МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра дифференциальных уравнений и системного анализа

БАЙЕСОВСКИЕ НЕЙРОННЫЕ СЕТИ

Курсовая работа

Афанасенко Григория Сергеевича студента 2-го курса специальности 1-31 03 09 «Компьютерная математика и системный анализ»

Научный руководитель: ст. преподаватель А. Э. Малевич

ОГЛАВЛЕНИЕ

1	Вид	иды нейронных сетей.		
	1.1	Детер	минированные нейронные сети	3
	1.2	Байес	овские нейронные сети	
		1.2.1	Вероятностные графы вычислений	
		1.2.2	Байесовские нейронные сети	6

ГЛАВА 1

Виды нейронных сетей.

1.1 Детерминированные нейронные сети.

Сначала напомним, что такое обычные (детерминированные) нейронные сети и как они обучаются.

Основная задача обычных искусственных нейронных сетей(ANN) в том, чтобы аппроксимировать некоторую зависимость выхода y от входа x: $y = \Phi(x)$. Зависимость $\Phi(x)$ аппроксимируем через композицию последовательных преобразований.

Для простоты будем рассматривать обычные *полносвязные* сети со входом x, скрытыми(промежуточными) состояниями слоёв h_i , функциями активации $a_i(\cdot)$ и выходом y:

$$egin{aligned} m{h_0} &= m{x} \ m{h_i} &= a_i (m{W_i} \cdot h_{i-1} + m{b_i}), i = \overline{1...n} \ m{h_n} &= \widehat{y} \ L &= \mathcal{L}(\widehat{y}, y), \end{aligned}$$

где $\mathcal{L}(\cdot,\cdot)$ - функция ошибки.

Обозначим параметры модели на i-ом слое $\theta_i = (W_i, b_i)$, а параметры всей модели через $\Theta = \{\theta_i : i = \overline{1...n}\}$. Чаще всего нейронные сети принято рассматривать, как вычислительный граф/граф вычислений. Такой подход удобен с инженерной точки зрения, поскольку позволяет воспользоваться инструментом автоматического дифференцирования, и используется во всех современных фреймоворках: PyTorch, TensorFlow и прочие. Граф вычислений является ациклическим ориентированным графом, составленным из вершин-переменных и вершин-операций (Рисунок 1.1).

Рисунок 1.1 Полносвязная сеть в виде графа вычислений

Далее будем называть модели, основанные на графах вычислений, — графовыми моделями. Графы вычислений могут разных типов: статическими/динамическими, детерминированными/вероятностными и т.д. Для обучения/настройки параметров детерминированных графовых моделей используется метод обратного распространения ошибки(back propagation), который широко используется в современном мире. Вкратце напомним алгоритм:

После прямого выполнения графа (forward pass), то есть в соответствии с направлениями рёбер на выходе мы получаем L -значение функции ошибки, которые в зависимости от задач мы хотим либо минимизировать, либо максимизировать. Для этого мы пользуемся градиентными методами оптимизации, что требует вычисление градиентов $\frac{dL}{dW_i}, \frac{dL}{db_i}$ по нашим параметрам модели, где $i=\overline{1,n}$. В общем случае это трудная задача, однако в случае детерминированных графовых моделей мы можем использовать цепное правило (chain rule) для того, чтобы последовательно проталкивать градиенты, начиная с концевой вершины, содержащей L.

Например, для подсчёта градиентов $\frac{dL}{dW_i}, \frac{dL}{db_i}$ мы представим его в виде

$$\frac{dL}{dW_i} = \frac{dL}{dh_n} \cdot \frac{dh_n}{dW_i}$$
$$\frac{dL}{db_i} = \frac{dL}{dh_n} \cdot \frac{dh_n}{db_i}$$

Аналогично для всех остальных параметров модели мы будем проталкивать накопленный с концевой вершины градиент до соответствующих вершин и с помощью этого градиента высчитывать градиент по параметрам модели. Схему работы алгоритма обратного распространения ошибки можно увидеть на Рису-

нок 1.2.

Рисунок 1.2 Обратное распространение ошибки по графу вычислений детерминированной полносвязной сети

Однако детерминированные нейронные сети обладают несколькими проблемами:

- Переобучение.
- Низкая интерпретируемость.
- Завышенная/заниженная уверенность модели в предсказаниях, даже если они неверные.
- Низкий уровень откалиброванности модели.

Указанные проблемы попытаемся решить с помощью байесовского подхода к нейронным сетям, который рассмотрим далее.

1.2 Байесовские нейронные сети.

1.2.1 Вероятностные графы вычислений.

Перед тем, как приступить к байесовским нейронным сетям, рассмотрим вероятностные графы вычислений, на которых основаны байесовские сети. В литературе также часто вместо названия вероятностные графы вычислений встречается вероятностные графические модели. Второе название является более общим, в то время как первое более специфично именно для байесовских нейронных сетей. Такие графы вычислений широко используются и известны достаточно давно. Они лежат в основе, например, Марковских цепей, которые

ранее активно использовались в различных задачах машинного предсказания, распознавания образов и т.п.

Основная мотивация в использовании вероятностного подхода состоит в том, что в реальном мире мы чаще имеем дело с неопределённостью в данных и знаниях и не можем детерминированно описать все приходящие переменные для решения задачи. Для решения проблем с неопределённостью можно попробовать собрать большие объёмы данных для того, чтобы попытаться "понять" эту неопределённость. С другой стороны мы можем использовать байесовский подход, который напрямую оперирует с неопределённостью.

1.2.2 Байесовские нейронные сети.