# 6. 実用回路CASE STUDY (1)

### 実用回路例 (1) 光センサ



- RとCdSの直列接続
- CdSは照度が増えると抵抗値が減るような抵抗
- 照度が増えると、出力電圧は減少する。
- $V_o$ をNOTゲートの入力に加えると、 出力 $Y_o$ は、高照度で0, 低照度で1。

照度

$$V_O = \frac{R_{CdS}}{R_1 + R_{CdS}} V_I$$

$$\therefore G = \frac{V_O}{V_I} = \frac{R_{CdS}}{R_1 + R_{CdS}}$$



### センサでランプを直接点灯できない理由

#### 理由:

センサの抵抗が高すぎて、 ランプに十分な電流を流せないから。



#### 解決策:

MOSスイッチを使う。

IGは無視できるので、VGはセンサと 抵抗の直列接続だけを考えて決め ればよい。



### 実用回路例(2) 歪みゲージ



・ 歪みεに比例して変化する抵抗。*K*は比例定数。

$$\frac{\Delta R}{R} = K\varepsilon$$

- $V_b$ ・変化率が小さいので、右のようなブリッジ回路(Wheatstone bridge)を使う。
  - - 無歪み時に平衡となるよう調整すれば、 出力電圧はRの絶対値に依存しなくな るので、精度がよくなる。

$$V_O = V_a - V_b = \left(\frac{R}{2R + \Delta R} - \frac{R}{R + R}\right)E = \frac{\Delta R}{4R + 2\Delta R}E = \frac{\Delta R}{4R}E = \frac{E}{4}K\varepsilon$$



https://www.kyowa-ei.com/jpn/technical/strainbasic\_course/index.html

### 実用回路例(3) Reset回路

- CPUやMicrocomputerには(再)起動のためのReset端子がある。
- Reset端子を一定時間だけ低電圧(論理0)に保つと再起動。
  - 大抵のCPUでは論理0と見なす電圧は1/3E未満、論理1は2/3E以上くらい。
- 電源ON時にもResetは必要(Power-on reset)
  - = Reset端子は電源端子より電圧を上げるのを遅らせる必要
- RCの直列回路を使うと安くて確実にResetできる。



# プロジェクト実習用マイコン\*のReset回路



\*TM4C123G LaunchPad

## TM4C123G のRST端子の仕様

Table 24-11. Reset Characteristics

| Parameter<br>No. | Parameter            | Parameter Name                                                                | Min  | Nom  | Max   | Unit |
|------------------|----------------------|-------------------------------------------------------------------------------|------|------|-------|------|
| R1               | T <sub>DPORDLY</sub> | Digital POR to Internal Reset assertion delay <sup>a</sup>                    | 0.80 | -    | 5.35  | μs   |
| R2               | T <sub>IRTOUT</sub>  | Standard Internal Reset time                                                  | -    | 9    | 11.5  | ms   |
|                  |                      | Internal Reset time with recovery code repair (program or erase) <sup>b</sup> | -    | -    | 6400° | ms   |
| R3               | T <sub>BORODLY</sub> | BOR0 to Internal Reset assertion delay <sup>a</sup>                           | 0.25 | -    | 1.95  | μs   |
| R3               | T <sub>BOR1DLY</sub> | BOR1 to Internal Reset assertion delay <sup>a</sup>                           | 0.75 | -    | 5.95  | μs   |
| R4               | T <sub>RSTMIN</sub>  | Minimum RST pulse width                                                       | -    | 250  | -     | ns   |
| R5               | T <sub>IRHWDLY</sub> | RST to Internal Reset assertion delay                                         | -    | 250  | -     | ns   |
| R6               | T <sub>IRSWR</sub>   | Internal reset timeout after software-initiated system reset                  | -    | 2.07 | -     | μs   |
| R7               | T <sub>IRWDR</sub>   | Internal reset timeout after Watchdog reset                                   | -    | 2.10 | -     | μs   |
| R8               | T <sub>IRMFR</sub>   | Internal reset timeout after MOSC failure reset                               | -    | 1.92 | -     | μs   |



Figure 24-11. External Reset Timing (RST)

