ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΙΙΙ

- Γ. Παναγόπουλος, Λέκτορας Εφαρμογών
- Δ. Κακαλέτσης, Καθηγητής

Σχεδιασμός τοιχωμάτων (μέρος 3)

Παράδειγμα σχεδιασμού τοιχώματος σε κτίριο Ο/Σ

Φορέας παραδείγματος

- Το παράδειγμα που ακολουθεί αποτελεί μέρος της διπλωματικής εργασίας του Πολιτικού Μηχανικού Παναγιώτη Αντωνιάδη και εκπονήθηκε στο Τμ. Πολ/κών Μηχ/κών του ΑΠΘ
- Αφορά ένα 9ώροφο κτίριο με την κάτοψη που φαίνεται στο παρακάτω σχήμα
- Παρουσιάζεται ο σχεδιασμός του εσωτερικού τοιχώματος στη διεύθυνση x

Παναγιώτη Σ. Αντωνιάδη (Α.Ε.Μ: 10069)

Παράδειγμα σχεδιασμού τοιχώματος σε κτίριο Ο/Σ

Φορέας παραδείγματος

- Υλικά C20, S400 (χάλυβας οπλισμού με f_{yk} =400MPa)
 - Στο παράδειγμα που επιλύθηκε πριν την έκδοση του Εθνικού Προσαρτήματος του Ευρωκώδικα 2, θεωρήθηκε α_{cc}=1.0

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 1.0 \cdot \frac{20}{1.5} = 13.33 \text{ MPa}$$

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{400}{1.15} = 347.83 \text{ MPa}$$

- Το τοίχωμα έχει διαστάσεις 30/600 (cm)
- Ο πρώτος όροφος έχει ύψος 4.50m, ενώ όλοι οι υπόλοιποι είναι 3.00m
- Ο φορέας είναι κανονικός σε κάτοψη και καθ'ύψος
- Θεώρηση υψηλής κατηγορίας πλαστιμότητας (ΚΠΥ)

Συντελεστής συμπεριφοράς q

$$q = q_0 k_{\rm w} \ge 1.5 \tag{5.1}$$

όπου

- k_w είναι συντελεστής που εκφράζει την επικρατούσα μορφή αστοχίας σε στατικά συστήματα με τοιχώματα (βλέπε (11)P της παρούσας).
- (2) Για κτίρια κανονικά σε όψη σύμφωνα με την **4.2.3.3**, οι βασικές τιμές του q_0 για τους διάφορους τύπους στατικών συστημάτων δίνονται στον Πίνακα 5.1.

Πίνακας 5.1: Βασική τιμή του συντελεστή συμπεριφοράς, q_0 , για συστήματα κανονικά σε όψη

ΤΥΠΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ	КПМ	КПҮ
Πλαισιωτό σύστημα, διπλό σύστημα, σύστημα συζευγμένων τοιχωμάτων	$3.0\alpha_{\mathrm{u}}/\alpha_{\mathrm{1}}$	$4.5\alpha_{\mathrm{u}}/\alpha_{\mathrm{1}}$
Σύστημα ασύζευκτων τοιχωμάτων	3,0	$4.0 \alpha_{ ext{u}}/lpha_{ ext{1}}$
Στρεπτικά εύκαμπτο σύστημα	2,0	3,0
Σύστημα ανεστραμμένου εκκρεμούς	1,5	2,0

διπλό σύστημα ισοδύναμο προς πλαισιωτό

διπλό σύστημα όπου η διατμητική αντοχή του πλαισιωτού συστήματος στην βάση του κτιρίου είναι μεγαλύτερη του 50% της συνολικής διατμητικής αντοχής του όλου στατικού συστήματος.

διπλό σύστημα ισοδύναμο προς σύστημα τοιχωμάτων

διπλό σύστημα όπου η διατμητική αντοχή των τοιχωμάτων στην βάση του κτιρίου είναι μεγαλύτερη από το 50% της συνολικής σεισμικής αντοχής του όλου στατικού συστήματος

- πολυώροφα πολύστυλα πλαισιωτά κτίρια ή ισοδύναμα προς αυτά διπλά συστήματα: $\alpha_{\text{u}}/\alpha_{\text{1}}=1,3$.
- Ισοδύναμα προς τοιχώματα διπλά συστήματα ή συστήματα συζευγμένων τοιχωμάτων: $\alpha_{\text{u}}/\alpha_{\text{l}}=1,2.$

$$q_0 = 4.5 \cdot \left(\frac{\alpha_u}{\alpha_1}\right) = 4.5 \cdot 1.2 = 5.4$$

Συντελεστής συμπεριφοράς q

$$k_{\rm w} = \begin{cases} 1{,}00{,}$$
για πλαισιωτά και ισοδύναμα προς πλαισιωτά συστήματα τοιχωμάτων
$$(1+\alpha_{\rm o})/3 \leq 1, \quad \text{αλλά όχι μικρότερη από 0,5, για συστήματα τοιχωμάτων,} \\ \text{ισοδύναμα προς τοιχώματα διπλά συστήματα και στρεπτικά εύστρεπτα συστήματα} \end{cases}$$

$$\alpha_{\rm o} = \sum h_{\rm wi} / \sum l_{\rm wi}$$

όπου

 h_{wi} είναι το ύψος του τοιχώματος i; και

l_{wi} είναι το μήκος της διατομής του τοιχώματος i.

$$\alpha_0 = \frac{\sum h_{wi}}{\sum l_{wi}} = \frac{2 \cdot 28.5}{2 \cdot 6} = 4.75 \quad (28.5 = \text{συνολικό ύψος του φορέα})$$

$$k_w = \frac{(1 + \alpha_0)}{3} = \frac{(1 + 4.75)}{3} = 1.917 > 1.0 \text{ συνεπώς } k_w = 1.0 \; .$$

$$q = q_0 \cdot k_w = 5.4 \cdot 1.0 = 5.4$$

Φάσμα σχεδιασμού

• Κατηγορία σπουδαιότητας ΙΙ

•
$$\gamma_1 = 1.0$$

- Ζώνη Ι
 - α_{qR} =0.16g
 - $\alpha_g = \gamma_l \cdot \alpha_{gR} = 0.16g$
- Κατηγορία εδάφους C
 - $T_R = 0.20$
 - $T_{C}=0.60$
 - S=1.15
- $T_1 = 0.714 sec$
- $S_d(T_1)=0.07158g$

Τέμνουσα βάσης – Κατανομή των σεισμικών δυνάμεων

Μάζες ορόφων (kg)			
9 05	98.56		
80G	133.04		
7°s	133.04		
6°°	133.04		
5°°	136.11		
4 09	136.9		
309	140.76		
2 09	141.95		
1 09	149.09		
Σύνολο	1202.5		

$$F_{i} = F_{b} \cdot \frac{z_{i} \cdot m_{i}}{\sum z_{j} \cdot m_{j}}$$

$$F_{\rm b} = S_{\rm d}(T_1) \cdot m \cdot \lambda$$

λ είναι συντελεστής διόρθωσης, η τιμή του οποίου ισούται με: $\lambda=0.85$ εάν $T_1\leq 2$ $T_{\rm C}$ και το κτίριο έχει πάνω από δύο ορόφους, ή $\lambda=1.0$ σε κάθε άλλη περίπτωση.

Δυνάμεις ορόφων F _i (kN)		
Στάθμη	Dual 1	
9	105.49	
8	127.41	
7	112.42	
6	97.43	
5	84.35	
4	69.41	
3	55.51	
2	39.98	
1	25.197	
Σύνολα	717.73	

$$F_{b1} = S_d(T_1) \cdot m \cdot \lambda = 0.07158 \cdot 9.81 \cdot 1202.5 \cdot 0.85 = 717.73 \text{kN}$$

Τέμνουσα βάσης – Κατανομή των σεισμικών δυνάμεων

Εντατικά μεγέθη

Εντατικά μεγέθη για το σεισμικό συνδυασμό δράσεων

Εντατικά μεγέθη τοιχώματος

Εντατικα μεγεθη τοιχωματος				
Στοιχείο	Διατομή	$E_x^+=E_x^-$		
		M (kNm)	N (kN)	V (kN)
82	Πόδας	6893.599	-3715.54	666.47
	Κεφαλή	3894.48	-3513.04	000.47
83	Πόδας	4160.696	-3235.911	500.798
	Κεφαλή	2658.30	-3100.911	300.796
84	Πόδας	3037.02	-2823.817	432.336
	Κεφαλή	1740.01	-2688.817	
85	Πόδας	2061.034	-2412.84	416.18
	Κεφαλή	812.495	-2277.84	
86	Πόδας	1149.529	-2007.703	323.631
	Κεφαλή	178.637	-1872.703	
87	Πόδας	527.057	-1600.877	303.341
	Κεφαλή	-382.96	-1465.877	303.341
88	Πόδας	-37.9	-1192.817	214.006
	Κεφαλή	-697.92	-1057.817	214.000
89	Πόδας	-350.04	-783.859	111.918
	Κεφαλή	-685.796	-648.859	111.910
90	Πόδας	-363.26	-374.329	-33.493
	Κεφαλή	-262.77	-239.329	-55.475

Τα διαγράμματα ροπών και τεμνουσών του τοιχώματος παρουσιάζονται στην επόμενη διαφάνεια

Εντατικά μεγέθη

Εντατικά μεγέθη για το σεισμικό συνδυασμό δράσεων

Διαστασιολόγηση τοιχώματος

Στάδια υπολογισμών

- Καθορισμός κρίσιμης περιοχής τοιχώματος
- Καθορισμός των ροπών και τεμνουσών σχεδιασμού (M_{Ed}, V_{Ed})
- Διαστασιολόγηση σε κάμψη
- Διαστασιολόγηση σε διάτμηση
 - Έλεγχος διαγώνιας σύνθλιψης
 - Έλεγχος διαγώνιου εφελκυσμού
 - Έλεγχος διατμητικής ολίσθησης
- Έλεγχοι εξασφάλισης πλαστιμότητας
- Κατασκευαστική διαμόρφωση

Κρίσιμη περιοχή τοιχώματος

(1) Το ύψος της κρίσιμης περιοχής $h_{\rm cr}$ πάνω από την βάση του τοιχώματος μπορεί να εκτιμηθεί ως εξής:

$$h_{\rm cr} = \max \left| l_{\rm w.} h_{\rm w} / 6 \right| \tag{5.19a}$$

αλλά

$$h_{\rm cr} \le \begin{cases} 2 \cdot l_{\rm w} \\ h_{\rm s} & \text{ για n} \le 6 \text{ ορόφους} \\ 2 \cdot h_{\rm s} & \text{ για n} \ge 7 \text{ ορόφους} \end{cases}$$
 (5.19b)

όπου

l_w πλάτος διατομής τοιχώματος.

h_w ύψος τοιχώματος.

h_s καθαρό ύψος του ορόφου πάνω από τη βάση του τοιχώματος.

$$h_{cr} = max \begin{cases} 6m \\ 28.5/6 = 4.75m \end{cases} \Rightarrow h_{cr} = 6m$$

$$h_{cr} = 6m <$$

$$\begin{cases} 2 \cdot 6 = 12m \\ 2 \cdot 4.12 = 8.24m \text{ για } n = 9 > 7 \text{ ορόφους} \end{cases}$$

Επιλέγεται ως κρίσιμη περιοχή να θεωρηθεί το ύψος των 2 πρώτων ορόφων, έτσι ώστε αυτή να μη διακόπτεται στο ενδιάμεσο του δεύτερου ορόφου. Έτσι:

$$h_{cr} = 4.5 + 3 = 7.5 m$$

Περιβάλλουσα ροπών τοιχώματος

- Το διάγραμμα καμπτικών ροπών σχεδιασμού κατά το ύψος του τοιχώματος πρέπει να προκύπτει από την περιβάλλουσα ροπών κάμψεως της ανάλυσης, με κατακόρυφη μετατόπιση
- Η περιβάλλουσα μπορεί να υποτεθεί γραμμική εφόσον ο φορέας δεν παρουσιάζει σημαντικές ασυνέχειες μάζας, δυσκαμψίας ή αντοχής κατά το ύψος του

Περιβάλλουσα ροπών τοιχώματος

- Οι τιμές των καμπτικών ροπών σε κάθε στάθμη (όροφο) καθορίζονται ξεκινώντας από το διάγραμμα ροπών για το σεισμικό συνδυασμό φόρτισης
- Οι ροπές σχεδιασμού Μ_{ed} σε κάθε στάθμη υπολογίζονται από τη γεωμετρία του σχήματος μετά την μετατόπιση

$$\begin{cases} M_{Ed}(z_i) = (M_0 - M_n) \cdot \left(1 - \frac{z_i - h_{cr}}{H}\right) + M_n & \gamma \iota \alpha z_i \ge h_{cr} \\ M_{Ed} = M_0 & \gamma \iota \alpha z_i < h_{cr} \end{cases}$$

όπου

Μο η ροπή που προέκυψε από την ανάλυση στη βάση του τοιχώματος

Μ_n η ροπή που προέκυψε από την ανάλυση στο υψηλότερο σημείο του τοιχώματος

z_i στάθμη του κάθε ορόφου μετρημένη από τη βάση του τοιχώματος

 h_{cr} κρίσιμη περιοχή τοιχώματος στη βάση του.

- Θεώρηση ορθογωνικής διατομής σε μονοαξονική κάμψη (η ένταση στην εγκάρσια διεύθυνση είναι συγκριτικά αμελητέα)
- Η ένταση στη βάση του τοιχώματος είναι: $M_{\rm Ed} = 6893.6 {\rm kN}$ και $N_{\rm Ed} = -3715.54 {\rm kN}$

$$b_{w0} = 0.30 m \\ l_w = 6.0 m$$

$$\mu_{Ed} = \frac{6893.6}{0.3 \cdot 6^2 \cdot 13333.33} = 0.048 \quad \text{kat } v_{Ed} = \frac{-3715.54}{0.3 \cdot 6 \cdot 13333.33} = -0.155$$

$$v_d \le 0.35$$

- Από το διάγραμμα αλληλεπίδρασης προκύπτει ότι $\omega_{tot} \approx 0$
- Θα τοποθετηθεί ο ελάχιστος επιτρεπόμενος οπλισμός
- Απαιτείται να προηγηθεί η εκτίμηση των διαστάσεων των κρυφοκολώνων

• Το μήκος Ι_c της κρυφοκολώνας υπολογίζεται ως εξής:

$$l_{c} = x_{u} \cdot \left(1 - \frac{\varepsilon_{cu2}}{\varepsilon_{cu2,c}}\right)$$

$$l_c \ge \max \begin{cases} 0.15 \cdot l_w \\ 1.50 \cdot b_w \end{cases}$$

- Το ποσοστό του διαμήκους οπλισμού κάθε ακραίας περιοχής δεν θα πρέπει να είναι μικρότερο από 0.005
- Η αρχική εκτίμηση για το μήκος I_c γίνεται χρησιμοποιώντας την ελάχιστη απαίτηση

$$l_c \ge \max \begin{cases} 0.15 \cdot l_w \\ 1.50 \cdot b_w \end{cases} = \max \begin{cases} 0.15 \cdot 6 = 0.9m \\ 1.50 \cdot 0.3 = 0.45m \end{cases} \Rightarrow l_c = 0.9m$$

• Ο ελάχιστος επιτρεπόμενος οπλισμός του κάθε άκρου είναι

$$A_{s,min} = 0.005 \cdot l_c \cdot b_w = 0.005 \cdot 90 \cdot 30 = 13.5 \text{cm}^2$$

- Έστω ότι οι γωνιακές ράβδοι στις κρυφοκολώνες είναι Ø12 και οι συνδετήρες είναι Ø6 $b_0 = b_w 2 \cdot c_{nom} 2 \cdot d_{bw} = 300 2 \cdot 35 2 \cdot 6 = 218 mm$
- Με δεδομένο ότι δεν επιτρέπεται οι αποστάσεις μεταξύ ράβδων που συγκρατώνται από συνδετήρες να ξεπερνούν τα 150mm για ΚΠΥ, έχουμε:

2Ø12

$$n_1 = \frac{900 - 6 - 12}{150} = 5.88 \rightarrow 6$$
 διαστήματα $\rightarrow 7$ ράβδοι $n_2 = \frac{218 - 12}{150} = 1.37 \rightarrow 2$ διαστήματα $\rightarrow 3$ ράβδοι $\frac{1_c}{s_1}$

$$s_1 = \frac{900 - 6 - 12}{6} = 147 \text{mm}$$

 $s_2 = \frac{218 - 12}{2} = 103 \text{mm} < 150 \text{mm}$

• Ο ελάχιστος επιτρεπόμενος οπλισμός του κάθε άκρου είναι

$$A_{s,min} = 0.005 \cdot l_c \cdot b_w = 0.005 \cdot 90 \cdot 30 = 13.5 cm^2$$

• Επιλέγεται αρχικά να τοποθετηθούν 4Ø12+12Ø10 (13.95cm²)

$$ω_{tot} = \frac{A_{s,tot}}{b_w \cdot l_w} \cdot \frac{f_{yd}}{f_{cd}} = \underbrace{2 \cdot 13.95}_{30 \cdot 600} \cdot \frac{347.83}{13.333} = 0.04$$

Το αξονικό φορτίο στη θέση αυτή είναι

$$v_{Ed} = \frac{-3715.54}{0.3 \cdot 6 \cdot 13333.33} = -0.155$$

- Από το διάγραμμα αλληλεπίδρασης προκύπτει ότι $~\mu_{Rd} = 0.075$
- Οπότε η ροπή αντοχής είναι: $M_{Rd} = \mu_{Rd} \cdot b_w \cdot l_w^2 \cdot f_{cd} = 0.075 \cdot 0.3 \cdot 6^2 \cdot 13333.33 = 10800 kNm$

Έλεγχος σε περίσφιξη

• Στις κρίσιμες περιοχές των τοιχωμάτων θα πρέπει να εξασφαλίζεται διαθέσιμη πλαστιμότητα καμπυλοτήτων τουλάχιστον ίση με:

$$\begin{cases} \mu_{\phi} = 2 \cdot q_0 \cdot \frac{M_{Ed}}{M_{Rd}} - 1 \quad \text{an} \quad T_1 \geq T_C \\ \mu_{\phi} = 1 + 2 \cdot \left(q_0 \cdot \frac{M_{Ed}}{M_{Rd}} - 1\right) \cdot \frac{T_C}{T_1} \quad \text{an} \quad T_1 \geq T_C \end{cases} \qquad \begin{array}{c} \text{\'othou} \\ T_1 \quad \text{Semeliading idioheriodos tou fooresta.} \\ T_C \quad \text{Carathrelatical provisions tou foorestating provisions tall provisions tall provisions and the semi-distance of the provisions of the provisions$$

Για T₁=0.714sec > T_C=0.6sec έχουμε:

$$\mu_{\phi} = 2 \cdot q_0 \cdot \frac{M_{Ed}}{M_{Rd}} - 1 = 2 \cdot 5.4 \cdot \frac{6893.6}{10800} - 1 = 5.89$$

 Το απαιτούμενο μηχανικό ογκομετρικό ποσοστό του οπλισμού περίσφιξης ω_{wd}, θα πρέπει να ικανοποιεί τη σχέση:

$$\alpha \cdot \omega_{\text{wd}} \ge 30 \cdot \mu_{\phi} \cdot (v_{\text{d}} + \omega_{\text{v}}) \cdot \varepsilon_{\text{sy,d}} \cdot \frac{b_{\text{c}}}{b_{\text{0}}} - 0.035$$

όπου

v_d το ανηγμένο αξονικό φορτίο σχεδιασμού.

ω_ν το μηχανικό ποσοστό οπλισμού του κατακόρυφου οπλισμού του κορμού. Δίνεται από την ακόλουθη σχέση:

$$\omega_{\rm v} = \rho_{\rm v} \cdot \frac{f_{\rm yd,v}}{f_{\rm cd}}$$

b_c το πλάτος της διατομής του τοιχώματος.

b₀ το πλάτος του περισφιγμένου πυρήνα σκυροδέματος των άκρων της διατομής του τοιχώματος.

α συντελεστής αποδοτικότητας της περίσφιξης (βλέπε και παράγραφο 2.10.5.3 του παρόντος).

ε_{sy,d} παραμόρφωση σχεδιασμού του χάλυβα κατά τη διαρροή.

μ_φ δείκτης πλαστιμότητας καμπυλοτήτων όπως υπολογίσθηκε παραπάνω.

Έλεγχος σε περίσφιξη

• Στην ανίσωση ορισμένα μεγέθη είναι ήδη γνωστά

$$\alpha \cdot \omega_{\text{wd}} \ge 30 \left(\mu_{\phi}\right) \left(v_{\text{d}}\right) + \omega_{\text{v}} \cdot \left(v_{\text{sy,d}}\right) \cdot \left(v_{\text{sy,d}}\right) \cdot \left(v_{\text{d}}\right) + 0.035$$

$$\varepsilon_{\text{sy,d}} = \frac{f_{\text{yd}}}{E_{\text{s}}} = \frac{347.83}{200000} = 0.00174$$

όπου

v_d το ανηγμένο αξονικό φορτίο σχεδιασμού.

ων το μηχανικό ποσοστό οπλισμού του κατακόρυφου οπλισμού του

κορμού. Δίνεται από την ακόλουθη σχέση:

 $\omega_{v} = \rho_{v} \cdot \frac{f_{yd,v}}{f_{cd}}$

b_c το πλάτος της διατομής του τοιχώματος.

 b_0 το πλάτος του περισφιγμένου πυρήνα σκυροδέματος των άκρων της

διατομής του τοιχώματος.

α συντελεστής αποδοτικότητας της περίσφιξης (βλέπε και παράγραφο

2.10.5.3 του παρόντος).

ε_{sy,d} παραμόρφωση σχεδιασμού του χάλυβα κατά τη διαρροή.

μ_φ δείκτης πλαστιμότητας καμπυλοτήτων όπως υπολογίσθηκε

παραπάνω.

• Γίνεται η θεώρηση ότι το ποσοστό του κατακόρυφου οπλισμού του κορμού ισούται με το ελάχιστο, δηλαδή ρ_ν=0.002. Επίσης η ποιότητα του χάλυβα είναι και πάλι S400

$$\omega_{\rm v} = \rho_{\rm v} \cdot \frac{f_{\rm yd,v}}{f_{\rm cd}} = 0.002 \cdot \frac{347.83}{13.33} = 0.052$$

Υπενθυμίζεται ότι για τον υπολογισμό του f_{cd} θεωρήθηκε $\alpha_{cc}=1.0$. Στο σημείο αυτό (περίσφιξη) υπάρχει συμφωνία με το Ελληνικό Εθνικό Προσάρτημα

Έλεγχος σε περίσφιξη

• Η μέγιστη απόσταση μεταξύ των συνδετήρων στις κρυφοκολώνες είναι:

$$s = min \begin{cases} b_0 / 3 = 218 / 3 = 73mm \\ 125mm \Rightarrow s = 60mm \\ 6 \cdot d_{bL} = 6 \cdot 10 = 60mm \end{cases}$$

• οπότε το ποσοστό του εγκάρσιου οπλισμού, ή καλύτερα ο όγκος των συνδετήρων προς τον όγκο του πυρήνα υπολογίζεται ως:

$$\rho_{w} = \frac{\left(7 \cdot b_{0} + 3 \cdot l_{c}\right) \cdot \frac{\pi \cdot 6^{2}}{4}}{b_{0} \cdot l_{c} \cdot s} = \frac{\left(7 \cdot 224 + 3 \cdot 900\right) \cdot 28.27}{224 \cdot 900 \cdot 60} = 0.0099$$

$$\omega_{wd} = \rho_{w} \cdot \frac{f_{yd}}{f_{c}} = 0.0099 \cdot \frac{347.83}{13.33} = 0.26 > \omega_{wd,min} = 0.12$$

• Ο συντελεστής αποδοτικότητας της περίσφιξης υπολογίζεται ως εξής:

$$\begin{split} \alpha_n = & 1 - \sum_n \frac{b_i^2}{6 \cdot b_0 \cdot l_c} = 1 - \frac{12 \cdot 147^2 + 4 \cdot 103^2}{6 \cdot 224 \cdot 900} = 0.75 \\ \alpha_s = & \left(1 - \frac{s}{2 \cdot b_0}\right) \cdot \left(1 - \frac{s}{2 \cdot l_c}\right) = \left(1 - \frac{60}{2 \cdot 224}\right) \cdot \left(1 - \frac{60}{2 \cdot 900}\right) = 0.837 \end{split}$$
 kal $\alpha \cdot \omega_{\mathrm{wd}} = 0.628 \cdot 0.26 = 0.163$

• Οπότε ο έλεγχος της περίσφιξης ικανοποιείται

$$30 \cdot \mu_{\phi} \cdot (v_d + \omega_v) \cdot \epsilon_{sy,d} \cdot \frac{b_c}{b_0} - 0.035 = 30 \cdot 5.89 \cdot (0.155 + 0.052) \cdot 0.00174 \cdot \frac{300}{224} - 0.035 = 0.05 < \alpha \cdot \omega_{wd} = 0.163$$

Τελικός υπολογισμός μήκους Ι_c

$$l_{c} = x_{u} \cdot \left(1 - \frac{\varepsilon_{cu2}}{\varepsilon_{cu2,c}}\right)$$

$$\varepsilon_{cu2} = 0.0035$$

• Η οριακή παραμόρφωση αστοχίας του περισφιγμένου σκυροδέματος είναι:

$$\varepsilon_{\text{cu}2,c} = 0.0035 + 0.1 \cdot \alpha \cdot \omega_{\text{wd}} = 0.0035 + 0.1 \cdot 0.163 = 0.0198$$

• Προσεγγιστικά, το ύψος της θλιβόμενης ζώνης λαμβάνεται:

$$x_u = (v_d + \omega_v) \cdot \frac{1_w \cdot b_c}{b_0} = (0.155 + 0.052) \cdot \frac{6 \cdot 0.3}{0.224} = 1.66 \text{m}$$

• Οπότε τελικά:

$$l_c = x_u \cdot \left(1 - \frac{\varepsilon_{cu2}}{\varepsilon_{cu2,c}}\right) = 1.66 \cdot \left(1 - \frac{0.0035}{0.0198}\right) = 1.37 \text{m} > 0.9 \text{m}$$

Τελικά: $I_c = 1.40$ m

Τελική τοποθέτηση οπλισμού κρυφοκολώνων

- Με το νέο μήκος $I_c=1.4$ m αλλάζει και ο ελάχιστος επιτρεπόμενος οπλισμός $A_{s,min}=0.005\cdot30\text{cm}\cdot140\text{cm}=21\text{cm}^2$
- και με δεδομένο ότι οι αποστάσεις των ράβδων δεν πρέπει να ξεπερνούν τα 150mm, η νέα τοποθέτηση του οπλισμού γίνεται 4Ø14+20Ø10 (21.86cm²)

- Με το νέο οπλισμό, η ροπή αντοχής προκύπτει: M_{Rd}=11520kNm
- και η απαιτούμενη τιμή του δείκτη πλαστιμότητας καμπυλοτήτων μ_φ=5.46
- Οι συνδετήρες παραμένουν Ø6/60mm

$$\alpha \cdot \omega_{\mathrm{wd}} = 0.169 > 30 \cdot \mu_{\phi} \cdot (v_{\mathrm{d}} + \omega_{\mathrm{v}}) \cdot \epsilon_{\mathrm{sy,d}} \cdot \frac{b_{c}}{b_{0}} - 0.035 = 0.044$$

Οπλισμός ανώτερων ορόφων

- Η διαμόρφωση αυτή των ακραίων περιοχών συνεχίζεται για ένα επιπλέον όροφο πάνω από την κρίσιμη περιοχή, δηλαδή τον τρίτο, με την προϋπόθεση πως θα παρέχεται τουλάχιστον η μισή περίσφιξη σε σχέση με αυτήν που παρέχεται εντός κρισίμου περιοχής.
- Έτσι η διάταξη των οπλισμών που παρουσιάζεται στο σχήμα 2.59 συνεχίζεται και στον τρίτο όροφο αλλά με καθ' ύψος απόσταση μεταξύ των εγκαρσίων οπλισμών είναι Ø6/100mm
- Το ογκομετρικό ποσοστό ω_{wd} της διάταξης αυτής προέκυψε 0.156 που είναι μεγαλύτερο από το ελάχιστο 0.12
- Στους ορόφους πάνω από τον 3°, με δεδομένο ότι οι απαιτήσεις λόγων των αναπτυσσόμενων ροπών είναι αμελητέες, τοποθετείται επίσης ο ελάχιστος απαιτούμενος οπλισμός. Επιπλέον, δεν απαιτείται η διαμόρφωση ακραίων περιοχών, όπως στην κρίσιμη περιοχή.
- Τα ελάχιστα/μέγιστα εμβαδά του κατακόρυφου οπλισμού του τοιχώματος είναι:

$$A_{s,v,min} = 0.002A_c = 0.002 \cdot 30 \cdot 600 = 36cm^2 \qquad A_{s,v,max} = 0.04A_c = 0.04 \cdot 30 \cdot 600 = 720cm^2$$

- Οι τέμνουσες σχεδιασμού των τοιχωμάτων πρέπει να λαμβάνουν υπόψη:
 - Το ενδεχόμενο σχηματισμού πλαστικής άρθρωσης στη βάση του
 - Την επιρροή των ανώτερων ιδιομορφών (για τοιχώματα με λόγο $h_w/l_w>2$)
- Οι παραπάνω απαιτήσεις θεωρείται ότι εξασφαλίζονται αν οι τέμνουσες που υπολογίστηκαν από την ανάλυση τροποποιηθούν ως εξής:

$$V_{Ed} = \epsilon \cdot V_{Ed}^{'}$$

όπου

V'_{Ed} οι τέμνουσες που προέκυψαν από την ανάλυση.

αυξητικός συντελεστής, ο οποίος υπολογίζεται με βάση την ακόλουθη σχέση

$$\epsilon = q \cdot \sqrt{\left(\frac{\gamma_{Rd}}{q} \cdot \frac{M_{Rd}}{M_{Ed}}\right)^2 + 0.1 \cdot \left(\frac{S_e(T_C)}{S_e(T_1)}\right)^2} \leq q$$

όπου

q ο δείκτης συμπεριφοράς.

 M_{Ed} η ροπή σχεδιασμού στη βάση του τοιχώματος. M_{Rd} η ροπή αντοχής της βάσεως του τοιχώματος.

γ_{Rd} συντελεστής υπεραντοχής κυρίως λόγω της επιρροής της κράτυνσης του χάλυβα. Στη περίπτωση που δεν γίνεται ακριβέστερος υπολογισμός θα λαμβάνεται ίσος με 1.2

 T_1 η θεμελιώδης ιδιοπερίοδος του φορέα (κατά τη διεύθυνση της V_{Ed}).

Τ_C χαρακτηριστική περίοδος (άνω όριο της σταθερής περιοχής) του φάσματος σχεδιασμού.

 $S_{\text{e}}(T)$ η τεταγμένη του ελαστικού φάσματος απόκρισης.

Ο συντελεστής ε δεν θα πρέπει να λαμβάνεται μικρότερος από 1.5.

• Εφαρμόζοντας τις σχέσεις:

$$q = 5.4$$

$$M_{Ed} = 6893.6 \text{kNm}$$

$$M_{Rd} = 11520 kNm$$

$$\gamma_{Rd} = 1.2$$

$$T_1 = 0.714 \sec$$

$$και T_C = 0.60 sec$$

$$\frac{S_e(T_C)}{g} = \alpha_g \cdot S \cdot n \cdot 2.5 = 0.16 \cdot 1.15 \cdot 1 \cdot 2.5 = 0.46$$

$$\frac{S_e(T_1)}{g} = \alpha_g \cdot S \cdot n \cdot 2.5 \cdot \left[\frac{T_C}{T} \right] = 0.46 \cdot \frac{0.6}{0.714} = 0.38 \text{ yid } T_1 > T_C \,.$$

Έτσι η τιμή του συντελεστή ε θα είναι:

$$\varepsilon = 5.4 \cdot \sqrt{\left(\frac{1.2}{5.4} \cdot \frac{11520}{6893.6}\right)^2 + 0.1 \cdot \left(\frac{0.46}{0.38}\right)^2} = 2.856 < q \text{ kai} > 1.5$$

Περιβάλλουσα τεμνουσών

- Σχεδιάζεται ως εξής
 - Στο κατώτερο 1/3 του ύψους του τοιχώματος, διατηρούνται οι τιμές που προέκυψαν από την ανάλυση με χρήση του μεγεθυντικού συντελεστή ε
 - Στο υπόλοιπο ύψος του κτιρίου θα έχουμε γραμμική μεταβολή του διαγράμματος των τεμνουσών σχεδιασμού από τη τιμή που αντιστοιχεί στο 1/3 του ύψος του τοιχώματος, ως τη τιμή της μισής τέμνουσας σχεδιασμού της βάσης, την οποία θεωρούμε για την κορυφή του τοιχώματος

Περιβάλλουσα τεμνουσών

- Περιλαμβάνει τους ακόλουθους ελέγχους
 - Έλεγχος έναντι συντριβής των θλιβόμενων διαγωνίων σκυροδέματος του κορμού του τοιχώματός.
 - Έλεγχος έναντι λοξού εφελκυσμού του σκυροδέματος του κορμού του τοιχώματος.
 - Έλεγχος έναντι διατμητικής ολίσθησης

Έλεγχος έναντι συντριβής των θλιβόμενων διαγωνίων σκυροδέματος

- Υπολογίζεται η τέμνουσα αντοχής V_{Rd,max}
 - Εκτός κρίσιμης περιοχής (θεώρηση z=0.8l_w)
 - Εντός κρίσιμης περιοχής: Το 40% της τιμής που υπολογίστηκε εκτός κρίσιμης
- Στο παράδειγμα θεωρείται ότι cotθ=1.0

Εκτός κρίσιμης

$$V_{Rd,max} = \alpha_{cw} \cdot b_{w} \cdot z \cdot v_{1} \frac{f_{cd}}{\cot \theta + \tan \theta} =$$

$$= 1 \cdot 0.3 \cdot (0.8 \cdot 6) \cdot 0.552 \cdot \frac{13333}{1+1} = 5299.2 \text{kN}$$

Από την περιβάλλουσα παρατηρείται ότι σε καμία θέση η τέμνουσα δεν υπερβαίνει την παραπάνω τιμή

Εντός κρίσιμης

$$V_{Rd,max} = 40\% \cdot 5299.2 = 2119.68 \text{kN}$$

Από την περιβάλλουσα παρατηρείται ότι η τέμνουσα στο ισόγειο είναι 1903.5kN, οπότε ο έλεγχος ικανοποιείται

Έλεγχος έναντι λοξού εφελκυσμού

• Υπολογίζεται ο λόγος διάτμησης $\alpha_{\rm s}$ και η τιμή του συγκρίνεται με το 2.0

$$\alpha_s = \frac{M_{Ed}}{V_{Ed} \cdot l_w}$$

- Για $\alpha_{\rm s} \ge 2.0$ υπολογίζεται η τέμνουσα αντοχής ${\sf V}_{\sf Rd,s}$ όπως σε δοκούς και στύλους
- Για $α_s < 2.0$ ισχύουν τα εξής:
- α. Οι οριζόντιες ράβδοι του κορμού θα πρέπει να ικανοποιούν την ακόλουθη έκφραση:

$$V_{Ed} \le V_{Rd,c} + 0.75 \cdot \rho_h \cdot f_{yd,h} \cdot b_{w0} \cdot \alpha_s \cdot l_w$$

όπου

ρ_h το γεωμετρικό ποσοστό των οριζοντίων οπλισμών του κορμού (ρ_h = $A_h/(b_{w0}\cdot s_h)$)

 $f_{yd,h}$ η αντοχή σχεδιασμού του χάλυβα των οριζοντίων ράβδων του κορμού του τοιχώματος.

V_{Rd,c} η τιμή σχεδιασμού της αντοχής έναντι διατμήσεως δομικών στοιχείων χωρίς οπλισμό διάτμησης.
 Η τιμή του όρου V_{Rd,c} θα λαμβάνεται ίση με μηδέν εντός της κρισίμου περιοχής του τοιχώματος αν το αξονικό φορτίο N_{Ed}είναι εφελκυστικό.

b. Οι κατακόρυφες ράβδοι του κορμού πρέπει να ενώνονται και να αγκυρώνονται κατά το ύψος του τοιχώματος ενώ θα πρέπει να ικανοποιούν και την ακόλουθη έκφραση:

$$\rho_h \cdot f_{yd,h} \cdot b_{w0} \cdot z \leq \rho_v \cdot f_{yd,v} \cdot b_{w0} \cdot z + min \, N_{Ed}$$

όπου

 $ρ_v$ το γεωμετρικό ποσοστό των κατακόρυφων οπλισμών του κορμού $(ρ_v=A_v/(b_{w0}\cdot s_v))$.

 $f_{yd,v}$ η αντοχή σχεδιασμού του χάλυβα των κατακόρυφων ράβδων του κορμού του τοιχώματος.

ενώ η τιμή του αξονικού φορτίου N_{Ed} λαμβάνεται θετική αν το φορτίο είναι θλιπτικό.

• Ελάχιστο ποσοστό οπλισμού κορμού (κατακόρυφη και οριζόντια διεύθυνση):

$$ρ_{v.min} = ρ_{h.min} = 0.002$$
 $s_v \dot{\eta} s_h = min$

$$\begin{cases}
250mm \\
25 \cdot (διάμετρο των ράβδων)
\end{cases}$$
Ελάχιστη διάμετρος: Ø8

Έλεγχος έναντι λοξού εφελκυσμού

• Οι τιμές του λόγου διάτμησης $\alpha_{\rm s}$ σε κάθε στάθμη είναι:

$$\alpha_{s} = \frac{M_{Ed}}{V_{Ed} \cdot l_{w}}$$

Λόγος διατμήσεως α _s			
όροφος	a_s		
105	1.72		
209	1.38		
30g	1.17		
4 05	0.82		
5ος	0.59		
6°s	0.29		
7°s	0.53		
8°°	1.02		
9°s	1.81		

• Οριζόντιος οπλισμός κορμού στο ισόγειο

$$V_{\text{Rd,c}} = max \begin{cases} \left[C_{\text{Rd,c}} \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} + k_1 \cdot \sigma_{cp} \right] \cdot b_w \cdot d \\ \left(v_{\text{min}} + k_1 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \end{cases}$$

όπου

 f_{ck} of MPa

$$k = 1 + \sqrt{\frac{200}{d}} \le 2.0$$

με το στατικό ύψος d σε mm. Έτσι θα είναι:

$$d = l_w - c_{nom} - \frac{d_{bw}}{2} - \frac{l_c}{2} = 6000 - 35 - \frac{8}{2} - \frac{1400}{2} = 5261 \text{mm}$$

(θεωρήσαμε ότι το στατικό ύψος d εκτείνεται ως το κέντρο της περισφιγμένης περιοχής του άκρου του τοιχώματος)

$$k = 1 + \sqrt{\frac{200}{5261}} = 1.195 < 2.0$$

$$\rho_1 = \frac{A_{s1}}{b_{...} \cdot d} \le 0.02$$

όπου A_{s1} είναι το εμβαδόν του εφελκυόμενου οπλισμού. Για την περίπτωσή μας θα θεωρηθεί ως το εμβαδόν των διαμήκων οπλισμών του ενός περισφιγμένου άκρου:

$$\rho_1 = \frac{21.86}{30 \cdot 526.1} = 0.00138 < 0.02$$

 b_{w} το πλάτος της εφελκυόμενης παρειάς του τοιχώματος = 300 mm

$$\sigma_{\rm cp} = \frac{N_{\rm Ed}}{A} < 0.2 f_{\rm cd} \, (\sigma \epsilon \, {\rm MPa})$$

όπου N_{Ed} είναι το αξονικό φορτίο σχεδιασμού της διατομής του τοιχώματος σε N (θετικό για θλίψη) και A_c είναι το εμβαδόν της διατομής του τοιχώματος (σε mm^2). Για τη βάση του τοιχώματος θα είναι:

$$\sigma_{cp} = \frac{3715.54 \cdot 1000}{6000 \cdot 30} = 2.064 \text{MPa} < 0.2 \cdot 13.33 = 2.667 \text{MPa}$$

$$C_{\text{Rd,c}} = \frac{0.18}{v_c} = \frac{0.18}{1.5} = 0.12$$

$$k_1 = 0.15$$

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{st}^{1/2} = 0.035 \cdot 1.195^{3/2} \cdot 20^{1/2} = 0.204$$

Έλεγχος έναντι λοξού εφελκυσμού

• Οριζόντιος οπλισμός κορμού στο ισόγειο

Έτσι η αντοχή σχεδιασμού έναντι διατμήσεως της διατομής του τοιχώματος χωρίς τη χρήση οπλισμού διάτμησης θα είναι:

$$V_{Rd,c} = max \begin{cases} [0.12 \cdot 1.195(100 \cdot 0.00138 \cdot 20)^{1/3} + 0.15 \cdot 2.064]300 \cdot 5261 \\ (0.204 + 0.15 \cdot 2.064) \cdot 300 \cdot 5261 \end{cases} \Rightarrow$$

$$V_{Rd,c} = max \begin{cases} 806566.33 \text{ N} \\ 811395.56 \text{ N} \end{cases} = 811.39 \text{ kN}$$

Για το 2° μέρος της παρακάτω σχέσης θεωρείται ότι τοποθετείται το ελάχιστο ποσοστό ρ_h=0.002

$$V_{\text{Ed}} \leq V_{\text{Rd,c}} + 0.75 \cdot \rho_h \cdot f_{\text{yd,h}} \cdot b_{\text{w0}} \cdot \alpha_{\text{s}} \cdot l_{\text{w}}$$

$$V_{Rd,c} + 0.75 \cdot \rho_h \cdot f_{yd,h} \cdot b_{w0} \cdot \alpha_s \cdot l_w =$$

$$811.39 + 0.75 \cdot 0.002 \cdot \frac{400}{1.15} \cdot 1000 \cdot 0.3 \cdot 1.72 \cdot 6 = 2426.7 \text{kN}$$

και

$$V_{Ed} = 1903.5kN < 2426.7kN$$

$$d_{h} = \begin{cases} \ge 8 \text{ mm} \\ \le (1/8) \cdot b_{w0} = (1/8) \cdot 300 = 37.5 \text{mm} \end{cases}$$

$$s_h = min \begin{cases} 250 \text{ mm} \\ 25 \cdot 8 = 200 \text{mm} \end{cases} \Rightarrow s_{h,max} = 200 \text{ mm}$$

Προκειμένου να εξασφαλίσουμε το ελάχιστο γεωμετρικό ποσοστό (το οποίο αποδείχθηκε επαρκές) , η απόσταση των ράβδων θα πρέπει να είναι:

$$s_h = \frac{A_h}{\rho_h \cdot b_{w0}} = \frac{2 \cdot 50.26}{0.002 \cdot 300} = 167 \text{mm} < 200 \text{mm}$$

Τοποθετείται: Ø8/160mm

Έλεγχος έναντι λοξού εφελκυσμού

• Κατακόρυφος οπλισμός κορμού στο ισόγειο

Ο έλεγχος αφορά τη σχέση:
$$\rho_h \cdot f_{yd,h} \cdot b_{w0} \cdot z \leq \rho_v \cdot f_{yd,v} \cdot b_{w0} \cdot z + \min N_{Ed}$$

Θεωρείται ότι τοποθετείται το ελάχιστο ποσοστό ρ,=0.002

$$\begin{split} & \rho_h \cdot f_{yd,h} \cdot b_{w0} \cdot z = 0.002 \cdot \frac{400}{1.15} \cdot 1000 \cdot 0.3 \cdot (0.8 \cdot 6) = 1001.74 kN \\ & \text{kal} \\ & \rho_v \cdot f_{yd,v} \cdot b_{w0} \cdot z + \min N_{Ed} = \\ & 0.002 \cdot \frac{400}{1.15} \cdot 1000 \cdot 0.3 \cdot (0.8 \cdot 6) + 3715.54 = 4717.3 kN > 1001.74 \end{split}$$

Ο ελάχιστος κατακόρυφος οπλισμός είναι επαρκής. Τοποθετείται: Ø8/160mm

• Ο ίδιος οριζόντιος και κατακόρυφος οπλισμός κορμού τοποθετείται και στους υπόλοιπους ορόφους (μικρότερη ένταση, ελάχιστος οπλισμός)

Έλεγχος έναντι διατμητικής ολίσθησης

Σε όλες τις θέσεις της κρίσιμης περιοχής ενός τοιχώματος όπου αναμένεται αστοχία από διατμητική ολίσθηση (π.χ η βάση του τοιχώματος και οι κατασκευαστικοί αρμοί) θα πρέπει να εξασφαλίζεται πως:

$$V_{Ed} \le V_{Rd,S}$$

όπου ως V_{Rd,S} ορίζεται η αντοχή σχεδιασμού του τοιχώματος έναντι διατμητικής ολίσθησης.

Η τιμή της $V_{Rd,S}$ υπολογίζεται ως ακολούθως:

$$V_{Rd,S} = V_{dd} + V_{id} + V_{fd}$$

όπου

$$V_{dd} = min \begin{cases} 1.3 \cdot \sum A_{sj} \cdot \sqrt{f_{cd} \cdot f_{yd}} \\ 0.25 \cdot f_{yd} \cdot \sum A_{sj} \end{cases}$$

$$V_{id} = \sum A_{si} \cdot f_{yd} \cdot \cos \phi$$

$$V_{fd} = min \begin{cases} \mu_f \cdot [(\sum A_{sj} \cdot f_{yd} + N_{Ed}) \cdot \xi + \frac{M_{Ed}}{z}] \\ 0.5 \cdot n \cdot f_{cd} \cdot \xi \cdot l_w \cdot b_{w0} \end{cases}$$

Έλεγχος έναντι διατμητικής ολίσθησης

V_{dd} η αντοχή λόγω της δράσης βλήτρου των κατακορύφων οπλισμών

V_{id} η αντοχή έναντι διάτμησης των κεκλιμένων ράβδων που σχηματίζουν γωνία φ με το ενδεχόμενο επίπεδο διατμητικής ολίσθησης.

V_{fd} η αντίσταση λόγω τριβής

μ_f συντελεστής τριβής μεταξύ επιφανειών σκυροδέματος λόγω ανακυκλιζόμενης φόρτισης. Μπορεί να θεωρηθεί ίσος με 0.6 για ομαλές επιφάνειες και 0.7 για τραχείες.

z ο μοχλοβραχίονας των εσωτερικών δυνάμεων

ξ η ανηγμένη τιμή του ύψους του ουδέτερου άξονα της διατομής.

ΣΑ_{sj} το άθροισμα όλων των κατακόρυφων ράβδων του κορμού και όλων των πρόσθετων ράβδων που τοποθετούνται για το σκοπό αυτό (αντίσταση έναντι διατμητικής ολίσθησης) στις ακραίες περιοχές του τοιχώματος.

ΣΑ_{si} το άθροισμα όλων των κεκλιμένων ράβδων ως προς οποιαδήποτε διεύθυνση. Συνίσταται η χρήση ράβδων μεγάλης διαμέτρου.

$$n = 0.6 \cdot \left(1 - \frac{f_{ck}}{250}\right)$$

όπου το f_{ck} εισάγεται σε MPa.

N_{Ed} λαμβάνεται θετικό όταν είναι θλιπτικό.

Έλεγχος έναντι διατμητικής ολίσθησης

• Έλεγχος στη βάση του τοιχώματος

Αντοχή λόγω της δράσης βλήτρου των κατακόρυφων οπλισμών

Ο κατακόρυφος οπλισμός του κορμού αποτελείται από ράβδους διαμέτρου 8 mm ανά αποστάσεις 160 mm (3.14 cm²/m) και τοποθετείται και στις δύο όψεις του τοιχώματος. Ο απαιτούμενος οπλισμός των ακραίων περιοχών προέκυψε αμελητέος συνεπώς μπορούμε να θεωρήσουμε πως ο τοποθετούμενος (21.86 cm² ανά πλευρά) μπορεί να συνεισφέρει στην αντίσταση του τοιχώματος έναντι διατμητικής ολίσθησης. Έτσι θα είναι:

$$\sum A_{sj} = 2 \cdot 21.86 + 2 \cdot 3.14 \cdot (l_w - 2 \cdot c_{nom} - d_{bw} - 2 \cdot l_c) = 63.74 cm^2$$

$$V_{dd} = min \begin{cases} 1.3 \cdot 63.74 \cdot \sqrt{\frac{20}{1.5} \cdot \frac{400}{1.15}} \cdot \frac{1}{10} = 564.3 \text{kN} \\ 0.25 \cdot \frac{400}{1.15} \cdot 63.74 \cdot \frac{1}{10} = 554.26 \text{kN} \end{cases} \Rightarrow V_{dd} = 554.26 \text{kN}$$

Έλεγχος έναντι διατμητικής ολίσθησης

• Έλεγχος στη βάση του τοιχώματος

Αυτοχή λόγω της τριβής μεταξύ των επιφανειών σκυροδέματος

$$\begin{split} &\mu_{\phi} = 0.6 \, (\, \delta \text{uschesterso}) \\ &z = 0.8 \cdot l_{\rm w} = 0.8 \cdot 6 = 4.8 m \\ &\xi = \frac{x_{\rm u}}{l_{\rm w}} = \frac{1.66}{6} = 0.276 \\ &N_{Ed} = 3715.54 kN \\ &M_{Ed} = 6893.6 kNm \\ &n = 0.6 \cdot \left(1 - \frac{20}{250}\right) = 0.552 \end{split}$$

$$V_{\text{fd}} = min \begin{cases} 0.6 \cdot [(63.74 \cdot \frac{400}{1.15} \cdot \frac{1}{10} + 3715.54) \cdot 0.276 + \frac{6893.6}{4.8}] = 1844.1 \text{kN} \\ 0.5 \cdot 0.552 \cdot \frac{20}{1.5} \cdot 1000 \cdot 0.276 \cdot 6 \cdot 0.3 = 1828.2 \text{kN} \end{cases}$$

Έλεγχος έναντι διατμητικής ολίσθησης

• Έλεγχος στη βάση του τοιχώματος

Παρατηρούμε πως ακόμη και αν δεν υπολογίσουμε τον όρο που αντιστοιχεί στη αντοχή έναντι διατμητικής ολίσθησης λόγω των κεκλιμένων οπλισμών θα είναι:

$$V_{Ed} = 1903.5 kN < V_{dd} + V_{fd} = 554.26 + 1828.2 = 2382.46 kN$$

Συμπεραίνουμε δηλαδή πως δεν απαιτείται κεκλιμένος οπλισμός στη βάση του τοιχώματος