Do Now: Graphing inequalities

Show your work. For graphs, use a pencil and straight edge. Graph the inequality after filling in the values in the blanks and circling the correct types.

1.
$$y > -2x - 3$$

y-intercept b =

Line:

Solid (=)

Dashed (\neq)

Slope

$$m = \underline{\hspace{1cm}}$$

Shading:

Above (y >) Below (y <)

2. Solve for y, then complete. $x + \frac{1}{2}y \le -1$

y-intercept b =

Line:

Solid (=) Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Label both lines and the solution to the system, the intersection, as a coordinate pair.

$$y = -\frac{2}{3}x + 1$$

$$y = \frac{1}{3}x + 4$$

- (a) y-intercept b = (a) y-intercept b =

(b) Slope
$$m = _{----}$$

(b) Slope
$$m = _{----}$$

Name:

Classwork: Graphing inequalities

Show your work. For graphs, use a pencil and straight edge. Graph the inequality after filling in the values in the blanks and circling the correct types.

$$1. \ y \le \frac{3}{4}x - 2$$

y-intercept b =

Line:

Solid (=) Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

2. Solve for y, then complete. $\frac{3}{4}x - 3y \ge 3$

y-intercept b =

Line:

Solid (=) Dashed (\neq)

Slope $m = \underline{\hspace{1cm}}$

Shading:

Label both lines and the solution to the system, the intersection, as a coordinate pair.

$$y \ge -2x + 1$$

$$y > -\frac{3}{2}x - 1$$

(a) y-intercept
$$b =$$

(a) y-intercept
$$b =$$
 (a) y-intercept $b =$

(b) Slope
$$m = ____$$

(b) Slope
$$m =$$

Rate of change

4. Find the slope of the function from the ratio of the line differences.

(a)	x	f(x)
	-2	-2
	-1	0
	0	2
	1	4
	2	6

(b)
$$\begin{vmatrix} x & f(x) \\ -4 & 9 \\ -2 & 6 \\ \hline 0 & 3 \\ \hline 2 & 0 \\ \hline 4 & -3 \\ \end{vmatrix}$$

Change in y =

Change in y =

Change in x =

Change in $x = \underline{\hspace{1cm}}$

Slope $m = \underline{\hspace{1cm}}$

Slope $m = \underline{\hspace{1cm}}$

5. Find the slope of the function. If the rate of change is not constant, write, "Non-linear. The rate of change is not constant."

(a)	x	f(x)
	-3	0
	-1	-2
	0	-3
	1	-4
	3	-6

	x	$\int f(x)$
(b)	-4	7
	-2	5
	0	3
	2	5
	4	7

Slope $m = \underline{\hspace{1cm}}$

Slope $m = \underline{\hspace{1cm}}$

Graphing quadratic functions

6. Given the quadratic function $f(x) = x^2 - 2$, find the row differences.

x	f(x)
-3	7
-2	2
-1	-1
0	-2
1	-1
2	2
3	7

Graph the function as a line over the domain $-3 \le x \le 3$.

Name:

Pop Quiz: Graphing inequalities

Fill in the values in the blanks and circling the correct types.

1.
$$y < \frac{1}{2}x + 3$$

y-intercept b =

Line:

Solid (=) Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

Graph the inequality (use a pencil and straight edge - 1 point)

2. Solve for y, then complete. $2x + y \ge -4$

y-intercept b =

Line:

Solid (=)

Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

$$y = x - 2$$

$$y = -\frac{1}{2}x$$

- (a) y-intercept b = (a) y-intercept b =

$$m = \underline{\hspace{1cm}}$$

(b) Slope
$$m =$$
_____(b) Slope $m =$ _____

Homework: Graphing systems of equations

1. Graph the two lines after filling in the values in the blanks.

$$y = 2x - 6$$

$$y = -\frac{1}{4}x + 3$$

- (a) y-intercept b = (a) y-intercept b =

(b) Slope
$$m = _{---}$$

(b) Slope
$$m =$$

Name:

Classwork: Graphing inequalities

Fill in the values in the blanks and circling the correct types.

$$1. \ y \le \frac{2}{3}x + 1$$

y-intercept b =

Line:

Solid (=) Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

Graph the inequality (use a pencil and straight edge: 1 point)

2. Solve for y, then complete. x + 2y > 3

y-intercept b =_____

Line:

Solid (=)

Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

$$y = 2x - 3$$

$$y = -\frac{1}{3}x + 4$$

- (a) y-intercept b = (a) y-intercept b =

$$m = \underline{\hspace{1cm}}$$

(b) Slope
$$m =$$
_____(b) Slope $m =$ _____

Graphing quadratic functions

4. Given the quadratic function $f(x) = x^2 - 3$, find the row differences.

x	f(x)
-3	6
-2	1
-1	-2
0	-3
1	-2
2	1
3	6

Graph the function as a line over the domain $-3 \le x \le 3$.

$$y = x - 3$$

$$x + y = 1$$

- (a) y-intercept b = (a) y-intercept b =

$$m = \underline{\hspace{1cm}}$$

(b) Slope
$$m =$$
_____(b) Slope $m =$ _____

