冲(读)		tCCHR	220	_		
写数据建立时间		tDS8	20		_	
写数据保持时间	D0-D7	tDH8	20		_	
读时间	ז ע־טע	tACC8			100	
读输出来允许时间		tOH8	10		110	

表 5

写数据到 ST7586S 的时序要求: (6800 系列 MPU)

项 目	符号	测试条件		极限值								
			MIN	TYPE	MAX							
地址保持时间	A0	tAH6	0									
地址建立时间	AU	tAW6	0									
系统循环时间 (写)		tCYC6	240									
使能"低"脉冲(写)	WR	tEWLW	100									
使能"高"脉冲(写)		tEWHW	100									
系统循环时间 (读)		tCYC6	500			ns						
使能"低"脉冲(读)	RD	tEWLR	220									
使能"高"脉冲(读)		tEWHR	220									
写数据建立时间		tDS6	20									
写数据保持时间	D0-D7	tDH6	20									
读时间	ו ע־טע	tACC6			110							
读输出来允许时间		tOH6	10		110							

表 6

6.5 电源启动后复位的时序要求(RESET CONDITION AFTER POWER UP):

Reset Timing

图 7: 电源启动后复位的时序

项 目	符号	测试条件			单位	
			MIN	TYPE	MAX	
复位时间	tr		120	_	1.0	ms
复位保持低电平的时间	trw	引脚: RESET	10	_		us

表 7: 电源启动后复位的时序要求

7. 指令功能:

7.1 指令表 指 令 表

表 8.

指令名称					指 〈	令 码]				说明
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
(1) 空指令 (NOP)	0	0	0	0	0	0	0	0	0	0	空操作
(2)软件复位(Reset)	0	0	0	0	0	0	0	0	0	1	0X01 :软件复位。
(3) 省电/睡眠模式	0	0	0	0	0	1	0	0	0	0	省电/睡眠模式
(Power Save)										1	0x10: 进入省电模式
											0x11: 退出省电模式
(4) 局部模式	0	0	0	0	0	1	0	1	0	0	局部模式开/关
(Partial Mode)										1	0x12:开,0x13:关
(5) 显示正显/反显	0	0	0	0	1	0	0	0	0	0	显示正显/反显:
(Display normal/reverse)										1	0x20: 常规: 正显
											0x21 : 反显
(6)全部点阵开/关	0	0	0	0	1	0	0	0	1	0	全部点阵开/关
(All Pixel ON/OFF)										1	0x22: 全部点阵关
											0x23: 全部点阵开
(7)显示开/关	0	0	0	0	1	0	1	0	0	0	显示开/关:
(Display ON/OFF)										1	0x28: 关, 0x29: 开
	0	0	0	0	1	0	1	0	1	0	列地址设置:
	1	0	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8	- │ 起始列地址范围: 0x00~0x9f
(8)列地址设置	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	- 结束列地址范围: 0x00∼0x9f
(Set Column Address)	1	0	XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8	_
	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	
	0	0	0	0	1	0	1	0	1	1	页地址设置:
(a) == 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1	0	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8	起始页地址范围: 0x00~0x9f
(9) 页地址设置	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	结束页地址范围: 0x00~0x9f
(Set Row Address)	1	0	XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8	
	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	_
(10)写数据到晶液屏	0	0	0	0	1	0	1	1	0	0	0X2C: 写数据
(Write Display Data)	1	0	D7	D6	D5	D4	D3	D2	D1	DO	- 8 位显示 数据
(11) 读液晶屏显示数据	0	0	0	0	1	0	1	1	1	0	OX2E: 读数据
(Read Display Data)	1	1	D7	D6	D5	D4	D3	D2	D1	DO	8 位显示数据
,	0	0	0	0	1	1	0	0	0	0	0X30: 指定显示区域
	1	0	PTS15	PTS14	PTS13	PTS12	PTS11	PTS10	PTS9	PTS8	起始区域地址: 00h≤PTS≤9Fh
(12) 指定区域显示数据	1	0	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	结束区域地址: 00h≤PTE≤9Fh
(Partial Display Area)	1	0	PTE15	PTE14	PTE13	PTE12	PTE11	PTE10	PTE9	PTE8	显示区域: 64h≤Duty≤160h
	1	0	PTE7	PTE6	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	
	0	0	0	0	1	1	0	0	1	1	OX33: 滚动区域设置
	1	0	TA7	TA6	TA5	TA4	TA3	TA2	TA1	TAO	起始区域地址: TA=00h~A0h
(13) 指定显示滚动区域	1	0	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SAO	滚动区域: SA=00h~A0h
(Scroll Area)	1	0	BA7	BA6	BA5	BA4	BA3	BA2	BA1	BAO	结束区域地址: BA=00h~A0h
			2,11	2110	2110	2111	2110	2112	2111	2110	TA+SA+BA=160
(14) 控制液晶屏显示	0	0	0	0	1	1	0	1	1	0	0X36: 显示控制

更新日期: 2022-01-18 0 MY=0: COM0→COM159

(Display Control)	1	0	MY	MX1	0	0	MX0	0	0	0	MY=0: COM0→COM159
(Display Contion)	1	J	l ""	WIXT			1417.0				MY=1: COM159→COOM0
											MX[1:0]=(0,0):
											SEG0→SEG383
											MX[1:0]=(1,1):
											SEG383→SEG0
(15) 显示初始行	0	0	0	0	1	1	0	1	1	1	0X37:滚动开始初始行设置
(Start Line)	1	0	S7	S6	S5	S4	S3	S2	S1	S0	S=00h~9Fh
(16) 显示模式	0	0	0	0	1	1	1	0	0	0	0XF0: 显示模式设置
(Display Mode)			U	0	1	1	1		O	1	0X39: 黑白模式
(Biopidy Modo)										1	0X38: 4 灰级度模式
	0	0	0	0	1	1	1	0	1	0	0x3a:使能数据显示模式
(Enable DDRAM	1	0	0	0	0	0	0	0	1	0	0x02:黑白和 4 灰级模式
Interface)										1	0x03:16 灰级模式
(18) 显示点空比	0	0	1	0	1	1	0	0	0	0	0xb0:点空比范围: DT=03~9f
(Display Duty)	1	0	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DTO	· · · · · · · · · · · · · · · · · · ·
(19) 设置第一行输出	0	0	1	0	1	1	0	0	0	1	0xb1: 第一行输出设置范围:
(First Output COM)	1	0	FC7	FC6	FC5	FC4	FC3	FC2	FC1	FC0	FC=00~9f
(20) FOSC分频	0	0	1	0	1	1	0	0	1	1	Oxb3:设置 FOSC 分频
(FOSC Divider)	1	0	0	0	0	0	0	0	1	1	0000. 炎重1000 分频
(21)指定区域显示	0	0	1	0	1	1	0	1	0	0	
(Partial Display)	1	0	1	0	1	0	0	0	0	0	000年,自是区域亚州
(22) N 行反显	0	0	1	0	1	1	0	1	0	1	Oxb5:N 行反显
(N-Line Inversion)	1	0	M	0	0	NL4	NL3	NL2	NL1	NL0	OVDO:IA 11 /X NF
(23) 读-改-写	0	0	1	0	1	1	1	0	0	0	读改写控制:
(Read Modify Write)			1	0	1	1	1		0	1	0XB8 : 启用读改写
(Read Wodiny Write)										1	0XB9 : 禁用读改写
	0	0	1	1	0	0	0	0	0	0	0xb0: 对比度设置
(24)液晶内部电压设置	1	0	Vop7	Vop6	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	微调对比度范围: 0x00~0xff
(Set Vop)	1	0	_	_	_	_	_	-	_	Vop8	粗调对比度范围: 0x01
(25) 对比度VOP增加	0	0	1	1	0	0	0	0	0	1	Oxc1:Vop 增加一级
(Vop Increase)			1	1	U	U			0	1	ONCI. YOU PEAR SX
(26) 对比度VOP降低	0	0	1	1	0	0	0	0	1	0	Oxc2:Vop 降低一级
(Vop Decrease)			_				Ů		1		ONOB. TOP THINK SA
(27) LCD 偏压比设置	0	0	1	1	0	0	0	0	1	1	
(BIAS System)	1	0	_	_	_	_	_	BS2	BS1	BS0	PU / Put
, /											
(28) 升压倍数	0	0	1	1	0	0	0	1	0	0	0xc4: 内建升压倍数设置
(Booster Level)	1	0	_	_	_	_	_	BST2	BST1	BST0	
(29) 模拟电路	0	0	1	1	0	1	0	0	0	0	0xd0:模拟电路
(Analog Control)	1	0	0	0	0	1	1	1	0	1	0x1d:使能模拟电路
	0	0	1	1	0	1	0	1	1	1	0xd7: 自动读取控制设置
(30)自动读取控制				1	 	1		+	1.	_	
(30) 自动读取控制 (Auto Read Control)	1	0	1	0	0	0	1	1	1	1	0x8f:启用自动读取控制
		0	1	0	0	0	1	1	1	1	0x8f: 启用自动读取控制 0x9f: 禁用动读取控制

┛┗Ӂ崩联讯电	拟自	自快习	• •	JLAS	8410	50G-9/3-BN 史				已新日期: 2022-01-18	
(OTP WR/RD Control)	1	0	0	0	WR RD	0	0	0	0	0	WR/RD=0; 0x00, 使能 OTP 读 ER/RD=1; 0x20, 使能 OTP 写
(32) 控制OTP输出 (OTP Control Out)	0	0	1	1	1	0	0	0	0	1	Oxe1: OTP 输出
(33) 写OTP (OTP Write)	0	0	1	1	1	0	0	0	1	0	0xe2: 写 OTP 程序
(34) 读OTP (OTP Read)	0	0	1	1	1	0	0	0	1	1	Oxe3: 读 OTP 程序
(35) OTP控制	0	0	1	1	1	0	0	1	0	0	Oxe4: OTP 控制设置
(OTP Selection Control)	1	0	0	Ctrl	0	1	1	0	0	1	0x19:禁用 OTP 0x59:启用 OTP
(36) OTP 编程设置	0	0	1	1	1	0	0	1	0	1	Oxe5: OTP 编程设置
(OTP Programming Setting)	1	0	0	0	0	0	1	1	1	1	0x0f:启用 OTP 编程
(37) 灰度帧速率	0	0	1	1	1	1	0	0	0	0	0xf0: 灰度帧速率设置
Frame Rate	1	0	-	-	-	FRA4	FRA3	FRA2	FRA1	FRA0	
(Gray Scale Mode)	1	0	-	-	_	FRB4	FRB3	FRB2	FRB1	FRB0	
	1	0	-	-	_	FRC4	FRC3	FRC2	FRC1	FRC0	
	1	0	-	-	_	FRD4	FRD3	FRD2	FRD1	FRD0	
(38)单色/黑白帧速率	0	0	1	1	1	1	0	0	0	1	0xf1: 黑白帧速率设置
Frame Rate	1	0	_	-	_	FRA4	FRA3	FRA2	FRA1	FRA0	
(Monochrome Mode)	1	0	-	-	-	FRB4	FRB3	FRB2	FRB1	FRB0	
	1	0	-	-	-	FRC4	FRC3	FRC2	FRC1	FRC0	
	1	0	-	-	-	FRD4	FRD3	FRD2	FRD1	FRD0	
	0	0	1	1	1	1	0	0	1	0	0xf2: 温度补偿范围设置
(39)温度补偿范围	1	0	-	TA6	TA5	TA4	TA3	TA2	TA1	TA0	
Temperature Range	1	0	-	TB6	TB5	TB4	TB3	TB2	TB1	TB0	
	1	0	-	TC6	TC5	TC4	TC3	TC2	TC1	TC0	
	0	0	1	1	1	1	0	1	0	0	0xf4: 温度梯度补偿系数设置
	1	0	MT13	MT12	MT11	MT10	MT03	MT02	MT01	MT00	
	1	0	MT33	MT32	MT31	MT30	MT23	MT22	MT21	MT20	
(40) 温度梯度补偿	1	0	MT53	MT52	MT51	MT50	MT43	MT42	MT41	MT40	
Temperature Gradient	1	0	MT73	MT72	MT71	MT70	MT63	MT62	MT61	MT60	
Compensation	1	0	MT93	MT92	MT91	MT90	MT83	MT82	MT81	MT80	
	1	0	MTB3	MTB2	MTB1	MTB0	MTA3	MTA2	MTA1	MTA0	
	1	0	MTD3	MTD2	MTD1	MTD0	MTC3	MTC2	MTC1	MTC0	
	1	0	MTF3	MTF2	MTF1	MTF0	MTE3	MTE2	MTE1	MTE0	
(41)PWM帧设置	0	0	1	1	1	1	1	0	0	1	0xf9:灰度等级设置
Frame PWM Set	1	0	-	_	_	P14	P13	P12	P11	P10	
	1	0	-	_	_	P24	P23	P22	P21	P20	
	:	:	:	:	:	:	:	:	:	:	
	0	0	-	_	_	P154	P153	P152	P151	P150	
) =) +) + (m +) +) + (m +) + (m m m m m m m m m m	0	0	_	_	-	P164	P163	P162	P161	P160	

请详细参考 ST7586S 的 IC 资料.

7.2 点阵与 DD RAM 地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 384*160 点阵的屏分为 20 个"页", 从第 0"页"到第 19"页"。

DB7--DB0 的排列方向: 数据是从下向上排列的。最低位 D0 是在最上面, 最高位 D7 是在最下面。 每一位(bit)数据对应一个点阵,通常"1"代表点亮该点阵,"0"代表关掉该点阵.如下图所示:

Bits Da	ata					
D6 (D3)	D5 (D2)	DDF	RAM	LCD		
1	1	1	1			
0	0	0	0 0			
0	0	1	0			
1	0	0	1			
	D6 (D3)	(D3) (D2) 1 1 0 0 0 0	D6 D5 (D2) 1 1 1 1 0 0 0 0 0 1	D6 (D3) (D2) D5 (D2) 1 1 1 1 1 0 0 0 0 0 0 1 0		

2 Bits Data				
D1	D0	DDF	RAM	LCD
1	1	1	1	
0	0	0	0	
1	0	1	0	
0	1	0	1	

DDRAM Mapping (4-Level Gray Scale Mode) Fig. 4

Fix LSB to 0 if Grav Mode

3 E	Bits Da	ata	DDRAM		LCD
D7 (D4)	D6 (D3)	D5 (D2)			
1	1	X	1	1	
0	0	Χ	0	0	

2 Bits Data				
D1	D0	DDF	RAM	LCD
1	1	1	1	
0	0	0	0	

Fig. 5 DDRAM Mapping (Monochrome Mode)

更新日期: 2022-01-18

下图摘自 ST7586s IC 资料,可通过"ST7586s. PDF"之第 21 页获取最佳效果。

LCD Display Function

DDRAM Map to LCD Driver Output

The internal relation between DDRAM and LCD driver circuit (SEG/COM output path) with different MX or MY setting is illustrated below.

Fig. 6 **DDRAM Display Direction**

7.3 初始化方法

7.3.1 液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

并行接口图

<u>7.3.2 并行程序</u>:

液晶模块型号: JLX384160G-973-BN-P, 并行接口,6800 时序,

```
驱动 IC 是:ST7586S(or compatible),
      版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;
#include <reg51.H>
#include <intrins.h>
#include <Ctype.h>
#include <ASCII_TABLE_5X8_8X16_12x24_16x32_horizontal.h>
sbit lcd_cs1 = P3^2;
sbit lcd_reset= P3^1;
sbit lcd_rs = P3<sup>5</sup>;
sbit lcd_rw = P3^4;
sbit lcd_e = P3^0;
/*另外: DB0~DB7 与 P1.0~P1.7 相连*/
sbit key = P2^0;
                      //按键: 我的主板上是 P2.0 口与 GND 之间接一个按键
#define uchar unsigned char
#define uint unsigned int
#define ulong unsigned long
uchar code bmp320160_1[];
//延时:1毫秒的i倍
void delay(int i)
{
 int j,k;
 for(j=0;j<i;j++)
      for (k=0; k<110; k++);
//延时: lus 的 i 倍
void delay_us(int i)
{
int j,k;
 for(j=0;j<i;j++)
      for (k=0; k<1; k++);
}
//等待一个按键, 我的主板是用 P2.0 与 GND 之间接一个按键
void waitkey()
{
repeat:
      if (key==1) goto repeat;
 else delay(2000);
//写指令到 LCD 模块
void transfer_command_lcd(int datal)
 1cd_cs1=0;
 lcd_rs=0;
 lcd_e=0;
 lcd_rw=0;
 P1=data1;
 lcd_e=1;
 delay_us(1);
 lcd_cs1=1;
 lcd_e=0;
```

```
}
//写数据到 LCD 模块
void transfer_data_lcd(int data1)
 1cd_cs1=0;
 lcd_rs=1;
 1cd_e=0;
 1cd_rw=0;
 P1=data1;
 lcd_e=1;
     delay_us(1);
 lcd_cs1=1;
 1cd_e=0;
/*LCD 模块初始化*/
void initial_lcd()
{
 lcd_reset=1;
                                    //硬件复位
 lcd_reset=0;
 delay(10);
 lcd_reset=1;
                                    //硬件复位完成后置高
 delay(10);
 transfer_command_lcd(0x11);
                             //退出睡眠模式
                             // 设置 VOP
 transfer_command_lcd(0xC0);
 transfer_data_lcd(0x2c);
                             // 设置 VOP 的值的低 8 位(总共 9 位),每调一级是 0.03667V
 transfer_data_lcd(0x01);
                             // 设置 VOP 的值的第 9 位, 也是最高一位
 transfer_command_1cd(0xC3);
                             // 设置 BIAS
                             // 00: BIAS = 1/14 02 = 1/12
 transfer_data_lcd(0x02);
 transfer_command_lcd(0xC4);
                             // 设置升压倍数
 transfer_data_lcd(0x07);
                               // 07:8倍压
 transfer_command_lcd(0xD0);
                              // 允许模拟电路
 transfer_data_lcd(0x1D);
                               // 允许模拟电路
 transfer_command_lcd(0xB5);
                              // N-Line = 13
 transfer_data_lcd(0x00);
                               // 8d
 transfer_command_lcd(0x38);
                              // 0x38: 设置为灰度模式; 0x39: 设置为黑白模式。
 transfer_command_lcd(0x3A);
                              // 允许 DDRAM 接口: 单色模式、4 灰度级、16 灰度级;
 transfer_data_lcd(0x02);
                               // 0x03:16 灰度级; 0x02:4 灰度级或单色模式。
//
      transfer_command_lcd(0x39);
                                   // 39: 设置为黑白模式
//
      transfer command 1cd(0x3A);
                                  // 允许 DDRAM 接口
//
                                    // 允许 DDRAM 接口
      transfer_data_lcd(0x02);
                              // 扫描顺序设置
 transfer_command_lcd(0x36);
 transfer_data_lcd(0x00);
                               // 扫描顺序设置:MX=1, MY=1: 从左到右, 从上到下的扫描顺序
 transfer_command_lcd(0xB0);
                              // Duty 设置
 transfer_data_lcd(0x9f);
                             // Duty 设置:1/160
 transfer\_command\_1cd(0x20);
                              // 反显设置: 0FF
 transfer_command_lcd(0xf1);
                               //温度补偿,温度变化改变帧频
 transfer_data_lcd(0x15);
 transfer_data_lcd(0x15);
 transfer data lcd(0x15);
 transfer_data_lcd(0x15);
```

```
transfer\_command\_lcd(0xb1);
                           // 扫描起始行设置
                             // 扫描起始行设置: 从 COMO 开始
 transfer_data_lcd(0x00);
 transfer_command_lcd(0x29);
                              // 打开显示: DISPLAY ON
}
/*写 LCD 行列地址:X 为起始的列地址,Y 为起始的行地址,x_total, y_total 分别为列地址及行地址的起点到终点的差值 */
void lcd_address(int x, int y, x_total, y_total)
 int x_end, y_end;
 x_{end}=x+(x_{total}-1)/3;
 y_end=y+y_total-1;
 transfer_command_1cd(0x2A);
 transfer_data_lcd((x>>8)&0x00ff);
 transfer_data_lcd(x&0x00ff);
 transfer_data_lcd(x_end>>8&0x00ff);
 transfer_data_lcd(x_end\&0x00ff);
 transfer_command_lcd(0x2B);
 transfer_data_lcd((y>>8)&0x00ff);
 transfer_data_lcd(y&0x00ff);
 transfer_data_lcd(y_end>>8&0x00ff);
 transfer\_data\_lcd(y\_end\&0x00ff);\\
//传送同一个地址的 3 个点阵的黑白的数据: 比如 SEG0、SEG1、SEG2(这 3 个点阵是同一个列地址,无法分开)
//送数据时左起第1列的数据是 "D7 D6 D5 D4 D3 D2 D1 D0" 中的高 3 位---D7 D6 D5,第2列是中 3 位---D4 D3 D2,第3列是低两位---D1 D0。
void transfer_mono_data_3pixel(uchar mono_data)
 uchar gray_data=0;
 if (mono_data&0x80)
 {
      gray_data=0xe0; //二进制 11100000, 就是给 D7、D6、D5 赋值
 }
 else
 {
      gray_data=0;
 }
 mono_data<<=1;
 if (mono_data&0x80)
 {
      gray_data+=0x1c; //二进制 00011100, 就是给 D4、D3、D2 赋值
 }
 else;
 mono_data<<=1;
 if (mono_data&0x80)
 {
      gray_data+=0x03; //二进制 00000011, 就是给 D1、D0 赋值
 }
 else;
 transfer_data_lcd(gray_data);
                               //display 3 dots (seg_N, seg_N+1, seg_N+2)
}
```

```
//显示 6 个点阵
   void transfer_mono_data_6pixel(uchar dat1)
    transfer_mono_data_3pixel(dat1);
    transfer_mono_data_3pixel(dat1<<3);</pre>
   //显示8个点阵
   void transfer_mono_data_8pixel(uchar dat1)
    transfer_mono_data_3pixe1 (dat1);//传送 dat1 的 D7\D6\D5 这 3 位,对应 3 个点阵(第 1、2、3 个) 会显示出来; 列地址是自动+1 的
    transfer_mono_data_3pixel (dat1<<3);//传送 dat1 的 D4\D3\D2 这 3 位,对应 3 个点阵(第 4、5、6 个)会显示出来;列地址是自动+1 的
    transfer_mono_data_3pixel(dat1<<6);//传送 dat1 的 D1\D0 这 2 位,对应 3 个点阵(第 7、8、9 个) 会显示出来
    //这个液晶驱动 IC 的每个列地址管 3 个点阵,无法分开,所以第 7、8 个点阵会连累到第 9 个点阵,结果是每次显示 9 个点阵,只不过第 9 个点阵会
补 "0"
    //如果第9个点阵本来有显示内容,就会被无情地清掉
   }
   //显示 9 个点阵
   void transfer_mono_data_9pixel(uchar dat1, uchar dat2)
    transfer_mono_data_6pixel(dat1);//先显示6个点阵
    transfer_mono_data_3pixel((dat1<<6)|(dat2>>2)); //显示 dat1 的 D1、D0 和 dat2 的 D7 位,对应 3 个点阵(第 7、7、9 个) 会显示出来; 列地址
是自动+1的
   }
   //显示 12 个点阵
   void transfer_mono_data_12pixel(uchar dat1, uchar dat2)
    transfer_mono_data_9pixel(dat1, dat2);//先显示9个点阵
    transfer_mono_data_3pixel(dat2<<1);</pre>
                                        //传送 dat2 的 D6\D5\D4 这 3 位,对应第 10、11、12 个个点阵会显示出来;列地址是自动+1 的
   }
   //显示 15 个点阵
   void transfer_mono_data_15pixel(uchar dat1, uchar dat2)
    transfer_mono_data_12pixel(dat1, dat2);
                                        //先显示 12 个点阵
    transfer_mono_data_3pixel(dat2<<4);</pre>
                                         //传送 dat2 的 D3\D2\D1 这 3 位,对应第 13、14、15 个点阵会显示出来; 列地址是自动+1 的
   }
   //显示 16 个点阵
    void transfer_mono_data_16pixel(uchar dat1, uchar dat2)
    transfer_mono_data_15pixel(dat1, dat2); //先显示 15 个点阵
    transfer mono data 3pixel(dat2<<7);
                                         //显示第 16 个点阵, 对应 dat2 的 D0 位。
    //这个液晶驱动 IC 的每个列地址管 3 个点阵,无法分开,所以第 16 个点阵会连累到第 17、18 个点阵,结果是每次显示 18 个点阵,只不过第 17、18
个点阵会补"0"
    //如果第17、18个点阵本来有显示内容,就会被无情地清掉
   //显示 18 个点阵
   void transfer_mono_data_18pixel(uchar dat1, uchar dat2, uchar dat3)
    transfer mono data 15pixel (dat1, dat2);
                                              //先显示 15 个点阵
    transfer_mono_data_3pixel((dat2<<7)|(dat3>>1)); //传送 dat2 的 D0 和 dat3 的 D7、D6 这 3 位,对应第 16、17、18 个点阵会显示出来;列地址
```

```
是自动+1的
   }
   //显示 21 个点阵
   void transfer_mono_data_21pixel(uchar dat1, uchar dat2, uchar dat3)
    transfer_mono_data_18pixel(dat1, dat2, dat3); //先显示 18 个点阵
                                           //传送 dat3 的 D5、D4、D3 这 3 位,对应第 19、20、21 个点阵会显示出来;列地址是自动+1 的
    transfer_mono_data_3pixel(dat3<<2);</pre>
   //显示 24 个点阵。方法一:
   void transfer_mono_data_24pixel(uchar dat1, uchar dat2, uchar dat3)
    transfer_mono_data_21pixel(dat1, dat2, dat3); //先显示 21 个点阵
    transfer_mono_data_3pixel(dat3<<5);</pre>
                                         //传送 dat3 的 D2、D1、D0 这 3 位,对应第 22、23、24 个点阵会显示出来; 列地址是自动+1 的
   //显示 24 个点阵。方法二:
   /*
   void transfer_mono_data_24pixel(uchar dat1, uchar dat2, uchar dat3) //每个字节显示 8 个点阵,显示 8*3=24 个点阵
    transfer_mono_data_3pixel(dat1);
                                               //传送 dat1 的 D7\D6\D5 这 3 位,对应第 1、2、3 个点阵会显示出来,列地址是自动+1 的
                                                     //传送 dat1 的 D4\D3\D2 这 3 位,对应第 4、5、6 个点阵会显示出来,列地址是自动
    transfer_mono_data_3pixel(dat1<<3);</pre>
+1的
    transfer_mono_data_3pixel((dat1<<6)|(dat2>>2)); //传送 dat1 的 D1\D0 和 dat2 的 D7 位,对应第 7、8、9 个点阵会显示出来,列地址是自动+1
的
    transfer_mono_data_3pixel(dat2<<1);
                                                     //传送 dat2 的 D6\D5\D4 这 3 位,对应第 10、11、12 个个点阵会显示出来;列地址是
自动+1的
    transfer_mono_data_3pixel(dat2<<4);</pre>
                                                     //传送 dat2 的 D3\D2\D1 这 3 位,对应第 13、14、15 个点阵会显示出来;列地址是自
动+1 的
    transfer_mono_data_3pixel((dat2<<7)|(dat3>>1)); //传送 dat2 的 D0 和 dat3 的 D7、D6 这 3 位,对应第 16、17、18 个点阵会显示出来; 列地址
是自动+1的
    transfer_mono_data_3pixel(dat3<<2);</pre>
                                                     //传送 dat3 的 D5、D4、D3 这 3 位,对应第 19、20、21 个点阵会显示出来;列地址是
自动+1的
                                                     //传送 dat3 的 D2、D1、D0 这 3 位,对应第 22、23、24 个点阵会显示出来;列地址是
    transfer_mono_data_3pixel(dat3<<5);</pre>
自动+1的
   }
   */
   //显示 27 个点阵
   void transfer_mono_data_27pixel(uchar dat1, uchar dat2, uchar dat3, uchar dat4)
    transfer_mono_data_24pixel(dat1, dat2, dat3); //先显示 24 个点阵
                                  //传送 dat4 的 D7、D6、D5 这 3 位,对应第 25、26、27 个点阵会显示出来;列地址是自动+1 的
    transfer_mono_data_3pixel(dat4);
   //显示 30 个点阵
   void transfer_mono_data_30pixel(uchar dat1, uchar dat2, uchar dat3, uchar dat4)
    transfer_mono_data_24pixel(dat1, dat2, dat3); //先显示 24 个点阵
    transfer_mono_data_6pixel(dat4);
                                          //再显示 6 个点阵, 24+6=30
   //显示 32 个点阵
```

```
void transfer_mono_data_32pixel(uchar dat1, uchar dat2, uchar dat3, uchar dat4)
     transfer_mono_data_24pixel(dat1, dat2, dat3); //先显示 24 个点阵
     transfer_mono_data_8pixel(dat4);
                                            //再显示 8 个点阵, 24+8=32
     //这个液晶驱动 IC 的每个列地址管 3 个点阵,无法分开,所以第 31、32 个点阵会连累到第 33 个点阵,结果是每次显示 33 个点阵,只不过第 33 个点
阵会补 "0"
     //如果第33个点阵本来有显示内容,就会被无情地清掉
    //显示 33 个点阵
    void transfer_mono_data_33pixel (uchar dat1, uchar dat2, uchar dat3, uchar dat4, uchar dat5)
     transfer_mono_data_24pixel(dat1, dat2, dat3);
                                                  //先显示 24 个点阵
     transfer_mono_data_9pixel(dat4, dat5);
                                                  //再显示 9 个点阵
    //显示 48 个点阵
    void transfer_mono_data_48pixel (uchar dat1, uchar dat2, uchar dat3, uchar dat4, uchar dat5, uchar dat6)
     transfer_mono_data_24pixel(dat1, dat2, dat3);
                                                 //先显示 24 个点阵
     transfer_mono_data_24pixel(dat4, dat5, dat6);
                                                  //再显示 24 个点阵
    //传送同一个地址的 3 个点阵的 4 灰度级的数据: 比如 SEG0、SEG1、SEG2, 这 3 个点阵是同一个列地址,无法分开
    //送灰度数据(gray_data)时, SEGO 对应高 3 位 (D7、D6、D5), SEG1 对应中 3 位 (D4、D3、D2), SEG2 对应低两位 (D1、D0)。
    void transfer_gray_data_3pixel(uchar dat1)
     uchar gray_data;
     gray_data=dat1&0xc0;;
                          //给 gray_data 的 D7、D6 赋值(=dat1 的 D7、D6)
     if((dat1\&0xc0)==0xc0)
          gray_data |=0x20; //给 gray_data 的 D5 赋值, 当 dat1 的 D7、D6 都是 1 的时候, gray_data 的 D5=1, 当 dat1 的 D7\D6 不都是 1 的时候, gray_data
的 D5=0
     gray_data |=((dat1>>1)&0x18); //给 gray_data 的 D4、D3 赋值(=dat1 的 D5、D4)
     if((dat1\&0x30)==0x30)
     {
          gray_data|=0x04; //给 gray_data 的 D2 赋值,当 dat1 的 D5\D4 都是 1 的时候,gray_data 的 D2=1,当 dat1 的 D7\D6 不都是 1 的时候,gray_data
的 D2=0
                                  //给 gray_data 的 D1、D0 赋值(=dat1 的 D3、D2)
     gray_data = ((dat1>>2)&0x03);
     transfer_data_lcd(gray_data);
                                  //传送1个字节灰度数据给液晶驱动 IC, 对应的3个点阵会显示(seg_N, seg_N+1, seg_N+2)
    //传送同一个地址的 12 个点阵的 4 灰度的数据: 比如 SEG0、SEG1、SEG2..... SEG9、SEG10、SEG11 (这 12 个点阵是 4 个列地址)
    //每 2 位数据对应一个点阵, 12 个点阵用: 2*12=24 位, 即 3 个字节:dat1、dat2、dat3
    void transfer_gray_data_12pixel(uchar dat1, uchar dat2, uchar dat3)
     transfer_gray_data_3pixel(dat1);
                                                  //显示 3 个点阵(seg_N, seg_N+1, SEG_N+2)
     transfer_gray_data_3pixe1((dat1<<6)|(dat2>>2)); //显示 3 个点阵(seg_N+3, seg_N+4, SEG_N+5)
     transfer_gray_data_3pixe1((dat2<<4)|(dat3>>4)); //显示 3 个点阵(seg_N+6, seg_N+7, SEG_N+8)
     transfer_gray_data_3pixel(dat3<<2);</pre>
                                                      //显示 3 个点阵(seg_N+9, seg_N+10, SEG_N+11)
```

```
void clear_screen()
{
 int i, j;
 lcd_address(0, 0, 384, 160);
   transfer_command_lcd(0x2c);
   for(i=0;i<160;i++)
     for(j=0;j<24;j++)
         transfer_mono_data_18pixe1(0x00, 0x00, 0x00); //每个字节显示 8 个点阵,显示 8*3=24 个点阵
}
}
/*显示 8*16 点阵 ASCII 码字符或等同于 8*16 点阵的图像*/
void disp_8x16(int x, int y, uchar *dp)
 int i, j;
 uchar dat1;
1cd\_address(x, y, 8, 16);
 transfer_command_lcd(0x2c);
 for (i=0; i<16; i++)
 {
      for(j=0;j<1;j++)
            dat1=*dp;dp++;
            transfer_mono_data_8pixel(dat1);
      }
 }
}
//括号里的参数分别为(列,行,数据指针)
void display_string_8x16(int x, int y, uchar *text)
 uint i=0, j, n, dat1;
 while(text[i]>0x00)
 {
      if((text[i]>=0x20)&&(text[i]<=0x7e))
      {
            j=text[i]-0x20;
            lcd_address(x, y, 8, 16);
            transfer_command_lcd(0x2c);
            for(n=0;n<16;n++)
                 dat1=ascii_table_8x16[j][n];
                 transfer_mono_data_8pixel(dat1);
            }
            i++;
            x+=3;
      }
      else
      i++;
}
}
```

//括号里的参数分别为(列,行,数据指针)

```
{
 uint i=0, j, n, dat1, dat2;
 while(text[i]>0x00)
      if((text[i]>=0x20)&&(text[i]<=0x7e))
            j=text[i]-0x20;
            lcd_address(x, y, 12, 24);
            transfer\_command\_lcd(0x2c);
            for (n=0; n<24; n++)
                 dat1=ascii_table_12x24[j][2*n];
                 dat2=ascii\_table\_12x24[j][2*n+1];
                 transfer_mono_data_12pixel(dat1, dat2);
            }
            i++;
           x+=4;
      }
      else
      i++;
 }
}
//显示 12*12 点阵的图像
void disp_12x12(int x, int y, uchar *dp)
 int i, j;
 uchar dat1, dat2;
lcd_address(x, y, 12, 12);
 transfer_command_lcd(0x2C);
 for(i=0;i<12;i++)
     for(j=0;j<1;j++)//循环1次,每次显示12个点阵
      {
            dat1=*dp;dp++;
            dat2=*dp;dp++;
            transfer_mono_data_12pixel(dat1, dat2); //每个字节显示 8 个点阵, 显示 8*2=16 个点阵
      }
 }
}
//显示 16*16 点阵的图像
void disp_16x16(int x, int y, uchar *dp)
{
 int i, j;
 uchar dat1, dat2;
 lcd_address(x, y, 16, 16);
 transfer\_command\_lcd(0x2C);
 for(i=0;i<16;i++)
     for(j=0;j<1;j++)//循环1次,每次显示18个点阵
      {
```

```
dat1=*dp;dp++;
            dat2=*dp;dp++;
            transfer_mono_data_16pixel(dat1, dat2); //每个字节显示 8 个点阵,显示 8*2=16 个点阵
}
}
//显示 18*18 点阵的图像
void disp_18x18(int x, int y, uchar *dp)
{
 int i, j;
 uchar dat1, dat2, dat3;
 lcd_address(x, y, 18, 18);
 transfer_command_lcd(0x2C);
 for(i=0;i<18;i++)
     for(j=0;j<1;j++)//循环1次,每次显示18个点阵
       {
            dat1=*dp;dp++;
            dat2=*dp;dp++;
            \mathtt{dat3} \texttt{=} \texttt{*} \mathtt{dp}; \mathtt{dp++};
            transfer_mono_data_18pixel (dat1, dat2, dat3); //每个字节显示 8 个点阵, 显示 8*2=16 个点阵
      }
 }
}
//显示 21*21 点阵的图像
void disp_21x21(int x, int y, uchar *dp)
 int i, j;
 uchar dat1, dat2, dat3;
 lcd_address(x, y, 21, 21);
 transfer_command_lcd(0x2C);
 for(i=0;i<21;i++)
     for(j=0;j<1;j++)//循环1次,每次显示18个点阵
            dat1=*dp;dp++;
            dat2=*dp;dp++;
            dat3=*dp;dp++;
            transfer_mono_data_21pixel (dat1, dat2, dat3); //每个字节显示 8 个点阵, 显示 8*2=16 个点阵
      }
 }
}
//显示 24*24 点阵的图像
void disp_24x24(int x, int y, uchar *dp)
{
 int i, j;
 uchar dat1, dat2, dat3;
 lcd_address(x, y, 24, 24);
 transfer_command_lcd(0x2C);
```

//显示 32*32 点阵的图像

```
for (i=0; i<24; i++)
    for(j=0;j<1;j++)//循环1次,每次显示24个点阵
      {
           dat1=*dp;dp++;
           dat2=*dp;dp++;
           dat3=*dp;dp++;
           transfer_mono_data_24pixel(dat1, dat2, dat3); //每个字节显示 8 个点阵,显示 8*3=24 个点阵
      }
}
}
//显示 27*27 点阵的图像
void disp_27x27(int x, int y, uchar *dp)
 int i, j;
 uchar dat1, dat2, dat3, dat4;
lcd_address(x, y, 27, 27);
 transfer_command_lcd(0x2C);
 for (i=0; i<27; i++)
    for(j=0;j<1;j++)//循环1次,每次显示24个点阵
           dat1=*dp;dp++;
           dat2=*dp;dp++;
           dat3=*dp;dp++;
           dat4=*dp;dp++;
           transfer_mono_data_27pixel(dat1, dat2, dat3, dat4); //每个字节显示8个点阵,显示8*3=24个点阵
      }
}
}
//显示 30*30 点阵的图像
void disp_30x30(int x, int y, uchar *dp)
{
 int i, j;
 uchar dat1, dat2, dat3, dat4;
 1cd_address(x, y, 30, 30);
 transfer_command_lcd(0x2C);
 for (i=0; i<30; i++)
    for(j=0;j<1;j++)//循环1次,每次显示30个点阵
           dat1=*dp;dp++;
           dat2=*dp;dp++;
           dat3=*dp;dp++;
           dat4=*dp;dp++;
           transfer_mono_data_30pixel(dat1, dat2, dat3, dat4); //每个字节显示 8 个点阵,显示 8*3=24 个点阵
      }
}
}
```

```
void disp_32x32(int x, int y, uchar *dp)
 int i, j;
 uchar dat1, dat2, dat3, dat4;
 lcd_address(x, y, 32, 32);
 transfer_command_lcd(0x2C);
 for (i=0; i<32; i++)
    for(j=0;j<1;j++)//循环1次,每次显示32个点阵
            dat1=*dp;dp++;
           dat2=*dp;dp++;
           dat3=*dp;dp++;
           dat4=*dp;dp++;
            transfer_mono_data_32pixel (dat1, dat2, dat3, dat4); //每个字节显示 8 个点阵,显示 8*4=32 个点阵
      }
}
}
//显示 33*33 点阵的图像
void disp_33x33(int x, int y, uchar *dp)
{
 int i, j;
 uchar dat1, dat2, dat3, dat4, dat5;
 1cd_address(x, y, 33, 33);
 transfer_command_lcd(0x2C);
 for(i=0;i<33;i++)
    for(j=0;j<1;j++)//循环1次,每次显示24个点阵
      {
            dat1=*dp;dp++;
           dat2=*dp;dp++;
           dat3=*dp;dp++;
           dat4=*dp;dp++;
           dat5=*dp;dp++;
            transfer_mono_data_33pixel(dat1, dat2, dat3, dat4, dat5); //每个字节显示 8 个点阵,显示 8*3=24 个点阵
      }
}
}
//显示 48*48 点阵的图像
void disp_48x48(int x, int y, uchar *dp)
{
 int i, j;
 uchar dat1, dat2, dat3, dat4, dat5, dat6;
lcd_address(x, y, 48, 48);
 transfer_command_lcd(0x2C);
 for(i=0;i<48;i++)
     for(j=0;j<1;j++)//循环1次,每次显示24个点阵
      {
```

```
dat1=*dp;dp++;
            dat2=*dp;dp++;
            \mathtt{dat3}\texttt{=}\mathtt{*}\mathtt{dp};\mathtt{dp++};
            dat4=*dp;dp++;
            dat5=*dp;dp++;
            dat6=*dp;dp++;
            transfer_mono_data_48pixel (dat1, dat2, dat3, dat4, dat5, dat6); //每个字节显示 8 个点阵,显示 8*3=24 个点阵
      }
}
}
//显示 384*160 点阵的图像
void disp_384x160(uchar *dp)
 int i, j;
 uchar dat1, dat2, dat3;
 lcd_address(0, 0, 384, 160);
 transfer_command_lcd(0x2C);
 for(i=0;i<160;i++)
 {
     for(j=0;j<16;j++)//循环16次,每次显示24个点阵,合计384个点阵
            dat1=*dp;dp++;
           dat2=*dp;dp++;
            dat3=*dp;dp++;
            transfer_mono_data_24pixel (dat1, dat2, dat3); //每个字节显示 8 个点阵,显示 8*3=24 个点阵
      }
}
}
//===显示测试画面:例如全显示,隔行显示,隔列显示,雪花显示===
void test_display(uchar dat1, uchar dat2, uchar dat3)
{
 int i, j;
 lcd_address(0, 0, 384, 160);
 transfer_command_lcd(0x2C);
 for(i=0;i<160;i++)
    for(j=0;j<16;j++)//循环 16 次,每次显示 24 个点阵,合计 384 个点阵
      {
            transfer_mono_data_24pixel(dat1, dat2, dat3); //每个字节显示 8 个点阵,显示 8*3=24 个点阵
      }
}
}
//显示 384*160 点阵的 4 灰度级图像
void disp_4gray_384x160(uchar *dp)
 uchar i, j;
 uchar dat1, dat2, dat3;
 lcd_address(0, 0, 384, 160); //
 transfer command 1cd(0x2C);
 for(i=0;i<160;i++)
```

```
{
    for(j=0;j<32;j++)//循环 26 次,每次显示 12 个点阵,合计 26*12=312 个点阵
          dat1=*dp;dp++;
          dat2=*dp;dp++;
          dat3=*dp;dp++;
          transfer_gray_data_12pixel (dat1, dat2, dat3); //每个字节显示 4 个点阵, 共显示 4*3=12 个点阵
     }
 }
}
void main ()
 while(1)
 {
      initial_lcd();
     clear_screen();//清屏
     disp_384x160(bmp1);
                             //显示一个 384x160 点阵的图片
     waitkey();
//
          clear_screen();//清屏
//
          disp_384x160(bmp2);
                                  //显示一个 384x160 点阵的图片
//
          waitkey();
     clear_screen();//清屏
     disp_384x160(bmp4);
                             //显示一个 384x160 点阵的图片
     waitkey();
     clear_screen();//清屏
                             //显示一个 384x160 点阵的图片
     disp_384x160(bmp3);
     waitkey();
      test_display(0xff, 0xff, 0xff);
     waitkey();
     clear_screen();//清屏
     disp_4gray_384x160(bmp_4gray_2);
                                        //显示一个 384x160 点阵的 4 灰度级的图片
     waitkey();
     clear_screen();//清屏
      disp_24x24(0, 0, jing_24); //在(0, 0)位置显示一个 24x24 点阵的汉字或图片, 三个参数分别是(x, y, 24x24 点阵的指针)
     disp 24x24(7,0,1ian 24); //在(7,0)位置显示一个 24x24 点阵的汉字或图片,三个参数分别是(x, y, 24x24 点阵的指针)
     disp_24x24(14, 0, xun_24); //在(14, 0)位置显示一个 24x24 点阵的汉字或图片, 三个参数分别是(x, y, 24x24 点阵的指针)
      disp_16x16(40, 0, jing_16); //在(40, 0)位置显示一个 16x16 点阵的汉字或图片, 三个参数分别是(x, y, 16x16 点阵的指针)
      disp_16x16(45, 0, 1ian_16); //在(45, 0)位置显示一个 16x16 点阵的汉字或图片, 三个参数分别是(x, y, 16x16 点阵的指针)
      disp_16x16(50, 0, xun_16); //在(50, 0)位置显示一个 16x16 点阵的汉字或图片, 三个参数分别是(x, y, 16x16 点阵的指针)
      disp_32x32(60,0,jing_32); //在(60,0)位置显示一个 32x32 点阵的汉字或图片,三个参数分别是(x,y,32x32 点阵的指针)
      disp_32x32(70, 0, 1ian_32); //在(70, 0)位置显示一个 32x32 点阵的汉字或图片, 三个参数分别是(x, y, 32x32 点阵的指针)
      disp 32x32(80,0,xun 32); //在(80,0)位置显示一个 32x32 点阵的汉字或图片, 三个参数分别是(x, y, 32x32 点阵的指针)
      disp_12x12(92, 0, jing_12); //在(92, 0)位置显示一个 12x12 点阵的汉字或图片, 三个参数分别是(x, y, 12x12 点阵的指针)
      disp_12x12(96, 0, 1ian_12); //在(96, 0)位置显示一个 12x12 点阵的汉字或图片, 三个参数分别是(x, y, 12x12 点阵的指针)
      disp_12x12(100, 0, xun_12); //在(100, 0)位置显示一个 12x12 点阵的汉字或图片, 三个参数分别是(x, y, 12x12 点阵的指针)
      disp_18x18(8, 32, jing_18);
     disp_21x21(15, 32, jing_21);
      disp_27x27(22, 32, jing_27);
      disp_30x30(30, 32, jing_30);
     disp_33x33(40, 32, jing_33); //
      disp_48x48(52, 32, jing_48);
      disp_8x16(0, 32, A_1);
      display string 8x16(0,80, "ABCDEFG!@#$%\&123");
      display_string_12x24(0, 96, "ABCDEFG!@#$%^&123");
```

waitkey();

} }

串行接口程序

32

图 9. 串行接口

```
液晶模块型号: JLX384160G-973,
 4线串行接口:接口有点特别,请注意:
  "SCLK"接在PCB印刷为"RS"那一个脚,
  "RS"接在印刷为"D1"那一个脚,
  "SDA"接在印刷为"DO" 那一个脚。
      驱动 IC 是:ST7586S
      版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;
*/
#include <reg51.H>
#include <intrins.h>
#include <Ctype.h>
#include <ASCII_TABLE_5X8_8X16_12x24_16x32_horizontal.h>
sbit 1cd_cs1 = P3^4;//CS
sbit lcd_reset= P3^5;//RST
sbit lcd_sclk = P1^6;//串行时钟
sbit lcd_rs = P3^3;//RS
sbit lcd_sid = P1^7;//串行数据
//===
```

#define uchar unsigned char

```
#define uint unsigned int
#define ulong unsigned long
uchar code bmp320160_1[];
//延时:1毫秒的i倍
void delay(int i)
  int j, k;
  for(j=0;j<i;j++)
       for (k=0; k<110; k++);
}
//延时: lus 的 i 倍
void delay_us(int i)
 int j, k;
 for(j=0;j<i;j++)
       for(k=0;k<1;k++);
}
//等待一个按键,我的主板是用 P2.0 与 GND 之间接一个按键
void waitkey()
{
repeat:
        if (key=1) goto repeat;
  else delay(2000);
}
////写指令到 LCD 模块
void transfer_command_lcd(int data1)
  char i;
  lcd_cs1=0;
  lcd_rs=0;
  for(i=0;i<8;i++)
        lcd_sclk=0;
        if(data1&0x80) lcd_sid=1;
       else lcd_sid=0;
       lcd_sclk=1;
       data1=data1<<=1;
 }
  lcd_cs1=1;
//写数据到 LCD 模块
void transfer_data_lcd(int data1)
  char i:
  lcd_cs1=0;
  lcd_rs=1;
  for(i=0;i<8;i++)
        lcd_sclk=0;
        if(data1&0x80) lcd_sid=1;
       else lcd_sid=0;
       lcd_sclk=1;
        datal=data1<<=1;
 }
 lcd_cs1=1;
```


}

-END-