Câu 1:

Cho đồ thị và heuristic như sau:

state space

heuristic function (goal state: G)

S	;	Α	В	С	D	Е	F	G
6	j	4	5	2	2	8	4	0

Tìm đường đi từ S đến G bằng:

- Greedy với h bên trên
- A* với h bên trên

Câu 2

Cho đồ thị và heuristic như sau:

Node	h_1	h_2
A	9.5	10
\mathbf{B}	9	12
C	8	10
D	7	8
\mathbf{E}	1.5	1
F	4	4.5
G	0	0

Tìm đường đi ngắn nhất từ A đến G bằng:

- A* với h1
- A* với h2

Câu 3

Cho mê cung như hình bên dưới. Đường in đậm biểu diễn vách ngăn không đi qua được. Hãy tìm đường đi từ \mathbf{s} đến \mathbf{g} với các chiến lược tìm kiếm dưới đây. Trình bày thứ tự duyệt các ô theo định dạng $\langle b_1, b_2, ..., b_n \rangle$, với b_i là ô được duyệt.

			a	b	
			c	d	e
f	S	h	k	m	n
p	q	r	t	g	

- Tìm kiếm tham lam với heuristic là *khoảng cách Manhattan*. h(state) = số bước ngắn nhất từ state đến **g** nếu không có rào chắn, ví dụ, h(k) = 2, h(s) = 4, h(g) = 0.
- Tìm kiếm A* với heuristic như trên