'Blind' Iterative SAFT Reconstruction for Manually Acquired Ultrasonic Measurement Data in Nondestructive Testing

CSP Advanced Research Project WS19/20

Sayako Kodera Technische Universität Ilmenau

Measurement Assistance System

Features:

- Position recognition
- Data recording
- Data visualization
- Post-processing

Problem: Observation errors e.g. tracking error

Measurement Assistance System

Features:

- Position recognition
- Data recording
- Data visualization
- Post-processing

Problem: Observation errors e.g. tracking error

Measurement Assistance System

Features:

- Position recognition
- Data recording
- Data visualization
- Post-processing

Problem: Observation errors e.g. tracking error

Impact of Positional Inaccuracy

Measurement data

Reconstruction (no error)

 Background
 Method
 Simulations
 Summary

 ○●○
 ○○
 ○

Impact of Positional Inaccuracy

Measurement data

Reconstruction (with error)

Objective and Contributions

Objective

 Reduce error-induced artefacts in SAFT reconstructions

Contributions

- Data model considering the positional inaccuracy
- Preprocessing method to estimate and correct positional error

Objective and Contributions

Objective

 Reduce error-induced artefacts in SAFT reconstructions

Contributions

- Data model considering the positional inaccuracy
- Preprocessing method to estimate and correct positional error

Summary o

Blind Error Correction (BEC)

Data model based on spatial approximation

- Signal source positions
- Tracking error

Preprocessing in 2 steps

- (1) Estimate the signal source positions Known: data structure
 - → Robust polynomial regression
- (2) Estimate and correct the tracking error
 - → Nonlinear programming

Simulation studies

- Error tolerance
- Impact of the ROI depth

Scenario and Assumptions

- Linear contact scanning (0.5 mm grids)
- One point source in ROI
- Tracking error $= -\lambda ... + \lambda$

Simulation studies

- Error tolerance
- Impact of the ROI depth

Scenario and Assumptions

- Linear contact scanning (0.5 mm grids)
- One point source in ROI
- Tracking error $= -\lambda ... + \lambda$

Evaluation methods

- Normalized squared error
- Generalized Contrast-to-Noise Ratio (gCNR)
- Array Performance Indicator (API)

Evaluation methods

- Normalized squared error
- Generalized Contrast-to-Noise Ratio (gCNR)
- Array Performance Indicator (API)

```
API = area > \epsilon (normalized with \lambda^2) \Rightarrow smaller API = better resolution
```


Conclusion

BEC ⇒ artefacts reduction

Region	Near surface	Middle	Deep
Resolution	Error susceptive	Good	Very good

Future Work

- Extension to 3D and/or gridless cases
- Error correction via minimax estimator

Backup

Parameters w.r.t. Test Object

Parameter	Value
Material	Aluminium
$ROI(L \times H)$	$40\mathrm{mm} imes100\mathrm{mm}$
Speed of sound c_0	$6300{\rm ms^{-1}}$
Sampling frequency f_S	80 MHz
$dt = rac{1}{f_s}$	12.5 ns
Sampling distance, surface (dx)	0.5 mm
Sampling distance, depth (dz)	39.375 μm

Parameters w.r.t. Pulse

Parameter	Value	
Model	Gaussian (Gabor)	
Carrier frequency f_c	5 MHz	
Wavelength λ	1.26 mm	
α	20 (MHz) ²	
Beam spread	30°	

Post-processing Method

Synthetic Aperture Focusing Technique (SAFT)

- Superposition according to propagation time delay
- Spatial sampling of the specimen

Post-processing Method

Synthetic Aperture Focusing Technique (SAFT)

- Superposition according to propagation time delay
- Spatial sampling of the specimen

defect map for $ROI = M \times N_x$

Transform: $defect \ map \rightarrow single \ A-Scan \ at \ x_k \in \mathbb{R}$

$$\mathbf{a}_k = \mathbf{H}_k \mathbf{b} + \mathbf{n} \in \mathbb{R}^{\mathsf{M}}$$

- a_k : measured A-Scan at x_k (M)
- H_k : SAFT matrix at x_k ($M \times L = M \times M N_x$) Containing pulse information for $s_l = (x_i, z_j)$, l = 1...L
- **b**: vectorized defect map $(L = M N_x)$
- **■** *n*: noise (M)

Transform: $defect \ map \rightarrow single \ A-Scan \ at \ x_k \in \mathbb{R}$

$$\boldsymbol{a}_k = \boldsymbol{H}_k \boldsymbol{b} + \boldsymbol{n} \in \mathbb{R}^{\mathsf{M}}$$

SAFT matrix at x_k

$$\mathbf{\textit{H}}_{k} = \begin{bmatrix} \mathbf{\textit{h}}_{k}^{(1)} & \mathbf{\textit{h}}_{k}^{(2)} & \cdots & \mathbf{\textit{h}}_{k}^{(L)} \end{bmatrix} \in \mathbb{R}^{\mathsf{M} \times \mathsf{L}}$$

Transform: defect map \rightarrow K A-Scans at $\mathbf{x} \in \mathbb{R}^{K}$

$$\mathsf{vec}\{oldsymbol{A}\} = oldsymbol{H}oldsymbol{b} + \mathsf{vec}\{oldsymbol{N}\} \in \mathbb{R}^{\mathsf{M}\,\mathsf{K}}$$

- **A**: measured A-Scans at $x (M \times K)$
- **H**: SAFT matrix at \mathbf{x} (MK × L = M × MN_x) Containing pulse information for $\mathbf{s}_l = (x_i, z_j)$, l = 1...L
- **b**: vectorized defect map $(L = M N_x)$
- **N**: noise (M × K)

Transform: defect map \rightarrow K A-Scans at $\mathbf{x} \in \mathbb{R}^{K}$

$$\mathsf{vec}\{oldsymbol{A}\} = oldsymbol{H}oldsymbol{b} + \mathsf{vec}\{oldsymbol{N}\} \in \mathbb{R}^{\mathsf{M}\,\mathsf{K}}$$

A-Scans collected at x

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_K \end{bmatrix} \in \mathbb{R}^{\mathsf{M} \times \mathsf{K}}$$

Transform: defect map \rightarrow K A-Scans at $\mathbf{x} \in \mathbb{R}^{K}$

$$\mathsf{vec}\{oldsymbol{A}\} = oldsymbol{H}oldsymbol{b} + \mathsf{vec}\{oldsymbol{N}\} \in \mathbb{R}^{\mathsf{M}\,\mathsf{K}}$$

SAFT matrix at x

$$oldsymbol{H} = egin{bmatrix} oldsymbol{H}_1 \ oldsymbol{H}_2 \ dots \ oldsymbol{H}_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{\mathsf{M}\,\mathsf{K}\, imes\,\mathsf{L}}$$

Spatial Approximation

Tracked position: $\hat{x}_k = x_k + \Delta x_k \in \mathbb{R}$

Data model

$$a_k = H_k b + n \in \mathbb{R}^{\mathsf{M}}$$

Approximation

$$oldsymbol{H}_k pprox \hat{oldsymbol{H}}_k - \hat{oldsymbol{J}}_k \Delta x_k \in \mathbb{R}^{\mathsf{M} imes \mathsf{L}}$$

- $\hat{\boldsymbol{H}}_k$: SAFT matrix at \hat{x}_k (M × L)
- $\hat{\boldsymbol{J}}_k$: Derivative of $\hat{\boldsymbol{H}}_k$ w.r.t. \times (M \times L)

Spatial Approximation

Tracked positions: $\hat{\mathbf{x}} = \mathbf{x} + \Delta \mathbf{x} \in \mathbb{R}^{\mathsf{K}}$

Data model

$$\mathsf{vec}\{oldsymbol{A}\} = oldsymbol{H}oldsymbol{b} + \mathsf{vec}\{oldsymbol{N}\} \in \mathbb{R}^{\mathsf{M}\,\mathsf{K}}$$

Approximation

$$oldsymbol{H} pprox \hat{oldsymbol{H}} + oldsymbol{E}\hat{oldsymbol{J}} \in \mathbb{R}^{ ext{MK} imes ext{L}}$$

- \hat{H} : SAFT matrix at \hat{x} (MK×L)
- \hat{J} : Derivative of \hat{H} w.r.t. \boldsymbol{x} (MK×L)
- \boldsymbol{E} : Error matrix = diag $\{\Delta \boldsymbol{x}\} \otimes \boldsymbol{I}_{\mathsf{M}} \ (\mathsf{M} \ \mathsf{K} \times \mathsf{M} \ \mathsf{K})$

Proposed Preprocessing

$$\min_{\Delta x} \min_{\boldsymbol{b}} \left\| \operatorname{vec} \{ \boldsymbol{A} \} - \left(\hat{\boldsymbol{H}} + \boldsymbol{E} \hat{\boldsymbol{J}} \right) \boldsymbol{b} \right\|_{2}^{2}$$

Curve Fitting

$$\min_{\Delta x} \min_{\boldsymbol{b}} \left\| \operatorname{vec} \{ \boldsymbol{A} \} - \left(\hat{\boldsymbol{H}} + \boldsymbol{E} \hat{\boldsymbol{J}} \right) \boldsymbol{b} \right\|_{2}^{2}$$

B-Scan

- Defect map $\boldsymbol{b} = (x_d, z_d)$
- Scan positions $\mathbf{x} \in \mathbb{R}^{\mathsf{K}}$
- Peak positions $z \in \mathbb{R}^{\mathsf{K}}$ $\hat{}$ Time-of-Flight
- Curvature

 $\Rightarrow \approx$ Parabola

B-Scan

- Defect map $\boldsymbol{b} = (x_d, z_d)$
- Scan positions $\mathbf{x} \in \mathbb{R}^{\mathsf{K}}$
- Peak positions $z \in \mathbb{R}^{\mathsf{K}}$ $\hat{}$ Time-of-Flight
- Curvature

 $\Rightarrow \approx$ Parabola

B-Scan

- Defect map $\boldsymbol{b} = (x_d, z_d)$
- Scan positions $\mathbf{x} \in \mathbb{R}^{\mathsf{K}}$
- Peak positions $z \in \mathbb{R}^{K}$ $\hat{}$ Time-of-Flight
- Curvature

 $\Rightarrow \approx$ Parabola

Parabola approximation: *k*-th scan

$$z_k \approx u_0 + u_1 \cdot x_k + u_2 \cdot x_k^2$$
 $x_d = -\frac{u_1}{2u_2}$
 $z_d = u_0 - \frac{u_1^2}{4u_2}$

Parabola approximation: k-th scan

$$z_k \approx u_0 + u_1 \cdot x_k + u_2 \cdot x_k^2$$

K scan positions:

$$egin{bmatrix} egin{bmatrix} z_1 \ z_2 \ dots \ z_{\mathsf{K}} \end{bmatrix} pprox egin{bmatrix} 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \ dots & dots & dots \ 1 & x_{\mathsf{K}} & x_{\mathsf{K}}^2 \end{bmatrix} \cdot egin{bmatrix} u_0 \ u_1 \ u_2 \end{bmatrix}$$

u

Approximation

$$\begin{bmatrix} z_1^2 \\ z_2^2 \\ \vdots \\ z_K^2 \end{bmatrix} \approx \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_K & x_K^2 \end{bmatrix} \cdot \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix}$$

Z

X

u

Frrors in z and X

- Δz: Measurement noise, quantization error etc
- ΔX:Tracking error
- **⇒** independent errors

Approximation

$$z \approx X \cdot u$$
 $K \times 3 \cdot 3$

Incorporating errors

$$\mathbf{z} + \Delta \mathbf{z} = (\mathbf{X} + \Delta \mathbf{X}) \cdot \mathbf{u}$$

$$\mathbf{K} \qquad \mathbf{K} \times \mathbf{3} \qquad \mathbf{3}$$

Incorporating errors

$$\mathbf{z} + \Delta \mathbf{z} = (\mathbf{X} + \Delta \mathbf{X}) \cdot \mathbf{u}$$
 $\mathbf{K} \times \mathbf{X} \times \mathbf{X} = \mathbf{X} \times \mathbf{X}$

⇒ Total least squares

$$\min \| [\Delta \mathbf{X} | \Delta \mathbf{z}] \|_{\mathsf{F}}^2 \quad \text{s.t.} \quad \mathbf{z} + \Delta \mathbf{z} = [\mathbf{X} + \Delta \mathbf{X}] \cdot \mathbf{u}$$

$$\Rightarrow \boldsymbol{u} \Rightarrow \hat{\boldsymbol{b}}_{\mathsf{est}}$$

Iterative Error Correction

$$\min_{\Delta x} \min_{\boldsymbol{b}} \left\| \operatorname{vec} \{ \boldsymbol{A} \} - \left(\hat{\boldsymbol{H}} + \boldsymbol{E} \hat{\boldsymbol{J}} \right) \boldsymbol{b} \right\|_{2}^{2}$$

Iterative Error Correction

Taylor approximation

$$\mathsf{vec}\{oldsymbol{A}\}pprox\left(\hat{oldsymbol{H}}+oldsymbol{E}\hat{oldsymbol{J}}
ight)oldsymbol{b}$$

Cost function (2nd step)

$$\min_{\Delta \mathbf{x}} \left\| \operatorname{vec}\{\mathbf{A}\} - \left(\hat{\mathbf{H}} + \mathbf{E}\hat{\mathbf{J}}\right) \hat{\mathbf{b}}_{\mathsf{est}} \right\|_2^2$$

Iterative Error Correction

Taylor approximation

$$\mathsf{vec}\{oldsymbol{A}\}pprox\left(\hat{oldsymbol{H}}+oldsymbol{E}\hat{oldsymbol{J}}
ight)oldsymbol{b}$$

Cost function (2nd step)

$$\min_{\Delta \mathbf{x}} \left\| \operatorname{vec}\{\mathbf{A}\} - \left(\hat{\mathbf{H}} + \mathbf{E}\hat{\mathbf{J}}\right) \hat{\mathbf{b}}_{\mathsf{est}} \right\|_2^2$$

⇒ Nonlinear programming (e.g. Newton method)

Signal Source Estimation

Signal Source Estimation

Metrics: SE[†]

$$\mathsf{SE}^{\dagger} = \frac{\|\gamma \hat{\boldsymbol{a}} - \boldsymbol{a}\|_2}{\|\boldsymbol{a}\|_2}$$

 γ : normalization factor

$$\gamma = \frac{\boldsymbol{a}^{\mathsf{T}} \cdot \hat{\boldsymbol{a}}}{\hat{\boldsymbol{a}}^{\mathsf{T}} \cdot \hat{\boldsymbol{a}}}.$$

Metrics: API

$$\mathsf{API} = \frac{A_{\epsilon}}{\lambda^2}$$

Metrics: gCNR

$$\mathsf{OVL} = \int \min\{p_i(x), p_o(x)\} \, \mathsf{dx}$$

where

- $p_i(x)$: p.d.f for inside the target area
- $p_o(x)$: p.d.f for outside the target area

$$gCNR = 1 - OVL$$

Error Tolerance: Images

Error Tolerance: Images

Error Tolerance: Images

Error tolerance Results: SE[†]

Error tolerance Results: API

Error tolerance Results: gCNR

Impact of the ROI Depth: SE[†]

Impact of the ROI Depth: API

Impact of the ROI Depth: gCNR

