ниу итмо

Факультет Информационных Технологий и Программирования Направление "Прикладная Математика и Информатика"

Лабораторная работа №3 курса "Методы Оптимизации"

Выполнили студенты: Белицкий Андрей М3236 Дубровин Антон М3236 Кулешов Егор М3236 Команда "Аппроксимирующий многочлен"

1. Постановка задачи

Реализовать прямой метод решения СЛАУ на основе LU-разложения с учётом поставленных требований:

- Профильная матрица
- Чтение/запись в файл
- Хранить в памяти только матрицу и необходимые вектора
- Элементы матрицы обрабатывать в порядке, соответствующем формату хранения

2. Описание алгоритмов

2.1. Метод Гаусса

2.1.1. Прямой ход метода Гаусса

Последовательно рассматриваются строки с первой до последней. На і-ом шаге рассматривается і-ая строка и из строк ниже этой строки вычитается і-ая строка деленная на $\frac{a_{ii}}{a_{ji}}$. Таким образом элементы і-го столбца ниже a_{ii} будут нулями.

Результат прямого хода - приведение матрицы к ступенчатому виду:

$$\frac{n-1}{G_{11} \times_{1} + G_{12} \times_{1} + G_{13} \times_{3} + \dots + G_{4n} \times_{n} = \beta_{4}}$$

$$Q_{12}^{(1)} \times_{2} + Q_{12}^{(1)} \times_{3} + \dots + Q_{1n}^{(1)} \times_{n} = \beta_{2}^{(4)}$$

$$Q_{1n}^{(n-1)} \times_{n} = \beta_{n}^{(n-1)}$$

2.1.2. Обратный ход метода Гаусса

Совершив прямой ход метода Гаусса получим матрицу в треугольном виде. Тогда для неё и её коэффициентов очевидно, что $x_n=\frac{b_n}{a_{_{\rm mn}}}$, тогда можно получить

$$x_{n-1} = rac{b_{n-1} - a_{n-1\,n} x_n}{x_{n-1\,n-1}}$$
 . Аналогично получим:

$$x_{k} = \frac{1}{a_{kk}} (b_{k} - \sum_{j=k+1}^{n} a_{kj} x_{j})$$

В результате мы найдем вектор x являющийся решением $\mathcal{C}\Pi A \mathcal{Y}$.

2.1.3. Метод Гаусса с выбором ведущего элемента

В прямом методе Гаусса во избежании накопления погрешности при делении на малые числа, в методе Гаусса с выбором ведущего элемента на каждой итерации прямого хода выбирается строка с наибольшим по модулю диагональным элементом, и эта строка меняется с і-ой строкой(на і-ой итерации).

Обратный ход метода Гаусса с выбором ведущего элемента совпадает с обратным ходом метода Гаусса.

2.2. LU-разложение

Представление матрицы в виде произведения двух матриц A = LU, где L - верхняя треугольная матрица, а U - нижняя треугольная матрица. L и U находятся по формулам:

$$\forall j <= i: l_{ij} = A_{ij} - \sum_{k=1}^{j-1} l_{ik} * u_{kj}$$

$$\forall j < i: u_{ji} = \frac{A_{ji} - \sum_{k=1}^{j-1} l_{jk} * u_{ki}}{l_{ji}}$$

,где u_{ij} и l_{ij} и A_{ij} - элементы матриц U, L и A с индексами і и ј соответственно, причём $u_{ii}=1$.

Для решения CЛAУ необходимо сделать прямой ход для L и получить y, затем совершить обратный ход для Ux = y.

2.3. МСГ для решения СЛАУ

Пусть дана система линейных уравнений Ax = b, причём матрица системы - действительная матрица, обладающая свойством $A = A^T > 0$, т.е. это симметричная положительно определённая матрица. Тогда процесс решения $C \Pi A y$ можно представить как минимизацию следующего функционала:

$$(Ax, x) - 2(b, x) \rightarrow min$$

Для минимизации используется метод сопряженных градиентов. Итерационный процесс:

Выбирается начальное приближение \boldsymbol{x}^0 и полагается

$$r^0 = f - Ax^0,$$
$$z^0 = r^0$$

Далее для k = 1, 2, ... производятся следующие вычисления:

$$a_{k} = \frac{(r^{k-1}, r^{k-1})}{(Az^{k-1}, z^{k-1})},$$

$$x^{k} = x^{k-1} + a_{k}z^{k-1},$$

$$r^{k} = r^{k-1} - a_{k}Az^{k-1},$$

$$\beta_{k} = \frac{(r^{k}, r^{k})}{(r^{k-1}, r^{k-1})},$$

$$z^{k} = r^{k} + \beta_{k}z^{k-1}$$

где x^0 – вектор начального приближения; x^k – вектор решения на k -й (текущей) итерации; r^k – вектор невязки на k -й (текущей) итерации; z^k – вектор спуска (сопряженное направление) на k -й итерации; $a_{k'}$ β_k – коэффициенты.

3. Матрицы с диагональным преобладанием

3.1. Задача

Провести исследование реализованного метода на матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания. Для этого необходимо решить последовательность СЛАУ:

$$A_k x_k = x_k$$
, где $k = 0$, 1, 2,...

,а матрицы \boldsymbol{A}_k строятся следующим образом:

$$a_{ii} = \begin{cases} -\sum_{i \neq j} a_{ij}, & i > 1 \\ -\sum_{i \neq j} a_{ij} + 10^{-k}, & i = 1 \end{cases}$$

и $a_{ij} \in \{0, -1, -2, -3, -4\}$ выбираются достаточно произвольно, а правая часть f_k получается умножением матрицы A_k на вектор $x^* = (1, ..., n).$ Размерность n для $C\Pi AY = 10, 100, 1000.$ Для каждого k, для которого система вычислительно разрешима, оценить погрешность найденного решения.

3.2. Результаты вычислений

n	k	$ x^*-x_k^* $	$\frac{ x^* - x_k }{ x^* }$
10	0	$2.22044 * 10^{-15}$	1.13164 * 10 ⁻¹⁶
10	1	2.71606 * 10 ⁻¹³	1.38423 * 10 ⁻¹⁴
10	2	1.79705 * 10 ⁻¹¹	9. 15864 * 10 ⁻¹³
10	3	1.21616 * 10 ⁻¹¹	6. 19815 * 10 ⁻¹³
10	4	7.48202 * 10 ⁻¹⁰	3.81319 * 10 ⁻¹¹
10	5	1.8055 * 10 ⁻⁸	9. 20172 * 10 ⁻¹⁰
10	6	1.7563 * 10 ⁻⁷	8. 95093 * 10 ⁻⁹
10	7	3.93216 * 10 ⁻⁷	2. 00401 * 10 ⁻⁸
10	8	1.30756 * 10 ⁻⁵	6. 66395 * 10 ⁻⁷
10	9	3. 12924 * 10 ⁻⁵	1.59481 * 10 ⁻⁶
10	10	0.001257	6. 40855 * 10 ⁻⁵

100	0	4.63952 * 10 ⁻¹²	7. 9761810 ⁻¹⁵
100	1	1.437 * 10 ⁻⁹	2.47043 * 10 ⁻¹²
100	2	2.47916 * 10 ⁻⁸	4. 26209 * 10 ⁻¹¹
100	3	9. 58815 * 10 ⁻⁸	1.64836 * 10 ⁻¹⁰
100	4	1.78588 * 10 ⁻⁶	3. 07022 * 10 ⁻⁹
100	5	6. 21871 * 10 ⁻⁶	1.06909 * 10 ⁻⁸
100	6	9. 17787 * 10 ⁻⁵	1.57782 * 10 ⁻⁷
100	7	3.73242 * 10 ⁻⁴	6.41664 * 10 ⁻⁷
100	8	0.03353	5.76473 * 10 ⁻⁵
100	9	0.09517	1.63627 * 10 ⁻⁴
100	10	1.2789	0.00219
1000	0	1.21533 * 10 ⁻⁶	6. 65168 * 10 ⁻¹¹
1000	1	5. 15069 * 10 ⁻⁶	2.81903 * 10 ⁻¹⁰
1000	2	5. 55981 * 10 ⁻⁵	3. 04295 * 10 ⁻⁹
1000	3	5.8853 * 10 ⁻⁴	3. 22109 * 10 ⁻⁸
1000	4	0.002947	1.61302 * 10 ⁻⁷
1000	5	0.05167	2. 82842 * 10 ⁻⁶
1000	6	0.23877	1.30683 * 10 ⁻⁵
1000	7	0.91713	5. 01956 * 10 ⁻⁵
1000	8	63.7615	0.00348
1000	9	155.8316	0.00852
1000	10	4352.962	0.23824

4. Матрицы Гильберта

4.1. Задача

Произвести аналогичные исследования на матрицах Гильберта различной размерности. Матрица Гильберта размерности k строится следующим образом:

$$a_{ii} = \frac{1}{i+j-1}, \ i, j = \overline{1, k}$$

4.2. Результаты вычислений

4.2. Результаты вычисі	пении	
n	$ x^*-x_k^* $	$\frac{ x^* - x_k }{ x^* }$
5	3.50788 * 10 ⁻¹¹	4.73003 * 10 ⁻¹²
10	0.0044	2. 24456 * 10 ⁻⁴
15	34.93439	0.99207
20	337.90716	6.30748
25	1974.50351	26.56389
30	14344.62961	147.5226
35	2004.52555	16.4162
40	4197.95246	28.21296
45	69742.25472	393.60965
50	11521.77692	55.61146
55	25105.81385	105.17513
60	9628.69205	35.4413
65	239145.19617	781.39925
70	21190.0318	62.00396
75	106265.59037	280.57074
80	37452.28187	89.81594
85	48697.64113	106.69075
90	699874.16494	1408.03791
95	149314.5261	277.11726
100	89266.71328	153.46397

5. Метод Гаусса с выбором ведущего элемента

5.1. Задача

Реализовать метод Гаусса с выбором ведущего элемента для плотных матриц. Сравнить метод Гаусса по точности получаемого решения по количеству действий с реализованным прямым методом LU-разложения.

5.2. Результаты вычислений и сравнение

	Метод Гаусса			LU-разложение		
n	$ x^* - x_k^* $	$\frac{ x^*-x_k }{ x^* }$	кол-во действий	$ x^*-x_k $	$\frac{ x^*-x_k }{ x^* }$	кол-во действий
10	4. 2974 * 10 ⁻¹⁴	2.96512 * 10 ⁻¹⁵	550	1.17172 * 10 ⁻¹³	8. 08465 * 10 ⁻¹⁵	440
60	2. 11196 * 10 ⁻¹²	4.77328 * 10 ⁻¹⁴	109800	1.48853 * 10 ⁻¹¹	3.36426 * 10 ⁻¹³	75640
110	8. 21789 * 10 ⁻¹³	1.43268 * 10 ⁻¹⁴	6751550	7.36611 * 10 ⁻¹¹	1.28418 * 10 ⁻¹²	455840
160	1.23061 * 10 ⁻¹²	1.66787 * 10 ⁻¹⁴	2060800	3.72737 * 10 ⁻¹⁰	5.05179 * 10 ⁻¹²	1391040
210	1.7338 * 10 ⁻¹²	2.12304 * 10 ⁻¹⁴	4652550	4. 25305 * 10 ⁻⁹	5. 20788 * 10 ⁻¹¹	3131240
260	1.56687 * 10 ⁻¹¹	1.61663 * 10 ⁻¹³	8821800	6.98244 * 10 ⁻¹⁰	7.20417 * 10 ⁻¹²	5926440
310	4. 32559 * 10 ⁻¹²	4. 2047 * 10 ⁻¹⁴	14943550	3.55378 * 10 ⁻¹⁰	3.45447 * 10 ⁻¹²	10026640
360	2.67451 * 10 ⁻¹²	2.302 * 10 ⁻¹⁴	23392800	1.66431 * 10 ⁻⁸	1.4325 * 10 ⁻¹⁰	15681840
410	7.13187 * 10 ⁻¹²	6. 32041 * 10 ⁻¹⁴	34544550	2.1315 * 10 ⁻⁹	1.88898 * 10 ⁻¹¹	23142040
460	8. 13443 * 10 ⁻¹²	6. 69006 * 10 ⁻¹⁴	48773800	5.70546 * 10 ⁻⁹	4.69238 * 10 ⁻¹¹	32657240
510	1.56679 * 10 ⁻¹¹	1.13685 * 10 ⁻¹³	66455550	1.23906 * 10 ⁻⁹	8.99057 * 10 ⁻¹²	44477440
560	3.41358 * 10 ⁻¹¹	2.50622 * 10 ⁻¹³	87964800	7.88348 * 10 ⁻¹⁰	5.78797 * 10 ⁻¹²	58852640
610	1.25672 * 10 ⁻¹⁰	8. 96529 * 10 ⁻¹³	113676550	1.02919 * 10 ⁻⁸	7.34214 * 10 ⁻¹¹	76032840
660	6.062896 * 10 ⁻¹¹	4. 01109 * 10 ⁻¹³	143965800	6.05781 * 10 ⁻¹⁰	4.00773 * 10 ⁻¹²	96268040
710	5.49544 * 10 ⁻¹¹	3.45745 * 10 ⁻¹³	179207550	6. 18913 * 10 ⁻⁹	3.89389 * 10 ⁻¹¹	119808240
760	2. 98928 * 10 ⁻¹¹	1.87782 * 10 ⁻¹³	219776800	1.61226 * 10 ⁻⁸	1.01279 * 10 ⁻¹⁰	146903440
810	5.177 * 10 ⁻¹¹	3. 17486 * 10 ⁻¹³	266048500	2.5391 * 10 ⁻⁸	1.55714 * 10 ⁻¹⁰	177803640
860	1.46674 * 10 ⁻¹⁰	8.41256 * 10 ⁻¹³	318397800	7.76795 * 10 ⁻⁹	4. 45533 * 10 ⁻¹¹	212758840
910	4.86199 * 10 ⁻¹¹	2.75278 * 10 ⁻¹³	377199550	6.56741 * 10 ⁻⁹	3.71837 * 10 ⁻¹¹	252019040
960	4.62433 * 10 ⁻¹¹	2.55435 * 10 ⁻¹³	442828800	1. 26721 * 10 ⁻⁸	6.99974 * 10 ⁻¹¹	295834240

6. MCT

6.1. Диагональное преобладание

n	Количество итераций	$ x^* - x_k $	$\frac{ x^*-x_k^* }{ x^* }$	cond(A)
10	19	1.01753 * 10 ⁻¹⁴	5. 18584 * 10 ⁻¹⁶	0.88349
20	23	3.17701 * 10 ⁻¹²	5. 93032 * 10 ⁻¹⁴	98.569
30	31	6.38842 * 10 ⁻¹²	6. 56996 * 10 ⁻¹⁴	67.95973
40	33	7.71122 * 10 ⁻¹²	5. 18244 * 10 ⁻¹⁴	53.30006
50	34	1.67591 * 10 ⁻¹¹	8. 08905 * 10 ⁻¹⁴	127.98731
60	33	1.88425 * 10 ⁻¹¹	6.93556 * 10 ⁻¹⁴	70.37144
70	33	2.44278 * 10 ⁻¹⁰	7.1478 * 10 ⁻¹³	261.10768
80	32	6.84747 * 10 ⁻¹²	1. 64212 * 10 ⁻¹⁴	15.51561
90	32	1.90421 * 10 ⁻¹⁰	3.83098 * 10 ⁻¹³	198.97807
100	32	1.19271 * 10 ⁻⁹	2.05046 * 10 ⁻¹²	1646.81937
300	29	6. 167402 * 10 ⁻⁸	2.05067 * 10 ⁻¹¹	4859.69568
500	29	8.04203 * 10 ⁻⁷	1.244 * 10 ⁻¹⁰	6295.30835
700	29	1.35543 * 10 ⁻⁶	1.26627 * 10 ⁻¹⁰	6281.06954
900	29	4.35963 * 10 ⁻⁶	2.79438 * 10 ⁻¹⁰	16987.75956
1000	219	7.376 * 10 ⁻⁶	4.03697 * 10 ⁻¹⁰	1099.86412
3500	237	7.24974 * 10 ⁻⁴	6.063 * 10 ⁻⁹	2414.56022
6000	271	1.19651 * 10 ⁻⁴	4.45859 * 10 ⁻¹⁰	1887.40374
8500	307	1.46403 * 10 ⁻⁷	3. 23553 * 10 ⁻¹³	154.08206
10000	285	5.08307 * 10 ⁻⁵	8.80348 * 10 ⁻¹¹	75.70739
100000	666	8.88316 * 10 ⁻⁷	1.53849 * 10 ⁻¹²	0.70628

^{*}при больших размерностях число обусловленности уменьшилось, так как для экономии памяти пришлось значительно увеличить число нулевых элементов.

6.2. Матица с обратным знаком внедиагональных элементов

n	Количество итераций	$ x^* - x_k $	$\frac{ x^*-x_k }{\cdots \cdots}$	cond(A)
			x*	
10	20	2.36392 * 10 ⁻¹³	1. 20476 * 10 ⁻¹⁴	10.97608
20	24	2.69015 * 10 ⁻¹²	5.02153 * 10 ⁻¹⁴	76.10033
30	31	2.10957 * 10 ⁻¹²	2. 16952 * 10 ⁻¹⁴	31.63022
40	33	1.73787 * 10 ⁻¹²	1.16796 * 10 ⁻¹⁴	14.83623
50	34	4. 1187 * 10 ⁻¹¹	1.98794 * 10 ⁻¹³	242.88997
60	33	5.41261 * 10 ⁻¹⁰	1.99227 * 10 ⁻¹²	1437.40606
70	32	3.63959 * 10 ⁻¹⁰	1.06497 * 10 ⁻¹²	584.09265
80	34	2.34971 * 10 ⁻¹⁰	5. 63494 * 10 ⁻¹³	333.07944
90	33	4.46225 * 10 ⁻¹⁰	8.97735 * 10 ⁻¹³	475.42735
100	31	8.08891 * 10 ⁻⁹	1.39061 * 10 ⁻¹¹	5419.44146
300	30	3.4885 * 10 ⁻⁸	2. 12828 * 10 ⁻¹¹	5500.33549
500	29	1.65877 * 10 ⁻⁷	5. 51547 * 10 ⁻¹¹	5120.73247
700	29	1.66646 * 10 ⁻⁷	3.60124 * 10 ⁻¹¹	8115.00011
900	28	7.98003 * 10 ⁻⁸	1.23441 * 10 ⁻¹¹	4599.44443
1000	245	2.87029 * 10 ⁻⁷	3.37845 * 10 ⁻¹¹	4512.51403
3500	327	1.48307 * 10 ⁻⁴	1.51235 * 10 ⁻¹⁰	28534.6485
6000	380	0.00104	3.89412 * 10 ⁻⁹	5030.36886
8500	383	0.00547	1.20919 * 10 ⁻⁸	17344.23631
10000	428	1.78931 * 10 ⁻⁴	3. 09895 * 10 ⁻¹⁰	148.36687
100000	1000	1.78953 * 10 ⁷	4.20573	94.06171

^{*}при больших размерностях число обусловленности уменьшилось, так как для экономии памяти пришлось значительно увеличить число нулевых элементов.

6.3. Плотная матрица Гильберта

n	Количество итераций	$ x^*-x_k^* $	$\frac{ x^* - x_k }{ x^* }$	cond(A)
2	2	1.77635 * 10 ⁻¹⁵	7.9441 * 10 ⁻¹⁶	0.92616
3	4	9. 2869 * 10 ⁻¹⁴	2. 48203 * 10 ⁻¹⁴	142.99417
4	6	2.9809 * 10 ⁻¹³	5. 44236 * 10 ⁻¹⁴	679.61873
5	8	2.36213 * 10 ⁻¹¹	3. 1851 * 10 ⁻¹²	630.40326
6	10	6. 49296 * 10 ⁻¹⁰	6.80647 * 10 ⁻¹¹	17505.805
7	13	3.01927 * 10 ⁻⁸	2.55175 * 10 ⁻⁹	3134560.899
8	19	8.86516 * 10 ⁻⁶	6. 20685 * 10 ⁻⁷	1. 10225 * 10 ⁸
9	19	4.82937 * 10 ⁻⁴	2.86067 * 10 ⁻⁵	5. 95271 * 10 ⁹
10	19	0.00134	6.85894 * 10 ⁻⁵	1.71226 * 10 ¹⁰
35	45	0.00395	3. 23724 * 10 ⁻⁵	5. 34945 * 10 ⁹
60	49	0.01491	5. 48811 * 10 ⁻⁵	1.64732 * 10 ¹⁰
85	65	0.0225	4. 93093 * 10 ⁻⁵	5. 90055 * 10 ⁹
100	65	0.0434	7.46276 * 10 ⁻⁵	1.75646 * 10 ¹⁰
350	105	0.29744	7.85114 * 10 ⁻⁵	1.15189 * 10 ¹⁰
600	119	0.41798	4. 91985 * 10 ⁻⁵	2. 60452 * 10 ¹⁰
850	135	1.22855	8. 57915 * 10 ⁻⁵	9.49783 * 10 ⁹
1000	142	1.04425	5.71532 * 10 ⁻⁵	6. 28114 * 10 ⁹

7. Выводы

- LU-разложение при увеличении размерности и числа обусловленности погрешность возрастает, что подтверждает сильную зависимость точности от этих параметров.
- Для матриц Гильберта погрешность возрастает экспоненциально, т.к. они являются стандартным примером плохо обусловленных матриц. Число обусловленности матрицы Гильберта n × n возрастает как $O(\frac{(1+\sqrt{2})^{4n}}{\sqrt{n}}).$
- В сравнении метода Гаусса и LU-разложения, оба метода имеют асимптотику $O(n^3)$, но константа в LU меньше. По точности методы весьма схожи, на полных матрицах. Различие на 1-2 порядка, для различных матриц.
- Метод сопряженных градиентов для матриц с диагональным преобладанием показал хорошую точность существенно меньше зависящую от размерности в отличии от приведенных ранее методов.
- Метод сопряженных градиентов для матриц Гильберта в отличии от других методов показал линейное уменьшение точности и количество итераций увеличивается сравнительно меньше числа обусловленности.

8. Код

https://github.com/SirDratuti/Gauss

Javadoc:

https://drive.google.com/drive/folders/1gd7JBaZfOnQjeJovSMDvyVJteowLLJ5X