Welcome to the

Air Quality Module

Virendra Sethi Professor

Environmental Science & Engineering Department IIT Bombay

2023

NAAQS

National Ambient Air Quality Standards

CPCB Website :

cpcb.nic.in/air-quality-standard/

Revised National Ambient Air Quality Standards (NAAQS) [NAAQS Notification dated 18th November, 2009]

			Concentration in Ambient Air		
S. No.	Pollutants	Time Weighted Average	Industrial, Residential, Rural and other Areas	Ecologically Sensitive Area (notified by Central Government)	Methods of Measurement
1	Sulphur Dioxide (SO ₂), µg/m ³	Annual*	50	20	Improved West and Gaeke Ultraviolet Fluorescence
		24 Hours**	80	80	
2	Nitrogen Dioxide (NO ₂), μg/m ³	Annual*	40	30	Modified Jacob & Hochheiser Chemiluminescence
		24 Hours**	80	80	
3	Particulate Matter (Size <10μm) or PM ₁₀ μg/m ³	Annual*	60	60	1. Gravimetric 2. TEOM 3. Beta attenuation 1. Gravimetric 2. TEOM
		24 Hours**	100	100	
4	Particulate Matter (Size <2.5 μm) or PM _{2.5} μg/m ³	Annual*	40	40	
		24 Hours **	60	60	Beta attenuation
5	Ozone (O ₃), µg/m ³	8 hours**	100	100	UV photometric
		1 hours **	180	180	Chemiluminescence Chemical Method
6	Lead (Pb), μg/m ³	Annual *	0.50	0.50	AAS/ICP Method after sampling using EPM 2000 or equivalent filter
		24 Hour**	1.0	1.0	paper 2. ED-XRF using Teflon filter
7	Carbon Monoxide (CO),	8 Hours **	02	02	Non dispersive Infra Red (NDIR)
	mg/m ³	1 Hour**	04	04	Spectroscopy
8	Ammonia (NH ₃), μg/m ³	Annual*	100	100	Chemiluminescence Indophernol blue method
		24 Hour**	400	400	2. maophemor side metrod

8	Ammonia (NH ₃), μg/m ³	Annual*	100	100	Chemiluminescence Indophernol blue method
		24 Hour**	400	400	
9	Benzene (C ₆ H ₆) , µg/m ³	Annual *	05	05	Gas chromatography based continuous analyzer Adsorption and Desorption followed by GC analysis
10	Benzo(a)Pyrene (BaP)- particulate phase only, ng/m ³	Annual*	01	01	Solvent extraction followed by HPLC/GC analysis
11	Arsenic (As), ng/m ³	Annual*	06	06	AAS/ICP method after sampling on EPM 2000 or equivalent filter paper
12	Nickel (Ni), ng/m ³	Annual*	20	20	AAS/ICP method after sampling on EPM 2000 or equivalent filter paper

^{*} Annual Arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform interval.** 24 hourly 08 hourly or 01 hourly monitored values, as applicable shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

NOTE: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reason to institute regular or continuous monitoring and further investigation.

Nature of Air Pollutants

1. Gaseous (SOx, NOx, CO...)

2. Particulate Matter (PM)

Gaseous Pollutants

- Similar sized molecules
- Behaviour
 - Physics : Same
 - Chemistry : Different
 - EXAMPLES
 - Solubility
 - Toxicity
 - Ozone Depletion Potential

Particulate Pollutants

- Behaviour
 - Physics : NOT the same
 - Size
 - Morphology
 - Chemistry:
 - Inert (Dust, Sand, No more reactive)
 - Smoke (Toxic, intoxicating)

Air Pollution

- Concentration
 - mass of pollutant / volume of air
 - number of particles / volume of air
 - opacity
- Duration hours to days to years
- Criteria Pollutants
 - Primary
 - SOx
 - NOx
 - CO
 - PM-10, PM-2.5
 - ...
 - Secondary
 - Ozone

How do you measure the mass concentration of PM?

Perception

(Scales)

2 mm Ant

3 Orders of Magnitude

2 m "Spherical" Baby Elephant

Ants and Elephants

• Ant ~2mm

"Spherical" Baby Elephant ~2 m

Order of magnitude
 3

• Nitrogen Molecule ~0.3 nm

• Respirable particle ~300 nm

Order of magnitude

Particles in Air

are like

Elephants

suspended

in an

Ocean

of

Ants

(Gas Molecules)

Ants and Elephants

- All the well established physics of "ants" (IDEAL GAS) is not applicable to the "elephants"
- All the MAGIC of "nano" is in this "new" world of "elephants"
- Ability to understand this range of sizes has become possible due to development of instrumentation
- Last 4-5 decades have been exciting times for Aerosol Science and Engineering
 - Powder Production Material science
 - Nano-products
 - Atmospheric Pollutants
 - Medical Sciences

Welcome to the

Air Quality Module

Virendra Sethi Professor

Environmental Science & Engineering Department IIT Bombay

2023

Even within the "Elephants" There is a range of Sizes

which decide
WHERE
they would deposit in the lungs

The Filtration Spectrum

17

Tri-modal Particle Size Distribution

(Source: Kittelson et al. 1999)

Mass - Size

Mass of ONE 1 μ m particle

EQUALS

Mass of \times 0.1 μ m particles

Tri-modal Particle Size Distribution

(Source: Kittelson et al. 1999)

Particle Formation in Coal Combustion

PARTICLE DIAMETER

Study Area Mumbai

- 1. WRL (residential)
- 2. PAL (industrial)

Map Source: http://wikimapia.org

Mass Size Distributions Measured for 5 Days in Mumbai (Goyal, 2008)

PM_{10} and $PM_{2.5}$

• PM_{10} is the mass concentration of particulate matter less than 10 μm expressed as $\mu g/m^3$

• $PM_{2.5}$ is the mass concentration of particulate matter less than **2.5** µm expressed as µg/m³

$PM_{2.5}$ is a subset of PM_{10}

Plot mass distribution function

• Mode in the <2.5 μm size is sourced by combustion and other anthropogenic activities. More toxic.

- Area under the curve
 - 0 to 10 μ m PM₁₀
 - 0 to 2.5 μm PM_{2.5}

Ratio of PM_{2.5} to PM₁₀

INDICATOR OF ANTHROPOGENIC / COMBUSTION ACTIVITIES

Ratio Small = Benign Particulate

Ratio Large = Most particles will reach lungs and possibly more toxic

PM_{2.5} and PM₁₀ Measurements at Mumbai

PM_{2.5} and PM₁₀ Measurements at Pune

PM_{2.5} and PM₁₀ Measurements at Mumbai and Pune

Mass Size Distributions Measured for 5 Days in Mumbai

Welcome to the

Air Quality Module

Virendra Sethi Professor

Environmental Science & Engineering Department IIT Bombay

2023

Sizing of Particles

Thought Exercise

How would you size and count particles in air in the nanometer size range?

Instrumentation

- Inertial Impactors
 - Mass based (> 56 nm)
- Optical Particle Counters
 - Number based (> 100 nm)
- Electrical Mobility
 - Sizing (> 6 nm)
 - Counting (Condensation Nuclei Counters)

MOUDI

Micro-Orifice Uniform Deposit Impactor

Instrumentation

- Inertial Impactors
 - Mass based (> 56 nm)
- Optical Particle Counters (OPC's)
 - Number based (> 100 nm)
- Electrical Mobility
 - Sizing (> 6 nm)
 - Counting (Condensation Nuclei Counters)

OPC's

- Light Scattering
- Light Extinction

Limited to 0.09 μm 0.4 > λ_{opt} > 0.7 μm

• Single Particle /Cloud of Particles

Welcome to the

Air Quality Module

Virendra Sethi Professor

Environmental Science & Engineering Department IIT Bombay

2023

Sizing of Particles

Instrumentation

- Inertial Impactors
 - Mass based (> 56 nm)
- Optical Particle Counters
 - Number based (> 100 nm)
- Electrical Mobility
 - Sizing (> 3 nm)
 - Counting (Condensation Nuclei Counters)

Electrical Mobility Analysers

- Charge particles
- Electrical Field

OPC in Principle – Alcohol used to grow size

Differential Mobility
Analyser (For size separation using electrical mobility)

Source: TSI Inc.

Condensation Particle Counter (For growing the size separated particles and detecting them using light scattering)

Source: TSI Inc.

Scanning Mobility Particle Sizer

Field Instruments

- High Volume Samplers (~2 Lakhs)
 - Regulatory (RSPM, SOx, NOx)

- Mini-vol Samplers (~5 Lakhs)
 - Regulatory (PM10, PM2.5)

- Dust Trak (~7 Lakhs)
 - Real time (1 minute resolution)
 - PM_x (x = 1, 2.5, 4, 10)

Measuring Gaseous Pollutants

Wet Chemistry (8 hour averages)

• Electrochemical sensors (Real time)

Spectroscopy (Real time)

Standard Methods (SPCB's Analytical Labs)

Welcome to the

Air Quality Module

Virendra Sethi Professor

Environmental Science & Engineering Department IIT Bombay

2023

Controlling Air Pollutants

at the SOURCE

Particulate Matter

Air Pollution Control - PM

MECHANICAL

• Gravity – Settling Chambers 20 -100 μm

• Inertia - Cyclones $> 25 \mu m$

• Diffusion – Filters $> 0.1 \, \mu m$

• ELECTRICAL

• Electrostatic Precipitators $> 0.1 \mu m$

Mechanical

Gravitational Settlers

Mechanical - Inertia

Welcome to the

Air Quality Module

Virendra Sethi Professor

Environmental Science & Engineering Department IIT Bombay

2023

Mechanical - Filtration

- Through Fibrous Material :
 - FILTERED by
 - Diffusion
 - Impaction
 - Interception
 - (NOT SIEVING)

Electrostatic Precipitators

Welcome to the

Air Quality Module

Virendra Sethi Professor

Environmental Science & Engineering Department IIT Bombay

2023

Controlling Air Pollutants

at the SOURCE

Gases

Air Pollution Control - Gases

Absorption

Adsorption

Incineration

- Chemical Reactions
 - Catalysts
 - Flue gas Desulphurisation

Adsorption

Incinerators - Flares

Thank you for your Time and Attention

Best Wishes

Virendra vsethi@iitb.ac.in