A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 8ED

Bookmark

Show all steps: (

ON

Problem

If $\alpha = \sqrt[4]{2}$ is a real fourth root of 2, then the four fourth roots of 2 are $\pm \alpha$ and $\pm i\alpha$. Explain parts 1–6, briefly but carefully:

Compute the table of the group $Gal(\mathbb{Q}(\alpha, i) : \mathbb{Q})$ and show that it is isomorphic to D_4 , the group of symmetries of the square.

Step-by-step solution

Step 1 of 2

The objective is to compute the table of the group $Gal(\mathbb{Q}(\sqrt[4]{2},i);\mathbb{Q})$ and show that it is isomorphic to D_4 , the group of symmetries of the square.

Comment

Step 2 of 2

The Galois group of $\mathbb{Q}(\sqrt[4]{2},i)$ over \mathbb{Q} is

$$Gal(\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}) = \{id, r, r^2, r^3, s, rs, rs^2, rs^3\}$$
, where

$$id: \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \\ i \mapsto i \end{cases} \quad r: \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \\ i \mapsto i \end{cases} \quad r^2: \begin{cases} \sqrt[4]{2} \mapsto -\sqrt[4]{2} \\ i \mapsto i \end{cases} \quad r^3: \begin{cases} \sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \end{cases}$$

$$s: \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \\ i \mapsto -i \end{cases} \quad rs: \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \\ i \mapsto -i \end{cases} \quad r^2s: \begin{cases} \sqrt[4]{2} \mapsto -\sqrt[4]{2} \\ i \mapsto -i \end{cases} \quad r^3s: \begin{cases} \sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto -i \end{cases}.$$

The operation is composition *giving the table:

0	id	r	r^2	r^3	S	rs	r^2s	r^3s
id	id	r	r^2	r^3	s	rs	r^2s	r^3s
r	r	r^2	r^3	id	r^3s	r^2s	r	rs
r^2	r^2	r^3	id	r	rs	r	r^3s	r^2s
r^3	r^3	id	r	r^2	r^2s	r^3s	rs	s
s	s	r^2s	rs	r^3s	id	r^2	r	r^3
rs	rs	r^3s	s	r^2s	r^2	id	r^3	r
r^2s	r^2s	rs	r^3s	s	r^3	r	id	r^2
r^3s	r^3s	s	r^2s	rs	r	r^3	r^2	id

From the table , $r^4 = id$, $s^2 = id$

Also , $rs = sr^{-1} = sr^3$.

So , $Gal\Big(\mathbb{Q}\Big(\sqrt[4]{2},i\Big):\mathbb{Q}\Big)$ is isomorphic to D_4 , the group of symmetries of the square.

Comment