Testes de hipóteses

Samuel Martins de Medeiros

Introdução

De maneira geral, existem duas grandes áreas na inferência Estatística: a estimação de parâmetros, para mais informações sobre estimação, verifique nosso post sobre função de Verossimilhança, e o teste de hipóteses. Em particular, o teste de hipoteses consiste em avaliar uma afirmação a respeito de um parâmetro (média, variância, proporção, etc.) ou um conjunto de parâmetros. Tal afirmação recebe o nome de de Hipótese Nula (Denotado por H_0), a afirmação alternativa recebe o nome de Hipótese Alternativa (Denotado por H_1).

Para deixar essa ideia um pouco mais clara, suponha que queremos saber se uma determinada marca de blusa A, possui um tempo médio de duração (Denotado por θ) igual ou superior a 5 anos. Conseguimos reescrever essa indagação na forma de um sistema de hipóteses, a saber:

$$\begin{cases} H_0: \theta \ge 5 \\ H_1: \theta < 5 \end{cases}$$

Para realizar o teste, assumimos que é possível obter uma amostra aleatória de blusas da marca $A, X_1, ..., X_n$, de uma distribuição $f(.; \theta)$.

Tambem é necessário definir a estatística de teste (T) e região de rejeição (R). Estatística de teste é um valor calculado a partir da amostra, seu valor define a regra de rejeição para uma hipótese, ele mostra o quanto seus dados observados correspondem à distribuição esperada sob a hipótese nula desse teste estatístico, denotamos por R os possíveis valores para θ em que, dado a regra de rejeição, rejeitamos H_0 . Estamos interessados em saber se o tempo de duração da marca A é igual ou maior que 5 anos, ou em outras palavras $H_0: \theta \geq 5$. Um possível teste seria rejeitar H_0 se $\overline{x} < 5 - 10/\sqrt{n}$, onde \overline{x} é a estatística de teste T, nesse caso nossa estatística acaba por ser o estimador de θ , digamos média amostral. No exemplo em questão, nossa região de rejeição são todos os possíveis valores de $\overline{x} < 5 - 10/\sqrt{n}$. Assumiremos δ como representação do procedimento de testes de hipótese no dercorrer do post.

Um teste pode ser tanto aleatório quanto não aleatório. O exemplo anterior, por exemplo, é um ótimo exemplo de teste não aleatório. Já um teste aleatório poderia ser "jogue uma moeda para o alto, caso cara rejeite a hipótese nula".

Tão importante quanto conhecer os tipos de teste é a verificação da "qualidade" de um teste, ou o quão correto estamos ao rejeitar uma hipótese.

Função Poder e Tipos de Erros\ Para cada teste aplicado sobre uma amostra obtida de uma distribuição $f(.;\theta)$ onde $\theta \in \Theta$ em que Θ representa o espaço paramétricos de possíveis valores para θ , teremos uma função poder associada. A função poder define a probabilidade, dado um valor de θ , de rejeitar H_0 dado que a mesma é falsa. Suponha um procedimento de teste δ , ou seja, possuímos uma regra de rejeição e uma estatística de teste. A função $\pi(\theta|\delta)$ é chamada função poder do teste δ . Se S_1 denota a região de rejeição de δ , então a função poder é determinada pela relação:

$$\pi(\theta|\delta) = \Pr(X \in S_1|\theta)$$

Se δ é descrito em função da estatística de teste T e da região de rejeição R, então

$$\pi(\theta|\delta) = \Pr(T \in R|\theta)$$

para todo $\theta \in \Theta$.

Sendo a função poder, a probabilidade de rejeitar a hipótese nula dado os possíveis valores do parâmetro em estudo θ , buscamos a o teste δ que minimize $\pi()$ para os valores de θ pertencentes ao espaço paramétrico de H_0 e a maximize quando θ pertence ao espaço paramétrico de H_1 , ou em outras palavras, $\pi(\theta \in \Theta_0 | \delta) = 0$ e $\pi(\theta \in \Theta_1 | \delta) = 1$, onde Θ_0 representa o espaço paramétrico sob a hipótese nula e Θ_1 o espaço paramétrico sob a hipótese alternativa. Retomando o exemplo inicial onde rejeitamos a hipótese nula para $\overline{x} < 5 - 10/\sqrt{n}$, suponha que uma amostra aleatória do produto A, $X_1, ..., X_{20}$ foi obtida de uma distribuição Normal (θ, σ^2) , com σ^2 conhecido e igual a 2, onde \overline{x} é o estimador de máxima verossimilhaça para média amostral. Obtendo, assim, a seguinte função poder,

$$\pi(\theta|\delta) = P\left(\overline{x} < 5 - \frac{10}{\sqrt{20}} = c \mid \theta\right)$$
$$= P\left(\frac{\overline{x} - \theta}{\sqrt{2/20}} < \frac{c - 5}{\sqrt{2/20}} \mid \theta\right) = P(Z < z_c \mid \theta)$$

onde Z segue uma distribuição Normal(0,1), tendo assim:

Como dito inicialmente, testamos se a hipótese nula é falsa e, portanto, se a hipótese alternativa é verdadeira, ou vice-versa. Nesse contexto, dois tipos de erros podem ser cometidos:

- Erro do Tipo I: rejeitar a hipótese nula quando a mesma é verdadeira.
- Erro do Tipo II: aceitar a hipótese nula quando a mesma é falsa.

Hipótese simples

As hipóteses de um teste podem ser da forma simples ou composta. Uma hipótese simples, é aquela onde o espaço de possíveis valores de θ é definido em apenas um ponto, onde a distribuição do parâmetro é completamente especificada $(H_0: \theta = \theta_0, f(.; \theta_0))$ por exemplo). Por outro lado, uma hipótese composta é aquela cuja distribuição não é especificada completamente e θ pode assumir um conjunto de valores Θ $(H_0: \theta \in \Theta, f(.; \Theta))$ por exemplo). A discussão acerca de hipótese simples versus hipótese simples não é muito vista na prática, porém serve como ótima introdução ao tema.

Testes de razão de verossimilhança simples Suponha que $X_1,...,X_n$ uma amostra aleatória de uma distribuição $f_0(.;\theta_0)$ ou $f_1(.;\theta_1)$. Um teste de $H_0:\theta=\theta_0$ vs. $H_1:\theta=\theta_1$ é um teste da razão de verossimilhança se é definido como: onde k é uma constante não negativa e $L(x_1,...,x_n)$ é a função de verossimilhança associada à função de densidade $f(\cdot)$. Rejeitamos a hipótese nula para um valor de $\lambda=L_0(\cdot)/L_1(\cdot)$ inferior a k, pois, seguindo a linha de raciocínio da razão das funções, $L_1(\cdot)$ é maior que $L_0(\cdot)$, nos dando mais indícios de que a amostra venha de uma população com distribuição $f_1(\cdot)$ em vez de uma $f_0(\cdot)$. Exemplo: seja $X_1,...,X_n$ uma amostra aleatória de uma distribuição $N(\theta,1)$ na qual queremos testar $H_0:\theta=0\times H_1:\theta=1$. Tendo a função de verossimilhança como:

$$L(\theta; \underline{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n exp\left\{-\sum_{i=1}^n \frac{(x_i - \theta)^2}{2}\right\}$$

Obtendo o teste de razão de verossimilhança,

$$\lambda = \frac{L_0(X)}{L_1(X)} = \frac{\left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left\{-\sum_{i=1}^n \frac{x_i^2}{2}\right\}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left\{-\sum_{i=1}^n \frac{(x_i-1)^2}{2}\right\}}$$

$$= exp\left\{-\sum_{i=1}^{n} \frac{x_i^2}{2} + \sum_{i=1}^{n} \frac{(x_i - 1)^2}{2}\right\} < k$$

Que pode ser reescrito como

$$\sum_{i=1}^{n} x_i > \frac{n}{2} - logk = k*$$

Ou seja, rejeitamos H_0 para um somatório de x maior que alguma constante k^* .

Testes Mais Poderosos Antes de falar sobre os testes mais poderosos, uma definição deve ser esclarecida: o tamanho do teste. Vamos admitir um teste δ cuja hipótese nula seja $H_0:\theta\in\Theta_0$ ($H_0:\theta<\theta_0$, por exemplo), em que $\theta\subset\Theta_0$ (ou seja, Θ_0 é um subconjunto do espaço paramétrico Θ). Assim, o tamanho do teste é definido como . Esclarecida essa definição, daremos prosseguimento ao assunto. Assim como já comentado, queremos um teste δ em que $\pi(\theta_0|\delta)=P[Rejeitar\ H_0\ |\ H_0\ reflection tento quando perfeito, <math>\pi(\theta_1)=1$ e $\pi(\theta_0)=0$, isto é, quando

os erros do tipo I e II são minimizados simultâneamente. Entretanto, na prática, uma das metodologias aplicadas de forma a definir o melhor teste possível é minimizar o erro do tipo II fixando o erro do tipo I.

Teste Mais Poderoso: Um teste $\delta *$ em que $H_0: \theta = \theta_0$ contra $H_1: \theta = \theta_1$ é definido como teste mais poderoso de tamanho α , com $0 < \alpha < 1$, se e somente se:

- i. $\pi(\theta|\delta*) = \alpha;$
- ii. $\pi(\theta_1|\delta^*) > \pi(\theta_1|\delta)$, para qualquer outro teste δ onde $\pi(\theta_0|\delta) < \alpha$.

Ou seja, podemos considerar um teste $\delta*$ como sendo o teste mais poderoso se, para qualquer outro teste de tamanho α ou menor do que α , ele possuir o maior poder.

O lema (ou método) a seguir é muito útil para encontrar testes mais poderosos.

- Lemma Neyman-Pearson: seja $X_1, ..., X_n$ uma amostra aleatória de uma distribuição com densidade $f(x; \theta)$, onde θ pode assumir os valores θ_1 ou θ_0 e $0 < \alpha < 1$. Considere k* uma constante positiva e C^* um subconjunto do espaço de valores para X_i . Assim,
- (i) $P_{\theta_0}[(X_1, \ldots, X_n) \in C^*] = \alpha$.

(ii)
$$\lambda = \frac{L(\theta_0; x_1, \dots, x_n)}{L(\theta_1; x_1, \dots, x_n)} = \frac{L_0}{L_1} \le k^*$$

e
$$\lambda > k^*$$
 se $(x_1, ..., x_n) \in C^*$.

Então, considerando um teste de hipóteses simples, temos que o teste para essa região crítica é o teste mais poderoso. Vamos mostrar um exemplo para melhor compreensão.

Exemplo: seja $X_1, ..., X_n$ uma amostra aleatória de uma distribuição Bernoulli (θ) e seja o teste $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1, \theta_1 > \theta_0$. O teste mais poderoso de tamanho α para testar H_0 contra H_1 é da forma

$$\varphi(\underline{x}) = \begin{cases} 1, & caso \ \lambda(\underline{x}) = \frac{\theta_1^{n\overline{x}} (1 - \theta_1)^{n - n\overline{x}}}{\theta_0^{n\overline{x}} (1 - \theta_0)^{n - n\overline{x}}} > k, \\ \gamma, & caso \ \lambda(\underline{x}) = k, \\ 0, & caso \ \lambda(\underline{x}) < k, \end{cases}$$

onde $k \in \gamma$ é determinada de maneira que . Agora, se

$$\lambda(\underline{x}) = \left(\frac{\theta_1}{\theta_0}\right)^{n\overline{x}} \left(\frac{1-\theta_1}{1-\theta_0}\right)^{n-n\overline{x}}$$

dado que $\theta_1 > \theta_0$ e $\lambda(x)$ é uma função crescente de \overline{x}_n , segue que $\lambda(x) > k$ se e somente se $\overline{x}_n > k_1$, sendo k_1 uma constante. Então, o teste mais poderoso de tamanho α é da forma

$$\varphi(\underline{x}) = \begin{cases} 1, & caso \ \overline{x} > k_1 \\ \gamma, & caso \ \overline{x} = k_1, \\ 0, & caso \ contrário \end{cases}$$

Ainda, k_1 e γ são determinados da forma

$$\alpha = \mathbb{E}_{\theta_0}[\varphi(X)] = P_{\theta_0}(\overline{x} > k_1) + \gamma P_{\theta_0}(\overline{x} = k_1)$$

$$= \sum_{n=k_1+1}^{n} \binom{n}{r} \theta_0^{nr} (1 - \theta_0)^{n-nr} + \gamma \binom{n}{k_1} \theta_0^{nk_1} (1 - \theta_0)^{n-nk_1}.$$

Observe que o teste mais poderoso de tamanho α é independente de θ_1 quando $\theta_1 > \theta_0$, e é, portanto, o teste mais poderoso para verificar se $\theta = \theta_0$ contra $\theta > \theta_0$.

Testes para hipóteses compostas

Generalizaremo-los para os teste de hipóteses compostos. A princípio, começaremos com o método mais geral para testar hipóteses, que, geralmente, não é o que fornece resultados mais precisos, mas é aplicável em todo tipo de situação. Considere $X_1,...,X_n$ uma amostra aleatória obtida de uma função de densidade $f(x;\theta), \theta \in \Theta$, e um teste do tipo $H_0: \theta \in \Theta_0$ contra $H_1: \theta \in \Theta_1 = \Theta - \Theta_0$.

• Teste de Razão de Verossimilhança Generalizada: suponha $L(\theta; X_1, ..., X_n)$ a função de verossimilhança para a amostra $X_1, ..., X_n$. O teste de razão de verossimilhança generalizada, denotado por λ , é definido como:

$$\lambda = \lambda_n = \lambda(x_1, \ldots, x_n) = \frac{\sup_{\substack{\theta \in \overline{\mathfrak{g}}_0 \\ \theta \in \overline{\mathfrak{g}}}} L(\theta; x_1, \ldots, x_n)}{\sup_{\substack{\theta \in \overline{\mathfrak{g}}}} L(\theta; x_1, \ldots, x_n)}.$$

onde λ se torna uma função da amostra definida no intervalo [0,1]. Assim como no Teste de Razão de Verossimilhança para hipóteses simples, rejeitamos a H_0 para algum $\lambda_0 > \lambda$, em que λ_0 é uma constante definida no intervalo [0,1].

• Testes Uniformemente Mais Poderosos (TUMP): um teste $\delta *$ do tipo $H_0: \theta \in \Theta_0$ contra $H_1: \theta \in \Theta_1 = \theta - \Theta_0$ é definido como TUMP de tamanho α se e somente se

(i)
$$\sup_{\theta \in \Theta^0} [\pi_{\delta *}(\theta)] = \alpha$$

(ii)
$$\pi_{\delta*}(\theta) > \pi_{\delta}(\theta)$$

para todo $\theta \in \Theta - \Theta_0$ e para qualquer teste δ de tamanho menor ou igual a α .

Conclusão

Na literatura, podemos encontrar formas diferentes de testar hipóteses das vistas neste tutorial, mas elas fogem do escopo deste post e por isso não foram abordadas. Ainda assim, fomos capazes de aprender alguns dos métodos para testar hipóteses estatísticas mais utilizados, além de métodos para achar o melhor tipo de teste. Espero que o texto tenha sido esclarecedor e de ajuda ao leitor. Para mais informações ou dúvidas, escreva-nos em : comunicacao@observatorioobstetricobr.org