Apprentissage de classes déséquilibrées HAX907X - Apprentissage statistique

SAWADOGO Kader GERMAIN Marine LABOURAIL Célia MARIAC Damien

Université Montpellier Département de Mathématique

20 octobre 2025

- Contexte
- 2 Problématique
- Méthodes
- Application
- 5 Limites des méthodes
- 6 Conclusion
- Bibliographie

Problème du déséquilibre et motivation du projet

Un jeu de données très déséquilibré

- CréditCard : 284 807 transactions, dont seulement 492 fraudes (0,17 %).
- \Rightarrow Les modèles ont tendance à ignorer la classe minoritaire.

Illustration du problème

Modèle	Recall	Precision	F1-score
Régression Logistique	0.59	0.89	0.70
Random Forest (200 arbres)	0.60	0.95	0.85

- Contexte
- 2 Problématique
- Méthodes
- Application
- 5 Limites des méthodes
- 6 Conclusion
- Bibliographie

Problématique scientifique

Comment atténuer le déséquilibre des classes pour améliorer la performance réelle du modèle?

- Contexte
- 2 Problématique
- Méthodes
- Application
- 5 Limites des méthodes
- 6 Conclusion
- Bibliographie

Random Over-Sampling

Table – Jeu de données après sur-échantillonnage (ROS)

x	label	source
1	0	original
2	0	original
3	0	original
4	0	original
5	0	original
6	0	original
7	0	original
8	1	original
9	1	original
10	1	original
8	1	dupliqué
9	1	dupliqué
10	1	dupliqué
8	1	dupliqué

Random Under-Sampling

Table – Jeu de données après sous-échantillonnage (RUS)

X	label	source
1	0	supprimé
2	0	supprimé
3	0	supprimé
4	0	original
5	0	original
6	0	original
7	0	original
8	1	original
9	1	original
10	1	original

Figure – Schéma de SMOTE

Figure – Schéma de SMOTE

Figure – Schéma de SMOTE

Figure – Schéma de SMOTE

Figure – Schéma de SMOTE

Notations

- n : nb total d'observations
- n_{min}: nb d'observations minoritaires
- d : dimension (nb de variables)

- k : nb de plus proches voisins
- M : nb de points synthétiques générés

Étapes dominantes & complexité (naïf)

- **Q** Recherche des k-PPV (vers tous les points) : coût d'une distance $\mathcal{O}(d) \Rightarrow$ comparaison à n points $\mathcal{O}(n\,d) \Rightarrow$ pour n_{\min} points minoritaires $\boxed{\mathcal{O}(n_{\min}\,n\,d)}$.
- **2 Génération** : $x_{\text{new}} = x_i + \lambda(x_j x_i), \ \lambda \sim \mathcal{U}(0, 1)$

 $\mathcal{O}(Md)$

Synthèse

 $T_{\text{SMOTE}} = \mathcal{O}(n_{\min} n d) + \mathcal{O}(M d)$

(recherche kNN dominante).

- Contexte
- 2 Problématique
- Méthodes
- 4 Application
- 5 Limites des méthodes
- 6 Conclusion
- Bibliographie

Comparaison des matrices de confusion

	RUS		ROS		SMOTE	
	P-F	F	P-F	F	P-F	F
Pas-Fraude	55834	15	56673	16	55500	12
Fraude	1020	92	186	86	1356	93

Comparaison des méthodes de rééchantillonnage

Méthode	Rappel	Specificity	Précision
SMOTE	0.886	0.976	0.064
RUS	0.860	0.982	0.083
ROS	0.843	0.997	0.316

- Contexte
- 2 Problématique
- Méthodes
- Application
- 6 Limites des méthodes
- 6 Conclusion
- Bibliographie

ROS

Overfitting

RUS

Perte d'information

SMOTE

- Temps de calculs
- Création de points aberrants
- Hyperparamètre k
- Variables qualitatives

SMOTE

Points aberrants

- Contexte
- 2 Problématique
- Méthodes
- Application
- 5 Limites des méthodes
- 6 Conclusion
- Bibliographie

Bilan général des méthodes

Méthode	Points forts	Limites
ROS	Simplicité, conserve	Overfitting, grand
	toutes les données	volume de données
RUS	Rapide et réduit le	perte d'information
	biais	et représentativité
SMOTE	Données	Coût élevé, sensible
	synthétiques variées	aux outliers

Aucune méthode n'est universelle :

le choix dépend du jeu de données et du modèle.

Conclusion et perspectives

- Pour notre jeu de données, la méthode la plus efficace est ROS.
- Pour aller plus loin : il serait pertinent de combiner des méthodes existantes ou de pondérer les modèles.

Merci pour votre attention!

- Contexte
- 2 Problématique
- Méthodes
- Application
- 5 Limites des méthodes
- 6 Conclusion
- Bibliographie

Références I

N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer.

SMOTE: Synthetic Minority Over-sampling Technique.

M. Chelouah.

Méthodes de rééquilibrage des classes en classification supervisée.

Crédits images

- Figures ROS, RUS : réalisées avec GeoGebra.
- Illustration SMOTE : réalisée avec Inkscape.