Homological Algebra

Ikhan Choi

July 21, 2023

1. Show that if $n \ge 2$ is an integer which is not a power of a prime, then there is a projective $\mathbb{Z}/n\mathbb{Z}$ -module which is not free.
Solution.
2. Show that if <i>n</i> is a power of prime, then every projective $\mathbb{Z}/n\mathbb{Z}$ -module is free.
Solution.
3. Let p be a prime and M_i are abelian groups, where $i \in \{1,2,3\}$. Suppose that $f: M_1 \to M_2$ and $g: M_2 \to M_3$ are group homomorphisms satisfying $g \circ f = 0$, and that the homomorphisms $M_i \to M_i: x \mapsto px$ are injective for all i . Consider a sequence
$0 \to M_1/p^n M_1 \xrightarrow{f_n} M_2/p^n M_2 \xrightarrow{g_n} M_3/p^n M_3 \to 0,$
where f_n and g_n are homomorphisms naturally induced from f and g . Show that the following statements are equivalent:
(i) The above sequence is exact for an integer $n \ge 1$.
(ii) The above sequence is exact for all integer $n \ge 1$.
Solution.
4. Let $R := \mathbb{Z}/n\mathbb{Z}$ for an integer $n \ge 2$.
(1) Show that an R -module M is injective if and only if for every $a \in M \setminus \{0\}$ there exist $b \in M$ and $m \mid n$ such that the order of a is n/m and $a = mb$.
(2) Let m and l be divisors of n . Using an injective resolution of $\mathbb{Z}/m\mathbb{Z}$ in the category of R -modules, compute $\operatorname{Ext}^i_R(\mathbb{Z}/l\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$.
Solution.
5. Let $R = \mathbb{C}[x, y]$.
(1) Compute $\operatorname{Ext}_R^i(R/(x,y),R)$.
(2) Are $\mathbb{C}(x,y)$ and $\mathbb{C}(x,y)/\mathbb{C}[x,y]$ injective <i>R</i> -modules?
Solution.
6. For a prime p , is the ideal (p, x) of $\mathbb{Z}[x]$ a flat $\mathbb{Z}[x]$ -module?
Solution.

 $AM,N) \cong \operatorname{Ext}_A^m(M,N) \text{ for } 0 \leq m \leq d.$

7. Let *A* be a commutative ring and *B* be a *A*-algebra. Let *d* be a positive integer and suppose an *A*-module *M* satisfies $\operatorname{Tor}_n^A(B,M)=0$ for $0< n\leq d$. Show that for any *B*-module *N* we have $\operatorname{Ext}_B^m(B\otimes A)=0$

Solution. 8. Let L_{\bullet} be a chain complex of finitely generated free abelian groups. Here we do not assume L is bounded below. For a prime p and an integer n, define $r_{n,p} := \dim_{\mathbb{F}_p} H_n(L_{\bullet} \otimes_{\mathbb{Z}} \mathbb{F}_p)$. Show that the following are equivalent: (i) The integer $r_{n,p}$ does not depend on p for all n. (ii) The homology group $H_n(L_{\bullet})$ is free for all n. Solution. **9.** Define a category \mathcal{C} as follows: an object is a tuple $\mathcal{M} = (M_0, M_1, f_0, f_1)$ of abelian groups M_0, M_1 and homomorphisms $f_i: M_0 \to M_1$ with $i \in \{0, 1\}$, and a morphism between $\mathcal{M} = (M_0, M_1, f_0, f_1)$ and $\mathcal{M}' = (M'_0, M'_1, f'_0, f'_1)$ is a pair $\varphi = (\varphi_0, \varphi_1)$ of homomorphisms $\varphi_i : M_i \to M'_i$ such that $\varphi_1 \circ f_j = f'_i \circ \varphi_0$ for $i, j \in \{0, 1\}$. (1) Show that C is abelian. (2) For an abelian group N, define objects $r_0(N) := (N, 0, 0, 0)$ and $r_1(N) := (N \otimes N, N, \operatorname{pr}_0, \operatorname{pr}_1)$ in \mathcal{C} . Show that for any object $\mathcal{M} = (M_0, M_1, f_0, f_1)$ in \mathcal{C} there are natural isomorphisms $\operatorname{Hom}_{\mathcal{C}}(\mathcal{M}, r_0(N)) \cong \operatorname{Hom}(M_0, N), \qquad \operatorname{Hom}_{\mathcal{C}}(\mathcal{M}, r_1(N)) \cong \operatorname{Hom}(M_1, N).$ (3) Show that C has enough injective objects. (4) Define a functor $F: \mathcal{C} \to \mathbf{Ab}$ such that $F(\mathcal{M}) := \{m \in M_0 : f_0(m) = f_1(m)\}$. Show that $R^1F(\mathcal{M}) = f_0(m) = f_1(m)$ $\operatorname{coker}(f_0 - f_1)$ and $R^i F = 0$ for $i \ge 2$, where $R^i F$ denotes the right derived functor. Solution. 10. Let \mathcal{A} be an abelian category with enough injective objects. Let $C^{\geq 0}(\mathcal{A})$ be an abelian category of cochain complexes K^{\bullet} such that $K^n = 0$ for n < 0. (1) For an integer $n \ge 0$, find the right adjoint functor of the functor $e_n^* : C^{\ge 0}(A) \to A : K^{\bullet} \to K^n$. (2) Show that $C^{\geq 0}(A)$ has enough injective objects. (3) Show that the right derived functor of the left exact functor $H^0: C^{\geq 0}(A) \to A: K^{\bullet} \to H^0(K^{\bullet})$ is given by $H^n: C^{\geq 0}(A) \to A: K^{\bullet} \mapsto H^n(K^{\bullet})$ for $n \geq 0$. Solution. 11. Give an example of an abelian category in which the direct product exists and the direct product does not preserve right exact sequences.

Solution. \Box

12. Give an example of an additive category \mathcal{C} with kernels and cokernels in which a morphism $f:A\to B$ such that $\operatorname{coim} f\to \operatorname{im} f$ is not epi exists.

Solution.