

IBMz Datathon

Lummox Team-104

Ram Selvaraj Shafiudeen Kameel Rahul Samal Prajay VK Niranjan Rao SS Noel Jacob Abraham

Emotion Detection using Voice Sample

Detects the emotion of a person based on a recorded voice sample.

It works by measuring the distortions in the audio file.

We have built the model using a convolution neural network, with a dataset consisting of Voice Actor sample data and have them classified depending on their Gender and Emotion

Datasets Used-

RAVDESS and SAVEE

Loading and Visualizing Audio

Loading and Displaying the WAV files in Python-

Spectrogram - Using scipy

Feature Extraction

Extracting the features of the audio using **Librosa**

In [60]: Out[60]:	train[255:265]																
	4	5	6	7	8	9		121	122	123	124	125	126	127	128	129	0
	1582	0.243815	0.234133	0.220812	0.222221	0.232087		0.248799	0.253912	0.260256	0.257698	0.258209	0.256242	0.255648	0.255648	0.255701	angry
	i521	0.285065	0.291352	0.303514	0.308232	0.328804		0.234485	0.228035	0.216631	0.214859	0.212437	0.213037	0.218348	0.223208	0.224450	fearful
	1765	0.108862	0.103840	0.101478	0.107730	0.103912		0.066940	0.036635	0.027208	0.036532	0.053178	0.065569	0.057186	0.039764	0.021314	angry
	1141	0.074467	0.089486	0.088280	0.092139	0.093846	***	0.054423	0.053604	0.055540	0.058426	0.060729	0.068808	0.088886	0.098216	0.090357	sad
	1724	0.281591	0.296421	0.285957	0.260214	0.257237		0.299710	0.291853	0.291916	0.299710	0.299710	0.299710	0.287766	0.252755	0.243608	happy
	1779	0.330779	0.330779	0.330779	0.330779	0.330779		0.288739	0.287423	0.283312	0.291878	0.305482	0.321055	0.327999	0.301280	0.300456	calm
	1433	0.169379	0.171645	0.179289	0.190308	0.182795		0.149075	0.147707	0.159900	0.184663	0.187635	0.168762	0.149145	0.130382	0.120786	neutral
	1036	0.238554	0.242728	0.229463	0.228398	0.243454	777	0.223064	0.207814	0.210600	0.210909	0.202713	0.192792	0.192630	0.195298	0.187149	happy
	1079	0.326079	0.305091	0.284397	0.274060	0.266039		0.156601	0.185422	0.202734	0.204833	0.213753	0.221158	0.222267	0.185138	0.151496	sad
	1975	0.172604	0.173216	0.167372	0.168891	0.178888		0.205757	0.200951	0.197044	0.193599	0.208915	0.228052	0.219472	0.205900	0.201549	surprised

Extracted Feature Set

Building the Model

Convolution Neural Network

```
In [110]:
           #sigmoid
           plt.plot(cnnhistory.history['acc'])
           plt.plot(cnnhistory.history['val_acc'])
           plt.title('model accuracy')
           plt.ylabel('accuracy')
           plt.xlabel('epoch')
           plt.legend(['train', 'test'], loc='upper left')
           plt.show()
                                 model accuracy
             1.0
                     train
             0.8
              0.4
             0.2
                          200
                                  400
                                          600
                                                   800
                                                          1000
```

Predictions

Predictions on our Test Dataset

finaldf[58:68]							
lvalu	alues	S	predicte	dvalues			
_fea	earfu	ıl	male	e_happy			
_fea	earfu	ul	male	e_fearful			
_fea	earfu	ul	male	e_fearfu			
_fea	earfu	ul	male	e_fearfu			
ale_s	_sac	d	m	ale_sad			
_fea	earfu	JI.	male	e_fearful			
_hap	appy	у	male	e_happy			
e_an	angry	y	femal	e_angry			
e_an	angry	у	female	e_fearfu			
a_an	angry	У	mal	e_angry			

Testing on User Audio

Model predicting on audio file where user says "Good Morning" in a happy mood


```
livepredictions = (lb.inverse_transform((liveabc)))

print("The predicted gender is '{}' and the emotion is '{}'.".format(*livepredictions[0].split("_")))

v 0.3s

The predicted gender is 'male' and the emotion is 'happy'.
```

Use Cases

1) Voice Assistant - Predict the emotions of the user and recommend information based on their mood. This would allow for a more personalized experience with such voice assistants. Ex- Plays a song based on the users mood

Use Cases

2) Police interrogation - Monitor criminal's emotions to extract confession from them

Use Cases

3) Therapy- Helps therapist gain an additional source of confirmation on their analysis

Conclusion

Building the model was a challenging task as it involved lot of trial and error methods, tuning etc. The model is very well trained to distinguish between male and female voices and it distinguishes with 91% accuracy.

The use of IBMz's LinuxOne was monumental to achieving the desired output, the speed and responsiveness of the platform is unmatched.

This project has a lot of real life use cases and we hope to implement such products

Thank You