### NCERT Solutions for Class 12- Maths Chapter 5 - Continuity and Differentiability

Chapter 5 - Continuity and Differentiability Exercise Ex. 5.1 Solution 1

### The given function is f(x) = 5x - 3At x = 0, $f(0) = 5 \times 0 - 3 = -3$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (5x - 3) = 5 \times 0 - 3 = -3$$

$$\therefore \lim_{x \to 0} f(x) = f(0)$$

Therefore, f is continuous at x = 0

At 
$$x = -3$$
,  $f(-3) = 5 \times (-3) - 3 = -18$   

$$\lim_{x \to -3} f(x) = \lim_{x \to -3} (5x - 3) = 5 \times (-3) - 3 = -18$$

$$\therefore \lim_{x \to -3} f(x) = f(-3)$$

Therefore, f is continuous at x = -3

At 
$$x = 5$$
,  $f(x) = f(5) = 5 \times 5 - 3 = 25 - 3 = 22$   

$$\lim_{x \to 5} f(x) = \lim_{x \to 5} (5x - 3) = 5 \times 5 - 3 = 22$$

$$\therefore \lim_{x \to 5} f(x) = f(5)$$

Therefore, f is continuous at x = 5

#### Solution 2

The given function is  $f(x) = 2x^2 - 1$ 

At 
$$x = 3$$
,  $f(x) = f(3) = 2 \times 3^2 - 1 = 17$ 

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} (2x^2 - 1) = 2 \times 3^2 - 1 = 17$$

$$\therefore \lim_{x \to 3} f(x) = f(3)$$

Thus, f is continuous at x = 3

(a) The given function is f(x) = x - 5

It is evident that f is defined at every real number k and its value at k is k-5.

It is also observed that,  $\lim_{x\to k} f(x) = \lim_{x\to k} (x-5) = k-5 = f(k)$ 

$$\therefore \lim_{x \to k} f(x) = f(k)$$

Hence, f is continuous at every real number and therefore, it is a continuous function.

(b) The given function is 
$$f(x) = \frac{1}{x-5}, x \neq 5$$

For any real number  $k \neq 5$ , we obtain

$$\lim_{x \to k} f(x) = \lim_{x \to k} \frac{1}{x - 5} = \frac{1}{k - 5}$$
Also, 
$$f(k) = \frac{1}{k - 5} \qquad (\text{As } k \neq 5)$$

$$\therefore \lim_{x \to k} f(x) = f(k)$$

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.

(c) The given function is 
$$f(x) = \frac{x^2 - 25}{x + 5}, x \neq -5$$

For any real number  $c \neq -5$ , we obtain

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{x^2 - 25}{x + 5} = \lim_{x \to c} \frac{(x + 5)(x - 5)}{x + 5} = \lim_{x \to c} (x - 5) = (c - 5)$$
Also,  $f(c) = \frac{(c + 5)(c - 5)}{c + 5} = (c - 5)$  (as  $c \ne -5$ )
$$\therefore \lim_{x \to c} f(x) = f(c)$$

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.

(d) The given function is 
$$f(x) = |x-5| = \begin{cases} 5-x, & \text{if } x < 5 \\ x-5, & \text{if } x \ge 5 \end{cases}$$

This function f is defined at all points of the real line.

Let c be a point on a real line. Then, c < 5 or c = 5 or c > 5

Case I: c < 5

Then, f(c) = 5 - c

$$\lim_{x \to c} f(x) = \lim_{x \to c} (5 - x) = 5 - c$$

$$\lim_{x\to c} f(x) = f(c)$$

Therefore, f is continuous at all real numbers less than 5.

Case II : c = 5

Then, 
$$f(c) = f(5) = (5-5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5} (5 - x) = (5 - 5) = 0$$

$$\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5} (x - 5) = 0$$

$$\therefore \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = f(c)$$

Therefore, f is continuous at x = 5

Case III: c > 5

Then, 
$$f(c) = f(5) = c - 5$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (x - 5) = c - 5$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all real numbers greater than 5.

Hence, f is continuous at every real number and therefore, it is a continuous function

The given function is  $f(x) = x^n$ 

It is evident that f is defined at all positive integers, n, and its value at n is  $n^n$ .

Then, 
$$\lim_{x\to n} f(n) = \lim_{x\to n} (x^n) = n^n$$

$$\therefore \lim_{x \to n} f(x) = f(n)$$

Therefore, f is continuous at n, where n is a positive integer

#### Solution 5

The given function f is  $f(x) = \begin{cases} x, & \text{if } x \le 1 \\ 5, & \text{if } x > 1 \end{cases}$ 

At 
$$x = 0$$
,

It is evident that f is defined at 0 and its value at 0 is 0.

Then, 
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} x = 0$$

$$\therefore \lim_{x\to 0} f(x) = f(0)$$

Therefore, f is continuous at x = 0

At 
$$x = 1$$
,

fis defined at 1 and its value at 1 is 1.

The left hand limit of f at x = 1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x = 1$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (5) = 5$$

$$\therefore \lim_{x \to 1^{+}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

Therefore, f is not continuous at x = 1

At 
$$x = 2$$
,

f is defined at 2 and its value at 2 is 5.

Then, 
$$\lim_{x\to 2} f(x) = \lim_{x\to 2} (5) = 5$$

$$\therefore \lim_{x \to 2} f(x) = f(2)$$

Therefore, f is continuous at x = 2

#### Solution 6

The given function f is 
$$f(x) = \begin{cases} 2x+3, & \text{if } x \le 2\\ 2x-3, & \text{if } x > 2 \end{cases}$$

It is evident that the given function f is defined at all the points of the real line.

Let c be a point on the real line. Then, three cases arise.

(i) 
$$c < 2$$

(ii) 
$$c > 2$$

(iii) 
$$c = 2$$

Case (i) c < 2

Then, 
$$f(c) = 2c + 3$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (2x+3) = 2c+3$$
  
$$\therefore \lim_{x \to c} f(x) = f(c)$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 2

Case (ii) c > 2

Then, 
$$f(c) = 2c - 3$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (2x - 3) = 2c - 3$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 2

Case (iii) c = 2

Then, the left hand limit of f at x = 2 is,

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2x+3) = 2 \times 2 + 3 = 7$$

The right hand limit of f at x = 2 is,

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (2x - 3) = 2 \times 2 - 3 = 1$$

It is observed that the left and right hand limit of f at x = 2 do not coincide.

Therefore, f is not continuous at x = 2

Hence, x = 2 is the only point of discontinuity of f.

The given function 
$$f$$
 is  $f(x) = \begin{cases} |x| + 3 = -x + 3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x + 2, & \text{if } x \ge 3 \end{cases}$ 

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If 
$$c < -3$$
, then  $f(c) = -c + 3$   

$$\lim_{x \to c} f(x) = \lim_{x \to c} (-x + 3) = -c + 3$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < -3

Case II:

If 
$$c = -3$$
, then  $f(-3) = -(-3) + 3 = 6$   

$$\lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{-}} (-x + 3) = -(-3) + 3 = 6$$

$$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{+}} (-2x) = -2 \times (-3) = 6$$

$$\therefore \lim_{x \to -3} f(x) = f(-3)$$

Therefore, f is continuous at x = -3

Case III:

If 
$$-3 < c < 3$$
, then  $f(c) = -2c$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (-2x) = -2c$ 

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous in (-3, 3).

Case IV:

If c = 3, then the left hand limit of f at x = 3 is,

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (-2x) = -2 \times 3 = -6$$

The right hand limit of f at x = 3 is,

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (6x + 2) = 6 \times 3 + 2 = 20$$

It is observed that the left and right hand limit of f at x = 3 do not coincide.

Therefore, f is not continuous at x = 3

Case V:

If 
$$c > 3$$
, then  $f(c) = 6c + 2$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (6x + 2) = 6c + 2$   

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 3

Hence, x = 3 is the only point of discontinuity of f.

The given function 
$$f$$
 is  $f(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ 

It is known that,  $x < 0 \Longrightarrow |x| = -x$  and  $x > 0 \Longrightarrow |x| = x$ 

Therefore, the given function can be rewritten as

$$f(x) = \begin{cases} \frac{|x|}{x} = \frac{-x}{x} = -1 \text{ if } x < 0\\ 0, \text{ if } x = 0\\ \frac{|x|}{x} = \frac{x}{x} = 1, \text{ if } x > 0 \end{cases}$$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If 
$$c < 0$$
, then  $f(c) = -1$ 

$$\lim_{x \to c} f(x) = \lim_{x \to c} (-1) = -1$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x < 0

Case II:

If c = 0, then the left hand limit of f at x = 0 is,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-1) = -1$$

The right hand limit of f at x = 0 is,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1) = 1$$

It is observed that the left and right hand limit of f at x = 0 do not coincide.

Therefore, f is not continuous at x = 0

Case III:

If 
$$c > 0$$
, then  $f(c) = 1$ 

$$\lim_{x \to c} f(x) = \lim_{x \to c} (1) = 1$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 0

Hence, x = 0 is the only point of discontinuity of f.

The given function 
$$f$$
 is  $f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0 \\ -1, & \text{if } x \ge 0 \end{cases}$ 

It is known that,  $x < 0 \Rightarrow |x| = -x$ 

Therefore, the given function can be rewritten as

$$f(x) = \begin{cases} \frac{x}{|x|} = \frac{x}{-x} = -1, & \text{if } x < 0 \\ -1, & \text{if } x \ge 0 \end{cases}$$
  
$$\Rightarrow f(x) = -1 \text{ for all } x \in \mathbf{R}$$

Let c be any real number. Then,  $\lim_{x\to c} f(x) = \lim_{x\to c} (-1) = -1$ 

Also, 
$$f(c) = -1 = \lim_{x \to c} f(x)$$

Therefore, the given function is a continuous function.

Hence, the given function has no point of discontinuity.

The given function 
$$f$$
 is  $f(x) = \begin{cases} x+1, & \text{if } x \ge 1 \\ x^2+1, & \text{if } x < 1 \end{cases}$ 

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If 
$$c < 1$$
, then  $f(c) = c^2 + 1$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (x^2 + 1) = c^2 + 1$   
 $\therefore \lim_{x \to c} f(x) = f(c)$ 

Therefore, f is continuous at all points x, such that x < 1

Case II:

If 
$$c = 1$$
, then  $f(c) = f(1) = 1 + 1 = 2$ 

The left hand limit of f at x = 1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^2 + 1) = 1^2 + 1 = 2$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x+1) = 1+1 = 2$$
  
 
$$\therefore \lim_{x \to 1} f(x) = f(1)$$

Therefore, f is continuous at x = 1

Case III:

If 
$$c > 1$$
, then  $f(c) = c + 1$   

$$\lim_{x \to c} f(x) = \lim_{x \to c} (x+1) = c+1$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 1

Hence, the given function f has no point of discontinuity.

#### Solution 11

The given function f is 
$$f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2 \\ x^2 + 1, & \text{if } x > 2 \end{cases}$$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If 
$$c < 2$$
, then  $f(c) = c^3 - 3$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (x^3 - 3) = c^3 - 3$ 

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 2

Case II:

If 
$$c = 2$$
, then  $f(c) = f(2) = 2^3 - 3 = 5$ 

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^3 - 3) = 2^3 - 3 = 5$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x^2 + 1) = 2^2 + 1 = 5$$

$$\therefore \lim_{x \to 2} f(x) = f(2)$$

Therefore, f is continuous at x = 2

Case III:

If 
$$c > 2$$
, then  $f(c) = c^2 + 1$ 

$$\lim_{x\to c} f(x) = \lim_{x\to c} (x^2 + 1) = c^2 + 1$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 2

Thus, the given function f is continuous at every point on the real line.

Hence, f has no point of discontinuity.

The given function 
$$f$$
 is  $f(x) = \begin{cases} x^{10} - 1, & \text{if } x \le 1 \\ x^2, & \text{if } x > 1 \end{cases}$ 

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If 
$$c < 1$$
, then  $f(c) = c^{10} - 1$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (x^{10} - 1) = c^{10} - 1$   
 $\therefore \lim_{x \to c} f(x) = f(c)$ 

Therefore, f is continuous at all points x, such that x < 1

Case II:

If c = 1, then the left hand limit of f at x = 1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{10} - 1) = 1^{10} - 1 = 1 - 1 = 0$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2) = 1^2 = 1$$

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case III:

If 
$$c > 1$$
, then  $f(c) = c^2$   

$$\lim_{x \to c} f(x) = \lim_{x \to c} (x^2) = c^2$$

$$\lim_{x\to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 1

# Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity.

#### Solution 13

The given function is 
$$f(x) = \begin{cases} x+5, & \text{if } x \le 1 \\ x-5, & \text{if } x > 1 \end{cases}$$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If 
$$c < 1$$
, then  $f(c) = c + 5$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (x + 5) = c + 5$ 

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 1

Case II:

If 
$$c = 1$$
, then  $f(1) = 1 + 5 = 6$ 

The left hand limit of f at x = 1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x+5) = 1+5 = 6$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 5) = 1 - 5 = -4$$

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case III:

If 
$$c > 1$$
, then  $f(c) = c - 5$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (x - 5) = c - 5$ 

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity of f.

#### Solution 14

The given function is 
$$f(x) = \begin{cases} 3, & \text{if } 0 \le x \le 1 \\ 4, & \text{if } 1 < x < 3 \\ 5, & \text{if } 3 \le x \le 10 \end{cases}$$

The given function is defined at all points of the interval [0, 10].

Let c be a point in the interval [0, 10].

Case I:

If 
$$0 \le c < 1$$
, then  $f(c) = 3$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (3) = 3$   
  $\therefore \lim_{x \to c} f(x) = f(c)$ 

Therefore, f is continuous in the interval [0, 1).

Case II:

If 
$$c = 1$$
, then  $f(3) = 3$ 

The left hand limit of f at x = 1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3) = 3$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^{2}} f(x) = \lim_{x \to 1^{2}} (4) = 4$$

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case III:

If 
$$1 < c < 3$$
, then  $f(c) = 4$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (4) = 4$   

$$\lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points of the interval (1, 3).

Case IV:

If 
$$c = 3$$
, then  $f(c) = 5$ 

The left hand limit of f at x = 3 is,

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (4) = 4$$

The right hand limit of f at x = 3 is,

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (5) = 5$$

It is observed that the left and right hand limits of f at x = 3 do not coincide.

Therefore, f is not continuous at x = 3

Case V:

If 
$$3 < c \le 10$$
, then  $f(c) = 5$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (5) = 5$ 

$$\lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points of the interval (3, 10].

Hence, f is not continuous at x = 1 and x = 3

#### Solution 15

The given function is 
$$f(x) = \begin{cases} 2x, & \text{if } x < 0 \\ 0, & \text{if } 0 \le x \le 1 \\ 4x, & \text{if } x > 1 \end{cases}$$

The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

If 
$$c < 0$$
, then  $f(c) = 2c$   

$$\lim_{x \to c} f(x) = \lim_{x \to c} (2x) = 2c$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 0

Case II:

If 
$$c = 0$$
, then  $f(c) = f(0) = 0$ 

The left hand limit of f at x = 0 is,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (2x) = 2 \times 0 = 0$$

The right hand limit of f at x = 0 is,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (0) = 0$$
$$\therefore \lim_{x \to 0} f(x) = f(0)$$

$$\therefore \lim_{x \to 0} f(x) = f(0)$$

Therefore, f is continuous at x = 0

Case III:

If 
$$0 < c < 1$$
, then  $f(x) = 0$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (0) = 0$   

$$\lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points of the interval (0, 1).

Case IV:

If 
$$c = 1$$
, then  $f(c) = f(1) = 0$ 

The left hand limit of f at x = 1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (0) = 0$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4x) = 4 \times 1 = 4$$

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case V:

If 
$$c < 1$$
, then  $f(c) = 4c$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (4x) = 4c$   

$$\lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that  $x \ge 1$ 

Hence, f is not continuous only at x = 1

The given function 
$$f$$
 is  $f(x) = \begin{cases} -2, & \text{if } x \le -1 \\ 2x, & \text{if } -1 < x \le 1 \\ 2, & \text{if } x > 1 \end{cases}$ 

The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

If 
$$c < -1$$
, then  $f(c) = -2$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (-2) = -2$   
  $\therefore \lim_{x \to c} f(x) = f(c)$ 

Therefore, f is continuous at all points x, such that x < -1

Case II:

If 
$$c = -1$$
, then  $f(c) = f(-1) = -2$ 

The left hand limit of f at x = -1 is,

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (-2) = -2$$

The right hand limit of f at x = -1 is,

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (2x) = 2 \times (-1) = -2$$

$$\therefore \lim_{x \to -1} f(x) = f(-1)$$

Therefore, f is continuous at x = -1

Case III:

If 
$$-1 < c < 1$$
, then  $f(c) = 2c$   

$$\lim_{x \to c} f(x) = \lim_{x \to c} (2x) = 2c$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points of the interval (-1, 1).

Case IV:

If 
$$c = 1$$
, then  $f(c) = f(1) = 2 \times 1 = 2$ 

The left hand limit of f at x = 1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (2x) = 2 \times 1 = 2$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2 = 2$$

$$\therefore \lim_{x \to 1} f(x) = f(c)$$

Therefore, f is continuous at x = 2

Case V:

If 
$$c > 1$$
, then  $f(c) = 2$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (2) = 2$ 

$$\lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observations, it can be concluded that f is continuous at all points of the real line

The given function 
$$f$$
 is  $f(x) = \begin{cases} ax+1, & \text{if } x \leq 3 \\ bx+3, & \text{if } x > 3 \end{cases}$ 

If f is continuous at x = 3, then

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3) \qquad \dots (1)$$
Also,
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (ax+1) = 3a+1$$

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (bx+3) = 3b+3$$

$$f(3) = 3a+1$$

Therefore, from (1), we obtain

$$3a+1=3b+3$$

$$\Rightarrow 3a+1=3b+3$$

$$\Rightarrow 3a=3b+2$$

$$\Rightarrow a=b+\frac{2}{3}$$

Therefore, the required relationship is given by,  $a = b + \frac{2}{3}$ 

The given function 
$$f$$
 is  $f(x) = \begin{cases} \lambda(x^2 - 2x), & \text{if } x \le 0 \\ 4x + 1, & \text{if } x > 0 \end{cases}$ 

If f is continuous at x = 0, then

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0^{-}} \lambda (x^{2} - 2x) = \lim_{x \to 0^{+}} (4x + 1) = \lambda (0^{2} - 2 \times 0)$$

$$\Rightarrow \lambda (0^{2} - 2 \times 0) = 4 \times 0 + 1 = 0$$

$$\Rightarrow 0 = 1 = 0, \text{ which is not possible}$$

Therefore, there is no value of  $\lambda$  for which f is continuous at x = 0

At 
$$x = 1$$
,  
 $f(1) = 4x + 1 = 4 \times 1 + 1 = 5$   

$$\lim_{x \to 1} (4x + 1) = 4 \times 1 + 1 = 5$$

$$\therefore \lim_{x \to 1} f(x) = f(1)$$

Therefore, for any values of  $\lambda$ , f is continuous at x = 1

The given function is g(x) = x - [x]

It is evident that g is defined at all integral points.

Let n be an integer.

Then,

$$g(n) = n - [n] = n - n = 0$$

The left hand limit of f at x = n is,

$$\lim_{x \to n^{-}} g(x) = \lim_{x \to n^{-}} (x - [x]) = \lim_{x \to n^{-}} (x) - \lim_{x \to n^{-}} [x] = n - (n - 1) = 1$$

The right hand limit of f at x = n is,

$$\lim_{x \to n^+} g(x) = \lim_{x \to n^+} (x - [x]) = \lim_{x \to n^+} (x) - \lim_{x \to n^+} [x] = n - n = 0$$

It is observed that the left and right hand limits of f at x = n do not coincide.

Therefore, f is not continuous at x = n

Hence, g is discontinuous at all integral points

Solution 20

The given function is  $f(x) = x^2 - \sin x + 5$ It is evident that f is defined at  $x = \Pi$ 

At 
$$x = \pi$$
,  $f(x) = f(\pi) = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5$   
Consider  $\lim_{x \to \pi} f(x) = \lim_{x \to \pi} (x^2 - \sin x + 5)$   
Put  $x = \pi + h$   
If  $x \to \pi$ , then it is evident that  $h \to 0$   

$$\lim_{x \to \pi} f(x) = \lim_{x \to \pi} (x^2 - \sin x + 5)$$

$$= \lim_{h \to 0} \left[ (\pi + h)^2 - \sin (\pi + h) + 5 \right]$$

$$= \lim_{h \to 0} \left[ (\pi + h)^2 - \lim_{h \to 0} \sin (\pi + h) + \lim_{h \to 0} 5 \right]$$

$$= (\pi + 0)^2 - \lim_{h \to 0} \left[ \sin \pi \cosh + \cos \pi \sinh \right] + 5$$

$$= \pi^2 - \lim_{h \to 0} \sin \pi \cosh - \lim_{h \to 0} \cos \pi \sinh + 5$$

$$= \pi^2 - \sin \pi \cos 0 - \cos \pi \sin 0 + 5$$

$$= \pi^2 - 0 \times 1 - (-1) \times 0 + 5$$

$$= \pi^2 + 5$$

Therefore, the given function f is continuous at  $x = \pi$ 

#### Solution 21

 $\lim_{x\to x} f(x) = f(\pi)$ 

It is known that if g and h are two continuous functions, then g+h, g-h, and g.h are also continuous.

It has to proved first that  $g(x) = \sin x$  and  $h(x) = \cos x$  are continuous functions.

Let 
$$g(x) = \sin x$$

It is evident that  $g(x) = \sin x$  is defined for every real number.

Let c be a real number. Put x = c + h

If 
$$x \to c$$
, then  $h \to 0$   

$$g(c) = \sin c$$

$$\lim_{x \to c} g(x) = \lim_{x \to c} \sin x$$

$$= \lim_{h \to 0} \sin (c+h)$$

$$= \lim_{h \to 0} [\sin c \cos h + \cos c \sin h]$$

$$= \lim_{h \to 0} (\sin c \cos h) + \lim_{h \to 0} (\cos c \sin h)$$

$$= \sin c \cos 0 + \cos c \sin 0$$

$$= \sin c + 0$$

$$= \sin c$$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is a continuous function.

Let 
$$h(x) = \cos x$$

It is evident that  $h(x) = \cos x$  is defined for every real number.

Let c be a real number. Put x = c + h

If 
$$x \to c$$
, then  $h \to 0$ 

$$h(c) = \cos c$$

$$\lim_{x \to c} h(x) = \lim_{x \to c} \cos x$$

$$= \lim_{h \to 0} \cos (c + h)$$

$$= \lim_{h \to 0} [\cos c \cos h - \sin c \sin h]$$

$$= \lim_{h \to 0} \cos c \cos h - \lim_{h \to 0} \sin c \sin h$$

$$= \cos c \cos 0 - \sin c \sin 0$$

$$= \cos c \times 1 - \sin c \times 0$$

$$= \cos c$$

$$\therefore \lim_{x \to c} h(x) = h(c)$$

Therefore, h is a continuous function.

Therefore, it can be concluded that

(a) 
$$f(x) = g(x) + h(x) = \sin x + \cos x$$
 is a continuous function

(b) 
$$f(x) = g(x) - h(x) = \sin x - \cos x$$
 is a continuous function

(c) 
$$f(x) = g(x) \times h(x) = \sin x \times \cos x$$
 is a continuous function

It is known that if g and h are two continuous functions, then

(i) 
$$\frac{h(x)}{g(x)}$$
,  $g(x) \neq 0$  is continuous

(ii) 
$$\frac{1}{g(x)}$$
,  $g(x) \neq 0$  is continuous

(iii) 
$$\frac{1}{h(x)}$$
,  $h(x) \neq 0$  is continuous

It has to be proved first that  $g(x) = \sin x$  and  $h(x) = \cos x$  are continuous functions.

Let 
$$g(x) = \sin x$$

It is evident that  $g(x) = \sin x$  is defined for every real number.

Let c be a real number. Put x = c + h

If 
$$x \to c$$
, then  $h \to 0$ 

$$g(c) = \sin c$$

$$\lim_{s \to c} g(x) = \lim_{s \to c} \sin x$$

$$= \lim_{h \to 0} \sin (c + h)$$

$$= \lim_{h \to 0} [\sin c \cos h + \cos c \sin h]$$

$$= \lim_{h \to 0} (\sin c \cos h) + \lim_{h \to 0} (\cos c \sin h)$$

$$= \sin c \cos 0 + \cos c \sin 0$$

$$= \sin c + 0$$

$$= \sin c$$

$$\therefore \lim_{s \to c} g(x) = g(c)$$

Therefore, g is a continuous function.

Let 
$$h(x) = \cos x$$

It is evident that  $h(x) = \cos x$  is defined for every real number.

Let c be a real number. Put x = c + h

If 
$$x \to c$$
, then  $h \to 0$ 

$$h(c) = \cos c$$

$$\lim_{x \to c} h(x) = \lim_{x \to c} \cos x$$

$$= \lim_{h \to 0} \cos (c + h)$$

$$= \lim_{h \to 0} [\cos c \cos h - \sin c \sin h]$$

$$= \lim_{h \to 0} \cos c \cos h - \lim_{h \to 0} \sin c \sin h$$

$$= \cos c \cos 0 - \sin c \sin 0$$

$$= \cos c \times 1 - \sin c \times 0$$

$$= \cos c$$

$$\therefore \lim_{h \to 0} h(x) = h(c)$$

Therefore,  $h(x) = \cos x$  is continuous function.

It can be concluded that,

$$\csc x = \frac{1}{\sin x}$$
,  $\sin x \neq 0$  is continuous  
 $\Rightarrow \csc x$ ,  $x \neq m\pi$   $(n \in Z)$  is continuous

# Therefore, cosecant is continuous except at x = np, $n \in Z$

$$\sec x = \frac{1}{\cos x}$$
,  $\cos x \neq 0$  is continuous

$$\Rightarrow$$
 sec  $x$ ,  $x \neq (2n+1)\frac{\pi}{2}$   $(n \in \mathbb{Z})$  is continuous

Therefore, secant is continuous except at  $x = (2n+1)\frac{\pi}{2}$   $(n \in \mathbb{Z})$ 

$$\cot x = \frac{\cos x}{\sin x}, \ \sin x \neq 0 \text{ is continuous}$$

 $\Rightarrow$  cot x,  $x \neq n\pi$   $(n \in Z)$  is continuous

## Therefore, cotangent is continuous except at x = np, $n \in Z$

Solution 23

The given function 
$$f$$
 is  $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x < 0 \\ x + 1, & \text{if } x \ge 0 \end{cases}$ 

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

If 
$$c < 0$$
, then  $f(c) = \frac{\sin c}{c}$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} \left(\frac{\sin x}{x}\right) = \frac{\sin c}{c}$   

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 0

Case II:

If 
$$c > 0$$
, then  $f(c) = c + 1$  and  $\lim_{x \to c} f(x) = \lim_{x \to c} (x + 1) = c + 1$   

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 0

Case III:

If 
$$c = 0$$
, then  $f(c) = f(0) = 0 + 1 = 1$ 

The left hand limit of f at x = 0 is,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

The right hand limit of f at x = 0 is,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+1) = 1$$
  
 
$$\therefore \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} f(x) = f(0)$$

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at all points of the real line.

Thus, f has no point of discontinuity.

#### Solution 24

He given function 
$$f$$
 is  $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ 

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

If 
$$c \neq 0$$
, then  $f(c) = c^2 \sin \frac{1}{c}$   

$$\lim_{x \to c} f(x) = \lim_{x \to c} \left( x^2 \sin \frac{1}{x} \right) = \left( \lim_{x \to c} x^2 \right) \left( \lim_{x \to c} \sin \frac{1}{x} \right) = c^2 \sin \frac{1}{c}$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points  $x \neq 0$ 

Case II:

If 
$$c = 0$$
, then  $f(0) = 0$ 

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left( x^{2} \sin \frac{1}{x} \right) = \lim_{x \to 0} \left( x^{2} \sin \frac{1}{x} \right)$$

It is known that,  $-1 \le \sin \frac{1}{x} \le 1$ ,  $x \ne 0$ 

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

$$\Rightarrow \lim_{x\to 0} (-x^2) \le \lim_{x\to 0} \left(x^2 \sin \frac{1}{x}\right) \le \lim_{x\to 0} x^2$$

$$\Rightarrow 0 \le \lim_{x \to 0} \left( x^2 \sin \frac{1}{x} \right) \le 0$$

$$\Rightarrow \lim_{x\to 0} \left(x^2 \sin \frac{1}{x}\right) = 0$$

$$\therefore \lim_{x \to 0^{-}} f(x) = 0$$

Similarly, 
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left( x^2 \sin \frac{1}{x} \right) = \lim_{x \to 0} \left( x^2 \sin \frac{1}{x} \right) = 0$$

$$\lim_{x\to 0^{-}} f(x) = f(0) = \lim_{x\to 0^{+}} f(x)$$

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

#### Solution 25

The given function 
$$f$$
 is  $f(x) = \begin{cases} \sin x - \cos x, & \text{if } x \neq 0 \\ -1 & \text{if } x = 0 \end{cases}$ 

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

If 
$$c \neq 0$$
, then  $f(c) = \sin c - \cos c$ 

$$\lim_{x \to c} f(x) = \lim_{x \to c} (\sin x - \cos x) = \sin c - \cos c$$

$$\therefore \lim_{x \to \infty} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that  $x \neq 0$ 

Case II:

If 
$$c = 0$$
, then  $f(0) = -1$ 

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (\sin x - \cos x) = \sin 0 - \cos 0 = 0 - 1 = -1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} (\sin x - \cos x) = \sin 0 - \cos 0 = 0 - 1 = -1$$

$$\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

#### Solution 26

The given function 
$$f$$
 is  $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$ 

The given function f is continuous at  $x = \frac{\pi}{2}$ , if f is defined at  $x = \frac{\pi}{2}$  and if the value of the f at  $x = \frac{\pi}{2}$  equals the limit of f at  $x = \frac{\pi}{2}$ .

It is evident that f is defined at  $x = \frac{\pi}{2}$  and  $f\left(\frac{\pi}{2}\right) = 3$ 

$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x}$$

Put 
$$x = \frac{\pi}{2} + h$$

Then, 
$$x \to \frac{\pi}{2} \Rightarrow h \to 0$$

$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = \lim_{h \to 0} \frac{k \cos \left(\frac{\pi}{2} + h\right)}{\pi - 2\left(\frac{\pi}{2} + h\right)}$$

$$= k \lim_{h \to 0} \frac{-\sin h}{-2h} = \frac{k}{2} \lim_{h \to 0} \frac{\sin h}{h} = \frac{k}{2} \cdot 1 = \frac{k}{2}$$

$$\therefore \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right)$$

$$\Rightarrow \frac{k}{2} = 3$$

$$\Rightarrow k = 6$$

Therefore, the required value of k is 6.

#### Solution 27

The given function is 
$$f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases}$$

The given function f is continuous at x = 2, if f is defined at x = 2 and if the value of f at x = 2 equals the limit of f at x = 2

It is evident that f is defined at x = 2 and  $f(2) = k(2)^2 = 4k$ 

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^{-}} (kx^{2}) = \lim_{x \to 2^{+}} (3) = 4k$$

$$\Rightarrow k \times 2^{2} = 3 = 4k$$

$$\Rightarrow 4k = 3$$

$$\Rightarrow k = \frac{3}{4}$$

Therefore, the required value of k is  $\frac{3}{4}$ 

The given function is 
$$f(x) = \begin{cases} kx+1, & \text{if } x \leq \pi \\ \cos x, & \text{if } x > \pi \end{cases}$$

The given function f is continuous at  $x = \pi^{\pi}$ , if f is defined at  $x = \pi^{\pi}$  and if the value of f at  $x = \pi^{\pi}$  equals the limit of f at  $x = \pi^{\pi}$ .

$$\lim_{x \to x^{-}} f(x) = \lim_{x \to x^{+}} f(x) = f(\pi)$$

$$\Rightarrow \lim_{x \to x^{-}} (kx+1) = \lim_{x \to x^{+}} \cos x = k\pi + 1$$

$$\Rightarrow k\pi + 1 = \cos \pi = k\pi + 1$$

$$\Rightarrow k\pi + 1 = -1 = k\pi + 1$$

$$\Rightarrow k = -\frac{2}{\pi}$$

Therefore, the required value of k is  $-\frac{2}{\pi}$ .

## Solution 29

The given function 
$$f$$
 is  $f(x) = \begin{cases} kx+1, & \text{if } x \le 5 \\ 3x-5, & \text{if } x > 5 \end{cases}$ 

The given function f is continuous at x = 5, if f is defined at x = 5 and if the value of f at x = 5 equals the limit of f at x = 5

It is evident that f is defined at x = 5 and f(5) = kx + 1 = 5k + 1

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{+}} f(x) = f(5)$$

$$\Rightarrow \lim_{x \to 5^{-}} (kx+1) = \lim_{x \to 5^{+}} (3x-5) = 5k+1$$

$$\Rightarrow 5k+1 = 15-5 = 5k+1$$

$$\Rightarrow 5k+1 = 10$$

$$\Rightarrow 5k = 9$$

$$\Rightarrow k = \frac{9}{5}$$

Therefore, the required value of k is  $\frac{9}{5}$ .

The given function 
$$f$$
 is  $f(x) = \begin{cases} 5, & \text{if } x \le 2\\ ax + b, \text{if } 2 < x < 10\\ 21, & \text{if } x \ge 10 \end{cases}$ 

It is evident that the given function f is defined at all points of the real line.

If f is a continuous function, then f is continuous at all real numbers.

In particular, f is continuous at x = 2 and x = 10

Since f is continuous at x = 2, we obtain

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^{+}} (5) = \lim_{x \to 2^{+}} (ax + b) = 5$$

$$\Rightarrow 5 = 2a + b = 5$$

$$\Rightarrow 2a + b = 5 \qquad \dots (1)$$

Since f is continuous at x = 10, we obtain

$$\lim_{x \to 10^{-}} f(x) = \lim_{x \to 10^{+}} f(x) = f(10)$$

$$\Rightarrow \lim_{x \to 10^{-}} (ax + b) = \lim_{x \to 10^{+}} (21) = 21$$

$$\Rightarrow 10a + b = 21 = 21$$

$$\Rightarrow 10a + b = 21 \qquad ...(2)$$

On subtracting equation (1) from equation (2), we obtain

$$8a = 16$$

$$a = 2$$

By putting a = 2 in equation (1), we obtain

$$2 \times 2 + b = 5$$

$$4 + b = 5$$

$$b = 1$$

Therefore, the values of a and b for which f is a continuous function are 2 and 1 respectively.

#### Solution 31

The given function is  $f(x) = \cos(x^2)$ 

This function f is defined for every real number and f can be written as the composition of two functions as,

$$f = g \circ h$$
, where  $g(x) = \cos x$  and  $h(x) = x^2$ 

$$\left[ \because (goh)(x) = g(h(x)) = g(x^2) = \cos(x^2) = f(x) \right]$$

It has to be first proved that  $g(x) = \cos x$  and  $h(x) = x^2$  are continuous functions.

It is evident that g is defined for every real number.

Let c be a real number.

Then, 
$$g(c) = \cos c$$

Put 
$$x = c + h$$

If 
$$x \to c$$
, then  $h \to 0$ 

$$\lim_{x \to c} g(x) = \lim_{x \to c} \cos x$$

$$= \lim_{h \to 0} \cos(c + h)$$

$$= \lim_{h \to 0} [\cos c \cos h - \sin c \sin h]$$

$$= \lim_{h \to 0} \cos c \cos h - \lim_{h \to 0} \sin c \sin h$$

$$= \cos c \cos 0 - \sin c \sin 0$$

$$= \cos c \times 1 - \sin c \times 0$$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

 $= \cos c$ 

Therefore,  $g(x) = \cos x$  is continuous function.

$$h(x) = x^2$$

Clearly, h is defined for every real number.

Let k be a real number, then  $h\left(k\right)=k^{2}$ 

$$\lim_{x \to k} h(x) = \lim_{x \to k} x^2 = k^2$$
  
$$\therefore \lim_{x \to k} h(x) = h(k)$$

Therefore, h is a continuous function.

It is known that for real valued functions g and h, such that  $(g \circ h)$  is defined at c, if g is continuous at c and if f is continuous at g (c), then  $(f \circ g)$  is continuous at c.

Therefore, 
$$f(x) = (goh)(x) = \cos(x^2)$$
 is a continuous function.

The given function is  $f(x) = |\cos x|$ 

This function f is defined for every real number and f can be written as the composition of two functions as,

$$f = g \circ h$$
, where  $g(x) = |x|$  and  $h(x) = \cos x$ 

$$\left[ \because (goh)(x) = g(h(x)) = g(\cos x) = |\cos x| = f(x) \right]$$

It has to be first proved that g(x) = |x| and  $h(x) = \cos x$  are continuous functions.

g(x) = |x| can be written as

$$g(x) = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

If 
$$c < 0$$
, then  $g(c) = -c$  and  $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$   
  $\therefore \lim_{x \to c} g(x) = g(c)$ 

Therefore, g is continuous at all points x, such that x < 0

Case II:

If 
$$c > 0$$
, then  $g(c) = c$  and  $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$   

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x > 0

Case III:

If 
$$c = 0$$
, then  $g(c) = g(0) = 0$ 

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$
$$\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} (x) = 0$$

$$\therefore \lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{+}} (x) = g(0)$$

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

$$h(x) = \cos x$$

It is evident that  $h(x) = \cos x$  is defined for every real number.

Let c be a real number. Put x = c + h

If 
$$x \to c$$
, then  $h \to 0$ 

$$h(c) = \cos c$$

$$\lim_{x \to c} h(x) = \lim_{x \to c} \cos x$$

$$= \lim_{h \to 0} \cos (c + h)$$

$$= \lim_{h \to 0} [\cos c \cos h - \sin c \sin h]$$

$$= \lim_{h \to 0} \cos c \cos h - \lim_{h \to 0} \sin c \sin h$$

$$= \cos c \cos 0 - \sin c \sin 0$$

$$= \cos c \times 1 - \sin c \times 0$$

$$= \cos c$$

$$\therefore \lim_{x \to c} h(x) = h(c)$$

Therefore,  $h(x) = \cos x$  is a continuous function.

It is known that for real valued functions g and h, such that  $(g \circ h)$  is defined at c, if g is continuous at c and if f is continuous at g (c), then  $(f \circ g)$  is continuous at c.

Therefore, 
$$f(x) = (goh)(x) = g(h(x)) = g(\cos x) = |\cos x|$$
 is a continuous function

Let 
$$f(x) = \sin|x|$$

This function f is defined for every real number and f can be written as the composition of two functions as,

$$f = g \circ h$$
, where  $g(x) = |x|$  and  $h(x) = \sin x$ 

$$\left[ \because (goh)(x) = g(h(x)) = g(\sin x) = |\sin x| = f(x) \right]$$

It has to be proved first that g(x) = |x| and  $h(x) = \sin x$  are continuous functions.

$$g(x) = |x|$$
 can be written as

$$g(x) = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

If 
$$c < 0$$
, then  $g(c) = -c$  and  $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$   

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x < 0

Case II:

If 
$$c > 0$$
, then  $g(c) = c$  and  $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$   

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x > 0

Case III:

If 
$$c = 0$$
, then  $g(c) = g(0) = 0$   

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$$

$$\lim_{x\to 0^{-}} g(x) = \lim_{x\to 0^{+}} (x) = g(0)$$

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

$$h(x) = \sin x$$

It is evident that  $h(x) = \sin x$  is defined for every real number.

Let c be a real number. Put x = c + k

If 
$$x \to c$$
, then  $k \to 0$ 

$$h(c) = \sin c$$

$$h(c) = \sin c$$

$$\lim_{x \to c} h(x) = \lim_{x \to c} \sin x$$

$$= \lim_{k \to 0} \sin (c + k)$$

$$= \lim_{k \to 0} [\sin c \cos k + \cos c \sin k]$$

$$= \lim_{k \to 0} (\sin c \cos k) + \lim_{k \to 0} (\cos c \sin k)$$

$$= \sin c \cos 0 + \cos c \sin 0$$

$$= \sin c + 0$$

$$= \sin c$$

$$\therefore \lim_{k \to 0} h(x) = g(c)$$

Therefore, h is a continuous function.

It is known that for real valued functions g and h, such that  $(g \circ h)$  is defined at c, if g is continuous at c and if f is continuous at g (c), then  $(f \circ g)$  is continuous at c.

Therefore,  $f(x) = (goh)(x) = g(h(x)) = g(\sin x) = |\sin x|$  is a continuous function.

The given function is f(x) = |x| - |x+1|

The two functions, g and h, are defined as

$$g(x) = |x| \text{ and } h(x) = |x+1|$$

Then, 
$$f = g - h$$

The continuity of g and h is examined first.

g(x) = |x| can be written as

$$g(x) = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

If 
$$c < 0$$
, then  $g(c) = -c$  and  $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$   

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x < 0

Case II:

If 
$$c > 0$$
, then  $g(c) = c$  and  $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$   

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x > 0

Case III:

If 
$$c = 0$$
, then  $g(c) = g(0) = 0$ 

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$$

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{+}} (x) = g(0)$$

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

h(x) = |x+1| can be written as

$$h(x) = \begin{cases} -(x+1), & \text{if, } x < -1\\ x+1, & \text{if } x \ge -1 \end{cases}$$

Clearly, h is defined for every real number.

Let c be a real number.

Case I:

If 
$$c < -1$$
, then  $h(c) = -(c+1)$  and  $\lim_{x \to c} h(x) = \lim_{x \to c} \left[ -(x+1) \right] = -(c+1)$   
  $\therefore \lim_{x \to c} h(x) = h(c)$ 

Therefore, h is continuous at all points x, such that x < -1

Case II:

If 
$$c > -1$$
, then  $h(c) = c + 1$  and  $\lim_{x \to c} h(x) = \lim_{x \to c} (x + 1) = c + 1$   

$$\therefore \lim_{x \to c} h(x) = h(c)$$

Therefore, h is continuous at all points x, such that x > -1

Case III:

If 
$$c = -1$$
, then  $h(c) = h(-1) = -1 + 1 = 0$ 

$$\lim_{x \to -1^{-}} h(x) = \lim_{x \to -1^{-}} \left[ -(x+1) \right] = -(-1+1) = 0$$

$$\lim_{x \to -1^+} h(x) = \lim_{x \to -1^+} (x+1) = (-1+1) = 0$$

$$\therefore \lim_{x \to -1^{-}} h(x) = \lim_{h \to -1^{+}} h(x) = h(-1)$$

Therefore, h is continuous at x = -1

From the above three observations, it can be concluded that h is continuous at all points of the real line.

g and h are continuous functions. Therefore, f = g - h is also a continuous function.

Therefore, f has no point of discontinuity.

# Chapter 5 - Continuity and Differentiability Exercise Ex. 5.2 Solution 1

Let 
$$f(x) = \sin(x^2 + 5)$$
,  $u(x) = x^2 + 5$ , and  $v(t) = \sin t$ 

Then, 
$$(v \circ u)(x) = v(u(x)) = v(x^2 + 5) = \sin(x^2 + 5) = f(x)$$

Thus, f is a composite of two functions.

Put 
$$t = u(x) = x^2 + 5$$

Then, we obtain

$$\frac{dv}{dt} = \frac{d}{dt}(\sin t) = \cos t = \cos(x^2 + 5)$$

$$\frac{dt}{dx} = \frac{d}{dx}(x^2 + 5) = \frac{d}{dx}(x^2) + \frac{d}{dx}(5) = 2x + 0 = 2x$$
Therefore, by chain rule,  $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = \cos(x^2 + 5) \times 2x = 2x\cos(x^2 + 5)$ 

#### Alternate method

$$\frac{d}{dx} \left[ \sin\left(x^2 + 5\right) \right] = \cos\left(x^2 + 5\right) \cdot \frac{d}{dx} \left(x^2 + 5\right)$$

$$= \cos\left(x^2 + 5\right) \cdot \left[ \frac{d}{dx} \left(x^2\right) + \frac{d}{dx} \left(5\right) \right]$$

$$= \cos\left(x^2 + 5\right) \cdot \left[2x + 0\right]$$

$$= 2x \cos\left(x^2 + 5\right)$$

#### Solution 2

Let 
$$f(x) = \cos(\sin x)$$
,  $u(x) = \sin x$ , and  $v(t) = \cos t$   
Then,  $(vou)(x) = v(u(x)) = v(\sin x) = \cos(\sin x) = f(x)$ 

Thus, f is a composite function of two functions.

Put 
$$t = u(x) = \sin x$$

$$\therefore \frac{dv}{dt} = \frac{d}{dt} [\cos t] = -\sin t = -\sin(\sin x)$$
$$\frac{dt}{dx} = \frac{d}{dx} (\sin x) = \cos x$$

By chain rule,

$$\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = -\sin(\sin x) \cdot \cos x = -\cos x \sin(\sin x)$$

### Alternate method

$$\frac{d}{dx}\Big[\cos(\sin x)\Big] = -\sin(\sin x) \cdot \frac{d}{dx}(\sin x) = -\sin(\sin x) \cdot \cos x = -\cos x \sin(\sin x)$$

Let 
$$f(x) = \sin(ax+b)$$
,  $u(x) = ax+b$ , and  $v(t) = \sin t$   
Then,  $(vou)(x) = v(u(x)) = v(ax+b) = \sin(ax+b) = f(x)$ 

Thus, f is a composite function of two functions, u and v.

Put 
$$t = u(x) = ax + b$$

Therefore,

$$\frac{dv}{dt} = \frac{d}{dt}(\sin t) = \cos t = \cos(ax+b)$$

$$\frac{dt}{dx} = \frac{d}{dx}(ax+b) = \frac{d}{dx}(ax) + \frac{d}{dx}(b) = a+0 = a$$

Hence, by chain rule, we obtain

$$\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = \cos(ax + b) \cdot a = a\cos(ax + b)$$

## Alternate method

$$\frac{d}{dx} \Big[ \sin(ax+b) \Big] = \cos(ax+b) \cdot \frac{d}{dx} (ax+b)$$

$$= \cos(ax+b) \cdot \Big[ \frac{d}{dx} (ax) + \frac{d}{dx} (b) \Big]$$

$$= \cos(ax+b) \cdot (a+0)$$

$$= a\cos(ax+b)$$

Let 
$$f(x) = \sec(\tan \sqrt{x})$$
,  $u(x) = \sqrt{x}$ ,  $v(t) = \tan t$ , and  $w(s) = \sec s$   
Then,  $(wovou)(x) = w[v(u(x))] = w[v(\sqrt{x})] = w(\tan \sqrt{x}) = \sec(\tan \sqrt{x}) = f(x)$ 

Thus, f is a composite function of three functions, u, v, and w.

Put 
$$s = v(t) = \tan t$$
 and  $t = u(x) = \sqrt{x}$ 

Then, 
$$\frac{dw}{ds} = \frac{d}{ds}(\sec s) = \sec s \tan s = \sec(\tan t) \cdot \tan(\tan t)$$
  $\left[s = \tan t\right]$   
=  $\sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x})$   $\left[t = \sqrt{x}\right]$ 

$$\frac{ds}{dt} = \frac{d}{dt} (\tan t) = \sec^2 t = \sec^2 \sqrt{x}$$

$$\frac{dt}{dx} = \frac{d}{dx} \left( \sqrt{x} \right) = \frac{d}{dx} \left( x^{\frac{1}{2}} \right) = \frac{1}{2} \cdot x^{\frac{1}{2} - 1} = \frac{1}{2\sqrt{x}}$$

Hence, by chain rule, we obtain

$$\frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

$$= \sec\left(\tan\sqrt{x}\right) \cdot \tan\left(\tan\sqrt{x}\right) \times \sec^2\sqrt{x} \times \frac{1}{2\sqrt{x}}$$

$$= \frac{1}{2\sqrt{x}} \sec^2\sqrt{x} \sec\left(\tan\sqrt{x}\right) \tan\left(\tan\sqrt{x}\right)$$

$$= \frac{\sec^2\sqrt{x} \sec\left(\tan\sqrt{x}\right) \tan\left(\tan\sqrt{x}\right)}{2\sqrt{x}}$$

# Alternate method

$$\frac{d}{dx} \left[ \sec(\tan \sqrt{x}) \right] = \sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x}) \cdot \frac{d}{dx} \left( \tan \sqrt{x} \right)$$

$$= \sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x}) \cdot \sec^2(\sqrt{x}) \cdot \frac{d}{dx} \left( \sqrt{x} \right)$$

$$= \sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x}) \cdot \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{\sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x}) \sec^2(\sqrt{x})}{2\sqrt{x}}$$

The given function is 
$$f(x) = \frac{\sin(ax+b)}{\cos(cx+d)} = \frac{g(x)}{h(x)}$$
, where  $g(x) = \sin(ax+b)$  and

$$h(x) = \cos(cx + d)$$

$$\therefore f' = \frac{g'h - gh'}{h^2}$$

Consider  $g(x) = \sin(ax + b)$ 

Let 
$$u(x) = ax + b, v(t) = \sin t$$

Then, 
$$(vou)(x) = v(u(x)) = v(ax+b) = \sin(ax+b) = g(x)$$

 $\therefore$  g is a composite function of two functions, u and v.

Put 
$$t = u(x) = ax + b$$
  

$$\frac{dv}{dt} = \frac{d}{dt}(\sin t) = \cos t = \cos(ax + b)$$

$$\frac{dt}{dx} = \frac{d}{dx}(ax + b) = \frac{d}{dx}(ax) + \frac{d}{dx}(b) = a + 0 = a$$

Therefore, by chain rule, we obtain

$$g' = \frac{dg}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = \cos(ax+b) \cdot a = a\cos(ax+b)$$
Consider  $h(x) = \cos(cx+d)$ 
Let  $p(x) = cx+d$ ,  $q(y) = \cos y$ 

Then, 
$$(qop)(x) = q(p(x)) = q(cx+d) = cos(cx+d) = h(x)$$

h is a composite function of two functions, p and q.

Put 
$$y = p(x) = cx + d$$

$$\frac{dq}{dv} = \frac{d}{dv}(\cos y) = -\sin y = -\sin(cx + d)$$

$$\frac{dy}{dx} = \frac{d}{dx}(cx+d) = \frac{d}{dx}(cx) + \frac{d}{dx}(d) = c$$

Therefore, by chain rule, we obtain

$$h' = \frac{dh}{dx} = \frac{dq}{dy} \cdot \frac{dy}{dx} = -\sin(cx+d) \times c = -c\sin(cx+d)$$

$$\therefore f' = \frac{a\cos(ax+b) \cdot \cos(cx+d) - \sin(ax+b) \{-c\sin(cx+d)\}}{\left[\cos(cx+d)\right]^2}$$

$$= \frac{a\cos(ax+b)}{\cos(cx+d)} + c\sin(ax+b) \cdot \frac{\sin(cx+d)}{\cos(cx+d)} \times \frac{1}{\cos(cx+d)}$$

$$= a\cos(ax+b)\sec(cx+d) + c\sin(ax+b)\tan(cx+d)\sec(cx+d)$$

### Solution 6

The given function is  $\cos x^3 \cdot \sin^2(x^5)$ .

$$\frac{d}{dx} \Big[ \cos x^3 \cdot \sin^2 (x^5) \Big] = \sin^2 (x^5) \times \frac{d}{dx} \Big( \cos x^3 \Big) + \cos x^3 \times \frac{d}{dx} \Big[ \sin^2 (x^5) \Big]$$

$$= \sin^2 (x^5) \times (-\sin x^3) \times \frac{d}{dx} \Big( x^3 \Big) + \cos x^3 \times 2 \sin (x^5) \cdot \frac{d}{dx} \Big[ \sin x^5 \Big]$$

$$= -\sin x^3 \sin^2 (x^5) \times 3x^2 + 2 \sin x^5 \cos x^3 \cdot \cos x^5 \times \frac{d}{dx} \Big( x^5 \Big)$$

$$= -3x^2 \sin x^3 \cdot \sin^2 (x^5) + 2 \sin x^5 \cos x^5 \cos x^3 \cdot \times 5x^4$$

$$= 10x^4 \sin x^5 \cos x^5 \cos x^3 - 3x^2 \sin x^3 \sin^2 (x^5)$$

$$\frac{d}{dx} \left[ 2\sqrt{\cot(x^2)} \right]$$

$$= 2 \cdot \frac{1}{2\sqrt{\cot(x^2)}} \times \frac{d}{dx} \left[ \cot(x^2) \right]$$

$$= \sqrt{\frac{\sin(x^2)}{\cos(x^2)}} \times -\csc^2(x^2) \times \frac{d}{dx}(x^2)$$

$$= -\sqrt{\frac{\sin(x^2)}{\cos(x^2)}} \times \frac{1}{\sin^2(x^2)} \times (2x)$$

$$= \frac{-2x}{\sqrt{\cos x^2} \sqrt{\sin x^2} \sin x^2}$$

$$= \frac{-2\sqrt{2}x}{\sqrt{2\sin x^2} \cos x^2 \sin x^2}$$

$$= \frac{-2\sqrt{2}x}{\sin x^2 \sqrt{\sin 2x^2}}$$

Solution 8

Let 
$$f(x) = \cos(\sqrt{x})$$
  
Also, let  $u(x) = \sqrt{x}$   
And,  $v(t) = \cos t$   
Then,  $(vou)(x) = v(u(x))$   
 $= v(\sqrt{x})$   
 $= \cos \sqrt{x}$   
 $= f(x)$ 

Clearly, f is a composite function of two functions, u and v, such that

$$t = u(x) = \sqrt{x}$$

Then, 
$$\frac{dt}{dx} = \frac{d}{dx} \left( \sqrt{x} \right) = \frac{d}{dx} \left( x^{\frac{1}{2}} \right) = \frac{1}{2} x^{-\frac{1}{2}}$$

$$= \frac{1}{2\sqrt{x}}$$
And,  $\frac{dv}{dt} = \frac{d}{dt} (\cos t) = -\sin t$ 

$$= -\sin \left( \sqrt{x} \right)$$

By using chain rule, we obtain

$$\frac{dt}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$$

$$= -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$$

$$= -\frac{1}{2\sqrt{x}} \sin(\sqrt{x})$$

$$= -\frac{\sin(\sqrt{x})}{2\sqrt{x}}$$

### Alternate method

$$\frac{d}{dx} \left[ \cos\left(\sqrt{x}\right) \right] = -\sin\left(\sqrt{x}\right) \cdot \frac{d}{dx} \left(\sqrt{x}\right)$$

$$= -\sin\left(\sqrt{x}\right) \times \frac{d}{dx} \left(x^{\frac{1}{2}}\right)$$

$$= -\sin\sqrt{x} \times \frac{1}{2} x^{-\frac{1}{2}}$$

$$= \frac{-\sin\sqrt{x}}{2\sqrt{x}}$$

### Solution 9

The given function is  $f(x) = |x-1|, x \in \mathbb{R}$ 

It is known that a function f is differentiable at a point x = c in its domain if both

$$\lim_{h\to 0^-} \frac{f(c+h)-f(c)}{h} \text{ and } \lim_{h\to 0^+} \frac{f(c+h)-f(c)}{h} \text{ are finite and equal.}$$

To check the differentiability of the given function at x=1,

consider the left hand limit of f at x = 1

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{|1+h-1| - |1-1|}{h}$$

$$= \lim_{h \to 0^{-}} \frac{|h| - 0}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} \qquad (h < 0 \Rightarrow |h| = -h)$$

$$= -1$$

Consider the right hand limit of f at x = 1

$$\lim_{h \to 0^{+}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{+}} \frac{|1+h-1| - |1-1|}{h}$$

$$= \lim_{h \to 0^{+}} \frac{|h| - 0}{h} = \lim_{h \to 0^{+}} \frac{h}{h} \qquad (h > 0 \Rightarrow |h| = h)$$

$$= 1$$

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at x = 1

## Solution 10

The given function f is f(x) = [x], 0 < x < 3

It is known that a function f is differentiable at a point x = c in its domain if both

$$\lim_{h\to 0^-} \frac{f(c+h)-f(c)}{h} \text{ and } \lim_{h\to 0^+} \frac{f(c+h)-f(c)}{h} \text{ are finite and equal.}$$

To check the differentiability of the given function at x = 1, consider the left hand limit of f at x = 1

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{[1+h] - [1]}{h}$$

$$= \lim_{h \to 0^{-}} \frac{0 - 1}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$

Consider the right hand limit of f at x = 1

$$\lim_{h \to 0^{\circ}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{\circ}} \frac{[1+h] - [1]}{h}$$

$$= \lim_{h \to 0^{\circ}} \frac{1-1}{h} = \lim_{h \to 0^{\circ}} 0 = 0$$

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at

To check the differentiability of the given function at x = 2, consider the left hand limit

of 
$$f$$
 at  $x = 2$ 

$$\lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{+}} \frac{[2+h] - [2]}{h}$$

$$= \lim_{h \to 0^{+}} \frac{1-2}{h} = \lim_{h \to 0^{+}} \frac{-1}{h} = \infty$$

Consider the right hand limit of f at x = 2

$$\lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{+}} \frac{[2+h] - [2]}{h}$$

$$= \lim_{h \to 0^{+}} \frac{2-2}{h} = \lim_{h \to 0^{+}} 0 = 0$$

Since the left and right hand limits of f at x = 2 are not equal, f is not differentiable at x = 2

# Chapter 5 - Continuity and Differentiability Exercise Ex. 5.3 Solution 1

The given relationship is  $2x + 3y = \sin x$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(2x+3y) = \frac{d}{dx}(\sin x)$$

$$\Rightarrow \frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \cos x$$

$$\Rightarrow 2 + 3\frac{dy}{dx} = \cos x$$

$$\Rightarrow 3\frac{dy}{dx} = \cos x - 2$$

$$\therefore \frac{dy}{dx} = \frac{\cos x - 2}{3}$$

The given relationship is  $2x + 3y = \sin y$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \frac{d}{dx}(\sin y)$$

$$\Rightarrow 2 + 3\frac{dy}{dx} = \cos y \frac{dy}{dx}$$
 [By using chain rule]
$$\Rightarrow 2 = (\cos y - 3)\frac{dy}{dx}$$

$$\therefore \frac{dy}{dx} = \frac{2}{\cos y - 3}$$

## Solution 3

The given relationship is  $ax + by^2 = \cos y$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(ax) + \frac{d}{dx}(by^2) = \frac{d}{dx}(\cos y)$$

$$\Rightarrow a + b\frac{d}{dx}(y^2) = \frac{d}{dx}(\cos y) \qquad ...(1)$$

Using chain rule, we obtain 
$$\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$$
 and  $\frac{d}{dx}(\cos y) = -\sin y\frac{dy}{dx}$  ...(2)

From (1) and (2), we obtain

$$a+b \times 2y \frac{dy}{dx} = -\sin y \frac{dy}{dx}$$
$$\Rightarrow (2by + \sin y) \frac{dy}{dx} = -a$$
$$\therefore \frac{dy}{dx} = \frac{-a}{2by + \sin y}$$

The given relationship is  $xy + y^2 = \tan x + y$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(xy+y^2) = \frac{d}{dx}(\tan x + y)$$

$$\Rightarrow \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = \frac{d}{dx}(\tan x) + \frac{dy}{dx}$$

$$\Rightarrow \left[ y \cdot \frac{d}{dx}(x) + x \cdot \frac{dy}{dx} \right] + 2y \frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$
[Using product rule and chain rule]
$$\Rightarrow y \cdot 1 + x \cdot \frac{dy}{dx} + 2y \frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$

$$\Rightarrow (x+2y-1) \frac{dy}{dx} = \sec^2 x - y$$

$$\therefore \frac{dy}{dx} = \frac{\sec^2 x - y}{(x+2y-1)}$$

### Solution 5

The given relationship is  $x^2 + xy + y^2 = 100$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x^2 + xy + y^2) = \frac{d}{dx}(100)$$

$$\Rightarrow \frac{d}{dx}(x^2) + \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = 0 \text{ [Derivative of constant function is 0]}$$

$$\Rightarrow 2x + \left[y \cdot \frac{d}{dx}(x) + x \cdot \frac{dy}{dx}\right] + 2y \frac{dy}{dx} = 0$$
[Using product rule and chain rule]
$$\Rightarrow 2x + y \cdot 1 + x \cdot \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow 2x + y + (x + 2y) \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{2x + y}{x + 2y}$$

The given relationship is  $x^3 + x^2y + xy^2 + y^3 = 81$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x^{3} + x^{2}y + xy^{2} + y^{3}) = \frac{d}{dx}(81)$$

$$\Rightarrow \frac{d}{dx}(x^{3}) + \frac{d}{dx}(x^{2}y) + \frac{d}{dx}(xy^{2}) + \frac{d}{dx}(y^{3}) = 0$$

$$\Rightarrow 3x^{2} + \left[y\frac{d}{dx}(x^{2}) + x^{2}\frac{dy}{dx}\right] + \left[y^{2}\frac{d}{dx}(x) + x\frac{d}{dx}(y^{2})\right] + 3y^{2}\frac{dy}{dx} = 0$$

$$\Rightarrow 3x^{2} + \left[y \cdot 2x + x^{2}\frac{dy}{dx}\right] + \left[y^{2} \cdot 1 + x \cdot 2y \cdot \frac{dy}{dx}\right] + 3y^{2}\frac{dy}{dx} = 0$$

$$\Rightarrow (x^{2} + 2xy + 3y^{2})\frac{dy}{dx} + (3x^{2} + 2xy + y^{2}) = 0$$

$$\therefore \frac{dy}{dx} = \frac{-(3x^{2} + 2xy + y^{2})}{(x^{2} + 2xy + 3y^{2})}$$

The given relationship is  $\sin^2 y + \cos xy = \pi$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin^2 y + \cos xy) = \frac{d}{dx}(\pi)$$

$$\Rightarrow \frac{d}{dx}(\sin^2 y) + \frac{d}{dx}(\cos xy) = 0 \qquad ...(1)$$

Using chain rule, we obtain

$$\frac{d}{dx}(\sin^2 y) = 2\sin y \frac{d}{dx}(\sin y) = 2\sin y \cos y \frac{dy}{dx} \qquad ...(2)$$

$$\frac{d}{dx}(\cos xy) = -\sin xy \frac{d}{dx}(xy) = -\sin xy \left[ y \frac{d}{dx}(x) + x \frac{dy}{dx} \right]$$

$$= -\sin xy \left[ y.1 + x \frac{dy}{dx} \right] = -y\sin xy - x\sin xy \frac{dy}{dx} \qquad ...(3)$$

From (1), (2), and (3), we obtain

$$2\sin y \cos y \frac{dy}{dx} - y \sin xy - x \sin xy \frac{dy}{dx} = 0$$

$$\Rightarrow (2\sin y \cos y - x \sin xy) \frac{dy}{dx} = y \sin xy$$

$$\Rightarrow (\sin 2y - x \sin xy) \frac{dy}{dx} = y \sin xy$$

$$\therefore \frac{dy}{dx} = \frac{y \sin xy}{\sin 2y - x \sin xy}$$

## Solution 8

The given relationship is  $\sin^2 x + \cos^2 y = 1$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}\left(\sin^2 x + \cos^2 y\right) = \frac{d}{dx}(1)$$

$$\Rightarrow \frac{d}{dx}\left(\sin^2 x\right) + \frac{d}{dx}\left(\cos^2 y\right) = 0$$

$$\Rightarrow 2\sin x \cdot \frac{d}{dx}\left(\sin x\right) + 2\cos y \cdot \frac{d}{dx}\left(\cos y\right) = 0$$

$$\Rightarrow 2\sin x \cos x + 2\cos y\left(-\sin y\right) \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \sin 2x - \sin 2y \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = \frac{\sin 2x}{\sin 2y}$$

## Solution 9

The given relationship is  $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ 

$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
$$\Rightarrow \sin y = \frac{2x}{1+x^2}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin y) = \frac{d}{dx} \left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow \cos y \frac{dy}{dx} = \frac{d}{dx} \left(\frac{2x}{1+x^2}\right) \qquad \dots (1)$$

The function,  $\frac{2x}{1+x^2}$ , is of the form of  $\frac{u}{v}$ .

Therefore, by quotient rule, we obtain

$$\frac{d}{dx} \left( \frac{2x}{1+x^2} \right) = \frac{\left( 1+x^2 \right) \cdot \frac{d}{dx} \left( 2x \right) - 2x \cdot \frac{d}{dx} \left( 1+x^2 \right)}{\left( 1+x^2 \right)^2} \\
= \frac{\left( 1+x^2 \right) \cdot 2 - 2x \cdot \left[ 0+2x \right]}{\left( 1+x^2 \right)^2} = \frac{2+2x^2-4x^2}{\left( 1+x^2 \right)^2} = \frac{2\left( 1-x^2 \right)}{\left( 1+x^2 \right)^2} \qquad \dots (2)$$

Also, 
$$\sin y = \frac{2x}{1+x^2}$$

$$\Rightarrow \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2} = \sqrt{\frac{\left(1 + x^2\right)^2 - 4x^2}{\left(1 + x^2\right)^2}}$$
$$= \sqrt{\frac{\left(1 - x^2\right)^2}{\left(1 + x^2\right)^2}} = \frac{1 - x^2}{1 + x^2} \qquad \dots (3)$$

From (1), (2), and (3), we obtain

$$\frac{1-x^2}{1+x^2} \times \frac{dy}{dx} = \frac{2(1-x^2)}{(1+x^2)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{2}{1+x^2}$$

## Solution 10

The given relationship is  $y = \tan^{-1} \left( \frac{3x - x^3}{1 - 3x^2} \right)$ 

$$y = \tan^{-1} \left( \frac{3x - x^3}{1 - 3x^2} \right)$$

$$\Rightarrow \tan y = \frac{3x - x^3}{1 - 3x^2} \qquad \dots (1)$$

It is known that, 
$$\tan y = \frac{3 \tan \frac{y}{3} - \tan^3 \frac{y}{3}}{1 - 3 \tan^2 \frac{y}{3}}$$
 ...(2)

Comparing equations (1) and (2), we obtain

$$x = \tan \frac{y}{3}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x) = \frac{d}{dx} \left( \tan \frac{y}{3} \right)$$

$$\Rightarrow 1 = \sec^2 \frac{y}{3} \cdot \frac{d}{dx} \left( \frac{y}{3} \right)$$

$$\Rightarrow 1 = \sec^2 \frac{y}{3} \cdot \frac{1}{3} \cdot \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{3}{\sec^2 \frac{y}{3}} = \frac{3}{1 + \tan^2 \frac{y}{3}}$$

$$\therefore \frac{dy}{dx} = \frac{3}{1 + x^2}$$

The given relationship is,

$$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

$$\Rightarrow \cos y = \frac{1-x^2}{1+x^2}$$

$$\Rightarrow \frac{1-\tan^2\frac{y}{2}}{1+\tan^2\frac{y}{2}} = \frac{1-x^2}{1+x^2}$$

On comparing L.H.S. and R.H.S. of the above relationship, we obtain

$$\tan\frac{y}{2} = x$$

Differentiating this relationship with respect to x, we obtain

$$\sec^{2} \frac{y}{2} \cdot \frac{d}{dx} \left( \frac{y}{2} \right) = \frac{d}{dx} (x)$$

$$\Rightarrow \sec^{2} \frac{y}{2} \times \frac{1}{2} \frac{dy}{dx} = 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{\sec^{2} \frac{y}{2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{1 + \tan^{2} \frac{y}{2}}$$

$$\therefore \frac{dy}{dx} = \frac{2}{1 + x^{2}}$$

The given relationship is  $y = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)$ 

$$y = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)$$

$$\Rightarrow \sin y = \frac{1-x^2}{1+x^2}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin y) = \frac{d}{dx}\left(\frac{1-x^2}{1+x^2}\right) \qquad \dots (1)$$

Using chain rule, we obtain

$$\frac{d}{dx}(\sin y) = \cos y \cdot \frac{dy}{dx}$$

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}$$

$$= \sqrt{\frac{\left(1 + x^2\right)^2 - \left(1 - x^2\right)^2}{\left(1 + x^2\right)^2}} = \sqrt{\frac{4x^2}{\left(1 + x^2\right)^2}} = \frac{2x}{1 + x^2}$$

$$\therefore \frac{d}{dx}(\sin y) = \frac{2x}{1+x^2} \frac{dy}{dx} \qquad ...(2)$$

$$\frac{d}{dx} \left( \frac{1 - x^2}{1 + x^2} \right) = \frac{\left( 1 + x^2 \right) \cdot \left( 1 - x^2 \right)' - \left( 1 - x^2 \right) \cdot \left( 1 + x^2 \right)'}{\left( 1 + x^2 \right)^2}$$

[Using quotient rule]

$$= \frac{(1+x^2)(-2x)-(1-x^2)\cdot(2x)}{(1+x^2)^2}$$

$$= \frac{-2x-2x^3-2x+2x^3}{(1+x^2)^2}$$

$$= \frac{-4x}{(1+x^2)^2} \qquad ...(3)$$

From (1), (2), and (3), we obtain

$$\frac{2x}{1+x^2} \frac{dy}{dx} = \frac{-4x}{\left(1+x^2\right)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{-2}{1+x^2}$$

Alternate method

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

$$\Rightarrow \sin y = \frac{1 - x^2}{1 + x^2}$$

$$\Rightarrow (1+x^2)\sin y = 1-x^2$$

$$\Rightarrow (1+\sin y)x^2 = 1-\sin y$$

$$\Rightarrow x^2 = \frac{1 - \sin y}{1 + \sin y}$$

$$\Rightarrow x^{2} = \frac{\left(\cos\frac{y}{2} - \sin\frac{y}{2}\right)^{2}}{\left(\cos\frac{y}{2} + \sin\frac{y}{2}\right)^{2}}$$
$$\Rightarrow x = \frac{\cos\frac{y}{2} - \sin\frac{y}{2}}{\cos\frac{y}{2} + \sin\frac{y}{2}}$$
$$\Rightarrow x = \frac{1 - \tan\frac{y}{2}}{1 + \tan\frac{y}{2}}$$
$$\Rightarrow x = \tan\left(\frac{\pi}{4} - \frac{y}{2}\right)$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x) = \frac{d}{dx} \cdot \left[ \tan\left(\frac{\pi}{4} - \frac{y}{2}\right) \right]$$

$$\Rightarrow 1 = \sec^2\left(\frac{\pi}{4} - \frac{y}{2}\right) \cdot \frac{d}{dx}\left(\frac{\pi}{4} - \frac{y}{2}\right)$$

$$\Rightarrow 1 = \left[1 + \tan^2\left(\frac{\pi}{4} - \frac{y}{2}\right)\right] \cdot \left(-\frac{1}{2} \frac{dy}{dx}\right)$$

$$\Rightarrow 1 = \left(1 + x^2\right)\left(-\frac{1}{2} \frac{dy}{dx}\right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2}{1 + x^2}$$

The given relationship is  $y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$ 

$$y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$$
$$\Rightarrow \cos y = \frac{2x}{1+x^2}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\cos y) = \frac{d}{dx} \cdot \left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow -\sin y \cdot \frac{dy}{dx} = \frac{\left(1+x^2\right) \cdot \frac{d}{dx}(2x) - 2x \cdot \frac{d}{dx}(1+x^2)}{\left(1+x^2\right)^2}$$

$$\Rightarrow -\sqrt{1-\cos^2 y} \frac{dy}{dx} = \frac{\left(1+x^2\right) \times 2 - 2x \cdot 2x}{\left(1+x^2\right)^2}$$

$$\Rightarrow \left[\sqrt{1-\left(\frac{2x}{1+x^2}\right)^2}\right] \frac{dy}{dx} = -\left[\frac{2\left(1-x^2\right)}{\left(1+x^2\right)^2}\right]$$

$$\Rightarrow \sqrt{\frac{\left(1+x^2\right)^2 - 4x^2}{\left(1+x^2\right)^2}} \frac{dy}{dx} = \frac{-2\left(1-x^2\right)}{\left(1+x^2\right)^2}$$

$$\Rightarrow \sqrt{\frac{\left(1-x^2\right)^2}{\left(1+x^2\right)^2}} \frac{dy}{dx} = \frac{-2\left(1-x^2\right)}{\left(1+x^2\right)^2}$$

$$\Rightarrow \frac{1-x^2}{1+x^2} \cdot \frac{dy}{dx} = \frac{-2\left(1-x^2\right)}{\left(1+x^2\right)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2}{1+x^2}$$

The given relationship is  $y = \sin^{-1}(2x\sqrt{1-x^2})$ 

$$y = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$$
$$\Rightarrow \sin y = 2x\sqrt{1-x^2}$$

Differentiating this relationship with respect to x, we obtain

$$\cos y \frac{dy}{dx} = 2 \left[ x \frac{d}{dx} \left( \sqrt{1 - x^2} \right) + \sqrt{1 - x^2} \frac{dx}{dx} \right]$$

$$\Rightarrow \sqrt{1 - \sin^2 y} \frac{dy}{dx} = 2 \left[ \frac{x}{2} \cdot \frac{-2x}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} \right]$$

$$\Rightarrow \sqrt{1 - \left( 2x\sqrt{1 - x^2} \right)^2} \frac{dy}{dx} = 2 \left[ \frac{-x^2 + 1 - x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \sqrt{1 - 4x^2 \left( 1 - x^2 \right)} \frac{dy}{dx} = 2 \left[ \frac{1 - 2x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \sqrt{\left( 1 - 2x^2 \right)^2} \frac{dy}{dx} = 2 \left[ \frac{1 - 2x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \left( 1 - 2x^2 \right) \frac{dy}{dx} = 2 \left[ \frac{1 - 2x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{\sqrt{1 - x^2}}$$

The given relationship is 
$$y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$$
  
 $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$   
 $\Rightarrow \sec y = \frac{1}{2x^2 - 1}$   
 $\Rightarrow \cos y = 2x^2 - 1$   
 $\Rightarrow 2x^2 = 1 + \cos y$   
 $\Rightarrow 2x^2 = 2\cos^2\frac{y}{2}$   
 $\Rightarrow x = \cos\frac{y}{2}$ 

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x) = \frac{d}{dx}\left(\cos\frac{y}{2}\right)$$

$$\Rightarrow 1 = -\sin\frac{y}{2} \cdot \frac{d}{dx}\left(\frac{y}{2}\right)$$

$$\Rightarrow \frac{-1}{\sin\frac{y}{2}} = \frac{1}{2}\frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2}{\sin\frac{y}{2}} = \frac{-2}{\sqrt{1-\cos^2\frac{y}{2}}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2}{\sqrt{1-x^2}}$$

# Chapter 5 - Continuity and Differentiability Exercise Ex. 5.4 Solution 1

Let 
$$y = \frac{e^x}{\sin x}$$

By using the quotient rule, we obtain

$$\frac{dy}{dx} = \frac{\sin x \frac{d}{dx} (e^x) - e^x \frac{d}{dx} (\sin x)}{\sin^2 x}$$

$$= \frac{\sin x \cdot (e^x) - e^x \cdot (\cos x)}{\sin^2 x}$$

$$= \frac{e^x (\sin x - \cos x)}{\sin^2 x}, x \neq n\pi, n \in \mathbf{Z}$$

## Solution 2

Let 
$$y = e^{\sin^{-1}x}$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \left( e^{\sin^{-1}x} \right)$$

$$\Rightarrow \frac{dy}{dx} = e^{\sin^{-1}x} \cdot \frac{d}{dx} \left( \sin^{-1}x \right)$$

$$= e^{\sin^{-1}x} \cdot \frac{1}{\sqrt{1 - x^2}}$$

$$= \frac{e^{\sin^{-1}x}}{\sqrt{1 - x^2}}$$

$$\therefore \frac{dy}{dx} = \frac{e^{\sin^{-1}x}}{\sqrt{1 - x^2}}, x \in (-1, 1)$$

Solution 3

Let 
$$y = e^{x^3}$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \left( e^{x^3} \right) = e^{x^3} \cdot \frac{d}{dx} \left( x^3 \right) = e^{x^3} \cdot 3x^2 = 3x^2 e^{x^3}$$

$$Let y = \sin\left(\tan^{-1}e^{-x}\right)$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \left[ \sin \left( \tan^{-1} e^{-x} \right) \right]$$

$$= \cos \left( \tan^{-1} e^{-x} \right) \cdot \frac{d}{dx} \left( \tan^{-1} e^{-x} \right)$$

$$= \cos \left( \tan^{-1} e^{-x} \right) \cdot \frac{1}{1 + \left( e^{-x} \right)^2} \cdot \frac{d}{dx} \left( e^{-x} \right)$$

$$= \frac{\cos \left( \tan^{-1} e^{-x} \right)}{1 + e^{-2x}} \cdot e^{-x} \cdot \frac{d}{dx} \left( -x \right)$$

$$= \frac{e^{-x} \cos \left( \tan^{-1} e^{-x} \right)}{1 + e^{-2x}} \times (-1)$$

$$= \frac{-e^{-x} \cos \left( \tan^{-1} e^{-x} \right)}{1 + e^{-2x}}$$

# Solution 5

Let 
$$y = \log(\cos e^x)$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \Big[ \log \Big( \cos e^x \Big) \Big]$$

$$= \frac{1}{\cos e^x} \cdot \frac{d}{dx} \Big( \cos e^x \Big)$$

$$= \frac{1}{\cos e^x} \cdot \Big( -\sin e^x \Big) \cdot \frac{d}{dx} \Big( e^x \Big)$$

$$= \frac{-\sin e^x}{\cos e^x} \cdot e^x$$

$$= -e^x \tan e^x, e^x \neq (2n+1) \frac{\pi}{2}, n \in \mathbb{N}$$

$$\frac{d}{dx}\left(e^{x} + e^{x^{2}} + \dots + e^{x^{3}}\right) 
= \frac{d}{dx}\left(e^{x}\right) + \frac{d}{dx}\left(e^{x^{2}}\right) + \frac{d}{dx}\left(e^{x^{3}}\right) + \frac{d}{dx}\left(e^{x^{4}}\right) + \frac{d}{dx}\left(e^{x^{5}}\right) 
= e^{x} + \left[e^{x^{2}} \times \frac{d}{dx}\left(x^{2}\right)\right] + \left[e^{x^{3}} \cdot \frac{d}{dx}\left(x^{3}\right)\right] + \left[e^{x^{4}} \cdot \frac{d}{dx}\left(x^{4}\right)\right] + \left[e^{x^{5}} \cdot \frac{d}{dx}\left(x^{5}\right)\right] 
= e^{x} + \left(e^{x^{2}} \times 2x\right) + \left(e^{x^{3}} \times 3x^{2}\right) + \left(e^{x^{4}} \times 4x^{3}\right) + \left(e^{x^{2}} \times 5x^{4}\right) 
= e^{x} + 2xe^{x^{2}} + 3x^{2}e^{x^{3}} + 4x^{3}e^{x^{4}} + 5x^{4}e^{x^{5}}$$

## Solution 7

Let 
$$y = \sqrt{e^{\sqrt{x}}}$$

Then, 
$$y^2 = e^{\sqrt{x}}$$

By differentiating this relationship with respect to x, we obtain

$$y^{2} = e^{\sqrt{x}}$$

$$\Rightarrow 2y \frac{dy}{dx} = e^{\sqrt{x}} \frac{d}{dx} (\sqrt{x})$$
 [By applying the chain rule]
$$\Rightarrow 2y \frac{dy}{dx} = e^{\sqrt{x}} \frac{1}{2} \cdot \frac{1}{\sqrt{x}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4y\sqrt{x}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{e^{\sqrt{x}}}} \sqrt{x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{x}e^{\sqrt{x}}} \sqrt{x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{x}e^{\sqrt{x}}} \sqrt{x}$$

Let 
$$y = \log(\log x)$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \Big[ \log (\log x) \Big]$$

$$= \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$$

$$= \frac{1}{\log x} \cdot \frac{1}{x}$$

$$= \frac{1}{x \log x}, x > 1$$

# Solution 9

$$Let y = \frac{\cos x}{\log x}$$

By using the quotient rule, we obtain

$$\frac{dy}{dx} = \frac{\frac{d}{dx}(\cos x) \times \log x - \cos x \times \frac{d}{dx}(\log x)}{(\log x)^2}$$

$$= \frac{-\sin x \log x - \cos x \times \frac{1}{x}}{(\log x)^2}$$

$$= \frac{-[x \log x \cdot \sin x + \cos x]}{x(\log x)^2}, x > 0$$

Let 
$$y = \cos(\log x + e^x)$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = -\sin\left(\log x + e^x\right) \cdot \frac{d}{dx} \left(\log x + e^x\right)$$

$$= -\sin\left(\log x + e^x\right) \cdot \left[\frac{d}{dx} \left(\log x\right) + \frac{d}{dx} \left(e^x\right)\right]$$

$$= -\sin\left(\log x + e^x\right) \cdot \left(\frac{1}{x} + e^x\right)$$

$$= -\left(\frac{1}{x} + e^x\right) \sin\left(\log x + e^x\right), x > 0$$

# Chapter 5 - Continuity and Differentiability Exercise Ex. 5.5 Solution 1

Let  $y = \cos x \cdot \cos 2x \cdot \cos 3x$ 

Taking logarithm on both the sides, we obtain

$$\log y = \log(\cos x.\cos 2x.\cos 3x)$$
  
$$\Rightarrow \log y = \log(\cos x) + \log(\cos 2x) + \log(\cos 3x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x) + \frac{1}{\cos 2x} \cdot \frac{d}{dx}(\cos 2x) + \frac{1}{\cos 3x} \cdot \frac{d}{dx}(\cos 3x)$$

$$\Rightarrow \frac{dy}{dx} = y \left[ -\frac{\sin x}{\cos x} - \frac{\sin 2x}{\cos 2x} \cdot \frac{d}{dx}(2x) - \frac{\sin 3x}{\cos 3x} \cdot \frac{d}{dx}(3x) \right]$$

$$\therefore \frac{dy}{dx} = -\cos x \cdot \cos 2x \cdot \cos 3x \left[ \tan x + 2\tan 2x + 3\tan 3x \right]$$

Let 
$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

$$\log y = \log \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

$$\Rightarrow \log y = \frac{1}{2} \log \left[ \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \left[ \log \left\{ (x-1)(x-2) \right\} - \log \left\{ (x-3)(x-4)(x-5) \right\} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \left[ \log \left( (x-1) + \log (x-2) - \log (x-3) - \log (x-4) - \log (x-5) \right]$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \left[ \frac{1}{x-1} \cdot \frac{d}{dx}(x-1) + \frac{1}{x-2} \cdot \frac{d}{dx}(x-2) - \frac{1}{x-3} \cdot \frac{d}{dx}(x-3) \right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{2} \left( \frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5} \right)$$

$$\therefore \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left[ \frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5} \right]$$

Let 
$$y = (\log x)^{\cos x}$$

$$\log y = \cos x \cdot \log(\log x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (\cos x) \times \log(\log x) + \cos x \times \frac{d}{dx} \left[ \log(\log x) \right]$$

$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = -\sin x \log(\log x) + \cos x \times \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{dy}{dx} = y \left[ -\sin x \log(\log x) + \frac{\cos x}{\log x} \times \frac{1}{x} \right]$$

$$\therefore \frac{dy}{dx} = (\log x)^{\cos x} \left[ \frac{\cos x}{x \log x} - \sin x \log(\log x) \right]$$

Let 
$$y = x^x - 2^{\sin x}$$

Also, let 
$$x^x = u$$
 and  $2^{\sin x} = v$ 

$$\therefore y = u - v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}$$

$$u = x^x$$

$$\log u = x \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \left[\frac{d}{dx}(x) \times \log x + x \times \frac{d}{dx}(\log x)\right]$$

$$\Rightarrow \frac{du}{dx} = u\left[1 \times \log x + x \times \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{x}(\log x + 1)$$

$$\Rightarrow \frac{du}{dx} = x^{x}(1 + \log x)$$

$$v = 2^{\sin x}$$

Taking logarithm on both the sides with respect to x, we obtain

$$\log v = \sin x \cdot \log 2$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \log 2 \cdot \frac{d}{dx} (\sin x)$$

$$\Rightarrow \frac{dv}{dx} = v \log 2 \cos x$$

$$\Rightarrow \frac{dv}{dx} = 2^{\sin x} \cos x \log 2$$

$$\therefore \frac{dy}{dx} = x^x \left( 1 + \log x \right) - 2^{\sin x} \cos x \log 2$$

Let 
$$y = (x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$$

$$\log y = \log(x+3)^2 + \log(x+4)^3 + \log(x+5)^4$$
  

$$\Rightarrow \log y = 2\log(x+3) + 3\log(x+4) + 4\log(x+5)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} \cdot \frac{d}{dx} (x+3) + 3 \cdot \frac{1}{x+4} \cdot \frac{d}{dx} (x+4) + 4 \cdot \frac{1}{x+5} \cdot \frac{d}{dx} (x+5)$$

$$\Rightarrow \frac{dy}{dx} = y \left[ \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \cdot \left[ \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \cdot \left[ \frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^2 (x+5)^3 \cdot \left[ 2(x^2 + 9x + 20) + 3(x^2 + 8x + 15) + 4(x^2 + 7x + 12) \right]$$

$$\therefore \frac{dy}{dx} = (x+3)(x+4)^2 (x+5)^3 \left( 9x^2 + 70x + 133 \right)$$

Let 
$$y = \left(x + \frac{1}{x}\right)^x + x^{\left(1 + \frac{1}{x}\right)}$$
  
Also, let  $u = \left(x + \frac{1}{x}\right)^x$  and  $v = x^{\left(1 + \frac{1}{x}\right)}$   
 $\therefore y = u + v$   
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$  ...(1)  
Then,  $u = \left(x + \frac{1}{x}\right)^x$   
 $\Rightarrow \log u = \log\left(x + \frac{1}{x}\right)^x$   
 $\Rightarrow \log u = x \log\left(x + \frac{1}{x}\right)$ 

$$\frac{1}{u} \cdot \frac{du}{dx} = \frac{d}{dx}(x) \times \log\left(x + \frac{1}{x}\right) + x \times \frac{d}{dx}\left[\log\left(x + \frac{1}{x}\right)\right]$$

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = 1 \times \log\left(x + \frac{1}{x}\right) + x \times \frac{1}{\left(x + \frac{1}{x}\right)} \cdot \frac{d}{dx}\left(x + \frac{1}{x}\right)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log\left(x + \frac{1}{x}\right) + \frac{x}{\left(x + \frac{1}{x}\right)} \times \left(1 - \frac{1}{x^2}\right)\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\log\left(x + \frac{1}{x}\right) + \frac{\left(x - \frac{1}{x}\right)}{\left(x + \frac{1}{x}\right)}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\log\left(x + \frac{1}{x}\right) + \frac{x^2 - 1}{x^2 + 1}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right)\right]$$

$$v = x^{\left(1 + \frac{1}{x}\right)}$$

$$\Rightarrow \log v = \log \left[ x^{\left(1 + \frac{1}{x}\right)} \right]$$

$$\Rightarrow \log v = \left(1 + \frac{1}{x}\right) \log x$$

$$\frac{1}{v} \cdot \frac{dv}{dx} = \left[ \frac{d}{dx} \left( 1 + \frac{1}{x} \right) \right] \times \log x + \left( 1 + \frac{1}{x} \right) \cdot \frac{d}{dx} \log x$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left( -\frac{1}{x^2} \right) \log x + \left( 1 + \frac{1}{x} \right) \cdot \frac{1}{x}$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = -\frac{\log x}{x^2} + \frac{1}{x} + \frac{1}{x^2}$$

$$\Rightarrow \frac{dv}{dx} = v \left[ \frac{-\log x + x + 1}{x^2} \right]$$

$$\Rightarrow \frac{dv}{dx} = x^{\left( 1 + \frac{1}{x} \right)} \left( \frac{x + 1 - \log x}{x^2} \right) \qquad \dots(3)$$

Therefore, from (1), (2), and (3), we obtain

$$\frac{dy}{dx} = \left(x + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right)\right] + x^{\left(1 + \frac{1}{x}\right)} \left(\frac{x + 1 - \log x}{x^2}\right)$$

Let 
$$y = (\log x)^x + x^{\log x}$$
  
Also, let  $u = (\log x)^x$  and  $v = x^{\log x}$   
 $\therefore y = u + v$   

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = (\log x)^x$$

$$\Rightarrow \log u = \log \left[ (\log x)^x \right]$$

$$\Rightarrow \log u = x \log (\log x)$$

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x) \times \log(\log x) + x \cdot \frac{d}{dx} \Big[ \log(\log x) \Big]$$

$$\Rightarrow \frac{du}{dx} = u \Big[ 1 \times \log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{d}{dx} (\log x) \Big]$$

$$\Rightarrow \frac{du}{dx} = (\log x)^x \Big[ \log(\log x) + \frac{x}{\log x} \cdot \frac{1}{x} \Big]$$

$$\Rightarrow \frac{du}{dx} = (\log x)^x \Big[ \log(\log x) + \frac{1}{\log x} \Big]$$

$$\Rightarrow \frac{du}{dx} = (\log x)^x \Big[ \frac{\log(\log x) \cdot \log x + 1}{\log x} \Big]$$

$$\Rightarrow \frac{du}{dx} = (\log x)^{x-1} \Big[ 1 + \log x \cdot \log(\log x) \Big] \qquad \dots(2)$$

$$v = x^{\log x}$$

$$\Rightarrow \log v = \log(x^{\log x})$$

$$\Rightarrow \log v = \log x \log x = (\log x)^2$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \frac{d}{dx} \left[ (\log x)^2 \right]$$

$$\Rightarrow \frac{1}{v} \cdot \frac{dv}{dx} = 2(\log x) \cdot \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{dv}{dx} = 2v(\log x) \cdot \frac{1}{x}$$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x} \frac{\log x}{x}$$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x-1} \cdot \log x \qquad ...(3)$$

Therefore, from (1), (2), and (3), we obtain

$$\frac{dy}{dx} = (\log x)^{x-1} \left[ 1 + \log x \cdot \log \left( \log x \right) \right] + 2x^{\log x - 1} \cdot \log x$$

## Solution 8

Let 
$$y = (\sin x)^x + \sin^{-1} \sqrt{x}$$

Also, let 
$$u = (\sin x)^x$$
 and  $v = \sin^{-1} \sqrt{x}$ 

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = (\sin x)^x$$

$$\Rightarrow \log u = \log(\sin x)^x$$

$$\Rightarrow \log u = x \log(\sin x)$$

Differentiating both sides with respect to x, we obtain

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = \frac{d}{dx} (x) \times \log(\sin x) + x \times \frac{d}{dx} \Big[ \log(\sin x) \Big]$$

$$\Rightarrow \frac{du}{dx} = u \Big[ 1 \cdot \log(\sin x) + x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x) \Big]$$

$$\Rightarrow \frac{du}{dx} = (\sin x)^x \Big[ \log(\sin x) + \frac{x}{\sin x} \cdot \cos x \Big]$$

$$\Rightarrow \frac{du}{dx} = (\sin x)^x (x \cot x + \log \sin x) \qquad \dots (2)$$

$$v = \sin^{-1} \sqrt{x}$$

$$\frac{dv}{dx} = \frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{d}{dx} (\sqrt{x})$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}}$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{x - x^2}} \qquad ...(3)$$

Therefore, from (1), (2), and (3), we obtain

$$\frac{dy}{dx} = \left(\sin x\right)^{x} \left(x \cot x + \log \sin x\right) + \frac{1}{2\sqrt{x - x^2}}$$

Let 
$$y = x^{\sin x} + (\sin x)^{\cos x}$$
  
Also, let  $u = x^{\sin x}$  and  $v = (\sin x)^{\cos x}$   
 $\therefore y = u + v$   

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = x^{\sin x}$$

$$\Rightarrow \log u = \log(x^{\sin x})$$

$$\Rightarrow \log u = \sin x \log x$$

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(\sin x) \cdot \log x + \sin x \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\cos x \log x + \sin x \cdot \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{\sin x} \left[\cos x \log x + \frac{\sin x}{x}\right] \qquad \dots(2)$$

$$v = (\sin x)^{\cos x}$$

$$\Rightarrow \log v = \log(\sin x)^{\cos x}$$

$$\Rightarrow \log v = \cos x \log(\sin x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}(\cos x) \times \log(\sin x) + \cos x \times \frac{d}{dx} \left[ \log(\sin x) \right]$$

$$\Rightarrow \frac{dv}{dx} = v \left[ -\sin x \cdot \log(\sin x) + \cos x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx}(\sin x) \right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[ -\sin x \log \sin x + \frac{\cos x}{\sin x} \cos x \right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[ -\sin x \log \sin x + \cot x \cos x \right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[ \cot x \cos x - \sin x \log \sin x \right] \qquad ...(3)$$

From (1), (2), and (3), we obtain

$$\frac{dy}{dx} = x^{\sin x} \left( \cos x \log x + \frac{\sin x}{x} \right) + \left( \sin x \right)^{\cos x} \left[ \cos x \cot x - \sin x \log \sin x \right]$$

# Solution 10

Let 
$$y = x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Also, let 
$$u = x^{x\cos x}$$
 and  $v = \frac{x^2 + 1}{x^2 - 1}$ 

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = x^{x \cos x}$$

$$\Rightarrow \log u = \log(x^{x\cos x})$$

$$\Rightarrow \log u = x \cos x \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x) \cdot \cos x \cdot \log x + x \cdot \frac{d}{dx}(\cos x) \cdot \log x + x \cos x \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[ 1 \cdot \cos x \cdot \log x + x \cdot (-\sin x) \log x + x \cos x \cdot \frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^{x \cos x} \left( \cos x \log x - x \sin x \log x + \cos x \right)$$

$$\Rightarrow \frac{du}{dx} = x^{x \cos x} \left[ \cos x (1 + \log x) - x \sin x \log x \right] \qquad \dots(2)$$

$$v = \frac{x^2 + 1}{x^2 - 1}$$

$$\Rightarrow \log v = \log(x^2 + 1) - \log(x^2 - 1)$$

$$\frac{1}{v}\frac{dv}{dx} = \frac{2x}{x^2 + 1} - \frac{2x}{x^2 - 1}$$

$$\Rightarrow \frac{dv}{dx} = v \left[ \frac{2x(x^2 - 1) - 2x(x^2 + 1)}{(x^2 + 1)(x^2 - 1)} \right]$$

$$\Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1} \times \left[ \frac{-4x}{(x^2 + 1)(x^2 - 1)} \right]$$

$$\Rightarrow \frac{dv}{dx} = \frac{-4x}{(x^2 - 1)^2} \qquad \dots(3)$$

From (1), (2), and (3), we obtain

$$\frac{dy}{dx} = x^{x\cos x} \left[\cos x \left(1 + \log x\right) - x\sin x \log x\right] - \frac{4x}{\left(x^2 - 1\right)^2}$$

Let 
$$y = (x \cos x)^x + (x \sin x)^{\frac{1}{x}}$$
  
Also, let  $u = (x \cos x)^x$  and  $v = (x \sin x)^{\frac{1}{x}}$   
 $\therefore y = u + v$   
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$  ...(1)  
 $u = (x \cos x)^x$   
 $\Rightarrow \log u = \log(x \cos x)^x$   
 $\Rightarrow \log u = x \log(x \cos x)$   
 $\Rightarrow \log u = x [\log x + \log \cos x]$   
 $\Rightarrow \log u = x \log x + x \log \cos x$ 

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x\log x) + \frac{d}{dx}(x\log\cos x)$$

$$\Rightarrow \frac{du}{dx} = u\left[\left\{\log x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log x)\right\} + \left\{\log\cos x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log\cos x)\right\}\right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[\left(\log x \cdot 1 + x \cdot \frac{1}{x}\right) + \left\{\log\cos x \cdot 1 + x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x)\right\}\right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[\left(\log x + 1\right) + \left\{\log\cos x + \frac{x}{\cos x} \cdot (-\sin x)\right\}\right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[ (1 + \log x) + (\log \cos x - x \tan x) \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[ 1 - x \tan x + (\log x + \log \cos x) \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[ 1 - x \tan x + \log(x\cos x) \right] \qquad ...(2)$$

$$v = (x\sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \log(x\sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \frac{1}{x} \log(x\sin x)$$

$$\Rightarrow \log v = \frac{1}{x} (\log x + \log \sin x)$$

$$\Rightarrow \log v = \frac{1}{x} (\log x + \log \sin x)$$

$$\Rightarrow \log v = \frac{1}{x} \log x + \frac{1}{x} \log \sin x$$

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{x}\log x\right) + \frac{d}{dx}\left[\frac{1}{x}\log(\sin x)\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[\log x \cdot \frac{d}{dx}\left(\frac{1}{x}\right) + \frac{1}{x} \cdot \frac{d}{dx}(\log x)\right] + \left[\log(\sin x) \cdot \frac{d}{dx}\left(\frac{1}{x}\right) + \frac{1}{x} \cdot \frac{d}{dx}\{\log(\sin x)\}\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[\log x \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} \cdot \frac{1}{x}\right] + \left[\log(\sin x) \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} \cdot \frac{1}{\sin x} \cdot \frac{d}{dx}(\sin x)\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2}(1 - \log x) + \left[-\frac{\log(\sin x)}{x^2} + \frac{1}{x\sin x} \cdot \cos x\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log x}{x^2} + \frac{-\log(\sin x) + x\cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log x - \log(\sin x) + x\cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log(x\sin x) + x\cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log(x\sin x) + x\cot x}{x^2}\right]$$
...(3)

From (1), (2), and (3), we obtain

$$\frac{dy}{dx} = \left(x\cos x\right)^x \left[1 - x\tan x + \log\left(x\cos x\right)\right] + \left(x\sin x\right)^{\frac{1}{x}} \left[\frac{x\cot x + 1 - \log\left(x\sin x\right)}{x^2}\right]$$

### Solution 12

The given function is  $x^y + y^z = 1$ 

Let 
$$x^y = u$$
 and  $y^x = v$ 

Then, the function becomes u + v = 1

$$\therefore \frac{du}{dx} + \frac{dv}{dx} = 0 \qquad ...(1)$$

$$u = x^{y}$$

$$\Rightarrow \log u = \log(x^y)$$

$$\Rightarrow \log u = y \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \log x \frac{dy}{dx} + y \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[ \log x \frac{dy}{dx} + y \cdot \frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^{y} \left( \log x \frac{dy}{dx} + \frac{y}{x} \right) \qquad \dots(2)$$

$$v = y^{x}$$

$$\Rightarrow \log v = \log(y^{x})$$

$$\Rightarrow \log v = x \log y$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \log y \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y)$$

$$\Rightarrow \frac{dv}{dx} = v \left(\log y \cdot 1 + x \cdot \frac{1}{y} \cdot \frac{dy}{dx}\right)$$

$$\Rightarrow \frac{dv}{dx} = y^{x} \left(\log y + \frac{x}{y} \frac{dy}{dx}\right) \qquad \dots(3)$$

From (1), (2), and (3), we obtain

$$x^{y} \left( \log x \frac{dy}{dx} + \frac{y}{x} \right) + y^{x} \left( \log y + \frac{x}{y} \frac{dy}{dx} \right) = 0$$

$$\Rightarrow \left( x^{y} \log x + xy^{x-1} \right) \frac{dy}{dx} = -\left( yx^{y-1} + y^{x} \log y \right)$$

$$\therefore \frac{dy}{dx} = -\frac{yx^{y-1} + y^{x} \log y}{x^{y} \log x + xy^{x-1}}$$

#### Solution 13

The given function is  $y^x = x^y$ 

Taking logarithm on both the sides, we obtain

$$x \log y = y \log x$$

Differentiating both sides with respect to x, we obtain

$$\log y \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y) = \log x \cdot \frac{d}{dx}(y) + y \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \log y \cdot 1 + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \log x \cdot \frac{dy}{dx} + y \cdot \frac{1}{x}$$

$$\Rightarrow \log y + \frac{x}{y} \frac{dy}{dx} = \log x \frac{dy}{dx} + \frac{y}{x}$$

$$\Rightarrow \left(\frac{x}{y} - \log x\right) \frac{dy}{dx} = \frac{y}{x} - \log y$$

$$\Rightarrow \left(\frac{x - y \log x}{y}\right) \frac{dy}{dx} = \frac{y - x \log y}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y}{x} \left(\frac{y - x \log y}{x - y \log x}\right)$$

The given function is  $(\cos x)^y = (\cos y)^x$ 

Taking logarithm on both the sides, we obtain

$$y \log \cos x = x \log \cos y$$

Differentiating both sides, we obtain

$$\log \cos x \cdot \frac{dy}{dx} + y \cdot \frac{d}{dx} (\log \cos x) = \log \cos y \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log \cos y)$$

$$\Rightarrow \log \cos x \frac{dy}{dx} + y \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) = \log \cos y \cdot 1 + x \cdot \frac{1}{\cos y} \cdot \frac{d}{dx} (\cos y)$$

$$\Rightarrow \log \cos x \frac{dy}{dx} + \frac{y}{\cos x} \cdot (-\sin x) = \log \cos y + \frac{x}{\cos y} (-\sin y) \cdot \frac{dy}{dx}$$

$$\Rightarrow \log \cos x \frac{dy}{dx} - y \tan x = \log \cos y - x \tan y \frac{dy}{dx}$$

$$\Rightarrow (\log \cos x + x \tan y) \frac{dy}{dx} = y \tan x + \log \cos y$$

$$\therefore \frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$$

The given function is  $xy = e^{(x-y)}$ 

Taking logarithm on both the sides, we obtain

$$\log(xy) = \log(e^{x-y})$$

$$\Rightarrow \log x + \log y = (x-y)\log e$$

$$\Rightarrow \log x + \log y = (x-y) \times 1$$

$$\Rightarrow \log x + \log y = x-y$$

Differentiating both sides with respect to x, we obtain

$$\frac{d}{dx}(\log x) + \frac{d}{dx}(\log y) = \frac{d}{dx}(x) - \frac{dy}{dx}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{y}\frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\Rightarrow \left(1 + \frac{1}{y}\right)\frac{dy}{dx} = 1 - \frac{1}{x}$$

$$\Rightarrow \left(\frac{y+1}{y}\right)\frac{dy}{dx} = \frac{x-1}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y(x-1)}{x(y+1)}$$

The given relationship is  $f(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)$ 

Taking logarithm on both the sides, we obtain

$$\log f(x) = \log(1+x) + \log(1+x^2) + \log(1+x^4) + \log(1+x^8)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{f(x)} \cdot \frac{d}{dx} \Big[ f(x) \Big] = \frac{d}{dx} \log(1+x) + \frac{d}{dx} \log(1+x^2) + \frac{d}{dx} \log(1+x^4) + \frac{d}{dx} \log(1+x^8)$$

$$\Rightarrow \frac{1}{f(x)} \cdot f'(x) = \frac{1}{1+x} \cdot \frac{d}{dx} (1+x) + \frac{1}{1+x^2} \cdot \frac{d}{dx} (1+x^2) + \frac{1}{1+x^4} \cdot \frac{d}{dx} (1+x^4) + \frac{1}{1+x^8} \cdot \frac{d}{dx} (1+x^8)$$

$$\Rightarrow f'(x) = f(x) \Big[ \frac{1}{1+x} + \frac{1}{1+x^2} \cdot 2x + \frac{1}{1+x^4} \cdot 4x^3 + \frac{1}{1+x^8} \cdot 8x^7 \Big]$$

$$\therefore f'(x) = (1+x)(1+x^2)(1+x^4)(1+x^8) \Big[ \frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} \Big]$$
Hence,  $f'(1) = (1+1)(1+1^2)(1+1^4)(1+1^8) \Big[ \frac{1}{1+1} + \frac{2\times 1}{1+1^2} + \frac{4\times 1^3}{1+1^4} + \frac{8\times 1^7}{1+1^8} \Big]$ 

$$= 2\times 2\times 2\times 2\Big[ \frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} \Big]$$

$$= 16\times \Big( \frac{1+2+4+8}{2} \Big)$$

$$= 16\times \frac{15}{2} = 120$$

Let 
$$x^2 - 5x + 8 = u$$
 and  $x^3 + 7x + 9 = v$   

$$\therefore y = uv$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx} \qquad \text{(By using product rule)}$$

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} \left(x^2 - 5x + 8\right) \cdot \left(x^3 + 7x + 9\right) + \left(x^2 - 5x + 8\right) \cdot \frac{d}{dx} \left(x^3 + 7x + 9\right)$$

$$\Rightarrow \frac{dy}{dx} = (2x - 5)\left(x^3 + 7x + 9\right) + \left(x^2 - 5x + 8\right)\left(3x^2 + 7\right)$$

$$\Rightarrow \frac{dy}{dx} = 2x\left(x^3 + 7x + 9\right) - 5\left(x^3 + 7x + 9\right) + x^2\left(3x^2 + 7\right) - 5x\left(3x^2 + 7\right) + 8\left(3x^2 + 7\right)$$

$$\Rightarrow \frac{dy}{dx} = \left(2x^4 + 14x^2 + 18x\right) - 5x^3 - 35x - 45 + \left(3x^4 + 7x^2\right) - 15x^3 - 35x + 24x^2 + 56$$

$$\therefore \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$$
(ii)

$$y = (x^{2} - 5x + 8)(x^{3} + 7x + 9)$$

$$= x^{2}(x^{3} + 7x + 9) - 5x(x^{3} + 7x + 9) + 8(x^{3} + 7x + 9)$$

$$= x^{5} + 7x^{3} + 9x^{2} - 5x^{4} - 35x^{2} - 45x + 8x^{3} + 56x + 72$$

$$= x^{5} - 5x^{4} + 15x^{3} - 26x^{2} + 11x + 72$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx}(x^{5} - 5x^{4} + 15x^{3} - 26x^{2} + 11x + 72)$$

$$= \frac{d}{dx}(x^{5}) - 5\frac{d}{dx}(x^{4}) + 15\frac{d}{dx}(x^{3}) - 26\frac{d}{dx}(x^{2}) + 11\frac{d}{dx}(x) + \frac{d}{dx}(72)$$

$$= 5x^{4} - 5 \times 4x^{3} + 15 \times 3x^{2} - 26 \times 2x + 11 \times 1 + 0$$

$$= 5x^{4} - 20x^{3} + 45x^{2} - 52x + 11$$

(iii) 
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

$$\log y = \log(x^2 - 5x + 8) + \log(x^3 + 7x + 9)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\log(x^2 - 5x + 8) + \frac{d}{dx}\log(x^3 + 7x + 9)$$

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot \frac{d}{dx}(x^2 - 5x + 8) + \frac{1}{x^3 + 7x + 9} \cdot \frac{d}{dx}(x^3 + 7x + 9)$$

$$\Rightarrow \frac{dy}{dx} = y\left[\frac{1}{x^2 - 5x + 8} \times (2x - 5) + \frac{1}{x^3 + 7x + 9} \times (3x^2 + 7)\right]$$

$$\Rightarrow \frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9)\left[\frac{2x - 5}{x^2 - 5x + 8} + \frac{3x^2 + 7}{x^3 + 7x + 9}\right]$$

$$\Rightarrow \frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9)\left[\frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)}\right]$$

$$\Rightarrow \frac{dy}{dx} = 2x(x^3 + 7x + 9) - 5(x^3 + 7x + 9) + 3x^2(x^2 - 5x + 8) + 7(x^2 - 5x + 8)$$

$$\Rightarrow \frac{dy}{dx} = (2x^4 + 14x^2 + 18x) - 5x^3 - 35x - 45 + (3x^4 - 15x^3 + 24x^2) + (7x^2 - 35x + 56)$$

$$\Rightarrow \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$$

Let 
$$y = u.v.w = u.(v.w)$$

By applying product rule, we obtain

$$\frac{dy}{dx} = \frac{du}{dx} \cdot (v \cdot w) + u \cdot \frac{d}{dx} (v \cdot w)$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} v \cdot w + u \left[ \frac{dv}{dx} \cdot w + v \cdot \frac{dw}{dx} \right]$$
(Again applying product rule)
$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} \cdot v \cdot w + u \cdot \frac{dv}{dx} \cdot w + u \cdot v \cdot \frac{dw}{dx}$$

By taking logarithm on both sides of the equation y = u.v.w, we obtain  $\log y = \log u + \log v + \log w$ 

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (\log u) + \frac{d}{dx} (\log v) + \frac{d}{dx} (\log w)$$

$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx}$$

$$\Rightarrow \frac{dy}{dx} = y \left( \frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx} \right)$$

$$\Rightarrow \frac{dy}{dx} = u.v.w. \left( \frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx} \right)$$

$$\therefore \frac{dy}{dx} = \frac{du}{dx} \cdot v \cdot w + u \cdot \frac{dv}{dx} \cdot w + u \cdot v \cdot \frac{dw}{dx}$$

# Chapter 5 - Continuity and Differentiability Exercise Ex. 5.6 Solution 1

The given equations are  $x = 2at^2$  and  $y = at^4$ 

Then, 
$$\frac{dx}{dt} = \frac{d}{dt}(2at^2) = 2a \cdot \frac{d}{dt}(t^2) = 2a \cdot 2t = 4at$$

$$\frac{dy}{dt} = \frac{d}{dt}(at^4) = a \cdot \frac{d}{dt}(t^4) = a \cdot 4 \cdot t^3 = 4at^3$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{4at^3}{4at} = t^2$$

The given equations are  $x = a \cos \theta$  and  $y = b \cos \theta$ 

Then, 
$$\frac{dx}{d\theta} = \frac{d}{d\theta} (a\cos\theta) = a(-\sin\theta) = -a\sin\theta$$
  
 $\frac{dy}{d\theta} = \frac{d}{d\theta} (b\cos\theta) = b(-\sin\theta) = -b\sin\theta$   

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{-b\sin\theta}{-a\sin\theta} = \frac{b}{a}$$

## Solution 3

The given equations are  $x = \sin t$  and  $y = \cos 2t$ 

Then, 
$$\frac{dx}{dt} = \frac{d}{dt}(\sin t) = \cos t$$
  
 $\frac{dy}{dt} = \frac{d}{dt}(\cos 2t) = -\sin 2t \cdot \frac{d}{dt}(2t) = -2\sin 2t$   

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-2\sin 2t}{\cos t} = \frac{-2\cdot 2\sin t\cos t}{\cos t} = -4\sin t$$

### Solution 4

The given equations are x = 4t and  $y = \frac{4}{t}$ 

$$\frac{dx}{dt} = \frac{d}{dt}(4t) = 4$$

$$\frac{dy}{dt} = \frac{d}{dt}\left(\frac{4}{t}\right) = 4 \cdot \frac{d}{dt}\left(\frac{1}{t}\right) = 4 \cdot \left(\frac{-1}{t^2}\right) = \frac{-4}{t^2}$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{-4}{t^2}\right)}{4} = \frac{-1}{t^2}$$

The given equations are  $x = \cos \theta - \cos 2\theta$  and  $y = \sin \theta - \sin 2\theta$ 

Then, 
$$\frac{dx}{d\theta} = \frac{d}{d\theta} (\cos \theta - \cos 2\theta) = \frac{d}{d\theta} (\cos \theta) - \frac{d}{d\theta} (\cos 2\theta)$$
  
 $= -\sin \theta - (-2\sin 2\theta) = 2\sin 2\theta - \sin \theta$   
 $\frac{dy}{d\theta} = \frac{d}{d\theta} (\sin \theta - \sin 2\theta) = \frac{d}{d\theta} (\sin \theta) - \frac{d}{d\theta} (\sin 2\theta)$   
 $= \cos \theta - 2\cos 2\theta$   
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{\cos \theta - 2\cos 2\theta}{2\sin 2\theta - \sin \theta}$ 

### Solution 6

The given equations are  $x = a(\theta - \sin \theta)$  and  $y = a(1 + \cos \theta)$ 

Then, 
$$\frac{dx}{d\theta} = a \left[ \frac{d}{d\theta} (\theta) - \frac{d}{d\theta} (\sin \theta) \right] = a(1 - \cos \theta)$$

$$\frac{dy}{d\theta} = a \left[ \frac{d}{d\theta} (1) + \frac{d}{d\theta} (\cos \theta) \right] = a \left[ 0 + (-\sin \theta) \right] = -a \sin \theta$$

$$\therefore \frac{dy}{dx} = \frac{\left( \frac{dy}{d\theta} \right)}{\left( \frac{dx}{d\theta} \right)} = \frac{-a \sin \theta}{a(1 - \cos \theta)} = \frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = \frac{-\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} = -\cot \frac{\theta}{2}$$

The given equations are  $x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$  and  $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$ 

Then, 
$$\frac{dx}{dt} = \frac{d}{dt} \left[ \frac{\sin^3 t}{\sqrt{\cos 2t}} \right]$$

$$= \frac{\sqrt{\cos 2t} \cdot \frac{d}{dt} \left( \sin^3 t \right) - \sin^3 t \cdot \frac{d}{dt} \sqrt{\cos 2t}}{\cos 2t}$$

$$= \frac{\sqrt{\cos 2t} \cdot 3\sin^2 t \cdot \frac{d}{dt} \left( \sin t \right) - \sin^3 t \times \frac{1}{2\sqrt{\cos 2t}} \cdot \frac{d}{dt} \left( \cos 2t \right)}{\cos 2t}$$

$$= \frac{3\sqrt{\cos 2t} \cdot \sin^2 t \cos t - \frac{\sin^3 t}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t}$$

$$= \frac{3\cos 2t \sin^2 t \cos t + \sin^3 t \sin 2t}{\cos 2t \sqrt{\cos 2t}}$$

$$\frac{dy}{dt} = \frac{d}{dt} \left[ \frac{\cos^3 t}{\sqrt{\cos 2t}} \right]$$

$$= \frac{\sqrt{\cos 2t} \cdot \frac{d}{dt} \left( \cos^3 t \right) - \cos^3 t \cdot \frac{d}{dt} \left( \sqrt{\cos 2t} \right)}{\cos 2t}$$

$$= \frac{\sqrt{\cos 2t} \cdot 3\cos^2 t \cdot \frac{d}{dt} \left( \cos t \right) - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot \frac{d}{dt} \left( \cos 2t \right)}{\cos 2t}$$

$$= \frac{3\sqrt{\cos 2t} \cdot \cos^2 t \left( -\sin t \right) - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot \left( -2\sin 2t \right)}{\cos 2t}$$

$$= \frac{-3\cos 2t \cdot \cos^2 t \cdot \sin t + \cos^3 t \sin 2t}{\cos 2t \cdot \sqrt{\cos 2t}}$$

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-3\cos 2t \cdot \cos^2 t \cdot \sin t + \cos^3 t \sin 2t}{3\cos 2t \sin^2 t \cos t + \sin^3 t \sin 2t}$$

$$= \frac{-3\cos 2t \cdot \cos^2 t \cdot \sin t + \cos^3 t \left(2\sin t \cos t\right)}{3\cos 2t \sin^2 t \cos t + \sin^3 t \left(2\sin t \cos t\right)}$$

$$= \frac{\sin t \cos t \left[-3\cos 2t \cdot \cos t + 2\cos^3 t\right]}{\sin t \cos t \left[3\cos 2t \sin t + 2\sin^3 t\right]}$$

$$= \frac{\left[-3\left(2\cos^2 t - 1\right)\cos t + 2\cos^3 t\right]}{\left[3\left(1 - 2\sin^2 t\right)\sin t + 2\sin^3 t\right]}$$

$$= \frac{-4\cos^3 t + 3\cos t}{3\sin t - 4\sin^3 t}$$

$$= \frac{-\cos 3t}{\sin 3t}$$

$$= -\cot 3t$$

$$\begin{bmatrix}\cos 3t = 4\cos^3 t - 3\cos t, \\\sin 3t = 3\sin t - 4\sin^3 t\end{bmatrix}$$

$$= -\cot 3t$$

The given equations are  $x = a \left( \cos t + \log \tan \frac{t}{2} \right)$  and  $y = a \sin t$ 

Then, 
$$\frac{dx}{dt} = a \cdot \left[ \frac{d}{dt} (\cos t) + \frac{d}{dt} (\log \tan \frac{t}{2}) \right]$$

$$= a \left[ -\sin t + \frac{1}{\tan \frac{t}{2}} \cdot \frac{d}{dt} (\tan \frac{t}{2}) \right]$$

$$= a \left[ -\sin t + \cot \frac{t}{2} \cdot \sec^2 \frac{t}{2} \cdot \frac{d}{dt} (\frac{t}{2}) \right]$$

$$= a \left[ -\sin t + \frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2} \right]$$

$$= a \left[ -\sin t + \frac{1}{2\sin \frac{t}{2}\cos \frac{t}{2}} \right]$$

$$= a \left[ -\sin t + \frac{1}{\sin t} \right]$$

$$= a \left( -\sin^2 t + 1 \right)$$

$$= a \frac{\cos^2 t}{\sin t}$$

$$= a \frac{dy}{dt} = a \frac{d}{dt} (\sin t) = a \cos t$$

$$\therefore \frac{dy}{dx} = \frac{\left( \frac{dy}{dt} \right)}{\left( \frac{dx}{dt} \right)} = \frac{a \cos t}{\left( \frac{\cos^2 t}{\sin t} \right)} = \frac{\sin t}{\cos t} = \tan t$$

The given equations are  $x = a \sec \theta$  and  $y = b \tan \theta$ 

Then, 
$$\frac{dx}{d\theta} = a \cdot \frac{d}{d\theta} (\sec \theta) = a \sec \theta \tan \theta$$
  

$$\frac{dy}{d\theta} = b \cdot \frac{d}{d\theta} (\tan \theta) = b \sec^2 \theta$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b}{a} \sec \theta \cot \theta = \frac{b \cos \theta}{a \cos \theta \sin \theta} = \frac{b}{a} \times \frac{1}{\sin \theta} = \frac{b}{a} \csc \theta$$

### Solution 10

The given equations are  $x = a(\cos\theta + \theta\sin\theta)$  and  $y = a(\sin\theta - \theta\cos\theta)$ 

Then, 
$$\frac{dx}{d\theta} = a \left[ \frac{d}{d\theta} \cos \theta + \frac{d}{d\theta} (\theta \sin \theta) \right] = a \left[ -\sin \theta + \theta \frac{d}{d\theta} (\sin \theta) + \sin \theta \frac{d}{d\theta} (\theta) \right]$$

$$= a \left[ -\sin \theta + \theta \cos \theta + \sin \theta \right] = a\theta \cos \theta$$

$$\frac{dy}{d\theta} = a \left[ \frac{d}{d\theta} (\sin \theta) - \frac{d}{d\theta} (\theta \cos \theta) \right] = a \left[ \cos \theta - \left\{ \theta \frac{d}{d\theta} (\cos \theta) + \cos \theta \cdot \frac{d}{d\theta} (\theta) \right\} \right]$$

$$= a \left[ \cos \theta + \theta \sin \theta - \cos \theta \right]$$

$$= a\theta \sin \theta$$

$$\therefore \frac{dy}{dx} = \frac{\left( \frac{dy}{d\theta} \right)}{\left( \frac{dx}{d\theta} \right)} = \frac{a\theta \sin \theta}{a\theta \cos \theta} = \tan \theta$$

The given equations are  $x = \sqrt{a^{\sin^{-1} t}}$  and  $y = \sqrt{a^{\cos^{-1} t}}$ 

$$x = \sqrt{a^{\sin^{-1} t}} \text{ and } y = \sqrt{a^{\cos^{-1} t}}$$

$$\Rightarrow x = \left(a^{\sin^{-1} t}\right)^{\frac{1}{2}} \text{ and } y = \left(a^{\cos^{-1} t}\right)^{\frac{1}{2}}$$

$$\Rightarrow x = a^{\frac{1}{2}\sin^{-1} t} \text{ and } y = a^{\frac{1}{2}\cos^{-1} t}$$

Consider  $x = a^{\frac{1}{2}\sin^{-1}x}$ 

Taking logarithm on both the sides, we obtain

$$\log x = \frac{1}{2} \sin^{-1} t \log a$$

$$\therefore \frac{1}{x} \cdot \frac{dx}{dt} = \frac{1}{2} \log a \cdot \frac{d}{dt} \left( \sin^{-1} t \right)$$

$$\Rightarrow \frac{dx}{dt} = \frac{x}{2} \log a \cdot \frac{1}{\sqrt{1 - t^2}}$$

$$\Rightarrow \frac{dx}{dt} = \frac{x \log a}{2\sqrt{1 - t^2}}$$

Then, consider  $y = a^{\frac{1}{2}\cos^{-1}t}$ 

Taking logarithm on both the sides, we obtain

$$\log y = \frac{1}{2} \cos^{-1} t \log a$$

$$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{2} \log a \cdot \frac{d}{dt} \left( \cos^{-1} t \right)$$

$$\Rightarrow \frac{dy}{dt} = \frac{y \log a}{2} \cdot \left( \frac{-1}{\sqrt{1 - t^2}} \right)$$

$$\Rightarrow \frac{dy}{dt} = \frac{-y \log a}{2\sqrt{1 - t^2}}$$

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{-y\log a}{2\sqrt{1-t^2}}\right)}{\left(\frac{x\log a}{2\sqrt{1-t^2}}\right)} = -\frac{y}{x}.$$

Hence, proved.

Chapter 5 - Continuity and Differentiability Exercise Ex. 5.7 Solution 1

Let 
$$y = x^2 + 3x + 2$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(x^2) + \frac{d}{dx}(3x) + \frac{d}{dx}(2) = 2x + 3 + 0 = 2x + 3$$
  
$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}(2x + 3) = \frac{d}{dx}(2x) + \frac{d}{dx}(3) = 2 + 0 = 2$$

### Solution 2

Let 
$$y = x^{20}$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left( x^{20} \right) = 20x^{19}$$

$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx} \left( 20x^{19} \right) = 20 \frac{d}{dx} \left( x^{19} \right) = 20 \cdot 19 \cdot x^{18} = 380x^{18}$$

# Solution 3

Let 
$$y = x \cdot \cos x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(x \cdot \cos x) = \cos x \cdot \frac{d}{dx}(x) + x \frac{d}{dx}(\cos x) = \cos x \cdot 1 + x(-\sin x) = \cos x - x \sin x$$

$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}[\cos x - x \sin x] = \frac{d}{dx}(\cos x) - \frac{d}{dx}(x \sin x)$$

$$= -\sin x - \left[\sin x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\sin x)\right]$$

$$= -\sin x - \left(\sin x + x \cos x\right)$$

$$= -\left(x \cos x + 2 \sin x\right)$$

#### Solution 4

Let 
$$y = \log x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} (\log x) = \frac{1}{x}$$
$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left( \frac{1}{x} \right) = \frac{-1}{x^2}$$

#### Solution 5

Let 
$$y = x^3 \log x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left[ x^3 \log x \right] = \log x \cdot \frac{d}{dx} \left( x^3 \right) + x^3 \cdot \frac{d}{dx} \left( \log x \right)$$

$$= \log x \cdot 3x^2 + x^3 \cdot \frac{1}{x} = \log x \cdot 3x^2 + x^2$$

$$= x^2 \left( 1 + 3 \log x \right)$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[ x^2 \left( 1 + 3 \log x \right) \right]$$

$$= \left( 1 + 3 \log x \right) \cdot \frac{d}{dx} \left( x^2 \right) + x^2 \cdot \frac{d}{dx} \left( 1 + 3 \log x \right)$$

$$= \left( 1 + 3 \log x \right) \cdot 2x + x^2 \cdot \frac{3}{x}$$

$$= 2x + 6x \log x + 3x$$

$$= 5x + 6x \log x$$

$$= x \left( 5 + 6 \log x \right)$$

### Solution 6

Let 
$$y = e^x \sin 5x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left( e^x \sin 5x \right) = \sin 5x \cdot \frac{d}{dx} \left( e^x \right) + e^x \cdot \frac{d}{dx} \left( \sin 5x \right)$$

$$= \sin 5x \cdot e^x + e^x \cdot \cos 5x \cdot \frac{d}{dx} \left( 5x \right) = e^x \sin 5x + e^x \cos 5x \cdot 5$$

$$= e^x \left( \sin 5x + 5 \cos 5x \right)$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[ e^x \left( \sin 5x + 5 \cos 5x \right) \right]$$

$$= \left( \sin 5x + 5 \cos 5x \right) \cdot \frac{d}{dx} \left( e^x \right) + e^x \cdot \frac{d}{dx} \left( \sin 5x + 5 \cos 5x \right)$$

$$= \left( \sin 5x + 5 \cos 5x \right) e^x + e^x \left[ \cos 5x \cdot \frac{d}{dx} \left( 5x \right) + 5 \left( -\sin 5x \right) \cdot \frac{d}{dx} \left( 5x \right) \right]$$

$$= e^x \left( \sin 5x + 5 \cos 5x \right) + e^x \left( 5 \cos 5x - 25 \sin 5x \right)$$

$$= e^x \left( 10 \cos 5x - 24 \sin 5x \right) = 2e^x \left( 5 \cos 5x - 12 \sin 5x \right)$$

Let 
$$y = e^{6x} \cos 3x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left( e^{6x} \cdot \cos 3x \right) = \cos 3x \cdot \frac{d}{dx} \left( e^{6x} \right) + e^{6x} \cdot \frac{d}{dx} \left( \cos 3x \right)$$

$$= \cos 3x \cdot e^{6x} \cdot \frac{d}{dx} (6x) + e^{6x} \cdot \left( -\sin 3x \right) \cdot \frac{d}{dx} (3x)$$

$$= 6e^{6x} \cos 3x - 3e^{6x} \sin 3x \qquad \dots (1)$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left( 6e^{6x} \cos 3x - 3e^{6x} \sin 3x \right) = 6 \cdot \frac{d}{dx} \left( e^{6x} \cos 3x \right) - 3 \cdot \frac{d}{dx} \left( e^{6x} \sin 3x \right)$$

$$= 6 \cdot \left[ 6e^{6x} \cos 3x - 3e^{6x} \sin 3x \right] - 3 \cdot \left[ \sin 3x \cdot \frac{d}{dx} \left( e^{6x} \right) + e^{6x} \cdot \frac{d}{dx} (\sin 3x) \right]$$

$$= 36e^{6x} \cos 3x - 18e^{6x} \sin 3x - 3 \left[ \sin 3x \cdot e^{6x} \cdot 6 + e^{6x} \cdot \cos 3x \cdot 3 \right]$$

$$= 36e^{6x} \cos 3x - 18e^{6x} \sin 3x - 18e^{6x} \sin 3x - 9e^{6x} \cos 3x$$

$$= 27e^{6x} \cos 3x - 36e^{6x} \sin 3x$$

$$= 9e^{6x} \left( 3\cos 3x - 4\sin 3x \right)$$

#### Solution 8

Let 
$$y = \tan^{-1} x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left( \tan^{-1} x \right) = \frac{1}{1+x^2}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left( \frac{1}{1+x^2} \right) = \frac{d}{dx} \left( 1+x^2 \right)^{-1} = \left( -1 \right) \cdot \left( 1+x^2 \right)^{-2} \cdot \frac{d}{dx} \left( 1+x^2 \right)$$

$$= \frac{-1}{\left( 1+x^2 \right)^2} \times 2x = \frac{-2x}{\left( 1+x^2 \right)^2}$$

Let 
$$y = \log(\log x)$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \Big[ \log(\log x) \Big] = \frac{1}{\log x} \cdot \frac{d}{dx} (\log x) = \frac{1}{x \log x} = (x \log x)^{-1}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \Big[ (x \log x)^{-1} \Big] = (-1) \cdot (x \log x)^{-2} \cdot \frac{d}{dx} (x \log x)$$

$$= \frac{-1}{(x \log x)^2} \cdot \Big[ \log x \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log x) \Big]$$

$$= \frac{-1}{(x \log x)^2} \cdot \Big[ \log x \cdot 1 + x \cdot \frac{1}{x} \Big] = \frac{-(1 + \log x)}{(x \log x)^2}$$

### Solution 10

Let 
$$y = \sin(\log x)$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left[ \sin(\log x) \right] = \cos(\log x) \cdot \frac{d}{dx} (\log x) = \frac{\cos(\log x)}{x}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[ \frac{\cos(\log x)}{x} \right]$$

$$= \frac{x \cdot \frac{d}{dx} \left[ \cos(\log x) \right] - \cos(\log x) \cdot \frac{d}{dx} (x)}{x^2}$$

$$= \frac{x \cdot \left[ -\sin(\log x) \cdot \frac{d}{dx} (\log x) \right] - \cos(\log x) \cdot 1}{x^2}$$

$$= \frac{-x \sin(\log x) \cdot \frac{1}{x} - \cos(\log x)}{x^2}$$

$$= \frac{-\left[ \sin(\log x) + \cos(\log x) \right]}{x^2}$$

It is given that,  $y = 5\cos x - 3\sin x$ 

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(5\cos x) - \frac{d}{dx}(3\sin x) = 5\frac{d}{dx}(\cos x) - 3\frac{d}{dx}(\sin x)$$

$$= 5(-\sin x) - 3\cos x = -(5\sin x + 3\cos x)$$

$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}\left[-(5\sin x + 3\cos x)\right]$$

$$= -\left[5\cdot\frac{d}{dx}(\sin x) + 3\cdot\frac{d}{dx}(\cos x)\right]$$

$$= -\left[5\cos x + 3(-\sin x)\right]$$

$$= -\left[5\cos x - 3\sin x\right]$$

$$= -y$$

$$\therefore \frac{d^2y}{dx^2} + y = 0$$

Hence, proved.

### Solution 12

It is given that,  $y = \cos^{-1} x$ 

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left( \cos^{-1} x \right) = \frac{-1}{\sqrt{1 - x^2}} = -\left( 1 - x^2 \right)^{\frac{-1}{2}}$$

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left[ -\left( 1 - x^2 \right)^{\frac{-1}{2}} \right]$$

$$= -\left( -\frac{1}{2} \right) \cdot \left( 1 - x^2 \right)^{\frac{-3}{2}} \cdot \frac{d}{dx} \left( 1 - x^2 \right)$$

$$= \frac{1}{2\sqrt{\left( 1 - x^2 \right)^3}} \times \left( -2x \right)$$

$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{-x}{\sqrt{\left( 1 - x^2 \right)^3}} \qquad ...(i)$$

$$y = \cos^{-1} x \Rightarrow x = \cos y$$

Putting  $x = \cos y$  in equation (i), we obtain

$$\frac{d^2 y}{dx^2} = \frac{-\cos y}{\sqrt{(1 - \cos^2 y)^3}}$$

$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{-\cos y}{\sqrt{(\sin^2 y)^3}}$$

$$= \frac{-\cos y}{\sin^3 y}$$

$$= \frac{-\cos y}{\sin y} \times \frac{1}{\sin^2 y}$$

$$\Rightarrow \frac{d^2 y}{dx^2} = -\cot y \cdot \csc^2 y$$

### Solution 13

It is given that,  $y = 3\cos(\log x) + 4\sin(\log x)$ 

Then,

$$y_{1} = 3 \cdot \frac{d}{dx} \Big[ \cos(\log x) \Big] + 4 \cdot \frac{d}{dx} \Big[ \sin(\log x) \Big]$$

$$= 3 \cdot \Big[ -\sin(\log x) \cdot \frac{d}{dx} (\log x) \Big] + 4 \cdot \Big[ \cos(\log x) \cdot \frac{d}{dx} (\log x) \Big]$$

$$\therefore y_{1} = \frac{-3\sin(\log x)}{x} + \frac{4\cos(\log x)}{x} = \frac{4\cos(\log x) - 3\sin(\log x)}{x}$$

$$\therefore y_{2} = \frac{d}{dx} \Big( \frac{4\cos(\log x) - 3\sin(\log x)}{x} \Big)$$

$$= \frac{x \{4\cos(\log x) - 3\sin(\log x)\}' - \{4\cos(\log x) - 3\sin(\log x)\}(x)'}{x^{2}}$$

$$= \frac{x \Big[ 4\{\cos(\log x)\}' - 3\{\sin(\log x)\}' \Big] - \{4\cos(\log x) - 3\sin(\log x)\}(1)}{x^{2}}$$

$$= \frac{x \Big[ -4\sin(\log x) \cdot (\log x)' - 3\cos(\log x) \cdot (\log x)' \Big] - 4\cos(\log x) + 3\sin(\log x)}{x^{2}}$$

$$= \frac{x \Big[ -4\sin(\log x) \cdot \frac{1}{x} - 3\cos(\log x) \cdot (\log x)' \Big] - 4\cos(\log x) + 3\sin(\log x)}{x^{2}}$$

$$= \frac{-4\sin(\log x) - 3\cos(\log x) - 4\cos(\log x) + 3\sin(\log x)}{x^2}$$

$$= \frac{-\sin(\log x) - 7\cos(\log x)}{x^2}$$

$$\therefore x^2 y_2 + xy_1 + y$$

$$= x^2 \left(\frac{-\sin(\log x) - 7\cos(\log x)}{x^2}\right) + x \left(\frac{4\cos(\log x) - 3\sin(\log x)}{x}\right) + 3\cos(\log x) + 4\sin(\log x)$$

$$= -\sin(\log x) - 7\cos(\log x) + 4\cos(\log x) - 3\sin(\log x) + 3\cos(\log x) + 4\sin(\log x)$$

$$= 0$$

Hence, proved.

### Solution 14

It is given that,  $y = Ae^{mx} + Be^{mx}$ 

Then,

$$\frac{dy}{dx} = A \cdot \frac{d}{dx} \left( e^{mx} \right) + B \cdot \frac{d}{dx} \left( e^{nx} \right) = A \cdot e^{mx} \cdot \frac{d}{dx} \left( mx \right) + B \cdot e^{nx} \cdot \frac{d}{dx} \left( nx \right) = Ame^{mx} + Bne^{nx}$$

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left( Ame^{mx} + Bne^{nx} \right) = Am \cdot \frac{d}{dx} \left( e^{mx} \right) + Bn \cdot \frac{d}{dx} \left( e^{nx} \right)$$

$$= Am \cdot e^{mx} \cdot \frac{d}{dx} \left( mx \right) + Bn \cdot e^{nx} \cdot \frac{d}{dx} \left( nx \right) = Am^2 e^{mx} + Bn^2 e^{nx}$$

$$\therefore \frac{d^2 y}{dx^2} - \left( m + n \right) \frac{dy}{dx} + mny$$

$$= Am^2 e^{mx} + Bn^2 e^{nx} - \left( m + n \right) \cdot \left( Ame^{mx} + Bne^{nx} \right) + mn \left( Ae^{mx} + Be^{nx} \right)$$

$$= Am^2 e^{mx} + Bn^2 e^{nx} - Am^2 e^{mx} - Bmne^{nx} - Amne^{mx} - Bn^2 e^{nx} + Amne^{mx} + Bmne^{nx}$$

$$= 0$$

Hence, proved.

It is given that,  $y = 500e^{7x} + 600e^{-7x}$ 

Then,

$$\frac{dy}{dx} = 500 \cdot \frac{d}{dx} (e^{7x}) + 600 \cdot \frac{d}{dx} (e^{-7x})$$

$$= 500 \cdot e^{7x} \cdot \frac{d}{dx} (7x) + 600 \cdot e^{-7x} \cdot \frac{d}{dx} (-7x)$$

$$= 3500e^{7x} - 4200e^{-7x}$$

$$\therefore \frac{d^2 y}{dx^2} = 3500 \cdot \frac{d}{dx} (e^{7x}) - 4200 \cdot \frac{d}{dx} (e^{-7x})$$

$$= 3500 \cdot e^{7x} \cdot \frac{d}{dx} (7x) - 4200 \cdot e^{-7x} \cdot \frac{d}{dx} (-7x)$$

$$= 7 \times 3500 \cdot e^{7x} + 7 \times 4200 \cdot e^{-7x}$$

$$= 49 \times 500e^{7x} + 49 \times 600e^{-7x}$$

$$= 49 (500e^{7x} + 600e^{-7x})$$

$$= 49 y$$

Hence, proved

The given relationship is  $e^{y}(x+1)=1$ 

$$e^{y}(x+1) = 1$$
$$\Rightarrow e^{y} = \frac{1}{x+1}$$

Taking logarithm on both the sides, we obtain

$$y = \log \frac{1}{(x+1)}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{dy}{dx} = (x+1)\frac{d}{dx}\left(\frac{1}{x+1}\right) = (x+1)\cdot\frac{-1}{(x+1)^2} = \frac{-1}{x+1}$$

$$\therefore \frac{d^2y}{dx^2} = -\frac{d}{dx}\left(\frac{1}{x+1}\right) = -\left(\frac{-1}{(x+1)^2}\right) = \frac{1}{(x+1)^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{-1}{x+1}\right)^2$$

$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$$

Hence, proved.

The given relationship is  $y = (\tan^{-1} x)^2$ 

Then,

$$y_1 = 2 \tan^{-1} x \frac{d}{dx} (\tan^{-1} x)$$
  
 $\Rightarrow y_1 = 2 \tan^{-1} x \cdot \frac{1}{1 + x^2}$   
 $\Rightarrow (1 + x^2) y_1 = 2 \tan^{-1} x$ 

Again differentiating with respect to x on both the sides, we obtain

$$(1+x^2)y_2 + 2xy_1 = 2\left(\frac{1}{1+x^2}\right)$$
$$\Rightarrow (1+x^2)^2 y_2 + 2x(1+x^2)y_1 = 2$$

Hence, proved.

### Chapter 5 - Continuity and Differentiability Exercise Ex. 5.8 Solution 1

The given function,  $f(x) = x^2 + 2x - 8$ , being a polynomial function, is continuous in [-4, 2] and is differentiable in (-4, 2).

$$f(-4) = (-4)^2 + 2 \times (-4) - 8 = 16 - 8 - 8 = 0$$
  
 $f(2) = (2)^2 + 2 \times 2 - 8 = 4 + 4 - 8 = 0$ 

$$f(-4) = f(2) = 0$$

The value of f(x) at -4 and 2 coincides.

# Rolle's theorem states that there is a point $c \in (-4, -2)$ such that f'(c) = 0

$$f(x) = x^{2} + 2x - 8$$

$$\Rightarrow f'(x) = 2x + 2$$

$$\therefore f'(c) = 0$$

$$\Rightarrow 2c + 2 = 0$$

$$\Rightarrow c = -1, \text{ where } c = -1 \in (-4, 2)$$

Hence, Rolle's Theorem is verified for the given function.

### Solution 2

By Rolle's Theorem, for a function  $f:[a, b] \rightarrow \mathbf{R}$ , if

- (a) f is continuous on [a, b]
- (b) f is differentiable on (a, b)
- (c) f(a) = f(b)

# then there exists some $c \in (a, b)$ such that f'(c) = 0

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

(i) 
$$f(x) = [x]$$
 for  $x \in [5, 9]$ 

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5 and x = 9

f(x) is not continuous in [5, 9].

Also, 
$$f(5) = [5] = 5$$
 and  $f(9) = [9] = 9$   
  $\therefore f(5) \neq f(9)$ 

The differentiability of f in (5, 9) is checked as follows.

Let n be an integer such that  $n \in (5, 9)$ .

The left hand limit of f at x = n is,

$$\lim_{h \to 0} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0} \frac{[n+h] - [n]}{h} = \lim_{h \to 0} \frac{n - 1 - n}{h} = \lim_{h \to 0} \frac{-1}{h} = \infty$$

The right hand limit of f at x = n is,

$$\lim_{h \to 0^{\circ}} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^{\circ}} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^{\circ}} \frac{n-n}{h} = \lim_{h \to 0^{\circ}} 0 = 0$$

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x = n

f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for f(x) = [x] for  $x \in [5, 9]$ .

(ii) 
$$f(x) = [x]$$
 for  $x \in [-2, 2]$ 

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = -2 and x = 2

f(x) is not continuous in [-2, 2].

Also, 
$$f(-2) = [-2] = -2$$
 and  $f(2) = [2] = 2$   
  $\therefore f(-2) \neq f(2)$ 

The differentiability of f in (-2, 2) is checked as follows.

Let n be an integer such that n  $\in$  (-2, 2).

The left hand limit of f at x = n is,

$$\lim_{h \to 0^+} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^+} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^+} \frac{n - 1 - n}{h} = \lim_{h \to 0^+} \frac{-1}{h} = \infty$$

The right hand limit of f at x = n is.

$$\lim_{h \to 0^+} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^+} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^+} \frac{n-n}{h} = \lim_{h \to 0^+} 0 = 0$$

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x = n

f is not differentiable in (-2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for f(x) = [x] for  $x \in [-2, 2]$ .

(iii) 
$$f(x) = x^2 - 1$$
 for  $x \in [1, 2]$ 

It is evident that f, being a polynomial function, is continuous in [1, 2] and is differentiable in (1, 2).

$$f(1) = (1)^2 - 1 = 0$$
  
 $f(2) = (2)^2 - 1 = 3$ 

$$f(1) \neq f(2)$$

It is observed that f does not satisfy a condition of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for  $f(x) = x^2 - 1$  for  $x \in [1, 2]$ .

### Solution 3

It is given that  $f:[-5,5] \rightarrow \mathbf{R}$  is a differentiable function.

Since every differentiable function is a continuous function, we obtain

- (a) f is continuous on [-5, 5].
- (b) f is differentiable on (-5, 5).

# Therefore, by the Mean Value Theorem, there exists c (-5, 5) such that

$$f'(c) = \frac{f(5) - f(-5)}{5 - (-5)}$$
  
$$\Rightarrow 10f'(c) = f(5) - f(-5)$$

It is also given that f'(x) does not vanish anywhere.

$$\therefore f'(c) \neq 0$$

$$\Rightarrow 10 f'(c) \neq 0$$

$$\Rightarrow f(5) - f(-5) \neq 0$$

$$\Rightarrow f(5) \neq f(-5)$$

Hence, proved.

### Solution 4

The given function is  $f(x) = x^2 - 4x - 3$ 

f, being a polynomial function, is continuous in [1, 4] and is differentiable in (1, 4) whose derivative is 2x - 4.

$$f(1) = 1^{2} - 4 \times 1 - 3 = -6, f(4) = 4^{2} - 4 \times 4 - 3 = -3$$
  
$$\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(4) - f(1)}{4 - 1} = \frac{-3 - (-6)}{3} = \frac{3}{3} = 1$$

## Mean Value Theorem states that there is a point $c \in (1, 4)$ such that f'(c) = 1

$$f'(c) = 1$$
  
 $\Rightarrow 2c - 4 = 1$   
 $\Rightarrow c = \frac{5}{2}$ , where  $c = \frac{5}{2} \in (1, 4)$ 

Hence, Mean Value Theorem is verified for the given function

The given function f is  $f(x) = x^3 - 5x^2 - 3x$ 

f, being a polynomial function, is continuous in [1, 3] and is differentiable in (1, 3) whose derivative is  $3x^2 - 10x - 3$ .

$$f(1) = 1^3 - 5 \times 1^2 - 3 \times 1 = -7, \ f(3) = 3^3 - 5 \times 3^2 - 3 \times 3 = -27$$
$$\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(3) - f(1)}{3 - 1} = \frac{-27 - (-7)}{3 - 1} = -10$$

Mean Value Theorem states that there exist a point  $c \square (1,3)$  such that f'(c) = -10

$$f'(c) = -10$$

$$\Rightarrow 3c^{2} - 10c - 3 = 10$$

$$\Rightarrow 3c^{2} - 10c + 7 = 0$$

$$\Rightarrow 3c^{2} - 3c - 7c + 7 = 0$$

$$\Rightarrow 3c(c - 1) - 7(c - 1) = 0$$

$$\Rightarrow (c - 1)(3c - 7) = 0$$

$$\Rightarrow c = 1, \frac{7}{3}, \text{ where } c = \frac{7}{3} \in (1, 3)$$

Hence, Mean Value Theorem is verified for the given function and  $c = \frac{7}{3} \in (1, 3)$  is the only point for which f'(c) = 0

Mean Value Theorem states that for a function  $f:[a, b] \to \mathbb{R}$ , if

- (a) f is continuous on [a, b]
- (b) f is differentiable on (a, b)

then, there exists some 
$$c \in (a, b)$$
 such that  $f'(c) = \frac{f(b) - f(a)}{b - a}$ 

Therefore, Mean Value Theorem is not applicable to those functions that do not satisfy any of the two conditions of the hypothesis.

(i) 
$$f(x) = [x]$$
 for  $x \in [5, 9]$ 

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5 and x = 9

 $\Rightarrow f(x)$  is not continuous in [5, 9].

The differentiability of f in (5, 9) is checked as follows.

Let n be an integer such that  $n \in (5, 9)$ .

The left hand limit of f at x = n is,

$$\lim_{h \to 0^{+}} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^{-}} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^{-}} \frac{n-1-n}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$

The right hand limit of f at x = n is,

$$\lim_{h \to 0^+} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^+} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^+} \frac{n-h}{h} = \lim_{h \to 0^+} 0 = 0$$

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x = n

f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is not applicable for f(x) = [x] for  $x \in [5, 9]$ 

(ii) 
$$f(x) = [x]$$
 for  $x \in [-2, 2]$ 

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = -2 and x = 2

 $\Rightarrow f(x)$  is not continuous in [-2, 2].

The differentiability of f in (-2, 2) is checked as follows.

Let n be an integer such that  $n \in (-2, 2)$ .

The left hand limit of f at x = n is,

$$\lim_{h \to 0} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0} \frac{[n+h] - [n]}{h} = \lim_{h \to 0} \frac{n - 1 - n}{h} = \lim_{h \to 0} \frac{-1}{h} = \infty$$

The right hand limit of f at x = n is,

$$\lim_{h \to 0^{\circ}} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^{\circ}} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^{\circ}} \frac{n-h}{h} = \lim_{h \to 0^{\circ}} 0 = 0$$

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x = n

f is not differentiable in (-2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is not applicable for f(x) = [x] for  $x \in [-2, 2]$ 

(iii) 
$$f(x) = x^2 - 1 \text{ for } x \in [1, 2]$$

It is evident that f, being a polynomial function, is continuous in [1, 2] and is differentiable in (1, 2).

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is applicable for  $f(x) = x^2 - 1$  for  $x \in [1, 2]$ . It can be proved as follows.

$$f(1) = 1^2 - 1 = 0$$
,  $f(2) = 2^2 - 1 = 3$   

$$\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(2) - f(1)}{2 - 1} = \frac{3 - 0}{1} = 3$$

$$f'(x) = 2x$$

$$\therefore f'(c) = 3$$

$$\Rightarrow 2c = 3$$

$$\Rightarrow c = \frac{3}{2} = 1.5, \text{ where } 1.5 \in [1, 2]$$

### Chapter 5 - Continuity and Differentiability Exercise Misc. Ex. Solution 1

Let 
$$y = (3x^2 - 9x + 5)^9$$

Using chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} (3x^2 - 9x + 5)^9$$

$$= 9(3x^2 - 9x + 5)^8 \cdot \frac{d}{dx} (3x^2 - 9x + 5)$$

$$= 9(3x^2 - 9x + 5)^8 \cdot (6x - 9)$$

$$= 9(3x^2 - 9x + 5)^8 \cdot 3(2x - 3)$$

$$= 27(3x^2 - 9x + 5)^8 (2x - 3)$$

### Solution 2

Let 
$$y = \sin^3 x + \cos^6 x$$
  

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \left( \sin^3 x \right) + \frac{d}{dx} \left( \cos^6 x \right)$$

$$= 3\sin^2 x \cdot \frac{d}{dx} \left( \sin x \right) + 6\cos^5 x \cdot \frac{d}{dx} \left( \cos x \right)$$

$$= 3\sin^2 x \cdot \cos x + 6\cos^5 x \cdot \left( -\sin x \right)$$

$$= 3\sin x \cos x \left( \sin x - 2\cos^4 x \right)$$

Let 
$$y = (5x)^{3\cos 2x}$$

Taking logarithm on both the sides, we obtain

$$\log y = 3\cos 2x \log 5x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = 3\left[\log 5x \cdot \frac{d}{dx}(\cos 2x) + \cos 2x \cdot \frac{d}{dx}(\log 5x)\right]$$

$$\Rightarrow \frac{dy}{dx} = 3y\left[\log 5x(-\sin 2x) \cdot \frac{d}{dx}(2x) + \cos 2x \cdot \frac{1}{5x} \cdot \frac{d}{dx}(5x)\right]$$

$$\Rightarrow \frac{dy}{dx} = 3y\left[-2\sin 2x \log 5x + \frac{\cos 2x}{x}\right]$$

$$\Rightarrow \frac{dy}{dx} = y\left[\frac{3\cos 2x}{x} - 6\sin 2x \log 5x\right]$$

$$\therefore \frac{dy}{dx} = (5x)^{3\cos 2x} \left[\frac{3\cos 2x}{x} - 6\sin 2x \log 5x\right]$$

### Solution 4

Let 
$$y = \sin^{-1}(x\sqrt{x})$$

Using chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \sin^{-1}(x\sqrt{x})$$

$$= \frac{1}{\sqrt{1 - (x\sqrt{x})^2}} \times \frac{d}{dx}(x\sqrt{x})$$

$$= \frac{1}{\sqrt{1 - x^3}} \cdot \frac{d}{dx}(x^{\frac{3}{2}})$$

$$= \frac{1}{\sqrt{1 - x^3}} \times \frac{3}{2} \cdot x^{\frac{1}{2}}$$

$$= \frac{3\sqrt{x}}{2\sqrt{1 - x^3}}$$

$$= \frac{3}{2} \sqrt{\frac{x}{1 - x^3}}$$

$$Let y = \frac{\cos^{-1} \frac{x}{2}}{\sqrt{2x+7}}$$

By quotient rule, we obtain

By quotient rule, we obtain
$$\frac{dy}{dx} = \frac{\sqrt{2x+7} \frac{d}{dx} \left(\cos^{-1} \frac{x}{2}\right) - \left(\cos^{-1} \frac{x}{2}\right) \frac{d}{dx} \left(\sqrt{2x+7}\right)}{\left(\sqrt{2x+7}\right)^{2}}$$

$$= \frac{\sqrt{2x+7} \left[\frac{-1}{\sqrt{1-\left(\frac{x}{2}\right)^{2}}} \cdot \frac{d}{dx} \left(\frac{x}{2}\right)\right] - \left(\cos^{-1} \frac{x}{2}\right) \frac{1}{2\sqrt{2x+7}} \cdot \frac{d}{dx} (2x+7)}{2x+7}$$

$$= \frac{\sqrt{2x+7} \frac{-1}{\sqrt{4-x^{2}}} - \left(\cos^{-1} \frac{x}{2}\right) \frac{2}{2\sqrt{2x+7}}}{2x+7}$$

$$= \frac{-\sqrt{2x+7}}{\sqrt{4-x^{2}} \times (2x+7)} - \frac{\cos^{-1} \frac{x}{2}}{\left(\sqrt{2x+7}\right)(2x+7)}$$

$$= -\left[\frac{1}{\sqrt{4-x^{2}} \sqrt{2x+7}} + \frac{\cos^{-1} \frac{x}{2}}{(2x+7)^{\frac{3}{2}}}\right]$$

Let 
$$y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$$
 ...(1)  
Then,  $\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}$ 

$$= \frac{\left(\sqrt{1+\sin x} + \sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x} - \sqrt{1-\sin x}\right)\left(\sqrt{1+\sin x} + \sqrt{1-\sin x}\right)}$$

$$= \frac{(1+\sin x) + (1-\sin x) + 2\sqrt{(1-\sin x)(1+\sin x)}}{(1+\sin x) - (1-\sin x)}$$

$$= \frac{2+2\sqrt{1-\sin^2 x}}{2\sin x}$$

$$= \frac{1+\cos x}{\sin x}$$

$$= \frac{1+\cos x}{\sin x}$$

$$= \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$$

$$= \cot \frac{x}{2}$$

Therefore, equation (1) becomes

$$y = \cot^{-1}\left(\cot\frac{x}{2}\right)$$

$$\Rightarrow y = \frac{x}{2}$$

$$\therefore \frac{dy}{dx} = \frac{1}{2}\frac{d}{dx}(x)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2}$$

Let 
$$y = (\log x)^{\log x}$$

Taking logarithm on both the sides, we obtain

$$\log y = \log x \cdot \log(\log x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\Big[\log x \cdot \log(\log x)\Big]$$

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = \log(\log x) \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}\Big[\log(\log x)\Big]$$

$$\Rightarrow \frac{dy}{dx} = y\Big[\log(\log x) \cdot \frac{1}{x} + \log x \cdot \frac{1}{\log x} \cdot \frac{d}{dx}(\log x)\Big]$$

$$\Rightarrow \frac{dy}{dx} = y\Big[\frac{1}{x}\log(\log x) + \frac{1}{x}\Big]$$

$$\therefore \frac{dy}{dx} = (\log x)^{\log x}\Big[\frac{1}{x} + \frac{\log(\log x)}{x}\Big]$$

### Solution 8

Let 
$$y = \cos(a\cos x + b\sin x)$$

By using chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx}\cos(a\cos x + b\sin x)$$

$$\Rightarrow \frac{dy}{dx} = -\sin(a\cos x + b\sin x) \cdot \frac{d}{dx}(a\cos x + b\sin x)$$

$$= -\sin(a\cos x + b\sin x) \cdot \left[a(-\sin x) + b\cos x\right]$$

$$= (a\sin x - b\cos x) \cdot \sin(a\cos x + b\sin x)$$

Let 
$$y = (\sin x - \cos x)^{(\sin x - \cos x)}$$

Taking logarithm on both the sides, we obtain

$$\log y = \log \left[ \left( \sin x - \cos x \right)^{\left( \sin x - \cos x \right)} \right]$$
  
$$\Rightarrow \log y = \left( \sin x - \cos x \right) \cdot \log \left( \sin x - \cos x \right)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\Big[\left(\sin x - \cos x\right)\log\left(\sin x - \cos x\right)\Big]$$

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = \log\left(\sin x - \cos x\right) \cdot \frac{d}{dx}\left(\sin x - \cos x\right) + \left(\sin x - \cos x\right) \cdot \frac{d}{dx}\log\left(\sin x - \cos x\right)$$

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = \log\left(\sin x - \cos x\right) \cdot \left(\cos x + \sin x\right) + \left(\sin x - \cos x\right) \cdot \frac{1}{\left(\sin x - \cos x\right)} \cdot \frac{d}{dx}\left(\sin x - \cos x\right)$$

$$\Rightarrow \frac{dy}{dx} = \left(\sin x - \cos x\right)^{\left(\sin x - \cos x\right)}\Big[\left(\cos x + \sin x\right) \cdot \log\left(\sin x - \cos x\right) + \left(\cos x + \sin x\right)\Big]$$

$$\therefore \frac{dy}{dx} = \left(\sin x - \cos x\right)^{\left(\sin x - \cos x\right)}\left(\cos x + \sin x\right)\Big[1 + \log\left(\sin x - \cos x\right)\Big]$$

### where $\sin x > \cos x$

Let 
$$y = x^x + x^a + a^x + a^a$$
  
Also, let  $x^x = u$ ,  $x^a = v$ ,  $a^x = w$ , and  $a^a = s$   

$$\therefore y = u + v + w + s$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} + \frac{ds}{dx}$$
...(1)
$$u = x^x$$

$$\Rightarrow \log u = \log x^x$$

$$\Rightarrow \log u = x \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \log x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log x \cdot 1 + x \cdot \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{x} \left[\log x + 1\right] = x^{x} \left(1 + \log x\right) \qquad \dots(2)$$

$$v = x^{a}$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(x^{a})$$

$$\Rightarrow \frac{dv}{dx} = ax^{a-1} \qquad \dots(3)$$

$$w = a^{x}$$

$$\Rightarrow \log w = \log a^{x}$$

$$\Rightarrow \log w = x \log a$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{w} \cdot \frac{dw}{dx} = \log a \cdot \frac{d}{dx}(x)$$

$$\Rightarrow \frac{dw}{dx} = w \log a$$

$$\Rightarrow \frac{dw}{dx} = a^x \log a \qquad ...(4)$$

$$s = a^a$$

Since  $\alpha$  is constant,  $\alpha^{\alpha}$  is also a constant.

$$\frac{ds}{dr} = 0 \qquad ...(5)$$

From (1), (2), (3), (4), and (5), we obtain

$$\frac{dy}{dx} = x^{x} (1 + \log x) + ax^{a-1} + a^{x} \log a + 0$$
$$= x^{x} (1 + \log x) + ax^{a-1} + a^{x} \log a$$

### Solution 11

Let 
$$y = x^{x^2-3} + (x-3)^{x^2}$$
  
Also, let  $u = x^{x^2-3}$  and  $v = (x-3)^{x^2}$   
 $\therefore y = u + v$ 

Differentiating both sides with respect to x, we obtain

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = x^{x^2 - 3}$$

$$\therefore \log u = \log \left( x^{x^2 - 3} \right)$$

$$\log u = \left( x^2 - 3 \right) \log x$$

Differentiating with respect to x, we obtain

$$\frac{1}{u} \cdot \frac{du}{dx} = \log x \cdot \frac{d}{dx} \left( x^2 - 3 \right) + \left( x^2 - 3 \right) \cdot \frac{d}{dx} \left( \log x \right)$$

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = \log x \cdot 2x + \left( x^2 - 3 \right) \cdot \frac{1}{x}$$

$$\Rightarrow \frac{du}{dx} = x^{x^2 - 3} \cdot \left[ \frac{x^2 - 3}{x} + 2x \log x \right]$$

Also,

$$v = (x-3)^{x^2}$$

$$\therefore \log v = \log(x-3)^{x^2}$$

$$\Rightarrow \log v = x^2 \log(x-3)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \log(x-3) \cdot \frac{d}{dx} (x^2) + x^2 \cdot \frac{d}{dx} \left[ \log(x-3) \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \log(x-3) \cdot 2x + x^2 \cdot \frac{1}{x-3} \cdot \frac{d}{dx} (x-3)$$

$$\Rightarrow \frac{dv}{dx} = v \left[ 2x \log(x-3) + \frac{x^2}{x-3} \cdot 1 \right]$$

$$\Rightarrow \frac{dv}{dx} = (x-3)^{x^2} \left[ \frac{x^2}{x-3} + 2x \log(x-3) \right]$$

Substituting the expressions of  $\frac{du}{dx}$  and  $\frac{dv}{dx}$  in equation (1), we obtain

$$\frac{dy}{dx} = x^{x^2 - 3} \left[ \frac{x^2 - 3}{x} + 2x \log x \right] + \left( x - 3 \right)^{x^2} \left[ \frac{x^2}{x - 3} + 2x \log \left( x - 3 \right) \right]$$

#### Solution 12

It is given that,  $y = 12(1 - \cos t)$ ,  $x = 10(t - \sin t)$ 

$$\therefore \frac{dx}{dt} = \frac{d}{dt} \Big[ 10(t - \sin t) \Big] = 10 \cdot \frac{d}{dt} (t - \sin t) = 10(1 - \cos t)$$

$$\frac{dy}{dt} = \frac{d}{dt} \Big[ 12(1 - \cos t) \Big] = 12 \cdot \frac{d}{dt} (1 - \cos t) = 12 \cdot \Big[ 0 - (-\sin t) \Big] = 12 \sin t$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{12 \sin t}{10(1 - \cos t)} = \frac{12 \cdot 2 \sin \frac{t}{2} \cdot \cos \frac{t}{2}}{10 \cdot 2 \sin^2 \frac{t}{2}} = \frac{6}{5} \cot \frac{t}{2}$$

It is given that, 
$$y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$$
  

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \left[ \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2} \right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} \left( \sin^{-1} x \right) + \frac{d}{dx} \left( \sin^{-1} \sqrt{1 - x^2} \right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - \left(\sqrt{1 - x^2}\right)^2}} \cdot \frac{d}{dx} \left( \sqrt{1 - x^2} \right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{x} \cdot \frac{1}{2\sqrt{1 - x^2}} \cdot \frac{d}{dx} \left( 1 - x^2 \right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{2x\sqrt{1 - x^2}} \left( -2x \right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}}$$

$$\therefore \frac{dy}{dx} = 0$$

$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$

$$\Rightarrow x\sqrt{1+y} = -y\sqrt{1+x}$$

Squaring both sides, we obtain

$$x^{2}(1+y) = y^{2}(1+x)$$

$$\Rightarrow x^2 + x^2 v = v^2 + xv^2$$

$$\Rightarrow x^2 - y^2 = xy^2 - x^2y$$

$$\Rightarrow x^2 - y^2 = xy(y - x)$$

$$\Rightarrow (x+y)(x-y) = xy(y-x)$$

$$\therefore x + y = -xy$$

$$\Rightarrow$$
  $(1+x)y = -x$ 

$$\Rightarrow y = \frac{-x}{(1+x)}$$

Differentiating both sides with respect to x, we obtain

$$y = \frac{-x}{(1+x)}$$

$$\frac{dy}{dx} = -\frac{(1+x)\frac{d}{dx}(x) - x\frac{d}{dx}(1+x)}{(1+x)^2} = -\frac{(1+x)-x}{(1+x)^2} = -\frac{1}{(1+x)^2}$$

Hence, proved.

### Solution 15

Differentiating both sides with respect to x, we obtain

$$\frac{d}{dx}\left[(x-a)^2\right] + \frac{d}{dx}\left[(y-b)^2\right] = \frac{d}{dx}(c^2)$$

$$\Rightarrow 2(x-a) \cdot \frac{d}{dx}(x-a) + 2(y-b) \cdot \frac{d}{dx}(y-b) = 0$$

$$\Rightarrow 2(x-a) \cdot 1 + 2(y-b) \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-(x-a)}{y-b} \qquad ...(1)$$

$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{-(x-a)}{y-b}\right]$$

$$= -\left[\frac{(y-b)\cdot\frac{d}{dx}(x-a) - (x-a)\cdot\frac{d}{dx}(y-b)}{(y-b)^2}\right]$$

$$= -\left[\frac{(y-b) - (x-a)\cdot\frac{dy}{dx}}{(y-b)^2}\right]$$

$$= -\left[\frac{(y-b) - (x-a)\cdot\left\{\frac{-(x-a)}{y-b}\right\}}{(y-b)^2}\right]$$

$$= -\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^3}\right]$$

$$= -\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^3}\right]$$

$$= \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = \frac{\left[1 + \frac{(x-a)^2}{(y-b)^2}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^3}\right]} = \frac{\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^3}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^3}\right]}$$

$$= \frac{\left[\frac{c^2}{(y-b)^3}\right]}{-\frac{c^2}{(y-b)^3}} = \frac{\frac{c^3}{(y-b)^3}}{-\frac{c^2}{(y-b)^3}} = -c \text{ which is constant and is independent of a and b}$$

### Hence, proved.

It is given that, 
$$\cos y = x \cos(a+y)$$
  

$$\therefore \frac{d}{dx} [\cos y] = \frac{d}{dx} [x \cos(a+y)]$$

$$\Rightarrow -\sin y \frac{dy}{dx} = \cos(a+y) \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} [\cos(a+y)]$$

$$\Rightarrow -\sin y \frac{dy}{dx} = \cos(a+y) + x \cdot [-\sin(a+y)] \frac{dy}{dx}$$

$$\Rightarrow [x \sin(a+y) - \sin y] \frac{dy}{dx} = \cos(a+y) \qquad ...(1)$$
Since  $\cos y = x \cos(a+y)$ ,  $x = \frac{\cos y}{\cos(a+y)}$ 

Then, equation (1) reduces to

$$\left[\frac{\cos y}{\cos(a+y)} \cdot \sin(a+y) - \sin y\right] \frac{dy}{dx} = \cos(a+y)$$

$$\Rightarrow \left[\cos y \cdot \sin(a+y) - \sin y \cdot \cos(a+y)\right] \cdot \frac{dy}{dx} = \cos^2(a+y)$$

$$\Rightarrow \sin(a+y-y) \frac{dy}{dx} = \cos^2(a+y)$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$$

It is given that, 
$$x = a(\cos t + t \sin t)$$
 and  $y = a(\sin t - t \cos t)$   

$$\therefore \frac{dx}{dt} = a \cdot \frac{d}{dt} (\cos t + t \sin t)$$

$$= a \left[ -\sin t + \sin t \cdot \frac{d}{dx} (t) + t \cdot \frac{d}{dt} (\sin t) \right]$$

$$= a \left[ -\sin t + \sin t + t \cos t \right] = at \cos t$$

$$\frac{dy}{dt} = a \cdot \frac{d}{dt} (\sin t - t \cos t)$$

$$= a \left[ \cos t - \left\{ \cos t \cdot \frac{d}{dt} (t) + t \cdot \frac{d}{dt} (\cos t) \right\} \right]$$

$$= a \left[ \cos t - \left\{ \cos t - t \sin t \right\} \right] = at \sin t$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{at \sin t}{at \cos t} = \tan t$$
Then, 
$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}(\tan t) = \sec^2 t \cdot \frac{dt}{dx}$$

$$= \sec^2 t \cdot \frac{1}{at \cos t} \qquad \left[\frac{dx}{dt} = at \cos t \Rightarrow \frac{dt}{dx} = \frac{1}{at \cos t}\right]$$

$$= \frac{\sec^3 t}{at}, 0 < t < \frac{\pi}{2}$$

It is known that,  $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$ 

Therefore, when  $x \ge 0$ ,  $f(x) = |x|^3 = x^3$ 

In this case,  $f'(x) = 3x^2$  and hence, f''(x) = 6x

When 
$$x < 0$$
,  $f(x) = |x|^3 = (-x)^3 = -x^3$ 

In this case,  $f'(x) = -3x^2$  and hence, f''(x) = -6x

Thus, for  $f(x) = |x|^3$ , f''(x) exists for all real x and is given by,

$$f''(x) = \begin{cases} 6x, & \text{if } x \ge 0 \\ -6x, & \text{if } x < 0 \end{cases}$$

Solution 19

To prove:  $P(n): \frac{d}{dx}(x^n) = nx^{n-1}$  for all positive integers n

For n=1,

$$P(1): \frac{d}{dx}(x) = 1 = 1 \cdot x^{1-1}$$

P(n) is true for n = 1

Let P(k) is true for some positive integer k.

That is, 
$$P(k): \frac{d}{dx}(x^k) = kx^{k-1}$$

It has to be proved that P(k+1) is also true.

Consider 
$$\frac{d}{dx}(x^{k+1}) = \frac{d}{dx}(x \cdot x^k)$$
  

$$= x^k \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(x^k)$$
 [By applying product rule]  

$$= x^k \cdot 1 + x \cdot k \cdot x^{k-1}$$
  

$$= x^k + kx^k$$
  

$$= (k+1) \cdot x^k$$
  

$$= (k+1) \cdot x^{(k+1)-1}$$

Thus, P(k+1) is true whenever P(k) is true.

Therefore, by the principle of mathematical induction, the statement P(n) is true for every positive integer n.

Hence, proved.

Solution 20

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

Differentiating both sides with respect to x, we obtain

$$\frac{d}{dx} \Big[ \sin(A+B) \Big] = \frac{d}{dx} \Big( \sin A \cos B \Big) + \frac{d}{dx} \Big( \cos A \sin B \Big)$$

$$\Rightarrow \cos(A+B) \cdot \frac{d}{dx} \Big( A+B \Big) = \cos B \cdot \frac{d}{dx} \Big( \sin A \Big) + \sin A \cdot \frac{d}{dx} \Big( \cos B \Big)$$

$$+ \sin B \cdot \frac{d}{dx} \Big( \cos A \Big) + \cos A \cdot \frac{d}{dx} \Big( \sin B \Big)$$

$$\Rightarrow \cos(A+B) \cdot \frac{d}{dx} \Big( A+B \Big) = \cos B \cdot \cos A \frac{dA}{dx} + \sin A \Big( -\sin B \Big) \frac{dB}{dx}$$

$$+ \sin B \Big( -\sin A \Big) \cdot \frac{dA}{dx} + \cos A \cos B \frac{dB}{dx}$$

$$\Rightarrow \cos(A+B) \cdot \Big[ \frac{dA}{dx} + \frac{dB}{dx} \Big] = \Big( \cos A \cos B - \sin A \sin B \Big) \cdot \Big[ \frac{dA}{dx} + \frac{dB}{dx} \Big]$$

$$\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$$

Solution 21

Yes.

Consider the function f(x)=|x-1|+|x-2|

Since we know that the modulus function is continuous everywhere, so there sum is also continuous Therefore, function f is continuous everywhere

Now, let us check the differentiability  $_{off}(x)$  at x=1,2 At x=1

$$= \lim_{h \to 0} \frac{h + h + 1 - 1}{h} = \lim_{h \to 0} \frac{2h}{h}$$

Now,

$$RHD = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$= \lim_{x \to 1^{+}} \frac{|x - 1| + |x - 2| - |1 - 1| - |1 - 2|}{x - 1}$$

$$= \lim_{x \to 1^{+}} \frac{|x - 1| + |x - 2| - 1}{x - 1}$$

$$= \lim_{x \to 1^{+}} \frac{|x - 1| + |x - 2| - 1}{x - 1}$$
[Take x=1+h, h>0 such that h\to 0 as x\to 1<sup>+</sup>]

$$= \lim_{h \to 0} \frac{|1+h-1| + |1+h-2| - 1}{1+h-1}$$

$$= \lim_{h \to 0} \frac{|h| + |h-1| - 1}{h}$$

$$= \lim_{h \to 0} \frac{h + |-(1-h)| - 1}{-h}$$

$$= \lim_{h \to 0} \frac{h + 1 - h - 1}{-h}$$

$$= 0$$

$$\neq LHD$$

Therefore, f is not differentiable at x=1.

At 
$$x=2$$

$$LHD = \lim_{x\to 2^{-}} \frac{f(x) - f(2)}{x-2}$$

$$= \lim_{x\to 2^{-}} \frac{|x-1| + |x-2| - |2-1| - |2-2|}{x-1}$$

$$= \lim_{x\to 2^{-}} \frac{|x-1| + |x-2| - 1}{x-2}$$

$$[Take x=2-h, h>0 such that h\to 0 as x\to 2^{-}]$$

$$= \lim_{h\to 0} \frac{|2-h-1| + |2-h-2| - 1}{2-h-2}$$

$$= \lim_{h\to 0} \frac{|1-h| + |-h| - 1}{-h}$$

$$= \lim_{h\to 0} \frac{1-h+h-1}{-h}$$

$$= -0$$

NOW,

$$RHD = \lim_{x\to 2^{-}} \frac{f(x) - f(2)}{x-2}$$

$$= \lim_{x \to 2^{+}} \frac{|x-1| + |x-2| - |2-1| - |2-2|}{|x-2|}$$

$$= \lim_{x \to 2^{+}} \frac{|x-1| + |x-2| - 1}{|x-2|}$$

$$= \lim_{x \to 2^{+}} \frac{|x-1| + |x-2| - 1}{|x-2|}$$

$$= \lim_{h \to 0} \frac{|2+h-1| + |2+h-2| - 1}{|2+h-2|}$$

$$= \lim_{h \to 0} \frac{|1+h| + |h| - 1}{h}$$

$$= \lim_{h \to 0} \frac{1+h + h - 1}{h}$$

$$= \lim_{h \to 0} \frac{2h}{h}$$

$$= 2$$

$$\neq LHD$$

Therefore, f is not differentiable at x=2.

Hence, f is not differentiable at exactly two points.

$$y = \begin{vmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{vmatrix}$$

$$\Rightarrow y = (mc - nb) f(x) - (lc - na) g(x) + (lb - ma) h(x)$$
Then, 
$$\frac{dy}{dx} = \frac{d}{dx} \left[ (mc - nb) f(x) \right] - \frac{d}{dx} \left[ (lc - na) g(x) \right] + \frac{d}{dx} \left[ (lb - ma) h(x) \right]$$

$$= (mc - nb) f'(x) - (lc - na) g'(x) + (lb - ma) h'(x)$$

$$= \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix}$$

Thus.

$$\frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix}$$

### Solution 23

It is given that,  $y = e^{a\cos^{3}x}$ 

Taking logarithm on both the sides, we obtain

$$\log y = a \cos^{-1} x \log e$$

$$\log y = a \cos^{-1} x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = a \times \frac{-1}{\sqrt{1 - x^2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-ay}{\sqrt{1 - x^2}}$$

By squaring both the sides, we obtain

$$\left(\frac{dy}{dx}\right)^2 = \frac{a^2y^2}{1-x^2}$$
$$\Rightarrow \left(1-x^2\right)\left(\frac{dy}{dx}\right)^2 = a^2y^2$$

$$\left(1 - x^2\right) \left(\frac{dy}{dx}\right)^2 = a^2 y^2$$

Again differentiating both sides with respect to x, we obtain

$$\left(\frac{dy}{dx}\right)^{2} \frac{d}{dx} (1-x^{2}) + (1-x^{2}) \times \frac{d}{dx} \left[ \left(\frac{dy}{dx}\right)^{2} \right] = a^{2} \frac{d}{dx} (y^{2})$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^{2} (-2x) + (1-x^{2}) \times 2 \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} = a^{2} \cdot 2y \cdot \frac{dy}{dx}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^{2} (-2x) + (1-x^{2}) \times 2 \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} = a^{2} \cdot 2y \cdot \frac{dy}{dx}$$

$$\Rightarrow -x \frac{dy}{dx} + (1-x^{2}) \frac{d^{2}y}{dx^{2}} = a^{2} \cdot y$$

$$\left[\frac{dy}{dx} \neq 0\right]$$

$$\Rightarrow \left(1-x^{2}\right) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} - a^{2}y = 0$$

Hence, proved.