Update: Trilinear reweighting

Jonathon Langford

Imperial College London

IC Hgg 16 Mar. 2018

Recap

- ullet Maltoni: determine λ_3 via single-Higgs differential measurements.
- Comparing LO to $\mathcal{O}(\lambda_3)$, observing effect of λ_3 on differential dist (e.g. $p_T(H)$). Using code by authors of arXiv:1709.08649 to generate event w/ and w/o trilinear reweighting (inclusion of electroweak loops).

C_1 variable

- POI is *C*₁
 - Introduces process/kinematic dependence of λ₃ on some cross section.
 - What we extract from reweighting code
 - Ratio O(λ₃)/LO in some bin of differential distribution.

$$egin{aligned} \lambda_3 &= \kappa_\lambda \lambda_3^{
m SM} \ \Sigma_{
m NLO}/\Sigma_{
m LO} &= Z_H (1 + \kappa_\lambda \, C_1) \end{aligned}$$

- Since: $\mu_i = f_i(C_1 i, \kappa_\lambda)$
 - m_{γγ} distribution in each bin from full signal and background MC samples
 - ► Use trilinear reweighting code to calculate *C*₁ in bin
 - Fit using combine tool to extract

 κ_{λ}

Event Gen.

- Generated events (Madgraph \rightarrow PYTHIA \rightarrow DELPHES) with and without trilinear reweighting (10⁵).
 - ightharpoonup ZH and WH ($H o \gamma \gamma$ inc. in ME calc in Madgraph)
 - ▶ VBF (Issue with Madgraph, force $H \rightarrow \gamma \gamma$ in PYTHIA config).
 - Having problems with ttH in generating loop diagrams. In contact with authors of code.
- Using Generator level particles for analysis. Apply selection to extract photon pair from Higgs decay.
 - p_T of each $\gamma > 25$ GeV
 - ▶ If multiple pairs remaining, choose pair with highest vector sum p_T .
- Use large binning in distributions, statistically limited.

ZH Production: $p_T(H)$

WH Production: $p_T(H)$

VBF: $p_T(H)$

ZHLeptonic

- Moving towards real analysis categories: ZHLeptonicTag
 - ▶ $p_T(I) > 20 \text{ GeV}$
 - ▶ Isolation from photon candidates: $\Delta R > 1.0/0.5$ for electron/muon
 - ► Same flavour, opposite charge
 - ▶ 70 < m_{||} < 110 GeV
 - ▶ Roughly 4% of events remaining from inclusive ZH event gen.

ZHLeptonic: $p_T(H)$

ZHLeptonic: m_{ZH}

Plans

- Now can measure C_1 in bins of any distribution.
- Aim: Set up full analysis framework in ZHLeptonic.
 - ▶ Using flashgg::ZHLeptonicTag on LHC official samples (signal+background). Changing configuration to dump required variables (i.e $p_T(\gamma\gamma)$, $m_{\gamma\gamma}$). Note, MC does not include trilinear effects (i.e. LO).
 - Create Asimov toy dataset, scaling up 3000 fb⁻¹
 - ▶ Make $m_{\gamma\gamma}$ distribution in each bin of distribution.
 - ▶ **Combine:** Likelihood scan to extract κ_{λ} : $\mu_i = f_i(C_{1i}, \kappa_{\lambda})$.
 - Gives an idea of required sensitivity for this kind of analysis.
 - ▶ Will move on to HL-LHC Delphes samples when they have been made.

