CSE3241: Operating System and System Programming

Class-20

Sangeeta Biswas, Ph.D.

Assistant Professor
Dept. of Computer Science and Engineering (CSE)
Faculty of Engineering

University of Rajshahi (RU) Rajshahi-6205, Bangladesh

E-mail: sangeeta.cse@ru.ac.bd / sangeeta.cse.ru@gmail.com

December 10, 2017

Scheduler

- Scheduler is the part of OS which manages processes in different queues so that processes do not stay in any quere for long time.
- Types of Schedulers:
 - 1. Long-term Scheduler:
 - ▶ mass storage device → memory.
 - batch system uses it.
 - also known as job scheduler.
 - runs only when a process leaves the system.
 - 2. Mid-term Scheduler:
 - ▶ ready queue → virtual memory.
 - some modern, time-sharing OS like Linux uses it.
 - 3. Short-term Scheduler:
 - ▶ ready queue → CPU.
 - ▶ all multi-programming OS uses it.
 - also known as CPU scheduler.
 - runs very frequently.

Mid-Term Scheduler in Swapping

CSE, RU 3/13

Memory Allocation

- **Degree of Multiprogramming**: is the number of processes in memory.
- In a multiprogramming system, OS has to allocate memory efficiently so that both OS and User processes can stay in memory happily.
- Types of Memory Allocation:
 - 1. Contiguous Allocation: Each process is contained in a single contiguous section of memory.
 - Fixed-Sized Allocation
 - Dynamic Allocation
 - Non-Contiguous Allocation: A process resides in different parts of the memory.

Paging

CSE, RU 4/13

Fixed-Sized Allocation

- Memory is divided into several fixed-sized partitions.
- When a partition is free:
 - a process is selected from the input queue, and
 - loaded into the free partition.
- Simple but:
 - waste lot of memory.
 - cannot provide memory for larger process.
- It is primarily used in the batch system.
- IBM OS/360 used it.
- It is no longer in use.

CSE, RU 5/13

Dynamic Allocation

- Initially all memory in the user space is considered as big hole.
- When a process arrives and needs a memory, OS search for a hole big enough for that process.
- Ways of Free Memory Allocation:
 - 1. First Fit:
 - allocate the first hole that is big enough.
 - searching is stopped as soon as the appropriate free hole is found.
 - 2. Best Fit:
 - allocate the smallest hole that is big enough.
 - search the entire list unless it is sorted.
 - 3. Worst Fit:
 - allocate the largest hole.
 - search the entire list unless it is sorted.

CSE, RU 6/13

Paging

■ It permits the physical space of a process to be **non-contiguous**.

It avoids of keeping the process await in the input queue.

previous memory management schemes suffered.

At the beginning paging was handled by special hardware.

■ Then both hardware and OS were designed to hande paging.

■ Most modern OS uses it.

CSE, RU 7/13

Paging Model[1]

CSE, RU 8/13

Contiguous Allocation[1]

CSE, RU 9/13

Paging Hardware[1]

CSE, RU 10/13

Paging Example for 32 byte memory[1]

Memory Layout of a Program

- Address space of a process contains:
 - ► Stack: temporary data such as function parameters, return addresses, local variables.
 - ► **Heap**: dynamically allocated memory locations.
 - Data Section: global variables.
 - ▶ **Text Section**: executable program.

CSE, RU 12/13

References

P. B. Galvin A. Silbeschatz and G. Gagne. Operating System Concepts. John Wiley & Sons, 9 edition, 2012.

CSE, RU 13/13