Algebra a diskrétna matematika Prehľad z 5. týždňa

Nerovinné grafy, ofarbenia grafov, stromy, kostry a ich konštruktívna enumerácia, ohodnotenia grafov

Graf je **rovinný**, ak ho je možné znázorniť v rovine tak, aby žiadne 2 krivky reprezentujúce jeho hrany nemali spoločný bod, ktorý by bol vnútorným bodom jednej z nich.

Graf, ktorý nie je rovinný sa nazýva **nerovinný (neplanárny)**.

Z minula vieme, že grafy K_5 , $K_{3,3}$ a Petersenov graf sú nerovinné.

Nerovinné grafy sa dajú nakresliť tak, aby sa ich hrany nepretínali vo svojich vnútorných bodoch v R^3 alebo na vhodných **plochách**.

Príklady niektorých plôch:

Tvrdenie: Každý graf je možné nakresliť bez priesečníkov na guľu s dostatočným počtom "uší".

Zostrojenie torusu

<u>Príklad:</u> Rôzne spôsoby umiestnenia úplného grafu K_5 na toruse.

Vrcholové ofarbenie grafu G je zobrazenie $f:V(G)\to\{1,2,\ldots,k\}$ také, že pre každú $uv\in E(G)$ je $f(u)\neq f(v)$ (susedné vrcholy dostanú rôzne farby).

Najmenšie také k je **chromatické číslo** $\chi(G)$ grafu G.

Príklad: Chromatické číslo Petersenovho grafu je 3.

Hranové ofarbenie grafu je priradenie k farieb hranám grafu, pričom hrany incidentné s rovnakým vrcholom dostanú rôzne farby.

Najmenšie také k je **chromatický index** (hranové chromatické číslo) $\chi'(G)$ grafu G.

Príklad: Chromatický index Petersenovho grafu je 4.

Veta o 5 farbách: Pre každý konečný rovinný graf platí, že $\chi(G) \leq 5$.

Pomerne jednoduchý dôkaz indukciou podľa počtu vrcholov bol prezentovaný na prednáške (aj s ilustráciou). Využíva sa tam fakt, že v rovinnom grafe existuje vrchol stupňa nanajvýš 5.

Slávny problém – Formulovaný r. 1852 – Francis Guthrie

Problém 4 farieb Pre každý konečný rovinný graf platí, že $\chi(G) \leq 4$.

1976 – Appel a Haken - prvý dôkaz, nie všetkými matematikmi prijatý

1996 – Robertson, Sanders, Seymour, Thomas - všeobecne prijatý dôkaz

Významná aplikácia: Globálny systém mobilných aplikácií operuje iba na 4 rôznych frekvenciách.

Strom je súvislý graf neobsahujúci kružnicu.

Nesúvislý graf bez kružníc sa nazýva les.

List grafu je vrchol stupňa jeden.

Húsenica je graf, v ktorom po odstránení listov (vrcholov stupňa 1) ostane iba cesta.

Kostra grafu G je strom, ktorý je jeho podgrafom a obsahuje všetky vrcholy grafu G.

<u>Príklad</u> dvoch rôznych, ale izomorfných kostier grafu K_6

Cayleyho veta: Pre každé $n \geq 2$ je počet všetkých kostier úplného grafu K_n (počet stromov na daných n vrcholoch) rovný n^{n-2} .

Hlavné myšlienky dôkazu

Ukážeme, že každú kostru K_n vieme zakódovať (n-2)-člennou postupnosťou čísel z množiny $\{1, 2, ..., n\}$. Také kódovanie definuje bijekciu medzi všetkými kostrami a všetkými postupnosťami tohto typu. Z toho vyplýva, že počet všetkých kostier je n^{n-2} .

Uvažujme kostru T grafu K_n s vrcholmi označenými číslami $1, 2, \ldots, n$.

Kostre T priradíme **Prüferov kód** $P(T) = (p_1, p_2, \dots, p_{n-2})$ nasledovne:

- Z kostry postupne odstraňujeme listy, až kým neostane jedna hrana.
- V každom kroku odstránime list s najmenším číslom.
- Do postupnosti pridáme číslo vrchola, ktorý je susedom odstráneného listu.

Príklad:

Spätná rekonštrukcia kostry

Uvedomme si najprv, že každý vrchol, ktorý nie je v P, je list.

Prvý vrchol bol odstránený list, ktorý susedil s prvým vstupom p_1 v P a mal najmenšie číslo ℓ_1 nevyskytujúce sa v P.

Ako druhý bol odstránený list susediaci s druhým vstupom p_2 v P a s najmenším číslom nevyskytujúcim sa v $P - \{p_1\}$ a rôznym od ℓ_1 .

V ďalšlom kroku budeme podobne vyšetrovať kód o dva vstupy kratší. Tak pokračujeme ďalej.

Po n-2 krokoch prejdeme celý kód. Ostáva určiť poslednú hranu. Jeden jej koniec je posledný vstup p_{n-2} v kóde P a druhý ten, ktorý sa nevyskytuje medzi odstránenými listami $\ell_1, \ldots \ell_{n-2}$ a je rôzny od p_{n-2} .

Algoritmus spätnej rekonštrukcie kostry

Vstup: Prüferov kód $P = (p_1, p_2, \dots p_{n-2})$

Algoritmus

- Krok 1: Nakresli n vrcholov a označ číslami od 1 do n.
- Krok 2: Zostav **zoznam** čísel Z = (1, 2, ..., n).
- Krok 3: Ak sú v zozname dve čísla, spoj vrcholy s týmito číslami hranou a ukonči, inak prejdi na Krok 4.
- Krok 4: Nájdi najmenšie číslo v zozname, ktoré nie je v kóde a prvé číslo v kóde. Spoj vrcholy s týmito číslami hranou.
- Krok 5: Vymaž čísla z Kroku 4 zo zoznamu aj z kódu. Choď na Krok 3.

Dá sa ukázať, že vzniknutý graf je vždy strom a že spätným prekódovaním dostaneme pôvodný kód.

Vrcholovo ohodnotený graf je graf, v ktorom sú vrcholom priradené čísla z nejakej množiny (tradične, 1, 2, ...) .

Hranovo ohodnotený graf je graf, v ktorom sú hrany ohodnotené číslami $1, 2, \dots$

Graciózne ohodnotenie (graceful labeling) stromu rádu n je ohodnotenie jeho vrcholov číslami $1, 2, \ldots, n$ tak, aby absolútne rozdiely ohodnotení susedných vrcholov vyčerpali celú množinu $\{1, 2, \ldots, n-1\}$.

Ringel-Kotzigova hypotéza: Každý strom má graciózne ohodnotenie. Hypotéza je stále otvorená.