Introduction to Machine Learning

Prof. Ziping Zhao

School of Information Science and Technology ShanghaiTech University, Shanghai, China

CS182: Introduction to Machine Learning (Fall 2021) http://cs182.sist.shanghaitech.edu.cn

Outline

What is Machine Learning?

Examples of Machine Learning Applications

Illustrative Example: Polynomial Curve Fitting

Introduction to Supervised Learning

Outline

What is Machine Learning?

Examples of Machine Learning Applications

Illustrative Example: Polynomial Curve Fitting

Introduction to Supervised Learning

What is Machine Learning?

- Machine Learning (ML) is the science of making computer artifacts improve their performance with respect to a certain performance criterion using example data or past experience, without requiring humans to program their behavior explicitly.
- ▶ Data Mining (a.k.a. knowledge discovery in databases (KDD)) is the application of machine learning methods to large databases.

What is Machine Learning?

► Machine Learning and Signal Processing (SP) both rely on rigorous math foundations and share lots of similarities in theory and methods.

- These two subjects commonly belong to the discipline of MATH and also EECS.
- ► These two subjects facilitated the development of each other.
- ► Watch the video ML&SP: https://www.youtube.com/watch?v=2Wa245mSXrc What is Machine Learning?

When is Machine Learning Needed?

- Human expertise is too expensive (e.g., intrusion detection, pathology)
- Human expertise does not exist (e.g., navigating on Mars)
- ► Humans cannot explain their expertise (e.g., speech recognition, visual perception)
- Problem (and hence solution) changes over time (e.g., network routing)
- ▶ ..

Some Characteristics of Machine Learning

- ▶ Data is (commonly) cheap and abundant ("Big Data"); knowledge is expensive and scarce.
- Details of the data generation process may be unknown, but the process is not completely random.
- ► Learning models from data by exploiting certain patterns or regularities in the data: inverting the data generation path.
- ▶ A model is often not an exact replica of the complete process, but is a good and useful approximation. (George Box: "All models are wrong, but some are useful.")
- ► A model may be descriptive to gain knowledge from data, or predictive to make predictions in the future, or both.
- ▶ Almost all of science is concerned with fitting models to data: inductive inference.

Roles of Statistics and Computer Science

- Machine learning makes extensive use of statistics in building mathematical models, because the core task is to make inference from a sample of observations.
- ▶ Role of computer science:
 - Developing efficient and accurate learning and inference algorithms
 - Common performance criteria: prediction accuracy, time complexity, space complexity.

Outline

What is Machine Learning?

Examples of Machine Learning Applications

Illustrative Example: Polynomial Curve Fitting

Introduction to Supervised Learning

Examples of Machine Learning Applications

- Learning associations
- Supervised learning (a.k.a. predictive learning):
 - Classification
 - Regression
- Unsupervised learning (a.k.a. descriptive learning or knowledge discovery)
- Reinforcement learning

Other learning paradigms (e.g., semi-supervised learning, multi-task learning, multi-label learning) will not be considered in this introductory course.

Learning Associations

- ► Example: basket analysis
- ► In finding an association rule, we learn

$$P(Y \mid X)$$

which denotes the probability that somebody who buys product/service X also buys product/service Y .

► E.g., 70% of customers who buy beer also buy chips:

$$P(\text{chips} \mid \text{beer}) = 0.7$$

► To make a distinction among customers, we may instead learn

$$P(Y \mid X, D)$$

where D is the set of customer attributes, e.g., gender, age, etc.

Classification

- ► Example: credit scoring
- ▶ Differentiating between low-risk and high-risk customers from their income and savings.
- ► A classification rule (discriminant):

IF income $> \theta_1$ AND savings $> \theta_2$ THEN low-risk ELSE high-risk

Classification: Other Applications

- Face detection and recognition
- Character recognition
- Speech recognition
- Object recognition and image classification
- ► Biometric authentication
- Multi-touch gesture classification
- Document classification
- Spam detection and filtering
- ► Intrusion detection
- Terrorism detection
- Medical diagnosis
- Weather forecasting
- **.**

Regression

► Example: price prediction for used cars

- x: attributes of car
 - y: price of car
- ► Model as regression function:

$$y = g(x \mid \theta)$$

where $g(\cdot)$ is the model and θ denotes the parameters.

Regression: Other Applications

- Navigation of autonomous vehicle: angle of steering wheel
- Kinematics of robot arm: joint angles
- Recommender system: movie ratings
- Age estimation from facial image: age
- Chemical manufacturing process: yield
- Risk prediction from financial reports: risk

Supervised Learning

- Prediction of future cases: predict output for future input using the rule learned
- Knowledge extraction: rule is easier to understand
- Compression: rule is simpler than data it explains
- Outlier detection: exceptions not covered by rule, e.g., fraud

Unsupervised Learning

- Learning "what normally happens" and "interesting patterns" in the data
- More typical of human and animal learning than supervised learning
- No output given
- Much less well-defined than supervised learning with no obvious error measure
- Density estimation
- ▶ Dimensionality reduction/visualization: discovering latent factors
- Clustering (cluster discovery): grouping similar instances
- Examples of applications:
 - Customer segmentation in customer relationship management (CRM)
 - Image compression: color quantization
 - Bioinformatics: finding similar genes

Reinforcement Learning

- ► Learning a policy (a sequence of actions) via a trial-and-error process (exploration vs. exploitation)
- No supervised output but delayed reward/penalty
- Credit assignment problem
- Examples of applications:
 - Game playing
 - Robot navigation in search of goal location
 - Individualized medical treatment for patients
 - Adaptive marketing campaign for maximizing long-term profits
- Some challenging issues:
 - Multiple agents
 - Partial observability of states

Outline

What is Machine Learning?

Examples of Machine Learning Applications

Illustrative Example: Polynomial Curve Fitting

Introduction to Supervised Learning

Polynomial Curve Fitting

- ► Regression problem:
 - Input variable: x
 - Target variable: t
- ► Data generation:

x

Polynomial Function as Linear Model

Polynomial function for fitting data:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

where $\mathbf{w} = (w_0, \dots, w_M)^T$ and M is the order of the polynomial.

Linear model: The function $y(x, \mathbf{w})$ is nonlinear in x (if M > 1) but linear in \mathbf{w} .

Curve Fitting via Error Minimization

► Error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left[y(x_n, \mathbf{w}) - t_n \right]^2$$

ightharpoonup Optimal solution \mathbf{w}^* that minimizes $E(\mathbf{w})$ can be found in closed form.

Order of Polynomial

▶ Choosing the order is an example of model selection.

► For 10 points, it becomes the polynomial interpolation to find a 9st degree polynomial to predict the output for any future x.

Overfitting

► Root-mean-square (RMS) error:

$$E_{\mathsf{RMS}} = \sqrt{2E(\mathbf{w}^*)/N}$$

ightharpoonup Overfitting occurs at M=9:

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Sample Size N=15

Sample Size N = 100

Regularization

► Regularized error function:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} [y(x_n, \mathbf{w}) - t_n]^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

where λ is a regularization parameter that governs the relative importance of the regularization term compared with the sum-of-squares error term.

Regularization Parameter $\ln \lambda = -18$

Regularization Parameter $\ln \lambda = 0$

Regularization: E_{RMS} v.s. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^\star	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Outline

What is Machine Learning?

Examples of Machine Learning Applications

Illustrative Example: Polynomial Curve Fitting

Introduction to Supervised Learning

Learning a Class from Examples

- ► Task: learn the class C of family cars.
- Learning from examples:
 - Positive examples: family cars
 - Negative examples: other cars

The training examples are labeled by humans.

- Class learning: find a description shared by all positive examples but no negative examples.
- \triangleright Prediction: is the car x (not seen before in the training data) a family car?
- ► Input representation:
 - Identify features useful for discriminating family cars from other cars.
 - Represent each car x as a feature vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ formed by n features x_i , e.g., x_1 = price, x_2 = engine power.

Training Set X

- ▶ A set of *N* examples/instances: $\mathcal{X} = \{(\mathbf{x}^{(\ell)}, y^{(\ell)})\}_{\ell=1}^N$
- ► Each example, as an ordered pair $(\mathbf{x}^{(\ell)}, y^{(\ell)})$, corresponds to a car:
 - Feature vector: $\mathbf{x}^{(\ell)} = \left(x_1^{(\ell)}, x_2^{(\ell)}\right)^T$ (only 2 features for simplicity)
 - Class label: $y^{(\ell)} = \begin{cases} 1 & \text{if } \mathbf{x}^{(\ell)} \text{ is a positive example} \\ 0 & \text{if } \mathbf{x}^{(\ell)} \text{ is a negative example} \end{cases}$ (a Boolean value)

Class C

► The rectangle corresponds to a model (a.k.a. hypothesis) specified by 4 parameters.

Hypothesis Class ${\cal H}$

▶ The learning algorithm finds a hypothesis $h \in \mathcal{H}$ to approximate the class C as closely as possible.

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } h \text{ classifies } \mathbf{x} \text{ as a positive example} \\ 0 & \text{if } h \text{ classifies } \mathbf{x} \text{ as a negative example} \end{cases}$$

- ► Each hypothesis is uniquely specified by a quadruple $(p_1^h, p_2^h, e_1^h, e_2^h)$ consisting of 4 parameters.
- We need to make sure that the hypothesis class/set \mathcal{H} is flexible enough (or has enough capacity) to learn C, i.e., to find $h \in \mathcal{H}$ that is as similar as possible to C.

Empirical Error

- $ightharpoonup C(\mathbf{x})$ is usually not known, so we cannot evaluate how well $h(\mathbf{x})$ matches $C(\mathbf{x})$.
- ▶ Empirical error (based on the training set \mathcal{X}):

$$E(h \mid \mathcal{X}) = \sum_{\ell=1}^{N} \mathbf{1}_{[h(\mathbf{x}^{(\ell)}) \neq y^{(\ell)}]}$$

Version Space

- Most specific hypothesis S: tightest rectangle in \mathcal{H} that includes all positive examples but no negative examples.
- Most general hypothesis G: largest rectangle in \mathcal{H} that includes all positive examples but no negative examples.
- ▶ Version space: the set of all $h \in \mathcal{H}$ between S and G (not all hypotheses in \mathcal{H} are equally good in terms of generalization performance).
- ► The instances pointed are those that define (or support) the margin; other instances can be removed without affecting *h*.

Vapnik-Chervonenkis (VC) Dimension

- \triangleright N points can be labeled in 2^N ways as +/-, one for a different learning problem.
- ▶ If for each of the 2^N learning problems, we can find a hypothesis $h \in \mathcal{H}$ that separates the positive and negative examples, then we say \mathcal{H} shatters N points.
- ▶ VC dimension of \mathcal{H} , or VC(\mathcal{H}): the maximum number of points that can be shattered by \mathcal{H} (which measures the capacity of \mathcal{H}).
- $ightharpoonup VC({axis-aligned rectangles}) = 4; VC(a lookup table) = +\infty$

Noise and Model Complexity

- Sources of noise:
 - Measurement of attributes (input)
 - Labeling (output)
 - Hidden or latent attributes
- With a complex model, one can make a perfect fit and attain zero error.
- ▶ Using the simple rectangle (model) is preferred because:
 - Simpler to use with lower computational complexity
 - Easier to train with lower space complexity
 - Easier to explain with higher interpretability
 - Better generalization with lower variance (Occam's razor)

Multiple Classes

- ▶ In classification, we would like to learn the boundary separating the instances of one class from the instances of all other classes.
- A K-class classification problem can be regarded as K two-class problems.

Learning a Regression Function from Examples

- A set of N examples: $\mathcal{X} = \{(\mathbf{x}^{(\ell)}, y^{(\ell)})\}_{\ell=1}^{N}$
- ▶ Unlike classification problems, $y^{(\ell)} \in \mathbb{R}$ (a numeric value).
- ► Prediction via regression function:

$$y = f(\mathbf{x}) + \epsilon,$$

where $f(\cdot)$ is the unknown regression function and ϵ is the random noise.

ightharpoonup Empirical error on \mathcal{X} :

$$E(f \mid \mathcal{X}) = \frac{1}{N} \sum_{\ell=1}^{N} [y^{(\ell)} - f(\mathbf{x}^{(\ell)})]^{2}.$$

- ▶ The square of the difference is one error (loss) function that can be used; there are many others.
- ▶ Regression: find $f(\cdot)$ that minimizes the empirical error $E(f \mid \mathcal{X})$.

Polynomials

First-order (linear), second-order and sixth-order polynomials

Model Selection and Generalization

- ► Learning is an ill-posed problem; data alone is not sufficient to find a unique solution.
- ▶ Inductive bias (i.e., assumptions about \mathcal{H}) is needed.
 - In learning the class of family cars, assuming the shape of a rectangle is one inductive bias.
 - In linear regression, assuming a linear function is an inductive bias, and among all lines, choosing the one that minimizes squared error is another inductive bias.
- Generalization: how well a learned model performs on new data not seen before.
- $lackbox{ Overfitting: } \mathcal{H} \text{ is more complex than } C \text{ or } f \text{ .}$
- ▶ Underfitting: \mathcal{H} is less complex than C or f .
- Model selection: choosing the right inductive bias.

Triple Tradeoff

- ► Tradeoff between three factors:
 - Complexity of \mathcal{H} , $c(\mathcal{H})$ (capacity of the hypothesis class)
 - Training set size, N
 - Generalization error on new data, E
- $ightharpoonup N \uparrow \leadsto E \downarrow$
- $ightharpoonup c(\mathcal{H}) \uparrow \quad \leadsto \quad E \downarrow \text{ then } E \uparrow$

Cross-Validation

- ▶ To estimate the generalization error, we need data unseen during model training.
- Data splitting:
 - Training set (e.g., 50%)
 - Validation set (e.g., 25%)
 - Test set (e.g., 25%)
- Resampling is needed when data is limited.

Dimensions of a Supervised Learning Algorithm

- Three dimensions:
 - Model:

$$g(\mathbf{x} \mid \theta)$$

Loss function:

$$E(\theta \mid \mathcal{X}) = \sum_{\ell} L(y^{(\ell)}, g(\mathbf{x}^{(\ell)} \mid \theta))$$

Optimization procedure/algorithm:

$$heta^* = \arg\min_{ heta} \ \ E(heta \mid \mathcal{X})$$

- ► No free lunch theorem:
 - There is no universally best model.
 - Different types of models have to be developed to suit the nature of the data in real applications.