Collaborative Deep Learning For Recommender Systems

Hao Wang, Naiyan Wang, Dit-Yan Yeung Hong Kong University of Science and Technology

Recommender Systems' Problem

- Observable: A matrix of ratings for user, item pairs.
- This matrix is mostly a sparse matrix and has many missing/unknown values
- Objective: Recommend a user items which are likeable to the user

Recommender Systems

- Content-Based Methods
- Collaborative Filtering
- Hybrid Methods
 - Loosely Coupled
 - Tightly Coupled

Tightly Coupled

- Collaborative Topic Regression (CTR)
 - Probabilistic Matrix Factorization
 - Topic Model: Latent Dirichlet Allocation
- Collaborative Deep Learning (CDL)
 - Probabilistic Matrix Factorization
 - Stacked Denoising Autoencoders

Probabilistic Matrix Factorization

2 Probabilistic Matrix Factorization (PMF)

Suppose we have M movies, N users, and integer rating values from 1 to K^1 . Let R_{ij} represent the rating of user i for movie j, $U \in R^{D \times N}$ and $V \in R^{D \times M}$ be latent user and movie feature matrices, with column vectors U_i and V_j representing user-specific and movie-specific latent feature vectors respectively. Since model performance is measured by computing the root mean squared error (RMSE) on the test set we first adopt a probabilistic linear model with Gaussian observation noise (see fig. 1, left panel). We define the conditional distribution over the observed ratings as

$$p(R|U, V, \sigma^2) = \prod_{i=1}^{N} \prod_{j=1}^{M} \left[\mathcal{N}(R_{ij}|U_i^T V_j, \sigma^2) \right]^{I_{ij}},$$
 (1)

2

where $\mathcal{N}(x|\mu, \sigma^2)$ is the probability density function of the Gaussian distribution with mean μ and variance σ^2 , and I_{ij} is the indicator function that is equal to 1 if user i rated movie j and equal to 0 otherwise. We also place zero-mean spherical Gaussian priors [1, 11] on user and movie feature vectors:

$$p(U|\sigma_U^2) = \prod_{i=1}^N \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}), \quad p(V|\sigma_V^2) = \prod_{j=1}^M \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I}).$$
 (2)

¹Real-valued ratings can be handled just as easily by the models described in this paper.

Denoising Autoencoders

Figure 1: The denoising autoencoder architecture. An example \mathbf{x} is stochastically corrupted (via $q_{\mathcal{D}}$) to $\tilde{\mathbf{x}}$. The autoencoder then maps it to \mathbf{y} (via encoder f_{θ}) and attempts to reconstruct \mathbf{x} via decoder $g_{\theta'}$, producing reconstruction \mathbf{z} . Reconstruction error is measured by loss $L_H(\mathbf{x}, \mathbf{z})$.

Stacked Denoising Autoencoders

Figure 3: Stacking denoising autoencoders. After training a first level denoising autoencoder (see Figure 1) its learnt encoding function f_{θ} is used on clean input (left). The resulting representation is used to train a second level denoising autoencoder (middle) to learn a second level encoding function $f_{\theta}^{(2)}$. From there, the procedure can be repeated (right).

SDAE Generative Process

- 1. For each layer l of the SDAE network,
 - (a) For each column n of the weight matrix \mathbf{W}_l , draw $\mathbf{W}_{l,*n} \sim \mathcal{N}(\mathbf{0}, \lambda_w^{-1} \mathbf{I}_{K_l})$.
 - (b) Draw the bias vector $\mathbf{b}_l \sim \mathcal{N}(\mathbf{0}, \lambda_w^{-1} \mathbf{I}_{K_l})$.
 - (c) For each row j of \mathbf{X}_l , draw

$$\mathbf{X}_{l,j*} \sim \mathcal{N}(\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l), \lambda_s^{-1} \mathbf{I}_{K_l}). \tag{1}$$

2. For each item j, draw a clean input ¹

$$\mathbf{X}_{c,j*} \sim \mathcal{N}(\mathbf{X}_{L,j*}, \lambda_n^{-1} \mathbf{I}_J).$$

Collaborative Deep Learning

- For each layer l of the SDAE network,
 - (a) For each column n of the weight matrix \mathbf{W}_l , draw

$$\mathbf{W}_{l,*n} \sim \mathcal{N}(\mathbf{0}, \lambda_w^{-1} \mathbf{I}_{K_l}).$$

- (b) Draw the bias vector $\mathbf{b}_l \sim \mathcal{N}(\mathbf{0}, \lambda_w^{-1} \mathbf{I}_{K_l})$.
- (c) For each row j of \mathbf{X}_l , draw

$$\mathbf{X}_{l,j*} \sim \mathcal{N}(\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_l + \mathbf{b}_l), \lambda_s^{-1}\mathbf{I}_{K_l}).$$

- 2. For each item j,
 - (a) Draw a clean input $\mathbf{X}_{c,j*} \sim \mathcal{N}(\mathbf{X}_{L,j*}, \lambda_n^{-1}\mathbf{I}_J)$.
 - (b) Draw a latent item offset vector $\boldsymbol{\epsilon}_j \sim \mathcal{N}(\mathbf{0}, \lambda_v^{-1} \mathbf{I}_K)$ and then set the latent item vector to be:

$$\mathbf{v}_j = \boldsymbol{\epsilon}_j + \mathbf{X}_{\frac{L}{2},j*}^T.$$

3. Draw a latent user vector for each user i:

$$\mathbf{u}_i \sim \mathcal{N}(\mathbf{0}, \lambda_u^{-1} \mathbf{I}_K).$$

4. Draw a rating \mathbf{R}_{ij} for each user-item pair (i, j):

$$\mathbf{R}_{ij} \sim \mathcal{N}(\mathbf{u}_i^T \mathbf{v}_j, \mathbf{C}_{ij}^{-1}).$$

Maximum A Posteriori Estimates

Joint log-likelihood of parameters

$$\begin{split} \mathscr{L} &= -\frac{\lambda_u}{2} \sum_i \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_l (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2) \\ &- \frac{\lambda_v}{2} \sum_j \|\mathbf{v}_j - f_e(\mathbf{X}_{0,j*}, \mathbf{W}^+)^T\|_2^2 \\ &- \frac{\lambda_n}{2} \sum_j \|f_r(\mathbf{X}_{0,j*}, \mathbf{W}^+) - \mathbf{X}_{c,j*}\|_2^2 \\ &- \sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2, \end{split}$$

Maximum A Posteriori Estimates

Learning

$$\mathbf{u}_{i} \leftarrow (\mathbf{V}\mathbf{C}_{i}\mathbf{V}^{T} + \lambda_{u}\mathbf{I}_{K})^{-1}\mathbf{V}\mathbf{C}_{i}\mathbf{R}_{i}$$

$$\mathbf{v}_{j} \leftarrow (\mathbf{U}\mathbf{C}_{i}\mathbf{U}^{T} + \lambda_{v}\mathbf{I}_{K})^{-1}(\mathbf{U}\mathbf{C}_{j}\mathbf{R}_{j} + \lambda_{v}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T}),$$

$$\nabla_{\mathbf{W}_{l}} \mathcal{L} = -\lambda_{w} \mathbf{W}_{l}$$

$$-\lambda_{v} \sum_{j} \nabla_{\mathbf{W}_{l}} f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} (f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} - \mathbf{v}_{j})$$

$$-\lambda_{n} \sum_{j} \nabla_{\mathbf{W}_{l}} f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) (f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) - \mathbf{X}_{c,j*})$$

$$\nabla_{\mathbf{b}_{l}} \mathcal{L} = -\lambda_{w} \mathbf{b}_{l}$$

$$-\lambda_{v} \sum_{j} \nabla_{\mathbf{b}_{l}} f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} (f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} - \mathbf{v}_{j})$$

$$-\lambda_{n} \sum_{j} \nabla_{\mathbf{b}_{l}} f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) (f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) - \mathbf{X}_{c,j*}).$$

Prediction

$$\mathbf{R}_{ij}^* \approx (\mathbf{u}_j^*)^T (f_e(\mathbf{X}_{0,j*}, \mathbf{W}^{+*})^T + \boldsymbol{\epsilon}_j^*) = (\mathbf{u}_i^*)^T \mathbf{v}_j^*.$$

Some Results

Figure 4: Performance comparison of CDL, CTR, DeepMusic, CMF, and SVDFeature based on recall@M for datasets citeulike-a, citeulike-t, and Netflix in the sparse setting. A 2-layer CDL is used.

Figure 5: Performance comparison of CDL, CTR, DeepMusic, CMF, and SVDFeature based on recall@M for datasets citeulike-a, citeulike-t, and Netflix in the dense setting. A 2-layer CDL is used.