ECS289: Scalable Machine Learning

Cho-Jui Hsieh UC Davis

Oct 27, 2015

Outline

- One versus all/One versus one
- Ranking loss for multiclass/multilabel classification
- Scaling to millions of labels

Multiclass Learning

- n data points, L labels, d features
- Input: training data $\{x_i, y_i\}_{i=1}^n$:
 - Each x_i is a d dimensional feature vector
 - Each $y_i \in \{1, \dots, L\}$ is the corresponding label
 - Each training data belongs to one category
- Goal: find a function to predict the correct label

$$f(\mathbf{x}) \approx y$$

Multi-label Problems

- n data points, L labels, d features
- Input: training data $\{x_i, y_i\}_{i=1}^n$:
 - Each x_i is a d dimensional feature vector
 - Each $\mathbf{y}_i \in \{0,1\}^L$ is a label vector (or $Y_i \in \{1,2,\ldots,L\}$) Example: $\mathbf{y}_i = [0,0,1,0,0,1,1]$ (or $Y_i = \{3,6,7\}$)
 - Each training data can belong to multiple categories
- \bullet Goal: Given a testing sample x, predict the correct labels

{Sports, Politics}
{Science, Politics}
•
•
{Environment}

Illustration

- Multiclass: each row of L has exact one "1"
- Multilabel: each row of L can have multiple ones

Measure the accuracy (multi-class)

- Let $\{x_i, y_i\}_{i=1}^m$ be a set of testing data for multi-class problems
- Let z_1, \ldots, z_m be the prediction for each testing data
- Accuracy:

$$\frac{1}{m}\sum_{i=1}^{m}I(y_i=z_i)$$

Measure the accuracy (multi-class)

- Let $\{x_i, y_i\}_{i=1}^m$ be a set of testing data for multi-class problems
- Let z_1, \ldots, z_m be the prediction for each testing data
- Accuracy:

$$\frac{1}{m}\sum_{i=1}^m I(y_i=z_i)$$

• If the algorithm outputs a set of k potential labels for each sample:

$$Z_1, Z_2, \ldots, Z_m$$

Each Z_i is a set of k labels

• Precision@k:

$$\frac{1}{m}\sum_{i=1}^m I(y_i \in Z_i)$$

x_1
x_2
x_3
x_4
x_5
x_n

0	1	0	0	y_1
1	0	0	0	y_2
0	1	0	0	
0	0	0	1	
1	0	0	0	
0	0	1	0	y_n

23	49	10	20
13	52	24	17
71	62	53	46
11	8	13	14
50	60	70	10
48	51	61	97

X

Y

Z(prediction)

x_1
x_2
x_3
x_4
x_5
x_n

0	1	0	0	y_1
1	0	0	0	y_2
0	1	0	0	
0	0	0	1	
1	0	0	0	
0	0	1	0	y_n

49	10	20
52	24	17
62	53	46
8	13	14
60	70	10
51	61	97
	52 62 8 60	52 24 62 53 8 13 60 70

X

Υ

Z(prediction)

Accuracy = Precision@1 = 2/6

x_1
x_2
x_3
x_4
x_5
x_n

0	1	0	0	y_1
1	0	0	0	y_2
0	1	0	0	
0	0	0	1	
1	0	0	0	
0	0	1	0	y_n

23	49	10	20
13	52	24	17
71	62	53	46
11	8	13	14
50	60	70	10
48	51	61	97

X

Y

Z(prediction)

Precision@2 = 4/6

x_1
x_2
x_3
x_4
x_5
x_n

0	1	0	0	y_1
1	0	0	0	y_2
0	1	0	0	
0	0	0	1	
1	0	0	0	
0	0	1	0	y_n

23	49	10	20
13	52	24	17
71	62	53	46
11	8	13	14
50	60	70	10
48	51	61	97

X

Y

Z(prediction)

Precision@3 = 5/6

Measure the accuracy (multi-label)

- Let $\{x_i, y_i\}_{i=1}^m$ be a set of testing data for multi-label problems
- ullet For each testing data, the classifier outputs $oldsymbol{z}_i \in \{0,1\}^L$
- We use $Y_i = \{t : (\mathbf{y}_i)_t \neq 0\}$ and $Z_i = \{t : (\mathbf{z}_i)_t \neq 0\}$ to denote the subset of real and predictive labels for the *i*-th testing data.
 - If each Z_i has k elements, then Precision@k is defined by:

$$\frac{1}{m}\sum_{i=1}^{m}\frac{Z_{i}\cap Y_{i}}{k}$$

Hamming loss: overall classification performance

$$\frac{1}{m}\sum_{i=1}^m d(\mathbf{y}_i,\mathbf{z}_i),$$

where $d(\mathbf{y}_i, \mathbf{z}_i)$ measures the number of places where \mathbf{y}_i and \mathbf{z}_i differ.

 ROC curve (assume the classifier predicts a ranking of labels for each data point)

Example (multilabel)

x_1
x_2
x_3
x_4
x_5
x_n

0	1	1	0	$ y_1 $
1	0	0	1	y_2
0	1	0	0	
1	1	0	1	
1	0	1	1	
0	0	1	0	y_n

23	49	10	20
13	52	24	17
71	62	53	46
11	8	13	14
50	60	70	10
48	51	61	97

X

Y

Z(prediction)

Example (multilabel)

x_1
x_2
x_3
x_4
x_5
x_n

0	1	1	0	y_1
1	0	0	1	y_2
0	1	0	0	
1	1	0	1	
1	0	1	1	
0	0	1	0	y_n

23	49	10	20
13	52	24	17
71	62	53	46
11	8	13	14
50	60	70	10
48	51	61	97

X

Y

Z(prediction)

Precision@1 = 3/6

Example (multilabel)

x_1
x_2
x_3
x_4
x_5
x_n

0	1	1	0	y_1
1	0	0	1	y_2
0	1	0	0	
1	1	0	1	
1	0	1	1	
0	0	1	0	y_n

	23	49	10	20
	13	52	24	17
	71	62	53	46
ſ	11	8	13	14
	50	60	70	10
	48	51	61	97

X

Y

Z(prediction)

Precision@2 = 5/12

Traditional Approach

- Many algorithms for binary classification
- Idea: transform multi-class or multi-label problems to multiple binary classification problems
- Two approaches:
 - One versus All (OVA)
 - One versus One (OVO)

One Versus All (OVA)

- Multi-class/multi-label problems with L categories
- Build *L* different binary classifiers
- For the t-th classifier:
 - Positive samples: all the points in class t ($\{x_i : t \in y_i\}$)
 - Negative samples: all the points not in class t $(\{x_i : t \notin y_i\})$
 - $f_t(\mathbf{x})$: the decision value for the t-th classifier (larger $f_t \Rightarrow$ higher probability that \mathbf{x} in class t)
- Prediction:

$$f(\mathbf{x}) = \arg \max_t f_t(\mathbf{x})$$

• Example: using SVM to train each binary classifier.

One Versus One (OVO)

- Multi-class/multi-label problems with L categories
- Build L(L-1) different binary classifiers
- For the (s, t)-th classifier:
 - Positive samples: all the points in class s $(\{x_i : s \in y_i\})$
 - Negative samples: all the points in class t $(\{x_i : t \in y_i\})$
 - $f_{s,t}(\mathbf{x})$: the decision value for this classifier (larger $f_{s,t}(\mathbf{x}) \Rightarrow$ label s has higher probability than label t)
 - $f_{t,s}(x) = -f_{s,t}(x)$
- Prediction:

$$f(\mathbf{x}) = \arg\max_{s} \left(\sum_{t} f_{s,t}(\mathbf{x}) \right)$$

- Example: using SVM to train each binary classifier.
- Not for multilabel problems.

OVA vs OVO

- Prediction accuracy: depends on datasets
- Computational time:
 - OVA needs to train L classifiers
 - OVO needs to train L(L-1)/2 classifiers
- Is OVA always faster than OVO?

OVA vs OVO

- Prediction accuracy: depends on datasets
- Computational time:
 - OVA needs to train L classifiers
 - OVO needs to train L(L-1)/2 classifiers
- Is OVA always faster than OVO?
 - NO, depends on the time complexity of the binary classifier
 - If the binary classifier requires O(n) time for n samples: OVA and OVO have similar time complexity
 - If the binary classifier requires $O(n^{1.xx})$ time: OVO is faster than OVA

OVA vs OVO

- Prediction accuracy: depends on datasets
- Computational time:
 - OVA needs to train L classifiers
 - OVO needs to train L(L-1)/2 classifiers
- Is OVA always faster than OVO?
 - NO, depends on the time complexity of the binary classifier
 - If the binary classifier requires O(n) time for n samples: OVA and OVO have similar time complexity
 - If the binary classifier requires $O(n^{1.xx})$ time: OVO is faster than OVA
- LIBSVM (kernel SVM solver): OVO
- LIBLINEAR (linear SVM solver): OVA

Comparisons (accuracy)

For kernel SVM with RBF kernel

	One-agai	nst-one	DA	G	One-agai	inst-all	[25],	[27]	C&	S
Problem	(C,γ)	rate	(C, γ)	rate	(C,γ)	rate	(C,γ)	rate	(C,γ)	rate
iris	$(2^{12}, 2^{-9})$	97.333	$(2^{12}, 2^{-8})$	96.667	$(2^9, 2^{-3})$	96.667	$(2^{12}, 2^{-8})$	97.333	$(2^{10}, 2^{-7})$	97.333
wine	$(2^7, 2^{-10})$	99.438	$(2^6, 2^{-9})$	98.876	$(2^7, 2^{-6})$	98.876	$(2^0, 2^{-2})$	98.876	$(2^1, 2^{-3})$	98.876
glass	$(2^{11}, 2^{-2})$	71.495	$(2^{12}, 2^{-3})$	73.832	$(2^{11}, 2^{-2})$	71.963	$(2^9, 2^{-4})$	71.028	$(2^4, 2^1)$	71.963
vowel	$(2^4, 2^0)$	99.053	$(2^2, 2^2)$	98.674	$(2^4, 2^1)$	98.485	$(2^3, 2^0)$	98.485	$(2^1, 2^3)$	98.674
vehicle	$(2^9, 2^{-3})$	86.643	$(2^{11}, 2^{-5})$	86.052	$(2^{11}, 2^{-4})$	87.470	$(2^{10}, 2^{-4})$	86.998	$(2^9, 2^{-4})$	86.761
segment	$(2^6, 2^0)$	97.403	$(2^{11}, 2^{-3})$	97.359	$(2^7, 2^0)$	97.532	$(2^5, 2^0)$	97.576	$(2^0, 2^3)$	97.316
dna	$(2^3, 2^{-6})$	95.447	$(2^3, 2^{-6})$	95.447	$(2^2, 2^{-6})$	95.784	$(2^4, 2^{-6})$	95.616	$(2^1, 2^{-6})$	95.869
satimage	$(2^4, 2^0)$	91.3	$(2^4, 2^0)$	91.25	$(2^2, 2^1)$	91.7	$(2^3, 2^0)$	91.25	$(2^2, 2^2)$	92.35
letter	$(2^4, 2^2)$	97.98	$(2^4, 2^2)$	97.98	$(2^2, 2^2)$	97.88	$(2^1, 2^2)$	97.76	$(2^3, 2^2)$	97.68
shuttle	$(2^{11}, 2^3)$	99.924	$(2^{11}, 2^3)$	99.924	$(2^9, 2^4)$	99.910	$(2^9, 2^4)$	99.910	$(2^{12}, 2^4)$	99.938

(See "A comparison of methods for multiclass support vector machines", 2002)

Comparisons (training time)

For kernel SVM (with RBF kernel)

	One-agai	nst-one	one DAG One-against-all [25], [27]		One-against-all		[27]	C&8	3	
Problem	training	$\#\mathrm{SVs}$	training	$\#\mathrm{SVs}$	training	$\#\mathrm{SVs}$	training	$\#\mathrm{SVs}$	training	$\#\mathrm{SVs}$
	testing		testing		testing		testing		testing	
iris	0.04	16.9	0.04	15.6	0.10	16.0	0.15	16.2	16.84	27.8
wine	0.12	56.3	0.13	56.5	0.20	29.2	0.28	54.5	0.39	41.6
glass	2.42	112.5	2.85	114.2	10.00	129.0	7.94	124.1	7.60	143.3
vowel	2.63	345.3	3.98	365.1	9.28	392.6	14.05	279.4	20.54	391.0
vehicle	19.73	302.4	35.18	293.1	142.50	343.0	88.61	264.2	1141.76	264.9
segment	17.10	442.4	23.25	266.8	68.85	446.3	66.43	358.2	192.47	970.3
dna	10.60	967	10.74	967	23.47	1152	13.5	951	16.27	945
	6.91		6.30		8.43		6.91		6.39	
satimage	24.85	1611	25.1	1611	136.42	2170	48.21	1426	89.58	2670
	13.23		12.67		19.22		11.89		23.61	
letter	298.08	8931	298.62	8931	1831.80	10129	8786.20	7627	1227.12*	6374
	126.10		92.8		146.43		142.75		110.39	
shuttle	170.45	301	168.87	301	202.96	330	237.80	202	2205.78*	198
	6.99		5.09		5.99		4.64		4.26	

^{*:} stopping tolerance $\epsilon = 0.1$ is used.

(See "A comparison of methods for multiclass support vector machines", 2002)

Methods Using Instance-wise Ranking Loss

Main idea

- OVA and OVO: decompose the problem by labels
- However, the ranking of the labels for a testing sample is important
 - For multiclass classification, the score of y_i should be larger than other labels
 - ullet For multilabel classification, the score of Y_i should be larger than other labels
- Both OVA and OVO decompose the problem into individual labels
 - \Rightarrow they cannot capture the ranking information
- Solve one combined optimization problem by minimizing the ranking loss

Main idea

- For simplicity, we assume a linear model
- Model parameters: $\mathbf{w}_1, \dots, \mathbf{w}_L$
- For each data point **x**, compute the decision value for each label:

$$\mathbf{w}_1^T \mathbf{x}, \quad \mathbf{w}_2^T \mathbf{x}, \dots, \quad \mathbf{w}_L^T \mathbf{x}$$

• Prediction:

$$y = \arg\max_t \boldsymbol{w}_t^T \boldsymbol{x}$$

• For training data x_i , y_i is the true label, so we want

$$y_i \approx \arg\max_t \boldsymbol{w}_t^T \boldsymbol{x}_i \ \ \forall i$$

Main idea

Question: how to define the distance between XW and Y

Weston-Watkins Formulation

 Proposed in Weston and Watkins, "Multi-class support vector machines". In ESANN, 1999.

$$\begin{aligned} \min_{\{\boldsymbol{w}_t\}, \{\xi_i^t\}} & \ \frac{1}{2} \sum_{t=1}^{L} \|\boldsymbol{w}_t\|^2 + C \sum_{i=1}^{n} \sum_{t=1}^{L} \xi_i^t \\ \text{s.t.} & \ \boldsymbol{w}_{y_i}^T \boldsymbol{x}_i - \boldsymbol{w}_t^T \boldsymbol{x}_i \geq 1 - \xi_i^t, \ \ \xi_i^t \geq 0 \ \ \forall t \neq y_i, \ \forall i = 1, \dots, n \end{aligned}$$

• If point i is in class y_i , for any other labels $(t \neq y_i)$, we want

$$\mathbf{w}_{y_i}^T \mathbf{x}_i - \mathbf{w}_t^T \mathbf{x}_i \geq 1$$

or we pay a penalty ξ_i^t

• Prediction:

$$f(\boldsymbol{x}) = \arg\max_{t} \boldsymbol{w}_{t}^{T} \boldsymbol{x}_{i}$$

Weston-Watkins Formulation (dual)

The dual problem of Weston-Watkins formulation:

$$\begin{aligned} \min_{\{\alpha_t\}} & \frac{1}{2} \sum_{t=1}^{L} \| \mathbf{w}_t(\alpha) \| + \sum_{i=1}^{n} \sum_{t \neq y_i} \alpha_i^t \\ \text{s.t.0} & \leq \alpha_i^t \leq C, \ \forall t \neq y_i, \ \forall i = 1, \dots, n \end{aligned}$$

- $\alpha_1, \ldots, \alpha_L \in \mathbb{R}^n$: dual variables for each label
- $\mathbf{w}_t(\alpha) = -\sum_i \alpha_i^t \mathbf{x}_i$, and $\alpha_i^{y_i} = -\sum_{t \neq y_i} \alpha_i^t$
- Can be solved by dual (block) coordinate descent

Crammer-Singer Formulation

 Proposed in Carmmer and Singer, "On the algorithmic implementation of multiclass kernel-based vector machines". JMLR, 2001.

$$\begin{aligned} \min_{\{\boldsymbol{w}_t\}, \{\xi_i^t\}} & \ \frac{1}{2} \sum_{t=1}^{L} \|\boldsymbol{w}_t\|^2 + C \sum_{i=1}^{n} \xi_i \\ \text{s.t.} & \ \boldsymbol{w}_{y_i}^T \boldsymbol{x}_i - \boldsymbol{w}_t^T \boldsymbol{x}_i \geq 1 - \xi_i, \ \ \forall t \neq y_i, \ \forall i = 1, \dots, n \\ & \xi_i \geq 0 \ \ \forall i = 1, \dots, n \end{aligned}$$

• If point i is in class y_i , for any other labels $(t \neq y_i)$, we want

$$\mathbf{w}_{y_i}^T \mathbf{x}_i - \mathbf{w}_t^T \mathbf{x}_i \geq 1$$

- For each point i, we only pay the largest penalty
- Prediction:

$$f(\mathbf{x}) = \arg\max_{t} \mathbf{w}_{t}^{T} \mathbf{x}_{i}$$

Crammer-Singer Formulation (dual)

The dual problem of Crammer-Singer formulation:

$$\begin{aligned} & \min_{\{\alpha_t\}} \frac{1}{2} \sum_{t=1}^{L} \| \boldsymbol{w}_t(\alpha) \| + \sum_{i=1}^{n} \sum_{t \neq y_i} \alpha_i^t \\ & \text{s.t.} \bigg(\alpha_i^t \leq C, \ \forall t, \sum_t \alpha_i^t = 0 \bigg), \ \forall i = 1, 2, \dots, n \end{aligned}$$

- $\alpha_1, \ldots, \alpha_L \in \mathbb{R}^n$: dual variables for each label
- $\mathbf{w}_t(\alpha) = -\sum_i \alpha_i^t \mathbf{x}_i$, and $\alpha_i^{y_i} = -\sum_{t \neq y_i} \alpha_i^t$
- Can be solved by dual (block) coordinate descent

Comparisons

Dataset	OVR	CS	WW
NEWS20	85.39 ± 0.37	85.26 ± 0.37	85.10 ± 0.43
SECTOR	94.83 ± 0.56	95.17 ± 0.62	94.37 ± 0.57
MNIST	91.46 ± 0.23	92.50 ± 0.20	91.84 ± 0.21
RCV1	90.85 ± 0.10	91.19 ± 0.07	91.10 ± 0.11
COVER	71.35 ± 0.33	72.31 ± 0.37	72.40 ± 0.25

(See "A Sequential Dual Method for Large Scale Multi-Class Linear SVMs", KDD 2008)

Scaling to huge number of labels

Challenges: large number of categories

- Multi-label (or multi-class) classification with large number of labels
- Image classification—> 10000 labels
- Recommending tags for articles: millions of labels (tags)

Challenges: large number of categories

- Consider a problem with 1 million labels (L = 1,000,000)
- One versus all: reduce to 1 million binary problems
- Training: 1 million binary classification problems.
 - Need 694 days if each binary problem can be solved in 1 minute
- Model size: 1 million models.
 - Need 1 TB if each model requires 1MB.
- Prediction one testing data: 1 million binary prediction
 - Need 1000 secs if each binary prediction needs 10^{-3} secs.

Several Approaches

- Label space reduction by Compressed Sensing (CS)
- Feature space reduction (PCA)
- Supervised latent feature model by matrix factorization

ullet If $A\in\mathbb{R}^{n imes d},$ $oldsymbol{w}\in\mathbb{R}^d,$ $oldsymbol{y}\in\mathbb{R}^n$, and

$$A\mathbf{w} = \mathbf{y}$$

• Given A and y, can we recover w?

• If $A \in \mathbb{R}^{n \times d}$, $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{y} \in \mathbb{R}^n$, and

$$A\mathbf{w} = \mathbf{y}$$

- Given A and \mathbf{y} , can we recover \mathbf{w} ?
- When $n \gg d$:

Usually yes, because number of constraints ≫ number of variable (over-determined linear system)

• If $A \in \mathbb{R}^{n \times d}$, $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{y} \in \mathbb{R}^n$, and

$$A\mathbf{w} = \mathbf{y}$$

- Given A and y, can we recover w?
- When $n \ll d$:

 ${\bf No}$, because number of constraints \ll number of variable (high dimensional regression, under-determined linear system, ...)

• However, if we know \boldsymbol{w} is a sparse vector (with $\leq s$ nonozero elements), and A satisfies certain condition, then we can recover \boldsymbol{w} even in the high dimensional setting.

- ullet Conditions: $oldsymbol{w}$ is s-sparse and A satisfies Restricted Isometry Property (RIP)
 - Example: all entries of A are generated i.i.d. from Gaussian $N(0,\sigma)$
 - ...
- \mathbf{w} can be recoverd by $O(s \log d)$ samples
 - Lasso (ℓ_1 -regularized linear regression)
 - Orthogonal Mathcing Pursuit (OMP)
 - ...
- How is this related to multilabel classification?

- Proposed in Hsu et al., "Multi-Label Prediction via Compressed Sensing". In NIPS 2009.
- Main idea: reduce the label space from \mathbb{R}^L to \mathbb{R}^k , where $k \ll L$

$$\mathbf{z}_i = M\mathbf{y}_i$$
 where $M \in \mathbb{R}^{k \times L}$

• If we can recover y_i by knowing z_i and M, then: we only need to learn a function to map x_i to z_i :

$$f(\mathbf{x}_i) \approx \mathbf{z}_i$$

- Proposed in Hsu et al., "Multi-Label Prediction via Compressed Sensing". In NIPS 2009.
- Main idea: reduce the label space from \mathbb{R}^L to \mathbb{R}^k , where $k \ll L$

$$\mathbf{z}_i = M\mathbf{y}_i$$
 where $M \in \mathbb{R}^{k \times L}$

• If we can recover y_i by knowing z_i and M, then: we only need to learn a function to map x_i to z_i :

$$f(\mathbf{x}_i) \approx \mathbf{z}_i$$

- By compressed sensing:
 - y_i can be recovered given x_i and M even when $k = O(s \log L)$
 - s is the number of nonzeroes in y_i : usually very small in practice

Training:

- Step 1: Construct M by i.i.d. Gaussian
- Step 2: Compute $z_i = My_i$ for all i = 1, 2, ..., n
- Step 3: Learn a function f such that

$$f(\mathbf{x}_i) \approx \mathbf{z}_i$$

Prediction for a test sample x

- Step 1: compute z = f(x)
- Step 2: compute $\mathbf{y} \in \mathbb{R}^L$ by solving a Lasso problem
- Step 3: Threshold \mathbf{y} to give the prediction

- Reduce the label size from L to $O(s \log L)$
- Drawbacks:
 - Slow prediction time (need to solve a Lasso problem for every prediction)
 - 2 Large error in practice

Another way to understand this algorithm

- $X \in \mathbb{R}^{n \times d}$: data matrix, each row is a data point x_i
- $Y \in \mathbb{R}^{n \times L}$: label matrix, each row is \mathbf{y}_i
- $M \in \mathbb{R}^{L \times k}$: Gaussian random matrix
- Goal: find a U matrix such that $XU \approx YM$

Another way to understand this algorithm

- $X \in \mathbb{R}^{n \times d}$: data matrix, each row is a data point x_i
- $Y \in \mathbb{R}^{n \times L}$: label matrix, each row is \mathbf{y}_i
- $M \in \mathbb{R}^{L \times k}$: Gaussian random matrix
- M^{\dagger} : psuedo inverse of M
- Goal: find a U matrix such that $XUM^{\dagger} \approx YMM^{\dagger}$

Feature space reduction

- Another way to improve speed: reduce the feature space
- ullet Dimension reduction from d dimensional space to k dimensional space

$$\mathbf{x}_i \to N \mathbf{x}_i = \bar{\mathbf{x}}_i,$$

where $N \in \mathbb{R}^{k \times d}$ and $k \ll d$

• Matrix form:

$$\bar{X} = XN^T$$

Multilabel learning on the reduced feature space:
Learn V such that

$$\bar{X}V \approx Y$$

- Time complexity: reduced by a factor of n/k
- Several ways to choose N: PCA, random projection, ...

Another way to understand this algorithm

- $X \in \mathbb{R}^{n \times d}$: data matrix, each row is a data point x_i
- $Y \in \mathbb{R}^{n \times L}$: label matrix, each row is \mathbf{y}_i
- $N \in \mathbb{R}^{k \times d}$: matrix for dimensional reduction
- Goal: find a V matrix such that $XN^TV \approx Y$

Supervised latent space model (by matrix factorization)

Label space reduction: find U such that

$$XUV^T \approx Y$$

• Feature space reduction: find V such that

$$XUV^T \approx Y$$

• How to improve?

Find best U and V simultaneously

- Proposed in
 - Chen and Lin, "Feature-aware label space dimension reduction for multi-label classification". In NIPS 2012.
 - Xu et al., "Speedup Matrix Completion with Side Information: Application to Multi-Label Learning". In NIPS 2013.
 - Yu et al., "Large-scale Multi-label Learning with Missing Labels". In ICML 2014.

Low Rank Modeling for Multilabel Classification

- Let $X \in \mathbb{R}^{n \times d}$ be the data matrix, $Y \in \mathbb{R}^{n \times L}$ be the 0-1 label matrix
- ullet Find $U \in \mathbb{R}^{d \times k}$ and $V \in \mathbb{R}^{L \times k}$ such that

$$Y \approx XUV^T$$

• Obtain U, V by solving the following optimization problem:

$$\min_{U \in \mathbb{R}^{d \times k}, V \in \mathbb{R}^{L \times k}} \|Y - XUV^T\|_F^2 + \lambda_1 \|U\|_F^2 + \lambda_2 \|V\|_F^2$$

where λ_1, λ_2 are the regularization parameters

• Solve by alternating minimization.

Low Rank Modeling for Multilabel Classification

Time complexity:

- O(nkL) for updating V
- O(ndk) for updating U
- Overall: O(nkL + ndk) per iteration
- Original time complexity: O(ndL) per iteration

Extensions

Extend to general loss function:

$$\min_{U \in \mathbb{R}^{d \times k}, V \in \mathbb{R}^{L \times k}} \sum_{i,j} \operatorname{dis}(Y_{ij}, (XUV^T)_{ij}) + \lambda_1 \|U\|_F^2 + \lambda_2 \|V\|_F^2$$

Can handle problems with missing data:

$$\min_{U \in \mathbb{R}^{d \times k}, V \in \mathbb{R}^{L \times k}} \sum_{i,j \in \Omega} \mathsf{dis}(Y_{ij}, (XUV^T)_{ij}) + \lambda_1 \|U\|_F^2 + \lambda_2 \|V\|_F^2$$

- Is it similar to inductive matrix completion?
- What's the time complexity for prediction?

Coming up

 Next class: paper presentations on mutiliabel classification and matrix completion

Questions?