

Implementing EDF scheduler based on FREE RTOS

Analytical Calculations: -

Task	Task Period (ms)	Execution Time (ms)
Button 1	50	0.013
Button 2	50	0.013
Periodic Transmitter	100	0.018
UART Receiver	20	0.015
Load 1 Simulation	10	5
Load 2 Simulation	100	12

- 1. System Hyper Period = 100 ms.

3. System Schedulability

• Urm Analysis:

URM = n [
$$2^{1/n} - 1$$
] = 0.7347

:: U < URM.

:. System is Schedulable.

4. Time Demand Analysis

Task	Task Priority (RM)	Task Period (ms)	Execution Time (ms)
Load 1 Simulation	4	10	5
UART Receiver	3	20	0.015
Button 1	2	50	0.013
Button 2	2	50	0.013
Periodic Transmitter	1	100	0.018
Load 2 Simulation	1	100	12

Time demand Analysis Equation: -
$$W_i(t) = e_i + \sum_{k=1}^{i-1} \left(\frac{t}{P_k}\right) e_k$$

• Load 1 Simulation Task: -

$$W_1(10) = 5, p = 10$$

 $W_1(10) < P = 5 < 10$, Load 1 Task is Schedulable.

• UART Receiver Task: -

$$W_2(20) = 0.015, P = 20$$

$$W_2(20) = 0.015 + \frac{20}{10} * 5 = 10.015$$

 $W_2(20) < P = 10.015 < 20$, UART Receiver Task is Schedulable.

• Button 1 Task: -

$$W_3$$
 (50) = 0.013, $P = 50$

$$W_3(50) = 0.013 + \left(\frac{50}{20}\right) * 0.015 + \left(\frac{50}{10}\right) * 5 = 25.0505$$

 W_3 (50) <P = 25.0505, Button 1 Task is Schedulable.

• Button 2 Task: -

$$W_4(50) = 0.013, P = 50$$

$$W_4(50) = 0.013 + \left(\frac{50}{50}\right) * 0.013 + \left(\frac{50}{20}\right) * 0.015 + \left(\frac{50}{10}\right) * 5 = 25.0635$$

 W_4 (50) <P = 25.0635, Button 2 Task is Schedulable.

• Periodic Transmitter Task: -

$$W_5(100) = 0.018, P = 100$$

$$W_5\left(100\right) = 0.018 + \left(\frac{_{100}}{_{50}}\right) * 0.013 + \left(\frac{_{100}}{_{50}}\right) * 0.013 + \left(\frac{_{100}}{_{20}}\right) * 0.015 + \left(\frac{_{10$$

$$\left(\frac{100}{10}\right) * 5 = 50.145$$

 W_5 (100) <P = 50.145, Periodic Transmitter Task is Schedulable.

• Load 2 Simulation Task: -

$$W_6 (100) = 12, P = 100$$

$$W_6 (100) = 12 + 0.018 + \left(\frac{100}{50}\right) * 0.013 + \left(\frac{100}{50}\right) * 0.013 + \left(\frac{100}{20}\right) *$$

$$0.015 + \left(\frac{100}{10}\right) * 5 = 62.145$$

 W_6 (100) \leq P = 62.145, Load 2 Simulation Task is Schedulable.

:. System is Schedulable.

Simso Offline Simulator: -

• Fixed Priority Rate Monotonic Schedule.

• EDF Schedule.

Keil Simulation: -

1. CPU load and time.

Name		Value
🌳	Task_1_Total_Time	405
🧼	Task_2_Total_Time	412
🧼	Task_3_Total_Time	383
🧼	Task_4_Total_Time	615
🧼	Task_5_Total_Time	166624
🧼	Task_6_Total_Time	40151
🧼	System_Time	331790
🧼	CPU_Load	62
Enter expression>		

2. Logic Analyzer.

- Signal 1: Button 1 Task.
- Signal 2: Button 2 Task.
- Signal 3: Period Transmitter Task.
- Signal 4: UART Receiver Task.
- Signal 5: Load 1 Simulation Task.
- Signal 6: Load 2 Simulation Task.

Results of all analysis are as expected and matches the manual analytical calculations