Mapping

May 20, 2020

```
#
Mapping Parameter Coefficients
Notebook Outline:
An example of hedonic house price modeling using MGWR - Section 1 - Section 2 - Section ?? - Section 4
Back to the main page
```

0.0.1 If you want to follow along with the code, follow this link

1 Mask the Significant Coefficients

```
In []: b_cols = ['beta_Intercept', 'beta_avg_age','beta_avg_water_dist', 'beta_avg_sqft', 'be
    bt_cols = ['bt_constant','bt_age','bt_water_dist','bt_sqft','bt_round_basement','bt_ind
    t_cols = ['t_Intercept','t_avg_age', 't_avg_water_dist', 't_avg_sqft', 't_avg_basement
    t_crit = [2.92,2.94,2.67,2.99,3.01,2.14,2.20,2.41]
In []: for i in range(8):
    census.loc[census[t_cols[i]] >=t_crit[i], bt_cols[i]] = census[b_cols[i]]
    census.loc[census[t_cols[i]] <=-t_crit[i], bt_cols[i]] = census[b_cols[i]]</pre>
```

2 Spatial Join - Results to Shapefile

```
In []: c='census_tracts/census_tracts.shp'
    crs = {'EPSG':'4326'}
    geo = gpd.read_file(c,crs=crs)[['geometry','objectid']]
    fig,ax = plt.subplots(figsize=(20,15))
    geo.plot(ax=ax)

coords = np.array(list(zip(census['x_coor'],census['y_coor'])))
    geom_points = [Point(xy) for xy in coords]
    geo_df = gpd.GeoDataFrame(census,crs={'init':'epsg:4326'},geometry=geom_points)
    geo_df = geo_df.rename(columns={'OBJECTID':'index'})
    geo_df = geo_df.to_crs(epsg=3857)
    final_geo = gpd.sjoin(geo, geo_df, how='inner',op='contains',lsuffix='left',rsuffix='r

    fig,ax = plt.subplots(figsize=(20,15))
    ax.set_facecolor('white')
```

```
final_geo.plot(ax=ax, color='gold')
geo_df.plot(ax=ax, markersize=8,alpha=1,color='tomato',marker="o")
```

3 Map of all Parameter Coefficients

In [1]: import mapping_results as maps

3.0.1 All parameter estimates for age covariate

In [7]: maps.mapp(name='beta_avg_age',color='RdBu_r',filename="b_age",normal=False)

3.0.2 Only significant parameter estimates for age covariate

In [6]: maps.mapp(name='bt_age',color='Reds',filename="bt_age",normal=False)

In [9]: maps.mapp(name='bt_water_dist',color='Blues_r',filename="bt_water_dist",normal=False)

In [10]: maps.mapp(name='bt_sqft',color='Reds',filename="bt_sqft",normal=False)

In [13]: maps.mapp(name='bt_unemp',color='Blues_r',filename="bt_unemp",normal=False)

In [17]: maps.mapp(name='bt_tech',color='Reds',filename="bt_tech",normal=False)

In [20]: maps.mapp(name='bt_constant',color='RdBu_r',filename="bt_constant",normal=False)

4 Interpretation of Maps