République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

> Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2020

Concours Physique et Chimie Corrigé de l'épreuve de Mathématiques

Exercice

- 1. (a) Comme $(x_n)_{n\in\mathbb{N}}$ est à valeurs positives, alors pour tout $t\geqslant 0$, on a $0\leqslant p_n\,e^{-t\,x_n}\leqslant p_n$. Or, $\sum_{n\geqslant 0}p_n$ converge, on en déduit la convergence de la série $\sum_{n\geqslant 0}p_n\,e^{-t\,x_n}$.
 - (b) Soit $t \ge 0$. D'après le théorème de transfert, la variable aléatoire e^{-tX} est d'espérance finie si et seulement si la série $\sum_{n>0} P(X=x_n)e^{-tx_n}$ converge, ce qui est le cas d'après
 - 1.(a) donc e^{-tX} est d'espérance finie et $E(e^{-tX}) = \sum_{n=0}^{+\infty} P(X = x_n) e^{-tx_n} = \sum_{n=0}^{+\infty} p_n e^{-tx_n}$.
- 2. D'après 1.(a) $\forall t \ge 0$, on a $0 \le \sum_{n=0}^{+\infty} p_n e^{-tx_n} \le \sum_{n=0}^{+\infty} p_n = 1$, donc Φ_X est à valeurs dans [0,1].

D'autre part, en posant $f_n(t) = p_n e^{-tx_n}$, pour $t \ge 0$ et $n \in \mathbb{N}$, on a :

- $\forall n \in \mathbb{N}$, f_n est continue sur $[0, +\infty[$; $\forall t \ge 0$, $|f_n(t)| \le p_n$, donc $\sup_{t \in [0, +\infty[} |f_n(t)| \le p_n$ et $\sum_{n \ge 0} p_n$ converge, on en déduit que $\sum_{n \ge 0} f_n$

converge normalement et par suite uniformément sur $[0, +\infty[$;

On conclut, par le théorème de continuité de la somme d'une série de fonctions, que Φ_X est continue sur $[0, +\infty[$.

- 3. (a) Soit $k \in \mathbb{N}^*$. On considère $\varphi : x \mapsto x^k e^{-\lambda x}$, $x \ge 0$, donc φ est positive. $\varphi'(x) = x^{k-1}e^{-\lambda x}(k-\lambda x)$, d'après son tableau de variations, φ atteint son maximum en $\frac{k}{\lambda}$, donc pour tout $x \ge 0$, on a $0 \le x^k e^{-\lambda x} \le \varphi(\frac{k}{\lambda}) = \frac{k^k}{\lambda^k} e^{-k}$.
 - (b) Avec les notations du 2. on a :
 - $-\forall n \in \mathbb{N}, f_n \text{ est de classe } \mathcal{C}^{\infty} \text{ sur }]0, +\infty[, \text{ et pour tout } k \in \mathbb{N}^*, f_n^{(k)}(t) = (-1)^k p_n x_n^k e^{-tx_n};$
 - $\sum_{n\geqslant 0} f_n$ converge simplement sur $]0,+\infty[$;
 - Convergence uniforme de $\sum_{n\geqslant 0}f_n^{(k)}$ sur tout segment $[lpha,eta]\subset]0,+\infty[$, pour $k\in\mathbb{N}^*$:

D'après 3.(a) $\forall t \in [\alpha, \beta], |f_n^{(k)}(t)| = p_n x_n^k e^{-t x_n} \le p_n \frac{k^k}{t^k} e^{-k} \le p_n \frac{k^k}{\kappa^k} e^{-k}, \text{ donc}$

 $\sup_{n>0} |f_n^{(k)}(t)| \leq M_k p_n, \text{ où } M_k = \frac{k^k}{\alpha^k} e^{-k}. \text{ Or, } \sum_{n>0} p_n \text{ converge, on en déduit que } \sum_{n\geq 0} f_n^{(k)}$

converge normalement et par suite uniformément sur $[\alpha, \beta]$;

On déduit alors que la somme $\Phi_X = \sum_{n=0}^{+\infty} f_n$ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$, avec pour tout $k \in \mathbb{N}^*$ et pour tout t > 0, $\Phi_X^{(k)}(t) = (-1)^k \sum_{n=0}^{+\infty} p_n x_n^k e^{-tx_n} = (-1)^k E(X^k e^{-tX})$.

- 4. La variable aléatoire discrète aX + b est bien à valeurs réelles positives, et on a : $\forall t \ge 0$, $\Phi_{aX+b}(t) = E\left(e^{-t(aX+b)}\right) = E\left(e^{-atX}e^{-bt}\right)$. Par linéarité de l'espérance, $\Phi_{aX+b}(t) = e^{-bt}E\left(e^{-atX}\right) = e^{-bt}\Phi_X(at)$.
- 5. $\forall t \geq 0$, e^{-tX} et e^{-tY} sont des variables aléatoires discrètes indépendantes (car X et Y sont indépendantes) et d'espérances finies, on en déduit $E\left(e^{-t(X+Y)}\right) = E\left(e^{-tX}e^{-tY}\right) = E\left(e^{-tX}\right)E\left(e^{-tY}\right)$, d'où $\Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t)$, donc $\Phi_{X+Y} = \Phi_X\Phi_Y$.
- 6. X est à valeurs dans \mathbb{N}^* , avec $P(X=n)=p(1-p)^{n-1}$, $\forall n \in \mathbb{N}^*$. D'après le théorème de transfert, e^{-tX} est d'espérance finie si et seulement si la série $\sum_{n \ge 1} P(X=n) e^{-nt}$ converge. Or $P(X=n) e^{-nt} = n e^{-t} ((1-n) e^{-t})^{n-1}$ donc e^{-tX} est d'espérance finie si et seulement si

Or, $P(X = n)e^{-nt} = pe^{-t}((1-p)e^{-t})^{n-1}$, donc e^{-tX} est d'espérance finie si et seulement si $|(1-p)e^{-t}| < 1 \Leftrightarrow t \in]\ln(1-p), +\infty[$ et pour tout $t > \ln(1-p),$

$$\underline{E(e^{-tX})} = \sum_{n=1}^{+\infty} P(X=n) e^{-nt} = p e^{-t} \sum_{n=1}^{+\infty} ((1-p) e^{-t})^{n-1} = \frac{p e^{-t}}{1 - (1-p) e^{-t}}.$$

7. (a) X est à valeurs dans \mathbb{N} , avec $P(X=n)=e^{-\lambda}\frac{\lambda^n}{n!}$. D'après le théorème de transfert, e^{-tX} est d'espérance finie si et seulement si la série $\sum_{n\geqslant 0}P(X=n)e^{-nt}$ converge. Or,

 $P(X=n)e^{-nt}=e^{-\lambda}\frac{(\lambda e^{-t})^n}{n!}$, et la série $\sum_{n\geqslant 0}\frac{(\lambda e^{-t})^n}{n!}$ converge pour tout réel t, donc e^{-tX}

est d'espérance pour tout
$$t \in \mathbb{R}$$
, avec $E(e^{-tX}) = \sum_{n=0}^{+\infty} P(X=n)e^{-nt}$

- (b) La somme de deux variables indépendantes suivant chacune une loi de Poisson de paramètres λ et μ , suit une loi de Poisson de paramètre $\lambda + \mu$. Donc, puisque les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes, leur somme S_n suit une loi de Poisson de paramètre $n\lambda$.
 - Les inégalités sont immédiates pour t = 0.

Soit t > 0, on a $(S_n \le na) = (-tS_n \ge -tna) = (e^{-tS_n} \ge e^{-tna})$. Or, e^{-tS_n} est d'espérance finie, car S_n suit la loi de Poisson de paramètre $n\lambda$, donc par l'inégalité de Markov,

$$\begin{split} &P(S_n \leqslant na) = P(e^{-tS_n} \geqslant e^{-tna}) \leqslant \frac{E(e^{-tS_n})}{e^{-tna}}, \text{ et d'après 7.(a)} \\ &E(e^{-tS_n}) = \Phi_{S_n}(t) = e^{n\lambda(e^{-t}-1)}, \text{ d'où } P(S_n \leqslant na) \leqslant e^{n\lambda(e^{-t}-1)}e^{tna} = e^{n(\lambda(e^{-t}-1)+at)}. \\ &\text{De même pour } t < 0, P(S_n \geqslant na) = P(e^{-tS_n} \geqslant e^{-tna}) \leqslant e^{n(\lambda(e^{-t}-1)+at)}. \end{split}$$

Problème 1

I Généralités

- 1. La fonction nulle $0 \in \mathbb{E}$, car $t \mapsto \frac{0}{1+t^2} = 0$ est continue et intégrable sur $[0, +\infty[$;
 - Si f et g sont dans \mathbb{E} , alors pour tout $\lambda \in \mathbb{R}$, $\lambda f + g$ est continue sur $[0, +\infty[$, et l'application $t \mapsto \frac{\lambda f(t) + g(t)}{1 + t^2} = \lambda \frac{f(t)}{1 + t^2} + \frac{g(t)}{1 + t^2}$ est intégrable sur $[0, +\infty[$, comme somme de fonctions intégrables.

Ainsi, $\mathbb E$ est un sous-espace vectoriel de $\mathcal C\left([0,+\infty[,\mathbb R),\text{ c'est donc un }\mathbb R\text{-espace vectoriel.}\right)$. D'autre part, si $f\in\mathbb B$, alors f est continue sur $[0,+\infty[$, et il existe M>0 tel que $\forall\,t\geqslant0$, $|f(t)|\leqslant M$, donc $\left|\frac{f(t)}{1+t^2}\right|\leqslant\frac{M}{1+t^2}$: intégrable sur $\mathbb R_+$, par suite $t\mapsto\frac{f(t)}{1+t^2}$ est intégrable sur $\mathbb R_+$, donc $f\in\mathbb E$.

- 2. (a) Il suffit de considérer $t_n = \frac{\pi}{2} + 2n\pi > 0$, $g(t_n) = \sqrt{t_n} \xrightarrow[n \to +\infty]{} +\infty$, donc g n'est pas bornée sur $[0, +\infty[$.
 - (b) $\forall t \ge 0$, $\left| \frac{g(t)}{1+t^2} \right| \le \frac{\sqrt{t}}{1+t^2} = h(t)$,

h est continue sur \mathbb{R}_+ , et $h(t) \sim \frac{1}{t^{3/2}}$: intégrable sur $[1, +\infty[$ car $\frac{3}{2} > 1$.

On en déduit que $h \in L^1(\mathbb{R}_+)$, donc $g \in \mathbb{E}$.

On conclut alors que $\mathbb B$ est strictement inclus dans $\mathbb E$.

- 3. Soit x > -1, on a $t \mapsto \frac{f(t)}{1+t^2+x}$ est bien définie et continue sur $[0,+\infty[$, de plus $\frac{f(t)}{1+t^2+x} \mathop{\sim}_{t\to +\infty} \frac{f(t)}{1+t^2} \text{ qui est intégrable sur } \mathbb{R}_+. \text{ On en déduit que } t \to \frac{f(t)}{1+t^2+x} \text{ est intégrable sur } \mathbb{R}_+.$
- 4. Simple par linéarité de l'intégrale.

II Propriétés de \widetilde{f}

- 1. On pose $F(x,t) = \frac{f(t)}{1+t^2+x}$, pour $(x,t) \in]-1,+\infty[\times \mathbb{R}_+,$ de sorte que $\widetilde{f}(x) = \int_0^{+\infty} F(x,t) \, dt$. On a :
 - $\forall x > -1$, $t \mapsto F(x,t)$ est intégrable sur \mathbb{R}_+ ;
 - $\forall t \ge 0, x \mapsto F(x,t)$ est de classe C^{∞} sur $]-1,+\infty[$, et pour tout $p \in \mathbb{N}^*$,

 $rac{\partial^p F}{\partial x^p}(x,t)=(-1)^p\,p!\,rac{f(t)}{(1+t^2+x)^{p+1}}$ par une récurrence simple ;

- $\forall x > -1, \forall p \in \mathbb{N}^*, t \mapsto \frac{\partial^p F}{\partial x^p}(x, t)$ est continue par morceaux sur \mathbb{R}_+ ;

- Hypothèse de domination locale : pour tout $p \in \mathbb{N}^*$, pour tout $[a,b] \subset]-1,+\infty[$, on a $\forall \ x \in [a,b], \ \forall \ t \geqslant 0, \ \left|\frac{\partial^p F}{\partial x^p}(x,t)\right| \leqslant \frac{p! \left|f(t)\right|}{(1+t^2+a)^{p+1}} = \varphi_p(t)$;

 φ_p est continue sur \mathbb{R}_+ et vérifie $\varphi_p(t) = o\left(\frac{|f(t)|}{1+t^2+a}\right)$, donc φ_p est intégrable sur \mathbb{R}_+ .

D'où \widetilde{f} est de classe C^{∞} sur $]-1,+\infty[$, et pour tout $p\in\mathbb{N}^*$, pour tout x>-1,

$$(\widetilde{f})^{(p)}(x) = \int_0^{+\infty} \frac{\partial^p F}{\partial x^p}(x, t) \, dt = (-1)^p \, p! \int_0^{+\infty} \frac{f(t)}{(1 + t^2 + x)^{p+1}} \, dt.$$

- 2. (a) $\lim_{n\to +\infty} x_n = +\infty$, donc il existe $n_0 \in \mathbb{N}$ tel que : $\forall n \geqslant n_0, x_n \geqslant 1$, donc $\widetilde{f}(x_n)$ est bien définie pour $n \geqslant n_0$. On pose alors $h_n(t) = \frac{f(t)}{1+t^2+x_n}$, $\forall t \geqslant 0$ et on applique le théorème de convergence dominée :
 - \forall *n* ≥ *n*₀, *h*_n est continue par morceaux sur \mathbb{R}_+ ;
 - $(h_n)_n$ converge simplement sur \mathbb{R}_+ vers la fonction nulle qui est continue par morceaux sur \mathbb{R}_+ ;
 - $\forall n \ge n_0, \forall t \ge 0, |h_n(t)| \le \frac{|f(t)|}{1+t^2} = \varphi(t)$, et φ est continue par morceaux et intégrable sur \mathbb{R}_+ ;

Donc, par le théorème de convergence dominée,

$$\lim_{n\to+\infty}\widetilde{f}(x_n)=\lim_{n\to+\infty}\int_0^{+\infty}h_n(t)\,dt=\int_0^{+\infty}\lim_{n\to+\infty}h_n(t)\,dt=0.$$

- (b) caractérisation séquentielle de la limite.
- 3. L'application ψ est continue sur $[0,+\infty[$. De plus, $\forall\,t\geqslant0,\,\left|\frac{\psi(t)}{1+t^2}\right|\leqslant|\psi(t)|$ et ψ est intégrable sur $[0,+\infty[$, on en déduit que $t\mapsto\frac{\psi(t)}{1+t^2}$ est intégrable sur $[0,+\infty[$, et par suite $\psi\in\mathbb{E}$. D'autre part, $x\,\widetilde{\psi}(x)=\int_0^{+\infty}\frac{(x+1+t^2)\psi(t)-(1+t^2)\psi(t)}{1+t^2+x}\,dt=\int_0^{+\infty}\psi(t)\,dt-\widetilde{g}(x)$ (*) où $g:t\mapsto(1+t^2)\psi(t)$. Or, $g\in\mathbb{E}$, car g est continue sur \mathbb{R}_+ et ψ est intégrable sur \mathbb{R}_+ .

D'après 2.(b) $\lim_{x\to +\infty}\widetilde{g}(x)=0$, ce qui entraine par (*) que $\lim_{x\to +\infty}x\,\widetilde{\psi}(x)=\int_0^{+\infty}\psi(t)\,dt$, par suite $\widetilde{\psi}(x) \underset{x\to +\infty}{\sim} \frac{1}{x}\int_0^{+\infty}\psi(t)\,dt$.

- 4. (a) Si $x \in]-1,1[$, alors $\frac{|x|}{1+t^2} \le |x| < 1$, donc $\frac{f(t)}{1+t^2+x} = \frac{f(t)}{1+t^2} \frac{1}{1+\frac{x}{1+t^2}} = \frac{f(t)}{1+t^2} \sum_{p=0}^{+\infty} \frac{(-1)^p x^p}{(1+t^2)^p}$.
 - (b) Soit $x \in]-1,1[$.

D'après ce qui précède : $\widetilde{f}(x) = \int_0^{+\infty} \sum_{p=0}^{+\infty} \frac{(-1)^p f(t) x^p}{(1+t^2)^{p+1}} dt$

On pose $u_p(t) = \frac{(-1)^p f(t) x^p}{(1+t^2)^{p+1}}$, et on applique le théorème d'intégration terme à terme :

- $\forall p \in \mathbb{N}$, u_p est intégrable sur $[0, +\infty[$, car $(1+t^2)^{p+1} \geqslant 1+t^2 > 0$ pour tout $t \geqslant 0$ donc $|u_p(t)| \leqslant \frac{|f(t)|}{(1+t^2)}$: intégrable sur $[0, +\infty[$;

- $\sum_{p\geqslant 0}u_p$ converge simplement sur $[0,+\infty[$ et sa somme est $t\mapsto \frac{f(t)}{1+t^2+x}$: continue par morceaux sur $[0,+\infty[$;
- par morceaux sur $[0, +\infty[$, -pour tous $t \ge 0$ et $p \in \mathbb{N}$, $\int_0^{+\infty} |u_p(t)| dt \le |x|^p \int_0^{+\infty} \frac{|f(t)|}{(1+t^2)^{p+1}} dt \le |x|^p \underbrace{\int_0^{+\infty} \frac{|f(t)|}{(1+t^2)} dt}_{1-t} = 0$
- $c|x|^p$ et $\sum_{p\geqslant 0}|x|^p$ converge pour $x\in]-1,1[$. Par suite, $\sum_{p\geqslant 0}\int_0^{+\infty}|u_p(t)|\,dt$ converge;

ce qui permet de conclure que
$$\widetilde{f}(x)=\int_0^{+\infty}\sum_{p=0}^{+\infty}u_p(t)\,dt=\sum_{p=0}^{+\infty}\int_0^{+\infty}u_p(t)\,dt=\sum_{p=0}^{+\infty}(-1)^p\,I_p\,x^p$$

- (c) Non, car il existe des fonctions de classe \mathcal{C}^{∞} sur $]-1,+\infty[$, qui ne sont pas développables en série entière sur]-1,1[, par exemple $t\mapsto \frac{1}{1+4t^2}$ est développable en série entière seulement sur $]-\frac{1}{2},\frac{1}{2}[$.
 - OU car il existe des fonctions de classe C^{∞} sur $]-1,+\infty[$, qui ne sont pas développables en série entière par exemple $t\mapsto \exp(-\frac{1}{t^2})$, si $t\neq 0$.

Problème 2

I Existence de matrice de G de norme minimale

1. La composante située à la *i*-ème ligne et *i*-ème colonne de tAA est $c_{i,i} = \sum_{j=1}^n a_{j,i}^2$. Ainsi, en échangeant la notation des indices

$$||A||^2 = \sum_{i=1}^n c_{i,i} = \sum_{i=1}^n \sum_{j=1}^n a_{j,i}^2 = \sum_{j=1}^n \sum_{i=1}^n a_{i,j}^2.$$

- 2. (a) L'application det est polynomiale en les composantes de la matrice donc elle est continue.
 - (b) D'après (a) l'application det est continue sur $\mathcal{M}_n(\mathbb{R})$, et $G = \{A \in \mathcal{M}_n(\mathbb{R}) / \det(A) = 1\}$, donc G est un fermé de $\mathcal{M}_n(\mathbb{R})$.
- 3. (a) Pour tout $p \in \mathbb{N}^*$ on a $\det(A_p) = 1$ d'où $A_p \in G$. De plus $||A_p|| = \sqrt{p^2 + \frac{1}{p^2} + n 2}$.
 - (b) On a $||A_p|| \xrightarrow[p \to +\infty]{} +\infty$ donc G n'est pas borné.
- 4. (a) Comme $M \in G$ donc det(M) = 1 et par suite $M \neq 0_n$. Ainsi $r = ||M|| \neq 0$.
 - (b) L'application $\|\cdot\|$ est 1-lipschitzienne donc continue, ou bien c'est une composée de fonctions continues d'après question 1.

(c) Comme $K \subset B_f(0_n, r)$ qui est bornée alors K est borné.

D'autre part, K étant une intersection de deux fermés donc c'est un fermé de $\mathcal{M}_n(\mathbb{R})$. En effet, si $(X_n)_{n\geqslant 0}$ est une suite d'éléments de K qui converge vers L, alors :

- $X_n \in G$ et G est fermé donc $L \in G$
- $X_n \in B_f(0_n, r)$ et $B_f(0_n, r)$ est fermée donc $L \in B_f(0_n, r)$

Ainsi, $L \in K$, par suite K est un fermé.

Finalement, K est un fermé borné de $\mathcal{M}_n(\mathbb{R})$.

(d) Pour tout $A \in G \setminus K$ on a ||A|| > r et si $A \in K$ on a $||A|| \le r$. Ainsi $\inf_{A \in G} ||A|| = \inf_{A \in K} ||A||$. Comme l'application $A \mapsto ||A||$ est continue sur le fermé borné K alors elle atteint sa borne inférieure dans K.

II Cas particulier où n=2

- 1. Le résultat s'obtient en calculant $\chi_A(X) = \det(XI_2 A)$.
- 2. $||A|| = \sqrt{2}$.
- 3. (a) Comme $\text{Tr}({}^tAA) = \|A\|^2 = r^2$ et $\det({}^tAA) = \det(A)^2 = 1$, alors d'après 1. $\chi_{{}^tAA}(X) = X^2 r^2X + 1$.
 - (b) La matrice tAA est symétrique réelle donc elle est diagonalisable d'après le théorème spectral. Ainsi $\chi_{{}^tAA}$ est scindé sur \mathbb{R} , donc son discriminant $\Delta = r^4 4 \ge 0$.
- 4. D'après 2. une matrice $A \in \mathcal{SO}_2(\mathbb{R})$ est une matrice dans G et de norme $\sqrt{2}$ donc $A \in K_{\sqrt{2}}$ et par suite $\mathcal{SO}_2(\mathbb{R}) \subset K_{\sqrt{2}}$.

Réciproquement, si $A \in K_{\sqrt{2}}$ alors d'après 3. $\chi_{tAA}(X) = X^2 - 2X + 1 = (X - 1)^2$. D'où $Sp(^tAA) = \{1\}$ et comme tAA est diagonalisable alors $^tAA = I_2$. Ainsi $A \in \mathcal{SO}_2(\mathbb{R})$.

III Cas général

- 1. (a) Théorème spectral.
 - (b) On a $||AV_i||^2 = \langle AV_i, AV_i \rangle = {}^tV_i {}^tAAV_i = \lambda_i ||V_i||^2 = \lambda_i > 0$ car A est inversible et donc $AV_i \neq 0$.
- 2. (a) ${}^tAU_i = \frac{1}{\sigma_i} {}^tAAV_i = \sigma_i V_i$.
 - (b) On a $A^t A U_i = \sigma_i^2 U_i = \lambda_i U_i$.
 - (c) On a $\langle U_i, U_j \rangle = \frac{1}{\sigma_i \sigma_j} {}^t V_i {}^t A A V_j = \frac{\sigma_j}{\sigma_i} {}^t V_i V_j = \frac{\sigma_j}{\sigma_i} \delta_{i,j} = \delta_{i,j}$. Comme de plus la famille est de cardinal n alors c'est une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$.

- 3. (a) Les colonnes de U (respectivement de V) forment une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$ donc ces deux matrices sont orthogonales.
 - (b) Par un calcul matriciel, la composante située sur la i-ème ligne et j-ème colonne de Σ est $\Sigma_{i,j} = {}^tU_iAV_j = \sigma_j{}^tU_iU_j = \sigma_i\delta_{i,j}$.
 - (c) On a $||A||^2 = ||U\Sigma^t V||^2 = \text{Tr}(V\Sigma^{2t}V) = \text{Tr}(\Sigma^2) = \sum_{i=1}^n \sigma_i^2$. De plus $\det(A) = \det(U\Sigma^t V) = \det(\Sigma) = \prod_{i=1}^n \sigma_i \text{ (sachant que } \det(A) = 1 > 0).$
 - (d) Une matrice $A = U\Sigma^t V \in G$ de norme minimale est une matrice telle que $\det(A) = \sigma_1 \cdots \sigma_n = 1$ et $\|A\|^2 = \sigma_1^2 + \cdots + \sigma_n^2$ soit minimale. D'après le résultat admis on a dans ce cas $\sigma_1 = \cdots = \sigma_n = 1$ d'où $A = U^t V$ est une matrice orthogonale : ${}^t A A = I_n$ et par suite $A \in \mathcal{SO}_n(\mathbb{R})$, et la valeur minimale de $\|A\| = \sqrt{n}$. Réciproquement, si $A \in SO_n(\mathbb{R})$ alors det(A) = 1 donc $A \in G$ et $\|A\| = \sqrt{Tr(tAA)} = \sqrt{Tr(I_n)} = \sqrt{n}$.