Two-Echelon Multicommodity Location Model

Sets

- I = set of production plants; (index i)
- J = set of potential Distribution Centers (DCs); (index j)
- R = set of demand nodes; (index r)
- K = set of homogeneous commodities; (index k)

Parameters

- -p = maximum number of DCs that can be opened;
- c_{ijr}^k = unit transportation cost of commodity $k \in K$ from plant node $i \in I$ to demand node $r \in R$ across DC $j \in J$;
- $d_r^k = \text{demand of commodity } k \in K \text{ from demand node } r \in R;$
- p_i^k = maximum quantity of commodity $k \in K$ that can be manufactured by plant $i \in I$:
- q_i^- = minimum activity level of potential DC $j \in J$;
- q_j^+ = maximum activity level of potential DC $j \in J$;
- f_j = fixed cost of potential DC $j \in J$;
- $g_i = \text{marginal cost of potential DC } j \in J;$

Variables

$$z_j = \begin{cases} 1 & \text{if DC } j \in J \text{ is opened} \\ 0 & \text{otherwise} \end{cases}$$

$$y_{jr} = \begin{cases} 1 & \text{if demand node } r \in R \text{ is assigned to DC } j \in J \\ 0 & \text{otherwise} \end{cases}$$

- $s_{ijr}^k =$ amount of commodity $k \in K$ transported from plant node $i \in I$ to demand node $r \in R$ across DC $j \in J$;

The following feasibility condition must hold:

$$\sum_{i \in I} p_i^k \ge \sum_{r \in R} d_r^k \quad k \in K$$

TEMC Mathematical Formulation

$$\sum_{i \in I} \sum_{j \in J} \sum_{r \in R} \sum_{k \in K} c_{ijr}^k \cdot s_{ijr}^k + \sum_{j \in J} \left(f_j \cdot z_j + g_j \cdot \sum_{r \in R} \sum_{k \in K} d_r^k \cdot y_{jr} \right)$$

$$\sum_{i \in J} \sum_{r \in R} s_{ijr}^k \le p_i^k \quad i \in I, \ k \in K$$
 (1)

$$\sum_{i \in I} s_{ijr}^k = d_r^k \cdot y_{jr} \quad j \in J, r \in R, k \in K$$
 (2)

$$\sum_{j \in J} y_{jr} = 1 \quad r \in R \tag{3}$$

$$q_j^- \cdot z_j \le \sum_{r \in R} \sum_{k \in K} d_r^k \cdot y_{jr} \le q_j^+ \cdot z_j \quad j \in J$$
 (4)

$$\sum_{j \in J} z_j = p \tag{5}$$

$$z_j \in \{0, 1\} \quad j \in J \tag{6}$$

$$y_{jr} \in \{0,1\} \quad j \in J, r \in R \tag{7}$$

$$s_{ijr}^k \ge 0 \quad i \in I, \ j \in J, \ r \in R, \ k \in K$$

$$\tag{8}$$

Demand Allocation Problem

If a set \overline{z} $j \in J$ and \overline{y}_{jr} , $j \in J$, $r \in R$ of feasible values is available, you just have to solve the following LP problem in order to determine the optimal demand allocation:

$$\sum_{i \in I} \sum_{j \in J} \sum_{r \in R} \sum_{k \in K} c_{ijr}^k \cdot s_{ijr}^k$$

$$\sum_{j \in J} \sum_{r \in R} s_{ijr}^k \le p_i^k \quad i \in I, \ k \in K$$

$$\sum_{i \in I} s_{ijr}^k = d_r^k \cdot \overline{y}_{jr} \quad j \in J, \, r \in R, \, k \in K$$

$$s_{ijr}^k \geq 0 \quad i \in I, \, j \in J, \, r \in R, \, k \in K$$