Experiment 3: Implement Simple Linear Regression Model by using Salary Dataset

```
In [76]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

In [77]: df = pd.read_csv('Salary_dataset.csv')
df
```

Out[77]:		YearsExperience	Salary
	0	1.2	39344
	1	1.4	46206
	2	1.6	37732
	3	2.1	43526
	4	2.3	39892
	5	3.0	56643
	6	3.1	60151
	7	3.3	54446
	8	3.3	64446
	9	3.8	57190
	10	4.0	63219
	11	4.1	55795
	12	4.1	56958
	13	4.2	57082
	14	4.6	61112
	15	5.0	67939
	16	5.2	66030
	17	5.4	83089
	18	6.0	81364
	19	6.1	93941
	20	6.9	91739
	21	7.2	98274
	22	8.0	101303
	23	8.3	113813
	24	8.8	109432
	25	9.1	105583
	26	9.6	116970
	27	9.7	112636
	28	10.4	122392
	29	10.6	121873

```
In [78]: plt.scatter(df.YearsExperience, df.Salary)
   plt.xlabel('YearsExperience')
   plt.ylabel('Salary')
```

```
Out[78]: Text(0, 0.5, 'Salary')
```



```
In [79]: from sklearn.model selection import train test split
         from sklearn.linear model import LinearRegression
In [80]: x_train, x_test, y_train, y_test = train_test_split(df[['YearsExperience']],
In [81]: model = LinearRegression()
         model.fit(x train, y train)
Out[81]:
             LinearRegression
         LinearRegression()
In [82]: y_pred = model.predict(x_test)
In [83]: # Step 8: Visualize the Results
         plt.scatter(x test, y test, color='blue', label='Actual Values')
         plt.plot(x test, y pred, color='red', label='Predicted Values')
         plt.xlabel('YearsExperience')
         plt.ylabel('Salary')
         plt.title('Linear Regression - Salary Prediction')
         plt.legend()
         plt.show()
```

Linear Regression - Salary Prediction

In [84]: model.predict([[1.4]])

C:\Users\Rishi\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarning:
X does not have valid feature names, but LinearRegression was fitted with fe
ature names

warnings.warn(

Out[84]: array([36729.47069073])

In [85]: model.predict([[2.3]])

C:\Users\Rishi\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarning:
X does not have valid feature names, but LinearRegression was fitted with fe
ature names

warnings.warn(

Out[85]: array([45776.97824144])

In [86]: model.predict([[10.6]])

C:\Users\Rishi\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarning:
X does not have valid feature names, but LinearRegression was fitted with fe
ature names

warnings.warn(

Out[86]: array([129215.10343133])