Citation !!

⑩日本国特許庁(JP)

① 特許出額公告

⑩特 許 公 報(B2)

昭63-31426

@Int_Cl_4	織別記号	庁内整理番号	2000公告	昭和63年(1988)6月23日
C 04 B 33/02 35/20 E 04 F 13/14		6512-4G 7412-4G		
E 04 F 13/14	103	A-7130-2E		発明の数 1 (全5頁)

蟻足付内装タイルの製造方法 図発明の名称

> 頭 昭56-60490 到特

開 昭57-174556 够公

願 昭56(1981)4月20日 13日

④昭57(1982)10月27日

三重県上野市三田1745番地の2 重 降 福岡 砂発 明 者

株式会社 イナツクス 切出 願 人

愛知県常滑市鯉江本町3丁目6番地

弁理士 内田 敏彦 の代 理 人 伊藤 哲夫 審査官

特開 昭54-118410 (JP, A) 60参考文献

特開 昭53-120708 (JP, A)

1

砂特許請求の範囲

1 厚みがおよそ5~6㎜以下とされる内装タイ ルに蟻足を形成する場合の内装タイルの製造方法 であつて、滑石を主原料として勘合してなる坏土 において粒子の平均充塡率が0.7以上になるまで 加圧成形することで、蟻足の有る部分と蟻足の無 い部分との充塡率個差を0.02以下とし、その後に **紫雄、施釉、焼成等の工程を経た製品タイル表面** する部分との間で波模様を出現させないようにし たことを特徴とする蛟足付内装タイルの製造方 法。

発明の詳細な説明

〔産業上の利用分野〕

本発明は、施和後のタイル表面に、波模様が出 現するのを防止した蟻足付内装タイルの製造方法 に関するものである。

(従来の技術及びその欠点)

一般に、タイルにあつては、タイル裏面に裏足 20 を形成すればタイル贴着後の接着強度に優れたも のが得られることは周知である。また裏足は蟻足 である場合に最も接着強度に優れていることも周 知である。然しながら、内装タイルの場合には、 その内厚が5~6㎜程度であるため、タイル素地 をつくるプレス成形時に、英足の有る部分と喪足 の無い部分とに加わるプレス成形圧に差が生じ、 原料粒子の密度の差異、すなわち、充壌率の差異

2

となつて現れざるを得ない。このため、上配暉部 分における粒子間の間隙 (気孔) の大きさも異な り、これに起因して生ずる吸水率及び吸水速度の 差が、施秈後の釉薬の水分量を部分的に変化さ の充填率とプレス成形圧との関係を表す特性曲線 5 せ、タイル緊地の釉面に裏足の有る部分と、無い 部分との波模様を出現させるという致命的な欠点 を生じていた。

そのため、従来にあつては、内装タイルの裏面 には要足を形成しないのが通常であつた。もつと の前記機足の有る部分と蟻足の無い部分とに対応 10 も、例外的に裏足を形成する場合には、裏足のビ ツチを小さくして上記プレス成形圧の集中を分散 させて平均化し、波模様の出現を極力防止するよ うにしていたが、この方法によつても、裏足のビ ツチを小さくすることには技術的な限界があり、 15 完全に波模様の出現を防止するには至らなかつ た。しかも、この場合においても、褒足を蟻足と することは上記事情から不可能であつた。このた め、従来の内装タイルは接着強度の点で未だ充分 なものではなかつた。

要するに、従来の内装タイルにあつては、優れ た接着強度を得んがための、裏足を形成する技術 と、これに付随する波模様の出現の問題とが相反 し、前者を得んとすれば後者に問題が起こり、後 者の問題を解決せんとすれば前者が得られず、二 25 律背反する相関関係の両者を一挙に解決するもの が得られなかつたのである。

(問題点を解決するための手段)

本発明は、従来の前記問題点に鑑みてこれを改

良除去したものであつて、内装タイルの表面に波 模様を出現させることなく嫌足を形成することの できる内装タイルの製造方法を提供せんとするも のである。

採用した手段は、厚みがおよそ5~6 m以下とさ れる内装タイルに蟻足を形成する場合の内装タイ ルの製造方法であつて、滑石を主原料として調合 してなる坏上の充填率とプレス成形圧との関係を 設す特性曲線において粒子の平均充填率が0.7以 10 向性、可塑性に優れる(滑石原料の特徴)ので、 上になるまで加圧成形することで、蟻足の有る部 分と蟻足の無い部分との充塡率偏差を0.02以下と し、その後に素焼、施釉、焼成等の工程を経た製 品タイル表面の前記域足の有る部分と蟻足の無い 部分とに対応する部分との間で波模様を出現させ 15 ないようにしている。

〔作用〕

主原料 (附石) の充塡率とプレス成形圧との関 係を示す特性山線において、粒子の平均充塡率が 分と蟻足の無い部分との充填率偏差を0.02以下と なるようにすることにより、成形されたタイル素 **地は低い吸水率を示す。このため、蟻足の有る部** 分と、蟻足の無い部分との吸水率偏差がほとんど なくなり、施釉した場合に両部分間において和薬 25 特性をもつているということである。 の水分量に変化がなくなる。従つて、タイル表面 に釉薬を塗布して姚成しても、波模様は出現しな 410

〔寒旅例〕

を図面に示す実施例に基づいて説明すると次の通 りである。

本発明の実施例は、生滑石を63%、長石を30 %、粘土を7%の割合で調合してなる滑石を主原 料とする坏土を使用している。この調合割合にお 35 けるブレス成形圧と粒子の充填率(ここにおいて 充填率とは、1-空隙率をいう)の関係は、第1 図に示す通りである。尚、同図において、滑石系 とあるのが本発明の実施例の場合であり、長石系 とあるのが長石を主原料とする従来の場合であ 40 る。この第1図から明らかなことは、本発明の滑 石系のものは、プレス成形圧の小さい領域で充填 率が急酸に増加し、プレス成形圧が300kg/cmの あたりから飽和状態に近い状態になつているとい

うことである。これに対して、従来の長石系のも のは、プレス成形圧の増加に対して充填率はゆる やかな上昇を続け、1000kg/ddを越えるあたり で、飽和状態に近い状態になるということであ **血して、前配問題点を解決するために本発明が 5 る。尚、本発明の上記特性は、滑石を主原料とす** るものであれば、原料の調合割合を変えてみても 路々同一の結果が得られたので、ここでの他の調 合割合の実施例は割愛する。

> **製するに、本発明の滑石系のものは、粒子の配** 極めて低いプレス成形圧でも高い充塡率を得るこ とができ、粒子間に形成される気孔の大きさを小 さくして吸水率を下げることが可能である。また プレス機械も小型のもので良い。

一方、上記充填率と施釉する直前の素焼した後 の吸水率の関係は、本発明の滑石系のものと、従 米の長石系のものとを比較して示せば、第2図及 び第3図に示す通りである。第2図は、素焼温度 を1040℃とした場合、第3図は同じく1080℃とし 0.7以上となるように加圧成形し、蟻足の有る部 20 た場合である。同図から判明することは、本発明 の滑石系のものは、素焼後の吸水率が低く、ブレ ス成形時の充塡率が0.7以上のところで横ばい状 腹になつているのに対し、従来の長石系のものは 吸水率が全体的に高く、しかも略々直線的な傾斜

次に、この第3図の結果を参酌しつつ、本発明 の滑石系と従来の長石系の坏土とで、それぞれ第 4 図に示す如く、肉厚 t = 4 ㎜のタイル裏面に、 高さh=1㎜の裏足を設けてタイル素地1を成形 以下に、本発明の蟻足付内装タイルの製造方法 30 した場合の、裏足の無い部分Aと裏足の有る部分 Bとのプレス成形圧と充塡率との関係及びその時 の吸水率と波模様の発生率について表ー1を参照 して考察する。

裹 (案焼温度1080℃、タイル案地20個)

	成形 圧	光 率			紫焙	波模
kg	kg/	A部	B部	A-B	吸率%	建率 %
本発明石系	100	0.68	0,62	0,08	12, 1	100
	180	0.72	0,70	0.02	9.2	5
	230	0.74	0.73	0,01	7,8	0

紫後吸水 成形 充 率 生率 A-B B部 ABIS kg/ % cil 7.0 0 280 0.74 0.01 0.75 n 0.75 0.01 6.6 0.78 330 成形不能 長石 系 100 0.04 16,6 100 0.60 180 0.64 100 0.04 16.4 0.68 0.64 50 0.03 15.9 0.70 0.67 280 . 10 0.02 15.3 0.69 330 0.71

蜷足2の ある内装タイル3を成形した場合の実施例であ る。蟻足2の成形は、素焼工程前のタイル繁地成 形時に蟻機4に相当する部分にゴム金型を用いて 成形すればよい。これにより、内装タイル3を、 尚、上記表-1は、各プレス成形圧において20 15 張付モルタル、セメントペースト等の接着剤を用 いて相手方部材に貼着した場合に、蟻潞4に上配 接着剤が入り込み、優れた接着強度が得られる。 [発明の効果]

6

個のタイル楽地 1 を温度1080℃で楽焼し、施釉し た場合の結果である。

以上説明したように本発明にあつては、滑石を 塡率が0.7以上になるまで加圧して褒面に蟻足の 有るタイル緊地を成形し、蟻足の有る部分と無い 部分との充塡率偏差を0.02以下とすることによ り、これを素焼した半製品の蟻足の有る部分とそ ものではA部の充填率は0.70で、B部の充填率は 25 れ以外の部分の吸水率の偏差を小さく抑え、その 後に施釉、本焼等の工程を行うことにより、タイ ル表面に波模様が出現しないようにしたから、極 めて肉厚の稗い内装タイルであつても蟻足を設け ることが可能である。従つて、本発明により製造 された内装タイルは、接着強度に優れたものとな る。また波模様が出現しないので、施工後のタイ ル壁面が美麗である等、内装タイルの技術分野に 貢献するところは極めて大である。要するに、本 発明は、従来解決し得なかつた内装タイルに蟻足 燥し、波模様は現れない。ところで、従来の長石 35 を形成し接着強度を向上させるという技術と、裏 足を形成した場合、タイル表面に波模様が出現す るという二律背反する問題を一挙に解決すること が可能である。

先ず、この表-1の結果から、裏足の無い部分 A及び裏足の有る部分Bと充填率との関係を、本 発明の滑石系のものと従来の長石系のものとを比 20 主原料として調合してなる坏土を、粒子の平均充 较して考察する。プレス成形圧が280kg/cdの場 合を例にとつて説明すると、本発明の滑石系もの ではA部の充塡率は0.75で、B部の充塡率は 0.74、AとBの差は0.01である。従来の長石系の 0.67、AとBの差は0.03である。従つて、上配充 塡率から聚焼後のA部とB部における吸水率の偏 **差は、第3図に示すように本発明の滑石系のもの** ではほとんど見られず、従来の長石系のものでは Δxで示す如く大きなものとして現れている。す 30 なわち、本発明の滑石系のものであれば、裏足の 紙い部分Aと裏足の有る部分Bとにおいて、吸水 率の偏差がないので施釉しても種薬の水分を吸収 する速度に差がなく、釉面の全面が同じ速度で乾 系のものでは、英足の無い部分Aと裏足の有る部 分Bとにおいて、大きな吸水率の偏差Δxがある ので、施籼すると籼薬の水分を吸収する速度が異 なり、A部とB部との間に釉薬の濃淡の波模様 (発生率50%)を生じるものである。

図面の簡単な説明

要するに、本発明は、滑石を主原料とする坏土 の平均充填率とプレス成形圧との関係を示す特性 山線及び平均充塡率と吸水率の関係を示す特性曲 線に着目し、該特性山線の充填率が0.7以上であ

第1図は本発明に係る滑石系の坏土と従来の長 40 石系の坏土の成形圧と充填率の関係を示す図面、 第2図及び第3図は本発明に係る滑石系の坏土と 従来の長石系の坏土でタイル緊地を成形し、これ を緊焼した場合のタイル索地の平均充填率と緊焼 7

ð

後の吸水率の関係を示す図面、第4図は要足の有るタイル素地を示す擬断面図、第5図は本発明に

係る内装タイルの縦断面図である。 2……蟻足、3……内装タイル。

第3図

第4図

第5図

