

A Level · OCR · Physics

11 mins

Structured Questions

Kinematics

Displacement, Velocity & Acceleration / Motion Graphs / Displacement & Velocity-Time Graphs

Scan here to return to the course

or visit savemyexams.com

Total Marks

/11

1 (a) Use the equations for momentum and kinetic energy to derive an expression for the kinetic energy E_k of a particle in terms of its momentum p and mass m.

(2 marks)

(b) Fig. 20.1 shows an electric motor used to lift and lower a load.

Fig. 20.1

At time t = 0 the load is on the ground with displacement s = 0.

Fig. 20.2 shows the variation of the displacement *s* of the load with time *t*.

Fig. 20.2

Fig. 20.3

i) On Fig. 20.3, sketch a graph to show the variation of the velocity *v* of the load with time

You do not need to insert a scale on the *v* axis.

[3]

ii) Describe how the kinetic energy and the gravitational potential energy of the load varies from t = 0 to t = 2.0 s.

[2]

iii) During the downward journey of the load, the string breaks at $t = 4.0$ s. It then falls vertically toward the ground. The mass of the load is 120 g.
Air resistance is negligible.
1. Calculate the velocity <i>V</i> of the load just before it hits the ground.
V = m s ⁻¹ [2]
2. The load hits the ground and comes to rest in a time interval of 25 ms.
Calculate the average force <i>F</i> exerted by the ground on the load.
F = N [2]
(9 marks)