CSP Chapter 3: Nondeterminism

Andrzej Filinski DIKU

Extreme Multiprogramming 6
December 6, 2013

Overview

- ► Today: nondeterministic processes.
 - Conceptually simple addition, massive ramifications.
 - ▶ Fortunately, all formal laws introduced so far remain valid...
 - but informal reasoning gets far more dangerous!
- Nondeterminism: exactly same actions and offers from environment may result in different behavior by process.
 - Usefulness of testing greatly diminished.
 - Even more need for "correctness by design".
- Two sources of nondeterminism in CSP
 - Explicit: manifestly unpredictable choices.
 - Implicit: asynchronous concealed events, in connection with normally deterministic choice.
- ▶ Both ultimately modeled by a single construct.

Essence of nondeterminism: internal choice

- ► Notation: $P \sqcap Q$ ("P or Q"). ► $\alpha(P \sqcap Q) = \alpha P = \alpha Q$.
- ▶ Process that can behave either like *P* or like *Q*; but the process itself (not the environment) decides which one.
- Examples:
 - ► $VME \stackrel{\triangle}{=} coin \rightarrow (coke \rightarrow VME \mid sprite \rightarrow VME)$. External choice: *customer* decides on product.
 - ► $VMI \stackrel{\triangle}{=} coin \rightarrow ((coke \rightarrow VMI) \sqcap (sprite \rightarrow VMI)).$ Internal choice: machine decides on product.
- Note: traces(VME) = traces(VMI)!
- With nondeterminism in the picture, traces(P) no longer fully describes behavior of P; will also need to consider what P may refuse to do.

Reasoning about nondeterminism

- ▶ Idempotence: $P \sqcap P = P$
- ▶ Commutativity: $P \sqcap Q = Q \sqcap P$
- Associativity: $(P \sqcap Q) \sqcap R = P \sqcap (Q \sqcap R)$.
- ▶ No neutral element: no fixed process MAGIC (with $\alpha MAGIC = \alpha P$), such that $P \sqcap MAGIC = P$.
- ▶ Prefix distributivity: $x \to (P \sqcap Q) = (x \to P) \sqcap (x \to Q)$.
 - More generally:
 - $(v: B \to (P(v) \sqcap Q(v)) = (v: B \to P(v)) \sqcap (v: B \to Q(v)).$
 - ▶ Can't observe exactly when an internal choice is made.
- ► Concurrency distributivity: $(P \sqcap Q) \parallel R = (P \parallel R) \sqcap (Q \parallel R)$.
- ▶ But difference between choosing *repeatedly* or *once*:
 - \blacktriangleright VMI = $\mu X.((coin \rightarrow coke \rightarrow X) \sqcap (coin \rightarrow sprite \rightarrow X))$
 - \blacktriangleright VMI' = $(\mu X.coin \rightarrow coke \rightarrow X) \sqcap (\mu X.coin \rightarrow sprite \rightarrow X)$
 - ▶ $traces(VMI') \subseteq traces(VMI)$.

More about internal choice

- Internal choice need not be fair.
 - ▶ $VMI \stackrel{\triangle}{=} coin \rightarrow ((coke \rightarrow VMI) \sqcap (sprite \rightarrow VMI))$ can decide to serve only *cokes* forever.
 - ▶ For communication: can ignore a channel forever.
- Internal choice need not even be responsive:
 - ▶ Let $CUSTC \triangleq coin \rightarrow coke \rightarrow CUSTC$. Then $VMI \parallel CUSTC$ can deadlock.
 - ▶ So can $VMI \parallel CUSTI$, where $CUSTI \triangleq coin \rightarrow ((coke \rightarrow CUSTI) \sqcap (sprite \rightarrow CUSTI))$.
 - ▶ But $VMI \parallel CUSTE = VMI$, if $CUSTE \triangleq coin \rightarrow (coke \rightarrow CUSTE \mid sprite \rightarrow CUSTE)$,

General choice

- Hybrid between internal and external choice.
- ▶ Notation: $P \square Q$. ("P alt Q"?).
- Like P □ Q, but will never insist on a first event that environment is unwilling to participate in.
 - $(x \to P) \square (y \to Q) = (x \to P \mid y \to Q), \text{ if } x \neq y.$
 - $(x \to P) \square (x \to Q) = (x \to P) \square (x \to Q) = x \to (P \square Q).$
- Examples:
 - ▶ $VME \stackrel{\triangle}{=} coin \rightarrow ((coke \rightarrow VME) \square (sprite \rightarrow VME))$
 - ▶ $VMI \stackrel{\triangle}{=} (coin \rightarrow coke \rightarrow VMI) \square (coin \rightarrow sprite \rightarrow VMI)$

More about general choice

- ► Caution: Don't anthropomorphize CSP processes. (They don't like it...) Still:
- $ightharpoonup P \square Q$ makes good-faith effort to avoid *immediate* deadlock.
 - ▶ $VME \stackrel{\triangle}{=} coin \rightarrow ((coke \rightarrow VME) \square (sprite \rightarrow VME))$
 - ▶ $VME \parallel (coin \rightarrow sprite \rightarrow P) = coin \rightarrow sprite \rightarrow (VME \parallel P)$.
- But not prescient: cannot pick right branch to avoid future deadlock:
 - ▶ $VMI \stackrel{\triangle}{=} (coin \rightarrow coke \rightarrow VMI) \square (coin \rightarrow sprite \rightarrow VMI)$
 - ▶ $VMI \parallel (coin \rightarrow sprite \rightarrow P) \neq coin \rightarrow sprite \rightarrow (VMI \parallel P)$.
- Sometimes useful to also consider angelic and demonic nondeterminism:
 - $ightharpoonup P \sqcap^{ang} Q$ chooses so as to avoid future deadlock (or other undesirable behavior), if at all possible.
 - $ightharpoonup P \sqcap^{dem} Q$ chooses so as to cause future deadlock (or other undesirable behavior), if at all possible.
 - Implementable in principle (though very inefficiently), but only if environment is fully specified as another CSP process.

Reasoning about general choice

- ▶ Idempotence, associativity, commutativity, like for □: $P \square P = P$, $P \square Q = Q \square P$, $(P \square Q) \square R = P \square (Q \square R)$.
- Now also have a neutral element: $P \square STOP_{\alpha P} = P$.
- ▶ Law for general choice between parameterized choices: $(v: A \to P(v)) \square (v: B \to Q(v)) = (v: A \cup B \to R(v)),$ where

$$R(x) = \begin{cases} P(x) & \text{if } x \in A, x \notin B \\ Q(x) & \text{if } x \in B, x \notin A \\ P(x) \sqcap Q(x) & \text{if } x \in A, x \in B \end{cases}$$

- ▶ But note: with nondeterminism, not all processes can be expressed as particular instances of parameterized choice.
 - ▶ Also need laws like $(P \sqcap Q) \sqcap R = (P \sqcap R) \sqcap (Q \sqcap R)$.
- ▶ Caution: $(P \sqcap Q) \parallel R = (P \parallel R) \sqcap (Q \parallel R)$, but no such law as $(P \square Q) \parallel R = (P \parallel R) \square (Q \parallel R)$.
 - ▶ Must resolve □ into either □ or | before reasoning can proceed.

POP QUIZ: General choice

Consider the following process definitions:

$$VM \triangleq (coin \rightarrow coke \rightarrow VM) \square (coin \rightarrow sprite \rightarrow VM) \square$$

$$(water \rightarrow VM)$$

$$C1 \triangleq coin \rightarrow sprite \rightarrow C1$$

$$C2 \triangleq coin \rightarrow ((coke \rightarrow C2) \square (sprite \rightarrow C2))$$

$$C3 \triangleq (coin \rightarrow ((coke \rightarrow C3) \square (sprite \rightarrow C3))) \square (water \rightarrow C3)$$

$$C4 \triangleq coin \rightarrow ((coke \rightarrow C4) \square (sprite \rightarrow C4) \square (water \rightarrow C4))$$

All alphabets are { coin, coke, sprite, water }

- ► What is the behavior of each of the following? Can they deadlock? Can they be written more simply?
 - ► VM || C1
 - ► VM || C2
 - ► VM || C3
 - ► VM || C4

Refusals

- ▶ Let $P = coke \rightarrow STOP_A$, $Q = sprite \rightarrow STOP_A$.
 - ▶ $traces(P \square Q) = traces(P \square Q) = \{\langle \rangle, \langle coke \rangle, \langle sprite \rangle \}$
 - ▶ But $(P \square Q) \parallel P = P$, while $(P \square Q) \parallel P = P \square STOP \neq P$.
- The traces of a nondeterministic process do not fully describe its behavior!
- ► Trace sets describe everything that a process might do (for some sequence of internal choices); also need to know what it might choose not to do.
- Def: a refusal of a process P is a set C ⊆ αP such that P may deadlock on its first step, when offered only C by the environment.
 - ▶ I.e., if $P \parallel (v: C \rightarrow RUN_{\alpha P}) = STOP \sqcap P'$ for some P'.
- ► The set of all refusals of *P* is written *refusals*(*P*). Note that this is a *set of sets*.

Refusals (2)

Recall:

- ▶ $VME \stackrel{\triangle}{=} coin \rightarrow ((coke \rightarrow VME) \square (sprite \rightarrow VME)).$
- ► $VMI \stackrel{\triangle}{=} coin \rightarrow ((coke \rightarrow VMI) \sqcap (sprite \rightarrow VMI)).$
- ► Then refusals(VME) = refusals(VMI) = {{}, {coke}, {sprite}}.
 - If environment's offer does not include coin, system is deadlocked.
- ▶ But $refusals(VME / \langle coin \rangle) = \{\{\}, \{coin\}\}$
 - ► After a *coin*, the machine will not refuse any offer that includes a product event.
- Whereas refusals(VMI / ⟨coin⟩) = {{}, {coin}, {coke}, {sprite}, {coin, coke}, {coin, sprite}}
 - After a coin, machine can choose to refuse any offer that does not include both coke and sprite.

Reasoning about refusals

- If a process can choose to deadlock when offered a choice, it can certainly also deadlock when offered a smaller choice:
 - ▶ If $C' \subseteq C$ and $C \in refusals(P)$, then $C' \in refusals(P)$.
 - ▶ In particular, $\{\} \in refusals(P)$ for any P.
- ▶ If *P* is deterministic, it is completely controlled by the environment: cannot refuse anything that it might also have accepted to do:
 - ▶ refusals(P) = { $C \mid \neg \exists x. x \in C \land \langle x \rangle \in traces(P)$ }, for P deterministic.
- ▶ In general, the behavior of a CSP process *P* is fully determined by
 - a. knowing traces(P), and
 - b. For every $s \in traces(P)$, knowing refusals(P / s).
- ► For a *persistently deterministic* process, (a) is sufficient, because (b) can be determined from it.

Refusal laws

- ▶ $refusals(v : B \rightarrow P(v)) = \{C \subseteq \alpha P \mid C \cap B = \{\}\}.$ Parameterized choice can (and will) refuse any offer that has nothing in common with initial menu. Special cases:
 - ► refusals($STOP_A$) = { $C \mid C \subseteq A$ } ► refusals($x \to P$) = { $C \mid x \notin C$ }
- ▶ $refusals(P \sqcap Q) = refusals(P) \cup refusals(Q)$. Internal choice can refuse any offer that either component can refuse.
- refusals(P □ Q) = refusals(P) ∩ refusals(Q).
 General choice can refuse any offer that both components can refuse.
- ▶ $refusals(P \parallel Q) = \{A \cup B \mid A \in refusals(P), B \in refusals(Q)\}$ Concurrent composition can refuse any offer that is the union of some refusals of each component. (See next slide.)

Example: Refusals of a concurrent composition

Consider:

```
\alpha VM = \alpha CUST = \{coke, sprite, fanta\}
                      VM \stackrel{\triangle}{=} (coke \rightarrow VM) \square (sprite \rightarrow VM)
                  CUST \stackrel{\triangle}{=} (coke \rightarrow CUST) \sqcap (fanta \rightarrow CUST)
```

▶ Then, using law for refusals($P \parallel Q$),

```
refusals(VM) = \{\{\}, \{fanta\}\}\}
       refusals(CUST) = \{\{\}, \{sprite\}, \{coke\}, \{fanta\}, \}
                                   {coke, sprite}, {sprite, fanta}}
refusals(VM \parallel CUST) \ni \{fanta\} \cup \{coke, sprite\}
                                   = \{coke, sprite, fanta\}
```

So system can deadlock on first step. Also seen by:

```
VM \parallel CUST = VM \parallel ((coke \rightarrow CUST) \sqcap (fanta \rightarrow CUST))
                     = (VM \parallel (coke \rightarrow CUST)) \sqcap (VM \parallel (fanta \rightarrow CUST))
                     = (coke \rightarrow (VM \parallel CUST)) \sqcap STOP
```

Concealment

- Often want to conceal some events from environment.
 - environment need not participate
 - environment can't even observe
- ▶ **Notation:** $P \setminus C$ ("P hide C"); do not confuse with $P \mid s$. $ho \quad \alpha(P \setminus C) = (\alpha P) - C$
- Behaves like P, but if P can engage in some event $x \in (\alpha P) \cap C$, x can now happen silently and spontaneously, without synchronizing with environment.
- Consider processes (all alphabets are {coin,coke,sprite}):

$$VMC \triangleq coin \rightarrow (coke \rightarrow VMC \mid sprite \rightarrow VMC)$$

$$CUST \triangleq coin \rightarrow coke \rightarrow CUST$$

- ► $(VMC \parallel CUST) \setminus \{sprite\} = \mu X : \{coin, coke\} . coin \rightarrow coke \rightarrow X$
- \blacktriangleright (VMC || CUST) \ {coin} = μX : {coke, sprite}. coke $\rightarrow X$
- ▶ $(VMC \parallel CUST) \setminus \{coin, coke\} = \mu X : \{sprite\} . X (?)$

Laws about concealment

- $P \setminus \{\} = P, (P \setminus C_1) \setminus C_2 = P \setminus (C_1 \cup C_2).$
- \triangleright STOP_A \ $C = STOP_{A-C}$.
- $(x \to P) \setminus C = x \to (P \setminus C), \text{ if } x \notin C.$
 - ▶ Generalized: $(v: B \to P(v)) \setminus C = (v: B \to (P(v) \setminus C))$, if $B \cap C = \{\}$.
- $(x \to P) \setminus C = (P \setminus C), \text{ if } x \in C.$
- $(x \to P \mid y \to Q) \setminus C = (P \setminus C) \sqcap (Q \setminus C), \text{ if } x, y \in C.$
- $(x \to P \mid y \to Q) \setminus C = (P \setminus C) \sqcap (y \to (Q \setminus C)),$ if $x \in C, y \notin C$
 - ▶ No! Even with *partial* concealment, "|" (or "□") will not pick a choice that manifestly disagrees with environment's offer.

Partial concealment

- ► Consider: $VM \stackrel{\triangle}{=} (coin \rightarrow coke \rightarrow VM \mid water \rightarrow VM)$
- ► VM \ {coin} can spontaneously commit to serving a coke, because coin can happen silently.
- ▶ But don't want *VM* \ {*coin*} to deadlock system (commit to *water*) when environment only wants to engage in *coke*.
- Yet with plausible-looking "law",

$$(x \to P \mid y \to Q) \setminus \{x\} = (P \setminus \{x\}) \sqcap (y \to (Q \setminus \{x\}))$$

we would get

$$VM \setminus \{coin\} = (coke \rightarrow (VM \setminus \{coin\})) \sqcap (water \rightarrow (VM \setminus \{coin\}))$$
 which can refuse $\{coke\}$.

- ► Correct law: retain external choice, $(x \to P \mid y \to Q) \setminus \{x\} = (P \setminus \{x\}) \sqcap ((P \setminus \{x\}) \sqcap (y \to Q \setminus \{x\})))$.
- ► Then we get, in particular, $VM \setminus \{coin\} = \mu X.(coke \rightarrow X) \sqcap (coke \rightarrow X \mid water \rightarrow X).$

Divergence

- Normally, the purpose of a process is to interact with its environment.
- Can conceal some events that the environment cannot legitimately be interested in.
- But what if we hide so many events that process (or process system) needs no longer interact with environment at all?
- ▶ $(VM \parallel CUST) \setminus \{coin, coke, sprite\} = ?$.
- In practice: process that spins uselessly, burning arbitrary amounts of CPU time, without interacting with any other process.
 - Particularly bad for cooperative multithreading.
 - "Livelock".

Divergence, continued

- ▶ $(\mu X. coke \rightarrow X) \setminus \{coke\} = \mu X.X = MYSTERY$, where $MYSTERY \triangleq MYSTERY$. (Note: Recursion not guarded!)
- ▶ **Recall:** our theory of process definitions had the property that any recursive definition determined a *unique* process.
- ▶ But what behavior does *MYSTERY* specify? *Every* candidate process satisfies that equation.
 - ► In most sequential/deterministic languages, it would be simply an infinite loop.
 - ▶ But in CSP, μX : A. $X = CHAOS_A$, the *least determined* process: may do anything (within A!), may refuse anything.
 - (In practice, CHAOS would most likely just loop silently; but for the purpose of reasoning about it, we assume the worst.)
- ► Even *potential* divergence is bad: $\mu X.(coke \rightarrow STOP) \sqcap X$ can still choose to just spin, but at least doesn't have to.
- ▶ Being equivalent to a (potentially) diverging process is almost always a sign of a bug in the original process definition.

Pictures (transition diagrams) revisited

- Recall pictorial representation of processes as (deterministic) automata:
 - nodes: process states
 - labeled edges: events
 - single unlabeled edges: recursion unfolding.
- Concealment operation just corresponds to erasing labels on edges.
 - ► Can now have *multiple* unlabeled outgoing edges from a node.
 - Nondeterminism!
- Can use CSP laws to normalize graph: every node is either an external choice node (all outgoing edges are labelled and distinct) or internal choice (all outgoing edges are unlabelled).
- ▶ **Note:** concealment may turn labeled self-loop into unlabeled self-loop: divergence.

Interleaving

- ▶ **Notation:** $P \parallel Q$; "P interleave Q".
 - ▶ Unlike ||, has $\alpha(P \parallel \mid Q) = \alpha P = \alpha Q$.
 - Mnemonic: concurrent composition with an interaction barrier.
- ▶ Behaves like P || Q, but P cannot interact with Q, even though both can interact with environment.
 - ▶ Alphabets of *P* and *Q* concealed (only) to each other.
- Repeated general choice between advancing either P or Q:

▶ If
$$P = (v: A \rightarrow P'(v))$$
 and $Q = (w: B \rightarrow Q'(w))$, then $P \parallel \mid Q = (v: A \rightarrow (P'(v) \parallel \mid Q)) \square (w: B \rightarrow (P \parallel \mid Q'(w)))$

- ► Ex: $(coke \rightarrow STOP) \parallel (sprite \rightarrow STOP) = (coke \rightarrow sprite \rightarrow STOP \mid sprite \rightarrow coke \rightarrow STOP).$
 - ▶ Whereas ($coke \rightarrow STOP$) || ($sprite \rightarrow STOP$) = STOP.
- ► Ex: $(coin \rightarrow coke \rightarrow STOP) \parallel (coin \rightarrow STOP) =$ $coin \rightarrow ((coke \rightarrow coin \rightarrow STOP \mid coin \rightarrow coke \rightarrow STOP) \sqcap$ $(coin \rightarrow coke \rightarrow STOP))$

More laws about interleaving

- ► $traces(P \parallel \mid Q) = \{s \mid \exists t \in traces(P), u \in traces(Q) : s \text{ interleaves } (t, u)\}$ ► Cf. $traces(P \parallel \mid Q) = traces(P) \cap traces(Q)$, when $\alpha P = \alpha Q$.
- $ightharpoonup refusals(P \square Q) = refusals(P) \cap refusals(Q).$
 - ▶ Cf. refusals($P \parallel Q$) = { $A \cup B \mid A \in refusals(P), B \in refusals(Q)$ }
- $(P \parallel Q) / s = \prod_{(t,u) \in S} (P / t) \parallel (Q / u), \text{ where}$ $S = \{(t,u) \mid t \in traces(P), u \in traces(Q), s \text{ interleaves } (t,u)\}.$
 - Note that for any s, S is a *finite* set, so the indexed \square can be expressed in terms of binary \square .
 - ▶ Cf. $(P \parallel Q) / s = (P / s) \parallel (Q / s)$, when $\alpha P = \alpha Q$.

Next time: Communication

- ► Lecture next Friday (Dec. 13) will be **9:15–11:00**.
- All downhill from now. Will just introduce some streamlined notation and conventions for writing CSP programs, but no truly new concepts.
- Read Chapter 4 of CSP book.
- ▶ **Reminder:** HW1 handed out last Tuesday, due December 15.
 - If you haven't started yet, get going!
 - Any questions about the theory part?
 - And once more: whenever you write " $(x \to P) \mid (y \to Q)$ ", you radiate incompetence...