1. 基本形:日中レンジを伴うモデル

ベース値
$$B_{t-1} = \begin{cases} Cl_{t-1} & (デイトレ中心) \\ \frac{H_{t-1} + L_{t-1}}{2} & (振れの大きい銘柄) \end{cases}$$

中心シフト量 $\alpha_t = \kappa(\sigma_t) S_t, \quad 0 \le |S_t| \le 1$

日中中心値 $C_t = B_{t-1}(1+\alpha_t) \beta_{\text{event},t}$

半レンジ $m_t = \sigma_t \beta_{\text{vol},t}$

高値 $H_t = C_t + m_t$

安値 $L_t = C_t - m_t$

始值 $O_t = C_t + \gamma_t \sigma_t$

終値 $Cl_t = C_t - \gamma_t \sigma_t$

主要変数・係数(基本形)

記号	定義・役割
Cl_{t-1}	前日終値
H_{t-1}, L_{t-1}	前日高値・安値
B_{t-1}	前日リファレンス値
σ_t	当日ボラティリティ推定
$\kappa(\sigma)$	ボラ依存シフトスケール
S_t	direction_score
$\beta_{\mathrm{event},t}$	曜日・決算などバイアス係数
$\beta_{\mathrm{vol},t}$	幅倍率 (σ 拡大率)
γ_t	モメンタム偏位係数

Phase 0:EWMA ギャップ補正

$$\begin{split} B_{t-1} &= C l_{t-1} \text{ or } \frac{H_{t-1} + L_{t-1}}{2} \\ \bar{G}_t^{(\lambda_{\text{open}})} &= \lambda_{\text{open}} \, G_t + \left(1 - \lambda_{\text{open}}\right) \bar{G}_{t-1}^{(\lambda_{\text{open}})} \\ G_t &= O_t - C l_{t-1}, \qquad O_t = B_{t-1} + \bar{G}_t^{(\lambda_{\text{open}})} \end{split}$$

記号	定義・役割
Cl_{t-1}	前日終値
H_{t-1}, L_{t-1}	前日高値・安値
B_{t-1}	前日リファレンス値
G_t	当日ギャップ (O_t-Cl_{t-1})
$\lambda_{ m open}$	EWMA 平滑定数 (0.05-0.50 推奨)
$ar{G}_t^{(\lambda_{ ext{open}})}$	EWMA 平滑ギャップ
O_t	Phase 0 始値予測

Phase 1:ギャップ分布スケーリング

- 1. 直近 63 営業日の IQR を測定 $IQR_G = Q_{75} (G_{t-63...t-1}) Q_{25} (G_{t-63...t-1})$
- 2. スケーラ $s_{\mathbf{gap}}$ を算出 $s_{\mathbf{gap}} = 1/\mathrm{IQR}_G$
- 3. EWMA ギャップをスケール $G_t^{(1)}=ar{G}_t^{(\lambda_{\mathrm{open}})}\,s_{\mathrm{gap}},\quad |G_t^{(1)}|\leq 5\sigma$
- 4. 始値を再計算 $O_t = B_{t-1} + G_t^{(1)}$

変数のポイント

- IQR_G:外れ値に強い中央 50 % 幅
- ullet s_{gap} :銘柄間"体格差"を吸収する分位点スケーラ

実装ヒント

- データ履歴が 63 d 未満の場合は Phase 0 にフォールバック
- $\mathrm{IQR}_G < 10^{-4}$ 時は下限を固定しゼロ割り防止

記号	定義・役割
Q_{75}, Q_{25}	75/25 パーセンタイル (63 d)
IQR_G	$Q_{75}-Q_{25}$
$s_{ m gap}$	$1/\mathrm{IQR}_G$
$G_t^{(1)}$	Phase 1 スケール後ギャップ
O_t	Phase 1 始値予測
$ar{G}_t^{(\lambda_{ ext{open}})}$	EWMA 平滑ギャップ
$\lambda_{ m open}$	EWMA 平滑定数 (0.05-0.50)

Phase 2:ボラティリティ連動補正

- 1. ボラ比を計算 $r_{\sigma} = \sigma_t^{
 m open} / \sigma_{63d}^{
 m open}$
- 2. 補正ギャップ $G_t^{(2)} = \frac{G_t^{(1)}}{r_\sigma^\eta}, \qquad \eta = 0.5$
- 3. 始値を更新 $O_t = B_{t-1} + G_t^{(2)}$

変数のポイント

- r_{σ} :当日ボラと平常ボラの比率 (0.3--3.0 でクリップ)
- η:補正式の指数。0 で無補正、1 で線形反比例

実装ヒント

- σ_t^{open} は center_shift と同じ EWMA14 値を共有
- Phase $1 \rightarrow 2$ で MAE が 2 to 5% 改善するのが典型

追加変数・係数

 O_t

Phase 2 始値予測

記号	定義・役割
$\sigma_t^{ m open}$	当日ボラ (center_shift と共有)
$\sigma_{63d}^{\rm open}$	63 d ボラ平均
r_{σ}	ボラ比
η	補正指数 (0.5)
$G_t^{(1)}$	Phase 1 ギャップ
$G_t^{(2)}$	Phase 2 ギャップ

Phase 3: Proxy Board Gap 補正

- 1. Proxy Gap $G_{\text{proxy}} = \frac{Cl_{t-1} 5\text{DMA}_{t-1}}{\sigma_{63d}^{\text{open}}}$ 2. 出来高重み $r_v = \text{Vol}_{t-1}/\text{AvgVol}_{25}, \quad w_v = \min(1.5, r_v)$
- 3. 最終ギャップ $G_t^{\text{final}} = G_t^{(2)} + w_v G_{\text{proxy}}$
- 4. 始値を決定 $O_t = B_{t-1} + G_t^{\text{final}}$

変数のポイント

- w_v は $w_v \le 1.5$ でクリップし過剰反応を防止
- 5DMA や 25DVMA が欠損する日は $w_v=0$

実装ヒント

Phase 2 \rightarrow 3 で Hit-Rate が **+1 to 3%** 向上するケースが多い (終値 vs 当日 VWAP に置き換えるとさらに滑らか)。

記号	定義・役割
Cl_{t-1}	前日終値
$5\mathrm{DMA}_{t-1}$	5 d 移動平均終値
$\sigma_{63d}^{ m open}$	63 d リターン標準偏差
G_{proxy}	終値 vs 5DMA の Z-score
Vol_{t-1}	前日出来高
AvgVol_{25}	25 d 出来高平均
w_v	出来高重み $(w_v \le 1.5)$
$G_t^{(2)}$	Phase $2 \neq \forall $
$G_t^{ m final}$	Phase 3 最終ギャップ
O_t	Phase 3 始值予測

Phase 4:自己適応 λ_{open} 更新

- 1. 誤差系列 $e_{t-k} = G_{t-k} \bar{G}_{t-k}^{(\lambda_{\text{open}, t-1})}$
- 2. 局所 MSE $MSE_t = \frac{1}{30} \sum_{k=1}^{30} e_{t-k}^2$
- 3. 勾配近似 $g_t \approx -\frac{2}{30} \sum_{k=1}^{30} e_{t-k} \, \bar{G}_{t-k}^{(\lambda_{\mathrm{open},\;t-1})}$
- $4. \ \lambda_{\mathbf{open}}$ 更新 $\lambda_{\mathrm{open},\,t} = \mathrm{clip} \big(\lambda_{\mathrm{open},\,t-1} \eta \, g_t,\, 0.05,\, 0.50 \big)$ 5. 翌日へ反映 新しい $\lambda_{\mathrm{open},\,t}$ で $\bar{G}_{t+1}^{(\lambda_{\mathrm{open},\,t})}$ を計算

変数のポイント

- λ_{open} :0.05 で半減期 $\approx 13\,\mathrm{d},~0.50$ でほぼ当日値
- $|g_t|$ は 10 でクリップして数値安定化

実装ヒント

- **ウォームアップ**:履歴 30 d 未満は $\lambda_{\mathrm{open}} = 0.20$ 固定
- バックテストで Phase 3 と比較し MAE・ドローダウンが改善することを確認

記号	定義・役割
$\lambda_{\mathrm{open},t-1}$	前日 EWMA 定数
$\lambda_{\mathrm{open},t}$	更新後 EWMA 定数
g_t	勾配近似
η	学習率 (0.01)
e_{t-k}	ギャップ誤差
MSE_t	30 d MSE
$\bar{G}_t^{(\lambda)}$	EWMA 平滑ギャップ

Phase 0:中心シフト量 α_t 前提条件

■ステップ/目的

- 1. 当日共通ボラ $\sigma_t^{\text{shift}} = \sqrt{\pi/2} |\Delta C l_t|$
- 2. 方向スコア $S_t = sign(\Delta C l_{t-1})$ (-1,0,+1)
- 3. スケール関数(定数) $\kappa(\sigma_t^{
 m shift})=\kappa_0$
- 4. 中心シフト量 $\alpha_t = \kappa_0 S_t, \quad 0 \leq |S_t| \leq 1$

変数のポイント

- $\kappa_0 = 0.20$:シンプルな基準値。Phase 1 以降で動的化
- $\sigma_t^{
 m shift}$: どのモジュールでも共通に使用

実装ヒント

履歴が不足する初期 5 日間は $S_t = 0 \cdot \alpha_t = 0$ として無効化すると安定します。

追加変数・係数

記号 定義・役割

 κ_0 固定スケール係数 (0.20)

 σ_t^{shift} EWMA14 ボラ (sigma/phase1.tex)

 $S_t \quad \operatorname{sign}(\Delta C l_{t-1})$

 $\Delta C l_t \ln(C l_t / C l_{t-1})$

 α_t 中心シフト量

kappa

Phase 1:段階定数モデル

■スケール関数

$$\kappa(\sigma_t^{\text{shift}}) = \begin{cases} 0.05 & 0 \le \sigma_t^{\text{shift}} < 0.01 \\ 0.10 & 0.01 \le \sigma_t^{\text{shift}} < 0.02 \\ 0.15 & 0.02 \le \sigma_t^{\text{shift}} < 0.04 \\ 0.20 & \sigma_t^{\text{shift}} \ge 0.04 \end{cases}$$

変数のポイント

- 4 バケットで十分な滑らかさと解釈性を両立
- 高ボラ域では κ を抑え過剰シフトを防止

実装ヒント

週次で分布を点検し、しきい値 0.01, 0.02, 0.04 をチューニングすると Hit-Rate が 0.5–1.0 pt 改善するケースがあります。

	P1.000
記号	定義・備考
$\sigma_t^{ m shift}$	共通ボラ (sigma/phase1.tex)
$\kappa(\sigma_t^{\rm shift})$	スケール係数 (本表)
α_t	中心シフト量

sigma

Phase 1 : EWMA-14 Volatility $\sigma_t^{\rm shift}$

■ステップ/目的

- 1. 初期化 $\sigma_0 = \sqrt{\pi/2} |\Delta C l_0|$
- 2. 分散の指数更新 $\sigma_t^2 = \lambda_{
 m shift} \sigma_{t-1}^2 + (1-\lambda_{
 m shift}) \Delta C l_t^2$
- 3. ボラ取得 $\sigma_t^{
 m shift} = \sqrt{\sigma_t^2}$
- 4. 出力 他モジュールへ供給

変数のポイント

- $\lambda_{\text{shift}} = 0.94$: 半減期 $\approx 14\,\mathrm{d}$
- ullet ログリターン ΔCl_t を使用し外れ値耐性を確保

実装ヒント

ボラのゼロ割りを避けるため $\sigma_t^2 < 10^{-8}$ の場合は下限 10^{-8} で固定します。

Symbol	Definition / Role
$\lambda_{ m shift}$	EWMA 定数 (0.90-0.98)
σ_t^2	EWMA 分散推定值
$\Delta C l_t$	日次ログリターン

sigma

Phase 2:自己適応 λ_{shift} 更新

■ステップ/目的

- 1. 誤差系列 $e_{t-k} = \Delta C l_{t-k}^2 \sigma_{t-k}^2$ 2. 局所 MSE $\text{MSE}_t = \frac{1}{30} \sum_{k=1}^{30} e_{t-k}^2$ 3. 勾配近似 $g_t \approx -\frac{2}{30} \sum_{k=1}^{30} e_{t-k} \sigma_{t-k}^2$
- 4. λ_{shift} 更新 $\lambda_{\text{shift},t} = \text{clip}(\lambda_{\text{shift},t-1} \eta g_t, 0.90, 0.98)$
- 5. **翌日へ反映** 上式の $\lambda_{\text{shift},t}$ で σ_{t+1}^2 を再計算

変数のポイント

- λ_{shift} は [0.90, 0.98] に制限
- $|g_t| \le 10$ でクリップし暴走を防止

実装ヒント

学習率 $\eta=0.01$ が無難。 ウォームアップ期間 (30 d) は固定 $\lambda_{\rm shift}=0.94$ 。

追加変数・係数

記号 定義・役割

前日 EWMA 定数 $\lambda_{\mathrm{shift},t-1}$

更新後 EWMA 定数 $\lambda_{\mathrm{shift},t}$

勾配近似 g_t

学習率 (0.01) η

誤差 e_{t-k}

 MSE_t $30~\mathrm{d}~\mathrm{MSE}$

$$m_t = \sigma_t^{\text{shift}} \beta_{\text{vol},t}^{(0)}, \quad \beta_{\text{vol},t}^{(0)} = 1.0$$

変数のポイント

• 初期フェーズでは **幅倍率を 1.0 に固定**し、共通ボラ σ_t^{shift} だけで半レンジを 決定。

主要変数・パラメータ

記号 定義・初期仕様

 σ_t^{shift} 共通ボラティリティ(center_shift/sigma/phase1.tex)

 $\beta_{\mathrm{vol},t}^{(0)}$ 幅倍率(定数 1.0)

 m_t 半レンジ(上下幅の 1/2)

ステップ・目的

- 1. 直近 63 営業日の半レンジ $R_{t-k} = (H_{t-k} L_{t-k})/2$
- 2. IQR 計算 IQR $_R = Q_{75}(R) Q_{25}(R)$
- 3. スケーラ $s_{\text{range}} = 1/\text{IQR}_R$
- 4. 幅倍率更新 $\beta_{\mathrm{vol},t}^{(1)} = \mathrm{clip}(s_{\mathrm{range}}, 0.20, 5.00)$
- 5. 半レンジ再計算 $m_t = \sigma_t^{\text{shift}} \ \beta_{\mathrm{vol},t}^{(1)}$

変数のポイント

- IQR_R 外れ値に強い 50
- 63 d 未満は Phase 0 値 (1.0) を使用

記号	定義・役割
Q_{75}, Q_{25}	四分位点(63 d)
$\beta_{\mathrm{vol},t}^{(0)}$	前フェーズ幅倍率
$\beta_{\mathrm{vol},t}^{(1)}$	本フェーズ幅倍率
m_t	半レンジ
$\sigma_t^{ m shift}$	共通ボラ

ステップ・目的

- 1. 平均ボラ $\overline{\sigma}_{63d} = 63^{-1} \sum_{k=1}^{63} \sigma_{t-k}^{\text{shift}}$ 2. 当日ボラ比 $r_{\sigma} = \sigma_{t}^{\text{shift}}/\overline{\sigma}_{63d} \ (0.3 \le r_{\sigma} \le 3.0)$ 3. 幅倍率指数補正 $\beta_{\text{vol},t}^{(2)} = \beta_{\text{vol},t}^{(1)} r_{\sigma}^{\eta}, \ \eta = 0.5$ 4. 半レンジ再計算 $m_{t} = \sigma_{t}^{\text{shift}} \beta_{\text{vol},t}^{(2)}$

記号	定義・役割
r_{σ}	当日ボラ比
η	ボラ感度 (0.5)
$\beta_{\mathrm{vol},t}^{(1)}$	前フェーズ幅倍率
$\beta_{\mathrm{vol},t}^{(2)}$	本フェーズ幅倍率
m_t	半レンジ

ステップ・目的

- 1. 出来高比率を計算 $r_v = \frac{\mathrm{Vol}_{t-1}}{\mathrm{AvgVol}_{25}}$ 2. 指数補正 $\beta_{\mathrm{vol},t}^{(3)} = \beta_{\mathrm{vol},t}^{(2)} r_v^{\eta_v}, \quad \eta_v = 0.4 \quad (0.2 \leq \beta_{\mathrm{vol},t}^{(3)} \leq 5.0 \; \text{でクリップ})$ 3. 半レンジを更新 $m_t = \sigma_t^{\mathrm{shift}} \beta_{\mathrm{vol},t}^{(3)}$

変数のポイント

- 出来高急増時はレンジを拡大、低迷時は縮小。
- $\eta_v=0$ とすれば出来高補正を無効化し Phase 2 の幅倍率をそのまま使用。

記号	定義・役割
Vol_{t-1}	前日出来高
AvgVol_{25}	25 日平均出来高
r_v	出来高比率
η_v	出来高補正指数(既定 0.4)
$\beta_{\mathrm{vol},t}^{(2)}$	Phase 2 幅倍率
$\beta_{\mathrm{vol},t}^{(3)}$	Phase 3 幅倍率(出来高反映)
m_t	半レンジ

ステップ・目的

- 1. 誤差系列 $e_{t-k}=m_{t-k}^{\mathrm{real}}-m_{t-k}^{\mathrm{pred}},\,k=1\dots30$ 2. 勾配近似 $g_t\approx-\frac{2}{30}(\beta_{\mathrm{vol},t}^{(3)}-\bar{\beta}_{\mathrm{vol},t-1})\,e_{t-1}$
- 3. λ 更新 $\lambda_{\text{vol}} \leftarrow \text{clip}(\lambda_{\text{vol}} 0.01 \, g_t, \, 0.80, 0.99)$
- 4. **EWMA** 平滑 $\bar{\beta}_{\text{vol},t} = \lambda_{\text{vol}}\bar{\beta}_{\text{vol},t-1} + (1 \lambda_{\text{vol}})\beta_{\text{vol},t}^{(3)}$
- 5. 半レンジ出力 $m_t = \sigma_t^{
 m shift} \ ar{eta}_{{
 m vol},t}$

変数のポイント

- 初期 $\lambda_{\text{vol}} = 0.90$ 、更新範囲 0.80–0.99。
- $\bar{\beta}_{\text{vol},t}$ が **range 系の最終幅倍率**。

追加変数・係数

記号 定義・役割

EWMA 平滑定数(動的更新) $\lambda_{
m vol}$

勾配近似值 g_t

Phase 3 幅倍率

 $\bar{\beta}_{\mathrm{vol},t}$ 平滑後幅倍率 (最終値)

 m_t 半レンジ (最終)

共通ボラティリティ

event / Phase 0: 基本定義

イベント係数(銘柄 i) $\beta_{\text{event},i,t} = \beta_{\text{weekday},i,t}^{(3)} \, \beta_{\text{earn},i,t} \, \beta_{\text{market},i,t}$

因子の役割

因子	定義・データソース	既定レンジ
$\beta_{\text{weekday},i,t}^{(3)}$	曜日+祝日+平滑済み最終係数	0.8–1.2
$\beta_{\mathrm{earn},i,t}$	決算ラグ・内容反映係数	0.8 – 1.5
$\beta_{\mathrm{market},i,t}$	指標相関係数	0.8 – 1.2

備考

- 欠損時は 1.0 にフォールバック。
- 係数更新は weekday / earn / market サブディレクトリで実施。

 $\mathsf{event} \ / \ \mathsf{weekday} \ / \ \mathsf{Phase} \ 1$

ステップ・目的

1. 曜日判定と係数取得

$$\beta_{\text{weekday},t}^{(1)} = \begin{cases} 1.10 & \text{(Mon)} \\ 1.05 & \text{(Tue)} \\ 1.00 & \text{(Wed)} \\ 0.98 & \text{(Thu)} \\ 0.95 & \text{(Fri)} \end{cases}$$

2. イベント係数に出力 $\beta_{\mathrm{event},t}^{(1)} = \beta_{\mathrm{weekday},t}^{(1)}$

記号	定義・役割
$\beta_{\text{weekday},t}^{(1)}$	曜日固定係数(上表)
	weekday 系フェーズ 1 出力

event / weekday / Phase 2

ステップ・目的

- 1. 曜日判定 $\operatorname{wd}_t \in \{\operatorname{Mon}, \operatorname{Tue}, \operatorname{Wed}, \operatorname{Thu}, \operatorname{Fri}\}$
- 2. CSV から係数取得

$$\beta_{\text{weekday},i,t}^{(2)} = \text{lookup}(i, \text{wd}_t), \quad 0.8 \leq \beta_{\text{weekday},i,t}^{(2)} \leq 1.2$$

欠損時は 1.0。

3. イベント係数更新 $eta_{\mathrm{event},i,t}^{(2)} = eta_{\mathrm{weekday},i,t}^{(2)}$

記号	定義・役割
i	銘柄コード
wd_t	曜日インデックス
$\beta_{\text{weekday},i,t}^{(2)}$	銘柄別動的曜日係数
$\beta_{\mathrm{event},i,t}^{(2)}$	weekday 系フェーズ 2 出力

event / weekday / holiday / Phase 1

ステップ・目的

- 1. 休場日判定 JPX カレンダー JSON で HolidayDivision $\neq 1$ を休場日とする。
- 2. **前後日フラグ抽出** 休場直前営業日フラグ $h_{t,-1}$, 休場明け初日フラグ $h_{t,+1}$ 。
- 3. 祝日係数決定

$$\beta_{\text{holiday},t} = \begin{cases} 0.90 & (h_{t,-1} = 1) \\ 0.95 & (h_{t,+1} = 1) \\ 1.00 & \text{otherwise} \end{cases}$$

追加変数・係数

記号 定義・役割

 $h_{t,-1}, h_{t,+1}$ 休日前営業日/休み明け初日フラグ

 $\beta_{\mathrm{holiday},t}$ 祝日固定係数

$event \ / \ weekday \ / \ holiday \ / \ Phase \ 2$

ステップ・目的

- 1. 入力係数作成 $\beta^*_{\text{weekday},i,t} = \beta^{(2)}_{\text{weekday},i,t} \beta_{\text{holiday},t}$
- 2. 平滑定数 $\lambda_{\rm wd} = 0.90$
- 3. EWMA 更新

$$\hat{\beta}_{\mathrm{weekday},i,t} = \lambda_{\mathrm{wd}} \, \hat{\beta}_{\mathrm{weekday},i,t-1} + \left(1 - \lambda_{\mathrm{wd}}\right) \beta_{\mathrm{weekday},i,t}^*$$

記号	定義・役割
$\lambda_{ m wd}$	EWMA 平滑定数
$\beta_{\text{weekday},i,t}^*$	Phase 1 係数合成値
$\hat{\beta}_{\text{weekday},i,t}$	平滑後係数 (Phase 2 出力)

event / weekday / holiday / Phase 3

ステップ・目的

1. 誤差系列
$$e_{t-k} = m_{t-k}^{\text{real}} - m_{t-k}^{\text{pred}}, \quad k = 1, \dots, 30$$

1. 誤差系列
$$e_{t-k}=m_{t-k}^{\mathrm{real}}-m_{t-k}^{\mathrm{pred}}, \quad k=1,\ldots,30$$

2. 局所 MSE $\mathrm{MSE}_t=\frac{1}{30}\sum_{k=1}^{30}e_{t-k}^2$

3. 勾配近似

$$g_t \approx -\frac{2}{30} \left(\beta_{\text{weekday},i,t}^* - \hat{\beta}_{\text{weekday},i,t-1} \right) e_{t-1}$$

4. λ 更新

$$\lambda_{\rm wd} = {\rm clip} \big(\lambda_{\rm wd} - \eta \, g_t, \ 0.80, \ 0.99 \big)$$

5. 最終 EWMA

$$\tilde{\beta}_{\mathrm{weekday},i,t} = \lambda_{\mathrm{wd}} \, \tilde{\beta}_{\mathrm{weekday},i,t-1} + \left(1 - \lambda_{\mathrm{wd}}\right) \beta_{\mathrm{weekday},i,t}^*$$

記号	定義・役割
$\lambda_{ m wd}$	EWMA 平滑定数(動的更新值;0.80-0.99)
η	学習率 (0.01)
e_{t-k}	半レンジ予測誤差
$\beta_{\text{weekday},i,t}^*$	祝日係数を掛け合わせた入力値 (Phase 2)
$\hat{\beta}_{\text{weekday},i,t}$	Phase 2 平滑出力
$\tilde{\beta}_{\mathrm{weekday},i,t}$	本フェーズ最終係数(weekday 系の最終値)

event / weekday / Phase 3

ステップ・目的

- 1. ${f holiday}$ 側最終係数を取り込み \input{event/weekday/holiday/phase3} で $\tilde{eta}_{{
 m weekday},i,t}$ を取得。
- 2. 最終 weekday 係数を宣言

$$\beta_{\text{weekday},i,t}^{(3)} = \tilde{\beta}_{\text{weekday},i,t}$$

3. イベント係数パイプラインへ出力 event/phase0.tex が $\beta_{\mathrm{weekday},i,t}^{(3)}$ を利用。

記号	定義・役割
$\tilde{\beta}_{\text{weekday},i,t}$	holiday/phase3 出力係数
$\beta_{\text{weekday},i,t}^{(3)}$	weekday 系最終係数 (本フェーズ)

ステップ・目的

- 1. **決算カレンダーでラグ判定** day -1 (前日) / day 0 (当日) / day +1 (翌営業日) を抽出。
- 2. 係数決定

$$\beta_{\text{earn},i,t}^{(1)} = \begin{cases} 1.15 & (\text{day-1}) \\ 1.20 & (\text{day 0}) \\ 1.10 & (\text{day+1}) \\ 1.00 & (\text{otherwise}) \end{cases}$$

3. イベント係数更新

$$\beta_{\mathrm{event},i,t}^{(1)} = \beta_{\mathrm{event},i,t}^{\mathrm{prev}} \, \beta_{\mathrm{earn},i,t}^{(1)}, \quad 0.80 \leq \beta_{\mathrm{event},i,t}^{(1)} \leq 1.50$$

記号	定義・役割
i	銘柄コード
$\beta_{\mathrm{earn},i,t}^{(1)}$	$\mathrm{day} \pm 1$ 固定決算係数
$\beta^{\text{prev}}_{\text{event},i,t}$	直前フェーズ(weekday 等)出力
$\beta_{\mathrm{event},i,t}^{(1)}$	earn 系フェーズ 1 出力

ステップ・目的

1. Profit / Sales サプライズ率

$$\begin{split} \Delta_{\text{profit}} &= \frac{\text{Profit}_t - \text{Profit}_{t-4Q}}{|\text{Profit}_{t-4Q}|}, \quad \Delta_{\text{sales}} = \frac{\text{NetSales}_t - \text{NetSales}_{t-4Q}}{|\text{NetSales}_{t-4Q}|} \\ &\Delta = 0.7 \, \Delta_{\text{profit}} + 0.3 \, \Delta_{\text{sales}} \end{split}$$

2. サプライズ係数

$$f_{\text{surp}} = 1 + 0.25 \operatorname{sign}(\Delta) \sqrt{\min(|\Delta|, 0.36)}$$

3. ガイダンス修正率と係数 最新 EarnForecastRevision から

$$R = \frac{\text{NewForecast} - \text{OldForecast}}{|\text{OldForecast}|}, \quad f_{\text{guid}} = 1 + 0.40 \text{ clip}(R, -0.25, 0.25)$$

4. Phase 2 決算係数

$$\beta_{\text{earn},i,t}^{(2)} = \text{clip}(f_{\text{surp}} f_{\text{guid}}, 0.80, 1.50)$$

5. イベント係数更新

$$\beta_{\text{event},i,t}^{(2)} = \beta_{\text{event},i,t}^{(1)} \, \beta_{\text{earn},i,t}^{(2)}$$

記号	定義・役割
$\Delta_{\mathrm{profit}}, \Delta_{\mathrm{sales}}$	前年同期比 Profit / Sales 変化率
Δ	合成サプライズ率 (Profit 70%:Sales 30%)
$f_{ m surp}$	サプライズ係数 (0.85-1.15)
$R, f_{\rm guid}$	ガイダンス修正率/係数 (0.80–1.20)
$\beta_{\mathrm{earn},i,t}^{(2)}$	earn Phase 2 係数 $(0.80-1.50)$
$\beta_{\mathrm{event},i,t}^{(1)}$	前フェーズ出力 (Phase 1)
$\beta_{\mathrm{event},i,t}^{(2)}$	本フェーズ出力 (Surprise + Guidance 反映)

ステップ・目的

- 1. 業種コード取得 $s = \text{lookup}(i) \in \{01, \dots, 33\}$ (symbol2industry.csv)
- 2. 利益率取得 $pm_s = \text{ProfitMargin}_s$ (sector_metrics_latest.csv)
- 3. 利益重み決定

$$w_{\text{profit},s} = \begin{cases} 0.9 & pm_s \ge 0.10 \\ 0.8 & 0.05 \le pm_s < 0.10 , \quad w_{\text{sales},s} = 1 - w_{\text{profit},s} \\ 0.6 & pm_s < 0.05 \end{cases}$$

- 4. サプライズ率再計算 $\Delta = w_{\mathrm{profit},s} \, \Delta_{\mathrm{profit}} + w_{\mathrm{sales},s} \, \Delta_{\mathrm{sales}}$
- 5. Phase 3 係数

$$\beta_{\mathrm{earn},i,t}^{(3)} = \mathrm{clip} \big(1 + 0.25 \ \mathrm{sign}(\Delta) \sqrt{\min(|\Delta|, 0.36)}, \ 0.80, 1.50 \big)$$

6. イベント係数更新

$$\beta_{\text{event},i,t}^{(3)} = \beta_{\text{event},i,t}^{(2)} \, \beta_{\text{earn},i,t}^{(3)}$$

記号	定義・役割
pm_s	業種 s の利益率
$w_{\mathrm{profit},s}$	利益重み $(0.6/0.8/0.9)$
$\beta_{\mathrm{event},i,t}^{(2)}$	前フェーズ出力
	本フェーズ出力

ステップ・目的

- 1. 誤差系列 $e_{t-k} = m^{\mathrm{real}}_{t-k} m^{\mathrm{pred}}_{t-k}, \ k = 1, \dots, 30$
- 2. 勾配近似

$$g_t \approx -\frac{2}{30} \sum_{k=1}^{30} e_{t-k} \left(\Delta_{\text{profit},t-k} - \Delta_{\text{sales},t-k} \right)$$

3. 利益重み更新

$$w_{\text{profit},i} = \text{clip}(w_{\text{profit},i} - \eta g_t, 0.50, 0.90), \quad w_{\text{sales},i} = 1 - w_{\text{profit},i}$$

- 4. サプライズ率再計算 前フェーズと同式で Δ を更新し $\beta_{\mathrm{earn},i,t}^{(4)}$ を取得。
- 5. イベント係数更新

$$\beta_{\text{event},i,t}^{(4)} = \beta_{\text{event},i,t}^{(3)} \, \beta_{\text{earn},i,t}^{(4)}$$

記号	定義・役割
$w_{\mathrm{profit},i}$	自己適応学習後の利益重み
η	学習率 (0.01)
g_t	勾配近似值
$\beta_{\mathrm{event},i,t}^{(3)}$	前フェーズ出力
$\beta_{\mathrm{event},i,t}^{(4)}$	本フェーズ出力

ステップ・目的

- 1. サンプル数取得 $n_i = \text{count_earnings}(i, \text{last 3Y})$
- 2. セクター平均重み $\bar{w}_{\mathrm{profit},s} = \mathrm{mean}(w_{\mathrm{profit},j})$
- 3. Bayes 縮小

$$\tilde{w}_{\mathrm{profit},i} = \frac{n_i}{n_i + \tau} \, w_{\mathrm{profit},i} + \frac{\tau}{n_i + \tau} \, \bar{w}_{\mathrm{profit},s}, \quad \tau = 10$$

 $\tilde{w}_{\mathrm{profit},i} = \mathrm{clip}(\tilde{w}_{\mathrm{profit},i}, 0.50, 0.90)$

- 4. サプライズ率再計算 $ightarrow eta_{\mathrm{earn},i,t}^{(5)}$ を取得。
- 5. イベント係数最終更新

$$\beta_{\text{event},i,t}^{\text{final}} = \beta_{\text{event},i,t}^{(4)} \, \beta_{\text{earn},i,t}^{(5)}$$

記号	定義・役割
n_i	過去 3 年の決算サンプル数
au	縮小ハイパーパラメータ (10)
$\bar{w}_{\mathrm{profit},s}$	セクター平均利益重み
$\beta^{\text{final}}_{\text{event},i,t}$	earn 系最終係数

ステップ・目的

1. **63** d 相関係数

$$\rho_t^{(i)} = \operatorname{corr}(\Delta C l_{t-62...t}, \Delta M_{t-62...t}^{(i)})$$

- 2. 当日 Z-score $z_t^{(i)}=\frac{\Delta M_t^{(i)}}{\sigma_{63}^{(i)}}$ 3. 指標係数(クリップ $\mathbf{0.8-1.2}$)

$$\beta_{i,t}^{(m1)} = \text{clip}(1 + \rho_t^{(i)} z_t^{(i)}, 0.8, 1.2)$$

4. イベント係数を更新

$$\boldsymbol{\beta}_{\mathrm{event},i,t}^{(m1)} = \boldsymbol{\beta}_{\mathrm{event},i,t}^{\mathrm{prev}} \prod_{i \in S} \boldsymbol{\beta}_{i,t}^{(m1)}, \quad S = \{\mathrm{TOPIX}, \mathrm{SPX}, \mathrm{USDJPY}\}$$

記号	定義・役割
$\Delta M_t^{(i)}$	指標 i の当日リターン
$\sigma_{63}^{(i)}$	指標 i の 63 日標準偏差
$ ho_t^{(i)}$	63 日相関係数
$\beta_{i,t}^{(m1)}$	Phase 1 指標係数 (0.8–1.2)
$\beta^{\text{prev}}_{\text{event},i,t}$	直前フェーズ出力
$\beta_{\mathrm{event},i,t}^{(m1)}$	Phase 1 出力 (市場要因反映)

ステップ・目的

- 1. 平滑定数 $\lambda_{\mathrm{mkt}} = 0.90$
- 2. **EWMA** 更新

$$\hat{\beta}_{i,t} = \lambda_{\text{mkt}} \hat{\beta}_{i,t-1} + (1 - \lambda_{\text{mkt}}) \beta_{i,t}^{(m1)}$$

初期値 $\hat{\beta}_{i,0} = 1.0$

- 3. クリップ $\hat{\beta}_{i,t} \leftarrow \operatorname{clip}(\hat{\beta}_{i,t}, 0.8, 1.2)$
- 4. イベント係数を更新

$$\beta_{\mathrm{event},i,t}^{(m2)} = \beta_{\mathrm{event},i,t}^{(m1)} \prod_{i \in S} \frac{\hat{\beta}_{i,t}}{\beta_{i,t}^{(m1)}}, \quad S = \{\mathrm{TOPIX}, \mathrm{SPX}, \mathrm{USDJPY}\}$$

記号	定義・役割
$\lambda_{ m mkt}$	EWMA 平滑定数 (0.90)
$\beta_{i,t}^{(m1)}$	Phase 1 指標係数
$\hat{eta}_{i,t}$	EWMA 平滑係数
$\beta_{\mathrm{event},i,t}^{(m1)}$	Phase 1 出力
$\beta_{\mathrm{event},i,t}^{(m2)}$	Phase 2 出力

ステップ・目的

1. **63** d beta を計算

$$\beta_{63,i} = \frac{\text{Cov}(r_i, r_{\text{TOPIX}})}{\text{Var}(r_{\text{TOPIX}})}$$

2. 補正係数

$$c_i = \begin{cases} 1.05 & \beta_{63,i} > 1.0\\ 0.95 & \beta_{63,i} < 0.5\\ 1.00 & \text{otherwise} \end{cases}$$

3. イベント係数を更新 $eta_{\mathrm{event},i,t}^{(m3)} = eta_{\mathrm{event},i,t}^{(m2)} c_i$

記号	定義・役割
$\beta_{63,i}$	63 日 TOPIX beta
c_i	補正係数 (0.95 / 1.05)
$\beta_{\mathrm{event},i,t}^{(m2)}$	Phase 2 出力
$\beta_{\mathrm{event},i,t}^{(m3)}$	Phase 3 出力

ステップ・目的

1. VI Z-score
$$z_{\text{VI}} = \frac{\text{VI}_t - \mu_{63}(\text{VI})}{\sigma_{63}(\text{VI})}$$

2. レジーム係数

$$c_t = \begin{cases} 1.10 & z_{\rm VI} > +1 \\ 0.90 & z_{\rm VI} < -1 \\ 1.00 & \text{otherwise} \end{cases}$$

3. イベント係数を更新 $eta_{\mathrm{event},i,t}^{(m4)}=eta_{\mathrm{event},i,t}^{(m3)}c_t$

記号	定義・役割
VI_t	ボラ指数 (NKVI または VIX)
μ_{63}, σ_{63}	63 日平均 / 標準偏差
$z_{ m VI}$	VI Z-score
c_t	レジーム係数
$\beta_{\mathrm{event},i,t}^{(m3)}$	Phase 3 出力
$\beta_{\mathrm{event},i,t}^{(m4)}$	Phase 4 出力

ステップ・目的

- 1. 誤差系列 $e_{t-k}=m_{t-k}^{\mathrm{real}}-m_{t-k}^{\mathrm{pred}},\;k=1,\ldots,30$
- 2. 勾配近似

$$g_t \approx -\frac{2}{30} \sum_{k=1}^{30} e_{t-k} \left(\hat{\beta}_{i,t-k} - \beta_{i,t-k}^{(m1)} \right)$$

3. lambda 更新

$$\lambda_{\text{mkt},t} = \text{clip}(\lambda_{\text{mkt},t-1} - 0.01 \, g_t, \, 0.80, 0.98)$$

4. 翌日 EWMA 反映

$$\hat{\beta}_{i,t+1} = \lambda_{\text{mkt},t} \hat{\beta}_{i,t} + (1 - \lambda_{\text{mkt},t}) \beta_{i,t+1}^{(m1)}$$

5. イベント係数確定 $eta_{\mathrm{event},i,t}^{\mathrm{final}} = eta_{\mathrm{event},i,t}^{(m4)}$

記号	定義・役割
$\lambda_{\mathrm{mkt},t}$	自己適応 EWMA 定数
g_t	勾配近似
e_{t-k}	予測誤差
$\beta_{i,t}^{(m1)}$	Phase 1 指標係数
$\hat{eta}_{i,t}$	EWMA 平滑係数
$\beta_{\mathrm{event},i,t}^{(m4)}$	Phase 4 出力
$\beta_{\mathrm{event},i,t}^{\mathrm{final}}$	market 系最終係数

Phase 0: モメンタム係数 γ_t ベースライン

 $\boxed{\gamma_t = 0}$

変数のポイント

• データ欠損・学習初期のフォールバックとして **常に $\gamma_t = 0^{**}$ を使用。始値と終値のシフトを一切行わない。

変数メモ

本フェーズは学習初期・データ欠損時のフォールバックとして使用し、当日寄り付きと引けの偏位を考慮しない設定($\gamma_t=0$)を採用する。

Phase 1:EMA5 符号

ステップ/目的

- 1. **EMA5** リターンを計算 $r_{5,t} = \mathrm{EMA}_5(\Delta C l_t)$
- 2. 符号を取得 $\operatorname{sgn}_t = \operatorname{sign}(r_{5,t})$
- 3. モメンタム係数を決定 $\gamma_t^{(1)} = 0.05 \ \mathrm{sgn}_t$

変数のポイント

- EMA5 は短期トレンドの最小検出器。
- **正符号**なら始値を +0.05 σ 上へ、**負符号**なら -0.05 σ 下へシフト。

追加変数・係数

記号 定義・役割 $\Delta Cl_t \quad \ln(Cl_t/Cl_{t-1})$ $r_{5,t} \quad 5 \text{ d EMA } \mathcal{Y}$ \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} Phase 1 出力 (± 0.05)

Phase 2: RSI 強弱

ステップ/目的

- 1. RSI14 を計算 $RSI_t = RSI_{14}(Cl)$
- 2. 強弱スケール $\Delta_{RSI} = 0.05 \tanh((RSI_t 50)/20)$
- 3. モメンタム係数を更新 $\gamma_t^{(2)} = \mathrm{clip} ig(\gamma_t^{(1)} + \Delta_{\mathrm{RSI}}, \, -0.10, \, 0.10 ig)$

変数のポイント

- RSI; $70 \rightarrow 買われ過ぎ:上寄り幅を縮小。RSI;30 <math>\rightarrow$ 売られ過ぎ:下寄り幅を縮小。
- $|\Delta_{\mathrm{RSI}}| \leq 0.05$ に制限し外挿を抑止。

追加変数・係数

記号 定義・役割 $RSI_t = 14 \text{ d RSI } (0-100)$ $\Delta_{RSI} = 強弱変位 (\pm 0.05)$ $\gamma_t^{(1)} = \text{Phase } 1 \text{ 入力}$ $\gamma_t^{(2)} = \text{Phase } 2 \text{ 出力 } (\pm 0.10)$

Phase 3:ボラレジーム補正

ステップ/目的

1. **VI Z-score** $z_{\text{VI}} = (\text{VI}_t - \mu_{63})/\sigma_{63}$

$$2$$
. 倍率を決定 $c_t = egin{cases} 1.10 & z_{
m VI} > +1 \ 0.90 & z_{
m VI} < -1 \ 1.00 & {
m otherwise} \end{cases}$

3. モメンタム係数を更新 $\gamma_t^{(3)} = \operatorname{clip}(\gamma_t^{(2)} c_t, -0.12, 0.12)$

変数のポイント

- 高ボラ (+1 σ) で 10
- $\gamma_t^{(2)}$ を単純倍率補正するのみで符号は保持。

記号	定義・役割
VI_t	ボラ指数 (NKVI or VIX)
μ_{63}, σ_{63}	63 d 平均・標準偏差
c_t	レジーム倍率 (0.9 / 1.1)
$\gamma_t^{(2)}$	Phase 2 入力
$\gamma_t^{(3)}$	Phase 3 出力 (± 0.12)

Phase 4: λ_{γ} 自己適応

ステップ/目的

- 1. 予測誤差系列 $e_{t-k} = Cl_{t-k}^{\mathrm{real}} Cl_{t-k}^{\mathrm{pred}}$ 2. 勾配近似 $g_t \approx -\frac{2}{30} \sum_{k=1}^{30} e_{t-k} \left(\gamma_{t-k}^{(3)} \gamma_{t-k}^{(1)}\right)$ 3. λ 更新 $\lambda_{\gamma,t} = \mathrm{clip}(\lambda_{\gamma,t-1} 0.01 \, g_t, \, 0.80, \, 0.98)$
- 4. **EWMA** 平滑 $\tilde{\gamma}_t = \lambda_{\gamma,t} \tilde{\gamma}_{t-1} + (1 \lambda_{\gamma,t}) \gamma_t^{(3)}$
- 5. モメンタム係数を更新 $\gamma_t^{(4)} = \mathrm{clip}(ilde{\gamma}_t, -0.12, 0.12)$

変数のポイント

- **初期 $\lambda_{\gamma}=0.90^{**}$ 、更新範囲 0.80–0.98。
- $\tilde{\gamma}_t$ が **Phase 4 最終推定値**。

追加変数・係数

記号 定義・役割

EWMA 平滑定数 (更新後)

勾配近似 g_t

終値予測誤差 e_{t-k}

 $\tilde{\gamma}_t$ 平滑後係数

 $\gamma_t^{(3)}$ Phase 3 入力

 $\gamma_t^{(4)}$ Phase 4 出力

Phase 5:ベイズ縮小

ステップ/目的

- 1. サンプル数を取得 $n_i = \operatorname{count}(\gamma_{i,*})$
- 2. セクター平均 $\bar{\gamma}_s = \operatorname{mean}(\gamma_{j,t}^{(4)} \mid j \in s)$
- 3. 縮小係数 $\tau = 15$
- 4. ベイズ縮小

$$\gamma_{i,t}^{\mathrm{final}} = \frac{n_i}{n_i + \tau} \, \gamma_{i,t}^{(4)} + \frac{\tau}{n_i + \tau} \, \bar{\gamma}_s$$

変数のポイント

- サンプル不足銘柄 $(n_i \ ar{ })$ は **セクター平均** に引き寄せ過学習を回避。
- τを大きくすると縮小強度↑、小さいと個別値を優先。

追加変数·係数

記号 定義・役割

 n_i 銘柄 i のサンプル数

 τ 縮小強度 (15)

 $\bar{\gamma}_s$ セクター平均 γ

 $\gamma_{i,t}^{(4)}$ Phase 4 入力

 $\gamma_{i,t}^{ ext{final}}$ 最終モメンタム係数

————— 日付	$\Delta C l_t$	σ_{t-1}^2	σ_t^2	σ_t	$\kappa(\sigma_t)$
2025-04-18	-0.023248	_	5.23e-04	0.022875	0.20
2025-04-21	-0.038352	5.23e-04	6.24 e-04	0.024976	0.15
2025-04-22	+0.012420	6.24 e-04	6.06e-04	0.024619	0.15
2025-04-23	+0.029112	6.06 e - 04	6.59 e-04	0.025674	0.15
2025-04-24	+0.026404	6.59 e-04	6.92 e- 04	0.026303	0.15
2025-04-25	+0.060692	6.92 e- 04	9.28e-04	0.030473	0.15
2025-04-28	-0.027417	9.28e-04	9.44e-04	0.030730	0.15
2025-04-30	-0.028844	9.44e-04	9.60e-04	0.031007	0.15
2025-05-01	+0.041102	9.60e-04	1.16e-03	0.034044	0.15
2025-05-02	-0.006966	1.16e-03	1.10e-03	0.033143	0.15
2025-05-07	-0.012879	1.10e-03	1.07e-03	0.032672	0.15
2025-05-08	-0.001757	1.07e-03	1.03e-03	0.032099	0.15
2025-05-09	+0.055284	1.03e-03	1.33e-03	0.036493	0.15
2025-05-12	+0.029934	1.33e-03	1.46e-03	0.038207	0.15
2025-05-13	+0.003206	1.46e-03	1.39e-03	0.037274	0.15
2025-05-14	+0.011941	1.39e-03	1.41e-03	0.037522	0.15
2025-05-15	-0.002906	1.41e-03	1.32e-03	0.036334	0.15
2025-05-16	-0.035819	1.32e-03	1.55e-03	0.039412	0.20
2025-05-19	-0.018542	1.55e-03	1.55e-03	0.039427	0.20
2025-05-20	+0.019364	1.55e-03	1.57e-03	0.039603	0.20
2025-05-21	-0.033713	1.57e-03	1.78e-03	0.042181	0.20
2025-05-22	-0.016284	1.78e-03	1.74e-03	0.041742	0.20
2025-05-23	+0.023906	1.74e-03	1.78e-03	0.042180	0.20
2025-05-26	-0.018448	1.78e-03	1.78e-03	0.042193	0.20
2025-05-27	-0.006322	1.78e-03	1.69e-03	0.041135	0.20
2025-05-28	+0.014595	1.69e-03	1.63e-03	0.040379	0.20
2025-05-29	+0.049331	1.63 e-03	2.28e-03	0.047736	0.20

日付	$\Delta C l_t$	σ_t	$\kappa(\sigma_t)$	Cl_{t-1}	H_{t-1}	L_{t-1}	B_{t-1}
2025-04-21	+0.006698	0.008395	0.05	1413.5	1426.0	1406.0	1413.5
2025-04-22	+0.010834	0.008561	0.05	1423.0	1425.0	1399.5	1423.0
2025-04-23	+0.013465	0.008932	0.05	1438.5	1446.5	1420.0	1438.5
2025-04-24	-0.032058	0.011690	0.10	1458.0	1470.0	1440.0	1458.0
2025-04-25	-0.000354	0.011334	0.10	1412.0	1451.0	1405.5	1412.0
2025-04-28	+0.007763	0.011152	0.10	1411.5	1434.0	1405.0	1411.5
2025-04-30	-0.009536	0.011062	0.10	1422.5	1430.0	1411.5	1422.5
2025-05-01	+0.032469	0.013352	0.10	1409.0	1427.5	1382.5	1409.0
2025-05-02	+0.000343	0.012945	0.10	1455.5	1461.0	1404.0	1455.5
2025-05-07	+0.019385	0.013419	0.10	1456.0	1474.0	1444.5	1456.0
2025-05-08	-0.003036	0.013032	0.10	1484.5	1494.5	1470.0	1484.5
2025-05-09	-0.016006	0.013229	0.10	1480.0	1510.0	1472.0	1480.0
2025-05-12	-0.001030	0.012829	0.10	1456.5	1488.0	1419.5	1456.5
2025-05-13	-0.028583	0.014273	0.10	1455.0	1483.0	1442.5	1455.0
2025-05-14	-0.018559	0.014566	0.10	1414.0	1456.5	1405.0	1414.0
2025-05-15	+0.007536	0.014242	0.10	1388.0	1388.0	1353.0	1388.0
2025-05-16	-0.011507	0.014093	0.10	1398.5	1402.5	1354.0	1398.5
2025-05-19	+0.006489	0.013756	0.10	1382.5	1408.0	1364.0	1382.5
2025-05-20	-0.015207	0.013847	0.10	1391.5	1398.0	1369.5	1391.5
2025-05-21	-0.002923	0.013444	0.10	1370.5	1391.5	1366.0	1370.5
2025-05-22	-0.005872	0.013114	0.10	1366.5	1376.0	1358.0	1366.5
2025-05-23	+0.004407	0.012760	0.10	1358.5	1361.0	1345.0	1358.5
2025-05-26	+0.005481	0.012444	0.10	1364.5	1378.5	1356.0	1364.5
2025-05-27	+0.013753	0.012526	0.10	1372.0	1383.5	1360.5	1372.0
2025-05-28	-0.008664	0.012329	0.10	1391.0	1394.5	1372.0	1391.0
2025-05-29	-0.000363	0.011954	0.10	1379.0	1402.0	1378.5	1379.0

	<i>C</i> 1		T		~	ō(0.2)	-
日付	Cl_{t-1}	H_{t-1}	L_{t-1}	B_{t-1}	G_t	$\bar{G}_t^{(0.2)}$	O_t
2025-04-21	1603.0	1622.5	1590.5	1603.0	-27.5	-27.50	1575.5
2025-04-22	1560.5	1589.0	1547.0	1560.5	3.0	-21.40	1539.1
2025-04-23	1580.0	1609.5	1555.0	1580.0	78.0	-1.52	1578.5
2025-04-24	1626.5	1665.5	1612.5	1626.5	40.0	6.78	1633.3
2025-04-25	1670.0	1707.0	1615.0	1670.0	80.0	21.43	1691.4
2025-04-28	1720.5	1796.0	1720.5	1720.5	72.0	35.50	1756.0
2025-04-30	1720.5	1796.0	1720.5	1720.5	-26.5	24.60	1745.1
2025-05-01	1672.5	1712.5	1668.0	1672.5	48.5	29.16	1701.7
2025-05-02	1743.0	1748.5	1702.0	1743.0	-9.5	17.11	1760.1
2025-05-07	1733.0	1743.5	1688.5	1733.0	22.5	17.79	1750.8
2025-05-08	1715.5	1715.5	1665.5	1715.5	-20.0	11.03	1726.5
2025-05-09	1712.5	1718.0	1677.0	1712.5	80.0	19.03	1731.5
2025-05-12	1812.0	1812.0	1761.0	1812.0	18.0	19.05	1831.0
2025-05-13	1867.0	1899.0	1821.0	1867.0	80.0	31.24	1898.2
2025-05-14	1873.0	1947.0	1817.0	1873.0	31.5	31.54	1904.5
2025-05-15	1895.5	1922.5	1862.0	1895.5	4.0	27.43	1922.9
2025-05-16	1890.0	1918.5	1866.0	1890.0	-29.0	18.10	1908.1
2025-05-19	1823.5	1876.5	1799.0	1823.5	-21.5	10.86	1834.4
2025-05-20	1790.0	1820.0	1783.5	1790.0	20.5	11.99	1802.0
2025-05-21	1825.0	1836.0	1801.5	1825.0	-80.0	-5.20	1819.8
2025-05-22	1764.5	1806.5	1745.0	1764.5	-40.0	-13.16	1751.3
2025-05-23	1736.0	1743.0	1707.5	1736.0	40.5	-3.18	1732.8
2025-05-26	1778.0	1804.0	1751.0	1778.0	-28.0	-11.28	1766.7
2025-05-27	1745.5	1765.0	1730.0	1745.5	-5.5	-9.29	1736.2
2025-05-28	1734.5	1744.5	1717.0	1734.5	35.5	-5.47	1729.0
2025-05-29	1760.0	1778.0	1745.0	1760.0	80.0	16.63	1776.6

				(1)								
日付	Cl_{t-1}	B_{t-1}	G_t	$\bar{G}_t^{(\lambda)}$	s_g	\bar{G}'_t	r_{σ}	G_{proxy}	w_v	$O_{t_{ m phase3}}$	O_t	$O_{t_{ m diff}}$
2025-04-18	1626.5	1626.5	-11.5	-2.30	_	_	_	_	_	1620.9	1615.0	5.9
2025-04-21	1603.0	1603.0	-27.5	-5.50	_	_	_	_	_	1593.0	1575.5	17.5
2025-04-22	1560.5	1560.5	3.0	-0.50	_	_	_	-0.63	_	1553.1	1563.5	-10.4
2025-04-23	1580.0	1580.0	43.0	8.10	_	_	_	0.36	_	1589.7	1658.0	-68.3
2025-04-24	1626.5	1626.5	40.0	15.22	_	_	_	1.17	_	1642.2	1666.5	-24.3
2025-04-25	1670.0	1670.0	80.0	31.04	0.041	1.27	1.00	1.24	1.50	1698.6	1750.0	-51.4
2025-04-28	1774.5	1774.5	18.0	28.03	0.043	1.19	1.00	-0.37	1.50	1801.0	1792.5	8.5
2025-04-30	1720.5	1720.5	-26.5	17.43	0.045	0.79	1.02	-0.18	1.50	1736.4	1694.0	42.4
2025-05-01	1672.5	1672.5	48.5	25.14	0.048	1.20	0.97	0.71	1.48	1694.9	1721.0	-26.1
2025-05-02	1743.0	1743.0	0.0	20.11	0.050	1.01	1.05	-0.24	1.46	1760.9	1743.0	17.9
2025-05-07	1715.5	1715.5	-18.0	12.69	0.053	0.67	1.08	-0.40	1.45	1740.2	1697.5	42.7
2025-05-08	1697.5	1697.5	-2.0	10.64	0.057	0.61	1.11	-0.59	1.42	1730.8	1695.5	35.3
2025-05-09	1712.5	1712.5	80.0	26.51	0.060	1.59	1.07	1.08	1.38	1721.6	1792.5	-70.9
2025-05-12	1812.0	1812.0	18.0	24.22	0.062	1.49	0.96	1.05	1.32	1745.7	1830.0	-84.3
2025-05-13	1867.0	1867.0	80.0	30.37	0.065	1.97	0.93	1.08	1.27	1873.4	1947.0	-73.6
2025-05-14	1873.0	1873.0	31.5	27.75	0.068	1.88	0.90	1.00	1.22	1882.4	1904.5	-22.1
2025-05-15	1895.5	1895.5	4.0	23.40	0.071	1.65	0.88	0.74	1.19	1897.6	1899.5	-1.9
2025-05-16	1890.0	1890.0	-29.0	11.88	0.074	0.88	0.92	0.30	1.16	1880.2	1861.0	19.2
2025-05-19	1823.5	1823.5	-21.5	1.65	0.077	0.13	0.96	-0.08	1.15	1811.0	1802.0	9.0
2025-05-20	1790.0	1790.0	20.0	5.98	0.080	0.48	1.05	0.00	1.11	1800.1	1810.0	-9.9
2025-05-21	1825.0	1825.0	-80.0	-9.51	0.082	-0.78	1.18	-0.49	1.09	1816.8	1745.0	71.8
2025-05-22	1764.5	1764.5	-40.0	-15.49	0.085	-1.32	1.22	-0.60	1.07	1753.2	1724.5	28.7
2025-05-23	1736.0	1736.0	40.5	-8.38	0.089	-0.74	1.25	0.71	1.05	1747.8	1776.5	-28.7
2025-05-26	1778.0	1778.0	-27.5	-8.19	0.091	-0.75	1.30	-0.10	1.03	1784.7	1750.5	34.2
2025-05-27	1745.5	1745.5	-5.5	-6.05	0.094	-0.57	1.26	-0.13	1.02	1756.8	1740.0	16.8
2025-05-28	1734.5	1734.5	35.5	-0.34	0.097	-0.03	1.17	0.37	1.01	1738.2	1770.0	-31.8
2025-05-29	1760.0	1760.0	80.0	15.29	0.100	1.53	1.14	0.61	1.00	1777.3	1840.0	-62.7

								1	1	1	
Date	O_t	H_t	L_t	Cl_t	Cl_{t-1}	σ_t	σ_t^{pred}	O_t^{pred}	H_t^{pred}	$L_t^{ m pred}$	Cl_t^{pred}
2025-06-02	1389.5	1402.5	1367.5	1385.5	1390.0	35.0	30.0	1390.0	1420.0	1360.0	1390.0
2025-05-30	1368.0	1390.0	1360.0	1390.0	1378.5	30.0	16.5	1378.5	1395.0	1362.0	1378.5
2025-05-29	1380.0	1382.0	1365.5	1378.5	1379.0	16.5	23.5	1379.0	1402.5	1355.5	1379.0
2025-05-28	1402.0	1402.0	1378.5	1379.0	1391.0	23.5	22.5	1391.0	1413.5	1368.5	1391.0
2025-05-27	1376.0	1394.5	1372.0	1391.0	1372.0	22.5	23.0	1372.0	1395.0	1349.0	1372.0
2025-05-26	1381.0	1383.5	1360.5	1372.0	1364.5	23.0	22.5	1364.5	1387.0	1342.0	1364.5
2025-05-23	1362.0	1378.5	1356.0	1364.5	1358.5	22.5	16.0	1358.5	1374.5	1342.5	1358.5
2025-05-22	1351.5	1361.0	1345.0	1358.5	1366.5	16.0	18.0	1366.5	1384.5	1348.5	1366.5
2025-05-21	1370.0	1376.0	1358.0	1366.5	1370.5	18.0	25.5	1370.5	1396.0	1345.0	1370.5
2025-05-20	1390.5	1391.5	1366.0	1370.5	1391.5	25.5	28.5	1391.5	1420.0	1363.0	1391.5
2025-05-19	1376.0	1398.0	1369.5	1391.5	1382.5	28.5	44.0	1382.5	1426.5	1338.5	1382.5
2025-05-16	1407.0	1408.0	1364.0	1382.5	1398.5	44.0	48.5	1398.5	1447.0	1350.0	1398.5
2025-05-15	1377.0	1402.5	1354.0	1398.5	1388.0	48.5	35.0	1388.0	1423.0	1353.0	1388.0
2025-05-14	1384.0	1388.0	1353.0	1388.0	1414.0	35.0	51.5	1414.0	1465.5	1362.5	1414.0

Date	S_t	α_t	$\sigma_t^{ m shift}$	$\kappa(\sigma)$	$\lambda_{ m shif}$
2025-06-02	1.0000000000	0.1000000000	0.0156348596	0.1000000000	0.9400005024
2025-05-30	-1.0000000000	-0.1000000000	0.0161052990	0.1000000000	0.9400005055
2025-05-29	-1.0000000000	-0.1000000000	0.0164782056	0.1000000000	0.9400005089
2025-05-28	1.0000000000	0.1000000000	0.0169957198	0.1000000000	0.940000512
2025 - 05 - 27	1.0000000000	0.1000000000	0.0173925318	0.1000000000	0.9400005170
2025-05-26	1.0000000000	0.1000000000	0.0175992857	0.1000000000	0.9400005184
2025-05-23	-1.0000000000	-0.1000000000	0.0180993685	0.1000000000	0.9400005198
2025 - 05 - 22	-1.0000000000	-0.1000000000	0.0186348369	0.1000000000	0.9400005200
2025 - 05 - 21	-1.0000000000	-0.1000000000	0.0191630310	0.1000000000	0.9400005195
2025-05-20	1.0000000000	0.1000000000	0.0197513521	0.1000000000	0.9400005183
2025-05-19	-1.0000000000	-0.1500000000	0.0200064155	0.1500000000	0.940000517
2025-05-16	1.0000000000	0.1500000000	0.0205698125	0.1500000000	0.9400005159
2025-05-15	-1.0000000000	-0.1500000000	0.0210160189	0.1500000000	0.9400005146
2025-05-14	-1.0000000000	-0.1500000000	0.0215925772	0.1500000000	0.9400005130
2025-05-13	-1.0000000000	-0.1500000000	0.0217718780	0.1500000000	0.9400005113
2025-05-12	-1.0000000000	-0.1500000000	0.0212631547	0.15000000000	0.940000509
2025-05-09	-1.00000000000	-0.1500000000	0.0219297185	0.1500000000	0.9400005080
2025-05-08	1.00000000000	0.15000000000	0.0222543640	0.1500000000	0.940000506
2025-05-07	1.00000000000	0.15000000000	0.0229407990	0.1500000000	0.9400005043
2025-05-02	1.0000000000	0.1500000000	0.0231492230	0.1500000000	0.940000502
2025-05-01	-1.0000000000	-0.1500000000	0.0238764364	0.15000000000	0.9400005000
2025-04-30	1.0000000000	0.1500000000	0.0232202529	0.15000000000	0.940000497
2025-04-28	-1.0000000000	-0.1500000000	0.0238283799	0.1500000000	0.940000495
2025-04-25	-1.0000000000	-0.1500000000	0.0244987114	0.1500000000	0.940000492
2025-04-24	1.00000000000	0.15000000000	0.0252683264	0.1500000000	0.940000489
2025-04-23	1.0000000000	0.1500000000	0.0247718031	0.1500000000	0.940000487
2025-04-22	1.0000000000	0.1500000000	0.0253226850	0.1500000000	0.940000484
2025-04-21	-1.0000000000	-0.1500000000	0.0259745397	0.1500000000	0.940000481
2025-04-18	1.0000000000	0.1500000000	0.0267371815	0.1500000000	0.940000477
2025-04-17	1.0000000000	0.1500000000	0.0275490336	0.1500000000	0.940000474
2025-04-16	-1.0000000000	-0.1500000000	0.0277871669	0.1500000000	0.940000474
2025-04-15	-1.0000000000	-0.1500000000	0.0285614199	0.1500000000	0.940000476
2025-04-14	-1.0000000000	-0.1500000000	0.0294074060	0.1500000000	0.940000461
2025-04-14	1.0000000000	0.1500000000	0.0303264824	0.1500000000	0.940000451
2025-04-11	-1.0000000000	-0.1500000000	0.0303204824	0.1500000000	0.940000450
2025-04-10	1.0000000000	0.1500000000	0.0261831289	0.1500000000	0.940000431
2025-04-08	-1.0000000000	-0.1500000000	0.0263882984	0.1500000000	0.940000445
2025-04-08	1.0000000000	0.1500000000	0.0249284379	0.1500000000	0.940000443
2025-04-07	-1.0000000000	-0.1000000000	0.0186113404	0.1000000000	0.940000443
2025-04-04	-1.0000000000	-0.1000000000	0.0179813990	0.1000000000	
					0.940000442
2025-04-02	1.0000000000	0.1000000000	0.0185425388	0.1000000000	0.940000441
2025-04-01	-1.0000000000	-0.1000000000	0.0190024574	0.1000000000	0.940000441
2025-03-31	-1.0000000000	-0.1000000000	0.0192865400	0.1000000000	0.940000440
2025-03-28	1.0000000000	0.1000000000	0.0181562681	0.1000000000	0.940000440
2025-03-27	1.0000000000	0.1000000000	0.0168209874	0.1000000000	0.940000440
2025-03-26	1.0000000000	0.1000000000	0.0173348656	0.1000000000	0.940000439
2025-03-25	1.0000000000	0.1000000000	0.0178614377	0.1000000000	0.940000439
2025-03-24	1.0000000000	0.1000000000	0.0181348531	0.1000000000	0.940000439
2025-03-21	1.0000000000	0.1000000000	0.0166219801	0.1000000000	0.940000438
2025-03-19	1.0000000000	0.1000000000	0.0171233856	0.1000000000	0.940000438
2025-03-18	1.0000000000	0.1000000000	0.0176523667	0.1000000000	0.940000438
2025-03-17	1.0000000000	0.1000000000	0.0161318778	0.1000000000	0.940000438
2025-03-14	1.0000000000	0.1000000000	0.0145742450	0.1000000000	0.940000438
2025-03-13	-1.0000000000	-0.1000000000	0.0150200070	0.1000000000	0.940000438
2025-03-12	-1.0000000000	-0.1000000000	0.0154866802	0.1000000000	0.940000438
2025-03-11	1.0000000000	0.1000000000	0.0156666567	0.1000000000	0.940000438
2025-03-10	-1.0000000000	-0.1000000000	0.0149162879	0.1000000000	0.940000437
2025-03-07	-1.0000000000	-0.1000000000	0.0153800279	0.1000000000	0.940000437
2025-03-06	1.0000000000	0.1000000000	0.0143151825	0.1000000000	0.940000437
2025-03-05	-1.0000000000	-0.1000000000	0.0147211222	0.1000000000	0.940000437
2025-03-04	1.0000000000	0.1000000000	0.0150393159	0.1000000000	0.940000436
2025-03-03	-1.0000000000	-0.1000000000	0.0155071851	0.1000000000	0.940000436
		-0.1000000000		0.1000000000	

Date	$\kappa(\sigma)$	B_{t-1}	C_{pred}	$C_{\rm real}$	C_{diff}	$\operatorname{sign}(C_{\operatorname{diff}})$	$\frac{ C_{\mathrm{diff}} }{\sigma_t^{\mathrm{shift}}}$	MAE_{5d}	HitRate _{20d}
2025-06-03	0.10	1385.0	1246.5	1375.2	-128.8	-1.0	8469.1	129.7	75.00
2025-06-02	0.10	1375.0	1512.5	1385.0	127.5	1.0	8154.9	129.2	75.00
2025-05-30	0.10	1373.8	1236.4	1375.0	-138.6	-1.0	8607.4	130.1	70.00
2025-05-29	0.10	1390.2	1251.2	1373.8	-122.5	-1.0	7435.6	132.3	70.00
2025-05-28	0.10	1383.2	1521.6	1390.2	131.3	1.0	7726.9	132.3	65.00
2025-05-27	0.10	1372.0	1509.2	1383.2	126.0	1.0	7241.6	131.3	65.00
2025-05-26	0.10	1367.2	1504.0	1372.0	132.0	1.0	7498.9	134.7	60.00
2025-05-23	0.10	1353.0	1217.7	1367.2	-149.5	-1.0	8262.7	149.5	60.00
2025-05-22	0.10	1367.0	1230.3	1353.0	-122.7	-1.0	6584.4	159.4	65.00
2025-05-21	0.10	1378.8	1240.9	1367.0	-126.1	-1.0	6581.7	177.5	65.00
2025-05-20	0.10	1383.8	1522.1	1378.8	143.4	1.0	7259.0	183.1	65.00
2025-05-19	0.15	1386.0	1178.1	1383.8	-205.7	-1.0	10279.2	191.9	70.00
2025-05-16	0.15	1378.2	1585.0	1386.0	199.0	1.0	9673.8	196.2	70.00
2025-05-15	0.15	1370.5	1164.9	1378.2	-213.3	-1.0	10150.6	193.7	70.00
2025-05-14	0.15	1430.8	1216.1	1370.5	-154.4	-1.0	7148.9	193.8	70.00
2025-05-13	0.15	1462.8	1243.3	1430.8	-187.4	-1.0	8608.0	202.1	65.00
2025-05-12	0.15	1453.8	1235.7	1462.8	-227.1	-1.0	10678.7	202.2	60.00
2025-05-09	0.15	1491.0	1267.3	1453.8	-186.4	-1.0	8499.9	204.4	60.00
2025-05-08	0.15	1482.2	1704.6	1491.0	213.6	1.0	9597.6	212.9	55.00
2025-05-07	0.15	1459.2	1678.1	1482.2	195.9	1.0	8538.8	213.1	50.00
2025-05-02	0.15	1432.5	1647.4	1459.2	188.1	1.0	8126.6	215.0	45.00
2025-05-01	0.15	1405.0	1194.2	1432.5	-238.2	-1.0	9978.5	226.4	45.00
2025-04-30	0.15	1420.8	1633.9	1405.0	228.9	1.0	9856.2	217.4	45.00
2025-04-28	0.15	1419.5	1206.6	1420.8	-214.2	-1.0	8988.2	209.7	45.00
2025-04-25	0.15	1428.2	1214.0	1419.5	-205.5	-1.0	8387.7	208.6	50.00
2025-04-24	0.15	1455.0	1673.2	1428.2	245.0	1.0	9695.9	206.6	45.00
2025-04-23	0.15	1433.2	1648.2	1455.0	193.2	1.0	7800.7	195.5	50.00
2025-04-22	0.15	1412.2	1624.1	1433.2	190.8	1.0	7536.2	197.5	50.00
2025-04-21	0.15	1416.0	1203.6	1412.2	-208.7	-1.0	8032.9	200.5	50.00
2025-04-18	0.15	1401.0	1611.1	1416.0	195.1	1.0	7298.8	205.5	50.00
2025-04-17	0.15	1383.2	1590.7	1401.0	189.7	1.0	6887.3	212.1	45.00
2025-04-16	0.15	1388.5	1180.2	1383.2	-203.0	-1.0	7306.4	229.1	45.00
2025-04-15	0.15	1391.5	1182.8	1388.5	-205.7	-1.0	7202.9	230.6	45.00
2025-04-14	0.15	1362.0	1157.7	1391.5	-233.8	-1.0	7950.4	231.8	45.00
2025-04-11	0.15	1383.0	1590.4	1362.0	228.4	1.0	7533.0	241.3	45.00
2025-04-10	0.15	1304.0	1108.4	1383.0	-274.6	-1.0	8824.3	235.4	45.00
2025-04-09	0.15	1316.8	1514.3	1304.0	210.3	1.0	8030.5	200.6	50.00
2025-04-08	0.15	1299.8	1104.8	1316.8	-212.0	-1.0	8032.4	190.1	50.00
2025-04-07	0.15	1374.8	1581.0	1299.8	281.2	1.0	11280.8	180.8	50.00
2025-04-04	0.10	1306.2	1175.6	1374.8	-199.1	-1.0	10699.1	142.2	55.00
2025-04-03	0.10	1339.8	1205.8	1306.2	-100.5	-1.0	5587.7	139.5	60.00
2025-04-02	0.10	1361.5	1497.7	1339.8	157.9	1.0	8515.6	144.1	60.00
2025-04-01	0.10	1329.2	1196.3	1361.5	-165.2	-1.0	8692.3	140.2	60.00
2025-03-31	0.10	1379.0	1241.1	1329.2	-88.1	-1.0	4570.5	129.1	60.00
2025-03-28	0.10	1422.5	1564.8	1379.0	185.8	1.0	10230.6	132.1	60.00
2025-03-27	0.10	1405.2	1545.8	1422.5	123.3	1.0	7328.6	122.8	65.00
2025-03-26	0.10	1403.8	1544.1	1405.2	138.9	1.0	8011.3	121.1	65.00
2025-03-25	0.10	1375.5	1513.1	1403.8	109.3	1.0	6119.3	110.6	65.00
2025-03-24	0.10	1344.5	1479.0	1375.5	103.5	1.0	5704.5	105.4	65.00
2025-03-21	0.10	1348.8	1483.6	1344.5	139.1	1.0	8369.9	111.7	65.00
2025-03-19	0.10	1330.5	1463.6	1348.8	114.8	1.0	6704.3	109.6	65.00
2025-03-18	0.10	1288.0	1416.8	1330.5	86.3	1.0	4888.9	109.8	60.00
2025-03-17	0.10	1246.5	1371.2	1288.0	83.2	1.0	5154.4	124.2	60.00
2025-03-14	0.10	1256.0	1381.6	1246.5	135.1	1.0	9269.8	134.2	55.00
2025-03-14	0.10	1252.5	1127.2	1256.0	-128.8	-1.0	8571.9	125.3	55.00
2025-03-13	0.10	1263.0	1136.7	1252.5	-115.8	-1.0	7477.4	125.2	60.00
2025-03-12	0.10	1292.0	1421.2	1263.0	158.2	1.0	10097.9	128.6	60.00
				1203.0	-133.2			125.9	
2025-03-10 2025-03-07	0.10 0.10	1287.5 1330.2	1158.8 1197.2	1292.0	-133.2 -90.3	-1.0 -1.0	8933.2 5869.6	133.0	60.00 65.00
4040-00-01	0.10	1330.2	1197.2	1287.5	-90.3 128.6	-1.0 1.0	5869.6 8985-2	139.5	60.00

Code	Close	$MAE_{-}5d$	$\mathrm{RelMAE}[\%]$	$\mathrm{HitRate}[\%]$
1321	39,260.00	3,967.90	10.11	60.00
4755	816.00	121.56	14.90	45.00
6723	1,763.00	269.72	15.30	50.00
7203	2,675.00	401.82	15.02	45.00
8034	22,400.00	3,612.72	16.13	55.00
8604	876.50	129.69	14.80	60.00
8750	$1,\!124.00$	156.36	13.91	60.00
8801	1,379.00	129.75	9.41	75.00
9432	158.90	14.97	9.42	65.00
9984	7,377.00	1,126.53	15.27	65.00
Average	7,782.94	993.10	13.43	58.00