

AD-A032 539 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OHIO SCHO--ETC F/G 15/5
ANALYSIS OF AIRCRAFT MAINTENANCE FACILITY ASSIGNMENTS AT WRIGHT--ETC(U)
SEP 76 T M GRIFFITH, H A STEWART

UNCLASSIFIED

SLSR-17-76B

NL

OF 2
AD-A
032 539

THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A032 539

ANALYSIS OF AIRCRAFT MAINTENANCE FACILITY
ASSIGNMENTS AT WRIGHT-PATTERSON AIR FORCE
BASE, OHIO

AIR FORCE INSTITUTE OF TECHNOLOGY,
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

SEPTEMBER 1976

ACCESSION for	
NTIS	White Section <input checked="" type="checkbox"/>
DOC	Buff Section <input type="checkbox"/>
UNANNOUNCED	<input type="checkbox"/>
JUSTIFICATION	
BY	
DISTRIBUTION/AVAILABILITY CODES	
Distr.	AVAIL. and/or SPECIAL
A	

D D C
RECORDED
NOV 26 1976
RECORDED
B

**ANALYSIS OF AIRCRAFT MAINTENANCE
FACILITY ASSIGNMENTS AT WRIGHT-
PATTERSON AFB, OHIO**

Thomas M. Griffith, Captain, USAF
Herbert A. Stewart, Captain, USAF

SLSR 17-76B

DISTRIBUTION STATEMENT A	
Approved for public release; Distribution Unlimited	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER SLSR 17-76B	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) ANALYSIS OF AIRCRAFT MAINTENANCE FACILITY ASSIGNMENTS AT WRIGHT- PATTERSON AFB, OHIO		5. TYPE OF REPORT & PERIOD COVERED Master's Thesis
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Thomas M. Griffith, Captain, USAF Herbert A. Stewart, Captain, USAF		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Graduate Education Division School of Systems and Logistics Air Force Institute of Technology, WPAFB OH		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Department of Research and Communicative Studies (SLGR) AFIT/SLGR, WPAFB OH 45433		12. REPORT DATE September 1976
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 104
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE AFR 190-17. <i>[Signature]</i> JERAL F. GUESS, CAPT, USAF Director of Information		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Facilities; Facility Utilization; Aircraft Maintenance; Planning; Evaluation.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Thesis Chairman: Charles E. Ebeling, Captain, USAF		

ia

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

This research investigates the operational effectiveness of the facility assignments of the 4950th Test Wing Aircraft Maintenance Complex located at Wright-Patterson AFB, Ohio, by analyzing the total distance traveled by the personnel of the Complex over a period of time. The frequency and distance of the interactions between activities in a given set of fixed facilities, and alternative activity locations were evaluated. The objective of the investigation was to determine if the activity-facility assignments could be varied to decrease the total distance traveled between the activities. The analysis uses a heuristic variation of the steepest-descent pairwise-interchange solution procedure for quadratic assignment problems and evaluated the activity assignments. The results of the investigation show that the location of the functional activities of the 4950th Test Wing Aircraft Maintenance Complex can be changed to decrease the total distance involved in their interaction.

it

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications of AFIT thesis research. Please return completed questionnaires to: AFIT/SLGR (Thesis Feedback), Wright-Patterson AFB, Ohio 45433.

1. Did this research contribute to a current Air Force project?

- a. Yes b. No

2. Do you believe this research topic is significant enough that it would have been researched (or contracted) by your organization or another agency if AFIT had not researched it?

- a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent value that your agency received by virtue of AFIT performing the research. Can you estimate what this research would have cost if it had been accomplished under contract or if it had been done in-house in terms of manpower and/or dollars?

a. Man-years _____ \$ _____ (Contract).

b. Man-years _____ \$ _____ (In-house).

4. Often it is not possible to attach equivalent dollar values to research, although the results of the research may, in fact, be important. Whether or not you were able to establish an equivalent value for this research (3 above), what is your estimate of its significance?

- a. Highly Significant b. Significant c. Slightly Significant d. Of No Significance

5. Comments:

Name and Grade

Position

Organization

Location

SLSR 17-76B

**ANALYSIS OF AIRCRAFT MAINTENANCE
FACILITY ASSIGNMENTS AT WRIGHT-
PATTERSON AFB, OHIO**

A Thesis

**Presented to the Faculty of the School of Systems and Logistics
of the Air Force Institute of Technology
Air University**

**In Partial Fulfillment of the Requirements for the
Degree of Master of Science in Logistics Management
and Master of Science in Facilities Management**

By

**Thomas M. Griffith, BS
Captain, USAF**

**Herbert A. Stewart, BS
Captain, USAF**

September 1976

**Approved for public release;
distribution unlimited**

id

This thesis, written by

Captain Thomas M. Griffith

and

Captain Herbert A. Stewart

has been accepted by the undersigned on behalf of the faculty of the School of Systems and Logistics in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN FACILITIES MANAGEMENT
(Captain Thomas M. Griffith)

MASTER OF SCIENCE IN LOGISTICS MANAGEMENT
(Captain Herbert A. Stewart)

DATE: 7 September 1976

Charles E. Cheling
COMMITTEE CHAIRMAN

TABLE OF CONTENTS

	Page
LIST OF TABLES	v
LIST OF FIGURES	vi
CHAPTER I. INTRODUCTION	1
STATEMENT OF THE PROBLEM	1
DEFINITION OF TERMS	1
JUSTIFICATION	2
DELIMITATION	4
OBJECTIVE	5
RESEARCH HYPOTHESIS	5
CHAPTER II. LITERATURE REVIEW	6
General Facility Assignment	6
New Facilities Integration	8
SUMMARY	13
CHAPTER III. METHODOLOGY	14
UNIVERSE AND POPULATION DESCRIPTION	14
INFORMATION REQUIREMENTS	14
DATA COLLECTION	15
Activities	15
Facilities	15
Distance	16
Frequency of Interactions	18
DATA MANIPULATION	21
MODEL DEVELOPMENT	22

	Page
MODEL SOLUTION	26
MODEL VALIDATION	26
CHAPTER IV. RESULTS	28
DATA COLLECTION	28
Distance	28
Facilities	28
Activities	29
Frequency of Interactions	29
MODEL APPLICATION	30
Relocation Candidates	30
Branch Candidates	31
Relocation Feasibility	32
Branch Feasibility	33
INDIVIDUAL EVALUATIONS	34
CUMULATIVE EVALUATION	34
CHAPTER V. CONCLUSIONS AND RECOMMENDATIONS	37
Conclusions	37
Recommendations	38
Recommendations for Further Research	38
APPENDICES	
A. EXPLANATORY FOOTNOTES	39
B. WORK CENTER CODES	41
C. DISTANCE MATRIX	45
D. FREQUENCY OF INTERACTION MATRIX	49
E. COMPUTER PROGRAM	52
F. MAPS OF WRIGHT-PATTERSON AFB	56
G. FACILITIES	60
H. BUILDING SURVEYS	62
I. ACTIVITIES	83
SELECTED BIBLIOGRAPHY	
A. REFERENCES CITED	90
B. RELATED SOURCES	93

LIST OF TABLES

Table	Page
1. Relocation Candidates	31
2. Branch Candidates	32
3. Proposed Relocations	33
4. Branch Relocation	33
5. Individual Evaluations	34
6. Cumulative Evaluation	35

LIST OF FIGURES

Figure	Page
1. Building Survey	17
2. Distance Matrix	19
3. Dispatch Recording Sheet	20
4. Activity-Facility Model	24

CHAPTER 1

INTRODUCTION

STATEMENT OF THE PROBLEM

Air Force installations must be evaluated continually for adequacy in accommodating . . . an arrangement of facilities that will ensure . . . efficient and economical use of existing real property resources [12:1].

The purpose of this research was to provide data which reflected the operational effectiveness of an organization's facility assignments by analyzing the frequency and distance interactions¹ between alternative activity locations among various existing facilities (2:27). This analysis was intended to show which of the functional activities were interrelated and to illustrate the relative magnitude of the existing interactions (7:58). The problem was to analyze the activity-facility assignments and to determine if they could have been varied to decrease the total distance involved in the interaction between the aircraft maintenance activities of the 4950th Test Wing located at Wright Patterson Air Force Base, Ohio (WPAFB).

DEFINITION OF TERMS

Activity -- an activity (work center)² performs a specific function within the maintenance organization. An organization may be comprised of one or more activities.

Facility -- a facility defines the physical structure which houses one or more activities.

Frequency of Interactions -- refers to only the physical interaction between activities rather than both the physical and the communicative (i.e., telephone, radio, etc.) interactions. These interactions may be objectively measured over a specified time period.

Total Distance -- the mathematical product of the frequency of interactions between activities and the actual distance between activities.

JUSTIFICATION

The current Air Force Installation Master Plan consists of a detailed description of existing and projected facilities utilization based on a five year programming cycle (13:1). The Installation Master Plan for each Air Base is continually updated, requiring considerable time and monetary outlay by the Major Command, the Installation, and the tenant organizations (2:4). After changes have been received and approved by the Facilities Utilization Board³, the remainder of the evaluation (and corresponding recommendations to meet future mission requirements) is accomplished by civilian Architect/Engineer (AE) sources (2:11). Therefore, the requirements established on the organizational level have to be precise to preclude inaccurate facilities planning.

In the military environment, facilities planning became a topic of interest in the late 1960's (9). Determination of facilities usage in the Air Force has historically been predicated upon the experience of the facility managers (12). This method of determination, in addition to the necessity for yearly facility requirement updates, has resulted in the expenditure of considerable time in facilities planning with no objective means of evaluating the efficiency of the facility planning decision.

In an effort to improve the Air Force facilities planning system, an Air Force study was conducted in 1970 by Booz-Allen Applied Research, Incorporated, a civilian Architect/Engineer firm. The subject of the Booz-Allen study was a broad basewide facilities planning system. They were to investigate the feasibility of such a program, to propose the type of system to be used, and to provide an implementation plan (10:5-6).

In their conclusion, they stated that the results of this analysis could provide information relative to the efficient use of existing facilities and that it could represent "a savings of approximately 65% over the current Architect/Engineer method of updating base Master Plans [10:7]." This monetary savings, and an accompanying time savings of approximately 69%, could significantly improve the response capability of the Facilities Utilization Board, in addition to decreasing the need for outside Architect/Engineer contracts (10:7). Despite these projected

advantages and in spite of today's military environment of reduced budgets and increased mission requirements, there has been no evidence to indicate that further related research has been accomplished by the Air Force (9). Hence, there remained a need to investigate potential means of increasing the facility manager's capacity to objectively evaluate facility usage decisions without incurring excessive costs and expending excessive time (13).

DELIMITATION

The specific objective of this research was to provide the Deputy Chief of Maintenance of the 4950th Test Wing with a method of objectively evaluating the effectiveness of decisions concerning current and proposed facility usage.

Aircraft maintenance organizations are located at all Air Force bases with a flying mission. The 4950th Test Wing was selected for this research because its unique mission encompassed all aspects of aircraft maintenance. The mission included accomplishing authorized flight test programs on military systems, subsystems, and components (15:25-1). The maintenance complex was required to perform maintenance on assigned mission aircraft as well as on the base-level support aircraft.

Since the mission aircraft were used for testing many different systems and components, no two mission aircraft were identically equipped. Additionally, the

forty-three assigned aircraft encompassed both fixed-wing and rotary-wing aircraft including reciprocating, turbo-prop and jet aircraft types. All basic aircraft maintenance functions plus many advanced maintenance functions were performed on these aircraft.

Further, the 4950th Test Wing acquired numerous additional facilities when their mission was expanded in 1975. This expansion placed many of their facilities at a considerable distance apart since the runway separated the old and the newly acquired facilities.

The Deputy Chief of Maintenance, at the time of the expansion, was constrained to using only this set of facilities in accomplishing the mission. In addition, the minimum number of activities necessary to accomplish the mission was prescribed by regulation (ASDR 23-1).

OBJECTIVE

The objective of this thesis was to analyze the relationships between functional aircraft maintenance activities of the 4950th Test Wing and to determine if the activity locations could be varied to decrease the total distance involved in their interaction.

RESEARCH HYPOTHESIS

The location of functional aircraft maintenance activities at the 4950th Test Wing can be changed to decrease the total distance involved in their interaction.

CHAPTER 2

LITERATURE REVIEW

Few research efforts in organizational relationships and facility utilization have been documented by the Air Force. However, in civilian industry, many concepts and techniques for relating functional areas to each other have been studied and utilized to reduce costs related to overall facility-activity assignments (1:iii).

In the civilian environment, new industrial facilities and plans have been thoroughly analyzed prior to siting and construction. The basic relationships involved in these analyses were activity distance and frequency interactions (7:227). Planners were able to effectively determine efficient facility location assignments through the analysis of these relationships. The previous research devoted to the facilities assignment problem was dichotomized into those works which addressed general facility assignments and those that addressed the integration of new facilities with existing facilities.

General Facility Assignment

General facility assignment is the application of mathematical techniques to determine conceptually optimal facility location and activity assignments. One of the more

recent treatments of this subject was Brown and Gibson's (3) comprehensive discrete location model. The procedural application of the model was divided into three phases: (1) defining the information necessary to compare potential sites, (2) collecting information for each site, and (3) evaluating potential sites utilizing the location model.

Their work has been further supported by the Francis and Mallette (8) application of theoretical techniques for optimizing warehouse facility layouts⁴. Francis and Mallette considered the application of the generalized version of the transportation algorithm⁵ as a means of determining a minimum cost solution to the layout problem. The model was defined on a grid-coordinate system and analyzed the distance and the frequency of interactions between a given point on the grid and variable storage locations.

Additionally, Zoller and Adendorff (20) addressed computer simulation in the analysis of feasible facility layouts. They hypothesized that the multitude of feasible facility layouts could be viewed as a finite statistical population. Several of the computer simulation programs that have been applied to this type of model were the Automated Layout Design Program (ALDEP), the Computerized Relationship Layout Planning Program (CORELAP), and the Computerized Relative Allocation of Facilities Technique Program (CRAFT). Francis and White, in analyzing these programs, described ALDEP and CORELAP as programs concerned

with the construction of a layout based on the closeness (importance) ratings⁶, while CRAFT was concerned with the minimization of a linear function of the movements between departments (7:95-141). Zoller and Adendorff concluded that the most important characteristic of their model was its flexibility with regard to layout construction and evaluation.

New Facilities Integration

New facilities integration is the application of heuristics or optimization procedures to determine the location of proposed facilities in relation to existing facilities. One of the earlier treatments of this subject was that of Cooper (5) who postulated that the general warehouse destination problem could be described as follows: given a set of independent variables (i.e., destination location, destination requirements, and related shipping rates), it is possible to determine the allocation of new warehouses to include the number, location, and capacity. His model assumed that there were no restrictions on the location or the capacity of the new facility and that the shipping costs, per unit, were uniform. Assuming transportation costs were proportional to distance, he stated that it was desired to minimize the total distance between sources and destination. He proposed a heuristic approximation method for use when the number of variables (sources and destinations) became large.

Curry and Smith (6) proposed that the location-allocation problem be formulated as a non-linear discrete-location minimization problem which could be transformed into the recursive equations of dynamic programming⁷. They concluded that the utility of the dynamic programming approach to location-allocation problems was the ease with which a non-linear objective function and constraints could be handled.

Cabot, Francis, and Stary (4) considered the problem of locating new facilities with respect to the location of existing facilities so as to minimize the distances between new and existing facilities. They hypothesized that the location problem could be subdivided into two separate problems, each of which was equivalent to a specific linear programming problem. The first problem was that of minimizing the distances between the new and the existing facilities, while the second problem was that of maximizing the flow of materials between the new and existing facilities. They concluded that this analysis provided a means of obtaining an optimal solution to the location problem from the dual variables of the corresponding flow problem.

In support of this work, Pritsker and Ghare (12) formulated an algorithm for optimally locating new facilities with respect to existing facilities where movements between facilities are rectilinear⁸. Their algorithm has been programmed for the digital computer to accommodate

large problems. They hypothesized that their algorithm was the first special purpose model developed for efficiently solving a problem involving a large number of new facilities in discrete locations. Specifically, their model involved the rectilinear distance and frequency interactions between the new and existing facilities, and then minimized the total distance between these facilities. They concluded that their method was flexible and could be extended to accommodate the restrictions on the placement of new facilities and the number of new facilities allowed at a given location.

White (18), in contrast to the above and as a follow-on to that research, utilized Euclidean⁹ distances in solving the optimal-facility location problem. He addressed the problem of locating multiple new facilities with respect to multiple existing facilities where there was an interchange of materials between the new facilities and between the new and existing ones. His notes defined the necessary and sufficient conditions for an optimum facility location, and then suggested the use of linear programming in obtaining a solution. In the same manner, the quadratic assignment model as formulated by Francis and White utilized binary and integer variables to optimally solve the assignment problem when there were interactions between multiple new activities in addition to interactions between the new and old activities (7:328-370). Since the quadratic assignment model is non-linear, the number of activities and facilities,

is greatly restricted. Utilizing the branch-and-bound technique¹⁰ it becomes impossible to solve problems when the number of activities exceeds fifteen (7:336).

Additionally, the quadratic assignment model is restricted to one activity per facility.

Pierce and Crowston (11) analyzed the branch-and-bound technique for solution of the quadratic assignment model by relating the procedures of several authors into a similar framework for comparison. They concluded that the procedures resulted in optimal solutions when carried to completion, but made no conclusions as to the relative efficiency of each procedure.

In larger quadratic assignment problems, several heuristic solution procedures have been utilized to obtain good (suboptimal) solutions. First, the steepest-descent pairwise-interchange solution procedure, easily adaptable to the computer, utilized the quadratic assignment model and interchanged those activities which provided the largest decrease in the objective function. This iterative process was continued until no further decreases could be obtained (7:338).

Another heuristic solution was the Vollman, Nugent, and Zartler procedure (19), similar to the steepest-descent pairwise-interchange solution procedure, but involving less computational time. The lesser computational time resulted from multiple interchanges during each iteration. Again,

these iterations were continued until no further decreases could be obtained (7:341).

Applications of facility planning systems have occurred in the civilian environment since the early 1960's. Civilian industry has used techniques similar to those indicated by Francis and Mallette (8) for efficient layout of warehouse floor space (9). City and urban planners have been involved in projects for planning optimum location of public and commercial services in support of housing developments in urban communities and small cities, predominantly in the eastern United States (9).

In the military environment, the Booz-Allen research study (2) previously mentioned, related facilities allocation and planning to a specific Air Force environment. The objective of the first phase was to develop a facilities planning model for preparing base master plans to maximize mission effectiveness at minimum total cost. The second phase summarized the major achievements of the first phase and expanded them into a facilities planning system. They hypothesized that a model could be developed to maximize base-wide mission effectiveness for present and long-range mission requirements. For the given activity locations (facilities), the model determined the effectiveness of the layout based upon the distance between activity pairs and the importance of their being together. In this development, they not only used distance as a decision variable, but

also related the relative importance of one activity to another through dynamic programming.

SUMMARY

In summary, the literature review described the available techniques and concepts presently being used in facility assignment and planning and indicated that there was sufficient information in this area to allow investigation of the applicability of facilities assignment concepts to an existing Air Force organization.

CHAPTER III

METHODOLOGY

UNIVERSE AND POPULATION DESCRIPTION

The universe of interest in this study consisted of all United States Air Force maintenance organizations presently supporting flying missions. The population of interest was the aircraft maintenance complex of the 4950th Test Wing, Wright-Patterson AFB, Ohio, which was composed of discrete maintenance work centers. A census of this population was utilized to collect data over a two week period.

INFORMATION REQUIREMENTS

To provide data which reflected the operational effectiveness of an organization's facility assignments, the frequency and distance interactions between activities were analyzed (2:27). This analysis required the collection of information on the functional activities, the facilities which housed them, the distances between the facilities, and the frequency of interactions between activities.

DATA COLLECTION

Activities

Aeronautical Systems Division Regulation (ASDR) 23-1 provides a description of the activities necessary to perform the aircraft maintenance functions of the 4950th Test Wing (15). The aircraft maintenance complex consisted of eight major subdivisions, which were further separated into specific activities. Some of these activities consisted of several work centers (Appendix B). The physical space normally allocated to these activities was prescribed in Air Force Manual (AFM) 86-2, Chapter 8. The respective activity managers were consulted to ensure that these space requirements were adequate. The Real Property Projected Utilization List, PCN:N200174, provided a current listing of the space allocated to the activities listed in ASDR 23-1 (16). These regulations provided the information on the activities and related space requirements which comprised the set of activity requirements for the problem.

Facilities

The Real Property Projected Utilization Lists, PCN:N200174 and PCN:N200181, identified the facilities by building number currently being utilized by the 4950th aircraft maintenance organization as well as the overall floor space of each facility. These lists also enumerated all activities being performed within each facility (16; 17).

Floor plans (blueprints) for each facility indicated the distribution of the floor space allocated to each activity. These floor plans were used in conjunction with a building survey to determine the suitability of each facility for accommodating activities. The building survey form (Figure 1) was used to assess the floor layout, to evaluate the condition of the facility, and to provide information on critical dimensions, such as interior heights, door widths and heights, and structural protuberances. These physical characteristics were used to determine the capacity of a facility to house an activity. For example, facility A had 5000 square feet of floor space and a ten foot ceiling. Yet, it would not house the C-130 activity which required the same floor space, but needed a thirty foot ceiling. These physical characteristics provided the set of constraints on activity location.

Distance

Once the facilities were identified, the distances between them were determined. This was accomplished by measuring the distances directly from maps of Wright-Patterson AFB obtained from Base Civil Engineering. Actual, rather than rectilinear or Euclidean, distance was used since it accurately represented the true route traveled between facilities. For example, buildings A and B were one mile apart (Euclidean and rectilinear), separated by a runway. To proceed from A to B, the shortest authorized

Building Number _____	Area (sq ft) _____
Description of Building _____	Category Code _____
Nominal Size _____	
Ceiling Height _____	Door Height (Acft) _____
Number of Floors _____	Door Width (Acft) _____
Type of Floor _____	Condition _____
<hr/>	
Frame	Wood Frame Steel Masonry
<hr/>	
Interior Partitions	Load Bearing Yes No Non Load Bearing Yes No Frame, Wood s.f. Masonry s.f. Special s.f. Recoverable Yes No
<hr/>	
Utilities	Toilets # Water Hot Cold Heating Yes No Central Air Cond Yes No Central Standby Generator Yes No Cap. ___ KVA Fire Protection Dry Wet Deluge
<hr/>	
Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access Yes No
<hr/>	

Figure 1

Building Survey

route (actual) was around the runway, a distance of two miles. Since crossing the runway was prohibited, the Euclidean or rectilinear distances did not indicate the true distance traveled between facilities (13). Therefore, the actual distance between facilities constituted a set of parameters required for the analysis. This data was recorded (Appendix C) as shown in Figure 2.

Since there was extensive physical separation between facilities, the distance between activity locations became an important consideration in determining the activity-facility assignments (13). Therefore, since the activity locations were the only variable in this research, the distance between activities, a function of their location, became a crucial factor affecting total distance traveled.

Frequency of Interaction

The objective of interaction data collection was to indicate the actual number of physical interactions between activities over a period of time. Data on the actual number of job related personnel movements between activities was collected by the activity supervisors over a two week period. These movements were recorded on data collection forms (Figure 3) provided by the 4950th Test Wing. In anticipation of future requirements to provide a cost analysis of these interactions, the form also provided for collection of additional data to support such

	FACILITY NUMBER																			
	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
F	01																			
A		02																		
C			03																	
I				04																
L					F															
I					A															
T					C															
Y					I															
N					L															
U					I															
M					T															
B					Y															
E					N															
R					U															
					M															
					B															
					E															
					R															
						16														
						17														
						18														
						19														
						20														

Figure 2
Distance Matrix

Work Center # _____ **Building #** _____

Figure 3
Dispatch Recording Sheet

an analysis. For the purpose of this research it was assumed that this data collection period (two weeks) was representative of the organization's frequency of interactions during the period of time that the mission of the 4950th Test Wing remained the same. Therefore, the number of interactions between activities was assumed to remain constant, independent of activity location. This frequency of interactions data (Appendix D) provided the second set of parameters necessary for the subsequent analysis.

DATA MANIPULATION

Once the data was collected, it was placed in useable format. The distance and frequency (interaction) data was placed in matrix form (Appendices C and D, respectively) to facilitate mathematical manipulations. The activity and facility data provided the requirements and the constraints on the problem.

After the distance data was collected, it was recorded as shown in Figure 2. Each facility was assigned a number. This format leads to the application of subscripts to the distance data for use in the model. For example, the distance between facility 6 and 14 became $D_{6,14}$. In this manner the distance data could be referenced through the subscripted notation.

In a similar manner, the frequency of interactions between activities was indicated by the use of subscripts. For example, the frequency that activity 23 initiated

interactions with activity 4 became $F_{23,4}$. It should be noted that the frequency that activity 4 initiated interactions with activity 23 was not necessarily the same as the above. The sum of the two discrete frequencies represented the total number of interactions between the two activities.

Whether or not an activity could be located in a specific facility was determined on an individual basis from the data collected in the activity and facility surveys. This insured that an activity would only be located in a suitable facility.

MODEL DEVELOPMENT

No algorithm, exactly addressing the types of variables and constraints offered in this situation could be located in the current literature. Several authors, however, have used the quadratic assignment model in addressing the location of new facilities with respect to existing facilities (4; 5; 6; 11). This type of model was used as a basis for the solution of this activity-facility location problem. The model developed was similar since it compared fixed activities located in fixed facilities to the location of the remaining activities in the available facilities.

The quadratic assignment model as formulated by Francis and White (7) involved the analysis of discrete activity locations using the distance and the frequency of

interactions between the activities. Each activity interacted at a given frequency with other activities. An activity, when located in a specific facility, performed these interactions over the distances to each of the facilities containing the other activities. Their model when solved determines those locations of activities in fixed facilities that minimizes the total distance (7:185). This model, as shown in figure 4, was initially considered for the solution of the problem. It was determined from the data collected that the number of activities (thirty) was too large to be solved optimally on the computer. Therefore, a heuristic approach was utilized to find a good solution to the problem.

This approach, the steepest-descent pairwise-interchange method, repeatedly searches for the pair of activities that, when interchanged, results in the greatest decrease in the objective function (7:333). Since this method does not discriminate between those activities which are interchangeable and those which are not, a modification of this procedure had to be used. The modified procedure allowed for the selection of activities (or activity groups) to be exchanged in accordance with the following criteria: select that activity from the interchangeable activities with the largest number of interactions with another activity (or activity group). Relocate that activity in a suitable facility (including the interacting activity's facility, if feasible) nearest to the interacting activity

$$x_{k,j} = \begin{cases} 1 & \text{If activity } i \text{ is located in facility } j \\ 0 & \text{Otherwise} \end{cases}$$

$D_{j,k}$ = Distance from facility j to facility k

$F_{i,1}$ = The number of interactions initiated by activity i to activity 1

w_i = The weight (capacity) of activity i

K_j = The capacity of the facility j

$$\text{Minimize } \sum_i \sum_j \sum_k \sum_l (F_{i,1} + F_{l,i}) D_{j,k} x_{l,j} x_{l,k}$$

Constraints:

$$\sum_j x_{i,j} = 1 \quad \text{Each activity must be located in a facility}$$

$$\sum_i w_i x_{i,j} \leq K_j \quad \text{The sum of the activity sizes in facilities are less than or equal to the capacity of facility } j$$

Figure 4

Activity-Facility Model

(or activity group). Facility suitability was determined on an individual basis from the building surveys. This procedure was used repetitively until a good solution to the problem was obtained.

A computer program was written (Appendix E) which evaluated any set of assignments including the current assignment and allowed the user to evaluate the effect of interchanging activities by computing the percent increase or decrease in total distance associated with that change.

First, the program read the frequency matrix, the distance matrix and the current activity assignments. Second, the user could input the desired assignments to be evaluated. Third, the computer program evaluated the desired assignments by: (1) computing the total distance, (2) converting the total distance from feet to miles, and (3) computing the percent change in total distance. Fourth, the program then printed the desired assignment total distance (in both feet and miles), printed the percent change in the total distance over the current configuration, and indicated if the change resulted in an increase or a decrease in total distance. Last, the program allowed for the options of: (1) continuing to make more exchanges, and (3) stopping the program. In this manner, the user could manually interact with the computer to determine a good solution to the problem.

MODEL SOLUTION

Using the methods previously discussed, each of the activities were initially limited to their current location (facility). The program was then used to determine the total distance of this current configuration. This distance became the reference distance for use in determining any subsequent decrease in total distance. Feasible activity relocations were determined following the previously specified criteria and the resultant total distance was compared with the reference distance to determine the percent change.

MODEL VALIDATION

The model was validated by demonstrating consistency in predicting the total distance traveled for a given configuration of input parameters. The procedure incorporated the parameters of distance between facilities, number of activities, number of facilities, and the frequency of interactions between activities. Within these parameters, the model computed the total distance traveled to accomplish the aircraft maintenance mission within a given period of time.

In summary, the model accurately represented the actual situation with the following assumptions. It was assumed that there will be no new construction within the 4950th Test Wing, and that all aircraft maintenance

activities peculiar to its mission were performed within existing facilities. Therefore, the total number of facilities remained constant. Further, it was assumed that there were no plans to add or change access roads or sidewalks between or around these facilities. Therefore, the actual distances between facilities remained constant and accurately represented the distance traveled between facilities.

Additionally, it was assumed that the activities represented the total number of activities required to accomplish the mission of the 4950th Test Wing aircraft maintenance complex. The model was designed with the assumption that the mission (number and type of aircraft supported) would not change, thereby making the number and type of activities required to support the mission constant.

The frequency of interactions between activities, as used in the model, was assumed to be constant and to be accurately represented by the data collected. Since the actual distance between facilities, the number and type of activities, the number and location of the facilities, and the frequency of interactions between activities were held constant, the problem became sensitive to one parameter - activity location.

CHAPTER IV

RESULTS

DATA COLLECTION

Data on the activities, the facilities, and the location of activities and facilities, including activity requirements, was collected during April and May of 1976. The results of this data collection follow.

Distance

Appendix F contains a map showing the portion of Wright-Patterson AFB containing the 4950th Test Wing Aircraft Maintenance complex and its facilities. Appendix G contains a list of the twenty-two facilities of interest and their corresponding building numbers. The actual distances between these facilities is contained in Appendix C.

Facilities

A survey of the existing twenty-two buildings occupied by the 4950th Test Wing Aircraft Maintenance complex was essential to collect and record information on the building condition and characteristics. Pertinent data about each building was identified and recorded on a building survey sheet. These results are contained in Appendix E.

Activities

The organization of the 4950th Test Wing Aircraft Maintenance complex is subdivided into 103 separate work centers. These work centers and their unique functions are listed in Appendix B. Those work centers which are collocated, or which normally function in close proximity with each other, were grouped and considered as one activity to facilitate manipulation of the model.

A list of these activities was formulated and is presented in Appendix I. The activities were numbered sequentially, and were subsequently referred to as activity numbers in the model. The list contains thirty groups of functionally similar work centers.

Frequency of Interations

Each of the supervisors of the activities listed in Appendix F was asked to complete the Data Collection Form (Figure 3), soliciting the activity location and the number of interactions between their activity and the other activities within the maintenance complex. The interaction data was collected and is presented in Appendix D. As mentioned in Chapter III, the frequency of interactions initiated by activity X with activity Y (f_{xy}) may not be the same as the frequency of interactions initiated by activity Y with activity X (f_{yx}). Therefore, the total number of interactions between activities X and Y is the sum of f_{xy} and f_{yx} .

The interactions reflected in Appendix D were collected over the two week period from 18 April to 1 May 1976, and were assumed to be representative of any two week period throughout the year.

MODEL APPLICATION

The activity relocation candidates and the resultant proposed activity relocations were identified utilizing the criteria stated in Chapter III. Further, it was determined that the occurrence of more than thirty interactions between two individual activities accounted for seventy-one percent of all interactions. Since available time precluded the examination of all feasible activity-location combinations, only those activities which incur more than thirty interactions with any other individual activity were considered.

Relocation Candidates

Twenty-seven activity pairs, each with more than thirty pair-wise interactions, were identified from the frequency of interaction matrix (Appendix D) as candidates for relocation. The relocation candidates incurred interactions which ranged from the selection minimum of thirty-one to a high of five hundred and fifty-five. These activity pairs are listed in Table 1.

TABLE 1
RELOCATION CANDIDATES

Activity (Appendix I)	Location (BLDG #)	Number of Interactions	Interacting Activity	Location (BLDG #)
29	4044/46	555	27	W.Ramp
20		498	26	E.Ramp
6	4042	342	27	W.Ramp
13	13	188	27	W.Ramp
11	145	139	12	148
21	4012	138	27	W.Ramp
10	106	132	28	4048
23	4012	123	27	W.Ramp
13	13	79	12	148
21	4012	77	26	E.Ramp
19	109	67	13	13
13	13	59	5	268
13	13	58	26	E.Ramp
10	106	56	13	13
10	106	52	26	E.Ramp
10	106	50	9	4028
13	13	48	11	145
10	106	45	7	4022
13	13	42	4	152
10	106	42	29	4044/46
13	13	40	3	4028
11	145	37	1	4012
6	4042	36	1	4012
10	106	35	11	145
25	884	35	1	4012
8	4026	32	27	W.Ramp
10	106	31	4	152

Branch Candidates

Additionally, it became apparent to the researchers that a decrease in total distance might occur if a branch was established on each side of the base for several activities which interacted with centralized locations on both the east and west sides of the base.

All activity interactions were again reviewed to determine those activities having a relatively equal number of interactions on either side of the runway. In this determination, the frequency of interaction matrix (Appendix D), the activity locations (Appendix I), and the maps of Wright-Patterson AFB (Appendix F) were consulted. This resulted in the identification of two activities as branch candidates. These activities are listed in Table 2.

TABLE 2
BRANCH CANDIDATES

Activity (Appendix I)	Location (Bldg #)	Interactions (West)	Interactions (East)
10	106	264	277
21	4012	175	173

Relocation Feasibility

The twenty-seven relocation candidates were examined to determine the feasibility of their relocation. Activity requirements and facility suitability (facility floor space, facility access, climate control, etc.) were compared using the criteria in Chapter III. From this comparison, eight feasible activity relocations were proposed as shown in Table 3.

TABLE 3
PROPOSED RELOCATIONS

Activity (Appendix I)	Location (Bldg #)	Proposed Activity Location (Bldg #)
29	4044/46	4022
2	4022	4012
20	106	145
12	148	268
5	268	148
21	4012	4042
23	4012	4042
10	106	4046
19	109	13
6	4042	4012
8	4026	4022
7	4022	4026

Branch Feasibility

Both branch candidates (activities) were examined to determine the feasibility of separating each of them into two individual branches. Activity requirements and facility suitability were compared and feasible branch relocations were proposed as shown in Table 4

TABLE 4
BRANCH RELOCATION

Activity (Appendix I)	Current Location	Proposed Branch Locations Branch 1	Proposed Branch Locations Branch 2
10	106	106	4046
21	4012	4012	93

INDIVIDUAL EVALUATIONS

Each proposed activity relocation or branch creation was evaluated individually and independently of the others by the computer program (Appendix E) discussed in Chapter III. The resultant total distance and percent change in total distance for each proposed activity relocation or branch creation are shown below in Table 5.

TABLE 5
INDIVIDUAL EVALUATIONS

Activity (Appendix I)	Proposed Location	Total Distance (Miles)	Percent Decrease (Percent)
Current Configuration		5090.64	-
29	4022		
2	4012	4872.22	4.3
10	4046	4872.32	4.3
6	4012	4963.02	2.5
20	145	4971.35	2.3
19	13	5070.01	0.4
8	4022	5085.60	0.1
7	4026		
5	148	5082.10	0.2
12	268		
21	4042	5274.35	(-3.6 Increase)
23	4042		
Branches			
21	4012/93	4679.29	8.1
10	4046/106	4503.44	11.5

CUMULATIVE EVALUATION

From the individual evaluations it was noted that the percent decrease in total distance ranged from 11.5 percent to -3.6 percent. The proposed changes were successively

evaluated by the computer program in descending order according to the individual decrease in total distance (Table 5). First, only the eight proposed activity relocations were evaluated to determine their combined effect on the total distance. Second, just the proposed branches were evaluated to determine their combined effect on the total distance. Finally, both groups were combined and then evaluated to determine the cumulative effect of all proposed changes on the total distance. The results of the evaluations are shown in Table 6.

TABLE 6
CUMULATIVE EVALUATION

Activity (Appendix I)	Total Distance Decrease Individual	Total Distance Decrease Cumulative	Percent Decrease Individual	Percent Decrease Total
<u>Relocation Activities</u>				
10	218.42	218.42	4.3	4.3
29, 2	218.32	409.80	4.3	8.0
6	135.28	545.08	2.5	10.7
20	118.91	653.99	2.3	12.8
19	12.38	666.37	0.4	13.1
8, 7	13.18	679.55	0.1	13.3
12, 5	8.57	688.12	0.2	13.5
21, 23	-175.11	513.01	-3.6	10.1
<u>Branch Activities</u>				
10	587.20	587.20	11.5	11.5
21	405.77	992.99	8.1	19.5
<u>Relocation and Branch Activities Combined</u>				
10	587.20	587.20	11.5	11.5
21	405.77	992.99	8.1	19.5
29, 2	218.32	1211.29	4.3	23.8
6	135.28	1346.57	2.5	26.5
20	118.54	1465.11	2.3	28.8
19	12.38	1481.07	0.4	29.1
8, 7	13.18	1494.25	0.1	29.4
12, 5	8.57	1505.74	0.2	29.6
21, 23	-175.11	1415.42	-3.6	27.8

The combined effects of the proposed changes provide a maximum decrease of 1505.74 one-way miles per two week period. Allowing for return trips, the yearly reduction in total distance would be 78,298 miles.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

An assessment of the potential value of this research has resulted in the following conclusions and recommendations.

Conclusions

It can be concluded, from the results of this research, that the location of the functional aircraft maintenance activities of the 4950th Test Wing can be changed to decrease the total distance involved in their interaction.

The following changes, as indicated by our model, will result in a 78,298 mile yearly decrease in distance traveled by the 4950th Test Wing aircraft maintenance personnel:

1. Place one sub-branch of the Non-Powered AGE Branch on each side of the runway in Building 106 and Building 4046.
2. Place one sub-branch of the Communication-Navigation Branch on each side of the runway in Building 4012 and Building 93.
3. Relocate the West Ramp Storage Area next to Hangar 4042 and relocate OMS Administration, Supervision, and Technical Administration to Building 4012.

4. Relocate the ABN Instrument Maintenance Shop to Building 4012.
5. Relocate the East Ramp Storage Area next to the North end of Building 145.
6. Exchange the Heavy Jet Dock in Building 4022 with the Structural Repair Dock in Building 4026.
7. Exchange the Propeller Dock in Building 268 with Base Flight Docks Five and Six in Building 148.

Recommendations

Based on the results of this research, it is recommended that the changes proposed above be implemented if they are economically justifiable and are within the resource capability of the 4950th Test Wing.

Recommendations for Further Research

In providing timely evaluations of the effects of Air Force activity relocation with respect to facility availability and suitability, and to assess the impact of such changes on Operations and Maintenance Funds, the ability to rapidly generate cost information is essential. Automating the generation of cost information is a necessary step toward rapid evaluation of the impact of proposed changes. It is, therefore, recommended that the model developed in this research be expanded into an algorithm which incorporates cost factors and evaluates the full effect of activity location changes in terms of total cost.

APPENDIX A
EXPLANATORY FOOTNOTES

EXPLANATORY FOOTNOTES

1. Interactions -- the physical movement of personnel between activities. This does not include any other form of interaction (i.e., telephone, letter, etc.).
2. Work centers -- organizational elements to which maintenance personnel may be assigned or locations to which they may be dispatched.
3. Facility Utilization Board -- required by AFR 86-7, charged with conducting a comprehensive master planning program at both major command and installation levels.
4. Layout problem -- a problem that encompasses the allocation of floor space in a facility (i.e., a warehouse).
5. Transportation algorithm -- a mathematical procedure which is designed to minimize the distance traveled between locations.
6. Importance ratings -- these ratings are a subjective evaluation of the necessity for one activity being located near another.
7. Dynamic programming -- a method used in determining solutions to certain non-linear optimization problems.
8. Rectilinear distance -- the right-angle distance between facilities.
9. Euclidean distance -- the straight line distance between facilities.
10. Branch and bound technique -- the recursive partitioning and fathoming (the lower bound of the partitioned set exceeds the upper bound of the current set) of the solution set to obtain the optimal solution without complete enumeration of all solutions.

APPENDIX B
WORK CENTER CODES

<u>Work Center</u>	<u>Function</u>	<u>Mnemonic</u>
U1000	Deputy Commander for Maintenance	DCMS
U1010	Production Analysis	ANAL
U1020	Training Management	LGMT
U1040	Plans, Programs, and Mobility	LGMX
U1100	Quality Control	QUAL
U1200	Maintenance Control	MCON
U1210	Job Control	JOBC
U1220	Plans and Scheduling	PLAN
U1221	Documentation	DOCR
U1230	Materiel Control	MATC
U1231	Production Control	PROD
U2000	Organizational Maintenance Squadron	OMSQ
U2010	Maintenance Supervision	OMSM
U2015	Tech Administration	OMSA
U2100	Heavy Jet Aircraft Administration	HJSU
U2110	Flight Line Maintenance, Flt "1"	HJF1
U2120	Flight Line Maintenance, Flt "2"	HJF2
U2130	Flight Line Maintenance, Flt "3"	HJF3
U2150	Propeller Aircraft Supervision	PROP
U2160	Flight Line Maintenance, Flt "A"	PFLA
U2170	Flight Line Maintenance, Flt "B"	PFLB
U2180	Flight Line Maintenance, Flt "C"	PFLC
U2191	Flight Mechanics Team "1"	MEC1
U2192	Flight Mechanics Team "2"	MEC2
U2194	ABN Instrument Maintenance/Opns Shop	AIOM
U2200	Heavy Jet Inspection	HJIN
U2210	Heavy Jet Dock "1"	HJK1
U2220	Heavy Jet Dock "2"	HJK2
U2230	Heavy Jet Dock "3" (Corrosion)	HJD3
U2250	Propeller Aircraft Inspection	PAIN
U2260	Propeller Aircraft Dock "3"	PAD3
U2270	Propeller Aircraft Dock "4"	PAD4
U2300	Support Equipment Branch	SUPT
U2310	Non-Powered AGE	NAGE

<u>Work Centers</u>	<u>Function</u>	<u>Mnemonic</u>
U2320	780 Equipment	780E
U2500	Base Flight/Transient Supervision	TRAN
U2510	Base Flight, Flt "A"	BFLA
U2511	Base Flight, Flt "B"	BFLB
U2512	Base Flight, Flt "C"	BFLC
U2513	Base Flight Dock "5"	BFD5
U2514	Base Flight Dock "6"	BFD6
U2520	Transient Flight, Flt "1"	TRF1
U2521	Transient Flight, Flt "2"	TRF2
U2522	Transient Flight, Flt "3"	TRF3
U3000	Field Maintenance Squadron	FMSQ
U3010	Maintenance Supervision	FMSM
U3015	Tech Administration	FMSA
U3100	Fabrication Branch	FABS
U3110	Machine	MACH
U3130	Structural Repair	STRU
U3140	Corrosion	CORR
U3150	Survival Equipment	SURV
U3151	Rubber Products	RUBB
U3152	Parachute	PARA
U3170	Non-Destructive Inspection	NDIN
U3200	Propulsion Branch	ENGS
U3210	Reciprocating Engine	RECP
U3220	Propeller Shop	PRPS
U3230	Jet Engine Shop	JETS
U3231	Engine Dispatch Section	ENGD
U3237	Test Cell	CELL
U3300	Aerospace Systems Branch	AERO
U3310	Repair and Reclamation	REPR
U3315	Wheel and Tire	TIRE
U3320	Fuel Systems	FUEL
U3330	Electric	ELEC
U3340	Pneudralics	PNEU
U3390	Egress	ORDS
U3360	Environmental	ENVR

<u>Work Center</u>	<u>Function</u>	<u>Mnemonic</u>
U3400	AGE Branch	AGEB
U3410	Repair - Inspection	AGER
U3420	Service - Pickup - Delivery (Area C)	AGES
U3421	Night Service -Pickup - Del (Area C)	AGNC
U3425	Service - Pickup - Delivery (West Ramp)	AGDW
U3426	Night Service - Pickup -Del (West Ramp)	AGDN
U4000	Avionics Maintenance Squadron	AMSQ
U4010	Maintenance Supervision	AMSM
U4015	Tech Administration	AMSA
U4100	Communication - Navigation Branch	CONV
U4110	Communication Shop	RADO
U4111	High Frequency Radio - ARIA	RADA
U4120	Navigation Shop	NAVS
U4140	Inertial Navigation Shop	INNS
U4200	Auto Flight Contr - Instrument Branch	AFCI
U4210	Auto Flight Controls	AFSC
U4220	Instrument	INST
U4300	Mission Systems Branch	MISS
U4301	Radio Frequency Shop	RADF
U4302	Antenna Shop	ANTE
U4303	Recorder/Timing Shop	RETI
U4304	Spacecraft Communications Shop	SCOM
U4500	Precision Measuring Equip. Lab	PMEL
U4510	Control Scheduling	PMEB
U4520	Quality Assurance	PMEQ
U4530	PMEL Annex	PMEA
U45AA	Electrical	PME1
U45BB	Oscilloscope	PME2
U45CC	Generator	PME3
U45DD	Electro - Mechanical	PME4
U45AS	Auto Calibration Consoles	PME5
U45BS	Auto Calibration Consoles	PME6
U45CS	Auto Calibration Consoles	PME7
U4900	T-40 Flight Trainer	TRNP

APPENDIX C
DISTANCE MATRIX

F A C I L I T Y

	1	2	3	4	5	6	7	8
1:	0	450	4000	650	900	1150	1400	1650
2:	450	0	1550	900	1150	1400	1650	1900
3:	4000	1550	0	4300	4400	4150	4900	4650
4:	650	900	4300	0	250	500	750	1000
5:	900	1150	4400	250	0	250	500	750
6:	1150	1400	4150	500	250	0	750	500
7:	1400	1650	4900	750	500	750	0	250
8:	1650	1900	4650	1000	750	500	250	0
9:	2750	3000	1600	2100	1850	1700	1850	1600
10:	16100	16350	14950	15450	15200	15050	15200	14950
11:	16950	17200	15800	16250	16000	15900	16000	15750
12:	18150	18400	16900	17500	17150	17000	17150	16900
13:	18500	18750	17250	17850	17500	17350	17500	17250
14:	19150	19400	17900	18500	18150	18000	18150	17900
15:	18420	18670	17170	17770	17420	17270	17420	17170
16:	18750	19000	17500	18100	17750	17600	17750	17500
17:	19050	19300	17800	18400	18050	17900	18050	17800
18:	19500	19750	18250	18850	18500	18350	18500	18250
19:	20400	20650	19150	19750	19400	19250	19400	19150
20:	20050	20300	18800	19400	19050	18900	19050	19800
21:	3000	3250	4850	2250	2550	2600	1280	1450
22:	18400	18650	17250	17750	17500	17350	17500	17250

(Distances are in feet)

=

F A C I L I T Y

	9	10	11	12	13	14	15	16
1:	2750	16100	16950	18150	18500	19150	18420	18750
2:	3000	16350	17200	18400	17750	19400	18670	19000
3:	1600	14950	15800	16900	17250	17900	17170	17500
4:	2100	15450	16250	17500	17850	18500	17770	18100
5:	1850	15200	16000	17150	17500	18150	17420	17750
6:	1700	15050	15900	17000	17350	18000	17270	17600
7:	1850	15200	16000	17150	17500	18150	17420	17750
8:	1600	14950	15750	16900	17250	17900	17170	17500
9:	0	13350	14150	15300	15650	16300	15570	15900
10:	13350	0	1700	2850	3200	3850	3120	3250
11:	14150	1700	0	1300	1650	2100	2100	1850
12:	15300	2850	1300	0	500	500	1850	1700
13:	15680	3200	1650	500	0	250	1700	2350
14:	16300	3850	2100	500	250	0	2250	2250
15:	15570	3120	2100	1850	1700	2250	0	400
16:	15900	3450	1850	1700	2350	2250	400	0
17:	16200	3750	2400	2250	2900	2800	520	560
18:	16750	4300	2900	1750	3400	3300	1150	1050
19:	17650	5200	4250	4050	4550	3600	2200	2000
20:	17300	4850	3200	2650	2250	2300	2300	2250
21:	1350	16800	17100	18250	18600	19250	18500	18850
22:	15800	2400	1700	1600	1700	1900	500	950

(Distances are in feet)

=

F A C I L I T Y

	17	18	19	20	21	22
1:	19050	19500	20400	20050	3000	18400
2:	19300	19750	20650	20300	3250	18650
3:	17800	18250	19150	18800	4850	17250
4:	18400	18850	19750	19400	2250	17750
5:	18050	18500	19400	19050	2250	17500
6:	17900	18350	19250	18900	2600	17350
7:	18050	18500	19400	19050	1280	17500
8:	17800	18250	19150	19800	1450	17250
9:	16200	16750	17650	17300	1350	15800
10:	3750	4300	5200	4850	16800	2400
11:	2400	2900	4250	3200	17100	1700
12:	2250	2750	4050	2650	18250	1600
13:	2900	3400	4550	2250	18600	1700
14:	2800	3300	3600	2300	19250	1900
15:	520	1150	2200	2300	18500	500
16:	560	1050	2000	2250	18850	950
17:	0	500	1750	2650	19150	1050
18:	500	0	1350	2300	19700	1600
19:	1750	1300	0	2250	20600	2550
20:	2650	2300	2250	0	20250	2550
21:	19150	19700	20600	20250	0	18600
22:	1050	1600	2550	2550	18600	0

(Distances are in feet)

*

APPENDIX D
FREQUENCY OF INTERACTION MATRIX

A C T I V I T Y

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1:	0	1	1	1	4	0	0	6	0	0	1	0	11	0	0
2:	1	0	4	1	0	0	0	1	2	0	0	0	1	0	0
3:	16	0	1	0	0	0	0	1	4	0	0	0	13	3	1
4:	14	19	0	0	5	0	0	0	0	5	0	0	9	2	0
5:	21	0	0	14	0	0	0	0	2	4	2	3	16	0	0
6:	36	15	0	0	0	0	0	0	0	0	2	0	0	1	0
7:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:	0	0	4	6	7	0	4	5	4	0	2	4	0	0	0
9:	0	0	3	1	1	0	4	5	2	0	3	7	0	0	0
10:	14	0	3	31	13	0	45	0	50	0	35	3	56	0	0
11:	37	16	0	0	0	0	1	0	0	0	0	139	20	0	0
12:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:	28	0	40	42	59	0	18	44	18	2	48	79	1	2	0
14:	0	0	2	0	0	0	3	0	0	0	6	0	0	0	0
15:	0	5	2	6	2	0	0	0	0	0	0	0	0	0	0
16:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:	0	0	0	0	9	0	0	0	0	0	0	0	18	16	0
19:	6	0	0	0	3	0	0	0	0	1	13	0	67	0	3
20:	0	0	0	0	3	0	0	0	0	0	10	7	0	9	2
21:	0	0	10	1	28	2	18	1	1	0	21	12	10	0	3
22:	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:	0	0	0	0	0	0	0	0	0	0	0	7	0	2	0
24:	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25:	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29:	0	0	3	0	0	0	0	10	9	2	0	0	0	0	11
30:	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(Interactions)

=

A C T I V I T Y

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1:	0	0	0	0	0	0	0	0	0	0	1	11	0	0	0
2:	0	0	0	0	0	0	0	0	0	0	2	7	0	0	0
3:	0	0	0	0	0	1	0	0	1	0	0	7	0	0	0
4:	0	0	0	0	1	0	0	0	1	2	0	0	0	0	0
5:	0	0	0	0	0	0	0	0	0	0	1	9	0	0	0
6:	0	0	0	0	0	0	0	0	0	0	0	342	0	0	0
7:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:	0	0	0	0	0	0	0	0	0	0	1	32	0	0	0
9:	0	0	0	0	0	0	0	0	0	0	2	7	0	0	0
10:	1	0	0	0	9	5	0	2	7	0	52	6	132	42	0
11:	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
12:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:	5	0	0	25	2	14	0	0	0	0	58	188	0	1	0
14:	0	0	0	0	0	0	0	0	0	0	20	25	0	0	0
15:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:	3	0	0	2	0	0	0	0	0	0	0	17	0	0	0
19:	0	0	0	0	0	0	0	0	0	1	0	0	0	9	0
20:	0	0	0	0	0	0	0	0	0	0	8	498	0	0	14
21:	0	0	0	0	0	0	1	0	1	0	77	138	0	0	0
22:	0	0	0	0	0	2	0	0	0	0	5	0	0	0	0
23:	3	0	0	0	0	0	0	0	0	0	0	19	123	0	0
24:	0	0	0	0	0	0	0	0	0	3	0	21	0	0	0
25:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28:	0	0	0	0	0	0	0	0	0	0	4	0	0	0	6
29:	0	0	0	32	0	0	0	0	0	0	0	0	555	15	0
30:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(Interactions)

*

APPENDIX E
COMPUTER PROGRAM

LEGEND

FR - Frequency matrix
D - Distance matrix
A(LO) - Initial location data
TOTPCT - Percent reduction in distance
TOTM - Total distance in miles
ITOT - Total distance in feet

```

10 INTEGER A(30),FR(30,30),D(22,22)
20 DO 10 N=1,30
30C READ FREQUENCY OF INTERACTIONS
40 READ(10,5)K,(FR(N,J),J=1,30)
50 005 FORMAT (V)
60 010 CONTINUE
70 DO 20 M=1,22
80C READ DISTANCES BETWEEN EXISTING FACILITIES
90 READ(11,5)(D(M,K),K=1,22)
100 020 CONTINUE
110C READ VECTOR SHOWING CURRENT ACTIVITY LOCATIONS
120 021 A(1)=9;A(2)=8;A(3)=7;A(4)=10;A(5)=17;A(6)=1;A(7)=8;A(8)=5
130 A(9)=6;A(10)=16;A(11)=15;A(12)=18;A(13)=13;A(14)=4;A(15)=14
140 A(16)=12;A(17)=13;A(18)=15;A(19)=11;A(20)=11;A(21)=9;A(22)=1
150 A(23)=9;A(24)=1;A(25)=20;A(26)=22;A(27)=21;A(28)=3;A(29)=2
160 A(30)=19
170 025 PRINT,"ENTER CHANGES TO THE ASSIGNMENT ARRAY AS FOLLOWS:"
180 PRINT,"ACTIVITY NUMBER, ACTIVITY BUILDING ASSIGNMENT"
190 PRINT,"ENTER 0,0 IF NO CHANGES ARE TO BE MADE"
200 030 READ, L, A(L)
210 IF(L.EQ.0)GO TO 050
220 GO TO 030
230 050 ITOT=0
240 DO 100 I=1,30
250 DO 090 J=1,30
260 ITOT=ITOT+FR(I,J)*D(A(I),A(J))
270 090 CONTINUE
280 100 CONTINUE
290 TOTM=ITOT/5280.0
300 TOTPCT=((26878570.0-ITOT)/26878570.0)*100.0
310 PRINT 120,ITOT
320 PRINT 121, TOTM
330 PRINT 122, TOTPCT
340 IF(TOTPCT.LT.0) PRINT,"YOUR CHANGE HAS RESULTED IN A NET
350&INCREASE"
360 IF(TOTPCT.GT.0) PRINT,"YOUR CHANGE HAS RESULTED IN A NET
370&DECREASE"
380 PRINT,"DO YOU WISH THE CURRENT ASSIGNMENTS? YES=1, NO=2"
390 READ,N
400 IF(N.EQ.2)GOTO 119
410 PRINT,"THE CURRENT ACTIVITY ASSIGNMENTS ARE :"
420 DO 129 N=1,30
430 PRINT 124,N,A(N)
440 129 CONTINUE
450 119 PRINT,""
460 120 FORMAT(1X,"TOTAL DISTANCE IS - ",I20," FEET",//)
470 121 FORMAT(1X,"OR   ",F10.2," MILES",//)

```

ready

*

```
480 122 FORMAT(1X,"THE PERCENT CHANGE IN DISTANCE OF THIS",/,,"  
490&CONFIGURATION IS ",F10.4," PERCENT.",//)  
500 124 FORMAT(1X,"ACTIVITY ",I2," IS IN BUILDING ",I2,/) )  
510 PRINT,"TYPE 1 TO GO BACK TO THE ORIGINAL ASSIGNMENT"  
520 PRINT,"2 TO CONTINUE WITH THE SAME ASSIGNMENTS MADE SO FAR"  
530 PRINT,"OR 3 TO STOP THE PROGRAM."  
540 READ , M  
550 GOTO (21,25,130),M  
560 130 STOP;END
```

ready

*

APPENDIX F
MAPS OF WRIGHT-PATTERSON AFB

Reproduced from
best available copy.

APPENDIX G
FACILITIES

FACILITY	BUILDING NUMBER	DESCRIPTION
1	4042	Aircraft maintenance shop
2	4044, 4046	West ramp age storage
3	4048	LOX Plant
4	4020	Fuel systems hangar
5	4026	Hangar
6	4024	Corrosion control
7	4028	Hangar
8	4022	Hangar
9	4012	DCM Complex
10	152	Hangar
11	109	Powered AGE
12	256	Test cell
13	13	Aircraft maintenance shop
14	169	Parachute Shop
15	145	Hangar
16	106	Non-Powered AGE
17	268	Hangar
18	148	Hangar
19	93	Flight simulator
20	884	PMEL
21		West ramp
22		East ramp

*

APPENDIX H
BUILDING SURVEYS

BUILDING SURVEY

Building Number 4042 Area (sq ft) 32,300Description Aircraft Maint. Shop Category
of Building _____ Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	<u>Wood Frame</u> <u>Steel</u> <u>Masonry</u>
-------	---

Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes <u>Yes</u> s.f. s.f. s.f. <u>Yes</u>	No No No No
---------------------	--	---	----------------------

Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	1 2 <u>Hot</u> <u>Yes</u> <u>Yes</u> <u>Yes</u> <u>Dry</u>	<u>Cold</u> No No No Wet Central Central.* Cap. Deluge
-----------	--	---	--

Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access	Yes	No
-----------------	---	-----	----

* OFFICE SPACE ONLY

BUILDING SURVEY

Building Number 4044/46 Area (sq ft) 6093Description WEST RAMP AGE STORAGE Category
of Building _____ Code _____Nominal
Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of
Floors 1 Door Width (Acft) _____Type of
Floor Concrete Condition Good

Frame	<u>Wood Frame</u> <u>Steel</u> <u>Masonry</u>	TWO BAYS	
Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	<input checked="" type="radio"/> Yes Yes s.f. s.f. s.f. Yes	No No <input checked="" type="radio"/> No
Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	1 <input checked="" type="radio"/> Hot <input checked="" type="radio"/> Yes <input checked="" type="radio"/> Yes <input checked="" type="radio"/> Yes <input checked="" type="radio"/> Dry	<input checked="" type="radio"/> Cold No No No Wet Central Central Cap. <u>KVA</u> Deluge
Site Facilities	Hard Surface <u>Parking</u> Loading Bay Taxi-way Access	Yes	<input checked="" type="radio"/> No

BUILDING SURVEY

Building Number 4048 Area (sq ft) 4040Description LOX PLANT Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel Masonry
-------	--------------------------------

Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes <input checked="" type="radio"/> Yes s.f. s.f. s.f. <input checked="" type="radio"/> Yes	No No No No
---------------------	--	---	----------------------

Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	# 1 Hot <input checked="" type="radio"/> Yes Yes Yes <input checked="" type="radio"/> DRY	Cold <input checked="" type="radio"/> No No No No Wet	Central Central Cap. KVA Deluge
-----------	--	--	--	--

Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access	Yes	No
-----------------	---	-----	----

BUILDING SURVEY

Building Number 4020 Area (sq ft) 16,000Description Fuel Systems HANGAR Category
of Building Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel Masonry	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes <input checked="" type="checkbox"/> Yes s.f. s.f. s.f. <input checked="" type="checkbox"/> Yes	No No No No	LIMITED OFFICE SPACE !
Interior Partitions		Toilets Water Heating Air Cond. Standby Generator Fire Protection	# 2 <input checked="" type="checkbox"/> No <input checked="" type="checkbox"/> Yes Yes Yes <input checked="" type="checkbox"/> Dry	<input checked="" type="checkbox"/> Cold No No No Wet	Central Central Cap. Deluge
Utilities		Hard Surface Parking Loading Bay Taxi-way Access	<input checked="" type="checkbox"/> Yes	No	KVA
Site Facilities					

BUILDING SURVEY

Building Number 4026 Area (sq ft) 28,000Description of Building HANGAR Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____
with tail doorNumber of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition good

Frame	Wood Frame Steel Masonry	Yes	No
Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes s.f. s.f. s.f. Yes	No
Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	1 Hot Yes Yes Yes Dry	Cold No No No Wet Deluge
Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access	Yes	No

BUILDING SURVEY

Building Number 4024 Area (sq ft) 41,794Description CORROSION Control Category
of Building Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor CONCRETE Condition Good

Frame	<u>Wood</u> Frame
	<u>Steel</u>
	<u>Masonry</u>

Interior Partitions	Load Bearing	Yes	No
	Non Load Bearing	<u>Yes</u>	No
	Frame, Wood	s.f.	
	Masonry	s.f.	
	Special	s.f.	
	Recoverable	<u>Yes</u>	No
Utilities	Toilets	1	
	Water	<u>Hot</u>	<u>Cold</u>
	Heating	<u>Yes</u>	No
	Air Cond.	Yes	<u>No</u>
	Standby Generator	Yes	No
	Fire Protection	<u>Dry</u>	Net
Site Facilities	Hard Surface		
	Parking		
	Loading Bay		
	Taxi-way Access		
		<u>Yes</u>	No

BUILDING SURVEY

Building Number 4028 Area (sq ft) 28,000Description of Building HANGAR Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) WITH TAIL DOORNumber of Floors 1 Door Width (Acft) _____Type of Floor CONCRETE Condition good

Frame	Wood Frame Steel Masonry	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes <u>Yes</u> s.f. s.f. s.f. <u>Yes</u>	No No No No No
Interior Partitions		Toilets Water Heating Air Cond. Standby Generator Fire Protection	# 1 <u>Hot</u> <u>Yes</u> <u>Yes</u> <u>Yes</u> <u>Dry</u>	<u>Cold</u> No No No Wet <u>Central</u> <u>Central</u> <u>Cap.</u> <u>Deluge</u>
Utilities		Hard Surface Parking Loading Bay Taxi-way Access	<u>Yes</u>	No

BUILDING SURVEY

Building Number 4022 Area (sq ft) 28,000Description HANGAR Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) WITH TAIL DOORNumber of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	<u>Wood Frame</u>
	<u>Steel</u>
	<u>Masonry</u>

Interior Partitions	Load Bearing	Yes	No
	Non Load Bearing	Yes	No
Utilities	Frame, Wood	s.f.	
	Masonry	s.f.	
Site Facilities	Special	s.f.	
	Recoverable	Yes	No
Utilities	Toilets	1	
	Water	Hot	Cold
	Heating	Yes	No
	Air Cond.	Yes	No
	Standby Generator	Yes	No
	Fire Protection	Dry	Central Csp. Deluge
Site Facilities	Hard Surface		KVA
	Parking		
	Loading Bay		
	Taxi-way Access	Yes	No

BUILDING SURVEY

Building Number 4012 Area (sq ft) 53,141Description DCM Complex Category
of Building _____ Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel Masonry	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No No Office Space → Some	PRIMARILY OFFICE SPACE
Interior Partitions		Toilets Water Heating Air Cond. Standby Generator Fire Protection	2 Hot Yes Yes Yes Dry	2 Cold No No No Wet	Central Central Cap. Deluge
Utilities		Hard Surface N/A Parking Loading Bay Taxi-way Access	Yes	No	KVA
Site Facilities					

BUILDING SURVEY

Building Number 152 Area (sq ft) 35,371Description of Building HANGAR Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor CONCRETE Condition Good

Frame	Wood Frame Steel Masonry
-------	--------------------------------

Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No No LIMITED ONE STORY OFFICE SPACE SOME
---------------------	--	---	--

Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	# 1 Hot Yes Yes Yes Dry	Cold No No No Wet Central Central Cap. Deluge	KVA
-----------	--	--	---	-----

Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access	Yes	No
-----------------	---	-----	----

BUILDING SURVEY

Building Number 109 Area (sq ft) 20,283Description Powered Age _____ Category
of Building _____ Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel Masonry	Yes	No
Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No No No
Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	Hot Yes Yes Yes Dry	Cold No No No Wet
Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access	Yes	Central Central Cap. Deluge
			KVA

BUILDING SURVEY

Building Number 256 Area (sq ft) 72,679Description of Building TEST CELL Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel Masonry	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No No No No No No
Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	1 2 Hot Yes Yes Yes Dry	Cold No No No Wet	Central Central Cap. Deluge KVA
Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access	Yes	No	

BUILDING SURVEY

Building Number 13 Area (sq ft) 282,026Description Acft MAINT. Shop Category
of Building _____ Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel Masonry	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No No s.f. s.f. s.f. No
Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	6 Hot Yes Yes Yes Dry	6 Cold No No No Wet	Central Central Cap. Deluge
Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access	Yes	No	KVA

BUILDING SURVEY

Building Number 169 Area (sq ft) 37,502Description of Building PARACHUTE shop Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel <u>Masonry</u>	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No No s.f. s.f. s.f. No
Interior Partitions		Toilets Water Heating Air Cond. Standby Generator Fire Protection	1 Hot Yes Yes Yes Dry	Cold No No Central Central Cap. Deluge
Utilities				KVA
Site Facilities	Hard Surface <u>Parking</u> Loading Bay Taxi-way Access		Yes	No

BUILDING SURVEY

Building Number 145 Area (sq ft) 35,536Description of Building HANGAR Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel Masonry	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No No s.f. s.f. s.f. No	N/A
Interior Partitions		Toilets Water Heating Air Cond. Standby Generator Fire Protection	3 Hot Yes Yes Yes Dry	Cold No No No Net	Central Central Cap. Deluge
Utilities					KVA
Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access		Yes	No	

OFFICE ONLY (Very Noisy)

BUILDING SURVEY

Building Number 106 Area (sq ft) 2,400
 Description Non Powered Age Category
 of Building _____ Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____

Type of Floor Concrete Condition Good

Frame	Wood Frame Steel <u>Masonry</u>	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No <u>HAS RAIL IN</u> <u>No Center Of Ceiling</u> <u>Limited Office</u> <u>SPACE</u>
Interior Partitions	Toilets Water Heating Air Cond. Standby Generator Fire Protection	1 2	Hot Yes Yes Yes Dry	Cold No No No Wet
Utilities	Hard Surface <u>Parking</u> Loading Bay Taxi-way Access		Yes	Central * Central Cap. <u>KVA</u> Deluge

* OFFICE ONLY

BUILDING SURVEY

Building Number 268 Area (sq ft) 41,138Description of Building HANGAR Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 2 - ON outside of HANGAR Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	<u>Wood Frame</u> <u>Steel</u> <u>Masonry</u>
-------	---

Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	<input checked="" type="checkbox"/> Yes <input checked="" type="checkbox"/> Yes s.f. s.f. s.f. Yes	No OFFICE SPACE ON BOTH SIDES OF HANGAR No
---------------------	--	---	--

Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	1 <input checked="" type="checkbox"/> Hot <input checked="" type="checkbox"/> Yes Yes Yes <input checked="" type="checkbox"/> DRY	<input checked="" type="checkbox"/> Cold No <input checked="" type="checkbox"/> NO No Net	Central Central Cap. Deluge	EVA
-----------	--	--	---	--------------------------------------	-----

Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access	<input checked="" type="checkbox"/> Yes	No
-----------------	---	---	----

BUILDING SURVEY

Building Number 148 Area (sq ft) 32,608Description of Building HANGAR Category Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel Masonry	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	Yes Yes s.f. s.f. s.f. Yes	No No s.f. s.f. s.f. No	Limited Office SPACE
Interior Partitions		Toilets Water Heating Air Cond. Standby Generator Fire Protection	1 Hot Yes Yes Yes DLY	1 Cold No No No Net	Central Central Cap. Deluge
Utilities		Hard Surface Parking Loading Bay Taxi-way Access	Yes	No	KVA
Site Facilities					

BUILDING SURVEY

Building Number 93 Area (sq ft) 12,501

Description of Building Flight Simulator Category Code

Nominal Size _____

Ceiling Height 20' Door Height (Acft) _____

Number of Floors 1 **Door Width (Acft)** _____

Type of Floor Tile over Concrete Condition Good

Frame	Wood Frame Steel Masonry				
Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable		Yes Yes s.f. s.f. s.f. Yes	No No No	
Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection		1 Hot Yes Yes Drip	2 Cold No No No Wet	Central Central Cap. _____ KVA Deluge
Site Facilities	Hard Surface Parking Loading Bay Taxi-way Access		Yes	No	

BUILDING SURVEY

Building Number 884 Area (sq ft) 15,039Description PMEL Category
of Building Code _____

Nominal Size _____

Ceiling Height _____ Door Height (Acft) _____

Number of Floors 1 Door Width (Acft) _____Type of Floor Concrete Condition Good

Frame	Wood Frame Steel <u>Masonry</u>			
Interior Partitions	Load Bearing Non Load Bearing Frame, Wood Masonry Special Recoverable	<input checked="" type="radio"/> Yes <input checked="" type="radio"/> Yes s.f. s.f. s.f. <input checked="" type="radio"/> Yes	No No No	
Utilities	Toilets Water Heating Air Cond. Standby Generator Fire Protection	<input checked="" type="radio"/> Yes <input checked="" type="radio"/> Yes <input checked="" type="radio"/> Yes <input checked="" type="radio"/> Yes <input checked="" type="radio"/> Yes	<input checked="" type="radio"/> Cold No No No <input checked="" type="radio"/> Wet	Central Central Cap. <u>RVA</u> <u>Deluge</u>
Site Facilities	Hard Surface <u>Parking</u> Loading Bay Taxi-way Access	<input checked="" type="radio"/> Yes	No	

APPENDIX I
ACTIVITIES

ACTIVITY	WORK CENTER	FUNCTION
1	U1000 U1010 U1020 U1040 U1100 U1200 U1210 U1220 U1221 U1230 U1231	Deputy Commander for Maintenance Production Analysis Training management Plans,Programs and Mobility Quality Control Maintenance Control Job Control Plans and Scheduling Documentation Material Control Production Control
2	U2000 U2010 U2015	Organizational Maint. Squadron Maintenance supervision Technical administration
3	U2100 U2110 U2120 U2130 U2200	Hvy Jet Acft Supervision Flt line maint. flt one Flt line maint. flt two Flt line maint. flt three Hvy jet inspection
4	U2150 U2180	Propeller Acft Supervision Flt line maint. flt-C,C-130
5	U2170 U2192 U2260	Flt line maint. flt-B Flight mechanics team 2 Propeller acft dock three
6	U2194	Abn inst maint/ops shop
7	U2210	Heavy jet dock one
8	U2220	Heavy jet dock two
9	U2230 U3140	Heavy jet corrosion dock three Corrosion control
10	U2310 U2320	Non-powered AGE 780 equipment
11	U2500 U2510 U2511 U2520 U2521	Base Flt/Transient Supv Base flight,flt A Base flight,flt B Transient flight one Transient flight two

=

AD-A032 539 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OHIO SCHO--ETC F/G 15/5
ANALYSIS OF AIRCRAFT MAINTENANCE FACILITY ASSIGNMENTS AT WRIGHT--ETC(U)
SEP 76 T M GRIFFITH, H A STEWART

UNCLASSIFIED

SLSR-17-76B

NL

2 OF 2
AD-A
032 539

END
DATE
FILMED
1-14-77
NTIS

ACTIVITY	WORK CENTER	FUNCTION
12	U2513 U2514	Base flt, dock five Base flt, dock six
13	U3000 U3010 U3015 U3110 U3130 U3170 U3210 U3220 U3230 U3300 U3315 U3330 U3340 U3360	Field Maintenance Squadron Maintenance Supervision Technical Administration Machine shop Structural repair NDI Reciprocating engines Propeller shop Jet engine shop Aerospace Systems Branch Wheel and tire Electric shop Pneudraulics Environmental
14	U3320	Fuel cell
15	U3150 U3151 U3152	Survival equipment Rubber products Parachute
16	U3237	Test cell
17	U3310	Repair and reclamation
18	U3390	EGRESS
19	U3400 U3410	AGE Branch Repair-inspection
20	U3420	AGE Service-pickup-delivery East ramp
21	U4100 U4110 U4120 U4140	Comm-Nav Branch Communication shop Navigation shop Inertial Nav. shop
22	U4111	H F Radio ARIA
23	U4200 U4210 U4220	Auto Flt Center-Inst Branch Auto flt control Instrument

=

ACTIVITY	WORK CENTER	FUNCTION
24	U4300 U4301 U4302 U4303	Mission Systems Branch Radio frequency shop Antenna shop Recorder/timing shop
25	U4500	PMEL
26	-----	East ramp
27	-----	West ramp
28	-----	Liquid Oxygen Storage
29	U3425	AGE service-pickup-delivery West ramp
30	U4900	T40 Flight trainer

*

CURRENT ACTIVITY LOCATIONS
ACTIVITY LOCATION
(NUMBER) (BLDG #)

1	4012
2	4022
3	4028
4	152
5	268
6	4042
7	4028
8	4026
9	4024
10	106
11	145
12	148
13	13
14	4020
15	169

=

CURRENT ACTIVITY LOCATIONS
ACTIVITY
(NUMBER) LOCATION
(BLDG #)

16	256
17	13
18	145
19	109
20	109
21	4012
22	4042
23	4012
24	4042
25	884
26	EAST RAMP
27	WEST RAMP
28	4048
29	4044, 4046
30	94

*

SELECTED BIBLIOGRAPHY

A. REFERENCES CITED

1. Apple, James M. Plant Layout and Materials Handling. 2nd Ed. New York: The Ronald Press Company, 1963.
2. Booz-Allen Applied Research, Inc. Development and Testing of an Air Base Facilities Planning System: Phase II. BARINC Report No. BA 9006-006-001, Washington, D. C. January 1972.
3. Brown, Phillip A., and David F. Gibson. "A Quantified Model for Facility Site Selection - Application to A Multiplant Location Problem," AIEE Transactions, Vol 4, No. 1 (March 1972), pp. 1-10.
4. Cabot, Victor A., Richard L. Francis, and Michael A. Stary. "Network Flow Solution to a Rectilinear Distance Location Problem," AIEE Transactions, Vol 2, No. 2 (June 1970), pp. 132-141.
5. Cooper, Leon. "Location-Allocation Problems," Operations Research, Vol 10, No. 3 (May-June, 1963), pp. 331-343.
6. Curry, Guy L., and Ronald W. Smith. "A Dynamic Programming Algorithm for Facility Location and Allocation," AIEE Transactions, Vol 1, No. 2 (June 1969), pp. 133-138.
7. Francis, Richard L., and John A. White. Facility Layout and Location - An Analytical Approach. Englewood Cliffs: Prentice-Hall, Inc., 1974.
8. Mallette, Arnold J., and Richard L. Francis. "A Generalized Assignment Approach to Optimal Facility Layout," AIEE Transactions, Vol 4, No. 2 (April 1972), pp. 144-147.
9. McIntyre, John P., Civilian Coordinator, Construction Branch, Engineering and Construction Division, Directorate of Engineering and Services, Headquarters USAF, Washington, D.C. Telephone Interviews. 10 and 30 October 1975.
10. _____ "Implementation Plan for Facilities System Model," unpublished functional briefing No. OX3-1858, Headquarters USAF, 1 November 1971.

11. Pierce, James F., and William B. Crowston, "Tree Search Algorithms for Quadratic Assignment Problems," Naval Research Logistics Quarterly, Vol 18, No. 1 (March 1971), pp. 1-36.
12. Pritsker, A. A. B., and P. M. Ghare. "Locating New Facilities with Respect to Existing Facilities," AIEE Transactions, Vol 4, No. 2 (April 1972), pp. 290-297.
13. Savage, Colonel George R., USAF. Deputy Commander for Maintenance, 4950th Test Wing, Wright-Patterson AFB, Ohio, Personal interviews. 22 September, 14 October and 22 November 1975.
14. U.S. Department of the Air Force. Civil Engineering Planning and Programming: Master Planning, AFR 86-4 30 November 1966. Washington: Government Printing Office, 1966.
15. . Organization and Functions - Aeronautical Systems Division, ASDR 23-1 (Change 8), 1 July 1975. Wright-Patterson AFB, Ohio, 1975.
16. . USAF Real Property Projected Utilization List. PCN: N200174, 14 November 1974. Wright Patterson AFB, Ohio, 1974.
17. . USAF Real Property Projected Utilization List. PCN: N200181, 14 November 1974. Wright Patterson AFB, Ohio, 1974.
18. White, John A. "A Quadratic Facility Location Problem," AIEE Transactions, Vol 3, No. 2 (June 1971), pp. 156-157.
19. Zartler, R. L., T. E. Vollman, and C. E. Nugent. "A Computerized Model for Office Layout," The Journal of Industrial Engineering, Vol 19, No. 7, 1968, pp. 321-329.
20. Zoller, Klaus, and Kristian Adendorff. "Layout Planning by Computer Simulation," AIEE Transactions, Vol 4, No. 2 (June 1972), pp. 116-125.

B. RELATED SOURCES

Anderson, David R., Dennis J. Sweeney, and Thomas A. Will ms.
Linear Programming for Decision Making - an Application Approach. St Paul: West Publishing Company, 1974.

Cooper, Leon. "Heuristic Methods for Location-Allocation Problems," SIAM Review, Vol 6, No. 1 (January-February, 1964), pp. 37-52.

Daellenbach, Hans G., and Earl J. Bell. User's Guide to Linear Programming. Englewood Cliffs: Prentice-Hall, Inc., 1970.

Francis, Richard L. "A Note on the Optimum Location of New Machines in Existing Plant Layouts," The Journal of Industrial Engineering, Vol 14, No. 1 (January-February, 1963), pp. 57-59.

_____. "Sufficient Conditions for Some Optimum Property Facility Designs," Operations Research, Vol 15, No. 3 (May-June, 1967), pp. 448-466.

Goldman, A. J. "Optimal Locations for Centers in a Network," Transportation Science, Vol 3, No. 4 (April, 1969), pp. 352-360.

Ireson, William G. Factory Planning and Plant Layout. Englewood Cliffs, New Jersey: Prentice-Hall, Inc, 1968.

Kropac, John R., and W. Jones. "Maintenance Administration Space Requirements for Organizational Level Activities," Unpublished Research Report No. 772B, Naval Air Engineering Center, Philadelphia, Pa., 20 December 1971.

Martin, J. J., and R. Sabeh. "Athwartship Berthing," Unpublished Research Report No. td-302, Naval Electronics Lab Center, San Diego, Calif., 5 February 1974.

Moore, James M. Plant Layout and Design. New York: The MacMillan Company, 1962.

Muther, Richard. Systematic Layout Planning: 2nd Ed. Boston Cahners Publishing Company, Inc., 1973.

Papineau, Robert L., and Richard L. Francis. "A Minimax Layout Problem on the Line Involving Distances Between Classes of Objects," AIEE Transactions, Vol 6, No. 3 (May-June 1974), pp. 252-256.

Robb, Colonel William G., USAF. Commander 2750th Civil Engineering Squadron, 2750th Air Base Wing, Wright Patterson AFB, Ohio. Personal Interview. 5 November 1975.

Roodman, Gary M., and Leroy B. Schwarz. "Optimal and Heuristic Facility Phase-out Strategies," AIEE Transactions, Vol 7, No. 7 (June 1975), pp. 23-27.

Schmidt, J. William, and Robert E. Taylor. Simulation and Analysis of Industrial Systems. Homewood, Illinois: Richard D. Irwin, 1970.

U.S. Department of the Air Force. Chapter 8, Category: Group 21 - Maintenance Facilities. AFM 86-2, 1 March 1973. Washington: Government Printing Office, 1973.

. Real Property Category, ADE RE - 008, Data Codes.
AFM 300-4, Vol IV (C-2), 30 December 1974. Washington: Government Printing Office, 1974.

Wagner, Harvey M. Principles of Operations Research. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1969.