BY BONNIE MCBRIDE AND SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996 ********************************** ### CEA analysis performed on Sun 11-Dec-2022 21:37:45 # Problem Type: "Rocket" (Finite Area Combustor) prob case= 7791 ro equilibrium ions fac !Mass Flux/Chamber Area, kg/sec-sqm: mdot=3.834# Pressure (1 value): p,psia= 250 # Chamber/Exit Pressure Ratio (1 value): pi/p = 18.532# Oxidizer/Fuel Wt. ratio (21 values): o/f= 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2 # You selected the following fuels and oxidizers: reac fuel C2H5OH(L) wt%= 95.0000 fuel H2O(L) wt%= 5.0000 oxid O2(L) wt%=100.0000 # You selected these options for output: # short version of output output short # Proportions of any products will be expressed as Mass Fractions. output massf # Heat will be expressed as siunits output siunits # Transport properties calculated output transport # Input prepared by this script:/var/www/sites/cearun.grc.nasa.gov/cgi-bin/CEARU N/prepareInputFile.cgi

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004

7791.html 12/11/22, 6:38 PM

IMPORTANT: The following line is the end of your CEA input file! end

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA Pinj/Pinf = 1.000014MDOT/Ac =3.834 (KG/S)/M**2 CASE = _____

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

0/F= 1.00000 %FUEL= 50.000000 R,EQ.RATIO= 1.712772 PHI,EQ.RATIO= 1.979589

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7447	18.532
P, BAR	17.237	17.237	9.8794	0.93011
T, K	3315.55	3315.55	3113.89	2240.38
RHO, KG/CU M	1.1341 0	1.1340 0	7.0002-1	9.4099-2
H, KJ/KG	-202.79	-202.81	-1018.26	-3845.59
U, KJ/KG	-1722.72	-1722.73	-2429.57	-4834.03
G, KJ/KG	-46328.0	-46328.0	-44338.0	-35013.3
S, KJ/(KG)(K)	13.9118	13.9118	13.9118	13.9118
M, (1/n)	18.137	18.137	18.345	18.845
(dLV/dLP)t	-1.02157	-1.02157	-1.01538	-1.00115
(dLV/dLT)p	1.3935	1.3935	1.2975	1.0294
Cp, KJ/(KG)(K)	5.7911	5.7912	5.0846	2.6894
GAMMAs	1.1523	1.1523	1.1556	1.2087
SON VEL,M/SEC	1323.4	1323.4	1277.1	1093.0
MACH NUMBER	0.000	0.004	1.000	2.469

TRANSPORT PROPERTIES (GASES ONLY) CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.0029 1.0029 0.95862 0.75771

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K)5.7911 5.7912 5.0846 2.6894 CONDUCTIVITY 14.9301 14.9301 12.5399 4.0856 PRANDTL NUMBER 0.3890 0.3890 0.3887 0.4988

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K) CONDUCTIVITY PRANDTL NUMBER	4.1965	4.1965	3.9438	2.8945
PERFORMANCE PARAM	METERS			
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		167.43 1928.1 0.0024 322824.7 4.7	1928.1 0.6624 2382.2	1.3999
MASS FRACTIONS				
*C0 *C02 C00H *H HC0 H02 *H2 H20 *O	0.49330 0.13242 0.00001 0.00246 0.00002 0.00001 0.02588 0.31567 0.00246 0.02515	0.13242 0.00001 0.00246 0.00002 0.00001 0.02588 0.31567 0.00246		0.17696 0.00000 0.00020 0.00000 0.00000 0.02809 0.32902

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

*02

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

0.00261 0.00261 0.00143 0.00001

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA 3.834 (KG/S)/M**2 MDOT/Ac =Pinj/Pinf = 1.000003CASE = _____ REACTANT **TEMP** WT FRACTION ENERGY (SEE NOTE) KJ/KG-MOL K C2H5OH(L) **FUEL** 0.000 0.9500000 0.000 H20(L) **FUEL** 0.0500000 0.000 0.000 02(L) OXIDANT 1.0000000 -12979.000 90.170 0/F= 1.05000 %FUEL= 48.780488 R,EQ.RATIO= 1.652647 PHI,EQ.RATIO= 1.885323

INJECTOR COMB END THROAT EXIT

Pinj/P 1.0000 1.0000 1.7407 18.532

7791.html

11/2	2, 6:38 PM				
Ρ,	BAR	17.237	17.237	9.9020	0.93011
T,	K	17.237 3357.34	3357.34	3163.86	2326.41
RHO), KG/CU M		1.1401 0		
Η,		-207.75			-3859.30
U,	KJ/KG	-1719.58	-1719.58	-2424.01	-4862.02
G,	KJ/KG	-46491.5	-46491.5	-44633.0	-35930.8
S,	KJ/(KG)(K)	13.7858	13.7858	13.7858	13.7858
Μ,	(1/n)	18.464	18.464	18.690	19.290
(dl	.V/dLP)t	-1.02548	-1.02548	-1.01886	-1.00184
(dl	_V/dLT)p	1.4619	1.4619	1.3617	1.0458
Cp.	KJ/(KG)(K)	6.2487	6.2487	5.5451	2.8379
GAN	MAs	1.1475	1.1475	1.1493	1.1966
SON	N VEL,M/SEC	1317.1	1317.1	1271.8	1095.4
MAC	CH NUMBER	0.000	0.002	1.000	2.467
TRA	ANSPORT PROPE	RTIES (GAS	SES ONLY)		
(CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)				
VIS	SC,MILLIPOISE	1.0189	1.0189	0.97659	0.78432

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K)	6.2487	6.2487	5.5451	2.8379
CONDUCTIVITY	15.9066	15.9066	13.6008	4.6523
PRANDTL NUMBER	0.4003	0.4003	0.3982	0.4784

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K)	2.4323	2.4323	2.4152	2.3096
CONDUCTIVITY	4.1665	4.1665	3.9279	2.9334
PRANDTI NUMBER	0.5948	0.5948	0.6005	0.6175

PERFORMANCE PARAMETERS

Ae/At	305.20	1.0000	3.5696
CSTAR, M/SEC	1926.4	1926.4	1926.4
CF	0.0013	0.6602	1.4029
Ivac, M/SEC	587917.1	2378.5	3073.5
Isp, M/SEC	2.6	1271.8	2702.4

MASS FRACTIONS

*C0	0.47296	0.47296	0.46759	0.44399
*C02	0.14225	0.14225	0.15070	0.18781
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00256	0.00256	0.00203	0.00029
HC0	0.00002	0.00002	0.00001	0.00000
H02	0.00002	0.00002	0.00001	0.00000

*H2	0.02328	0.02328	0.02331	0.02498
H20	0.32094	0.32094	0.32995	0.34148
*0	0.00344	0.00344	0.00199	0.00002
*0H	0.03039	0.03039	0.02192	0.00141
*02	0.00411	0.00411	0.00247	0.00002

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000003 CASE = _____

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

O/F= 1.10000 %FUEL= 47.619048 R,EQ.RATIO= 1.596600 PHI,EQ.RATIO= 1.799626

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7374	18.532
P, BAR	17.237	17.237	9.9213	0.93011
T, K	3392.52	3392.52	3206.26	2406.89
RHO, KG/CU M	1.1475 0	1.1475 0	7.0790-1	9.1670-2
H, KJ/KG	-212.46	-212.46	-1014.08	-3865.69
U, KJ/KG	-1714.57	-1714.57	-2415.59	-4880.32
G, KJ/KG	-46566.1	-46566.1	-44822.7	-36752.1
S, KJ/(KG)(K)	13.6635	13.6635	13.6635	13.6635
M, (1/n)	18.778	18.778	19.021	19.724
(dLV/dLP)t	-1.02959	-1.02959	-1.02268	-1.00282
(dLV/dLT)p	1.5333	1.5333	1.4318	1.0687
Cp, KJ/(KG)(K)	6.7140	6.7140	6.0351	3.0414
GAMMAs	1.1435	1.1435	1.1439	1.1841
SON VEL,M/SEC	1310.6	1310.6	1266.2	1096.1
MACH NUMBER	0.000	0.002	1.000	2.466

TRANSPORT PROPERTIES (GASES ONLY)
CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.0332 1.0332 0.99269 0.80974

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K) CONDUCTIVITY PRANDTL NUMBER	6.7140 16.8325 0.4121			3.0414 5.3424 0.4610
WITH FROZEN REA	CTIONS			
Cp, KJ/(KG)(K) CONDUCTIVITY PRANDTL NUMBER	2.4085 4.1333 0.6021	4.1333	3.9074	
PERFORMANCE PARA	METERS			
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		314.17 1923.0 0.0013 604167.0 2.5	1923.0 0.6584 2373.1	1.4056 3078.4
MASS FRACTIONS				

*C0	0.45336	0.45336	0.44734	0.42288
*C02	0.15195	0.15195	0.16144	0.19989
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00263	0.00263	0.00214	0.00041
HC0	0.00002	0.00002	0.00001	0.00000
H02	0.00003	0.00003	0.00001	0.00000
*H2	0.02098	0.02098	0.02089	0.02210
H20	0.32458	0.32458	0.33448	0.35209
*0	0.00459	0.00459	0.00286	0.00005
*0H	0.03569	0.03569	0.02682	0.00250
*02	0.00614	0.00614	0.00400	0.00008

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA

MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000003

CASE = _____

REACTANT WT FRACTION ENERGY TEMP (SEE NOTE) KJ/KG-MOL K
FUEL C2H5OH(L) 0.9500000 0.000 0.000

FUEL H20(L) 0.0500000 0.000 0.000 OXIDANT 02(L) 1.0000000 -12979.000 90.170

O/F= 1.15000 %FUEL= 46.511628 R,EQ.RATIO= 1.544230 PHI,EQ.RATIO= 1.721382

INJECTOR COMB END THROAT **EXIT** Pinj/P 1.0000 1.0000 1.7345 18.532 9.9375 P, BAR 17.237 17.237 0.93011 T, K 3421.81 3421.80 3241.79 2480.77 RHO, KG/CU M 1.1560 0 1.1560 0 7.1297-1 9.0829-2 H, KJ/KG -216.95 -216.96 -1011.04 -3865.44 U, KJ/KG -1708.05 -1708.06 -2404.85 -4889.47 G, KJ/KG -46564.2 -46564.2 -44920.0 -37466.7 13.5447 13.5447 13.5447 13.5447 S, KJ/(KG)(K)M, (1/n)19.080 19.080 19.338 20.142 (dLV/dLP)t -1.03377 -1.03377 -1.02673 -1.00415 (dLV/dLT)p 1.6058 1.6058 1.5060 1.0997 Cp, KJ/(KG)(K)7.1725 7.1725 6.5402 3.3122 GAMMAs 1.1401 1.1401 1.1394 1.1717 SON VEL, M/SEC 1303.8 1303.8 1260.2 1095.4 MACH NUMBER 0.000 0.002 1.000 2.466

TRANSPORT PROPERTIES (GASES ONLY)
CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.0459 1.0459 1.0070 0.83368

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K) 7.1725 7.1725 6.5402 3.3122 CONDUCTIVITY 17.7015 17.7015 15.6228 6.1504 PRANDTL NUMBER 0.4238 0.4238 0.4216 0.4490

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K) 2.3854 2.3854 2.3711 2.2858 CONDUCTIVITY 4.0978 4.0978 3.8831 2.9989 PRANDTL NUMBER 0.6089 0.6089 0.6149 0.6354

PERFORMANCE PARAMETERS

Ae/At 325.39 1.0000 3.6621 CSTAR, M/SEC 1918.4 1918.4 1918.4 CF 0.0012 0.6569 1.4081 Ivac, M/SEC 624218.8 2366.2 3080.4 Isp, M/SEC 2.4 1260.2 2701.3

MASS FRACTIONS

*C0	0.43454	0.43454	0.42781	0.40167
*C02	0.16144	0.16144	0.17202	0.21312
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00266	0.00266	0.00221	0.00053
HCO	0.00002	0.00002	0.00001	0.00000
H02	0.00003	0.00003	0.00002	0.00000
*H2	0.01895	0.01895	0.01876	0.01947
H20	0.32681	0.32681	0.33737	0.36074
H202	0.00001	0.00001	0.00000	0.00000
*0	0.00588	0.00588	0.00388	0.00013
*0H	0.04090	0.04090	0.03181	0.00414
*02	0.00876	0.00876	0.00609	0.00021

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

```
Pin = 250.0 PSIA
MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000003
CASE = _____
```

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.000000	-12979.000	90.170

O/F= 1.20000 %FUEL= 45.454545 R,EQ.RATIO= 1.495186 PHI,EQ.RATIO= 1.649658

Pinj/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG	-221.24 -1700.35	3445.91 1.1653 0	1.7322 9.9508 3271.18 7.1862-1 -1007.59 -2392.30	2547.10 9.0229-2 -3859.24 -4890.08
S, KJ/(KG)(K)	-	13.4294		
M (1/2)	10 270	10 270	10 (42	20 544
M, (1/n)	19.370	19.370	19.642	20.544
(dLV/dLP)t	-1.03790	-1.03790	-1.03090	-1.00594
(dLV/dLT)p	1.6772	1.6772	1.5820	1.1407
Cp, KJ/(KG)(K)	7.6101	7.6101	7.0427	3.6644
GAMMAs	1.1373	1.1373	1.1358	1.1598

SON VEL,M/SEC	1297.0	1297.0	1254.1	1093.4
MACH NUMBER	0.000	0.002	1.000	2.467

TRANSPORT PROPERTIES (GASES ONLY)

CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.0572 1.0572 1.0196 0.85588

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K)	7.6101	7.6101	7.0427	3.6644
CONDUCTIVITY	18.5063	18.5063	16.5646	7.0664
PRANDTL NUMBER	0.4347	0.4347	0.4335	0.4438

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K)	2.3629	2.3629	2.3496	2.2731
CONDUCTIVITY	4.0607	4.0607	3.8559	3.0243
PRANDTI NUMBER	0.6152	0.6152	0.6213	0.643

PERFORMANCE PARAMETERS

Ae/At	339.11	1.0000	3.7028
CSTAR, M/SEC	1912.6	1912.6	1912.6
CF	0.0012	0.6557	1.4103
Ivac, M/SEC	648599.1	2358.2	3079.6
Isp, M/SEC	2.3	1254.1	2697.4

MASS FRACTIONS

*C0	0.41648	0.41648	0.40905	0.38044
*C02	0.17062	0.17062	0.18232	0.22728
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00266	0.00266	0.00224	0.00066
HCO	0.00002	0.00002	0.00001	0.00000
H02	0.00005	0.00005	0.00003	0.00000
*H2	0.01716	0.01716	0.01689	0.01709
H20	0.32785	0.32785	0.33886	0.36733
H202	0.00001	0.00001	0.00000	0.00000
*0	0.00727	0.00727	0.00505	0.00027
*0H	0.04590	0.04590	0.03673	0.00639
*02	0.01198	0.01198	0.00882	0.00053

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA 3.834 (KG/S)/M**2 MDOT/Ac =Pinj/Pinf = 1.000002CASE = REACTANT WT FRACTION ENERGY TEMP (SEE NOTE) KJ/KG-MOL Κ FUEL C2H50H(L) 0.9500000 0.000 0.000 **FUEL** H20(L) 0.0500000 0.000 0.000 OXIDANT 02(L) 1.0000000 -12979.000 90.170 0/F= 1.25000 %FUEL= 44.444444 R,EO.RATIO= 1.449161 PHI,EO.RATIO= 1.583671 INJECTOR COMB END THROAT **EXIT** Pinj/P 1.0000 1.7303 1.0000 18.532 P, BAR 17.237 17.237 9.9618 0.93011 T, K 3465.52 3465.52 3295.21 2605.11 1.1754 0 1.1754 0 7.2474-1 8.9864-2 RHO, KG/CU M H, KJ/KG -225.34 -225.34 -1003.84 -3847.86 U, KJ/KG -1691.75 -1691.75 -2378.37 -4882.88 G, KJ/KG -46378.0 -46378.0 -44888.4 -38541.9 S, KJ/(KG)(K)13.3177 13.3177 13.3177 13.3177 M, (1/n)19.649 19.649 19.933 20.927 (dLV/dLP)t -1.04187 -1.04187 -1.03504 -1.00827 (dLV/dLT)p 1.7455 1.7455 1.6571 1.1939 Cp, KJ/(KG)(K)8.0143 8.0143 7.5247 4.1108 GAMMAs 1.1351 1.1351 1.1327 1.1487 1090.4 SON VEL,M/SEC 1290.1 1290.1 1247.8 0.000 0.002 MACH NUMBER 1.000 2.469 TRANSPORT PROPERTIES (GASES ONLY) CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K) VISC, MILLIPOISE 1.0671 1.0671 1.0307 0.87605 WITH EQUILIBRIUM REACTIONS Cp, KJ/(KG)(K)8.0143 8.0143 7.5246 4.1108 CONDUCTIVITY 19.2394 19.2394 17.4447 8.0788 0.4445 PRANDTL NUMBER 0.4445 0.4446 0.4458 WITH FROZEN REACTIONS Cp, KJ/(KG)(K)2.3411 2.3411 2.3286 2.2597 CONDUCTIVITY 4.0227 4.0227 3.8266 3.0441

PRANDTL NUMBER

0.6210

0.6210

0.6272

0.6503

PERFORMANCE PARAMETERS

Ae/At	355.68	1.0000	3.7387
CSTAR, M/SEC	1906.0	1906.0	1906.0
CF	0.0011	0.6547	1.4122
Ivac, M/SEC	677934.2	2349.4	3076.2
Isp, M/SEC	2.2	1247.8	2691.7

MASS FRACTIONS

*C0	0.39920	0.39920	0.39107	0.35939
*C02	0.17944	0.17944	0.19222	0.24203
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00263	0.00263	0.00225	0.00077
HC0	0.00002	0.00002	0.00001	0.00000
H02	0.00006	0.00006	0.00003	0.00000
*H2	0.01559	0.01559	0.01525	0.01498
H20	0.32790	0.32790	0.33919	0.37186
H202	0.00001	0.00001	0.00000	0.00000
*0	0.00872	0.00872	0.00631	0.00053
*0H	0.05059	0.05059	0.04143	0.00924
*02	0.01582	0.01582	0.01221	0.00119

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002

CASE = _____

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

O/F= 1.30000 %FUEL= 43.478261 R,EQ.RATIO= 1.405886 PHI,EQ.RATIO= 1.522761

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7288	18.532
P, BAR	17.237	17.237	9.9706	0.93011
T, K	3481.25	3481.25	3314.60	2654.41
RHO, KG/CU M	1.1861 0	1.1861 0	7.3123-1	8.9722-2
H, KJ/KG	-229.26	-229.26	-999.87	-3832.08

12/ 7791.html

2/11/22, 6:38 PM				
U, KJ/KG	-1682.47	-1682.48	-2363.41	-4868.74
	-46214.4			
S, KJ/(KG)(K)	13.2094	13.2094	13.2094	13.2094
M. (1/n)	19.918	19.918	20.211	21.290
M, (1/n) (dLV/dLP)t	-1.04555	-1.04555	-1.03900	-1.01120
(dLV/dLT)p			1.7290	
Cp, KJ/(KG)(K)				
GAMMAs			1.1303	
SON VEL,M/SEC	1283.3	1283.3	1241.5	1086.6
MACH NUMBER	0.000	0.002	1.000	2.470
TRANSPORT PROPE	RTIES (GAS	SES ONLY)		
CONDUCTIVITY			ATTS/(CM)	(K)
VISC,MILLIPOISE	1.0758	1.0758	1.0404	0.89398
WITH EQUILIBRI	UM REACTIO	ONS		
Cp, KJ/(KG)(K)	0 2757	0 2757	7 0702	1 6556
CONDUCTIVITY	19 8944	19 89//	18 2512	9 1728
PRANDTL NUMBER	0 4529	0 4529	0 4543	0.4537
TRANSTE NORDER	0.4323	0.4323	0.4545	0.4337
WITH FROZEN REA	ACTIONS			
Cp, KJ/(KG)(K)	2.3199	2.3199	2.3082	2.2458
CONDUCTIVITY	3.9843	3.9843	3.7959	3.0578
PRANDTL NUMBER	0.6264	0.6264	0.6326	0.6566
PERFORMANCE PARA	AMETERS			
Ae/At		378.50	1.0000	3.7692
CSTAR, M/SEC		378.50 1898.8	1898.8	
CF		0.0011	0.6538	1.4137
Ivac, M/SEC		718689.8	2339.8	3070.5
Isp, M/SEC		2.0	1241.5	2684.3
MASS FRACTIONS				
*C0	0.38268	0.38268	0.37390	0.33875
*C02	0.18786	0.18786	0.20166	0.25692
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00259	0.00259	0.00223	0.00087
HCO	0.00002	0.00002	0.00001	0.00000
H02	0.00007	0.00007	0.00004	0.00000
*H2	0.01420	0.01420	0.01382	0.01314
H20	0.32716	0.32716	0.33857	0.37443
H202	0.00001	0.00001	0.00001	0.00000

0.01021 0.01021 0.00764 0.00092

*0

*OH 0.05493 0.05493 0.04584 0.01259 *O2 0.02026 0.02026 0.01626 0.00237

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA

MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002

CASE = _____

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

O/F= 1.35000 %FUEL= 42.553191 R,EQ.RATIO= 1.365120 PHI,EQ.RATIO= 1.466362

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7275	18.532
P, BAR	17.237	17.237	9.9777	0.93011
T, K	3493.68	3493.68	3330.02	2695.10
RHO, KG/CU M	1.1972 0	1.1972 0	7.3801-1	8.9783-2
H, KJ/KG	-233.01	-233.01	-995.76	-3812.75
U, KJ/KG	-1672.72	-1672.72	-2347.75	-4848.70
G, KJ/KG	-46015.5	-46015.5	-44633.6	-39130.3
S, KJ/(KG)(K)	13.1044	13.1044	13.1044	13.1044
M, (1/n)	20.176	20.176	20.479	21.631
(dLV/dLP)t	-1.04889	-1.04889	-1.04269	-1.01468
(dLV/dLT)p	1.8667	1.8667	1.7956	1.3387
Cp, KJ/(KG)(K)	8.6890	8.6890	8.3680	5.2856
GAMMAs	1.1317	1.1317	1.1284	1.1308
SON VEL,M/SEC	1276.4	1276.4	1235.1	1082.3
MACH NUMBER	0.000	0.001	1.000	2.472

TRANSPORT PROPERTIES (GASES ONLY)

CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.0834 1.0834 1.0488 0.90956

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K) 8.6890 8.6890 8.3680 5.2856

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

/11/22, 6:38 PM				
CONDUCTIVITY PRANDTL NUMBER				
WITH FROZEN REA	CTIONS			
Cp, KJ/(KG)(K) CONDUCTIVITY PRANDTL NUMBER	3.9458	3.9458	3.7642	3.0654
PERFORMANCE PARA	METERS			
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		403.90 1891.0 0.0010 763773.4 1.9	0.6532 2329.7	1891.0 1.4150 3062.9
MASS FRACTIONS				
*C0 *C02 COOH *H HCO H02 *H2 H20 H202 *O	0.36691 0.19585 0.00001 0.00253 0.00002 0.00009 0.01298 0.32577 0.00001 0.01169 0.05888	0.00001 0.00253 0.00002 0.00009 0.01298 0.32577 0.00001 0.01169	0.35753 0.21059 0.00001 0.00220 0.00001 0.00005 0.01256 0.33720 0.00001 0.00899 0.04989	0.27145 0.00000 0.00095 0.00000 0.00000 0.01155 0.37524 0.00000 0.00146
*02	0.02527	0.02527	0.02096	0.00428

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002

CASE = _____

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.000000	-12979.000	90.170

O/F= 1.40000 %FUEL= 41.666667 R,EQ.RATIO= 1.326651 PHI,EQ.RATIO= 1.413992

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7265	18.532
P, BAR	17.237	17.237	9.9835	0.93011
T, K	3503.28	3503.28	3342.09	2727.79
RHO, KG/CU M	1.2087 0	1.2087 0	7.4501-1	9.0020-2
H, KJ/KG	-236.61	-236.61	-991.56	-3790.65
U, KJ/KG	-1662.66	-1662.66	-2331.62	-4823.87
G, KJ/KG	-45788.5	-45788.5	-44447.6	-39259.2
S, KJ/(KG)(K)	13.0027	13.0027	13.0027	13.0027
M, (1/n)	20.426	20.426	20.736	21.951
(dLV/dLP)t	-1.05184	-1.05184	-1.04600	-1.01859
(dLV/dLT)p	1.9176	1.9176	1.8557	1.4259
Cp, KJ/(KG)(K)	8.9519	8.9519	8.7110	5.9676
GAMMAs	1.1304	1.1304	1.1268	1.1242
SON VEL,M/SEC	1269.7	1269.7	1228.8	1077.7
MACH NUMBER	0.000	0.002	1.000	2.474

TRANSPORT PROPERTIES (GASES ONLY)
CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.0901 1.0901 1.0561 0.92283

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K) 8.9519 8.9519 8.7110 5.9676 CONDUCTIVITY 20.9547 20.9547 19.6071 11.5026 PRANDTL NUMBER 0.4657 0.4657 0.4692 0.4788

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K) 2.2796 2.2796 2.2690 2.2164 CONDUCTIVITY 3.9075 3.9075 3.7320 3.0670 PRANDTL NUMBER 0.6359 0.6359 0.6421 0.6669

PERFORMANCE PARAMETERS

Ae/At 309.84 1.0000 3.8143 CSTAR, M/SEC 1882.9 1882.9 1882.9 CF 0.0013 0.6526 1.4160 Ivac, M/SEC 583380.7 2319.3 3053.6 Isp, M/SEC 2.4 1228.8 2666.1

MASS FRACTIONS

*CO 0.35187 0.35187 0.34195 0.29979

*C02	0.20339	0.20339	0.21899	0.28525
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00246	0.00246	0.00215	0.00100
HCO	0.00002	0.00002	0.00001	0.00000
H02	0.00010	0.00010	0.00006	0.00000
*H2	0.01189	0.01189	0.01146	0.01019
H20	0.32387	0.32387	0.33524	0.37459
H202	0.00001	0.00001	0.00001	0.00000
*0	0.01315	0.01315	0.01034	0.00213
*0H	0.06243	0.06243	0.05355	0.01996
*02	0.03081	0.03081	0.02624	0.00707

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

```
Pin = 250.0 PSIA

MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002

CASE = _____
```

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H20(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

O/F= 1.45000 %FUEL= 40.816327 R,EQ.RATIO= 1.290291 PHI,EQ.RATIO= 1.365234

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7257	18.532
P, BAR	17.237	17.237	9.9882	0.93011
T, K	3510.48	3510.48	3351.33	2753.47
RHO, KG/CU M	1.2204 0	1.2204 0	7.5218-1	9.0403-2
H, KJ/KG	-240.05	-240.06	-987.31	-3766.50
U, KJ/KG	-1652.40	-1652.40	-2315.22	-4795.35
G, KJ/KG	-45539.6	-45539.6	-44233.1	-39297.5
S, KJ/(KG)(K)	12.9041	12.9041	12.9041	12.9041
M, (1/n)	20.666	20.666	20.984	22.252
(dLV/dLP)t	-1.05438	-1.05438	-1.04890	-1.02266
(dLV/dLT)p	1.9618	1.9618	1.9083	1.5165
Cp, KJ/(KG)(K)	9.1653	9.1653	8.9968	6.6559
GAMMAs	1.1294	1.1294	1.1255	1.1191
SON VEL,M/SEC	1263.0	1263.0	1222.5	1073.0
MACH NUMBER	0.000	0.002	1.000	2.475

TRANSPORT PROPERTIES (GASES ONLY)
CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.0958 1.0958 1.0625 0.93396

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K)	9.1653	9.1653	8.9968	6.6559
CONDUCTIVITY	21.3585	21.3585	20.1462	12.6601
PRANDTL NUMBER	0.4702	0.4702	0.4745	0.4910

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K)	2.2604	2.2604	2.2502	2.2012
CONDUCTIVITY	3.8696	3.8696	3.6995	3.0635
PRANDTL NUMBER	0.6401	0.6401	0.6462	0.6711

PERFORMANCE PARAMETERS

Ae/At	313.00	1.0000	3.8300
CSTAR, M/SEC	1874.5	1874.5	1874.5
CF	0.0013	0.6522	1.4168
Ivac, M/SEC	586717.8	2308.7	3043.1
Isp, M/SEC	2.4	1222.5	2655.7

MASS FRACTIONS

*C0	0.33753	0.33753	0.32713	0.28184
*C02	0.21049	0.21049	0.22684	0.29802
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00238	0.00238	0.00209	0.00103
HC0	0.00001	0.00001	0.00001	0.00000
H02	0.00012	0.00012	0.00008	0.00001
*H2	0.01093	0.01093	0.01049	0.00904
H20	0.32157	0.32157	0.33281	0.37279
H202	0.00001	0.00001	0.00001	0.00000
*0	0.01455	0.01455	0.01165	0.00291
*0H	0.06558	0.06558	0.05682	0.02356
*02	0.03682	0.03682	0.03207	0.01079

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

12/11/22, 6:38 PM Pin = 250.0 PSIA 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002MDOT/Ac =CASE = REACTANT WT FRACTION **ENERGY TEMP** (SEE NOTE) KJ/KG-MOL Κ FUEL C2H5OH(L) 0.9500000 0.000 0.000 FUEL H20(L) 0.0500000 0.000 0.000 OXIDANT 02(L) 1.0000000 -12979.000 90.170 0/F= 1.50000 %FUEL= 40.000000 R,EO.RATIO= 1.255871 PHI,EO.RATIO= 1.319726 INJECTOR COMB END THROAT **EXIT** Pinj/P 1.0000 1.0000 1.7251 18.532 P, BAR 9.9920 0.93011 17.237 17.237 T, K 3515.66 3515.66 3358.19 2773.25 RHO, KG/CU M 1.2324 0 1.2324 0 7.5947-1 9.0900-2 H, KJ/KG -243.37 -243.37 -983.04 -3740.90 U, KJ/KG -1642.05 -1642.05 -2298.70 -4764.12 G, KJ/KG -45273.8 -45273.8 -43996.5 -39262.2 S, KJ/(KG)(K)12.8085 12.8085 12.8085 12.8085 M, (1/n)20.899 20.899 21.223 22.535 (dLV/dLP)t -1.05651 -1.05651 -1.05137 -1.02664 (dLV/dLT)p 1.9992 1.9992 1.9534 1.6045 Cp, KJ/(KG)(K)9.3322 9.3322 9.2267 7.3047 GAMMAs 1.1285 1.1285 1.1244 1.1153 SON VEL, M/SEC 1256.3 1256.3 1216.3 1068.3 MACH NUMBER 0.000 0.002 1.000 2.476 TRANSPORT PROPERTIES (GASES ONLY) CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K) VISC, MILLIPOISE 1.1008 1.1008 1.0679 0.94318 WITH EQUILIBRIUM REACTIONS 9.2267 Cp, KJ/(KG)(K)9.3322 9.3322 7.3047

CONDUCTIVITY 21.6806 21.6806 20.5917 13.7527 0.4738 PRANDTL NUMBER 0.4738 0.4785 0.5010

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K)2.2418 2.2418 2.2320 2.1858 CONDUCTIVITY 3.8323 3.8323 3.6670 3.0556 PRANDTL NUMBER 0.6440 0.6440 0.6500 0.6747

PERFORMANCE PARAMETERS

Ae/At	316.04	1.0000	3.8422
CSTAR, M/SEC	1866.0	1866.0	1866.6
CF	0.0013	0.6518	1.4174
Ivac, M/SEC	589742.2	2298.0	3031.7
Isp, M/SEC	2.4	1216.3	2644.8
MASS FRACTIONS			

*C0 0.32387 0.32387 0.31304 0.26501 *C02 0.21714 0.21714 0.23417 0.30965 COOH 0.00001 0.00001 0.00001 0.00000 0.00230 0.00230 0.00202 *H 0.00104 0.00001 0.00001 0.00001 HCO 0.00000 H02 0.00013 0.00013 0.00009 0.00001 *H2 0.01007 0.01007 0.00963 0.00807 H20 0.31897 0.31897 0.33004 0.37014 0.00001 0.00001 0.00001 0.00000 H202 *0 0.01588 0.01588 0.01291 0.00375 *0H 0.06835 0.06835 0.05970 0.02690 *02 0.04325 0.04325 0.03838 0.01543

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002 CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.000000	-12979.000	90.170

O/F= 1.55000 %FUEL= 39.215686 R,EQ.RATIO= 1.223240 PHI,EQ.RATIO= 1.277154

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7245	18.532
P, BAR	17.237	17.237	9.9952	0.93011
T, K	3519.10	3519.10	3363.03	2788.19
RHO, KG/CU M	1.2444 0	1.2444 0	7.6684-1	9.1486-2
H, KJ/KG	-246.55	-246.55	-978.77	-3714.35
U, KJ/KG	-1631.68	-1631.69	-2282.18	-4731.02
G, KJ/KG	-44995.2	-44995.2	-43742.9	-39168.9

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

2/11/22	, 6:38 PM				
S, I	KJ/(KG)(K)	12.7159	12.7159	12.7159	12.7159
М.	(1/n) V/dLP)t	21.124	21.124	21.453	22.802
(di v	V/dI b)+	-1.05826	-1.05826	-1.05341	-1.03029
(qr)	V/dLT)p	2 0301	2.0301	1 9911	1 6851
Cn	KJ/(KG)(K)				
GAM			1.1278		
SON	VEL,M/SEC	17/10 0	17/0 0	1710 1	1063 5
MACI	H NUMBER	0.000	0.002	1.000	2.476
	NSPORT PROPER				
C	ONDUCTIVITY 1	IN UNITS (OF MILLIWA	ATTS/(CM)	(K)
VIS	C,MILLIPOISE	1.1052	1.1052	1.0726	0.95077
WI	TH EQUILIBRIU	JM REACTIO	ONS		
Cp.	KJ/(KG)(K)	9,4564	9,4564	9.4042	7.8795
CONI	KJ/(KG)(K) DUCTIVITY	21.9255	21.9255	20.9462	14.7419
PRAI	NDTL NUMBER	0.4766	0.4766	0.4815	0.5082
WI.	TH FROZEN REA	ACTIONS			
Cn	KJ/(KG)(K)	2 2239	2 2239	2 21/1/	2 1705
	DUCTIVITY		3.7957		
	NDTL NUMBER	0.6475	0.6475	0.6534	0.6779
PER	FORMANCE PARA	METERS			
Ae/	At		318.94	1.0000	3.8516
	AR, M/SEC		1857.4	1857.4	1857.4
CF			318.94 1857.4 0.0013 592419.7 2.3	0.6515	1.4178
	c, M/SEC		592419.7	2287.2	3019.6
Isp	, M/SEC		2.3	1210.1	2633.6
MAS:	S FRACTIONS				
*C0		0.31084	0.31084	0.29965	0.24929
*C0	2	0.22337	0.22337	0.24097	0.32011
COOL		0.00001	0.00001	0.00001	0.00000
*H		0.00222	0.00222	0.00195	0.00103
HCO		0.00001	0.00001	0.00001	0.00000
H02		0.00015	0.00015	0.00010	0.00001
*H2		0.00931	0.00931	0.00886	0.00724
H20		0.31613	0.31613	0.32701	0.36688
H20	2	0.00002	0.00002	0.00001	0.00000
*0	_	0.01714	0.00002	0.01411	0.00460
*0H		0.01714	0.07076	0.06221	0.02990
*02		0.05005	0.05005	0.04511	0.02990
	earlin arc nasa aov		5.63665	7701 html	0.02032
mne Hee		/		(/uːl html	

7791.html

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

```
Pin = 250.0 PSIA

MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002

CASE = _____
```

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.000000	-12979.000	90.170

O/F= 1.60000 %FUEL= 38.461538 R,EQ.RATIO= 1.192262 PHI,EQ.RATIO= 1.237243

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7241	18.532
P, BAR	17.237	17.237	9.9978	0.93011
T, K	3521.07	3521.07	3366.18	2799.23
RHO, KG/CU M	1.2565 0	1.2565 0	7.7428-1	9.2139-2
H, KJ/KG	-249.61	-249.61	-974.52	-3687.24
U, KJ/KG	-1621.37	-1621.37	-2265.76	-4696.70
G, KJ/KG	-44707.3	-44707.3	-43476.6	-39030.8
S, KJ/(KG)(K)	12.6262	12.6262	12.6262	12.6262
M, (1/n)	21.342	21.342	21.675	23.056
(dLV/dLP)t	-1.05965	-1.05965	-1.05506	-1.03347
(dLV/dLT)p	2.0552	2.0552	2.0218	1.7552
<pre>Cp, KJ/(KG)(K)</pre>	9.5426	9.5426	9.5342	8.3605
GAMMAs	1.1271	1.1271	1.1228	1.1104
SON VEL,M/SEC	1243.4	1243.4	1204.1	1058.7
MACH NUMBER	0.000	0.002	1.000	2.477

TRANSPORT PROPERTIES (GASES ONLY)
CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.1089 1.1089 1.0765 0.95698

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K) 9.5426 9.5426 9.5342 8.3605 CONDUCTIVITY 22.0983 22.0983 21.2148 15.6012 PRANDTL NUMBER 0.4788 0.4788 0.4838 0.5128

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K)	2.2066	2.2066	2.1973	2.1552
CONDUCTIVITY	3.7598	3.7598	3.6027	3.0301
PRANDTL NUMBER	0.6508	0.6508	0.6566	0.6807

PERFORMANCE PARAMETERS

Ae/At	321.68	1.0000	3.8589
CSTAR, M/SEC	1848.8	1848.8	1848.8
CF	0.0012	0.6513	1.4182
Ivac, M/SEC	594729.5	2276.5	3007.1
Isp, M/SEC	2.3	1204.1	2622.1

MASS FRACTIONS

*C0	0.29843	0.29843	0.28692	0.23463
*C02	0.22918	0.22918	0.24728	0.32945
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00213	0.00213	0.00188	0.00101
HC0	0.00001	0.00001	0.00001	0.00000
H02	0.00016	0.00016	0.00011	0.00002
*H2	0.00863	0.00863	0.00818	0.00653
H20	0.31311	0.31311	0.32380	0.36321
H202	0.00002	0.00002	0.00001	0.00000
*0	0.01832	0.01832	0.01523	0.00545
*OH	0.07284	0.07284	0.06437	0.03254
*02	0.05716	0.05716	0.05220	0.02715

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002 CASE = _____

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.000000	-12979.000	90.170

0/F= 1.65000 %FUEL= 37.735849 R,EQ.RATIO= 1.162813 PHI,EQ.RATIO= 1.199751

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P P, BAR T, K	1.0000	1.0000	1.7237	18.532
P, BAR	17.237	17.237	9.9999	0.93011
T, K	3521.79	3521.79	3367.90	2807.13
KHO, KG/CO M	1.268/ 0	1.268/ 0	/.81/4-1	9.2843-2
H, KJ/KG U, KJ/KG	-252.55	-252.55	-970.31	-3659.86
U, KJ/KG	-1611.14	-1611.15	-2249.50	-4661.67
טא/גא עט	-44412.0	-44412.0	-43200.9	-30030.0
S, KJ/(KG)(K)	12.5391	12.5391	12.5391	12.5391
M, (1/n) (dLV/dLP)t	21.553	21.553	21.891	23.298
(dLV/dLP)t	-1.06072	-1.06072	-1.05635	-1.03610
(dLV/dLT)p	2.0750	2.0750	2.0462	1.8135
Cp, KJ/(KG)(K)	9.5957	9.5957	9.6222	8.7417
(dLV/dLT)p Cp, KJ/(KG)(K) GAMMAs SON VEL,M/SEC	1.1266	1.1266	1.1222	1.1088
SON VEL,M/SEC	1237.2	1237.2	1198.1	1054.0
MACH NUMBER	0.000	0.002	1.000	2.477
TRANSPORT PROPE	DTTES (GAS	SEC UNIV		
CONDUCTIVITY			ATTS / (CM)	(K)
CONDOCTIVITI	IN ONITIO) HILLIMA	(Cn)	()
VISC,MILLIPOISE	1.1120	1.1120	1.0799	0.96202
WITH EQUILIBRI	UM REACTIO	ONS		
Cp, KJ/(KG)(K)	9.5957	9.5957	9.6222	8.7417
CONDUCTIVITY				
PRANDTL NUMBER				
WITH FROZEN RE	ACTTONE			
MIIU LKOZEN KE	ACTIONS			
Cp, KJ/(KG)(K)	2.1898	2.1898	2.1807	2.1402
CONDUCTIVITY	3.7247	3.7247	3.5711	3.0139
PRANDTL NUMBER				0.6831
PERFORMANCE PAR	AMETERS			
		224 22	1 0000	2.0646
Ae/At				3.8646
CSTAR, M/SEC			1840.3	
CF W/SEC			0.6511	
Ivac, M/SEC				2994.2
Isp, M/SEC		2.3	1198.1	2610.5
MASS FRACTIONS				
*C0	0.28661	0.28661	0.27483	0.22097
*C02		0.23459		
COOH		0.00001		
20011	0.0001	0.00001	0.00001	0.00000

*H	0.00205	0.00205	0.00181	0.00099
HCO	0.00001	0.00001	0.00001	0.00000
H02	0.00018	0.00018	0.00012	0.00002
*H2	0.00801	0.00801	0.00758	0.00592
H20	0.30997	0.30997	0.32044	0.35926
H202	0.00002	0.00002	0.00001	0.00000
*0	0.01940	0.01940	0.01626	0.00625
*0H	0.07460	0.07460	0.06622	0.03482
*02	0.06455	0.06455	0.05960	0.03402

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

```
Pin = 250.0 PSIA

MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002

CASE = _____
```

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H50H(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.000000	-12979.000	90.170

O/F= 1.70000 %FUEL= 37.037037 R,EQ.RATIO= 1.134785 PHI,EQ.RATIO= 1.164464

	INJECTOR	COMB END) THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7234	18.532
P, BAR	17.237	17.237	10.002	0.93011
T, K	3521.44	3521.44	3368.40	2812.49
RHO, KG/CU M	1.2809 0	1.2809 0	7.8922-1	9.3583-2
H, KJ/KG	-255.38	-255.39	-966.16	-3632.43
U, KJ/KG	-1601.05	-1601.05	-2233.46	-4626.32
G, KJ/KG	-44113.9	-44113.9	-42918.6	-38661.1
S, KJ/(KG)(K)	12.4547	12.4547	12.4547	12.4547
M, (1/n)	21.758	21.758	22.099	23.528
(dLV/dLP)t	-1.06150	-1.06150	-1.05730	-1.03819
(dLV/dLT)p	2.0900	2.0900	2.0649	1.8598
<pre>Cp, KJ/(KG)(K)</pre>	9.6202	9.6202	9.6738	9.0266
GAMMAs	1.1261	1.1261	1.1217	1.1077
SON VEL,M/SEC	1231.0	1231.0	1192.3	1049.3
MACH NUMBER	0.000	0.002	1.000	2.477

TRANSPORT PROPERTIES (GASES ONLY)

CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.1147 1.1147 1.0828 0.96609

WITH EQUILIBRIUM REACTIONS

<pre>Cp, KJ/(KG)(K)</pre>	9.6202	9.6202	9.6738	9.0266
CONDUCTIVITY	22.2527	22.2527	21.5203	16.8860
PRANDTL NUMBER	0.4819	0.4819	0.4867	0.5164

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K)	2.1736	2.1736	2.1647	2.1253
CONDUCTIVITY	3.6903	3.6903	3.5400	2.9961
PRANDTI NUMBER	0 6565	0 6565	0 6621	0 6853

PERFORMANCE PARAMETERS

Ae/At	326.57	1.0000	3.8690
CSTAR, M/SEC	1831.8	1831.8	1831.8
CF	0.0012	0.6509	1.4187
Ivac, M/SEC	598219.7	2255.2	2981.3
Isp, M/SEC	2.2	1192.3	2598.9

MASS FRACTIONS

*C0	0.27533	0.27533	0.26333	0.20823
*C02	0.23963	0.23963	0.25850	0.34508
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00196	0.00196	0.00174	0.00095
HC0	0.00001	0.00001	0.00001	0.00000
H02	0.00019	0.00019	0.00013	0.00002
*H2	0.00746	0.00746	0.00703	0.00539
H20	0.30674	0.30674	0.31700	0.35515
H202	0.00002	0.00002	0.00001	0.00000
*0	0.02040	0.02040	0.01722	0.00701
*OH	0.07609	0.07609	0.06778	0.03675
*02	0.07215	0.07215	0.06726	0.04141

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA

MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002

12/11/22, 6:38 PM

7791.html

CASE = _____

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

O/F= 1.75000 %FUEL= 36.363636 R,EQ.RATIO= 1.108076 PHI,EQ.RATIO= 1.131194

EYTT

INJECTOR	COMB END	IHKUAI	EXTI
1.0000	1.0000	1.7231	18.532
17.237	17.237	10.003	0.93011
3520.17	3520.17	3367.87	2815.79
1.2931 0	1.2931 0	7.9669-1	9.4351-2
-258.11	-258.12	-962.06	-3605.11
-1591.10	-1591.10	-2217.66	-4590.91
-43812.5	-43812.5	-42632.0	-38444.3
12.3728	12.3728	12.3728	12.3728
21.957	21.957	22.302	23.749
-1.06203	-1.06203	-1.05797	-1.03975
2.1008	2.1008	2.0785	1.8949
9.6204	9.6204	9.6942	9.2244
1.1257	1.1257	1.1213	1.1068
1225.0	1225.0	1186.6	1044.6
0.000	0.002	1.000	2.477
	1.0000 17.237 3520.17 1.2931 0 -258.11 -1591.10 -43812.5 12.3728 21.957 -1.06203 2.1008 9.6204 1.1257 1225.0	1.0000 1.0000 17.237 17.237 3520.17 3520.17 1.2931 0 1.2931 0 -258.11 -258.12 -1591.10 -1591.10 -43812.5 -43812.5 12.3728 12.3728 21.957 21.957 -1.06203 -1.06203 2.1008 2.1008 9.6204 9.6204 1.1257 1.1257 1225.0 1225.0	1.0000 1.0000 1.7231 17.237 17.237 10.003 3520.17 3520.17 3367.87 1.2931 0 1.2931 0 7.9669-1 -258.11 -258.12 -962.06 -1591.10 -1591.10 -2217.66 -43812.5 -43812.5 -42632.0 12.3728 12.3728 12.3728 21.957 21.957 22.302 -1.06203 -1.06203 -1.05797 2.1008 2.1008 2.0785 9.6204 9.6204 9.6942 1.1257 1.1257 1.1213 1225.0 1225.0 1186.6

TNITECTOR COMP END THROAT

TRANSPORT PROPERTIES (GASES ONLY)
CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.1169 1.1169 1.0851 0.96933

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K) 9.6204 9.6204 9.6942 9.2244 CONDUCTIVITY 22.2471 22.2471 21.5717 17.3141 PRANDTL NUMBER 0.4830 0.4830 0.4876 0.5164

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K) 2.1579 2.1579 2.1492 2.1108 CONDUCTIVITY 3.6568 3.6568 3.5093 2.9771 PRANDTL NUMBER 0.6591 0.6591 0.6646 0.6873

PERFORMANCE PARAMETERS

Ae/At 328.73 1.0000 3.8724 CSTAR, M/SEC 1823.4 1823.4 1823.4

CF Ivac, M/SEC Isp, M/SEC		0.0012 599411.1 2.2	0.6507 2244.7 1186.5	1.4189 2968.3 2587.3
MASS FRACTIONS				
*C0	0.26457	0.26457	0.25239	0.19632
*C02	0.24430	0.24430	0.26346	0.35156
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00188	0.00188	0.00167	0.00092
HC0	0.00001	0.00001	0.00001	0.00000
H02	0.00021	0.00021	0.00014	0.00002
*H2	0.00695	0.00695	0.00654	0.00492
H20	0.30346	0.30346	0.31350	0.35094
H202	0.00002	0.00002	0.00001	0.00000
*0	0.02131	0.02131	0.01808	0.00771
*0H	0.07732	0.07732	0.06907	0.03836
*02	0.07995	0.07995	0.07512	0.04924

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

```
Pin = 250.0 PSIA
MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002
CASE = _____
```

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.000000	-12979.000	90.170

O/F= 1.80000 %FUEL= 35.714286 R,EQ.RATIO= 1.082595 PHI,EQ.RATIO= 1.099772

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7229	18.532
P, BAR	17.237	17.237	10.005	0.93011
T, K	3518.11	3518.11	3366.45	2817.40
RHO, KG/CU M	1.3053 0	1.3052 0	8.0415-1	9.5139-2
H, KJ/KG	-260.75	-260.75	-958.03	-3578.04
U, KJ/KG	-1581.32	-1581.32	-2202.15	-4555.67
G, KJ/KG	-43510.0	-43510.0	-42342.8	-38213.2
S, KJ/(KG)(K)	12.2933	12.2933	12.2933	12.2933

M, (1/n)	22.151	22.151	22.498	23.961
(dLV/dLP)t	-1.06234	-1.06234	-1.05839	-1.04084
(dLV/dLT)p	2.1080	2.1080	2.0878	1.9200
Cp, KJ/(KG)(K)	9.5999	9.5999	9.6882	9.3464
GAMMAs	1.1254	1.1254	1.1209	1.1062
SON VEL,M/SEC	1219.1	1219.1	1180.9	1039.9
MACH NUMBER	0.000	0.002	1.000	2.477

TRANSPORT PROPERTIES (GASES ONLY) CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.1188 1.1188 1.0871 0.97187

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K)	9.5999	9.5999	9.6882	9.3464
CONDUCTIVITY	22.1947	22.1947	21.5655	17.6117
PRANDTL NUMBER	0.4839	0.4839	0.4884	0.5158

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K)	2.1427	2.1427	2.1341	2.0965
CONDUCTIVITY	3.6240	3.6240	3.4792	2.9572
PRANDTI NUMBER	0.6615	0.6615	0.6668	0.6890

PERFORMANCE PARAMETERS

Ae/At	330.70	1.0000	3.8752
CSTAR, M/SEC	1815.1	1815.1	1815.1
CF	0.0012	0.6506	1.4191
Ivac, M/SEC	600252.2	2234.4	2955.3
Isp, M/SEC	2.2	1180.9	2575.8

MASS FRACTIONS

*C0	0.25431	0.25431	0.24198	0.18519
*C02	0.24864	0.24864	0.26803	0.35727
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00180	0.00180	0.00160	0.00088
HC0	0.00001	0.00001	0.00000	0.00000
H02	0.00022	0.00022	0.00015	0.00003
*H2	0.00650	0.00650	0.00610	0.00451
H20	0.30014	0.30014	0.30998	0.34669
H202	0.00002	0.00002	0.00001	0.00000
*0	0.02213	0.02213	0.01887	0.00834
*0H	0.07832	0.07832	0.07012	0.03969
*02	0.08789	0.08789	0.08315	0.05740

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002 CASE = ______

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H50H(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

O/F= 1.85000 %FUEL= 35.087719 R,EQ.RATIO= 1.058260 PHI,EQ.RATIO= 1.070048

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7227	18.532
P, BAR	17.237	17.237	10.006	0.93011
T, K	3515.37	3515.37	3364.26	2817.62
RHO, KG/CU M	1.3174 0	1.3174 0	8.1158-1	9.5942-2
H, KJ/KG	-263.29	-263.29	-954.07	-3551.28
U, KJ/KG	-1571.72	-1571.73	-2186.94	-4520.73
G, KJ/KG	-43207.6	-43207.6	-42052.4	-37971.7
S, KJ/(KG)(K)	12.2161	12.2161	12.2161	12.2161
M, (1/n)	22.339	22.339	22.689	24.165
(dLV/dLP)t	-1.06246	-1.06246	-1.05859	-1.04153
(dLV/dLT)p	2.1120	2.1120	2.0933	1.9363
<pre>Cp, KJ/(KG)(K)</pre>	9.5622	9.5622	9.6600	9.4045
GAMMAs	1.1251	1.1251	1.1206	1.1058
SON VEL,M/SEC	1213.3	1213.3	1175.4	1035.4
MACH NUMBER	0.000	0.002	1.000	2.477

TRANSPORT PROPERTIES (GASES ONLY)
CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

VISC, MILLIPOISE 1.1203 1.1203 1.0886 0.97382

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K) 9.5622 9.5622 9.6600 9.4045 CONDUCTIVITY 22.1012 22.1012 21.5087 17.7919 PRANDTL NUMBER 0.4847 0.4847 0.4889 0.5147

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K) CONDUCTIVITY PRANDTL NUMBER	3.5919	3.5919	3.4497	2.9367		
PERFORMANCE PARAMETERS						
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		332.48 1806.9 0.0012 600763.7 2.2	1806.9 0.6505 2224.3	1.4192 2942.4		
MASS FRACTIONS						
*C0 *C02 C00H *H HC0 H02 *H2 H20 H202 *O *OH	0.24452 0.25265 0.00001 0.00173 0.00001 0.00024 0.00608 0.29682 0.00002 0.02287 0.07910 0.09595	0.00001 0.00173 0.00001 0.00024 0.00608 0.29682 0.00002 0.02287 0.07910	0.00001 0.00153 0.00000 0.00016 0.00569 0.30645 0.00001 0.01957	0.36228 0.00000 0.00084 0.00000 0.00003 0.00415 0.34244 0.00000 0.00890 0.04076		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002 CASE = _____

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

0/F= 1.90000 %FUEL= 34.482759 R,EQ.RATIO= 1.034994 PHI,EQ.RATIO= 1.041889

INJECTOR COMB END THROAT EXIT

2	/11/22, 6:38 PM				
	Pinj/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG)(K)	3512.05 1.3294 0 -265.74 -1562.32 -42906.2	3512.05 1.3294 0 -265.75 -1562.32 -42906.2	3361.42 8.1898-1 -950.19 -2172.03 -41761.9	2816.68 9.6756-2 -3524.91 -4486.21 -37722.8
	M, (1/n) (dLV/dLP)t (dLV/dLT)p Cp, KJ/(KG)(K) GAMMAs SON VEL,M/SEC MACH NUMBER	2.1133 9.5100 1.1248 1207.6	2.1133 9.5100 1.1248 1207.6	2.0955 9.6132 1.1204 1170.0	1.9452 9.4096 1.1054 1030.8
	TRANSPORT PROPER CONDUCTIVITY: VISC, MILLIPOISE WITH EQUILIBRIU	1.1215	0F MILLIWA 1.1215		
	Cp, KJ/(KG)(K) CONDUCTIVITY PRANDTL NUMBER WITH FROZEN REA	9.5100 21.9722 0.4854	9.5100 21.9722	21.4079	17.8688
	Cp, KJ/(KG)(K) CONDUCTIVITY PRANDTL NUMBER PERFORMANCE PARA	3.5606 0.6658	3.5606	3.4206	2.9157
	Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		0.0012	1.0000 1798.9 0.6504 2214.3 1170.0	1.4193 2929.6
	MASS FRACTIONS				
	*C0 *C02 C00H *H HC0	0.25636 0.00001 0.00165	0.23517 0.25636 0.00001 0.00165 0.00001	0.27609 0.00001 0.00146	0.36668 0.00000 0.00080

H02	0.00025	0.00025	0.00017	0.00003
*H2	0.00571	0.00571	0.00533	0.00382
H20	0.29349	0.29349	0.30293	0.33821
H202	0.00002	0.00002	0.00001	0.00000
*0	0.02352	0.02352	0.02020	0.00939
*0H	0.07970	0.07970	0.07160	0.04159
*02	0.10409	0.10409	0.09957	0.07449

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

```
Pin = 250.0 PSIA
MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002
CASE = _____
```

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	0.9500000	0.000	0.000
FUEL	H2O(L)	0.0500000	0.000	0.000
OXIDANT	02(L)	1.0000000	-12979.000	90.170

O/F= 1.95000 %FUEL= 33.898305 R,EQ.RATIO= 1.012730 PHI,EQ.RATIO= 1.015174

	INJECTOR	COMB END	THROAT	EXIT
Pinj/P	1.0000	1.0000	1.7224	18.532
P, BAR	17.237	17.237	10.007	0.93011
T, K	3508.21	3508.21	3358.02	2814.76
RHO, KG/CU M	1.3414 0	1.3414 0	8.2634-1	9.7577-2
H, KJ/KG	-268.11	-268.12	-946.38	-3498.97
U, KJ/KG	-1553.11	-1553.11	-2157.44	-4452.18
G, KJ/KG	-42606.5	-42606.5	-41472.2	-37468.6
S, KJ/(KG)(K)	12.0684	12.0684	12.0684	12.0684
M, (1/n)	22.700	22.700	23.054	24.552
(dLV/dLP)t	-1.06222	-1.06222	-1.05845	-1.04192
(dLV/dLT)p	2.1121	2.1121	2.0948	1.9479
<pre>Cp, KJ/(KG)(K)</pre>	9.4460	9.4460	9.5512	9.3714
GAMMAs	1.1246	1.1246	1.1201	1.1052
SON VEL,M/SEC	1202.1	1202.1	1164.7	1026.4
MACH NUMBER	0.000	0.002	1.000	2.477

TRANSPORT PROPERTIES (GASES ONLY)
CONDUCTIVITY IN UNITS OF MILLIWATTS/(CM)(K)

7791.html

VISC, MILLIPOISE 1.1224 1.1224 1.0908 0.97626

WITH EQUILIBRIUM REACTIONS

Cp, KJ/(KG)(K)	9.4460	9.4460	9.5512	9.3714
CONDUCTIVITY	21.8125	21.8125	21.2691	17.8564
PRANDTL NUMBER	0.4861	0.4861	0.4898	0.5124

WITH FROZEN REACTIONS

Cp, KJ/(KG)(K)	2.0999	2.0999	2.0917	2.0557
CONDUCTIVITY	3.5301	3.5301	3.3922	2.8944
PRANDTI NUMBER	0 6677	0 6677	0 6726	0 6934

PERFORMANCE PARAMETERS

Ae/At	335.52	1.0000	3.8802
CSTAR, M/SEC	1791.0	1791.0	1791.0
CF	0.0012	0.6503	1.4194
Ivac, M/SEC	600896.0	2204.5	2917.0
Isp, M/SEC	2.1	1164.7	2542.0

MASS FRACTIONS

*C0	0.22624	0.22624	0.21362	0.15579
*C02	0.25979	0.25979	0.27962	0.37051
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00158	0.00158	0.00140	0.00076
HCO	0.00001	0.00001	0.00000	0.00000
H02	0.00026	0.00026	0.00018	0.00004
*H2	0.00536	0.00536	0.00499	0.00353
H20	0.29019	0.29019	0.29943	0.33403
H202	0.00002	0.00002	0.00001	0.00000
*0	0.02410	0.02410	0.02075	0.00982
*0H	0.08013	0.08013	0.07207	0.04223
*02	0.11230	0.11230	0.10791	0.08330

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR

Pin = 250.0 PSIA MDOT/Ac = 3.834 (KG/S)/M**2 Pinj/Pinf = 1.000002 CASE =

REACTANT					ENERGY KJ/KG-MOL	
FUEL	C2H5OH(L)				0.000	
FUEL	H2O(L)				0.000	
OXIDANT	02(L)				-12979.000	
0/F= 2.0	0000 %FUEL=	33.333333	R,EQ.RA	ΓΙΟ= 0.991	.404 PHI,EQ.RA	TIO= 0.989795
		COMB END				
	1.0000					
P, BAR	17.237	17.237	10.008	0.93011		
T, K	3503.93 M 1.3533 0	3503.93	3354.12	2812.01		
RHO, KG/CU	M 1.3533 0	1.3533 0	8.3365-1	9.8404-2		
H, KJ/KG	-270.41	-270.41	-942.65	-3473.49		
U, KJ/KG	-1544.09	-1544.09	-2143.17	-4418.69		
G, KJ/KG	-42309.2	-42309.2	-41184.1	-37210.9		
S, KJ/(KG)(-270.41 -1544.09 -42309.2 K) 11.9976	11.9976	11.9976	11.9976		
M (1/n)	22.873	22 873	23 230	24 736		
(4) A/4) b)+	-1.06191	-1 06191	-1 05817	-1 04173		
(dIV/dIT)n	2 1090	2 1090	2 0918	1 9453		
(alv/ali/p	(K) 9 3721	9 3721	9 4764	9 2984		
GAMMAs	2.1090 (K) 9.3721 1.1244 EC 1196.7	1 12//	1 1100	1 1051		
CON VEL M/C	FC 1106 7	1106 7	1150 5	1022 0		
MACH NIIMDED	0.000	0 002	1 000	2 477		
MACH NOMBER	0.000	0.002	1.000	2.4//		
TRANSPORT P	ROPERTIES (GA	SES ONLY)				
CONDUCTIV	ITY IN UNITS	OF MILLIWA	ATTS/(CM)	(K)		
VISC,MILLIP	OISE 1.1231	1.1231	1.0915	0.97687		
WITH EQUIL	IBRIUM REACTI	ONS				
Cp, KJ/(KG)	(K) 9.3721	9.3721	9.4764	9.2984		
	Ý 21.6267					
	BER 0.4867					
WITH FROZEN REACTIONS						
Cp, KJ/(KG)	(K) 2.0865	2.0865	2.0784	2.0427		
CONDUCTIVIT		3.5002		2.8729		
PRANDTL NUM	BER 0.6695	0.6695	0.6743	0.6946		
PERFORMANCE PARAMETERS						
Ae/At		336.80	1.0000	3.8811		
CSTAR, M/SE	r	1783.2				
CF CSTAR, M/3E		0.0012				
Ivac, M/SEC		600569.3				
1 vac, 11/3EC		0000005.5	Z134,3	2904.3		

Isp, M/SEC 2.1 1159.5 2531.0

MASS FRACTIONS

*C0	0.21770	0.21770	0.20504	0.14714
*C02	0.26295	0.26295	0.28285	0.37384
COOH	0.00001	0.00001	0.00001	0.00000
*H	0.00151	0.00151	0.00134	0.00072
HCO	0.00001	0.00001	0.00000	0.00000
H02	0.00027	0.00027	0.00019	0.00004
*H2	0.00504	0.00504	0.00468	0.00327
H20	0.28691	0.28691	0.29597	0.32991
H202	0.00002	0.00002	0.00001	0.00000
*0	0.02461	0.02461	0.02123	0.01019
*0H	0.08041	0.08041	0.07238	0.04268
*02	0.12054	0.12054	0.11628	0.09222

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS