Chapitre 3 Energie électrostatique

1. Energie potentielle électrostatique

1.1 Energie potentielle d'une charge ponctuelle

Définition

L'énergie potentielle électrostatique d'une particule chargée placée dans un champ électrostatique est égale au travail qu'il faut fournir pour amener de façon quasi-statique cette particule de l'infini à sa position initiale.

Soit une charge ponctuelle q placée dans un champ \vec{E} . Pour la déplacer de l'infini au point M on doit exercer une force \vec{F}_{ext} qui s'oppose à la force de coulomb \vec{F}_c :

$$\vec{F}_{ext} = -\vec{F}_c = -q\vec{E}.$$

Si ce déplacement est fait suffisamment lentement, la charge n'acquiert aucune énergie cinétique (assimilable à une suite d'états stationnaires). Le travail fournit est :

$$W_e = \int_{\infty}^{M} dw = \int_{\infty}^{M} \vec{F}_{ext} \cdot \overrightarrow{dr} = -\int_{\infty}^{M} q \, \vec{E} \cdot \overrightarrow{dr} = q(V_M - V(\infty))$$

Or $V(\infty) = 0$ alors l'énergie électrostatique d'une charge ponctuelle placée au point M est :

$$W_{\rho} = qV_{M}$$

1.2 Energie potentielle d'une distribution de charges

1.2.1 Distribution discrète de charges

Dans le cas d'une seule charge nous avons négligé le champ créé par la charge elle-même. Mais lorsqu'on a affaire à N charges, chacune d'elles va créer sur les autres un champ \vec{E} et mettre ainsi en jeu son énergie.

Soit un ensemble de N charges ponctuelles $q_i(i=1,..N)$ placées respectivement en $P_i(i=1,..N)$. Pour calculer l'énergie électrostatique de cet ensemble, déterminons l'énergie mise en jeu pour amener depuis l'infini chacune de ces charges.

• Soit q_1 placée en P_1 qui ne demande aucun travail car il n'existe aucun champ puisque les autres charges sont à l'infini.

$$W_1 = 0$$

• On amène q_2 en P_2 . On fournit le travail $W_2 = q_2 V_1(P_2) = q_1 V_2(P_1) = W_1$ où $V_1(P_2)$ est le potentiel créé au point P_2 par la charge q_1 .

$$W_2 = q_2(\frac{q_1}{4\pi\varepsilon_0 r_{12}})$$

• On amène q_3 de l'infini en P_3 (q_1 et q_2 étant fixes), le travail fourni :

$$W_3 = q_3 V_{1+2}(P_3) = q_3 (V_1(P_3) + V_2(P_3)) = \frac{1}{4\pi\varepsilon_0} (\frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}})$$

Le système de 3 charges possède l'énergie : $W_e = W_1 + W_2 + W_3$

$$W_e = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1q_3}{r_{13}} + \frac{q_2q_3}{r_{23}} + \frac{q_1q_2}{r_{12}} \right)$$

$$2W_e = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} + \frac{q_1 q_2}{r_{12}} \right) + \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} + \frac{q_1 q_2}{r_{12}} \right)$$

$$2W_e = \frac{q_1}{4\pi\varepsilon_0} \left(\frac{q_3}{r_{13}} + \frac{q_2}{r_{12}}\right) + \frac{q_2}{4\pi\varepsilon_0} \left(\frac{q_3}{r_{23}} + \frac{q_1}{r_{12}}\right) + \frac{q_3}{4\pi\varepsilon_0} \left(\frac{q_1}{r_{13}} + \frac{q_2}{r_{23}}\right)$$

$$2W_e = q_1V_1 + q_2V_2 + q_3V_3 = \sum_{i=1}^{i=3} q_iV_i$$

$$W_e = \frac{1}{2} \sum_{i=1}^{t-3} q_i V_i$$

Pour le système de N charges on aura l'énergie électrostatique :

$$W_e = \frac{1}{2} \sum_{i=1}^{i=N} q_i V_i$$

Où V_i est le potentiel créé en P_i par les charges à l'exclusion de la charge q_i :

$$V_i(P_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i \neq i} \frac{q_i}{r_{ij}}$$

1.2.2 Distribution continue de charges

On peut étendre la sommation discontinue précédente à une sommation intégrale. En désignant par dq la charge élémentaire et par V le potentiel auquel est soumise cette charge, on obtient :

$$W_e = \frac{1}{2} \int_{distri} V dq$$

• Distribution linéique : $dq = \lambda d\ell$ $W_e = \frac{1}{2} \int_L V \lambda d\ell$

• Distribution surfacique : $dq = \sigma ds$ $W_e = \frac{1}{2} \iint_S V \sigma ds$

• Distribution volumique : $dq = \rho d\tau$ $W_e = \frac{1}{2} \iiint_{\eta} V \rho d\tau$

1.3 Energie électrostatique d'un conducteur en équilibre

Soit un conducteur isolé de potentiel V et de charge Q distribuée sur sa surface S. L'énergie électrostatique de ce conducteur est alors :

$$W_e = \frac{1}{2} \int dq \, V = \frac{V}{2} \int dq = \frac{QV}{2}$$

$$W_e = \frac{QV}{2} = \frac{CV^2}{2} = \frac{Q^2}{2C}$$

C'est l'énergie nécessaire pour amener un conducteur de capacité C au potentiel V.

1.4 Energie électrostatique d'un système de conducteurs en équilibres

Soit un ensemble de N conducteurs chargés. A l'équilibre les conducteurs ont la charge Q_i et le potentiel V_i . L'énergie électrostatique de ce système est :

$$W_e = \frac{1}{2}Q_1V_1 + \frac{1}{2}Q_2V_2 + \dots + \frac{1}{2}Q_NV_N = \frac{1}{2}\sum_{i=1}^N Q_iV_i$$

1.5 Energie électrostatique d'un condensateur

L'influence entre les armatures étant totale. On a :

$$Q_1 = -Q_2$$

$$W_e = \frac{1}{2}(Q_1V_1 + Q_2V_2) = \frac{Q_1}{2}(V_1 - V_2)$$

$$\frac{V_2}{V_1}$$

$$Q_1$$

Ou encore, en posant : $V_1 - V_2 = U$:

$$W_e = \frac{1}{2}Q_1U^2 = \frac{1}{2}CU^2 = \frac{1}{2}\frac{{Q_1}^2}{C}$$