Pulsating Components in Binary and Multiple Stellar Systems — A Catalog of Oscillating Binaries *

A.-Y. Zhou

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; aiying@nao.cas.cn

Abstract We present an up-to-date catalog of pulsating binaries, i.e. the binary and multiple stellar systems containing pulsating components, along with a statistics on them. Compared to the earlier compilation by Soydugan et al.(2006a) of 25 δ Scuti-type 'oscillating Algol-type eclipsing binaries' (oEA), the recent collection of 74 oEA by Liakos et al.(2012), and the collection of Cepheids in binaries by Szabados (2003a), the numbers and types of pulsating variables in binaries are now extended. The total numbers of pulsating binary/multiple stellar systems have increased to be 515 as of 2014 October 26, among which 262+ are oscillating eclipsing binaries and the oEA containing δ Scuti components are updated to be 96. The catalog is intended to be a collection of various pulsating binary stars across the Hertzsprung-Russell diagram. We reviewed the open questions, advances and prospects connecting pulsation/oscillation and binarity. The observational implication of binary systems with pulsating components, to stellar evolution theories is also addressed. In addition, we have searched the Simbad database for candidate pulsating binaries. As a result, 322 candidates were extracted. Furthermore, a brief statistics on Algol-type eclipsing binaries (EA) based on the existing catalogs is given. We got 5315 EA, of which there are 904 EA with spectral types A and F. The present catalog has a sortable web version allowing easy updating and maintenance (http://www.chjaa.org/COB/).

Key words: stars: oscillation (pulsation) — stars: binaries: eclipsing: Algol — stars: variables: β Cephei, Cepheids, δ Scuti, γ Doradus, HADS, SX Phe, Red Giant Branch, RR Lyrae, sdBV/sdOV, SPB, post-AGB, pulsating White Dwarf, CV, Wolf-Rayet, Be/X-ray

1 MOTIVATION

What has caused the observational studies of eclipsing binaries (EB) with pulsating components important? Let us see the case of an oscillating Algol-type eclipsing binary system (designated as oEA, following Kim et al. 2003). An oEA's light variations would contain that due to the reflect and proximity effects, in addition to the eclipse, while the remained periodic variations are intrinsic variability to one of the components (usually the primary one) of the binary system. Figure 1 shows an example of such superimposed light variations. The photometric analysis of such binaries is unavoidably affected by intrinsic variations due to pulsation. In some case, if the big-sized component is pulsating, then periodic intrinsic pulsation can be seen during the whole orbital period, even in full eclipse. Most oEA stars exhibit the pulsational properties of a typical δ Scuti star. However, their evolutionary history is entirely different with respect to single pulsators. This evokes not only one's observational interests but it also brings about a challenge to both stellar evolutionary and pulsational theories in characterizing the pulsators and binary systems. Eclipsing binaries, as one of the fundamental

^{*} An update to arXiv:1002.2729v5 based on the literature as of October 26, 2014. The web version at http://www.chjaa.org/COB/provides the latest updates. This edition is dedicated to my wife JYZ who suggests me to make the catalog searchable, sortable, and easy to update.

Fig. 1 Sample light curves of PG 1336–018, an eclipsing binary with a pulsating subdwarf B component. Adopted from Vučković et al.(2007).

astrophysical objects, when coupled with asteroseismology, they provide two independent methods to obtain masses and radii and excellent opportunities to develop highly constrained stellar models.

Research suggests that many stars are part of either binary star systems or star systems with more than two stars, called multiple stellar systems. Some 67% of the stars with spectral types ranged G to M in the vicinity of the Sun are binaries (Mayor et al. 2001). Moreover, 75% high-mass binaries are found in star clusters and stellar associations (of O–B types, Mason et al. 2001).

Pulsation has been detected in stars of almost every kind of spectral types. Pulsating variables cover a wide range of masses and almost every stage in stellar evolution. Pulsating variables and binary systems are connected with each other over a long history. Almost all types of pulsating stars (see Fig. 1 or its original version, fig.1 of Jeffery 2008) are found as members of binary systems. For example, nearly a half of the 60 spectroscopically monitored γ Doradus stars in northern sky are binaries (Mathias et al. 2004); the majority of classical Cepheids have one or more companions (Szabados 2003b).

The period-luminosity relationship of Cepheids makes their study one of the most effective ways to measure the distance to nearby galaxies and thus to map out the scale of the whole universe. This useful feature of Cepheids has earned them the nickname "standard candles". Unfortunately, despite their importance for the improvement in the cosmic distance scale, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20% less than predictions from the theory of stellar evolution. The find of eclipsing binaries containing a Cepheid will help in accurately measuring the orbital motion, sizes and masses of the two stars. It is the best approach to solving the above mass discrepancy. Unfortunately neither Cepheids nor eclipsing binaries are common, so the chance of finding such an unusual pair seemed incredibly rare. None are known in the Milky Way by now. MACHO 81.8997.87 was first identified as an eclipsing Cepheid (in first overtone mode) in the Large Magellanic Cloud (LMC) by OGLE (Udalski et al. 1999), and it is reconfirmed by MACHO (Lepischak et al. 2004). Eclipsing binary systems with Cepheid components in the LMC is a key to the extragalactic distance scale (Guinan et al. 2005). The discovery of the eclipsing double star OGLE-LMC-CEP 0227 in the LMC (Pietrzyński et al. 2010), where a 3d 8-pulsating Cepheid variable orbiting another star in a period of 310 days. The rare alignment of the orbits of the two stars in this eclipsing system has allowed a

Fig. 2 A version of the Hertzsprung-Russell diagram of pulsating stars. Adopted from Jeffery (2008).

measurement of the Cepheid mass with unprecedented accuracy. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations.

Similar to Cepheids, because of their constant mean luminosities $\sim 45\,L_{\odot}$ ($\langle M_V \rangle \sim +0.5$ mag) and easily recognizable light curves, RR Lyr variables have long served as the "cornerstone" of the Pop. II distance scale in our galaxy and for local group galaxies. However, there are few fundamental data available for RR Lyr stars. In fact, except the trigonometric parallax determination of RR Lyr itself from HST measurements (Benedict et al. 2002), there are few direct measures of their most fundamental properties — such as mass, radius and luminosity. The astrophysical and cosmological consequences of finding an RR Lyr star in an EB are considerable, because the masses and absolute radii of the components of eclipsing binaries can be determined to within a few percent from analyses of their light and radial velocity curves. RW Ari was early suspected to be in an EB system (Wiśniewski 1971) but it was not supported by late observations (e.g. Dahm 1994). The RR Lyr star TU UMa was highly suspected to be a member of a binary system by Wade et al. (1999), but without follow-up confirmation. OGLE data could have discovered three candidates in the LMC which simultaneously reveal RR Lyr-type and eclipsing-type variability (Soszyński et al. 2003). One of the three candidates OGLE J052218.07-692827.4 apparently showed detached eclipsing binary signature. The RR Lyr primary component has a pulsation period of 0.564876 days. It was suspected to be the only bona fide EB with an RR Lyr component (Guinan et al. 2007). However, HST/WFPC2 observations of the star resolved 5 distinct sources within a 1.3" region — the typical OGLE resolution, proving that it is also an optical blend, does not seem to correspond to a physically plausible system. The source is likely another background RR Lyr star. As of 2008, there is still no an RR Lyr star discovered in an eclipsing binary system (Prša et al. 2008). Most recently, using the OGLE-III database, Soszyński et al. (2011) reported the breakthrough discovery of an RR Lyr star OGLE-BLG-RRLYR-02792 with additional eclipsing variability with the orbital period of 15.2447 days. These authors have identified further three RR Lyr stars being likely in EB systems.

Recent discoveries of various oscillating stars in eclipsing binaries have motivated the researchers, who are specialized in the fields of binaries and pulsating variables, to draw their observational attention onto oscillating binary systems. For example, the discovery of non-radial pulsations in the Herbig Ae type spectroscopic binary RS Cha (Böhm et al. 2009); the discovery of slow X-ray pulsations in the high-mass X-ray binary 4U 2206+54 (Reig et al. 2009); the search for planets around pulsating subdwarf B stars (Schuh et al. 2010); the detection of a tertiary brown dwarf companion in the sdB-type eclipsing binary HS 0705+6700 (Qian et al. 2009) and circumbinary planets orbiting the sdB binary NY Vir (Qian et al. 2012); the detection of a giant extrasolar planet orbiting the eclipsing polar DP Leo (Qian et al. 2010), which is identified as a cataclysmic binary by Beuermann et al. (2011).

Most recently, a search for radio pulsations from neutron star companions of four subdwarf B stars (Coenen et al. 2011) leads to the results that they orbit a companion in the neutron star mass range. Such companions are thought to play an important role in the poorly understood formation of subdwarf B stars.

2 RATIONALE AND BENEFIT OF STUDYING BINARY SYSTEMS OSCILLATING COMPONENTS

There are only two underlying mechanisms for driving stellar pulsations: the self excitation in the layers (which operate as a heat engine) and the stochastic oscillations by turbulent convection. The former instability mechanism excites pulsations in most stars, beginning from classical instability strip stars, through B type main sequence stars, hot subdwarfs to white dwarfs. The second stochastic excitation drives solar-like oscillations, including those observed in the Sun, and is expected in all stars with extended convective outer layers (Daszyńska-Daszkiewicz 2009). That is not the whole story of stellar pulsation. In pulsation modelling, pulsation modes are needed to be observationally identified first. More importantly, the stellar mass must be well determined as a key input parameter before applying asteroseismic techniques.

How can we measure the mass of a distant star? As known, stellar mass (together with radius) can be independently and uniquely determined only if the star is a component of a double-lined spectroscopic eclipsing binary by the Kepler's third law:

$$\frac{G(M_1 + M_2)}{a^3} = \frac{4\pi^2}{P^2} \quad \text{or} \quad M_1 + M_2 = \frac{a^3}{P^2} \,, \tag{1}$$

if one measures orbital period P in years, semimajor axis of the orbit a (or separation of the two components) in astronomical units (AU) and each component's mass (M_1, M_2) in solar masses. The orbital velocity amplitudes (K_1, K_2) are used to determine a directly by the relation

$$|K_1| + |K_2| = \frac{2\pi}{P} a \sin i \ . \tag{2}$$

A general mass function for the secondary companion can be written as

$$M_2 \sin i = \left(\frac{P}{2\pi G}\right)^{1/3} \frac{K_1 \sin i}{(M_1 + M_2)^{2/3}},\tag{3}$$

where $K_1 \sin i$ is the line-of-sight velocity component of the orbital motion of the primary companion about the center of mass, G is the universal gravitational constant. If the orbital plane of a binary system is perpendicular to the plane of the sky, that is, we are observing in the orbital plane (edge-on, orbital inclination $i = 90^{\circ}$, which is true if the system is eclipsing), then the solution to the above equation is straightforward. By using eq.(3), orbital eccentricity is neglected and circular orbit has been assumed. Thus if an eclipsing binary is a double-lined spectroscopic system, the fundamental physical properties (mass, radius, temperature and luminosity) can be directly determined from the analysis of the combined radial velocity and photometric observations. The parameter relations given in eqs.(1)–(3) is one of the main concerns on the study of eclipsing binary systems with pulsating components.

To summarize, the common interests in studying the pulsators in binary and multiple stellar systems relies at least on following advantages:

(1) If no mechanism damping pulsations in close binaries, percentage of pulsating stars expected among A–F components of detached and semi-detached eclipsing binaries should be at least the same as for single A–F type stars.

- (2) Pulsation characteristics of oscillating binaries are similar to those of single pulsators, but their evolutions are quite different due to mass accretion.
- (3) Precise estimation of the accretion rate using the pulsation period changes of the gainer(i.e. accreting star) caused by accretion.
- (4) Possibility of precise dynamical mass and radius determinations the masses and radii for each component in eclipsing (double-lined) spectroscopic binaries could be accurately determined.
 - (5) With a certain mass, it should help to model the pulsating spectra.
- (6) The possibility of (non-radial) mode identification during the eclipse orbital phases (i.e. the primary minima) using the observed pulsational amplitude and phase changes during the eclipse (Nather & Robinson 1974). This has been explored by, for instance, Reed et al. (2005) and Bíró & Nuspl (2011).
- (7) Higher probability of detection of the sectorial modes due to equator-on visibility of components in close eclipsing binaries.
- (8) When applying asteroseismic diagnostic tools to studying the dynamics of mass transfer between components in semi-detached eclipsing binaries, the possibility of precise estimation of the accretion rate would become higher if using the pulsation period changes of the gainer star caused by accretion.
- (9) The study of pulsational properties of the pulsating components in eclipsing binaries is in its blossom state, whereas asteroseismology of these stars is very attractive in comparison to single stars pulsational properties can be constrained using spectroscopic eclipsing binary systems (say Creevey et al. 2011).
- (10) The connection between asteroseismology and exoplanet research, i.e. the study of pulsating stars harboring planets. Two early discussions can be found in Moya (2013) and Vauclair (2008, 2012). A recent technique progress using photometric data to derive radial velocity is presented by Shibahashi & Kurtz (2012) and Murphy et al. (2014). This technique has opened a new era in the EB study.
- (11) Eclipsing binaries containing pulsating stars provide a unique opportunity to improve calibration of the cosmic distance scale and to better calibrate stellar evolutionary models.

By now, more than ten types of pulsating stars are found as members of various binary systems. Those planet-hosting oscillators can also be regarded as a special case of binary systems. At the time of observational efforts rolling into this field, the binary, triple or multiple stellar systems with pulsating components are needed to be collected in a catalog. We have attempted to catalog both the Galactic and extragalactic stellar systems with pulsating components. However, the number of pulsating binaries is increasing. As of this writing, some oscillating multiple stellar systems might have not been collected. The readers should be aware that other kinds of pulsating binary systems not mentioned in current version are possible. Regarding this, the missing materials will be supplied in future updates.

3 NOTES TO THE CATALOG

3.1 General notes

Labels used in the catalog:

- (1) Sp.(A+B) spectral types of the primary (A) and secondary component (B)
- (2) $\langle V \rangle$ mean magnitude in V band
- (3) $\langle B \rangle$ mean magnitude in B band
- (4) $P_{\rm orb}$ orbital period in days
- (5) P_{pul} main pulsation period in days (except those indicated units)
- (6) Comments key characteristics of the pulsating multiple stellar systems, membership of a cluster, other identifications, etc. Full identification in the survey project is provided, some object names used short nomenclature following the original references.

Table 1 A statistics on pulsating binaries based on the presented catalog. Candidates follow the plus '+' sign.

Type of Pulsators			Classes of stella	r systems	
	Group	Eclipsing	Spectroscopic	Visual	Others [†]
	Sum	Binaries	Binaries	Binaries	
(1) DCEP: Galactic ^{††}	154 + 34	3	123	20	20
DCEP: Extragalactic	4 + 0	4	0	0	_
Type II Cepheids(CWA,CWB,RV):	14 + 18	7	7	0	_
(2) DSCT: δ Scuti-type	112 + 53	96	13	1	7
(3) solar-like oscillators + RGB	71 + 0	65	4	2	1
(4) sdBV: pulsating subdwarf B/O	41 + 20	15	24	_	1
(5) CV: cataclysmic variable	32 + 28	29	3	0	0
(6) BCEP: β Cep-type	26 + 9	10	11	_	5
(7) SPB: slowly pulsating B stars	15 + 0	3	10	2	2
(8) GDOR: γ Dor-type	12 + 30	10	2	0	_
(9) Be/X-ray pulsators	10 + 0	9	0	0	_
(10) WD: pulsating white dwarf	6 + 57	3	3	0	_
(11) WR: Wolf-Rayet stars	3 + 0	3	0	0	_
(12) SX Phe-type	6 + 3	2	0	0	_
(13) BY Dra-type	1 + 0	1	0	0	_
(14) HADS: high-amplitude DSCT	2 + 0	1	0	0	_
(15) RR: RR Lyr-type	4 + 59	1	0	0	_
(16) non-classified	2 + 11	1	1	0	_
Total	515 + 322*	262	201	23	36

^{†:} Column 'Others' for triple/multiple systems and unidentified;

- (7) EB; EA Eclipsing binary (system); Eclipsing binary of Algol-type
- (8) oEA oscillating EA (eclipsing binaries of Algol-type)
- (9) SB refers to spectroscopic binary: SB1 (single-lined), SB2 (double-lined).
- (10) SB+orbit stands for spectroscopic binary with known orbital elements available in literature.
- (11) comp.? photometric companion, physical relation should be investigated.
- (12) References key references related to the pulsational properties and binarity. Some data were adopted from Soydugan et al. (2006a), which is not always listed when original papers or latest results are cited. Columns missing data will be populated in the future updates.

3.2 Comments on each subgroup of the pulsating multiple stellar systems

Under the scope of pulsating components in binaries, we have summarized, as a catalog in Table 3, all the types of pulsating stars currently discovered in various groups of binary systems. We describe each type of pulsating stars and binary systems briefly according to the GCVS as a conceptual background knowledge.

3.2.1 Types of Binary Systems Involved

1. EB: Eclipsing binary (systems). These are binary systems with orbital planes so close to the observer's line of sight (the inclination of the orbital plane to the plane orthogonal to the line of sight is close to 90°) that the components periodically eclipse each other. Consequently, the observer finds changes of the apparent combined brightness of the system with the period coincident with that of the components' orbital motion.

^{††:} Galactic classical Cepheids in binaries are adopted from Szabados (2003a);

^{*:} These candidates were extracted from Simbad database without literature check for their identities.

Fig. 3 Number of pulsators in different groups of multiple stellar systems.

Fig. 4 Distribution of binaries (and multiples) containing different type pulsators. The columns for Galactic DCEP and δ Sct are cutoff in order to display others better.

2. EA: eclipsing binaries of Algol (β Persei)-type, are binaries with spherical or slightly ellipsoidal (usually semi-detached or detached) components. It is possible to specify, for their light curves, the moments of the beginning and end of the eclipses. Between eclipses the light remains almost constant or varies insignificantly because of reflection effects, slight ellipsoidality of components, or physical variations. Secondary minima may be absent. An extremely wide range of periods is observed, from 0.1167 (HW Vir) to \geq 10 000 days (ϵ Aur). Light amplitudes are also quite different and may reach several magnitudes. For the oscillating Algol-type eclipsing binaries (widely recognized as

- oEA systems), usually the primary components are intrinsic pulsating variable stars (e.g. δ Scuti-type pulsators), while the late-type secondary fills its Roche lobe. Distribution of a sample of 434 confirmed EA with respect to spectral types is given in Fig. 6. These binaries are provided in appendix.
- 3. EB(β): β Lyrae-type eclipsing systems. These are eclipsing systems having ellipsoidal components and light curves for which it is impossible to specify the exact times of onset and end of eclipses because of a continuous change of a system's apparent combined brightness between eclipses; secondary minimum is observed in all cases, its depth usually being considerably smaller than that of the primary minimum; periods are mainly longer than 1 day. The components generally belong to early spectral types (B-A). Light amplitudes are usually < 2 mag in V.
- 4. EW: W Ursae Majoris-type eclipsing variables (W UMa-type). These are eclipsing binaries with periods shorter than 1 day, consisting of ellipsoidal components almost in contact (some even overcontact) and having light curves for which it is impossible to specify the exact times of onset and end of eclipses. The depths of the primary and secondary minima are almost equal or differ insignificantly. Light amplitudes are usually <0.8 mag in V. The components generally belong to spectral types F–G and later. Only eight pulsating components are identified in EW by now. However, several additional candidates were suggested (e.g. Michalska & Pigulski 2008).
- 5. SB: single- or double-lined spectroscopic binaries (SB1, SB2).
- 6. X: Close binary systems that are sources of strong, variable X-ray emission and which do not belong to or are not yet attributed to any of the above types of variable stars. One of the components of the system is a hot compact object (white dwarf, neutron star, or possibly a black hole). X-ray emission originates from the infall of matter onto the compact object or onto an accretion disk surrounding the compact object. In turn, the X-ray emission is incident upon the atmosphere of the cooler companion of the compact object and is re-radiated in the form of optical high-temperature radiation (reflection effect), thus making that area of the cooler companion's surface an earlier spectral type. These effects lead to quite a peculiar complex character of optical variability in such systems. Be/X-ray pulsating binary systems is a type of this class.

3.2.2 δ Sct Pulsators in Binaries

Variables of the δ Scuti type (DSCT) are pulsating variables of spectral types A0-F5 with luminosity classes V to III displaying light amplitudes from 0.003 to 0.9 mag in V band (usually several hundredths of a magnitude) and periods from 0.01 to 0.2 days. The shapes of the light curves, periods, and amplitudes usually vary greatly. Radial as well as nonradial pulsations are observed. The variability of some members of this type appears sporadically and sometimes completely ceases, this being a consequence of strong amplitude modulation with the lower value of the amplitude not exceeding 0.001 mag in some cases. The maximum of the surface layer expansion does not lag behind the maximum light for more than 0.1 periods. DSCT stars are representatives of the galactic disk and are phenomenologically close to the SX Phe variables. They pulsate in radial and nonradial p (pressure, and possibly also g – gravity) modes. After white dwarfs, they are the second most abundant pulsating variables in our Galaxy.

 δ Sct type pulsators are driven by the so-called κ mechanism. These stars pulsate mostly in low-radial-order pressure-mode with pulsation constants usually less than 0.03 d. Seeds (1972) argued that about one third of 155 δ Sct stars are binary, but as of 1974, only two (AB Cas and Y Cam) were known in eclipsing binaries. Fitch (1976) suggested that high-amplitude DSCT are single, while the low-amplitude ones probably have companions. However, probably due to difficulty in observing small-amplitude oscillations in comparison with large light variation caused by the eclipsing phenomenon, only nine δ Sct-type pulsating components in EB systems were reported as of 2001 (Rodríguez & Breger 2001). Nevertheless, with high-precision CCD photometry and various surveys including the space missions CoRoT and Kepler, the number has been inspiringly increased largely to more than 90 in recent years.

Fig. 5 Correlation between the orbital and pulsational periods of the known 93 oEA with δ Sct components (DSCT-oEA). A few with longer orbital periods are cutoff. Red lines in both panels based upon a sample of 73 DSCT-oEA: $\log P_{\rm pul} = -1.7 + \log P_{\rm orb}$ (Zhang et al. 2013); Top: black solid line for a collection of 74 DSCT-oEA by Liakos et al.(2012): $\log P_{\rm pul} = -1.53 + 0.58 \log P_{\rm orb}$ [eq.(3)]; while the blue dash for semi-detached DSCT-oEA: $\log P_{\rm pul} = -1.4 + 0.52 \log P_{\rm orb}$ [eq.(2)], green line for detached DSCT-oEA: $\log P_{\rm pul} = -1.56 + 0.62 \log P_{\rm orb}$ [eq.(1)].

3.2.3 β Cep and SPB Pulsators in Binaries

There are two classes of B-type main sequence pulsators: β Cephei pulsators (BCEP) and slowly pulsating B stars (SPB). Variables of the β Cephei type (prototype β Cep, β CMa), are pulsating O8-B6 I-V stars with periods of light and radial-velocity variations in the range of 0.1–0.6 days and light amplitudes from 0.01 to 0.3 mag in V band. The light curves are similar in shape to average radial-velocity curves but lag in phase by a quarter of the period, so that maximum brightness corresponds to maximum contraction, i.e., to minimum stellar radius. The majority of these stars probably show radial pulsations, but some (say V649 Per) display nonradial pulsations. Multiperiodicity is characteristic of many of these stars. BCEP stars with masses larger than $8M_{\odot}$ and spectral types B0-B2.5, in which mainly pressure (p) modes are excited.

SPB stars are pulsating in high-order, low degree gravity (*g*) modes with typical periods of the order of a few days. These modes are excited by the opacity mechanism acting on the metal-bump. They are trapped deep in the interior of these hot stars, making them very interesting from an asteroseismic point of view. The theoretical pulsation frequency spectra of SPB stars are very dense, the observed amplitudes are low, and most of the currently known SPBs are multiperiodic, giving rise to beat periods of the order of months or even years. Rotation is a serious complication for mode identification in these stars because rotational splitting is large enough to cause multiplets of adjacent radial orders to overlap. Together with longer pulsation periods and rich eigen-spectra, great promise and obstacles coexist. These stars present serious observational and theoretical challenges. Currently, at least 51 confirmed and 65 candidate galactic SPB stars are known (Aerts et al. 2006 and references therein), of which 15 are in open clusters.

SPBs with spectral types B3–B9 and masses smaller than $8M_{\odot}$. SPBs are somewhat similar to BCEP stars. Several BCEP/SPB hybrids are currently known, for example, γ Peg (Handler 2009a,b), ν Eri and 12 Lac (Dziembowski & Pamyatnykh 2008) have been confirmed to present both BCEP and SPB types of variations, i.e. pressure and gravity modes pulsation. The existence of excited p and q modes should allow the simultaneous study of both the external and the internal zones of the stars. It may also help to refine the limits of the SPBs instability zone.

3.2.4 Cepheids in Binaries

Cepheids (CEP) are radially pulsating, high luminosity (classes Ib-II) massive variables with periods in the range of 1– 135 days and amplitudes from several hundredths to 2 mag in V (in the B band, the amplitudes are greater). Light curves show a rapid rise in brightness followed by a more gradual decline, shaped like a shark fin. Spectral type at maximum light is F; at minimum, the types are G-K. The longer the period of light variation, the later is the spectral type. The maximum of the surface-layer expansion velocity almost coinciding with maximum light. (1) Classical Cepheids (Pop. I, prototype δ Cephei) or called δ Cephei-type (DCEP) variables, are comparatively young objects that have left the main sequence and evolved into the instability strip of the Hertzsprung-Russell (H-R) diagram, they obey the well-known Cepheid period-luminosity relation and belong to the young disk population. DCEP stars are present in open clusters. They display a certain relation between the shapes of their light curves and their periods. (2) Type II Cepheids: metalpoor, low mass, population II. They are divided into three subclasses: BL Herculis-type (P=1-5 days), W Virginis-type (P=~10-20 days), and RV Tauri-type (P>20 days). W Vir Cepheids (CW) are pulsating variables of the galactic spherical component (old disk) population with periods of approximately 0.8 to 35 days and amplitudes from 0.3 to 1.2 mag in V. They obey a period-luminosity relation different from that for DCEP variables. For an equal period value, the CW stars are fainter than the DCEP stars by 0.7-2 mag. The light curves of CW variables for some period intervals differ from those of DCEP variables for corresponding periods either by amplitudes or by the presence of humps on their descending branches, sometimes turning into broad flat maxima. CW variables are present in globular clusters and at high galactic latitudes. DCEP and CW are distinct groups of entirely different objects in different evolutionary stages. A few RV Tauri-type pulsating variables were found in post-Asymptotic Giant Branch (post-AGB) binaries.

During the last few years, observations have revealed that (1) nonradial modes in classical Cepheids (Moskalik & Kolaczkowski 2008); (2) eclipsing binaries containing Cepheids (Soszyński et al. 2008b; Pietrzyński et al. 2010); (3) triple-mode Cepheids (Soszyński et al. 2008a), etc. Most stellar systems containing Cepheids are spectroscopic binaries, a few are eclipsing binaries. Moreover, the orbital period of these binaries usually are quite long (up to tens of years), see details in the present catalog.

The astrophysical and cosmological importance of finding a Cepheid as a member of an eclipsing binary is considerable. If an eclipsing binary is a double-lined system, the mass, radius, and luminosity can be directly determined from the analysis of the light and radial velocity curves. Moreover, the study of Cepheids in eclipsing binaries offers an important opportunity to investigate the structure and evolution of Cepheids as well as tests of pulsational theories. These systems

provide opportunity to minimize the dependence of the Cosmic Distance Scale and Hubble's constant on uncertainties in assumed "zero-points". Unfortunately, there are no Cepheids in eclipsing binary systems known so far in the Milky Way.

Fig. 6 Distribution of the identified 434 Algol-type eclipsing binaries over spectral types.

3.2.5 γ Dor Pulsators in Binaries

 γ Doradus-type stars (GDOR, prototype γ Dor) are early type F dwarfs showing multiple periods from several tenths of a day to slightly in excess of one day. Amplitudes usually do not exceed 0.1 mag. Presumably low degree gravity-mode non-radial pulsators and high-radial-order g-mode pulsators. Presently feasible driving mechanism is flux-blocking mechanism at the base of their relatively thin convective envelopes. They usually have pulsation constants higher than 0.23 d. γ Dor and δ Sct stars have commensurate pulsational periods.

3.2.6 sdB/sdO Pulsators in Binaries

Pulsating subdwarf B (sdB) variable stars are low-mass (\sim 0.5 $\rm M_{\odot}$) core helium-burning horizonal branch stars with very thin outer hydrogen layers, making them quite luminous. They are evolved, compact (typical values $\log g \sim 5.8$) and hotter ($T_{\rm eff} \gtrsim 20\,000\,\rm K$) B subdwarfs. Since its discovery in 1997, over 30 of the sdBV stars have been identified to be multimode pulsators, with typical pulsation periods of 100–250 seconds in a total range of about 60–600 seconds, and with pulsation amplitudes generally less than a few hundredths of a magnitude. These pulsating sdB stars are officially V361 Hya stars, which were commonly known as EC 14026 stars after the prototype and referred to as sdBV stars.

3.2.7 RR Lyr Pulsators in Binaries

RR Lyrae stars (RR) are variables of the RR Lyrae type, they are old population II, mostly found in globular clusters, which are radially-pulsating giant stars with spectral types in A7–F5, having amplitudes $\Delta V \sim 0^{\rm m}3-2^{\rm m}0$ and periods in 1.5–24 hr. Cases of variable light-curve shapes as well as variable periods are known. If these changes are periodic, they are called the "Blazhko effect." The majority of these stars belong to the spherical component of the Galaxy; they are present, sometimes in large numbers, in some globular clusters, where they are known as pulsating horizontal-branch stars. Like Cepheids, maximum expansion velocities of surface layers for these stars practically coincide with maximum light. They are further classified into four subgroups: (1) RR(B): RR Lyrae variables showing two simultaneously operating pulsation modes, the fundamental tone with the period P_0 and the first overtone, P_1 (AQ Leo). The ratio P_1/P_0 is approximately 0.745; (2) RRab: RR Lyrae variables with asymmetric light curves (steep ascending branches), periods from 0.3 to 1.2 days, and amplitudes from 0.5 to 2 mag in V; pulsating in fundamental mode. (3) RRc: RR Lyrae variables with nearly symmetric, sometimes sinusoidal, light curves, periods from 0.2 to 0.5 days, and amplitudes not greater than 0.8 mag in V (e.g. SX UMa). Overtone pulsators. (4) RRd: RR Lyrae pulsators in first overtone and fundamental double radial modes.

3.2.8 SX Phe-type Pulsators in Binaries

Phenomenologically, these SXPHE resemble DSCT variables and are pulsating subdwarfs of the spherical component, or old disk galactic population, with spectral types in the range A2–F5. They may show several simultaneous periods of oscillation, generally in the range 0.04–0.08 days, with variable-amplitude light changes that may reach 0.7 mag in V band. These stars are Pop. II, metal-poor with high spatial motions, mostly in blue-straggler region in globular clusters. Multiperiodicity and nonradial pulsational contents are discovered recently in some of them.

3.2.9 WDA/WDB Pulsators in Binaries

White dwarf (WD) pulsators (showing absorption lines with FWHM $>1500 \text{ km s}^{-1}$) with Balmer lines only (WDA) or white-dwarf white-dwarf binaries (WDB). Binaries consisting of sdB and WD are listed together under sdB type.

3.2.10 Oscillating Red Giant (Branch) Stars in Eclipsing Binaries

Solar-like oscillations have been identified in 15 more red-giant branch (RGB) stars belonging to eclipsing binary systems in *Kepler* data (Gaulme et al. 2013,2014). The first detection was the 408-day period system KIC 8410637 (Hekker et al. 2010). So far, all the stars known to both display acoustic modes and belong to EBs are red-giants. We group them as red giants in eclipsing binaries (hereafter RGEBs or RG/EBs), which span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant.

3.2.11 Other Pulsators in Binaries

In this contribution, we also collected a few other types of pulsating stars in EB systems, including three Wolf-Rayet stars, one BY Dra-type star, and those eclipsing cataclysmic variables (CVs), especially the subgroup of post-common envelope binaries known or suspected to possess planets. CVs are a class of interacting binary star system which display a huge diversity of physical phenomena. The majority of them are composed of a white dwarf and a low-mass and unevolved secondary star, plus an accretion disc through which material passes from the secondary star (the donor) to the WD. The importance of eclipsing CVs lies in the information which can be extracted from them: detailed modelling of their eclipses allows one to obtain the basic physical properties of the system, including the masses and radii of the stellar components. Such information is valuable in understanding the evolution of CVs.

4 STATISTICS AND OPEN QUESTIONS

Based on the catalog, several statistics were made in Table 1 and Figs.3–6. We address such stellar systems' observational implication to stellar evolutionary theory by gathering the interesting topics and open questions from publications (Lampens 2006 and others) as followings:

- 1. How can binarity modify the pulsation properties? in what manner? e.g. how binary tidal interactions affect pulsations when compared to the single-star case.
- 2. How can binarity/multiplicity help to identify the pulsation modes? Regarding that the amplitude and phase of the pulsating mode change during an eclipse (Breger 2005), the eclipse mapping technique was attempted by e.g. Reed et al. (2005), Bíró & Nuspl (2011) and the direct fitting of spherical harmonics by Latković & Bíró (2008).
- 3. Can we understand stellar pulsations when other processes (e.g. mass exchange/loss) are also present?
- 4. What is the link between orbital motion, rotation and pulsation?
- 5. We need improved models which can take into account deformed stellar shapes, including rotational and tidal distortions.
- 6. How to discriminate properly between forced oscillations and modified or unaffected free oscillations in close binaries?
- 7. Possible small cyclic variations of the oscillation frequencies, due to variable shape of the star in close eccentric-orbit binaries, and the light-time effect in the wide ones.
- 8. binary constraints for asteroseismology of pulsating stars, e.g. the studies by Creevey (2008) and Creevey et al. (2011); establishing pulsating binary models, e.g. the work by Nie et al.(2010).
- 9. search for solar-like p-mode oscillations in eclipsing binary systems.
- 10. search for solar-like oscillations in metal-poor stars.
- 11. search for pulsating M, K giants and subgiant stars.
- 12. search for extra-solar planets orbiting a pulsator: eclipsing binaries consisting of planetary companions have been found from high-precision photometry, e.g. Silvotti et al.(2007), Qian et al.(2010).
- 13. search for extragalactic eclipsing binaries containing pulsating stars (e.g. RR Lyr and Cepheids).

Recalling the open questions, progress and prospects connecting oscillation and binarity, the study of pulsating components in binaries becomes increasingly important.

5 THE CATALOG

The catalog is arranged in different types of pulsating stars. Entries for member stars in each group are listed in the order of ascending Right Ascension. The orbital and pulsational data were adopted from literature. FK5 coordinates

14 Zhou A.-Y.

(equinox=2000.0), spectral types and B, V, J, H, g, r magnitudes when unavailable in publications were adopted from the SIMBAD astronomical database¹ and other databases on the Internet.

Acknowledgements I appreciate Dr. Laszlo Szabados' comments, which urges me to finish cataloging as complete as possible. Thanks to Dr. Yang Y.-G. for providing the LaTeX format table of the 435 Algol-type eclipsing binaries. This research was funded by the National Natural Science Foundation of China (NSFC). The project is co-sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

Appendix A: CATALOG OF IDENTIFIED ALGOL-TYPE ECLIPSING BINARIES

For the convenience of selecting a candidate EA to search for pulsation, currently confirmed 435 Algol-type eclipsing binaries are cataloged. As seen in Fig. 1, pulsation could be excited in almost everywhere across the H–R diagram, so spectral types is not an exclusive criterion in the selection of candidate pulsators. Entries for member stars are listed in the order of ascending Right Ascension. Some oEA systems have been included in this collection. Other data and references to stars are not given for simplicity. These materials are an update to the 434 entries given in the post-doctoral report of Dr. Yang Y.-G. (2010).

Besides this catalog, several catalogs from various survey projects are available for reference. For instance, the OGLE catalog of 2580+1351 EBs in LMC and SMC (Wyrzykowski et al. 2003, 2004), 11099 EBs in ASAS catalog (Paczynski et al. 2006); a catalog of 773 EBs in the TrES survey (Devor et al. 2008; https://www.cfa.harvard.edu/~jdevor/Catalog.html); Kepler EB stars catalog of 1879 EBs in its first data release (http://astro4.ast.villanova.edu/aprsa/kepler; Prsa et al. 2011) and the second data release has increased the total number of identified EBs to 2165 (http://keplerEBs.villanova.edu; Slawson et al. 2011, Matijevic et al. 2012). We investigated these catalogues and summarize them in Table A.1. In addition, the fruitful searches (e.g. Mkrtichian et al. 2002, Kim et al. 2003) and those fruitless attempts (e.g. Pazhouhesh et al. 2009) can be referenced in selecting candidates.

http://simbad.u-strasbg.fr/simbad/

Table A.1 A statistics on Algol-type eclipsing binaries.

4.03, GCVS V4.2 4.03, GCVS V4.2 2.03, HEASARC_GCVS version 3.10, 95.09, from GCVS	http://www.sai.msu.su/gcvs/cgi-bin/search.htm http://www.sai.msu.su/gcvs/gcvs/iii/iii.dat http://heasarc.gsfc.nasa.gov/W3Browse/all/gcvs.html Avvakumova et al. 2013, AN, 334, 860
2.03, HEASARC_GCVS version 3.10,	http://heasarc.gsfc.nasa.gov/W3Browse/all/gcvs.html
3.10,	
,	Avvakumova et al. 2013, AN, 334, 860
05.09 from GCVS	, , , ,
3.07, HOIII GC V B	Malkov et al. 2006, A&A, 446, 785
3.11, Kepler EB	Kepler Eclipsing Binaries [Revision 3(beta)], http://keplerebs.villanova.edu
1 OGLE-III	EB in LMC (Graczyk et al. 2011, Acta Astron., 61, 103 arXiv:1108.0446)
3 OGLE-III	EB in SMC (Pawlak et al. 2013, Acta Astron., 63, 323 arXiv:1310.3272)
	http://ogle.astrouw.edu.pl ftp://ftp.astrouw.edu.pl/ogle3/OIII-CVS/lmc/ecl/
08.02 , ASAS ($V < 14^{\rm m}_{\cdot}0$)	627 DSCT/BCEP in EC/ED/ESD: Paczyński B. et al. 2006, MNRAS, 368, 1311(astro-ph/0601026)
	2758Detached, 2957SD, 5384C; 11099EB of 50122 variables. http://www.astrouw.edu.pl/asas/
98 TrES	Devor, J., Charbonneau, D., ODonovan, F. T., Mandushev, G., & Torres, G., 2008, AJ, 135, 850
2, GSCVS 4, Vol.V	Extragalactic Variable Stars; Extragalactic eclipsing binaries
0/2741 not presented in 3395	
2/910 not presented in 4062	
0/3395 not presented in 4062: 502+5	529+4062=5093 EA
502 + 152/529 +67/4062 = 315/5093	3 not presented in 4866:
3538 not presented in 4866:	
5 + 45 + 4866 = 5226	
315 + 6/45 + 880/4866 = 904/5226	— maximum EA with A and F spectral types
26 + 89/10980 = 5315 EA—the max	imum number of EA as of October 26, 2014
3 3 3 3 3 3 3 3 3 3 3	3.11, Kepler EB 1 OGLE-III 3 OGLE-III 8.02, ASAS (V < 14 ^m 0) 8 TrES 2, GSCVS 4, Vol.V /2741 not presented in 3395 /910 not presented in 4062 /3395 not presented in 4062: 502+5 502 + 152/529 +67/4062 = 315/509 8538 not presented in 4866: + 45 + 4866 =5226 815 + 6/45 + 880/4866 = 904/5226

^{†:} The missing stars in the late catalogs were not investigated. EV=Eclipsing Variables.

^{‡:} Up-to-date version of this table at http://www.chjaa.org/COB/

Type of Pulsators	Binary or Multiple	RA hh:mm:ss	DEC °: ': "	Sp.(A+B)	$\langle V \rangle$ (mag)	$\langle B \rangle$ (mag)	P _{orb} (day)	$P_{ m pul}$ (day)	Comments	References
Cepheids:	CG Cas	00:00:59	+60:57:32	F5	11.37	12.59		4.3652	SB	[443]
Galactic	SY Cas	00:15:10	+58:25:27	F5	9.92	10.69		4.0738	SB	[446]
DCEP	DL Cas	00:29:58	+60:12:43	F7.5Ib + B9V	8.71	9.79	684.39	7.9983	SB+orbit, in NGC 129	[29, 113, 159, 187, 306]
	BY Cas	01:47:12	+61:25:21	F5	10.41	11.5	563	3.2211	SB+orbit, visual	[165, 166, 167, 453]
	CI Per	02:05:02	+57:08:34	_	12.7	13.00		3.2961	SB	[352]
	UX Per	02:13:07	+58:04:48	F5 +	11.0	11.3		4.5709	SB,visual	[450, 453]
	V440 Per	02:23:52	+55:21:53	F7Ib +	6.3	7.11		7.5683	SB, unconfirmed,=ADS 1820	[165, 168]
	VY Per	02:27:35	+58:55:02	F5 +	11.26	12.79		5.5335	SB	[445]
	α UMi	02:31:49	+89:15:51	F7:Ib-IIv + F0V	2.0	2.59	10800	3.9719	SB+orbit, triple, =ADS 1477	[113, 123, 120, 218, 219, 357, 491]
10	SU Cas	02:51:59	+68:53:18	F5Ib + B9.5V	5.94	6.60	406.76	1.9498	SB+orbit	[108, 165, 172, 366, 444]
	RW Cam	03:54:22	+58:39:12	F8	8.72	10.02		16.4059	SB	[37, 112, 291, 453]
	RX Cam	04:04:58	+58:39:35	G1Ib	7.70	8.85	1116	7.9068	SB+orbit	[208, 165, 172, 366]
	SZ Tau	04:37:15	+18:32:35	F6.7:Ib	6.50	7.28		3.1477	SB, in NGC 1647	[109, 165, 168]
	AW Per	04:47:46	+36:43:22	F0 + B8.2V	7.51	8.46	14594	6.4565	SB+orbit, triple	[112, 113, 127, 165, 291, 482, 487]
	SV Per	04:49:48	+42:17:23	F8 + B8.00III	9.0	9.74		11.1173	SB	[37, 112, 158, 291]
	AN Aur	04:59:41	+40:50:10	F6	10.21	11.35		10.2802	SB	[291, 444]
	RX Aur	05:01:23	+39:57:37	G0Iabv	7.62	8.49		11.6145	SB	[168, 292, 441]
	YZ Aur	05:15:22	+40:04:41	G5	10.38	11.08		18.1970	SB	[291, 292, 450]
	EU Tau	05:45:40	+18:39:25	G5 +	8.08	8.71		2.1038	SB, unconfirmed	[165]
20	AS Aur	06:05:24	+28:47:23	F6	11.8	11.80		3.1769	SB	[450]
	RZ Gem	06:02:36	+22:14:03	F5	9.91	10.83		5.5335	SB	[291, 292, 444]
	CR Ori	06:05:45	+13:14:24	F7	12.3	12.97		4.9091	SB	[446]
	AA Gem	06:06:35	+26:19:45	K0	9.91	11.0		11.2980	SB	[126, 450]
	CS Ori	06:07:25	+11:09:07	F5	11.37	12.29		3.8905	SB	[450]
	RS Ori	06:22:13	+14:40:41	F4Ib +	8.42	9.34		7.5683	SB	[125, 291, 444]
	T Mon	06:25:13	+07:05:08	G3Iabv + B9.8V	6.2	7.6	32449	27.0396	SB+orbit	[113, 118, 157, 165, 172]
	RT Aur	06:28:34	+30:29:35	F8Ibv +	5.75	6.49		0.572	SB, verification needed	[471, 447]
	CS Mon	06:32:11	+06:39:11	_	11.0	_		6.7298	Visual	[126]
	DX Gem	06:33:54	+14:28:17	_	10.53	11.20		3.1405	SB	[49]
30	V495 Mon	06:37:03	-02:49:27	_	12.4	13.69		4.0926	SB	[450]
	CV Mon	06:37:05	+03:03:50	_	10.3	11.08		5.3827	comp.? in cluster	[126, 160, 291, 341, 469]
	AD Gem	06:43:07	+20:56:21	F5	9.80	10.42		3.7844	SB	[444]
	TX Mon	06:50:52	-01:25:45	F6	11.0	11.76		8.7096	SB	[450]
	XX Mon	06:52:12	-02:48:25	F6	11.91	13.10		5.4576	SB	[291, 446, 481]

Galactic AC Mon 07:01:00 -08:42:32 F5 10.1 10.81 8.0168 SB (351] DCEP ζ Gem 07:04:06 +20:34:13 GOlbv 4.01 4.89 10.1391 SB,visual,=ADS 5742 [357] V465 Mon 07:08:09 -00:03:56 G0 + AOV 10.4 11.07 2.7102 SB [29, 49, 113] 40 RY CMa 07:16:37 -11:29:14 KO 8.19 8.99 4.6774 SB [481] 40 RZ CMa 07:21:33 -16:41:14 F6 9.72 10.75 4.2560 comp.? [291, 292, 341] SS CMa 07:26:02 -25:55:26 F6 9.84 10.99 12.3595 SB [126, 446] VZ CMa 07:26:28 -25:55:56 F5II 9.11 9.96 3.1261 SB,=AX Pup [437, 446] VW Pup 07:31:49 -20:08:59 F5 + 11.38 12.50 4.2855 SB [450] W Pup 07:51:49	Type of Pulsators	Binary or Multiple	RA hh:mm:ss	DEC °: ': "	Sp.(A+B)	$\langle V \rangle$ (mag)	$\langle B \rangle$ (mag)	$P_{ m orb}$ (day)	$P_{ m pul}$ (day)	Comments	References
DCEP Vafes Mon 07:04:06 +20:34:13 GOIbv 4.01 4.89 10.1391 SB.visual,=ADS 5742 3571	Cepheids:	TZ Mon	06:58:01	-00:22:33	F6	10.8	11.8		7.4302	SB	[446]
V465 Mon O7:08:09 -00:03:56 GO + AOV 10.4 11.07 2.7102 SB 29, 91;13]	Galactic	AC Mon	07:01:00	-08:42:32	F5	10.1	10.81		8.0168	SB	[351]
RY CMa	DCEP	ζ Gem	07:04:06	+20:34:13	G0Ibv	4.01	4.89		10.1391	SB,visual,=ADS 5742	[357]
RZ CMa		V465 Mon	07:08:09	-00:03:56	G0 + A0V	10.4	11.07		2.7102	SB	[29, 49, 113]
SS CMa		RY CMa	07:16:37	-11:29:14	K0	8.19	8.99		4.6774	SB	[481]
VZ CMa	40	RZ CMa	07:21:33	-16:41:14	F6	9.72	10.75		4.2560	comp.?	[291, 292, 341]
VW Pup 07:31:49 -20:08:59 F5+ 11.38 12.50 4.2855 SB [450] BM Pup 07:50:03 -28:15:18 — 10.7 11.6 7.1945 Visual [453] AP Pup 07:57:46 -40:07:24 F8II + 7.37 8.13 5.0816 SB [284] AQ Pup 07:58:22 -29:07:48 F5Ib + 8.54 9.70 30.6068 SB [126,292,481] LS Pup 07:58:59 -29:18:28 — 10.7 11.7 14.1579 SB [453] HL Pup 08:11:11 -33:30:57 — 10.7 11.6 3.4834 Visual [453] AH Vel 08:12:20 -36:36:37 F5 + A2V 8.07 8.83 6.6681 SB [113, 156] V Car 08:28:43 -6007:21 G2lab 7.31 8.14 6.6988 SB [109,442] T Vel 08:37:41 -47:21:43 G0II+ 8.06 8.92 4.6345 <t< td=""><td></td><td>SS CMa</td><td>07:26:07</td><td>-25:15:26</td><td>F6</td><td>9.84</td><td>10.99</td><td></td><td>12.3595</td><td>SB</td><td>[126, 446]</td></t<>		SS CMa	07:26:07	-25:15:26	F6	9.84	10.99		12.3595	SB	[126, 446]
BM Pup 07:50:03 -28:15:18 10.7 11.6 7.1945 Visual [453]		VZ CMa	07:26:28	-25:55:36	F5II	9.11	9.96		3.1261	SB,=AX Pup	[437, 446]
AP Pup		VW Pup	07:31:49	-20:08:59	F5 +	11.38	12.50		4.2855	SB	[450]
AQ Pup 07:58:22 -29:07:48 F5lb + 8.54 9.70 30.0608 SB [126, 292, 481]		BM Pup	07:50:03	-28:15:18	_	10.7	11.6		7.1945	Visual	[453]
LS Pup		AP Pup	07:57:46	-40:07:24	F8II +	7.37	8.13		5.0816	SB	[284]
HL Pup 08:11:11 -33:30:57 — 10.7 11.6 3.4834 Visual [453] AH Vel 08:12:00 -46:38:40 F7Ib-II + 5.76 6.35 4.2267 SB [154, 284] AT Pup 08:12:22 -36:56:37 F5 + A2V 8.07 8.83 6.6681 SB [113, 156] V Car 08:28:43 -60:07:21 G2Iab 7.31 8.14 6.6988 SB [109, 442] T Vel 08:37:41 -47:21:43 G0II + 8.06 8.92 4.6345 SB [104, 452] BG Vel 09:08:16 -51:26:11 F7/F8II + 7.69 8.82 6.9183 comp.? [104] DK Vel 09:17:17 -53:05:05 — 10.7 11.4 2.4774 Visual [452, 453] V Vel 09:22:16 -55:57:37 F8II + 7.57 8.29 4.3752 SB [109, 442] DP Vel 09:30:16 -53:03:31 — 11.8 — 5.4828 SB [446] YZ Car 10:33:11 -58:29:55 F2 + B9.0V 8.69 9.72 657.3 18:1552 SB+orbit [69, 113, 116, 343] Y Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15:7036 SB [28] WZ Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		AQ Pup	07:58:22	-29:07:48	F5Ib +	8.54	9.70		30.0608	SB	[126, 292, 481]
AH Vel 08:12:00 -46:38:40 F7Ib-II + 5.76 6.35 4.2267 SB [154, 284] AT Pup 08:12:22 -36:56:37 F5 + A2V 8.07 8.83 6.6681 SB [113, 156] V Car 08:28:43 -60:07:21 G2Iab 7.31 8.14 6.6988 SB [109, 442] T Vel 08:37:41 -47:21:43 G0II + 8.06 8.92 4.6345 SB [104, 452] BG Vel 09:08:16 -51:26:11 F7/F8II + 7.69 8.82 6.9183 comp.? [104] DK Vel 09:17:17 -53:05:05 — 10.7 11.4 2.4774 Visual [452, 453] V Vel 09:22:16 -55:57:37 F8II + 7.57 8.29 4.3752 SB [109, 442] DP Vel 09:30:16 -53:03:31 — 11.8 — 5.4828 SB [446] YZ Car 10:28:17 -59:21:00 G5 + B8-A0V 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343] Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit,double-mode,triple [35, 113, 121, 343] VY Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		LS Pup	07:58:59	-29:18:28	_	10.7	11.7		14.1579	SB	[446]
50 AT Pup 08:12:22 -36:56:37 F5 + A2V 8.07 8.83 6.6681 SB [113, 156] V Car 08:28:43 -60:07:21 G2lab 7.31 8.14 6.6988 SB [109, 442] T Vel 08:37:41 -47:21:43 G0II + 8.06 8.92 4.6345 SB [104] BG Vel 09:08:16 -51:26:11 F7/F8II + 7.69 8.82 6.9183 comp.? [104] DK Vel 09:17:17 -53:05:05 — 10.7 11.4 2.4774 Visual [452, 453] V Vel 09:22:16 -55:57:37 F8II + 7.57 8.29 4.3752 SB [109, 442] DP Vel 09:30:16 -53:03:31 — 11.8 — 5.4828 SB [446] YZ Car 10:28:17 -59:21:00 G5 + B8-A0V 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343 Y Car 10:33:11 -58:29:55 F2 + B9.0V		HL Pup	08:11:11	-33:30:57	_	10.7	11.6		3.4834	Visual	[453]
V Car 08:28:43 -60:07:21 G2Iab 7.31 8.14 6.6988 SB [109, 442] T Vel 08:37:41 -47:21:43 G0II + 8.06 8.92 4.6345 SB [104, 452] BG Vel 09:08:16 -51:26:11 F7/F8II + 7.69 8.82 6.9183 comp.? [104] DK Vel 09:17:17 -53:05:05 - 10.7 11.4 2.4774 Visual [452, 453] V Vel 09:22:16 -55:57:37 F8II + 7.57 8.29 4.3752 SB [109, 442] DP Vel 09:30:16 -53:03:31 - 11.8 - 5.4828 SB [446] YZ Car 10:28:17 -59:21:00 G5 + B8-A0V 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343 Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit,double-mode,triple [35, 113, 121, 343 VY Car 10:44:32 -57:33:55 F7Iab 7.03 7.71 18.9234 SB,in Car OB1		AH Vel	08:12:00	-46:38:40	F7Ib-II +	5.76	6.35		4.2267	SB	[154, 284]
T Vel 08:37:41 -47:21:43 G0II + 8.06 8.92 4.6345 SB [104, 452] BG Vel 09:08:16 -51:26:11 F7/F8II + 7.69 8.82 6.9183 comp.? [104] DK Vel 09:17:17 -53:05:05 — 10.7 11.4 2.4774 Visual [452, 453] V Vel 09:22:16 -55:57:37 F8II + 7.57 8.29 4.3752 SB [109, 442] DP Vel 09:30:16 -53:03:31 — 11.8 — 5.4828 SB [446] YZ Car 10:28:17 -59:21:00 G5 + B8-A0V 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343] Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit,double-mode,triple [35, 113, 121, 343] VY Car 10:44:32 -57:33:55 F7Iab 7.03 7.71 18.9234 SB, in Car OB1 [126, 446, 452, 45] EY Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]	50	AT Pup	08:12:22	-36:56:37	F5 + A2V	8.07	8.83		6.6681	SB	[113, 156]
BG Vel 09:08:16 -51:26:11 F7/F8II + 7.69 8.82 6.9183 comp.? [104] DK Vel 09:17:17 -53:05:05 — 10.7 11.4 2.4774 Visual [452, 453] V Vel 09:22:16 -55:57:37 F8II + 7.57 8.29 4.3752 SB [109, 442] DP Vel 09:30:16 -53:03:31 — 11.8 — 5.4828 SB [446] YZ Car 10:28:17 -59:21:00 G5 + B8-AOV 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343] Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit,double-mode,triple [35, 113, 121, 343] VY Car 10:44:32 -57:33:55 F71ab 7.03 7.71 18.9234 SB,in Car OB1 [126, 446, 452, 45] EY Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		V Car	08:28:43	-60:07:21	G2Iab	7.31	8.14		6.6988	SB	[109, 442]
DK Vel 09:17:17 -53:05:05 — 10.7 11.4 2.4774 Visual [452, 453] V Vel 09:22:16 -55:57:37 F8II + 7.57 8.29 4.3752 SB [109, 442] DP Vel 09:30:16 -53:03:31 — 11.8 — 5.4828 SB [446] YZ Car 10:28:17 -59:21:00 G5 + B8-A0V 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343] Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit,double-mode,triple [35, 113, 121, 343] VY Car 10:44:32 -57:33:55 F7Iab 7.03 7.71 18.9234 SB,in Car OB1 [126, 446, 452, 45] EY Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:20 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		T Vel	08:37:41	-47:21:43	G0II +	8.06	8.92		4.6345	SB	[104, 452]
V Vel 09:22:16 -55:57:37 F8II + 7.57 8.29 4.3752 SB [109, 442] DP Vel 09:30:16 -53:03:31 — 11.8 — 5.4828 SB [446] YZ Car 10:28:17 -59:21:00 G5 + B8-A0V 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343] Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit, double-mode, triple [35, 113, 121, 343] VY Car 10:44:32 -57:33:55 F7Iab 7.03 7.71 18.9234 SB, in Car OB1 [126, 446, 452, 45] 60 EY Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car		BG Vel	09:08:16	-51:26:11	F7/F8II +	7.69	8.82		6.9183	comp.?	[104]
DP Vel 09:30:16 -53:03:31 — 11.8 — 5.4828 SB [446] YZ Car 10:28:17 -59:21:00 G5 + B8-A0V 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343] Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit,double-mode,triple [35, 113, 121, 343] VY Car 10:44:32 -57:33:55 F71ab 7.03 7.71 18.9234 SB,in Car OB1 [126, 446, 452, 45] EY Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		DK Vel	09:17:17	-53:05:05	_	10.7	11.4		2.4774	Visual	[452, 453]
YZ Car 10:28:17 -59:21:00 G5 + B8-A0V 8.69 9.72 657.3 18.1552 SB+orbit [69, 113, 116, 343] Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit,double-mode,triple [35, 113, 121, 343] VY Car 10:44:32 -57:33:55 F7Iab 7.03 7.71 18.9234 SB,in Car OB1 [126, 446, 452, 45] EY Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		V Vel	09:22:16	-55:57:37	F8II +	7.57	8.29		4.3752	SB	[109, 442]
Y Car 10:33:11 -58:29:55 F2 + B9.0V 8.16 8.75 993 3.6392 SB+orbit,double-mode,triple [35, 113, 121, 343] VY Car 10:44:32 -57:33:55 F7Iab 7.03 7.71 18.9234 SB,in Car OB1 [126, 446, 452, 45] EY Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		DP Vel	09:30:16	-53:03:31	_	11.8	_		5.4828	SB	[446]
VY Car 10:44:32 -57:33:55 F7Iab 7.03 7.71 18.9234 SB,in Car OB1 [126, 446, 452, 45] EY Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		YZ Car	10:28:17	-59:21:00	G5 + B8-A0V	8.69	9.72	657.3	18.1552	SB+orbit	[69, 113, 116, 343]
60 EY Car 10:42:23 -61:09:57 — 10.7 11.3 2.8774 SB [113] WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		Y Car	10:33:11	-58:29:55	F2 + B9.0V	8.16	8.75	993	3.6392	SB+orbit,double-mode,triple	[35, 113, 121, 343]
WZ Car 10:55:19 -60:56:24 F8 9.37 10.40 23.0144 comp.? [386] XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		VY Car	10:44:32	-57:33:55	F7Iab	7.03	7.71		18.9234	SB,in Car OB1	[126, 446, 452, 453
XX Car 10:57:09 -65:08:05 G0 9.42 10.46 15.7036 SB [28] U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]	60	EY Car	10:42:23	-61:09:57	_	10.7	11.3		2.8774	SB	[113]
U Car 10:57:48 -59:43:55 G0Ib 6.86 6.67 38.8150 SB [28] FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		WZ Car	10:55:19	-60:56:24	F8	9.37	10.40		23.0144	comp.?	[386]
FO Car 11:01:30 -62:17:27 — 10.7 11.8 10.3514 SB [446] HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		XX Car	10:57:09	-65:08:05	G0	9.42	10.46		15.7036	SB	[28]
HK Car 11:03:45 -60:38:32 G5 10.71 10.90 6.6988 Visual binary [453] GI Car 11:14:00 -57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		U Car	10:57:48	-59:43:55	G0Ib	6.86	6.67		38.8150	SB	[28]
GI Car 11:14:00 –57:54:39 F4Iab 8.33 9.01 4.4361 comp.? [156] FR Car 11:14:21 –60:03:10 G5 9.64 10.7 10.7152 SB [446]		FO Car	11:01:30	-62:17:27		10.7	11.8		10.3514	SB	[446]
FR Car 11:14:21 -60:03:10 G5 9.64 10.7 10.7152 SB [446]		HK Car	11:03:45	-60:38:32	G5	10.71	10.90		6.6988	Visual binary	[453]
		GI Car	11:14:00	-57:54:39	F4Iab	8.33	9.01		4.4361	comp.?	[156]
UZ Cen 11:40:58 –62:41:33 F3Ib-II 8.68 8.87 3.3343 Visual,double-mode [357, 452]		FR Car	11:14:21	-60:03:10	G5	9.64	10.7		10.7152	SB	[446]
		UZ Cen	11:40:58	-62:41:33	F3Ib-II	8.68	8.87		3.3343	Visual,double-mode	[357, 452]

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{\rm orb}$	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
Cepheids:	RT Mus	11:44:33	-67:18:19	F8	9.0	9.69		3.0832	SB	[446]
Galactic	BK Cen	11:49:16	-63:04:43	G5	10.27	11.06		3.1769	Visual,double-mode	[453]
DCEP	TY Cru	12:06:40	-62:35:49	_	13.70	13.77		5.0003	SB	[351]
	S Mus	12:12:47	-70:09:06	F6Ib + B3.5V	6.1	7.44	505.15	9.6605	SB+orbit	[35, 113, 172, 284, 342, 343]
	SU Cru	12:18:17	-63:16:48	M	9.54	11.05		12.8529	SB,visual	[446, 453, 481]
	T Cru	12:21:21	-62:16:54	G2Ib	6.57	7.42		6.7298	SB	[28, 109]
	R Cru	12:23:38	-61:37:45	F7Ib/II	6.90	7.75		5.8210	SB	[198]
	BG Cru	12:31:40	-59:25:26	F7Ib-II	5.50	6.07		3.3420	SB	[442]
	VX Cru	12:34:23	-61:14:15	_	11.38	12.75		12.2180	SB	[446]
	AG Cru	12:41:26	-59:47:39	F8Ib/II	7.90	8.30		3.8371	SB	[104, 155, 341]
	R Mus	12:42:05	-69:24:27	F7Ib +	6.3	7.00		7.5162	SB	[246, 284]
80	OO Cen	13:26:30	-63:09:45	_	12.01	13.78		12.8825	SB	[446]
	V659 Cen	13:31:33	-61:34:56	F6/F7Ib + B6.0V	6.66	7.40		5.6234	SB	[111, 112, 453]
	VW Cen	13:33:59	-64:03:20		10.24	11.5		15.0314	SB	[291, 292, 341, 446]
	KN Cen	13:36:37	-64:33:30	+ B6.0V	9.85	11.3		34.0408	SB	[37, 112, 291, 442]
	XX Cen	13:40:19	-57:36:47	F7/F8II + A1V	7.82	8.72	924.1	10.9648	SB+orbit	[113, 172, 443]
	V339 Cen	14:21:48	-61:32:58	F7II	8.57	9.68		9.4624	Visual	[453]
	TX Cen	14:35:12	-60:59:52		10.52	12.30		71.4496	Visual	[291, 357]
	BP Cir	14:46:42	-61:27:43	F2/F3II + B6.0V	7.52	8.12		2.3988	SB	[112, 115]
	AV Cir	14:50:30	-67:29:51	F7II	7.40	8.00		3.0620	Visual	[452]
	AX Cir	14:52:35	-63:48:35	F8II + B6.0V	5.96	6.66	6532	5.2723	SB+orbit,visual	[109, 113, 284, 342, 343, 442]
90	R TrA	15:19:46	-66:29:46	F7Ib/II + A5V	6.74	7.48		3.3884	SB	[113, 155, 284]
	GH Lup	15:24:38	-52:51:14	G2Iab	7.6	9.05		9.2683	SB	[341, 442]
	SY Nor	15:54:43	-54:33:59	+ B4.5V	9.5	11.0		12.6474	SB	[29, 37, 112, 291, 357, 452]
	S Nor	16:18:52	-57:53:59	F9Ib + B9.5V	6.45	6.94	3584	9.7499	SB+orbit, in NGC 6087	[111, 126, 172, 291, 306, 442]
	V340 Ara	16:45:19	-51:20:33	_	10.2	11.5		20.7970	SB, metal-rich	[340]
	RV Sco	16:58:20	-33:36:33	G0Ib +	7.1	7.64		6.0674	SB	[109, 357, 442, 452]
	BF Oph	17:06:05	-26:34:50	G0II +	7.37	8.19		4.0644	SB	[284, 442]
	V636 Sco	17:22:46	-45:36:51	F7/F8Ib/II + B9.5V	6.74	7.67	1362	6.7920	SB+orbit	[36, 111, 113, 284, 343]
	V482 Sco	17:30:48	-33:36:35	F9II +	7.91	8.78		4.5290	SB	[108, 481]
	X Sgr	17:47:34	-27:49:51	F7II +	4.56	5.26	573.6	7.0146	SB+orbit	[109, 172, 443]
100	V500 Sco	17:48:37	-30:28:33	K0 +	8.8	10.07		9.3111	comp.?	[291, 292, 442]
	RY Sco	17:50:52	-33:42:20	F6Ib +	8.0	9.69		20.3236	Visual	[126, 357, 452]
	Y Oph	17:52:39	-06:08:37	F8Iab +	6.18	7.51	2612	17.1396	SB+orbit	[2, 109, 442]

Type of Pulsators	Binary or Multiple	RA hh:mm:ss	DEC °: ': "	Sp.(A+B)	$\langle V \rangle$ (mag)	$\langle B \rangle$ (mag)	P _{orb} (day)	$P_{ m pul}$ (day)	Comments	References
Cepheids:	AV Sgr	18:04:49	-22:43:57	_	11.29	13.39		15.4170	SB, metal-rich	[446, 340]
Galactic	W Sgr	18:05:01	-29:34:48	F7.2Ib + A0V	4.66	5.4	1651	7.6033	SB+orbit,triple,=ADS 11029	[7, 29, 27, 122, 172, 357, 343, 452]
DCEP	VY Sgr	18:12:05	-20:42:15	F6 +	11.45	13.46		13.5519	SB, metal-rich	[351, 340]
	AP Sgr	18:13:02	-23:07:02	F7/F8Ib/II +	7.08	8.00		5.0582	SB	[155]
	WZ Sgr	18:17:00	-19:04:33	F7III +	8.1	9.10		21.8273	SB, in cluster	[28, 442, 470]
	Y Sgr	18:21:23	-18:51:36	F8II +	5.77	6.59		5.7677	SB	[28, 109, 442]
	X Sct	18:31:20	-13:06:29	F5 +	10.01	11.18		4.1976	comp.?	[126, 291]
110	UZ Sct	18:31:22	-12:55:43	G0 +	11.3	13.15		14.7571	SB, metal-rich	[351, 340]
	U Sgr	18:31:53	-19:07:30	G1Ib+	6.36	7.25		6.7453	SB, in M25, =ADS 11433	[29, 357, 452]
	BQ Ser	18:36:16	+04:23:53	F5III +	9.54	10.86		4.2756	SB unconfirmed	[165]
	EV Sct	18:36:40	-08:11:05	G0II +	10.2	11.3		3.0903	SB unconfirmed, in NGC 6664	[247, 306]
	Y Sct	18:38:03	-08:22:08	F7 +	9.69	11.2		10.3514	comp.?	[315, 442]
	RU Sct	18:41:56	-04:06:38	G5 +	9.5	11.2		19.6789	SB,in Tr 35	[446]
	TY Sct	18:42:08	-04:17:36	F5 +	10.9	12.53		11.0408	SB	[291, 351]
	V350 Sgr	18:45:17	-20:38:50	F8Ib/II + B9.0V	7.47	8.33	1482	5.1523	Visual	[111, 117, 124, 165, 167, 284, 343]
	YZ Sgr	18:49:29	-16:43:23	G2Ib+	7.38	8.36		9.5499	SB	[446]
	BB Sgr	18:51:00	-20:17:43	G0Ib+	6.92	7.84		6.6374	SB	[155]
120	FF Aql	18:58:15	+17:21:39	F5Iab + A9-F3V	5.31	5.85	1432.4	4.4668	SB+orbit	[27, 165, 172, 357, 366]
	V496 Aql	19:08:21	-07:26:16	G5 + A1-A2	7.79	8.88	1331	6.8077	SB+orbit	[172, 442]
	V916 Aql	19:10:00	+12:32:11	_	10.86	12.22		13.4277	SB	[168]
	FN Aql	19:12:47	+03:33:26	G5	8.42	9.58		9.4842	comp.?	[104, 441, 473]
	U Aql	19:29:21	-07:02:39	F8Ib-IIv + B9.8V	6.5	7.32	1856.4	7.0307	SB+orbit, triple	[1, 37, 111, 113, 121, 284, 357]
	U Vul	19:36:38	+20:19:58	F5:Iabv +	7.15	8.36	2510	7.9983	SB+orbit	[208, 172, 444, 446]
	SU Cyg	19:44:49	+29:15:53	F2Iab + B8.0V	6.98	7.58	549.24	3.8459	SB+orbit,triple,in cluster	[107, 113, 172, 207, 291, 366, 486]
	V1154 Cyg	19:48:15	+43:07:37	G0 +	9.14	9.92		4.9204	SB	[168]
	S Vul	19:48:24	+27:17:11	K0 +	9.20	11.15		68.3912	SB	[168]
	SV Vul	19:51:31	+27:27:37	G2.5:Iab	7.35	8.88		44.9780	SB, in Vul OB1	[109, 446]
130	η Aql	19:52:28	+01:00:20	F6Iab + B9.8V	3.88	4.62		7.1779	SB	[37, 108]
	S Sge	19:56:01	+16:38:05	G5Ibv + A7-F0V	5.72	6.60	675.72	8.3753	SB+orbit,triple	[44, 113, 165, 167, 172]
	KL Aql	20:01:10	+15:48:12	F6Iab +	10.14	10.95		6.1094	SB	[341, 444]
	MW Cyg	20:12:23	+32:52:18	F8Ib +	9.45	10.71	437.3	5.9566	SB+orbit	[208, 165, 167, 366]
	SZ Cyg	20:32:54	+46:36:04	F8Ib +	9.37	10.80		15.1008	SB	[291, 444]
	BZ Cyg	20:46:00	+45:18:25	F8Ib +	10.2	11.8		10.1391	comp.?	[292, 444]
	T Vul	20:51:28	+28:15:02	F5Ib + A0.8V	5.61	6.18		4.4361	SB	[110]

Table 2—Continued

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{ m orb}$	$P_{ m pul}$	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
Cepheids:	V386 Cyg	21:14:40	+41:42:59	F5Ib +	9.75	11.12		5.2602	SB	[291, 444]
Galactic	V1334 Cyg	21:19:22	+38:14:15	F1II + B7.0V	5.89	6.35	1937.5	3.3343	SB+orbit, =ADS 14859	[109, 113, 114, 121, 119]
DCEP	V532 Cyg	21:20:33	+45:28:03	F5 +	9.11	10.08		3.2810	comp.?	[165, 291, 444, 473]
140	VZ Cyg	21:51:41	+43:08:02	G0 +	9.10	10.02	2092	4.8641	SB+orbit	[172, 366]
	CP Cep	21:57:53	+56:09:50	F5Ib	10.58	12.23		17.8649	comp.?	[291]
	IR Cep	21:57:52	+61:01:08	G0	7.86	8.68		2.1135	Visual	[452]
	BG Lac	22:00:25	+43:26:43	G0.7	8.59	9.33		5.3333	SB	[291, 292, 444]
	Y Lac	22:09:03	+51:02:45	F8 + A0.5V	9.13	9.79		4.3251	SB	[111, 125, 168, 291, 444]
	AK Cep	22:28:50	+58:12:39	F8	11.20	12.53		7.2277	comp.?	[291, 481]
	δ Cep	22:29:10	+58:24:55	F5Iab	4.07	4.81		5.3703	Visual	[357]
	V351 Cep	22:33:41	+57:19:06	F8Ib	9.50	10.31		2.8054	SB	[168]
	Z Lac	22:40:52	+56:49:46	F6Ib + A5	8.57	9.71	382.63	10.8893	SB+orbit	[208, 113, 165, 172, 438]
	RR Lac	22:41:26	+56:25:58	K0 +	8.87	9.68		6.4121	SB	[168]
150	X Lac	22:49:03	+56:25:41	G5 +	8.42	9.21		5.4450	SB	[168, 284, 473]
	RY Cas	23:52:07	+58:44:30	G2 +	9.95	11.32		12.1339	Visual binary	[452]
	DD Cas	23:57:35	+62:43:05	F7 +	9.85	10.96		9.8175	comp.?	[291, 292]
	CE Cas(a)	23:58:09	+61:12:49	F9Ibv+F8Ib	10.63	_		5.1404	Visual, in NGC 7790	[387]
154	CE Cas(b)	23:58:09	+61:12:49		_	_		4.4771	=TYC 4281-1042-2	[387]
	V1330 Tau	04:42:18.609	+01:17:39.94	K5	11.88	14.14			cC*+SB: candidate	cC*= classical Cepheids
	OGLE LMC-CEP-336	04:54:38.50	-68:17:14.4		16.738				cC*+EB: candidate	
	HV 883	05:00:07.507	-68:27:00.16	F8/G0Ia	11.63	13.86			cC*+SB: candidate	
	OGLE LMC-SC10 95827	05:11:04.07	-69:17:57.8		16.141	16.67			cC*+EB: candidate	
	HV 914	05:12:47.02	-69:06:08.9		14.926	18.800			cC*+SB: candidate	
	V1852 Ori	05:13:05.819	+08:51:31.44	K2+M2	12.59	13.800			cC*+SB: candidate	
	OGLE LMC-CEP-1386	05:15:35.84	-70:30:27.8		18.529				cC*+EB: candidate	
	OGLE LMC100.2 55731	05:21:54.92	-69:21:50.1		15.190	15.706			cC*+EB: candidate	
	HV 12024	05:23:07.71	-69:33:49.9		16.707	17.360			cC*+EB: candidate	
	HV 5834	05:25:58.65	-70:09:49.2		15.280	15.74			cC*+EB: candidate	
	OGLE LMC-SC17 59796	05:38:04.14	-69:57:05.2		16.317	18.300			cC*+EB: candidate	
	OGLE LMC177.4 136	05:40:07.871	-70:15:04.48		17.30	18.61			cC*+EB: candidate	
	X Pup	07:32:47.034	-20:54:34.88	K0	8.46	9.56			cC*+SB: candidate	
	AD Pup	07:48:03.852	-25:34:40.01	F8	9.99	10.81			cC*+SB: candidate	
	RZ Vel	08:37:01.303	-44:06:52.83	G1Ib	7.128	8.199			cC*+SB: candidate	
	ST Vel	08:44:55.892	-50:33:36.14	K	9.69	10.89			cC*+SB: candidate	

Table 2—Continued

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	P_{orb}	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
	GH Car	11:10:44.593	-60:45:01.00	F8	9.04	9.92			cC*+SB: candidate	
	V898 Cen		-54:33:25.26	F3III	7.97	8.55			cC*+SB: candidate	
	V419 Cen	11:30:54.430	-56:53:55.83	F7II	8.19	8.90			cC*+SB: candidate	
	S Mus	12:12:47.018	-70:09:06.44	F6Ib+B3V	6.17	7.01			cC*+SB: candidate	
	V445 Vir	13:05:29.120	+12:49:35.50	G4V	10.11	10.96			cC*+SB: candidate	
	LR TrA	15:30:49.823	-65:35:57.58	F8II	7.80	8.61			cC*+SB: candidate	
	V479 Ser	15:51:07.584	+11:16:18.77	K5IV/Ve	12.79				cC*+SB: candidate	
	Y Oph	17:52:38.702	-06:08:36.87	F8Iab:	6.21	7.61			cC*+SB: candidate	
	V676 Her	18:13:39.133	+37:28:34.25			13.5			cC*+EB: candidate	
	AY Sgr	18:23:19.151	-18:34:29.15	F6	10.49	11.99			cC*+SB: candidate	
	TYC 1031-1262-1	18:26:11.503	+12:12:34.80	F8II+G6II	11.51	11.92			cC*+EB: candidate	
	2MASS J19173621+3928300	19:17:36.213	+39:28:30.04		14.041	13.62			V* +EB: candidate	V*= Variable star
	KIC 5095098	19:22:01.200	+40:15:59.97						V* +EB: candidate	
	KIC 5196301	19:37:36.658	+40:20:14.46						V* +EB: candidate	
	KIC 3965879	19:37:54.096	+39:00:13.97						EW+Ce*: candidate	Ce*= Cepheids
	KIC 5217688	19:55:42.422	+40:19:47.24						V* +EB: candidate	
	BX Scl	23:43:54.454	-28:18:34.50	A	13.56	13.82			SX*+SB: candidate	SX*= SX Phe-type pulsators
	BY Scl	23:51:32.250	-25:45:46.53	A0	13.85	14.05			SX*+SB: candidate	
Cepheids:	OGLE-LMC-CEP-227	04:52:16	-70:14:31	_	15.317		310	3.797	ЕВ	[344, 419, 356, 295]
Extragalactic	MACHO 6.6454.5	05:20:25.00	-70:11:08.7	_	14.767	R=14.638	397.14	4.97	EB in LMC, by MACHO	[8, 173]
DCEP									=OGLE LMC-SC21 40876=	=397d LMC EB
	OGLE-LMC-CEP-1812	05:23:08	-69:33:50	_	16.707			1.3129	oEA	[419]
	OGLE-LMC-CEP-2532	05:36:04	-70:01:55	$+ \ K/M$	17.297		800.5	2.035	1st overtone EB in LMC	[8, 173, 274, 419]
									=OGLE LMC-SC16 119952	2=MACHO 81.8997.87
Type II Cepheids:	OGLE-SMC-T2CEP-23	00:55:01	-73:09:47	_	15.99		17.6753	156.884	in SMC, OGLE-III data	[420]
W Vir-type	OGLE-SMC-T2CEP-28	00:57:32	-73:32:11	_	15.91		15.2643	141.835	in SMC, OGLE-III data	[420]
	OGLE LMC-T2CEP-93	05:19:26	-69:51:51	_	15.86	16.347	419.718	17.68	eclipsing Cepheid in LMC	[8]
			=OGLE I	MC-SC7 2396	598=MACF	IO 78.6338.24	4=MACHO	J051926.9-	695152,W Vir class type II Ce	pheid with a smaller, dimmer companion
	TX Del	20:50:13	+03:39:08	F8	9.21	9.95	133.3	6.1660	SB1+orbit,W Vir-type	[165, 188, 185, 366]
	OGLE LMC130.1 160	04:59:34.97	-71:15:31.2		16.580				CWA+EB: candidate	CWA=Type II Cepheids of W Vir type
	HV 12509	05:00:13.00	-67:42:43.7		16.101				CWA+EB: candidate	
	OGLE LMC112.7 9733	05:09:59.34	-69:58:28.7		16.861				CWA+EB: candidate	
	OGLE LMC-SC8 194670	05:16:21.44	-69:36:59.2		18.039	18.460			CWA+EB: candidate	
	OGLE LMC-SC8 306227	05:17:07.50	-69:27:34.1		17.841				CWA+EB: candidate	

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{\rm orb}$	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
	HV 5756	05:19:26.45	-69:51:51.0		15.861	16.347			CWA+EB: candidate	
	OGLE LMC-SC21 40876	05:20:25.00	-70:11:08.7		14.767				CWA+EB: candidate	
	OGLE LMC-T2CEP-110	05:22:19.51	-68:53:49.9		17.649	17.800			CWA+EB: candidate	
	OGLE LMC-T2CEP-151	05:34:35.74	-69:59:14.8		17.198				CWA+EB: candidate	
	OGLE LMC-SC17 24613	05:38:04.32	-70:20:29.2		16.933	17.52			CWA+EB: candidate	
	V1834 Sgr	18:16:16.6	-33:37:49			13.3			CWA+EB: candidate	
	AU Peg	21:24:00.24	+18:16:43.78	F8	9.18	10.03			CWA+SB: candidate	
BL Her-type	IX Cas	00:04:51	+50:14:05	F7 +	11.19	11.73		9.2	SB1,	[188]
	AU Peg	21:24:00	+18:16:44	F8 +	9.18	10.03	53.26	2.411	SB1, double-mode	[217, 186]
RV Tau-type	OGLE-SMC-T2CEP-29	00:57:38	-72:18:12	_	14.49	15.3	33.6765	608.6	in SMC, OGLE-III data,=HV 1214	0 [420]
(in post-AGB)	V390 Vel	08:56:14	-44:43:11	F3e +	9.13	10.48	507.8	71.7	=IRAS 08544-4431	[240, 477]
	AF Crt=IRAS 11472-0800	11:49:48.0	-08:17:20.4	F5Iab +	11.17	11.72	years	31.16	semi-regular,extremely depleted	[478]
	HD 108015	12:24:53	-47:09:07	F3Ib +	7.95		913.8	60.5	=IRAS 12222-4652=NSV 5601	[240, 477]
	EN TrA	14:57:00	-68:50:23	F2Ib +	8.77		1493	37.04	=HD 131356=IRAS 14524-6838	[240, 477]
	IRAS 15469-5311	15:50:44	-53:20:43	F3 +	10.56		389.9	54.5		[240, 477]
	IRAS 19125+0343	19:15:01	+03:48:43	F2 +	10.16		519.6	42.3		[240, 477]
	IRAS 19157-0247	19:18:23	-02:42:11	F3 +	10.70		119.5	22.5		[240, 477]
	HV 1586	00:53:35.98	-72:34:21.8		15.890	16.61			EB+RV*: candidate	RV*=Variable Star of RV Tau ty
	OGLE LMC-T2CEP-16	04:55:45.98	-69:07:46.3		15.681	16.900			EB+RV*: candidate	
	OGLE J050926.21-685005.1	05:09:26.15	-68:50:05.1		15.661				EB+RV*: candidate	
	OGLE LMC106.7 74	05:16:55.33	-71:41:41.5		16.065				EB+RV*: candidate	
	OGLE LMC-T2CEP-192	05:53:55.69	-70:17:11.4		16.148				EB+RV*: candidate	
	BG Gem	06:03:30.81	+27:41:50.7			13.6			EB+RV*: candidate	
δ Scuti	WY Cet	01:35:36	-11:56:31	A2 + F0V	9.6	9.60	1.93969	0.0757	oEA, third body	[278, 280]
(DSCT)	HD 232486	01:38:41	+52:31:08	A5 + F3	9.69	10.02	2.3723	0.0409	=HIP 7666, detached	[103]
	X Tri	02:00:33	+27:53:19	A7V +	9.00	9.30	0.971	0.022	oEA,detached	[468]
	AB Cas	02:37:31	+71:18:16	A3V + K0IV	10.17	10.59	1.3669	0.0583	oEA, semi-detached	[378, 381, 383, 429, 459]
	RZ Cas	02:48:55	+69:38:03	A3V + K0IV	6.26	6.41	1.1953	0.0156	oEA, semi-detached [16	3, 164, 270, 272, 326, 382, 426
	IU Per	02:59:37	+43:55:18	A4 +	10.56	10.85	0.8570	0.0238	oEA, detached	[235, 503]
	V1241 Tau	03:24:23	-00:42:15	F0V + G5III-IV	9.38	9.87	0.8233	0.1645	oEA, semi-detached, WX Eri is wr	ong [15]
	TT Hor	03:27:04.4	-45:52:56.4	F0-F2 +	J=10.327	9.8	2.6081	$15 - 38 \mathrm{d}^{-1}$	oEA, semi-detached	[317]
	AS Eri	03:32:25	-03:18:48	A3V + K0IV	8.29	8.49	2.6641	0.0169	oEA, semi-detached, roAp	[311]
10	V1229 Tau	03:47:29	+24:17:18	A0V +	6.83	6.90			oEA + SB2, =HD 23642	[171]
	AB Per	03:37:45	+40:45:49	A5V + G9IV	10.40	10.12	7.1603	0.1958	oEA, semi-detached	[229, 232]

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{\rm orb}$	$P_{ m pul}$	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
δ Scuti	TZ Eri	04:21:40	-06:01:09	A5V + K0III	9.80	9.95	2.6062	0.0534	oEA, semi-detached	[276, 278]
(DSCT)	θ^2 Tau	04:28:39	+15:52:15	A7III +	3.41	3.59			SB, in Hyades	[355, 465]
	AC Tau	04:37:06.3	+01:41:31.2	A8 +	11.09	11.51	2.0434	0.05703	oEA, [semi-]detached	[280]
	ζ Aur	05:02:28	+41:04:33	K4Ib-II +	3.77	4.93			oEA	[100]
	FL Ori	05:07:46.6	-02:44:38.2	A3V +	11.42	11.77	1.55098	0.05501	oEA, [semi-]detached	[280]
	RR Lep	05:12:10.5	-13:11:58.6	A4III +	10.14	10.29	0.91543	0.03138	oEA, semi-detached	[280]
	V417 Aur	05:13:32	+35:39:11	A0 +	7.90	7.99	1.8655	0.2091	oEA, likely DSCT primary	[131]
	KW Aur=14 Aur	05:15:24	+32:41:15	A9IV +	5.01	5.21	3.789	0.0875	SB,	[202]
20	FO Ori	05:28:09	+03:37:23	A3 +	9.48	9.59	18.80	0.0292	oEA, detached	[468]
	EY Ori	05:31:18	-05:42:13	A7V +	9.49	10.21	16.78	0.103	oEA, detached	[468]
	RY Lep	05:48:10	-20:01:25	A9V +	8.2	8.9			SB	[86, 377]
	FR Ori	05:51:05.721	+09:26:37.46	A7 +	10.64	11.05			oEA, semi-detached, beta Lyr type,HD 248406	[502]
	UCAC4 605-026193	05:51:57	+30:54:54	B - V = 0.44	14.5		1.179	$30.7\mathrm{d}^{-1}$	oEA,=USNO-A2.0 1200-03937339	[277]
	V551 Aur	06:02:38.2	+49:53:04.7	F+	14.27	15.11	1.1732	7.727,15.45	oEA, detached,g-mode	[283]
	HD 50870	06:54:56.7	-03:20:21.9	F0IV +	8.85	9.17		$6-9,13-18 \mathrm{d}^{-1}$	SB, seen with CoRoT & HARPS	[294]
	R CMa	07:19:28	-16:23:42	F0V + K1IV	5.70	6.05	1.1359	0.0471	oEA	[309, 310]
	HM Pup	07:19:37.7	-48:39:13.0	A7 +	10.095	11.05	2.5897	$15-38 \mathrm{d}^{-1}$	oEA, detached	[317]
	HD 61199	07:38:17	+04:56:34	A3 + late F	7.97	8.18	3.57436	0.03959	triple system: multi-mode,MOST	[183]
30	V681 Car	07:39:03	-60:37:08	A5 II +	10.00	10.51	1.2209	0.21423	=CPD-60°871=ASAS J073904-6037.5, or BCEP	[307, 347]
	Y Cam	07:41:11	+76:04:26	A7V + K1IV	10.50	10.88	3.3057	0.0665	oEA [45, 46	5, 228, 384, 385]
	HD 62571	07:44:22	-06:41:49	F0V +	8.80	9.10	3.2086	0.11048	oEA, semi-detached, multiperiodic	[307, 347]
	CL Lyn	07:55:12.5	+54:09:45.6	A5 +	9.77	10.05	1.58604	0.04338	oEA, [semi-]detached	[280]
	AW Vel	08:08:11.6	-44:20:53.5	A7 +	J=9.789	11.5	1.9925	$15-38 \mathrm{d}^{-1}$	oEA, detached	[317]
	CQ Lyn	08:12:59	+55:37:31	Am F0 + G?	7.97	8.34	12.5074	0.11277	EB+SB2,Am DSCT and solar-like components	[52]
	AI Hya	08:18:47	+00:17:00	F0 + F2	9.35	_	8.2897	0.1380	oEA, detached	[354]
	RS Cha	08:43:12	-79:04:12	A8V + A8V	6.02	6.28	1.6699	0.086	oEA	[38, 67, 304]
	BF Vel	08:56:27.0	-39:58:35.9	A3 +	J=10.246	11.4	0.704	0.02225	oEA, [semi-]detached	[280]
	XX Pyx	08:58:39	-24:35:11	A4V +	11.50		1.15	0.02624	detached,multiperiodic,ellipsoidal var.	[5, 14, 280]
40	RX Hya	09:05:41	-08:15:39	A8 + K5IV	8.90	9.76	2.2817	0.0516	oEA, semi-detached	[229]
	WY Leo	09:31:01.1	+16:39:25.2	A2 +	10.89	11.28	4.98578	0.0655	oEA, [semi-]detached	[280]
	Y Leo	09:36:52	+26:13:57	A3V +	10.07	10.31	1.6861	0.029	oEA, semi-detached	[467, 280]
	VV UMa	09:38:06	+56:01:07	A2V + G1IV	10.13	10.42	0.6874	0.0195	oEA, semi-detached	[233]
	DG Leo	09:49:50	+21:10:46	A7IV +	6.08	6.32	4.14675	0.08337	SB: triple system [140, 14	1, 258, 259, 280]
	HD 86731	10:00:42	+17:34:04	F5 +	8.05	8.51			DSCT + ellipsoidal binary,=HIP 49061	[244]

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{ m orb}$	$P_{ m pul}$	Comments	References
Pulsators	Multiple	hh:mm:ss	· : ' : "	21.()	(mag)	(mag)	(day)	(day)		
					(8)	(8/	(,)	(==,)		
δ Scuti	HD 94529	10:53:59	-49:19:51	A0V +	8.77	8.81			double system	[307]
(DSCT)	CPD-41°5106	11:06:15	-42:24:36	_	10.47		2.1369	0.1215	=ASAS J110615-4224.6, maybe BCEP	[307, 347]
	HD 99612	11:27:33	-24:50:08	A7 II +	11.3	11.4	2.7787	0.06796	=ASAS J112733-2450.2,detached	[307, 347]
	OO Dra	11:40:01.4	+75:09:21.5	A3V +	11.386	11.42	1.23837	0.02703	oEA, [semi-]detached,=GSC 4550-1408	[92, 280, 505]
50	Y UMa	12:40:21.3	+55:50:47.6	M7II +	7.70	9.66	3.3057	0.0586	oEA, semi-regular pulsation	[504]
	IO UMa	13:14:54.4	+59:17:44.3	A3 +	8.21	8.44	5.5204	0.05275,0.04542	oEA, semi-detached,=HD 115268	[280, 434]
	RU UMi	13:38:56	+69:48:11	A2 +	10.24	10.00			oEA	[25]
	ψ Cen	14:20:33	-37:53:07	A0IV	4.05	4.02			double system	[47]
	EW Boo	15:02:46	+37:54:36	A0 +	10.27	10.45	0.9063	0.02083	oEA	[428, 431, 280]
	TW Dra	15:33:51	+63:54:25	A5V + K2III	7.43	7.70	2.8069	0.0556	oEA, semi-detached	[229, 429]
	YY Boo	15:35:28	+43:28:49	A7III+F9IV	11.90	12.0	3.93307	0.06128	oEA, mass-accreting	[178]
	AO Ser	15:58:18	+17:16:00	A2V +	11.40	11.3	0.8793	0.0465	oEA, semi-detached	[231]
	CT Her	16:20:26	+18:27:16	A3V + G3IV	10.60	11.4	1.7864	0.01889	oEA, semi-detached	[230, 262, 263, 264]
	WASP 1628+10	16:28:42	+10:14:16	A2V + B			0.72	0.025	EL CVn-type, pre-He-WD companion	[302]
60	GK Dra	16:45:41	+68:15:31	G0 +	8.77	9.11	16.96	0.11376	oEA, detached	[75, 280]
	EF Her	16:55:26	+17:17:48	F0 + KIV	11.00	12.0	4.7292	0.1042	oEA, semi-detached	[230, 390]
	AI Dra	16:56:18	+52:41:54	A0V +	7.11	7.16			EA, pulsation unconfirmed:	[239, 322]
	V2365 Oph	17:08:45.8	+09:11:10.1	A2 +	8.86	9.14	4.8656	0.07	oEA, [semi-]detached	[280]
	TU Her	17:13:35	+30:42:36	A5+	10.88	11.33	2.2669	0.0556	oEA, semi-detached	[257]
	V944 Her	17:17:34.6	+28:54:47.8	MIII +	6.89	8.54	2.08309	0.09467		[280]
	GSC 3889-0202	17:46:30.4	+53:11:57.9		10.39	10.60	2.71066	0.0441	oEA, semi-detached	[280]
	SX Dra	18:04:34	+58:23:54	A9V +	10.41	10.72	5.16919	0.04375	oEA, semi-detached	[95, 433]
	V577 Oph	18:16:45.8	+06:54:18.2	A +	10.98	11.4	6.0791	0.0695	oEA, detached; Simbad: RR Lyr type	[138, 506]
	TZ Dra	18:22:11	+47:34:08	A7V + K2IV	9.60	9.54	0.8660	0.01973	oEA, semi-detached	[276]
70	MX Pav	18:24:11	-63:56:55	A5 + K3 IV	11.45	10.0	5.7308	0.0756	oEA, =ASAS J182411-6356.9, semi-detached	[307, 347]
	V994 Her	18:27:45	+24:41:50	B9 +	7.00	7.01	2.08309	0.09467	oEA	[74, 504]
	HL Dra	18:34:26.3	+57:48:06.5	A5 +	7.36	7.56	0.94428	0.03848	oEA, semi-detached	[280]
	HD 172189	18:38:37	+05:27:55	A2+	8.85	9.09	5.702	0.0510	EB,detached, in open cluster IC 4756	[67]
	BO Her	18:40:30	+24:55:42	A7 +	11.1	11.6	4.27283	0.07446	oEA, semi-detached	[439]
	CoRoT 105906206	18:43:17	+05:58:00		12.21	12.68	3.6945	$9.41\mathrm{d}^{-1}$	oEA, detached,=TYC 459-892-1	[77]
	HN Dra	18:44:53	+57:05:17	F2 +	8.11	8.43	1.80075	0.11686	SB, detached, DSCT + Ell., =HD 173977	[56]
	KIC 4544587	19:03:32.7	+39:41:00.3		10.83	10.95	2.189	31 modes	oEA, 14/17 g/p modes, e =0.28, detached	[177]
	KIC 10661783	19:21:11.6	+47:58:42.9	A2 +	9.563	9.844	1.23136	0.03554	oEA, semi-detached EB of β Lyr type,68 puls. fr	eq. [423, 273]
	V377 Vul	19:22:51	+26:15:44	B6III +	5.19	5.07	367		SB1,unconfirmed,=3 Vul=HD 182255	[201]

Type of	Binary or	RA DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{\rm orb}$	$P_{ m pul}$	Comments	References
Pulsators	Multiple	hh:mm:ss °:′:	//	(mag)	(mag)	(day)	(day)		
δ Scuti	GSC 4588-0883	19:27:54 +77:17:42	2 A9IV + K4III	11.31	11.85	3.2582	0.0493	oEA, semi-detached	[93, 280]
(DSCT)	HD 183648	19:28:33 +44:40:2	1 A5+	8.48	8.69	31.973	0.53	oEA, =KIC 8560861	[39]
	KIC 9651065	19:30:25 +46:22:52	2 A+	10.98	11.31		13.62-36.15 d ⁻¹		[321]
	KIC 4471379	19:34:07 +39:34:19	9 A+	R=12.32	KEP=12.344	961	12.41–21.95 d ⁻¹	a binary/w 2 pulsating components (PB2)	[321]
	KIC 3858884	19:34:46.9 +38:58:58	3.0 F5 + F?	9.28	9.72	25.95	$6-15\mathrm{d}^{-1}$	oEA, 2 components pulsating, highly eccentric (e=0.46)	[290, 266]
	HD 174884	19:36:08.0 +11:09:00).6 B8 +	7.998	8.14	3.657	multiples of f_{orb}	eclipsing SB2, $e\sim$ 0.3, =HR 7445=CoRoT 7758	[287]
	KIC 7618364	19:39:52 +43:16:38	3 A+	R=13.05	KEP=13.095	1479	$17.35 - 26.14 \mathrm{d}^{-1}$		[321]
	KIC 11771670	19:43:49 +49:57:13	3 A+	R=12.82	KEP=12.826	565	34.71-40.43 d ⁻¹		[321]
	HZ Dra	19:46:02.5 +69:55:0	8.9 A0+	8.14	8.34	0.77294	0.01895	oEA, detached	[280]
	V729 Aql	19:56:50 +13:17:50	B - V = 0.16	13.75	14.2	1.282	$28.034\mathrm{d}^{-1}$	oEA	[277]
90	UCAC4 515-117553	19:57:31 +12:54:17	B - V = 0.26	13.5		3.015	$18.7\mathrm{d}^{-1}$	oEA,=USNO-A2.0 0975-17281677	[277]
	QY Aql	20:09:28 +15:18:44	4 F0+		11.4	7.2296	0.09385	oEA, detached	[280, 468]
	V469 Cyg	20:14:48 +34:44:22	2 A+	12.80	12.80	1.3125	0.0278	oEA, semi-detached	[55]
	V346 Cyg	20:19:24 +36:20:24	4 A5 + G4IV	11.80	11.80	2.7433	0.0502	oEA, semi-detached	[234]
	BW Del	20:21:06.5 +18:23:10).9 F+	11.28	11.57	2.42313	0.03984	oEA, detached	[504]
	UW Cyg	20:23:02.8 +43:14:32	2.4 A5 +	10.86	11.09	3.4508	0.03405	oEA, [semi-]detached,third & fourth bodies	[280]
	TY Cap	20:24:30 -12:57:55	5 A5III +	10.3	10.48	1.42346	0.0413	oEA, third body	[278, 280]
	IZ Tel	20:28:43 -56:20:43	3 —	12.06	13.00	4.8802	0.07376	oEA, =ASAS J202844-5620.8,semi-detached	[307, 347]
	VY Mic	20:49:07 -33:43:54	4 A4III/V +	9.47	8.40	4.4364	0.08174	oEA, =ASAS J204907-3343.9,semi-detached	[307, 347]
	RS Gru	21:43:04 -48:11:22	2 A9IV +	7.93	_	11.5	0.147	SB	[20, 86, 280]
100	δ Cap	21:47:02 -16:07:35	5 A8m + dK7	2.87	3.16	1.02		oEA, p-& g-mode hybrid	[175]
	HD 207651	21:50:08 +19:25:20	6 A5 +	7.21	7.42	1.4708	0.06479,0.051	SB, DSCT + Ell.,detached	[70]
	AU Lac	22:15:17.1 +48:43:10	6.9 A5 +	11.81	12.15	1.39243	0.01977	oEA, [semi-]detached	[280]
	DY Aqr	22:19:04 -02:38:30) A0+	10.23	10.30	2.1597	0.04275	oEA	[431, 430, 9]
	BG Peg	22:52:47 +15:39:34	4 A2 +	10.50	10.50	1.9527	0.0391,0.047	oEA,detached,ℓ=2 non-radial modes [430), 432, 279, 400
	HD 218994	23:13:16 -60:35:02	2 Ap	8.55	8.8			Magnetic Ap star: multiple star	[251]
	CZ Aqr	23:22:20 -15:56:20) A5+	11.1	11.1	0.08628	0.02849	oEA, detached, third body	[280, 468]
	HD 220687	23:25:47 -11:36:3	5 A2 III +	9.55	9.79	1.5942	0.03821	oEA, detached, multiperiodic, =ASAS J232548-1136.6	[307, 347]
	HD 220392	23:33:54 -53:48:3	l A4III	6.12	6.37			=HR 8895=IRAS 23210-5405,visual binary	[255]
	XX Cep	23:38:20.2 +64:20:02	2.7 A7V +	9.18	9.47	2.3373	0.0317	oEA, detached	[200]
110	CPD-31°6830	23:45:20 -31:00:30) —	10.95		0.8834	0.18304	contact EB, =ASAS J234520-3100.5	[307, 347]
111	GSC 4293-0432	23:45:42 +66:05:00	6 A7 + K3	10.58	10.79	4.3844	0.125	oEA, semi-detached,=BD+65 1939	[94]
112	IV Cas	23:49:31 +53:08:04	4 A2 + G1IV	11.20	11.6	0.9985	0.0265	oEA, detached	[236, 237]
	15+stars							candidate oEA with a DSCT primary: OGLE-II	[308]

Table 2—Continued

Type of Pulsators	Binary or Multiple	RA hh:mm:ss	DEC ° : ' : "	Sp.(A+B)	$\langle V \rangle$ (mag)	$\langle B \rangle$ (mag)	P _{orb} (day)	P _{pul} (day)	Comments	References
δ Scuti	8+stars								candidate oscillating EW stars: OGLE-II	[308]
(DSCT)	HD 719	00:11:28 624	-26:15:11.68	A3mF0	9.377	9.76			SB,SAO 166102: candidate	[411, 404, 374, 375]
(BBC1)	HD 923		-29:34:32.49	A6mF2	8.55	8.74			SB, SAO 166128: candidate	[79, 303, 411]
	AU Scl		-29:00:23.02	A4mF4Sr	9.050	9.48			SB,HD 1097=SAO 166146: candidate	[79, 303, 411]
	BB Phe	00:30:27.826		F2III	6.178	6.478			SB,HD 2724=SAO 215120=HR 119: candidate	[79, 303]
	BG Cet	00:36:06.857		A5m	6.06	6.35			SB,HD 3326=SAO 166400=HR 151: candidate	[87, 79, 88, 303]
	AI Scl		-37:51:23.32	FOIII	5.946	6.212			SB,HD 7312=SAO 192980=HR 359: candidate	[79, 303]
	TYC 5276-1653-1	01:18:01.569	-13:23:06.39	A6m	11.01	11.35			SB: candidate	[411, 374, 375]
	HD 8457	01:23:34.252	-13:02:34.03	A1III	10.14	10.45			SB,BD-13 252: candidate	[66, 411, 404]
	WZ Scl	01:28:43.491	-33:45:50.30	F0IV	6.595	6.870			SB,HD 9065=SAO 193136=HIC 6888: candidate	[79, 303]
	XX Scl	01:29:26.133	-33:19:13.74	A7	8.89	9.12			SB: candidate	
	HD 9659	01:34:26.155	-17:43:53.22	A6IV	10.32	10.49			SB: candidate	
	HD 11490	01:52:09.745	-36:14:29.51	A5m	9.30	9.51			SB: candidate	
	BK Cet	01:52:52.114	-16:55:45.29	F0V	5.793	6.028			SB: candidate	
	mu. Cet	02:44:56.541	+10:06:50.91	A9IIIp	4.20	4.58			SB: candidate	
	60 Tau	04:22:03.518	+14:04:37.91	A3m	5.720	6.018			SB: candidate	
	71 Tau	04:26:20.741	+15:37:05.77	F0V	4.490	4.727			SB: candidate	
	rho Tau	04:33:50.918	+14:50:39.92	A8V	4.65	4.90			SB: candidate	
	14 Aur	05:15:24.394	+32:41:15.36	A9V	5.000	5.217			SB: candidate	
	59 Ori	05:58:24.443	+01:50:13.59	A5me	5.904	6.114			SB: candidate	
	DD Lyn	07:55:40.827	+35:24:45.67	A3p	6.233	6.481			SB: candidate	
	SZ Lyn	08:09:35.748	+44:28:17.61	F2	9.08	9.73			SB,hybrid RR+DSCT,=HD 67390: candidate	[59, 275, 79]
	HH UMa	11:04:48.151	+35:36:26.62	F8	10.39	10.92			SB: candidate	
	d02 Vir	12:45:37.058	+07:40:23.97	F0IIIm	5.217	5.516			SB: candidate	
	2MASS J13101839-4508550	13:10:18.39	-45:08:55.0	A7V		16.9			EA: candidate	
	EL Boo	14:48:03.405	+13:56:41.19	F8	9.37	9.85			SB: candidate	
	TU UMi	14:55:43.801	+76:18:23.65	F2	8.75	9.17			SB: candidate	
	V644 Her	16:55:15.991	+13:37:11.68	F1V	6.352	6.662			SB: candidate	
	V1003 Her	18:53:17.543	+21:13:32.74	A7	9.79	10.20			SB: candidate	
	BD+38 3415	19:03:51.028	+38:21:28.75	A5	9.56	9.73			SB: candidate	
	KIC 9210037	19:12:07.37	+45:38:11.9						EB: candidate	[410, 475]
	V2363 Cyg	19:21:08.382	+51:02:00.93		12.01	12.81			Contradictory variability types,KIC 12305537	[410, 359, 81]
	TYC 3146-584-1	19:24:05.977	+44:32:47.01		12.00	12.40			EB, KIC 8493159, ASAS J192406+4432.8	[81, 359, 410, 349]
	TYC 3142-717-1	19:27:25.346	+42:00:31.04		11.24	11.50			EB, KIC 6606229	[475, 359, 410]

Table 2—Continued

Type of Pulsators	Binary or Multiple	RA hh:mm:ss	DEC °: ': "	Sp.(A+B)	$\langle V \rangle$ (mag)	$\langle B angle$ (mag)	$P_{ m orb}$ (day)	$P_{ m pul}$ (day)	Comments	References
δ Scuti	BD+37 3464	19:27:34.029	+37:33:24.51	F2	9.47	9.90			EB, SAO 68345, KIC 2162283,	[475, 359, 410]
(DSCT)	TYC 3142-957-1	19:29:59.685	+41:37:44.87		12.22	13.16			Contradictory var. types, KIC 6287172	[64, 359, 410, 18]
	KIC 5623923	19:32:01.50	+40:51:16.8						EB: candidate	[364]
	KIC 8758716	19:35:24.449	+44:56:57.90						Contradictory var. types	[64, 359, 410, 81]
	h01 Sgr	19:36:01.653	-24:43:08.68	A1mA2	5.647	5.824			SB: candidate	
	BD+39 3858	19:36:09.032	+39:37:42.98	F1V	9.76	10.11			Contradictory var. types,KIC 4570326	[475, 359, 410, 54]
	BOKS 33809	19:38:18.252	+46:44:05.54		g=15.82	r=15.22			Contradictory var. types,KIC 9897710	[81, 359, 410, 130]
	TYC 3140-782-1	19:42:52.228	+39:41:29.39		11.95	12.56			KIC 4577647: candidate	[81, 359, 410]
	TYC 3565-1003-1	19:45:48.805	+49:47:11.48		10.90	11.27			Contradictory var. types,KIC 11671429	[475, 410]
	HD 234999	19:46:42.589	+50:21:01.35	B8.5IV-V	9.09	9.27			SB: candidate	
	TYC 3148-1402-1	19:46:55.498	+43:50:27.81		10.69	11.20			EA,Contradictory var. types,KIC 80439	61[64, 365, 81, 475, 410]
	KIC 7300184	19:47:08.587	+42:48:12.00		R=15.98				EB, hybrid DSCT+SXPhe	[21, 81, 359, 410]
	KIC 5724811	19:47:39.257	+40:54:46.72						Contradictory variability types	[81, 359, 410]
	TYC 3562-805-1	19:53:42.391	+47:58:27.21		11.19	11.42			Contradictory var. types,KIC 10684673	[475, 410, 349]
	KIC 9306095	20:00:41.911	+45:47:59.34		12.450				EW: candidate	
	KIC 8330092	20:03:34.930	+44:14:50.06		13.523	13.966			EW,Contradictory var. types	[64, 460, 81, 475, 359]
	IK Peg	21:26:26.662	+19:22:32.30	kA6hA9mF0+DA	6.078	6.294			SB: hybrid DSCT+WD: candidate	
	HR 8437	22:08:42.644	-33:07:32.49	A2III/IV	6.383	6.565			SB: candidate	
	GX Peg	22:31:34.352	+29:32:33.93	A5m	6.330	6.520			SB: candidate	
	HD 223676	23:51:43.195	-37:05:46.38	A2mA8	9.46	9.72			SB: candidate	
Solar-like	NSVS 06507557	01:58:24	+25:21:12	K9 + M3	13.4	_	0.515		EB, SB2,low mass	[50]
oscillators	α CMi (Procyon)	07:39:18	+05:13:30	F5IV-V	0.34	0.74			SPB, visual Binary	[101]
(oscillating RGB)	β Gem	07:45:19	+28:01:34	K0IIIb +	1.15	2.15	545	0.1332	planet-hosting,2.6M _{Jup}	[179, 190, 191]
	α Cen A	14:39:36	-60:50:08	G2V + K1V	-0.1	0.4	79 yr		Visual Binary,28 modes	[40, 51, 101]
	70 Oph	18:05:27	+02:30:00	K0V	4.03	4.89			SPB,visual Binary	[53, 101]
	KIC 8210370	18:43:05.3	+44:11:19.4		J= 9.522	H=9.001	153.5	$44.1 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 7799540	18:44:46.0	+43:31:29.8		J=11.021	H=10.571	71.8	$347.2 \mu \text{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 8144355	18:47:30.4	+44:01:47.7		J=12.084	H=11.534	80.6	$179.0 \mu Hz$	oscillating RGB heartbeat star	[24]
	KIC 8410637	18:48:38.1	+44:29:09.8	K2III + F	11.33	$12.18, K_p = 10.77$	408.32	$30\text{-}60\mu\text{Hz}$	EB,detached, oscillating red-giant	[194, 139, 147, 145]
10	KIC 8803882	18:59:11.2	+45:05:56.7	<u> </u>	J=11.489	H=11.013	89.7	$347.0 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 6762188	19:06:12.2	+42:14:05.2		KEP=13.672	J=11.989,H=11.434	7.155		Detached, triple	[145]
	KIC 4732015	19:07:18.0	+39:48:09.0		10.72	12.19,KEP=10.147		0.9388	EA,Detached, Triple	[145]
	KIC 10001167	19:07:49.3	+46:56:11.8		10.39	11.48	120.39		oscillating red-giant(RG) EB,detached	[147, 145]
	KIC 7879404	19:08:30.1	+43:36:04.1		KEP=11.835		0.3927		EB of W UMa-type, overcontact,	[145]

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{ m orb}$	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″	_	(mag)	(mag)	(day)	(day)		
-										
Solar-like	KIC 6509282	19:09:19.3	+41:58:29.6		KEP=13.560	J=11.839,H=11.296	3.9890		Detached,	[145]
oscillators	KIC 7431665	19:09:30.3	+43:00:34.1		J=9.305	H=8.783	281.4	$54.0 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
(oscillating RGB)	KIC 2697935	19:09:52.2	+37:58:00.0		11.01	11.77	21.5	$405.6 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 3532985	19:11:39.6	+38:38:26.8		11.88	13.17,KEP=11.317	5.2885		EA,Detached, triple	[145]
	KIC 4999260	19:12:04.7	+40:07:37.4		9.61	10.49,KEP= 9.333	0.37837		EB of W UMa-type, overcontact,	[145]
20	KIC 8747222	19:17:19.1	+44:58:27.1		KEP=12.882	J=11.105,H=10.557	1.6674		Detached,	[145]
	KIC 5179609	19:18:26.7	+40:20:09.0		J=11.061	H=10.564	43.93	181.70	oscillating red-giant(RG) EB, oEA, detached	[147, 145]
	KIC 12645761	19:18:48.9	+51:42:51.8		KEP=13.368	J=11.781,H=11.18	5.4192		EA,Detached,	[145]
	KIC 10007492	19:20:20.8	+46:56:42.7		KEP=12.375	J=10.887,H=10.441	2.6456		EA,Detached,	[145]
	KIC 7955301	19:20:44.7	+43:43:25.8		KEP=12.672	J=10.992,H=10.487	15.326		Detached, RG/EB, detached, Triple	[145]
	KIC 5786154	19:21:01.4	+41:01:04.9		J=11.816	R=13.488	197.92		oscillating red-giant(RG) EB, oEA, detached	[147, 145]
	KIC 5006817	19:21:49.4	+40:08:44.6		11.15	12.39	94.8	$145.9 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 9151763	19:22:44.4	+45:34:06.0		J=9.717	H=9.034	437.5	$13.8 \mu Hz$	oscillating RGB heartbeat star	[24]
	KIC 8095275	19:23:52.9	+43:58:14.9		J=11.819	H=11.248	23.01	69.3μHz	oscillating RGB heartbeat star,	[24, 145]
						non-El	B, photometr	ric variability	is due to tidally induced distortions/oscillations	
	KIC 2711123	19:24:03.7	+37:58:03.9		KEP=12.529	J=10.805,H=10.226	0.7147		Detached,	[145]
30	KIC 11135978	19:24:09.9	+48:43:04.9		KEP=12.331		0.2921		overcontact, ellipsoidal variation, Triple	[145]
	KIC 7031714	19:24:44.0	+42:32:00.8		KEP=12.126	J=10.514,H=9.985	0.8141		EB of β Lyr-type,semi-detached,Triple	[145]
	KIC 8430105	19:26:14.1	+44:29:17.5		10.61	11.44	63.33	121.6	oscillating red-giant(RG) EB,detached	[147, 145]
	KIC 2444348	19:26:40.4	+37:42:14.6		10.74	11.90	103.5	$30.5 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 7037405	19:31:54.2	+42:32:51.6		J=10.156	H=9.554	207.11		oscillating red-giant(RG) EB,detached	[147, 145]
	KIC 2720096	19:31:54.9	+37:54:39.3		J=11.337	H=10.776	26.7	$110.1 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 2997455	19:32:31.3	+38:07:40.1		KEP=13.800	J=12.028,H=11.501	1.1298		EA,Detached,	[145]
	KIC 9408183	19:33:58.3	+45:59:15.3		J=11.533	H=10.998	49.7	$164.8 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 10735519	19:34:13.7	+48:02:30.3		KEP=11.780	J=10.035,H=9.552	0.9070		EA,Detached,	[145]
	KIC 4663185	19:36:19.0	+39:43:46.7		KEP=11.356	J=9.602,H=8.998	56.699		RG/EB,detached,	[145]
									quadruple:(RG+RG)+(RG+ δ Sct companion)	
40	KIC 4570555	19:36:23.1	+39:38:49.5		11.74	12.74,KEP=11.540	4.7503		Detached,	[145]
	KIC 4663623	19:36:47.7	+39:45:28.8		J=11.110	H=10.593	358.08		oscillating red-giant(RG) EB	[147]
	KIC 11968514	19:37:26.8	+50:18:27.4		KEP=11.449	J=9.910,H=9.403	1.0366		EA,Detached,	[145]
	KIC 7690843	19:38:06.4	+43:23:47.2	11	.322,KEP=11.083	J=9.481,H=8.961	0.7862		EW, contact/semi-detached, Triple	[145]
	KIC 9163796	19:41:20.9	+45:30:17.2		9.82	10.67	121.3	153.2μHz	oscillating RGB heartbeat star	[24]
	KIC 6791033	19:42:08.9	+42:15:06.3		KEP=12.385	J=10.782,H=10.188	0.7582		ellipsoidal variable	[145]
	KIC 4576968	19:42:18.9	+39:41:53.2	12	370,KEP=12.537	J=10.847,H=10.296	0.37842		overcontact,	[145]

Table 2—Continued

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	P_{orb}	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
Solar-like	KIC 7377422	19:43:43.3	+42:57:04.3				107.62	54.6	oEA,oscillating RG,detached	[147]
oscillators	KIC 11147460	19:44:49.2	+48:46:00.5		KEP=13.912	J=12.234,H=11.67	4.1077		EA, Detached (D),	[145]
(oscillating RGB)	KIC 10809677	19:45:54.8	+48:08:46.2		KEP=13.942	J=12.320,H=11.764	7.042		EA,Detached,	[145]
50	KIC 8702921	19:46:39.6	+44:51:11.1		J=10.326	H=9.839	19.385	97.8	oscillating RG,detached EB	[147, 145]
	KIC 7769072	19:47:21.5	+43:24:28.9		KEP=13.886	J=12.237,H=11.672	0.6088		EA,Detached,	[145]
	KIC 10614012	19:47:42.9	+47:52:58.8		9.98	11.04	132.1	$70.2 \mu \text{Hz}$	oscillating RGB heartbeat *,eclipsing	[24]
	KIC 9540226	19:48:08.1	+46:11:54.5		12.44	12.75	175.46	27.4μHz	oscillating RGB heartbeat *, oEA, D	[24, 147, 145]
	KIC 5640750	19:48:48.4	+40:53:32.8		12.03	13.23	987.40/1324.26		oscillating RG,detached EB	[147, 145]
	KIC 11044668	19:51:46.7	+48:33:28.0		J=10.736	H=10.246	139.5	50.2μHz	oscillating RGB heartbeat star	[24]
	KIC 5039392	19:53:36.2	+40:10:19.7		J=9.291	H=8.491	236.7	$6.2 \mu \mathrm{Hz}$	oscillating RGB heartbeat star	[24]
	KIC 8255058	19:53:43.4	+44:11:32.8		KEP=13.285	J=11.628,H=11.106	6.2799		EA,Detached,triple	[145]
	KIC 10991989	19:54:06.5	+48:25:06.9		10.60	11.50,KEP=10.282	0.9744		EA,Detached, Triple	[145]
	KIC 9970396	19:54:50.3	+46:49:58.9		J=9.742	H=9.19	235.30		oscillating RG,detached EB	[147, 145]
60	KIC 8453324	19:55:18.8	+44:29:20.9		KEP=11.516	J=9.795,H=9.26	2.5245		EA,Detached,	[145]
	KIC 5218014	19:55:59.5	+40:18:53.1		KEP=12.923	J=11.153,H=10.619	10.845		EA,Detached,	[145]
	KIC 5650420	19:56:45.8	+40:49:21.5		KEP=12.387	J=10.555,H=9.97	2.0988		Detached,	[145]
	KIC 8054233	19:56:58.4	+43:48:51.7		J=10.036	H=9.46	1058.23		oscillating red-giant(RG) EB	[147]
	KIC 5652071	19:58:02.2	+40:48:31.8		KEP=13.299	J=11.412,H=10.790	1.0205		overcontact,	[145]
	KIC 5308778	19:58:18.5	+40:27:30.5		J=10.046	H=9.532	40.567	38.9	oscillating RG, detached EB	[147, 145]
	KIC 5308777	19:58:18.5	+40:29:54.6		KEP=13.199	J=11.368,H=10.746	0.9447		Detached,	[145]
	KIC 8912308	20:00:16.4	+45:06:05.8		J=9.73	H=9.21	20.2	$350.2 \mu Hz$	oscillating RGB heartbeat star	[24]
	KIC 9181877	20:02:09.5	+45:30:25.9		11.80	13.13,KEP=11.698	0.32101		overcontact,ellipsoidal,Triple	[145]
	KIC 8718273	20:03:04.4	+44:49:50.3		10.83,KEP=10.565	12.16	6.959		EA,Detached,	[145]
70	KIC 9246715	20:03:48.3	+45:36:14.8	K2 +	9.65	10.74	171.28	93.30	EB,detached,oscillating double RG	[147, 145]
71	KIC 8848288	20:04:11.3	+45:05:15.3	K2 +	10.22	11.22,KEP= 9.837	2.7831		Detached,	[145]
sdBV	WD 0048-202	00:51:04	-19:59:59	sdB + WD	15.4	15.1	7.4436		DA,=GD 656	[149]
& sdOV	Ton S 183	01:01:17	-33:42:45	sdB + WD	12.57	12.39	0.8277		may be NS/BH companion,HIP 4769	[149]
	PG 0101+039	01:04:21.677	+04:13:37.06	sdB + WD	12.06	11.82	0.6		SB*,WD*,blu,=HIP 5023	[367]
	WD 0107-342	01:10:19	-34:00:00	sdB + WD	13.93	14.7	0.375		WD companion,=GD 687	[149]
	FBS 0117+396	01:20:22.9	+39:50:59.3	sdB + dM	R=15.7	14.5	0.252	337–379 s	8 more modes 45 m–2.5 h	[331]
	HE 0230-4323	02:32:54	-43:10:27	sdB + WD	13.78	13.9	0.443		may be late MS companion	[149]
	IQ Cam	04:26:06.87	+54:28:17.0	sdB + WD	14.66	14.86			EB,=KPD 0422+5421	[245, 327]
	AA Dor	05:31:40	-69:53:02	sdO + dM	11.14	10.84			EA+SB,=LB 3459	[223, 242]
	HE 0532-4503	05:33:40	-45:01:35	sdB + NS/BH	16.06	16fm20	0.2656	Neutron Sta	r (NS)or Black Hole (BH) companion	[149]

Type of	Binary or	RA DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{\rm orb}$	$P_{ m pul}$	Comments	References
Pulsators	Multiple	hh:mm:ss \circ : $'$: $''$		(mag)	(mag)	(day)	(day)		
sdBV	V470 Cam	07:10:42.07 +66:55:43.6	sdB + dM		14.100			EA,=HS 0705+6700=GSC 04123-00265	[98, 360]
	GSC 00196-00617	08:20:53 +00:08:43	sdB + dM	15.17	15.03	0.096		EB with a Brown Dwarf Companion	[151]
								=SDSS J082053.53+000843.4, MUCHFUSS project	
	HE 0929-0424	09:32:02 -04:37:37	sdB + WD		15.4	0.440		may be NS/BH companion	[149]
	PG 0941+280	09:43:54 +27:46:59	sdB + WD	13.24	12.95				[150]
	XY Sex	10:20:14 -08 53 46	sdB + dM	14.43	14.46			=PG 1017-086	[300]
	HE 1047-0436	10:50:27 -04:52:36	sdB + WD		14.68	1.2133		may be late MS companion	[149]
	KL UMa	11:47:14 +61:15:32	sdB + WD	1328	1312	0.376		=Feige 48	[333, 369, 476]
	PG 1232-136	12:35:19 -13:55:09	sdB + NS/BH	13.27	13.06	0.3630			[149]
	HW Vir	12:44:20 -08:40:17	sdB + dM	10.9	10.53			oEA,post-CE binary	[267, 497]
	PG 1329+159	13:31:53 +15:41:18	sdB + dM	13.53	13.24			=GSC 01459-01061	[169]
20	NY Vir	13:38:48 -02:01:49	sdB + dM	13.30	13.6			oEA,=PG 1336-018,HW Vir-type EB	[224, 225, 483, 484]
	HE 1421-1206	14:24:09 -12:20:21	sdB + WD		15.1	1.188		may be late MS companion	[149]
	PG 1438-029	14:40:53 -03:08:56	sdB + dM		13.82				[170]
	HE 1448-0510	14:51:13 -05:23:17	sdB +		14.96	7.1588			[149]
	NSVS 7826147	15:33:49 +37:59:28	sdB + dM		12.6	0.1617		EB,=2MASS J15334944+3759282	[136, 137]
	KIC 11179657	19:02:22 +48:50:52	sdBV + dM	$K_p = 17.06$				=SDSS J19023+4850,double stars	[330]
	KIC 7668647	19:05:06.39 +43:18:31.1	sdB +	15.48	15.08			sdBV +	[457, 305, 332]
	KIC 2438324	19:21:12.9 +37:45:51.3	sdBV + dM	17.873	17.69	0.3985	2384–7640 s	EB sdB in NGC 6791,non-EB or ellipsoidal variations?	[314, 85, 334]
	KIC 1868650	19:26:09.44 +37:20:08.18	sdB + dM	$K_p = 13.45$	13.60	0.2923		EB?, CV*, =NAME KBS 13	[135, 330]
	KIC 2991403	19:27:16 +38:08:08	sdBV + dM	$K_p = 17.14$				=SDSS J192715.88+380808.2	[330]
30	V2214 Cyg	19:32:15 +27:58:35	sdB + WD	13.82	13.75	0.1		SB,=KPD 1930+2752	[148, 370, 371]
	KIC 6614501	19:36:50.013 +42:01:43.60	sdB+WD				0.1575	SB,low mass,beta Cep type,=2MASS J19365001+4201436	[406]
	KIC 9472174	19:38:32 +46:03:59	sdBV + dM	12.69	12.17		Е	B of beta Lyr,=TYC 3556-3568-1=2M1938+4603,multimode	[329]
	KPD 1946+4340	19:47:43 +43:47:31	sdOB + WD	14.23	14.06			EB,2MASS J19474288+4347306,Kepler	[34]
	GSC 09331-00373	21:36:01 -72:48:27	sdB +	12.40	12.18		0.75	SB, =JL 82, PG 1716-class	[243]
	HE 2135-3749	21:38:44 -37:36:15	sdB + WD	13.94	13.68	0.924		may be late MS companion	[149]
	HE 2150-0238	21:52:36 -02:24:37	sdB +		15.8	1.3209			[149]
	V391 Peg	22:01:12 +26:25:08	sdBV + dM	14.3	13.6	1168	349 ^s .5	planetary companion of M dwarf	[286, 395, 405]
								=HS 2201+2610, planet-hosting sdBV, both p - & g -modes	
	HS 2231+2441	22:33:24 +24:56:00	sdB + dM					M-dwarf secondary	[328]
	EQ Psc	23:34:34 -01:19:37	sdB + dM	13.06		0.8014	$8-46\mathrm{d}^{-1}$	19h periodic variation by orbital reflection	[211]
40	HS 2333+3927	23:35:42 +39:44:27	sdB + dM					multiple	[193]
41	PG 2345+318	23:48:07 +32:04:46	sdB + WD		14.37			EB+SB,=SBC9 2129	[150]

Type of	Binary or	RA DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	P_{orb}	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss °: ': "		(mag)	(mag)	(day)	(day)		
sdBV	GD 1289	00:03:24.43 -16:21:06.3	sdB	12.7	12.6			SB*,WD*: candidate	
	HE 0004-2737	00:06:46.26 -27:20:53.4	sdB	13.97	13.68			SB*,blu: candidate	
	GD 605	00:21:58.73 -24:25:20.9	sdB	14.48	14.10			SB*,WD*,blu: candidate	
	2MASS J00232400-0029530	00:23:24.01 -00:29:53.1	sdB	15.7	15.26			SB*,WD*: candidate	
	TYC 6425-1982-1	01:12:11.650 -26:13:27.69	sdB	13.15	12.953			SB*,WD*,blu: candidate	
	TYC 6433-1540-1	02:22:19.833 -23:24:55.88	sdB	12.01	11.79			SB*,double stars: candidate	
	TYC 3315-1807-1	03:21:39.630 +47:27:18.83	sdB	11.73	11.54			EB*,CV*,double stars: candidate	
	GSC 00231-01572	09:21:28.214 +02:46:02.31	sdBw+	13.327	13.056			SB*,WD*: candidate	
	EC 10246-2707	10:26:56.6 -27:22:59	sdB+dM	14.38	14.22			EB*: candidate	
	2MASS J11384069-0035317	11:38:40.70 -00:35:31.8	sdB	14.0	13.75			SB*,Pe*,WD*: candidate	
	SBC9 2128	14:35:19.20 +15:40:14.0	sdBw+		13.63			SB*,WD*: candidate	
	PG 1502+113	15:05:13.524 +11:08:36.63	sdB	15.33	15.08			SB*,WD*: candidate	
	2MASS J15461169+4838373	15:46:11.69 +48:38:37.3	sdB+sdB		12.80			SB*: candidate	
	V1093 Her	17:18:03.86 +42:34:12.7	sdB	13.97	13.69			SB*,WD*: candidate	
	OGLE BUL-SC16 335	18:09:48.226 -26:41:49.46	sdB+dM	J=12.868	H-12.072			EB*: candidate	
	V2214 Cyg	19:32:14.81 +27:58:35.5	sdBV	13.82	13.75			SB*,sdBV: candidate	
	2MASS J19530839+4743002	19:53:08.391 +47:43:00.22	sdB	J=15.45	H=15.54			SB*,bC*+HB*: candidate	
	SDSS J204613.40-045418.7	20:46:13.402 -04:54:18.75	sdB	u=15.80	g=15.98			SB*,WD*: candidate	
	2MASS J22342148+2456573	22:34:21.481 +24:56:57.39	sdB+dM	J=14.67	H=14.73			EB*: candidate	
	FBS 2347+385	23:49:47.642 +38:44:41.55	sdB	11.73	11.65			EB*,double stars: candidate	
CV	GALEX J003535.7+462353	00:35:36 +46:23:52	WD+			0.1722		eclipsing dwarf nova	[493]
	2MASS J01074282+4845188	01:07:43 +48:45:19	WD+			0.1935		nova-like CV	[91]
	PHL 1445	02:42:43 -11:46:48	WD+	18.6	18.37	0.0529		eclipsing CV,=PB 9151	[493]
	XZ Eri	04:11:25 -15:23:24	WD+		14.6			eclipsing CV,dwarf nova	[389]
	HS 0417+7445	04:23:33 +74:52:50	WD+	R=17.2	18.4	0.0753		SU UMa-type dwarf nova	[402]
	KR Aur	06:15:44 +28:35:08	WD+	11.0	11.3			nova-like star	[248]
	BG CMi	07:31:29 +09:56:23	WD+	14.5	14.5			=3A 0729+103:DG Her type CV	[238]
	SDSS J081610.84+453010.2	08:16:10.8 +45:30:10.2	WD + dM				0.2096	eclipsing dwarf nova	[401]
	SDSS J090350.73+330036.1	09:03:50.7 +33:00:36.1	WD+	u=18.856	g=18.826	85.066 m		=SDSS J0903+3300,eclipsing CV	[389]
10	SDSS J092638.71+362402.4	09:26:38 +36:24:02	WD+			28m	shoi	test period EB, first eclipsing AM CVn-type SDSS J0926+3624 – short nomemclature	[65]
	DV UMa	09:46:36 +44:46:45	WD+	J=16.89	19.0			eclipsing CV,dwarf nova	[389]
	SDSS J103533.03+055158.4	10:35:33.0 +05:51:58.4	WD+	18.80	18.57	82.089 m		=SDSS J1035+0551, eclipsing CV	389, 281, 282]
	DP Leo	11:17:16 +17:57:41	WD+	17.5	18.5	89.9 m		post-CE binary, AM Her-type,planet triple	[31, 361]

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{ m orb}$	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
CV	SDSS J122740.83+513925.0		+51:39:25.0	WD +	19.08	18.89			=SDSS J1227+5139, eclipsing CV	[389]
	SDSS J115207.00+404947.8		+40:49:48	WD +			0.06772		eclipsing CV	[389]
	CTCV J1300-3052		-30:52:57.1	WD +	15.4	18.40	0.0889		eclipsing CV, dwarf nova	[389]
	QS Vir		-13:13:37.5	DA + dMe	U=14.27	16.17	0.15		detached oEA, eclipsing post-CE binary	[338]
	SDSS J143317.78+101123.3		+10:11:23.5	WD +	u=18.533	g=18.555	78.1066 m		=SDSS J1433+1011, eclipsing CV	[389]
	OU Vir	14:35:00.2	-00:46:06.3	WD +	14.5	18.5			eclipsing CV,dwarf nova	[389]
20	SDSS J150137.22+550123.3	15:01:37.2	+55:01:23.3	WD +			0.0568		=SDSS J1501+5501, eclipsing CV	[389]
	SDSS J150240.98+333423.9	15:02:40.9	+33:34:23.9	WD +	13.7	17.3	84.829 m		=SDSS J1502+3334=NZ Boo,eclipsing CV	[389]
	SDSS J150722.30+523039.8	15:07:22.3	+52:30:39.8	DAe +	g=18.32	18.7	66.61 m		eclipsing CV,subdwarf donor,=SDSS 1507+52	[389, 474, 282]
									=SDSS J150722.30+523039.8, d=250 pc	
	GSC 04560-02157	15:43:36.71	+75:15:40.5		15.7		0.2653		eclipsing CV,	[222]
	SDSS 154453.60+255348.9	15:44:53	+25:53:49	WD + dM			0.2513		eclipsing CV, d=800 pc	[409]
	NN Ser	15:52:56	+12:54:45	DAO +M4	16.67	16fm0			nova-like	[30]
	V386 Ser	16:10:33	-01:02:23		18.9	_			=SDSS J161033.64-010223.3, nova-like star	
	SDSS J170213.26+322954.1	17:02:13	+32:29:54	WD + M1.5e	u=18.166	g=17.928			eclipsing CV,=SDSS J170213.26+322954.1	[389, 281]
	LSQ172554.8-643839	17:25:54	-64:38:39	DA + M8			94.657m		eclipse depths >5.7 mag	[363]
	1RXS J180834.7+101041	18:08:36	+10:10:30	WD +	R=16.2	16.2			accretion disc eclipsed,SU UMa-subtype	[422]
30	WZ Sge	20:07:36	+17:42:15	WD +	15.2	15.3			eclipsing dwarf nova	
31	HU Aqr	21:07:58	-05:17:40	WD+ Am	15.0		0.0868		with unconfirmed planet,AM Her-type	[398, 397]
32	CTCV J2354-4700	23:54:20	-47:00:20	WD +	g=19.25	r=19.15		0.0655	eclipsing CV	[389]
	2MASS J00274999-0010234	00:27:50.00	-00:10:23.4	WD:+dM		18			SB*: candidate	
	TW Tri	01:36:37.01	+32:00:39.9			16.000			SB,CV*: candidate	
	TT Ari	02:06:53.084	+15:17:41.81	Bep:	10.20	10.73			SB,Nova: candidate	
	PY Per	02:50:00.15	+37:39:22.2			13.8			SB,CV*: candidate	
	TYC 3315-1807-1	03:21:39.630	+47:27:18.83	sdB+	11.73	11.54	0.266		EB, detached: candidate	[331, 152]
	GK Per	03:31:12.012	+43:54:15.48	Be+K2sdI*	14.0	10.2			SB,nova: candidate	
	EGB 4	06:29:33.96	+71:04:36.3			14.1			SB+PN: candidate	
	Z Cam	08:25:13.201	+73:06:39.23		10.00	11.85			SB+DN*: candidate	
	2MASS J08375098+3830124	08:37:50.99	+38:30:12.4	WD+M		18.400			SB*: candidate	
	EG Cnc		+27:51:49.66		11.9	11.9			SB+DN*: candidate	
	SDSS J092219.55+421256.7		+42:12:56.8	WD+M:	u=19.83	g=19.84			SB,CV*: candidate	
	V436 Cen		-37:40:47.8			11.5			SB+DN*: candidate	
	BE UMa		+48:56:18.5	CV		14.8			EA+SB*: candidate	
	4 Dra	12:30:06.660	+69:12:04.06	M4III	4.95	6.57			SB: candidate	

Table 2—Continued

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	P_{orb}	$P_{ m pul}$	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
CV	2MASS J12495974+0357265	12:49:59 74	+03:57:26.5	DA+M		14.55			SB,WD*: candidate	
0.	2MASS J13023621+0601483	13:02:36.21	+06:01:48.3	M6	J=14.623	H=14.026			SB,FI*: candidate	
	2MASS J13231264-0254559	13:23:12.65		DC:+dM	J=14.254	H=13.719			SB*: candidate	
	NGC 5139 BPB 341736	13:26:38.439	-47:19:59.71		14.737	15.390			EB: candidate	[488]
	SDSS J140453.98-102702.1		-10:27:02.32		u=20.01	g=19.738			EB,dwarf nova,CRTS CSS080623 J140454-102702	[96, 498]
	2MASS J14394762-0106068	14:39:47.63		DA+dM:e		15.700			SB*: candidate	. , ,
	2MASS J14460066+3328502		+33:28:50.29	DA1.8		16			SB*: candidate	
	AP CrB	15:54:12.35	+27:21:52.4	M3					SB,AM*: candidate	
	SDSS J155904.62+035623.4	15:59:04.623	+03:56:23.45	DA+M	u=18.240	g=18.392			SB,CV*: candidate	
	NAME KBS 13	19:26:09.444	+37:20:08.18	sdB+dM	13.63	13.60			Contradictory variability types, KIC 1868650	[211, 391]
	V1504 Cyg	19:28:56.47	+43:05:37.1			13.5			SB,DN*: candidate	
	2MASS J20482791+0050089	20:48:27.92	+00:50:09.0	M4	19.04	19.45			SB,double stars: candidate	
	V2069 Cyg	21:23:44.82	+42:18:01.7		15.70	16.100			SB,Nova: candidate	
	2MASS J21435459+1244577	21:43:54.59	+12:44:57.8	DA+M		15.700			SB,CV*: candidate	
β Cephei	γ Peg	00:13:14	+15:11:00	B2IV +	2.83	2.60	370.5	0.15175	hybrid BCEP/SPB star: p & g-modes	[57, 181]
(BCEP)	γ Cas	00:56:42	+60:43:00	B0.5IVpe +	2.47	2.29	200		Be binarity; unconfirmed	[184, 285, 413, 414]
	ε Per	03:57:51	+40:00:37	B0.5V +	2.901	2.733	14.07			[162, 455]
	SZ Cam	04:07:49.3	+62:19:58.6	O9IV + B0.5 V	6.93	7.26	2.7	0.3326	quadruple EB/SB2 of β Lyr type, semi-detached	[454]
	η Ori	05:24:28.6	-02:23:50.0	B0.5Vea + B3V					EA + BCEP	GCVS
	Ψ Ori	05:26:50	+03:05:44	B1II + B2V	4.595	4.393	2.5		=HR 1811,acoustic high-degree modes	[440, 456]
	HD 50230	06:52:19.8	-00:40:38.9	B3V +	8.95	8.93		rich	SB2,CoRoT target, $g + p$ -modes	[84]
	V467 Vel	08:43:49.8	-46:07:08.8	O6.5V + B1 V	10.56	11.2	2.7532	0.4327	oEA, O-type SB2, =CPD-45 2920	[307, 347]
						=ALS	S 1135 = ASA	AS J084350-46	507.2,detached/semidetached/contact, may not pulsate	
	V381 Car	10:43:49	-58:13:04	B1III	9.03	8.99			=HD 92024,in NGC 3293	[197]
10	V916 Cen	11:42:25	-62:28:37	B0.5+	8.73	8.72			=HD 101794, EB, in Stock 14	[105]
	HD 101838	11:42:49	-62:33:55	B0.5+	8.41	8.44			in Stock 14	[105]
	β Cru	12:47:43	-59:41:19	B0.5IV	1.30	1.15			hot star + pre-MS companion	[4, 63, 72]
	α Vir=Spica	13:25:12	-11:09:41	B1III-IV +	1.04	0.91	4.01		EB,=67 Vir=HR 5056,acoustic oscill.	[89, 412]
	u Cen	13:49:30	-41:41:16	B2IV +	3.39	3.19	2.6		Ellipsoidal variable	[394, 440]
	β Cen	14:03:49	-60:22:23	B1III +	0.60	0.38	357.02		line-profile variation, no phot.var.	[16]
	δ Sco	16:00:20	-22:37:18	B0.2IVe	2.29	2.21	10.74		Be binary star,=HR 5953	[451]
	V393 Sco	17:48:47.6	-35:03:25.6	B3III +	7.59	7.71	7.7122	253.4	oEA, detached, ASAS data	[350]
	V539 Ara	17:50:28	-53:36:44	B3V + B4V	5.71	5.61	3.17	0.74	oEA,multiperiods: 0.56,0.93	[60]
	V4386 Sgr	18:14:42.1	-33:08:27.2	B1II +	8.46	8.34	10.79824	$6.771 \mathrm{d}^{-1}$	EB, =HD $167003;7.023,7.351 d^{-1}EB$	[106]

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	P_{orb}	$P_{ m pul}$	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
β Cephei	V1135 Her	18:32:13.0	+12:17:04.3		12.65	14.10			EB, semi-detached, =NSV 10993	[220]
(BCEP)	KIC 6362430=HD 179506	19:10:57.7	+41:46:33.4	B7V + F2.5V	7.907	7.859	26.551	1.3616	SB2:multiple,1175 frequencies,g-mode SPB	[336]
	KIC 11558725	19:26:34.1	+49:30:29.6	sdB + WD	J=15.38	H=15.35	10.05	160+ freq.	β Cep-type	[458]
	KIC 4931738	19:36:00.8	+40:05:55.2	B6V + B8.5V	11.317	11.543	14.197	0.7488	SB2,1082 frequencies, tidally excited g modes	[336]
	V2107 Cyg	20:08:45.7	+37:14:13.3	B1III + B8	8.63	8.73			$EB(\beta)$, semi-detached	[17]
	β Cep	21:28:40	+70:33:38	B2III + B5Ve	3.22	3.02	90 yr		close Be star companion, prototype of BCEP	[490, 196]
26	EN Lac	22:56:23	+41:36:14	B2IV	5.58	5.44			eclipsing SB, =16 Lac,	[144, 213, 461]
	8+stars						candidate /	3 Cep eclipsin	g systems, might be DSCT as primary: OGLE-II	[308]
	HD 16429	02:40:44.944	+61:16:56.06	O9.5III+F4V	7.67	8.29			bC*,SB, double stars	bC*=Variable of β Cep type
	tet02 Cru	12:04:19.215	-63:09:56.55	B2IV	4.718	4.626			bC*,SB: candidate	
	eps Lup	15:22:40.868	-44:41:22.61	B2IV-V	3.367	3.198			bC*,SB, double stars	
	sig Sco	16:21:11.316	-25:35:34.05	B1III	2.89	3.02			bC*,SB, double stars	
	iot Her	17:39:27.886	+46:00:22.80	B3IV	3.800	3.630			bC*,SB: candidate	
	TYC 3135-115-1	19:31:06.729	+38:19:41.71	B2V	10.15	10.07			bC*,SB: candidate	
	TYC 3135-619-1	19:35:05.808	+38:52:50.11	B5IV-V	10.00	9.95			bC*,SB: candidate	
	2MASS J19530839+4743002	19:53:08.391	+47:43:00.22	sdB					bC*,SB*,HB*	HB*=Horizonal Branch star
	TYC 3562-2361-1	19:54:12.421	+46:56:12.71		11.45	11.86			bC*,EB*,El*	El*=Ellipsoidal variable star
SPB	au 08 Eri	03:53:43	-24:36:44	B5V +	4.60	4.51	459	0.8642	SB1,=33 Eri,Rotationally variable Star	[82]
	V1133 Tau	04:03:44.6	+05:26:08.2	B5V +	5.33	5.25	\sim 8.9 yr	1.532	=HD 25558 SB2 (SPB+SPB)	[415]
	GSC 00138-00095	06:04:12	+05:30:31	B9 +	10.29	10.52	1.4329	1.7655c/d	=ASAS J060412+0530.5	[348, 307]
	NO Vel	08:13:36	-46:59:30	B2.5IV + K5V	5.10	4.99	4.82		SB1,EB, visual,ellipsoidal variable	[82]
	HY Vel	08:42:25	-53:06:50	B3IV +	4.86	4.66	8.378	1.5511	SB1,=HR 3467=HD 74560	[82]
	V514 Car	10:38:03	-57:15:23	B3IV +	5.91	5.75	2.9	4.6555	SB1,=HR 4173=HD 92287	[82]
	Y Cir	13:39:09	-65:02:11	A2 + K0IV	11.21	10.80	3.1699	1.1089	oEA, SPB? =ASAS 133910-6502.2	[307, 347, 348]
	V869 Cen	14:09:35	-51:30:17	B9IV +	5.94	5.92	26	1.4592	SB2,=HR 5296,visual 4+ modes	[83, 225]
	PT Ser	15:46:06	-01:48:15	B8III +	5.39	5.37	38.9	0.8683	SB2,=HR 5863=HD 140873	[82]
10	HD 314884	17:56:37	-27:11:46	B5V +	10.04	10.05	1.365	0.889	SPB, + G or WD companion	[216]
	FR Sct	18:23:22	-12:40:51	M3 Iaep + O9.5V	10.15	11.6	3.5339		=ASAS 182323-1240.9,triple,VV Cep star	[348, 307]
	V4396 Sgr	18:30:02	-33:29:43	B8 V +	7.66	7.71	1.745	0.9087c/d	=oEA, =ASAS 183002-3329.7	[348, 307]
	HD 169978	18:31:22	-62:16:42	B7.5III +	4.64	4.50	1.71		SB1,=HR 6916=NSV 10889	[82]
	V4198 Sgr	19:07:08	-18:44:17	B8V +	6.29	6.24	11.91	1.1896	SB1,=HR 7241,forced oscillation	[82, 182, 440, 492]
15	V746 Cas	00:24:15.6	+52:01:11.7	B5IV +	5.575	5.467			=HD 1976, triple: SB2 binary + SB1,magnetic	[324]
	4+stars								binary candidates with a SPB primary: OGLE-II	[308]
γ Doradus	AS Cam	05:29:47	+69:29:45	A0 +	8.60	8.59	3.43	0.913	oEA, triple	[249, 250]

Table 2—Continued

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{ m orb}$	$P_{ m pul}$	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
γ Doradus	V432 Aur	05:37:32	+37:05:12	G0	8.07	8.58			EB	[408]
	CoRoT 102918586	06:48:54.3	-00:52:22.8	F0V/F3III + A5IV	12.43		4.39138	1.22	EB, SB2, 35 frequencies	[290, 42, 289, 463, 288]
	CoRoT 102931335	06:49:09	-01:26:52	G3V + F2			3.979	0.6-0.8	EB	[76]
05	CoRoT 102980178	06:50:12	-02:41:22				5.05	2.75c/d	oEA, multimode	[416]
	VZ CVn	13:32:03	+28:35:05	F2V + F8V	9.35	9.68	0.842	1.0688	=HD 117777, double-lined close EB	[206]
	ASAS 172738-3808.6	17:27:38	-38:08:48		11.56		0.3786	0.4233	may be a contact secondary	[350]
	V2502 Oph	18:17:04	+01:00:20	F2V	6.61	6.91			=HR 6844	[129]
	KIC 11285625	19:00:51.8	+49:05:22.0	F0 +	10.143	10.51	10.79	$0.557 - 1.684 \mathrm{d}^{-1}$	SP2-EB,	[80]
10	V404 Lyr	19:19:05.9	+38:22:00.5		11.77	12.03	649	1.85-2.11 d ⁻¹	EB of β Lyr type, semi-detached	[268]
11	KIC 10486425	19:49:54.4	+47:39:32.3		R=12.505	13.235		1.3189	oEA, detached	[10]
12	CK Ind	20:04:38	-64:43:42	A9/F0V	7.33	7.55	3.1	3.0303	=HD 209295, $p-$ and $g-$ modes	[182]
	CD-22 422	01:13:32.647	-22:01:13.62	A6m	12.16	12.14			SB: candidate	_
	KU Eri	02:46:33.962	-06:42:06.81	F0	7.78	8.14			SB: candidate	
	9 Aur	05:06:40.630	+51:35:51.80	F2V	4.980	5.280			SB: candidate	
	DO Lyn	07:45:42.337	+39:32:49.00	F0	7.13	7.45			SB: candidate	
	LS UMa	08:27:40.087	+67:58:26.78	F0	8.11	8.42			SB: candidate	
	LU UMa	09:24:03.260	+61:46:22.85	F0V	8.46	8.78			SB: candidate	
	HN Leo	09:58:26.039	+27:45:32.40	F3V	6.460	6.800			SB: candidate	
	NY UMa	11:32:12.881	+38:55:32.99	Am	7.99	8.28			SB: candidate	
	HD 120054	13:47:49.253	-33:25:20.41	A2mA8	9.372	9.665			SB: candidate	
	iot TrA	16:27:57.345	-64:03:28.60	F4IV	5.27	5.63			SB: candidate	
	V2502 Oph	18:17:04.841	+01:00:20.63	F2V	6.61	6.91			SB: candidate	
	KIC 10711646	18:49:44.633	+48:05:51.91		J=13.926	H=13.253			EA,Contradictory var. types	[460, 81, 68, 359]
	TYC 3120-328-1	19:07:22.878	+37:48:57.23		11.63	12.11			EA,KIC 2557430	[460, 475, 359, 410]
	HD 180099	19:13:27.170	+40:14:31.92	F5	8.70	9.07			Contradictory var. types	[464, 475, 359]
	KIC 11134079	19:20:03.362	+48:42:06.58		J=13.502	H=13.04			EA,Contradictory var. types	[460, 81, 68, 359]
	HD 181850	19:20:27.025	+38:23:59.46	A	8.94	9.11			EA,KIC 3230227,SAO 68163	[462, 460, 475, 359]
	V850 Cyg	19:24:58.822	+47:14:57.35	B1	11.27	11.93			EA,Contradictory var. types	[161, 475, 359, 410]
	TYC 2666-352-1	19:25:29.233	+37:05:56.86		11.15	11.44			EB,KIC 1432149	[475, 189]
	TYC 3547-2237-1	19:27:44.720	+47:18:34.91		11.54	12.26			EA,Contradictory var. types	[460, 475, 359, 410]
	KIC 7286410	19:32:40.848	+42:48:26.57						EB,Contradictory variability types	[145, 81, 410]
	KIC 4936334	19:40:35.669	+40:01:59.09						EA,Contradictory variability types	[81, 359, 410]
	KIC 10417135	19:45:54.689	+47:33:17.02						EB+gD*+El*,Contradictory types	[81, 359, 410]
	KIC 6302592	19:46:38.460	+41:36:51.81						EB, Contradictory variability types	[64, 81, 359, 410]

Table 2—Continued

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	P_{orb}	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss	°:':"		(mag)	(mag)	(day)	(day)		
γ Doradus	TYC 3145-171-1	19:50:57.860	+42:59:46.04		11.44	12.04			EA,KIC 7385478, Contradictory var. types	[64, 460, 81, 359]
	TYC 3558-637-1	19:58:20.770	+46:45:55.97		10.82	11.20			EA,KIC 9913481, Contradictory var. types	[460, 81, 475, 359]
	KIC 8264534	20:03:54.19	+44:06:46.2		12.6435	12.8711			EB,Contradictory variability types	[19, 359, 410]
	BD+43 3473s	20:04:09.305	+44:04:15.98	F2	10.66	11.02			EB,KIC 8197761,Contradictory var. types	[460, 475, 359]
	V418 Peg	23:35:37.528	+14:35:37.17	A3m	7.444	7.72			SB,HD 221866,HIP 116434	
	BD+44 4512	23:53:10.921	+45:02:25.93	A2mF5	10.16	10.46			SB: candidate	
Be/X-ray binary	DZ Tuc	00:50:45	-73:16:05	B0-0.5 V D +	15.44	15.40		0.71	Galactic,nonradial,high-mass,	[61, 393]
					=SXP 32	23=AX J0051	-733=RX J0	050.7–731	5=MACHO 212.16019.30, wide orbit, MACHO	
	XTE J0052-725	00:52:09	-72:38:03	B1-3 III-V D	15.02	15.16			in SMC,wide orbit,nonradial,MACHO	[393]
	RX J0055.2-7238	00:55:17.7	-72:38:53				=X	KMMU J00	5517.7–723853,wide orbit,nonradial,MACHO	[393]
	MACHO 207.16313.35	00:55:17.9	-72:38:53	O9.5V D +	15.87	16.02		6 ^h 833	p ₂ =15 ^h :586, =SC7 129062 (in SMC)	[128]
	V635 Cas	01:18:31	+63:44:24	B0.2 Ve +	15.19	16.64		3.3	Galactic,nonradial,high-mass	[176]
									=4U0115+63=1XRS 01152+634	
	V831 Cas	01:47:00	+61:21:23	B1 III +	11.34	12.22		25.;8 ^s .7	=LS I+61° 235=RX J0146.9+6121	[388]
									Galactic, high-mass	
	GRO J2058+42	20:59:00	+41:43:00	O9.5-B0 IV-Ve +	14.92	16.04			Galactic Be/X-ray binary	[241]
	SAX J2103.5+4545	21:03:35	+45:45:05	B0 Ve +	14.25	15.36		2.23	Galactic,nonradial,high-mass	[176]
	IGR J21343+4738	21:34:20	+47:38:00	B1IVe +	14.1	14.9	200-300	320 s	X-ray pulsations in Be/X-ray binary	[373]
10	4U 2206+54	22:07:56	+54:31:06	O0.95IIIe	9.93	10.14			high-mass, X-ray pulsation	[372]
Pulsating White Dwarf	J0247-25	02:47:43.3	-25:15:49.2				0.6678		EB, multi-periodic around 2500μ Hz,	[301]
					=15	SWASP J0247	43.37-25154	49.2; stripp	ed red giant,low-mass WD precursor + SXPhe	
	LP 413-40	03:45:17	+17:48:09	WD + WD	16.66	17.10	5.64h		EB, detached, =NLTT 11748	[436]
	V471 Tau	03:50:25	+17:14:47	K2V + DA	9.48	10.24			EA+SB:	[205]
	CSS 41177	10:05:59	+22:49:32	WD + WD	g=17.27	r=17.61	0.116		EB,detached, =SDSS J100559.10+224932.2	[337]
									=SDSS J100559.10+224932.2	
	SDSS J143547.87	14:35:47	+37:33:38	_	g=17.12	r=17.22			=SDSS J143547.87+373338.5	[248]
6	HIP 96515	19:37:08	-51:34:00	M1Ve	12.29	13.38			triple system	[204]
	BD+08 102	00:44:01.319	+09:32:57.85	K2V+DA2.1	10.219	10.94			SB*,WD*,flare star: candidate	
	PTF1 J004546.00+415030.0	00:45:46.00	+41:50:30.0	M3					EB*,WD*: candidate	
	GD 659	00:53:17.44	-32:59:56.6	DA1.4	13.36	13.14			SB*,WD*: candidate	
	2MASS J01100908+1326166	01:10:09.08	+13:26:16.7	DA+dMe	J=16.362	H=15.927			EB+SB,WD,double stars: candidate	
	TYC 6425-1982-1	01:12:11.650	-26:13:27.69	sdB	13.15	12.953			SB*,WD*,sdB: candidate	
Pulsating White Dwarf	39 Cet	01:16:36.289	-02:30:01.32	G5III+DA2.8	5.432	6.298			SB*,WD,double stars,RS*: candidate	

Table 2—Continued

Type of Pulsators	Binary or Multiple		DEC ° : ' : "	Sp.(A+B)	$\langle V \rangle$ (mag)	$\langle B \rangle$ (mag)	P _{orb} (day)	$P_{ m pul}$ (day)	Comments	References
					(8)	(8)	(,)	(,)		
	PTF1 J015256.60+384413.4	01:52:56.60	+38:44:13.4	M3					EB*,WD*: candidate	
	PTF1 J015524.70+373153.8	01:55:24.70	+37:31:53.8	M3					EB*,WD*: candidate	
	ksi01 Cet	02:12:59.995 +	+08:50:48.16	G6II/III-Ba0.3+DA	4.35	5.23			EB+SB,WD,double stars: candidate	
	FS Cet	02:35:07.594 +	+03:43:56.80	DA.8	12.412	12.209			SB*,WD*: candidate	
	HD 18131	02:54:38.827 -	-05:19:50.93	K0IV+DA:	7.31	8.32			SB*,WD*,BY*: candidate	
	SDSS J030308.35+005444.1	03:03:08.362 +	+00:54:43.92	WD+dM	18.06	18.9			EB+SB, WD,double stars: candidate	
	CL Oct	03:17:15.81	-85:32:25.5	DA	14.72				ZZ*, double stars,blu: candidate	ZZ*=pulsating WD*
	WD 0316+003	03:18:47.088 +	+00:30:29.61	DA	17.94	18.10			ZZ*,double stars: candidate	
	V471 Tau	03:50:24.968 +	+17:14:47.42	K2V+DA	9.373	10.24			EA+SB,WD*: candidate	
	V1092 Tau	03:57:05.816 +	+28:37:51.38	K2V+DA1.5	11.51	12.61			SB*,WD*,BY*: candidate	BY*=Variable of BY Dra type
	RR Cae	04:21:05.563 -	-48:39:07.02	DA7.8	14.40	14.92			EA*,WD*: candidate	
	HS 0507+0434B	05:10:13.512 +	+04:38:55.10	DA2.3	15.31	15.52			ZZ*,double stars: candidate	
	V1396 Ori	05:10:13.9	+04:38:44	DA+	15.36				ZZ*,double stars: candidate	
	IN CMa	07:20:47.909 -	-31:47:02.73	DA.9	14.64	14.900			SB*,Nova,WD*: candidate	
	WD J0751-0141	07:51:41.179 -	-01:41:20.90		u=17.911	g=17.453			EB*,WD*: candidate	
	RY LMi	09:24:15.27	+35:16:51.3	DA4.0	15.54	15.72			ZZ*, double stars: candidate	
	SDSS J100559.10+224932.2	10:05:59.116 +	+22:49:32.32	DA	u=17.33	g=17.27			EB*,WD?: candidate	
	WD J1007+5245	10:07:18.263 +	+52:45:19.83	DA	u=19.27	g=18.86			ZZ*, double stars: candidate	
	WD 1013-050	10:16:28.677 -	-05:20:32.06	DAO.9	13.21	13.3			SB*,WD*: candidate	
	RW Sex	10:19:56.623 -	-08:41:56.09	DAe	10.7	10.65			SB*,WD*,Nova: candidate	
	HD 90052	10:24:05.900 +	+26:21:03.72	F0V+DA1.4	9.26	9.57			SB*,WD*: candidate	
	RX J1027.1+3223	10:27:12.013 +	+32:23:29.71	G5V+DA1.4	13.38	14.00			SB*,WD*: candidate	
	V727 Car	10:44:10.231 -	-69:18:18.03	DA2.2	13.09	13.05			SB*,WD*: candidate	
	2MASS J12101023+3347239	12:10:10.232 +	+33:47:23.99	WD+M	16.3	16.9			EB+SB, WD,double stars: candidate	
	V379 Vir	12:12:09.308 +	+01:36:27.74	DAH+dL8	17.85	17.21			SB*,WD?,Nova: candidate	
	2MASS J12125824-0123101	12:12:58.25	-01:23:10.2	DA+M	J=14.830	H=14.347			EB+SB, WD,double stars: candidate	
	LM Com	12:26:30.895 +	+30:38:52.72	DA1.7	16.15	16.099			SB*,WD,double stars: candidate	
	V886 Cen	12:38:49.82	-49:48:00.2	DA4.2	13.96	14.14			ZZ*, double stars: candidate	
	PN LoTr 5	12:55:33.747 +	+25:53:30.61	G5III-IV	8.88	9.72			SB*,PN,WD*: candidate	
	QS Vir	13:49:51.95	-13:13:37.5	DA+M2-4		16.17			EA+SB,WD*: candidate	
	GK Vir	14:15:36.411 +	+01:17:18.23	DAO1.1	17.01	17.0			EA+SB,WD,double stars: candidate	
	GD 165	14:24:39.144 +	+09:17:13.98	DA4.1	14.32	14.46			ZZ*, double stars: candidate	
	2MASS J14354787+3733386	14:35:47.88	+37:33:38.7	DA+dM	J=15.421	H=15.045			EB+SB, WD,double stars: candidate	
Pulsating	SDSS J145634.29+161137.7	14:56:34.298 +	+16:11:37.72	D+M6.0	u=17.866	g=17.703			EB*,WD*: candidate	
									•	

Table 2—Continued

Type of Pulsators	Binary or Multiple	RA DEC hh:mm:ss °: ': "	Sp.(A+B)	$\langle V \rangle$ (mag)	$\langle B \rangle$ (mag)	P _{orb} (day)	$P_{ m pul}$ (day)	Comments	References
White Dwarf	2MASS J15484603+4057291	15:48:46.04 +40:57:29.1	DA+M		18.700			EB+SB, WD,double stars: candidate	
Winte Dwarf	V1093 Her	17:18:03.86 +42:34:12.7	sdB	13.97	13.69			SB*,WD*: candidate	
	DR Dra =29 Dra	17:32:41.208 +74:13:38.47	K0+DA1.5	6.635	7.673			SB*,WD*,RS*,=HD 160538=WD 1734+74	12
	WD J1741+6526	17:41:40.490 +65:26:38.74	110 12/11.5	u=19.34	g=18.411			EB*,WD*: candidate	
	HD 165141	18:07:00.249 -48:14:50.23	K0II/IIIBa1+DA:	7.10	8.10			SB*,WD*,RS* — RS*=Variable of RS CV	n type
	2MASS J19135987+4759472	19:13:59.874 +47:59:47.28	Ron/mbar Dr.	J=13.056	H=13.04			EA*,WD*: candidate	n type
	V3885 Sgr	19:47:40.527 -42:00:26.39	DB:p	10.33	10.32			SB*,WD*,Dwarf Nova: candidate	
	WZ Sge	20:07:36.50 +17:42:14.8	DAepv	15.20	15.30			SB*,WD*,Dwarf Nova: candidate	
	V1412 Aql	20:13:55.67 +06:42:44.7	DC	15.751	16.176			EB*,WD,double stars: candidate	
	IK Peg	21:26:26.662 +19:22:32.30	kA6hA9mF0 + DA	6.078	6.294			SB*,hybrid WD+DSCT: candidate	
	zet Cap	21:26:40.026 -22:24:40.80	G8IIIp+DA2.2	3.74	4.75			SB*,WD,double stars; candidate	
	RX J2130.6+4710	21:30:18.46 +47:10:07.4	Me	J=11.193	H=10.547			EB*,XB*,WD*: candidate	
	56 Peg	23:07:06.739 +25:28:05.73	K1IV(e)+DA1	4.74	6.06			SB*,WD*: candidate	
	VY Scl	23:29:00.48 -29:46:45.9	0	4.74	12.5			SB*,WD*,Nova-like: candidate	
	SBC9 2129	23:48:07.30 +32:04:46.0	sdBw+		14.37			EB+SB,WD*: candidate	
	V409 Peg	23:49:53.45 +13:06:12.8	DA4.4	16.13	15.9			ZZ*,double stars; candidate	
	SB 911	23:55:30.201 -25:16:13.06	sdB	13.90	13.88			SB*,WD*: candidate	
			500		13.00	2442	4522447-1	<u> </u>	
SX Phoenicis	KIC 11754974	19:08:15 +49:57:15		12.48	- 150	344.2	$16.3-21.4\mathrm{d}^{-1}$	or DSCT-type	[320, 321]
	QU Sge	19:53:49.34 +18:45:43.4	_	15.2	15.2			EB, in M71	[212]
	KIC 12643589	19:13:17.131 +51:43:35.59		J=12.90	H=12.65			EB, 2MASS J19131715+5143357	[21, 410]
	KIC 7300184	19:47:08.587 +42:48:12.00		R=15.98				hybrid DSCT+SXPhe	[21, 359, 410]
	KIC 10989032	19:49:34.459 +48:24:38.88		J=13.354	H=13.32			EA,detached,2MASS J19493443+4824386	[21, 359, 410]
	[SS2011] W9	13:12:59.00 +18:10:22.0		19.34	R=19.369			EB not confimed,NGC 5024 SAW V104	[13, 41]
	BQ Phe	00:25:24.142 -46:55:27.06	F4V	10.98	10.41			SB*: candidate	
	BX Scl	23:43:54.454 -28:18:34.50	A	13.82	13.56			SB*,SX*+cC* hybrid: candidate	
	BY Scl	23:51:32.250 -25:45:46.53	A0	14.05	13.85			SB*,SX*+cC* hybrid: candidate	
RR Lyrae	* RW Ari	02:16:03 +17:31:59	B8	12.12	12.10			EB unconfirmed	[496, 494, 73]
	* OGLE J052218.07-692827.4	05:22:18 -69:28:27		18.6	18.87	8.923	0.5649	disproved not pulsating EB	[174, 358]
	* TU UMa	11:29:48 +30:04:02	F2 +	9.3–10.2		23 yr	0.558	RRab, probably binary	[485]
	OGLE-BLG-RRLYR-02792	17:47:38 -35:31:07	_	I=15.734		15.2447	0.6275	first RR Lyr in EB+SB2,detached;0.26M $_{\odot}$	[421, 345]
	WW Scl	00:06:01.948 -36:54:15.14	A0	13.2	13.9			SB*,RR* – candidate	
	CD Scl	00:06:20.828 -35:17:12.59	A0	13.73	14.13			SB*,RR* - candidate	
	RX Cet	00:33:38.282 -15:29:14.79	A7	11.2	11.7			SB*,RR* - candidate	
RR Lyrae	2MASS J00445307-2442392	00:44:53.08 -24:42:39.3	A	13.67	13.5			SB*,RR* – candidate	

Table 2—Continued

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	$P_{\rm orb}$	P_{pul}	Comments	Reference
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
	WX Scl	00:49:29.098	-27:23:14.19	A3	13.1	13.8			SB*,RR* – candidate	
	UV Scl	00:55:58.59	-26:22:59.5		13.50	13.80			SB*,RR* – candidate	
	WY Scl	01:00:27.77	-28:12:20.5	A	12.4	13.500			SB*,RR* – candidate	
	RU Cet	01:00:40.303	-15:57:27.64	A5	11.90	12.02			SB*,RR* – candidate	
	AE Scl	01:07:25.813	-32:18:35.08	sd?F0	12.44	12.86			SB*,RR* – candidate	
	VX Scl	01:35:23.663	-35:07:42.59	A2	12.01	12.22			SB*,RR* – candidate	
	CU Scl	01:42:26.369	-30:27:36.74	A0	12.28	12.29			SB*,RR* – candidate	
	SV Scl	01:44:59.662	-30:03:33.39	A0	11.6	11.6			SB*,RR* – candidate	
	OGLE LMC-RRLYR-2863	04:59:36.06	-70:35:40.9		18.97				EB*,RR* – candidate	
	OGLE LMC-RRLYR-11576	05:19:48.66	-68:06:54.0		19.22				EB*,RR* – candidate	
	OGLE J052144.42-705729.8	05:21:44.30	-70:57:29.5		19.48	19.82			EB*,RR* – candidate	
	OGLE LMC-RRLYR-13574	05:23:11.17	-68:28:44.7		19.14				EB*,RR* – candidate	
	UU Dor	05:45:07.683	-69:52:15.29		14.25	14.2			EB*,RR* – candidate	
	SZ Lyn	08:09:35.748	+44:28:17.61	F2	9.08	9.73			SB*,RR+DSCT hybrid – candidate	
	AG Cnc	08:51:25.305	+12:02:56.35			14.2			SB*,RS*,RR* – candidate	
	FT UMa	08:54:30.328	+51:14:40.35	F0	9.20	9.64			EB+SB,RR* – candidate	
	RR LMi	11:00:15.121	+29:19:14.52	A		13.5			EB*,RR* – candidate	
	GL Mus	11:38:58.87	-74:28:08.4			15.1			EB*,RR* – candidate	
	DE Cha	11:46:35.63	-76:35:14.8			14.5			EB*,RR* – candidate	
	2MASS J13244044-4745225	13:24:40.44	-47:45:22.5		17.45	17.700			EB*,RR* – candidate	
	NGC 5139 WSB V155	13:26:13.17	-47:24:04.5		16.10				EB*,RR* – candidate	
	V814 Cen	13:27:44.02	-47:26:09.8	K2.5	14.295	14.271			SB*,RR* – candidate	
	NGC 5139 WSB V53	13:28:54.73	-47:30:21.1		19.41				EB*,RR* – candidate	
	NN Vir	14:19:37.741	+05:53:46.65	F2	7.63	8.02			EW*,SB*,RR* – candidate	
	DD Boo	14:51:20.07	+23:32:30.0		12.8				EB*,RR* – candidate	
	TYC 2576-1282-1	16:00:58.471	+34:18:54.32		13.16	13.12			EB*,RR*,double – candidate	
	BX Dra	16:06:17.370	+62:45:46.10	A3	10.62	11.00			SB*,RR* – candidate	
	LQ Nor	16:33:39.31	-56:12:29.6			12.9			EB*,RR* – candidate	
	V719 Her	17:09:52.584	+42:56:07.98		12.344	12.5			EB*,RR*,double - candidate	
	V1844 Oph	17:19:03.12				16.4			EB*,RR* – candidate	
	OGLE BLG-RRLYR-2792	17:47:38.21	-35:31:07.1		17.079				EB*,RR* – candidate	
	V4584 Sgr	18:08:55.24	-32:30:46.3		16.254	16.8			EW*,RR* – candidate	
	[BB97c] E2	18:10:15.68	-31:46:41.7						EB*,RR* – candidate	
RR Lyrae	V4623 Sgr	18:11:39.34				15.9			EA*,RR* – candidate	

Table 2—Continued

Type of	Binary or	RA	DEC	Sp.(A+B)	$\langle V \rangle$	$\langle B \rangle$	P_{orb}	P_{pul}	Comments	References
Pulsators	Multiple	hh:mm:ss	°:′:″		(mag)	(mag)	(day)	(day)		
	HI Dra	18:33:24.361	+58:42:23.36	F8	9.01	9.30			SB*,RR*,double – candidate	
	HN Dra	18:44:53.133	+57:05:17.16	F2	8.07	8.45			SB*,RR* – candidate	
	2MASS J18451772+4240120	18:45:17.727	+42:40:12.05		13.213				EB*,RR* – candidate	
	2MASS J19100386+5033239	19:10:03.870	+50:33:23.91		13.664				EW*,RR* - candidate	
	KIC 3104113	19:12:09.521	+38:17:38.86						EW*,RR* – candidate	
	V400 Lyr	19:13:52.65	+38:06:54.7			13.5			EB*,RR* – candidate	
	V894 Cyg	19:33:00.910	+46:14:22.93		12.794	11.9			EB*,RR*-candidate	
	V1269 Aq1	19:36:40.122	+00:53:38.11		11.87	12.56			EB*,RR* – candidate	
	KIC 9350889	19:40:22.025	+45:50:34.15						EW*,RR* - candidate	
	2MASS J19471339+4323077	19:47:13.397	+43:23:07.71		J=14.151	H=13.89			EW*,RR* – candidate	
	V997 Cyg	19:48:05.077	+52:51:16.25			14.265			EW*,RR* - candidate	
	V1464 Aql	19:50:15.473	-08:36:06.26	A2	8.68	8.94			SB*,RR*-candidate	
	2MASS J19560480+4713138	19:56:04.802	+47:13:13.86		11.987				EW*,RR* – candidate	
	KIC 8265951	20:05:23.67	+44:11:16.1		12.515	12.91			EW*,RR* - candidate	
	DE Oct	20:19:19.162	-76:07:35.54	A9IV	9.13	9.48			SB*,RR*,double-candidate	
	SU Equ	21:25:36.972	+09:41:35.78	A8		16.1			EW*,RR* - candidate	
	BO Gru	23:06:58.63	-43:54:38.5		12.66	12.1			EB*,RR* - candidate	
	V351 Peg	23:25:25.188	+15:41:19.14	A9III	8.04	8.33			EW+SB*,RR*-candidate	
	CN Scl	23:40:22.913	-38:18:58.09	A7:	13.2	13.7			SB*,RR*-candidate	
	TW Scl	23:54:41.65	-33:28:52.5	A7	12.5	13.5			SB*,RR* – candidate	
	TX Scl	23:55:22.257	-26:18:07.15	F0	12.14	12.89			SB*,RR* – candidate	
Wolf-Rayet stars	HD 5980	00:59:26	-72:09:54	WN3 + OB	11.5	11.28			triple, 3rd object is also a binary	[133]
SMC WR/LBV	WR 104	18:02:04	-23:37:41	WCv + OB	13.54		220		WR + OB binary	[466]
	MWC 314	19:21:34	+14:52:57	B3Ibe +	9.89	11.3			=IRAS 19192+1447,WR + OB binary	[495]
HADS	UNSW-V-500	13:10:18	-45:09:13	\sim A6 + \sim K6	~12.2		5.35048	0.0734	oEA, semi-detached, first overtone	[58]
									=ASAS 131018-4509.2	
	GSC 01374-01131	07:47:22.45	+22:04:13.9		14.04					[221]
BY Draconis	SV Cam	06:41:19	+82:16:02	G5V	9.37	10.02			RS CVn-type EB: polar spots	[199, 209, 269]
non-classified	WDS 12483-6708	12:48:17	-67:07:52	_						[407]
	HD 187091	19:46:15.5	+43:56:51.3	A0 +	8.38	8.51	41.805	0.4645	KOI-54,tidally-excited pulsations	[489, 143]
	TYC 5887-1085-1	03:52:21.955	-21:51:20.09		11.65	12.62			EA*,Pu*: candidate	Pu*=pulsating variable st
	TYC 7243-1211-1	12:00:20.526	-36:53:54.92		13.08	12.83			EA*,Pu*: candidate	
	V1289 Cen	13:49:09.215	-47:46:33.73	F5	10.54	10.87			EA*,Pu*: candidate	
non-classified	V1119 Her	16:40:22.415	+06:07:29.71	G0	10.070	10.36			$EB(\beta)$,Pu*: candidate	

Table 2—Continued

Type of Pulsators	Binary or Multiple	RA hh:mm:ss	DEC °: ': "	Sp.(A+B)	$\langle V \rangle$ (mag)	$\langle B \rangle$ (mag)	P _{orb} (day)	$P_{ m pul}$ (day)	Comments	References
	2MASS J16580027-5951065	16:58:00.28	-59:51:06.6			17.5			EW*,Pu*: candidate	
	2MASS J17050043-5930427	17:05:00.44	-59:30:42.8			13.7			EW*,Pu*: candidate	
	V817 Ara	17:09:26.003	-57:44:41.50			14.9			$EB(\beta)$,Pu*: candidate	
	V938 Oph	17:52:46.54	+02:48:50.2			14.5			EW*,Pu*: candidate	
	V866 Aql	18:49:25.0	-01:06:20			14.6			EA*,Pu*: candidate	
	TYC 3139-1857-1	19:39:43.167	+40:08:49.28		11.71	12.02			EW*,Pu*: candidate	
	TYC 3140-582-1	19:49:04.758	+40:24:36.60	F4.5IV	12.50	12.55			EW*,Pu*: candidate	

^aCandidates are extracted from Simbad database without literature check. There are no lines between candidates entries.

^bReferences numbers are accordingly linked to their entries in the list of references at the end of the paper.

^cCheck updates of this table on-line at: http://www.chjaa.org/COB/. You are welcome to reporting any mistakes/typos as well as new members of this category of oscillating binaries to the author at aiying@nao.cas.cn.

Table A.2 435 Identified Algol-type Eclipsing Binaries (web version: http://www.chjaa.org/COB/).

No.	Stars	Sp. Type	RA (2000)	DEC(2000)	$\langle V \rangle$	Min.I _{HJD}	D . (d)
1							P _{orb} (d)
	DM Peg TW And	A8	00:00:07.5 00:03:18.2	+18:44:17.1	10.80	2425853.4700	2.5890
2		F0V:		+32:50:45.1	9.08	2443790.4490 2417983.4300	4.1228
3	SX Cas	G6	00:10:42.1	+54:53:29.4	8.96		36.5668
4	GT Cas	A0	00:13:29.4	+58:16:58.0	11.90	2427341.4250	2.9898
5	TV Cas	B9V	00:19:18.7	+59:08:20.6	7.22	2443043.6265	1.8126
6	FS Cas	F2	00:24:44.2	+57:18:37.0	13.90	2428038.5400	3.0809
7	V380 Cas	A0	00:31:27.2	+73:43:27.0	10.40	2425645.5050	1.3573
8	UU And	F5	00:43:45.1	+30:56:20.0	11.20	2441650.3400	1.4863
9	Y Hyi	A6V	00:45:50.7	-78:49:16.8	10.40	2425481.5000	3.5360
10	OR Cas	F3	00:48:00.7	+60:51:39.0	11.40	2444210.3890	1.2457
11	V Tuc	A0/A1IV	00:51:46.6	-71:59:53.0	10.60	2436139.1420	0.8709
12	KR Cas	A0	00:54:01.9	+54:30:58.0	9.80	2415038.2290	4.9043
13	SX Psc	F1	00:57:35.2	+12:18:36.0	11.20	2445992.2890	0.8259
14	U Cep	B8V	01:02:18.3	+81:52:32.1	6.86	2444541.6031	2.4930
15	CO And	F8	01:11:24.8	+46:57:49.5	11.10	2426985.5100	1.8277
16	GG Cas	B5	01:16:12.6	+56:19:43.0	9.94	2441054.9335	3.7587
17	V Tri	A2:	01:31:47.1	+30:22:01.8	10.70	2424474.3050	0.5852
18	IZ Per	B8	01:32:05.5	+54:01:08.3	7.80	2444577.5874	3.6877
19	MN Cas	A0V	01:42:02.9	+54:57:37.0	10.10	2442326.4699	1.9169
20	V436 Per	B1.5V	01:51:59.3	+55:08:50.7	5.45	2443562.8530	25.9359
21	BZ Cas	A0	01:53:42.8	+62:57:33.0	11.40	2429497.3160	2.1264
22	TX Cet	A2	01:56:07.2	-00:42:56.0	10.43	2443082.6343	0.7408
23	XZ And	A4IV	01:56:51.5	+42:06:02.2	9.56	2423977.1915	1.3573
24	X Tri	A7V	02:00:33.7	+27:53:19.3	8.55	2442502.7210	0.9715
25	CP And	A5	02:12:51.2	+45:37:51.8	11.40	2427718.5180	3.6089
26	RV Tri	A2:	02:13:18.2	+37:01:01.7	11.50	2446033.3080	0.7537
27	RW Cet	A5	02:15:21.6	-12:12:34.0	10.43	2442229.3883	0.9752
28	SU For	A2IV	02:21:36.5	-37:12:46.0	9.84	2444891.6639	2.4347
29	DM Per	B6V	02:25:58.0	+56:06:10.0	7.96	2441920.4543	2.7277
30	AB Cas	A3Vv	02:37:31.6	+71:18:16.1	10.21	2442714.4600	1.3669
31	Z Per	A0	02:40:03.2	+42:11:57.6	9.67	2445659.2450	3.0563
32	DO Cas	A2II	02:41:24.2	+60:33:11.8	8.39	2433926.4580	0.6847
33	IT Per	A1	02:43:20.0	+43:43:24.0	9.90	2429382.9420	1.5337
34	RY Per	B8V	02:45:42.1	+48:08:37.9	8.49	2427070.7080	6.8636
35	TW Cas	A0V	02:45:54.8	+65:43:35.1	8.32	2442008.3873	1.4283
36	RS Ari	F8IV	02:46:14.1	+27:52:39.0	10.70	2452507.4400	8.8032
37	SS Cet	A2	02:48:36.3	+01:48:27.0	9.40	2442451.3290	2.9740
38	RZ Cas	A3Vv	02:48:55.5	+69:38:03.1	6.28	2443200.3100	1.1952
39	TU Cet	K2	02:59:20.3	+03:17:18.0	10.80	2428507.2700	4.3912
40	ST Per	A3V	03:00:05.7	+39:11:25.1	9.61	2442436.5880	2.6483
41	RX Cas	G3III	03:07:45.7	+67:34:38.6	8.64	2416250.9100	32.3121
42	β Per	B8V	03:08:10.1	+40:57:20.3	2.08	2445641.5135	2.8673
43	AY Per	B9	03:10:25.1	+50:55:54.3	9.80	2427152.2500	11.7766
44	LX Per	G5IV	03:13:22.3	+48:06:31.9	8.10	2427033.1200	8.0382
45	RT Per	F2V	03:23:40.4	+46:34:35.6	10.60	2433376.0583	0.8494
46	AS Eri	A1V	03:32:25.1	-03:18:47.7	8.29	2428538.0660	2.6642
47	AB Per	A5	03:37:45.2	+40:45:49.3	9.66	2422987.2070	7.1603
48	WY Per	A0	03:38:24.5	+42:40:40.0	11.50	2446002.3600	3.3272
49	CD Eri	A0	03:47:46.0	-08:36:41.4	9.51	2429910.5670	2.8767
50	RY Eri	G0	03:58:58.1	-17:13:46.6	10.30	2425621.5800	4.9793
	-						

Table A.2 — Continued

	tinued	~	D. J. (2000)		(* *)	3.6. 7	
No.	Stars	Sp. Type	RA (2000)	DEC(2000)	$\langle V \rangle$	Min.I _{HJD}	P _{orb} (d)
51	λ Tau	B3V	04:00:40.8	+12:29:25.0	3.34	2421506.8506	3.9529
52	RW Tau	B8Ve	04:03:54.3	+28:07:34.0	8.00	2445684.2040	2.7688
53	XZ Per	G1	04:09:27.8	+46:33:57.0	11.40	2443507.4774	1.1516
54	RV Per	A0	04:10:38.0	+34:15:54.9	10.23	2442046.9210	1.9735
55	BZ Eri	F2	04:12:12.6	-06:01:17.6	9.00	2425558.4450	0.6642
56	VX Hyi	F4	04:14:56.1	-73:22:02.0	11.90	2425481.5000	3.5360
57	BN Tau	_	04:15:28.3	+30:40:59.3	10.17	2445236.5840	4.2543
58	RW Per	A5Ve	04:20:16.8	+42:18:51.9	9.77	2436701.0854	14.1989
59	TZ Eri	A5	04:21:40.3	-06:01:09.4	9.80	2442414.2630	2.6061
60	AO Eri	A2	04:32:00.9	-17:44:47.7	10.30	2429631.1500	9.2982
61	AC Tau	A8	04:37:06.4	+01:40:23.0	10.30	2445636.5900	2.0434
62	HU Tau	B8V	04:38:15.8	+20:41:05.1	5.86	2441275.3219	2.0563
63	ET Ori	G3	04:55:34.3	+01:22:49.6	10.13	2426684.2830	0.9509
64	AQ Tau	A5	04:55:57.5	+27:53:12.0	12.00	2429651.7740	1.2159
65	AM Aur	G5	04:56:37.0	+32:12:11.0	9.72	2439732.6000	14.6172
66	EQ Ori	A0	04:57:13.6	-03:35:59.0	10.20	2431438.7430	1.7461
67	RV Pic	A1V	04:57:29.7	-52:08:45.7	9.43	2441286.7570	3.9718
68	RS Cep	A0V	05:06:03.2	+80:14:52.3	10.20	2440862.6770	12.4201
69	SX Aur	B1:V:ne	05:11:42.9	+42:09:55.3	8.39	2440162.3355	1.2101
70	IM Aur	B7V	05:15:29.8	+46:24:21.5	7.96	2440515.5465	1.2473
71	XZ Cam	A0	05:17:12.7	+75:50:05.3	11.40	2432468.5030	11.0146
72	RY Aur	B9	05:18:24.5	+38:20:38.0	11.70	2438289.5630	2.7254
73	X Pic	A2	05:04:56.1	-53:08:29.0	10.70	2429112.1690	0.8619
74	FK Ori	A2	05:05:33.3	+09:20:01.0	11.80	2445680.5120	1.9475
75	FL Ori	A3V	05:07:44.5	-02:44:56.0	11.40	2445347.4640	1.5510
76	FM Ori	A5	05:08:54.4	+10:33:34.2	10.30	2425859.5880	22.1451
77	Z Lep	F0	05:10:09.3	-14:52:18.0	11.00	2427424.3110	0.9937
78	FH Ori	A2	05:23:16.6	+04:16:45.0	10.50	2425900.3870	2.1512
79	FO Ori	A3	05:28:09.7	+03:37:23.4	9.50	2431820.6270	18.8006
80	EY Ori	A7V:	05:31:18.4	-05:42:13.5	9.55	2443527.4660	16.7878
81	FF Ori	A1	05:35:11.3	+02:56:54.6	10.20	2432216.3670	1.8105
82	BM Ori	B0V	05:35:16.4	-05:23:06.0	7.90	2440265.3430	6.4705
83	OS Ori	A0	05:36:20.0	+08:49:55.0	11.50	2445386.3490	2.3835
84	ET Tau	B8	05:37:40.8	+27:16:16.4	8.68	2429362.4760	5.9969
85	GQ Tau	B9	05:41:35.1	+26:00:21.0	11.20	2436493.5160	1.5318
86	RZ Aur	A0	05:49:21.9	+31:42:11.0	11.90	2442447.5210	3.0106
87	SV Tau	В9	05:52:08.2	+28:06:40.0	9.55	2434423.7491	2.1669
88	AM Tau	B3V	05:52:19.2	+16:17:15.0	10.40	2445253.4170	2.0439
89	Z Ori	B4V	05:55:50.9	+13:41:42.0	9.90	2425190.7200	5.2033
90	RS Lep	A0V	05:59:18.4	-20:13:25.1	9.58	2436191.1480	1.2885
91	DN Ori	A2e	06:00:28.4	+10:13:05.0	9.21	2435577.1848	12.9665
92	SV Gem	В3	06:00:41.0	+24:28:26.0	8.34	2418662.4880	4.0061
93	RW Gem	B6V	06:01:28.1	+23:08:28.0	9.61	2418302.6550	2.8655
94	CP Ori	G0	06:07:01.8	+17:41:58.2	10.07	2436130.4410	5.3205
95	δ Pic	B3III+O9V	06:10:17.9	-54:58:07.2	4.65	2441695.3360	1.6725
96	RT CMa	F8	06:13:13.5	-17:39:16.0	11.40	2426625.5700	1.2938
97	BO Gem	A2	06:25:02.3	+17:58:17.0	11.30	2437027.2690	4.0686
98	AY Gem	A0	06:31:56.2	+19:40:12.0	10.80	2436631.3260	3.0536
99	BD Gem	A0	06:34:35.1	+15:33:05.0	11.90	2427414.5320	1.6167
100	RW Mon	B8V+G5IV	06:34:45.9	+08:49:32.2	9.29	2433680.4481	1.9061
100	20,7 171011	20110011	00.01.10.7	1 00.17.02.2	J.=J	55000.7701	1.7001

Table A.2 — Continued

	unuea	g	D. I. (2000)	DEG(2000)	/T.T\	1.6° T	D (1)
No.	Stars	Sp. Type	RA (2000)	DEC(2000)	$\langle V \rangle$	Min.I _{HJD}	$P_{\rm orb}$ (d)
101	AK Aur	A1	06:39:17.3	+31:36:46.0	10.55	2428126.4810	2.3814
102	AE Gem	B9	06:47:36.9	+28:55:16.0	10.50	2435893.2810	1.4568
103	RX Gem	A2	06:50:11.6	+33:14:21.0	9.21	2440555.7820	12.2087
104	AF Gem	A0	06:50:39.7	+21:21:56.0	10.54	2427162.3095	1.2435
105	RU Mon	B9pv	06:54:12.3	-07:35:45.0	10.33	2441743.2900	3.5846
106	AU Mon	B5	06:54:54.7	-01:22:32.9	8.17	2442801.3752	11.1130
107	V745 Mon	B8	06:55:11.9	-09:19:16.2	7.69	2448502.7700	3.9744
108	AL Gem	F6V	06:57:38.6	+20:53:33.0	9.80	2426324.4467	1.3913
109	HO Mon	A5	07:10:17.2	+00:25:26.0	11.40	2429999.3900	7.8945
110	AQ Mon	A0	07:14:17.7	-07:13:45.1	9.79	2425620.3920	2.5456
111	AG CMa	F4	07:15:47.7	-26:09:57.0	13.90	2428059.3550	2.6726
112	SS Cam	G1III:	07:16:24.7	+73:19:57.1	10.14	2442855.6370	4.8242
113	R CMa	F2III/IV	07:19:28.1	-16:23:42.0	5.78	2420213.1330	1.1359
114	AR Mon	K0II	07:20:48.4	-05:15:35.7	8.75	2426606.4080	21.2091
115	AS Mon	A2:	07:22:25.0	-08:51:41.0	10.70	2426721.5690	1.8365
116	RY Gem	A2Ve	07:27:24.2	+15:39:35.0	8.71	2439732.6328	9.3006
117	AV Mon	A0	07:28:16.1	-04:36:50.5	10.80	2426709.1720	6.9474
118	YY Pup	B8V	07:35:52.3	-19:23:31.2	9.00	2424832.5400	27.9549
119	TX Gem	A2V	07:36:01.3	+16:54:29.0	10.00	2419848.4120	2.8000
120	AK CMi	A0	07:40:15.9	+03:57:12.0	10.10	2449396.7070	0.5659
121	Y Cam	A7V	07:41:11.0	+76:04:26.1	10.54	2448502.2480	3.3055
122	HY Mon	F8	07:44:51.0	-07:32:49.4	11.50	2425621.5170	7.2827
123	RR Pup	A0	07:46:53.1	-41:22:27.0	10.34	2429115.5800	6.4296
124	ZZ Pup	A4III	07:48:26.0	-19:17:33.9	9.07	2426783.1070	6.3381
125	AW Mon	A2	07:48:43.8	-10:26:41.7	10.50	2435932.9000	20.8200
126	V397 Pup	B9V	07:49:14.7	-35:14:35.9	5.91	2448502.1900	3.0046
127	TU Mon	B2Vn	07:53:19.8	-03:02:31.2	9.00	2434068.1230	5.0490
128	ZZ Cnc	A3	07:57:06.8	+10:59:04.0	9.40	2426770.3500	25.5950
129	FW Mon	A2	07:57:38.4	-07:11:22.0	9.40	2427562.2200	3.8736
130	V Pup	B2II/IIIn	07:58:14.4	-49:14:41.7	4.35	2445367.6063	1.4545
131	BO Mon	A2	07:59:49.2	-03:28:15.0	10.00	2443507.5970	2.2252
132	AA Pup	F3IV/V	08:01:36.1	-24:43:03.6	9.44	2425652.5900	7.0671
133	V635 Mon	F5	08:01:44.5		7.40	2429658.3750	1.8078
134	XY Pup	A3	08:09:34.7	-11:59:08.5	9.10	2426417.8050	14.7783
135	XZ Pup	B9.5IV/V	08:13:31.1	-23:57:11.4	7.80	2442412.1946	2.1924
136	SX Lyn	A2	08:13:58.1	+57:15:54.0	10.00	2445439.4240	2.0225
137	TY Lyn	A0	08:18:23.6	+46:16:07.0	10.00	2426024.3250	4.3317
138	AI Hya	F2	08:18:46.0	+00:16:52.0	9.35	2441726.3872	8.2897
139	SW Pup	A0V	08:18:50.9	-42:45:11.3	8.87	2419282.0680	2.7473
140	DE Hya	A2	08:27:47.1	+05:38:38.0	11.00	2431149.1510	4.2277
141	SY Hya	A0:	08:29:51.7	-09:23:57.5	10.70	2432216.3560	3.4029
142	VW Hya	B9III/IV	08:33:51.0	-07.23.37.3 -14:40:07.0	10.70	2426421.4300	2.6964
143	RU Cnc	F9V:	08:37:30.1	+23:33:41.6	10.14	2422650.7160	10.1729
143	RZ Cnc	K2III	08:39:08.5	+23.33.41.6	8.67	2412880.4340	21.6431
144	RY Cnc	F2	08:39:55.3	+31.47.44.0 +19:49:20.0		2442458.5470	
143	S Cnc	B9V	08:43:56.2	+19:49:20.0 +19:02:03.0	12.99 8.30	2442438.3470	1.0929
							9.4846
147	TU Cnc	A2	08:52:16.5	+09:05:18.0	9.90	2442050.7344	5.5615
148	AS Vel	A6V	08:28:18.2	-38:58:19.2	8.51	2426454.4400	1.5579
149	EQ Vel	B7	08:43:46.0	-45:05:11.0	11.00	2426507.2858	1.0803
150	AC UMa	A2	08:55:54.0	+64:58:12.0	10.30	2446072.4660	6.8549

Table A.2 — Continued

	Store	Cn. Truns	D.A. (2000)	DEC(2000)	/17\	Min I	D (d)
No.	Stars CW Vel	Sp. Type B5III/IV	RA (2000)	DEC(2000)	9.04	Min.I _{HJD} 2444248.7584	$P_{\rm orb}$ (d)
151			09:02:21.3 09:05:41.2	-52:50:28.9			2.3609
152	RX Hya	A2		-08:15:39.2	8.90	2443447.7000	2.2816
153	WW Cnc	A8	09:09:46.5	+30:26:46.0	10.50	2427133.4590	1.1160
154	DN Vel	A0III/IV	09:19:37.7	-45:40:47.8	9.38	2428450.6900	12.8977
155	VZ Leo	A5	09:26:49.2	+16:36:15.0	11.80	2431164.3160	1.0899
156	RX Vel	A2	09:27:32.6	-51:04:15.5	9.68	2429243.2720	3.1118
157	TY Hya	A0	09:29:02.8	+05:34:32.0	10.50	2434478.4640	4.6611
158	KQ Car	B8III/IV	09:29:19.5	-60:51:22.0	10.20	2430868.2250	2.3184
159	XZ UMa	A5	09:31:24.5	+49:28:03.0	10.10	2446168.4260	1.2223
160	S Vel	A5m	09:33:13.2	-45:12:31.0	7.79	2427612.3560	5.9336
161	FU Vel	A0	09:33:50.6	-55:55:06.1	9.80	2428655.2250	2.4468
162	Y Leo	A3V	09:36:51.8	+26:13:57.7	10.09	2445436.4510	1.6861
163	VV UMa	A2V	09:38:06.7	+56:01:07.2	10.13	2445818.3365	0.6874
164	RT Leo	A0	09:45:22.3	+19:54:21.0	10.30	2423844.0370	7.4479
165	UU Leo	A2	09:47:50.2	+12:59:09.0	11.40	2445397.4560	1.6797
166	T LMi	A0	09:48:28.5	+33:17:19.6	10.85	2445397.3680	3.0199
167	DX Vel	A5	09:51:46.0	-50:53:23.7	10.08	2429037.2690	1.1173
168	VY Hya	A8/A9V	10:20:16.0	-23:09:05.1	9.00	2423535.6010	2.0012
169	TT Vel	A5	10:20:16.5	-46:14:04.4	10.10	2428633.3670	2.1084
170	AF UMa	A0	10:24:07.8	+64:07:50.5	10.05	2426796.3600	5.2576
171	EX Car	G0	10:24:59.6	-63:38:11.0	11.14	2423997.6410	1.3964
172	SW Car	A0	10:26:57.1	-58:16:34.0	10.80	2428947.6430	8.1659
173	ZZ UMa	F8	10:30:03.2	+61:48:41.4	10.10	2435951.4840	2.2993
174	TX Leo	A2V	10:35:02.2	+08:39:01.6	5.66	2438844.3220	2.4451
175	ZZ Vel	A0V	10:37:54.1	-55:56:37.3	9.61	2423700.4200	2.8762
176	RW UMa	F9V:	11:40:46.4	+51:59:53.5	10.16	2445823.4120	7.3282
177	TX UMa	B8V	10:45:20.5	+45:33:58.7	6.95	2444998.1475	3.0632
178	CV Car	A2	10:45:44.4	-57:55:00.0	11.10	2425759.7300	14.4149
179	CX Car	A0	10:57:35.2	-58:33:13.0	10.00	2423909.9140	3.3472
180	FP Car	B5III	11:04:35.9	-62:34:21.0	10.10	2421725.0480	176.0270
181	DE Car	A0	11:06:13.7	-60:47:33.0	11.20	2423891.3430	3.7131
182	GU Car	A2	11:06:52.3	-57:14:03.0	11.10	2428692.4100	3.4906
183	TT Hya	A1III	11:13:12.5	-26:27:54.3	7.30	2443918.1060	6.9534
184	SU Cen	F2V	11:11:09.3	-47:50:37.3	8.98	2429253.8300	5.3543
185	MN Cen	B2/B3V	11:28:03.0	-61:24:41.2	8.60	2424918.5800	3.4891
186	BF Cen	B8	11:36:17.0	-61:28:01.3	8.42	2424262.2800	3.6933
187	V646 Cen	B8IV	11:36:58.8	-53:12:35.4	8.75	2443916.1946	2.2466
188	MQ Cen	B5	11:44:15.6	-61:42:59.1	9.70	2429113.3870	3.6870
189	Z Dra	A5V	11:45:29.2	+72:14:59.0	10.67	2443499.7360	1.3575
190	VZ Cen	B2III/IV	11:52:28.8	-61:31:26.9	8.34	2429125.5190	4.9288
191	UV Mus	A2	11:54:07.4	-66:12:19.2	9.94	2423943.3380	2.0033
192	AE Cru	B7III	11:58:34.8	-61:10:01.0	8.97	2430399.1140	3.4781
193	DZ Mus	B8/B9IV/V	11:59:53.5	-69:53:04.8	8.82	2418093.7280	3.2476
194	SW Cen	B9V	12:17:47.4	-49:44:04.1	9.83	2429236.5910	5.2195
195	LP Cen	A9V	12:22:16.9	-41:46:10.0	8.50	2424262.2800	3.6933
196	UY Vir	A9IV	13:01:53.4	-19:46:28.4	8.02	2430020.6670	1.9945
197	CT Cen	A3	13:10:43.0	-58:16:38.7	9.49	2425438.2060	16.3940
198	SS Cen	B8V	13:13:38.5	-64:09:04.0	9.34	2429552.4750	2.4787
199	UW Vir	A8IV/V	13:15:20.8	-17:28:16.7	8.84	2444345.4130	1.8108
200	V379 Cen	B5Vn	13:25 21.3	-59:46:53.3	8.82	2428402.2300	1.8747

Table A.2 — Continued

	G	C T	D. J. (2000)	DEG(2000)	/T 7\	1.6: T	D (1)
No.	Stars	Sp. Type	RA (2000)	DEC(2000)	$\langle V \rangle$	Min.I _{HJD}	P _{orb} (d)
201	BD Vir	A8V	13:26:40.6	-16:06:16.4	9.96	2442538.4130	2.5485
202	V380 Cen	B4V	13:27:23.4	-61:52:26.3	9.70	2427807.6010	1.0872
203	V402 Cen	A0	13:28:23.3	-63:35:02.4	9.30	2428330.3830	3.7198
204	RU UMi	A2	13:38:56.6	+69:48:12.0	10.00	2441596.3365	0.5249
205	SY Cen	A5	13:41:51.6	-61:46:10.1	10.21	2427892.6234	6.6314
206	T Cir	B7II/III	13:43:24.0	-65:28:31.8	9.69	2429095.5860	3.2984
207	SX Hya	A5IV/V	13:44:37.4	-26:46:48.3	8.60	2444344.4510	2.8957
208	SZ Cen	A6III	13:50:35.1	-58:29:57.0	8.30	2441386.7466	4.1080
209	DL Vir	A1V	13:52:38.8	-18:42:32.5	7.07	2438796.5250	1.3155
210	DM Vir	F5	14:07:52.5	-11:09:07.5	8.80	2443583.8810	4.6694
211	V621 Cen	B8/B9II/III	14:02:49.5	-62:43:23.3	9.80	2428992.8300	3.6836
212	AT Cir	A5IV/Vs	14:03:38.3	-66:44:07.2	7.67	2415221.8170	3.2575
213	UW Boo	F2	14:20:59.2	+47:06:43.0	10.40	2452500.0434	1.0047
214	SU Boo	A4V	14:29:21.3	+32:08:10.0	11.96	2421071.3970	1.5612
215	RV Lib	G7IV	14:35:48.4	-18:02:11.4	9.19	2430887.2360	10.7222
216	DT Lup	A0V	14:36:35.8	-51:24:49.2	9.95	2427897.6290	1.4531
217	BW Boo	F0V	14:37:08.8	+35:55:47.1	7.16	2448501.6200	3.3328
218	BU Dra	F5	14:58:40.1	+56:45:07.0	10.40	2428656.5100	3.8284
219	δ Lib	B9.5V	15:00:58.4	-08:31:08.2	4.92	2442960.6994	2.3274
220	RR Nor	B9V	15:12:31.8	-55:18:50.0	9.60	2444433.5976	1.5138
221	TY UMi	F0	15:17:57.5	+83:51:34.1	7.79	2448500.2764	1.7248
222	U CrB	B7Vv	15:18:11.4	+31:38:49.5	7.81	2448501.3910	3.4525
223	CX Ser	F8	15:23:35.3	+02:35:17.0	12.30	2431213.4900	0.9973
224	TW Dra	A5	15:33:51.0	+63:54:26.0	7.41	2444136.2950	2.8068
225	EI Lib	A5	15:34:21.8	-23:00:03.1	9.54	2430869.3100	1.9869
226	RW CrB	A8Vv	15:39:15.2	+29:37:19.7	10.26	2448500.3490	0.7264
227	HH Nor	F0	15:43:30.1	-51:50:48.4	9.70	2427114.2350	8.5831
228	SS Lib	A8/A9II	15:49:05.1	-15:32:08.6	10.43	2441155.6600	1.4380
229	AO Ser	A2	15:58:18.4	+17:16:09.9	10.34	2434133.4640	0.8793
230	Z Nor	B3IV	16:04:57.1	-46:17:37.4	9.06	2443343.9897	2.5569
231	W UMi	A2V	16:08:27.4	+86:11:59.4	8.65	2443392.4794	1.7012
232	EQ TrA	F3V	16:10:00.0	-66:09:30.2	8.90	2441100.0060	2.7091
233	SW Oph	A0		-06.07.30.2 $-06:58:43.8$	9.39	2438957.3550	2.4460
234	CC Her	A0 A2	16:17:38.9	+08:56:02.8	9.65	2439668.3420	1.7340
235	RR TrA	B8	16:17:38.9	-62:44:14.8	10.36	2435629.3693	0.7131
			16:20:26.6	-02.44.14.8 +18:27:16.9		2442522.9320	
236	CT Her FN Her	A0 A8	16:25:13.4	+18.27.10.9	11.32 10.50	2428309.2940	1.7864
237	SY Ara			+11.18.00.0 $-54:45:09.0$	10.30		2.6913
238		A0	16:35:21.4			2425631.3770	1.8566
239	R Ara	B9IV/V	16:39:44.7	-56:59:39.8	6.56	2425818.0280	4.4251
240	AL Sco	F2	16:48:13.1	-32:56:42.3	11.01	2425086.1350	1.5322
241	μ Sco	B1.5Vp	16:51:52.2	-38:02:50.4 +52:41:54.0	2.89	2432001.0450	1.4463
242	AI Dra	A0V	16:56:18.2	+52:41:54.0	7.08	2443291.6270	1.1988
243	V359 Her	F0	16:56:28.7	+37:39:18.9	9.71	2443673.4320	1.7557
244	UU Oph	A1IV	16:57:22.7	-25:47:58.5	10.00	2420750.4890	4.3968
245	V594 Sco	F0	17:00:24.6	-41:42:39.2	10.60	2428720.4100	3.6329
246	V735 Oph	A0	17:07:49.0	+09:33:09.2	10.30	2426894.5170	3.2052
247	TU Her	A5	17:13:35.4	+30:42:36.0	10.38	2444061.4620	2.2670
248	FV Sco	B6V	17:13:45.0	-32:51:09.2	7.97	2448504.3800	5.7279
249	SZ Oph	A5	17:15:02.8	-08:03:27.5	10.70	2445485.4620	3.7085
250	μ Her	M7III	17:17:19.6	+33:06:00.4	4.73	2405830.0326	2.0510

Table A.2 — Continued

	minued				4		
No.	Stars	Sp. Type	RA (2000)	DEC(2000)	$\langle V \rangle$	$Min.I_{\mbox{HJD}}$	$P_{\rm orb}$ (d)
251	V441 Oph	A0	17:20:52.7	-17:20:05.3	11.60	2435663.8210	3.0585
252	DW Aps	B6III	17:23:30.0	-67:55:44.8	8.88	2439209.5020	2.3129
253	V535 Oph	A3	17:32:10.0	-29:25:56.0	11.30	2427959.5050	6.0553
254	RV Oph	A3V	17:34:34.9	+07:14:49.2	9.42	2423997.3833	3.6871
255	RW Ara	A1IV	17:34:49.2	-57:08:50.6	8.67	2441861.8801	4.3672
256	SZ Her	F0Vv	17:39:36.8	+32:56:46.6	9.95	2441864.3052	0.8181
257	V806 Oph	F8	17:40:56.0	-16:57:35.0	11.60	2434216.6700	15.4065
258	AK Ser	A5	17:42:04.4	-13:53:11.7	10.30	2446255.4620	1.9226
259	V496 Sco	F5	17:43:02.9	-32:22:15.0	11.50	2427299.3400	2.1926
260	BN Sgr	F3V	17:47:05.4	-28:08:59.6	9.11	2435370.4930	2.5197
261	UW Ara	A0V	17:47:34.5	-48:44:51.0	9.20	2419760.4100	3.2971
262	V393 Sco	B3III	17:48:47.6	-35:03:25.6	7.45	2448504.9700	7.7125
263	MX Her	F5	17:50:51.0	+50:02:47.0	11.40	2431657.4110	2.3477
264	V338 Her	F2V	17:53:12.7	+43:46:23.3	10.15	2443691.1230	1.3057
265	UX Her	A0V	17:54:07.9	+16:56:37.7	8.96	2439672.3785	1.5488
266	BS Sco	F8	17:55:04.4	-31:38:34.8	11.50	2439301.4680	7.6224
267	V913 Oph	A0	17:55:12.8	+14:08:34.0	11.50	2445414.6200	1.9173
268	V453 Sco	B0Ia	17:56:16.1	-32:28:30.0	6.36	2442218.7400	12.0060
269	V391 Oph	A1	17:58:09.2	+04:39:46.0	11.50	2445518.5460	2.8956
270	RW CrA	B9III	17:59:20.3	-37:52:52.6	9.41	2448501.4968	1.6836
271	WX Sgr	A2III/IV	17:59:24.2	-17:23:55.0	9.13	2445518.5420	2.1293
272	WY Sgr	B4III	18:00:58.7	-23:01:56.0	9.38	2428752.2200	4.6704
273	W Ser	G0/G1Iape	18:09:50.7	-15:33:00.3	8.72	2426625.4930	14.1549
274	XY Sgr	A0	18:11:05.4	-16:28:05.0	10.70	2419979.3730	2.0229
275	RS Sgr	B3V	18:17:36.3	-34:06:26.0	6.00	2420586.3870	2.4157
276	V501 Oph	A5	18:18:35.6	+14:13:42.8	10.90	2430911.3950	0.9680
277	TZ CrA	A1III/IV	18:18:48.3	-43:21:37.2	9.60	2436080.0350	0.6867
278	IS CrA	A2	18:19:37.9	-38:04:29.0	10.90	2431293.2140	3.2366
279	XZ Sgr	A2/A3IV:	18:22:06.8	-25:14:23.7	8.92	2441890.6201	3.2756
280	TZ Dra	A7V:	18:22:11.6	+47:34:08.0	9.60	2442966.4820	0.8660
281	RZ Dra	A6V	18:23:05.4	+58:54:13.0	10.21	2444177.5555	0.5509
282	RY Sct	B1IIIpe	18:25:31.5	-12:41:24.2	9.16	2443342.4200	11.1247
283	RZ Sct	B3Ib	18:26:33.5	-09:12:06.0		2419261.1025	15.1902
284	EW Lyr	F0	18:33:15.6	+37:45:12.8	11.20	2426499.6970	1.9487
285	V681 CrA	B9V	18:37:39.6	-42:57:19.7	7.63	2448500.7800	2.1639
286	DV Sgr	A0	18:39:36.3	-22:40:43.5	10.14	2431281.2150	1.8628
287	BO Her	A0 A7	18:40:30.1	-22.40.43.3 +24:55:42.8	10.14	2434193.4950	4.2728
288	RR Dra	A2	18:41:47.4	+24.33.42.8 +62:40:35.0	10.00	2444483.3910	2.8313
289	RV Tel	A2/A3III/IV	18:43:37.4	-51:37:49.5	10.30	2418641.1876	8.3281
290	RZ Oph	F3Ibe	18:45:46.4	+07:13:12.3	9.65	2442204.3900	261.9277
291	AC Sct	B9					
			18:46:01.6	-10:14:57.0	10.00	2428817.1430	4.7976
292	SX Sgr	A9V	18:46:05.3	-30:29:20.4	9.26	2444048.1610	4.1541
293	CX Dra	B2.5Ve	18:46:43.1	+52:59:17.0	5.68	- 2441997 4724	2 06/11
294	KO Aql	A0	18:47:10.7	+10:45:49.4	8.30	2441887.4724	2.8641
295	DH Her	A5	18:47:34.6	+22:50:45.8	10.01	2426575.4560	4.7792
296	V356 Sgr	B9III	18:47:52.3	-20:16:28.2	6.90	2433900.8270	8.8961
297	RS Sct	G0	18:49:11.3	-10:14:27.9	9.90	2444437.1658	0.6642
298	ZZ Sgr	A2III/IV	18:49:42.1	-34:40:59.5	9.70	2443344.9859	3.0835
299	AD Her	G5	18:50:00.3	+20:43:16.6	9.38	2439001.1348	9.7666
300	β Lyr	B7Ve	18:50:04.8	+33:21:45.6	3.37	2441539.5500	12.9138

Table A.2 — Continued

No. Stars Sp. Type		itiliucu						
BS Ber Belli Bis Bis 50.49.8 -24.43:12.0 8.50 2452856.3646 1.6374 303 BF Dra F8 Bis 50.59.3 +60.52:57.0 9.82 244727.63948 11.2111 305 U Sct A9 Bis Bis 27.2 -12.36:35.4 9.88 2444468.6658 0.9550 306 CT Sct B9 Bis Bis 24.21.6 -06:00:16.8 10.02 2428727.3740 4.9536 307 KP Aql A3 19:02:29.9 +15:48:01.1 9.70 2428727.3740 4.9536 308 FK Aql B9 19:04:18.6 +02:46:47.1 11.10 2437786.0790 2.6509 309 BL Tel FS FS 19:06:38.1 -51:25:03.2 7.09 2434692.6000 778.6000 310 FL Lyr GOV 19:12:04.9 +46:19:26.5 9.27 2438221.5525 2.1782 311 Y554 Sgr F8 19:14:01.7 +49:05:42.0 11.30 2426631.1480 8.5793 312 V474 Cyg F8 19:14:01.7 +49:05:42.0 11.30 2426631.1480 8.5793 313 BO Sgr AlIII/IV 19:14:14.9 -36:14:39.8 9.21 2422224.3780 8.0195 314 EG Sgr AO/A1IV: 19:14:23.8 -14:11:16.0 11.20 2427395.7710 2.4862 315 RV Lyr A5: 19:16:17.6 +32:25:11.0 11.50 2445526.4310 3.5991 316 YZ Aql A3 19:16:46.2 -00:36:17.1 10.50 2434222.6390 4.6723 317 V342 Aql A3I 19:17:03.5 -00:20:38.5 9.50 2433280.8570 4.4777 319 V409 Aql F5 19:17:58.5 -00:40:54.0 11.50 2425503.3850 2.0494 320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 241710.4114 3.3806 321 UZ Lyr A2 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 323 V753 Cyg F8 19:26:47.9 +50:08:43.0 7.46 244380.02600 4.9336 326 TT Lyr B2V 19:26:11.6 +20:59:12.0 10.20 243898.1530 0.9964 327 V2080 Cyg F5 19:26:47.9 +50:08:43.0 7.46 2444981.3780 1.7072 328 V415 Aql B9V 19:38:53.2 +28:16:44.0 9.30 244389.1980 0.9941 331 V343 Aql B9V 19:38:53.2 +28:16:44.0 9.30 243499.13780 1.7072 329 V909 Cyg A0 19:48:41.9 +31:30:20.8	No.	Stars	Sp. Type	RA (2000)	DEC(2000)	$\langle V \rangle$	$Min.I_{\mbox{HJD}}$	P_{orb} (d)
BF Dra	301	BC Her	A2	18:50:41.2	+12:29:46.0	11.80	2436483.4240	3.0873
BS Sct	302	HS Her	B6III	18:50:49.8	+24:43:12.0	8.50	2452856.3646	1.6374
305 U Sct A9 18:54:27.2 -12:36:35.4 9.88 2444468.6658 0.9550 306 CT Sct B9 18:54:21.6 -06:00:16.8 10.02 2428727.3740 49:336 307 KPAql B9 19:04:18.6 +02:46:47.1 11.10 2437786.0790 2.6509 309 BL Tel FSlab/lb 19:06:38.1 -51:25:03.2 7.09 2434692.6000 778.6000 310 FL Lyr GOV 19:12:04.9 +46:19:26.5 9.27 2438221.5525 2.1782 311 Y354 Sgr F8 19:14:01.7 +49:05:42.0 11.30 2426631.1480 8.5793 312 V474 Cyg F8 19:14:01.7 +49:05:42.0 11.30 2426631.1480 24:6588 313 BG Sgr AlIIII/V 19:14:14.9 -36:14:39.8 9.21 24222243780 8.0195 314 EG Sgr AlVAH 51:14:10.0 +10.50 2427395.7710 2.4862 317 V342 Aql AlII 19:1	303	BF Dra	F8	18:50:59.3	+69:52:57.0	9.82	2447276.3948	11.2111
CT Sct	304	BS Sct	A7	18:52:05.8	-06:14:37.0	11.00	2440148.6200	3.8210
307 KP Aql A3 19:02:29.9 +15:48:01.1 9.70 245:2500.5670 3.3675 308 FK Aql B9 19:04:18.6 +02:46:47.1 11.10 2437786.0790 2.6509 310 FL Lyr GOV 19:12:04.9 +46:19:26.5 9.27 24348221.5525 2.1782 311 V354 Sgr F8 19:13:23.4 -18:29:00.1 10.70 2431281.3400 8.5793 312 V474 Cyg F8 19:14:01.7 +49:05:42.0 11.30 2426631.1480 24.6588 313 BQ Sgr A1III/V 19:14:14.9 -36:14:39.8 9.21 2422224.3780 8.0195 314 EG Sgr A0/AIIV: 19:14:23.8 -14:11:16.0 11.20 2479395.7710 2.4862 315 RV Lyr A5: 19:16:17.6 +32:25:11.0 11.50 2434222.6390 4.6723 316 YZ Aql A3 19:17:03.5 +09:20:38.5 9.50 2439318.5810 3.3909 318 RS Vul	305	U Sct	A9	18:54:27.2	-12:36:35.4	9.88	2444468.6658	0.9550
308 FK AqI B9 19:04:18.6 +02:46:47.1 11.10 2437786.0790 2.6509 309 BL Tel F5lab/lb 19:06:38.1 -51:25:03.2 7.09 2434692.0000 778.6000 310 FL Lyr GOV 19:12:04.9 +46:19:26.5 9.27 2438221.5525 2.1782 311 V354 Sgr F8 19:13:23.4 -18:29:00.1 10.70 2431281.3400 8.5793 312 V474 Cyg F8 19:14:01.7 +49:05:42.0 11.30 2426631.1480 24.6588 313 BQ Sgr AIIII/IV 19:14:14.9 -36:14:39.8 9.21 2422224.3780 8.0195 315 RV Lyr A5: 19:16:17.6 +32:25:11.0 11.50 243525.64310 3.5991 316 YZ Aql A3 19:16:17.6 +32:25:11.0 11.50 2432226.390 4.6723 317 V342 Aql A4III 19:17:03.5 +00:30:38.5 9.50 2439318.5810 3.3991 318 V409 Aql	306	CT Sct	B9	18:54:21.6	-06:00:16.8	10.02	2428727.3740	4.9536
BL Tel	307	KP Aql	A3	19:02:29.9	+15:48:01.1	9.70	2452500.5670	3.3675
STOCK STOC	308	FK Aql	B9	19:04:18.6	+02:46:47.1	11.10	2437786.0790	2.6509
311	309	BL Tel	F5Iab/Ib	19:06:38.1	-51:25:03.2	7.09	2434692.6000	778.6000
312	310	FL Lyr	G0V	19:12:04.9	+46:19:26.5	9.27	2438221.5525	2.1782
313 BQ Sgr AIIII/IV 19:14:14.9 -36:14:39.8 9.21 2422224.3780 8.0195 314 EG Sgr AO/AIIV: 19:14:23.8 -14:11:16.0 11:20 2427395.7710 2.4862 315 RV Lyr A5: 19:16:17.6 +32:25:11.0 11.50 243522.6390 4.6723 316 YZ Aql A3 19:16:46.2 -00:36:17.1 10.50 2434222.6390 4.6723 317 Y342 Aql A4III 19:17:03.5 +09:20:38.5 9.50 2439318.5810 3.3909 318 RS Vul B5V 19:17:58.5 -00:40:54.0 11.50 2425503.3850 2.0494 320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2454 322 Zvul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2454 322 Yvl B4	311	V354 Sgr	F8	19:13:23.4	-18:29:00.1	10.70	2431281.3400	8.5793
314 EG Sgr A0/A1IV: 19:14:23.8 -14:11:16.0 11.20 2427395.7710 2.4862 315 RV Lyr A5: 19:16:17.6 +32:25:11.0 11.50 244526.4310 3.5991 316 YZ Aql A3 19:16:46.2 -00:36:17.1 10.50 2434222.6390 4.6723 317 V342 Aql A4III 19:17:03.5 +09:20:38.5 9.50 2439318.5810 3.3909 318 RS Vul B5V 19:17:58.5 -00:40:54.0 11.50 2425503.3850 2.0494 320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:89.9 +37:56:11.5 9.92 2443689.9415 1.8913 322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 24549 323 V763 Cyg F8 19:22:47.1 +48:12:11.0 11.20 243804.4651 0.9524 324 V687 Cyg A0 </td <td>312</td> <td>V474 Cyg</td> <td>F8</td> <td>19:14:01.7</td> <td>+49:05:42.0</td> <td>11.30</td> <td>2426631.1480</td> <td>24.6588</td>	312	V474 Cyg	F8	19:14:01.7	+49:05:42.0	11.30	2426631.1480	24.6588
315 RV Lyr A5: 19:16:17.6 +32:25:11.0 11.50 2445526.4310 3.5991 316 YZ Aql A3 19:16:46.2 -00:36:17.1 10.50 2434222.6390 4.6723 317 V342 Aql A4III 19:17:30.5 +09:20:38.5 9.50 2439318.5810 3.909 318 RS Vul B5V 19:17:40.0 +22:26:28.4 6.85 2432808.2570 4.4773 319 V409 Aql F5 19:17:58.5 -00:40:54.0 11.50 2425503.3850 2.0494 320 USge B8III 19:18:48.4 +10:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 322 Zvul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 323 V687 Cyg A0 19:26:41.6 +29:59:12.0 10.20 24448500.620 49:36 324 V687 Cyg A0	313	BQ Sgr	A1III/IV	19:14:14.9	-36:14:39.8	9.21	2422224.3780	8.0195
316 YZ Aql A3 19:16:46.2 -00:36:17.1 10.50 2434222.6390 4.6723 317 V342 Aql A4III 19:17:03.5 +09:20:38.5 9.50 2439318.5810 3.3909 318 RS Vul B5V 19:17:40.0 +22:26:28.4 6.85 2432808.2570 4.4777 319 V409 Aql F5 19:17:58.5 -00:40:54.0 11.50 2425503.3850 2.0494 320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:08.9 +37:56:11.5 9.92 2443689.9415 1.8913 322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 323 V753 Cyg F8 19:22:47.1 +48:12:11.0 11.20 2433804.4651 0.9524 324 V687 Cyg A0 19:26:41.6 +29:59:12.0 10.20 2444810.0 1.7072 325 V2080 Cyg F5	314	EG Sgr	A0/A1IV:	19:14:23.8	-14:11:16.0	11.20	2427395.7710	2.4862
317 V342 Aql A4III 19:17:03.5 +09:20:38.5 9.50 2439318.5810 3.3909 318 RS Vul B5V 19:17:40.0 +22:26:28.4 6.85 2432808.2570 4.4777 319 V409 Aql F5 19:17:58.5 -00:40:54.0 11.50 2425503.3850 2.0494 320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:08.9 +37:56:11.5 9.92 2443689.9415 1.8913 322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 24549 323 V753 Cyg F8 19:22:47.1 +48:12:11.0 11.20 2438804.4651 0.9524 324 V687 Cyg A0 19:26:41.9 +50:08:43.0 7.46 2448500.6200 49:336 326 TT Lyr B2V 19:27:36.3 +41:20:5.5 9.10 2438605.2644 52:437 327 XzVul G0	315	RV Lyr	A5:	19:16:17.6	+32:25:11.0	11.50	2445526.4310	3.5991
318 RS Vul B5V 19:17:40.0 +22:26:28.4 6.85 2432808.2570 4.4777 319 V409 Aql F5 19:17:58.5 -00:40:54.0 11.50 2425503.3850 2.0494 320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:08.9 +37:56:11.5 9.92 2443689.9415 1.8913 322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 323 V753 Cyg F8 19:22:47.1 +48:12:11.0 11.20 2433804.4651 0.9524 324 V687 Cyg A0 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 2432792.5730 3.0896 328 V415 Aql F2	316	YZ Aql	A3	19:16:46.2	-00:36:17.1	10.50	2434222.6390	4.6723
319 V409 Aql F5 19:17:58.5 -00:40:54.0 11.50 2425503.3850 2.0494 320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:08.9 +37:56:11.5 9.92 2443689.9415 1.8913 322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 323 V753 Cyg F8 19:22:47.1 +48:12:11.0 11.20 243804.4651 0.9524 324 V687 Cyg A0 19:26:11.6 +29:59:12.0 10.20 2444913.2780 0.9524 325 V2080 Cyg F5 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:35:53.2 +28:16:44.0 9.30 2445207.5320 2.4627 329 V909 Cyg A0	317	V342 Aql	A4III	19:17:03.5	+09:20:38.5	9.50	2439318.5810	3.3909
320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:08.9 +37:56:11.5 9.92 2443689.9415 1.8913 322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 323 V753 Cyg F8 19:22:47.1 +48:12:11.0 11.20 2433804.4651 0.9524 324 V687 Cyg A0 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 243792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2	318	-	B5V	19:17:40.0	+22:26:28.4	6.85	2432808.2570	4.4777
320 U Sge B8III 19:18:48.4 +19:36:37.7 6.50 2417130.4114 3.3806 321 UZ Lyr A2 19:21:08.9 +37:56:11.5 9.92 2443689.9415 1.8913 322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 323 V753 Cyg F8 19:22:47.1 +48:12:11.0 11.20 2433804.4651 0.9524 324 V687 Cyg A0 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 243792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2	319	V409 Aql	F5	19:17:58.5	-00:40:54.0	11.50	2425503.3850	2.0494
322 Z Vul B4V 19:21:39.1 +25:34:29.5 7.28 2442947.4777 2.4549 323 V753 Cyg F8 19:22:47.1 +48:12:11.0 11.20 2433804.4651 0.9524 324 V687 Cyg A0 19:26:11.6 +29:59:12.0 10.20 2444913.2780 1.7072 325 V2080 Cyg F5 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 2432792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V <td>320</td> <td>U Sge</td> <td>B8III</td> <td>19:18:48.4</td> <td>+19:36:37.7</td> <td>6.50</td> <td>2417130.4114</td> <td>3.3806</td>	320	U Sge	B8III	19:18:48.4	+19:36:37.7	6.50	2417130.4114	3.3806
323 V753 Cyg F8 19:22:47.1 +48:12:11.0 11.20 2433804.4651 0.9524 324 V687 Cyg A0 19:26:11.6 +29:59:12.0 10.20 2444913.2780 1.7072 325 V2080 Cyg F5 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 2432792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8466 332 BR Cyg A3V </td <td>321</td> <td>UZ Lyr</td> <td>A2</td> <td>19:21:08.9</td> <td>+37:56:11.5</td> <td>9.92</td> <td>2443689.9415</td> <td>1.8913</td>	321	UZ Lyr	A2	19:21:08.9	+37:56:11.5	9.92	2443689.9415	1.8913
324 V687 Cyg A0 19:26:11.6 +29:59:12.0 10.20 2444913.2780 1.7072 325 V2080 Cyg F5 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 2432792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8446 332 BR Cyg A3V 19:40:54.8 +46:70:60.0 9.40 2441539.4654 1.3326 333 QS Aql B5V <td>322</td> <td>Z Vul</td> <td>B4V</td> <td>19:21:39.1</td> <td>+25:34:29.5</td> <td>7.28</td> <td>2442947.4777</td> <td>2.4549</td>	322	Z Vul	B4V	19:21:39.1	+25:34:29.5	7.28	2442947.4777	2.4549
324 V687 Cyg A0 19:26:11.6 +29:59:12.0 10.20 2444913.2780 1.7072 325 V2080 Cyg F5 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 2432792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8446 332 BR Cyg A3V 19:40:54.8 +46:70:60.0 9.40 2441539.4654 1.3326 333 QS Aql B5V <td>323</td> <td>V753 Cyg</td> <td>F8</td> <td>19:22:47.1</td> <td>+48:12:11.0</td> <td>11.20</td> <td>2433804.4651</td> <td>0.9524</td>	323	V753 Cyg	F8	19:22:47.1	+48:12:11.0	11.20	2433804.4651	0.9524
325 V2080 Cyg F5 19:26:47.9 +50:08:43.0 7.46 2448500.6200 4.9336 326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 2432792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8446 332 BR Cyg A3V 19:40:54.8 +46:47:06.0 9.40 2441539.4654 1.3326 333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V <td>324</td> <td></td> <td>A0</td> <td>19:26:11.6</td> <td>+29:59:12.0</td> <td>10.20</td> <td>2444913.2780</td> <td>1.7072</td>	324		A0	19:26:11.6	+29:59:12.0	10.20	2444913.2780	1.7072
326 TT Lyr B2V 19:27:36.3 +41:42:05.5 9.10 2438605.2644 5.2437 327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 2432792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8446 332 BR Cyg A3V 19:40:54.8 +46:47:06.0 9.40 2441539.4654 1.3326 333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A5: <td>325</td> <td></td> <td>F5</td> <td>19:26:47.9</td> <td>+50:08:43.0</td> <td>7.46</td> <td>2448500.6200</td> <td>4.9336</td>	325		F5	19:26:47.9	+50:08:43.0	7.46	2448500.6200	4.9336
327 XZ Vul G0 19:29:24.3 +27:26:04.6 11.30 2432792.5730 3.0896 328 V415 Aql F2 19:30:43.7 +13:40:20.8 11.10 2428670.5320 2.4627 329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8446 332 BR Cyg A3V 19:40:54.8 +46:47:06.0 9.40 2441539.4654 1.3326 333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A0 19:43:38.0 +32:47:38.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5:<			B2V	19:27:36.3	+41:42:05.5	9.10	2438605.2644	5.2437
329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8446 332 BR Cyg A3V 19:40:54.8 +46:47:06.0 9.40 2441539.4654 1.3326 333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A0 19:43:38.0 +32:47:38.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8		-	G0	19:29:24.3	+27:26:04.6		2432792.5730	3.0896
329 V909 Cyg A0 19:35:53.2 +28:16:44.0 9.30 2445202.3731 2.8054 330 FR Vul A2 19:36:24.8 +26:45:56.6 9.91 2434981.3980 0.9419 331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8446 332 BR Cyg A3V 19:40:54.8 +46:47:06.0 9.40 2441539.4654 1.3326 333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A0 19:43:38.0 +32:47:38.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8	328	V415 Aql	F2	19:30:43.7	+13:40:20.8	11.10	2428670.5320	2.4627
331 V343 Aql B9V 19:38:35.2 +12:45:27.2 10.60 2428443.4170 1.8446 332 BR Cyg A3V 19:40:54.8 +46:47:06.0 9.40 2441539.4654 1.3326 333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A0 19:43:38.0 +32:47:38.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr <t< td=""><td>329</td><td></td><td>A0</td><td>19:35:53.2</td><td>+28:16:44.0</td><td>9.30</td><td>2445202.3731</td><td>2.8054</td></t<>	329		A0	19:35:53.2	+28:16:44.0	9.30	2445202.3731	2.8054
332 BR Cyg A3V 19:40:54.8 +46:47:06.0 9.40 2441539.4654 1.3326 333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A0 19:43:53.9 +30:19:35.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr <td< td=""><td>330</td><td>FR Vul</td><td>A2</td><td>19:36:24.8</td><td>+26:45:56.6</td><td>9.91</td><td>2434981.3980</td><td>0.9419</td></td<>	330	FR Vul	A2	19:36:24.8	+26:45:56.6	9.91	2434981.3980	0.9419
332 BR Cyg A3V 19:40:54.8 +46:47:06.0 9.40 2441539.4654 1.3326 333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A0 19:43:53.9 +30:19:35.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr <td< td=""><td>331</td><td>V343 Aql</td><td>B9V</td><td>19:38:35.2</td><td>+12:45:27.2</td><td>10.60</td><td>2428443.4170</td><td>1.8446</td></td<>	331	V343 Aql	B9V	19:38:35.2	+12:45:27.2	10.60	2428443.4170	1.8446
333 QS Aql B5V 19:41:05.5 +13:48:56.5 5.93 2440443.4798 2.5133 334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A0 19:43:38.0 +32:47:38.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721		-	A3V	19:40:54.8	+46:47:06.0	9.40	2441539.4654	1.3326
334 V463 Cyg A1V 19:42:13.9 +31:18:02.0 10.55 2444081.5080 2.1176 335 V370 Cyg A0 19:43:38.0 +32:47:38.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg <	333		B5V	19:41:05.5	+13:48:56.5	5.93	2440443.4798	2.5133
335 V370 Cyg A0 19:43:38.0 +32:47:38.0 11.80 2434629.4620 0.7745 336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 345 V548 Cyg <t< td=""><td>334</td><td></td><td>A1V</td><td>19:42:13.9</td><td>+31:18:02.0</td><td>10.55</td><td>2444081.5080</td><td>2.1176</td></t<>	334		A1V	19:42:13.9	+31:18:02.0	10.55	2444081.5080	2.1176
336 V959 Cyg A5: 19:43:53.9 +30:19:35.0 11.30 2433922.4120 1.8398 337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A							2434629.4620	
337 SY Cyg A3v 19:46:34.3 +32:42:19.0 10.70 2420001.5370 6.0055 338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:14.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V<		V959 Cyg		19:43:53.9	+30:19:35.0		2433922.4120	1.8398
338 V995 Cyg B8 19:48:34.6 +46:13:40.0 11.30 2426352.2500 3.5563 339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 </td <td></td> <td></td> <td>A3v</td> <td>19:46:34.3</td> <td>+32:42:19.0</td> <td></td> <td>2420001.5370</td> <td>6.0055</td>			A3v	19:46:34.3	+32:42:19.0		2420001.5370	6.0055
339 V688 Cyg A0 19:48:41.9 +37:36:16.0 13.80 2432344.1702 6.3034 340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 <td></td> <td></td> <td></td> <td>19:48:34.6</td> <td>+46:13:40.0</td> <td></td> <td>2426352.2500</td> <td></td>				19:48:34.6	+46:13:40.0		2426352.2500	
340 V505 Sgr A1V 19:53:06.4 -14:36:11.1 6.51 2444461.5907 1.1829 341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2				19:48:41.9	+37:36:16.0		2432344.1702	
341 V524 Sgr F8 19:53:14.5 -14:55:04.0 9.96 2429236.0770 4.1162 342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721				19:53:06.4	-14:36:11.1		2444461.5907	
342 AB Vul A8 19:53:47.2 +28:56:59.0 12.40 2425145.4670 1.4613 343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721	341	_		19:53:14.5	-14:55:04.0	9.96	2429236.0770	4.1162
343 V1011 Cyg A0 19:55:14.9 +34:12:29.0 12.20 2433922.3330 3.2394 344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721		_					2425145.4670	
344 BO Vul F0 19:56:29.1 +23:54:45.0 9.71 2435989.4310 1.9459 345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721								
345 V548 Cyg A1V 19:56:58.3 +54:47:58.0 8.54 2444456.4958 1.8052 346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721					•			
346 WW Cyg B8V 20:04:02.7 +41:35:17.0 10.02 2440377.8860 3.3178 347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721								
347 GM Cyg B9 20:04:15.8 +38:07:45.0 12.00 2432408.5350 4.7457 348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721								
348 SW Cyg A2 20:06:57.9 +46:17:58.0 9.24 2441867.8173 4.5731 349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721								
349 DE Sge A2 20:07:12.1 +20:49:32.0 11.90 2428717.4450 2.8721								

Table A.2 — Continued

— Continued									
No.	Stars	Sp. Type	RA (2000)	DEC(2000)	$\langle V \rangle$	Min.I _{HJD}	P _{orb} (d)		
351	QY Aql	F0	20:09:28.8	+15:18:44.7	11.40	2448507.1600	7.2296		
352	V346 Aql	A0V	20:09:59.6	+10:20:59.1	9.00	2441918.3840	1.1064		
353	V345 Cyg	A1	20:10:10.5	+30:28:55.0	11.30	2428635.5680	2.0755		
354	UZ Sge	A0	20:12:16.0	+19:20:56.0	11.40	2445861.4140	2.2157		
355	KU Cyg	F0Iab:	20:12:45.1	+47:23:41.0	10.73	2433884.8400	38.4393		
356	V695 Cyg	K2II	20:13:37.9	+46:44:29.0	3.73	2441470.0000	3784.3000		
357	VW Cyg	A3	20:15:12.3	+34:30:48.0	10.25	2441116.8678	8.4303		
358	RW Cap	A1III/IV	20:17:56.1	-17:40:23.7	9.80	2440113.3280	3.3924		
359	V346 Cyg	A5	20:19:24.7	+36:20:24.0	11.80	2435686.7500	2.7433		
360	MY Cyg	A0mv	20:20:03.4	+33:56:35.0	8.30	2433847.6070	4.0052		
361	XZ Aql	A2	20:22:13.4	-07:21:03.4	10.10	2441903.4610	2.1392		
362	UW Cyg	A5	20:23:02.8	+43:14:32.0	10.70	2443690.0550	3.4508		
363	ZZ Cyg	F7:	20:23:52.9	+46:55:15.0	10.61	2445000.3570	0.6286		
364	TY Cap	A5III	20:24:29.7	-12:57:55.0	10.50	2444793.4520	1.4234		
365	BP Vul	A7	20:25:33.3	+21:02:17.9	9.71	2446003.2480	1.9403		
366	BE Vul	A0	20:25:33.6	+27:22:08.9	9.50	2440111.3810	1.5520		
367	V728 Cyg	A0	20:26:40.1	+58:46:48.0	10.60	2444806.4150	2.0602		
368	V788 Cyg	F8	20:27:34.1	+31:51:25.0	10.00	2426620.5400	47.8487		
369	BI Del	G0	20:27:38.6	+14:20:09.0	11.40	2428366.2900	7.2524		
370	V442 Cyg	F4	20:27:52.3	+30:47:28.0	10.00	2428745.2490	2.3859		
371	AW Vul	F0	20:29:00.1	+24:48:02.0	10.80	2446285.4650	0.8065		
372	V729 Cyg	O7e	20:32:22.4	+41:18:19.0	9.05	2440413.7960	6.5979		
373	AX Vul	A2	20:33:10.3	+24:51:55.6	10.34	2444853.3900	2.0248		
374	AY Vul	F0	20:35:38.9	+22:37:27.1	10.61	2442685.3770	2.4124		
375	TT Del	A1	20:36:03.0	+08:26:56.0	10.60	2445232.4190	2.8711		
376	W Del	F0	20:37:40.1	+18:17:04.0	9.69	2443328.5495	4.8061		
377	V748 Cyg	A0	20:41:45.6	+50:41:35.0	11.70	2430145.5450	10.4902		
378	RR Del	F2	20:43:33.9	+13:56:41.0	10.20	2418183.4220	4.5995		
379	V512 Cyg	A0	20:44:40.5	+49:37:57.0	11.40	2434730.3970	2.4246		
380	AV Del	F8	20:45:30.8	+11:10:22.0	10.70	2443689.5150	3.8534		
381	VY Mic	A4III/IV	20:49:07.1	-33:43:54.4	9.39	2438295.2650	4.4358		
382	BT Pav	F6	20:51:00.5	-63:41:31.7	10.07	2428045.3150	2.5440		
383	DW Cep	B8	20:51:39.7	+62:48:50.4	10.25	2426980.2970	2.5169		
384	FZ Del	F5:	20:53:32.8	+04:38:48.0	10.20	2431324.3290	0.7832		
385	RR Vul	A2	20:54:47.6	+27:55:05.6	9.63	2435035.4370	5.0507		
386	S Equ	B8V	20:57:12.8	+05:04:49.0	8.09	2442596.7435	3.4361		
387	CG Cyg	G9	20:58:13.5	+35:10:30.0	9.73	2439425.1221	0.6311		
388	V1898 Cyg	B1IV:p	21:03:53.8	+46:19:50.0	7.71	2445960.6758	1.5131		
389	TY Del	A0	21:04:22.0	+13:12:54.0	9.70	2442959.4450	1.1911		
390	AE Cyg	A5	21:13:14.3	+30:44:27.0	11.80	2444586.2290	0.9619		
391	RY Aqr	A3	21:20:16.0	-10:48:08.4	8.80	2443392.7981	1.9666		
392	BN Peg	F5	21:28:02.1	+05:00:12.0	10.30	2433896.3660	0.7133		
393	U Gru	A5	21:31:48.5	-45:02:44.0	11.00	2411202.7540	1.8805		
394	AQ Peg	A2	21:37:20.9	+13:28:28.5	10.37	2441222.7048	5.5485		
395	GP Cep	O8-B0III	21:41:21.5	+69:41:34.1	8.96	2431256.6020	6.6883		
396	V Gru	F2V	21:51:53.4	-42:22:24.0	9.50	2444463.8040	0.4834		
397	AW Peg	A4Vv	21:52:20.7	+24:00:44.5	7.63	2447735.4967	10.6226		
398	DF Peg	F5	21:54:43.4	+14:33:28.1	9.17	2433505.6200	14.6987		
399	MR Cyg	B3V	21:58:56.6	+47:59:00.0	8.75	2433396.4069	1.6770		
400	UZ Cyg	A3	21:59:14.3	+44:21:35.0	10.23	2441226.6585	31.3058		

Table A.2 — Continued

No.	Stars	Sp. Type	RA (2000)	DEC(2000)	$\langle V \rangle$	$Min.I_{ m HJD}$	P _{orb} (d)
401	RT Lac	G5	22:01:30.7	+43:53:26.0	9.00	2444873.3648	5.0739
402	DO Peg	B8	22:07:31.3	+06:09:23.0	10.60	2445211.5100	2.6139
403	CY Lac	B5	22:13:08.3	+54:33:35.0	11.50	2428746.2190	2.7869
404	AT Peg	A3/5V	22:13:23.5	+08:25:30.8	8.97	2445219.8562	1.1461
405	AU Lac	A5:	22:15:09.6	+48:42:55.0	12.00	2434195.4410	1.3924
406	EK Cep	A1V	22:18:45.6	+56:07:33.9	7.88	2439002.7240	4.4278
407	UW Lac	A5:	22:20:39.8	+42:24:29.0	11.40	2437188.3350	5.2902
408	UX Peg	A2	22:28:36.2	+18:01:33.0	10.70	2440425.4790	1.5446
409	DG Lac	A5	22:28:50.2	+53:46:16.0	10.80	2444509.3870	2.2065
410	TW Lac	A2	22:30:24.1	+54:37:55.0	12.02	2441500.5340	3.0374
411	EH Peg	G0	22:34:03.7	+13:41:06.0	10.20	2428408.4540	2.3744
412	CX Aqr	F2pv	22:35:43.9	-00:41:32.4	10.55	2452500.4293	0.5560
413	VX Lac	F0	22:41:00.6	+38:19:20.0	10.90	2445258.4660	1.0745
414	AH Cep	B0.5V	22:47:52.9	+65:03:43.8	6.87	2434989.4026	1.7747
415	BG Peg	A2	22:52:47.2	+15:39:09.0	10.50	2445532.5180	1.9527
416	GT Cep	B8	22:57:47.3	+68:24:26.0	8.11	2425628.2500	4.9088
417	BO And	B8	22:58:38.0	+45:31:52.0	13.40	2428021.3070	5.7973
418	AA And	B9V	23:05:22.9	+47:40:34.8	10.87	2447804.6739	0.9351
419	ER Peg	A7	23:05:46.8	+33:29:07.0	11.00	2445526.5540	2.2747
420	TT And	A0:	23:13:22.7	+46:08:51.0	11.50	2434237.4130	2.7651
421	SZ Psc	K1IV-V	23:13:23.8	+02:40:31.4	7.18	2443498.5020	3.9657
422	AN And	A7m	23:18:23.3	+41:46:25.3	6.00	2436095.7260	3.2196
423	X Gru	A1V	23:19:42.4	-55:36:42.0	10.64	2441858.8235	2.1236
424	CZ Aqr	A5	23:22:21.0	-15:56:20.3	10.98	2443371.4690	0.8628
425	IS Cas	A2	23:28:29.0	+60:33:56.0	12.10	2428776.2630	1.8415
426	TY Peg	F0V	23:29:57.0	+13:32:31.4	10.28	2440451.7840	3.0922
427	AN Tuc	A5IIIm	23:30:22.2	-58:25:34.6	10.20	2434305.6500	5.4609
428	DI Peg	F0IVn	23:32:14.7	+14:58:08.8	9.54	2445196.4880	0.7118
429	Y Psc	A3V	23:34:25.4	+07:55:28.6	9.40	2445635.2410	3.7658
430	XX Cep	A7V	23:38:20.3	+64:20:02.8	9.25	2444839.8022	2.3373
431	DK Peg	A5	23:41:33.5	+10:12:57.1	9.92	2445530.4660	1.6318
432	WW And	A5	23:44:53.5	+45:41:11.5	10.93	2434618.1850	23.2852
433	IV Cas	A2	23:49:31.5	+53:08:04.7	12.10	2440854.6480	0.9985
434	XY Cep	B8	23:52:32.9	+68:56:01.7	10.03	2443791.3160	2.7745
435	V354 Aur		05:36:49.6	+41:27:57.5	15.0		

References

- [1] Abt, H. A. 1959, ApJ, 130, 769
- [2] Abt, H. A., & Levy, S. G. 1978, PASP, 90, 188
- [3] Aerts, C. & Harmanec, P. 2004, in ASP Conf. Ser. 318, Spectroscopically and Spatially Resolving the Components of Close Binary Stars, eds. R. Hilditch, H. Hensberge H. & K. Pavlovski (San Francisco: ASP), p.325 (astro-ph/0510344): pulsating components in close binaries
- [4] Aerts, C., et al. 1998, A&A, 329, 137: β Crucis
- [5] Aerts, C., et al. 2002, MNRAS, 333, L35-L39: XX Pyx (ellipsoidal var.)
- [6] Aerts, C., et al. 2006, ApJ, 642, L165
- [7] Albrow, M. D., & Cottrell, P. L. 1996, MNRAS, 280, 917
- [8] Alcock, C., et al. 2002, ApJ, 573, 338 (astro-ph/0201481): 3 Cepheids in EB in LMC MACHO
- [9] Alfonso-Garzón, J., Montesinos, B., Moya, A., et al. 2014, MNRAS, 443, 3022: DY Aqr
- [10] Aliçavus, F. K., Soydugan, E. 2014, IAUS, 301, 433: KIC 10486425
- [11] Althaus, L. G., et al. 2009, A&A, 494, 1021
- [12] Althaus, L. G., et al. 2010, A&ARv, 18, 471
- [13] Arellano Ferro A., et al. 2011, MNRAS, 416, 2265
- [14] Arentoft, T., et al. 2001, MNRAS, 326, 192-202: XX Pyx
- [15] Arentoft, T., et al. 2004, A&A, 418, 249: WX Eridani
- [16] Ausseloos, M., et al. 2002, A&A, 384, 209: β Cen
- [17] Bakiş, V. et al. 2013, EAS Publ. Ser., 64, 377: V2107 Cyg
- [18] Balona L. A. & Dziembowski W. A., 2011, MNRAS, 417, 591
- [19] Balona L. A., Joshi S., Joshi Y. C. & Sagar R., 2013, MNRAS, 429, 1466
- [20] Balona, L. A., & Martin, W. L. 1978, MNRAS, 184, 1: RS Gruis
- [21] Balona L. A. & Nemec J. M., 2012, MNRAS, 426, 2413
- [22] Barlow, B. N., et al. 2008, ApJ, 688, L95: two more carbon-dominated WD pulsator
- [23] Bazot, M., et al. 2005, A&A, 440, 615: pulsators which harbour planets: μ Ara
- [24] Beck, P. G., Hambleton, K., Vos, J., et al. 2014, A&A, 564, 36 (arXiv:1312.4500): KIC 5006817 18 oscillating RGB stars
- [25] Bell, S. A., et al. 1993, MNRAS, 260, 478: RU UMi
- [26] Benedict, G. F., et al. 2002, AJ, 123, 473
- [27] Benedict, G. F., et al. 2007, AJ, 133, 1810
- [28] Bersier, D. 2002, ApJS, 140, 465
- [29] Bersier, D., Burki, G., Mayor, M., & Duquennoy, A. 1994, A&AS 108, 25
- [30] Beuermann, K., et al. 2010, A&A, 521, L60: NN Ser
- [31] Beuermann, K., et al. 2011, A&A, 526, 53 (arXiv:1011.3905): DP Leo
- [32] Bíró, I. B. & Nuspl, J. 2005, in ASP Conf. Ser. 333, Tidal Evolution and Oscillations in Binary Stars: Third Granada Workshop on Stellar Structure, eds. A. Claret, A. Giménez & J.-P. Zahn (San Francisco: ASP), p.221
- [33] Bíró, I. B. & Nuspl, J. 2011, MNRAS, 416, 1601 (arXiv:1101.5162)
- [34] Bloemen, S., Marsh, T. R., Østensen, R. H., et al. 2011, MNRAS, 410, 1787 (arXiv:1010.2747): KPD 1946+4340
- [35] Böhm-Vitense, E., et al. 1997, AJ, 114, 1176
- [36] Böhm-Vitense, E., et al. 1998, ApJ, 505, 903
- [37] Böhm-Vitense, E., & Proffitt, C. 1985, ApJ 296, 175
- [38] Böhm, T., et al. 2009, A&A, 497, 183 (arXiv:0812.4218): RS Cha
- [39] Borkovits, T., Derekas, A., Fuller, J., et al. 2014, MNRAS, 443, 3068 (arXiv:1407.1788): HD 183648
- [40] Bouchy, F. & Carrier, F. 2001, A&A, 375, L5: α Cen A
- [41] Bramich, D. M. et al. 2012, MNRAS, 424, 2722
- [42] Bravo J. P., Roque S., Estrela R., et al. 2014, A&A, 568, 34
- [43] Breger, M. 2005, in ASP Conf. Ser. 333, Tidal Evolution and Oscillations in Binary Stars: Third Granada Workshop on Stellar Structure, eds. A. Claret, A. Giménez & J.-P. Zahn (San Francisco: ASP), p.299
- [44] Breitfellner, M.G., Gillet, D. 1993, A&A, 277, 541
- [45] Broglia, P. & Conconi, P. 1984, A&A, 138, p.443: Y Cam
- [46] Broglia, P. & Marin, F. 1974, A&A, 34, 89
- [47] Bruntt, H., et al. 2006, A&A, 456, 651: psi Centauri
- [48] Budding, E. et al. 2004, A&A, 417, 263
- [49] Burki, G. 1985, in Proc. IAU Colloq. 82, Cepheids: Theory and Observation, ed. B.F. Madore, Cambridge Univ. Press, p.34
- [50] Çakırlı, Ö. & İbanoğlu, C. 2010, MNRAS, 401, 1141: NSVS 06507557: double-lined E
- [51] Carrier, F. & Bourban, G. 2003, A&A, 406, L23: α Cen A
- [52] Carrier, F., et al. 2002, A&A, 390, 1027: CQ Lyncis

- [53] Carrier, F., et al. 2006, A&A, 450, 695: 70 Oph
- [54] Catanzaro G., Ripepi V., Bernabei S., et al. 2011, MNRAS, 411, 1167
- [55] Caton, D. B. 2004, IBVS, No.5531: V469 Cyg
- [56] Chapellier, E., et al. 2004, A&A, 426, 247: HD 173977 ellipsoidal DSCT
- [57] Chapellier, E., et al. 2006, A&A, 448, 697: γ Pegasi
- [58] Christiansen, J. L., et al. 2007, MNRAS, 382, 239 (arXiv:0707.4540): UNSW-V-500, first HADS in EB
- [59] Ciocca M., 2013, JAVSO, 41, 134
- [60] Clausen, J. V. 1996, A&A, 308, 151
- [61] Coe, M. J., Negueruela, I., & McBeide, V. A. 2005, MNRAS, 362, 952: SXP 323
- [62] Coenen, T., Leeuwen, J. van, & Stairs, I. H. 2011, A&A, 531, 125: radio pulsations
- [63] Cohen, D. H., et al. 2008, MNRAS, 386, 1855: β Crucis
- [64] Conroy, K. E., Prša, A., Stassun, K. G., et al. 2014, AJ, 147, 45 (arXiv:1306.0512):
- [65] Copperwheat, C. M., et al. 2011, MNRAS, 410, 1113 (arXiv:1008.1907): SDSS J0926+3624
- [66] Coskunoglu B., AK S., Bilir S., et al. 2012, MNRAS, 419, 2844
- [67] Costa, J. E. S., et al. 2007, A&A, 468, 637(arXiv:0706.4083): HD 172189
- [68] Coughlin J. L., Lopez-Morales M., Harrison T. E., et al. 2011, AJ, 141, 78
- [69] Coulson, I. M. 1983, MNRAS, 205, 1135
- [70] Creevey, O. L. 2008, J. Phys. Conf. Ser. 118, 2050
- [71] Creevey, O. L., Metcalfe, T. S., Brown, T. M., Jiméez-Reyes, S., & Belmonte, J. A. 2011, ApJ, 733, 38
- [72] Cuypers, J., et al. 2002, A&A, 392, 599: β Crucis
- [73] Dahm, M. 1994, BAV Rundbrief, Jahrg. 43, No.1, p.4-6: disproved RW Ari in EB
- [74] Dallaporta, S., & Munari, U. 2005, astro-ph/0511399: V994 Her
- [75] Dallaporta, S., et al. 2002, IBVS, No.5312: BK Dra
- [76] Damiani, C. et al. 2010, Ap&SS, 328, 91: CoRoT 102931335
- [77] da Silva, R., Maceroni, C., Gandolfi, D., Lehmann, H., & Hatzes, A. P. 2014, A&A, 565, 55 (arXiv.1403.3003): CoRoT 105906206
- [78] Daszyńska-Daszkiewicz, J. 2009, CoAst, 159, 7 (arXiv:0901.4842)
- [79] De Bruijne J. H. J. & Eilers A.-C., 2012, A&A, 546, 61
- [80] Debosscher, J., Aerts, C., Tkachenko, A., et al. 2013, A&A, 556, A56(arXiv:1306.2148): KIC 11285625
- [81] Debosscher J., Blomme J., Aerts C. & De Ridder J. 2011, A&A, 529, 89
- [82] De Cat, P., et al. 2000, A&A, 355, 1015: 8 binary SPB
- [83] De Cat, P., et al. 2009, AIP Conf. Proc., 1170, 483: HD 147787
- [84] Degroote, P., et al. 2012, A&A, 542, 88 (arXiv:1204.5587): HD 50230
- [85] De Marchi, F., Poretti, E., Montalto, M., et al. 2007, A&A, 471, 515: NGC 6791
- [86] Derekas, A., et al. 2009, MNRAS, 394, 995: RS Gru
- [87] De Rosa R. J., Patience J., Wilson P. A., et al. 2014, MNRAS, 437, 1216
- [88] De Rosa R. J., Patience J., Vigan A., et al. 2012, MNRAS, 422, 2765
- [89] Desmet, M., et al. 2009, AIP Conf. Proc., 1170, 376: 67 Vir=Spica
- [90] Devor, J., Charbonneau, D., ODonovan, F. T., Mandushev, G., & Torres, G. 2008, AJ, 135, 850 (arXiv:0712.0839v1) 773 EB
- [91] Dimitrov, D., & Kjurkchieva, D. 2011, New Astron., 17, 34 (arXiv:1106.2115): 2MASS J01074282+4845188
- [92] Dimitrov, D., Kraicheva Z., & Popov, V. 2008, IBVS, No.5842: OO Dra
- [93] Dimitrov, D., Kraicheva Z., & Popov, V. 2010a, IBVS, No.5883: GSC 4588-0883
- [94] Dimitrov, D., Kraicheva Z., & Popov, V. 2010b, IBVS, No.5892: GSC 4293-0432
- [95] Dimitrov, D., et al. 2010c, IBVS, No.5925: SX Dra
- [96] Drake A. J., Catelan M., Djorgovski S. G., et al. 2013, ApJ, 765, 154
- [97] Drechsel, H., et al. 2001, A&A, 294, 723: HS 0705+6700
- [98] Dziembowski, W. A. & Jerzykiewicz, M. 1996, A&A, 306, 436: 16 Lac
- [99] Dziembowski, W. A., & Pamyatnykh, A. A. 2008, MNRAS, 385, 2061
- [100] Eaton, J. A., Henry, G. W., & Odell, A. P. 2008, ApJ, 679, 1490
- [101] Eggenberger, P., et al. 2006, MmSAI, 77, 451: α CMi, α Cen, 70 Oph
- [102] Engelbrecht, C. A., & Balona, L. A. 1986, MNRAS, 219, 449: HD 92024 (in NGC3293)
- [103] Escola-Sirisi, E., et al. 2005, A&A, 434, 1063: HIP 7666
- [104] Dean, J. F. 1977, MNASSA, 36, No.1, 3
- [105] Drobek, D., Pigulski, A., Shobbrook, R. R., & Narwid, A. 2011, AN, 331, 1077 (arXiv:1011.0910)
- [106] Drobek, D. & Pigulski, A., IAU Symp. 301, (arXiv:1402.6726): HD 167003, HD 101794
- [107] Evans, N. R. 1988a, ApJS, 66, 343
- [108] Evans, N. R. 1991, ApJ, 372, 597
- [109] Evans, N. R. 1992a, ApJ, 384, 220
- [110] Evans, N. R. 1992c, AJ, 104, 216: T Vul

- [111] Evans, N. R. 1992d, ApJ, 389, 657
- [112] Evans, N. R. 1994, ApJ, 436, 273
- [113] Evans, N. R. 1995, ApJ, 445, 393
- [114] Evans, N. R. 2000, AJ, 119, 3050
- [115] Evans, N. R., Arellano Ferro, A., & Udalska, J. 1992, AJ, 103, 1638
- [116] Evans, N. R., & Butler, J. 1993, PASP, 105, 915
- [117] Evans, N. R., et al. 1997, PASP 109, 789
- [118] Evans, N. R., et al. 1999, ApJ, 524, 379
- [119] Evans, N. R., et al. 2006, PASP, 118, 1545: ADS 14859
- [120] Evans, N. R., et al. 2008, AJ, 136, 1137
- [121] Evans, N. R., Carpenter, K. C., Robinson, R., Kienzle, F., & Dekas, A. 2005, AJ, 130, 789
- [122] Evans, N. R., Massa, D., & Proffitt, C. 2009, AJ, 137, 3700: W Sgr Massive Star Multiplicity
- [123] Evans, N. R., Sasselov, D. D., & Short, C. I. 2002, ApJ, 567, 1121
- [124] Evans, N. R., & Sugars, B. J. A. 1997, AJ, 113, 792
- [125] Evans, N. R., Szabados, L., & Udalska, J. 1990, PASP, 102, 981
- [126] Evans, N. R., & Udalski, A. 1994, AJ, 108, 653
- [127] Evans, N. R., Vinkó, J., & Wahlgren, G. M. 2000, AJ, 120, 407
- [128] Fabrycky, D. C. 2005, MNRAS, 359, 117 (astro-ph/0407614)
- [129] Fekel, F., & Henry, G. W. 2003, AJ, 125, 2156-2162: V2502 Oph=HR 6844
- [130] Feldmeier J. J., Howell S. B., Sherry W., et al. 2011, AJ, 142, 2
- [131] Fernandez, M. A., Williamson, C. O., & Beaky, M. M. 2010, IBVS, No.5948: V417 Aur
- [132] Fitch, W. S. 1976, IAU Colloq. 29, Multiple Periodic Variable Stars (AASL, 60), p.167
- [133] Foellmi, C., et al. 2008, Rev. Mex. Astron. Astroph.(RMxAA) 44, No.1 (arXiv:0711.4858): HD 5980
- [134] Fontaine, G., & Brassard, P. 2008, PASP, 120, 104: review on WD
- [135] For, B.-Q., et al. 2008, in ASP Conf. Ser. 392, Hot Subdwarf Stars and Related Objects, eds. U. Herber, S. Jeffery & R. Napiwotzki (San Francisco: ASP), p.203 (arXiv:0809.4517): KBS 13
- [136] For, B.-Q., et al. 2010, ApJ, 708, 253 (arXiv:0911.2006): 2M 1533+3759, sdB+dM
- [137] For, B.-Q., Green, E. M., Fontaine, G., & Shaw, S. 2010, Ap&SS, 329, 87: 2M 1533+3759
- [138] Forsyth, C., & Hintz, E. G. 2006, AAS, 209, 2918: V577 Oph
- [139] Frandsen, S., Lehmann, H., Hekker, S., et al. 2013, A&A, 556, 138 (arXiv:1307.0314): KIC 8410637
- [140] Frémat, Y., Lampens, P., & Hensberge, H. 2004, in ASP Conf. Ser. 318, Spectroscopically and Spatially Resolving the Components of the Close Binary Stars, eds. R. W. Hilditch, H. Hensberge & K. Pavlovski (San Francisco: ASP), p.342: DG Leo
- [141] Frémat, Y., Lampens, P., & Hensberge, H. 2005, MNRAS, 356, 545: DG Leo
- [142] Frémat, Y., et al. 2007, A&A, 471, 675: survey
- [143] Fuller, Jim & Lai, Dong 2012, MNRAS, 420, 3126 (arXiv:1107.4594): Kepler KOI-54
- [144] Garrido, R., et al. 1983, A&A, 123, 193: 16 Lacertae
- [145] Gaulme, P., McKeever, J., Rawls, M. L., et al. 2013, ApJ, 767, 82 (arXiv:1303.1197): 70 RG/EBs
- [146] Gaulme, P. & Guzik, J. A. 2014, IAUS, 301, 413
- [147] Gaulme, P., Jackiewicz, J., Appourchaux, T., & Mosser, B. 2014, ApJ, 785, 5 (arXiv:1402.3027)
- [148] Geier, S., Nesslinger, S., & Heber, U. 2007, A&A, 464, 299: KPD 1930+2752
- [149] Geier, S., et al. 2008, in ASP Conf. Ser. 392, Hot Subdwarf Stars and Related Objects, eds. U. Herber, S. Jeffery & R. Napiwotzki (San Francisco: ASP), p.207
- [150] Geier, S., Heber, U., & Napiwotzki, R. 2008, in ASP Conf. Ser. 392, Hot Subdwarf Stars and Related Objects, eds. U. Herber, S. Jeffery & R. Napiwotzki (San Francisco: ASP), p.225 (arXiv:0804.1276)
- [151] Geier, S., et al. 2011, ApJ, 731, L22 (arXiv:1103.1989): SDSS J08205+0008
- [152] Geier S., Hirsch H., Tillich A., et al. 2011, A&A, 530, 28
- [153] Gianninas A., Dufour P., Kilic M. et al. 2014, ApJ, 794, 35 (arXiv:1408.3118): 61 low-mass WD, binary WDs
- [154] Gieren, W. P. 1980, A&AS, 39, 153
- [155] Gieren, W. P. 1982, ApJS, 49, 1
- [156] Gieren, W. P. 1985, ApJ, 295, 507
- [157] Gieren, W. P. 1989, A&A, 216, 135
- [158] Gieren, W. P., & Brieva, E. 1992, A&A, 253, 126
- [159] Gieren, W. P., Welch, D. L., Mermilliod, J.-C., Matthews, J. M., & Hertling, G. 1994, AJ, 107, 2093
- [160] Gieren, W. P., Mermilliod, J.-C., Matthews, J. M., & Welch, D. L. 1996, AJ, 111, 2059
- [161] Gies D. R., Williams S. J., Matson R. A., 2012, AJ, 143, 137
- [162] Gies, D., et al. 1999, ApJ, 525, 420
- [163] Golovin, A., & Pavlenko, E. 2007a, IAUS, 240, 330: RZ Cas
- [164] Golovin, A., & Pavlenko, E. 2007b, IAUS, 240, 641: RZ Cas
- [165] Gorynya, N. A., Rastorguev, A.S., & Samus, N. N. 1996a, AstrL, 22, 33

- [166] Gorynya, N. A., Samus, N. N., & Rastorgouev, A. S. 1994, IBVS, No.4130
- [167] Gorynya, N. A., et al. 1995, IBVS, No.4199
- [168] Gorynya, N. A., Samus, N. N., Rastorgouev, A. S., & Sachkov, M.E. 1996b, PAZh, 22, 198
- [169] Green, E. M. 2004, Ap&SS, 291, 267: PG 1329+159
- [170] Green, E. M., For, B.-Q., & Hyde, E. A. 2005, in ASP Conf. Ser. 334, 14th European Workshop on White Dwarfs, eds. D. Koester & S. Moehlerp, p.363: PG 1438-029
- [171] Groenewegen, M. A. T., et al. 2007, A&A, 463, 579
- [172] Groenewegen, M. A. T. 2008, A&A, 488, 25
- [173] Guinan, E. F., Fitzpatrick, E., Ribas, I., Engle, S., Welch, D., & Lepischak, D. 2005, in AAS 207, #186.04 (Bull. of AAS 37, 1479)
- [174] Guinan, E. F. 2007, HST Proposal ID #11223.
- [175] Guinan, E. F., et al. 2011, AAS Meeting #218, #407.16 (Bull. of AAS, 43): δ Capricorni
- [176] Gutiérrez-Soto, J., Reig, P., Fabregat, J., & Fox-Machado, L. 2010, in IAU Symp. 272, Active OB stars: structure, evolution, mass loss and critical limits, eds. C. Neiner, G. Wade, G. Meynet & G. Peters, (arXiv:1010.1913)
- [177] Hambleton, K. M., Kurtz, D. W., Prša, A., et al. 2013, MNRAS, 434, 925 (arXiv:1306.1819): KIC 4544587
- [178] Hambsch, Franz-Josef, et al. 2010, IBVS, No.5949: YY Boo
- [179] Han, I., et al. 2008, J. KAS (Korean Astronomical Society), 41, 59 (arXiv:0709.1406): β GEM
- [180] Handler, G. 2009a, CoAst, 159, 42
- [181] Handler, G. 2009b, MNRAS, 398, 1339: γ Peg in p & g modes
- [182] Handler, G., Balona, L. A. & Shobbrook, R. R. 2002, MNRAS, 333, 262: HD 209295
- [183] Hareter, M. 2008, A&A, 492, 185: HD 61199
- [184] Harmanec, P., et al. 2000, A&A, 364, L85: γ Cas
- [185] Harris, H. C. 1985, AJ, 90, 756
- [186] Harris, H. C., Olzewski, E. W., & Wallerstein, G. 1984, AJ, 89, 119
- [187] Harris, H. C., Welch, D. L., Kraft, R. P., & Schmidt, E. G. 1987, AJ, 94, 403
- [188] Harris, H. C., & Welch, D. L. 1989, AJ, 98, 981
- [189] Hartman J. D., Bakos G., Stanek K. Z., & Noyes R. W., 2004, AJ, 128, 1761
- [190] Hatzes, A. P., et al. 2006, A&A, 457, 335: β Gem
- [191] Hatzes, A. P., & Zechmeister, M. 2007, ApJ, 670, L37: β Gem
- [192] Hatzes, A. P., & Zechmeister, M. 2008, J. Phys. Conf. Ser. 118, p.2016
- [193] Heber, U., et al. 2004, A&A, 420, 251
- [194] Hekker, S., et al. 2010, ApJ, 713, 187 (arXiv:1001.0399): KIC 8410637
- [195] Hekker, S., et al. 2009, arXiv:0901.3162
- [196] Henrichs, H. F., et al. 2013, A&A, 555, 46: beta Cephei
- [197] Hensberge, H., et al. 2004, JAD, 10, 2: HD 92024
- [198] Herne, P. E. L., 1939, Annals of the Bosscha Obs. Lembang (Indonesia), 8, 35: R Crucis
- [199] Hilditch, R. W., Mclean B. J., & Harland, D. M. 1979, MNRAS, 187, 797: SV Cam
- [200] Hosseinzadeh, B., Pazhouhesh, R., Yakut, K. 2013, New Astron., 27, 95: XX Cep
- [201] Hube, D. P., & Aikman, G. C. L. 1991, PASP, 103, 49: 3 Vul=V377 Vul
- [202] Hudson, K. I., et al. 1971, ApJ, 165, 573: 14 Aur=KW Aur
- [203] Hrivnak, B. J., et al. 2008, AJ, 136, 1557: Asymptotic Giant Branch Binary HD 46703
- [204] Huélamo, et al. 2009, A&A, 503, 873 (arXiv:0901.0305)
- [205] İbanoğlu, C. 1978, Ap&SS, 57, 219: V471 Tauri
- [206] İbanoğlu, C., Taş, G., Sipahi, E., & Evren, S. 2007, MNRAS, 376, 573: VZ CVn
- [207] Imbert, M. 1985, A&AS, 58, 259
- [208] Imbert, M. 1996, A&AS, 116, 497
- [209] Jeffers, S. V., Collier Cameron, A., Barnes, J. R., Aufdenberg, J. P., & Hussain, G. A. J. 2005, ApJ, 621, 425 (arXiv:astro-ph/0501671): SV Cam
- [210] Jeffery, C. S. 2008, CoAst, 157, 240
- [211] Jeffery, C. S., & Ramsay, G. 2014, MNRAS, 442, 61 (arXiv:1404.7470): EQ Psc
- [212] Jeon, Y.-B., et al. 2006, MmSAI, 77, 133: QU Sge
- [213] Jerzykiewicz, M. 1980, LNP, 125, 125: 16 Lac
- [214] Jerzykiewicz, M., & Pigulski, A. 1996, MNRAS, 282, 853: 16 Lac
- [215] Jerzykiewicz, M., & Pigulski, A. 1999, MNRAS, 310, 804: 16 Lac
- [216] Johnson, C. B., Hynes, R. I., Maccarone T., et al. 2014, MNRAS, 444, 1584 (arXiv:1407.7938): HD 314884
- [217] Jurkovic, M., Szabados, L., & Vinkó J., Csák, B. 2007, AN, 328, 837 (arXiv:0705.2389): AU Peg
- [218] Kamper, K. 1996, JRASC 90, 140
- [219] Kamper, K., Evans, N. R., & Lyons R. W. 1984, JRASC 78, 173
- [220] Khruslov, A. V. 2008, Peremennye Zvezdy, 28,no.4
- [221] Khruslov, A. V. 2013, Peremennye Zvezdy, 33, 1: GSC 01374-01131

- [222] Khruslov, A. V., Kusakin, A. V., Barsukova, E. A., et al. 2014, arXiv:1411.3847: GSC 04560-02157
- [223] Kilkenny, D., et al. 1981, MNRAS, 194, 429: LB 3459
- [224] Kilkenny, D., et al. 1998, MNRAS, 296, 329: PG 1336-018
- [225] Kilkenny, D., et al. 2003, MNRAS, 345, 834-846: PG 1336-018(NY Vir)
- [226] Kim, S.-L., et al. 2002a, IBVS, No.5314
- [227] Kim, S.-L., et al. 2002b, IBVS, No.5325
- [228] Kim, S.-L., et al. 2002c, A&A, 391, 213: Y Cam
- [229] Kim, S.-L., et al. 2003, A&A, 405, 231: first oEA survey
- [230] Kim, S.-L., et al. 2004a, IBVS, No.5537: CT Her, EF Her
- [231] Kim, S.-L., et al. 2004b, IBVS, No.5538: AO Ser
- [232] Kim, S.-L., et al. 2004c, in ASP Conf. Ser. 310, Variable Stars in the Local Group (IAU Colloq. 193), eds. Kurtz D. W. & Pollard K. R. (San Francisco: ASP), p.399: AB Per
- [233] Kim, S.-L., et al. 2005a, IBVS, No.5598: VV UMa
- [234] Kim, S.-L., et al. 2005b, IBVS, No.5628: V346 Cyg
- [235] Kim, S.-L., et al. 2005c, IBVS, No.5629
- [236] Kim, S.-L., et al. 2007, CoAst, 150, 69
- [237] Kim, S.-L., et al. 2010, PASP, 122, 1311: IV Cas
- [238] Kim, Y. G., et al. 2005d, A&A, 441, 663: BG CMi
- [239] Kiss, L. L. 2002, IBVS, No.5355: AI Dra
- [240] Kiss, L. L., et al. 2007, MNRAS, 375, 1338 (astro-ph/0612217): pulsating post-AGB binaries
- [241] Kiziloglu, U., et al. 2007, A&A, 470, 1023
- [242] Klepp, S., & Rauch, T. 2011, A&A, 531, L7: AA Dor
- [243] Koen, C. 2009, MNRAS, 395, 979: JL 82
- [244] Koen, C., & Eyer, L. 2002, MNRAS, 331, 45
- [245] Koen, C., Orisz, J. A., & Wade, R. A. 1998, MNRAS, 300, 695: KPD 0422+5421
- [246] Kovács, G., Kisvarsányi, E., & Buchler, J. R. 1990, ApJ, 351, 606
- [247] Kovtyukh, V. V., & Andrievsky, S. M. 1999, A&A, 350, L55
- [248] Kozhevnikov, V. P. 2007, MNRAS, 378, 955: KR Aur
- [249] Kozyreva, V. S. & Zakharov, A. L. 2006a, JAVSO, 35, 181: AS Cam
- [250] Kozyreva, V. S. & Zakharov, A. L. 2006b, AstL, 32, 313: AS Cam
- [251] Kurtz, D., et al. 2008, MNRAS, 386, 1750
- [252] Lampens, P. 2002, in ASP Conf. Ser. 256, Observational Aspects of Pulsating B- and A Stars, eds. C. Sterken & D. W. Kurtz (San Francisco: ASP), p.149
- [253] Lampens, P. 2006, in ASP Conf. Ser. 349, Astrophysics of Variables, eds. C. Sterken & C. Aerts (San Francisco: ASP), p.153: Intrinsic Variability in multiple systems and clusters: open questions
- [254] Lampens, P., & Boffin, H. M. J. 2000, in ASP Conf. Ser. 210, Delta Scuti and Related Stars, Reference Handbook and Proceedings of the 6th Vienna Workshop in Astrophysics, eds. M. Breger & M. Montgomery (San Francisco: ASP), p.309 (astro-ph/0001351)
- [255] Lampens, P., et al. 1999, DSSN, 13, 10
- [256] Lampens, P., et al. 2004a, RMxAC, 21, 73
- [257] Lampens, P., et al. 2004b, IBVS, No.5572: TU Her
- [258] Lampens, P., et al. 2004c, IAUS, 224, 835
- [259] Lampens, P., et al. 2005a, A&A, 438, 201
- [260] Lampens, P., et al. 2005b, in ASP Conf. Ser. 333, Tidal Evolution and Oscillations in Binar Stars: Third Granada Workshop on Stellar Structure, eds. A. Claret, A. Giménez and J.-P. Zahn (San Francisco: ASP), p.149
- [261] Lampens, P., et al. 2007, A&A, 464, 641: binary/multiple stars photometry
- [262] Lampens, P., et al. 2008a, CoAst, 153, 54: CT Her
- [263] Lampens, P., et al. 2008b, CoAst, 157, 328
- [264] Lampens, P., et al. 2011, A&A, 534, 111 (arXiv:1105.5064): CT Her campaign
- [265] Latković, O., & Bìrò, I. B. 2008, CoAst, 157, 330
- [266] Lee, C.-U., et al. 2012, IAUS, 282, 327: KIC 3858884, oEA
- [267] Lee, J. W., et al. 2009, AJ, 137, 3181: HW Vir
- [268] Lee, J. W., Kim, S.-L., Hong, K., et al. 2014, AJ, 148, 37 (arXiv:1405.5658): V404 Lyr
- [269] Lehmann, H., Hempelmann, A., & Wolter, U. 2002, A&A, 392, 963: SV Cam
- [270] Lehmann, H., & Mkrtichian, D. E. 2004, A&A, 413, 293: RZ Cas
- [271] Lehmann, H., et al. 2001, yCat, 33670236: 16 Lac=EN Lac
- [272] Lehmann, H., et al. 2008, A&A, 480, 247
- [273] Lehmann, H., Southworth, J., Tkachenko, A., & Pavlovski, K. 2013, A&A, 557, 79: KIC 10661783
- [274] Lepischak, D., Welch, D. L., & van Kooten, P. B. M. 2004, ApJ, 611,1100: 81.8997.87
- [275] Li L.-J. & Qian S.-B., 2013, PASJ, 65, 116

- [276] Liakos, A. 2008, CoAst, 157, 336: TZ Eri
- [277] Liakos, A., & Cagaš, P. 2014, Ap&SS, 353, 559 (arXiv:1407.6946[astro-pn.SR]): 3 eclipsing binaries
- [278] Liakos, A., & Niarchos, P. 2009, CoAst, 160, 2
- [279] Liakos, A., & Niarchos, P. 2011, CoAst, 162, 73: BG Peg
- [280] Liakos, A., Niarchos, P., Soydugan, E., & Zasche, P. 2012, MNRAS, 422, 1250 (arXiv:1404.2808): survey for DSCT in EB
- [281] Littlefair, S. P., Dhillon, V. S., Marsh, T. R., Gänsicke B. T. 2006, MNRAS, 371, 1435
- [282] Littlefair, S. P., Dhillon, V. S., Marsh, T. R., et al. 2008, MNRAS, 388, 1582
- [283] Liu N., Zhang X.-B., Ren A.-B., Deng L.-C., Luo Z.-Q. 2012, RAA, 12, 671: V551 Aur
- [284] Lloyd Evans, T. 1982, MNRAS, 199, 925
- [285] Lopes de Oliveira, R., Smith, M. A., & Motch, C. 2010, A&A, 512, 22 (arXiv:0903.2600): γ Cas
- [286] Lutz, R., et al. 2009, A&A, 496, 469 (arXiv:0901.4523): V391 Peg
- [287] Maceroni, C., Montalbán, J., Michel, E., et al. 2009, A&A, 508, 1375(arXiv:0910.3513): HD 174884
- [288] Maceroni, C., et al. 2011, Astron. Nachr., in press (arXiv:1004.1525)
- [289] Maceroni, C., Montalban J., Gandolfi D., et al. 2013, A&A, 552, 60 (arXiv:1302.0167): CoRoT 102918586
- [290] Maceroni, C., Lehmann, H., Da Silva, R., et al. 2014, A&A, 563, 59 (arXiv:1401.3130): KIC 3858884, hybrid DSCT
- [291] Madore, B. F. 1977, MNRAS, 178, 505
- [292] Madore, B. F., & Fernie, J. D. 1980, PASP, 92, 315
- [293] Malkov, O. Yu., et al. 2006, A&A, 446, 785: 6330 EB
- [294] Mantegazza, L., et al. 2012, A&A, 542, 24 (arXiv:1203.0221): HD 50870
- [295] Marconi, M., et al. 2013, ApJL, 768, 6(arXiv:1304.0860): OGLE-LMC-CEP-0227
- [296] Mason, B. D., et al. 2001, AJ, 122, 3466
- [297] Mathias, P., et al. 2004, A&A, 417, 189: 59 γ Dor
- [298] Matijevic, G., Prsa, A., Orosz, J. A., et al. 2012, AJ, 143, 123 (arXiv:1204.2113): 2165 Kepler EBs
- [299] Mayor, M., et al. 2001, IAU Symp., 200, 45: Binaries at bottom of MS and below
- [300] Maxted, P. F. L., et al. 2002, MNRAS, 333, 231: PG 1017-086
- [301] Maxted, P. F. L., Serenelli, A. M., Miglio, A., et al. 2013, Nature, 498, 463 (arXiv:1307.1654): WASP 1628+10
- [302] Maxted, P. F. L., et al. 2014, MNRAS, 444, 208: WASP 1628+10
- [303] McDonald I., Zijlstra A.A. & Boyer M.L., 2012, MNRAS, 427, 343
- [304] McInally, C. J., & Austin, R. D. 1977, IBVS, No. 1334
- [305] McNamara B.J., Jackiewicz J. & McKeever J., 2012, AJ, 143, 101
- [306] Mermilliod, J.-C., Mayor, M., & Burki, G. 1987, A&AS, 70, 389
- [307] Michalska, G., & Pigulski, A. 2007, CoAst, 150, 71: pulsating components of EB from ASAS-3
- [308] Michalska, G., & Pigulski, A. 2008, J. Phys. Conf. Ser. 118, p.2064: oEA from OGLE-II
- [309] Mkrtichian, D. E., & Gamarova, A. Yu. 2000, IBVS, No.4836
- [310] Mkrtichian, D. E., et al. 2002, in ASP Conf. Ser. 256, Observational Aspects of Pulsating B- and A Stars, eds. C. Sterken & D. W. Kurtz (San Francisco: ASP), p.259: Central Asian Network on eclipsing binaries
- [311] Mkrtichian, D. E., et al. 2004, A&A, 419, 1015: AS Eri
- [312] Mkrtichian, D. E., et al. 2005, in ASP Conf. Ser. 333, Tidal Evolution and Oscillations in Binary Stars: Third Granada Workshop on Stellar Structure, eds. A. Claret, A. Giménez & J.-P. Zahn (San Francisco: ASP), p.197
- [313] Mkrtichian, D. E., et al. 2006, Ap&SS, 304, 169
- [314] Mochejska, B. J.; Stanek, K. Z.; Sasselov, D. D.; Szentgyorgyi, A. H. 2002, AJ, 123, 3460 (arXiv:astro-ph/0201244): B4=KU92 in NGC 6791
- [315] Moffett, T. J., & Barnes, T. G. 1987, PASP, 99, 1206
- [316] Montgomery, M. H., et al. 2008, ApJ, 678, L51: carbon-dominated WD pulsator
- [317] Moriarty, D. J. W., et al. 2013, JAVSO, 41, 182: AW Vel, HM Pup, TT Hor
- [318] Moskalik, P., & Kołaczkowski, Z. 2008, arXiv:0807.0623
- [319] Moya A. 2013, Stellar Pulsations, Astrophysics and Space Science Proceedings (Springer-Verlag, Berlin, Heidelberg), 31, p.221 (arXiv:1111.2274 [astro-ph.SR])
- [320] Murphy, S. J., et al. 2013, MNRAS, 432, 2284: KIC 11754947–SX Phe-type
- [321] Murphy, S. J., Bedding, T. R., Shibahashi H., et al. 2014, MNRAS, 441, 2515 (arXiv:1404.5649)
- [322] Narusawa, S., Waki, Y., Ioroi, M., & Takeuti, M. 2002, IBVS, No.5279: AI Dra
- [323] Nather, R. E. & Robinson, E. L. 1974, ApJ, 190, 637
- [324] Neiner, C., Tkachenko, A., et al. 2014, A&A, 563, L7: HD 1976
- [325] Nie, J. D., Zhang, X. B., & Jiang, B. W. 2010, AJ, 139, 1909
- [326] Ohshima, O., et al. 2001, AJ, 122,418: RZ: Cas
- [327] Orosz, J. A. & Wade, R. A. 1999, MNRAS, 310, 773: KPD 0422+5421
- [328] Østensen, R. H., Oreiro, R., Drechsel, H., Heber, U., Baran, A., & Pigulski, A. 2007, in ASP Conf. Ser. 372, 15th European Workshop on White Dwarfs, eds. R. Napiwotzki and M. R. Burleigh(San Francisco: ASP), p.4830: HS

2231+2441

- [329] Østensen, R. H., et al. 2010a, MNRAS, 408, 510: 2M1938+4603
- [330] Østensen, R. H., et al. 2010b, MNRAS, 409, 1470 (arXiv:1007.3170): Kepler survey KBS
- [331] Østensen, R. H., et al. 2013, A&A, 559, 35 (arXiv:1310.2209): FBS 0117+396
- [332] Ostensen R.H., Silvotti R., Charpinet S., et al. 2011, MNRAS, 414, 2860
- [333] O'Toole, S. J., Heber, U., & Benjamin, R. A. 2004, A&A, 422, 1053
- [334] Pablo, H., Kawaler S. D., & Green, E. M. 2011, ApJ, 740, L47 (arXiv:1109.3736): B4 binary sdB in NGC 6791
- [335] Paczyński, B., Szczygiel, D., Pilecki, B., & Pojmański, G. 2006, MNRAS, 368, 1311 (arXiv:astro-ph/0601026v1): 11099 EB=5384C+2957SD+2758D
- [336] Pápics, P. I., Tkachenko, A., Aerts, C., et al. 2013, A&A, 553, 127 (arXiv:1304.2202): B-type pulsators in 2 SB2 in Kepler field
- [337] Parsons, S. G., Marsh, T. R., Gänsicke, B. T., Drake, A. J., & Koester, D. 2011, ApJ, 735, L30: CSS 41177
- [338] Parsons, S. G., Marsh, T. R., Gänsicke, B. T., & Tappert, C. 2011, MNRAS, 412, 2563 (arXiv:1011.5235): QS Vir
- [339] Pazhouhesh, R., Liakos, A., & Niarchos, P. 2009, preprint, arXiv:0910.2953
- [340] Pedicelli, S., et al. 2010, A&A, 518, 11 (arXiv:1003.3854): d, R for 4 metal-rich Galactic Cepheids
- [341] Pel, J. W. 1978, A&A, 62, 75
- [342] Petterson, O. K. L., Albrow, M. D., & Cottrell, P. L. 1998, Southern Stars 38, 9
- [343] Petterson, O. K. L., Cottrell, P. L., & Albrow, M. D. 2004, MNRAS, 350, 95
- [344] Pietrzyński, G., et al. 2010, Nature, 468, 542
- [345] Pietrzyński, G, Thompson, I. B., Gieren, W., et al. 2012, Nature, 484, 75 (arXiv:1204.1872)
- [346] Pigulski, A. 2005, in ASP Conf. Ser. 349, Astrophysics of Variables, eds. C. Sterken & C. Aerts (San Francisco: ASP), p.137: Overview of pulsating components in multiple systems
- [347] Pigulski, A., & Michalska, G. 2007, Acta Astron., 57, 61 (astro-ph/0703614): 9 oEA
- [348] Pigulski, A., & Pojmański G. 2007, IAUS, 240, 456: 4 BCEP in E from ASAS-3
- [349] Pigulski, A., Pojmański G., Pilecki, B. & Szczygiel, D. M., 2009, AcA, 59, 33
- [350] Pilecki B. & Szczygiel D. M. 2007, IBVS, No.5768 (arXiv:0705.1662): 13 from ASAS
- [351] Pont, F., Mayor, M., & Burki, G. 1994, A&A, 285, 415
- [352] Pont, F., Queloz, D., Bratschi, P., & Mayor, M. 1996, A&A, 318, 416
- [353] Pop, A., & Turcu, V. 1993, Ap&SS, 204, 233
- [354] Popper, D. M. 1988, AJ, 95, 190
- [355] Poretti, E., et al. 2002, A&A, 382, 157
- [356] Prada Moroni, P. G., Gennaro, M., Bono, G., et al. 2012, ApJ, 749, 108 (arXiv:1202.2855): eclipsing binary Cepheid CEP0227 in LMC
- [357] Proust, D., Ochsenbein, F., & Pettersen, B. R. 1981, A&AS, 44, 179
- [358] Prša, A., Guinan, E. F., Devinney, E. J., & Engle, S. G. 2008, A&A, 489, 1209 (arXiv:0808.3560)
- [359] Prša, A., Batalha, N., Slawson, R. W., et al. 2011, AJ, 141, 83 (arXiv:1006.2815v2): Catalog of 1879 Kepler EBs (Data Release I)
- [360] Qian, S.-B., et al. 2009, ApJ, 695, L163: HS 0705+6700
- [361] Qian, S.-B., et al. 2010, ApJ, 708, L66: DP Leo
- [362] Qian, S.-B., et al. 2012, ApJ, 745, L23: Circumbinary Planets Orbiting NY Vir
- [363] Rabinowitz, D., et al. 2011, ApJ, 732, 51 (arXiv:1103.0449): LSQ172554.8-643839
- [364] Ramsay G., Brooks A., Hakala P. et al. 2014, MNRAS, 437, 132
- [365] Rappaport S., Deck K., Levine A., et al. 2013, ApJ, 768, 33
- [366] Rastorgouev, A. S., Gorynya, N. A., & Samus, N. N. 1997, in Binary Stellar Systems, ed. A.G. Massevich (Moscow, Kozmosinform), p.123
- [367] Randall, S. K., et al. 2005, ApJ, 633, 460
- [368] Reed, M. D., Brondel, B. J., & Kawaler, S. D. 2005, ApJ, 634, 602: Eclipse Mapping
- [369] Reed, M. D., et al. 2004, MNRAS, 348, 1164
- [370] Reed, M. D., et al. 2006, BaltA, 15, 269: KPD 1930+2752
- [371] Reed, M. D., et al. 2011, MNRAS, 412, 371 (arXiv:1011.0387): KPD 1930+2752
- [372] Reig, P., et al. 2009, A&A, 497, 1073
- [373] Reig, P. & Zezas, A. 2014, MNRAS, 442, 472 (arXiv:1405.1154): IGR J21343+4738
- [374] Renson P. & Manfroid J., 2009, A&A, 498, 961
- [375] Renson P., Gerbaldi M. & Catalano F.A., 1991, A&AS, 89, 429
- [376] Rodríguez, E., & Breger, M. 2001, A&A, 366, 178: analysis of δ Sct catalog
- [377] Rodríguez, E., et al. 1995, MNRAS, 277, 965: RS Gru, RY Lep
- [378] Rodríguez, E., et al. 1998, A&A, 340, 196: AB Cas
- [379] Rodríguez, E., et al. 1999, DSSN, 13, 18
- [380] Rodríguez, E., et al. 2004a, MNRAS, 347, 1317: RZ Cas
- [381] Rodríguez, E., et al. 2004b, MNRAS, 353, 310

- [382] Rodríguez, E., et al. 2004c, CoAst, 145, 81
- [383] Rodríguez, E., et al. 2004d, CoAst, 145, 84
- [384] Rodríguez, E., et al. 2007, CoAst, 150, 63
- [385] Rodríguez, E., et al. 2010, MNRAS, 408, 2149: Y Cam
- [386] Russo, G., Sollazzo, C., & Coppola, M. 1981, A&A, 102, 20
- [387] Sandage, A. R., & Tammann, G. A. 1969, ApJ, 157, 683
- [388] Sarty, G. E., et al. 2009, MNRAS, 392, 1242
- [389] Savoury, C. D. J., Littlefair, S. P., Dhillon, V. S., et al. 2011, MNRAS, 415, 2025 (arXiv:1103.2713): 14 eclipsing CVs
- [390] Senyüz, T., & Soydugan, E. 2008, CoAst, 157, 365: EF Her
- [391] Schaffenroth V., et al. 2014, A&A, 570, 70:
- [392] Schaffenroth, V., et al. 2011, in AIP Conf. Proc. 1331, Planetary systems beyond the main sequence, p.174 Analysis of Two Eclipsing Hot Subdwarf Binaries with a Low Mass Stellar and a Brown Dwarf Companion
- [393] Schmidtke, P. C., & Cowley, A. P. 2005, AJ, 130, 2220: Be/X-ray in SMC
- [394] Schrijvers, C., & Telting, J. H. 2002, A&A, 394, 603
- [395] Schuh, S., et al. 2009, CoAst, 159, 91 (arXiv:0901.4885): V391 Pegasi
- [396] Schuh, S., et al. 2010, Ap&SS, 329, 231
- [397] Schwope, A. D., Horne, K., Steeghs, D., & Still, M. 2011, A&A, 531, 34: HU Aqr
- [398] Schwarz, R., et al. 2009, A&A, 496, 833 (arXiv:0901.4902): HU Aqr
- [399] Seeds, M. A. 1972, IBVS, No.625
- [400] Senyüz, T., Soydugan, E. 2014, in Proc. IAU Symp. 301, Precision Asteroseismology, eds. J.A. Guzik, W.J. Chaplin, G. Handler & A. Pigulski, p.483: BG Peg
- [401] Shears, J. H., et al. 2011, JBAA, in press (arXiv:1104.0104): SDSS J081610.84+453010.2
- [402] Shears, J. H., Gansicke, B. T., Brady, S., et al. 2011, New Astron., 16, 311 (arXiv:1011.1594): HS 0417+7445
- [403] Shibahashi, H. & Kurtz, D. W. 2012, MNRAS, 422, 738 (=arXiv:1202.0105 or 2013, ASPC, 479, 503)
- [404] Siebert A., Williams M. E. K., Siviero A., et al. 2011, AJ, 141, 187
- [405] Silvotti, R., et al. 2007, Nature, 449, 189: V391 Peg
- [406] Silvotti, R. et al. 2012, MNRAS, 424, 1752: KIC 6614501 (sdB+WD)
- [407] Sinachopoulos, D., & Gavras, P. 2008, CoAst, 153, 17: WDS 12483-6708
- [408] Siviero, A., et al. 2004, A&A, 417, 1083: V432 Aur
- [409] Skinner, J. N., Thorstensen, J. R., Armstrong, E., & Brady, S. 2011, PASP, 123, 259 (arXiv:1101.1513): SDSS 154453+2553
- [410] Slawson, R. W., Prša, A., Welsh, W. F., et al. 2011, AJ, 142, 160 (arXiv:1103.1659): 2165 Kepler EBs (DATA Release II)
- [411] Smalley B., Kurtz D. W., Smith A. M. S., et al. 2011, A&A, 535, 3
- [412] Smith, M. A. 1985, ApJ, 297, 224: Spica= α Vir
- [413] Smith, M. A., et al. 2004, ApJ, 600, 972: γ Cas
- [414] Smith, M. A., Lopes de Oliveira, R., & Motch, C. 2010, AAS, Vol.41, p.276
- [415] Sódor, Á., De Cat, P., Wright, D. J., et al. 2014, MNRAS, 438, 3535 (arXiv:1312.6307): HD 25558: SB2, SPB+SPB
- [416] Sokolovsky, K., et al. 2010 CoAst, 161, 59: CoRoT 102980178 (arXiv:1006.3050)
- [417] Soszyński, I., et al. 2003, Acta Astron., 53, 93
- [418] Soszyński, I., et al. 2008a, Acta Astron., 58, 153 (arXiv:0807.4182)
- [419] Soszyński, I., et al. 2008b, Acta Astron., 58, 163 (arXiv:0808.2210)
- [420] Soszyński, I., et al. 2010, Acta Astron., 60, 91 (arXiv:1005.3544)
- [421] Soszyński, I., et al. 2011, Acta Astron., 61, 1 (arXiv:1105.6126): first RR Lyr in EB
- [422] Southworth, J. & Copperwheat, C. M. 2011, Obs., 131, 66 (arXiv:1101.2534): 1RXS J180834.7+101041
- [423] Southworth, J., Zima, W., Aerts, C., et al. 2011, MNRAS, 414, 2413 (arXiv:1102.3599): KIC 10661783
- [424] Soydugan, E., et al. 2003, AJ, 126, 1933: AB Cas
- [425] Soydugan, E., et al. 2006a, MNRAS, 370, 2013: first catalog of oEA in DSCT region
- [426] Soydugan, E., et al. 2006b, AN, 327, 905
- [427] Soydugan, E., et al. 2006c, MNRAS, 366, 1289
- [428] Soydugan, E., et al. 2008a, CoAst, 157, 379: EW Boo
- [429] Soydugan, E., et al. 2008b, CoAst, 157, 321
- [430] Soydugan, E., et al. 2009, IBVS, No.5902: DY Aqr, BG Peg
- [431] Soydugan, E., et al. 2010, in ASP Conf. Ser. 435, Binaries Key to Comprehension of the Universe, eds. A. Prša & M. Zejda, p.331: EW Boo, DY Aqr
- [432] Soydugan, E., et al. 2011, NewA, 16, 72: BG Peg
- [433] Soydugan, E., & Kaçar, Y. 2013, AJ, 145, 87: SX Dra (oEA)
- [434] Soydugan, E., Soydugan, E., Kanvermez, Ç., & Liakos, A. 2013, MNRAS, 432, 3278: IO UMa

- [435] Steinfadt, J. D. R., et al. 2008, ApJ, 677, 113: SDSS J143547.87+373338.5
- [436] Steinfadt, J. D. R., et al. 2010, ApJ, 716, 146 (arXiv:1005.1977): NLTT 11748
- [437] Stobie, R. S., & Balona, L. A. 1979, MNRAS, 189, 641
- [438] Sugars, B. J. A., & Evans, N. R. 1996, AJ, 112, 1670
- [439] Sumter, G. C. & Beaky, M. M. 2007, IBVS, No.5798: BO Her
- [440] Svaříček, P. 2008, OEJV, 95, p.16
- [441] Szabados, L. 1988, PASP, 100, 589
- [442] Szabados, L. 1989, Commun. Konkoly Obs. Hung. Acad. Sci., Budapest, No.94
- [443] Szabados, L. 1990, MNRAS, 242, 285
- [444] Szabados, L. 1991, Commun. Konkoly Obs. Hung. Acad. Sci., Budapest, No.96 CoKon96
- [445] Szabados, L. 1992, Obs., 112, 57
- [446] Szabados, L. 1996, A&A, 311, 189
- [447] Szabados, L. 2003a, IBVS, No. 5394: Binaries among Galactic DCEP
- [448] Szabados, L. 2003b, in ASP Conf. Ser. 298, GAIA Spectroscopy, Science and Technology, ed. U. Munari, p.237.
- [449] Szabados, L. 2004, CoAst, 145, 29: new CEP in binaries candidates in the Magellanic Clouds
- [450] Szabados, L., & Pont, F. 1998, A&AS 133, 51
- [451] Tango, W. J., et al. 2009, 396, 842: δ Scorpii
- [452] The Hipparcos Input Catalog 1992, ESA SP-1136
- [453] The Hipparcos and Tycho Catalogue 1997, ESA SP-1200
- [454] Tamajo, E., Munari, U., Siviero A., et al. 2012, A&A, 539, 139 (arXiv:1202.0130): SZ Cam
- [455] Tarasov, A. E., et al. 1995, A&AS, 110, 59
- [456] Telting, J. H., Abbott, J. B. & Schrijivers, C. 2001, A&A, 377, 104
- [457] Telting, J. H., Baran A. S., Nemeth P. et al. 2014, A&A, 570, 129
- [458] Telting, J. H., et al. 2012, A&A, 544, 1 (arXiv:1206.3872): KIC 11558725
- [459] Tempesti, P. 1971, IBVS, No.596
- [460] Tenenbaum P., Christiansen J. L., Jenkins J. M., et al. 2012, ApJS, 199, 24
- [461] Thoul, A., et al. 2003, A&A, 406, 287: EN Lac=16 Lac, seismic modelling
- [462] Thompson S. E., Everett M., Mullally F., et al. 2012, ApJ, 753, 86
- [463] Tkachenko A., Aerts C., Yakushechkin A., et al. 2013, A&A, 556, 52
- [464] Tkachenko A., Lehmann H., Smalley B., et al. 2012, MNRAS, 422, 2960
- [465] Torres, K. B. V., et al 2011, A&A, 525, 50: theta2 Tau
- [466] Tuthill, P. G., et al. 2008, ApJ, 675, 698 (arXiv:0712.2111): WR 104
- [467] Turcu, V., Pop, A., & Moldovan, O. 2008, IBVS, No.5826: Y Leonis
- [468] Turner, D. G., Katichuck, R., & Holaday, J. 2014, JAVSO, 42, 134: EY Ori, FO Ori, X Tri
- [469] Turner, D. G., Pedreros, M. H., & Walker, A. R. 1998, AJ, 115, 1958
- [470] Turner, D. G., van den Bergh, S., Younger, F., Danks, T. A., & Forbes, D. 1993, ApJS 85, 119
- [471] Turner, D. G., et al. 2007, PASP, 119, 1247
- [472] Udalski, A., et al. 1999, Acta Astron., 49, 223: OGLE project
- [473] Usenko, I.A. 1990, Kinem. i Fiz. Neb. Tel., 6, No.3, 91
- [474] Uthas, H., Knigge, C., Long, K. S., Patterson, J., & Thorstensen, J. 2011, MNRAS, 414, L85 (arXiv:1104.1180)
- [475] Uytterhoeven K., Moya A., Grigahcene A., et al. A&A, 534, 125
- [476] Van Grootel, V., Charpinet, S., Fontaine, G., & Brassard, P. 2008, A&A, 483, 875
- [477] Van Winckel, H., et al. 2009, A&A, 505, 1221 (arXiv:0906.4482): 6 binary post-AGB
- [478] Van Winckel, H., Hrivnak, B. J., Gorlova, N., et al. 2012, A&A, 542, 53 (arXiv:1203.3416): IRAS 11472-0800
- [479] Vauclair S., 2008, Les Houches Winter School, arXiv:0809.0249
- [480] Vauclair S., 2012, Progress in Solar/Stellar Physics with Helio- and Asteroseismology, Eds. H. Shibahashi, M. Takata, & A.E. Lynas-Gray (San Francisco), ASP Conf., 462, 74
- [481] Vinkó, J. 1991, Ap&SS, 183, 17
- [482] Vinkó, J. 1993, MNRAS, 260, 273
- [483] Vučković, M., et al. 2007, A&A, 471, 605: PG 1336-018(NY Vir)
- [484] Vučković, M., et al. 2008, CoAst, 157, 381
- [485] Wade, R. A., Donley, J., Fried, R., White, R. E., & Saha, A. 1999, AJ, 118, 2442
- [486] Wahlgren, G. M., & Evans, N. R. 1998, A&A, 332, L33
- [487] Welch, D. L., & Evans, N. R. 1989, AJ, 97, 1153
- [488] Weldrake D. T. F., Sackett P. D. & Bridges T. J., 2007, AJ, 133, 1447
- [489] Welsh, W. F., Orosz, J. A., Aerts, C., et al. 2011, ApJS, 197, 4 (arXiv:1102.1730): KOI-54
- [490] Wheelwright, H. E., Oudmaijer, R. D., & Schnerr, R. S. 2009, A&A, 497, 487: β Cep
- [491] Wielen, R., Jahreiss, H., Dettbarn, C., Lenharndt, H., & Schwan, H. 2000, A&A 360, 399
- [492] Willems, B., & Aerts, C. 2002, A&A, 384, 441: HD 177863
- [493] Wils, P., Krajci, T., Hambsch, F.-J., & Muyllaert, E. 2011, IBVS, No.5982 (arXiv:1103.6021): PHL 1445

- [494] Wiśniewski, W. Z. 1971, Acta Astron., 21, 307: RW Ari
- [495] Wisniewski, J. P., et al. 2006, PASP, 118, 820 (arXiv:astro-ph/0605602): MWC 314
- [496] Woodard, E. J. 1972, JAVSO, 1, 68: RW Ari
- [497] Wood, J. H. & Saffer, R. 1999, MNRAS, 305, 82: HW Vir
- [498] Woudt P. A., Warner B., De Bude D., et al. 2012, MNRAS, 421, 2414
- [499] Wyrzykowski, L., et al. 2003, Acta Astron., 53, 1 (arXiv:astro-ph/0304458)
- [500] Wyrzykowski, L., et al. 2004, Acta Astron., 54, 1 (arXiv:astro-ph/0404523)
- [501] Yang, Y.-G. 2010, post-doctoral report (Beijing: NAOC)
- [502] Yang Y.-G., Wei J.-Y., Li H.-L, 2014, AJ, 147, 35: oEA FR Orionis
- [503] Zhang, X.-B., et al. 2009, RAA, 9, 422: IU Per
- [504] Zhang, X.-B., et al. 2013, ApJ, 777, 77: derived $P_{\rm orb}-P_{\rm pul}$ relationship
- [505] Zhang, X.-B., et al. 2014, AJ, 148, 106 (arXiv:1408.0851v1): OO Dra
- [506] Zhou, A.-Y. 2001, IBVS, No.5087: V577 Oph