Практическое занятие №1. Метод Ритца

Варианты заданий

Вариант	y = x	y = 1 + x	y = 1 - x	V(k,b)	Экстремум
1	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{k^2}{5}$	$\min, k = 0, \forall b$
2	$-\frac{10}{3}$	$-\frac{100}{3}$	$\frac{16}{3}$	$-\frac{10}{3}k^2 - 14bk - 16b^2$	$\max, k = 0, b = 0$
3	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	$k^2 + \frac{k}{2}$	$\min, k = -\frac{1}{4}, \forall b$
4	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3k^2}{8}$	$\min, k = 0, \forall b$
5	$\frac{5}{3}$	$\frac{20}{3}$	$\frac{4}{3}$	$k^2 + 2bk + \frac{2}{3}k + 2b^2 + b$	$\min, k = b = -\frac{1}{6}$
6	$\frac{8\pi^3 + 18\pi}{3}$		$\frac{8\pi^3 - 12\pi^2}{3}$		
7	$\frac{8\pi^3 + 6\pi}{3}$				
8	$-\frac{10}{3}$	$-\frac{100}{3}$	$\frac{16}{3}$	$-\frac{10}{3}k^2 - 14bk - 16b^2$	$\max, k = 0, b = 0$
9	$-\frac{10}{3}$	$-\frac{100}{3}$	$\frac{16}{3}$	$-\frac{10}{3}k^2 - 14bk - 16b^2$	$\max, k = 0, b = 0$
10	$-\frac{10}{3}$	$-\frac{100}{3}$	$\frac{16}{3}$	$-\frac{10}{3}k^2 - 14bk - 16b^2$	$\max, k = 0, b = 0$

Вариант 1.

- **1.** (1б.) Дан функционал $V[y] = \int_{0}^{1} x^{4}y'^{2}dx$.
 - **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
 - **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y] = \int_{0}^{1} \left[y'^2 + y^2 \right] dx$, и краевые условия y(0) = 1,

y(1)=2. Пусть экстремум функционала ищется в классе функций $y(x)=\varphi(x)+C\sin\pi x$, где C — параметр, $\varphi(x)\in C^1_{[0,1]}$.

- **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
- **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (16.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{0}^{1} [y'^{2} - y^{2} - 2xy] dx \to \text{extr}, \quad y(0) = y(1) = 0$$

в виде $y(x) = x(1-x)(C_0 + C_1x + C_2x^2 + \cdots + C_nx^n)$, ограничиться случаем n=0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2.
- 5.* (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 2.

1. (1б.) Дан функционал
$$V[y] = \int_{0}^{1} \left[y'^2 + 2yy' - 16y^2 \right] dx$$
.

 $\varphi(x) + C \sin \pi x$, где C — параметр, $\varphi(x) \in C^1_{[0,1]}$.

- **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
- **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y]=\int\limits_0^1 \left[(y'^2+y^2]dx,$ и краевые условия y(0)=0, y(1)=1. Пусть экстремум функционала ищется в классе функций y(x)=
 - **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
 - **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (16.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{1}^{2} \left[xy'^{2} - \frac{x^{2} - 1}{x}y^{2} - 2x^{2}y \right] dx \to \text{extr}, \quad y(1) = y(2) = 0.$$

в виде $y(x)=(x-1)(x-2)(C_0+C_1x+C_2x^2+\cdots+C_nx^n)$, ограничиться случаем n=0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2.
- 5.* (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 3.

- **1.** (1б.) Дан функционал $V[y] = \int_{0}^{1} \left[y'^2 + xy^2 \right] dx$.
 - **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
 - **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y] = \int_{0}^{1} \left[y'^2 + y^2 \right] dx$, и краевые условия y(0) = 0, y(1) = 2. Пусть экстромум функционала инпотед в классо функций y(x) = 0

y(1)=2. Пусть экстремум функционала ищется в классе функций $y(x)=\varphi(x)+C\sin\pi x$, где C — параметр, $\varphi(x)\in C^1_{[0,1]}$.

- **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
- **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (1б.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{0}^{2} [y'^{2} + 2xy + y^{2}] dx \to \text{extr}, \quad y(0) = y(2) = 0.$$

в виде $y(x) = x(x-2)(C_0 + C_1x + C_2x^2 + \dots + C_nx^n)$, ограничиться случаем n=0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2
- 5.* (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 4.

1. (1б.) Дан функционал
$$V[y] = \int_{1}^{2} \frac{y'^2}{x^3} dx$$
.

- **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
- **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y] = \int_0^1 \left[y'^2 + y^2 \right] dx$, и краевые условия y(0) = 0,

 $y(1)=rac{1}{2}.$ Пусть экстремум функционала ищется в классе функций $y(x)=arphi(x)+C\sin\pi x,$ где C — параметр, $arphi(x)\in C^1_{[0,1]}.$

- **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
- **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (16.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{0}^{1} [y'^{2} - y^{2} - 2xy] dx \to \text{extr}, \quad y(0) = y(1) = 0$$

в виде $y(x) = x(1-x)(C_0 + C_1x + C_2x^2 + \dots + C_nx^n)$, ограничиться случаем n = 0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2.
- **5.*** (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 5.

- **1.** (16.) Дан функционал $V[y] = \int_{0}^{1} \left[x^{2}y'^{2} + 2y^{2} + 2xy \right] dx$.
 - **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
 - **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y]=\int\limits_0^1 \left[(y'^2-y^2]dx,$ и краевые условия y(0)=1, y(1)=2. Пусть экстремум функционала ищется в классе функций y(x)=1

 $\varphi(x) + C \sin \pi x$, где C — параметр, $\varphi(x) \in C^1_{[0,1]}$.

- **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
- **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (16.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{1}^{2} \left[xy'^{2} - \frac{x^{2} - 1}{x}y^{2} - 2x^{2}y \right] dx \to \text{extr}, \quad y(1) = y(2) = 0.$$

в виде $y(x)=(x-1)(x-2)(C_0+C_1x+C_2x^2+\cdots+C_nx^n)$, ограничиться случаем n=0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2.
- 5.* (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 6.

- 1. (16.) Дан функционал $V[y] = \int_{0}^{2\pi} \left[y'^2 2y \sin x + y^2 \right] dx$.
 - **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
 - **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y] = \int\limits_0^1 \left[y'^2 y^2 \right] dx$, и краевые условия y(0) = 0,

y(1)=1. Пусть экстремум функционала ищется в классе функций $y(x)=\varphi(x)+C\sin\pi x$, где C — параметр, $\varphi(x)\in C^1_{[0,1]}.$

- **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
- **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (1б.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{0}^{2} [y'^{2} + 2xy + y^{2}] dx \to \text{extr}, \quad y(0) = y(2) = 0.$$

в виде $y(x) = x(x-2)(C_0 + C_1x + C_2x^2 + \dots + C_nx^n)$, ограничиться случаем n = 0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2.
- 5.* (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 7.

- 1. (16.) Дан функционал $V[y] = \int_{0}^{1} \left[-y'^2 2y \sin x + y^2 \right] dx$.
 - **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
 - **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y] = \int\limits_0^1 \left[y'^2 y^2 \right] dx$, и краевые условия y(0) = 0,

y(1)=2. Пусть экстремум функционала ищется в классе функций $y(x)=\varphi(x)+C\sin\pi x,$ где C — параметр, $\varphi(x)\in C^1_{[0,1]}.$

- **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
- **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (16.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{0}^{1} [y'^{2} - y^{2} - 2xy] dx \to \text{extr}, \quad y(0) = y(1) = 0$$

в виде $y(x) = x(1-x)(C_0 + C_1x + C_2x^2 + \cdots + C_nx^n)$, ограничиться случаем n=0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2.
- 5.* (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 8.

1. (16.) Дан функционал
$$V[y] = \int_{0}^{1} \left[y'^2 + y^2 2e^x y \right] dx$$
.

- **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
- **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y] = \int_0^1 \left[y'^2 y^2 \right] dx$, и краевые условия y(0) = 0,

 $y(1)=rac{1}{2}.$ Пусть экстремум функционала ищется в классе функций $y(x)=arphi(x)+C\sin\pi x,$ где C — параметр, $arphi(x)\in C^1_{[0,1]}.$

- **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
- **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (16.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{1}^{2} \left[xy'^{2} - \frac{x^{2} - 1}{x}y^{2} - 2x^{2}y \right] dx \to \text{extr}, \quad y(1) = y(2) = 0.$$

в виде $y(x) = (x-1)(x-2)(C_0 + C_1x + C_2x^2 + \cdots + C_nx^n)$, ограничиться случаем n = 0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2.
- **5.*** (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 9.

1. (16.) Дан функционал
$$V[y] = \int_{1}^{2} \left[y'^2 + y^2 + \frac{2y}{x^3} \right] dx$$
.

- **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
- **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (1б.) Дан функционал $V[y] = \int_{0}^{1} \left[y'^2 2y^2 \right] dx$, и краевые условия y(0) = 0, y(1) = 1. Пусть экстремум функционала ищется в классе функций y(x) = 0

y(1)=1. Пусть экстремум функционала ищется в классе функций $y(x)=\varphi(x)+C\sin\pi x,$ где C — параметр, $\varphi(x)\in C^1_{[0,1]}.$

- **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
- **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (16.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{0}^{2} [y'^{2} + 2xy + y^{2}] dx \to \text{extr}, \quad y(0) = y(2) = 0.$$

в виде $y(x) = x(x-2)(C_0 + C_1x + C_2x^2 + \dots + C_nx^n)$, ограничиться случаем n=0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2
- 5.* (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$

Вариант 10.

- **1.** (16.) Дан функционал $V[y] = \int_{1}^{2} \left[y'^3 y^2 \right] dx$.
 - **1а.** Найти его значение при y(x) = x, y(x) = 1 + x, y(x) = 1 x.
 - **1b.** Достигается ли экстремум V[y] на множестве функций y(x) = kx + b? Если достигается, то при каких значениях k и b? Максимум или минимум?
- **2.** (16.) Дан функционал $V[y] = \int\limits_0^1 \left[y'^2-2y^2\right] dx$, и краевые условия y(0)=1, y(1)=2. Пусть экстремум функционала ищется в классе функций $y(x)=\varphi(x)+C\sin\pi x$, где C параметр, $\varphi(x)\in C^1_{[0,1]}$.
 - **2а.** Подберите $\varphi(x)$ так, чтобы при любых значениях C функция y(x) удовлетворяла бы краевым условиям.
 - **2b.** Достигается ли экстремум V[y] на получившимся множестве функций y(x)? Если достигается, то при каких значениях C? Максимум или минимум?
- 3. (16.) Найдите приближенное решение вариационной задачи

$$V[y] = \int_{0}^{1} [y'^{2} - y^{2} - 2xy] dx \to \text{extr}, \quad y(0) = y(1) = 0$$

в виде $y(x) = x(1-x)(C_0 + C_1x + C_2x^2 + \dots + C_nx^n)$, ограничиться случаем n = 0.

- **4.** (ДЗ 16.) Найти приближенное решение предыдущей задачи при n=1 и n=2
- 5.* (ДЗ 36.) Найти приближенное решение вариационной задачи

$$V[z(x,y)] = \iint\limits_{D} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy \to \text{extr},$$