1. 학습 목적

첫번째 과제는 커스텀 메시지 생성 후 토픽 통신을 구현하는 것이다. 기존의 std_msgs는 정해진 기본 메시지 타입만 통신할 수 있기에 실제 로봇 센서 제어등에 자주 쓰이는 데이터를 std::vector에 저장해서 보내는 과정을 학습하고자 한다.

2. 과제 구현

custom msg를 패키지에서 사용하기 위해서 ros2 pkg create custom_interfaces --buile-type ament_cmake cd msa touch AddTwoInts.msg -CMakeLists.txt에 내용 추가 .msg 파일에 find_package내용 추가 Int32[] b 등 사용할 메시지 데이터 기입 Include_directories(\${custom_msg_interface_INCLUDE_DIRS} - CMakeLists.txt에 내용 추가 find_package(rosidl_default_generators REQUIRED) ament_target_dependencies에 custom_msg_interface 추가 rosidl generate interfaces(\${PROJECT_NAME} "msg/AddTwoInts.msg" - package.xml에 내용 추가 - package.xml에 내용 추가 ⟨build_depend⟩custom_msg_interface⟨/build_depend⟩ $\label{lem:condition} $$ \build_depend\ \cosidl_default_generators $$\build_depend\ \cosidl_default_runtime $$\end\ \cosidl_default_runtime $$\cosidl_depend\ \cosidl_default_runtime $$\cosidl_depend\ \cosidl_depend\ \cos$ ⟨exec_depend⟩custom_msg_interface⟨/exec_depend⟩ \(member_of_group\)rosidl_interface_packages\(/member_of_group\)

우선 강의 자료에 나온 것과 같이 custom msg를 패키지에서 사용하기 위해 custom msg interface를 구성하였다. 그리고 .msg 파일 안에 int64 a int32[b] 의 정수와 배열 구조를 정의하였다. 그리고 노드를 publisher 노드와 subscriber 노드로 day1 과제와 같이 나누었다. 그리고 std::vector<int32_t> 안에 msg.a 에는 count를 넣고 msg.b 배열은 [count, count+1, count+2] 값을 대입하여 1초마다 새로운 메시지를 발송한다. Subscriber 노드에서 메시지를 콜백 함수를 이용하여 받은 정수와 배열 데이터를 터미널에 출력하도록 하였다.

3. 실행 결과

다음은 실행 결과이다. 각각의 터미널에서 publisher 노드와 subscriber 노드를 실행하였을 때 커스텀 메시지가 통신되는 것을 볼 수 있다.