Patent

when Y is $-NR_6$, then k = 2-4;

when Y is -O and M or W is -O, then k = 1-4

when W is not a bond with Het bonded through a nitrogen atom, then q = 2.4 and when W is a bond with Het bonded through a nitrogen atom and Y is -0 or $-NR_6$, then k = 2.4, G_1 , G_2 , R_1 , R_4 , Z, R_4 , R_5 , R_6 , and R_6 are defined in the specification or a pharmaceutically acceptable salt thereof which are useful as antineoplastic agents and in the treatment of polycystic kidney disease.

In the Claims

Claim 1 has been amended as follows:

1. A compound of Formula 1 having the structure:

$$G_1$$
 G_2
 G_1
 G_2
 G_3
 G_4
 G_4
 G_4
 G_4
 G_5
 G_6
 G_7
 G_8
 G_8
 G_8
 G_8
 G_8
 G_8
 G_8
 G_8
 G_8

wherein:

X is cycloalkyl of 3 to 7 carbon atoms, which may be optionally substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a pyridinyl, pyrimidinyl, or phenyl ring wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally mono- di-, or trisubstituted with a substituent selected from the group consisting of halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy,

Patent

benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, carboxyalkyl of 2-7 carbon atoms, carboalkoxyalky of 3-8 carbon atoms, aminoalkyl of 1-5 carbon atoms, N-alkylaminoalkyl of 2-9 carbon atoms, N,N-dialkylaminoalkyl of 3-10 carbon atoms, N-alkylaminoalkoxy of 2-9 carbon atoms, N,N-dialkylaminoalkoxy of 3-10 carbon atoms, mercapto, methylmercapto, and benzoylamino;

Z is -NH-, -O-, -S-, or -NR-;

R is alkyl of 1-6 carbon atoms, or carboalkyl of 2-7 carbon atoms;

G₁, G₂, R₁, and R₄ are each, independently, hydrogen, halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, alkenyloxy of 2-6 carbon atoms, alkynyloxy of 2-6 carbon atoms, hydroxymethyl, halomethyl, alkanoyloxy of 1-6 carbon atoms, alkenoyloxy of 3-8 carbon atoms, alkynoyloxy of 3-8 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkenoyloxymethyl of 4-9 carbon atoms, alkynovloxymethyl of 4-9 carbon atoms, alkoxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, alkylsulphinyl of 1-6 carbon atoms, alkylsulphonyl of 1-6 carbon atoms, alkylsulfonamido of 1-6 carbon atoms, alkenylsulfonamido of 2-6 carbon atoms, alkynylsulfonamido of 2-6 carbon hydroxy, trifluoromethyl, trifluoromethoxy, cyano, atoms, nitro. carboxy. carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzyl, amino, hydroxyamino, alkoxyamino of 1-4 carbon atoms, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, Nalkylcarbamoyl, N,N-dialkylcarbamoyl, N-alkyl-N-alkenylamino of 4 to 12 carbon atoms, N,N-dialkenylamino of 6-12 carbon atoms, phenylamino, benzylamino,

$$R_{7}$$
- $(C(R_{6})_{2})_{p}$ - N - $(C(R_{6})_{2})_{k}$ - Y - R_{8} R_{9} - CH - M - $(C(R_{6})_{2})_{k}$ - Y - $(C(R_{6})_{2})_{p}$

 R_7 -(C(R₆)₂)_g-Y- , R_7 -(C(R₆)₂)_p-M-(C(R₆)₂)_k-Y- , or Het-(C(R₆)₂)_q-W-(C(R₆)₂)_k-Y- with the proviso that either G₁ or G₂ or both G₁ and G₂ must be a radical selected from the group

Patent

$$R_{7}$$
- $(C(R_{6})_{2})_{p}$ - N - $(C(R_{6})_{2})_{k}$ - Y - $R_{8}R_{9}$ - CH - M - $(C(R_{6})_{2})_{k}$ - Y - $(C(R_{6})_{2})_{p}$

$$\begin{aligned} & \text{R'}_7\text{-}(\text{C}(\text{R}_6)_2)_g\text{-Y-} \quad , \quad \text{R}_7\text{-}(\text{C}(\text{R}_6)_2)_p\text{-M-}(\text{C}(\text{R}_6)_2)_k\text{-Y-} \quad , \quad \text{Het-}(\text{C}(\text{R}_6)_2)_q\text{-W-}(\text{C}(\text{R}_6)_2)_k\text{-Y-} \quad , \\ & \text{or} \qquad \quad \text{R}_2\text{-N--} \quad ; \end{aligned}$$

Y is a divalent radical selected from the group consisting of

—
$$(CH_2)_a$$
— , —O— , and —N— ;

 R_7 is $-NR_6R_6$, -J, $-OR_6$, $-N(R_6)_3$, or $-NR_6(OR_6)$;

R'7 is $-NR_6(OR_6)$, $-N(R_6)_3$, alkenoxy of 1-6 carbon atoms, alkynoxy of 1-6 carbon atoms, N-alkyl-N-alkenylamino of 4 to 12 carbon atoms, N,N-dialkenylamino of 6-12 carbon atoms, N-alkyl-N-alkynylamino of 4 to 12 carbon atoms, N-alkenyl-N-alkynylamino of 4 to 12 carbon atoms, or N,N-dialkynylamino of 6-12 carbon atoms with the proviso that the alkenyl or alkynyl moiety is bound to a nitrogen or oxygen atom through a saturated carbon atom;

M is
$$>NR_6$$
, $-O_-$, $>N_-(C(R_6)_2)_pNR_6R_6$, or $>N_-(C(R_6)_2)_p-OR_6$,

W is $> NR_6$, -O- or is a bond;

Het is a heterocycle selected from the group consisting of morpholine, thiomorpholine, thiomorpholine S-oxide, thiomorpholine S,S-dioxide, piperidine, pyrrolidine, aziridine, pyridine, imidazole, 1,2,3-triazole, 1,2,4-triazole, thiazole, thiazolidine, tetrazole, piperazine, furan, thiophene, tetrahydrothiophene, tetrahydrofuran, dioxane,

1,3-dioxolane, tetrahydropyran, and

wherein the heterocycle is optionally mono- or di-substituted on carbon or nitrogen with R_6 , optionally mono- or di-substituted on carbon with hydroxy, $-N(R_6)_{2,}$ or - OR_6 , optionally mono or di-substituted on carbon with the mono-valent radicals -

Patent

 $(C(R_6)_2)_sOR_6$ or $-(C(R_6)_2)_sN(R_6)_2$, or optionally mono or di-substituted on a saturated carbon with divalent radicals -O- or $-O(C(R_6)_2)_sO$ -;

R6 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, cycloalkyl of 1-6 carbon atoms, carboalkyl of 2-7 carbon atoms, carboxyalkyl (2-7 carbon atoms), phenyl, or phenyl optionally substituted with one or more halogen, alkoxy of 1-6 carbon atoms, trifluoromethyl, amino, alkylamino of 1-3 carbon atoms, dialkylamino of 2-6 carbon atoms, nitro, cyano, azido, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, carboxyl, carboalkoxy of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, or alkyl of 1-6 carbon atoms;

R2, is selected from the group consisting of

$$R_{3}$$
 R_{3}
 R_{3

Patent

R₃ is independently hydrogen, alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms,

$$R_{7}-(C(R_{6})_{2})_{p}-N \begin{pmatrix} (C(R_{6})_{2})_{p} \\ N-(C(R_{6})_{2})_{r}- \\ (C(R_{6})_{2})_{p} \end{pmatrix}$$

$$R_{7}-(C(R_{6})_{2})_{s}- \qquad R_{7}-(C(R_{6})_{2})_{p}-M-(C(R_{6})_{2})_{r}- \qquad R_{8}R_{9}-CH-M-(C(R_{6})_{2})_{r}- \qquad , \text{ or } Het-(C(R_{6})_{2})_{q}-W-(C(R_{6})_{2})_{r}- \qquad ;$$

with the proviso that at least one of the R₃ groups is selected from the group

Patent

with the proviso that for said at least one R₃ group the moiety

 $Het-(C(R_6)_2)_q-W-(C(R_6)_2)_r-$

cannot be morpholino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, piperidino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, N-alkyl piperidino-N-alkyl wherein either alkyl group is 1-6 carbon atoms, or azacycloalkyl-N-alkyl of 3-11 carbon atoms;

R5 is independently hydrogen, alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms,

 R_8 , and R_9 are each, independently, $-(C(R_6)_2)_TNR_6R_6$, or $-(C(R_6)_2)_TOR_6$;

J is independently hydrogen, chlorine, fluorine, or bromine;

Q is alkyl of 1-6 carbon atoms or hydrogen;

a = 0 or 1;

g = 1-6;

k = 0-4;

n is 0-1;

p = 2-4;

q=0-4;

r = 1-4;

s = 1-6;

u = 0-4 and v = 0-4, wherein the sum of u+v is 2-4;

or a pharmaceutically acceptable salt thereof,

provided that

Patent

when R6 is alkenyl of 2-7 carbon atoms or alkynyl of 2-7 carbon atoms, such alkenyl or alkynyl moiety is bound to a nitrogen or oxygen atom through a saturated carbon atom;

and further provided that

when Y is -NR6- and R7 is -NR6R6, -N(R6)3 $^{+}$ or -NR6(OR6), then g = 2-6;

when M is -O- and R7 is -OR6, then p = 1-4;

when Y is -NR6-, then k = 2-4;

when Y is -O- and M or W is -O-, then k = 1-4

when W is not a bond with Het bonded through a nitrogen atom, then q = 2-4

and when W is a bond with Het bonded through a nitrogen atom and Y is -O- or - NR_6 -, then k=2-4.

Claim 6 has been amended to read as follows:

6. A method of treating, inhibiting the growth of, or eradicating a neoplasm in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of formula 1 having the structure

$$G_1$$
 G_2
 R_4
 $C \equiv N$
 $C \equiv N$

wherein:

X is cycloalkyl of 3 to 7 carbon atoms, which may be optionally substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a pyridinyl, pyrimidinyl, or phenyl ring wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally mono- di-, or trisubstituted with a substituent selected from the group consisting of halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms,

Patent

alkanoyloxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, carboxyalkyl of 2-7 carbon atoms, carboalkoxyalky of 3-8 carbon atoms, aminoalkyl of 1-5 carbon atoms, N-alkylaminoalkyl of 2-9 carbon atoms, N,N-dialkylaminoalkyl of 3-10 carbon atoms, N-alkylaminoalkoxy of 2-9 carbon atoms, N,N-dialkylaminoalkoxy of 3-10 carbon atoms, mercapto, methylmercapto, and benzoylamino;

Z is -NH-, -O-, -S-, or -NR-;

R is alkyl of 1-6 carbon atoms, or carboalkyl of 2-7 carbon atoms;

G1, G2, R1, and R4 are each, independently, hydrogen, halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, alkenyloxy of 2-6 carbon atoms, hydroxymethyl, halomethyl, alkanoyloxy of 1-6 carbon atoms, alkenoyloxy of 3-8 carbon atoms, alkynoyloxy of 3-8 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkenoyloxymethyl of 4-9 carbon atoms, alkynoyloxymethyl of 4-9 carbon atoms, alkoxymethyl of 2-7 carbon atoms, alkylsulphinyl of 1-6 carbon atoms, alkylsulphonyl of 1-6 carbon atoms, alkylsulphonyl of 1-6 carbon atoms, alkylsulfonamido of 1-6 carbon atoms, alkenylsulfonamido of 2-6 carbon atoms, alkylsulfonamido of 2-6 carbon atoms, hydroxy, trifluoromethyl, trifluoromethoxy, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzyl, amino, hydroxyamino, alkoxyamino of 1-4 carbon atoms, alkylamino of 1-6 carbon atoms, N-alkylamino of 4 to 12 carbon atoms, N,N-dialkylcarbamoyl, N,N-dialkylcarbamoyl, N-alkyl-N-alkenylamino, benzylamino,

Patent

$$R_{7} - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{k} - Y - R_{8}R_{9} - CH - M - (C(R_{6})_{2})_{k} - Y - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{k} - Y - (C(R_{6})_{2}$$

 R_7 - $(C(R_6)_2)_g$ -Y- , R_7 - $(C(R_6)_2)_p$ -M- $(C(R_6)_2)_k$ -Y- , or Het- $(C(R_6)_2)_q$ -W- $(C(R_6)_2)_k$ -Y- with the proviso that either G_1 or G_2 or both G_1 and G_2 must be a radical selected from the group

$$R_{7}$$
- $(C(R_{6})_{2})_{p}$ N - $(C(R_{6})_{2})_{k}$ - Y - $R_{8}R_{9}$ - CH - M - $(C(R_{6})_{2})_{k}$ - Y - $(C(R_{6})_{2})_{p}$

$$\begin{aligned} & R'_7 - (C(R_6)_2)_g - Y - \quad , \quad R_7 - (C(R_6)_2)_p - M - (C(R_6)_2)_k - Y - \quad , \quad & Het - (C(R_6)_2)_q - W - (C(R_6)_2)_k - Y - \quad , \\ & \text{or} \qquad & R_2 - N - \quad ; \end{aligned}$$

Y is a divalent radical selected from the group consisting of

$$-(CH_2)_a$$
 , $-O$, and $-N$;

 R_7 is $-NR_6R_6$, -J, $-OR_6$, $-N(R_6)_3^+$, or $-NR_6(OR_6)$;

R'7 is -NR₆(OR₆), -N(R₆)₃ + alkenoxy of 1-6 carbon atoms, alkynoxy of 1-6 carbon atoms, N-alkyl-N-alkenylamino of 4 to 12 carbon atoms, N,N-dialkenylamino of 6-12 carbon atoms, N-alkyl-N-alkynylamino of 4 to 12 carbon atoms, N-alkenyl-N-alkynylamino of 4 to 12 carbon atoms, or N,N-dialkynylamino of 6-12 carbon atoms with the proviso that the alkenyl or alkynyl moiety is bound to a nitrogen or oxygen atom through a saturated carbon atom;

M is $>NR_6$, -O-, >N- $(C(R_6)_2)_pNR_6R_6$, or >N- $(C(R_6)_2)_p$ - OR_6 ;

W is $>NR_6$, -O- or is a bond;

Het is a heterocycle selected from the group consisting of morpholine, thiomorpholine, thiomorpholine S-oxide, thiomorpholine S,S-dioxide, piperidine, pyrrolidine, aziridine, pyridine, imidazole, 1,2,3-triazole, 1,2,4-triazole, thiazole, thiazolidine,

Patent

tetrazole, piperazine, furan, thiophene, tetrahydrothiophene, tetrahydrofuran, dioxane,

1,3-dioxolane, tetrahydropyran, and

wherein the heterocycle is optionally mono- or di-substituted on carbon or nitrogen with R_6 , optionally mono- or di-substituted on carbon with hydroxy, $-N(R_6)_{2,}$ or $-OR_6$, optionally mono or di-substituted on carbon with the mono-valent radicals $-(C(R_6)_2)_sOR_6$ or $-(C(R_6)_2)_sN(R_6)_2$, or optionally mono or di-substituted on a saturated carbon with divalent radicals -O- or $-O(C(R_6)_2)_sO$ -;

R6 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, cycloalkyl of 1-6 carbon atoms, carboalkyl of 2-7 carbon atoms, carboxyalkyl (2-7 carbon atoms), phenyl, or phenyl optionally substituted with one or more halogen, alkoxy of 1-6 carbon atoms, trifluoromethyl, amino, alkylamino of 1-3 carbon atoms, dialkylamino of 2-6 carbon atoms, nitro, cyano, azido, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, carboxyl, carboalkoxy of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, or alkyl of 1-6 carbon atoms;

R2, is selected from the group consisting of

Docket No: ACY33451 C1
Patent

$$QO_2C$$
 CH_2 R_5 CH_2 R_5 CH_2 R_5 CH_2 R_5 CO_2Q ;

R3 is independently hydrogen, alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms,

$$R_{7}\text{-}(C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_$$

with the proviso that at least one of the R3 groups is selected from the group

$$R_{7}\text{-}(C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r}\text{-}$$

$$(C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r}\text{-}$$

$$(C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r}\text{-}$$

$$R_{7}\text{-}(C(R_{6})_{2})_{p} - M - (C(R_{6})_{2})_{r}\text{-}$$

$$R_{8}R_{9}\text{-}CH-M - (C(R_{6})_{2})_{r}\text{-} \quad \text{, or Het-}(C(R_{6})_{2})_{q}\text{-}W\text{-}(C(R_{6})_{2})_{r}\text{-} \quad \text{;}$$

Patent

with the proviso that for said at least one R₃ group the moiety

 $Het-(C(R_6)_2)_q-W-(C(R_6)_2)_r-$

cannot be morpholino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, piperidino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, N-alkyl piperidino-N-alkyl wherein either alkyl group is 1-6 carbon atoms, or azacycloalkyl-N-alkyl of 3-11 carbon atoms;

R5 is independently hydrogen, alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms,

$$R_{7}\text{-}(C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_$$

 R_8 , and R_9 are each, independently, $-(C(R_6)_2)_rNR_6R_6$, or $-(C(R_6)_2)_rOR_6$;

J is independently hydrogen, chlorine, fluorine, or bromine;

Q is alkyl of 1-6 carbon atoms or hydrogen;

$$a = 0 \text{ or } 1;$$

$$g = 1-6$$
;

$$k = 0-4$$
;

$$p = 2-4$$
;

$$q=0-4$$
;

$$r = 1-4$$
:

$$s = 1-6$$
;

u = 0-4 and v = 0-4, wherein the sum of u+v is 2-4;

or a pharmaceutically acceptable salt thereof,

provided that

Patent

when R6 is alkenyl of 2-7 carbon atoms or alkynyl of 2-7 carbon atoms, such alkenyl or alkynyl moiety is bound to a nitrogen or oxygen atom through a saturated carbon atom;

and further provided that

when Y is -NR6- and R7 is -NR6R6, -N(R6)3 $^{+}$ or -NR6(OR6), then g = 2-6;

when M is -O- and R7 is -OR6, then p = 1-4;

when Y is -NR6-, then k = 2-4;

when Y is -O- and M or W is -O-, then k = 1-4

when W is not a bond with Het bonded through a nitrogen atom, then q = 2-4 and when W is a bond with Het bonded through a nitrogen atom and Y is -O- or -NR₆-, then k = 2-4.

- 7. The method according to claim 6 wherein the neoplasm is selected from the group consisting of breast, kidney, bladder, mouth, larynx, esophagus, stomach, colon, ovary, and lung.
- 8. A method of treating, inhibiting the progression of, or eradicating polycystic kidney disease in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of formula 1 having the structure

$$G_1$$
 R_1
 $C \equiv N$
 G_2
 R_4
 R_4

wherein:

X is cycloalkyl of 3 to 7 carbon atoms, which may be optionally substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a pyridinyl, pyrimidinyl, or phenyl ring wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally mono- di-, or tri-

Amendment

Docket No: ACY33451 C1
Patent

substituted with a substituent selected from the group consisting of halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, carboxyalkyl of 2-7 carbon atoms, carboalkoxyalky of 3-8 carbon atoms, aminoalkyl of 1-5 carbon atoms, N-alkylaminoalkyl of 2-9 carbon atoms, N,N-dialkylaminoalkyl of 3-10 carbon atoms, N-alkylaminoalkoxy of 2-9 carbon atoms, N,N-dialkylaminoalkoxy of 3-10 carbon atoms, mercapto, methylmercapto, and benzoylamino;

Z is -NH-, -O-, -S-, or -NR-;

R is alkyl of 1-6 carbon atoms, or carboalkyl of 2-7 carbon atoms;

G₁, G₂, R₁, and R₄ are each, independently, hydrogen, halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, alkenyloxy of 2-6 carbon atoms, alkynyloxy of 2-6 carbon atoms, hydroxymethyl, halomethyl, alkanoyloxy of 1-6 carbon atoms, alkenoyloxy of 3-8 carbon atoms, alkynoyloxy of 3-8 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkenoyloxymethyl of 4-9 carbon atoms, alkynoyloxymethyl of 4-9 carbon atoms, alkoxymethyl of 2-7 carbon atoms. alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, alkylsulphinyl of 1-6 carbon atoms, alkylsulphonyl of 1-6 carbon atoms, alkylsulfonamido of 1-6 carbon atoms, alkenylsulfonamido of 2-6 carbon atoms, alkynylsulfonamido of 2-6 carbon hydroxy, trifluoromethyl, trifluoromethoxy, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzyl, amino, hydroxyamino, alkoxyamino of 1-4 carbon atoms, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, Nalkylcarbamoyl, N,N-dialkylcarbamoyl, N-alkyl-N-alkenylamino of 4 to 12 carbon atoms, N,N-dialkenylamino of 6-12 carbon atoms, phenylamino, benzylamino,

Patent

 R_7 - $(C(R_6)_2)_g$ -Y- , R_7 - $(C(R_6)_2)_p$ -M- $(C(R_6)_2)_k$ -Y- , or Het- $(C(R_6)_2)_q$ -W- $(C(R_6)_2)_k$ -Y- with the proviso that either G_1 or G_2 or both G_1 and G_2 must be a radical selected from the group

$$R_{7}\text{-}(C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{k}\text{-}Y - R_{8}R_{9}\text{-}CH-M-(C(R_{6})_{2})_{k}\text{-}Y - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{k}\text{-}Y - (C(R_{6})_{2})_{k}\text{-}Y - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{k}\text{-}Y - (C(R_{6})_{2})_{$$

$$\begin{split} & \text{R'}_7\text{-}(\text{C}(\text{R}_6)_2)_g\text{-Y-} \quad , \quad \text{R}_7\text{-}(\text{C}(\text{R}_6)_2)_p\text{-M-}(\text{C}(\text{R}_6)_2)_k\text{-Y-} \quad , \quad \text{Het-}(\text{C}(\text{R}_6)_2)_q\text{-W-}(\text{C}(\text{R}_6)_2)_k\text{-Y-} \quad , \\ & \text{or} \qquad \quad \text{R}_2\text{-N-} \quad ; \end{split}$$

Y is a divalent radical selected from the group consisting of

$$-(CH_2)_a$$
 , $-O$, and $-N$;

 R_7 is $-NR_6R_6$, -J, $-OR_6$, $-N(R_6)_3^+$, or $-NR_6(OR_6)$;

R'7 is -NR₆(OR₆), -N(R₆)₃ + alkenoxy of 1-6 carbon atoms, alkynoxy of 1-6 carbon atoms, N-alkyl-N-alkenylamino of 4 to 12 carbon atoms, N,N-dialkenylamino of 6-12 carbon atoms, N-alkyl-N-alkynylamino of 4 to 12 carbon atoms, N-alkenyl-N-alkynylamino of 4 to 12 carbon atoms, or N,N-dialkynylamino of 6-12 carbon atoms with the proviso that the alkenyl or alkynyl moiety is bound to a nitrogen or oxygen atom through a saturated carbon atom;

M is $>NR_6$, -O-, $>N-(C(R_6)_2)_pNR_6R_6$, or $>N-(C(R_6)_2)_p-OR_6$;

W is $>NR_6$, -O- or is a bond;

Het is a heterocycle selected from the group consisting of morpholine, thiomorpholine, thiomorpholine S-oxide, thiomorpholine S,S-dioxide, piperidine, pyrrolidine, aziridine, pyridine, imidazole, 1,2,3-triazole, 1,2,4-triazole, thiazole, thiazolidine.

Patent

tetrazole, piperazine, furan, thiophene, tetrahydrothiophene, tetrahydrofuran, dioxane,

1,3-dioxolane, tetrahydropyran, and

wherein the heterocycle is optionally mono- or di-substituted on carbon or nitrogen with R_6 , optionally mono- or di-substituted on carbon with hydroxy, $-N(R_6)_{2,}$ or $-OR_6$, optionally mono or di-substituted on carbon with the mono-valent radicals $-(C(R_6)_2)_sOR_6$ or $-(C(R_6)_2)_sN(R_6)_2$, or optionally mono or di-substituted on a saturated carbon with divalent radicals -O- or $-O(C(R_6)_2)_sO$ -;

R6 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, cycloalkyl of 1-6 carbon atoms, carboalkyl of 2-7 carbon atoms, carboxyalkyl (2-7 carbon atoms), phenyl, or phenyl optionally substituted with one or more halogen, alkoxy of 1-6 carbon atoms, trifluoromethyl, amino, alkylamino of 1-3 carbon atoms, dialkylamino of 2-6 carbon atoms, nitro, cyano, azido, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, carboxyl, carboalkoxy of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, or alkyl of 1-6 carbon atoms;

R2, is selected from the group consisting of

$$R_3$$
 R_3
 R_3

Patent

R₃ is independently hydrogen, alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms,

$$R_{7}-(C(R_{6})_{2})_{p}-N \qquad N-(C(R_{6})_{2})_{r^{-}} \ , \\ (C(R_{6})_{2})_{p} \qquad N-(C(R_{6})_{2})_{r^{-}} \ , \\ R_{7}-(C(R_{6})_{2})_{s^{-}} \ , \qquad R_{7}-(C(R_{6})_{2})_{p}-M-(C(R_{6})_{2})_{r^{-}} \ , \\ R_{8}R_{9}-CH-M-(C(R_{6})_{2})_{r^{-}} \ , \text{ or Het-}(C(R_{6})_{2})_{q}-W-(C(R_{6})_{2})_{r^{-}}$$

with the proviso that at least one of the R3 groups is selected from the group

$$R_{7}-(C(R_{6})_{2})_{p}-N \qquad N-(C(R_{6})_{2})_{r}-N = (C(R_{6})_{2})_{p}-N = (C(R_{6})_{2})_{p}-N = (C(R_{6})_{2})_{p}-N = (C(R_{6})_{2})_{p}-N = (C(R_{6})_{2})_{p}-N = (C(R_{6})_{2})_{r}-N = (C(R_{6})_{2})_{p}-N = (C(R_{6})_{2$$

Patent

with the proviso that for said at least one R₃ group the moiety

 $\underline{\text{Het-}(C(R_{\underline{6}})_{\underline{2}})_{q}\text{-W-}(C(R_{\underline{6}})_{\underline{2}})_{\underline{r}}\text{-}}$

cannot be morpholino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, piperidino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, N-alkyl piperidino-N-alkyl wherein either alkyl group is 1-6 carbon atoms, or azacycloalkyl-N-alkyl of 3-11 carbon atoms;

R5 is independently hydrogen, alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms,

$$R_{7}-(C(R_{6})_{2})_{p}-N \qquad N-(C(R_{6})_{2})_{r}- \qquad (C(R_{6})_{2})_{p}$$

$$R_{7}-(C(R_{6})_{2})_{s}- \qquad R_{7}-(C(R_{6})_{2})_{p}-M-(C(R_{6})_{2})_{r}- \qquad R_{8}R_{9}-CH-M-(C(R_{6})_{2})_{r}- \qquad , or \ Het-(C(R_{6})_{2})_{q}-W-(C(R_{6})_{2})_{r}- \qquad ;$$

R₈, and R₉ are each, independently, $-(C(R_6)_2)_rNR_6R_6$, or $-(C(R_6)_2)_rOR_6$;

J is independently hydrogen, chlorine, fluorine, or bromine;

Q is alkyl of 1-6 carbon atoms or hydrogen;

$$a = 0 \text{ or } 1$$
;

$$g = 1-6$$
;

$$k = 0-4$$
;

$$p = 2-4$$
;

$$q=0-4;$$

$$r = 1-4$$
;

$$s = 1-6$$
;

u = 0-4 and v = 0-4, wherein the sum of u+v is 2-4;

or a pharmaceutically acceptable salt thereof,

provided that

Patent

when R6 is alkenyl of 2-7 carbon atoms or alkynyl of 2-7 carbon atoms, such alkenyl or alkynyl moiety is bound to a nitrogen or oxygen atom through a saturated carbon atom;

and further provided that

when Y is -NR6- and R7 is -NR6R6, -N(R6)3 $^{+}$ or -NR6(OR6), then g = 2-6;

when M is -O- and R7 is -OR6, then p = 1-4;

when Y is -NR6-, then k = 2-4;

when Y is -O- and M or W is -O-, then k = 1-4

when W is not a bond with Het bonded through a nitrogen atom, then q=2-4 and when W is a bond with Het bonded through a nitrogen atom and Y is -O- or -NR₆-, then k=2-4.

9. A pharmaceutical composition which comprises a compound of formula 1 having the structure

$$G_1$$
 R_1
 $C \equiv N$
 G_2
 R_4
 R_4

wherein:

X is cycloalkyl of 3 to 7 carbon atoms, which may be optionally substituted with one or more alkyl of 1 to 6 carbon atom groups; or is a pyridinyl, pyrimidinyl, or phenyl ring wherein the pyridinyl, pyrimidinyl, or phenyl ring may be optionally mono- di-, or trisubstituted with a substituent selected from the group consisting of halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, azido, hydroxyalkyl of 1-6 carbon atoms, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, trifluoromethyl, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, amino, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12

Amendment

Patent

carbon atoms, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, alkenoylamino of 3-8 carbon atoms, alkynoylamino of 3-8 carbon atoms, carboxyalkyl of 2-7 carbon atoms, carboalkoxyalky of 3-8 carbon atoms, aminoalkyl of 1-5 carbon atoms, N-alkylaminoalkyl of 2-9 carbon atoms, N,N-dialkylaminoalkyl of 3-10 carbon atoms, N-alkylaminoalkoxy of 2-9 carbon atoms, N,N-dialkylaminoalkoxy of 3-10 carbon atoms, mercapto, methylmercapto, and benzoylamino;

Z is -NH-, -O-, -S-, or -NR-;

R is alkyl of 1-6 carbon atoms, or carboalkyl of 2-7 carbon atoms;

G₁, G₂, R₁, and R₄ are each, independently, hydrogen, halogen, alkyl of 1-6 carbon atoms. alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, alkenyloxy of 2-6 carbon atoms, alkynyloxy of 2-6 carbon atoms, hydroxymethyl, halomethyl, alkanoyloxy of 1-6 carbon atoms, alkenoyloxy of 3-8 carbon atoms, alkynoyloxy of 3-8 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkenoyloxymethyl of 4-9 carbon atoms, alkynoyloxymethyl of 4-9 carbon atoms, alkoxymethyl of 2-7 carbon atoms. alkoxy of 1-6 carbon atoms, alkylthio of 1-6 carbon atoms, alkylsulphinyl of 1-6 carbon atoms, alkylsulphonyl of 1-6 carbon atoms, alkylsulfonamido of 1-6 carbon atoms, alkenylsulfonamido of 2-6 carbon atoms, alkynylsulfonamido of 2-6 carbon hydroxy, trifluoromethyl, trifluoromethoxy, cyano, nitro, carboxy, carboalkoxy of 2-7 carbon atoms, carboalkyl of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzyl, amino, hydroxyamino, alkoxyamino of 1-4 carbon atoms, alkylamino of 1-6 carbon atoms, dialkylamino of 2 to 12 carbon atoms, Nalkylcarbamoyl, N,N-dialkylcarbamoyl, N-alkyl-N-alkenylamino of 4 to 12 carbon atoms, N,N-dialkenylamino of 6-12 carbon atoms, phenylamino, benzylamino,

 R_7 -($C(R_6)_2$)_g-Y- , R_7 -($C(R_6)_2$)_p-M-($C(R_6)_2$)_k-Y- , or Het-($C(R_6)_2$)_q-W-($C(R_6)_2$)_k-Y- with the proviso that either G_1 or G_2 or both G_1 and G_2 must be a radical selected from the group

Patent

$$R_{7}$$
- $(C(R_{6})_{2})_{p}$ - N - $(C(R_{6})_{2})_{k}$ - Y - $R_{8}R_{9}$ - CH - M - $(C(R_{6})_{2})_{k}$ - Y - $(C(R_{6})_{2})_{p}$

$$R'_7 - (C(R_6)_2)_g - Y - \quad , \quad R_7 - (C(R_6)_2)_p - M - (C(R_6)_2)_k - Y - \quad , \quad \text{Het-}(C(R_6)_2)_q - W - (C(R_6)_2)_k - Y - \quad , \quad \text{Het-}(C(R_6)_2)_q - W - (C(R_6)_2)_k - Y - \quad , \quad \text{Het-}(C(R_6)_2)_q - W - (C(R_6)_2)_k - Y - \quad , \quad \text{Het-}(C(R_6)_2)_q - W - (C(R_6)_2)_k - Y - \quad , \quad \text{Het-}(C(R_6)_2)_q - W - (C(R_6)_2)_k - Y - \quad , \quad \text{Het-}(C(R_6)_2)_q - W - (C(R_6)_2)_k - Y - \quad , \quad \text{Het-}(C(R_6)_2)_q - W - (C(R_6)_2)_q -$$

Y is a divalent radical selected from the group consisting of

—
$$(CH_2)_a$$
— , —O— , and —N— ;

 R_7 is $-NR_6R_6$, -J, $-OR_6$, $-N(R_6)_3$, or $-NR_6(OR_6)$;

R'7 is -NR₆(OR₆), -N(R₆)₃ + alkenoxy of 1-6 carbon atoms, alkynoxy of 1-6 carbon atoms, N-alkyl-N-alkenylamino of 4 to 12 carbon atoms, N,N-dialkenylamino of 6-12 carbon atoms, N-alkyl-N-alkynylamino of 4 to 12 carbon atoms, N-alkenyl-N-alkynylamino of 4 to 12 carbon atoms, or N,N-dialkynylamino of 6-12 carbon atoms with the proviso that the alkenyl or alkynyl moiety is bound to a nitrogen or oxygen atom through a saturated carbon atom;

M is
$$>NR_6$$
, $-O$ -, $>N$ - $(C(R_6)_2)_pNR_6R_6$, or $>N$ - $(C(R_6)_2)_p$ - OR_6 ;

W is $>NR_6$, -O- or is a bond;

Het is a heterocycle selected from the group consisting of morpholine, thiomorpholine, thiomorpholine S-oxide, thiomorpholine S,S-dioxide, piperidine, pyrrolidine, aziridine, pyridine, imidazole, 1,2,3-triazole, 1,2,4-triazole, thiazole, thiazolidine, tetrazole, piperazine, furan, thiophene, tetrahydrothiophene, tetrahydrofuran, dioxane,

1,3-dioxolane, tetrahydropyran, and

wherein the heterocycle is optionally mono- or di-substituted on carbon or nitrogen with R_6 , optionally mono- or di-substituted on carbon with hydroxy, $-N(R_6)_{2,}$ or - OR_6 , optionally mono or di-substituted on carbon with the mono-valent radicals -

Patent

 $(C(R_6)_2)_sOR_6$ or $-(C(R_6)_2)_sN(R_6)_2$, or optionally mono or di-substituted on a saturated carbon with divalent radicals -O- or $-O(C(R_6)_2)_sO$ -;

R6 is hydrogen, alkyl of 1-6 carbon atoms, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, cycloalkyl of 1-6 carbon atoms, carboalkyl of 2-7 carbon atoms, carboxyalkyl (2-7 carbon atoms), phenyl, or phenyl optionally substituted with one or more halogen, alkoxy of 1-6 carbon atoms, trifluoromethyl, amino, alkylamino of 1-3 carbon atoms, dialkylamino of 2-6 carbon atoms, nitro, cyano, azido, halomethyl, alkoxymethyl of 2-7 carbon atoms, alkanoyloxymethyl of 2-7 carbon atoms, alkylthio of 1-6 carbon atoms, hydroxy, carboxyl, carboalkoxy of 2-7 carbon atoms, phenoxy, phenyl, thiophenoxy, benzoyl, benzyl, phenylamino, benzylamino, alkanoylamino of 1-6 carbon atoms, or alkyl of 1-6 carbon atoms;

R2, is selected from the group consisting of

Patent

Patent

R₃ is independently hydrogen, alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms,

$$R_{7}-(C(R_{6})_{2})_{p}-N \qquad N-(C(R_{6})_{2})_{r^{-}},$$

$$(C(R_{6})_{2})_{p}$$

$$R_{7}-(C(R_{6})_{2})_{s^{-}}, \qquad R_{7}-(C(R_{6})_{2})_{s^{-}},$$

$$R_{7}-(C(R_{6})_{2})_{s^{-}}, \qquad R_{7}-(C(R_{6})_{2})_{p}-M-(C(R_{6})_{2})_{r^{-}},$$

$$R_{8}R_{9}-CH-M-(C(R_{6})_{2})_{r^{-}}, \qquad \text{or Het-}(C(R_{6})_{2})_{q}-W-(C(R_{6})_{2})_{r^{-}},$$

with the proviso that at least one of the R3 groups is selected from the group

$$R_{7}-(C(R_{6})_{2})_{p}-N \qquad N-(C(R_{6})_{2})_{r}-N \\ (C(R_{6})_{2})_{p}-N -(C(R_{6})_{2})_{r}-N \\ (C(R_{6})_{2})_{p}-M -(C(R_{6})_{2})_{r}-N \\ R_{8}R_{9}-CH-M-(C(R_{6})_{2})_{r}-N -(C(R_{6})_{2})_{q}-W -(C(R_{6})_{2})_{r}-N \\ R_{8}R_{9}-CH-M-(C(R_{6})_{2})_{r}-N -(C(R_{6})_{2})_{r}-N -(C(R_{6})_{2})_{r}-N \\ R_{8}R_{9}-CH-M-(C(R_{6})_{2})_{r}-N -(C(R_{6})_{2})_{r}-N -(C(R_{6})_{2})_{r}-N \\ R_{8}R_{9}-CH-M-(C(R_{6})_{2})_{r}-N -(C(R_{6})_{2})_{r}-N -(C(R_$$

Patent

with the proviso that for said at least one R₃ group the moiety

 $Het-(C(R_6)_2)_q-W-(C(R_6)_2)_r-$

cannot be morpholino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, piperidino-N-alkyl wherein the alkyl group is 1-6 carbon atoms, N-alkyl piperidino-N-alkyl wherein either alkyl group is 1-6 carbon atoms, or azacycloalkyl-N-alkyl of 3-11 carbon atoms;

R5 is independently hydrogen, alkyl of 1-6 carbon atoms, carboxy, carboalkoxy of 1-6 carbon atoms, phenyl, carboalkyl of 2-7 carbon atoms,

$$R_{7}-(C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{p} - N - (C(R_{6})_{2})_{r} - N - (C(R_{6})_{2}$$

 R_8 , and R_9 are each, independently, $-(C(R_6)_2)_rNR_6R_6$, or $-(C(R_6)_2)_rOR_6$;

J is independently hydrogen, chlorine, fluorine, or bromine;

Q is alkyl of 1-6 carbon atoms or hydrogen;

$$a = 0 \text{ or } 1;$$

$$g = 1-6$$
;

$$k = 0-4$$
;

$$p = 2-4$$
;

$$q=0-4$$
;

$$r = 1-4$$
:

$$s = 1-6$$
;

u = 0-4 and v = 0-4, wherein the sum of u+v is 2-4;

or a pharmaceutically acceptable salt thereof,

provided that

Patent

when R6 is alkenyl of 2-7 carbon atoms or alkynyl of 2-7 carbon atoms, such alkenyl or alkynyl moiety is bound to a nitrogen or oxygen atom through a saturated carbon atom;

and further provided that

when Y is -NR6- and R7 is -NR6R6, -N(R6)3 $^{+}$ or -NR6(OR6), then g = 2-6;

when M is -O- and R7 is -OR6, then p = 1-4;

when Y is -NR6-, then k = 2-4;

when Y is -O- and M or W is -O-, then k = 1-4

when W is not a bond with Het bonded through a nitrogen atom, then q=2-4 and when W is a bond with Het bonded through a nitrogen atom and Y is -O- or -NR₆-, then k=2-4.

