Revised optical air mass tables and approximation formula

Fritz Kasten and Andrew T. Young

Fritz Kasten is with Deutscher Wetterdienst, Meteorologisches Observatorium Hamburg, D-2000 Hamburg, Federal Republic of Germany; A. T. Young is with San Diego State University, Department of Astronomy, San Diego, California 92182-0334.

Received 9 August 1989.

0003-6935/89/224735-04\$02.00/0.

© 1989 Optical Society of America.

We correct an error in a widely used air mass table by recalculating the values on the basis of the ISO Standard Atmosphere (1972) and revise its approximation formula.

In 1965, Kasten¹ published new tables of the air mass function and a simple approximation formula that have been widely used, particularly in meteorology and solar energy. The relative optical air mass $m(\gamma)$ at solar elevation γ is defined as

$$m(\gamma) = m_{\rm abs}(\gamma)/m_{\rm abs}(90^{\circ}), \tag{1}$$

where the absolute optical air mass $m_{\rm abs}(\gamma)$ is

$$\begin{split} m_{\rm abs}(\gamma) &= \rho_0 \int_0^\infty (\rho/\rho_0) \{1 - [1 + 2\delta_0(1 - \rho/\rho_0)] \\ &\times [\cos\gamma/(1 + h/R)]^2\}^{-1/2} dh, \end{split} \tag{2}$$

and h = height above mean sea level,

 $\rho = \rho(h) = \text{air density at height } h$,

 $\rho_0 = \text{air density at } h = 0,$

 $\delta_0=n_0-1,$

 n_0 = refractive index for air at 0.7- μ m wavelength at h = 0,

R =mean earth radius.

As $m_{\rm abs}(\gamma)$ contains the optical parameter δ_0 , it is not a purely mechanical quantity. Therefore, we call $m_{\rm abs}(\gamma)$ the absolute optical air mass and $m(\gamma)$ the relative optical air mass

The relative optical air mass is used by many different disciplines that deal with atmospheric transmission, including astronomy, atmospheric optics, geophysics, meteorology, and solar energy. Unfortunately, these different fields employ conflicting terminology and notation. The vertical distance above sea level (or, more strictly, above the geoid) is called altitude by meteorologists but height by astronomers, who use altitude to denote angular distance above the horizon. To avoid ambiguity, we, therefore, avoid altitude in favor of height, even though this is not the standard term in the meteorological community. This quantity is often denoted by z in geophysics and meteorology; but unfortunately astronomers use this symbol for zenith distance, the complement of astronomical altitude (which we call elevation throughout this paper to avoid ambiguity). As preferred astronomical usage is to give air mass as a function of zenith distance z, we must avoid z to avoid confusing our astronomical readers. As height is hauteur in French and Höhe in German, the symbol h seems natural, although h is used by astronomers for the quantity called hour angle, which is used to compute zenith distance. Furthermore, Höhe in German also means astronomical altitude or elevation angle. Evidently, there is no common notation or terminology that will make everyone happy. We tried to choose terms and symbols that will least confuse a potential reader, although they are not standard in some fields. But we see no really satisfactory solution to this problem.

The $m(\gamma)$ table in Ref. 1 has been computed from the air density profile of the ARDC Model Atmosphere, 1959,² with $\rho_0 = 1.22500 \text{ kg/m}^3$, $\delta_0 = 2.76 \times 10^{-4}$, and $R = 6.371229 \times 10^6$ m, and a function $f(\gamma)$ for approximating $m(\gamma)$ was found:

$$f(\gamma) = [\sin\gamma + a \cdot (\gamma + b)^{-c}]^{-1},\tag{3}$$

for γ in degrees. The constants a,b, and c were determined by the method of least squares of the relative errors, using a standard differential correction method for these nonlinear parameters; the values found were $a=0.1500,\,b=3.885^\circ$, and c=1.253.

The integrand of Eq. (2) becomes indefinite at $\gamma=0$ as h approaches 0. In this case, the integration was performed by a special procedure, described in Appendix 1 of Kasten. Unfortunately, an error seems to have crept into the computations. The value at the horizon, 36.2648, seems to be $\sim 5\%$ too small.

For example, the tables of Link and Neuzil³ give 38.16 for the horizontal air mass in the 1962 U.S. Standard Atmosphere, which is very similar to the 1959 ARDC model used by Kasten. Snider and Goldman⁴ give 38.10 for the 1962 model, in good agreement with Link and Neuzil. Treve,⁵ using the 1959 ARDC model, got 38.11 at 0.55 μ m and 38.08 at 0.70 μ m for the horizontal relative air mass.

Internal evidence for the error at the horizon in Ref. 1 is given by the first differences of the old table, which increase smoothly toward the horizon but suddenly decrease in the last interval. This is a well known method for detecting errors in tables. One might have expected the error to show up as a large residual in the least-squares fitting of Eq. (3); but the point at the horizon has high leverage, so the largest residual is actually at the adjacent point in the table. Because of this, and the obscurity of most other modern air mass calculations, the error escaped notice until recently.

These discrepancies led us to recalculate the whole optical air mass table. We have taken the opportunity to replace the ARDC Model Atmosphere 1959 with the ISO Standard Atmosphere, 6 which is based on the International Civil Aviation Organization (ICAO) 1964 and U.S. 1962 Standard Atmospheres. For heights up to 32 km, the ISO Standard Atmosphere is identical to the present Standard Atmospheres of ICAO and the World Meteorological Organization. The older ARDC Model Atmosphere 1959 had generally higher temperatures and consequently lower densities than the newer standards in the stratosphere above 20 km. 7

Moreover, the ISO Standard Atmosphere has two numerical advantages over the ARDC Model Atmosphere 1959: the height resolution is twice as fine, and the air densities are given to one more decimal place, both of which increase the accuracy of the numerical integration of Eq. (2). The constants ρ_0 and δ_0 remain unchanged, while the nominal earth radius $R=6.356766\times 10^6$ m is taken from Ref. 6.

In evaluating Eq. (2), finer steps $\Delta \gamma$ of solar elevation γ were chosen than in Ref. 1 (see Table 1). Several numerical integration methods were used, giving results identical with-

Table I. Step Widths $\Delta\gamma$ of Elevation γ Used in Computing the Optical Air Masses

Range of γ (deg)	Δγ (deg)		
0-20	0.1		
20-30	0.2		
30-55	0.5		
55-90	1.0		

Table II. Absolute Optical Air Mass $m_{\rm abs}(\gamma)$ in kg/m², Relative Optical Air Mass $m(\gamma) = m_{\rm abs}(\gamma)/m_{\rm abs}(90^\circ)$, and Relative Error $r(\gamma)$, Eq. (4), as Functions of Elevation Angle γ in Degrees Computed from the ISO Standard Atmosphere

						•		•			
γ (degrees)	$m_{abs}(\gamma)$	$m(\gamma)$	r(γ) (%)	γ (degrees)	$m_{abs}(\gamma)$	m (γ)	r(γ) (%)	γ (degrees)	$m_{abs}(\gamma)$	m (γ)	r(γ) (%)
0.0	394428	38.0868	0.432	4.0	127560	12.3174	0.123	9.3	61857	5.9730	-0.025
0.1	378596	36.5581	0.243	4.1	125162	12.0859	0.122	9.4	61248	5.9142	-0.027
0.2	363727	35.1223	0.099	4.2	122846	11.8623	0.121	9.5	60650	5.8565	-0.029
0.3	349750	33.7726	-0.009	4.3	120608	11.6462	0.120	9.6	60065	5.8000	-0.029
0.4	336598	32.5026	-0.087	4.4	118444	11.4372	0.118	9.7	59490	5.7445	-0.030
0.5	324210	31.3064	-0.141	4.5	116350	11.2350	0.116	9.8	58926	5.6900	-0.033
0.6	312531	30.1786	-0.177	4.6	114324	11.0394	0.114	9.9	58372	5.6365	-0.035
0.7	301509	29.1144	-0.197	4.7	112362	10.8500	0.111	10.0	57829	5.5841	-0.035
0.8	291099	28.1091	-0.206	4.8	110463	10.6665	0.108	10.1	57295	5.5325	-0.038
0.9	281257	27.1588	-0.205	4.9	108622	10.4887	0.105	10.2	56771	5.4820	-0.038
1.0	271944	26.2595	-0.198	5.0	106837	10.3164	0.102	10.3	56257	5.4323	-0.040
1.1	263125	25.4079	-0.186	5.1	105107	10.1493	0.099	10.4	55752	5.3835	-0.041
1.2	254765	24.6006	-0.171	5.2	103428	9.9872	0.095	10.5	55255	5.3356	-0.042
1.3	246834	23.8349	-0.152	5.3	101799	9.8299	0.092	10.6	54768	5.2885	-0.043
1.4	239305	23.1078	-0.133	5.4	100217	9.6772	0.089	10.7	54289	5.2422	-0.045
1.5	232151	22.4170 21.7601	-0.113 -0.092	5.5	98681	9.5289	0.086	10.8	53818	5.1968	-0.045
1.6	225348 218873	21.7601	-0.092	5.6	97189	9.3848	0.082	10.9	53355	5.1521	-0.046
1.7 1.8	212708	20.5395	-0.072	5.7	95739	9.2448	0.078	11.0	52900	5.1081	-0.048
1.9	206831	19.9720	-0.033	5.8	94329	9.1087	0.075	11.1	52453	5.0649	-0.049
2.0	201226	19.4308	-0.015	5.9	92959	8.9763	0.071	11.2	52013	5.0225	-0.049
2.1	195877	18.9143	0.002	6.0	91625	8.8475	0.067 0.064	11.3	51580	4.9807	-0.050
2.2	190767	18.4209	0.002	6.1	90327	8.7222		11.4	51155	4.9396	-0.052
2.3	185884	17.9493	0.032	6.2	89064	8.6002	0.060 0.057	11.5	50736	4.8992	-0.052
2.4	181213	17.4983	0.045	6.3 6.4	87834 86637	8.4815 8.3658	0.057	11.6	50325	4.8595	-0.052
2.5	176743	17.0667	0.057	6.5	85470	8.2531	0.033	11.7	49920	4.8204	-0.053
2.6	172463	16.6534	0.069		84332		0.049	11.8	49521	4.7819	-0.054
2.7	168361	16.2573	0.078	6.6 6.7	83224	8.1433 8.0363	0.044	11.9	49129	4.7440	-0.055
2.8	164428	15.8775	0.087	6.8	82143	7.9319	0.040	12.0	48743	4.7067	-0.056
2.9	160654	15.5131	0.094	6.9	81088	7.8300	0.036	12.1	48363	4.6700	-0.057
3.0	157031	15.1633	0.101	7.0	80060	7.7307	0.033	12.2	47989	4.6339	-0.057
3.1	153551	14.8273	0.107	7.1	79056	7.6338	0.030	12.3	47621	4.5984	-0.056
3.2	150207	14.5043	0.111	7.2	78076	7.5392	0.027	12.4	47258	4.5633	-0.059
3.3	146990	14.1937	0.115	7.3	77119	7.4468	0.024	12.5	46901	4.5288	-0.059
3.4	143896	13.8949	0.118	7.4	76185	7.3566	0.021	12.6	46549	4.4949	-0.058
3.5	140916	13.6072	0.120	7.5	75272	7.2684	0.017	12.7	46203	4.4614	-0.060
3.6	138047	13.3301	0.122	7.6	74380	7.1823	0.014	12.8	45861	4.4285	-0.059
3.7	135281	13.0630	0.123	7.7	73509	7.0982	0.012	12.9	45525	4.3960	-0.060
3.8	132615	12.8056	0.124	7.8	72657	7.0159	0.009	13.0	45194	4.3640	-0.060
3.9	130042	12.5572	0.124	7.9	71824	6.9355	0.007	13.1	44867	4.3325	-0.060
				8.0	71010	6.8568	0.003	13.2	44545	4.3014	-0.061
				8.1	70213	6.7799	0.001	13.3	44228	4.2708	-0.061
				8.2	69433	6.7046	-0.001	13.4	43916	4.2406	-0.062
				8.3	68670	6.6310	-0.003	13.5	43608	4.2108	-0.063
				8.4	67924	6.5589	-0.005	13.6	43304	4.1815	-0.062
				8.5	67193	6.4883	-0.008	13.7	43004	4.1526	-0.062
				8.6	66477	6.4192	-0.010	13.8	42709	4.1241	-0.062
				8.7	65776	6.3515	-0.012	13.9	42418	4.0959	-0.064
****				8.8	65089	6.2852	-0.014	14.0	42130	4.0682	-0.063
				8.9	64416	6.2202	-0.017	14.1	41847	4.0408	-0.064
				9.0	63757	6.1565	-0.019	14.2	41567	4.0138	-0.064
				9.1	63111	6.0942	-0.020	14.3	41292	3.9872	-0.064
				9.2	62478	6.0330	-0.022	14.4	41020	3.9610	-0.062
				·			V. 10.00 1.00 1.00 1.00 1.00 1.00 1.00 1	14.5	40751	3.9350	-0.065
											continued

in a precision of 10^{-5} except for very low solar elevations ($\gamma < 0.4^{\circ}$). Therefore, we turned to stepwise analytical integration, which is possible when the air density ρ is expressible as a linear function of height h. Thanks to the fine height resolution of the ISO Standard Atmosphere, linear interpolation between any two adjacent tabulated values $\rho(h)$ has a relative error of $<10^{-4}$.

This stepwise analytical integration, which is described in detail in Appendix 1 of Ref. 1 for the special case of $\gamma = 0$, was performed for each γ . Table II gives the results; for $\gamma \ge 0.4$, the values are identical to those obtained by numerical inte-

gration. For completeness, this table gives not only the relative optical air masses $m(\gamma)$ but also the absolute optical air masses $m_{\rm abs}(\gamma)$ from which the relative values were derived, according to Eq. (1).

From the values in Table II, the constants in the approximating function, Eq. (3), were recalculated, using the nonlinear least-squares program GAUSSFIT, written by Jefferys et al.⁸ By setting the estimated variances of the data proportional to the squares of the tabular values, the sum of squares of the relative errors is minimized. This is equivalent to the procedure described in Appendix 2 of Ref. 1. The resulting

Table II, continued

					rable II, CC	nitiniueu					
γ (degrees)	$m_{abs}(\gamma)$	m (γ)	r(γ) (%)	γ (degrees)	$m_{abs}(\gamma)$	m (γ)	r(γ) (%)	γ (degrees)	$m_{abs}(\gamma)$	$m(\gamma)$	r(γ) (%)
14.6	40486	3.9095	-0.063	19.9	30191	2.9153	-0.055	31.0	20050	1.9361	-0.019
14.7	40225	3.8842	-0.065	20.0	30049	2.9016	-0.053	31.5	19766	1.9087	-0.015
14.8	39967	3.8593	-0.065	20.2	29768	2.8745	-0.053	32.0	19492	1.8821	-0.017
14.9	39713	3.8347	-0.065	20.4	29493	2.8479	-0.054	32.5	19226	1.8565	-0.012
15.0	39462	3.8105	-0.063	20.6	29224	2.8219	-0.052	33.0	18968	1.8316	-0.014
15.1	39213	3.7865	-0.065	20.8	28959	2.7964	-0.050	33.5	18719	1.8076	-0.010
15.2	38969	3.7629	-0.064	21.0	28700	2.7713	-0.051	34.0	18478	1.7843	-0.008
15.3	38727	3.7395	-0.065	21.2	28445	2.7467	-0.052	34.5	18244	1.7617	-0.008
15.4	38488	3.7165	-0.064	21.4	28196	2.7226	-0.050	35.0	18018	1.7398	-0.008
15.5	38252	3.6937	-0.065	21.6	27951	2.6990	-0.047	35.5	17798	1.7186	-0.005
15.6	38020	3.6713	-0.063	21.8	27710	2.6757	-0.049	36.0	17585	1.6980	-0.005
15.7	37790	3.6491	-0.063	22.0	27474	2.6529	-0.049	36.5	17378	1.6780	-0.006
15.8	37563	3.6271	-0.065	22.2	27242	2.6305	-0.048	37.0	17177	1.6586	-0.005
15.9	37339	3.6055	-0.063	22.4	27014	2.6086	-0.044	37.5	16982	1.6398	-0.003
16.0	37117	3.5841	-0.064	22.6	26791	2.5870	-0.044	38.0	16793	1.6215	-0.003
16.1	36898	3.5630	-0.063	22.8	26571	2.5658	-0.043	38.5	16609	1.6038	0.001
16.2	36682	3.5421	-0.063	23.0	26355	2.5449	-0.045	39.0	16430	1.5865	-0.001
16.3	36469	3.5215	-0.063	23.2	26143	2.5245	-0.043	39.5	16256	1.5698	0.005
	36258	3.5011	-0.063	23.4	25935	2.5043	-0.041				
16.4		3.4810				2.4846		40.0	16088	1.5535	0.006
16.5	36049		-0.062	23.6	25730		-0.040	40.5	15924	1.5376	0.004
16.6	35843	3.4611	-0.062	23.8	25529	2.4651	-0.042	41.0	15764	1.5222	0.006
16.7	35639	3.4414	-0.063	24.0	25331	2.4460	-0.041	41.5	15608	1.5072	0.007
16.8	35438	3.4220	-0.062	24.2	25136	2.4272	-0.041	42.0	15457	1.4926	0.008
16.9	35239	3.4028	-0.061	24.4	24945	2.4088	-0.037	42.5	15310	1.4784	0.009
17.0	35043	3.3838	-0.062	24.6	24757	2.3906	-0.038	43.0	15167	1.4645	0.005
17.1	34848	3.3650	-0.062	24.8	24572	2.3727	-0.039	43.5	15028	1.4511	0.011
17.2	34656	3.3465	-0.061	25.0	24390	2.3552	-0.035	44.0	14892	1.4380	0.012
17.3	34466	3.3281	-0.062	25.2	24211	2.3379	-0.035	44.5	14759	1.4252	0.011
17.4	34278	3.3100	-0.061	25.4	24035	2.3209	-0.033	45.0	14631	1.4128	0.014
17.5	34093	3.2921	-0.060	25.6	23861	2.3041	-0.035	45.5	14505	1.4006	0.010
17.6	33909	3.2743	-0.062	25.8	23691	2.2876	-0.036	46.0	14383	1.3888	0.011
17.7	33728	3.2568	-0.061	26.0	23523	2,2714	-0.035	46.5	14264	1.3773	0.012
17.8	33548	3.2395	-0.059	26.2	23358	2.2555	-0.031	47.0	14147	1.3661	0.014
17.9	33371	3.2223	-0.061	26.4	23195	2.2398	-0.030	47.5	14034	1.3552	0.017
18.0	33195	3.2054	-0.059	26.6	23035	2.2243	-0.031	48.0	13924	1.3445	0.015
18.1	33021	3.1886	-0.060	26.8	22877	2.2091	-0.029	48.5	13816	1.3341	0.015
18.2	32850	3.1720	-0.060	27.0	22722	2.1941	-0.028	49.0	13711	1.3240	0.018
18.3	32680	3.1556	-0.059	27.2	22569	2.1793	-0.029	49.5	13609	1.3141	0.018
18.4	32511	3.1394	-0.058	27.4	22418	2.1647	-0.031	50.0	13509	1.3045	0.021
18.5	32345	3.1233	-0.059	27.6	22270	2.1504	-0.028	50.5	13412	1.2951	0.022
18.6	32181	3.1074	-0.059	27.8	22124	2.1363	-0.027	51.0	13317	1.2859	0.020
18.7	32018	3.0917	-0.058	28.0	21979	2.1224	-0.026	51.5	13224	1,2769	0.016
18.8	31857	3.0762	-0.056	28.2	21838	2.1087	-0.025	52.0	13134	1,2682	0.019
18.9	31697	3.0608	-0.056	28.4	21698	2.0952	-0.024	52.5	13046	1.2597	0.020
19.0	31540	3.0455	-0.058	28.6	21560	2.0819	-0.023	53.0	12960	1.2514	0.021
19.1	31384	3.0305	-0.056	28.8	21424	2.0688	-0.022	53.5			0.021
19.2	31229	3.0156	-0.055	29.0	21290	2.0558	-0.025		12876	1,2433	
19.3	31076	3.0008	-0.056	29.2	21158	2.0431	-0.022	54.0	12794	1.2354	0.023
19.4	30925	2.9862	-0.055	29.4	21028	2.0305	-0.023	54.5	12714	1.2277	0.024
19.5	30775	2.9717	-0.056	29.6	20900	2.0303	-0.023	55.0	12636	1.2202	0.027
19.5	30627	2.9574	-0.055	29.8	20773	2.0059	-0.024	56.0	12486	1.2057	0.028
19.0	30480	2.9432		30.0	20649	1.9939	-0.022	57.0	12343	1.1918	0.021
	30335	2.9292		30.5	20344	1.9645	-0.020	58.0	12207	1.1787	0.025
19.8	20222	L.7L7L	-0.055	30.3	20344	1.9043	-0.019	59.0	12077	1.1662	0.026
											continue

values are: a = 0.50572, $b = 6.07995^{\circ}$, c = 1.6364. These values are much closer than the former ones to the constants determined from Bemporad's classical air mass tables, namely, a = 0.6556, $b = 6.379^{\circ}$, and c = 1.757 (see Ref. 1).

The new constants give a greatly improved fit to the tabular values over the whole range of the table, because the one bad value at the horizon had corrupted the whole least-squares fit. For example, even near the zenith the error of the new fit is less than half of that of the old one. Table II gives the relative errors

$$r(\gamma) = [f(\gamma) - m(\gamma)]/m(\gamma) \tag{4}$$

of this new fit, in percent. The maximum relative error of the approximating formula is now <0.5%, several times smaller than in Ref. 1.

The tables and approximating function given here use the apparent elevation rather than that calculated from positions and times without refraction corrections, as argument, γ . As emphasized by Young, 9 substantial errors will be incurred if unrefracted elevations are used by mistake. The distinction between true and apparent elevation must be respected carefully if the accuracy of Table II and Eq. (3) is to be utilized.

Table II, continued

γ (degrees)	$m_{abs}(\gamma)$	$m(\gamma)$	r(y) (%)
60.0	11954	1.1543	0.027
61.0	11837	1.1430	0.028
62.0	11726	1.1322	0.025
63.0	11620	1.1220	0.026
64.0	11519	1.1123	0.027
65.0	11424	1.1031	0.027
66.0	11334	1.0944	0.029
67.0	11248	1.0862	0.034
68.0	11168	1.0784	0.035
69.0	11091	1.0710	0.033
70.0	11019	1.0640	0.028
71.0	10951	1.0575	0.032
72.0	10888	1.0513	0.027
73.0	10828	1.0456	0.033
74.0	10772	1.0402	0.031
75.0	10721	1.0352	0.032
76.0	10672	1.0305	0.027
77.0	10628	1.0262	0.027
78.0	10587	1.0223	0.033
79.0	10549	1.0187	0.034
80.0	10515	1.0154	0.032
81.0	10485	1.0124	0.028
82.0	10458	1.0098	0.031
83.0	10434	1.0075	0.032
84.0	10413	1.0055	0.031
85.0	10396	1.0038	0.030
86.0	10381	1.0024	0.027
87.0	10370	1.0014	0.033
88.0	10362	1.0006	0.029
89.0	10358	1.0002	0.034
90.0	10356	1.0000	0.029

Also, these calculations refer to the well mixed components of the molecular atmosphere and are not applicable to components (like ozone and aerosols) that are not uniformly mixed.

We thank Gerhard Czeplak in Hamburg for performing the integrations and William Uplinger of Lockheed Palo Alto Research Laboratories for calling our attention to Ref. 4.

References

- F. Kasten, "A New Table and Approximation Formula for the Relative Optical Air Mass," Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206–223 (1965).
- R. A. Minzer, K. S. W. Champion, and H. L. Pond, The ARDC Model Atmosphere, 1959, Air Force Surveys in Geophysics 115 (AFCRL, 1959).
- 3. F. Link and L. Neuzil, Tables of Light Trajectories in the Terrestrial Atmosphere (Hermann, Paris, 1969).
- D. E. Snider and A. Goldman, Refractive Effects in Remote Sensing of the Atmosphere with Infrared Transmission Spectroscopy, Ballistic Research Laboratories, Report 1790 (Ballistic Research Laboratories, June 1975).
- Y. M. Treve, "New Values of the Optical Air Mass and the Refraction and Comparison with Previous Tables," in Proceedings, Second Tropospheric Refraction Effects Technical Review Meeting, Technical Documentary Rep. ESD-TDR-64-103, May 1964 (National Technical Information Service Order AD-442626), pp. 5-391.
- International Organization for Standardization, Standard Atmosphere, International Standard ISO 2533 (1972).
- 7. S. L. Valley, Handbook of Geophysics and Space Physics (AFCRL, 1965), pp. 2-3.
- 8. W. H. Jefferys, M. J. Fitzpatrick, B. E. McArthur, and J. E. McCartney, GaussFit: A System for Least Squares and Robust Estimation (U. Texas at Austin, 1989).
- A. T. Young, "Observational Technique and Data Reduction," in Methods of Experimental Physics (Vol. 12, Astrophysics; Part A: Optical and Infrared), N. Carleton, Ed. (Academic, New York, 1974), p. 150.

For information regarding the length of a Letter, number of illustrations and tables, and general preparation of manuscript, see Information for Contributors on the second page of any issue.