Relazione progetto SIS

Indice

Circuito $FSM + D$	2
Traccia	2
Interfaccia del circuito	2
Architettura generale	3
Segnali interni	3
Macchina a stati finiti (FSM)	4
Transizioni	4
Grafo delle transizioni	4
Tabella delle transizioni	5
Unità di elaborazione	5
Contatore	5
Modificatore	5
Errore	6
Neutrale	6

Circuito FSM + D

Abbiamo sviluppato un circuito che controlla un meccanismo chimico, il cui scopo è portare una soluzione con un pH iniziale noto ad un valore di neutralità.

Traccia

Il valore del pH viene espresso in valori compresi tra 0.00 e 14.0: nell'intervallo [0.00, 7.00) si trovano i valori acidi, mentre in quello (8.00, 14.0] si trovano i valori basici, infine i valori compresi in [7.00, 8.00] sono considerati neutrali. Tutti gli altri valori non sono accettabili e comportano un errore.

Il sistema è quindi dotato di due valvole: la prima può decrementare il valore del pH di 0.25 in un singolo ciclo di clock, mentre la seconda lo può incrementare di 0.50 nello stesso periodo di tempo.

Figura 1: Sistema

Interfaccia del circuito

Il circuito accetta i seguenti segnali di ingresso:

Ingresso	Descrizione	
RST	10000	
	altro ingresso.	
START	Ordina al circuito di leggere il valore presente nell'ingresso PH[8].	
PH[8]	Rappresentazione del valore iniziale assunto dal pH della soluzione.	

L'ingresso PH[8] è un byte codificato in virgola fissa con 4 bit dedicati alla parte intera.

Il circuito produce i seguenti segnali di uscita:

Uscita	Descrizione
FINE_OPER.	Indica che il sistema ha completato le operazioni. Ovvero il pH è neutro.
ERRORE_SENSORE	Indica che il sistema ha ricevuto in ingresso un valore di pH non accettabile.
VALVOLA_ACIDO	Richiede l'apertura della valvola che decrementa il valore del pH.
VALVOLA_BASICO	Richiede l'apertura della valvola che incrementa il valore del pH.
PH_FINALE[8]	Rappresentazione del valore finale assunto dal pH della soluzione.
NCLK[8]	Rappresentazione del numero di cicli utilizzati per completare le operazioni.

L'uscita PH_FINALE[8] è un byte codificato esattamente come l'ingresso PH[8], mentre il byte NCLK[8] viene codificato in **modulo**.

Architettura generale

Il sistema implementa il modello FSMD, cioè collega una $macchina\ a\ stati\ finiti\ (detta\ FSM)$ con un'unità $di\ elaborazione\ (chiamata\ Data\ path).$

Il compito della macchina a stati è quello di contestualizzare i calcoli eseguiti dall'elaboratore, viceversa quest'ultimo ha il ruolo di aiutare la macchina a determinare in che stato transitare.

Segnali interni

Il collegamento tra i due sottosistemi avviene grazie allo scambio di segnali di stato e controllo; i primi vengono emessi dalla macchina a stati verso l'elaboratore, i secondi seguono il percorso inverso.

I segnali di stato utilizzati sono i seguenti:

Segnale	Descrizione
RESET	Ordina all'elaboratore di reinizializzare i valori.
INIZIO_OPER.	Comunica all'elaboratore che è appena stato inserito un pH.
TIPO_PH	Permette all'elaboratore di determinare come modificare il pH.
STOP_OPER.	Comunica all'elaboratore di non modificare i valori memorizzati.

I segnali di controllo utilizzati sono i seguenti:

Segnale	Descrizione
ERRORE NEUTRO	Comunica alla macchina che il valore del pH non è accettabile. Comunica alla macchina che il valore del pH ha raggiunto la neutralità.

Macchina a stati finiti (FSM)

Abbiamo individuato cinque stati per la macchina, cioè:

- 1. Reset: stato iniziale, in cui l'elaboratore viene inizializzato;
- 2. Errore: il valore del pH appena inserito non è valido;
- 3. Acido: il valore del pH è inferiore a 7.00;
- 4. Basico: il valore del pH è superiore a 8.00;
- 5. Neutro: il valore del pH ha raggiunto un valore compreso in [7.00, 8.00].

Transizioni

I segnali utilizzati per le transizioni della macchina sono:

Ingressi	Uscite
RST	FINE_OPERAZIONE
START	ERRORE_SENSORE
PH[8]	VALVOLA_ACIDO
ERRORE	VALVOLA_BASICO
NEUTRO	RESET
	INIZIO_OPERAZIONE
	TIPO_PH
	STOP_OPERAZIONE

Grafo delle transizioni

Di seguito un l'immagine del grafo delle transizioni.

RST START PH[8] ERRORE CONTROLLO_NEUTRO /
FINE_OPERAZIONE ERRORE_SENSORE VALVOLA_ACIDO VALVOLVA_BASICO RESET INIZIO_OPERAZIONE TIPO_PH STOP_OPERAZIONE

Figura 2: FSM

Tabella delle transizioni

Di seguito il codice sorgente della tabella delle transizioni descritta nel formato utilizzato da SIS.

Transizioni da Reset 1----- Reset Reset 000010-0 00---- Reset Reset 000010-0 01----1- Reset Errore 010001-0 010-----O- Reset Acido 00010100 011-----0- Reset Basico 00100110 # Transizione da Errore O----- Errore Errore 010000-1 1----- Errore Reset 000010-0 # Transizioni da Acido O-----O Acido Acido 00010000 O-----1 Acido Neutro 10000001 1----- Acido Reset 000010-0 # Transizioni da Basico O-----O Basico Basico 00100010 O-----1 Basico Neutro 10000011 1----- Basico Reset 000010-0 # Transizioni da Neutro O----- Neutro Neutro 100000-1 1----- Neutro Reset 000010-0

Unità di elaborazione

L'unità di elaborazione è suddivisa in più componenti:

- 1. Contatore: memorizza e incrementa il numero di cicli impiegati;
- 2. *Modificatore*: applica le modifiche al pH;
- 3. Errore: verifica se il valore del pH è superiore a 14;
- 4. Neutrale: verifica se il valore del pH è compreso in [7.00, 8.00].

Contatore

Il contatore utilizza un registro, tre multiplexer e un sommatore ad 8 bit.

Il componente continua a sommare 1 al valore memorizzato finché riceve il segnale di RESET = 1. Invece quando riceve il segnale di STOP = 1 smette di contare e restituisce il valore memorizzato.

Modificatore

Il modificatore utilizza un sommatore, un sottrattore ed un multiplexer ad 8 bit.

Figura 3: Contatore

Se il $TIPO_{PH}$ equivale a 0, incrementa il valore del pH di 0.50, al contrario, se il $TIPO_{PH}$ equivale ad 1, allora lo decrementa di 0.25.

Errore

Il componente utilizza un maggiore ad 8 bit.

Confronta il valore del pH, se questo supera il 14, allora restituisce 1, cioè vero.

${\bf Neutrale}$

Il componente utilizza un maggiore ed un minore ad 8 bit; nonché una porta NOR ad un bit.

Confronta il valore del pH, se questo è compreso in $[7.00,\ 8.00]$ allora restituisce 1,cioè vero.

Figura 4: Modificatore

Figura 5: Errore

Figura 6: Neutrale