Datrysiadau i Daflen Problemau 7

1. Ystyriwch y rhwydwaith isod gyda hydoedd heol yn dynodi'r pellteroedd rhwng pob dinas. Defnyddiwch rhaglennu deinameg i ganfod y llwybr lleiaf o A i J.

Datrysiad 1 Yn gyntaf trefnwch y dinasoedd gan y nifer mwyaf o linciau rhwng ei hunain a J: JHIGFEDCBA. Yna gwnewch iteru gwerthoedd:

Ac felly hyd y llwybr lleiaf rhwng A a J yw 12. Y llwybr gorau posib yw ABEFIJ.

2. Mae gennych wyth bocs cardbord yn eich tŷ gyda'r dimensiynau canlynol:

Bocs	Hyd	Lled	Uchder	
α	10	10	10	
β	15	6	6	
γ	3	3	3	
δ	4	5	7	
ϵ	9	9	11	
ζ	11	4	4	
η	5	3	4	
θ	5	10	6	

Mae'r bocsys yn fregus a ni allant cael ei cylchdroi na'i fflipio. Gallwch stacio bocs ar ben bocs arall os yw ei hyd yn llai, ac os yw ei lled yn llai na'r bocs oddi tanddo. Defnyddio rhaglennu deinameg i ganfod y stac uchaf o bocsys posib.

Datrysiad 2 Tynnwch lun y graff cyfeiriedig digylchlwybr, gydag ymyl rhwng dau bocs os gall un cael ei stacio ar ben y llall:

Datrysiad 2 (continuing from p. 2) Yna gwnewch iteru gwerthoedd:

Bocs	O dan	r	r + f	f
*	-	0	0	0
γ	*	3	3	3
η^-	*	4	4	
	γ	4	7	7
ζ	*	4	4	
	γ	4	7	
	η	4	11	11
δ	*	7	7	
	γ	7	10	10
θ^{-}	*	6	6	
	γ	6	9	
	η	6	13	
	δ	6	16	16
ϵ	*	$\overline{11}^{-}$	11	
	γ	11	14	
	η	11	18	
	δ	11	21	21
ϵ	*	6	6	
	γ	6	9	
	η	6	13	
	$rac{\eta}{\delta}$	6	16	
	ζ	6	17	17
ϵ	*	10	10	
	γ	10	13	
	η	10	17	
	δ	10	20	
	$_{---\epsilon}_{-------------------$	_10_	31	31

Ac felly uchder y stac uchaf yw 31. Y stac gorau posib yw $\alpha - \epsilon - \delta - \gamma$.

3. Mae tryc byrgyr symudol wedi cael ei gontracto i gyflenwi byrgyrs ar gyfer gwyl cerddoriaeth. Mae'r wyl yn para 5 diwrnod, ond mae gan y tryc byrgyr ond 3 bocs o cig wedi rhewi, ac unwaith caiff ei ddadrewi mae pob bocs o cig ond yn para un diwrnod. Mae'n costio $\in 1k$ pob bocs i'w gadw wedi rhewi. Mae angen i'r tryc byrgyr penderfynu faint o bocys i'w dadrewi a gwerthu pob diwrnod o'r wyl. Mae'n nhw'n rhagfynegi gallen nhw gwneud $\in 1.5k$ o elw y dydd os ydynt yn dadrewi un bocs, $\in 3k$ os ydynt yn dadrewi dau bocs ar yr un diwrnod, a $\in 3.5k$ os ydynt yn dadrewi tri bocs ar yr un diwrnod. Ond, o achos torri amodau'r gontract, bydd angen talu dirwy o $\in 2k$ pob diwrnod nad ydynt yn cynnig byrgyrs. Defnyddiwch rhaglennu deinameg i ddyfeisio strategaeth bydd yn uchafsymio elw'r tryc.

Datrysiad 3 (continuing from p. 4) Gan berfformio iteru gwerthoedd:

(t,n)	I'w ddadrewi	r	r + f	f
(5, 3)		0_	0	0
(5, 2)		0	0	0
(5, 1)		0	0	0
(5, 0)		0		0
(4, 0)		-20	-20 + 0 = -20	-20
(4, 1)		-30	-30 + 0 = -30	
	1	15	15 + 0 = 15	15
(4, 2)		-40	-40 + 0 = -40	
(')	1	5	5 + 0 = 5	
	2	30	30 + 0 = 30	30
$\overline{(4, 3)}$		-50	-50 + 0 = -30	
(,)	1	-5	-5 + 0 = -5	
	2	20	20 + 0 = 20	
	3	35	35 + 0 = 35	35
(3, 0)		-20	-20 - 20 = -20	- - 4 0
$-\frac{(3, 5)}{(3, 1)}$		-30	-30 + 15 = -15	
(0, 1)	1	15	15 - 20 = -5	-5
(3, 2)		- 40	$-\frac{10}{-40} + \frac{20}{35} = -\frac{5}{35}$	
(3, 2)	1	5	5 + 15 = 20	
	2	30	30 - 20 = 10	20
(3, 3)		- <u>- 50</u> -50	-50 + 35 = -15	
(3, 3)	1	-50 -5	-50 + 30 = -15 -5 + 30 = 25	
	2	-9 20	-3 + 30 = 25 20 + 15 = 35	
	3	20 35	20 + 15 = 35 35 - 20 = 15	25
- 72 0			-20 - 40 = -60	- 35
$-\frac{(2, 0)}{(2, 1)}$		-20		60
$(2, 1)^{-}$	0	-30	-30 - 50 = -35	25
		15	-15-40=-25	_ -25
$(2, \bar{2})$	0	-40	-40 + 20 = -20	
	1	5	5 - 5 = 0	_
- 70- 51-	2	_ 30_	30 - 40 = -10	0
(2, 3)	0	-50	-50 + 35 = -15	
	1	-5	-5 + 20 = 15	
	2	20	20 - 5 = 15	
	3	35	35 - 40 = -5	_ 15
(1, 0)		20	-20 - 60 = -80	80
(1, 1)		-30	-30 - 25 = -55	
		_ 15	15 - 60 = -45	45
$(1, \bar{2})$	0		-40 + 0 = -40	
	1	5	5 - 25 = -20	
	2	30	30 - 60 = -30	-20
$(1, \bar{3})$	0	-50	-50 + 15 = -35	
	1	-5	-5 + 0 = -5	
	2	20	20 - 25 = -5	
	3	35	35 - 60 = -25	-5
(0, 3)		-50	-50 + 5 = -45	
	1	-5	-5 - 20 = -25	
	2	20	20 - 45 = -25	
	3	35	35 - 80 = -50	-25

Datrysiad 3 (continuing from p. 5) Er mwyn helpu darllen off y datrysiad, ail-tynnwch lun y DAC ac ond cadw'r gweithrediadau gorau posib, a llwydio pob gweithrediad nad yw'n cyrhaeddadwy o'r cyflwr dechreuol (0, 3).

Felly'r strategaeth gorau posb yw i naill ai:

- dadrewi dau bocs ar y diwrnod cyntaf, un ar yr ail diwrnod, ac sero fel arall, neu
- dadrewi un bocs ar y diwrnod cyntaf, un ar yr ail diwrnod, un ar y trydydd diwrnod, a sero fel arall.

4. Mae canfod yr is-dilyniant cyffredin hiraf rhwng dau dilyniant yn broblem defnyddiol i'w ddatrys, er enghraifft mae'n gallu dweud wrthon ni pa mor tebyg yw dau llinyn o DNA. Defnyddiwch rhaglennu deinameg i ganfod yr is-dilyniant cyffredin hiraf rhwng ACTAGCTA ac TCAGGTAT.

(Awgrym: ystyriwch y 3-blygion (i, j, k) fel cyflyrau, yn cyfateb i i^{fed} elfen y dilyniant cyntaf, a j^{fed} elfen yr ail dilyniant. Mae ond angen ystyried y cyflyrau lle mae'r llythrennau, k hyn yr un peth. E.e. mae'r cyflwr (1, 3, A) yn dynodi'r llythyren A wedi rhannu gan llythyren cyntaf y dilyniant cyntaf a trydydd llythyren yr ail dilyniant.)

Datrysiad 4 Gadewch i (i,j,k) dynodi'r cyflwr yn cyfateb i i^{fed} elfen y dilyniant cyntaf, a j^{th} elfen yr ail dilyniant. Byddwn ond yn ystyried cyflyrau lle mae'r elfennau hyn, k, yr un peth. E.e. mae (1,3,A) yn cyfateb i'r llythyren A bod yr elfen cyntaf y dilyniant cyntaf, ac ail elfen yr ail dilyniant. Rhoddir yr holl cyflyrau gan: (1,3,A), (1,7,A), (4,3,A), (4,7,A), (8,3,A), (8,7,A), (2,2,C), (6,2,C), (3,1,T), (3,6,T), (3,8,T), (7,1,T), (7,6,T), (7,8,T), (5,4,G), (5,5,G). Gallwn tynnu llun y graff cyfeiriedig digylchlwybr sy'n cynrychioli os gall pob llythyren dod cyn y llall yn yr is-dilyniant. Trefnwch y cyflyrau, hynny yw mae $s_1=(i_1,j_1,k_1)$ yn dod cyn $s_2=(i_2,j_2,k_2)$ os yw $i_1 < i_2$ ac mae $j_i < j_2$. Mae ymyl o s_1 i s_2 os yw s_1 yn dod cyn s_2 . Nodwch y gallwn symleiddio'r problem try nodi nad oes pwyn sgipio llythyrau dilys yn yr is-dilyniant. Felly, o pob cyflwr s, ar gyfer pob elfen k mae ond un ymyl o s i gyflwr arall gyda'r eflen k, a sicrhewch taw hon yw'r cyflwr cyntaf o'r fath yn y trefn. Mae hwn yn golygu ni ddefnyddir hrai cyflyrau. Tynnwch lyn y graff cyfeiriedig digylchlwybr:

Datrysiad 4 (continuing from p. 7) Nawr gwnewch iteru gwerthoedd, yn nodi bod pob ymyl yn adio yn elfen i'r is-dilyniant.

Ac felly hyd yr is-dilyniant cyffredin hiraf yw 5, a chawn hon o: $(0,0,0) \rightarrow (3,1,T) \rightarrow (4,3,A) \rightarrow (5,4,G) \rightarrow (7,6,T) \rightarrow (8,7,A)$ neu gan $(0,0,0) \rightarrow (2,2,C) \rightarrow (4,3,A) \rightarrow (5,4,G) \rightarrow (7,6,T) \rightarrow (8,7,A)$. Hynny yw: TAGTA neu CAGTA.