19-3-2021

BILKENT UNIVERSITY

Department of Electrical and Electronics Engineering

EEE313 Electronic Circuit Design

MidTerm Exam #1

Name and Surname:
Student ID no:
Section:
Signature:

Exam Duration: 120 minutes. Solve all 5 questions.

PART-1, 3 questions, 45 minutes

Question#	Your score	Out of
Q1		15
Q2		15
Q3		10
Q4		30
Q5		30
Total:		100

Instructions:

- 1. Calculators without extensive memory are allowed
- 2. Clearly explain all your answers in order to receive credit
- 3. Put a box around your final answer
- 4. Cheat sheets are not allowed
- 5. Indicate the units for your final answers
- 6. Write your student ID on the bottom of every page

Q1. (15 points)

For the circuit on the left, the diodes can be represented by a piecewise-linear model with cut-in voltage $V_{\gamma}=0.65V$ and forward resistance $r_d=20\Omega.$ The Zener can also be modeled by a piecewise-linear model, has an incremental resistance of $r_z=20~\Omega$ and its voltage is 8.2V when a Zener current of 10mA is passed through it. Sketch and clearly label the v_o versus v_i transfer characteristic of the circuit, for -20V $< v_i < 20V.$ Note: Verify your assumptions.

Q2. (15 points)

For the circuit on the left, $V_{DD} = 10V$, $V_{TN} = 0.6V$, $K_n =$ 0.5mA/V^2

- a) Assuming $\lambda = 0$, find R such that $I_D = 12.5 \text{mA}$.
- b) Assuming $\lambda = 0.02 V^{-1}$, find R such that $I_D = 12.5 mA$. In this part an approximate iterative solution is acceptable. Note: Verify your assumptions.

Q3. (10 points)

For the circuit on the left,

 $V_{DD} = 5V, \ V_{TN} = 1V, \ V_{TP} = \text{-}1V, \ K_n = K_p = 1 \ mA/V^2, \ \lambda = 0.$

Find V_{out} for when $V_{in} = 3 \text{ V}$. Note: Verify your assumptions.