MATH 6320

Theory of Functions of a Real Variable Fall 2024

First name:	Last name:	Points:
		. ouns.

Assignment 7, due Thursday, October 31, 11:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Find an example of a sequence of Riemann integrable functions $(f_n)_{n=1}^{\infty}$, $f_n:[0,1]\to[0,\infty)$ so that $\lim_{n\to\infty}\int_{[0,1]}f_ndm=0$ and $g=\sup_{n\in\mathbb{N}}f_n$ is not in $L^1(m)$, where m is the Lebesgue measure on [0,1]. Next, explain how you can modify your example to obtain the same property for a sequence of continuous functions $(f_n)_{n=1}^{\infty}$. Hint: Start with g and let $f_n=\chi_{I_n}g$, where each I_n is a closed interval.

Problem 2

Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Let $f: X \to [0, \infty)$ be bounded, measurable. Prove that

$$\int f d\mu = inf \Bigl\{ \sum_{j=1}^n \, \mu(A_j) \sup_{x \in A_j} \, f(x) : A_j's \, \, \text{partition} \, \, X \Bigr\}$$

where it is assumed that each partition contains only measurable $A_j \in \mathcal{M}$. Also show that this identity can fail if the assumption that f bounded is replaced by $f \in L^1(\mu)$.

Problem 3

Let V be an open set in $\mathbb R$ and μ a Borel measure on $\mathbb R$ such that $\mu(\mathbb R)<\infty$. Show that $f(x)=\mu(x+V)$ defines a lower semicontinuous function f on $\mathbb R$.