

Đăng nhập

CHUYÊN ĐỀ 22_GÓC TRONG KHÔNG GIAN (PHƯƠNG PHÁP TOẠ ĐỘ)

(TRẮC NGHIỆM 4 PHƯƠNG ÁN)

A. KIẾN THỰC CƠ BẢN CẦN NẮM

1. Công thức tính góc giữa hai đường thẳng

Định Nghĩa:

Trong không gian Oxyz, cho hai đường thẳng Δ và Δ' tương ứng có vectơ chỉ phương $\overrightarrow{u} = (a;b;c), \overrightarrow{u'} = (a';b';c')$.

Khi đó:
$$(u u) = \frac{|aa' + bb' + cc'|}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{a'^2 + b'^2 + c'^2}}$$

2. Công thức tính góc giữa đường thẳng và mặt phẳng

Định Nghĩa:

Trong không gian \overrightarrow{Oxyz} , cho đường thẳng $\overset{\Delta}{}$ có vectơ chỉ phương $\overrightarrow{u=}(a;b;c)$ và mặt phẳng (P) có vectơ pháp tuyến $\overrightarrow{n=}(A;B;C)$.

Khi đó:
$$(P) \cos | , (\overrightarrow{u} n) | = \frac{|aA+bB+cC|}{\sqrt{a^2+b^2+c^2} \cdot \sqrt{A^2+B^2+C^2}}$$

3. Công thức tính góc giữa hai mặt phẳng

Định Nghĩa:

Trong không gian Oxyz, cho hai mặt phẳng (P),(Q) tương ứng có các vectơ pháp tuyến là $\overrightarrow{n} = (A;B;C), \overrightarrow{n'} = (A';B';C')$. Khi đó, góc giữa (P) và (Q), kí hiệu là ((P),(Q)), được tinh theo công thức:

$$\cos((P),(Q)) = \left|\cos(\overrightarrow{n,n'})\right| = \frac{\operatorname{Trang}A' + 1BB' + (3C')}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{A'^2 + B'^2 + C'^2}} \quad \oplus \quad +$$

Đăng nhập

thức:

$$\cos((P),(Q)) = \left|\cos(\overrightarrow{n,n'})\right| = \frac{|AA' + BB' + CC'|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{A'^2 + B'^2 + C'^2}}$$

B. CÂU HỎI TRẮC NGHIỆM

Oxyz

$$\Delta: \begin{cases} x = t \\ y = 2 - 3t \end{cases}$$

- Câu 1: Trong không gian với hệ trục tọa độ , cho hai đường thẳng $d: \frac{x-1}{-3} = \frac{y}{2} = \frac{z-2}{2}$. Góc tạo bởi hai đường thẳng và gần giá trị nào nhất trong các giá trị sau?

Oxyz

$$d_1: \begin{cases} x = -1 - t \\ y = 3 + 4t \\ z = 3 + 3t \end{cases}$$

- z = 3 + 3t và Câu 2: Trong không gian với hệ tọa độ , cho hai đường thẳng $d_1 \qquad d_2$ $d_2: \frac{x}{1} = \frac{y+8}{-4} = \frac{z+3}{-3}$. Tính góc hợp bởi đường thẳng và .
 - **A.** 0^{0} .
- **B.** 90° . **C.** 30° .
- **D.** 60°.

Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P: 6x+8y+10z-1=0 và đường $d: \frac{x-2}{2} = \frac{y+1}{2} = \frac{z-5}{2}$ $d: \frac{x-2}{1} = \frac{y+1}{1}$

Đăng nhập

Câu 3: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 6x + 8y + 10z - 1 = 0 và đường thẳng $d: \frac{x-2}{3} = \frac{y+1}{4} = \frac{z-5}{5}$. Góc giữa đường thẳng và mặt phẳng (P) là **A.** 90°. **B.** 45°. C. 60°. **D.** 30°.

Oxyz

Câu 4: Trong không gian với hệ tọa độ , cho đường thẳng |z|=1 và mặt phẳng (P): 3x-2y+1=0. Tính góc hợp bởi đường thẳng d và mặt phẳng (P). **A.** 45°. **B.** 30°. C. 90°.

Câu 5: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x-2y-z+2=0, (Q): 2x-y+z+1=0. Góc giữa (P) và (Q) là

C. 90°. D. 60°. **A.** 120°. **B.** 30°.

Câu 6: Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x+2y-2z+3=0, mặt phẳng (Q): x-3y+5z-2=0. Côsin của góc giữa hai mặt phẳng (P), (Q) là $\frac{\sqrt{35}}{7}$ $\frac{-\sqrt{35}}{7}$ $\frac{5}{7}$ $\frac{-5}{7}$

Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là Câu 7: n_P và n_Q . Biết góc giữa hai vector n_P và n_Q bằng 120° . Góc giữa hai mặt phẳng n_Q và n_Q và n_Q bằng B. 120°. C. 30°.

A. 45°.

D. 60°.

D. 90[□]

Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng Câu 8:

A. 30⁻¹

Câu 9: Trong không gian

, góc giữa hai mặt phẳng (P): x+y-z-11=0 và

B. 45[□]

C. 60[□]

D. 90⁻¹

Câu 9: Trong không gian Oxyz, góc giữa hai mặt phẳng (P): x+y-z-11=0 và (P): 2x + 2y - 2z + 7 = 0 bằng

A. 0°. **B.** 45°. **C.** 180°. **D.** 90°

Câu 10: Trong không gian Oxyz, cho hai mặt phẳng (P): x-2y+2z-1=0 và (Q): 2x + 2y - z - 3 = 0. Gọi α là góc giữa hai mặt phẳng (P) và (Q). Tính $\cos \alpha$.

 $\frac{4}{A}$, $\frac{4}{9}$, $\frac{2}{C}$, $\frac{2}{3}$, $\frac{2}{D}$, $\frac{2}{3}$.

Câu 11: Trong không gian Oxyz, gọi α là góc giữa hai mặt phẳng (P): x+2y-z+2=0 và (Q): 2x - y - z + 4 = 0. Tính $\cos \alpha$

 $\cos \alpha = \frac{2}{3}.$ $\cos \alpha = \frac{3}{4}.$ $\cos \alpha = \frac{1}{6}.$ $\cot \alpha = \frac{1}{6}.$ $\cot \alpha = \frac{1}{3}.$

Câu 12: Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxz) và (P):x-y+1=0 bằng **A.** 60° **D.** 90°

D 200

z = 3 + t và mặt phẳng: Câu 13: Trong không gian với hệ tọa độ Oxyz cho đường thẳng x-y+3=0. Tính số đo góc giữa đường thẳng d và mặt phẳng.

Câu 13: Trong không gian với hệ tọa độ Oxyz cho đường thẳng z = 3 + t và mặt phẳng : x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng .

- **A.** 60°
- **B.** 30°

- C. 120°
- **D.** 45°

Câu 14:Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 4x+3y-z+1=0 và đường thẳng $d: \frac{x-1}{4} = \frac{y-6}{3} = \frac{z+4}{1}$, sin của góc giữa đường thẳng và mặt phẳng bằng58
1

