Improving the Generalization Performance of Multi-class SVM via Angular Regularization

Jianxin Li¹, Haoyi Zhou¹, Pengtao Xie^{2,3}, Yingchun Zhang¹

¹ Beihang University, ² Carnegie Mellon University, ³ Petuum Inc

. ABSTRACT

In multi-class support vector machine (MSVM) for classification, one core issue is to regularize the coefficient vectors to reduce overfitting. Various regularizers have been proposed such as L₂, L₁, and trace norm. In this paper, we introduce a new type of regularization approach -- angular regularization, that encourages the coefficient vectors to have larger angles such that class regions can be widen to flexibly accommodate unseen samples. We propose a novel angular regularizer based on the singular values of the coefficient matrix, where the uniformity of singular values reduces the correlation among different classes and drives the angles between coefficient vectors to increase. In generalization error analysis, we show that decreasing this regularizer effectively reduces generalization error bound. On various datasets, we demonstrate the efficacy of the regularizer in reducing overfitting.

II. OVERVIEW

Multi-class SVM classification (K > 2 classes):

• Crammer and Singer (2001)

Analyzable formulation

Multiple kernelization

- One-Against-ALL
- One-Against-One
- Directed acyclic graph SVM

Multi-class SVM formulation:

$$\min_{\mathbf{W}} P(\mathbf{W}) \triangleq \min_{\mathbf{W}} \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{W}; (\mathbf{x}_i, y_i))$$

$$L(\mathbf{W}; (\mathbf{x}_i, y_i)) = \max(0, 1 + \mathbf{w}_{R_i}^T \cdot \mathbf{x}_i - \mathbf{w}_{y_i}^T \cdot \mathbf{x}_i),$$
where $\mathbf{P} = \text{argmax } \mathbf{w}_{R_i}^T \cdot \mathbf{x}_i$

where $R_i = \underset{k \in \mathcal{Y}, k \neq y_i}{\operatorname{argmax}} \mathbf{w}_k^T \cdot \mathbf{x}_i$.

Multi-class SVM with norm-based Regularization:

• L1-norm (Bradley et al, 1998; Wang et al, 2012),

$$\min_{\mathbf{W}} \lambda \|\mathbf{W}\|_1 + \frac{1}{m} \sum_{i=1}^m L(\mathbf{W}; (\mathbf{x}_i, y_i))$$
• L2-norm (Weston et al, 1999; Guermuer, 2002),
$$\min_{\mathbf{W}} \frac{\lambda}{2} \|\mathbf{W}\|_2^2 + \frac{1}{m} \sum_{i=1}^m L(\mathbf{W}; (\mathbf{x}_i, y_i))$$

• Doubly-norm (Wang et al, 2006)

norm (wang et al, 2006)
$$\min_{\mathbf{W}} \lambda_1 \|\mathbf{W}\|_1 + \frac{\lambda_2}{2} \|\mathbf{W}\|_2^2 + \frac{1}{m} \sum_{i=1}^m L(\mathbf{W}; (\mathbf{x}_i, y_i))$$

Angular perspective to reduce Overfitting:

Table 1: Classification Accuracy of MSVM- ℓ_2

Dataset	Yeast	Usps	YaleB
Dim. of Features	8	256	1024
Train Accuracy (%)	57.23	97.31	97.70
Test Accuracy (%)	52.00	90.48	93.25

(a) Unregularized MSVM (b) Angular regularized MSVM

METHODS

Desirable diversity measure:

INVARIANT to scale, translation, rotation and orientation of the two hyperplanes.

Angular Regularizer (AR):

The negative of the minimum angle:

$$\mathcal{R}(\mathbf{W}) = -\min_{i \neq j} \theta_{ij}$$

- Pros: directly encourages theses coefficient vectors to have larger angles, and this definition facilitates theoretical analysis.
- Cons: non-smooth (similar to the one in Xie et al, 2015).

Decorrelation Regularizer (DR):

Given two hyperplanes (h_i and h_i), we can treat i and j as two random variables:

A set of hyperplanes' weights vectors W can be reformulated as full-rank matrix with rank K < D: $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_K]$.

We compute the full-rank $K \times K$ Gram matrix $G = W^TW$, and

variability of points along that direction.

We define a probability distribution of the eigenvalues $p(X=i) = \frac{\lambda_i}{\sum_{j=1}^K \lambda_j}$ (normalization)

If p(X) is close to uniform distribution $q(X = i) = \frac{1}{K}$, hyperplanes diversified. And we measure it by Kullback-Leibler divergence:

$$KL(q||p) = \sum_{i=1}^{K} \frac{1}{K} \log \frac{1/K}{\lambda_i / \sum_{j=1}^{K} \lambda_j}$$
$$= \log \sum_{j=1}^{K} \lambda_j - \frac{1}{K} \sum_{i=1}^{K} \log \lambda_i - \log K$$

Using two facts $tr(\mathbf{G}) = \sum_{j=1}^{K} \lambda_j$ and $det(\mathbf{G}) = \prod_{i=1}^{K} \lambda_i$, we have

$$KL(q||p) = \log \operatorname{tr}(\mathbf{W}^{\top}\mathbf{W}) - \frac{1}{K} \log \det(\mathbf{W}^{\top}\mathbf{W}) + \log K$$
 Dropped

The Decorrelation Regularizer is

$$\widehat{\mathcal{R}}(\mathbf{W}) = \log \operatorname{tr}(\mathbf{W}^{\top}\mathbf{W}) - \frac{1}{K} \log \det(\mathbf{W}^{\top}\mathbf{W})$$

Theorem 1. Let $\nabla \widehat{\mathcal{R}}$ be the gradient of $\widehat{\mathcal{R}}(\mathbf{W})$ w.r.t \mathbf{W} . $\exists \kappa > 0$, such that $\forall \eta \in (0, \kappa), \ \mathcal{R}(\mathbf{W} - \eta \nabla \widehat{\mathcal{R}}) \leq \mathcal{R}(\mathbf{W}).$

OPTIMIZATION

An Angle-regularized MSVM (AR-MSVM)

Objective function for Optimization

$$\min_{\mathbf{W}} \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 + \mathbf{w}_{r_i}^{\top} \mathbf{x}_i - \mathbf{w}_{y_i}^{\top} \mathbf{x}_i) + \frac{\lambda}{2} ||\mathbf{W}||_2^2 + \frac{\beta}{2} \widehat{\mathcal{R}}(\mathbf{W})$$

Optimizing method: Pegasos-style Stochastic sub-gradient method (Shalev-Shwartz et al., 2011; Wang et al., 2010).

EXPERIMENTAL RESULTS

Case study: Intuitive experiments

Multi-class Classification

Datasets:

Table 2: Statistics of Datasets					
Dataset	#Classes	#Train	#Test	#Features	 10 random train/test splits
YaleB	38	1500	914	1024	 Parameters is tuned via 5-fold
ImageNet-50	50	30K	10K	128	Farameters is tuned via 3-1010
Covtype	7	100K	40K	54	• Results is averaged over 10 run
Shuttle	7	30450	14500	9	Results is averaged over 10 ful
New-thyroid	3	108	107	5	
Yeast	10	1134	350	8	
Dermatology	6	323	35	33	
Page-Blocks	5	4924	548	10	
Wine-Quality-Red	6	1439	160	11	
Zoo	7	89	12	16	

Baseline:

- C-SVC (Chang and Lin, 2011): performing multi-class classification using an O-A-O strategy.
- AMM (Wang et al, 2011): a multi-class classification method based on adaptive multi-hyperplanes.
- MSVM-L1 (Shalev-Shwartz et al, 2011): L1-regularized MSVM.
- CS-MSVM (Yu et al, 2011): MSVM regularized by a cosine similarity regularizer.
- IC-MSVM (Bao et al, 2013): MSVM regularized by an incoherence regularizer.
- Div-MSVM (Xie et al, 2015): MSVM regularized by a diversity-promoting regularizer.
- MSVM-Struct (Tsochantaridis et al, 2004): L2-regularized MSVM with a cutting-plane algorithm. MSVM-L2 (Wang et al, 2010): L2-regularized MSVM solved with a SGD algorithm.

Table 3: Classification results (%) on six multi-class datasets										
Dataset	Metric	C-SVC	AMM	MSVM- ℓ_1	CS-MSVM	IC-MSVM	Div-MSVM	MSVM-Struct	MSVM- ℓ_2	AR-MSVM
YaleB	Acc	55.31 ±0.1	83.32 ±2.5	85.12 ±4.4	94.13 ±1.6	89.38 ±0.9	94.25 ± 0.4	91.50 ± 0.0	93.90 ± 0.5	94.55 ±0.8
	F	54.74 ± 1.0	$86.88 \pm \scriptstyle{1.8}$	87.11 ± 2.6	93.71 ± 1.3	90.54 ± 1.4	93.87 ± 0.3	91.39 ± 0.0	93.51 ± 0.5	94.38 ±0.7
ImageNet-50	Acc	91.59 ± 0.4	92.27 ± 0.1	91.23 ± 0.0	92.86 ± 0.1	92.96 ± 0.1	92.93 ± 0.1	89.36 ± 0.0	92.32 ± 0.1	93.12 ±0.1
	F	91.70 ± 0.4	92.31 ± 0.1	91.38 ± 0.0	92.90 ± 0.1	92.98 ± 0.1	92.97 ± 0.1	89.65 ± 0.0	92.35 ± 0.0	93.17 ±0.1
Covtype	Acc	71.35 ± 0.5	70.21 ± 0.3	56.12 ± 0.4	70.29 ± 1.1	70.82 ± 0.2	70.70 ± 0.1	65.84 ± 0.1	69.45 ± 0.2	71.75 ±0.1
	F	50.97 ± 3.1	49.84 ± 2.4	37.03 ± 3.5	50.67 ± 2.1	$50.82 \pm \scriptstyle{0.1}$	50.53 ± 0.5	36.80 ± 0.1	45.64 ± 1.8	51.31 ±0.9
Shuttle	Acc	98.86 ±0.3	93.81 ± 0.3	79.41 ± 0.4	96.02 ± 0.0	96.22 ± 0.1	94.74 ± 0.2	66.57 ± 0.0	92.83 ± 0.1	97.08 ± 0.3
	F	52.94 ± 2.1	54.12 ± 0.3	24.90 ± 0.0	57.20 ± 0.1	57.57 ± 0.1	55.61 ± 0.2	33.66 ± 0.0	53.55 ± 0.2	58.53 ± 0.3
New-thyroid	Acc	76.92 ± 0.9	86.77 ± 1.8	86.15 ± 0.0	78.46 ± 10.9	78.69 ± 3.3	91.54 ± 0.8	89.23 ± 0.0	90.87 ± 0.0	92.15 ±0.5
	F	58.73 ± 1.0	83.66 ± 2.4	87.50 ± 0.0	75.32 ± 1.4	78.46 ± 2.1	90.08 ± 1.1	87.50 ± 0.0	89.24 ± 0.0	90.91 ±0.7
Yeast	Acc	59.71 ±1.5	48.63 ± 5.3	53.71 ±2.4	53.61 ± 6.2	54.14 ± 0.2	53.14 ±2.5	49.93 ± 0.1	51.86 ±3.8	54.80 ±1.1
	F	61.81 \pm 2.0	44.87 ± 5.1	48.63 ± 4.8	52.80 ± 4.1	52.07 ± 2.0	52.64 ± 3.7	37.09 ± 0.1	49.45 ± 3.1	54.65 ± 4.3

Angular regularizer can improve the performance of MSVM.

- Ensemble methods: efficiently improve the generalization performance.
- L1-regularized methods: sparse constraints are not effective in reduce overfitting of multi-class classification.
- Diversity-promoting methods: CS-MSVM is smooth, while the others are non-smooth. AR-MSVM is not only smooth but also ensures all angles are increased directly.
- L2-regularized methods: AR-MSVM is directly based on MSVM-L2, but achieves better results in all cases.

Parameter Sensitivity:

- 2^{-10} to 2^{-2} : a larger β results in larger angles
- 2^{-2} to 2^{20} : too large β harms hing loss

Linux Machine

magnetic disk

Memory: 256 GB

Hard Drive: 512 GB

CPU: 2.00GHz Xeon CPU

Runtime:

Percentage of Trainning Samples

Imbalanced Classification

On small classes (2-5), AR-MSVM performs much better than MSVM.

On large class (1), they are comparable.

THEORETICAL RESULTS

We analyze the generalization error under a supervised learning framework via the PAC learning theory.

Theorem 1. Fix p > 0. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification generalization bound holds for all $h \in H \leadsto H^1$:

 $L(\hat{h}) - L(h^*) \le \frac{8K^2C_1C_2}{p\sqrt{m}} + \frac{2}{\sqrt{m}} + (\frac{1}{p}\sqrt{(1 - \frac{1}{K})(\cos(-\mathcal{R}(\mathbf{W})) + \frac{K+1}{K-1})}C_1C_2 + 1)\sqrt{\frac{2\log(2/\delta)}{m}}.$

Main conclusions:

- The MSVM's objective function is seeking the maximum margin principle which encourages H approaching H¹.
- The generalization error bound $L(\hat{h}) L(h^*)$ is an increasing function of the angular regularizer $\mathcal{R}(\mathbf{W})$. It is also why β needs to be chosen to achieve the best accuracy.
- ullet Thus, decreasing angular regularizer $\mathcal{R}(\mathbf{W})$ can reduce the error bound and improve the generalization performance.

ACKNOWLEDGEMENTS

This work is supported by China 973 Fundamental R&D Program (No.2014CB340300), NSFC program (No.61472022, 61421003), SKLSDE-2016ZX-11, and partly by the Beijing Advanced Innovation Center for Big Data and Brain Computing.

Wechat Contact

Appendix Files

Homepage