Amendments to the Claims

- 1. (Currently amended) A method of preparing (S)-chiral alcohol comprising:
- (a) reacting in organic solvent a compound of the following chemical formula 1 as a starting material,

a racemization metal catalyst,

an acyl donor being capable of acylating an alcohol compound, and

a protein hydrolysis enzyme selected from the group consisting of stabilized or fixed subtilisin, chymotrypsin, papain, protease from *Aspergillus orygae*, protease from *Aspergillus melleus*, protease from *Streptomyces griseus*, and protease from *Bacillus stearothemophilus* and being capable of stimulating the enantioselective acylation of a racemic compound to obtain a chiral ester compound of chemical formula 3; and

(b) hydrolyzing the chiral ester compound of chemical formula 3 to obtain (S)-chiral alcohol;

[chemical formula 1]

[chemical formula 3]

wherein X is -OH or = O, R_1 , R_2 and R_3 are independently substituted or unsubstituted C_1 - C_{15} alkyl, substituted or unsubstituted C_2 - C_{15} alkenyl, substituted or unsubstituted C_5 - C_{18} aryl, substituted or unsubstituted C_5 - C_{18} arylalkyl, substituted or unsubstituted C_5 - C_{20} heterocycle, substituted or unsubstituted C_3 - C_{20} heteroarylalkyl, substituted or unsubstituted C_3 -

 C_{15} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkenyl, substituted or unsubstituted C_6 - C_{15} cycloalkynyl, or substituted or unsubstituted C_3 - C_{20} heterocycloalky heterocycloalkyl, wherein the R_1 group and the R_2 group can be linked together, and wherein a size of a circular arc indicates that the R_1 group is larger than the R_2 group.

- 2. (Previously presented) The method of preparing (S)-chiral alcohol according to claim 1, further comprising adding a hydrogen donor in step (a) when the starting material of chemical formula 1 comprises a ketone such that X is =O.
- 3. (Currently amended) The method of preparing (S)-chiral alcohol according to claim 1:

wherein the starting material of chemical formula 1 is [[the]] \underline{a} compound of the following chemical formula 1a;

[chemical formula 1a]

wherein R_1 and R_2 are independently substituted or unsubstituted C_1 - C_{15} alkyl, substituted or unsubstituted C_2 - C_{15} alkenyl, substituted or unsubstituted C_2 - C_{15} alkynyl, substituted or unsubstituted C_5 - C_{18} aryl, substituted or unsubstituted C_6 - C_{18} arylalkyl, substituted or unsubstituted C_2 - C_{20} heterocycle, substituted or unsubstituted C_3 - C_{20} heteroarylalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkenyl, substituted or unsubstituted C_6 - C_{15} cycloalkynyl, or substituted or unsubstituted C_3 - C_{20} heterocycloalkyl heterocycloalkyl; and wherein R_1 and R_2 can be linked together.

4. (Currently amended) The method of preparing (S)-chiral alcohol according to claim 3, further comprising:

obtaining an alcohol compound of chemical formula 1a by adding a hydrogen donor to a ketone compound of the following chemical formula 1b to reduce it;

[chemical formula 1a]

[chemical formula 1b]

wherein R_1 and R_2 are independently substituted or unsubstituted C_1 - C_{15} alkyl, substituted or unsubstituted C_2 - C_{15} alkenyl, substituted or unsubstituted C_2 - C_{15} alkynyl, substituted or unsubstituted C_5 - C_{18} aryl, substituted or unsubstituted C_6 - C_{18} arylalkyl, substituted or unsubstituted C_2 - C_{20} heterocycle, substituted or unsubstituted C_3 - C_{20} heteroarylalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkenyl, substituted or unsubstituted C_6 - C_{15} cycloalkynyl, or substituted or unsubstituted C_3 - C_{20} heterocycloalkyl heterocycloalkyl; and wherein C_1 and C_2 can be linked together.

5. (Currently amended) The method of preparing (S)-chiral alcohol according to claim 1, further comprising:

adding a hydrogen donor to reduce a ketone group in step (a); wherein the compound of chemical formula 1 comprises chemical formula 1b;

[chemical formula 1b]

wherein R_1 and R_2 are independently substituted or unsubstituted C_1 - C_{15} alkyl, substituted or unsubstituted C_2 - C_{15} alkenyl, substituted or unsubstituted C_2 - C_{15} alkynyl, substituted or unsubstituted C_5 - C_{18} aryl, substituted or unsubstituted C_6 - C_{18} arylalkyl, substituted or unsubstituted C_2 - C_{20} heterocycle, substituted or unsubstituted C_3 - C_{20} heteroarylalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkenyl, substituted or unsubstituted C_6 - C_{15} cycloalkynyl, or substituted or unsubstituted C_3 - C_{20} heterocycloalkyl heterocycloalkyl; and

wherein R₁ and R₂ can be linked together.

- 6. (Previously presented) The method of preparing (S)-chiral alcohol according to claim 1, wherein step (a) of the reaction comprises a one-pot reaction and wherein the reaction is performed in one vessel.
- 7. (Original) The method of preparing (S)-chiral alcohol according to claim 1, wherein the metal catalyst comprises a ruthenium complex compound.
- 8. (Original) The method of preparing (S)-chiral alcohol according to claim 1, wherein the metal catalyst is selected from the group consisting of ruthenium complex compounds represented by the following chemical formulas 4 to 8:

[chemical formula 4]

[chemical formula 5]

$$\begin{array}{c|c} A_2 & A_1 & R_5 \\ A_3 & A_4 & R_6 \\ OC & B & CO \end{array}$$

[chemical formula 6]

$$A_1$$
 A_2
 A_3
 A_4
 A_4
 A_5
 A_6
 A_8
 A_6
 A_8
 A_8

[chemical formula 7]

[chemical formula 8]

wherein A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 and A_8 are independently hydrogen, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_5 - C_{18} aryl, or substituted or unsubstituted C_2 - C_{20} heterocycle;

wherein R_5 and R_6 are independently hydrogen, substituted or unsubstituted C_1 - C_{15} alkyl, substituted or unsubstituted C_2 - C_{15} alkenyl, substituted or unsubstituted C_2 - C_{15} alkynyl, substituted or unsubstituted C_5 - C_{18} aryl, substituted or unsubstituted

 C_6 - C_{18} arylalkyl, substituted or unsubstituted C_1 - C_{20} heterocycle, substituted or unsubstituted C_3 - C_{20} heteroarylalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkenyl, substituted or unsubstituted C_6 - C_{15} cycloalkynyl, or substituted or unsubstituted C_3 - C_{20} heterocycloalkyl; wherein B comprises a substituent selected from the group consisting of hydrogen, carbonyl, halogen and trifluoromethanesulfonate or there is no substituent in B site; and wherein W is hydrogen or a halogen.

- 9. (Previously presented) The method of preparing (S)-chiral alcohol according to claim 2, wherein the <u>aeyl hydrogen</u> donor comprises 2,4-dimethyl-3-pentanol, 2,6-dimethyl-4-heptanol, formic acid, or hydrogen.
- 10. (Original) The method of preparing (S)-chiral alcohol according to claim 1, wherein the acyl donor is linked to the R_1 group or the R_2 group of the chemical formula 1.
- 11. (Original) The method of preparing (S)-chiral alcohol according to claim 10, wherein the acyl donor is a substituent including a $-OCO-R_3$ terminal group linked to the R_1 or R_2 of the chemical formula 1.
- 12. (Previously presented) The method of preparing (S)-chiral alcohol according to claim 1, wherein the acyl donor is [[the]] <u>a</u> compound of the chemical formula 2; and

[chemical formula 2]

wherein R_3 and R_4 are independently substituted or unsubstituted C_1 - C_{15} alkyl, substituted or unsubstituted C_2 - C_{15} alkenyl, substituted or unsubstituted C_2 - C_{15} alkynyl, substituted or unsubstituted C_5 - C_{18} aryl, substituted or unsubstituted C_6 - C_{18}

arylalkyl, substituted or unsubstituted C_2 - C_{20} heterocycle, substituted or unsubstituted C_3 - C_{20} heteroarylalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkynyl, or substituted or unsubstituted C_3 - C_{20} heterocycloalkyl.

13. (Canceled)

- 14. (Original) The method of preparing (S)-chiral alcohol according to claim 1, wherein the protein hydrolysis enzyme is subtilisin.
- 15. (Original) The method of preparing (S)-chiral alcohol according to claim 1, wherein the organic solvent is benzene, toluene, C_5 - C_{10} alkane, C_5 - C_{10} cycloalkane, tetrahydrofuran, dioxane, C_2 - C_{10} dialkylether, C_3 - C_{10} alkylate, C_2 - C_{10} cyanoalkane, C_3 - C_{10} dialkyl ketone, dichloromethane, chloroform, carbon tetrachloride, C_4 - C_{10} tertiary alcohol, or a room temperature ionic liquid.
- 16. (Previously presented) The method of preparing (S)-chiral alcohol according to claim 1, wherein the reaction temperature in step (a) is at a temperature between room temperature and 80°C.

17. (Canceled)

18. (Currently amended) A method of preparing (S)-chiral ester comprising:

reacting in organic solvent a compound of the following chemical formula 1 as a starting material,

a racemization metal catalyst,

an acyl donor being capable of acylating an alcohol compound, and

a protein hydrolysis enzyme selected from the group consisting of stabilized or fixed subtilisin, chymotrypsin, papain, protease from *Aspergillus orygae*, protease from *Aspergillus melleus*, protease from *Streptomyces griseus*, and protease from *Bacillus stearothemophilus* and being capable of stimulating the enantioselective acylation of a racemic compound to obtain a chiral ester compound of chemical formula 3.

[chemical formula 1]

[chemical formula 3]

wherein R_1 and R_2 are independently substituted or unsubstituted C_1 - C_{15} alkyl, substituted or unsubstituted C_2 - C_{15} alkynyl, substituted or unsubstituted C_5 - C_{18} aryl, substituted or unsubstituted C_6 - C_{18} arylalkyl, substituted or unsubstituted C_2 - C_{20} heterocycle, substituted or unsubstituted C_3 - C_{20} heteroarylalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkenyl, substituted or unsubstituted C_6 - C_{15} cycloalkynyl, or substituted or unsubstituted C_3 - C_{20} heterocycloalkyl heterocycloalkyl, and C_1 and C_2 can be linked together; and wherein a size of a circular arc indicates that the C_1 group is larger than the C_2 group.

19. (Previously presented) The method of preparing (S)-chiral ester according to claim 18, further comprising adding a hydrogen donor in step (a) and wherein the starting material comprises ketone where X=O.

20. (Canceled)

21. (Previously presented) A method of preparing (S)-chiral alcohol of the following chemical formula 1 comprising:

hydrolyzing the chiral ester of the chemical formula 3 prepared according to claim 18.

[chemical formula 1]

[chemical formula 3]

wherein X is -OH or = O,

wherein R_1 , R_2 and R_3 are independently substituted or unsubstituted C_1 - C_{15} alkyl, substituted or unsubstituted C_2 - C_{15} alkenyl, substituted or unsubstituted C_2 - C_{15} alkynyl, substituted or unsubstituted C_5 - C_{18} aryl, substituted or unsubstituted C_6 - C_{18} arylalkyl, substituted or unsubstituted C_2 - C_{20} heterocycle, substituted or unsubstituted C_3 - C_{20} heteroarylalkyl, substituted or unsubstituted C_3 - C_{16} cycloalkyl, substituted or unsubstituted C_3 - C_{15} cycloalkenyl, substituted or unsubstituted C_6 - C_{15} cycloalkynyl, or substituted or unsubstituted C_3 - C_{20} heterocycloalkyl; wherein R_1 and R_2 can be linked together; and wherein a size of a circular arc indicates that the R_1 group is larger than the R_2 group.