Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Láncolás

Hasító (hash) tábla mérete

Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelye

Adatszerkezetek

10. Hasító (hash) táblák

Vekov Géza

2023. május 3.

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utközések Láncolás Nvílt címzés

tábla mérete Újra-hashelés

Hasító (hash függvény -

Alkalmazások mellékelve

Feladat

Tároljuk el a barátaink telefonszámát úgy, hogy minnél könnyebben hozzá tudjunk férni.

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

rehashing

Hasító (hash
függvény -

Alkalmazások mellékelve

Feladat

Tároljuk el a barátaink telefonszámát úgy, hogy minnél könnyebben hozzá tudjunk férni.

1	0755548975
2	0745698102
3	0740123497
4	0771236458
5	0756585820
6	0744147852

Ötlet: tároljuk a telefonszámokat egy tömbben

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

Hasító (ha függvény -

> Alkalmazások mellékelve

Feladat

Tároljuk el a barátaink telefonszámát úgy, hogy minnél könnyebben hozzá tudjunk férni.

1	0755548975
2	0745698102
3	0740123497
4	0771236458
5	0756585820
6	0744147852

Ötlet: tároljuk a telefonszámokat egy tömbben

De: Célszerű lenne név-telefonszám párokat eltárolni

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Utközések Láncolás Nvílt címzés

Hasító (hash) tábla mérete

Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelve

Hasító (hash) tábla

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Ütközések Láncolás Nyílt címzé:

Hasító (hash) tábla mérete Újra-hashelé rehashing

függvény mellékelve

Alkalmazások mellékelve

Adatok

A hasító (hash) tábla a tömb általánosítása:

- Az "index" bármilyen érték lehet.
- Kulcs-érték párokat tárolunk el (pl. név-telefonszám), ahol
 - a kulcs az index,
 - az érték a táblában tárolt adat
- Fontos: több lehetséges kulcs van, mint hely a hasító (hash) táblában.

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Ütközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelé: rehashing

Hasító (ha: függvény -

Alkalmazások mellékelve

Adatok

A hasító (hash) tábla a tömb általánosítása:

- Az "index" bármilyen érték lehet.
- Kulcs-érték párokat tárolunk el (pl. név-telefonszám), ahol
 - a kulcs az index,
 - az érték a táblában tárolt adat
- Fontos: több lehetséges kulcs van, mint hely a hasító (hash) táblában.

Cél

■ Eltárolni egy (folyamatosan változó) adathalmazt

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Utközések Láncolás Nvílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelve

Műveletek

- Beszúrás (*)
- Törlés (*)
- Keresés (*)
- * adott kulcs alapján

Megjegyzés

O(1)

- ha megfelelően van implementálva
- nem "rossz" bemenetre

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Utközések Láncolás Nyílt címzé

Hasító (hash tábla mérete Úira-hashelé

Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelve

Műveletek

- Beszúrás (*) *O*(1)
- Törlés (*) *O*(1)
- Keresés (*) *O*(1)
- * adott kulcs alapján

Megjegyzés

O(1)

- ha megfelelően van implementálva
- nem "rossz" bemenetre

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Láncolás

Hasító (hash) tábla mérete

Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelve

Adott

 ${\it U}$ - univerzum, a lehetséges kulcsok halmaza

általában nagyon nagy méret

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Láncolás Nyílt címzé

Hasító (hash) tábla mérete Újra-hashelés rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Adott

U - univerzum, a lehetséges kulcsok halmaza

általában nagyon nagy méret

Cél

Eltárolni egy $S \subseteq U$ adathalmazt

■ általában reális méret

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Ütközések Láncolás Nyílt címzé

Hasító (hash tábla mérete Úira-hashelé

Újra-hashelés rehashing Hasító (hash)

függvény mellékelv

Alkalmazásol mellékelve

Adott

U - univerzum, a lehetséges kulcsok halmaza

általában nagyon nagy méret

Cél

Eltárolni egy $S \subseteq U$ adathalmazt

■ általában reális méret

Megoldás

- n cellák száma
- hasító (hash) függvény: $h: U \rightarrow 0, 1, ..., n-1$
- A hasító (hash) tábla egy n elemű tömb:
 - x-et a h(x)-dik helyen tároljuk

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Utközések Láncolás

Nyílt címzé

tábla mérete Újra-hashelé

Hasító (hash) függvény -

Alkalmazások mellékelve

Felmerülő kérdések

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Utkozesek Láncolás Nyílt címzé

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (hash)

Alkalmazások mellékelve

- Hogyan kezeljük az ütközéseket?
- Mekkora legyen a hasító (hash) tábla mérete?
- Mi történik, ha megtelik a hasító (hash) tábla?
- Milyen hasító (hash) függvényt használjunk?

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utkozések

Nyílt címzé

Hasító (hash) tábla mérete

Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelve

Ütközések

Ütközés

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Ütközések

Láncolás

Nyilt cimzé

Hasító (hash tábla mérete Újra-hashele

Újra-hashelé rehashing Hasító (hash)

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Ütközés

különböző $x, y \in U : h(x) = h(y)$

Az ütközések előfordulása nagyon gyakori, szinte minden esetben fellép

Kezelési stratégiák

- Láncolás, keresőfa
 - a hasító (hash) tábla egyes indexein egy-egy láncolt listát tárolunk
 - a hasító (hash) tábla egyes indexein egy-egy PF fát tárolunk
- Nyílt címzés
 - egy indexen kizárólag egy értéket tárolunk
 - több megoldás létezik (lineáris próba, kvadratikus próba, kettős hashelés, stb.

Adatszerkezetek

Vekov Géz

Hasító (hasl tábla

Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelé rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

- A hasító (hash) táblában minden elem valójában egy láncolt lista
- A műveletek kiegészülnek azzal, hogy az aktuális kulcs által meghatározott pozíción levő listát be kell járni.

Futási idő

Keresés, törlés:

- Ideális esetben: *O*(1)
- Legrosszabb esetben: O(n)

Adatszerkezetek

Láncolás

Megjegyzés

- Elvileg szükség lehet rendezett listára, hogy gyorsabb legyen a keresés, DE
- Ha jó a hasító (hash) függvény, akkor a listák rövidek lesznek, és nincs szükség a rendezésre, mert a keresés így is nagyon gyors lesz.

Adatszerkezetek

Vekov Géza

tábla

Utközések **Láncolás** Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

rehashing
Hasító (hash)

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	
1	
3	
3	
4	
5	
6	

Adatszerkezetek

Vekov Géza

Hasító (has tábla

Ütközések **Láncolás**Nvílt címzé:

Hasító (hash) tábla mérete Újra-hashelé rehashing

rehashing Hasító (hash)

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	
1	50
2	
2 3 4 5	
4	
5	
6	

■ Beszúr(50)

Adatszerkezetek

Vekov Géza

Hasító (has tábla

Ütközések **Láncolás** Nyílt címzé

Hasító (hash) tábla mérete Újra-hashelés rehashing

rehashing
Hasító (hash)

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	
3	
4	
5	
6	

■ Beszúr(700)

Adatszerkezetek

Vekov Géza

Hasitó (has tábla

Ütközések **Láncolás** Nyílt címzé

Hasító (hash) tábla mérete Újra-hashelés rehashing

rehashing
Hasító (hash)

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
3	
4	
5	
6	76

■ Beszúr(76)

Adatszerkezetek

Vekov Géza

Hasitó (has tábla

Ütközések **Láncolás** Nyílt címzés

tábla mérete Újra-hashelés rehashing

rehashing
Hasító (hash)

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50 → 85
2	
3	
4	
5	
6	76

■ Beszúr(85)

Adatszerkezetek

Vekov Géza

tábla

Utközések **Láncolás** Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

rehashing
Hasító (hash)

Alkalmazások

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50 → 85 → 92
2	
3	
4	
5	
6	76

■ Beszúr(92)

Adatszerkezetek

Vekov Géza

Hasító (has tábla

Ütközések **Láncolás**Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

rehashing

Hasító (hash)

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50 → 85 → 92
2	
3	73
4	
5	
6	76

■ Beszúr(73)

Adatszerkezetek

Vekov Géza

tábla

Utközések **Láncolás** Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

rehashing
Hasító (hash)

Alkalmazások

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50 → 85 → 92
2	
3	73 → 101
4	
5	
6	76

■ Beszúr(101)

Nyílt címzés

Adatszerkezetek

Nyílt címzés

Nyílt címzés

- minden elemet ténylegesen a hasító (hash) táblában tárolunk
- minden cellában egyetlen elem található
- ütközés esetén alternatív indexet keresünk a beszúrandó elemnek
 - pl. Hozzáadunk 1-et az indexhez

Nyílt címzés - Műveletek

Adatszerkezetek

Vekov Géza

Hasító (hasl

Ütközések Láncolás

Láncolás Nyílt címzés

Hasító (hash tábla mérete Újra-hashel rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Beszúrás(k)

lacktriangle addig "próbálkozunk", amíg találunk egy üres cellát ahol elhelyezhetjük k-t

Pédául

Beszúrandó elem: x

Tábla mérete: n

- ha a [h(x)%n] cella foglalt, akkor megpróbáljuk elhelyezni x-et a [(h(x)+1)%n] cellában
- ha a [(h(x)+1)%n] cella foglalt, akkor megpróbáljuk elhelyezni x-et a [(h(x)+2)%n] cellában
- ha a [(h(x) + 2)%n] cella foglalt, akkor megpróbáljuk elhelyezni x-et a [(h(x) + 3)%n] cellában
- ...

Nyílt címzés - Műveletek

Adatszerkezetek

Vekov Géza

tábla

Láncolás Nyílt címzés

Hasító (hash tábla mérete Újra-hashel rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Keresés(k)

■ addig "próbálkozunk", amíg megtaláljuk a *k*-t, vagy egy üres cellához érünk.

$T\ddot{o}rl\acute{e}s(k)$

- ha csak egyszerűen törlünk egy kulcsot, akkor a törlés után a keresés nem biztos, hogy sikerrel jár.
- tényleges törlés helyett, csupán megjelöljük a cellát "törölt"-ként

Megjegyzés

- beszúráskor helyezhetünk el elemet "törölt" cellába
- kereséskor ha "törölt" cellát találunk, akkor nem állítjuk le a keresést, hanem tovább haladunk amíg vagy megtaláljuk a keresett elemet, vagy egy üres cellát találunk.

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Láncolás

Nyílt címzés

tábla mérete Újra-hashelés

Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelve

Lineáris próba

- Lineárisan "próbálkozunk" a következő cellával
- A leggyakoribb "rés" az elemek között 1

Adatszerkezetek

Vekov Géza

tábla ..

Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

Adatszerkezetek

Vekov Géza

Hasító (hasl tábla

Utközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

■ Beszúr(50)

Adatszerkezetek

Vekov Géza

Hasító (hasł tábla

Utközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	
3	
4	
5	
6	

■ Beszúr(700)

Adatszerkezetek

Vekov Géza

Hasito (ha tábla

Utközések Láncolás **Nyílt címzés**

Hasító (hash) tábla mérete Újra-hashelé rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	
3	
4	
5	
6	76

■ Beszúr(76)

Adatszerkezetek

Vekov Géza

Hasító (hasł tábla

Utközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	
4	
5	
6	76

■ Beszúr(85) - ütközés az 1-es indexen

Adatszerkezetek

Vekov Géza

tábla

Utközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	92
4	
5	
6	76

■ Beszúr(92) - ütközés az 1-es indexen

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utkozesek Láncolás **Nyílt címzés**

Hasító (hash) tábla mérete Újra-hashelés rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	92
4	73
5	
6	76

■ Beszúr(73) - ütközés az 3-as indexen

Adatszerkezetek

Vekov Géza

Hasitó (ha tábla

Utközések Láncolás **Nyílt címzés**

Hasító (hash) tábla mérete Újra-hashelés rehashing

rehashing

Hasító (hash)

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	92
4	73
5	101
6	76

■ Beszúr(101) - ütközés az 3-as indexen

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Ütközések

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (hasł függvény -

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	92
4	73
5	101
6	76

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Láncolás

Nyílt címzés

Hasító (hash tábla mérete Úira-hashelé

Újra-hashelés rehashing

Hasító (has függvény -

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	92
4	73
5	101
6	76

$$h(85) = 1$$

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Láncolás

Nyílt címzés

Hasító (hash tábla mérete Úira-hashelé

Újra-hashelés rehashing

Hasító (hasl függvény -

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	92
4	73
5	101
6	76

$$h(85) = 1$$

$$A[1] = 85 ?$$

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Utközések

Nyílt címzés

Hasító (hash tábla mérete Úira-hashelé

Újra-hashelés rehashing

Hasító (has függvény -

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	törölt
3	92
4	73
5	101
6	76

$$h(85) = 1$$

$$A[1] = 85$$
?

■
$$A[2] = 85 ? \rightarrow A[2] = t\"{o}r\"{o}lt$$

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Utközések Láncolás

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (has függvény -

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

700
50
törölt
92
73
101
76

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Láncolás

Nyílt címzés

Hasito (hash tábla mérete Újra-hashelé

Újra-hashelés rehashing

Hasító (ha függvény mellékelye

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	törölt
3	92
4	73
5	101
6	76

$$h(92) = 1$$

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Utközések Láncolás

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (ha függvény mellékelve

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	törölt
3	92
4	73
5	101
6	76

$$h(92) = 1$$

$$A[1] = 92$$
?

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Ütközésel

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (hash függvény -

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	törölt
3	92
4	73
5	101
6	76

$$h(92) = 1$$

$$A[1] = 92 ?$$

$$A[2] = 92$$
?

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Láncolás

Nyílt címzés

tábla mérete Újra-hashelés

rehashing

Hasító (hash)

mellékelve Alkalmazáso

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	törölt
3	92
4	73
5	101
6	76

Keressük a 92-t!

$$h(92) = 1$$

$$A[1] = 92 ?$$

■ *A*[2] = 92 ? nem, de törölt, ezért folytatjuk

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Utközések Láncolás

Nyílt címzés

Hasító (hash) tábla mérete Úira-hashelé

Újra-hashelés rehashing

Hasító (hash függvény -

Alkalmazások

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	törölt
3	92
4	73
5	101
6	76

$$h(92) = 1$$

$$A[1] = 92 ?$$

■
$$A[3] = 92$$
? \rightarrow megtaláltuk

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Ütközések

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (hash)

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Láncolás

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (has függvény -

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	törölt
4	73
5	101
6	76

$$h(70) = 0$$

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Utkozesek Láncolás

Nyílt címzés

Hasító (hash tábla mérete Úira-hashelé

Újra-hashelés rehashing

Hasító (has függvény -

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	törölt
4	73
5	101
6	76

Szúrjuk be a 70-et!

$$h(70) = 0$$

 \blacksquare A[0] foglalt

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Láncolás

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (hash

Alkalmazások mellékelve

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	törölt
4	73
5	101
6	76

- h(70) = 0
- \blacksquare A[0] foglalt
- \blacksquare A[1] foglalt

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Utkozesek Láncolás

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (hasł függvény -

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	törölt
4	73
5	101
6	76

- h(70) = 0
- \blacksquare A[0] foglalt
- *A*[1]foglalt
- \blacksquare A[2] foglalt

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Láncolás

Nyílt címzés

Hasító (hash tábla mérete

Újra-hashelés rehashing

Hasító (hash)

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	törölt
4	73
5	101
6	76

- h(70) = 0
- \blacksquare A[0] foglalt
- A[1]foglalt
- *A*[2]*foglalt*
- *A*[3] törölt

Adatszerkezetek

Vekov Géza

Hasító (ha tábla

Ütközésel

Láncolás Nyílt címzés

Hasító (hash

tábla mérete Újra-hashelés rehashing

rehashing
Hasító (hash)

Alkalmazások mellékelye

Példa

- kulcsok: 50, 700, 76, 85, 92, 73, 101
- hasító (hash) függvény: kulcs mod 7 (tábla mérete: 7)

0	700
1	50
2	85
3	70
4	73
5	101
6	76

$$h(70) = 0$$

$$\blacksquare$$
 $A[0]$ foglalt

$$\blacksquare$$
 $A[1]$ foglalt

$$\blacksquare$$
 $A[2]$ foglalt

■
$$A[3]$$
 törölt $\rightarrow A[3] = 70$

Adatszerkezetek

Vekov Géz

Hasító (hasl tábla

Láncolás

Nyílt címzés

tábla mérete Újra-hashelés

Hasító (hash) függvény -

Alkalmazások mellékelye

Hátrányok

Csoportosulás (clustering)

- Sok egymás utáni elem csoportosulhat, és egyre nehezebb lesz üres cellát találni a táblában
- A keresési idő megnő a csoportosulások kialakulásával

Nyílt címzés - kavadratikus próba

Adatszerkezetek

Nyílt címzés

Kvadratikus próba

Minden i. iterációban az i². cellával "próbálkozunk"

Pédául

Beszúrandó elem: x

Tábla mérete: n

- ha a [h(x)%n] cella foglalt, akkor megpróbáljuk elhelyezni x-et a $[(h(x)+1\cdot1)\%n]$ cellában
- ha a $[(h(x) + 1 \cdot 1)\%n]$ cella foglalt, akkor megpróbáljuk elhelyezni x-et a $[(h(x) + 2 \cdot 2)\%n]$ cellában
- ha a $[(h(x) + 2 \cdot 2)\%n]$ cella foglalt, akkor megpróbáljuk elhelyezni x-et a $[(h(x) + 3 \cdot 3)\%n]$ cellában

Nyílt címzés - kvadratikus próba

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Láncolás

Nyílt címzés

tábla mérete Újra-hashelé

Ujra-hashelés rehashing Hasító (hash)

mellékelve

Alkalmazások mellékelve

Megjegyzés

- Nem jön létre csoportosulás.
- Csak akkor garantált a működés, ha
 - a tábla csak félig telik meg
 - a tábla mérete prímszám

Nyílt címzés - dupla hasítás

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Láncolás Nyílt címzés

Hasító (hash tábla mérete

rehashing

Hasító (hash)

függvény
mellékelye

Alkalmazások mellékelve

Kettős hashelés

- Két hasítófüggvényt használunk:
 - h₁ határozza meg a kezdeti indexet
 - h₂ határozza meg a lépésközt, amivel egy következő szabad pozíciót keresünk

Pédául

Beszúrandó elem: x

Tábla mérete: n

- ha a [h(x)%n] cella foglalt, akkor megpróbáljuk elhelyezni x-et a $[(h_1(x)+1\cdot h_2(x))\%n]$ cellában
- ha a $[(h_1(x) + 1 \cdot h_2(x))\%n]$ cella foglalt, akkor megpróbáljuk elhelyezni x-et a $[(h_1(x) + 2 \cdot h_2(x)\%n]$ cellában
- ha a $[(h_1(x) + 2 \cdot h_2(x))\%n]$ cella foglalt, akkor megpróbáljuk elhelyezni x-et a $[(h_1(x) + 3 \cdot h_2(x))\%n]$ cellában

Nyílt címzés - dupla hasítás

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Láncolás

Nyílt címzés

tábla mérete Újra-hashelés rehashing

Hasító (hash) függvény mellékelye

Alkalmazások mellékelve

Megjegyzés

- Csak akkor garantált a működés, ha
 - h₂ soha nem lehet nulla, mert végtelen ciklust kapnánk
 - a tábla mérete prímszám vagy kettő hatványa
 - Ha a tábla mérete kettő hatványa, akkor a lépésköz páratlan legyen.

Láncolás vs. nyílt címzés

Adatszerkezetek

VI 61

Hasító (hash tábla

Láncolás Nyílt címzés

Hasító (hasl

rehashing

Hasító (hash
függvény -

Alkalmazáso mellékelve

Összehasonlítás		
Láncolás	Nyílt címzés	
[+] Egyszerűbb implementálni	[-] Bonyolultabb implementálni	
[+] A hasító (hash) tábla soha	[-] A hasító (hash) tábla betelhet	
nem telik meg		
[+] Kevésbé érzékeny a hasító (hash)	[-] A hasító (hash) függvényt úgy kell	
függvény "minőségére"	megtervezni, hogy elkerüljük a csoportosulást	
[+] Többnyire akkor használjuk, amikor	[+] Többnyire akkor használjuk,	
nem tudjuk előre, hogy milyen	amikor ismerjük előre a kulcsok mennyiségét,	
mennyiségű és típusú kulcsunk van	és azok típusát.	
[-] Extra tárhelyigény a láncolás miatt	[+] Nincsen láncolás	
[-] Helypazarlás: bizonyos cellákat	[+] Az ütközések miatt, egyébként üresen	
soha nem használunk	maradó cellákat is felhasználunk	
[-] Összességében gyengébb teljesítmény,	[+] Jobb teljesítmény, mivel	
a láncolt lista használata miatt	minden adat egy táblában van	

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Utkozesek Láncolás Nvílt címzés

Hasító (hash) tábla mérete

Újra-hashelés rehashing

Hasító (hash) függvény -

Alkalmazások -

Hasító (hash) tábla mérete

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete

Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelve

Teljesítmény

Ha sok az ütközés, és telített a hash táblánk, akkor a teljesítmény romlik:

- Minél több elemet tárolunk el, annál gyakoribbak lesznek az ütközések.
- Láncolás: hosszabb listák → hosszabb keresési idő
- **Nyílt címzés:** telített tábla → nehezebb üres helyet találni

Mindkét esetben: időigényesebb műveletek

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Ütközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete

Újra-hashelés rehashing

mellékelve

Alkalmazások mellékelve

Teljesítmény

Ha sok az ütközés, és telített a hash táblánk, akkor a teljesítmény romlik:

- Minél több elemet tárolunk el, annál gyakoribbak lesznek az ütközések.
- Láncolás: hosszabb listák → hosszabb keresési idő
- **Nyílt címzés:** telített tábla → nehezebb üres helyet találni

Mindkét esetben: időigényesebb műveletek

Cél

O(1) idejű műveletek

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utkozesek Láncolás Nyílt címzé:

Hasító (hash) tábla mérete

Újra-hashelés rehashing

rehashing Hasító (hash)

Alkalmazások mellékelye

Telítettség

A hasítótábla telítettsége - telítettségi tényező:

 α = eltárolt objektumok száma/cellák száma

- \blacksquare A teljesítmény az α telítettségi tényező növekedésével arányosan csökken.
- A hatékony működéshez elengedhetetlen, hogy a tábla telítettségét kontroll alatt tartsuk:
- → újra-hashelés

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete

Újra-hashelés rehashing

Hasító (hash függvény mellékelve

Alkalmazások mellékelve

Telítettség

Hash táblák esetén, melyik ütközés kezelési stratégia használható akkor is, ha a hash táblánk megtelt (azaz a telítettségi arány, $\alpha \ge 1$).

- nyílt címzés
- láncolás
- egyik sem
- mindkettő

 \rightarrow www.menti.com - 2019 1811

Újra-hashelés - *rehashing*

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Utközések Láncolás

Hasító (hash) tábla mérete

Újra-hashelés rehashing

Hasító (hash függvény mellékelve

Alkalmazások mellékelve

Újra-hashelés

A tábla újraméretezését jelenti

Újra-hashelés - rehashing

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Ütközések Láncolás Nyílt címzés

tábla mérete Újra-hashelés rehashing

függvény mellékelve

Alkalmazások mellékelve

Újra-hashelés

- A tábla újraméretezését jelenti
- Minden beszúráskor ellenőrizzük a telítettséget
- Amennyiben a telítettség meghalad egy előre meghatározott korlátot (alapértelmezetten 0.75), akkor szükséges az **újra-hashelés**:

Újra-hashelés - rehashing

Adatszerkezetek

Vekov Géza

Hasító (hash tábla

Ütközések Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés rehashing

Hasító (hash függvény mellékelve

Alkalmazások mellékelve

Újra-hashelés

- A tábla újraméretezését jelenti
- Minden beszúráskor ellenőrizzük a telítettséget
- Amennyiben a telítettség meghalad egy előre meghatározott korlátot (alapértelmezetten 0.75), akkor szükséges az újra-hashelés:
 - Létrehozunk egy új táblát, mely kétszer akkora, mint az eredeti tábla
 - Bejárjuk az ereseti táblát, és minden elemet beszúrunk az új táblába (a hasítófüggvényben csak a tábla méretét változtatjuk meg)
 - Töröljük a régi táblát

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Utközések Láncolás

Nyílt címzé

Hasító (hash) tábla mérete Úira-hashelé

Újra-hashelé rehashing

Hasító (hash) függvény mellékelve

Alkalmazások mellékelve Hasító (hash) függvény - mellékelve

Adatszerkezetek

Vekov Géza

Hasító (hash) tábla

Utkozesek Láncolás Nyílt címzés

Hasító (hash) tábla mérete Újra-hashelés

Hasító (hash)

mellékelve

Alkalmazások mellékelve

Alkalmazások - mellékelve