Graph learning code: https://github.com/alikhz1376/LLFG/tree/master

VGAE architecture

N = Number of nodes

d = feature dimension

5 = number of selected important features

X[full] = has all the original features from PyGeo + binarized(0 or 1) version of the important features

X' = Reconstructed X

X[0,1] = binarized(0 or 1) 5 most important features

VGAE framework setting:

Namespace(epoch_number=101, Vis_step=20, Ir=0.001, dataset='citeseer', hemogenize=False, num_of_comunities=64, encoder_layers='64', use_feature=True, DropOut_rate=0, batch_norm=True, split_the_data_to_train_test=True, decoder_type='MultiRelational_SBM', encoder_type='RGCN_Encoder', num_node=-1, downstreamTasks={'linkPrediction', 'nodeClassification'})

Datasets:

Dataset	#Nod es	#edg es	#nod e types	#edg e types	#featur es	#Labels
ACM (Paper, author, subject)	8,993	18,92 9	3	2	1902	3 (the conferences the papers published)

IMDB (actor, movie, director)	11,61 6	19,12 0	3	2	3066	3 (genres of movies)
Cora(papers)	2,708	5,429	1	1	1,433	7(subject of papers)
<u>Citeseer</u> (papers)	3,327	4,732	1	1	3,703	6(publications topic)
Photos (co purchased photos)	7,650	238,1 62	1	1	745	8(product category)
Computers (co purchased computers)	13,75 2	491,7 22	1	1	767	10(product category)

You can find the sql version of these datasets on:

mysql -h database-1.cxcqxpvbnnwo.us-east-2.rds.amazonaws.com -P 3306 -uadmin -pnewPassword

The preprocessing steps for these datasets are found at:

https://github.com/alikhz1376/LLFG/blob/master/preprocess.py

And

https://github.com/alikhz1376/LLFG/blob/master/imdb_preprocess.py

Configurations for running factor base(<u>config.cfg</u>):

```
# Database Configurations

dbaddress = mysql://database-1.cxcqxpvbnnwo.us-east-2.rds.amazonaws.com

dbname = cora

dbusername = admin

dbpassword = newPassword
```

```
dbtemporarytablesize = 4
dbcollation = latinl_swedish_ci

# FactorBase Configurations
AutomaticSetup = 1
ComputeKLD = 0
Continuous = 0
LinkAnalysis = 0
LinkCorrelations = 0
UseLocal_CT = 0
SkipParameterLearning = 0

# Counting strategy for generating the contingency tables.
# 0 - Precount
# 1 - Ondemand
# 2 - Hybrid
CountingStrategy = 0

# Logging levels for console output.
# info - Basic console output.
# info - Basic console output.
# runtimeDetails - Additional runtime information.
# debug - Detailed information.
LoggingLevel = debug
```

Steps of running the code:

- **1) Run preprocess/imdb_preprocess.py** to create the sql version of the database with the 5 most important features
- 2) Run factorbase using:

java -Dconfig=config.cfg -jar -Xmx64G factorbase-1.0-SNAPSHOT-parmis.jar

For more information on factorbase visit <u>factorbase git</u> and <u>other instructions</u>

3) Optional BN files: If you want to see the bayesian network generated from factorbase you can use the UBC tool:

Download the tool from here

And the run:

java -jar bayes.jar

Then go click file/load from file/ and then select the generated bif_****.xml that the factorbase has outputted. I have attached a list of BN files that I got from factorbase_here

4) Run rule learning:

Python RuleLearning.py