1 Classification

- 1. Derive the dual formulation of the soft support vector machine algorithm.
- 2. Derive the Discriminant function of the Quadratic Discriminant Analysis.
- 3. Derive the Gaussian process classifier by using the Laplace approximation.
- 4. For the following data, build a tree by using: a) Gini index, b) the depth of tree is two. The target variable is **Loan Approved**.

Table 1: Loan Approval Dataset for Tree Algorithms

Age	Income	Credit Score	Employment Type	Education	Home Ownership	Previous Loan	Married	Loan Approved
32	45,213	689	Full-time	Bachelor	Rent	No	Yes	Yes
45	78,234	734	Self-employed	Master	Own	Yes	Yes	Yes
28	31,245	612	Part-time	High School	Rent	No	No	No
51	92,345	756	Full-time	PhD	Mortgage	No	Yes	Yes
36	42,367	589	Full-time	Bachelor	Rent	Yes	Yes	No
42	67,342	698	Self-employed	Master	Own	No	No	Yes
29	28,765	543	Part-time	High School	Rent	Yes	No	No
58	84,567	812	Full-time	Bachelor	Own	No	Yes	Yes
31	39,234	654	Full-time	Bachelor	Mortgage	No	Yes	Yes
47	72,389	723	Self-employed	Master	Own	Yes	Yes	Yes
26	25,678	598	Unemployed	High School	Rent	No	No	No
39	56,321	687	Full-time	Bachelor	Mortgage	Yes	Yes	Yes
53	89,234	789	Full-time	Master	Own	No	Yes	Yes
34	42,345	623	Part-time	Bachelor	Rent	No	No	No
44	67,345	712	Full-time	Master	Mortgage	No	Yes	Yes
27	29,876	567	Unemployed	High School	Rent	Yes	No	No
49	81,234	745	Self-employed	PhD	Own	No	Yes	Yes
37	48,765	678	Full-time	Bachelor	Rent	Yes	Yes	Yes
41	52,345	701	Full-time	Master	Mortgage	No	No	Yes
30	34,567	634	Part-time	High School	Rent	No	Yes	No

5. For the data set in https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic, try following algorithms learned in the class: a) Discriminate function (mse, ppn, svm); b) Generative method (LDA, QDA, Naive Bayes (Gaussian)); c) logistic regression, neural network; d) KNN, tree method, random forest, e): kernel method (kernel svm, Gaussian process classifier). Report the parameters of your algorithm, and the accuracy on the test set.