Algebra HW4

段奎元

SID: 201821130049 dkuei@outlook.com

October 15, 2018

- 1. Page 106,3 If H and K are subgroups of a group G, let (H,K) be the subgroup of G generated by the elements $\{hkh^{-1}k^{-1} \mid h \in H, k \in K\}$. Show that
 - (a) (H, K) is normal in $H \vee K$.
 - (b) If $(H, G') = \langle e \rangle$, then $(H', G) = \langle e \rangle$.
 - (c) $H \triangleleft G$ if and only if (H, G) < H.
 - (d) Let $K \triangleleft G$ and $K \triangleleft H$; then H/K < C(G/K) if and only if (H,G) < K.

SOLUTION:

(a) It suffices to prove $\forall a \in H, b \in K, c \in (H, K), aca^{-1} \in (H, K)$ and $bcb^{-1} \in (H, K)$. We only need to prove the condition c in (H, K)'s genetor, i.e. there are $h \in H, k \in K$ such that $c = hkh^{-1}k^{-1}$. Then

$$aca^{-1} = ahkh^{-1}k^{-1}a^{-1}$$

$$= ahkh^{-1}a^{-1}k^{-1}kak^{-1}a^{-1}$$

$$= (ahkh^{-1}a^{-1}k^{-1})(aka^{-1}k^{-1})^{-1} \in (H, K).$$

Similarly, $bcb^{-1} \in (H, K)$. We get $(H, K) \triangleleft H \vee K$.

- (b)
- (c) For all $h \in H, g \in G$,

$$\begin{split} H \lhd G &\Leftrightarrow ghg^{-1} \in H \\ &\Leftrightarrow gh^{-1}g^{-1} \in H \\ &\Leftrightarrow hgh^{-1}g^{-1} \in H \\ &\Leftrightarrow (H,G) < H. \end{split}$$

(d)

- 2. Page 106,8 If D_n is the dihedral group with generators a of order n and b of order 2, then
 - (a) $a^2 \in D'_n$.
 - (b) If n is odd, $D'_n \cong Z_n$.
 - (c) If n is even, $D'_n \cong Z_m$, where 2m = n.
 - (d) D_n is nilpotent if and only if n is a power of 2.

SOLUTION:

3. Page 106,10 S_n is solvable for $n \leq 4$, but S_3 and S_4 are not nilpotent. Solution:

4. Page 106,14 If $N \lhd G$ and $N \cap G' = \langle e \rangle$, then N < C(G). Solution: