Нейронные сети для изображений

Лунев Иван, Петраков Михаил

> Санкт-Петербург 2019г.

Структура CNN

Сверточная нейронная сеть состоит из разных видов слоев:

- сверточные (convolutional) слои
- объединяющие слои (pooling layer)
- полносвязные слои

Количество параметров

В снс количество параметров сокращается.

Рассчитаем кол-во параметров для нс:

$$n=(i*h+h*o)+(h+o)$$
, где i — размер входного слоя, h — размер скрытого слоя, o — размер выходного слоя $n=(3*5+5*2)+(5+2)=32$

Рассчитаем кол-во параметров для снс:

$$n = [x * (w * w) * o] + o = [3 * (2 * 2) * 1] + 1 = 13$$

Сверточный слой

 $\mathbf{x}[i,j]$ - исходные признаки, пиксели $n \times m$ изображения; \mathbf{w}_{ab} - ядро свертки, где считаем, что ядро является прямоугольным, а а и b длины его сторон; Сверточный нейрон:

$$(x*w)[i,j] = \sum_{a} \sum_{b} w_{ab} x[i+a,j+b]$$

Сверточный слой (Пример)

Например, пусть вход имеет размер $[32\times32\times3]$. В этом случае возьмем размер фильтра $[5\times5\times3]$, то есть фильтр будет иметь форму прямоугольного параллелепипеда, в общей сложности 5*5*3=75 весовых коэффициентов (и +1 параметр смещения). Используются параллельно несколько разных фильтров, за счет чего сеть растет "вглубь".

Сверточный слой (Пример)

Гиперпараметры, формирующие размер выхода сверточного слоя:

- глубина (depth) количество разных фильтров
- шаг (stride) шаг сдвига фильтра
- дополнение нулями (zero-padding)

Для одномерного случая: (W-F+2P)/S+1 - размер выходного слоя, где W - размер входа, F - ширина фильтра, P — заполнение 0, S — шаг.

$$F = 3$$
, $W = 5$, $P = 1$.

left - S=1, следовательно размер выхода (5-3+2)/1+1=5 right - S=2, следовательно размер выхода (5-3+2)/2+1=3

Сверточный слой (Итоги)

- вход размером $W_1 \times H_1 \times D_1$ (обычно рассматриваются картинки, у которых глубина (RGB) равна $D_1=3$)
- требует 4 гиперпараметра :
 - ullet K количество фильтров
 - F размер фильтра (имеется ввиду трехмерный квадратный фильтр со стороной F и глубиной $D_1=3$, но вообще говоря форма может быть любой)
 - ullet S шаг свертки
 - P заполнение нулями (ширина полосы по кругу картинки, которые заполняются нулями)
- ullet на выходе $W_2 imes H_2 imes D_2$
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$
 - $D_2 = K$
- ullet $F*F*D_1$ весов на фильтр, всего $F*F*D_1*K$ весов
- Далее к получившимся элементам сверточного слоя применяют функцию активации. Обычно берут Выпрямитель: $\mathsf{ReLu}(p) = \mathsf{max}(0,p)$;

Объединяющий слой (pooling layer)

Объединяющий слой нейронов – это необучаемая свёртка с щагом $\mathsf{h}>1$, агрегирующая данные прямоугольной области $\mathsf{h}\times\mathsf{h}$:

$$\mathsf{y}[\mathsf{i},\mathsf{j}] = \mathsf{F}(\mathsf{x}[\mathsf{h}\mathsf{i},\mathsf{h}\mathsf{j}],\dots,\mathsf{x}[\mathsf{h}\mathsf{i}+\mathsf{h}-1,\mathsf{h}\mathsf{j}+\mathsf{h}-1])\text{,}$$

гду F – агрегирующая функция: max, average и т.п.

Объединяющий слой (pooling layer)

- \bullet вход $W_1 \times H_1 \times D_1$
- 2 гиперпараметра:
 - ullet F ширина квадратного фильтра
 - S шаг фильтра
- Выход $W_2 \times H_2 \times D_2$:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $D_2 = D_1$
- не принято дополнять входной объект нулями
- ullet чаще всего F=3,S=2 или S=2,F=2

Полносвязный слой

Последний из типов слоев это слой обычного многослойного персептрона. Цель слоя – классификация, моделирует сложную нелинейную функцию, оптимизируя которую, улучшается качество распознавания. Вычисление значений нейрона можно описать формулой:

$$x_{j}^{l} = \sigma(\sum_{i} x_{i}^{l-1} * w_{i,j}^{l-1} + b_{j}^{l-1}),$$

где

- x_{j}^{l} карта признаков ј (выход слоя I),
- ullet $\sigma()$ функция активации,
- b^I коэффициент сдвига слоя I,
- w_{i,i} матрица весовых коэффициентов слоя I.

Функция активации

Выделяются следующие функции активации:

- ullet сигмойда: $\sigma(z)=rac{1}{1-e^{-az}}$, $a\in\mathbb{R}$;
- ullet гиперболический тангенс: $\sigma(z)=rac{e^{az}-e^{-az}}{e^{az}+e^{-az}};$
- softmax: $\sigma(z)_i = \frac{e^{z_i}}{\sum\limits_{k=1}^K e^{z_k}}$.

Forwardpropagation and Backpropagation

По сути, к снс применим обычный алгоритм прямого и обратного распространения, так как она подходит по определение обычной нс, мы просто обнуляем большинство весов, которые скорее всего не дают вклада.

Но за счет специфичного построения последующих слоев, у нас появляется возможность переписать эти алгоритмы в более удобную для вычислений форму.

Далее представлен алгоритм, по которому усовершенствуются Forwardpropagation и Backpropagation.

Forwardpropagation

Операция свертки может быть записана так, как описано на рисунке ниже.

Forwardpropagation

Теперь, чтобы вычислить градиенты фильтра F относительно ошибки E, необходимо решить уравнения, которые можно записать в форме операции свертки.

Forwardpropagation

Точно так же мы можем найти градиенты входной матрицы X относительно ошибки E.

$$\begin{split} \frac{\partial E}{\partial X_{11}} &= \frac{\partial E}{\partial O_{11}} F_{11} + \frac{\partial E}{\partial O_{12}} 0 + \frac{\partial E}{\partial O_{21}} 0 + \frac{\partial E}{\partial O_{22}} 0 \\ \frac{\partial E}{\partial X_{12}} &= \frac{\partial E}{\partial O_{11}} F_{12} + \frac{\partial E}{\partial O_{12}} F_{11} + \frac{\partial E}{\partial O_{21}} 0 + \frac{\partial E}{\partial O_{22}} 0 \\ \frac{\partial E}{\partial X_{13}} &= \frac{\partial E}{\partial O_{11}} 0 + \frac{\partial E}{\partial O_{12}} F_{12} + \frac{\partial E}{\partial O_{21}} 0 + \frac{\partial E}{\partial O_{22}} 0 \\ \frac{\partial E}{\partial X_{21}} &= \frac{\partial E}{\partial O_{11}} F_{21} + \frac{\partial E}{\partial O_{12}} 0 + \frac{\partial E}{\partial O_{21}} F_{11} + \frac{\partial E}{\partial O_{22}} 0 \\ \frac{\partial E}{\partial X_{22}} &= \frac{\partial E}{\partial O_{11}} F_{22} + \frac{\partial E}{\partial O_{12}} F_{21} + \frac{\partial E}{\partial O_{21}} f_{12} + \frac{\partial E}{\partial O_{22}} F_{11} \\ \frac{\partial E}{\partial X_{23}} &= \frac{\partial E}{\partial O_{11}} 0 + \frac{\partial E}{\partial O_{12}} F_{22} + \frac{\partial E}{\partial O_{21}} 0 + \frac{\partial E}{\partial O_{22}} F_{11} \\ \frac{\partial E}{\partial X_{33}} &= \frac{\partial E}{\partial O_{11}} 0 + \frac{\partial E}{\partial O_{12}} 0 + \frac{\partial E}{\partial O_{21}} F_{22} + \frac{\partial E}{\partial O_{22}} 0 \\ \frac{\partial E}{\partial X_{33}} &= \frac{\partial E}{\partial O_{11}} 0 + \frac{\partial E}{\partial O_{12}} 0 + \frac{\partial E}{\partial O_{21}} F_{22} + \frac{\partial E}{\partial O_{22}} F_{21} \\ \frac{\partial E}{\partial X_{33}} &= \frac{\partial E}{\partial O_{11}} 0 + \frac{\partial E}{\partial O_{12}} 0 + \frac{\partial E}{\partial O_{21}} 0 + \frac{\partial E}{\partial O_{22}} F_{22} \\ \frac{\partial E}{\partial X_{33}} &= \frac{\partial E}{\partial O_{11}} 0 + \frac{\partial E}{\partial O_{12}} 0 + \frac{\partial E}{\partial O_{21}} 0 + \frac{\partial E}{\partial O_{22}} F_{22} \end{split}$$

Backpropagation

Теперь вышеприведенные вычисления могут быть получены с помощью операции свертки другого типа, известной как полная свертка. Чтобы получить градиенты входной матрицы, необходимо повернуть фильтр на 180 градусов и рассчитать полную свертку повернутого фильтра по градиентам выходного сигнала относительно ошибки.

∂E/∂X ₁₁	∂E/∂X ₁₂	∂E/∂X ₁₃	= Full_Convolution	∂E/∂O ₁₁	∂E/∂O ₁₂		F ₂₂	F ₂₁		
∂E/∂X ₂₁	∂E/∂X ₂₂	∂E/∂X ₂₃)	1)
∂E/∂X ₃₁	∂E/∂X ₃₂	∂E/∂X ₃₃			∂E/∂O ₂₁	∂E/∂O ₂₂	,	F ₁₂	F ₁₁	/

Backpropagation

Полная свертка может быть визуализирована как выполнение процедуры, представленной на рисунке ниже.

