References

- F. Andrews. playwith: A GUI for interactive plots using GTK+, 2007. URL http://playwith.googlecode.com/. R package version 0.8.28.
- A. Azzalini and A. W. Bowman. A look at some data on the Old Faithful Geyser. *Applied Statistics*, 39:357–365, 1990.
- M. S. Bartlett. The square root transformation in analysis of variance. Supplement to the Journal of the Royal Statistical Society, 3(1):68–78, 1936.
- R. A. Becker, A. R. Wilks, R. Brownrigg, and T. P. Minka. *maps: Draw Geographical Maps*, 2007. R package version 2.0-39.
- G. E. P. Box and D. R. Cox. An analysis of transformations. *Journal of the Royal Statistical Society. Series B (Methodological)*, 26(2):211–252, 1964.
- R. R. Brinkman, M. Gasparetto, S. J. J. Lee, A. J. Ribickas, J. Perkins, W. Janssen, R. Smiley, and C. Smith. High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease. BBMT, 13(6):691–700, 2007.
- S. M. Bruntz, W. S. Cleveland, B. Kleiner, and J. L. Warner. The dependence of ambient ozone on solar radiation, temperature, and mixing height. Symposium on Atmospheric Diffusion and Air Pollution, pages 125–128, 1974
- D. Carr, N. Lewin-Koh, and M. Maechler. hexbin: Hexagonal Binning Routines, 2006. R package version 1.12.0.
- D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scatterplot matrix techniques for large N. Journal of the American Statistical Association, 82(398):424–436, 1987.
- J. M. Chambers. *Programming with Data: A Guide to the S Language*. Springer, New York, 1998.
- R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning. STL: A seasonal-trend decomposition procedure based on loess. *Journal of Official Statistics*, 6:3–33, 1990.
- W. S. Cleveland. The Elements of Graphing Data. Wadsworth, Monterey, California, 1985.

- W. S. Cleveland, editor. The Collected Works of John W. Tukey, Volume V: Graphics 1965–1985. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1988.
- W. S. Cleveland. Visualizing Data. Hobart Press, Summit, New Jersey, 1993.
- W. S. Cleveland and S. J. Devlin. Locally weighted regression: An approach to regression analysis by local fitting. *Journal of the American Statistical Association*, 83:596–610, 1988.
- W. S. Cleveland and E. Grosse. Computational methods for local regression. *Statistics and Computing*, 1:47–62, 1991.
- W. S. Cleveland, M. E. McGill, and R. McGill. The shape parameter of a two-variable graph. *Journal of the American Statistical Association*, 83: 289–300, 1988.
- P. Dalgaard. *Introductory Statistics with R.* Springer, New York, 2002. URL http://www.biostat.ku.dk/~pd/ISwR.html. ISBN 0-387-95475-9.
- T. Duong, B. Ellis, R. Gentleman, F. Hahne, N. Le Meur, and D. Sarkar. flow Viz: Visualization for flow cytometry, 2007. R package version 1.3.0.
- R. A. Fisher. The Design of Experiments. Hafner, New York, ninth edition, 1971.
- M. Friendly. Visualizing Categorical Data. SAS Institute, Carey, NC, 2000. ISBN 1-58025-660-0.
- M. Friendly. Corrgrams: Exploratory displays for correlation matrices. *The American Statistician*, 56(4):316–324, 2002.
- R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, et al. Bioconductor: Open software development for computational biology and bioinformatics. *Genome Biology*, 5:R80, 2004. URL http://genomebiology.com/2004/5/10/R80.
- W. Härdle. Smoothing Techniques: With Implementation in S. Springer, New York, 1990.
- M. Harrower and C. A. Brewer. Colorbrewer.org: An online tool for selecting colour schemes for maps. *Cartographic Journal*, 40(1):27–37, 2003.
- H. V. Henderson and P. F. Velleman. Building multiple regression models interactively. *Biometrics*, 37:391–411, 1981.
- J. L. Hintze and R. D. Nelson. Violin plots: A box plot-density trace synergism. The American Statistician, 52:181–184, 1998.
- R. Ihaka. Colour for presentation graphics. *Proceedings of DSC*, 2003. URL http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/Ihaka.pdf.
- A. Inselberg. The plane with parallel coordinates. *The Visual Computer*, 1 (4):69–91, 1985.
- W. B. Joyner and D. M. Boore. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 71 (6):2011–2038, 1981.
- C. Kooperberg. *logspline: Logspline density estimation routines*, 2007. R package version 2.0.4.

- C. Loader. Local Regression and Likelihood. Springer, New York, 1999.
- R. Lock. 1993 New car data. Journal of Statistics Education, 1(1):7–7, 1993.
- D. McIlroy, R. Brownrigg, and T. P. Minka. *mapproj: Map Projections*, 2005. R package version 1.1-7.1.
- L. Molyneaux, S. K. Gilliam, and L. C. Florant. Differences in Virginia death rates by color, sex, age and rural or urban residence. *American Sociological Review*, 12(5):525–535, 1947.
- D. Murdoch, E. D. Chow, and J. M. F. Celayeta. *ellipse: Functions for drawing ellipses and ellipse-like confidence regions*, 2007. R package version 0.3-5.
- P. Murrell. R Graphics. Chapman & Hall/CRC, Boca Raton, FL, 2005. URL http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html. ISBN 1-584-88486-X.
- P. Murrell and R. Ihaka. An approach to providing mathematical annotation in plots. *Journal of Computational and Graphical Statistics*, 9(3):582–599, 2000.
- R. B. Nelsen. An Introduction to Copulas. Springer, New York, 1999.
- E. Neuwirth. *RColorBrewer: ColorBrewer palettes*, 2007. R package version 1.0-1.
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007. URL http://www.R-project.org. ISBN 3-900051-07-0.
- J. Rasbash, F. Steele, W. Browne, and B. Prosser. A User's Guide to MLwiN. Institute of Education, University of London, 2000.
- P. S. Reynolds. Time-series analyses of beaver body temperatures. In N. Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest, and J. Greenhouse, editors, *Case Studies in Biometry*, pages 211–228. Wiley-Interscience, 1994.
- D. A. Rizzieri, L. P. Koh, G. D. Long, C. Gasparetto, K. M. Sullivan, M. Horwitz, J. Chute, C. Smith, J. Z. Gong, A. Lagoo, et al. Partially matched, nonmyeloablative allogeneic transplantation: Clinical outcomes and immune reconstitution. *Journal of Clinical Oncology*, 25(6), 2007.
- D. W. Scott. Averaged shifted histograms: Effective nonparametric density estimators in several dimensions. The Annals of Statistics, 13:1024–1040, 1985.
- C. J. Stone, M. H. Hansen, C. Kooperberg, and Y. K. Truong. Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture. *The Annals of Statistics*, 25(4):1371–1470, 1997.
- D. F. Swayne, D. Temple Lang, A. Buja, and D. Cook. GGobi: Evolving from XGobi into an extensible framework for interactive data visualization. *Computational Statistics & Data Analysis*, 43(4):423–444, 2003.
- E. R. Tufte. *The Visual Display of Quantitative Information*. Graphics Press, Cheshire, Connecticut, second edition, 2001.
- J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Menlo Park, CA, 1977.

- W. N. Venables and B. D. Ripley. *Modern Applied Statistics with S.* Springer, New York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0.
- E. J. Wegman. Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association, 85:664–675, 1990.
- L. Wilkinson. The Grammar of Graphics. Springer, New York, 1999.
- J. Yan and I. Kojadinovic. copula: Multivariate Dependence with Copula, 2007. R package version 0.5-8.
- F. Yates. Complex experiments. Journal of the Royal Statistical Society (Supplement), 2:181–247, 1935.

Index

.First(), 131	device, 121
abbreviate(), 137 annotation, 1, 26, 151 axis, see axis annotation mathematical, see mathematical an-	distance, 93 distribute.type, 80, 81 do.out, 47 drape, 155 draw, 75
notation Arguments, 31-33, 216, 232, 233, 241, 253 abbreviate, 137 alpha, 52 as.table, 20, 119, 131 aspect, 19, 24, 41, 68, 92, 105, 131, 141, 143, 184, 245 auto.key, 5, 26, 27, 61, 126, 152, 158, 159, 176, 199 axis, 144	draw.key, 26 drop.unused.levels, 176 echo, 7 f.value, 41 fill, 243 fontsize, 129 fun, 199 grid.pars, 129 groups, 5, 24, 57, 73, 75, 77, 79, 80, 86, 96, 156, 159, 165, 166, 168,
axis.components, 130 between, 24, 85, 130, 131 border, 32, 33 box.ratio, 183 bw, 36 cex, 129	176, 199, 253 highlight, 221 horizontal, 52, 75, 77, 182 index.cond, 63, 193, 206 jitter.data, 52, 199 kern, 36
clip, 129 coef, 47 col, 80 col.regions, 240, 241 color, 121 colorkey, 152, 155, 156 column, 217	key, 26, 75, 129, 130, 152-154, 156, 157, 160 labels, 220 layout, 20, 21, 24, 206 layout.heights, 129, 130 layout.widths, 129, 130 legend, 161, 162
common.scale, 88 data, 3, 5, 14, 41, 73, 86, 165, 166, 170, 173, 232, 247, 250 default.scales, 138, 139	levels, 187 lines, 157 lty, 80 main, 26, 129, 151

000 004	7 00
more, 203, 204	superpanel, 86
name, 125	text, 157
new, 121	theme, 121, 122, 125, 131
newpage, 203, 204	Titanic, 29
outer, 102, 168	type, 39, 57, 63, 75, 77-81, 85, 96,
overlap, 178	146, 199, 230
packet.panel, 203	value, 125
page, 26, 131, 162, 218	varnames, 86
panel, 30, 31, 110, 130	varwidth, 47
panel.3d.cloud, 110, 241	x, 3, 232, 247, 250
panel.3d.wireframe, 110, 241	xlab, 26, 130, 140, 151
panel.aspect, 92	xlim, 29, 92, 141
panel.groups, 231	xscale.components, 144, 146, 147
panel.height, 203	у, 232
panel.width, 203	ylab, 26, 140, 151
panel.xyplot, 75	ylim, 29, 92, 141
par.settings, 125, 126, 203	yscale.components, 144, 146
par.strip.text, 197	zlab, 140, 151
pch, 94	$\mathtt{zlim}, 92, 94$
perspective, 93	zoom, 94
plot.args, 203	argument passing, 33, 73, 199, 232, 252
plot.points, 4, 36	arranging plots, 7, 179, 203
points, 157	arrows(), 230
position, 203, 204	as.data.frame.table(), 55, 100
prefix, 217	asinh(), 83
prepanel, 63, 134, 141	aspect ratio, 19, 28, 42, 57, 68, 92, 99,
pscales, 85, 86, 139	143, 144, 184, 245, 249
R.mat, 93	attach(), 14
rectangles, 157	averaged shifted histogram, 39
ref, 4	axis(), 211, 215
relation, 129, 130, 190	axis.default(), 135, 149
retain, 122	axis annotation, 2, 28, 81, 94, 133, 135,
row, 217	173
scales, 29, 63, 94, 111, 134-136,	logarithmic, 144
138–142, 144, 146, 150, 155	three-dimensional, 139
screen, 93	axis breaks, 183
shrink, 109	axis function, 135
skip, 24	axTicks(), 147
space, 159	banking 10 42 142 145 184 240
split, 203, 204	banking, 19, 42, 143–145, 184, 249
stack, 59	banking(), 143
strip, 28, 130, 131, 193, 196	bar charts, 29, 31, 57, 167
strip.left, 28, 193, 197	three-dimensional, 109
style, 196 sub, 26, 130, 151	barchart(), 9, 30, 31, 33, 52, 55, 59, 63, 65, 182, 202, 248, 253
subscripts, 71, 73, 159, 168, 216, 219, 220, 232	bounding box (3-D), 92 box(), 211
subset, 5, 44, 159, 165, 166, 173, 176,	box-and-whisker plots, 47, 179, 182, 237
232, 253	boxcox(), 42
202, 200	DOAGOA(), 42

1 1 -+ () 015	Deterate
boxplot(), 215	Datasets
bwplot(), 9, 46, 47, 52, 182, 183	ancestry, 243
	barley, 52, 53
categorical data, xi, 65	beavers, 172
choropleth maps, see maps	biocAccess, 143, 211, 248
Classes	Car93, 157
POSIXct, 137	Cars93, 108, 161
dendrogram,161	Chem97, 5 , 35 , 37 , 40 , 47 , 53 , 63 , 100 ,
expression,26	108, 110, 165
factor, 63	Earthquake, 78 , 144
flowSet, 250	environmental, 100
formula, 3, 13, 14, 248, 250	$\mathtt{faithful},36$
matrix, 56, 107	${\tt Gcsemv},\ 169$
shingle,202	GvHD, 250, 251
stl, 248, 250	gvhd10, 37, 49, 83, 88, 90
table, 55, 59	$\mathtt{mtcars},86-89$
trellis, 6, 7, 15, 16, 18–20, 31, 33, 95,	Oats, 17, 19, 20, 27
133, 140, 158, 179, 201–204, 206,	postdoc, 59, 61
208, 209, 211, 215–217, 221, 232	quakes, 50, 51, 67, 71, 91, 177
ts, 187	SeatacWeather, 79
classes, see object-oriented features	state.region, 85, 161
clipping, 129, 141, 231	state.x77, 207
cloud(), 9, 28, 91, 92, 96, 102, 109, 110,	Titanic, 166, 173
126, 133, 139, 151, 241, 244	USAge.df, 114, 174
coercion, 52, 182	USArrests, 84, 85, 161
color, ix, 113, 120	USCancerRates, 193, 246
conditioning variable, 3, 14	VADeaths, 55, 56, 122, 254
continuous random variables, 35	volcano, 99, 100, 105, 107
contour plots, 98, 241	data rectangle, 28, 92, 134
- · · · · · · · · · · · · · · · · · · ·	dcopula(), 110
contourplot(), 9, 91, 99, 105, 107 coplot(), 210	-
	dendrogramGrob(), 161, 162
correlation matrices, 105, 238	dendrograms, 108, 161
corrgrams, 238	density(), 36, 37, 235
CRAN, x	densityplot(), 4, 7, 9, 35, 36, 232, 235,
cumulative distribution function, 35	250, 251
current.column(), 96, 231	density function, 35
current.panel.limits(), 231	density plots, 4, 24, 35, 235, 249
current.row(), 96, 231	dev.print(), 120
curve(), 230	devices, see graphics devices
customizations, see settings	dimnames(), 202, 211
persistent, 131	discrete distributions, 53
cut(), 15, 67, 69, 71	discrete random variables, 63
cut-and-stack plots, 143, 184, 248	distribution function, see cumulative
${\tt cutAndStack()},248$	distribution function
	$\mathtt{dnorm}(), 35$
data	do.call(), 221
large, see large data	$\mathtt{dotplot()},\ 9,\ 13,\ 52,\ 5557,\ 77,\ 193,$
managing, 14, 98, 165, 249	248
data(), 2	dot plots, 55, 122, 184, 187, 203, 223

262 Index downViewport(), 217 draw.colorkey(), 75, 152, 154-156draw.key(), 26, 152, 156, 161, 218 dropping unused levels, 159, 176 dynamic manipulation, 95 ecdfplot(), 44 empirical CDF, 44 equal.count(), 16, 71, 178, 184eval.parent(), 252expand.grid(), 102expression(), 26, 200 expressions, see mathematical annotation factor(), 187 factors, 15 false color level plots, see level plots for(), 7 formula interface, 3, 13, 54, 166, 170 fractions(), 146 generic functions, see object-oriented features getOption(), 131 GGobi, xi glm(), 165, 173 graphical parameters, 1, 119, 123 specifying, 123

generic functions, see object-oriented
features
getOption(), 131
GGobi, xi
glm(), 165, 173
graphical parameters, 1, 119, 123
specifying, 123
graphical primitives, 229
graphics devices, 120
Grid graphical objects, see grob
Grid graphics, see Packages, grid
grid.circle(), 239
grid.edit(), 215
grid.locator(), 216, 217, 219
grid.points(), 230
grid.polygon(), 230
grid.text(), 230
grob, 26, 151, 152, 154, 155, 161, 162,
215
grouping, see superposition

hclust(), 108, 161 heatmap(), 163 heatmaps, 161 hexagonal binning, 83, 251 hexbinplot(), 83, 251, 252 high-level functions, 1, 9 histogram(), 3, 4, 7, 9, 30, 39, 248 histograms, 2, 39 hypocycloid, 232, 233 hypotrochoid, 232

identify(), 216 indexing, 71, 173, 206 interaction, 86, 211, 216

jittering, 36, 52, 142, 177, 199

kernel density estimate, 36 key, see legends

labels, 26, 151 large data, 37, 49, 82, 88, 249 lattice.getOption(), 131 lattice.options(), 131, 141 layout, 15, 16, 20, 47, see arranging plots legends, 26, 75, 148, 152 level plots, 98, 113, 161, 238 level.colors(), 73, 239, 241 levelplot(), 9, 91, 99, 105, 107, 108, 111, 155, 156, 163, 240, 241, 248 levels(), 140library(), 2, 131 lines(), 215, 230 lm(), 165, 173 locator(), 216 log(), 83 log-spline density estimate, 235 logarithm, see transformations long format, 166 ltransform3dMatrix(), 93 ltransform3dto3d(), 241

make.groups(), 170-172
map(), 243, 246
mapplot(), 245, 246, 251
maps, 98, 242
match.call(), 252
mathematical annotation, 26, 137, 146, 151, 200
mean-difference plots, 208
methods, see object-oriented features
new, see new methods
multipanel conditioning, 2, 3, 14

native coordinate system, 134

dil 071	
new displays, 251	panel function, 4, 30, 229, 252
new methods, 247	three-dimensional, 96
nonstandard evaluation, 165, 252	panel order, 18, 203
1 16	panel.3dbars(), 109
object-oriented features, 6, 13, 33, 56,	panel.3dscatter(), 241
179, 201, 247	panel.3dwire(), 241
OpenGL, xi	panel.abline(), 230
options(), 131	$\mathtt{panel.arrows}(),230$
orthogonal projection, 93	panel.average(), 75, 199, 231
	panel.axis(), 149
Packages	$ exttt{panel.barchart()}, 31 exttt{}33, 128$
coda,248	$\mathtt{panel.bwplot()},47,49,126,183,231$
colorspace, 120	$\mathtt{panel.cloud()},110,128$
copula, x , 110	panel.curve(), 230
ellipse, x, 238	$\mathtt{panel.densityplot()},36,128,232$
$flowCore, \mathbf{x}$	panel.dotplot(), 126
flowViz, x, 250	panel.fill(), 230
ggplot, xi	panel.grid(), 32, 75, 129, 230
ggplot2, xi	panel.histogram(), 128
grid, x, xi, 26, 127, 129, 151, 152, 162,	panel.identify(), 216, 219, 220
203, 206, 215–217, 219, 229–231,	panel.identify.qqmath(), 219, 221
239, 252	panel.levelplot(), 109, 128, 155
gridBase, x , 252 , 254	panel.lines(), 230
hexbin, x, 83, 251, 252	panel.link.splom(), 219, 221
Hmisc, 247	panel.lmline(), 75, 136, 230
lattice, 242, 248, 250	panel.locfit(), 80
latticeExtra, x, 37, 44, 53, 59, 79, 109,	panel.loess(), 75, 230
114, 143, 161, 174, 193, 210, 224,	panel.mathdensity(), 230
242, 243, 246, 248, 251	panel.number(), 81, 208, 231
locfit, x, 78, 80, 100	panel.pairs(), 86, 139
logspline, x, 235	panel.parallel(), 88
mapproj, x, 246	panel.points(), 230
maps, x, 242	panel.polygon(), 230, 243, 245
MASS, x, 42, 99, 146	panel.qqmathline(), 221, 230
MEMSS, x, 77	panel.rect(), 230
mlmRev, x, 2, 169	panel.rug(), 169, 230
nlme, 247	panel.segments(), 230
playwith, xi, 215	panel.splom(), 67, 84
RColorBrewer, x, 120, 243	panel.stripplot(), 52, 199
rggobi, xi, 242	panel.superpose(), 75, 80, 231
rgl, xi, 95, 242	panel.text(), 129, 230
vcd, xi, 65	panel.violin(), 49, 231
zoo, 248	panel.wireframe(), 128, 155
packages (installing), x	panel.xyplot(), 67, 75, 77, 78, 80, 83,
packet, 15, 28, 73, 95, 133	84, 128, 199, 231
packet order, 18, 203	parallel(), 9, 54, 67, 88
	parallel (7, 9, 54, 67, 88) parallel coordinates plots, 87
packet.number(), 216, 221, 231 packet.panel.default(), 203	
- · · · · · · · · · · · · · · · · · · ·	pdf(), 121, 122, 132
panel, 2	persp(), 93

perspective projection, 93	S-PLUS, vii, x, 153, 230
pie(), 254	S3, 201, 248, 249
pie charts, 57, 252	S4, 201, 247, 249, 250
piechart(), 253	scales, 2, 28, 133, 183, 193
plot(), 7, 179, 202-204, 206, 215, 248	combining, 28
plot types, 75	scatter-plot matrices, 84, 100, 221
plotting	scatter plots, 16, 67, 82, 144, 157, 160,
automatic, 6	169, 173, 177, 193, 219
suppression of, 7	three-dimensional, 91
png(), 121	$\mathtt{seekViewport()},217$
pnorm(), 35	segments(), 230
points(), 230	settings
polygon(), 230, 243	graphical, 27, 119, 158
postscript(), 122, 132	non-graphical, 131
predict(), 102	shingle(), 178, 184
prepanel.lmline(), 144	shingles, 15, 71, 177
prepanel.loess(), 144, 146	show.settings(), 128, 129
prepanel.qqmathline(), 144	simpleKey(), 157, 158
prepanel function, 28, 133, 134, 140, 142	simpleTheme(), 126
pretty(), 149	source(), 7
primary variable, 4, 14, 168	Spirograph, 232
print(), 6, 7, 202, 203, 215	splom(), 9, 28, 54, 67, 77, 84-86, 88,
probability mass function, 53	133, 139, 221
projection, 91, 241, 244	spread-location plots, 52
prop.table(), 59	square root transformation, 83, 108, 181, 251
() 25	stacked bar charts, 59
qnorm(), 35	stereo viewing, 95
qq(), 9, 44, 47, 54, 208	stl(), 248
qqmath(), 9, 40, 41, 54, 144, 208, 221,	str(), 123, 202
230, 248	strip plots, 50
quantile function, 35	strip.custom(), 181, 197
quantile plots, 40, 43, 170, 171, 181,	$\mathtt{strip.default()},126,196,197$
196, 218	$\mathtt{stripplot()}, 9, 52, 77, 182, 199$
two-sample, 44, 208	strips, 2, 28, 181, 193, 210
() 140	$\mathtt{subset}(), 159$
range(), 140	subsetting, see indexing
rect(), 230	summary(), 202, 204
reorder(), 63, 187, 190	superpanel function, 85
reordering, 61, 108, 187	superposition, 5, 24, 79, 156
require(), 131	surfaces, 98, 241
reshape(), 168	mathematical, 110
reshaping, 166	parameterized, 111
residuals (visualizing), 52, 198, 248	+-1-1-() FT 940
resizePanels(), 193, 206, 224	table(), 55, 248
rootogram(), 53	tables, 55, 98
roulettes, 233	terrain.colors(), 115
Rows(), 156, 157	text(), 230
rug(), 230	textGrob(), 151

232, 247–250

trellis.par.set(), 121, 122, 125, 203