

Competitive Programming From Problem 2 Solution in O(1)

Data Structures Binary Indexed Tree (Fenwick)

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Background

BIT is based on binary properties

Let's revise some binary properties first

Binary Representation

Src: http://www.c-jump.com/bcc/common/Talk2/Cxx/BitByteHexASCII/BitByteHexASCII.html

Removing bits from mask

- mask = think in integer bits
- Assume we have numbers X, Y
- If for every position in Y with 1 AND X has 1
 - X = 10010100
 - Y = 00010100
- X Y removes all Y 1s from X
- Another longer/general way to do so:
 - X & ~Y
 - **10010100 &**
 - 11101011 =
 - **10000000**

Least/Most Significant Bit

Src: http://www.electronique-et-informatique.fr/Digit/images/MSB_LSB.gif

Src: http://tronixstuff.com/wp-content/uploads/2011/05/binnum.jpg

Least Significant ONE Bit

Let's call it the last bit

Src: http://billconner.com/techie/binary-2.gif

One's Complement Representation

The 1's complement of a binary number is just the inverse of the digits. To form the 1's complement, change all 0's to 1's and all 1's to 0's.

For example, the 1's complement of 11001010 is 00110101

Src: http://district.bluegrass.kctcs.edu/kevin.dunn/files/Arithmetic_Operations_and_Circuits/paste_image3.png

Two's Complement Representation

- Start to flip AFTER the "last bit"
- -number = 2's complement of number
- One way to compute manually:
 - Get 1's complement...then add 1

 $Src: \ http://2.bp.blogspot.com/-7pIXtOAOaq0/VdA5fZ_-EmI/AAAAAAAACyY/GPgQwR-NOqA/s1600/twos%2Bcomplement%2Bof%2Bbinary%2Bvalue.PNG-1000/twos%2Bcomplement%2Bof%2Bof%2Bbinary%2Bvalue.PNG-1000/twos%2Bcomplement%2Bof%2Bbinary%2Bvalue.PNG-1000/twos%2Bcomplement%2Bof%2Bbinary%2Bvalue.PNG-1000/twos%2Bcomplement%2Bof%2Bbinary%2Bvalue.PNG-1000/twos%2Bcomplement%2Bof%2Bbinary%2Bvalue.PNG-1000/twos%2Bcomplement%2Bof%2Bbinary%2Bvalue.PNG-1000/twos%2Bcomplement%2Bof%2Bof%2Bbinary%2Bbin$

Two's Complement Representation

Number in decimal	Number in two's complement binary
5	000000000000101
4	0000000000000000000
3	00000000000011
2	000000000000000000000000000000000000000
1	000000000000001
0	00000000000000
-1	11111111111111
-2	11111111111110
-3	11111111111101
-4	11111111111100
-5	111111111111011

 $Src: {\it http://patentimages.storage.googleapis.com/WO2002095573A1/imgf000007_0001.png}$

Removing Last Bit

- Get last bit using index & -index
 - +20 = 00010100
 - **-20** = **11101**100
 - **20 & -20 = 00000100**
- Remove last bit
 - Get it...subtract it
 - index (index & -index)
 - $\mathbf{00010100 00000100 = 00010000}$
- We can remove last bit using other ways too

Integer as sums of powers of 2

Binary Expansion

- □ Any integer N can be written as a sum of powers of 2.
- □ Start with the largest $2^k \le N$, subtract of it, and repeat the process.
- □ 147 = 128 + 19; 19 = 16 + 3; 3 = 2 + 1So 147 = 128 + 16 + 2 + 1 = 010010011with k = 7, 4, 1, 0

Src: http://images.slideplayer.com/5/1546412/slides/slide_22.jpg

Our problem

- Let's move to our problem
- Given an array of integer N
 - Assume index 0 always will be 0 (NOT in use)
- 2 query types:
 - Add value val to position index
 - **Sum** values from 1 to index
- Segment Tree can be used to such problem
 - O(N) preprocess, O(NlogN) queries, O(nlogn) memory
- BIT has a better memory order (shorter code)
 - \bullet O(n) memory + O(NlogN) queries

Problem Example

0	1	2	3	4	5	6	7	8	9	10	11
xx	3	2	-1	6	5	4	-3	3	7	2	3

- Accumulative Sum (1, 3): 3 + 2 1 = 4
- Accumulative Sum (1, 5): 3 + 2 1 + 6 + 5 = 15
- Add: index 3, value = 5

xx	3	2	<u>4</u>	6	5	4	-3	3	7	2	3	
----	---	---	----------	---	---	---	----	---	---	---	---	--

- Accumulative Sum (1, 3): 3 + 2 + 4 = 9
- Accumulative Sum (1, 5): 3 + 2 + 4 + 6 + 5 = 21

Motivation

- Integer = Sum of Powers of 2
- Accumulative Sum = Sum of Sub sums
- Recall: 147 = 128 + 16 + 2 + 1
- Think in accumulative sum (1 to 147)
 - Sum of last 1 number +
 - Sum of next 2 numbers +
 - Sum of next 16 numbers +
 - Sum of next 128 numbers
- \bullet Sum(1,147) =
 - \sim Sum(147,147) + Sum(146,145) + Sum(144,129) + Sum(128,1)
 - $147 \Rightarrow \text{positions } \{147, 146, 144, 128\} \text{ with ranges } \{1, 2, 16, 147, 148\} \}$

Motivation

- To get starting positions fast? Remove last bit
 - 147 = 010010011 [remove last 1 bit]
 - \blacksquare 146 = 010010010 [remove last 1 bit]
 - \blacksquare 144 = 010010000 [remove last 1 bit]
 - \blacksquare 128 = 010000000 [remove last 1 bit]
 - \bullet 0 = DONE
- How to interpret:
 - 147 responsible for range 147 to > 146
 - 146 responsible for range 146 to > 144
 - 144 responsible for range 144 to > 128
 - 146 responsible for range 128 to > 0

Binary Indexed Tree

- Create a new array of Length N, name it BIT
- BIT[position] = sum of its responsible range
- Then For each Query
 - Sum(147)= BIT(147) + BIT(146) + BIT(144) + BIT(128)
 - That is: 4 steps only to get the answer
 - Sum(144) = BIT(144) + BIT(128)
 - Sum(15) = BIT(15) + BIT(14) + BIT(12) + BIT(8)
 - Recall: 1111 = 1111, 1110, 1100, 1000, 0
 - Sum(11) = BIT(11) + BIT(10) + BIT(8)
 - Recall 1011: 1011, 1010, 1000, 0
 - Sum(7) = BIT(7) + BIT(6) + BIT(4) \Rightarrow 111, 110, 100, 0

Binary Indexed Tree

E.g. node 12 has values: BIT[12] = val[12] + val[11] + val[9] $12 = 1100 \Rightarrow$ removing last 1 bit $\Rightarrow 1000 = 8$ Then parent of $12 \Rightarrow 8$ (e.g. next closest position 12 is **not covering**) **Notice**: we removed bit at position $2 \Rightarrow 12$ covers 2^2 numbers = 12 - 8 = 4

Src: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8917&rep=rep1&type=pdf

Binary Indexed Tree


```
Notice: 8 = 1000 => has 3 trailing zeros. Try to replace each 0 with 1

1001 = 9

1010 = 10

1100 = 12

# of trailing zeros = # children ... child remove last bit => go to parent
```

Src: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.8917&rep=rep1&type=pdf

Get Interval Accumulation

```
Sum(15) = BIT(15) + BIT(14) + BIT(12) + BIT(8)
= 1111 \Rightarrow 1110 \Rightarrow 1100 \Rightarrow 1000 \Rightarrow 0 = STOP
```

15 is **responsible for** 1 number, 14 for 2, 12 for 4, 8 for 8 numbers

```
const int MAX_VAL = 30000;
int BITTree[MAX_VAL] = {0};

int getAccum(int idx){
   int sum = 0;

while (idx > 0) {
      sum += BITTree[idx];
      idx -= (idx & -idx);
   }
   return sum;
}
```


Position 1: Covered by 4 intervals \Rightarrow 1, 2, 4, 8 Add -3 to 1 \Rightarrow add -3 to these 4 intervals

Given index, how to get **smallest** position **covering** it? E.g. $1 \Rightarrow 2$ $6 \Rightarrow 8$ $10 \Rightarrow 12$ $13 \Rightarrow 14$ Then 1 goes to 2...2 goes to 4..4 goes to 8 [recursive]

- Recall given number idx it covers 2^r values
 - r is position of "last bit"
 - It covers numbers from idx to $idx 2^r + 1$
- All following numbers cover 8 values
 - $0001000 \Rightarrow r = 3 \Rightarrow 2^3 = 8$
 - **0101000**
 - **1**101000
 - **11111000**
 - **1001000**
- So our focus on "last bit", NOT before that

- 1000 covers 8 numbers
 - **1000 000 = 1000**
 - 1000 001 = 0111
 - \blacksquare 1000 010 = 0110
 - \blacksquare 1000 011 = 0101
 - \blacksquare 1000 100 = 0100
 - \blacksquare 1000 101 = 0011
 - \blacksquare 1000 110 = 0010
 - \blacksquare 1000 111 = 0001
- Each of these 8 numbers covered by 1000
- But 1000 is NOT their smallest cover number

- Let's get who covers 4 = 0100
 - 4 has "last bit" at k = 2
 - When target number enumerate its 2^r, one contains 100
 - So we need to go at least 1 bit higher than k
 - E.g. re-set last bit $k = 3 \Rightarrow 1000 \Rightarrow$ first one to cover 0100
- Let's get who covers 5 = 0101
 - $\mathbf{k} = 0$
 - We need target number to include our 1 at k = 0
 - The earlier one should exist in smallest coverer number
 - So again, shift k = 0 1 step to be in its enumeration
 - E.g. re-set last bit $k = 1 \Rightarrow 110$. Note, 1000 also cover 5

- Let's get who covers 3 = 0011
 - "last bit" at k = 0
 - We need enumeration includes whole 11
 - So parent need to be a 1 before these 11
 - \blacksquare E.g. \Rightarrow 0100
- So general rule
 - **100100001000**

1001000**1**0000

1001000**111**00

100100100000

- How to get that number easily?
 - Just add $2^k \Rightarrow$ if one or more bits \Rightarrow shifted
 - E.g. 1001000**111**00 + 000000000100 = 100100**1**00000

Updating tree

Updating tree

Notice: 8 = 1000 => has 3 trailing zeros. Remove last bit, and add 1, 2, 3...trailing ones 0100 = 4 0110 = 6 0111 = 7# of trailing zeros = # children

Updating tree

```
void add(int idx ,int val){
    while (idx < MAX_VAL) {
        BITTree[idx] += val;
        idx += (idx & -idx);
    }
}</pre>
```

Building initial tree from input: just iterate on input and add it to its position

Index perspective

Smallest idx **cover** 12 is 16 16 responsible for: 16, 15,...1

$$idx += (idx \& -idx)$$

12 += (12 & -12) \Rightarrow 16

12 is **responsible** down to 8+1 12 responsible for: 12, 11, 10, 9

$$idx = (idx \& -idx)$$

12 -= (12 & -12) \Rightarrow 8

Index with cumulative sum

- Assume we have array of values ≥ 0
- \blacksquare Accumulate it \Rightarrow increasing sequence
- Find **first index** with accumulation >= value
- Given that it is increasing, using binary search is direct
- BIT maintain such accumulation by definition,
 if all values >= 0

Index with cumulative sum

```
int getValue(int idx) {
    return getAccum(idx) - getAccum(idx-1);
// Prerequisite : input array is positive
int getIdx(int accum) {
   int s = 1, e = MAX VAL;
   while(s < e) {
       int midIdx = s + (e-s)/2, val = getAccum(midIdx);
       if(val >= accum)
          e = midIdx;
       else s = midIdx+1:
    return s; // s is the least x for which p(x) is true
```

2D BIT

- BIT can be extended to higher dimensions
 - In 2D: query add value to cell
 - Or Rectangle sum (0, 0) to (x, y)
- Define 2D array with MAX_X and MAX_Y
 - Think in each row (x indexed) as independent tree on y
 - X is responsible for set of trees
 - Y is responsible for a single tree
- Add val to bit2d[x][y]
- bit2d[x] is a 1D tree at position x
 - Update normally cross different bit2d[x][y]

2D BIT

```
void update(int x , int y , int val){
    while (x <= max_x){
        updatey(x , y , val);
        // this function should update array tree[x]
        x += (x & -x);
    }
}</pre>
```

The function updatey is the "same" as function update:

```
void updatey(int x , int y , int val){
    while (y <= max_y){
        tree[x][y] += val;
        y += (y & -y);
    }
}</pre>
```

References

- Paper
- TopCoder <u>Article</u>

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ

Problems

- 2D Bit: http://codeforces.com/contest/341/problem/D
- SRM-310-D1-500