Homework 3

Adrián Enríquez Ballester

February 22, 2022

1 Collision resistant hash function?

Let $H: \mathcal{M} \to \mathcal{T}$ be a collision resistant hash function. We define $\hat{H}(x||b) := H(x)||b|$ where b denotes one bit and || denotes concatenation.

We are going to prove that \hat{H} is also a collision resistant hash function. For that, let $\mathcal{A}_{\hat{H}}$ be an adversary for the collision resistance of \hat{H} . We can define an adversary \mathcal{A}_H for the collision resistance of H which also plays the role of oracle for $\mathcal{A}_{\hat{H}}$:

$$\mathcal{A}_{H}$$
:
 $(\mathbf{m}_{1}||\mathbf{b}_{1}, \mathbf{m}_{2}||\mathbf{b}_{2}) \leftarrow \mathcal{A}_{\hat{H}}()$
 $\mathbf{0}(\mathbf{m}_{1}, \mathbf{m}_{2})$

It receives a pair of messages provided by $\mathcal{A}_{\hat{H}}$, removes its last bit and sends them to the oracle for the collision resistance of \mathcal{A}_H . Note that it is an efficient adversary, as it only removes the last bit of two messages.

Recall the collision resistance advantage of \mathcal{A}_H , which is the probability of it to win (i.e. the event $H(m_1) = H(m_2) \wedge m_1 \neq m_2$, where (m_1, m_2) is the pair of messages provided by \mathcal{A}_H to its oracle). We are going to analyze this probability in terms of the advantage of $\mathcal{A}_{\hat{H}}$ itself.

On the one hand, if $\mathcal{A}_{\hat{H}}$ wins, then we have

$$\hat{H}(m_1||b_1) = \hat{H}(m_2||b_2)$$

$$H(m_1)||b_1 = H(m_2)||b_2$$

and $m_1||b_1 \neq m_2||b_2$. From the equality of the hashes we can extract $b_1 = b_2$ and $H(m_1) = H(m_2)$, so $m_1 \neq m_2$ and therefore \mathcal{A}_H also wins.

On the other hand, if $\mathcal{A}_{\hat{H}}$ does not win, then

$$\hat{H}(m_1||b_1) \neq \hat{H}(m_2||b_2)$$

 $H(m_1)||b_1 \neq H(m_2)||b_2$

or $m_1||b_1 = m_2||b_2$. In this case, \mathcal{A}_H can still win if $H(m_1) = H(m_2)$ and $m_1 \neq m_2$, which is only possible if $b_1 \neq b_2$.

Given the above cases, the probability of A_H to win is as follows:

$$\begin{split} \mathsf{CRadv}[\mathcal{A}_H, H] &= \mathsf{CRadv}[\mathcal{A}_{\hat{H}}, \hat{H}] \cdot 1 + (1 - \mathsf{CRadv}[\mathcal{A}_{\hat{H}}, \hat{H}]) \cdot \varepsilon \\ &\geq \mathsf{CRadv}[\mathcal{A}_{\hat{H}}, \hat{H}] \end{split}$$

where

$$\varepsilon = \Pr[m_1 \neq m_2 \land b_1 \neq b_2 \land H(m_1) = H(m_2)]$$

If $\mathsf{CRadv}[\mathcal{A}_{\hat{H}}, \hat{H}]$ were not negligible, then $\mathsf{CRadv}[\mathcal{A}_H, H]$ would also be non negligible, which is not possible because H is collision resistant. This implies that \hat{H} is also collision resistant.

2 Signatures vs. encryption

In some literature, digital signatures are sometimes described as an "inversion" of public key encryption schemes, where we treat a message m as a ciphertext of the encryption scheme and decrypt it using sk to produce a signature. To verify, the idea is then to encrypt and check whether cyphertext matches the message.

More concretely, let $\mathcal{E}=(G_{\mathcal{E}},E,D)$ be a deterministic encryption scheme (i.e. algorithms E and D are deterministic). Then we can define a signature scheme $\Pi=(G_{\Pi},S,V)$ as follows:

```
\begin{array}{lll} \textbf{G}_{\Pi}(\textbf{n}) \colon & \textbf{S}(\textbf{m}) \colon & \textbf{V}(\textbf{m}, \, \sigma) \colon \\ & (\textbf{sk}, \, \textbf{pk}) \leftarrow \textbf{G}_{\mathcal{E}}(\textbf{n}) & \sigma \leftarrow \textbf{D}_{\textbf{sk}}(\textbf{m}) & \textbf{c} \leftarrow \textbf{E}_{\textbf{pk}}(\sigma) \\ & \textbf{return } (\textbf{sk}, \, \textbf{pk}) & \textbf{return } \sigma & \textbf{if m = c} \colon \\ & & \textbf{return 1} \\ & & \textbf{else} \colon \\ & & & \textbf{return 0} \end{array}
```

For this exercise, we consider a weak security notion of digital signature scheme where the adversary does not get access to a signature oracle.

A signature scheme $\Pi = (\mathsf{G}_\Pi, \mathsf{S}, \mathsf{V})$ is unforgeable under a key only attack if for any PPT algorithm \mathcal{A} , the probability that the experiment $\mathsf{Sig} - \mathsf{forge}_{\mathcal{A},\Pi}^{ka}(n)$ evaluates to 1 is negligible, where

```
Sig-forge^{ka}_{\mathcal{A},\Pi}(n):

(sk, pk) \leftarrow G_{\Pi}(n)

(m, \sigma) \leftarrow \mathcal{A}(pk)

return V(m, \sigma)
```

The advantage of the adversary \mathcal{A} over Π under this security notion is the aforementioned probability:

$$\mathsf{Sig}-\mathsf{forge}^{ka}\mathsf{adv}[\mathcal{A}_\Pi,\Pi]=Pr[\mathsf{Sig}-\mathsf{forge}^{ka}_{\mathcal{A},\Pi}(n)=1]$$

Te following attack shows that Π is not $Sig - forge^{ka}$ secure:

$$\begin{split} \mathcal{A} \colon & \\ & \text{pk} \leftarrow \text{O()} \\ & \sigma \overset{\$}{\leftarrow} \mathcal{S} \\ & \text{m} \leftarrow \text{E}_{\text{pk}}(\sigma) \\ & \text{O(m, } \sigma) \end{split}$$

This adversary generates a random σ from S, namely the signature space of Π and also the message space of \mathcal{E} . It then obtains the message m that matches this signature by performing the same operation used by V to verify. This trivially leads to $V(m, \sigma)$ to output 1, as $\mathsf{E}_{pk}(\sigma) = m$.

Note that this adversary is efficient because it generates a random signature and uses E, which also has to be efficient. It always succeeds in creating a valid forgery, so its advantage is

$$\mathsf{Sig} - \mathsf{forge}^{ka} \mathsf{adv}[\mathcal{A}_\Pi, \Pi] = 1$$

and then Π is not $Sig - forge^{ka}$ secure.

3 Σ -protocol for Pedersen commitments

Let \mathcal{G} be a group with a prime number q of elements where the discrete logarithm problem is hard. The public parameters of the Pedersen commitments are two group elements g_1 and g_2 .

To commit an element $m \in \mathbb{Z}_q$, the committee has to choose a random element $x \in \mathbb{Z}_q$ and compute the commitment as $c := g_1^m \cdot g_2^x$.

We are going to define some Σ -protocols for proving statements within this setting and prove its completeness, special soundness and honest-verifier zero-knowledge.

3.a
$$\mathsf{POK}[\exists m \exists x : c = g_1^m \cdot g_2^x]$$

This protocol allows a prover to announce that he has committed a message without revealing his choice, which cannot be modified once the announcement has been made:

```
\begin{split} & \text{Prover}((\mathcal{G}, \ g_1, \ g_2, \ c), \ (\textbf{m}, \ \textbf{x})) \colon \\ & (u_1, \ u_2) \leftarrow \mathbb{Z}_q^{\ 2} \\ & a :=_q \ g_1^{u_1} \cdot g_2^{u_2} \\ & ch \leftarrow \text{Verifier}(\textbf{a}) \\ & r_1 :=_q \ u_1 + ch \cdot \textbf{m} \\ & r_2 :=_q \ u_2 + ch \cdot \textbf{x} \\ & \text{Verifier}(\textbf{r}_1, \ \textbf{r}_2) \end{split}
```

```
\begin{split} & \text{Verifier}((\mathcal{G}, \ g_1, \ g_2, \ c)) \colon \\ & \text{a} \leftarrow \text{Prover}() \\ & \text{ch} \overset{\$}{\leftarrow} \mathbb{Z}_q \\ & (r_1, \ r_2) \leftarrow \text{Prover}(\text{ch}) \\ & \text{if} \ g_1^{\ r_1} \cdot g_2^{\ r_2} =_q \ \text{a} \cdot \text{c}^{\text{ch}} \colon \\ & \text{return} \ 1 \\ & \text{else} \colon \\ & \text{return} \ 0 \end{split}
```

The name ch has been used to denote the challenge, although the letter c is used more often, because one of the parameters already has the name c.

3.a.1 Completeness

Completeness holds because

$$\begin{split} g_1^{r_1} \cdot g_2^{r_2} &= g_1^{u_1 + ch \cdot m} \cdot g_2^{u_2 + ch \cdot x} \\ &= g_1^{u_1} \cdot g_1^{ch \cdot m} \cdot g_2^{u_2} \cdot g_2^{ch \cdot x} \\ &= a \cdot g_1^{ch \cdot m} \cdot g_2^{ch \cdot x} \\ &= a \cdot (g_1^m \cdot g_2^x)^{ch} \\ &= a \cdot c^{ch} \end{split}$$

if the protocol has been followed properly.

3.a.2 Special soundness

Given two conversations with the same announcement where the challenge is different, $(a, ch, (r_1, r_2))$ and $(a, ch', (r'_1, r'_2))$ with $ch \neq ch'$, the witness can be recovered:

$$\begin{cases} g_1^{r_1} \cdot g_2^{r_2} &= a \cdot c^{ch} \\ g_1^{r_1'} \cdot g_2^{r_2'} &= a \cdot c^{ch'} \end{cases}$$

$$g_1^{r_1 - r_1'} \cdot g_2^{r_2 - r_2'} &= c^{ch - ch'}$$

$$g_1^{(r_1 - r_1') \cdot (ch - ch')^{-1}} \cdot g_2^{(r_2 - r_2') \cdot (ch - ch')^{-1}} &= c$$

$$g_1^{(r_1 - r_1') \cdot (ch - ch')^{-1}} \cdot g_2^{(r_2 - r_2') \cdot (ch - ch')^{-1}} &= g_1^m \cdot g_2^m \end{cases}$$

$$\begin{cases} m = (r_1 - r'_1) \cdot (ch - ch')^{-1} \\ x = (r_2 - r'_2) \cdot (ch - ch')^{-1} \end{cases}$$

3.a.3 Honest-verifier zero-knowledgeness

Given a challenge ch. Take r_1 and r_2 at random from \mathbb{Z}_q and compute

$$a = g_1^{r_1} \cdot g_2^{r_2} \cdot c^{-ch}$$

in order to generate a simulated conversation $(a, ch, (r_1, r_2))$.

The probability of a simulated conversation to happen is $1/q^2$ due to the randomness of r_1 and r_2 over \mathbb{Z}_q . It is the same probability that for an honest conversation with a fixed challenge ch, due to the randomness of u_1 and u_2 over \mathbb{Z}_q .

3.b POK $[\exists m \exists x : c = g_1^m \cdot g_2^x \land c' = g_3^x]$

This protocol combines the previous one with a new statement where g_3 is also a public element of \mathcal{G} :

```
\begin{array}{lll} & \text{Prover}((\mathcal{G}, \, g_1, \, g_2, \, g_3, \, c, \, c'), \, (m, \, x)) \colon \\ & (u_1, \, u_2, \, u_3) \, \leftarrow \, \mathbb{Z}_q^3 \\ & a_1 \coloneqq_q g_1^{u_1} \cdot g_2^{u_2} \\ & a_2 \coloneqq g_3^{u_3} \\ & ch \leftarrow \text{Verifier}(a_1, \, a_2) \\ & r_1 \coloneqq_q u_1 + ch \cdot m \\ & r_2 \coloneqq_q u_2 + ch \cdot x \\ & r_3 \coloneqq_q u_3 + ch \cdot x \\ & \text{Verifier}(r_1, \, r_2, \, r_3) \\ & \text{Verifier}((\mathcal{G}, \, g_1, \, g_2, \, g_3, \, c, \, c')) \colon \\ & (a_1, \, a_2) \leftarrow \text{Prover}() \\ & ch \overset{\$}{\leftarrow} \mathbb{Z}_q \\ & (r_1, \, r_2, \, r_3) \leftarrow \text{Prover}(ch) \\ & \text{if } g_1^{r_1} \cdot g_2^{r_2} =_q a_1 \cdot c^{ch} \text{ and } g_3^{r_3} =_q a_2 \cdot c'^{ch} \colon \\ & \text{return 1} \\ & \text{else:} \\ & \text{return 0} \end{array}
```

3.b.1 Completeness

Completeness holds because

$$\begin{split} g_1^{r_1} \cdot g_2^{r_2} &= g_1^{u_1 + ch \cdot m} \cdot g_2^{u_2 + ch \cdot x} \\ &= g_1^{u_1} \cdot g_1^{ch \cdot m} \cdot g_2^{u_2} \cdot g_2^{ch \cdot x} \\ &= a_1 \cdot g_1^{ch \cdot m} \cdot g_2^{ch \cdot x} \\ &= a_1 \cdot (g_1^m \cdot g_2^x)^{ch} \\ &= a_1 \cdot c^{ch} \end{split}$$

and

$$g_3^{r_3} = g_3^{u_3 + ch \cdot x}$$
$$= g_3^{u_3} \cdot g_3^{ch \cdot x}$$
$$= a_2 \cdot c'^{ch}$$

if the protocol has been followed properly.

3.b.2 Special soundness

Given two conversations with the same announcement where the challenge is different, $((a_1, a_2), ch, (r_1, r_2, r_3))$ and $((a_1, a_2), ch', (r'_1, r'_2, r'_3))$ with $ch \neq ch'$, the witness can be recovered:

$$\begin{cases} g_1^{r_1} \cdot g_2^{r_2} &= a_1 \cdot c^{ch} \\ g_1^{r_1'} \cdot g_2^{r_2'} &= a_1 \cdot c^{ch'} \end{cases}$$

$$\begin{split} g_1^{r_1-r_1'} \cdot g_2^{r_2-r_2'} &= c^{ch-ch'} \\ g_1^{(r_1-r_1') \cdot (ch-ch')^{-1}} \cdot g_2^{(r_2-r_2') \cdot (ch-ch')^{-1}} &= c \\ g_1^{(r_1-r_1') \cdot (ch-ch')^{-1}} \cdot g_2^{(r_2-r_2') \cdot (ch-ch')^{-1}} &= g_1^m \cdot g_2^x \end{split}$$

$$\begin{cases} m &= (r_1 - r_1') \cdot (ch - ch')^{-1} \\ x &= (r_2 - r_2') \cdot (ch - ch')^{-1} \end{cases}$$

But, in this case, we also have an alternative way to recover x:

$$\begin{cases} g_3^{r_3} &= a_2 \cdot c'^{ch} \\ g_3^{r'_3} &= a_2 \cdot c'^{ch'} \end{cases}$$

$$\begin{split} g_3^{r_3-r_3'} &= c'^{ch-ch'} \\ g_3^{(r_3-r_3')\cdot(ch-ch')^{-1}} &= c' \\ g_3^{(r_3-r_3')\cdot(ch-ch')^{-1}} &= g_3^x \end{split}$$

$$x = (r_3 - r_3') \cdot (ch - ch')^{-1}$$

Honest-verifier zero-knowledgeness

Given a challenge ch. Take r_1, r_2 and r_3 at random from \mathbb{Z}_q and compute

$$\begin{cases} a_1 &= g_1^{r_1} \cdot g_2^{r_2} \cdot c^{-ch} \\ a_2 &= g_3^{r_3} \cdot c'^{-ch} \end{cases}$$

in order to generate a simulated conversation $((a_1,a_2),ch,(r_1,r_2,r_3))$. The probability of a simulated conversation to happen is $1/q^3$ due to the randomness of r_1, r_2 and r_3 over \mathbb{Z}_q . It is the same probability that for an honest conversation with a fixed challenge ch, due to the randomness of u_1, u_2 and u_3 over \mathbb{Z}_q .