Introduction Méthodologie Résultats Discussion Ouverture

Préférences hétérogènes pour la gestion de l'eau de schiste : Résultats d'un choice experiment conduit dans le sud-ouest de la Chine, Liuyang Yao, Bo Sui, 2020

Gabriel AMMOUR & Noa LF ROUX

Master ECAP Analyse des marchés des ressources naturelles

07/02/2025

Nantes Université

- Introduction
 - Le gaz de schiste
 - Drill, baby, drill
 - Eau et gaz à tous les étages
- 2 Méthodologie
 - Le choice experiment
 - Questionnaire
 - Modélisation
- Résultats
 - Résultats des modèles
 - Résumé des résultats
- Discussion
 - Peut-on mettre un prix à la nature ?
- Ouverture
 - Le rôle des économistes à l'heure de l'anthropocène

Le gaz de schiste

Définitions

- Un gaz naturel qui se forme dans les roches de schiste
- Extration par fracturation hydraulique

Avantages

- Potentiel de toxicité humaine plus faible
- Émet moins de GES à l'utilisation que le gaz conventionnel

Externalités négatives

- Destruction et pollution permanantes des eco-systèmes
- Impact particulièrement important sur le cycle et la ressource de l'eau

Une ressource abondante

Figure: Réserves prouvées de Gaz de schiste à travers le monde (Source : Wikipedia)

La Chine

- Pays avec le plus réserves exploitables (32 billions de *m*³)
- Deuxième producteur derrière l'Amérique du Nord (9 milliards de *m*³)

La consommation d'eau

Figure: Digramme d'un puit fracturé (Source: Wikimedia commons)

La fracturation hydraulique

- Methode dite non-conventionnel
- Injection sous très haute pression d'un fluide (95% d'eau) destiné à fissurer et microfissurer la roche

La consommation d'eau

Une consommation significative

- Entre 10 000 et 15 000 m³ par forage
- Consommation quotidienne de 30 000 personnes

Une ressource de plus en plus rare

Sécheresses liées au changement climatique

Conflits d'usages

- Eau prélévée dans des sources à usage domestique ou agricole
- Perturbation éco-systemiques

La pollution de la ressource eau

Figure: Exploitation du gisement riche en gaz de schiste du bassin de Marcellus aux abords de la ville de Waynesburg, le 13 avril 2012 (Source: AFP)

Pollution in situ

- Eaux stockées dans des bassins en plein air
- 50% des eaux sont traités
- Pollution des nappes phréatiques

Eau: bien public ou privé?

Une ressource rare et précieuse

- 72% d'eau sur terre mais seulement 3% d'eau douce
- Une ressource de plus en plus rare
 - Fortes préssions anthropiques
 - Réchauffement climatique

Quel statut?

- À qui appartient l'eau de la rivière ? Celle des nappes phréatiques ?
- « L'eau est essentielle et doit être considérée dès lors comme un bien commun », One Water

Littérature

Littérature existante en matière de politiques de gestion de l'eau

- La perception du public concernant les impacts de l'exploitation du gaz de schiste sur l'eau est bien documentée
- On manque d'informations sur les préférences du public

Pourquoi s'intéresser aux préférences publiques?

■ Concevoir des politiques efficaces et socialement acceptables

Problématiques

Quelles sont les préférences publiques concernant la gestion de l'eau de Schiste ?

De quelles manières ces préférences varient en fonction des individus ?

Introduction

- Le gaz de schiste
- Drill, baby, drill
- Eau et gaz à tous les étages

2 Méthodologie

- Le choice experiment
- Questionnaire
- Modélisation

Résultats

- Résultats des modèles
- Résumé des résultats

Discussion

■ Peut-on mettre un prix à la nature?

Ouverture

■ Le rôle des économistes à l'heure de l'anthropocène

La methode

Méthodes

- Economie positive et normative
- Préférence révélées vs préférences déclarées
- Évaluation contingentes vs Analyse conjointe

Hypothèses sous-jacentes

- Rationalité des choix: Individus rationnels qui font des choix qui maximisent leur bien-être en tenant compte des compromis entre les différents attributs
- Préférences stables dans le temps, affectées par leur caractéristiques démographiques et psychologiques
- Biais d'information: Les individus sont capables de comprendre les attributs et d'exprimer leur préférences.
- Biais stratégique: Les répondants fournissent intentionnellement des réponses biaisées pour influencer un résultat

Collecte des données

Représentativité de la zone d'étude

- Étape 1: Jiaoshi et Baitao
- Étape 2: Jiangdong et Pingqiao (expérience modérée)

Échantillonnage

- 2 villages de Pingqiao
- 4 villages de Jiaoshi
- 6 villages de Baitao
- 6 villages de Jiangdong
- Total: 1260 ménages ciblés

Le questionnaire

Design

- Une vidéo animée
- Un livret d'information en couleur
- Un questionnaire pré-testé

Questionnaire

- Question d'introduction
- Attitudes envers les impact environnementaux du DGS
- 3 Statut socio-économique du ménage
- Choice experiment
- 5 Détection des biais de réponses

L'éxperience de choix

Figure: Différentes options du choice experiment proposées aux participants

Attributes	Status Quo	Levels			
Water Consumption (Reduced percentile		**************************************	10% Nic /r 20%	60%	0% 80%
per well)	1 1 0%	No reduction	Reduced by 20%	Reduced by 40%	Reduced by 60%
Wastewater Recycling (Recycling rate)	1505	2 505	E In		(1105)
	·	50% recycles	1 70% r	ecycled	100% recycled
Water Quality Monitoring (With or without)		No mo	No monitoring With monitoring		
Annual Payment (Increased household expenditure)	0 Yuan	10 Yuan, 20 Yuan, 30 Yuan, 40 Yuan, 50 Yuan, 60 Yuan			

Modélisation: Random Parameter Logit (RPL)

$$U_{nj} = V_{nj}(\beta_n) + \epsilon_{nj} = \delta^* ASC + \alpha_n^* X_j + \gamma_n^* (-pay_j) + \epsilon_{nj}$$

Détail de l'équation

- Modèle basé sur la théorie de l'utilité aléatoire
- ASC: Constante spécifique à l'alternative
- X_i: Attributs liés à l'eau
- pay_i: Attribut de paiement

Hétérogénéité des préférences

- Hétérogénéité aléatoire
- Hétérogénéité systématique

Modélisation: Random Parameter Logit (RPL)

$$V_{nj}(\beta_n) = ASC \times (\delta_0 + \delta'_n Z_n) + \alpha'_n \times X_j + \gamma_n pay_j$$

Détail de l'équation

- Impact des caractéristiques individuelles sur l'utilité
- Impact des attributs liés à l'eau sur l'utilité
- Impact du paiement sur l'utilité

Modélisation: Random Parameter Logit (RPL)

Modèle de base: Model One

- Ne tient pas compte de l'hétérogénéité systématique des préférences
- Inclut seulement l'ASC (Alternative Specific Constant)
- Fournit une estimation du CAP moyen pour l'ensemble de l'échantillon
- Sert principalement de point de comparaison
- Suppose que les préférences varient aléatoirement, sans les lier à des facteurs observable

Modèle plus sophistiqué: Model Two

- Inclut l'hétérogénéité systématique des préférences
- Interaction entre l'ASC avec des variables individuelles
- Le CAP varie en fonction de ces caractéristiques

Modélisation: Le Consentement à Payer (CAP)

$$\mathsf{CAP}_{ni} = -\frac{\frac{\partial \mathsf{V}_{ni}}{\partial \mathsf{V}_{ni}}}{\frac{\partial \mathsf{V}_{ni}}{\partial \mathsf{pay}_{i}}} = \frac{\alpha_{n}}{\gamma_{n}}$$

Détail

- Impact marginal de l'**attribut** *x* sur l'utilité
- Impact marginal du paiement sur l'utilité
- \blacksquare α_n et γ_n sont considérés aléatoires
- \blacksquare γ_n distribution log-normale
- Simulation de Krinsky et Robb

Modélisation: Surplus compensatoire (SC)

$$SC_n = \frac{\alpha'_n \times X_{1j} - \alpha'_n \times X_{0j} - \delta - \delta'_n Z_n}{\gamma_n}$$

Détail

- Changement d'utilité dû à l'amélioration des attributs de gestion de l'eau
- Changement d'utilité due à l'éloignement du statu quo
- X_{0i} : niveau des attributs dans le statu quo (avant toute amélioration)
- X_{1j} : niveau des attributs dans le scénario de gestion de l'eau spécifique (après l'amélioration)

- Introduction
 - Le gaz de schiste
 - Drill, baby, drill
 - Eau et gaz à tous les étages
- 2 Méthodologie
 - Le choice experiment
 - Questionnaire
 - Modélisation
- **3** Résultats
 - Résultats des modèles
 - Résumé des résultats
- 4 Discussion
 - Peut-on mettre un prix à la nature ?
- 5 Ouverture
 - Le rôle des économistes à l'heure de l'anthropocène

Statistiques descriptives

Table: Statistiques descriptives de l'échantillon de l'étude

Statistique	Valeur
Nombre total de questionnaires valides	825 (65,48% de l'échantillon cible)
Répartition par genre	88,8% hommes
Taille moyenne des ménages	4,4
Revenu personnel annuel moyen	9 000–12 000 yuans
Source principale de revenus	66,7% activités hors exploitation

Remarques : Ce tableau résume les principales statistiques descriptives de l'échantillon utilisé dans l'étude.

Résultats des modèles

Table: Résultats des modélisations logit

Variables	Coefficient (S.E.)			
	Model 1	Model 2		
Fixed Parameter				
ASC	-7.305 (1.287)***	4.197 (0.491)***		
ASC × localisation		-0.753 (0.228)***		
ASC × revenu		-2.579 (0.195)***		
$ASC \times source$		-1.103 (0.239)***		
$ASC \times condition$		-0.242 (0.100)**		
ASC imes consommation		0.912 (0.115)***		
$ASC \times gestion$		1.118 (0.125)***		
Random Parameters				
mean of wc	9.829 (1.856)***	6.001 (0.497)***		
mean of wr	7.577 (1.420)***	5.076 (0.448)***		
mean of wq	2.709 (0.522)***	1.798 (0.167)***		
mean of -pay (log-normal)	-0.630 (0.172)***	-1.460 (0.076)***		
sd. of wc	12.515 (2.585)***	-2.474 (0.564)***		
sd. of wr	7.924 (1.915)***	3.049 (0.522)***		
sd. of wq	2.211 (0.611)***	1.182 (0.232)***		
sd. of -pay (log-normal)	0.749 (0.038)***	0.315 (0.018)***		
Log Likelihood Function	-1539.004	-1125.611		

Le consentement à payer: Résultats

Le CAP moyen

- L'inclusion de l'hétérogénéité des préférences n'améliore pas la précision des estimations
- 2.60¥ pour une réduction de 10% de la consommation d'eau
- 2.20¥ pour une augmentation de 10% du taux de recyclage des eaux usées
- 7.79¥ pour la mise en place d'un réseau de surveillance de la qualité de l'eau
- 11.17¥ en plus si le revenu augmente d'une unité
- 1.03¥ en plus si la satisfaction environnementale augmente

Hétérogénéité des préférences

- 3.31¥ de plus pour les résidents vivant dans la première zone de développement
- 4.81¥ de plus pour les résidents dont le revenu dépend de l'agriculture

Le Surplus Compensatoire: Résultats

Le Surplus Compensatoire (SC)

- SC Moyen: 45.76¥ yuan par ménage et par an
- SC Total: 38,98¥ millions par an
- SC Total actualisé: 896,20¥ millions par an, avec un taux à 4,35%.

Résumé des résultats

Implication financière

- Une augmentation du prix du gaz de 0.058¥/m³ peut être socialement acceptable
- Cette augmentation couvre les coûts d'investissement des entreprises dans la gestion de l'eau

Recommandations Politiques

- Subventions des pouvoirs publiques
- Prioriser les stratégies dont les avantages sont facilement perceptibles
- Tenir compte de l'hétérogénéité des préférences
- Mise en place de campagnes d'information / sensibilisation visant les personnes moins enclines à payer.

- 1 Introduction
 - Le gaz de schiste
 - Drill, baby, drill
 - Eau et gaz à tous les étages
- 2 Méthodologie
 - Le choice experiment
 - Questionnaire
 - Modélisation
- Résultats
 - Résultats des modèles
 - Résumé des résultats
- 4 Discussion
 - Peut-on mettre un prix à la nature ?
- 5 Ouverture
 - Le rôle des économistes à l'heure de l'anthropocène

Peut-on mettre un prix à l'environnement ?

Limites de la tarification environnementale

- Logique utilitariste : l'environnement réduit à une valeur marchande.
- Compensation financière ≠ préservation réelle.
- Certaines destructions sont irréversibles (biodiversité, pollution).

Apports de l'économie comportementale

- Les choix ne sont pas toujours rationnels : biais cognitifs, préférences sociales.
- Influence du cadrage des questions et de l'information fournie.
- Importance des normes sociales et de la perception du risque.

- Introduction
 - Le gaz de schiste
 - Drill, baby, drill
 - Eau et gaz à tous les étages
- 2 Méthodologie
 - Le choice experiment
 - Questionnaire
 - Modélisation
- Résultats
 - Résultats des modèles
 - Résumé des résultats
- 4 Discussion
 - Peut-on mettre un prix à la nature ?
- Ouverture
 - Le rôle des économistes à l'heure de l'anthropocène

Le rôle des économistes à l'heure de l'anthropocène

Une caution scientifique pour l'industrie?

- L'évaluation économique des dommages peut-elle légitimer les industries polluantes ?
 - Un marché pour un marché

Le piège du techno-solutionnisme?

- Quelle place pour une réelle transformation écologique?
 - Foi excessive dans des solutions techniques et marchandes.

Merci pour votre attention!