Agrégation Externe et Interne Anneaux principaux

¹Ce problème est en relation avec les leçons d'oral suivante :

- 122: Anneaux principaux. Applications;

On pourra consulter les ouvrages suivants.

- P. Boyer, J. J. Risler: Algèbre pour la licence 3. Groupes, anneaux, corps. Dunod (2006).
- F. Combes Algèbre et géométrie. Bréal (2003).
- S. Francinou, H. Gianella, S. Nicolas : Exercices de mathématiques. Oraux X-ENS. Algèbre 1. Cassini (2001).
- S. Francinou, H. Gianella. Exercices de mathématiques pour l'agrégation. Algèbre 1. Masson (1994).
 - D. Perrin. Cours d'algèbre. Ellipses (1996).
 - A. SZPIRGLAS. Mathématiques L3. Algèbre. Pearson (2009).

^{1.} Le 05/10/2013

1 Énoncé

Pour ce problème, A désigne un anneau commutatif, unitaire, intègre et on note :

- -0 et 1 les éléments neutres pour l'addition et la multiplication de A, avec $0 \neq 1$;
- $\mathbb{A}^* = \mathbb{A} \setminus \{0\}$ l'ensemble des éléments non nuls de \mathbb{A} ;
- \mathbb{A}^{\times} le groupe multiplicatif des éléments inversibles (ou des unités) de \mathbb{A} .

- I - Anneaux principaux

- 1. Soit A un anneau principal.
 - (a) Montrer qu'un élément $p \in \mathbb{A}^* \setminus \mathbb{A}^\times$ est irréductible si, et seulement si, il est premier.
 - (b) Montrer que, pour tout $p \in \mathbb{A}^* \setminus \mathbb{A}^\times$, on a :

$$((p) \text{ premier}) \Leftrightarrow (p \text{ premier}) \Leftrightarrow (p \text{ irréductible}) \Leftrightarrow ((p) \text{ maximal})$$

- 2. Montrer que, pour $n \geq 3$, l'anneau $\mathbb{Z}[i\sqrt{n}]$ n'est pas principal.
- 3. Soient A un anneau principal et I = (a) un idéal non trivial de A (i. e. I ≠ {0} et I ≠ A).
 Montrer que tous les idéaux de A/I sont principaux de la forme (b̄) où b ∈ A est un diviseur de a.
 L'anneau A/I est-il principal?
- 4. On désigne par $\mathbb{K}[X]$ l'anneau des séries formelles à une indéterminée et à coefficients dans un corps commutatif \mathbb{K} .
 - (a) Soient $S = \sum_{n \in \mathbb{N}} a_n X^n$ et $T = \sum_{n \in \mathbb{N}} b_n X^n$ deux séries formelles avec val (T) = 0 (soit $b_0 \neq 0_{\mathbb{K}}$). Montrer que, pour tout entier naturel n, il existe un unique couple $(Q_n, R_n) \in \mathbb{K}_n[X] \times \mathbb{K}[[X]]$ tel que $S = TQ_n + X^{n+1}R_n$.
 - (b) Montrer que $(\mathbb{K}[[X]])^{\times} = \mathbb{K}[[X]] \setminus (X)$.
 - (c) Montrer que les idéaux non réduit à $\{0\}$ de $\mathbb{K}[[X]]$ sont de la forme $(X^n) = X^n \cdot \mathbb{K}[[X]]$. Donc $\mathbb{K}[[X]]$ est principal.
- 5. On se donne deux réels a < b et $\mathbb{A} = \mathcal{C}^0([a,b],\mathbb{R})$ est l'anneau des fonctions continues de [a,b] dans \mathbb{R} .
 - (a) L'anneau A est-il intègre?
 - (b) Montrer que, pour tout réel $x \in [a, b]$ l'ensemble :

$$I_x = \{ f \in \mathbb{A} \mid f(x) = 0 \}$$

est un idéal maximal de A.

(c) Montrer que les idéaux I_x ne sont pas principaux.

- II - Anneaux euclidiens

Définition 1 On appelle stathme sur \mathbb{A} une application $\varphi : \mathbb{A}^* \to \mathbb{N}$.

Définition 2 On dit que l'anneau \mathbb{A} est euclidien, s'il est intègre et s'il existe un stathme φ sur \mathbb{A} tel que pour tout couple (a,b) d'éléments de $\mathbb{A} \times \mathbb{A}^*$, il existe un couple (q,r) dans \mathbb{A}^2 tel que :

$$a=bq+r\ avec\ r=0\ ou\ r\neq 0\ et\ \varphi\left(r\right)<\varphi\left(b\right)$$

On notera (\mathbb{A}, φ) un tel anneau euclidien.

- 1. Montrer qu'un anneau euclidien est principal.
- 2. L'anneau $(\mathbb{Z}, |\cdot|)$.
 - (a) Soit α un réel. Montrer que pour tout couple d'entiers (a,b), avec $b \neq 0$, il existe un unique couple d'entiers (q,r) tel que a=bq+r et $\alpha \leq r < \alpha + |b|$. Pour $\alpha=0$, on retrouve le théorème classique de division euclidienne avec un reste positif. Pour $\alpha=-\frac{|b|}{2}$, le reste est dans $\left[-\frac{|b|}{2},\frac{|b|}{2}\right]$ et c'est le reste de plus petite valeur absolue.
 - (b) Montrer que l'anneau \mathbb{Z} des entiers relatifs est euclidien pour le stathme $\varphi : n \in \mathbb{Z}^* \mapsto |n|$.
 - (c) Soient $a \in \mathbb{Z}^*$ et $b \in \mathbb{N}^*$ ne divisant pas a. Montrer qu'il y a exactement deux divisions euclidiennes de a par b dans $(\mathbb{Z}, |\cdot|)$.
- 3. Les anneaux $\mathbb{K}[X]$.

Montrer que l'anneau $\mathbb{K}[X]$ des polynômes à une indéterminée et à coefficients dans un corps commutatif \mathbb{K} est euclidien pour le stathme deg : $P \in \mathbb{K}[X] \setminus \{0\} \mapsto \deg(P)$. A-t-on unicité du quotient et du reste pour la division euclidienne dans $(\mathbb{K}[X], \deg)$?

4. L'anneau $\mathbb D$ des nombres décimaux.

Soit:

$$\mathbb{D} = \left\{ \frac{a}{10^m} \mid (a, m) \in \mathbb{Z} \times \mathbb{N} \right\}$$

l'anneau des nombres décimaux (on vérifie facilement que c'est un sous-anneau de Q).

- (a) Montrer que tout nombre décimal non nul s'écrit de manière unique sous la forme $d = n2^p5^q$, où n, p, q sont des entiers relatifs avec $n \neq 0$ premier avec 10. Une telle écriture d'un nombre décimale est appelée écriture canonique.
- (b) Montrer que \mathbb{D} est euclidien pour le stathme φ défini, en utilisant l'écriture canonique d'un nombre décimal, par :

$$\forall a = n2^p 5^q \in \mathbb{D}^*, \ \varphi(a) = |n|$$

- (c) A-t-on unicité du quotient et du reste pour la division euclidienne dans (\mathbb{D},φ) ?
- 5. Les anneaux $\mathbb{Z}\left[i\sqrt{n}\right]$.
 - (a) Soient u, v dans $\mathbb{Z}[i\sqrt{n}]$ avec $v \neq 0$ et $(x, y) \in \mathbb{Q}^2$ tel que $\frac{u}{v} = x + iy\sqrt{n}$.
 - i. Montrer qu'il existe un unique couple (a, b) d'entiers relatifs tel que :

$$(x,y) \in \left[a - \frac{1}{2}, a + \frac{1}{2}\right[\times \left[b - \frac{1}{2}, b + \frac{1}{2}\right]$$

- ii. En déduire qu'il existe $q \in \mathbb{Z}[i\sqrt{n}]$ tel que $|u-qv| \leq \frac{\sqrt{n+1}}{2}|v|$.
- (b) Montrer que, pour n=1 ou n=2, l'anneau $\mathbb{Z}[i\sqrt{n}]$ est euclidien pour le stathme :

3

$$\varphi: u = a + ib\sqrt{n} \in \mathbb{Z} \left[i\sqrt{n} \right] \mapsto \left| u \right|^2 = a^2 + nb^2 \in \mathbb{N}$$

(le stathme est aussi défini en 0).

- (c) Effectuer la division euclidienne de u = 11 + 7i par v = 18 i dans $\mathbb{Z}[i]$.
- (d) Montrer que, pour $n \geq 3$, $\mathbb{Z}\left[i\sqrt{n}\right]$ n'est pas euclidien.

6. Soient $\omega = x + iy$ un nombre complexe non réel (i. e. avec $x \in \mathbb{R}$ et $y \in \mathbb{R}^*$) et :

$$\mathbb{Z}\left[\omega\right] = \mathbb{Z} + \mathbb{Z}\omega = \left\{a + b\omega \mid (a, b) \in \mathbb{Z}^2\right\}$$

(a) Montrer que $\mathbb{Z}[\omega]$ est un anneau si, et seulement si, ω est un entier quadratique, c'est-àdire racine d'un polynôme de degré 2, $P(X) = X^2 - \alpha X - \beta$ à coefficients entiers. Dans ce cas, montrer que $\mathbb{Z}[\omega]$ est stable par l'opération de conjugaison complexe $z \mapsto \overline{z}$,

que l'application $\varphi: u \mapsto |u|^2$ définit un stathme sur $\mathbb{Z}[\omega]$, que $\mathbb{Z}[\omega] = \mathbb{Z}[\overline{\omega}]$, que pour tout entier relatif n, on a $\mathbb{Z}[\omega] = \mathbb{Z}[n + \omega]$ et qu'il existe un nombre complexe $\omega' = x' + iy'$ tel que $x' \in [0, 1[, y' > 0 \text{ et } \mathbb{Z}[\omega] = \mathbb{Z}[\omega']]$.

Pour la suite de cette question, on suppose que $\omega = x + iy$ est un entier quadratique avec $x \in [0,1[\ ,y>0.$

- (b) Montrer que l'on soit $\omega = i\sqrt{n}$, soit $\omega = \frac{1}{2} + i\frac{\sqrt{4n-1}}{2}$ où $n \in \mathbb{N}^*$.
- (c) Soient u, v dans $\mathbb{Z}[\omega]$ avec $v \neq 0$.
 - i. Montrer qu'il existe $(r,s) \in \mathbb{Q}^2$ tel que $\frac{u}{v} = r + s\omega$.
 - ii. Montrer qu'il existe $q \in \mathbb{Z}[\omega]$ tel que $|u qv|^2 \le \frac{1 + y^2}{4} |v|^2$.
- (d) Montrer que, pour $x \in [0,1[$ et $y \in]0,\sqrt{3}[$, l'anneau $\mathbb{Z}[\omega]$ est euclidien pour le stathme :

$$\varphi: u = a + b\omega \in \mathbb{Z}[\omega] \mapsto |u|^2$$

Préciser les valeurs possibles de ω .

7. Un anneau principal non euclidien.

Pour cette question, $\omega = \frac{1+i\sqrt{19}}{2}$ (cas n=5 du deuxième cas de figure de **II.6b**) et on se propose de montrer que l'anneau $\mathbb{Z}[\omega]$ est principal, mais non euclidien.

(a) Montrer que :

$$\left(\mathbb{Z}\left[\omega\right]\right)^{\times} = \{-1, 1\}$$

- (b) On suppose qu'il existe un stathme $\varphi: \mathbb{A}^* \to \mathbb{N}$ qui fasse de $\mathbb{Z}[\omega]$ un anneau euclidien.
 - i. Justifier l'existence de $u\in\mathbb{Z}\left[\omega\right]\backslash\left\{ 0\right\}$ tel que :

$$\varphi(u) = \min \{ \varphi(v) \mid v \in \mathbb{Z} [\omega] \setminus \{-1, 0, 1\} \}$$

- ii. Montrer que pour tout $v \in \mathbb{Z}[\omega] \setminus \{0\}$, l'entier $|u|^2$ divise l'un des entiers $|v|^2$, $|v-1|^2$ ou $|v+1|^2$ dans \mathbb{N} .
- iii. Montrer qu'on aboutit à une contradiction et conclure.
- (c) Montrer que pour tout $z \in \mathbb{C}$, il existe $u \in \mathbb{Z}[\omega]$ tel que :

$$|z - u| < 1$$
 ou $|2z - u| < 1$

(d) Montrer que l'anneau $\mathbb{Z}[\omega]$ est principal.

- III - Anneaux factoriels

Définition 3 On dit que l'anneau A est factoriel s'il est intègre et si tout élément a non nul et non inversible s'écrit de manière unique (à permutation et association près) comme produit d'éléments irréductibles.

- 1. On se propose de montrer que l'anneau intègre A est factoriel si, et seulement si, les deux propriétés suivantes sont vérifiées :
 - (1) toute suite croissante d'idéaux principaux de A est stationnaire;
 - (2) tout élément irréductible de A est premier.
 - (a) Montrer que si A est factoriel, les propriétés (1) et (2) sont alors vérifiées.
 - (b) On suppose que les propriétés (1) et (2) sont vérifiées et on se donne $a \in \mathbb{A}^* \setminus \mathbb{A}^{\times}$.
 - i. Montrer que a admet un diviseur irréductible.
 - ii. On construit des diviseurs irréductibles de a comme suit : si a est irréductible, on pose $p_1=a$ et c'est terminé; supposant construits, pour $n\geq 1$, des diviseurs irréductibles p_1,\cdots,p_n de a, si $a_n=\frac{a}{p_1\cdot\cdots\cdot p_n}$ est inversible c'est terminé, sinon p_{n+1} est un diviseur irréductible de a_n . Montrer que cet algorithme s'arrête nécessairement au bout d'un nombre fini d'étapes et en déduire l'existence d'une décomposition de a en facteurs irréductibles.
 - iii. Montrer l'unicité d'une telle décomposition.
- 2. Montrer que, pour $n \geq 3$, l'anneau $\mathbb{Z}[i\sqrt{n}]$ n'est pas factoriel.
- 3. Montrer qu'un anneau principal est factoriel.

- IV - Anneaux à pgcd

Définition 4 Soient $r \in \mathbb{N} \setminus \{0,1\}$ et a_1, \dots, a_r dans \mathbb{A}^* . On dit que ces éléments admettent un plus grand commun diviseur s'il existe $\delta \in \mathbb{A}^*$ tel que :

$$\begin{cases}
\forall k \in \{1, \dots, r\}, \ \delta \ divise \ a_k \\
tout \ diviseur \ commun \ \grave{a} \ a_1, \dots, a_r \ divise \ \delta
\end{cases}$$
(1)

Définition 5 On dit que \mathbb{A} est un anneau à pgcd si deux éléments quelconques a, b de \mathbb{A}^* admettent un plus grand commun diviseur.

1. En cas d'existence, montrer que deux plus grands communs diviseurs d'une famille $\{a_1, \dots, a_r\}$ de $r \geq 2$ éléments de \mathbb{A}^* sont associés.

On note pgcd (a_1, \dots, a_r) ou $a_1 \wedge \dots \wedge a_r$ un plus grand commun diviseur de a_1, \dots, a_r , c'est un élément de \mathbb{A}^* défini à association près (ou modulo \mathbb{A}^{\times}).

Si $\{a_1, \dots, a_r\}$ est une famille d'éléments non tous nuls de \mathbb{A} , on définit $\operatorname{pgcd}(a_0, a_1, \dots, a_n)$ comme le pgcd des coefficients a_k qui sont non nuls.

Dans le cas où pgcd (a_1, \dots, a_r) est inversible, on dit que a_1, \dots, a_r sont premiers entre eux et on note :

$$\operatorname{pgcd}\left(a_{1},\cdots,a_{r}\right)=1$$

(c'est une égalité modulo \mathbb{A}^{\times}).

- 2. Montrer que \mathbb{A} est un anneau à pgcd si, et seulement si, toute famille $\{a_1, \dots, a_r\}$ de $r \geq 2$ éléments de \mathbb{A}^* admet un pgcd et que dans ce cas :
 - (a) pour $r \geq 3$, on a:

$$\operatorname{pgcd}(a_1, \dots, a_r) = \operatorname{pgcd}(\operatorname{pgcd}(a_1, \dots, a_{r-1}), a_r)$$

(associativité du pgcd);

(b) pour toute permutation σ de $\{1, \dots, r\}$, on a:

$$\operatorname{pgcd}(a_1, \dots, a_r) = \operatorname{pgcd}(a_{\sigma(1)}, \dots, a_{\sigma(r)})$$

(commutativité du pgcd);

(c) pour tout $c \in \mathbb{A}^*$, on a:

$$\operatorname{pgcd}(c \cdot a_1, \cdots, c \cdot a_r) = c \cdot \operatorname{pgcd}(a_1, \cdots, a_r)$$

(homogénéité du pgcd);

- (d) $\delta = \operatorname{pgcd}(a_1, \dots, a_r)$ si, et seulement si, il existe des éléments a'_1, \dots, a'_r premiers entre eux dans \mathbb{A}^* tels que $a_k = \delta a'_k$ pour tout k compris entre 1 et r.
- 3. Montrer que dans $\mathbb{A} = \mathbb{Z}\left[i\sqrt{5}\right]$, a = 6 et $b = 4 + 2i\sqrt{5}$ n'ont pas de pgcd.
- 4. Soit \mathbb{A} un anneau à pgcd et a, b dans \mathbb{A}^* . Montrer que a et b sont premiers entre eux si, et seulement si, pour tout $c \in \mathbb{A}^*$, on a :

$$(a \text{ divise } bc) \Leftrightarrow (a \text{ divise } c)$$

(lemme de Gauss).

- 5. Montrer que dans un anneau à pgcd A, un élément est irréductible si, et seulement si, il est premier.
- 6. Montrer qu'un anneau principal A est un anneau à pgcd.
- 7. Soient \mathbb{A} un anneau factoriel et a, b deux éléments non nuls et non inversibles de \mathbb{A} . En notant :

$$a = u \prod_{k=1}^{r} p_k^{m_k}, \ b = v \prod_{k=1}^{r} P_k^{n_k}$$

les décompositions de a et b en facteurs irréductibles, où u, v sont inversibles, les p_k sont irréductibles deux à deux non associés et les n_k , m_k sont des entiers naturels (certains de ces entiers pouvant être nuls), montrer que :

$$(a \text{ divise } b) \Leftrightarrow (\forall k \in \{1, \dots, r\}, m_k \leq n_k)$$

8. Montrer qu'un anneau factoriel A est un anneau à pgcd.

- V - L'anneau $\mathbb{A}[X]$ des polynômes à coefficients dans \mathbb{A}

On suppose connues les principales propriétés de l'anneau $\mathbb{K}[X]$ des polynômes à coefficients dans un corps commutatif \mathbb{K} .

Définition 6 Si $P(X) = \sum_{k=0}^{n} a_k X^k$ est un polynôme non nul à coefficients dans un anneau factoriel \mathbb{A} , son contenu est :

$$c(P) = \operatorname{pgcd}(a_0, a_1, \cdots, a_n)$$

On dit que P est primitif si son contenu est inversible dans A.

- 1. Soit A un anneau commutatif, unitaire. Montrer que les assertions suivantes sont équivalentes:
 - (a) l'anneau $\mathbb{A}[X]$ est intègre;
 - (b) l'anneau A est intègre;

(c) pour tous polynômes P, Q dans $\mathbb{A}[X]$, on a :

$$\deg(PQ) = \deg(P) + \deg(Q)$$

- 2. On suppose à nouveau, que l'anneau \mathbb{A} est intègre. Montrer que le groupe des éléments inversibles de l'anneau $\mathbb{A}[X]$ est \mathbb{A}^{\times} .
- 3. Montrer que:

$$(A[X] \text{ est principal}) \Leftrightarrow (A \text{ est un corps})$$

Dans les questions qui suivent, l'anneau A est supposé factoriel.

- 4. Montrer que le produit de deux polynômes primitifs dans $\mathbb{A}[X]$, où \mathbb{A} est factoriel, est primitif.
- 5. Soient P, Q deux polynômes non nuls dans $\mathbb{A}[X]$. Montrer que c(PQ) = c(P)c(Q). On désigne par \mathbb{K} le corps des fractions de \mathbb{A} .
- 6. Soit $P \in \mathbb{A}[X]$ non nul et non inversible. Montrer que P est irréductible dans $\mathbb{A}[X]$ si, et seulement si il est constant et irréductible dans \mathbb{A} , ou non constant et primitif dans $\mathbb{A}[X]$ et irréductible dans $\mathbb{K}[X]$.
- 7. Montrer que si \mathbb{A} est factoriel, alors dans $\mathbb{A}[X]$, un polynôme est irréductible si, et seulement si, il est premier.
- 8. Montrer que si \mathbb{A} est factoriel, alors $\mathbb{A}[X]$ est factoriel (théorème de Gauss). On en déduit que si \mathbb{A} est un anneau factoriel qui n'est pas un corps, l'anneau $\mathbb{A}[X]$ est factoriel non principal.