נושאים במתמטיקה לתלמידי מח"ר - 10444

פתרון ממ"ן 12

שאלה 1

$$:$$
 לכך, $B = \{1,3,5\}$ -1 $A = \{1,2\}$.

$$A \times B = \{\langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 1, 5 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 2, 5 \rangle\}$$

ו- פבוצות גם את לבנות לבנות החלקיות לקבוצה וו. כך ניתן לבנות אוסף כל הקבוצות וו- $P(A \times B)$

יאת! עשו אור .P(B) את וכמובן שגם את $P(B \times A), B \times A$

: מכאן נקבל שמתקיים

נכון 5) נכון 3) לא נכון 4) לא נכון 1) לא נכון 1

: עלינו להוכיח כי לכל ארבע קבוצות C,D,U,V מתקיים

$$(C \times U) \cap (D \times V) = (C \cap D) \times (U \cap V)$$

: הוכחה

נוכיח שמתקיימת הכלה דו-כיוונית:

$$\langle x,y \rangle \in (C imes U) \cap (D imes V)$$
 אם $(\subseteq) *$. $\langle x,y \rangle \in D imes V$ אם $\langle x,y \rangle \in C imes U$ אז $\langle x,y \rangle \in C imes U$

. $y \in V$ -ו $y \in U$ וגם , $x \in D$ -ו $x \in C$

 $y \in U \cap V$ -ו $x \in C \cap D$ -ומכאן ש

. כנדרש, $\langle x,y\rangle\in (C\cap D)\times (U\cap V)$ - נדרש,

,
$$\langle x,y \rangle \in (C \cap D) \times (U \cap V)$$
 אם $(\supseteq) *$

. $v \in U \cap V$ ו- $x \in C \cap D$ אז מתקיים

 $y \in V$ -ו $y \in U$ וגם ווגם $x \in D$ וולכן וולכן

 $\langle x,y \rangle \in D \times V$ וגם $\langle x,y \rangle \in C \times U$ או

. כנדרש, $\langle x,y\rangle \in (C\times U)\cap (D\times V)$ כנדרש,

הוכחנו הכלה דו-כיוונית, לכן מתקיים השוויון שרצינו להוכיח. ניתן להוכיח טענה זו גם בעזרת אלגברה של קבוצות, נסו זאת!

ג. ניעזר בסעיף הקודם, לפיו מתקיים

$$(B \times A) \cap (\mathbf{Z} \times B) = (B \cap \mathbf{Z}) \times (A \cap B)$$

לכן כדי למצוא את הקבוצה באגף שמאל, נעדיף למצוא את הקבוצה באגף ימין. $B \cap \mathbf{Z} = B \quad \text{i acm} \quad B \subset \mathbf{Z} \quad \text{i acm} \quad B \subset \mathbf{Z} \quad \text{i acm} \quad B \cap \mathbf{Z} = B \quad \text{in acm} \quad B \cap \mathbf{Z} = B \quad \text{in acm} \quad B \cap \mathbf{Z} = B \quad \text{in acm} \quad B \cap \mathbf{Z} = B \quad \text{in acm} \quad B \cap \mathbf{Z} = \mathbf{Z}$ לפי הגדרת הקבוצות $A, B \cap B = \{0\}$. $A \cap B = \{0\}$

קיבלנו, אם כן,

שאלה 2

א. 1)

x=-2 כדי לחשב את S אנו עוברים על האיברים של A לפי סדר באופן הבא את S אנו עוברים על האיברים של A ונחפש את כל ערכי y הנמצאים ב-A ומקיימים A ומקיימים y=0 ווער y=1 ווער באופן הבא את בל שפתרונות משוואה או הם y=1 ווער באומים ב-y=1 שנמצא ב-y=1 שנמצא ב-y=1 וערה נעבור ל-y=1 ונחפש את ערכי y=1 הרלבנטיים עבורו, ונקבל ש-y=1 ובאים ב-y=1 וכך הלאה.

$$DomS = \{-2, -1, 0, 1, 2, 3, 4\} = A$$

$$Im S = \{-1, 0, 1, 2, 3, 4\}$$

2) רפלקסיביות:

. $\langle 1, 1 \rangle \not \in S$ אינו רפלקסיבי. נוכיח זאת זS

 $\langle a,a
angle
otin S$ מתקיים $a\in A$ מתקיים כי לכל אי-רפלקסיבי מים מתקיים למעשה קל לראות שהיחס הוא אי-רפלקסיבי ל|a-1|=|a-2| אז $\langle a,a
angle \in S$ שהרי אם נניח בשלילה ש

כלומר $a=\frac{3}{2}$ או 2a=3 או , a-1=-(a-2) או a-1=a-2 כלומר . $\frac{3}{2} \notin A$

:סימטריה

(כי |0-1|=|1-2|), אך אד אך (|0-1|=|1-2|) (כי |0-1|=|1-2|), אך אד אינו סימטרי כי, למשל, $|1-1|\neq |0-2|$

:אנטי-סימטריה

: היחס אינו אנטי-סימטרי

 $4 \neq -1$ וגם אך (וודא זאת) אך $4,-1 \in S$ וגם $\langle -1,4 \rangle \in S$ הרי

:טרנזיטיביות

. $\langle 4,4 \rangle \not \in S$ אך אך $\langle 4,-1 \rangle \in S$ וגם $\langle -1,4 \rangle \in S$ אד היחס אינו טרנזיטיבי

:מסעיף א' נקבל S בעזרת הגדרת (3

: לכן

$$R = \left\langle \begin{matrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 1 & 3 \end{matrix} \right\rangle$$
 :ב. מהאיור רואים כי

$$R^2 = \left\langle \begin{matrix} 1 & 1 & 2 & 2 & 3 \\ 1 & 2 & 2 & 1 & 3 \end{matrix} \right\rangle$$
 לכן

- .יחס סימטרי הוא R^2 הוא יחס סימטרי (1
 - . ולכן R^2 רפלקסיבי, $I_A \subset R^2$ (2
- : טרנזיטיבי. נבדוק את כל המקרים האפשריים R^2 (3

. מתקיים.
$$\langle 1,2 \rangle \in R^2 \Leftarrow \langle 1,2 \rangle \in R^2$$
 ו מתקיים. $\langle 1,1 \rangle \in R^2$

. מתקיים.
$$\langle 1,2 \rangle \in R^2 \leftarrow \langle 2,2 \rangle \in R^2$$
 מתקיים. $\langle 1,2 \rangle \in R^2$

. מתקיים.
$$\langle 1,1 \rangle \in R^2 \Leftarrow \langle 2,1 \rangle \in R^2$$
 ר מתקיים. $\langle 1,2 \rangle \in R^2$

. מתקיים.
$$\langle 2,1 \rangle \in R^2 \leftarrow \langle 1,1 \rangle \in R^2$$
 ר מתקיים. $\langle 2,1 \rangle \in R^2$

מתקיים.
$$\langle 2,2 \rangle \in R^2 \Leftarrow \langle 1,2 \rangle \in R^2 - 1 \langle 2,1 \rangle \in R^2$$

. מתקיים.
$$\langle 2,1 \rangle \in R^2 \Leftarrow \langle 2,1 \rangle \in R^2$$
 ר- $\langle 2,2 \rangle \in R^2$

שאלה 3

f z אל-ידי על Z הוא היחס המוגדר על S ב.

$$xSy \Leftrightarrow x \leq y + 1$$

נבדוק רפלקסיביות, סימטריה אנטי-סמטריה וטרנזיטיביות.

 $x \le x+1$ מתקיים $x \in \mathbf{Z}$ מתקיים לכל רפלקסיבי: נוכיח שהיחס

. מתקיים xSx וקבלנו רפלקסיביות, S מתקיים לכן, לפי הגדרת

3S5 (כי $1+3 \le 5$), אינו סימטרי. מתקיים אינו (כי $1+3 \le 5$),

אך לא מתקיים 5S3 (כי $1+5 \geq 5$).

2S3 (כי $1+2 \le 3+1$), אינו אנטי-סימטרי. מתקיים אנטי-סימטריה: היחס

 $1.2 \neq 3$ אך (כי $1+2 \geq 1$), אך 3S2 וגם

3S2 (כי $1+2 \ge 3$), אינו טרנזיטיבי. מתקיים 3S2 (כי $1+2 \ge 3$),

וגם 2*S*1 (כי 1+1 ≥ 2), אך לא מתקיים 3*T*1 (כי 1+1 \geq 3).

:ב. \mathbf{N} על-ידי על \mathbf{N}

רפלקסיביות:

היחס רפלקסיבי.

 $: \langle a,a
angle \in T$ מתקיים $a \in \mathbf{N}$ נוכיח שלכל

. אם k מתקיים מספר קיים מספר k=1 מתקיים k=1 מתקיים k=1 מתקיים מספר שלם k=1

. $\langle a,a\rangle\in T$ ולכן

:סימטריה

היחס אינו סימטרי.

k שלם מספר שלם (כי לא קיים מספר שלם ($2=2\cdot 1$, k=2 כי לא קיים (2,1) אך (2,1) אד

. שעבורו מתקיים $k=\frac{1}{2}$, אד אויון או מחפר שלם). $1=k\cdot 2$ שעבורו מתקיים . $1=k\cdot 2$

:טרנזיטיביות

. טרנזיטיביT היחס

 $\langle b,c \rangle \in T$ וגם $\langle a,b \rangle \in T$ כך ש- $a,b,c \in \mathbf{N}$ וגם : הוכחה

. $\langle a,c\rangle\in T$ צ.ל. ש-

b=nc וגם a=kb וגם a=kb קיימים a=kb קיימים a=kb קיימים a=kb=k(nc)=(kn)c c

. כנדרש. $\langle a,c \rangle \in T$ ולכן a=(kn)c שעבורו מתקיים שעבורו אשנו שקיים מספר שלם שלם ומצאנו

שאלה 4

כיוון שיחסים הם קבוצות של זוגות סדורים, ניתן לדבר על איחוד וחיתוך של יחסים.

א. הטענה נכונה. נוכיח אותה:

מתקיים (בספר הלימוד) איי, לפי סעיף אי $S\subseteq T$ אם הרשומה אוי, לפי איי, לפי אזי, לפי א

,
$$S^{-1} \subseteq T \cup T^{-1}$$
 וגם $S \subseteq T \cup T^{-1}$ מכאן נקבל שמתקיים . $S^{-1} \subseteq T^{-1}$

$$S \cup S^{-1} \subseteq T \cup T^{-1}$$
 סעיף בי מתקיים 1.14 לכן , לפי שאלה

,
$$T \cup T^{-1} = T$$
 ולכן $T = T^{-1}$ סימטרי, T-טוון ש-T

. נקבל שמתקיים ארצינו להוכיח, $S \cup S^{-1} \subseteq T$ נקבל שמתקיים (1) ומ-

ב. הטענה נכונה. נוכיח אותה בשלילה:

כלומר, נניח כי S אנטי-סימטרי, אך לא מתקיים ש- T וגם אנטי-סימטריים. לכן מתקיים ש- T או אינו יחס אנטי-סימטרי.

נניח ש- T אינו אינו אנטי-סימטרי. לכן, לפי ההגדרה של יחס אנטי-סימטרי, קיימים נניח ש- T אינו אונט יחס אנטי-סימטרי. כך ש- $a \neq b$ כך ש- $a \neq b$ וגם $a \neq b$

 $a \neq b$ כאשר לכן, $a \neq b$ וגם $a \neq b$ וגם לכן, לכן, $a \neq b$ לכן, לכן, לכן יגם אד

. וזה אומר ש- $T \cup S$ אינו אנטי-סימטרי - בסתירה לנתון. והראנו שהטענה נכונה $T \cup S$

ג. הטענה אינה נכונה.

דוגמא נגדית: נגדיר

$$A = \{1, 2, 3, 4\}$$

$$S = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 4 \rangle\}$$

$$T = \{\langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 3 \rangle, \langle 4, 2 \rangle\}$$

קל לוודא ש- S ו- S טרנזיטיביים (עשה זאת) אך אד אד הרי, T טרנזיטיבי. הרי, $(3,2)\not\in T\cup S \ , \ \langle 3,4\rangle, \langle 4,2\rangle\in T\cup S \$ למשל,

ד. <u>הטענה אינה נכונה</u>.

 $T=\left\{\left\langle 2,3\right\rangle ,\left\langle 3,2\right\rangle \right\}$; $S=\left\{\left\langle 1,2\right\rangle ,\left\langle 2,1\right\rangle \right\}$; $A=\left\{1,2,3\right\}$ דוגמא נגדית : נגדיר S שינו סימטרי. $ST=\left\{\left\langle 1,3\right\rangle \right\}$ אינו סימטרי.

שאלה 5

:נתון יחס S מעל A שהוא יחס רפלקסיבי המקיים

$$(*)$$
 $\langle b,c \rangle \in S \Leftarrow \langle a,c \rangle \in S$ וגם $\langle a,b \rangle \in S$: $a,b,c \in A$

: צריך להוכיח שS הוא יחס שקילות

- 1) רפלקסיביות נתון.
- $\langle a,b \rangle \in S \Leftrightarrow \langle b,a \rangle \in S$, $a,b \in A$ שלכל (2

. $\langle a,a \rangle \in S$ כך ש- $\langle a,b \rangle \in S$ הרי הרי כל לכן גם $a,b \in A$ יהיו

לפיכך, קיבלנו ש- $\langle a,a \rangle \in S$ וגם אום $\langle a,b \rangle \in S$ מתקיים לפיכך, קיבלנו ש- $\langle a,b \rangle \in S$. כנדרש

. $\langle a,b \rangle \in S \leftrightharpoons \langle b,a \rangle \in S$ - עם bעם עם aעם נחליף אם ובאופן ובאופן ובאופן

 $\langle a,c \rangle \in S$ אז $\langle b,c \rangle \in S$ וגם $\langle a,b \rangle \in S$ אז $\langle a,c \rangle \in S$ טרנזיטיביות – נוכיח כי אם (3

אם (שהוכחנו ב-(2)), מתקיים אזי, משיקולי אזי, משיקולי $a,b \in S$ אם $a,b \in S$ אם $a,b \in S$ אזי, משיקולי אזי, $a,b \in S$ וגם $a,b \in S$

. הוא יחס רפלקסיבי, סימטרי וטרנזיטיבי – ולכן הוא יחס שקילות הוכחנו ש- S