Old car price Predcitions

2022/11~2022/12 Create by Ming

Old car price Predcitions

2022/11~2022/12

【根據資料製作模型,預測二手車價值】

- 利用對二手車市場的認識,進行資料的分類處理
 - 品牌價值
 - 排氣量
- 資料除錯,分析可能有資料誤植的可能性
- 數據視覺化呈現,觀察各項指標與價錢的關係
 - 特別做年份高的二手車分析,希望排除收藏車的疑慮
- 使用迴歸與資料探勘進行推估,推估準確度超過80%
- 比對預測與實際資料,分析模型現階段的問題,並提出可改良的方向

About Dataset

The steps listed below must be included in your notebooks:

- 1. Understand the problem statement.
- 2.Import required libraries and Data.
- 3.Check the Data
- 4. Pre-processing and data cleansing.
- 5. Utilize the provided dataset to conduct exploratory data analysis.
- 6.Feature Selection
- 7.Data splitting
- 8. Create an ML model, then test it using various metrics.

資料共5512筆,有10個欄位

Data shape: (5512, 10)

了解資料結構

判斷目標及其他特徵

Unnamed: 0	car_name	car_prices_in_rupee	kms_driven	fuel_type	transmission	ownership	manufacture	engine	Seats
0	Jeep Compass 2.0 Longitude Option BSIV	10.03 Lakh	86,226 kms	Diesel	Manual	1st Owner	2017	1956 cc	5 Seats
1	Renault Duster RXZ Turbo CVT	12.83 Lakh	13,248 kms	Petrol	Automatic	1st Owner	2021	1330 cc	5 Seats
2	Toyota Camry 2.5 G	16.40 Lakh	60,343 kms	Petrol	Automatic	1st Owner	2016	2494 cc	5 Seats
3	Honda Jazz VX CVT	7.77 Lakh	26,696 kms	Petrol	Automatic	1st Owner	2018	1199 cc	5 Seats
4	Volkswagen Polo 1.2 MPI Highline	5.15 Lakh	69, 4 14 kms	Petrol	Manual	1st Owner	2016	1199 cc	5 Seats

學習目標 - 價格

→ Objec型態需要做轉換

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5512 entries, 0 to 5511 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	5512 non-null	int64
1	car_name	5512 non-null	object
2	car_prices_in_rupee	5512 non-null	object
3	kms_driven	5512 non-null	object
4	fuel_type	5512 non-null	object
5	transmission	5512 non-null	object
6	ownership	5512 non-null	object
7	manufacture	5512 non-null	int64
8	engine	5512 non-null	object
9	Seats	5512 non-null	object

dtypes: int64(2), object(8) memory usage: 430.8+ KB

> 資料沒有重複

df[df.duplicated()].count()

Unnamed: 0	0
car_name	0
car_prices_in_rupee	0
kms_driven	0
fuel_type	0
transmission	0
ownership	0
manufacture	0
engine	0
Seats	0
dtype: int64	

汽車品牌對車價也有重要影響

因此將汽車品牌從原始欄位獨立出來,方便後續操作

```
newcols = df["car_name"].str.split(" ",n=1)
newcols.index = df.index
df.insert(1, "Brand", "")
for i in range(5512):
   df["Brand"][i] = newcols[i][0]
   df["car_name"][i] = newcols[i][1]
df.head()
```

	Unnam 0

	Unnamed: 0	Brand	car_name	car_prices_in_rupee	kms_driven	fuel_type	transmission	ownership	manufacture
0	0	Jeep	Compass 2.0 Longitude Option BSIV	10.03 Lakh	86,226 kms	Diesel	Manual	1st Owner	2017
1	1	Renault	Duster RXZ Turbo CVT	12.83 Lakh	13,248 kms	Petrol	Automatic	1st Owner	2021
2	2	Toyota	Camry 2.5 G	16.40 Lakh	60,343 kms	Petrol	Automatic	1st Owner	2016
3	3	Honda	Jazz VX CVT	7.77 Lakh	26,696 kms	Petrol	Automatic	1st Owner	2018
4	4	Volkswagen	Polo 1.2 MPI Highline	5.15 Lakh	69,414 kms	Petrol	Manual	1st Owner	2016

移除欄位中的單位,保留數字,讓資料更整潔,也方便轉換型態

```
df["kms_driven"] = df["kms_driven"].str.strip("kms")
df["kms_driven"] = df["kms_driven"].str.replace(",","")
df['Seats']=df['Seats'].str.replace(' Seats','')
df['engine']=df['engine'].str.replace(' cc','')
df["ownership"] = df["ownership"].str.strip("Owner")
for i,item in enumerate(df["ownership"]):
   df["ownership"][i] = df["ownership"][i][0]
```

將製造年份,轉換成為使用年份,更適用於判斷二手車的價值

```
df.insert(11, "Age", "")
df["Age"] = 2023 - df["manufacture"]
df.head()
```

10	car_prices	multiply NT	kms_driven	fuel_type	transmission	ownership	manufacture	Age	engine	engine_class	Seats
ss de	37.30	10K	86226	Diesel	Manual	1	2017	6	1956	3	5
	47.72	10K	13248	Petrol	Automatic	1	2021	2	1330	2	5
	61.00	10K	60343	Petrol	Automatic	1	2016	7	2494	4	5
:	28.90	10K	26696	Petrol	Automatic	1	2018	5	1199	1	5
2	19.15	10K	69414	Petrol	Manual	1	2016	7	1199	1	5
4											

```
for j,item in enumerate(df["car_prices_in_rupee"]):
   if "Lakh" in item:
      df["car_prices_in_rupee"][j] = df["car_prices_in_rupee"][j].strip("Lakh")
      #print(j, ", ", df["car_prices_in_rupee"][j], type(df["car_prices_in_rupee"][j]))
      df["car_prices_in_rupee"][j]=pd.to_numeric(df["car_prices_in_rupee"][j])
       df["car_prices_in_rupee"][j]= round((df["car_prices_in_rupee"][j]*37193),2)
    elif "Crore" in item:
        df["car_prices_in_rupee"][j] = df["car_prices_in_rupee"][j].strip("Crore")
        #print(df["car_prices_in_rupee"][j])
        df["car_prices_in_rupee"][j]=pd.to_numeric(df["car_prices_in_rupee"][j])
        df["car_prices_in_rupee"][j]= round((df["car_prices_in_rupee"][j]*3712136),2)
        df["car_prices_in_rupee"][j] = df["car_prices_in_rupee"][j].replace(",","")
        df["car_prices_in_rupee"][j]= pd.to_numeric(df["car_prices_in_rupee"][j])
        df["car_prices_in_rupee"][j]= round((df["car_prices_in_rupee"][j]*0.37),2)
df.rename(columns={'car_prices_in_rupee': 'car_prices_in_NT',
                           }, inplace=True)
```

原始資料使用的幣值是盧比,為了更好去理解相對價值 因此我利用匯率,將幣值轉換成台幣,並統一設定是以 10K當作基礎。

	Unnamed: 0	Brand	car_name	car_prices	multiply NT	kms_driven	fuel_type	transmission	ownership	manufacture
0	0	Jeep	Compass 2.0 Longitude Option BSIV	37.30	10K	86,226 kms	Diesel	Manual	1st Owner	2017
1	1	Renault	Duster RXZ Turbo CVT	47.72	10K	13,248 kms	Petrol	Automatic	1st Owner	2021
2	2	Toyota	Camry 2.5 G	61.00	10K	60,343 kms	Petrol	Automatic	1st Owner	2016
3	3	Honda	Jazz VX CVT	28.90	10K	26,696 kms	Petrol	Automatic	1st Owner	2018
4	4	Volkswagen	Polo 1.2 MPI Highline	19.15	10K	69,414 kms	Petrol	Manual	1st Owner	2016
4										+

→ 發現有排氣量為0的資料,特別找出不為0的最大最小值

```
min: 624 max: 5950
df.insert(11, "engine_class", "")
for i, size in enumerate (df["engine"]):
    if size == 0:
        df["engine_class"][i] = 0
    elif size <=1200:
        df["engine_class"][i] = 1
    elif 1201<= size <=1800:
        df["engine_class"][i] = 2
    elif 1801<= size <=2400:
       df["engine_class"][i] = 3
    elif 2401<= size <=3000:
        df["engine_class"][i] = 4
    elif 3001<= size <=4200:
        df["engine_class"][i] = 5
    elif 4201<= size <=5400:
        df["engine_class"][i] = 6
    elif 5401<= size <=6600:
        df["engine_class"][i] = 7
df.sample(5)
```

#Find out the range of "engine"

汽機車稅金級距表

print("min:",df[df["engine"]!=0]["engine"].min(),"max:",df["engine"].max())

小客車自用/營業使用牌照稅稅額表

排氣量 (c.c)	稅額(座位9	9人以下者)
拼無里(C.C)	自用(全年)	營業 (全年)
500以下	1,620	900
501~600	2,160	1,260
601~1200	4,320	2,160
1201~1800	7,120	3,060
1801~2400	11,230	6,480
2401~3000	15,210	9,900
3001~4200	28,220	16,380
4201~5400	46,170	24,300
5401~6600	69,690	33,660
6001~7800	117,000	44,460
7801以上	151,200	56,700

利用臺灣小客車 牌照稅的稅金級距將排氣量歸納成不同等級

r_name	car_prices	multiply NT	kms_driven	fuel_type	transmission	ownership	manufacture	engine	engine_class	Seats
lo 1.5 Il imfortline	14.62	10K	71033	Diesel	Manual	2	2014	1248	2	5
nue S JS	29.31	10K	16591	Petrol	Manual	1	2021	796	1	5
and i10 2 Kappa ortz otion AT	23.25	10K	28387	Petrol	Automatic	1	2019	1197	1	5
ctor arp CVT	66.09	10K	11081	Petrol	Automatic	1	2021	1995	3	5
n Estilo 1 LX BSIII	3.29	10K	29081	Petrol	Manual	3	2006	2179	3	5
4	<u> </u>									

376

Name: Brand_lv, dtype: int64

```
car_brand = {'LV1':["Toyota", "Nissan", "Mitsubishi", "Ford", "Hyundai", "Isuzu", "Honda", "Datsu
n", "Fiat", "Kia", "MG", "Mahindra", "Maruti", "Premier", "Tata", "Renault", "Force"],
             'LV2':["Jeep", "Lexus", "Mini", "Skoda", "Volkswagen", "Volvo"],
             'LV3':["Audi", "BMW", "Chevrolet", "Jaguar", "Land", "Mercedes-Benz", "Porsche"],
             'LV4':["Bentley","Maserati"]}
df.insert(2, "Brand_lv", "")
for i,brand in enumerate (df["Brand"]):
    if brand in car_brand['LV1']:
        df["Brand_lv"][i] = 0
    elif brand in car_brand['LV2']:
        df["Brand_lv"][i] = 1
    elif brand in car_brand['LV3']:
        df["Brand_lv"][i] = 2
    elif brand in car_brand['LV4']:
        df["Brand_lv"][i] = 3
    else:
        print(brand)
df["Brand_lv"].value_counts()
     4337
```

利用汽車個品牌的品牌價值,將汽車品牌分為4個級別

	Unnamed: 0	Brand	Brand_lv	ar_name	car_prices	multiply NT	kms_driven	fuel_type	transmission	ownership	m
0	0	Jeep	1	Compass 2.0 Longitude Option BSIV	37.30	10K	86226	Diesel	Manual	1	20
1	1	Renault	0	Duster RXZ Turbo DVT	47.72	10K	13248	Petrol	Automatic	1	20
2	2	Toyota	0	Camry 2.5 G	61.00	10K	60343	Petrol	Automatic	1	2(
3	3	Honda	0	Jazz VX CVT	28.90	10K	26696	Petrol	Automatic	1	2(
4	4	Volkswagen	1	Polo 1.2 MPI Highline	19.15	10K	69414	Petrol	Manual	1	20
4											-

價格與品牌有較高關聯

價格與傳動有較高關聯

傳動方式的比例關係

plt.figure(figsize*(12, 5), dpi=88) plt.subplot(1, 2, 1) ax = ans.barplot(x="transmission", y="car_prices", data=df2) ax.set_title("Average car price by Number of transmission") trans = df2["transmission"].copy() count = trans.value_counts() #print(count) plt.subplot(1, 2, 2) plt.ple(xecount,autopot="%.ff%x",labels = ["Manual", "Automatic"]) plt.title("Transmission type popularity')

Text(0.5, 1.0, 'Transmission type popularity')

座位數的比例關係

```
plt.subplot(2, 1, 2)
ax!= sns.lineplot(x="Seats", y="car_prices", data=df2)
ax1.set_title('Average car price by Number of Seats')
plt.subplot(2, 2, 1)
ax2 = sns.barplot(x="Seats", y="car_prices", data=df2)
ax2 = sns.barplot(x="Seats", y="car_prices", data=df2)
ax2.set_title('Average car price by Number of seats')
seat = df2["Seats"].copy()
count = seat.value_counts().sort_index(ascending=False)
##print(count)
plt.subplot(2, 2, 2)
plt.ple(x=count, autopct="%.1f%%",labels = ["8", "7", "6", "5", "4", "2"])
plt.title('Transmission type popularity')
```


使用者次數比例關係

```
plt.figure(figsize=(12, 10), dpi=80)
plt.subplot(2, 1, 2)
pv2=sns.lineplot(x="ownership", y='car_prices', data=df2)
pv2.set_title('Average car price by Number of ownership')
plt.subplot(2, 2, 1)
ax = sns.barplot(x="ownership", y='car_prices', data=df2)
ax.set_title('Average car price by Number of ownership')
ownership = df2["ownership"].copy()
count = ownership.value_counts().sort_index(ascending=False)
plt.subplot(2, 2, 2)
plt.pie(x=count, autopct='%.1f%%', labels = ["5","4","3","2","1","8"])
plt.title('Ownership type popularity')
      84
     359
    1314
1 3724
     7
Name: ownership, dtype: int64
 Text(0.5, 1.0, 'Ownership type popularity')
        Average car price by Number of ownership
                                                         Ownership type popularity
 150
 125
                              使用者次數對價格影響
```

燃料方式比例關係

年份對價格的關係

車齡越高理論上價格會越低 但在高年份的車資,金額卻有往上的趨勢 表示這部分可能需要深入了解

排氣量對價格的關係

ax = sns.barplot(x="engine_class", y='car_prices', data=df2)
ax.set_title('Average car price by Number of engine_class')

Text(0.5, 1.0, 'Average car price by Number of engine_class')

在3000~4200cc 這個級距 可能有較高的價格

里程對價格的關係

plt.figure(figsize=(8,5))
plt.title('Relation between price and KMS driven')
plt.scatter(df2.kms_driven, df2.car_prices, color="b")

<matplotlib.collections.PathCollection at 0x7f7c083f5d10>

Relation between price and KMS driven

Relation between price and KMS driven

年份對價格的衰退關係(探討保值的問題)

```
P1 = df[df['Age'] <= 5]['car_prices'].mean()
P2 = df[(df['Age']>5) & (df['Age']<=10)]['car_prices'].mean()
P3 = df[(df['Age']>10) & (df['Age']<=15)]['car_prices'].mean()
P4 = df[(df['Age']>15) & (df['Age']<=20)]['car_prices'].mean()
P5 = df[df['Age']>20]['car_prices'].mean()
Plist = [P1, P2, P3, P4, P5]
Rlist = ["0-5", "5-10", "10-15", "15-20", "20-"]
pv2=sns.lineplot(x=Rlist, y=Plist)
pv2.set_title('Every 5 year price trend')
```

Text(0.5, 1.0, 'Every 5 year price trend')

可以看出在前五年,價格衰退幅度最大

```
P1 = df[df['Age'] <= 3]['car_prices'].mean()
P2 = df[(df['Age']>3) & (df['Age']<=5)]['car_prices'].mean()
P3 = df[(df['Age']>5) & (df['Age']<=10)]['car_prices'].mean()
P4 = df[(df['Age']>10) & (df['Age']<=15)]['car_prices'].mean()
P5 = df[(df['Age']>15) & (df['Age']<=20)]['car_prices'].mean()
P6 = df[df['Age']>20]['car_prices'].mean()
Plist = [P1,P2,P3,P4,P5,P6]
Rlist = ["0-3","3-5","5-10","10-15","15-20","20-"]
pv2=sns.lineplot(x=Rlist, y=Plist)
pv2.set_title('Every 5 year price trend')
```

Text(0.5, 1.0, 'Every 5 year price trend')

拆分出0-3年、3-5年,

可以看出在車齡為0-3區間,價格衰減幅度相對小

列表年份最高的資料

```
df3 = df2.copy()
df3.sort_values(by=['Age'],inplace = True)
old5=df3.iloc[-20:,:]
top5=pd.pivot_table(old5,index='car_name',values='car_prices',sort=False)
top5.plot(kind='barh',figsize=(8,8),edgecolor = 'black',title='The Most old 20 cars')
price = df2.copy().sort_values('car_prices')
plt.axvline(x = df2[df2['Age']>=15]['car_prices'].mean(),linewidth=2, color='r')
<matplotlib.lines.Line2D at 0x7f7c0907a510>
                                     The Most old 20 cars
    leep CL 500 MDI
                                                              car prices
          Zen VXI
           Zen LX
           Zen LXI
           800 Std
 Santro GLS I - Euro II
        800 Std BSII
                                  取年份大於15年的價格平均
       Palio 1.2 ELX
     800 DX 5 Speed
       Wagon R VXI
           Alto LX
      Tiago XTA AMT
         Santro AT
       Qualis FS B1
 Scorpio 2.6 SLX CRDe
```

根據網路資料顯示,這一台車的發表年份應該是2017年 特別算出資料中2017年車的平均車價25.49與異常資料的車價22.69相近 因此,特別修正此筆資料,更正他的車齡。

呼應年份對車價的曲線,確實有異常值

()

拆分資料集

```
# Split data to train and test:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df_X, df_y ,test_size=0.25, random_state=
1)
```

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score,GridSearchCV
```

匯入模組

```
Regression=[]
Regression.append(RandomForestRegressor())
Regression.append(DecisionTreeRegressor())
Regression.append(LinearRegression())
Regression
```

```
cv_results=[]

LR_model = LinearRegression(n_jobs=-1)
cv_results_append(cross_val_score(LR_model_X_train_v_train_cv=10_n_jobs=-1))
```

交叉驗證

選擇模型

	cv_mean	cv_std	algorithm
0	0.448247	0.046303	LinearRegression
1	0.839361	0.031192	RandomForestRegressor
2	0.650803	0.079433	DecisionTreeRegressor

將結果以表格、圖表展示

<seaborn.axisgrid.FacetGrid at 0x7f7c01f80b90>

使用模型進行預測並計算成績

```
rFModel = RandomForestRegressor(n_estimators=100, criterion = 'mse')
# 使用訓練資料訓練模型
rFModel.fit(X_train,y_train)
RandomForestRegressor(criterion='mse')
score = rFModel.score(X_train,y_train)
score
0.9777049298772856
from sklearn.metrics import mean_squared_error #均方误差
from sklearn.metrics import mean_absolute_error #平方绝对课差
from sklearn.metrics import r2_score#R square
y_pred = rFModel.predict(X_test)
rscore=r2_score(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
print("rscore:", rscore, "mse:", mse, "mae:", mae)
rscore: 0.720344292867565 mse: 1379.6932845396402 mae: 13.389703901616159
```

OLS Regression Results

Dep. Variable	e:	car_prices	R-square	d (uncente	red):		0.585			
Model:		0LS	Adj. R-s	quared (un	centered):	0.584				
Method:	ı	east Squares	F-statis	stic:		724.2				
Date: Fri, 06 Jan 2023			Prob (F-	statistic)	:		0.00			
Time: 07:09:23		Log-Like	lihood:		-2	22422.				
No. Observations: 4125		AIC:			4.48	36e+04				
Df Residuals	:	4117	BIC:			4.49	91e+04			
Df Model:		8								
Covariance Ty	/pe:	nonrobust								
	coef	std err	t	P> t	[0.025	0.975]				
Brand_1v	40.7745	1.520	26.826	0.000	37.795	43.754				
kms_driven	-5.056e-05	2.45e-05	-2.063	0.039	-9.86e-05	-2.51e-06				
fuel_type	4.5848	1.590	2.884	0.004	1.468	7.702				
transmission	38.1282	2.475	15.407	0.000	33.276	42.980				
ownership	-2.1298	1.359	-1.567	0.117	-4.794	0.534				
Age	-3.9646	0.273	-14.545	0.000	-4.499	-3.430				
engine_class	3.0647	0.897	3.415	0.001	1.306	4.824				
Seats	8.6461	0.537	16.095	0.000	7.593	9.699				
Omnibus: 4528.663		Durbin-V	latson:		2.037					
Prob(Omnibus): 0.000		Jarque-E	Bera (JB):	422546.461						

Notes

Skew:

[1] \mathbb{R}^2 is computed without centering (uncentered) since the model does not contain a constant.

0.00

2.34e+05

- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 2.34e+05. This might indicate that there are strong multicollinearity or other numerical problems.

5.544 Prob(JB):

51.327 Cond. No.

判別預測結果和實際值

```
df2['Price_prediction']=rFModel.predict(df_X)
```

```
prd=df2['Price_prediction']
x_ax = range(len(df_y))
plt.figure(figsize=(15,7))
plt.plot(x_ax, df_y,linewidth = '4.5', label="Original")
plt.plot(x_ax, prd, linewidth = '4.5', label="predicted")
plt.title("Test data VS Predicted data")
plt.xlabel('X')
plt.ylabel('Y')
plt.ylabel('Y')
plt.legend(loc='lower right',fancybox=True, shadow=True)
plt.show()
```


- 1. 大部分預測結果有貼近實際值
- 2. 在價格介於200-600間的時候預測偏離率較大

```
plt.scatter(df2['Price_prediction'],df2['car_prices'],color="b",)
plt.title('Prediction and Original data correlation')
plt.xlabel("pred")
plt.ylabel("data")
plt.grid()
            Prediction and Original data correlation
  700
  600
  500
data
300
  300
  200
  100
            100
                 200
                             400
                                  500
                                        600
                          pred
```

按照原始預測,品牌對於價格的影響 幅度較大,由結果可以判斷,在對品 牌價值的分類上,可能在中高階級的品牌,需要做更仔細的區分。

使用beautifulsoup 爬取 YAHOO汽車中古車版的資料

s 187.0 ≈ \$99.0 ±

s 188.0 m \$ 139.0 m

1. 目標爬取頁面中 相同於紅框區塊的資訊

3280.0≈ \$85.5 ₩

```
1 import requests
2 from bs4 import BeautifulSoup
 6 column = [ ] 車型', '出廠時間', '行駛里程', '燃料排氣', '顏色', '變速系統', '傳動系統', '乘坐人數', '所在地', '售價']
   df tw = pd.DataFrame(data = detail, columns = column)
9 def getcardetails(title, link, c):
           res = requests.get(url)
                = BeautifulSoup(res.text, "html.parser")
13
           content = soup.find_all("div", class_= 'text-bold', limit = 8)
           price = soup.find_all("span", class_= 'abc-article_price_num text-2x1')
15
           for i, n in enumerate (content[0:9]):
                  #print(n)
18
                  s = (n. text. strip(). replace(" ", ""))
19
                  df_{tw.} loc[c, column[i+1]] = s
                  df_tw.loc[c,'售價'] = price[0].text.strip().replace(" ","")
20
                         df_tw.loc[c,column[i]] = title
23
                  else:
24
                         continue
25
26
                  #print(s)
27
           return df_tw
```

2. 從紅框內的資訊 取得車子的車型以及該車的連結

3. 由於版面上的資訊過於精簡 特別寫一函式 getcardetails() 進到各連結中取的汽車完整資訊

```
行駛里程 燃料排氣 顏色 變速系統 傳動系統 乘坐人數 所在地 售價
0 2012 M-Benz 賓士 C-Class Sedan 2012年03月 166,718公里 汽油/1.8L 黑色 手自排 後輪驅動
1 2017 M-Benz 賓士 C-Class Estate 2017年11月
                                                                         5人 新北市 248萬
2 2008 M-Benz 賓士 C-Class Sedan 2008年05月 100,000公里 汽油/6.0L 黑色 手自排 後輪驅動
                                                                         5人 彰化縣 53.8萬
3 2016 M-Benz 賓士 C-Class Coupe 2016年05月 56,500公里 汽油/2.0L 白色
                                                                         4人 台南市 158萬
4 2014 M-Benz 賓士 C-Class Sedan 2014年09月 87,165公里 汽油/3.0L 白色
                                                                         5人 新北市 139萬
                                                          自排 四輪驅動
                                                                         4人 高雄市 99.8萬
        2022 Suzuki 鈴木 Jimny 2022年12月
                                     28公里 汽油/1.5L 其他
        2022 Suzuki 鈴木 Jimny 2022年12月
        2022 Suzuki 鈴木 Jimny 2022年12月
                                                          白排 四輪驅動
                                                                         4人 公中市 98.8萬
         2022 Suzuki 鈴木 Jimny 2022年12月
        2022 Suzuki 鈴木 Jimny 2022年12月
```

4. 將爬取的資料存成一個Dataframe 並存成csv檔,以便後續使用

確認爬蟲資料與模型資料的特徵值

[77] 1 display(df_tw.head())

2 display(X_test.head())

		車型	出廠時間	行駛里程	燃料排氣	顏色	變速系統	傳動系統	乘坐人數	所在地	售價	3
0	2012 M-Benz 賓士 C-Class	s Sedan	2012年03月	166,718公里	汽油/1.8L	黑色	手自排	後輪驅動	5人	高雄市	68.8萬	
1	2017 M-Benz 賓士 C-Class	Estate	2017年11月	53,000公里	汽油/3.0L	白色	手自排	四輪驅動	5人	新北市	248萬	
2	2008 M-Benz 賓士 C-Class	Sedan	2008年05月	100,000公里	汽油/6.0L	黑色	手自排	後輪驅動	5人	彰化縣	53.8萬	
3	2016 M-Benz 賓士 C-Class	Coupe	2016年05月	56,500公里	汽油/2.0L	白色	手自排	後輪驅動	4人	台南市	158萬	
4	2014 M-Benz 賓士 C-Class	s Sedan	2014年09月	87,165公里	汽油/3.0L	白色	手自排	後輪驅動	5人	新北市	139萬	
	Brand_lv kms_driv	en fuel	_type tran	smission ow	nership /	Age ei	ngine_clas	s Seats				
44	20 0 1400	00	1	0	2	11		1 5				
22	0 1423	66	1	0	1	11		1 5				
36	0 700	00	0	0	2	18		3 5				
47	16 0 279	24	1	0	1	3		3 5				
54	41 0 797	18	1	0	1	14		2 5				

比對後發現

大部分特徵值可以互相匹配

唯獨 "ownership" 無法在yahoo汽車中取得

而"傳動系統"、"所在地"則是不存在於原始資料集

接下來要做新的資料處理,並修正訓練資料,重新做模型訓練

新資料的資料預處理

Before

	車型	出廠時間	行駛里程	燃料排氣	顏色	變速系統	傳動系統	乘坐人數	所在地	告價
0	2012 M-Benz 賓士 C-Class Sedan	2012年03月	166,718公里	汽油/1.8L	黑色	手自排	後輪驅動	5人	高雄市	68.8萬
1	2017 M-Benz 賓士 C-Class Estate	2017年11月	53,000公里	汽油/3.0L	白色	手自排	四輪驅動	5人	新北市	248萬
2	2008 M-Benz 賓士 C-Class Sedan	2008年05月	100,000公里	汽油/6.0L	黑色	手自排	後輪驅動	5人	彰化縣	53.8萬
3	2016 M-Benz 賓士 C-Class Coupe	2016年05月	56,500公里	汽油/2.0L	白色	手自排	後輪驅動	4人	台南市	158萬
4	2014 M-Benz 賓士 C-Class Sedan	2014年09月	87,165公里	汽油/3.0L	白色	手自排	後輪驅動	5人	新北市	139萬

After

	Brand	Brand_lv	car_name	kms_driven	<pre>fuel_type</pre>	transmission	Age	engine_class	Seats
0	Mercedes-Benz	2	C-Class Sedan	166718	0	1	11	2	5
1	Mercedes-Benz	2	C-Class Estate	53000	0	1	6	4	5
2	Mercedes-Benz	2	C-Class Sedan	100000	0	1	15	7	5
3	Mercedes-Benz	2	C-Class Coupe	56500	0	1	7	3	4
4	Mercedes-Benz	2	C-Class Sedan	87165	0	1	9	4	5

將原始的資料集,利用split, strip, map, astype指令轉換內容以及資料型態,最後drop不需要的欄位完成最終的台灣二手汽車資料預測集

Final

	Brand_lv	kms_driven	fuel_type	transmission	Age	engine_class	Seats
0	2	166718	0	1	11	2	5
1	2	53000	0	1	6	4	5
2	2	100000	0	1	15	7	5
3	2	56500	0	1	7	3	4
4	2	87165	0	1	9	4	5
57	0	28	0	1	1	2	4
58	0	27	0	1	1	2	4
59	0	10	0	1	1	2	4
60	0	43	0	1	1	2	4
61	0	11	0	1	1	2	4

62 rows x 7 columns

建立新的模型

移除訓練資料集中不需要的欄位

87165

並確認與台灣二手汽車資料預測集的特徵值相符

```
[106] 1 # Split data to train and test:
2
3 from sklearn.model_selection import train_test_split
4 X_train, X_test, y_train, y_test = train_test_split(df_X, df_y ,test_size=0.25, random_state=1)

1 rFModel = RandomForestRegressor(n_estimators=100, criterion = 'friedman_mse')
2 # 使用訓練資料訓練模型
3 rFModel.fit(X_train, y_train)

C RandomForestRegressor
RandomForestRegressor(criterion='friedman_mse')

[108] 1 score = rFModel.score(X_train, y_train)
2 score
0.9748132436011652
```

拆分資料集,

並使用最初模型篩選,效果最好的演算法RandomForestRegressor 重新訓練模型,並得到決定係數為0.97成績

['rFModel.pkl']

1 clf2 = joblib.load('rFModel.pkl')

建立新的模型

- 1 df_X = df_train.copy().drop(columns = ["car_prices", "ownership"], axis = 1)
 2 df_y = df_train["car_prices"].copy()
 3
 4 display(df_X.head())
 5 display(df_twFinal.head())
- Brand_lv
 kms_driven
 fuel_type
 transmission
 Age
 engine_class
 Seats

 0
 1
 86226
 1
 0
 6
 3
 5

 1
 0
 13248
 0
 1
 2
 2
 5

 2
 0
 60343
 0
 1
 7
 4
 5

 3
 0
 26696
 0
 1
 5
 1
 5

 4
 1
 69414
 0
 0
 7
 1
 5

 Brand_lv
 kms_driven
 fuel_type
 transmission
 Age
 engine_class
 Seats

 0
 2
 166718
 0
 1
 11
 2
 5

 1
 2
 53000
 0
 1
 6
 4
 5

 2
 2
 100000
 0
 1
 7
 5

 3
 2
 56500
 0
 1
 7
 3
 4

 4
 2
 87165

移除訓練資料集中不需要的欄位

並確認與台灣二手汽車資料預測集的特徵值相符

```
[106] 1 # Split data to train and test:
     3 from sklearn.model_selection import train_test_split
     4 X_train, X_test, y_train, y_test = train_test_split(df_X, df_y ,test_size=0.25, random_state=1)
    1 rFModel = RandomForestRegressor(n_estimators=100, criterion = 'friedman_mse')
     2 # 使用訓練資料訓練模型
     3 rFModel.fit(X_train,y_train)
 - -
              RandomForestRegressor
    RandomForestRegressor(criterion='friedman_mse')
[108] 1 score = rFModel.score(X_train,y_train)
     2 score
    0.9748132436011652
   拆分資料集,
   並使用最初模型篩選,效果最好的演算法RandomForestRegressor
   重新訓練模型,並得到決定係數為0.97成績
[110] 1 import joblib
[111] 1 joblib. dump(rFModel, 'rFModel.pkl')
```

儲存模型,可於未來繼續使用

使用模型預測台灣二手汽車資料

```
1 result = clf2.predict(df_twFinal)
2 result
```

```
1 loss = pd.DataFrame(data = [],columns=['predict_price','market_price'])
2 loss["predict_price'] = result
3 loss["market_price"] = tw_price
4 #print(loss[loss["market_price"].isnull()])
5 loss["loss"] = loss["predict_price"] - loss["market_price"]
6 loss
```

C+		predict_price	market_price	loss
	0	40.0970	68.8	-28.7030
	1	207.8660	248.0	-40.1340
	2	37.9223	53.8	-15.8777
	3	114.2926	158.0	-43.7074
	4	100.8037	139.0	-38.1963
	57	57.1297	99.8	-42.6703
	58	57.1297	98.0	-40.8703
	59	57.1297	98.8	-41.6703
	60	57.1297	95.9	-38.7703
	61	57.1297	98.8	-41.6703
	62 rc	ws × 3 columns		

利用預測結果與市場上的真實資料 製作成一個Dataframe 另外求得兩者的誤差值(預測值-實際值)

預測與實際資料的折線圖(一)

```
1 x_ax = range(len(result))
2 plt.figure(figsize=(15,7))
3 plt.plot(x_ax, result,linewidth = '4.5', label="predicted")
4 plt.plot(x_ax, tw_price, linewidth = '4.5', label="market")
5 plt.title("Predicted data VS Market data")
6 plt.xlabel('X')
7 plt.ylabel('Y')
8 plt.legend(loc='lower right',fancybox=True, shadow=True)
9 plt.show()
```


誤差值的折線圖(二)

由圖表(一)兩條線的走勢來看 模型在判斷的準確度還算不差 不僅走勢相合,部分線段還重和

相對來說

低價位的二手車預測結果比高價位的優異

由圖表(二)來看 大部分的預測結果都在+-50之內 針對誤差值大的資料,則可作為後續改良的依據

分析預測誤差大的項目

[162]	1 10	ss[loss[″	loss"]	< -	-250]
	pre	dict_price	market_	_price	loss
	34	67.7877		368.0	-300.2123
[165]	1 df	_tw.iloc[34, :]		
	出行燃顏變傳乘所售職與料色速動坐在價時里排 系系人地	2017 Porsch		2017年0 86,0002 汽油/3 灰的 使 食糧	05月 公里 3.OL 至 1手排 倫驅動 4人 北市

- 1 df_twNew.iloc[34,:]
- Erand Porsche
 Brand_lv 2
 car_name Panamera
 kms_driven 86000
 fuel_type 0
 transmission 0
 Age 6
 engine_class 4
 Seats 4
 Name: 34, dtype: object
- 1. 取得誤差大的該筆資料

1	loss[33:37]							
	predict_price	market_price	loss	2.				
33	175.0454	265.0	-89.9546	₩ 至11 / (女 <i>//</i> -	‡相近的賞	を示し		
34	67.7877	368.0	-300.2123					—
35	8.6838	178.0	-169.3162	初步先抄	战出同為同	可一家車	厰的	資料
36	201.7659	275.0	-73.2341	發現34、	、35的誤意	差值明 顯	人很	多
33	Porsche	2	Macan	28936	0	0	4	
34	Porsche	2	Panamera	86000	0	0	6	
35	Porsche	2	Macan	70000	0	0	9	
36	Porsche	2	Macan	30000	0	0	4	

3. 首先,從紅色框來看,雖為同一廠牌出產的汽車,但在模型訓練中,並未對車款進行特徵處理 進而影響到跑車、轎車、休旅車…等等車型對價格之影響,所以應該要嘗試將車型納入模型訓練中。

再者,從橘框及藍框來看,行駛里程以及車齡,對於車價的預估有顯著的影響,以33、35、36資料來看同為 Porsche Macan 車型,當里程數及車齡較大時,價格明顯被低估。

總結

1. 現在的模型,針對品牌價值及車價較平價之車款預測效果較好

可能因為品牌價值較平價之車款,相對來說不同車型價格差異沒有這麼大,因此預測的誤差也大為降低,另外,平價車款可能相對保值性接近,較能依照目前模型的特徵值(里程,車齡)作為主要價格預測,而在處理高檔汽車時,則無法有相應價值的預測結果

2. 需要增加一些特徵來優化模型的預測能力

從預測的結果判斷,最顯著的是<mark>車款樣式</mark>,特別是在高級車中,價差會特別顯著,因此應該要考量的車款的條件,另外,結果中也有發現,相似條件下的資料中,有的行駛里程數較高,但卻有較好的價格表現,因此可以發現,在影響車價的特徵中,還有一些條件是沒考慮到的,像是車色、安全配備等,也許都是可以作為對後續模型優化的調整方向。