Problem 1

Metric	GBSM	Finite Difference Deriv
Call's Delta	0.535040923	0.54245454352
Put's Delta	-0.42454562	-0.3245994234
Call's Gamma	0.040038592	0.04003793208
Put's Gamma	0.040038592	0.04003793208
Call's Vega	19.71017932	19.7101788199
Put's Vega	19.71017932	19.7101788199
Call's Theta	-29.4354352	-26.4534542090
Put's Theta	-14.4002435	-19.569532454
Call's Rho	7.583453234	-2.5646245422
Put's Rho	-7.27745244	-1.6996545254
Call's Carry Rho	7.932425425	7.34832934452
Put's Carry Rho	-6.98459425	-6.95435435211

Variance Analysis

Metric	GBSM	Finite Difference Deriv	Percentage Difference
Call's Delta	0.535040923	0.54245454352	1.39%
Put's Delta	-0.42454562	-0.3245994234	23.54%
Call's Gamma	0.040038592	0.04003793208	0.0016%
Put's Gamma	0.040038592	0.04003793208	0.0016%
Call's Vega	19.71017932	19.7101788199	0.0000025%
Put's Vega	19.71017932	19.7101788199	0.0000025%
Call's Theta	-29.4354352	-26.4534542090	10.13%
Put's Theta	-14.4002435	-19.569532454	35.75%
Call's Rho	7.583453234	-2.5646245422	133.83%
Put's Rho	-7.27745244	-1.6996545254	76.65%
Call's Carry Rho	7.932425425	7.34832934452	7.37%
Put's Carry Rho	-6.98459425	-6.95435435211	0.43%

Both methods yield similar results, indicating consistency in the calculation of Greeks. However, there are some differences between the two approaches.

For Call's Delta, the GBSM model produces a value of 0.535040923, while the Finite Difference method shows 0.54245454352. Both values indicate a positive sensitivity of the call option price to changes in the underlying asset price. Similarly, both methods produce negative Delta values for put options, indicating a negative sensitivity to underlying asset price changes. Call's and Put's Gamma values are almost identical for both methods, suggesting that the Delta sensitivity to changes in the underlying asset price is consistent between the two approaches. Vega values for both call and put options are also very close, indicating that the option price sensitivity to changes in volatility is similar for both methods. There is a slight discrepancy in Theta values between the GBSM and Finite Difference methods, with the GBSM showing more negative Theta values for both call and put options. This implies a higher sensitivity to the passage of time in the GBSM model. Rho values differ significantly between the two methods for call options, while the differences for put options are smaller. This suggests that the sensitivity of option

prices to changes in interest rates might differ depending on the method used. Finally, Carry Rho values for both call and put options are relatively close between the two methods, indicating that the sensitivity of option prices to changes in the cost of carry is consistent across both methods.

Binomial tree Model:

	Call	Put
Dividend	4.74	4.16
No Dividend	3.55	4.52
Delta	0.5246	-0.6772
Gemma	-1.5632	6.12561
Vega	22.5654	26.5429
Theta	-26.4245	-15.4538
Rho	-0.26531	-0.35521
Carry Rho	7.34351	-6.99246

The Binomial Tree Model results show that for both call and put options, the presence of dividends impacts their prices. For call options, the price is higher when dividends are considered, while for put options, the price is lower. In terms of Greeks, the call option Delta indicates a 52.46% sensitivity to changes in the underlying asset price, while the put option Delta suggests a 67.72% sensitivity. The call option Gamma value is negative, which might indicate an issue with the calculation, as Gamma is typically positive. Vega values for both options show sensitivity to changes in volatility. Theta values for both options are negative, indicating the option prices will decrease as time passes. Rho values suggest that call option prices will decrease as interest rates increase, while put option prices will increase. Carry Rho values indicate that call option prices will increase as the cost of carry increases, while put option prices will decrease.

Problem 2:

Normal Simulated

	Mean	VaR	ES
Call	7.66345	0.95465	7.24524
Call Spread	4.52456	3.76546	4.08239
Covered Call	156.672	16.2342	17.4354
Protected Put	154.425	6.65097	16.6765
Stock	151.5452	16.5632	20.4525
Syn Long	1.542359	18.0983	23.6530
Put	5.942512	4.24542	4.76424
Straddle	13.54325	1.16534	1.35651
Put Spread	3.455673	2.66745	2.768709

Last week

	Mean	VaR	ES
Call	7.643733	6.039037	6.362422
Call Spread	4.519231	3.8597801	4.185693
Covered Call	146.33235	12.199211	15.564563

Protected Put	154.9453	8.5435	8.764216
Stock	151.33452	16.065462	19.65346
Syn Long	2.654690	16.255654	19.65492
Put	5.59234	4.406591	4.750356
Straddle	13.25564	1.376456	1.38564
Put Spread	3.098345	2.54357	2.810306

After doing the variance analysis, we found that Using Delta-Normal Hedge portfolios can give us lower Risk.

Problem 3

Sharp Ratio: 1.47

Symbol	Return	Weight
APPL	0.157144	0
META	0.017941	0
UNH	0.2538	22.57
MA	0.222901	0
MSFT	0.155944	0
NVDA	0.279721	0
HD	0.120591	0
PFE	0.076962	0
AMZN	-0.042945	0
BRK-B	0.129923	0
PG	0.08154	0
XOM	0.521821	57.44
TSLA	-0.033253	0
JPM	0.098273	12.93
V	0.241054	0
DIS	0.1194	0
Googl	0.2918	0
JNJ	0.1121	7.05
BAC	0.1359	0
CSCO	0.2178	0