

VLSI Design Project Report Standard Cell Library Characterization

EE 671: VLSI Design (2024)

Team Members: Team No. 27

- Samridhi Sahay (22B3935)
 - Jatin Kumar (22B3922)
- Virti R Mehta (22B3949)
- Yashashwini K (22B3911)

Instructor: Prof. Laxmeesha Somappa Department of Electrical Engineering, IIT Bombay

September 16, 2024

Contents

1	Intr	oducti	ion	3
2	Cell	1: Bı	ıffer (buf)	4
	2.1	Circui	t Design in NGSpice	4
		2.1.1	Schematic Diagram	4
		2.1.2	Buffer Specifications	4
	2.2	Screen	nshot of the PEX netlist Buffer	5
	2.3	Layou	t Design in Magic	6
		2.3.1	Layout Diagram	6
		2.3.2	DRC and LVS Verification	7
	2.4	Timin	g, Power, and Capacitance Characterization	8
		2.4.1	Input Pin Capacitances	8
		2.4.2	Transition Time Table	8
		2.4.3	Propagation Delay Time Table	13
		2.4.4	Static Power	15
		2.4.5	Dynamic Power Table	15
	2.5	HDL 1	Functional Definition	19
		2.5.1	VHDL Output for Buffer	20
3	Cell	2: 2-i	input NOR with Inverted Input (nor2b)	21
	3.1		t Design in NGSpice	21
		3.1.1	Schematic Diagram	21
		3.1.2	NOR Gate Specifications	22
	3.2	Screen	nshot of the PEX netlist NOR	22
	3.3	Layou	t Design in Magic	23
		3.3.1	Layout Diagram	23
		3.3.2	DRC and LVS Verification	23
	3.4	Timin	g, Power, and Capacitance Characterization	25
		3.4.1	Input Pin Capacitances	25
		3.4.2	Transition Time Table	25
		3.4.3	Propagation Delay Time Table	33
		3.4.4	Static Power	35
		3.4.5	Dynamic Power Table	36
	3.5	HDL I	Functional Definition	40
		3.5.1	VHDL Output for NOR	41

CONTENTS 2

4	Cel	l 3: Delay Flop (dfxtp)
	4.1	Circuit Design in NGSpice
		4.1.1 Schematic Diagram
		4.1.2 D Flip-Flop Specifications
	4.2	Screenshot of the PEX netlist DFF
	4.3	Layout Design in Magic
		4.3.1 Layout Diagram
		4.3.2 DRC and LVS Verification
	4.4	Timing, Power, and Capacitance Characterization
		4.4.1 a) Input Pin Capacitances
		4.4.2 b) Set-up Time Table
		4.4.3 c) Hold Time Table
		4.4.4 e) CLK-to-Q Delay Time Table
		4.4.5 f) Static Power
		4.4.6 g) Dynamic Power Table
	4.5	HDL Functional Definition
		4.5.1 VHDL Output for DFF
5	Tea	m Contributions
	5.1	Samridhi's Responsibilities
	5.2	Yashaswini's Responsibilities
	5.3	Jatin's Responsibilities
	5.4	Virti's Responsibilities
6	Cor	nelusion

Chapter 1

Introduction

This project focuses on the comprehensive design, characterization, and verification of three fundamental standard cells: Buffer (buf), Delay Flip-Flop with positive edge trigger (dfxtp), and 2-input NOR with one inverted input (nor2b). The cells were meticulously designed using NGSpice for circuit simulation and Magic for layout creation. Key performance parameters such as timing, power consumption, and input capacitance were thoroughly characterized to ensure optimal functionality and efficiency.

The report is structured into three distinct sections, each dedicated to one of the cells. For each cell, the circuit design, layout, performance characterization, and HDL implementation are detailed, accompanied by simulation results, timing analysis, and power measurements.

Chapter 2

Cell 1: Buffer (buf)

2.1 Circuit Design in NGSpice

2.1.1 Schematic Diagram

Figure 2.1: Schematic of Buffer

2.1.2 Buffer Specifications

Device	Width (µm)	Length (µm)
NMOS	0.42	0.15
PMOS	0.80	0.15

Table 2.1: Buffer Output Dimensions

2.2 Screenshot of the PEX netlist Buffer

Figure 2.2: Screenshot of the PEX netlist

2.3 Layout Design in Magic

2.3.1 Layout Diagram

Figure 2.3: Layout of Buffer (buf)

2.3.2 DRC and LVS Verification

The layout was verified against the design rules using DRC and checked for connectivity using LVS.

Figure 2.4: LVS Verification for Buffer (buf)

Figure 2.5: DRC Verification for Buffer (buf)

2.4 Timing, Power, and Capacitance Characterization

2.4.1 Input Pin Capacitances

Input Pin	Rise Cap (fF)	Fall Cap (fF)	Average Cap (fF)
A	4.23	3.64	3.935

Table 2.2: Input Pin Capacitances for Buffer (buf)

2.4.2 Transition Time Table

Capacitance (fF)	10 ps Slew (ns)	100 ps Slew (ns)	1000 ps Slew (ns)	
Output Rise Transitions				
0.5 fF	0.02319	0.02284	0.0395	
10 fF	0.10607	0.1095	0.1116	
100 fF	0.9377	0.9401	0.938	
	Output Fal	ll Transitions		
0.5 fF	0.02177	0.020935	0.0373	
10 fF	0.09716	0.0985	0.0987	
100 fF	0.820	0.845	0.878	

Table 2.3: Transition Time Table for Buffer (buf)

Figure 2.6: Buffer Characterization for 0.5f Capacitance

Figure 2.7: Buffer Characterization for 10f Capacitance

Figure 2.8: Buffer Characterization for 10f Capacitance

Figure 2.9: Buffer Characterization for 100f Capacitance

Figure 2.10: Buffer Characterization for $100f\ 1000ps$ Capacitance

2.4.3 Propagation Delay Time Table

Capacitance (fF)	10 ps Slew (ns)	100 ps Slew (ns)	1000 ps Slew (ns)		
	Cell Rise Delay				
0.5 fF	0.05465	0.07927	0.15		
10 fF	0.11555	0.1369	0.2341		
100 fF	0.7158	0.6737	0.851		
	Cell Fa	all Delay			
0.5 fF	0.06046	0.08536	0.18		
10 fF	0.11333	0.1368	0.2978		
100 fF	0.5895	0.5474	0.745		

Table 2.4: Propagation Delay Time Table for Buffer (buf)

Figure 2.11: Propagation Delay Simulation for Buffer

2.4.4 Static Power

Condition (A)	Power (nW)
0	1.08902
1	1.06751

Table 2.5: Static Power for Buffer (buf)

Figure 2.12: Static Power Simulation for Buffer

2.4.5 Dynamic Power Table

Capacitance (fF)	10 ps Slew (nW)	100 ps Slew (nW)	1000 ps Slew (nW)		
	Rise Power				
0.5 fF	16,741	3,500	1,190		
10 fF	1,138.79	1,527.93	24,410		
100 fF	1,031.4	11,297.2	13,101		
	Fall	Power			
0.5 fF	31,360	16,530	9,180		
10 fF	3,674	648.8	8,835.24		
100 fF	2,418.6	2,418.6335	1,008.4		

Table 2.6: Dynamic Power Table for Buffer (buf)

Figure 2.13: Dynamic Power Simulations for Various 0.5fF and various slews

Figure 2.14: Dynamic Power Simulations for Various 10fF and various slews

Figure 2.15: Dynamic Power Simulations for Various 100fF and various slews

endmodule

2.5 HDL Functional Definition

The following Verilog code implements the buffer.

```
module buffer (
    input wire a, // Input signal
    output wire y // Output signal (same as input)
);
// Continuous assignment for buffer (just passes input to output)
assign y = a;
endmodule
// Testbench for Buffer
module testbench;
                    // Input for buffer
    reg a;
                    // Output from buffer
    wire y;
    // Instantiate the buffer
    buffer uut (
        .a(a),
        .y(y)
    );
    // Test stimulus
    initial begin
        $dumpfile("buffer_tb.vcd"); // Dump file for waveform
        $dumpvars(0, testbench);
        // Test cases
        a = 0; #10;
        a = 1; #10;
        a = 0; #10;
        $finish;
    end
```

2.5.1 VHDL Output for Buffer

(a) VHDL Output for Buffer

Figure 2.16: VHDL Output for Buffer

Chapter 3

Cell 2: 2-input NOR with Inverted Input (nor2b)

3.1 Circuit Design in NGSpice

3.1.1 Schematic Diagram

Figure 3.1: Schematic of NOR Gate

3.1.2 NOR Gate Specifications

Device	Width (µm)	Length (µm)
NMOS	0.42	0.31
PMOS	1.55	0.31

Table 3.1: NOR Gate Output Dimensions

3.2 Screenshot of the PEX netlist NOR

Figure 3.2: Screenshot of the PEX netlist

3.3 Layout Design in Magic

3.3.1 Layout Diagram

Figure 3.3: Layout of NOR Gate (nor2b)

3.3.2 DRC and LVS Verification

Figure 3.4: LVS Verification for NOR Gate (nor2b)

Figure 3.5: DRC Verification for NOR Gate (nor2b)

3.4 Timing, Power, and Capacitance Characterization

3.4.1 Input Pin Capacitances

Input Pin	Rise Cap (fF)	Fall Cap (fF)	Average Cap (fF)
A	0.001778	0.0015454	0.0016617
В	0.002336	0.00229	0.002825

Table 3.2: Input Pin Capacitances for NOR Gate (nor2b)

3.4.2 Transition Time Table

Capacitance (fF)	10 ps Slew (ns)	100 ps Slew (ns)	1000 ps Slew (ns)		
	Output Rise Transitions				
	Relate	d Pin A			
0.5 fF	0.04394	0.0477	0.0484		
10 fF	0.2322	0.2314	0.2324		
100 fF	2.0305	2.0255	2.0247		
	Relate	ed Pin B			
0.5 fF	0.04201	0.04062	0.1058		
10 fF	0.3018	0.2209	0.274		
100 fF	2.077	1.914	2.016		
	Output Fal	l Transitions			
	Relate	d Pin A			
0.5 fF	0.04064	0.0459	0.0474		
10 fF	0.2172	0.2191	0.2133		
100 fF	1.9278	1.9254	1.9151		
Related Pin B					
0.5 fF	0.03997	0.03984	0.975		
10 fF	0.2966	0.2085	0.257		
100 fF	1.87	1.9	1.915		

Table 3.3: Transition Time Table for NOR Gate (nor2b)

Figure 3.6: Transition Time Simulations for Pin A

Figure 3.7: Transition Time Simulations for Pin A

Figure 3.8: Transition Time Simulations for Pin A

(a) A100f1000psNor fall

Figure 3.9: Transition Time Simulations for Pin A

Figure 3.10: Pin B Transition Time Simulations for Capacitance 0.5fF

Figure 3.11: Pin B Transition Time Simulations for Capacitance 10fF

Figure 3.12: Pin B Transition Time Simulations for Capacitance 100fF

3.4.3 Propagation Delay Time Table

Capacitance (fF)	10 ps Slew (ns)	100 ps Slew (ns)	1000 ps Slew (ns)		
	Cell Rise Delay				
	Relate	ed Pin A			
0.5 fF	0.12337	0.1474	0.2475		
10 fF	0.2772	0.3556	0.4		
100 fF	1.6444	1.7263	1.8025		
	Relate	ed Pin B			
0.5 fF	0.06078	0.06771	0.2381		
10 fF	0.2222	0.2222	0.421		
100 fF	1.466	1.532	1.759		
	Cell Fa	all Delay			
	Relate	ed Pin A			
0.5 fF	0.11429	0.1263	0.2673		
10 fF	0.1881	0.2222	0.353		
100 fF	0.8	0.8421	1.0124		
Related Pin B					
0.5 fF	0.03137	0.04167	0.059		
10 fF	0.0926	0.1111	0.21		
100 fF	0.776	0.645	1.018		

Table 3.4: Propagation Delay Time Table for NOR Gate (nor2b)

Figure 3.13: Propagation Delay Simulation NOR Gate

3.4.4 Static Power

Condition (A, B)	Power
00	6 pW
01	$4.9266~\mathrm{pW}$
10	$1.07085 \; \mathrm{nW}$
11	$1.06748 \; \mathrm{nW}$

Table 3.5: Static Power for NOR Gate (nor2b)

Figure 3.14: Static Power for NOR Gate Condition(A,B)

3.4.5 Dynamic Power Table

Capacitance (fF)	10 ps Slew (nW)	100 ps Slew (nW)	1000 ps Slew (nW)	
	Rise Power			
	Relate	ed Pin A		
0.5 fF	818	33.156684	1,583	
10 fF	356.51	1,721.6	2,936	
100 fF	18,220	11,378	11,670	
	Relat	ed Pin B		
0.5 fF	6,366.15	4,653.126	1,516.1	
10 fF	594.765	284.94	152.779	
100 fF	287.9	83.79466	228.39	
Fall Power				
Related Pin A				
0.5 fF	954.7	1,020	812.37	
10 fF	1,680.5	882.47	722.7	
100 fF	993.983	$5,\!546.5$	1,793.346	
Related Pin B				
0.5 fF	52.2350775	19,922.4	568.84	
10 fF	3,192.1	1,633.82	2,022.57	
100 fF	19,120	9,968	9,701	

Table 3.6: Dynamic Power Table for NOR Gate (nor2b)

Figure 3.15: Dynamic Power Simulations for 0.5f Capacitance

Figure 3.16: Dynamic Power Simulations for 10f Capacitance

Figure 3.17: Dynamic Power Simulations for 100f Capacitance

3.5 HDL Functional Definition

The following Verilog code implements the NOR gate.

```
module nor_gate (
                               input wire a, // First input
                              input wire b, // Second input
                               output wire y // Output (result of NOR operation)
);
// NOR gate logic
assign y = (a | b);
endmodule
// Testbench for NOR Gate
module testbench;
                             reg a, b; \hspace{1cm} \hspace{1c
                                                                                                                                                 // Output from NOR gate
                              wire y;
                              // Instantiate the NOR gate
                              nor_gate uut (
                                                              .a(a),
                                                               .b(b),
                                                                .y(y)
                               );
                               // Test stimulus
                               initial begin
                                                              $dumpfile("nor_gate_tb.vcd"); // Dump file for waveform
                                                              $dumpvars(0, testbench);
                                                              // Test cases
                                                              a = 0; b = 0; #10;
                                                              a = 0; b = 1; #10;
                                                              a = 1; b = 0; #10;
                                                              a = 1; b = 1; #10;
                                                              $finish;
                                                              end
```

endmodule

3.5.1 VHDL Output for NOR

(a) VHDL Output for NOR

Figure 3.18: VHDL Output for NOR $\,$

Chapter 4

Cell 3: Delay Flop (dfxtp)

4.1 Circuit Design in NGSpice

4.1.1 Schematic Diagram

Figure 4.1: Schematic of Delay Flop (dfxtp)

4.1.2 D Flip-Flop Specifications

Device	Width (µm)	Length (µm)
NMOS	0.79	0.15
PMOS	0.42	0.15

Table 4.1: D Flip-Flop Output Dimensions

4.2 Screenshot of the PEX netlist DFF

Figure 4.2: Screenshot of the PEX netlist

4.3 Layout Design in Magic

4.3.1 Layout Diagram

Figure 4.3: Layout of Delay Flop (dfxtp)

4.3.2 DRC and LVS Verification

Figure 4.4: LVS Verification for Delay Flop (dfxtp)

Figure 4.5: DRC Verification for Delay Flop (dfxtp)

4.4 Timing, Power, and Capacitance Characterization

4.4.1 a) Input Pin Capacitances

Input Pins	Rise Cap (fF)	Fall Cap (fF)	Average Cap (fF)
D	0.298	0.1999	0.24895
CLK	0.267	0.1888	0.2275

Table 4.2: Input Pin Capacitances for DFF

4.4.2 b) Set-up Time Table

(i) Rise Constraint (in ns) [Input slew vs CLK slew]

Input Slew	10 ps CLK Slew	1000 ps CLK Slew
10 ps	0.136	0.8
1000 ps	0.44	0.45

Table 4.3: Set-up Time Rise Constraint for DFF

(ii) Fall Constraint (in ns) [Input slew vs CLK slew]

Input Slew	10 ps CLK Slew	1000 ps CLK Slew
10 ps	0.25	0.9
1000 ps	0.42	0.43

Table 4.4: Set-up Time Fall Constraint for DFF

Figure 4.6: Set-Up Time Table

4.4.3 c) Hold Time Table

(i) Rise Constraint (in ns) [Input slew vs CLK slew]

Input Slew	10 ps CLK Slew	1000 ps CLK Slew
10 ps	0.16	0.7
1000 ps	0.53	0.67

Table 4.5: Hold Time Rise Constraint for DFF

(ii) Fall Constraint (in ns) [Input slew vs CLK slew]

Input Slew	10 ps CLK Slew	1000 ps CLK Slew
10 ps	0.33	0.95
1000 ps	0.47	0.52

Table 4.6: Hold Time Fall Constraint for DFF

Figure 4.7: Hold Time Table

(i) Output Rise Transitions (in ns) [Input slew vs output capacitance]

Capacitance (fF)	10 ps Slew	100 ps Slew	1000 ps Slew
0.5 fF	0.1092	0.1144	0.1141
10 fF	0.1703	0.1717	0.1731
100 fF	0.7443	0.7452	0.7437

Table 4.7: Output Rise Transitions for DFF

(ii) Output Fall Transitions (in ns) [Input slew vs output capacitance]

Capacitance (fF)	10 ps Slew	100 ps Slew	1000 ps Slew
0.5 fF	0.1139	0.1148	0.1157
10 fF	0.1718	0.1725	0.1739
100 fF	0.7353	0.7349	0.7373

Table 4.8: Output Fall Transitions for DFF

Figure 4.8: Transition Time Simulation for Capacitance 0.5fF

Figure 4.9: Transition Time Simulation for Capacitance 10fF

Figure 4.10: Transition Time Simulation for Capacitance 100fF

4.4.4 e) CLK-to-Q Delay Time Table

(i) Cell Rise Delay (in ns) [Input slew vs output capacitance]

Capacitance (fF)	10 ps Slew	100 ps Slew	1000 ps Slew
0.5 fF	0.3407	0.1765	0.1688
10 fF	0.2177	0.2055	0.2235
100 fF	0.6121	0.6051	0.5968

Table 4.9: Output Rise Delay for DFF

(ii) Cell Fall Delay (in ns) [Input slew vs output capacitance]

Capacitance (fF)	10 ps Slew	100 ps Slew	1000 ps Slew
0.5 fF	0.6667	0.1882	0.1688
10 fF	0.25	0.2603	0.2353
100 fF	0.6897	0.7068	0.6774

Table 4.10: Output Fall Delay for DFF

Figure 4.11: Transition Time Propagation for Capacitance 0.5fF

Figure 4.12: Transition Time Propagation for Capacitance 10fF

Figure 4.13: Transition Time Propagation for Capacitance 100fF

4.4.5 f) Static Power

Condition (CLK, D)	Power (nW)
00	0.704207
01	0.930692
10	0.927231
11	0.930692

Table 4.11: Static Power for DFF

Figure 4.14: Static Power Simulation for DFF Condition(CLK, D)

4.4.6 g) Dynamic Power Table

(i) Rise Power (in nW) [Input slew vs output capacitance]

Capacitance (fF)	10 ps Slew	100 ps Slew	1000 ps Slew
0.5 fF	3588.80	3979.99	3833.15
10 fF	7410.00	7569.00	8083.00
100 fF	47852.80	46759.90	47458.00

Table 4.12: Dynamic Rise Power for DFF

(ii) Fall Power (in nW) [Input slew vs output capacitance]

Capacitance (fF)	10 ps Slew	100 ps Slew	1000 ps Slew
0.5 fF	3787.00	3599.00	3945.00
10 fF	2600.00	2740.00	2702.00
100 fF	10390.00	11523.00	11229.00

Table 4.13: Dynamic Fall Power for DFF

Figure 4.15: Dynamic Power Simulation for Capacitance 0.5fF

Figure 4.16: Dynamic Power Simulation for Capacitance 10fF

Figure 4.17: Dynamic Power Simulation for Capacitance 100fF

4.5 HDL Functional Definition

The following Verilog code implements the delay flop.

```
module d_flipflop (
    input wire D,
                      // Data input
                     // Clock input
    input wire clk,
    input wire reset, // Reset input (active high)
                      // Output
    output reg Q
);
// On rising clock edge or reset
always @(posedge clk or posedge reset) begin
    if (reset)
        Q \le 1'b0; // Set Q to 0 when reset is active
    else
        Q <= D; // Capture D on the rising clock edge
end
endmodule
// Testbench for D Flip-Flop
module testbench;
    reg D;
    reg clk;
    reg reset;
    wire Q;
    // Instantiate the D Flip-Flop
    d_flipflop uut (
        .D(D),
        .clk(clk),
        .reset(reset),
        Q(Q)
    );
    // Clock generation
    always begin
        clk = 0; #5; // 5ns low
        clk = 1; #5; // 5ns high
    end
    // Test stimulus
    initial begin
        $dumpfile("d_flipflop_tb.vcd"); // Dump file for waveform
        $dumpvars(0, testbench);
```

```
// Initialize inputs
D = 0;
reset = 1; // Apply reset
#15;
reset = 0; // De-assert reset

// Test the D Flip-Flop behavior
D = 1; #10;
D = 0; #10;
D = 1; #10;

// Test reset again
reset = 1; #10;
reset = 0;

$finish;
end
```

endmodule

4.5.1 VHDL Output for DFF

(a) VHDL Output for DFF

Figure 4.18: VHDL Output for DFF

Chapter 5

Team Contributions

5.1 Samridhi's Responsibilities

- Created the MAG and LEF files for the NOR gate and completed its timing characterization.
- Worked on the power and timing characterization for the buffer, created the buffer's Verilog model, and performed the LVS check to ensure layout accuracy.
- Verified the functionality of the D Flip-Flop (DFF) within the buffer and reviewed the Verilog description for the DFF.

5.2 Yashaswini's Responsibilities

- Designed the MAG file for the buffer, created its LEF file, and completed its timing characterization.
- Performed setup and hold time characterization.
- Managed the LEF creation, power characterization, and provided the netlist and Verilog model for the D Flip-Flop (DFF).
- Measured the input capacitance of the DFF for accurate performance.

5.3 Jatin's Responsibilities

- Created the LEF file for the buffer, performed timing characterization, and handled power characterization.
- Conducted the power and timing characterization for NOR Gate B.
- Provided the buffer netlist and compiled the required library documentation of combinational circuits.

5.4 Virti's Responsibilities

- Developed the MAG file for the D latch and D Flip-Flop (DFF) and the Transmission gate MAG file.
- Generated the LEF files and handled both the timing and power characterization for the NOR gate.
- Provided the netlist for the NOR gate, contributed to report writing, and managed the library documentation of the DFF.

Chapter 6

Conclusion

This project involved the successful design and characterization of three standard cells: the Buffer (buf), Delay Flop (dfxtp), and 2-input NOR with an inverted input (nor2b). Each of these cells was thoroughly verified through NGSpice simulations, with the corresponding layouts created and validated using Magic. Comprehensive timing, power, and input capacitance characterizations were conducted, ensuring accurate performance metrics. Additionally, all cells passed Design Rule Check (DRC) and Layout Versus Schematic (LVS) validation, confirming both their manufacturability and functional correctness.