Application of GLM Advancements to Non-Life Insurance Pricing

Leonardo Stincone

Università degli Studi di Trieste

18 Maggio 2021

Indice

1. Descrizione del problema

2. Dataset

3. Modelli

4. Risultati

Descrizione del problema

Problema: prevedere il numero di sinistri (N_i) che causerà un assicurato (i) a partire dalle informazioni della sua polizza:

$$(x_{i1}, x_{i2}, \dots, x_{ip}) \longmapsto F_{N_i}, E(N_i), Var(N_i)$$

Soluzione: stimo un modello a partire dai dati storici.

Perché: prevedere il numero di sinistri è uno degli elementi per determinare il prezzo di una polizza assicurativa.

Dataset: Esposizione e Variabile Risposta

Origine del Dataset

Portafoglio RCA costituito da polizze di una provincia italiana nel periodo 2014-2019

Set	Esposizione	Numero	Frequenza	
	(rischi anno)	Sinistri	Sinistri	
Train	107 998.4	4 823	0.045	
Test	26 806.3	1 131	0.042	
Tot	134 804.7	5 954	0.044	

Dataset: Variabili Esplicative

Descrizione	Numero di variabili per categoria
Informazioni sul veicolo assicurato	12
Informazioni generiche sull'assicurato	14
Informazioni assicurative sull'assicurato	9
Opzioni della polizza assicurativa	11
Informazioni sull'assicurato in quanto cliente	2
Dati telematici	4
Totale	52

Modelli: Modelli Lineari Generalizzati (GLM)

Ipotesi

- $oldsymbol{0}$ (Y_1,\ldots,Y_n) indipendenti con distribuzione appartenente alla medesima Famiglia Esponenziale Lineare
- Predittore lineare

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} = \mathbf{x}_i^t \boldsymbol{\beta}, \quad i \in \{1, 2, \dots, n\}$$

§ Funzione legame

$$g(\mu_i) = \eta_i = \boldsymbol{x}_i^t \boldsymbol{\beta}, \quad i \in \{1, 2, \dots, n\}$$

Stima dei parametri

Stima di massima verosimiglianza

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} L\left(\boldsymbol{\beta}, \phi; \boldsymbol{y}\right) = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} D(\boldsymbol{\beta}, \boldsymbol{y})$$

Selezione delle variabili

Algoritmo stepwise basato su un criterio di informazione (AIC)

Modelli: Elastic Net

Ipotesi

Modello sottostante: GLM

Stima dei parametri

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) + \lambda \sum_{j=1}^{p} \left(\alpha |\beta_j| + (1-\alpha) |\beta_j|^2 \right) \right\}$$

con

- ullet $\lambda \geq 0$ iperparametro di penalizzazione
- ullet $lpha \in [0,1]$ iperparametro che determina il peso della penalizzazione LASSO
 - $ightharpoonup \alpha = 0 \implies \text{Regressione Ridge}$
 - $\alpha = 1 \implies \text{Regressione LASSO}$

Modelli: Modelli Additivi Generalizzati (GAM)

Ipotesi

Predittore lineare

$$\eta_i = oldsymbol{x}_i^t oldsymbol{eta} + \sum_{l=1}^q f_l(z_{i,l}), \quad i \in \{1,2,\ldots,n\}$$

con $f_l(\cdot)$ spline cubica

Stima dei parametri

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\mathbf{f}} = \underset{\mathbf{f}}{\operatorname{arg\,min}} \left\{ D(\mathbf{f}, \mathbf{y}) + \sum_{l=1}^{q} \lambda_l \int_{a_l}^{b_l} (f_l''(x_l))^2 dx \right\}$$

con $\lambda_1,\lambda_2,\ldots,\lambda_q$ iperparametri di smoothing.

Risultati

ld	Model	Test Deviance	Time	α	λ
Mod1	GLM Tot	8 458 147	2.7s	0	0
Mod2	Elastic Net Tot	8 458 024	1h 30m	0.06	2.01e-04
Mod3	Ridge Tot	8 457 465	1h 30m	0	4.64e-04
Mod4	GLM AIC	8 458 023	7h 27m	0	0
Mod5	Elastic Net AIC	8 458.236	8h 54m	0	1.63e-05
Mod6	GAM AIC	9 728.570	7h 45m	0	0
Mod7	GBM Tot	8 504.178	2h 30m		

Grazie per l'attenzione