Part II Data Structures

§ Three Types of Data Structures Considered:

- Hash Tables
- Trees
- Heaps

Hash Table

- suitable for large key space with small numbers of actual keys stored
- average search time over the hash table equal to O(1)
- collision-handling strategy required
- keys must be stored to ensure right items retrieved
- hash function maps a key to one table index

Hash Table with Collision Resolution by Chaining

- multiple elements with different keys mapped to the same table entry (collisions)
- they can be chained, with a lookup going through the chain
- for load factor of $\alpha = n/m$, where n (or m) is the number of elements (or table entries)
- under uniform distribution, one search (be successful or not) takes $\Theta(1+\alpha)$, according to Theorems 11.1 and 11.2
- if hash table size (m) grows in proportion to n, then the mean search time is $\Theta(1)$
- there are other more efficient ways for handling collisions

Hash Functions

- division method
- multiplication method
- **1. Division method:** (more restrictive on the suitable m) $\underline{h(k) = k \mod m}, \text{ where the choice of } m = 2^p 1 \text{ is poor but}$ $a \underline{prime} \text{ not close to an exact power of 2 is often good}$

For example, given n=2000 character strings to be stored in a hash table with m=701 entries, then an unsuccessful search takes some 3 accesses

2. Multiplication method:

- Multiply k by a constant A, with 0 < A < 1 and extract the <u>fraction part</u> of $k \cdot A$, e.g., $h(k) = \lfloor m \ (kA \ \text{mod} \ 1) \rfloor$, where " $kA \ \text{mod} \ 1$ " equals $kA \lfloor kA \rfloor$
 - table size (m) can be arbitrary, e.g., $m = 2^p$
 - let A be a fraction of the form $s/2^w$ as shown in the figure below
 - perform multiplication of w-bit k and w-bit s, to get a 2w-bit product
 - product denoted by $r_1 \cdot 2^w + r_0$, then p-bit hash value is obtained from r_0
 - while arbitrary A works, $A \approx (\sqrt{5} 1)/2 = 0.6180339887 \dots$ recommended

- Open Addressing (to deal with collision-chaining)
 - elements stored inside the table
 - calculating probe sequence of given key, instead of using pointers: $\langle h(k, 0), h(k, 1), h(k, 2), \dots, h(k, m-1) \rangle$
 - if probe sequence is a permutation of (0, 1, 2, ..., m-1), every table entry is a candidate location for the element
 - the probe sequence is fixed for a given key
 - key has to be stored in the table entry

```
HASH-INSERT(T, k)
i = 0
repeat
j = h(k, i)
if T[j] == \text{NIL}
T[j] = k
return j
else i = i + 1
until i == m
error "hash table overflow"
```

Hash-Search(T, k)

```
i=0
repeat
j=h(k,i)
if T[j]==k
return j
i=i+1
until T[j]== NIL or i=m
return NIL
```

Uniform Hashing Analysis on Open Addressing

- key probe sequence equal likely in one of m! permutations of (0, 1, 2, ..., m-1)
- probe sequences defined for open addressing
 - + linear probing: *m* different sequences
 - o dictated by $h(k, i) = (h'(k) + i) \mod m$
 - o subject to primary clustering
 - + quadratic probing: *m* different sequences
 - \circ dictated by $h(k, i) = (h'(k) + c_1 \cdot i + c_2 \cdot i^2) \mod m$
 - o subject to secondary clustering, i.e., $h(k_1, 0) = h(k_2, 0) \implies$ both keys follow the <u>same</u> probe sequence

79

69

98

72

14

50

5

8

1011

12

- + double hashing: m² different sequences
 - o dictated by $h(k, i) = (h_1(k) + i \cdot h_2(k)) \mod m$
 - o many good choices: $h_2(k)$ relatively prime to m; m itself a prime; m a power of 2 and $h_2(k)$ always an odd number; or below:

m a prime and m' slightly less than m (e.g., m-1 or m-2) with

$$h_1(k) = k \mod m$$

 $h_2(k) = 1 + (k \mod m')$
e.g., for $k = 14$ under $m = 13$, $m' = 11$;
upon inserting $k = 14$.

Open-Address Hashing Analysis

Theorem 1:

For an open-address hash table with load factor $\alpha = n/m < 1$, the expected number of probes in <u>unsuccessful search</u> under uniform hashing is <u>at most $1/(1 - \alpha)$ </u>.

Note: unsuccessful search ends at seeing an empty entry.

- + if α is a constant, an unsuccessful search runs in O(1) time
- + inserting an element into an open-address hash table with load factor α takes at most $1/(1-\alpha)$ probes on an average under uniform hashing, because it has $(1-\alpha)$ for 1 probe, plus prob. $\alpha(1-\alpha)$ to take 2 probes, plus prob. $\alpha^2(1-\alpha)$ to take 3 probes, etc., yielding $1+\alpha+\alpha^2+\alpha^3+\ldots=1/(1-\alpha)$

e.g., for $\alpha = 50/100$, we have 2 probes.

Theorem 2:

For an open-address hash table with load factor $\alpha < 1$, the expected number of probes in a <u>successful search</u> under uniform hashing is at most $\frac{1}{\alpha} \cdot \ln \frac{1}{1-\alpha}$.

► successful search for a key equals the sequence of inserting the key 2^{nd} key insertion takes $\leq 1/(1-(1/m))$ probes, on an average, when α is 1/m 3^{rd} key takes $\leq 1/(1-(2/m))$ probes, on an average, when α is 2/m

i+1th key takes $\leq 1/(1-(i/m))$ probes

Mean no. of probes equals results over all *n* keys inserted

This is because **insertion and probes** follow the same hash function. We have: $1/n \left(\sum_{i=0}^{n-1} 1/(1-i/m)\right)$

e.g., for $\alpha = 50/100$, we have ≈ 1.39 probes, as $\ln(2) \sim 0.693$. (base e ~ 2.718)

Universal Hashing

For the hash function of $h_{ab}(k) = ((a \cdot k + b) \mod p) \mod m$, where p is a <u>large prime</u> number, with p > m, $a \in \{1, 2, ..., p-1\}$ and $b \in \{0, 1, 2, p-1\}$, the collection of such hash functions is *universal*.

In this case, m can be <u>any number</u> and does not have to be a prime. For example, for p = 17 and m = 8, we have $h_{34}(15) = 7$.

 $((3*15+4) \mod 17) \mod 8 = 7$

Perfect Hashing

- set of keys is *static* (never changed), then excellent <u>worst case</u> performance exists
- search takes O(1) in memory accesses in the worst case
- two levels of hashing, with secondary hash table S_i to hold those hashed to slot j
- <u>unlikely</u> to have collisions in S_j (with n_j keys) if its size m_j equals $n_j^2 \rightarrow$ easy to determine a collision-free secondary hash function
- total storage required for both primary and secondary hash tables is O(n)

Theorem 3:

Given n_i keys for a hash table sized $m_i = n_i^2$, the probability of having collisions < 1/2.

This theorem implies that one can easily (with a few trials) identify **collision-free secondary** $h_i(k)$ with proper a_i and b_i

Figure 11.6 Using perfect hashing to store the set $K = \{10, 22, 37, 40, 60, 70, 75\}$. The primary hash function is $h(k) = ((a \cdot k + b) \mod p) \mod m$, where a = 3, b = 42, p = 101, and m = 9.

For example, h(75) = 2, so Key 75 hashes to slot 2 of table T. A secondary hash table S_j stores all keys hashing to Slot j. The size of hash table S_j is m_j , and the associated hash function is $h_j(k) = ((a_j k + b_j) \mod p) \mod m_j$. If $h_2(75) = 7$, Key 75 is stored in Slot 7 of secondary hash table S_2 . There are no collisions in any of the secondary hash tables, and so searching takes a constant time in the worst case.

Perfect Hashing

- total expected storage for both primary and secondary hash tables is O(n).

Theorem 4:

Given n keys for an outer hash table sized m = n and n_j keys present in Slot j under outer hash, we have $E\left[\sum_{j=0}^{m-1} n_j^2\right] < 2n$. (Note: this deals with the "expected" storage size.)

Corollary 1:

With n keys for a hash table sized m = n and n_j keys present in Slot j under the outer hash and the sizes of secondary hash tables equal to $m_j = n_j^2$, we have the probability of <u>total storage</u> used <u>for secondary hash tables</u> $\geq 4n$ less than $\frac{1}{2}$.

This corollary implies that one can easily (with a few trials) identify **good primary hash** h(k) with proper a and b that lead to a reasonable amount of total storage required.

Cuckoo Hashing§

- move keys around upon insertion for worst probe case of O(1)
 - + quick search but possibly lengthy insertion
 - + multiple hash functions required for separate hash tables
- delete keys in the worst-case of O(1)
- example with two hash functions below:
 - + two hash tables, each with *m* elements
 - + two hash functions, h_1 and h_2 , one for a table
 - + each key x at either $h_1(x)$ or $h_2(x)$
 - + new key '10' with $h_1(10) = 6$ and $h_2(10) = 4$
 - * move key '93' around, if $h_2(93)=5$, for insertion
- Algorithm
 - 1. insert "new key" to T_1 located at h_1 (new key), when available
 - 2. otherwise, "new key" displaces "existing key" in T_1 ; place "existing key" in T_2 located at h_2 (existing key); repeat the displacement process, if needed.

§ R. Pagh and F. Rodler, "Cuckoo Hashing," *Journal of Algorithms*, Aug. 2001, pp. 121-133.

Cuckoo Graph

- derived from cuckoo hash tables
 - + each table entry is a node
 - + each key is an edge, which links the entries that can hold the key
 - + an insertion adds a new edge to the graph
 - * let $h_1(88) = 4$ and $h_2(88) = 6$
 - * displace key '58' in T_1 to make room for key '88'
 - * displace key '91' in T_2 to make room for key '58'
 - * displace key '16' in T_1 to make room for key '91'
 - * displace key '10' in T_2 to make room for key '16'
 - * repeat
 - + insertion done by tracing a path over the graph
 - + what about inserting <u>next</u> key "67" with $h_1(67) = 1$ and $h_2(67) = 6$?

Cuckoo Graph

 insertion <u>succeeds</u> if and only if the new edge (defined by the new key) contains at most one cycle

Proof sketch:

- 1. each edge denotes a key and requires a table entry (i.e., node) to hold it
- 2. for a cycle exists, the number of its edges equals the number of its nodes involved, so that all nodes (table entries) are taken
- 3. if a <u>new edge</u> (after added) is on two cycles the edge <u>must link two taken nodes</u> AND <u>all nodes</u> on the two cycles <u>have been used</u>
- 4. the new key (edge) cannot be accommodated.

<u>Side note</u>: two cycles (one with 4 distinct nodes and the other with at least one distinct node) that share one edge include (at least) 5 distinct nodes but contain (at least) 6 distinct edges; impossible.

Binary Search Trees

§ Binary Search Tree Property

– Given tree node x, if node y is in the left (or right) subtree of x, we have y.key ≤ x.key (or y.key ≥ x.key).

Theorem 1

INORDER-TREE-WALK(x) across an n-node subtree rooted at x takes $\Theta(n)$.

Proof.

(because the tree height may equal n)

The tree walk has to visit every node, and hence, the time complexity T(n) is <u>lower bounded</u> by $\Omega(n)$.

Next, considering that INORDER-TREE-WALK(x) is called on x whose left and right subtrees have k and (n-k-1) nodes, respectively, we have

$$T(n) \le T(k) + T(n-k-1) + d$$
 for some $d > 0$.

By the substitution method, we prove that $T(n) \le (c+d)n + c$, for a constant c, below:

$$T(n) \le T(k) + T(n-k-1) + d$$

 $\le ((c+d)k + c) + ((c+d)(n-k-1) + c) + d$
 $= (c+d)n + c - (c+d) + c + d$
 $= (c+d)n + c$ (upper bounded)

Querying binary search trees

- searching
- successor and predecessor
- insertion and deletion
- Searching via TREE-SEARCH in time complexity O(h)

TREE-SEARCH(x, k)

```
if x == NIL or k == key[x]
    return x
if k < x.key
    return TREE-SEARCH(x.left, k)
else return TREE-SEARCH(x.right, k)</pre>
```


search path from root to key = 13 is $15 \rightarrow 6 \rightarrow 7 \rightarrow 13$

- Successor and predecessor
 - + by inorder tree walk
 - + separate results for non-empty right subtree and for empty right subtree
 - + time complexity for a tree of height h is O(h)

$\underline{\mathsf{TREE-SUCCESSOR}(x)}$

```
if x.right \neq NIL

return TREE-MINIMUM (x.right)

y = x.p  y is the parent node of x.

while y \neq NIL and x == y.right

x = y  climb up the tree.

y = y.p

return y
```

If node x has no right subtree, its successor is the <u>lowest</u> ancestor of x whose left subtree contains x.

successor of key = 7 is 9 successor of key = 13 is 15

- Insertion

- + tree node (say, z) to be added, with z.key = v, z.left = nil, z.right = nil
- + z added to one appropriate node with an **absent** left or right child (never a full node)
- + tree in-order walk, with the trailing pointer y maintained
- + time complexity for a tree of height *h* is *O(h)*

TREE-INSERT(T, z)

else y.right = z

```
y = \text{NIL}

x = T.root

while x \neq \text{NIL}

y = x

if z.key < x.key

x = x.left

else x = x.right
```

y is the parent node of x after x is reassigned to move down

tree traversal downward until the insertion point, with the added node as a **leaf node**

```
else x = x.right

z.p = y // y is the parent node of z.

if y == NIL

T.root = z // tree T was empty

elseif z.key < y.key

y.left = z.
```


Inserting *key* = 13 into binary search tree, with affected path marked.

- Deletion (on z)
 - + three basic cases involved: z having no child, exactly one child, two children
 - + based on TRANSPLANT that replaces sibling subtree with another subtree
 - + time complexity for a tree of height h is O(h)

```
TRANSPLANT(T, u, v)
                                                                                                                                 Involved node z:
  if u.p == NIL
                                                                                                                                 no or one child in (a) & (b);
                                                                        (a)
       T.root = v
                                                                                                                                 two children in (c) & (d).
  elseif u == u.p.left
                                                                                  NIL
       u.p.left = v
  else u.p.right = v
  if \nu \neq NIL
                                                                        (b)
       v.p = u.p
TREE-DELETE (T, z)
 if z. left == NIL
                                         // z has no left child
     TRANSPLANT(T, z, z, right)
 elseif z. right == NIL
                                                                        (c)
                                         // z has just a left child
     TRANSPLANT (T, z, z, left)
 else // z has two children.
     y = \text{TREE-MINIMUM}(z.right)
                                         // y is z's successor
     if y.p \neq z \leftarrow This is case (d) shown in the figure.
          // y lies within z's right subtree but is not the root of this subtree
         TRANSPLANT(T, y, y.right)
                                        Prepare a subtree rooted at v
         y.right = z.right
                                        whose left subtree is empty.
                                                                                                                         NIL
         y.right.p = y
     // Replace z by y.
                                         Alternatively, one may
     TRANSPLANT(T, z, y)
                                         cut the left-hand subtree
     y.left = z.left
                                         of z and move it to become
                                                                                  NIL
     y.left.p = y
                                         the left-hand subtree of y.
```

- Randomly build binary search trees
 - + worst-case tree height (h) being n-1
 - + can be shown that $h \ge \lfloor \lg n \rfloor$, which is the best case
 - + like quicksort, average case proven to be much closer to best case than worst case
 - + special case of creating binary search trees (via insertion alone) with random keys, we have following theorem:

Theorem 2. ← This theorem refers to the special case that the tree is created by insertion alone (and no deletion).

The expected height of a randomly built binary search tree on n distinct keys is $O(\lg n)$.

B-Trees

- § Balanced Search Trees (B-Trees) with t non-root node has $\geq t \leq 2t$ children
 - + balance achieved by keeping multiple (i.e., ≥ t-1) keys in each non-root node
 - + node has at most 2t-1 keys, called **full node** (with degree = 2t)
 - + keys stored in a node in non-decreasing order
 - + node x (with $\underline{x.n \text{ keys}}$) has x.n+1 children, pointed by $x.c_1, x.c_2, \ldots, x.c_{x.n+1}$, then $k_1 \le x.key_1 \le k_2 \le x.key_2 \le \ldots \le x.key_{x.n} \le k_{x.n+1}$, where k_i is a key stored in subtree rooted at $x.c_i$ and $x.key_i$ is a key stored in node x
 - + all leaves have the same height
 - + simplest B-tree is for t = 2, called 2-3-4 tree (each internal node has 2, 3, or 4 children)

Theorem

For any n-key B-tree T of height h and minimum node degree $t \ge 2$ (i.e., number of keys in each non-root node $\ge t$ -1), we have $h \le \log_t \frac{n+1}{2}$.

+ Proof follows the fact of $n \ge 1 + (t-1) \cdot \sum_{i=1}^{h} 2 \cdot t^{i-1}$ illustrated in the figure below (to show the minimum possible number of keys in a B-tree with height = 3).

Basic operations

+ Searching for record with key = k: each internal node \mathbf{x} makes an (x.n + 1)-way branching decision; returning $(y, i) \rightarrow \text{node } \mathbf{y}$ and its index i with $y.key_i = k$

```
B-TREE-SEARCH(x, k)

1 i = 1

2 while i \le x.n and k > x.key_i

3 i = i + 1

4 if i \le x.n and k = x.key_i

5 return (x, i)

6 elseif x.leaf x.leaf Boolean variable to indicate if it is a leaf node return NIL

8 else DISK-READ(x.c_i)

9 return B-TREE-SEARCH(x.c_i, k)
```

Basic operations

+ Splitting a full node: for non-full internal node \mathbf{x} and a full child of \mathbf{x} (say, $\mathbf{y} = x.c_i$), \mathbf{y} is split at median key S, which moves up into \mathbf{x} , with those > S forming a new subtree

Basic operations

- + Inserting a key: B-tree T of height h, takes O(h) disk accesses (nodes kept as disk pages)
 - can't insert the key into a newly created node nor into an internal node directly
 so can insert it only to a <u>leaf node</u>
 - <u>never</u> descend <u>through</u> a <u>full node</u>, achieved by B-TREE-SPLIT-CHILD,

to avoid back-tracking altogether

- root split to increase height by 1

```
B-TREE-INSERT (T, k)

1  r = T.root

2  if r.n == 2t - 1 // splitting the root?

3  s = ALLOCATE-NODE()

4  T.root = s

5  s.leaf = FALSE

6  s.n = 0

7  s.c_1 = r

8  B-TREE-SPLIT-CHILD (s, 1) (split 1s child of s)

9  B-TREE-INSERT-NONFULL (s, k)

10 else B-TREE-INSERT-NONFULL (r, k)
```

```
B-Tree-Insert-Nonfull (x, k)
    i = x.n
    if x.leaf
                  (upon a leaf, key is inserted therein)
         while i \ge 1 and k < x \cdot key_i
              x. key_{i+1} = x. key_i (shift key in x rightwar
              i = i - 1
 6 	 x.key_{i+1} = k
         x.n = x.n + 1
         DISK-WRITE(x)
    else while i \ge 1 and k < x \cdot key_i
10
              i = i - 1
         i = i + 1
11
         DISK-READ(x, c_i) (descend one level)
12
13
         if x \cdot c_i \cdot n == 2t - 1 // full child?
14
              B-TREE-SPLIT-CHILD (x, i)
       if k > x. key_i
15
                   i = i + 1
16
         B-Tree-Insert-Nonfull (x, c_i, k)
```

+ Inserting a key: B-tree T with t = 3 and modified nodes lightly shaded

Basic operations

+ Deleting a key: delete key k from the subtree rooted at x in B-tree t with the minimum degree of t (where the key may be in any node, not just at a leaf node)

- number of keys kept in any internal node upon descending through would be

at least t

- + Deleting key k from the subtree rooted at x in B-tree T with the minimum degree of t
 - Deletion Procedure sketched below:
 - 1. If the key k is in node x and x is a leaf, delete the key k from x.
 - 2. If the key k is in node x and x is an internal node, do the following:
 - a. If the child y that precedes k in node x has at least t keys, then find the predecessor k' of k in the subtree rooted at y. Recursively delete k', and replace k by k' in x. (We can find k' and delete it in a single downward pass.)
 - b. If y has fewer than t keys, then, symmetrically, examine the child z that follows k in node x. If z has at least t keys, then find the successor k' of k in the subtree rooted at z. Recursively delete k', and replace k by k' in x. (We can find k' and delete it in a single downward pass.)
 - c. Otherwise, if both y and z have only t-1 keys, merge k and all of z into y, so that x loses both k and the pointer to z, and y now contains 2t-1 keys. Then free z and recursively delete k from y.
 - 3. If the key k is not present in internal node x, determine the root x.ci of the appropriate subtree that must contain k, if k is in the tree at all. If x.ci has only t 1 keys, execute step 3a or 3b as necessary to guarantee that we descend to a node containing at least t keys. Then finish by recursing on the appropriate child of x.
 - a. If $x.c_i$ has only t-1 keys but has an immediate sibling with at least t keys, give $x.c_i$ an extra key by moving a key from x down into $x.c_i$, moving a key from $x.c_i$'s immediate left or right sibling up into x, and moving the appropriate child pointer from the sibling into $x.c_i$.
 - b. If $x.c_i$ and both of $x.c_i$'s immediate siblings have t-1 keys, merge $x.c_i$ with one sibling, which involves moving a key from x down into the new merged node to become the median key for that node.

Targeted node with the key

This is <u>Rule 1</u> - Key *k* present:

At internal node *x* which contains the key (say, *k*) to be deleted, it checks if <u>predecessor</u> or <u>successor</u> of *k* can be borrowed to replace *k* (and in this case, only the borrowed key is moved; and its associated pointer stays).

Prepare to walk down the tree

This is Rule 2 - Key k not present:
While at internal node x, it checks
if the root of the target child has
at least t key
If not, it prepares that root node by
borrowing a key (plus associated
pointer, i.e., a subtree) from its left
or right sibling, if possible.

Fibonacci Heaps

§ Fibonacci Heap

- + a collection of min-heap trees, with their roots doubly linked together
- + belongs to the "mergeable heap" that supports five operations efficiently: MAKE-HEAP(); INSERT(H, x); MINIMUM(H); EXTRACT-MIN(H); $UNION(H_1, H_2)$
- + additionally, the Fibonacci heap supports: DECREASE-KEY(*H*, *x*, *k*); DELETE(*H*, *x*)
- + several preceding operations run in constant amortized time

Four pointers exist for each node: *p*, *child*, *left*, *right*, permitting children of a node to be doubly linked as the child list.

Max Binary Heap

16	
14 10	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$\frac{3}{2}$ $\frac{1}{4}$ $\frac{1}{1}$	

		Binary heap	Fibonacci heap
	Procedure	(worst-case)	(amortized)
	Make-Heap	$\Theta(1)$	$\Theta(1)$
+	INSERT (to Root List	$\Theta(\lg n)$	$\Theta(1)$
	Minimum	$\Theta(1)$	$\Theta(1)$
	Extract-Min	$\Theta(\lg n)$	$O(\lg n)$
+	UNION (i.e., Merging	$\Theta(n)$	$\Theta(1)$
+	Decrease-Key	$\Theta(\lg n)$	$\Theta(1)$
	DELETE	$\Theta(\lg n)$	$O(\lg n)$

Heap operations

+ inserting a node, with time complexity O(1), by adding the node to the root list

FIB-HEAP-INSERT(H, x)

```
1 x.degree = 0

2 x.p = NIL

3 x.child = NIL

4 x.mark = FALSE

5 if H.min == NIL

6 create a root list for H containing just x

7 H.min = x

8 else insert x into H's root list

9 if x.key < H.min.key

10 H.min = x

11 H.n = H.n + 1
```


Uniting two Fibonacci heaps

- + concatenating the root lists of H_1 and H_2
- + determining the new minimum node

```
FIB-HEAP-UNION (H_1, H_2)

1 H = \text{MAKE-FIB-HEAP}()

2 H.min = H_1.min

3 concatenate the root list of H_2 with the root list of H

4 if (H_1.min == \text{NIL}) or (H_2.min \neq \text{NIL}) and H_2.min.key < H_1.min.key)

5 H.min = H_2.min

6 H.n = H_1.n + H_2.n

7 return H
```

Extracting minimum node

- + doing consolidation of trees on the root list, so that one root is left for each degree
- + calling CONSOLIDATE(H) to link trees of the same degree

conducting delayed work of consolidating trees in the root list

FIB-HEAP-EXTRACT-MIN(H)

```
z = H.min
    if z \neq NIL
         for each child x of z
               add x to the root list of H
 5
               x.p = NIL
         remove z from the root list of H
          if z == z.right
                                // z being the root of the only tree and having no child (since any child, if existing,
               H_{min} = NIL
                                                                  would then have been added to the root list)
 9
          else H.min = z.right
               CONSOLIDATE(H)
10
          H.n = H.n - 1
11
12
     return z
```

• **CONSOLIDATE**(*H*) for consolidating trees on the root list

```
Consolidate(H)
    let A[0..D(H.n)] be a new array // D(H, n) being the largest degree of a constituent MIN heap
    for i = 0 to D(H.n)
 3
         A[i] = NIL
                      // auxiliary array initialization
    for each node w in the root list of H
 5
         x = w
        d = x.degree
         while A[d] \neq NIL
 8
             y = A[d]
                              // another node with the same degree as x existing
 9
             if x.key > y.key
10
                 exchange x with y
                                                              FIB-HEAP-LINK (H, y, x)
11
             FIB-HEAP-LINK (H, y, x)
                                                              1 remove y from the root list of H
12
             A[d] = NIL
                                                              2 make y a child of x, incrementing x. degree
             d = d + 1
13
                                                                 y.mark = FALSE
        A[d] = x
14
    H.min = NIL
    for i = 0 to D(H,n) // establish the root list and find H.min after consolidation
         if A[i] \neq NIL
17
18
             if H.min == NIL
                 create a root list for H containing just A[i]
19
20
                 H.min = A[i]
21
             else insert A[i] into H's root list
22
                 if A[i]. key < H. min. key
23
                      H.min = A[i]
```

• Extracting minimum node

• Extracting minimum node

Decreasing a key

```
FIB-HEAP-DECREASE-KEY(H, x, k)
1 if k > x. key
       error "new key is greater than current key"
  x.key = k
4 \quad y = x.p
 if y \neq NIL and x.key < y.key
       CUT(H, x, y)
       CASCADING-CUT(H, y)
8 if x.key < H.min.key
9
       H.min = x
CUT(H, x, y)
1 remove x from the child list of y, decrementing y. degree
2 add x to the root list of H
3 \quad x.p = NIL
4 x.mark = FALSE
CASCADING-CUT(H, y)
  z = y.p
  if z \neq NIL
3
       if y.mark == FALSE
4
           y.mark = TRUE
5
       else Cut(H, y, z)
           CASCADING-CUT(H, z)
```

Decreasing a key

Deleting a key

FIB-HEAP-DELETE(H, x)

FIB-HEAP-DECREASE-KEY($H, x, -\infty$)

FIB-HEAP-EXTRACT-MIN(*H*)

Heap Bounds

Lemma 1.

Let x be <u>any node</u> in a Fibonacci heap and k = x.degree. We have $\operatorname{size}(x) \ge F_{k+2} \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2$.

= 1.618

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

 ϕ^k 1.0, 1.6, 2.6, 4.2, 6.9, 11.1, 17.9, 29.0, 47.0

k=1, k=2, k=3, k=4,

In fact, $D(k) \ge$

2. 4, 8, 16, 32, 64, 128,

Lemma 2.

The maximum degree D(x) of any node in an *n*-node Fibonacci heap is $O(\lg n)$.

Note: the smallest Fibonacci heaps with k = 1, 2, 3, 4, etc. include 2, 4, 8, 16, etc. nodes. Hence, $size(1) \ge 2$, $size(2) \ge 4$, $size(3) \ge 8$, $size(4) \ge 16$, etc.