CS-541: Artificial Intelligence Lecture 4a

Abdul Rafae Khan

Department of Computer Science Stevens Institute of Technology akhan4@stevens.edu

February 14, 2022

Neural Network Recap

$$f: \mathbb{R} \mapsto \mathbb{R}$$
input: $x^{(0)} \in \mathbb{R}$

$$z^{(1)} = w^{(0)}x^{(0)}$$

$$x^{(1)} = \max\{0, z^{(1)}\}$$

$$z^{(2)} = w^{(1)}x^{(1)}$$

$$x^{(2)} = \max\{0, z^{(2)}\}$$

$$z^{(3)} = w^{(2)}x^{(2)}$$
output: $f(x^{(0)}) = z^{(3)} \in \mathbb{R}$
loss: $L = \frac{1}{2}(f(x^{(0)}) - y)^2$

Neural Network Recap

$$f: \mathbb{R} \mapsto \mathbb{R}$$
input: $x^{(0)} \in \mathbb{R}$

$$z^{(1)} = w^{(0)}x^{(0)}$$

$$x^{(1)} = \max\{0, z^{(1)}\}$$

$$z^{(2)} = w^{(1)}x^{(1)}$$

$$x^{(2)} = \max\{0, z^{(2)}\}$$

$$z^{(3)} = w^{(2)}x^{(2)}$$
output: $f(x^{(0)}) = z^{(3)} \in \mathbb{R}$
loss: $L = \frac{1}{2}(f(x^{(0)}) - y)^2$

$$\frac{\partial L}{\partial z^{(3)}} = ?$$

$$\frac{\partial L}{\partial z^{(2)}} = ?$$

$$\frac{\partial L}{\partial w^{(2)}} = ?$$

$$\frac{\partial L}{\partial z^{(1)}} = ?$$

$$\frac{\partial L}{\partial w^{(0)}} = ?$$

Neural Network Recap

$$f: \mathbb{R} \mapsto \mathbb{R}$$

$$input: x^{(0)} \in \mathbb{R}$$

$$z^{(1)} = w^{(0)}x^{(0)}$$

$$x^{(1)} = \max\{0, z^{(1)}\}$$

$$z^{(2)} = w^{(1)}x^{(1)}$$

$$x^{(2)} = \max\{0, z^{(2)}\}$$

$$z^{(3)} = w^{(2)}x^{(2)}$$

$$output: f(x^{(0)}) = z^{(3)} \in \mathbb{R}$$

$$\frac{\partial L}{\partial z^{(2)}} = \frac{\partial z^{(3)}}{\partial z^{(2)}} \frac{\partial L}{\partial z^{(2)}} \frac{\partial L}{\partial z^{(2)}} = \frac{\partial z^{(3)}}{\partial w^{(2)}} \frac{\partial L}{\partial z^{(3)}}$$

$$\frac{\partial L}{\partial z^{(1)}} = \frac{\partial z^{(2)}}{\partial z^{(1)}} \frac{\partial L}{\partial z^{(2)}} \frac{\partial L}{\partial w^{(1)}} = \frac{\partial z^{(2)}}{\partial w^{(1)}} \frac{\partial L}{\partial z^{(2)}}$$

$$\frac{\partial L}{\partial z^{(2)}} = \frac{\partial z^{(1)}}{\partial w^{(0)}} \frac{\partial L}{\partial z^{(1)}}$$

$$\frac{\partial L}{\partial z^{(1)}} = \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial L}{\partial z^{(1)}}$$

$$\frac{\partial L}{\partial z^{(1)}} = \frac{\partial z^{(1)}}{\partial z^{(1)}} \frac{\partial L}{\partial z^{(1)}}$$

Overview

- 1. Planning Agent
- 2. Formulating Search Problem
- 3. Search Strategy
- 4. State Space vs Search Tree
- 5. Search Algorithms
 - 5.1 Backtracking Search
 - 5.2 DFS
 - 5.3 BFS
 - 5.4 IDS
- 6. Search Dynamic Programming
- 7. Uniform Cost Search

Planning Agent

Construct plans to achieve its goal and execute them Analyze a situation and develop a strategy for achieving the goal. Finding a sequence of actions for a desired outcome. Search agents typically assume

- static world
- observable environment
- discrete states
- deterministic transition model

Revisiting Tower of Hanoi

According to a legend, there is a temple in India with a spacious room.

In the center are 64 golden discs stacked on 3 posts

Young priests are assigned the duty to move disks from one post to another

Larger disk cannot come above a smaller disc

The legend says, the world will end when the priest re-create the stack on another post

Does a solution exist? What is the cost?

Formulating as Search Problem

state representation: How will a state be represented in code?

start state: What is the initial state? **goal state:** What is the final state?

action: What are the possible movements from one state to another?

cost: What is the cost for an action?

Formulating as Search Problem

state representation: 3 lists

start state:

goal state: can be multiple goal states

action: movement of a disc

cost: 1 for each action

Formulating a Search Problem

```
start state: s_{start} goal state: s_{end}
```

action(s): all possible actions that can be perform at state s

cost(s, a): cost associated with action a at state s

successor(s, a): returns the new state after taking action a at state s

Search Applications

Wolf, goat and cabbage problem

Cross all three across the river Wolf can eat the goat if left alone Goat can eat the cabbage if left alone

Wolf, goat and cabbage problem

```
state representation: ?
start state: ?
goal state: ?
actions: ?
cost: ?
```

Wolf, goat and cabbage problem

state representation: 2 lists

start state: All three on the left side of the river **goal state:** All three on the right side of the river

actions: Move across the river

cost: 1

Maze

Maze

```
state representation: ?
start state: ?
goal state: ?
actions: ?
cost: ?
```

Maze

state representation: $m \times n$ matrix

start state: root node goal state: some leaf node actions: left, right, up, down

cost: 1 for each edge traversal

Tic-Tac-Toe

Tic-Tac-Toe

```
state representation: ?
start state: ?
goal state: ?
actions: ?
cost: ?
```

Tic-Tac-Toe

state representation: 3×3 matrix of 0s & 1s

start state: empty grid

goal state: three Os or Xs in a line

action: Add an X or O

cost: 0 or 1

Toy Vacuum Problem

Vacuum cleaner world with only two rooms!

Vacuum cleaner world with only two rooms!

state representation: 3-tuple

start state: position of vacuum, position of dirt

goal state: No dirt

actions: Left, Right, Suck

cost: 1 for each step

8 possible states!

If no information of the environment Multi-state problem e.g. the vacuum has no senors

Search Problems

How to solve such problems?

Search Problems

How to solve such problems? Traverse all the states until you reach the goal state

Search Space vs Search Tree

start state: A goal state: B

Search Problems

When developing a search strategy, consider **Complete:** Will the solution be found?

Optimality: Will the optimal solution be found?

Time Complexity: How much time will it take?

Space Complexity: How much space will it require?

Informed/Uninformed: Does the search use additional domain specific information

Solving a Search Problem

One idea is a search tree

Each node represents a state
Each edge represents an action from one state to another

start state: blue
goal state: red

branching factor: number of children for each node (b)

depth: number of edges from root to leaf (D)

The solution is the sequence of edges (actions) from start state to goal state

Lets look at a small example

start state: A goal state: F

Look at the complete tree for the solution

Cost: Any start state: A goal state: F

Whiteboard

		Time	•
Backtracking Search	Any	$O(b^D)$	O(D)

Depth First Search

Similar to backtracking search with early stop

Cost: 0

start state: A goal state: F

Whiteboard

Algorithm	Cost	Time	Space
Backtracking Search	Any	$O(b^D)$	O(D)
DFS	0	$O(b^D)$	O(D)

b = branching factor

D = total depth of tree

d = depth of solution

Breadth First Search

Search all the adjacent nodes first

 $\begin{array}{l} \mathsf{Cost:} \, \geq 0 \\ \mathbf{start} \, \, \mathbf{state:} \, \, \mathsf{A} \\ \mathbf{goal} \, \, \mathbf{state:} \, \, \mathsf{F} \\ \end{array}$

Whiteboard

Algorithm	Cost	Time	Space
Backtracking Search	Any	$O(b^D)$	O(D)
DFS	0	$O(b^D)$	O(D)
BFS	≥ 0	$O(b^d)$	$O(b^d)$

b = branching factor

D = total depth of tree

d = depth of solution

Iterative Deepening Search

Search all the adjacent nodes first

start state: A goal state: F

Whiteboard

Algorithm	Cost	Time	Space
Backtracking Search	Any	$O(b^D)$	O(D)
DFS	0	$O(b^D)$	O(D)
BFS	≥ 0	$O(b^d)$	$O(b^d)$
IDS	≥ 0	$O(b^d)$	O(d)

b = branching factor

 $D={
m total}{
m \ depth}{
m \ of}{
m \ tree}$

d = depth of solution

cost(A, a) = x (cost from state A for action a) $total_cost(B) = x'$ (total cost from state B to goal state)

 $total_cost(A) = ?$ (total cost from state A to goal state)

cost(A, a) = x (cost from state A for action a) $total_cost(B) = x'$ (total cost from state B to goal state)

$$total_cost(A) = \begin{cases} 0 & \text{if } is_goal(A) \\ \min_{a \in actions(A)} \{ cost(A, a) + total_cost(successor(A, a)) \} \end{cases} \text{ otherwise}$$

Future cost only depends upon current state

start state: A **goal state**: D

start state: A goal state: F

Tree grows expotentially as number of nodes increase With memoization, we can keep track of costs of visited nodes Therefore we do not have to explore them again However, it only works with acyclic graphs

Graph with Cycles

What if state graph has cycles?

start state: A goal state: D

Whiteboard

Explored: red Frontier: yellow Unexplored: blue

Uniform Cost Search

Keep a list of visited states

start state: A
goal state: D

Whiteboard

Uniform Cost Search

start state: A goal state: H, I, J

Whiteboard

Uniform Cost Search

```
Add (start,0) to frontier Q
While Q is not empty:
    u,p = remove state with smallest value from Q
    if u == goal:
        return
    Add u to explored E
    for a in actions(u):
        v = successor(u,a)
        if v not in E
            Add (v,p+cost(u,a)) to Q
```

Algorithm	Cost	Time	Space	Complete	Optimal
Backtracking Search	Any	$O(b^D)$	O(D)	Yes	Yes
DFS	0	$O(b^D)$	O(D)	No	Yes
BFS	≥ 0	$O(b^d)$	$O(b^d)$	Yes	If costs are equal
IDS	≥ 0	$O(b^d)$	O(d)	Yes	If costs are equal
UCS	≥ 0	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	Yes	Yes

b = branching factor

D = total depth of tree

d = depth of solution

 $C^* = cost of optimal path$

Recap

Search Strategies Formulation Backtracking Search DFS & BFS Dynamic Programming Uniform Cost Search

References

Stuart Russell and Xiaodong Song (2021)

CS 188 — Introduction to Artificial Intelligence

University of California, Berkeley

Chelsea Finn and Nima Anari (2021)

CS221 — Artificial Intelligence: Principles and Techniques

Stanford University

The End