sbhamar1.binghamton.edu

55/455 Fall 2018

Programming Assignment 1

(Due on September 15, 2018 by 11:59pm)

I. Questions (20%):

(1) (as 2.11) (4%) Consider the two image subsets, S1 and S2, shown in the following figure. For $V = \{1\}$, determine whether these two subsets are (a) 4-adjacent, (b) 8-adjacent, or (c) m-adjacent.

		S	1	S2				
0	0	0	0	0 (0 (1	1	0
1	0	0	1	0 () 1	0	0	1
1	0	0	1	0 1	1	0	0	0
0	0	1	1	1 (0 (0	0	0
0	0	1	1	1 (0 (1	1	1

ANS:

- (a) S1 and S2 **are not 4-adjacent** because q is not in the set N4(p)
- (b) S1 and S2 **are 8-adjacent** because q is in the set N8(p)
- (c) S1 and S2 are m-adjacent

- (2) (as 2.15) (4%) Consider the image segment shown
 - (a) Let $V = \{0,1\}$ and compute the lengths of the shortest 4-, 8-, and m-path between p and q. If a particular path does not exist between these two points, explain why.
 - (b) Repeat for $V = \{1,2\}$.

Answer:

(a) **4-path does not exist between p and q** because So,we can't go from p to q by traveling along points that are both 4-adjacent and also have values from V . **The shortest 8-path length is 4**. The **length of shortest m-path is 5**. Both of these shortest paths are unique in this case.

(b) **the shortest 4path when V** = $\{1; 2\}$ **is 6**. It is easily verified that another 4path of the same length exists between p and q. The shortest **8-path length is 4**. The length of a shortest **m-path is 6**.

(3) Based on the definition of EXTADD(f, g),

(a) (2%) Design a block diagram to realize the EXTADD(f, g) operation using ADD and EXTEND operations.

ANS:

(b) (2%) Compute the EXTADD(f, g), where
$$f = \begin{pmatrix} 3 & 5 & -2 \\ * & 0 & * \end{pmatrix}_{1,2}$$
; $g = \begin{pmatrix} 2 & 4 \\ 3 & 9 \\ -2 & * \end{pmatrix}_{2,2}$

ANS:

EXTADD(f, g) =
$$\begin{pmatrix} * & 2 & 4 \\ 3 & 8 & 7 \\ * & -2 & * \end{pmatrix}$$

(4) 4%

Given the following histogram (A), after a shifting by T, the histogram becomes (B). Write a transformation function and plot the transformation curve for such a shifting transformation.

ANS:

The transformation function for the A ->B histogram is ,

HistogramB = HistogramA(X - T)

The transformation curve for the above transformation function :

Transformation curve

<u>(5) 4%</u>

Give the histogram (A), after applying the transformation (C), plot the new histogram after the transformation.

Ans:

input