利用水稻植冠面積相關指數評估物候模式之探討

呂椿棠1,*,賴俊傑2,*,楊滿霞3,*,賴明信3,林汶鑫2,**

行政院農業委員會農業試驗所技術服務組 2國立屏東科技大學農園生產系 3行政院農業委員會農業試驗所作物組

前言

葉面積指數(leaf area index, LAI)是各項作物用以評估生物量的重要參數之一,並與作物物候階段以及植冠動態變化具有高度的相關性。此外,由於葉面積於栽培環境之逆境及氣候變化時具有快速的反應呈現。因此,如何精確的葉面積指數估計,是作物生長動態中評估生長發育時重要的關鍵步驟。本研究利用臺灣種植面積最大的水稻(Oryza sativa L.)品種-TN 11為研究標的,嘗試利用無人機 (unmanned aerial vehicle, UAV)之空拍影像,探討水稻植冠面積相關指數LCA (leaf cover area)、LCP (leaf cover proportion))與葉面積指數之相關趨勢分析,並探討用以評估物候模式之可行性。

材料與方法

本試驗以水稻品種台南11號(TN11)為材料,試驗進行地點為行政院農業委員會農業試驗所試驗田區,栽培及調查日期分別:一期作,民國110年3月8日插秧,共計調查10個週次;二期作,民國110年8月10日插秧,共計調查9個週次。植株性狀調查部分,包括分蘗數、葉面積,以及葉面積指數。此外,栽培過程中以 DJI Mavic 2 Pro (28 mm, f/2.8 - f/11, 2000 MP) 取得空拍影像(Fig. 1),計算水稻植冠面積相關指數LCA (leaf cover area)、LCP (leaf cover proportion))。相關數據以SAS software (version 9.4, SAS Institute, Cary, NC, USA)進行統計分析。

(b)

Fig. 2 各生育日數水稻植冠面積相關指數之變化趨勢:(a) LCA;(b)LCP。

Fig. 3 (a) 水稻分蘖數與(b)葉面積指數(LAI)在各生育日數之變化趨勢

Fig.1 2021年第一期作10個調查週次之正射影像空拍圖

結果與討論

如Fig. 2所示,水稻植冠面積相關指數LCA、LCP在各生育日數的變化呈現二次多項次函數關係,並且一、二期作的變化趨勢亦有不同。此外,對應幼穗分化期的結果指出,在幼穗分化期間,水稻植冠面積相關指數LCA、LCP變化趨勢呈現趨緩,爾後均開始呈現逐步下降的趨勢。根據Table 1結果指出,一期作利用UAV評估之葉覆蓋面積(LCA)與分蘖數及葉面積指數具有高度相關,而葉覆蓋比例(LCP)與分蘖數及葉面積指數亦有相同高度相關的趨勢。然而,二期作之相關程度雖不似一期作為佳,但仍具有顯著的相關趨勢。

Table 1 LCP、LCA、分蘖數與LAI之相關分析

		1 st crop season			
	119	LCP	LCA	Tiller	LAI
2 nd crop season	LCP		0.9989	0.9204	0.8213
			<.0001	0.0002	0.0036
	LCA	0.9535		0.9257	0.8080
		<.0001	100	0.0001	0.0047
	Tiller	0.7552	0.7135		0.7415
		0.0186	0.0309		0.0141
	LAI	0.8253	0.7305	0.5981	-
		0.0062	0.0254	0.0889	

結論

如上結果所述,精確評估葉面積指數(LAI)可提供包括生物量、碳與水分的變化,以及重要生育期的評估,可以準確的提供水稻物候生長階段的重要訊息,而UAV的正射影像資料提供一個快速且大面積掌握的利器。然而,如何克服水稻植冠面積相關指數在產業的落地應用,以及快速精確估計LAI仍是未來主要的難題。