고객특성기반 추천 - 지불 금액 예측 모델

제안 배경

고객은 어디서 상품을 구매할까요?

고객의 선택지는 정해져 있습니다.

충성고객과 자물쇠 효과

충성고객은 자물쇠 효과에 의해 한 번 소비한 제품/서비스 등을 지속적으로 소비하는 경향을 보입니다. 소비시장이 온라인으로 확대되면서 충성고객 확보는 업계의 중요한목표로 자리매김했습니다.

"충성고객들은 타 브랜드 편의점과 함께 여러 가게가 밀집해 있는 지역에서도, **동일한 브랜드의 편의점을 선택**하는 등 브랜드 충성도가 높다" 2022, 이재은

자물쇠 효과(Lock-in effect)

고객이 특정 제품/서비스를 경험한 후, 다른 곳으로 수요를 옮기지 않고 계속해서 같은 제품/서비스를 이용하는 현상

충성고객을 확보하기 위해

충성고객을 확보하기 위해 고객에게 만족스러운 소비 경험을 선사할 필요성이 있습니다. 이를 위해 엘페이 '엘포인트 고객 데이터를 분석하였습니다. 분석결과를 통해 각 고객이 상품을 고르고 결제하기까지의 과정을 돕고, 맞춤형 혜택을 제공하고자 합니다.

결제 패턴화

제안 배경

분석 목표

- L.point L.pay 데이터를 활용한 고객 특성 추출
- 고객 특성 기반의 상품 추천
- 추천 상품을 기반한 고객의 지불 가격에 대한 예측
- 고객의 구매 편의성 및 효율성 증대
- 고객 맞춤형 마케팅 제공

분석 목차

탐색 모델 적용

- SDM model
- Product category recommendation

- Tabnet model
- price regression

분석 목차

모델 적용 탐색 개인화 마케팅 활용 방안 아이템 추천 모델 데이터 탐색 가격 예측 모델

탐색적 데이터 분석: 기본 데이터 구성

제공 데이터

내부 데이터 : 롯데그룹 온라인/오프라인 계열사의 이용 이력

외부 데이터 : 공휴일 데이터, 생활인구 이동 데이터

데이터 설명

유형	데이터명	설명	제공처
	Demo	고객번호, 성별, 연령대, 거주지대분류	
	상품 구매 정보	고객번호,영수증번호, 채널구분, 제휴사, 상품코드,점포코드,구매일자,구매시간,구매금액,구매수량	
내부	제휴사 이용 정보	고객번호,영수증번호, 제휴사, 점포코드, 이용일자, 방문일자, 이용시간,이용금액	롯데멤버스
상품 분류 정보 상품코드,소분류명,대분류명,중분류명		X-11	
	점포 정보	점포코드,제휴사,점포 대분류코드, 점포 중분류코드	
	엘페이 이용	고객번호, 제휴사, 영수증번호, 이용일자, 이용시간, 이용금액	
	공휴일 데이터	공휴일 이름, 연월일 날짜	한국천문연구원
외부	생활인구 데이터	연월, 요일, 도착시간, 출발 시군구, 도착 시군구, 성별, 나이, 이동유형, 평균이동시간(분), 이동인구(합)	서울 열린데이터광장

탐색적 데이터 분석: 고객 인구통계학 특성

■ 전체 데이터

Demo 인구통계적 PDDE 상품 구매

COP 제휴사 이용 PD_CLAC 상품 분류

BR 점포 정보 LPAY 엘페이

■ 총 고객 수

총 고객 수는 29913명 - 그 중 39명 소비 데이터 공백 (제외하고 분석 진행)

■ 고객 성별/연령별 비율

여성: 20,072명

남성: 9,802명

구매에 있어 여성 비율이 더 ↑ ■ 고객 거주 지역별 유통사 상품 판매량

Z17, Z10 에 유통사 판매량 집중

지역별 편차 존재

탐색적 데이터 분석: 유통사/제휴사 별 특성

- 유통사/제휴사 이용 내역

유통사/제휴사별 구매 추이

■ 이용 채널 추이

온라인, 오프라인 이용 추이

제휴사보다는 유통사 이용 행태가 활발 오프라인 구매 건수가 온라인 대비 ↑

탐색적 데이터 분석: 고객 구매 상품

■ 고객별 구매하는 상품 양상

과자,채소,대용식 등등의 소비재 관련 제품이 주문건수가↑ 금융,가전,가구,자동차 등등의 비소비재 제품이 주문건수가↓ 전체적으로 가장 많이 구매된 상품군인 과자의 경우에도 고객들 별로 구매 개수 편차가 존재한다.

주 구매 물품임에도 고객들마다 구매하는 상품의 양상은 다르다.

상품,대분류,중분류 변수 모두 포함

탐색적 데이터 분석: 상품의 가격 특성

■ 상품군 별 가격 분포 편차

Skew ,Kurt 값

pd_c	pd_nm	clac_mcls_nm	price_skew
PD1505	한우등심	국산소고기	22.353733
PD0298	기타남성의류세트	남성의류세트	22.726418
PD1181	커피음료	커피음료	26.276529
PD1645	캡슐원두커피	원두커피	28.144911
PD0001	소파	거실가구	1.789868
PD1930	남성향수	향수	2.932297

왜도를 통해 분포의 비대칭성을 확인. -2~2 정도 의 치우침은 정 상. 클 수록 편차 심각도 ↑. 즉 상품들 중, 비대칭성이 큰 상품 존재.

상품별 가격 분포 그래프

가전제품, 시계, 가구 등등에서 특히 가격군의 편차가 크다.

하나의 상품군 안에 가격분포 편차가 크게 존재한다.

<u>가격 관련 변수 생성 및 유통사 상품</u> 가격 이상치 보정 필요

탐색적 데이터 분석: 시간과 소비 패턴

■ 요일별, 시간별 소비 패턴

요일 별 구매건수

평일보다 금요일과 토요일에 구매 건수 집중 즉 휴일에 구매가 증가함을 확인

시간대 별 구매건수

오전 9시부터 증가해서 오후 5까지 지속적으로 구매 증가 오후 5-6시에 가장 많이 구매 (퇴근시간 영향 예상)

평일/주말/퇴근 시간 등등의 생활 요인, 구매 건수에 영향

휴일 데이터, 인구 이동 데이터를 함께 활용하여 변수 중요도 향상

2 3 4

탐색적 데이터 분석 : 시간과 소비 패턴 _ 외부 데이터

■ 공휴일 정보

공휴일 정보 병합

이름	날짜	요일
신정	2021-01-01	4
설날	2021-02-11	3
추석	2021-09-22	2
	•••	
한글날	2021-10-09	5
대체공휴일	2021-10-11	0
기독탄신일	2021-12-25	5

한국천문연구원의 특일 정보 내 xml 데이터를 추출하여 2021년도에 있었던 공휴일과 그 날짜를 산출.

요일 별로 분류하여 변수로 대입

■ 생활인구 이동 정보

생활인구 이동 데이터 병합

대상연월	요일	성별	나이	이동인구(합)
1	0	남성	20대	4572,677.44000
1	0	남성	30대	6500,359.49000
	•••			
12	6	여성	50대	4822,519.93000
12	6	여성	60대	4250,445.18000
12	6	여성	70대	2009,519.50000

서울 열린데이터광장에서 제공하는 생활 인구 이동 데이터를 월별로 합산하여 이동 인구를 산출

기존 데이터와 공유하는 컬럼 기준 대입

PDDE, COP 데이터와 월별/요일/성별/나이 기준 구매건수 양상이 비슷함을 확인

휴일 데이터, 인구 이동 데이터 파생변수로 추가

2 3 4

탐색적 데이터 분석 : 엘페이 사용 여부

■ 엘페이 사용 데이터

엘페이를 이용하는 고객은 전체 고객 중 30% 정도

엘페이를 이용한 고객이 엘페이를 이용하지 않는 고객보다 더 많이 소비함을 추정 가능

엘페이 사용 정도를 구분하여 변수 생성

01 데이터 탐색

추가 발견: 엘페이 100원 마케팅

LPAY 데이터 buy_am

Cust	buy_am
M929422819	100.00000
M620106281	100.00000
M799857188	100.00000
M109052062	100.00000
M672691149	100.00000
•	

엘페이 100원 딜

LPAY 데이터 중 100원 거래 고객 발굴 100원 자체만 거래 된 고객 다수 등장

엘페이 결제 시 100원으로 상품을 응모할 수 있는 형태의 이벤트 진행 이력 발견

01 데이터 탐색

추가 발견: 엘페이 100원 마케팅

'100원' 만 쓴 고객 대비 이후 거래가 있는 고객 多

100원이 '첫구매', 이후 구매가 발생한 고객 多

엘페이 고객 : 8,906명

그 중 100원 딜 참여 예상 고객 : 1,270 명

100원 이벤트만 거래한 고객: 1,270명 중 36명

100원 이벤트 외에도 거래가 발생한 고객: 1,270명 중 1,234명

첫 구매가 100원인 사람 : 총 353명

이후 구매 없는 사람 : 36명 (전체의 10%) 이후 구매 있는 사람 : 317명 (전체의 90%)

" 100원 결제 마케팅은 이후 사용을 지속하는 데 있어 효과적 "

01 데이터 탐색

추가 발견: 엘페이 100원 마케팅

'100원' 만 쓴 고객 대비 이후 거래가 있는 고객 多 100원이 '첫구매', 이후 구미	배가 빌	생한 고객 多	
3%			
30% M9985			
" 사용을 지속시키기 위해 가격적 측면의 혜택 제공이 F	필요	하 다 [e"	
But, 90% M0021			
- 엘페이고객 - 엘페이미사용고객 - 100원만거래 일괄적 가격 혜택과 별개로			
엘페이고객: 8,906명 개별 고객 전용 혜택을 통한 접근이 필요 그중 100원 및 참여 예상 고객: 1,270 명	Ω 35		
100원 이벤트만 거래한 고객 : 1 270명 중 26명 이후 구매 없는 사람 : 36명 100원 이벤트 외에도 거래가 발 개별 고객의 지불의사가격 예측 도입	를 (전치 (건		

02 아이템 추천 모델

모델 적용 탐색 개인화 마케팅 활용 방안 데이터 탐색 가격 예측 모델 아이템 추천 모델

모델 공통: 데이터 전처리

■ 제휴사 재 라벨링

PDDE+PD_C+COP 합

	cust	pd_nm	clac_hlv_nm	clac_mcls_nm
	M430112881	남성티셔츠	남성의류	남성의류상의
	M430112881	남성티셔츠	남성의류	남성의류상의
	M430112881	남성티셔츠	남성의류	남성의류상의
	M430112881	남성티셔츠	남성의류	남성의류상의
	M506355556	남성티셔츠	남성의류	남성의류상의
	데이터 공	백	•••	
ſ	M058650684	NaN	NaN	NaN
	M058650684	NaN	NaN	NaN
	M014154595	NaN	NaN	NaN
	M510878172	NaN	NaN	NaN

기준

pd_c	pd_nm	clac_mcls_nm	clac_hlv_nm
PD0001	소파	거실가구	가구
PD0002	스툴/리빙의자	거실가구	가구

수정

pd_c	pd_nm	clac_mcls_nm	clac_hlv_nm
PD1934	B01	숙박업종	제휴사
PD1935	C01	엔터테인먼트	제휴사
PD1936	C02	엔터테인먼트	제휴사
PD1937	D01	F&B	제휴사
PD1938	D02	F&B	제휴사
PD1939	E01	렌탈업종	제휴사
PD1940	L00	기타제휴사	엘페이
PD1941	L01	비제휴사	엘페이
PD1942	L02	A01	유통사
PD1943	L03	A02	유통사
PD1944	L04	A03	유통사
PD1945	L05	A04	유통사
PD1946	L06	A05	유통사
PD1947	L07	A06	유통사

수정 내용

상품코드(pd_c)

: 앞 상품에 이어 연속적 숫자 부여

상품명 (pd nm)

: 제휴사 이름 (B01,C01…)

중분류(clac_mcls_nm)

: 제휴사 유형

(숙박업종, 엔터테인먼트, F&B…)

대분류 (clac_hlv_nm)

: 제휴사 여부

(제휴사, 비제휴사, 제휴사,

엘페이_엘페이로유통사 결제했을때)

L.pay | L.POINT

모델 공통: 데이터 전처리

■ 가격 이상치 보정

가격 Log 변환

상품명	가격 리스트	로그 가격
2단우산	[36000.0, 36000.0,	[10.491
B01	[60000.0, 17100.0,	[11.002
BB/컴팩트류	[80000.0, 66000.0,	[11.289

상품별 구매가격에 np.log 를 씌워 가격 편차를 완화한다.

상/하한가 설정

상품명	하한값	상한값
2단우산	9.210440366976517	10.591714092984121
B01	8.803889767277028	13.52207815684787
BB/컴팩트류	8.006700845440367	11.849404844423074
C01	6.90875477931522	10.239995502805316

상품별로 log 취한 가격을 정렬.

하위 5%, 상위5% 위치의 가격을 각각 하한, 상한으로 설정하여 그 이하/이상의 값들을 대체

※ 가격 예측에서만 활용

아이템 추천 모델: SDM model

모델 선정 배경

고객의 특성(성별, 거주지, 나이)과 아이템의 특성(상품 분류 등)을 모두 고려한 추천을 의도

현재 데이터를 통해서 얻을 수 있는 정보는 구매에 대한 피드백(Label 1)

특성 값을 활용한 추천 모델

CTR 기반 model

Y={0,1} <u>if 구</u>매 (Label_1) if not 구매 (Label 0)₁

Target 데이터 구성의 어렵다. Label이 0인 구매하지 않은 정보를 별도로 구성해야 하기 때문이다.

이 과정에서 원치 않는 편향이 반영될 수 있다.

Matching 기반 model

Negative Sampling(구매1, 비구매0)을 통한 Target 데이터 구성 가능하다. 역시 데이터 편향 발생할 수 있지만, 상대적 선호도를 구분한다는 관점에서 그 정도가적을 것이라고 판단한다.

채택!

추가 채택 요인

고객의 과거 거래 정보를 반영한 예측 추천을 의도

SDM은 Sequential 기반 추천 모델로 과거 거래정보를 반영 최근 거래를 통해 short-term 선호도를,

이전의 거래를 통해 long-term 선호도를 반영할 수 있다.

아이템 추천 모델: Feature Engineering

Feature Engineering

Feature명	Feature 정의	Feature engineering
buy_am_bins	고객의 상품별 구매 금액 등급	1. 편차를 고려하여 구매 금액에 Log scaling 진행 (변수명 : buy_am_log) 2. buy_am_log값을 Standardization을 진행하여 buy_am_std가 정규 분포를 따르도록 조정 3. 가격 분포 별로 8단계로 구분 (3 – sigma 규칙 활용)
Session id	유저 행동 정의	유저 행동(세션) 정의 기준 오프라인: - 구매 데이터를 (유통사/제휴사, 시간) 기준으로 그룹화 - 시간별 유통사/제휴사 내 구매를 하나의 행동으로 정의 온라인: - 구매 데이터를 (유통사/제휴사, 하루) 기준으로 그룹화 - 일별 유통사/제휴사 내 구매를 하나의 행동으로 정의 위 기준에 따라 모든 데이터에 session_id 부여

아이템 추천 모델 : 최종 데이터 입력

Input Data

기본 정보

변수명	변수 설명
cust	고객 ID
ma_fem_dv	성별 구분
ages	나이대 구분
zon_hlv_user	고객 지역 대분류 정보

카테고리 정보

변수명	변수 설명
pd_c	상품 코드
clac_mcls_nm	상품 카테고리 중분류명
clac_hlv_nm	상품 카테고리 대분류명

Context 정보

변수명	변수 설명
buy_am_bins	Standardization price 분포 별 레벨 구분
cop_c	유통사/제휴사 구분
Session_id	행동 정보 구분

Output Data

변수명	변수 설명
pd_c	상품 코드

다음 구매로 예상되는 상품 코드(PD_C)

아이템 추천 모델 : 최종 모델 결과

Train: 2021-01-01~2021-11-14일

유저의 다음 행동 데이터

지표	수치
HR@5	0.792
nDCG@5	0.741

Valid 데이터 직후 행동 데이터

지표	수치
HR@5	0.772
nDCG@5	0.727

아이템 추천 모델 : 모델 학습 및 결과 프로세스

User 기준 예시

1. 이전 구매 데이터 모델학습

이전 구매날짜	이전 구매 목록
2021-09-27 [냉동피자, 참치통조림, 참치통조림, 가공조미료, 일반스낵, 섬유유연제/향기지:	
2021-10-16	[미술/창작완구, 옥수수스낵, 마시는요구르트, 당근, 기타유아동양말류, 푸딩/젤리,

2. 모델 결과 도출: cust별 예상 pd_c (확률 상위 5개 도출)

cust	
M001639664	

예측 슈위	예측 수위 예상 pd c pd c 상품	
1	PD1937	D01
2	PD1237	네비게이션
3	PD0340	D02
4	PD1935	업소용냉장고
5	PD1754	C01
6	PD0916	유아동시계
7	PD1947	로드자전거
	•••	

3. 다음 구매 데이터와 비교

예측된 상위 5개의 상품이 학습 데이터 이후의 데이터와 매칭되는지 비교

cust	다음 구매 pd_c
M001639664	PD1937

다음 구매 pd_c 와 예상 pc_c 가 일치하면 예측 성공!

03 가격 예측 모델

가격 예측 모델: TabNet

모델 선정 배경

정형 데이터를 활용 가능한 딥러닝 모델인 TabNet 사용

주어진 Tabular 데이터를 통해 가격 예측을 하기에는 Tree 기반의 모델이 적절하다고 판단

모델 후보

- 1. RandomForest, LightGBM 등의 Machine Learning model
- 2. Deep Learning model, TabNet

채택 이유

- 1 모델의 해석가능성을 염두 가격 예측의 목적이 개인화 마케팅에 있으므로, Feature의 영향력 관찰과 모델 해석 가능성이 중요하다고 판단. TabNet은 해석이 가능한 모델. 각 고객이 지불할 가격을 예상함에 있어 중요한 feature와 그 영향을 알 수 있다.
- 2 SDM model 과의 연계를 염두 앞서 SDM model에서 확보한 유저 임베딩을 활용할 수 있으므로 Deep Learning 기반의 TabNet을 채택

가격 예측 모델: Feature Engineering

Feature Engineering

Feature명	Feature 정의	Feature engineering
buy_ct_pct	고객의 상품별 구매 개수 선호 비율	$\frac{\textit{buy}_\textit{ct} \textit{ sum of one customer by product}}{\textit{buy}_\textit{ct} \textit{ sum of all customers by product}} \times 100$
buy_am_pct	고객의 상품별 구매 금액 선호 비율	$rac{buy_{am}}{buy_{am}}$ sum of one customer by product $ imes 100$
preference	고객의 상품별 선호 비율 평균	Feature 3 + Feature 4 2
re_buy_mean	상품별 구매주기	$\frac{(t_2^i-t_1^i)+(t_3^i-t_2^i)+\cdots+(t_n^i-t_{n-1}^i)}{t\times n} \ where \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
lpay_class	엘페이 사용 여부	$f_7 \in \{0,1,2,3\}$
specials_cnt	특이품 구매 개수	Number of purchases of $PD_{\mathcal{C}}$ with a large standard devation

2 3 4

가격 예측 모델 : 최종 데이터 입력

Input Data

기본 정보

변수명	변수 설명
cust	고객 ID
ma_fem_dv	성별 구분
Ages	나이대 구분
zon_hlv_user	고객 지역 대분류 정보
chnl_dv	온라인,오프라인 구분
buy_ct	구매한 수량

카테고리 정보

변수명	변수 설명	
buy_ct_pct	고객의 상품별 구매 개수 선호 비율	
buy_am_pct	고객의 상품별 구매 금액 선호 비율	
preference	고객의 상품별 선호 비율 평균	
re_buy_mean	상품별 구매주기	
specials_cnt	특이품 구매 개수	
lpay_class	엘페이 이용 정도	

추가 정보

변수명	변수 설명	
de_hr	구매 시간	
deal_type	제휴사/유통사/엘페이 구분	
de_month	월일 중 월 구분	
de_day	월일 중 일 구분	
de_dow	요일 구분	
de_hday	휴일 구분	
de_season	계절 구분	
pop_traffic	생활이동데이터	

Output Data

변수명	변수 설명
buy_am	구매 금액

: 상품 별 지불 예상 금액

가격 예측 모델: 최종 모델 결과

2021.11.15~2021.12.14 데이터로 학습

Train Data

RMSLE	0.6280	
RMSE	127077.897	
MAE	13405.6989	

2021.12.15~2021.12.19 데이터로 검증

Vaild Data

RMSLE	0.6514	
RMSE	77008.922	
MAE	11825.932	

2021.12.19~2021.12.23 데이터로 테스트

Test Data

RMSLE	0.6718	
RMSE	101965.204	
MAE	13000.957	

가격 예측 모델: 모델 학습 및 결과 프로세스

User 기준 예시

1. 이전 구매 데이터 모델학습

구매 날짜	clac_hlv_nm	clac_mcls_nm	de_month	de_hr	
		•••			
2021-08-13	남성의류	남성의류상의	8	13	•••
2021-09-01	가구	사무용/학생용가구	9	17	

2. 모델 결과 도출: pd_c 와 함께 사용하는 금액

pd_c	예상 지출 금액	
PD1606	17,782원	

3. 오차 확인

pd_c	예상 지출 금액	실제 지출 금액
PD1606	15,782원	12,700원

오차: 3,082원

pd_c 와 함께 지출하는 금액을 수치형으로 예상

04 개인화 마케팅 활용 방안

모델 적용 탐색 아이템 추천 모델 데이터 탐색 가격 예측 모델 개인화 마케팅 활용 방안

모델 적용 도안 상품추천-가격예측 연계형 모델에 대한 실제 활용 방안

실제 활용 전략 핵심 요소 모델의 특성을 최대한 활용하여 개인화 마케팅

가격 베네핏 제공

NEW

사용처 152

제공 가능 베네핏

예상 가능 금액 선의 구매 할인 쿠폰 제공 추가적인 상품/제휴사 추천 고려 가능 예상 가능 금액 이상을 사용하면 포인트 적립 비율 증가

개인화 마케팅 핵심 요인

어플 중심 전달

개인화 된 마케팅 푸시 알람 전달 용이

지속적인 어플 접근을 유도하여, 고객 데이터 및 구매 접점 확보 가능

리미티드 타임 전략

모델의 특성을 최대한 활용하여 당장의 구매를 자극한다.

반영 모델특성

고객에게 '지금' 타이밍에서의 필요 상품을 추천하는 기능, 함께 사용할 만한 금액대를 예측하는 기능을 함께 활용

마케팅 방안

추천 및 예측을 진행하고 그 결과를 구매로 연결하는 데 집중한다. 추천 시점에서의 상품 예측과 더불어 고객이 그 상품을 구매할 때 지출할 것으로 예상 되는 금액을 기반으로 쿠폰 혹은 추가 적립 제공한다.

기대효과

고객이 쓸 만한 금액을 간접적으로 어필할 수 있다. 실제 포인트 적립이 나의 소비에 어떤 영향을 끼치는지 체감할 수 있다.

추천된 상품을 여러 방향으로 각인 시켜 구매를 고려하게 만든다.

지금 당신에게 필요한 상품

상품 추천과 엘페이 사용 촉진 직관화

롯데홈쇼핑

기저귀 구매할 때가 되었네요! 매번 사는 기저귀, 엘페이로 구매하면?

추천상품 알람이 도착했습니다.

[시나리오]

위의 추천템 구매를 가정하고 지금까지 혜택으로 절약한 고객님의 돈 더하여 엘페이까지 사용했을 때 절약할 수 있었던 고객님의 돈

구매 혜택

반영 모델특성

고객이 살 확률이 높은 상품을 추천해주는 추천모델 기능 이용 추천하는 상품을 활용하여 포인트 적립 및 엘페이 사용 유도.

마케팅 방안

추천되는 상품을 구매할 때 엘페이 사용이 가능한 상품군이라면 그냥 구매했을 때와 엘페이를 이용했을 때 절약할 수 있는 금액을 직관적으로 전달하여 엘페이 사용을 장려한다.

기대효과

포인트 적립의 효용을 인지하고 엘페이 사용 역시 지속적으로 어필할 수 있다.

4

가격 넛지와 실제 효용 체감

예측된 가격을 간접적으로 전달하고 실제 효용을 체감하게 만든다.

반영 모델특성

고객이 상품과 함께 사용할 만한 예상 금액을 예측 예측된 금액을 소비자에게 간접적으로 어필하여 구매 예상 금액 달성 목표

마케팅 방안

포인트 적립의 이점을 실물로 환원하여 실질적으로 체감하도록 하는 것이 목표이다.

이용 예상 금액대를 소비할 수 있는 상품 및 제휴사를 추천하며 지출 예상액을 소비했을 때 달성되는 포인트를 평소 관심 있었던 상품군으로 환원해 보여준다.

기대효과

고객이 쓸 만한 금액을 간접적으로 어필할 수 있다. 실제 포인트 적립이 나의 소비에 어떤 영향을 끼치는지 체감할 수 있다.

END 기대효과

모델 결합 프로세스의 기대효과

상품 추천과 가격 예측 모델을 동시에 설계하여 얻을 수 있는 베네핏

아이템 추천 모델

+

가격 예측 모델

"고객님, 이 물건 어떠세요?"

"그 물건 살 때 고객님께는 이 쿠폰을 드릴게요"

고객이 살 만한 아이템을 추천 하면서

: 고객 특성을 반영 한 개인화 된 물품 추천

구매의 확장과

: 지출을 확장하여 '구매' 를 기점으로 추가 구매를 야기한다.

구매 달성까지 고려

개인화 된 가격적 혜택으로 접근하여 구매 욕구를 높인다 :

"추천에서 나아가 실제로 구매 하는 순간까지 도달 하도록"

감사합니다.

