Contents

1	Introduction	3
2	Problems	5

Chapter 1

Introduction

Definition: A statiscal model is parametric if it can be determined using a set of parameters. A statiscal model that can not be adquately determined by a set of parameters is called a non-parametric model. Models that have both components are called semi-parametric.

Definition: A parametric model is identifiable if

$$\theta_1 \neq \theta_2 \implies P_{\theta_1} \neq P_{\theta_2}$$
 (1.1)

Definition: A statistic is a function from sample space \mathcal{X} to some spave of values, \mathcal{T} .

Definition: Any parametric model that either

- 1. All of P_{θ} are continuous with denisities $p(x,\theta)$
- 2. All of P_{θ} are discrete with frequency functions $p(x,\theta)$, and the support set $\{x_1, x_2, \ldots\} \equiv \{x \mid p(x,\theta) > 0\}$

are called regular parametric models.

1. Introduction

Chapter 2

Problems

2.0.1

Let U be any random variable and V be any other non-negative random variable. Show that U + V is stochastically larger then U, that is

$$F_{U+V}(t) \le F_U(t), \quad \forall t$$
 (2.1)

Proof. Let

$$A_1 = \{\omega \mid U + V \le t\}, \quad A_2 = \{\omega \mid U \le t\}$$

since $U + V \ge U$ then $A_1 \subset A_2$ and hence

$$\mathbb{P}(A_1) = F_{U+V}(t) \le F_U(t) = \mathbb{P}(A_2)$$