Class07

Dhruv

KMEANS() is used for PCA analysis. To learn about this, we can create a test dataset for ourselves. Before anything, we should start with the rnorm() function.

hist(rnorm(1500))

Histogram of rnorm(1500)

hist(rnorm(1500, mean = 3))

Histogram of rnorm(1500, mean = 3)

hist(rnorm(1500, mean = -3))

Histogram of rnorm(1500, mean = -3)

Histogram of rnorm(1500, mean = c(-3, 3))


```
n=30
hist(c(rnorm(n, mean =3), rnorm(n, mean = -3)))
```

Histogram of c(rnorm(n, mean = 3), rnorm(n, mean = -3)

c(rnorm(n, mean = 3), rnorm(n, mean = -3))

```
x <- c(rnorm(n, mean =3), rnorm(n, mean = -3))
#how to reverse x from y?
y <- rev(x)
y</pre>
```

```
[1] -3.5300058 -1.7150085 -2.2598615 -2.3035355 -3.9575128 -1.3124003 [7] -3.3671163 -3.6253032 -4.5939929 -3.2983892 -2.1944178 -2.7657015 [13] -4.5671485 -3.0203419 -1.8581458 -0.9620706 -1.6640641 -3.8779396 [19] -3.6467931 -1.2728020 -2.9021023 -1.2750205 -3.8549247 -2.1781451 [25] -2.3867031 -3.2671504 -2.3767540 -5.8221130 -1.5842519 -2.9211504 [31] 3.0700486 3.0038782 2.2746844 3.4117455 3.2205965 2.8059860 [37] 3.4413271 3.4977003 0.4396646 3.0993090 4.2821317 3.1354824 [43] 2.1204680 2.8634697 4.0777640 4.2682230 3.0421943 2.9438097 [49] 2.2113581 3.3883277 3.3013871 2.9068922 3.3939603 1.9372142 [55] 2.7750856 4.1197269 3.9261453 4.7157443 2.5839265 1.9068442
```

```
z <- cbind(x,y)
plot(z)</pre>
```


##K-means clustering

The function for k-means clustering is called kmeans(). Run kmeans() and assign two centers.

Q1. Print out the club membership vector (our main answer)

km\$centers

km\$cluster

plot(z, col = "red")

plot(z, col = c("red", "blue")) #Think about R as vectors. One vector is two colors against


```
plot(z, col = km$cluster)
```


plot with clustering result and add centers.

```
plot(z, col = km$cluster)
points(km$centers, col = "blue", pch = 15, cex = 2)
```


Q. Can you cluster our data in ${\bf z}$ into four clusters

```
km_four <- kmeans(z, 4)</pre>
```

```
plot(z, col = km_four$cluster)
points(km_four$centers, col = "blue", pch = 15, cex = 2)
```


kmeans(z,4)

K-means clustering with 4 clusters of sizes 14, 16, 14, 16

Cluster means:

х у

1 -1.810227 3.284530

2 -3.688605 2.886355

3 3.284530 -1.810227

4 2.886355 -3.688605

Clustering vector:

Within cluster sum of squares by cluster:

[1] 17.4404 15.1317 17.4404 15.1317 (between_SS / total_SS = 94.4 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

##Hierarchical Clustering

Function = hclust() For hclust() we first need a distance matrix from data.

```
d <- dist(z)
hc <- hclust(d)
plot(hc) #gives a plot where data is divided on two main arms (1-30 and 31-60)
abline(h=10, col = "red")</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

To get main clustering results, can "cut" the tree and give height. to do this, use cutree.

```
grps <- cutree(hc, h=10)

plot(z, col = grps)</pre>
```


##Principle component analysis (PCA)

Take original data, and choose path with most variance and assign it PC1. Then draw PC2 to capture more variance.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
nrow(x) #Q.1 answer</pre>
```

[1] 17

```
ncol(x)# Q.1 answer
```

[1] 5

```
head(x) # Q.2 answer
```

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93

```
5 Fats_and_oils
                            235
                                      184
                                                 209
                      193
          Sugars
                      156
                           175
                                      147
                                                 139
rownames(x) \leftarrow x[,1]
x < -x[,-1]
head(x)
                England Wales Scotland N.Ireland
Cheese
                                                66
                    105
                          103
                                    103
Carcass_meat
                    245
                          227
                                    242
                                               267
                          803
Other_meat
                    685
                                    750
                                              586
Fish
                    147
                          160
                                    122
                                               93
Fats_and_oils
                    193
                          235
                                    184
                                               209
                    156
                          175
                                    147
                                               139
Sugars
url <- "https://tinyurl.com/UK-foods"</pre>
x <- read.csv(url,row.names = 1)</pre>
nrow(x) #Q.1 answer
[1] 17
ncol(x)# Q.1 answer
[1] 4
dim(x)
[1] 17 4
```

barplot(as.matrix(x), col=rainbow(nrow(x)))

pairs(x, col=rainbow(10), pch=16)

$17\ \text{variables}$ is not close to how many dimensions we would normally look at. Using PCA

Function for PCA in base R is prcomp()

X

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

t(x)

	Cheese	Carcass	meat	Other_	meat	Fish	Fats_and	_oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	potatoes	Fresh	n_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	l.	265		570			203
Scotland		566	3	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	fruit	Cere	als :	Beverages	Soft_d	drinks
England		360		1102	2	1472	57		1374
Wales		365		1137	•	1582	73		1256
Scotland		337		957	•	1462	53		1572

N.Ireland	334	674	1494	47	1506
	Alcoholic_drinks	Confectionery			
England	375	54	Į.		
Wales	475	64	<u> </u>		
Scotland	458	62	2		
N.Ireland	135	41	_		

```
pca <- prcomp(t(x))
summary (pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 2.921e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00

What is inside our result from our object pca

attributes(pca)

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

To make our PC plot/Score plot/ordination plot/PC1/2 plot.

```
plot(pca$x[,1], pca$x[,2], col = x[,1])
```


plot(pca\$x[,1], pca\$x[,2], col = c("black", "red", "blue", "darkgreen"), pch = 16, xlab = "Pot(pca\$x[,1], pca\$x[,2], col = c("black", "red", "blue", "darkgreen"), pch = 16, xlab = "Pot(pca\$x[,1], pca\$x[,2], col = c("black", "red", "blue", "darkgreen"), pch = 16, xlab = "Pot(pca\$x[,1], pca\$x[,2], col = c("black", "red", "blue", "darkgreen"), pch = 16, xlab = "Pot(pca\$x[,2], pca\$x[,2], pca\$x[,

add loadings plot before submitting this.

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```



```
barplot( pca$rotation[,4], las=2 )
```


pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348
Cereals	-0.047702858	-0.212599678	-0.35884921	0.100043319
Beverages	-0.026187756	-0.030560542	-0.04135860	-0.018382072
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.222319484
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.273126013
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001890737