Virtualna Okruženja

Vježba 1

Programiranje grafičkog sklopovlja

1. Preslikavanje neravnina

Vježbu sam riješio u DirectX/HLSL inačici.

Kako bi se ostvarilo preslikavanje neravnina potreban je jedan prolaz kroz grafički cjevovod sa odgovarajućim programima za sjenčanje vrhova i fragmenata. Na izlazu iz sjenčanja vrhova potrebni su (uz uobičajene parametre) vektor prema svjetlu i prema oku.

U programu za sjenčanje fragmenata trebalo je dodati sljedeće linije koda:

Dohvat normale iz teksture normala	<pre>float3 n = normalize(tex2D(normalMap,IN.texCoord)*2 + float3(-1,-1,-1));</pre>
Računanje polu-vektora h	float3 I = normalize(IN.lightDir); float3 v = normalize(IN.viewDir); float3 h = normalize(IN.lightDir + IN.viewDir);
Računanje faktora refleksije prema	float nSpecL = pow(dot(n, h),
pojednostavljenoj formuli refleksije	material.shininess);
Računanje ukupne boje svjetla na temelju materijala i izračunatih faktora svjetla (difuznog i reflektiranog)	float4 color = (material.ambient * light.ambient) + (material.specular * light.specular * nSpecL) + (material.diffuse * light.diffuse * nDotL);

Na slici 1. nalazi se scena bez preslikavanja neravnina, a na slici 2. je scena sa preslikavanjem neravnina.

Slika 1. Bez preslikavanja ravnina

Slika 2. Preslikavanje neravnina

2. Preslikavanje sjena

Vježbu sam riješio u DirectX/HLSL inačici.

Za preslikavanje sjena potrebna su dva prolaza kroz grafički cjevovod. U prvom se prolazu scena crta iz perspektive jedinog svjetla u scenu, a kao rezultat se dobiva tekstura sjena koja sadrži podatke o udaljenosti fragmenata vidljivih iz pozicije svjetla.

U drugom se prolazu scena crta iz perspektive kamere i tada se opet računa udaljenost fragmenta od izvora svjetlosti. Novi korak je usporedba dobivene udaljenosti sa onom u teksturi sjena. Ako je udaljenost veća, znači da postoji fragment koji je bliže svjetlu i trenutni se fragment nalazi u sjeni te ga treba potamniti.

U tablici u nastavku su linije koda koje je trebalo dodati u program za sjenčanje:

Početna transformacija viewPosLight	float4 transVPL = (
vektora	(IN.viewPosLight / IN.viewPosLight.w) + float4(1,1,1,1))/2;
	transVPL.y = 1.0 - transVPL.y;
Čitanje dubine iz mape sjena	float shadowDepth =
	tex2D(shadowMap, float2(transVPL.x, transVPL.y)).x;
Ako trenutni fragment ima veću	float factor = 1.0;
udaljenost nego fragment iz mape	if(shadowDepth < (IN.viewPosLight.z/xMaxDepth - 0.01)){
sjena, onda je trenutni fragment u	factor = 0.0;
sjeni!	}
Gađenje difuznog osvjetljenja koje	color =
daje svjetlo	(light.ambient + factor * light.diffuse * nDotL) * material;

Na slikama 3. i 4. nalaze se scene bez i sa preslikavanjem sjena.

Slika 3. Bez preslikavanja sjena

Slika 4. Sa preslikavanjem sjena

Do nazubljenosti sjena dolazi zbog male razlučivosti mape sjena i nedostatka interpolacije njenih vrijednosti. Na slici 5. vidimo da rub sjene ima promjenu kvadratnog oblika što je posljedica projekcije teksture sjena niske razlučivosti i odsustva interpolacije. Rješenje tog problema je korištenje veće razlučivosti za teksturu sjena, omogućavanje interpolacije ili implementacijom mekih sjena koje bi bile ovisne o udaljenosti od ruba sjene.

Slika 5. Nazubljeni rub sjene