Université d'Aix-Marseille, Licence SV, 1^{re} année, 2^e semestre

Mathématiques : devoir 1

Hugo Raguet

avril 2016

Une marque de gâteaux offre en cadeau, avec l'achat de chaque paquet de cette marque, un aimant à coller sur le réfrigérateur. Il y a $M \in \mathbb{N}^*$ aimants différents, et on suppose que pour chaque paquet acheté, l'aimant offert peut être chacun des M aimants, de façon équiprobable et indépendante des autres paquets achetés.

On souhaiterait connaître le nombre moyen de paquets à acheter pour avoir toute la collection, c'est-à-dire pour avoir M aimants différents. Pour tout $n \in \mathbb{N}$, on définit X_n la variable aléatoire qui compte le nombre exact d'aimants différents qu'on a après n achats, à valeur dans $\{0, \ldots, M\}$.

- 1. Soit $n \in \mathbb{N}^*$, et $m \in \{0, ..., M-1\}$. Si on a exactement $X_{n-1} = m$ aimants différents après n-1 achats, quelles sont les différentes valeurs possibles pour X_n , et quelles sont leurs probabilités respectives?
- 2. Soit $m \in \{0, ..., M-1\}$. Dans un premier temps, on suppose qu'on commence avec exactement $X_0 = m$ aimants différents, et on s'intéresse au nombre d'achats nécessaires pour passer de m à m+1 aimants différents; soit $N_{m\to m+1}$ la variable aléatoire correspondante, à valeur dans \mathbb{N}^* .
 - (a) Donner, dans cette expérience, la loi de $N_{m\to m+1}$.
 - (b) Le nombre moyen d'achats nécessaires pour passer de m à m+1 aimants différents est $\mathbb{E}(N_{m\to m+1})=\lim_{N\to+\infty}\sum_{n=0}^{N}n\mathbb{P}(N_{m\to m+1}=n)$. En admettant que pour tout $x\in]-1,1[$, $\lim_{N\to+\infty}\sum_{n=0}^{N}nx^{n-1}=\frac{1}{(1-x)^2},$ montrer que $\mathbb{E}(N_{m\to m+1})=\frac{M}{M-m}.$
- 3. On suppose maintenant que l'on commence avec aucun aimant, $X_0 = 0$, et on note N la variable aléatoire qui compte le nombre d'achats nécessaires pour avoir toute la collection. En admettant que $N = N_0 + \cdots + N_{M-1}$, où pour tout $m \in \{0, \dots, M-1\}$, N_m est une variable aléatoire de même loi que $N_{m \to m+1}$ définie en 2, exprimer le nombre moyen d'achats nécessaires pour avoir toute la collection. Donner une valeur approchée pour M = 12.