

霍尔效应 (The Hall Effect)

大学物理实验 II (University Physics Experiments)

Outline

- · Introduction
- Applications
- 实验任务
- 操作要点
- 注意事项
- 报告要求
- 讨论题

- · Discovered by
 - Edwin Hall, "On a New Action of the Magnet on Electric Currents", American Journal of Mathematics 2, 3, 287-92 (1879)
 - While working on his doctoral degree
 - 18 years prior to the discovery of the electron.

- The Hall effect: production of a voltage difference $U_{\rm H}$ (the Hall voltage) across a conductor (sample) that is transverse to an applied electric current $I_{\rm H}$ and to an applied magnetic field $B(I_{\rm M})$ perpendicular to $I_{\rm H}$.
- The Lorentz force: F = e [E + (v x B)]

• The magnetic force is $F_m = ev_d B$ where v_d is the drift velocity

 $F_m = F_e = V_H e/W$

The Hall Voltage is:

 V_H = I_SB/ned , where n is the number of charge carriers (载荷子) and e is the electron charge

- The Hall coefficient is defined as $R_H = dV_H / IB$
- Substituting, R_H = -1/ne, K_H = -1/ned
- · The Hall effect is very useful to measure:
 - Carrier density (载荷子密度)
 - Type of charge carrier
 - · Electrons?
 - · Holes? (正离子/空穴载流子)
 - · Combination?
 - Magnetic Field

Applications

- The Hall probe: measurement of large magnetic fields is often performed by making use of the Hall effect. A thin film (~100 μm) Hall probe is placed in the magnetic field (~1 T) and a transverse voltage (~1 μV) is measured.
- Example: a Cu thin film, $n = 8.47 \times 10^{28}$ electrons/m³

Molar mass of copper =
$$63.54\,gm$$
 / mol = $63.54\,x10^{-3}\,kg$ / mol = M Density of copper = $9\,gm$ / cm^3 = $9\,x10^3kg$ / m^3 = ρ Number of free electrons per mol = Avogadro's number = $6.02\,x10^{23}$ / mol = N_A Number of free electrons per unit volume = n

$$n = \frac{mass / m^3 x \ atoms / mol}{mass / mol} = atoms / m^3$$

$$n = \frac{\rho N_A}{M} = 8.5 \times 10^{28} \text{ electrons / } m^3$$

This is a nominal value because the density of copper in electrical wiring cables varies somwhat with processing.

• For I = 1 A, B = 1 T, $d = 100 \times 10^{-6} \text{ m}$, $V_H = 0.737 \times 10^{-6} \text{ V}$

实验任务

$U_H = I_H B(I_M) / ned$

- 用"对称测量法"测量 U_{H} - I_{H} 曲线,计算霍尔元件灵敏度(Calculate the sensitivity of the Hall sensor via the measurement of its U_{H} - I_{H} curve)
- 用"对称测量法"测量 U_{H} - I_{M} 曲线,计算霍尔元件灵敏度(Calculate the sensitivity of the Hall sensor via the measurements of its U_{H} - I_{M} curve)
- 测量电磁铁气隙中磁感应强度B的大小和分布 (Measure an unknown B with the calculated I_H and U_H values)

1. 实验前的操作

- 了解仪器各部分功能,连接好线路;
- 打开及关闭电源开关前,应将工作电流、励磁电流调节旋钮逆时 针旋转到底,使电流最小;
- 为提高霍尔元件测量的准确性,实验前应将霍尔元件预热5分钟, 具体操作如下:闭合工作电流开关,断开励磁电流开关,通入工作电流5 mA,待5分钟后开始实验。

2. 测量霍尔元件灵敏度KH

- 移动二维移动尺, 使霍尔元件处于电磁铁气隙中心位置;
- 设置励磁电流 I_M = 300 mA,通过公式 $B=C \cdot I_M$ 计算并记录电磁铁气隙中的磁感应强度B (C为电磁铁的线圈常数,可从仪器面板上直接读取);
- 自行设计调节工作电流**I**_H的值,要求等间隔调节,且**I**_H的取值区间为**1**.0至**10**.0 m**A**;对每个**I**_H的值,改变**I**_H和**I**_M的方向,测出**U**_H的值。要求按表**1**至少测量**5**组数据。

表 1. 霍尔电压 $U_{\rm H}$ 与工作电流 $I_{\rm H}$ 的关系。 $I_{\rm M} = ___ \, {\rm mA}, \ {\rm C} = ___ \, {\rm mT/A}, \ d \ (霍尔元件厚度) = ___ \, {\rm mm}.$ $U_1 \ ({\rm mV})_{\circ} \quad U_2 \ ({\rm mV})_{\circ} \quad U_3 \ ({\rm mV})_{\circ} \quad U_4 \ ({\rm mV})_{\circ} \quad U_{\rm H} = (|U_1| + |U_2| + |U_3| + |U_4|)/4.$

	I _H (mA).	$U_1 (\mathrm{mV})_{\scriptscriptstyle \mathcal{O}}$	$U_2 (\mathrm{mV})_{\wp}$	U_3 (mV).	$U_4 (\mathrm{mV})_{\wp}$	$U_{\rm H} = (U_1 + U_2 + U_3 + U_4)/4$	٦
		$+I_{\mathrm{M}},+I_{\mathrm{H}^{\circ}}$	$-I_{ m M},+I_{ m H^{\circ}}$	$+I_{ m M},-I_{ m H^{\circ}}$	- $I_{ m M}$, - $I_{ m H^{\wp}}$	(mV) _°	47
	• 42	Þ	¢	₽	ę	47	4

3. 测量U_H与I_M曲线

- 移动二维移动尺, 使霍尔元件处于电磁铁气隙中心位置;
- 设置工作电流I_H = 3.00 mA;
- 自行设计调节励磁电流**I**_M的值,要求等间隔调节,且**I**_M的取值区间为**100**至**1000 m***A*;对每个**I**_M的值,改变**I**_H和**I**_M的方向,测出**U**_H的值。要求按表**2**至少测量**5**组数据。

表 2. 霍尔电压 $U_{\rm H}$ 与励磁电流 $I_{\rm M}$ 之间的关系。

 $I_{\rm H} =$ ____mA,C = ___mT/A,d(霍尔元件厚度)= ____mm

	U ₁ (mV).	$U_2 (\mathrm{mV})_{\wp}$	U ₃ (mV).	U ₄ (mV)	$U_{\rm H} = (U_1 + U_2 + U_3)$	D
$I_{\mathrm{M}}(\mathrm{mA})_{\scriptscriptstyle{\mathcal{O}}}$	$+I_{\mathrm{M}},+I_{\mathrm{H}^{\wp}}$	$-I_{ m M},+I_{ m H^{\circ}}$	$+I_{ m M}$, $-I_{ m H^{\circ}}$	- $I_{ m M}$, - $I_{ m H}$ $^{\circ}$	$+ U_4)/4$.	(mT)
					(mV)	
• 43	₽	47	ته	₽	43	Ð

- 4. 测量电磁体气隙中磁感应强度B的大小和分布
 - 设置I_M = 600 mA, I_H = 5.00 mA;
 - 调节二维移动尺的垂直标尺,使霍尔元件处于电磁铁气隙垂直方向的中心位置;
 - 调节水平标尺,从O刻度开始,改变I_H和I_M的方向,测出U_H的值;并根据K_{H2}计算出磁感应强度;要求水平位置X范围覆盖[0,50] mm,且至少测量15个点,以达到更好地描绘磁感应强度B的分布特征。建议[0,10]和[40,50]每2 mm获取一个点,[15,35]每5 mm.

表 3. 电磁铁气隙中磁感应强度 B 的分布。

$$I_{\rm H} = \underline{\hspace{1cm}} mA$$
, $I_{\rm M} = \underline{\hspace{1cm}} mA$, $C = \underline{\hspace{1cm}} mT/A_{\rm m}$

	$X(mm)_{\scriptscriptstyle{arphi}}$	$U_1 (\mathrm{mV})_{\scriptscriptstyle arphi}$	$U_2 (\mathrm{mV})_{\wp}$	U ₃ (mV).	U ₄ (mV).	$U_{\rm H} = (U_1 + U_2 + U_3 + U_4)/4$		
		$+I_{\mathrm{M}}$, $+I_{\mathrm{H}^{\wp}}$	$-I_{ m M}, +I_{ m H^{\circ}}$	$+I_{ m M},-I_{ m H^{o}}$	- $I_{ m M}$, - $I_{ m H^{\wp}}$	$(mV)_{c}$	B (mT)	
	• 4	₽	₽	ą.	₽	Ş	ą.	

注意事项

- 1. 霍尔元件及二维移动尺容易折断和变形,应注意避免使其受挤压或碰撞等;
- 2. 为避免使电磁体因过热而影响测量精度或受损,除在短时间内读取有关数据时通以励磁电流外,其余时间最好断开励磁电流开关。

报告要求

- 1. 画U_H-I_H曲线,用最小二乘法计算斜率K₁,计算霍尔元件 灵敏度K_{H1};
- 2. 画U_H-I_M曲线,用最小二乘法计算斜率K₂,计算霍尔元件 灵敏度K_{H2};
- 3. 画B-X图,描述电磁铁气隙内X方向上B的分布特征。

讨论题

- 1. 根据B、I_H和U_H方向判断本实验霍尔片的导电类型(N或P型半导体),要求画图说明。(注: N型半导体中,载流子为电子; P型半导体中将载流子视为正离子)
- 2. 估算本实验所用霍尔片的载流子密度。

References

- · 哈尔滨工业大学(深圳)2018年春季班大学物理实验指导书 v1.4
- C. R. Nave, Hyper Physics, http://hyperphysics.phyastr.gsu.edu/hbase/magnetic/Hall.html#c1, retrieved on May 16, 2018
- Wikipedia https://en.wikipedia.org/wiki/Hall_effect, retrieved on May 16, 2018