Anexo 1 Revisión de literatura: resumen de modelos de consumo energético y simulación en transporte

Tabla 1 Modelos de consumo energético: estado del arte

PUBLICACIÓN	AÑO	REGIÓN	MODELO/METODOLOGIA			
Bose & Srinivasachary	1997	India	LEAP			
Wohlgemuth	1997	OECD	Modelo econométrico			
Akisawaa & Kayab	1998	Japón	Modelo de consumo mínimo			
Das & Parikh	2000	India	LEAP			
Leónardi & Baumgartner	2004	Alemania	Modelo dinámico			
Vanek & Morlok	2005	Estados Unidos	Enfoque basado en carga			
Frey, et al	2007	EU y Portugal	Basado en el poder específico de combustión del vehículo			
Tanczos & Torok	2007	Hungría	Modelo de regresión lineal			
Rabia & Sheikh	2010	India	Modelo LEAP			
Romero-Jordán, et al	2010	España	Modelo AIDS			
González-Marrero, et al	2012	España	Modelo dinámico			
Lin & Xie	2013	China	Modelo de cointegración			
Karplus, et al	2013	Global	Programación dinámica recursiva, modelo de equilibrio general			
Chavez-Baeza & Sheinbaum-Pardo	2014	México	Modelo Bottom-up			
Cui, & Li	2015	Global	Análisis envolvente de datos, regresión Tobit			
Achour & Belloumi	2015	Alemania	Modelo COPERT			

Tabla 2 Modelos de consumo energético: estado del arte

PUBLICACIÓN	AÑO	REGIÓN	MODELO/METODOLOGIA		
Siemionek & Dziubiński	2015	Polonia	Modelo basado en consumo energético		
Binbin, et al	2015	China	Modelo LEAP		
Shaojun Zhang, et al	2016	China	Modelo empírico		
Jiateng, et al	2016	Global	Modelo de programación estocástica		
Predić, et al	2016	Serbia	Modelo basado en redes neuronales		
Solis Ávila & Sheinbaum Pardo	2016	México	Modelo Bottom-up		
Castaño, et al	2017	España	Modelo mediante dinámica de sistemas		
Gerboni, et al	2017	Italia	Modelo de acceso basado en tiempo		
Jing-Li, et al	2017	Japón	Modelo LEAP		
Mahmood Mahmoodi, et al	2017	Nueva Zelanda	Modelo basado en la operación real de transporte público		
Dallmeyer, et al	2017	Alemania	Modelo físico de consumo y micro simulación		
Rehermann, & Pablo-Romeroa	2018	Latinoamérica	Modelos con relaciones no lineales		
Obando & Rosero	2018	España	Modelo basado en consumo de combustible con base en la tasa de		
			ocupación		
Peilin, et al	2018	China	Modelo ASIF		
		Modelo de cointegración, modelo de corrección de errores y un			
			modelo dinámico		
Cartenì, et al.	2020	Italia	Modelo desagregado		

Fuente: Elaboración propia

Figura 1 Línea de tiempo de los modelos de consumo energético

Tabla 3 Artículos base para la investigación

AUTOR	AÑO	TÍTULO
TRL	1999	Methodology for calculating transport emissions and energy consumption.
García Álvarez Alberto, Ma. del Pilar Martín Cañizares	2019	Energy utilizations in the transport sector
Castaño John A., Andrés E. Diez y Diana P. Giraldo	2017	Análisis del Consumo Energético de un Sistema de Transporte Público de Pasajeros con Tracción Eléctrica desde una Perspectiva Sistémica
Wang Y.F., K.P. Li, X.M. Xu , Y.R. Zhang	2014	Transport energy consumption and saving in China
Binbin Peng, Huibin Dua, Shoufeng Maa, Ying Fan, David C. Broadstock	2015	Urban passenger transport energy saving and emission reduction potential: A case study for Tianjin, China
Dallmeyer Jorg, Carsten Taubert, Ingo J. Timm	2017	Fuel consumption and emission modelling for urban scenarios
Cillero Hernández Alberto, Paula Bouzada Outeda, Alberto García Álvarez, Ma del Pilar Martín Cañizares	2019	Metrics and standardization of consumptions and emissions in transport
Cartenì Armando, Giulio Erberto Cantarella, Stefano de Luca	2020	A methodology for estimating traffic fuel consumption and vehicle emissions for urban planning
Poudenx, P.	2008	The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation.
Shibghatullah Abdul S.	2006	A proposed multiagent model for bus crew scheduling
Castillo Ernesto, Cortés Cristián E., Fuentes Roberto, Moya Carlos, and Rocco Víctor	2011	Análisis de la capacidad de corredores de transporte público mediante micro simulación
Bowman Casey N., Miller John A.	2017	Modeling traffic flow using simulation and big data analytics
Poeting Moritz, Prell Bastian, Rabe Markus, Uhlig Tobias, Wenzel Sigrid	2019	Considering energy-related factors in the simulation of logistics systems
Pereira Wilson Inacio, Chwif Leonardo	2018	Generic bus route simulation model and its application to a new bus network development for Caieiras city, Brazil
Mavrina Vadim, Magdina Kirill, Shepelevb Vladimir, Danilov Igor	2020	Reduction of environmental impact from road transport using analysis and simulation methods
Yanga Liu, Zhanga Lufeng, Stettlerb Marc E.J., Sukitpaneenitb Manlika, Xiaoc Dunhui, Van Dam Koen H.	2020	Supporting an integrated transportation infrastructure and public space design: A coupled simulation method for evaluating traffic pollution and microclimate

Tabla 4 Estudios de simulación en transporte: estado del arte

PUBLICACIÓN	AÑO	OBJETO/METÓDO DE SIMULACION			
Schwefel & Schmitz	1997	Simulación de módulos macroeconómicos			
Perumalla	2006	Simulación de eventos discretos y paralelo mediante el enfoque SCATTER			
Li, et al.	2006	Simulación de la demanda con simulación de la oferta			
Hunter, et al.	2006	Simulación dinámica basada en datos			
Shibghatullah	2006	Simulación por agentes con metodología Gaia			
Zhou & Kuhl	2010	Simulación de sistemas de eventos discretos			
Castillo, et al.	2011	Simulación de sistemas de eventos discretos y por objetos			
Ma, et al.	2011	Simulación basada en agentes			
Halim, et al.	2012	Simulación multinivel con un enfoque sistémico			
Zomer, et al.	2015	Simulación con metamodelo para incluir el comportamiento			
Ma & Fukuda	2015	Simulación con biblioteca para el modelado de transporte			
Linares M., et al.	2016	Simulación microscópica con información de tráfico en tiempo real			
Bowman & Miller	2017	Simulación mediante la modelación de llegadas de vehículos con regresión / series de tiempo			
Zhang & Cassandras	2017	Simulación de tráfico híbrido a nivel microscópico			
Narayana , et al.	2017	Simulación multi-agente y asignación dinámica			
Hu, et al.	2017	Simulación basada en agentes			
Pereira & Chwif	2018	Modelo de simulación genérico para redes radiales			
Tolujew, et al.	2018	Simulación basada en agentes			
Andelfinger, et al.	2018	Simulación basada en agentes			
Saroj, et al.	2018	Simulación de tráfico híbrido en un contexto de big data			
Poeting, et al.	2019	Simulación energética			
Bipasha, et al.	2019	Simulación construida sobre un modelo estadístico			
Vargas, et al.	2020	Simulación de eventos discretos			
Mavrina, et al.	2020	Simulación de eventos discretos mediante la utilización de una biblioteca de tráfico vial			
Yang, et al.	2020	Simulación multiescalar basado en agentes de meso escala			
Makarovaa , et al.	2020	Simulación mediante micro modelado			

Fuente: Elaboración propia

Figura 2 Línea de tiempo de la simulación en el transporte Fuente: Elaboración propia