Activité 0.3 – Ordre de grandeur

Contexte : En physique on utilise des grandeurs avec des tailles très variables, c'est pour ça qu'on utilise la **notation scientifique**.

En physique et dans la vie de tous les jours, on peut être amené à essayer de raisonner rapidement sur des grandeurs mal connues. Pour ça on peut utiliser les **ordres de grandeur**.

Enfin, pour pouvoir comparer et communiquer sur des grandeurs, il faut pouvoir les mesurer avec des unités communes, c'est l'intérêt du système international de mesure.

1 – Notation scientifique

Document 1 - Les puissances de 10

- Écrire le nombre 10^n (avec $n=0,1,2,3,\ldots$), revient à écrire "1" suivi de $n=0,1,2,3,\ldots$ zéros. $Exemple:10^3=1000$
- Écrire le nombre 10^{-n} (avec $n=1,2,3,\ldots$), revient à écrire "0," suivi de $n-1=0,1,2,\ldots$ zéros et d'un 1. $Exemple:10^{-2}=0.01$
- $10^a \times 10^b = 10^{a+b}$
- $\frac{1}{10^n} = \frac{10^{-n}}{10^{-n}} \times \frac{1}{10^n} = \frac{10^{-n}}{10^{n-n}} = \frac{10^{-n}}{10^0} = 10^{-n}$

Document 2 - La notation scientifique

La notation scientifique d'une quantité se présente de la façon suivante :

chiffre différent de zéro

puissance de dix

unité

1 - Écrire les quantités suivantes en notation scientifique :

 $288 \, \mathbf{h} = \qquad \qquad 638 \, \mathbf{N} = \qquad \qquad \ldots$

 $756\,864\,000\,\mathrm{s} = \dots 0,999\,7\,\mathrm{g/mL} = \dots 0$

2 – Les ordres de grandeurs

Document 3 - Définition d'un ordre de grandeur

L'ordre de grandeur d'une quantité est la puis sance de 10 la plus proche de cette quantité.

Exemple: L'ordre de grandeur de 60 s est 10^2 s (60 est plus proche de 100 que de 10).

2 - Donner l'ordre de grandeur des quantités suivantes :

$$3,00 \times 10^8 \,\mathrm{m \cdot s^{-1}} = \dots 9,11 \times 10^{-31} \,\mathrm{kg} = \dots$$

$$1,67 \times 10^{-27} \,\mathrm{kg} = \dots$$
 $53 \times 10^{-12} \,\mathrm{m} = \dots$

3 – Le système international de mesure

A - Le système international

Pour comparer des grandeurs entre elles, il faut les exprimer avec les mêmes unités de mesures.

Pour pouvoir communiquer facilement d'un pays à un autre, le système international (SI) a été développé par la Conférence Générale des Poids et Mesures (CGPM).

Le système international est composé de **sept unités de base**, que l'on retrouve quotidiennement. Une part importante de nos technologies modernes dépendent de la précision avec laquelle ces unités sont définies.

Grandeur	Unité	Symbole de l'unité
Masse	kilogramme	kg
Temps	seconde	S
Longueur	mètre	m
Température	kelvin	K
Quantité de matière	mole	mol
Intensité électrique	ampère	A
Intensité lumineuse	candela	cd

B – De l'échelle microscopique à l'échelle astronomique

3 — Compléter le tableau en associant à chaque objet sa longueur, puis l'ordre de grandeur de cette longueur. Pour ça, utilisez ces six longueurs (attention aux unités!) :

$$10^{20}\,\mathrm{m}$$
 0,1 nm 60 µm 6 mm 1 000 km $10^{10}\,\mathrm{m}$

Objet	Épaisseur cheveux	Voie Lactée	Système solaire	Hexagone	Fourmi	Atome
Image						
Taille						
Ordre de grandeur en mètre						