

Лекция 2

Линейная зависимость векторов

Содержание лекции:

В данной лекции мы введем и обсудим аксиомы линейного пространства. Главным объектом нашего исследования будут линейные комбинации векторов, рассмотрение которых приводит к понятиям линейной зависимости или независимости набора векторов, а также полноты заданного набора. Эти понятия затем лягут в основу определения одного из главных понятий линейной алгебры - размерности линейного пространства.

Ключевые слова:

Аксомы линейного пространства, набор векторов, набор коэффициентов, тривиальный набор, линейная комбинация векторов, линейнозависимый набор, линейнонезависимый набор, полный набор.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

2.1 Аксиомы линейного пространства

Линейным пространством $X(\mathbb{k})$ над полем \mathbb{k} называется абелева группа X, снабженная алгебраической структурой \mathbb{k} -модуля:

Nota bene В связи с тем, что линейные пространства играют ключевую роль во многих практических задачах, перечислим явно аксиомы согласования в этой алгебраической структуре. Положим далее, что x,y,z,\ldots - элементы группы X, а α,β,\ldots - элементы поля \Bbbk .

- 1. $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in X(\mathbb{k})$, $\alpha, \beta \in \mathbb{k}$;
- 2. $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in X(\mathbb{k})$, $\alpha \in \mathbb{k}$;
- 3. $\alpha(\beta x) = (\alpha \beta)x = \beta(\alpha x), \quad \forall x \in X(\mathbb{k}), \quad \alpha, \beta \in \mathbb{k};$
- 4. $\exists 1 \in \mathbb{k} : 1 \cdot x = x, \quad \forall x \in X(\mathbb{k});$

Nota bene Элементы линейного пространства $X(\mathbb{k})$ принято называть векторами.

Пример 2.1. Примеры линейных пространств:

- 1. $\mathbb{R}^n(\mathbb{C}^n) = \left\{ x = (\xi^1, \xi^2, \dots, \xi^n)^T, \xi^i \in \mathbb{R}(\mathbb{C}) \right\}$ пространство столбиков высоты n;
- 2. $\mathbb{k}[x]_n = \{p \in \mathbb{k}[x] : \deg p \le n, n \in \mathbb{N}\}$ пространство многочленов над \mathbb{k} ;
- 3. $\operatorname{Mat}_{\mathbb{k}}(m,n) = \{A \in \mathbb{k}_n^m : a_{i,j} \in \mathbb{k}\}$ пространство $m \times n$ матриц над \mathbb{k} .

Лемма 2.1. *Имеет место:* $0 \cdot x = 0_X$.

Утверждение леммы эквивалентно следующему:

$$\begin{aligned} 0 \cdot x &= 0_X \quad \Rightarrow \quad 0 \cdot x + y = y \quad \forall y \in X(\mathbb{k}). \\ 0 \cdot x + y &= 0 \cdot x + 0_X + y = 0 \cdot x + x + (-x) + y = 0 \cdot x + 1 \cdot x + (-x) + y = \\ &= (0+1) \cdot x + (-x) + y = 1 \cdot x + (-x) + y = x + (-x) + y = 0_X + y = y. \end{aligned}$$

Лемма 2.2. Имеет место: $(-1) \cdot x = -x$.

Убеждаемся прямой проверкой:

$$-1 \cdot x = -1 \cdot x + 0_X = -1 \cdot x + x + (-x) = (-1+1)x + (-x) = 0 \cdot x + (-x) = 0_X + (-x) = -x.$$

Лемма 2.3. Имеет место: $\forall \alpha \in \mathbb{k}, \quad \alpha \cdot 0_X = 0_X$.

▶

Действительно:

$$\alpha \cdot 0_X = 0_X \implies \alpha \cdot 0_X + y = y \quad \forall y \in X.$$

$$y = 0_X + y = x + (-x) + y = 1 \cdot x + (-x) + y = (\alpha + (-\alpha) + 1) \cdot x + (-x) + y =$$

$$\alpha x + (-\alpha)x + 1 \cdot x + (-x) + y = \alpha x + (-1)\alpha x + x + (-x) + y = \alpha (x + (-1)x) + 0_X + y =$$

$$= \alpha \cdot (x + (-x)) + y = \alpha \cdot 0_X + y.$$

4

2.2 Линейная зависимость векторов

Набором $\{x_i\}_{i\in I}$ элементов некоторого множества M будем называть конечную и упорядоченную совокупность его элементов с учетом их кратностей.

Пусть $\{x_i\}_{i=1}^n \in X(\mathbb{k})$ - набор векторов линейного пространства $X(\mathbb{k})$, и $\{\alpha^j\}_{j=1}^n \in \mathbb{k}$ - набор коэффициентов из поля \mathbb{k} . Конструкция вида

$$v = x_1 \alpha^1 + x_2 \alpha^2 + \ldots + x_n \alpha^n$$

называется **линейной комбинацией** векторов $\{x_i\}_{i=1}^n$ с коэффициентами $\{\alpha^j\}_{j=1}^n$.

Тривиальным набором коэффициентов договоримся называть набор, все элементы которого равны нулю.

Набор векторов $\{x_i\}_{i=1}^n$ называется **линейнозависимым** (ЛЗ), если существует нетривиальный набор коэффициентов $\{\alpha^j\}_{j=1}^n$, такой что

$$x_1\alpha^1 + x_2\alpha^2 + \ldots + x_n\alpha^n = 0.$$

Набор векторов $\{x_i\}_{i=1}^n$ называется **линейнонезависимым** (ЛНЗ), если

$$x_1\alpha^1 + x_2\alpha^2 + \ldots + x_n\alpha^n = 0.$$

имеет место только тогда, когда набор $\left\{\alpha^j\right\}_{j=1}^n$ тривиальный.

Пример 2.2. Пусть
$$X(\mathbb{R}) = \mathbb{R}^n = \left\{ x = (\xi^1, \xi^2, \dots, \xi^n)^T, \xi^i \in \mathbb{R} \right\}$$
, тогда $x_1 \alpha^1 + x_2 \alpha^2 + \dots + x_n \alpha^n = 0$.

записывается в виде

$$\alpha_1 \begin{pmatrix} \xi_1^1 \\ \xi_1^2 \\ \vdots \\ \xi_n^n \end{pmatrix} + \alpha_2 \begin{pmatrix} \xi_2^1 \\ \xi_2^2 \\ \vdots \\ \xi_n^n \end{pmatrix} + \dots + \alpha_n \begin{pmatrix} \xi_n^1 \\ \xi_n^2 \\ \vdots \\ \xi_n^n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

или в форме системы

$$\begin{cases} \xi_1^1 \alpha^1 + \xi_2^1 \alpha^2 + \dots + \xi_n^1 \alpha^n = 0, \\ \xi_1^2 \alpha^1 + \xi_2^2 \alpha^2 + \dots + \xi_n^2 \alpha^n = 0, \\ \dots & \dots \\ \xi_1^n \alpha^1 + \xi_2^n \alpha^2 + \dots + \xi_n^n \alpha^n = 0. \end{cases}$$

Отсюда нетрудно получить, что система векторов:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix},$$

является линейнонезависимой, что следует из

$$\begin{cases} 1 \cdot \alpha^1 + 0 \cdot \alpha^2 + \ldots + 0 \cdot \alpha^n = 0, \\ 0 \cdot \alpha^1 + 1 \cdot \alpha^2 + \ldots + 0 \cdot \alpha^n = 0, \\ \ldots & \ldots \\ 0 \cdot \alpha^1 + 0 \cdot \alpha^2 + \ldots + 1 \cdot \alpha^n = 0. \end{cases} \Rightarrow \begin{cases} \alpha^1 = 0, \\ \alpha^2 = 0, \\ \vdots \\ \alpha^n = 0. \end{cases}$$

Пример 2.3. Пусть $X = \mathbb{k}[x]_n$, рассмотрим набор $\{1, x, x^2, \dots, x^{n-1}, x^n\}$ и линейную комбинацию

$$\alpha_0 \cdot 1 + \alpha_1 x^1 + \alpha_2 x^2 + \ldots + \alpha_n x^n = 0(x).$$

В точке t=0 рассмотрим производные до n-го порядка включительно:

$$0: \quad \alpha_0 \cdot 1 + \alpha_1 \cdot 0 + \alpha_2 \cdot 0 + \ldots + \alpha_n \cdot 0 = 0 \quad \Rightarrow \quad \alpha_0 = 0.$$

$$1: \quad 0 + \alpha_1 \cdot 1 + 2\alpha_2 \cdot 0 + \ldots + n\alpha_n \cdot 0 = 0 \quad \Rightarrow \quad \alpha_1 = 0.$$

...

$$n: n(n-1)(n-2)\dots 2 \cdot 1\alpha_n \cdot 1 = 0 \implies \alpha_n = 0.$$

Отсюда следует, что набор $\{1, x, x^2, \dots, x^{n-1}, x^n\}$ линейнонезависимый.

Пример 2.4. Положим $X(\Bbbk) = \operatorname{Mat}_{\Bbbk}(m,n)$ и рассмотрим набор $\{e_{ij}\}$ матриц, у каждой из которых единственный ненулевой элемент имеет индексы (i,j) $(e_{i,j})$ называют матричной единицей). Тогда

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha^{ij} e_{ij} = 0 \quad \Leftrightarrow \quad \alpha^{ij} = 0.$$

Лемма 2.4. Любой набор, содержащий нулевой вектор, является ЛЗ.

Лемма 2.5. Набор, содержащий ЛЗ поднабор, является ЛЗ.

Лемма 2.6. Любой поднабор ЛНЗ набора также является ЛНЗ.

Лемма 2.7. Система векторов линейнозависима тогда и только тогда, когда хотя бы один из векторов набора выражается линейной комбинацией остальных.

$$\{x_i\}_{i=1}^n - \mathcal{J}3 \quad \Leftrightarrow \quad \exists k \in 1 \dots n : \quad x_k = \sum_{i=1, i \neq k}^n x_i \beta^i.$$

 \Rightarrow Пусть $\{x_i\}_{i=1}^n$ - линейнозависимый набор, тогда

$$\exists k \in 1 \dots n : \quad \sum_{i=1}^{n} \alpha^{i} x_{i} = 0, \quad \alpha^{k} \neq 0 \quad \Rightarrow \quad x_{k} = -\sum_{i=1, i \neq k}^{n} x_{i} \frac{\alpha^{i}}{\alpha^{k}}.$$

 \Leftarrow Пусть набор $\{x_i\}_{i=1}^n$ такой, что

$$\exists k \in 1 \dots n : \quad x_k = \sum_{i=1, i \neq k}^n x_i \beta^i \quad \Rightarrow \quad \sum_{i=1, i \neq k}^n x_i \beta^i - 1 \cdot x_k = 0 \quad \Rightarrow \quad \{x_i\}_{i=1}^n - \text{II3}.$$

2.3 Полный набор

Набор векторов $\{x_i\}_{i=1}^n$ называется **полным** в линейном пространстве $X(\mathbb{k})$, если выполняется следующее условие:

$$\forall x \in X \quad \exists \alpha^1 \dots \alpha^n \in \mathbb{k} : \quad x = \sum_{i=1}^n x_i \alpha^i.$$

Пример 2.5. Пусть $X = \mathbb{R}^n$, тогда введенный выше набор $\{e_i\}_{i=1}^n$ является полным:

$$x = \begin{pmatrix} \xi^1 \\ \xi^2 \\ \vdots \\ \xi^n \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xi^1 + \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \xi^2 + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \xi^n = \sum_{i=1}^n x_i \xi^i.$$

Пример 2.6. Пусть $X = \mathbb{k}[x]_n$, тогда набор $\{1, x, x^2, \dots, x^{n-1}, x^n\}$ является полным:

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \ldots + \alpha_n x^n = \sum_{k=0}^{n} \alpha_k x^k.$$

Пример 2.7. Пусть $X = \mathrm{Mat}_{\Bbbk}(m,n)$, тогда набор $\{e_{ij}\}$ является полным:

$$A = \alpha^{11}e_{11} + \alpha^{12}e_{12} + \ldots + \alpha^{mn}e_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha^{ij}e_{ij}.$$