MarshalkoMV 26122024-170048

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 2 ситуаций соответствует эта частотная характеристика? Варианты ОТВЕТА: 1) а 2) в 3) с 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который может обеспечить согласование со стороны плеча 2 на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11}=0.35\text{-}0.44\mathrm{i}.$

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -2.1 дБ
- 2) -0.7 дБ
- 3) -3.3 дБ
- 4) -1.7 дБ

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm H}=3.3~\Gamma\Gamma$ ц и $f_{\rm B}=3.9~\Gamma\Gamma$ ц, используя рисунок 4.

Рисунок 4 — Частотная характеристика усиления

- 1) 0.7 дБ
- 2) 0.7 дБ
- 3) 1.4 дБ
- 4) 0.7 дБ

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -2.3 \text{ дБ}.$

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 0.6 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 0.2 mB_T
- 2) 0.5 mB_T
- 3) 0.7 MBT
- 4) 0.8 mBT

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.6	0.488	-139.4	17.130	94.0	0.032	50.3	0.379	-70.7

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamoчнo, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 1.4 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 1.7 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 2.8 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 2.2 дБ, подключённый к плечу 2.