

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 24 MAY 2004
WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 16 311.5

Anmeldetag: 08. April 2003

Anmelder/Inhaber: BASF Aktiengesellschaft, 67056 Ludwigshafen/DE

Bezeichnung: Bezolsulfonamid-Derivate

IPC: C 07, D, A 01 N

Bemerkung: Die letzten 2 Zeilen auf der Seite 2 der Beschreibung gingen am 08. April 2003 per Fax unleserlich ein. Am 05. Dezember 2003 traf das Original korrekt ein.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 17. Februar 2004
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Benzolsulfonamid-Derivate

Beschreibung

5 Die vorliegende Erfindung betrifft Benzolsulfonamid-Derivate der Formel I

in der die Variablen die folgenden Bedeutungen haben:

- 10 X¹ Wasserstoff oder Halogen;
- 15 X² Wasserstoff, Cyano, CS-NH₂, Halogen, C₁-C₆-Alkyl oder C₁-C₆-Halogenalkyl;
- 20 X³ Wasserstoff, Cyano, C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, C₃-C₇-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl-C₁-C₄-alkyl, wobei der Phenylrest seinerseits partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert sein kann;
- 25 Y eine Gruppe -C(A)B, SO₂ oder SO₂NR²;
- 30 A Sauerstoff oder Schwefel;
- 35 B Sauerstoff, Schwefel, NR² oder eine Bindung;
- R¹ Wasserstoff, Halogen, Hydroxy, C₁-C₈-Alkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyl-C₁-C₄-alkyl, C₂-C₈-Alkenyl, C₅-C₇-Cycloalkenyl, C₃-C₈-Alkinyl, C₁-C₈-Alkoxy, C₃-C₇-Cycloalkyloxy, C₂-C₈-Alkenyloxy, C₃-C₈-Alkinyloxy, Aryl, Aryloxy, Aryl-C₁-C₄-alkyl; wobei die 13 letztgenannten Reste ihrerseits partiell oder vollständig halogeniert sein können und/oder ein bis drei Substituenten aus der Gruppe Cyano, NO₂, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₃-C₇-Cycloalkyloxy, C₂-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkyllthio, C₁-C₆-Halogenalkylthio, Amino, C₁-C₆-Alkylamino, Di(C₁-C₆-alkyl)amino, C₁-C₆-Alkylsulfinyl, C₁-C₆-

2

- Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkoxy sulfonyl, Formyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-
Halogenalkylcarbonyl, C₂-C₆-Alkenylcarbonyl, C₃-C₆-Alkinylcarbonyl, Carboxy, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Halogenalkoxy-carbonyl, C₂-C₆-
5 Alkenyloxycarbonyl, C₃-C₆-Alkinyloxycarbonyl, Mercapto-carbonyl, C₁-C₆-Alkylthiocarbonyl, C₁-C₆-Halogenalkylthiocarbonyl, C₂-C₆-
Alkenylthiocarbonyl, C₃-C₆-Alkinylthiocarbonyl, Aminocarbonyl, C₁-C₆-Alkylaminocarbonyl, Di(C₁-C₆-alkylamino)carbonyl, C₁-C₆-Halogenalkyl-
10 aminocarbonyl, Di(C₁-C₆-halogenalkylamino)carbonyl, C₂-C₆-Alkenylaminocarbonyl, Di(C₂-C₆-alkenylamino)carbonyl, C₃-C₆-Alkinylaminocarbonyl,
Di(C₃-C₆-alkinylamino)carbonyl, Phenyl, Phenoxy, Phenyl-C₁-C₄-Alkyl und Phenyl-C₁-C₄-alkoxy, tragen können;
- 15 vier- bis sechsgliedriges Heterocycl, das partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert sein kann; oder
- 20 vier- bis sechsgliedriges Heterocycl-C₁-C₄-alkyl, das partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert sein kann; oder
- 25 fünf- bis sechsgliedriges Heteroaryl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom; das partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Amino, C₁-C₆-Alkylamino und Di(C₁-C₆-alkyl)amino substituiert sein kann, oder
- 30 fünf- bis sechsgliedriges Heteroaryl-C₁-C₄-alkyl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom; das partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Amino, C₁-C₆-Alkylamino und Di(C₁-C₆-alkyl)amino substituiert sein kann;
- 35 R² Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₇-Cycloalkyl, wobei die vier letztgenannten Reste teilweise oder vollständig halogeniert sein können; oder
- 40

3

R^1 und R^2 bilden zusammen mit dem N-Atom, an das sie gebunden sind, einen drei- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl und C₁-C₆-Alkoxy substituiert sein kann;

5

Q

ein Rest aus der Gruppe Q¹ bis Q³⁹

10

15

4Q¹ 5**5**

5

A¹ bis A¹⁷ Sauerstoff oder Schwefel;

10

R³, R⁴, R⁷, R⁸, R¹¹, R¹², R¹⁸, R¹⁹, R²⁷, R²⁹, R³², R³³, R³⁸, R³⁹, R⁴⁴, R⁴⁵, R⁴⁶ und R⁴⁷ Wasserstoff, Cyano, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Cyanoalkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyloxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Alkinyl, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Phenyl-C₁-C₆-alkyl, Amino, C₁-C₆-Alkylamino oder Di(C₁-C₆-alkyl)amino; oder

15

6

R³ und R⁴, R¹¹ und R¹², R¹⁸ und R¹⁹, oder R⁴⁶ und R⁴⁷ bilden zusammen mit den Atomen, an die sie gebunden sind, einen drei- bis siebengliedrigen Heterocyc-
lus, welcher seinerseits partiell oder vollständig halogeniert und/oder durch
ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert
sein kann;

5

R⁵, R⁶, R⁹, R¹⁰, R¹⁵, R¹⁶, R²⁰, R²¹, R³⁰, R³¹, R³⁵, R³⁸, R⁴¹, R⁴² und R⁴³
Wasserstoff, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl,
C₃-C₇-Cycloalkyloxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₂-C₆-Alkenyl,
C₂-C₆-Halogenalkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Alkinyl, C₃-C₆-Alkinyloxy,
C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-
Alkoxysulfonyl, C₁-C₆-Alkylsulfonyloxy, Amino, C₁-C₆-Alkylamino oder
Di(C₁-C₆-alkyl)amino; oder

10

15

20

25

30

35

R⁵ und R⁶, R⁹ und R¹⁰, R¹⁵ und R¹⁶, R²⁰ und R²¹, oder R³⁰ und R³¹ bilden zusammen mit
den Atomen, an die sie gebunden sind, einen drei- bis siebengliedrigen He-
terocyclus, welcher seinerseits partiell oder vollständig halogeniert
und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-
Alkoxy substituiert sein kann;

R¹³, R¹⁴, R²², R²³, R²⁵ und R²⁶

Wasserstoff, Halogen oder C₁-C₆-Alkyl;

R¹⁷, R²⁸, R³⁴, R³⁷ oder R⁴⁰

Wasserstoff, Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₇-
Cycloalkyl, C₃-C₇-Cycloalkyloxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-
C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl,
C₂-C₆-Alkenyloxy, C₃-C₆-Alkinyl oder C₃-C₆-Alkinyloxy;

R²⁴

Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₃-C₆-Alkinyl,
C₁-C₆-Halogenalkoxy, Amino, C₁-C₆-Alkylamino oder Di(C₁-C₆-alkyl)amino;

sowie deren landwirtschaftlich brauchbaren Salze.

Außerdem betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung von
Verbindungen der Formel I, Mittel welche diese enthalten sowie die Verwendung dieser
Derivate oder diese enthaltende Mittel zur Bekämpfung unerwünschter Pflanzen.

Aus der Literatur, beispielsweise aus WO 96/07323, WO 96/08151, WO 97/42176 und DE 44 37 197 sind substituierte Phenyluracile bekannt. Phenylpyrazole werden in WO 95/32188 beschrieben. Bicyclische Triazolone werden in WO 02/38562 beschrieben. Weiterhin sind aus der Literatur phenylsubstituierte Pyrimidin(thi)one (WO 5

96/07647), Phenylpyridazone (WO 99/52878) und Triazolderivate (WO 96/18618) bekannt. In WO 93/03019 werden phenylsubstituierte Sulfonamide offenbart.

Die herbiziden Eigenschaften der bisher bekannten Verbindungen bzw. die Verträglichkeiten gegenüber Kulturpflanzen sind jedoch nicht immer voll befriedigend. Es lag

10 daher dieser Erfindung die Aufgabe zugrunde, neue, insbesondere herbizid wirksame, Verbindungen mit verbesserten Eigenschaften zu finden.

Demgemäß wurden die Benzolsulfonamid-Derivate der Formel I sowie deren herbizide Wirkung gefunden.

15

Ferner wurden herbizide Mittel gefunden, welche die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.

20

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als Enantiomeren oder Diastereomeren-gemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

25

Die Verbindungen der Formel I können auch in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen, wobei es auf die Art des Salzes in der Regel nicht ankommt. Im allgemeinen kommen die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen, beziehungsweise Anionen, die herbizide Wirkung der Verbindungen I nicht negativ beeinträchtigen.

30

Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammonium, wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, Phenyl oder Benzyl ersetzt sein können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, 2(2Hydroxyeth-1-oxy)eth-1-ylammonium, Di(2-hydroxyeth-1-yl)ammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C₁-C₄-40

alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionsalzen sind in erster Linie Chlorid, Bromid,

- 5 Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

10

Die für die Substituenten X², X³, R¹-R⁴⁷ oder als Reste an Phenyl-, Heterocyclyl- oder Heteroaryl-Resten genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also alle Alkyl-, Alkylen-, Halogenalkyl-, Cyanoalkyl-, Phenylalkyl-, Alkenyl-, Halogenalkenyl-, Alkinyl-, Alkoxy-, Alkylenoxy-, Halogenalkoxy-, Alkylamino-, Dialkylamino- und Alkoxyalkyl-Teile können geradkettig oder verzweigt sein. Sofern nicht anders angegeben tragen halogenierte Substituenten vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor,

15 Chlor, Brom oder Iod.

20

Ferner bedeuten beispielsweise:

- C₁-C₄-Alkyl sowie die Alkylteile von C₁-C₆-Alkoxycarbonyl-C₁-C₄-alkyl, C₂-C₆-

25 Alkynyloxycarbonyl-C₁-C₄-alkyl, Aryl-C₁-C₄-alkyl, Cycloalkyl-C₁-C₄-alkyl, Heterocyclyl-C₁-C₄-alkyl und Heteroaryl-C₁-C₄-alkyl; Methyl, Ethyl, n-Propyl, 1-Methyl-ethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl;

- C₁-C₆-Alkyl sowie die C₁-C₆-Alkylteile von C₁-C₆-Cyanoalkyl, C₁-C₆-Alkylthio, C₁-

30 C₆-Alkylamino, Di(C₁-C₆-alkyl)amino, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkylthiocarbonyl, C₁-C₆-Alkylaminocarbonyl, Di(C₁-C₆-alkyl)aminocarbonyl: C₁-C₄-Alkyl, wie voranstehend genannt, sowie z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-

35 Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-3-methylpropyl;

- C₁-C₈-Alkyl: C₁-C₆-Alkyl, wie voranstehend genannt, sowie z.B. Heptyl, 2-

40 Methylhexyl, 3-Methylhexyl, 2,2-Dimethylpentyl, 2,3-Dimethylpentyl, 2,4-

9

Dimethylpentyl, 3,3-Dimethylpentyl, 2,2-Dimethyl-3-methylbutyl, Octyl, 2-Methylheptyl, 3-Methylheptyl, 4-Methylheptyl, 2,2-Diemthylhexyl, 2,3-Dimethylhexyl, 2,4-Dimethylhexyl, 3,3-Dimethylhexyl, 2,2,3-Trimethylpentyl, 2,3,3-Trimethylpentyl, 2,3,4-Trimethylpentyl und 2,2,3,3-Tetramethylbutyl;

5

- C₃–C₇–Cycloalkyl sowie die C₃–C₇–Cycloalkyl-Teile von C₃–C₇–Cycloalkyl-C₁–C₄-alkyl und C₃–C₇–Cycloalkyloxy: monocyclischer, gesättigter Kohlenwasserstoff mit 3 bis 7 Ringgliedern, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cyclo-heptyl;

10

- C₅–C₇–Cycloalkenyl: monocyclischer, ungesättigter Kohlenwasserstoff mit 5 bis 7 Ringgliedern, z.B. 1-Cyclopentenyl, 2-Cyclopentenyl, 3-Cyclopentenyl, 2,4-Cyclopentadienyl, 1-Cyclohexenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, 1,3-Cyclohexadienyl, 2,5-Cyclohexadienyl, 1-Cycloheptenyl, 2-Cycloheptenyl, 3-Cycloheptenyl, 4-Cycloheptenyl, 2,6-Cycloheptadienyl, 3,5-Cycloheptadienyl;

15

- vier- bis sechsgliedriges Heterocyclyl: monocyclischer, gesättigter oder partiell ungesättigter Kohlenwasserstoff mit vier bis sechs Ringgliedern wie voranste-hend genannt, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome, ein oder zwei Sauerstoffatome, ein Schwefelatom, ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom, oder ein Sauerstoff und ein Schwefelatom enthalten können, und welche über ein C-Atom oder ein N-Atom verknüpft sein können,

20

z.B. 2-Oxetanyl, 3-Oxetanyl, 3-Thiethanyl, 1-Azetidinyl, 2-Azetidinyl, 1-Azetinyl, 2-Azetinyl;

25

z.B. 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 1,2,3,4-Tetrazolidin-5-yl;

30

35

z.B. 1-Pyrrolidinyl, 2-Isothiazolidinyl, 2-Isothiazolidinyl, 1-Pyrazolidinyl, 3-Oxazolidinyl, 3-Thiazolidinyl, 1-Imidazolidinyl, 1,2,4-Triazolidin-1-yl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,3,4-Tetrazolidin-5-yl,

40

z.B. 2,3-Dihydrofur-2-yl, 2,3-Dihydrofur-3-yl, 2,4-Dihydrofur-2-yl, 2,4-Dihydrofur-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,4-Dihydrothien-2-yl, 2,4-

10

Dihydrothien-3-yl, 4,5-Dihydropyrrol-2-yl, 4,5-Dihydropyrrol-3-yl, 2,5-Dihydropyrrol-2-yl, 2,5-Dihydropyrrol-3-yl, 4,5-Dihydroisoxazol-3-yl, 2,5-Dihydroisoxazol-3-yl, 2,3-Dihydroisoxazol-3-yl, 4,5-Dihydroisoxazol-4-yl, 2,5-Dihydroisoxazol-4-yl, 2,3-Dihydroisoxazol-4-yl, 4,5-Dihydroisoxazol-5-yl, 2,5-Dihydroisoxazol-5-yl, 2,3-Dihydroisoxazol-5-yl, 4,5-Dihydroisothiazol-3-yl, 2,5-Dihydroisothiazol-3-yl, 2,3-Dihydroisothiazol-3-yl, 4,5-Dihydroisothiazol-4-yl, 2,5-Dihydroisothiazol-4-yl, 2,3-Dihydroisothiazol-4-yl, 4,5-Dihydroisothiazol-5-yl, 2,5-Dihydroisothiazol-5-yl, 2,3-Dihydroisothiazol -5-yl, 2,3-Dihydropyrazol-2-yl, 2,3-Dihydropyrazol-3-yl, 2,3-Dihydropyrazol-4-yl, 2,3-Dihydropyrazol-5-yl, 3,4-Dihydropyrazol-3-yl, 3,4-Dihydropyrazol-4-yl, 3,4-Dihydropyrazol-5-yl, 4,5-Dihydropyrazol-3-yl, 4,5-Dihydropyrazol-4-yl, 4,5-Dihydropyrazol-5-yl, 2,3-Dihydroimidazol-2-yl, 2,3-Dihydroimidazol-3-yl ,2,3-Dihydroimidazol-4-yl, 2,3-Dihydroimidazol-5-yl, 4,5-Dihydroimidazol-2-yl, 4,5-Dihydroimidazol-4-yl, 4,5-Dihydroimidazol-5-yl, 2,5-Dihydroimidazol-2-yl, 2,5-Dihydroimidazol-4-yl, 2,3-Dihydroimidazol-5-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-4-yl, 3,4-Dihydrooxazol-5-yl, 2,3-Dihydrothiazol-3-yl, 2,3-Dihydrothiazol-4-yl, 2,3-Dihydrothiazol-5-yl, 3,4-Dihydrothiazol-3-yl, 3,4-Dihydrothiazol-4-yl, 3,4-Dihydrothiazol-5-yl, 3,4-Dihydrothiazol-2-yl, 3,4-Dihydrothiazol-3-yl, 3,4-Dihydrothiazol-4-yl, 3,4-Dihydrothiazol-5-yl, 3,4-Dihydrothiazol-4-yl, 2,5-Dihydroisoxazol-2-yl, 4,5-Dihydroisoxazol-2-yl, 2,3-Dihydroisoxazol-1-yl, 4,5-Dihydroisoxazol-1-yl, 2,3-Dihydroisothiazol-1-yl, 2,3-Dihydropyrazol-1-yl, 4,5-Dihydropyrazol-1-yl, 3,4-Dihydropyrazol-1-yl, 2,3-Dihydroimidazol-1-yl, 4,5-Dihydroimidazol-1-yl, 2,5-Dihydroimidazol-1-yl, 2,3-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-2-yl, 2,3-Dihydrothiazol-2-yl; z.B. 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl, 1,3-Dithian-5-yl, 2-Tetrahydropyranyl, 4-Tetrahydropyranyl, 2-Tetrahydrothiopyranyl, 4-Tetrahydrothiopyranyl 3-Hexahydropyridazinyl, 4-Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 5-Hexahydropyrimidinyl, 2-Piperazinyl, 1,3,5-Hexahydrotriazin-2-yl, 1,2,4-Hexahydrotriazin-3-yl, Tetrahydro-1,3-oxazin-2-yl, Tetrahydro-1,3-oxazin-6-yl, 2-Morpholinyl, 3-Morpholinyl, ; z.B. 1-Piperidinyl, 1-Hexahydropyridazinyl, 1-Hexahydropyrimidinyl, 1-Piperazinyl, 1,3,5-Hexahydrotriazin-1-yl, 1,2,4-Hexahydrotriazin-1-yl, Tetrahydro-1,3-oxazin-1-yl, 1-Morpholinyl; z.B. 2H-Pyran-2-yl, 2H-Pyran-3-yl, 2H-Pyran-4-yl, 2H-Pyran-5-yl, 2H-Pyran-6-yl, 2H-Thiopyran-2-yl, 2H-Thiopyran-3-yl, 2H-Thiopyran-4-yl, 2H-Thiopyran-5-yl, 2H-Thiopyran-6-yl, 5,6-Dihydro-4H-1,3-oxazin-2-yl;

11

- drei- bis siebengliedriges Heterocycl: vier- bis sechsgliedriges Heterocycl wie voranstehend genannt sowie
z.B. 2-Oxrianyl, 1-Aziridinyl, 2-Aziridinyl, 2-Thiiranyl;
- 5 z.B. Azepan-2-yl, Azepan-3-yl, Azepan-4-yl, Oxepan-2-yl, Oxepan-3-yl, Oxepan-4-yl, Thiepan-2-yl, Thiepan-3-yl, Thiepan-4-yl, 1,2-Diazepan-3-yl, 1,2-Diazepan-4-yl, 1,2-Diazepan-5-yl;
- 10 z.B. Azepan-1-yl, 1,2-Diazepan-1-yl, 1,4-Oxazepan-4-yl, 1,4-Thiazepan-4-yl; z.B. 2,3,6,7-Tetrahydro-1H-azepin-2-yl, 2,3,6,7-Tetrahydro-1H-azepin-3-yl, 2,3,6,7-Tetrahydro-1H-azepin-4-yl, 2,3,4,5-Tetrahydro-1H-azepin-2-yl, 2,3,4,5-Tetrahydro-1H-azepin-3-yl, 2,3,4,5-Tetrahydro-1H-azepin-4-yl, 1H-Azepin-2-yl, 1H-Azepin-3-yl, 1H-Azepin-4-yl, Oxepin-2-yl, Oxepin-3-yl, Oxepin-4-yl, Thiepin-2-yl, Thiepin-3-yl, Thiepin-4-yl, 1,4-Oxazepin-2-yl, 1,4-Oxazepin-3-yl, 1,4-Oxazepin-5-yl, 1,4-Oxazepin-6-yl, 1,4-Oxazepin-7-yl, 1,4-Thiazepin-2-yl, 1,4-Thiazepin-3-yl, 1,4-Thiazepin-5-yl, 1,4-Thiazepin-6-yl, 1,4-Thiazepin-7-yl, 4,5,6,7-Tetrahydro-1H-[1,3]-diazepin-2-yl, 4,5,6,7-Tetrahydro-1H-[1,3]-diazepin-4-yl, 4,5,6,7-Tetrahydro-1H-[1,3]-diazepin-5-yl, 4,5,6,7-Tetrahydro-1H-[1,4]-diazepin-2-yl, 2,3,4,5-Tetrahydro-1H-[1,4]-diazepin-3-yl, 2,3,4,5-Tetrahydro-1H-[1,4]-diazepin-5-yl, 2,3,4,5-Tetrahydro-1H-[1,4]-diazepin-6-yl, 2,3,4,5-Tetrahydro-1H-[1,4]-diazepin-7-yl, 2,3-Dihydro-1H-[1,2]diazepin-3-yl, 2,3-Dihydro-1H-[1,2]diazepin-4-yl, 2,3-Dihydro-1H-[1,2]diazepin-5-yl, 2,3-Dihydro-1H-[1,2]diazepin-6-yl, 2,3-Dihydro-1H-[1,2]diazepin-7-yl, 4,7-Dihydro-[1,4]-oxazepin-2-yl, 4,7-Dihydro-[1,4]-oxazepin-3-yl, 4,7-Dihydro-[1,4]-oxazepin-5-yl, 4,7-Dihydro-[1,4]-oxazepin-6-yl, 4,7-Dihydro-[1,4]-oxazepin-7-yl, 2,3-Dihydro-[1,3]-thiazepin-2-yl, 2,3-Dihydro-[1,3]-thiazepin-4-yl, 2,3-Dihydro-[1,3]-thiazepin-5-yl, 2,3-Dihydro-[1,3]-thiazepin-6-yl, 2,3-Dihydro-[1,3]-thiazepin-7-yl;
- 15 z.B. Azepin-1-yl, 2,3,6,7-Tetrahydroazepin-1-yl, 2,3,4,5-Tetrahydroazepin-1-yl, 4,5,6,7-Tetrahydro-[1,3]-diazepin-1-yl, 2,3,4,5-Tetrahydro-[1,4]-diazepin-1-yl, 2,3-Dihydro-[1,2]diazepin-1-yl, 4,7-Dihydro-[1,4]-oxazepin-4-yl, 2,3-Dihydro-[1,3]-thiazepin-3-yl;
- 20
- 25
- 30
- C₂-C₄-Alkenyl sowie die Alkenylteile von C₁-C₆-Alkoxy carbonyl-C₂-C₄-alkenyl: Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl;
- C₃-C₆-Alkenyl: z.B. 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-but enyl, 3-Methyl-1-but enyl, 1-Methyl-2-but enyl, 2-
- 35
- 40

12

- Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-
Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-
Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-
Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-
pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-
Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-
pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-
Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-
pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl,
1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-
Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-
1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-
butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-
butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-
propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-
2-methyl-2-propenyl;
- C₂-C₈-Alkenyl sowie die C₂-C₈-Alkenylteile von C₂-C₈-Alkenyloxy, C₂-C₆-
Alkenylcarbonyl, C₂-C₆-Alkenyloxycarbonyl, C₂-C₆-Alkenyloxycarbonyl-C₁-C₄-
alkyl, C₂-C₆-Alkenylthiocarbonyl, C₂-C₆-Alkenylaminocarbonyl, Di(C₂-C₆-
alkenyl)aminocarbonyl: C₃-C₆-Alkenyl wie voranstehend genannt, sowie Ethenyl;
- C₂-C₈-Alkenyl sowie die C₂-C₈-Alkenylteile von C₂-C₈-Alkenyloxy: C₂-C₆-Alkenyl
wie voranstehend genannt, sowie z.B. 1-Heptenyl, 2-Heptenyl, 3-Heptenyl, 2-
Methyl-1-hexenyl, 2-Methyl-2-hexenyl, 2-Methyl-3-hexenyl, 2-Methyl-4-hexenyl,
2-Methyl-5-hexenyl, 3-Methyl-1-hexenyl, 3-Methyl-2-hexenyl, 3-Methyl-3-hexenyl,
3-Methyl-4-hexenyl, 3-Methyl-5-hexenyl, 2,2-Dimethyl-3-pentenyl, 2,2-Dimethyl-
4-pentenyl, 2,3-Dimethyl-1-pentenyl, 2,3-Dimethyl-2-pentenyl, 2,3-Dimethyl-3-
pentenyl, 2,3-Dimethyl-4-pentenyl, 2,4-Dimethyl-1-pentenyl, 2,4-Dimethyl-2-
pentenyl, 3,3-Dimethyl-1-pentenyl, 2,2-Dimethyl-3-methyl-3-butentyl, 1-Octenyl,
2-Octenyl, 3-Octenyl, 4-Octenyl, 2-Methyl-1-heptenyl, 2-Methyl-2-heptenyl, 2-
Methyl-3-heptenyl, 2-Methyl-4-heptenyl, 2-Methyl-5-heptenyl, 2-Methyl-6-
heptenyl, 3-Methyl-1-heptenyl, 3-Methyl-2-heptenyl, 3-Methyl-3-heptenyl, 3-
Methyl-4-heptenyl, 3-Methyl-5-heptenyl, 3-Methyl-6-heptenyl, 4-Methyl-1-
heptenyl, 4-Methyl-2-heptenyl, 4-Methyl-3-heptenyl, 2,2-Dimethyl-3-hexenyl, 2,2-
Dimethyl-4-hexenyl, 2,2-Dimethyl-5-hexenyl, 2,3-Dimethyl-1-hexenyl, 2,3-
Dimethyl-2-hexenyl, 2,3-Dimethyl-3-hexenyl, 2,3-Dimethyl-4-hexenyl, 2,3-
Dimethyl-5-hexenyl, 2,4-Dimethyl-1-hexenyl, 2,4-Dimethyl-2-hexenyl, 2,4-
Dimethyl-3-hexenyl, 2,4-Dimethyl-4-hexenyl, 2,4-Dimethyl-5-hexenyl, 3,3-
Dimethyl-1-hexenyl, 3,3-Dimethyl-4-hexenyl, 3,3-Dimethyl-5-hexenyl, 2,2,3-

13

Trimethyl-3-pentenyl, 2,2,3-Trimethyl-4-pentenyl, 2,3,3-Trimethyl-1-pentenyl, 2,3,3-Trimethyl-4-pentenyl, 2,3,4-Trimethyl-1-pentenyl und 2,3,4-Trimethyl-2-pentenyl;

- 5 - C₃-C₆-Alkinyl sowie die C₃-C₆-Alkinyl-Teile von C₃-C₆-Alkinylloxy, C₃-C₆-Alkinylcarbonyl, C₃-C₆-Alkinylloxycarbonyl, C₃-C₆-Alkinylthiocarbonyl, C₃-C₆-Alkinylaminocarbonyl, Di(C₃-C₆-alkinyl)aminocarbonyl: z.B. 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-méthyl-2-propinyl;
- 10 - C₃-C₈-Alkinyl sowie die C₃-C₈-Alkinyl-Teile von C₃-C₈-Alkinylloxy: C₃-C₆-Alkinyl wie voranstehend genannt, sowie z.B. 1-Heptinyl, 2-Heptinyl, 3-Heptinyl, 2-Methyl-3-hexinyl, 2-Methyl-4-hexinyl, 2-Methyl-5-hexinyl, 3-Methyl-1-hexinyl, 3-Methyl-4-hexinyl, 3-Methyl-5-hexinyl, 2,2-Dimethyl-3-pentinyl, 2,2-Dimethyl-4-pentinyl, 2,3-Dimethyl-4-pentinyl, 3,3-Dimethyl-1-pentinyl, 1-Octinyl, 2-Octinyl, 3-Octinyl, 4-Octinyl, 2-Methyl-3-heptinyl, 2-Methyl-4-heptinyl, 2-Methyl-5-heptinyl, 2-Methyl-6-heptinyl, 3-Methyl-1-heptinyl, 3-Methyl-4-heptinyl, 3-Methyl-5-heptinyl, 3-Methyl-6-heptinyl, 4-Methyl-1-heptinyl, 4-Methyl-2-heptinyl, 2,2-Dimethyl-3-hexinyl, 2,2-Dimethyl-4-hexinyl, 2,2-Dimethyl-5-hexinyl, 2,3-Dimethyl-4-hexinyl, 2,3-Dimethyl-5-hexinyl, 2,4-Dimethyl-5-hexinyl, 3,3-Dimethyl-1-hexinyl, 3,3-Dimethyl-4-hexinyl, 3,3-Dimethyl-5-hexinyl, 2,233-Trimethyl-3-pentinyl, 2,2,3-Trimethyl-4-pentinyl und 2,3,3-Trimethyl-4-pentinyl;
- 15 - C₁-C₄-Halogenalkyl: ein C₁-C₄-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-
- 20 -
- 25 -
- 30 -
- 35 -
- 40 -

14

(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl und Nonafluorbutyl;

- 5 - C₁-C₆-Halogenalkyl sowie die C₁-C₆-Halogenalkyl-Teile von C₁-C₆-Halogenalkylthio, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Halogenalkylthiocarbonyl, C₁-C₆-Halogenalkylaminocarbonyl, Di(C₁-C₆-halogenalkyl)aminocarbonyl: C₁-C₄-Halogenalkyl wie voranstehend genannt, sowie z.B. 5-Fluorpentyl, 5-Chlorpentyl, 5-Brompentyl, 5-Iodpentyl, Undecafluorpentyl, 6-Fluorhexyl, 6-Chlorhexyl, 6-Bromhexyl, 6-Iodhexyl und Dodecafluorhexyl;
- 10 - C₁-C₈-Halogenalkyl: C₁-C₆-Halogenalkyl wie voranstehend genannt, sowie z.B. 7-Fluorheptyl, 7-Chlorheptyl, 7-Bromheptyl, 7-Iodheptyl, Perfluorheptyl, 8-Fluoroctyl, 8-Chloroctyl, 8-Bromoctyl, 8-Iodoctyl und Perfluoroctyl;
- 15 - C₂-C₆-Halogenalkenyl: ein C₂-C₆-Alkenylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, z.B. 2-Chlorvinyl, 2-Chlorallyl, 3-Chlorallyl, 2,3-Dichlorallyl, 3,3-Dichlorallyl, 2,3,3-Trichlorallyl, 2,3-Dichlorbut-2-enyl, 2-Bromvinyl, 2-Bromallyl, 3-Bromallyl, 2,3-Dibromallyl, 3,3-Dibromallyl, 2,3,3-Tribromallyl oder 2,3-Dibrombut-2-enyl;
- 20 - C₂-C₈-Halogenalkenyl: ein C₂-C₈-Halogenalkenylrest wie voranstehend genannt, sowie z.B. 2-Chlor-1-heptenyl, 3-Chlor-1-heptenyl, 2,3-Dichlor-1-heptenyl, 3,3-Dichlor-1-heptenyl, 2,3,3-Trichlor-1-heptenyl, 2-Brom-1-heptenyl, 3-Brom-1-heptenyl, 2,3-Dibrom-1-heptenyl, 3,3-Dibrom-1-heptenyl, 2,3,3-Tribrom-1-heptenyl, 2-Chlor-1-octenyl, 3-Chlor-1-octenyl, 2,3-Dichlor-1-octenyl, 3,3-Dichlor-1-octenyl, 2,3,3-Trichlor-1-octenyl, 2-Brom-1-octenyl, 3-Brom-1-octenyl, 2,3-Dibrom-1-octenyl, 3,3-Dibrom-1-octenyl und 2,3,3-Tribrom-1-octenyl;
- 25 - C₃-C₆-Halogenalkinyl: ein C₃-C₆-Alkinylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, z.B. 1,1-Difluor-prop-2-in-1-yl, 3-Iod-prop-2-in-1-yl, 4-Fluorbut-2-in-1-yl, 4-Chlorbut-2-in-1-yl, 1,1-Difluorbut-2-in-1-yl, 4-Iodbut-3-in-1-yl, 5-Fluorpent-3-in-1-yl, 5-Iodpent-4-in-1-yl, 6-Fluorhex-4-in-1-yl oder 6-Iodhex-5-in-1-yl;
- 30 - C₁-C₄-Alkoxy sowie die C₁-C₄-Alkoxy-Teile von C₁-C₄-Alkoxy-C₁-C₄-alkyl und Phenyl-C₁-C₄-alkoxy: z.B. Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy;
- 35 -

15

- C₁–C₆–Alkoxy sowie die C₁–C₆–Alkoxyteile von C₁–C₆–Alkoxy-C₁–C₄–alkyl, C₁–C₆–Alkoxycarbonyl, C₁–C₆–Alkoxycarbonyl-C₁–C₄–alkyl, C₁–C₆–Alkoxycarbonyl-C₂–C₄–alkenyl, C₁–C₆–Alkoxysulfonyl: C₁–C₄–Alkoxy wie voranstehend genannt, sowie z.B. Pentoxy, 1–Methylbutoxy, 2–Methylbutoxy, 3–Methoxylbutoxy, 1,1–Dimethylpropoxy, 1,2–Dimethylpropoxy, 2,2–Dimethylpropoxy, 1–Ethylpropoxy, Hexoxy, 1–Methylpentoxy, 2–Methylpentoxy, 3–Methylpentoxy, 4–Methylpentoxy, 1,1–Dimethylbutoxy, 1,2–Dimethylbutoxy, 1,3–Dimethylbutoxy, 2,2–Dimethylbutoxy, 2,3–Dimethylbutoxy, 3,3–Dimethylbutoxy, 1–Ethylbutoxy, 2–Ethylbutoxy, 1,1,2–Trimethylpropoxy, 1,2,2–Trimethylpropoxy, 1–Ethyl-1–methylpropoxy und 1–Ethyl-2–methylpropoxy;
 - C₁–C₈–Alkoxy: C₁–C₆–Alkoxy wie voranstehend genannt, sowie z.B. Heptoxy, 2–Methylhexoxy, 3–Methylhexoxy, 2,2–Dimethylpentoxy, 2,3–Dimethylpentoxy, 2,4–Dimethylpentoxy, 3,3–Dimethylpentoxy, 2,2–Dimethyl-3–methylbutoxy, Octoxy, 2–Methylheptoxy, 3–Methylheptoxy, 4–Methylheptoxy, 2,2–Diethylhexoxy, 2,3–Dimethylhexoxy, 2,4–Dimethylhexoxy, 3,3–Dimethylhexoxy, 2,2,3–Triimethylpentoxy, 2,3,3–Trimethylpentoxy, 2,3,4–Trimethylpentoxy und 2,2,3,3–Tetramethylbutoxy;
- 15
- C₁–C₄–Halogenalkoxy: einen C₁–C₄–Alkoxyrest wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Bromdifluormethoxy, 2–Fluorethoxy, 2–Chlorethoxy, 2–Brommethoxy, 2–Iodethoxy, 2,2–Difluorethoxy, 2,2,2–Trifluorethoxy, 2–Chlor-2–fluorethoxy, 2–Chlor-2,2–difluorethoxy, 2,2–Dichlor-2–fluorethoxy, 2,2,2–Trichlorethoxy, Pentafuorethoxy, 2–Fluorpropoxy, 3–Fluorpropoxy, 2–Chlorpropoxy, 3–Chlorpropoxy, 2–Brompropoxy, 3–Brompropoxy, 2,2–Difluorpropoxy, 2,3–Difluorpropoxy, 2,3–Dichlorpropoxy, 3,3,3–Trifluorpropoxy, 3,3,3–Trichlorpropoxy, 2,2,3,3,3–Pentafluorpropoxy, Heptafluorpropoxy, 1–(Fluormethyl)-2–fluorethoxy, 1–(Chlormethyl)-2–chlorethoxy, 1–(Brommethyl)-2–bromethoxy, 4–Fluorbutoxy, 4–Chlorbutoxy, 4–Brombutoxy und Nonafluorbutoxy;
 - C₁–C₆–Halogenalkoxy sowie die C₁–C₆–Halogenalkoxy-Teile von C₁–C₆–Halogenalkoxycarbonyl: C₁–C₄–Halogenalkoxy wie voranstehend genannt, sowie z.B. 5–Fluorpentoxy, 5–Chlorpenoxy, 5–Brompenoxy, 5–Iodpenoxy, Undecafluorpentoxy, 6–Fluorhexoxy, 6–Chlorhexoxy, 6–Bromhexoxy, 6–Iodhexoxy und Dodecafluorhexoxy;
- 20
- 25
- 30
- 35

16

- C₁-C₆-Alkoxy-C₁-C₄-alkyl sowie die Alkylreste von C₁-C₆-Alkylthio-C₁-C₄-alkyl: ein
C₁-C₄-Alkyl, welches durch C₁-C₆-Alkoxy wie vorstehend genannt, substituiert ist
also z.B. Methoxymethyl, Ethoxymethyl, Propoxymethyl, (1-Methylethoxy)methyl,
Butoxymethyl, (1-Methylpropoxy)methyl, (2-Methylpropoxy)methyl, (1,1-
5 Dimethylethoxy)methyl, 2-(Methoxy)ethyl, 2-(Ethoxy)ethyl, 2-(Propoxy)ethyl, 2-(1-
Methylethoxy)ethyl, 2-(Butoxy)ethyl, 2-(1-Methylpropoxy)ethyl, 2-(2-
Methylpropoxy)ethyl, 2-(1,1-Dimethylethoxy)ethyl, 2-(Methoxy)-propyl, 2-
(Ethoxy)propyl, 2-(Propoxy)propyl, 2-(1-Methylethoxy)propyl, 2-(Butoxy)propyl, 2-
(1-Methylpropoxy)propyl, 2-(2-Methylpropoxy)propyl, 2-(1,1-
10 Dimethylethoxy)propyl, 3-(Methoxy)propyl, 3-(Ethoxy)-propyl, 3-(Propoxy)propyl,
3-(1-Methylethoxy)propyl, 3-(Butoxy)propyl, 3-(1-Methylpropoxy)propyl, 3-(2-
Methylpropoxy)propyl, 3-(1,1-Dimethylethoxy)propyl, 2-(Methoxy)-butyl, 2-
(Ethoxy)butyl, 2-(Propoxy)butyl, 2-(1-Methylethoxy)butyl, 2-(Butoxy)butyl, 2-(1-
15 Methylpropoxy)butyl, 2-(2-Methylpropoxy)butyl, 2-(1,1-Dimethylethoxy)butyl, 3-
(Methoxy)butyl, 3-(Ethoxy)-butyl, 3-(Propoxy)butyl, 3-(1-Methylethoxy)butyl, 3-
(Butoxy)-butyl, 3-(1-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl, 3-(1,1-
Dimethylethoxy)butyl, 4-(Methoxy)butyl, 4-(Ethoxy)butyl, 4-(Propoxy)butyl, 4-(1-
20 Methylethoxy)butyl, 4-(Butoxy)butyl, 4-(1-Methylpropoxy)butyl, 4-(2-
Methylpropoxy)butyl und 4-(1,1-Dimethylethoxy)butyl;
- C₁-C₆-Alkoxycarbonyl-C₁-C₄-alkyl: durch C₁-C₆-Alkoxycarbonyl wie vorstehend
genannt substituiertes C₁-C₄-Alkyl, also z.B. für Methoxycarbonylmethyl, Ethoxycarbonylmethyl, Propoxycarbonylmethyl, (1-Methylethoxycarbonyl)methyl, Butoxycarbonylmethyl, (1-Methylpropoxycarbonyl)methyl, (2-
25 Methylpropoxycarbonyl)methyl, (1,1-Dimethylethoxycarbonyl)methyl, 2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl, 2-(Propoxycarbonyl)ethyl, 2-(1-Methylethoxycarbonyl)ethyl, 2-(Butoxycarbonyl)ethyl, 2-(1-Methylpropoxycarbonyl)ethyl, 2-(2-Methylpropoxycarbonyl)ethyl, 2-(1,1-Dimethylethoxycarbonyl)ethyl, 2-(Methoxycarbonyl)propyl, 2-(
30 Ethoxycarbonyl)propyl, 2-(Propoxycarbonyl)propyl, 2-(1-Methylethoxycarbonyl)propyl, 2-(Butoxycarbonyl)propyl, 2-(1-Methylpropoxycarbonyl)propyl, 2-(2-Methylpropoxycarbonyl)propyl, 2-(1,1-Dimethylethoxycarbonyl)propyl, 3-(Methoxycarbonyl)-propyl, 3-(Ethoxycarbonyl)propyl, 3-(Propoxycarbonyl)propyl, 3-(1-
35 Methylethoxycarbonyl)propyl, 3-(Butoxycarbonyl)propyl, 3-(1-Methylpropoxycarbonyl)propyl, 3-(2-Methylpropoxycarbonyl)propyl, 3-(1,1-Dimethylethoxycarbonyl)propyl, 2-(Methoxycarbonyl)butyl, 2-(
40 Ethoxycarbonyl)butyl, 2-(Propoxycarbonyl)butyl, 2-(1-Methylethoxycarbonyl)butyl, 2-(Butoxycarbonyl)butyl, 2-(1-Methylpropoxycarbonyl)butyl, 2-(2-Methylpropoxycarbonyl)butyl, 2-(1,1-Dimethylethoxycarbonyl)butyl,

17

- Dimethylethoxycarbonyl)butyl, 3-(Methoxycarbonyl)butyl, 3-(Ethoxycarbonyl)butyl, 3-(Propoxycarbonyl)butyl, 3-(1-Methylethoxycarbonyl)butyl, 3-(Butoxycarbonyl)butyl, 3-(1-Methylpropoxycarbonyl)butyl, 3-(2-Methylpropoxycarbonyl)butyl, 3-(1,1-Dimethylethoxycarbonyl)butyl, 4-(Methoxycarbonyl)-butyl, 4-(Ethoxycarbonyl)butyl, 4-(Propoxycarbonyl)butyl, 4-(1-Methylethoxycarbonyl)butyl, 4-(Butoxycarbonyl)butyl, 4-(1-Methylpropoxy)butoxy, 4-(2-Methylpropoxy)butoxy und 4-(1,1-Dimethylethoxycarbonyl)butyl;
- 10 - C₁-C₄-Alkylthio: z.B. Methylthio, Ethylthio, n-Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio;
- 15 - C₁-C₆-Alkylthio: C₁-C₄-Alkylthio wie voranstehend genannt, sowie z.B. Pentylthio, Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 2,2-Dimethylpropylthio, 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio, 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Trimethylpropylthio, 1,2,2-Trimethylpropylthio, 1-Ethyl-1-methylpropylthio und 1-Ethyl-2-methylpropylthio;
- 20 - C₁-C₈-Alkylthio: C₁-C₈-Alkylthio wie voranstehend genannt, sowie die Alkylthio-Teile von C₁-C₈-Alkylthio-C₁-C₈-alkyl, sowie z.B. Heptylthio, 2-Methylhexylthio, 3-Methylhexylthio, 2,2-Dimethylpentylthio, 2,3-Dimethylpentylthio, 2,4-Dimethylpentylthio, 3,3-Dimethylpentylthio, 2,2-Dimethyl-3-methylbutylthio, Octylthio, 2-Methylheptylthio, 3-Methylheptylthio, 4-Methylheptylthio, 2,2-Diemethylhexylthio, 2,3-Dimethylhexylthio, 2,4-Dimethylhexylthio, 3,3-Dimethylhexylthio, 2,2,3-Trimethylpentylthio, 2,3,3-Trimethylpentylthio, 2,3,4-Trimethylpentylthio und 2,2,3,3-Tetramethylbutylthio;
- 25 - C₁-C₈-Alkylamino:z.B. Methylamino, Ethylamino, Propylamino, 1-Methylethylamino, Butylamino, 1-Methylpropylamino, 2-Methylpropylamino, 1,1-Dimethylethylamino, Pentylamino, 1-Methylbutylamino, 2-Methylbutylamino, 3-Methylbutylamino, 2,2-Dimethylpropylamino, 1-Ethylpropylamino, Hexylamino, 1,1-Dimethylpropylamino, 1,2-Dimethylpropylamino, 1-Methylpentylamino, 2-Methylpentylamino, 3-Methylpentylamino, 4-Methylpentylamino, 1,1-Dimethylbutylamino, 1,2-Dimethylbutylamino, 1,3-Dimethylbutylamino, 2,2-Dimethylbutylamino, 2,3-Dimethylbutylamino, 3,3-Dimethylbutylamino, 1-Ethylbutylamino, 2-Ethylbutylamino, 1,1,2-Trimethylpropylamino, 1,2,2-
- 30 -
- 35 -

18

Trimethylpropylamino, 1-Ethyl-1-methylpropylamino oder 1-Ethyl-2-methylpropylamino;

- 5 - Di(C₁-C₄-alkyl)amino: z.B. N,N-Dimethylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Di(1-methylethyl)amino, N,N-Dibutylamino, N,N-Di(1-methylpropyl)amino, N,N-Di(2-methylpropyl)amino, N,N-Di(1,1-dimethylethyl)amino, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl-N-(1-methylethyl)amino, N-Butyl-N-methylamino, N-Methyl-N-(1-methylpropyl)-amino, N-Methyl-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-methylamino, N-Ethyl-N-propylamino, N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethylamino, N-Ethyl-N-(1-methylpropyl)amino, N-Ethyl-N-(2-methylpropyl)amino, N-Ethyl-N-(1,1-dimethylethyl)amino, N-(1-Methylethyl)-N-propylamino, N-Butyl-N-propylamino, N-(1-Methylpropyl)-N-propylamino, N-(2-Methylpropyl)-N-propylamino, N-(1,1-Dimethylethyl)-N-propylamino, N-Butyl-N-(1-methylethyl)amino, N-(1-Methylethyl)-N-(1-methylpropyl)amino, N-(1-Methylethyl)-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)amino, N-Butyl-N-(1-methylpropyl)amino, N-Butyl-N-(1,1-dimethylethyl)amino, N-(1-Methylpropyl)-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)amino und N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino;
- 10 - Di(C₁-C₆-alkyl)amino: Di(C₁-C₄-alkyl)amino wie voranstehend genannt, sowie die Dialkylamino-Teile von Di(C₁-C₆-alkyl)amino-C₁-C₆-alkyl, Di(C₁-C₆-alkyl)-aminocarbonyl und Di(C₁-C₆-alkyl)aminocarbonyl-C₁-C₆-alkyl: z.B. N,N-Dipentylamino, N,N-Dihexylamino, N-Methyl-N-pentylamino, N-Ethyl-N-pentylamino, N-Methyl-N-hexylamino und N-Ethyl-N-hexylamino;
- 15 - Aryl sowie die Aryl-Teile von Aryloxy und Aryl-C₁-C₄-alkyl: ein- bis dreikerniger aromatischer Carbocyclus mit 6 bis 14 Ringgliedern, wie z.B. Phenyl, Naphthyl und Anthracenyl;
- 20 - 5-oder 6-gliedriges Heteroaryl sowie die 5-oder 6-gliedrigen Heteroaryl-Teile von 5-oder 6-gliedrigem Heteroaryl-C₁-C₆-alkyl: aromatische 5- oder 6-Ring-Heterocyclen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome, oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom, oder ein Sauerstoff- oder Schwefelatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Iothiazolyl, 4-Iothiazolyl, 5-Iothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-
- 25 -
- 30 -
- 35 -
- 40 -

19

Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl,
1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl, 1,3,4-Triazol-2-yl und Tetrazol-2-yl;
2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-
Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl,
1,2,4-Triazin-5-yl, 1,2,4-Triazin-6-yl und 1,2,4,5-Tetrazinyl;

5

In einer besonderen Ausführungsform haben die Variablen der Verbindungen der Formel I folgende Bedeutungen, wobei diese für sich allein betrachtet als auch in Kombination miteinander besondere Ausgestaltungen der Verbindungen der Formel I darstellen:
10

Bevorzugt sind die Benzolsulfonamide der Formel I, in der

- X¹ Wasserstoff, Fluor oder Chlor;
15 besonders bevorzugt Wasserstoff oder Fluor;
insbesondere bevorzugt Fluor;
bedeutet.

20 Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

- X² Wasserstoff, Cyano, CS-NH₂ oder Halogen;
besonders bevorzugt Wasserstoff, Cyano oder Halogen wie Fluor und Chlor;
insbesondere bevorzugt Chlor;
bedeutet.
25

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

- X¹ Wasserstoff, Fluor oder Chlor;
besonders bevorzugt Wasserstoff oder Fluor;
insbesondere bevorzugt Fluor; und
X² Wasserstoff, Cyano, CS-NH₂ oder Halogen;
besonders bevorzugt Wasserstoff, Cyano, Halogen wie Fluor und Chlor;
insbesondere bevorzugt Chlor;
bedeutet.
35

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

- X³ Wasserstoff, Cyano, C₁-C₆-Alkyl oder Phenyl-C₁-C₄-alkyl;
besonders bevorzugt Wasserstoff, Cyano, C₁-C₄-Alkyl wie CH₃, und C₂H₅, oder
Benzyl;
40

20

insbesondere bevorzugt Wasserstoff oder Cyano;
außerordentlich bevorzugt Wasserstoff;

bedeutet.

5

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der
Y eine Gruppe C(A)B;
besonders bevorzugt C(A)B, wobei A für Sauerstoff steht;
insbesondere bevorzugt C(A)B, wobei A für Sauerstoff und B für Sauerstoff oder
10 Schwefel stehen;
außerordentlich bevorzugt C(A)B, wobei A und B für Sauerstoff stehen;
bedeutet.

15

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der
Y eine Gruppe C(A)B;
besonders bevorzugt C(A)B, wobei A für Sauerstoff steht;
insbesondere bevorzugt C(A)B, wobei A für Sauerstoff und B für NR² stehen;
bedeutet.

20

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der
Y eine Gruppe C(A)B;
besonders bevorzugt C(A)B, wobei A für Sauerstoff steht;
25 insbesondere bevorzugt C(A)B, wobei A für Sauerstoff und B für eine Bindung
stehen;
bedeutet.

30

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der
R¹ Wasserstoff, Hydroxy, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₃-C₇-Cycloalkyl,
C₃-C₇-Cycloalkyl-C₁-C₄-alkyl, C₂-C₈-Alkenyl, C₂-C₈-Halogenalkenyl,
C₃-C₈-Alkinyl, C₁-C₈-Alkoxy, C₁-C₈-Alkoxy-C₁-C₄-alkyl, C₁-C₆-Alkoxy carbonyl-
35 C₁-C₄-alkyl, C₁-C₆-Alkoxy carbonyl-C₂-C₄-alkenyl, C₂-C₆-Alkenyloxycarbonyl-
C₁-C₄-alkyl, C₃-C₆-Alkinyloxycarbonyl-C₁-C₄-alkyl, C₁-C₆-Alkylthio-C₁-C₄-alkyl,
Aryl, Aryl-C₁-C₄-alkyl;
vier- bis sechsgliedriges Heterocycl, welches partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und
C₁-C₄-Alkoxy tragen kann;

21

vier- bis sechsgliedriges Heterocycl-C₁-C₄-alkyl, welches partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;

5 fünf- bis sechsgliedriges Heteroaryl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom, welches partiell oder vollständig halogeniert und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Amino, C₁-C₄-Alkylamino und Di(C₁-C₄-alkyl)amino tragen kann;

10 fünf- bis sechsgliedriges Heteroaryl-C₁-C₄-alkyl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom, welches partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;

15

besonders bevorzugt

Wasserstoff, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkoxy, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy carbonyl-C₁-C₄-alkyl, C₁-C₄-Alkoxy carbonyl-C₂-C₄-alkenyl, C₂-C₄-Alkenyloxycarbonyl-C₁-C₄-alkyl, C₃-C₆-Alkinyloxycarbonyl-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, Phenyl, Benzyl;

20

fünf- bis sechsgliedriges Heterocycl, welches partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;

25

fünf- bis sechsgliedriges Heteroaryl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom, welches partiell oder vollständig halogeniert und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Amino, C₁-C₄-Alkylamino und Di(C₁-C₄-alkyl)amino tragen kann;

30

insbesondere bevorzugt

C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₅-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, Phenyl, Benzyl;

35

fünf- bis sechsgliedriges Heterocycl, welches partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;

40

fünf- bis sechsgliedriges Heteroaryl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom, wobei die zwei letztgenannten Reste

22

partiell oder vollständig halogeniert sein können und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen können;

außerordentlich bevorzugt

- 5 C₁-C₄-Alkyl wie CH₃, C₂H₅, CH(CH₃)₂, -CH₂-CH₂-CH₃, C₁-C₄-Halogenalkyl wie CF₃, C₅-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, Phenyl, Benzyl, fünf- bis sechsgliedriges Heterocycl¹ oder fünf- bis sechsgliedriges Heteroaryl mit ein bis vier Stickstoffatomen, wobei die zwei letztgenannten Reste partiell oder vollständig halogeniert sein können
- 10 und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen können;
- bedeutet.

- 15 Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der R² Wasserstoff, C₁-C₆-Alkyl oder C₂-C₆-Alkenyl,
 besonders bevorzugt Wasserstoff, C₁-C₆-Alkyl oder C₂-C₆-Alkenyl,
 insbesondere bevorzugt Wasserstoff oder C₁-C₄-Alkyl,
 außerordentlich bevorzugt Wasserstoff, CH₃, C₂H₅ oder CH(CH₃)₂,
- 20 sehr außerordentlich bevorzugt Wasserstoff oder CH₃;
 bedeutet.

- 25 Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der R¹ und R² zusammen mit dem N-Atom, an das sie gebunden sind,
 einen drei- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl und C₁-C₆-Alkoxy tragen kann;
 besonders bevorzugt einen drei- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;
 insbesondere bevorzugt einen fünf- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;
30 außerordentlich bevorzugt einen fünf- oder sechsgliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;
 sehr außerordentlich einen Heterocyclus aus der Gruppe Pyrrolidin-1-yl, 2,3-Dihydropyrrol-1-yl, 2,5-Dihydropyrrol-1-yl, Piperidin-1-yl, 1,2,3,4-Tetrahydropyridin-1-yl, 1,2,3,6-Tetrahydropyridin-1-yl, Piperazin-1-yl, Morpholin-
- 35
- 40

23

4-yl, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann; bilden.

5

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der
Y C(A)B, wobei A und B für Sauerstoff stehen; und
R¹ die voranstehend genannten Bevorzugungen hat,
bedeutet.

10

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der
Y C(A)B, wobei A für Sauerstoff und B für NR² steht; und
R² Wasserstoff, C₁-C₈-Alkyl oder C₂-C₈-Alkenyl,
besonders bevorzugt Wasserstoff, C₁-C₆-Alkyl oder C₂-C₆-Alkenyl,
insbesondere bevorzugt Wasserstoff oder C₁-C₄-Alkyl,
außerordentlich bevorzugt Wasserstoff, CH₃, C₂H₅ oder CH(CH₃)₂;
sehr außerordentlich bevorzugt Wasserstoff oder CH₃;

15

20 besonders bevorzugt

Y C(=A)B, wobei A für Sauerstoff und B für NR² steht;
R² Wasserstoff, C₁-C₈-Alkyl oder C₂-C₈-Alkenyl,
besonders bevorzugt Wasserstoff, C₁-C₆-Alkyl oder C₂-C₆-Alkenyl,
insbesondere bevorzugt Wasserstoff oder C₁-C₄-Alkyl,
25 außerordentlich bevorzugt Wasserstoff, CH₃, C₂H₅ oder CH(CH₃)₂;
sehr außerordentlich bevorzugt Wasserstoff oder CH₃; und
R¹ die voranstehend genannten Bevorzugungen hat,
bedeutet.

30

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der
Y C(A)B wobei A für Sauerstoff und B für NR² steht; und
R¹ und R² zusammen mit dem N-Atom, an das sie gebunden sind,
einen drei- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder
35 vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl und C₁-C₈-Alkoxy tragen kann;
besonders bevorzugt einen drei- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;

24

insbesondere bevorzugt einen fünf- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann;

- 5 außerordentlich bevorzugt einen fünf- bis sechsgliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann; sehr außerordentlich einen Heterocyclus aus der Gruppe Pyrrolidin-1-yl, 2,3-Dihydropyrrol-1-yl, 2,5-Dihydropyrrol-1-yl, Piperidin-1-yl, 1,2,3,4-Tetrahydropyridin-1-yl, 1,2,3,6-Tetrahydropyridin-1-yl, Piperazin-1-yl, Morphin-10 4-yl, welcher seinerseits partiell oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-C₄-Alkyl und C₁-C₄-Alkoxy tragen kann; bilden.

- 15 Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der Y C(A)B, wobei A für Sauerstoff und B für eine Bindung stehen; und R¹ die voranstehend genannten bevorzugten Bedeutungen hat. bedeutet.

- 20 Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der Y eine Gruppe SO₂;

- 25 besonders bevorzugt
Y SO₂; und
R¹ die voranstehend genannten Bevorzugungen hat,
bedeutet.

- 30 Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der Y eine Gruppe SO₂NR²;

- 35 besonders bevorzugt
Y SO₂NR²; und
R² Wasserstoff, C₁-C₈-Alkyl oder C₂-C₈-Alkenyl,
besonders bevorzugt Wasserstoff, C₁-C₈-Alkyl oder C₂-C₈-Alkenyl,
insbesondere bevorzugt Wasserstoff oder C₁-C₄-Alkyl,
außerordentlich bevorzugt Wasserstoff, CH₃, C₂H₅ oder CH(CH₃)₂;
sehr außerordentlich bevorzugt Wasserstoff oder CH₃;

insbesondere bevorzugt

Y SO_2NR^2 ;

R² Wasserstoff, C₁-C₈-Alkyl oder C₂-C₈-Alkenyl,
besonders bevorzugt Wasserstoff, C₁-C₆-Alkyl oder C₂-C₆-Alkenyl,

5 insbesondere bevorzugt Wasserstoff oder C₁-C₄-Alkyl,
außerordentlich bevorzugt Wasserstoff, CH₃, C₂H₅ oder CH(CH₃)₂;
sehr außerordentlich bevorzugt Wasserstoff oder CH₃; und

R¹ die voranstehend genannten Bevorzugungen hat,
bedeutet.

10

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

Q Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²³, Q²⁴, Q²⁷, Q³¹, Q³², Q³⁴,
Q³⁸ oder Q³⁹;

15

besonders bevorzugt Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²⁴,
Q²⁷, Q³¹, Q³², Q³⁸ oder Q³⁹;

insbesondere bevorzugt Q⁵, Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ oder Q³⁹;
außerordentlich bevorzugt Q²¹, Q³² oder Q³⁸;

bedeutet.

20

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

Q Q¹, Q², Q³, Q⁴, Q⁸, Q⁷, Q⁸, Q⁹, Q¹⁰, Q¹¹, Q¹², Q¹³, Q¹⁴, Q¹⁵, Q¹⁶, Q¹⁷, Q¹⁸, Q¹⁹, Q²⁰,
Q²¹, Q²², Q²³, Q²⁴, Q²⁵, Q²⁶, Q²⁷, Q²⁸, Q²⁹, Q³⁰, Q³¹, Q³², Q³³, Q³⁴, Q³⁵, Q³⁶, Q³⁷,
Q³⁸ oder Q³⁹,

25

besonders bevorzugt Q¹, Q², Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²³, Q²⁴,
Q²⁷, Q³¹, Q³², Q³⁴, Q³⁸ oder Q³⁹,

insbesondere bevorzugt Q¹, Q², Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²⁴, Q²⁷,
Q³¹, Q³², Q³⁸ oder Q³⁹,

30

außerordentlich bevorzugt Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ oder Q³⁹,

sehr außerordentlich bevorzugt Q²¹, Q³² oder Q³⁸

bedeutet.

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

35 Q Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ oder Q³⁹;

besonders bevorzugt

Q⁷, wobei Y für SO₂, SO₂NR² oder C(A)B mit B = Sauerstoff oder NR², steht;

Q²¹, wobei Y für SO₂, SO₂NR² oder C(A)B mit B = Sauerstoff, Schwefel oder
40 NR², steht,

26

bevorzugt Y für SO₂NR² oder C(A)B mit B = Sauerstoff oder NR², steht,
sehr bevorzugt Y für SO₂NR² oder C(A)B mit B = Sauerstoff oder NR²,
und X² für Wasserstoff, Cyano oder Halogen wie Fluor
oder Chlor steht;

- 5 Q²²; Q²⁷;
Q³², wobei Y für SO₂, SO₂NR² oder C(A)B mit B = Sauerstoff, Schwefel oder NR²,
steht;
Q³⁸ oder Q³⁹;

- 10 insbesondere bevorzugt

Q²¹, wobei Y für SO₂, SO₂NR² oder C(A)B mit B = Sauerstoff, Schwefel
oder NR², steht,

bevorzugt Y für SO₂NR² oder C(A)B mit B = Sauerstoff oder NR², steht,
sehr bevorzugt Y für SO₂NR² oder C(A)B mit B = Sauerstoff oder NR²,
und X² für Wasserstoff, Cyano oder Halogen wie Fluor
oder Chlor steht;

Q³², wobei Y für SO₂, SO₂NR² oder C(A)B mit B = Sauerstoff, Schwefel
oder NR², steht; oder

Q³⁸;

- 20 bedeutet.

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

X¹ Wasserstoff, Fluor oder Chlor;

- 25 besonders bevorzugt Wasserstoff oder Fluor;

insbesondere bevorzugt Fluor;

X² Wasserstoff, Cyano, CS-NH₂ oder Halogen;

besonders bevorzugt Wasserstoff, Halogen wie Fluor oder Chlor;

insbesondere bevorzugt Chlor; und

- 30 Q Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²³, Q²⁴, Q²⁷, Q³¹, Q³², Q³⁴,
Q³⁸ oder Q³⁹,

besonders bevorzugt Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²⁴,
Q²⁷, Q³¹, Q³², Q³⁸ oder Q³⁹,

insbesondere bevorzugt Q⁵, Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ oder Q³⁹,

- 35 außerordentlich bevorzugt Q²¹, Q³² oder Q³⁸

bedeuten.

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

- 40 Q Q¹ bis Q³⁹; und

27

R³, R⁴, R⁷, R⁸, R¹¹, R¹², R¹⁸, R¹⁹, R²⁷, R²⁹, R³², R³³, R³⁸, R³⁹, R⁴⁴, R⁴⁵, R⁴⁶ und R⁴⁷

Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-

Halogenalkoxy, C₁-C₆-Alkylsulfonyl oder Amino;

bevorzugt Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-

5 Halogenalkoxy, C₁-C₄-Alkylsulfonyl oder Amino;

insbesondere bevorzugt Wasserstoff, CH₃, C₂H₅, CF₃, CHF₂, CH₂CF₃, OCH₃, OCHF₂, OCF₂CHF₂, SO₂CH₃ oder Amino;

R⁵, R⁶, R⁹, R¹⁰, R¹⁵, R¹⁶, R²⁰, R²¹, R³⁰, R³¹, R³⁵, R³⁸, R⁴¹, R⁴² und R⁴³

Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-

10 Halogenalkoxy, C₁-C₆-Alkylsulfonyl oder Amino;

bevorzugt Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-

Halogenalkoxy, C₁-C₄-Alkylsulfonyl oder Amino;

insbesondere bevorzugt Wasserstoff, CH₃, C₂H₅, CF₃, CHF₂, OCH₃, OCHF₂, SO₂CH₃ oder Amino;

15 R¹³, R¹⁴, R²², R²³, R²⁵ und R²⁶

Wasserstoff, Halogen oder C₁-C₄-Alkyl;

besonders bevorzugt Wasserstoff, Halogen oder CH₃;

insbesondere bevorzugt Wasserstoff, Chlor oder Brom;

R¹⁷, R²⁸, R³⁴, R³⁷ oder R⁴⁰

20 Wasserstoff, Halogen oder C₁-C₄-Alkyl;

besonders bevorzugt Wasserstoff, Halogen oder CH₃;

insbesondere bevorzugt Wasserstoff, Chlor oder Brom;

bedeuten.

25

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

Q Q⁵, Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ oder Q³⁹,

besonders bevorzugt Q²¹, Q³² oder Q³⁸;

A¹, A⁸, A⁹, A¹⁰, A¹¹, A¹², A¹³, A¹⁵, A¹⁶ und A¹⁷ Sauerstoff;

30 R⁷, R⁸, R²⁹, R³², R³³, R³⁸, R³⁹, R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷

Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-

Halogenalkoxy, C₁-C₆-Alkylsulfonyl oder Amino;

bevorzugt Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-

Halogenalkoxy, C₁-C₄-Alkylsulfonyl oder Amino;

35 insbesondere bevorzugt Wasserstoff, CH₃, C₂H₅, CF₃, CHF₂, CH₂CF₃, OCH₃, OCHF₂, OCF₂CHF₂, SO₂CH₃ oder Amino;

R³⁰, R³¹, R³⁵, R³⁶, R⁴¹, R⁴², R⁴³

Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-

40 Halogenalkoxy, C₁-C₆-Alkylsulfonyl oder Amino;

28

bevorzugt Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylsulfonyl oder Amino;
insbesondere bevorzugt Wasserstoff, CH₃, C₂H₅, CF₃, CHF₂, OCH₃, OCHF₂, SO₂CH₃ oder Amino; und

5

R³⁴, R³⁷, R⁴⁰

Wasserstoff, Halogen oder C₁-C₄-Alkyl;
besonders bevorzugt Wasserstoff, Halogen oder CH₃;
insbesondere bevorzugt Wasserstoff, Chlor oder Brom;

10 bedeuten.

Ebenso bevorzugt sind die Benzolsulfonamid-Derivate der Formel I, in der

Q Q¹, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q²¹, Q²³, Q²⁴, Q³¹ oder Q³⁴;

A¹, A², A³, A⁴, A⁵, A⁶, A⁷, A⁸, A⁹, A¹⁴, A¹⁶ und A¹⁷ Sauerstoff bedeuten; und

R³ und R⁴, R⁵ und R⁶, R⁹ und R¹⁰, R¹⁵ und R¹⁶, R¹⁸ und R¹⁹, R²⁰ und R²¹, R³⁰ und R³¹

oder R⁴⁶ und R⁴⁷ zusammen mit den Atomen, an die sie gebunden sind, einen
drei- bis siebengliedrigen Heterocyclus bilden, welcher seinerseits partiell oder
vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-

20 C₆-Alkyl und C₁-C₆-Alkoxy tragen kann;

besonders bevorzugt

Q Q¹, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q²¹, Q²⁴ oder Q³¹;

A¹, A², A³, A⁴, A⁵, A⁶, A⁸, A⁹, A¹⁶ und A¹⁷ Sauerstoff bedeuten; und

25 R³ und R⁴, R⁵ und R⁶, R⁹ und R¹⁰, R¹⁵ und R¹⁶, R¹⁸ und R¹⁹, R²⁰ und R²¹, R³⁰ und R³¹

oder R⁴⁶ und R⁴⁷ zusammen mit den Atomen, an die sie gebunden sind, einen
drei- bis siebengliedrigen Heterocyclus bilden, welcher seinerseits partiell oder
vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Gruppe C₁-
C₆-Alkyl und C₁-C₆-Alkoxy tragen kann;

30

insbesondere bevorzugt

Q Q⁷ oder Q²¹,

A⁸, A⁹, A¹⁶ und A¹⁷ Sauerstoff;

R²⁹ Wasserstoff, C₁-C₆-Alkyl oder Amino bedeuten; und

35 R³⁰ und R³¹ oder R⁴⁶ und R⁴⁷ zusammen mit den Atomen, an die sie gebunden sind,
einen drei- bis siebengliedrigen Heterocyclus bilden, welcher seinerseits partiell
oder vollständig halogeniert sein kann und/oder ein bis drei Reste aus der Grup-
pe C₁-C₆-Alkyl und C₁-C₆-Alkoxy tragen kann,

bedeuten.

40

Außerordentlich bevorzugt sind die Verbindungen der Formel I.1[entspricht Formel I mit X¹ = Fluor; X² = Chlor; X³ = Wasserstoff; Y = -C(A)B (mit A = Sauerstoff, B = NR²); Q = Q²¹ (mit A⁸, A⁹ = Sauerstoff, R²⁹ = Methyl, R³⁰ = Trifluormethyl und R³¹ = Wasserstoff],

- 5 insbesondere die Verbindungen der Formel I.1.1 bis I.1.689 der Tabelle 1, wobei die Definitionen der Variablen X¹, X², X³, Y, A, B, R¹, R² und Q nicht nur in Kombination miteinander sondern auch jeweils für sich allein betrachtet für die erfindungsgemäßen Verbindungen eine besondere Rolle spielen.

10

Tabelle 1

No.	R ¹	R ²
I.1.1	CH ₃	H
I.1.2	C ₂ H ₅	H
I.1.3	CH ₂ CH ₂ CH ₃	H
I.1.4	CH ₂ CH ₂ CH ₂ CH ₃	H
I.1.5	CH(CH ₃) ₂	H
I.1.6	CH(CH ₃)CH ₂ CH ₃	H
I.1.7	CH ₂ CH(CH ₃) ₂	H
I.1.8	C(CH ₃) ₃	H
I.1.9	CH(CH ₃)CH ₂ CH ₂ CH ₃	H
I.1.10	CH ₂ CH(CH ₃)CH ₂ CH ₃	H
I.1.11	CH ₂ CH ₂ CH(CH ₃) ₂	H
I.1.12	CH ₂ CHF ₂	H
I.1.13	CH ₂ CF ₃	H
I.1.14	CH ₂ CH ₂ Cl	H
I.1.15	CH ₂ CH ₂ Br	H
I.1.16	CH ₂ CH ₂ CN	H
I.1.17	CH(CH ₃)CN	H
I.1.18	CH ₂ CH(CH ₃)CN	H
I.1.19	Cyclopropyl	H
I.1.20	CH ₂ -Cyclopropyl	H

I.1.21	Cyclopentyl	H
I.1.22	CH ₂ -Cyclopentyl	H
I.1.23	Cyclohexyl	H
I.1.24	CH ₂ CH=CH ₂	H
I.1.25	C(CH ₃)=CH ₂	H
I.1.26	CH=CHCH ₃	H
I.1.27	CH ₂ CH=CHCH ₃	H
I.1.28	CH ₂ CF=CF ₂	H
I.1.29	CH ₂ C≡CH	H
I.1.30	CH(CH ₃)-C≡CH	H
I.1.31	CH ₂ -CO-OCH ₃	H
I.1.32	CH ₂ CH ₂ -CO-OCH ₃	H
I.1.33	CH ₂ -CO-OC ₂ H ₅	H
I.1.34	CH(CH ₃)-CO-OCH ₃	H
I.1.35	C(CH ₃) ₂ -CO-OCH ₃	H
I.1.36	CH=CH-CO-OCH ₃	H
I.1.37	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	H
I.1.38	CH ₂ CH ₂ OCH ₃	H
I.1.39	CH ₂ CH ₂ OC ₂ H ₅	H
I.1.40	CH ₂ CH ₂ SCH ₃	H
I.1.41	CH ₂ CH ₂ S(O)CH ₃	H
I.1.42	CH ₂ CH ₂ SO ₂ CH ₃	H
I.1.43	CH ₂ (1,3-Dioxolanyl)	H
I.1.44	CH ₂ (2-Furyl)	H
I.1.45	CH ₂ (3-Furyl)	H
I.1.46	CH ₂ (2-Thienyl)	H
I.1.47	CH ₂ (3-Thienyl)	H
I.1.48	Phenyl	H
I.1.49	2-Chlorophenyl	H
I.1.50	3-Chlorophenyl	H
I.1.51	4-Chlorophenyl	H
I.1.52	2-Fluorophenyl	H
I.1.53	3-Fluorophenyl	H
I.1.54	4-Fluorophenyl	H
I.1.55	2-Methylphenyl	H
I.1.56	3-Methylphenyl	H
I.1.57	4-Methylphenyl	H
I.1.58	2-Methoxyphenyl	H

I.1.59	3-Methoxyphenyl	H
I.1.60	4-Methoxyphenyl	H
I.1.61	2-(Methoxycarbonyl)phenyl	H
I.1.62	3-(Methoxycarbonyl)phenyl	H
I.1.63	4-(Methoxycarbonyl)phenyl	H
I.1.64	2-Nitrophenyl	H
I.1.65	3-Nitrophenyl	H
I.1.66	4-Nitrophenyl	H
I.1.67	2-(Dimethylamino)phenyl	H
I.1.68	3-(Dimethylamino)phenyl	H
I.1.69	4-(Dimethylamino)phenyl	H
I.1.70	2-(Trifluoromethyl)phenyl	H
I.1.71	3-(Trifluoromethyl)phenyl	H
I.1.72	4-(Trifluoromethyl)phenyl	H
I.1.73	3-(Phenoxy)phenyl	H
I.1.74	4-(Phenoxy)phenyl	H
I.1.75	2,4-Difluorophenyl	H
I.1.76	2,4-Dichlorophenyl	H
I.1.77	3,4-Difluorophenyl	H
I.1.78	3,4-Dichlorophenyl	H
I.1.79	3,5-Difluorophenyl	H
I.1.80	3,5-Dichlorophenyl	H
I.1.81	2-Pyridyl	H
I.1.82	3-Pyridyl	H
I.1.83	4-Pyridyl	H
I.1.84	α -Naphthyl	H
I.1.84	Benzyl	H
I.1.86	2-Chlorobenzyl	H
I.1.87	3-Chlorobenzyl	H
I.1.88	4-Chlorobenzyl	H
I.1.89	2-Methoxybenzyl	H
I.1.90	3-Methoxybenzyl	H
I.1.91	4-Methoxybenzyl	H
I.1.92	4-Chlor-6-methoxy-1,3-pyrimidin-2-yl	H
I.1.93	4-Methyl-6-methoxy-1,3-pyrimidin-2-yl	H
I.1.94	4-Methyl-6-methylamino-1,3-pyrimidin-2-yl	H
I.1.95	4,6-Dimethyl-1,3-pyrimidin-2-yl	H
I.1.96	4-Trifluormethyl-6-methoxy-1,3-pyrimidin-2-yl	H

I.1.97	4-Methoxy-6-methylamino-1,3-pyrimidin-2-yl	H
I.1.98	4-Difluormethoxy-6-methyl-1,3-pyrimidin-2-yl	H
I.1.99	4,6-Bis(difluormethoxy)-1,3-pyrimidin-2-yl	H
I.1.100	4-Methyl-6-methoxy-1,3,5-triazin-2-yl	H
I.1.101	4,6-Dimethyl-1,3,5-triazin-2-yl	H
I.1.102	4-Methylamino-6-methoxy-1,3,5-triazin-2-yl	H
I.1.103	4-Trifluormethyl-6-methoxy-1,3,5-triazin-2-yl	H
I.1.104	4,6-Dimethoxy-1,3,5-triazin-2-yl	H
I.1.105	CH ₃	CH ₃
I.1.106	C ₂ H ₅	CH ₃
I.1.107	CH ₂ CH ₂ CH ₃	CH ₃
I.1.108	CH ₂ CH ₂ CH ₂ CH ₃	CH ₃
I.1.109	CH(CH ₃) ₂	CH ₃
I.1.110	CH(CH ₃)C ₂ H ₅	CH ₃
I.1.111	CH ₂ CH(CH ₃) ₂	CH ₃
I.1.112	C(CH ₃) ₃	CH ₃
I.1.113	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH ₃
I.1.114	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH ₃
I.1.115	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₃
I.1.116	CH ₂ CHF ₂	CH ₃
I.1.117	CH ₂ CF ₃	CH ₃
I.1.118	CH ₂ CH ₂ Cl	CH ₃
I.1.119	CH ₂ CH ₂ Br	CH ₃
I.1.120	CH ₂ CH ₂ CN	CH ₃
I.1.121	CH(CH ₃)CN	CH ₃
I.1.122	CH ₂ CH(CH ₃)CN	CH ₃
I.1.123	Cyclopropyl	CH ₃
I.1.124	CH ₂ -Cyclopropyl	CH ₃
I.1.125	Cyclopentyl	CH ₃
I.1.126	CH ₂ -Cyclopentyl	CH ₃
I.1.127	Cyclohexyl	CH ₃
I.1.128	CH ₂ CH=CH ₂	CH ₃
I.1.129	C(CH ₃)=CH ₂	CH ₃
I.1.130	CH=CHCH ₃	CH ₃
I.1.131	CH ₂ CH=CHCH ₃	CH ₃
I.1.132	CH ₂ CF=CF ₂	CH ₃
I.1.133	CH ₂ C≡CH	CH ₃
I.1.134	CH(CH ₃)—C≡CH	CH ₃

I.1.135	OH	CH ₃
I.1.136	OCH ₃	CH ₃
I.1.137	CH ₂ -CO-OCH ₃	CH ₃
I.1.138	CH ₂ CH ₂ -CO-OCH ₃	CH ₃
I.1.139	CH ₂ -CO-OC ₂ H ₅	CH ₃
I.1.140	CH(CH ₃)-CO-OCH ₃	CH ₃
I.1.141	C(CH ₃) ₂ -CO-OCH ₃	CH ₃
I.1.142	CH=CH-CO-OCH ₃	CH ₃
I.1.143	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	CH ₃
I.1.144	CH ₂ CH ₂ OCH ₃	CH ₃
I.1.145	CH ₂ CH ₂ OC ₂ H ₅	CH ₃
I.1.146	CH ₂ CH ₂ SCH ₃	CH ₃
I.1.147	CH ₂ CH ₂ S(O)CH ₃	CH ₃
I.1.148	CH ₂ CH ₂ SO ₂ CH ₃	CH ₃
I.1.149	CH ₂ (1,3-Dioxolanyl)	CH ₃
I.1.150	CH ₂ (2-Furyl)	CH ₃
I.1.151	CH ₂ (3-Furyl)	CH ₃
I.1.152	CH ₂ (2-Thienyl)	CH ₃
I.1.153	CH ₂ (3-Thienyl)	CH ₃
I.1.154	Phenyl	CH ₃
I.1.155	2-Chlorophenyl	CH ₃
I.1.156	3-Chlorophenyl	CH ₃
I.1.157	4-Chlorophenyl	CH ₃
I.1.158	2-Fluorophenyl	CH ₃
I.1.159	3-Fluorophenyl	CH ₃
I.1.160	4-Fluorophenyl	CH ₃
I.1.161	2-Methylphenyl	CH ₃
I.1.162	3-Methylphenyl	CH ₃
I.1.163	4-Methylphenyl	CH ₃
I.1.164	2-Methoxyphenyl	CH ₃
I.1.165	3-Methoxyphenyl	CH ₃
I.1.166	4-Methoxyphenyl	CH ₃
I.1.167	2-(Methoxycarbonyl)phenyl	CH ₃
I.1.168	3-(Methoxycarbonyl)phenyl	CH ₃
I.1.169	4-(Methoxycarbonyl)phenyl	CH ₃
I.1.170	2-Nitrophenyl	CH ₃
I.1.171	3-Nitrophenyl	CH ₃
I.1.172	4-Nitrophenyl	CH ₃

I.1.173	2-(Dimethylamino)phenyl	CH ₃
I.1.174	3-(Dimethylamino)phenyl	CH ₃
I.1.175	4-(Dimethylamino)phenyl	CH ₃
I.1.176	2-(Trifluoromethyl)phenyl	CH ₃
I.1.177	3-(Trifluoromethyl)phenyl	CH ₃
I.1.178	4-(Trifluoromethyl)phenyl	CH ₃
I.1.179	3-(Phenoxy)phenyl	CH ₃
I.1.180	4-(Phenoxy)phenyl	CH ₃
I.1.181	2,4-Difluorophenyl	CH ₃
I.1.182	2,4-Dichlorophenyl	CH ₃
I.1.183	3,4-Difluorophenyl	CH ₃
I.1.184	3,4-Dichlorophenyl	CH ₃
I.1.185	3,5-Difluorophenyl	CH ₃
I.1.186	3,5-Dichlorophenyl	CH ₃
I.1.187	2-Pyridyl	CH ₃
I.1.188	3-Pyridyl	CH ₃
I.1.189	4-Pyridyl	CH ₃
I.1.190	α -Naphthyl	CH ₃
I.1.191	Benzyl	CH ₃
I.1.192	2-Chlorobenzyl	CH ₃
I.1.193	3-Chlorobenzyl	CH ₃
I.1.194	4-Chlorobenzyl	CH ₃
I.1.195	2-Methoxybenzyl	CH ₃
I.1.196	3-Methoxybenzyl	CH ₃
I.1.197	4-Methoxybenzyl	CH ₃
I.1.198	C ₂ H ₅	C ₂ H ₅
I.1.199	CH ₂ CH ₂ CH ₃	C ₂ H ₅
I.1.200	CH ₂ CH ₂ CH ₂ CH ₃	C ₂ H ₅
I.1.201	CH(CH ₃) ₂	C ₂ H ₅
I.1.202	CH(CH ₃)CH ₂ CH ₃	C ₂ H ₅
I.1.203	CH ₂ CH(CH ₃) ₂	C ₂ H ₅
I.1.204	C(CH ₃) ₃	C ₂ H ₅
I.1.205	CH(CH ₃)CH ₂ CH ₂ CH ₃	C ₂ H ₅
I.1.206	CH ₂ CH(CH ₃)CH ₂ CH ₃	C ₂ H ₅
I.1.207	CH ₂ CH ₂ CH(CH ₃) ₂	C ₂ H ₅
I.1.208	CH ₂ CHF ₂	C ₂ H ₅
I.1.209	CH ₂ CF ₃	C ₂ H ₅
I.1.210	CH ₂ CH ₂ Cl	C ₂ H ₅

I.1.211	CH ₂ CH ₂ Br	C ₂ H ₅
I.1.212	CH ₂ CH ₂ CN	C ₂ H ₅
I.1.213	CH(CH ₃)CN	C ₂ H ₅
I.1.214	CH ₂ CH(CH ₃)CN	C ₂ H ₅
I.1.215	Cyclopropyl	C ₂ H ₅
I.1.216	CH ₂ -Cyclopropyl	C ₂ H ₅
I.1.217	Cyclopentyl	C ₂ H ₅
I.1.218	CH ₂ -Cyclopentyl	C ₂ H ₅
I.1.219	Cyclohexyl	C ₂ H ₅
I.1.220	CH ₂ CH=CH ₂	C ₂ H ₅
I.1.221	C(CH ₃)=CH ₂	C ₂ H ₅
I.1.222	CH=CHCH ₃	C ₂ H ₅
I.1.223	CH ₂ CH=CHCH ₃	C ₂ H ₅
I.1.224	CH ₂ CF=CF ₂	C ₂ H ₅
I.1.225	CH ₂ -C≡CH	C ₂ H ₅
I.1.226	CH(CH ₃)-C≡CH	C ₂ H ₅
I.1.227	OH	C ₂ H ₅
I.1.228	OCH ₃	C ₂ H ₅
I.1.229	CH ₂ -CO-OCH ₃	C ₂ H ₅
I.1.230	CH ₂ -CH ₂ -CO-OCH ₃	C ₂ H ₅
I.1.231	CH ₂ -CO-OC ₂ H ₅	C ₂ H ₅
I.1.232	CH(CH ₃)-CO-OCH ₃	C ₂ H ₅
I.1.233	C(CH ₃) ₂ -CO-OCH ₃	C ₂ H ₅
I.1.234	CH=CH-CO-OCH ₃	C ₂ H ₅
I.1.235	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	C ₂ H ₅
I.1.236	CH ₂ CH ₂ OCH ₃	C ₂ H ₅
I.1.237	CH ₂ CH ₂ OC ₂ H ₅	C ₂ H ₅
I.1.238	CH ₂ CH ₂ SCH ₃	C ₂ H ₅
I.1.239	CH ₂ CH ₂ S(O)CH ₃	C ₂ H ₅
I.1.240	CH ₂ CH ₂ SO ₂ CH ₃	C ₂ H ₅
I.1.241	CH ₂ (1,3-Dioxolanyl)	C ₂ H ₅
I.1.242	CH ₂ (2-Furyl)	C ₂ H ₅
I.1.243	CH ₂ (3-Furyl)	C ₂ H ₅
I.1.244	CH ₂ (2-Thienyl)	C ₂ H ₅
I.1.245	CH ₂ (3-Thienyl)	C ₂ H ₅
I.1.246	Phenyl	C ₂ H ₅
I.1.247	2-Chlorophenyl	C ₂ H ₅
I.1.248	3-Chlorophenyl	C ₂ H ₅

I.1.249	4-Chlorophenyl	C ₂ H ₅
I.1.250	2-Fluorophenyl	C ₂ H ₅
I.1.251	3-Fluorophenyl	C ₂ H ₅
I.1.252	4-Fluorophenyl	C ₂ H ₅
I.1.253	2-Methylphenyl	C ₂ H ₅
I.1.254	3-Methylphenyl	C ₂ H ₅
I.1.255	4-Methylphenyl	C ₂ H ₅
I.1.256	2-Methoxyphenyl	C ₂ H ₅
I.1.257	3-Methoxyphenyl	C ₂ H ₅
I.1.258	4-Methoxyphenyl	C ₂ H ₅
I.1.259	2-(Methoxycarbonyl)phenyl	C ₂ H ₅
I.1.260	3-(Methoxycarbonyl)phenyl	C ₂ H ₅
I.1.261	4-(Methoxycarbonyl)phenyl	C ₂ H ₅
I.1.262	2-Nitrophenyl	C ₂ H ₅
I.1.263	3-Nitrophenyl	C ₂ H ₅
I.1.264	4-Nitrophenyl	C ₂ H ₅
I.1.265	2-(Dimethylamino)phenyl	C ₂ H ₅
I.1.266	3-(Dimethylamino)phenyl	C ₂ H ₅
I.1.267	4-(Dimethylamino)phenyl	C ₂ H ₅
I.1.268	2-(Trifluoromethyl)phenyl	C ₂ H ₅
I.1.269	3-(Trifluoromethyl)phenyl	C ₂ H ₅
I.1.270	4-(Trifluoromethyl)phenyl	C ₂ H ₅
I.1.271	3-(Phenoxy)phenyl	C ₂ H ₅
I.1.272	4-(Phenoxy)phenyl	C ₂ H ₅
I.1.273	2,4-Difluorophenyl	C ₂ H ₅
I.1.274	2,4-Dichlorophenyl	C ₂ H ₅
I.1.275	3,4-Difluorophenyl	C ₂ H ₅
I.1.276	3,4-Dichlorophenyl	C ₂ H ₅
I.1.277	3,5-Difluorophenyl	C ₂ H ₅
I.1.278	3,5-Dichlorophenyl	C ₂ H ₅
I.1.279	2-Pyridyl	C ₂ H ₅
I.1.280	3-Pyridyl	C ₂ H ₅
I.1.281	4-Pyridyl	C ₂ H ₅
I.1.282	α -Naphthyl	C ₂ H ₅
I.1.283	Benzyl	C ₂ H ₅
I.1.284	2-Chlorobenzyl	C ₂ H ₅
I.1.285	3-Chlorobenzyl	C ₂ H ₅
I.1.286	4-Chlorobenzyl	C ₂ H ₅

I.1.287	2-Methoxybenzyl	C ₂ H ₅
I.1.288	3-Methoxybenzyl	C ₂ H ₅
I.1.289	4-Methoxybenzyl	C ₂ H ₅
I.1.290	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
I.1.291	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
I.1.292	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃
I.1.293	CH(CH ₃)CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
I.1.294	CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃
I.1.295	C(CH ₃) ₃	CH ₂ CH ₂ CH ₃
I.1.296	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
I.1.297	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
I.1.298	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃
I.1.299	CH ₂ CHF ₂	CH ₂ CH ₂ CH ₃
I.1.300	CH ₂ CF ₃	CH ₂ CH ₂ CH ₃
I.1.301	CH ₂ CH ₂ Cl	CH ₂ CH ₂ CH ₃
I.1.302	CH ₂ CH ₂ Br	CH ₂ CH ₂ CH ₃
I.1.303	CH ₂ CH ₂ CN	CH ₂ CH ₂ CH ₃
I.1.304	CH(CH ₃)CN	CH ₂ CH ₂ CH ₃
I.1.305	CH ₂ CH(CH ₃)CN	CH ₂ CH ₂ CH ₃
I.1.306	Cyclopropyl	CH ₂ CH ₂ CH ₃
I.1.307	CH ₂ -Cyclopropyl	CH ₂ CH ₂ CH ₃
I.1.308	Cyclopentyl	CH ₂ CH ₂ CH ₃
I.1.309	CH ₂ -Cyclopentyl	CH ₂ CH ₂ CH ₃
I.1.310	Cyclohexyl	CH ₂ CH ₂ CH ₃
I.1.311	CH ₂ CH=CH ₂	CH ₂ CH ₂ CH ₃
I.1.312	C(CH ₃)=CH ₂	CH ₂ CH ₂ CH ₃
I.1.313	CH=CHCH ₃	CH ₂ CH ₂ CH ₃
I.1.314	CH ₂ CH=CHCH ₃	CH ₂ CH ₂ CH ₃
I.1.315	CH ₂ CF=CF ₂	CH ₂ CH ₂ CH ₃
I.1.316	CH ₂ -C≡CH	CH ₂ CH ₂ CH ₃
I.1.317	CH(CH ₃)-C≡CH	CH ₂ CH ₂ CH ₃
I.1.318	OH	CH ₂ CH ₂ CH ₃
I.1.319	OCH ₃	CH ₂ CH ₂ CH ₃
I.1.320	CH ₂ -CO-OCH ₃	CH ₂ CH ₂ CH ₃
I.1.321	CH ₂ -CH ₂ -CO-OCH ₃	CH ₂ CH ₂ CH ₃
I.1.322	CH ₂ -CO-OC ₂ H ₅	CH ₂ CH ₂ CH ₃
I.1.323	CH(CH ₃)-CO-OCH ₃	CH ₂ CH ₂ CH ₃
I.1.324	C(CH ₃) ₂ -CO-OCH ₃	CH ₂ CH ₂ CH ₃

I.1.325	CH=CH-CO-OCH ₃	CH ₂ CH ₂ CH ₃
I.1.326	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	CH ₂ CH ₂ CH ₃
I.1.327	CH ₂ CH ₂ OCH ₃	CH ₂ CH ₂ CH ₃
I.1.328	CH ₂ CH ₂ OC ₂ H ₅	CH ₂ CH ₂ CH ₃
I.1.329	CH ₂ CH ₂ SCH ₃	CH ₂ CH ₂ CH ₃
I.1.330	CH ₂ CH ₂ S(O)CH ₃	CH ₂ CH ₂ CH ₃
I.1.331	CH ₂ CH ₂ SO ₂ CH ₃	CH ₂ CH ₂ CH ₃
I.1.332	CH ₂ (1,3-Dioxolanyl)	CH ₂ CH ₂ CH ₃
I.1.333	CH ₂ (2-Furyl)	CH ₂ CH ₂ CH ₃
I.1.334	CH ₂ (3-Furyl)	CH ₂ CH ₂ CH ₃
I.1.335	CH ₂ (2-Thienyl)	CH ₂ CH ₂ CH ₃
I.1.336	CH ₂ (3-Thienyl)	CH ₂ CH ₂ CH ₃
I.1.337	Phenyl	CH ₂ CH ₂ CH ₃
I.1.338	2-Chlorophenyl	CH ₂ CH ₂ CH ₃
I.1.339	3-Chlorophenyl	CH ₂ CH ₂ CH ₃
I.1.340	4-Chlorophenyl	CH ₂ CH ₂ CH ₃
I.1.341	2-Fluorophenyl	CH ₂ CH ₂ CH ₃
I.1.342	3-Fluorophenyl	CH ₂ CH ₂ CH ₃
I.1.343	4-Fluorophenyl	CH ₂ CH ₂ CH ₃
I.1.344	2-Methylphenyl	CH ₂ CH ₂ CH ₃
I.1.345	3-Methylphenyl	CH ₂ CH ₂ CH ₃
I.1.346	4-Methylphenyl	CH ₂ CH ₂ CH ₃
I.1.347	2-Methoxyphenyl	CH ₂ CH ₂ CH ₃
I.1.348	3-Methoxyphenyl	CH ₂ CH ₂ CH ₃
I.1.349	4-Methoxyphenyl	CH ₂ CH ₂ CH ₃
I.1.350	2-(Methoxycarbonyl)phenyl	CH ₂ CH ₂ CH ₃
I.1.351	3-(Methoxycarbonyl)phenyl	CH ₂ CH ₂ CH ₃
I.1.352	4-(Methoxycarbonyl)phenyl	CH ₂ CH ₂ CH ₃
I.1.353	2-Nitrophenyl	CH ₂ CH ₂ CH ₃
I.1.354	3-Nitrophenyl	CH ₂ CH ₂ CH ₃
I.1.355	4-Nitrophenyl	CH ₂ CH ₂ CH ₃
I.1.356	2-(Dimethylamino)phenyl	CH ₂ CH ₂ CH ₃
I.1.357	3-(Dimethylamino)phenyl	CH ₂ CH ₂ CH ₃
I.1.358	4-(Dimethylamino)phenyl	CH ₂ CH ₂ CH ₃
I.1.359	2-(Trifluoromethyl)phenyl	CH ₂ CH ₂ CH ₃
I.1.360	3-(Trifluoromethyl)phenyl	CH ₂ CH ₂ CH ₃
I.1.361	4-(Trifluoromethyl)phenyl	CH ₂ CH ₂ CH ₃
I.1.362	3-(Phenoxy)phenyl	CH ₂ CH ₂ CH ₃

I.1.363	4-(Phenoxy)phenyl	CH ₂ CH ₂ CH ₃
I.1.364	2,4-Difluorophenyl	CH ₂ CH ₂ CH ₃
I.1.365	2,4-Dichlorophenyl	CH ₂ CH ₂ CH ₃
I.1.366	3,4-Difluorophenyl	CH ₂ CH ₂ CH ₃
I.1.367	3,4-Dichlorophenyl	CH ₂ CH ₂ CH ₃
I.1.368	3,5-Difluorophenyl	CH ₂ CH ₂ CH ₃
I.1.369	3,5-Dichlorophenyl	CH ₂ CH ₂ CH ₃
I.1.370	2-Pyridyl	CH ₂ CH ₂ CH ₃
I.1.371	3-Pyridyl	CH ₂ CH ₂ CH ₃
I.1.372	4-Pyridyl	CH ₂ CH ₂ CH ₃
I.1.373	α -Naphthyl	CH ₂ CH ₂ CH ₃
I.1.374	Benzyl	CH ₂ CH ₂ CH ₃
I.1.375	2-Chlorobenzyl	CH ₂ CH ₂ CH ₃
I.1.376	3-Chlorobenzyl	CH ₂ CH ₂ CH ₃
I.1.377	4-Chlorobenzyl	CH ₂ CH ₂ CH ₃
I.1.378	2-Methoxybenzyl	CH ₂ CH ₂ CH ₃
I.1.379	3-Methoxybenzyl	CH ₂ CH ₂ CH ₃
I.1.380	4-Methoxybenzyl	CH ₂ CH ₂ CH ₃
I.1.381	CH ₂ CH ₂ CH ₂ CH ₃	CH(CH ₃) ₂
I.1.382	CH(CH ₃) ₂	CH(CH ₃) ₂
I.1.383	CH(CH ₃)CH ₂ CH ₃	CH(CH ₃) ₂
I.1.384	CH ₂ CH(CH ₃) ₂	CH(CH ₃) ₂
I.1.385	C(CH ₃) ₃	CH(CH ₃) ₂
I.1.386	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH(CH ₃) ₂
I.1.387	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH(CH ₃) ₂
I.1.388	CH ₂ CH ₂ CH(CH ₃) ₂	CH(CH ₃) ₂
I.1.389	CH ₂ CHF ₂	CH(CH ₃) ₂
I.1.390	CH ₂ CF ₃	CH(CH ₃) ₂
I.1.391	CH ₂ CH ₂ Cl	CH(CH ₃) ₂
I.1.392	CH ₂ CH ₂ Br	CH(CH ₃) ₂
I.1.393	CH ₂ CH ₂ CN	CH(CH ₃) ₂
I.1.394	CH(CH ₃)CN	CH(CH ₃) ₂
I.1.395	CH ₂ CH(CH ₃)CN	CH(CH ₃) ₂
I.1.396	Cyclopropyl	CH(CH ₃) ₂
I.1.397	CH ₂ -Cyclopropyl	CH(CH ₃) ₂
I.1.398	Cyclopentyl	CH(CH ₃) ₂
I.1.399	CH ₂ -Cyclopentyl	CH(CH ₃) ₂
I.1.400	Cyclohexyl	CH(CH ₃) ₂

I.1.401	CH ₂ CH=CH ₂	CH(CH ₃) ₂
I.1.402	C(CH ₃)=CH ₂	CH(CH ₃) ₂
I.1.403	CH=CHCH ₃	CH(CH ₃) ₂
I.1.404	CH ₂ CH=CHCH ₃	CH(CH ₃) ₂
I.1.405	CH ₂ CF=CF ₂	CH(CH ₃) ₂
I.1.406	CH ₂ -C≡CH	CH(CH ₃) ₂
I.1.407	CH(CH ₃)-C≡CH	CH(CH ₃) ₂
I.1.408	OH	CH(CH ₃) ₂
I.1.409	OCH ₃	CH(CH ₃) ₂
I.1.410	CH ₂ -CO-OCH ₃	CH(CH ₃) ₂
I.1.411	CH ₂ -CH ₂ -CO-OCH ₃	CH(CH ₃) ₂
I.1.412	CH ₂ -CO-OC ₂ H ₅	CH(CH ₃) ₂
I.1.413	CH(CH ₃)-CO-OCH ₃	CH(CH ₃) ₂
I.1.414	C(CH ₃) ₂ -CO-OCH ₃	CH(CH ₃) ₂
I.1.415	CH=CH-CO-OCH ₃	CH(CH ₃) ₂
I.1.416	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	CH(CH ₃) ₂
I.1.417	CH ₂ CH ₂ OCH ₃	CH(CH ₃) ₂
I.1.418	CH ₂ CH ₂ OC ₂ H ₅	CH(CH ₃) ₂
I.1.419	CH ₂ CH ₂ SCH ₃	CH(CH ₃) ₂
I.1.420	CH ₂ CH ₂ S(O)CH ₃	CH(CH ₃) ₂
I.1.421	CH ₂ CH ₂ SO ₂ CH ₃	CH(CH ₃) ₂
I.1.422	CH ₂ (1,3-Dioxolanyl)	CH(CH ₃) ₂
I.1.423	CH ₂ (2-Furyl)	CH(CH ₃) ₂
I.1.424	CH ₂ (3-Furyl)	CH(CH ₃) ₂
I.1.425	CH ₂ (2-Thienyl)	CH(CH ₃) ₂
I.1.426	CH ₂ (3-Thienyl)	CH(CH ₃) ₂
I.1.427	Phenyl	CH(CH ₃) ₂
I.1.428	2-Chlorophenyl	CH(CH ₃) ₂
I.1.429	3-Chlorophenyl	CH(CH ₃) ₂
I.1.430	4-Chlorophenyl	CH(CH ₃) ₂
I.1.431	2-Fluorophenyl	CH(CH ₃) ₂
I.1.432	3-Fluorophenyl	CH(CH ₃) ₂
I.1.433	4-Fluorophenyl	CH(CH ₃) ₂
I.1.434	2-Methylphenyl	CH(CH ₃) ₂
I.1.435	3-Methylphenyl	CH(CH ₃) ₂
I.1.436	4-Methylphenyl	CH(CH ₃) ₂
I.1.437	2-Methoxyphenyl	CH(CH ₃) ₂
I.1.438	3-Methoxyphenyl	CH(CH ₃) ₂

I.1.439	4-Methoxyphenyl	CH(CH ₃) ₂
I.1.440	2-(Methoxycarbonyl)phenyl	CH(CH ₃) ₂
I.1.441	3-(Methoxycarbonyl)phenyl	CH(CH ₃) ₂
I.1.442	4-(Methoxycarbonyl)phenyl	CH(CH ₃) ₂
I.1.443	2-Nitrophenyl	CH(CH ₃) ₂
I.1.444	3-Nitrophenyl	CH(CH ₃) ₂
I.1.445	4-Nitrophenyl	CH(CH ₃) ₂
I.1.446	2-(Dimethylamino)phenyl	CH(CH ₃) ₂
I.1.447	3-(Dimethylamino)phenyl	CH(CH ₃) ₂
I.1.448	4-(Dimethylamino)phenyl	CH(CH ₃) ₂
I.1.449	2-(Trifluoromethyl)phenyl	CH(CH ₃) ₂
I.1.450	3-(Trifluoromethyl)phenyl	CH(CH ₃) ₂
I.1.451	4-(Trifluoromethyl)phenyl	CH(CH ₃) ₂
I.1.452	3-(Phenoxy)phenyl	CH(CH ₃) ₂
I.1.453	4-(Phenoxy)phenyl	CH(CH ₃) ₂
I.1.454	2,4-Difluorophenyl	CH(CH ₃) ₂
I.1.455	2,4-Dichlorophenyl	CH(CH ₃) ₂
I.1.456	3,4-Difluorophenyl	CH(CH ₃) ₂
I.1.457	3,4-Dichlorophenyl	CH(CH ₃) ₂
I.1.458	3,5-Difluorophenyl	CH(CH ₃) ₂
I.1.459	3,5-Dichlorophenyl	CH(CH ₃) ₂
I.1.460	2-Pyridyl	CH(CH ₃) ₂
I.1.461	3-Pyridyl	CH(CH ₃) ₂
I.1.462	4-Pyridyl	CH(CH ₃) ₂
I.1.463	α -Naphthyl	CH(CH ₃) ₂
I.1.464	Benzyl	CH(CH ₃) ₂
I.1.465	2-Chlorobenzyl	CH(CH ₃) ₂
I.1.466	3-Chlorobenzyl	CH(CH ₃) ₂
I.1.467	4-Chlorobenzyl	CH(CH ₃) ₂
I.1.468	2-Methoxybenzyl	CH(CH ₃) ₂
I.1.469	3-Methoxybenzyl	CH(CH ₃) ₂
I.1.470	4-Methoxybenzyl	CH(CH ₃) ₂
I.1.471	CH(CH ₃)CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.472	CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₃
I.1.473	C(CH ₃) ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.474	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.475	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.476	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₃

I.1.477	CH ₂ CHF ₂	CH ₂ CH ₂ CH ₂ CH ₃
I.1.478	CH ₂ CF ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.479	CH ₂ CH ₂ Cl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.480	CH ₂ CH ₂ Br	CH ₂ CH ₂ CH ₂ CH ₃
I.1.481	CH ₂ CH ₂ CN	CH ₂ CH ₂ CH ₂ CH ₃
I.1.482	CH(CH ₃)CN	CH ₂ CH ₂ CH ₂ CH ₃
I.1.483	CH ₂ CH(CH ₃)CN	CH ₂ CH ₂ CH ₂ CH ₃
I.1.484	Cyclopropyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.485	CH ₂ -Cyclopropyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.486	Cyclopentyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.487	CH ₂ -Cyclopentyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.488	Cyclohexyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.489	CH ₂ CH=CH ₂	CH ₂ CH ₂ CH ₂ CH ₃
I.1.490	C(CH ₃)=CH ₂	CH ₂ CH ₂ CH ₂ CH ₃
I.1.491	CH=CHCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.492	CH ₂ CH=CHCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.493	CH ₂ CF=CF ₂	CH ₂ CH ₂ CH ₂ CH ₃
I.1.494	CH ₂ -C≡CH	CH ₂ CH ₂ CH ₂ CH ₃
I.1.495	CH(CH ₃)-C≡CH	CH ₂ CH ₂ CH ₂ CH ₃
I.1.496	OH	CH ₂ CH ₂ CH ₂ CH ₃
I.1.497	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.498	CH ₂ -CO-OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.499	CH ₂ -CH ₂ -CO-OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.500	CH ₂ -CO-OC ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃
I.1.501	CH(CH ₃)-CO-OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.502	C(CH ₃) ₂ -CO-OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.503	CH=CH-CO-OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.504	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	CH ₂ CH ₂ CH ₂ CH ₃
I.1.505	CH ₂ CH ₂ OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.506	CH ₂ CH ₂ OC ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃
I.1.507	CH ₂ CH ₂ SCH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.508	CH ₂ CH ₂ S(O)CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.509	CH ₂ CH ₂ SO ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
I.1.510	CH ₂ (1,3-Dioxolanyl)	CH ₂ CH ₂ CH ₂ CH ₃
I.1.511	CH ₂ (2-Furyl)	CH ₂ CH ₂ CH ₂ CH ₃
I.1.512	CH ₂ (3-Furyl)	CH ₂ CH ₂ CH ₂ CH ₃
I.1.513	CH ₂ (2-Thienyl)	CH ₂ CH ₂ CH ₂ CH ₃
I.1.514	CH ₂ (3-Thienyl)	CH ₂ CH ₂ CH ₂ CH ₃

I.1.515	Phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.516	2-Chlorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.517	3-Chlorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.518	4-Chlorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.519	2-Fluorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.520	3-Fluorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.521	4-Fluorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.522	2-Methylphenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.523	3-Methylphenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.524	4-Methylphenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.525	2-Methoxyphenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.526	3-Methoxyphenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.527	4-Methoxyphenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.528	2-(Methoxycarbonyl)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.529	3-(Methoxycarbonyl)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.530	4-(Methoxycarbonyl)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.531	2-Nitrophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.532	3-Nitrophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.689	4-Nitrophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.534	2-(Dimethylamino)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.535	3-(Dimethylamino)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.536	4-(Dimethylamino)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.537	2-(Trifluoromethyl)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.538	3-(Trifluoromethyl)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.539	4-(Trifluoromethyl)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.540	3-(Phenoxy)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.541	4-(Phenoxy)phenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.542	2,4-Difluorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.543	2,4-Dichlorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.544	3,4-Difluorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.545	3,4-Dichlorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.546	3,5-Difluorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.547	3,5-Dichlorophenyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.548	2-Pyridyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.549	3-Pyridyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.550	4-Pyridyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.551	α -Naphthyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.552	Benzyl	CH ₂ CH ₂ CH ₂ CH ₃

I.1.553	2-Chlorobenzyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.554	3-Chlorobenzyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.555	4-Chlorobenzyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.556	2-Methoxybenzyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.557	3-Methoxybenzyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.558	4-Methoxybenzyl	CH ₂ CH ₂ CH ₂ CH ₃
I.1.559	CH(CH ₃)CH ₂ CH ₃	CH ₂ CH(CH ₃) ₂
I.1.560	CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂
I.1.561	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH ₂ CH(CH ₃) ₂
I.1.562	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH ₂ CH(CH ₃) ₂
I.1.563	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂
I.1.564	CH ₂ CHF ₂	CH ₂ CH(CH ₃) ₂
I.1.565	CH ₂ CF ₃	CH ₂ CH(CH ₃) ₂
I.1.566	CH ₂ CH ₂ Cl	CH ₂ CH(CH ₃) ₂
I.1.567	CH ₂ CH ₂ Br	CH ₂ CH(CH ₃) ₂
I.1.568	CH ₂ CH ₂ CN	CH ₂ CH(CH ₃) ₂
I.1.569	CH(CH ₃)CN	CH ₂ CH(CH ₃) ₂
I.1.570	CH ₂ CH(CH ₃)CN	CH ₂ CH(CH ₃) ₂
I.1.571	Cyclopropyl	CH ₂ CH(CH ₃) ₂
I.1.572	CH ₂ -Cyclopropyl	CH ₂ CH(CH ₃) ₂
I.1.573	Cyclopentyl	CH ₂ CH(CH ₃) ₂
I.1.574	CH ₂ -Cyclopentyl	CH ₂ CH(CH ₃) ₂
I.1.575	Cyclohexyl	CH ₂ CH(CH ₃) ₂
I.1.576	CH ₂ CH=CH ₂	CH ₂ CH(CH ₃) ₂
I.1.577	C(CH ₃)=CH ₂	CH ₂ CH(CH ₃) ₂
I.1.578	CH=CHCH ₃	CH ₂ CH(CH ₃) ₂
I.1.579	CH ₂ CH=CHCH ₃	CH ₂ CH(CH ₃) ₂
I.1.580	CH ₂ CF=CF ₂	CH ₂ CH(CH ₃) ₂
I.1.581	CH ₂ -C≡CH	CH ₂ CH(CH ₃) ₂
I.1.582	CH(CH ₃)-C≡CH	CH ₂ CH(CH ₃) ₂
I.1.583	OH	CH ₂ CH(CH ₃) ₂
I.1.584	OCH ₃	CH ₂ CH(CH ₃) ₂
I.1.585	CH ₂ -CO-OCH ₃	CH ₂ CH(CH ₃) ₂
I.1.586	CH ₂ -CH ₂ -CO-OCH ₃	CH ₂ CH(CH ₃) ₂
I.1.587	CH ₂ -CO-OC ₂ H ₅	CH ₂ CH(CH ₃) ₂
I.1.588	CH(CH ₃)-CO-OCH ₃	CH ₂ CH(CH ₃) ₂
I.1.589	C(CH ₃) ₂ -CO-OCH ₃	CH ₂ CH(CH ₃) ₂
I.1.590	CH=CH-CO-OCH ₃	CH ₂ CH(CH ₃) ₂

I.1.591	$\text{C}(\text{CH}_3)_2\text{-CO-OCH}_2\text{-CH=CH}_2$	$\text{CH}_2\text{CH}(\text{CH}_3)_2$
I.1.592	$\text{CH}_2\text{CH}_2\text{OCH}_3$	$\text{CH}_2\text{CH}(\text{CH}_3)_2$
I.1.593	$\text{CH}_2\text{CH}_2\text{OC}_2\text{H}_5$	$\text{CH}_2\text{CH}(\text{CH}_3)_2$
I.1.594	$\text{CH}_2\text{CH}_2\text{SCH}_3$	$\text{CH}_2\text{CH}(\text{CH}_3)_2$
I.1.595	$\text{CH}_2\text{CH}_2\text{S(O)CH}_3$	$\text{CH}_2\text{CH}(\text{CH}_3)_2$
I.1.596	$\text{CH}_2\text{CH}_2\text{SO}_2\text{CH}_3$	$\text{CH}_2\text{CH}(\text{CH}_3)_2$
I.1.597	$\text{CH}(\text{CH}_3)\text{C}_2\text{H}_5$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.598	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_2\text{CH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.599	$\text{CH}_2\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.600	$\text{CH}_2\text{CH}_2\text{CH}(\text{CH}_3)_2$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.601	CH_2CHF_2	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.602	CH_2CF_3	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.603	$\text{CH}_2\text{CH-Cl}$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.604	$\text{CH}_2\text{CH}_2\text{Br}$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.605	$\text{CH}_2\text{CH}_2\text{CN}$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.606	$\text{CH}(\text{CH}_3)\text{CN}$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.607	$\text{CH}_2\text{CH}(\text{CH}_3)\text{CN}$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.608	Cyclopropyl	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.609	CH ₂ -Cyclopropyl	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.610	Cyclopentyl	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.611	CH ₂ -Cyclopentyl	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.612	Cyclohexyl	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.613	$\text{CH}_2\text{CH=CH}_2$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.614	$\text{C}(\text{CH}_3)=\text{CH}_2$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.615	$\text{CH}=\text{CHCH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.616	$\text{CH}_2\text{CH=CHCH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.617	$\text{CH}_2\text{CF=CF}_2$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.618	$\text{CH}_2\text{-C}\equiv\text{CH}$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.619	$\text{CH}(\text{CH}_3)\text{-C}\equiv\text{CH}$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.620	OH	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.621	OCH ₃	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.622	$\text{CH}_2\text{-CO-OCH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.623	$\text{CH}_2\text{-CH}_2\text{-CO-OCH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.624	$\text{CH}_2\text{-CO-OC}_2\text{H}_5$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.625	$\text{CH}(\text{CH}_3)\text{-CO-OCH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.626	$\text{C}(\text{CH}_3)_2\text{-CO-OCH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.627	$\text{CH}=\text{CH-CO-OCH}_3$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$
I.1.628	$\text{C}(\text{CH}_3)_2\text{-CO-OCH}_2\text{-CH=CH}_2$	$\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$

I.1.629	CH ₂ CH ₂ OCH ₃	CH(CH ₃)CH ₂ CH ₃
I.1.630	CH ₂ CH ₂ OC ₂ H ₅	CH(CH ₃)CH ₂ CH ₃
I.1.631	CH ₂ CH ₂ SCH ₃	CH(CH ₃)CH ₂ CH ₃
I.1.632	CH ₂ CH ₂ S(O)CH ₃	CH(CH ₃)CH ₂ CH ₃
I.1.633	CH ₂ CH ₂ SO ₂ CH ₃	CH(CH ₃)CH ₂ CH ₃
I.1.634	CH(CH ₃)C ₂ H ₅	C(CH ₃) ₃
I.1.635	CH ₂ CH(CH ₃) ₂	C(CH ₃) ₃
I.1.636	C(CH ₃) ₃	C(CH ₃) ₃
I.1.637	CH(CH ₃)CH ₂ CH ₂ CH ₃	C(CH ₃) ₃
I.1.638	CH ₂ CH(CH ₃)CH ₂ CH ₃	C(CH ₃) ₃
I.1.639	CH ₂ CH ₂ CH(CH ₃) ₂	C(CH ₃) ₃
I.1.640	CH ₂ CHF ₂	C(CH ₃) ₃
I.1.641	CH ₂ CF ₃	C(CH ₃) ₃
I.1.642	CH ₂ CH ₂ Cl	C(CH ₃) ₃
I.1.643	CH ₂ CH ₂ Br	C(CH ₃) ₃
I.1.644	CH ₂ CH ₂ CN	C(CH ₃) ₃
I.1.645	CH(CH ₃)CN	C(CH ₃) ₃
I.1.646	CH ₂ CH(CH ₃)CN	C(CH ₃) ₃
I.1.647	Cyclopropyl	C(CH ₃) ₃
I.1.648	CH ₂ -Cyclopropyl	C(CH ₃) ₃
I.1.649	Cyclopentyl	C(CH ₃) ₃
I.1.650	CH ₂ -Cyclopentyl	C(CH ₃) ₃
I.1.651	Cyclohexyl	C(CH ₃) ₃
I.1.652	CH ₂ CH=CH ₂	C(CH ₃) ₃
I.1.653	C(CH ₃)=CH ₂	C(CH ₃) ₃
I.1.654	CH=CHCH ₃	C(CH ₃) ₃
I.1.655	CH ₂ CH=CHCH ₃	C(CH ₃) ₃
I.1.656	CH ₂ CF=CF ₂	C(CH ₃) ₃
I.1.657	CH ₂ -C≡CH	C(CH ₃) ₃
I.1.658	CH(CH ₃)-C≡CH	C(CH ₃) ₃
I.1.659	OH	C(CH ₃) ₃
I.1.660	OCH ₃	C(CH ₃) ₃
I.1.661	CH ₂ -CO-OCH ₃	C(CH ₃) ₃
I.1.662	CH ₂ -CH ₂ -CO-OCH ₃	C(CH ₃) ₃
I.1.663	CH ₂ -CO-OC ₂ H ₅	C(CH ₃) ₃
I.1.664	CH(CH ₃)-CO-OCH ₃	C(CH ₃) ₃
I.1.665	C(CH ₃) ₂ -CO-OCH ₃	C(CH ₃) ₃
I.1.666	CH=CH-CO-OCH ₃	C(CH ₃) ₃

I.1.667	$\text{C}(\text{CH}_3)_2\text{-CO-OCH}_2\text{-CH=CH}_2$	$\text{C}(\text{CH}_3)_3$
I.1.668	$\text{CH}_2\text{CH}_2\text{OCH}_3$	$\text{C}(\text{CH}_3)_3$
I.1.669	$\text{CH}_2\text{CH}_2\text{OC}_2\text{H}_5$	$\text{C}(\text{CH}_3)_3$
I.1.670	$\text{CH}_2\text{CH}_2\text{SCH}_3$	$\text{C}(\text{CH}_3)_3$
I.1.671	$\text{CH}_2\text{CH}_2\text{S(O)CH}_3$	$\text{C}(\text{CH}_3)_3$
I.1.672	$\text{CH}_2\text{CH}_2\text{SO}_2\text{-CH}_3$	$\text{C}(\text{CH}_3)_3$
I.1.673	$-\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2-$	
I.1.674	$-\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2-$	
I.1.675	$-\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH(CH}_3\text{)-}$	
I.1.676	$-\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH(CH}_3\text{)-CH}_2-$	
I.1.677	$-\text{CH}_2\text{-CH}_2\text{-CH(CH}_3\text{)-CH}_2\text{-CH}_2-$	
I.1.678	$-\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH(CH}_2\text{CH}_2\text{Cl)-}$	
I.1.679	$-\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH(CH}_2\text{CH}_2\text{Cl)-CH}_2-$	
I.1.680	$-\text{CH}_2\text{-CH}_2\text{-CH(CH}_2\text{CH}_2\text{Cl)-CH}_2\text{-CH}_2-$	
I.1.681	$-\text{CH=CH-CH}_2\text{-CH}_2-$	
I.1.682	$-\text{CH}_2\text{-CH=CH-CH}_2-$	
I.1.683	$-\text{CH=CH-CH}_2\text{-CH}_2\text{-CH}_2-$	
I.1.684	$-\text{CH}_2\text{-CH=CH-CH}_2\text{-CH}_2-$	
I.1.685	$-\text{CH}_2\text{CH}_2\text{-O-CH}_2\text{-CH}_2-$	
I.1.686	$-\text{CH}_2\text{CH}_2\text{-O-CH(CH}_3\text{)-CH}_2-$	
I.1.687	$-\text{CH}_2\text{CH}_2\text{-O-CH}_2\text{-CH(CH}_3\text{)-}$	
I.1.688	$-\text{CH}_2\text{-CH(CH}_3\text{)-O-CH(CH}_3\text{)-CH}_2-$	
I.1.689	$-\text{CH}_2\text{-CH}_2\text{-N(CH}_3\text{)-CH}_2\text{-CH}_2-$	

5

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.2, insbesondere die Verbindungen der Formel I.2.1 bis I.2.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.3, insbesondere 10 die Verbindungen der Formel I.3.1 bis I.3.689, die sich von den entsprechenden Ver-

48

bindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel steht.

- 5 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.4, insbesondere die Verbindungen der Formel I.4.1 bis I.4.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung steht.

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.5, insbesondere die Verbindungen der Formel I.5.1 bis I.5.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ steht.

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.6, insbesondere die Verbindungen der Formel I.6.1 bis I.6.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² steht.

49

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.7, insbesondere die Verbindungen der Formel I.7.1 bis I.7.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß R²⁹ für Amino steht.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.8, insbesondere die Verbindungen der Formel I.8.1 bis I.8.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und R²⁹ für Amino stehen.
- 10

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.9, insbesondere die Verbindungen der Formel I.9.1 bis I.9.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und R²⁹ für Amino stehen.
- 15

50

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.10, insbesondere die Verbindungen der Formel I.10.1 bis I.10.689, die sich von den entsprechenden 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und R²⁹ für Amino stehen.

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.11, insbesondere die Verbindungen der Formel I.11.1 bis I.11.689, die sich von den entsprechenden 10 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und R²⁹ für Amino stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.12, insbesondere die Verbindungen der Formel I.12.1 bis I.12.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und R²⁹ für Amino stehen.

51

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.13, insbesondere die Verbindungen der Formel I.13.1 bis I.13.689, die sich von den entsprechenden
 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff steht.

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.14, insbesondere die Verbindungen der Formel I.14.1 bis I.14.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff und B für Sauerstoff stehen.
 10

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.15, insbesondere die Verbindungen der Formel I.15.1 bis I.15.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff und B für Schwefel stehen.

52

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.16, insbesondere die Verbindungen der Formel I.16.1 bis I.16.689, die sich von den entsprechenden 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff und B für eine Bindung stehen.

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.17, insbesondere die Verbindungen der Formel I.17.1 bis I.17.689, die sich von den entsprechenden 10 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff und Y für SO₂ stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.18, insbesondere die Verbindungen der Formel I.18.1 bis I.18.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff und Y für SO₂NR² stehen.

53

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.19, insbesondere die Verbindungen der Formel I.19.1 bis I.19.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff und R²⁹ für Amino stehen.
- 5

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.20, insbesondere die Verbindungen der Formel I.20.1 bis I.20.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff, B für Sauerstoff und R²⁹ für Amino stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.21, insbesondere die Verbindungen der Formel I.21.1 bis I.21.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff, B für Schwefel und R²⁹ für Amino stehen.
- 20

54

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.22, insbesondere die Verbindungen der Formel I.22.1 bis I.22.689, die sich von den entsprechenden
 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff, B für eine Bindung und R²⁹ für Amino stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.23, insbesondere die Verbindungen der Formel I.23.1 bis I.23.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff, Y für SO₂ und R²⁹ für Amino stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.24, insbesondere die Verbindungen der Formel I.24.1 bis I.24.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Wasserstoff, Y für SO₂NR² und R²⁹ für Amino stehen.
 20

55

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.25, insbesondere die Verbindungen der Formel I.25.1 bis I.25.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) steht.
- 5

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.26, insbesondere die Verbindungen der Formel I.26.1 bis I.26.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.27, insbesondere die Verbindungen der Formel I.27.1 bis I.27.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.
- 20

56

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.28, insbesondere die Verbindungen der Formel I.28.1 bis I.28.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.
- 5

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.29, insbesondere die Verbindungen der Formel I.29.1 bis I.29.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.30, insbesondere die Verbindungen der Formel I.30.1 bis I.30.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.
- 20

57

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.31, insbesondere die Verbindungen der Formel I.31.1 bis I.31.689, die sich von den entsprechenden
- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.32, insbesondere die Verbindungen der Formel I.32.1 bis I.32.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für Sauerstoff und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.

15

- 20 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.33, insbesondere die Verbindungen der Formel I.33.1 bis I.33.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für Schwefel und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.

58

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.34, insbesondere die Verbindungen der Formel I.34.1 bis I.34.689, die sich von den entsprechenden
- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für eine Bindung und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.35, insbesondere die Verbindungen der Formel I.35.1 bis I.35.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, Y für SO₂ und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.36, insbesondere die Verbindungen der Formel I.36.1 bis I.36.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, Y für SO₂NR² und Q für Q⁵ (mit A¹ = Sauerstoff, R⁷ = Difluormethyl und R⁸ = Methyl) stehen.
- 20

59

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.37, insbesondere die Verbindungen der Formel I.37.1 bis I.37.689, die sich von den entsprechenden

- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q²² (mit A¹⁰ und A¹¹ = Sauerstoff, A¹² = Schwefel und R³², R³³ = Methyl) steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.38, insbesondere die Verbindungen der Formel I.38.1 bis I.38.689, die sich von den entsprechenden

- 10 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q²² (mit A¹⁰ und A¹¹ = Sauerstoff, A¹² = Schwefel und R³², R³³ = Methyl) stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.39, insbesondere die Verbindungen der Formel I.39.1 bis I.39.689, die sich von den entsprechenden

- 20 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q²² (mit A¹⁰ und A¹¹ = Sauerstoff, A¹² = Schwefel und R³², R³³ = Methyl) stehen.

60

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.40, insbesondere die Verbindungen der Formel I.40.1 bis I.40.689, die sich von den entsprechenden

- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q²² (mit A¹⁰ und A¹¹ = Sauerstoff, A¹² = Schwefel und R³², R³³ = Methyl) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.41, insbesondere die Verbindungen der Formel I.41.1 bis I.41.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q²² (mit A¹⁰ und A¹¹ = Sauerstoff, A¹² = Schwefel und R³², R³³ = Methyl) stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.42, insbesondere die Verbindungen der Formel I.42.1 bis I.42.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q²² (mit A¹⁰ und A¹¹ = Sauerstoff, A¹² = Schwefel und R³², R³³ = Methyl) stehen.
- 20 hen.

61

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.43, insbesondere die Verbindungen der Formel I.43.1 bis I.43.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q²² (mit A¹⁰, A¹¹, A¹² = Sauerstoff und R³², R³³ = Methyl) steht.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.44, insbesondere die Verbindungen der Formel I.44.1 bis I.44.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q²² (mit A¹⁰, A¹¹, A¹² = Sauerstoff und R³², R³³ = Methyl) stehen.
- 10

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.45, insbesondere die Verbindungen der Formel I.45.1 bis I.45.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q²² (mit A¹⁰, A¹¹, A¹² = Sauerstoff und R³², R³³ = Methyl) stehen.

62

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.46, insbesondere die Verbindungen der Formel I.46.1 bis I.46.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q²² (mit A¹⁰, A¹¹, A¹² = Sauerstoff und R³², R³³ = Methyl) stehen.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.47, insbesondere die Verbindungen der Formel I.47.1 bis I.47.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q²² (mit A¹⁰, A¹¹, A¹² = Sauerstoff und R³², R³³ = Methyl) stehen.
- 10

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.48, insbesondere die Verbindungen der Formel I.48.1 bis I.48.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q²² (mit A¹⁰, A¹¹, A¹² = Sauerstoff und R³², R³³ = Methyl) stehen.

63

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.49, insbesondere die Verbindungen der Formel I.49.1 bis I.49.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴, R³⁶ = Wasserstoff, R³⁵ = Trifluormethyl) steht.
- 5 A. Verbindungen der Formel I.1.1 bis I.1.689

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.50, insbesondere die Verbindungen der Formel I.50.1 bis I.50.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴, R³⁶ = Wasserstoff, R³⁵ = Trifluormethyl) stehen.
- 10 A. Verbindungen der Formel I.1.1 bis I.1.689

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.51, insbesondere die Verbindungen der Formel I.51.1 bis I.51.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴, R³⁶ = Wasserstoff, R³⁵ = Trifluormethyl) stehen.
- 15 A. Verbindungen der Formel I.1.1 bis I.1.689

64

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.52, insbesondere die Verbindungen der Formel I.52.1 bis I.52.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴, R³⁶ = Wasserstoff, R³⁵ = Trifluormethyl) stehen.

5

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.53, insbesondere die Verbindungen der Formel I.53.1 bis I.53.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴, R³⁶ = Wasserstoff, R³⁵ = Trifluormethyl) stehen.

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.54, insbesondere die Verbindungen der Formel I.54.1 bis I.54.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴, R³⁶ = Wasserstoff, R³⁵ = Trifluormethyl) stehen.

20

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.55, insbesondere die Verbindungen der Formel I.55.1 bis I.55.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Trifluormethyl, R³⁶ = Methyl) steht.

65

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.56, insbesondere die Verbindungen der Formel I.56.1 bis I.56.689, die sich von den entsprechenden

- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Trifluormethyl, R³⁶ = Methyl) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.57, insbesondere die Verbindungen der Formel I.57.1 bis I.57.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Trifluormethyl, R³⁶ = Methyl) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.58, insbesondere die Verbindungen der Formel I.58.1 bis I.58.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Trifluormethyl, R³⁶ = Methyl) stehen.

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.59, insbesondere die Verbindungen der Formel I.59.1 bis I.59.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Trifluormethyl, R³⁶ = Methyl) stehen.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.60, insbesondere die Verbindungen der Formel I.60.1 bis I.60.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Trifluormethyl, R³⁶ = Methyl) stehen.
- 10

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.61, insbesondere die Verbindungen der Formel I.61.1 bis I.61.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Methylsulfonyl, R³⁶ = Amino) stehen.

20

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.62, insbesondere die Verbindungen der Formel I.62.1 bis I.62.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Methylsulfonyl, R³⁶ = Amino) stehen.
- 25

67

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.63, insbesondere die Verbindungen der Formel I.63.1 bis I.63.689, die sich von den entsprechenden

- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Methylsulfonyl, R³⁶ = Ami-
- no) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.64, insbesondere die Verbindungen der Formel I.64.1 bis I.64.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Methylsulfonyl, R³⁶ = Amino) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.65, insbesondere die Verbindungen der Formel I.65.1 bis I.65.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und 20 Q für Q²⁷ (mit A¹³ = Sauerstoff, R³⁴ = Wasserstoff, R³⁵ = Methylsulfonyl, R³⁶ = Amino) stehen.

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.66, insbesondere die Verbindungen der Formel I.66.1 bis I.66.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO_2NR^2 und Q für Q^{27} (mit $\text{A}^{13} = \text{Sauerstoff}$, $\text{R}^{34} = \text{Wasserstoff}$, $\text{R}^{35} = \text{Methylsulfonyl}$, $\text{R}^{36} = \text{Amino}$) stehen.
- 5

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.67, insbesondere die Verbindungen der Formel I.67.1 bis I.67.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q^{32} (mit $\text{R}^{37} = \text{Chlor}$, $\text{R}^{38} = \text{Difluormethoxy}$, $\text{R}^{39} = \text{Methyl}$) stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.68, insbesondere die Verbindungen der Formel I.68.1 bis I.68.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q^{32} (mit $\text{R}^{37} = \text{Chlor}$, $\text{R}^{38} = \text{Difluormethoxy}$, $\text{R}^{39} = \text{Methyl}$) stehen.

- 20 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.69, insbesondere die Verbindungen der Formel I.69.1 bis I.69.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q^{32} (mit $\text{R}^{37} = \text{Chlor}$, $\text{R}^{38} = \text{Difluormethoxy}$, $\text{R}^{39} = \text{Methyl}$) stehen.

69

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.70, insbesondere die Verbindungen der Formel I.70.1 bis I.70.689, die sich von den entsprechenden

- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.71, insbesondere die Verbindungen der Formel I.71.1 bis I.71.689, die sich von den entsprechenden

- 10 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.72, insbesondere die Verbindungen der Formel I.72.1 bis I.72.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.73, insbesondere die Verbindungen der Formel I.73.1 bis I.73.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) steht.

5 R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.74, insbesondere die Verbindungen der Formel I.74.1 bis I.74.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.75, insbesondere die Verbindungen der Formel I.75.1 bis I.75.689, die sich von den entsprechenden

15

Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.76, insbesondere die Verbindungen der Formel I.76.1 bis I.76.689, die sich von den entsprechenden

20

Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

71

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.77, insbesondere die Verbindungen der Formel I.77.1 bis I.77.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO_2 und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.78, insbesondere die Verbindungen der Formel I.78.1 bis I.78.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO_2NR^2 und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.
- 10

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.79, insbesondere die Verbindungen der Formel I.79.1 bis I.79.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.80, insbesondere die Verbindungen der Formel I.80.1 bis I.80.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B

5 für Sauerstoff und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.81, insbesondere die Verbindungen der Formel I.81.1 bis I.81.689, die sich von den entsprechenden

10 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für Schwefel und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.82, insbesondere die Verbindungen der Formel I.82.1 bis I.82.689, die sich von den entsprechenden

15 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für eine Bindung und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

20

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.83, insbesondere die Verbindungen der Formel I.83.1 bis I.83.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, Y für SO₂ und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Difluormethoxy, R³⁹ = Methyl) stehen.

73

I.83

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.84, insbesondere die Verbindungen der Formel I.84.1 bis I.84.689, die sich von den entsprechenden

- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X^1 für Chlor, Y für SO_2NR^2 und Q für Q^{32} (mit $R^{37} = \text{Brom}$, $R^{38} = \text{Difluormethoxy}$, $R^{39} = \text{Methyl}$) stehen.

I.84

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.85, insbesondere die Verbindungen der Formel I.85.1 bis I.85.689, die sich von den entsprechenden

- 10 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q^{32} (mit $R^{37} = \text{Chlor}$, $R^{38} = \text{Trifluormethyl}$, $R^{39} = \text{Methyl}$) steht.

I.85

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.86, insbesondere die Verbindungen der Formel I.86.1 bis I.86.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q^{32} (mit $R^{37} = \text{Chlor}$, $R^{38} = \text{Trifluormethyl}$, $R^{39} = \text{Methyl}$) stehen.

I.86

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.87, insbesondere die Verbindungen der Formel I.87.1 bis I.87.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.88, insbesondere die Verbindungen der Formel I.88.1 bis I.88.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.
- 10

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.89, insbesondere die Verbindungen der Formel I.89.1 bis I.89.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.
- 15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.90, insbesondere die Verbindungen der Formel I.90.1 bis I.90.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.
- 20

75

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.91, insbesondere die Verbindungen der Formel I.91.1 bis I.91.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q^{32} (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.92, insbesondere die Verbindungen der Formel I.92.1 bis I.92.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q^{32} (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.
- 10

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.93, insbesondere die Verbindungen der Formel I.93.1 bis I.93.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q^{32} (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.
- 15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.94, insbesondere die Verbindungen der Formel I.94.1 bis I.94.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

5

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.95, insbesondere die Verbindungen der Formel I.95.1 bis I.95.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.96, insbesondere die Verbindungen der Formel I.96.1 bis I.96.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.97, insbesondere die Verbindungen der Formel I.97.1 bis I.97.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

20

77

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.98, insbesondere die Verbindungen der Formel I.98.1 bis I.98.689, die sich von den entsprechenden

- 5 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für Sauerstoff und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.99, insbesondere die Verbindungen der Formel I.99.1 bis I.99.689, die sich von den entsprechenden

- 10 Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für Schwefel und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.100, insbesondere die Verbindungen der Formel I.100.1 bis I.100.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für eine Bindung und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl; R³⁹ = Methyl) stehen.

78

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.101, insbesondere die Verbindungen der Formel I.101.1 bis I.101.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, Y für SO₂ und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

- 5 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.101, insbesondere die Verbindungen der Formel I.101.1 bis I.101.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, Y für SO₂ und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.102, insbesondere die Verbindungen der Formel I.102.1 bis I.102.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, Y für SO₂NR² und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Trifluormethyl, R³⁹ = Methyl) stehen.

15

- 20 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.103, insbesondere die Verbindungen der Formel I.103.1 bis I.103.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) steht.

79

I.103

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.104, insbesondere die Verbindungen der Formel I.104.1 bis I.104.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

- 5 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.104, insbesondere die Verbindungen der Formel I.104.1 bis I.104.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.105, insbesondere die Verbindungen der Formel I.105.1 bis I.105.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.105, insbesondere die Verbindungen der Formel I.105.1 bis I.105.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.106, insbesondere die Verbindungen der Formel I.106.1 bis I.106.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.107, insbesondere die Verbindungen der Formel I.107.1 bis I.107.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für

- 5 SO₂ und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.108, insbesondere die Verbindungen der Formel I.108.1 bis I.108.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q³² (mit R³⁷ = Chlor, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.109, insbesondere die Verbindungen der Formel I.109.1 bis I.109.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) steht.

15

- 20 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.110, insbesondere die Verbindungen der Formel I.110.1 bis I.110.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

81

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.111, insbesondere die Verbindungen der Formel I.111.1 bis I.111.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.112, insbesondere die Verbindungen der Formel I.112.1 bis I.112.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.
- 10

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.113, insbesondere die Verbindungen der Formel I.113.1 bis I.113.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.114, insbesondere die Verbindungen der Formel I.114.1 bis I.114.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für

5 SO₂NR² und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.115, insbesondere die Verbindungen der Formel I.115.1 bis I.115.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.116, insbesondere die Verbindungen der Formel I.116.1 bis I.116.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für Sauerstoff und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

20

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.117, insbesondere die Verbindungen der Formel I.117.1 bis I.117.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für

83

Chlor, B für Schwefel und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

- 5 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.118, insbesondere die Verbindungen der Formel I.118.1 bis I.118.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, B für eine Bindung und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.119, insbesondere die Verbindungen der Formel I.119.1 bis I.119.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für

- 15 Chlor, Y für SO₂ und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

- 20 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.120, insbesondere die Verbindungen der Formel I.120.1 bis I.120.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß X¹ für Chlor, Y für SO₂NR² und Q für Q³² (mit R³⁷ = Brom, R³⁸ = Methylsulfonyl, R³⁹ = Methyl) stehen.

84

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.121, insbesondere die Verbindungen der Formel I.121.1 bis I.121.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für

- 5 Q^{38} (mit R^{40} = Chlor, R^{41} , R^{43} = Wasserstoff, R^{42} = Trifluormethyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.122, insbesondere die Verbindungen der Formel I.122.1 bis I.122.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für

- 10 Sauerstoff und Q für Q^{38} (mit R^{40} = Chlor, R^{41} , R^{43} = Wasserstoff, R^{42} = Trifluormethyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.123, insbesondere die Verbindungen der Formel I.123.1 bis I.123.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für

- 15 Schwefel und Q für Q^{38} (mit R^{40} = Chlor, R^{41} , R^{43} = Wasserstoff, R^{42} = Trifluormethyl) stehen.

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.124, insbesondere die Verbindungen der Formel I.124.1 bis I.124.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q³⁸ (mit R⁴⁰ = Chlor, R⁴¹, R⁴³ = Wasserstoff, R⁴² = Trifluormethyl) stehen.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.125, insbesondere die Verbindungen der Formel I.125.1 bis I.125.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q³⁸ (mit R⁴⁰ = Chlor, R⁴¹, R⁴³ = Wasserstoff, R⁴² = Trifluormethyl) stehen.
- 10

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.126, insbesondere die Verbindungen der Formel I.126.1 bis I.126.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q³⁸ (mit R⁴⁰ = Chlor, R⁴¹, R⁴³ = Wasserstoff, R⁴² = Trifluormethyl) stehen.
- 15
- 20

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.127, insbesondere die Verbindungen der Formel I.127.1 bis I.127.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q³⁹ (mit A¹ = Sauerstoff, A¹⁵ = Schwefel, R⁴⁴, R⁴⁵ = Methyl) steht.
- 25

86

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.128, insbesondere die Verbindungen der Formel I.128.1 bis I.128.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für

- 5 Sauerstoff und Q für Q³⁹ (mit A¹ = Sauerstoff, A¹⁵ = Schwefel, R⁴⁴, R⁴⁵ = Methyl) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.129, insbesondere die Verbindungen der Formel I.129.1 bis I.129.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q³⁹ (mit A¹ = Sauerstoff, A¹⁵ = Schwefel, R⁴⁴, R⁴⁵ = Methyl) stehen.

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.130, insbesondere die Verbindungen der Formel I.130.1 bis I.130.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q³⁹ (mit A¹ = Sauerstoff, A¹⁵ = Schwefel, R⁴⁴, R⁴⁵ = Methyl) stehen.

20

87

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.131, insbesondere die Verbindungen der Formel I.131.1 bis I.131.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für

- 5 SO₂ und Q für Q³⁹ (mit A¹ = Sauerstoff, A¹⁵ = Schwefel, R⁴⁴, R⁴⁵ = Methyl) stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.132, insbesondere die Verbindungen der Formel I.132.1 bis I.132.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für

- 10 SO₂NR² und Q für Q³⁹ (mit A¹ = Sauerstoff, A¹⁵ = Schwefel, R⁴⁴, R⁴⁵ = Methyl) stehen.

- 15 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.133, insbesondere die Verbindungen der Formel I.133.1 bis I.133.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q⁷ (mit A¹⁶, A¹⁷ = Sauerstoff und R⁴⁶, R⁴⁷ bilden eine Kette -CH₂-CH₂-O-CH₂-) steht.

88

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.134, insbesondere die Verbindungen der Formel I.134.1 bis I.134.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q⁷ (mit A¹⁶, A¹⁷ = Sauerstoff und R⁴⁶, R⁴⁷ bilden eine Kette –CH₂–CH₂–O–CH₂–) stehen.
- 5

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.135, insbesondere die Verbindungen der Formel I.135.1 bis I.135.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q⁷ (mit A¹⁶, A¹⁷ = Sauerstoff und R⁴⁶, R⁴⁷ bilden eine Kette –CH₂–CH₂–O–CH₂–) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.136, insbesondere die Verbindungen der Formel I.136.1 bis I.136.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q⁷ (mit A¹⁶, A¹⁷ = Sauerstoff und R⁴⁶, R⁴⁷ bilden eine Kette –CH₂–CH₂–O–CH₂–) stehen.
- 20

89

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.137, insbesondere die Verbindungen der Formel I.137.1 bis I.137.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für

- 5 SO_2 und Q für Q^7 (mit A^{16} , A^{17} = Sauerstoff und R^{46} , R^{47} bilden eine Kette
- $\text{CH}_2\text{-CH}_2\text{-O-CH}_2$ -) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.138, insbesondere die Verbindungen der Formel I.138.1 bis I.138.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO_2NR^2 und Q für Q^7 (mit A^{16} , A^{17} = Sauerstoff und R^{46} , R^{47} bilden eine Kette
- $\text{CH}_2\text{-CH}_2\text{-O-CH}_2$ -) stehen.

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.139, insbesondere die Verbindungen der Formel I.139.1 bis I.139.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für

- 20 Q^7 (mit A^{16} = Schwefel, A^{17} = Sauerstoff und R^{46} , R^{47} bilden eine Kette
- $\text{CH}_2\text{-CH}_2\text{-O-CH}_2$ -) steht.

90

I.139

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.140, insbesondere die Verbindungen der Formel I.140.1 bis I.140.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q^7 (mit $\text{A}^{16} = \text{Schwefel}$, $\text{A}^{17} = \text{Sauerstoff}$ und $\text{R}^{46}, \text{R}^{47}$ bilden eine Kette $-\text{CH}_2\text{-CH}_2\text{-O-CH}_2-$) stehen.
- 5

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.141, insbesondere die Verbindungen der Formel I.141.1 bis I.141.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q^7 (mit $\text{A}^{16} = \text{Schwefel}$, $\text{A}^{17} = \text{Sauerstoff}$ und $\text{R}^{46}, \text{R}^{47}$ bilden eine Kette $-\text{CH}_2\text{-CH}_2\text{-O-CH}_2-$) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.142, insbesondere die Verbindungen der Formel I.142.1 bis I.142.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q^7 (mit $\text{A}^{16} = \text{Schwefel}$, $\text{A}^{17} = \text{Sauerstoff}$ und $\text{R}^{46}, \text{R}^{47}$ bilden eine Kette $-\text{CH}_2\text{-CH}_2\text{-O-CH}_2-$) stehen.
- 20

91

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.143, insbesondere die Verbindungen der Formel I.143.1 bis I.143.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂ und Q für Q⁷ (mit A¹⁶ = Schwefel, A¹⁷ = Sauerstoff und R⁴⁸, R⁴⁷ bilden eine Kette –CH₂-CH₂-O-CH₂) stehen.
- 5

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.144, insbesondere die Verbindungen der Formel I.144.1 bis I.144.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q⁷ (mit A¹⁶ = Schwefel, A¹⁷ = Sauerstoff und R⁴⁸, R⁴⁷ bilden eine Kette –CH₂-CH₂-O-CH₂) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.145, insbesondere die Verbindungen der Formel I.145.1 bis I.145.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für Q⁷ (mit A¹⁶, A¹⁷ = Schwefel und R⁴⁸, R⁴⁷ bilden eine Kette –CH₂-CH₂-O-CH₂) steht.
- 20

92

- 5 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.146, insbesondere die Verbindungen der Formel I.146.1 bis I.146.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q⁷ (mit A¹⁶, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette –CH₂-CH₂-O-CH₂-) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.147, insbesondere die Verbindungen der Formel I.147.1 bis I.147.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q⁷ (mit A¹⁶, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette –CH₂-CH₂-O-CH₂-) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.148, insbesondere die Verbindungen der Formel I.148.1 bis I.148.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q⁷ (mit A¹⁶, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette –CH₂-CH₂-O-CH₂-) stehen.

93

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.149, insbesondere die Verbindungen der Formel I.149.1 bis I.149.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für

- 5 SO₂ und Q für Q⁷ (mit A¹⁶, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette -CH₂-CH₂-O-CH₂-) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.150, insbesondere die Verbindungen der Formel I.150.1 bis I.150.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO₂NR² und Q für Q⁷ (mit A¹⁶, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette -CH₂-CH₂-O-CH₂-) stehen.

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.151, insbesondere die Verbindungen der Formel I.151.1 bis I.151.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Q für

- 20 Q⁷ (mit A¹⁶ = Sauerstoff, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette -CH₂-CH₂-O-CH₂-) steht.

94

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.152, insbesondere die Verbindungen der Formel I.152.1 bis I.152.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Sauerstoff und Q für Q⁷ (mit A¹⁶ = Sauerstoff, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette -CH₂-CH₂-O-CH₂-) stehen.
- 5

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.153, insbesondere die Verbindungen der Formel I.153.1 bis I.153.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für Schwefel und Q für Q⁷ (mit A¹⁶ = Sauerstoff, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette -CH₂-CH₂-O-CH₂-) stehen.

15

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.154, insbesondere die Verbindungen der Formel I.154.1 bis I.154.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß B für eine Bindung und Q für Q⁷ (mit A¹⁶ = Sauerstoff, A¹⁷ = Schwefel und R⁴⁶, R⁴⁷ bilden eine Kette -CH₂-CH₂-O-CH₂-) stehen.
- 20

95

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.155, insbesondere die Verbindungen der Formel I.155.1 bis I.155.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für

- 5 SO_2 und Q für Q^7 (mit A^{16} = Sauerstoff, A^{17} = Schwefel und $\text{R}^{46}, \text{R}^{47}$ bilden eine Kette – $\text{CH}_2\text{CH}_2\text{OCH}_2$) stehen.

- 10 Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.156, insbesondere die Verbindungen der Formel I.156.1 bis I.156.689, die sich von den entsprechenden Verbindungen der Formel I.1.1 bis I.1.689 dadurch unterscheiden, daß Y für SO_2NR^2 und Q für Q^7 (mit A^{16} = Sauerstoff, A^{17} = Schwefel und $\text{R}^{46}, \text{R}^{47}$ bilden eine Kette – $\text{CH}_2\text{CH}_2\text{OCH}_2$) stehen.

15

96

Die Benzolsulfonamid-Derivate der Formel I sind auf verschiedene Art und Weise erhältlich, beispielsweise nach einem der folgenden Verfahren:

5 Verfahren A

Entsprechend substituierte Aromaten der Formel VIII werden über eine Chlorsulfonylierung in die entsprechenden Benzolsulfonylchloride der Formel VII überführt, welche dann mit Ammoniak zu den entsprechenden Sulfonamiden der Formel V umgesetzt werden. Die Sulfonamide der Formel V werden dann mit (Thio)phosgen der Formel VI zu den Benzolsulfonyliso(thio)cyanaten der Formel II umgesetzt, welche anschließend mit Aminen der Formel III oder Alkoholen bzw. Thiolen der Formel IV zu den gewünschten Benzolsulfonamid-Derivaten der Formel I, wobei X^3 für Wasserstoff, Y für $-C(A)B$ und B für NR^2 , Sauerstoff oder Schwefel stehen und die übrigen Reste die unter Anspruch 1 genannten Bedeutungen haben, regieren:

Q in Formel VIII steht für die oben genannten Reste Q¹ bis Q³⁹ oder für einen Substituenten, der eine für die Synthese von Q¹ bis Q³⁹ geeignete Vorstufe darstellt, z.B. eine Nitro- oder Carboxygruppe.

- 5 Die Chlorsufonylierung der Aromaten der Formel VIII zu den entsprechenden Benzolsulfonylchloriden der Formel VII erfolgt üblicherweise bei Temperaturen von 0°C bis 150°C, vorzugsweise 20°C bis 130°C, besonders bevorzugt 30°C bis 110°C, beispielsweise mit Chlorsulfonsäure, Sulfonylchlorid (SO₂Cl₂) oder mit Sulfonylchlorid in Gegenwart von Chlorsulfonsäure in einem inerten organischen Lösungsmittel [vgl. Houben-Weyl, Methoden der organischen Chemie, Bd. 9, 1955, S. 572 – 579].

Geeignete Lösungsmittel sind halogenierte Kohlenwasserstoffe wie Methylenechlorid, Chloroform und Chlorbenzol, Nitrile wie Acetonitril und Propionitril, sowie Chlorsulfonsäure, besonders bevorzugt Chlorsulfonsäure.

15

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

- Gegebenenfalls kann diese Reaktion auch in Gegenwart eines Metallkatalysators, beispielsweise Aluminiumchlorid, nach Art einer Friedel-Crafts-Reaktion durchgeführt werden [vgl. Houben-Weyl, Methoden der organischen Chemie, Bd. 9, 1955, S. 578 – 579].

- Als Säuren und saure Katalysatoren finden auch anorganische Säuren wie Fluorwasserstoffsäure, Salzsäure, Bromwasserstoffsäure, Schwefelsäure und Perchlorsäure, Lewis-Säuren wie Bortrifluorid, Aluminiumtrichlorid, Eisen-III-chlorid, Zinn-IV-chlorid, Titan-IV-chlorid und Zink-II-chlorid, Verwendung.

30

Die sauren Katalysatoren werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

35

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, Chlorsulfonsäure oder Sulfonylchlorid in einem Überschuß bezogen auf VIII einzusetzen, oder direkt in Chlorsulfonsäure als Lösungsmittel zu arbeiten.

40

Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z.T. in Form zäher Öle an, die unter verminderter Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe

98

erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

Des weiteren können auch Dialkylsulfide mit Chlor in Gegenwart von Wasser gespalten

- 5 und zu den entsprechenden Benzolsulfonylchloriden der Formel VII umgesetzt werden [vgl. Houben-Weyl, Methoden der organischen Chemie, Bd. 9, 1955, S. 580 – 582].

Analog lassen sich auch Thiophenole in die entsprechenden Benzolsulfonylchloriden der Formel VII umwandeln [vgl. Houben-Weyl, Methoden der organischen Chemie, Bd.

- 10 9, 1955, S. 582].

Benzolsulfonylchloride der Formel VII sind auch durch die Umsetzung von Benzolsulfinsäuren mit Chlorierungsmitteln wie Thionylchlorid, Phosgen, Phosphortrichlorid oder Phosphorpentachlorid darstellbar [vgl. Houben-Weyl, Methoden der organischen Chemie, Bd. 9, 1955, S. 564 – 568].

Des weiteren lassen sich auch Anilide über ihre Diazoniumsalze mittels Schwefeldioxid in Gegenwart von Kupfer(II)chlorid (Meerwein-Reaktion) in die entsprechenden Ben-

- 20 zolsulfonsulfonylchloride der Formel VII überführen [vgl. Houben-Weyl, Methoden der organischen Chemie, Bd. 9, 1955, S. 579-580].

Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe sind in der Literatur bekannt [z.B. CAS 112, 157842; JP 01/168662] oder können gemäß der zitierten Literatur hergestellt werden.

25

Benzolsulfonylchloride der Formel VII, in denen Q für Q⁷ steht, sind z.B. aus WO 02/38562 bekannt.

30

Die Herstellung von Benzolsulfonylchloriden der Formel VII, in dem Q für Q²¹ steht, ist z.B. in US 5,169,430 beschrieben.

Benzolsulfonylchloride der Formel VII, in denen Q für Q³² steht, sind z.B. aus WO 96/15115 bekannt.

35

Die Herstellung von Benzolsulfonylchloriden der Formel VII, in dem Q für Q³⁸ steht, ist z.B. in WO 95/02580 beschrieben.

Die Herstellung von Benzolsulfonylchloriden der Formel VII mit weiteren Resten Q kann in Analogie zu den oben genannten Methoden durchgeführt werden (vgl. z.B.

99

JP 05/164386). Weitere Vorprodukte sind in Böger, Wakabayashi, Peroxidizing Herbicides, Springer Verlag 1999 beschrieben.

Die Folgereaktion der Benzolsulfonylchloride der Formel VII mit gasförmigem oder

- 5 wässrigem Ammoniak zu den entsprechenden Sulfonamiden der Formel V mit
 $X^3 = \text{Wasserstoff}$ erfolgt üblicherweise bei Temperaturen von -10°C bis 50°C , vor-
zugsweise 0°C bis 30°C , besonders bevorzugt 5°C bis 15°C , in einem inerten organi-
schen Lösungsmittel, gegebenenfalls in Gegenwart einer Base [vgl. US 5,169,430; WO
95/02580; Houben-Weyl, Methoden der organischen Chemie, Bd. 9, 1955, S. 398-400
10 und 605].

Vorzugsweise verwendet man Ammoniak in einem Überschuß von 200 bis 230%, man kann jedoch auch eine Hilfsbase einsetzen.

- 15 Als Hilfsbasen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithium-
20 hydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetallamide wie Lithiu-
mamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie
Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetall-
hydrogencarbonate wie Natriumhydrogencarbonat, metallorganische Verbindungen,
insbesondere Alkalimetallalkyle wie Methylolithium, Butyllithium und Phenyllithium, Al-
25 kylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdal-
kalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliummethanolat, Kali-
um- tert.-Butanolat, Kalium-tert.-Pentanolat und Dimethoxymagnesium, außerdem or-
ganische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethy-
30 lamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-
Dimethylaminopyridin sowie bicyclische Amine in Betracht.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

- 35 Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan,
Cyclohexan und Gemische von C_5 - C_8 -Alkanen, aromatische Kohlenwasserstoffe wie
Toluol, o-, m- und p-Xylo, halogenierte Kohlenwasserstoffe wie Methylenchlorid, 1,2-
Dichlorethan, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether,
tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und
40 Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-

100

Butylmethylketon, sowie Dimethylformamid und Dimethylacetamid, besonders bevorzugt Dioxan, Tetrahydrofuran, 1,2-Dichlorethan, Toluol oder Cyclohexan.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

5

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

Weitere Sulfonamide der Formel V lassen sich durch die analoge Umsetzung von Ben-

10 zolsulfonylchloriden der Formel VII mit einem Amin H_2NX^3 herstellen.

Sulfonamide der Formel V, in denen Q für Q^7 steht, werden z.B. in WO 02/38562 ge-
nannt.

15 In US 5,169,430 und WO 95/02580 werden Sulfonamide der Formel V, in denen Q für Q^{21} bzw. Q^{28} steht, beschrieben.

Die Umsetzung der Sulfonamide der Formel V mit X^3 = Wasserstoff mit (Thio)phosgen der Formel VI zu Benzolsulfonyliso(thio)cyanaten der Formel II erfolgt üblicherweise

20 bei Temperaturen von 50°C bis 110°C, vorzugsweise 60°C bis 90°C, in einem inerten organischen Lösungsmittel gegebenenfalls in Gegenwart eines Katalysators [vgl. Houben-Weyl, Methoden der organischen Chemie, Bd. 11,2, 1985, S. 1106; US 4,379,769; DD 238 522].

25 Als Katalysatoren eignen sich z.B. aliphatische Isocyanante wie z.B. n-Propylisocyanat, Isopropylisocyanat oder n-Butylisocyanat.

Der Katalysator wird im allgemeinen in einem Unterschub von 5% bis 15% pro Mol Sulfonamid der Formel V eingesetzt.

30

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylo, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-

35 Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylketon, Diethylketon und tert.-Butylmethylketon, besonders bevorzugt Toluol, 1,2-Dichlorethan oder Chlorbenzol.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

40

101

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, die VI in einem Überschuß bezogen auf V einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

5

Die Umsetzung der Sulfonamide der Formel V mit $X^3 = \text{Wasserstoff}$ zu Benzolsulfonyliso(thio)cyanaten der Formel II kann auch mit Diphosgen [CIC(O)OCCl_3] oder mit Schwefelkohlenstoff in Phosgen erfolgen.

10

Zweckmäßiger Weise können die Sulfonamide der Formel V mit $X^3 = \text{Wasserstoff}$ auch zunächst mit Thionylchlorid unter Rückfluß vorbehandelt und anschließend mit Phosgen zu Benzolsulfonyliso(thio)cyanaten der Formel II umgesetzt werden (vgl. DE 43 22 726).

15

Benzolsulfonyliso(thio)cyanate der Formel II können auch durch die Reaktion von Sulfonamiden der Formel V mit $X^3 = \text{Wasserstoff}$ mit Chlorsulfonylisocyanat hergestellt werden (vgl. DE 31 32 944).

20

Benzolsulfonyliso(thio)cyanate der Formel II lassen sich ferner in an sich bekannter Weise durch Umsetzung von Benzolsulfonylchloriden der Formel VII mit Alkylimetall-isocyanaten herstellen (vgl. US 4,546,179).

25

Die Umsetzung von Benzolsulfonyliso(thio)cyanaten der Formel II mit einem primären Amin der Formel III oder einem Alkohol bzw. Thiol der Formel IV zu den gewünschten Benzolsulfonamid-Derivaten der Formel I mit $X^3 = \text{Wasserstoff}$, $Y = -\text{C(A)B}$ und $B = \text{NR}^2$, Sauerstoff oder Schwefel erfolgt üblicherweise bei Temperaturen von 0°C bis 120°C, vorzugsweise 10°C bis 100°C, besonders bevorzugt 20°C bis 70°C, in einem inerten organischen Lösungsmittel [vgl. EP 162 723].

30

Die Reaktion kann unter Normaldruck oder unter erhöhtem Druck (bis 50 bar), vorzugsweise bei 1 bis 5 bar, kontinuierlich oder diskontinuierlich durchgeführt werden.

35

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen; Nitrokohlenwasserstoffe wie Nitromethan, Nitroethan, Nitrobenzol, o-, m-, p-Chlornitrobenzol und o-Nitrotoluol; aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie Methylchlorid, 1,2-Dichlorethan, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran

102

sowie Nitrile wie Acetonitril und Propionitril, besonders bevorzugt Tetrahydrofuran, Dioxan sowie 1,2-Dichlorethan.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

5

Als Katalysator kann vor oder während der Reaktion eine Base zugesetzt werden, wodurch die Reaktion beschleunigt und die Produktqualität verbessert wird.

Als Basen kommen allgemein organische Basen, z.B. tertiäre Amine wie Trimethyl-

10 amin, Triethylamin, Diisopropylethylamin, Tri(n-propyl)amin , N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Triethylamin oder 1,4-Diazabicyclo[2,2,2]octan.

15

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar verwendet werden.

Die Benzolysulfonyliso(thio)cyanate der Formel II werden im allgemeinen in äquimolaren Mengen mit dem primären Amin der Formel III bzw. dem Alkohol bzw. Thiol der

20 Formel IV umgesetzt. Es kann vorteilhaft sein, III oder IV in einem Überschuß bezogen auf II einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

25

Verfahren B

Sulfonamide der Formel V werden mit (Thio)Carbamaten der Formel IX zu den ge-

30 wünschten Benzolsulfonamid-Derivaten der Formel I umgesetzt, wobei Y für -C(A)B und B für NR² steht und die übrigen Reste die unter Anspruch 1 genannten Bedeutungen haben:

103

- 5 Z in Formel IX steht für einen C₁-C₆-Alkyl- oder Phenylrest, wobei beide Reste ihrerseits partiell oder vollständig halogeniert sein können und/oder ein bis drei Reste aus der Gruppe Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkoxy carbonyl tragen können.

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0°C bis 120°C, vorzugsweise 20°C bis 100°C, in einem inerten organischen Lösungsmittel [vgl. EP 141 777 und EP 101 670].

- 10 Die Reaktion kann unter Normaldruck oder unter erhöhtem Druck (bis 50 bar), vorzugsweise bei 1 bis 5 bar, kontinuierlich oder diskontinuierlich durchgeführt werden.
- 15 Geeignete Lösungsmittel sind aliphatische oder cycloaliphatische Kohlenwasserstoffe wie Pentan, 1,2,4-Trimethylpentan, 2,2,3-Trimethylpentan, 2,3,3-Trimethylpentan, Hexan, Heptan, Octan, Nonan, Gemische von C₅-C₈-Alkanen, Pinan, Cyclohexan, Methylcyclohexan, o-, m-, p-Cymol, Benzinfractionen innerhalb eines Siedepunktintervalls von 70°C bis 190°C, Dekalin, Petrolether, Ligroin; Nitrokohlenwasserstoffe wie Nitromethan, Nitroethan, Nitrobenzol, o-, m-, p-Chlornitrobenzol und o-Nitrotoluol; aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylo, halogenierte Kohlenwasserstoffe wie 1,2-Dichlorethan, 1,1-Dichlorethan, 1,2-cis-Dichlorethylen, 1,1,1- oder 1,1,2-Trichlorethan, Trichlorethylen, Tetrachlorethylen, 1,1,2,2- oder 1,1,1,2-Tetrachlorethan, Pentachlorethan, Dichlorpropan, Methylenchlorid, Dichlorbutan, Chloroform, Tetrachlorkohlenstoff, Fluorbenzol, Chlorbenzol, Brombenzol, Jodbenzol, o-, m-, p-Difluorbenzol, o-, m-, p-Dichlorbenzol, o-, m-, p-Dibrombenzol, o-, m-, p-Chlortoluol, 1,2,4-Trichlorbenzol, Chlornaphthalin, Dichlornaphthalin; Ether wie Diethylether, Ethylpropylether, Diisopropylether, tert.-Butylmethylether, n-Butylethylether, Di-n-butylether, Diisobutylether, Diisoamylether, Dioxan, Cyclohexylmethylether, Ethylen-glycoldimethylether, β,β'-Dichlordiethylether, Tetrahydrofuran, Anisol, Thioanisol, Phenol; Nitrile wie Acetonitril, Propionitril, Butyronitril, Isobutyronitril, Benzonitril, m-Chlorbenzonitril; Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, sowie Dimethylformamid; Ester wie Ethylacetat, Acetessigester, Iso-

104

butylacetat; Amide wie Formamid, Methylformamid, Dimethylformamid; besonders bevorzugt 1,2-Dichlorethan, Tetrahydrofuran, tert. Butylmethylether sowie Toluol.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

5

Als Katalysator kann vor oder während der Reaktion eine Base zugesetzt werden, wodurch die Reaktion beschleunigt und die Produktqualität verbessert wird.

Als Basen kommen allgemein organische Basen, z.B. tertiäre Amine wie Trimethyl-

10 amin, Triethylamin, Diisopropylethylamin, Tri(n-propyl)amin , N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Triethylamin oder 1,4-Diazabicyclo[2.2.2]octan.

15

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar verwendet werden.

Die Sulfonamide der Formel V werden im allgemeinen in äquimolaren Mengen mit dem (Thio)Carbamid der Formel IX umgesetzt. Es kann vorteilhaft sein, IX in einem Über-

20 schuß bezogen auf V einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

25 Durch analoge Umsetzung mit Carbonsäurederivaten $ZO(A)R^1$ lassen sich Benzolsulfonamid-Derivate der Formel I mit $Y = -C(A)B$ und $B = \text{Bindung}$ herstellen.

30

Verfahren C

Sulfonamide der Formel V können mit Iso(thio)cyanaten der Formel X zu den gewünschten Benzolsulfonamid-Derivaten der Formel I umgesetzt werden, wobei Y für $-C(A)B$ und B für NH steht und die übrigen Reste die unter Anspruch 1 genannten Bedeutungen haben:

35

105

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0°C bis 150°C, vorzugsweise 10°C bis 100°C, in einem inerten organischen Lösungsmittel [vgl. EP 234 352].

5

Die Reaktion kann unter Normaldruck oder unter erhöhtem Druck (bis 50 bar), vorzugsweise bei 1 bis 5 bar, kontinuierlich oder diskontinuierlich durchgeführt werden.

- Geeignete Lösungsmittel sind aliphatische oder cycloaliphatische Kohlenwasserstoffe
 10 wie Pentan, 1,2,4-Trimethylpentan, 2,2,3-Trimethylpentan, 2,3,3-Trimethylpentan, Hexan, Heptan, Octan, Nonan, Gemische von C₅-C₈-Alkanen, Pinan, Cyclohexan, Methylcyclohexan, o-, m-, p-Cymol, Benzinfractionen innerhalb eines Siedepunktintervalls von 70°C bis 190°C, Dekalin, Petrolether, Ligroin; Nitrokohlenwasserstoffe wie Nitromethan, Nitroethan, Nitrobenzol, o-, m-, p-Chlornitrobenzol und o-Nitrotoluol; aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie 1,2-Dichlorethan, 1,1-Dichlorethan, 1,2-cis-Dichlorethylen, 1,1,1- oder 1,1,2-Trichlorethan, Trichlorethylen, Tetrachlorethylen, 1,1,2,2- oder 1,1,1,2-Tetrachlorethan, Pentachlorethan, Dichlorpropan, Methylenchlorid; Dichlorbutan, Chloroform, Tetrachlorkohlenstoff, Fluorbenzol, Chlorbenzol, Brombenzol, Jodbenzol, o-, m-, p-Difluorbenzol, o-, m-, p-Dichlorbenzol, o-, m-, p-Dibrombenzol, o-, m-, p-Chlortoluol, 1,2,4-Trichlorbenzol, Chlornaphthalin, Dichlornaphthalin; Ether wie Diethylether, Ethylpropyltether, Diisopropylether, tert.-Butylmethylether, n-Butylethylether, Di-n-butylether, Diisobutylether, Diisoamylether, Dioxan, Cyclohexylmethylether, Ethylen-glycoldimethylether, β,β'-Dichlordiethylether, Tetrahydrofuran, Anisol, Thioanisol, Phenol; Nitrile wie Acetonitril, Propionitril, Butyronitril, Isobutyronitril, Benzonitril, m-Chlorbenzonitril; Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, sowie Dimethylformamid; Ester wie Ethylacetat, Acetessigester, Isobutylacetat; Amide wie Formamid, Methylformamid, Dimethylformamid; besonders bevorzugt 1,2-Dichlorethan, Tetrahydrofuran, Ethylacetat, tert. Butylmethylether, Aceton
 20 sowie Toluol.
 25
 30

106

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Katalysator kann vor oder während der Reaktion eine Base zugesetzt werden, wodurch die Reaktion beschleunigt und die Produktqualität verbessert wird.

5

Als Basen kommen allgemein organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, Tri(n-propyl)amin, N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Triethylamin oder 2,4,6-

10 Collidin.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar verwendet werden.

15

Die Sulfonamide der Formel V werden im allgemeinen in äquimolaren Mengen mit einem Iso(thio)cyanat der Formel X umgesetzt. Es kann vorteilhaft sein, X in einem Überschuß bezogen auf V einzusetzen.

20

Zur Beendigung der Umsetzung kann nach Zugabe der Komponenten die Reaktionsmischung noch 20 min bis 24 h bei 0 bis 120 °C, vorzugsweise 10 bis 100°C, insbesondere 20 bis 80 °C, nachgerührt werden.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

25

Verfahren D

30

Sulfonamide der Formel V können mit Halogeniden der Formel XI zu den gewünschten Benzolsulfonamid-Derivaten der Formel I umgesetzt werden:

35 Hal in Formel XI steht für Halogen wie Fluor, Chlor, Brom, besonders bevorzugt Chlor.

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0°C bis 150°C, vorzugsweise 10°C bis 100°C, in einem inerten organischen Lösungsmittel [vgl. JP 05/194386, CAS 120, 134277].

5

Die Reaktion kann unter Normaldruck oder unter erhöhtem Druck (bis 50 bar), vorzugsweise bei 1 bis 5 bar, kontinuierlich oder diskontinuierlich, durchgeführt werden.

Geeignete Lösungsmittel sind aliphatische oder cycloaliphatische Kohlenwasserstoffe

10 wie Pentan, 1,2,4-Trimethylpentan, 2,2,3-Trimethylpentan, 2,3,3-Trimethylpentan, Hexan, Heptan, Octan, Nonan, Gemische von C₅-C₈-Alkanen, Pinan, Cyclohexan, Methylcyclohexan, o-, m-, p-Cymol, Benzinfraktionen innerhalb eines Siedepunktintervalls von 70°C bis 190°C, Dekalin, Petrolether, Ligroin; Nitrokohlenwasserstoffe wie Nitromethan, Nitroethan, Nitrobenzol, o-, m-, p-Chlornitrobenzol und o-Nitrotoluol; aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie 1,2-Dichlorethan, 1,1-Dichlorethan, 1,2-cis-Dichlorethylen, 1,1,1- oder 1,1,2-Trichlorethan, Trichlorethylen, Tetrachlorethylen, 1,1,2,2- oder 1,1,1,2-Tetrachlorethan, Pentachlorethan, Dichlorpropan, Methylchlorid, Dichlorbutan, Chloroform, Tetrachlorkohlenstoff, Fluorbenzol, Chlorbenzol, Brombenzol, Jodbenzol, o-, m-, p-

20 Difluorbenzol, o-, m-, p-Dichlorbenzol, o-, m-, p-Dibrombenzol, o-, m-, p-Chlortoluol, 1,2,4-Trichlorbenzol, Chlornaphthalin, Dichlornaphthalin; Ether wie Diethylether, Ethylpropylether, Diisopropylether, tert.-Butylmethylether, n-Butylethylether, Di-n-butylether, Diisobutylether, Diisoamylether, Dioxan, Cyclohexylmethylether, Ethylen-glykoldimethylether, β,β'-Dichlordiethylether, Tetrahydrofuran, Anisol, Thioanisol, Phenol; Nitrile wie Acetonitril, Propionitril, Butyronitril, Isobutyronitril, Benzonitril, m-Chlorbenzonitril; Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-

25 Butylmethylketon, sowie Dimethylformamid; Ester wie Ethylacetat, Acetessigester, Isobutylacetat; Amide wie Formamid, Methylformamid, Dimethylformamid; besonders bevorzugt 1,2-Dichlorethan, Tetrahydrofuran, Ethylacetat, Acetonitril sowie Toluol.

30

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Katalysator kann vor oder während der Reaktion eine Base zugesetzt werden, wodurch die Reaktion beschleunigt und die Produktqualität verbessert wird.

35

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natrium-

108

hydrogencarbonat, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, Tri(n-propyl)amin, N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Triethylamin oder 2,4,6-Collidin.

5

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar verwendet werden.

10 Die Sulfonamide der Formel V werden im allgemeinen in äquimolaren Mengen mit dem Isocyanat bzw. Isothiocyanat der Formel X umgesetzt. Es kann vorteilhaft sein, XI in einem Überschuß bezogen auf V einzusetzen.

15 Zur Beendigung der Umsetzung kann nach Zugabe der Komponenten die Reaktionsmischung noch 20 min bis 24 h bei 0 bis 120 °C, vorzugsweise 10 bis 100°C, insbesondere 20 bis 80 °C nachgerührt werden.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

20 Analog zu den oben beschriebenen Verfahren D lassen sich auch Sulfonamide der Formel V mit Anhydriden der Formel XII

zu den gewünschten Benzolsulfonamid-Derivaten der Formel I, in denen Y für -C(A)B mit B für eine Bindung steht und die übrigen Reste die unter Anspruch 1 genannten Bedeutungen haben, umsetzen.

Verfahren E

30

Sulfonyl(thio)carbamate der Formel XIII werden mit Aminen der Formel XIV zu den gewünschten Benzolsulfonamid-Derivaten der Formel I umgesetzt, wobei Y für -C(A)B und B für NR² steht und die übrigen Reste die unter Anspruch 1 genannten Bedeutungen haben:

35

109

Z in Formel XIII steht für C₁-C₆-Alkyl oder Phenyl, wobei beide Reste ihrerseits partiell oder vollständig halogeniert sein können und/oder ein bis drei Reste aus der Gruppe

5 Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkoxy carbonyl tragen können.

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0°C bis 120°C, vorzugsweise 10°C bis 100°C, in einem inerten organischen Lösungsmittel [vgl. EP 120 814; EP 101 407].

10

Geeignete Lösungsmittel sind aliphatische oder cycloaliphatische Kohlenwasserstoffe wie Pentan, 1,2,4-Trimethylpentan, 2,2,3-Trimethylpentan, 2,3,3-Trimethylpentan, Hexan, Heptan, Octan, Nonan, Gemische von C₅-C₈-Alkanen, Pinan, Cyclohexan, Methylcyclohexan, o-, m-, p-Cymol, Benzinfraktionen innerhalb eines Siedepunktintervalls

15

von 70°C bis 190°C, Dekalin, Petrolether, Ligroin; Nitrokohlenwasserstoffe wie Nitromethan, Nitroethan, Nitrobenzol, o-, m-, p-Chlornitrobenzol und o-Nitrotoluol; aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylo, halogenierte Kohlenwasserstoffe wie 1,2-Dichlorethan, 1,1-Dichlorethan, 1,2-cis-Dichlorethylen, 1,1,1- oder 1,1,2-Trichlorethan, Trichlorethylen, Tetrachlorethylen, 1,1,2,2- oder 1,1,1,2-Tetrachlorethan,

20

Pentachlorethan, Dichlorpropan, Methylenechlorid, Dichlorbutan, Chloroform, Tetrachlorkohlenstoff, Fluorbenzol, Chlorbenzol, Brombenzol, Jodbenzol, o-, m-, p-Difluorbenzol, o-, m-, p-Dichlorbenzol, o-, m-, p-Dibrombenzol, o-, m-, p-Chlortoluol, 1,2,4-Trichlorbenzol, Chlornaphthalin, Dichlornaphthalin; Ether wie Diethylether, Ethylpropylether, Diisopropylether, tert.-Butylmethylether, n-Butylethylether, Di-n-

25

butylether, Diisobutylether, Diisoamylether, Dioxan, Cyclohexylmethylether, Ethylenglykoldemithylether, β,β'-Dichlordiethylether, Tetrahydrofuran, Anisol, Thioanisol, Phenetol; Nitrile wie Acetonitril, Propionitril, Butyronitril, Isobutyronitril, Benzonitril, m-Chlorbenzonitril; Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-

30

Butylmethylketon, sowie Dimethylformamid; Ester wie Ethylacetat, Acetessigester, Isobutylacetat; Amide wie Formamid, Methylformamid, Dimethylformamid; besonders bevorzugt Tetrahydrofuran, Dioxan, Dimethylformamid sowie Toluol.

110

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Katalysator kann vor oder während der Reaktion eine Base zugesetzt werden, wodurch die Reaktion beschleunigt und die Produktqualität verbessert wird.

5

Als Basen kommen allgemein organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, Tri(n-propyl)amin, N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Triethylamin oder 1,4-

10 Diazabicyclo[2,2,2]octan.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar verwendet werden.

15

Die Sulfonylcarbamate der Formel XII werden im allgemeinen in äquimolaren Mengen mit einem Amin der Formel XIV umgesetzt. Es kann vorteilhaft sein, XIV in einem Überschuß bezogen auf XII einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

20

Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe sind in der Literatur bekannt [vgl. z.B. CAS 112, 157842; JP 01/168662] oder können gemäß der zitierten Literatur hergestellt werden.

25

Verfahren F

30

Verbindungen der Formel I, in denen die Reste Q an ihren Stickstoffatomen die Substituenten R³, R⁴, R⁷, R¹¹, R¹⁸, R¹⁹, R²⁴, R²⁷, R²⁹, R³², R³⁹, R⁴⁴-R⁴⁷ tragen, [wobei diese Reste unter anderem für C₁-C₆-Alkyl oder Amino, C₁-C₆-Alkylamino oder Di(C₁-C₆-alkyl)amino stehen], lassen sich herstellen, indem entweder vor dem Aufbau der Sulfonynamidseitenkette (d.h., auf der Stufe der Aromaten der Formel VIII) oder nach Aufbau

35

der Sulfonamidseitenkette mit einem Alkyhalogenid, -sulfat, -tosylat oder einem elektrophilen Aminierungsreagens der Formel XVII analog zu den in der Literatur beschriebenen Methoden umgesetzt wird.

Beispiele für elektrophile Aminierungsreagenzien der Formel XVII sind 2,4-

40 Dinitrophenylhydroxylamin und o-Mesitylsulfonylhydroxylamin.

Beispielsweise lassen sich die oben genannten Benzolsulfonsäurechloride der Formel VII durch Einwirkung von Alkoholen, zweckmäßigerweise in Gegenwart einer Base, in die entsprechenden Benzolsulfonsäureester umwandeln [vgl. Houben-Weyl, Methoden der organischen Synthese, Bd. 9, 1955, S. 663]. Anschließend lassen sich die Benzolsulfonsäureester an den freien Stickstoffatomen der entsprechenden Reste Q alkylieren oder aminieren. Im Anschluß daran können die Benzolsulfonsäureester wieder verseift werden [vgl. Kocienski, Protecting groups, Thieme-Verlag 1994; Greene, Wuts, Protecting groups in organic synthesis, Wiley 1999; Houben-Weyl, Methoden der organischen Chemie, Bd. E5 Teil I, 1985, S. 223f.).

Beispielhaft sei hier eine Aminierung am Rest $Q = Q^{21}$ dargestellt. Die Aminierungen für die anderen Reste Q sowie Alkylierungen an den Resten Q sind analog durchführbar. Man erhält auf diesem Weg z.B. Sulfonsäuren der Formel XVI. Diese können anschließend nach literaturbekannten Methoden zu den gewünschten Benzolsulfonamid-Derivaten der Formel I umgesetzt werden.

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 10°C bis 80°C, vorzugsweise 20°C bis 40°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. DE 19 652 431; WO 01/83459].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylimethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylimethylketon, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Tetrahydrofuran, Dioxan, Acetonitril sowie Dimethylformamid.

112

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

- Als Basen kommen allgemein anorganische Verbindungen, z.B. Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetall-carbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriummethanolat, Kaliummethanolat, Kalium-tert.-Butanolat, Kalium-tert.-pentanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Kaliumcarbonat sowie Calciumcarbonat.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

- 20 Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann aber auch vorteilhaft sein, XVII in einem Überschuß bezogen auf XV einzusetzen.

- Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

- Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe sind in der Literatur bekannt [z.B. CAS 112, 157842; JP 01168662] oder können gemäß der zitierten Literatur hergestellt werden.

Benzolsulfonyliso(thio)cyanate der Formel II

wobei X¹, X², A und Q die unter Anspruch 1 genannten Bedeutungen haben, sind ebenfalls ein Gegenstand der vorliegenden Erfindung.

Die besonders bevorzugten Ausführungsformen der Zwischenprodukte in Bezug auf
5 die Variablen entsprechen denen der Reste X¹, X², A und Q der Formel I.

Besonders bevorzugt werden Zwischenprodukte der Formel IV, in denen

X¹ Wasserstoff, Fluor oder Chlor;

besonders bevorzugt Wasserstoff oder Fluor;

10 insbesondere bevorzugt Fluor;

X² Wasserstoff, Cyano, CS-NH₂ oder Halogen;

besonders bevorzugt Wasserstoff, Halogen wie Fluor und Chlor;

insbesondere bevorzugt Chlor; und

15 Q Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²³, Q²⁴, Q²⁷, Q³¹, Q³², Q³⁴, Q³⁸ oder Q³⁹,

besonders bevorzugt Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²⁴, Q²⁷, Q³¹, Q³², Q³⁸ oder Q³⁹,

insbesondere bevorzugt Q⁵, Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ oder Q³⁹,

außerordentlich bevorzugt Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ oder Q³⁹,

20 sehr außerordentlich bevorzugt Q²¹, Q³² oder Q³⁸

bedeuten.

25 Herstellungsbeispiele

Beispiel 1

2-Chlor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]-benzolsulfonamid

30

1.6 g (93.8 mmol) Ammoniakgas wurden unter Rühren bei 0°C in eine Mischung aus 18 g (44.6 mmol) 2-Chlor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]-benzolsulfonylchlorid in Tetrahydrofuran (THF) geleitet. Anschließend

114

wurde bei 10 °C Essigsäureethylester zugegeben und mit 1N Salzsäure angesäuert. Nach Trennung der Phasen und Extraktion der wässrigen Phase wurden die vereinigten organischen Phasen gewaschen, getrocknet und vom Lösungsmittel befreit. Nach üblichen Reinigungsmethoden erhielt man 14.4 g (82.4% der Theorie) der Titelverbindung (Schmp.: 257-258 °C).

Beispiel 2

2-Chlor-4-fluor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]

10 benzolsulfonylisocyanat

7.4 g (62.3 mmol) Thionylchlorid wurden bei 60°C unter Rühren zu einer Suspension von 10.0 g (24.9 mmol) 2-Chlor-4-fluor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-

15 trifluormethyl-(2H)-pyrimidin-1-yl]-benzolsulfonylamid in 1,2-Dichlorethan getropft. Anschließend wurde 4 h am Rückfluß gekocht. Anschließend wurde auf 60°C abgekühlt, katalytische Mengen Pyridin zugegeben und 12 h unter Rückfluß Phosgen eingeleitet, bis eine klare Lösung entstand. Nach Abkühlen auf 30 °C wurde das Produkt vom Lösungsmittel befreit. Man erhielt 11.6 g (98% der Theorie) der Titelverbindung.

20 $^1\text{H-NMR}$ (400 MHz, CDCl_3) δ [ppm] = 8.12 (d, 1H), 7.55 (d, 1H), 6.38 (s, 1H), 3.57 (s, 3H).

Beispiel 3

25 2-Chlor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]-benzolsulfonylisocyanat

115

10.0 g (26.1 mmol) 2-Chlor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]-benzolsulfonamid wurde analog der in Beispiel 2 beschriebenen Methode umgesetzt. Man erhielt 13.4 g (99% der Theorie) der Titelverbindung.

5 $^1\text{H-NMR}$ (400 MHz, CDCl_3) δ [ppm] = 8.02 (s, 1H), 7.76 (d, 2H), 7.5 (d, 1H), 6.38 (s, 1H), 3.70 (s, 3H).

Beispiel 4 (Nr. 3.32)

10 Benzyl{2-chlor-4-fluor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]-phenyl}sulfonylcarbamat

15 0.6 g (1.4 mmol) 2-Chlor-4-fluor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]-benzolsulfonylisocyanat in 1,2-Dichlorethan wurden unter Rühren zu einer Lösung von 0.15 g (1.4 mmol) Benzylalkohol in Methylenechlorid gegeben und die Reaktionsmischung über Nacht gerührt. Nach Entfernen des Lösungsmittels und üblichen Reinigungsmethoden erhielt man 0.4 g (52% der Theorie) der Titelverbindung als farblosen Feststoff (Schmp: 231-232 °C).

20

Beispiel 5 (Nr. 2.26)

25 3-[4-Chlor-2-fluor-5-{[isopropyl(methyl)amino]carbonylamino}sulfonyl]phenyl]-1-methyl-2,4-dioxo-6-trifluormethyl-1,2,3,4-tetrahydropyrimidin

25

1.0 g (2.34 mmol) 2-Chlor-4-fluor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]-benzolsulfonylisocyanat in 1,2-Dichlorethan wurde unter Rühren zu

116

einer Lösung von 0.34 g (4.68 mmol) N-Methylisopropylamin in 1,2-Dichlorethan gegeben und über Nacht gerührt. Die Reaktionsmischung wurde eingeengt, der Rückstand in Methylenechlorid aufgenommen und mit 0.5N Salzsäure versetzt. Anschließend wurde die organische Phase getrocknet und vom Lösungsmittel befreit. Man erhielt 0.5 g (42% der Theorie) der Titelverbindung als farblosen Feststoff (Schmp.: 145°C).

5 (42% der Theorie) der Titelverbindung als farblosen Feststoff (Schmp.: 145°C).

Beispiel 6 (Nr. 4.5)

10 N-isobutynyl-[2-chlor-5-(3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-1-(2H)-pyrimidinyl)]benzolsulfonamid

15 Zu einer Mischung von 0.5 g (1.3 mmol) 2-Chlor-4-fluor-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluormethyl-(2H)-pyrimidin-1-yl]-benzolsulfonylisocyanat, 0.26g (2.61 mmol) Triethylamin und katalytischen Mengen N,N-Dimethylaminopyridin in Methylenechlorid wurden unter Rühren 0.15 g (1.43 mmol) Isobuttersäurechlorid gegeben und über Nacht gerührt. Die Reaktionsmischung wurde mit 1N Salzsäure gewaschen, getrocknet und vom Lösungsmittel befreit. Man erhielt 0.6 g (96% der Theorie) der Titelverbindung als farblosen Feststoff (Schmp.: 114-116 °C).

20
25 In den Tabellen 2 bis 4 sind neben den voranstehenden Verbindungen noch weitere Benzolsulfonamid-Derivate der Formel I aufgeführt, die in analoger Weise nach den voranstehend beschriebenen Verfahren hergestellt wurden oder herstellbar sind.

117

Tabelle 2

Nr.	X ¹	X ²	R ¹	R ²	R ²⁹	Schmp. [°C]
2.1	H	Cl	CH ₃	H	CH ₃	
2.2	H	Cl	CH ₃	H	NH ₂	
2.3	H	Cl	CH ₃	CH ₃	CH ₃	
2.4	H	Cl	CH ₃	CH ₃	NH ₂	
2.5	H	Cl	OCH ₃	CH ₃	CH ₃	95
2.6	H	Cl	C ₂ H ₅	H	CH ₃	
2.7	H	Cl	C ₂ H ₅	H	NH ₂	
2.8	H	Cl	C ₂ H ₅	C ₂ H ₅	CH ₃	
2.9	H	Cl	CH ₂ CH ₂ CH ₃	H	CH ₃	
2.10	H	Cl	CH ₂ CH ₂ CH ₃	H	NH ₂	
2.11	H	Cl	CH(CH ₃) ₂	H	CH ₃	
2.12	H	Cl	CH(CH ₃) ₂	CH ₃	CH ₃	197
2.13	H	Cl	CH ₂ =CH-CH ₂	H	CH ₃	
2.14	H	Cl	4-Methoxy-6-methyl-pyrimidin-2-yl	H	CH ₃	209-211
2.15	H	Cl	4,6-Dimethoxy-pyrimidin-2-yl	H	CH ₃	208-212
2.16	H	Cl	4-Methoxy-6-methyl-1,3,5-triazin-2-yl	H	CH ₃	146-175
2.17	F	Cl	CH ₃	H	CH ₃	228-230
2.18	F	Cl	CH ₃	H	NH ₂	
2.19	F	Cl	CH ₃	CH ₃	CH ₃	198-205
2.20	F	Cl	CH ₃	CH ₃	NH ₂	
2.21	F	Cl	C ₂ H ₅	H	CH ₃	
2.22	F	Cl	C ₂ H ₅	H	NH ₂	
2.23	F	Cl	C ₂ H ₅	CH ₃	CH ₃	
2.24	F	Cl	CH ₂ CH ₂ CH ₃	H	CH ₃	
2.25	F	Cl	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	
2.26	F	Cl	CH(CH ₃) ₂	CH ₃	CH ₃	145 (Zersetzung)

118

2.27	F	Cl	CH(CH ₃) ₂	CH(CH ₃) ₂	CH ₃	179-181
2.28	F	Cl	CH(CH ₃)C≡CH	CH ₃	CH ₃	160-165
2.29	F	Cl	C ₆ H ₅	H	CH ₃	160
2.30	F	Cl		-(CH ₂) ₅ -	CH ₃	
2.31	F	Cl		-(CH ₂) ₆ -	CH ₃	
2.32	Cl	Cl	CH ₃	H	CH ₃	234-235
2.33	Cl	Cl	CH ₃	CH ₃	CH ₃	
2.34	Cl	Cl	CH ₃	CH ₃	NH ₂	
2.35	Cl	Cl	C ₂ H ₅	H	CH ₃	
2.36	Cl	Cl	CH ₂ CH ₂ CH ₃	H	CH ₃	
2.37	F	Cl	CH(CH ₃) ₂	H	NH ₂	

5

Tabelle 3

Nr.	X ¹	X ²	A	B	R ¹	R ²⁹	Schmp. [°C]
3.1	H	Cl	O	O	CH ₃	CH ₃	120-148
3.2	H	Cl	O	O	C ₂ H ₅	CH ₃	189-190
3.3	H	Cl	O	O	CH ₂ CH ₂ CH ₃	CH ₃	
3.4	H	Cl	O	O	CH(CH ₃) ₂	CH ₃	
3.5	H	Cl	O	O	(CH ₂) ₃ CH ₃	CH ₃	194-195
3.6	H	Cl	O	O	CH(CH ₃)CH ₂ CH ₃	CH ₃	
3.7	H	Cl	O	O	CH ₂ CH(CH ₃) ₂	CH ₃	
3.8	H	Cl	O	O	C(CH ₃) ₃	CH ₃	
3.9	H	Cl	O	O	(CH ₂) ₄ CH ₃	CH ₃	
3.10	H	Cl	O	O	Cyclopentyl	CH ₃	114-116
3.11	H	Cl	O	O	CH ₂ CH ₂ Cl	CH ₃	
3.12	H	Cl	O	O	(CH ₂)OCH ₃	CH ₃	
3.13	H	Cl	O	O	(CH ₂)SCH ₃	CH ₃	
3.14	H	Cl	O	O	CH ₂ CH ₂ CN	CH ₃	
3.15	H	Cl	O	S	CH ₃	CH ₃	

119

3.16	H	Cl	O	S	C ₂ H ₅	CH ₃	
3.17	H	Cl	O	S	CH ₂ CH ₂ CH ₃	CH ₃	
3.18	F	Cl	O	O	CH ₃	CH ₃	120-135
3.19	F	Cl	O	O	C ₂ H ₅	CH ₃	228-231
3.20	F	Cl	O	O	CH ₂ CH ₂ CH ₃	CH ₃	203
3.21	F	Cl	O	O	CH(CH ₃) ₂	CH ₃	
3.22	F	Cl	O	O	(CH ₂) ₃ CH ₃	CH ₃	238
3.23	F	Cl	O	O	CH(CH ₃)CH ₂ CH ₃	CH ₃	195-198
3.24	F	Cl	O	O	CH ₂ CH(CH ₃) ₂	CH ₃	233-235
3.25	F	Cl	O	O	C(CH ₃) ₃	CH ₃	185
3.26	F	Cl	O	O	(CH ₂) ₄ CH ₃	CH ₃	235
3.27	F	Cl	O	O	Cyclopentyl	CH ₃	214
3.28	F	Cl	O	O	CH ₂ CH ₂ Cl	CH ₃	
3.29	F	Cl	O	O	(CH ₂)OCH ₃	CH ₃	
3.30	F	Cl	O	O	(CH ₂)SCH ₃	CH ₃	
3.31	F	Cl	O	O	CH ₂ CH ₂ CN	CH ₃	
3.32	F	Cl	O	O	CH ₂ C ₆ H ₅	CH ₃	231-232
3.33	F	Cl	O	S	CH ₃	CH ₃	
3.34	F	Cl	O	S	C ₂ H ₅	CH ₃	
3.35	F	Cl	O	S	CH ₂ CH ₂ CH ₃	CH ₃	
3.36	Cl	Cl	O	S	CH ₃	CH ₃	
3.37	Cl	Cl	O	S	C ₂ H ₅	CH ₃	
3.38	Cl	Cl	O	S	CH ₂ CH ₂ CH ₃	CH ₃	
3.39	Cl	Cl	O	O	CH ₃	CH ₃	218-220
3.40	Cl	Cl	O	O	C ₂ H ₅	CH ₃	235-237
3.41	F	Cl	O	O	CH ₂ COOCH ₃	CH ₃	142-160
3.42	F	Cl	O	O	C(CH ₃) ₂ CH ₂ OCH ₃	CH ₃	178

120

4

Tabelle 4

Nr.	X ¹	X ²	R ¹	R ²⁹	Schmp. [°C]
4.1	H	Cl	H	CH ₃	
4.2	H	Cl	CH ₃	CH ₃	
4.3	H	Cl	C ₂ H ₅	CH ₃	
4.4	H	Cl	CH ₂ CH ₂ CH ₃	CH ₃	
4.5	H	Cl	CH(CH ₃) ₂	CH ₃	114-116
4.6	H	Cl	(CH ₂) ₃ CH ₃	CH ₃	
4.7	H	Cl	CH(CH ₃)CH ₂ CH ₃	CH ₃	
4.8	H	Cl	CH ₂ CH(CH ₃) ₂	CH ₃	
4.9	H	Cl	Cyclopentyl	CH ₃	
4.10	H	Cl	CH ₃	NH ₂	
4.11	H	Cl	C ₂ H ₅	NH ₂	
4.12	H	Cl	CH ₂ CH ₂ CH ₃	NH ₂	
4.13	F	Cl	CH ₃	CH ₃	269 (Zersetzung)
4.14	F	Cl	C ₂ H ₅	CH ₃	
4.15	F	Cl	CH ₂ CH ₂ CH ₃	CH ₃	
4.16	F	Cl	CH(CH ₃) ₂	CH ₃	243-245
4.17	F	Cl	CH ₂ Cl	CH ₃	
4.18	F	Cl	CF ₃	CH ₃	
4.19	F	Cl	C ₆ H ₅	CH ₃	
4.20	F	Cl	2-Cl-C ₆ H ₄	CH ₃	
4.21	F	Cl	3-Cl-C ₆ H ₄	CH ₃	
4.22	F	Cl	4-Cl-C ₆ H ₄	CH ₃	
4.23	F	Cl	CH ₂ (4-CH ₃ -C ₆ H ₄)	CH ₃	
4.24	Cl	Cl	CH ₃	CH ₃	275-277
4.25	Cl	Cl	C ₂ H ₅	CH ₃	225-230
4.26	Cl	Cl	CH ₂ CH ₂ CH ₃	CH ₃	
4.27	Cl	Cl	CH ₂ CH(CH ₃) ₂	CH ₃	
4.28	Cl	Cl	CH ₃	NH ₂	
4.29	Cl	Cl	C ₂ H ₅	NH ₂	
4.30	Cl	Cl	CH ₂ CH ₂ CH ₃	NH ₂	

Biologische Wirksamkeit

Die Benzolsulfonamid-Derivate der Formel I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isome-

5 ren - als Herbizide. Die Verbindungen der Formel I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

10 In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen der Formel I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

15 Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoiensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, 20 Vitis vinifera und Zea mays.

30 Darüber hinaus können die Verbindungen der Formel I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.

35 Die Verbindungen der Formel I bzw. die sie enthaltenden herbiziden Mittel können beispielweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, ölichen oder sonstigen Suspensionen oder Dispersions, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewen-

122

det werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

- 5 Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.

Als inerte Hilfsstoffe kommen im Wesentlichen in Betracht:

- 10 Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie Kerosin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffine, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole und deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.

- 15 Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

- 20 25 Als oberflächenaktive Stoffe (Adjuvantien) kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutyl-naphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanoate sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylethoxyphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenaldehyde, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

123

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

5 Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerde wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

10

15 Die Konzentrationen der Verbindungen der Formel I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa von 0.001 bis 98 Gew.-%, vorzugsweise 0.01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

20 Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:

- 25 I. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.
- 30 II. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.
- 35 III. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion
- 40

124

on vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.

5

IV. 20 Gewichtsteile eines Wirkstoffs der Formel I werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle ver-

10

mahlen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs der Formel I enthält.

15

V. 3 Gewichtsteile eines Wirkstoffs der Formel I werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs der Formel I enthält.

20

VI. 20 Gewichtsteile eines Wirkstoffs der Formel I werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkoholpolyglykether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

25

VII. 1 Gewichtteil eines Wirkstoffs der Formel I wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isocetylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.

30

VIII. 1 Gewichtteil eines Wirkstoffs der Formel I wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol^R EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl) besteht. Man erhält ein stabiles Emulsionskonzentrat.

35

Die Applikation der Verbindungen der Formel I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

125

Die Aufwandmengen an Verbindung der Formel I betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0.001 bis 3.0, vorzugsweise 0.01 bis 1.0 kg/ha aktive Substanz (a.S.).

- 5 Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Benzolsulfonamid-Derivate der Formel I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, 10 Anilide, Aryloxy-/Heteroaryloxyalkansäuren und deren Derivate, Benzoësäure und deren Derivate, Benzothiadiazinone, 2-(Hetaryl/Aroyl)-1,3-cyclohexandione, Heteroaryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF₃-PhenylDerivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexenonoximetherderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbon-15 säuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydropthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, Phenylsuccinsäure und deren Derivate, 2-Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyri-20 dincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln 25 gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

30

Anwendungsbeispiele

- 35 Die herbizide Wirkung der Benzolsulfonamid-Derivate der Formel I ließ sich durch die folgenden Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

40

126

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Eissaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese

- 5 Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in

- 10 Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt.

- 15 Die Aufwandmenge für die Vor- und Nachauflaufbehandlung betrug zwischen 62.5 und 3.1 g a.S./ha.

- Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während 20 dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

- 25 Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name	Deutscher Name	Englischer Name
<i>Abutilon theophrasti</i>	Chinesischer Hanf	Velvetleaf
<i>Amaranthus retroflexus</i>	Amarant	Pigweed
<i>Chenopodium album</i>	Weißer Gänsefuß	Lambsquarters, common
<i>Ipomoea hederacea</i>	Trichterwinde	Morningglory
<i>Pharbitis purpurea</i>	Purpurne Trichterwinde	Morningglory, common
<i>Polygonum convolvulus</i>	Windenknoten	Buckwheat, wild
<i>Polygonum persicaria</i>	Flohknöterich	Ladysthump
<i>Solanum nigrum</i>	Nachtschatten	Nightshade, common

127

Bei Aufwandmengen von 12.5 bzw. 6.2 g/ha zeigten die Verbindungen 3.1 und 3.18 (Tabelle 3) im Vorauflauf eine sehr gute Wirkung gegen die unerwünschten Pflanzen Amarant, Weißer Gänsefuß, Purpurne Trichterwinde und Windenknöterich.

- 5 Weiterhin bekämpften Verbindungen 3.24 (Tabelle 3) und 4.16 (Tabelle 4) im Vorauf-
lauf bei Aufwandsmengen von 6.2 bzw. 3.1 g/ha die unerwünschten Pflanzen Chinesi-
scher Hanf, Amarant, Weißer Gänsefuß und Trichterwinde sehr gut.

- 10 Die Wirkung von Verbindung 3.32 (Tabelle 3) im Vorauflauf bei Aufwandsmengen von
62.5 bzw. 31.2 g/ha auf die unerwünschten Pflanzen Chinesischer Hanf, Amarant,
Weißer Gänsefuß und Nachtschatten war sehr gut.

- 15 Bei Aufwandmengen von 15.6 bzw. 7.8 g/ha zeigten die Verbindungen 3.27, 3.18, 3.20
und 3.22 (Tabelle 3) im Nachauflauf eine sehr gute Wirkung gegen die unerwünschten
Pflanzen Amarant, Weißer Gänsefuß, Purpurne Trichterwinde und Flohknöterich.

- Weiterhin bekämpften Verbindungen 2.29 (Tabelle 2) und 3.26 (Tabelle 3) im Nachauflauf
bei Aufwandsmengen von 15.6 bzw. 7.8 g/ha die unerwünschten Pflanzen
Amarant, Weißer Gänsefuß und Purpurne Trichterwinde sehr gut.

Patentansprüche:

1. Benzolsulfonamid-Derivate der Formel I

in der die Variablen die folgenden Bedeutungen haben:

- 10 X^1 Wasserstoff oder Halogen;
- 15 X^2 Wasserstoff, Cyano, CS-NH₂, Halogen, C₁-C₆-Alkyl oder C₁-C₆-Halogenalkyl;
- 20 X^3 Wasserstoff, Cyano, C₁-C₆-Alkyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, C₃-C₇-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl-C₁-C₄-alkyl, wobei der Phenylrest seinerseits partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert sein kann;
- 25 Y eine Gruppe -C(A)B, SO₂ oder SO₂NR²;
- 30 A Sauerstoff oder Schwefel;
- 35 B Sauerstoff, Schwefel, NR² oder eine Bindung;
- 40 R¹ Wasserstoff, Halogen, Hydroxy, C₁-C₈-Alkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyl-C₁-C₄-alkyl, C₂-C₈-Alkenyl, C₅-C₇-Cycloalkenyl, C₃-C₈-Alkinyl, C₁-C₈-Alkoxy, C₃-C₇-Cycloalkyloxy, C₂-C₈-Alkenyloxy, C₃-C₆-Alkinyloxy, Aryl, Aryloxy, Aryl-C₁-C₄-alkyl; wobei die 13 letztgenannten Reste ihrerseits partiell oder vollständig halogeniert sein können und/oder ein bis drei Substituenten aus der Gruppe Cyano, NO₂, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₃-C₇-Cycloalkyloxy, C₂-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, Amino, C₁-C₆-Alkylamino, Di(C₁-C₆-alkyl)amino, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogen-alkylsulfinyl, C₁-C₆-

- Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkoxy sulfonyl, Formyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl, C₂-C₆-Alkenylcarbonyl, C₃-C₆-Alkinylcarbonyl, Carboxy, C₁-C₆-Alkoxy carbonyl, C₁-C₆-Halogenalkoxy carbonyl, C₂-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkinyloxycarbonyl, Mercaptocarbonyl, C₁-C₆-Alkylthiocarbonyl, C₁-C₆-Halogenalkylthiocarbonyl, C₂-C₆-Alkenylthiocarbonyl, C₃-C₆-Alkinylthiocarbonyl, Aminocarbonyl, C₁-C₆-Alkylaminocarbonyl, Di(C₁-C₆-alkylamino)carbonyl, C₁-C₆-Halogenalkylaminocarbonyl, Di(C₁-C₆-halogenalkylamino)carbonyl, C₂-C₆-Alkenylaminocarbonyl, Di(C₂-C₆-alkenylamino)carbonyl, C₃-C₆-Alkinylaminocarbonyl, Di(C₃-C₆-alkinylamino)carbonyl, Phenyl, Phenoxy, Phenyl-C₁-C₄-Alkyl und Phenyl-C₁-C₄-alkoxy, tragen können;
- vier- bis sechsgliedriges Heterocycl, das partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert sein kann; oder
- vier- bis sechsgliedriges Heterocycl-C₁-C₄-alkyl, das partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert sein kann; oder
- fünf- bis sechsgliedriges Heteroaryl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom; das partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Amino, C₁-C₆-Alkylamino und Di(C₁-C₆-alkyl)amino substituiert sein kann, oder
- fünf- bis sechsgliedriges Heteroaryl-C₁-C₄-alkyl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom; das partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Amino, C₁-C₆-Alkylamino und Di(C₁-C₆-alkyl)amino substituiert sein kann;
- R² Wasserstoff, C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₃-C₈-Alkinyl, C₃-C₇-Cycloalkyl, wobei die vier letztgenannten Reste teilweise oder vollständig halogeniert sein können; oder

R¹ und R² bilden zusammen mit dem N-Atom, an das sie gebunden sind, einen drei- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl und C₁-C₆-Alkoxy substituiert sein kann;

5

Q

ein Rest aus der Gruppe Q¹ bis Q³⁹

15

4

5

5

A¹ bis A¹⁷ Sauerstoff oder Schwefel;

10 R³, R⁴, R⁷, R⁸, R¹¹, R¹², R¹⁸, R¹⁹, R²⁷, R²⁹, R³², R³³, R³⁸, R³⁹, R⁴⁴, R⁴⁵, R⁴⁶ und R⁴⁷
Wasserstoff, Cyano, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Cyanoalkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyloxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Alkinyl, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Phenyl-C₁-C₆-alkyl, Amino, C₁-C₆-Alkylamino oder Di(C₁-C₆-alkyl)amino; oder

15

R³ und R⁴, R¹¹ und R¹², R¹⁸ und R¹⁹, oder R⁴⁶ und R⁴⁷ bilden zusammen mit den Atomen, an die sie gebunden sind, einen drei- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert sein kann;

5

R⁵, R⁶, R⁹, R¹⁰, R¹⁵, R¹⁶, R²⁰, R²¹, R³⁰, R³¹, R³⁵, R³⁶, R⁴¹, R⁴² und R⁴³
Wasserstoff, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyloxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy,
10 C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Alkinyl, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkoxysulfonyl, C₁-C₆-Alkylsulfonyloxy, Amino, C₁-C₆-Alkylamino oder Di(C₁-C₆-alkyl)amino; oder

15

R⁵ und R⁶, R⁹ und R¹⁰, R¹⁵ und R¹⁶, R²⁰ und R²¹, oder R³⁰ und R³¹ bilden zusammen mit den Atomen, an die sie gebunden sind, einen drei- bis siebengliedrigen Heterocyclus, welcher seinerseits partiell oder vollständig halogeniert und/oder durch ein bis drei Reste aus der Gruppe C₁-C₆-Alkyl und C₁-C₆-Alkoxy substituiert sein kann;

20

R¹³, R¹⁴, R²², R²³, R²⁵ und R²⁶
Wasserstoff, Halogen oder C₁-C₆-Alkyl;

25

R¹⁷, R²⁸, R³⁴, R³⁷ oder R⁴⁰
Wasserstoff, Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyloxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Alkinyl oder C₃-C₆-Alkinyloxy;

30

R²⁴ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Halogenalkoxy, Amino, C₁-C₆-Alkylamino oder Di(C₁-C₆-alkyl)amino;

35

sowie deren landwirtschaftlich brauchbaren Salze.

2. Benzolsulfonamide der Formel I gemäß Anspruch 1, in der X¹ Wasserstoff, Fluor oder Chlor bedeutet.

3. Benzolsulfonamide der Formel I gemäß Anspruch 1, in der X² Wasserstoff, Cyan-, CS-NH₂ oder Halogen bedeutet.

4. Benzolsulfonamide der Formel I gemäß Anspruch 1, in der Y eine Gruppe -C(A)B bedeutet.

5. Benzolsulfonamide der Formel I gemäß Anspruch 1, in der Q Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²³, Q²⁴, Q²⁷, Q³¹, Q³², Q³⁴, Q³⁸ oder Q³⁹ bedeutet.

10

6. Benzolsulfonamide der Formel I gemäß Anspruch 1, in der Q Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ oder Q³⁹ bedeutet.

7. Verfahren zur Herstellung von Benzolsulfonamid-Derivaten der Formel I gemäß Anspruch 1, wobei X³ für Wasserstoff, Y für -C(A)B und B für Sauerstoff, Schwefel oder NR² steht, dadurch gekennzeichnet daß Benzolsulfonyliso(thio)cyanate der Formel II

20

wobei X¹, X², A und Q die unter Anspruch 1 genannten Bedeutungen haben,

mit Aminen der Formel III oder Alkoholen bzw. Thiolen der Formel IV

25

wobei R¹ und R² die unter Anspruch 1 genannten Bedeutungen haben, umgesetzt werden.

30 8. Benzolsulfonyliso(thio)cyanate der Formel II

wobei X¹, X², A und Q die unter Anspruch 1 genannten Bedeutungen haben.

9. Mittel, enthaltend eine herbizid wirksame Menge mindestens eines Benzolsulfonamid-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 6 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.
10. Verfahren zur Herstellung von Mitteln gemäß Anspruch 9, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines Benzolsulfonamid-Derivates der Formel I gemäß den Ansprüchen 1 bis 6 oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel mischt.
11. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines Benzolsulfonamid-Derivates der Formel I gemäß den Ansprüchen 1 bis 6 oder eines landwirtschaftlich brauchbaren Salzes von I auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.
- 20 12. Verwendung der Benzolsulfonamid-Derivate der Formel I gemäß den Ansprüchen 1 bis 6 und deren landwirtschaftlich brauchbaren Salze als Herbizide.

Zusammenfassung

Die vorliegende Erfindung betrifft Benzolsulfonamid-Derivate der Formel I

in der die Variablen die folgenden Bedeutungen haben:

- 10 X¹ Wasserstoff oder Halogen;
- 15 X² Wasserstoff, Cyano, CS-NH₂, Halogen, Alkyl oder Halogenalkyl;
- 20 X³ Wasserstoff, Cyano, Alkyl, Alkoxy -Alkyl, Cycloalkyl, Alkenyl, Alkinyl oder Phenyl-Alkyl, wobei der Phenylrest seinerseits substituiert sein kann;
- 25 Y eine Gruppe -C(A)B, SO₂ oder SO₂NR²;
- 30 A Sauerstoff oder Schwefel;
- 35 B Sauerstoff, Schwefel, NR² oder eine Bindung;
- R¹ Wasserstoff, Halogen, Hydroxy, Alkyl, Cycloalkyl, Cycloalkylalkyl, Alkenyl, Cycloalkenyl, Alkinyl, Alkoxy, Cycloalkyloxy, Alkenyloxy, Alkinyloxy, Aryl, Aryloxy, Arylalkyl, wobei die 13 letztgenannten Reste ihrerseits substituiert sein können;
gegebenenfalls substituiertes vier- bis sechsgliedriges Heterocycl; gegebenenfalls substituiertes vier- bis sechsgliedriges Heterocycl-C₁-C₄-alkyl; gegebenenfalls substituiertes fünf- bis sechsgliedriges Heteroaryl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom; oder
gegebenenfalls substituiertes fünf- bis sechsgliedriges Heteroaryl-C₁-C₄-alkyl mit ein bis vier Stickstoffatomen, oder mit ein bis drei Stickstoffatomen und einem Sauerstoff- oder einem Schwefelatom, oder mit einem Sauerstoff oder Schwefelatom;

2

R² Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, wobei die vier letztgenannten Reste teilweise oder vollständig halogeniert sein können; oder

5 R¹ und R² bilden zusammen mit dem N-Atom, an das sie gebunden sind, einen gegebenenfalls substituierten drei- bis siebengliedrigen Heterocyclus;

Q ein Rest aus der Gruppe Q¹ bis Q³⁹;

10 Verfahren und Zwischenprodukte zu ihrer Herstellung; sowie die Verwendung dieser Verbindungen oder diese Verbindungen enthaltende Mittel zur Bekämpfung unerwünschter Pflanzen.