1

Assignment 2

Ayush Kumar Singh - AI20BTECH11028

Download all python codes from

https://github.com/ayush-2321/AI1103/tree/main/assignment%203

and latex-tikz codes from

https://github.com/ayush-2321/AI1103/tree/main/assignment%203

PROBLEM 54 (GATE MA 2007)

Consider two identical boxes B1 and B_2 where the box B(i = 1, 2) contains i + 2 red balls and 5 - i - 1 white balls. A fair die is cast. Let the number shown on the top face of die be N. If N is even or 5, then two balls are drawn with replacement from the box b_1 otherwise two balls are drawn with replacement from box B_2 . The probability that two balls drawn are of different colors is

- (a) $\frac{7}{25}$
- (b) $\frac{9}{25}$
- (c) $\frac{12}{25}$
- (d) $\frac{16}{25}$

1 solution

Let $X \in \{1, 2\}$ be a discrete random variable which denotes whether the ball has been drawn from box B_1 or B_2 .

Let $Y \in \{0, 1\}$ be a discrete random variable which denotes whether the drawn ball from a box B_1 is of same color or not respectively.

Let $Z \in \{0, 1\}$ be a discrete random variable which denotes whether the drawn ball from a box B_2 is of same color or not respectively.

Total number of red balls in box $B_{i=1} = 3$ Total number of white balls in box $B_{i=1} = 3$ Total number of red balls in box $B_{i=2} = 4$ Total number of white balls in box $B_{i=2} = 2$ $Pr(X = 1) = \frac{2}{3}$ (1.0.1) $Pr(X = 2) = \frac{1}{3}$ (1.0.2) $Pr(Y = 1) = \frac{1}{2}$ (1.0.3) $Pr(Z = 1) = \frac{4}{9}$

For draw of different colors following cases are possible.

1) X=1,Y=1

$$Pr(X = 1, Y = 1) = Pr(X = 1) \times Pr(Y = 1)$$

Since, both events are independent

$$Pr(X = 1, Y = 1) = \frac{1}{3}$$
, using (1.0.1) and (1.0.3)

2) X=2, Z=1

$$Pr(X = 2, Z = 1) = Pr(X = 2) \times Pr(Z = 1)$$

Since, both events are independent

$$Pr(X = 2, Z = 1) = \frac{4}{27}$$
, using (1.0.2) and (1.0.4)

So, required probability
$$=\frac{1}{3} + \frac{4}{27} = \frac{13}{27}$$