Corrigé du devoir maison 4.

Exercice 1

1°) a) Soit $x \in \mathbb{R}$. $-1 \le \sin x \le 1$ donc $0 \le 1 + \sin(x) \le 2$, donc $0 \le \frac{1 + \sin x}{2} \le 1$.

Donc $\sqrt{\frac{1 + \sin x}{2}}$ existe et par croissance de la fonction racine, $0 \le \sqrt{\frac{1 + \sin x}{2}} \le 1$.

De plus, Arcsin est définie sur [-1,1] donc f(x) existe.

Ainsi, f est définie sur $D = \mathbb{R}$.

b) $\forall x \in \mathbb{R}, f(x+2\pi) = \operatorname{Arccos}\left(\sqrt{\frac{1+\sin(x+2\pi)}{2}}\right) = \operatorname{Arccos}\left(\sqrt{\frac{1+\sin(x)}{2}}\right) = f(x) \operatorname{car} \sin \operatorname{est} 2\pi\operatorname{-p\'{e}riodique}.$

Donc f est 2π -périodique.

c) Soit $x \in \mathbb{R}$, $f(\pi - x) = \operatorname{Arccos}\left(\sqrt{\frac{1 + \sin(\pi - x)}{2}}\right) = \operatorname{Arccos}\left(\sqrt{\frac{1 + \sin(x)}{2}}\right)$, ainsi $f(\pi - x) = f(x)$.

Interprétation géométrique :

Considérons M le point de la courbe représentative de f d'abscisse x, et M' le point de la courbe représentative de f d'abscisse $\pi - x$.

Leurs coordonnées sont M(x, f(x)) et $M'(\pi - x, f(\pi - x))$, mais comme $f(\pi - x) = f(x)$, ces deux points ont même ordonnée.

Par ailleurs, on remarque que $\frac{x+(\pi-x)}{2}=\frac{\pi}{2}$ i.e. l'abscisse du point milieu du segment [MM'] est toujours $\frac{\pi}{2}$. Ce milieu est donc sur la droite d'équation $x=\frac{\pi}{2}$.

Finalement, les points M et M' sont symétriques par rapport à cette droite.

Ainsi, la droite d'équation $x = \frac{\pi}{2}$ est axe de symétrie

d) Comme f est 2π -périodique il suffit de l'étudier sur un intervalle de longueur 2π . On choisit ici $\left[\frac{\pi}{2} - \pi, \frac{\pi}{2} + \pi\right]$ i.e. $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

Comme cet intervalle est centré en $\frac{\pi}{2}$, la symétrie établie à la question précédente permet de réduire l'étude seulement sur $I = [-\pi/2, \pi/2]$.

Pour obtenir le tracé sur \mathbb{R} :

Par symétrie par rapport à la droite d'équation $x = \frac{\pi}{2}$, on obtient la courbe sur $\left| -\frac{\pi}{2}, \frac{3\pi}{2} \right|$. Puis on complète par translations de vecteurs $2k\pi \overrightarrow{i}$ où $k \in \mathbb{Z}$.

2°) a) Par somme, la fonction $x \mapsto \frac{1 + \sin(x)}{2}$ est dérivable (sur \mathbb{R}).

Pour $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, alors $-1 < \sin(x) < 1$, donc $0 < 1 + \sin(x) < 2$ puis $0 < \frac{1 + \sin(x)}{2} < 1$.

Ainsi, la fonction $x \mapsto \frac{1+\sin(x)}{2}$ est à valeurs dans \mathbb{R}_+^* sur l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Comme $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* , par composition, $x \mapsto \sqrt{\frac{1+\sin(x)}{2}}$ est dérivable sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.

Pour $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, en reprenant l'encadrement plus haut, on obtient $0 < \sqrt{\frac{1+\sin(x)}{2}} < 1$ par stricte croissance de la fonction racine.

Ainsi, la fonction $x \mapsto \sqrt{\frac{1+\sin(x)}{2}}$ est dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et à valeurs dans]0,1[donc à valeurs dans]-1,1[.

Comme Arccos est dérivable sur] -1,1[, par composition, $\Big|f$ est dérivable sur $\Big]-\frac{\pi}{2},\frac{\pi}{2}\Big[$ (au moins).

 $\mathbf{b)} \ \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[,$

$$f'(x) = \frac{\cos x}{2} \times \frac{1}{2\sqrt{\frac{1+\sin x}{2}}} \times \frac{-1}{\sqrt{1-\left(\sqrt{\frac{1+\sin x}{2}}\right)^2}}$$

$$= -\frac{\cos x}{2\sqrt{1+\sin x}} \times \frac{1}{\sqrt{\frac{2-(1+\sin x)}{2}}}$$

$$= -\frac{\cos x}{2\sqrt{1+\sin x}\sqrt{1-\sin x}}$$

$$= -\frac{\cos x}{2\sqrt{1-\sin^2 x}}$$

$$= -\frac{\cos x}{2\sqrt{\cos^2 x}}$$

$$= -\frac{\cos x}{2|\cos x|}$$

$$f'(x) = -\frac{1}{2} \qquad \cos x > 0$$

c) Comme $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ est un intervalle, on en déduit que :

$$\exists c \in \mathbb{R}, \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, f(x) = -\frac{x}{2} + c$$

En utilisant la valeur particulière x = 0, on trouve $c = \operatorname{Arccos}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$.

Ainsi, pour tout
$$x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, f(x) = \frac{\pi}{4} - \frac{x}{2}.$$

On vérifie les valeurs de f en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$.

$$f\left(-\frac{\pi}{2}\right) = \operatorname{Arccos}(0) = \frac{\pi}{2}, \text{ c'est bien égal à } \frac{\pi}{4} + \frac{\pi}{4}.$$

$$f\left(\frac{\pi}{2}\right) = \operatorname{Arccos}(1) = 0, \text{ c'est bien égal à } \frac{\pi}{4} - \frac{\pi}{4}.$$

Finalement, pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], f(x) = \frac{\pi}{4} - \frac{x}{2}$.

Exercice 2

1°) Le trinôme a pour discriminant $\Delta = (2+3i)^2 - 4 = 4+12i - 9 - 4 = -9+12i$. Cherchons les racines carrées de Δ . Soit $\delta = x+iy$ où x et y sont des réels.

$$\delta^2 = -9 + 12i \iff \begin{cases} \delta^2 = -9 + 12i \\ |\delta|^2 = |-9 + 12i| \end{cases}$$

$$\iff \begin{cases} (x + iy)^2 = -9 + 12i \\ x^2 + y^2 = \sqrt{81 + 144} \end{cases}$$

$$\iff \begin{cases} x^2 - y^2 + 2ixy = -9 + 12i \\ x^2 + y^2 = \sqrt{225} \end{cases}$$

$$\iff \begin{cases} x^2 - y^2 = -9 \\ 2xy = 12 \\ x^2 + y^2 = 15 \end{cases}$$

$$\iff \begin{cases} x^2 = 3 & \frac{L_1 + L_3}{2} \\ y^2 = 12 & \frac{L_3 - L_1}{2} \\ xy > 0 \end{cases}$$

$$\iff x + iy = \sqrt{3} + i\sqrt{12} \text{ ou } x + iy = -\sqrt{3} - i\sqrt{12}$$

$$\iff \delta = \sqrt{3} + 2i\sqrt{3} \text{ ou } \delta = -\sqrt{3} - 2i\sqrt{3} \end{cases}$$

On choisit $\delta = \sqrt{3} + 2i\sqrt{3}$.

Les racines sont :
$$z_1 = \frac{2 + 3i + \sqrt{3} + 2i\sqrt{3}}{2} = \boxed{\frac{2 + \sqrt{3} + i(3 + 2\sqrt{3})}{2}}$$

et
$$z_2 = \frac{2+3i-(\sqrt{3}+2i\sqrt{3})}{2} = \boxed{\frac{2-\sqrt{3}+i(3-2\sqrt{3})}{2}}$$
.

L'ensemble des solutions est : $\{z_1, z_2\}$.

$$2^{\circ}$$
) Soit $z = a + ib$ où a et b sont des réels.

$$\frac{a-ib}{a^2+b^2} = \frac{\overline{z}}{|z|^2} = \frac{\overline{z}}{z\overline{z}} \operatorname{donc} \left[\frac{a-ib}{a^2+b^2} = \frac{1}{z} \right].$$

3°) Soit
$$x$$
 et y des réels positifs. On pose $a = \sqrt{x}$ et $b = \sqrt{y}$.

$$(S_1) \iff \begin{cases} a\left(1+\frac{1}{a^2+b^2}\right)=2\\ b\left(1-\frac{1}{a^2+b^2}\right)=3\\ \iff a\left(1+\frac{1}{a^2+b^2}\right)+ib\left(1-\frac{1}{a^2+b^2}\right)=2+3i \quad \text{par unicit\'e de l'\'ecriture alg\'ebrique}\\ \iff a+ib+\frac{a-ib}{a^2+b^2}=2+3i\\ \iff z+\frac{1}{z}=2+3i \quad \text{en posant } z=a+ib \text{ et en utilisant la question 2}\\ \iff z^2+1=(2+3i)z\\ \iff z^2-(2+3i)z+1=0\\ \iff z=z_1 \text{ ou } z=z_2 \quad \text{par la question 1} \end{cases}$$

 $Re(z_1) > 0$ et $Im(z_1) > 0$.

9 < 12 donc $3 < 2\sqrt{3}$ donc $\mathrm{Im}(z_2) < 0$. Ainsi, on ne peut pas avoir $z = z_2$ car $\mathrm{Im}(z) = b \ge 0$.

$$(S) \iff z = z_1$$

$$\iff a = \frac{2 + \sqrt{3}}{2} \text{ et } b = \frac{3 + 2\sqrt{3}}{2} \quad \text{par unicit\'e de l'\'ecriture alg\'ebrique}$$

$$\iff \sqrt{x} = \frac{2 + \sqrt{3}}{2} \text{ et } \sqrt{y} = \frac{3 + 2\sqrt{3}}{2}$$

$$\iff x = \left(\frac{2 + \sqrt{3}}{2}\right)^2 \text{ et } y = \left(\frac{3 + 2\sqrt{3}}{2}\right)^2 \quad \text{car } \frac{2 + \sqrt{3}}{2} \ge 0 \text{ et } \frac{3 + 2\sqrt{3}}{2} \ge 0$$

$$\iff x = \frac{7 + 4\sqrt{3}}{4} \text{ et } y = \frac{21 + 12\sqrt{3}}{4}$$

Ainsi,
$$(S)$$
 possède une unique solution : le couple $\left(\frac{7+4\sqrt{3}}{4},\frac{21+12\sqrt{3}}{4}\right)$