BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (RAJ)

Second Semester (2017-2018)

BITS F111 Thermodynamics

Comprehensive Examination Conceptual (close book)

Max Mark 20+100=120

Thursday, 3rd May 2018

Duration 180 min

- This part of paper is of 20 marks. Five questions of 4 marks each. 1.
- Maximum time for this part of paper is 60 minutes.
- **3.** Use of Thermodynamics table is permitted.
- 4. Space provided is sufficient to solve the question. Do not write anything outside of the box.
- Consider two cases for increasing the efficiency of a Carnot Engine: (a) increase the source temperature (T_H) Q 1. by ΔT while sink temperature (T_L) is constant, (b) Decrease the sink temperature (T_L) by ΔT while source temperature (T_H) is constant. Explain with proof which of these two cases is more effective.

Solution:

The Carnot engine efficiency is given by: $\eta = 1 - rac{T_L}{T_H}$

Case (a) the Carnot efficiency can be written as: $\eta_I=1-\frac{T_L}{T_H+\Delta T}$ Case (b) The Carnot efficiency can be written as: $\eta_{II}=1-\frac{T_L-\Delta T}{T_H}$ (1)

(2)

Subtract equation (2) from equation (1)

$$\begin{split} \eta_I - \eta_{II} &= \left(1 - \frac{T_L}{T_H + \Delta T}\right) - \left(1 - \frac{T_L - \Delta T}{T_H}\right) = \\ &+ \frac{T_L - \Delta T}{T_H} - \frac{T_L}{T_H + \Delta T} \\ &= \frac{(T_L - \Delta T)(T_H + \Delta T) - T_H T_L}{T_H(T_H + \Delta T)} = \frac{T_H T_L + (\Delta T)(T_L - T_H) - T_H T_L}{T_H(T_H + \Delta T)} = \frac{\Delta T(T_L - T_H)}{T_H(T_H + \Delta T)} \end{split}$$
 The denominator is always positive, since $\Delta T > 0$, and $T_L - T_H < 0$

Therefore, $\eta_I - \eta_{II} < 0$ or $\eta_{II} > \eta_I$, we can conclude that case (b) is always better than case (a)

A balloon filled with helium at 20 °C, 100 kPa and a volume of 0.5 m³ is moving with a velocity of 15 m/s at O 2. an elevation of 0.5 km relative to an exergy reference environment for which $T_0 = 20$ °C, $p_0 = 100$ kPa. Using the ideal gas model, determine the specific exergy of the helium, in kJ/kg. Take acceleration due to gravity (g) equal to 9.8 m/s^2 .

Conceptual Q1-solution [5 marks from Simanchal]

$$e = u-u_0 + P_0(v-v_0) - T_0(s-s_0) + V^2/2 + gZ$$

$$e = C_v(T-T_0) + P_0(RT/P - RT_0/P_0) - T_0[C_pln(T/T_0) - Rln(P/P_0)] + V^2/2 + gZ - 2 Marks$$

e = 15*15/2 + 9.8*500

e = 5.0125 kJ - 2 Marks (Ans.)

Q 3. Air is flowing steadily in an insulated duct the pressure and temperature measurement of air at two stations A and B are given below. Establish the direction of the flow of air in the duct. Assuming constant specific heat of the air

Properties	A	В
Pressure (kPa)	130	100
Temperature (°C)	50	13

$$s_B$$
- s_A = 1.005 ln (T_B/T_A)-0.287 ln (pB/pA) =

 $\Delta Suniv = -0.047 \text{ kJ/kg}$

Hence the flow will be from B to A

- Q 4. Sketch the T-S and P-V diagrams for an ideal gas undergoing the following transformations, all starting from the same state (V1, P1, T1, S1). **Draw and name** two curves on T-S and two curves on P-V diagram.
 - i) Isothermal expansion to double the initial volume
 - ii) Adiabatic and reversible compression to half the initial volume

- Q 5. (a) Heat is lost through a plane wall steadily at a rate of 800 W. If the inner and outer surface temperatures of the wall are 20°C and 5°C, respectively, and the environment temperature is 0°C. What is the rate of exergy destruction within the wall?
 - (b) A block of ice melts when left in a sunny location. Does its exergy increase or decrease? Explain in one sentence.

a)
$$\frac{800}{278} - \frac{800}{293} = S_{gen} = 0.1\dot{4}7322 \ W/K$$

Exergy destruction= T0 Sgen = 40.22 W

b) Exergy of the system decreases as the system comes in thermodynamics equilibrium with the surrounding. Hence the exergy of the ice decreases as it melts.