

멋쟁이사자처럼 2차 프로젝트 중간보 고발표

팀 이름 : 돌체라떼

팀장: 박지용

팀원: 최두호(발표자)

가스공급량 수요예측 모델개발

요약:

2013년도 ~ 18년도 까지의 데이터를 가지고, 19년도 1월 ~ 3월 까지의 가스공급량 예측

저희가 생각하는 **맹점**:

- 1. **외부데이터**를 얼마나 잘 정제해서 가져오는가?
- 2. 데이콘에서 기본으로 제공한 데이터를 얼마나 잘 사용하는가?

외부데이터를 얼마나 잘 정제해서 가져오는가?

(1)기온데이터

기상청 기상자료 개방포털에서 1년단위로 된 csv파일을 총 6개(2013년도~2018년도) 다운로드.

데이터프레임으로 하나씩 불러온뒤, 하나의 데이터 프레임으로 병합해주었음(이슈)

(숫자파일)

기온DF을 기본DF과 병합한뒤, 해당 데이터 프레임으로 기온예측모델생성

기온예측모델을 이용해서 test데이터프레임에 붙어주었음

이제, 기온의 특성추가를 완료하였기때문에 구분, 년, 월, 일, 시간, <mark>기온</mark> 데이터를 사용하여서

공급량 예측 모델 생성 후, 제출.

기본데이터만을 가지고 예측을 했을 때와 비교해서.

 $0.1617253368 \rightarrow 0.1307686256$

0.1307686256

0.031점 정도 차이나는 유의미한 성과를 냈음.

(2) 발전량데이터

한국전력거래소 데이터:

한국 전력공사 연별 전력 통계:

난위	: GWh, %								
		계	원자력	석탄	가스	신재생	유류	양수	기타
2011	발전량	496,893	154,723	202,856	112,646	12,190	11,245	3,233	
	비중	100.0	31.1	40.8	22.7	2.5	2.3	0.7	
2012	발전량	509,574	150,327	202,191	125,285	12,587	15,501	3,683	
	비중	100.0	29.5	39.7	24.6	2.5	3.0	0.7	
2013	발전량	517,148	138,784	204,196	139,783	14,449	15,832	4,105	
	비중	100.0	26.8	39.5	27.0	2.8	3.1	0.8	
2014	발전량	521,971	156,407	207,214	127,472	17,447	8,364	5,068	
2014	비중	100.0	30.0	39.7	24.4	3.3	1.6	1.0	
2045	발전량	528,091	164,762	211,393	118,695	19,464	10,127	3,650	
2015	비중	100.0	31.2	40.0	22.5	3.7	1.9	0.7	
2016	발전량	540,441	161,995	213,803	121,018	25,836	14,001	3,787	
2010	비중	100.0	30.0	39.6	22.4	4.8	2.6	0.7	
2017	발전량	553,530	148,427	238,799	126,039	30,817	5,263	4,186	
	비중	100.0	26.8	43.1	22.8	5.6	1.0	0.8	
2018	발전량	570,647	133,505	238,967	152,924	35,598	5,740	3,911	
	비중	100.0	23.4	41.9	26.8	6.2	1.0	0.7	
2019	발전량	563,040	145,910	227,384	144,355	36,392	3,292	3,458	
2019	비중	100.0	25.9	40.4	25.6	6.5	0.6	0.6	
2020	발전량	552,162	160,184	196,333	145,911	36,527	2,255	3,271	7
	비중	100.0	29.0	35.6	26.4	6.6	0.4	0.6	

- 공공데이터에서 17~18년 화력 발전소 시간데이터를 베이스로 데이터 구상을 시작 했음.
- 13년부터 15년 데이터는 에너지원별 발전량 데이터을 참고하여 총 생산량 비율로
 17년, 18년 기준으로 나눈 후 두개를 추합 후, 반으로 나눔.
- 16년도 윤년 데이터는 예측하지 않고 제거하였음. → 이후, 새로운 특성 데이터와 합칠때 오류 발생 우려로 해결.

16년 2월 29일 데이터를 예측하기

date

0	2013-01-01 00:00:00
1	2013-01-01 01:00:00
2	2013-01-01 02:00:00
3	2013-01-01 03:00:00
4	2013-01-01 04:00:00
52580	2018-12-31 20:00:00
52581	2018-12-31 21:00:00
52582	2018-12-31 22:00:00
52583	2018-12-31 23:00:00
52584	2019-01-01 00:00:00

- pd.date_range를 이용해 시간데이터를 임의로 생성.
- 16년 2월 29일에 해당되는 구간만 잘라내기.

```
In [43]: t_df.loc[(t_df["일자"] == '2016-02-29')].index

Out[43]: Int64Index([27696, 27697, 27698, 27699, 27700, 27701, 27702, 27703, 27704, 27705, 27706, 27707, 27708, 27709, 27710, 27711, 27712, 27713, 27714, 27715, 27716, 27717, 27718, 27719], dtype='int64')
```

• 기존 발전량과 합치고, 잘라낸 구간 합치고. sort_index()로 다시 구간 맞추기.

	date	일자	시간
27697	2016-02-29 01:00:00	2016-02-29	1
27698	2016-02-29 02:00:00	2016-02-29	2
27699	2016-02-29 03:00:00	2016-02-29	3
27700	2016-02-29 04:00:00	2016-02-29	4
27701	2016-02-29 05:00:00	2016-02-29	5
27702	2016-02-29 06:00:00	2016-02-29	6
27703	2016-02-29 07:00:00	2016-02-29	7
27704	2016-02-29 08:00:00	2016-02-29	8
27705	2016-02-29 09:00:00	2016-02-29	9
27706	2016-02-29 10:00:00	2016-02-29	10
27707	2016-02-29 11:00:00	2016-02-29	11
27708	2016-02-29 12:00:00	2016-02-29	12
27709	2016-02-29 13:00:00	2016-02-29	13
27710	2016-02-29 14:00:00	2016-02-29	14
27711	2016-02-29 15:00:00	2016-02-29	15
27712	2016-02-29 16:00:00	2016-02-29	16
27713	2016-02-29 17:00:00	2016-02-29	17
27714	2016-02-29 18:00:00	2016-02-29	18
27715	2016-02-29 19:00:00	2016-02-29	19
27716	2016-02-29 20:00:00	2016-02-29	20
27717	2016-02-29 21:00:00	2016-02-29	21
27718	2016-02-29 22:00:00	2016-02-29	22
27719	2016-02-29 23:00:00	2016-02-29	23
27720	2016-03-01 00:00:00	2016-03-01	24

- interpolate(method="time")을 사용하여, 시간별로 결측치 보간
- 유의미한 결과를 가져오는 가에, baseline과 동일하게 lgbm을 사용해서 발전량의 예측량을 예측하고, 공급량 예측 모델을 생성
- 베이스라인 점수와 비교했을때

사용한 CSV:

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/e380cd3f-e 1dc-4df9-8a2b-bf2c0691279a/energy_ratio.xls

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/f1528e4e-963e-49a8-87c6-e7a577154c04/한국전력거래소_시간별_발전량_20201231.csv

• 제출한 내역

향후 계획

(다음페이지)