

Esercizi subnetting

Internet, Reti E Sicurezza (Università degli Studi di Camerino)

Scansiona per aprire su Studocu

Esercizi subnetting

- 1) Si identifichi la classe a cui appartengono i seguenti indirizzi IP, dopo averli convertiti in notazione binaria
 - 11100101 01011110 01101110 00110011 è Classe D
 - 101.123.5.45
 - 231.201.5.45
 - 128.23.45.4
 - 192.168.20.3
 - 193.242.100.255

- è Classe A
- è Classe D
- è Classe B
- è Classe C
- è Classe C
- 2) Partendo dalla maschera di sottorete di un indirizzo di classe C 255.255.255.0 e operando su questa con Subnetting avente maschera fissa, quante sotto-reti si possono ottenere?

Partendo dalla maschera assegnata si possono ottenere

- 255.255.255.0
- 255.255.255.128 (10000000) è 2 s.r. C, 2^{7} -2=126 host

- 255.255.255.192 (11000000) è 4 s.r. C, 2⁶-2=62 host 255.255.255.224 (11100000) è 8 s.r. C, 2⁵-2=30 host 255.255.255.240 (11110000) è 16 s.r. C, 2⁴-2=14 host 255.255.255.255.248 (11111000) è 32 s.r. C, 2³-2=6 host 255.255.255.252 (11111100) è 64 s.r. C, 2²-2=2 host

- 3) Perché non ha senso l'indirizzo 255.255.255.254?

Ci sarebbero $(2^1)-2=0$ host indirizzabili

Per superare questa inefficienza è stato proposto nell'RFC 3021 "Using 31-Bit Prefixes on IPv4 Point-to-Point Links" l'utilizzo di maschere di 31 bit per indirizzare 2 host su collegamenti punto-punto

N.B. la maschera 255.255.255.255 è utilizzata per indicare un host e non una sotto-rete

4) Data la rete in figura definire un possibile schema di indirizzamento utilizzando la tecnica del subnetting con maschera fissa a partire da indirizzi di classe C

È necessario definire 7 sotto-reti (anche i Link sono sotto-reti) quindi la Sub_Net_ID sarà lunga 3 bit.

A partire da un indirizzo di classe C con 3 bit utilizzati per il subnetting rimangono 8-3=5 bit per Host_ID \rightarrow posso indirizzare al più $(2^5)-2=30$ host in ogni sotto-rete.

- 5) Ad un'organizzazione è stata assegnato lo spazio di indirizzi di classe C 193.212.100.0 (255.255.255.0). Abbiamo bisogno di definire 6 sottoreti. La più grande è composta da 25 host.
 - a) Determinare la netmask necessaria per la gestione di tale rete utilizzando subnetting con maschera fissa
 - b) Per ognuna delle 6 sottoreti, determinare quali sono gli indirizzi utilizzabili per gli host.

Per definire 6 sotto-reti sono necessari 3 bit.

Con 3 bit utilizzati per il subnetting, dall'indirizzo di classe C rimangono 8-3 = 5 bit per Host_ID

si possono indirizzare fino a 30 host in ogni sotto-rete

La netmask necessaria alla gestione della rete è quindi:

255	255	255	255
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 0 0 0 0 0

193	212	100	0
1 1 0 0 0 0 0 1	1 1 0 1 0 1 0 0	0 1 1 0 0 1 0 0	xxxxxxx

<u>Subnet #1</u> indirizzo:193.212.100.0 netmask:255.255.255.224 (/27)

Indirizzi assegnabili agli host: 193.212.100.1/27 \rightarrow 193.212.100.30/27

Subnet #2 indirizzo:193.212.100.32 netmask:255.255.255.224
(/27)

• Indirizzi assegnabili agli host: 193.212.100.33/27 → 193.212.100.62/27

Subnet #3 indirizzo:193.212.100.64 netmask:255.255.255.224
(/27)

- Indirizzi assegnabili agli host: 193.212.100.65/27 → 193.212.100.94/27
- Subnet #4 indirizzo:193.212.100.96 netmask:255.255.255.224
 (/27)
 - Indirizzi assegnabili agli host: 193.212.100.97/2 → 193.212.100.126/27
- Subnet #5 indirizzo:193.212.100.128 netmask:255.255.255.224
 (/27)
 - Indirizzi assegnabili agli host: 193.212.100.129/27 → 193.212.100.158/27
- Subnet #6 indirizzo:193.212.100.160 netmask:255.255.255.224
 (/27)
 - Indirizzi assegnabili agli host: 193.212.100.161/27 → 193.212.100.190/27

⁶⁾ Utilizzando il subnetting con maschere di lunghezza variabile sulla stessa rete dell' Esercizio 4, definire uno schema di indirizzamento che utilizzi un solo indirizzo di classe C.

195.168.1.0

7) Abbiamo a disposizione un indirizzo di classe C: 195.168.13.0/24

Vogliamo assegnare indirizzi e maschere di sottorete alle LAN, agli host e al router, utilizzando la tecnica del subnetting.

Nota: le interfacce dei router non sono comprese nel numero di host indicato in ciascuna LAN \rightarrow vanno aggiunte

Per 2 sotto-reti è sufficiente utilizzare 1 bit per la Sub_Net_ID \rightarrow rimangono $2^7-2=126$ indirizzi assegnabili ad host e router

Dall'indirizzo 195.168.13.0 (255.255.255.0)

			19	95					168										1	3							()			
1	1	0	0	0	0	1 ()	1	1	1		1	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0

LAN1 indirizzo:195.168.13.0 netmask:255.255.255.128 (/25)

- Router R1 (eth0): 195.168.13.1/25
- Indirizzi assegnabili agli host: 195.168.13.2/25 → 195.168.13.126/25

LAN2 indirizzo:195.168.13.128 netmask:255.255.255.128 (/25)

• Router R1 (eth1): 195.168.13.129/25

• Indirizzi assegnabili agli host: 195.168.13.130/25 → 195.168.13.254/27

8) Abbiamo a disposizione un indirizzo di classe C: 195.168.13.0/24

Assegnare indirizzi e maschere di sottorete alle LAN, agli host e al router.

Nota: le interfacce dei router non sono comprese nel numero di host indicato in ciascuna LAN \rightarrow vanno aggiunte

Per 4 sotto-reti è necessario utilizzare 2 bit per la Sub_Net_ID \rightarrow rimangono $2^6-2=62$ indirizzi assegnabili ad host e router.

- La LAN1 ha 80 host +1 router, non è possibile definire uno schema di indirizzamento utilizzando il subnetting con maschere di lunghezza fissa, proviamo con maschere di lunghezza variabile
- Per la LAN1 è sufficiente utilizzare 7 bit per Host_ID (80 host+1) → maschera /25
- Per la LAN2 è sufficiente utilizzare 5 bit per Host_ID (25 host+2) → maschera /27
- Per la LAN3 è sufficiente utilizzare 4 bit per Host_ID (7 host+1) → maschera /28
- Per il LINK è sufficiente utilizzare 2 bit per Host_ID (2 router) → maschera /30
- LAN1 indirizzo:195.168.13.0 netmask:255.255.255.128 (/25)
 - o Router R1 (eth0): 195.168.13.1/25
 - o Indirizzi assegnabili agli host: 195.168.13.2/25 → 195.168.13.126/25
- LAN2 indirizzo:195.168.13.128 netmask:255.255.255.224 (/27)
 - o Router R2 (eth1): 195.168.13.129/27
 - o Router R3 (eth0): 195.168.13.130/27
 - o Indirizzi assegnabili agli host: 195.168.13.131/27 → 195.168.13.158/27
- LAN3 indirizzo:195.168.13.160 netmask:255.255.255.240 (/28)

o Router R3 (eth1): 195.168.13.161/28

- o Indirizzi assegnabili agli host: 195.168.13.162/28 → 195.168.13.175/28
- Link indirizzo:195.168.13.252 netmask:255.255.255.252 (/30)
 - o Router R1 (eth1): 195.168.13.253/30 o Router R2 (eth0): 195.168.13.254/30
- 9) Un'organizzazione, a cui è stato assegnato lo spazio 140.25.0.0/16, vuole sviluppare una rete VLSM con la seguente struttura:
 - Specificare le 8 sottoreti di 140.25.0.0/16.
 - Elencare gli indirizzi che possono essere assegnati nella sottorete #3.
 - Specificare le 16 sottoreti della sottorete #6.
 - Specificare gli indirizzi che possono essere assegnati alla sottorete #6-3
 - Specificare le 8 sottoreti di #6-14

140.25.192.0/19

Sotto-rete #7 \rightarrow 140.25.224.0/19

Gli indirizzi assegnabili della sotto-rete #3 sono:

			1	10				25											9	6							C)			
1	0	0	0	1	1	0	0	0	0	0	1	1	0	0	1	0	1	1	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х
1 4	10.	2.5	5 .	96.	1/	19	_)	14().2	2.5.	12	7.	2.5	4/	19															

Dalla sotto-rete #6 140.25.192.0/19 è possibile definire 16 sottoreti utilizzando altri 4 bit per la Sub_Net_ID

				14	10				25											19	92							()			
	1	0	0	0	1	1	0	0	0	0	0	1	1	0	0	1	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Ξ														Tr	ndi	ri	7.7	i	12	≺ .												

La sotto-rete 6-3 ha indirizzo 140.25.198.0/23

140	25	192	0											
1 0 0 0 1 1 0 0	0 0 0 1 1 0 0 1	1 1 0 0 0 1 1 x	x x x x x x x x x											
140.25.198.2	140.25.198.1/23 → 140.25.199.254/23													

Dalla sotto-rete #6-14 140.25.220.0/23 è possibile definire altre 8 sottoreti utilizzando altri 3 bit per la Sub_Net_ID

				14	0							2	5							19	92							C)			
1 0 0 0 1 1 0 0 0 0 1 1 0 0 0										1	1	1	0	1	1	1	0	Х	Х	Х	Х		Х	Х	Х	Х						
	Indirizzi /23																															

10) Realizzare un piano di indirizzamento utilizzando network classful per la rete in figura. Si utilizzino solo indirizzi privati e si scelgano i primi indirizzi disponibili in ogni blocco.

La rete in esame è composta da 3 reti IP e può essere gestita da una classe B (la rete da 350 hosts) e da due classi C (le rimanenti). Dal momento che l'esercizio richiede la scelta di indirizzi privati (primi disponibili in ogni blocco), questi dovranno essere gli indirizzi 172.16.0.0 (classe B), e gli indirizzi 192.168.0.0 e 192.168.1.0 (classe C).

11) Realizzare un piano di indirizzamento classful, utilizzando indirizzi privati (primi disponibili in ogni blocco).

- 12) Convertire l'indirizzo IP la cui rappresentazione esadecimale è C22F1158 nella notazione decimale a punti.
- 13) Si supponga che invece di utilizzare 16 bit per la sezione rete di un indirizzo di classe B, vengano utilizzati 20 bit. Quante reti di classe B ci sarebbero?
- 14) Una rete di classe B ha come maschera di sottorete 255.255.240.0. Qual è il massimo numero di host per sottorete?
- 15) Quante reti di classe C ci sarebbero se, invece di utilizzare 24 bit per la sezione di rete, ne venissero utilizzati 27?
 - 2^27-2
 - 2^27
 - 2^24
- 16) Una rete di classe B ha come maschera di sottorete 255.255.192.0.
 - Qual è il massimo numero di host per sottorete?
 - Qual è il massimo numero di sottoreti?