Geoestadística No Paramétrica: Representando información espacial de forma flexible

Ing. Sergio Castillo Páez, PhD.

Universidad de las Fuerzas Armadas ESPE, Ecuador Universidad de Vigo, España

29 Junio 2018

Contenido

- Introducción
- 2 Modelización geoestadística
- 3 Estimación Paramétrica
- 4 Geoestadística No Paramétrica

Introducción

 Geoestadística: Proporciona modelos y métodos para el análisis de información de procesos continuos asociados a posiciones espaciales.

• Algunos ejemplos:

- Medioambiente: Mapas de Riesgo de Contaminación (Fernandez Casal et al, 2017)
- Econometría espacial: Estudios de precios de bienes raíces, crecimiento urbano, selección de localización de negocios, etc. (G. Arbia y H. Baltagi, 2009)
- Finanzas: Optimización de portafolios de inversión mediante kriging (C. Oliveira et al., 2012)
- Marketing: Geomarketing, análisis de políticas de marketing (E. Bradlow et al., 2005)
- En estudios sociales: *Mapas de tasas de crimen en una ciudad* (G. Fernández-Avilés Calderón, 2008)

Introducción

Idea clave: Observaciones más cercanas son similares entre sí, y a medida que la separación entre ellas aumenta, su correlación disminuye (dependencia espacial).

Fig 1: Zinc (ppm) en las riberas del río Meuse. (Fig. Izq.), Dispersión respecto a la dirección Este (Fig. Cent.) y Norte (Fig.

Der.) y curvas de regresión no paramétrica.

library (sp); data(meuse)
coordinates(meuse) = "x+y
spplot(meuse, "zinc")
plot(meuse@coords[,1], meuse@data\$zinc, xlab = "Direccion Este", ylab = " log(ppm)")
lines(lowess(meuse@coords[,1], meuse@data\$zinc), col = 2)

Modelización geoestadística

• Proceso espacial: $\{Y(\mathbf{x}), \mathbf{x} \in D \subset \mathbb{R}^d\}$, con dominio D continuo.

Modelo con tendencia no constante:

$$Y(\mathbf{x}) = \mu(\mathbf{x}) + \varepsilon(\mathbf{x}),\tag{1}$$

- $\mu(\cdot)$ función tendencia (determinística).
- $\varepsilon(\cdot)$ proceso de error estacionario de segundo orden, de media cero y covariograma:

$$C(\mathbf{u}) = Cov(\varepsilon(\mathbf{x}), \varepsilon(\mathbf{x} + \mathbf{u}))$$

• Usualmente, la dependencia se modela a través del variograma:

$$\gamma(\mathbf{u}) = \frac{1}{2} Var(\varepsilon(\mathbf{x}) - \varepsilon(\mathbf{x} + \mathbf{u}))$$
 (2)

• $C(\mathbf{u})$ y $\gamma(\mathbf{u})$ dependen solo del salto u, además:

$$\gamma(\mathbf{u}) = \sigma^2 - C(\mathbf{u}).$$

Modelización geoestadística

Características del variograma

- Efecto nugget (c₀):
 Comportamiento cerca del origen.
- **Umbral** (σ^2): Comportamiento en el límite del salto.
- Umbral parcial (c_1) : $\sigma^2 c_0$.
- Rango práctico (a): Distancia mínima a la cual $\gamma(\mathbf{u}) = 0.95\sigma^2$.
- Anisotropía: Cuando la forma de γ(u) dependiendo de la dirección de u.
 Si γ(u) = γ(||u||) se dice

Si $\gamma(\mathbf{u}) = \gamma(||\mathbf{u}||)$ se dice isotrópico.

Ejemplos de variogramas y covariogramas.

Estimación Paramétrica

- Regresión kriging: Estimación paramétrica de la tendencia y la dependencia basada en residuos.
 - $oldsymbol{0}$ Obtener una estimación inicial de la tendencia $\hat{\mu} = \mathbf{X}\hat{eta}_{mco}.$
 - ② Calcular los residuos o errores estimados: $\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} \hat{\boldsymbol{\mu}}$.
 - **3** Ajustar un variograma válido $\hat{\gamma}(\mathbf{u})$ construido a partir de $\hat{\varepsilon}$.
 - **4** Se reestima la función $\mu(\cdot)$:

$$\hat{oldsymbol{eta}}_{mcge} = (\mathbf{X}^t\hat{oldsymbol{\Sigma}}^{-1}\mathbf{X})^{-1}\mathbf{X}^t\hat{oldsymbol{\Sigma}}^{-1}\mathbf{Y}$$

donde $\hat{\Sigma}$ se obtiene a partir de $\hat{\gamma}(\mathbf{u})$.

 Este proceso se puede repetir de forma iterativa (Algoritmo Neuman -Jacobson)

Estimación Paramétrica

Estimación del variograma

Para estimar $\gamma(\cdot)$ se recurre al *análisis* estructural:

- Obtener un estimador piloto no paramétrico (p.e. estimador empírico).
- Selección y ajuste de un modelo válido de variograma (p.e. modelo exponencial)
- Diagnosis del variograma ajustado (p.e. por Validación cruzada)

Estimación paramétrica del variograma de los residuos a partir de un modelo Exponencial

```
library (gstat)

vgm <- variogram(log(zinc) ~ sqrt(dist), meuse)

fit.vgm <- fit.variogram(vgm, model = vgm(1, "Exp", 300, 1))

plot(vgm, fit.vgm, main = " ", xlab = "metros", ylab="semivarianzas", col = 1)
```

Geoestadística No Paramétrica

Estimación Paramétrica vs. No Paramétrica

Enfoque Paramétrico

- Expuestos a problemas de mala especificación.
- La variabilidad de los residuos subestima la variabilidad del proceso.

Enfoque No Paramétrico

- Obtienen estimaciones más flexibles.
- Facilitan la selección de un modelo.
- Requieren la selección de un parámetro de suavizado (ventana).

Tendencia estimada paramétricamente, a partir de la distancia a la orilla del río (log ppm zinc)

Geoestadística No Paramétrica

Estimación lineal local de la tendencia

Se obtiene como la solución para α del siguiente problema:

$$\min_{\alpha,\beta} \sum_{i=1}^{n} \left\{ Y(\mathbf{x}_{i}) - \alpha - \beta^{T}(\mathbf{x}_{i} - \mathbf{x}) \right\}^{2} K_{H}(\mathbf{x}_{i} - \mathbf{x}).$$

De forma explícita:

$$\hat{\mu}_{\mathsf{H}}(\mathsf{x}) = \mathbf{e}_1^t \left(\mathbf{X}_{\mathsf{x}}^t \mathbf{W}_{\mathsf{x}} \mathbf{X}_{\mathsf{x}} \right)^{-1} \mathbf{X}_{\mathsf{x}}^t \mathbf{W}_{\mathsf{x}} \mathbf{Y} = s_{\mathsf{x}}^t \mathbf{Y},$$

donde $\mathbf{e}_1=(1,0,\ldots,0)$, $\mathbf{X}_{\mathbf{x}}$ es la matriz cuya i-ésima fila es igual a $\left(1,(\mathbf{x}_i-\mathbf{x})^t\right)$, $\mathbf{W}_{\mathbf{x}}=diag\left\{K_{\mathbf{H}}(\mathbf{x}_1-\mathbf{x}),\ldots,K_{\mathbf{H}}(\mathbf{x}_n-\mathbf{x})\right\}$, $K_{\mathbf{H}}(\mathbf{u})=|\mathbf{H}|^{-1}K(\mathbf{H}^{-1}\mathbf{u})$, siendo K una función tipo núcleo d-dimensional, y \mathbf{H} la matriz ventana $d\times d$ simétrica no singular.

Se puede expresar como suavizado lineal de los datos $(\mathbf{x}_i, Y(\mathbf{x}_i))$:

 $\hat{\mu} = \mathbf{SY}$, donde $s_{\mathbf{x}}^t$ es la *i*-ésima fila de la matriz de suavizado \mathbf{S} .

Geoestadística No Paramétrica

Estimación No Paramétrica

Observaciones

- La ventana H se selecciona mediante criterios que deben tomar en cuenta la dependencia espacial
- El estimador lineal local reduce el efecto frontera, y también se puede aplicar para estimar el variograma.
- Se cuenta con un procedimiento NP para corregir el sesgo en la variabilidad de los residuos
- Funciones programadas en el paquete npsp de R

Simulación del efecto del sesgo en el variograma, debido al uso de residuos

Aplicación a datos: Meuse

Estimación lineal local $\hat{\mu}$ piloto y final

Estimación $\hat{\gamma}$ residual y Modelo S-B ajustado a $\tilde{\gamma}$

- Ejemplo completo de aplicación del paquete npsp en R:
- Datos de precipitación mensual en EEUU
- https://rubenfcasal.github.io/npsp/articles/npsp.html

Referencias

Cressie, N. (1993) Statistics for Spatial Data. Wiley.

Fernández-Casal R, Francisco-Fernández M (2014) Nonparametric bias-corrected variogram estimation under non-constant trend. Stoch Environ Res Risk Assess 28.

Fernández-Casal, R., Castillo-Páez, S., y Francisco-Fernández, M. (2017) Nonparametric geostatistical risk mapping, Stoch Environ Res Risk Assess.

Pebesma, E.J. (2004) *Multivariable geostatistics in S: the gstat package*. Computers & Geoscience 30: 683-691.

GRACIAS