

Data Communication (CSX-208) Dr Samayveer Singh

Data Link Layer Framing, Flow Control

Data Link Layer

- > Data link layer is divided into two sub-layers: Data Link Control (DLC) and Multiple Access Control (MAC).
- The data link control needs to pack bits into frames, so that each frame is distinguishable from another.
- Our postal system practices a type of framing. The simple act of inserting a letter into an envelope separates one piece of information from another; the envelope serves as the delimiter.
- > Types of framing:
 - Fixed-Size Framing
 - Variable-Size Framing

A frame in a bit-oriented protocol

Variable-Size Framing: Bit Stuffing and Unstuffing

A frame in a character-oriented protocol

Variable-Size Framing: Byte Stuffing and Unstuffing

Flow control at the data link layer

Data Link Layer protocols

Simplest Protocol

Stop-and-Wait Protocol

Stop-and-Wait Automatic Repeat Request

- The sender will not send the next frame until it is sure that the current one is correctly receive
- > Sequence number is necessary to check for duplicated frames

Figure: Normal Operation

Stop-and-Wait ARQ

A damage or lost frame treated by the same manner by the receiver.

Figure: Stop-and-Wait ARQ, lost or damaged frame

Stop-and-Wait ARQ

> Importance of frame numbering: *prevents retaining of duplicate frames*.

Figure: Stop-and-Wait ARQ, lost ACK frame

Stop-and-Wait ARQ

Numbered acknowledgments are needed if an acknowledgment is delayed and the next frame is lost.

Figure: Stop-and-Wait ARQ, delayed ACK and lost frame

Piggybacking (Bidirectional transmission)

- > It is a method to combine a data frame with an acknowledgment.
- It can save bandwidth because data frame and an ACK frame can combined into just one frame

Go-Back-N Automatic Repeat Request

ACK1 is not necessary if ACK2 is sent: Cumulative ACK

Figure: Normal operation

Go-Back-N Automatic Repeat Request

Correctly received out of order packets are not Buffered

Figure: Damage or Lost Frame

Go-Back-N Automatic Repeat Request

a. Window size < 2^m

b. Window size = 2^{m}

Figure: Window Size

Selective Repeat Automatic Repeat Request

Figure: Selective Repeat ARQ, lost frame

Selective Repeat Automatic Repeat Request

Figure: Selective Repeat ARQ, sender window size

High-level Data Link Control (HDLC)

- > HDLC is a bit-oriented protocol for communication over point-to-point and multi-point links. It implements the ARQ mechanisms
- > Two modes
 - Normal mode (NRM)
 - Primary station can send commands and secondary stations can only respond
 - Asynchronous balanced mode (ABM)
 - The link is point-to-point i.e each station can function as primary and secondary station

HDLC transfer modes

a. Point-to-point

Figure: HDLC in point to point and multi-point scenario in NRM

HDLC transfer modes

Figure: HDLC in point to point and multi-point scenario in ABM

HDLC frames

- > Information frames (I-frame)
- > Supervisory frames (S-frame)
- > Unnumbered frames (U-frame)

Point-to-Point Protocol (PPP)

- > Mostly used on internet communication at data-link layer
- > It is byte oriented protocol

Figure: PPP frame