T-distributed Stochastic Neighbor Embedding (tSNE)

Tuan Nguyen

Ngày 28 tháng 12 năm 2022

Overview

PCA - linear projection

t-SNE introduction

SNE algorithm

t-SNE algorithm

PCA - linear projection

Hình 1: Linearly nonseparable data

PCA - MNIST

tSNE - MNIST

t-SNE

- ► t-SNE is an alternative dimensionality reduction algorithm
- ▶ PCA tries to find a global structure
 - Low dimensional subspace
 - Can lead to local inconsistencies -> Far away point can become nearest neighbors
- ► t-SNE tries to perserve local structure
 - Low dimensional neighborhood should be the same as original neighborhood

SNE

SNE basic idea:

- "Encode" high dimensional neighborhood information as a distribution
- Find low dimensional points such that their neighborhood distribution is similar
- ▶ Intuition: Random walk between data points
 - High probability to jump to a close point
- How do you measure distance between distributions?
 - Most common measure: KL divergence

Neighborhood Distribution

SNF basic idea:

- $lackbox{ }$ Consider the neighborhood around an input data point $x_i \in \mathbb{R}^d$
- ightharpoonup Imagine that we have a Gaussian distribution centered around x_i
- ▶ Then the probability that x_i chooses some other datapoint x_j as its neighbor is in proportion with the density under this Gaussian
- ightharpoonup A point closer to x_i will be more likely than one further away

8 / 20

Probabilities

The probability that point x_i chooses x_i as it neighbor:

$$p_{j|i} = \frac{\exp\left\{-\left\|x^{(i)} - x^{(j)}\right\|^{2} / 2\sigma_{i}^{2}\right\}}{\sum_{k \neq i} \exp\left\{-\left\|x^{(i)} - x^{(k)}\right\|^{2} / 2\sigma_{i}^{2}\right\}}$$
(1)

with $p_{i|i} = 0$

Final distribution over pairs is symmetrized:

$$p_{ij} = \frac{1}{2N}(p_{i|j} + p_{j|i}) \tag{2}$$

Example 1

Example 2

Perplexity

- ▶ The parameter σ_i sets the size of the neighborhood
 - Very low σ_i all the probability is in the nearest neighbor
 - Very high σ_i Uniform weights
- ▶ Here we set σ_i differently for each data point
- ▶ Results depend heavily on σ_i it defines the neighborhoods we are trying to preserve.

Perplexity (cont.)

▶ For each distribution $P_{j|i}$ (depends on σ_i) we define the perplexity

$$perp(P_{j|i}) = 2^{H(P_{j|i})}, H(P) = -\sum_{i} P_{i} \log(P_{i}) \text{ is the entropy}$$
 (3)

- ▶ If P is uniform over k elements perplexity is k
 - Low perplexity = small σ
 - High perplexity = large σ
- ► Values between 5-50 usually work well
- Important parameter different perplexity can capture different scales in the data

Perplexity (cont.)

SNE objective

- ▶ Given $x^{(1)},..,x^{(N)} \in \mathbb{R}^D$ we define the distribution P_{ij}
- ▶ Goal: Find good embedding $y^{(1)},...,y^{(N)} \in \mathbb{R}^d$ for some d < D (normally 2 or 3)
- ▶ For points $y^{(1)},...,y^{(N)} \in \mathbb{R}^d$ we can define distribution Q similarly the same (notice no σ_i and not symmetric)

$$Q_{ij} = \frac{\exp\{-\|y^{(i)} - y^{(j)}\|\}^2}{\sum_{k} \sum_{l \neq k} \exp\{-\|y^{(l)} - y^{(k)}\|^2\}}$$
(4)

▶ Optimize Q to be close to P: Minimize KL - divergence -> to find the embedding (parameter) $y^{(1)},...,y^{(N)} \in \mathbb{R}^d$

Example 2

Measure the distance between two distributions, P and Q:

$$KL(Q||P) = \sum_{ij} Q_{ij} \log\left(\frac{Q_{ij}}{P_{ij}}\right)$$
 (5)

KL Properties:

- ▶ $KL(Q||P) \ge 0$ and zero only when Q = P
- ► KL(Q||P) is a convex function

16 / 20

SNE algorithm

- ▶ We have P, and are looking for $y^{(1)},..,y^{(N)} \in \mathbb{R}^d$ such that the distribution Q we infer will minimize L(Q) = KL(P||Q)
- Note that

$$KL(P||Q) = \sum_{ij} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}}\right) = -\sum_{ij} P_{ij} \log(Q_{ij}) + \text{const}$$
 (6)

Can show that

$$\frac{\partial L}{\partial y^{(i)}} = \sum_{j} (P_{ij} - Q_{ij})(y^{(i)} - y^{(j)})$$
 (7)

► Crowding problem...

Crowding problem

- ► In high dimension we have more room, points can have a lot of different neighbors
- ▶ In 2D a point can have a few neighbors at distance one all far from each other what happens when we embed in 1D?
- ► This is the "crowding problem" we don't have enough room to accommodate all neighbors.
- ► This is one of the biggest problems with SNE.
- ▶ t-SNE solution: Change the Gaussian in Q to a heavy tailed distribution -> if Q changes slower, we have more "wiggle room" to place points at.

18 / 20

Crowding problem (cont.)

t-SNE

t-Distributed Stochastic Neighbor Embedding

- Probability goes to zero much slower then a Gaussian
- ightharpoonup We can now redefine Q_{ij} as

$$Q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|y_k - y_l\|^2)^{-1}}$$
(8)

- \blacktriangleright We use the same P_{ij}
- the gradients of t-SNE objective are

$$\frac{\partial L}{\partial y^{(i)}} = \sum_{j} (P_{ij} - Q_{ij})(y^{(i)} - y^{(j))}(1 + ||y_i - y_j||^2)^{-1}$$
 (9)

