date: thursday, february 29, 2024

Polynomial Rings

Assumption: R is a commutative ring with 1_R .

Elements of the form $Q_n \chi^n + Q_{n-1} \chi^{n-1} + \cdots + Q_i \chi + Q_o$ with $Q_n \neq Q_o$, Q_o , ..., $Q_n \in \mathbb{R}$

is called a polynomial over R with indeterminate X.

a.,.., an are coefficients · an is the leading coefficient

· p(x) is a monic polynomial if $a_n=1$ deg p(x) = n if $p(x) \neq 0$ or deg $p(x) = -\infty$ if p(x) = 0

 $Def^{-}: R[x] = 2all polynomials with coefficients in R3$

Note: $p(x) = a_n x^n + \cdots + a_n$ and $q(x) = b_m x^m + \cdots + b_n$, then p(x) = q(x) iff n = mand a:=b: for all i.

Theorem: R[x] is a commutative ring with identity 1 with the operations

 $(a_n \chi^n + a_{n-1} \chi^{n-1} + \dots + a_o) + (b_n \chi^n + b_{n-1} \chi^{n-1} + \dots + b_o) = (a_n + b_n) \chi^n + (a_{n-1} + b_{n-1}) \chi^{n-1} + \dots + (a_o + b_o)$ $(a_{n}\chi^{n} + a_{n-1}\chi^{n-1} + \dots + a_{o})(b_{n}\chi^{n} + b_{n-1}\chi^{n-1} + \dots + b_{o}) = a_{n}b_{m}\chi^{n+m} + (a_{n-1}b_{m} + a_{n}b_{m-1})\chi^{n+m-1} + \dots + a_{o}b_{o}$ eq. $R = \mathbb{Z}_3$. Count the number of polynomials of degree 2.

 $0_2x^2 + a_1x + a_2 < -$ arbitrary polynomial of degree 2 $\frac{2}{1,23}$ $\frac{3}{1,23}$ $\frac{3}{1,23}$ 18 solutions

Q: If R has property P, does R[x] have property P? A: It depends.

Theorem: If R is an integral domain, then R[x] is also an integral domain.

Proof

Suppose $p(x) = a_n x^n + \cdots + a_n$ and $q(x) = b_m x^m + \cdots + b_n$. Then, $p(x)q(x) = a_n b_m x^{m+n} + \cdots$ Since $a_n \neq 0$ and $b_m \neq 0$, and since R is an integral domain, $a_n b_m \neq 0$.

So $p(x)q(x) \neq 0$. Thus, R[x] is an integral domain.

Corollary: If R is an integral domain and $p(x)q(x) \in R[x]$ then

Corollary: If R is an integral domain and $p(x)q(x) \in R[x]$, then $\deg p(x)q(x) = \deg p(x) + \deg q(x)$.

eq. If $R = \mathbb{Z}_4$, and if $p(x) = 2x^{100} + 1$ and $q(x) = 2x^{2024} + 1$, then $p(x)q(x) = 4x^{2124} + 2x^{400} + 2x^{2024} + 1 = 2x^{2024} + 2x^{400} + 1$. eq. If F is a field, is F[x] a field?

No, the element x has no inverse. Suppose q(x)x = 1. Then $\deg q(x) + \deg x = 0$. This implies $\deg q(x) < 0$ which can't happen.

There are many maps R[x] to R.

Theorem: Let $\alpha \in \mathbb{R}$. Then the map $\Psi_{\alpha} : \mathbb{R}[x] \rightarrow \mathbb{R}$ given by $p(\alpha) = a_n x^n + \dots + a_n \longrightarrow p(\alpha) = a_n \alpha^n + \dots + a_n$

is a homomorphism (called evaluation homomorphism at α).

Note: R[x] is a commutative ring with identity 1. We can use this ring of coefficients to make a new polynomial ring. $(R[x])[y] = \{all\ polynomials\ over\ R[x]\ with\ indeterminate\ y\ \}$

 $g \in \mathbb{R}[x][y] => g = f_n(x)y^n + f_{n-1}(x)y^{n-1} + \dots + f_n(x)$ usually write $\mathbb{R}[x,y]$.
In append, can make $\mathbb{R}[x]$

In general, can make $R[x, ..., x_n]$.

Division Algorithm in F[x]High school stuff: polynomial division

2x + 7 $3x^2+2x+1/6x^3+25x^2+16x+17$ $-6\chi^3 + 4\chi^2 + 2\chi$ $91\chi^{2} + 14\chi + 17$ $-21\chi^2 + 14\chi + 7$

 $6x^3 + 25x^2 + 16x + 17 = (3x^2 + 2x + 1)(2x + 7) + 10$ Can always do this if we assume our ring of coefficients is a field.

Theorem: (Division Algorithm for F[x]) If F is a field, and $a(x),b(x) \in F[x]$ and $b(x) \neq 0$, then there exists unique polynomials q(x) and r(x) such that a(x) = b(x)q(x) + r(x) with r(x) = 0 or deg r(x) < deg b(x). eq. $R = \mathbb{Z}$, $a(x) = 2x^2 + 1$, b(x) = 3x + 1

 $(2x^2+1)=(3x+1)(0x+b)+c$ To make this work, a= 3 € Z So we need the field property.

Proof: Next class issue Recall: α is a root of $f(\alpha)$ if $f(\alpha)=0$

Corollary: Let F be a field. Then α is a root of $f(\alpha) \in F[\alpha]$ iff $f(x) = (x - \alpha)q(x).$ Proof

"="If $f(x) = (x - \alpha)q(x)$, then $f(\alpha) = (\alpha - \alpha)q(\alpha) = 0$. "=>"Apply the division algorithm to f(x) and $(x-\alpha)$.

So
$$f(x) = q(x)(x-\alpha) + r(x)$$
 with $r(x) = 0$ or $deg(r(x)) < 1$. Then, $0 = f(\alpha) = q(\alpha)(\alpha - \alpha) + r(\alpha) = r(\alpha)$.

But $r(x)$ is a constant, so $r(\alpha) = 0$.