Managed Lane Strategies for Near-term Deployment of Cooperative Adaptive Cruise Control

AVS 2020 Breakout Session: The (Dedicated) Road to Deployment: What are the priorities?

Zijia (Gary) Zhong, Ph.D., National Renewable Energy Laboratory Joyoung Lee, Ph.D., New Jersey Institute of Technology

Near-term CACC Deployment

The field testing of CACC has been accelerated in recent years.

There are still questions:

- The network-wide traffic impact of CACC vehicles under mixed traffic conditions
- The potential impacts of CACC to non-equipped vehicle (e.g., human-driven vehicles)
- The deployment strategies to accommodate and incentivize CACC adoption under low market penetration
- Cooperative driving framework at scale
- Imperfect DSRC communication in deployment

Here Today

Level 1

Level 2

In Testing

Level 3

Level 4

Level 5
Someday(?)

Level 5

Transition to Full Market Penetration

Infrastructure

- DSRC-enabled Roadside Units
- Automated Driving Systems

Policy

- Preferential lane use
- Technical accommodation

Market

• Incentive to upgrade & retrofit

CACC Vehicle Clustering

Clustering strategies for CACC platoons

- Ad hoc coordination
- Local coordination (active platooning)
- Global coordination (end-to-end platooning)

Managed lane policy for CACC

- Creates a local high market penetration region
- Increases traffic homogeneity
- Alleviate vehicle localization issue

CACC platoon formation

Goal: Suitable Managed Lane Strategy

Simulation-based Approach

•CACC Vehicle Longitudinal Control:

Enhanced-Intelligent Driver Model (Kesting et al. 2010)

$$\ddot{x} = \begin{cases} a[1 - (\frac{\dot{x}}{x_{des}})^{\delta} - (\frac{s^*(\dot{x}, \dot{x}_{lead})}{s_0})] & \text{if } x = \ddot{x}_{IDM} \ge \ddot{x}_{CAH} \\ (1 - c)\ddot{x}_{IDM} + c[\ddot{x}_{CAH} + b \cdot tanh(\frac{\ddot{x}_{IDM} - \ddot{x}_{CAH}}{b})] & \text{otherwise} \end{cases}$$

$$s^*(\dot{x}, x_{lead}) = s_0 + \dot{x}T + \frac{\dot{x}(\dot{x} - x_{lead})}{2\sqrt{ab}}$$

$$\ddot{x}_{CAH} = \begin{cases} \frac{\dot{x}^2 \cdot \min(\ddot{x}_{lead}, \ddot{x})}{\dot{x}_{lead}^2 - 2x \cdot \min(\ddot{x}_{lead}, \ddot{x})} & \dot{x}_{lead}(\dot{x} - \dot{x}_{lead}) \le -2x \min(\ddot{x}_{lead}, \ddot{x}) \\ \min(\ddot{x}_{lead}, \ddot{x}) - \frac{(\dot{x} - \dot{x}_{lead})^2 \Theta(\dot{x} - \dot{x}_{lead})}{2x} & \text{otherwise} \end{cases}$$

•Minimizing Overall Braking Induced by Lane Change Model (Kesting et al. 2007)

$$\tilde{\ddot{x}} - \ddot{x} + p(\tilde{\ddot{x}}_n - \ddot{x}_n + \tilde{\ddot{x}}_o - \ddot{x}_o) > \Delta \ddot{x}_{th}$$

I-66 Simulation Test Bed

- A major commuter corridor outside of the beltway of Washington D.C. with recurring congestion during peak hours
- The chosen segment is 8-km (5-mile) long with 2 interchanges and 4 lanes in each direction
- An HOV lane implemented in the leftmost lane

CACC Managed Lane Strategies

Strategy	ID	1 st Lane	2 nd Lane	3 rd Lane	4 th Lane (leftmost)	MPR, %	Access Control
Base case	BASE		GP+ HOV		HOV	N/A	
Unmanaged lane	UML		GP +0	10~50	No		
Mixed managed lane	MML	GP +HOV + CACC				CACC + HOV	
CACC lane w/o access control	DL	GP + CACC				CACC	
CACC lane w/ access control	DLA		GP + CACC		CACC		Yes

^{*}GP: General propose

^{*}HOV: High occupancy vehicle

Simulation Assumptions

- •Calibrated vehicle behaviors in VISSIM realistically represent the road users' driving behaviors.
- •The CACC vehicle controller is free of control errors.
- •The lateral control for platoon formation is conducted by human drivers with recommendations for lane change from the CACC system.
- Human-driven vehicles treat CACC vehicles as another human-driven vehicles.

 (no indication whether a vehicle is equipped with CACC system)

Results: Mobility & Safety

Mobility: planning time index

Safety: standard deviation of speed (km/h)

- Performance increases with the gradual increase of the MPR of CACC
- Managed lane needs certain MPR threshold to justify
- Significant difference observed for dedicated CACC lane

Result: Equity

Side-by-side comparison of the travel time distributions of two user groups

- Fairness in distributing impacts (ML users vs non-ML users)
- •Use travel time to gauge the equity between managed lane & general-purpose lane users

Result: Platoon Performance

Conclusions

Strategy/ MPR	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
Unmanaged										
Mixed										
Dedicated										
Dedicated										

- •Mixing CACC traffic across all travel lanes if MPR below 30%
- •Mixed managed lane is a versatile option for providing priority lane usage for CACC
- ■Dedicated lane starts to show its advantage when mid-rang MPR (30% -55%) is reached

Future Research

- Investigate the potential impacts of local coordination of CACC in the absence of managed lane (e.g., induced lane change)
- Enhance multi-anticipative behavior of CACC car-following model
- Incorporate human factor aspect for increase the degree of realism in the CACC behavior model (e.g., ADS authority transition)
- Analyze vehicle trajectory level traffic impact analysis

Relevant Publications

- 1. **Z. Zhong***, E. E.Lee, M. Nejad and J. Lee, "Influence of CAV Clustering Strategies on Mixed Traffic Flow Characteristics: An Analysis of Vehicle Trajectory Data," Transp. Res. Part C: Emerging Technologies, vol.115, pp.102611, 2020, doi:10.1016/j.trc.2020.102611
- 2. Z. Zhong* and J. Lee, "The Effectiveness of Managed Lane Strategies for the Near-term Deployment of Cooperative Adaptive Cruise Control," Transp. Res. Part A: Policy and Practices, vol.129, pp. 257–270, 2019, doi:1016/J.TRA.2019.08.015
- 3. **Z. Zhong***, M. Nejad, E. E.Lee, and J. Lee, "Clustering Strategies of Cooperative Adaptive Cruise Control: Impacts on Human-driven Vehicles", in IEEE 2nd Connected and Automated Vehicles Symposium, Honolulu, Hawaii, USA, 2019
- 4. **Z. Zhong**, J, Lee*, and L. Zhao, "Evaluations of managed lane strategies for arterial deployment of cooperative adaptive cruise control," in 96th Transp. Res. Board Annu. Meeting, Washington, DC, USA, 2017

Contact

Zijia (Gary) Zhong, Ph.D.
Postdoctoral Researcher
Center for Integrated Mobility Sciences
National Renewable Energy Laboratory
(303)384-6761 | zijia.zhong@nrel.gov

Joyoung Lee, Ph.D.
Associate Professor
John A. Reif, Jr. Department of Civil and Environmental Engineering
New Jersey Institute of Technology
(973)596-2475 | jo.y.lee@njit.edu

Network Calibration

Data Collection

- Remote traffic microwave sensors (speed, volume, and lane occupancy)
- Video cameras (ramp volume)
- INRIX probe vehicle data (TMC travel time)

Managed Lane Evaluation Score

- A simple score system factors in the heterogeneous performance measures
 - Traffic performance score based on comparison with the baseline case
 - Platooning performance score based on the comparison among CACC scenarios (MP>0%)

Parameter	Evaluation Score		
Traditional performance measure	improvement: 1		
(mobility, safety, equity,	neutral: 0		
and environmental impact)	degradation:-1		
	ranked among 4 strategies		
CACC platoon formation	1st: 4, 2nd: 3, 3rd: 2, 4th: 1		

MP	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%
UML	4	4	4	4	4	4	4	4	4	4	4
MML	4	4	4	4	4	4	4	4	4	4	4
DL	0	0	0	-1	-1	1	3	2	4	4	4
DLA	0	0	0	-2	-2	-2	2	2	3	4	4

(a) traffic performance score

MP	20%	25%	30%	35%	40%
UML	4	4	4	2	2
MML	4	4	4	5	5
DL	5	4	4	5	5
DLA	7	8	8	8	8

(b) platooning performance score

MP	20%	25%	30%	35%	40%
UML	1.33	1.33	1.33	1	1
MML	1.33	1.33	1.33	1.5	1.5
DL	0.67	0.5	0.83	1.33	1.17
		1	1	1.67	1.67

(c) normalized sum of score