SOFTWARE EN PROGRAMACIÓN MATEMÁTICA

Programación en GAMS

Software en optimización

Modelizadores:

Reciben modelo en lenguaje matemático habitual y lo transforman a un formato reconocido por el optimizador.

Entrada: Datos del modelo

Salida: Fichero MPS (Mathematical Programming Standard)

Optimizadores:

Reciben modelo en formato adecuado y lo resuelven.

Entrada: Fichero MPS

Salida: Informe de la solución obtenida

Software en optimización

Modelizadores:

• GAMS AIMMS ...

AMPL XPRESS

Optimizadores:

CPLEX

FortMP MINOS ...

OSL CONOPT

Software modelizador y optimizador:

- Winqsb
- OPL (herramienta integrada)

Software en optimización

Modelizadores:

Lenguajes de modelización:

- Lenguajes de programación de propósito general.
 (pueden llamar a una biblioteca de optimización)
- 2) Lenguajes o entornos de cálculo numérico o simbólico (hojas de cálculo, MATLAB, Maple, Mathematica, etc...)
- Lenguajes algebraicos de modelización
 (lenguajes de alto nivel diseñados específicamente para el desarrollo e implantación de modelos de optimización)

Una refinería de petróleo va a producir un nuevo tipo de gasolina mezclando las gasolinas que resultan de procesar diferentes tipos de crudo. Los crudos de origen son cuatro y tienen distinta composición.

Para simplificar el problema se supone que cada tipo de gasolina tiene un porcentaje distinto de los aditivos A, B y C. La tabla siguiente indica estos porcentajes y el precio unitario para los cuatro tipos de gasolina:

	Aditivo A	Aditivo B	Aditivo C	Precio Gasolina
Gasolina 1	80	10	10	43
Gasolina 2	30	30	40	31
Gasolina 3	70	10	20	47
Gasolina 4	40	50	10	37

Las exigencias del mercado imponen que la gasolina que se va a producir debe tener al menos

- el 60 % del aditivo A
- no más del 30 % del aditivo C.

Determinar la mezcla que producirá la gasolina con estas especificaciones y cuyo precio sea mínimo.

Esquema básico de un programa en GAMS

- Datos del problema
- Variables del problema
 - Definición de las variables
 - Naturaleza de las variables
- Ecuaciones del problema
 - Función objetivo
 - Restricciones
- Descripción del modelo
- Llamada al software optimizador

\$TITLE Hoja 1 problema 1

variables

x proporción de gas1 en la mezcla y proporción de gas2 en la mezcla z proporción de gas3 en la mezcla t proporción de gas4 en la mezcla obj objetivo;

positive variables x,y,z,t;

equations

```
fobj coste de la mezcla
```

adA porcentaje aditivo A

adC porcentaje aditivo C

Total total de la mezcla;

```
fobj.. obj =E= 43*x+31*y+47*z+37*t;
adA.. 80*x+30*y+70*z+40*t =G= 60;
adC.. 100*x+40*y+20*z+10*t =L= 30;
total.. x+y+z+t =E= 1;
```

model mezcla /fobj,adA,adC, total/; solve mezcla using LP minimizing obj;

Problema del transporte

Se consideran dos conjuntos, uno de consumidores y otro de productores o factorías y se conocen las demandas de cada consumidor, la producción máxima de cada productor y el coste del transporte de unidades de producto entre productores y consumidores.

Se trata de determinar la cantidad de producto que enviar de cada productor a cada consumidor de tal forma que se satisfaga la demanda a coste mínimo.

Modelo del problema del transporte

 x_{ij} = Cantidad de producto que se transporta de i a j

$$Min\sum_{i=1}^{n}\sum_{j=1}^{m}C_{ij}X_{ij}$$

s.a.:
$$\sum_{i=1}^{n} x_{ij} \le a_i \quad \forall i = 1,...,n$$

$$\sum_{i=1}^{m} x_{ij} \ge b_j \quad \forall j = 1, ..., m$$

$$x_{ij} \ge 0$$

Ejemplo numérico

Distancias entre plantas y mercados <u>Producción</u> Mercados

Plantas	Nueva York	Chicago	Topeka	
Seattle	2.5	1.7	1.8	350
San Diego	2.5	1.8	1.4	600
Demandas	325	300	275	

Las distancias están en miles de millas. El coste por transportar una unidad de una ciudad a otra es de 90\$ por cada mil millas.

Estructura programa en Gams

Inputs	Outputs		
• Sets Declaration Assignment of members • Data (Parameters, Tables, Scalar) Declaration Assignment of values • Variables Declaration Assignment of type Assignment of bounds and/or initial values (optional) • Equations Declaration Definition • Model and Solve statements • Display statement (optional)	 Echo Print Reference Maps Equation Listings Status Reports Results 		

Datos del problema I

```
Sets
                                                           _Conjuntos de
        i plantas de producción / Seattle, San-Diego /
           mercados / New-York, Chicago, Topeka / ;
                                                             indices
Parameters
        a(i) capacidad de la planta i
                        Seattle
                                     350
                        San-Diego
                                     600 /
                                                             Parámetros
        b(j) demanda del mercado j
                        New-York
                                     325
                        Chicago
                                     300
                        Topeka
                                   275 / ;
```


Datos del problema II

```
Table d(i,i) distancia en miles de millas
                     New-York
                                   Chicago
                                                Topeka
                                                          Tabla de datos
                                                 1.8
         Seattle
                        2.5
                                    1.7
                                    1.8
                                                 1.4 ;
         San-Diego
                       2.5
Scalar f coste por miles de millas /90/;
                                                          Escalares
Parameter c(i,j) coste del transporte por planta y
  mercado ;
                                                          Parámetros
        c(i,j) = f*d(i,j)/1000;
```


Variables del problema

```
Variables

x(i,j) Uds de producto que se envían de i a j
z coste total del transporte en miles de dólares;

Naturaleza de las variables

Positive variable x ;
```


Ecuaciones del problema

Equations

```
cost función objetivo del problema supply(i) no se supera tope de producción demand(j) se satisface la demanda;
```

Definición de las ecuaciones

cost .. z =e= sum((i,j), c(i,j)*x(i,j));
supply(i) .. sum(j, x(i,j))=l= a(i);
demand(j) .. sum(i, x(i,j)) =g= b(j);

Expresiones formales de las ecuaciones

Código de desigualdades:

Definición del modelo, llamada al optimizador y datos de salida

```
Model transport /all/;
solve transport using lp minimizing z;
display x.l, x.m;

Definición del modelo
Llamada al software optimizador

Petición de datos de salida
```

Códigos solve:

lp	Programación lineal	nlp	Programación no lineal
dnlp	Programación no lineal con derivadas discontinuas	mip	Programación lineal entera-mixta
rmip	Programación lineal relajada entera-mixta	minlp	Programación no lineal entera-mixta
rminlp	Programación no lineal relajada entera-mixta	mcp	Problemas complementarios mixtos
mpec	Problemas matemáticos con restricciones de equilibrio	cns	Sistemas no lineales acotados

Display:

.l Solución óptima

.m Solución marginal o costes reducidos

Definición alias

```
Sets
   i aviadores / Espanol, Frances, Italiano, Griego, Portugues /
   k puesto / piloto, copiloto /;
   alias (i,j)
```

Operador Condicional \$

Código de desigualdades:

```
< lt \le le

> gt \ge ge

= eq \ne ne
```

- Asterisco *
 - Producto *
 - Exponenciación **
 - Comentarios
 - Definición de conjuntos 1*5 → 1,2,3,4,5

Esquema de un fichero de salida

- Compilación y conteo de líneas
- Código MPS (ecuaciones escritas de forma explícita)
- Coeficientes de las variables y ecuaciones en las que aparecen éstas
- Resumen del modelo con número de ecuaciones, variables y otros datos
- Resolución del problema
- Datos de salida pedidos en el código

Resolución de problemas en NEOS

