Лабораторная работа №1 по дисциплине «Физика»

Выполнил: студент 1 курса Величко А. А.

Величко Арсений Александрович ИИТиТО, ИВТ 1 курс, 2 группа, 3 подгруппа Дисциплина: Физика

Цель работы

Исследовать изменение сопротивления, силы тока и напряжения в цепи при разных положениях реостата, потенциометра, с использованием закона Ома.

Приборы и инструменты

- Реостат-потенциометр;
- Вольтамперметр (2 шт.);
- Лампа накаливания;
- Высокоомный резистор;
- Соединительные провода с клеммами;
- Лабораторный источник питания;
- Линейка.

Используемые формулы

$$R = \frac{U}{I} \qquad (1)$$

Часть 1. Исследование зависимости напряжения в цепи от силы тока с помощью реостата

Ход работы

- 1. Выбрать подходящие приборы и инструменты;
- 2. Собрать цепь в соответствии со схемой;
- 3. Провести эксперимент, произвести измерения силы тока и напряжения в цепи;
- 4. Записать результат в таблицу, рассчитать сопротивление, построить график;
- 5. Проанализировать результат эксперимента.

Выбор реостата

Для выполнения данной работы потребуется реостат-потенциометр с номинальным сопротивлением большим, чем номинальное сопротивление потребителя (лампы накаливания). Т. к. номинальное сопротивление потребителя приблизительно равно 220 Ом, был выбран реостат-потенциометр с номинальным сопротивлением 500 Ом.

Сборка цепи

На данном этапе была собрана цепь из реостата, лампы накаливания, источника питания и двух вольтамперметров в соответствии со схемой, изображенной на рисунке 1.

Эксперимент

После проверки схемы преподавателем, был начат эксперимент. В ходе эксперимента ползунок реостата передвигался в разные положения. Для каждого из шести рассмотренных положений ползунка фиксировались показания вольтметра и амперметра.

Результаты эксперимента

В ходе эксперимента была получена таблица значений напряжения и силы тока в цепи (таблица 1). Для каждый пары полученных значений было рассчитано сопротивление в цепи по формуле 1. На основании данных, приведённых в таблице был построен график зависимости напряжения от силы тока в цепи (график 1).

Таблица 1: Зависимость напряжения в цепи от силы тока

Nº	I, MA	U, B	R, Ом	
1	82	14,4	175	
2	66	10,8	163,6	
3	55	7,8	141,8	
4	45	5,4	120	
5	40	4,4	110	
6	35	3,8	108,5	

График 1

Часть 1. Зависимость напряжения в цепи от силы тока

Анализ результатов эксперимента

Полученные в ходе выполнения эксперимента данные указывают на то, что напряжение в цепи прямо пропорционально силе тока в ней. Полученный график выглядит, как график линейной функции, однако слегка отклоняется от нее. Эти отклонения можно объяснить погрешностями в измерениях.

Часть 2. Исследование зависимости напряжения в цепи от длины обмотки реостата

Ход работы

- 1. Выбрать подходящие приборы и инструменты;
- 2. Собрать цепь в соответствии со схемой;
- 3. Провести эксперимент, произвести измерения напряжения в цепи;
- 4. Записать результат в таблицу, построить график.
- 5. Проанализировать результат эксперимента

Выбор реостата-потенциометра

Для выполнения данной работы потребуется потенциометр с номинальным сопротивлением много меньшим, чем номинальное сопротивление нагрузки (резистора). Т. к. номинальное сопротивление нагрузки приблизительно равно 5 кОм, был выбран реостат-потенциометр с номинальным сопротивлением 500 Ом.

Сборка цепи

На данном этапе была собрана цепь из потенциометра, резистора, источника питания и вольтметра в соответствии со схемой, изображенной на рисунке 2.

Рисунок 2

Эксперимент

После проверки схемы преподавателем, был начат эксперимент. Шкала реостата-потенциометра была разделена на 5 равных отрезков шестью точками. Точки соответствовали 0, 20, 40, 60, 80, 100% от длины шкалы реостата-потенциометра. В ходе эксперимента ползунок реостата передвигался в разные положения, соответствующие этим точкам. Для каждого из шести рассмотренных положений ползунка фиксировались показания вольтметра.

Результаты эксперимента

В ходе эксперимента была получена таблица значений напряжения и длины задействованной обмотки потенциометра (таблица 2). На основании данных в таблице был построен график зависимости U от l (график 2).

Таблица 2: Зависимость напряжения в цепи от длины обмотки реостата

l, % от длины обмотки	0	20	40	60	80	100
U, B	0	2,5	6,8	10	12,5	16

График 2

Часть 2. Зависимость напряжения в цепи от длины обмотки реостата

Величко Арсений Александрович ИИТиТО, ИВТ 1 курс, 2 группа, 3 подгруппа Дисциплина: Физика

Анализ результатов эксперимента

Полученные в ходе выполнения эксперимента данные указывают на то, что напряжение в цепи прямо пропорционально длине задействованной обмотки потенциометра. Полученный график выглядит как график линейной функции, однако слегка отклоняется от нее. Эти отклонения объясняются погрешностями в измерениях.

Вывод

В ходе выполнения лабораторной работы было рассмотрено изменение сопротивления, силы тока и напряжения в цепи при различных положениях реостата, потенциометра. Анализ результатов экспериметов показал, что значения силы тока и напряжения в цепи линейно зависимы. Напряжение в цепи также линейно зависимо от сопротивления в ней. Таким образом, эксперементально был подтвержден закон Ома.