→ TITLE: GROUP A: BDA LAB ASSIGNMENT 1

AIM

 $\label{thm:continuous} Working \ with \ \mathsf{Dataset\text{-}Retrieving} \ \mathsf{and} \ \mathsf{Visualization} \ \mathsf{the} \ \mathsf{required} \ \mathsf{data}.$

OBJECTIVE

- 1. Getting data to work with: Download dataset from Kaggle
- 2. Setting up the working directory.
- 3. Unpacking the data. Decompress the file locally.
- 4. Looking at the data. Display the top(10) and bottom(10) of the file.
- 5. Measuring the length of the data set. Count the number of lines in the file.
- 6. Encode the categorical data
- 7. Plot a graph stating the state-wise Covid cases(active/ deceased/ recovered)

The below commands are shown on Covid Dataset from kaggle (do not use the same dataset for the implementation. You may lose points if the same dataset is used .)

from google.colab import files
uploaded = files.upload()

Choose Files corona.csv

• corona.csv(application/vnd.ms-excel) - 658552 bytes, last modified: 8/21/2020 - 100% done

Saving corona.csv to corona (2).csv

import pandas as pd

df = pd.read_csv('corona.csv', parse_dates=True)

df.head(10)

□ →		Date Announced	Age Bracket	Gender	Detected City	Detected District	Detected State	Current Status	Notes	Contracted from which Patient (Suspected)	Nationality	Type of transmission	Backup Notes
	0	30/01/2020	20	F	Thrissur	Thrissur	Kerala	Recovered	Travelled from Wuhan	NaN	India	Imported	NaN
	1	02/02/2020	NaN	NaN	Alappuzha	Alappuzha	Kerala	Recovered	Travelled from Wuhan	NaN	India	Imported	Student from Wuhan
	2	03/02/2020	NaN	NaN	Kasaragod	Kasaragod	Kerala	Recovered	Travelled from Wuhan	NaN	India	Imported	Student from Wuhan
	3	02/03/2020	45	М	East Delhi (Mayur Vihar)	East Delhi	Delhi	Recovered	Travelled from Austria, Italy	NaN	India	Imported	Travel history to Italy and Austria
	4	02/03/2020	24	М	Hyderabad	Hyderabad	Telangana	Recovered	Travelled from Dubai to Bangalore on 20th Feb,	NaN	India	Imported	Travel history to Dubai, Singapore contact
	5	03/03/2020	69	М	Jaipur	Italians*	Rajasthan	Recovered	Travelled from Italy	NaN	Italy	Imported	Italian tourist
	6	04/03/2020	55	NaN	Gurugram	Italians*	Haryana	Recovered	Travelled from Italy	P6	Italy	Imported	Italian tourist
	7	04/03/2020	55	NaN	Gurugram	Italians*	Haryana	Recovered	Travelled from Italy	P6	Italy	Imported	Italian tourist

df.tail(10)

L→	Date Announced	Age Bracket	Gender	Detected City	Detected District	Detected State	Current Status	Notes	Contracted from which Patient (Suspected)	Nationality	Type of transmission	Backup Notes
1009) NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	1 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	2 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	3 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	4 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	5 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	6 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	7 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	8 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1009	9 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

df.isna().count()

10100 Date Announced Age Bracket 10100 Gender 10100 Detected City
Detected District 10100 10100 Detected State 10100 Current Status 10100 10100 Notes Contracted from which Patient (Suspected)
Nationality
Type of transmission
Backup Notes
dtype: int64 10100 10100 10100 10100

df.columns

df.dropna(axis=0, inplace=True)

dtype='object')

df.tail()

Backup Notes	Type of transmission	Nationality	Contracted from which Patient (Suspected)	Notes	Current Status	Detected State	Detected District	Detected City	ender G	Age	Date	L→
Son of P182	Local	India	P182	Son of P182	Hospitalized	Punjab	Shahid Bhagat Singh Nagar	Nawanshahr	М	45	21/03/2020	305
Daughter in Law of P182	Local	India	P182	l in Law of P182	Hospitalized	Punjab	Shahid Bhagat Singh Nagar	Nawanshahr	F	40	21/03/2020	306
Grand daughter of P182	Local	India	P182	Grand daughter of P182	Hospitalized	Punjab	Shahid Bhagat Singh Nagar	Nawanshahr	М	17	21/03/2020	307
Daughter of P182	Local	India	P182	Daughter of P182	Hospitalized	Punjab	Shahid Bhagat Singh Nagar	Nawanshahr	F	36	21/03/2020	308
In contact with	Local	India	P182	In contact with	Hospitalized	Punjab	Hoshiarpur	Garhshankar	М	60	21/03/2020	310

df.shape

□→ (48, 12)

df.dtypes

Date Announced object Age Bracket object Gender object Detected City object Detected District object Detected State object Current Status object Notes object Contracted from which Patient (Suspected) object Nationality object Type of transmission object Backup Notes object dtype: object

df.drop(['Detected City','Detected District','Notes','Contracted from which Patient (Suspected)','Backup Notes','Nationality','Type of transmission'], axis=1, inplace=True)

df.set_index('Date Announced',inplace=True)

df.head(5)

Date Announced

04/03/2020	70	F	Rajasthan	Recovered
04/03/2020	45	F	Uttar Pradesh	Recovered
04/03/2020	16	М	Uttar Pradesh	Recovered
08/03/2020	54	М	Kerala	Recovered
08/03/2020	53	F	Kerala	Recovered

Age Bracket Gender Detected State Current Status

#df = pd.get_dummies(df, columns=['Gender','Detected State','Current Status','Nationality','Type of transmission'], prefix='',prefix_sep='')

df = pd.get_dummies(df, columns=['Current Status'], prefix='',prefix_sep='')

df.head(3)

₽

Age Bracket Gender Detected State Deceased Hospitalized Recovered

Date Announced											
04/03/2020	70	F	Rajasthan	0	0	1					
04/03/2020	45	F	Uttar Pradesh	0	0	1					
04/03/2020	16	М	Uttar Pradesh	0	0	1					

dateData = df.groupby(['Date Announced'])['Deceased', 'Hospitalized', 'Recovered'].sum().reset_index() dateData.head()

stateData = df.groupby(['Detected State'])['Deceased','Hospitalized','Recovered'].sum().reset_index() stateData.head()

ageData = df.groupby(['Age Bracket'])['Deceased','Hospitalized','Recovered'].sum().reset_index() ageData.head()

import matplotlib.pyplot as plt

plt.figure(figsize=(10,10)) plt.plot(dateData['Date Announced'],dateData['Deceased'],color='r') plt.title('COVID-19 INDIA - Date vs Death') plt.xticks(rotation=60) plt.xlabel('Date',labelpad=10) plt.ylabel('Number of Deaths',labelpad=10)

plt.figure(figsize=(10,10)) plt.plot(dateData['Date Announced'],dateData['Recovered'],color='green') plt.title('COVID-19 INDIA - Date vs Recoveries') plt.xticks(rotation=60) plt.xlabel('Date',labelpad=10) plt.ylabel('Number of Recoveries',labelpad=10)

plt.figure(figsize=(10,10)) plt.plot(dateData['Date Announced'],dateData['Hospitalized'],color='black') plt.title('COVID-19 INDIA - Date vs Hospitalized')

https://colab.research.google.com/drive/1QBwxh-qcvlZsOi7krmOrslOnsDHt6p-S#scrollTo=Hg-bHcV3tMZs&printMode=true

```
plt.xticks(rotation=60)
plt.xlabel('Date',labelpad=10)
plt.ylabel('Number of Hospitalized',labelpad=10)
plt.show()
```



```
plt.figure(figsize=(10,10))
ax = plt.plot(dateData['Date Announced'],dateData['Hospitalized'],color='black',label='Hospitalized')
ax1=plt.plot(dateData['Date Announced'],dateData['Recovered'],color='green',label='Recovered')
ax2 =plt.plot(dateData['Date Announced'],dateData['Deceased'],color='r',label='Deceased')
plt.legend()
plt.title('COVID-19 INDIA - Datewise Report')
plt.xticks(rotation=60)
plt.xlabel('Date',labelpad=10)
plt.ylabel('Number of Cases',labelpad=10)
plt.show()
```



```
barWidth = 0.33
# set height of bar
bars1 = ageData['Deceased']
bars2 = ageData['Recovered']
bars3 = ageData['Hospitalized']
# Set position of bar on X axis
r1 = np.arange(len(bars1))
r2 = [x + barWidth for x in r1]
r3 = [x + barWidth for x in r2]
plt.figure(figsize=(24,5))
ax = plt.bar(ageData['Age Bracket'], bars1, color='red', width=barWidth, edgecolor='white', label='Deceased',align='center')
ax1 = plt.bar(r2,bars2, color='green', width=barWidth, edgecolor='white', label='Recovered',align='center')
ax2 = plt.bar(r3,bars3, color='blue', width=barWidth, edgecolor='white', label='Hospitalized',align='center') plt.title('COVID-
19 INDIA - Age vs Covid-19 cases', fontweight='bold')
plt.xlabel('Age Group', fontweight='bold')
plt.ylabel('Number of cases', fontweight='bold')
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```



```
fig = plt.figure()
ax = fig.add_axes([0,0,2,2])
ax.bar(stateData['Detected State'], stateData['Deceased'], color = list('rgbkymc'), width = 0.25) plt.title('COVID-
19 INDIA - States vs Death Graph')
plt.xticks(rotation=90)
plt.xlabel('State Name')
plt.ylabel('Number of Deaths')
plt.show()
```



```
fig = plt.figure()
ax = fig.add_axes([0,0,2,2])
ax.bar(stateData['Detected State'], stateData['Recovered'], color = list('rgbkymc'), width = 0.25)
plt.title('COVID-19 INDIA - States vs Recoveries')
plt.xticks(rotation=90)
plt.xlabel('State Name')
plt.ylabel('Number of Recoveries')
plt.show()
```



```
fig = plt.figure()
ax = fig.add_axes([0,0,2,2])
ax.bar(stateData['Detected State'],stateData['Hospitalized'], color = list('rgbkymc'), width = 0.25) plt.title('COVID-
19 INDIA - States vs Active Cases')
plt.xticks(rotation=90)
plt.xlabel('State Name')
plt.ylabel('Number of Active Cases')
plt.show()
```



```
barWidth = 0.33

# set height of bar
bars1 = stateData['Deceased']
bars2 = stateData['Recovered']
bars3 = stateData['Hospitalized']

# Set position of bar on X axis
r1 = np.arange(len(bars1))
r2 = [x + barWidth for x in r1]
r3 = [x + barWidth for x in r2]

plt.figure(figsize=(10,10))

ax = plt.bar(stateData['Detected State'], bars1, color='red', width=barWidth, edgecolor='white', label='Deceased',align='center')
```

ax1 = plt.bar(r2,bars2, color='blue', width=barWidth, edgecolor='white', label='Recovered',align='center')
ax2 = plt.bar(r3,bars3, color='black', width=barWidth, edgecolor='white', label='Hospitalized',align='center')

```
plt.title( COVID-19 INDIA - States vs Covid-19 cases , fontweight= bold )
plt.xlabel('State', fontweight='bold')
plt.ylabel('Number of cases', fontweight='bold')
plt.xticks(rotation = 90)
```

plt.legend()
plt.show()


```
state = stateData['Detected State']
cases = stateData['Deceased']
plt.title('COVID-19 Statewise Deaths', bbox={'facecolor':'0.8', 'pad':5}).set_position([.5,1.8])
plt.pie(cases,autopct='%1.2f%',shadow=True, radius=3)
plt.legend(state, loc='center',bbox_to_anchor=(2.5, 0.5))
plt.show()
```



```
state = stateData['Detected State']
cases = stateData['Recovered']
plt.title('COVID-19 Recovered', bbox={'facecolor':'0.8', 'pad':5}).set_position([.5,1.8])
plt.pie(cases,autopct='%1.2f%%',shadow=True, radius=3)
plt.legend(state, loc='center',bbox_to_anchor=(2.5, 0.5))
```



```
state = stateData['Detected State']
cases = stateData['Hospitalized']
plt.title('COVID-19 Statewise Hospitalized Cases', bbox={'facecolor':'0.8', 'pad':5}).set_position([.5,1.8])
plt.pie(cases,autopct='%1.2f%',shadow=True, radius=3)
plt.legend(state, loc='center',bbox_to_anchor=(2.5, 0.5))
plt.show()
```



```
labels = 'Deceased' , 'Hospitalized' , 'Recovered'
sizes = []
for i in range(len(labels)):
    sizes.append(dateData[labels[i]].sum())

plt.title('COVID-19 INDIA Cases', bbox={'facecolor':'0.8', 'pad':5}).set_position([.5,1.8])
plt.pie(sizes,autopct='%1.2f%',shadow=True, radius=3,)
plt.legend(labels, loc='center',bbox_to_anchor=(2.5, 0.5))
plt.show()
```

