A Proof of Blackwell's Theorem*

Eduardo Perez-Richet[†]

November 15, 2017

Abstract

This note gives a new proof of Blackwell's celebrated result. The result is a bit stronger than the classical version since the action set and the prior are fixed, and only the utility of the decision maker varies. I show directly that a decision maker has access to a larger set of joint distributions over actions and states of the world if and only if her information improves in the garbling order.

1 Introduction

This note provides a proof of Blackwell's theorem (Blackwell, 1951, 1953). If a decision maker is identified with a prior on the states of the world, an action set, and a utility function over actions and states of the world, Blackwell's theorem says that an experiment π , that provides information about the state of the world, is preferred by every decision maker to an experiment π' if and only if π' is a garble of π . The proof I provide is relatively simple, and has the merit of making the intuitive point that the choice set of the decision maker is enlarged by moving from π' to π if and only if π' is a garble of π , which is absent from other proofs (Blackwell, 1951, 1953; Ponssard, 1975; Cremer, 1982; Leshno and Spector, 1992). Another advantage of this proof is that it varies only the utility of the decision maker, and not the prior or the action

^{*}I thank Olivier Gossner and Shuo Liu, who pointed out some mistakes in the earlier versions of this proof, and Jeanne Hagenbach, for comments.

[†]École Polytechnique, e-mail: eduardo.perez@polytechnique.edu

set¹, so the difficult direction of the result (π more useful than π' implies that π' is a garble of π) is slightly stronger here than in Blackwell's original formulation.

2 Setup and Preliminary Results

There is a finite action set A, with $|A| \geq 2$, and a finite set of states of the world Ω . The prior is a probability distribution $p(\omega)$ in $\Delta(\Omega)$. The payoff of the decision maker is given by a real valued payoff function $u(a,\omega)$. Let U be the set of such payoff functions. An experiment is given by a random variable x, with finite support X and a joint distribution function π on $X \times \Omega$ with marginal $p(\cdot)$ on Ω . When the decision maker can observe the realization of x, but not that of ω , she has access to mixed strategies $\sigma(a|x)$, with $\sum_a \sigma(a|x) = 1$ for all x. Let $\Sigma(\pi)$ be the set of strategies accessible to a decision maker endowed with experiment π . Ultimately, the decision maker only cares about the joint distributions of actions and states of the world, $\varphi(a,\omega)$. Let $\Phi(\pi)$ be the set of joint distributions she can generate when endowed with π , or policy space. It is restricted by her lack of knowledge in the following way:

$$\Phi(\pi) = \Big\{ \varphi(a, \omega) \ : \ \exists \, \sigma \in \Sigma(\pi), \ \varphi(a, \omega) = \sum_x \sigma(a|x) \pi(x, \omega) \Big\}.$$

It is easy to show that this set is a compact, and convex subset of $[0,1]^{|A|\times |\Omega|}$. Then the problem of decision maker u endowed with experiment π is given by the following linear program

$$V(\pi, u) = \max_{\varphi \in \Phi(\pi)} \sum_{a,\omega} \varphi(a, \omega) u(a, \omega).$$

Definition 1 (Usefulness Order). I say that an experiment π is more useful than another experiment π' , and write $\pi \succeq \pi'$, if all decision makers get a higher value when endowed with π than when they are endowed with π' , that is,

$$\pi \succeq \pi' \iff V(\pi, u) \ge V(\pi', u), \ \forall u \in U$$

¹Leshno and Spector (1992) also fix the action set, but use a different proof technique based on matrices.

Definition 2 (Garbling Order). I say that π' is a garble of π , and write $\pi' \leq \pi$ if there exists a function $f: X \times X' \to [0,1]$ such that $\pi'(x',\omega) = \sum_x f(x,x')\pi(x,\omega)$ and $\sum_{x'} f(x,x') = 1$ for all x'. Two experiments π and π' are equivalent, denoted by $\pi \sim \pi'$, if $\pi \leq \pi'$ and $\pi' \leq \pi$.

Note that this definition provides a different interpretation of $\Phi(\pi)$ as the set of garbles π' of π such that $|X'| \leq |A|$. For each function f satisfying the conditions of the definition, I will denote by $f \circ \pi$ the corresponding garble of π .

It is useful to prove a few basic results about garbles. The first of these results shows that, if one can observe two experiments $f_1 \circ \pi$ with realization space X_1 , and $f_2 \circ \pi$ with realization space X_2 , which are both garbles of π , then the experiment $f_1 f_2 \circ \pi$, with realization space $X_1 \times X_2$, is also a garble of π . This easily extends to a finite number of garbles.

Lemma 1. Let $f_1 \circ \pi, \dots, f_K \circ \pi$ be garbles of π . Then

$$f_1 \cdots f_k \circ \pi \leq \pi$$
.

Proof. Let $g(x, x_1, \dots, x_K) = f_1(x, x_1) \dots f_2(x, x_K)$. Then

$$\sum_{x_1,\dots,x_K} g(x,x_1,\dots,x_K) = \sum_{x_1} f_1(x,x_1) \dots \sum_{x_K} f_K(x,x_K) = 1.$$

so that $f_1 \cdots f_K \circ \pi$ is indeed a garble of π .

The second result shows that if one is allowed to combine experiments from the set of binary garbles of π , i.e. garbles with support of size 2, then one can reconstitute all the information in π . The idea is simple: for each possible realization x of π , define the binary garble of π that returns 1 if x is realized and 0 otherwise; then combining all these garbles gives exactly the same information as π . Without loss of generality, I can fix the set $B = \{0, 1\}$, and denote the set of binary garbles of π by

$$\Gamma_b(\pi) = \Big\{ \pi'(x', \omega) : \exists f : X \times B \to \mathbb{R}^+, \ \pi'(x', \omega) = \sum_x f(x, x') \pi(x, \omega) \text{ and } \sum_{x' \in B} f(x, x') = 1 \Big\}.$$

Lemma 2 (Reconstitution from Binary Garbles). Consider an experiment π with support X. Then there exists |X| binary garbles $f_1 \circ \pi, \dots, f_{|X|} \circ \pi \in \Gamma_b(\pi)$ such that

$$f_1 \cdots f_{|X|} \circ \pi \sim \pi$$
.

Proof. Let $x_1, \dots, x_{|X|}$ be the elements of X. Then let $f_k(x, 1) = \mathbbm{1}_{x=x_k}$ and $f_k(x, 0) = 1 - f_k(x, 1)$. The |X| functions thus defined satisfy the conditions of Definition 2, so they generate |X| binary garbles $f_1 \circ \pi, \dots, f_{|X|} \circ \pi$. It is easy to see that $(f_k \circ \pi) (1, \omega) = \pi(x_k, \omega)$, therefore observing the combined outcomes of all the experiments $f_1 \circ \pi, \dots, f_{|X|} \circ \pi$ intuitively allows to reconstitute the π . To show this formally consider the experiment $f_1 \cdots f_{|X|} \circ \pi$. Its realization space is $\{0,1\}^{|X|}$, but in fact the only vectors that occur with positive probability are the vectors with 0 on every dimension except one. Let e^k be the vector with a 1 on the k-th dimension and zeros elsewhere. Then for every $k = 1, \dots, |X|$

$$(f_1 \cdots f_{|X|} \circ \pi) \ (e^k, \omega) = \pi(x_k, \omega),$$

which proves that $f_1 \cdots f_{|X|} \circ \pi \sim \pi$. In fact, $f_1 \cdots f_{|X|} \circ \pi$ is exactly π , up to a recoding of the set X.

3 Blackwell's Theorem

Blackwell's theorem says that the usefulness order and the garbling order are the same. I decompose the proof in two steps. First, I show by classical arguments that an experiment is more informative than another if and only if it generates a larger policy space in the set containment order. Second, I show that an experiment generates a larger policy space than another one if and only if the latter is a garbling of the former. The latter part is the novel one and it relies on the binary decomposition result. The idea for the difficult implication is to show that, if π leads to a larger policy space than π' , then the binary reconstitution of π' , which is informationally equivalent to π' , is a garble of π .

Theorem 1 (Blackwell). $\pi \succeq \pi' \Leftrightarrow \Phi(\pi) \supseteq \Phi(\pi') \Leftrightarrow \pi \trianglerighteq \pi'$.

Proof. I write one lemma for each step.

Lemma 3.
$$\pi \succeq \pi' \Leftrightarrow \Phi(\pi) \supseteq \Phi(\pi')$$

Proof. \Leftarrow is due to the fact that maximizing a function over a larger set always yields a higher value. \Rightarrow is due to a separation theorem. Indeed, suppose that there exists a policy $\varphi(a,\omega)$ in $\Phi(\pi') \setminus \Phi(\pi)$. Then because $\Phi(\pi)$ is a closed convex set, the hyperplane separation theorem implies the existence of a vector $u \in U$ such that $\sum_{a,\omega} u(a,\omega)\varphi(a,\omega) > V(\pi,u)$.

Lemma 4.
$$\Phi(\pi) \supseteq \Phi(\pi') \Leftrightarrow \pi \trianglerighteq \pi'$$

Proof. \Leftarrow is the more natural sense. Suppose that π' is a garble of π , and let $f(\cdot)$ be the associated garbling function. Let $\varphi \in \Phi(\pi')$ be the policy generated by the associated strategy $\sigma \in \Sigma(\pi')$. Consider the strategy

$$\hat{\sigma}(a|x) \equiv \sum_{x'} f(x, x') \sigma(a|x').$$

It is an element of $\Sigma(\pi)$ since

$$\sum_{a} \hat{\sigma}(a|x) = \sum_{a'} f(x, x') \sum_{a} \sigma(a|x') = 1.$$

And I can write

$$\varphi(a,\omega) = \sum_{x'} \sigma(a|x')\pi'(x',\omega)$$

$$= \sum_{x'} \sigma(a|x') \sum_{x} f(x,x')\pi(x,\omega)$$

$$= \sum_{x} \sum_{x'} f(x,x')\sigma(a|x')\pi(x,\omega)$$

$$= \sum_{x} \hat{\sigma}(a|x)\pi(x,\omega),$$

which shows that $\varphi \in \Phi(\pi)$.

For \Rightarrow , suppose $\Phi(\pi') \subseteq \Phi(\pi)$. Then, since $|A| \geq 2$, I have $\Gamma_b(\pi') \subseteq \Phi(\pi') \subseteq \Phi(\pi)$. Then, by Lemma 2, I can pick |X'| binary garbles $f_1 \circ \pi', \cdots f_{|X'|} \circ \pi'$ in $\Phi(\pi')$ that reconstitute π' , so that $f_1 \cdots f_{|X'|} \circ \pi' \sim \pi'$.

Since $f_k \circ \pi' \in \Phi(\pi)$, $f_k \circ \pi'$ is a garble of π , so it is possible to find a function $g_k : X \times B \to [0,1]$ such that $g_k(x,0) + g_k(x,1) = 1$, and $f_k \circ \pi' = g_k \circ \pi$.

Consider the function $g: X \times B \to \mathbb{R}^+$ defined by $g(x,b) = \sum_k g_k(x,b)$. I can write

$$\sum_{x} g(x, 1)\pi(x, \omega) = \sum_{x} \sum_{k} g_{k}(x, 1)\pi(x, \omega) = \sum_{k} \sum_{x} g_{k}(x, 1)\pi(x, \omega)$$

$$= \sum_{k} (\pi \circ g_{k}) (1, \omega) = \sum_{k} (\pi' \circ f_{k}) (1, \omega)$$

$$= \sum_{k} \pi'(x_{k}, \omega) = p(\omega)$$

$$= \sum_{k} \pi(x, \omega)$$

This can be seen as a system of $|\Omega|$ equations in |X| unknowns, the $(g(x,1))_{x\in X}$. It has at least one solution which is g(x,1)=1, for all x. If $|X|\leq |\Omega|$, this is the unique solution, and therefore the functions $g_k(\cdot)$ must be such that g(x,1)=1, for all x.

Suppose instead that $|X| > |\Omega|$. Then I show that the $g_k(\cdot)$ functions can be chosen so that g(x,1) = 1 for all x. To see this note first that because $g_k(x,1) + g_k(x,0) = 1$, the problem of finding the $g_k(\cdot)$ functions can be reduced to solving the system of $|X'| \times |\Omega|$ equations in $|X'| \times |X|$ unknowns given by $\sum_x \in Xg_k(x,1)\pi(x,\omega) = \pi'(x,\omega)$, for each $k = 1,\ldots,|X'|$, and each $\omega \in \Omega$. Because $|X| > |\Omega|$ the system has multiple solutions. Adding the |X| equations $g(x,1) = \sum_k g_k(x,1) = 1$ to the system leaves the number of equation below the number of unknowns, so we can indeed choose the $g_k(\cdots)$ functions so that g(x,1) = 1, for all x.

Knowing this, I show that $f_1 \cdots f_{|X'|} \circ \pi'$ is a garble of π as follows. For every $e \in \{0,1\}^{|X'|}$,

I have

$$(\pi' \circ f_1 \cdots f_{|X'|}) (e, \omega) = \sum_k \mathbb{1}_{e=e^k} (\pi' \circ f_k) (1, \omega)$$

$$= \sum_k \mathbb{1}_{e=e^k} (\pi \circ g_k) (1, \omega)$$

$$= \sum_k \mathbb{1}_{e=e^k} \sum_x g_k(x, 1) \pi(x, \omega)$$

$$= \sum_x \sum_k \mathbb{1}_{e=e^k} g_k(x, 1) \pi(x, \omega)$$

$$= \sum_k \mathbb{1}_{e=e^k} g_k(x, 1) \pi(x, \omega)$$

Hence, to prove that $f_1 \cdots f_{|X'|} \circ \pi'$ is a garble of π , I just need to show that $\sum_e h(x, e) = 1$. To see this note that h(x, e) = 0 if e is not one of the e^k vectors, and $h(x, e^k) = g_k(x, 1)$. Therefore,

$$\sum_{e} h(x, e) = \sum_{k} g_k(x, 1) = g(x, 1) = 1.$$

References

BLACKWELL, D. (1951): "The Comparison of Experiments," in *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability*, ed. by J. Neyman, University of California Press, Berkeley, 93–102.

CREMER, J. (1982): "A Simple Proof of Blackwell's "Comparison of Experiments" Theorem," Journal of Economic Theory, 27, 439–443.

LESHNO, M. AND Y. SPECTOR (1992): "An Elementary Proof of Blackwell's Theorem," *Mathematical Social Sciences*, 25, 95–98.

Ponssard, J.-P. (1975): "A note on information value theory for experiments defined in extensive A Note on Information Value Theory for Experiments Defined in Extensive Form," *Management Science*, 22, 449–454.