

Lista de Exercícios – Métodos Numéricos para Engenharia TC Prof^a Polliana Cândida Oliveira Martins 2020/1

Resolva manualmente os problemas a seguir. Quando necessário, use uma calculadora ou escreva um programa no MATLAB para realizar os cálculos. Não utilize funções residentes do MATLAB/Octave para realizar o ajuste de curvas e interpolação.

1ª QUESTÃO:

Faça uma estimativa do logaritmo comum de 10 usando interpolação linear usando a abordagem de Newton.

- (a) Interpole entre log 8=0,9030900 e log 12=1,0791812.
- (b) Interpole entre $\log 9 = 0.9542425$ e $\log 11 = 1.0413927$.
- (c) Para cada interpolação, calcule o erro relativo porcentual baseado no valor verdadeiro.

2ª QUESTÃO:

A economia de um carro (km/litro) varia com sua velocidade. Em um experimento, são feitas as cinco medições a seguir.

Velocidade (km/h)	16	40	64	88	112
Economia (km/litro)	4,2	9,2	10	10,7	8,6

- a) Determine o polinômio de Lagrange de segunda ordem e de quarta ordem que passa pelos pontos. Use os dois polinômios para calcular a economia de combustível a 105 km/h. Compare os resultados obtidos.
- b) Determine o polinômio interpolador de Newton de quarta ordem que passa pelos pontos. Use os dois polinômios para calcular a economia de combustível 48 km/h. Compare os resultados obtidos.

3ª QUESTÃO:

Considere os dados da tabela que se segue

X	1,6	2	2,5	3,2	4	4,5
f(x)	2	8	14	15	8	2

- a) Determine os polinômios interpoladores de Lagrange de primeiro a terceiro graus que devem ser utilizados para interpolar valores nesse conjunto de dados.
- b) Determine splines quadráticos que devem ser utilizados para interpolar valores nesse conjunto de dados.
- c) Determine splines cúbicas naturais que devem ser utilizados para interpolar valores nesse conjunto de dados.
- d) Determine, usando os polinômios desenvolvidos de a) ate c) os valores de f(2,2), f(3,4) e f(4,2). Compare os valores obtidos.

4ª QUESTÃO

A tabela a seguir mostra alturas e pesos de uma amostra de nove homens entre as idades de 25 a 29 anos, extraída aleatoriamente entre funcionários de uma indústria.

Altura	183	173	168	188	158	163	193	163	178	cm
Peso	79	69	70	81	61	63	79	71	73	kg

- a) Faça o diagrama de dispersão dos dados e observe a relação linear entre altura e peso.
- b) Ajuste uma reta que descreva o comportamento do peso em função da altura, isto é peso=f(altura)
- c) Estime o peso de um funcionário com 175cm de altura e estime a altura de um funcionário com 80kg.
- d) Ajuste agora a reta que descreve o comportamento da altura em função do peso, isto é, altura=f(peso);
- e) Resolva o item c) com a nova função e compare os resultados obtidos. Explique.
- f) Compare graficamente as equações b) e d) e comente.

5ª QUESTÃO

Os dados a seguir fornecem a população aproximada do mundo em anos selecionados de 1850 até 2000.

Ano	1850	1900	1950	1980	2000
População (Bilhões)	1,3	1,6	3	4,4	6

Assuma que o crescimento da população possa ser modelado por uma função exponencial $p = be^{mx}$, onde x é o ano e p é a população em bilhões. Linearize essa função e use a regressão linear por mínimos quadrados para determinar as constantes b e m para as quais a função fornece o melhor ajuste para os dados. Use essa equação para estimar a população em 1970.

6ª QUESTÃO

Para medir g (a aceleração da gravidade), realiza se o experimento a seguir. Uma bola é solta do topo de um edifício de 30 m de altura. À medida que o objeto vai caindo, sua velocidade V vai sendo medida em várias alturas por sensores presos ao edifício. Os dados medidos no experimento são fornecidos na tabela.

<i>x</i> (m)	0	5	10	15	20	25
v (m/s)	0	9,85	14,32	17,63	19,34	22,41

Em termos das coordenadas mostradas na figura (positivo para baixo), a velocidade da bola em função da distância x é dada por $v^2 = 2gx$. Usando a regressão linear, determine o valor experimental de g.