COMP/ENGN 4528/6528: Computer Vision

Question 1

Colour Space Conversion

1. Given RGB value (25, 30, 40), what would the pixel value be in the HSV space? (Please refer to the Szeliski Computer Vision textbook and the lecture slides)

Question 2

Camera Projections

1. Given a lens with a focal length of 30, and a world point at (20, 20, 200), where the camera center sits at (0, 0, 0), and the optical axis is in direction (0, 0, 1), with the x and y axes aligned to the world axes, what pixel will this world point project to?

Question 3

(Homogeneous) Coordinates Transformations

1. Image warping can be performed by pre-multiplying coordinate locations by a 2×2 matrix, and adding for translation. What would the effect be of the following transformation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

where
$$a_{11} = 2$$
, $a_{12} = 0$, $a_{21} = 0$, $a_{22} = 1$, $d_x = 1$ and $d_y = 2$

2. Homogeneous coordinates simplify representation by allowing 2D image transformations to be represented by a single matrix operation (3×3) . What are the effects of the following transformations:

(a)
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \text{ where } t_x = 1 \text{ and } t_y = 2.$$

(b)
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \text{ where } \theta = 45^{\circ}.$$

3. Suppose we have a set of transformations in the order of translation of (1,2), counterclockwise rotation of 25° , and scaling of (2,1). What is the resulting transformation matrix?