RE	STR	I	CTED	内部文件	#

	SOLUTIONS STEPS	MARKS	NOTES
TION A			
$(x^{2} + 4x + 4) = (x + 2)^{2} - (y)$ $= (x + 2) + (y)$ $= (x + y + 1)(x)$	$-1)$] [(x + 2) - (y - 1)] $\frac{i\vec{h}_1 + \vec{h}_2 + \vec{h}_3}{2}$	1A - P 1A - P 2M 25 2A 2A	For factorizing $x^2 + 4x + 4$.
If a cand. wrote $(x+2)^2 - (y-1)^2 =$	0 etc, withhold last 2A.		If equality signs omitted, -1 for pp. If "⇒" used, -1 for pp.
(a)	(a) Correct reason f ∠ABC = 30°.	or 3M	Incomplete reason for

)M	1 rucombr	ete teai	son for	
	∠ABC	= 30°.	1M or 2	۲
	-			

		•	•				ŀ
	and the					1	
	1	*	4			1A	l
(a)	54.5				· · · · · · · · · · · · · · · · · · ·	**	1
							ĺ

(1) Manager	44.5(100) + 54.5(300) + 64.5(400) + 74.5(200)			44.5(100) + 54.5(300) +		1M	
(b) Mean			1000		111		
	<i>(</i> 1			 	2A		
1	= 01.5			 			

For	$\sum x_i f_i$	4	
	dividing	by	1000

2M

	l marks			
cori	rect an	swer	with	ut
any	step.	1.71		

	RESTRI	CTED	内部文件
--	--------	------	------

	RESTRICTED 内部 solutions steps	文件 Marks	P.3
(a)	a:b = 3:4 = 6:8 a:c = 2:5 = 6:15 a:b:c = 6:8:15	1A 1A 1A	
(b)	Let $\frac{a}{6} = \frac{b}{8} = \frac{c}{15} = k$ $\frac{ac}{a^2 + b^2} = \frac{(6k)(15k)}{6^2k^2 + 8^2k^2}$	2M	ALTERNATIVELY, $\frac{ac}{a^2 + b^2} = \frac{a}{1 + \frac{b^2}{a^2}}$ 2M
	= 0.9·	1A	- 0.9 1A
5. (a)	oc = 30 - 15 = 15	1A	
	$\cos\angle AOC = \frac{15}{30}$ $\angle AOC = 60^{\circ} \text{ or } \frac{\pi}{3}$	1M 1A	This may be omitted provided OC is correct. Or any figure which rounded to 60.
(b)	$\widehat{AB} = \frac{60}{360} \times 271(30)$ or $30 \times \frac{71}{3}$	1M+1A	Accept 9.9 π to 10.1 π
6.	$1000[(1.1)^{5} - 1] = 1000 \times \frac{r}{100} \times 3$ $1000[0.331] = 1000 \times \frac{r}{100} \times 3$	24+14+14> \$5 - 72 111-15	24 for "="." 1A for R.S., 1A for L.S. If a cand. wrote compound int.=\$1000(1.1) ³ , deduct 1 mark. If a cand. wrote
	3r = 33.1 r = 11.033 3 ≈ 11.03	1A 1A	simple interest = \$1000(1+r x x 3), deduct 1 mark. Or any figure which rounded to 11.03. Accept 11.03x.
	$2 \cos^{2}\theta + 5\sin\theta + 1 = 0$ $2(1 - \sin^{2}\theta) + 5\sin\theta + 1 = 0$ $2\sin^{2}\theta - 5\sin\theta - 3 = 0$ $(2\sin\theta + 1)(\sin\theta - 3) = 0$ $\sin\theta = 3 \text{ or } -\frac{1}{4}$	- 1M 1A - 1A	For cos ² 0 = 1 - sin ² 0 If a candidate wrote sin0 = -12 only, award
Ā.	Rejecting $\sin\theta = 3$ $\theta = 210^{\circ} \text{ or } 330^{\circ}$ For answers in radian measure: $\theta = \frac{7\pi}{6}$ or $\frac{11\pi}{6}$.	1A 1A+1A	2 marks. Accept "0 = 210°, 330°," or "0 = 210° and 330°".
	(or any figure which rounded to 3.67 or 5.76) If more than 2 answers given, deduct 1 mark for each wrong answer from the marks scored in the answer only.		General solution, no marks.

· provens	7307		
	RESTRICTED 内部文 SOLUTIONS STEPS	件 MARKS	P.4 NOTES
ION	В,		
(a)	(3 marks)		With r: h = 3:2 snly
	Volume of hemisphere = $\frac{1}{2} \times \frac{4}{3} \pi r^3$	1A	anarch I mai
	$\pi r^2 h = \frac{1}{2} \times \frac{4}{3} \pi r^3$	1A	
	2r = 3h r:h = 3:2	1A	Accept $r: h = \frac{3}{2}: 1$
	6. 4 No mark		or 1: $\frac{2}{3}$, or $\frac{3}{2}$
	항공 실하다 사람들은 사람들이 가는 것이다.		or $\frac{r}{h} = \frac{3}{2}$ or 3 : 2
(b)	(9 marks)		
7	(i) Perimeter of section $= \pi r + 2h + 2r$	- 2A	
	η r + 2h + 2r = 136	1M	For perimeter = 136
:	$\pi r + \frac{4}{3}r + 2r = 136$	1M	🖟 Time of the property 🗗 the real property is a second of the contract of th
	$r(\pi + \frac{4}{3} + 2) = 136$		0 Sul. 1=34.
Ėγ	$r = \frac{136}{7i + \frac{4}{3} + 2}$	1A	Or any figure which rounded to 21.
		- 1A	Accept r = 21 cm.
	(ii) Total external surface area		
	$= 2 \pi r^2 + 2 \pi r h + \pi r^2$	- 2M	For 2 correct terms,
	$\frac{2}{3\pi r^2 + 2\pi r \cdot \frac{2}{3}r}$		award 1 mark.
	$= 3\pi r^2 + \frac{4}{3}\pi r^2$		
	$2 \log \left(\frac{13}{2} \pi r^2 \right)$		Accept area = 6000
-	÷ 6000 cm ²	- la	Accept area + 6000.
			For wrong unit, do not award this mark.
• • • • •			
-	/		
	,		

	SOLUTIONS STEPS	MARKS	P.7 NOTES
	nit omitted in answer of any part, deduct at most rk (NOT as pp) from answer.		
(a)	(3 marks)		
	Distance travelled = $(10 + 10 \times \frac{3}{4} \times 2) \text{ m}$	2A	
	≖ 25 m	1A	
(b)	(6 marks)		
	Distance travelled =	av. av. av	lM For counting "10" once.
	$10 + 2 \times 10 \times \frac{3}{4} + 2 \times 10 \times (\frac{3}{4})^2 + + 2 \times 10 \times (\frac{3}{4})^k$	1M+1M+1A	lM For counting some other terms twice
	$= 10 + \frac{2 \times 10 \times \frac{3}{4} [1 - (\frac{3}{4})^{k}]}{1 - \frac{3}{4}}$	1M	For $S_n = \frac{a(1-r^n)}{1-r}$.
	= $10 + 60[1 - (\frac{3}{4})^k]$ m	2A	
	or $[70 - 60 (\frac{3}{4})^k]$ m		
(c)	~ [70-80(2) bil] m (3 marks)	Ì.	
	Distance travelled		
	$10 + \frac{a}{1-r}$	1M+1M	1M For "10":
			$1M \text{ For } \frac{a}{1-r}$
	$= 10 + \frac{2 \times 10 \times \frac{3}{4}}{1 - \frac{3}{4}}$		
4 4 A	$\frac{1}{1} - \frac{3}{4}$		
	■ 70 m	1A	
NOTE			
If a	cand. wrote		
	Dist. travelled = $70 - 60(\frac{3}{4})^{k+1}$ or $80 - 60(\frac{3}{4})^k$		
	b) and obtained 70 or 80 as answer in (c) by ing $k \rightarrow \infty$, award 2M.		

	RESTRICTED 內部文		P.8.
	SOLUTIONS STEPS	MARKS	NOTES
l. (a)	(3 marks) may be contitled	'	
	(3 marks) Required probability = (0.6) - may be emitted 0.216	2A 1A	Accept $\frac{216}{1000}$ or $\frac{27}{125}$.
		-	
(b)	(3 marks)		
a Sept	Probability of answering a question wrongly	1A	
	Required probability = (0.4) ³ = 0.064	IM IA	Accept $\frac{8}{125}$ or $\frac{64}{1000}$
(c)	(4 marks)		
	Probability of answering Q.1 correctly but Q.2, Q.3 wrongly = (0.6)(0.4) ²	2A	If (0.6)(0.4) ² is given
	Required Probability = $3(0.6)(0.4)^2$	111	the answer, award 2 mark
	- 0.288	1A	Accept $\frac{36}{125}$ or $\frac{288}{1000}$.
(d)	(2 marks)		
	Required Probability = 3 (0.6) ² 0.4	1M 1A	Accept $\frac{54}{125}$ or $\frac{432}{1000}$.
	ALTERNATIVELY,		
	Probability = 1 - 0.216 - 0.064 - 0.288 - 0.432	1M 1A	
NOTE:			
If "r	required probability " or "P" omitted in all the fou , deduct one mark as pp.	.	
		· .	

٠	RESTRICTED 內部 solutions steps	MARKS	NOTES P.9
?. (a)	(3 marks) Graphs of the 3 lines	1A+1A+1A	Labelling may be omitted. Accuracy of lines: accept deviation of lunit.
(b)	(3 marks) Correct region	3 A	Award 3 or 0 marks. Accuracy of line: if deviation > 2 units, deduct 2 marks for line. Lack
(c)	<pre>(6 marks) (1) Testing optimization by either substituting (10, 20), (30, 0),</pre>	. 2м	If testing of some of the vertices omitted, award 1 mark.
	Maximum of P = 180 Minimum of P = 70	1A 1A	
	(ii) If $x \le 45$, Maximum of $P = 155$ Minimum of $P = 70$	1A 1A	
	y 50 19 = 2 ×		
`	No.		
	336		
	20		

2x+3y=12c

	SOLUTIONS STEPS	MARKS	NOTES
a)	(6 marks)		
	For answer without unit, deduct 1 mark.		may be in part (b)
	AC = 50	, 1 <u>A</u>	
	In \triangle BCH, tan30° = $\frac{50}{BC}$	1M	
	BC = 50 \(\int 3 \)	1A	Or any figure which lie between 86.6 to 87.
	In \triangle ABC, AB ² = AC ² + BC ² = 50^2 + $(50\sqrt{3})^2$	1M	For Pythagoras' Theorem
	$= 50^{2} + (50 \sqrt{3})^{2}$ $= 10 000$ AB = 100 m	1111	
	AB = 100 m	1 A	
) :	(6 marks)		
	Do not deduct marks for answers with no unit. (i) Area of \triangle ABC = $\frac{1}{2}$ AC x BC		
	$=\frac{1}{2}\times 50(50\sqrt{3})$		
	Area of $\triangle ABC = \frac{1}{2} (AB)(CP)$		
	$=\frac{1}{2}(100)$ CP		
. • •			
٠.	$\frac{1}{2}$ (100) (CP) = $\frac{1}{2}$ (50) (50) ($\sqrt{3}$)	2M	
	CP = 25 √3	1A	Or any figure which rounded to 43.
	= 43 (m)	1A	
. :	ALTERNATIVELY,		
	In ABC,		
	$\cos\angle A = \frac{50}{100}$ or $\tan\angle A = \frac{50\sqrt{3}}{50}$, $\sin\angle A = \frac{50\sqrt{3}}{100}$	111	ALTERNATIVELY,
	∠ A = 60°		$\tan \angle B = \frac{50}{50/3}, \dots 1M$
			∠B = 30°
	In $\triangle CPA$, $\sin \angle A = \frac{CP}{AC}$	111	In △CPB,
•	sin60° = CP		$\sin \angle B = \frac{CP}{BC}$ ————————————————————————————————————
	$CP = 50 \frac{\sqrt{3}}{2}$		T 7
	2	. :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	= 25 /3	1A	Or any figure which
	= 43 (m)	1 A	rounded to 43.
	(ii) In △PCH, tan ∠CPH = 50	IM	
	25 J3	"	
	_ J <u>3</u>		
	∠CPH = 49.106 6° ≈ 49° ———————————————————————————————————	1,	
		1 A	
	·	i	

	RESTRICTED 内部文 SOLUTIONS STEPS	4 MARKS	P.11 NOTES
4. (a)	(5 marks)		
٠.	Δ+β=2m Δβ=n	1A 1A	
	(1) $(m - \alpha) + (m - \beta)$ = $2m - (\alpha + \beta)$ = $2m - 2m$		
	=, 0,	1A	
	(11) $(m - \lambda) \times (m - \beta)$ = $m^2 - (\lambda + \beta)m + \lambda\beta$ = $m^2 - 2m^2 + n$	1M	
	= -m ² + n	1A	mitted
(b)	(3 marks)		may be omitted
	The equation is $[x-(m-\alpha)][x-(m-\beta)] = 0$	ÎM	or 16
	$x^2 - [(m - \alpha) + (m - \beta)]x + (m - \alpha)(m - \beta) = 0$	1M/	x^2 - (sum of roots)x + (prod. of roots) = 0
	$x^2 - m^2 g + n = 0$	1A	
(c)	(4 marks)		
	n = 4 For real roots, $4m^2 - 16 \ge 0$ $m^2 - 4 \ge 0$	1M+1A	IM for ∆ ≥ 0
	m > 2 or m < -2	2A	If a cand, wrote m > 2 or m < -2;
		安 on	award 1 mark.
	이 물질 작용을 하고 하다는 이 경영이		
	이번화로 하는 그는 그들은 [12] [2]		