

HSC Trial Examination 2001

Mathematics Extension 1

Solutions and suggested marking scheme

QUESTION 1

Sample Answer Outcome listing and mark guide HE4 $\int_{1}^{\sqrt{3}} \frac{dx}{\sqrt{4 - x^2}} = \left[\sin^{-1} \frac{x}{2} \right]_{1}^{\sqrt{3}}$ Gives correct answer.....3 Gives correct integral and gives at least one $=\sin^{-1}\frac{\sqrt{3}}{2}-\sin^{-1}\frac{1}{2}$ correct sin-1 evaluation 2 $=\frac{\pi}{6}$ PE₃ $\frac{3}{x^2-1} \ge 0$ (b) $x^2 - 1 \neq 0$ i.e. $x \neq 1$ or $x \neq -1$ $(x^2-1)>0$ (x-1)(x+1) > 0x < -1 or x > 1HE₆ (c) $u^2 = 4 + x$ Gives correct solution 4 $x = u^2 - 4$ dx = 2u duIf x = 5, $u^2 = 9$ Gives correct expression to be integrated .2 $\therefore u = 3$ Shows significant progress in finding the If x = 0, $u^2 = 4$ correct expression to be integrated 1 $\therefore u = 2$ $\int_{0}^{5} \frac{x}{\sqrt{4+x}} dx = \int_{2}^{3} \frac{u^{2}-4}{\sqrt{u^{2}}} 2u \, du$ $=2\int_{2}^{3}(u^{2}-4)du$ $=2\left[\frac{1}{3}u^3-4u\right]_2^3$ $= 2 \left\{ [9 - 12] - \left[\frac{8}{3} - 8 \right] \right\}$

(d)
$$\frac{{}^{n}P_{r+1}}{{}^{n}P_{r}} = \frac{n!}{(n-(r+1))!} \div \frac{n!}{(n-r)!}$$

$$= \frac{n!}{(n-r-1)!} \times \frac{(n-r)(n-r-1)!}{n!}$$

$$= n-r$$

 $=\frac{14}{3}$ or $4\frac{2}{3}$ or 4.67 (2 d.p.)

QUESTION 2

		Sample Answer	Outcome listing and mark guide
(a)	(i)	$\frac{d}{dx}x\tan^{-1}x = \tan^{-1}x + \frac{x}{1+x^2}$	HE4, H5
	(-)	$\frac{dx}{1+x^2}$	Gives correct derivative
	(ii)	$\int_0^1 \tan^{-1} x dx = \int_0^1 \frac{d}{dx} x \tan^{-1} x dx - \int_0^1 \frac{x dx}{1 + x^2}$	HE4, H5 • Gives correct answer
		$= \left[x \tan^{-1} x\right]_0^1 - \left[\frac{1}{2}\ln(1+x^2)\right]_0^1$ $= [(1)\tan(1) - 0]$	 Gives the two correct integrals or Gives the correct answer to one of the integrals
		$-\left[\frac{1}{2}\ln(1+1) - \frac{1}{2}\ln(1+0)\right]$	• Gives correct expression to integrate I
		$= \left[\frac{\pi}{4} - 0\right] - \left[\frac{1}{2}\ln 2 - 0\right]$	
		$=\frac{\pi}{4}-\frac{1}{2}\ln 2$	
(b)	(i)	$y = -x$ $y = \cos x$ $-\pi$ -1 1 π x $\cos x = -x$	P4 One mark for drawing two correct graphs. One mark for giving a satisfactory explanation
		draw $y = \cos x$ and $y = -x, -\pi \le x \le \pi$ There is only one point of intersection.	
		$\therefore \cos x + x = 0 \text{ has only one solution.}$	
	(ii)	Newton's method	PE3, H5
		Let $f(x) = \cos x + x$	• Gives correct answer
		$f(-1) = \cos(-1) - 1$	• Finds correct values of $f(-1)$ and $f'(-1)$
		= -0.459697	and quotes correct formula
		$f'(x) = -\sin x + 1$	
		$f'(-1) = -\sin(-1) + 1$	
		= 1.84147	
		$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$	
		$= -1 - \frac{-0.459697}{1.84147}$	
		= -0.75036	
		=-0.75 (to 2 decimal places)	

QUESTION 2 (Continued)

		Sample Answer	Outcome listing and mark guide
(c)	(i)	Number of arrangements = $\frac{12!}{3!4!5!}$ = 27 720	PE3 • Gives correct answer
	(ii)	Number of arrangements = 3! = 6	PE3 • Gives correct answer1
	(iii)	Number of arrangements with Gone with the Wind at one end and Gladiator at the other end = $2! \times \frac{10!}{2! \times 4! \times 4!} = 6300$ $P(\text{above arrangement}) = \frac{6300}{27720} = \frac{5}{22}$	PE3, H5 • Gives correct answer