MISE EN PLACE D'UNE CHAÎNE DE STREAMING AVEC DOCKER ET KAFKA

Collège de Bois-de-Boulogne 420-D24-BB

Par: François Hébert et David Savard

OBJECTIFS INITIAUX DU PROJET

- · Définir une structure utilisant la conteneurisation
- · Élaborer une chaîne de traitement (ex. Spark)
- · Bâtir une pipeline d'ingestion de données

SOLUTION RETENUE

Une chaîne d'ingestion de données en temps réel utilisant Docker, Kafka et HBase.

SOURCES DE DONNÉES

Simulation d'un streaming (par une application Flask) de données générées par des capteurs sous format JSON afin de représenter des événements variés.

Zookeeper

ARCHITECTUREIMPLÉMENTATION

DÉPLOIEMENT & GESTION DES SOURCES

- · Nous avons utilisé GitHub comme répertoire pour stocker les fichiers
- · Les étapes de déploiements sont simples et bien documentées

github.com/daprogCo/projetD24.git

DÉMO!

Établissement d'une chaîne de streaming fonctionnelle pour le traitement en temps réel, démontrant efficacité et adaptabilité.

PRINCIPAUX DÉFIS

- ★ La synchronisation des services Docker et communication avec Kafka a été plutôt simple
- ★ Le défi a été de déterminer la méthodologie pour stocker les données dans HBase...

COMPÉTENCES _____ ACQUISES

Paramétrage d'une structure de conteneurs (ex. docker-compose, Dockerfile)

Approfondissement du langage Python

Expérimentation et compréhension accrue des flux de données (ETL)

- ★ Le projet illustre la puissance de Kafka pour l'ingestion de données en temps réel
- ★ Docker est un outil idéal qui permet un déploiement et une gestion facile tout en maintenant une uniformité des environnements entre les membres d'une équipe

CONCLUSION