阻尼振动与受迫振动(简要报告)

刘泓尊 计84 2018011446

1 实验目的

- 1. 观测阻尼振动,学习测量振动系统基本参数的方法。
- 2. 研究受迫振动的幅频特性和相频特性,观察共振现象。
- 3. 观测不同阻尼对受迫振动的影响。

2 实验原理、仪器、步骤等请参看预习报告部分

3 数据处理

1. 阻尼振动:

(1) 无电磁阻尼

	7 儿电燃阻化	1	1				1	
序	$T_i = 10\overline{T_d}/\mathrm{s}$	θ_i / $^{\circ}$	$\ln \theta_i$	序号	$T_i = 10\overline{T_d}/\mathrm{s}$	θ _i / °	$\ln \theta_i$	$D_j =$
号						-	,	$\ln \theta_{j+25}$ - $\ln \theta_{j}$
1		177	5.176	26	(续左下)	153	5.030	-0.146
2		176	5.170	27		152	5.024	-0.146
3		175	5.165	28		151	5.017	-0.148
4		174	5.159	29		150	5.011	-0.148
5	14.520	173	5.153	30		149	5.004	-0.149
6		172	5.147	31		147	4.990	-0.157
7		171	5.142	32		147	4.990	-0.152
8		171	5.142	33		146	4.984	-0.158
9		169	5.130	34		145	4.977	-0.153
10		169	5.130	35		144	4.970	-0.160
11		167	5.118	36	14.562	143	4.963	-0.155
12		167	5.118	37		143	4.963	-0.155
13		165	5.106	38		141	4.949	-0.157
14		165	5.106	39		141	4.949	-0.157
15		163	5.094	40		140	4.942	-0.152
16	14.539	163	5.094	41		139	4.934	-0.160
17		161	5.081	42		138	4.927	-0.154
18		161	5.081	43		137	4.920	-0.161
19		160	5.075	44		136	4.913	-0.162
20		159	5.068	45		135	4.905	-0.163
21		158	5.063	46	14.572	133	4.890	-0.173
22		157	5.056	47		132	4.883	-0.183
23	14.551	156	5.050	48		131	4.875	-0.175
24		155	5.043	49		130	4.868	-0.175
25		154	5.037	50		129	4.860	-0.177

a. 对 $y_i = \ln \theta_i$ 和 i 进行回归分析得到拟合直线:

$$y = -0.0063x + 5.1906$$

$$b = \ln \theta_j - \ln \theta_{j-1} = -\beta T_d = -\beta \frac{2\pi}{\sqrt{w_0^2 - \beta^2}} = -\frac{2\pi}{\sqrt{\zeta^{-2} - 1}}$$

$$b = \frac{\overline{D}}{I} = \frac{\sum (y_{j+1} - y_j)}{I^2} = -0.0063456$$

$$S_b = \frac{\sqrt{\sum (D_j - D)^2 / (I - 1)}}{I}$$

$$\triangle b = S_b = \frac{1}{n} \sqrt{\frac{\sum (D_i - \overline{D})^2}{n - 1}} = \frac{S_D}{25} = 3.77 \times 10^{-4}$$

$$b = (-6.34 \pm 0.37) \times 10^{-3}$$

由于
$$b = -\frac{2\pi}{\sqrt{\zeta^{-2}-1}}$$

$$\zeta = \left(\left(\frac{2\pi}{b} \right)^2 + 1 \right)^{-\frac{1}{2}} = 0.00101$$
$$\frac{d\zeta}{db} = \frac{4\pi^2}{b^3} \left(\left(\frac{2\pi}{b} \right)^2 + 1 \right)^{-\frac{3}{2}}$$
$$\Delta \zeta = \left| \frac{d\zeta}{db} \right| \Delta b = 0.000161$$

$$\zeta = (1.01 \pm 0.16) \times 10^{-3}$$

$$S_{10\overline{T_d}} = \sqrt{\frac{\sum (T_{d_i} - \overline{T_d})^2}{n - 1}} = 0.00041$$

由于 $\triangle_B = 0.001s$ 故,

$$\Delta S_{10\overline{T_d}} = \sqrt{S_{10\overline{T_d}}^2 + \Delta_B^2} = 0.00108$$
$$\Delta T_d = \frac{\Delta T_d}{10} = 0.000108$$

故,

$$T_d = (1.4549 \pm 0.0001)s$$

$$\omega_0 = \frac{2\pi}{T_d \sqrt{1 - \zeta^2}} = 4.3186$$

$$\frac{\Delta \omega_0}{\omega_0} = \sqrt{\left(\frac{\Delta T_d}{T_d}\right)^2 + \left(\frac{\zeta \Delta \zeta}{1 - \zeta}\right)^2} = 0.000177$$

$$\Delta \omega_0 = \frac{\Delta \omega_0}{\omega_0} \omega_0 = 0.000765 s^{-1}$$

故,

$$\omega_0 = (4.3186 \pm 0.0008)s^{-1}$$

综上所述, 无阻尼时:

$$b = (-6.34 \pm 0.37) \times 10^{-3},$$
 $\zeta = (1.01 \pm 0.16) \times 10^{-3},$
$$T_d = (1.4549 \pm 0.0001)s,$$
 $\omega_0 = (4.3186 \pm 0.0008)s^{-1}$

(2) 电磁阻尼 2 档时:

序号	<i>θ_j</i> / °	$ln\theta_j$	$\overline{T_d}$ /s	序号	$ heta_{j}$ / \circ	$\ln \theta_j$	$\overline{T_d}$ /s	$D_{j}=$ $ln\theta_{j+5}$ - $ln\theta_{j}$
1	169	5.130	1.452	6	104	4.644	1.460	-0.486
2	154	5.037	1.454	7	95	4.554	1.462	-0.493
3	140	4.942	1.456	8	85	4.443	1.463	-0.499
4	127	4.884	1.458	9	77	4.344	1.463	-0.540
5	115	4.745	1.459	10	70	4.248	1.465	-0.497

a. 对 $y_i = \ln \theta_i$ 和 i 进行回归分析得到拟合直线:

$$y = -0.0992x + 5.2429$$

$$b = \ln \theta_j - \ln \theta_{j-1} = -\beta T_d = -\beta \frac{2\pi}{\sqrt{w_0^2 - \beta^2}} = -\frac{2\pi}{\sqrt{\zeta^{-2} - 1}}$$

$$b = \frac{\overline{D}}{I} = \frac{\sum (y_{j+I} - y_j)}{I^2} = -0.1002$$

$$S_b = \frac{\sqrt{\sum (D_j - D)^2 / (I - 1)}}{I}$$

$$\triangle b = S_b = \frac{1}{n} \sqrt{\frac{\sum (D_i - \overline{D})^2}{n - 1}} = \frac{S_D}{25} = 0.0004$$

$$b = (-0.1002 \pm 0.0004)$$

由于
$$b = -\frac{2\pi}{\sqrt{\zeta^{-2}-1}}$$
,
$$\zeta = \left(\left(\frac{2\pi}{b}\right)^2 + 1\right)^{-\frac{1}{2}} = 0.0159$$

$$\frac{d\zeta}{db} = \frac{4\pi^2}{b^3} \left(\left(\frac{2\pi}{b}\right)^2 + 1\right)^{-\frac{3}{2}}$$

$$\triangle \zeta = \left|\frac{d\zeta}{db}\right| \triangle b = 0.00006$$

$$\zeta = 0.01594 \pm 0.0007$$

$$S_{\overline{T_d}} = \sqrt{\frac{\sum (T_{d_i} - \overline{T_d})^2}{n-1}} = 0.00042$$

由于 $\triangle_B = 0.001s$ 故,

$$\triangle S_{\overline{T_d}} = \sqrt{S_{\overline{T_d}}^2 + \triangle_B^2} = 0.00108$$

$$\triangle T_d = 0.00108$$

故,

$$T_d = (1.4592 \pm 0.0011)s$$

$$\omega_0 = \frac{2\pi}{T_d \sqrt{1 - \zeta^2}} = 4.3064$$

$$\frac{\Delta \omega_0}{\omega_0} = \sqrt{\left(\frac{\Delta T_d}{T_d}\right)^2 + \left(\frac{\zeta \Delta \zeta}{1 - \zeta^2}\right)^2} = 0.0026$$

$$\Delta \omega_0 = \frac{\Delta \omega_0}{\omega_0} \omega_0 = 0.0113s$$

故,

$$\omega_0 = (4.3064 \pm 0.0113)s^{-1}$$

$$\tau = \frac{1}{\zeta\omega_0} = 14.563s$$

$$\frac{\Delta\tau}{\tau} = \sqrt{\left(\frac{\Delta\zeta}{\zeta}\right)^2 + \left(\frac{\Delta\omega_0}{\omega_0}\right)^2} = 0.004$$

故,

$$\tau = (14.563 \pm 0.072)s$$

$$Q = \frac{1}{2\zeta} = 31.357$$

$$\frac{\triangle Q}{Q} = \sqrt{\left(\frac{\triangle \zeta}{\zeta}\right)^2} = 0.003$$

$$Q = (31.357 \pm 0.125)$$

综上所述,阻尼2档时:

$$b = (-0.1002 \pm 0.0004),$$
 $\zeta = 0.0159 \pm 0.0001,$ $T_d = (1.4592 \pm 0.0042)s,$ $\omega_0 = (4.3064 \pm 0.0128)s^{-1}$ $\tau = (14.563 \pm 0.072)s,$ $Q = (31.357 \pm 0.125)$

(3) 电磁阻尼 3 档时:

	L 1441111/C	30 14.30						
序 号	<i>θ_j</i> / °	lnθj	$\overline{T_d}$ /s	序号	<i>θ_j</i> / °	$\ln \theta_j$	$\overline{T_d}$ /s	$D_{j}=$ $ln\theta_{j+5}-ln\theta_{j}$

1	167	5.118	1.452	6	98	4.585	1.462	-0.533
2	150	5.011	1.455	7	87	4.470	1.462	-0.541
3	135	4.905	1.457	8	79	4.369	1.464	-0.536
4	121	4.796	1.460	9	70	4.248	1.464	-0.548
5	109	4.691	1.460	10	63	4.143	1.465	-0.548

a. 对 $y_i = \ln \theta_i$ 和 i 进行回归分析得到拟合直线:

$$y = -0.1084x + 5.2296$$

$$b = \ln \theta_j - \ln \theta_{j-1} = -\beta T_d = -\beta \frac{2\pi}{\sqrt{w_0^2 - \beta^2}} = -\frac{2\pi}{\sqrt{\zeta^{-2} - 1}}$$

$$b = \frac{\overline{D}}{I} = \frac{\sum (y_{j+I} - y_j)}{I^2} = -0.1082$$

$$S_b = \frac{\sqrt{\sum (D_j - D)^2 / (I - 1)}}{I}$$

$$\triangle b = S_b = \frac{1}{n} \sqrt{\frac{\sum (D_i - \overline{D})^2}{n - 1}} = \frac{S_D}{25} = 0.0007$$

$$b = (-0.1082 \pm 0.0007)$$

曲于
$$b = -\frac{2\pi}{\sqrt{\zeta^{-2}-1}}$$
,
$$\zeta = \left((\frac{2\pi}{b})^2 + 1 \right)^{-\frac{1}{2}} = 0.0172$$

$$\frac{d\zeta}{db} = \frac{4\pi^2}{b^3} \left((\frac{2\pi}{b})^2 + 1 \right)^{-\frac{3}{2}}$$

$$\Delta \zeta = \left| \frac{d\zeta}{db} \right| \Delta b = 0.0001$$

$$\zeta = 0.0172 \pm 0.0001$$

$$S_{\overline{T_d}} = \sqrt{\frac{\sum (T_{d_i} - \overline{T_d})^2}{n-1}} = 0.0042$$

由于 $\triangle_B = 0.001s$ 故,

$$\Delta S_{\overline{T_d}} = \sqrt{S_{\overline{T_d}}^2 + \Delta_B^2} = 0.0044$$
$$\Delta T_d = 0.0044$$

故,

$$T_d = (1.4601 \pm 0.0044)s$$

$$\omega_0 = \frac{2\pi}{T_d \sqrt{1 - \zeta^2}} = 4.3039$$

$$\frac{\Delta \omega_0}{\omega_0} = \sqrt{\left(\frac{\Delta T_d}{T_d}\right)^2 + \left(\frac{\zeta \Delta \zeta}{1 - \zeta^2}\right)^2} = 0.0030$$

$$\Delta \omega_0 = \frac{\Delta \omega_0}{\omega_0} \omega_0 = 0.0129s$$

故,

$$\omega_0 = (4.3039 \pm 0.0129)s^{-1}$$

$$\tau = \frac{1}{\zeta\omega_0} = 13.494s$$

$$\frac{\triangle\tau}{\tau} = \sqrt{\left(\frac{\triangle\zeta}{\zeta}\right)^2 + \left(\frac{\triangle\omega_0}{\omega_0}\right)^2} = 0.007$$

故,

$$\tau = (13.494 \pm 0.007)s$$

$$Q = \frac{1}{2\zeta} = 29.039$$

$$\frac{\triangle Q}{Q} = \sqrt{\left(\frac{\triangle \zeta}{\zeta}\right)^2} = 0.006$$

$$Q = (29.039 \pm 0.188)$$

综上所述,阻尼3档时:

$$b = (-0.1082 \pm 0.0007),$$
 $\zeta = 0.0172 \pm 0.0001,$ $T_d = (1.4601 \pm 0.0044)s,$ $\omega_0 = (4.3039 \pm 0.0129)s^{-1}$ $\tau = (13.494 \pm 0.007)s,$ $Q = (29.039 \pm 0.188)$

(4) 电磁阻尼 4 档时:

序号	$ heta_j$ / \circ	$ln\theta_j$	$\overline{T_d}$ /s	序号	$ heta_{j}$ / \circ	$\ln\! heta_{j}$	$\overline{T_d}$ /s	$D_{j}=$ $ln\theta_{j+5}-ln\theta_{j}$
1	175	5.165	1.455	6	87	4.466	1.464	-0.699
2	153	5.030	1.457	7	76	4.331	1.465	-0.699
3	133	4.890	1.459	8	66	4.190	1.467	-0.700
4	115	4.745	1.462	9	57	4.043	1.467	-0.702
5	101	4.615	1.463	10	49	3.892	1.468	-0.723

a. 对 $y_i = \ln \theta_i$ 和 i 进行回归分析得到拟合直线:

$$y = -0.1410x + 5.3119$$

$$b = \ln \theta_j - \ln \theta_{j-1} = -\beta T_d = -\beta \frac{2\pi}{\sqrt{w_0^2 - \beta^2}} = -\frac{2\pi}{\sqrt{\zeta^{-2} - 1}}$$
$$b = \frac{\overline{D}}{I} = \frac{\sum (y_{j+I} - y_j)}{I^2} = -0.1409$$
$$S_b = \frac{\sqrt{\sum (D_j - D)^2 / (I - 1)}}{I}$$

$$\triangle b = S_b = \frac{1}{n} \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}} = \frac{S_D}{25} = 0.0002$$

$$b = (-0.1409 \pm 0.0002)$$

曲于
$$b = -\frac{2\pi}{\sqrt{\zeta^{-2}-1}}$$
,
$$\zeta = \left((\frac{2\pi}{b})^2 + 1 \right)^{-\frac{1}{2}} = 0.0224$$

$$\frac{d\zeta}{db} = \frac{4\pi^2}{b^3} \left((\frac{2\pi}{b})^2 + 1 \right)^{-\frac{3}{2}}$$

$$\triangle \zeta = \left| \frac{d\zeta}{db} \right| \triangle b = 0.00003$$

$$\zeta = 0.0224 \pm 0.0001$$

$$S_{\overline{T_d}} = \sqrt{\frac{\sum (T_{di} - \overline{T_d})^2}{n - 1}} = 0.0044$$

由于 $\triangle_B = 0.001s$ 故,

$$\triangle S_{\overline{T_d}} = \sqrt{S_{\overline{T_d}}^2 + \triangle_B^2} = 0.0045$$

$$\triangle T_d = 0.0045$$

故,

$$T_d = (1.4627 \pm 0.0045)s$$

$$\omega_0 = \frac{2\pi}{T_d \sqrt{1 - \zeta^2}} = 4.2967$$

$$\frac{\Delta \omega_0}{\omega_0} = \sqrt{\left(\frac{\Delta T_d}{T_d}\right)^2 + \left(\frac{\zeta \Delta \zeta}{1 - \zeta^2}\right)^2} = 0.0031$$

$$\Delta \omega_0 = \frac{\Delta \omega_0}{\omega_0} \omega_0 = 0.0134s$$

故,

$$\omega_0 = (4.2967 \pm 0.0134)s^{-1}$$

$$\tau = \frac{1}{\zeta \omega_0} = 10.381s$$

$$\frac{\Delta \tau}{\tau} = \sqrt{\left(\frac{\Delta \zeta}{\zeta}\right)^2 + \left(\frac{\Delta \omega_0}{\omega_0}\right)^2} = 0.003$$

故,

$$\tau = (10.381 \pm 0.035)s$$

$$Q = \frac{1}{2\zeta} = 22.302$$

$$\frac{\triangle Q}{Q} = \sqrt{\left(\frac{\triangle \zeta}{\zeta}\right)^2} = 0.001$$

$$Q = (22.302 \pm 0.032)$$

综上所述,阻尼4档时:

$$b = (-0.1409 \pm 0.0002),$$
 $\zeta = 0.0224 \pm 0.0001,$ $T_d = (1.4627 \pm 0.0045)s,$ $\omega_0 = (4.2967 \pm 0.0134)s^{-1}$ $\tau = (10.381 \pm 0.035)s,$ $Q = (22.302 \pm 0.032)$

2. 受迫振动

(1) 电磁阻尼 2 档时:

	T/s	ω/ω_0	θ _m / °	φ1/°	ф2/°	$\phi = (\phi_1)$	ф/°	相对
						$+ \phi_2$)/2	理论值	偏差
1	1.430	1.020	68	149.0	149.5	149.2	141.6	5.32
2	1.439	1.014	87	138.5	139.5	139.0	131.0	6.09
3	1.445	1.010	105	127.5	128.5	128.0	121.3	5.52
4	1.448	1.008	119	118.5	119.5	119.0	115.5	3.01
5	1.452	1.005	128	107.0	108.0	107.5	106.9	0.55
6	1.455	1.003	133	98.0	99.0	98.5	99.9	-1.38
7	1.458	1.001	134	89.5	90.5	90.0	92.5	-2.75
8	1.461	0.998	133	80.5	82.0	81.3	85.1	-4.53
9	1.466	0.995	128	70.5	72.0	71.3	73.3	-2.76
10	1.473	0.990	117	60.0	61.0	60.5	59.1	-2.41
11	1.482	0.984	103	48.0	49.0	48.5	45.5	6.56
12	1.487	0.981	93	42.0	43.0	42.5	39.9	6.40
13	1.500	0.972	75	33.0	34.0	33.5	29.9	12.18

计算过程取:

$$\begin{split} \omega_0 &= 4.3064, \qquad \zeta = 0.0159 \\ \frac{\omega}{\omega_0} &= \frac{2\pi}{T\omega_0} \\ \phi &= \arctan\frac{2\zeta(\omega/\omega_0)}{1-(\omega/\omega_0)^2} \end{split}$$

(2) 电磁阻尼 3 档时:

	T/s	ω/ω_0	θ _m / °	φ ₁ /°	ф2/°	$\phi = (\phi_1)$	ф/°	相对
					-	$+ \phi_2$)/2	理论值	偏差
						/ °		/%
1	1.427	1.023	63	148.5	149.0	148.8	142.9	4.09
2	1.435	1.017	76	139.5	140.5	140.0	134.9	3.71
3	1.442	1.012	90	131.5	132.0	131.8	125.6	4.91
4	1.447	1.008	104	119.5	120.5	120.0	117.2	2.33
5	1.450	1.006	113	112.5	113.5	113.0	111.6	1.30
6	1.454	1.004	119	102.5	103.5	103.0	103.2	-0.20
7	1.458	1.001	122	90.5	91.5	91.0	94.3	-3.48
8	1.465	0.996	119	77.5	78.5	78.0	78.4	-0.63
9	1.472	0.991	113	65.5	66.5	66.0	64.3	2.59
10	1.477	0.988	105	58.5	59.0	58.8	55.9	5.24
11	1.482	0.985	95	51.5	52.5	52.0	48.8	6.47
12	1.496	0.975	77	39.0	39.5	39.3	35.1	11.85
13	1.504	0.970	69	33.0	33.5	33.3	30.0	10.95

计算过程取:

$$\begin{split} \omega_0 &= 4.3039, \qquad \zeta = 0.0172 \\ \frac{\omega}{\omega_0} &= \frac{2\pi}{T\omega_0} \\ \phi &= \arctan\frac{2\zeta(\omega/\omega_0)}{1-(\omega/\omega_0)^2} \end{split}$$

(4) 电磁阻尼4档时:

	T/s	ω/ω_0	θ _m / °	ф1/°	ф2/°	$\phi = (\phi_1 +$	ф/°	相对偏
						φ ₂)/2 / °	理论值	差/%
1	1.414	1.034	47	149.0	149.5	149.3	146.3	2.03
2	1.424	1.027	55	143.0	143.4	143.2	139.8	2.38
3	1.437	1.017	68	131.0	131.6	131.3	127.9	2.61
4	1.442	1.014	73	124.5	125.0	124.7	122.0	2.20
5	1.451	1.007	85	110.5	111.5	111.0	109.1	1.69
6	1.455	1.005	87	104.0	105.0	104.5	102.6	1.81
7	1.462	1.000	90	91.0	92.0	91.5	90.6	1.02
8	1.467	0.996	91	84.0	85.0	84.5	81.8	3.18
9	1.474	0.992	87	71.5	72.5	72.0	70.4	2.18
10	1.484	0.985	79	59.0	60.0	59.5	56.7	4.93
11	1.491	0.980	73	52.0	52.5	52.2	49.0	6.36
12	1.502	0.973	63	43.0	43.5	43.2	39.9	8.21
13	1.514	0.966	54	34.5	35.0	34.8	32.8	6.03

计算过程取:

$$\begin{split} \omega_0 &= 4.2967, \qquad \zeta = 0.0224 \\ \frac{\omega}{\omega_0} &= \frac{2\pi}{T\omega_0} \\ \phi &= \arctan\frac{2\zeta(\omega/\omega_0)}{1-(\omega/\omega_0)^2} \end{split}$$

4 幅频特性曲线

红色: 阻尼 2 档; 黑色: 阻尼 3 档; 蓝色: 阻尼 4 档 横坐标: 角频率ω; 纵坐标: 幅值 θ

5 相频特性曲线

红色: 阻尼 2 档; 黑色: 阻尼 3 档; 蓝色: 阻尼 4 档 横坐标: 角频率 ω ; 纵坐标: 相位差 ϕ

6 思考题

- 1. 如何判断受迫振动已经处于稳定状态? 周期测量位于摆轮时,当显示窗中**周期和振幅的示数都稳定**时,受迫振动处于稳定状态。
- 2. 从幅频曲线的相对振幅比为 1/2 的点,也可求出 β 值。试用你的幅频特性曲线进行计算.把结果与练习 2 进行比较。

 $\frac{\theta_1}{\theta_2} = \frac{1}{2}$ 时,

$$\frac{(\omega_0^2 - \omega_2^2)^2 + 4\beta^2 \omega_2^2}{(\omega_0^2 - \omega_1^2)^2 + 4\beta^2 \omega_1^2} = \frac{1}{4}$$

阻尼为 2 档时,取 $\theta_1 = 134$ $\omega_1 = 4.3158s^{-1}, \theta_2 = 67$ $\omega_2 = 4.3925s^{-1}$, 计算得:

$$\beta = 0.055$$

实验二中求得 $\beta = 0.068$, 在误差允许范围内,与本题计算结果相符.

3. 实验中如何判断达到共振? 共振频率是多少?

测得相位差,即闪光灯亮时有机玻璃盘上的读数为 90 度(相位差 $\pi/2$)时,达到共振。共振频率 $f = \omega_0$ 近似相等。

阻尼为 2 时,约为 0.6853Hz = 4.3064 rad/s

阻尼为 3 时,约为 0.6850Hz = 4.3039 rad/s

阻尼为 4 时,约为 0.6838Hz = 4.2967 rad/s

可以看到共振频率随着阻尼的差别而略有差别。

7 实验小结

本次实验进行十分顺利。通过本次实验,我巩固了物理课程中阻尼振动的相关知识,锻炼了自己数据处理分析的能力。在实验中,我曾有一个点与其他点的间隔大于 10 度,我在添加数据时,没有在原始数据下方添加,而是划去原来的错误数据,老师的提醒使我获得了经验:实验中的任何数据都要如实记录,不要因为多测了一组数据就抹去之前的数据。

谢谢老师的耐心指导!

井 | 4 实验原始数据记录

1 测量最小阳尼时的阳尼比ζ和固有角频率 ωι

1.	测量最小阻尼	己时的阻	1尼比5	和迫	有用频率 ω0			D
序	$T_i = 10\overline{T_d}$ /s	θ _j / °	$\ln \theta_i$	序	$T_i = 10\overline{T_d} / \text{s}$	θ _j / °	$\ln \theta_j$	$D_{j} = \ln \theta_{j+25} - \ln \theta_{j}$
号	$I_i = 10I_d$	O) /		号		11-2	t =) =	Company of the second s
1		177	5176	26	(续左下)	153	5.030	-0.146
2		176	1,170	27		152	5.024	-0.146
3		175	tilbt	28		151	1011	-0.148
4		174	tilta	29		10	1:011	-0.148
5		173	t.1t3	30		149	5.004	-0.149
6	14.520	172	5,147	31		147	4,990	-0.157
7		171	1.142	32		147	4990	-0.15Z
8		17)	1.142	33		146	4.984	-0.158
9		119	t.130	34		145	4.977	-0.153
10		149	5130	35	14562	144	4.970	-0.160
11		167	1.118	36	14300	143	4.963	-0.15
12		167	1118	37		143	4.963	-0.15
13		165	t1106	38		141	4949	-0.LT
14		165	1106	39		141	4,949	-0.157
15	14539	163	5.094	40		140	4942	-0,152
16	19071	163	5.094	41		139	9.924	-0,160
17		161	5081	42		138	9,927	-0.154
18		161	5.081	43		137	4920	-0.161
19		160	5.075	44		136	4913	-p1162
20		159	1:068	45	100 1-75	135	4,905	-0.163
21		118	1.062	46	145/2	133	4.890	-0.173
22		157	tobb	47		132	4.883	-0.183
23	14551	46	roto	48		131	4875	-01175
24	19031	山	5,043	49		130	4.868	-0175
25		154	上037	50		129	4.850	-0177
							• 710000	

2. 测量其他 2 种或 3 种阻尼状态的振幅,求出 ζ . 阻尼 2:

电磁阻尼 2 档。

序号	<i>θ_j</i> / °	$ln\theta_j$	$\overline{T_d}$ /s	序号	<i>θ_j</i> / °	$\ln \theta_j$	$\overline{T_d}$ /s	$\mathbf{D_{j}}=\\ ln\theta_{j+6}-ln\theta_{j}$
1	169	130	1.452	7	95	4,154	1462	
2	154	5037	1,454	8	85	4.443	1.463	
3	140	4942	1,456	9	77	4:34	1,463	
4	127	9844	1,418	10	70	4248	1,905	
5	115	9.745	1,459	11				
6	10#	4.644	1.460	12				
	104				- DA1	-		

阻尼 3:

电磁阻尼 3 档。

序号	$\theta_{j}/^{\circ}$	lnθj	T _d /s	序号	<i>0_j</i> / °	$\ln \theta_j$	$\overline{T_d}$ /s	$D_{j}=In\theta_{j+6}-In\theta_{j}$
1	167	5,118 14	Z	7	87	4.47	01.462	
2	150	1.011	1.411	8	79	4.369	1.464	
3	124	4905	1.4107	9	70	4,248	1464	
4	121	0.796	1.460	10	63	4.143	1465	
5	109	4.691	1.460	11				
6	\$98	4.185	1.462	12				

阻尼 4:

电磁阻尼 4 档。

序号	<i>θ_j</i> / °	lnθj	$\overline{T_d}$ /s	序号	0 _j / °	lnθj	$\overline{T_d}$ /s	$D_{j}=In\theta_{j+6}-In\theta_{j}$
1	175	11/6t	144	7	76	4.231	1.465	
2	153	1.030	1457	8	66	4190	1467	
3	133	4.890	1.459	9	17	4.043	1.467	
4	115	4.745	1.462	10	49	3892	1.468	
5	101	4615	1.463	11				
6	8	4.466	1.464	12				

3. 测定受迫振动的幅频特性和相频特性曲线

阻尼 2:

电磁阻尼 始。

T/s		ω/ω_0	θm/°	φ1/°	φ ₂ /°	$\phi = (\phi_1 +$	φ/°	相对偏差
1.01	a		W	S Se		φ2)/2/°	理论值	/%
154	卑		144	149.0	149,5	149,3		
1.0	124		1	143.0	143,4	14312.		
1,0	37		68	131.0	131.6	1313	0	
10	192		73	124.5	125.0	124.7		
1,0	45		85	110.5	111.5	1110		
14 12	100		8 0	104.0	1050	1045		
	162		90	91.0	92.0	915		
1.0	167		91	840	Sto	845		
1.4	74		87	71,5	Tat	72.0		
484 1	80		\$ 19	19.0	60.0	J9.5		
1.4	91		73	12,0	52.5	52,2		
1.5	20		63	43.0	435	铁乙		
1.J	14		14	345	350	348		

	阻尼3: 电磁阻尼	み 档。						
	T/s	ω/ω ₀	0 _m /°	φι/°	ф2/°	$\phi = (\phi_1 + \phi_2)/2/^\circ$	φ/° 理论值	相对偏差
	1.427		63	1485	149,0	148.8		
	1.435		76	139.5	1405	180,0		
	1.442		90	13/5	132.0	131.8		
	1.44		103/0	41195	120.5	120.0		
	1,450		113	1125	1135	113.0	1 N	
1.4	4448		119+24	93.5		W94:01	03.0	
	1.418		122	90.5	915	9091.0		
	1.465		119	115	1817	78.0	3	
	1.472		117	655	665	66.0		-
	1.47		105	187	5910	18.8		-
	1482		1 45	7/1	77	1700		1
	1.496			39.0	795	3913		
	1504		09	33.0	孙上	X3		
	阻尼 4:	*						
	电磁阻尼_	学 乙档。						
	电磁阻尼_	全 Ζ档。 ω/ω ₀	θm/°	φι/°	φ ₂ /°	φ= (φ1 +	φ/°	相对偏差
			0m/°		ф2/°	$\phi = (\phi_1 + \phi_2)/2/^{\circ}$	φ/° 理论值	相对偏差
			θm/°	φ1/°	φ2/°	$ \phi = (\phi_1 + \phi_2)/2/^\circ $ $ 149.2 $	The state of the s	The second second
	T/s					φ ₂)/2 / °	The state of the s	The second second
	T/s		68 87 101	149,0		φ2)/2/° 149.2	The state of the s	The second line of the
	T/s		68	149,0	1495 1395	φ ₂)/2/° 149.2 1 3 9.0	The state of the s	The second line of the
	T/s		68 87 101	149,0 138,5 127,5	1495 1395 1285 1195 1080	φ ₂)/2/° 149.2 139.0 128.0 119.0 107.5	The state of the s	The second line of the
	T/s 1.430 1.439 1.445 1.445 1.45		68 87 105 119	149,0 138,5 127,5 118,5 107,0	1495 1395 1285 1195 1080	φ ₂)/2/° 149.2 139.0 128.0 119.0 107.5	The state of the s	The second line of the
1.45	1,430 1,430 1,445 1,445 1,452 1,454 1,454	ω/ω ₀	68 87 101 119 128 133	149.0 138.5 127.5 118.5 107.0 98.0	1495 1395 1285 1195 108,0 99,090	φ ₂)/2/° 149.2 139.0 128.0 119.0 107.5 498.5	The state of the s	The second line of the
1.45	T/s 1.430 1.439 1.445 1.445 1.452 1.455	ω/ω ₀	68 87 101 119 128 133 133	149.0 138.5 127.5 118.5 107.0 98.0	1495 1395 1285 1195 108,0 99,090	φ ₂)/2/° 149.2 139.0 128.0 119.0 107.5 498.5	The state of the s	The second line of the
1.45	T/s 1.430 1.439 1.445 1.445 1.452 1.455	ω/ω ₀	68 87 101 119 128 133 133	149,0 138,5 127,5 118,5 107.0 98.0 13805	1495 1395 1285 1195 108,0 99,090 \$2,0 72,0	φ ₂)/2/° 149.2 139.0 128.0 119.0 107.5 498.5	The state of the s	The second line of the
1.45	T/s 1.430 1.439 1.445 1.445 1.452 1.455	ω/ω ₀	68 87 101 119 128 133 133 133 128	149,0 138,5 127,5 118,5 107.0 98.0 13805	1495 1395 1285 1195 108,0 99,090 \$2,0 72,0	φ ₂)/2/° 149.2 139.0 128.0 119.0 107.5 498.5	The state of the s	The second line of the
1.45	T/s 1.430 1.439 1.445 1.445 1.452 1.455	ω/ω ₀	68 87 101 119 128 133 133 133 128	149,0 138,5 127,5 118,5 107.0 98.0 13805	1495 1395 1285 1195 108,0 99,090 99,090 120 120 120 49,0	φ2)/2/° 149.2 139.0 128.0 19.0 107.5 98.5 98.5 71.3 60.5 48.5	The state of the s	The second line of the
1.45	T/s 1.430 1.439 1.445 1.452 1.457 1.461 1.466 1.473 1.482 1.487	ω/ω ₀	68 87 101 119 128 133 133 133 128	149,0 138,5 127,5 118,5 107.0 98.0 13805	1495 1395 1285 1195 108,0 99,090 99,090 120 120 120 49,0	φ2)/2/° 149.2 139.0 128.0 19.0 107.5 98.5 98.5 71.3 60.5 48.5	The state of the s	相对偏差 /%
	1,430 1,430 1,445 1,445 1,452 1,454 1,454	ω/ω ₀	68 87 105 119 128 133 133 128	149.0 138.5 127.5 118.5 107.0 98.0	1495 1395 1285 1195 108,0 99,090 \$2,0 72,0	φ ₂)/2/° 149.2 139.0 128.0 119.0 107.5 498.5	The state of the s	The second second

10.31 陈月19