Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

x	-1	0	2	3
f(x)	5	10	2	1
f'(x)	5	0	_	

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \arctan \frac{2 - 3x}{\sqrt{5 - 2x}} + \ln^{-2}(2x + 3).$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} (\sqrt{4n^2 - 5} - 2n)$$
,

(a)
$$\lim_{n \to \infty} (\sqrt{4n^2 - 5} - 2n)$$
, (b) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - x}$, (c) $\lim_{x \to \frac{\pi}{2}} (1 - \sin x) \operatorname{tg} x$.

$$(c) \lim_{x \to \frac{\pi}{2}} (1 - \sin x) \operatorname{tg} x.$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \sqrt{2-5x^3}$ a bod $x_0 = -1$. Jaká je funkční hodnota a hodnota první derivace funkce f v bodě x_0 ?

 \blacktriangleright Příklad 5 [2 b.]: Kámen vyhozen z výšky $h=10\,m$ kolmo vzhůru má počáteční rychlost $v_0 = 20 \, m/s$. Určete:

- (a) Jakou rychlost bude mít kámen v čase t = 1.5 s?
- (b) Za jaký čas dosáhne maximální výšky?
- (c) Jaké výšky dosáhne?

(Nápověda: Dráhu popisuje vztah $s=h+v_0t-\frac{1}{2}gt^2$, gravitační zrychlení uvažujte $g=10\,m/s^2$.)

▶ Příklad 6 [2 b.]: Určete intervaly monotonie a lokální extrémy funkce

$$f(x) = \frac{x^2}{\ln x}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[⊳] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

[⊳] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

x	-1	0	2	3
f(x)	5	10	2	1

Dále pomocí získaného polynomu odhadněte hodnotu funkce f v $x_0 = -1/2$.

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \ln(x^2 + 4x - 5) + \frac{2x^2}{\sqrt{2x + 6}}.$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} (3n - \sqrt{9n^2 - 3})$$

(a)
$$\lim_{n \to \infty} (3n - \sqrt{9n^2 - 3}),$$
 (b) $\lim_{x \to \infty} \frac{x^3 + \sqrt[3]{x^{12} + x^5} - \sqrt{x}}{\sqrt{x + 3x^8} - x},$ (c) $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right).$

$$(c) \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \ln(x^2 - 3x - 9)$ a bod $x_0 = 5$. Jaká je funkční hodnota a hodnota první derivace funkce f v bodě x_0 ?

▶ Příklad 5 [2 b.]: Těleso se pohybuje po dráze $s=8+3t+t^2-\frac{t^3}{3}$ (v metrech). Určete:

- (a) Za jaký čas zastaví?
- (b) Jaké bude jeho zrychlení v čase t = 0.5 s?
- (c) Jakou dráhu těleso urazí od času t = 0 do zastavení?

▶ Příklad 6 [2 b.]: Určete intervaly monotonie a lokální extrémy funkce

$$f(x) = \frac{x}{e^{x^2}}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[⊳] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

[⊳] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

x	0	1	2
f(x)	1	2	5
f'(x)	-1	-	2

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \arcsin \frac{x+3}{2} + \sqrt{\frac{x+4}{x-2}}.$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n\to\infty} \left(\sqrt{5n-7} - \sqrt{7n-5}\right)$$

(a)
$$\lim_{n \to \infty} \left(\sqrt{5n - 7} - \sqrt{7n - 5} \right)$$
, (b) $\lim_{x \to \infty} \frac{\sqrt{x^5 + 4} + 3^x - x^2}{\sqrt[3]{x^5 + 2} - 3^{x+1}}$, (c) $\lim_{x \to 0^+} x^x$.

$$(c) \lim_{x \to 0^+} x^x.$$

lacktriangle Příklad 4 [1 b.]: Je dána funkce $f(x)=\sqrt[3]{x^2+10x+1}$ a bod $x_0=-1$. Jaká je funkční hodnota a hodnota první derivace funkce f v bodě x_0 ?

▶ Příklad 5 [2 b.]: Množství elektrického náboje Q, který prochází vodičem, se mění s časem podle vztahu $Q = 3t^2 + 2t + 2$ (jednotky coulomb C a sekunda s).

- (a) Jaká bude okamžitá hodnota proudu I (jednotky amper A) v čase t = 1 s?
- (b) Kdy bude hodnota proudu I = 20 A?

(Nápověda: Proud je změna náboje v čase.)

▶ Příklad 6 [2 b.]: Určete intervaly konvexnosti a konkávnosti a najděte inflexní body funkce

$$f(x) = \frac{x}{e^{\frac{x^2}{2}}}, \qquad f'(x) = \frac{1 - x^2}{e^{\frac{x^2}{2}}}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[⊳] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

[⊳] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

x	-1	0	1	2
f(x)	3	1	0	1

Dále pomocí získaného polynomu odhadněte hodnotu funkce f v $x_0 = 1/2$.

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \operatorname{arccotg} \frac{x-1}{\sqrt{1-x}} + \ln^{-2}(2x+21).$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} (\sqrt{(n+3)(n-1)} - n)$$
,

(a)
$$\lim_{n \to \infty} (\sqrt{(n+3)(n-1)} - n)$$
, (b) $\lim_{x \to \infty} \frac{\sqrt{3x}}{\sqrt{5x + \sqrt{7x + \sqrt{8x}}}}$, (c) $\lim_{x \to 0^+} (\cot x)^{\sin x}$.

$$(c) \lim_{x \to 0^+} (\cot g \, x)^{\sin x}$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \ln(x^3 + 2x^2 + 1)$ a bod $x_0 = -2$. Jaká je funkční hodnota a hodnota první derivace funkce f v bodě x_0 ?

▶ Příklad 5 [2 b.]: Těleso sjede po nakloněné rovině dlouhé 50 m za 10 s. Jaká je jeho konečná rychlost, pokud předpokládáme, že dráha je kvadratická funkce času a že počáteční rychlost je nulová?

(Nápověda: Dráhu uvažujte jako $s = at^2 + bt + c$ s neurčitými koeficienty $a, b, c \in \mathbb{R}$.)

▶ Příklad 6 [2 b.]: Určete všechny asymptoty funkce

$$f(x) = \frac{e^x}{x+1}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[⊳] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

[⊳] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Výsledky

1) A:
$$\frac{1}{2}(-x^5 + 5x^4 - x^3 - 14x + 20)$$

B: $x^3 - 4x^2 + 10$, $\frac{71}{8}$
C: $\frac{1}{4}(-x^4 + x^3 + 8x^2 - 4x + 4)$

D:
$$\frac{1}{6}(x^3 + 3x^2 - 10x + 6)$$
, $\frac{5}{16}$

2) A:
$$(-3/2, -1) \cup (-1, 5/2)$$

$$B: (1, \infty)$$

$$C: [-5, -4]$$

D:
$$(-21/2, -10) \cup (-10, 1)$$

3) A:
$$(a) 0, (b) -1, (c) 0$$

B: (a)
$$0$$
, (b) $1/\sqrt{3}$, (c) 0

C:
$$(a) - \infty, (b) - 1/3, (c) 1$$

D: (a) 1, (b)
$$\sqrt{3/5}$$
, (c) 1

4) A:
$$f'(x) = \frac{-15x^2}{2\sqrt{2}-5x^3}$$
, $f(-1) = \sqrt{7}$, $f'(-1) = \frac{-15}{2\sqrt{7}}$

B:
$$f'(x) = \frac{2x-3x}{x^2-2x-9}$$
, $f(5) = 0$, $f'(5) = 7$

4) A:
$$f'(x) = \frac{-15x^2}{2\sqrt{2-5x^3}}, f(-1) = \sqrt{7}, f'(-1) = \frac{-15}{2\sqrt{7}}$$

B: $f'(x) = \frac{2x-3}{x^2-3x-9}, f(5) = 0, f'(5) = 7$
C: $f'(x) = \frac{2x+10}{3\sqrt[3]{(x^2+10x+1)^2}}, f(-1) = -2, f'(-1) = \frac{2}{3}$

D:
$$f'(x) = \frac{3x^2 + 4x}{x^3 + 2x^2 + 1}$$
, $f(-2) = 0$, $f'(-2) = 4$

B:
$$(a)$$
 3, (b) 1, (c) 9

D:
$$10, (s(t) = t^2/2)$$

6) A:
$$\nearrow$$
 pro $x \in (\sqrt{e}, \infty)$, \searrow pro $x \in (0, 1) \cup (1, \sqrt{e}]$, lok. min. v $x = \sqrt{e}$

B:
$$\nearrow \text{ pro } x \in [-1/\sqrt{2}, 1/\sqrt{2}], \searrow \text{ pro } x \in (-\infty, -1/\sqrt{2}] \cup [1/\sqrt{2}, \infty),$$
 lok. min. v $x = -1/\sqrt{2}$, lok. max. v $x = 1/\sqrt{2}$

C:
$$\bigcup$$
 pro $x \in [-\sqrt{3}, 0] \cup [\sqrt{3}, \infty)$, \bigcap pro $x \in (-\infty, -\sqrt{3}] \cup [0, \sqrt{3}]$, infl. body v $x \in \{0, \pm \sqrt{3}\}$

D: bez sm.
$$x = -1 (-|+)$$
,

se sm. v
$$+\infty$$
 není, v $-\infty$ je $y=0$