Лабораторна робота 3 ФІЛЬТРАЦІЯ БІОСИГНАЛІВ ФІЛЬТРАМИ З НЕСКІНЧЕНОЮ ІМПУЛЬСНОЮ ХАРАКТЕРИСТИКОЮ

Мета роботи:

- 1. Дослідити основні властивості цифрових фільтрів із нескінченною імпульсною характеристикою.
- 2. Ознайомитися з варіантами застосування таких фільтрів для оброблення біосигналів.

Короткі теоретичні відомості

Фільтрами з нескінченною імпульсною характеристикою (HIX-фільтр) називають фільтри, у яких імпульсна характеристика ϵ нескінченною послідовністю.

Цифровий HIX-фільтр можна описати різницевим рівнянням (у часовій області):

$$y(n) = \sum_{k=0}^{N-1} b_k x(n-k) - \sum_{k=1}^{M-1} a_k y(n-k),$$

або передавальною функцією (у частотній області):

$$H(z) = \frac{\sum_{k=0}^{N-1} b_k z^{-k}}{1 + \sum_{k=0}^{M-1} a_k z^{-k}}.$$

НІХ-фільтр має зворотний зв'язок (рекурсивний фільтр) і зазвичай містить менше коефіцієнтів, ніж СІХ-фільтр за однакових вимогах до частотних характеристик.

Нулі та полюси фільтрів можуть бути дійсними або становити комплексно-спряжені пари. НІХ-фільтр буде стійким, якщо всі його полюси лежать усередині одиничного кола в *z*-площині.

Фільтри 2-го порядку часто ϵ основою для синтезу фільтрів високого порядку. Передавальна функція фільтру 2-го порядку (біквадратної ланки) має таку загальну форму:

$$H(z) = \frac{1 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}.$$

Використовуючи значення нулів q_1, q_2 і полюсів p_1, p_2 фільтру, його передавальну функцію можна подати як:

$$H(z) = \frac{B(z)}{A(z)} = \frac{\left(1 - q_1 z^{-1}\right)\left(1 - q_2 z^{-1}\right)}{\left(1 - p_1 z^{-1}\right)\left(1 - p_2 z^{-1}\right)}.$$

Використовуючи показову форму представлення комплексно спряжених полюсів, $p_1 = re^{j\phi}$ $p_2 = re^{-j\phi}$ можна записати знаменник передавальної функції у вигляді:

$$A(z) = 1 - 2r\cos(\varphi)z^{-1} + r^2z^{-2}$$

де $a_1 = -2r\cos(\phi);$ $a_2 = r^2;$ $\phi = 2\pi f_c/f_s;$ f_c – критична частота; f_s – частота дискретизації.

Значення коефіцієнтів b_1 і b_2 визначають положення нулів передавальної функції і тип фільтру, а значення коефіцієнтів a_1 і a_2 задають положення полюсів фільтру в межах одиничного кола.

Цифрові інтегратори використовують апроксимацію підінтегральної функції за відомими її значеннями в кінцевій послідовності точок. Операції інтегрування сигналів можна реалізувати декількома алгоритмами:

а) інтегрування методом прямокутників:

$$y(n) = Tx(n) + y(n-1);$$

б) інтегрування методом трапецій:

$$y(n) = (x(n) + x(n-1))T/2 + y(n-1);$$

в) інтегрування методом парабол (Сімпсона):

$$y(n) = (x(n) + 4x(n-1) + x(n-2))T/3 + y(n-2).$$

В цих формулах T – період дискретизації сигналу.

Теоретично інтегратори є нестійкими, але їх нестійкість виявляється тільки при сигналах нескінченної довжини, тобто при $n \to \infty$. При інтегруванні сигналів кінцевої довжини результат інтегрування також кінцевий.

Команди MATLAB для вивчення

Використовуйте команду help в MATLAB, вивчіть призначення та варіанти застосування таких функцій (команд): conv, function, qrid, legend, loglog, semilogx.

Завдання і методичні вказівки до виконання роботи

1. Дослідження смугового фільтра

1.1. Синтезуйте смуговий фільтр 2-го порядку з центральною частотою f_c і передавальною функцією загального вигляду:

$$H(z) = \frac{1 - z^{-2}}{1 - 2r\cos(\varphi)z^{-1} + r^2z^{-2}},$$

де $f_c = 20 \Gamma \text{ц}$; $\varphi = 2\pi f_c / f_s$; $f_s = 200 \Gamma \text{ц}$; r = 0.6.

Для виконання завдання можна використати такий код:

fs = 200; fc = 20;
phi =
$$2*pi*fc/fs$$
; r = 0.6;
b = $[1 \ 0 \ -1]$; a = $[1 \ -2*r*cos(phi) \ r^2]$;

Який вираз має передавальна функція смугового фільтра у числовому вигляді?

- 1.2. Для синтезованого фільтру: 1) побудуйте графіки АЧХ і ФЧХ; 2) обчисліть нулі та полюси; 3) побудуйте карту нулів і полюсів (функція zplane). Наведіть в звіті отримані результати.
- 1.3. Синтезуйте смугові фільтри за п. 1.1 при r=0.7 і r=0.9. Виконайте для цих фільтрів завдання п. 1.2

Які існують обмеження на вибір параметру r? Чи ϵ стійкими спроектовані фільтри (обґрунтуйте відповідь)?

1.4. Визначить добротність Q для кожного із варіантів смугового фільтру, використовуючи графіки АЧХ, за формулою:

$$Q = f_{c}/(f_{2} - f_{1}),$$

де f_c — центральна частота фільтра; f_1, f_2 — частоти, на яких АЧХ зменшується на 3 дБ щодо значення при f_c .

Як значення г впливає на добротність фільтра?

1.5. Побудуйте графіки перехідних процесів для кожного із смугових фільтрів (функція stepz), визначте (приблизно) тривалість перехідного процесу для кожного з фільтрів. Подайте результати у звіті.

Як впливає добротність фільтру на тривалість перехідного процесу в ньому?

2. Смугова фільтрація ЕКГ сигналу

2.1. Виконайте фільтрацію ЕКГ (файл ecg105.txt) смуговим фільтром із п.1.1. Побудуйте графіки вихідних сигналів фільтрів. Для зручності встановіть діапазон по осі x таким, щоб спостерігати 2–3 хвилі ЕКГ (функція xlim). Подайте результати у звіті.

У чому проявляється ефект фільтрації?

2.2. Виконайте фільтрацію ЕКГ фільтрами із п.1.3, побудуйте графіки вихідних сигналів.

Який із цих фільтрів забезпечує кращу фільтрацію шуму? Як добротність фільтра впливає на результат фільтрації?

3. Дослідження режекторного фільтра

3.1. Дослідіть властивості режекторного НІХ-фільтра. Його можна отримати додаванням до режекторного СІХ-фильтра з передавальною функцією:

$$H(z) = (1 + z^{-1} + z^{-2})/3$$

двох пар комплексно спряжених полюсів, розташованих усередині одиничного кола в кутах 110° та 130° при r=0.8.

Програмний код обчислення знаменника такий:

$$r = 0.8$$
; phi1 = 110*pi/180; phi2 = 130*pi/180; a1 = $[1 - 2*r*cos(phi1) r^2]$; a2 = $[1 - 2*r*cos(phi2) r^2]$; a = conv(a1,a2);

Запишіть вирази для передавальної функції та різницевого рівняння отриманого фільтра.

Яку операцію виконує функція CONV?

3.2. Для досліджуваного режекторного фільтра: 1) побудуйте графіки АЧХ і ФЧХ; 2) обчисліть нулі та полюси; 3) побудуйте карту нулів і полюсів. Результати наведіть у звіті.

Яка частота затримання фільтра, якщо частота дискретизації сигналу $f_s=200~\Gamma$ ц?

3.3. Порівняйте АЧХ і ФЧХ режекторних НІХ і СІХ-фильтрів. Визначте добротність обох фільтрів.

Як збільшити добротність режекторного фільтра? Як необхідно змінити параметри режекторного фільтра для налаштування його на частоту 50 Гц?

3.4. Завантажте сигнал ЕКГ (функція load) з мережевою перешкодою частою 60 Гц (файл ecg2x60.dat). Виконайте

фільтрацію сигналу режекторним фільтром. Побудуйте в одному вікні графіки початковою та відфільтрованою ЕКГ. Для зручності спостереження ефекту фільтрації виділіть дві хвилі сигналу ЕКГ (функція Xlim). Подайте у звіті отримані результати.

У чому проявляється ефект фільтрації перешкоди мережі живлення?

4. Дослідження цифрових інтеграторів

- 4.1. Обчисліть АЧХ і ФЧХ інтеграторів і отримайте графіки цих характеристик. Подайте результати у звіті.
- 4.2. Визначте нулі та полюси інтеграторів (функція roots), побудуйте карту нулів і полюси. Запишіть передавальні функції кожного з інтеграторів. Подайте результати у звіті.

Що спільного у розглянутих інтеграторів на карті нулів і полюсів? Які висновки можна зробити про стійкість інтеграторів?

4.3. Обчисліть абсолютну похибку АЧХ досліджених інтеграторів як відхилення її від АЧХ ідеального інтегратора, побудуйте графік похибки. Для досліджень можна використати код

mag0 = 1./(2*pi*f); loglog(f,mag0,f,mag1)

err = (mag1 - mag0)*100; figure, plot(f,err)

Опишіть характер зміни похибок кожного з інтеграторів у діапазоні частот інтегрування.

4.4. Завантажте сигнал ЕКГ із шумом (файл ecg105.dat). Виконайте інтегрування сигналу ЕКГ інтеграторами, побудуйте графіки вихідного сигналу інтеграторів.

Чому перед інтегруванням доцільно видалити середнє значення сигналу? Який з інтеграторів дає кращі результати?

Контрольні запитання

- 1. Як експериментально визначити імпульсну та перехідну характеристики цифрового фільтра?
- 2. Як визначити передавальну функцію цифрового HIX-фільтра за його різницевим рівнянням?
- 3. Яке перетворення пов'язує частотну та імпульсну характеристики цифрового фільтру?
 - 4. За якими критеріями визначають стійкість НІХ-фільтру?