- 113 Factoriser les expressions suivantes à l'aide d'une identité remarquable:
 - a. $x^2 + 6x + 9$
 - b. $x^2 8x + 16$
 - c. $9x^2 + 30x + 5$
 - d. $36x^2 49$
 - e. $4x^2 44x + 49$
- Factoriser les expressions suivantes à l'aide d'une identité remarquable :
 - a. $(2x+1)^2 (1-x)^2$
 - b. $25 (x+1)^2$
 - c. $4x^2 + 4 + 8x$
- Calculer à la main $10\,001^2 9\,999^2$.
- Factoriser les expressions suivantes :
 - a. $4(2x-1)^2 2(2x-1)(x+3)$
 - b. $(1-5y)^2-9$
 - c. $4(x-2)^2-25$
- Factoriser les expressions suivantes :
 - a. $2x^2 + 3x$
 - b. $x^2 4x$
 - c. $x^3 + 8x$
 - d. $4x^2 5x$
 - e. xy 6x
- Factoriser les expressions suivantes :
 - a. 2x(1-x) + 3x
 - b. xy + xz
 - c. (x+1)(x+2) + 5(x+2)
 - d. $(2x+1)^2 (2x+1)(4x-3)$
 - e. $(x+3)^2 + x + 3$
- Factoriser pour a, b et c:
 - a. ab + 2bc
 - b. $a^2b + 3ab$
 - c. $abc + ab^2$
- Soit f la fonction carrée et ${\mathscr P}$ la parabole qui la 120 représente:
 - 1. On calcule $2,4^2=5,76$. Traduire ce résultat sous la forme :
 - (a) f(...) = ...
 - (b) $M(\ldots;\ldots) \in \mathscr{P}$
 - 2. Compléter le tableau :

Completer le tableau.		
$x^2 = y$	f() =	$M(\ldots;\ldots)\in\mathscr{P}$
	f(-1,2) = 1,44	
		$M(0,8;\ldots) \in \mathscr{P}$
$(2\pi)^2$		

- Résoudre graphiquement les équations suivantes :
 - 1. $x^2 = 25$

3. $x^2 = 0$

 $2. x^2 = 5$

- 4. $x^2 = -3$
- Résoudre algébriquement les équations suivantes :
 - 1. $4x^2 5 = 0$
 - $2. 2x^2 + 3 = 1$
 - 3. $\frac{4}{5}x^2 = 5$
- Comparer sans aucun calcul et en justifiant à l'aide des propriétés de la fonction carrée :
 - a. $2,356^2$ et $2,5^2$
 - b. $(-1,08)^2$ et $(-1,2)^2$
 - c. $(-1,6)^2$ et $1,57^2$
- Donner un encadrement de x^2 sachant que :
 - a. $-3, 5 \le x \le -1$
 - b. $0, 5 \le x \le 2, 5$
 - c. $x \in]-2;1]$
 - d. $x \in]-2;4]$
- À l'aide de la parabole d'équation $y = x^2$, déterminer l'ensemble des valeurs de x telles que :
 - 1. $x^2 \ge 4$

3. $x^2 < 2$

2. $x^2 > 4$

- 4. $x^2 \ge -5$
- Même consigne que précédemment :
 - 1. $x^2 \ge 3$

3. $x^2 < 100$

2. $x^2 \le 5$

- 4. $x^2 > 100$
- Résoudre algébriquement les équations suivantes :
 - 1. $(x-1)^2 = 4$
 - $2. (3x+4)^2 = 9$
 - 3. $(x+1)^2 = 3$
 - 4. $(-5x+1)^2 = 6$
- Simplifier:

 - 1. $(\sqrt{5})^2$

 $2. - \left(\sqrt{\frac{3}{4}}\right)^2$

- Calculer $\sqrt{a+b}$ et $\sqrt{a}+\sqrt{b}$ pour :
 - 1. a = 1 et b = 3
 - 2. a = 4 et b = 3

132

136

138

- Écrire sous la forme $a\sqrt{b}$ où a et b sont des entiers naturels :
 - 1. $\sqrt{18}$

4. $\sqrt{54}$

- 2. $\sqrt{200}$
- 3. $\sqrt{125}$

- 5. $\sqrt{24}$
- 131 Simplifier les sommes algébriques suivantes :
 - 1. $2\sqrt{2} 5\sqrt{2} + 4\sqrt{2}$
 - 2. $-\sqrt{5} + 2\sqrt{5} + 4\sqrt{5}$
 - 1. Simplifier au maximum $\sqrt{8}$, $\sqrt{18}$, $\sqrt{12}$ et $\sqrt{75}$.
 - 2. Écrire sous la forme $a\sqrt{b}$ avec a et b entiers :
 - (a) $3\sqrt{2} 4\sqrt{8} + 2\sqrt{18}$
 - (b) $\sqrt{12} + 3\sqrt{3} \sqrt{75}$
- **133** Écrire sous la forme $a\sqrt{b}$ avec a et b entiers :
 - 1. $\sqrt{27} 2\sqrt{3} + \sqrt{48}$
 - 2. $4\sqrt{32} 3\sqrt{8} + \sqrt{18}$
- Soit trois points A, B et C vérifiant AB = $\sqrt{300}$, BC = $2\sqrt{27}$ et AC = $\sqrt{48}$. Démontrer que ces trois points sont alignés.
- Soit trois points A, B et C vérifiant AB = $\sqrt{5} \sqrt{3}$, AC = $\sqrt{5} + \sqrt{3}$ et BC = 4. Le triangle ABC est-il rectangle?
 - Comparer, sans calcul, à l'aide de la fonction racine carrée :
 - 1. $\sqrt{2,5}$ et $\sqrt{1,8}$
 - 2. $\sqrt{3,08} \text{ et } \sqrt{\pi}$
- Écrire l'ensemble des solutions des inéquations :
 - 1. $\sqrt{x} < 2$
 - $2. \ \sqrt{x} 5 \leqslant 0$
 - 3. $3 \sqrt{x} < 5$
 - 4. $3 2\sqrt{x} \ge 0$
 - Écrire sous la forme $a\sqrt{b}$ où a est un réel positif puis ranger dans l'ordre croissant les nombres suivants :
 - 1. $\sqrt{2}\sqrt{5}$
 - 2. $\frac{20}{\sqrt{5}}$
 - 3. $2\sqrt{5}$
 - 4. $\sqrt{\frac{225}{3}}$
- Dans chacun des cas, donner le meilleur encadrement possible de \sqrt{x} en justifiant :
 - 1. $0 \le x \le 4$.
 - $2. \ 0,25 \leqslant x \leqslant 6,25.$
 - 3. $\frac{1}{100} \leqslant x \leqslant 1$.