

#### Wakacje





Adam wraz z przyjaciółmi planują wspólnie wakacyjny wyjazd. Wybrali już miejsce, do którego się wybiorą. Pozostało im już tylko wybrać termin wakacji.

Każdy z N przyjaciół wysłał już dni, w których planują wziąć urlop z pracy. Przyjaciel o numerze i zaplanował urlop od dnia  $L_i$ -tego do  $R_i$ -tego włącznie. Aby zmaksymalizować czas, który znajomi spędzą razem na wyjeździe, każdy z nich może przesunąć swój urlop w przód lub w tył. Dokładniej, przyjaciel o numerze i może wybrać liczbę całkowitą  $d_i$  i przesunąć swój urlop do przedziału  $[L_i + d_i, R_i + d_i]$ . Dodatnie  $d_i$  znaczy, że urlop odbędzie się później niż początkowo planowany, ujemne  $d_i$  znaczy, że urlop odbędzie się wcześniej, a  $d_i = 0$  znaczy, że urlop odbędzie się wtedy, kiedy był początkowo planowany.

Przyjaciele zdają sobie sprawę, że ich szefowie nie będą zadowoleni z niedogodności spowodowanych zmianą dat ich urlopów. Zatem, przyjaciele zamierzają przesuwać swoje urlopy w taki sposób, aby sumaryczna liczba dni, o które przesuną urlopy nie przekroczyła liczby całkowitej K. Formalnie, musi zachodzić  $|d_0| + |d_1| + \cdots + |d_{N-1}| \leq K$ .

Pomóż przyjaciołom i powiedz, ile maksymalnie dni mogą wszyscy z nich być razem, jeżeli przesuną swoje urlopy optymalnie.

#### Szczegóły implementacji

Zaimplementuj funkcję plan vacation:

int plan\_vacation(int N, std::vector<int> L, std::vector<int> R, long long K)

- *N*: liczba przyjaciół
- L: vector N liczb całkowitych oznaczających pierwsze dni oryginalnego urlopu kolejnych przyjaciół;
- R: vector N liczb całkowitych oznaczających ostatnie dni oryginalnego urlopu kolejnych przyjaciół;
- K: maksymalna dopuszczalna wartość wyrażenia  $|d_0| + |d_1| + \cdots + |d_{N-1}|$ .

Ta funkcja zostanie wywołana raz na każdy test. Musi zwrócić maksymalną liczbę dni, przez które wszyscy przyjaciele mogą być razem lub 0, jeżeli nie jest to w ogóle możliwe.



## Ograniczenia

- $1 \le N \le 500~000$
- $1 \le L_i \le R_i \le 10^9$
- $0 \le K \le 10^{18}$

#### Podzadania

| Podzadanie | Punkty | Wymagane podzadania | Dodatkowe ograniczenia                        |
|------------|--------|---------------------|-----------------------------------------------|
| 0          | 0      | _                   | Przykład.                                     |
| 1          | 7      | _                   | K = 0                                         |
| 2          | 11     | 1                   | $K \le 1$                                     |
| 3          | 6      | _                   | $K = 10^{18}$                                 |
| 4          | 13     | 0                   | $N \leq 10^4$ , $L_i \leq 10$ , $R_i \leq 10$ |
| 5          | 18     | 0                   | $N \le 10^3$                                  |
| 6          | 29     | 0, 4, 5             | $N \le 10^5$                                  |
| 7          | 16     | 0 - 6               | _                                             |

# Przykład

Rozważmy następujące wywołanie:

Przyjaciele wybrali następujące zakresy urlopów: [1,3], [5,9], [2,5]. Można przesunąć urlop przyjaciela o numerze 0 w przód o 2 dni i urlop przyjaciela o numerze 1 w tył o 1 dzień otrzymując urlopy: [3,5], [4,8], [2,5]. Wtedy, wszyscy przyjaciele będą dostępni w dniu 4 i 5, zatem będą 2 dni razem. Można udowodnić, że nie da się uzyskać lepszego wyniku dla K=3. Funkcja powinna zwrócić 2.

### Przykładowa biblioteka

Format wejścia jest następujący:

- wiersz 1: dwie liczby całkowite wartości N oraz K.
- wiersze od 2 do N+1: dwie liczby całkowite  $L_i$  praz  $R_i$ .

Format wyjścia jest następujący:

• wiersz 1: jedna liczba całkowita - wartość zwrócona przez Twoją funkcję.