Disclaimer

This document is an exam summary that follows the slides of the *Introduction to Machine Learning* lecture at ETH Zurich. The contribution to this is a short summary that includes the most important concepts, formulas and algorithms. This summary was created during the spring semester 2018 by Yannik Merkli and adapted in 2024 by Nicolas Wehrli. Due to updates to the syllabus content, some material may no longer be relevant for future versions of the lecture. This work is published as CC BY-NC-SA.

@**()**(\$)(9)

I do not guarantee correctness or completeness, nor is this document endorsed by the lecturers. Feel free to point out any erratas. For the full LATEX source code, consider https://github.com/nwehrli/ymerklieth-summaries.

Basics	$L(\hat{f}; \mathbb{P}_{X,Y}) = E_X((\hat{f}(X) - f^*(X))^2) + \sigma^2(\text{sq. loss})$	F1 score = $\frac{2TP}{2TP+FP+FN} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$	CNN $\varphi(W*v^{(l)})$
Orth: A: $det(A) \in \{+1, -1\}, AA^T = A^TA = I$ trace(ABC) = trace(BCA) = trace(CAB)	$L(\hat{f}_{\mathcal{D}}; \mathcal{D}_{\text{test}}) = \frac{1}{ \mathcal{D}_{\text{test}} } \sum_{(x,y) \in \mathcal{D}_{\text{test}}} \ell(\hat{f}_{\mathcal{D}}(x), y) \text{ estim.}$	$\hat{y}_{\tau}(x) = \operatorname{sign}(\hat{f}(x) - \tau)$ (varying threshold)	The out. dim. of applying $k f \times f \times d$ filters (d
	generaliz. err.; g. err. $+$ const $=$ exp. estim err.	Kernels $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$	= # channels) to $n \times m$ image with padding p
$trace(A) = \sum \lambda_i(A); \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	k-fold CV: \uparrow k $\Longrightarrow \hat{f}_{M_i,\mathcal{D}'} \approx \hat{f}_{M_i,\mathcal{D}_{use}}$, $CV_k(M_i) \approx$	Reparam. $w = \phi^T \alpha$; $f(x) = \sum_{i=1}^n \alpha_i \langle \phi(x_i), \phi(x) \rangle$	and stride s is: $\left(\frac{n+2p-f}{s}+1\right) \times \left(\frac{m+2p-f}{s}+1\right)$ with
$A = \sum_{k=1}^{rk(A)} \sigma_{k,k} u_k(v_k)^T, A^{\dagger} = US'V^T; \sigma'_{k,k} = \frac{1}{\sigma_{k,k}}$	$L(\hat{f}_{M_i,\mathcal{D}_{use}}; \mathbb{P}_{X,Y});$ extreme: LOOCV	A kernel is valid if <i>K</i> is sym.: $k(x,z) = k(z,x)$	k channels. If $t \times t$ pooling is applied, both dimensions are divided by t , nr. channels stays.
Deriv: $\frac{\partial}{\partial x}b^Tx = \frac{\partial}{\partial x}x^Tb = b^T, \frac{\partial}{\partial x}\ x\ _2^2 =$	Bias-Variance Tradeoff $\operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}},x) := (E_{\mathcal{D}}(\hat{f}_{\mathcal{D}}(x)) - f^{*}(x))^{2}$	and psd: $z^{\top}Kz \ge 0$	Don't forget bias : 1 per filter + #outputs for
	$\operatorname{Bias}_{\mathcal{D}}^{\mathcal{D}}(f_{\mathcal{D}},X) := (E_{\mathcal{D}}(f_{\mathcal{D}}(X)) - f_{\mathcal{D}}(X)$ $\operatorname{Bias}_{\mathcal{D}}^{\mathcal{D}}(\hat{f}_{\mathcal{D}}) := E_{X}(\operatorname{Bias}_{\mathcal{D}}^{\mathcal{D}}(\hat{f}_{\mathcal{D}},X)); \operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}) :=$	mono. : $k(x,y) = (x^{\top}y)^m$, poly : $k(x,y) = (1 + (x^{\top}y)^m)$	any fully connected layer.
$2x^{T}, \frac{\partial}{\partial x} \ x - a\ _{2} = \frac{(x-a)^{T}}{\ x-a\ _{2}}, \frac{\partial}{\partial x} (x^{T}Ax) =$	$E_X(\operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}(X)))$; Pred. err. $E_{\mathcal{D}}(L(\hat{f}_{\mathcal{D}}; \mathbb{P}_{X,Y})) =$	$(x^{\top}y)^m$, RBF : $k(x,z) = \exp(-\frac{\ x-z\ _{\alpha}}{\tau})$, $\alpha = 1 \Rightarrow \text{Laplacian}$, $\alpha = 2 \Rightarrow \text{Gaussian}$	Learning with momentum
$x^{T}(A^{T} + A), \frac{\partial}{\partial x}(b^{T}Ax) = A^{T}b, \nabla_{X}(c^{T}Xb) =$	$\operatorname{Var}_{\mathcal{D}}(\hat{f}_{\mathcal{D}}) + \operatorname{Bias}_{\mathcal{D}}^{2}(\hat{f}_{\mathcal{D}}) + \sigma^{2}$	Mercers Theorem: Valid kernels can be decom-	$a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W \leftarrow W - a$
$cb^{T}, \nabla_{X}(c^{T}X^{T}b) = bc^{T}; A _{op} = sup_{ x _{2}=1} Ax _{2}$	Ridge closed form: $\hat{w} = (X^T X + \lambda I)^{-1} X^T y$	posed into a lin. comb. of inner products.	Clustering k-mean
(Strong) Convexity:	Kernelized: $\min_{w} \frac{w}{n} = (\lambda \lambda + \lambda I) \lambda y$ Kernelized: $\min_{w} \frac{1}{n} y - \Phi w _2^2 + \lambda w _2^2 =$	Kernel composition $k = k_1 + k_2$, $k = k_1 \cdot k_2$, $\forall c > 0$	
$0: f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)y$	$\min_{\alpha} \frac{1}{n} y - K\alpha _2^2 + \lambda \alpha^T K\alpha$	0. $k = c \cdot k_1$, $k = f(k_1)$, f pwr. series w/ non-neg.	$\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1,k\}} x_i - \mu_j _2^2$, non-convex, NP-
$\lambda)f(y) - \frac{m}{2}\lambda(1-\lambda)\ x-y\ _2^2$	Classification	coeffs., $k(\binom{x}{y}, \binom{x'}{y'}) = k(x, x')k(y, y'), k(\binom{x}{y}, \binom{x'}{y'}) =$	hard, kernelizable, local opt., spherical bias
1: $f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) - \frac{m}{2} x - y _2^2$	$\hat{y} = sign(f(x)) = sign(w^T x), z = y f(x)$ Surrogate	$k(x,x') + k(y,y'), k(x,x') = g(\langle x,x'\rangle), g all Tay-$	Algorithm (Lloyd's heuristic):
2: Hessian $\nabla^2 f(x) \ge 0 + mI$ (psd)	Losses for 0-1: $\ell_{\exp(z)} = e^{-z}$, $\ell_{\log}(z) = \log(1 + e^{-z})$	lor coefficients non-negative, $\forall f. \ k(x,y) = f(x)k_1(x,y)f(y)$	Initialize cluster centers $\mu^{(0)} = [\mu_1^{(0)},, \mu_k^{(0)}]$ While still changes in assignments:
i : $\alpha f + \beta g$, $\alpha, \beta \ge 0$, convex if f, g convex · ii : $f \circ g$, convex if f convex and g affine or f	$\nabla_z \ell_{\rm exp}$ explodes for $z \to -\infty$, sens. to outliers.	Kern. Ridge Reg. $\min_{w} \frac{1}{n} y - \Phi w ^2 + \lambda w _2^2 =$	while still changes in assignments.
convex non-decreasing and g convex iii:	Logistic Reg. $L(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i w^T x_i})$ (li-	min _{α} $\frac{1}{n} y - K\alpha _2^2 + \lambda \alpha^\top K\alpha$	$z_i^{(t)} = \underset{j \in \{1, \dots, k\}}{\operatorname{argmin}} \ x_i - \mu_j^{(t-1)}\ _2^2; \mu_j^{(t)} = \frac{1}{n_j^{(t)}} \sum_{i: z_i^{(t)} = j} x_i$
$\max(f,g)$, convex if f,g convex	near boundary!)	k Nearest Neighbor classifier	$\mathcal{O}(nkd)$ per it., worst-case exponential it.
PSD: $M \in \mathbb{R}^{n \times n}$ PSD $\Leftrightarrow \forall x \in \mathbb{R}^n : x^\top M x \ge 0$	MM and SVM $y_1, y_2 = \arg\max_{x \in \mathcal{X}} \min_{x \in \mathcal{X}} y_2/y_1 y_2$	i: Pick k and distance metric $d \cdot ii$: For given	Conv. proof: $\hat{R}(\mu, z) := \sum_{i=1}^{n} x_i - \mu_{z_i} _2^2$.
\Leftrightarrow all principal minors of M have non-negative determinant $\Leftrightarrow \lambda \geq 0 \ \forall \lambda \in \sigma(M)$	$w_{\text{MM}} = \arg \max_{\ w\ _2 = 1} \min_{1 \le i \le n} y_i \langle w, x_i \rangle$ $w_{\text{SVM}} = \arg \min \ w\ _2 \text{ s.t. } y_i \langle w, x_i \rangle \ge 1, \forall i$	x , find among $x_1,,x_n \in D$ the k closest to	$\hat{R}(\mu^{(t)}, z^{(t)}) \ge \hat{R}(\mu^{(t)}, z^{(t+1)}) \ge \hat{R}(\mu^{(t+1)}, z^{(t+1)})$
	If data linearly sep., 1. $w_{\text{SVM}} = w_{\text{MM}} w_{\text{SVM}} _2$	$x \rightarrow x_{i_1},,x_{i_k}$ · iii: Output the majority vote of labels	k-mean++
$p_{\mu,\Sigma}(x) = \frac{1}{\sqrt{(2\pi)^p det(\Sigma)}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$	2. GD on logistic reg. $(\eta = 1)$: $\frac{w^t}{\ w^t\ _2} \rightarrow w_{\text{MM}}$	Neural Networks	- Start with random data point as center
$\mathbf{X} \sim \mathcal{N}(\mu, \Sigma) \Longrightarrow A\mathbf{X} + b \sim \mathcal{N}(A\mu + b, A\Sigma A^{T})$ $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y \mid Y]] = \nabla \mathbb{E}[Y \mid Y]\mathbb{E}[Y \mid Y]$	If not and $ker(X) = \emptyset$ GD on logistic reg	$F(x) = W^{L} \phi^{L-1} (W^{L-1} (\phi^{1} (W^{1} x)))$	- for $j = 2$ to k : i_j sampled with prob.
$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]] = \sum_{y} \mathbb{E}[X \mid Y] \mathbb{P}[Y = y]$	$(\eta = \frac{4}{\lambda_{max}(X)}) w^t \rightarrow \hat{w}, \hat{w}$ global min.	ReLU: max(0, z), Tanh: $\frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$ Sigmoid: $\varphi(z) = \frac{1}{1 + \exp(-z)}, \varphi' = (1 - \varphi)\varphi$	$P(i_j = i) = \frac{1}{z} \min_{1 < l < i} x_i - \mu_l _2^2; \ \mu_j \leftarrow x_{i_j}$
If $X \ge 0$: $\mathbb{E}[X] = \int_0^\infty (1 - F(x)) dx$ $Var(AX) = AVar(X)A^{\top}$	Hinge loss: $l_H(w; x, y) = max\{0, 1 - yw^Tx\}$	Sigmoid: $\varphi(z) = \frac{1}{1 + \exp(-z)}, \varphi' = (1 - \varphi)\varphi$	in exp. conv. to $\mathcal{O}(\log k)$ ·OPT
Jensen ineq: $g(E[X]) \le E[g(X)]$, g convex	soft-mar. $w^* = \operatorname{argmin} \ w\ _2^2 + \lambda \sum_{i=1}^n l_H(w; x_i, y_i)$	Universal Approximation Theorem: We can	Selecting <i>k</i> : elbow method, regularization
Regression	w	approximate any arbitrary smooth target func-	Dimension Reduction
Linear Regression $f(x) = w^T x; X \in \mathbb{R}^{n \times d}$	$g_i(w) = max\{0, 1 - y_i w^T x_i\} + \lambda w _2^2$	tion, with 1+ layer with sufficient width. Forward Propagation	Principal component analysis (PCA)
$L(w) = Xw - y _2^2; X^T X \hat{w} = X^T y$	$\nabla_{w} g_{i}(w) = \begin{cases} -y_{i} x_{i} + 2\lambda w & \text{, if } y_{i} w^{T} x_{i} < 1\\ 2\lambda w & \text{, if } y_{i} w^{T} x_{i} \ge 1 \end{cases}$	Input: $v^{(0)} = [x;1]$ Output: $f = W^{(L)}v^{(L-1)}$	Given: $D = \{x_1,, x_n\} \subset \mathbb{R}^d, 1 \le k \le d$
$d \le n : \hat{w} = (X^T X)^{-1} X^T y \text{ if } rk(X) = d$		Hidden: $z^{(l)} = W^{(l)}v^{(l-1)}, v^{(l)} = [\varphi(z^{(l)}); 1]$	$\Sigma_{d \times d} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T$, $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = 0$!!
$n < d : \hat{w} = (X^T X)^{\dagger} X^T y; rk(X) = n \hat{w} _2 \text{ min.}$	Multi-Class Classification $\hat{y}(x) = \operatorname{argmax}_{k \in \{1,,K\}} f_k(x); f = (f_1,,f_K)$	Backpropagation $f(x) = f(x) = f(x) = f(x)$	Sol.: $(W, z_1,, z_n) = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^n Wz_i - x_i _2^2$,
$\nabla_w L(w) = 2X^T (Xw - y)$	OvR: For each class $k \in [K]$:		where $W \in \mathbb{R}^{d \times k} : W^T W = I_k, W^* = (v_1 v_k)$
Gradient Descent 1. Start arbitrary $w_o \in \mathbb{R}$	1. Relabel $\tilde{y}_i = 1$ if $y_i = k$, else $\tilde{y}_i = -1$ as \mathcal{D}_k	$\left(\nabla_{W^{(L)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L)}} = \frac{\frac{\partial \ell}{\partial f}}{\frac{\partial f}{\partial W^{(L)}}}$	w/ v_i evec. of Σ and evals $\lambda_1 \ge \ge \lambda_d \ge 0$. Projections $z_1,,z_n \in \mathbb{R}^k$ are given by
2. Do $w_{t+1} = w_t - \eta \nabla L(w_t)$ until $ w^t - w^{t-1} _2 \le \epsilon$	2. Train f_k as binary classifier on \mathcal{D}_k	$\left(\nabla_{W^{(L-1)}}\ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-1)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}}$	$z_i = W^T x_i$ where $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^T$,
GD conv. to \hat{w} if $rk(X^TX) = d, \eta < \frac{2}{\lambda_{max}(X^TX)}$	Cross-E. Loss: $\ell_{ce}(f(x), y) = -\log\left(\frac{e^{f_y(x)}}{\sum_{k=1}^{K} e^{f_k(x)}}\right)$	$\frac{\partial W^{(L-1)}}{\partial t} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial Z^{(L-1)}}{\partial W^{(L-1)}}$	$z_i - v_i x_i \text{ where } z - \underline{\sum}_{i=1} x_i v_i v_i$, Kernel PCA
$ w^{t+1} - \hat{w} \le I - \eta X^T X _{op} w^t - \hat{w} _2 \le \rho^{t+1} w^0 - \hat{w} _2 \le \rho^{t+1} w^$	OvO : $L(w) = \sum_{i=1}^{n} \ell_{ce}(f_w(x_i), y_i)$; GD on $L(w)$	$\left(\nabla_{W^{(L-2)}}\ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-2)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}$	For general $k \ge 1$, the Kernel PC are given by
	Multiplicative noise model: $y = y^*(x)\varepsilon$	Only compute the gradient. Rand. init.	$\alpha^{(1)},,\alpha^{(k)} \in \mathbb{R}^n$, where $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i$ is obtained
$\hat{w} _2; \eta_{opt} = \frac{2}{\lambda_{max} + \lambda_{min}}; \rho_{min} = 1 - \eta_{opt} \lambda_{min} = \frac{\kappa - 1}{\kappa + 1}$	Cost Sensitive Classification	weights by distr. assumption for φ . ($2/n_{in}$ for	from: $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T$, $\lambda_1 \ge \ge \lambda_d \ge 0$
minibatch SGD: $\nabla L_S(w)$ on random $S \subset D$ every iter.; $ S = 1$ SGD; $E_S(\nabla L_S(w)) = \nabla L(w)$	Replace loss by: $l_{CS}(w; x, y) = c_y l(w; x, y)$	ReLu and $1/n_{in}$ or $2/(n_{in} + n_{out})$ for Tanh) Overfitting	Point <i>x</i> projected as $z \in \mathbb{R}^k$: $z_i = \sum_{j=1}^n \alpha_j^{(i)} k(x, x_j)$
strictly c. \implies stationary point is unique g.	Metrics (convention: positive = rare)	Regularization; Early Stopping; Dropout:	, , , , , , , , , , , , , , , , , , , ,
min.; strongly c. \implies unique g. min. exists	Accuracy= $\frac{\text{\#correct predictions}}{\text{\#all predictions}} = \frac{TP+TN}{TP+TN+FP+FN}$,	ignore hidden units with prob. $1 - p$, after trai-	Autoencoders $f_1: \mathbb{R}^d \to \mathbb{R}^k$, $f_2: \mathbb{R}^k \to \mathbb{R}^d$
Errors even estim err: $F_{v}(\ell(f(X), f^*(Y))) \cdot v = f^*(x) + c$	Precision= $\frac{\#correct'+'predictions}{\#all'+'predictions} = \frac{TP}{TP+FP} = 1-FDR$	ning use all units and scale weights by p; Batch	Try to learn identity function: $x \approx f(x;\theta)$
exp. estim. err.: $E_X(\ell(f(X), f^*(X))); y = f^*(x) + \varepsilon$ generaliz. err.: $L(f; \mathbb{P}_{X,Y}) = E_{X,Y}(\ell(f(X), Y))$	Rec.=TPR= $\frac{TP}{TP+FN} = \frac{TP}{n}$, FPR= $\frac{FP}{TN+FP} = \frac{FP}{n}$ =T1	Normalization : normalize the input data for each mini-batch, rescale and shift;	$f(x;\theta) = f_2(f_1(x_1;\theta_1);\theta_2); f_1 : \text{en-}, f_2 : \text{decoder}$ Lin. activation func. & square loss => PCA
$\mathcal{L}_{X,Y}(\mathcal{L}(\mathcal{L}(\mathcal{L}(\mathcal{L}(\mathcal{L}(\mathcal{L}(\mathcal{L}(L$	$TP+FN$ n_+ , $TN+FP$ n	Sween, recome und online,	/ Off

Probability Modeling Gaussian Bayes Classifier Assumption: Data set is generated iid No independence assumption, model the featu-Find $h: X \to Y$ that minimizes pred. error

 $\hat{y} = h^*(x) = \mathbb{E}[Y|X=x]$ for sq. loss **Maximum Likelihood Estimation (MLE)** Choose a particular parametric $\hat{p}(Y|X,\theta)$

 $\theta^* = \max_{\theta} \hat{p}(y_{1:n}|x_{1:n},\theta)$ $\stackrel{\text{iid}}{=} \operatorname{amin}_{\theta} - \sum_{i=1}^{n} log \hat{p}(y_i | x_i, \theta)$

Ex. Conditional Linear Gaussian Assume Gaussian noise $y = f(x) + \epsilon$ with $\epsilon \sim$ $\mathcal{N}(0,\sigma^2)$ and $f(x) = w^{\top}x$:

The optimal \hat{w} can be found using MLE: $\hat{w} = \operatorname{argmax} p(y|x, \theta) = \operatorname{argmin} \sum (y_i - w^{\top} x_i)^2$ **Maximum a Posteriori Estimate**

 $\hat{p}(y \mid x, \theta) = \mathcal{N}(y; w^{\top} x, \sigma^2)$

Assume $y = f(x; \theta^*) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$, but $\theta^* \sim \mathcal{N}(0, \sigma_0^2 I_d)$ The posterior distribution of θ is given by: $p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)}{p(\mathcal{D})} \cdot p(\theta)$

Now we want to find the MAP for θ : $\hat{\theta} = \operatorname{argmax}_{\theta} p(\theta \mid \mathcal{D})$ $= \operatorname{argmax}_{\theta} p(\mathcal{D} \mid \theta) \cdot p(\theta)$

= $\operatorname{argmin}_{\theta} - \sum_{i=1}^{n} \log p(y_i \mid x_i, \theta) - \log p(\theta)$ $= \operatorname{argmin}_{\theta} \frac{\sigma^2}{\sigma^2} ||\theta||_2^2 + \sum_{i=1}^n (y_i - f(x_i; \theta))^2$

Regularization can be understood as MAP inference, with different priors (= regularizers) and likelihoods (= loss functions).

Statistical Models for Classification f minimizing the population risk: $f^*(x) =$ $\operatorname{argmax}_{\hat{v}} p(\hat{y} \mid x)$ This is called the Bayes' optimal predictor for

conditional probability is: $p(y \mid x, w) \sim \text{Ber}(y; \sigma(w^{\top}x))$ Where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function.

the 0-1 loss. Assuming iid. Bernoulli noise, the

Using MLE we get: $\hat{w} = \operatorname{argmin} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^{\top} x_i))$

Which is the logistic loss. Instead of MLE we can estimate MAP, e.g. with a Gaussian prior: $\hat{w} = \operatorname{argmin} \lambda ||w||_2^2 + \sum_{i=1}^n \log(1 + e^{-y_i w^{\top} x_i})$

Bayesian Decision Theory Given $p(y \mid x)$, a set of actions A and a cost

mum expected utility. $a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_v[C(y, a) \mid x]$ Can be used for asymmetric costs or abstenti-

 $C: Y \times A \mapsto \mathbb{R}$, pick the action with the maxi-

Generative Modeling Aim to estimate p(x, y) for complex situations using Bayes' rule: $p(x, y) = p(x|y) \cdot p(y)$

res with a multivariate Gaussian $\mathcal{N}(x; \mu_v, \Sigma_v)$: $\mu_y = \frac{1}{\text{Count}(Y=v)} \sum_{j \mid y_j = y} x_j$ $\Sigma_y = \frac{1}{\text{Count}(Y=v)} \sum_{j \mid y_j = y} (x_j - \hat{\mu}_y) (x_j - \hat{\mu}_y)^{\top}$ This is also called the quadratic discriminant analysis (QDA). LDA: $\Sigma_{+} = \Sigma_{-}$, Fisher LDA:

 $p(y) = \frac{1}{2}$, classify x as outlier if: $p(x) \le \tau$. **Gaussian Naive Bayes Classifier** GBC with diagonal Σ s (assume features independent). Estimate the parameters via MLE:

MLE for class prior: $p(y) = \hat{p}_v = \frac{\text{Count}(Y=y)}{n}$ MLE for feature distribution: $p(x_i \mid y) = \mathcal{N}(x_i; \hat{\mu}_{v,i}, \sigma_{v,i}^2)$ Where: $\mu_{y,i} = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} x_{j,i}$ $\sigma_{y,i}^2 = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} (x_{j,i} - \hat{\mu}_{y,i})^2$

 $y = \operatorname{argmax} p(\hat{y} \mid x) = \operatorname{argmax} p(\hat{y}) \cdot | p(x_i \mid \hat{y})$ Equivalent to decision rule for bin. class.: $y = \operatorname{sgn}\left(\log \frac{p(Y=+1 \mid x)}{p(Y=-1 \mid x)}\right)$ Where f(x) is called the discriminant function.

Predictions are made by:

Generative vs. Discriminative

If the conditional independence assumption is violated, the classifier can be overconfident. **Avoiding Overfitting** MLE is prone to overfitting. Avoid this by restricting model class (fewer parameters, e.g.

GNB) or using priors (restrict param. values).

Discriminative models: p(y|x), can't detect outliers, more robust Generative models: p(x,y), can be more powerful (detect outliers, missing values) if assumptions are met, are typically less robust against outliers

Fisher's linear discriminant analysis (LDA; c=2) Assume: p = 0.5; $\hat{\Sigma}_{-} = \hat{\Sigma}_{+} = \hat{\Sigma}$

discriminant f.: $f(x) = log \frac{p}{1-p} + \frac{1}{2} [log \frac{|\Sigma_-|}{|\hat{\Sigma}|}]$ $+((x-\hat{\mu}_{-})^{T}\hat{\Sigma}_{-}^{-1}(x-\hat{\mu}_{-}))-((x-\hat{\mu}_{+})^{T}\hat{\Sigma}_{+}^{-1}(x-\hat{\mu}_{+}))]$ Predict: $y = sign(f(x)) = sign(w^T x + w_0)$ $w = \hat{\Sigma}^{-1}(\hat{\mu}_+ - \hat{\mu}_-); w_0 = \frac{1}{2}(\hat{\mu}_-^T \hat{\Sigma}^{-1} \hat{\mu}_- - \hat{\mu}_+^T \hat{\Sigma}^{-1} \hat{\mu}_+)$

 $P(x) = \sum_{v=1}^{c} P(y)P(x|y) = \sum_{v} \hat{p}_{v} \mathcal{N}(x|\hat{\mu}_{v}, \hat{\Sigma}_{v}) \le \tau$ **Gaussian Mixture Model** Mixture modeling $P(x|\theta) = P(x|\mu; \Sigma, w)$

1)Model each cluster j as prob. distr. $P(x|\theta_i)$ 2)data iid, lklh.: $P(D|\theta) = \prod_{i=1}^{n} \sum_{i=1}^{k} w_i P(x_i|\theta_i)$ 3) θ should minimize neg log-likelihood:

Outlier Detection

 $\theta^* = \underset{\theta}{\min} L(D; \theta) = \underset{\theta}{\min} - \sum_i log \sum_j w_j P(x_i | \theta_j)$

 $\Sigma w_i = 1$, $P(z, x) = w_z \mathcal{N}(x | \mu_z, \Sigma_z)$ **Gaussian-Mixture Bayes classifiers** Estimate class prior P(y); Est. cond. distr. for each class: $P(x|y) = \sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \sum_i^{(y)})$ $P(y|x) = \frac{1}{P(x)}p(y)\sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_i^{(y)})$

Ex: $P(x|\theta) = \sum_i w_i \mathcal{N}(x; \mu_i, \Sigma_i), P(z_i = j) = w_i$

Hard-EM algorithm Initialize parameters $\theta^{(0)}$ For t = 1, 2... Predict class z_i for each x_i : **E:** $z_i^{(t)} = \operatorname{argmax}_z P(z|x_i, \theta^{(t-1)}) =$

= argmax_z $P(z|\theta^{(t-1)})P(x_i|z,\theta^{(t-1)})$ = = argmax_z $w_z^{(t-1)} \mathcal{N}(x_i | \mu_z^{(t-1)}, \Sigma_z^{(t-1)})$ M: Compute the MLE as for the Gaussian B. class.: $\theta^{(t)} = \operatorname{argmax}_{\theta} P(D^{(t)}|\theta)$ $\forall i.(x_i, z_i^{(t)}) \in D^{(t)}$; works poorly if clust. overlap Special case: fix $w_z = \frac{1}{L}$, spher. cov. $\Sigma_z = \sigma^2 \mathbb{I}$

 \rightarrow k-means: **E:** $z_i^{(t)} = \operatorname{argmin}_z ||x_i - \mu_z^{(t-1)}||_2^2$ **M:** $\mu_i^{(t)} = \frac{1}{n_i} \sum_{i:z_i^{(t)} = i} x_i$ Soft-EM algorithm: While not converged

E-step: For each i and j calculate $\gamma_i^{(t)}(x_i)$

 $=\sum_{i=1}^{n} \mathbb{E}_{z_i}[\log P(x_{1:n}, z_i; \theta) | x_i, \theta^{(t-1)}] =$

 $\gamma_j^t(x_i) = P(Z_i = j | x_i, \theta_t) = \frac{P(x_i | Z_i = j, \theta_t) P(Z_i = j | \theta_t)}{P(x_i; \theta_t)} =$ $\frac{w_j P(x|\Sigma_j, \mu_j)}{\Sigma_l w_l P(x|\Sigma_l, \mu_l)} = \frac{w_j \mathcal{N}(x; \Sigma_j, \mu_j)}{\Sigma_l w_l \mathcal{N}(x; \Sigma_l, \mu_l)}$ $Q(\theta; \theta^{(t-1)}) = \mathbb{E}_{z_{1:n}}[\log P(x_{1:n}, z_{1:n}|\theta)|x_{1:n}, \theta^{(t-1)}]$ $= \mathbb{E}_{z_{1:n}}[\log \prod_{i=1}^{n} P(x_i, z_i | \theta) | x_{1:n}, \theta^{(t-1)}] =$

 $\sum_{i=1}^{n} \sum_{i=1}^{k} P(z_i = j | x_i, \theta^{(t-1)}) \log(P(x_i, z_i = j | \theta))$ $= \sum_{i=1}^{n} \sum_{i=1}^{k} \gamma_{i}^{t}(x_{i}) \log(P(z_{i} = j)P(x_{i}|z_{i} = j, \theta))$ If constraint $\sum_{i=1}^{m} P(z_i = j; \theta) = 1$ (m: #labels):

 $\to \mathcal{L}(\theta, \lambda) = Q(\theta|\theta^{(t-1)}) + \lambda(\sum_{i=1}^{m} P(z_i = j) - 1)$ **M-step:** Fit clusters to weighted data points:

Large Language Models

Genrl: $\theta^{(t)} = \operatorname{argmax}_{\theta} Q(\theta; \theta^{(t-1)}), \gamma_i^t(x_i) fixed!$

 $w_j^{(t)} \leftarrow \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i); \mu_j^{(t)} \leftarrow \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)x_i}{\sum_{i=1}^n \gamma_i^{(t)}(x_i)}$ $\Sigma_{j}^{(t)} \leftarrow \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})(x_{i} - \mu_{j}^{(t)})^{T}}{\sum_{i=1}^{n} \gamma_{i}^{(t)}(x_{i})} \{+\nu^{2} \mathbb{I}\}$

put + last hidden state \rightarrow new hidden state,

 $\mathbb{E}_{z_{1:m}}[\lambda \sum_{i=1}^{m} t_{i} | t_{1:n}; \lambda^{(j)}] - \mathbb{E}_{z_{1:m}}[\lambda \sum_{i=1}^{m} z_{i} | t_{1:n}; \lambda^{(j)}]$

SSL w/ GMMs: labeled p.: z_i : $\gamma_i^{(t)}(x_i) = 1[j = z_i]$

unl. p.: $\gamma_i^{(t)}(x_i) = P(Z = j | x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$

Sequence: Use RNN with hidden

state, keep hidden state, encoder: current in-

 $=(n+m)\log(\lambda)-\lambda\sum_{i=1}^{m}t_i-m\lambda^{(j)}(\tau+\frac{1}{\lambda^{(j)}})$

decoder: current hidden state → output token

Use encoder/decoder architecture, don't need

recurrence because of (self-) attention (multi-

head), encoder: self-attention + feed-forward

(FCNN), decoder: self-attention, encoder-

Self-attention: For the tokens *X*, generate **que-**

ry $Q = X \times W_O$, key $K = X \times W_K$, value V =

 $X \times W_V$. For each token, perform dot product

of query and key, use soft-maxed version to

Positional Encodings: Add to word embed-

Task First, plug in the complete data log-

 $Q(\lambda; \lambda^j) := \mathbb{E}_{z_{1:m}}[(n+m)\log(\lambda) - \lambda \sum_{i=1}^m t_i -$

 $\lambda \sum_{i=1}^{m} z_i | t_{1:n}; \lambda^{(j)}]$ The 1. and 2. summand don't depend on $z_{1:m}$

 $= (n + m)\log(\lambda) + \lambda \sum_{i=1}^{m} t_i +$

The third summand does not depend on

 $t_{1:n}$ but $z_i \sim \operatorname{Exp}(\lambda^{(j)})$. $\mathbb{E}_{z_{1:m}}[\lambda \sum_{i=1}^m z_i | t_{1:n}; \lambda^{(j)}] =$

We know that $z_i \geq \tau$. We use a new $\text{Exp}(\lambda^{(j)})$

 $= \frac{1}{\mathbb{P}[z_i' \ge \tau]} \int_{\tau}^{\inf} z_i' \lambda^{(j)} e^{-\lambda^{(j)} z_i'} dz_i' \text{ (below } \tau \text{ the value)}$

distributed variable z'_i to model this:

 $\mathbb{E}_{z_1,m}[z_i|\lambda^{(j)}] = \mathbb{E}[z_i'|z_i' \ge \tau;\lambda^{(j)}]$

 $= \frac{1}{\mathbb{P}[z_i' \ge \tau]} (\tau \lambda^{(j)} + 1) e^{-\tau \lambda^{(j)}} \frac{1}{\lambda^{(j)}} \text{ (hint)}$

 $\mathbb{P}[z_i' \geq \tau] = \int_{\tau}^{\inf} \lambda^{(j)} e^{-\lambda^{(j)} z_i'} dz_i' = e^{-\lambda^{(j)} \tau}$

 $\frac{1}{e^{-\lambda^{(j)}\tau}} (\tau \lambda^{(j)} + 1) e^{-\tau \lambda^{(j)}} \frac{1}{\lambda^{(j)}} = (\tau \lambda^{(j)} + 1) \frac{1}{\lambda^{(j)}}$

Assembling this back together, we get for the

 $\lambda \sum_{i=1}^{m} \mathbb{E}_{z_{1:m}}[z_{i}|\lambda^{(j)}] = \lambda^{(j)} \sum_{i=1}^{m} ((\tau \lambda^{(j)} + 1) \frac{1}{\lambda^{(j)}}) =$

 $\lambda^{(j)} m(\tau \lambda^{(j)} + 1) \frac{1}{1(j)} = m(\tau \lambda^{(j)} + 1) = m \lambda^{(j)} (\tau + \frac{1}{1(j)})$

Finally, summing the three summands again:

 $\mathbb{E}_{z_{1:m}}[(n + m)\log(\lambda)|t_{1:n};\lambda^{(j)}]$

dings, e.g. sine functions w/ different freq.

Enc.-Dec. Att.: dec.: *Q* so far. enc.: *K*, *V*

likelihood into the equation for Q:

decoder attention, feed-forward

scale value, i.e. $Z = \operatorname{softmax}(\frac{Q \times K \top}{\sqrt{\cdot}})V$

+ new hidden state

Transformers

nor $t_{1:n}$ nor $\lambda^{(j)}$:

 $\mathbb{E}_{z_{1:m}}[\lambda \sum_{i=1}^m z_i | t_{1:n}; \lambda^{(j)}]$

 $\lambda \sum_{i=1}^m \mathbb{E}_{z_1 \dots z_i} [z_i | \lambda^{(j)}]$

Furthermore:

Thus we get:

third summand: