Hirschberg's algorithm

MPA-PRG: Programming in Bioinformatics

Exercise 5

Sequence alignment

- inputs:
 - two sequences $(A = a_1 a_2 ... a_m \text{ and } B = b_1 b_2 ... b_n)$
 - scoring system match/mismatch scores and gap penalty

- global alignment Needleman-Wunsch algorithm
- local alignment Smith-Waterman algorithm

- time complexity O(mn)
- space complexity O(mn)

Scoring matrix

В

	S	j	A	A	G	G	T	A	T	G	A	A	T	С
	i	0	1	2	3	4	5	6	7	8	9	10	11	12
, [A	1												
	A	2												
	С	3												
	Ð	4												
	Т	5												
	T	6												
	G	7												
	A	8												

best alignment between prefix a1..a4 and prefix b1..b4

Linear space alignment

В

	S	j	A	A	G	G	T	A	T	G	A	A	T	С
	i	0	1	2	3	4	5	6	7	8	9	10	11	12
۱ [A	1												+
	A	2												+
	С	3												+
	G	4			†									
	T	5												
	Ŧ	6												
	G	7												
	A	8												

We need only three values:

$$S(i - 1, j)$$

 $S(i - 1, j - 1)$
 $S(i, j - 1)$

Therefore we only need to keep previous and current row in memory.

Linear space alignment

- Given sequences A and B we can in linear time score alignment of:
 - A with every prefix of B
 - every prefix of A with B
 - a particular prefix of A with every prefix of B
 - a particular suffix of A with every sufix of B

Alignment between prefixes of A and B

Best scores between A and all prefixes of B

Alignment between prefixes of A and B

Best scores between all prefixes A and B

Alignment between prefixes of A and B

Score of optimal alignment between all prefixes A and a prefix of B

Best scores between all prefixes A and B

Alignment between suffixes of A and B

В

	S	j	A	A	U	G	T	A	T	U	A	A	Т	U	
	i	0	1	2	3	4	5	6	7	8	9	10	11	12	
, [A	1													8
	A	2													7
	С	3													6
	G	4													5
	Т	5													4
	Т	6	+												3
	G	7	+												2
	A	8	+												1
			12	11	10	9	8	7	6	5	4	3	2	1	0

The same principle as for scoring of prefixes

Best alignment between suffix a5..a8 and suffix b5..b12

Path through scoring matrix

Path goes through middle row

Path through scoring matrix

Finding the actual alignment is equivalent to finding all cells that optimal path passes through

Hirschberg's algorithm

Hirschberg's algorithm

- for global alignment of two sequnces
- uses divide and conquer, dynamic programming and linear-space

Complexity

Algorithm	Time complexity	Space complexity				
Needleman-Wunsch	$O(m \cdot n)$	$O(m \cdot n)$				
Hirschberg	$O(m \cdot n)$	O(m+n)				

Example

- sequence 1: AGTACGCA
- sequence 2: TATGC
- match = 2
- mismatch = -1
- gap = -2

Example

- sequence 1: TACGAGGCA
- sequence 2: ACGGA
- match = 3
- mismatch = 1
- gap = -3

Task

• Implement Hirschberg's algorithm