

CpE 3201 Embedded Systems

Analog to Digital Converter

Peripherals Features Covered:

- Analog to Digital Converter (ADC)
- Universal Synchronous Asynchronous Receiver Transmitter (USART)
- Inter-Integrated Circuit Communication (I²C)

Analog to Digital Conversion

- Analog signals are continuous with infinite values in a given range
- Digital signals have discrete values such as on and off, 0 and 1 or +5V and 0.7V.

Digital Signal

Conversion Concepts

 A/D conversion is the process of converting continuously varying signal such as voltage or current into discrete digital quantities that represent the magnitude of the signal compared to a standard or reference voltage.

Hypothetical 3-bit A/D Converter

Conversion Concepts

- A/D resolution: 3 bits
- No. of Voltage Steps: $2^3 = 8$
- Step Voltage: 1V / 8 steps = 0.125 V/step
- If analog input voltage is 0.5V, therefore:
 - 0.5V / 0.125V/step = 4 steps
 - Digital Value = "100"

Example #1

Given a 0 to 5V analog input signal and an 8-bit A/D converter, calculate the values LSB and MSB, resolution and the full-scale output.

Solution

- $2^8 = 256$ steps from 00H to FFH
- LSB $(00000001_2) = 5V/256$ steps = 19.53mV
- MSB = (100000002) = 1/2 of full scale value = 2.5V
- Resolution = 256 steps @ 19.53mV per step
- Full-scale output = Full-scale Analog Signal LSB
 = 5V 0.01953V = 4.98 V

Example #2

 Calculate the voltage resolution for a 10-bit converter when the full-scale input voltage ranges from -5V to 5V.

Solution

- $-2^{10} = 1024$ steps from 000H to 3FFH
- Voltage Range: (5-(-5)) = 10V
- Voltage Resolution: 10V / 1024 steps = 9.76mV

Resolution

- Resolution defines the step voltage of an A/D converter. The higher the resolution, the finer the step voltage value and is ideal for minute changes in the analog signal. For example an 8-bit vs 10-bit A/D converters:
 - Steps: 256 vs 1024
 - Step voltage: 19.53mV vs 4.88mV

Conversion Methods

Flash

- uses multiple comparators in parallel
- If the analog signal is higher than the known signal, the output of the comparator goes to 1

Integrating

- this A/D converter type charges a capacitor for a given amount of time using the analog signal
- It discharges back to zero with a known voltage and the counter provides the value of the unknown signal

Conversion Methods

- Successive Approximation
 - this converter includes a D/A converter and a comparator
 - an internal analog signal is generated by turning on successive bits in the D/A converter
- Counter
 - similar to successive approximation circuitry
 - The counter starting from zero feeds the signal to the D/A converter instead of turning on successive bits

A/D Conversion Module (PIC16F877A)

- The 8-/10-bit A/D converter module of the PIC16F877A has 8-analog input channels.
- It has a 10-bit digital output.
- It has high and low-voltage reference input that is software selectable to some combination of VDD, VSS, RA2 or RA3.
- It is able to operate while the device is in Sleep mode.

A/D Module Registers

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register0 (ADCON0)
- A/D Control Register1 (ADCON1)

REGISTER 11-1: ADCON0 REGISTER (ADDRESS 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in bold)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	0.0	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

000 = Channel 0 (AN0)

001 = Channel 1 (AN1)

010 = Channel 2 (AN2)

011 = Channel 3 (AN3)

100 = Channel 4 (AN4)

101 = Channel 5 (AN5)

110 = Channel 6 (AN6)

111 = Channel 7 (AN7)

Note: The PIC16F873A/876A devices only implement A/D channels 0 through 4; the unimplemented selections are reserved. Do not select any unimplemented channels with these devices.

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically cleared by hardware when the A/D conversion is complete)
- 0 = A/D conversion not in progress
- bit 1 Unimplemented: Read as '0'
- bit 0 ADON: A/D On bit
 - 1 = A/D converter module is powered up
 - 0 = A/D converter module is shut-off and consumes no operating current

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7				•			bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	0.0	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	0.0	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	_	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	AN3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

A = Analog input D = Digital I/O C/R = # of analog input channels/# of A/D voltage references

FIGURE 11-1: A/D BLOCK DIAGRAM

A/D Module Registers

- The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion.
- When the A/D conversion is complete, the result is loaded into this A/D Result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set.
- Interrupt enable ADIE is at PIE1 register and interrupt flag ADIF is at PIR1 register.

Steps in Implementing A/D Conversion

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - SelectA/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIE bit

^{*} Analog input pins are automatically set to input once configured as "analog".

Steps in Implementing A/D Conversion

- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared (interrupts disabled); OR
 - Waiting for the A/D interrupt
- Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as T_{AD}.

^{*} Analog input pins are automatically set to input once configured as "analog".

A/D Converter Resolution

- The digital result is 10-bits at ADRESH:ADRESL.
- Depending on the A/D Result Format Select (ADFM) bit in the ADCON1 register, the 10-bit data can either be right or left justified.

A/D Converter Resolution

• Let's say that the V_{REF} is 5V. Converting the analog input using the 10-bit resolution will have a step voltage of:

$$StepVoltage = \frac{V_{REF}}{2^{resolution}}$$

$$StepVoltage = \frac{5V}{2^{10}} = 4.882mV$$

 The digital value range of 0-169 will have an analog value range of:

$$169x4.882mV = 0.825V$$

Therefore the equivalent analog range is:

$$0V - 0.825V$$

Example (A/D Module)

 A variable resistor is connected to AN0 (RA0) with a reference voltage of +5V and five LEDs connected to PORTB <RB4:RB0>. The LEDs shall light up depending on the applied analog signal.

Applied voltage	Obtained A/D value	LED lighting
0 to 0.83 V	0 to 169	
0 10 0.85 4	0 10 109	No LED is on.
0.83 to 1.67 V	170 to 340	
0.05 15 1.07 4	170 to 340	LED1 is on.
1.67 to 2.50 V	341 to 511	
1.07 10 2.30 4	341 10 311	LEDs 1 to 2 are on.
2.50 to 3.33 V	512 to 682	
2.50 (0 5.55 4	312 to 002	LEDs 1 to 3 are on.
3.33 to 4.17 V	683 to 853	
3.33 15 4:17 4	065 to 655	LEDs 1 to 4 are on.
4.17 to 5.00 V	854 to 1024	
9.17 10 5.00 Y	037 10 1024	All LEDs are on.


```
void main(void)
  int d value = 0;
  TRISE = 0x00; // set all PORTB as output
  PORTB = 0X00; // all LEDs OFF
  ADCON1 = 0x80; // result register: right justified, clock: Fosc/2
                    // all ports in PORTA are analog
                    // V_{REF+}=VDD, V_{REF-}=VSS
  ADCON0 = 0x01;
                   // clock: Fosc/2, analog channel: ANO
                    // A/D conversion: STOP, A/D module: ON
  for(;;)
              // foreground routine
     d value = readADC();
     /\overline{*} setting the LEDs */
     if (d value>=0 && d value<=169)
             PORTB = 0 \times \overline{00}; // all LEDs OFF
     else if (d value>=170 && d value<=340)
              PORTB = 0x01;
                                   // RBO LED ON
```

For this example the step voltage is 4.88mV. Therefore from 0 to 169, the voltage range is from 0V to 0.83V (see table).

```
int readADC(void)
   int temp = 0;
   delay(1000);
                // delay before reading value
   GO = 1;
                          // start A/D conversion (ADCON0 reg)
     while (GO DONE==1); // wait until conversion is done (ADCONO reg)
   /* read result register */
   temp = ADRESH; // read ADRESH
   temp = temp << 8; // move to correct position
   temp = temp | ADRESL; // read ADRESL
   return temp;
void delay(int cnt)
   while (cnt--);
```

GO bit is automatically reset when conversion is done (GO_DONE='0').

Using Interrupts

- When implementing A/D converter using interrupts, a slower conversion clock must be used.
- In the ISR, ADIF should be checked. The value should be '1' when the conversion is complete.
- In the next example, the conversion clock used if Fosc/32.


```
void main(void)
                  // set all PORTB as output
  TRISB = 0 \times 00;
                  // all LEDs OFF
  PORTB = 0x00;
  ADCON1 = 0x80;
                  // result register: right Justified, clock: Fosc/8
                   // all ports in PORTA are analog
                   // V_{REF+}=VDD, V_{REF-}=VSS
  ADCON0 = 0x41;
                   // clock: Fosc/8 analog channel: ANO
                   // A/D conversion: STOP, A/D module: ON
                   // A/D conversion complete interrupt enable (PIE1 reg)
  ADIE = 1;
                   // reset interrupt flag (PIR1 reg)
  ADIF = 0;
  PEIE = 1;
                   // enable all peripheral interrupt (INTCON reg)
  GIE = 1;
                   // enable all unmasked interrupts (INTCON reg)
  GO = 1;
                   // start A/D conversion (ADCONO reg)
                 // foreground routine
  for(;;)
```



```
void interrupt ISR(void)
 int d value = 0;
 GIE = 0;
                       // disable all unmasked interrupts (INTCON reg)
 if(ADIF==1)
                        // checks CCP1 interrupt flag
   ADIF = 0;
                       // clears interrupt flag (INTCON reg)
    /* read result register */
    d value = d value << 8; // move to correct position
    /* setting the LEDs */
    if(d value>=0 && d value<=169)
      PORTB = 0 \times 00; // all LEDs OFF
    else if(d value>=170 && d value<=340)
      PORTB = 0 \times 01; // RB0 LED ON
 GO = 1;
                       // restart A/D conversion (ADCONO reg)
 GIE = 1;
                        // enable all unmasked interrupts (INTCON reg)
```


CpE 3201 Embedded Systems

End of Lecture

Note: This lecture slides was written by **Van B. Patiluna**. Images used in this material are copyright to their respective owners. Do not distribute.

References:

- De Leon, Hilary L., Microcontroller Programming and Interfacing, 2006.
- Goankar, Ramesh, Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18 MCU Family),2007.
- PIC16F87X Data Sheet, Microchip Technology Inc. 2003.