

第2节 基本文字处理:正则表达式

From Languages to Information CS124
—— Lecture 2: Basic Text Processing

https://web.stanfhttps://web.stanford.edu/class/cs124/lec/textprocessingboth.pdford.edu/class/cs224n/lectures/cs224n-2017-lecture2.pdf

正则表达式 (Regular Expressions)

- 正则表达式是对字符串操作的一种逻辑公式,就是用事先 定义好的一些特定字符、及这些特定字符的组合,组成一 个规定字符串。
- 如何搜索这些词?
 - ◆ woodchuck (土拨鼠)
 - woodchucks
 - Woodchuck
 - Woodchucks

正则表达式:析取

• 字符集合 []

Pattern	Matches
[wW] oodchuck	Woodchuck, woodchuck
[1234567890]	任一数字

• 范围表示 [A-Z]

Pattern	Matches	
[A-Z]	单个大写字母	Drenched Blossoms
[a-z]	单个小写字母	my beans were impatient
[0-9]	单个数字	Chapter 1: Down the Hole

- 否定 [^Ss]
 - 仅当 "^" 出现在字符集合模式([])的第一个字符时

Pattern	Matches	
[^A-Z]	非单个大写字母	Oyfn pripetchik
[^Ss]	既不是 "S" 也不 是 "s"	<u>I</u> have no exquisite reason
a^b	与字段相同	Look up <u>a^b</u> now

正则表达式:其他析取

- Woodchucks is another name for groundhog!
- 析取中的"」",对匹配条件进行逻辑"或"运算

Pattern	Matches
groundhog woodchuck	groundhog 或 woodchuck
yours mine	yours 或 mine
a b c	=[abc]

Pattern	Matches	
colou?r	匹配前面的子表达式 一次或零次	colour
oo*h!	匹配前面的子表达式 任意次	oh! ooh! oooooh!
0+h!	匹配前面的子表达式 一次或多次	baa baaa baaaaaa
beg.n	匹配除"\n"和"\r" 之外的任何单个字符	begin begun beg9n

正则表达式: ^ \$

Pattern	Matches	
^[A-Z]	匹配输入字行首	Palo Alto colour
^[^A-Za-z]	如果设置了RegExp对 象的Multiline属性,^ 也匹配 "\n"或 "\r" 之后的位置	<u>l</u> <u>"</u> Hello"
\.\$	匹配输入行尾	The end.
.\$	如果设置了RegExp对 象的Multiline属性, ^ 也匹配 "\n" 或 "\r" 之前的位置	The end? The end!

举例

• 找到文本中的 "the" 的所有实例

错误

- 我们刚刚经历的过程修复了两种错误
 - 匹配本不应被匹配的字符串(there, then, other)
 - False positives (误报 Type I)
 - 没有匹配到本应被匹配的字符串(The)
 - False negatives (漏报 Type II)

错误

- 在NLP中,我们经常处理此类错误
- 降低应用程序中的错误率通常涉及两种对立的工作:
 - 提高准确性或精确度(最小化False positives)
 - 提高覆盖率或召回度(最小化False negatives)

总结

- 正则表达式起着至关重要的作用
 - 对于任何的文本处理来说,正则表达式通常是复杂序列的首选模型
- 对于许多困难的任务,我们使用机器学习分类器
 - 但是正则表达式将作为分类器中的特征值
 - 在获取一般化时非常有用

学习Natural Language Processing with Deep Learning CS224N/Ling284

Lecture 2: Word Vectors https://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture2.pdf
Lecture Notes 1 https://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-notes1.pdf

文本归一化 (Text Normalization)

- 每个NLP任务都需要做文本归一化处理:
 - 1. 在运行文本中对单词进行分段、标记
 - 2. 规范字格式
 - 3. 在运行文本中对句子进行分段

How many words?

- I do uh main- mainly business data processing
 - Fragments (片段), filled pauses (填充停顿)
- Seuss's cat in the hat is different from other cats!
 - **Lemma** (词元): same stem (相同词干), part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform(词形): the full inflected surface form(完全改变的表示)
 - cat and cats = different wordforms

How many words?

they lay back on the San Francisco grass and looked at the stars and their

- Type: an element of the vocabulary
- Token: an instance of that type in running text
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12) (or 11?)

How many words?

N = number of tokens

V = vocabulary = set of types Church and Gale (1990): $|V| > O(N^{1/2})$

|V|is the size of the vocabulary

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

UNIX 中的简单标记

- (Inspired by Ken Church's UNIX for Poets.)
- 给定一个文本文件,输出单词标记及其频率

```
tr -sc 'A-Za-z' '\n' < shakes.txt Change all non-alpha to newlines
| sort | Sort in alphabetical order
| uniq -c | Merge and count each type
```

```
1945 A 25 Aaron
72 AARON 6 Abate
19 ABBESS 5 Abbess
5 ABBOT 6 Abbey
... 3 Abbot
```


第一步:分词 (tokenizing)

```
tr -sc 'A-Za-z' '\n' < shakes.txt | head
```

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

Wе

. . .

第二步:排序(sorting)

```
tr -sc 'A-Za-z' '\n' < shakes.txt | sort | head
```

Α

Α

Α

Α

Α

Α

Α

Α

Α

. . .

更多的计算

• 合并大小写

```
tr A-Z' a-z' < shakes.txt | tr -sc A-Za-z' n' | sort | uniq -c
```

• 对计数排序

16339 to 15687 of 12780 a 12163 you 10839 my 10005 in 8954 d

分词中的问题

- Finland's capital → Finland Finlands Finland's ?
- What're, I'm, isn't → What are, I am, is not
- Hewlett-Packard → Hewlett Packard ?
- state-of-the-art → state of the art ?
- Lowercase → lower-case lowercase lower case ?
- San Francisco → one token or two ?
- m.p.h., PhD. → ??

分词:语言问题

- French
 - *L'ensemble* → one token or two?
 - L?L'?Le?
 - Want *l'ensemble* to match with *un ensemble*
- German noun compounds are not segmented (德语中的名词复合词不分段)
 - Lebensversicherungsgesellschaftsangesteller
 - 'life insurance company employee'
 - German information retrieval needs compound splitter (德语的信息检索需要复合词分配器)

- 中文和日文的词汇间没有空格分隔
 - 莎拉波娃现在居住在美国东南部的弗罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 弗罗里达
 - Sharapova now lives in US southeastern Florida
- 日文更复杂,有多个字母混杂
 - 多种格式的日期/数量表示

中文分词

- 中文词汇是由汉字组成的
 - 汉字通常含有一个音节和一个语素
 - 每个词汇平均由2.4个汉字组成
- 标准基线分割算法:
 - 最大匹配算法(也称贪心算法-Greedy)

最大匹配 —— 分词算法

- 给定一个中文词汇表和一个字符串
- 1. 在字符串开头启动指针
- 2. 在字典中找到与从指针开始的字符串匹配的最长单词
- 3. 将指针移动至越过此单词
- 4. 跳至第2步重复此过程

最大匹配分割猜想

Thecatinthehat the cat in the hat

Thetabledownthere the table down there

theta bled own there

- 对英语不适用!
- 但是对中文非常适用
 - 莎拉波娃现在居住在美国东南部的弗罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 弗罗里达
- 现代概率分割算法的效果更好

学习Natural Language Processing with Deep Learning CS224N/Ling284

Lecture 2: Word Vectors https://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture2.pdf
Lecture Notes 1 https://web.stanford.edu/class/cs224n/lecture notes/cs224n-2017-notes1.pdf

规范化(Normalization)

- 需要规范化用语
 - 信息检索:索引文本&查询字词必须有相同的格式
 - We want to match U.S.A. and USA
- 我们隐式定义了属于的等价类
 - e.g., 删除字词中的句号
- 替代方案:非对称性扩展(asymmetric expansion)

Enter: windowSearch: window, windows

Enter: windows
 Search: Windows, windows, window

Enter: WindowsSearch: Windows

• 可能更强大,但效率更低

大写转换(Case folding)

- 像IR这样的应用:将所有字母转换为小写
 - 由于用户倾向于使用小写字母
 - 可能出现的例外:句中的大写字母?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- 对于情感分析, MT, 信息提取
 - 字母的大小写转换是非常有帮助的(US versus Us is important)

词形还原 (Lemmatization)

- 将变形或变体形式转换为基本形式
 - am, are, $is \rightarrow be$
 - car, cars, car's, cars' → car
- The boy's cars are different colors \rightarrow the boy car be different color
- 词形还原:必须找到正确的字典首词(headword)形式
- 机器翻译(Machine translation)
 - Spanish quiero ('I want'), quieres ('you want') same lemma as querer 'want'

形态学 (Morphology)

- 语素:
 - 构成单词的微小而有意义的单元
 - 词干(stems):核心含义单位
 - 词缀(Affixes):依附于词干上的单元
 - 通常具有语法功能

词干提取 (Stemming)

- 在信息检索中,将词语缩短至其词干形式
- 词干提取即是对词缀的粗略删减
 - 语言依赖
 - e.g. automate(s), automatic, automation all reduced to automat.

For example compressed and compression are both accepted as equivalent to compress

For exampl compress and compress ar both accept as equival to compress

词干提取算法(Porter's algorithm) 最为普遍的英文词干提取算法

```
Step 1a
Step 1a
                                      ational → ate relational → relate
sses → ss
              caresses → caress
ies \rightarrow I
         ponies → poni
                                      izer
                                              → ize digitizer → digitize
                                      ator
                                              → ate operator → operate

ightarrow SS
SS
          caress → caress
\mathsf{s} \rightarrow \mathsf{0}
         cats → cat
Step 1b
                                      Step 1a
```

 $(*V*) ing \rightarrow \emptyset \qquad walking \qquad \rightarrow walk \qquad sses \rightarrow ss \qquad caresses \rightarrow caress \\ sing \qquad \rightarrow sing \qquad ies \qquad \rightarrow I \qquad ponies \qquad \rightarrow poni \\ (*V*) ed \qquad \rightarrow \emptyset \qquad plastered \rightarrow plaster \qquad ss \qquad \rightarrow ss \qquad caress \qquad \rightarrow caress \\ \dots \qquad \qquad s \qquad \rightarrow \emptyset \qquad cats \qquad \rightarrow cat$

第2节 基本文字处理:句子划分与决策树

学习Natural Language Processing with Deep Learning CS224N/Ling284

Lecture 2: Word Vectors https://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture2.pdf
Lecture Notes 1 https://web.stanford.edu/class/cs224n/lecture notes/cs224n-2017-notes1.pdf

句子划分 (Sentence Segmentation)

- ! , ? 是相对明确的标点符号
- 句号""的含义模糊
 - 句子边界
 - 缩写表示(Dr.)
 - 数学表示(.02%)
- 构建二元分类器
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

确定单词是否为句子结尾:决策树(Decision Tree)

决策树的实现

- 决策树仅仅是 if-then-else 的语句
- 有趣的是其选择功能
- 难以手动建立决策树结构
 - 手动构建至适用于简单的特征及领域
 - 对于数字要素,选择每个阈值太难
 - 相反,结构通常通过机器学习从训练语料库中得出

- 当特征可被任何类型的分类器利用时
 - 线性回归(Logistic regression)
 - SVM
 - 神经网络(Neural Nets)

Thank you!