ISYE 6669 – HOMEWORK 9

ANSWER 1 –

a)

Given LP -

To convert LP to standard form, we replace y with -w (where w is non-negative), z = v-u (where v and u are non-negative), convert objective to a minimization, and prepare inequalities for dual form -

Min
$$\{-x + w - v + u\}$$

s.t.

-
$$10x - w - 5v + 5u >= -2$$
 (a in dual LP)
 $2w + 3v - 3u >= -3$ (b in dual LP)
- $2w - 3v + 3u >= 3$ (c in dual LP)
 $x - w - 2v + 2u >= -4$ (d in dual LP)

$$x,w,v,u >= 0$$

Dual LP –

Max
$$\{-2a - 3b + 3c - 4d\}$$

s.t.

$$-10a + d \le -1$$

 $-a + 2b - 2c - d \le 1$
 $-5a + 3b - 3c - 2d \le -1$
 $5a - 3b + 3c + 2d \le 1$

$$a,b,c,d >= 0$$

Or in standard minimization form –

$$Min \{2a + 3b - 3c + 4d\}$$

s.t.

$$-10a + d <= -1$$

 $-a + 2b - 2c - d <= 1$
 $-5a + 3b - 3c - 2d <= -1$
 $5a - 3b + 3c + 2d <= 1$

$$a,b,c,d >= 0$$

b)

Given LP with adjusted inequalities –

 $Min \{c^Tx\}$

s.t.

$$-Ax >= -b$$

$$x >= 0$$

Dual LP -

Max
$$\{-b^Ty\}$$

s.t.

$$-A^{T}y \ll c$$

$$y > = 0$$

Or in standard minimization form –

 $Min \{b^Ty\}$

s.t.

$$-A^Ty \le c$$

$$y > = 0$$

ANSWER 2 -

a)

The dual problem (with a and b for the two inequalities) –

Min $\{500a + 400b\}$

s.t.

$$2a + 3b >= 4$$

$$a + 2b >= 1$$

$$3a + b >= 3$$

$$4a + 6b >= 10$$

$$a,b >= 0$$

Or in standard LP format –

s.t.

$$2a + 3b >= 4$$

$$a + 2b >= 1$$

$$3a + b >= 3$$

$$4a + 6b >= 10$$

$$a,b >= 0$$

b)

The graph –

c)

The optimal objective value is 800 at point 4/7 and 9/7.

e)

Both dual optimal variables are non-zero hence all primal constraints are active.

f)

The third and fourth dual constraints are active (exactly equal via the complementary slackness check), hence variables x3 and x4 are non-zero, and x1 and x2 are zero.

g)

Now we reframe our primal LP –

Max
$$\{3x_3 + 10x_4\}$$

s.t.

$$3x_3 + 4x_4 \le 500$$

$$x_3 + 6x_4 \le 400$$

$$x_3, x_4 >= 0$$

The intersection of the equality version of those two lines is at point –

$$x_3 = 100$$

$$x_4 = 50$$

And the maximum gain is \$800. (We got around \$140 more now).

ANSWER 3 -

a)

The plot –

b)

Worst case scenarios for a₁ and a₂ are the border points –

And plugging in $(x_1, x_2) = (-1, 1)$ in the inequality with these four values and we get the respective left hand side values of $a_1x_1 + a_2x_2 -$

The last two extremes of the hull fail the condition since they are greater than or equal to 1.

Or in other words, the points (-1, 1) DO NOT belong to the half-space for ALL values allowed by the uncertainty set.

c)

New deterministic linear constraints with new variables w and y –

$$a_1x_1 + a_2x_2 >= 1$$

 $w + y <= 1$
 $-w <= a_1 - 1 <= w$
 $-y <= a_2 - 2 <= y$

d)

Here is the feasible region plotted after plugging in the extreme points of the uncertainty set and generating the intersection of four half-spaces created by those extreme points –

The robust feasible region is, in fact, just the intersection of the half-spaces generated by extreme uncertainty points -(1,1) and (0,2).