0 (1E

() $\delta(x_0) \leq \delta(x) \forall x \in]x_0 - r, x_0 + r[, n)$

· Definición f concave hacia ariba!

· Supongamos que existe Ma $\widetilde{x} \in I$ $J(\widetilde{x}) < J(x_0)$

· Por la concavidad hacia corriba de f teremos que:

 $f(t\tilde{x}_{0}+(1-t)\tilde{x}) \leq t f(x_{0})+(1-t) f(\tilde{x}) < t f(x_{0})+(1-t) f(\tilde{x}) < t f(x_{0})+(1-t) f(x_{0}) = f(x_{0}) \quad \forall t \in I_{0}, I$

Tomado t suficientemente cercano a 1, tenemos que $tx_0 + (1-t)\tilde{x} \in]x_0-r, x_0+r[$, y por tanto

 $f(x_0) \leq f(x_0 + (1-t)\tilde{x}) < f(x_0)$ (= CONTRADICCIÓN)

Por tonto, $J(x_0) \leq J(x)$ $\forall x \in I$ es decing alcansa en x_0 un mínimo absoluto.

Si
$$\exists x \in f(x) = 0$$
 se tiene que $f(x) \ge f(x) \ge f(x)$ $\forall x \in I$

Por tanto, g es un mínimo absoluto de f.