

Algorithmen I Tutorium 33

Woche 8 | 15. Juni 2018

Daniel Jungkind (daniel.jungkind@student.kit.edu)

INSTITUT FÜR THEORETISCHE INFORMATIK

Inhalt

Sortierte Folgen

Graphen

Zu Blatt #7

Durchschnitt: 71 % der Punkte

Heaps liegen lückenlos im Speicher!

Schwarzes Brett

Am Mi, 20.06. zum Algorithmen-Termin: Probeklausur!

- 🕂 "Reale" Klausurbedingungen
- ⇒ Hingehen lohnt sich!
 Die Probeklausur z\u00e4hlt wie zwei Bl\u00e4tter, hat also 20 Punkte.
 Gesamtpunktezahl aller Bl\u00e4tter wird erh\u00f6ht!
- Hilfsmittel: Einseitig beschriebenes Cheatsheet erlaubt (Tipp: Mit Druckbleistift kann man sehr klein schreiben! ②)
- + Cheatsheet auch in der echten Klausur nutzbar!

Wie viele Elemente kann ein Heap der Höhe *h* minimal/maximal haben?

?

Wie viele Elemente kann ein Heap der Höhe *h* minimal/maximal haben?

Minimal 2^h , maximal $2^{h+1} - 1$.

Wie viele Elemente kann ein Heap der Höhe *h* minimal/maximal haben?

Minimal 2^h , maximal $2^{h+1} - 1$.

Ist das Array (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) ein Min-Heap?

Wie viele Elemente kann ein Heap der Höhe *h* minimal/maximal haben?

Minimal 2^h , maximal $2^{h+1} - 1$.

Ist das Array (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) ein Min-Heap? Nein.

Wie viele Elemente kann ein Heap der Höhe *h* minimal/maximal haben?

Minimal 2^h , maximal $2^{h+1} - 1$.

Ist das Array (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) ein Min-Heap? Nein.

In einem Max-Heap befindet sich das kleinste Element immer im untersten Level.

Wie viele Elemente kann ein Heap der Höhe *h* minimal/maximal haben?

Minimal 2^h , maximal $2^{h+1} - 1$.

Ist das Array (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) ein Min-Heap? Nein.

In einem Max-Heap befindet sich das kleinste Element immer im untersten Level.

Falsch.

Wie viele Elemente kann ein Heap der Höhe *h* minimal/maximal haben?

Minimal 2^h , maximal $2^{h+1} - 1$.

Ist das Array (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) ein Min-Heap? Nein.

In einem Max-Heap befindet sich das kleinste Element immer im untersten Level.

Ist ein aufsteigend sortiertes Array ein Min-Heap?

Wie viele Elemente kann ein Heap der Höhe *h* minimal/maximal haben?

Minimal 2^h , maximal $2^{h+1} - 1$.

Ist das Array (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) ein Min-Heap? Nein.

In einem Max-Heap befindet sich das kleinste Element immer im untersten Level.

Ist ein aufsteigend sortiertes Array ein Min-Heap? Ja.

SORTIERTE FOLGEN

Die eierlegende Wollmilchdatenstruktur

Heap- und stichfest?

■ Ziel: eine dynamische und stets sortierte Datenstruktur

Heap- und stichfest?

- Ziel: eine dynamische und stets sortierte Datenstruktur
- Operationen:

Einfügen,

Entfernen,

Finden des nächstkleineren/größeren Elements

⇒ so schnell wie möglich

Heap- und stichfest?

- Ziel: eine dynamische und stets sortierte Datenstruktur
- Operationen:

Einfügen,

Entfernen,

Finden des nächstkleineren/größeren Elements

- ⇒ so schnell wie möglich
- Idee: Binärer Heap sieht sortiert aus, ist es aber nicht!

Einfach sortierter Binärbaum

Vorschlag: Binärbaum mit strengerer Ordnung:

 $\forall v \in V$: LeftChild $(v) \leqslant v < \text{RightChild}(v)$

Einfach sortierter Binärbaum

• Vorschlag: Binärbaum mit strengerer Ordnung:

 $\forall v \in V$: LeftChild $(v) \leqslant v < \text{RightChild}(v)$

Intuitiv: Laufzeiten in $O(\log n)$ mittels binärer Suche

Einfach sortierter Binärbaum

- Vorschlag: Binärbaum mit strengerer Ordnung:
 - $\forall v \in V : \mathsf{LeftChild}(v) \leqslant v < \mathsf{RightChild}(v)$
- Intuitiv: Laufzeiten in O(log n) mittels binärer Suche
- Worst-Case: Füge aufsteigende Folge ein
 - ⇒ Lange Kette entsteht ("Baum unbalanciert"),
 - Laufzeiten in O(n) \odot

Einfach sortierter Binärbaum

- Vorschlag: Binärbaum mit strengerer Ordnung:
 - $\forall v \in V : \mathsf{LeftChild}(v) \leqslant v < \mathsf{RightChild}(v)$
- Intuitiv: Laufzeiten in O(log n) mittels binärer Suche
- Worst-Case: Füge aufsteigende Folge ein
 - ⇒ Lange Kette entsteht ("Baum unbalanciert"),
 - Laufzeiten in O(n) \odot
 - \Rightarrow I. A. eher ungeeignet

Einfach sortierter Binärbaum

- Vorschlag: Binärbaum mit strengerer Ordnung:
 - $\forall v \in V : \mathsf{LeftChild}(v) \leqslant v < \mathsf{RightChild}(v)$
- Intuitiv: Laufzeiten in O(log n) mittels binärer Suche
- Worst-Case: Füge aufsteigende Folge ein
 - ⇒ Lange Kette entsteht ("Baum unbalanciert"),
 - Laufzeiten in O(n) \odot
 - \Rightarrow I. A. eher ungeeignet
- ⇒ Wollen **balancierten** Baum (alle Blätter haben gleiche Tiefe)

(a, b)-Bäume

Besser: Baum mit flexiblem Knotengrad

 \Rightarrow Anzahl **Kinder** zwischen a...b

Ausnahme: Wurzel kann weniger haben

■ Dafür sinnvoll: $a \ge 2$ und $b \ge 2a - 1$

(a, b)-Bäume

- Besser: Baum mit flexiblem Knotengrad
 - \Rightarrow Anzahl **Kinder** zwischen a...b

Ausnahme: Wurzel kann weniger haben

- Dafür sinnvoll: $a \ge 2$ und $b \ge 2a 1$
- Jeder Knoten hat ein Navigations-Array:

Einträge mit (k : Key, T_k : Subtree):

 T_k führt nur zu Elementen $e \leqslant k$

Letzter Eintrag: kein Key k, führt zu Elementen e > letztes k

(a, b)-Bäume

- Besser: Baum mit flexiblem Knotengrad
 - \Rightarrow Anzahl **Kinder** zwischen *a...b*

Ausnahme: Wurzel kann weniger haben

- Dafür sinnvoll: $a \ge 2$ und $b \ge 2a 1$
- Jeder Knoten hat ein Navigations-Array:

Einträge mit $(k : Key, T_k : Subtree)$:

 T_k führt nur zu Elementen $e \leqslant k$

Letzter Eintrag: kein Key k, führt zu Elementen e > letztes k

Blätter: Eigentliche Elemente/Daten als verkettete Liste

(a, b)-Bäume

- Besser: Baum mit flexiblem Knotengrad
 - ⇒ Anzahl **Kinder** zwischen *a…b*

Ausnahme: Wurzel kann weniger haben

- Dafür sinnvoll: $a \ge 2$ und $b \ge 2a 1$
- Jeder Knoten hat ein Navigations-Array:

Einträge mit $(k : Key, T_k : Subtree)$:

 T_k führt nur zu Elementen $e \leqslant k$

Letzter Eintrag: kein Key k, führt zu Elementen e > letztes k

- Blätter: Eigentliche Elemente/Daten als verkettete Liste
- Zur Vermeidung von Sonderfällen: "Dummy-Wert" ∞ ganz am Ende

Beispiel: (2, 4)-Baum ("00" steht in VL für ∞)

Finden von (nächstgrößeren (-kleineren)) Elementen

Geg.: Wert e

Ges.: (Nächstgrößeres) Element $z \geqslant e$

Finden von (nächstgrößeren (-kleineren)) Elementen

Geg.: Wert e

Ges.: (Nächstgrößeres) Element $z \geqslant e$

⇒ Starte bei Wurzel

Finden von (nächstgrößeren (-kleineren)) Elementen

■ **Geg**.: Wert *e*

Ges.: (Nächstgrößeres) Element $z \geqslant e$

⇒ Starte bei Wurzel

Suche Element j im Navigationsarray, wobei

$$j := \min \{ j \mid e \leqslant j \}$$

Finden von (nächstgrößeren (-kleineren)) Elementen

Geg.: Wert e

Ges.: (Nächstgrößeres) Element $z \geqslant e$

⇒ Starte bei Wurzel

Suche Element *j* im Navigationsarray, wobei

```
j := \min \{ j \mid e \leqslant j \}
```

Blatt-Ebene erreicht? \Rightarrow return j

Sonst **Wiederhole** auf Subtree von j oder ganz rechtem Link falls $\nexists j$

Laufzeit in

Finden von (nächstgrößeren (-kleineren)) Elementen

- Geg.: Wert e
 - **Ges**.: (Nächstgrößeres) Element $z \geqslant e$
- ⇒ Starte bei Wurzel

Suche Element *j* im Navigationsarray, wobei

$$j := \min \{ j \mid e \leqslant j \}$$

Blatt-Ebene erreicht? \Rightarrow return j

Sonst **Wiederhole** auf Subtree von j oder ganz rechtem Link falls $\nexists j$

Laufzeit in $O(b \cdot \text{H\"ohe}) = O(b \cdot \log_a n)$

Finden von (nächstgrößeren (-kleineren)) Elementen

- Geg.: Wert e
 - **Ges**.: (Nächstgrößeres) Element $z \geqslant e$
- ⇒ Starte bei Wurzel

Suche Element *j* im Navigationsarray, wobei

```
j := \min \{ j \mid e \leqslant j \}
```

Blatt-Ebene erreicht? \Rightarrow return j

Sonst **Wiederhole** auf Subtree von j oder ganz rechtem Link falls $\nexists j$

- **Laufzeit** in $O(b \cdot \text{H\"ohe}) = O(b \cdot \log_a n)$
- Finden von nächstkleinerem Element:

Finden von (nächstgrößeren (-kleineren)) Elementen

- Geg.: Wert e
 - **Ges**.: (Nächstgrößeres) Element $z \geqslant e$
- ⇒ Starte bei Wurzel

Suche Element *j* im Navigationsarray, wobei

$$j := \min \{ j \mid e \leqslant j \}$$

Blatt-Ebene erreicht? \Rightarrow return j

Sonst **Wiederhole** auf Subtree von j oder ganz rechtem Link falls $\nexists j$

- Laufzeit in $O(b \cdot \text{H\"ohe}) = O(b \cdot \log_a n)$
- Finden von nächstkleinerem Element:

```
Finde nächstgrößeres;
```

Falls $j \neq e$: Nehme Vorgänger von j in verketteter Liste

Finden von (nächstgrößeren (-kleineren)) Elementen

Beispiel: Suche nach 55:

Einfügen von Elementen

1. Finde Einfügestelle (wie beim Suchen)

Einfügen von Elementen

- 1. Finde Einfügestelle (wie beim Suchen)
- 2a. Fall 1: Platz im Navigationsarray frei?
 - \Rightarrow Einfügen, im Nav-Array verlinken, fertig! \odot

(falls neues Maximum: Verlinkung anpassen!)

Einfügen von Elementen (Forts.)

2b. Fall 2: Kein Platz im Nav-Array frei? ⇒ "split"
 D.h. Element einfügen, Knoten halbieren:
 Linker Teil L (enthält Mittelelement M), Rechter Teil R

Einfügen von Elementen (Forts.)

3. Füge *M* in Vorgänger ein, hänge *L* als Subtree daran; *R* hängt schon im Vorgänger

Einfügen von Elementen (Forts.)

3. Füge *M* in Vorgänger ein, hänge *L* als Subtree daran; *R* hängt schon im Vorgänger

4. Vorgänger **voll**? ⇒ **Recurse** from step 2b.

Einfügen von Elementen (Forts.)

3. Füge *M* in Vorgänger ein, hänge *L* als Subtree daran; *R* hängt schon im Vorgänger

Vorgänger voll? ⇒ Recurse from step 2b.
 Endet ggf. mit Anlegen einer neuen Wurzel

Entfernen von Elementen

1. Einfach: Finden

Entfernen von Elementen

1. Einfach: Finden und Entfernen.

Entfernen von Elementen

- Einfach: Finden und Entfernen.
 Knotenmaximum wurde entfernt?
 - ⇒ Aktualisiere Verlinkung auf neues Maximum!

Entfernen von Elementen

2. Knoten jetzt zu klein?

2a. **Fall 1**: ...und ∃ Nachbar, der leer genug?

 \Rightarrow "fuse": Knoten zusammenfügen

Entfernen von Elementen

2. Knoten jetzt zu klein?

2a. **Fall 1**: ...und ∃ Nachbar, der leer genug?

 \Rightarrow "fuse": Knoten zusammenfügen

...und Verlinkung anpassen!

Entfernen von Elementen

2. Knoten jetzt zu klein?

2a. **Fall 1**: ...und ∃ Nachbar, der leer genug?

 \Rightarrow "fuse": Knoten zusammenfügen

...und Verlinkung anpassen!

Vorgänger jetzt **zu klein**? \Rightarrow **Recurse** from step 2.

Entfernen von Elementen

2. Knoten jetzt zu klein?2b. Fall 2: Ansonsten: ∃ Nachbar, der voll genug

Entfernen von Elementen

2. Knoten jetzt zu klein?

2b. Fall 2: Ansonsten: ∃ Nachbar, der voll genug

 \Rightarrow "balance": Klaue Elemente vom fetten Nachbarn

(von links: maximale, von rechts: minimale Elemente)

Entfernen von Elementen

2. Knoten jetzt zu klein?

2b. Fall 2: Ansonsten: ∃ Nachbar, der voll genug

⇒ "balance": Klaue Elemente vom fetten Nachbarn

(von links: maximale, von rechts: minimale Elemente) ...und **Verlinkung anpassen!**

Laufzeiten:

$$\begin{cases} \textit{locate} \\ \textit{insert} \\ \textit{remove} \end{cases} \text{ in } O(b \cdot \mathsf{H\"ohe}) = O(b \cdot \log_a n) \quad \text{(f\"ur konst. } a, b : O(\log n)).$$

GRAPHEN

Der Plural, nicht der Kohlenstoff

Wir erinnern uns ...

■ Graph G = (V, E) mit **Knoten**menge $V \neq \emptyset$ und **Kanten**menge E

- Graph G = (V, E) mit **Knoten**menge $V \neq \emptyset$ und **Kanten**menge E
- Gerichteter Graph: $E \subseteq V \times V$
- lacksquare Ungerichteter Graph: $m{{\it E}} \subseteq \Big\{\{u,v\} \ \Big| \ u,v \in {\it V}\Big\}$

- Graph G = (V, E) mit **Knoten**menge $V \neq \emptyset$ und **Kanten**menge E
- Gerichteter Graph: $E \subseteq V \times V$
- lacksquare Ungerichteter Graph: $E\subseteq \Big\{\{u,v\}\;\Big|\; u,v\in V\Big\}$
- Umwandlung ungerichtet \(\sim \) gerichtet trivial
 - ⇒ Im Folgenden stets *gerichtete* Graphen

- Graph G = (V, E) mit **Knoten**menge $V \neq \emptyset$ und **Kanten**menge E
- Gerichteter Graph: $E \subseteq V \times V$
- *Ungerichteter* Graph: $E \subseteq \{\{u,v\} \mid u,v \in V\}$
- Umwandlung ungerichtet → gerichtet trivial
 ⇒ Im Folgenden stets gerichtete Graphen
- n := |V|
- *m* := |*E*|

- Graph G = (V, E) mit **Knoten**menge $V \neq \emptyset$ und **Kanten**menge E
- Gerichteter Graph: $E \subseteq V \times V$
- lacksquare Ungerichteter Graph: $E\subseteq \Big\{\{u,v\}\ \Big|\ u,v\in V\Big\}$
- Umwandlung ungerichtet → gerichtet trivial
 ⇒ Im Folgenden stets gerichtete Graphen
- n := |V|
- m := |E|
- Betrachten üblicherweise $V = \{1...n\}$

Kantenfolge

 (Zusammenhängender) Graph eindeutig definiert durch Menge aller Kanten (Reihenfolge egal)

$$\Leftrightarrow \langle (u,v),(v,w),(w,u),(u,w)\rangle$$

Kantenfolge

- (Zusammenhängender) Graph eindeutig definiert durch Menge aller Kanten (Reihenfolge egal)
- Knoten v existiert in G $\Leftrightarrow \exists (v, x) \text{ oder } (x, v) \in \textit{Kantenliste} \quad (x \text{ beliebig})$

$$\Leftrightarrow \langle (u,v),(v,w),(w,u),(u,w)\rangle$$

Kantenfolge

- (Zusammenhängender) Graph eindeutig definiert durch Menge aller Kanten (Reihenfolge egal)
- Knoten v existiert in G

 $\Leftrightarrow \exists (v, x) \text{ oder } (x, v) \in \textit{Kantenliste} \quad (x \text{ beliebig})$

We Kompakt ⇒ Gut handhabbar (im Speicher oder bei I/O)

$$\Leftrightarrow \langle (u,v),(v,w),(w,u),(u,w)\rangle$$

Kantenfolge

- (Zusammenhängender) Graph eindeutig definiert durch Menge aller Kanten (Reihenfolge egal)
- Knoten v existiert in G
 - $\Leftrightarrow \exists (v, x) \text{ oder } (x, v) \in \textit{Kantenliste} \quad (x \text{ beliebig})$
- \clubsuit Kompakt \Rightarrow Gut handhabbar (im Speicher oder bei I/O)
- Einzige effiziente Operation: **Durchlaufen** aller Kanten

$$\Leftrightarrow \langle (u,v),(v,w),(w,u),(u,w)\rangle$$

Adjazenzmatrix

Verwende Matrix $A \in \{0,1\}^{n \times n}$ mit $a_{ij} = 1 \Leftrightarrow (i,j) \in E$

Nach 1 2 3 4

Von 1
$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 3 & 0 & 1 & 1 & 1 \\ 4 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Adjazenzmatrix

recht platzeffizient, falls Graph dicht

- recht **platzeffizient**, falls Graph dicht
- ➡ Einfügen, Löschen und Testen von Kanten in O(1) und simpel

Adjazenzmatrix

recht platzeffizient, falls Graph dicht

+ Einfügen, Löschen und Testen von Kanten in O(1) und simpel

 \P $\{0,1\} \rightsquigarrow \mathbb{R}$ erweitern für **Kantengewichte**

- recht platzeffizient, falls Graph dicht
- ♣ Einfügen, Löschen und Testen von Kanten in O(1) und simpel
- LA, yay! :D

- recht platzeffizient, falls Graph dicht
- ➡ Einfügen, Löschen und Testen von Kanten in O(1) und simpel
- \P $\{0,1\} \rightsquigarrow \mathbb{R}$ erweitern für Kantengewichte
- ♣ LA, yay! :D
- platzineffizient bei dünnbesetzten Graphen (also durchschn. Knotengrad ≪ n)

- recht **platzeffizient**, falls Graph dicht
- ♣ Einfügen, Löschen und Testen von Kanten in O(1) und simpel
- \clubsuit $\{0,1\} \leadsto \mathbb{R}$ erweitern für Kantengewichte
- 🕂 LA, yay! :D
- platzineffizient bei dünnbesetzten Graphen (also durchschn. Knotengrad ≪ n)
- langsame Navigation

- recht platzeffizient, falls Graph dicht
- + Einfügen, Löschen und Testen von Kanten in O(1) und simpel
- \clubsuit $\{0,1\} \leadsto \mathbb{R}$ erweitern für Kantengewichte
- ♣ LA, yay! :D
- platzineffizient bei dünnbesetzten Graphen (also durchschn. Knotengrad ≪ n)
- langsame Navigation
- LA *kotz*

Adjazenzfeld (aka Adjazenzarray)

Definiere $V : \operatorname{array}[1 \dots n+1]$ of $\{1 \dots m+1\}$ und $E : \operatorname{array}[1 \dots m]$ of $\{1 \dots n\}$

Adjazenzfeld (aka Adjazenzarray)

- Definiere $V : \operatorname{array}[1 \dots n+1]$ of $\{1 \dots m+1\}$ und $E : \operatorname{array}[1 \dots m]$ of $\{1 \dots n\}$
- Von v erreichbare Knoten: $\{E[i] \mid V[v] \leqslant i < V[v+1]\}$

Adjazenzfeld (aka Adjazenzarray)

- Definiere $V : \operatorname{array}[1 \dots n+1]$ of $\{1 \dots m+1\}$ und $E : \operatorname{array}[1 \dots m]$ of $\{1 \dots n\}$
- Von v erreichbare Knoten: $\{E[i] \mid V[v] \leqslant i < V[v+1]\}$
- "Dummy-Eintrag": V[n+1] := m+1, damit oben v = n nicht knallt

Adjazenzfeld (aka Adjazenzarray)

Navigation gut möglich

Adjazenzfeld (aka Adjazenzarray)

+ Navigation gut möglich

Zusatzinfos (z. B. Kantengewichte) durch weitere Arrays leicht aufrüstbar

Adjazenzfeld (aka Adjazenzarray)

- + Navigation gut möglich
- **Zusatzinfos** (z. B. Kantengewichte) durch weitere Arrays leicht aufrüstbar
- Cachefreundlich

Adjazenzfeld (aka Adjazenzarray)

- + Navigation gut möglich
- **Zusatzinfos** (z. B. Kantengewichte) durch weitere Arrays leicht aufrüstbar
- Cachefreundlich
- Nachrüstbar: Kanten löschen, rückwärts laufen

Adjazenzfeld (aka Adjazenzarray)

- + Navigation gut möglich
- Zusatzinfos (z. B. Kantengewichte) durch weitere Arrays leicht aufrüstbar
- Cachefreundlich
- ♣ Nachrüstbar: Kanten löschen, rückwärts laufen
- Hinzufügen von Kanten scheiße (#ArraysHalt...)

Adjazenzliste

■ Verwende array A[1...n] von verketteten Listen

- Verwende array A[1...n] von verketteten Listen
- A[v]: Liste aller von $v \in V$ aus erreichbaren Knoten

- Verwende array A[1...n] von verketteten Listen
- A[v]: Liste aller von $v \in V$ aus erreichbaren Knoten
- Alle Features vom Adjazenzfeld

- Verwende array A[1...n] von verketteten Listen
- A[v]: Liste aller von $v \in V$ aus erreichbaren Knoten
- Alle Features vom Adjazenzfeld
- 🕂 ...und noch mehr: Einfügen, Löschen von Kanten

- Verwende array A[1...n] von verketteten Listen
- A[v]: Liste aller von $v \in V$ aus erreichbaren Knoten
- Alle Features vom Adjazenzfeld
- 🕂 ...und noch mehr: Einfügen, Löschen von Kanten
- Benötigt mehr Platz (für Zeiger)

- Verwende array A[1...n] von verketteten Listen
- A[v]: Liste aller von $v \in V$ aus erreichbaren Knoten
- Alle Features vom Adjazenzfeld
- 🕂 ...und noch mehr: Einfügen, Löschen von Kanten
- Benötigt mehr Platz (für Zeiger)
- Cachefeindlicher

Aufgabe 1: Lesen in der Matrix

Was kann man an der Adjazenzmatrix ablesen?

Gerichtet oder ungerichtet?

Aufgabe 1: Lesen in der Matrix

Was kann man an der Adjazenzmatrix ablesen?

■ Gerichtet oder ungerichtet? ⇒ gerichtet (weil A nicht symm.)

Aufgabe 1: Lesen in der Matrix

- Gerichtet oder ungerichtet? ⇒ gerichtet (weil A nicht symm.)
- Schlingen?

Aufgabe 1: Lesen in der Matrix

- Gerichtet oder ungerichtet? ⇒ gerichtet (weil A nicht symm.)
- Schlingen? ⇒ Auf der Diagonalen von A: Knoten 1, 3

Aufgabe 1: Lesen in der Matrix

- Gerichtet oder ungerichtet? ⇒ gerichtet (weil A nicht symm.)
- Schlingen? ⇒ Auf der Diagonalen von A: Knoten 1, 3
- Zusammenhängend?

Aufgabe 1: Lesen in der Matrix

- Gerichtet oder ungerichtet? ⇒ gerichtet (weil A nicht symm.)
- Schlingen? ⇒ Auf der Diagonalen von A: Knoten 1, 3
- Zusammenhängend? ⇒ Nein (6 ist isoliert).
- Zeichnet den Graphen und stellt ihn als Adjazenzfeld und Kantenfolge dar (alphabetisch geordnet).

Aufgabe 1: Lesen in der Matrix

- Gerichtet oder ungerichtet? ⇒ gerichtet (weil A nicht symm.)
- Schlingen? ⇒ Auf der Diagonalen von A: Knoten 1, 3
- Zusammenhängend? ⇒ Nein (6 ist isoliert).
- Zeichnet den Graphen und stellt ihn als Adjazenzfeld und Kantenfolge dar (alphabetisch geordnet).

Aufgabe 2: Malen nach Zahlen

Stellt diesen Graphen als Adjazenzfeld, Adjazenzmatrix und Kantenfolge dar (alphabetisch geordnet).

Graphenbeweise

Aufgabe 3: I Wanna Ride My Acycle!

Es sei G = (V, E) ein gerichteter azyklischer Graph (DAG) mit endlich vielen und mindestens einem Knoten. Zeige, dass G mindestens einen Knoten mit Eingangsgrad 0 besitzt.

Graphenbeweise

Aufgabe 3: I Wanna Ride My Acycle!

Es sei G = (V, E) ein gerichteter azyklischer Graph (DAG) mit endlich vielen und mindestens einem Knoten. Zeige, dass G mindestens einen Knoten mit Eingangsgrad 0 besitzt.

Lösung zu Aufgabe 3

Angenommen, jeder Knoten hat Eingangsgrad \geqslant 1. (= Gegenteil.) Nehme irgendeinen Knoten v. Auf diesen zeigt also garantiert ne **Kante**. Laufe sie **rückwärts** \leadsto neuer Knoten. **Wiederhole** beliebig oft (das geht dank Annahme!).

Also geht das öfter, als G Knoten hat \Rightarrow Irgendwann ein Knoten 2x besucht \Rightarrow Wir laufen im Kreis \Rightarrow $\oint G$ kreisfrei.