Unbounded operators, resolvents, the Friedrichs extension, and the Laplacian on $L^2(\mathbb{T}^d)$

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

September 24, 2015

1 Unbounded operators

Let V be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$, linear in the first argument. We write $|v|^2 = \langle v, v \rangle$ and for a bounded operator A on V we write

$$||A|| = \sup_{|v| \le 1} |Av|.$$

By an **operator** T, D_T **in** V we mean that D_T is a linear subspace of V and $T: D_T \to V$ is a linear map. For operators T, D_T and $T', D_{T'}$, by $T \subset T'$ we mean that $D_T \subset D_{T'}$ and the restriction of T' to D_T is equal to T, and we say that T' is an **extension** of T.

Lemma 1. If X and Y are Banach spaces, X_0 is a dense linear subspace of X, and $T_0: X_0 \to Y$ is a bounded operator, then there is a unique bounded operator $T: X \to Y$ whose restriction to X_0 is equal to T_0 and which satisfies $||T|| = ||T_0||$.

Proof. For $x \in X$, let x_n, x'_n be sequences in X_0 tending to x, and thus $|x_n - x'_n| \le |x_n - x| + |x'_n - x| \to 0$. $|T_0x_n - T_0x_m| \le |T_0| |x_n - x_m|$, so T_0x_n is a Cauchy sequence in Y and hence converges to some $y \in Y$, and likewise $T_0x'_n$ converges to some $y' \in Y$. Then

$$|y - y'| \le |y - T_0 x_n| + ||T_0|| ||x_n - x_n'|| + |T_0 x_n' - y'|| \to 0,$$

showing that y = y'. Therefore it makes sense to define Tx = y. Check that $T: X \to Y$ is linear. For $x \in X$, because $T_0x_n \to Tx$ and $|x_n| \to |x|$,

$$|Tx| \le |Tx - T_0x_n| + |T_0x_n| \le |Tx - T_0x_n| + ||T_0|| \, |x_n| \to ||T_0|| \, |x|,$$

showing that $||T|| \leq ||T_0||$, and so $T: X \to Y$ is a bounded operator.

For $x \in X_0$, $Tx = T_0x$, which means that the restriction of T to X_0 is equal to T_0 . Furthermore, $|T_0x| = |Tx| \le ||T|| |x|$, which shows that $||T_0|| \le ||T||$, and so with $||T|| \le ||T_0||$ we have $||T|| = ||T_0||$, completing the proof.

For a densely defined operator T, D_T , let D_{T^*} be the set of those $w \in V$ such that $v \mapsto \langle Tv, w \rangle$ is continuous $D_T \to \mathbb{C}$. It is apparent that D_{T^*} is a linear subspace of V. For $w \in D_{T^*}$, by Lemma 1 there is some $\Lambda_w \in V^*$ whose restriction to D_T is equal to $v \mapsto \langle Tv, w \rangle$, and then by the Riesz representation theorem there is a unique $v_w \in V$ such that $\Lambda_w v = \langle v, v_w \rangle$ for all $v \in V$. Thus for $v \in D_T$ it holds that $\langle Tv, w \rangle = \langle v, v_w \rangle$, and if $u \in V$ also satisfies $\langle Tv, w \rangle = \langle v, u \rangle$ for all $v \in D_T$ then $\langle v, v_w \rangle = \langle v, u \rangle$ for all $v \in D_T$, which means that $v_w - u \in D_T^\perp$ and because D_T is dense it follows that $u = v_w$. Therefore it makes sense to define $T^*: D_{T^*} \to V$, called the **adjoint** of T, by

$$\langle Tv, w \rangle = \langle v, T^*w \rangle, \quad v \in D_T, \quad w \in D_{T^*}.$$

 $T^*: D_{T^*} \to V$ is a linear map. We shall only speak about the adjoint of a densely defined operator.

We call a densely defined operator T self-adjoint when $T = T^*$. An operator T, D_T is called **symmetric** when

$$\langle Tv, w \rangle = \langle v, Tw \rangle, \quad v, w \in D_T,$$

and called **positive** if it is symmetric and satisfies

$$\langle Tv, v \rangle \ge 0, \qquad vD_T.$$

If T, D_T is symmetric then $\langle Tv, v \rangle \in \mathbb{R}$ for $v \in D_T$.

Lemma 2. Let T, D_T be densely defined. T is symmetric if and only if $T \subset T^*$.

Proof. If T is symmetric then for $w \in D_T$ the map $v \mapsto \langle Tv, w \rangle = \langle v, Tw \rangle$ is continuous $D_T \to \mathbb{C}$, hence $D_T \subset D_{T^*}$. Furthermore, for $w \in D_T \subset D_{T^*}$ it is the case that $\langle v, Tw \rangle = \langle Tv, w \rangle = \langle v, T^*w \rangle$ for all $v \in D_T$, hence $Tw - T^*w \in D_T^{\perp}$, and as D_T is dense this means that $Tw = T^*w$. Therefore, when T is densely defined and symmetric,

$$T \subset T^*$$
.

On the other hand, if T is densely defined and $T \subset T^*$, then for $v, w \in D_T$, as $w \in D_{T^*}$ we have $\langle Tv, w \rangle = \langle v, T^*w \rangle = \langle v, Tw \rangle$, showing that T is symmetric. \square

For an operator T, D_T , for $v, w \in D_T$ define the inner product $\langle \cdot, \cdot \rangle_T$ on the linear space D_T by

$$\langle v, w \rangle_T = \langle v, w \rangle + \langle Tv, Tw \rangle$$
,

and write $|v|_T^2 = \langle v, v \rangle_T = |v|^2 + |Tv|^2$. An operator T, D_T is called **closed** if

$$graph T = \{(v, Tv) : v \in D_T\}$$

is a closed linear subspace of $V \times V$.

Lemma 3. An operator T, D_T is closed if and only if D_T with the inner product $\langle \cdot, \cdot \rangle_T$ is a Hilbert space.

Proof. Suppose that T is closed and let v_n be a Cauchy sequence in the norm $|\cdot|_T$. Then v_n and Tv_n are Cauchy sequences in the norm $|\cdot|_T$, and hence there are $v, w \in V$ such that $|v_n - v| \to 0$ and $|Tv_n - w| \to 0$. Thus $|(v_n, Tv_n) - (v, w)|^2 = |v_n - v|^2 + |Tv_n - w|^2 \to 0$, and because graph T is closed this means that $(v, w) \in \text{graph } T$, i.e. $v \in D_T$ and w = Tv. Therefore $|v_n - v|_T^2 = |v_n - v|^2 + |Tv_n - v|^2 + |Tv_n - w|^2 \to 0$, showing that the Cauchy sequence v_n converges to v in the norm $|\cdot|_T$.

Suppose that $(D_T, \langle \cdot, \cdot \rangle_T)$ is a Hilbert space and let (v_n, Tv_n) be a sequence in graph T that converges to some $(v, w) \in V \times V$. This means that v_n converges to v in the norm $|\cdot|$ and Tv_n converges to w in the norm $|\cdot|$. Therefore v_n is a Cauchy sequence in the norm $|\cdot|_T$, and because $(D_T, \langle \cdot, \cdot \rangle_T)$ is a Hilbert space, there is some $u \in D_T$ to which v_n converges in the norm $|\cdot|_T$. That is, $v_n \to u$ in the norm $|\cdot|$ and $Tv_n \to Tu$ in the norm $|\cdot|$. But we already have that $v_n \to v$ and $Tv_n \to w$ in the norm $|\cdot|$, which implies that u = v and Tu = w, so $v \in D_T$ and w = Tv, which means that $(v, w) \in \operatorname{graph} T$.

Define $J: V \times V \to V \times V$ by

$$J(v, w) = (-w, v).$$

 $J^2 = I$, and J is a unitary operator:

$$\langle J(v_1, v_2), J(w_1, w_2) \rangle = \langle (-v_2, v_1), (-w_2, w_1) \rangle$$

$$= \langle -v_2, -w_2 \rangle + \langle v_1, w_1 \rangle$$

$$= \langle v_1, w_1 \rangle + \langle v_2, w_2 \rangle$$

$$= \langle (v_1, v_2), (w_1, w_2) \rangle.$$

Lemma 4. If T is a densely defined operator then

graph
$$T^* = (J \operatorname{graph} T)^{\perp}$$
.

Proof. $(x,y) \in \text{graph } T^*$ is equivalent to $x \in D_{T^*}$ and $y = T^*x$ is equivalent to $\langle Tv, x \rangle = \langle v, y \rangle$ for all $v \in D_T$ is equivalent to $\langle (-Tv, v), (x, y) \rangle = 0$ for all $v \in D_T$ is equivalent to $\langle J(v, w), (x, y) \rangle = 0$ for all $(v, w) \in \text{graph } T$ is equivalent to $(x, y) \in (J(\text{graph } T))^{\perp}$.

The above lemma shows that an adjoint T^* is a closed operator.

Lemma 5. If T is a closed densely defined operator, then

$$V \times V = (J \operatorname{graph} T) \oplus \operatorname{graph} T^*$$

is an orthogonal direct sum.

Proof. Generally, if M is a linear subspace of $V \times V$,

$$V \times V = \overline{M} \oplus M^{\perp}$$

is an orthogonal direct sum. For M = Jgraph T, because graph T is a closed linear subspace of $V \times V$, so is M. Thus

$$V \times V = (J \operatorname{graph} T) \oplus (J \operatorname{graph} T)^{\perp}.$$

By Lemma 4 this is

$$V \times V = (J \operatorname{graph} T) \oplus \operatorname{graph} T^*.$$

An operator T, D_T is called **closable** if there exists a closed extension of it. If T, D_T is closable with closed extensions T_1, D_{T_1} and T_2, D_{T_2} and $(v, w) \in \overline{\text{graph } T}$, then $(v, w) \in \overline{\text{graph } T_1} \cap \overline{\text{graph } T_2}$, so $T_1v = w$ and $T_2v = w$, showing that the restriction of T_1 to D_T is equal to the restriction of T_2 to D_T . Therefore it makes sense to define \overline{T} to be the intersection of all closed extensions of T. We call $\overline{T}, D_{\overline{T}}$ the **closure of** T. For $\pi_1(v, w) = v$, $D_{\overline{T}} = \pi_1(\overline{\text{graph } T})$, and \overline{T} is the restriction of any closed extension of T to $D_{\overline{T}}$. In other words, if an operator is closable then there exists a minimal closed extension of it, called its closure and denoted \overline{T} . For a densely defined symmetric operator T it holds that $T \subset T^*$. But T^* is closed, showing that a densely defined symmetric operator is closable.

Lemma 6. An operator T, D_T is closable if and only if whenever v_n is a sequence in D_T with $v_n \to 0$ and $Tv_n \to v$, it follows that v = 0.

Proof. Suppose that T is closable, with a closed extension $T', D_{T'}$. As $v_n \to 0$ and $T'v_n = Tv_n \to v$ it holds that $(v_n, T'v_n) \to (0, v)$, and because T' is closed, v = T'0 = 0.

Now let D be the set of those $v \in V$ for which there is a sequence $v_n \in D_T$ such that $v_n \to v$ and Tv_n converges to something in V. This is a linear subspace of V. If $v_n \to v, Tv_n \to x$ and $w_n \to v, Tw_n \to y$, then $v_n - w_n \to 0$ and $T(v_n - w_n) = Tv_n - Tw_n \rightarrow x - y$, so by hypothesis x - y = 0, i.e. x = y. Therefore it makes sense to define $T': D \to V$ by: for $v \in D$ there is a sequence $v_n \in D_T$ that tends to v, and T'v is the limit of Tv_n . Check that T' is linear. If $(v_n, T'v_n) \in \text{graph } T' \text{ tends to } (x, y) \in V \times V$, then for each n there is some $w_n \in D_T$ with $|w_n - v_n| + |Tw_n - T'v_n| \leq \frac{1}{n}$. Then $|x-w_n| \le |x-v_n| + |w_n-v_n| \to 0$ and $|y-Tw_n| \le |y-T'v_n| + |Tw_n-T'v_n| \to 0$, meaning that $w_n \to x$ and $Tw_n \to y$. By the definition of D this means that $x \in D$. Moreover, T'x is the limit of Tw_n , i.e. T'x = y, showing that $(x,y) \in \operatorname{graph} T'$. Hence T' is a closed operator. It is immediate that $D_T \subset D$ and that for $v \in D_T$, T'v is the limit of the constant sequence Tv, namely T'v = Tv, showing that $T \subset T'$. Therefore T', D is a closed extension of T, D_T .

Lemma 7. If S and T are densely defined operators with $S \subset T$, then $T^* \subset S^*$. If T is a densely defined closable operator then $\overline{T}^* = T^*$.

Proof. $S \subset T$ implies Jgraph $S \subset J$ graph T implies (Jgraph $T)^{\perp} \subset (J$ graph $S)^{\perp}$ implies by Lemma 4

graph
$$T^* \subset \operatorname{graph} S^*$$
.

If T is densely defined and closable, then $T \subset \overline{T}$ so by the above $\overline{T}^* \subset T^*$. We now prove that $T^* \subset \overline{T}^*$. Take $w \in D_{T^*}$. For all $v \in D_{\overline{T}}$ it holds that $\langle Tv, w \rangle = \langle v, T^*w \rangle$. For $x \in D_{\overline{T}}$, because $(x, \overline{T}x) \in \operatorname{graph} \overline{T} = \overline{\operatorname{graph} T}$, there is a sequence $v_n \in D_T$ such that $(v_n, Tv_n) \to (x, \overline{T}x)$. Since $Tv_n \to \overline{T}x$ and $v_n \to x$,

$$\langle \overline{T}x, w \rangle = \lim_{n \to \infty} \langle Tv_n, w \rangle = \lim_{n \to \infty} \langle v_n, T^*w \rangle = \langle x, T^*w \rangle$$

which shows that $x \mapsto \left\langle \overline{T}x, w \right\rangle = \overline{x}T^*w$ is continuous $D_{\overline{T}} \to \mathbb{C}$. This means that $w \in D_{\overline{T}^*}$. Moreover, $\left\langle \overline{T}x, w \right\rangle = \left\langle x, \overline{T}^*w \right\rangle$ for all $x \in D_{\overline{T}}$ and $\left\langle \overline{T}x, w \right\rangle = \left\langle x, T^*w \right\rangle$ for all $x \in D_{\overline{T}}$, hence $\left\langle x, \overline{T}^*w - T^*w \right\rangle = 0$ for all $x \in D_{\overline{T}}$, and because $D_{\overline{T}}$ is dense this implies that $\overline{T}^*w = T^*w$. Therefore $T^* \subset \overline{T}^*$.

Lemma 8. Let T, D_T be a densely defined operator. T is closable if and only if T^* is densely defined, and in this case $\overline{T} = T^{**}$.

Proof. Suppose that T^* is densely defined, and then T^{**} makes sense and is a closed operator. For $v \in D_T$ and $w \in D_{T^*}$,

$$\langle T^*w, v \rangle = \overline{\langle v, T^*w \rangle} = \overline{\langle Tv, w \rangle} = \langle w, Tv \rangle,$$

which shows that $w \mapsto \langle T^*w, v \rangle$ is continuous $D_{T^*} \to \mathbb{C}$ and hence that $v \in D_{T^{**}}$. Furthermore, $\langle w, T^{**}v \rangle = \langle T^*w, v \rangle = \langle w, Tv \rangle$ and so $\langle w, T^{**}v - Tv \rangle$ for all $w \in D_{T^*}$, and because D_{T^*} is dense in V this implies that $T^{**}v = Tv$. Therefore $T \subset T^{**}$, and T^{**} is closed so T is closable.

Suppose that T is closable and let $w \in D_{T^*}^{\perp}$; showing that w = 0 will prove that T^* is densely defined. For $(x,y) \in \text{graph } T^*$ it then holds that $\langle (x,y),(w,0)\rangle = \langle x,w\rangle + \langle y,0\rangle = \langle x,w\rangle = 0$, meaning $(w,0) \in (\text{graph } T^*)^{\perp}$. Applying Lemma 4,

$$(w,0) \in (J\operatorname{graph} T)^{\perp \perp} = \overline{J\operatorname{graph} T} = J\overline{\operatorname{graph} T}.$$

Because T is closable, $\overline{\text{graph }T}=\text{graph }\overline{T}$ is a linear space, so $-\text{graph }\overline{T}=\text{graph }\overline{T}.$ Then

$$(0,w)=(-0,w)=J(w,0)\in J^2\mathrm{graph}\;\overline{T}=-\mathrm{graph}\;\overline{T}=\mathrm{graph}\;\overline{T}.$$

 $(0,w)\in\operatorname{graph}\overline{T}$ means that $\overline{T}0=w$, so w=0. Therefore T^* is densely defined. If T is densely defined and closable, then because T^* is densely defined, Lemma 4 says graph $T^{**}=(J\operatorname{graph} T^*)^{\perp}$. But also by applying Lemma 4, $(J\operatorname{graph} T^*)^{\perp}=(J(J\operatorname{graph} T)^{\perp})^{\perp}$; check that $(JM)^{\perp}=JM^{\perp}$ for M a linear subspace of $V\times V$, and thus

$$\operatorname{graph} T^{**} = (J^2(\operatorname{graph} T)^{\perp})^{\perp} = (-(\operatorname{graph} T)^{\perp})^{\perp} = (\operatorname{graph} T)^{\perp \perp} = \overline{\operatorname{graph} T}.$$

Because T is closable this means that $T^{**} = \overline{T}$.

2 Resolvents

For an operator T, D_T in V and for $\lambda \in \mathbb{C}$, we write

$$T_{\lambda} = T - \lambda, \qquad \mathscr{R}_{\lambda} = T_{\lambda} D_{T}.$$

We define the **resolvent set** $\rho(T)$ of T as the set of those $\lambda \in \mathbb{C}$ such that (i) $T_{\lambda}: D_{T} \to \text{is injective}$, (ii) \mathscr{R}_{λ} is dense in V, and (iii) $T_{\lambda}^{-1}: \mathscr{R}_{\lambda} \to D_{T}$ is a bounded operator. For $\lambda \in \rho(T)$, because \mathscr{R}_{λ} is a dense linear subspace of V and $T_{\lambda}^{-1}: \mathscr{R}_{\lambda} \to V$ is bounded, by Lemma 1 there is a unique bounded operator $R_{\lambda}: V \to V$ whose restriction to \mathscr{R}_{λ} is equal to T_{λ}^{-1} , and $||R_{\lambda}|| = ||T_{\lambda}^{-1}||$. We call R_{λ} a **resolvent** of T.

We will use the following theorem to prove that the resolvent set is open.¹

Theorem 9. Let T, D_T be an operator in V and let $\lambda \in \mathbb{C}$. If $T_{\lambda} : D_T \to V$ is injective and $T_{\lambda}^{-1} : \mathcal{R}_{\lambda} \to D_T$ is bounded, then $||T_{\lambda}^{-1}|| |\mu - \lambda| < 1$ implies that $T_{\mu} : D_T \to V$ is injective and $T_{\mu}^{-1} : \mathcal{R}_{\mu} \to D_T$ is bounded, and $\overline{\mathcal{R}}_{\mu}$ is not a proper subset of $\overline{\mathcal{R}}_{\lambda}$.

Proof. For $x \in D_T$,

$$T_{\mu}x = Tx - \mu x = T_{\lambda}x + \lambda x - \mu x = T_{\lambda}x + (\lambda - \mu)x.$$

Hence $|T_{\mu}x| \geq |T_{\lambda}x| - |\lambda - \mu||x|$. But

$$|x| = |T_{\lambda}^{-1} T_{\lambda} x| \le ||T_{\lambda}^{-1}|| |T_{\lambda} x|,$$

so

$$||T_{\lambda}^{-1}|| |T_{\mu}x| \ge ||T_{\lambda}^{-1}|| |T_{\lambda}x| - ||T_{\lambda}^{-1}|| |\lambda - \mu||x| \ge |x| - ||T_{\lambda}^{-1}|| |\lambda - \mu||x|,$$

i.e.

$$||T_{\lambda}^{-1}|| |T_{\mu}x| \ge |x|(1 - ||T_{\lambda}^{-1}|| |\lambda - \mu|).$$
 (1)

Therefore, if $T_{\mu}x = 0$ then x = 0, showing that $T_{\mu}: D_T \to V$ is injective. For $y = T_{\mu}x \in \mathcal{R}_{\mu}$, applying (1) with $x = T_{\mu}^{-1}y$,

$$|T_{\mu}^{-1}y| \leq (1 - \left\|T_{\lambda}^{-1}\right\| |\lambda - \mu|)^{-1} \left\|T_{\lambda}^{-1}\right\| |T_{\mu}T_{\mu}^{-1}y| = (1 - \left\|T_{\lambda}^{-1}\right\| |\lambda - \mu|)^{-1} \left\|T_{\lambda}^{-1}\right\| |y|,$$

showing that $T_{\mu}^{-1}: \mathscr{R}_{\mu} \to D_T$ is bounded.

Riesz's lemma states that if X is a normed space and X_0 is a closed linear subspace of X with $X_0 \neq X$, then for each $0 < \theta < 1$ there is some $x_\theta \in X$ with $|x_\theta| = 1$ and $|x - x_\theta| \ge \theta$ for all $x \in X_0$. Assume by contradiction that $\overline{\mathscr{R}}_{\mu}$ is a proper subset of $\overline{\mathscr{R}}_{\lambda}$. Take

$$\left\|T_{\lambda}^{-1}\right\|\left|\mu-\lambda\right|<\theta<1,$$

¹Angus E. Taylor, Introduction to Functional Analysis, p. 256, Theorem 5.1-A.

²Angus E. Taylor, *Introduction to Functional Analysis*, p. 96, Theorem 3.12-E.

and applying Riesz's lemma there is some $y_{\theta} \in \overline{\mathcal{R}_{\lambda}}$ such that $|y_{\theta}| = 1$ and such that $|y - y_{\theta}| \ge \theta$ for all $y \in \overline{\mathcal{R}_{\mu}}$. Take $x_n \in D_T$ with $T_{\lambda}x_n \to y_{\theta}$. As $T_{\mu}x_n = T_{\lambda}x_n + (\lambda - \mu)x_n$, we have

$$|T_{\mu}x_n - T_{\lambda}x_n| = |\lambda - \mu||T_{\lambda}^{-1}T_{\lambda}x_n| \le |\lambda - \mu||T_{\lambda}^{-1}||T_{\lambda}x_n|.$$

Now, $T_{\mu}x_n \in \mathcal{R}_{\mu}$ so $|T_{\mu}x_n - y_{\theta}| \geq \theta|$, and hence

$$\theta \le |T_{\mu}x_n - T_{\lambda}x_n| + |T_{\lambda}x_n - y_{\theta}| \le |\lambda - \mu| \left\| T_{\lambda}^{-1} \right\| |T_{\lambda}x_n| + |T_{\lambda}x_n - y_{\theta}|.$$

As $n \to \infty$, $T_{\lambda} x_n \to y_{\theta}$, so the above right-hand side tends to $|\lambda - \mu| ||T_{\lambda}^{-1}|| |y_{\theta}|$. Hence

$$\theta \le |\lambda - \mu| \|T_{\lambda}^{-1}\| |y_{\theta}| = |\lambda - \mu| \|T_{\lambda}^{-1}\|,$$

a contradiction. Therefore $\overline{\mathcal{R}}_{\mu}$ is not a proper subset of $\overline{\mathcal{R}}_{\lambda}$.

Corollary 10. For an operator T, D_T in V, if $\lambda \in \rho(T)$ then $||T_{\lambda}^{-1}|| |\mu - \lambda| < 1$ implies that $\mu \in \rho(T)$. In particular, $\rho(T)$ is an open subset of \mathbb{C} .

Proof. If $\lambda \in \rho(T)$, then $T_{\lambda}: D_{T} \to V$ is injective and $T_{\lambda}^{-1}: \mathscr{R}_{\lambda} \to D_{T}$ is bounded, so by Theorem 9, $|\mu - \lambda| < \|T_{\lambda}^{-1}\|^{-1}$ implies that $T_{\mu}: D_{T} \to V$ is injective, $T_{\mu}^{-1}: \mathscr{R}_{\mu} \to D_{T}$ is bounded, and $\overline{\mathscr{R}_{\mu}}$ is not a proper subset of $\overline{\mathscr{R}_{\lambda}}$. But because $\lambda \in \rho(T)$ it is the case that $\overline{\mathscr{R}_{\lambda}} = V$, so $\overline{\mathscr{R}_{\mu}}$ is not a proper subset of V, i.e. $\overline{\mathscr{R}_{\mu}} = V$. This shows that $\mu \in \rho(T)$.

We characterize the resolvent sets of closed operators in the following lemma.³

Lemma 11. Let T, D_T be a closed operator. For $\lambda \in \mathbb{C}$, the following are equivalent:

- 1. $\lambda \in \rho(T)$.
- 2. $T \lambda : D_T \to V$ is a bijection.
- 3. There is a bounded operator R on V such that

$$R(T - \lambda) = I_{D_T}, \qquad (T - \lambda)R = I_V.$$

Proof. Suppose $\lambda \in \rho(T)$ and take $x \in V$. Because $(T - \lambda)D_T$ is dense in V there is a sequence y_n in D_T such that $(T - \lambda)y_n \to x$. Furthermore, R_λ : $V \to V$ is continuous, so $R_\lambda(T - \lambda)y_n \to R_\lambda x$. But $R_\lambda(T - \lambda)y_n = y_n$, so $y_n \to R_\lambda x$. $y_n \to R_\lambda x$ and $(T - \lambda)y_n \to x$ yield $Ty_n \to x + \lambda R_\lambda x$, and thence $(y_n, Ty_n) \to (R_\lambda x, x + \lambda R_\lambda x)$. But $y_n \in D_T$ and graph T is closed, which means that $R_\lambda x \in D_T$ and $TR_\lambda x = x + \lambda R_\lambda x$. That is, $R_\lambda x \in D_T$ and $(T - \lambda)R_\lambda x = x$, which implies that $x = (T - \lambda)R_\lambda x \in (T - \lambda)D_T$, showing that $T - \lambda$ is surjective. We already know that $T - \lambda$ is injective, so we have proved that $T - \lambda : D_T \to V$ is a bijection.

³Gilles Royer, An Initiation to Logarithmic Sobolev Inequalities, p. 2, Proposition 1.1.4.

Suppose that $T - \lambda: D_T \to V$ is a bijection. Because T is closed, Lemma 3 states that the linear space D_T with the inner product $\langle v, w \rangle_T = \langle v, w \rangle + \langle Tv, Tw \rangle$ is a Hilbert space. But $|Tv|^2 = \langle Tv, Tv \rangle \leq \langle v, v \rangle_T = |v|^2$, so T is bounded $(D_T, \langle \cdot, \cdot \rangle_T) \to V$, and $|\lambda v|^2 = \langle \lambda v, \lambda v \rangle = |\lambda|^2 \langle v, v \rangle \leq |\lambda|^2 |v|_T^2$, so $v \mapsto \lambda v$ is bounded $(D_T, \langle \cdot, \cdot \rangle_T) \to V$. Because $T - \lambda$ is a bijective bounded operator $(D_T, \langle \cdot, \cdot \rangle_T) \to V$, the open mapping theorem tells us that $(T - \lambda)^{-1}: V \to (D_T, \langle \cdot, \cdot \rangle_T)$ is bounded. Because $|\cdot| \leq |\cdot|_T$, a fortiori $(T - \lambda)^{-1}: V \to (D_T, \langle \cdot, \cdot \rangle)$ is bounded.

Suppose that there is a bounded operator R in V such that

$$R(T - \lambda) = I_{D_T}, \qquad (T - \lambda)R = I_V.$$

The first equality implies that $T - \lambda : D_T \to V$ is injective. The second equality implies that $T - \lambda : D_T \to V$ is surjective, and a fortiori that $(T - \lambda)D_T$ is dense in V. For $w \in (T - \lambda)D_T$, as $(T - \lambda)^{-1}w = Rw$ and as R is a bounded operator, $|(T - \lambda)^{-1}w| = |Rw| \le ||R|| |w|$, showing that $(T - \lambda)^{-1} : (T - \lambda)D_T \to V$ is a bounded operator. This establishes that $\lambda \in \rho(T)$.

The hypothesis of the following theorem is satisfied if T, D_T is a closed operator.⁴ We denote by $\mathcal{L}(V)$ the complex Banach algebra of bounded linear operators $V \to V$

Theorem 12 (Resolvent identity). Suppose that T, D_T is an operator in V such that $\mathcal{R}_{\lambda} = V$ for each $\lambda \in \rho(T)$. If $\lambda, \mu \in \rho(T)$, then

$$R_{\lambda} - R_{\mu} = (\lambda - \mu) R_{\lambda} R_{\mu}.$$

For $\lambda, \mu \in \rho(T)$ and $n \geq 0$,

$$R_{\lambda} = \sum_{k=0}^{n} (\lambda - \mu)^{k} R_{\mu}^{k+1} + (\lambda - \mu)^{n+1} R_{\mu}^{n+1} R_{\lambda}.$$
 (2)

If $|\lambda - \mu| \|R_{\mu}\| < 1$, then

$$\sum_{k=0}^{n} (\lambda - \mu)^k R_{\mu}^{k+1} \to R_{\lambda}$$

in the operator norm. The function $\lambda \mapsto R_{\lambda}$ is holomorphic $\rho(T) \to \mathcal{L}(V)$, and

$$\frac{d}{d\lambda}R_{\lambda} = R_{\lambda}^2.$$

Proof. For $y \in V$, by hypothesis there is some $x \in D_T$ with $y = T_{\mu}x$, $x = R_{\mu}y$. Because $T_{\mu}x - T_{\lambda}x = (\lambda - \mu)x$,

$$y - T_{\lambda}R_{\mu}y = (\lambda - \mu)R_{\mu}y.$$

⁴Angus E. Taylor, Introduction to Functional Analysis, p. 257, Theorem 5.1-C.

Applying R_{λ} on the left,

$$R_{\lambda}y - R_{\lambda}T_{\lambda}R_{\mu}y = R_{\lambda}(\lambda - \mu)R_{\mu}y,$$

i.e.

$$R_{\lambda}y - R_{\mu}y = (\lambda - \mu)R_{\lambda}R_{\mu}y.$$

This shows that $R_{\lambda} - R_{\mu} = (\lambda - \mu) R_{\lambda} R_{\mu}$.

The resolvent identity provides $R_{\lambda} = R_{\mu} + (\lambda - \mu)R_{\mu}R_{\lambda}$. Assume by induction that for some n, (2) is true. Then, using the resolvent identity $R_{\lambda} - R_{\mu} = (\lambda - \mu)R_{\lambda}R_{\mu}$ and $R_{\lambda}R_{\mu} = R_{\mu}R_{\lambda}$ (which is immediate from the resolvent identity),

$$R_{\lambda} = \sum_{k=0}^{n+1} (\lambda - \mu)^{k} R_{\mu}^{k+1} - (\lambda - \mu)^{n+1} R_{\mu}^{n+2} + (\lambda - \mu)^{n+1} R_{\mu}^{n+1} R_{\lambda}$$

$$= \sum_{k=0}^{n+1} (\lambda - \mu)^{k} R_{\mu}^{k+1} + (\lambda - \mu)^{n+1} R_{\mu}^{n+1} (-R_{\mu} + R_{\lambda})$$

$$= \sum_{k=0}^{n+1} (\lambda - \mu)^{k} R_{\mu}^{k+1} + (\lambda - \mu)^{n+1} R_{\mu}^{n+1} \cdot (\lambda - \mu) R_{\lambda} R_{\mu}$$

$$= \sum_{k=0}^{n+1} (\lambda - \mu)^{k} R_{\mu}^{k+1} + (\lambda - \mu)^{n+2} R_{\mu}^{n+2} R_{\lambda},$$

showing that (2) is true for n+1.

If
$$r = |\mu - \lambda| ||R_{\lambda}|| < 1$$
, then

$$\left\| (\lambda - \mu)^{n+2} R_{\mu}^{n+2} R_{\lambda} \right\| \le |\lambda - \mu|^{n+2} \left\| R_{\mu} \right\|^{n+2} \left\| R_{\lambda} \right\| = \|R_{\lambda}\| \, r^{n+2},$$

which tends to 0 as $n \to \infty$, and thus (2) implies $\sum_{k=0}^{n} (\lambda - \mu)^k R_{\mu}^{k+1} \to R_{\lambda}$ in $\mathcal{L}(V)$.

Take $\lambda \in \rho(T)$. For $\mu \in \rho(T)$ with $\mu \neq \lambda$, applying the resolvent identity twice yields

$$\frac{R_{\mu} - R_{\lambda}}{\mu - \lambda} - R_{\lambda}^2 = R_{\mu}R_{\lambda} - R_{\lambda}^2 = (R_{\mu} - R_{\lambda})R_{\lambda} = (\mu - \lambda)R_{\mu}R_{\lambda}R_{\lambda}.$$

Suppose that μ satisfies $||R_{\lambda}|| |\mu - \lambda| \leq \frac{1}{2}$. Then $\mu \in \rho(T)$ by Corollary 10. From the resolvent identity, $||R_{\lambda} - R_{\mu}|| \leq |\lambda - \mu| ||R_{\lambda}|| ||R_{\mu}||$, and using this with $||R_{\mu} - R_{\lambda}|| \geq ||R_{\mu}|| - ||R_{\lambda}||$ gives

$$||R_{\mu}|| (1 - |\lambda - \mu| ||R_{\lambda}||) \le ||R_{\lambda}||.$$
 (3)

Because $||T_{\lambda}^{-1}|| |\mu - \lambda| \le \frac{1}{2}$,

$$||R_{\mu}|| \leq 2 ||R_{\lambda}||$$
,

and using this with (3) yields

$$||R_{\lambda} - R_{\mu}|| \le 2|\lambda - \mu| ||R_{\lambda}||^2.$$

This shows that $\mu \mapsto R_{\mu}$ is a continuous function from the closed disc with radius $\frac{1}{2} \|R_{\lambda}\|^{-1}$ and center λ to $\mathcal{L}(V)$. Let $\|R_{\mu}\| \leq M$ for all μ in this compact disc. Hence

$$\left\| \frac{R_{\mu} - R_{\lambda}}{\mu - \lambda} - R_{\lambda}^{2} \right\| \leq |\mu - \lambda| \left\| R_{\mu} \right\| \left\| R_{\lambda} \right\|^{2} \leq M \left\| R_{\lambda} \right\|^{2} |\mu - \lambda|,$$

which tends to 0 as $\mu \to \lambda$. Therefore $\frac{R_{\mu} - R_{\lambda}}{\mu - \lambda}$ tends to R_{λ}^2 in $\mathcal{L}(V)$ as $\mu \to \lambda$, showing that R_{λ} is holomorphic $\rho(T) \to \mathcal{L}(V)$.

Lemma 13. If T, D_T is a self-adjoint operator in V and $\lambda = x + iy$, then for $y \neq 0$ it is the case that $\lambda \in \rho(T)$ and $||R_{\lambda}|| \leq 1/|y|$. If furthermore T is positive, then for y = 0 and x < 0, it is the case that $\lambda \in \rho(T)$ and $||R_{\lambda}|| \leq 1/|x|$.

Proof. Write $\lambda = x + iy$. If $y \neq 0$, then for $v \in D_T$, using that T - x is symmetric,

$$\begin{split} |(T-\lambda)v|^2 &= \langle (T-x)v - iyv, (T-x)v - iyv \rangle \\ &= |(T-x)v|^2 + iy \langle (T-x)v, v \rangle - iy \langle v, (T-x)v \rangle + y^2 |v|^2 \\ &= |(T-x)v|^2 + y^2 |v|^2 \\ &\geq y^2 |v|^2. \end{split}$$

Since $y \neq 0$, if $v \neq 0$ then $(T - \lambda)v \neq 0$, showing that $T - \lambda$ is injective. If $w \in ((T - \lambda)D_T)^{\perp}$, then for $v \in D_T$ it holds that $\langle (T - \lambda)v, w \rangle = 0 = \langle v, 0 \rangle$, so $v \mapsto \langle (T - \lambda)v, w \rangle$ is continuous $D_T \to \mathbb{C}$, meaning that $w \in D_{T^*} = D_T$. Furthermore, $(T - \lambda)^*w = 0$, meaning $Tw = T^*w = \overline{\lambda}w$. Then $\langle Tw, w \rangle = \langle \overline{\lambda}w, w \rangle = \overline{\lambda}\langle w, w \rangle$, and because T is symmetric $\langle Tw, w \rangle \in \mathbb{R}$, implying that w = 0. This establishes that $(T - \lambda)D_T$ is dense in V. Define F: graph $(T - \lambda) \to (T - \lambda)D_T$ by F(v, w) = w. For $v \in D_T$,

$$|(T - \lambda)v|^2 \le |(T - \lambda)v|^2 + |v|^2 \le (1 + y^{-2})|(T - \lambda)v|^2$$

and because F is surjective this implies that F: graph $(T-\lambda) \to (T-\lambda)D_T$ and $F^{-1}: (T-\lambda)D_T \to \text{graph } (T-\lambda)$ are Lipschitz, meaning that graph $(T-\lambda)$ and $(T-\lambda)D_T$ are Lipschitz equivalent. Because T is self-adjoint it is closed, and then $T-\lambda$ is a closed operator, because λI is a bounded operator, and therefore graph $(T-\lambda)$ is a complete metric, being a closed set in the complete metric space $V \times V$. Since graph $(T-\lambda)$ and $(T-\lambda)D_T$ are Lipschitz equivalent, it follows that $(T-\lambda)D_T$ is a complete metric space. Because $(T-\lambda)D_T$ is a complete subspace of the metric space V, it is a closed set in V. But we have proved that $(T-\lambda)D_T$ is dense in V, so $(T-\lambda)D_T = V$, meaning that $T-\lambda:D_T\to V$ is surjective.

For $w \in V$, let v be the unique element of D_T for which $(T - \lambda)v = w$. $|(T - \lambda)v|^2 \ge y^2|v|^2$ means that $|v| \le |y|^{-1}|w|$, i.e. $|(T - \lambda)^{-1}w| \le |y|^{-1}|w|$. This shows that $\lambda \in \rho(T)$ and that $\|R_{\lambda}\| \le 1/|\operatorname{Im} \lambda|$.

3 The Friedrichs extension

If T, D_T is a positive densely defined operator, for $v, w \in D_T$ define

$$(v, w)_T = \langle v, w \rangle + \langle Tv, w \rangle$$
,

and write $(v)_T^2 = (v, v)_T$. As T is symmetric, $(w, v)_T = \langle w, v \rangle + \langle w, Tv \rangle = \langle v, w \rangle + \langle Tv, w \rangle = (v, w)_T$. As T is positive, $(v, v)_T = \langle v, v \rangle + \langle Tv, v \rangle \geq 0$. Therefore $(\cdot, \cdot)_T$ is an inner product on D_T .

Let V_T be the completion of D_T with respect to the inner product $(\cdot, \cdot)_T$. For $f \in V_T$, if $v_n, w_n \in D_T$ are Cauchy sequences that each tend to f in the norm $(\cdot)_T$ then on the one hand, v_n and w_n are Cauchy sequences in the norm $|\cdot|$ and hence converge in $|\cdot|$ respectively to some $v, w \in V$. On the other hand, $v_n - w_m$ converges to 0 in the norm $(\cdot)_T$ so $|v - w| \leq |v - v_n| + |v_n - w_n| + |w_n - w| \to 0$, showing that v = w. Thus for $f \in V_T$, which is the $(\cdot)_T$ limit of some Cauchy sequence $v_n \in D_T$, it makes sense to define $i_T f$ to be the $|\cdot|$ limit of v_n in V. Check that

$$i_T:V_T\to V$$

is a linear map. For $f \in V_T$, where $v_n \in D_T$ tends to f in the norm $(\cdot)_T$,

$$|i_T f| = |i_T f - v_n| + |v_n| \le |i_T f - v_n| + (v_n)_T \to (f)_T$$

which means that $||i_T|| \le 1$. If $i_T f = 0$, where $v_n \in D_T$ tends to f in the norm $(\cdot)_T$, then v_n tends to 0 in the norm $|\cdot|$, and for each $v \in D_T$ we have

$$(v,f)_T = \lim_{n \to \infty} (v,v_n)_T = \lim_{n \to \infty} (\langle v,v_n \rangle + \langle Tv,v_n \rangle) = 0.$$

Because D_T is dense in V_T , this implies that f=0, showing that i_T is an injection.⁵

For $v \in V$ define $\lambda_v : V_T \to \mathbb{C}$ by $\lambda_v f = \langle i_T f, v \rangle$. This satisfies $|\lambda_v f| \le |i_T f| |v| \le (f)_T |v|$, so $||\lambda_v|| \le |v|$. By the Riesz representation theorem there is a unique $Bv \in V_T$ satisfying

$$\langle i_T f, v \rangle = \lambda_v f = (f, Bv)_T$$

for $f \in V_T$, and $(Bv)_T = ||\lambda_v|| \le |v|$. Check that the map

$$B:V\to V_T$$

is linear, and has operator norm $||B|| \leq 1$. For $v, w \in V$,

$$\langle i_T B v, w \rangle = \lambda_w B v = (B v, B w)_T = \overline{(B w, B v)_T} = \overline{\lambda_v B w} = \langle v, i_T B w \rangle,$$

showing that $i_T B: V \to V$ is symmetric. For $v \in V$,

$$\langle i_T B v, v \rangle = \lambda_v B v = (B v, B v)_T \ge 0,$$

⁵Peter D. Lax, Functional Analysis, p. 403, §33.3.

showing that $i_T B$ is positive. If Bv = 0 then for $f \in V_T$,

$$\langle i_T f, v \rangle = \lambda_v f = (f, Bv)_T = (f, 0)_T = 0,$$

and because $D_T \subset i_T V_T$ and D_T is dense in V this implies that v = 0. This shows that $B: V \to V_T$ is injective, and because $i_T: V_T \to V$ is injective we get that $i_T B: V \to V$ is injective. If $w \in (i_T B V)^{\perp}$ then

$$0 = \langle i_T B w, w \rangle = \lambda_w B w = (B w, B w)_T$$

which implies that Bw=0, and because B is injective this implies w=0. Therefore $(i_TBV)^{\perp}=\{0\}$, which means that i_TBV is dense in V. We have so far established that $i_TB:V\to V$ has $||i_TB||\leq 1$, is positive, is an injection, and has dense image. Furthermore, i_TB is bounded and symmetric it is self-adjoint.

Let $D_A = i_T BV$ and define $A: D_A \to V$ by

$$Ax = (i_T B)^{-1} x, \qquad x \in D_A = i_T B V,$$

which is a linear isomorphism $D_A \to V$. For $x = i_T B v$, $y = i_T B w$, because $i_T B$ is symmetric we get $\langle Ax, y \rangle = \langle v, i_T B w \rangle = \langle i_T B v, w \rangle = \langle x, Ay \rangle$, which means that A is symmetric. For $x = i_T B v$,

$$\langle Ax, x \rangle = \langle x, Ax \rangle = \langle i_T Bv, v \rangle = (Bv, Bv)_T,$$

which shows a fortiori that A is positive. Define $S: V \times V \to V \times V$ by S(v,w)=(w,v), and $A=(i_TB)^{-1}$ means

graph
$$A = S(\text{graph } i_T B)$$
.

 $J \circ S = -S \circ J$:

$$J(S(v, w)) = (-v, w),$$
 $S(J(v, w)) = S(-w, v) = (v, -w).$

A is densely defined, since $i_T B$ has dense image, so it makes sense to talk about the adjoint of A. Then

graph
$$A^* = (J(\operatorname{graph} A))^{\perp}$$

 $= (JS(\operatorname{graph} i_T B))^{\perp}$
 $= (-SJ(\operatorname{graph} i_T B))^{\perp}$
 $= (SJ(\operatorname{graph} i_T B))^{\perp}$
 $= S((J(\operatorname{graph} i_T B))^{\perp})$
 $= S(\operatorname{graph} (i_T B)^*)$
 $= S(\operatorname{graph} i_T B)$
 $= \operatorname{graph} A,$

showing that A is self-adjoint.

Now define S = 1 + T, which is symmetric because T is. For $v, w \in D_T$, as $i_T v = v$,

$$\langle v, Sw \rangle = \langle i_T v, Sw \rangle = (v, BSw)_T$$

and

$$\langle v, Sw \rangle = \langle Sv, w \rangle = \langle v, w \rangle + \langle Tv, w \rangle = (v, w)_T,$$

and therefore $(v, w - BSw)_T = 0$ for $v \in D_T$. Because D_T is $(\cdot)_T$ dense in V_T this implies BSw = w for $w \in D_T$. This shows that D_T is contained in the image of B and as $i_TD_T = D_T$, implies that $D_S = D_T \subset D_A$. For $w \in D_S$, as $i_Tw = w$ and BSw = w,

$$Aw = A(i_T w) = A(i_T B S w) = S w,$$

showing that $S \subset A$.

Define $D_{\widetilde{T}} = D_A = i_T BV$ and $\widetilde{T} = A - 1$. Then \widetilde{T} is self-adjoint, and for $w \in D_T$,

$$\widetilde{T}w = Aw - w = Sw - w = Tw,$$

showing that $T \subset \widetilde{T}$. For $x = i_T Bv$ we have obtained $\langle Ax, x \rangle \geq (Bv, Bv)_T$, and using this with $||i_T|| \leq 1$ yields

$$\langle Ax, x \rangle \ge (Bv, Bv)_T = (i_T^{-1}x)_T^2 \ge |x|^2,$$

hence

$$\left\langle \widetilde{T}x,x\right\rangle =\left\langle Ax-x,x\right\rangle =\left\langle Ax,x\right\rangle -\left\langle x,x\right\rangle \geq0,$$

showing that \widetilde{T} is positive.

For $v \in D_T$ and $w \in V$,

$$\left\langle (1+T)v, (1+\widetilde{T})^{-1}w \right\rangle = \left\langle Sv, A^{-1}w \right\rangle$$

$$= \left\langle Sv, i_T Bw \right\rangle$$

$$= \left\langle Av, i_T Bw \right\rangle$$

$$= \left\langle v, A^{-1}i_T Bw \right\rangle$$

$$= \left\langle v, w \right\rangle.$$

We call the positive self-adjoint operator $\widetilde{T}, D_{\widetilde{T}}$ the **Friedrichs extension** of the positive densely defined operator T, D_T .

Theorem 14 (Friedrichs extension theorem). If T, D_T is a positive densely defined operator then there is a positive self-adjoint extension $\widetilde{T}, D_{\widetilde{T}}$ of T that satisfies

$$\left\langle (1+T)v, (1+\widetilde{T})^{-1}w \right\rangle = \left\langle v, w \right\rangle, \quad v \in D_T, \quad w \in V.$$

⁶http://www.math.umn.edu/~garrett/m/v/friedrichs.pdf

Corollary 15. If $i_T: V_T \to V$ is a compact operator, then $(1+\widetilde{T})^{-1}: V \to V$ is a compact operator.

Proof. $\widetilde{T} = A - 1$ and $A = (i_T B)^{-1}$, so $(1 + \widetilde{T})^{-1} = A^{-1} = i_T B$. Because $B: V \to V_T$ is continuous and $i_T: V_T \to V$ is compact, the composition $i_T B: V \to V$ is compact.

4 The Laplacian on $L^2(\mathbb{T}^d)$

Let $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ and let m be the Haar probability measure on \mathbb{T}^d ,

$$dm(x) = (2\pi)^{-d} dx.$$

Let $V = L^2(\mathbb{T}^d)$, let $D_T = C^{\infty}(\mathbb{T}^d)$, and let $T = -\Delta$. For $f, g \in D_T$,

$$\langle \Delta f, g \rangle = \int_{\mathbb{T}^d} \Delta f \cdot \overline{g} dm = - \int_{\mathbb{T}^d} \sum_{i=1}^d \partial_i f \cdot \overline{\partial_i g} dm = \langle f, \Delta g \rangle,$$

showing that the densely defined operator T, D_T is symmetric, and

$$\langle Tf, f \rangle = -\langle \Delta f, f \rangle \ge 0,$$

showing that T is positive.

We follow the construction of the Friedrichs extension. For $f, g \in D_T$,

$$(f,g)_{T} = \langle f,g \rangle + \langle Tf,g \rangle$$

$$= \langle f,g \rangle - \int_{\mathbb{T}^{d}} \Delta \cdot \overline{g} dm$$

$$= \langle f,g \rangle + \int_{\mathbb{T}^{d}} \sum_{j=1}^{d} \partial_{j} f \cdot \overline{\partial_{j} g} dm$$

$$= \langle f,g \rangle + \sum_{j=1}^{d} \langle \partial_{j} f, \partial_{j} g \rangle.$$

Then

$$(f)_T^2 = |f|^2 + \sum_{j=1}^d |\partial_j f|^2.$$

 V_T is the completion of the inner product space $(D_T, (\cdot, \cdot)_T)$, and $i_T : V_T \to V$ is defined as follows: for $\phi \in V_T$ there is a $(\cdot)_T$ Cauchy sequence f_n in D_T that converges to ϕ in the norm $(\cdot)_T$. Then f_n is a $|\cdot|$ Cauchy sequence, and converges to $i_T \phi \in V$ in the norm $|\cdot|$.

By the Friedrichs extension theorem, there is a positive self-adjoint extension $\widetilde{T}, D_{\widetilde{T}}$ of T, D_T such that

$$\left\langle (1+T)f, (1+\widetilde{T})^{-1}g \right\rangle = \left\langle f,g \right\rangle, \qquad f \in C^{\infty}(\mathbb{T}^d), \quad g \in L^2(\mathbb{T}^d).$$