CHUONG 7: MẠCH GHÉP TS. PHẠM NGUYỄN THANH LOAN

Tổ chức lớp

- □ Số tín chỉ: 3
- □ Giảng viên: TS. Phạm Nguyễn Thanh Loan
- □ Văn phòng: Phòng 618, thư viện Điện Tử
- Email: loanpham.sinhvien@gmail.com
- □ Sách:
 - 1. Electronic Devices and Circuit Theory, Robert Boylestad and Louis Nashelsky
 - 2. Kỹ thuật Mạch điện tử, Phạm Minh Hà
- Bài tập tại lớp, bài tập về nhà theo nhóm được cung cấp tại lớp

Nội dung chương 7

- □ Ghép giữa các tầng khuếch đại
- □ Ghép Cascode
- Ghép Darlington
- Mạch nguồn dòng
- Mạch dòng gương
- □ Mạch khuếch đại vi sai
- □ Tham khảo chương 12, sách tham khảo 1 (Boylestad)

Ghép giữa các tầng khuếch đại

- □ Ghép trực tiếp
- □ Ghép dùng tụ
- □ Ghép dùng biến áp
- Ghép dùng điện trở
- □ Ghép điện quang

Ghép giữa các tầng khuếch đại

Ghép trực tiếp

- Trực tiếp ghép giữa đầu ra tầng trước và đầu vào tầng sau
- □ Ưu:
 - Đơn giản
 - Không mất năng lượng
 - Không méo
 - Băng thông rộng
- □ Nhược:
 - Phải chú ý ảnh hưởng DC giữa các tầng
- □ Hay sử dụng trong IC

Ghép dùng tụ

Dùng tụ ghép đầu ra tầng trước và đầu vào tầng sau

Ghép giữa các tầng khuếch đại

Ghép dùng tụ

Ghép giữa các tầng khuếch đại

Ghép dùng tụ

- Dùng tụ ghép đầu ra tầng trước và đầu vào tầng sau
- □ Ưu:
 - Cách ly DC các tầng
 - Dùng tụ lớn tránh méo
- □ Nhược:
 - Cồng kềnh
 - Hạn chế tần số thấp
- □ Sử dụng trong mạch riêng lẻ
- Τụ tuỳ thuộc vào tần số của tín hiệu. VD: với âm tần tụ nối tầng có trị số từ 1μF đến 10 μF. Tụ C_e thường chọn từ 25μF đến 50 μF

Ghép giữa các tầng khuếch đại Ghép biến áp

- Dùng nhiều trước kia
- Cách ly vào ra
- Dễ phối hợp trở kháng
- □ Dải tần làm việc hẹp
- Không tích họp được
- □ Cồng kềnh
- □ Đắt
- =>ít dùng

Ghép giữa các tầng khuếch đại

- □ Ghép dùng điện trở thường dùng cùng C
 - Tăng trở kháng vào
 - □ Giảm tín hiệu vào
 - Tạo mức dịch điện áp
 - Phụ thuộc tần số (khi dùng cùng C)
- □ Ghép điện quang
 - Dùng cho nguồn điện áp cao

Ghép Cascode

Hai transistor mắc chung E
 và chung B được nối trực
 tiếp

Đặc biệt được sử dụng nhiều trong các ứng dụng ở tần số cao, ví dụ: mạch khuếch đạI dảI rộng, mạch khuếch đại chọn lọc tần số cao

Ghép Cascode

- Tầng EC với hệ số khuếch đại điện áp âm nhỏ và trở kháng vào lớn để điện dung Miller đầu vào nhỏ
- □ PhốI hợp trở kháng ở cửa ra tầng EC và cửa vào tầng BC
- Cách ly tốt giữa đầu vào và đầu ra: tầng BC có tổng trở vào nhỏ, tổng trở ra lớn có tác dụng để ngăn cách ảnh hưởng của ngõ ra đến ngõ vào nhất là ở tần số cao, đặc biệt hiệu quả vớI mạch chọn lọc tần số cao

Ghép Cascode

Mạch ghép Cascode thực tế:

 $A_V^1 = -1 => \text{điện dung}$ Miller ở đầu vào nhỏ

 A_V^2 lớn => hệ số khuếch đại tổng lớn

Ghép Darlington

- Hai transistor <u>cùng</u>
 <u>loại</u>, hoạt động như một transistor
- Hệ số khuếch đại dòng điện tổng rất lớn
- □ Tổng trở vào rất lớn

Ghép Darlington

Phân cực trans Darlington và sơ đồ tương đương mạch lặp emitter (hay sử dụng trong mạch công suất)

Ghép Darlington

Type 2N999

N-P-N Darlington-Connected Silicon Transistor Package

Parameter	Test Conditions	Min.	Max.
V_{BE}	$I_C = 100 \text{ mA}$		1.8 V
$h_{FE} (\beta_D)$	$I_C = 10 \text{ mA}$	4000	
	$I_C = 100 \text{ mA}$	7000	70,000

- Tổ hợp vào một package (hình vẽ)
- Hoặc xây dựng từ 2 transistor
 rời rạc (chú ý: T₁ công suất nhỏ,
 T₂ công suất lớn, I_c max là giới
 hạn của T₂

Ghép Darlington - ứng dụng

- Nhạy cảm với dòng rất nhỏ
 -> có thể làm mạch "touch-switch"
- Mắc kiểu CC cho khuếch đại công suất với yêu cầu phối hợp trở kháng với tải có tổng trở nhỏ

Ghép Darlington bù

- □ Tương tự ghép darlington
- Hai transistor <u>khác loại</u>, hoạt động giống như một BJT loại pnp
- Hệ số khuếch dòng điện tổng rất lớn

Mạch nguồn dòng

Bộ phận cấp dòng điện, mắc song song với điện trở R, được gọi là nội trở của nguồn

Nguồn dòng điện lý tưởng khi R = ∞, và cung cấp một dòng điện là hằng số

Mạch nguồn dòng

- Dòng cung cấp ổn định và điện trở nguồn rất lớn
- Sử dụng BJT, hoặc FET, hoặc kết hợp
- I_D, I_C là dòng điện không đổi được cấp cho mạch, nội trở nguồn là điện trở ra của mạch

Mạch dòng gương

- Cung cấp 1 hoặc nhiều dòng bằng 1 dòng xác định khác.
 Chú ý không nhân ra quá nhiều dòng
- □ Sử dụng chủ yếu trong IC
- □ Yêu cầu: Q₁, Q₂ hoàn toàn giống nhau
- \square $I \approx I_x = V_{cc} V_{BE} / R_x$

- Mạch đối xứng theo đường thẳng đứng, các phần tử tương ứng giống nhau về mọi đặc tính
- Q1 giống hệt Q2, mắc kiểu
 EC hoặc CC
- □ 2 đầu vào v₁ và v₂, có thể sử dụng 1 hoặc phối hợp
- 2 đầu ra v_a và v_b, sử dụng 1 hoặc phối hợp

□ Đầu vào cân bằng, đầu ra cân bằng

$$v_{in} = v_1 - v_2$$
; $v_{out} = v_a - v_b$

Đầu vào cân bằng, đầu ra không cân bằng

$$v_{in} = v_1 - v_2$$
; $v_{out} = v_a$

Đầu vào không cân bằng, đầu ra cân bằng

$$v_{in} = v_1$$
 ; $v_{out} = v_a - v_b$

Đầu vào không cân bằng, đầu ra không cân bằng

$$v_{in} = v_1$$
 ; $v_{out} = v_a$

- hệ số khuếch đại vi sai và hệ số triệt tiêu đồng pha

Chế độ phân cực 1
chiều:
$$V_{B1} = V_{B2} \implies I_{C1} = I_{C2} = I_{E}/2 \implies V_{C1} = V_{C2}$$

Nếu
$$v_{in} = v_1 - v_2 \implies V_{B1} + v_{in} \text{ và } V_{B2} - v_{in} \implies i_{c1} > i_{c2}$$

$$\implies v_{out} = v_{c1} - v_{c2} > 0$$

⇒ khuếch đại điện áp vi sai

Nếu
$$v_{in} = v_1 = v_2 => V_{B1} + v_{in} và V_{B2} + v_{in} => i_{c1} = i_{c2}$$

=> $v_{out} = v_{c1} - v_{c2} = 0$

⇒ triệt tiêu điện áp đồng pha

- hệ số khuếch đạI vi sai và hệ số triệt tiêu đồng pha

Phân tích bằng sơ đồ tương đương xoay chiều:

$$\begin{split} v_{in} &= v_1, v_2 = 0 \; ; \; v_{out} = v_a \qquad : A_v = R_C/2r_e \\ v_{in} &= v_1 - v_2 \quad ; \; v_{out} = v_a - v_b : A_d = R_C/r_e \\ v_{in} &= v_1 = v_2 \quad ; \; v_{out} = v_a \quad : A_c = \beta R_C/(\beta r_e + 2(\beta + 1)R_E) \end{split} \tag{differential mode}$$
 Nhân xét :

- Tín hiệu vào ngược pha: khuếch đại lớn
- Tín hiệu vào cùng pha: khuếch đại nhỏ
- ⇒ khả năng chống nhiễu tốt
- → Tỉ số nén đồng pha (CMRR-Common mode rejection ratio)
 = Hệ số KĐ vi sai/Hệ số KĐ đồng pha
- ⇒ CMRR càng lớn chất lượng mạch càng tốt

Với KĐ ngõ ra không cân bằng, T_1 , T_2 vẫn có tác dụng trừ các tín hiệu nhiễu đồng pha hay ảnh hưởng của nhiệt độ tác dụng lên hai transistor

- nâng cao tính chống nhiễu

- Có nguồn dòng ổn định với nội trở rất lớn
- -> ổn định nhiệt và giảm hệ số KĐ đồng pha
- -> tăng khả năng chống nhiễu

Nguồn dòng cũng có thể là mạch dòng gương

- nâng cao tính chống nhiễu

- □ Sử dụng "active loads" mạch dòng gương
- ⇒ thiết lập dòng collector như nhau trên cả hai transistor
- ⇒ tăng hệ số khuếch đại vi sai

- vấn đề điện áp trôi

- Ng/nhân: đặc tính kỹ thuật của hai transistor không hoàn toàn giống nhau
- □ Khắc phục: Dùng điện trở R_C không đối xứng (biến trở)

Mạch ghép

□ BT chương 12: 1, 6, 11, 12, 15, 19, 21, 24, 26, 30