# <u>Assignment – Clustering and PCA</u> <u>Part 1</u>

**KAVITHA M** 

#### Problem Statement

- ▶ HELP International is an international humanitarian NGO that is committed to fighting poverty and providing the people of backward countries with basic amenities and relief during the time of disasters and natural calamities. It runs a lot of operational projects from time to time along with advocacy drives to raise awareness as well as for funding purposes.
- ▶ After the recent funding programmes, they have been able to raise around \$ 10 million. Now the CEO of the NGO needs to decide how to use this money strategically and effectively. The significant issues that come while making this decision are mostly related to choosing the countries that are in the direst need of aid.

## Understanding the data

|                 |                              |                                              |                                                             |                                                                      | income                                                                                    | iiiiidaaaaii                                                                                        | life_expec                                                                                                           | total_fer                                                                                                                           | gdpp                                                                                                                                               |
|-----------------|------------------------------|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Afghanistan     | 90.2                         | 10.0                                         | 7.58                                                        | 44.9                                                                 | 1610                                                                                      | 9.44                                                                                                | 56.2                                                                                                                 | 5.82                                                                                                                                | 553                                                                                                                                                |
| Albania         | 16.6                         | 28.0                                         | 6.55                                                        | 48.6                                                                 | 9930                                                                                      | 4.49                                                                                                | 76.3                                                                                                                 | 1.65                                                                                                                                | 4090                                                                                                                                               |
| Algeria         | 27.3                         | 38.4                                         | 4.17                                                        | 31.4                                                                 | 12900                                                                                     | 16.10                                                                                               | 76.5                                                                                                                 | 2.89                                                                                                                                | 4460                                                                                                                                               |
| Angola          | 119.0                        | 62.3                                         | 2.85                                                        | 42.9                                                                 | 5900                                                                                      | 22.40                                                                                               | 60.1                                                                                                                 | 6.16                                                                                                                                | 3530                                                                                                                                               |
| gua and Barbuda | 10.3                         | 45.5                                         | 6.03                                                        | 58.9                                                                 | 19100                                                                                     | 1.44                                                                                                | 76.8                                                                                                                 | 2.13                                                                                                                                | 12200                                                                                                                                              |
| _               | Albania<br>Algeria<br>Angola | Albania 16.6<br>Algeria 27.3<br>Angola 119.0 | Albania 16.6 28.0<br>Algeria 27.3 38.4<br>Angola 119.0 62.3 | Albania 16.6 28.0 6.55 Algeria 27.3 38.4 4.17 Angola 119.0 62.3 2.85 | Albania 16.6 28.0 6.55 48.6<br>Algeria 27.3 38.4 4.17 31.4<br>Angola 119.0 62.3 2.85 42.9 | Albania 16.6 28.0 6.55 48.6 9930 Algeria 27.3 38.4 4.17 31.4 12900 Angola 119.0 62.3 2.85 42.9 5900 | Albania 16.6 28.0 6.55 48.6 9930 4.49 Algeria 27.3 38.4 4.17 31.4 12900 16.10 Angola 119.0 62.3 2.85 42.9 5900 22.40 | Albania 16.6 28.0 6.55 48.6 9930 4.49 76.3 Algeria 27.3 38.4 4.17 31.4 12900 16.10 76.5 Angola 119.0 62.3 2.85 42.9 5900 22.40 60.1 | Albania 16.6 28.0 6.55 48.6 9930 4.49 76.3 1.65 Algeria 27.3 38.4 4.17 31.4 12900 16.10 76.5 2.89 Angola 119.0 62.3 2.85 42.9 5900 22.40 60.1 6.16 |

Let's convert imports, exports and health spending from percentage values to actual values of their GDP per capita. Because the percentage values don't give a clear picture of that country. For ex. Afghanistan and Albania have similar imports percentage but their gdpp has a huge gap which doesn't give an accurate idea of which country is more developed than the other.

#### Post conversion, data would look like,

|   | country             | child_mort | exports | health   | imports  | income | inflation | life_expec | total_fer | gdpp  |
|---|---------------------|------------|---------|----------|----------|--------|-----------|------------|-----------|-------|
| 0 | Afghanistan         | 90.2       | 55.30   | 41.9174  | 248.297  | 1610   | 9.44      | 56.2       | 5.82      | 553   |
| 1 | Albania             | 16.6       | 1145.20 | 267.8950 | 1987.740 | 9930   | 4.49      | 76.3       | 1.65      | 4090  |
| 2 | Algeria             | 27.3       | 1712.64 | 185.9820 | 1400.440 | 12900  | 16.10     | 76.5       | 2.89      | 4460  |
| 3 | Angola              | 119.0      | 2199.19 | 100.6050 | 1514.370 | 5900   | 22.40     | 60.1       | 6.16      | 3530  |
| 4 | Antigua and Barbuda | 10.3       | 5551.00 | 735.6600 | 7185.800 | 19100  | 1.44      | 76.8       | 2.13      | 12200 |
|   |                     |            |         |          |          |        |           |            |           |       |

<class 'pandas.core.frame.DataFrame'> RangeIndex: 167 entries, 0 to 166 Data columns (total 10 columns): country 167 non-null object child mort 167 non-null float64 exports 167 non-null float64 health 167 non-null float64 imports 167 non-null float64 income 167 non-null int64 inflation 167 non-null float64 life expec 167 non-null float64 total\_fer 167 non-null float64 gdpp 167 non-null int64 dtypes: float64(7), int64(2), object(1) memory usage: 13.1+ KB

#### Basic data cleaning checks

| country      | 0 |
|--------------|---|
| child_mort   | 0 |
| exports      | 0 |
| health       | 0 |
| imports      | 0 |
| income       | 0 |
| inflation    | 0 |
| life_expec   | 0 |
| total_fer    | 0 |
| gdpp         | 0 |
| dtype: int64 |   |

#### Checking for correlation...

| mont          | 1          | -0.3    | -0.43  | -0.32   | -0.52  | 0.29      | -0.89      | 0.85      | -0.48 |
|---------------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|
| xports child  | -0.3       | 1       | 0.61   | 0.99    | 0.73   | -0.14     | 0.38       | -0.29     | 0.77  |
| health e      | -0.43      | 0.61    | 1      | 0.64    | 0.69   | -0.25     | 0.55       | -0.41     | 0.92  |
| imports       | -0.32      | 0.99    | 0.64   | 1       | 0.67   | -0.18     | 0.4        | -0.32     | 0.76  |
| ncome ir      | -0.52      | 0.73    | 0.69   | 0.67    | 1      | -0.15     | 0.61       | -0.5      | 0.9   |
| flation i     | 0.29       | -0.14   | -0.25  | -0.18   | -0.15  | 1         | -0.24      | 0.32      | -0.22 |
| expec in      | -0.89      | 0.38    | 0.55   | 0.4     | 0.61   | -0.24     | 1          | -0.76     | 0.6   |
| tal_fer_life_ | 0.85       | -0.29   | -0.41  | -0.32   | -0.5   | 0.32      | -0.76      | 1         | -0.45 |
| ot qqbg       | -0.48      | 0.77    | 0.92   | 0.76    | 0.9    | -0.22     | 0.6        | -0.45     | 1     |
|               | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  |

A lot of highly correlated variables exist, hence the usage of PCA is justified. Now let's proceed to doing it on the dataset

# The final matrix would only contain the data columns. Hence let's drop the country column

|   | child_mort | exports | health   | imports  | income | inflation | life_expec | total_fer | gdpp  |
|---|------------|---------|----------|----------|--------|-----------|------------|-----------|-------|
| 0 | 90.2       | 55.30   | 41.9174  | 248.297  | 1610   | 9.44      | 56.2       | 5.82      | 553   |
| 1 | 16.6       | 1145.20 | 267.8950 | 1987.740 | 9930   | 4.49      | 76.3       | 1.65      | 4090  |
| 2 | 27.3       | 1712.64 | 185.9820 | 1400.440 | 12900  | 16.10     | 76.5       | 2.89      | 4460  |
| 3 | 119.0      | 2199.19 | 100.6050 | 1514.370 | 5900   | 22.40     | 60.1       | 6.16      | 3530  |
| 4 | 10.3       | 5551.00 | 735.6600 | 7185.800 | 19100  | 1.44      | 76.8       | 2.13      | 12200 |

#### Rescaling data in order to perform PCA

```
array([ 1.29153238, -0.4110113 , -0.56503989, ..., -1.61909203,
        1.90288227, -0.67917961],
       [-0.5389489 , -0.35019096, -0.43921769, ..., 0.64786643,
       -0.85997281, -0.48562324],
       [-0.27283273, -0.31852577, -0.48482608, ..., 0.67042323,
        -0.0384044 , -0.46537561],
       . . . .
       [-0.37231541, -0.36146329, -0.53848844, ..., 0.28695762,
       -0.66120626, -0.63775406],
       [ 0.44841668, -0.39216643, -0.55059641, ..., -0.34463279,
        1.14094382, -0.63775406],
       [ 1.11495062, -0.38395214, -0.54049845, ..., -2.09278484,
         1.6246091 , -0.62954556]])
```

#### **Applying PCA..**

```
#let's apply PCA
pca.fit(dat2)

PCA(copy=True, iterated_power='auto', n_components=None, random_state=42,
    svd_solver='randomized', tol=0.0, whiten=False)
```

#### List of PCA components. It would be the same as the number of variables

```
array([[-0.31639186, 0.34288671, 0.358535 , 0.34486492, 0.38004113,
       -0.14308531, 0.34385651, -0.30284224, 0.39998795],
      [ 0.47626735, 0.39731091, 0.1550529 , 0.37078075, 0.12838448,
        0.22126089, -0.36981973, 0.4597152, 0.2006241],
      [-0.15001225, -0.03057367, -0.07570322, -0.07217386, 0.14576421,
        0.94841868, 0.19675173, -0.07783431, 0.01033941],
      [-0.14805195, 0.44942527, -0.59971228, 0.46179779, -0.15480592,
       -0.00762798, -0.01839465, -0.21392805, -0.36477239],
      [ 0.1019948 , -0.03853829, -0.49319984, -0.2527867 , 0.79407469,
       -0.13642345, -0.15404105, -0.02033568, 0.08750149],
      [ 0.19658519, -0.03891112, 0.18069888, -0.01217988, -0.03814681,
        0.10840284, -0.58600986, -0.75390075, 0.04538167],
      [ 0.76126725, -0.01366973, -0.06461567,  0.02718244, -0.02311312,
       -0.02207663, 0.58120846, -0.27314534, -0.04402264],
      [ 0.00644411, -0.05526371, 0.43007213, 0.1311355 , 0.3938113 ,
       -0.00607016, 0.002966 , 0.03429334, -0.79902242],
      [-0.00495137, -0.71792388, -0.13034593, 0.66568664, 0.07901102,
        0.01128137, -0.03159406, 0.02368185, 0.12846398]])
```

#### checking the variance ratios

```
array([5.89372984e-01, 1.84451685e-01, 9.91147170e-02, 6.07227801e-02, 3.02917253e-02, 2.45982702e-02, 9.39743701e-03, 1.55641971e-03, 4.93981394e-04])
```

#### Cumulative Variance VS Number of components



Clearly over 90% of the data is properly explained by the first 3 principal components. Let's use them only for our clustering process

#### Checking the 1<sup>st</sup> 3 components..

|   | Feature    | PC1       | PC2       | PC3       |
|---|------------|-----------|-----------|-----------|
| 0 | child_mort | -0.316392 | 0.476267  | -0.150012 |
| 1 | exports    | 0.342887  | 0.397311  | -0.030574 |
| 2 | health     | 0.358535  | 0.155053  | -0.075703 |
| 3 | imports    | 0.344865  | 0.370781  | -0.072174 |
| 4 | income     | 0.380041  | 0.128384  | 0.145764  |
| 5 | inflation  | -0.143085 | 0.221261  | 0.948419  |
| 6 | life_expec | 0.343857  | -0.369820 | 0.196752  |
| 7 | total_fer  | -0.302842 | 0.459715  | -0.077834 |
| 8 | gdpp       | 0.399988  | 0.200624  | 0.010339  |

#### Plotting the 1<sup>st</sup> 3 components...



A lot of variables have a good loading score on the first principal component. Similarly Child mortality and total fertility is well explained by the 2nd principal component.

# Creating the newer matrix according to the given principal components

| 59 |
|----|
| 01 |
| 67 |
| 87 |
| 03 |
| 8  |

# Checking for outliers.. – Principal Component 1



# Checking for outliers.. – Principal Component 2



# Checking for outliers.. – Principal Component 3



## Checking the spread of dataset



## Stepping into clustering...

As we checked previously the dataset looks of similar magnitude. Hence no further standardization is necessary. Let's proceed to calculating the Hopkins statistic to ensure that the data is good for clustering.

```
#Let's check the Hopkins measure
hopkins(pcs_df2.drop(['country'],axis=1))
0.8286149182127605
```

#### Implementing K-means Clustering



The silhouette score reaches a peak at around 5 clusters indicating that it might be the ideal number of clusters.

#### Using elbow curve to identify cluster number...



A distinct elbow is formed at around 3-7 clusters. Let's finally create the clusters and see for ourselves which ones fare better Implementing K-means with k=5 clusters

# Implementing k-means..

|   | country             | PC1       | PC2       | PC3       | ClusterID |
|---|---------------------|-----------|-----------|-----------|-----------|
| 0 | Afghanistan         | -2.637442 | 1.469038  | -0.541359 | 4         |
| 1 | Algeria             | -0.457626 | -0.673301 | 0.961867  | 3         |
| 2 | Antigua and Barbuda | 0.649849  | -1.024374 | -0.250103 | 1         |
| 3 | Argentina           | 0.037197  | -0.680889 | 1.466963  | 3         |
| 4 | Armenia             | -0.332692 | -1.274517 | 0.176636  | 1         |

## Visualizing clusters on PC-1



## Visualizing clusters on PC-2



## Visualizing clusters on PC-3



**Even though some distinct clusters are being formed, some are not so good.** Creating the cluster means wrt to the various variables mentioned in the question and plot and see how they are related

|           | ClusterID | Child_Mortality | Exports      | Imports      | Health_Spending | Income       | Inflation | Life_Expectancy | Total_Fertility | GDPpcapita   |
|-----------|-----------|-----------------|--------------|--------------|-----------------|--------------|-----------|-----------------|-----------------|--------------|
| ClusterID |           |                 |              |              |                 |              |           |                 |                 |              |
| 0         | 0.0       | 5.111538        | 14074.200000 | 13725.319231 | 3335.156154     | 35707.692308 | 1.858577  | 79.838462       | 1.731538        | 34550.000000 |
| 1         | 1.0       | 23.535593       | 2612.041839  | 2876.256629  | 376.153092      | 10690.508475 | 5.770017  | 72.737288       | 2.322034        | 5781.050847  |
| 2         | 2.0       | 66.525000       | 1364.012500  | 966.090000   | 170.390000      | 6171.250000  | 19.887500 | 65.725000       | 4.827500        | 3111.250000  |
| 3         | 3.0       | 15.557143       | 7198.816429  | 4200.612143  | 528.118714      | 29805.000000 | 20.321429 | 73.814286       | 2.307857        | 13610.714286 |
| 4         | NaN       | 72.657692       | 639.146415   | 857.742692   | 126.934292      | 3425.000000  | 5.267500  | 60.619231       | 4.371538        | 1740.615385  |
|           |           |                 |              |              |                 |              |           |                 |                 |              |

## Along child-mortality and income



#### Let's take a look at those countries clusters and try to make sense if the clustering process worked well

|     | country         | child_mort | exports | imports | health  | income | inflation | life_expec | total_fer | gdpp  | ClusterID |
|-----|-----------------|------------|---------|---------|---------|--------|-----------|------------|-----------|-------|-----------|
| 5   | Australia       | 4.8        | 10276.2 | 10847.1 | 4530.87 | 41400  | 1.160     | 82.0       | 1.93      | 51900 | 0         |
| 6   | Austria         | 4.3        | 24059.7 | 22418.2 | 5159.00 | 43200  | 0.873     | 80.5       | 1.44      | 46900 | 0         |
| 8   | Bahamas         | 13.8       | 9800.0  | 12236.0 | 2209.20 | 22900  | -0.393    | 73.8       | 1.86      | 28000 | 0         |
| 9   | Bahrain         | 8.6        | 14386.5 | 10536.3 | 1028.79 | 41100  | 7.440     | 76.0       | 2.16      | 20700 | 0         |
| 23  | Canada          | 5.6        | 13793.4 | 14694.0 | 5356.20 | 40700  | 2.870     | 81.3       | 1.63      | 47400 | 0         |
| 31  | Cyprus          | 3.6        | 15461.6 | 17710.0 | 1838.76 | 33900  | 2.010     | 79.9       | 1.42      | 30800 | 0         |
| 32  | Czech Republic  | 3.4        | 13068.0 | 12454.2 | 1560.24 | 28300  | -1.430    | 77.5       | 1.51      | 19800 | 0         |
| 40  | Finland         | 3.0        | 17879.4 | 17278.8 | 4134.90 | 39800  | 0.351     | 80.0       | 1.87      | 46200 | 0         |
| 41  | France          | 4.2        | 10880.8 | 11408.6 | 4831.40 | 36900  | 1.050     | 81.4       | 2.03      | 40600 | 0         |
| 45  | Germany         | 4.2        | 17681.4 | 15507.8 | 4848.80 | 40400  | 0.758     | 80.1       | 1.39      | 41800 | 0         |
| 47  | Greece          | 3.9        | 5944.9  | 8258.3  | 2770.70 | 28700  | 0.673     | 80.4       | 1.48      | 26900 | 0         |
| 53  | Iceland         | 2.6        | 22374.6 | 18142.7 | 3938.60 | 38800  | 5.470     | 82.0       | 2.20      | 41900 | 0         |
| 58  | Israel          | 4.6        | 10710.0 | 10067.4 | 2334.78 | 29600  | 1.770     | 81.4       | 3.03      | 30600 | 0         |
| 59  | Italy           | 4.0        | 9021.6  | 9737.6  | 3411.74 | 36200  | 0.319     | 81.7       | 1.46      | 35800 | 0         |
| 61  | Japan           | 3.2        | 6675.0  | 6052.0  | 4223.05 | 35800  | -1.900    | 82.8       | 1.39      | 44500 | 0         |
| 77  | Malta           | 6.8        | 32283.0 | 32494.0 | 1825.15 | 28300  | 3.830     | 80.3       | 1.36      | 21100 | 0         |
| 87  | New Zealand     | 6.2        | 10211.1 | 9436.0  | 3403.70 | 32300  | 3.730     | 80.9       | 2.17      | 33700 | 0         |
| 95  | Portugal        | 3.9        | 6727.5  | 8415.0  | 2475.00 | 27200  | 0.643     | 79.8       | 1.39      | 22500 | 0         |
| 103 | Slovak Republic | 7.0        | 12665.8 | 12914.8 | 1459.14 | 25200  | 0.485     | 75.5       | 1.43      | 16600 | 0         |
| 104 | Slovenia        | 3.2        | 15046.2 | 14718.6 | 2201.94 | 28700  | -0.987    | 79.5       | 1.57      | 23400 | 0         |
| 107 | South Korea     | 4.1        | 10917.4 | 10210.2 | 1531.53 | 30400  | 3.160     | 80.1       | 1.23      | 22100 | 0         |

From the clusters it is observed that cluster 2 and 4 have pretty low values of the 4 indicators that we chose. Hence these are the countries that we need to focus



# Trying Hierarchical clustering

▶ Trying single linkage procedure



# Trying Hierarchical clustering

Trying complete linkage procedure instead..



# Now we are seeing some good clusters here. Let's see if they make sense if we eliminate the barriers

|   | country             | PC1       | PC2       | PC3       | ClusterID |
|---|---------------------|-----------|-----------|-----------|-----------|
| 0 | Afghanistan         | -2.637442 | 1.469038  | -0.541359 | 0         |
| 1 | Algeria             | -0.457626 | -0.673301 | 0.961867  | 1         |
| 2 | Antigua and Barbuda | 0.649849  | -1.024374 | -0.250103 | 2         |
| 3 | Argentina           | 0.037197  | -0.680889 | 1.466963  | 1         |
| 4 | Armenia             | -0.332692 | -1.274517 | 0.176636  | 2         |

|   | country             | child_mort | exports | imports  | health   | income | inflation | life_expec | total_fer | gdpp  | ClusterID |
|---|---------------------|------------|---------|----------|----------|--------|-----------|------------|-----------|-------|-----------|
| 0 | Afghanistan         | 90.2       | 55.30   | 248.297  | 41.9174  | 1610   | 9.44      | 56.2       | 5.82      | 553   | 0         |
| 1 | Algeria             | 27.3       | 1712.64 | 1400.440 | 185.9820 | 12900  | 16.10     | 76.5       | 2.89      | 4460  | 1         |
| 2 | Antigua and Barbuda | 10.3       | 5551.00 | 7185.800 | 735.6600 | 19100  | 1.44      | 76.8       | 2.13      | 12200 | 2         |
| 3 | Argentina           | 14.5       | 1946.70 | 1648.000 | 834.3000 | 18700  | 20.90     | 75.8       | 2.37      | 10300 | 1         |
| 4 | Armenia             | 18.1       | 669.76  | 1458.660 | 141.6800 | 6700   | 7.77      | 73.3       | 1.69      | 3220  | 2         |

# Checking for data point count in each cluster formed..

```
2 61
3 26
0 23
1 21
4 2
Name: ClusterID, dtype: int64
```

Cluster 4 doesn't have enough amount of clusters.

#### Visualizing the clusters formed..



#### Final result

We use the clusters formed during K-means clustering to find the countries that we require since Hierarchical clustering is not showing proper clusters here. For K-means part, we got Cluster 2 and 4 might be the ones which has a proper need of aid

## Converting exports, imports and health spending percentages to absolute values.

|   | country             | child_mort | exports | health   | imports  | income | inflation | life_expec | total_fer | gdpp  |
|---|---------------------|------------|---------|----------|----------|--------|-----------|------------|-----------|-------|
| 0 | Afghanistan         | 90.2       | 55.30   | 41.9174  | 248.297  | 1610   | 9.44      | 56.2       | 5.82      | 553   |
| 1 | Albania             | 16.6       | 1145.20 | 267.8950 | 1987.740 | 9930   | 4.49      | 76.3       | 1.65      | 4090  |
| 2 | Algeria             | 27.3       | 1712.64 | 185.9820 | 1400.440 | 12900  | 16.10     | 76.5       | 2.89      | 4460  |
| 3 | Angola              | 119.0      | 2199.19 | 100.6050 | 1514.370 | 5900   | 22.40     | 60.1       | 6.16      | 3530  |
| 4 | Antigua and Barbuda | 10.3       | 5551.00 | 735.6600 | 7185.800 | 19100  | 1.44      | 76.8       | 2.13      | 12200 |
|   |                     |            |         |          |          |        |           |            |           |       |

Let's use the binning with gdpp first to see the list of countries which might be important.

The upper limit that we got from the clustering process was 1700.

Let's filter the complete dataset with 1700 as the cutoff limit for gdpp.

#### After Binning..

|    | country      | child_mort | exports  | health  | imports | income | inflation | life_expec | total_fer | gdpp |
|----|--------------|------------|----------|---------|---------|--------|-----------|------------|-----------|------|
| 0  | Afghanistan  | 90.2       | 55.3000  | 41.9174 | 248.297 | 1610   | 9.440     | 56.2       | 5.82      | 553  |
| 12 | Bangladesh   | 49.4       | 121.2800 | 26.6816 | 165.244 | 2440   | 7.140     | 70.4       | 2.33      | 758  |
| 17 | Benin        | 111.0      | 180.4040 | 31.0780 | 281.976 | 1820   | 0.885     | 61.8       | 5.36      | 758  |
| 25 | Burkina Faso | 116.0      | 110.4000 | 38.7550 | 170.200 | 1430   | 6.810     | 57.9       | 5.87      | 575  |
| 26 | Burundi      | 93.6       | 20.6052  | 26.7960 | 90.552  | 764    | 12.300    | 57.7       | 6.26      | 231  |

len(fin2)

48

#So we got 48 countries here. We can create further sub categories by taking another good clustering indicator.

|       | child_mort | exports    | health     | imports     | income      | inflation | life_expec | total_fer | gdpp        |
|-------|------------|------------|------------|-------------|-------------|-----------|------------|-----------|-------------|
| count | 48.000000  | 48.000000  | 48.000000  | 48.000000   | 48.000000   | 48.000000 | 48.000000  | 48.000000 | 48.000000   |
| mean  | 84.808333  | 242.988282 | 53.166544  | 389.688794  | 2209.229167 | 8.849688  | 60.789583  | 4.552500  | 847.583333  |
| std   | 37.864382  | 208.411190 | 36.338142  | 306.718665  | 1134.428833 | 5.849055  | 7.282776   | 1.382764  | 384.444824  |
| min   | 17.200000  | 1.076920   | 12.821200  | 0.651092    | 609.000000  | 0.885000  | 32.100000  | 1.270000  | 231.000000  |
| 25%   | 61.350000  | 101.630250 | 31.079500  | 175.909500  | 1390.000000 | 4.080000  | 57.175000  | 3.465000  | 551.500000  |
| 50%   | 82.050000  | 150.912000 | 44.388600  | 280.956000  | 1900.000000 | 8.215000  | 61.250000  | 4.875000  | 758.000000  |
| 75%   | 108.250000 | 388.087500 | 60.501250  | 450.765000  | 2857.500000 | 12.150000 | 66.125000  | 5.370000  | 1205.000000 |
| max   | 208.000000 | 943.200000 | 190.710000 | 1279.550000 | 4490.000000 | 23.600000 | 73.100000  | 7.490000  | 1630.000000 |

From the clustering process we got child\_mortality to be at least 76 for the most downtrodden cluster.

Let's see how many countries lie within that range

```
len(fin2[fin2['child_mort']>=76])
28
```

Ok so we got 28 countries now. We can stop here or take one more indicator and find the final list. #Here we are taking income as the next one, where around 3200 was the income mean of the downtrodden cluster.

```
fin3=fin2[fin2['child_mort']>=76]
fin4=fin3[fin3['income']<3200]
len(fin4)</pre>
```

# We've got 23 countries now, let's use the describe function to see how they're aligned again.

|       | child_mort | exports    | health     | imports     | income      | inflation | life_expec | total_fer | gdpp        |
|-------|------------|------------|------------|-------------|-------------|-----------|------------|-----------|-------------|
| count | 23.000000  | 23.000000  | 23.000000  | 23.000000   | 23.000000   | 23.000000 | 23.000000  | 23.000000 | 23.000000   |
| mean  | 113.743478 | 165.144704 | 41.870378  | 292.629174  | 1444.913043 | 7.125435  | 56.065217  | 5.463478  | 627.173913  |
| std   | 30.255681  | 140.898936 | 23.154120  | 222.532254  | 587.515796  | 5.428622  | 6.853042   | 0.953232  | 288.989407  |
| min   | 80.300000  | 20.605200  | 17.750800  | 90.552000   | 609.000000  | 0.885000  | 32.100000  | 3.300000  | 231.000000  |
| 25%   | 90.400000  | 79.379500  | 30.663050  | 170.185000  | 974.000000  | 3.420000  | 55.300000  | 5.080000  | 432.500000  |
| 50%   | 109.000000 | 126.885000 | 37.332000  | 248.297000  | 1410.000000 | 5.450000  | 57.300000  | 5.340000  | 562.000000  |
| 75%   | 119.500000 | 188.290000 | 46.119600  | 328.251000  | 1740.000000 | 10.020000 | 58.750000  | 6.010000  | 733.000000  |
| max   | 208.000000 | 617.320000 | 129.870000 | 1181.700000 | 2690.000000 | 20.800000 | 65.900000  | 7.490000  | 1310.000000 |

#### The final list of countries

|     | country                  | child_mort | exports  | health   | imports  | income | inflation | life_expec | total_fer | gdpp |
|-----|--------------------------|------------|----------|----------|----------|--------|-----------|------------|-----------|------|
| 0   | Afghanistan              | 90.2       | 55.3000  | 41.9174  | 248.297  | 1610   | 9.440     | 56.2       | 5.82      | 553  |
| 17  | Benin                    | 111.0      | 180.4040 | 31.0780  | 281.976  | 1820   | 0.885     | 61.8       | 5.36      | 758  |
| 25  | Burkina Faso             | 116.0      | 110.4000 | 38.7550  | 170.200  | 1430   | 6.810     | 57.9       | 5.87      | 575  |
| 26  | Burundi                  | 93.6       | 20.6052  | 26.7960  | 90.552   | 764    | 12.300    | 57.7       | 6.26      | 231  |
| 28  | Cameroon                 | 108.0      | 290.8200 | 67.2030  | 353.700  | 2660   | 1.910     | 57.3       | 5.11      | 1310 |
| 31  | Central African Republic | 149.0      | 52.6280  | 17.7508  | 118.190  | 888    | 2.010     | 47.5       | 5.21      | 446  |
| 32  | Chad                     | 150.0      | 330.0960 | 40.6341  | 390.195  | 1930   | 6.390     | 56.5       | 6.59      | 897  |
| 36  | Comoros                  | 88.2       | 126.8850 | 34.6819  | 397.573  | 1410   | 3.870     | 65.9       | 4.75      | 769  |
| 37  | Congo, Dem. Rep.         | 116.0      | 137.2740 | 26.4194  | 165.664  | 609    | 20.800    | 57.5       | 6.54      | 334  |
| 40  | Cote d'Ivoire            | 111.0      | 617.3200 | 64.6600  | 528.260  | 2690   | 5.390     | 56.3       | 5.27      | 1220 |
| 56  | Gambia                   | 80.3       | 133.7560 | 31.9778  | 239.974  | 1660   | 4.300     | 65.5       | 5.71      | 562  |
| 63  | Guinea                   | 109.0      | 196.3440 | 31.9464  | 279.936  | 1190   | 16.100    | 58.0       | 5.34      | 648  |
| 64  | Guinea-Bissau            | 114.0      | 81.5030  | 46.4950  | 192.544  | 1390   | 2.970     | 55.6       | 5.05      | 547  |
| 66  | Haiti                    | 208.0      | 101.2860 | 45.7442  | 428.314  | 1500   | 5.450     | 32.1       | 3.33      | 662  |
| 87  | Lesotho                  | 99.7       | 460.9800 | 129.8700 | 1181.700 | 2380   | 4.150     | 46.5       | 3.30      | 1170 |
| 88  | Liberia                  | 89.3       | 62.4570  | 38.5860  | 302.802  | 700    | 5.470     | 60.8       | 5.02      | 327  |
| 94  | Malawi                   | 90.5       | 104.6520 | 30.2481  | 160.191  | 1030   | 12.100    | 53.1       | 5.31      | 459  |
| 97  | Mali                     | 137.0      | 161.4240 | 35.2584  | 248.508  | 1870   | 4.370     | 59.5       | 6.55      | 708  |
| 106 | Mozambique               | 101.0      | 131.9850 | 21.8299  | 193.578  | 918    | 7.640     | 54.5       | 5.56      | 419  |
| 112 | Niger                    | 123.0      | 77.2560  | 17.9568  | 170.868  | 814    | 2.550     | 58.8       | 7.49      | 348  |
| 132 | Sierra Leone             | 160.0      | 67.0320  | 52.2690  | 137.655  | 1220   | 17.200    | 55.0       | 5.20      | 399  |
| 150 | Togo                     | 90.3       | 196.1760 | 37.3320  | 279.624  | 1210   | 1.180     | 58.7       | 4.87      | 488  |
| 155 | Uganda                   | 81.0       | 101.7450 | 53.6095  | 170.170  | 1540   | 10.600    | 56.8       | 6.15      | 595  |