import plotly.express as px
import pandas as pd
import numpy as np

Import Cancer data drom the Sklearn library
cancer_df = pd.read_csv("/content/cancer.csv")

Check out the head of the dataframe
cancer_df.head()

3	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	worst perimeter
(17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 17.33	184.60
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 23.41	158.80
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 25.53	152.50
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 26.50	98.87
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 16.67	152.20
5	rows × 31 c	olumns										

Check out the tail of the dataframe
cancer_df.tail()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension		worst texture	wors perimets
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623		26.40	166.
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533		38.25	155.0
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648		34.12	126.7
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016		39.42	184.6
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884		30.37	59.
5 rows × 31 columns													

#Box plot

fig=px.box(cancer_df, x="target", y="mean area")

fig.show()

#Plot the boxplot for Mean Perimeter, use points = "all"
fig = px.box(cancer_df, x = "target", y = "mean perimeter", points = "all")
fig.show()

#A histogram is representation of the distribution of numerical data, where the data are binned fig = $px.histogram(cancer_df, x = "mean radius", nbins = 60)$ fig.show()

#Plot the histogram for the mean permieter for the entire dataset

fig = $px.histogram(cancer_df, x = "mean perimeter", nbins = 60)$ fig.show()

#Plot the histogram for the mean perimeter for each of the class independently fig = $px.histogram(cancer_df, x = "mean perimeter", color = 'target', nbins = 60)$ fig.show()

fig = $px.histogram(cancer_df, x = "mean radius", color = 'target', nbins = 60)$ fig.show()

With the marginal keyword, a subplot is drawn alongside the histogram, visualizing the distribution. fig = $px.histogram(cancer_df, x = "mean radius", color = 'target', marginal = 'rug', nbins = 60)$ fig.show()

#Plot the histogram for the mean perimeter using 40 bins and explore a new marginal plot
fig = px.histogram(cancer_df, x = "mean perimeter", color = 'target', marginal="violin", nbins = 40, hover_data = cancer_df.colu
fig.show()

A 2D histogram, also known as a density heatmap, is the 2-dimensional generalization of a histogram which resembles a heatmap # and applying an aggregation function such as count or sum (if z is provided) to compute the color of the tile representing the # This kind of visualization (and the related 2D histogram contour, or density contour) is often used to manage over-plotting, c fig=px.density_heatmap(cancer_df, x="mean radius", y="mean texture") fig.show()

read univeristy_admission.csv dataset
university_df=pd.read_csv("/content/university_admission.csv")

plot density_heatmap fig = $px.density_heatmap(university_df, x = "TOEFL Score", y = "Chance of Admit") fig.show()$

#Plot density map between GRE Score vs. Chance of admission
fig = px.density_heatmap(university_df, x = "GRE Score", y = "Chance of Admit")
fig.show()

#Plot density map between GPA vs. Chance of admission fig = $px.density_heatmap(university_df, x = "CGPA", y = "Chance of Admit") fig.show()$

A scatterplot matrix is a matrix associated to n numerical arrays (data variables), \$X_1,X_2,...,X_n\$, of the same length.
fig = px.scatter_matrix(university_df, width=1200, height=1200)
fig.show()

#Plot the scatter matrix for cancer data, including only the following features: mean radius, mean area, mean perimeter, and mea
fig = px.scatter_matrix(cancer_df, dimensions = ['mean radius', 'mean area', 'mean perimeter', 'mean texture'])
fig.show()

#Plot the scatter matrix for cancer data while color coding the two classes (malignant vs. benign), including only the following
fig = px.scatter_matrix(cancer_df, dimensions = ['mean radius', 'mean area', 'mean perimeter', 'mean texture'], color="target")
fig.show()

A violin plot is a statistical representation of numerical data.
It is similar to a box plot, with the addition of a rotated kernel density plot on each side.
fig=px.violin(cancer_df, y='mean radius')
fig.show()

Show data points
fig = px.violin(cancer_df, y = "mean radius", box = True, points = "all", hover_data = cancer_df.columns)
fig.show()

Show data points and box plot
fig = px.violin(cancer_df, y = "mean radius", box = True, points = "outliers", hover_data = cancer_df.columns)
fig.show()

You can also plot multiple violin plots as follows:
fig = px.violin(cancer_df, y = "mean radius", box = True, points = "all", hover_data = cancer_df.columns, color = 'target')
fig.show()

#Plot violin plot for GRE Score in university admission dataset
fig = px.violin(university_df, y = "GRE Score", box = True, points = "all", hover_data = university_df.columns)
fig.show()

Using the violin plot, what is the median value of the GRE Score? $university_df.median()$

#Calculate the mean value for GRE score and compare it to the median university_df.describe()

3	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.00000
mean	250.500000	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.72174
std	144.481833	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.14114
min	1.000000	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.34000
25%	125.750000	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.63000
50%	250.500000	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.72000
75%	375.250000	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.82000

A 2D histogram contour plot, also known as a density contour plot, is a 2-dimensional generalization of a histogram which rese # and applying an aggregation function such as count or sum (if z is provided) to compute the value to be used to compute contou # This kind of visualization (and the related 2D histogram, or density heatmap) is often used to manage over-plotting, or situat fig = px.density_contour(cancer_df, x = "mean radius", y = "mean texture") fig.show()

Marginal plots can be added to visualize the 1-dimensional distributions of the two variables.
Here we use a marginal histogram. Other allowable values are violin, box and rug.
fig = px.density_contour(cancer_df, x = "mean radius", y = "mean texture", marginal_x = 'histogram', marginal_y='histogram')
fig.show()

