Forecasting rice prices in the Philippines (initial results)

Vidal Marvin Gabriel

Data Analytics Specialist

April 21, 2021

Outline of the presentation

- Introduction
- Methodology
- Results
- What to do next?

Objective

- ▶ Model rice prices in the Philippines
- ▶ Forecast rice prices in the Philippines

Proposed models

- Artificial Neural Networks (Can work with multivariate inputs)
- Support Vector Machines (Can work with multivariate inputs)
- ARIMA (univariate)
- VECM

Data to be used

- Total Stock
- Household Stock
- Commercial Stock
- NFA stock
- ▶ Rice inflation Datasource: PSA, 1995 to 2020

Methodology - ANN

- Inputs:
 - ► For univariate, 3 previous data points = previous 3 months
 - ► For multivariate, 3 previous data points and other possible time series (features)

Features will be selected based on correlation coefficient.

- ▶ 1 to 2 hidden layers will vary based on performance.
- ► Each hidden layer will have 5 to 50 nodes will vary based on performance.
- Activation function tanh; Optimizer gradient descent
- ▶ 8 iterations/loops will be done to choose the most optimal regressor.

Methodology - SVM

- Inputs:
 - ► For univariate, previous data point = previous month
 - ► For multivariate, previous data point and other possible time series (features)
 - Features will be selected based on correlation coefficient.
- Grid search to look for parameters will look for different combinations of the parameters of SVM
- Kernel radial base function

Methodology - ARIMA

- Univariate rice inflation
- Grid search to look for parameters will look for different combinations of the parameters of ARIMA

Methodology - VECM

- ▶ Lag selection automated
- Check for cointegration

Performance metric

- RMSE 3 data points
- ► MAE 3 data points
- Confusion matrix proposed metric

Results

Results

Model	RMSE	MAE		
ARIMA	0.9	0.9		
VECM	0.4	0.4		
SVM_uni	1.3	1.2 0.3		
SVM_mul	0.3			
ANN_{uni}	0.7	0.6		
ANN_mul	0.5	0.5		
Performance metrics score.				

Confusion matrix

- Recall/True positive rate proportion of actual positives was identified correctly.
- ▶ Precision proportion of positive idenfications was actually correct.
- ▶ F1 score weighted average of precision and recall.

Confusion matrix identifier

Dichotomous data: 1 - when the model predicted higher inflation than previous inflation and actual inflation is higher than previous inflation; 0 - when the model predicted lower inflation than previous inflation but in actual inflation is higher than previous inflation.

Model	Recall	Precision	F1
ANN_uni	0.8	0.6	0.7
Confusion matrix trial run.			

What to do next?

- ▶ Include confusion matrix (upon approval)
- Documentation

Thank You!

Questions?