Aplicaciones Lineales

Tema 2

Estudiar si son aplicaciones lineales

1.-
$$f: \mathbb{R}^3 \to \mathbb{R}^4: f(x_1, x_2, x_3) = (x_3, x_1 + x_2, 0, -x_3)$$

2.-
$$f: R^3 \rightarrow R^2: f(x, y, z) = (x + a, y)$$

3.- f:
$$R^3 \rightarrow M_2(x)$$
: $f(x, y, z) = \begin{pmatrix} ax & by \\ cz & x + y + z \end{pmatrix}$ a,b,c $\in R$

4.- Dado el endomorfismo de R^3 definido por las ecuaciones

$$(y_1, y_2, y_3) = (x_1 + x_2 + x_3, x_1 + x_2 - x_3, x_3)$$

Obtener: a) Kerf b) Imf

c) f(V) siendo V=
$$\{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$$

5.- Dada f: $R^3 \rightarrow R^2$ definido por las ecuaciones

$$(y_1, y_2, y_3) = (x_1 + 2x_2 + 3x_3, 2x_1 + 4x_2 + 6x_3)$$

Obtener: a) Kerf b) Imf

c) Comprobar las dimensiones de cada uno

6.- Determinar el ker f e Imf del endomorfismo : $R^3 \rightarrow R^3$ definido por $f(x_1, x_2, x_3) = (x_3, x_1 + x_2, -x_3)$

Calcular
$$f^{-1}(0,0,0)$$
 $f^{-1}(1,2,3)$ $f^{-1}(1,0,-1)$

7.- Dada la aplicación lineal f: $P_2(x) \rightarrow P_2(x)$ tal que:

$$f(1+x^2) = 3 + 2x^2$$
 $f(x) = 1 + x + 2x^2$ $f(3+x) = -1$

¿Qué polinomio es la imagen del polinomio $1 - x + 5x^2$?

8.- Dadas $B=\{u_1,u_2\}$ y $B'=\{v_1,v_2,v_3\}$ bases de U y V respectivamente, si g es una aplicación lineal tal que:

$$g(3u_1 - 2u_2) = 3v_1 + 6v_2 - 3v_3$$
 $g(4u_1 - 3u_2) = v_1 + 5v_2 - v_3$

Obtener $M_{B,B'}(g)$. Clasificar el homomorfismo

9.- Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por la expresión

$$f(x_1, x_2, x_3) = (x_1 + 3x_2 + 5x_3, 2x_1 + 2x_2 + 7x_3).$$

Calcular la matriz asociada al homomorfismo f en las bases A'y B'de $R^3 y R^2$ respectivamente

$$A' = \{(1,1,1), (1,1,0), (0,1,1)\}$$
 $B' = \{(1,1), (4,3)\}$

10.- Sean A'= $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ una base de U y $B' = \{\vec{v}_1, \vec{v}_2\}$ base de V

f es un homomorfismo de U en V definido por:

$$f(\vec{u}_1 + 3\vec{u}_2 + 2\vec{u}_3) = \vec{v}_1 + 3\vec{v}_2$$
; $f(\vec{u}_2 + \vec{u}_3) = -\vec{v}_1 + \vec{v}_2$;

$$f(\vec{u}_1 + \vec{u}_3) = 4\vec{v}_1 + 2\vec{v}_2$$
. Calcular $M_{A'B'}(f)$

11.- Si C es la base canónica de \mathbb{R}^3 y C'= {(1,1,0), (1,0,1), (0,-1,2)}

Si f es un endomorfismo cuya matriz asociada respecto a la base canónica es

$$M_C(f) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ -2 & 2 & 3 \end{pmatrix}$$

Calcular la matriz de f en la base C'.

$$C' = \{u_1 = (1,1,0), u_2 = (1,0,1), u_3 = (0,-1,2)\}\$$

12.- (Examen final álgebra U-tad 2021)

Dada f: $R^3 \to R^3$ aplicación lineal , $S = \{(x,y,z) \in R^3 / x + y + z = 0\}$ es un subespacio de R^3 que verifica $f(v) = v \ \forall v \in S$ y ker f={w\in R^3/w^t. v = 0 \ \forall v \in S}

- a) Determinar $M_{BB_C}(f)$, la matriz asociada a f considerando la base $B=\{(1,0,-1), (0,1,-1), (1,1,1)\}$ en el espacio de partida y la base B_c en el espacio de llegada.
- b) Dar la expresión analítica de f(x,y,z) en las bases canónicas
- c) Calcular $f^{-1}(W)$ siendo $W = \{(x, y, z) \in \mathbb{R}^3 / y = z = 0\}$
- d) Razonar cuáles son las dimensiones de ker f y de Im f y clasificar la aplicación lineal.

13.- Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
; $M_{B_c,B_c}(f) = \begin{pmatrix} 3 & 0 & -2 \\ -1 & 4 & 5 \end{pmatrix}$

Calcular la matriz asociada a f en las bases $B=\{(1,3,0), (1,0,2), (0,4,-2)\}\ de\ \textbf{R}^3$ y $B'=\{(2,1), (4,3)\}\ de\ \textbf{R}^2$

14.- (Examen final álgebra lineal enero 2022)

Sean $B_1=\left\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right\}$ base canónica del espacio de matrices de S_2

(matrices simétricas de orden 2) y $B_2 = \{(1,0,0), (0,1,0), (0,0,1)\}$ base canónica de \mathbb{R}^3

Si $f: S_2 \rightarrow R^3$ y $g: R^3 \rightarrow S_2$ son aplicaciones lineales de las que conocemos:

- 1) Unas ecuaciones implícitas del núcleo de f en la base B_1 son x-y+2z=0
- 2) $(gof)\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$

Se pide:

- a) Calcular la matriz del endomorfismo h=gof en la base B_1
- b) Obtener una base de h(W) siendo W={ $\begin{pmatrix} x & y \\ y & z \end{pmatrix}$ /x-2y+3z=0; 3x-7y+7z=0;5x-11y+13z=0}
- c) $Si\ B' = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -3 & 1 \\ 1 & 1 \end{pmatrix} \right\}$ es otra base de S_2 , obtener la matriz del endomorfismo h en la base B'.
- d) ¿Pueden ser las ecuaciones x+2y+3z=0; y-4z=0 unas ecuaciones implícitas en B_1 del subespacio Img? Razona la respuesta

15.- Dada la base de
$$\mathbb{R}^3$$
, B={ $u_1 = (1,1,1), u_2 = (1,1,0), u_3 = (1,0,0)$ }

Obtener la base dual.

16.- Sean B= $\{v_1 = (1,2), v_2 = (3,1)\}$ una base de \mathbb{R}^2 y $\mathbb{R}^* = \{v_1^*, v_2^*\}$ su base dual. Y sea f la forma lineal f= $3v_1^* + 4v_2^*$

Determinar el valor de $f(x_1, x_2)$ para un vector cualquiera de \mathbb{R}^2

17.- (Examen parcial álgebra lineal U-tad 2021)

Consideramos el homomorfismo f_{β} definido entre los espacios vectoriales $P_{2}[x] = \{\text{polinomios de grado menor o igual que 2}\}$ y

 $M_2x2 = \{matrices \ cuadradas \ de \ orden \ 2\}$

de modo que

$$f_{-}\beta(a+bx+cx^{2}) = \begin{pmatrix} \beta p(1) & p'(1) \\ p''(1) & p'''(1) \end{pmatrix}$$

Obtener la matriz de f_{β} en las bases

$$B_1 = \{1, x, x^2\}; \qquad B_2 = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$$

Calcular la dimensión de Im f_{β} y de ker f_{β} según los diferentes valores de β .

Obtener unas ecuaciones paramétricas de ker f_{β} en la base B_1 y unas ecuaciones implícitas de Im f_{β} en la base B_2 en el caso en que f_{β} no es inyectivo.

Para
$$\beta = 1$$
:

Encontrar una base de $f_1^{-1}(S_{2x2})$ siendo S_{2x2} el espacio de matrices simétricas 2x2

Considerando ahora las bases

$$B_1'=\{1, \text{x-1,1}+x^2\}$$
 y $B_2'=\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&-1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\-1&0\end{pmatrix},\begin{pmatrix}1&1\\-1&2\end{pmatrix}\}$ en los espacios de partida y de llegada respectivamente

Obtener la matriz del homomorfismo $M_{B_1'B_2'}(f_1)$.

18.-(Examen parcial álgebra lineal noviembre 2023)

En $P_2(x)$, espacio vectorial de polinomios de coeficientes reales de grado menor o igual que 2, definimos la aplicación

f:
$$P_2(x) \rightarrow P_2(x)$$
 tal que

- 1) Los polinomios con término independiente nulo se transforman en sí mismos.
- 2) Ker $f = \{a + bx + cx^2 \in P_2(x) / a = b = c\}$ Calcular:
- a) La matriz asociada al homomorfismo f en la base canónica de $P_2(x)$
- b) Si S={ $\alpha 2\beta + \gamma + (\alpha 2\beta \gamma)x + (\alpha 2\beta)x^2$ } es un subespacio de $P_2(x)$, obtener una base de f(S)

- c) Clasificar el homomorfismo y razonar, analizando las dimensiones de los subespacios del apartado anterior, por qué tiene sentido el resultado obtenido.
- d) Utilizando la matriz asociada a f en la base $B=\{1+x+x^2,1+x,1\}$, determinar las coordenadas de $f(1-3x+5x^2)$ en la base canónica.

19.- Sea
$$B = \{u_1 = (1,1,0), u_2 = (0,1,1), u_3 = (1,0,1)\}$$
 una base de \mathbb{R}^3 .

Encontrar la base dual de B

20.- Sea f un endomorfismo de R⁴ definido por:

1) ker
$$f = \{(x,y,z,t)/2x+y-z-2t=0; z+2t=0\}$$

2)
$$f(0,0,0,1) = (2,0,0,0)$$
 y $f(1,0,0,0) = (2,0,2,0)$

Resolver las siguientes cuestiones:

- a) Calcular la matriz de f respecto de la base canónica de R⁴
- b) Hallar una base del subespacio f(V) siendo $V = \{(x, y, z, t) / x + y + z + t = 0\}$
- c) Calcular la matriz de f respecto de la base

$$B = \{w_1 = (1,1,0,0), w_2 = (1,-1,0,0), w_3 = (0,0,1,1), w_4 = (0,0,1,-1)\}$$

21.- Se consideran A, B y C tres espacios vectoriales, cuyas bases respectivas son $B_A = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ $B_B = \{\vec{u}_1, \vec{u}_2\}$ y $B_C = \{\vec{c}_1, \vec{c}_2, \vec{c}_3\}$ y dos homomorfismos:

$$\mbox{f: A} \quad \rightarrow \quad \mbox{B}\!\equiv\! \begin{cases} f(\vec{e}_1) = \vec{u}_1 - \vec{u}_2 \\ f(\vec{e}_2) = & \vec{u}_2 \\ f(\vec{e}_3) = & 2\vec{u}_2 \end{cases} \label{eq:basis}$$

g: B
$$\rightarrow$$
 $C \equiv \begin{cases} g(\vec{u}_1) = \vec{c}_1 - \vec{c}_2 + \overrightarrow{2}\vec{c}_3 \\ g(\vec{u}_2) = \vec{c}_1 - \vec{c}_2 \end{cases}$

Calcular:

- a) Matriz del homomorfismo h=gof: A \rightarrow C
- b) Obtener $h^{-1}(1,1,1)$
- c) Núcleo de h
- d) $h(V \cap W)$ siendo $V = \{(2\alpha + \beta, \alpha \beta, -\alpha) \ con \ \alpha, \beta \in R\}$ y siendo $W = \{(x, y, z) \ con \ x y + 2z = 0\}$

22.-(Examen Parcial álgebra lineal noviembre 2020)

Consideramos los espacios vectoriales:

 $E = \{ax + b/a, b \in R\}$; $F = \{matrices simétricas de orden 2\}$; $G = R^3$

Definimos los homomorfismos f: E \rightarrow F tal que f(ax+b)= $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$

y g: F
$$\rightarrow$$
 G tal que g $\begin{pmatrix} a & d \\ d & c \end{pmatrix} = (a, c, a + c)$

 $B = \{x,1\}; \ B' = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}; \ B'' = \{(1,0,0), (0,1,0), (0,0,1)\} \ son \ las \ bases \ canónicas \ de \ E, \ F \ y \ G. \ Calcular:$

- a) Matrices de los homomorfismos f, g y gof en las bases B, B'y B''.
- b) Calcular gof (V) siendo $V = \{ax + a / a \in R\}$
- c) Obtener núcleo e imagen de la aplicación lineal g y razonar si es inyectiva y/o suprayectiva
- d) Si en F consideramos la base $B^* = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \}$, hallar las matrices de f, g y gof en las bases B, B^* y B''.

23.-(Examen parcial álgebra lineal noviembre 2022)

Si $S_2(R)$ es el espacio vectorial de las matrices 2x2 simétricas de coeficientes reales y $P_2(x)$ es el espacio vectorial de polinomios de coeficientes reales de grado menor o igual que 2, y definimos la aplicación

f:
$$P_2(x) \rightarrow S_2(R)$$
 tal que f[p(x)] = $\begin{pmatrix} p'(0) & p'(1) \\ p'(1) & p'(-1) \end{pmatrix}$

Calcular:

- e) Probar que f es una aplicación lineal y obtener la matriz del homomorfismo f respecto a las bases canónicas de $P_2(x)$ y $S_2(R)$;
- f) Calcular las ecuaciones implícitas y dar una base del ker f en la base B $B=\{x^2,(x-1)^2,(x+1)^2\}$

Si g: $S_2(R) \to P_1(x)$ siendo $P_1(x)$ es el espacio vectorial de polinomios de coeficientes reales de grado menor o igual que 1, tal que $g(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = (a+d)+(a-d)x$

Y definimos $h=g_0f$

- g) Obtener una base de $h^{-1}(T)$ siendo $T = \{k + kx/k \neq 0\}$
- h) Obtener la matriz del homomorfismo $M_{BB'}(f)$ si B'={(1,-2); (0,1)}
- i) Obtener a partir de la matriz del apartado anterior $h(3 2x + 6x^2) y$ dar las coordenadas de esta imagen en la base canónica.