

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf:	DE-EX-01

Indice: 4

Date: 02/12/2019

EPREUVE D'EVALUATION

Annéall		
Année Universitaire : 2020/2021 Nature : ☑ DC ☐ Evamen ☐ DP	Date de l'Examen : 23/11/2020	
	Durée: □ 1h ☑ 1h30min	□ 2h □ 3h
Diplôme : ☐ Mastère ☐ Ingénieur	Nombre de pages : 1	
Section: ☐ GCP ☑ GCV ☐ GEA ☐ GCR ☐ GM	Enseignant (e) : Néjib Ben Jamaa	1
Niveau d'étude : \square 1 ère \square 2 ème \square 3 ème année	Documents Autorisés :□ Oui	☑ Non
Matière : Géologie et Géophysique de l'Ingénieur	Remarque:	

- 1- Quelles sont les méthodes géophysiques les plus courantes :
 - pour déterminer la profondeur d'un substratum rocheux ?

pour détecter une nappe aquifère ?

- 2- Comment sont classées les roches détritiques ? Quels sont les différents types ?
- 3- Quelle est la différence entre les roches volcaniques et les roches plutoniques ?
- 4- Par quoi est caractérisée une marge continentale active ?
- 5- Quel est le rôle des essais mécaniques des sols en laboratoire ?
- 6- Que se passe lorsqu'on a une couche mince conductrice se trouve entre deux couches résistantes épaisses. Qu'appelle-t-on ce phénomène ?
- 7- Exercice N°1:

Lors d'une prospection sismique réfraction, on a enregistré les mesures suivantes.

			Branch and the state of the sta										
X (m)	0	20	40	60	70	80	100	120	140	160	170	180	200
Tirl	0	0,008	0,016	0,023	0,026	0,029	0,036	0,042			0,059		
Tir 2 10 ⁻³ S	0	0,008	0,016	0,022	0,025	0,027	0,032	0,036	0,041	0,046	0,048	0,050	0,055

- a- Tracez les dromochroniques en adoptant les échelles suivantes :
 - $(1 \text{ mm pour } 1 \text{ m et } 2 \text{ mm pour } 1 \text{ ms} = 10^{-3} \text{ s}).$
- b- Calculez les différentes vitesses et épaisseurs.
- c- En se basant sur le tableau suivant, déterminez la nature des terrains.

Roches	argile	sable	grès	marne	gravier	calcaire
Vitesse (km/s)	1.1 - 1.8	1.9 - 2.7	2.9 - 3.8	2.1- 2.8	0.3 - 1.0	3.5 - 6.0

Données:

t = x/v1

 $t = x/v2 + (2.e1\cos i_{1.2}) / v1$

 $t = x/v3 + (2.e1\cos i_{1.3}) / v1 + (2.e2\cos i_{2.3}) / v2$

 $t = x.\sin(i+\alpha)/v1 + (2.e1\cos i)/v1$

 $t = x.\sin(i-\alpha)/v1 + (2.e2\cos i)/v1$

Bonne chance

Page: 1/1