TRIGONOMETRIE

 $\underline{\textit{définitions}}$ Si ABC est un triangle rectangle en C, on définit :

le cosinus de l'angle \overrightarrow{BAC} , noté $\cos(\widehat{BAC})$, le quotient :

$$cos(\widehat{BAC}) = \frac{AC}{AB} = \frac{\widehat{cote} \ adjacent \ \widehat{a} \ \widehat{BAC}}{hypoténuse};$$

le sinus de l'angle \widehat{BAC} , noté $\sin(\widehat{BAC})$, le quotient :

$$\sin(\widehat{BAC}) = \frac{BC}{AB} = \frac{\widehat{cote} \ oppose \ \widehat{a} \ \widehat{BAC}}{hypotenuse};$$

la tangente de l'angle BAC, noté tan(BAC), le quotient :

$$\tan(\widehat{BAC}) = \frac{BC}{AC} = \frac{\widehat{cote} \ oppose \ \widehat{a} \ \widehat{BAC}}{\widehat{cote} \ adjacent \ \widehat{a} \ \widehat{BAC}};$$

<u>exemple</u>

ABC est un triangle rectangle en B tel que $AB = 5 \ cm \ \text{et} \ \widehat{BAC} = 33^{\circ}.$

Calculer \widehat{BCA} , BC et AC (on arrondira les longueurs au dixième).

$$90 - 33 = 57$$
 donc $\widehat{BCA} = 57^{\circ}$.

$$\cos(\widehat{BAC}) = \frac{AB}{AC}$$
 (car [AB] est le côté adjacent à l'angle \widehat{BAC}).

$$\cos(33) = \frac{5}{AC}$$

$$AC \times \cos(33) = 5$$

$$AC = \frac{5}{\cos(33)} \approx 6$$
. [AC] mesure environ 6 cm.

 $\tan(\widehat{BAC}) = \frac{BC}{AB}$ (car [BC] est le côté opposé à l'angle \widehat{BAC} et [AB] est le côté adjacent à l'angle BAC).

$$\tan{(33)} = \frac{BC}{5}$$

 $BC = 5 \times \tan(33) \approx 3.2$. [BC] mesure environ 3.2 cm.

<u>Autre exemple</u>:

ABC est un triangle rectangle en C tel que AB = 7 cm et BC = 4 cm. Calculer la mesure des angles BAC

Dans le triangle ABC rectangle en C:

$$\sin(\widehat{BAC}) = \frac{BC}{AB}$$

$$\sin(\widehat{BAC}) = \frac{4}{7}$$

$$mes(\widehat{BAC}) = \sin^{-1}(4:7) \approx 35^{\circ}$$

$$\cos(\widehat{ABC}) = \frac{BC}{AB}$$

$$\cos(\widehat{ABC}) = \frac{4}{7}$$

$$mes(\widehat{ABC}) = \cos^{-1}(4:7) \approx 55^{\circ}$$

propriétés

Si x désigne la mesure d'un angle aigu, on a les relations suivantes :

$$(\cos x)^2 + (\sin x)^2 = 1$$

$$\tan x = \frac{\sin x}{\cos x}.$$

Preuve

On se place dans un triangle ABC rectangle en B. Appelons x la mesure en degrés de l'angle \widehat{BCA} :

$$\sin x = \frac{AB}{AC}$$
, $\cos x = \frac{BC}{AC}$ et $\tan x = \frac{AB}{BC}$.

$$(\sin x)^{2} + (\cos x)^{2} = \left(\frac{AB}{AC}\right)^{2} + \left(\frac{BC}{AC}\right)^{2}$$

$$= \frac{AB^{2} + BC^{2}}{AC^{2}}$$

$$= \frac{AC^{2}}{AC^{2}} \qquad \text{car } AB^{2} + BC^{2} = AC^{2} \text{ d'après le théorème de Pythagore}$$

$$= 1$$

$$\frac{\sin x}{\cos x} = \frac{AB}{AC} \times \frac{AC}{BC} = \frac{AB}{BC} = \tan x.$$