e1_MavlinkCtrl 进阶接口类实验

本文件夹中的所有实验均为本讲中进阶接口类实验,基于 0.ApiExps、1.BasicExps 文件夹中的实验。

序号	实验名称	简介	文件地址	版本
1	MAVSfun 解锁 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小型无人载具的通信协议,于 2009 年首次发布。该协议广泛应用于地面站(Ground Control Station,GCS)与无人载具(Unmanned vehicles)之间的通信,同时也应用在载具上机载计算机与 Pixhawk 之间的内部通信中,协议以消息库的形式定义了参数传输的规则。MAVLink 协议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载具。本实验将通过CopterSim 软件在硬件在环仿真时,通过 MAVLink 封装模块何 UDP 的方式,在 CopterSim 软件中显示解锁信息。	1.MavSfunTest_Arm\Readme.pdf	个人集合版
2	MAVLink 控制 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小型 无人载具的通信协议,于 2009 年首次发布。本实验 将基于 CopterSim 软件在硬件在环仿真时,通过 MAVLink 封装模块 UDP 的方式,实现无人机姿态控 制。	2.MavSfunTest_Con\Readme.pdf	个人集合版
3	MAVSfun 解锁 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小型 无人载具的通信协议,于 2009 年首次发布。该协议	1.MavSfunTest_Arm\Readme.pdf	个人集合版

		广泛应用于地面站(Ground Control Station,GCS)		
		与无人载具(Unmanned vehicles)之间的通信,同		
		时也应用在载具上机载计算机与 Pixhawk 之间的内		
		部通信中,协议以消息库的形式定义了参数传输的		
		规则。MAVLink 协议支持无人固定翼飞行器、无人		
		旋翼飞行器、无人车辆等多种载具。本实验将通过		
		CopterSim 软件在硬件在环仿真时,通过 MAVLink		
		封装模块何 UDP 的方式,在 CopterSim 软件中显示		
		解锁信息。		
4	MAVLink 控制 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小型	2.MavSfunTest_Con\Readme.pdf	个人集合版
		无人载具的通信协议,于 2009 年首次发布。本实验		
		将基于 CopterSim 软件在硬件在环仿真时, 通过		
		MAVLink 封装模块 UDP 的方式, 实现无人机姿态控		
		制。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接口类实	Readme.pdf	个人集合版
		验,基于 0.ApiExps、1.BasicExps 文件夹中的实验。		
2	MAVSfun 解锁 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小	1.MavSfunTest_Arm\Readme.pdf	个人集合版
		型无人载具的通信协议,于 2009 年首次发布。该		
		协议广泛应用于地面站(Ground Control Station,		
		GCS) 与无人载具 (Unmanned vehicles) 之间的通		
		信,同时也应用在载具上机载计算机与 Pixhawk 之		
		间的内部通信中,协议以消息库的形式定义了参数		
		传输的规则。MAVLink 协议支持无人固定翼飞行		
		器、无人旋翼飞行器、无人车辆等多种载具。本实		
		验将通过 CopterSim 软件在硬件在环仿真时,通过		
		MAVLink 封装模块何 UDP 的方式,在 CopterSim		
		软件中显示解锁信息。		
3	MAVLink 控制 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小	2.MavSfunTest_Con\Readme.pdf	个人集合版
		型无人载具的通信协议,于 2009 年首次发布。本		
		实验将基于 CopterSim 软件在硬件在环仿真时,通		
		过 MAVLink 封装模块 UDP 的方式,实现无人机姿		
		态控制。		
4	MAVSfun 解锁 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小	1.MavSfunTest_Arm\Readme.pdf	个人集合版
		型无人载具的通信协议,于 2009 年首次发布。该		
		协议广泛应用于地面站(Ground Control Station,		

		GCS)与无人载具(Unmanned vehicles)之间的通信,同时也应用在载具上机载计算机与 Pixhawk 之间的内部通信中,协议以消息库的形式定义了参数传输的规则。MAVLink 协议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载具。本实验将通过 CopterSim 软件在硬件在环仿真时,通过MAVLink 封装模块何 UDP 的方式,在 CopterSim 软件中显示解锁信息。		
5	MAVLink 控制 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小型无人载具的通信协议,于 2009 年首次发布。本实验将基于 CopterSim 软件在硬件在环仿真时,通过 MAVLink 封装模块 UDP 的方式,实现无人机姿态控制。	2.MavSfunTest_Con\Readme.pdf	个人集合版

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。