Data Report

1. Question

How has the adoption of electric vehicles influenced energy grids and infrastructure development in North American cities?

2. Data Sources

2.1. Estimated U.S. Consumption of Electricity by Light-Duty Electric Vehicle Types

• Why Chosen:

• Provides historical and current data on electricity consumption specific to electric vehicles (EVs), essential for analyzing the impact on energy grids.

Source Information:

- Provider: U.S. Energy Information Administration (EIA)
- o Access Link: EIA Table D1 Excel File

Data Content:

- Monthly and annual estimates of electricity consumption by different types of light-duty EVs across the United States.
- o Includes data on energy consumption patterns, which can be correlated with EV adoption rates.

Structure and Quality:

- Data is organized in an Excel file with a single sheet containing annual and monthly data.
- Very concise data, only limited to the year 2022 and 2024. Sourced from a reputable government agency.

License and Usage Rights:

- License: Public Domain (as per EIA's data usage policy)
- License Details: EIA Terms of Use https://www.eia.gov/about/copyrights reuse.php
- Obligations and Compliance:
 - Free to use with proper attribution.
 - Plan to cite EIA as the data source in all project materials.

2.2. Alternative Fuel Stations API

Why Chosen:

 Offers real-time data on the location and characteristics of electric charging stations, reflecting infrastructure development in response to EV adoption.

Source Information:

- Provider: National Renewable Energy Laboratory (NREL)
- Access Link: NREL Alternative Fuel Stations API https://developer.nrel.gov/docs/transportation/vehicles-v1/

Data Content:

 Information on electric vehicle charging stations, including location, operational status, and station details across North America. Facilitates analysis of infrastructure growth and distribution patterns.

Structure and Quality:

- o Data is accessible via API in JSON format, enabling automated and up-to-date data retrieval.
- o Maintained by a reputable institution, ensuring reliability and accuracy.

License and Usage Rights:

- o License: NREL Data License
- Obligations and Compliance:
 - Requires attribution and adherence to usage guidelines.
 - Plan to include NREL attribution and comply with rate limits and other terms.

3. Data Pipeline

3.1. High-Level Description

• Technologies Used:

- Programming Language: Python
- Libraries: Pandas, Requests, JSON
- Tools: Jupyter Notebook for development and testing

3.2. Data Extraction

EIA Excel Data:

- o Automated download of the Excel file from the EIA website.
- Used pandas.read_excel() to load data into DataFrames.

• NREL API Data:

- Utilized the Requests library to make API calls.
- Parsed JSON responses to extract relevant data fields.

3.3. Data Transformation and Cleaning

Transformations Applied:

- O EIA Data:
 - Standardized date formats to datetime objects.
 - Renamed columns for consistency.
 - Filtered data to include only relevant vehicle types and time frames.

NREL API Data:

- Extracted necessary fields such as station location, status, and capacity.
- Converted location data into geospatial formats if needed.

• Reasons for Transformations:

- o To ensure compatibility between datasets.
- Facilitate accurate merging and analysis.
- Improve data quality by handling inconsistencies and missing values.

3.4. Challenges and Solutions

- Issue: Inconsistent date formats in the Excel data.
 - **Solution:** Implemented a function to parse and standardize date formats.
- **Issue:** API rate limits causing incomplete data retrieval.
 - o **Solution:** Added error handling and retry logic, implemented caching where appropriate.
- **Issue:** Missing or null values in key data fields.
 - Solution: Applied data imputation techniques and filtered out unreliable records.

3.5. Meta-Quality Measures

- Error Handling:
 - Used try-except blocks to catch and log errors during data fetching and processing.
- Data Validation:
 - o Implemented checks for data completeness and correctness after each transformation step.
- Adaptability:
 - Designed the pipeline to handle changes in input data structure by dynamically reading headers and schema.

4. Results and Limitations

4.1. Output Data Description

- Final Dataset:
 - A merged dataset combining EV electricity consumption data with charging infrastructure details.
 - o Contains time-series and geospatial components for comprehensive analysis.
- Data Structure:
 - Columns: Date, Electricity Consumption, Number of Charging Stations, Location Coordinates, Station Capacity, etc.
 - Format: Stored as a SQLite database for scalability and ease of access.

4.2. Data Format Choice

- SQLite Database:
 - Allows for efficient querying and data manipulation.
 - Handles larger datasets without the overhead of a full-fledged database server.

4.4. Critical Reflection and Potential Issues

- Data Limitations:
 - Geographical Scope: Some datasets may lack granularity at the city level.
 - o **Temporal Alignment:** Discrepancies in data update frequencies between sources.
- Anticipated Challenges:
 - Data Integration: Merging datasets with differing structures and levels of detail.
 - o Biases: Possible overrepresentation or underrepresentation of certain regions due to data availability.