

Definición

- Un objeto se define como recursivo cuando una parte de él está formada por el objeto mismo.
- La recursividad puede aplicarse en diversos aspectos de la vida cotidiana, tales como las imágenes, el idioma y también en la programación.

Definiciones recursivas

- Un *identificador* es un nombre definido por el programador para denominar una variable o función.
- Algunas de las reglas que deben cumplir los identificadores pueden expresarse en forma recursiva.

© Lie. Ricarde Thempsen

Definiciones recursivas

Un identificador en Python es:

- Una letra o guión bajo.
- Un identificador seguido por una letra, número o guión bajo.

Funciones recursivas

- La recursividad aplicada a la programación se manifiesta en forma de funciones en las que una parte del trabajo lo realiza la misma función.
- En otras palabras, son funciones que se invocan *a si mismas*.

@ Lie. Ricarde Thempsen

Función factorial

$$fact(3) = 3 * 2 * 1 \rightarrow fact(4) = 4 * fact(3)$$

$$fact(2) = 2 * 1$$
 \rightarrow $fact(3) = 3 * fact(2)$

Función factorial

Generalizando:

- fact(n) = n * fact(n-1)
- fact(0) = 1 (por convención)

© Lic. Ricarde Thempsen

Función factorial

```
def fact(n):
    if n==0:
        return 1
    else:
        return n * fact(n-1)

# Programa principal
a=int(input("Ingrese un número entero: "))
print("El factorial de", a, "es", fact(a))
```

Función factorial

Prueba de escritorio para n = 4

```
def fact(n):
    if n = = 0:
        return 1
    else:
        return n * fact(n-1)
        return n * fact(n-1)
        return n * fact(n-1)
```

@ Lie. Ricarde Thempsen

Función factorial

Prueba de escritorio para n = 4

def fact(n):	n	fact(n)
if n==0:	4	4 * fact(3) = 24
return 1	3	4 * fact(3) = 24 3 * fact(2) = 6 2 * fact(1) = 2 1 * fact(0) = 1
else:	2	2 * fact(1) = 2
return n * fact(n-1)	1	1 * fact(0) = 1
	0	1

© Lie. Ricarde Thempsen

Función factorial

```
def fact(n):
    if n==0:
        return 1
    else:
        return n * fact(n-1)
        Caso base
        Caso recursivo
        return n * fact(n-1)
```

a=int(input("Ingrese un número entero: '
print("El factorial de", a, "es", fact(a))

@ Lie. Ricarde Thempsen

Función factorial

- El caso recursivo es donde se realizan las llamadas recursivas. Suele ser el más común, es decir el que se ejecuta la mayoría de las veces.
- El caso base es donde se realiza una salida no recursiva. Suele ser único, o limitado a pocas alternativas.

Prueba de escritorio para n = -1

```
def fact(n):

if n = = 0:

return 1

else:

return n * fact(n-1)

n fact(n)

-1 -1 * fact(-2)

-2 -2 * fact(-3)

-3 * fact(-4)

-4 * fact(-5)

[...]
```

© Lie. Ricarde Thempsen

Función factorial

Prueba de escritorio para n = -1

RecursionError:

maximum recursion depth exceeded in comparison

© Lie. Ricarde Thempsen

"Divide y Vencerás"

- Es una técnica que ayuda a determinar si un problema es adecuado para recibir una solución recursiva.
- Consiste en particionar el problema global en problemas más pequeños, y volverlos a particionar hasta llegar a una solución elemental.

© Lic. Ricarde Thempsen

Potencia de un Nº natural

•
$$2^4 = 2 * 2 * 2 * 2$$

•
$$2^3 = 2 * 2 * 2$$

$$2^3 = 2 * 2 * 2$$
 \Rightarrow $2^4 = 2 * 2^3$

•
$$2^2 = 2 * 2$$

$$\rightarrow$$
 2³ = 2 * 2²

Iteraciones y recursividad

Prueba de escritorio para n = 100

def imprimir(n):	n	Imprime
if n>0:	100	100
ino primain(p. 1)	99	99
imprimir(n-1)	98	98
print(n, end=" ")		[]
	2	2
iii(100)	1	1
imprimir(100)	0	

@ Lic. Ricarde Thempsen

- Es una sucesión infinita de números naturales.
- Comienza con 0 y 1.
- A partir de allí cada término se calcula sumando los dos anteriores:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

© Lie. Ricarde Thempsen

Fibonacci

Formulación recursiva:

- fib(n) = fib(n-1) + fib(n-2)

fib(0) = 0 fib(1) = 1

Casos base

- Muchas operaciones sobre listas se realizan a través de ciclos.
- Como los ciclos pueden ser reemplazados por llamadas recursivas, es posible implementar cualquiera de estas operaciones a través de recursividad.

@ Lic. Ricarde Thempsen

Listas y Recursividad

def imprimirlista(lista, inicio=0):

if inicio < len(lista):

print(lista[inicio], end=" ")

imprimirlista(lista, inicio+1)

...que se invoca como:

imprimirlista(lista)

@ Lie. Ricarde Thempsen

Listas y Recursividad

Programa completo

```
def buscarmayor(lista, inicio=0):
  if inicio < len(lista)-1:
    actual = lista[inicio]
    mayor = buscarmayor(lista, inicio+1)
    return actual if actual>mayor else mayor
    return lista[-1] # Último elemento
def imprimirlista(lista, inicio=0):
  if inicio < len(lista):
    print(lista[inicio], end=" ")
    imprimirlista(lista, inicio+1)
# Programa principal
lista = [2,7,5,4,9,0,8,6]
imprimirlista(lista)
print()
maximo = buscarmayor(lista)
print("El mayor elemento de la lista es", maximo)
```

@ Lic. Ricarde Thempsen

- Es un pasatiempo que se presentó en Europa en 1883.
- El entretenimiento intenta reproducir una tarea que, según la leyenda, vienen desarrollando los monjes del templo de Brahma en la India.

@ Lie. Ricarde Thempsen

El objetivo del juego consiste en trasladar la torre de 64 discos desde la aguja 1 a la aguja 3, respetando sólo dos reglas básicas:

@ Lic. Ricarde Thempsen

Las Torres de Hanoi

- 1. No se puede mover más de un disco por vez.
- 2. No se puede colocar un disco de mayor tamaño encima de otro de menor tamaño.

- La tarea es tan larga que aún hoy los monjes continúan con ella.
- Según la leyenda, cuando terminen de trasladar la pirámide habrá llegado el fin del mundo.

@ Lic. Ricarde Thempsen

Las Torres de Hanoi

```
def mover(n, origen, destino, aux):

if n>0:

mover(n-1, origen, aux, destino)

print("Muevo un disco de",origen,"a",destino)

mover(n-1, aux, destino, origen)
```

Programa principal

discos=int(input("Cantidad de discos? "))
mover(discos, 1, 3, 2)

© Lic. Ricarde Thempsen

Las Torres de Hanoi

- La cantidad óptima de movimientos está dada por la fórmula 2ⁿ – 1, donde n es la cantidad de discos.
- Si n=64, 2⁶⁴ 1 =

18.446.744.073.709.551.615

(≈ 18.4 trillones de movimientos)

Para tener en cuenta

- Nunca debe verificarse el caso base mediante while o for.
- Las variables locales tienen una utilidad acotada.
- Es necesario utilizar parámetros adicionales para comunicar valores entre distintas llamadas recursivas.

