Probabilité QFM 2023 _UM6P

TD ET TP

Elhoucine AIT BOUGNSA Elhoucine.AITBOUGNSA@um6p.ma

Exercice 0.0.1. Tracé de f_X et F_X à partir d'un échantillon

Soit X une V.A de densité f_X et de fonction de répartition F_X et (X_n) des observations indépendantes de X (les X_n sont vues comme de VA iid de même loi que X

1. Soit 0 < h << 1 tel que $\int_x^{x+h} f_X(t) dt \approx h. f_X(x)$. Montrer que :

$$h.f_X(x) \approx E\left(\mathbb{1}_{[x,x+h]}(X)\right)$$

et que:

$$F_X(x) = E\left(\mathbb{1}_{]-\infty,x]}(X)\right)$$

- 2. En utilisant la loi des grandes nombres et la question précédente , tracer la courbe de la fonction densité de probabilité de X=U.V avec U et V sont iid de même loi uniforme sur]0,1[
- 3. Calculer explicitement F_X et f_X puis tracer les courbes réelles (X = U.V)
- 4. (Vérification numérique de la méthode de Box-Muller) Tracer la courbe approchée de f_X si $X = \sqrt{-2log(U)}.sin(2\pi.V)$ avec Uet V sont iid de même loi uniforme sur]0,1[

Exercice 0.0.2. Simulation de la loi uniforme et application

Soient X et Y deux VA de densités ,respectivement, $f_X(t) = e^{-|t|}$ et $f_Y(t) = \frac{1}{\pi(1+t^2)}$. Soient $A = \{(x,y) \in \mathbb{R}^2/f_X(x) > y > -f_Y(x)\}$ et le couple (U_1,U_2) suit la loi uniforme sur A

On note f_1 la densité de U_1 et f_2 la densité marginale de U_2

- 1. réaliser la simulation de X et de Y
- 2. Montrer que $f_1 = \frac{1}{2}f_X + \frac{1}{2}f_Y$
- 3. réaliser la simulation de (U_1, U_2) et en déduire la simulation U_2
- 4. Tracer la courbe approchée de f_2 la densité de U_2 et F_2 la fonction de répartition de U_2 (en utilisant la démarche de l'exercice 1)
- 5. Montrer explicitement que :

$$f_2(t) = \begin{cases} 0 & \text{si } t > 1 \text{ ou } t < \frac{-1}{\pi} \\ \sqrt{-\frac{1}{\pi t} - 1} & \text{si } \frac{-1}{\pi} \le t < 0 \\ -Log(t) & \text{si } 1 > t > 0 \end{cases}$$

tracer la courbe exacte de f_Y

Soit $B = \{(x,y) \in \mathbb{R}^2 / 0 < y < |sin(x)|e^{-|x|}\}$ et (X_1,Y_1) suit la loi uniforme sur B

- 6. Calculer une approximation de la surface de B (par la loi des grandes nombres)
- 7. Réaliser la simulation de (X_1, Y_1)
- 8. En déduire la simulation de la loi caractérisée par la densité

$$f(t) = \alpha |sin(t)|e^{-|t|}$$

Indication : calculer f_{X_1}

Exercice 0.0.3. Simulation d'un couple Gaussien

Soit (X,Y) un couple de densité

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{\frac{1}{2}(-x^2 - y^2)}$$

- 1. Montrer que X et Y sont indépendantes et puis réaliser la simulation du couple (X,Y)
- 2. On suppose maintenant que

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi}e^{-x^2-y^2-2\alpha x \cdot y}$$

réaliser la simulation de (X, Y)

Exercice 0.0.4. simulation d'une marche aléatoire

Soit X_n une famille de variables aléatoires iid de même loi de bernoulli de paramètre $\frac{1}{2}$ et $S_n = \sum_{1}^{n} X_k$

- 1. réaliser la simulation de X_n
- 2. Tracer la courbe (n, S_n)

Exercice 0.0.5. Simulation d'un mouvement brownien

Soit $(X_t)_{t\leq 0}$ un processus définie par :

$$X_0 = 0$$

 $\forall s \geq t \geq 0 : X_s - X_t$ suit la loi normale $N(0, \sqrt{s-t})$

 $\forall s > t \geq 0 \ X_s - X_t$ est mutuellement indépendante avec $(X_u)_{0 \leq u \leq t}$

- 1. En utilisant la méthode de box-Muller réaliser la simulation de la loi $N(m,\sigma)$
- 2. Tracer la courbe (t, X_t) Indication : $X_{t+h} = X_{t+h} - X_t + X_t$, le pas h = 0.01 et l'intervalle [0, 100]
- 3. Soit (Y_t) un autre processus vérifiant les même propriétés que X_t mais indépendante de X_t . Tracer la courbe paramétrique (X_t, Y_t)

Exercice 0.0.6. simulation de processus de poisson

Soit X_n une suit de VA IID de même loi exponentielle de paramètre λ . Soient

$$S_n = \sum_{1}^{n} X_k \ et \ N(t) = \min\{n/S_n > t\}$$

Exemple d'explication :

Si on considère l'arrivée de clients dans une magazine, S_n va représenter l'instante correspondante au n^{eme} client et X_{n+1} représente l'espacement entre le n^{eme} client et $n+1^{eme}$ client (le temps d'attente). N(t) va représenter le nombre de clients reçus entre 0 et t

- 1. réaliser la simulation de X_n
- 2. Montrer que N(t) suit la loi de poisson de paramètre λt
- 3. réaliser une simulation qui trace la courbe (t, N(t))