CNNs

CV Jawahar

IIIT-H

11 April 2025

Convolution

Filter 1

6 x 6 image

-2

-1

-2

Revisit: Convolution layer

- Window size
- Stride
- Padding
- Pool

Window size: 3x3

Stride: 1

Padding: 0

Window size: 3x3

Stride: 1

Padding: 1

CNNs

Strides reduces dimension

$$O = \frac{(W - K + 2P)}{S} + 1$$

Revisit: Convolution layer

- Window size
- Stride
- Padding
- Pool

Window size: 3x3

Stride: 1

Padding: 0

Window size: 3x3

Stride: 1

Padding: 1

Max Pool and Stride

- Window Size = 3
- Stride =1

Max pooling in 2-D

Softmax

- Normalizes the output.
- K is total number of classes

Terminologies

- # Input Channels
- # Output channels

- Feature Maps/Channels
- Filters/Weights
- Filter Size/Window Size

- Stride
- Pooling (Max/Average)
- Fully Connected Layer
- Soft-Max
- Normalization
- Flattening
- Convolution Layer

Layer wise abstraction

11

1-D Convolution 2-D Convolution

Deep Learnt Features

• It's deep if it has more than one stage of non-linear feature transformation.

AlexNet Architecture

Learned Representations: Pre-Train and Fine Tune

Design Guidelines: Smaller Convolutions and Deeper nw

- 1. Less Parameters; Faster
- 2. Same Receptive Field
- 3. More nonlinearities (2 ReLU)

Performance over ImagenetBenchmark

Accuracy vs Model complexity Vs comput. complexity

- Size of point denotes the Model complexity
- The band around 95% accuracy has varying complexity of 4-25 G-FLOPs
- The band between 10-15 G-FLOPs have high variance in both Model Complexity (size of the point) and accuracy
- Recognition accuracy is not only dependent on the model or computational complexity

What goes on inside a convnet?

Visualizing CNNs

A. How do I interpret the learned filters?

Source: Zeiler e.t. al. ECCV'14

Early Layers Converge Faster

Figure: Evolution of randomly chosen subset of model features generated using deconvnet through training at epoch 1, 2, 5, 10, 20, 30, 40, 64.

CNN

RNNs

RNN basic architecture

23

RNN basic architecture

Forward Pass, Loss

$$h_t = f(Ux_t + Wh_{t-1})$$

$$\hat{o}_t = \operatorname{softmax}(Vh_t)$$

$$E(o,\hat{o}) = \sum_{t} E_{t}(o_{t},\hat{o}_{t})$$

Questions?