10/30/23, 12:07 AM Test results - Codility

Codility_

CodeCheck Report: training387PW5-C2Y

Test Name:

Summary Timeline

Check out Codility training tasks

Tasks Details

1. TapeEquilibrium
Minimize the value |(A[0] + ... + A[P-1]) - (A[P] + ... +Task ScoreCorrectnessPerformanceA[N-1])|.100%100%

100%

Task description

A non-empty array A consisting of N integers is given. Array A represents numbers on a tape.

Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P-1] and A[P], A[P+1], ..., A[N-1].

The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P - 1]) - (A[P] + A[P + 1] + ... + A[N - 1])|

In other words, it is the absolute difference between the sum of the first part and the sum of the second part.

For example, consider array A such that:

A[0] = 3

A[1] = 1

A[2] = 2

A[3] = 4

A[4] = 3

We can split this tape in four places:

- P = 1, difference = |3 10| = 7
- P = 2, difference = |4 9| = 5
- P = 3, difference = |6 7| = 1
- P = 4, difference = |10 3| = 7

Write a function:

class Solution { public int solution(int[] A); }

that, given a non-empty array A of N integers, returns the minimal difference that can be achieved.

For example, given:

Solution

Programming language used: Java 8

Total time used: 1 minutes

Effective time used: 1 minutes

Notes: not defined yet

Task timeline

22:03:03

Code: 22:03:51 UTC, java, final, show code in pop-up score: 100

```
import java.util.Arrays;
 2
 3
     class Solution {
 4
         public int solution(int[] A) {
 5
                     int sum = Arrays.stream(A).sum();
 6
                     int minDifference = Integer.MAX VALUE;
 7
                     int sumLeft = 0;
                     for (int i = 0; i < A.length - 1; i++) {
 8
 9
                              sumLeft += A[i];
10
                              minDifference = Math.min(minDiffe
11
12
                     return minDifference;
13
```

A[0] = 3

A[1] = 1

A[2] = 2

A[3] = 4

A[4] = 3

the function should return 1, as explained above.

Write an efficient algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [-1,000..1,000].

Copyright 2009–2023 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Test results - Codility

}}

Analysis summary

The solution obtained perfect score.

Analysis

Detected time complexity: O(N)

uble elemen	oK OK	Correctne	ess test	S OK			
uble elemen	nts	Correctne					
uble elemen	nts	Correctne					
elemen				✓ OK			
08 s							
	OK						
08 s	ОК						
08 s	ОК						
-	ositive with positive num	nbers, lengt		∨ OK			
08 s	ОК						
	ОК						
)	8 s	8 s OK	8 s OK		8 s OK	8 s OK	8 s OK

•	-	negative	✓ OK numbers, length = 5
1.	0.008 s	ОК	
2.	0.008 s	ОК	
•	_	boundary	✓ OK of the sides
1.	0.008 s	ОК	
2.	0.008 s	ОК	
3.	0.008 s	ОК	
4.	0.008 s	ОК	
•	small_ra	andom mall, length = 1	∨ OK
1.	0.008 s	OK	
•	small_range range sequence, length = ~1,000		✓ OK ~1,000
1.	0.012 s	ОК	
•	small small eler	ments	∨ OK
1.	0.008 s	ОК	
collap	se all		Performance tests
•			✓ OK s from 0 to 100, length
1.	0.032 s	OK	

randor	um_rand n medium, = ~10,000	numbers from -1,000 to 50,	∨ OK
1.	0.032 s	ок	
•	large_or	uence, numbers from -1 to 1, len	✔ OK gth =
1.	0.224 s	ОК	
2.	0.224 s	ОК	
•	large_ra	indom arge, length = ~100,000	∨ OK
1.	0.280 s	ОК	
2.	0.280 s	ОК	
•	-	equence uence, length = ~100,000	∠ OK
1.	0.128 s	ок	
•	large_extended large test	with maximal and minimal valu	✓ OK es,
1.	0.312 s	ОК	
2.	0.312 s	ОК	
3.	0.252 s	ОК	