Elementos extremos y funciones

Clase 13

IIC 1253

Prof. Sebastián Bugedo

Outline

Obertura

Supremos e ínfimos

Funciones

Funciones

Epílogo

Segundo Acto: Relaciones Conjuntos, relaciones y funciones

Definición

Una relación R sobre A es una relación de orden parcial si es refleja, antisimétrica y transitiva.

Generalmente denotaremos una relación de orden parcial con el símbolo ≤.

- $(x,y) \in x \leq y$.
- \mathbf{x} es menor (o menor-igual) que y.

Si \leq es una relación de orden parcial sobre A, diremos que el par (A, \leq) es un orden parcial.

Ejemplos

- 1. Los pares (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) son órdenes parciales.
- 2. El par $(\mathbb{N}\setminus\{0\},|)$ es un orden parcial.
- 3. Si A es un conjunto cualquiera, el par $(\mathcal{P}(A), \subseteq)$ es un orden parcial.

Definición

Una relación \leq sobre A es una relación de orden total (o lineal) si es una relación de orden parcial y además es conexa.

Para todo par $x, y \in A$, se tiene que $x \le y$ o $y \le x$

Similarmente al caso anterior, diremos que un par (A, \leq) es un orden total.

Definición

Sean (A, \leq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una cota inferior de S si para todo $y \in S$ se cumple que $x \le y$.
- 2. x es un elemento minimal de S si $x \in S$ y para todo $y \in S$ se cumple que $y \le x \Rightarrow y = x$.
- 3. x es un mínimo en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Ejercicio

En cada caso, ¿podemos encontrar un S tal que todos sus elementos sean minimales y maximales a la vez?

Ejercicio

En cada caso, ¿podemos encontrar un S tal que todos sus elementos sean minimales y maximales a la vez?

- En el orden ($\mathbb{N}\setminus\{0\}$,|) podemos tomar $S = \{2,3,5\}$. Como no se dividen entre sí, son todos minimales y maximales.
- En el orden $(\mathcal{P}(\{1,2,3,4\}),\subseteq)$ podemos tomar $S = \{\{1\},\{2\},\{3\},\{4\}\}$. Como ninguno de los conjuntos en S es subconjunto de ninguno de los demás, son todos minimales y maximales.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Ejercicio

Demuestre el teorema.

Ejercicio

Demuestre el resultado análogo para el máximo.

Esto nos permite hablar de el mínimo o el máximo, que denotaremos por min(S) y max(S) respectivamente.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Demostración: Formalmente, debemos demostrar que

$$\forall x, y \in S(x \text{ es mínimo} \land y \text{ es mínimo} \rightarrow x = y)$$

Por demostración directa, supongamos que S tiene dos mínimos s_1, s_2 . Como son mínimos, $s_1, s_2 \in S$, y también $s_1 \le s_2$ y $s_2 \le s_1$. Como \le es una relación de orden, es antisimétrica, y luego $s_1 = s_2$,. Por lo tanto, si hay un mínimo, este es único.

La demostración de unicidad del máximo es completamente análoga.

Objetivos de la clase

- □ Comprender concepto de supremo e ínfimo
- □ Comprender concepto de función
- □ Demostrar propiedades básicas de las funciones

Outline

Obertura

Supremos e ínfimos

Funciones

Funciones

Epílogo

Vimos que hay conjuntos sin mínimo o máximo. La siguiente definición extiende estos conceptos.

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$. Diremos que s es un **infimo** de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \leq s$. Es decir, el ínfimo es la mayor cota inferior.

Análogamente se define el supremo de un conjunto.

Ejercicio

Dé ejemplos de conjuntos que no tengan mínimo pero sí ínfimo, y lo análogo para máximo y supremo.

Un ejemplo típico son los intervalos abiertos en el orden (\mathbb{R},\leq) . Por ejemplo, (0,1) no tiene mínimo pero sí infimo, 0; y no tiene máximo pero sí supremo, 1.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

Ejercicio

Demuestre el teorema.

Esto nos permite hablar de **el** supremo o **el** ínfimo, que denotaremos por sup(S) e inf(S) respectivamente.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos

<u>Demostración</u>: de manera similar a la demostración del mínimo, supongamos que S tiene dos supremos s_1 y s_2 . Por definición de supremo, ambos son cotas superiores de S.

Como s_1 es supremo, para toda cota superior s de S se tiene que $s_1 \le s$, pues el supremo es la menor cota superior, y en particular, $s_1 \le s_2$, pues s_2 es cota superior.

Realizando un razonamiento análogo, obtenemos también que $s_2 \le s_1$, y como \le es antisimétrica, se tiene que $s_1 = s_2$. Concluimos entonces que si existe un supremo, este es único.

La demostración de unicidad del ínfimo es completamente análoga.

¿Existen conjuntos acotados inferiormente (superiormente) que no tengan ínfimo (supremo)?

- En los órdenes (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) no existen.
- En (\mathbb{Q}, \leq) sí, por ejemplo $S = \{q \in \mathbb{Q} \mid q^2 \leq 2\}$. Este conjunto está acotado superiormente (por ejemplo por 2), pero no tiene supremo en \mathbb{Q} . Uno podría estar tentado de decir que el supremo es $\sqrt{2}$, pero $\sqrt{2} \notin \mathbb{Q}$. El supremo debe pertenecer al conjunto sobre el cual está definido el orden.

Definición

Sea (A, \leq) un orden parcial. Este se dice superiormente completo si para cada $S \subseteq A$ no vacío, si S tiene cota superior, entonces tiene supremo.

De manera similar definimos el concepto de ser inferiormente completo.

Dado el ejemplo anterior, tenemos que (\mathbb{Q}, \leq) no es superiormente completo. Una observación importante es que tampoco es inferiormente completo: basta tomar $S' = \{ q \in \mathbb{Q} \mid q^2 \geq 2 \}.$

Esto motiva el siguiente teorema:

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Ejercicio

Demuestre el teorema.

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

<u>Demostración:</u> Demostraremos la dirección hacia la derecha; la otra dirección es análoga y se deja como ejercicio.

Supongamos que (A, \leq) es superiormente completo; es decir, $\forall S \subseteq A$ no vacío, si S está acotado superiormente, tiene supremo. Queremos demostrar que también es inferiormente completo; es decir, $\forall S \subseteq A$ no vacío, si S está acotado inferiormente, tiene ínfimo. Sea entonces $S \subseteq A$ no vacío. Supongamos que está acotado inferiormente. Demostraremos que tiene ínfimo.

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Como S está acotado inferiormente, tiene al menos una cota inferior. Tomemos el siguiente conjunto:

$$S_{ci} = \{ a \in A \mid a \text{ es cota inferior de } S \}$$

Es decir, S_{ci} es el conjunto de todas las cotas inferiores de S. Es claro que $S_{ci} \neq \emptyset$. Por otra parte, como todos los elementos de S_{ci} son cotas inferiores de S, por definición de cota inferior se cumple que

$$\forall x \in Sci \quad \forall y \in S \quad x \leq y$$

de donde es claro que S_{ci} está acotado superiormente (por todos los elementos de S). Luego, como (A, \leq) es superiormente completo, S_{ci} tiene supremo, S_{ci} , el que por definición es una cota superior de S_{ci} .

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Ahora, como todos los elementos de S son cotas superiores de S_{ci} , se cumple que

$$\forall y \in S \quad sup(S_{ci}) \leq y$$

pues el supremo es la menor cota superior. De esto último se deduce que $sup(S_{ci})$ es una cota inferior de S, y como es una cota superior de S_{ci} , es la mayor cota inferior de S, es decir, es el ínfimo de S:

$$inf(S) = sup(S_{ci})$$

Concluimos entonces que (A, \leq) es inferiormente completo.

Outline

Obertura

Supremos e ínfimos

Funciones

Funciones

Epílogo

Definición

Sea f una relación binaria de A en B; es decir, $f \subseteq A \times B$.

Diremos que f es una función de A en B si dado cualquier elemento $a \in A$, si existe un elemento en $b \in B$ tal que afb, este es único:

$$afb \land afc \Rightarrow b = c$$

Si afb, escribimos b = f(a).

- b es la imagen de a.
- a es la preimagen de b.

Notación: $f: A \rightarrow B$

Una función $f: A \rightarrow B$ se dice total si todo elemento en A tiene imagen.

- Es decir, si para todo $a \in A$ existe $b \in B$ tal que b = f(a).
- Una función que no sea total se dice parcial.
- De ahora en adelante, toda función será total a menos que se diga lo contrario.

Ejemplos

Las siguientes relaciones son todas funciones de \mathbb{N}_4 en \mathbb{N}_4 :

$$f_1 = \{(0,0), (1,1), (2,2), (3,3)\}$$

$$f_2 = \{(0,1), (1,1), (2,1), (3,1)\}$$

$$f_3 = \{(0,3), (1,2), (2,1), (3,0)\}$$

¿Cuántas funciones $f: \mathbb{N}_4 \to \mathbb{N}_4$ podemos construir?

También podemos definir funciones mediante expresiones que nos den el valor de f(x).

Ejemplos

Las siguientes son definiciones para funciones de $\mathbb R$ en $\mathbb R$:

$$\forall x \in \mathbb{R}, f_1(x) = x^2 + 1$$

$$\forall x \in \mathbb{R}, f_2(x) = \lfloor x + \sqrt{x} \rfloor$$

$$\forall x \in \mathbb{R}, f_3(x) = 0$$

$$\forall x \in \mathbb{R}, f_4(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

Ejemplos

Dado un conjunto A cualquiera, las siguientes son definiciones para funciones de A en $\mathcal{P}(A)$:

$$\forall a \in A, f_1(a) = \{a\}$$

$$\forall a \in A, f_2(a) = A - \{a\}$$

$$\forall a \in A, f_3(a) = \emptyset$$

Definición

Diremos que una función $f: A \rightarrow B$ es:

- 1. Inyectiva (o 1-1) si para cada par de elementos $x, y \in A$ se tiene que $f(x) = f(y) \Rightarrow x = y$. Es decir, no existen dos elementos distintos en A con la misma imagen.
- Sobreyectiva (o sobre) si cada elemento b ∈ B tiene preimagen. Es decir, para todo b ∈ B existe a ∈ A tal que b = f(a).
- 3. Biyectiva si es inyectiva y sobreyectiva a la vez.

Ejercicio

Determine qué propiedades cumplen o no cumplen las siguientes funciones:

- 1. $f: A \rightarrow \mathcal{P}(A), \forall a \in A, f(a) = \{a\}$
- 2. $f: A \to \mathcal{P}(A), \forall a \in A, f(a) = \emptyset$
- 3. $f: \mathbb{N} \to \mathbb{N}_4$, $\forall n \in \mathbb{N}$, $f(n) = n \mod 4$
- 4. $f: \mathbb{N}_4 \to \mathbb{N}_4$, $\forall n \in \mathbb{N}_4$, $f(n) = (n+2) \mod 4$
- 1. es inyectiva y no sobreyectiva.
- 2. ni inyectiva ni sobreyectiva.
- 3. es sobreyectiva y no inyectiva.
- 4. es inyectiva, sobreyectiva y biyectiva.

- Recordemos que las relaciones (y por lo tanto las funciones) son conjuntos (de pares ordenados).
- Esto significa que podemos usar las operaciones de conjuntos.
 - Unión
 - Intersección
 - Complemento
 - •
- Existen también operaciones exclusivas para relaciones (y funciones).

Definición

Dada una relación R de A en B, la relación inversa de R es una relación de B en A definida como

$$R^{-1} = \{(b, a) \in B \times A \mid aRb\}$$

Definición

Dada una función f de A en B, diremos que f es invertible si su relación inversa f^{-1} es una función de B en A.

Definición

Dadas relaciones R de A en B y S de B en C, la composición de R y S es una relación de A en C definida como

$$S \circ R = \{(a, c) \in A \times C \mid \exists b \in B \text{ tal que } aRb \land bSc\}$$

Proposición

Dadas funciones f de A en B y g de B en C, la composición $g \circ f$ es una función de A en C.

Ejercicio

Demuestre la proposición.

Proposición

Dadas funciones f de A en B y g de B en C, la **composición** $g \circ f$ es una función de A en C.

1. $g \circ f$ es función: supongamos que

$$(g \circ f)(x) = z_1 \text{ y } (g \circ f)(x) = z_2, \text{ con } x \in A, z_1, z_2 \in C.$$

Por definición de composición:

$$g(f(x)) = z_1 \text{ y } g(f(x)) = z_2, \text{ con } x \in A, z_1, z_2 \in C.$$

Como f es función, existe un único $y \in B$ tal que y = f(x), y luego

$$g(y) = z_1 y g(y) = z_2$$
, con $x \in A, y \in B, z_1, z_2 \in C$

y como g también es función, $z_1 = z_2$. Concluimos que $g \circ f$ es función.

Proposición

Dadas funciones f de A en B y g de B en C, la composición $g \circ f$ es una función de A en C.

2. $g \circ f$ es total: sea $x \in A$.

Como f es función total, $\exists y \in B$ tal que $(x, y) \in f$.

Similarmente, como g es función total, $\exists z \in C$ tal que $(y,z) \in g$.

Luego, $(x, z) \in g \circ f$.

Como para cada $x \in A$ existe $z \in C$ tal que $z = (g \circ f)(x)$, $g \circ f$ es total.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

Ejercicio

Demuestre el teorema.

Corolario

Si f es biyectiva, entonces es invertible.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- 1. <u>Función:</u> supongamos que $yf^{-1}x_1$ e $yf^{-1}x_2$, con $y \in B$ y $x_1, x_2 \in A$. Por definición de relación inversa, esto significa que $x_1 fy$ y $x_2 fy$. Como f es inyectiva, $x_1 = x_2$, y por lo tanto f^{-1} es función.
- 2. <u>Total:</u> como f es sobre, para todo $y \in B$ existe $x \in A$ tal que y = f(x). Luego, para todo $y \in B$ existe $x \in A$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es total.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- 3. Inyectiva: supongamos que $f^{-1}(y_1) = f^{-1}(y_2) = x$, con $y_1, y_2 \in B$ y $x \in A$. Por definición de relación inversa, esto significa que $f(x) = y_1$ y $f(x) = y_2$. Como f es función, $y_1 = y_2$, y por lo tanto f^{-1} es inyectiva.
- 4. Sobre: como f es total, para todo $x \in A$ existe $y \in B$ tal que y = f(x). Luego, para todo $x \in A$ existe $y \in B$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es sobre.

Teorema

Dadas dos funciones $f : A \rightarrow B$ y $g : B \rightarrow C$:

- 1. Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.

Ejercicio

Demuestre el teorema.

Corolario

Si f y g son biyectivas, entonces $g \circ f$ también lo es.

Teorema

Dadas dos funciones $f : A \rightarrow B$ y $g : B \rightarrow C$:

- 1. Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.
- 1. Supongamos que $(g \circ f)(x_1) = (g \circ f)(x_2)$, con $x_1, x_2 \in A$. Por definición de composición, $g(f(x_1)) = g(f(x_2))$. Como g es inyectiva, se tiene que $f(x_1) = f(x_2)$, y como f también es inyectiva, $x_1 = x_2$. Por lo tanto, $g \circ f$ es inyectiva.
- Sea z ∈ C. Como g es sobre, sabemos que existe y ∈ B tal que z = g(y). Similarmente, como f es sobre, sabemos que existe x ∈ A tal que y = f(x). Entonces, tenemos que z = g(y) = g(f(x)) = (g ∘ f)(x), y por lo tanto para cada z ∈ C existe x ∈ A tal que z = (g ∘ f)(x). Concluimos que g ∘ f es sobre.

Una aplicación muy importante de las funciones es que nos permiten razonar sobre el tamaño de los conjuntos. Una propiedad interesante sobre los conjuntos finitos es la siguiente:

Principio del palomar

Se tienen m palomas y n palomares, con m > n. Entonces, si se reparten las m palomas en los n palomares, necesariamente existirá un palomar con más de una paloma.

Principio del palomar (matemático)

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m > n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x, y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

Principio del palomar (para sobreyectividad)

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m < n, la función f no puede ser sobreyectiva.

Corolario

La única forma en que una función $f: \mathbb{N}_m \to \mathbb{N}_n$ sea biyectiva es que m = n.

Ejemplo

Si en una sala hay 8 personas, entonces este año necesariamente dos de ellas celebrarán su cumpleaños el mismo día de la semana.

Las 8 personas las podemos modelar como el conjunto $P = \{0, \dots, 7\}$ y los días de la semana como el conjunto $S = 0, \dots, 6$. El día de la semana que se celebra el cumpleaños de cada una resulta ser una función de P en S, por el principio de los cajones, esta función no puede ser inyectiva, luego al menos dos personas distintas celebrarán su cumpleaños el mismo día de la semana.

Outline

Obertura

Supremos e ínfimos

Funciones

Funciones

Epílogo

Objetivos de la clase

- □ Comprender concepto de supremo e ínfimo
- □ Comprender concepto de función
- □ Demostrar propiedades básicas de las funciones