GIST 53: ADVANCED GEOSPATIAL TECHNOLOGY & SPATIAL ANALYSIS

Foothill College Course Outline of Record

Effective Term:	Summer 2022
Units:	4
Hours:	2 lecture, 6 laboratory per week (96 total per quarter)
Advisory:	This is an advanced level course in GIS, and assumes in-depth understanding of GIST and data structures and fluency using industry standard software; successful completion of the following courses strongly recommended: GEOG 11 or GIST 11, and GEOG 12 or GIST 12, and GIST 52.
Degree & Credit Status:	Degree-Applicable Credit Course
Foothill GE:	Non-GE
Transferable:	CSU
Grade Type:	Letter Grade (Request for Pass/No Pass)
Repeatability:	Not Repeatable

Student Learning Outcomes

- Run geoprocessing tools individually and implement a model to run several tools in sequence.
- Organize the data sets resulting from analysis.
- Student will be able to prepare data for use in Geospatial analysis.
- Present the results of a geospatial analysis using appropriate terminology and visualizations.
- Determine an appropriate approach to solving a problem using geospatial tools and methods.

Description

Introduction to problem-solving and decision-making using geospatial analysis techniques, applicable to a range of disciplines.

Course Objectives

The student will be able to:

- 1. Prepare data for use in analysis.
- 2. Determine an appropriate approach to solving a problem using geospatial tools and methods.
- 3. Run geoprocessing tools individually and implement a model to run several tools in sequence.
- 4. Organize the data sets resulting from analysis.
- 5. Present the results of a geospatial analysis using appropriate terminology and visualizations.

Course Content

- 1. Reviewing the basics of geospatial data
 - a. Data sources
 - b. Data types
 - c. Vector and raster data formats
 - d. Basic cartographic data presentation techniques
- 2. Introduction to geospatial analysis
 - a. Database joins
 - b. Classifying and displaying data with a variety of statistical methods
 - c. Presenting results as graphs and maps
- 3. Using advanced attribute and spatial queries for data exploration
 - a. Metadata and data dictionaries
 - b. Formulating queries
 - c. Types of selections

- 4. Using advanced attribute and spatial queries for data exploration
 - a. Fundamentals of coding for advanced analysis operations
 - b. Integrating machine learning tools to GIS analysis
 - c. Using GIS to build models
- 5. Vector data analysis
 - a. Overlay techniques
 - b. Creating a site selection model
 - c. Networks and network analysis
- 6. Building an automated model
 - a. Uses and applications of models
 - b. Planning and implementing models
- 7. Raster data analysis: working with topographic data
 - a. Topographic data
 - b. Viewshed analysis for site selection
 - c. Reclassification
 - d. Map algebra
 - e. Hydrographic data
 - f. Density surfaces
- 8. Database design and schema implementation
 - a. Subtypes
 - b. Default values
 - c. Importing existing database schema

Lab Content

- 1. Reviewing the basics of geospatial data
 - a. Acquiring data
 - b. Formatting data
 - c. Reprojecting data and transforming coordinate systems
 - d. Vector and raster data formats

- e. Basic cartographic data presentation techniques
- 2. Introduction to geospatial analysis
 - a. Database joins
 - b. Classifying and displaying data with a variety of statistical methods
 - c. Presenting results as graphs and maps
- 3. Using advanced attribute and spatial queries for data exploration
 - a. Using metadata and a data dictionary
 - b. Formulating queries
 - c. Selection by location
- 4. Using advanced attribute and spatial queries for data exploration
 - a. Using data dictionaries to interpret attribute tables
 - b. Formulating Boolean queries
 - c. Selection by location
 - d. Buffering
 - e. Implementing a model
- 5. Vector data analysis: overlay techniques
 - a. Union
 - b. Intersect
 - c. Converting from coverage format to modern GIS data format
- 6. Vector data analysis: creating a site selection model
 - a. Proximity analysis using line and polygon buffering
 - b. Geospatial data model flow charts
 - c. Creating a model that satisfies multiple location criteria
- 7. Vector data analysis: network analysis
 - a. Building topology
 - b. Network routing
 - c. Modeling of network impedance
 - d. Generating service areas
- 8. Building an automated model
 - a. Setting environmental settings prior to running the model

- b. Setting model parameters in order to later model inputs
- c. Implementing a multi-step model using automation tools
- d. Exporting and editing model script
- 9. Raster data analysis: working with topographic data
 - a. Using elevation data to create slope, aspect, and hillshade surfaces
 - b. Analyzing an environmental issue using elevation derived data sets
 - c. Reclassifying raster data
 - d. Map algebra
 - e. Viewshed analysis for site selection
- 10. Raster data analysis: working with hydrographic data
 - a. Generating stream flow direction using accumulation surfaces
 - b. Creating watersheds based on topographic data
 - c. Using hydrographic data to analyze a scientific question
- 11. Raster data analysis: density surfaces
 - a. Interpolating density surfaces from point data
 - b. Converting between vector and raster formats
- 12. Database design and schema implementation
 - a. Subtypes
 - b. Default values
 - c. Importing existing database schema

Special Facilities and/or Equipment

Access to industry standard geospatial software and a computer with an internet connection.

Method(s) of Evaluation

Methods of Evaluation may include but are not limited to the following:

Labs

Method(s) of Instruction

Methods of Instruction may include but are not limited to the following:

Lecture presentations and classroom discussion Demonstrations and hands-on exercises Laboratory exercises Reading assignments

Representative Text(s) and Other Materials

Bolstad, Paul. GIS Fundamentals: A First Text on Geographic Information Systems, 6th ed., 2019.

Types and/or Examples of Required Reading, Writing, and Outside of Class Assignments

- 1. Weekly reading assignments from text and outside sources ranging from 30-60 pages per week.
- 2. Weekly lecture covering subject matter from text assignment with extended topic information. Class discussion is encouraged.
- 3. Hands-on exercises and demonstrations: Weekly computer labs. Each exercise covers assigned reading and lecture topics.

Discipline(s)

Geography or Drafting/CADD or Environmental Technologies or Forestry/Natural Resources