# CSE 564 VISUALIZATION & VISUAL ANALYTCS

# INTERACTION & INFORMATION NAVIGATION

## KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

## **Too Much Data?**

#### How can we deal with data overload

see the forest for the trees (or the other way around)



## **Too Much Data?**



Internet routes (1/15/2005)

(NY Museum of Modern Art)

## The Key to Overcome the Data Deluge: Interaction

#### Allow users to control what is currently shown:

- level of detail
- extent of the data (spatial, values)
- aspects of the data (attributes)

#### But do not leave the user lost in the forest

provide navigation hints

## Two powerful paradigms:

- overview, and detail on demand (forest and trees)
- focus and context (trees and forest)

#### Interaction needs to be interactive (as in responsive)

user needs get quick visual feedback on actions

## **Interaction: Key to Visual Analytics**

## Puts the human in the loop

appeals to human's expertise and intuition

#### Requires a suitable human-computer interface

recall the lectures on color and perception

#### Interaction can help with:

- making sense of it all
- putting things in proper context
- data overload (scalability)
- telling stories with data (explain findings to others)

#### Evaluate effectiveness

- do human users actually benefit?
- user studies!

## A Taxonomy of Fundamental Interaction Types

## Stephen Few (chapter 4):

- compare
- sort
- add variables
- re-scale
- re-express
- filter
- highlight
- annotate
- bookmark
- aggregate
- re-visualize
- zoom and pan
- details on demand

#### **Example**

#### Assume you have been offered a car to buy

- assume you are mostly interested in horsepower, weight, acceleration
- the car you have been offered has 60 hp, 1834 kg, 8 s



## **Compare**

#### See the car with other available cars



hard to see how it really ranks

#### Sort

See the car in the context of other available cars



it is a low-horsepower car

#### **Additional Variables**

## Is horsepower correlated to weight?

• are there trade-offs?



hard to see what is going on

#### Re-Scale

#### Scale horsepower into the same range than weight

could also normalize each to (0.0, 1.0)



#### There seems to be a positive correlation

cars with higher horsepower are also heavier

#### **Another Variable**

How does it relate to acceleration?



non-intuitive that acceleration is less for high horsepower cars

#### **Re-Express**

#### Acceleration should really be 1/acceleration

should be measured in 1/sec (and not sec)



 now higher horsepower cars also seem to have higher acceleration (but the influence is quite minor) → is there a higher-D relationship?

## **Filtering**

## Example: Graph of concepts

related concepts group closer



from: http://www.mkbergman.com/date/2008/02/

## **Filtering**

## Example: Graph of concepts

• only keep top 750 connected nodes



## **Filtering**

## Example: Graph of concepts

• only keep top 350 connected nodes



#### **Zooming**

## Example: Graph of concepts

only keep Saab neighborhood



## **Zooming**

## Example: Graph of concepts

only keep Saab neighborhood, zoom in more



#### **Aggregate**

As discussed, good ways to aggregate all data into a single display are:

- biplots (project all data into a PCA vector basis)
- multidimensional Scaling (MDS)
- parallel coordinates







biplot

**MDS** 

parallel coordinates

#### **Overview and Detail**

## The Visual Information-Seeking Mantra

- devised 1996 by Ben Shneiderman (U Maryland, College Park)
- summarizes many visual design guidelines
- in some ways inspired by human vision/behavior
- provides an excellent framework for designing Information visualization applications.



Overview, zoom and filter, then details-on-demand

. . . .

Overview, zoom and filter, then details-on-demand Overview, zoom and filter, then details-on-demand Overview, zoom and filter, then details-on-demand Overview, zoom and filter, then details-on-demand

#### **Overview and Detail**

#### Information space overview plus some detail

maintains (some) context with the detail currently focused on



Leica Microsystems



WikiViz

#### Focus + Context

#### Overview and detail

- disjoint views, maybe connected by a fan
- but: they simultaneously shows both overview and details
- require the viewer to consciously shift his/her focus of attention

#### Focus + context

- one single view which shows information in direct context
- maintains continuity across the display
- do not require viewer to shift back and forth
- a good F+C paradigm is the *lens*
- but: there will be distortion





## **Fisheye Lenses**

#### Fisheye lenses

- physically correct and therefore familiar
- keep target item in focus
- less relevant peripheral items are dropped or reduces in size
- distortion





## **Bifocal Lens**



**Complete Mapped Information Space** 





## **Bifocal Lens**

## London subway map



## (Volumetric) Magnification Lenses



Avoid aliasing in transition regions by low-pass filtering

#### **Generalized Lenses**

#### Computers can go beyond (stretch) the laws of physics

• example: multi-perspective lens rendering, gaze-directed, ...





Rademacher/Bishop





MC Escher

Loeffelmann/Groeller

## **Generalized Lenses**



#### **Lenses in Information Visualization**

## Hyperbolic Tree fisheye lens

- Xerox PARC/Inxight
- selectively and smoothly reduce complexity as user focus changes



#### **Lenses in Information Visualization**

## Table Lens (Rao and Card, 1994)

- uses a DOI (degree of interest) lens
- fuses symbolic and graphical detail driven by the DOI lens







#### **Lenses in Information Visualization**

#### Perspective Wall

- Xerox PARC/Inxight
- details on the center panel are at least three times larger than the details on a flat wall that fits the field of view



## **Magic Lens**



Illustrating the concept of a magic lens. (a) shows a conventional map of an area, (b) shows the location of services (gas, water and electricity pipes) in the same area, and (c) a (movable) magic lens shows services in an area of interest, in context

Video

#### **Zoom and Pan**

## **Panning**

smooth movement of a viewing frame over a 2D image of greater size

#### Zooming

increasing magnification of a decreasing fraction (or vice-versa) of a
 2D image under the constraint of a viewing frame of constant size

#### Transfer of the focus of attention:

zoom out → pan → zoom in







## **Scale-Space Diagrams**

## Efficient transfer of the focus of attention:

zoom out → pan → zoom in

Furnas, Bederson, 1995



#### **Intelligent Zooming**

#### Depending on scrolling speed, zoom more or less

- allows efficient navigation of large documents
- employs semantic zooming



Igarashi, Hinckley, 2000

#### **Semantic Zoom**

#### Standard zoom:

shows a down/up scaled version of the object/image

#### Semantic zoom:

 shows a different representation determined by the space available



## **Semantic Zooms: Maps**









#### **Semantic Zooms: Information Visualization**

#### Could show different levels/aspects of information

- on a map, show either parking lots, bars, or restaurants
- zoom in by price range (cheap first, then more expensive...)
- zoom in by preference (favorite food first, then less favorite...)
- may combine these criteria into a preference function

#### **Semantic Zooms: Information Visualization**

#### Could show different levels/aspects of information

- on a map, show either parking lots, bars, or restaurants
- zoom in by price range (cheap first, then more expensive...)
- zoom in by preference (favorite food first, then less favorite...)
- may combine these criteria into a preference function

#### Zoom levels may require access rights

- members only
- big wallets only
- classified information



## **Exploded Views**



<u>Video</u>

## **Brushing and Linking**

#### Interactive technique

- Highlighting
- Brushing and Linking

## At least two things must be linked together to allow for brushing

- select a subset of points
- see the role played by this subset of points in one or more other views

#### Example systems

- Graham Will's EDV system
- Ahlberg & Sheiderman's IVEE (Spotfire)

## **Linking Types of Assist Behavior to Position Played**



#### **Baseball Data: Scatterplots and Histograms and Bars**



#### What was Learned from Interaction w/ the Baseball Data?

- Seems impossible to earn a high salary in the first three years
- High salaried players have a bimodal distribution (peaking around 7 & 13 yrs)
- Hits/Year a better indicator of salary than HR/Year
- High paid outlier with low HR and medium hits/year. Reason: person is player-coach
- There seem to be two differentiated groups in the put-outs/assists category (but not correlated with salary) Why?

## **Brushing: Highlighting**

## Use mouse interaction to highlight points and lines in

- parallel coordinates
- scatterplots





#### **Interaction Video #1**

Interaction in Parallel Coordinate