

Sequence Listing

<110> Baker, Kevin P.
 Botstein, David
 Desnoyers, Luc
 Eaton, Dan 1.
 Ferrara, Napoleone
 Fong, Sherman
 Gao, Wei-Qiang
 Goddard, Audrey
 Godowski, Paul J.
 Grimaldi, Christopher J.
 Gurney, Austin L.
 Hillan, Kenneth J.
 Pan, James
 Paoni, Nicholas F.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2830P1C4

<140> 10/006818

<141> 2001-12-06

<150> 60/098716

<151> 1998-09-01

<150> 60/098723

<151> 1998-09-01

<150> 60/098749

<151> 1998-09-01

<150> 60/098750

<151> 1998-09-01

<150> 60/098803

<151> 1998-09-02

<150> 60/098821

<151> 1998-09-02

<150> 60/098843

<151> 1998-09-02

<150> 60/099536

<151> 1998-09-09

<150> 60/099596

<151> 1998-09-09

<150> 60/099598

<151> 1998-09-09

<150> 60/099602

<151> 1998-09-09

```
<150> 60/099642
```

- <151> 1998-09-09
- <150> 60/099741
- <151> 1998-09-10
- <150> 60/099754
- <151> 1998-09-10
 - <150> 60/099763
 - <151> 1998-09-10
 - <150> 60/099792
 - <151> 1998-09-10
 - <150> 60/099808
 - <151> 1998-09-10
 - <150> 60/099812
 - <151> 1998-09-10
 - <150> 60/099815
 - <151> 1998-09-10
 - <150> 60/099816
 - <151> 1998-09-10
 - <150> 60/100385
 - <151> 1998-09-15
 - <150> 60/100388
 - <151> 1998-09-15
 - <150> 60/100390
 - <151> 1998-09-15
 - <150> 60/100584
 - <151> 1998-09-16
 - <150> 60/100627
 - <151> 1998-09-16
 - <150> 60/100661
 - <151> 1998-09-16
- <150> 60/100662
- <151> 1998-09-16
- <150> 60/100664
- <151> 1998-09-16
- <150> 60/100683
- <151> 1998-09-17
- <150> 60/100684
- <151> 1998-09-17

```
<150> 60/100710
<151> 1998-09-17
<150> 60/100711
<151> 1998-09-17
<150> 60/100848
<151> 1998-09-18
<150> 60/100849
<151> 1998-09-18
<150> 60/100919
<151> 1998-09-17
<150> 60/100930
<151> 1998-09-17
<150> 60/101014
<151> 1998-09-18
<150> 60/101068
<151> 1998-09-18
<150> 60/101071
<151> 1998-09-18
<150> 60/101279
<151> 1998-09-22
<150> 60/101471
<151> 1998-09-23
<150> 60/101472
<151> 1998-09-23
<150> 60/101474
<151> 1998-09-23
<150> 60/101475
<151> 1998-09-23
<150> 60/101476
<151> 1998-09-23
<150> 60/101477
<151> 1998-09-23
<150> 60/101479
<151> 1998-09-23
<150> 60/101738
<151> 1998-09-24
```

<150> 60/101741 <151> 1998-09-24

```
<150> 60/101743
<151> 1998-09-24
<150> 60/101915
<151> 1998-09-24
<150> 60/101916
<151> 1998-09-24
<150> 60/102207
<151> 1998-09-29
<150> 60/102240
<151> 1998-09-29
<150> 60/102307
<151> 1998-09-29
<150> 60/102330
<151> 1998-09-29
<150> 60/102331
<151> 1998-09-29
<150> 60/102484
<151> 1998-09-30
<150> 60/102487
<151> 1998-09-30
<150> 60/102570
<151> 1998-09-30
<150> 60/102571
<151> 1998-09-30
<150> 60/102684
<151> 1998-10-01
<150> 60/102687
<151> 1998-10-01
<150> 60/102965
<151> 1998-10-02
<150> 60/103258
<151> 1998-10-06
<150> 60/103314
<151> 1998-10-07
<150> 60/103315
<151> 1998-10-07
```

<150> 60/103328 <151> 1998-10-07

<150> 60/103395 <151> 1998-10-07 <150> 60/103396 <151> 1998-10-07 <150> 60/103401 <151> 1998-10-07 <150> 60/103449 <151> 1998-10-06 <150> 60/103633 <151> 1998-10-08 <150> 60/103678 <151> 1998-10-08 <150> 60/103679 <151> 1998-10-08 <150> 60/103711 <151> 1998-10-08 <150> 60/104257 <151> 1998-10-14 <150> 60/104987 <151> 1998-10-20 <150> 60/105000 <151> 1998-10-20 <150> 60/105002 <151> 1998-10-20 <150> 60/105104 <151> 1998-10-21 <150> 60/105169 <151> 1998-10-22 <150> 60/105266 <151> 1998-10-22 <150> 60/105693 <151> 1998-10-26 <150> 60/105694 <151> 1998-10-26

<150> 60/105807 <151> 1998-10-27

<150> 60/105881 <151> 1998-10-27

```
<150> 60/105882
```

- <151> 1998-10-27
- <150> 60/106023
- <151> 1998-10-28
- <150> 60/106029
- <151> 1998-10-28
- <150> 60/106030
- <151> 1998-10-28
- <150> 60/106032
- <151> 1998-10-28
- <150> 60/106033
- <151> 1998-10-28
- <150> 60/106062
- <151> 1998-10-27
- <150> 60/106178
- <151> 1998-10-28
- <150> 60/106248
- <151> 1998-10-29
- <150> 60/106384
- <151> 1998-10-29
- <150> 60/108500
- <151> 1998-10-29
- <150> 60/106464
- <151> 1998-10-30
- <150> 60/106856
- <151> 1998-11-03
- <150> 60/106902
- <151> 1998-11-03
- <150> 60/106905
- <151> 1998-11-03
- <150> 60/106919
- <151> 1998-11-03
- <150> 60/106932
- <151> 1998-11-03
- <150> 60/106934 <151> 1998-11-03
- <150> 60/107783 <151> 1998-11-10

```
<150> 60/108775
<151> 1998-11-17
<150> 60/108779
<151> 1998-11-17
<150> 60/108787
<151> 1998-11-17
<150> 60/108788
<151> 1998-11-17
<150> 60/108801
<151> 1998-11-17
<150> 60/108802
<151> 1998-11-17
<150> 60/108806
<151> 1998-11-17
<150> 60/108807
<151> 1998-11-17
<150> 60/108848
<151> 1998-11-18
<150> 60/108849
<151> 1998-11-18
<150> 60/108850
<151> 1998-11-18
<150> 60/108851
<151> 1998-11-18
<150> 60/108852
<151> 1998-11-18
<150> 60/108858
<151> 1998-11-18
<150> 60/108867
<151> 1998-11-17
<150> 60/108904
<151> 1998-11-18
<150> 60/108925
<151> 1998-11-17
<150> 60/113296
<151> 1998-12-22
```

<150> 60/114223 <151> 1998-12-30

- <151> 1999-04-16
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/144758
- <151> 1999-07-20
- <150> 60/145698
- <151> 1999-07-26
- <150> 60/162506
- <151> 1999-10-29
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/403297
- <151> 1999-10-18
- <150> 09/872035
- <151> 2001-06-01
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/946374
- <151> 2001-09-04
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/20111
- <151> 1999-09-01
- <150> PCT/US99/21194
- <151> 1999-09-15
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US00/00219
- <151> 2000-01-05
- <150> PCT/US00/00376
- <151> 2000-01-06

- <151> 2000-02-11
- <150> PCT/US00/04342
- <151> 2000-02-18
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/06884
- <151> 2000-03-15
- <150> PCT/US00/13705
- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/23522
- <151> 2000-08-23
- <150> PCT/US00/30873
- <151> 2000-11-10
- <150> PCT/US00/30952
- <151> 2000-11-08
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/06666
- <151> 2001-03-01
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29

3

1

1 10 15 Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Phe Ile Phe Trp · Ile Thr Gly Val Ile Leu Leu Ala Val Gly Ile Trp Gly Lys Val Ser Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Lys Ala Thr Asn Val Pro Phe Val Leu Ile Ala Thr Gly Thr Val Ile Ile Leu Leu Gly Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Ser Ala Trp Met Leu Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Phe Leu Val Glu Leu Val Ala Ala Ile Val Gly Phe Val Phe Arg His Glu Ile Lys Asn Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Lys Gln Tyr Asn Ser Thr Gly Asp Tyr Arg Ser His Ala Val Asp Lys Ile Gln Asn Thr Leu His Cys Cys Gly Val Thr Asp Tyr Arg Asp Trp Thr Asp Thr Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Ser Cys Cys Lys Leu Glu Asp Cys Thr Pro Gln Arg Asp Ala Asp Lys Val Asn Asn Glu 190 Gly Cys Phe Ile Lys Val Met Thr Ile Ile Glu Ser Glu Met Gly Val Val Ala Gly Ile Ser Phe Gly Val Ala Cys Phe Gln Leu Ile Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Ala Ile Thr Asn Asn Gln Tyr Glu Ile Val

<210> 5

<211> 1218

<212> DNA

<213> Homo sapiens

<400> 5

cccacgcgtc cggcgccgtg gcctcgcgtc catctttgcc gttctctcgg 50

7

```
acctgtcaca aaggagtcgc gccgccgccg ccgcccctc cctccggtgg 100
 gcccgggagg tagagaaagt cagtgccaca gcccgaccgc gctgctctga 150
 gccctgggca cgcggaacgg gagggagtct gagggttggg gacgtctgtg 200
 agggagggga acagccgctc gagcctgggg cgggcggacc ggactggggc 250
 cggggtaggc tctggaaagg gcccgggaga gaggtggcgt tggtcagaac 300
 ctgagaaaca gccgagaggt tttccaccga ggcccgcgct tgagggatct 350
 gaagaggttc ctagaagagg gtgttccctc tttcgggggt cctcaccaga 400
 agaggttctt gggggtcgcc cttctgagga ggctgcggct aacagggccc 450
 agaactgcca ttggatgtcc agaatcccct gtagttgata atgttgggaa 500
 taagctctgc aactttcttt ggcattcagt tgttaaaaac aaataggatg 550
 caaattcctc aactccaggt tatgaaaaca gtacttggaa aactgaaaac 600
 tacctaaatg atcgtctttg gttgggccgt gttcttagcg agcagaagcc 650
 ttggccaggg tctgttgttg actctcgaag agcacatagc ccacttccta 700
 gggactggag gtgccgctac taccatgggt aattcctgta tctgccgaga 750
 tgacagtgga acagatgaca gtgttgacac ccaacagcaa caggccgaga 800
 acagtgcagt acccactgct gacacaagga gccaaccacg ggaccctgtt 850
 cggccaccaa ggaggggccg aggacctcat gagccaagga gaaagaaaca 900
 aaatgtggat gggctagtgt tggacacact ggcagtaata cggactcttg 950
 tagataagta agtatetgae teaeggteae eteeagtgga atgaaaagtg 1000
 ttctgcccgg aaccatgact ttaggactcc ttcagttcct ttaggacata 1050
 ctcgccaagc cttgtgctca cagggcaaag gagaatatt taatgctccg 1100
 ctgatggcag agtaaatgat aagatttgat gtttttgctt gctgtcatct 1150
 actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaag 1200
 ctatgatctt tattagag 1218
<210> 6
<211> 117
<212> PRT
<213> Homo sapiens
```

<220>

<221> sig_peptide

<222> 1-16

<223> Signal Peptide

```
<220>
<221> misc feature
\langle 222 \rangle 18-2\overline{4}, 32-38, 34-40, 35-41, 51-57
<223> N-Myristoylation Site.
<220>
<221> misc feature
<222> 22-26, 50-54, 113-117
<223> Casein Kinase II Phosphorylation Site.
<400> 6
 Met Ile Val Phe Gly Trp Ala Val Phe Leu Ala Ser Arg Ser Leu
 Gly Gln Gly Leu Leu Thr Leu Glu Glu His Ile Ala His Phe
                  20
                                       25
 Leu Gly Thr Gly Gly Ala Ala Thr Thr Met Gly Asn Ser Cys Ile
 Cys Arg Asp Asp Ser Gly Thr Asp Asp Ser Val Asp Thr Gln Gln
                50
                                       55
 Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp Thr Arg Ser
 Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg Gly Pro
 His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val Leu
Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Lys
                 110
<210> 7
<211> 756
<212> DNA
<213> Homo sapiens
<400> 7
ggcacgaggc gctgtccacc cgggggcgtg ggagtgaggt accagattca 50
gcccatttgg ccccgacgcc tctgttctcg gaatccgggt gctgcggatt 100
gaggtcccgg ttcctaacgg actgcaagat ggaggaaggc gggaacctag 150
gaggcctgat taagatggtc catctactgg tcttgtcagg tgcctggggc 200
atgcaaatgt gggtgacett cgtctcaggc ttcctgcttt tccgaagcct 250
teccegacat acetteggae tagtgeagag caaactette ceettetact 300
tccacatctc catgggctgt gccttcatca acctctgcat cttggcttca 350
```

cagcatgett gggeteaget caeattetgg gaggeeagee agetttacet 400

gctgttcctg agccttacgc tggccactgt caacgcccgc tggctggaac 450

```
cccgcaccac agctgccatg tgggccctgc aaaccgtgga gaaggagcga 500
 ggcctgggtg gggaggtacc aggcagccac cagggtcccg atccctaccg 550
 ccagctgcga gagaaggacc ccaagtacag tgctctccgc cagaatttct 600
 tccgctacca tgggctgtcc tctctttgca atctgggctg cgtcctgagc 650
 aatgggctct gtctcgctgg ccttgccctg gaaataagga gcctctagca 700
 aaaaaa 756
<210> 8
<211> 189
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-24
<223> Signal Peptide
<220>
<221> misc_feature
<222> 4-10, 5-11, 47-53, 170-176, 176-182
<223> N-Myristoylation Site.
<220>
<221> misc feature
<222> 44-85
<223> G-protein Coupled Receptors Proteins.
<220>
<221> misc_feature
<222> 54-65
<223> Prokaryotic Mmembrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc feature
<223> Casein Kinase II Phosphorylation Site.
<220>
<221> TRANSMEM
<222> 86-103, 60-75
<223> Transmembrane Domain
<220>
<221> misc_feature
<222> 144-151
<223> Tyrosine Kinase Phosphorylation Site.
<400> 8
Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His
```

```
Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr
                 20
Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His Thr
Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile
                 50
Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile Leu Ala Ser Gln
His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser Gln Leu Tyr
                                      85
Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp
                                     100
Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr Val
                110
                                     115
                                                         120
Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gln
Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr
Ser Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser
                155
Leu Cys Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala
                                    175
Gly Leu Ala Leu Glu Ile Arg Ser Leu
```

<210> 9

<211> 1508

<212> DNA

<213> Homo sapiens

<400> 9

aattcagatt ttaagcccat tctgcagtgg aatttcatga actagcaaga 50 ggacaccatc ttcttgtatt atacaagaaa ggagtgtacc tatcacacac 100 agggggaaaa atgctctttt gggtgctagg cctcctaatc ctctgtggtt 150 ttctgtggac tcgtaaagga aaactaaaga ttgaagacat cactgataag 200 tacattttta tcactggatg tgactcgggc tttggaaact tggcagccag 250 aacttttgat aaaaagggat ttcatgtaat cgctgcctgt ctgactgaat 300 caggatcaac agctttaaag gcagaaacct cagagagact tcgtactgtg 350 cttctggatg tgaccgaccc agagaatgtc aagaggactg cccagtgggt 400

gaagaaccaa gttggggaga aaggtctctg gggtctgatc aataatgctg 450 gtgttcccgg cgtgctggct cccactgact ggctgacact agaggactac 500 agagaaccta ttgaagtgaa cctgtttgga ctcatcagtg tgacactaaa 550 tatgcttcct ttggtcaaga aagctcaagg gagagttatt aatgtctcca 600 gtgttggagg tcgccttgca atcgttggag ggggctatac tccatccaaa 650 tatgcagtgg aaggtttcaa tgacagctta agacgggaca tgaaagcttt 700 tggtgtgcac gtctcatgca ttgaaccagg attgttcaaa acaaacttgg 750 cagatccagt aaaggtaatt gaaaaaaaac tcgccatttg ggagcagctg 800 tctccagaca tcaaacaaca atatggagaa ggttacattg aaaaaagtct 850 agacaaactg aaaggcaata aatcctatgt gaacatggac ctctctccgg 900 tggtagagtg catggaccac gctctaacaa gtctcttccc taaqactcat 950 tatgccgctg gaaaagatgc caaaattttc tggatacctc tgtctcacat 1000 gccagcagct ttgcaagact ttttattgtt gaaacagaaa gcagagctgg 1050 ctaatcccaa ggcagtgtga ctcagctaac cacaaatgtc tcctccaggc 1100 tatgaaattg gccgatttca agaacacatc tccttttcaa ccccattcct 1150 tatctgctcc aacctggact catttagatc gtgcttattt ggattgcaaa 1200 agggagtccc accatcgctg gtggtatccc agggtccctg ctcaagtttt 1250 ctttgaaaag gagggctgga atggtacatc acataggcaa gtcctgccct 1300 gtatttaggc tttgcctgct tggtgtgatg taagggaaat tgaaagactt 1350 gcccattcaa aatgatettt accgtggeet gccccatget tatggteece 1400 agcatttaca gtaacttgtg aatgttaagt atcatctctt atctaaatat 1450 aaaaaaaa 1508 <210> 10 <211> 319 <212> PRT <213> Homo sapiens <220> <221> sig_peptide <222> 1-17 <223> Signal Peptide

17

<221> misc_feature

```
<222> 36-47, 108-113, 166-171, 198-203, 207-212
<223> N-myristoylation Sites.
<220>
<221> misc feature
<222> 39-42
<223> Glycosaminoglycan Attachment Site.
<221> TRANSMEM
<222> 136-152
<223> Transmembrane Domain
<220>
<221> misc feature
<222> 161-\overline{1}63, 187-190 and 253-256
<223> N-glycosylation Sites.
<400> 10
Met Leu Phe Trp Val Leu Gly Leu Leu Ile Leu Cys Gly Phe Leu
Trp Thr Arg Lys Gly Lys Leu Lys Ile Glu Asp Ile Thr Asp Lys
Tyr Ile Phe Ile Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Ala
Ala Arg Thr Phe Asp Lys Lys Gly Phe His Val Ile Ala Ala Cys
Leu Thr Glu Ser Gly Ser Thr Ala Leu Lys Ala Glu Thr Ser Glu
Arg Leu Arg Thr Val Leu Leu Asp Val Thr Asp Pro Glu Asn Val
Lys Arg Thr Ala Gln Trp Val Lys Asn Gln Val Gly Glu Lys Gly
Leu Trp Gly Leu Ile Asn Asn Ala Gly Val Pro Gly Val Leu Ala
                110
                                     115
Pro Thr Asp Trp Leu Thr Leu Glu Asp Tyr Arg Glu Pro Ile Glu
                                     130
Val Asn Leu Phe Gly Leu Ile Ser Val Thr Leu Asn Met Leu Pro
                                     145
Leu Val Lys Lys Ala Gln Gly Arg Val Ile Asn Val Ser Ser Val
Gly Gly Arg Leu Ala Ile Val Gly Gly Gly Tyr Thr Pro Ser Lys
                170
Tyr Ala Val Glu Gly Phe Asn Asp Ser Leu Arg Arg Asp Met Lys
```

Ala Phe Gly Val His Val Ser Cys Ile Glu Pro Gly Leu Phe Lys 200 Thr Asn Leu Ala Asp Pro Val Lys Val Ile Glu Lys Lys Leu Ala Ile Trp Glu Gln Leu Ser Pro Asp Ile Lys Gln Gln Tyr Gly Glu 230 Gly Tyr Ile Glu Lys Ser Leu Asp Lys Leu Lys Gly Asn Lys Ser Tyr Val Asn Met Asp Leu Ser Pro Val Val Glu Cys Met Asp His 260 270 Ala Leu Thr Ser Leu Phe Pro Lys Thr His Tyr Ala Ala Gly Lys 280 Asp Ala Lys Ile Phe Trp Ile Pro Leu Ser His Met Pro Ala Ala 295 Leu Gln Asp Phe Leu Leu Lys Gln Lys Ala Glu Leu Ala Asn 310 Pro Lys Ala Val

<210> 11 <211> 2720 <212> DNA <213> Homo sapines

<400> 11

gcgggctgtt gacggcgctg cgatggctgc ctgcgagggc aggagaagcg 50 gagctctcgg ttcctctcag tcggacttcc tgacgccgcc agtgggcggg 100 gccccttggg ccgtcgccac cactgtagtc atgtacccac cgccgccqcc 150 gccgcctcat cgggacttca tctcggtgac gctgagcttt ggcgagagct 200 atgacaacag caagagttgg cggcggcgct cgtgctggag gaaatggaag 250 caactgtcga gattgcagcg gaatatgatt ctcttcctcc ttgcctttct 300 gcttttctgt ggactcctct tctacatcaa cttggctgac cattggaaag 350 ctctggcttt caggctagag gaagagcaga agatgaggcc agaaattgct 400 gggttaaaac cagcaaatcc acccgtctta ccagctcctc agaaggcgga 450 caccgaccct gagaacttac ctgagatttc gtcacagaag acacaaagac 500 acatccagcg gggaccacct cacctgcaga ttagaccccc aagccaagac 550 ctgaaggatg ggacccagga ggaggccaca aaaaggcaag aagcccctgt 600 ggatccccgc ccggaaggag atccgcagag gacagtcatc agctggaggg 650

gagcggtgat cgagcctgag cagggcaccg agctcccttc aagaagagca 700 gaagtgccca ccaagcctcc cctgccaccg gccaggacac agggcacacc 750 agtgcatctg aactatcgcc agaagggcgt gattgacgtc ttcctgcatg 800 catggaaagg ataccgcaag tttgcatggg gccatgacga gctgaagcct 850 gtgtccaggt ccttcagtga gtggtttggc ctcggtctca cactgatcga 900 cgcgctggac accatgtgga tcttgggtct gaggaaagaa tttgaggaag 950 ccaggaagtg ggtgtcgaag aagttacact ttgaaaagga cgtggacgtc 1000 aacctgtttg agagcacgat ccgcatcctg ggggggctcc tgagtgccta 1050 ccacctgtct ggggacagcc tcttcctgag gaaagctgag gattttggaa 1100 atcggctaat gcctgccttc agaacaccat ccaagattcc ttactcggat 1150 gtgaacatcg gtactggagt tgcccacccg ccacggtgga cctccgacag 1200 cactgtggcc gaggtgacca gcattcagct ggagttccgg gagctctccc 1250 gtctcacagg ggataagaag tttcaggagg cagtggagaa ggtgacacag 1300 cacatccacg gcctgtctgg gaagaaggat gggctggtgc ccatgttcat 1350 caatacccac agtggcctct tcacccacct gggcgtattc acgctgggcg 1400 ccagggccga cagctactat gagtacctgc tgaagcagtg gatccagggc 1450 gggaagcagg agacacagct gctggaagac tacgtggaag ccatcgaggg 1500 tgtcagaacg cacctgctgc ggcactccga gcccagtaag ctcacctttg 1550 tgggggagct tgcccacggc cgcttcagtg ccaagatgga ccacctggtg 1600 tgcttcctgc cagggacgct ggctctgggc gtctaccacg gcctgcccgc 1650 cagccacatg gagctggccc aggagctcat ggagacttgt taccagatga 1700 accggcagat ggagacgggg ctgagtcccg agatcgtgca cttcaacctt 1750 tacccccage egggeegteg ggaegtggag gteaageeag cagaeaggea 1800 caacctgctg cggccagaga ccgtggagag cctgttctac ctgtaccgcg 1850 tcacagggga ccgcaaatac caggactggg gctgggagat tctgcagagc 1900 ttcagccgat tcacacgggt cccctcgggt ggctattctt ccatcaacaa 1950 tgtccaggat cctcagaagc ccgagcctag ggacaagatg gagagcttct 2000 tcctggggga gacgctcaag tatctgttct tgctcttctc cgatgaccca 2050 aacctgctca gcctggacgc ctacgtgttc aacaccgaag cccaccctct 2100


```
gcctatctgg acccctgcct agggtggatg gctgctggtg tggggacttc 2150
 gggtgggcag aggcaccttg ctgggtctgt ggcattttcc aagggcccac 2200
 gtagcaccgg caaccgccaa gtggcccagg ctctgaactg gctctgggct 2250
 cctcctcgtc tctgctttaa tcaggacacc gtgaggacaa gtgaggccgt 2300
 cagtettggt gtgatgcggg gtgggctggg ccgctggagc ctccgcctgc 2350
 ttcctccaga agacacgaat catgactcac gattgctgaa gcctgagcag 2400
 gtctctgtgg gccgaccaga ggggggcttc gaggtggtcc ctggtactgg 2450
 ggtgaccgag tggacagccc agggtgcagc tctgcccggg ctcgtgaagc 2500
 ctcagatgtc cccaatccaa gggtctggag gggctgccgt gactccagag 2550
gcctgaggct ccagggctgg ctctggtgtt tacaagctgg actcagggat 2600
 cctcctggcc gccccgcagg gggcttggag ggctggacgg caagtccgtc 2650
 tagctcacgg gcccctccag tggaatgggt cttttcggtg gagataaaag 2700
ttgatttgct ctaaccgcaa 2720
<210> 12
<212> PRT
<213> Homo sapiens
```

- <211> 699

- <220>
- <221> TRANSMEM
- <222> 21-40 and 84-105
- <223> Transmembrane Domain (type II)
- <400> 12
- Met Ala Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser
- Gln Ser Asp Phe Leu Thr Pro Pro Val Gly Gly Ala Pro Trp Ala
- Val Ala Thr Thr Val Val Met Tyr Pro Pro Pro Pro Pro Pro
- His Arg Asp Phe Ile Ser Val Thr Leu Ser Phe Gly Glu Ser Tyr
- Asp Asn Ser Lys Ser Trp Arg Arg Arg Ser Cys Trp Arg Lys Trp
- Lys Gln Leu Ser Arg Leu Gln Arg Asn Met Ile Leu Phe Leu Leu
- Ala Phe Leu Leu Phe Cys Gly Leu Leu Phe Tyr Ile Asn Leu Ala

BI

Asp His Trp Lys Ala Leu Ala Phe Arg Leu Glu Glu Glu Gln Lys Met Arg Pro Glu Ile Ala Gly Leu Lys Pro Ala Asn Pro Pro Val Leu Pro Ala Pro Gln Lys Ala Asp Thr Asp Pro Glu Asn Leu Pro Glu Ile Ser Ser Gln Lys Thr Gln Arg His Ile Gln Arg Gly Pro Pro His Leu Gln Ile Arg Pro Pro Ser Gln Asp Leu Lys Asp Gly 170 175 Thr Gln Glu Glu Ala Thr Lys Arg Gln Glu Ala Pro Val Asp Pro 190 Arg Pro Glu Gly Asp Pro Gln Arg Thr Val Ile Ser Trp Arg Gly 200 205 210 Ala Val Ile Glu Pro Glu Gln Gly Thr Glu Leu Pro Ser Arg Arg Ala Glu Val Pro Thr Lys Pro Pro Leu Pro Pro Ala Arg Thr Gln 240 Gly Thr Pro Val His Leu Asn Tyr Arg Gln Lys Gly Val Ile Asp Val Phe Leu His Ala Trp Lys Gly Tyr Arg Lys Phe Ala Trp Gly His Asp Glu Leu Lys Pro Val Ser Arg Ser Phe Ser Glu Trp Phe Gly Leu Gly Leu Thr Leu Ile Asp Ala Leu Asp Thr Met Trp Ile Leu Gly Leu Arg Lys Glu Phe Glu Glu Ala Arg Lys Trp Val Ser 310 Lys Lys Leu His Phe Glu Lys Asp Val Asp Val Asn Leu Phe Glu Ser Thr Ile Arg Ile Leu Gly Gly Leu Leu Ser Ala Tyr His Leu Ser Gly Asp Ser Leu Phe Leu Arg Lys Ala Glu Asp Phe Gly Asn 350 360 355 Arg Leu Met Pro Ala Phe Arg Thr Pro Ser Lys Ile Pro Tyr Ser Asp Val Asn Ile Gly Thr Gly Val Ala His Pro Pro Arg Trp Thr 380 Ser Asp Ser Thr Val Ala Glu Val Thr Ser Ile Gln Leu Glu Phe

400

405

Val Glu Ser Leu Phe Tyr Leu Tyr Arg Val Thr Gly Asp Arg Lys Tyr Gln Asp Trp Gly Trp Glu Ile Leu Gln Ser Phe Ser Arg Phe 620

635

650

680

395

670

685

690

Thr Arg Val Pro Ser Gly Gly Tyr Ser Ser Ile Asn Asn Val Gln

Asp Pro Gln Lys Pro Glu Pro Arg Asp Lys Met Glu Ser Phe Phe

Leu Gly Glu Thr Leu Lys Tyr Leu Phe Leu Leu Phe Ser Asp Asp

Pro Asn Leu Leu Ser Leu Asp Ala Tyr Val Phe Asn Thr Glu Ala

```
His Pro Leu Pro Ile Trp Thr Pro Ala
                 695
<210> 13
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 13
 cgccagaagg gcgtgattga cgtc 24
<210> 14
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 14
 ccatccttct tcccagacag gccg 24
<210> 15
<211> 44
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-44
<223> Synthetic construct.
gaagcctgtg tccaggtcct tcagtgagtg gtttggcctc ggtc 44
<210> 16
<211> 1524
<212> DNA
<213> Homo sapiens
<400> 16
ggcgccgcgt aggcccggga ggccgggccg gccgggctgc gagcgcctgc 50
cccatgcgcc gccgcctctc cgcacgatgt tcccctcgcg gaggaaagcg 100
gcgcagctgc cctgggagga cggcaggtcc gggttgctct ccggcggcct 150
ccctcggaag tgttccgtct tccacctgtt cgtggcctgc ctctcgctgg 200
gcttcttctc cctactctgg ctgcagctca gctgctctgg ggacgtggcc 250
```

cccccagag ccgcccctg agcactggga agaaqacqca tcctggggcc 350 cccaccgcct ggcagtgctg gtgcccttcc gcgaacgctt cgaggagctc 400 ctggtcttcg tgccccacat gcgccgcttc ctgagcagga agaagatccg 450 gcaccacatc tacgtgctca accaggtgga ccacttcagg ttcaaccggg 500 cagcgctcat caacgtgggc ttcctggaga gcagcaacag cacggactac 550 attgccatgc acgacgttga cctgctccct ctcaacgagg agctggacta 600 tggctttcct gaggctgggc ccttccacgt ggcctccccg gagctccacc 650 ctctctacca ctacaagacc tatgtcggcg gcatcctgct gctctccaag 700 cagcactacc ggctgtgcaa tgggatgtcc aaccqcttct gggqctgggg 750 ccgcgaggac gacgagttct accggcgcat taagggagct gggctccagc 800 ttttccgccc ctcgggaatc acaactgggt acaagacatt tcgccacctg 850 catgacccag cctggcggaa gagggaccag aagcgcatcg cagctcaaaa 900 acaggagcag ttcaaggtgg acagggaggg aggcctgaac actgtgaagt 950 accatgtggc ttcccgcact gccctgtctg tgggcggggc cccctgcact 1000 gtcctcaaca tcatgttgga ctgtgacaag accqccacac cctqqtqcac 1050 attcagctga gctggatgga cagtgaggaa gcctgtacct acaggccata 1100 ttgctcaggc tcaggacaag gcctcaggtc gtgggcccag ctctgacagg 1150 atgtggagtg gccaggacca agacagcaag ctacgcaatt gcagccaccc 1200 ggccgccaag gcaggcttgg gctgggccag gacacgtggg gtgcctggga 1250 cgctgcttgc catgcacagt gatcagagag aggctggggt gtgtcctgtc 1300 cgggaccccc cctgccttcc tgctcaccct actctgacct ccttcacgtg 1350 cccaggcctg tgggtagtgg ggagggctga acaggacaac ctctcatcac 1400 cctactctga cctccttcac gtgcccaggc ctgtgggtag tggggagggc 1450

cgggcagtca ggggacaagg gcaggagacc tcgggccctc cccgtgcctg 300

aaaaaaaaa aaaaaaaaa aaaa 1524

<220>

<210> 17

<211> 327

<212> PRT

<213> Homo sapiens

```
<221> sig_peptide
<222> 1-42
<223> Signal peptide.
<220>
<221> misc_feature
<222> 19-25,65-71,247-253,285-291,303-310
<223> N-myristoylation site.
<220>
<221> misc_feature
<222> 27-31
<223> cAMP- and cGMP-dependent protein kinase phosphorylation site.
<220>
<221> TRANSMEM
<222> 29-49
<223> Transmembrane domain (type II).
<220>
<221> misc feature
<222> 154-158
<223> N-glycosylation site.
<220>
<221> misc feature
<222> 226-233
<223> Tyrosine kinase phosphorylation site.
<400> 17
Met Phe Pro Ser Arg Arg Lys Ala Ala Gln Leu Pro Trp Glu Asp
Gly Arg Ser Gly Leu Leu Ser Gly Gly Leu Pro Arg Lys Cys Ser
Val Phe His Leu Phe Val Ala Cys Leu Ser Leu Gly Phe Phe Ser
Leu Leu Trp Leu Gln Leu Ser Cys Ser Gly Asp Val Ala Arq Ala
Val Arg Gly Gln Gly Gln Glu Thr Ser Gly Pro Pro Arg Ala Cys
Pro Pro Glu Pro Pro Pro Glu His Trp Glu Glu Asp Ala Ser Trp
Gly Pro His Arg Leu Ala Val Leu Val Pro Phe Arg Glu Arg Phe
                  95
                                     100
                                                          105
Glu Glu Leu Leu Val Phe Val Pro His Met Arg Arg Phe Leu Ser
                                     115
Arg Lys Lys Ile Arg His His Ile Tyr Val Leu Asn Gln Val Asp
                 125
                                     130
                                                          135
```

His Phe Arg Phe Asn Arg Ala Ala Leu Ile Asn Val Gly Phe Leu

Leu Leu Pro Leu Asn Glu Glu Leu Asp Tyr Gly Phe Pro Glu Ala Gly Pro Phe His Val Ala Ser Pro Glu Leu His Pro Leu Tyr His 185 190 Tyr Lys Thr Tyr Val Gly Gly Ile Leu Leu Leu Ser Lys Gln His Tyr Arg Leu Cys Asn Gly Met Ser Asn Arg Phe Trp Gly Trp Gly 215 220 Arg Glu Asp Asp Glu Phe Tyr Arg Arg Ile Lys Gly Ala Gly Leu 230 235 Gln Leu Phe Arg Pro Ser Gly Ile Thr Thr Gly Tyr Lys Thr Phe 245 250 Arg His Leu His Asp Pro Ala Trp Arg Lys Arg Asp Gln Lys Arg Ile Ala Ala Gln Lys Gln Glu Gln Phe Lys Val Asp Arg Glu Gly Gly Leu Asn Thr Val Lys Tyr His Val Ala Ser Arg Thr Ala Leu Ser Val Gly Gly Ala Pro Cys Thr Val Leu Asn Ile Met Leu Asp Cys Asp Lys Thr Ala Thr Pro Trp Cys Thr Phe Ser <210> 18 <211> 23 <212> DNA <213> Artificial <220> <221> Artificial Sequence

140

145

Glu Ser Ser Asn Ser Thr Asp Tyr Ile Ala Met His Asp Val Asp

150

gcgaacgctt cgaggagtcc tgg 23
<210> 19
<211> 24
<212> DNA
<213> Artificial

<223> Synthetic construct.

<220> <221> Artificial Sequence

<222> 1-23

<400> 18

```
<222> 1-24
<223> Synthetic construct
<400> 19
 gcagtgcggg aagccacatg gtac 24
<210> 20
<211> 46
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.
<400> 20
 cttcctgagc aggaagaaga tccggcacca catctacgtg ctcaac 46
<210> 21
<211> 494
<212> DNA
<213> Homo sapiens
<400> 21
 caatgtttgc ctatccacct cccccaagcc cctttaccta tgctgctgct 50
 aacgctgctg ctgctgctgc tgctgcttaa aggctcatgc ttggagtggg 100
 gactggtcgg tgcccagaaa gtctcttctg ccactgacgc ccccatcagg 150
 gattgggcct tctttccccc ttcctttctg tgtctcctgc ctcatcggcc 200
 tgccatgacc tgcagccaag cccagccccg tggggaaggg gagaaagtgg 250
 gggatggcta agaaagctgg gagataggga acagaagagg gtagtgggtg 300
 ggctaggggg gctgccttat ttaaagtggt tgtttatgat tcttatacta 350
 atttatacaa agatattaag gccctgttca ttaagaaatt gttcccttcc 400
cctgtgttca atgtttgtaa agattgttct gtgtaaatat gtctttataa 450
<210> 22
<211> 73
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-15
<223> Signal peptide.
<220>
<221> misc feature
<222> 3-18
```

<223> Growth factor and cytokines receptors family.

<400> 22

Ser Cys Leu Glu Trp Gly Leu Val Gly Ala Gln Lys Val Ser Ser 20 25 30

Ala Thr Asp Ala Pro Ile Arg Asp Trp Ala Phe Pro Pro Ser 35 40 45

Phe Leu Cys Leu Pro His Arg Pro Ala Met Thr Cys Ser Gln 50 55

Ala Gln Pro Arg Gly Glu Gly Glu Lys Val Gly Asp Gly
65 70

<210> 23

<211> 2883

<212> DNA

<213> Homo sapiens

<400> 23

gggacccatg cggccgtgac ccccggctcc ctagaggccc agcgcagccg 50 cagcggacaa aggagcatgt ccgcgccggg gaaggcccgt cctccggccg 100 ccataaggct ccggtcgccg ctgggcccqc qccqcqctcc tqcccqcccq 150 ggctccgggg cggcccgcta ggccagtgcg ccgccgctcg ccccgcaggc 200 cccggcccgc agcatggagc cacccggacg ccggcggggc cgcgcgcagc 250 egeegetgtt getgeegete tegetgttag egetgetege getgetggga 300 ggcggcggcg gcggcggcgc cgcggcgctg cccgccggct gcaagcacga 350 tgggcggccc cgaggggctg gcagggcggc gggcgccqcc gagggcaagg 400 tggtgtgcag cagcctggaa ctcgcgcagg tcctgccccc agatactctg 450 cccaaccgca cggtcaccct gattctgagt aacaataaga tatccgagct 500 gaagaatggc tcattttctg ggttaagtct ccttgaaaga ttggacctcc 550 gaaacaatct tattagtagt atagatccag gtgccttctg gggactgtca 600 tctctaaaaa gattggatct gacaaacaat cgaataggat gtctgaatgc 650 agacatattt cgaggactca ccaatctggt tcggctaaac ctttcgggga 700 atttgttttc ttcattatct caaggaactt ttgattatct tgcgtcatta 750 cggtctttgg aattccagac tgagtatctt ttgtgtgact gtaacatact 800 gtggatgcat cgctgggtaa aggagaagaa catcacggta cgggatacca 850

ggtgtgttta tcctaagtca ctgcaggccc aaccagtcac aggcgtgaag 900 caggagetgt tgacatgega eceteegett gaattgeegt etttetacat 950 gactccatct catcgccaag ttgtgtttga aggagacagc cttcctttcc 1000 agtgcatggc ttcatatatt gatcaggaca tgcaagtgtt gtggtatcag 1050 gatgggagaa tagttgaaac cgatgaatcg caaggtattt ttgttgaaaa 1100 gaacatgatt cacaactgct ccttgattgc aagtgcccta accatttcta 1150 atattcaggc tggatctact ggaaattggg gctgtcatgt ccagaccaaa 1200 cgtgggaata atacgaggac tgtggatatt gtggtattag agagttctgc 1250 acagtactgt cctccagaga gggtggtaaa caacaaaggt gacttcagat 1300 ggcccagaac attggcaggc attactgcat atctgcagtg tacgcggaac 1350 acccatggca gtgggatata tcccggaaac ccacaggatg agagaaaagc 1400 ttggcgcaga tgtgatagag gtggcttttg ggcagatgat gattattctc 1450 gctgtcagta tgcaaatgat gtcactagag ttctttatat gtttaatcag 1500 atgecectea atettaceaa tgeegtggea acagetegae agttactgge 1550 ttacactgtg gaagcagcca acttttctga caaaatggat gttatatttg 1600 tggcagaaat gattgaaaaa tttggaagat ttaccaagga ggaaaaatca 1650 aaagagctag gtgacgtgat ggttgacatt gcaagtaaca tcatgttggc 1700 tgatgaacgt gtcctgtggc tggcgcagag ggaagctaaa gcctgcagta 1750 ggattgtgca gtgtcttcag cgcattgcta cctaccggct agccggtgga 1800 gctcacgttt attcaacata ttcacccaat attgctctgg aagcttatgt 1850 catcaagtct actggcttca cggggatgac ctgtaccqtg ttccagaaag 1900 tggcagcctc tgatcgtaca ggactttcgg attatgggag gcgggatcca 1950 gagggaaacc tggataagca gctgagcttt aagtgcaatg tttcaaatac 2000 attttcgagt ctggcactaa aggtatgtta cattctgcaa tcatttaaga 2050 ctatttacag ttaaattaga atgctccaaa tgttctgctt cgcaaaataa 2100 ccttattaaa agatttttt ttgcaggaag ataggtatta ttgcttttgc 2150 tactgtttta aagaaaacta accaggaaga actgcattac gactttcaag 2200 ggccctaggc atttttgcct ttgattccct ttcttcacat aaaaatatca 2250 gaaattacat tttataactg cagtggtata aatgcaaata tactattgtt 2300

acatgtgaaa aaattttatt tgacttaaaa gtttatttat ttgttttttt 2350 gctcctgatt ttaagacaat aagatgtttt catgggccc taaaagtatc 2400 atgageettt ggeactgege etgeeaagee tagtggagaa gteaaccetg 2450 agaccaggtg tttaatcaag caagctgtat atcaaaattt ttggcagaaa 2500 acacaaatat gtcatatatc tttttttaaa aaaagtattt cattgaagca 2550 agcaaaatga aagcattttt actgattttt aaaattggtg ctttagatat 2600 atttgactac actgtattga agcaaataga ggaggcacaa ctccagcacc 2650 ctaatggaac cacattttt tcacttagct ttctgtgggc atgtgtaatt 2700 gtattctctg cggtttttaa tctcacagta ctttatttct gtcttgtccc 2750 tcaataatat cacaaacaat attccagtca ttttaatggc tgcataataa 2800 ctgatccaac aggtgttagg tgttctggtt tagtgtgagc actcaataaa 2850 tattgaatga atgaacgaaa aaaaaaaaaa aaa 2883 <210> 24 <211> 616 <212> PRT <213> Homo sapiens <220> <221> sig peptide <222> 1-33 <223> Signal peptide. <220> <221> TRANSMEM <222> 13-40 <223> Transmembrane domain (type II). <400> 24 Met Glu Pro Pro Gly Arg Arg Gly Arg Ala Gln Pro Pro Leu Leu Leu Pro Leu Ser Leu Leu Ala Leu Leu Ala Leu Leu Gly Gly

Asp Gly Arg Pro Arg Gly Ala Gly Arg Ala Ala Gly Ala Ala Glu
50 55 60

Gly Lys Val Val Cys Ser Ser Leu Glu Leu Ala Gln Val Leu Pro
65 70 75

Pro Asp Thr Leu Pro Asn Arg Thr Val Thr Leu Ile Leu Ser Asn

Gly Gly Gly Gly Ala Ala Ala Leu Pro Ala Gly Cys Lys His

Asn	Lys	Ile	Ser	Glu 95	Leu	Lys	Asn	Gly	Ser 100	Phe	Ser	Gly	Leu	Ser 105
Leu	Leu	Glu	Arg	Leu 110	Asp	Leu	Arg	Asn	Asn 115	Leu	Ile	Ser	Ser	Ile 120
Asp	Pro	Gly	Ala	Phe 125	Trp	Gly	Leu	Ser	Ser 130	Leu	Lys	Arg	Leu	Asp 135
Leu	Thr	Asn	Asn	Arg 140	Ile	Gly	Cys	Leu	Asn 145	Ala	Asp	Ile	Phe	Arg 150
Gly	Leu	Thr	Asn	Leu 155	Val	Arg	Leu	Asn	Leu 160	Ser	Gly	Asn	Leu	Phe 165
Ser	Ser	Leu	Ser	Gln 170	Gly	Thr	Phe	Asp	Tyr 175	Leu	Ala	Ser	Leu	Arg 180
Ser	Leu	Glu	Phe	Gln 185	Thr	Glu	Tyr	Leu	Leu 190	Cys	Asp	Cys	Asn	Ile 195
Leu	Trp	Met	His	Arg 200	Trp	Val	Lys	Glu	Lys 205	Asn	Ile	Thr	Val	Arg 210
Asp	Thr	Arg	Cys	Val 215	Tyr	Pro	Lys	Ser	Leu 220	Gln	Ala	Gln	Pro	Val 225
Thr	Gly	Val	Lys	Gln 230	Glu	Leu	Leu	Thr	Cys 235	Asp	Pro	Pro	Leu	Glu 240
Leu	Pro	Ser	Phe	Tyr 245	Met ,	Thr	Pro	Ser	His 250	Arg	Gln	Val	Val	Phe 255
Glu	Gly	Asp	Ser	Leu 260	Pro	Phe	Gln	Суѕ	Met 265	Ala	Ser	Tyr	Ile	Asp 270
Gln	Asp	Met	Gln	Val 275	Leu	Trp	Tyr	Gln	Asp 280	Gly	Arg	Ile	Val	Glu 285
Thr	Asp	Glu	Ser	Gln 290	Gly	Ile	Phe	Val	205	Lys ''	Asn	Met	Ile	His 300
Asn	Cys	Ser	Leu	Ile 305	Ala	Ser	Ala	Leu	Thr 310	Ile	Ser	Asn	lle	Gln 315
Ala	Gly	Ser	Thr	Gly 320	Asn	Trp	Gly	Суѕ	His 325	Val	Gln	Thr	Lys	Arg 330
Gly	Asn	Asn	Thr	Arg 335	Thr	Val	Asp	Ile	Val 340	Val	Leu	Glu	Ser	Ser 345
Ala	Gln	Tyr	Cys	Pro 350	Pro	Glu	Arg	Val	Val 355	Asn	Asn	Lys	Gly	Asp 360
Phe	Arg	Trp	Pro	Arg 365	Thr	Leu	Ala	Gly	Ile 370	Thr	Ala	Tyr	Leu	Gln 375
Cys	Thr	Arg	Asn	Thr	His	Gly	Ser	Gly	Ile	Tyr	Pro	Gly	Asn	Pro

				380					385					390
Gln	Asp	Glu	Arg	Lys 395	Ala	Trp	Arg	Arg	Cys 400	Asp	Arg	Gly	Gly	Phe 405
Trp	Ala	Asp	Asp	Asp 410	Tyr	Ser	Arg	Cys	Gln 415	Tyr	Ala	Asn	Asp	Val 420
Thr	Arg	Val	Leu	Tyr 425	Met	Phe	Asn	Gln	Met 430	Pro	Leu	Asn	Leu	Thr 435
Asn	Ala	Val	Ala	Thr 440	Ala	Arg	Gln	Leu	Leu 445	Ala	Tyr	Thr	Val	Glu 450
Ala	Ala	Asn	Phe	Ser 455	Asp	Lys	Met	Asp	Val 460	Ile	Phe	Val	Ala	Glu 465
Met	Ile	Glu	Lys	Phe 470	Gly	Arg	Phe	Thr	Lys 475	Glu	Glu	Lys	Ser	Lys 480
Glu	Leu	Gly	Asp	Val 485	Met	Val	Asp	Ile	Ala 490	Ser	Asn	Ile	Met	Leu 495
Ala	Asp	Glu	Arg	Val 500	Leu	Trp	Leu	Ala	Gln 505	Arg	Glu	Ala	Lys	Ala 510
Cys	Ser	Arg	Ile	Val 515	Gln	Суз	Leu	Gln	Arg 520	Ile	Ala	Thr	Tyr	Arg 525
Leu	Ala	Gly	Gly	Ala 530	His	Val	Tyr	Ser	Thr 535	Tyr	Ser	Pro	Asn	Ile 540
Ala	Leu	Glu	Ala	Tyr 545	Val	Ile	Lys	Ser	Thr 550	Gly	Phe	Thr	Gly	Met 555
Thr	Cys	Thr	Val	Phe 560	Gln	Lys	Val	Ala	Ala 565	Ser	Asp	Arg	Thr	Gly 570
Leu	Ser	Asp	Tyr	Gly 57.5	Arg	Arg	Asp	Pro	Glu 580	Gly	Asn	Leu	Asp	Lys 585
Gln	Leu	Ser	Phe	Lys 590	Cys	Asn	Val	Ser	Asn 595	Thr	Phe	Ser	Ser	Leu 600
Ala	Leu	Lys	Val	Cys 605	Tyr	Ile	Leu	Gln	Ser 610	Phe	Lys	Thr	Ile	Tyr 615
Ser														

<210> 25

<211> 24 <212> DNA

<213> Artificial

<220> < <221> Artificial Sequence <222> 1-24

```
<223> Synthetic construct
<400> 25
 gaggactcac caatctggtt cggc 24
<210> 26
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 26
 aactggaaag gaaggctgtc tccc 24
<210> 27
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 27
 gtaaaggaga agaacatcac ggtacgggat accaggtgtg tttatcctaa 50
<210> 28
<211> 683
<212> DNA
<213> Homo sapiens
<400> 28
 gcgtggggat gtctaggagc tcgaaggtgg tgctgggcct ctcggtgctg 50
ctgacggcgg ccacagtggc cggcgtacat gtgaagcagc agtgggacca 100
 gcagaggctt cgtgacggag ttatcagaga cattgagagg caaattcgga 150
 aaaaagaaaa cattcgtctt ttgggagaac agattatttt gactgagcaa 200
cttgaagcag aaagagagaa gatgttattg gcaaaaggat ctcaaaaatc 250
atgacttgaa tgtgaaatat ctgttggaca gacaacacga gtttgtgtgt 300
gtgtgttgat ggagagtagc ttagtagtat cttcatcttt ttttttggtc 350
actgtccttt taaacttgat caaataaagg acagtgggtc atataagtta 400
ctgctttcag ggtcccttat atctgaataa aggagtgtgg gcagacactt 450
tttggaagag tctgtctggg tgatcctggt agaagcccca ttagggtcac 500
```

tgtccagtgc ttagggttgt tactgagaag cactgccgag cttgtgagaa 550

ggaagggatg gatagtagca tccacctgag tagtctgatc agtcggcatg 600 atgacgaagc cacgagaaca tcgacctcag aaggactgga ggaaggtgaa 650 gtggagggag agacgeteet gategtegaa tee 683 <210> 29 <211> 81 <212> PRT <213> Homo sapiens <220> <221> sig_peptide <222> 1-21 <223> Signal peptide. <400> 29 Met Ser Arg Ser Ser Lys Val Val Leu Gly Leu Ser Val Leu Leu Thr Ala Ala Thr Val Ala Gly Val His Val Lys Gln Gln Trp Asp Gln Gln Arg Leu Arg Asp Gly Val Ile Arg Asp Ile Glu Arg Gln Ile Arg Lys Lys Glu Asn Ile Arg Leu Leu Gly Glu Gln Ile Ile Leu Thr Glu Gln Leu Glu Ala Glu Arg Glu Lys Met Leu Leu Ala Lys Gly Ser Gln Lys Ser <210> 30 <211> 2128 <212> DNA <213> Homo sapiens <400> 30 ctgtcgtctt tgcttcagcc gcagtcgcca ctggctgcct gaggtgctct 50

ctgtcgtctt tgcttcagcc gcagtcgcca ctggctgcct gaggtgctct 50
tacagcctgt tccaagtgtg gcttaatccg tctccaccac cagatctttc 100
tccgtggatt cctctgctaa gaccgctgcc atgccagtga cggtaacccg 150
caccaccatc acaaccacca cgacgtcatc ttcgggcctg gggtccccca 200
tgatcgtggg gtcccctcgg gccctgacac agcccctggg tctccttcgc 250
ctgctgcagc tggtgtctac ctgcgtggcc ttctcgctgg tggctagcgt 300
gggcgcctgg acggggtcca tgggcaactg gtccatgttc acctggtgct 350
tctgcttctc cgtgaccctg atcatcctca tcgtggagct gtgcgggctc 400
caggcccgct tccccctgtc ttggcgcaac ttccccatca ccttcgcctg 450

atgtccagtt cctgtcccac ggccgttcgc gggaccacgc catcgccgcc 550 accttcttct cctgcatcgc gtgtgtggct tacgccaccg aagtggcctg 600 gaccogggcc cggcccggcg agatcactgg ctatatggcc accgtacccg 650 ggctgctgaa ggtgctggag accttcgttg cctgcatcat cttcgcgttc 700 atcagegace ceaacetgta ecageaceag eeggeeetgg agtggtgegt 750 ggcggtgtac gccatctgct tcatcctagc ggccatcgcc atcctgctga 800 acctggggga gtgcaccaac gtgctaccca tccccttccc cagcttcctg 850 tcggggctgg ccttgctgtc tgtcctcctc tatgccaccg cccttgttct 900 ctggcccctc taccagttcg atgagaagta tggcggccag cctcggcgct 950 cgagagatgt aagctgcagc cgcagccatg cctactacgt gtgtgcctgg 1000 gaccgccgac tggctgtggc catcctgacg gccatcaacc tactggcgta 1050 tgtggctgac ctggtgcact ctgcccacct ggtttttgtc aaggtctaag 1100 acteteceaa gaggeteeeg tteeetetee aacetetttg ttettettge 1150 ecgagtttte tttatggagt acttetttee teegeettte etetgtttte 1200 ctcttcctgt ctcccctccc tcccaccttt ttctttcctt cccaattcct 1250 tgcactctaa ccagttettg gatgcatett etteetteee ttteetettg 1300 ctgtttcctt cctgtgttgt tttgttgccc acatcctgtt ttcacccctg 1350 gattctcact ctgtggccca ggctggagtg cagtggtgcg atctcagctc 1450 actgcaacce cegecteetg ggttcaageg atteteetee eccageetee 1500 caagtagctg ggaggacagg tgtgagctgc cgcacccagc ctgtttctct 1550 ttttccactc ttctttttc tcatctcttt tctgggttgc ctgtcggctt 1600 tettatetge etgttttgea ageaeettet eetgtgteet tgggageeet 1650 gagacttett teteteettg cetecaceca cetecaaagg tgetgagete 1700 acatccacac cccttgcage cgtccatgce acageccece aaggggeece 1750

attgccaaag catgcctgcc caccctcgct gtgccttagt cagtgtgtac 1800

ggccctcttt ctcccagtgg aggaaggtgt gcagtgtact tcccctttaa 1900

ctatgcggcc ctcttctgcc tctcggcctc catcatctac cccaccacct 500

attaaaaaac atatatata atatatttgg aggtcagtaa tttccaatgg 1950 gcgggaggca ttaagcaccg accetgggte cetaggeece gcetggeact 2000 cagcettgcc agagattggc tecagaattt ttgccagget tacagaacac 2050 ccactgccta gaggccatct taaaggaagc aggggctgga tgcctttcat 2100 cccaactatt ctctgtggta tgaaaaag 2128

- <210> 31 <211> 322
- <212> PRT
- <213> Homo sapiens
- <400> 31 Met Pro Val Thr Val Thr Arg Thr Thr Ile Thr Thr Thr Thr 10
- Ser Ser Ser Gly Leu Gly Ser Pro Met Ile Val Gly Ser Pro Arg
- Ala Leu Thr Gln Pro Leu Gly Leu Leu Arg Leu Leu Gln Leu Val 40
- Ser Thr Cys Val Ala Phe Ser Leu Val Ala Ser Val Gly Ala Trp
- Thr Gly Ser Met Gly Asn Trp Ser Met Phe Thr Trp Cys Phe Cys
- Phe Ser Val Thr Leu Ile Ile Leu Ile Val Glu Leu Cys Gly Leu
- Gln Ala Arg Phe Pro Leu Ser Trp Arg Asn Phe Pro Ile Thr Phe 100 105
- Ala Cys Tyr Ala Ala Leu Phe Cys Leu Ser Ala Ser Ile Ile Tyr 115
- Pro Thr Thr Tyr Val Gln Phe Leu Ser His Gly Arg Ser Arg Asp 130
- His Ala Ile Ala Ala Thr Phe Phe Ser Cys Ile Ala Cys Val Ala
- Tyr Ala Thr Glu Val Ala Trp Thr Arg Ala Arg Pro Gly Glu Ile 155
- Thr Gly Tyr Met Ala Thr Val Pro Gly Leu Leu Lys Val Leu Glu 170 175
- Thr Phe Val Ala Cys Ile Ile Phe Ala Phe Ile Ser Asp Pro Asn 185 190 195
- Leu Tyr Gln His Gln Pro Ala Leu Glu Trp Cys Val Ala Val Tyr 200 205

```
Ala Ile Cys Phe Ile Leu Ala Ala Ile Ala Ile Leu Leu Asn Leu
Gly Glu Cys Thr Asn Val Leu Pro Ile Pro Phe Pro Ser Phe Leu
                                    235
Ser Gly Leu Ala Leu Leu Ser Val Leu Leu Tyr Ala Thr Ala Leu
                245
Val Leu Trp Pro Leu Tyr Gln Phe Asp Glu Lys Tyr Gly Gln
Pro Arg Arg Ser Arg Asp Val Ser Cys Ser Arg Ser His Ala Tyr
Tyr Val Cys Ala Trp Asp Arg Arg Leu Ala Val Ala Ile Leu Thr
Ala Ile Asn Leu Leu Ala Tyr Val Ala Asp Leu Val His Ser Ala
                305
                                    310
His Leu Val Phe Val Lys Val
                320
```

<210> 32

<211> 3680

<212> DNA

<213> Homo sapiens

<400> 32

gaacgtgcca ccatgcccag ctaatttttg tatttttagt agagacgggg 50 tttcaccatg ttggccaggc tggtcttgaa ctcgtgacct catgatccgc 100 tcacctcggc ctcccaaagt gctgggatta caggcatgag ccactgacgc 150 ctggccagcc tatgcatttt taagaaatta ttctgtatta ggtgctgtgc 200 taaacattgg gcactacagt gaccaaaaca gactgaattc cccaagagcc 250 aaagaccagt gagggagacc aacaagaaac aggaaatgca aaagagacca 300 ttattactca ctatgactaa gggtcacaaa tggggtacgt tgatggagag 350 tgatttgtta agagactaca gagggaggac agactaccaa gaggggggcc 400 aggaaagctc ctctgacgag gtggtatttc agcccaaact ggaagaatga 450 gaaagagcta gccagccatc agaatagtcc agaagagatg gggagcacta 500 cactcactac actttggcct gagaaaatag catgggattg gaggaggctg 550 ggggaacacc acttctgccg acctgggcag gaggcattga gggcttgaga 600 aagggcaatg gcagtagcag tagaaaggac agggtaggag cagggacttt 650 gcaggtggaa tcattaggtc ttatcaacag atatgggcaa gcaaagccag 700

Bl

gggagaattg atggtaatgc tgaggtttgg agccaggcta gatgggacag 750 tggtgggtga tgcaaaggaa agaggtcagg aagcagggcc agacgtgggg 800 agaaggtgtg ggggtttggt ttccatcttg ccgagtctgc cggaatgtgg 850 atgggaagac caagaggagg agcaaggggc agaggggaag ggaatcttaa 900 agaagtcctg gatgccacac tcttcttcct tcctcctctt ccctctcctc 950 agaggtetea etegtggtte tteattteet geeetgeete eateteetet 1000 gggtgctggg aaagtggagg attagctgaa gttttgcttc tcggggcctg 1050 tetgaatete cattgettte tgggaggaea taatteacet gteetagett 1100 ettateatet taeattteee tgtageeact gggaeatatg tggtgtteet 1150 tectagetee tgteteetee teatgeettt getgggtatg ggeatgttag 1200 ggggaaggtc attgctgtca gaggggcact gactttctaa tggtgttacc 1250 caaggtgaat gttggagaca cagtcgcgat gctgcccaag tcccggcgag 1300 ecetaactat ecaggagate getgegetgg ceaggteete eetgeatggt 1350 atgcagcccc tcccatgttt ctggccactt tgtcctttct cctcccgttt 1400 gcacatccct ttggaactgt ttcctgtgag tacatgctgg ggtctcccct 1450 ttetteeett geteaggtga ateteageee etteteeeae eeaaaggtte 1500 acatggatee taactactge caccetteea cetecetgea eetgtgetee 1550 ctggcctggt cctttaccag gcttctccac cctccctat ctccaggtat 1600 ttcccaggtg gtgaaggacc acgtgaccaa gcctaccgcc atggcccagg 1650 gccgagtggc tcacctcatt gagtggaagg gctggagcaa gccgagtgac 1700 teacetgetg ecetggaate ageettttee teetatteag aceteagega 1750 gggcgaacaa gaggctcgct ttgcagcagg agtggctgag cagtttgcca 1800 tcgcggaagc caagctccga gcatggtctt cggtggatgg cgaggactcc 1850 actgatgact cctatgatga ggactttgct ggggggaatgg acacagacat 1900 ggctgggcag ctgcccctgg ggccgcacct ccaggacctg ttcaccggcc 1950 accggttctc ccggcctgtg cgccagggct ccgtggagcc tgagagcgac 2000 tgctcacaga ccgtgtcccc agacaccctg tgctctagtc tgtgcagcct 2050 ggaggatggg ttgttgggct ccccggcccg gctggcctcc cagctgctgg 2100 gcgatgagct gcttctcgcc aaactgcccc ccagccggga aagtgccttc 2150

B1

cgcagcctgg gcccactgga ggcccaggac tcactctaca actcgcccct 2200 cacagagtcc tgcctttccc ccgcggagga ggagccagcc ccctgcaagg 2250 actgccagcc actctgccca ccactaacgg gcagctggga acggcagcgg 2300 caageetetg acetggeete ttetggggtg gtgteettag atgaggatga 2350 ggcagagcca gaggaacagt gacccacatc atgcctggca gtggcatgca 2400 teeceegget getgeeaggg geagageete tgtgeeeaag tgtgggetea 2450 aggeteecag cagageteea cageetagag ggeteetggg agegeteget 2500 teteegttgt gtgttttgea tgaaagtgtt tggagaggag geaggggetg 2550 ggctgggggc gcatgtcctg ccccactcc cggggcttgc cgggggttgc 2600 ccggggcctc tggggcatgg ctacagctgt ggcagacagt gatgttcatg 2650 ttcttaaaat gccacacaca catttcctcc tcggataatg tgaaccacta 2700 agggggttgt gactgggctg tgtgagggtg gggtgggagg gggcccagca 2750 acceccace etecceatge etetetette tetgetttte tteteaette 2800 cgagtccatg tgcagtgctt gatagaatca ccccacctg gaggggctgg 2850 etectgeect eceggageet atgggttgag cegteectea agggeecetg 2900 cccagctggg ctcgtgctgt gcttcattca cctctccatc gtctctaaat 2950 cttcctcttt tttcctaaag acagaaggtt tttggtctgt tttttcagtc 3000 ggatcttctc ttctctggga ggctttggaa tgatgaaagc atgtaccctc 3050 caccetttte etggeeect aatggggeet gggeeettte ecaaceete 3100 ctaggatgtg cgggcagtgt gctggcgct cacagccagc cgggctgccc 3150 attcacgcag agctctctga gcgggaggtg gaagaaagga tggctctggt 3200 tgccacagag ctgggacttc atgttcttct agagagggcc acaagagggc 3250 cacaggggtg gccgggagtt gtcagctgat gcctgctgag aggcaggaat 3300 tgtgccagtg agtgacagtc atgagggagt gtctcttctt ggggaggaaa 3350 gaaggtagag cetttetgte tgaatgaaag gecaaggeta eagtacaggg 3400 ccccgcccca gccagggtgt taatgcccac gtagtggagg cctctggcag 3450 atcctgcatt ccaaggtcac tggactgtac gtttttatgg ttgtgggaag 3500 ggtgggtggc tttagaatta agggccttgt aggctttggc aggtaagagg 3550 gcccaaggta agaacgagag ccaacgggca caagcattct atataaagt 3600

ggctcattag gtgtttattt tgttctattt aagaatttgt tttattaaat 3650 taatataaaa atctttgtaa atctctaaaa 3680

<210> 33

<211> 335

<212> PRT

<213> Homo sapiens

<400> 33

Met Phe Leu Ala Thr Leu Ser Phe Leu Leu Pro Phe Ala His Pro
1 5 10 15

Phe Gly Thr Val Ser Cys Glu Tyr Met Leu Gly Ser Pro Leu Ser 20 25 30

Ser Leu Ala Gln Val Asn Leu Ser Pro Phe Ser His Pro Lys Val 35 40 \cdot 45

His Met Asp Pro Asn Tyr Cys His Pro Ser Thr Ser Leu His Leu
50 55 60

Cys Ser Leu Ala Trp Ser Phe Thr Arg Leu Leu His Pro Pro Leu
65 70 75

Ser Pro Gly Ile Ser Gln Val Val Lys Asp His Val Thr Lys Pro $80 \\ 85 \\ 90$

Thr Ala Met Ala Gln Gly Arg Val Ala His Leu Ile Glu Trp Lys 95 100 105

Gly Trp Ser Lys Pro Ser Asp Ser Pro Ala Ala Leu Glu Ser Ala 110 115 120

Phe Ser Ser Tyr Ser Asp Leu Ser Glu Gly Glu Gln Glu Ala Arg 125 130 135

Phe Ala Ala Gly Val Ala Glu Gln Phe Ala Ile Ala Glu Ala Lys 140 145 150

Leu Arg Ala Trp Ser Ser Val Asp Gly Glu Asp Ser Thr Asp Asp 155 160 165

Ser Tyr Asp Glu Asp Phe Ala Gly Gly Met Asp Thr Asp Met Ala 170 175 180

Gly Gln Leu Pro Leu Gly Pro His Leu Gln Asp Leu Phe Thr Gly 185 190 195

His Arg Phe Ser Arg Pro Val Arg Gln Gly Ser Val Glu Pro Glu 200 205 210

Ser Asp Cys Ser Gln Thr Val Ser Pro Asp Thr Leu Cys Ser Ser 215 220 225

Leu Cys Ser Leu Glu Asp Gly Leu Leu Gly Ser Pro Ala Arg Leu 230 235 240

```
Ala Ser Gln Leu Leu Gly Asp Glu Leu Leu Leu Ala Lys Leu Pro
                  245
                                      250
 Pro Ser Arg Glu Ser Ala Phe Arg Ser Leu Gly Pro Leu Glu Ala
 Gln Asp Ser Leu Tyr Asn Ser Pro Leu Thr Glu Ser Cys Leu Ser
                  275
                                      280
 Pro Ala Glu Glu Pro Ala Pro Cys Lys Asp Cys Gln Pro Leu
 Cys Pro Pro Leu Thr Gly Ser Trp Glu Arg Gln Arg Gln Ala Ser
                  305
 Asp Leu Ala Ser Ser Gly Val Val Ser Leu Asp Glu Asp Glu Ala
 Glu Pro Glu Glu Gln
                 335
<210> 34
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct
<400> 34
 tgtcctttgt cccaqacttc tgtcc 25
<210> 35
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 35
ctggatgcta atgtgtccag taaatgatcc ccttatcccg tcgcgatgct 50
<210> 36
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
```

<400> 36

```
ttccactcaa tgaggtgagc cactc 25
<210> 37
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-23
<223> Synthetic construct.
<400> 37
 ggcgagccct aactatccag gag 23
<210> 38
<211> 39
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-39
<223> Synthetic construct.
<400> 38
ggagatcgct gcgctggcca ggtcctccct gcatggtat 39
<210> 39
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-22
<223> Synthetic construct.
<400> 39
ctgctgcaaa gcgagcctct tg 22
<210> 40
<211> 2084
<212> DNA
<213> Homo sapiens
<400> 40
ggttcctggg cgctctgtta cacaagcaag atacagccag ccccacctaa 50
ttttgtttcc ctggcaccct cctgctcagt gcgacattgt cacacttaac 100
ccatctgttt tctctaatgc acgacagatt cctttcagac aggacaactg 150
tgatatttca gttcctgatt gtaaatacct cctaagcctg aagcttctgt 200
tactagccat tgtgagcttc agtttcttca tctgcaaaat gggcataata 250
caatctattc ttgccacatc aagggattgt tattccttta aaaaaaaacc 300
```

caacgttgtt ttattcactt ctatcgggga gccatggaaa agaaaatcaa 400 gacataaaca caacacagaa cattgcagaa gtttttaaaa caatggaaaa 450 taaacctatt tctttggaaa gtgaagcaaa cttaaactca gataaagaaa 500 atataaccac ctcaaatctc aaggcgagtc attcccctcc tttgaatcta 550 cccaacaaca gccacggaat aacagatttc tccagtaact catcagcaga 600 gcattetttg ggcagtetaa aacceacate taccatttee acaageeete 650 ccttgatcca tagctttgtt tctaaagtgc cttggaatgc acctatagca 700 gatgaagatc ttttgcccat ctcaqcacat cccaatgcta cacctgctct 750 gtcttcagaa aacttcactt ggtctttggt caatgacacc gtgaaaactc 800 ctgataacag ttccattaca gttagcatcc tctcttcaga accaacttct 850 ccatctgtga cccccttgat agtggaacca agtggatggc ttaccacaaa 900 cagtgatage tteactgggt ttacccetta teaagaaaaa acaactetac 950 agcctacctt aaaattcacc aataattcaa aactctttcc aaatacgtca 1000 gatccccaaa aagaaaatag aaatacagga atagtattcg gggccatttt 1050 aggtgctatt ctgggtgtct cattgcttac tcttgtgggc tacttgttgt 1100 gtggaaaaag gaaaacggat tcattttccc atcggcgact ttatgacgac 1150 agaaatgaac cagttctgcg attagacaat gcaccggaac cttatgatgt 1200 gagttttggg aattctagct actacaatcc aactttgaat gattcagcca 1250 tgccagaaag tgaagaaaat gcacgtgatg gcattcctat ggatgacata 1300 cctccacttc gtacttctgt ataqaactaa cagcaaaaag gcgttaaaca 1350 gcaagtgtca tctacatcct agccttttga caaattcatc tttcaaaagg 1400 ttacacaaaa ttactgtcac gtggattttg tcaaggagaa tcataaaagc 1450 aggagaccag tagcagaaat gtagacagga tgtatcatcc aaaggttttc 1500 tttcttacaa tttttggcca tcctgaggca tttactaagt agccttaatt 1550 tgtattttag tagtattttc ttagtagaaa atatttgtgg aatcagataa 1600 aactaaaaga tttcaccatt acagccctgc ctcataacta aataataaaa 1650 attattccac caaaaaattc taaaacaatg aagatgactc tttactgctc 1700

aataccaaag aagcctacaa tgttggcctt agccaaaatt ctgttgattt 350

BI

tgcctgaagc cctagtacca taattcaaga ttgcattttc ttaaatgaaa 1750

attgaaaggg tgcttttaa agaaaatttg acttaaagct aaaaagagga 1800 catagcccag agtttctgtt attgggaaat tgaggcaata gaaatgacag 1850 acctgtattc tagtacgtta taattttcta gatcagcaca cacatgatca 1900 gcccactgag ttatgaagct gacaatgact gcattcaacg gggccatggc 1950 aggaaagctg accctaccca ggaaagtaat agcttctta aaagtcttca 2000 aaggttttgg gaatttaac ttgtcttaat atatcttagg cttcaattat 2050 ttgggtgcct taaaaactca atgagaatca tggt 2084

<210> 41

<211> 334

<212> PRT

<213> Homo sapiens

<400> 41

Met Leu Ala Leu Ala Lys Ile Leu Leu Ile Ser Thr Leu Phe Tyr 1 5 10 15

Ser Leu Leu Ser Gly Ser His Gly Lys Glu Asn Gln Asp Ile Asn 20 25 30

Thr Thr Gln Asn Ile Ala Glu Val Phe Lys Thr Met Glu Asn Lys 35 40 45

Pro Ile Ser Leu Glu Ser Glu Ala Asn Leu Asn Ser Asp Lys Glu
50 55 60

Asn Ile Thr Thr Ser Asn Leu Lys Ala Ser His Ser Pro Pro Leu 65 70 75

Asn Leu Pro Asn Asn Ser His Gly Ile Thr Asp Phe Ser Ser Asn 80 85 90

Ser Ser Ala Glu His Ser Leu Gly Ser Leu Lys Pro Thr Ser Thr 95 100 105

Ile Ser Thr Ser Pro Pro Leu Ile His Ser Phe Val Ser Lys Val 110 115 120

Pro Trp Asn Ala Pro Ile Ala Asp Glu Asp Leu Leu Pro Ile Ser 125 130 135

Ala His Pro Asn Ala Thr Pro Ala Leu Ser Ser Glu Asn Phe Thr 140 145 150

Trp Ser Leu Val Asn Asp Thr Val Lys Thr Pro Asp Asn Ser Ser 155 160 165

Ile Thr Val Ser Ile Leu Ser Ser Glu Pro Thr Ser Pro Ser Val 170 175 180

Thr Pro Leu Ile Val Glu Pro Ser Gly Trp Leu Thr Thr Asn Ser 185 190 195 21

Arg Thr Ser Val

<210> 42 <211> 1594 <212> DNA <213> Homo sapiens

<400> 42
aacaggatct cctcttgcag tctgcagccc aggacgctga ttccagcagc 50
gccttaccgc gcagcccgaa gattcactat ggtgaaaatc gccttcaata 100
cccctaccgc cgtgcaaaag gaggaggcgc ggcaagacgt ggaggccctc 150
ctgagccgca cggtcagaac tcagatactg accggcaagg agctccgagt 200
tgccacccag gaaaaagagg gctcctctgg gagatgtatg cttactctct 250
taggccttc attcatcttg gcaggactta ttgttggtgg agcctgcatt 300
tacaagtact tcatgcccaa gagcaccatt taccgtggag agatgtgctt 350
ttttgattct gaggatcctg caaattccct tcgtggagga gagcctaact 400
tcctgcctgt gactgaggag gctgacattc gtgaggatga caacattgca 450
atcattgatg tgcctgtccc cagtttctct gatagtgacc ctgcagcaat 500
tattcatgac tttgaaaagg gaatgactgc ttacctggac ttgttgctgg 550

```
ggaactgcta tctgatgccc ctcaatactt ctattgttat gcctccaaaa 600
aatctggtag agctctttgg caaactggcg agtggcagat atctgcctca 650
aacttatgtg gttcgagaag acctagttgc tgtggaggaa attcgtgatg 700
ttagtaacct tggcatcttt atttaccaac tttgcaataa cagaaagtcc 750
ttccgccttc gtcgcagaga cctcttgctg ggtttcaaca aacgtgccat 800
tgataaatgc tggaagatta gacacttccc caacgaattt attgttgaga 850
ccaagatctg tcaagagtaa gaggcaacag atagagtgtc cttggtaata 900
agaagtcaga gatttacaat atgactttaa cattaaggtt tatgggatac 950
tcaagatatt tactcatgca tttactctat tgcttatgct ttaaaaaaag 1000
gaaaaaaaaa aaaactacta accactqcaa qctcttqtca aattttaqtt 1050
taattggcat tgcttgtttt ttgaaactga aattacatga gtttcatttt 1100
ttctttgcat ttatagggtt tagatttctg aaagcagcat gaatatatca 1150
cctaacatcc tgacaataaa ttccatccgt tgtttttttt gtttgtttgt 1200
tttttctttt cctttaagta agctctttat tcatcttatg gtggagcaat 1250
tttaaaaattt gaaatatttt aaattgtttt tgaacttttt qtgtaaaata 1300
tatcagatct caacattgtt ggtttctttt gtttttcatt ttgtacaact 1350
ttcttgaatt tagaaattac atctttgcag ttctgttagg tgctctgtaa 1400
ttaacctgac ttatatgtga acaattttca tgagacagtc atttttaact 1450
aatgcagtga ttctttctca ctactatctg tattgtggaa tgcacaaaat 1500
tgtgtaggtg ctgaatgctg taaggagttt aggttgtatg aattctacaa 1550
```

<210> 43

<211> 263

<212> PRT

<213> Homo sapiens

<400> 43

Met Val Lys Ile Ala Phe Asn Thr Pro Thr Ala Val Gln Lys Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Glu Ala Arg Gln Asp Val Glu Ala Leu Leu Ser Arg Thr Val Arg
20 25 30

Thr Gln Ile Leu Thr Gly Lys Glu Leu Arg Val Ala Thr Gln Glu
35 40 45

Lys Glu Gly Ser Ser Gly Arg Cys Met Leu Thr Leu Leu Gly Leu

50

60

Ser Phe Ile Leu Ala Gly Leu Ile Val Gly Gly Ala Cys Ile Tyr
65 70 75

55

Lys Tyr Phe Met Pro Lys Ser Thr Ile Tyr Arg Gly Glu Met Cys 80 85 90

Phe Phe Asp Ser Glu Asp Pro Ala Asn Ser Leu Arg Gly Glu 95 100 105

Pro Asn Phe Leu Pro Val Thr Glu Glu Ala Asp Ile Arg Glu Asp 110 115 120

Asp Asn Ile Ala Ile Ile Asp Val Pro Val Pro Ser Phe Ser Asp 125 130 135

Ser Asp Pro Ala Ala Ile Ile His Asp Phe Glu Lys Gly Met Thr 140 145 150

Ala Tyr Leu Asp Leu Leu Gly Asn Cys Tyr Leu Met Pro Leu 155 160 165

Asn Thr Ser Ile Val Met Pro Pro Lys Asn Leu Val Glu Leu Phe 170 175 180

Gly Lys Leu Ala Ser Gly Arg Tyr Leu Pro Gln Thr Tyr Val Val 185 190 195

Arg Glu Asp Leu Val Åla Val Glu Glu Ile Arg Asp Val Ser Asn 200 205 210

Leu Gly Ile Phe Ile Tyr Gln Leu Cys Asn Asn Arg Lys Ser Phe \$215\$ \$20\$ \$25

Arg Leu Arg Arg Arg Leu Leu Leu Gly Phe Asn Lys Arg Ala 230 235 240

Ile Asp Lys Cys Trp Lys Ile Arg His Phe Pro Asn Glu Phe Ile 245 250 255

Val Glu Thr Lys Ile Cys Gln Glu 260

<210> 44

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial sequence

<222> 1-24

<223> Synthetic construct.

<400> 44

gaaagacacg acacagcagc ttgc 24

<210> 45

```
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-20
<223> Synthetic construct.
<400> 45
 gggaactgct atctgatgcc 20
<210> 46
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-26
<223> Synthetic construct.
<400> 46
 caggatetee tettgeagte tgeage 26
<210> 47
<211> 28
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-28
<223> Synthetic construct.
<400> 47
cttctcgaac cacataagtt tgaggcag 28
<210> 48
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
<400> 48
cacgattccc tccacagcaa ctggg 25
<210> 49
<211> 1969
<212> DNA
<213> Homo sapiens
<400> 49
ggaggaggga gggcgggcag gcgccagccc agagcagccc cgggcaccag 50
```

cacggactet etettecage ecaggtgeee eccaeteteg etecattegg 100 cgggagcacc cagtcctgta cgccaaggaa ctggtcctgg gggcaccatg 150 gtttcggcgg cagcccccag cctcctcatc cttctgttgc tgctgctggg 200 gtctgtgcct gctaccgacg cccgctctgt gcccctgaag gccacgttcc 250 tggaggatgt ggcgggtagt ggggaggccg agggctcgtc ggcctcctcc 300 ccgagcctcc cgccaccctg gaccccggcc ctcagcccca catcgatggg 350 gccccagccc acaaccctgg ggggcccatc acccccacc aacttcctgg 400 atgggatagt ggacttcttc cgccagtacg tgatgctgat tgctgtggtg 450 ggctccctgg cctttctgct gatgttcatc gtctgtgccg cggtcatcac 500 ccggcagaag cagaaggcct cggcctatta cccatcgtcc ttccccaaga 550 agaagtacgt ggaccagagt gaccgggccg ggggcccccg ggccttcagt 600 gaggtccccg acagagcccc cgacagcagg cccgaggaag ccctggattc 650 ctcccggcag ctccaggccg acatcttggc cgccacccag aacctcaagt 700 cccccaccag ggctgcactg ggcggtgggg acggagccag gatggtggag 750 ggcaggggcg cagaggaaga ggagaagggc agccaggagg gggaccagga 800 agtccaggga catggggtcc cagtggagac accagaggcg caggaggagc 850 cgtgctcagg ggtccttgag ggggctgtgg tggccggtga gggccaaggg 900 gagctggaag ggtctctctt gttagcccag gaagcccagg gaccagtggg 950 tececegaa ageceetgtg ettgeageag tgtecaceee agtgtetaae 1000 agtecteeeg ggetgeeage cetgaetgte gggeeeeaa gtggteacet 1050 eccegtgtat gaaaaggeet teageeetga etgetteetg acaeteeete 1100 cttggcctcc ctgtggtgcc aatcccagca tgtgctgatt ctacagcagg 1150 cagaaatgct ggtccccggt gccccggagg aatcttacca agtgccatca 1200 teetteacet cageageece aaagggetae ateetacage acageteece 1250 tgacaaagtg agggagggca cgtgtccctg tgacagccag gataaaacat 1300 cccccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcccaaac 1350 tactttttaa aacagctaca gggtaaaatc ctgcagcacc cactctggaa 1400 aatactgctc ttaattttcc tgaaggtggc cccctgtttc tagttggtcc 1450

BI

aggattaggg atgtggggta tagggcattt aaatcctctc aagcgctctc 1500

```
caagcacccc cggcctgggg gtgagtttct catcccgcta ctgctgctgg 1550
 gatcaggttg aatgaatgga actetteetg tetggeetee aaageageet 1600
 agaagctgag gggctgtgtt tgaggggacc tccaccctgg ggaagtccga 1650
 ggggctgggg aagggtttct gacgcccagc ctggagcagg ggggccctgg 1700
ccacccctg ttgctcacac attgtctggc agcctgtgtc cacaatattc 1750
gtcagtcctc gacagggagc ctgggctccg tcctgcttta gggaggctct 1800
ggcaggaggt cetetecece atecetecat etggggetee eccaacetet 1850
gcacagctct ccaggtgctg agatataatg caccagcaca ataaaccttt 1900
attccggcct gaaaaaaaaa aaaaaaaaaa aaaaaaaaa 1950
aaaaaaaaa aaaaaaaga 1969
<210> 50
<211> 283
<212> PRT
<213> Homo sapiens
<400> 50
Met Val Ser Ala Ala Ala Pro Ser Leu Leu Ile Leu Leu Leu
Leu Leu Gly Ser Val Pro Ala Thr Asp Ala Arg Ser Val Pro Leu
Lys Ala Thr Phe Leu Glu Asp Val Ala Gly Ser Gly Glu Ala Glu
Gly Ser Ser Ala Ser Ser Pro Ser Leu Pro Pro Pro Trp Thr Pro
Ala Leu Ser Pro Thr Ser Met Gly Pro Gln Pro Thr Thr Leu Gly
Gly Pro Ser Pro Pro Thr Asn Phe Leu Asp Gly Ile Val Asp Phe
```

Phe Leu Leu Met Phe Ile Val Cys Ala Ala Val Ile Thr Arg Gln 110 Lys Gln Lys Ala Ser Ala Tyr Tyr Pro Ser Ser Phe Pro Lys Lys

Phe Arg Gln Tyr Val Met Leu Ile Ala Val Val Gly Ser Leu Ala

Lys Tyr Val Asp Gln Ser Asp Arg Ala Gly Gly Pro Arg Ala Phe

Ser Glu Val Pro Asp Arg Ala Pro Asp Ser Arg Pro Glu Glu Ala 155 160 165

280

<210> 51

<211> 1734

<212> DNA

<213> Homo sapiens

<400> 51
gtggactctg agaagcccag gcagttgagg acaggagaa gaaggctgca 50
gacccagagg gagggaggac agggagtcgg aaggaggagg acagaggagg 100
gcacagagac gcagagcaag ggcggcaagg aggagaccct ggtgggagga 150
agacactctg gagagagagg gggctgggca gagatgaagt tccaggggcc 200
cctggcctgc ctcctgctgg ccctctgcct gggcagtggg gaggctggcc 250
ccctgcagag cggagaggaa agcactggga caaatattgg ggaggccctt 300
ggacatggcc tgggagacgc cctgagcgaa ggggtgggaa aggccattgg 350
caaagaggcc ggaggggcag ctggctctaa agtcagtgag gcccttggcc 400
aagggaccag atgctttggg caacagggt gggaagcag cccatgctct 500
gggaaacact gggcacgaa ttggcagac ggggaagcag cccatgctct 500
gggaaacact gggcacgaga ttggcagac ggggggtgcc tggccacagt 600
ggtgcttggg aaacttctgg aggccatggc atctttggc ctcaaggtgg 650
ccttggaggc cagggccagg gcaatcctgg aggtctgggg actccgtggg 700

```
tccacggata ccccggaaac tcagcaggca gctttggaat gaatcctcag 750
 ggagctccct ggggtcaagg aggcaatgga gggccaccaa actttgggac 800
 caacactcag ggagctgtgg cccagcctgg ctatggttca gtgagagcca 850
 gcaaccagaa tgaagggtgc acgaatcccc caccatctgg ctcaggtgga 900
ggctccagca actctggggg aggcagcggc tcacagtcgg gcagcagtgg 950
 cagtggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000
gcagtggcag cagcagtggc agcagcagtg gcggcagcag tggcggcagc 1050
 agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100
 tgagtcctcc tggggatcca gcaccggctc ctcctccggc aaccacggtg 1150
 ggagcggcgg aggaaatgga cataaacccg ggtgtgaaaa gccagggaat 1200
gaagcccgcg ggagcgggga atctgggatt cagggcttca gaggacaggg 1250
agtttccagc aacatgaggg aaataagcaa agagggcaat cqcctccttg 1300
gaggctctgg agacaattat cgggggcaag ggtcgagctg gggcagtgga 1350
ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400
tgggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450
gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500
ccgtgacctc cagacaagga gccaccagat tggatgggag cccccacact 1550
ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600
aaaaaaaaaa aaaaaaaaaa aaaa 1734
<211> 440
<212> PRT
<213> Homo sapiens
```

- <210> 52

- <400> 52
- Met Lys Phe Gln Gly Pro Leu Ala Cys Leu Leu Leu Ala Leu Cys 1
- Leu Gly Ser Gly Glu Ala Gly Pro Leu Gln Ser Gly Glu Glu Ser
- Thr Gly Thr Asn Ile Gly Glu Ala Leu Gly His Gly Leu Gly Asp
- Ala Lèu Ser Glu Gly Val Gly Lys Ala Ile Gly Lys Glu Ala Gly

50

Gly Ala Ala Gly Ser Lys Val Ser Glu Ala Leu Gly Gln Gly Thr Arg Glu Ala Val Gly Thr Gly Val Arg Gln Val Pro Gly Phe Gly Ala Ala Asp Ala Leu Gly Asn Arg Val Gly Glu Ala Ala His Ala • 95 100 Leu Gly Asn Thr Gly His Glu Ile Gly Arg Gln Ala Glu Asp Val 115 Ile Arg His Gly Ala Asp Ala Val Arg Gly Ser Trp Gln Gly Val 125 130 Pro Gly His Ser Gly Ala Trp Glu Thr Ser Gly Gly His Gly Ile Phe Gly Ser Gln Gly Gly Leu Gly Gly Gln Gly Gln Gly Asn Pro 155 Gly Gly Leu Gly Thr Pro Trp Val His Gly Tyr Pro Gly Asn Ser Ala Gly Ser Phe Gly Met Asn Pro Gln Gly Ala Pro Trp Gly Gln 185 Gly Gly Asn Gly Gly Pro Pro Asn Phe Gly Thr Asn Thr Gln Gly Ala Val Ala Gln Pro Gly Tyr Gly Ser Val Arg Ala Ser Asn Gln Asn Glu Gly Cys Thr Asn Pro Pro Pro Ser Gly Ser Gly Gly Ser Ser Asn Ser Gly Gly Gly Ser Gly Ser Gln Ser Gly Ser Ser Gly Ser Gly Ser Asn Gly Asp Asn Asn Gly Ser Ser Ser Gly Gly Ser Ser Ser Gly Ser Ser Gly Ser Ser Gly Gly Ser 275 280 Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Asn Ser Gly Gly Ser Arg Gly Asp Ser Gly Ser Glu Ser Ser Trp Gly Ser Ser Thr Gly 305 Ser Ser Ser Gly Asn His Gly Gly Ser Gly Gly Gly Asn Gly His Lys Pro Gly Cys Glu Lys Pro Gly Asn Glu Ala Arg Gly Ser Gly

Glu Ser Gly Ile Gln Gly Phe Arg Gly Gln Gly Val Ser Ser Asn 360

Met Arg Glu Ile Ser Lys Glu Gly Asn Arg Leu Leu Gly Gly Ser 375

Gly Asp Asn Tyr Arg 380 Gly Gln Gly Ser Ser Trp Gly Ser Gly 390

Gly Asp Ala Val Gly Gly Val Asn Thr Val Asn Ser Glu Thr Ser 405

Pro Gly Met Phe Asn Phe Asp Thr Phe Trp Lys Asn Phe Lys Ser 420

Lys Leu Gly Phe Ile Asn Trp Asp Ala Ile Asn Lys Asp Gln Arg 435

Ser Ser Arg Ile Pro

<210> 53 <211> 3580 <212> DNA

<213> Homo sapiens

<400> 53 gaccggtccc tccggtcctg gatgtgcgga ctctgctgca gcgagggctg 50 caggcccgcc gggcggtgct caccgtqccc tqqctqqtqq aqtttctctc 100 ctttgctgac catgttgttc ccttgctgga atattaccgg gacatcttca 150 ctctcctgct gcgcctgcac cggagcttgg tgttgtcgca ggagagtgag 200 gggaagatgt gtttcctgaa caagctgctg ctacttgctg tcctgggctg 250 gcttttccag attcccacag tccctgagga cttgttcttt ctggaagagg 300 gtccctcata tgcctttgag gtggacacag tagccccaga gcatggcttg 350 gacaatgcgc ctgtggtgga ccagcagctg ctctacacct gctgccccta 400 catcggagag ctccggaaac tgctcgcttc gtgggtgtca ggcagtagtg 450 gacggagtgg gggcttcatg aggaaaatca ccccaccac taccaccagc 500 ctgggagccc agccttccca gaccagccag gggctgcagg cacagctcgc 550 ccaggccttt ttccacaacc agccgcctc cttgcgccgg accgtagagt 600 tcgtggcaga aagaattgga tcaaactgtg tcaaacatat caaggctaca 650 ctggtggcag atctggtgcg ccaggcagag tcacttctcc aagagcagct 700 ggtgacacag ggagaggaag ggggagaccc agcccagctg ttggagatct 750 tgtgttccca gctgtgccct cacggggccc aggcattggc cctggggcgg 800

gagttctgtc aaaggaagag ccctggggct gtgcgggcgc tgcttccaga 850 ggagaccccg gcagccgttc tgagcagtgc agagaacatt gctgtggggc 900 ttgcaacaga gaaagcctgt gcttggctgt cagccaacat cacagcactg 950 atcaggaggg aggtgaaagc agcagtgagt cgcacacttc gagcccaggg 1000 teetgaaeet getgeeeggg gggageggag gggetgetee egegeetgae 1050 gtgctctcct tggccgtggg gccacgggac cctgacgagg gagtctcccc 1100 agagcatctg gaacagctcc taggccagct gggccagacg ctgcggtgcc 1150 gccagttcct gtgcccacct gctgagcagc atctggcaaa gtgctctgtg 1200 gagttagett cecteetegt tgeagateaa attectatee tagggeecee 1250 ggcacagtac aggctggaga gagggcaggc tcgaaggctt ctgcacatgc 1300 tgctttcctt gtggaaggaa gactttcagg ggccggttcc gctgcagctg 1350 ctgctgagcc caagaaatgt ggggcttctg gcagacacaa ggccaaggga 1400 gtgggacttg ctgctattct tgctacggga gctggtggag aagggtctga 1450 tgggacggat ggagatagag gcctgcctgg gcagcctcca ccaggcccag 1500 tggccagggg actttgctga agaattagca acactgtcta atctgtttct 1550 agccgagccc cacctgccag aaccccagct aagagcctgt gagttggtgc 1600 agccaaaccg gggcactgtg ctggcccaga gctagggctg agaagtggcc 1650 ctgccttggg cattgcacca gaaccctgga cccccgcctc acgaggaggc 1700 ccaagtgccc aatgcagacc ctcactggtt ggggtgtagc tgggtctaca 1750 gtcagacttc ctgctctaag ggtgtcactg cctggcatcc caccacgcga 1800 atcctagagg aaggagagtt ggcctgattt gggattatgg cagaaaagtc 1850 cagagatgcc agtcctggag tagaagaggt ggtgtttgtt tatctcttgg 1900 atactaaatg aaatgaggtg tgtgggcttg tcaacacaga attcaagcct 1950 catttgctat cccagcatct cttaaaactt tgtagtcttg gaattcatga 2000 cagaggcaaa tgactcctgc ttaacttatg aagaaagtta aaacatgaat 2050 cttgggagtc tacattttct tatcaccagg agctggactg ccatctcctt 2100 ataaatgcct aacacaggcc gggtctggtg gctcatgcct gtaatcccag 2150 cactttgaga ggcctgaggt cggcggactg cctgaggtca ggaattcaag 2200 accageetgg ceaacatgge aaaaceeeat etetaetaaa aataaaaaaa 2250

BI

ttattagctg ggcatggtgg tgtgtgcctg taatcccagc tactcaggag 2300 gatgaggcag gagacctgct tgaacctgga ggtggaggtt gcagtgagcc 2350 gaggtcgcac cactgcactc cagtctgggt aacagagcga gactttctag 2400 aaaaagccta acaaacagat aaggtaggac tcaaccaact gaaacctgac 2450 tttccccctg taccttcagc ccctgtgcag gtagtaacct cttgagacct 2500 ctccctgacc agggaccaag cacagggcat ttagagcttt ttagaataaa 2550 ctggttttct ttaaaaaaaa aaaaaaaaaa agggcggccg ccctttttt 2600 ttttattaaa attctcccca cacgatggct cctgcaatct gccacagctc 2700 tggggcgtgt cctgtaggga aaggccctgt tttccctgag gcggggctgg 2750 gcttgtccat gggtccgcgg agctggccgt gcttggcgcc ctggcgtgtg 2800 tctagctgct tcttgccggg cacagagctg cggggtctgg gggcaccggg 2850 agctaagagc aggctctggt gcaggggtgg aggcctgtct cttaaccgac 2900 accetgaggt geteetgaga tgetgggtee accetgagtg geacggggag 2950 cagctgtggc cggtgctcct tcytaggcca gtcctgggga aactaagctc 3000 gggcccttct ttgcaaagac cgaggatggg gtgggtgtgg gggactcatg 3050 gggaatggcc tgaggagcta cgtgtgaaga gggcgccggt ttgttggctg 3100 cagcggcctg gagcgcctct ctcctgagcc tcagtttccc tttccgtcta 3150 atgaagaaca tgccgtctcg gtgtctcagg gctattagga cttgccctca 3200 ggaagtggcc ttggacgagc gtcatgttat tttcacaact gtcctgcgac 3250 gttggcctgg gcacgtcatg gaatggccca tgtccctctg ctgcgtggac 3300 gtcgcggtcg ggagtgcgca gccagaggcg gggccagacg tgcgcctggg 3350 ggtgagggga ggcgcccgg gagggcctca caggaagttg ggctcccgca 3400 ccaccaggca gggcgggctc ccgccgccgc cgccgccacc accgtccagg 3450 ggccggtaga caaagtggaa gtcgcgcttg ggctcgctgc gcagcaggta 3500 gcccttgatg cagtgcggca gcgcgtcgtc cgccagctgg aagcagcgcc 3550 cgtccaccag cacgaacagc cggtgcgcct 3580

<210> 54

<211> .280

<212> PRT

<213> Homo sapiens

<400> 54 Met Cys Phe Leu Asn Lys Leu Leu Leu Leu Ala Val Leu Gly Trp 10 Leu Phe Gln Ile Pro Thr Val Pro Glu Asp Leu Phe Phe Leu Glu Glu Gly Pro Ser Tyr Ala Phe Glu Val Asp Thr Val Ala Pro Glu His Gly Leu Asp Asn Ala Pro Val Val Asp Gln Gln Leu Leu Tyr Thr Cys Cys Pro Tyr Ile Gly Glu Leu Arg Lys Leu Leu Ala Ser Trp Val Ser Gly Ser Ser Gly Arg Ser Gly Gly Phe Met Arg Lys Ile Thr Pro Thr Thr Thr Ser Leu Gly Ala Gln Pro Ser Gln Thr Ser Gln Gly Leu Gln Ala Gln Leu Ala Gln Ala Phe Phe His 110 115 Asn Gln Pro Pro Ser Leu Arg Arg Thr Val Glu Phe Val Ala Glu 130 Arg Ile Gly Ser Asn Cys Val Lys His Ile Lys Ala Thr Leu Val 145 Ala Asp Leu Val Arg Gln Ala Glu Ser Leu Leu Gln Glu Gln Leu Val Thr Gln Gly Glu Glu Gly Gly Asp Pro Ala Gln Leu Leu Glu 170 Ile Leu Cys Ser Gln Leu Cys Pro His Gly Ala Gln Ala Leu Ala Leu Gly Arg Glu Phe Cys Gln Arg Lys Ser Pro Gly Ala Val Arg 200 Ala Leu Leu Pro Glu Glu Thr Pro Ala Ala Val Leu Ser Ser Ala 220 Glu Asn Ile Ala Val Gly Leu Ala Thr Glu Lys Ala Cys Ala Trp 230 Leu Ser Ala Asn Ile Thr Ala Leu Ile Arg Arg Glu Val Lys Ala 250 Ala Val Ser Arg Thr Leu Arg Ala Gln Gly Pro Glu Pro Ala Ala 260 265 Arg Gly Glu Arg Arg Gly Cys Ser Arg Ala 275 280

<210> 55

<211> 2401 <212> DNA <213> Homo sapiens <400> 55 tcccttgaca ggtctggtgg ctggttcggg gtctactgaa ggctgtcttg 50 atcaggaaac tgaagactct ctgcttttgc cacagcagtt cctgcagctt 100 cettgaggtg tgaacccaca teeetgeeee cagggeeace tgeaggaege 150 cgacacctac ccctcagcag acgccggaga gaaatgagta gcaacaaaga 200 gcagcggtca gcagtgttcg tgatcctctt tgccctcatc accatcctca 250 tectetacag etecaacagt gecaatgagg tettecatta eggeteeetg 300 cggggccgta gccgccgacc tgtcaacctc aagaagtgga gcatcactga 350 cggctatgtc cccattctcg gcaacaagac actgccctct cggtgccacc 400 agtgtgtgat tgtcagcagc tccagccacc tgctgggcac caagctgggc 450 cctgagatcg agcgggctga gtgtacaatc cgcatgaatg atgcacccac 500 cactggctac tcagctgatg tgggcaacaa gaccacctac cgcgtcgtgg 550 cccattccag tgtgttccgc gtgctgagga ggccccagga gtttgtcaac 600 cggacccctg aaaccgtgtt catcttctgg gggcccccga gcaagatgca 650 gaageceeag ggeageeteg tgegtgtgat eeagegageg ggeetggtgt 700 tececaacat ggaageatat geegtetete eeggeegeat geggeaattt 750 gacgacctct tccggggtga gacgggcaag gacagggaga agtctcattc 800 gtggttgagc acaggctggt ttaccatggt gatcgcggtg gagttgtgtg 850 accacgtgca tgtctatggc atggtccccc ccaactactg cagccagcgg 900 ccccgcctcc agcgcatgcc ctaccactac tacgagccca aggggccgga 950 cgaatgtgtc acctacatcc agaatgagca cagtcgcaag ggcaaccacc 1000 accgcttcat caccgagaaa agggtcttct catcgtgggc ccagctgtat 1050 ggcatcacct teteceacce etectggace taggecacce agectgtggg 1100 acctcaggag ggtcagagga gaagcagcct ccgcccagcc gctaggccag 1150 ggaccatctt ctggccaatc aaggcttgct ggagtgtctc ccagccaatc 1200 agggccttga ggaggatgta tcctccagcc aatcagggcc tggggaatct 1250 gttggcgaat cagggatttg ggagtctatg tggttaatca ggggtgtctt 1300

```
tettgtgcag teagggtetg egeacagtea ateagggtag agggggtatt 1350
tctgagtcaa tctgaggcta aggacatgtc ctttcccatg aggccttggt 1400
tcagagcccc aggaatggac cccccaatca ctccccactc tqctqqqata 1450
atggggtcct gtcccaagga gctgggaact tggtgttqcc ccctcaattt 1500
ccagcaccag aaagagagat tgtgtggggg tagaagctgt ctggaggccc 1550
ggccagagaa tttgtggggt tgtggaggtt gtgggggggg tggggaggtc 1600
ccagaggtgg gaggctggca tccaggtctt ggctctgccc tqaqaccttq 1650
gacaaaccet tececetete tgggeaccet tetgeecaca ceaqttteca 1700
gtgcggagtc tgagaccctt tccacctccc ctacaagtgc cctcgggtct 1750
gtcctcccg tctggacct cccagccact atccttgct ggaaggctca 1800
gctctttggg gggtctgggg tgacctcccc acctcctgga aaactttagg 1850
gtatttttgc gcaaactcct tcagggttgg gggactctga aqqaaacqqq 1900
acaaaacctt aagctgtttt cttagcccct cagccagctg ccattagctt 1950
ggctcttaaa gggccaggcc tccttttctg ccctctagca gggaggtttt 2000
ccaactgttg gaggcgcctt tggggctgcc cctttgtctg gagtcactgg 2050
gggcttccga gggtctccct cgaccctctg tcgtcctggg atggctgtcg 2100
ggagetgtat cacctgggtt etgteeeetg getetgtate aggeaettta 2150
ttaaagctgg gcctcagtgg ggtgtgtttg tctcctgctc ttctggagcc 2200
tggaaggaaa gggcttcagg aggaggctgt gaggctggag ggaccagatg 2250
gaggaggcca gcagctagcc attgcacact ggggtgatgg gtggggggg 2300
tgactgcccc agacttggtt ttgtaatgat ttgtacagga ataaacacac 2350
ctacgctccg gaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2400
a 2401
```

<210> 56

<211> 299

<212> PRT

<213> Homo sapiens

<400> 56

Met Ser Ser Asn Lys Glu Gln Arg Ser Ala Val Phe Val Ile. Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Ala Leu Ile Thr Ile Leu Ile Leu Tyr Ser Ser Asn Ser Ala
20 25 30

Bl

Asn Glu Val Phe His Tyr Gly Ser Leu Arg Gly Arg Ser Arg Arg Pro Val Asn Leu Lys Lys Trp Ser Ile Thr Asp Gly Tyr Val Pro Ile Leu Gly Asn Lys Thr Leu Pro Ser Arg Cys His Gln Cys Val Ile Val Ser Ser Ser His Leu Leu Gly Thr Lys Leu Gly Pro Glu Ile Glu Arg Ala Glu Cys Thr Ile Arg Met Asn Asp Ala Pro Thr Thr Gly Tyr Ser Ala Asp Val Gly Asn Lys Thr Thr Tyr Arg 115 Val Val Ala His Ser Ser Val Phe Arg Val Leu Arg Arg Pro Gln 125 130 Glu Phe Val Asn Arg Thr Pro Glu Thr Val Phe Ile Phe Trp Gly 145 Pro Pro Ser Lys Met Gln Lys Pro Gln Gly Ser Leu Val Arg Val Ile Gln Arg Ala Gly Leu Val Phe Pro Asn Met Glu Ala Tyr Ala Val Ser Pro Gly Arg Met Arg Gln Phe Asp Asp Leu Phe Arg Gly 185 190 Glu Thr Gly Lys Asp Arg Glu Lys Ser His Ser Trp Leu Ser Thr Gly Trp Phe Thr Met Val Ile Ala Val Glu Leu Cys Asp His Val His Val Tyr Gly Met Val Pro Pro Asn Tyr Cys Ser Gln Arg Pro Arg Leu Gln Arg Met Pro Tyr His Tyr Tyr Glu Pro Lys Gly Pro Asp Glu Cys Val Thr Tyr Ile Gln Asn Glu His Ser Arg Lys Gly Asn His His Arg Phe Ile Thr Glu Lys Arg Val Phe Ser Ser Trp Ala Gln Leu Tyr Gly Ile Thr Phe Ser His Pro Ser Trp Thr

<210> 57

<211> 4277

<212> DNA

<213> Homo sapiens

<400> 57 gtttctcata gttggcgtct tctaaaggaa aaacactaaa atgaggaact 50 cagcggaccg ggagcgacgc agcttgaggg aagcatccct agctgttggc 100 gcagaggggc gaggctgaag ccgagtggcc cgaggtgtct gaggggctgg 150 ggcaaaggtg aaagagtttc agaacaagct tcctggaacc catgacccat 200 gaagtettgt egacatttat accetetgag getageaget egaaactaga 250 agaagtggag tgttgccagg gacggcagta tctctttgtg tgaccctggc 300 ggcctatggg acgttggctt cagacctttg tgatacacca tgctgcgtgg 350 gacgatgacg gcgtggagag gaatgaggcc tgaggtcaca ctggcttgcc 400 teeteetage cacageagge tgetttgetg aettgaaega ggteeeteag 450 gtcaccgtcc agcctgcgtc caccgtccag aagcccggag gcactgtgat 500 cttgggctgc gtggtggaac ctccaaggat gaatgtaacc tggcgcctga 550 atggaaagga gctgaatggc tcggatgatg ctctgggtgt cctcatcacc 600 cacgggaccc tcgtcatcac tgcccttaac aaccacactg tgggacggta 650 ccagtgtgtg gcccggatgc ctgcgggggc tgtggccagc gtgccagcca 700 ctgtgacact agccaatctc caggacttca agttagatgt gcagcacgtg 750 attgaagtgg atgagggaaa cacagcagtc attgcctgcc acctgcctga 800 gagccacccc aaagcccagg tccggtacag cgtcaaacaa gagtggctgg 850 aggcctccag aggtaactac ctgatcatgc cctcagggaa cctccagatt 900 gtgaatgcca gccaggagga cgagggcatg tacaagtgtg cagcctacaa 950 cccagtgacc caggaagtga aaacctccgg ctccagcgac aggctacgtg 1000 tgcgccgctc caccgctgag gctgcccgca tcatctaccc cccagaggcc 1050 caaaccatca tcgtcaccaa aggccagagt ctcattctgg agtgtgtggc 1100 cagtggaatc ccaccccac gggtcacctg ggccaaggat gggtccagtg 1150 tcaccggcta caacaagacg cgcttcctgc tgagcaacct cctcatcgac 1200 accaccageg aggaggaete aggeaectae egetgeatgg eegacaatgg 1250 ggttgggcag cccggggcag cggtcatcct ctacaatgtc caggtgtttg 1300 aaccccctga ggtcaccatg gagctatccc agctggtcat cccctggggc 1350 cagagtgcca agcttacctg tgaggtgcgt gggaaccccc cgccctccgt 1400 gctgtggctg aggaatgctg tgcccctcat ctccaqccag cqcctccqqc 1450

Bl

tctcccgcag ggccctgcgc gtgctcagca tggggcctga ggacgaaggc 1500 gtctaccagt gcatggccga gaacgaggtt gggagcgccc atgccgtagt 1550 ccagctgcgg acctccaggc caagcataac cccaaggcta tggcaggatg 1600 ctgagctggc tactggcaca cctcctgtat caccctccaa actcggcaac 1650 cctgagcaga tgctgagggg gcaaccggcg ctccccagac ccccaacgtc 1700 agtggggcct gcttccccga agtgtccagg agagaagggg cagggggctc 1750 ecgcegagge teccateate eteagetege ecegeacete caagacagae 1800 tcatatgaac tggtgtggcg gcctcggcat gagggcagtg gccgggcgcc 1850 aatcctctac tatgtggtga aacaccgcaa gcaggtcaca aattcctctg 1900 acgattggac catctctggc attccagcca accagcaccg cctgaccctc 1950 accagaettg acccegggag ettgtatgaa gtggagatgg cagettacaa 2000 ctgtgcggga gagggccaga cagccatggt caccttccga actggacggc 2050 ggcccaaacc cgagatcatg gccagcaaag agcagcagat ccagagagac 2100 gaccetggag ccagtececa gageageage cagecagace aeggeegeet 2150 ctcccccca gaagetcccg acaggcccac catctccacg gcctccgaga 2200 cctcagtgta cgtgacctgg attccccgtg ggaatggtgg gttcccaatc 2250 cagtccttcc gtgtggagta caagaagcta aagaaagtgg gagactggat 2300 totggccacc agogccatco coccatogog gotgtccgtg gagatoacgg 2350 gcctagagaa aggcacctcc tacaagtttc gagtccgggc tctgaacatg 2400 ctgggggaga gcgagcccag cgcccctct cggccctacg tggtgtcggg 2450 ctacageggt egegtgtaeg agaggeeegt ggeaggteet tatateaeet 2500 tcacggatgc ggtcaatgag accaccatca tgctcaagtg gatgtacatc 2550 ccagcaagta acaacaac cccaatccat ggcttttata tctattatcg 2600 acccacagac agtgacaatg atagtgacta caagaaggat atggtggaag 2650 gggacaagta ctggcactcc atcagccacc tgcagccaga gacctcctac 2700 gacattaaga tgcagtgctt caatgaagga ggggagagcg agttcagcaa 2750 cgtgatgatc tgtgagacca aagctcggaa gtcttctggc cagcctggtc 2800 gactgccacc cccaactctg gccccaccac agccgcccct tcctgaaacc 2850 atagagegge eggtgggeae tggggeeatg gtggeteget eeagegaeet 2900

gccctatctg attgtcgggg tcgtcctggg ctccatcgtt ctcatcatcg 2950 tcaccttcat ccccttctgc ttgtggaggg cctggtctaa gcaaaaacat 3000 acaacagacc tgggttttcc tcgaagtgcc cttccaccct cctgcccgta 3050 tactatggtg ccattgggag gactcccagg ccaccaggcc agtggacagc 3100 cctacctcag tggcatcagt ggacgggcct gtgctaatgg gatccacatg 3150 aataggggct gcccctcggc tgcagtgggc tacccgggca tgaagcccca 3200 gcagcactgc ccaggcgagc ttcagcagca gagtgacacc agcagcctgc 3250 tgaggcagac ccatcttggc aatggatatg acccccaaag tcaccagatc 3300 acgaggggtc ccaagtctag cccggacgag ggctctttct tatacacact 3350 gcccgacgac tccactcacc agctgctgca gccccatcac gactgctgcc 3400 aacgccagga gcagcctgct gctgtgggcc agtcaggggt gaggagagcc 3450 cccgacagtc ctgtcctgga agcagtgtgg gaccctccat ttcactcagg 3500 gcccccatgc tgcttgggcc ttgtgccagt tgaagaggtg gacagtcctg 3550 actcctgcca agtgagtgga ggagactggt gtccccagca ccccgtaggg 3600 gcctacgtag gacaggaacc tggaatgcag ctctccccgg ggccactggt 3650 gcgtgtgtct tttgaaacac cacctctcac aatttaggca gaagctgata 3700 tcccagaaag actatatatt gtttttttt taaaaaaaaa agaagaaaaa 3750 agagacagag aaaattggta tttatttttc tattatagcc atatttatat 3800 atttatgcac ttgtaaataa atgtatatgt tttataattc tggagagaca 3850 taaggagtcc tacccgttga ggttggagag ggaaaataaa gaagctgcca 3900 cctaacagga gtcacccagg aaagcaccgc acaggctggc gcgggacaga 3950 ctcctaacct ggggcctctg cagtggcagg cgaggctgca ggaggcccac 4000 agataagctg gcaagaggaa ggatcccagg cacatggttc atcacgagca 4050 tgagggaaca gcaaggggca cggtatcaca gcctggagac acccacacag 4100 atggctggat ccggtgctac gggaaacatt ttcctaagat gcccatgaga 4150 acagaccaag atgtgtacag cactatgagc attaaaaaac cttccagaat 4200 caataatccg tggcaacata tctctgtaaa aacaaacact gtaacttcta 4250 aataaatgtt tagtcttccc tgtaaaa 4277

<210> 58 <211> 1115 <400> 58

Met Leu Arg Gly Thr Met Thr Ala Trp Arg Gly Met Arg Pro Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Thr Leu Ala Cys Leu Leu Leu Ala Thr Ala Gly Cys Phe Ala 20 25 30

Asp Leu Asn Glu Val Pro Gln Val Thr Val Gln Pro Ala Ser Thr 35 40 45

Val Gln Lys Pro Gly Gly Thr Val Ile Leu Gly Cys Val Val Glu
50 55 60

Pro Pro Arg Met Asn Val Thr Trp Arg Leu Asn Gly Lys Glu Leu 65 70 75

Asn Gly Ser Asp Asp Ala Leu Gly Val Leu Ile Thr His Gly Thr 80 85 90

Leu Val Ile Thr Ala Leu Asn Asn His Thr Val Gly Arg Tyr Gln
95 100 105

Thr Val Thr Leu Ala Asn Leu Gln Asp Phe Lys Leu Asp Val Gln 125 130 135

His Val Ile Glu Val Asp Glu Gly Asn Thr Ala Val Ile Ala Cys 140 145 150

His Leu Pro Glu Ser His Pro Lys Ala Gln Val Arg Tyr Ser Val 155 160 165

Lys Gln Glu Trp Leu Glu Ala Ser Arg Gly Asn Tyr Leu Ile Met 170 175 180

Pro Ser Gly Asn Leu Gln Ile Val Asn Ala Şer Gln Glu Asp Glu 185 190 195

Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gln Glu Val
200 205 210

Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser Thr 215 220 225

Ala Glu Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr Ile 230 235 240

Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala Ser 245 250 255

Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser Ser 260 265 270

Val	Thr	Gly	Tyr	Asn 275	Lys	Thr	Arg	Phe	Leu 280	Leu	Ser	Asn	Leu	Leu 285
Ile	Asp	Thr	Thr	Ser 290	Gļu	Glu	Asp	Ser	Gly 295	Thr	Tyr	Arg	Суз	Met 300
Ala	Asp	Asn	Gly	Val 305	Gly	Gln	Pro	Gly	Ala 310	Ala	Val	Ile	Leu	Tyr 315
Asn	Val	Gln	Val	Phe 320	Glu	Pro	Pro	Glu	Val 325	Thr	Met	Glu	Leu	Ser 330
Gln	Leu	Val	Ile	Pro 335	Trp	Gly	Gln	Ser	Ala 340	Lys	Leu	Thr	Cys	Glu 345
Val	Arg	Gly	Asn	Pro 350	Pro	Pro	Ser	Val	Leu 355	Trp	Leu	Arg	Asn	Ala 360
Val	Pro	Leu	Ile	Ser 365	Ser	Gln	Arg	Leu	Arg 370	Leu	Ser	Arg	Arg	Ala 375
Leu	Arg	Val	Leu	Ser 380	Met	Gly	Pro	Glu	Asp 385	Glu	Gly	Val	Tyr	Gln 390
Суз	Met	Ala	Glu	Asn 395	Glu	Val	Gly	Ser	Ala 400	His	Ala	Val	Val	Gln 405
Leu	Arg	Thr	Ser	Arg 410	Pro	Ser	Ile	Thr	Pro 415	Arg	Leu	Trp	Gln	Asp 420
Ala	Glu	Leu	Ala	Thr 425	Gly	Thr	Pro	Pro	Val 430	Ser	Pro	Ser	Lys	Leu 435
Gly	Asn	Pro	Glu	Gln 440	Met	Leu	Arg	Gly	Gln 445	Pro	Ala	Leu	Pro	Arg 450
Pro	Pro	Thr	Ser	Val 455	Gly	Pro	Ala	Ser	Pro 460	Lys	Cys	Pro	Gly	Glu 465
Lys	Gly	Gln	Gly	Ala 470	Pro	Ala	Glu	Ala	Pro 475	Ile	Ile	Leu	Ser	Ser 480
Pro	Arg	Thr	Ser	Lys 485	Thr	Asp	Ser	Tyr	Glu 490	Leu	Val	Trp	Arg	Pro 495
Arg	His	Glu	Gly	Ser 500	Gly	Arg	Ala	Pro	Ile 505	Leu	Tyr	Tyr	Val	Val 510
Lys	His	Arg	Lys	Gln 515	Val	Thr	Asn	Ser	Ser 520	Asp	Asp	Trp	Thr	Ile 525
Ser	Gly	Ile	Pro	Ala 530	Asn	Gln	His	Arg	Leu 535	Thr	Leu	Thr	Arg	Leu 540
Asp	Pro	Gly	Ser	Leu 545	Tyr	Glu	Val	Glu	Met 550	Ala	Ala	Tyr	Asn	Cys 555
Ala	Gly	Glu	Gly	Gln	Thr	Ala	Met	Val	Thr	Phe	Arg	Thr	Gly	Arg

560 565 570

Arg Pro Lys Pro Glu Ile Met Ala Ser Lys Glu Gln Gln Ile Gln 575 580 585

Arg Asp Asp Pro Gly Ala Ser Pro Gln Ser Ser Ser Gln Pro Asp 590 595 600

His Gly Arg Leu Ser Pro Pro Glu Ala Pro Asp Arg Pro Thr Ile 605 610 615

Ser Thr Ala Ser Glu Thr Ser Val Tyr Val Thr Trp Ile Pro Arg 620 625 630

Gly Asn Gly Gly Phe Pro Ile Gln Ser Phe Arg Val Glu Tyr Lys 635 640 645

Lys Leu Lys Lys Val Gly Asp Trp Ile Leu Ala Thr Ser Ala Ile 650 655 660

Pro Pro Ser Arg Leu Ser Val Glu Ile Thr Gly Leu Glu Lys Gly 665 670 675

Thr Ser Tyr Lys Phe Arg Val Arg Ala Leu Asn Met Leu Gly Glu 680 685 690

Ser Glu Pro Ser Ala Pro Ser Arg Pro Tyr Val Val Ser Gly Tyr 695 700 705

Ser Gly Arg Val Tyr Glu Arg Pro Val Ala Gly Pro Tyr Ile Thr $710 \hspace{1cm} 715 \hspace{1cm} 720$

Phe Thr Asp Ala Val Asn Glu Thr Thr Ile Met Leu Lys Trp Met 725 730 735

Tyr Ile Pro Ala Ser Asn Asn Asn Thr Pro Ile His Gly Phe Tyr 740 745 750

Ile Tyr Tyr Arg Pro Thr Asp Ser Asp Asn Asp Ser Asp Tyr Lys
755 760 765

Lys Asp Met Val Glu Gly Asp Lys Tyr Trp His Ser Ile Ser His 770 775 780'

Leu Gln Pro Glu Thr Ser Tyr Asp Ile Lys Met Gln Cys Phe Asn 785 790 795

Glu Gly Gly Glu Ser Glu Phe Ser Asn Val Met Ile Cys Glu Thr 800 805 810

Lys Ala Arg Lys Ser Ser Gly Gln Pro Gly Arg Leu Pro Pro Pro 815 820 825

Thr Leu Ala Pro Pro Gln Pro Pro Leu Pro Glu Thr Ile Glu Arg 830 835 840

Pro Val Gly Thr Gly Ala Met Val Ala Arg Ser Ser Asp Leu Pro $845 \\ 850 \\ 855$

Tyr Leu Ile Val Gly Val Val Leu Gly Ser Ile Val Leu Ile Ile 860 Val Thr Phe Ile Pro Phe Cys Leu Trp Arg Ala Trp Ser Lys Gln Lys His Thr Thr Asp Leu Gly Phe Pro Arg Ser Ala Leu Pro Pro 890 Ser Cys Pro Tyr Thr Met Val Pro Leu Gly Gly Leu Pro Gly His Gln Ala Ser Gly Gln Pro Tyr Leu Ser Gly Ile Ser Gly Arg Ala 925 Cys Ala Asn Gly Ile His Met Asn Arg Gly Cys Pro Ser Ala Ala Val Gly Tyr Pro Gly Met Lys Pro Gln Gln His Cys Pro Gly Glu Leu Gln Gln Ser Asp Thr Ser Ser Leu Leu Arg Gln Thr His Leu Gly Asn Gly Tyr Asp Pro Gln Ser His Gln Ile Thr Arg Gly Pro Lys Ser Ser Pro Asp Glu Gly Ser Phe Leu Tyr Thr Leu Pro 995 Asp Asp Ser Thr His Gln Leu Leu Gln Pro His His Asp Cys Cys 1010 1015 1020 Gln Arg Gln Glu Gln Pro Ala Ala Val Gly Gln Ser Gly Val Arg 1025 1030 1035 Arg Ala Pro Asp Ser Pro Val Leu Glu Ala Val Trp Asp Pro Pro 1040 1045 1050 Phe His Ser Gly Pro Pro Cys Cys Leu Gly Leu Val Pro Val Glu 1060 ... Glu Val Asp Ser Pro Asp Ser Cys Gln Val Ser Gly Gly Asp Trp 1070 Cys Pro Gln His Pro Val Gly Ala Tyr Val Gly Gln Glu Pro Gly Met Gln Leu Ser Pro Gly Pro Leu Val Arg Val Ser Phe Glu Thr 1100 1105

Pro Pro Leu Thr Ile 1115

<210> 59

<211> 25

<212> DNA

<213> Artificial

```
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
<400> 59
 gggaaacaca gcagtcattg cctgc 25
<210> 60
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-24
<223> Synthetic construct.
<400> 60
 gcacacgtag cctgtcgctg gagc 24
<210> 61
<211> 42
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-42
<223> Synthetic construct.
<400> 61
 caccccaaag cccaggtccg gtacagcgtc aaacaagagt gg 42
<210> 62
<211> 1661
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 678
<223> unknown base
<400> 62
 cgggaggctg ggtcgtcatg atccggaccc cattgtcggc ctctgcccat 50
cgcctgctcc tcccaggctc ccgcggccga cccccgcgca acatgcagcc 100
cacgggccgc gagggttccc gcgcgctcag ccggcggtat ctgcggcgtc 150
 tgctgctcct gctactgctg ctgctgctgc ggcagcccgt aacccgcgcg 200
gagaccacgc cgggcgcccc cagagccctc tccacgctgg gctcccccag 250
cctcttcacc acgccgggtg tccccagcgc cctcactacc ccaggcctca 300
```

ctacgccagg cacccccaaa accctggacc ttcggggtcg cgcgcaggcc 350

ctgatgcgga gtttcccact cgtggacggc cacaatgacc tgccccaggt 400 cctgagacag cgttacaaga atgtgcttca ggatgttaac ctgcgaaatt 450 tcagccatgg tcagaccagc ctggacaggc ttagagacgg cctcgtgggt 500 gcccagttct ggtcagcctc cgtctcatgc cagtcccagg accagactgc 550 cgtgcgcctc gccctggagc agattgacct cattcaccgc atgtgtgcct 600 cctactctga actcgagctt gtgacctcag ctgaaggtct gaacagctct 650 caaaagctgg cctgcctcat tggcgtgnag ggtggtcact cactggacag 700 cagectetet gtgetgegea gtttetatgt getgggggtg egetaeetga 750 cacttacctt cacctgcagt acaccatggg cagagagttc caccaagttc 800 agacaccaca tgtacaccaa cgtcagcgga ttgacaagct ttggtgagaa 850 agtagtagag gagttgaacc gcctgggcat gatgatagat ttgtcctatg 900 catcggacac cttgataaga agggtcctgg aagtgtctca ggctcctgtg 950 atcttctccc actcagctgc cagagctgtg tgtgacaatt tgttgaatgt 1000 tecegatgat atectgeage ttetgaagaa eggtggeate gtgatggtga 1050 cactgtccat gggggtgctg cagtgcaacc tgcttgctaa cgtgtccact 1100 gtggcagatc actttgacca catcagggca gtcattggat ctgagttcat 1150 cgggattggt ggaaattatg acgggactgg ccggttccct caggggctgg 1200 aggatgtgtc cacataccca gtcctgatag aggagttgct gagtcgtasc 1250 tggagcgagg aagagcttca aggtgtcctt cgtggaaacc tgctgcgggt 1300 cttcagacaa gtggaaaagg tgagagagga gagcagggcg cagagccccg 1350 tggaggctga gtttccatat gggcaactga gcacatcctg ccactcccac 1400 ctcgtgcctc agaatggaca ccaggctact catctggagg tgaccaagca 1450 gccaaccaat cgggtcccct ggaggtcctc aaatgcctcc ccataccttg 1500 ttccaggeet tgtggetget gecaceatee caacetteae ecagtggete 1550 tgctgacaca gtcggtcccc gcagaggtca ctgtggcaaa gcctcacaaa 1600 gccccctctc ctagttcatt cacaagcata tgctgagaat aaacatgtta 1650 cacatggaaa a 1661

<210> 63

<211> 487

<212> PRT

<213> Homo sapiens

<220> <221> unsure <222> 196, 386 <223> unknown amino acid														
<400> Met G		Pro	Thr	Gly 5	Arg	Glu	Gly	Ser	Arg 10	Ala	Leu	Ser	Arg	Arg 15
Tyr L	eu P	۱rg.	Arg	Leu 20	Leu	Leu	Leu	Leu	Leu 25	Leu	Leu	Leu	Leu	Arg 30
Gln P	ro V	/al	Thr	Arg 35	Ala	Glu	Thr	Thr	Pro 40	Gly	Ala	Pro	Arg	Ala 45
Leu S	er T	hr	Leu	Gly 50	Ser	Pro	Ser	Leu	Phe 55	Thr	Thr	Pro	Gly	Val 60
Pro S	er A	Ala	Leu	Thr 65	Thr	Pro	Gly	Leu	Thr 70	Thr	Pro	Gly	Thr	Pro 75
Lys T	hr I	.eu	Asp	Leu 80	Arg	Gly	Arg	Ala	Gln 85	Ala	Leu	Met	Arg	Ser 90
Phe P	ro L	eu	Val	Asp 95	Gly	His	Asn	Asp	Leu 100	Pro	Gln	Val	Leu	Arg 105
Gln A	rg T	'yr	Lys	Asn 110	Val	Leu	Gln	Asp	Val 115	Asn	Leu	Arg	Asn	Phe 120
Ser H	is G	ly	Gln	Thr 125	Ser	Leu	Asp	Arg	Leu 130	Arg	Asp	Gly	Leu	Val 135
Gly A	la G	ln	Phe	Trp 140	Ser	Ala	Ser	Val	Ser 145	Cys	Gln	Ser	Gln	Asp 150
Gln T	hr A	la	Val	Arg 155	Leu	Ala	Leu	Glu	Gln 160	Ile	Asp	Leu	Ile	His 165
Arg M	et C	ys	Ala	Ser 170	Tyr	Ser	Glu	Leu	Glu 175	Leu	Val	Thr	Ser	Ala 180
Glu G	ју Г	eu	Asn	Ser 185	Ser	Gln	Lys	Leu	Ala 190	Cys	Leu	Ile	Gly	Val 195
Xaa G	ly G	ly	His	Ser 200	Leu	Asp	Ser	Ser	Leu 205	Ser	Val	Leu	Arg	Ser 210
Phe T	yr V	al	Leu	Gly 215	Val	Arg	Tyr	Leu	Thr 220	Leu	Thr	Phe	Thr	Cys 225
Ser T	hr P	ro	Trp	Ala 230	Glu	Ser	Ser	Thr	Lys 235	Phe	Arg	His	His	Met 240
Tyr Th	hr A	sn	Val	Ser 245	Gly	Leu	Thr	Ser	Phe 250	Gly	Glu	Lys	Val	Val 255
Glu Gl	lu L	eu .	Asn 、	Arg	Leu	Gly	Met	Met	Ile	Asp	Leu	Ser	Tyr	Ala
			,						.71					

Ser Asp Thr Leu Ile Arg Arg Val Leu Glu Val Ser Gln Ala Pro 280 Val Ile Phe Ser His Ser Ala Ala Arg Ala Val Cys Asp Asn Leu 300 Leu Asn Val Pro Asp Asp Ile Leu Gln Leu Leu Lys Asn Gly Gly Ile Val Met Val Thr Leu Ser Met Gly Val Leu Gln Cys Asn Leu Leu Ala Asn Val Ser Thr Val Ala Asp His Phe Asp His Ile Arg Ala Val Ile Gly Ser Glu Phe Ile Gly Ile Gly Gly Asn Tyr Asp Gly Thr Gly Arg Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Xaa Trp Ser Glu Glu Glu Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg Gln Val Glu Lys Val Arg Glu Glu Ser Arg Ala Gln Ser Pro Val Glu Ala Glu Phe Pro Tyr Gly Gln Leu Ser Thr Ser Cys His Ser 425 430 His Leu Val Pro Gln Asn Gly His Gln Ala Thr His Leu Glu Val Thr Lys Gln Pro Thr Asn Arg Val Pro Trp Arg Ser Ser Asn Ala Ser Pro Tyr Leu Val Pro Gly Leu Val Ala Ala Ala Thr Ile Pro

Thr Phe Thr Gln Trp Leu Cys 485

<210> 64

<211> 25

<212> DNA

<213> Artificial

<220>

<221> Artificial sequence

<222> 1-25

<223> Synthetic construct.

<400> 64

```
ccttcacctg cagtacacca tgggc 25
<210> 65
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
<400> 65
gtcacacaca gctctggcag ctgag 25
<210> 66
<211> 47
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-47
<223> Synthetic construct.
<400> 66
ccaagttcag acaccacatg tacaccaacg tcagcggatt gacaagc 47
<210> 67
<211> 1564
<212> DNA
<213> Homo sapiens
<400> 67
tgctaggctc tgtcccacaa tgcacccgag agcaggagct gaaagcctct 50
aacacccaca gatccctcta tgactgcaat gtgaggtgtc cggctttgct 100
ggcccagcaa gcctgataag catgaagctc ttatctttgg tggctgtggt 150
cgggtgtttg ctggtgcccc cagctgaagc caacaagagt tctgaagata 200
tccggtgcaa atgcatctgt ccaccttata gaaacatcag tgggcacatt 250
tacaaccaga atgtatccca gaaggactgc aactgcctgc acqtqqtqqa 300
gcccatgcca gtgcctggcc atgacgtgga ggcctactgc ctgctgtgcg 350
agtgcaggta cgaggagcgc agcaccacca ccatcaaggt catcattgtc 400
atctacctgt ccgtggtggg tgccctgttg ctctacatgg ccttcctgat 450
gctggtggac cctctgatcc gaaagccgga tgcatacact gagcaactgc 500
acaatgagga ggagaatgag gatgctcgct ctatggcagc agctqctqca 550
```

tccctcgggg gaccccgagc aaacacagtc ctggagcgtg tggaaggtgc 600

```
ccagcagcgg tggaagctgc aggtgcagga gcagcggaag acagtcttcg 650
 atcggcacaa gatgctcagc tagatgggct ggtgtggttg ggtcaaggcc 700
 ccaacaccat ggctgccagc ttccaggctg gacaaagcag ggggctactt 750
 ctcccttccc tcggttccag tcttcccttt aaaagcctgt ggcatttttc 800
 ctccttctcc ctaactttag aaatgttgta cttggctatt ttgattaggg 850
 aagagggatg tggtctctga tctctgttgt cttcttgggt ctttggggtt 900
 gaagggaggg ggaaggcagg ccagaaggga atggagacat tcgaggcggc 950
 ctcaggagtg gatgcgatct gtctctcctg gctccactct tgccqccttc 1000
 cagctctgag tcttgggaat gttgttaccc ttggaagata aagctgggtc 1050
 ttcaggaact cagtgtctgg gaggaaagca tggcccagca ttcagcatgt 1100
 gttcctttct gcagtggttc ttatcaccac ctcctccca gccccggcgc 1150
 ctcagcccca gccccagctc cagccctgag gacagctctg atgggagagc 1200
 tgggccccct gagcccactg ggtcttcagg gtgcactgga agctggtgtt 1250
 cgctgtcccc tgtgcacttc tcgcactggg gcatggagtg cccatgcata 1300
 ctctgctgcc ggtcccctca cctgcacttg aggggtctgg gcagtccctc 1350
 ctctccccag tgtccacagt cactgagcca gacggtcggt tggaacatga 1400
gactcgaggc tgagcgtgga tctgaacacc acagcccctg tacttgqqtt 1450
 gcctcttgtc cctgaacttc gttgtaccag tgcatggaga gaaaattttg 1500
 tcctcttgtc ttagagttgt gtgtaaatca aggaagccat cattaaattg 1550
ttttatttct ctca 1564
<210> 68
```

<211> 183

<212> PRT

<213> Homo sapiens

<400> 68

Met Lys Leu Leu Ser Leu Val Ala Val Val Gly Cys Leu Leu Val

Pro Pro Ala Glu Ala Asn Lys Ser Ser Glu Asp Ile Arg Cys Lys

Cys Ile Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn

Gln Asn Val Ser Gln Lys Asp Cys Asn Cys Leu His Val Val Glu 55

Met Leu Ser

<210> 69 <211> 3170 <212> DNA

<213> Homo sapiens

<400> 69
agcgggtctc gcttgggtc cgctaattc tgtcctgagg cgtgagactg 50
agttcatagg gtcctgggtc cccgaaccag gaagggttga gggaacacaa 100
tctgcaagcc cccgcgaccc aagtgagggg ccccgtgttg gggtcctccc 150
tccctttgca ttcccacccc tccgggcttt gcgtcttcct ggggaccccc 200
tcgccgggag atggccgcgt tgatgcggag caaggattcg tcctgctgcc 250
tgctcctact ggccgcggtg ctgatggtgg agagctcaca gatcggcagt 300
tcgcgggcca aactcaactc catcaagtcc tctctgggcg gggagacgcc 350
tggtcaggcc gccaatcgat ctgcgggcat gtaccaagga ctggcattcg 400
gcggcagtaa gaagggcaaa aacctggggc aggcctaccc ttgtagcagt 450
gataaggagt gtgaagttgg gaggtattgc cacagtccc accaaggatc 500
atcggcctgc atggtgtc ggagaaaaaa gaagcgctgc caccgagatg 550
gcatgtgctg ccccagtacc cgctgcaata atggcatctg tatcccagtt 600
actgaaagca tcttaacccc tcacatcccg gctctggatg gtactcggca 650

cagagatcga aaccacggtc attactcaaa ccatgacttg ggatggcaga 700 atctaggaag accacacat aagatgtcac atataaaagg gcatgaagga 750 gacccctgcc tacgatcatc agactgcatt gaagggtttt gctgtgctcg 800 tcatttctgg accaaaatct gcaaaccagt gctccatcag ggggaagtct 850 gtaccaaaca acgcaagaag ggttctcatg ggctggaaat tttccagcgt 900 tgcgactgtg cgaagggcct gtcttgcaaa gtatggaaag atgccaccta 950 ctcctccaaa gccagactcc atgtgtgtca gaaaatttga tcaccattga 1000 ggaacatcat caattgcaga ctgtgaagtt gtgtatttaa tgcattatag 1050 catggtggaa aataaggttc agatgcagaa gaatggctaa aataagaaac 1100 gtgataagaa tatagatgat cacaaaaagg gagaaagaaa acatgaactg 1150 aatagattag aatgggtgac aaatgcagtg cagccagtgt ttccattatg 1200 caacttgtct atgtaaataa tgtacacatt tgtggaaaat gctattatta 1250 agagaacaag cacacagtgg aaattactga tgagtagcat gtgactttcc 1300 aagagtttag gttgtgctgg aggagaggtt tccttcagat tgctgattgc 1350 ttatacaaat aacctacatg ccagatttct attcaacgtt agagtttaac 1400 aaaatactcc tagaataact tgttatacaa taggttctaa aaataaaatt 1450 gctaaacaag aaatgaaaac atggagcatt gttaatttac aacagaaaat 1500 taccttttga tttgtaacac tacttctgct gttcaatcaa gagtcttggt 1550 agataagaaa aaaatcagtc aatatttcca aataattgca aaataatggc 1600 cagttgttta ggaaggcctt taggaagaca aataaataac aaacaaacag 1650 ccacaaatac tttttttca aaattttagt tttacctgta attaataaga 1700 actgatacaa gacaaaaaca gttccttcag attctacgga atgacagtat 1750 atctctcttt atcctatgtg attcctgctc tgaatgcatt atattttcca 1800 aactataccc ataaattgtg actagtaaaa tacttacaca gagcagaatt 1850 ttcacagatg gcaaaaaaat ttaaagatgt ccaatatatg tgggaaaaga 1900 gctaacagag agatcattat ttcttaaaga ttggccataa cctatatttt 1950 gatagaatta gattggtaaa tacatgtatt catacatact ctgtggtaat 2000 agagacttaa gctggatctg tactgcactg gagtaagcaa gaaaattggg 2050 aaaacttttt cgtttgttca ggttttggca acacatagat catatgtctg 2100


```
aggcacaagt tggctgttca tctttgaaac caggggatgc acagtctaaa 2150
tgaatatctg catgggattt gctatcataa tatttactat gcagatgaat 2200
tcagtgtgag gtcctgtgtc cgtactatcc tcaaattatt tattttatag 2250
tgctgagatc ctcaaataat ctcaatttca ggaggtttca caaaatgtac 2300
teetgaagta gacagagtag tgaggtttea ttgeeeteta taagettetg 2350
actagccaat ggcatcatcc aattttcttc ccaaacctct qcaqcatctq 2400
ctttattgcc aaagggctag tttcggtttt ctgcagccat tgcggttaaa 2450
aaatataagt aggataactt gtaaaacctg catattgcta atctatagac 2500
accacagttt ctaaattctt tgaaaccact ttactacttt ttttaaactt 2550
aactcagttc taaatacttt gtctggagca caaaacaata aaaggttatc 2600
ttatagtcgt gactttaaac ttttgtagac cacaattcac tttttagttt 2650
tcttttactt aaatcccatc tgcagtctca aatttaagtt ctcccagtag 2700
agattgagtt tgagcctgta tatctattaa aaatttcaac ttcccacata 2750
tatttactaa gatgattaag acttacattt tctgcacagg tctgcaaaaa 2800
caaaaattat aaactagtcc atccaagaac caaagtttgt ataaacaggt 2850
tgctataagc ttgtgaaatg aaaatggaac atttcaatca aacatttcct 2900
atataacaat tattatattt acaatttggt ttctgcaata tttttcttat 2950
gtccaccctt ttaaaaatta ttatttgaag taatttattt acaggaaatg 3000
ttaatgagat gtattttctt atagagatat ttcttacaga aagctttgta 3050
gcagaatata tttgcagcta ttgactttgt aatttaggaa aaatgtataa 3100
taagataaaa totattaaat ttttctcctc taaaaactga aaaaaaaaa 3150
aaaaaaaaa aaaaaaaaa 3170
```

<210> 70

<211> 259

<212> PRT

<213> Homo sapiens

<400> 70

Met Ala Ala Leu Met Arg Ser Lys Asp Ser Ser Cys Cys Leu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Leu Ala Ala Val Leu Met Val Glu Ser Ser Gln Ile Gly Ser 20 25 30

Ser Arg Ala Lys Leu Asn Ser Ile Lys Ser Ser Leu Gly Gly Glu 35 40 45

```
Thr Pro Gly Gln Ala Ala Asn Arg Ser Ala Gly Met Tyr Gln Gly
                                                          60
Leu Ala Phe Gly Gly Ser Lys Lys Gly Lys Asn Leu Gly Gln Ala
Tyr Pro Cys Ser Ser Asp Lys Glu Cys Glu Val Gly Arg Tyr Cys
His Ser Pro His Gln Gly Ser Ser Ala Cys Met Val Cys Arg Arg
Lys Lys Lys Arg Cys His Arg Asp Gly Met Cys Cys Pro Ser Thr
Arg Cys Asn Asn Gly Ile Cys Ile Pro Val Thr Glu Ser Ile Leu
Thr Pro His Ile Pro Ala Leu Asp Gly Thr Arg His Arg Asp Arg
                                     145
Asn His Gly His Tyr Ser Asn His Asp Leu Gly Trp Gln Asn Leu
Gly Arg Pro His Thr Lys Met Ser His Ile Lys Gly His Glu Gly
                170
Asp Pro Cys Leu Arg Ser Ser Asp Cys Ile Glu Gly Phe Cys Cys
                                     190
Ala Arg His Phe Trp Thr Lys Ile Cys Lys Pro Val Leu His Gln
                                     205
                                                         210
Gly Glu Val Cys Thr Lys Gln Arg Lys Lys Gly Ser His Gly Leu
Glu Ile Phe Gln Arg Cys Asp Cys Ala Lys Gly Leu Ser Cys Lys
Val Trp Lys Asp Ala Thr Tyr Ser Ser Lys Ala Arg Leu His Val
                                    250 ...
Cys Gln Lys Ile
```

_ _

<210> 71

<211> 1809

<212> DNA

<213> Homo sapiens

<400> 71

teteaatetg etgacetegt gateegeetg acettgtaat ceacetacet 50 tggeeteeca aagtgttggg attacaggeg tgageeaceg egeeeggeea 100 acateaegtt tttaaaaatt gatttettea aatteatgge aaatatttee 150 etteeetta aettettatg teagaatgag gaaggatage tgeatttatt 200

B1

tagtcagttt tcattgcata gtaatatttt catgtagtat tttctaagtt 250 atattttagt aattcatatg ttttagatta taggttttaa catacttgtg 300 aaaatacttg atgtgtttta aagccttggg cagaaattct gtattgttga 350 ggatttgttc ttttatcccc cttttaaagt catccgtcct tggctcagga 400 tttggagagc ttgcaccacc aaaaatggca aacatcacca gctcccagat 450 tttggaccag ttgaaagctc cgagtttggg ccagtttacc accaccccaa 500 gtacacagca gaatagtaca agtcacccta caactactac ttcttgggac 550 ctcaagcccc caacatccca gtcctcagtc ctcagtcatc ttgacttcaa 600 atctcaacct gagccatccc cagttcttag ccagttgagc cagcgacaac 650 agcaccagag ccaggcagtc actgttcctc ctcctggttt ggagtccttt 700 ccttcccagg caaaacttcg agaatcaaca cctggagaca gtccctccac 750 tgtgaacaag cttttgcagc ttcccagcac gaccattgaa aatatctctg 800 tgtctgtcca ccagccacag cccaaacaca tcaaacttgc taagcggcgg 850 atacccccag cttctaagat cccagcttct gcagtggaaa tgcctggttc 900 agcagatgtc acaggattaa atgtgcagtt tggggctctg gaatttgggt 950 cagaaccttc tctctctgaa tttggatcag ctccaagcag tgaaaatagt 1000 aatcagattc ccatcagctt gtattcgaag tctttaagtg agcctttgaa 1050 tacatcttta tcaatgacca gtgcagtaca gaactccaca tatacaactt 1100 ccgtcattac ctcctgcagt ctgacaagct catcactgaa ttctgctagt 1150 ccagtagcaa tgtcttcctc ttatgaccag agttctgtgc ataacaggat 1200 cccataccaa agccctgtga gttcatcaga gtcagctçca ggaaccatca 1250 tgaatggaca tggtggtggt cgaagtcagc agacactaga cagtaagtat 1300 agcagcaagc tactcttgtc atggctggtg ccaaccaaac agaggaagag 1350 gatageteae gtgatgtgga aaacaccagt tggtcaatgg ctcattcgtt 1400 aaaaagcagc ccttttgctt ttttgttttt ggaccaggtg ttggctgtgg 1450 tgttattaga aatgtcttaa ccacagcaag aaggaggtgg tggtctcata 1500 ttcttctgcc ctaatcagac tgcaccacaa gtgcagcata cagtatgcat 1550 tttaaagatg cttgggccag gcggggtggc tgatgcccat aatcccagtg 1600 ctttgggggg ccaaggcagg cagattgccc aagctcagga gtttgagacc 1650 accctgggca acatggtgaa actctgtctc tactaaaata cgaaaaacta 1700 gccgggtgtg gtggcggcg gtgcctgtaa tcccagctac ttgggaggct 1750 gaggcacaag aatcgcttga gccagcttgg gctacaaagt gagactccgt 1800 ctgaaaaga 1809

<210> 72

<211> 363

<212> PRT

<213> Homo sapiens

<400> 72

Met Cys Phe Lys Ala Leu Gly Arg Asn Ser Val Leu Leu Arg Ile $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Ser Phe Ile Pro Leu Leu Lys Ser Ser Val Leu Gly Ser Gly 20 25 30

Phe Gly Glu Leu Ala Pro Pro Lys Met Ala Asn Ile Thr Ser Ser 35 40 45

Gln Ile Leu Asp Gln Leu Lys Ala Pro Ser Leu Gly Gln Phe Thr 50 55 60

Thr Thr Pro Ser Thr Gln Gln Asn Ser Thr Ser His Pro Thr Thr
65 70 75

Thr Thr Ser Trp Asp Leu Lys Pro Pro Thr Ser Gln Ser Ser Val 80 85 90

Leu Ser His Leu Asp Phe Lys Ser Gln Pro Glu Pro Ser Pro Val 95 100 105

Leu Ser Gln Leu Ser Gln Arg Gln Gln His Gln Ser Gln Ala Val 110 115 120

Thr Val Pro Pro Gly Leu Glu Ser Phe Pro Ser Gln Ala Lys 125 130 135

Leu Arg Glu Ser Thr Pro Gly Asp Ser Pro Ser Thr Val Asn Lys 140 145 150

Leu Leu Gln Leu Pro Ser Thr Thr Ile Glu Asn Ile Ser Val Ser 155 160 165

Val His Gln Pro Gln Pro Lys His Ile Lys Leu Ala Lys Arg Arg 170 175 180

Ile Pro Pro Ala Ser Lys Ile Pro Ala Ser Ala Val Glu Met Pro 185 190 195

Gly Ser Ala Asp Val Thr Gly Leu Asn Val Gln Phe Gly Ala Leu 200 205 210

Glu Phe Gly Ser Glu Pro Ser Leu Ser Glu Phe Gly Ser Ala Pro 215 220 225

```
Ser Ser Glu Asn Ser Asn Gln Ile Pro Ile Ser Leu Tyr Ser Lys
 Ser Leu Ser Glu Pro Leu Asn Thr Ser Leu Ser Met Thr Ser Ala
                                      250
 Val Gln Asn Ser Thr Tyr Thr Thr Ser Val Ile Thr Ser Cys Ser
                                      265
 Leu Thr Ser Ser Ser Leu Asn Ser Ala Ser Pro Val Ala Met Ser
 Ser Ser Tyr Asp Gln Ser Ser Val His Asn Arg Ile Pro Tyr Gln
 Ser Pro Val Ser Ser Ser Glu Ser Ala Pro Gly Thr Ile Met Asn
 Gly His Gly Gly Gly Arg Ser Gln Gln Thr Leu Asp Ser Lys Tyr
 Ser Ser Lys Leu Leu Ser Trp Leu Val Pro Thr Lys Gln Arg
 Lys Arg Ile Ala His Val Met Trp Lys Thr Pro Val Gly Gln Trp
                                      355
 Leu Ile Arg
<210> 73
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-26
<223> Synthetic construct.
<400> 73
aattcatggc aaatatttcc cttccc 26
<210> 74
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-22
<223> Synthetic construct.
<400>.74
tggtaaactg gcccaaactc gg 22
<210> 75
```

<211> 50

240

255

<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-50
<223> Synthetic construct

<400> 75
 ttaaagtcat ccgtccttgg ctcaggattt ggagagcttg caccaccaaa 50

<210> 76
<211> 1989
<212> DNA
<213> Homo sapiens

<400> 76 gccgagtggg acaaagcctg gggctgggcg ggggccatgg cgctgccatc 50 ccgaatcctg ctttggaaac ttgtgcttct gcagagctct gctgttctcc 100 tgcactcagc ggtggaggag acggacgcgg ggctgtacac ctgcaacctg 150 caccatcact actgccacct ctacgagagc ctggccgtcc gcctggaggt 200 caccgacggc cccccggcca cccccgccta ctgggacggc gagaaggagg 250 tgctggcggt ggcgcgggc gcacccgcgc ttctgacctg cgtgaaccqc 300 gggcacgtgt ggaccgaccg gcacgtggag gaggctcaac aggtggtgca 350 ctgggaccgg cagccgccg gggtcccgca cgaccgcgcg gaccgcctgc 400 tggacctcta cgcgtcgggc gagcgccgcg cctacgggcc ccttttctg 450 cgcgaccgcg tggctgtggg cgcggatgcc tttgagcgcg gtgacttctc 500 actgcgtatc gagccgctgg aggtcgccga cgagggcacc tactcctgcc 550 acctgcacca ccattactgt ggcctgcacg aacgccgcgt cttccacctg 600 acggtcgccg aaccccacgc ggagccgccc ccccggggct ctccgggcaa 650 cggctccagc cacagcggcg ccccaggccc agaccccaca ctggcgcgcg 700 gccacaacgt catcaatgtc atcgtccccg agagccgagc ccacttcttc 750 cagcagctgg gctacgtgct ggccacqctg ctqctcttca tcctqctact 800 ggtcactgtc ctcctggccg cccgcaggcg ccgcggaggc tacgaatact 850 cggaccagaa gtcgggaaag tcaaagggga aggatgttaa cttggcggag 900 ttcgctgtgg ctgcagggga ccagatgctt tacaggagtg aggacatcca 950 gctagattac aaaaacaaca tcctgaagga gagggcggag ctggcccaca 1000 gccccctgcc tgccaagtac atcgacctag acaaagggtt ccggaaggag 1050

aactgcaaat agggaggccc tgggctcctg gctgggccag cagctgcacc 1100 tctcctgtct gtgctcctcg gggcatctcc tgatgctccg gggctcaccc 1150 cccttccagc ggctggtccc gctttcctgg aatttggcct gggcgtatgc 1200 agaggccgcc tccacacccc tcccccaggg gcttggtggc agcatagccc 1250 ccaccctgc ggcctttgct cacgggtggc cctgcccacc cctggcacaa 1300 ccaaaatccc actgatgccc atcatgccct cagacccttc tgggctctgc 1350 ccgctggggg cctgaagaca ttcctggagg acactcccat cagaacctgg 1400 cagccccaaa actggggtca gcctcagggc aggagtccca ctcctccagg 1450 gctctgctcg tccggggctg ggagatgttc ctggaggagg acactcccat 1500 cagaacttgg cagccttgaa gttggggtca gcctcggcag gagtcccact 1550 cctcctgggg tgctgcctgc caccaagagc tcccccacct gtaccaccat 1600 gtgggactcc aggcaccatc tgttctcccc agggacctgc tgacttgaat 1650 gccagccctt gctcctctgt gttgctttgg gccacctggg gctgcacccc 1700 ctgccctttc tctgccccat ccctacccta gccttgctct cagccacctt 1750 gatagtcact gggctccctg tgacttctga ccctgacacc cctcccttgg 1800 actotycoty gyctygagto tagggotygy gotacattty gottotytac 1850 tggctgagga caggggaggg agtgaagttg gtttggggtg gcctgtgttg 1900 ccactctcag caccccacat ttgcatctgc tggtggacct gccaccatca 1950 caataaagtc cccatctgat ttttaaaaaa aaaaaaaaa 1989 <210> 77 <211> 341 <212> PRT <213> Homo sapiens <400> 77 Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val Leu Leu Gln Ser Ser Ala Val Leu Leu His Ser Ala Val Glu Glu Thr Asp

Ala Gly Leu Tyr Thr Cys Asn Leu His His His Tyr Cys His Leu

Tyr Glu Ser Leu Ala Val Arg Leu Glu Val Thr Asp Gly Pro Pro

Ala Thr Pro Ala Tyr Trp Asp Gly Glu Lys Glu Val Leu Ala Val

65

230

Ala Arg Gly Ala Pro Ala Leu Leu Thr Cys Val Asn Arg Gly His Val Trp Thr Asp Arg His Val Glu Glu Ala Gln Gln Val Val His 100 Trp Asp Arg Gln Pro Pro Gly Val Pro His Asp Arg Ala Asp Arg Leu Leu Asp Leu Tyr Ala Ser Gly Glu Arg Arg Ala Tyr Gly Pro Leu Phe Leu Arg Asp Arg Val Ala Val Gly Ala Asp Ala Phe Glu Arg Gly Asp Phe Ser Leu Arg Ile Glu Pro Leu Glu Val Ala Asp Glu Gly Thr Tyr Ser Cys His Leu His His His Tyr Cys Gly Leu His Glu Arg Arg Val Phe His Leu Thr Val Ala Glu Pro His Ala Glu Pro Pro Pro Arg Gly Ser Pro Gly Asn Gly Ser Ser His Ser Gly Ala Pro Gly Pro Asp Pro Thr Leu Ala Arg Gly His Asn Val Ile Asn Val Ile Val Pro Glu Ser Arg Ala His Phe Phe Gln Gln 235 Leu Gly Tyr Val Leu Ala Thr Leu Leu Leu Phe Ile Leu Leu Leu 250 Val Thr Val Leu Leu Ala Ala Arg Arg Arg Gly Gly Tyr Glu 265 Tyr Ser Asp Gln Lys Ser Gly Lys Ser Lys Gly Lys Asp Val Asn 280 .. Leu Ala Glu Phe Ala Val Ala Ala Gly Asp Gln Met Leu Tyr Arg 290 Ser Glu Asp Ile Gln Leu Asp Tyr Lys Asn Asn Ile Leu Lys Glu Arg Ala Glu Leu Ala His Ser Pro Leu Pro Ala Lys Tyr Ile Asp Leu Asp Lys Gly Phe Arg Lys Glu Asn Cys Lys 335

<210> 78

<211> 2243

<212> DNA

<213> Homo sapiens

<400> 78 cgccggaggc agcggcggcg tggcgcagcg gcgacatggc cgttgtctca 50 gaggacgact ttcagcacag ttcaaactcc acctacggaa ccacaagcag 100 cagtetecga getgaccagg aggeactget tgagaagetg etggaccgee 150 cgcccctgg cctgcagagg cccgaggacc gcttctgtgg cacatacatc 200 atcttcttca gcctgggcat tggcagtcta ctgccatgga acttctttat 250 cactgccaag gagtactgga tgttcaaact ccgcaactcc tccaqcccag 300 ccaccgggga ggaccctgag ggctcagaca tcctgaacta ctttgagagc 350 taccttgccg ttgcctccac cgtgccctcc atgctgtgcc tggtggccaa 400 cttcctgctt gtcaacaggg ttgcagtcca catccgtgtc ctggcctcac 450 tgacggtcat cctggccatc ttcatggtga taactgcact ggtgaaggtg 500 gacactteet cetggaceeg tggtttttt geggteacea ttgtetgeat 550 ggtgatcctc agcggtgcct ccactgtctt cagcagcagc atctacggca 600 tgaccggctc ctttcctatg aggaactccc aagcactgat atcaggagga 650 gccatgggcg ggacggtcag cgccgtggcc tcattggtgg acttggctgc 700 atccagtgat gtgaggaaca gcgccctggc cttcttcctg acggccacca 750 tetteetegt getetgeatg ggaetetace tgetgetgte caggetggag 800 tatgccaggt actacatgag gcctgttctt gcggcccatg tgttttctgg 850 tgaagaggag cttccccagg actccctcag tgccccttcg gtggcctcca 900 gattcattga ttcccacaca cccctctcc gccccatcct gaagaagacg 950 gccagcctgg gcttctgtgt cacctacgtc ttcttcatca ccagcctcat 1000 ctaccccgcc gtctgcacca acatcgagtc cctcaacaag ggctcgggct 1050 cactgtggac caccaagttt ttcatccccc tcactacctt cctcctgtac 1100 aactttgctg acctatgtgg ccggcagetc accgcctgga tccaggtgcc 1150 agggcccaac agcaaggcgc teccagggtt egtgeteete eggacetgee 1200 teateceest ettegtgete tgtaactace ageceegegt ceacetgaag 1250 actgtggtet tecagteega tgtgtaeece geacteetea geteeetget 1300 ggggeteage aaeggetace teageaceet ggeeeteete taegggeeta 1350

agattgtgcc cagggagctg gctgaggcca cgggagtggt gatgtccttt 1400

tatgtgtgct tgggcttaac actgggctca gcctgctcta ccctcctggt 1450

gcacctcatc tagaagggag gacacaagga cattggtgct tcagagcctt 1500 tgaagatgag aagagagtgc aggagggctg ggggccatgg aggaaaggcc 1550 taaagtttca cttggggaca gagagcagag cacactcggg cctcatccct 1600 cccaagatgc cagtgagcca cgtccatgcc cattccgtgc aaggcagata 1650 ttccagtcat attaacagaa cactcctgag acagttgaag aagaaatagc 1700 acaaatcagg ggtactccct tcacagctqa tqqttaacat tccaccttct 1750 ttctagccct tcaaagatgc tgccagtgtt cgccctagag ttattacaaa 1800 gccagtgcca aaacccagcc atgggctctt tgcaacctcc cagctgcgct 1850 cattccagct gacagcgaga tgcaagcaaa tgctcagctc tccttaccct 1900 gaaggggtct ccctggaatg gaagtcccct ggcatggtca gtcctcaggc 1950 ccaagactca agtgtgcaca gacccctgtg ttctgcgggt gaacaactgc 2000 ccactaacca gactggaaaa cccagaaaga tgggccttcc atgaatgctt 2050 cattccagag ggaccagagg gcctccctgt gcaagggatc aagcatgtct 2100 ggcctgggtt ttcaaaaaaa gagggatcct catgacctgg tggtctatgg 2150 cctgggtcaa gatgagggtc tttcagtgtt cctgtttaca acatgtcaaa 2200 gccattggtt caagggcgta ataaatactt gcgtattcaa aaa 2243 <210> 79 <211> 475 <212> PRT <213> Homo sapiens <400> 79 Met Ala Val Val Ser Glu Asp Asp Phe Gln His Ser Ser Asn Ser Thr Tyr Gly Thr Thr Ser Ser Leu Arg Ala Asp Gln Glu Ala Leu Leu Glu Lys Leu Leu Asp Arg Pro Pro Pro Gly Leu Gln Arg Pro Glu Asp Arg Phe Cys Gly Thr Tyr Ile Ile Phe Phe Ser Leu Gly Ile Gly Ser Leu Leu Pro Trp Asn Phe Phe Ile Thr Ala Lys

Glu Tyr Trp Met Phe Lys Leu Arg Asn Ser Ser Ser Pro Ala Thr 80 85 90

Gly Glu Asp Pro Glu Gly Ser Asp Ile Leu Asn Tyr Phe Glu Ser 95 100 105

Tyr	Leu	Ala	Val	Ala 110	Ser	Thr	Val	Pro	Ser 115	Met	Leu	Cys	Leu	Val 120
Ala	Asn	Phe	Leu	Leu 125	Val	Asn	Arg	Val	Ala 130	Val	His	Ile	Arg	Val 135
Leu	Ala	Ser	Leu	Thr 140	Val	Ile	Leu	Ala	Ile 145	Phe	Met	Val	Ile	Thr 150
Ala	Leu	Val	Lys	Val 155	Asp	Thr	Ser	Ser	Trp 160	Thr	Arg	Gly	Phe	Phe 165
Ala	Val	Thr	Ile	Val 170	Cys	Met	Val	Ile	Leu 175	Ser	Gly	Ala	Ser	Thr 180
Val	Phe	Ser	Ser	Ser 185	Ile	Tyr	Gly	Met	Thr 190	Gly	Ser	Phe	Pro	Met 195
Arg	Asn	Ser	Gln	Ala 200	Leu	Ile	Ser	Gly	Gly 205	Ala	Met	Gly	Gly	Thr 210
Val	Ser	Ala	Val	Ala 215	Ser	Leu	Val	Asp	Leu 220	Ala	Ala	Ser	Ser	Asp 225
Val	Arg	Asn	Ser	Ala 230	Leu	Ala	Phe	Phe	Leu 235	Thr	Ala	Thr	Ile	Phe 240
Leu	Val	Leu	Cys	Met 245	Gly	Leu	Tyr	Leu	Leu 250	Leu	Ser	Arg	Leu	Glu 255
Tyr	Ala	Arg	Tyr	Tyr 260	Met	Arg	Pro	Val	Leu 265	Ala	Ala	His	Val	Phe 270
Ser	Gly	Glu	Glu	Glu 275	Leu	Pro	Gln	Asp	Ser 280	Leu	Ser	Ala	Pro	Ser 285
Val	Ala	Ser	Arg	Phe 290	Ile	Asp	Ser	His	Thr 295	Pro	Pro	Leu	Arg	Pro 300
Ile	Leu	Lys	Lys	Thr 305	Ala	Ser	Leu	Gly	Phe 310	Cys ''	Val	Thr	Tyr	Val 315
Phe	Phe	Ile	Thr	Ser 320	Leu	Ile	Tyr	Pro	Ala 325	Val	Cys	Thr	Asn	Ile 330
Glu	Ser	Leu	Asn	Lys 335	Gly	Ser	Gly	Ser	Leu 340	Trp	Thr	Thr	Lys	Phe 345
Phe	Ile	Pro	Leu	Thr 350	Thr	Phe	Leu	Leu	Tyr 355	Asn	Phe	Ala	Asp	Leu 360
Cys	Gly	Arg	Gln	Leu 365	Thr	Ala	Trp	Ile	Gln 370	Val	Pro	Gly	Pro	Asn 375
Ser	Lys	Ala	Leu	Pro 380	Gly	Phe	Val	Leu	Leu 385	Arg	Thr	Cys	Leu	Ile 390
Pro	Leu	Phe	Val	Leu	Cys	Asn	Tyr	Gln	Pro	Arg	Val	His	Leu	Lys

395 400 405 Thr Val Val Phe Gln Ser Asp Val Tyr Pro Ala Leu Leu Ser Ser Leu Leu Gly Leu Ser Asn Gly Tyr Leu Ser Thr Leu Ala Leu Leu 430 Tyr Gly Pro Lys Ile Val Pro Arg Glu Leu Ala Glu Ala Thr Gly 445 Val Val Met Ser Phe Tyr Val Cys Leu Gly Leu Thr Leu Gly Ser Ala Cys Ser Thr Leu Leu Val His Leu Ile <210> 80 <211> 22 <212> DNA <213> Artificial <220> <221> Artificial sequence <222> 1-22 <223> Synthetic construct. <400> 80 ttttgcggtc accattgtct gc 22 <210> 81 <211> 23 <212> DNA <213> Homo sapiens <220> <221> Artificial sequence <222> 1-23 <223> Synthetic construct. <400> 81 cgtaggtgac acagaagccc agg 23 <210> 82 <211> 49 <212> DNA <213> Artificial <220> <221> Artificial sequence <222> 1-49 <223> Synthetic construct. tacggcatga ccggctcctt tcctatgagg aactcccagg cactgatat 49 <210> 83

<211> 1844

<212> DNA <213> Homo sapiens

<400> 8	3					
gacagt	ggag	ggcagtggag	aggaccgcgc	tgtcctgctg	tcaccaagag	50
ctggag	jacac	catctcccac	cgagagtcat	ggccccattg	gccctgcacc	100
tcctcg	tcct	cgtccccatc	ctcctcagcc	tggtggcctc	ccaggactgg	150
aaggct	gaac	gcagccaaga	ccccttcgag	aaatgcatgc	aggatcctga	200
ctatga	gcag	ctgctcaagg	tggtgacctg	ggġgctcaat	cggaccctga	250
agcccc	agag	ggtgattgtg	gttggcgctg	gtgtggccgg	gctggtggcc	300
gccaag	gtgc	tcagcgatgc	tggacacaag	gtcaccatcc	tggaggcaga	350
taacag	gatc	gggggccgca	tcttcaccta	ccgggaccag	aacacgggct	400
ggattg	ggga	gctgggagcc	atgcgcatgc	ccagctctca	caggatcctc	450
cacaag	ctct	gccagggcct	ggggctcaac	ctgaccaagt	tcacccagta	500
cgacaa	gaac	acgtggacgg	aggtgcacga	agtgaagctg	cgcaactatg	550
tggtgg	agaa	ggtgcccgag	aagctgggct	acgccttgcg	tccccaggaa	600
aagggc	cact	cgcccgaaga	catctaccag	atggctctca	accaggccct	650
caaaga	cctc	aaggcactgg	gctgcagaaa	ggcgatgaag	aagtttgaaa	700
ggcaca	cgct	cttggaatat	cttctcgggg	aggggaacct	gagccggccg	750
gccgtg	cagc	ttctgggaga	cgtgatgtcc	gaggatggct	tcttctatct	800
cagctt	cgcc	gaggccctcc	gggcccacag	ctgcctcagc	gacagactcc	850
agtaca	gccg	catcgtgggt	ggctgggacc	tgctgccgcg	cgcgctgctg	900
agctcg	ctgt	ccgggcttgt	gctgttgaac	gcgcccgtgg	tggcgatgac	950
ccaggg	accg	cacgatgtgc	acgtgcagat	cgagacctct	ccccggcgc	1000
ggaatc	tgaa	ggtgctgaag	gccgacgtgg	tgctgctgac	ggcgagcgga	1050
ccggcg	gtga	agcgcatcac	cttctcgccg	ccgctgcccc	gccacatgca	1100
ggaggc	gctg	cggaggctgc	actacgtgcc	ggccaccaag	gtgttcctaa	1150
gcttcc	gcag	gcccttctgg	cgcgaggagc	acattgaagg	cggccactca	1200
aacacc	gatc	gcccgtcgcg	catgattttc	tacccgccgc	cgcgcgaggg	1250
cgcgct	gctg	ctggcctcgt	acacgtggtc	ggacgcggcg	gcagcgttcg	1300
ccggct	tgag	ccgggaagag	gcgttgcgct	tggcgctcga	cgacgtggcg	1350

<210> 84

<211> 567

<212> PRT

<213> Homo sapiens

<400> 84

Met Ala Pro Leu Ala Leu His Leu Leu Val Leu Val Pro Ile Leu 1 5 10 15

Leu Ser Leu Val Ala Ser Gln Asp Trp Lys Ala Glu Arg Ser Gln
20 25 30

Asp Pro Phe Glu Lys Cys Met Gln Asp Pro Asp Tyr Glu Gln Leu 35 40 45

Leu Lys Val Val Thr Trp Gly Leu Asn Arg Thr Leu Lys Pro Gln 50 55 60

Arg Val Ile Val Val Gly Ala Gly Val Ala Gly Leu Val Ala Ala 65 70 75

Lys Val Leu Ser Asp Ala Gly His Lys Val Thr Ile Leu Glu Ala 80 85 90

Asp Asn Arg Ile Gly Gly Arg Ile Phe Thr Tyr Arg Asp Gln Asn 95 100 105

Thr Gly Trp Ile Gly Glu Leu Gly Ala Met Arg Met Pro Ser Ser

His Arg Ile Leu His Lys Leu Cys Gln Gly Leu Gly Leu Asn Leu 125 130 135

Thr Lys Phe Thr Gln Tyr Asp Lys Asn Thr Trp Thr Glu Val His 140 145 150

Glu Val Lys Leu Arg Asn Tyr Val Val Glu Lys Val Pro Glu Lys 155 160 165

Leu	Gly	Tyr	Ala	Leu 170	Arg	Pro	Gln	Glu	Lys 175	Gly	His	Ser	Pro	Glu 180
Asp	Ile	Tyr	Gln	Met 185	Ala	Leu	Asn	Gln	Ala 190	Leu	Lys	Asp	Leu	Lys 195
Ala	Leu	Gly	Суз	Arg 200	Lys	Ala	Met	Lys	Lys 205	Phe	Glu	Arg	His	Thr 210
Leu	Leu	Glu	Tyr	Leu 215	Leu	Gly	Glu	Gly	Asn 220	Leu	Ser	Arg	Pro	Ala 225
Val	Gln	Leu	Leu	Gly 230	Asp	Val	Met	Ser	Glu 235	Asp	Gly	Phe	Phe	Tyr 240
Leu	Ser	Phe	Ala	Glu 245	Ala	Leu	Arg	Ala	His 250	Ser	Cys	Leu	Ser	Asp 255
Arg	Leu	Gln	Tyr	Ser 260	Arg	Ile	Val	Gly	Gly 265	Trp	Asp	Leu	Leu	Pro 270
Arg	Ala	Leu	Leu	Ser 275	Ser	Leu	Ser	Gly	Leu [.] 280	Val	Leu	Leu	Asn	Ala 285
Pro	Val	Val	Ala	Met 290	Thr	Gln	Gly	Pro	His 295	Asp	Val	His	Val	Gln 300
Ile	Glu	Thr	Ser	Pro 305	Pro	Ala	Arg	Asn	Leu 310	Lys	Val	Leu	Lys	Ala 315
Asp	Val	Val	Leu	Leu 320	Thr	Ala	Ser	Gly	Pro 325	Ala	Val	Lys	Arg	Ile 330
Thr	Phe	Ser	Pro	Pro 335	Leu	Pro	Arg	His	Met 340	Gln	Glu	Ala	Leu	Arg 345
Arg	Leu	His	Tyr	Val 350	Pro	Ala	Thr	Lys	Val 355	Phe	Leu	Ser	Phe	Arg 360
Arg	Pro	Phe	Trp	Arg 365	Glu	Glu	His	Ile	Glu 370	Gly	Gly	His	Ser	Asn 375
Thr	Asp	Arg	Pro	Ser 380	Arg	Met	Ile	Phe	Tyr 385	Pro	Pro	Pro	Arg	Glu 390
Gly	Ala	Leu	Leu	Leu 395	Ala	Ser	Tyr	Thr	Trp 400	Ser	Asp	Ala	Ala	Ala 405
Ala	Phe	Ala	Gly	Leu 410	Ser	Arg	Glu	Glu	Ala 415	Leu	Arg	Leu	Ala	Leu 420
Asp	Asp	Val	Ala	Ala 425	Leu	His	Gly	Pro	Val 430	Val	Arg	Gln	Leu	Trp 435
Asp	Gly	Thr	Gly	Val 440	Val	Lys	Arg	Trp	Ala 445	Glu	Asp	Gln	His	Ser 450
Gln	Gly	Gly	Phe	Val	Val	Gln	Pro	Pro	Ala	Leu	Trp	Gln	Thr	Glu

Lys Asp Asp Trp Thr Val Pro Tyr Gly Arg Ile Tyr Phe Ala Gly 470 475 480

Glu His Thr Ala Tyr Pro His Gly Trp Val Glu Thr Ala Val Lys 485

Ser Ala Leu Arg Ala Ala Ile Lys Ile Asn Ser Arg Lys Gly Pro 500 505 510

Ala Ser Asp Thr Ala Ser Pro Glu Gly His Ala Ser Asp Met Glu 515 520 525

Gly Gln Gly His Val His Gly Val Ala Ser Ser Pro Ser His Asp 530 535 540

Leu Ala Lys Glu Glu Gly Ser His Pro Pro Val Gln Gly Gln Leu 545 550 555

Ser Leu Gln Asn Thr Thr His Thr Arg Thr Ser His 560 565

<210> 85

<211> 3316

<212> DNA

<213> Homo sapiens

<400> 85

ctgacatggc geettetgce tgeatggacg ctctgaagce accetgtete 100 tggaggaace acgagggagg gaagaaggac agggactegt gtggcaggaa 150 gaactcagag cegggaagce cecattcact agaagcactg gtggcaggaa 150 gaactcagag cegggaagce cecattcact agaagcactg agaggatgegg 200 cecectegca gggtetgaat tteetgetge tgtteacaaa gatgetttt 250 atettaact ttttgttte eccaetteeg acceeggegt tgatetgeat 300 cetgacattt ggagetgea tettettgtg getgateace agaceteaac 350 cegtettace tettettgae etgaacaate agtetggg aattgaggga 400 ggageaegga aggggttte ecagaagaac aatgacetaa eaagttgetg 450 etteteagat gecaagacta tgtatgaggt ttteeaaag ggaceteget 500 tgtetgacaa teggeeegg ttgggataa eccageeetac 550 agatggetat ettacaaca ggtgtetgat agaacacaa ecageeetac 550 agatggetat ettacaaaca ggtgtetgat agageaggag accegggtte 600 etgtetetg eataaaggtt ataaateate accagaccag tttgteggea 650 tetttgetea gaataggeea gagtggatea teteegaatt ggeetagta 700 accgtacetea tggtagetga accetetgtat ggacacettgg gaccagaage 750

catcgtacat attgtcaaca aggctgatat cgccatggtg atctgtgaca 800 caccccaaaa ggcattggtg ctgataggga atgtagagaa aggcttcacc 850 ccgagcctga aggtgatcat ccttatggac ccctttgatg atgacctgaa 900 gcaaagaggg gagaagagtg gaattgagat cttatcccta tatgatgctg 950 agaacctagg caaagagcac ttcagaaaac ctgtgcctcc tagcccagaa 1000 gacctgagcg tcatctgctt caccagtggg accacaggtg accccaaagg 1050 agccatgata acccatcaaa atattgtttc aaatgctgct gcctttctca 1100 aatgtgtgga gcatgcttat gagcccactc ctgatgatgt ggccatatcc 1150 tacctccctc tggctcatat gtttgagagg attgtacagg ctgttgtgta 1200 cagctgtgga gccagagttg gattcttcca aggggatatt cggttgctgg 1250 ctgacgacat gaagactttg aagcccacat tgtttcccgc ggtgcctcga 1300 ctccttaaca ggatctacga taaggtacaa aatgaggcca agacaccctt 1350 gaagaagttc ttgttgaagc tggctgtttc cagtaaattc aaagagcttc 1400 aaaagggtat catcaggcat gatagtttct gggacaagct catctttgca 1450 aagatecagg acageetggg eggaagggtt egtgtaattg teaetggage 1500 tgcccccatg tccacttcag tcatgacatt cttccgggca gcaatgggat 1550 gtcaggtgta tgaagcttat ggtcaaacag aatgcacagg tggctgtaca 1600 tttacattac ctggggactg gacatcaggt cacgttgggg tgcccctggc 1650 ttgcaattac gtgaagctgg aagatgtggc tgacatgaac tactttacag 1700 tgaataatga aggagaggtc tgcatcaagg gtacaaacgt gttcaaagga 1750 tacctgaagg accctgagaa gacacaggaa gccctggaça gtgatggctg 1800 gcttcacaca ggagacattg gtcgctggct cccgaatgga actctgaaga 1850 tcatcgaccg taaaaagaac attttcaagc tggcccaagg agaatacatt 1900 gcaccagaga agatagaaaa tatctacaac aggagtcaac cagtgttaca 1950 aatttttgta cacggggaga gcttacggtc atccttagta ggagtggtgg 2000 ttcctgacac agatgtactt ccctcatttg cagccaagct tggggtgaag 2050 ggctcctttg aggaactgtg ccaaaaccaa gttgtaaggg aagccatttt 2100 agaagacttg cagaaaattg ggaaagaaag tggccttaaa acttttgaac 2150 aggtcaaagc catttttctt catccagagc cattttccat tgaaaatggg 2200

ctcttgacac caacattgaa agcaaagcga ggagagcttt ccaaatactt 2250 tcggacccaa attgacagcc tgtatgagca catccaggat taggataagg 2300 tacttaagta cctgccggcc cactgtgcac tgcttgtgag aaaatggatt 2350 aaaaactatt cttacatttg ttttgccttt cctcctattt ttttttaacc 2400 tgttaaactc taaagccata gcttttgttt tatattgaga catataatgt 2450 gtaaacttag ttcccaaata aatcaatcct gtctttccca tcttcqatqt 2500 tgctaatatt aaggcttcag ggctactttt atcaacatgc ctgtcttcaa 2550 gatcccagtt tatgttctgt gtccttcctc atgatttcca accttaatac 2600 tattagtaac cacaagttca agggtcaaag ggaccctctg tgccttcttc 2650 tttgttttgt gataaacata acttgccaac agtctctatg cttatttaca 2700 tcttctactg ttcaaactaa gagattttta aattctgaaa aactgcttac 2750 aattcatgtt ttctagccac tccacaaacc actaaaattt tagttttagc 2800 ctatcactca tgtcaatcat atctatgaga caaatgtctc cgatgctctt 2850 ctgcgtaaat taaattgtgt actgaaggga aaagtttgat cataccaaac 2900 atttcctaaa ctctctagtt agatatctga cttgggagta ttaaaaattg 2950 ggtctatgac atactgtcca aaaggaatgc tgttcttaaa gcattattta 3000 cagtaggaac tggggagtaa atctgttccc tacagtttgc tgctgagctg, 3050 gaagctgtgg gggaaggagt tgacaggtgg gcccagtgaa cttttccagt 3100 aaatgaagca agcactgaat aaaaacctcc tqaactqqqa acaaagatct 3150 acaggcaagc aagatgccca cacaacaggc ttattttctg tgaaggaacc 3200 aactgatete eeccaecett ggattagagt teetgeteta eettaeeeac 3250 agataacaca tgttgtttct acttgtaaat gtaaagtctt taaaataaac 3300 tattacagat aaaaaa 3316

<210> 86

<211> 739

<212> PRT

<213> Homo sapiens

<400> 86

Met Asp Ala Leu Lys Pro Pro Cys Leu Trp Arg Asn His Glu Arg
1 5 10 15

Gly Lys Lys Asp Arg Asp Ser Cys Gly Arg Lys Asn Ser Glu Pro 20 25 30

														•
Gly	Ser	Pro	His	Ser 35	Leu	Glu	Ala	Leu	Arg 40	Asp	Ala	Ala	Pro	Ser 45
Gln	Gly	Leu	Asn	Phe 50	Leu	Leu	Leu	Phe	Thr 55	Lys	Met	Leu	Phe	Ile 60
Phe	Asn	Phe	Leu	Phe 65	Ser	Pro	Leu	Pro	Thr 70	Pro	Ala	Leu	Ile	Cys 75
Ile	Leu	Thr	Phe	Gly 80	Ala	Ala	Ile	Phe	Leu 85	Trp	Leu	Ile	Thr	Arg 90
Pro	Gln	Pro	Val	Leu 95	Pro	Leu	Leu	Asp	Leu 100	Asn	Asn	Gln	Ser	Val 105
Gly	Ile	Glu	Gly	Gly 110	Ala	Arg	Lys	Gly	Val 115	Ser	Gln	Lys	Asn	Asn 120
Asp	Leu	Thr	Ser	Cys 125	Суз	Phe	Ser	Asp	Ala 130	Lys	Thr	Met	Tyr	Glu 135•
Val	Phe	Gln	Arg	Gly 140	Leu	Ala	Val	Ser	Asp 145	Asn	Gly	Pro	Суѕ	Leu 150
Gly	Tyr	Arg	Lys	Pro 155	Asn	Gln	Pro	Tyr	Arg 160	Trp	Leu	Ser	Tyr	Lys 165
Gln	Val	Ser	Asp	Arg 170	Ala	Glu	Tyr	Leu	Gly 175	Ser	Cys	Leu	Leu	His 180
Lys	Gly	Tyr	Lys	Ser 185	Ser	Pro	Asp	Gln	Phe 190	Val	Gly	Ile	Phe	Ala 195
Gln	Asn	Arg	Pro	Glu 200	Trp	Ile	Ile	Ser	Glu 205	Leu	Ala	Суз	Tyr	Thr 210
Tyr	Ser	Met	Val	Ala 215	Val	Pro	Leu	Tyr	Asp 220	Thr	Leu	Gly	Pro	Glu 225
Ala	Ile	Val	His	Ile 230	Val	Asn	Lys	Ala	Asp 235	Ile	Ala	Met	Val	Ile 240
Суз	Asp	Thr	Pro	Gln 245	Lys	Ala	Leu	Val	Leu 250	Ile	Gly	Asn	Val	Glu 255
Lys	Gly	Phe	Thr	Pro 260	Ser	Leu	Lys	Val	Ile 265	Ile	Leu	Met	Asp	Pro 270
Phe	Asp	Asp	Asp	Leu 275	Lys	Gln	Arg	Gly	Glu 280	Lys	Ser	Gly	Ile	Glu 285
Ile	Leu	Ser	Leu	Tyr 290	Asp	Ala	Glu	Asn	Leu 295	Gly	Lys	Glu	His	Phe 300
Arg	Lys	Pro	Val	Pro 305	Pro	Ser	Pro	Glu	Asp 310	Leu	Ser	Val	Ile	Cys 315
Phe	Thr	Ser	Gly	Thr	Thr	Gly	Asp	Pro	ГÀЗ	Gly	Ala	Met	Ile	Thr

				320					325					330
His	Gln	Asn	Ile	Val 335	Ser	Asn	Ala	Ala	Ala 340	Phe	Leu	Lys	Cys	Val 345
Glu	His	Ala	Tyr	Glu 350	Pro	Thr	Pro	Asp	Asp 355	Val	Ala	Ile	Ser	Tyr 360
Leu	Pro	Leu	Ala	His 365	Met	Phe	Glu	Arg	Ile 370	Val	Gln	Ala	Val	Val 375
Tyr	Ser	Cys	Gly	Ala 380	Arg	Val	Gly	Phe	Phe 385	Gln	Gly	Asp	Ile	Arg 390
Leu	Leu	Ala	Asp	Asp 395	Met	Lys	Thr	Leu	Lys 400	Pro	Thr	Leu	Phe	Pro 405
Ala	Val	Pro	Arg	Leu 410	Leu	Asn	Arg	Ile	Tyr 415	Asp	Lys	Val	Gln	Asn 420
Glu	Ala	Lys	Thr	Pro 425	Leu	Lys	Lys	Phe	Leu 430	Leu	Lys	Leu	Ala	Val 435
Ser	Ser	Lys	Phe	Lys 440	Glu	Leu	Gln	Lys	Gly 445	Ile	Ile	Arg	His	Asp 450
Ser	Phe	Trp	Asp	Lys 455	Leu	Ile	Phe	Ala	Lys 460	Ile	Gln	Asp	Ser	Leu 465
Gly	Gly	Arg	Val	Arg 470	Val	Ile	Val	Thr	Gly 475	Ala	Ala	Pro	Met	Ser 480
Thr	Ser	Val	Met	Thr 485	Phe	Phe	Arg	Ala	Ala 490	Met	Gly	Суѕ	Gln	Val 495
Tyr	Glu	Ala	Tyr	Gly 500	Gln	Thr	Glu	Cys	Thr 505	Gly	Gly	Суѕ	Thr	Phe 510
			Gly	515				*	520					525
Ala	Cys	Asn	Tyr	Val 530	Lys	Leu	Glu	Asp	Val 535	Äla	Asp	Met	Asn	Tyr 540
Phe	Thr	Val	Asn	Asn 545	Glu	Gly	Glu	Val	Cys 550	Ile	Lys	Gly	Thr	Asn 555
Val	Phe	Lys	Gly	Tyr 560	Leu	Lys	Asp	Pro	Glu 565	Lys	Thr	Gln	Glu	Ala 570
Leu	Asp	Ser	Asp	Gly 575	Trp	Leu	His	Thr	Gly 580	Asp	Ile	Gly	Arg	Trp 585
Leu	Pro	Asn	Gly	Thr 590	Leu	Lys	Ile	Ile	Asp 595	Arg	Lys	Lys	Asn	Ile 600
Phe	Lys	Leu	Ala	Gln 605	Gly	Glu	Tyr	Ile	Ala 610	Pro	Glu	Lys	Ile	Glu 615

 Asn
 Ile
 Tyr
 Asn
 Arg 620
 Ser
 Gln
 Pro
 Val
 Leu 625
 Gln
 Ile
 Phe
 Val
 His 630

 Gly
 Glu
 Ser
 Leu
 Asp
 Gly
 Val
 Val
 Val
 Pro
 Asp
 645

 Thr
 Asp
 Val
 Leu
 Pro
 Asp
 Ala
 Ala
 Ala
 Lys
 Leu
 Gly
 Val
 Val
 Val
 Lys
 Gly
 G66

 Ser
 Phe
 Glu
 Asp
 Leu
 Gln
 Lys
 Gln
 Asp
 Glu
 Ala
 Ile
 Gly
 Lys
 Glu
 Ser
 Glu
 Asp
 Ile
 Lys
 Ala
 Ile
 Phe
 Leu
 His
 Fro
 Gly
 Asp
 Ile
 Hys
 Gly
 Gly
 Gly
 Fro
 G

His Ile Gln Asp

<210> 87

<211> 2725

<212> DNA

<213> Homo sapiens

<400> 87
ggaggcggag gccggggag gccgggccga gcagtgaggg ccctagcggg 50
gcccgagcgg ggcccggggc ccctaagcca ttcctgaagt catgggctgg 100
ccaggacatt ggtgacccgc caatccggta tggacgactg gaagcccagc 150
cccctcatca agccctttgg ggctcggaag aagcggagct ggtaccttac 200
ctggaagtat aaactgacaa accagcgggc cctgcggaga ttctgtcaga 250
caggggccgt gcttttcctg ctggtgactg tcattgtcaa tatcaagttg 300
atcctggaca ctcggcgagc catcagtgaa gccaatgaag acccagagcc 350
agagcaagac tatgatgagg ccctaggccg cctggagccc ccacggcgca 400
gaggcagtgg tccccggcgg gtcctggacg tagaggtgta ttcaagtcgc 450
agcaaagtat atgtggcagt ggatggcacc acggtgctgg aggatgaggc 500
ccgggagcag ggccggggca tccatgtcat tgtcctcaac caggccacgg 550
gccacgtgat ggcaaaacgt gtgtttgaca cgtactcacc tcatgaggat 600
gaggccatgg tgctattcct caacatggta gcgcccggcc gagtgctcat 650

ctgcactgtc aaggatgagg gctccttcca cctcaaggac acagccaagg 700 gacacatggg ccttcgtggg acgaaaagga ggtcctgtct tcggggagaa 800 acattetaag teacetgeee tetetteetg gggggaceea gteetgetga 850 agacagatgt gccattgagc tcagcagaag aggcagagtg ccactgggca 900 gacacagage tgaaccgtcg ccgccggcge ttctgcagca aagttgaggg 950 ctatggaagt gtatgcagct gcaaggaccc cacacccatc gagttcagcc 1000 ctgacccact cccagacaac aaggtcctca atgtgcctgt ggctgtcatt 1050 gcagggaacc gacccaatta cctgtacagg atgctgcgct ctctgctttc 1100 agcccagggg gtgtctcctc agatgataac agttttcatt gacggctact 1150 atgaggaacc catggatgtg gtggcactgt ttggtctgag gggcatccag 1200 ' catactecca teageateaa gaatgeeege gtgteteage actacaagge 1250 cagecteact gecaetttea acetgtttee ggaggecaag tttgetgtgg 1300 ttctggaaga ggacctggac attgctgtgg attttttcag tttcctgagc 1350 caatccatcc acctactgga ggaggatgac agcctgtact gcatctctgc 1400 ctggaatgac caggggtatg aacacacggc tgaggaccca gcactactgt 1450 acceptgtgga gaccatgcct gggctgggct gggtgctcag gaggtccttg 1500 tacaaggagg agcttgagcc caagtggcct acaccggaaa agctctggga 1550 ttgggacatg tggatgcgga tgcctgaaca acgccggggc cgagagtgca 1600 tcatccctga cgtttcccga tcctaccact ttggcatcgt cggcctcaac 1650 atgaatgget actttcacga ggeetactte aagaageaca agttcaacae 1700 ggttccaggt gtccagctca ggaatgtgga cagtctgaag aaagaagctt 1750 atgaagtgga agttcacagg ctgctcagtg aggctgaggt tctggaccac 1800 agcaagaacc cttgtgaaga ctctttcctg ccagacacag agggccacac 1850 ctacgtggcc tttattcgaa tggagaaaga tgatgacttc accacctgga 1900 cccagcttgc caagtgcctc catatctggg acctggatgt gcgtggcaac 1950 catcggggcc tgtggagatt gtttcggaag aagaaccact tcctggtggt 2000 gggggtcccg gcttcccct actcagtgaa gaagccaccc tcagtcaccc 2050 caattttcct ggagccaccc ccaaaggagg agggagcccc aggagcccca 2100

<210> 88

<211> 660

<212> PRT

<213> Homo sapiens

<400> 88

Met Asp Asp Trp Lys Pro Ser Pro Leu Ile Lys Pro Phe Gly Ala $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Arg Lys Lys Arg Ser Trp Tyr Leu Thr Trp Lys Tyr Lys Leu Thr 20 25 30

Asn Gln Arg Ala Leu Arg Arg Phe Cys Gln Thr Gly Ala Val Leu 35 40 45

Phe Leu Leu Val Thr Val Ile Val Asn Ile Lys Leu Ile Leu Asp 50 55 60

Thr Arg Arg Ala Ile Ser Glu Ala Asn Glu Asp Pro Glu Pro Glu
65 70 75

Gln Asp Tyr Asp Glu Ala Leu Gly Arg Leu Glu Pro Pro Arg Arg 80 85 90

Arg Gly Ser Gly Pro Arg Arg Val Leu Asp Val Glu Val Tyr Ser 95 100 105

Ser Arg Ser Lys Val Tyr Val Ala Val Asp Gly Thr Thr Val Leu 110 115 120

Glu Asp Glu Ala Arg Glu Gln Gly Arg Gly Ile His Val Ile Val 125 130 135

Leu Asn Gln Ala Thr Gly His Val Met Ala Lys Arg Val Phe Asp Thr Tyr Ser Pro His Glu Asp Glu Ala Met Val Leu Phe Leu Asn Met Val Ala Pro Gly Arg Val Leu Ile Cys Thr Val Lys Asp Glu Gly Ser Phe His Leu Lys Asp Thr Ala Lys Ala Leu Leu Arg Ser 185 Leu Gly Ser Gln Ala Gly Pro Ala Leu Gly Trp Arg Asp Thr Trp Ala Phe Val Gly Arg Lys Gly Gly Pro Val Phe Gly Glu Lys His Ser Lys Ser Pro Ala Leu Ser Ser Trp Gly Asp Pro Val Leu Leu Lys Thr Asp Val Pro Leu Ser Ser Ala Glu Glu Ala Glu Cys His Trp Ala Asp Thr Glu Leu Asn Arg Arg Arg Arg Phe Cys Ser Lys Val Glu Gly Tyr Gly Ser Val Cys Ser Cys Lys Asp Pro Thr Pro Ile Glu Phe Ser Pro Asp Pro Leu Pro Asp Asn Lys Val Leu Asn Val Pro Val Ala Val Ile Ala Gly Asn Arg Pro Asn Tyr Leu Tyr Arg Met Leu Arg Ser Leu Leu Ser Ala Gln Gly Val Ser Pro 320 Gln Met Ile Thr Val Phe Ile Asp Gly Tyr Tyr Glu Glu Pro Met 335 Asp Val Val Ala Leu Phe Gly Leu Arg Gly Ile Gln His Thr Pro 350 355 Ile Ser Ile Lys Asn Ala Arg Val Ser Gln His Tyr Lys Ala Ser 365 Leu Thr Ala Thr Phe Asn Leu Phe Pro Glu Ala Lys Phe Ala Val Val Leu Glu Glu Asp Leu Asp Ile Ala Val Asp Phe Phe Ser Phe Leu Ser Gln Ser Ile His Leu Leu Glu Glu Asp Asp Ser Leu Tyr 410 420 Cys Ile Ser Ala Trp Asn Asp Gln Gly Tyr Glu His Thr Ala Glu

01

425 430 435 Asp Pro Ala Leu Leu Tyr Arg Val Glu Thr Met Pro Gly Leu Gly 450 Trp Val Leu Arg Arg Ser Leu Tyr Lys Glu Glu Leu Glu Pro Lys Trp Pro Thr Pro Glu Lys Leu Trp Asp Trp Asp Met Trp Met Arg Met Pro Glu Gln Arg Arg Gly Arg Glu Cys Ile Ile Pro Asp Val Ser Arg Ser Tyr His Phe Gly Ile Val Gly Leu Ásn Met Asn Gly 505 Tyr Phe His Glu Ala Tyr Phe Lys Lys His Lys Phe Asn Thr Val Pro Gly Val Gln Leu Arg Asn Val Asp Ser Leu Lys Lys Glu Ala Tyr Glu Val Glu Val His Arg Leu Leu Ser Glu Ala Glu Val Leu Asp His Ser Lys Asn Pro Cys Glu Asp Ser Phe Leu Pro Asp Thr 560 565 Glu Gly His Thr Tyr Val Ala Phe Ile Arg Met Glu Lys Asp Asp 575 580 Asp Phe Thr Trp Thr Gln Leu Ala Lys Cys Leu His Ile Trp 590 .595600 Asp Leu Asp Val Arg Gly Asn His Arg Gly Leu Trp Arg Leu Phe Arg Lys Lys Asn His Phe Leu Val Val Gly Val Pro Ala Ser Pro Tyr Ser Val Lys Lys Pro Pro Ser Val Thr Pro Ile Phe Leu Glu Pro Pro Pro Lys Glu Glu Gly Ala Pro Gly Ala Pro Glu Gln Thr

<210> 89

<211> 25

<212> DNA

<213> Artificial

<220>

<221> Artificial sequence

<222> 1-25

<223> Synthetic construct.

<400> 89

```
gatggcaaaa cgtgtgtttg acacg 25
<210> 90
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-22
<223> Synthetic construct.
<400> 90
 cctcaaccag gccacgggcc ac 22
<210> 91
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-24
<223> Synthetic construct.
<400> 91
 cccaggcaga gatgcagtac aggc 24
<210> 92
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-26
<223> Synthetic construct.
<400> 92
 cctccagtag gtggatggat tggctc 26
<210> 93
<211> 47
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-47
<223> Synthetic construct.
ctcacctcat gaggatgagg ccatggtgct attcctcaac atggtag 47
<210> 94
<211> 3037
<212> DNA
<213> Homo sapiens
```

<400> 94 cggacgcgtg ggctgctggt gggaaggcct aaagaactgg aaagcccact 50 ctcttggaac caccacact gtttaaagaa cctaagcacc atttaaagcc 100 actggaaatt tgttgtctag tggttgtggg tgaataaagg agggcagaat 150 ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 200 gttacgtggc cggaatcatt cccttggctg ttaatttctc agaggaacga 250 ctgaagctgg tgactgtttt gggtgctggc cttctctgtg gaactgctct 300 ggcagtcatc gtgcctgaag gagtacatgc cctttatgaa gatattcttg 350 agggaaaaca ccaccaagca agtgaaacac ataatgtgat tgcatcagac 400 aaagcagcag aaaaatcagt tgtccatgaa catgagcaca gccacgacca 450 cacacagety catgeetata ttgqtqtttc ceteqttetq qqcttcqttt 500 tcatgttgct ggtggaccag attggtaact cccatgtgca ttctactgac 550 gatccagaag cagcaaggtc tagcaattcc aaaatcacca ccacgctggg 600 tctggttgtc catgctgcag ctgatggtgt tgctttggga gcagcagcat 650 ctacttcaca gaccagtgtc cagttaattg tgtttgtggc aatcatgcta 700 cataaggcac cagctgcttt tggactggtt tccttcttga tgcatgctgg 750 cttagagcgg aatcgaatca gaaagcactt gctggtcttt gcattggcag 800 caccagttat gtccatggtg acatacttag gactgagtaa gagcagtaaa 850 gaagcccttt cagaggtgaa cgccacggga gtggccatgc ttttctctgc 900 cgggacattt ctttatgttg ccacagtaca tgtcctccct gaggtgggcg 950 gaatagggca cagccacaag cccgatgcca cgggagggag aggcctcagc 1000 cgcctggaag tggcagccct ggttctgggt tgcctcatcc ctctcatcct 1050 gtcagtagga caccagcatt aaatgttcaa ggtccagcct tggtccaggg 1100 ccgtttgcca tccagtgaga acagccggca cgtgacagct actcacttcc 1150 tcagtctctt gtctcacctt gcgcatctct acatgtattc ctagagtcca 1200 gaggggaggt gaggttaaaa cctgagtaat ggaaaagctt ttagagtaga 1250 aacacattta cgttgcagtt agctatagac atcccattgt gttatctttt 1300 aaaaggccct tgacattttg cgttttaata tttctcttaa ccctattctc 1350 agggaagatg gaatttagtt ttaaggaaaa gaggagaact tcatactcac 1400 aatgaaatag tgattatgaa aatacagtgt tctgtaatta agctatgtct 1450

ctttcttctt agtttagagg ctctgctact ttatccattg atttttaaca 1500 tggttcccac catgtaagac tggtgcttta gcatctatgc cacatgcgtt 1550 gatggaaggt catagcaccc actcacttag atgctaaagg tgattctagt 1600 taatctggga ttagggtcag gaaaatgata gcaagacaca ttgaaagctc 1650 tctttatact caaaagagat atccattgaa aagggatgtc tagagggatt 1700 taaacagctc ctttggcacg tgcctctctg aatccagcct gccattccat 1750 caaatggagc aggagggtg ggaggagctt ctaaagaggt gactggtatt 1800 ttgtagcatt ccttgtcaag ttctcctttg cagaatacct gtctccacat 1850 tcctagagag gagccaagtt ctagtagttt cagttctagg ctttccttca 1900 agaacagtca gatcacaaag tgtctttgga aattaaggga tattaaattt 1950 taagtgattt ttggatggtt attgatatct ttgtagtagc tttttttaaa 2000 agactaccaa aatgtatggt tgtccttttt ttttgttttt tttttttta 2050 attatttctc ttagcagatc agcaatccct ctagggacct aaatactagg 2100 tcagctttgg cgacactgtg tcttctcaca taaccacctg tagcaagatg 2150 gatcataaat gagaagtgtt tgcctattga tttaaagctt attggaatca 2200 tgtctcttgt ctcttcgtct tttctttgct tttcttctaa cttttccctc 2250 tagectetee tegecaeaat ttgetgetta etgetggtgt taatatttgt 2300 gtgggatgaa ttcttatcag gacaaccact tctcgaactg taataatgaa 2350 gataataata totttattot ttatoocott caaagaaatt acotttgtgt 2400 caaatgccgc tttgttgagc ccttaaaata ccacctcctc atgtgtaaat 2450 tgacacaatc actaatctgg taatttaaac aattgagata gcaaaagtgt 2500 ttaacagact aggataattt ttttttcata tttgccaaaa tttttgtaaa 2550 ccctgtcttg tcaaataagt gtataatatt gtattattaa tttatttta 2600 ctttctatac catttcaaaa cacattacac taagggggaa ccaagactag 2650 tttcttcagg gcagtggacg tagtagtttg taaaaacgtt ttctatgacg 2700 cataagctag catgcctatg atttatttcc ttcatgaatt tgtcactgga 2750 tcagcagctg tggaaataaa gcttgtgagc cctctgctgg ccacagtgag 2800 gaaagtagca caaataggat acagttgtat gtagtcattg gcaacaattg 2850 catacaattt tactaccaag agaaggtata gtatggaaag tccaaatgac 2900

<210> 95

<211> 307

<212> PRT

<213> Homo sapiens

<400> 95

Met Asp Asp Phe Ile Ser Ile Ser Leu Leu Ser Leu Ala Met Leu 1 5 10 15

Val Gly Cys Tyr Val Ala Gly Ile Ile Pro Leu Ala Val Asn Phe 20 25 30

Ser Glu Glu Arg Leu Lys Leu Val Thr Val Leu Gly Ala Gly Leu 35 40 45

Leu Cys Gly Thr Ala Leu Ala Val Ile Val Pro Glu Gly Val His 50 55 60

Glu Thr His Asn Val Ile Ala Ser Asp Lys Ala Ala Glu Lys Ser 80 85 90

Val Val His Glu His Glu His Ser His Asp His Thr Gln Leu His 95 100 105

Ala Tyr Ile Gly Val Ser Leu Val Leu Gly Phe Val Phe Met Leu 110 115 120

Leu Val Asp Gln Ile Gly Asn Ser His Val His Ser Thr Asp Asp 125 130 135

Pro Glu Ala Arg Ser Ser Asn Ser Lys Ile Thr Thr Leu 140 145 150

Gly Leu Val Val His Ala Ala Ala Asp Gly Val Ala Leu Gly Ala 155 160 . 165

Ala Ala Ser Thr Ser Gln Thr Ser Val Gln Leu Ile Val Phe Val 170 175 180

Ala Ile Met Leu His Lys Ala Pro Ala Ala Phe Gly Leu Val Ser 185 190 195

Phe Leu Met His Ala Gly Leu Glu Arg Asn Arg Ile Arg Lys His 200 205 210

Leu Leu Val Phe Ala Leu Ala Ala Pro Val Met Ser Met Val Thr 215 220 225

Tyr Leu Gly Leu Ser Lys Ser Ser Lys Glu Ala Leu Ser Glu Val

```
230
                                       235
                                                           240
 Asn Ala Thr Gly Val Ala Met Leu Phe Ser Ala Gly Thr Phe Leu
                                       250
 Tyr Val Ala Thr Val His Val Leu Pro Glu Val Gly Gly Ile Gly
                                      265
                                                           270
 His Ser His Lys Pro Asp Ala Thr Gly Gly Arg Gly Leu Ser Arg
                                                           285
 Leu Glu Val Ala Ala Leu Val Leu Gly Cys Leu Ile Pro Leu Ile
 Leu Ser Val Gly His Gln His
                 305
<210> 96
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
<400> 96
 gttgtgggtg aataaaggag ggcag 25
<210> 97
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.
<400> 97
 ctgtgctcat gttcatggac aactg 25
<210> 98
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial sequence
<222> 1-50
<223> Synthetic construct.
ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 50
<210> 99
```

<211> 1429

<212> DNA <213> Homo sapiens

<400> 99

gctcgaggcc ggcggcggcg ggagagcgac ccgggcggcc tcgtagcggg 50. gccccggatc cccgagtggc ggccggagcc tcgaaaagag attctcagcg 100 ctgattttga gatgatgggc ttgggaaacg ggcgtcgcag catgaagtcg 150 ccgccctcg tgctggccgc cctggtggcc tgcatcatcg tcttgggctt 200 caactactgg attgcgagct cccggagcgt ggacctccag acacggatca 250 tggagctgga aggcagggtc cgcagggcgg ctgcagagag aggcgccgtg 300 gagctgaaga agaacgagtt ccagggagag ctggagaagc agcgggagca 350 gcttgacaaa atccagtcca gccacaactt ccagctggag agcgtcaaca 400 agctgtacca ggacgaaaag gcggttttgg tgaataacat caccacaggt 450 gagaggetea teegagtget geaagaceag ttaaagaeee tgeagaggaa 500 ttacggcagg ctgcagcagg atgtcctcca gtttcagaag aaccagacca 550 acctggagag gaagttetee tacgaeetga geeagtgeat caatcagatg 600 aaggaggtga aggaacagtg tgaggagcga atagaagagg tcaccaaaaa 650 ggggaatgaa gctgtagctt ccagagacct gagtgaaaac aacgaccaga 700 gacagcagct ccaagccctc agtgagcctc agcccaggct gcaggcagca 750 ggcctgccac acacagaggt gccacaaggg aagggaaacg tgcttggtaa 800 cagcaagtcc cagacaccag cccccagttc cgaagtggtt ttggattcaa 850 agagacaagt tgagaaagag gaaaccaatg agatccaggt ggtgaatgag 900 gagcctcaga gggacaggct gccgcaggag ccaggccggg agcaggtggt 950 ggaagacaga cctgtaggtg gaagaggctt cgggggagcc ggagaactgg 1000 gccagacccc acaggtgcag gctgccctgt cagtgagcca ggaaaatcca 1050 gagatggagg gccctgagcg agaccagctt gtcatccccg acggacagga 1100 ggaggagcag gaagctgccg gggaagggag aaaccagcag aaactgagag 1150 gagaagatga ctacaacatg gatgaaaatg aagcagaatc tgagacagac 1200 aagcaagcag ccctggcagg gaatgacaga aacatagatg tttttaatgt 1250 tgaagatcag aaaagagaca ccataaattt acttgatcag cgtgaaaagc 1300 ggaatcatac actctgaatt gaactggaat cacatatttc acaacagggc 1350

<210> 100

<211> 401

<212> PRT

<213> Homo sapiens

<400> 100

Met Met Gly Leu Gly Asn Gly Arg Arg Ser Met Lys Ser Pro Pro 1 5 10 15

Leu Val Leu Ala Ala Leu Val Ala Cys Ile Ile Val Leu Gly Phe
20 25 30

Asn Tyr Trp Ile Ala Ser Ser Arg Ser Val Asp Leu Gln Thr Arg 35 40 45

Ile Met Glu Leu Glu Gly Arg Val Arg Arg Ala Ala Ala Glu Arg 50 55 60

Gly Ala Val Glu Leu Lys Lys Asn Glu Phe Gln Gly Glu Leu Glu
65 70 75

Lys Gln Arg Glu Gln Leu Asp Lys Ile Gln Ser Ser His Asn Phe 80 85 90

Gln Leu Glu Ser Val Asn Lys Leu Tyr Gln Asp Glu Lys Ala Val 95 100 105

Leu Val Asn Asn Ile Thr Thr Gly Glu Arg Leu Ile Arg Val Leu 110 115 120

Gln Asp Gln Leu Lys Thr Leu Gln Arg Asn Tyr Gly Arg Leu Gln 125 130 135

Gln Asp Val Leu Gln Phe Gln Lys Asn Gln Thr Asn Leu Glu Arg • 140 145 150

Lys Phe Ser Tyr Asp Leu Ser Gln Cys Ile Asn Gln Met Lys Glu 155 160 165

Val Lys Glu Gln Cys Glu Glu Arg Ile Glu Glu Val Thr Lys Lys 170 175 180

Gly Asn Glu Ala Val Ala Ser Arg Asp Leu Ser Glu Asn Asn Asp 185 190 195

Gln Arg Gln Gln Leu Gln Ala Leu Ser Glu Pro Gln Pro Arg Leu 200 205 210

Gln Ala Ala Gly Leu Pro His Thr Glu Val Pro Gln Gly Lys Gly 215 220 225

Asn Val Leu Gly Asn Ser Lys Ser Gln Thr Pro Ala Pro Ser Ser 230 235 240


```
Glu Val Val Leu Asp 245 Ser Lys Arg Gln Val Glu Lys Glu Glu Thr 255

Asn Glu Ile Gln Val 260 Val Asn Glu Glu Pro 265 Gln Arg Asp Arg Leu 270

Pro Gln Glu Pro Gly 275 Arg Glu Gln Val Val 280 Glu Asp Arg Pro Val 285

Gly Gly Arg Gly Phe 290 Gly Ala Gly Ala Gly Glu Leu Gly Gln Thr Pro 300

Gln Val Gln Ala Ala Leu Ser Val Ser Gln Glu Asn Pro Glu Met 315

Glu Gly Pro Glu Arg Asp Gln Leu Val Ile Pro Asp Gly Gln Glu 330

Glu Glu Glu Gln Ala Ala Gly Glu Gly Arg Asn Gln Gln Lys Leu 345

Arg Gly Glu Asp Asp Tyr Asn Met Asp Glu Asn Glu Ala Glu Ser 360

Glu Thr Asp Lys Gln Ala Ala Leu Ala Leu Ala Gly Arg Asn Asp Arg Asn Ile 375

Asp Val Phe Asn Val 380 Glu Asp Gln Lys Arg Asn His Thr Leu 400
```

<210> 101

<211> 3671

<212> DNA

<213> Homo sapiens

<400> 101

ggatgcagaa agcctcagtg ttgctcttcc tggcctgggt ctgcttcctc 50
ttctacgctg gcattgccct cttcaccagt ggcttcctgc tcacccgttt 100
ggagctcacc aaccatagca gctgccaaga gcccccaggc cctgggtccc 150
tgccatgggg gagccaaggg aaacctgggg cctgctggat ggcttcccga 200
ttttcgcggg ttgtgttggt gctgatagat gctctgcgat ttgacttcgc 250
ccagccccag cattcacacg tgcctagaga gcctcctgtc tccctaccct 300
tcctgggcaa actaagctcc ttgcagaga tcctggagat tcagcccac 350
catgcccggc tctaccgatc tcaggttgac cctcctacca ccaccatgca 400
gcgcctcaag gccctcacca ctggctcact gcctacctt attgatgctg 450
gtagtaactt cgccagccac gccatagtgg aagacaatct cattaagcag 500

agaaacttag ccagatggac caggtgatcc agggacttgt ggagcgtctg 800 gagaatgaca cactgctggt agtggctggg gaccatggga tgaccacaaa 850 tggagaccat ggaggggaca gtgagctgga ggtctcagct gctctcttc 900 tgtatagccc cacagcagtc ttccccagca ccccaccaga ggagccagag 950 gtgattcctc aagttagcct tgtgcccacg ctggccctgc tgctgggcct 1000 gcccatccca tttgggaata tcggggaagt gatggctgag ctattctcag 1050 ggggtgagga ctcccagcc cactcctct ctttagccca agcctcagct 1100 ctccatcta atgctcagca ggtgtcccga ttcttcata cctactcagc 1150 tgctactcag gaccttcaag ctaaggagct tcatcagcaggg cacagggg 1250 gctgaggcag cactgccgac tgtgattgct gagctgcag agttcctgcg 1300 gggagctcgg gccatgtga tcgagtctg ggctcgttt tctctggtcc 1350

ctcaccagtg caggaaggcg tgtagtcttc atgggagatg atacctggaa 550

agacetttte cetggtgett tetecaaage tttettette ceatcettea 600

atgtcagaga cctagacaca gtggacaatg gcatcctgga acacctctac 650

cccaccatgg acagtggtga atgggacgtg ctgattgctc acttcctggg 700

tgtggaccac tgtggccaca agcatggccc tcaccaccct gaaatggcca 750

gcatggcggg gggtactgct ctcttggctg cttcctgctt tatctgcctg 1400

ctggcatctc agtgggcaat atccccaggc tttccattct gccctctact 1450

cctgacacct gtggcctggg gcctggttgg ggccatagcg tatgctggac 1500

tcctgggaac tattgagctg aagctagatc tagtgcttct aggggctgtg 1550

gctgcagtga gctcattcct cccttttctg tggaaagcct gggctggctg 1600

ggggtccaag aggcccctgg caaccctgtt tcccatccct gggcccgtcc 1650

tgttactcct gctgtttcgc ttggctgtgt tcttctctga tagttttgtt 1700

gtagetgagg ceagggeeae eccetteett ttgggeteat teateetget 1750

cctggttgtc cagcttcact gggagggcca gctgcttcca cctaagctac 1800

tcacaatgcc ccgccttggc acttcagcca caacaaaccc cccacggcac 1850

aatggtgcat atgccctgag gcttggaatt gggttgcttt tatgtacaag 1900

gctagctggg ctttttcatc gttgccctga agagacacct gtttgccact 1950

cctctccctg gctgagtcct ctggcatcca tggtgggtgg tcgagccaag 2000 aatttatggt atggagcttg tgtggcggcg ctggtggccc tgttagctgc 2050 cgtgcgcttg tggcttcgcc gctatggtaa tctcaagagc cccgagccac 2100 ccatgctctt tgtgcgctgg ggactgcccc taatggcatt gggtactgct 2150 gcctactggg cattggcgtc gggggcagat gaggctcccc cccgtctccg 2200 ggtcctggtc tctggggcat ccatggtgct gcctcgggct gtagcagggc 2250 tggctgcttc agggctcgcg ctgctgctct ggaagcctgt gacagtgctg 2300 gtgaaggctg gggcaggcgc tccaaggacc aggactgtcc tcactccctt 2350 ctcaggcccc cccacttctc aagctgactt ggattatgtg gtccctcaaa 2400 tctaccgaca catgcaggag gagttccggg gccggttaga gaggaccaaa 2450 tetcagggte ecetgactgt ggetgettat cagttgggga gtgtetaete 2500 agctgctatg gtcacagccc tcaccctgtt ggccttccca cttctgctgt 2550 tgcatgcgga gcgcatcagc cttgtgttcc tgcttctgtt tctgcagagc 2600 ttccttctcc tacatctgct tgctgctggg atacccgtca ccacccctgg 2650 tccttttact gtgccatggc aggcagtctc ggcttgggcc ctcatggcca 2700 cacagacett etaeteeaca ggeeaceage etgtetttee ageeateeat 2750 tggcatgcag ccttcgtggg attcccagag ggtcatggct cctgtacttg 2800 gctgcctgct ttgctagtgg gagccaacac ctttgcctcc cacctcctct 2850 ttgcagtagg ttgcccactg ctcctgctct ggcctttcct gtgtgagagt 2900 caagggctgc ggaagagaca gcagcccca gggaatgaag ctgatgccag 2950 agtcagaccc gaggaggaag aggagccact gatggagatg cggctccggg 3000 atgcgcctca gcacttctat gcagcactgc tgcagctggg cctcaagtac 3050 ctctttatcc ttggtattca gattctggcc tgtgccttgg cagcctccat 3100 ccttcgcagg catctcatgg tctggaaagt gtttgcccct aagttcatat 3150 ttgaggctgt gggcttcatt gtgagcagcg tgggacttct cctgggcata 3200 gctttggtga tgagagtgga tggtgctgtg agctcctggt tcaggcagct 3250 atttetggee cageagaggt ageetagtet gtgattaetg geaettgget 3300 acagagagtg ctggagaaca gtgtagcctg gcctgtacag gtactggatg 3350 atctgcaaga caggeteage catactetta etateatgea geeaggggee 3400

getgacatet aggaetteat tattetataa tteaggaeca eagtggagta 3450 tgateectaa eteetgattt ggatgeatet gagggaeaag gggggeggte 3500 teegaagtgg aataaaatag geegggegtg gtgaettgea eetataatee 3550 eageaetttg ggaggeagag gtgggaggat tgettggtee eaggagttea 3600 agaeeageet gtggaacata acaagaeeee gtetetaeta tttaaaaaaa 3650 agtgtaataa aatgataata t 3671

<210> 102

<211> 1089

<212> PRT

<213> Homo sapiens

<400> 102

Met Gln Lys Ala Ser Val Leu Leu Phe Leu Ala Trp Val Cys Phe 1 5 10 15

Leu Phe Tyr Ala Gly Ile Ala Leu Phe Thr Ser Gly Phe Leu Leu 20 25 30

Thr Arg Leu Glu Leu Thr Asn His Ser Ser Cys Gln Glu Pro Pro 35 40 45

Gly Pro Gly Ser Leu Pro Trp Gly Ser Gln Gly Lys Pro Gly Ala
50 55 60

Cys Trp Met Ala Ser Arg Phe Ser Arg Val Val Leu Val Leu Ile 65 70 75

Asp Ala Leu Arg Phe Asp Phe Ala Gln Pro Gln His Ser His Val 80 85 90

Pro Arg Glu Pro Pro Val Ser Leu Pro Phe Leu Gly Lys Leu Ser 95 100 105

Ser Leu Gln Arg Ile Leu Glu Ile Gln Pro His His Ala Arg Leu 110 115 ... 120

Tyr Arg Ser Gln Val Asp Pro Pro Thr Thr Met Gln Arg Leu 125 130 135

Lys Ala Leu Thr Thr Gly Ser Leu Pro Thr Phe Ile Asp Ala Gly
140 145 150

Ser Asn Phe Ala Ser His Ala Ile Val Glu Asp Asn Leu Ile Lys 155 160 165

Gln Leu Thr Ser Ala Gly Arg Arg Val Val Phe Met Gly Asp Asp 170 175 180

Thr Trp Lys Asp Leu Phe Pro Gly Ala Phe Ser Lys Ala Phe Phe 185 190 195

Phe Pro Ser Phe Asn Val Arg Asp Leu Asp Thr Val Asp Asn Gly

112

200 Ile Leu Glu His Leu Tyr Pro Thr Met Asp Ser Gly Glu Trp Asp Val Leu Ile Ala His Phe Leu Gly Val Asp His Cys Gly His Lys His Gly Pro His His Pro Glu Met Ala Lys Lys Leu Ser Gln Met Asp Gln Val Ile Gln Gly Leu Val Glu Arg Leu Glu Asn Asp Thr Leu Leu Val Val Ala Gly Asp His Gly Met Thr Thr Asn Gly Asp His Gly Gly Asp Ser Glu Leu Glu Val Ser Ala Ala Leu Phe Leu Tyr Ser Pro Thr Ala Val Phe Pro Ser Thr Pro Pro Glu Glu Pro 310 Glu Val Ile Pro Gln Val Ser Leu Val Pro Thr Leu Ala Leu Leu Leu Gly Leu Pro Ile Pro Phe Gly Asn Ile Gly Glu Val Met Ala Glu Leu Phe Ser Gly Gly Glu Asp Ser Gln Pro His Ser Ser Ala Leu Ala Gln Ala Ser Ala Leu His Leu Asn Ala Gln Gln Val Ser Arg Phe Leu His Thr Tyr Ser Ala Ala Thr Gln Asp Leu Gln Ala Lys Glu Leu His Gln Leu Gln Asn Leu Phe Ser Lys Ala Ser Ala 395 Asp Tyr Gln Trp Leu Leu Gln Ser Pro Lys Gly Ala Glu Ala Thr 410 415 Leu Pro Thr Val Ile Ala Glu Leu Gln Gln Phe Leu Arg Gly Ala 425 430 Arg Ala Met Cys Ile Glu Ser Trp Ala Arg Phe Ser Leu Val Arg 440 Met Ala Gly Gly Thr Ala Leu Leu Ala Ala Ser Cys Phe Ile Cys 460 Leu Leu Ala Ser Gln Trp Ala Ile Ser Pro Gly Phe Pro Phe Cys Pro Leu Leu Thr Pro Val Ala Trp Gly Leu Val Gly Ala Ile 485

Ala	Tyr	Ala	Gly	Leu 500	Leụ	Gly	Thr	Ile	Glu 505	Leu	Lys	Leu	Asp	Leu 510
Val	Leu	Leu	Gly	Ala 515	Val	Ala	Ala	Val	Ser 520	Ser	Phe	Leu	Pro	Phe 525
Leu	Trp	Lys	Ala	Trp 530	Ala	Gly	Trp	Gly	Ser 535	Lys	Arg	Pro	Leu	Ala 540
Thr	Leu	Phe	Pro	Ile 545	Pro	Gly	Pro	Val	Leu 550	Leu	Leu	Leu	Leu	Phe 555
Arg	Leu	Ala	Val	Phe 560	Phe	Ser	Asp	Ser	Phe 565	Val	Val	Ala	Glu	Ala 570
Arg	Ala	Thr	Pro	Phe 575	Leu	Leu	Gly	Ser	Phe 580	Ile	Leu	Leu	Leu	Val 585
Val	Gln	Leu	His	Trp 590	Glu	Gly	Gln	Leu	Leu 595	Pro	Pro	Lys	Leu	Leu 600
Thr	Met	Pro	Arg	Leu 605	Gly	Thr	Ser	Ala	Thr 610	Thr	Asn	Pro	Pro	Arg 615
His	Asn	Gly	Ala	Tyr 620	Ala	Leu	Arg	Leu	Gly 625	Ile	Gly	Leu	Leu	Leu 630
Cys	Thr	Arg	Leu	Ala 635	Gly	Leu	Phe	His	Arg 640	Cys	Pro	Glu	Glu	Thr 645
Pro	Val	Cys	His	Ser 650	Ser	Pro	Trp	Leu	Ser 655	Pro	Leu	Ala	Ser	Met 660
Val	Gly	Gly	Arg	Ala 665	Lys	Asn	Leu	Trp	Tyr 670	Gly	Ala	Суѕ	Val	Ala 675
Ala	Leu	Val	Ala	Leu 680	Leu	Ala	Ala	Val	Arg 685	Leu	Trp	Leu	Arg	Arg 690
Tyr	Gly	Asn	Leu	Lys 695	Ser	Pro	Glu	Pro	Pro 700	Met ''	Leu	Phe	Val	Arg 705
Trp	Gly	Leu	Pro	Leu 710	Met	Ala	Leu	Gly	Thr 715	Ala	Ala	Tyr	Trp	Ala 720
Leu	Ala	Ser	Gly	Ala 725	Asp	Glu	Ala	Pro	Pro 730	Arg	Leu	Arg	Val	Leu 735
Val	Ser	Gly	Ala	Ser 740	Met	Val	Leu	Pro	Arg 745	Ala	Val	Ala	Gly	Leu 750
Ala	Ala	Ser	Gly	Leu 755	Ala	Leu	Leu	Leu	Trp 760	Lys	Pro	Val	Thr	Val 765
Leu	Val	Lys	Ala	Gly 770	Ala	Gly	Ala	Pro	Arg 775	Thr	Arg	Thr	Val	Leu 780
Thr	Pro	Phe	Ser	Gly	Pro	Pro	Thr	Ser	Gln	Ala	Asp	Leu	Asp	Tyr

785 790 795 Val Val Pro Gln Ile Tyr Arg His Met Gln Glu Glu Phe Arg Gly Arg Leu Glu Arg Thr Lys Ser Gln Gly Pro Leu Thr Val Ala Ala Tyr Gln Leu Gly Ser Val Tyr Ser Ala Ala Met Val Thr Ala Leu Thr Leu Leu Ala Phe Pro Leu Leu Leu His Ala Glu Arg Ile 850 Ser Leu Val Phe Leu Leu Leu Phe Leu Gln Ser Phe Leu Leu Leu His Leu Leu Ala Ala Gly Ile Pro Val Thr Thr Pro Gly Pro Phe Thr Val Pro Trp Gln Ala Val Ser Ala Trp Ala Leu Met Ala Thr Gln Thr Phe Tyr Ser Thr Gly His Gln Pro Val Phe Pro Ala Ile His Trp His Ala Ala Phe Val Gly Phe Pro Glu Gly His Gly Ser 920 Cys Thr Trp Leu Pro Ala Leu Leu Val Gly Ala Asn Thr Phe Ala 935 Ser His Leu Leu Phe Ala Val Gly Cys Pro Leu Leu Leu Trp 950 955 Pro Phe Leu Cys Glu Ser Gln Gly Leu Arg Lys Arg Gln Gln Pro Pro Gly Asn Glu Ala Asp Ala Arg Val Arg Pro Glu Glu Glu Glu 980 Glu Pro Leu Met Glu Met Arg Leu Arg Asp Ala Pro Gln His Phe 1000 Tyr Ala Ala Leu Leu Gln Leu Gly Leu Lys Tyr Leu Phe Ile Leu 1010 1020 Gly Ile Gln Ile Leu Ala Cys Ala Leu Ala Ala Ser Ile Leu Arg 1025 1030 Arg His Leu Met Val Trp Lys Val Phe Ala Pro Lys Phe Ile Phe 1040 1045 1050 Glu Ala Val Gly Phe Ile Val Ser Ser Val Gly Leu Leu Gly 1060

1075

1080

Ile Ala Leu Val Met Arg Val Asp Gly Ala Val Ser Ser Trp Phe

1070

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 103

tgccgctgcc gccgctgctg ctgttgctcc tggcggcgcc ttggggacgg 50 gcagttccct gtgtctctgg tggtttgcct aaacctgcaa acatcacctt 100 cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150 ttcaaggagt taaagttact tacactgtgc agtatttcat cacaaattgg 200 cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250 tgacagetee agagaagtgg aagagaaate cagaagaeet teetgtttee 300 atgcaacaaa tatactccaa tctgaagtat aacgtgtctg tgttgaatac 350 taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctggtgc 400 tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450 gtcccagggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500 gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctggt 550 atgttttgcc catatctatt accgtgtttc ttttttctgt gatgggctat 600 tccatctacc gatatatcca cgttggcaaa gagaaacacc cagcaaattt 650 gattttgatt tatggaaatg aatttgacaa aagattcttt gtgcctgctg 700 aaaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750 atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag 800 ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag 850 aggaggtgaa acatttaggg tatgcttcgc atttgatgga aattttttgt 900 gactctgaag aaaacacgga aggtacttct ctcacccagc aagagtccct 950 cagcagaaca ataccccgg ataaaacagt cattgaatat gaatatgatg 1000 tcagaaccac tgacatttgt gcggggcctg aagagcagga gctcagtttg 1050 caggaggagg tgtccacaca aggaacatta ttgqagtcqc aggcagcqtt 1100 ggcagtcttg ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150 aagacttaga ccccctggcg caggagcaca cagactcgga ggaggggccg 1200 gaggaagage categaegae cetggtegae tgggateece aaactggeag 1250

gctgtgtatt ccttcgctgt ccagcttcga ccaggattca gagggctgcg 1300 agccttctga gggggatggg ctcggagagg agggtcttct atctagactc 1350 tatgaggagc cggctccaga caggccacca ggagaaaatg aaacctatct 1400 catgcaattc atggaggaat gggggttata tgtgcagatg gaaaactgat 1450 gccaacactt ccttttgcct tttgtttcct gtgcaaacaa gtgagtcacc 1500 cctttgatcc cagccataaa gtacctggga tgaaagaagt tttttccagt 1550 ttgtcagtg ctgtgagaat tacttattc ttttctctat tctcatagca 1600 cgtgtggat tggtcatgc atgaaggtct cttaacaatg atggtggcc 1650 tctggagtcc aggggctggc cggttgttct atgcagagaa agcagtcaat 1700 aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743

<210> 104 <211> 442 <212> PRT

<213> Homo sapiens

<400> 104 Met Ser '

Met Ser Tyr Asn Gly Leu His Gln Arg Val Phe Lys Glu Leu Lys 1 5 10 15

Leu Leu Thr Leu Cys Ser Ile Ser Ser Gln Ile Gly Pro Pro Glu 20 25 30

Val Ala Leu Thr Thr Asp Glu Lys Ser Ile Ser Val Val Leu Thr 35 40 45

Ala Pro Glu Lys Trp Lys Arg Asn Pro Glu Asp Leu Pro Val Ser
50 55 60

Met Gln Gln Ile Tyr Ser Asn Leu Lys Tyr Asn Val Ser Val Leu
65 70 75

Asn Thr Lys Ser Asn Arg Thr Trp Ser Gln Cys Val Thr Asn His 80 85 90

Thr Leu Val Leu Thr Trp Leu Glu Pro Asn Thr Leu Tyr Cys Val 95 100 105

His Val Glu Ser Phe Val Pro Gly Pro Pro Arg Arg Ala Gln Pro 110 $$\rm 115$$

Ser Glu Lys Gln Cys Ala Arg Thr Leu Lys Asp Gln Ser Ser Glu 125 130 135

Phe Lys Ala Lys Ile Ile Phe Trp Tyr Val Leu Pro Ile Ser Ile 140 145 150

Thr Val Phe Leu Phe Ser Val Met Gly Tyr Ser Ile Tyr Arg Tyr 155 160 165 Bl

Ile	His	Val	Gly	Lys 170	Glu	Lys	His	Pro	Ala 175	Asn	Leu	Ile	Leu	Ile 180
Tyr	Gly	Asn	Glu	Phe 185	Asp	Lys	Arg	Phe	Phe 190	Val	Pro	Ala	Glu	Lys 195
Ile	Val	Ile	Asn	Phe 200	Ile	Thr	Leu	Asn	Ile 205	Ser	Asp	Asp	Ser	Lys 210
Ile	Ser	His	Gln	Asp 215	Met	Ser	Leu	Leu	Gly 220	Lys	Ser	Ser	Asp	Val 225
Ser	Ser	Leu	Asn	Asp 230	Pro	Gln	Pro	Ser	Gly 235	Asn	Leu	Arg	Pro	Pro 240
Gln	Glu	Glu	Glu	Glu 245	Val	Lys	His	Leu	Gly 250	Tyr	Ala	Ser	His	Leu 255
	•			260		Ser			265					270
				275		Leu			280					285
				290		Tyr			295					300
				305		Glu			310					315
				320		Glu			325					330
				335		Tyr			340					345
				350		Glu			355					360
				365		Thr			370	4				375
				380		Ser			385					390
				395		Glu			400					405
				410		Glu			415					420
				425		Leu	Met	Gln	Phe 430	Met	Glu	Glu	Trp	Gly 435
Leu	Tyr	Val	Gln	Met 440	Glu	Asn								

<210> 105

```
<211> 21
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-21
<223> Synthetic construct
<400> 105
cgctgctgct gttgctcctg g 21
<210> 106
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 106
 cagtgtgcca ggactttg 18
<210> 107
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 107
agtcgcaggc agcgttgg 18
<210> 108
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.
<400> 108
ctcctccgag tctgtgtgct cctgc 25
<210> 109
<211> 51
<212> DNA
<213> Artificial
<220>
```

<221> Artificial Sequence

<222> 1-51 <223> Synthetic construct. <400> 109 ggacgggcag ttccctgtgt ctctggtggt ttgcctaaac ctgcaaacat 50 c 51 <210> 110 <211> 1114 <212> DNA <213> Homo sapiens <400> 110 cggacgcgtg ggcggacgcg tgggcggacg cgtgggtctc tgcggggaga 50 cgccagcctg cgtctgccat ggggctcggg ttgaggggct ggggacgtcc 100 tctgctgact gtggccaccg ccctgatgct gcccgtgaag ccccccgcag 150 gctcctgggg ggcccagatc atcgggggcc acgaggtgac ccccactcc 200 aggccctaca tggcatccgt gcgcttcggg ggccaacatc actgcggagg 250 cttcctgctg cgagcccgct gggtggtctc ggccgcccac tgcttcagcc 300 acagagacct ccgcactggc ctggtggtgc tgggcgccca cgtcctgagt 350 actgcggagc ccacccagca ggtgtttggc atcgatgctc tcaccacgca 400 ccccgactac caccccatga cccacgccaa cgacatctgc ctgctgcggc 450 tgaacggctc tgctgtcctg ggccctgcag tggggctgct gaggctgcca 500 gggagaaggg ccaggcccc cacagcgggg acacggtgcc gggtggctgg 550 ctggggcttc gtgtctgact ttgaggagct gccgcctgga ctgatggagg 600 ccaaggtccg agtgctggac ccggacgtct gcaacagctc ctggaagggc 650 cacctgacac ttaccatgct ctgcacccgc agtggggaca gccacagacg 700 gggcttctgc tcggccgact ccggagggcc cctggtgtgc aggaaccggg 750

ctcacggcct cgtttccttc tcgggcctct ggtgcggcga ccccaagacc 800

cccgacgtgt acacgcaggt gtccgccttt gtggcctgga tctgggacgt 850

ggttcggcgg agcagtcccc agcccggccc cctgcctggg accaccaggc 900

ccccaggaga agccgcctga gccacaacct tgcggcatgc aaatgagatg 950

gccgctccag gcctggaatg ttccgtggct gggccccacg ggaagcctga 1000

tgttcagggt tggggtggga cgggcagcgg tggggcacac ccattccaca 1050

tgcaaagggc agaagcaaac ccagtaaaat gttaactgac aaaaaaaaa 1100

aaaaaaaaa gaaa 1114

<210> 111

<211> 283

<212> PRT

<213> Homo sapiens

<400> 111

Met Gly Leu Gly Leu Arg Gly Trp Gly Arg Pro Leu Leu Thr Val $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Thr Ala Leu Met Leu Pro Val Lys Pro Pro Ala Gly Ser Trp

Gly Ala Gln Ile Ile Gly Gly His Glu Val Thr Pro His Ser Arg 35 40 45

Pro Tyr Met Ala Ser Val Arg Phe Gly Gly Gln His His Cys Gly
50 55 60

Gly Phe Leu Leu Arg Ala Arg Trp Val Val Ser Ala Ala His Cys
65 70 75

Phe Ser His Arg Asp Leu Arg Thr Gly Leu Val Val Leu Gly Ala 80 85 90

His Val Leu Ser Thr Ala Glu Pro Thr Gln Gln Val Phe Gly Ile 95 100 105

Asp Ala Leu Thr Thr His Pro Asp Tyr His Pro Met Thr His Ala 110 115 120

Asn Asp Ile Cys Leu Leu Arg Leu Asn Gly Ser Ala Val Leu Gly 125 130 135

Pro Ala Val Gly Leu Leu Arg Leu Pro Gly Arg Arg Ala Arg Pro 140 145 150

Pro Thr Ala Gly Thr Arg Cys Arg Val Ala Gly Trp Gly Phe Val 155 160 165

Ser Asp Phe Glu Glu Leu Pro Pro Gly Leu Met Glu Ala Lys Val 170 175 180

Arg Val Leu Asp Pro Asp Val Cys Asn Ser Ser Trp Lys Gly His 185 190 195

Leu Thr Leu Thr Met Leu Cys Thr Arg Ser Gly Asp Ser His Arg 200 205 210

Arg Gly Phe Cys Ser Ala Asp Ser Gly Gly Pro Leu Val Cys Arg 215 220 225

Asn Arg Ala His Gly Leu Val Ser Phe Ser Gly Leu Trp Cys Gly
230 235 240

Asp Pro Lys Thr Pro Asp Val Tyr Thr Gln Val Ser Ala Phe Val 245 250 255


```
Ala Trp Ile Trp Asp Val Val Arg Arg Ser Ser Pro Gln Pro Gly
                 260
                                      265
 Pro Leu Pro Gly Thr Thr Arg Pro Pro Gly Glu Ala Ala
<210> 112
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 112
 gacgtctgca acagctcctg gaag 24
<210> 113
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 113
cgagaaggaa acgaggccgt gag 23
<210> 114
<211> 44
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-44
<223> Synthetic construct.
<400> 114
tgacacttac catgetetge accegeagtg gggacageea caga 44
<210> 115
<211> 1808
<212> DNA
<213> Homo sapiens
<400> 115
gagctaccca ggcggctggt gtgcagcaag ctccgcgccg actccggacg 50
cctgacgcct gacgcctgtc cccggcccgg catgagccgc tacctgctgc 100
cgctgtcggc gctgggcacg gtagcaggcg ccgccgtgct gctcaaggac 150
```

tatgtcaccg gtggggcttg ccccagcaag gccaccatcc ctgggaagac 200

ggtcatcgtg acgggcgcca acacaggcat cgggaagcag accgccttgg 250 aactggccag gagaggaggc aacatcatcc tggcctgccg agacatggag 300 aagtgtgagg cggcagcaaa ggacatccgc ggggagaccc tcaatcacca 350 tgtcaacgcc cggcacctgg acttggcttc cctcaagtct atccgagagt 400 ttgcagcaaa gatcattgaa gaggaggagc gagtggacat tctaatcaac 450 aacgcgggtg tgatgcggtg cccccactgg accaccgagg acggcttcga 500 gatgcagttt ggcgttaacc acctgggtca ctttctcttg acaaacttgc 550 tgctggacaa gctgaaagcc tcagcccctt cgcggatcat caacctctcg 600 tccctggccc atgttgctgg gcacatagac tttgacgact tgaactggca 650 gacgaggaag tataacacca aagccgccta ctgccagagc aagctcgcca 700 tcgtcctctt caccaaggag ctgagccggc ggctgcaagg ctctggtgtg 750 actgtcaacg ccctgcaccc cggcgtggcc aggacagagc tgggcagaca 800 cacgggcatc catggctcca ccttctccag caccacactc gggcccatct 850 tctggctgct ggtcaagagc cccgagctgg ccgcccagcc cagcacatac 900 ctggccgtgg cggaggaact ggcggatgtt tccggaaagt acttcgatgg 950 actcaaacag aaggccccgg cccccgaggc tgaggatgag gaggtggccc 1000 ggaggctttg ggctgaaagt gcccgcctgg tgggcttaga ggctccctct 1050 gtgagggagc agcccctccc cagataacct ctggagcaga tttgaaagcc 1100 aggatggcgc ctccagaccg aggacagctg tccgccatgc ccgcagcttc 1150 ctggcactac ctgagccggg agacccagga ctggcggccg ccatgcccgc 1200 agtaggttct agggggggt gctggccgca gtggactggc ctgcaggtga 1250 gcactgcccc gggctctggc tggttccgtc tgctctgctg ccagcagggg 1300 agaggggcca tctgatgctt cccctgggaa tctaaactgg gaatggccga 1350 ggaggaaggg gctctgtgca cttgcaggcc acgtcaggag agccagcggt 1400 gcctgtcggg gagggttcca aggtgctccg tgaagagcat gggcaagttg 1450 tctgacactt ggtggattct tgggtccctg tgggaccttg tgcatgcatg 1500 gtcctctctg agccttggtt tcttcagcag tgagatgctc agaataactg 1550 ctgtctccca tgatggtgtg gtacagcgag ctgttgtctg gctatggcat 1600 ggctgtgccg ggggtgtttg ctgagggctt cctgtgccag agcccagcca 1650

gagagcaggt gcaggtgtca tcccgagttc aggctctgca cggcatggag 1700 tgggaacccc accagctgct gctacaggac ctgggattgc ctgggactcc 1750 caccttccta tcaattctca tggtagtcca aactgcagac tctcaaactt 1800 gctcattt 1808

<210> 116

<211> 331

<212> PRT

<213> Homo sapiens

<400> 116

Met Ser Arg Tyr Leu Leu Pro Leu Ser Ala Leu Gly Thr Val Ala 1 5 10 15

Gly Ala Ala Val Leu Leu Lys Asp Tyr Val Thr Gly Gly Ala Cys
20 25 30

Pro Ser Lys Ala Thr Ile Pro Gly Lys Thr Val Ile Val Thr Gly
35 40 45

Ala Asn Thr Gly Ile Gly Lys Gln Thr Ala Leu Glu Leu Ala Arg
50 55 60

Arg Gly Gly Asn Ile Ile Leu Ala Cys Arg Asp Met Glu Lys Cys $$ $$ $$ 75

Glu Ala Ala Lys Asp Ile Arg Gly Glu Thr Leu Asn His His 80 85 90

Val Asn Ala Arg His Leu Asp Leu Ala Ser Leu Lys Ser Ile Arg 95 100 105

Glu Phe Ala Ala Lys Ile Ile Glu Glu Glu Glu Arg Val Asp Ile 110 115 120

Leu Ilė Asn Asn Ala Gly Val Met Arg Cys Pro His Trp Thr 125 130 135

Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His Leu Gly His
140 145 150

Phe Leu Leu Thr Asn Leu Leu Leu Asp Lys Leu Lys Ala Ser Ala 155 160 165

Pro Ser Arg Ile Ile Asn Leu Ser Ser Leu Ala His Val Ala Gly
170 175 180

His Ile Asp Phe Asp Asp Leu Asn Trp Gln Thr Arg Lys Tyr Asn 185 190 195

Thr Lys Ala Ala Tyr Cys Gln Ser Lys Leu Ala Ile Val Leu Phe 200 205 210

Thr Lys Glu Leu Ser Arg Arg Leu Gln Gly Ser Gly Val Thr Val 215 220 225

Arg

<210> 117

<211> 2249

<212> DNA

<400> 117

<213> Homo sapiens

ctggcggtgc tggcgctcgg gacaggagac ccagaaaggg ctgcggctcg 100 gggcgacacg ttctcggcgc tgaccagcgt ggcgcgcgc ctggcgcccg 150 agcgccggct gctggggctg ctgaggcggt acctgcggg ggaggaggcg 200 cggctgcggg acctgactag attctacgac aaggtacttt ctttgcatga 250 ggattcaaca acccctgtgg ctaaccctct gcttgcattt actctcatca 300 aacgcctgca gtctgactgg aggaatgtgg tacatagtct ggaggccagt 350 gagaacatcc gagctctgaa ggatggctat gagaaggtgg agcaagacct 400 tccagccttt gaggaccttg agggagcagc aagggccctg atgcggctgc 450 aggacgtgta catgctcaat gtgaaaggcc tggcccgagg tgtcttcag 500 agagtcactg gctctgccat cactgacctg tacagcccca aacggctctt 550

ttctctcaca ggggatgact gcttccaagt tggcaaggtg gcctatgaca 600

tgggggatta ttaccatgcc attccatggc tggaggaggc tgtcagtctc 650

ttccgaggat cttacggaga gtggaagaca gaggatgagg caagtctaga 700

gaagttcgcg agcgctggca tgtggtcctg gggcgcggct ggcggcgctg 50

agatgccttg gatcacttgg cctttgctta tttccgggca ggaaatgttt 750 cgtgtgccct cagcctctct cgggagtttc ttctctacag cccagataat 800 aagaggatgg ccaggaatgt cttgaaatat gaaaggctct tggcagagag 850 ccccaaccac gtggtagctg aggctgtcat ccagaggccc aatatacccc 900 acctgcagac cagagacacc tacgaggggc tatgtcagac cctgggttcc 950 cagoccacto totaccagat cootagooto tactgttoot atgagaccaa 1000 ttccaacgcc tacctgctgc tccagcccat ccggaaggag gtcatccacc 1050 tggagcccta cattgctctc taccatgact tcgtcagtga ctcagaggct 1100 cagaaaatta gagaacttgc agaaccatgg ctacagaggt cagtggtggc 1150 atcaggggag aagcagttac aagtggagta ccgcatcagc aaaagtgcct 1200 ggctgaagga cactgttgac ccaaaactgg tgaccctcaa ccaccgcatt 1250 gctgccctca caggccttga tgtccggcct ccctatgcag agtatctgca 1300 ggtggtgaac tatggcatcg gaggacacta tgagcctcac tttgaccatg 1350 ctacgtcacc aagcagcccc ctctacagaa tgaagtcagg aaaccgagtt 1400 gcaacattta tgatctatct gagctcggtg gaagctggag gagccacagc 1450 cttcatctat gccaacctca gcgtgcctgt ggttaggaat gcagcactgt 1500 tttggtggaa cctgcacagg agtggtgaag gggacagtga cacacttcat 1550 gctggctgtc ctgtcctggt gggagataag tgggtggcca acaagtggat 1600 acatgagtat ggacaggaat tecgeagace etgeagetee ageeetgaag 1650 actgaactgt tggcagagag aagctggtgg agtcctgtgg ctttccagag 1700 aagccaggag ccaaaagctg gggtaggaga ggagaaagca gagcagcctc 1750 ctggaagaag gccttgtcag ctttgtctgt gcctcgcaaa tcagaggcaa 1800 gggagaggtt gttaccaggg gacactgaga atgtacattt gatctgcccc 1850 agccacggaa gtcagagtag gatgcacagt acaaaggagg ggggagtgga 1900 ggcctgagag ggaagtttct ggagttcaga tactctctgt tgggaacagg 1950 acatctcaac agtctcaggt tcgatcagtg ggtcttttgg cactttgaac 2000 cttgaccaca gggaccaaga agtggcaatg aggacacctg caggaggggc 2050 tagectgact cecagaactt taagaettte teeceactge ettetgetge 2100 agcccaagca gggagtgtcc ccctcccaga agcatatccc agatgagtgg 2150

<210> 118

<211> 544

<212> PRT

<213> Homo sapiens

<400> 118

Met Gly Pro Gly Ala Arg Leu Ala Ala Leu Leu Ala Val Leu Ala 1 5 10 15

Leu Gly Thr Gly Asp Pro Glu Arg Ala Ala Ala Arg Gly Asp Thr
20 25 30

Phe Ser Ala Leu Thr Ser Val Ala Arg Ala Leu Ala Pro Glu Arg 35 40 45

Arg Leu Leu Gly Leu Leu Arg Arg Tyr Leu Arg Gly Glu Glu Ala
50 55 60

Arg Leu Arg Asp Leu Thr Arg Phe Tyr Asp Lys Val Leu Ser Leu
65 70 75

His Glu Asp Ser Thr Thr Pro Val Ala Asn Pro Leu Leu Ala Phe 80 85 90

Thr Leu Ile Lys Arg Leu Gln Ser Asp Trp Arg Asn Val Val His 95 100 105

Ser Leu Glu Ala Ser Glu Asn Ile Arg Ala Leu Lys Asp Gly Tyr 110 115 120

Glu Lys Val Glu Gln Asp Leu Pro Ala Phe Glu Asp Leu Glu Gly 125 130 135

Ala Ala Arg Ala Leu Met Arg Leu Gln Asp Val Tyr Met Leu Asn 140 145 150

Val Lys Gly Leu Ala Arg Gly Val Phe Gln Arg Val Thr Gly Ser 155 160 " 165

Ala Ile Thr Asp Leu Tyr Ser Pro Lys Arg Leu Phe Ser Leu Thr 170 175 180

Gly Asp Asp Cys Phe Gln Val Gly Lys Val Ala Tyr Asp Met Gly
185 190 195

Asp Tyr Tyr His Ala Ile Pro Trp Leu Glu Glu Ala Val Ser Leu 200 205 210

Phe Arg Gly Ser Tyr Gly Glu Trp Lys Thr Glu Asp Glu Ala Ser 215 220 225

Leu Glu Asp Ala Leu Asp His Leu Ala Phe Ala Tyr Phe Arg Ala 230 235 240

Gly Asn Val Ser Cys Ala Leu Ser Leu Ser Arg Glu Phe Leu Leu 250 Tyr Ser Pro Asp Asn Lys Arg Met Ala Arg Asn Val Leu Lys Tyr 265 Glu Arg Leu Leu Ala Glu Ser Pro Asn His Val Val Ala Glu Ala 280 Val Ile Gln Arg Pro Asn Ile Pro His Leu Gln Thr Arg Asp Thr 295 Tyr Glu Gly Leu Cys Gln Thr Leu Gly Ser Gln Pro Thr Leu Tyr 310 Gln Ile Pro Ser Leu Tyr Cys Ser Tyr Glu Thr Asn Ser Asn Ala Tyr Leu Leu Gln Pro Ile Arg Lys Glu Val Ile His Leu Glu Pro Tyr Ile Ala Leu Tyr His Asp Phe Val Ser Asp Ser Glu Ala Gln Lys Ile Arg Glu Leu Ala Glu Pro Trp Leu Gln Arg Ser Val Val Ala Ser Gly Glu Lys Gln Leu Gln Val Glu Tyr Arg Ile Ser Lys Ser Ala Trp Leu Lys Asp Thr Val Asp Pro Lys Leu Val Thr Leu Asn His Arg Ile Ala Ala Leu Thr Gly Leu Asp Val Arg Pro Pro Tyr Ala Glu Tyr Leu Gln Val Val Asn Tyr Gly Ile Gly Gly His Tyr Glu Pro His Phe Asp His Ala Thr Ser Pro Ser Ser Pro 445 Leu Tyr Arg Met Lys Ser Gly Asn Arg Val Ala Thr Phe Met Ile Tyr Leu Ser Ser Val Glu Ala Gly Gly Ala Thr Ala Phe Ile Tyr Ala Asn Leu Ser Val Pro Val Val Arg Asn Ala Ala Leu Phe Trp 485 Trp Asn Leu His Arg Ser Gly Glu Gly Asp Ser Asp Thr Leu His Ala Gly Cys Pro Val Leu Val Gly Asp Lys Trp Val Ala Asn Lys 515 520 Trp Ile His Glu Tyr Gly Gln Glu Phe Arg Arg Pro Cys Ser Ser

Ser Pro Glu Asp

- <210> 119
- <211> 23
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-23
- <223> Synthetic construct.
- <400> 119
- cgggacagga gacccagaaa ggg 23
- <210> 120
- <211> 24
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-24
- <223> Synthetic construct.
- <400> 120
- ggccaagtga tccaaggcat cttc 24
- <210> 121
- <211> 49
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-49
- <223> Synthetic construct.
- <400> 121
- ctgcgggacc tgactagatt ctacgacaag gtactttctt tgcatgggg 49
- <210> 122
- <211> 1778
- <212> DNA
- <213> Homo sapiens
- <400> 122
- gagataggga gtctgggttt aagttcctgc tccatctcag gagcccctgc 50
- teccaeceet aggaageeae cagaeteeae ggtgtgggge caateaggtg 100
- gaatcggccc tggcaggtgg ggccacgagc gctggctgag ggaccgagcc 150
- ggagagcccc ggagcccccg taacccgcgc ggggagcgcc caggatgccg 200

cgcggggact cggagcaggt gcgctactgc gcgcgcttct cctacctctg 250 gctcaagttt tcacttatca tctattccac cgtgttctgg ctgattgggg 300 ccctggtcct gtctgtgggc atctatgcag aggttgagcg gcagaaatat 350 aaaacccttg aaagtgcctt cctggctcca gccatcatcc tcatcctcct 400 gggcgtcgtc atgttcatgg tctccttcat tggtgtgctg gcgtccctcc 450 gtgacaacct gtaccttctc caagcattca tgtacatcct tgggatctgc 500 ctcatcatgg agctcattgg tggcgtggtg gccttgacct tccggaacca 550 gaccattgac ttcctgaacg acaacattcg aagaggaatt gagaactact 600 atgatgatet ggaetteaaa aacateatgg aetttgttea gaaaaagtte 650 aagtgctgtg gcggggagga ctaccgagat tggagcaaga atcagtacca 700 cgactgcagt gcccctggac ccctggcctg tggggtgccc tacacctgct 750 gcatcaggaa cacgacagaa gttgtcaaca ccatgtgtgg ctacaaaact 800 atcgacaagg agcgtttcag tgtgcaggat gtcatctacg tgcggggctg 850 caccaacgcc gtgatcatct ggttcatgga caactacacc atcatggcgt 900 gcatcctcct gggcatcctg cttccccagt tcctgggggt gctgctgacg 950 ctgctgtaca tcacccgggt ggaggacatc atcatggagc actctgtcac 1000 tgatgggctc ctggggcccg gtgccaagcc cagcgtggag gcggcaggca 1050 cgggatgctg cttgtgctac cccaattagg gcccagcctg ccatggcagc 1100 tccaacaagg accgtctggg atagcacctc tcagtcaaca tcgtggggct 1150 ggacagggct gcggcccctc tgcccacact cagtactgac caaagccagg 1200 gctgtgtgtg cctgtgtgta ggtcccacgg cctctgcctc cccagggage 1250 agagcctggg cctcccctaa gaggctttcc ccgaggcagc tctggaatct 1300 gtgcccacct ggggcctggg gaacaaggcc ctcctttctc caggcctggg 1350 ctacagggga gggagagcct gaggctctgc tcagggccca tttcatctct 1400 ggcagtgcct tggcggtggt attcaaggca gttttgtagc acctgtaatt 1450 ggggagaggg agtgtgcccc tcggggcagg agggaagggc atctggggaa 1500 gggcaggagg gaagagctgt ccatgcagcc acgcccatgg ccaggttggc 1550 ctcttctcag cctcccaggt gccttgagcc ctcttgcaag ggcggctgct 1600 toottgagee tagttttttt ttaegtgatt tttgtaacat teatttttt 1650

BI

<210> 123

<211> 294

<212> PRT

<213> Homo sapiens

<400> 123

Met Pro Arg Gly Asp Ser Glu Gln Val Arg Tyr Cys Ala Arg Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Tyr Leu Trp Leu Lys Phe Ser Leu Ile Ile Tyr Ser Thr Val 20 25 30

Phe Trp Leu Ile Gly Ala Leu Val Leu Ser Val Gly Ile Tyr Ala 35 40 45

Glu Val Glu Arg Gln Lys Tyr Lys Thr Leu Glu Ser Ala Phe Leu
50 55 60

Ala Pro Ala Ile Ile Leu Ile Leu Leu Gly Val Val Met Phe Met
65 70 75

Val Ser Phe Ile Gly Val Leu Ala Ser Leu Arg Asp Asn Leu Tyr 80 85 90

Leu Leu Gln Ala Phe Met Tyr Ile Leu Gly Ile Cys Leu Ile Met 95 100 105

Glu Leu Ile Gly Gly Val Val Ala Leu Thr Phe Arg Asn Gln Thr 110 115 120

Ile Asp Phe Leu Asn Asp Asn Ile Arg Arg Gly Ile Glu Asn Tyr 125 130 135

Tyr Asp Asp Leu Asp Phe Lys Asn Ile Met Asp Phe Val Gln Lys 140 145 .

Lys Phe Lys Cys Cys Gly Gly Glu Asp Tyr Arg Asp Trp Ser Lys 155 160 165

Asn Gln Tyr His Asp Cys Ser Ala Pro Gly Pro Leu Ala Cys Gly 170 175 180

Val Pro Tyr Thr Cys Cys Ile Arg Asn Thr Thr Glu Val Val Asn 185 190 195

Thr Met Cys Gly Tyr Lys Thr Ile Asp Lys Glu Arg Phe Ser Val 200 205 210

Gln Asp Val Ile Tyr Val Arg Gly Cys Thr Asn Ala Val Ile Ile 215 220 225

Trp Phe Met Asp Asn Tyr Thr Ile Met Ala Cys Ile Leu Leu Gly

230 235 240

Ile Leu Leu Pro Gln Phe Leu Gly Val Leu Leu Thr Leu Leu Tyr 245 250 255

Ile Thr Arg Val Glu Asp Ile Ile Met Glu His Ser Val Thr Asp 260 265 270

Gly Leu Leu Gly Pro Gly Ala Lys Pro Ser Val Glu Ala Ala Gly 275 280 285

Thr Gly Cys Cys Leu Cys Tyr Pro Asn 290

<210> 124

<211> 25

<212> DNA

<213> Artificial

<221> Artificial Sequence

<222> 1-25

<223> Synthetic construct.

<400> 124

atcatctatt ccaccgtgtt ctggc 25

<210> 125

<211> 25

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-25

<223> Synthetic construct.

<400> 125

gacagagtgc tccatgatga tgtcc 25

<210> 126

<211> 50

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-50

<223> Synthetic construct.

<400> 126

cctgtctgtg ggcatctatg cagaggttga gcggcagaaa tataaaaccc 50

<210> 127

<211> 1636

<212> DNA

<213> Homo sapiens

<400> 127 gaggagcggg ccgaggactc cagcgtgccc aggtctggca tcctgcactt 50 gctgccctct gacacctggg aagatggccg gcccgtggac cttcaccctt 100 ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150 tgcagttctc atcctcggcc caaaagtcat caaagaaaag ctgacacagg 200 agctgaagga ccacaacgcc accagcatcc tgcagcagct gccgctgctc 250 agtgccatgc gggaaaagcc agccggaggc atccctgtgc tgggcagcct 300 ggtgaacacc gtcctgaagc acatcatctg gctgaaggtc atcacagcta 350 acatecteca getgeaggtg aagecetegg ceaatgacea ggagetgeta 400 gtcaagatcc ccctggacat ggtggctgga ttcaacacgc ccctggtcaa 450 gaccatcgtg gagttccaca tgacgactga ggcccaagcc accatccgca 500 tggacaccag tgcaagtggc cccacccgcc tggtcctcag tgactgtgcc 550 accagecatg ggagectgeg catecaactg etgtataage teteetteet 600 ggtgaacgcc ttagctaagc aggtcatgaa cctcctagtg ccatccctgc 650 ccaatctagt gaaaaaccag ctgtgtcccg tgatcgaggc ttccttcaat 700 ggcatgtatg cagacetect geagetggtg aaggtgeeca ttteeeteag 750 cattgaccgt ctggagtttg accttctgta tcctgccatc aagggtgaca 800 ccattcagct ctacctgggg gccaagttgt tggactcaca gggaaaggtg 850 accaagtggt tcaataactc tgcagcttcc ctgacaatgc ccaccctgga 900 caacatcccg ttcagcctca tcgtgagtca ggacgtggtg aaagctgcag 950 tggctgctgt gctctctcca gaagaattca tggtcctgtt ggactctgtg 1000 cttcctgaga gtgcccatcg gctgaagtca agcatcgggc tgatcaatga 1050 aaaggctgca gataagctgg gatctaccca gatcgtgaag atcctaactc 1100 aggacactee egagtttttt atagaceaag gecatgeeaa ggtggeecaa 1150 ctgatcgtgc tggaagtgtt tccctccagt gaagccctcc gccctttgtt 1200 caccetgggc atcgaagcca geteggaage teagttttae accaaaggtg 1250 accaacttat actcaacttg aataacatca gctctgatcg gatccagctg 1300 atgaactetg ggattggetg gtteeaacet gatgttetga aaaacateat 1350 cactgagate atccactcca teetgetgee gaaccagaat ggeaaattaa 1400 gatctggggt cccagtgtca ttggtgaagg ccttgggatt cgaqqcagct 1450

gaatcctcac tgaccaagga tgcccttgtg cttactccag cctccttgtg 1500 gaaacccagc tctcctgtct cccagtgaag acttggatgg cagccatcag 1550 ggaaggctgg gtcccagctg ggagtatggg tgtgagctct atagaccatc 1600 cctctctgca atcaataaac acttgcctgt gaaaaa 1636

<210> 128

<211> 484

<212> PRT

<213> Homo sapiens

<400> 128

Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ala Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile 20 25 30

Leu Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys
35 40 45

Asp His Asn Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser 50 55 60

Ala Met Arg Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser 65 70 75

Leu Val Asn Thr Val Leu Lys His Ile Ile Trp Leu Lys Val Ile $80 \hspace{1cm} 85 \hspace{1cm} 90$

Thr Ala Asn Ile Leu Gln Leu Gln Val Lys Pro Ser Ala Asn Asp 95 100 105

Gln Glu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe
110 115 120

Asn Thr Pro Leu Val Lys Thr Ile Val Glu Phe His Met Thr Thr \$125\$ \$130\$ \$135

Glu Ala Gln Ala Thr Ile Arg Met Asp Thr Ser Ala Ser Gly Pro 140 145 150

Thr Arg Leu Val Leu Ser Asp Cys Ala Thr Ser His Gly Ser Leu 155 160 165

Arg Ile Gln Leu Tyr Lys Leu Ser Phe Leu Val Asn Ala Leu
170 175 180

Ala Lys Gln Val Met Asn Leu Leu Val Pro Ser Leu Pro Asn Leu 185 190 195

Val Lys Asn Gln Leu Cys Pro Val Ile Glu Ala Ser Phe Asn Gly 200 205 210

Met Tyr Ala Asp Leu Leu Gln Leu Val Lys Val Pro Ile Ser Leu 215 220 225

Ser Ile Asp Arg Leu Glu Phe Asp Leu Leu Tyr Pro Ala Ile Lys Gly Asp Thr Ile Gln Leu Tyr Leu Gly Ala Lys Leu Leu Asp Ser Gln Gly Lys Val Thr Lys Trp Phe Asn Asn Ser Ala Ala Ser Leu Thr Met Pro Thr Leu Asp Asn Ile Pro Phe Ser Leu Ile Val Ser Gln Asp Val Val Lys Ala Ala Val Ala Ala Val Leu Ser Pro Glu Glu Phe Met Val Leu Leu Asp Ser Val Leu Pro Glu Ser Ala His Arg Leu Lys Ser Ser Ile Gly Leu Ile Asn Glu Lys Ala Ala Asp Lys Leu Gly Ser Thr Gln Ile Val Lys Ile Leu Thr Gln Asp Thr Pro Glu Phe Phe Ile Asp Gln Gly His Ala Lys Val Ala Gln Leu 350 Ile Val Leu Glu Val Phe Pro Ser Ser Glu Ala Leu Arg Pro Leu Phe Thr Leu Gly Ile Glu Ala Ser Ser Glu Ala Gln Phe Tyr Thr 385 390 Lys Gly Asp Gln Leu Ile Leu Asn Leu Asn Asn Ile Ser Ser Asp 400 Arg Ile Gln Leu Met Asn Ser Gly Ile Gly Trp Phe Gln Pro Asp Val Leu Lys Asn Ile Ile Thr Glu Ile Ile His Ser Ile Leu Leu Pro Asn Gln Asn Gly Lys Leu Arg Ser Gly Val Pro Val Ser Leu Val Lys Ala Leu Gly Phe Glu Ala Ala Glu Ser Ser Leu Thr Lys 460 Asp Ala Leu Val Leu Thr Pro Ala Ser Leu Trp Lys Pro Ser Ser

Pro Val Ser Gln

<210> 129

<211> 2213

<212> DNA

<213> Homo sapiens

B1

<400> 129 gagcgaacat ggcagcgcgt tggcggtttt ggtgtgtctc tgtgaccatg 50 gtggtggcgc tgctcatcgt ttgcgacgtt ccctcagcct ctgcccaaag 100 ctaacaaaag acctgtaata agaatgaatg gagacaagtt ccgtcgcctt 200 gtgaaagccc caccgagaaa ttactccgtt atcgtcatgt tcactgctct 250 ccaactgcat agacagtgtg tcgtttgcaa gcaagctgat gaagaattcc 300 agatectgge aaacteetgg egatacteea gtgeatteae caacaggata 350 ttttttgcca tggtggattt tgatgaaggc tctgatgtat ttcagatgct 400 aaacatgaat tcagctccaa ctttcatcaa ctttcctgca aaagggaaac 450 ccaaacgggg tgatacatat gagttacagg tgcggggttt ttcagctgag 500 cagattgccc ggtggatcgc cgacagaact gatgtcaata ttagagtgat 550 tagaccccca aattatgctg gtccccttat gttgggattg cttttggctg 600 ttattggtgg acttgtgtat cttcgaagaa gtaatatgga atttctcttt 650 aataaaactg gatgggcttt tgcagctttg tgttttgtgc ttgctatgac 700 atctggtcaa atgtggaacc atataagagg accaccatat gcccataaga 750 atccccacac gggacatgtg aattatatcc atggaagcag tcaagcccag 800 tttgtagctg aaacacacat tgttcttctg tttaatggtg gagttacctt 850 aggaatggtg cttttatgtg aagctgctac ctctgacatg gatattggaa 900 agcgaaagat aatgtgtgtg gctggtattg gacttgttgt attattcttc 950 agttggatgc tctctatttt tagatctaaa tatcatggct acccatacag 1000 ctttctgatg agttaaaaag gtcccagaga tatatagaca ctggagtact 1050 ggaaattgaa aaacgaaaat cgtgtgtgtt tgaaaagaag aatgcaactt 1100 gtatattttg tattacctct ttttttcaag tgatttaaat agttaatcat 1150 ttaaccaaag aagatgtgta gtgccttaac aagcaatcct ctgtcaaaat 1200 ctgaggtatt tgaaaataat tatcctctta accttctctt cccagtgaac 1250 tttatggaac atttaattta gtacaattaa gtatattata aaaattgtaa 1300 aactactact ttgttttagt tagaacaaag ctcaaaacta ctttagttaa 1350 cttggtcatc tgattttata ttgccttatc caaagatggg gaaagtaagt 1400 cctgaccagg tgttcccaca tatgcctgtt acagataact acattaggaa 1450

ttcattctta gcttcttcat ctttgtgtgg atgtgtatac tttacgcatc 1500 tttccttttg agtagagaaa ttatgtgtgt catgtggtct tctgaaaatg 1550 gaacaccatt cttcagagca cacgtctagc cctcagcaag acagttgttt 1600 ctcctcctcc ttgcatattt cctactgcgc tccagcctga gtgatagagt 1650 gagactetgt etcaaaaaaa agtateteta aatacaggat tataatttet 1700 gcttgagtat ggtgttaact accttgtatt tagaaagatt tcagattcat 1750 tccatctcct tagttttctt ttaaggtgac ccatctgtga taaaaatata 1800 gcttagtgct aaaatcagtg taacttatac atggcctaaa atgtttctac 1850 aaattagagt ttgtcactta ttccatttgt acctaagaga aaaataggct 1900 cagttagaaa aggactccct ggccaggcgc agtgacttac gcctgtaatc 1950 tcagcacttt gggaggccaa ggcaggcaga tcacgaggtc aggagttcga 2000 gaccatcctg gccaacatgg tgaaaccccg tctctactaa aaatataaaa 2050 attagctggg tgtggtggca ggagcctgta atcccagcta cacaggaggc 2100 tgaggcacga gaatcacttg aactcaggag atggaggttt cagtgagccg 2150 agatcacgcc actgcactcc agcctggcaa cagagcgaga ctccatctca 2200 aaaaaaaaa aaa 2213

<210> 130

<211> 335

<212> PRT

<213> Homo sapiens

<400> 130

Met Ala Ala Arg Trp Arg Phe Trp Cys Val Ser Val Thr Met Val

1 5 10 15

Val Ala Leu Leu Ile Val Cys Asp Val Pro Ser Ala Ser Ala Gln 20 25 30

Arg Lys Lys Glu Met Val Leu Ser Glu Lys Val Ser Gln Leu Met 35 40 45

Glu Trp Thr Asn Lys Arg Pro Val Ile Arg Met Asn Gly Asp Lys 50 55 60

Phe Arg Arg Leu Val Lys Ala Pro Pro Arg Asn Tyr Ser Val Ile 65 70 75

Val Met Phe Thr Ala Leu Gln Leu His Arg Gln Cys Val Val Cys 80 85 90

Lys Gln Ala Asp Glu Glu Phe Gln Ile Leu Ala Asn Ser Trp Arg 95 100 105

Tyr Ser Ser Ala Phe Thr Asn Arg Ile Phe Phe Ala Met Val Asp 120 Phe Asp Glu Gly Ser Asp Val Phe Gln Met Leu Asn Met Asn Ser 130 Ala Pro Thr Phe Ile.Asn Phe Pro Ala Lys Gly Lys Pro Lys Arg Gly Asp Thr Tyr Glu Leu Gln Val Arg Gly Phe Ser Ala Glu Gln Ile Ala Arg Trp Ile Ala Asp Arg Thr Asp Val Asn Ile Arg Val Ile Arg Pro Pro Asn Tyr Ala Gly Pro Leu Met Leu Gly Leu Leu Leu Ala Val Ile Gly Gly Leu Val Tyr Leu Arg Arg Ser Asn Met Glu Phe Leu Phe Asn Lys Thr Gly Trp Ala Phe Ala Ala Leu Cys Phe Val Leu Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro Pro Tyr Ala His Lys Asn Pro His Thr Gly His Val Asn Tyr Ile His Gly Ser Ser Gln Ala Gln Phe Val Ala Glu Thr His 260 265 Ile Val Leu Leu Phe Asn Gly Gly Val Thr Leu Gly Met Val Leu 280 Leu Cys Glu Ala Ala Thr Ser Asp Met Asp Ile Gly Lys Arg Lys 295 300 Ile Met Cys Val Ala Gly Ile Gly Leu Val Val Leu Phe Phe Ser 310 Trp Met Leu Ser Ile Phe Arg Ser Lys Tyr His Gly Tyr Pro Tyr 320 325 Ser Phe Leu Met Ser <210> 131 <211> 2476 <212> DNA

<213> Homo sapiens

<400> 131

aagcaaccaa actgcaagct ttgggagttg ttcgctgtcc ctgccctgct 50 ctgctaggga gagaacgcca gagggaggcg gctggcccgg cggcaggctc 100

tcagaaccgc taccggcgat gctactgctg tgggtgtcgg tggtcgcagc 150 cttggcgctg gcggtactgg cccccggagc aggggagcag aggcggagag 200 cagccaaagc gcccaatgtg gtgctggtcg tgagcgactc cttcgatgga 250 aggttaacat ttcatccagg aagtcaggta gtgaaacttc cttttatcaa 300 ctttatgaag acacgtggga cttcctttct gaatgcctac acaaactctc 350 caatttgttg cccatcacgc gcagcaatgt ggagtggcct cttcactcac 400 ttaacagaat cttggaataa ttttaagggt ctagatccaa attatacaac 450 atggatggat gtcatggaga ggcatggcta ccgaacacag aaatttggga 500 aactggacta tacttcagga catcactcca ttagtaatcg tgtggaagcg 550 tggacaagag atgttgcttt cttactcaga caagaaggca ggcccatggt 600 taatcttatc cgtaacagga ctaaagtcag agtgatggaa agggattggc 650 agaatacaga caaagcagta aactggttaa gaaaggaagc aattaattac 700 actgaaccat ttgttattta cttgggatta aatttaccac accettacce 750 ttcaccatct tctggagaaa attttggatc ttcaacattt cacacatctc 800 tttattggct tgaaaaagtg tctcatgatg ccatcaaaat cccaaagtgg 850 tcacctttgt cagaaatgca ccctgtagat tattactctt cttatacaaa 900 aaactgcact ggaagattta caaaaaaaga aattaagaat attagagcat 950 tttattatgc tatgtgtgct gagacagatg ccatgcttgg tgaaattatt 1000 ttggcccttc atcaattaga tcttcttcag aaaactattg tcatatactc 1050 ctcagaccat ggagagctgg ccatggaaca tcgacagttt tataaaatqa 1100 gcatgtacga ggctagtgca catgttccgc ttttgatgat gggaccagga 1150 attaaagccg gcctacaagt atcaaatgtg gtttctcttg tggatattta 1200 ccctaccatg cttgatattg ctggaattcc tctgcctcag aacctgagtg 1250 gatactcttt gttgccgtta tcatcagaaa catttaagaa tgaacataaa 1300 gtcaaaaacc tgcatccacc ctggattctg agtgaattcc atggatgtaa 1350 tgtgaatgcc tccacctaca tgcttcgaac taaccactgg aaatatatag 1400 cctattcgga tggtgcatca atattgcctc aactctttga tctttcctcg 1450 gatccagatg aattaacaaa tgttgctgta aaatttccag aaattactta 1500 ttctttggat cagaagcttc attccattat aaactaccct aaagtttctg 1550

```
cttctgtcca ccagtataat aaagagcagt ttatcaagtg gaaacaaagt 1600
 ataggacaga attattcaaa cgttatagca aatcttaggt ggcaccaaga 1650
 ctggcagaag gaaccaagga agtatgaaaa tgcaattgat cagtggctta 1700
 aaacccatat gaatccaaga gcagtttgaa caaaaagttt aaaaatagtg 1750
 ttctagagat acatataaat atattacaag atcataatta tgtattttaa 1800
 atgaaacagt tttaataatt accaagtttt ggccgggcac agtggctcac 1850
 acctgtaatc ccaggacttt gggaggctga ggaaagcaga tcacaaggtc 1900
 aagagattga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 1950
 aaatacaaaa attagctggg cgcggtggtg cacacctata gtctcagcta 2000
 ctcagaggct gaggcaggag gatcgcttga acccgggagg cagcagttgc 2050
 agtgagctga gattgcgcca ctgtactcca gcctggcaac agagtgagac 2100
 tgtgtcgcaa aaaaataaaa ataaaataat aataattacc aatttttcat 2150
 tattttgtaa gaatgtagtg tattttaaga taaaatgcca atgattataa 2200
 aatcacatat tttcaaaaat ggttattatt taggcctttg tacaatttct 2250
 aacaatttag tggaagtatc aaaaggattg aagcaaatac tgtaacagtt 2300
 atgttccttt aaataataga gaatataaaa tattgtaata atatgtatca 2350
 aaaaaaaaa aaaaaaaa aaaaaa 2476
<210> 132
<211> 536
<212> PRT
<213> Homo sapiens
<400> 132
```

Met Leu Leu Trp Val Ser Val Val Ala Ala Leu Ala Leu Ala

Val Leu Ala Pro Gly Ala Gly Glu Gln Arg Arg Ala Ala Lys

Ala Pro Asn Val Val Leu Val Val Ser Asp Ser Phe Asp Gly Arg

Leu Thr Phe His Pro Gly Ser Gln Val Val Lys Leu Pro Phe Ile

Asn Phe Met Lys Thr Arg Gly Thr Ser Phe Leu Asn Ala Tyr Thr 70

Asn Ser Pro Ile Cys Cys Pro Ser Arg Ala Ala Met Trp Ser Gly Leu Phe Thr His Leu Thr Glu Ser Trp Asn Asn Phe Lys Gly Leu Asp Pro Asn Tyr Thr Trp Met Asp Val Met Glu Arg His Gly Tyr Arg Thr Gln Lys Phe Gly Lys Leu Asp Tyr Thr Ser Gly His His Ser Ile Ser Asn Arg Val Glu Ala Trp Thr Arg Asp Val Ala Phe Leu Leu Arg Gln Glu Gly Arg Pro Met Val Asn Leu Ile Arg 155 160 165 Asn Arg Thr Lys Val Arg Val Met Glu Arg Asp Trp Gln Asn Thr Asp Lys Ala Val Asn Trp Leu Arg Lys Glu Ala Ile Asn Tyr Thr Glu Pro Phe Val Ile Tyr Leu Gly Leu Asn Leu Pro His Pro Tyr Pro Ser Pro Ser Ser Gly Glu Asn Phe Gly Ser Ser Thr Phe His Thr Ser Leu Tyr Trp Leu Glu Lys Val Ser His Asp Ala Ile Lys Ile Pro Lys Trp Ser Pro Leu Ser Glu Met His Pro Val Asp Tyr Tyr Ser Ser Tyr Thr Lys Asn Cys Thr Gly Arg Phe Thr Lys Lys 260 Glu Ile Lys Asn Ile Arg Ala Phe Tyr Tyr Ala Met Cys Ala Glu 280 Thr Asp Ala Met Leu Gly Glu Ile Ile Leu Ala Leu His Gln Leu Asp Leu Leu Gln Lys Thr Ile Val Ile Tyr Ser Ser Asp His Gly Glu Leu Ala Met Glu His Arg Gln Phe Tyr Lys Met Ser Met Tyr Glu Ala Ser Ala His Val Pro Leu Leu Met Met Gly Pro Gly Ile Lys Ala Gly Leu Gln Val Ser Asn Val Val Ser Leu Val Asp Ile 350 Tyr Pro Thr Met Leu Asp Ile Ala Gly Ile Pro Leu Pro Gln Asn

Leu Ser Gly Tyr Ser Leu Leu Pro Leu Ser Ser Glu Thr Phe Lys 380 385 390

365

Asn Glu His Lys Val Lys Asn Leu His Pro Pro Trp Ile Leu Ser 395 400 405

370

375

Glu Phe His Gly Cys Asn Val Asn Ala Ser Thr Tyr Met Leu Arg 410 415 420

Thr Asn His Trp Lys Tyr Ile Ala Tyr Ser Asp Gly Ala Ser Ile
425
430

Leu Pro Gln Leu Phe Asp Leu Ser Ser Asp Pro Asp Glu Leu Thr 440 445 450

Asn Val Ala Val Lys Phe Pro Glu Ile Thr Tyr Ser Leu Asp Gln 455 460 465

Lys Leu His Ser Ile Ile Asn Tyr Pro Lys Val Ser Ala Ser Val 470 475 480

His Gln Tyr Asn Lys Glu Gln Phe Ile Lys Trp Lys Gln Ser Ile 485 490 495

Gly Gln Asn Tyr Ser Asn Val Ile Ala Asn Leu Arg Trp His Gln 500 505 510

Asp Trp Gln Lys Glu Pro Arg Lys Tyr Glu Asn Ala Ile Asp Gln 515 520 525

Trp Leu Lys Thr His Met Asn Pro Arg Ala Val 530 535

<210> 133

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 133

gagagaagtc agcctggcag agagactctg aaatgaggga ttagaggtgt 50
tcaaggagca agagcttcag cctgaagaca agggagcagt ccctgaagac 100
gcttctactg agaggtctgc catggcctct cttggcctcc aacttgtggg 150
ctacatccta ggccttctgg ggcttttggg cacactggtt gccatgctgc 200
tccccagctg gaaaacaagt tcttatgtcg gtgccagcat tgtgacagca 250
gttggcttct ccaagggcct ctggatggaa tgtgccacac acagcacagg 300
catcacccag tgtgacatct atagcaccct tctgggcctg cccgctgaca 350
tccaggctgc ccaggccatg atggtgacat ccagtgcaat ctcctccctg 400
gcctgcatta tctctgtggt gggcatgaga tgcacagtct tctgccagga 450

atcccgagcc aaagacagag tggcggtagc aggtggagtc tttttcatcc 500 ttggaggcct cctgggattc attcctgttg cctggaatct tcatgggatc 550 ctacgggact tctactcacc actggtgcct gacagcatga aatttgagat 600 tggagagget ctttacttgg gcattatttc ttccctgttc tccctgatag 650 ctggaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700 tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750 gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800 cagggtatgt gtgaagaacc aggggccaga gctgggggt ggctgggtct 850 gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900 actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950 ggattgagca aaggcagaaa tgggggctag tgtaacagca tgcaggttga 1000 attgccaagg atgctcgcca tgccagcctt tctgttttcc tcaccttgct 1050 gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100 agccaggact cagaggatcc ctttgccctc tggtttacct gggactccat 1150 ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200 ccctctctct ggctgaggtt ggctcttagc tcattgctgg ggatgggaag 1250 gagaagcagt ggcttttgtg ggcattgctc taacctactt ctcaaqcttc 1300 cctccaaaga aactgattgg ccctggaacc tccatcccac tcttgttatg 1350 actccacagt gtccagacta atttgtgcat gaactgaaat aaaaccatcc 1400 tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450 gcagcctggg acatttaaaa aaata 1475

<210> 134

<211> 230

<212> PRT

<213> Homo sapiens

<400> 134

Met Ala Ser Leu Gly Leu Gln Leu Val Gly Tyr Ile Leu Gly Leu 1 5 10 15

Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp 20 25 30

Lys Thr Ser Ser Tyr Val Gly Ala Ser Ile Val Thr Ala Val Gly 35 40 45

Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly

55

60

Ile Thr Gln Cys Asp Ile Tyr Ser Thr Leu Leu Gly Leu Pro Ala 65 70 75

50

Asp Ile Gln Ala Ala Gln Ala Met Met Val Thr Ser Ser Ala Ile 80 85 90

Ser Ser Leu Ala Cys Ile Ile Ser Val Val Gly Met Arg Cys Thr 95 100 105

Val Phe Cys Gln Glu Ser Arg Ala Lys Asp Arg Val Ala Val Ala

Gly Gly Val Phe Phe Ile Leu Gly Gly Leu Leu Gly Phe Ile Pro 125 130 135

Val Ala Trp Asn Leu His Gly Ile Leu Arg Asp Phe Tyr Ser Pro 140 145 150

Leu Val Pro Asp Ser Met Lys Phe Glu Ile Gly Glu Ala Leu Tyr 155 160 165

Leu Gly Ile Ile Ser Ser Leu Phe Ser Leu Ile Ala Gly Ile Ile 170 175 180

Leu Cys Phe Ser Cys Ser Ser Gln Arg Asn Arg Ser Asn Tyr Tyr 185 190 195

Asp Ala Tyr Gln Ala Gln Pro Leu Ala Thr Arg Ser Ser Pro Arg 200 205 210

Pro Gly Gln Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser 215 220 225

Leu Thr Gly Tyr Val 230

<210> 135

<211> 610

<212> DNA

<213> Homo sapiens

<400> 135

gcactgctgc tgtcccatca gctgctctga agctccatgg tgcccagaat 50 cttcgctcct gcttatgtgt cagtctgtct cctcctcttg tgtccaaggg 100 aagtcatcgc tcccgctggc tcagaaccat ggctgtgcca gccggcaccc 150 aggtgtggag acaagatcta caaccccttg gagcagtgct gttacaatga 200 cgccatcgtg tccctgagcg agacccgcca atgtggtccc ccctgcacct 250 tctggccctg ctttgagctc tgctgtcttg attcctttgg cctcacaaac 300 gattttgttg tgaagctgaa ggttcagggt gtgaattccc agtgccactc 350

atctcccatc tccagtaaat gtgaaagcag aagacgttt ccctgagaag 400
acatagaaag aaaatcaact ttcactaagg catctcagaa acataggcta 450
aggtaatatg tgtaccagta gagaagcctg aggaatttac aaaatgatgc 500
agctccaagc cattgtatgg cccatgtggg agactgatgg gacatggaga 550
atgacagtag attatcagga aataaataaa gtggttttc caatgtacac 600
acctgtaaaa 610

<210> 136 <211> 119 <212> PRT

<213> Homo sapiens

<400> 136

Met Val Pro Arg Ile Phe Ala Pro Ala Tyr Val Ser Val Cys Leu $1 \ \ \, 5 \ \ \, 10 \ \ \, 15$

Leu Leu Cys Pro Arg Glu Val Ile Ala Pro Ala Gly Ser Glu 20 25 30

Pro Trp Leu Cys Gln Pro Ala Pro Arg Cys Gly Asp Lys Ile Tyr 35 40 45

Asn Pro Leu Glu Gln Cys Cys Tyr Asn Asp Ala Ile Val Ser Leu 50 55 60

Ser Glu Thr Arg Gln Cys Gly Pro Pro Cys Thr Phe Trp Pro Cys
65 70 75

Phe Glu Leu Cys Cys Leu Asp Ser Phe Gly Leu Thr Asn Asp Phe 80 85

Val Val Lys Leu Lys Val Gln Gly Val Asn Ser Gln Cys His Ser 95 100 105

Ser Pro Ile Ser Ser Lys Cys Glu Ser Arg Arg Phe Pro 110 115 .

<210> 137

<211> 771

<212> DNA

<213> Homo sapiens

<400> 137

ctccactgca accaccaga gccatggctc cccgaggctg catcgtagct 50 gtctttgcca ttttctgcat ctccaggctc ctctgctcac acggagccc 100 agtggccccc atgactcctt acctgatgct gtgccagcca cacaagagat 150 gtggggacaa gttctacgac cccctgcagc actgttgcta tgatgatgcc 200 gtcgtgccct tggccaggac ccagacgtgt ggaaactgca ccttcagagt 250

agaactgcga ctcagccgg acctcggatg acaggetttg tcgcagtgtc 350
agctaatgga acatcagggg aacgatgact cctggattct ccttcctggg 400
tgggcctgga gaaagaggct ggtgttacct gagatctggg atgctgagtg 450
gctgtttggg ggccagagaa acacacactc aactgcccac ttcattctgt 500
gacctgtctg aggcccaccc tgcagctgcc ctgaggaggc ccacaggtcc 550
ccttctagaa ttctggacag catgagatgc gtgtgctgat gggggcccag 600
ggactctgaa ccctcctgat gacccctatg gccaacatca acccggcacc 650
accccaaggc tggctggga acccttcacc cttctgtgag attttccatc 700
atctcaagtt ctcttctatc caggagcaaa gcacaggatc ataataaatt 750
tatgtacttt ataaatgaaa a 771

Thr Pro Tyr Leu Met Leu Cys Gln Pro His Lys Arg Cys Gly Asp 35 40 45

Lys Phe Tyr Asp Pro Leu Gln His Cys Cys Tyr Asp Asp Ala Val $50 \hspace{1cm} 55 \hspace{1cm} 60$

Val Pro Leu Ala Arg Thr Gln Thr Cys Gly Asn Cys Thr Phe Arg
65 70 75

Val Cys Phe Glu Gln Cys Cys Pro Trp Thr Phe Met Val Lys Leu 80 85 90

Ile Asn Gln Asn Cys Asp Ser Ala Arg Thr Ser Asp Asp Arg Leu 95 100 105

Cys Arg Ser Val Ser 110

<210> 139

<211> 2044

<212> DNA

<213> Homo sapiens

<400> 139

gggggcgggt gcctggagca cggcgctggg gccgcccgca gcgctcactc 50 gctcgcactc agtcgcggga ggcttccccg cgccggccgc gtcccgcccg 100 ctccccggca ccagaagttc ctctgcgcgt ccgacggcga catgggcgtc 150 cccacggccc tggaggccgg cagctggcgc tggggatccc tgctcttcgc 200. tctcttcctg gctgcgtccc taggtccggt ggcagccttc aaggtcgcca 250 cgccgtattc cctgtatgtc tgtcccgagg ggcagaacgt caccctcacc 300 tgcaggctct tgggccctgt ggacaaaggg cacgatgtga ccttctacaa 350 gacgtggtac cgcagctcga ggggcgaggt gcagacctgc tcagagcgcc 400 ggcccatccg caacctcacg ttccaggacc ttcacctgca ccatggaggc 450 caccaggetg ccaacaccag ccacgacetg geteagegee aegggetgga 500 gtcggcctcc gaccaccatg gcaacttctc catcaccatg cgcaacctga 550 ccctgctgga tagcggcctc tactgctgcc tggtggtgga gatcaggcac 600 caccactcgg agcacagggt ccatggtgcc atggagctgc aggtgcagac 650 aggcaaagat gcaccatcca actgtgtggt gtacccatcc tcctcccagg 700 atagtgaaaa catcacggct gcagccctgg ctacgggtgc ctgcatcgta 750 ggaatcctct gcctcccct catcctgctc ctggtctaca agcaaaggca 800 ggcagcctcc aaccgccgtg cccaggagct ggtgcggatg gacagcaaca 850 ttcaagggat tgaaaacccc ggctttgaag cctcaccacc tgcccagggg 900 atacccgagg ccaaagtcag gcacccctg tcctatgtgg cccagcggca 950 gccttctgag tctgggcggc atctgctttc ggagcccagc accccctgt 1000 ctcctccagg ccccggagac gtcttcttcc catccctgga ccctgtccct 1050 gactetecaa aetttgaggt catetageee agetggggga cagtgggetg 1100 ttgtggctgg gtctggggca ggtgcatttg agccagggct ggctctgtga 1150 gtggcctcct tggcctcggc cctggttccc tccctcctgc tctgggctca 1200 gatactgtga catcccagaa gcccagcccc tcaacccctc tggatgctac 1250 atggggatgc tggacggctc agcccctgtt ccaaggattt tggggtgctg 1300 agattetece etagagacet gaaatteace agetacagat gecaaatgae 1350 ttacatetta agaagtetea gaaegteeag eeetteagea getetegtte 1400 tgagacatga gccttgggat gtggcagcat cagtgggaca agatggacac 1450

BI

<210> 140

<211> 311

<212> PRT

<213> Homo sapiens

<400> 140

Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp Gly 1 5 10 15

Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val 20 25 30

Ala Ala Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro 35 40 45

Glu Gly Gln Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val 50 55 .. 60

Asp Lys Gly His Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser 65 70 75

Ser Arg Gly Glu Val Gln Thr Cys Ser Glu Arg Arg Pro Ile Arg 80 85 90

Asn Leu Thr Phe Gln Asp Leu His Leu His His Gly Gly His Gln 95 100 105

Ala Ala Asn Thr Ser His Asp Leu Ala Gln Arg His Gly Leu Glu
110 115 120

Ser Ala Ser Asp His His Gly Asn Phe Ser Ile Thr Met Arg Asn 125 130 135

Leu Thr Leu Leu Asp Ser Gly Leu Tyr Cys Cys Leu Val Val Glu

140 145 150

Ile Arg His His Ser Glu His Arg Val His Gly Ala Met Glu
155 160 165

Leu Gln Val Gln Thr Gly Lys Asp Ala Pro Ser Asn Cys Val Val

Tyr Pro Ser Ser Ser Gln Asp Ser Glu Asn Ile Thr Ala Ala Ala 185 190 195

Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys Leu Pro Leu
200 205 210

Ile Leu Leu Val Tyr Lys Gln Arg Gln Ala Ala Ser Asn Arg 215 220 225

Arg Ala Gln Glu Leu Val Arg Met Asp Ser Asn Ile Gln Gly Ile 230 235 240

Glu Asn Pro Gly Phe Glu Ala Ser Pro Pro Ala Gln Gly Ile Pro 245 250 255

Glu Ala Lys Val Arg His Pro Leu Ser Tyr Val Ala Gln Arg Gln 260 265 270

Pro Ser Glu Ser Gly Arg His Leu Leu Ser Glu Pro Ser Thr Pro 275 280 285

Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Pro Ser Leu Asp 290 295 300

Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile 305

<210> 141

<211> 1732

<212> DNA

<213> Homo sapiens

<400> 141

cccacgcgtc cgcgcctctc ccttctgctg gaccttcctt cgtctctca 50
tctctccctc ctttccccgc gttctctttc cacctttctc ttcttcccac 100
cttagacctc ccttcctgcc ctcctttcct gcccaccgct gcttcctggc 150
ccttctccga ccccgctcta gcagcagacc tcctggggtc tgtgggttga 200
tctgtggccc ctgtgcctcc gtgtcctttt cgtctccctt cctcccgact 250
ccgctcccgg accagcggcc tgaccctggg gaaaggatgg ttcccgaggt 300
gagggtcctc tcctccttgc tgggactcgc gctgctctgg ttccccctgg 350
actcccacgc tcgagcccgc ccagacatgt tctgcctttt ccatgggaag 400
agatactccc ccggcgagag ctggcacccc tacttggagc cacaaggcct 450

gatgtactgc ctgcgctgta cctgctcaga gggcgcccat gtgagttgtt 500 accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550 cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600 ggccccacca aagtcctgcc agcacaacgg gaccatgtac caacacggag 650 agatetteag tgeccatgag etgtteeect eeegeetgee caaceagtgt 700 gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750 ccccgaacca ggctgcccag cacccctccc actgccagac tcctgctgcc 800 aagcctgcaa agatgaggca agtgagcaat cggatgaaga ggacagtgtg 850 cagtcgctcc atggggtgag acatcctcag gatccatgtt ccagtgatgc 900 tgggagaaag agaggcccgg gcaccccagc ccccactggc ctcagcgccc 950 ctctgagett catecetege caetteagae ccaagggage aggeageaea 1000 actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050 cgggaagacg tactcccacg gggaggtgtg gcacccggcc ttccgtgcct 1100 teggeceett geeetgeate etatgeacet gtgaggatgg eegeeaggae 1150 tgccagcgtg tgacctgtcc caccgagtac ccctgccgtc accccgagaa 1200 agtggctggg aagtgctgca agatttgccc agaggacaaa gcagaccctg 1250 gccacagtga gatcagttct accaggtgtc ccaaggcacc gggccgggtc 1300 ctcgtccaca catcggtatc cccaagccca gacaacctgc gtcgctttgc 1350 cctggaacac gaggcctcgg acttggtgga gatctacctc tggaagctgg 1400 taaaagatga ggaaactgag gctcagagag gtgaagtacc tggcccaagg 1450 ccacacagec agaatettee aettgaetea gateaagaaa gteaggaage 1500 aagacttcca gaaagaggca cagcacttcc gactgctcgc tggcccccac 1550 gaaggtcact ggaacgtctt cctagcccag accctggagc tgaaggtcac 1600 ggccagtcca gacaaagtga ccaagacata acaaagacct aacagttgca 1650 gatatgagct gtataattgt tgttattata tattaataaa taagaagttg 1700 cattaccctc aaaaaaaaaa aa 1732

<210> 142

<211> 451

<212> PRT

<213> Homo sapiens

<400> 142

Met 1	Val	Pro	Glu	Val 5	Arg	Val	Leu	Ser	Ser 10	Leu	Leu	Gly	Leu	Ala 15
Leu	Leu	Trp	Phe	Pro 20	Leu	Asp	Ser	His	Ala 25	Arg	Ala	Arg	Pro	Asp 30
Met	Phe	Суз	Leu	Phe 35	His	Gly	Lys	Arg	Туг 40	Ser	Pro	Gly	Glu	Ser 45
Trp	His	Pro	Tyr	Leu 50	Glu	Pro	Gln	Gly	Leu 55	Met	Tyr	Суѕ	Leu	Arg 60
. Cys	Thr	Суз	Ser	Glu 65	Gly	Ala	His	Val	Ser 70	Cys	Tyr	Arg	Leu	His 75
Cys	Pro	Pro	Val	His 80	Суз	Pro	Gln	Pro	Val 85	Thr	Glu	Pro	Gln	Gln 90
Cys	Суз	Pro	Lys	Cys 95	Val	Glu	Pro	His	Thr 100	Pro	Ser	Gly	Leu	Arg 105
Ala	Pro	Pro	Lys	Ser 110	Cys	Gln	His	Asn	Gly 115	Thr	Met	Tyr	Gln	His 120
Gly	Glu	Ile	Phe	Ser 125	Ala	His	Glu	Leu	Phe 130	Pro	Ser	Arg	Leu	Pro 135
Asn	Gln	Cys	Val	Leu 140	Cys	Ser	Cys	Thr	Glu 145	Gly	Gln	Ile	Tyr	Cys 150
Gly	Leu	Thr	Thr	Cys 155	Pro	Glu	Pro	Gly	Cys 160	Pro	Ala	Pro	Leu	Pro 165
Leu	Pro	Asp	Ser	Cys 170	Суѕ	Gln	Ala	Cys	Lys 175	Asp	Glu	Ala	Ser	Glu 180
Gln	Ser	Asp	Glu	Glu 185	Asp	Ser	Val	Gln	Ser 190	Leu	His	Gly	Val	Arg 195
His	Pro	Gln	Asp	Pro 200	Cys	Ser	Ser	Asp	Ala 205	Gly	Arg	Lys	Arg	Gly 210
Pro	Gly	Thr	Pro	Ala 215	Pro	Thr	Gly	Leu	Ser 220	Ala	Pro	Leu	Ser	Phe 225
Ile	Pro	Arg	His	Phe 230	Arg	Pro	Lys	Gly	Ala 235	Gly	Ser	Thr	Thr	Val 240
Lys	Ile	Val	Leu	Lys 245	Glu	Lys	His	Lys	Lys 250	Ala	Суѕ	Val	His	Gly 255
Gly	Lys	Thr	Tyr	Ser 260	His	Gly	Glu	Val	Trp 265	His	Pro	Ala	Phe	Arg ' 270
Ala	Phe	Gly	Pro	Leu 275	Pro	Cys	Ile	Leu	Cys 280	Thr	Cys	Glu	Asp	Gly 285
Arg	Gln	Asp	Cys	Gln	Arg	Val	Thr	Cys	Pro	Thr	Glu	Tyr	Pro	Cys

290 295 300

Arg His Pro Glu Lys Val Ala Gly Lys Cys Cys Lys Ile Cys Pro

Glu Asp Lys Ala Asp Pro Gly His Ser Glu Ile Ser Ser Thr Arg
320 325 330

Cys Pro Lys Ala Pro Gly Arg Val Leu Val His Thr Ser Val Ser 335 340 345

Pro Ser Pro Asp Asn Leu Arg Arg Phe Ala Leu Glu His Glu Ala 350 355 360

Ser Asp Leu Val Glu Ile Tyr Leu Trp Lys Leu Val Lys Asp Glu 365 370 375

Glu Thr Glu Ala Gln Arg Gly Glu Val Pro Gly Pro Arg Pro His 380 385 390

Ser Gln Asn Leu Pro Leu Asp Ser Asp Gln Glu Ser Gln Glu Ala 395 400 405

Arg Leu Pro Glu Arg Gly Thr Ala Leu Pro Thr Ala Arg Trp Pro
410 415 420

Pro Arg Arg Ser Leu Glu Arg Leu Pro Ser Pro Asp Pro Gly Ala 425 430 435

Glu Gly His Gly Gln Ser Arg Gln Ser Asp Gln Asp Ile Thr Lys 440 445 450

Thr

<210> 143

<211> 693

<212> DNA

<213> Homo sapiens

<400> 143

ctagcetgeg ccaagggta gtgagacege geggeaacag ettgeggetg 50 eggggagete eegtggege teegetgget gtgeaggegg ceatggatte 100 ettgeggaaa atgetgatet eagtegeaat getgggegea ggggetggeg 150 tgggetaege geteetegtt ategtgaece egggagageg geggaageag 200 gaaatgetaa aggagatgee actgeaggae ecaaggagea gggaggagge 250 ggecaggaee eageagetat tgetggeeae tetgeaggag geageageae 300 egeaggagaa egtggeetgg aggaagaaet ggatggttgg eggegaagge 350 ggegecageg ggaggteaee gtgagaeeg acttgeetee gtgggegeeg 400 gaeettgget tgggegeagg aateegagge ageetttete ettegtggee 450

ccagcggaga gtccggaccg agataccatg ccaggactct ccggggtcct 500 gtgagctgcc gtcgggtgag cacgtttccc ccaaaccctg gactgactgc 550 tttaaggtcc gcaaggcggg ccagggccga gacgcgagtc ggatgtggtg 600 aactgaaaga accaataaaa tcatgttcct ccaaaaaaaa aaaaaaaaa 650 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 693 <210> 144 <211> 93 <212> PRT <213> Homo sapiens <400> 144 Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly Ala Gly Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro Gly Glu Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu Gln 35 Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu Leu Ala Thr Leu Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala 70 Trp Arg Lys Asn Trp Met Val Gly Gly Glu Gly Gly Ala Ser Gly Arg Ser Pro

<210> 145 <211> 1883 <212> DNA <213> Homo sapiens

<400> 145 caggagagaa ggcaccgccc ccaccccgcc tccaaagcta accctcgggc 50 ttgaggggaa gaggctgact gtacgttcct tctactctgg caccactctc 100 caggetgcca tggggcccag caccectete etcatettgt teettttgte 150 atggtcggga cccctccaag gacagcagca ccaccttgtg gagtacatgg 200 aacgccgact agctgcttta gaggaacggc tggcccagtg ccaggaccag 250 agtagtcggc atgctgctga gctgcgggac ttcaagaaca agatgctgcc 300 actgctggag gtggcagaga aggagcggga ggcactcaga actgaggccg 350 acaccatctc cgggagagtg gatcgtctgg agcgggaggt agactatctg 400

BI

gagacccaga acccagetet gecetgtgta gagtttgatg agaaggtgae 450 tggaggccct gggaccaaag gcaagggaag aaggaatgag aagtacgata 500 tggtgacaga ctgtggctac acaatctctc aagtgagatc aatgaagatt 550 ctgaagcgat ttggtggccc agctggtcta tggaccaagg atccactggg 600 gcaaacagag aagatctacg tgttagatgg gacacagaat gacacagcct 650 ttgtcttccc aaggctgcgt gacttcaccc ttgccatggc tgcccggaaa 700 gcttcccgag tccgggtgcc cttcccctgg gtaggcacag ggcagctggt 750 atatggtggc tttctttatt ttgctcggag gcctcctgga agacctggtg 800 gaggtggtga gatggagaac actttgcagc taatcaaatt ccacctggca 850 aaccgaacag tggtggacag ctcagtattc ccagcagagg ggctgatccc 900 cccctacggc ttgacagcag acacctacat cgacctggta gctgatgagg 950 aaggtetttg ggetgtetat gecaeeeggg aggatgaeag geaettgtgt 1000 ctggccaagt tagatccaca gacactggac acagagcagc agtgggacac 1050 accatgteee agagagaatg etgaggetge etttgteate tgtgggaeee 1100 tctatgtcgt ctataacacc cgtcctgcca gtcgggcccg catccagtgc 1150 teetttgatg eeageggeae eetgaeeeet gaaegggeag eacteeetta 1200 ttttccccgc agatatggtg cccatgccag cctccgctat aacccccgag 1250 aacgccagct ctatgcctgg gatgatggct accagattgt ctataagctg 1300 gagatgagga agaaagagga ggaggtttga ggagctagcc ttgttttttg 1350 catctttctc actcccatac atttatatta tatccccact aaatttcttg 1400 ttcctcattc ttcaaatgtg ggccagttgt ggctcaaatc ctctatattt 1450 ttagccaatg gcaatcaaat tctttcagct cctttgtttc atacggaact 1500 ccagatcctg agtaatcctt ttagagcccg aagagtcaaa accctcaatg 1550 ttccctcctg ctctcctgcc ccatgtcaac aaatttcagg ctaaggatgc 1600 cccagaccca gggctctaac cttgtatgcg ggcaggccca gggagcaggc 1650 agcagtgttc ttcccctcag agtgacttgg ggagggagaa ataggaggag 1700 acgtccaget etgtcetete tteeteacte etceetteag tgteetgagg 1750 aacaggactt tctccacatt gttttgtatt gcaacatttt gcattaaaag 1800

Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser

250

155

BI

```
        Val
        Phe
        Pro
        Ala
        Gly
        Leu
        Ile
        Pro
        265
        Tyr
        Gly
        Leu
        Thr
        270

        Asp
        Thr
        Tyr
        Ile
        Asp
        Leu
        Val
        Ala
        Asp
        Glu
        Glu
        Glu
        Glu
        Glu
        Asp
        Asp
        Arg
        His
        Leu
        Cys
        Leu
        Ala
        Lys
        300

        Leu
        Asp
        Pro
        Gln
        Thr
        Arg
        Bu
        Asp
        Arg
        His
        Leu
        Cys
        Leu
        Ala
        Lys
        300

        Leu
        Asp
        Pro
        Asp
        Thr
        Glu
        Glu
        Glu
        Asp
        Thr
        Arg
        Thr
        Arg
        Thr
        Arg
        Thr
        Arg
        Arg
        Thr
        Arg
        Arg
```

<210> 147

<211> 2052

<212> DNA

<213> Homo sapiens

<400> 147

gacagetgtg tetegatgga gtagaetete agaacagege agtttgeeet 50 cegeteacge agageetete egtggettee geacettgag cattaggeea 100 gtteteetet tetetetaat ceateegtea ceteteetgt cateegttee 150 catgeegtga ggteeattea cagaacacat ceatggetet catgeteagt 200 ttggttetga gteteeteaa getgggatea gggeagtgge aggtgtttgg 250 geeagacaag cetgteeag cettggtgg ggaggaegea geatteteet 300 gttteetgte teetaagaee aatgeagagg ceatggaagt geggttette 350 aggggeeagt tetetagegt ggteeacete tacagggaeg ggaaggaeea 400 geeatttatg eagatgeea agtateaagg caggaeaaa etggtgaagg 450 attetattge ggagggege atetetetga ggetggaaaa cattactgtg 500

PI

ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttactacca 550 gaaggccatc tgggagctac aggtgtcagc actgggctca gttcctctca 600 tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650 tegggetggt teeeceggee cacagegaag tggaaaggte cacaaggaca 700 ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgtttg 750 atgtggagat ctctctgacc gtccaagaga acgccgggag catatcctgt 800 tccatgcggc atgctcatct gagccgagag gtggaatcca gggtacagat 850 aggagatacc tttttcgagc ctatatcgtg gcacctggct accaaagtac 900 tgggaatact ctgctgtggc ctattttttg gcattgttgg actgaagatt 950 ttcttctcca aattccagtg gaaaatccag gcggaactgg actggagaag 1000 aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050 tgactctgga tccagagacg gctcacccga agctctgcgt ttctgatctg 1100 aaaactgtaa cccatagaaa agctccccag gaggtgcctc actctgagaa 1150 gagatttaca aggaagagtg tggtggcttc tcagagtttc caagcaggga 1200 aacattactg ggaggtggac ggaggacaca ataaaaggtg gcgcgtggga 1250 gtgtgccggg atgatgtgga caggaggaag gagtacgtga ctttgtctcc 1300 cgatcatggg tactgggtcc tcagactgaa tggagaacat ttgtatttca 1350 cattaaatcc ccgttttatc agcgtcttcc ccaggacccc acctacaaaa 1400 ataggggtet teetggaeta tgagtgtggg accateteet tetteaacat 1450 aaatgaccag tcccttattt ataccctgac atgtcggttt gaaggcttat 1500 tgaggcccta cattgagtat ccgtcctata atgagcaaaa tggaactccc 1550 atagtcatct gcccagtcac ccaggaatca gagaaagagg cctcttggca 1600 aagggcctct gcaatcccag agacaagcaa cagtgagtcc tcctcacagg 1650 caaccacgcc cttcctcccc aggggtgaaa tgtaggatga atcacatccc 1700 acattettet ttagggatat taaggtetet eteccagate caaagteeg 1750 cagcagccgg ccaaggtggc ttccagatga agggggactg gcctgtccac 1800 atgggagtca ggtgtcatgg ctgccctgag ctgggaggga agaaggctga 1850 cattacattt agtttgctct cactccatct ggctaagtga tcttgaaata 1900 ccacctctca ggtgaagaac cgtcaggaat tcccatctca caggctgtgg 1950

Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Leu Lys Leu Gly

Ser Gly Gln Trp Gln Val Phe Gly Pro Asp Lys Pro Val Gln Ala
20 25 30

Leu Val Gly Glu Asp Ala Ala Phe Ser Cys Phe Leu Ser Pro Lys
35 40 45

Thr Asn Ala Glu Ala Met Glu Val Arg Phe Phe Arg Gly Gln Phe

Ser Ser Val Val His Leu Tyr Arg Asp Gly Lys Asp Gln Pro Phe

tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2000

Ser Ile Ala Glu Gly Arg Ile Ser Leu Arg Leu Glu Asn Ile Thr 95 100 105

Val Leu Asp Ala Gly Leu Tyr Gly Cys Arg Ile Ser Ser Gln Ser 110 115 120

Tyr Tyr Gln Lys Ala Ile Trp Glu Leu Gln Val Ser Ala Leu Gly 125 130 135

Ser Val Pro Leu Ile Ser Ile Thr Gly Tyr Val Asp Arg Asp Ile 140 145 ... 150

Gln Leu Leu Cys Gln Ser Ser Gly Trp Phe Pro Arg Pro Thr Ala 155 160 165

Lys Trp Lys Gly Pro Gln Gly Gln Asp Leu Ser Thr Asp Ser Arg 170 175 180

Thr Asn Arg Asp Met His Gly Leu Phe Asp Val Glu Ile Ser Leu 185 190 195

Thr Val Gln Glu Asn Ala Gly Ser Ile Ser Cys Ser Met Arg His
200 205 210

Ala His Leu Ser Arg Glu Val Glu Ser Arg Val Gln Ile Gly Asp 215 220 225

Thr Phe Phe Glu Pro Ile Ser Trp His Leu Ala Thr Lys Val Leu

230 235 240 Gly Ile Leu Cys Cys Gly Leu Phe Phe Gly Ile Val Gly Leu Lys Ile Phe Phe Ser Lys Phe Gln Trp Lys Ile Gln Ala Glu Leu Asp Trp Arg Arg Lys His Gly Gln Ala Glu Leu Arg Asp Ala Arg Lys His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro 305 Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val Val Ala Ser Gln Ser Phe Gln Ala Gly Lys His Tyr Trp Glu Val 335 Asp Gly Gly His Asn Lys Arg Trp Arg Val Gly Val Cys Arg Asp Asp Val Asp Arg Arg Lys Glu Tyr Val Thr Leu Ser Pro Asp His 370 Gly Tyr Trp Val Leu Arg Leu Asn Gly Glu His Leu Tyr Phe Thr Leu Asn Pro Arg Phe Ile Ser Val Phe Pro Arg Thr Pro Pro Thr Lys Ile Gly Val Phe Leu Asp Tyr Glu Cys Gly Thr Ile Ser Phe Phe Asn Ile Asn Asp Gln Ser Leu Ile Tyr Thr Leu Thr Cys Arg Phe Glu Gly Leu Leu Arg Pro Tyr Ile Glu Tyr Pro Ser Tyr Asn Glu Gln Asn Gly Thr Pro Ile Val Ile Cys Pro Val Thr Gln Glu 455 Ser Glu Lys Glu Ala Ser Trp Gln Arg Ala Ser Ala Ile Pro Glu Thr Ser Asn Ser Glu Ser Ser Ser Gln Ala Thr Thr Pro Phe Leu 485 490 Pro Arg Gly Glu Met 500

<210> 149 <211> 24

```
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 149
 gcgtggtcca cctctacagg gacg 24
<210> 150
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 150
 ggaactgacc cagtgctgac acc 23
<210> 151
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 151
gcagatgcca cagtatcaag gcaggacaaa actggtgaag gattc 45
<210> 152
<211> 2294
<212> DNA
<213> Homo sapiens
<400> 152
gcgatggtgc gcccggtggc ggtggcggcg gcggttgcgg aggcttcctt 50
ggtcggattg caacgaggag aagatgactg accaaccgac tggctgaatg 100
 aatgaatggc ggagccgagc gcgccatgag gagcctgccg agcctgggcg 150
 gcctcgccct gttgtgctgc gccgccgccg ccgccgccgt cgcctcagcc 200
gcctcggcgg ggaatgtcac cggtggcggc ggggccgcgg ggcaggtgga 250
cgcgtcgccg ggccccgggt tgcggggcga gcccagccac cccttcccta 300
gggcgacggc tcccacggcc caggccccga ggaccgggcc cccgcgcgcc 350
```

accgtccacc gacccctggc tgcgacttct ccagcccagt ccccggagac 400

caccectett tgggcgactg etggaceete ttecaceaee ttteaggege 450 cgctcggccc ctcgccgacc accctccgg cggcggaacg cacttcgacc 500 acctctcagg cgccgaccag acccgcgccg accacccttt cgacqaccac 550 tggcccggcg ccgaccaccc ctgtagcgac caccgtaccg gcgcccacga 600 ctccccggac cccgacccc gatctcccca gcagcagcaa cagcagcgtc 650 ctccccacc cacctgccac cgaggcccc tcttcgcctc ctccagagta 700 tgtatgtaac tgctctgtgg ttggaagcct gaatgtgaat cgctgcaacc 750 agaccacagg gcagtgtgag tgtcggccag gttatcaggg gcttcactgt 800 gaaacctgca aagagggctt ttacctaaat tacacttctg ggctctgtca 850 gccatgtgac tgtagtccac atggagctct cagcataccg tgcaacaggt 900 aagcaacaga gggtggaact gaagtttatt ttattttagc aagggaaaaa 950 aaaaggctgc tactctcaag gaccatactg gtttaaacaa aggaggatga 1000 gggtcataga tttacaaaat attttatata cttttattct cttactttat 1050 atgttatatt taatgtcagg atttaaaaac atctaattta ctgatttagt 1100 tetteaaaag caetagagte geeaattttt etetgggata atttetgtaa 1150 atttcatggg aaaaaattat tgaagaataa atctgctttc tggaagggct 1200 ttcaggcatg aaacctgcta ggaggtttag aaatgttctt atgtttatta 1250 atataccatt ggagtttgag gaaatttgtt gtttggttta tttttctctc 1300 taatcaaaat tctacatttg tttctttgga catctaaagc ttaacctggg 1350 ggtaccctaa tttatttaac tagtggtaag tagactggtt ttactctatt 1400 taccagtaca tttttgagac caaaagtaga ttaagcagga attatcttta 1450 aactattatg ttatttggag gtaatttaat ctagtggaat aatgtactgt 1500 tatctaagca tttgccttgt actgcactga aagtaattat tctttgacct 1550 tatgtgaggc acttggcttt ttgtggaccc caagtcaaaa aactgaagag 1600 acagtattaa ataatgaaaa aaataatgac aggttatact cagtgtaacc 1650 tgggtataac ccaagatctg ctgccactta cgagctgtgt tccttgggca 1700 agtaatttcc tttcactgag cttgtttctt ctcaaggttg ttgtgaagat 1750 taaatgagtt gatatatata aaatgcctag cacatgtcac tcaataaatt 1800 ctggtttgtt ttaatttcaa aggaatatta tggactgaaa tgagagaaca 1850

<210> 153 <211> 258 <212> PRT <213> Homo sapiens

Thr Ala Pro Thr Ala Gln Ala Pro Arg Thr Gly Pro Pro Arg Ala 65 70 75

Thr Val His Arg Pro Leu Ala Ala Thr Ser Pro Ala Gln Ser Pro 80 $\,$ 85 $_{\rm H}$ $\,$ 90

Glu Thr Thr Pro Leu Trp Ala Thr Ala Gly Pro Ser Ser Thr Thr $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105 \hspace{1.5cm}$

Phe Gln Ala Pro Leu Gly Pro Ser Pro Thr Thr Pro Pro Ala Ala 110 115 120

Glu Arg Thr Ser Thr Thr Ser Gln Ala Pro Thr Arg Pro Ala Pro 125 130 135

Thr Thr Leu Ser Thr Thr Gly Pro Ala Pro Thr Thr Pro Val

Ala Thr Thr Val Pro Ala Pro Thr Thr Pro Arg Thr Pro Thr Pro
155 160 165

Asp Leu Pro Ser Ser Ser Asn Ser Ser Val Leu Pro Thr Pro Pro

Cys Asn Arg

- <210> 154
- <211> 24
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-24
- <223> Synthetic construct.
- <400> 154

aactgctctg tggttggaag cctg 24

- <210> 155
- <211> 24
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-24
- <223> Synthetic construct.
- <400> 155

cagtcacatg gctgacagac ccac 24

- <210> 156
- <211> 38
- <212> DNA
- <213> Artificial
- <220>
- <221> Artificial Sequence
- <222> 1-38
- <223> Synthetic construct.
- <400> 156

aggttatcag gggcttcact gtgaaacctg caaagagg 38

```
<400> 157
 tgcggcgcag tgtagacctg ggaggatggg cggcctgctg ctggctgctt 50
 ttctggcttt ggtctcggtg cccagggccc aggccgtgtg gttgggaaga 100
 ctggaccctg agcagcttct tgggccctgg tacgtgcttg cggtggcctc 150
 ccgggaaaag ggctttgcca tggagaagga catgaagaac gtcgtggggg 200
 tggtggtgac cctcactcca gaaaacaacc tgcggacgct gtcctctcag 250
 cacgggctgg gagggtgtga ccagagtgtc atggacctga taaagcgaaa 300
 ctccggatgg gtgtttgaga atccctcaat aggcgtgctg gagctctggg 350
 tgctggccac caacttcaga gactatgcca tcatcttcac tcagctggag 400
 ttcggggacg agcccttcaa caccgtggag ctgtacagtc tgacggagac 450
 agccagccag gaggccatgg ggctcttcac caagtggagc aggagcctgg 500
 getteetgte acagtageag geceagetge agaaggacet cacetgtget 550
 cacaagatcc ttctgtgagt gctgcgtccc cagtagggat ggcgcccaca 600
 gggtcctgtg acctcggcca gtgtccaccc acctcgctca gcggctcccg 650
 gggcccagca ccagctcaga ataaagcgat tccacagca 689
<210> 158
<211> 163
<212> PRT
<213> Homo sapiens
<400> 158
Met Gly Gly Leu Leu Ala Ala Phe Leu Ala Leu Val Ser Val
 Pro Arg Ala Gln Ala Val Trp Leu Gly Arg Leu Asp Pro Glu Gln
```

Leu Leu Gly Pro Trp Tyr Val Leu Ala Val Ala Ser Arg Glu Lys

Gly Phe Ala Met Glu Lys Asp Met Lys Asn Val Val Gly Val Val

Val Thr Leu Thr Pro Glu Asn Asn Leu Arg Thr Leu Ser Ser Gln

His Gly Leu Gly Gly Cys Asp Gln Ser Val Met Asp Leu Ile Lys

80

<210> 157 <211> 689 <212> DNA

<213> Homo sapiens

Arg Asn Ser Gly Trp Val Phe Glu Asn Pro Ser Ile Gly Val Leu 105

Glu Leu Trp Val Leu Ala Thr Asn Phe Arg Asp Tyr Ala Ile Ile 120

Phe Thr Gln Leu Glu Phe Gly Asp Glu Pro Phe Asn Thr Val Glu 135

Leu Tyr Ser Leu Thr Glu Thr Ala Ser Gln Glu Ala Met Gly Leu 150

Phe Thr Lys Trp Ser Arg Ser Leu Gly Phe Leu Ser Gln

<210> 159

<211> 1665

<212> DNA

<213> Homo sapiens

<400> 159

aacagacgtt ccctcgcggc cctggcacct ctaaccccag acatgctgct 50 gctgctgctg cccctgctct gggggaggga gagggcggaa ggacagacaa 100 gtaaactgct gacgatgcag agttccgtga cggtgcagga aggcctgtgt 150 gtccatgtgc cctgctcctt ctcctacccc tcgcatggct ggatttaccc 200 tggcccagta gttcatggct actggttccg ggaaggggcc aatacagacc 250 aggatgetee agtggeeaca aacaacceag etegggeagt gtgggaggag 300 actogggaco gattocacot cottggggac coacatacoa agaattgcac 350 cctgagcatc agagatgcca gaagaagtga tgcggggaga tacttctttc 400 gtatggagaa aggaagtata aaatggaatt ataaacatca ccggctctct 450 gtgaatgtga cagcettgae ceacaggeee aacateetea teecaggeae 500 cctggagtcc ggctgccccc agaatctgac ctgctctgtg ccctgggcct 550 gtgagcaggg gacacccct atgatctcct ggatagggac ctccgtgtcc 600 cccctggacc cctccaccac ccgctcctcg gtgctcaccc tcatcccaca 650 gccccaggac catggcacca gcctcacctg tcaggtgacc ttccctgggg 700 ccagcgtgac cacgaacaag accgtccatc tcaacgtgtc ctacccgcct 750 cagaacttga ccatgactgt cttccaagga gacggcacag tatccacagt 800 cttgggaaat ggctcatctc tgtcactccc agagggccag tctctgcgcc 850 tggtctgtgc agttgatgca gttgacagca atccccctgc caggctgagc 900 ctgagctgga gaggcctgac cctgtgcccc tcacagccct caaacccggg 950

BI

ggtgctggag ctgccttggg tgcacctgag ggatgcagct gaattcacct 1000 gcagagctca gaaccctctc ggctctcagc aggtctacct gaacgtctcc 1050 ctgcagagca aagccacatc aggagtgact cagggggtgg tcggggggg 1100 tggaggccaca gccctggtct tcctgtcctt ctgcgtcatc ttcgttgtag 1150 tgaggtcctg caggaagaa tcggcaaggc cagcagcggg cgtgggagat 1200 acgggcatag aggatgcaaa cgctgtcagg ggttcagcct ctcaggggc 1250 cctgactgaa ccttgggcag aagacagtcc cccagaccag cctccccag 1300 cttctgcccg ctcctcagtg ggggaaggag agctccagta tgcatccct 1350 agcttccaga tggtgaagcc ttggggactcg cggggacagg aggccactga 1400 caccgagtac tcggagatca agatccacag atgagaacct gcagagcact 1450 accctgattg agggatcaca gccctccaag tgatgagca tgataacact 1550 atgaattatg tgcagagtga aaagcacaca ggctttagag tcaaagtatc 1600 tcaaacctga atccacact tgccctccct tttattttt taactaaaag 1650 acaggacaaat tccta 1665

<210> 160

<211> 463

<212> PRT

<213> Homo sapiens

<400> 160

Met Leu Leu Leu Leu Pro Leu Leu Trp Gly Arg Glu Arg Ala
1 5 10 15

Glu Gly Gln Thr Ser Lys Leu Leu Thr Met Gln Ser Ser Val Thr $20 \ 25 \ , \ 30$

Val Gln Glu Gly Leu Cys Val His Val Pro Cys Ser Phe Ser Tyr 35 40 45

Trp Phe Arg Glu Gly Ala Asn Thr Asp Gln Asp Ala Pro Val Ala 657075

Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg Asp Arg 80 \cdot 85 90

Phe His Leu Leu Gly Asp Pro His Thr Lys Asn Cys Thr Leu Ser 95 100 105

Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg

				110					115					120
Met	Glu	Lys	Gly	Ser 125	Ile	Lys	Trp	Asn	Tyr 130	Lys	His	His	Arg	Leu 135
Ser	Val	Asn	Val	Thr 140	Ala	Leu	Thr	His	Arg 145	Pro	Asn	Ile	Leu	Ile 150
Pro	Gly	Thr	Leu	Glu 155	Ser	Gly	Суѕ	Pro	Gln 160	Asn	Leu	Thr	Cys	Ser 165
Val	Pro	Trp	Ala	Cys 170	Glu	Gln	Gly	Thr	Pro 175	Pro	Met	Ile	Ser	Trp 180
Ile	Gly	Thr	Ser	Val 185	Ser	Pro	Leu	Asp	Pro 190	Ser	Thr	Thr	Arg	Ser 195
Ser	Val	Leu	Thr	Leu 200	Ile	Pro	Gln	Pro	Gln 205	Asp	His	Gly	Thr	Ser 210
Leu	Thr	Cys	Gln	Val 215	Thr	Phe	Pro	Gly	Ala 220	Ser	Val	Thr	Thr	Asn 225
Lys	Thr	Val	His	Leu 230	Asn	Val	Ser	Tyr	Pro 235	Pro	Gln	Asn	Leu	Thr 240
Met	Thr	V.al	Phe	Gln 245	Gly	Asp	Gly	Thr	Val 250	Ser	Thr	Val	Leu	Gly 255
Asn	Gly	Ser	Ser	Leu 260	Ser	Leu	Pro	Glu	Gly 265	Gln	Ser	Leu	Arg	Leu 270
Val	Cys	Ala	Val	Asp 275	Ala	Val	Asp	Ser	Asn 280	Pro	Pro	Ala	Arg	Leu 285
Ser	Leu	Ser	Trp	Arg 290	Gly	Leu	Thr	Leu	Cys 295	Pro	Ser	Gln	Pro	Ser 300
Asn	Pro	Gly	Val	Leu 305	Glu	Leu	Pro	Trp	Val 310	His	Leu	Arg	Asp	Ala 315
Ala	Glu	Phe	Thr	Cys 320		Ala	Gln	Asn	Pro 325	Leu	Gly	Ser	Gln	Gln 330
Val	Tyr	Leu	Asn	Val 335	Ser	Leu	Gln	Ser	Lys 340	Ala	Thr	Ser	Gly	Val 345
Thr	Gln	Gly	Val	Val 350	Gly	Gly	Ala	Gly	Ala 355	Thr	Ala	Leu	Val	Phe 360
Leu	Ser	Phe	Cys	Val 365	Ile	Phe	Val	Val	Val 370	Arg	Ser	Cys	Arg	Lys 375
Lys	Ser	Ala	Arg	Pro 380	Ala	Ala	Gly	Val	Gly 385	Asp	Thr	Gly	Ile	Glu 390
Asp	Ala	Asn	Ala	Val 395	Arg	Gly	Ser	Ala	Ser 400	Gln	Gly	Pro	Leu	Thr 405

```
Glu Pro Trp Ala Glu Asp Ser Pro Pro Asp Gln Pro Pro Pro Ala
Ser Ala Arg Ser Ser Val Gly Glu Gly Glu Leu Gln Tyr Ala Ser
Leu Ser Phe Gln Met Val Lys Pro Trp Asp Ser Arg Gly Gln Glu
Ala Thr Asp Thr Glu Tyr Ser Glu Ile Lys Ile His Arg
<210> 161
```

<211> 739 <212> DNA

<213> Homo sapiens

<400> 161

gacgcccagt gacctgccga ggtcggcagc acagagctct ggagatgaag 50 accetgttcc tgggtgtcac geteggeetg geegetgeec tgteetteae 100 cctggaggag gaggatatca cagggacctg gtacgtgaag gccatggtgg 150 tcgataagga ctttccggag gacaggaggc ccaggaaggt gtccccagtg 200 aaggtgacag ccctqqqcqq tqqqaaqttq qaaqccacqt tcaccttcat 250 gagggaggat cggtgcatcc agaagaaaat cctgatgcgg aagacggagg 300 agcctggcaa atacagcgcc tatgggggca ggaagctcat gtacctgcag 350 gagctgccca ggagggacca ctacatcttt tactgcaaag accagcacca 400 tgggggcctg ctccacatgg gaaagcttgt gggtaggaat tctgatacca 450 accgggaggc cctggaagaa tttaagaaat tggtgcagcg caagggactc 500 tcggaggagg acattttcac gcccctgcag acgggaagct gcgttcccga 550 acactaggca gccccgggt ctgcacctcc agagcccacc ctaccaccag 600 acacagagee eggaceacet ggacetaeee tecageeatg accetteeet 650 aaaaaaaaa aaaaaaaaa aaaaaaaaa 739

<210> 162

<211> 170

<212> PRT

<213> Homo sapiens

<400> 162

Met Lys Thr Leu Phe Leu Gly Val Thr Leu Gly Leu Ala Ala Ala 1 5

Leu Ser Phe Thr Leu Glu Glu Glu Asp Ile Thr Gly Thr Trp Tyr

Val Lys Ala Met Val Val Asp Lys Asp Phe Pro Glu Asp Arg Arg 35 40 45

Pro Arg Lys Val Ser Pro Val Lys Val Thr Ala Leu Gly Gly Gly 50 55 60

Lys Leu Glu Ala Thr Phe Thr Phe Met Arg Glu Asp Arg Cys Ile
65 70 75

Gln Lys Lys Ile Leu Met Arg Lys Thr Glu Glu Pro Gly Lys Tyr 80 85 90

Ser Ala Tyr Gly Gly Arg Lys Leu Met Tyr Leu Gln Glu Leu Pro 95 100 105

Arg Arg Asp His Tyr Ile Phe Tyr Cys Lys Asp Gln His His Gly

Gly Leu Leu His Met Gly Lys Leu Val Gly Arg Asn Ser Asp Thr 125 130 135

Asn Arg Glu Ala Leu Glu Glu Phe Lys Lys Leu Val Gln Arg Lys 140 145 150

Gly Leu Ser Glu Glu Asp Ile Phe Thr Pro Leu Gln Thr Gly Ser 155 160 165

Cys Val Pro Glu His

<210> 163

<211> 22

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-22

<223> Synthetic construct.

<400> 163

ggagatgaag accetgttcc tg 22

<210> 164

<211> 26

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-26

<223> Synthetic construct.

<400> 164

ggagatgaag accetgttcc tgggtg 26

```
<210> 165
<211> 21
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-21
<223> Synthetic construct.
<400> 165
 gtcctccgga aagtccttat c 21
<210> 166
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.
<400> 166
 gcctagtgtt cgggaacgca gcttc 25
<210> 167
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 167
 cagggacctg gtacgtgaag gccatggtgg tcgataagga ctttccggag 50
<210> 168
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
 ctgtccttca ccctggagga ggaggatatc acagggacct ggtac 45
<210> 169
<211> 1204
<212> DNA
<213> Homo sapiens
<400> 169
```

```
gttccgcaga tgcagaggtt gaggtggctg cgggactgga agtcatcggg 50
 cagaggtete acageageea aggaacetgg ggcccgetee tecccetee 100
 aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 150
 gtagggggag agaccaggat catcaagggg ttcgagtgca agcctcactc 200
 ccagccctgg caggcagccc tgttcgagaa gacgcggcta ctctgtgggg 250
 cgacgctcat cgcccccaga tggctcctga cagcagccca ctgcctcaag 300
 ccccgctaca tagttcacct ggggcagcac aacctccaga aggaggaggg 350
 ctgtgagcag acccggacag ccactgagtc cttcccccac cccggcttca 400
 acaacageet ecceaacaaa gaeeacegea atgacateat getggtgaag 450
 atggcatcgc cagtctccat cacctgggct gtgcgacccc tcaccctctc 500
 ctcacgctgt gtcactgctg gcaccagctg cctcatttcc ggctggggca 550
 gcacgtccag ccccagtta cgcctgcctc acaccttqcg atgcgccaac 600
 atcaccatca ttgagcacca gaagtgtgag aacgcctacc ccggcaacat 650
cacagacacc atggtgtgt ccagcgtgca ggaaggggc aaggactcct 700
gccagggtga ctccgggggc cctctggtct gtaaccagtc tcttcaaggc 750
attatctcct ggggccagga tccgtgtgcg atcacccgaa agcctggtgt 800
ctacacgaaa gtctgcaaat atgtggactg gatccaggag acgatgaaga 850
acaattagac tggacccacc caccacagcc catcaccctc catttccact 900
tggtgtttgg ttcctgttca ctctgttaat aagaaaccct aagccaagac 950
cctctacgaa cattctttgg gcctcctgga ctacaggaga tgctgtcact 1000
taataatcaa cctggggttc gaaatcagtg agacctggat tcaaattctg 1050
ccttgaaata ttgtgactct gggaatgaca acacctggtt tgttctctgt 1100
tgtatcccca gccccaaaga cagctcctgg ccatatatca aggtttcaat 1150
aaaa 1204
<210> 170
<211> 250
<212> PRT
<213> Homo sapiens
<400> 170
Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu
```



```
Val Gly Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro
 His Ser Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu
 Leu Cys Gly Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala
 Ala His Cys Leu Lys Pro Arg Tyr Ile Val His Leu Gly Gln His
 Asn Leu Gln Lys Glu Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr
 Glu Ser Phe Pro His Pro Gly Phe Asn Asn Ser Leu Pro Asn Lys
 Asp His Arg Asn Asp Ile Met Leu Val Lys Met Ala Ser Pro Val
                 110
                                     115
 Ser Ile Thr Trp Ala Val Arg Pro Leu Thr Leu Ser Ser Arg Cys
                                     130
 Val Thr Ala Gly Thr Ser Cys Leu Ile Ser Gly Trp Gly Ser Thr
                                     145
 Ser Ser Pro Gln Leu Arg Leu Pro His Thr Leu Arg Cys Ala Asn
                                     160
 Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn Ala Tyr Pro Gly
                 170
 Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln Glu Gly Gly
Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asn
Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys Ala
                                     220
 Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val
Asp Trp Ile Gln Glu Thr Met Lys Asn Asn
                 245
<210> 171
<211> 25
<212> DNA
```

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-25

<223> Synthetic construct.

```
<400> 171
 ggctgcggga ctggaagtca tcggg 25
<210> 172
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 172
 ctccaggcca tgaggattct gcag 24
<210> 173
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 173
 cctctggtct gtaaccag 18
<210> 174
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 174
tctgtgatgt tgccggggta ggcg 24
<210> 175
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.
<400> 175
cgtgtagaca ccaggctttc gggtg 25
<210> 176
<211> 18
```

<212> DNA

```
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 176
 cccttgatga tcctggtc 18
<210> 177
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 177
 aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 50
<210> 178
<211> 43
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-43
<223> Synthetic construct.
<400> 178
gagagaccag gatcatcaag gggttcgagt qcaaqcctca ctc 43
<210> 179
<211> 907
<212> DNA
<213> Homo sapiens
<400> 179
gagcagtgtt ctgctggagc cgatgccaaa aaccatgcat ttcttattca 50
gattcattgt tttcttttat ctgtggggcc tttttactgc tcagagacaa 100
aagaaagagg agagcaccga agaagtgaaa atagaagttt tgcatcgtcc 150
agaaaactgc tctaagacaa gcaagaaggg agacctacta aatgcccatt 200
atgacggcta cctggctaaa gacggctcga aattctactg cagccggaca 250
caaaatgaag gccaccccaa atggtttgtt cttggtgttg ggcaagtcat 300
aaaaggccta gacattgcta tgacagatat gtgccctgga gaaaagcgaa 350
```

aagtagttat acccccttca tttgcatacg gaaaggaagg ctatgcagaa 400

B1

```
ggcaagattc caccggatgc tacattgatt tttgagattg aactttatgc 450
 tgtgaccaaa ggaccacgga gcattgagac atttaaacaa atagacatgg 500
 acaatgacag gcagctctct aaagccgaga taaacctcta cttgcaaagg 550
gaatttgaaa aagatgagaa gccacqtgac aagtcatatc aggatgcagt 600
 tttagaagat atttttaaga agaatgacca tgatggtgat ggcttcattt 650
ctcccaagga atacaatgta taccaacacg atgaactata gcatatttgt 700
atttctactt tttttttta gctatttact gtactttatg tataaaacaa 750
agtcactttt ctccaagttg tatttgctat ttttccccta tgagaagata 800
ttttgatctc cccaatacat tgattttggt ataataaatg tgaggctgtt 850
aaaaaaa 907
<210> 180
<211> 222
<212> PRT
<213> Homo sapiens
<400> 180
Met Pro Lys Thr Met His Phe Leu Phe Arg Phe Ile Val Phe Phe
                                    10
Tyr Leu Trp Gly Leu Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu
Ser Thr Glu Glu Val Lys Ile Glu Val Leu His Arg Pro Glu Asn
Cys Ser Lys Thr Ser Lys Lys Gly Asp Leu Leu Asn Ala His Tyr
Asp Gly Tyr Leu Ala Lys Asp Gly Ser Lys Phe Tyr Cys Ser Arg
Thr Gln Asn Glu Gly His Pro Lys Trp Phe Val Leu Gly Val Gly
```

```
Ile Glu Thr Phe Lys Gln Ile Asp Met Asp Asn Asp Arg Gln Leu
                 155
 Ser Lys Ala Glu Ile Asn Leu Tyr Leu Gln Arg Glu Phe Glu Lys
 Asp Glu Lys Pro Arg Asp Lys Ser Tyr Gln Asp Ala Val Leu Glu
                                      190
 Asp Ile Phe Lys Lys Asn Asp His Asp Gly Asp Gly Phe Ile Ser
 Pro Lys Glu Tyr Asn Val Tyr Gln His Asp Glu Leu
<210> 181
<211> 22
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-22
<223> Synthetic construct.
<400> 181
gtgttctgct ggagccgatg cc 22
<210> 182
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 182
gacatggaca atgacagg 18
<210> 183
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 183
cctttcagga tgtaggag 18
```

<210> 184 <211> 18 <212> DNA

<213> Artificial

```
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 184
 gatgtctgcc accccaag 18
<210> 185
<211> 27
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-27
<223> Synthetic construct.
<400> 185
 gcatcctgat atgacttgtc acgtggc 27
<210> 186
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 186
 tacaagaggg aagaggagtt gcac 24
<210> 187
<211> 52
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-52
<223> Synthetic construct.
<400> 187
gcccattatg acggctacct ggctaaagac ggctcgaaat tctactgcag 50
cc 52
<210> 188
<211> 573
<212> DNA
<213> Homo sapiens
<400> 188
cagaaatgca gggaccattg cttcttccag gcctctgctt tctgctgagc 50
ctctttggag ctgtgactca gaaaaccaaa acttcctgtg ctaagtgccc 100
```

cccaaatgct tcctgtgtca ataacactca ctgcacctgc aaccatggat 150
atacttctgg atctgggcag aaactattca cattcccctt ggagacatgt 200
aacgccaggc atggtggctc gcgcctgtaa tcccagttct ttgggaagcc 250
aaggcaggtg gatcacctga ggtcaggagt ttgagaccag cctggccaac 300
atagtgaaac cccgtgtcta ctaaaaatac aaaaatcagc cgggcgtggt 350
ggtgcatgcc tgcaatccca gttactcggg aggctgaggc aggagaatcg 400
cttgaactca ggaggcagaa gttgcagtga acccagatcc tgccattgca 450
ctccagcatg gatgacagag caagactccg tctcaaaaaag aaaagatagt 500
ttcttgtttc atttcgcgac tgccctctca gtgtttcctg ggatcccctc 550
ccaaataaag tacttatatt ctc 573

BI

```
<210> 189
<211> 74
<212> PRT
<213> Homo sapiens
```

<400> 189

Met Gln Gly Pro Leu Leu Leu Pro Gly Leu Cys Phe Leu Leu Ser 1 5 10 15

Leu Phe Gly Ala Val Thr Gln Lys Thr Lys Thr Ser Cys Ala Lys 20 25 30

Cys Pro Pro Asn Ala Ser Cys Val Asn Asn Thr His Cys Thr Cys 35 40 45

Asn His Gly Tyr Thr Ser Gly Ser Gly Gln Lys Leu Phe Thr Phe 50 55 60

Pro Leu Glu Thr Cys Asn Ala Arg His Gly Gly Ser Arg Leu 65 70

```
<210> 190
```

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 190

agggaccatt gcttcttcca ggcc 24

<210> 191

<211> 24

<212> DNA

<213> Artificial

٠,

<211> 24

<212> DNA

<213> Artificial

```
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 191
cgttacatgt ctccaagggg aatg 24
<210> 192
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 192
 cctgtgctaa gtgcccccca aatgcttcct gtgtcaataa cactcactgc 50
<210> 193
<211> 1091
<212> DNA
<213> Homo sapiens
<400> 193
caagcaggtc atccccttgg tgaccttcaa agagaagcag agagggcaga 50
ggtgggggc acagggaaag ggtgacctct gagattcccc ttttccccca 100
gactttggaa gtgacccacc atggggctca gcatcttttt gctcctgtgt 150
gttcttgggc tcagccaggc agccacaccg aagattttca atggcactga 200
gtgtgggcgt aactcacagc cgtggcaggt ggggctgttt gagggcacca 250
gcctgcgctg cgggggtgtc cttattgacc acaggtgggt cctcacagcg 300
gctcactgca gcggcagcag gtactgggtg cgcctggggg aacacagcct 350
cagccagete gactggaceg ageagateeg geacagegge ttetetgtga 400
cccatcccgg ctacctggga gcctcgacga gccacqagca cgacctccgg 450
ctgctgcggc tgcgcctgcc cgtccgcgta accagcagcg ttcaacccct 500
gcccctgccc aatgactgtg caaccgctgg caccgagtgc cacgtctcag 550
gctggggcat caccaaccac ccacggaacc cattcccqqa tctqctccag 600
tgcctcaacc tctccatcgt ctcccatgcc acctgccatg gtgtgtatcc 650
cgggagaatc acgagcaaca tggtgtgtgc aggcggcgtc ccggggcagg 700
atgcctgcca gggtgattct gggggccccc tggtgtgtgg gggagtcctt 750
```

caaggtctgg tgtcctgggg gtctgtgggg ccctgtggac aagatggcat 800

ccctggagtc tacacctata tttgcaagta tgtggactgg atccggatga 850
tcatgaggaa caactgacct gtttcctcca cctccacccc caccccttaa 900
cttgggtacc cctctggccc tcagagcacc aatatctcct ccatcacttc 950
ccctagctcc actcttgttg gcctgggaac ttcttggaac tttaactcct 1000
gccagccctt ctaagaccca cgagcgggt gagagaagtg tgcaatagtć 1050
tggaataaat ataaatgaag gagggcaaa aaaaaaaaa a 1091

<210> 194

<211> 248

<212> PRT

<213> Homo sapiens

<400> 194

Met Gly Leu Ser Ile Phe Leu Leu Cys Val Leu Gly Leu Ser 1 5 10 15

Gln Ala Ala Thr Pro Lys Ile Phe Asn Gly Thr Glu Cys Gly Arg 20 25 30

Asn Ser Gln Pro Trp Gln Val Gly Leu Phe Glu Gly Thr Ser Leu 35 40 45

Arg Cys Gly Gly Val Leu Ile Asp His Arg Trp Val Leu Thr Ala 50 55 60

Ala His Cys Ser Gly Ser Arg Tyr Trp Val Arg Leu Gly Glu His
65 70 75

Ser Leu Ser Gln Leu Asp Trp Thr Glu Gln Ile Arg His Ser Gly 80 85 90

Phe Ser Val Thr His Pro Gly Tyr Leu Gly Ala Ser Thr Ser His 95 100 105

Glu His Asp Leu Arg Leu Leu Arg Leu Arg Leu Pro Val Arg Val 110 115 120

Thr Ser Ser Val Gln Pro Leu Pro Leu Pro Asn Asp Cys Ala Thr 125 130 135

Ala Gly Thr Glu Cys His Val Ser Gly Trp Gly Ile Thr Asn His 140 145

Pro Arg Asn Pro Phe Pro Asp Leu Leu Gln Cys Leu Asn Leu Ser 155 160 165

Ile Val Ser His Ala Thr Cys His Gly Val Tyr Pro Gly Arg Ile 170 175 180

Thr Ser Asn Met Val Cys Ala Gly Gly Val Pro Gly Gln Asp Ala 185 190 195

Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Gly Gly Val Leu

Gln Gly Leu Val Ser Trp Gly Ser Val Gly Pro Cys Gly Gln Asp 225

Gly Ile Pro Gly Val Tyr Thr Tyr Ile Cys Lys Tyr Val Asp Trp 230

Ile Arg Met Ile Met Arg Asn Asn 245

<210> 195 <211> 1485 <212> DNA

<213> Homo sapiens

<400> 195 geggecaeae geagetagee ggageeegga ceaggegeet gtgeeteete 50 ctcgtccctc gccgcgtccg cgaagcctgg agccggcggg agccccgcgc 100 tegecatgte gggegagete ageaacaggt tecaaggagg gaaggegtte 150 ggcttgctca aagcccggca ggagaggagg ctggccgaga tcaaccggga 200 gtttctgtgt gaccagaagt acagtgatga agagaacctt ccagaaaagc 250 tcacagcctt caaagagaag tacatggagt ttgacctgaa caatgaaggc 300 gagattgacc tgatgtcttt aaagaggatg atggagaagc ttggtgtccc 350 caagacccac ctggagatga agaagatgat ctcagaggtg acaggagggg 400 tcagtgacac tatatcctac cgagactttg tgaacatgat gctggggaaa 450 cggtcggctg tcctcaagtt agtcatgatg tttgaaggaa aagccaacga 500 gagcagcccc aagccagttg gccccctcc agagagagac attgctagcc 550 tgccctgagg accccgcctg gactccccag ccttcccacc ccatacctcc 600 ctcccgatct tgctgccctt cttgacacac tgtgatctct ctctctctca 650 tttgtttggt cattgagggt ttgtttgtgt tttcatcaat gtctttgtaa 700 agcacaaatt atctgcctta aaggggctct gggtcgggga atcctgagcc 750 ttgggtcccc tccctctt cttccctcct tccccgctcc ctgtgcagaa 800 gggctgatat caaaccaaaa actagagggg gcagggccag ggcagggagg 850 cttccagcct gtgttcccct cacttggagg aaccagcact ctccatcctt 900 tcagaaagtc tccaagccaa gttcaggctc actgacctgg ctctgacgag 950 gaccccaggc cactctgaga agaccttgga gtagggacaa ggctgcaggg 1000

cctctttcgg gtttccttgg acagtgccat ggttccagtg ctctggtgtc 1050


```
<210> 196
<211> 150
<212> PRT
```

<400> 196

Met Ser Gly Glu Leu Ser Asn Arg Phe Gln Gly Gly Lys Ala Phe
1 5 10 15

Gly Leu Leu Lys Ala Arg Gln Glu Arg Arg Leu Ala Glu Ile Asn $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Arg Glu Phe Leu Cys Asp Gln Lys Tyr Ser Asp Glu Glu Asn Leu 35 40 45

Pro Glu Lys Leu Thr Ala Phe Lys Glu Lys Tyr Met Glu Phe Asp 50 55 60

Leu Asn Asn Glu Gly Glu Ile Asp Leu Met Ser Leu Lys Arg Met 65 70 75

Met Glu Lys Leu Gly Val Pro Lys Thr His Leu Glu Met Lys Lys 80 85 .. 90

Met Ile Ser Glu Val Thr Gly Gly Val Ser Asp Thr Ile Ser Tyr 95 100 105

Arg Asp Phe Val Asn Met Met Leu Gly Lys Arg Ser Ala Val Leu
110 115 120

Lys Leu Val Met Met Phe Glu Gly Lys Ala Asn Glu Ser Ser Pro 125 130 135

Lys Pro Val Gly Pro Pro Pro Glu Arg Asp Ile Ala Ser Leu Pro 140 145 150

<213> Homo sapiens

<210> 197

<211> 4842

<212> DNA

<213> Homo sapiens

cgcgctcccc gcgcgcctcc tcgggctcca cgcgtcttgc cccgcagagg 50 cagecteete caggageggg geeetgeaca ceatggeece egggtgggea 100 ggggtcggcg ccgccgtgcg cgcccqcctq gcgctggcct tggcgctggc 150 gagegteetg agtgggeete eageegtege etgeeceace aagtgtacet 200 gctccgctgc cagcgtggac tgccacgggc tgggcctccg cgcggttcct 250 cggggcatcc cccgcaacgc tgagcgcctt gacctggaca gaaataatat 300 caccaggate accaagatgg acttegetgg geteaagaac eteegagtet 350 tgcatctgga agacaaccag gtcagcgtca tcgagagagg cgccttccag 400 gacctgaagc agctagagcg actgcgcctg aacaagaata agctgcaagt 450 ccttccagaa ttgcttttcc agagcacgcc gaagctcacc agactagatt 500 tgagtgaaaa ccagatccag gggatcccga ggaaggcgtt ccgcggcatc 550 accgatgtga agaacctgca actggacaac aaccacatca gctgcattga 600 agatggagcc ttccgagcgc tgcgcgattt ggagatcctt accctcaaca 650 acaacaacat cagtcgcatc ctggtcacca gcttcaacca catgccgaag 700 atccgaactc tgcgcctcca ctccaaccac ctctactgcg actgccacct 750 ggcctggctc tcggattggc tgcgacagcg acggacagtt ggccagttca 800 cactetgeat ggeteetgtg catttgaggg getteaacgt ggeggatgtg 850 cagaagaagg agtacgtgtg cccagcccc cactcggagc ccccatcctg 900 caatgccaac tccatctcct gcccttcgcc ctgcacgtgc agcaataaca 950 tcgtggactg tcgaggaaag ggcttgatgg agattcctgc caacttgccg 1000 gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 1050 tgcaggagcc ttcacccagt acaagaaact gaagcgaata gacatcagca 1100 agaatcagat atcggatatt gctccagatg ccttccaggg cctgaaatca 1150 ctcacatcgc tggtcctgta tgggaacaag atcaccgaga ttgccaaggg 1200 actgtttgat gggctggtgt ccctacagct gctcctcctc aatgccaaca 1250 agatcaactg cctgcgggtg aacacgtttc aggacctgca gaacctcaac 1300

ttgctctccc tgtatgacaa caagctgcag accatcagca aggggctctt 1350

cgcccctctg cagtccatcc agacactcca cttagcccaa aacccatttg 1400

tgtgcgactg ccacttgaag tggctggccg actacctcca ggacaacccc 1450

<400> 197

atcgagacaa gcggggcccg ctgcagcagc ccgcgccgac tcgccaacaa 1500 gcgcatcagc cagatcaaga gcaagaagtt ccgctgctca ggctccgagg 1550 attaccgcag caggttcagc agcgagtgct tcatggacct cgtgtgcccc 1600 gagaagtgtc gctgtgaggg cacgattgtg gactgctcca accagaagct 1650 ggtccgcatc ccaagccacc tecetgaata tgtcaccgac ctgcgactga 1700 atgacaatga ggtatctgtt ctggaggcca ctggcatctt caagaagttg 1750 cccaacctgc ggaaaataaa tctgagtaac aataagatca aggaggtgcg 1800 agagggagct ttcgatggag cagccagcgt gcaggagctg atgctgacag 1850 ggaaccaget ggagacegtg caegggegeg tgtteegtgg ceteagtgge 1900 ctcaaaacct tgatgctgag gagtaacttg atcagctgtg tgagtaatga 1950 cacctttgcc ggcctgagtt cggtgagact gctgtccctc tatgacaatc 2000 ggatcaccac catcacccct ggggccttca ccacgcttgt ctccctgtcc 2050 accataaacc teetgteeaa eccetteaac tgeaactgee acctggeetg 2100 gctcggcaag tggttgagga agaggcggat cgtcagtggg aaccctaggt 2150 gccagaagcc atttttcctc aaggagattc ccatccagga tgtggccatc 2200 caggacttca cctgtgatgg caacgaggag agtagctgcc agctgagccc 2250 gcgctgcccg gagcagtgca cctgtatgga gacagtggtg cgatgcagca 2300 acaagggget cegegeeete eecagaggea tgeecaagga tgtgacegag 2350 ctgtacctgg aaggaaacca cctaacagcc gtgcccagag agctgtccgc 2400 cctccgacac ctgacgctta ttgacctgag caacaacagc atcagcatgc 2450 tgaccaatta caccttcagt aacatgtctc acctctccac tctgatcctg 2500 agctacaacc ggctgaggtg catccccgtc cacgccttca acgggctgcg 2550 gtccctgcga gtgctaaccc tccatggcaa tgacatttcc agcgttcctg 2600 aaggeteett caaegaeete acatetettt eeeatetgge getgggaaee 2650 aacccactcc actgtgactg cagtcttcgg tggctgtcgg agtgggtgaa 2700 ggcggggtac aaggagcctg gcatcgcccg ctgcagtagc cctgagccca 2750 tggctgacag gctcctgctc accaccccaa cccaccgctt ccagtgcaaa 2800 gggccagtgg acatcaacat tgtggccaaa tgcaatgcct gcctctccag 2850 cccgtgcaag aataacggga catgcaccca ggaccctgtg gagctgtacc 2900

gctgtgcctg cccctacagc tacaagggca aggactgcac tgtgcccatc 2950 aacacctgca tccagaaccc ctgtcagcat ggaggcacct gccacctgag 3000 tgacageeae aaggatgggt teagetgete etgeeetetg ggetttgagg 3050 ggcagcggtg tgagatcaac ccagatgact gtgaggacaa cgactgcgaa 3100 aacaatgcca cctgcgtgga cgggatcaac aactacgtgt gtatctgtcc 3150 gcctaactac acaggtgagc tatgcgacga ggtgattgac cactgtgtgc 3200 ctgagctgaa cctctgtcag catgaggcca agtgcatccc cctggacaaa 3250 ggattcagct gcgagtgtgt ccctggctac agcgggaagc tctgtgagac 3300 . agacaatgat gactgtgtgg cccacaagtg ccgccacggg gcccagtgcg 3350 tggacacaat caatggctac acatgcacct gcccccaggg cttcagtgga 3400 cccttctgtg aacaccccc acccatggtc ctactgcaga ccagcccatg 3450 cgaccagtac gagtgccaga acggggccca gtgcatcgtg gtgcagcagg 3500 ageceacety eegetgeeea eeaggetteg eeggeeeeag atgegagaag 3550 ctcatcactg tcaacttcgt gggcaaagac tcctacgtgg aactggcctc 3600 cgccaaggtc cgaccccagg ccaacatctc cctgcaggtg gccactgaca 3650 aggacaacgg catcettete tacaaaggag acaatgacee cetggeactg 3700 gagetgtace agggeeacgt geggetggte tatgacagee tgagtteece 3750 tccaaccaca gtgtacagtg tggagacagt gaatgatggg cagtttcaca 3800 gtgtggaget ggtgaegeta aaceagaeee tgaaeetagt agtggaeaaa 3850 ggaactccaa agagcctggg gaagctccag aagcagccag cagtgggcat 3900 caacageeee etetacettg gaggeateee caectecaee ggeeteteeg 3950 cettgcgcca gggcacggac cggcctctag gcggcttcca cggatgcatc 4000 catgaggtgc gcatcaacaa cgagctgcag gacttcaagg ccctcccacc 4050 acagtccctg ggggtgtcac caggctgcaa gtcctgcacc gtgtgcaagc 4100 acggcctgtg ccgctccgtg gagaaggaca gcgtggtgtg cgagtgccgc 4150 ccaggetgga ccggcccact ctgcgaccag gaggcccggg acccctgcct 4200 cggccacaga tgccaccatg gaaaatgtgt ggcaactggg acctcataca 4250 tgtgcaagtg tgccgagggc tatggagggg acttgtgtga caacaagaat 4300 gactetgeca atgeetgete ageetteaag tgteaceatg ggeagtgeea 4350

BI

catctcagac caaggggagc cctactgcct gtgccagccc ggctttagcg 4400 gcgagcactg ccaacaagag aatccgtgcc tgggacaagt agtccgagag 4450 gtgatccgcc gccagaaagg ttatgcatca tgtgccacag cctccaaggt 4500 gcccatcatg gaatgtcgtg ggggctgtgg gccccagtgc tgccagccca 4550 cccgcagcaa gcggcggaaa tacgtcttcc agtgcacgga cggctcctcg 4600 tttgtagaag aggtggagag acacttagag tgcggctgcc tcgcgtgttc 4650 ctaagcccct gcccgcctgc ctgccacctc tcggactcca gcttgatgga 4700 gttgggacag ccatgtgga cccctggtg attcagcatg aaggaaatga 4750 agctggagag gaaggtaaag aagaagagaa tattaagtat attgtaaaat 4800 aaacaaaaaa tagaacttaa aaaaaaaaa aaaaaaaaa aa 4842

<210> 198

<211> 1523

<212> PRT

<213> Homo sapiens

<400> 198

Met Ala Pro Gly Trp Ala Gly Val Gly Ala Ala Val Arg Ala Arg
1 5 10 15

Leu Ala Leu Ala Leu Ala Ser Val Leu Ser Gly Pro Pro 20 25 30

Ala Val Ala Cys Pro Thr Lys Cys Thr Cys Ser Ala Ala Ser Val

Asp Cys His Gly Leu Gly Leu Arg Ala Val Pro Arg Gly Ile Pro 50 55 60

Arg Asn Ala Glu Arg Leu Asp Leu Asp Arg Asn Asn Ile Thr Arg 65 70 75

Ile Thr Lys Met Asp Phe Ala Gly Leu Lys Asn Leu Arg Val Leu $80 \hspace{1cm} 85 \hspace{1cm} 90$

His Leu Glu Asp Asn Gln Val Ser Val Ile Glu Arg Gly Ala Phe $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Gln Asp Leu Lys Gln Leu Glu Arg Leu Arg Leu Asn Lys Asn Lys 110 115 120

Leu Gln Val Leu Pro Glu Leu Leu Phe Gln Ser Thr Pro Lys Leu 125 130 135

Thr Arg Leu Asp Leu Ser Glu Asn Gln Ile Gln Gly Ile Pro Arg 140 145 150

Lys Ala Phe Arg Gly Ile Thr Asp Val Lys Asn Leu Gln Leu Asp 155 .160 165

Asn	Asn	His	Ile	Ser 170	Cys	Ile	Glu	Asp	Gly 175	Ala	Phe	Arg	Ala	Leu 180
Arg	Asp	Leu	Glu	Ile 185	Leu	Thr	Leu	Asn	Asn 190	Asn	Asn	Ile	Ser	Arg 195
Ile	Leu	Val	Thr	Ser 200	Phe	Asn	His	Met	Pro 205	Lys	Ile	Arg	Thr	Leu 210
Arg	Leu	His	Ser	Asn 215	His	Leu	Tyr	Cys	Asp 220	Суѕ	His	Leu	Ala	Trp 225
Leu	Ser	Asp	Trp	Leu 230	Arg	Gln	Arg	Arg	Thr 235	Val	Gly	Gln	Phe	Thr 240
Leu	Cys	Met	Ala	Pro 245	Val	His	Leu	Arg	Gly 250	Phe	Asn	Val	Ala	Asp 255
Val	Gln	Lys	Lys	Glu 260	Tyr	Val	Cys	Pro	Ala 265	Pro	His	Ser	Glu	Pro 270
Pro	Ser	Cys	Asn	Ala 275	Asn	Ser	Ile	Ser	Cys 280	Pro	Ser	Pro	Cys	Thr 285
Cys	Ser	Asn	Asn	Ile 290	Val	Asp	Cys	Arg	Gly 295	Lys	Gly	Leu	Met	Glu 300
Ile	Pro	Ala	Asn	Leu 305	Pro	Glu	Gly	Ile	Val 310	Glu	Ile	Arg	Leu	Glu 315
Gln	Asn	Ser	Ile	Lys 320	Ala	Ile	Pro	Ala	Gly 325	Ala	Phe	Thr	Gln	Tyr 330
Lys	Lys	Leu	Lys	Arg 335	Ile	Asp	Ile	Ser	Lys 340	Asn	Gln	Ile	Ser	Asp 345
Ile	Ala	Pro	Asp	Ala 350	Phe	Gln	Gly	Leu	Lys 355	Ser	Leu	Thr	Ser	Leu 360
Val	Leu	Tyr	Gly	Asn 365	Lys	Ile	Thr	Glu	Ile 370	Ala	Lys	Gly	Leu	Phe 375
Asp	Gly	Leu	Val	Ser 380	Leu	Gln	Leu	Leu	Leu 385	Leu	Asn	Ala	Asn	Lys 390
Ile	Asn	Cys	Leu	Arg 395	Val	Asn	Thr	Phe	Gln 400	Asp	Leu	Gln	Asn	Leu 405
Asn	Leu	Leu	Ser	Leu 410	Tyr	Asp	Asn	Lys	Leu 415	Gln	Thr	Ile	Ser	Lys 420
Gly	Leu	Phe	Ala	Pro 425	Leu	Gln	Ser	Ile	Gln 430	Thr	Leu	His	Leu	Ala 435
Gln	Asn	Pro	Phe	Val 440	Суѕ	Asp	Cys	His	Leu 445	Lys	Trp	Leu	Ala	Asp 450
Tyr	Leu	Gln	Asp	Asn	Pro	Ile	Glu	Thr	Ser	Gly	Ala	Arg	Cys	Ser

D1

				455					460					465
Ser	Pro	Arg	Arg	Leu 470	Ala	Asn	Lys	Arg	Ile 475	Ser	Gln	Ile	Lys	Ser 480
Lys	Lys	Phe	Arg	Cys 485	Ser	Gly	Ser	Glu	Asp 490	Tyr	Arg	Ser	Arg	Phe 495
Ser	Ser	Glu	Cys	Phe 500	Met	Asp	Leu	Val	Cys 505	Pro	Glu	Lys	Cys	Arg 510
Cys	Glu	Gly	Thr	Ile 515	Val	Asp	Cys	Ser	Asn 520	Gln	Lys	Leu	Val	Arg 525
Ile	Pro	Ser	His	Leu 530	Pro	Glu	Tyr	Val	Thr 535	Asp	Leu	Arg	Leu	Asn 540
Asp	Asn	Glu	Val	Ser 545	Val	Leu	Glu	Ala	Thr 550	Gly	Ile	Phe	Lys	Lys 555
Leu	Pro	Asn	Leu	Arg 560	Lys	Ile	Asn	Leu	Ser 565	Asn	Asn	Lys	Ile	Lys 570
Glu	Val	Arg	Glu	Gly 575	Ala	Phe	Asp	Gly	Ala 580	Ala	Ser	Val	Gln	Glu 585
Leu	Met	Leu	Thr	Gly 590	Asn	Gln	Leu	Glu	Thr 595	Val	His	Gly	Arg	Val 600
Phe	Arg	Gly	Leu	Ser 605	Gly	Leu	Lys	Thr	Leu 610	Met	Leu	Arg	Ser	Asn 615
Leu	Ile	Ser	СА̀̀	Val 620	Ser	Asn	Asp	Thr	Phe 625	Ala	Gly	Leu	Ser	Ser 630
Val	Arg	Leu	Leu	Ser 635	Leu	Tyr	Asp	Asn	Arg 640	Ile	Thr	Thr	Ile	Thr 645
Pro	Gly	Ala	Phe	Thr 650	Thr	Leu	Val	Ser	Leu 655	Ser	Thr	Ile	Asn	Leu 660
Leu	Ser	Asn	Pro	Phe 665		Суѕ	Asn		His 670	Leu	Ala	Trp	Leu	Gly 675
Lys	Trp	Leu	Arg	Lys 680	Arg	Arg	Ile	Val	Ser 685	Gly	Asn	Pro	Arg	Cys 690
Gln	Lys	Pro	Phe	Phe 695	Leu	Lys	Glu	Ile	Pro 700	Ile	Gln	Asp	Val	Ala 705
Ile	Gln	Asp	Phe	Thr 710	Cys	Asp	Gly	Asn	Glu 715	Glu	Ser	Ser	Cys	Gln 720
Leu	Ser	Pro	Arg	Cys 725	Pro	Glu	Gln	Cys	Thr 730	Cys	Met	Glu	Thr	Val 735
Val	Arg	Cys	Ser	Asn 740	Lys	Gly	Leu	Arg	Ala 745	Leu	Pro	Arg	Gly	Met 750

Pro Lys Asp Val Thr Glu Leu Tyr Leu Glu Gly Asn His Leu Thr Ala Val Pro Arg Glu Leu Ser Ala Leu Arg His Leu Thr Leu Ile Asp Leu Ser Asn Asn Ser Ile Ser Met Leu Thr Asn Tyr Thr Phe Ser Asn Met Ser His Leu Ser Thr Leu Ile Leu Ser Tyr Asn Arg 805 Leu Arg Cys Ile Pro Val His Ala Phe Asn Gly Leu Arg Ser Leu Arg Val Leu Thr Leu His Gly Asn Asp Ile Ser Ser Val Pro Glu 830 835 840 Gly Ser Phe Asn Asp Leu Thr Ser Leu Ser His Leu Ala Leu Gly Thr Asn Pro Leu His Cys Asp Cys Ser Leu Arg Trp Leu Ser Glu Trp Val Lys Ala Gly Tyr Lys Glu Pro Gly Ile Ala Arg Cys Ser 875 Ser Pro Glu Pro Met Ala Asp Arg Leu Leu Thr Thr Pro Thr His Arg Phe Gln Cys Lys Gly Pro Val Asp Ile Asn Ile Val Ala Lys Cys Asn Ala Cys Leu Ser Pro Cys Lys Asn Asn Gly Thr Cys Thr Gln Asp Pro Val Glu Leu Tyr Arg Cys Ala Cys Pro Tyr 935 Ser Tyr Lys Gly Lys Asp Cys Thr Val Pro Ile Asn Thr Cys Ile 955 Gln Asn Pro Cys Gln His Gly Gly Thr Cys His Leu Ser Asp Ser 965 970 His Lys Asp Gly Phe Ser Cys Ser Cys Pro Leu Gly Phe Glu Gly Gln Arg Cys Glu Ile Asn Pro Asp Asp Cys Glu Asp Asn Asp Cys 1005 Glu Asn Asn Ala Thr Cys Val Asp Gly Ile Asn Asn Tyr Val Cys Ile Cys Pro Pro Asn Tyr Thr Gly Glu Leu Cys Asp Glu Val Ile 1025 1035 Asp His Cys Val Pro Glu Leu Asn Leu Cys Gln His Glu Ala Lys

1040 1045 1050

Cys Ile Pro Leu Asp Lys Gly Phe Ser Cys Glu Cys Val Pro Gly 1055 1060 1065

Tyr Ser Gly Lys Leu Cys Glu Thr Asp Asn Asp Asp Cys Val Ala 1070 1075 1080

His Lys Cys Arg His Gly Ala Gln Cys Val Asp Thr Ile Asn Gly
1085 1090 1095

Tyr Thr Cys Thr Cys Pro Gln Gly Phe Ser Gly Pro Phe Cys Glu 1100 1105 1110

His Pro Pro Pro Met Val Leu Leu Gln Thr Ser Pro Cys Asp Gln
1115 1120 1125

Tyr Glu Cys Gln Asn Gly Ala Gln Cys Ile Val Val Gln Gln Glu 1130 1135 1140

Pro Thr Cys Arg Cys Pro Pro Gly Phe Ala Gly Pro Arg Cys Glu 1145 1150 1155

Lys Leu Ile Thr Val Asn Phe Val Gly Lys Asp Ser Tyr Val Glu 1160 1165 1170

Leu Ala Ser Ala Lys Val Arg Pro Gln Ala Asn Ile Ser Leu Gln 1175 1180 1185

Val Ala Thr Asp Lys Asp Asn Gly Ile Leu Leu Tyr Lys Gly Asp 1190 1195 1200

Asn Asp Pro Leu Ala Leu Glu Leu Tyr Gln Gly His Val Arg Leu 1205 1210 1215

Val Tyr Asp Ser Leu Ser Ser Pro Pro Thr Thr Val Tyr Ser Val 1220 1225 1230

Glu Thr Val Asn Asp Gly Gln Phe His Ser Val Glu Leu Val Thr 1235 1240 1245

Leu Asn Gln Thr Leu Asn Leu Val Val Asp Lys Gly Thr Pro Lys 1250 1255 1260

Ser Leu Gly Lys Leu Gln Lys Gln Pro Ala Val Gly Ile Asn Ser 1265 1270 1275

Pro Leu Tyr Leu Gly Gly Ile Pro Thr Ser Thr Gly Leu Ser Ala 1280 1285 1290

Leu Arg Gln Gly Thr Asp Arg Pro Leu Gly Gly Phe His Gly Cys 1295 1300 1305

Ile His Glu Val Arg Ile Asn Asn Glu Leu Gln Asp Phe Lys Ala 1310 1315 1320

Leu Pro Pro Gln Ser Leu Gly Val Ser Pro Gly Cys Lys Ser Cys $1325 \hspace{1cm} 1330 \hspace{1cm} . \hspace{1cm} 1335 \hspace{1cm}$

Thr Val Cys Lys His Gly Leu Cys Arg Ser Val Glu Lys Asp Ser 1340 1345 Val Val Cys Glu Cys Arg Pro Gly Trp Thr Gly Pro Leu Cys Asp 1355 1360 Gln Glu Ala Arg Asp Pro Cys Leu Gly His Arg Cys His His Gly 1370 Lys Cys Val Ala Thr Gly Thr Ser Tyr Met Cys Lys Cys Ala Glu 1385 Gly Tyr Gly Gly Asp Leu Cys Asp Asn Lys Asn Asp Ser Ala Asn 1400 1405 Ala Cys Ser Ala Phe Lys Cys His His Gly Gln Cys His Ile Ser 1415 1420 Asp Gln Gly Glu Pro Tyr Cys Leu Cys Gln Pro Gly Phe Ser Gly 1430 1435 Glu His Cys Gln Gln Glu Asn Pro Cys Leu Gly Gln Val Val Arg 1450 Glu Val Ile Arg Arg Gln Lys Gly Tyr Ala Ser Cys Ala Thr Ala 1460 1465 Ser Lys Val Pro Ile Met Glu Cys Arg Gly Gly Cys Gly Pro Gln Cys Cys Gln Pro Thr Arg Ser Lys Arg Arg Lys Tyr Val Phe Gln 1490 1495 Cys Thr Asp Gly Ser Ser Phe Val Glu Glu Val Glu Arg His Leu 1505 1510 Glu Cys Gly Cys Leu Ala Cys Ser 1520 <210> 199 <211> 24 <212> DNA

<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 199
 atggagattc ctgccaactt gccg 24
<210> 200
<211> 24
<212> DNA
<213> Artificial

<220>

```
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 200
 ttgttggcat tgaggaggag cagc 24
<210> 201
<211> 50
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 201
 gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 50
<210> 202
<211> 753
<212> DNA
<213> Homo sapiens
<400> 202
 ggatgcagga cgctcccctg agctgcctgt caccgactag gtggagcagt 50
 gtttcttccg cagactcaac tgagaagtca gcctctgggg caggcaccag 100
 gaatctgcct tttcagttct gtctccggca ggctttgagg atgaaggctg 150
cgggcattct gaccctcatt ggctgcctgg tcacaggcgc cgagtccaaa 200
atctacactc gttgcaaact ggcaaaaata ttctcgaggg ctggcctgga 250
caattactgg ggcttcagcc ttggaaactg gatctgcatg gcatattatg 300
agagcggcta caacaccaca gccccgacgg tcctggatga cggcagcatc 350
gactatggca tcttccagat caacagcttc gcgtggtgca gacgcggaaa 400
gctgaaggag aacaaccact gccatgtcgc ctgctcagcc ttgatcactg 450
atgacctcac agatgcaatt atctgtgcca ggaaaattgt taaagagaca 500
caaggaatga actattggca aggctggaag aaacattgtg agggcagaga 550
cctgtccgag tggaaaaaag gctgtgaggt ttcctaaact ggaactggac 600
ccaggatget ttgcagcaac gccctaggat ttgcagtgaa tgtccaaatg 650
cctgtgtcat cttgtcccgt ttcctcccaa tattccttct caaacttgga 700
gagggaaaat taagctatac ttttaagaaa ataaatattt ccatttaaat 750
```

gtc 753

```
<210> 203
<211> 148
<212> PRT
<213> Homo sapiens
<400> 203
 Met Lys Ala Ala Gly Ile Leu Thr Leu Ile Gly Cys Leu Val Thr
 Gly Ala Glu Ser Lys Ile Tyr Thr Arg Cys Lys Leu Ala Lys Ile
 Phe Ser Arg Ala Gly Leu Asp Asn Tyr Trp Gly Phe Ser Leu Gly
 Asn Trp Ile Cys Met Ala Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr
 Ala Pro Thr Val Leu Asp Asp Gly Ser Ile Asp Tyr Gly Ile Phe
 Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg Gly Lys Leu Lys Glu
 Asn Asn His Cys His Val Ala Cys Ser Ala Leu Ile Thr Asp Asp
                                      100
                                                           105
 Leu Thr Asp Ala Ile Ile Cys Ala Arg Lys Ile Val Lys Glu Thr
                                      115
 Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys Lys His Cys Glu Gly
                                      130
 Arg Asp Leu Ser Glu Trp Lys Lys Gly Cys Glu Val Ser
<210> 204
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 204
gcaggctttg aggatgaagg ctgc 24
<210> 205
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
```

<222> 1-24

<223> Synthetic construct.

```
<400> 205
 ctcattggct gcctggtcac aggc 24
<210> 206
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 206
 ccagtcggac aggtctctcc cctc 24
<210> 207
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 207
tcagtgacca aggctgagca ggcg 24
<210> 208
<211> 47
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-47
<223> Synthetic construct.
<400> 208
ctacactcgt tgcaaactgg caaaaatatt ctcgagggct ggcctgg 47
<210> 209
<211> 1648
<212> DNA
<213> Homo sapiens
<400> 209
caggocattt gcatcccact gtccttgtgt tcggagccag gccacaccgt 50
cctcagcagt gtcatgtgtt aaaaacgcca agctgaatat atcatgcccc 100
tattaaaact tgtacatggc tccccattgg tttttggaga aaagttcaag 150
ctttttacct tggtgtctgc ctgtatccca gtgttcaggc tggctagacg 200
gcggaagaag atcctatttt actgtcactt cccagatctg cttctcacca 250
```

agagagattc ttttcttaaa cgactataca gggccccaat tgactggata 300 gaggaataca ccacaggcat ggcagactgc atcttagtca acagccagtt 350 cacagctgct gtttttaagg aaacattcaa gtccctgtct cacatagacc 400 ctgatgtcct ctatccatct ctaaatgtca ccagctttga ctcagttgtt 450 cctgaaaagc tggatgacct agtccccaag gggaaaaaat tcctgctgct 500 ctccatcaac agatacgaaa ggaagaaaaa tctgactttg gcactggaag 550 ccctagtaca gctgcgtgga agattgacat cccaagattg ggagagggtt 600 catctgatcg tggcaggtgg ttatgacgag agagtcctgg agaatgtgga 650 acattatcag gaattgaaga aaatggtcca acagtccgac cttggccagt 700 atgtgacctt cttgaggtct ttctcagaca aacagaaaat ctccctcctc 750 cacagetgca egtgtgtgct ttacacacca agcaatgage actttggcat 800 tgtccctctg gaagccatgt acatgcagtg cccagtcatt gctgttaatt 850 cgggtggacc cttggagtcc attgaccaca gtgtcacagg gtttctgtgt 900 gageetgace eggtgeactt eteagaagea atagaaaagt teateegtga 950 acctteetta aaageeacea tgggeetgge tggaagagee agagtgaagg 1000 aaaaattttc ccctgaagca tttacagaac agctctaccg atatgttacc 1050 aaactgctgg tataatcaga ttgtttttaa gatctccatt aatgtcattt 1100 ttatggattg tagacccagt tttgaaacca aaaaagaaac ctagaatcta 1150 atgcagaaga gatcttttaa aaaataaact tgagtcttga atgtgagcca 1200 ctttcctata taccacacct ccctgtccac ttttcagaaa aaccatgtct 1250 tttatgctat aatcattcca aattttgcca gtgttaagtt acaaatgtgg 1300 tgtcattcca tgttcagcag agtattttaa ttatattttc tcgggattat 1350 tgctcttctg tctataaatt ttgaatgata ctgtgcctta attggttttc 1400 atagtttaag tgtgtatcat tatcaaagtt gattaatttg gcttcatagt 1450 ataatgagag cagggctatt gtagttccca gattcaatcc accgaagtgt 1500 tcactgtcat ctgttaggga atttttgttt gtcctgtctt tgcctggatc 1550 catagcgaga gtgctctgta ttttttttaa gataatttgt atttttgcac 1600 actgagatat aataaaaggt gtttatcata aaaaaaaaa aaaaaaaa 1648 <210> 210

			-											
<400	> 21	Ω												
			Leu	Lys 5	Leu	Val	His	Gly	Ser 10	Pro	Leu	Val	Phe	Gly 15
Glu	Lys	Phe	Lys	Leu 20	Phe	Thr	Leu	Val	Ser 25	Ala	Cys	Ile	Pro	Val 30
Phe	Arg	Leu	Ala	Arg 35	Arg	Arg	Lys	Lys	Ile 40	Leu	Phe	Tyr	Cys	His 45
Phe	Pro	Asp	Leu	Leu 50	Leu	Thr	Lys	Arg	Asp 55	Ser	Phe	Leu	Lys	Arg 60
Leu	Tyr	Arg	Ala	Pro 65	Ile	Asp	Trp	Ile	Glu 70	Glu	Tyr	Thr	Thr	Gly 75
Met	Ala	Asp	Cys	Ile 80	Leu	Val	Asn	Ser	Gln 85	Phe	Thr	Ala	Ala	Val 90
Phe	Lys	Glu	Thr	Phe 95	Lys	Ser	Leu	Ser	His 100	Ile	Asp	Pro	Asp	Val 105
Leu	Tyr	Pro	Ser	Leu 110	Asn	Val	Thr	Ser	Phe 115	Asp	Ser	Val	Val	Pro 120
Glu	Lys	Leu	Asp	Asp 125	Leu	Val	Pro	Lys	Gly 130	Lys	Lys	Phe	Leu	Leu 135
Leu	Ser	Ile	Asn	Arg 140	Tyr	Gļu	Arg	Lys	Lys 145	Asn	Leu	Thr	Leu	Ala 150
Leu	Glu	Ala	Leu	Val 155	Gln	Leu	Arg	Gly	Arg 160	Leu	Thr	Ser	Gln	Asp 165
Trp	Glu	Arg	Val	His 170	Leu	Ile	Val	Ala	Gly 175	Gly	Tyr	Asp	Glu	Arg 180
Val	Leu	Glu	Asn	Val 185	Glu	His	Tyr	Gln	Glu 190	Leu ''	Lys	Lys	Met	Val 195
Gln	Gln	Ser	Asp	Leu 200	Gly	Gln	Tyr	Val	Thr 205	Phe	Leu	Arg	Ser	Phe 210
Ser	Asp	Lys	Gln	Lys 215	Ile	Ser	Leụ	Leu	His 220	Ser	Cys	Thr	Cys	Val 225
Leu	Tyr	Thr	Pro	Ser 230	Asn	Glu	His	Phe	Gly 235	Ile	Val	Pro	Leu	Glu 240
Ala	Met	Ťyr	Met	Gln 245	Cys	Pro	Val	Ile	Ala 250	Val	Asn	Ser	Gly	Gly 255
Pro	Leu	Glu	Ser	Ile 260	Asp	His	Ser	Val	Thr 265	Gly	Phe	Leu	Cys	Glu 270

Pro Asp Pro Val His Phe Ser Glu Ala Ile Glu Lys Phe Ile Arg 285

Glu Pro Ser Leu Lys Ala Thr Met Gly Leu Ala Gly Arg Ala Arg 290

Val Lys Glu Lys Phe Ser Pro Glu Ala Phe Thr Glu Gln Leu Tyr 305

Arg Tyr Val Thr Lys Leu Leu Val

<210> 211

<211> 1554

<212> DNA

<213> Homo sapiens

<400> 211

gactacgccg atccgagacg tggctccctg ggcggcagaa ccatgttgga 50 cttcgcgatc ttcgccgtta ccttcttgct ggcgttggtg ggagccgtgc 100 totacctcta tccggcttcc agacaagctg caggaattcc agggattact 150 ccaactgaag aaaaagatgg taatcttcca gatattgtga atagtggaag 200 tttgcatgag ttcctggtta atttgcatga gagatatggg cctgtggtct 250 ccttctggtt tggcaggcgc ctcgtggtta gtttgggcac tgttgatgta 300 ctgaagcagc atatcaatcc caataagaca tcggaccctt ttgaaaccat 350 gctgaagtca ttattaaggt atcaatctgg tggtggcagt gtgagtgaaa 400 accacatgag gaaaaaattg tatgaaaatg gtgtgactga ttctctgaag 450 agtaactttg ccctcctct aaagctttca gaagaattat tagataaatg 500 getetectae ecagagaeee ageaegtgee ecteageeag catatgettg 550 gttttgctat gaagtctgtt acacagatgg taatgggtag tacatttgaa 600 gatgatcagg aagtcattcg cttccagaag aatcatggca cagtttggtc 650 tgagattgga aaaggctttc tagatgggtc acttgataaa aacatgactc 700 ggaaaaaaca atatgaagat gccctcatgc aactggagtc tgttttaagg 750 aacatcataa aagaacgaaa aggaaggaac ttcagtcaac atattttcat 800 tgactcctta gtacaaggga accttaatga ccaacagatc ctagaagaca 850 gtatgatatt ttctctggcc agttgcataa taactgcaaa attgtgtacc 900 tgggcaatct gttttttaac cacctctgaa gaagttcaaa aaaaattata 950 tgaagagata aaccaagttt ttggaaatqq tcctqttact ccagagaaaa 1000 BI

ttgagcaget cagatattgt cagcatgtge tttgtgaaac tgttcgaact 1050 gccaaactga ctccagttte tgcccagett caagatattg aaggaaaaat 1100 tgaccgattt attattecta gagagaceet cgtcetttat gccettggtg 1150 tggtacttea ggatectaat acttggecat etecacacaa gtttgateea 1200 gateggtttg atgatgaatt agtaatgaaa actttteet caettggatt 1250 etecaggeaca caggagtgte cagagttgag gtttgeatat atggtgaeca 1300 cagtacttet tagtgtattg gtgaagagae tgeacetaet ttetgggag 1350 ggacaggtta ttgaaacaaa gtatgaactg gtaacateat caagggaaga 1400 agettggate actgteeaa agagatatta aaattttata catttaaaat 1450 cattgtaaa ttgattgagg aaaacaacea tttaaaaaaa ateetatgtg 1500 aateettta taaaccagta teaetttgta ataaaacae etattgtae 1550 ttaa 1554

- <210> 212
- <211> 462
- <212> PRT
- <213> Homo sapiens
- <400> 212
- Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu Ala Leu 1 5 10 15
- .Val Gly Ala Val Leu Tyr Leu Tyr Pro Ala Ser Arg Gln Ala Ala 20 25 30
- Gly Ile Pro Gly Ile Thr Pro Thr Glu Glu Lys Asp Gly Asn Leu 35 40 45
- Pro Asp Ile Val Asn Ser Gly Ser Leu His Glu Phe Leu Val Asn 50 55 , 60
- Leu His Glu Arg Tyr Gly Pro Val Val Ser Phe Trp Phe Gly Arg
 65 70 75
- Arg Leu Val Val Ser Leu Gly Thr Val Asp Val Leu Lys Gln His $80 \cdot 85$
- Ile Asn Pro Asn Lys Thr Ser Asp Pro Phe Glu Thr Met Leu Lys
 95 100 105
- Ser Leu Leu Arg Tyr Gln Ser Gly Gly Gly Ser Val Ser Glu Asn 110 115 120
- His Met Arg Lys Lys Leu Tyr Glu Asn Gly Val Thr Asp Ser Leu 125 130 135
- Lys Ser Asn Phe Ala Leu Leu Leu Lys Leu Ser Glu Glu Leu Leu

				140					145					150
Asp	Lys	Trp	Leu	Ser 155	Tyr	Pro	Glu	Thr	Gln 160	His	Val	Pro	Leu	Ser 165
Gln	His	Met	Leu	Gly 170	Phe	Ala	Met	Lys	Ser 175	Val	Thr	Gln	Met	Val 180
Met	Gly	Ser	Thr	Phe 185	Glu	Asp	Asp	Gln	Glu 190	Val	Ile	·Arg	Phe	Gln 195
Lys	Asn	His	Gly	Thr 200	Val	Trp	Ser	Glu	Ile 205	Gly	Lys	Gly	Phe	Leu 210
Asp	Gly	Ser	Leu	Asp 215	Lys	Asn	Met	Thr	Arg 220	Lys	Lys	Gln	Tyr	Glu 225
Asp	Ala	Leu	Met	Gln 230	Leu	Glu	Ser	Val	Leu 235	Arg	Asn	Ile	Ile	Lys 240
Glu	Arg	Lys	Gly	Arg 245	Asn	Phe	Ser	Gln	His 250	Ile	Phe	Ile	Asp	Ser 255
Leu	Val	Gln	Gly	Asn 260	Leu	Asn	Asp	Gln	Gln 265	Ile	Leu	Glu	Asp	Ser 270
Met	Ile	Phe	Ser	Leu 275	Ala	Ser	Cys	Ile	Ile 280	Thr	Ala	Lys	Leu	Cys 285
Thr	Trp	Ala	Ile	Cys 290	Phe	Leu	Thr	Thr	Ser 295	Glu	Glu	Val	Gln	Lys 300
Lys	Leu	Tyr	Glu	Glu 305	Ile	Asn	Gln	Val	Phe 310	Gly	Asn	Gly	Pro	Val 315
Thr	Pro	Glu	Lys	Ile 320	Glu	Gln	Leu	Arg	Tyr 325	Cys	Gln	His	Val	Leu 330
Cys	Glu	Thr	Val	Arg 335	Thr	Ala	Lys	Leu	Thr 340	Pro	Val	Ser	Ala	Gln 345
Leu	Gln	Asp	Ile	Glu 350	Gly	Lys	Ile	Àsp	Arg 355	Ϋhe	Ile	Ile	Pro	Arg 360
Gļu	Thr	Leu	Val	Leu 365	Tyr	Ala	Leu	Gly	Val 370	Val	Leu	Gln	Asp	Pro 375
Asn	Thr	Trp	Pro	Ser 380	Pro	His	Lys	Phe	Asp 385	Pro	Asp	Arg	Phe	Asp 390
Asp	Glu	Leu	Val	Met 395	Lys	Thr	Phe	Ser	Ser 400	Leu	Gly	Phe	Ser	Gly 405
Thr	Gln	Glu	Cys	Pro 410	Glu	Leu	Arg	Phe	Ala 415	Tyr	Met	Val	Thr	Thr 420
Val	Leu	Leu	Ser	Val 425	Leu	Val	Lys	Arg	Leu 430	His	Leu	Leu	Ser	Val 435

Glu Gly Gln Val Ile Glu Thr Lys Tyr Glu Leu Val Thr Ser Ser Arg Glu Glu Ala Trp Ile Thr Val Ser Lys Arg Tyr 455 <210> 213 <211> 759 <212> DNA <213> Homo sapiens <400> 213 ctagatttgt cggcttgcgg ggagacttca ggagtcgctg tctctgaact 50 tccagcctca gagaccgccg cccttgtccc cgagggccat gggccgggtc 100 teagggettg tgeeeteteg etteetgaeg etcetggege atetggtggt 150 cgtcatcacc ttattctggt cccgggacag caacatacag gcctgcctgc 200 ctctcacgtt caccccgag gagtatgaca agcaggacat tcagctggtg 250 gccgcgctct ctgtcaccct gggcctcttt gcagtggagc tggccggttt 300 cctctcagga gtctccatgt tcaacagcac ccagagcctc atctccattg 350 gggctcactg tagtgcatcc gtggccctgt ccttcttcat attcgagcgt 400 tgggagtgca ctacgtattg gtacattttt gtcttctgca gtgcccttcc 450 agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaga 500 aaccettetg attacettea tgaegggaac etaaggaega ageetaeagg 550 ggcaagggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcggtt 600 ttcccctcgg aaactgcttc tgctggagga tatgtgttgg aataattacg 650 tcttgagtct gggattatcc gcattgtatt tagtgctttg taataaaata 700 tgttttgtag taacattaag acttatatac agttttaggg gacaattaaa 750 aaaaaaaaa 759 <210> 214 <211> 140 <212> PRT <213> Homo sapiens Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu

<400> 214

Leu Ala His Leu Val Val Ile Thr Leu Phe Trp Ser Arg Asp

Ser Asn Ile Gln Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu 40

```
Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala Ala Leu Ser Val Thr
                  50
 Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val
 Ser Met Phe Asn Ser Thr Gln Ser Leu Ile Ser Ile Gly Ala His
 Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp
 Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu
 Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu
                                     130
 Lys Lys Pro Phe
<210> 215
<211> 697
<212> DNA
<213> Homo sapiens
<400> 215
teceggacee tgeegeeetg ceactatgte eegeegetet atgetgettg 50
cctgggctct ccccagcctc cttcgactcg gagcggctca ggagacagaa 100
gacccggcct gctgcagccc catagtgccc cggaacgagt ggaaggccct 150
```

cetggacec tgeegeetg ceaetatgte eegeegetet atgetgettg 50

cetgggetet eeceageete ettegacteg gageggetea ggaagacagaa 100

gaceeggeet getgeageee eatagtgeee eggaacgagt ggaaggeeet 150

ggeateagag tgegeeeage acetgageet geeettaege tatgtggtgg 200

tategeacae ggegggeage agetgeaaca eeceegeete gtgeeageag 250

caggeeegga atgtgeagea etaceacatg aagacaetgg getggtgega 300

egtgggetae aactteetga ttggagaaga egggetegta taegagggee 350

gtggetggaa etteaegggt geeeacteag gteaettätg gaaceeeatg 400

teeattggea teagetteat gggeaactae atggateggg tgeeeacaee 450

ceaggeeate egggeageee agggtetaet ggeetggg tgtgeteagg 500

gageeetgag gteeaactat gtgeteaaag gacaeeggga tgtgeagegt 550

acactetete eaggeaacea getetaeeae eteateeaa attggeeaca 600

ctaeegetee eeetgaggee etgetgatee geaeeeeatt eeteeetee 650

catggeeaaa aaceeeactg teteettete eaataaagat gtagete 697

<210> 216

<211> 196

<212> PRT

<213> Homo sapiens

BI

```
<400> 216
Met Ser Arg Arg Ser Met Leu Leu Ala Trp Ala Leu Pro Ser Leu
Leu Arg Leu Gly Ala Ala Gln Glu Thr Glu Asp Pro Ala Cys Cys
Ser Pro Ile Val Pro Arg Asn Glu Trp Lys Ala Leu Ala Ser Glu
Cys Ala Gln His Leu Ser Leu Pro Leu Arg Tyr Val Val Val Ser
His Thr Ala Gly Ser Ser Cys Asn Thr Pro Ala Ser Cys Gln Gln
Gln Ala Arg Asn Val Gln His Tyr His Met Lys Thr Leu Gly Trp
Cys Asp Val Gly Tyr Asn Phe Leu Ile Gly Glu Asp Gly Leu Val
Tyr Glu Gly Arg Gly Trp Asn Phe Thr Gly Ala His Ser Gly His
                110
                                     115
Leu Trp Asn Pro Met Ser Ile Gly Ile Ser Phe Met Gly Asn Tyr
                                     130
Met Asp Arg Val Pro Thr Pro Gln Ala Ile Arg Ala Ala Gln Gly
                                     145
                                                         150
Leu Leu Ala Cys Gly Val Ala Gln Gly Ala Leu Arg Ser Asn Tyr
Val Leu Lys Gly His Arg Asp Val Gln Arg Thr Leu Ser Pro Gly
                170
Asn Gln Leu Tyr His Leu Ile Gln Asn Trp Pro His Tyr Arg Ser
                                    190
```

Pro

<210> 217

<211> 1871

<212> DNA

<213> Homo sapiens

<400> 217

ctgggacccc gaaaagagaa ggggagagcg aggggacgag agcggaggag 50 gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg cagggtagcc 100 tctatctggt catctgtggc caggatgatg gtcctcccgg ctcagaggac 150 cctgagcgtg atgaccacga gggccagccc cggccccggg tgcctcggaa 200

gcggggccac	atctcaccta	agtcccgccc	catggccaat	tccactctcc	250
tagggctgct	ggccccgcct	ggggaggctt	ggggcattct	tgggcagccc	300
cccaaccgcc	cgaaccacag	cccccaccc	tcagccaagg	tgaagaaaat	350
ctttggctgg	ggcgacttct	actccaacat	caagacggtg	gccctgaacc	400
tgctcgtcac	agggaagatt	gtggaccatg	gcaatgggac	cttcagcgtc	450
cacttccaac	acaatgccac	aggccaggga	aacatctcca	tcagcctcgt	500
gccccccagt	aaagctgtag	agttccacca	ggaacagcag	atcttcatcg	550
aagccaaggc	ctccaaaatc	ttcaactgcc	ggatggagtg	ggagaaggta	600
gaacggggcc	gccggacctc	gctttgcacc	cacgacccag	ccaagatctg	650
ctcccgagac	cacgctcaga	gctcagccac	ctggagctgc	tcccagccct	700
tcaaagtcgt	ctgtgtctac	atcgccttct	acagcacgga	ctatcggctg	750
gtccagaagg	tgtgcccaga	ttacaactac	catagtgata	cccctacta	800
cccatctggg	tgacccgggg	caggccacag	aggccaggcc	agggctggaa	850
ggacaggcct	gcccatgcag	gagaccatct	ggacaccggg	cagggaaggg	900
gttgggcctc	aggcagggag	gggggtggag	acgaggagat	gccaagtggg	950
gccagggcca	agtctcaagt	ggcagagaaa	gggtcccaag	tgctggtccc	1000
aacctgaagc	tgtggagtga	ctagatcaca	ggagcactgg	aggaggagtg	1050
ggctctctgt	gcagcctcac	agggctttgc	cacggagcca	cagagagatg	1100
ctgggtcccc	gaggcctgtg	ggcaggccga	tcagtgtggc	cccagatcaa	1150
gtcatgggag	gaagctaagc	ccttggttct	tgccatcctg	aggaaagata	1200
gcaacaggga	gggggagatt	tcatcagtgt	ggacagcctg	tcaacttagg	1250
atggatggct	gagagggctt	cctaggagcc	agtcagcagg	gtggggtggg	1300
gccagaggag	ctctccagcc	ctgcctagtg	ggcgccctga	gccccttgtc	1350
gtgtgctgag	catggcatga	ggctgaagtg	gcaaccctgg	ggtctttgat	1400
gtcttgacag	attgaccatc	tgtctccagc	caggccaccc	ctttccaaaa	1450
ttccctcttc	tgccagtact	cccctgtac	cacccattgc	tgatggcaca	1500
cccatcctta	agctaagaca	ggacgattgt	ggtcctccca	cactaaggcc	1550
acagcccatc	cgcgtgctgt	gtgtccctct	tccaccccaa	cccctgctgg	1600
ctcctctggg	agcatccatg	tcccggagag	gggtccctca	acagtcagcc	1650

tcacctgtca gaccggggtt ctcccggatc tggatggcgc cgccctctca 1700 gcagcgggca cgggtggggc ggggccgggc cgcagagcat gtgctggatc 1750 tgttctgtgt gtctgtctgt gggtgggggg aggggaggga agtcttgtga 1800 aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850 aataaagctt gccccggggc a 1871

<210> 218

<211> 252

<212> PRT

<213> Homo sapiens

<400> 218

Met Gln Leu Thr Arg Cys Cys Phe Val Phe Leu Val Gln Gly Ser 1 5 10 15

Leu Tyr Leu Val Ile Cys Gly Gln Asp Asp Gly Pro Pro Gly Ser 20 25 30

Glu Asp Pro Glu Arg Asp Asp His Glu Gly Gln Pro Arg Pro Arg
35 40 45

Val Pro Arg Lys Arg Gly His Ile Ser Pro Lys Ser Arg Pro Met
50 55 60

Ala Asn Ser Thr Leu Leu Gly Leu Leu Ala Pro Pro Gly Glu Ala 65 70 75

Trp Gly Ile Leu Gly Gln Pro Pro Asn Arg Pro Asn His Ser Pro 80 85 90

Pro Pro Ser Ala Lys Val Lys Lys Ile Phe Gly Trp Gly Asp Phe 95 100 105

Tyr Ser Asn Ile Lys Thr Val Ala Leu Asn Leu Leu Val Thr Gly
110 115 120

Lys Ile Val Asp His Gly Asn Gly Thr Phe Ser Val His Phe Gln
125 130 ' 135

His Asn Ala Thr Gly Gln Gly Asn Ile Ser Ile Ser Leu Val Pro $140\,$

Pro Ser Lys Ala Val Glu Phe His Gln Glu Gln Gln Ile Phe Ile 155 160 165

Glu Ala Lys Ala Ser Lys Ile Phe Asn Cys Arg Met Glu Trp Glu 170 175 180

Lys Val Glu Arg Gly Arg Arg Thr Ser Leu Cys Thr His Asp Pro 185 190

Ala Lys Ile Cys Ser Arg Asp His Ala Gln Ser Ser Ala Thr Trp
200 205 210

Ser Cys Ser Gln Pro Phe Lys Val Val Cys Val Tyr Ile Ala Phe 225

Tyr Ser Thr Asp Tyr Arg Leu Val Gln Lys Val Cys Pro Asp Tyr

230 235 24

Asn Tyr His Ser Asp Thr Pro Tyr Tyr Pro Ser Gly 245 250

<210> 219

<211> 2065

<212> DNA

<213> Homo sapiens

<400> 219

gtgaatgtga gggtttgatg actttcagat gtctaggaac cagagtgggt 50 gcaggggccc caggcagggc tgattcttgg gcggaggaga gtagggtaaa 100 gggttctgca tgagctcctt aaaggacaaa ggtaacagag ccagcgagag 150 agctcgaggg gagactttga cttcaagcca cagaattqqt qqaaqtqtqc 200 gcgccgccgc cgccgtcgct cctgcagcgc tgtcgaccta gccgctagca 250 tettecegag cacegggate eeggggtagg aggegaegeg ggegageace 300 agegecagee ggetgegget geceaeaegg etcaceatgg geteegggeg 350 cogggogotg tecgoggtge eggeogtget getggteete acgetgeegg 400 ggctgcccgt ctgggcacag aacgacacgg agcccatcgt gctggagggc 450 aagtgtctgg tggtgtgcga ctcgaacccg gccacggact ccaagggctc 500 ctcttcctcc ccgctgggga tatcggtccg ggcggccaac tccaaggtcg 550 ccttctcggc ggtgcggagc accaaccacg agccatccga gatgagcaac 600 aagacgcgca tcatttactt cgatcagatc ctggtgaatg tgggtaattt 650 tttcacattg gagtctgtct ttgtagcacc aagaaaagga atttacagtt 700 tcagttttca cgtgattaaa gtctaccaga gccaaactat ccaggttaac 750 ttgatgttaa atggaaaacc agtaatatct gcctttgcgg gggacaaaga 800 tgttactcgt gaagctgcca cgaatggtgt cctgctctac ctagataaag 850 aggataaggt ttacctaaaa ctggagaaag gtaatttggt tggaggctgg 900 cagtattcca cgttttctgg ctttctggtg ttccccctat aggattcaat 950 ttctccatga tgttcatcca ggtgagggat gacccactcc tgagttattg 1000 gaagatcatt ttttcatcat tggattgatg tcttttattg gtttctcatg 1050 ggtggatatg gattctaagg attctagcct gtctgaacca atacaaaatt 1100

B1

tcacagatta tttgtgtgtg tctgtttcag tatatttgga ttgggactct 1150 aagcagataa tacctatgct taaatgtaac agtcaaaagc tgtctgcaag 1200 acttattctg aatttcattt cctgggatta ctgaattagt tacagatgtg 1250 gaattttatt tgtttagttt taaaagactg gcaaccaggt ctaaggatta 1300 gaaaactcta aagttctgac ttcaatcaac ggttagtgtg atactgccaa 1350 agaactgtat actgtgttaa tatattgatt atatttgttt ttattccttt 1400 ggaattagtt tgtttggttc ttgtaaaaaa cttggatttt ttttttcagt 1450 aactggtatt atgttttctc ttaaaataag gtaatgaatg gcttgcccac 1500 aaatttacct tgactacgat atcatcgaca tgacttctct caaaaaaaaa 1550 gaatgcttca tagttgtatt ttaattgtat atgtgaaaga gtcatatttt 1600 ccaagttata ttttctaaga agaagaatag atcataaatc tgacaaggaa 1650 aaagttgctt acccaaaatc taagtgctca atccctgagc ctcagcaaaa 1700 cagctcccct ccgagggaaa tcttatactt tattgctcaa ctttaattaa 1750 aatgattgat aataaccact ttattaaaaa cctaaggttt ttttttttc 1800 cgtagacatg accactttat taactggtgg tgggatgctg ttgtttctaa 1850 ttatacctat ttttcaaggc ttctgttgta tttgaagtat catctggttt 1900 tgccttaact ctttaaattg tatatattta tctgtttagc taatattaaa 1950 ttcaaatatc ccatatctaa atttagtgca atatcttgtc ttttgtatag 2000 gtcatatgaa ttcataaaat tatttatgtc tgttatagaa taaagattaa 2050 tatatgttaa aaaaa 2065

<210> 220

<211> 201

<212> PRT

<213> Homo sapiens

<400> 220

Met Gly Ser Gly Arg Arg Ala Leu Ser Ala Val Pro Ala Val Leu 1 5 10 15

Leu Val Leu Thr Leu Pro Gly Leu Pro Val Trp Ala Gln Asn Asp 20 25 30

Thr Glu Pro Ile Val Leu Glu Gly Lys Cys Leu Val Val Cys Asp \$35\$ 40 45

Ser Asn Pro Ala Thr Asp Ser Lys Gly Ser Ser Ser Pro Leu
50 55 60

```
Gly Ile Ser Val Arg Ala Ala Asn Ser Lys Val Ala Phe Ser Ala
 Val Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Lys Thr
 Arg Ile Ile Tyr Phe Asp Gln Ile Leu Val Asn Val Gly Asn Phe
 Phe Thr Leu Glu Ser Val Phe Val Ala Pro Arg Lys Gly Ile Tyr
 Ser Phe Ser Phe His Val Ile Lys Val Tyr Gln Ser Gln Thr Ile
 Gln Val Asn Leu Met Leu Asn Gly Lys Pro Val Ile Ser Ala Phe
 Ala Gly Asp Lys Asp Val Thr Arg Glu Ala Ala Thr Asn Gly Val
                 155
 Leu Leu Tyr Leu Asp Lys Glu Asp Lys Val Tyr Leu Lys Leu Glu
 Lys Gly Asn Leu Val Gly Gly Trp Gln Tyr Ser Thr Phe Ser Gly
                 185
 Phe Leu Val Phe Pro Leu
                 200
<210> 221
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.
<400> 221
acggctcacc atgggctccg 20
<210> 222
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 222
aggaagagga gcccttggag tccg 24
<210> 223
```

<211> 40

```
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-40
<223> Synthetic construct.
<400> 223
cgtgctggag ggcaagtgtc tggtggtgtg cgactcgaac 40
<210> 224
<211> 902
<212> DNA
<213> Homo sapiens
<400> 224
 cggtggccat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc 50°
gggcctgcgc tcgcccttta tgtcttcacc atcgccatcg agccgttgcg 100
tatcatcttc ctcatcgccg gagctttctt ctggttggtg tctctactga 150
tttcgtccct tgtttggttc atggcaagag tcattattga caacaaagat 200
ggaccaacac agaaatatct gctgatcttt ggagcgtttg tctctgtcta 250
tatccaagaa atgttccgat ttgcatatta taaactctta aaaaaagcca 300
gtgaaggttt gaagagtata aacccaggtg agacagcacc ctctatgcga 350
ctgctggcct atgtttctgg cttgggcttt ggaatcatga gtggagtatt 400
ttcctttgtg aataccctat ctgactcctt ggggccaggc acagtgggca 450
ttcatggaga ttctcctcaa ttcttccttt attcagcttt catgacgctg 500
gtcattatct tgctgcatgt attctggggc attgtatttt ttgatggctg 550
tgagaagaaa aagtggggca tcctccttat cgttctcctg acccacctgc 600
tggtgtcagc ccagaccttc ataagttctt attatggaat aaacctggcg 650
tcagcattta taatcctggt gctcatgggc acctgggcat tcttagctgc 700
actttcttct ttacaaccag cgctccagat aacctcaggg aaccagcact 800
tcccaaaccg cagactacat ctttagagga agcacaactg tgcctttttc 850
tgaaaatccc tttttctggt ggaattgaga aagaaataaa actatgcaga 900
ta 902
<210> 225
<211> 257
<212> PRT
```

<213> Homo sapiens

<400> 225

Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly Pro Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Ile Glu Pro Leu Arg Ile Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser Leu Leu Ile Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile Asp Asn Lys Asp Gly Pro Thr Gln Lys Tyr Leu Leu Ile Phe Gly Ala Phe Val Ser Val Tyr Ile Gln Glu Met Phe Arg Phe Ala Tyr Tyr Lys Leu Leu Lys Lys Ala Ser Glu Gly Leu Lys Ser Ile Asn Pro Gly Glu Thr Ala Pro Ser Met Arg Leu Leu Ala Tyr Val Ser 110 115 Gly Leu Gly Phe Gly Ile Met Ser Gly Val Phe Ser Phe Val Asn Thr Leu Ser Asp Ser Leu Gly Pro Gly Thr Val Gly Ile His Gly Asp Ser Pro Gln Phe Phe Leu Tyr Ser Ala Phe Met Thr Leu Val Ile Ile Leu Leu His Val Phe Trp Gly Ile Val Phe Phe Asp Gly 175 Cys Glu Lys Lys Trp Gly Ile Leu Leu Ile Val Leu Leu Thr 190 ..

His Leu Leu Val Ser Ala Gln Thr Phe Ile Ser Ser Tyr Tyr Gly 200 205 205

Ile Asn Leu Ala Ser Ala Phe Ile Ile Leu Val Leu Met Gly Thr 215 220 225

Trp Ala Phe Leu Ala Ala Gly Gly Ser Cys Arg Ser Leu Lys Leu 230 235 240

Cys Leu Leu Cys Gln Asp Lys Asn Phe Leu Leu Tyr Asn Gln Arg 245 250 255

Ser Arg

<210> 226

```
<212> DNA
<213> Homo sapiens
<400> 226
cggcaaccag ccgccgc
atgttcgctc tgggctt
```

<211> 3939

BI

cggcaaccag ccgccgccac caccgctgcc actgccgccc tgccqqqqcc 50 atgttcgctc tgggcttgcc cttcttggtg ctcttggtgg cctcggtcga 100 gagccatctg ggggttctgg ggcccaagaa cgtctcgcag aaagacgccg 150 agtttgagcg cacctacgtg gacgaggtca acagcgagct ggtcaacatc 200 tacaccttca accatactgt gacccgcaac aggacagagg gcgtgcgtgt 250 gtctgtgaac gtcctgaaca agcagaaggg ggcgccgttg ctgtttgtgg 300 tccgccagaa ggaggctgtg gtgtccttcc aggtgcccct aatcctgcga 350 gggatgtttc agcgcaagta cctctaccaa aaagtggaac gaaccctgtg 400 tcagccccc accaagaatg agtcggagat tcagttcttc tacqtqqatq 450 tgtccaccct gtcaccagtc aacaccacat accageteeg ggtcageege 500 atggacgatt ttgtgctcag gactggggag cagttcagct tcaataccac 550 agcagcacag ccccagtact tcaagtatga gttccctgaa ggcgtggact 600 cggtaattgt caaggtgacc tccaacaagg ccttcccctg ctcagtcatc 650 tccattcagg atgtgctgtg tcctgtctat gacctggaca acaacgtagc 700 cttcatcggc atgtaccaga cgatgaccaa gaaggcggcc atcaccgtac 750 agcgcaaaga cttccccagc aacagctttt atgtggtggt ggtggtgaag 800 accgaagacc aagcctgcgg gggctccctg cettetacc cettegcaga 850 agatgaaccg gtcgatcaag ggcaccgcca gaaaaccctg tcagtgctgg 900 tgtctcaagc agtcacgtct gaggcatacg tcagtgggat gctcttttgc 950 ctgggtatat ttctctctt ttacctgctg accgtcctcc tggcctgctg 1000 ggagaactgg aggcagaaga agaagaccct gctggtggcc attgaccgag 1050 ectgeecaga aageggteae ectegagtee tggetgatte tttteetgge 1100 agttcccctt atgagggtta caactatggc tcctttgaga atgtttctgg 1150 atctaccgat ggtctggttg acagcgctgg cactggggac ctctcttacg 1200 gttaccaggg ccgctccttt gaacctgtag gtactcggcc ccgagtggac 1250 tccatgagct ctgtggagga ggatgactac gacacattga ccgacatcga 1300 ttccgacaag aatgtcattc gcaccaagca atacctctat gtggctgacc 1350

Bl

tggcacggaa ggacaagcgt gttctgcgga aaaagtacca gatctacttc 1400 tggaacattg ccaccattgc tgtcttctat gcccttcctg tggtgcagct 1450 ggtgatcacc taccagacgg tggtgaatgt cacagggaat caggacatct 1500 gctactacaa cttcctctgc gcccacccac tgggcaatct cagcgccttc 1550 aacaacatcc tcagcaacct ggggtacatc ctgctggggc tgcttttcct 1600 geteateate etgeaaeggg agateaacea caacegggee etgetgegea 1650 atgacctctg tgccctggaa tgtgggatcc ccaaacactt tgggcttttc 1700 tacgccatgg gcacagccct gatgatggag gggctgctca gtgcttgcta 1750 tcatgtgtgc cccaactata ccaatttcca gtttgacaca tcgttcatgt 1800 acatgatege eggactetge atgetgaage tetaceagaa geggeaeeeg 1850 gacatcaacg ccagcgccta cagtgcctac gcctgcctgg ccattgtcat 1900 cttcttctct gtgctgggcg tggtctttgg caaagggaac acggcgttct 1950 ggategtett etecateatt cacateateg ceaceetget ceteageaeg 2000 cagctctatt acatgggccg gtggaaactg gactcgggga tcttccgccg 2050 catcetecae gtgetetaca cagactgeat ceggeagtge agegggeege 2100 tetaegtgga cegeatggtg etgetggtea tgggeaaegt cateaaetgg 2150 tegetggetg cetatggget tateatgege eccaatgatt tegetteeta 2200 cttgttggcc attggcatct gcaacctgct cctttacttc gccttctaca 2250 tcatcatgaa gctccggagt ggggagagga tcaagctcat ccccctgctc 2300 tgcatcgttt gcacctccgt ggtctggggc ttcgcgctct tcttcttctt 2350 ccagggactc agcacctggc agaaaacccc tgcagagtcg agggagcaca 2400 accgggactg catcetecte gacttetttg acgaecacga catetggeae 2450 ttcctctcct ccatcgccat gttcgggtcc ttcctggtgt tgctgacact 2500 ggatgacgac ctggatactg tgcagcggga caagatctat gtcttctagc 2550 aggagetggg ceettegett caceteaagg ggeeetgage teetttgtgt 2600 catagaccgg tcactctgtc gtgctgtggg gatgagtccc agcaccgctg 2650 cccagcactg gatggcagca ggacagccag gtctagctta ggcttggcct 2700 gggacagcca tggggtggca tggaaccttg cagctgccct ctgccgagga 2750 gcaggcctgc tcccctggaa cccccagatg ttggccaaat tgctgctttc 2800

```
ttctcagtgt tggggccttc catgggcccc tgtcctttgg ctctccattt 2850
gtccctttgc aagaggaagg atggaaggga caccctcccc atttcatgcc 2900
ttgcattttg cccgtcctcc tccccacaat gccccagcct gggacctaag 2950
gestettttt setsesatas tessastesa gggestagte tggggestga 3000
atctctgtcc tgtatcaggg ccccagttct ctttgggctg tccctggctg 3050
ccatcactgc ccattccagt cagccaggat ggatgggggt atgagatttt 3100
gggggttggc cagctggtgc cagacttttg gtgctaaggc ctgcaagggg 3150
cctggggcag tgcgtattct cttccctctg acctgtgctc agggctggct 3200
ctttagcaat gcgctcagcc caatttgaga accgccttct gattcaagag 3250
gctgaattca gaggtcacct cttcatccca tcagctccca gactgatgcc 3300
agcaccagga ctggagggag aagcgcctca ccccttccct tccttctttc 3350
caggccctta gtcttgccaa accccagctg gtggcctttc agtgccattg 3400
acactgccca agaatgtcca ggggcaaagg agggatgata cagagttcag 3450
eccgttetge etccaeaget gtgggeacee eagtgeetae ettagaaagg 3500
ggcttcagga agggatgtgc tgtttccctc tacqtqccca qtcctaqcct 3550
cgctctagga cccagggctg gcttctaagt ttccgtccag tcttcaggca 3600
agttctgtgt tagtcatgca cacacatacc tatgaaacct tggagtttac 3650
aaagaattgc cccagctctg ggcaccctgg ccaccctggt ccttggatcc 3700
ccttcgtccc acctggtcca ccccagatgc tgaggatggg ggagctcagg 3750
cggggcctct gctttgggga tgggaatgtg tttttctccc aaacttgttt 3800
ttatagctct gcttgaaggg ctgggagatg aggtgggtct ggatcttttc 3850
tcagagcgtc tccatgctat ggttgcattt ccgttttcta tgaatgaatt 3900
tgcattcaat aaacaaccag actcaaaaaa aaaaaaaaa 3939
```

<210> 227

<211> 832

<212> PRT

<213> Homo sapiens

<400> 227

Met Phe Ala Leu Gly Leu Pro Phe Leu Val Leu Leu Val Ala Ser 1 5 10 15

Val Glu Ser His Leu Gly Val Leu Gly Pro Lys Asn Val Ser Gln
20 25 30

Lys Asp Ala Glu Phe Glu Arg Thr Tyr Val Asp Glu Val Asn Ser Glu Leu Val Asn Ile Tyr Thr Phe Asn His Thr Val Thr Arg Asn Arg Thr Glu Gly Val Arg Val Ser Val Asn Val Leu Asn Lys Gln Lys Gly Ala Pro Leu Leu Phe Val Val Arg Gln Lys Glu Ala Val Val Ser Phe Gln Val Pro Leu Ile Leu Arg Gly Met Phe Gln Arg Lys Tyr Leu Tyr Gln Lys Val Glu Arg Thr Leu Cys Gln Pro Pro Thr Lys Asn Glu Ser Glu Ile Gln Phe Phe Tyr Val Asp Val Ser Thr Leu Ser Pro Val Asn Thr Thr Tyr Gln Leu Arg Val Ser Arg Met Asp Asp Phe Val Leu Arg Thr Gly Glu Gln Phe Ser Phe Asn Thr Thr Ala Ala Gln Pro Gln Tyr Phe Lys Tyr Glu Phe Pro Glu Gly Val Asp Ser Val Ile Val Lys Val Thr Ser Asn Lys Ala Phe 185 190 Pro Cys Ser Val Ile Ser Ile Gln Asp Val Leu Cys Pro Val Tyr Asp Leu Asp Asn Asn Val Ala Phe Ile Gly Met Tyr Gln Thr Met 215 Thr Lys Lys Ala Ala Ile Thr Val Gln Arg Lys Asp Phe Pro Ser 235 Asn Ser Phe Tyr Val Val Val Val Lys Thr Glu Asp Gln Ala 245 Cys Gly Gly Ser Leu Pro Phe Tyr Pro Phe Ala Glu Asp Glu Pro Val Asp Gln Gly His Arg Gln Lys Thr Leu Ser Val Leu Val Ser Gln Ala Val Thr Ser Glu Ala Tyr Val Ser Gly Met Leu Phe Cys $\boldsymbol{\cdot}$ Leu Gly Ile Phe Leu Ser Phe Tyr Leu Leu Thr Val Leu Leu Ala 305 Cys Trp Glu Asn Trp Arg Gln Lys Lys Lys Thr Leu Leu Val Ala

				320					325					330
Ile	Asp	Arg	Ala	Cys 335	Pro	Glu	Ser	Gly	His 340	Pro	Arg	Val	Leu	Ala 345
Asp	Ser	Phe	Pro	Gly 350	Ser	Ser	Pro	Tyr	Glu 355	Gly	Tyr	Asn	Tyr	G1y 360
Ser	Phe	Glu	Asn	Val 365	Ser	Gly	Ser	Thr	Asp 370	Gly	Leu	Val	Asp	Ser 375
Ala	Gly	Thr	Gly	Asp 380	Leu	Ser	Tyr	Gly	Tyr 385	Gln	Gly	Arg	Ser	Phe 390
Glu	Pro	Val	Gly	Thr 395	Arg	Pro	Arg	Val	Asp 400	Ser	Met	Ser	Ser	Val 405
Glu	Glu	Asp	Asp	Tyr 410	Asp	Thr	Leu	Thr	Asp 415	Ile	Asp	Ser	Asp	Lys 420
Asn	Val	Ile	Arg	Thr 425	Lys	Gln	Tyr	Leu	Tyr 430	Val	Ala	Asp	Leu	Ala 435
Arg	Lys	Asp	Lys	Arg 440	Val	Leu	Arg	Lys	Lys 445	Tyr	Gln	Ile	Tyr	Phe
Trp	Asn	Ile	Ala	Thr 455	Ile	Ala	Val	Phe	Tyr 460	Ala	Leu	Pro	Val	Val 465
Ğln	Leu	Val	Ile	Thr 470	Tyr	Gln	Thr	Val	Val 475	Asn	Val	Thr	Gly	Asn 480
Gln	Asp	Ile	Cys	Tyr 485	Tyr	Asn	Phe	Leu	Cys 490	Ala	His	Pro	Leu	Gly 495
Asn	Leu	Ser	Ala	Phe 500	Asn	Asn	Ile	Leu	Ser 505	Asn	Leu	Gly	Tyr	Ile 510
Leu	Leu	Gly	Leu	Leu 515	Phe	Leu	Leu	Ile	Ile 520	Leu	Gln	Arg	Glu	Ile 525
Asn	His	Asn	Arg	Ala 530	Leu	Leu	Arg	Asn	Asp 535	Leu	Cys	Ala	Leu	Glu 540
Cys	Gly	Ile	Pro	Lys 545	His	Phe	Gly	Leu	Phe 550	Tyr	Ala	Met	Gly	Thr 555
Ala	Leu	Met	Met	Glu 560	Gly	Leu	Leu	Ser	Ala 565	Cys	Tyr	His	Val	Cys 570
Pro	Asn	Tyr	Thr	Asn 575	Phe	Gln	Phe	Asp	Thr 580	Ser	Phe	Met	Tyr	Met 585
Ile	Ala	Gly	Leu	Cys 590	Met	Leu	Lys	Leu	Tyr 595	Gln	Lys	Arg	His	Pro 600
Asp	Ile	Asn	Ala	Ser 605	Ala	Tyr	Ser	Ala	Tyr 610	Ala	Суѕ	Leu	Ala	Ile 615

BI

```
Val Ile Phe Phe Ser Val Leu Gly Val Val Phe Gly Lys Gly Asn
                                                         630
Thr Ala Phe Trp Ile Val Phe Ser Ile Ile His Ile Ile Ala Thr
                635
                                     640
                                                         645
Leu Leu Leu Ser Thr Gln Leu Tyr Tyr Met Gly Arg Trp Lys Leu
                                     655
Asp Ser Gly Ile Phe Arg Arg Ile Leu His Val Leu Tyr Thr Asp
                                                         675
Cys Ile Arg Gln Cys Ser Gly Pro Leu Tyr Val Asp Arg Met Val
Leu Leu Val Met Gly Asn Val Ile Asn Trp Ser Leu Ala Ala Tyr
                                                         705
Gly Leu Ile Met Arg Pro Asn Asp Phe Ala Ser Tyr Leu Leu Ala
Ile Gly Ile Cys Asn Leu Leu Leu Tyr Phe Ala Phe Tyr Ile Ile
Met Lys Leu Arg Ser Gly Glu Arg Ile Lys Leu Ile Pro Leu Leu
                                     745
Cys Ile Val Cys Thr Ser Val Val Trp Gly Phe Ala Leu Phe Phe
Phe Phe Gln Gly Leu Ser Thr Trp Gln Lys Thr Pro Ala Glu Ser
                770
                                     775
Arg Glu His Asn Arg Asp Cys Ile Leu Leu Asp Phe Phe Asp Asp
                                     790
His Asp Ile Trp His Phe Leu Ser Ser Ile Ala Met Phe Gly Ser
                800
                                    805
                                                         810
Phe Leu Val Leu Leu Thr Leu Asp Asp Leu Asp Thr Val Gln
                                    820
Arg Asp Lys Ile Tyr Val Phe
                830
```

<210> 228

<211> 2848

<212> DNA

<213> Homo sapiens

<400> 228

gctcaagtgc cctgccttgc cccacccagc ccagcctggc cagagccccc 50 tggagaagga gctctcttct tgcttggcag ctggaccaag ggagccagtc 100 ttgggcgctg gagggcctgt cctgaccatg gtccctgcct ggctgtggct 150 gctttgtgtc tccgtcccc aggctctccc caaggcccag cctgcagagc 200

B1

tgtctgtgga agttccagaa aactatggtg gaaatttccc tttatacctg 250 accaagttgc cgctgccccg tgagggggct gaaggccaga tcgtgctgtc 300 aggggactca ggcaaggcaa ctgagggccc atttgctatg gatccagatt 350 ctggcttcct gctggtgacc agggccctgg accgagagga gcaggcagag 400 taccagctac aggtcaccct ggagatgcag gatggacatg tcttgtgggg 450 tecacageet gtgettgtge aegtgaagga tgagaatgae caggtgeeec 500 atttctctca agccatctac agagetegge tgageegggg taccaggeet 550 ggcatcccct tcctcttcct tgaggcttca gaccgggatg agccaggcac 600 cttccccaga catgttccag ctggagcctc ggctgggggc tctggccctc 700 agececaagg ggageaceag cettgaecae geeetggaga ggaeetaeca 750 gctgttggta caggtcaagg acatgggtga ccaggcctca ggccaccagg 800 ccactgccac cgtggaagtc tccatcatag agagcacctg ggtgtcccta 850 gagcctatcc acctggcaga gaatctcaaa gtcctatacc cgcaccacat 900 ggcccaggta cactggagtg ggggtgatgt gcactatcac ctggagagcc 950 atcccccggg accctttgaa gtgaatgcag agggaaacct ctacgtgacc 1000 agagagctgg acagagaagc ccaggctgag tacctgctcc aggtgcgggc 1050 tcagaattcc catggcgagg actatgcggc ccctctggag ctgcacgtgc 1100 tggtgatgga tgagaatgac aacgtgccta tctgccctcc ccgtgacccc 1150 acagtcagca tecetgaget cagtecacea ggtaetgaag tgaetagaet 1200 gtcagcagag gatgcagatg cccccggctc ccccaattcc cacgttgtgt 1250 atcageteet gagecetgag cetgaggatg gggtagaggg gagageette 1300 caggtggacc ccacttcagg cagtgtgacg ctgggggtgc tcccactccg 1350 agcaggccag aacatectge ttetggtget ggccatggae etggcaggeg 1400 cagagggtgg cttcagcagc acgtgtgaag tcgaagtcgc agtcacagat 1450 atcaatgatc acgcccctga gttcatcact tcccagattg ggcctataag 1500 cctccctgag gatgtggagc ccgggactct ggtggccatg ctaacagcca 1550 ttgatgctga cctcgagccc gccttccgcc tcatggattt tgccattgag 1600 aggggagaca cagaagggac ttttggcctg gattgggagc cagactctgg 1650

gtcatgaggt ggtggtggtg gtgcagagtg tggcgaagct ggtggggcca 1750 ggcccaggcc ctggagccac cgccacggtg actgtgctag tggagagagt 1800 gatgccaccc cccaagttgg accaggagag ctacgaggcc agtgtcccca 1850 tcagtgcccc agccggctct ttcctgctga ccatccagcc ctccgacccc 1900 atcagccgaa ccctcaggtt ctccctagtc aatgactcag agggctggct 1950 ctgcattgag aaattctccg gggaggtgca caccgcccag tccctgcagg 2000 gegeeeagee tggggaeace tacaeggtge ttgtggagge eeaggataca 2050 gccctgactc ttgcccctgt gccctcccaa tacctctgca caccccgcca 2100 agaccatggc ttgatcgtga gtggacccag caaqqacccc gatctggcca 2150 gtgggcacgg tccctacagc ttcacccttg gtcccaaccc cacggtgcaa 2200 cgggattggc gcctccagac tctcaatggt tcccatgcct acctcacctt 2250 ggccctgcat tgggtggagc cacgtgaaca cataatcccc gtggtggtca 2300 gccacaatgc ccagatgtgg cagctcctgg ttcgagtgat cgtgtgtcgc 2350 tgcaacgtgg aggggcagtg catgcgcaag qtgqqccqca tqaaqqqcat 2400 gcccacgaag ctgtcggcag tgggcatcct tgtaggcacc ctggtagcaa 2450 taggaatett ceteateete atttteacee aetggaeeat gteaaggaag 2500 aaggacccgg atcaaccagc agacagcgtg cccctgaagg cgactgtctg 2550 aatggcccag gcagctctag ctgggagctt ggcctctggc tccatctgag 2600 teccetggga gagageeeag caceeaagat eeageagggg acaggaeaga 2650 gtagaagccc ctccatctgc cctggggtgg aggcaccatc accatcacca 2700 ggcatgtctg cagagcctgg acaccaactt tatggactgc ccatgggagt 2750 gctccaaatg tcagggtgtt tgcccaataa taaagcccca qagaactggg 2800 <210> 229

gcatgttaga ctcagactct gcaagaacct cagttatgag gcagctccaa 1700

Ala Leu Pro Lys Ala Gln Pro Ala Glu Leu Ser Val Glu Val Pro

<211> 807

<212> PRT

<213> Homo sapiens

<400> 229

Met Val Pro Ala Trp Leu Trp Leu Cys Val Ser Val Pro Gln

Glu	Asn	Tyr	Gly	Gly 35		Phe	Pro	Leu	Tyr 40		Thr	Lys	Leu	Pro
Leu	Pro	Arg	Glu	Gly 50		Glu	Gly	Gln	Ile 55		Leu	Ser	Gly	Asp 60
Ser	Gly	Lys	Ala	Thr 65		Gly	Pro	Phe	Ala 70	Met	Asp	Pro	Asp	Sei 75
Gly	Phe	Leu	Leu	Val 80		Arg	Ala	Leu	Asp 85	Arg	Glu	Glu	Gln	Ala 90
Glu	Tyr	Gln	Leu	Gln 95	Val	Thr	Leu	Glu	Met 100	Gln	Asp	Gly	His	Val
Leu	Trp	Gly	Pro	Gln 110	Pro	Val	Leu	Val	His 115	Val	Lys	Asp	Glu	Asr 120
Asp	Gln	Val	Pro	His 125	Phe	Ser	Gln	Ala	Ile 130	Tyr	Arg	Ala	Arg	Leu 135
Ser	Arg	Gly	Thr	Arg 140	Pro	Gly	Ile	Pro	Phe 145	Leu	Phe	Leu	Glu	Ala 150
Ser	Asp	Arg	Asp	Glu 155	Pro	Gly	Thr	Ala	Asn 160	Ser	Asp	Leu	Arg	Phe 165
His	Ile	Leu	Ser	Gln 170	Ala	Pro	Ala	Gln	Pro 175	Ser	Pro	Asp	Met	Phe 180
Gln	Leu	Glu	Pro	Arg 185	Leu	Gly	Ala	Leu	Ala 190	Leu	Ser	Pro	Lys	Gly 195
Ser	Thr	Ser	Leu	Asp 200	His	Ala	Leu	Glu	Arg 205	Thr	Tyr	Gln	Leu	Leu 210
Val	Gln	Val	Lys	Asp 215	Met	Gly	Asp	Gln	Ala 220	Ser	Gly	His	Gln	Ala 225
Thr	Ala	Thr	Val	Glu 230	Val	Ser	Ile	Ile	Glu 235	Ser	Thr	Trp	Val	Ser 240
Leu	Glu	Pro	Ile	His 245	Leu	Ala	Glu	Asn	Leu 250	Lys	Val	Leu	Tyr	Pro 255
His	His	Met	Ala	Gln 260	Val	His	Trp	Ser	Gly 265	Gly	Asp	Val	His	Tyr 270
His	Leu	Glu	Ser	His 275	Pro	Pro	Gly	Pro	Phe 280	Glu	Val	Asn	Ala	Glu 285
Gly	Asn	Leu	Tyr	Val 290	Thr	Arg	Glu	Leu	Asp 295	Arg	Glu	Ala	Gln	Ala 300
Glu	Tyr	Leu	Leu	Gln 305	Val	Arg	Ala	Gln	Asn 310	Ser	His	Gly	Glu	Asp 315

B

Tyr Ala Ala Pro Leu Glu Leu His Val Leu Val Met Asp Glu Asn Asp Asn Val Pro Ile Cys Pro Pro Arg Asp Pro Thr Val Ser Ile Pro Glu Leu Ser Pro Pro Gly Thr Glu Val Thr Arg Leu Ser Ala Glu Asp Ala Asp Ala Pro Gly Ser Pro Asn Ser His Val Val Tyr Gln Leu Leu Ser Pro Glu Pro Glu Asp Gly Val Glu Gly Arg Ala Phe Gln Val Asp Pro Thr Ser Gly Ser Val Thr Leu Gly Val Leu Pro Leu Arg Ala Gly Gln Asn Ile Leu Leu Val Leu Ala Met Asp Leu Ala Gly Ala Glu Gly Gly Phe Ser Ser Thr Cys Glu Val Glu Val Ala Val Thr Asp Ile Asn Asp His Ala Pro Glu Phe Ile Thr Ser Gln Ile Gly Pro Ile Ser Leu Pro Glu Asp Val Glu Pro Gly Thr Leu Val Ala Met Leu Thr Ala Ile Asp Ala Asp Leu Glu Pro Ala Phe Arg Leu Met Asp Phe Ala Ile Glu Arg Gly Asp Thr Glu Gly Thr Phe Gly Leu Asp Trp Glu Pro Asp Ser Gly His Val Arg Leu Arg Leu Cys Lys Asn Leu Ser Tyr Glu Ala Ala Pro Ser 520 His Glu Val Val Val Val Gln Ser Val Ala Lys Leu Val Gly Pro Gly Pro Gly Pro Gly Ala Thr Ala Thr Val Thr Val Leu Val Glu Arg Val Met Pro Pro Pro Lys Leu Asp Gln Glu Ser Tyr Glu Ala Ser Val Pro Ile Ser Ala Pro Ala Gly Ser Phe Leu Leu Thr Ile Gln Pro Ser Asp Pro Ile Ser Arg Thr Leu Arg Phe Ser Leu Val Asn Asp Ser Glu Gly Trp Leu Cys Ile Glu Lys Phe Ser Gly

605

610 615

Glu Val His Thr Ala Gln Ser Leu Gln Gly Ala Gln Pro Gly Asp 625

Thr Tyr Thr Val Leu Val Glu Ala Gln Asp Thr Ala Leu Thr Leu

Ala Pro Val Pro Ser Gln Tyr Leu Cys Thr Pro Arg Gln Asp His

Gly Leu Ile Val Ser Gly Pro Ser Lys Asp Pro Asp Leu Ala Ser

Gly His Gly Pro Tyr Ser Phe Thr Leu Gly Pro Asn Pro Thr Val

Gln Arg Asp Trp Arg Leu Gln Thr Leu Asn Gly Ser His Ala Tyr

Leu Thr Leu Ala Leu His Trp Val Glu Pro Arg Glu His Ile Ile 715

Pro Val Val Ser His Asn Ala Gln Met Trp Gln Leu Leu Val

Arg Val Ile Val Cys Arg Cys Asn Val Glu Gly Gln Cys Met Arg 745

Lys Val Gly Arg Met Lys Gly Met Pro Thr Lys Leu Ser Ala Val

Gly Ile Leu Val Gly Thr Leu Val Ala Ile Gly Ile Phe Leu Ile

Leu Ile Phe Thr His Trp Thr Met Ser Arg Lys Lys Asp Pro Asp

Gln Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val 805

<210> 230

<211> 50

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-50

<223> Synthetic construct.

cgccttaccg cgcagcccga agattcacta tggtgaaaat cgccttcaat 50

<210> 231

<211> 24

<212> DNA

<213> Artificial Sequence

```
<220>
<221> Artificial Sequence
<222> full
<223> Synthetic oligonucleotide probe
<400> 231
cctgagctgt aaccccactc cagg 24
<210> 232
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 232
agagtctgtc ccagctatct tgt 23
<210> 233
<211> 2786
<212> DNA
<213> Homo sapiens
<400> 233
ccggggacat gaggtggata ctgttcattg gggcccttat tgggtccagc 50
atctgtggcc aagaaaaatt ttttggggac caagttttga ggattaatgt 100
cagaaatgga gacgagatca gcaaattgag tcaactagtg aattcaaaca 150
acttgaaget caatttetgg aaateteeet eeteetteaa teggeetgtg 200
gatgtcctgg tcccatctgt cagtctgcag gcatttaaat ccttcctgag 250
atcccagggc ttagagtacg cagtgacaat tgaggacctg caggcccttt 300
tagacaatga agatgatgaa atgcaacaca atgaagggca agaacggagc 350
agtaataact tcaactacgg ggcttaccat tccctggaag ctatttacca 400
cgagatggac aacattgccg cagactttcc tgacctggcg aggagggtga 450
agattggaca ttcgtttgaa aaccggccga tgtatgtact gaagttcagc 500
actgggaaag gcgtgaggcg gccggccgtt tggctgaatg caggcatcca 550
ttcccgagag tggatctccc aggccactgc aatctggacg gcaaggaaga 600
ttgtatctga ttaccagagg gatccagcta tcacctccat cttggagaaa 650
atggatattt tcttgttgcc tgtggccaat cctgatggat atgtgtatac 700
tcaaactcaa aaccgattat ggaggaagac gcggtcccga aatcctggaa 750
gctcctgcat tggtgctgac ccaaatagaa actggaacgc tagttttgca 800
```

ggaaagggag ccagcgacaa cccttgctcc gaagtgtacc atggacccca 850

10

cgccaattcg gaagtggagg tgaaatcagt ggtagatttc atccaaaaac 900 atgggaattt caagggette ategaeetge acagetaete geagetgetg 950 atgtatccat atgggtactc agtcaaaaag gccccagatg ccgaggaact 1000 cgacaaggtg gcgaggcttg cggccaaagc tctggcttct gtgtcgggca 1050 ctgagtacca agtgggtccc acctgcacca ctgtctatcc agctagcggg 1100 agcagcatcg actgggcgta tgacaacggc atcaaatttg cattcacatt 1150 tgagttgaga gataccggga cctatggctt cctcctgcca gctaaccaga 1200 tcatececae tgeagaggag aegtggetgg ggetgaagae eateatggag 1250 atttgtaccc acacgtgcac gcactgaggc cattgttaaa ggagctcttt 1350 cctacctgtg tgagtcagag ccctctgggt ttgtggagca cacaggcctg 1400 cccctctcca gccagctccc tggagtcgtg tgtcctggcg gtgtccctgc 1450 aagaactggt tctgccagcc tgctcaattt tggtcctgct gtttttgatg 1500 agcettttgt etgtttetee ttecaccetg etggetggge ggetgeacte 1550 agcatcaccc cttcctgggt ggcatgtctc tctctacctc atttttagaa 1600 ccaaagaaca tetgagatga ttetetacee teatecacat etagecaage 1650 cagtgacctt gctctggtgg cactgtggga gacaccactt gtctttaggt 1700 gggtctcaaa gatgatgtag aatttccttt aatttctcgc agtcttcctg 1750 gaaaatattt tootttgago agcaaatott gtagggatat cagtgaaggt 1800 ctctccctcc ctcctctcct gttttttttt tttttgagac agagttttgc 1850 tettgttgee eaggetggag tgtgatgget egatettgge teaceaeaac 1900 ctctgcctcc tgggttcaag caattctcct gcctcagcct cttgagtagc 1950 ttggtttata ggcgcatgcc accatgcctg gctaattttg tgtttttagt 2000 agagacaggg tttctccatg ttggtcaggc tggtctcaaa ctcccaacct 2050 caggtgatct gccctccttg gcctcccaga gtgctgggat tacaggtgtg 2100 agccactgtg ccgggcccgt cccctccttt tttaggcctg aatacaaagt 2150 agaagatcac tttccttcac tgtgctgaga atttctagat actacagttc 2200 ttactcctct cttccctttg ttattcagtg tgaccaggat ggcgggaggg 2250 gatctgtgtc actgtaggta ctgtgcccag gaaggctggg tgaagtgacc 2300

- <210> 234
- <211> 421
- <212> PRT
- <213> Homo sapiens
- <400> 234
- Met Arg Trp Ile Leu Phe Ile Gly Ala Leu Ile Gly Ser Ser Ile
 1 5 10 15
- Cys Gly Gln Glu Lys Phe Phe Gly Asp Gln Val Leu Arg Ile Asn 20 25 30
- Val Arg Asn Gly Asp Glu Ile Ser Lys Leu Ser Gln Leu Val Asn 35 40 45
- Ser Asn Asn Leu Lys Leu Asn Phe Trp Lys Ser Pro Ser Ser Phe 50 55 60
- Asn Arg Pro Val Asp Val Leu Val Pro Ser Val Ser Leu Gln Ala 657075
- Phe Lys Ser Phe Leu Arg Ser Gln Gly Leu Glu Tyr Ala Val Thr 80 85 90
- Ile Glu Asp Leu Gln Ala Leu Leu Asp Asn Glu Asp Asp Glu Met
 95 100 105
- Gln His Asn Glu Gly Gln Glu Arg Ser Ser Asn Asn Phe Asn Tyr \$110\$ \$115\$ \$120
- Gly Ala Tyr His Ser Leu Glu Ala Ile Tyr His Glu Met Asp Asn 125 130 135
- Ile Ala Ala Asp Phe Pro Asp Leu Ala Arg Arg Val Lys Ile Gly
 140 145 150
- His Ser Phe Glu Asn Arg Pro Met Tyr Val Leu Lys Phe Ser Thr 155 160 165

```
Gly Lys Gly Val Arg Arg Pro Ala Val Trp Leu Asn Ala Gly Ile
His Ser Arg Glu Trp Ile Ser Gln Ala Thr Ala Ile Trp Thr Ala
Arg Lys Ile Val Ser Asp Tyr Gln Arg Asp Pro Ala Ile Thr Ser
                                     205
Ile Leu Glu Lys Met Asp Ile Phe Leu Leu Pro Val Ala Asn Pro
Asp Gly Tyr Val Tyr Thr Gln Thr Gln Asn Arg Leu Trp Arg Lys
                230
Thr Arg Ser Arg Asn Pro Gly Ser Ser Cys Ile Gly Ala Asp Pro
Asn Arg Asn Trp Asn Ala Ser Phe Ala Gly Lys Gly Ala Ser Asp
                260
                                     265
Asn Pro Cys Ser Glu Val Tyr His Gly Pro His Ala Asn Ser Glu
                                     280
Val Glu Val Lys Ser Val Val Asp Phe Ile Gln Lys His Gly Asn
                                                         300
Phe Lys Gly Phe Ile Asp Leu His Ser Tyr Ser Gln Leu Leu Met
                                     310
Tyr Pro Tyr Gly Tyr Ser Val Lys Lys Ala Pro Asp Ala Glu Glu
Leu Asp Lys Val Ala Arg Leu Ala Ala Lys Ala Leu Ala Ser Val
Ser Gly Thr Glu Tyr Gln Val Gly Pro Thr Cys Thr Thr Val Tyr
Pro Ala Ser Gly Ser Ser Ile Asp Trp Ala Tyr Asp Asn Gly Ile
                                    370 .
Lys Phe Ala Phe Thr Phe Glu Leu Arg Asp Thr Gly Thr Tyr Gly
                                    385
Phe Leu Leu Pro Ala Asn Gln Ile Ile Pro Thr Ala Glu Glu Thr
Trp Leu Gly Leu Lys Thr Ile Met Glu His Val Arg Asp Asn Leu
Tyr
```

<210> 235

<211> 1743

<212> DNA

<213> Homo sapiens

131

<400> 235 caaccatgca aggacagggc aggagaagag gaacctgcaa agacatattt 50 tgttccaaaa tggcatctta cctttatgga gtactctttg ctgttggcct 100 ctgtgctcca atctactgtg tgtccccggc caatgccccc agtgcatacc 150 cccgcccttc ctccacaaag agcacccctg cctcacaggt gtattccctc 200 aacaccgact ttgccttccg cctataccgc aggctggttt tggagacccc 250 gagtcagaac atcttcttct cccctgtgag tgtctccact tccctggcca 300 tgctctccct tggggcccac tcagtcacca agacccagat tctccagggc 350 ctgggcttca acctcacaca cacaccagag tctgccatcc accagggctt 400 ccagcacctg gttcactcac tgactgttcc cagcaaagac ctgaccttga 450 agatgggaag tgccctcttc gtcaagaagg agctgcagct gcaggcaaat 500 ttcttgggca atgtcaagag gctgtatgaa gcagaagtct tttctacaga 550 tttctccaac ccctccattg cccaggcgag gatcaacagc catgtgaaaa 600 agaagaccca agggaaggtt gtagacataa tccaaggcct tgaccttctg 650 acggccatgg ttctggtgaa tcacattttc tttaaagcca agtgggagaa 700 gccctttcac cttgaatata caagaaagaa cttcccattc ctggtgggcg 750 agcaggtcac tgtgcaagtc cccatgatgc accagaaaga gcagttcgct 800 tttggggtgg atacagagct gaactgcttt gtgctgcaga tggattacaa 850 gggagatgcc gtggccttct ttgtcctccc tagcaagggc aagatgaggc 900 aactggaaca ggccttgtca gccagaacac tgataaagtg gagccactca 950 ctccagaaaa ggtggataga ggtgttcatc cccagatttt ccatttctgc 1000 ctcctacaat ctggaaacca tcctcccgaa gatgggcatc caaaatgcct 1050 ttgacaaaaa tgctgatttt tctggaattg caaagagaga ctccctgcag 1100 gtttctaaag caacccacaa ggctgtgctg gatgtcagtg aagagggcac 1150 tgaggccaca gcagctacca ccaccaagtt catagtccga tcgaaggatg 1200 gtccctctta cttcactgtc tccttcaata ggaccttcct gatgatgatt 1250 acaaataaag ccacagacgg tattctcttt ctagggaaag tggaaaatcc 1300 cactaaatcc taggtgggaa atggcctgtt aactgatggc acattgctaa 1350 tgaccccagt ggagctggat tcgctggcag ggatgccact tccaaggctc 1450

<210> 236

<211> 417

<212> PRT

<213> Homo sapiens

<400> 236

Met Ala Ser Tyr Leu Tyr Gly Val Leu Phe Ala Val Gly Leu Cys 1 5 10 15

Ala Pro Ile Tyr Cys Val Ser Pro Ala Asn Ala Pro Ser Ala Tyr
20 25 30

Pro Arg Pro Ser Ser Thr Lys Ser Thr Pro Ala Ser Gln Val Tyr 35 40 45

Ser Leu Asn Thr Asp Phe Ala Phe Arg Leu Tyr Arg Arg Leu Val
50 55 60

Leu Glu Thr Pro Ser Gln Asn Ile Phe Phe Ser Pro Val Ser Val 65 70 75

Ser Thr Ser Leu Ala Met Leu Ser Leu Gly Ala His Ser Val Thr 80 85 90

Lys Thr Gln Ile Leu Gln Gly Leu Gly Phe Asn Leu Thr His Thr 95 100 105

Pro Glu Ser Ala Ile His Gln Gly Phe Gln His Leu Val His Ser 110 115 ... 120

Leu Thr Val Pro Ser Lys Asp Leu Thr Leu Lys Met Gly Ser Ala 125 130 135

Leu Phe Val Lys Lys Glu Leu Gln Leu Gln Ala Asn Phe Leu Gly 140 145 150

Asn Val Lys Arg Leu Tyr Glu Ala Glu Val Phe Ser Thr Asp Phe 155 160 165

Ser Asn Pro Ser Ile Ala Gln Ala Arg Ile Asn Ser His Val Lys 170 175 180

Lys Lys Thr Gln Gly Lys Val Val Asp Ile Ile Gln Gly Leu Asp 185 190 195

Leu Leu Thr Ala Met Val Leu Val Asn His Ile Phe Phe Lys Ala

				200					205					210
Lys	Trp	Glu	Lys	Pro 215	Phe	His	Leu	Glu	Tyr 220	Thr	Arg	Lys	Asn	Phe 225
Pro	Phe	Leu	Val	Gly 230	Glu	Gln	Val	Thr	Val 235	Gln	Val	Pro	Met	Met 240
His	Gln	Lys	Glu	Gln 245	Phe	Ala	Phe	Gly	Val 250	Asp	Thr	Glu	Leu	Asn 255
Cys	Phe	Val	Leu	Gln 260	Met	Asp	Tyr	Lys	Gly 265	Asp	Ala	Val	Ala	Phe 270
Phe	Val	Leu	Pro	Ser 275	Lys	Gly	Lys	Met	Arg 280	Gln	Leu	Glu	Gln	Ala 285
Leu	Ser	Ala	Arg	Thr 290	Leu	Ile	Lys	Trp	Ser 295	His	Ser	Leu	Gln	Lys 300
Arg	Trp	Ile	Glu	Val 305	Phe	Ile	Pro	Arg	Phe 310	Ser	Ile	Ser	Ala	Ser 315
Tyr	Asn	Leu	Glu	Thr 320	Ile	Leu	Pro	Lys	Met 325	Gly	Ile	Gln	Asn	Ala 330
Phe	Asp	Lys	Asn	Ala 335	Asp	Phe	Ser	Gly	Ile 340	Ala	Lys	Arg	Asp	Ser 345
Leu	Gln	Val	Ser	Lys 350	Ala	Thr	His	Lys	Ala 355	Val	Leu	Asp	Val	Ser 360
Glu	Glu	Gly	Thr	Glu 365	Ala	Thr	Ala	Ala	Thr 370	Thr	Thr	Lys	Phe	Ile 375
Val	Arg	Ser	Lys	Asp 380	Gly	Pro	Ser	Tyr	Phe 385	Thr	Val	Ser	Phe	Asn 390
Arg	Thr	Phe	Leu	Met 395	Met	Ile	Thr	Asn	Lys 400	Ala	Thr	Asp	Gly	Ile 405
Leu	Phe	Leu	Gly	Lys 410	Val	Glu	Asn	Pro	Thr 415	Lys	Ser			
<pre><210> 237 <211> 23 <212> DNA <213> Artificial</pre>														
<pre>\$220> \$221> Artificial Sequence \$222> 1-23 \$223> Synthetic construct.</pre>														
(100) 227														

<400> 237
caaccatgca aggacagggc agg 23
<210> 238

```
<211> 47
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-47
<223> Synthetic construct.
<400> 238
 ctttgctgtt ggcctctgtg ctcccaacca tgcaaggaca gggcagg 47
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 239
 tgactcgggg tctccaaaac cagc 24
<210> 240
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 240
 ggtataggcg gaaggcaaag tcgg 24
<210> 241
<211> 48
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-48
<223> Synthetic construct.
<400> 241
ggcatcttac ctttatggag tactctttgc tgttggcctc tgtgctcc 48
<210> 242
<211> 2436
<212> DNA
<213> Homo sapiens
<400> 242
ggctgaccgt gctacattgc ctggaggaag cctaaggaac ccaggcatcc 50
```


agctgcccac	gcctgagtcc	aagattctto	ccaggaacad	: aaacgtagga	100
gacccacgct	cctggaagca	ccagccttta	tctcttcaco	ttcaagtccc	: 150
ctttctcaag	aatcctctgt	tctttgccct	ctaaagtctt	ggtacatcta	200
ggacccaggc	atcttgcttt	ccagccacaa	agagacagat	gaagatgcag	250
aaaggaaatg	ttctccttat	gtttggtcta	ctattgcatt	tagaagctgc	300
aacaaattcc	aatgagacta	gcacctctgc	: caacactgga	tccagtgtga	350
tctccagtgg	agccagcaca	gccaccaact	ctgggtccag	tgtgacctcc	400.
agtggggtca	gcacagccac	catctcaggg	tccagcgtga	cctccaatgg	450
ggtcagcata	gtcaccaact	ctgagttcca	tacaacctcc	agtgggatca	500
gcacagccac	caactctgag	ttcagcacag	cgtccagtgg	gatcagcata	550
gccaccaact	ctgagtccag	cacaacctcc	agtggggcca	gcacagccac	600
caactctgag	tccagcacac	cctccagtgg	ggccagcaca	gtcaccaact	650
ctgggtccag	tgtgacctcc	agtggagcca	gcactgccac	caactctgag	700
tccagcacag	tgtccagtag	ggccagcact	gccaccaact	ctgagtctag	750
cacactctcc	agtggggcca	gcacagccac	caactctgac	tccagcacaa	800
cctccagtgg	ggctagcaca	gccaccaact	ctgagtccag	cacaacctcc	850
agtggggcca	gcacagccac	caactctgag	tccagcacag	tgtccagtag	900
ggccagcact	gccaccaact	ctgagtccag	cacaacctcc	agtggggcca	950
gcacagccac	caactctgag	tccagaacga	cctccaatgg	ggctggcaca	1000
gccaccaact	ctgagtccag	cacgacctcc	agtggggcca	gcacagccac	1050
caactctgac	tccagcacag	tgtccagtgg	ggccagcact	gccaccaact	1100
ctgagtccag	cacgacctcc	agtggggcca	gcacagccac	caactctgag	1150
tccagcacga	cctccagtgg	ggctagcaca	gccaccaact	ctgactccag	1200
cacaacctcc	agtggggccg	gcacagccac	caactctgag	tccagcacag	1250
tgtccagtgg	gatcagcaca	gtcaccaatt	ctgagtccag	cacaccctcc	1300
agtggggcca	acacagccac	caactctgag	tccagtacga	cctccagtgg	1350
ggccaacaca	gccaccaact	ctgagtccag	cacagtgtcc	agtggggcca	1400
gcactgccac	caactctgag	tccagcacaa	cctccagtgg	ggtcagcaca	1450
gccaccaact	ctgagtccag	cacaacctcc	agtggggcta	gcacagccac	1500

```
caactctgac tccagcacaa cctccagtga ggccagcaca gccaccaact 1550
 ctgagtctag cacagtgtcc agtgggatca gcacagtcac caattctgag 1600
 tecageacaa cetecagtgg ggecaacaca gecaecaact etgggtecag 1650
 tgtgacctct gcaggctctg gaacagcagc tctgactgga atgcacacaa 1700
 cttcccatag tgcatctact gcagtgagtg aggcaaagcc tggtgggtcc 1750
 ctggtgccgt gggaaatctt cctcatcacc ctggtctcgg ttgtggcggc 1800
 cgtggggctc tttgctgggc tcttcttctg tgtgagaaac agcctgtccc 1850
 tgagaaacac ctttaacaca gctgtctacc accctcatgg cctcaaccat 1900
 ggccttggtc caggccctgg agggaatcat ggagcccccc acaggcccag 1950
 gtggagtcct aactggttct ggaggagacc agtatcatcg atagccatgg 2000
 agatgagegg gaggaacage gggeeetgag cageeeegga ageaagtgee 2050
 gcattettea ggaaggaaga gacetgggea eccaagacet ggttteettt 2100
 cattcatccc aggagacccc tcccagcttt gtttgagatc ctgaaaatct 2150
 tgaagaaggt attcctcacc tttcttgcct ttaccagaca ctggaaagag 2200
 aatactatat tgctcattta gctaagaaat aaatacatct catctaacac 2250
 acacgacaaa gagaagctgt gcttgccccg gggtgggtat ctagctctga 2300
 gatgaactca gttataggag aaaacctcca tgctggactc catctggcat 2350
 tcaaaaatctc cacagtaaaa tccaaagacc tcaaaaaaaa aaaaaaaaa 2400
 aaaaaaaaaa aaaaaaaaa aaaaaaa 2436
<210> 243
<211> 596
<212> PRT
<213> Homo sapiens
<400> 243
Met Lys Met Gln Lys Gly Asn Val Leu Leu Met Phe Gly Leu Leu
Leu His Leu Glu Ala Ala Thr Asn Ser Asn Glu Thr Ser Thr Ser
Ala Asn Thr Gly Ser Ser Val Ile Ser Ser Gly Ala Ser Thr Ala
Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Val Ser Thr Ala
Thr Ile Ser Gly Ser Ser Val Thr Ser Asn Gly Val Ser Ile Val
```

Thr	Asn	Ser	Glu	Phe 80	His	Thr	Thr	Ser	Ser 85	Gly	Ile	Ser	Thr	Ala 90
Thr	Asn	Ser	Glu	Phe 95	Ser	Thr	Ala	Ser	Ser 100	Gly	Ile	Ser	Ile	Ala 105
Thr	Asn	Ser	Glu	Ser 110	Ser	Thr	Thr	Ser	Ser 115	Gly	Ala	Ser	Thr	Ala 120
Thr	Asn	Ser	Glu	Ser 125	Ser	Thr	Pro	Ser	Ser 130	Gly	Ala	Ser	Thr	Val 135
Thr	Asn	Ser	Gly	Ser 140	Ser	Val	Thr	Ser	Ser 145	Gly	Ala	Ser	Thr	Ala 150
Thr	Asn	Ser	Glu	Ser 155	Ser	Thr	Val	Ser	Ser 160	Arg	Ala	Ser	Thr	Ala 165
Thr	Asn	Ser	Glu	Ser 170	Ser	Thr	Leu	Ser	Ser 175	Gly	Ala	Ser	Thr	Ala 180
Thr	Asn	Ser	Asp	Ser 185	Ser	Thr	Thr	Ser	Ser 190	Gly	Ala	Ser	Thr	Ala 195
Thr	Asn	Ser	Glu	Ser 200	Ser	Thr	Thr	Ser	Ser 205	Gly	Ala	Ser	Thr	Ala 210
Thr	Asn	Ser	Glu	Ser 215	Ser	Thr	Val	Ser	Ser 220	Arg	Ala	Ser	Thr	Ala 225
Thr	Asn	Ser	Glu	Ser 230	Ser	Thr	Thr	Ser	Ser 235	Gly	Ala	Ser	Thr	Ala 240
			Glu	245					250	_		_		255
Thr	Asn	Ser	Glu	Ser 260	Ser	Thr	Thr	Ser	Ser 265	Gly	Ala	Ser	Thr	Ala 270
			Asp	275					280	";				285
			Glu	290					295					300
Thr	Asn	Ser	Glu	Ser 305	Ser	Thr	Thr	Ser	Ser 310	Gly	Ala	Ser	Thr	Ala 315
			Asp	320					325					330
			Glu	335					340					345
			Glu	350					355					360
Thr	Asn	Ser	Glu	Ser	Ser	Thr	Thr	Ser	Ser	Gly	Ala	Asn	Thr	Ala

```
365
                                      370
                                                          375
 Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ala Ser Thr Ala
 Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Val Ser Thr Ala
 Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
                 410
 Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Glu Ala Ser Thr Ala
 Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ile Ser Thr Val
                 440
 Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Asn Thr Ala
 Thr Asn Ser Gly Ser Ser Val Thr Ser Ala Gly Ser Gly Thr Ala
                 470
 Ala Leu Thr Gly Met His Thr Thr Ser His Ser Ala Ser Thr Ala
 Val Ser Glu Ala Lys Pro Gly Gly Ser Leu Val Pro Trp Glu Ile
 Phe Leu Ile Thr Leu Val Ser Val Val Ala Ala Val Gly Leu Phe
                 515
 Ala Gly Leu Phe Phe Cys Val Arg Asn Ser Leu Ser Leu Arg Asn
 Thr Phe Asn Thr Ala Val Tyr His Pro His Gly Leu Asn His Gly
 Leu Gly Pro Gly Pro Gly Gly Asn His Gly Ala Pro His Arg Pro
 Arg Trp Ser Pro Asn Trp Phe Trp Arg Arg Pro Val Ser Ser Ile
Ala Met Glu Met Ser Gly Arg Asn Ser Gly Pro
                 590
<210> 244
<212> DNA
<213> Artificial
<221> Artificial Sequence
```

<211> 26

<220>

<222> 1-26

<223> Synthetic construct.

<400> 244

```
gaagcaccag cctttatctc ttcacc 26
<210> 245
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic sequence.
<400> 245
 gtcagagttg gtggctgtgc tagc 24
<210> 246
<211> 48
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-48
<223> Synthetic construct.
<400> 246
ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgc 48
<210> 247
<211> 957
<212> DNA
<213> Homo sapiens
<400> 247
gggagagagg ataaatagca gcgtggcttc cctggctcct ctctgcatcc 50
ttcccgacct tcccagcaat atgcatcttg cacgtctggt cggctcctgc 100
 teceteette tgetactggg ggeeetgtet ggatgggegg ceagegatga 150
ccccattgag aaggtcattg aagggatcaa ccgagggctg agcaatgcag 200
agagagaggt gggcaaggcc ctggatggca tcaacagťgg aatcacgcat 250
gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag 300
ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca 350
tggacaaggt tgcccatgag atcaaccatg gtattggaca agcaggaaag 400
gaagcagaga agcttggcca tggggtcaac aacgctgctg gacaggccgg 450
gaaggaagca gacaaagcgg tccaagggtt ccacactggg gtccaccagg 500
ctgggaagga agcagagaaa cttggccaag gggtcaacca tgctgctgac 550
```

caggctggaa aggaagtgga gaagcttggc caaggtgccc accatgctgc 600

tggccaggcc gggaaggagc tgcagaatgc tcataatggg gtcaaccaag 650 ccagcaagga ggccaaccag ctgctgaatg gcaaccatca aagcggatct 700 tccagccatc aaggagggc cacaaccacg ccgttagcct ctggggcctc 750 agtcaacacg cctttcatca accttcccgc cctgtggagg agcgtcgcca 800 acatcatgcc ctaaactggc atccggcctt gctggaggaa taatgtcgcc 850 gttgtcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900 tttctgaaat ccctgaaggg ggttgtactg ggatttgtga ataaacttga 950 tacacca 957

<210> 248 <211> 247 <212> PRT <213> Homo sapiens

<400> 248

Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu 1 5 10 15

Leu Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu 20 25 30

Lys Val Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg 35 40 45

Glu Val Gly Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His $50 \,\,$

Gly Ser His Thr Gly Lys Glu Leu Asp Lys Gly Val Gln Gly Leu 80 85 90

Asn His Gly Met Asp Lys Val Ala His Glu Ile Asn His Gly Ile 95 100 105

Gly Gln Ala Gly Lys Glu Ala Glu Lys Leu Gly His Gly Val Asn 110 115 120

Asn Ala Ala Gly Gln Ala Gly Lys Glu Ala Asp Lys Ala Val Gln 125 130 135

Gly Phe His Thr Gly Val His Gln Ala Gly Lys Glu Ala Glu Lys 140 145 150

Leu Gly Gln Gly Val Asn His Ala Ala Asp Gln Ala Gly Lys Glu 155 160 165

Val Glu Lys Leu Gly Gln Gly Ala His His Ala Ala Gly Gln Ala 170 175 180

```
Gly Lys Glu Leu Gln Asn Ala His Asn Gly Val Asn Gln Ala Ser
 Lys Glu Ala Asn Gln Leu Leu Asn Gly Asn His Gln Ser Gly Ser
                                      205
 Ser Ser His Gln Gly Gly Ala Thr Thr Pro Leu Ala Ser Gly
                  215
 Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg
                                                           240
 Ser Val Ala Asn Ile Met Pro
                 245
<210> 249
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 249
 caatatgcat cttgcacgtc tgg 23
<210> 250
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 250
 aagcttctct gcttcctttc ctgc 24
<210> 251
<211> 43
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-43
<223> Synthetic construct.
tgaccccatt gagaaggtca ttgaagggat caaccgaggg ctg 43
<210> 252
<211> 3781
<212> DNA
```

<213> Homo sapiens

<400> 252 ctccgggtcc ccaggggctg cgccgggccg gcctggcaag ggggacgagt 50 cagtggacac tccaggaaga gcggccccgc ggggggcgat gaccgtgcgc 100 tgaccctgac tcactccagg tccggaggcg ggggcccccg gggcgactcg 150 ggggcggacc gcggggcgga gctgccgcc gtgagtccgg ccgagccacc 200 tgagcccgag ccgcgggaca ccgtcgctcc tgctctccga atgctgcgca 250 ccgcgatggg cctgaggagc tggctcgccg ccccatgggg cgcgctgccg 300 cctcggccac cgctgctgct gctcctgctg ctgctgctcc tgctgcagcc 350 geogeotoog acctgggege teageocoog gateageotg cetetggget 400 ctgaagagcg gccattcctc agattcgaag ctgaacacat ctccaactac 450 acagecette tgetgageag ggatggeagg accetgtacg tgggtgeteg 500 agaggeeete tttgeactea gtageaacet cagetteetg ceaggegggg 550 agtaccagga gctgctttgg ggtgcagacg cagagaagaa acagcagtgc 600 agcttcaagg gcaaggaccc acagcgcgac tgtcaaaact acatcaagat 650 cctcctgccg ctcagcggca gtcacctgtt cacctgtggc acagcagcct 700 tcagccccat gtgtacctac atcaacatgg agaacttcac cctggcaagg 750 gacgagaagg ggaatgtcct cctggaagat ggcaagggcc gttgtccctt 800 cgacccgaat ttcaagtcca ctgccctggt ggttgatggc gagctctaca 850 ctggaacagt cagcagcttc caagggaatg acccggccat ctcgcggagc 900 caaageette geeccaccaa gaccgagage teectcaact ggetgeaaga 950 cccagctttt gtggcctcag cctacattcc tgagagcctg ggcagcttgc 1000 aaggcgatga tgacaagatc tactttttct tcagcgagac tggccaggaa 1050 tttgagttct ttgagaacac cattgtgtcc cgcattgccc gcatctgcaa 1100 gggcgatgag ggtggagagc gggtgctaca gcagcgctgg acctccttcc 1150 tcaaggccca gctgctgtgc tcacggcccg acgatggctt ccccttcaac 1200 gtgctgcagg atgtcttcac gctgagcccc agcccccagg actggcgtga 1250 caccetttte tatggggtet teaetteeca gtggcacagg ggaactacag 1300 aaggetetge egtetgtgte tteacaatga aggatgtgea gagagtette 1350 agcggcctct acaaggaggt gaaccgtgag acacagcagt ggtacaccgt 1400

gacccacccg gtgcccacac cccggcctgg agcgtgcatc accaacagtg 1450

aacttcctca aggaccactt cctgatggac gggcaggtcc gaagccgcat 1550 gctgctgctg cagccccagg ctcgctacca gcgcgtggct gtacaccgcg 1600 tecetggeet geaceaeae taegatgtee tetteetggg caetggtgae 1650 ggccggctcc acaaggcagt gagcgtgggc ccccgggtgc acatcattga 1700 ggagctgcag atcttctcat cgggacagcc cgtgcagaat ctgctcctgg 1750 acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtccag 1800 gtgcccatgg ccaactgcag cctgtaccgg agctgtgggg actgcctcct 1850 egecegggae ceetactgtg ettggagegg etecagetge aageaegtea 1900 gcctctacca gcctcagctg gccaccaggc cgtggatcca ggacatcgag 1950 ggagccagcg ccaaggacct ttgcagcgcg tcttcggttg tgtccccgtc 2000 ttttgtacca acaggggaga agccatgtga gcaagtccag ttccagccca 2050 acacagtgaa cactttggcc tgcccgctcc tctccaacct ggcgacccga 2100 ctctggctac gcaacggggc ccccgtcaat gcctcggcct cctgccacgt 2150 gctacccact ggggacctgc tgctggtggg cacccaacag ctgggggagt 2200 tecagtgetg gteactagag gagggettee ageagetggt ageeagetae 2250 tgcccagagg tggtggagga cggggtggca gaccaaacag atgagggtgg 2300 cagtgtaccc gtcattatca gcacatcgcg tgtgagtgca ccagctggtg 2350 gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2400 atgtgcacgc tctttgtgct ggccgtgctg ctcccagttt tattcttgct 2450 ctaccggcac cggaacagca tgaaagtctt cctgaagcag ggggaatgtg 2500 ccagcgtgca ccccaagacc tgccctgtgg tgctgccccc tgagacccgc 2550 ccactcaacg gcctagggcc ccctagcacc ccgctcgatc accgagggta 2600 ccagtccctg tcagacagcc ccccgggggc ccgagtcttc actgagtcag 2650 agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2700 tgcccccggc cccgggtccg ccttggctcg gagatccgtg actctgtggt 2750

gtgagagctg acttccagag gacgctgccc tggcttcagg ggctgtgaat 2800

gctcggagag ggtcaactgg acctcccctc cgctctgctc ttcgtggaac 2850

acgaccgtgg tgcccggccc ttgggagcct tggagccagc tggcctgctg 2900

cccgggaaag gaagatcaac tcatccctgc agctcccaga ccgcgtgctg 1500

ctctccagtc aagtagcgaa gctcctacca cccagacacc caaacagccg 2950 tggccccaga ggtcctggcc aaatatgggg gcctgcctag gttggtggaa 3000 cagtgctcct tatgtaaact gagccctttg tttaaaaaac aattccaaat 3050 gtgaaactag aatgagaggg aagagatagc atggcatgca gcacacacgg 3100 ctgctccagt tcatggcctc ccaggggtgc tggggatgca tccaaagtgg 3150 ttgtctgaga cagagttgga aaccctcacc aactggcctc ttcaccttcc 3200 acattatece getgecaceg getgecetgt etcaetgeag atteaggace 3250 agettggget gegtgegtte tgeettgeea gteageegag gatgtagttg 3300 ttgctgccgt cgtcccacca cctcagggac cagagggcta ggttggcact 3350 gcggccctca ccaggtcctg ggctcggacc caactcctgg acctttccag 3400 cctgtatcag gctgtggcca cacgagagga cagcgcgagc tcaggagaga 3450 tttcgtgaca atgtacgcct ttccctcaga attcagggaa gagactgtcg 3500 cetgeettee teegttgttg egtgagaace egtgtgeece tteecaccat 3550 atccaccete getecatett tgaactcaaa caegaggaac taactgcace 3600 ctggtcctct ccccagtccc cagttcaccc tccatccctc accttcctcc 3650 actctaaggg atatcaacac tgcccagcac aggggccctg aatttatgtg 3700 gtttttatac attttttaat aagatgcact ttatgtcatt ttttaataaa 3750 gtctgaagaa ttactgttta aaaaaaaaaa a 3781 <210> 253 <211> 837 <212> PRT <213> Homo sapiens <400> 253 Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro Trp Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu 25 Leu Leu Leu Leu Gln Pro Pro Pro Thr Trp Ala Leu Ser 45 Pro Arg Ile Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu

Arg Phe Glu Ala Glu His Ile Ser Asn Tyr Thr Ala Leu Leu

Ser Arg Asp Gly Arg Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu

70

80 85 90

Phe Ala Leu Ser Ser Asn Leu Ser Phe Leu Pro Gly Gly Glu Tyr . 100 Gln Glu Leu Leu Trp Gly Ala Asp Ala Glu Lys Lys Gln Gln Cys Ser Phe Lys Gly Lys Asp Pro Gln Arg Asp Cys Gln Asn Tyr Ile Lys Ile Leu Leu Pro Leu Ser Gly Ser His Leu Phe Thr Cys Gly Thr Ala Ala Phe Ser Pro Met Cys Thr Tyr Ile Asn Met Glu Asn Phe Thr Leu Ala Arg Asp Glu Lys Gly Asn Val Leu Leu Glu Asp Gly Lys Gly Arg Cys Pro Phe Asp Pro Asn Phe Lys Ser Thr Ala 185 190 Leu Val Val Asp Gly Glu Leu Tyr Thr Gly Thr Val Ser Ser Phe Gln Gly Asn Asp Pro Ala Ile Ser Arg Ser Gln Ser Leu Arg Pro 215 220 225 Thr Lys Thr Glu Ser Ser Leu Asn Trp Leu Gln Asp Pro Ala Phe Val Ala Ser Ala Tyr Ile Pro Glu Ser Leu Gly Ser Leu Gln Gly Asp Asp Asp Lys Ile Tyr Phe Phe Ser Glu Thr Gly Gln Glu 265 Phe Glu Phe Phe Glu Asn Thr Ile Val Ser Arg Ile Ala Arg Ile 275 280 Cys Lys Gly Asp Glu Gly Gly Glu Arg Val Leu Gln Gln Arg Trp Thr Ser Phe Leu Lys Ala Gln Leu Leu Cys Ser Arg Pro Asp Asp Gly Phe Pro Phe Asn Val Leu Gln Asp Val Phe Thr Leu Ser Pro Ser Pro Gln Asp Trp Arg Asp Thr Leu Phe Tyr Gly Val Phe Thr 335 340 345 Ser Gln Trp His Arg Gly Thr Thr Glu Gly Ser Ala Val Cys Val Phe Thr Met Lys Asp Val Gln Arg Val Phe Ser Gly Leu Tyr Lys 365

Val Pro Thr Pro Arg Pro Gly Ala Cys Ile Thr Asn Ser Ala Arg Glu Arg Lys Ile Asn Ser Ser Leu Gln Leu Pro Asp Arg Val Leu Asn Phe Leu Lys Asp His Phe Leu Met Asp Gly Gln Val Arg Ser Arg Met Leu Leu Gln Pro Gln Ala Arg Tyr Gln Arg Val Ala Val His Arg Val Pro Gly Leu His His Thr Tyr Asp Val Leu Phe Leu Gly Thr Gly Asp Gly Arg Leu His Lys Ala Val Ser Val Gly 470 475 480 Pro Arg Val His Ile Ile Glu Glu Leu Gln Ile Phe Ser Ser Gly 485 490 Gln Pro Val Gln Asn Leu Leu Leu Asp Thr His Arg Gly Leu Leu 500 505 Tyr Ala Ala Ser His Ser Gly Val Val Gln Val Pro Met Ala Asn Cys Ser Leu Tyr Arg Ser Cys Gly Asp Cys Leu Leu Ala Arg Asp 530 535 Pro Tyr Cys Ala Trp Ser Gly Ser Ser Cys Lys His Val Ser Leu Tyr Gln Pro Gln Leu Ala Thr Arg Pro Trp Ile Gln Asp Ile Glu 560 Gly Ala Ser Ala Lys Asp Leu Cys Ser Ala Ser Ser Val Val Ser 580 Pro Ser Phe Val Pro Thr Gly Glu Lys Pro Cys Glu Gln Val Gln 590 600 Phe Gln Pro Asn Thr Val Asn Thr Leu Ala Cys Pro Leu Leu Ser Asn Leu Ala Thr Arg Leu Trp Leu Arg Asn Gly Ala Pro Val Asn 630 620 625 Ala Ser Ala Ser Cys His Val Leu Pro Thr Gly Asp Leu Leu Leu 640

Val Gly Thr Gln Gln Leu Gly Glu Phe Gln Cys Trp Ser Leu Glu

Glu Gly Phe Gln Gln Leu Val Ala Ser Tyr Cys Pro Glu Val Val

650

Glu Val Asn Arg Glu Thr Gln Gln Trp Tyr Thr Val Thr His Pro

660

665 670 675

Glu Asp Gly Val Ala Asp Gln Thr Asp Glu Gly Gly Ser Val Pro 680 685 690

Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly Lys 695 700 705

Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val $710 \ \ 715 \ \ 720$

Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe 725 730 735

Leu Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln 740 745 750

Gly Glu Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu 755 760 765

Pro Pro Glu Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr 770 775 780

Pro Leu Asp His Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro 785 790 795

Gly Ala Arg Val Phe Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile $800 \\ 805 \\ 810$

Gln Asp Ser Phe Val Glu Val Ser Pro Val Cys Pro Arg Pro Arg 815 820 825

Val Arg Leu Gly Ser Glu Ile Arg Asp Ser Val Val 830 835

<210> 254

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 254

agcccgtgca gaatctgctc ctgg 24

<210> 255

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

```
<400> 255
 tgaagccagg gcagcgtcct ctgg 24
<210> 256
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 256
 gtacaggctg cagttggc 18
<210> 257
<211> 41
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-41
<223> Synthetic construct.
<400> 257
 agaagccatg tgagcaagtc cagttccagc ccaacacagt g 41
<210> 258
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
gagetgeaga tetteteate gggacagece gtgcagaate tgete 45
<210> 259
<211> 4563
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 3635
<223> unknown base
<400> 259
ctaagccgga ggatgtgcag ctgcggcggc ggcgccggct acgaagagga 50
cggggacagg cgccgtgcga accgagccca gccagccgga ggacgcgggc 100
```

agggcgggac gggagcccgg actcgtctgc cgccgccgtc gtcgccgtcg 150

tgccggcccc gcgtccccgc gcgcgagcgg gaggagccgc cgccacctcg 200 cgcccgagcc gccgctagcg cgcgccgggc atggtcccct cttaaaggcg 250 caggeegegg eggegggge gggtgtgegg aacaaagege eggegegggg 300 cctgcgggcg gctcgggggc cgcgatgggc gcggcgggcc cgcggcggcg 350 geggegetge eegggeeggg cetegeggeg etaggeeggg etggeeteeg 400 tgggcggggg cagcgggctg agggcgcgcg gagcctgcgg cggcggcggc 450 ggcggcggcg gcggcccggc gggcggagcg gcgcgggcat ggccgcgcgc 500 ggccggcgcg cctggctcag cgtgctgctc gggctcgtcc tgggcttcgt 550 getggeeteg eggetegtee tgeeceggge tteegagetg aagegagegg 600 gcccacggcg ccgcgccagc cccgagggct gccggtccgg gcaggcggcg 650 gcttcccagg ccggcgggc gcgcggcgat gcgcgcgggg cgcagctctg 700 gccgcccggc tcggacccag atggcggccc gcgcgacagg aactttctct 750 tegtgggagt catgacegee cagaaatace tgeagaeteg ggeegtggee 800 gcctacagaa catggtccaa gacaattcct gggaaagttc agttcttctc 850 aagtgagggt tetgaeacat etgtaeeaat teeagtagtg eeactaeggg 900 gtgtggacga ctcctacccg ccccagaaga agtccttcat gatgctcaag 950 tacatgcacg accactactt ggacaagtat gaatggttta tgagagcaga 1000 tgatgacgtg tacatcaaag gagaccgtct ggagaacttc ctgaggagtt 1050 tgaacagcag cgagcccctc tttcttgggc agacaggcct gggcaccacg 1100 gaagaaatgg gaaaactggc cctggagcct ggtgagaact tctgcatggg 1150 ggggcctggc gtgatcatga gccgggaggt gcttcggaga atggtgccgc 1200 acattggcaa gtgtctccgg gagatgtaca ccacccatga ggacgtggag 1250 gtgggaaggt gtgtccggag gtttgcaggg gtgcagtgtg tctggtctta 1300 tgagatgcgg cagctttttt atgagaatta cgagcagaac aaaaaggggt 1350 acattagaga tetecataae agtaaaatte aceaagetat cacattacae 1400 cccaacaaaa acccacccta ccagtacagg ctccacagct acatgctgag 1450 ccgcaagata tccgagctcc gccatcgcac aatacagctg caccgcgaaa 1500 ttgtcctgat gagcaaatac agcaacacag aaattcataa agaggacctc 1550 cagctgggaa teceteete etteatgagg ttteageece gecagegaga 1600

ggagattctg gaatgggagt ttctgactgg aaaatacttg tattcggcag 1650 ttgacggcca gccccctcga agaggaatgg actccgccca gagggaagcc 1700 ttggacgaca ttgtcatgca ggtcatggag atgatcaatg ccaacgccaa 1750 gaccagaggg cgcatcattg acttcaaaga gatccagtac ggctaccgcc 1800 gggtgaaccc catgtatggg gctgagtaca tcctggacct gctgcttctg 1850 tacaaaaagc acaaagggaa gaaaatgacg gtccctgtga ggaggcacgc 1900 gtatttacag cagactttca gcaaaatcca gtttgtggag catgaggagc 1950 tggatgcaca agagttggcc aagagaatca atcaggaatc tggatccttg 2000 teetttetet caaacteeet gaagaagete gteeeettte ageteeetgg 2050 gtcgaagagt gagcacaaag aacccaaaga taaaaagata aacatactga 2100 ttcctttgtc tgggcgtttc gacatgtttg tgagatttat gggaaacttt 2150 gagaagacgt gtcttatccc caatcagaac gtcaagctcg tggttctgct 2200 tttcaattct gactccaacc ctgacaaggc caaacaagtt gaactgatga 2250 gagattaccg cattaagtac cctaaagccg acatgcagat tttgcctgtg 2300 tctggagagt tttcaagagc cctggccctg gaagtaggat cctcccagtt 2350 taacaatgaa tetttgetet tettetgega egtegaeete gtgtttaeta 2400 cagaattcct tcagcgatgt cgagcaaata cagttctggg ccaacaaata 2450 tattttccaa tcatcttcag ccagtatgac ccaaagattg tttatagtgg 2500 gaaagttccc agtgacaacc attttgcctt tactcagaaa actggcttct 2550 ggagaaacta tgggtttggc atcacgtgta tttataaggg agatcttgtc 2600 cgagtgggtg gctttgatgt ttccatccaa ggctgggggc tggaggatgt 2650 ggaccttttc aacaaggttg tccaggcagg tttgaagacg tttaggagcc 2700 aggaagtagg agtagtccac gtccaccatc ctgtcttttg tgatcccaat 2750 cttgacccca aacagtacaa aatgtgcttg gggtccaaag catcgaccta 2800 tgggtccacc cagcagctgg ctgagatgtg gctggaaaaa aatgatccaa 2850 gttacagtaa aagcagcaat aataatggct cagtgaggac agcctaatgt 2900 ccagctttgc tggaaaagac gtttttaatt atctaatita tttttcaaaa 2950 attttttgta tgatcagttt ttgaagtccg tatacaagga tatattttac 3000 aagtggtttt cttacatagg actcctttaa gattgagctt tctgaacaag 3050

aaggtgatca gtgtttgcct ttqaacacat cttcttgctg aacattatgt 3100 agcagacctg cttaactttg acttqaaatg tacctgatga acaaaacttt 3150 tttaaaaaaa tgttttcttt tgaqaccctt tgctccagtc ctatggcaga 3200 aaacgtgaac attcctgcaa agtattattg taacaaaaca ctgtaactct 3250 ggtaaatgtt ctgttgtgat tgttaacatt ccacagattc taccttttgt 3300 gttttgtttt ttttttttac aattgtttta aagccatttc atgttccagt 3350 tgtaagataa ggaaatgtga taatagctgt ttcatcattg tcttcaggag 3400 agetttecag agttgateat tteeteteat ggtaetetge teageatgge 3450 cacgtaggtt ttttgtttgt tttgttttgt tctttttttg agacggagtc 3500 tcactctgtt acccaggctg gaatgcagtg gcgcaatctt ggctcacttt 3550 aacctccact teectggtte aagcaattee eetgeetttg ceteeegagt 3600 agctgggatt acaggcacac accaccacgc ccagntagtt tttttgtatt 3650 tttagtagag acggggtttc accatgcaag cccagctggc cacgtaggtt 3700 ttaaagcaag gggcgtgaag aaggcacagt gaggtatgtg gctgttctcg 3750 tggtagttca ttcgqcctaa atagacctgg cattaaattt caagaaggat 3800 ttggcatttt ctcttcttga cccttctctt taaagggtaa aatattaatg 3850 tttagaatga caaagatgaa ttattacaat aaatctgatg tacacagact 3900 gaaacataca cacatacacc ctaatcaaaa cgttggggaa aaatgtattt 3950 ggttttgttc ctttcatcct gtctgtgtta tgtgggtgga gatggttttc 4000 attettteat tactgttttg ttttateett tgtatetgaa atacetttaa 4050 tttatttaat atctgttgtt cagagetetg ceatttettg agtacetgtt 4100 agttagtatt atttatgtgt atcgggagtg tgtttagtct gttttatttg 4150 cagtaaaccg atctccaaag atttcctttt ggaaacgctt tttcccctcc 4200 ttaattttta tatteettae tgttttaeta aatattaagt gttetttgae 4250 aattttggtg ctcatgtgtt ttggggacaa aagtgaaatg aatctgtcat 4300 tataccagaa agttaaattc tcagatcaaa tgtgccttaa taaatttgtt 4350 ttcatttaga tttcaaacag tgatagactt gccattttaa tacacgtcat 4400 tggagggctg cgtatttgta aatagcctga tgctcatttg gaaaaataaa 4450 ccaqtqaaca atatttttct attqtacttt tcqaaccatt ttqtctcatt 4500

attcctgttt tagctgaaga attgtattac atttggagag taaaaaactt 4550 aaacacgaaa aaa 4563

<210> 260

<211> 802

<212> PRT

<213> Homo sapiens

<400> 260

Met Ala Ala Arg Gly Arg Arg Ala Trp Leu Ser Val Leu Leu Gly
1 10 15

Leu Val Leu Gly Phe Val Leu Ala Ser Arg Leu Val Leu Pro Arg
20 25 30

Ala Ser Glu Leu Lys Arg Ala Gly Pro Arg Arg Arg Ala Ser Pro 35 40 $\cdot 45$

Glu Gly Cys Arg Ser Gly Gln Ala Ala Ala Ser Gln Ala Gly Gly
50 55 60

Ala Arg Gly Asp Ala Arg Gly Ala Gln Leu Trp Pro Pro Gly Ser 65 70 75

Asp Pro Asp Gly Gly Pro Arg Asp Arg Asn Phe Leu Phe Val Gly 80 85 90

Val Met Thr Ala Gln Lys Tyr Leu Gln Thr Arg Ala Val Ala Ala 95 100 105

Tyr Arg Thr Trp Ser Lys Thr Ile Pro Gly Lys Val Gln Phe Phe 110 115 120

Ser Ser Glu Gly Ser Asp Thr Ser Val Pro Ile Pro Val Val Pro 125 130 135

Leu Arg Gly Val Asp Asp Ser Tyr Pro Pro Gln Lys Lys Ser Phe \$140\$ \$145\$ \$150

Met Met Leu Lys Tyr Met His Asp His Tyr Leu Asp Lys Tyr Glu 155 160 165

Trp Phe Met Arg Ala Asp Asp Asp Val Tyr Ile Lys Gly Asp Arg 170 175 180

Leu Glu Asn Phe Leu Arg Ser Leu Asn Ser Ser Glu Pro Leu Phe
185 190 195

Leu Gly Gln Thr Gly Leu Gly Thr Thr Glu Glu Met Gly Lys Leu
200 205 210

Ala Leu Glu Pro Gly Glu Asn Phe Cys Met Gly Gly Pro Gly Val 215 220 225

Ile Met Ser Arg Glu Val Leu Arg Arg Met Val Pro His Ile Gly 230 235 240

Lys Cys Leu Arg Glu Met Tyr Thr His Glu Asp Val Glu Val 245 250 Gly Arg Cys Val Arg Arg Phe Ala Gly Val Gln Cys Val Trp Ser Tyr Glu Met Arg Gln Leu Phe Tyr Glu Asn Tyr Glu Gln Asn Lys 275 280 285 Lys Gly Tyr Ile Arg Asp Leu His Asn Ser Lys Ile His Gln Ala Ile Thr Leu His Pro Asn Lys Asn Pro Pro Tyr Gln Tyr Arg Leu 310 315 His Ser Tyr Met Leu Ser Arg Lys Ile Ser Glu Leu Arg His Arg Thr Ile Gln Leu His Arg Glu Ile Val Leu Met Ser Lys Tyr Ser 335 345 Asn Thr Glu Ile His Lys Glu Asp Leu Gln Leu Gly Ile Pro Pro Ser Phe Met Arg Phe Gln Pro Arg Gln Arg Glu Glu Ile Leu Glu 365 Trp Glu Phe Leu Thr Gly Lys Tyr Leu Tyr Ser Ala Val Asp Gly Gln Pro Pro Arg Arg Gly Met Asp Ser Ala Gln Arg Glu Ala Leu Asp Asp Ile Val Met Gln Val Met Glu Met Ile Asn Ala Asn Ala Lys Thr Arg Gly Arg Ile Ile Asp Phe Lys Glu Ile Gln Tyr Gly 425 Tyr Arg Arg Val Asn Pro Met Tyr Gly Ala Glu Tyr Ile Leu Asp 445 Leu Leu Leu Tyr Lys Lys His Lys Gly Lys Lys Met Thr Val 465 Pro Val Arg Arg His Ala Tyr Leu Gln Gln Thr Phe Ser Lys Ile Gln Phe Val Glu His Glu Glu Leu Asp Ala Gln Glu Leu Ala Lys Arg Ile Asn Gln Glu Ser Gly Ser Leu Ser Phe Leu Ser Asn Ser Leu Lys Lys Leu Val Pro Phe Gln Leu Pro Gly Ser Lys Ser Glu 515 His Lys Glu Pro Lys Asp Lys Ile Asn Ile Leu Ile Pro Leu

530 535 540

Ser Gly Arg Phe Asp Met Phe Val Arg Phe Met Gly Asn Phe Glu 545 550 555

Lys Thr Cys Leu Ile Pro Asn Gln Asn Val Lys Leu Val Val Leu 560 565 570

Leu Phe Asn Ser Asp Ser Asn Pro Asp Lys Ala Lys Gln Val Glu 575 580 585

Leu Met Arg Asp Tyr Arg Ile Lys Tyr Pro Lys Ala Asp Met Gln
590 595

Ile Leu Pro Val Ser Gly Glu Phe Ser Arg Ala Leu Ala Leu Glu 605 610

Val Gly Ser Ser Gln Phe Asn Asn Glu Ser Leu Leu Phe Phe Cys 620 625 630

Asp Val Asp Leu Val Phe Thr Thr Glu Phe Leu Gln Arg Cys Arg 635 640 645

Ala Asn Thr Val Leu Gly Gln Gln Ile Tyr Phe Pro Ile Ile Phe 650 655 660

Ser Gln Tyr Asp Pro Lys Ile Val Tyr Ser Gly Lys Val Pro Ser 665 670 675

Asp Asn His Phe Ala Phe Thr Gln Lys Thr Gly Phe Trp Arg Asn 680 685 690

Tyr Gly Phe Gly Ile Thr Cys Ile Tyr Lys Gly Asp Leu Val Arg
695 700 705

Val Gly Gly Phe Asp Val Ser Ile Gln Gly Trp Gly Leu Glu Asp $710 \hspace{1cm} 715 \hspace{1cm} 720 \hspace{1cm}$

Val Asp Leu Phe Asn Lys Val Val Gln Ala Gly Leu Lys Thr Phe $\overline{\mbox{725}}$ $\overline{\mbox{730}}$ $\overline{\mbox{735}}$

Arg Ser Gln Glu Val Gly Val Val His Val His His Pro Val Phe
740 745 750

Cys Asp Pro Asn Leu Asp Pro Lys Gln Tyr Lys Met Cys Leu Gly
755 760 765

Ser Lys Ala Ser Thr Tyr Gly Ser Thr Gln Gln Leu Ala Glu Met $770 \hspace{1.5cm} 775 \hspace{1.5cm} 780$

Trp Leu Glu Lys Asn Asp Pro Ser Tyr Ser Lys Ser Ser Asn Asn 785 790 795

Asn Gly Ser Val Arg Thr Ala 800

<210> 261 <211> 24

```
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 261
 gtgccactac ggggtgtgga cgac 24
<210> 262
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 262
 tcccatttct tccgtggtgc ccag 24
<210> 263
<211> 46
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.
<400> 263
ccagaagaag tccttcatga tgctcaagta catgcacgac cactac 46
<210> 264
<211> 1419
<212> DNA
<213> Homo sapiens
<400> 264
 ggacaaccgt tgctgggtgt cccagggcct gaggcaggac ggtactccgc 50
 tgacaccttc cctttcggcc ttgaggttcc cagcctggtg gccccaggac 100
 gttccggtcg catggcagag tgctacggac gacgcctatg aagcccttag 150
 tccttctagt tgcgcttttg ctatggcctt cgtctgtgcc ggcttatccg 200
agcataactg tgacacctga tgaagagcaa aacttgaatc attatataca 250
agttttagag aacctagtac gaagtgttcc ctctggggag ccaggtcgtg 300
```

agaaaaaatc taactctcca aaacatgttt attctatagc atcaaaggga 350

tcaaaattta aggagctagt tacacatgga gacgcttcaa ctgagaatga 400

```
tgttttaacc aatcctatca gtgaagaaac tacaactttc cctacaggag 450
gcttcacacc ggaaatagga aagaaaaaac acacggaaag taccccattc 500
tggtcgatca aaccaaacaa tgtttccatt gttttgcatg cagaggaacc 550
ttatattgaa aatgaagagc cagagccaga gccggagcca gctgcaaaac 600
aaactgaggc accaagaatg ttgccagttg ttactgaatc atctacaagt 650
ccatatgtta cctcatacaa gtcacctqtc accactttag ataaqaqcac 700
tggcattgag atctctacag aatcagaaga tgttcctcag ctctcaggtg 750
aaactgcgat agaaaaaccc gaagagtttg gaaagcaccc agagagttgg 800
aataatgatg acattttgaa aaaaatttta gatattaatt cacaagtgca 850
acaggcactt cttagtgaca ccagcaaccc agcatataga gaagatattg 900
aagcctctaa agatcaccta aaacgaagcc ttgctctagc agcagcagca 950
gaacataaat taaaaacaat gtataagtcc cagttattgc cagtaggacg 1000
aacaagtaat aaaattgatg acatcgaaac tgttattaac atgctgtgta 1050
attctagatc taaactctat gaatatttag atattaaatg tgttccacca 1100
gagatgagag aaaaagctgc tacagtattc aatacattaa aaaatatgtg 1150
tagatcaagg agagtcacag ccttattaaa agtttattaa acaataatat 1200
aaaaatttta aacctacttg atattccata acaaagctga tttaagcaaa 1250
ctgcattttt tcacaggaga aataatcata ttcgtaattt caaaagttgt 1300
ataaaaatat tttctattgt agttcaaatg tgccaacatc tttatgtgtc 1350
atgtgttatg aacaattttc atatgcacta aaaacctaat ttaaaataaa 1400
attttggttc aggaaaaaa 1419
```

<210> 265

<211> 350

<212> PRT

<213> Homo sapiens

<400> 265

Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Leu Trp Pro Ser 1 5 10 15

Ser Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu 20 25 30

Gln Asn Leu Asn His Tyr Ile Gln Val Leu Glu Asn Leu Val Arg 35 40 45

Ser Val Pro Ser Gly Glu Pro Gly Arg Glu Lys Lys Ser Asn Ser

50

Pro Lys His Val Tyr Ser Ile Ala Ser Lys Gly Ser Lys Phe Lys Glu Leu Val Thr His Gly Asp Ala Ser Thr Glu Asn Asp Val Leu Thr Asn Pro Ile Ser Glu Glu Thr Thr Thr Phe Pro Thr Gly Gly 100 105 Phe Thr Pro Glu Ile Gly Lys Lys His Thr Glu Ser Thr Pro 110 115 Phe Trp Ser Ile Lys Pro Asn Asn Val Ser Ile Val Leu His Ala 125 130 135 Glu Glu Pro Tyr Ile Glu Asn Glu Glu Pro Glu Pro Glu Pro Glu 145 Pro Ala Ala Lys Gln Thr Glu Ala Pro Arg Met Leu Pro Val Val 160 Thr Glu Ser Ser Thr Ser Pro Tyr Val Thr Ser Tyr Lys Ser Pro Val Thr Thr Leu Asp Lys Ser Thr Gly Ile Glu Ile Ser Thr Glu Ser Glu Asp Val Pro Gln Leu Ser Gly Glu Thr Ala Ile Glu Lys 205 Pro Glu Glu Phe Gly Lys His Pro Glu Ser Trp Asn Asn Asp Ile Leu Lys Lys Ile Leu Asp Ile Asn Ser Gln Val Gln Gln Ala Leu Leu Ser Asp Thr Ser Asn Pro Ala Tyr Arg Glu Asp Ile Glu 245 Ala Ser Lys Asp His Leu Lys Arg Ser Leu Ala Leu Ala Ala Ala Ala Glu His Lys Leu Lys Thr Met Tyr Lys Ser Gln Leu Leu Pro 285 Val Gly Arg Thr Ser Asn Lys Ile Asp Asp Ile Glu Thr Val Ile 295 Asn Met Leu Cys Asn Ser Arg Ser Lys Leu Tyr Glu Tyr Leu Asp Ile Lys Cys Val Pro Pro Glu Met Arg Glu Lys Ala Ala Thr Val Phe Asn Thr Leu Lys Asn Met Cys Arg Ser Arg Arg Val Thr Ala 335 340

<211>, 2403 <212> DNA <213> Homo sapiens <400> 266

cggctcgagc ggctcgagtg aagagcctct ccacggctcc tgcgcctgag 50 acagetggce tgacetecaa ateatecate cacecetget gteatetgtt 100 ttcataqtqt qaqatcaacc cacaqqaata tccatqqctt ttqtqctcat 150 tttggttctc agtttctacg agctggtgtc aggacagtgg caagtcactg 200 gaccgggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250 tgctccctct ttcctgagac cagtgcagag gctatggaag tgcggttctt 300 caggaatcag ttccatgctg tggtccacct ctacagagat ggggaagact 350 gggaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtgaag 400 gactccattg caggggggcg tgtctctcta aggctaaaaa acatcactcc 450 ctcggacatc ggcctgtatg ggtgctggtt cagttcccag atttacgatg 500 aggaggccac ctgggagctg cgggtggcag cactgggctc acttcctctc 550 atttccatcg tgggatatgt tgacggaggt atccagttac tctgcctgtc 600 ctcaggctgg ttcccccagc ccacagccaa gtggaaaggt ccacaaggac 650 aggatttgtc ttcagactcc agagcaaatg cagatgggta cagcctgtat 700 gatgtggaga tetecattat agtecaggaa aatgetggga geatattgtg 750 ttccatccac cttgctgagc agagtcatga ggtggaatcc aaggtattga 800 taggagagac gtttttccag ccctcacctt ggcgcctggc ttctatttta 850 ctcgggttac tctgtggtgc cctgtgtggt gttgtcatgg ggatgataat 900 tgttttcttc aaatccaaag ggaaaatcca ggcggaactg gactggagaa 950 gaaagcacgg acaggcagaa ttgagagacg cccqqaaaca cgcagtggag 1000 gtgactctgg atccagagac ggctcacccg aagctctgcg tttctgatct 1050 gaaaactgta acccatagaa aagctcccca ggaggtgcct cactctgaga 1100 agagatttac aaggaagagt gtggtggctt ctcagggttt ccaagcaggg 1150 agacattact gggaggtgga cgtgggacaa aatqtagggt ggtatgtggg 1200 agtgtgtcgg gatgacgtag acagggggaa gaacaatgtg actttgtctc 1250 B1

```
ccaacaatgg gtattgggtc ctcagactga caacagaaca tttgtatttc 1300
 acattcaatc cccattttat cagcctcccc cccagcaccc ctcctacacq 1350
 agtaggggtc ttcctggact atgagggtgg gaccatctcc ttcttcaata 1400
 caaatgacca gtcccttatt tataccctgc tgacatgtca gtttgaaggc 1450
 ttgttgagac cctatatcca gcatgcgatg tatgacgagg aaaaggggac 1500
 teceatatte atatgtecag tgteetgggg atgagacaga gaagaeeetg 1550
 cttaaagggc cccacaccac agacccagac acagccaagg gagagtgctc 1600
 ccgacaggtg gccccagctt cctctccgga gcctgcgcac agagagtcac 1650
 geceeceact etectttagg gagetgaggt tettetgece tgagecetge 1700
 agcageggea gteacagett ecagatgagg ggggattgge etgaecetgt 1750
 gggagtcaga agccatggct gccctgaagt ggggacggaa tagactcaca 1800
 ttaggtttag tttgtgaaaa ctccatccag ctaagcgatc ttgaacaagt 1850
 cacaacetee caggeteete atttgetagt caeggacagt gatteetgee 1900
 tcacaggtga agattaaaga gacaacgaat gtgaatcatg cttgcaggtt 1950
 tgagggcaca gtgtttgcta atgatgtgtt tttatattat acattttccc 2000
 accataaact ctgtttgctt attccacatt aatttacttt tctctatacc 2050
 aaatcaccca tggaatagtt attgaacacc tgctttgtga ggctcaaaga 2100
 ataaagagga ggtaggattt ttcactgatt ctataagccc agcattacct 2150
gataccaaaa ccaggcaaag aaaacagaag aagaggaagg aaaactacag 2200
gtccatatcc ctcattaaca cagacacaaa aattctaaat aaaattttaa 2250
caaattaaac taaacaatat atttaaagat gatatataac tactcagtgt 2300
ggtttgtccc acaaatgcag agttggttta atatttaaat atcaaccagt 2350
aaa 2403
<210> 267
<211> 466
<212> PRT
<213> Homo sapiens
<400> 267
Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val
```

Ser Gly Gln Trp Gln Val Thr Gly Pro Gly Lys Phe Val Gln Ala

Leu Val Gly Glu Asp Ala Val Phe Ser Cys Ser Leu Phe Pro Glu 40 Thr Ser Ala Glu Ala Met Glu Val Arg Phe Phe Arg Asn Gln Phe His Ala Val Val His Leu Tyr Arg Asp Gly Glu Asp Trp Glu Ser Lys Gln Met Pro Gln Tyr Arg Gly Arg Thr Glu Phe Val Lys Asp Ser Ile Ala Gly Gly Arg Val Ser Leu Arg Leu Lys Asn Ile Thr Pro Ser Asp Ile Gly Leu Tyr Gly Cys Trp Phe Ser Ser Gln Ile Tyr Asp Glu Glu Ala Thr Trp Glu Leu Arg Val Ala Ala Leu Gly 125 Ser Leu Pro Leu Ile Ser Ile Val Gly Tyr Val Asp Gly Gly Ile Gln Leu Cys Leu Ser Ser Gly Trp Phe Pro Gln Pro Thr Ala 155 Lys Trp Lys Gly Pro Gln Gly Gln Asp Leu Ser Ser Asp Ser Arg Ala Asn Ala Asp Gly Tyr Ser Leu Tyr Asp Val Glu Ile Ser Ile Ile Val Gln Glu Asn Ala Gly Ser Ile Leu Cys Ser Ile His Leu 200 205 Ala Glu Gln Ser His Glu Val Glu Ser Lys Val Leu Ile Gly Glu 215 Thr Phe Phe Gln Pro Ser Pro Trp Arg Leu Ala Ser Ile Leu Leu Gly Leu Leu Cys Gly Ala Leu Cys Gly Val Val Met Gly Met Ile Ile Val Phe Phe Lys Ser Lys Gly Lys Ile Gln Ala Glu Leu Asp Trp Arg Arg Lys His Gly Gln Ala Glu Leu Arg Asp Ala Arg Lys His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro 310

```
131
```

```
Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val
                 320
                                      325
 Val Ala Ser Gln Gly Phe Gln Ala Gly Arg His Tyr Trp Glu Val
 Asp Val Gly Gln Asn Val Gly Trp Tyr Val Gly Val Cys Arg Asp
                 350
                                      355
 Asp Val Asp Arg Gly Lys Asn Asn Val Thr Leu Ser Pro Asn Asn
                 365
 Gly Tyr Trp Val Leu Arg Leu Thr Thr Glu His Leu Tyr Phe Thr
                                      385
 Phe Asn Pro His Phe Ile Ser Leu Pro Pro Ser Thr Pro Pro Thr
                                      400
Arg Val Gly Val Phe Leu Asp Tyr Glu Gly Gly Thr Ile Ser Phe
                 410
                                      415
 Phe Asn Thr Asn Asp Gln Ser Leu Ile Tyr Thr Leu Leu Thr Cys
 Gln Phe Glu Gly Leu Leu Arg Pro Tyr Ile Gln His Ala Met Tyr
Asp Glu Glu Lys Gly Thr Pro Ile Phe Ile Cys Pro Val Ser Trp
                                     460
Gly
<210> 268
```

<210> 268 <211> 2103 <212> DNA <213> Homo sapiens

<400> 268

tggtgaggc taggaaaaga gtttgttgg aaccctgggt tatcggcctc 100 gtcatcttca tatccctgat tgtcctggca gtgtgcattg gactcactgt 150 tcattatgtg agatataatc aaaagaagac ctacaattac tatagcacat 200 tgtcatttac aactgacaaa ctatatgctg agtttggcag agaggcttct 250 aacaattta cagaaatgag ccagagactt gaatcaatgg tgaaaaatgc 300 attttataaa tctccattaa gggaagaatt tgtcaagtct caggttatca 350 agttcagtca acagaagcat ggagtgttgg ctcatatgct gttgatttgt 400 agatttcact ctactgagga tcctgaaact gtagataaaa ttgttcaact 450 tgttttacat gaaaagctgc aagatgctgt aggaccccct aaagtagatc 500

BI

ctcactcagt taaaattaaa aaaatcaaca agacagaaac agacagctat 550 ctaaaccatt gctgcggaac acgaagaagt aaaactctag gtcagagtct 600 caggatcgtt ggtgggacag aagtagaaga gggtgaatgg ccctggcagg 650 ctagcctgca gtgggatggg agtcatcgct gtggagcaac cttaattaat 700 gccacatggc ttgtgagtgc tgctcactgt tttacaacat ataagaaccc 750 tgccagatgg actgcttcct ttggagtaac aataaaacct tcgaaaatga 800 aacggggtct ccggagaata attgtccatg aaaaatacaa acacccatca 850 catgactatg atattctct tgcagagctt tctagccctg ttccctacac 900 aaatgcagta catagagttt gtctccctga tgcatcctat gagtttcaac 950 caggtgatgt gatgtttgtg acaggatttg gagcactgaa aaatgatggt 1000 tacagtcaaa atcatcttcg acaagcacag gtgactctca tagacgctac 1050 aacttgcaat gaacctcaag cttacaatga cgccataact cctagaatgt 1100 tatgtgctgg ctccttagaa ggaaaaacag atgcatgcca gggtgactct 1150 ggaggaccac tggttagttc agatgctaga gatatctggt accttgctgg 1200 aatagtgagc tggggagatg aatgtgcgaa acccaacaag cctggtgttt 1250 atactagagt tacggccttg cgggactgga ttacttcaaa aactggtatc 1300 taagagacaa aagcctcatg gaacagataa cattttttt tgttttttgg 1350 gtgtggaggc catttttaga gatacagaat tggagaagac ttgcaaaaca 1400 gctagatttg actgatctca ataaactgtt tgcttgatgc atgtattttc 1450 ttcccagete tgttccgcac gtaagcatec tgcttctgcc agatcaacte 1500 tgtcatctgt gagcaatagt tgaaacttta tgtacataga gaaatagata 1550 atacaatatt acattacagc ctgtattcat ttgttctcta gaagttttgt 1600 cagaattttg acttgttgac ataaatttgt aatgcatata tacaatttga 1650 agcactcctt ttcttcagtt cctcagctcc tctcatttca gcaaatatcc 1700 attttcaagg tgcagaacaa ggagtgaaag aaaatataag aagaaaaaaa 1750 tcccctacat tttattggca cagaaaagta ttaggtgttt ttcttagtgg 1800 aatattagaa atgatcatat tcattatgaa aggtcaagca aagacagcag 1850 aataccaatc acttcatcat ttaggaagta tgggaactaa gttaaggaag 1900 tccagaaaga agccaagata tatccttatt ttcatttcca aacaactact 1950

atgataaatg tgaagaagat tctgtttttt tgtgacctat aataattata 2000 caaacttcat gcaatgtact tgttctaagc aaattaaagc aaatatttat 2050 ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaatcac 2100 cca 2103 <210> 269 <211> 423 <212> PRT <213> Homo sapiens <400> 269 Met Met Tyr Arg Pro Asp Val Val Arg-Ala Arg Lys Arg Val Cys Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr Asn Gln Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn Phe Thr Glu Met Ser Gln Arg Leu Glu Ser Met Val Lys Asn Ala Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gln Val Ile Lys Phe Ser Gln Gln Lys His Gly Val Leu Ala His Met Leu 110 Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp 130 125 Lys Ile Val Gln Leu Val Leu His Glu Lys Leu Gln Asp Ala Val Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile 155 Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr Arg Arg Ser Lys Thr Leu Gly Gln Ser Leu Arg Ile Val Gly Gly Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu Gln

220

Trp Asp Gly Ser His Arg Cys Gly Ala Thr Leu Ile Asn Ala Thr

215

Trp Leu Val Ser Ala Ala His Cys Phe Thr Thr Tyr Lys Asn Pro 230 235 Ala Arg Trp Thr Ala Ser Phe Gly Val Thr Ile Lys Pro Ser Lys 245 Met Lys Arg Gly Leu Arg Arg Ile Ile Val His Glu Lys Tyr Lys 260 265 270 His Pro Ser His Asp Tyr Asp Ile Ser Leu Ala Glu Leu Ser Ser 280 Pro Val Pro Tyr Thr Asn Ala Val His Arg Val Cys Leu Pro Asp 290 295 300 Ala Ser Tyr Glu Phe Gln Pro Gly Asp Val Met Phe Val Thr Gly 305 Phe Gly Ala Leu Lys Asn Asp Gly Tyr Ser Gln Asn His Leu Arg 325 320 330 Gln Ala Gln Val Thr Leu Ile Asp Ala Thr Thr Cys Asn Glu Pro 335 340 Gln Ala Tyr Asn Asp Ala Ile Thr Pro Arg Met Leu Cys Ala Gly 350 355 360 Ser Leu Glu Gly Lys Thr Asp Ala Cys Gln Gly Asp Ser Gly Gly 370 Pro Leu Val Ser Ser Asp Ala Arg Asp Ile Trp Tyr Leu Ala Gly 385 Ile Val Ser Trp Gly Asp Glu Cys Ala Lys Pro Asn Lys Pro Gly Val Tyr Thr Arg Val Thr Ala Leu Arg Asp Trp Ile Thr Ser Lys 410 415

Thr Gly Ile

<210> 270

<211> 1170 <212> DNA

<213> Homo sapiens

<400> 270

gtcgaaggtt ataaaagctt ccagccaaac ggcattgaag ttgaagatac 50 aacctgacag cacagcctga gatcttgggg atccctcagc ctaacaccca 100 cagacgtcag ctggtggatt cccgctgcat caaggcctac ccactgtctc 150 catgctgggc tetecetgcc ttetgtgget cetggeegtg acettettgg 200 ttcccagagc tcagcccttg gcccctcaag actttgaaga agaggaggca 250 Bl

gatgagactg agacggcgtg gccgcctttg ccggctgtcc cctgcgacta 300 cgaccactgc cgacacctgc aggtgccctg caaggagcta cagagggtcg 350 ggccggcggc ctgcctgtgc ccaggactct ccagccccgc ccagccgccc 400 gacccgccgc gcatgggaga agtgcgcatt gcggccgaag agggccgcgc 450 agtggtccac tggtgtgccc ccttctcccc ggtcctccac tactggctgc 500 tgctttggga cggcagcgag gctgcgcaga aggggccccc gctgaacgct 550 acggtccgca gagccgaact gaaggggctg aagccagggg gcatttatgt 600 cgtttgcgta gtggccgcta acgaggccgg ggcaagccgc gtgccccagg 650 ctggaggaga gggcctcgag ggggccgaca tccctgcctt cgggccttgc 700 agccgccttg cggtgccgcc caacccccgc actctggtcc acgcggccgt 750 cggggtgggc acggccctgg ccctgctaaq ctqtqccqcc ctqqtqtqqc 800 acttetgeet gegegatege tggggetgee egegeegage egeegeega 850 gccgcagggg cgctctgaaa ggggcctggg ggcatctcgg gcacagacag 900 ccccacctgg ggcgctcagc ctggcccccg ggaaagagga aaacccgctg 950 cctccaggga gggctggacg gcgagctggg agccagcccc aggctccagg 1000 gccacggcgg agtcatggtt ctcaggactg agcgcttgtt taggtccggt 1050 acttggcgct ttgtttcctg gctgaggtct gggaaggaat agaaaggggc 1100 ccccaatttt tttttaagcg gccagataat aaataatgta acctttgcgg 1150 ttaaaaaaaa aaaaaaaaa 1170

<210> 271

<211> 238

<212> PRT

<213> Homo sapiens

<400> 271

Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe 1 5 10 15

Glu Glu Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala 35 40 45

Val Pro Cys Asp Tyr Asp His Cys Arg His Leu Gln Val Pro Cys
50 55 60

Lys Glu Leu Gln Arg Val Gly Pro Ala Ala Cys Leu Cys Pro Gly 65 70 . 75

Leu Ser Ser Pro Ala Gln Pro Pro Asp Pro Pro Arg Met Gly Glu Val Arg Ile Ala Ala Glu Glu Gly Arg Ala Val His Trp Cys Ala Pro Phe Ser Pro Val Leu His Tyr Trp Leu Leu Trp Asp 110 115 Gly Ser Glu Ala Ala Gln Lys Gly Pro Pro Leu Asn Ala Thr Val Arg Arg Ala Glu Leu Lys Gly Leu Lys Pro Gly Gly Ile Tyr Val Val Cys Val Val Ala Ala Asn Glu Ala Gly Ala Ser Arg Val Pro Gln Ala Gly Glu Gly Leu Glu Gly Ala Asp Ile Pro Ala Phe 170 175 Gly Pro Cys Ser Arg Leu Ala Val Pro Pro Asn Pro Arg Thr Leu 185 190 Val His Ala Ala Val Gly Val Gly Thr Ala Leu Ala Leu Leu Ser 205 Cys Ala Ala Leu Val Trp His Phe Cys Leu Arg Asp Arg Trp Gly

Cys Pro Arg Ala Ala Ala Arg Ala Ala Gly Ala Leu

<210> 272

<211> 2397

<212> DNA

<213> Homo sapiens

<400> 272

agagaaagaa gcgtctccag ctgaagccaa tgcagccctc cggctctccg 50 cgaagaagtt ccctgccccg atgagccccc gccgtgcgtc cccgactatc 100 cccaggcggg cgtggggcac cgggcccagc gccgacgatc gctgccgttt 150 tgcccttggg agtaggatgt ggtgaaagga tggggcttct cccttacggg 200 gctcacaatg gccagagaag attccgtgaa gtgtctgcgc tgcctgctct 250 acgeceteaa tetgetettt tggttaatgt ceateagtgt gttggeagtt 300 tctgcttgga tgagggacta cctaaataat gttctcactt taactgcaga 350 aacgagggta gaggaagcag tcattttgac ttactttcct gtggttcatc 400 cggtcatgat tgctgtttgc tgtttcctta tcattgtggg gatgttagga 450 tattgtggaa cggtgaaaag aaatctgttg cttcttgcat ggtactttgg 500

210

aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650 tgcttggaat tttttcaga gagagtttaa gtgctgtgga gtagtatatt 700 tcactgactg gttggaaatg acagagatgg actggccccc agattcctgc 750 tgtgttagag aattcccagg atgttccaaa caggcccacc aggaagatct 800 cagtgacctt tatcaagagg gttgtgggaa gaaaatgtat tcctttttga 850 gaggaaccaa acaactgcag gtgctgaggt ttctgggaat ctccattggg 900 gtgacacaaa tcctggccat gattctcacc attactctgc tctgggctct 950 gtattatgat agaagggagc ctgggacaga ccaaatgatg tccttgaaga 1000 atgacaactc tcagcacctg tcatgtccct cagtagaact gttgaaacca 1050 agoctgtcaa gaatetttga acacacatee atggeaaaca getttaatae 1100 acactttgag atggaggagt tataaaaaga aatgtcacag aagaaaacca 1150 caaacttgtt ttattggact tgtgaatttt tgagtacata ctatgtgttt 1200 cagaaatatg tagaaataaa aatgttgcca taaaataaca cctaaqcata 1250 tactattcta tgctttaaaa tgaggatgga aaagtttcat gtcataagtc 1300 accacctgga caataattga tgcccttaaa atgctgaaga cagatgtcat 1350 acceactgtg tagectgtgt atgaetttta etgaacacag ttatgttttg 1400 aggcagcatg gtttgattag catttccgca tccatgcaaa cgagtcacat 1450 atggtgggac tggagccata qtaaaqqttq atttacttct accaactagt 1500 atataaagta ctaattaaat gctaacatag gaagttagaa aatactaata 1550 acttttatta ctcagcgatc tattcttctg atgctaaata aattatatat 1600 cagaaaactt tcaatattgg tgactaccta aatgtgattt ttgctggtta 1650 ctaaaatatt cttaccactt aaaagagcaa gctaacacat tgtcttaagc 1700

tgatcaggga ttttttgtat ataagtctgt gttaaatctg tataattcag 1750

tcgatttcag ttctgataat gttaagaata accattatga aaaggaaaat 1800

ttgtcctgta tagcatcatt atttttagcc tttcctgtta ataaagcttt 1850

actattctgt cctgggctta tattacacat ataactgtta tttaaatact 1900

taaccactaa ttttgaaaat taccagtgtg atacatagga atcattattc 1950

aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550

atgaacagga acttatggtt ccagtacaat qqtcaqatat qqtcactttq 600

agaatgtagt ctggtcttta ggaagtatta ataagaaaat ttgcacataa 2000 cttagttgat tcagaaagga cttgtatgct gttttctcc caaatgaaga 2050 ctctttttga cactaaacac tttttaaaaa gcttatcttt gccttctcca 2100 aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150 ttcttttct ccagaaaaat gcttgtgaga atcattaaaa catgtgacaa 2200 tttagagatt ctttgttta tttcactgat taatatactg tggcaaatta 2250 cacagattat taaattttt tacaagagta tagtatatt atttgaaatg 2300 ggaaaagtgc attttactgt atttgtgta ttttgtttat ttctcagaat 2350 atggaaagaa aattaaaatg tgtcaataaa tatttctag agagtaa 2397

<210> 273

<211> 305

<212> PRT

<213> Homo sapiens

<400> 273

Met Ala Arg Glu Asp Ser Val Lys Cys Leu Arg Cys Leu Leu Tyr
1 5 10 15

Ala Leu Asn Leu Leu Phe Trp Leu Met Ser Ile Ser Val Leu Ala 20 25 30

Val Ser Ala Trp Met Arg Asp Tyr Leu Asn Asn Val Leu Thr Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Ala Glu Thr Arg Val Glu Glu Ala Val Ile Leu Thr Tyr Phe
50 55 60

Pro Val Val His Pro Val Met Ile Ala Val Cys Cys Phe Leu Ile 65 70 75

Ile Val Gly Met Leu Gly Tyr Cys Gly Thr Val Lys Arg Asn Leu 80 85 90

Leu Leu Leu Ala Trp Tyr Phe Gly Ser Leu Leu Val Ile Phe Cys 95 100 105

Val Glu Leu Ala Cys Gly Val Trp Thr Tyr Glu Gln Glu Leu Met 110 115 120

Val Pro Val Gln Trp Ser Asp Met Val Thr Leu Lys Ala Arg Met 125 130 135

Thr Asn Tyr Gly Leu Pro Arg Tyr Arg Trp Leu Thr His Ala Trp 140 145 150

Asn Phe Phe Gln Arg Glu Phe Lys Cys Cys Gly Val Val Tyr Phe 155 160 165

Thr Asp Trp Leu Glu Met Thr Glu Met Asp Trp Pro Pro Asp Ser

Cys Cys Val Arg Glu Phe Pro Gly Cys Ser Lys Gln Ala His Gln Glu Asp Leu Ser Asp Leu Tyr Gln Glu Gly Cys Gly Lys Lys Met 200 Tyr Ser Phe Leu Arg Gly Thr Lys Gln Leu Gln Val Leu Arg Phe 215 Leu Gly Ile Ser Ile Gly Val Thr Gln Ile Leu Ala Met Ile Leu 230 Thr Ile Thr Leu Leu Trp Ala Leu Tyr Tyr Asp Arg Arg Glu Pro 245 250 255 Gly Thr Asp Gln Met Met Ser Leu Lys Asn Asp Asn Ser Gln His 260 265 Leu Ser Cys Pro Ser Val Glu Leu Leu Lys Pro Ser Leu Ser Arg 280 285 Ile Phe Glu His Thr Ser Met Ala Asn Ser Phe Asn Thr His Phe

175

295

180

170

<210> 274

<211> 2063

<212> DNA

<213> Homo sapiens

Glu Met Glu Glu Leu

305

<400> 274

gagagaggcagcagettgetcageggacaaggatgetgggcgtgagggac50caaggeetgecetgeactegggeeteeteeagecagtgetgaceagggae100ttetgacetgctggeeageeaggacetgtgtggggaggeeetectgetge150cttggggtgacaateteagetecaggetaeagggagaèeeggaggateae200agagecageatgttacaggatectgacagtgateaacetetgaacageet250egatgteaaaeecetgegeaaaceeegtateeceatggagacetteagaa300aggtggggateeceateateatageactaetgageetggegagtateate350attgtggttgtectcateaaggtgattetggataaataetactteetetg400egggeageetetecaetteatecegaggaageagetgtgtgaeggagage450tggactgteeettgggggaggaeggaggageactgtgteaagagetteee500gaagggeetgeagtggeagteegeeteteeaaggaeegateeacaetgea550ggtgetggacteggeeacagggaactggttetetgeetgtttegaeact600

tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650 gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 700 aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750 gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800 ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850 ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900 acccccactg ggtcctcacg gcagcccact gcttcaggaa acataccgat 950 gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000 atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050 ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100 teaggeacag teaggeecat etgtetgeec ttetttgatg aggageteae 1150 tecagecace ceaetetgga teattggatg gggetttacg aageagaatg 1200 gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250 agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1300 gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350 acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400 atcgttagct ggggctatgg ctgcgggggc ccgagcaccc caggagtata 1450 caccaaggte teageetate teaactggat etacaatgte tggaaggetg 1500 agetgtaatg etgetgeece tttgeagtge tgggageege tteetteetg 1550 ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600 ttgggtacac coctctgccc acagcctcag catttcttgg agcagcaaag 1650 ggcctcaatt cctgtaagag accctcgcag cccagaggcg cccagaggaa 1700 gtcagcagcc ctagctcggc cacacttggt gctcccagca tcccagggag 1750 agacacagee caetgaacaa ggteteaggg gtattgetaa gecaagaagg 1800 aactttccca cactactgaa tggaagcagg ctgtcttgta aaagcccaga 1850 tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1900 tetteaceca tecceaagee tactagagea agaaaceagt tgtaatataa 1950 aatgcactgc cctactgttg gtatgactac cgttacctac tgttgtcatt 2000 gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050

<211> 432

<212> PRT

<213> Homo sapiens

<400> 275

Met Leu Gln Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp 1 5 10 15

Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg
20 25 30

Lys Val Gly Ile Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser 35 40 45

Ile Ile Ile Val Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr
50 55 60

Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu 80 85 90

His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg 95 100 105

Leu Ser Lys Asp Arg Ser Thr Leu Gln Val Leu Asp Ser Ala Thr 110 115 120

Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu 125 130 135

Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser Arg Ala Val Glu 140 145 150

Ile Gly Pro Asp Gln Asp Leu Asp Val Val Glu Ile Thr Glu Asn 155 160 165

Ser Gln Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser 170 175 180

Gly Ser Leu Val Ser Leu His Cys Leu Ala Cys Gly Lys Ser Leu 185 190 195

Lys Thr Pro Arg Val Val Gly Gly Glu Glu Ala Ser Val Asp Ser 200 205 210

Trp Pro Trp Gln Val Ser Ile Gln Tyr Asp Lys Gln His Val Cys 215 220 225

Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr Ala Ala His 230 235 240

Cys Phe Arg Lys His Thr Asp Val Phe Asn Trp Lys Val Arg Ala 245 250 255

Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp Ile Ala Leu Met Lys Leu Gln Phe Pro Leu Thr Phe Ser Gly Thr 290 295 300 Val Arg Pro Ile Cys Leu Pro Phe Phe Asp Glu Glu Leu Thr Pro 305 Ala Thr Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gln Asn 320 325 Gly Gly Lys Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val 335 340 Ile Asp Ser Thr Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu 350 355 360 Val Thr Glu Lys Met Met Cys Ala Gly Ile Pro Glu Gly Gly Val Asp Thr Cys Gln Gly Asp Ser Gly Gly Pro Leu Met Tyr Gln Ser 390 Asp Gln Trp His Val Val Gly Ile Val Ser Trp Gly Tyr Gly Cys 395 Gly Gly Pro Ser Thr Pro Gly Val Tyr Thr Lys Val Ser Ala Tyr 415

Leu Asn Trp Ile Tyr Asn Val Trp Lys Ala Glu Leu

Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala Lys

270

<210> 276

<211> 3143

<212> DNA

<213> Homo sapiens

<400> 276

gggctgaggc actgagagac cggaaagcct ggcattccag agggagggaa 50 acgcagcggc atcccaggc tccagagctc cctggtgaca gtctgtggct 100 gagcatggcc ctcccagccc tgggcctgga cccctggagc ctcctgggcc 150 ttttcctctt ccaactgctt cagctgctgc tgccgacgac gaccgcgggg 200 ggaggcgggc aggggcccat gcccagggtc agatactatg caggggatga 250 acgtagggca cttagcttct tccaccagaa gggcctccag gattttgaca 300 ctctgctcct gagtggtat ggaaatactc tctacgtggg ggctcgagaa 350 gccattctgg ccttggatat ccaggatcca ggggtcccca ggctaaagaa 400

catgataccg tggccagcca gtgacagaaa aaagagtgaa tgtgccttta 450 agaagaagag caatgagaca cagtgtttca acttcatccg tgtcctggtt 500 tettacaatg teacceatet etacacetge ggcacetteg cetteágece 550 tgcttgtacc ttcattgaac ttcaagattc ctacctgttg cccatctcgg 600 aggacaaggt catggaggga aaaggccaaa gcccctttga ccccgctcac 650 aagcatacgg ctgtcttggt ggatgggatg ctctattctg gtactatgaa 700 caactteetg ggeagtgage ceateetgat gegeacaetg ggateeeage 750 ctgtcctcaa gaccgacaac ttcctccgct ggctgcatca tgacgcctcc 800 tttgtggcag ccatcccttc gacccaggtc gtctacttct tcttcgagga 850 gacagccagc gagtttgact tctttgagag gctccacaca tcgcgggtgg 900 ctagagtetg caagaatgae gtgggeggeg aaaagetget geagaagaag 950 tggaccacct tcctgaaggc ccagctgctc tgcacccagc cggggcagct 1000 gcccttcaac gtcatccgcc acgcggtcct gctccccgcc gattctccca 1050 cagctcccca catctacgca gtcttcacct cccagtggca ggttggcggg 1100 accaggaget etgeggtttg tgeettetet etettggaca ttgaacgtgt 1150 ctttaagggg aaatacaaag agttgaacaa agaaacttca cgctggacta 1200 cttatagggg ccctgagacc aacccccggc caggcagttg ctcagtgggc 1250 ccctcctctg ataaggccct gaccttcatg aaggaccatt tcctgatgga 1300 tgagcaagtg gtggggacgc ccctqctggt gaaatctggc gtggagtata 1350 cacggettge agtggagaea geecagggee ttgatgggea eagecatett 1400 gtcatgtacc tgggaaccac cacagggtcg ctccacaagg ctgtggtaag 1450 tggggacage agtgeteate tggtggaaga gatteagetg tteeetgace 1500 ctgaacctgt tcgcaacctg cagctggccc ccacccaggg tgcagtgttt 1550 gtaggettet caggaggtgt etggagggtg eecegageea aetgtagtgt 1600 ctatgagage tgtgtggaet gtgteettge eegggaeeee eactgtgeet 1650 gggaccetga gtcccgaace tgttgcctce tgtctgcccc caacctgaac 1700 tcctggaagc aggacatgga gcgggggaac ccagagtggg catgtgccag 1750 tggccccatg agcaggagcc ttcggcctca gagccgcccg caaatcatta 1800 aagaagteet ggetgteece aactecatee tggageteee etgeeceeae 1850

```
ctgtcagcct tggcctctta ttattggagt catggcccag cagcagtccc 1900
 agaagcctct tccactgtct acaatggctc cctcttgctg atagtgcagg 1950
 atggagttgg gggtctctac cagtgctggg caactgagaa tggcttttca 2000
 taccctgtga tctcctactg ggtggacagc caggaccaga ccctggccct 2050
 ggatcctgaa ctggcaggca tcccccggga gcatgtgaag gtcccgttga 2100
 ccagggtcag tggtggggcc gccctggctg cccagcagtc ctactggccc 2150
 cactttgtca ctgtcactgt cctctttgcc ttagtgcttt caggagccct 2200
 catcatecte gtggcetece cattgagage acteeggget eggggeaagg 2250
 ttcagggctg tgagaccctg cgccctgggg agaaggcccc gttaagcaga 2300
 gagcaacacc tecagtetee caaggaatge aggacetetg ceagtgatgt 2350
 ggacgctgac aacaactgcc taggcactga ggtagcttaa actctaggca 2400
 caggeegggg etgeggtgea ggeacetgge catgetgget gggeggeeca 2450
 agcacagece tgactaggat gacageagea caaaagaeea cettteteee 2500
 ctgagaggag cttctgctac tctgcatcac tgatgacact cagcagggtg 2550
 atgcacagca gtctgcctcc cctatgggac tcccttctac caagcacatg 2600
 agetetetaa eagggtgggg getaeeecca gaeetgetee tacaetgata 2650
 ttgaagaacc tggagaggat cettcagtte tggccattee agggaccete 2700
 cagaaacaca gtgtttcaag agaccctaaa aaacctgcct gtcccaggac 2750
 cctatggtaa tgaacaccaa acatctaaac aatcatatgc taacatgcca 2800
 ctcctggaaa ctccactctg aagctgccgc tttggacacc aacactccct 2850
 teteceaggg teatgeaggg atetgeteee teetgettee ettaceagte 2900
 gtgcaccgct gactcccagg aagtctttcc tgaagtctga ccacctttct 2950
 tettgettea gttggggeag actetgatee ettetgeeet ggeagaatgg 3000
caggggtaat ctgagccttc ttcactcctt taccctagct gaccccttca 3050
cetetecece tecettttee tttgttttgg gatteagaaa actgettgte 3100
agagactgtt tatttttat taaaaatata aggcttaaaa aaa 3143
<210> 277
```

<211> 761

<212> PRT

<213> Homo sapiens

<400> 277

Bl

Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly Leu Phe Leu Phe Gln Leu Leu Gln Leu Leu Pro Thr Thr Ala Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr Ala Gly Asp Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly Leu Gln Asp Phe Asp Thr Leu Leu Ser Gly Asp Gly Asn Thr Leu Tyr Val Gly Ala Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln Asp Pro Gly Val Pro Arg Leu Lys Asn Met Ile Pro Trp Pro Ala Ser Asp Arg Lys Lys Ser Glu Cys Ala Phe Lys Lys Ser Asn Glu Thr Gln Cys Phe Asn Phe Ile Arg Val Leu Val Ser Tyr Asn 125 130 Val Thr His Leu Tyr Thr Cys Gly Thr Phe Ala Phe Ser Pro Ala 145 Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr Leu Leu Pro Ile Ser 155 Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser Pro Phe Asp Pro Ala His Lys His Thr Ala Val Leu Val Asp Gly Met Leu Tyr Ser 185 190 Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu Met Arg 205 Thr Leu Gly Ser Gln Pro Val Leu Lys Thr Asp Asn Phe Leu Arg 220 Trp Leu His His Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr Gln Val Val Tyr Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp 250 Phe Phe Glu Arg Leu His Thr Ser Arg Val Ala Arg Val Cys Lys Asn Asp Val Gly Glu Lys Leu Leu Gln Lys Lys Trp Thr Thr Phe Leu Lys Ala Gln Leu Leu Cys Thr Gln Pro Gly Gln Leu Pro

300

Phe Asn Val Ile Arg His Ala Val Leu Pro Ala Asp Ser Pro 305 310 315

Thr Ala Pro His Ile Tyr Ala Val Phe Thr Ser Gln Trp Gln Val 320 325 330

Gly Gly Thr Arg Ser Ser Ala Val Cys Ala Phe Ser Leu Leu Asp 335 340 345

Ile Glu Arg Val Phe Lys Gly Lys Tyr Lys Glu Leu Asn Lys Glu 350 355 360

Thr Ser Arg Trp Thr Thr Tyr Arg Gly Pro Glu Thr Asn Pro Arg 365 370 375

Pro Gly Ser Cys Ser Val Gly Pro Ser Ser Asp Lys Ala Leu Thr 380 385 390

Phe Met Lys Asp His Phe Leu Met Asp Glu Gln Val Val Gly Thr 395 400 405

Pro Leu Leu Val Lys Ser Gly Val Glu Tyr Thr Arg Leu Ala Val 410 415 420

Glu Thr Ala Gln Gly Leu Asp Gly His Ser His Leu Val Met Tyr 425 430 435

Leu Gly Thr Thr Gly Ser Leu His Lys Ala Val Val Ser Gly 440 445 . 450

Asp Ser Ser Ala His Leu Val Glu Glu Ile Gln Leu Phe Pro Asp 455 460 465

Pro Glu Pro Val Arg Asn Leu Gln Leu Ala Pro Thr Gln Gly Ala 470 475 480

Val Phe Val Gly Phe Ser Gly Gly Val Trp Arg Val Pro Arg Ala 485 490 495

Asn Cys Ser Val Tyr Glu Ser Cys Val Asp Cys Val Leu Ala Arg 500 505 Val Leu Ala Arg

Asp Pro His Cys Ala Trp Asp Pro Glu Ser Arg Thr Cys Cys Leu 515 520 525

Leu Ser Ala Pro Asn Leu Asn Ser Trp Lys Gln Asp Met Glu Arg 530 540

Gly Asn Pro Glu Trp Ala Cys Ala Ser Gly Pro Met Ser Arg Ser 545 550

Leu Arg Pro Gln Ser Arg Pro Gln Ile Ile Lys Glu Val Leu Ala 560 565 570

Val Pro Asn Ser Ile Leu Glu Leu Pro Cys Pro His Leu Ser Ala 575 580 585

```
Leu Ala Ser Tyr Tyr Trp Ser His Gly Pro Ala Ala Val Pro Glu
                                      595
 Ala Ser Ser Thr Val Tyr Asn Gly Ser Leu Leu Leu Ile Val Gln
 Asp Gly Val Gly Gly Leu Tyr Gln Cys Trp Ala Thr Glu Asn Gly
                                      625
 Phe Ser Tyr Pro Val Ile Ser Tyr Trp Val Asp Ser Gln Asp Gln
 Thr Leu Ala Leu Asp Pro Glu Leu Ala Gly Ile Pro Arg Glu His
                 650
 Val Lys Val Pro Leu Thr Arg Val Ser Gly Gly Ala Ala Leu Ala
                 665
 Ala Gln Gln Ser Tyr Trp Pro His Phe Val Thr Val Leu
                 680
 Phe Ala Leu Val Leu Ser Gly Ala Leu Ile Ile Leu Val Ala Ser
                                      700
 Pro Leu Arg Ala Leu Arg Ala Arg Gly Lys Val Gln Gly Cys Glu
                                      715
                                                          720
 Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gln His
 Leu Gln Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp
                                                          750
 Ala Asp Asn Asn Cys Leu Gly Thr Glu Val Ala
                 755
<210> 278
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 278
ctgctggtga aatctggcgt ggag 24
<210> 279
<211> 24
<212> DNA
<213> Artificial
```

<220>

<222> 1-24

<221> Artificial Sequence

<223> Synthetic construct.

<400> 279 gtctggtcct ggctgtccac ccag 24 <210> 280 <211> 45 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-45 <223> Synthetic construct. <400> 280 catcttgtca tgtacctggg aaccaccaca gggtcgctcc acaaq 45 <210> 281 <211> 2320 <212> DNA <213> Homo sapiens <400> 281 agggtccctt agccgggcgc agggcgcgca gcccaggctg agatccgcgg 50 cttccgtaga agtgagcatg gctgggcagc gagtgcttct tctagtgggc 100 ttccttctcc ctggggtcct gctctcagag gctgccaaaa tcctgacaat 150 atctacagta ggtggaagcc attatctact gatggaccgg gtttctcaga 200 ttcttcaaga tcacggtcat aatgtcacca tgcttaacca caaaagaggt 250 ccttttatgc cagattttaa aaaggaagaa aaatcatatc aagttatcag 300 ttggcttgca cctgaagatc atcaaagaga atttaaaaag agttttgatt 350 tctttctgga agaaacttta ggtggcagag gaaaatttga aaacttatta 400 aatgttctag aatacttggc gttgcagtgc agtcattttt taaatagaaa 450 ggatatcatg gattccttaa agaatgagaa cttcgacatg gtgatagttg 500 aaacttttga ctactgtcct ttcctgattg ctgagaagct tgggaagcca 550 tttgtggcca ttctttccac ttcattcggc tctttggaat ttgggctacc 600 aatccccttg tcttatgttc cagtattccg ttccttgctg actgatcaca 650 tggacttctg gggccgagtg aagaattttc tgatgttctt tagtttctgc 700 aggaggcaac agcacatgca gtctacattt gacaacacca tcaaggaaca 750 tttcacagaa ggctctaggc cagttttgtc tcatcttcta ctgaaagcag 800 agttgtggtt cattaactct gactttgcct ttgattttgc tcgacctctg 850 cttcccaaca ctgtttatgt tggaggcttg atggaaaaac ctattaaacc 900

272

BI

agtaccacaa gacttggaga acttcattgc caagtttggg gactctggtt 950 ttgtccttgt gaccttgggc tccatggtga acacctgtca gaatccggaa 1000 atcttcaagg agatgaacaa tgcctttgct cacctacccc aaggggtgat 1050 atggaagtgt cagtgttctc attggcccaa agatgtccac ctggctgcaa 1100 atgtgaaaat tgtggactgg cttcctcaga gtgacctcct ggctcaccca 1150 agcatccgtc tgtttgtcac ccacggcggg cagaatagca taatggaggc 1200 catccagcat ggtgtgccca tggtggggat ccctctcttt ggagaccagc 1250 ctgaaaacat ggtccgagta gaagccaaaa agtttggtgt ttctattcag 1300 ttaaagaagc tcaaggcaga gacattggct cttaagatga aacaaatcat 1350 ggaagacaag agatacaagt ccgcggcagt ggctgccagt gtcatcctgc 1400 gctcccaccc gctcagcccc acacagcggc tggtgggctg gattgaccac 1450 gtcctccaga cagggggcgc gacgcacctc aagccctatg tctttcagca 1500 gccctggcat gagcagtacc tgttcgacgt ttttgtgttt ctgctggggc 1550 tcactctggg gactctatgg ctttgtggga agctgctggg catggctgtc 1600 tggtggctgc gtggggccag aaaggtgaag gagacataag gccaggtgca 1650 gccttggcgg ggtctgtttg gtgggcgatg tcaccatttc tagggagctt 1700 cccactagtt ctggcagccc cattctctag teettetagt tateteetgt 1750 tttcttgaag aacaggaaaa atggccaaaa atcatccttt ccacttgcta 1800 attttgctac aaattcatcc ttactagctc ctgcctgcta gcagaaatct 1850 ttccagtcct cttgtcctcc tttgtttgcc atcagcaagg gctatgctgt 1900 gattctgtct ctgagtgact tggaccactg accetcagat ttccagcett 1950 aaaatccacc ttccttctca tgcgcctctc cgaatcacac cctgactctt 2000 ccagceteca tgtecagace tagteageet eteteactee tgeceetact 2050 atctatcatg gaataacatc caagaaagac accttgcata ttctttcagt 2100 ttctgttttg ttctcccaca tattctcttc aatgctcagg aagcctgccc 2150 tgtgcttgag agttcagggc cggacacagg ctcacaggtc tccacattgg 2200 gtccctgtct ctggtgccca cagtgagctc cttcttggct gagcaggcat 2250 ggagactgta ggtttccaga tttcctgaaa aataaaagtt tacagcgtta 2300 tctctcccca acctcactaa 2320

```
<210> 282
<211> 523
<212> PRT
<213> Homo sapiens
<400> 282
Met Ala Gly Gln Arg Val Leu Leu Val Gly Phe Leu Leu Pro
Gly Val Leu Leu Ser Glu Ala Ala Lys Ile Leu Thr Ile Ser Thr
Val Gly Gly Ser His Tyr Leu Leu Met Asp Arg Val Ser Gln Ile
Leu Gln Asp His Gly His Asn Val Thr Met Leu Asn His Lys Arg
Gly Pro Phe Met Pro Asp Phe Lys Lys Glu Glu Lys Ser Tyr Gln
Val Ile Ser Trp Leu Ala Pro Glu Asp His Gln Arg Glu Phe Lys
Lys Ser Phe Asp Phe Phe Leu Glu Glu Thr Leu Gly Gly Arg Gly
Lys Phe Glu Asn Leu Leu Asn Val Leu Glu Tyr Leu Ala Leu Gln
                110
                                     115
Cys Ser His Phe Leu Asn Arg Lys Asp Ile Met Asp Ser Leu Lys
                                     130
Asn Glu Asn Phe Asp Met Val Ile Val Glu Thr Phe Asp Tyr Cys
Pro Phe Leu Ile Ala Glu Lys Leu Gly Lys Pro Phe Val Ala Ile
                155
Leu Ser Thr Ser Phe Gly Ser Leu Glu Phe Gly Leu Pro Ile Pro
                                     175 ..
Leu Ser Tyr Val Pro Val Phe Arg Ser Leu Leu Thr Asp His Met
                185
                                     190
Asp Phe Trp Gly Arg Val Lys Asn Phe Leu Met Phe Phe Ser Phe
Cys Arg Arg Gln Gln His Met Gln Ser Thr Phe Asp Asn Thr Ile
Lys Glu His Phe Thr Glu Gly Ser Arg Pro Val Leu Ser His Leu
Leu Leu Lys Ala Glu Leu Trp Phe Ile Asn Ser Asp Phe Ala Phe
Asp Phe Ala Arg Pro Leu Leu Pro Asn Thr Val Tyr Val Gly Gly
```

Leu Met Glu Lys Pro Ile Lys Pro Val Pro Gln Asp Leu Glu Asn Phe Ile Ala Lys Phe Gly Asp Ser Gly Phe Val Leu Val Thr Leu Gly Ser Met Val Asn Thr Cys Gln Asn Pro Glu Ile Phe Lys Glu 305 Met Asn Asn Ala Phe Ala His Leu Pro Gln Gly Val Ile Trp Lys Cys Gln Cys Ser His Trp Pro Lys Asp Val His Leu Ala Ala Asn 340 Val Lys Ile Val Asp Trp Leu Pro Gln Ser Asp Leu Leu Ala His 355 Pro Ser Ile Arg Leu Phe Val Thr His Gly Gly Gln Asn Ser Ile Met Glu Ala Ile Gln His Gly Val Pro Met Val Gly Ile Pro Leu Phe Gly Asp Gln Pro Glu Asn Met Val Arg Val Glu Ala Lys Lys Phe Gly Val Ser Ile Gln Leu Lys Lys Leu Lys Ala Glu Thr Leu 410 Ala Leu Lys Met Lys Gln Ile Met Glu Asp Lys Arg Tyr Lys Ser 430 435 Ala Ala Val Ala Ala Ser Val Ile Leu Arg Ser His Pro Leu Ser 445 Pro Thr Gln Arg Leu Val Gly Trp Ile Asp His Val Leu Gln Thr 465 Gly Gly Ala Thr His Leu Lys Pro Tyr Val Phe Gln Gln Pro Trp His Glu Gln Tyr Leu Phe Asp Val Phe Val Phe Leu Leu Gly Leu Thr Leu Gly Thr Leu Trp Leu Cys Gly Lys Leu Leu Gly Met Ala Val Trp Trp Leu Arg Gly Ala Arg Lys Val Lys Glu Thr 515

<210> 283

<211> 24

<212> DNA

<213> Artificial

```
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 283
tgcctttgct cacctacccc aagg 24
<210> 284
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 284
tcaggctggt ctccaaagag aggg 24
<210> 285
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 285
cccaaagatg tccacctggc tgcaaatgtg aaaattgtgg actgg 45
<210> 286
<211> 2340
<212> DNA
<213> Homo sapiens
<400> 286
gggctgttga tttgtggggg attttgaaga gaggaggaat aggaggaagg 50
ggttgagggg ctgcctctgg catatgcaca cactcacaca ttctgtcaca 100
cccgtcacac acacatacca tgttctccat cccccaggt ccagccctca 150
gtgctgtccc atccagcagg gctaccctga agctctggct gcagccctcc 200
cgtccagtgg gcaggcggct tcatccctcc tttctctccc aaagcccaac 250
tgctgtcact gcatgctctg ccaaggagga gggaactgca gtgacagcag 300
gagtaagagt gggaggcagg acagagctgg gacacaggta tggagagggg 350
gttcagcgag cctagagagg gcagactatc agggtgccgg cggtgagaat 400
```

ccagggagag gagcggaaac agaagaggg cagaagaccg gggcacttgt 450

gggttgcaga gcccctcagc catgttggga gccaagccac actggctacc 500 aggteeeta cacagteeeg ggetgeeett ggttetggtg ettetggeee 550 tgggggccgg gtgggcccag gaggggtcag agcccgtcct gctggagggg 600 gagtgcctgg tggtctgtga gcctggccga gctgctgcag gggggcccgg 650 gggagcagcc ctgggagagg caccccctgg gcgagtggca tttgctgcgg 700 tccgaagcca ccaccatgag ccagcagggg aaaccggcaa tggcaccagt 750 ggggccatct acttcgacca ggtcctggtg aacgagggcg gtggctttga 800 ccgggcctct ggctccttcg tagcccctgt ccggggtgtc tacagcttcc 850 ggttccatgt ggtgaaggtg tacaaccgcc aaactgtcca ggtgagcctg 900 atgctgaaca cgtggcctgt catctcagcc tttgccaatg atcctgacgt 950 gacccgggag gcagccacca gctctgtgct actgcccttg gaccctgggg 1000 accgagtgtc tctgcgcctg cgtcggggga atctactggg tggttggaaa 1050 tactcaagtt tctctggctt cctcatcttc cctctctgag gacccaagtc 1100 tttcaagcac aagaatccag cccctgacaa ctttcttctg ccctctcttg 1150 ccccagaaac agcagaggca ggagagagac tccctctggc tcctatccca 1200 cctctttgca tgggaccctg tgccaaacac ccaagtttaa gagaagagta 1250 gagetgtgge atetecagae caggeettte caeccaecca eccecagtta 1300 ccctcccagc cacctgctgc atctgttcct gcctgcagcc ctaggatcag 1350 ggcaaggttt ggcaagaagg aagatctgca ctactttgcg gcctctgctc 1400 ctccggttcc cccaccccag cttcctgctc aatgctgatc agggacaggt 1450 ggcgcaggtg agcctgacag gccccacag gagcccagat ggacaagcct 1500 cagcgtaccc tgcaggcttc ttcctgtgag gaaagccagc atcacggatc 1550 tcagccagca ccgtcagaag ctgagccagc accgtatggg ctagggtggg 1600 aggeteagee acaggeagaa gggtgggaag ggeetggagt etgtggetgg 1650 tgaggaagga aggaggtgt attgtctaga ctgaacatgg tacacattct 1700 gcatgtatag cagagcagcc agcaggtagc aatcctggct gtccttctat 1750 gctggatccc agatggactc tggcccttac ctccccacct gagattaggg 1800 tgagtgtgtt tgctctggct gagagcagag ctgagagcag gtatacagag 1850 ctggaagtgg accatggaaa acatcgataa ccatgcatcc tcttgcttqq 1900

131

caccetecty anaectyce accettignany titignaectit agreected 1950 cactetignaty getycetect tectecage teteteacty agritatetic 2000 actignated tecageata tecceactaty etetetitety ectigatety 2050 getytetiaty tetecageaty agreected tracetygga tracety 2100 catteetical gaccetetee tyccageaty ethical ectetetic 2150 tetetete etytecaty gyaccageety gyatgaatety ateantanaa 2200 cancellagua atgytygeta gyatgaacaty atagaatta taaggagaagy 2250 atgeetety agrithysaa gyatataa gyatatyi 2300 agaggaaaaty aaatateaa etytaacta aaattaaaa 2340

- <210> 287 <211> 205
- <212> PRT
- <213> Homo sapiens

<400> 287

- Met Leu Gly Ala Lys Pro His Trp Leu Pro Gly Pro Leu His Ser 1 5 10 15
- Pro Gly Leu Pro Leu Val Leu Val Leu Leu Ala Leu Gly Ala Gly 20 25 30
- Trp Ala Gln Glu Gly Ser Glu Pro Val Leu Leu Glu Gly Glu Cys
 35 40 45
- Leu Val Val Cys Glu Pro Gly Arg Ala Ala Ala Gly Gly Pro Gly
 50 55 60
- Gly Ala Ala Leu Gly Glu Ala Pro Pro Gly Arg Val Ala Phe Ala 65 70 75
- Ala Val Arg Ser His His His Glu Pro Ala Gly Glu Thr Gly Asn 80 85 90
- Gly Thr Ser Gly Ala Ile Tyr Phe Asp Gln Val Leu Val Asn Glu 95 100 105
- Gly Gly Gly Phe Asp Arg Ala Ser Gly Ser Phe Val Ala Pro Val 110 115 120
- Arg Gly Val Tyr Ser Phe Arg Phe His Val Val Lys Val Tyr Asn 125 130 135
- Arg Gln Thr Val Gln Val Ser Leu Met Leu Asn Thr Trp Pro Val 140 145
- Ile Ser Ala Phe Ala Asn Asp Pro Asp Val Thr Arg Glu Ala Ala 155 160 165
- Thr Ser Ser Val Leu Pro Leu Asp Pro Gly Asp Arg Val Ser

Leu Arg Leu Arg Gly Asn Leu Leu Gly Gly Trp Lys Tyr Ser 190 Ser Phe Ser Gly Phe Leu Ile Phe Pro Leu <210> 288 <211> 24 <212> DNA

<220> <221> Artificial Sequence

<213> Artificial

<222> 1-24 <223> Synthetic construct.

<400> 288 aggcagccac cagctctgtg ctac 24

<210> 289

<211> 27 <212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-27

<223> Synthetic construct.

<400> 289

cagagagga agatgaggaa gccagag 27

<210> 290

<211> 42

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-42

<223> Synthetic construct.

<400> 290

ctgtgctact gcccttggac cctggggacc gagtgtctct gc 42

<210> 291

<211> 1570

<212> DNA

<213> Homo sapiens

<400> 291

gctgtttctc tcgcgccacc actggccgcc ggccgcagct ccaggtgtcc 50

tagccgccca gcctcgacgc cgtcccggga cccctgtgct ctgcgcgaag 100

ccctggcccc gggggccggg gcatgggcca ggggcgcggg gtgaagcggc 150

ttcccgcggg gccgtgactg ggcgggcttc agccatgaag accctcatag 200 ccgcctactc cggggtcctg cgcggcgagc gtcaggccga ggctgaccgg 250 agccagcgct ctcacggagg acctgcgctg tcgcgcgagg ggtctgggag 300 atggggcact ggatccagca tecteteege ecteeaggae etettetetg 350 tcacctggct caataggtcc aaggtggaaa agcagctaca ggtcatctca 400 gtgctccagt gggtcctgtc cttccttgta ctgggagtgg cctgcagtgc 450 catcctcatg tacatattct gcactgattg ctggctcatc gctgtgctct 500 acttcacttg gctggtgttt gactggaaca cacccaagaa aggtggcagg 550 aggtcacagt gggtccgaaa ctgggctgtg tggcgctact ttcgagacta 600 ctttcccatc cagctggtga agacacacaa cctgctgacc accaggaact 650 atatetttgg ataccaecce catggtatea tgggeetggg tgeettetge 700 aacttcagca cagaggccac agaagtgagc aagaagttcc caggcatacg 750 gccttacctg gctacactgg caggcaactt ccgaatgcct gtgttgaggg 800 agtacctgat gtctggaggt atctgccctg tcagccggga caccatagac 850 tatttgcttt caaagaatgg gagtggcaat gctatcatca tcgtggtcgg 900 gggtgcggct gagtctctga gctccatgcc tggcaagaat gcagtcaccc 950 tgcggaaccg caagggcttt gtgaaactgg ccctgcgtca tggagctgac 1000 ctggttccca tctactcctt tggagagaat gaagtgtaca agcaggtgat 1050 cttcgaggag ggctcctggg gccgatgggt ccagaagaag ttccagaaat 1100 acattggttt cgccccatgc atcttccatg gtcgaggcct cttctcctcc 1150 gacacctggg ggctggtgcc ctactccaag cccatcacca ctgttgtggg 1200 agageceate accatececa agetggagea eccaacecag caagacateg 1250 acctgtacca caccatgtac atggaggccc tggtgaagct cttcgacaag 1300 cacaagacca agttcggcct cccggagact gaggtcctgg aggtgaactg 1350 agccagcctt cggggccaat tccctggagg aaccagctgc aaatcacttt 1400 tttgctctgt aaatttggaa gtgtcatggg tgtctgtggg ttatttaaaa 1450 aaaaaaaaaaaaaaa 1570

<210> 292 <211> 388 <212> PRT <213> Homo sapiens <400> 292 Met Lys Thr Leu Ile Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu Arg Gln Ala Glu Ala Asp Arg Ser Gln Arg Ser His Gly Gly Pro Ala Leu Ser Arg Glu Gly Ser Gly Arg Trp Gly Thr Gly Ser Ser Ile Leu Ser Ala Leu Gln Asp Leu Phe Ser Val Thr Trp Leu Asn Arg Ser Lys Val Glu Lys Gln Leu Gln Val Ile Ser Val Leu Gln Trp Val Leu Ser Phe Leu Val Leu Gly Val Ala Cys Ser Ala Ile Leu Met Tyr Ile Phe Cys Thr Asp Cys Trp Leu Ile Ala Val Leu Tyr Phe Thr Trp Leu Val Phe Asp Trp Asn Thr Pro Lys Lys Gly 110 115 Gly Arg Arg Ser Gln Trp Val Arg Asn Trp Ala Val Trp Arg Tyr 130 Phe Arg Asp Tyr Phe Pro Ile Gln Leu Val Lys Thr His Asn Leu Leu Thr Thr Arg Asn Tyr Ile Phe Gly Tyr His Pro His Gly Ile Met Gly Leu Gly Ala Phe Cys Asn Phe Ser Thr Glu Ala Thr Glu Val Ser Lys Lys Phe Pro Gly Ile Arg Pro Tyr Leu Ala Thr Leu Ala Gly Asn Phe Arg Met Pro Val Leu Arg Glu Tyr Leu Met Ser Gly Gly Ile Cys Pro Val Ser Arg Asp Thr Ile Asp Tyr Leu Leu Ser Lys Asn Gly Ser Gly Asn Ala Ile Ile Ile Val Val Gly Gly 230 Ala Ala Glu Ser Leu Ser Ser Met Pro Gly Lys Asn Ala Val Thr

250

Leu Arg Asn Arg Lys Gly Phe Val Lys Leu Ala Leu Arg His Gly

260 265

270

Ala Asp Leu Val Pro Ile Tyr Ser Phe Gly Glu Asn Glu Val Tyr 275 280 285

Lys Gln Val Ile Phe Glu Glu Gly Ser Trp Gly Arg Trp Val Gln 290 295 300

Lys Lys Phe Gln Lys Tyr Ile Gly Phe Ala Pro Cys Ile Phe His 305 310 315

Gly Arg Gly Leu Phe Ser Ser Asp Thr Trp Gly Leu Val Pro Tyr 320 325 330

Ser Lys Pro Ile Thr Thr Val Val Gly Glu Pro Ile Thr Ile Pro 335 340 345

Lys Leu Glu His Pro Thr Gln Gln Asp Ile Asp Leu Tyr His Thr 350 355 360

Met Tyr Met Glu Ala Leu Val Lys Leu Phe Asp Lys His Lys Thr $365 \cdot 370$

Lys Phe Gly Leu Pro Glu Thr Glu Val Leu Glu Val Asn $380 \hspace{1cm} 385$

<210> 293

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 293

gctgacctgg ttcccatcta ctcc 24

<210> 294

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 294

cccacagaca cccatgacac ttcc 24

<210> 295

<211> 50

<212> DNA

<213> Artificial

<220>

```
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.
<400> 295
aagaatgaat tgtacaaagc aggtgatctt cgaggagggc tcctggggcc 50
<210> 296
<211> 3060
<212> DNA
<213> Homo sapiens
<400> 296
 gggcggcggg atgggggccg ggggcggcgg gcgccgcact cgctgaggcc 50
ccgacgcagg gccgggccgg gcccagggcc gaggagcgcg gcqqccagaq 100
 cggggccgcg gaggcgacgc cggggacgcc cgcgcgacga gcaggtggcg 150
gcggctgcag gcttgtccag ccggaagccc tgagggcagc tgttcccact 200
ggctctgctg accttgtgcc ttggacggct gtcctcagcg aggggccgtg 250
caccegetee tgageagege catgggeetg etggeettee tgaagaceca 300°
gttcgtgctg cacctgctgg tcggctttgt cttcgtggtg agtggtctgg 350
 tcatcaactt cgtccagctg tgcacgctgg cgctctggcc ggtcagcaag 400
cagctctacc gccgcctcaa ctgccgcctc gcctactcac tctggagcca 450
actggtcatg ctgctggagt ggtggtcctg cacggagtgt acactgttca 500
cggaccagge cacggtagag cgctttggga aggagcacgc agtcatcatc 550
ctcaaccaca acttcgagat cgacttcctc tgtgggtgga ccatgtgtga 600
gcgcttcgga gtgctgggga gctccaaggt cctcgctaag aaggagctgc 650
tctacgtgcc cctcatcggc tggacgtggt actttctgga gattgtgttc 700
tgcaagcgga agtgggagga ggaccgggac accgtggt'cg aagggctgag 750
gcgcctgtcg gactaccccg agtacatgtg gtttctcctg tactgcgagg 800
ggacgcgctt cacggagacc aagcaccgcg ttagcatgga ggtggcggct 850
gctaaggggc ttcctgtcct caagtaccac ctgctgccgc ggaccaaqqq 900
cttcaccacc gcagtcaagt gcctccgggg gacagtcgca gctgtctatg 950
atgtaaccct gaacttcaga ggaaacaaga acccgtccct gctggggatc 1000
ctctacggga agaagtacga ggcggacatg tgcgtgagga gatttcctct 1050
ggaagacatc ccgctggatg aaaaggaagc agctcagtgg cttcataaac 1100
tgtaccagga gaaggacgcg ctccaggaga tatataatca gaagggcatg 1150
```


tttccagggg agcagtttaa gcctgcccgg aggccgtgga ccctcctgaa 1200 cttcctgtcc tgggccacca ttctcctgtc tcccctcttc agttttgtct 1250 tgggcgtctt tgccagcgga tcacctctcc tgatcctgac tttcttgggg 1300 tttgtgggag cagcttcctt tggagttcgc agactgatag gagaatcgct 1350 tgaacctggg aggtggagat tgcagtgagc tgagatggca tcactgtact 1400 ccagcctagg caacagagca agactcagtc tcaaaaaaaa aaaaaaacaa 1450 aaaaacccca gaaattctgg agttgaactg tgtagttact gacatgaaaa 1500 attcactaga ggctgaacag cagatttgag caggcagaaa aaaatcaqca 1550 agcttgaaga tggtaccttg agatttttca ggctaatgaa aaaagaatga 1600 aggaaaatta acagcctcag agacccatgg tgcaccgtca cacaaatcaa 1650 catatgcatg atgagagtcc cagaaggaga ggagagaaag ggtcagaaag 1700 aatggccaca agctgatgaa aaacagtaac ctacccactc aggaagctca 1750 gtgaactcca atgaggatga atatcagaga tccacaccta gatatttcat 1800 aatcaaagtg tcaaatgaca aagaatcttg aaagcagcaa gagatgagca 1850 acttatcttg ttcaaaggat ctttgatcag attaacagct catttctcct 1900 cagaaatcat gggagccagg agatagtggg atgaacactg ttgaaggcaa 1950 aaccttcaac tgtaattatt ggacttttga gtcttagatg gtcctgacct 2000 ctttgtcttc agggacagtt tttcaattta atccctaata acaattagtc 2050 aagctteett gaeetgtagg aaggeetgte tttaggeegg geaeagtgge 2100 ttacacctgt aatcccagca ctttgggagg cccagacggg tggatcattt 2150 ggggtcaggc tgatctcaaa ctcctgagtt caggtgatct gcccgcctca 2200 geeteecaaa gtgttgtgat tgeaggegtg ageeactgeg cetggeegga 2250 atttcttttt aaggctgaat gatgggggcc aggcacgatg gctcacgcct 2300 gtgatcccaa gtagcttgga ttgtaaacat gcaccaccat gcctggctaa 2350 tttttgtatt tttagtagag acgtgttagc caggetggtc tcgatctcct 2400 gacctcaagt gaccacctgc ctcagcctcc caaagtactg ggattacagg 2450 cgtgagccac tgtgcctggc cttgagcatc ttgtgatgtg cttattggcc 2500 atttgtatat cttctatctt ctttggggaa atgtctgttc aagtcctttg 2550

agcetegace teetggetg cagtgatect eccaecteag cetecettgt 2700 agctgtattt ttttgtattt tgtattttgt agetgtagtt tttgtatttt 2750 ttgtggagac agcatteac catgatgece aggetggtet tgaacteetg 2800 ageteaagtg atetgeetge tteageetee caaagtgetg ggattacaga 2850 catgagecac tgeacetgge aaacteecaa aatteaacac acaecacaa 2900 aaaaccacct gatteaaaat gggeagaggg geegggtgtg geeceaacta 2950 ceagggagac tgaagtgga ggategettg ggeatgagaa gtegaggetg 3000 cagtgagteg aggttgteg aetgeattee ageetggaca acagagtgag 3050 accetgtete 3060

ttgttctgtt gcccaggctg gagtacagtg gcacagtctt ggctcactgc 2650

BI

<210> 297 <211> 368

<212> PRT

<213> Homo sapiens

<400> 297

Met Gly Leu Leu Ala Phe Leu Lys Thr Gln Phe Val Leu His Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Val Gly Phe Val Phe Val Val Ser Gly Leu Val Ile Asn Phe 20 25 30

Val Gln Leu Cys Thr Leu Ala Leu Trp Pro Val Ser Lys Gln Leu 35 40 45

Tyr Arg Arg Leu Asn Cys Arg Leu Ala Tyr Ser Leu Trp Ser Gln
50 55 60

Leu Val Met Leu Leu Glu Trp Trp Ser Cys Thr Glu Cys Thr Leu 65 70 75

Phe Thr Asp Gln Ala Thr Val Glu Arg Phe Gly Lys Glu His Ala 80 85 90

Val Ile Ile Leu Asn His Asn Phe Glu Ile Asp Phe Leu Cys Gly
95 100 105

Trp Thr Met Cys Glu Arg Phe Gly Val Leu Gly Ser Ser Lys Val

Leu Ala Lys Lys Glu Leu Leu Tyr Val Pro Leu Ile Gly Trp Thr 125 130 135

Trp Tyr Phe Leu Glu Ile Val Phe Cys Lys Arg Lys Trp Glu Glu 140 145 150

```
Pro Glu Tyr Met Trp Phe Leu Leu Tyr Cys Glu Gly Thr Arg Phe
                 170
                                      175
                                                           180
 Thr Glu Thr Lys His Arg Val Ser Met Glu Val Ala Ala Ala Lys
                 185
                                      190
 Gly Leu Pro Val Leu Lys Tyr His Leu Leu Pro Arg Thr Lys Gly
                 200
                                      205
                                                           210
 Phe Thr Thr Ala Val Lys Cys Leu Arg Gly Thr Val Ala Ala Val
 Tyr Asp Val Thr Leu Asn Phe Arg Gly Asn Lys Asn Pro Ser Leu
                 230
                                      235
                                                          240
 Leu Gly Ile Leu Tyr Gly Lys Lys Tyr Glu Ala Asp Met Cys Val
 Arg Arg Phe Pro Leu Glu Asp Ile Pro Leu Asp Glu Lys Glu Ala
 Ala Gln Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Leu Gln
 Glu Ile Tyr Asn Gln Lys Gly Met Phe Pro Gly Glu Gln Phe Lys
                 290
                                      295
 Pro Ala Arg Arg Pro Trp Thr Leu Leu Asn Phe Leu Ser Trp Ala
                                      310
 Thr Ile Leu Leu Ser Pro Leu Phe Ser Phe Val Leu Gly Val Phe
                 320
                                      325
                                                          330
 Ala Ser Gly Ser Pro Leu Leu Ile Leu Thr Phe Leu Gly Phe Val
                                      340
Gly Ala Ala Ser Phe Gly Val Arg Arg Leu Ile Gly Glu Ser Leu
                 350
                                      355
                                                          360
Glu Pro Gly Arg Trp Arg Leu Gln
                 365
<210> 298
<211> 24
<213> Artificial
```

- <212> DNA
- <220>
- <221> Artificial Sequence
- <222> 1-24
- <223> Synthetic construct.
- <400> 298
- cttcctctgt gggtggacca tgtg 24
- <210>`299
- <211> 21
- <212> DNA

```
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-21
<223> Synthetic construct.
<400> 299
gccacctcca tgctaacgcg g 21
<210> 300
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 300
ccaaggtcct cgctaagaag gagctgctct acgtgcccct catcg 45
<210> 301
<211> 1334
<212> DNA
<213> Homo sapiens
<400> 301
gatattettt atttttaaga atetgaagta etatgeatea eteeeteeaa 50
tgtcctgggg cagccaccag gcatattcat ctttgtgtgt gtttttcttt 100
tgctttagca ctggggcact tcttgcttat ttctttggta ggaaaggggc 150
tcagtttgtc ttgtggggtt ggtggcaggc aggccggctt acgcctgata 200
cggccctggg ttagaaggga agggaagata aacttttata caaatgggga 250
tagctggggt ctgagacctg cttcctcagt aaaattcctg ggatctgcct 300
ataccttctt ttctctaacc tggcataccc tgcttaaagc ctctcagggc 350
ttctctctgt tcttaggatc aaagtattta gagctacaag agccctcatg 400
gtctggcccc tgccccctg gccagcttca ttgtacatgt ggtgttctct 450
tgtcgttcct gtaatgtggt atgccatggg gtctttgcac aagcctttcc 500
tetttggetg gacactgtte eetgeeece ceatactett cetaettaat 550
atgtagtcat cctgcagatt tcaattctaa catcattttc tccagggatc 600
ctggcctgac agaatctcat cttgtttaat gctctcataa gaccacttgt 650
ttcccttttg cagcacttgc cactcagttg tatctttatg tgcgtttgtg 700
```

gttgtatggg ttgtgtctgt tccccagaat gcccagctct gagctgcgtg 750

BI

agggtcaagg gcattgctgt gcctgccagg tatagtgcct acatgtggtg 800 ggtgctcatg ttttagagac taaatggagg aggagatgag gaaaagattg 850 aaatctctca gttcaccaga tggtgtaggg cccagcattg taaattcaca 900 cgttgactgt gcttgtgaat tatctgggga tgcaggtcct gattcagtag 950 gcccaggttg ggcatctcta acaaactccc acgtgatgct gatgctggtc 1000 ctatgaacta tactaaatag taagaatcta tggagccagg ctgggcatgg 1050 tggctcacac ctatgatccc agcactttgg gaggctgagg caggctgatc 1100 acctggagtc aggattcaa gactagcctg gccaacatgg tggaacccca 1150 tctgtactaa aaatacacaa attagctggg catggtggca catgctgta 1200 gtcccagcta cttgggaggc tgaagcaaga gaatcgcttg aacctgggag 1250 gcggaggttg cagtgagccg agatcaggcc actgtattcc aaccagggtg 1300 acagagtgag actctatgtc caaaaaaaaa aaaa 1334

<210> 302

<211> 143

<212> PRT

<213> Homo sapiens

<400> 302

Met His His Ser Leu Gln Cys Pro Gly Ala Ala Thr Arg His Ile 1 5 10 15

His Leu Cys Val Cys Phe Ser Phe Ala Leu Ala Leu Gly His Phe 20 25 30

Leu Leu Ile Ser Leu Val Gly Lys Gly Leu Ser Leu Ser Cys Gly 35 40 45

Val Gly Gly Arg Gln Ala Gly Leu Arg Leu Ile Arg Pro Trp Val 50 . 55 . 60

Arg Arg Glu Gly Lys Ile Asn Phe Tyr Thr Asn Gly Asp Ser Trp
65 70 75

Gly Leu Arg Pro Ala Ser Ser Val Lys Phe Leu Gly Ser Ala Tyr 80 85 90

Thr Phe Phe Ser Leu Thr Trp His Thr Leu Leu Lys Ala Ser Gln 95 100 105

Gly Phe Ser Leu Phe Leu Gly Ser Lys Tyr Leu Glu Leu Gln Glu
110 115 120

Pro Ser Trp Ser Gly Pro Cys Pro Pro Gly Gln Leu His Cys Thr 125 130 135

Cys Gly Val Leu Leu Ser Phe Leu

```
<210> 303
<211> 1768
<212> DNA
<213> Homo sapiens
```

<400> 303

aaggtgctgt gattataggt gtaagccacc gtgtctggcc tctgaacaac 100 tttttcagca actaaaaaag ccacaggagt tgaactgcta ggattctgac 150 tatgctgtgg tggctagtgc tcctactcct acctacatta aaatctgttt 200 tttgttctct tgtaactagc ctttaccttc ctaacacaga ggatctgtca 250 ctgtggctct ggcccaaacc tgaccttcac tctggaacga gaacagaggt 300 ttctacccac accgtcccct cgaagccggg gacagcctca ccttgctggc 350 ctctcgctgg agcagtgccc tcaccaactg tctcacgtct ggaggcactg 400 actcgggcag tgcaggtagc tgagcctctt ggtagctgcg gctttcaagg 450 tgggccttgc cctggccgta gaagggattg acaagcccga agatttcata 500 ggcgatggct cccactgccc aggcatcagc cttgctgtag tcaatcactg 550 ccctggggcc aggacggcc gtggacacct gctcagaagc agtgggtgag 600 acatcacgct gcccgcccat ctaacctttt catgtcctgc acatcacctg 650 atccatgggc taatctgaac tctgtcccaa ggaacccaga gcttgagtga 700 gctgtggctc agacccagaa ggggtctgct tagaccacct ggtttatgtg 750 acaggacttg cattetectg gaacatgagg gaacgeegga ggaaagcaaa 800 gtggcaggga aggaacttgt gccaaattat gggtcagaaa agatggaggt 850 gttgggttat cacaaggcat cgagtctcct gcattcagtg gacatgtggg 900 ggaagggctg ccgatggcgc atgacacact cgggactcac ctctggggcc 950 atcagacage cgtttccgcc ccgatccacg taccagctgc tgaagggcaa 1000 ctgcaggccg atgctctcat cagccaggca gcagccaaaa tctgcgatca 1050 ccagccaggg gcagccgtct gggaaggagc aagcaaagtg accatttctc 1100 ctcccctcct tccctctgag aggccctcct atgtccctac taaagccacc 1150

agcaagacat agctgacagg ggctaatggc tcagtgttgg cccaggaggt 1200

cagcaaggcc tgagagctga tcagaagggc ctgctgtgcg aacacggaaa 1250

ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc 50

tgcctccagt aagcacaggc tgcaaaatcc ccaggcaaag gactgtgtgg 1300 ctcaatttaa atcatgttct agtaattgga gctgtcccca agaccaaagg 1350 agctagagct tggttcaaat gatctccaag ggcccttata ccccaggaga 1400 ctttgatttg aatttgaaac cccaaatcca aacctaagaa ccaggtgcat 1450 taagaatcag ttattgccgg gtgtggtggc ctgtaatgcc aacattttgg 1500 gaggccgagg cgggtagatc acctgaggtc aggagttcaa gaccagcctg 1550 gccaacatgg tgaaacccct gtctctacta aaaatacaaa aaaactagcc 1600 aggcatggtg gtgtgtgcct gtatcccagc tactcgggag gctgagacag 1650 gagaattact tgaacctgg aggtgaagga ggctgagaca ggagaatcac 1700 ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaag 1750 aattatggtt atttgtaa 1768

(b)

```
<210> 304
```

<400> 304

Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu 20 25 30

Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly 35 40 45

Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly 50 55 60

Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro 65 . 70 " 75

Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala 80 85 90

Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly
95 100 105

Arg Arg Arg Asp

<210> 305

<211> 989

<212> DNA

<213> Homo sapiens

<400> 305

<211> 109

<212> PRT

<213> Homo sapiens

```
gegggeeege qagteegaga cetgteecag qageteeage teaegtgace 50
tgtcactqcc tcccqccqcc tcctqcccqc qccatqaccc aqccqqtqcc 100
ccggctctcc gtgcccgccg cgctggccct gggctcagcc gcactgggcg 150
ccgccttcgc cactggcctc ttcctgggga ggcggtgccc cccatggcga 200
ggccggcgag agcagtgcct gcttcccccc gaggacagcc gcctgtggca 250
gtatettetg agecgeteca tgegggagea eeeggegetg egaageetga 300
ggctgctgac cctggagcag ccgcaggggg attctatgat gacctgcgag 350
caggeceage tettggecaa cetggegegg etcatecagg ceaagaagge 400
gctggacctg ggcaccttca cggctactc cgccctggcc ctggccctgg 450
cgctgcccgc ggacgggcgc gtggtgacct gcgaggtgga cgcgcagccc 500
ccggagctgg gacggcccct gtggaggcag gccgaggcgg agcacaagat 550
cgacctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcgg 600
cgggcgaggc cggcaccttc gacgtggccg tggtggatgc ggacaaggag 650
aactgctccg cctactacga gcgctgcctg cagctgctgc gacccggagg 700
catcetegee gteeteagag teetgtggeg egggaaggtg etgeaacete 750
cqaaaqqqqa cqtqqcqqcc qaqtqtqtqc qaaacctaaa cqaacqcatc 800
eggegggacg teagggteta cateageete etgeceetgg gegatggact 850
caccttggcc ttcaagatct agggctggcc cctagtgagt gggctcgagg 900
gagggttqcc tgggaacccc aggaattgac cctgagtttt aaattcgaaa 950
ataaagtggg gctgggacac aaaaaaaaaa aaaaaaaa 989
```

<210> 306

<211> 262

<212> PRT

<213> Homo sapiens

<400> 306

Met Thr Gln Pro Val Pro Arg Leu Ser Val Pro Ala Ala Leu Ala 1 5 10 15

Leu Gly Ser Ala Ala Leu Gly Ala Ala Phe Ala Thr Gly Leu Phe $20 \\ 25 \\ 30$

Leu Gly Arg Arg Cys Pro Pro Trp Arg Gly Arg Arg Glu Gln Cys
35 40 45

Leu Leu Pro Pro Glu Asp Ser Arg Leu Trp Gln Tyr Leu Leu Ser 50 55 60

Arg Ser Met Arg Glu His Pro Ala Leu Arg Ser Leu Arg Leu Leu 65 70 Thr Leu Glu Gln Pro Gln Gly Asp Ser Met Met Thr Cys Glu Gln Ala Gln Leu Leu Ala Asn Leu Ala Arg Leu Ile Gln Ala Lys Lys 95 100 105 Ala Leu Asp Leu Gly Thr Phe Thr Gly Tyr Ser Ala Leu Ala Leu 115 Ala Leu Ala Leu Pro Ala Asp Gly Arg Val Val Thr Cys Glu Val 125 130 135 Asp Ala Gln Pro Pro Glu Leu Gly Arg Pro Leu Trp Arg Gln Ala Glu Ala Glu His Lys Ile Asp Leu Arg Leu Lys Pro Ala Leu Glu 160 Thr Leu Asp Glu Leu Leu Ala Ala Gly Glu Ala Gly Thr Phe Asp Val Ala Val Val Asp Ala Asp Lys Glu Asn Cys Ser Ala Tyr Tyr 185 Glu Arg Cys Leu Gln Leu Leu Arg Pro Gly Gly Ile Leu Ala Val Leu Arg Val Leu Trp Arg Gly Lys Val Leu Gln Pro Pro Lys Gly 215 225 Asp Val Ala Ala Glu Cys Val Arg Asn Leu Asn Glu Arg Ile Arg Arg Asp Val Arg Val Tyr Ile Ser Leu Leu Pro Leu Gly Asp Gly 245 Leu Thr Leu Ala Phe Lys Ile

260

<210> 307

<211> 2272

<212> DNA

<213> Homo sapiens

<400> 307

ccgccgccgc agccgctacc gccgctgcag ccgctttccg cggcctgggc 50 ctctcgccgt cagcatgcca cacgccttca agcccgggga cttggtgttc 100 gctaagatga agggctaccc tcactggcct gccaggatcg acgacatcgc 150 ggatggcgcc gtgaagcccc cacccaacaa gtaccccatc tttttctttg 200 gcacacacga aacagcette etgggaceca aggacetgtt eccetacgae 250

ggcagtgacg ctgacgagga cgatgaggac cggggggtca tggccgtcac 450 agcggtaacc gccacagctg ccagcgacag gatggagagc gactcagact 500 cagacaagag tagcgacaac agtggcctga agaggaagac gcctgcgcta 550 aagatgtcgg tctcgaaacg agcccgaaag gcctccagcg acctggatca 600 ggccagcgtg tccccatccg aagaggagaa ctcggaaagc tcatctgagt 650 cggagaagac cagcgaccag gacttcacac ctgagaagaa agcagcggtc 700 cgggcgccac ggaggggccc tctgggggga cggaaaaaaa agaaggcgcc 750 gtcagcctcc gactccgact ccaaggccga ttcggacggg gccaagcctg 800 agccggtggc catggcgcgg tcggcgtcct cctcctcctc ttcctcctcc 850 tecteegact ecgatgtgte tgtgaagaag ceteegaggg geaggaagee 900 agcggagaag cctctcccga agccgcgagg gcggaaaccg aagcctgaac 950 ggcctccgtc cagctccagc agtgacagtg acagcgacga ggtggaccgc 1000 atcagtgagt ggaagcggcg ggacgaggcg cggaggcgcg agctggaggc 1050 ccggcggcgg cgagagcagg aggaggagct gcggcgcctg cgggagcagg 1100 agaaggagga gaaggagcgg aggcgcgagc gggccgaccg cggggaggct 1150 gageggggea geggeggeag eageggggae gageteaggg aggaegatga 1200 geoegteaag aageggggae geaagggeeg gggeeggggt ceeeegteet 1250 cctctgactc cgagcccgag gccgagctgg agagagaggc caagaaatca 1300 gcgaagaagc cgcagtcctc aagcacagag cccgccagga aacctggcca 1350 gaaggagaag agagtgegge eegaggagaa geaacaagee aageeegtga 1400 aggtggagcg gacccggaag cggtccgagg gcttctcgat ggacaggaag 1450

gtagagaaga agaaagagcc ctccgtggag gagaagctgc agaagctgca 1500

cagtgagatc aagtttgccc taaaggtcga cagcccggac gtgaagaggt 1550

gcctgaatgc cctagaggag ctgggaaccc tgcaggtgac ctctcagatc 1600

ctccagaaga acacagacgt ggtggccacc ttgaagaaga ttcgccgtta 1650

caaagcgaac aaggacgtaa tggagaaggc agcagaagtc tatacccggc 1700

aaatgtaaag acaagtacgg gaagcccaac aagaggaaag gcttcaatga 300

agggctgtgg gagatccaga acaaccccca cgccagctac agcgcccctc 350

cgccagtgag ctcctccgac agcgaggccc ccgaggccaa ccccgccgac 400

teaagtegeg ggteetegge ceaaagateg aggeggtgea gaaagtgaae 1750
aaggetggga tggagaagga gaaggeegaa gagaagetgg ceggggagga 1800
getggeeggg gaggaggeee ceeaggagaa ggeggaggae aageeeagea 1850
cegatetete ageeeeagtg aatggegagg ceacateaca gaagggggag 1900
ageeggaggg acaaggagea egaggaggt egggaetegg aggagggee 1950
aaggtgtgge teetetgaag acetgeaega eagegtaegg gagggteeeg 2000
acetggaeag geetgggage gaeeggeagg ageeggagag ggeaegggg 2050
gaeteggagg ceetggaega ggagagetga geeggggea geeaggeea 2100
geeeeegee gageteagge tgeeeetete etteeegge tegeaggaga 2150
geagageaga gaaetgtggg gaaegetgtg etgttgtat ttgtteeett 2200
gggtttttt tteetgeeta atttetgtga ttteeaacea acatgaaatg 2250
actataaacg gtttttaat ga 2272

- <210> 308
- <211> 671
- <212> PRT
- <213> Homo sapiens
- <400> 308
- Met Pro His Ala Phe Lys Pro Gly Asp Leu Val Phe Ala Lys Met
 1 5 10 15
- Lys Gly Tyr Pro His Trp Pro Ala Arg Ile Asp Asp Ile Ala Asp 20 25 30
- Gly Ala Val Lys Pro Pro Pro Asn Lys Tyr Pro Ile Phe Phe Ass 40 45
- Gly Thr His Glu Thr Ala Phe Leu Gly Pro Lys Asp Leu Phe Pro 50 55 60
- Tyr Asp Lys Cys Lys Asp Lys Tyr Gly Lys Pro Asn Lys Arg Lys 65 70 75
- Gly Phe Asn Glu Gly Leu Trp Glu Ile Gln Asn Asn Pro His Ala 80 85 90
- Ser Tyr Ser Ala Pro Pro Pro Val Ser Ser Ser Asp Ser Glu Ala 95 100 105
- Pro Glu Ala Asn Pro Ala Asp Gly Ser Asp Ala Asp Glu Asp Asp 110 115 120
- Glu Asp Arg Gly Val Met Ala Val Thr Ala Val Thr Ala Thr Ala 125
- Ala Ser Asp Arg Met Glu Ser Asp Ser Asp Ser Asp Lys Ser Ser

Asp Asn Ser Gly Leu Lys Arg Lys Thr Pro Ala Leu Lys Met Ser Val Ser Lys Arg Ala Arg Lys Ala Ser Ser Asp Leu Asp Gln Ala Ser Val Ser Pro Ser Glu Glu Glu Asn Ser Glu Ser Ser Glu 190 Ser Glu Lys Thr Ser Asp Gln Asp Phe Thr Pro Glu Lys Lys Ala Ala Val Arg Ala Pro Arg Gly Pro Leu Gly Gly Arg Lys Lys Lys Lys Ala Pro Ser Ala Ser Asp Ser Asp Ser Lys Ala Asp Ser Asp Gly Ala Lys Pro Glu Pro Val Ala Met Ala Arg Ser Ala Ser Ser Ser Ser Ser Ser Ser Ser Ser Asp Ser Asp Val Ser Val Lys Lys Pro Pro Arg Gly Arg Lys Pro Ala Glu Lys Pro Leu Pro Lys Pro Arg Gly Arg Lys Pro Lys Pro Glu Arg Pro Pro Ser Ser Ser Ser Ser Asp Ser Asp Glu Val Asp Arg Ile Ser Glu 305 310 315 Trp Lys Arg Arg Asp Glu Ala Arg Arg Arg Glu Leu Glu Ala Arg Arg Arg Arg Glu Glu Glu Glu Leu Arg Arg Leu Arg Glu Gln 345 Glu Lys Glu Glu Lys Glu Arg Arg Glu Arg Ala Asp Arg Gly Glu Ala Glu Arg Gly Ser Gly Gly Ser Ser Gly Asp Glu Leu Arg Glu Asp Asp Glu Pro Val Lys Lys Arg Gly Arg Lys Gly Arg Gly Arg Gly Pro Pro Ser Ser Ser Asp Ser Glu Pro Glu Ala Glu Leu Glu Arg Glu Ala Lys Lys Ser Ala Lys Lys Pro Gln Ser Ser Thr Glu Pro Ala Arg Lys Pro Gly Gln Lys Glu Lys Arg Val Arg 425 430

Arg Lys Arg Ser Glu Gly Phe Ser Met Asp Arg Lys Val Glu Lys 460 Lys Lys Glu Pro Ser Val Glu Glu Lys Leu Gln Lys Leu His Ser 470 475 Glu Ile Lys Phe Ala Leu Lys Val Asp Ser Pro Asp Val Lys Arg 485 490 Cys Leu Asn Ala Leu Glu Glu Leu Gly Thr Leu Gln Val Thr Ser 500 505 Gln Ile Leu Gln Lys Asn Thr Asp Val Val Ala Thr Leu Lys Lys 515 Ile Arg Arg Tyr Lys Ala Asn Lys Asp Val Met Glu Lys Ala Ala 535 530 Glu Val Tyr Thr Arg Leu Lys Ser Arg Val Leu Gly Pro Lys Ile 550 Glu Ala Val Gln Lys Val Asn Lys Ala Gly Met Glu Lys Glu Lys Ala Glu Glu Lys Leu Ala Gly Glu Glu Leu Ala Gly Glu Glu Ala Pro Gln Glu Lys Ala Glu Asp Lys Pro Ser Thr Asp Leu Ser Ala 595 Pro Val Asn Gly Glu Ala Thr Ser Gln Lys Gly Glu Ser Ala Glu

Pro Glu Glu Lys Gln Gln Ala Lys Pro Val Lys Val Glu Arg Thr

445

450

480

510

440

Cys Gly Ser Ser Glu Asp Leu His Asp Ser Val Arg Glu Gly Pro

Asp Lys Glu His Glu Glu Gly Arg Asp Ser Glu Glu Gly Pro Arg

Asp Leu Asp Arg Pro Gly Ser Asp Arg Gln Glu Arg Glu Arg Ala 650 655 660

Arg Gly Asp Ser Glu Ala Leu Asp Glu Glu Ser 665

620

<400> 309

gttggttctc ctggatcttc accttaccaa ctgcagatct tqqqactcat 50

cagcctcaat aattatatta aattaacacc atttgaaaga gaacattgtt 100

<210> 309

<211> 3871

<212> DNA

<213> Homo sapiens

ttcatcatga atgctaataa agatgaaaga cttaaagcca gaagccaaga 150 ttttcacctt tttcctgctt tgatgatgct aagcatgacc atgttgtttc 200 ttccagtcac tggcactttg aagcaaaata ttccaagact caagctaacc 250 tacaaagact tgctgctttc aaatagctgt attccctttt tgggttcatc 300 agaaggactg gattttcaaa ctcttctctt agatgaggaa agaggcaggc 350 tgctcttggg agccaaagac cacatctttc tactcagtct ggttgactta 400 aacaaaaatt ttaagaagat ttattggcct gctgcaaagg aacgggtgga 450 attatgtaaa ttagctggga aagatgccaa tacagaatgt gcaaatttca 500 tcagagtact tcagccctat aacaaaactc acatatatgt gtgtggaact 550 ggagcatttc atccaatatg tgggtatatt gatcttggag tctacaagga 600 ggatattata ttcaaactag acacacataa tttggagtct ggcagactga 650 aatgtccttt cgatcctcag cagccttttg cttcagtaat gacagatgag 700 tacctctact ctggaacagc ttctgatttc cttggcaaag atactgcatt 750 cactcgatcc cttgggccta ctcatgacca ccactacatc agaactgaca 800 tttcagagca ctactggctc aatggagcaa aatttattgg aactttcttc 850 ataccagaca cctacaatcc agatgatgat aaaatatatt tcttctttcg 900 tgaatcatct caagaaggca gtacctccga taaaaccatc ctttctcgag 950 ttggaagagt ttgtaagaat gatgtaggag gacaacgcag cctgataaac 1000 aagtggacga cttttcttaa ggccagactg atttgctcaa ttcctggaag 1050 tgatggggca gatacttact ttgatgagct tcaagatatt tatttactcc 1100 ccacaagaga tgaaagaaat cctgtagtat atggagtctt tactacaacc 1150 agctccatct tcaaaggctc tgctgtttgt gtgtatagca tggctgacat 1200 cagageagtt tttaatggtc catatgctca taaqqaaaqt gcaqaccatc 1250 gttgggtgca gtatgatggg agaattcctt atccacggcc tggtacatgt 1300 ccaagcaaaa cctatgaccc actgattaag tccacccgag attttccaga 1350 tgatgtcatc agtttcataa agcggcactc tgtgatgtat aagtccgtat 1400 acccagttgc aggaggacca acgttcaaga gaatcaatgt ggattacaga 1450 ctgacacaga tagtggtgga tcatgtcatt gcagaagatg gccagtacga 1500 tgtaatgttt cttggaacag acattggaac tgtcctcaaa gttgtcagca 1550

tttcaaagga aaagtggaat atggaagagg tagtgctgga ggagttgcag 1600 atattcaagc actcatcaat catcttgaac atggaattgt ctctgaagca 1650 gcaacaattg tacattggtt cccgagatgg attagttcag ctctccttgc 1700 acagatgcga cacttatggg aaagcttgcg cagactgttg tcttgccaga 1750 gacccctact gtgcctggga tggaaatgca tgctctcgat atgctcctac 1800 ttctaaaagg agagctagac gccaagatgt aaaatatggc gacccaatca 1850 cccagtgctg ggacatcgaa gacagcatta gtcatgaaac tgctgatgaa 1900 aaggtgattt ttggcattga atttaactca acctttctgg aatgtatacc 1950 taaatcccaa caagcaacta ttaaatggta tatccagagg tcaggggatg 2000 agcatcgaga ggagttgaag cccgatgaaa gaatcatcaa aacggaatat 2050 gggctactga ttcgaagttt gcagaagaag gattctggga tgtattactg 2100 caaagcccag gagcacactt tcatccacac catagtgaag ctgactttga 2150 atgtcattga gaatgaacag atggaaaata cccagagggc agagcatgag 2200 gaggggcagg tcaaggatct attggctgag tcacggttga gatacaaaga 2250 ctacatccaa atccttagca gcccaaactt cagcctcgac cagtactgcg 2300 aacagatgtg gcacagggag aagcggagac agagaaacaa ggggggccca 2350 aagtggaagc acatgcagga aatgaagaag aaacgaaatc gaagacatca 2400 cagagacctg gatgagctcc ctagagctgt agccacgtag ttttctactt 2450 aatttaaaga aaagaattcc ttacctataa aaacattgcc ttctgttttg 2500 tatatccctt atagtaattc ataaatgctt cccatggagt tttgctaagg 2550 cacaagacaa taatctgaat aagacaatat gtgatgaata taagaaaggg 2600 caaaaaattc atttgaacca gttttccaag aacaaatctt gcacaagcaa 2650 agtataagaa ttatcctaaa aatagggggt ttacagttgt aaatgtttta 2700 tgttttgagt tttggaattt attgtcatgt aaatagttga gctaagcaag 2750 ccccgaattt gatagtgtat aaggtgcttt attccctcga atgtccatta 2800 agcatggaat ttaccatgca gttgtgctat gttcttatga acagatatat 2850 cattectatt gagaaccage tacettgtgg tagggaataa gaggteagae 2900 acaaattaag acaactccca ttatcaacag gaactttctc agtgagccat 2950 tcactcctgg agaatggtat aggaatttgg agaggtgcat tatttctttc 3000

B1

tggccactgg ggttaaattt agtgtactac aacattgatt tactgaaggg 3050 cactaatgtt tcccccagga tttctattga ctagtcagga gtaacaggtt 3100 cacagagaga agttggtgct tagttatgtg ttttttagag tatatactaa 3150 gctctacagg gacagaatgc ttaataaata ctttaataag atatgggaaa 3200 atattttaat aaaacaagga aaacataatg atgtataatg catcctgatg 3250 ggaaggcatg cagatgggat ttgttagaag acagaaggaa agacagccat 3300 aaattctggc tttggggaaa actcatatcc ccatgaaaag gaagaacaat 3350 cacaaataaa gtgagagtaa tgtaatggag ctcttttcac tagggtataa 3400 gtagctgcca atttgtaatt catctgttaa aaaaaatcta gattataaca 3450 aactgctagc aaaatctgag gaaacataaa ttcttctgaa gaatcatagg 3500 aagagtagac attttattta taaccaatga tatttcagta tatattttct 3550 ctcttttaaa aaatatttat catactctgt atattattc tttttactgc 3600 ctttattctc tcctgtatat tggattttgt gattatattt gagtgaatag 3650 gagaaaacaa tatataacac acaqaqaatt aagaaaatqa catttctqqq 3700 gagtggggat atatatttgt tqaataacag aacgagtgta aaattttaac 3750 aacggaaagg gttaaattaa ctctttgaca tcttcactca accttttctc 3800 attgctgagt taatctgttg taattgtagt attgtttttg taatttaaca 3850 ataaataagc ctgctacatg t 3871

<210> 310

<211> 777

<212> PRT

<213> Homo sapiens

<400> 310

Met Asn Ala Asn Lys Asp Glu Arg Leu Lys Ala Arg Ser Gln Asp 1 5 10 15

Phe His Leu Phe Pro Ala Leu Met Met Leu Ser Met Thr Met Leu 20 25 30

Phe Leu Pro Val Thr Gly Thr Leu Lys Gln Asn Ile Pro Arg Leu 35 40 45

Lys Leu Thr Tyr Lys Asp Leu Leu Ser Asn Ser Cys Ile Pro 50 55 60

Phe Leu Gly Ser Ser Glu Gly Leu Asp Phe Gln Thr Leu Leu Leu 65 70 75

Asp Glu Glu Arg Gly Arg Leu Leu Leu Gly Ala Lys Asp His Ile

Phe Leu Leu Ser Leu Val Asp Leu Asn Lys Asn Phe Lys Lys Ile 95 100 Tyr Trp Pro Ala Ala Lys Glu Arg Val Glu Leu Cys Lys Leu Ala Gly Lys Asp Ala Asn Thr Glu Cys Ala Asn Phe Ile Arg Val Leu 125 130 Gln Pro Tyr Asn Lys Thr His Ile Tyr Val Cys Gly Thr Gly Ala Phe His Pro Ile Cys Gly Tyr Ile Asp Leu Gly Val Tyr Lys Glu Asp Ile Ile Phe Lys Leu Asp Thr His Asn Leu Glu Ser Gly Arg Leu Lys Cys Pro Phe Asp Pro Gln Gln Pro Phe Ala Ser Val Met Thr Asp Glu Tyr Leu Tyr Ser Gly Thr Ala Ser Asp Phe Leu Gly Lys Asp Thr Ala Phe Thr Arg Ser Leu Gly Pro Thr His Asp His His Tyr Ile Arg Thr Asp Ile Ser Glu His Tyr Trp Leu Asn Gly Ala Lys Phe Ile Gly Thr Phe Phe Ile Pro Asp Thr Tyr Asn Pro Asp Asp Asp Lys Ile Tyr Phe Phe Phe Arg Glu Ser Ser Gln Glu Gly Ser Thr Ser Asp Lys Thr Ile Leu Ser Arg Val Gly Arg Val Cys Lys Asn Asp Val Gly Gly Gln Arg Ser Leu Ile Asn Lys Trp Thr Thr Phe Leu Lys Ala Arg Leu Ile Cys Ser Ile Pro Gly Ser Asp Gly Ala Asp Thr Tyr Phe Asp Glu Leu Gln Asp Ile Tyr Leu Leu Pro Thr Arg Asp Glu Arg Asn Pro Val Val Tyr Gly Val Phe 345 Thr Thr Thr Ser Ser Ile Phe Lys Gly Ser Ala Val Cys Val Tyr Ser Met Ala Asp Ile Arg Ala Val Phe Asn Gly Pro Tyr Ala His

BI

Lys Glu Ser Ala Asp His Arg Trp Val Gln Tyr Asp Gly Arg Ile 380 Pro Tyr Pro Arg Pro Gly Thr Cys Pro Ser Lys Thr Tyr Asp Pro Leu Ile Lys Ser Thr Arg Asp Phe Pro Asp Asp Val Ile Ser Phe 410 415 420 Ile Lys Arg His Ser Val Met Tyr Lys Ser Val Tyr Pro Val Ala 425 430 Gly Gly Pro Thr Phe Lys Arg Ile Asn Val Asp Tyr Arg Leu Thr 440 445 450 Gln Ile Val Val Asp His Val Ile Ala Glu Asp Gly Gln Tyr Asp Val Met Phe Leu Gly Thr Asp Ile Gly Thr Val Leu Lys Val Val Ser Ile Ser Lys Glu Lys Trp Asn Met Glu Glu Val Val Leu Glu Glu Leu Gln Ile Phe Lys His Ser Ser Ile Ile Leu Asn Met Glu Leu Ser Leu Lys Gln Gln Gln Leu Tyr Ile Gly Ser Arg Asp Gly Leu Val Gln Leu Ser Leu His Arg Cys Asp Thr Tyr Gly Lys Ala Cys Ala Asp Cys Cys Leu Ala Arg Asp Pro Tyr Cys Ala Trp Asp Gly Asn Ala Cys Ser Arg Tyr Ala Pro Thr Ser Lys Arg Arg Ala Arg Arg Gln Asp Val Lys Tyr Gly Asp Pro Ile Thr Gln Cys Trp Asp Ile Glu Asp Ser Ile Ser His Glu Thr Ala Asp Glu Lys Val 590 595 600 Ile Phe Gly Ile Glu Phe Asn Ser Thr Phe Leu Glu Cys Ile Pro 610 Lys Ser Gln Gln Ala Thr Ile Lys Trp Tyr Ile Gln Arg Ser Gly 630 Asp Glu His Arg Glu Glu Leu Lys Pro Asp Glu Arg Ile Ile Lys Thr Glu Tyr Gly Leu Leu Ile Arg Ser Leu Gln Lys Lys Asp Ser Gly Met Tyr Tyr Cys Lys Ala Gln Glu His Thr Phe Ile His Thr

675

Ile Val Lys Leu Thr Leu Asn Val Ile Glu Asn Glu Gln Met Glu 680 685 690

670

Asn Thr Gln Arg Ala Glu His Glu Glu Gly Gln Val Lys Asp Leu
-695 700 705

Leu Ala Glu Ser Arg Leu Arg Tyr Lys Asp Tyr Ile Gln Ile Leu 710 715 720

Ser Ser Pro Asn Phe Ser Leu Asp Gln Tyr Cys Glu Gln Met Trp
725 730 735

His Arg Glu Lys Arg Arg Gln Arg Asn Lys Gly Gly Pro Lys Trp
740 745 750

Lys His Met Gln Glu Met Lys Lys Lys Arg Asn Arg Arg His His 755 760 765

Arg Asp Leu Asp Glu Leu Pro Arg Ala Val Ala Thr 770 775

<210> 311

<211> 25

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-25

<223> Synthetic construct.

<400> 311

caacgcagcc gtgataaaca agtgg 25

<210> 312

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 312

gcttggacat gtaccaggcc gtgg 24

<210> 313

<211> 45

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-45

<223> Synthetic construct.

<400> 313 ggccagactg atttgctcaa ttcctggaag tgatggggca gatac 45 <210> 314 <211> 3934 <212> DNA <213> Homo sapiens <400> 314 ccctgacctc cctgagccac actgagctgg aagccgcaga ggtcatcctg 50 gagcatgccc accgcgggga gcagacaacc tcccaggtaa gctgggagca 100 ctcagcagtt tcagccagca gggactgatc aggtgtgtgt cctggagtgg 200 ggagcagaag gcgtggctgg caagagtggc ctggagaaag aggttcagcg 250 cttgaccagc cgagctgccc gtgactacaa gatccagaac catgggcatc 300 gggtgaggtg ggggggcaca ggtqtcatqt qcaccttctt qtctcaqcaa 350 gaagagctga gagaggggat cttggagcca ttgagggtgt catggagcta 400 cagaggggag ggaaaggtat tttaaggtaa cagtgtggca caatagttaa 450 gagcacagtt tttggagcta gaccgacata ggttcaaatt ctcttctgtt 500 gcttcctagt tctgtagccc caggtaaggg agtgacttaa cctctctgga 550 cttcaatttc ctcatcacta aagtagggcc aataatagca cccacctcat 600 agggaagatt aaatgacata atgtatgtga tgcaactagc aaagtaccag 650 teccatagta agteatgeee cacagtattt ecaeceaece etgttetetg 700 ccttcccaac caggtactgc aacgactgga gcagaggcgg cagcaggctt 750 cagageggga ggetecaage atagaacaga ggttacagga agtgegagag 800 agcatecgee gggeacaggt gagecaggtg aagggggetg eeeggetgge 850 cctgctgcag ggggctggct tagatgtgga gcgctggctg aagccagcca 900 tgacccaggc ccaggatgag gtggagcagg agcggcggct cagtgaggct 950

cggctgtccc agagggacct ctctccaacc gctgaggatg ctgagctttc 1000

tgactttgag gaatgtgagg agacgggaga gctctttgag gagcctgccc 1050

cccaagccct ggccacgagg gccctcccct gccctgcaca cgtggtattt 1100

cgctatcagg cagggcgtga ggatgagctg acaatcacgg agggtgagtg 1150

gctggaggtc atagaggagg gagatgctga cgaatgggtc aaggctcgga 1200

accagcacgg cgaggtaggc tttgtccctg agcgatatct caacttcccq 1250

gacctetece teccagagag cagecaagae agtgaeaate eetgegggge 1300 agageceaca geatteetgg caeaggeest gtacagetas aceggacaga 1350 gtgcagagga gctgagcttc cctgaggggg cactcatccg tctgctgccc 1400 cgggcccaag atggagtaga tgacggcttc tggaggggag aatttggggg 1450 ccgtgttggg gtcttcccct ccctgctggt ggaagagctg cttggccccc 1500 cagggccacc tgaactctct gaccctgaac agatgctgcc gtccccttct 1550 ceteccaget tetecceace tgeacetace tetgtgttgg atgggeecee 1600 tgcacctgtc ctgcctgggg acaaagccct ggacttccct gggttcctgg 1650 acatgatggc acctcgactc aggccgatgc gtccaccacc tcccccgccg 1700 gctaaagccc cggatcctgg ccacccagat cccctcacct gaaggccagg 1750 gaageettga eeeccagtga tgetgetgte eetatettea agetgteaga 1800 ccacaccatc aatgatccag agcaacacag ccaaaagctg gaatcgccct 1850 tatttccacc ctcacctcca agggtggaaa cttgcccctt cccatttcta 1900 gagctggaac ccactccttt ttttcccatt gttctatcat ctctaggacc 1950 ggaactacta cettetette tgteatgace etatetaggg tggtgaaatg 2000 cctgaaatct ctggggctgg aaaccatcca tcaaggtctc tagtagttct 2050 ggcccacctc tttccccacc ctggctccat gacccacccc actctggatg 2100 ccagggtcac tggggttggg ctggggagag gaacaggcct tgggaatcag 2150 gagctggagc caggatgcga agcagctgta atggtctgag cggatttatt 2200 gacaatgaat aaagggcacg aaggccaggc cagggcctgg gcctcttgtg 2250 ctaagagggc agggggccta cggtgctatt gctttagggg cccaccacgg 2300 gcaggggcct gctcccagct gccacgctct atcatatgga gcgaggtgtt 2350 ggggaaggcg gggcaggcag cctgttgcag gcaggggaag gagaagagac 2400 tgaggggctg tgacctctcc tgaggccccc agcctgagac tgtgcaactc 2450 caggtggaag tagagctggt ccctcagctg gggggcagtg ctgtccagtg 2500 gaggggaggg ctttcacgcc cacccaccc ctggccctgc cagctggtag 2550 tccatcagca caatgaagga gacttggaga agaggaagaa taacactgtt 2600 getteetgtt caagetgtgt ceagetttte eeetgggget ceaggacett 2650 ccctacctcc accaccaaac caagggattt atagcaaagg ctaagcctgc 2700

```
agtttactct gggggttcag ggagccgaaa ggcttaaata gtttaagtag 2750
gtgatgggaa gatgagatta cctcatttag ggctcaggca gactcacctc 2800
 tcaacaatga gagaccagga gtaggtccta tcagtgcccc ccagagtaga 2900
gagcaataag agcccagccc agtgcagtcc cggctgtgtt ttcctacctg 2950
gtgatcagaa gtgtctggtt tgcttggctg cccatttgcc tcttgagtgg 3000
gcagccctgg gcttgggccc ctccctccgg ccctcagtgt tggctctgca 3050
gaagetetgg ggtteeette aagtgeacga ggggttagge tgetgteeet 3100
gagtcctcca ttctgtactg gggggctggc taggacctgg ggctgtggcc 3150
 teteaggggg cageetetee atggeaggea teeetgeett gggetgeeet 3200
coccagaco cotgacoaco coctgggtoo tgtococcao cagageecca 3250
gctcctgtct gtgggggagc catcacggtg ttcgtgcagt ccatagcgct 3300
 teteaatgtg tgteaeeegg aaeetgggag gggagggaae aetggggttt 3350
aggaccacaa ctcagagget gettggeeet eeeetetgae cagggacate 3400
ctgagtttgg tggctacttc cctctggcct aaggtagggg aggccttctc 3450
agattgtggg gcacattgtg tagcctgact tctgctggag ctcccagtcc 3500
aggaggaaag agccaaggcc cacttttggg atcaggtgcc tgatcactgg 3550
gccccctacc tcagcccccc tttccctgga gcacctgccc cacctgccca 3600
gagegteect gaeggaeaag tggaggeete ttgetgegge tgeaatggat 3700
gcaaggggct gcagagccca ggtgcactgt gtgatgatgg gagggggctc 3750
cgtcctgcag gctggaggtg gcatccacac tggacagcag gaggagggga 3800
gtgagggtaa catttccatt tecetteatg ttttgtttet taegttettt 3850
cagcatgete ettaaaacce cagaageeee aattteeeca ageeecattt 3900
tttcttgtct ttatctaata aactcaatat taag 3934
<210> 315
<211> 370
```

<212> PRT

<213> Homo sapiens

<400> 315

Met Gln Leu Ala Lys Tyr Gln Ser His Ser Lys Ser Cys Pro Thr
1 5 10 15

Val Phe Pro Pro Thr Pro Val Leu Cys Leu Pro Asn Gln Val Leu Gln Arg Leu Glu Gln Arg Arg Gln Gln Ala Ser Glu Arg Glu Ala Pro Ser Ile Glu Gln Arg Leu Gln Glu Val Arg Glu Ser Ile Arg Arg Ala Gln Val Ser Gln Val Lys Gly Ala Ala Arg Leu Ala Leu Leu Gln Gly Ala Gly Leu Asp Val Glu Arg Trp Leu Lys Pro Ala Met Thr Gln Ala Gln Asp Glu Val Glu Gln Glu Arg Arg Leu Ser Glu Ala Arg Leu Ser Gln Arg Asp Leu Ser Pro Thr Ala Glu Asp 110 115 Ala Glu Leu Ser Asp Phe Glu Glu Cys Glu Glu Thr Gly Glu Leu Phe Glu Glu Pro Ala Pro Gln Ala Leu Ala Thr Arg Ala Leu Pro Cys Pro Ala His Val Val Phe Arg Tyr Gln Ala Gly Arg Glu Asp Glu Leu Thr Ile Thr Glu Gly Glu Trp Leu Glu Val Ile Glu Glu Gly Asp Ala Asp Glu Trp Val Lys Ala Arg Asn Gln His Gly Glu Val Gly Phe Val Pro Glu Arg Tyr Leu Asn Phe Pro Asp Leu Ser Leu Pro Glu Ser Ser Gln Asp Ser Asp Asn Pro Cys Gly Ala Glu 220 Pro Thr Ala Phe Leu Ala Gln Ala Leu Tyr Ser Tyr Thr Gly Gln 230 Ser Ala Glu Glu Leu Ser Phe Pro Glu Gly Ala Leu Ile Arg Leu Leu Pro Arg Ala Gln Asp Gly Val Asp Asp Gly Phe Trp Arg Gly 260 270 Glu Phe Gly Gly Arg Val Gly Val Phe Pro Ser Leu Leu Val Glu Glu Leu Leu Gly Pro Pro Gly Pro Pro Glu Leu Ser Asp Pro Glu 300 Gln Met Leu Pro Ser Pro Ser Pro Pro Ser Phe Ser Pro Pro Ala

305 310 315

Pro Thr Ser Val Leu Asp Gly Pro Pro Ala Pro Val Leu Pro Gly 320 325 330

Asp Lys Ala Leu Asp Phe Pro Gly Phe Leu Asp Met Met Ala Pro 335 - 340 345

Arg Leu Arg Pro Met Arg Pro Pro Pro Pro Pro Pro Ala Lys Ala 350 355 360

Pro Asp Pro Gly His Pro Asp Pro Leu Thr 365

<210> 316

<211> 4407

<212> DNA

<213> Homo sapiens

<400> 316

ctcacatcct acgccggaag agtcctgcca gcggtcaagg tcccatgtgc 1000 aacgtcaagg ctcctcttgg aagccccagc cccagacccc gaagagccaa 1050 gcgctttgct tcactgagta gatttgtgga gacactggtg gtggcagatg 1100 acaagatggc cgcattccac ggtgcggggc taaagcgcta cctgctaaca 1150 gtgatggcag cagcagccaa ggccttcaag cacccaagca tccgcaatcc 1200 tgtcagcttg gtggtgactc ggctagtgat cctggggtca ggcgaggagg 1250 ggccccaagt ggggcccagt gctgcccaga ccctgcgcag cttctgtgcc 1300 tggcagcggg gcctcaacac ccctgaggac tcgggccctg accactttga 1350 cacagccatt ctgtttaccc gtcaggacct gtgtggagtc tccacttgcg 1400 acacgctggg tatggctgat gtgggcaccg tctgtgaccc ggctcggagc 1450 tgtgccattg tggaggatga tgggctccag tcagccttca ctgctgctca 1500 tgaactgggt catgtettea acatgeteea tgacaactee aageeatgea 1550 tcagtttgaa tgggcctttg agcacctctc gccatgtcat ggcccctgtg 1600 atggctcatg tggatcctga ggagccctgg tccccctgca gtgcccgctt 1650 catcactgac ttcctggaca atggctatgg gcactgtctc ttagacaaac 1700 cagaggetee attgeatetg cetgtgactt teeetggeaa ggaetatgat 1750 gctgaccgcc agtgccagct gaccttcggg cccgactcac gccattgtcc 1800 acagetgeeg eegecetgtg etgecetetg gtgetetgge caceteaatg 1850 gccatgccat gtgccagacc aaacactcgc cctgggccga tggcacaccc 1900 tgcgggcccg cacaggcctg catgggtggt cgctgcctcc acatggacca 1950 gctccaggac ttcaatattc cacaggctgg tggctggggt ccttggggac 2000 catggggtga ctgctctcgg acctgtgggg gtggtgtcca gttctcctcc 2050 cgagactgca cgaggcctgt cccccggaat ggtggcaagt actgtgaggg 2100 ccgccgtacc cgcttccgct cctgcaacac tgaggactgc ccaactggct 2150 cagccctgac cttccgcgag gagcagtgtg ctgcctacaa ccaccgcacc 2200 gacctettea agagetteee agggeecatg gactgggtte etegetaeae 2250 aggegtggee ecceaggace agtgeaaact cacetgeeag geeegggeae 2300 tgggctacta ctatgtgctg gagccacggg tggtagatgg gaccccctgt 2350 tecceggaca geteeteggt etgtgteeag ggeegatgea tecatgetgg 2400

ttcaggtacg gatacaacaa tgtggtcact atccccgcgg gggccaccca 2550 cattettgtc eggeageagg gaaaccetgg ceaeeggage atetaettgg 2600 ccctgaagct gccagatggc tcctatgccc tcaatggtga atacacgctg 2650 atgccctccc ccacagatgt ggtactgcct ggggcagtca gcttgcgcta 2700 cageggggee actgeageet cagagaeact gteaggeeat gggeeactgg 2750 eccageettt gacaetgeaa gteetagtgg etggeaacee ecaggaeaca 2800 egecteegat acagettett egtgeeeegg eegaceeett caacgeeaeg 2850 ccccactccc caggactggc tgcaccgaag agcacagatt ctggagatcc 2900 ttcggcggcg cccctgggcg ggcaggaaat aacctcacta tcccggctgc 2950 cctttctggg caccggggcc tcggacttag ctgggagaaa gagagagctt 3000 ctgttgctgc ctcatgctaa gactcagtgg ggaggggctg tgggcgtgag 3050 acctgcccct cctctctgcc ctaatgcgca ggctggccct gccctggttt 3100 cctgccctgg gaggcagtga tgggttagtg gatggaaggg gctgacagac 3150 agccctccat ctaaactgcc ccctctgccc tgcgggtcac aggagggagg 3200 gggaaggcag ggagggcctg ggccccagtt gtatttattt agtatttatt 3250 cacttttatt tagcaccagg gaaggggaca aggactaggg tcctggggaa 3300 cctgacccct gacccctcat agccctcacc ctggggctag gaaatccagg 3350 gtggtggtga taggtataag tggtgtgtgt atgcgtgtgt gtgtgtgtgt 3400 gaaaatgtgt gtgtgcttat gtatgaggta caacctgttc tgctttcctc 3450 ttcctgaatt ttatttttg ggaaaagaaa agtcaagggt agggtgggcc 3500 ttcagggagt gagggattat ctttttttt ttttctttct ttcttcttt 3550 tttttttttg agacagaatc tcgctctgtc gcccaggctg gagtgcaatg 3600

gcacaatctc ggctcactgc atcctccgcc tcccgggttc aagtgattct 3650

catgcctcag cctcctgagt agctgggatt acaggctcct gccaccacgc 3700

ccagctaatt tttgttttgt tttgtttgga gacagagtct cgctattgtc 3750

accagggetg gaatgattte ageteactge aacettegee acctgggtte 3800

cagcaattet cetgeeteag cetecegagt agetgagatt ataggeacet 3850

ctgtgatcgc atcattggct ccaagaagaa gtttgacaag tgcatggtgt 2450

gcggagggga cggttctggt tgcagcaagc agtcaggctc cttcaggaaa 2500

- <210> 317
- <211> 837
- <212> PRT
- <213> Homo sapiens

<400> 317

- Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$
- Trp Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro 20 25 30
- Leu Ser Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Leu Ala Ser Leu 35 40 45
- Leu Pro Ser Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu 50 55 60
- Ile Val Phe Pro Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser 65 70 75
- Gly Ala Pro Ala Arg Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu 80 85 90
- Thr Leu Leu Glu Leu Glu Gln Asp Ser Gly Val Gln Val Glu
 95 100 105
- Gly Leu Thr Val Gln Tyr Leu Gly Gln Ala Pro Glu Leu Leu Gly 110 115 120
- Gly Ala Glu Pro Gly Thr Tyr Leu Thr Gly Thr Ile Asn Gly Asp 125 130 135
- Pro Glu Ser Val Ala Ser Leu His Trp Asp Gly Gly Ala Leu Leu

140 145 150 Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu His Leu Gln Pro Leu 155 160 Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro Met Cys Asn 185 195 Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg Ala 205 Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val 220 225 Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val 260 Ile Leu Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Gly Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp Pro Ala Arg Ser Cys 335 Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp Asn Ser Lys 365 370 375 Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg His Val 385 Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp Ser 405 Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro 425

Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys 485 Gly Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp 500 505 510 Gln Leu Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro 515 Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Gly Val 530 535 540 Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe 590 Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr 625 Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala 650 Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Phe Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly 680 690 Ser Phe Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr Ile Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro 720 Gly His Arg Ser Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser

725 730 735

Tyr Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp
740 745 750

Val Val Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala Thr 755 760 765

Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gln Pro
770 775 780

Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg
785 790 795

Leu Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr Pro Ser Thr Pro 800 805 810

Arg Pro Thr Pro Gln Asp Trp Leu His Arg Arg Ala Gln Ile.Leu 815 820 825

Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys 830 835

<210> 318

<211> 23

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-23

<223> Synthetic construct.

<400> 318 ccctgaaget gecagatgge tee 23

<210> 319

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 319

ctgtgctctt cggtgcagcc agtc 24

<210> 320

<211> 43

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-43

<223> Synthetic construct.

```
<400> 320
ccacagatgt ggtactgcct ggggcagtca gcttgcgcta cag 43
<210> 321
<211> 1197
<212> DNA
<213> Homo sapiens
<400> 321
cagcagtggt ctctcagtcc tctcaaaqca aqqaaaqaqt actqtqtqct 50
gagagaccat ggcaaagaat cctccaqaqa attgtqaaqa ctgtcacatt 100
ctaaatgcag aagcttttaa atccaagaaa atatgtaaat cacttaagat 150
ttgtggactg gtgtttggta tcctggccct aactctaatt gtcctgtttt 200
gggggagcaa gcacttctgg ccggaggtac ccaaaaaaagc ctatgacatg 250
gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300
tgatcctgtg accagaactg aaatattcag aagcggaaat ggcactgatg 350
aaacattgga agtgcacgac tttaaaaaacg gatacactgg catctacttc 400
gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450
attttctgaa ccagaagagg aaatagatga gaatgaagaa attaccacaa 500
ctttctttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550
aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600
gaccatgtat tggatcaatc ccactctaat atcagtttct gagttacaag 650
actttgagga ggagggagaa gatcttcact ttcctgccaa cgaaaaaaaa 700
gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa 750
gacccgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800
atactgaaaa tggaatagaa tttgatccca tgctgga'tga gagaggttat 850
tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900
acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950
tcatctgtcg tgtcatcatg ccttgtaact ggtgggtggc ccgcatgctg 1000
gggagggtct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050
atataataaa tgcatgctat tcaatgaatt tctgcctatg aggcatctgg 1100
cccctggtag ccagctctcc agaattactt gtaggtaatt cctctcttca 1150
```

<210> 322

<400> 322

Met Ala Lys Asn Pro Pro Glu Asn Cys Glu Asp Cys His Ile Leu 1 5 10 15

Asn Ala Glu Ala Phe Lys Ser Lys Lys Ile Cys Lys Ser Leu Lys 20 25 30

Ile Cys Gly Leu Val Phe Gly Ile Leu Ala Leu Thr Leu Ile Val

Leu Phe Trp Gly Ser Lys His Phe Trp Pro Glu Val Pro Lys Lys 50 55 60

Ala Tyr Asp Met Glu His Thr Phe Tyr Ser Asn Gly Glu Lys Lys
65 70 75

Lys Ile Tyr Met Glu Ile Asp Pro Val Thr Arg Thr Glu Ile Phe 80 85 90

Arg Ser Gly Asn Gly Thr Asp Glu Thr Leu Glu Val His Asp Phe 95 100 105

Lys Asn Gly Tyr Thr Gly Ile Tyr Phe Val Gly Leu Gln Lys Cys 110 115 120

Phe Ile Lys Thr Gln Ile Lys Val Ile Pro Glu Phe Ser Glu Pro 125 130 135

Glu Glu Glu Ile Asp Glu Asn Glu Glu Ile Thr Thr Thr Phe Phe 140 145 150

Glu Gln Ser Val Ile Trp Val Pro Ala Glu Lys Pro Ile Glu Asn 155 160 165

Arg Asp Phe Leu Lys Asn Ser Lys Ile Leu Glu Ile Cys Asp Asn 170 175 180

Val Thr Met Tyr Trp Ile Asn Pro Thr Leu Ile Ser Val Ser Glu 185 190 195

Leu Gln Asp Phe Glu Glu Glu Gly Glu Asp Leu His Phe Pro Ala 200 205 210

Asn Glu Lys Lys Gly Ile Glu Gln Asn Glu Gln Trp Val Val Pro 215 220 225

Gln Val Lys Val Glu Lys Thr Arg His Ala Arg Gln Ala Ser Glu 230 235 240

Glu Glu Leu Pro Ile Asn Asp Tyr Thr Glu Asn Gly Ile Glu Phe \$245\$ \$250\$

Asp Pro Met Leu Asp Glu Arg Gly Tyr Cys Cys Ile Tyr Cys Arg 260 265 270

315

Arg Gly Asn Arg Tyr Cys Arg Arg Val Cys Glu Pro Leu Leu Gly 285

Tyr Tyr Pro Tyr Pro Tyr Cys Tyr Gln Gly Gly Arg Val Ile Cys 300

Arg Val Ile Met Pro Cys Asn Trp Trp Val Ala Arg Met Leu Gly 315

Arg Val

<210> 323 <211> 1174 <212> DNA <213> Homo sapiens

<400> 323 geggaactgg eteeggetgg caectgagga geggegtgae eeegagggee 50 cagggagetg eccggetgge etaggeagge ageegeacea tggecageac 100 ggccgtgcag cttctgggct tcctgctcag cttcctgggc atggtgggca 150 cgttgatcac caccatcctg ccgcactggc ggaggacagc gcacgtgggc 200 accaacatcc tcacggccgt gtcctacctg aaagggctct ggatggagtg 250 tgtgtggcac agcacaggca tctaccagtg ccagatctac cgatccctgc 300 tggcgctgcc ccaagacctc caggctgccc gcgccctcat ggtcatctcc 350 tgcctgctct cgggcatagc ctgcgcctgc gccgtcatcg ggatgaagtg 400 cacgcgctgc gccaagggca cacccgccaa gaccaccttt gccatcctcg 450 geggeaceet etteateetg geeggeetee tgtgeatggt ggeegtetee 500 tggaccacca acgacgtggt gcagaacttc tacaacccgc tgctgcccag 550 cggcatgaag tttgagattg gccaggccct gtacctgggc ttcatctcct 600 cgtccctctc gctcattggt ggcaccctgc tttgcctgtc ctgccaggac 650 gaggcaccct acaggcccta ccaggccccg cccagggcca ccacgaccac 700 tgcaaacacc gcacctgcct accagccacc agctgcctac aaagacaatc 750 gggccccctc agtgacctcg gccacgcaca gcgggtacag gctgaacgac 800 tacgtgtgag tccccacagc ctgcttctcc cctgggctgc tgtgggctgg 850 gtccccggcg ggactgtcaa tggaggcagg ggttccagca caaagtttac 900 ttctgggcaa tttttgtatc caaggaaata atgtgaatgc gaggaaatgt 950

ctttagagca cagggacaga gggggaaata agaggaggag aaagctctct 1000

ataccaaaga ctgaaaaaaa aaatcctgtc tgttttgta tttattatat 1050 atatttatgt gggtgatttg ataacaagtt taatataaag tgacttggga 1100 gtttggtcag tggggttggt ttgtgatcca ggaataaacc ttgcggatgt 1150 ggctgtttat gaaaaaaaaa aaaa 1174

<210> 324

<211> 239

<212> PRT

<213> Homo sapiens

<400> 324

Met Ala Ser Thr Ala Val Gln Leu Leu Gly Phe Leu Leu Ser Phe 1 5 10 15

Leu Gly Met Val Gly Thr Leu Ile Thr Thr Ile Leu Pro His Trp
20 25 30

Tyr Leu Lys Gly Leu Trp Met Glu Cys Val Trp His Ser Thr Gly 50 55 60

Ile Tyr Gln Cys Gln Ile Tyr Arg Ser Leu Leu Ala Leu Pro Gln
65 70 75

Asp Leu Gln Ala Ala Arg Ala Leu Met Val Ile Ser Cys Leu Leu 80 85 90

Ser Gly Ile Ala Cys Ala Cys Ala Val Ile Gly Met Lys Cys Thr 95 100 105

Arg Cys Ala Lys Gly Thr Pro Ala Lys Thr Thr Phe Ala Ile Leu 110 115 120

Gly Gly Thr Leu Phe Ile Leu Ala Gly Leu Leu Cys Met Val Ala 125 130 135

Val Ser Trp Thr Thr Asn Asp Val Val Gln Asn Phe Tyr Asn Pro 140 145 150

Leu Leu Pro Ser Gly Met Lys Phe Glu Ile Gly Gln Ala Leu Tyr 155 160 165

Leu Gly Phe Ile Ser Ser Ser Leu Ser Leu Ile Gly Gly Thr Leu 170 175 180

Leu Cys Leu Ser Cys Gln Asp Glu Ala Pro Tyr Arg Pro Tyr Gln
185

Ala Pro Pro Arg Ala Thr Thr Thr Thr Ala Asn Thr Ala Pro Ala 200 205 210

Tyr Gln Pro Pro Ala Ala Tyr Lys Asp Asn Arg Ala Pro Ser Val 215 220 225 <210> 325 <211> 2121 <212> DNA

<213> Homo sapiens

<400> 325 gageteect caggagegeg ttagetteac acetteggea geaggagge 50 ggcagcttct cgcaggcggc agggcgggcg gccaggatca tqtccaccac 100 cacatgccaa gtggtggcgt teeteetqte cateetqqqq etqqeeqqet 150 gcatcgcggc caccgggatg gacatgtgga gcacccagga cctgtacgac 200 aaccccgtca cctccgtgtt ccagtacgaa gggctctgga ggagctgcgt 250 gaggcagagt tcaggcttca ccgaatgcag gccctatttc accatcctgg 300 gacttccagc catgctgcag gcagtgcgag ccctgatgat cgtaggcatc 350 gtcctgggtg ccattggcct cctggtatcc atctttgccc tgaaatgcat 400 ccgcattggc agcatggagg actctgccaa agccaacatg acactgacct 450 ccgggatcat gttcattgtc tcaggtcttt gtgcaattgc tggagtgtct 500 gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat 550 gtacaccggc atgggtggga tggtgcagac tgttcagacc aggtacacat 600 ttggtgcggc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt 650 gggggtgtga tgatgtgcat cgcctgccgg ggcctggcac cagaagaaac 700° caactacaaa gccgtttctt atcatgcctc aggccacagt gttgcctaca 750 agcctggagg cttcaaggcc agcactggct ttgggtccaa caccaaaaac 800 aagaagatat acgatggagg tgcccgcaca gaggacgagg tacaatctta 850 tccttccaag cacgactatg tgtaatgctc taagacctct cagcacgggc 900 ggaagaaact cccggagagc tcacccaaaa aacaaggaga tcccatctag 950 atttcttctt gcttttgact cacagctgga agttagaaaa gcctcgattt 1000 catctttgga gaggccaaat ggtcttagcc tcagtctctg tctctaaata 1050 ttccaccata aaacagctga gttatttatg aattagaggc tatagctcac 1100 attttcaatc ctctatttct ttttttaaat ataactttct actctgatga 1150 gagaatgtgg ttttaatctc tctctcacat tttgatgatt tagacagact 1200 ccccctcttc ctcctagtca ataaacccat tgatgatcta tttcccagct 1250

```
tatccccaag aaaacttttg aaaggaaaga gtagacccaa agatgttatt 1300
ttctgctgtt tgaattttgt ctccccaccc ccaacttggc tagtaataaa 1350
cacttactga agaagaagca ataagagaaa gatatttgta atctctccag 1400
agtcattttc agtttgaggc aaccaaacct ttctactgct gttgacatct 1500
tettattaca geaacaceat tetaggagtt teetgagete teeactggag 1550
tcctctttct gtcgcgggtc agaaattgtc cctagatgaa tgagaaaatt 1600
attttttta atttaagtcc taaatatagt taaaataaat aatgttttag 1650
taaaatgata cactatetet gtgaaatage etcaceeta catgtggata 1700
gaaggaaatg aaaaaataat tgctttgaca ttgtctatat qqtactttgt 1750
aaagtcatgc ttaagtacaa attccatgaa aagctcacac ctgtaatcct 1800
agcactttgg gaggctgagg aggaaggatc acttgagccc agaagttcga 1850
gactagcctg ggcaacatgg agaagccctg tctctacaaa atacagagag 1900
aaaaaatcag ccagtcatgg tggcatacac ctgtagtccc agcattccgg 1950
gaggetgagg tgggaggate acttgageee agggaggttg gggetgeagt 2000
gagecatgat cacaccactg cactecagee aggtgacata gegagateet 2050
gtctaaaaaa ataaaaaata aataatggaa cacagcaagt cctaggaagt 2100
aggttaaaac taattcttta a 2121
```

<210> 326

<211> 261

<212> PRT

<213> Homo sapiens

<400> 326

Met Ser Thr Thr Cys Gln Val Val Ala Phe Leu Leu Ser Ile
1 5 10 15

Leu Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp $20 \\ 25 \\ 30$

Ser Thr Gln Asp Leu Tyr Asp Asn Pro Val Thr Ser Val Phe Gln 35 40 45

Tyr Glu Gly Leu Trp Arg Ser Cys Val Arg Gln Ser Ser Gly Phe 50 55 60

Thr Glu Cys Arg Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met 65 70 75

Leu Gln Ala Val Arg Ala Leu Met Ile Val Gly Ile Val Leu Gly

90

Ala Ile Gly Leu Leu Val Ser Ile Phe Ala Leu Lys Cys Ile Arg 95 100 105

Ile Gly Ser Met Glu Asp Ser Ala Lys Ala Asn Met Thr Leu Thr 110 115 120

Ser Gly Ile Met Phe Ile Val Ser Gly Leu Cys Ala Ile Ala Gly 125 130 135

Val Ser Val Phe Ala Asn Met Leu Val Thr Asn Phe Trp Met Ser 140 145 150

Thr Ala Asn Met Tyr Thr Gly Met Gly Gly Met Val Gln Thr Val 155 160 165

Gln Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe Val Gly Trp Val 170 175 180

Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met Cys Ile Ala 185 190 195

Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala Val Ser 200 205 210

Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly Phe \$215\$ \$220\$ Pro \$225\$

Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile 230 235 240

Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gln Ser Tyr Pro 245 250 255

Ser Lys His Asp Tyr Val 260

<210> 327

<211> 2010

<212> DNA

<213> Homo sapiens

<400> 327

ggaaaaactg ttctcttctg tggcacagag aaccctgctt caaagcagaa 50

gtagcagttc cggagtccag ctggctaaaa ctcatcccag aggataatgg 100

caacccatgc cttagaaatc gctgggctgt ttcttggtgg tgttggaatg 150

gtgggcacag tggctgtcac tgtcatgcct cagtggagag tgtcggcctt 200

cattgaaaac aacatcgtgg tttttgaaaa cttctgggaa ggactgtgga 250

tgaattgcgt gaggcaggct aacatcagga tgcagtgcaa aatctatgat 300

tccctgctgg ctctttctcc ggacctacag gcagccagag gactgatgtg 350

tgctgcttcc gtgatgtcct tcttggcttt catgatggcc atccttggca 400 tgaaatgcac caggtgcacg ggggacaatg agaaggtgaa ggctcacatt 450 ctgctgacgg ctggaatcat cttcatcatc acgggcatgg tggtgctcat 500 ccctgtgagc tgggttgcca atgccatcat cagagatttc tataactcaa 550 tagtgaatgt tgcccaaaaa cgtgagcttg gagaagctct ctacttagga 600 tggaccacgg cactggtgct gattgttgga ggagctctgt tctgctgcgt 650 tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700 atcgcacaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750 tactccagaa gtcagtatgt gtagttgtgt atgttttttt aactttacta 800 taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850 caaagaaact ttgatttact gttcttaact gcctaatctt aattacagga 900 actgtgcatc agctatttat gattctataa gctatttcag cagaatgaga 950 tattaaaccc aatgctttga ttgttctaga aagtatagta atttgttttc 1000 taaggtggtt caagcatcta ctctttttat catttacttc aaaatgacat 1050 tgctaaagac tgcattattt tactactgta atttctccac gacatagcat 1100 tatgtacata gatgagtgta acatttatat ctcacataga gacatgctta 1150 tatggtttta tttaaaatga aatgccagtc cattacactg aataaataga 1200 actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggtta 1250 ctattaattg tttaaaaaca gcttagggat taatgtcctc catttataat 1300 gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350 tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400 atcctcttct cccagaggct ttttttttct tgtgtattaa attaacattt 1450 ttaaaacgca gatattttgt caaggggctt tgcattcaaa ctgcttttcc 1500 agggetatae teagaagaaa gataaaagtg tgatetaaga aaaagtgatg 1550 gttttaggaa agtgaaaata tttttgtttt tgtatttgaa gaagaatgat 1600 gcattttgac aagaaatcat atatgtatgg atatatttta ataagtattt 1650 gagtacagac tttgaggttt catcaatata aataaaagag cagaaaaata 1700 tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagttgt 1750 cctttgagaa cttcacctgc tcctatgtgg gtacctgagt caaaattgtc 1800

attttgttc tgtgaaaaat aaatttcctt cttgtaccat ttctgtttag 1850 ttttactaaa atctgtaaat actgtattt tctgtttatt ccaaatttga 1900 tgaaactgac aatccaattt gaaagtttgt gtcgacgtct gtctagctta 1950 aatgaatgtg ttctatttgc tttatacatt tatattaata aattgtacat 2000 ttttctaatt 2010

<210> 328 <211> 225

<212> PRT

<213> Homo sapiens

<400> 328

Met Ala Thr His Ala Leu Glu Ile Ala Gly Leu Phe Leu Gly Gly 1 5 10 15

Val Gly Met Val Gly Thr Val Ala Val Thr Val Met Pro Gln Trp $20 \\ 25 \\ 30$

Arg Val Ser Ala Phe Ile Glu Asn Asn Ile Val Val Phe Glu Asn 35 40 45

Phe Trp Glu Gly Leu Trp Met Asn Cys Val Arg Gln Ala Asn Ile 50 55 60

Arg Met Gln Cys Lys Ile Tyr Asp Ser Leu Leu Ala Leu Ser Pro 65 70 75

Asp Leu Gln Ala Ala Arg Gly Leu Met Cys Ala Ala Ser Val Met 80 85 90

Ser Phe Leu Ala Phe Met Met Ala Ile Leu Gly Met Lys Cys Thr 95 100

Arg Cys Thr Gly Asp Asn Glu Lys Val Lys Ala His Ile Leu Leu 110 115 120

Thr Ala Gly Ile Ile Phe Ile Ile Thr Gly Met Val Val Leu Ile 125 130 135

Pro Val Ser Trp Val Ala Asn Ala Ile Ile Arg Asp Phe Tyr Asn $140 \hspace{1.5cm} 145 \hspace{1.5cm} 150 \hspace{1.5cm}$

Ser Ile Val Asn Val Ala Gln Lys Arg Glu Leu Gly Glu Ala Leu 155 160 165

Tyr Leu Gly Trp Thr Thr Ala Leu Val Leu Ile Val Gly Gly Ala 170 175 180

Leu Phe Cys Cys Val Phe Cys Cys Asn Glu Lys Ser Ser Ser Tyr 185 190 195

Arg Tyr Ser Ile Pro Ser His Arg Thr Thr Gln Lys Ser Tyr His 200 205 210

<210> 329

<211> 1315

<212> DNA

<213> Homo sapiens

<400> 329

tegecatgge etetgeegga atgeagatee tgggagtegt cetgaeactg 50 ctgggctggg tgaatggcct ggtctcctgt gccctgccca tgtggaaggt 100 gaccgctttc atcggcaaca gcatcgtggt ggcccaggtg gtgtgggagg 150 gcctgtggat gtcctgcgtg gtgcagagca ccggccagat gcagtgcaag 200 gtgtacgact cactgctggc gctgccacag gacctgcagg ctgcacgtgc 250 cctctgtgtc atcqccctcc ttqtqqccct qttcqqcttq ctqqtctacc 300 ttgctggggc caagtgtacc acctgtgtgg aggagaagga ttccaaggcc 350 cgcctggtgc tcacctctgg gattgtcttt gtcatctcag gggtcctgac 400 gctaatcccc gtgtgctgga cggcgcatgc catcatccgg gacttctata 450 accccctggt ggctgaggcc caaaagcggg agctgggggc ctccctctac 500 ttgggctggg cggcctcagg ccttttgttg ctgggtgggg ggttgctgtg 550 ctgcacttgc ccctcggggg ggtcccaggg ccccagccat tacatggccc 600 gctactcaac atctgcccct gccatctctc gggggccctc tgagtaccct 650 accaagaatt acgtctgacg tggaggggaa tgggggctcc gctggcgcta 700 gagccatcca gaaqtqqcaq tqcccaacaq ctttqqqatq qqttcqtacc 750 ttttgtttct gcctcctgct atttttcttt tgactgagga tatttaaaat 800 tcatttgaaa actgagccaa ggtgttgact cagactctca cttaggctct 850 gctgtttctc acccttggat gatggagcca aagaggggat gctttgagat 900 totggatott gacatgocca tottagaago cagtoaagot atggaactaa 950 tgcggaggct gcttqctqtq ctqqctttqc aacaaqacag actqtcccca 1000 agagtteetg etgetgetgg gggetggget teeetagatg teaetggaea 1050 gctgccccc atcctactca ggtctctgga gctcctctct tcacccctgg 1100 aaaaacaaat catctgttaa caaaggactg cccacctccg gaacttctga 1150 cctctgtttc ctccgtcctg ataagacgtc cacccccag ggccaggtcc 1200 cagctatgta gaccccgcc cccacctcca acactgcacc cttctgccct 1250

Leu Gly Trp Ala Ala Ser Gly Leu Leu Leu Gly Gly Gly Leu

Leu Cys Cys Thr Cys Pro Ser Gly Gly Ser Gln Gly Pro Ser His

Tyr Met Ala Arg Tyr Ser Thr Ser Ala Pro Ala Ile Ser Arg Gly

Pro Ser Glu Tyr Pro Thr Lys Asn Tyr Val <210> 331 <211> 1160

<212> DNA

220

210

<213> Homo sapiens

```
<400> 331
 gccaaggaga acatcatcaa agacttctct agactcaaaa ggcttccacg 50
ttctacatct tgagcatctt ctaccactcc gaattgaacc agtcttcaaa 100
gtaaaggcaa tggcatttta teeettgcaa attgctggge tggttettgg 150
gttccttggc atggtgggga ctcttgccac aacccttctg cctcagtggt 200
ggagtatcag cttttgttgg cagcaacatt attgtctttg agaggctctg 250
ggaagggctc tggatgaatt gcatccgaca agccagggtc cggttgcaat 300°
gcaagttcta tagctccttg ttggctctcc cgcctgccct ggaaacagcc 350
cgggccctca tgtgtgtggc tgttgctctc tccttgatcg ccctgcttat 400
 tggcatctgt ggcatgaagc aggtccagtg cacaggctct aacgagaggg 450
ccaaagcata ccttctggga acttcaggag tcctcttcat cctgacgggt 500
atcttcgttc tgattccggt gagctggaca gccaatataa tcatcagaga 550
tttctacaac ccagccatcc acataggtca gaaacgagag ctgggagcag 600
cacttttcct tggctgggca agcgctgctg tcctcttcat tggagggggt 650
ctgctttgtg gattttgctg ctgcaacaga aagaagcaag ggtacagata 700
tccagtgcct ggctaccgtg tgccacacac agataagcga agaaatacga 750
caatgettag taagacetee accagttatg tetaatgeet eettttgget 800
ccaagtatgg actatggtca atgtttttta taaagtcctg ctagaaactg 850
taaqtatqtq aqqcaqqaqa acttqcttta tqtctaqatt tacattqata 900
cqaaaqtttc aatttgttac tggtggtagg aatgaaaatg acttacttgg 950
acattetgae tteaggtgta ttaaatgeat tgaetattgt tggaeceaat 1000
cgctgctcca attttcatat tctaaattca agtataccca taatcattag 1050
caagtgtaca atgatggact acttattact ttttgaccat catgtattat 1100
ctgataagaa tctaaagttg aaattgatat tctataacaa taaaacatat 1150
acctattcta 1160
```

Met Asn Cys Ile Arg Gln Ala Arg Val Arg Leu Gln Cys Lys Phe

325

<210> 332

<211> 173

<212> PRT

<213> Homo sapiens

<400> 332

5

10

15

Tyr Ser Ser Leu Leu Ala Leu Pro Pro Ala Leu Glu Thr Ala Arg $20 \\ 25 \\ 30$

Ala Leu Met Cys Val Ala Val Ala Leu Ser Leu Ile Ala Leu Leu 35 40 45

Ile Gly Ile Cys Gly Met Lys Gln Val Gln Cys Thr Gly Ser Asn 50 55 60

Glu Arg Ala Lys Ala Tyr Leu Leu Gly Thr Ser Gly Val Leu Phe
65 70 75

Ile Leu Thr Gly Ile Phe Val Leu Ile Pro Val Ser Trp Thr Ala 80 85 90

Asn Ile Ile Ile Arg Asp Phe Tyr Asn Pro Ala Ile His Ile Gly 95 100 105

Gln Lys Arg Glu Leu Gly Ala Ala Leu Phe Leu Gly Trp Ala Ser 110 115 120

Ala Ala Val Leu Phe Ile Gly Gly Gly Leu Leu Cys Gly Phe Cys 125 130 135

Cys Cys Asn Arg Lys Lys Gln Gly Tyr Arg Tyr Pro Val Pro Gly
140 145 150

Tyr Arg Val Pro His Thr Asp Lys Arg Arg Asn Thr Thr Met Leu 155 160 165

Ser Lys Thr Ser Thr Ser Tyr Val 170

<210> 333

<211> 535

<212> DNA

<213> Homo sapiens

<400> 333

agtgacaatc tcagagcagc ttctacacca cagccattte cagcatgaag 50 atcactgggg gtctccttct gctctgtaca gtggtctatt tctgtagcag 100 ctcagaagct gctagtctgt ctccaaaaaa agtggactge agcatttaca 150 agaagtatce agtggtggce atcccctgce ccatcacata cctaccagtt 200 tgtggttctg actacatcac ctatgggaat gaatgtcact tgtgtaccga 250 gagcttgaaa agtaatggaa gagttcagtt tcttcacgat ggaagttgct 300 aaattctcca tggacataga gagaaaggaa tgatattctc atcatcatct 350 tcatcatccc aggctctgac tgagtttctt tcagttttac tgatgttctg 400 ggtgggggac agagccagat tcagagtaat cttgactgaa tggagaaagt 450

ttctgtgcta cccctacaaa cccatgcctc actgacagac cagcatttt 500 tttttaacac gtcaataaaa aaataatctc ccaga 535

<210> 334

<211> 85

<212> PRT

<213> Homo sapiens

<400> 334

Met Lys Ile Thr Gly Gly Leu Leu Leu Cys Thr Val Val Tyr 1 5 10 15

Phe Cys Ser Ser Ser Glu Ala Ala Ser Leu Ser Pro Lys Lys Val 20 25 30

Asp Cys Ser Ile Tyr Lys Lys Tyr Pro Val Val Ala Ile Pro Cys 35 40 45

Pro Ile Thr Tyr Leu Pro Val Cys Gly Ser Asp Tyr Ile Thr Tyr 50 55 60

Gly Asn Glu Cys His Leu Cys Thr Glu Ser Leu Lys Ser Asn Gly 65 70 75

Arg Val Gln Phe Leu His Asp Gly Ser Cys 80 85

<210> 335

<211> 742

<212> DNA

<213> Homo sapiens

<400> 335

cccgcgcccg gttctccctc gcagcacctc gaagtgcgcc cctcgccctc 50 ctgctcgcgc cccgccgca tggctgcctc ccccgcgcgg cctgctgtcc 100 tggccctgac cgggctggcg ctgctcctgc tcctgtgctg gggcccaggt 150 ggcataagtg gaaataaact caagctgatg cttcaaaaac gagaagcacc 200 tgttccaact aagactaaag tggccgttga tgagaataaa gccaaagaat 250 tccttggcag cctgaagcgc cagaagcggc agctgtgga ccggactcgg 300 cccgaggtgc agcagtggta ccagcagtt ctctacatgg gctttgatga 350 agcgaaatt gaagatgaca tcacctattg gcttaacaga gatcgaaatg 400 gacatgaata ctatggcgat tactaccaac gtcactatga tgaagactct 450 gcaattggtc cccggagccc ctacggcttt aggcatggag ccagcgtcaa 500 ctacgatgac tactaaccat gacttgccac acgctgtaca agaagcaaat 550 agcgattctc ttcatgtatc tcctaatgcc ttacactact tggtttctga 600

tttgctctat ttcagcagat cttttctacc tactttgtgt gatcaaaaaa 650 gaagagttaa aacaacacat gtaaatgcct tttgatattt catgggaatg 700 cctctcattt aaaaatagaa ataaagcatt ttgttaaaaa ga 742

<210> 336

<211> 148

<212> PRT

<213> Homo sapiens

<400> 336

Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly
1 5 10 15

Leu Ala Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser 20 25 30

Gly Asn Lys Leu Lys Leu Met Leu Gln Lys Arg Glu Ala Pro Val 35 40 45

Pro Thr Lys Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu
. 50 55 60

Phe Leu Gly Ser Leu Lys Arg Gln Lys Arg Gln Leu Trp Asp Arg
65 70 75

Thr Arg Pro Glu Val Gln Gln Trp Tyr Gln Gln Phe Leu Tyr Met 80 85 90

Gly Phe Asp Glu Ala Lys Phe Glu Asp Asp Ile Thr Tyr Trp Leu 95 100 105

Asn Arg Asp Arg Asn Gly His Glu Tyr Tyr Gly Asp Tyr Tyr Gln
110 115 120

Arg His Tyr Asp Glu Asp Ser Ala Ile Gly Pro Arg Ser Pro Tyr 125 130 135

Gly Phe Arg His Gly Ala Ser Val Asn Tyr Asp Asp Tyr
140 145 ...

<210> 337

<211> 1310

<212> DNA

<213> Homo sapiens

<400> 337

cggctcgagc ccgcccggaa gtgcccgagg ggccgcgatg gagctggggg 50
agccgggcgc tcggtagcgc ggcgggcaag gcaggcgcca tgaccctgat 100
tgaaggggtg ggtgatgagg tgaccgtcct tttctcggtg cttgcctgcc 150
ttctggtgct ggcccttgcc tgggtctcaa cgcacaccgc tgagggcggg 200
gacccactgc cccagccgtc agggacccca acgccatccc agcccagcgc 250

```
agccatggca gctaccgaca gcatgagagg ggaggcccca ggggcagaga 300
 ccccagcct gagacacaga ggtcaagctg cacagccaga gcccagcacg 350
 gggttcacag caacaccgcc agccccggac tccccgcagg agcccctcgt 400
 gctacggctg aaattcctca atgattcaga gcaggtggcc agggcctggc 450
 cccacgacac cattggctcc ttgaaaagga cccagtttcc cggccgggaa 500
 cagcaggtgc gactcatcta ccaagggcag ctgctaggcg acgacaccca 550
 gaccetggge ageetteace teecteecaa etgegttete caetgeeacg 600
 tgtccacgag agtcggtccc ccaaatcccc cctgcccgcc ggggtccgag 650
 cccggcccct ccgggctgga aatcgqcaqc ctqctqctqc ccctqctqct 700
 cctgctgttg ctgctgctct ggtactgcca gatccagtac cggcccttct 750
 ttcccctgac cgccactctg ggcctggccg gcttcaccct gctcctcagt 800
 ctcctggcct ttgccatgta ccgcccgtag tgcctccgcg ggcqcttggc 850
 agegtegeeg geceeteegg acettgetee eegegeegeg gegggagetg 900
 etgeetgeec aggeeegeet eteeggeetg cetetteeeg etgeeetgga 950
 gcccagccet gcgccgcaga ggactcccgg gactggcgga ggccccgccc 1000
 tgcgaccgcc ggggctcggg gccacctccc ggggctgctg aacctcagcc 1050
 cgcactggga gtgggctcct cggggtcggg catctgctgt cgctqcctcq 1100
 gccccgggca gagccggqcc qccccqqqqq cccqtcttaq tqttctqccq 1150
 gaggacccag ccgcctccaa tccctgacag ctccttgggc tgagttgggg 1200
 acgccaggtc ggtgggaggc tggtgaaggg gagcggggag gggcagagga 1250
 gttccccgga acccgtgcag attaaagtaa ctgtgaagtt ttaaaaaaaa 1300
aaaaaaaaa 1310
<210> 338
<211> 246
<212> PRT
<213> Homo sapiens
<400> 338
Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe
  1
Ser Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser
```

40

Thr His Thr Ala Glu Gly Gly Asp Pro Leu Pro Gln Pro Ser Gly

b)

```
Thr Pro Thr Pro Ser Gln Pro Ser Ala Ala Met Ala Ala Thr Asp
Ser Met Arg Gly Glu Ala Pro Gly Ala Glu Thr Pro Ser Leu Arg
His Arg Gly Gln Ala Ala Gln Pro Glu Pro Ser Thr Gly Phe Thr
Ala Thr Pro Pro Ala Pro Asp Ser Pro Gln Glu Pro Leu Val Leu
Arg Leu Lys Phe Leu Asn Asp Ser Glu Gln Val Ala Arg Ala Trp
               110
                                  115
                                                     120
Pro His Asp Thr Ile Gly Ser Leu Lys Arg Thr Gln Phe Pro Gly
Arg Glu Gln Gln Val Arg Leu Ile Tyr Gln Gly Gln Leu Leu Gly
                                  145
Asp Asp Thr Gln Thr Leu Gly Ser Leu His Leu Pro Pro Asn Cys
               155
Val Leu His Cys His Val Ser Thr Arg Val Gly Pro Pro Asn Pro
               170
                                  175
Pro Cys Pro Pro Gly Ser Glu Pro Gly Pro Ser Gly Leu Glu Ile
                                  190
205
                                                     210
Trp Tyr Cys Gln Ile Gln Tyr Arg Pro Phe Phe Pro Leu Thr Ala
                                  220
Thr Leu Gly Leu Ala Gly Phe Thr Leu Leu Leu Ser Leu Leu Ala
               230
                                  235
                                                     240
Phe Ala Met Tyr Arg Pro
               245
```

<210> 339

<211> 849

<212> DNA

<213> Homo sapiens

<400> 339

gagattggaa acagccaggt tggagcagtg agtgagtaag gaaacctggc 50
tgccctctcc agattcccca ggctctcaga gaagatcagc agaaagtctg 100
caagacccta agaaccatca gccctcagct gcacctcctc ccctccaagg 150
atgacaaagg cgctactcat ctatttggtc agcagctttc ttgccctaaa 200
tcaggccagc ctcatcagtc gctgtgactt ggcccaggtg ctgcagctgg 250

BI

aggacttgga tgggtttgag ggttactccc tgagtgactg gctgtgcctg 300 gcttttgtgg aaagcaagtt caacatatca aagataaatg aaaatgcgga 350 tggaagcttt gactatggcc tcttccagat caacagccac tactggtgca 400 acgattataa gagttactcg gaaaaccttt gccacgtaga ctgtcaagat 450 ctgctgaatc ccaaccttct tgcaggcatc cactgcgcaa aaaggattgt 500 gtccggagca cgggggatga acaactgggt agaatggagg ttgcactgtt 550 caggccggcc actctcctac tggctgacag gatgccgcct gagatgaaac 600 agggtgcggg tgcaccgtgg agtcattcca agactcctgt cctcactcag 650 ggattcttca tttcttctc ctactgcctc cacttcatgt tattttcttc 700 ccttcccatt tacaactaaa actgaccaga gccccaggaa taaatggttt 750 tcttggcttc ctccttactc ccatctggac ccagtccct ggttcctgtc 800 tgttatttgt aaactgagga ccacaataaa gaaatcttta tatttatcg 849

<210> 340

<211> 148

<212> PRT

<213> Homo sapiens

<400> 340

Met Thr Lys Ala Leu Leu Ile Tyr Leu Val Ser Ser Phe Leu Ala 1 5 10 15

Leu Asn Gln Ala Ser Leu Ile Ser Arg Cys Asp Leu Ala Gln Val 20 25 30

Leu Gln Leu Glu Asp Leu Asp Gly Phe Glu Gly Tyr Ser Leu Ser 35 40 45

Asp Trp Leu Cys Leu Ala Phe Val Glu Ser Lys Phe Asn Ile Ser 50 55 60

Lys Ile Asn Glu Asn Ala Asp Gly Ser Phe Asp Tyr Gly Leu Phe 657075

Gln Ile Asn Ser His Tyr Trp Cys Asn Asp Tyr Lys Ser Tyr Ser 80 85 90

Glu Asn Leu Cys His Val Asp Cys Gln Asp Leu Leu Asn Pro Asn 95 100 105

Leu Leu Ala Gly Ile His Cys Ala Lys Arg Ile Val Ser Gly Ala 110 115 120

Arg Gly Met Asn Asn Trp Val Glu Trp Arg Leu His Cys Ser Gly
125 130 135

Arg Pro Leu Ser Tyr Trp Leu Thr Gly Cys Arg Leu Arg

140 145

```
<210> 341
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 341
 ccctccaagg atgacaaagg cgc 23
<210> 342
<211> 29
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-29
<223> Synthetic construct.
<400> 342
 ggtcagcagc tttcttgccc taaatcagg 29
<210> 343
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 343
 atctcaggcg gcatcctgtc agcc 24
<210> 344
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 344
gtggatgcct gcaagaaggt tggg 24
<210> 345
<211> 45
<212> DNA
<213> Artificial
```

```
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 345
agctttcttg ccctaaatca ggccagcctc atcagtcgct gtgac 45
<210> 346
<211> 2575
<212> DNA
<213> Homo sapiens
<400> 346
tctgacctga ctggaagcgt ccaaagaggg acggctgtca gccctgcttg 50
actgagaacc caccagctca tcccagacac ctcatagcaa cctatttata 100
caaaggggga aagaaacacc tgagcagaat ggaatcatta ttttttccc 150
gtgaatgggc tttcagaagg caattaaaga aatccactca gagaggactt 250
ggggtgaaac ttgggtcctg tggttttctg attgtaagtg gaagcaggtc 300
ttgcacacgc tgttggcaaa tgtcaggacc aggttaagtg actggcagaa 350
aaacttccag gtggaacaag caacccatgt tctgctgcaa gcttgaagga 400
gcctggagcg ggagaaagct aacttgaaca tgacctgttg catttggcaa 450
gttctagcaa catgctccta aggaagcgat acaggcacag accatgcaga 500
ctccagttcc tcctgctgct cctgatgctg ggatgcgtcc tgatgatggt 550
ggcgatgttg caccetecee accaeacet geaceagaet gteacageee 600
aagccagcaa gcacagccct gaagccaggt accgcctgga ctttggggaa 650
tcccaggatt gggtactgga agctgaggat gagggtgaag agtacagccc 700
tctggagggc ctgccaccct ttatctcact gcgggaggat cagctgctgg 750
tggccgtggc cttaccccag gccagaagga accagagcca gggcaggaga 800
ggtgggagct accgcctcat caagcagcca aggaggcagg ataaggaagc 850
cccaaagagg gactgggggg ctgatgagga cggggaggtg tctgaagaag 900
aggagttgac cccgttcagc ctggacccac gtggcctcca ggaggcactc 950
agtgcccgca tcccctcca gagggctctg cccgaggtgc ggcacccact 1000
gtgtctgcag cagcaccctc aggacagcct gcccacagcc agcgtcatcc 1050
tctgtttcca tgatgaggcc tggtccactc tcctgcggac tgtacacagc 1100
```


atcctcgaca cagtgcccag ggccttcctg aaggagatca tcctcgtgga 1150 cgacctcage cagcaaggac aactcaagte tgeteteage gaatatgtgg 1200 ccaggctgga gggggtgaag ttactcagga gcaacaagag gctgggtgcc 1250 atcagggccc ggatgctggg ggccaccaga gccaccgggg atgtgctcgt 1300 cttcatggat gcccactgcg agtgccaccc aggctggctg gagcccctcc 1350 tcagcagaat agctggtgac aggagccgag tggtatctcc ggtgatagat 1400 gtgattgact ggaagacttt ccagtattac ccctcaaagg acctgcagcg 1450 tggggtgttg gactggaage tggattteca etgggaacet ttgecagage 1500 atgtgaggaa ggccctccag tcccccataa gccccatcag gagccctgtg 1550 gtgcccggag aggtggtggc catggacaga cattacttcc aaaacactgg 1600 agcgtatgac tctcttatgt cgctgcgagg tggtgaaaac ctcgaactgt 1650 ctttcaaggc ctggctctgt ggtggctctg ttgaaatcct tccctgctct 1700 egggtaggae acatetacea aaateaggat teecatteee eeetegaeea 1750 ggaggccacc ctgaggaaca gggttcgcat tgctgagacc tggctggggt 1800 cattcaaaga aaccttctac aagcatagee cagaggeett eteettgage 1850 aaggctgaga agccagactg catggaacgc ttgcagctgc aaaggagact 1900 gggttgtcgg acattccact ggtttctggc taatgtctac cctgagctgt 1950 acceatetga acceaggece agtttetetg gaaageteea caacaetgga 2000 cttgggctct gtgcagactg ccaggcagaa ggggacatcc tgggctgtcc 2050 catggtgttg gctccttgca gtgacagccg gcagcaacag tacctgcagc 2100 acaccagcag gaaggagatt cactttggca gcccacagca cctgtgcttt 2150 gctgtcaggc aggagcaggt gattcttcag aactgcacgg aggaaggcct 2200 ggccatccac cagcagcact gggacttcca ggagaatggg atgattgtcc 2250 acattette tgggaaatge atggaagetg tggtgcaaga aaacaataaa 2300 gatttgtacc tgcgtccgtg tgatggaaaa gcccgccagc agtggcgatt 2350 tgaccagata aatgctgtgg atgaacgatg aatgtcaatg tcagaaggaa 2400 aagagaattt tggccatcaa aatccagctc caagtgaacg taaagagctt 2450 atatatttca tgaagctgat cettttgtgt gtgtgeteet tgtgttagga 2500 gagaaaaaag ctctatgaaa gaatatagga agtttctcct tttcacacct 2550

<212> PRT

<213> Homo sapiens

<400> 347

Met Leu Leu Arg Lys Arg Tyr Arg His Arg Pro Cys Arg Leu Gln 1 5 10 15

Phe Leu Leu Leu Leu Met Leu Gly Cys Val Leu Met Met Val 20 25 30

Ala Met Leu His Pro Pro His His Thr Leu His Gln Thr Val Thr 35 40 45

Ala Gln Ala Ser Lys His Ser Pro Glu Ala Arg Tyr Arg Leu Asp 50 55 60

Phe Gly Glu Ser Gln Asp Trp Val Leu Glu Ala Glu Asp Glu Gly 65 70 75

Glu Glu Tyr Ser Pro Leu Glu Gly Leu Pro Pro Phe Ile Ser Leu 80 85 90

Arg Glu Asp Gln Leu Leu Val Ala Val Ala Leu Pro Gln Ala Arg 95 100 105

Arg Asn Gln Ser Gln Gly Arg Gly Gly Ser Tyr Arg Leu Ile 110 115 120

Lys Gln Pro Arg Arg Gln Asp Lys Glu Ala Pro Lys Arg Asp Trp
125 130 135

Gly Ala Asp Glu Asp Gly Glu Val Ser Glu Glu Glu Glu Leu Thr 140 145 150

Pro Phe Ser Leu Asp Pro Arg Gly Leu Gln Glu Ala Leu Ser Ala 155 160 165

Arg Ile Pro Leu Gln Arg Ala Leu Pro Glu Val Arg His Pro Leu 170 175 180

Cys Leu Gln Gln His Pro Gln Asp Ser Leu Pro Thr Ala Ser Val

Ile Leu Cys Phe His Asp Glu Ala Trp Ser Thr Leu Leu Arg Thr 200 205 210

Val His Ser Ile Leu Asp Thr Val Pro Arg Ala Phe Leu Lys Glu 215 220 225

Ile Ile Leu Val Asp Asp Leu Ser Gln Gln Gly Gln Leu Lys Ser 230 235 240

Ala Leu Ser Glu Tyr Val Ala Arg Leu Glu Gly Val Lys Leu Leu 245 250 255

Bl

Arg Ser Asn Lys Arg Leu Gly Ala Ile Arg Ala Arg Met Leu Gly Ala Thr Arg Ala Thr Gly Asp Val Leu Val Phe Met Asp Ala His Cys Glu Cys His Pro Gly Trp Leu Glu Pro Leu Leu Ser Arg Ile Ala Gly Asp Arg Ser Arg Val Val Ser Pro Val Ile Asp Val Ile Asp Trp Lys Thr Phe Gln Tyr Tyr Pro Ser Lys Asp Leu Gln Arg Gly Val Leu Asp Trp Lys Leu Asp Phe His Trp Glu Pro Leu Pro Glu His Val Arg Lys Ala Leu Gln Ser Pro Ile Ser Pro Ile Arg Ser Pro Val Val Pro Gly Glu Val Val Ala Met Asp Arg His Tyr Phe Gln Asn Thr Gly Ala Tyr Asp Ser Leu Met Ser Leu Arg Gly Gly Glu Asn Leu Glu Leu Ser Phe Lys Ala Trp Leu Cys Gly Gly Ser Val Glu Ile Leu Pro Cys Ser Arg Val Gly His Ile Tyr Gln Asn Gln Asp Ser His Ser Pro Leu Asp Gln Glu Ala Thr Leu Arg 430 Asn Arg Val Arg Ile Ala Glu Thr Trp Leu Gly Ser Phe Lys Glu 445 Thr Phe Tyr Lys His Ser Pro Glu Ala Phe Ser Leu Ser Lys Ala 460 ... Glu Lys Pro Asp Cys Met Glu Arg Leu Gln Leu Gln Arg Arg Leu Gly Cys Arg Thr Phe His Trp Phe Leu Ala Asn Val Tyr Pro Glu Leu Tyr Pro Ser Glu Pro Arg Pro Ser Phe Ser Gly Lys Leu His Asn Thr Gly Leu Gly Leu Cys Ala Asp Cys Gln Ala Glu Gly Asp Ile Leu Gly Cys Pro Met Val Leu Ala Pro Cys Ser Asp Ser Arg 530 Gln Gln Gln Tyr Leu Gln His Thr Ser Arg Lys Glu Ile His Phe

```
545
                                      550
 Gly Ser Pro Gln His Leu Cys Phe Ala Val Arg Gln Glu Gln Val
 Ile Leu Gln Asn Cys Thr Glu Glu Gly Leu Ala Ile His Gln Gln
 His Trp Asp Phe Gln Glu Asn Gly Met Ile Val His Ile Leu Ser
 Gly Lys Cys Met Glu Ala Val Val Gln Glu Asn Asn Lys Asp Leu
 Tyr Leu Arg Pro Cys Asp Gly Lys Ala Arg Gln Gln Trp Arg Phe
                 620
                                      625
 Asp Gln Ile Asn Ala Val Asp Glu Arg
                 635
<210> 348
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 348
 ggagaggtgg tggccatgga cag 23
<210> 349
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 349
ctgtcactgc aaggagccaa cacc 24
<210> 350
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
```

555

<400> 350 tatgtcgctg cgaggtggtg aaaacctcga actgtctttc aaggc 45

<222> 1-45

<223> Synthetic construct.

```
<400> 351
```

<210> 351

<211> 2524 <212> DNA <213> Homo sapiens cgccaagcat gcagtaaagg ctgaaaatct gggtcacagc tgaggaagac 50 ctcagacatg gagtccagga tgtggcctgc gctgctgctg tcccacctcc 100 tecetetetg gecaetgetg ttgetgeece teceaecgee tgeteaggge 150 tetteatect eccetegaac eccaceagee ceageeegee eccegtgtge 200 caggggaggc ccctcggccc cacgtcatgt gtgcgtgtgg gagcgagcac 250 ctccaccaag ccgatctcct cgggtcccaa gatcacgtcg gcaagtcctg 300 cctggcactg caccccagc caccccatca ggctttgagg aggggccgcc 350 ctcatcccaa tacccctggg ctatcgtgtg gggtcccacc gtgtctcgag 400 aggatggagg ggaccccaac tctgccaatc ccggatttct ggactatggt 450 tttgcagccc ctcatgggct cgcaacccca caccccaact cagactccat 500 gcgaggtgat ggagatgggc ttatccttgg agaggcacct gccaccctqc 550 ggccattcct gttcgggggc cgtggggaag gtgtggaccc ccagctctat 600 gtcacaatta ccatctccat catcattgtt ctcgtggcca ctggcatcat 650 cttcaagttc tgctgggacc gcagccagaa gcgacgcaga ccctcagggc 700 agcaaggtgc cctgaggcag gaggagagcc agcagccact gacagacctg 750 tccccggctg gagtcactgt gctgggggcc ttcggggact cacctacccc 800 cacccctgac catgaggagc cccgaggggg accccggcct gggatgcccc 850 accccaaggg ggctccagcc ttccagttga accggtgagg gcaggggcaa 900 tgggatggga gggcaaagag ggaaggcaac ttaggtcttc agagctgggg 950 tgggggtgcc ctctggatgg gtagtgagga ggcaggcgtg gcctcccaca 1000 gcccctggcc ctcccaaggg ggctggacca gctcctctct gggaggcacc 1050 etteettete ceagtetete aggatetgtg teetattete tgetgeeeat 1100 aactccaact ctgccctctt tggttttttc tcatgccacc ttgtctaaga 1150 caactetgee etettaacet tgatteeece tetttgtett gaactteece 1200 ttctattctg gcctacccct tggttcctga ctgtgccctt tccctcttcc 1250 tctcaggatt cccctggtga atctgtgatg cccccaatgt tggggtgcag 1300


```
ccaagcagga ggccaagggg ccggcacagc ccccatccca ctgagggtgg 1350
 ggcagctgtg gggagctggg gccacagggg ctcctqqctc ctqccccttg 1400
 cacaccacco ggaacactco ccagococac qqqcaatcct atotqctcqc 1450
 cctcctgcag gtgggggcct cacatatctg tgacttcggg tccctgtccc 1500
 caccettgtg cacteacatg aaageettge acacteacet ceacetteae 1550
 aggccatttg cacacgctcc tgcaccctct ccccgtccat accgctccqc 1600
 teagetgaet eteatgttet etegteteae atttgeacte teteetteee 1650
 acattctgtg ctcagctcac tcagtggtca gcgtttcctg cacactttac 1700
 ctctcatgtg cgtttcccgg cctgatgttg tggtggtgt cggcgtgctc 1750
 actetetece teatgaacae ecaeceaeet egttteegea geceetgegt 1800
 gctgctccag aggtgggtgg gaggtgagct gggggctcct tgggccctca 1850
 tcggtcatgg tctcgtccca ttccacacca tttgtttctc tgtctcccca 1900
 tectaeteea aggatgeegg cateaceetg agggeteece ettgggaatg 1950
 gggtagtgag gccccagact tcacccccag cccactqcta aaatctqttt 2000
 tctgacagat gggttttggg gagtcgcctg ctgcactaca tgagaaaggg 2050
 actoccattt gocottocot ttotoctaca gtocottttq tottqtctqt 2100
 cctggctgtc tgtgtgtgt ccattctctg gacttcagag ccccctgagc 2150
 cagtoctocc ttcccagcot coetttgggc ctccctaact ccacctaggc 2200
 tgccagggac cggagtcagc tggttcaagg ccatcgggag ctctgcctcc 2250
 aagtetacce tteeetteee ggaeteeete etgteeete ettteeteee 2300
 teetteette caeteteett eetttigett eeetgeeett teeceeteet 2350
 caggitette ecteettete aetggittit ceaeetteet ectteeette 2400
 ttccctggct cctaggctgt gatatatatt tttgtattat ctctttcttc 2450
 ttcttgtggt gatcatcttg aattactgtg ggatgtaagt ttcaaaattt 2500
 tcaaataaag cctttgcaag ataa 2524
<210> 352
<211> 243
<212> PRT
<213> Homo sapiens
<400> 352
Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
```

Leu Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu 115 Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 130 Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg 145 Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln 170 175 180 Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser 185 190 Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp 200 205 210 Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp 220 .. Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Glu Glu

Leu Pro Lys

<400> 353

gttaaccage gcagteetee gtgegteeeg eeegeegetg eeeteactee 50 eggeeaggat ggeateetgt etggeeetge gcatggeget getgetggte 100

<210> 353

<211> 480

<212> DNA

<213> Homo sapiens

cgtgcccacg ctgtggaacg agccggccga gctgccgtcg ggagaaggcc 200 ccgtggagag caccagccc ggccgggagc ccgtggacac cggtcccca 250 gcccccaccg tcgcgccagg acccgaggac agcaccgcgc aggagcggct 300 ggaccagggc ggcgggtcgc tggggcccgg cgctatcgcg gccatcgtga 350 tcgccgcct gctggccacc tgcgtggtgc tggcgctcgt ggtcgtcgc 400 ctgagaaagt tttctgcctc ctgaagcgaa taaaggggcc gcgcccggcc 450 gcggcgcgac tcggcaaaaa aaaaaaaaa 480

tccggggttc tggcccctgc ggtgctcaca gacgatgttc cacaggagcc 150

BI

```
<210> 354
<211> 121
<212> PRT
<213> Homo sapiens
```

<400> 354

Met 1	Ala	Ser	Cys				Arg				Val	Ser 15
Gly	Val	Leu	Ala				Leu					Glu 30
Pro	Val	Pro	Thr	Leu 35	Trp	Asn	Glu			Pro		Gly 45
Glu	Gly	Pro					Ser					Asp

Thr Gly Pro Pro Ala Pro Thr Val Ala Pro Gly Pro Glu Asp Ser 65 70 75

Thr Ala Gln Glu Arg Leu Asp Gln Gly Gly Gly Ser Leu Gly Pro 80 85 90

Gly Ala Ile Ala Ala Ile Val Ile Ala Ala Leu Leu Ala Thr Cys 95 100 105

Val Val Leu Ala Leu Val Val Val Ala Leu Arg Lys Phe Ser Ala 110 115 120

Ser

```
<210> 355
<211> 2134
<212> DNA
<213> Homo sapiens
```

<400> 355
ggccgttggt tggtgcgcgg ctgaagggtg tggcgcgagc agcgtcgttg 50
gttggccggc ggcgggccgg gacgggcatg gccctgctgc tgtgcctggt 100

gtgcctgacg gcggcgctgg cccacggctg tctgcactgc cacagcaact 150 tctccaagaa gttctccttc taccgccacc atgtgaactt caagtcctqg 200 tgggtgggcg acateceegt gteaggggcg etgeteaceg actggagega 250 cgacacgatg aaggagctgc acctggccat ccccgccaag atcacccggg 300 agaagctgga ccaagtggcg acagcagtgt accagatgat ggatcagctg 350 taccagggga agatgtactt ccccgggtat ttccccaacg agctgcgaaa 400 catcttccgg gagcaggtgc acctcatcca gaacgccatc atcgaaaggc 450 acctggcacc aggcagctgg ggaggaggc agctctccag ggagggaccc 500 agcctagcac ctgaaggatc aatgccatca ccccgcgggg acctccccta 550 agtagccccc agaggcgctg ggagtgttgc caccgccctc ccctgaagtt 600 tgctccatct cacgctgggg gtcaacctgg ggaccccttc.cctccgggcc 650 atggacacac atacatgaaa accaggccgc atcgactgtc agcaccgctg 700 tggcatcttc cagtacgaga ccatctcctg caacaactgc acagactcgc 750 acgtcgcctg ctttggctat aactgcgagt agggctcagg catcacaccc 800 accegtgeea gggeeetact gteeetgggg teeeaggete teettggagg 850 gggctccccg ccttccacct ggctgtcatc gggtagggcg gggccgtggg 900 ttcaggggcg caccacttcc aagcctgtgt cccacaggtc ctcggcgcag 950 tggaagtcag ctgtccaggg cctcctgaac tacataaata actggcacaa 1000 gtaagtcccc tcctcaaacc aacacaggca gtgtgtgtat gtgagcacct 1050 cgtgggtgag tatgtgtggg gcacaggctg gctccctcag ctcccacgtc 1100 ctagaggggc tcccgaggag gtggaacctc aacccagctc tgcgcaggag 1150 gcggctgcag tccttttctc cctcaaaggt ctccgaccct cagctggagg 1200 egggeatett teetaaaggg teeceatagg gtetggttee acceeatece 1250 aggtctgtgg tcagagcctg ggagggttcc ctacgatggt taggggtgcc 1300 ccatggaggg gctgactgcc ccacattgcc tttcagacag gacacgagca 1350 tgaggtaagg ccgccctgac ctggacttca gggggagggg gtaaagggag 1400 agaggagggg ggctaggggg tcctctagat cagtgggggc actgcaggtg 1450 gggctctccc tatacctggg acacctgctg gatgtcacct ctgcaaccac 1500 acceatgtgg tggttteatg aacagaceae geteetetge etteteetgg 1550

BI

cctgggacac acagagccac cccggccttg tgagtgaccc agagaaggg 1600 ggcctcggga gaaggggtgc tcgtaagcca acaccagcgt gccgcggcct 1650 gcacaccctt cggacatccc aggcacgagg gtgtcgtgga tgtggccaca 1700 cataggacca cacgtcccag ctgggaggag aggcctgggg cccccaggga 1750 gggaggcagg gggtgggga catggagagc tgaggcagcc tcgtctccc 1800 gcagcctggt atcgccagcc ttaaggtgtc tggagcccc acacttggcc 1850 aacctgacct tggaagatgc tgctgagtgt ctcaagcagc actgacagca 1900 gctgggcctg ccccagggca acgtggggc ggagagccc acggagacccag ctggacagcc 1950 cctgcctgtc actctggac tgggctgctg ctgacagca cagagctgag ctggccagg cagagaggc gggaggagg 2050 gaatggggt gggctgtcg cagcatcag ccctggcag gtccgcagag 2100 ctgcgggat tgattaaagt ccctgatgt tctc 2134

<210> 356

<211> 157

<212> PRT

<213> Homo sapiens

<400> 356

Met Ala Leu Leu Cys Leu Val Cys Leu Thr Ala Ala Leu Ala $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

His Gly Cys Leu His Cys His Ser Asn Phe Ser Lys Lys Phe Ser 20 25 30

Phe Tyr Arg His His Val Asn Phe Lys Ser Trp Trp Val Gly Asp 35 40 45

Ile Pro Val Ser Gly Ala Leu Leu Thr Asp Trp Ser Asp Asp Thr 50 55 .

Met Lys Glu Leu His Leu Ala Ile Pro Ala Lys Ile Thr Arg Glu 65 70 75

Lys Leu Asp Gln Val Ala Thr Ala Val Tyr Gln Met Met Asp Gln 80 85 90

Leu Tyr Gln Gly Lys Met Tyr Phe Pro Gly Tyr Phe Pro Asn Glu 95 100 105

Leu Arg Asn Ile Phe Arg Glu Gln Val His Leu Ile Gln Asn Ala 110 115 120

Ile Ile Glu Arg His Leu Ala Pro Gly Ser Trp Gly Gly Gln 125 130 135

Leu Ser Arg Glu Gly Pro Ser Leu Ala Pro Glu Gly Ser Met Pro

150

Ser Pro Arg Gly Asp Leu Pro 155

<210> 357

<211> 1536

<212> DNA

<213> Homo sapiens

<400> 357

agcaggagca ggagagggac aatggaagct gccccqtcca ggttcatgtt 50 cctcttattt ctcctcacgt gtgagctggc tgcagaagtt gctgcagaag 100 ttgagaaatc ctcagatggt cctggtgctg cccaggaacc cacgtggctc 150 acagatgtcc cagctgccat ggaattcatt gctgccactg aggtggctgt 200 cataggette ttecaggatt tagaaatace ageagtgeee atacteeata 250 gcatggtgca aaaattccca ggcgtgtcat ttgggatcag cactgattct 300 gaggttctga cacactacaa catcactggg aacaccatct gcctctttcg 350 cctggtagac aatgaacaac tgaatttaga ggacgaagac attgaaagca 400 ttgatgccac caaattgagc cgtttcattg agatcaacag cctccacatg 450 gtgacagagt acaaccctgt gactgtgatt gggttattca acagcgtaat 500 tcagattcat ctcctcctga taatgaacaa ggcctcccca gagtatgaag 550 agaacatgca cagataccag aaggcagcca agctcttcca ggggaagatt 600 ctctttattc tggtggacag tggtatgaaa gaaaatggga aggtgatatc 650 atttttcaaa ctaaaggagt ctcaactgcc agctttggca atttaccaga 700 ctctagatga cgagtgggat acactgccca cagcagaagt ttccgtagag 750 catgtgcaaa acttttgtga tggattccta agtggaaaat tgttgaaaga 800 aaatcgtgaa tcagaaggaa agactccaaa ggtggaactc tgacttctcc 850 ttggaactac atatggccaa gtatctactt tatgcaaagt aaaaaggcac 900 aactcaaatc tcagagacac taaacaacag gatcactagg cctgccaacc 950 acacacaca gcacqtqcac acacqcacqc acqcqtqcac acacacacqc 1000 gcacacacac acacacag agetteattt cetqtettaa aateteqttt 1050 tctcttcttc cttctttaa atttcatatc ctcactccct atccaatttc 1100 cttcttatcg tgcattcata ctctgtaagc ccatctgtaa cacacctaga 1150 tcaaggcttt aagagactca ctgtgatgcc tctatgaaag agaggcattc 1200

344

ctagagaaag attgttcaa tttgtcatt aatacaagt ttgtatactg 1250 cacatgactt acacacaaca tagttcctgc tcttttaagg ttacctaagg 1300 gttgaaactc taccttctt cataagcaca tgtccgtctc tgactcagga 1350 tcaaaaacca aaggatggtt ttaaacacct ttgtgaaatt gtctttttgc 1400 cagaagttaa aggctgtctc caagtccctg aactcagcag aaatagacca 1450 tgtgaaaact ccatgcttgg ttagcatctc caactcccta tgtaaatcaa 1500 caacctgcat aataaataaa aggcaatcat gttata 1536

<210> 358 <211> 273 <212> PRT

<213> Homo sapiens

<400> 358

Met Glu Ala Ala Pro Ser Arg Phe Met Phe Leu Leu Phe Leu Leu 1 5 10 15

Thr Cys Glu Leu Ala Ala Glu Val Ala Ala Glu Val Glu Lys Ser $20 \\ 25 \\ 30$

Ser Asp Gly Pro Gly Ala Ala Gln Glu Pro Thr Trp Leu Thr Asp 35 40 45

Val Pro Ala Ala Met Glu Phe Ile Ala Ala Thr Glu Val Ala Val 50 55 60

Ile Gly Phe Phe Gln Asp Leu Glu Ile Pro Ala Val Pro Ile Leu
65 70 75

His Ser Met Val Gln Lys Phe Pro Gly Val Ser Phe Gly Ile Ser 80 85 90

Thr Asp Ser Glu Val Leu Thr His Tyr Asn Ile Thr Gly Asn Thr 95 100 105

Ile Cys Leu Phe Arg Leu Val Asp Asn Glu Gln Leu Asn Leu Glu
110 115 120

Asp Glu Asp Ile Glu Ser Ile Asp Ala Thr Lys Leu Ser Arg Phe 125 130 135

Ile Glu Ile Asn Ser Leu His Met Val Thr Glu Tyr Asn Pro Val 140 145 $\cdot 150$

Thr Val Ile Gly Leu Phe Asn Ser Val Ile Gln Ile His Leu Leu 155 160 165

Leu Ile Met Asn Lys Ala Ser Pro Glu Tyr Glu Glu Asn Met His 170 175 180

Arg Tyr Gln Lys Ala Ala Lys Leu Phe Gln Gly Lys Ile Leu Phe 185 190 195

```
Ile Leu Val Asp Ser Gly Met Lys Glu Asn Gly Lys Val Ile Ser
                 200
 Phe Phe Lys Leu Lys Glu Ser Gln Leu Pro Ala Leu Ala Ile Tyr
 Gln Thr Leu Asp Asp Glu Trp Asp Thr Leu Pro Thr Ala Glu Val
                 230
 Ser Val Glu His Val Gln Asn Phe Cys Asp Gly Phe Leu Ser Gly
 Lys Leu Leu Lys Glu Asn Arg Glu Ser Glu Gly Lys Thr Pro Lys
                 260
 Val Glu Leu
<210> 359
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 359
ccagcagtgc ccatactcca tagc 24
<210> 360
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.
<400> 360
 tgacgagtgg gatacactgc 20
<210> 361
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 361
gctctacgga aacttctgct gtgg 24
```

<210> 362

<211> 50 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-50 <223> Synthetic construct. <400> 362 attcccaggc gtgtcatttg ggatcagcac tgattctgag gttctgacac 50 <210> 363 <211> 1777 <212> DNA <213> Homo sapiens <400> 363 ggagagccgc ggctgggacc ggagtgggga gcgcggcgtg gaggtgccac 50 ccggcgcggg tggcggagag atcagaagcc tcttccccaa gccgagccaa 100 cctcagcggg gacccgggct cagggacgcg gcggcggcgg cggcqactgc 150 agtggctgga cgatggcagc gtccgccgga gccggggcgg tgattgcagc 200 cccagacage eggegetgge tgtggteggt getggeggeg gegettggge 250 tcttgacage tggagtatca geettggaag tatataegee aaaagaaate 300 ttcgtggcaa atggtacaca agggaagctg acctgcaagt tcaagtctac 350 tagtacgact ggcgggttga cctcagtctc ctggagcttc cagccagagg 400 gggccgacac tactgtgtcg tttttccact actcccaagg gcaagtgtac 450 cttgggaatt atccaccatt taaagacaga atcagctggg ctggagacct 500 tgacaagaaa gatgcatcaa tcaacataga aaatatgcag tttatacaca 550 atggcaccta tatctgtgat gtcaaaaacc ctcctgacat cgttgtccag 600 cctggacaca ttaggctcta tgtcgtagaa aaagagaatt tgcctgtgtt 650 tccagtttgg gtagtggtgg gcatagttac tgctgtggtc ctaggtctca 700 ctctgctcat cagcatgatt ctggctgtcc tctatagaag gaaaaactct 750 aaacgggatt acactggctg cagtacatca gagagtttgt caccagttaa 800 gcaggctcct cggaagtccc cctccgacac tgagggtctt gtaaagagtc 850 tgccttctgg atctcaccag ggcccagtca tatatgcaca gttagaccac 900

tccggcggac atcacagtga caagattaac aagtcagagt ctgtggtgta 950

tgcggatatc cgaaagaatt aagagaatac ctagaacata tcctcagcaa 1000

131

gaaacaaaac caaactggac tctcqtqcaq aaaatqtaqc ccattaccac 1050 atgtageett ggagaeeeag geaaggaeaa gtaeaegtgt aeteaeagag 1100 ggagagaaag atgtgtacaa aggatatgta taaatattct atttagtcat 1150 cctgatatga ggagccagtg ttgcatgatg aaaagatggt atgattctac 1200 atatgtaccc attgtcttgc tgtttttgta ctttcttttc aggtcattta 1250 caattgggag atttcagaaa cattcctttc accatcattt agaaatggtt 1300 tgccttaatg gagacaatag cagatcctgt agtatttcca gtagacatgg 1350 ccttttaatc taagggctta agactgatta gtcttagcat ttactgtagt 1400 tggaggatgg agatgctatg atggaagcat acccagggtg gcctttagca 1450 cagtatcagt accatttatt tgtctgccgc ttttaaaaaaa tacccattgg 1500 ctatgccact tgaaaacaat ttgagaagtt tttttgaagt ttttctcact 1550 aaaatatggg gcaattgtta gccttacatg ttgtgtagac ttactttaag 1600 tttgcaccct tgaaatgtgt catatcaatt tctggattca taatagcaag 1650 attagcaaag gataaatgcc gaaggtcact tcattctgga cacagttgga 1700 tcaatactga ttaagtagaa aatccaagct ttgcttgaga acttttgtaa 1750 cgtggagagt aaaaagtatc ggtttta 1777

<210> 364

<211> 269

<212> PRT

<213> Homo sapiens

<400> 364

Met Ala Ala Ser Ala Gly Ala Gly Ala Val Ile Ala Ala Pro Asp 1 5 10 15

Ser Arg Arg Trp Leu Trp Ser Val Leu Ala Äla Ala Leu Gly Leu 20 25 30

Leu Thr Ala Gly Val Ser Ala Leu Glu Val Tyr Thr Pro Lys Glu 35 40 45

Ile Phe Val Ala Asn Gly Thr Gln Gly Lys Leu Thr Cys Lys Phe 50 55 60

Lys Ser Thr Ser Thr Thr Gly Gly Leu Thr Ser Val Ser Trp Ser
65 70 75

Phe Gln Pro Glu Gly Ala Asp Thr Thr Val Ser Phe Phe His Tyr 80 85 90

Ser Gln Gly Gln Val Tyr Leu Gly Asn Tyr Pro Pro Phe Lys Asp 95 100 105 (B)

```
Arg Ile Ser Trp Ala Gly Asp Leu Asp Lys Lys Asp Ala Ser Ile
Asn Ile Glu Asn Met Gln Phe Ile His Asn Gly Thr Tyr Ile Cys
                125
Asp Val Lys Asn Pro Pro Asp Ile Val Val Gln Pro Gly His Ile
                                    145
Arg Leu Tyr Val Val Glu Lys Glu Asn Leu Pro Val Phe Pro Val
Trp Val Val Gly Ile Val Thr Ala Val Val Leu Gly Leu Thr
                170
Leu Leu Ile Ser Met Ile Leu Ala Val Leu Tyr Arg Arg Lys Asn
                185
Ser Lys Arg Asp Tyr Thr Gly Cys Ser Thr Ser Glu Ser Leu Ser
                200
                                    205
                                                         210
Pro Val Lys Gln Ala Pro Arg Lys Ser Pro Ser Asp Thr Glu Gly
                215
                                    220
Leu Val Lys Ser Leu Pro Ser Gly Ser His Gln Gly Pro Val Ile
                                    235
Tyr Ala Gln Leu Asp His Ser Gly Gly His His Ser Asp Lys Ile
Asn Lys Ser Glu Ser Val Val Tyr Ala Asp Ile Arg Lys Asn
```

- <210> 365
- <211> 1321
- <212> DNA
- <213> Homo sapiens
- <400> 365

gccggctgtg cagagacgcc atgtaccggc tectgtcage agtgactgcc 50 cgggctgccg cecceggggg ettggectca agetgeggac gaegeggggt 100 ccatcagege gecgggetge egectetegg ceaegggetgg gtegggggcc 150 tegggetgg getggggetg gegetegggg tgaagetgge aggtgggetg 200 aggggegegg eeeeggega gteeeeggg geeeeegge etgaggete 250 geetetgge gageegeac aggageagte eeteggeee tegggete 250 agaeeeegge geegeeee teeaggtget tegeeagge eategagage 350 ageeggeac tgetgeacag gateaaggat gaggtgggeg eaeegggeat 400 agtggttgga gttetgtag atggaaaaga agtetggtea gaaggtttag 450 gttatgetga tgttgagaac egtgtaccat gtaaaccaga gacagttatg 500

01

cgaattgcta qcatcagcaa aagtctcacc atggttgctc ttgccaaatt 550 gtgggaagca gggaaactgg atcttgatat tccagtacaa cattatgttc 600 ccgaattccc agaaaaagaa tatgaaggtg aaaaggtttc tgtcacaaca 650 agattactga tttcccattt aagtggaatt cgtcattatg aaaaggacat 700 aaaaaaggtg aaagaagaga aagcttataa agccttgaag atgatgaaag 750 agaatgttgc atttgagcaa gaaaaagaag gcaaaagtaa tgaaaagaat 800 gattttacta aatttaaaac agagcaggag aatgaagcca aatgccggaa 850 ttcaaaacct ggcaagaaaa agaatgattt tgaacaaggc gaattatatt 900 tgagagaaaa gtttgaaaat tcaattgaat ccctaagatt atttaaaaat 950 gatcctttgt tcttcaaacc tggtagtcag tttttgtatt caacttttgg 1000 ctatacccta ctggcagcca tagtagagag agcttcagga tgtaaatatt 1050 tggactatat gcagaaaata ttccatgact tggatatgct gacgactgtg 1100 caggaagaaa acgagccagt gatttacaat agagcaaggt aaatgaatac 1150 cttctgctgt gtctagctat atcqcatctt aacactattt tattaattaa 1200 aagtcaaatt ttctttgttt ccattccaaa atcaacctgc cacattttgg 1250 gagcttttct acatgtctgt tttctcatct gtaaagtgaa ggaagtaaaa 1300 catgtttata aagtaaaaaa a 1321

- <210> 366
- <211> 373
- <212> PRT
- <213> Homo sapiens
- <400> 366
- Met Tyr Arg Leu Leu Ser Ala Val Thr Ala Arg Ala Ala Pro 1 5 10 $^{\prime\prime}$ 15
- Gly Gly Leu Ala Ser Ser Cys Gly Arg Arg Gly Val His Gln Arg $20 \\ 25 \\ 30$
- Ala Gly Leu Pro Pro Leu Gly His Gly Trp Val Gly Gly Leu Gly 35 40 45
- Leu Gly Leu Gly Leu Ala Leu Gly Val Lys Leu Ala Gly Gly Leu 50 55 60
- Arg Gly Ala Ala Pro Ala Gln Ser Pro Ala Ala Pro Asp Pro Glu 65 70 75
- Ala Ser Pro Leu Ala Glu Pro Pro Gln Glu Gln Ser Leu Ala Pro 80 85 90

Т	'rp	Ser	Pro	Gln	Thr 95	Pro	Ala	Pro	Pro	Cys 100	Ser	Arg	Cys	Phe	Ala 105
A	rg	Ala	Ile	Glu	Ser 110	Ser	Arg	Asp	Leu	Leu 115	His	Arg	Ile	Lys	Asp 120
G	lu	Val	Gly	Ala	Pro 125	Gly	Ile	Val	Val	Gly 130	Val	Ser	Val	Asp	Gly 135
L	ys	Glu	Val	Trp	Ser 140	Glu	Gly	Leu	Gly	Tyr 145	Ala	Asp	Val	Glu	Asn 150
A	rg	Val	Pro	Cys	Lys 155	Pro	Glu	Thr	Val	Met 160	Arg	Iļe	Ala	Ser	Ile 165
S	er	Lys	Ser	Leu,	Thr 170	Met	Val	Ala	Leu	Ala 175	Lys	Leu	Trp	Glu	Ala 180
G	ly	Lys	Leu	Asp	Leu 185	Asp	Ile	Pro	Val	Gln 190	His	Tyr	Val	Pro	Glu 195
Ρ	he	Pro	Glu	Lys	Glu 200	Tyr	Glu	Gly	Glu	Lys 205	Val	Ser	Val	Thr	Thr 210
A	rg	Leu	Leu	Ile	Ser 215	His	Leu	Ser	Gly	Ile 220	Arg	His	Tyr	Glu	Lys 225
Α	sp	Ile	Lys	Lys	Val 230	Lys	Glu	Glu	Lys	Ala 235	Tyr	Lys	Ala	Leu	Lys 240
М	et	Met	Lys	Glu	Asn 245	Val	Ala	Phe	Glu	Gln 250	Glu	Lys	Glu	Gly	Lys 255
S	er	Asn	Glu	Lys	Asn 260	Asp	Phe	Thr	Lys	Phe 265	Lys	Thr	Glu	Gln	Glu 270
A	.sn	Glu	Ala	Lys	Cys 275	Arg	Asn	Ser	Lys	Pro 280	Gly	Lys	Lys	Lys	Asn 285
A	.sp	Phe	Glu	Gln	Gly 290	Glu	Leu	Tyr	Leu	Arg 295	Glu	Lys	Phe	Glu	Asn 300
S	er	Ile	Glu	Ser	Leu 305	Arg	Leu	Phe	Lys	Asn 310	Asp	Pro	Leu	Phe	Phe 315
L	ys	Pro	Gly	Ser	Gln 320	Phe	Leu	Tyr	Ser	Thr 325	Phe	Gly	Tyr	Thr	Leu 330
L	eu	Ala	Ala	Ile	Val 335	Glu	Arg	Ala	Ser	Gly 340	Cys	Lys	Tyr	Leu	Asp 345
Т	yr	Met	Gln	Lys	Ile 350	Phe	His	Asp	Leu	Asp 355	Met	Leu	Thr	Thr	Val 360
G	ln	Glu	Glu	Asn	Glu 365	Pro	Val	Ile	Tyr	Asn 370	Arg	Ala	Arg		
12	10	367	7												

<210> 367

```
<211> 30
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-30
<223> Synthetic construct.
<400> 367
tggaaaagaa gtctggtcag aaggtttagg 30
<210> 368
<211> 25
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.
<400> 368
 catttggctt cattctcctg ctctg 25
<210> 369
<211> 28
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-28
<223> Synthetic construct.
<400> 369
aaaacctcag aacaactcat tttgcacc 28
<210> 370
<211> 41
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-41
<223> Synthetic construct.
<400> 370
gtctcaccat ggttgctctt gccaaattgt gggaagcagg g 41
<210> 371
<211> 1150
<212> DNA
<213> Homo sapiens
<400> 371
gtgacactat agaagagcta tgacgtcgca tgcacgcgta cgtaagctcg 50
```

```
gaattcggct cgaggctggt gggaagaagc cgagatggcg gcagccagcg 100
 ctggggcaac ccgctgctc ctgctcttgc tgatggcggt agcagcgccc 150
 aqtcqaqccc qqqqcaqcqq ctqccqqqcc qqqactqqtg cgcqaqqqqc 200
 tggggcggaa ggtcgagagg gcgaggcctg tggcacggtg gggctgctgc 250
 tggagcactc atttgagatc gatgacagtg ccaacttccg gaagcggggc 300
 tcactgctct ggaaccagca ggatggtacc ttgtccctgt cacagcggca 350
 qctcaqcqaq qaqqaqcqqq qccqactccq gqatqtqqca qccctgaatg 400
 gcctgtaccg ggtccggatc ccaaggcgac ccggggccct ggatggcctg 450
 gaagetggtg getatgtete eteetttgte eetgegtget eeetggtgga 500
 gtcgcacctg tcggaccagc tgaccctgca cgtggatgtg gccggcaacg 550
 tggtgggcgt gtcggtggtg acgcaccccg ggggctgccg gggccatgag 600
 gtggaggacg tggacctgga gctgttcaac acctcggtgc agctgcagcc 650
 gcccaccaca gccccaggcc ctgagacggc ggccttcatt gagcgcctgg 700
 agatggaaca ggcccagaag gccaagaacc cccaggagca gaagtccttc 750
 ttcgccaaat actggatgta catcattccc gtcgtcctgt tcctcatgat 800
 gtcaggagcg ccagacaccg ggggccaggg tgggggtggg ggtgggggtg 850
 gtggtggggg tagtggcctt tgctgtgtgc caccctccct gtaagtctat 900
 ttaaaaacat cgacgataca ttgaaatgtg tgaacgtttt gaaaagctac 950
 agcttccagc agccaaaagc aactgttgtt ttggcaagac ggtcctgatg 1000
 tacaagettg attgaaatte actgeteact tgataegtta tteagaaace 1050
 caaggaatgg ctgtccccat cctcatgtgg ctgtgtggag ctcagctgtg 1100
 ttgtgtggca gtttattaaa ctgtccccca gatcgacacg caaaaaaaaa 1150
<210> 372
<211> 269
```

Leu Met Ala Val Ala Ala Pro Ser Arg Ala Arg Gly Ser Gly Cys

Arg Ala Gly Thr Gly Ala Arg Gly Ala Gly Ala Glu Gly Arg Glu

<212> PRT

<213> Homo sapiens

<400> 372

Met Ala Ala Ala Ser Ala Gly Ala Thr Arg Leu Leu Leu Leu

*B*1

Gly Glu Ala Cys Gly Thr Val Gly Leu Leu Glu His Ser Phe Glu Ile Asp Asp Ser Ala Asn Phe Arg Lys Arg Gly Ser Leu Leu Trp Asn Gln Gln Asp Gly Thr Leu Ser Leu Ser Gln Arg Gln Leu Ser Glu Glu Glu Arg Gly Arg Leu Arg Asp Val Ala Ala Leu Asn Gly Leu Tyr Arg Val Arg Ile Pro Arg Arg Pro Gly Ala Leu Asp 110 115 Gly Leu Glu Ala Gly Gly Tyr Val Ser Ser Phe Val Pro Ala Cys 130 Ser Leu Val Glu Ser His Leu Ser Asp Gln Leu Thr Leu His Val 140 145 150 Asp Val Ala Gly Asn Val Val Gly Val Ser Val Val Thr His Pro Gly Gly Cys Arg Gly His Glu Val Glu Asp Val Asp Leu Glu Leu 170 Phe Asn Thr Ser Val Gln Leu Gln Pro Pro Thr Thr Ala Pro Gly Pro Glu Thr Ala Ala Phe Ile Glu Arq Leu Glu Met Glu Gln Ala 200 205 Gln Lys Ala Lys Asn Pro Gln Glu Gln Lys Ser Phe Phe Ala Lys Tyr Trp Met Tyr Ile Ile Pro Val Val Leu Phe Leu Met Met Ser 230 Gly Ala Pro Asp Thr Gly Gly Gln Gly Gly Gly Gly Gly Gly Gly 250 Gly Gly Gly Ser Gly Leu Cys Cys Val Pro Pro Ser Leu

<210> 373

<211> 1706

<212> DNA

<213> Homo sapiens

<400> 373

ggagcgctgc tggaacccga gccggagccg gagccacagc ggggagggtg 50 gcctggcggc ctggagccgg acgtgtccgg ggcgtccccg cagaccgggg 100 cagcaggtcg tccgggggcc caccatgctg gtgactgcct accttgcttt 150 tgtaggcctc ctggcctcct gcctggggct ggaactgtca agatgccggg 200

BI

ctaaaccccc tggaagggcc tgcagcaatc cctccttcct tcggtttcaa 250 ctggacttct atcaggtcta cttcctggcc ctggcagctg attggcttca 300 ggccccctac ctctataaac tctaccagca ttactacttc ctggaaggtc 350 aaattgccat cctctatgtc tgtggccttg cctctacagt cctctttggc 400 ctagtggcct cctcccttgt ggattggctg ggtcgcaaga attcttgtgt 450 cctcttctcc ctgacttact cactatgctg cttaaccaaa ctctctcaag 500 actactttgt gctgctagtg gggcgagcac ttggtgggct gtccacagcc 550 ctgctcttct cagccttcga ggcctggtat atccatgagc acgtggaacg 600 gcatgacttc cctgctgagt ggatcccagc tacctttgct cgagctgcct 650 tctggaacca tgtgctggct gtagtggcag gtgtggcagc tgaggctgta 700 gccagctgga tagggctggg gcctgtagcg ccctttgtgg ctgccatccc 750 tctcctggct ctggcagggg ccttggccct tcgaaactgg ggggagaact 800 atgaccggca gcgtgccttc tcaaggacct gtgctggagg cctgcgctgc 850 ctcctgtcgg accgccgcgt gctgctgctg ggcaccatac aagctctatt 900 tgagagtgtc atcttcatct ttgtcttcct ctggacacct gtgctggacc 950 cacacggggc ccctctgggc attatcttct ccagcttcat ggcagccagc 1000 ctgcttggct cttccctgta ccgtatcgcc acctccaaga ggtaccacct 1050 tcagcccatg cacctgctgt cccttgctgt gctcatcgtc gtcttctctc 1100 tetteatgtt gaetttetet accageceag gecaggagag teeggtggag 1150 teetteatag eetttetaet tattgagttg gettgtggat tataetttee 1200 cagcatgage ttectaegga gaaaggtgat eeetgagaca gagcaggetg 1250 gtgtactcaa ctggttccgg gtacctctgc actcactggc ttgcctaggg 1300 ctccttgtcc tccatgacag tgatcgaaaa acaggcactc ggaatatgtt 1350 cagcatttgc tctgctgtca tggtgatggc tctgctggca gtggtgggac 1400 tetteacegt ggtaaggeat gatgetgage tgegggtace tteacetact 1450 gaggagccct atgcccctga gctgtaaccc cactccagga caagatagct 1500 gggacagact cttgaattcc agctatccgg gattgtacag atctctctgt 1550 gactgacttt gtgactgtcc tgtggtttct cctgccattg ctttgtgttt 1600 gggaggacat gatgggggtg atggactgga aagaaggtgc caaaagttcc 1650

ctctgtgtta ctcccattta gaaaataaac acttttaaat gatcaaaaaa 1700 aaaaaa 1706

<210> 374

<211> 450

<212> PRT

<213> Homo sapiens

<400> 374

Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser 1 5 . 10 15

Cys Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly 20 25 30

Arg Ala Cys Ser Asn Pro Ser Phe Leu Arg Phe Gln Leu Asp Phe 35 40 45

Tyr Gln Val Tyr Phe Leu Ala Leu Ala Ala Asp Trp Leu Gln Ala 50 55 60

Pro Tyr Leu Tyr Lys Leu Tyr Gln His Tyr Tyr Phe Leu Glu Gly 65 70 75

Gln Ile Ala Ile Leu Tyr Val Cys Gly Leu Ala Ser Thr Val Leu 80 85 90

Phe Gly Leu Val Ala Ser Ser Leu Val Asp Trp Leu Gly Arg Lys 95 100 105

Asn Ser Cys Val Leu Phe Ser Leu Thr Tyr Ser Leu Cys Cys Leu
110 115 120

Thr Lys Leu Ser Gln Asp Tyr Phe Val Leu Leu Val Gly Arg Ala 125 130 135

Leu Gly Gly Leu Ser Thr Ala Leu Leu Phe Ser Ala Phe Glu Ala 140 145 150

Trp Tyr Ile His Glu His Val Glu Arg His Asp Phe Pro Ala Glu
155 160 165

Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe Trp Asn His Val 170 175 180

Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val Ala Ser Trp
185 190 195

Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile Pro Leu
200 205 210

Leu Ala Leu Ala Gly Ala Leu Ala Leu Arg Asn Trp Gly Glu Asn 215 220 225

Tyr Asp Arg Gln Arg Ala Phe Ser Arg Thr Cys Ala Gly Gly Leu 230 235 240

Arg Cys Leu Leu Ser Asp Arg Arg Val Leu Leu Gly Thr Ile 250 Gln Ala Leu Phe Glu Ser Val Ile Phe Ile Phe Val Phe Leu Trp Thr Pro Val Leu Asp Pro His Gly Ala Pro Leu Gly Ile Ile Phe 275 280 Ser Ser Phe Met Ala Ala Ser Leu Leu Gly Ser Ser Leu Tyr Arg Ile Ala Thr Ser Lys Arg Tyr His Leu Gln Pro Met His Leu Leu 305 310 315 Ser Leu Ala Val Leu Ile Val Val Phe Ser Leu Phe Met Leu Thr Phe Ser Thr Ser Pro Gly Gln Glu Ser Pro Val Glu Ser Phe Ile 335 Ala Phe Leu Leu Ile Glu Leu Ala Cys Gly Leu Tyr Phe Pro Ser 350 355 Met Ser Phe Leu Arg Arg Lys Val Ile Pro Glu Thr Glu Gln Ala 365 370 375 Gly Val Leu Asn Trp Phe Arg Val Pro Leu His Ser Leu Ala Cys 380 385 Leu Gly Leu Leu Val Leu His Asp Ser Asp Arg Lys Thr Gly Thr 405 Arg Asn Met Phe Ser Ile Cys Ser Ala Val Met Val Met Ala Leu 410 Leu Ala Val Val Gly Leu Phe Thr Val Val Arg His Asp Ala Glu 425 435 Leu Arg Val Pro Ser Pro Thr Glu Glu Pro Tyr Ala Pro Glu Leu 440 445 <210> 375 <211> 1098 <212> DNA

<400> 375

gegacgegeg geggggegge gagaggaaac geggegeegg geegggeeeg 50 . gccctggaga tggtccccgg cgccgcgggc tggtgttgtc tcgtgctctg 100 gctccccgcg tgcgtcgcgg cccacggctt ccgtatccat gattatttgt 150 actttcaagt gctgagtcct ggggacattc gatacatctt cacagccaca 200 cctgccaagg actttggtgg tatctttcac acaaggtatg agcagattca 250

<213> Artificial


```
ccttgtcccc gctgaacctc cagaggcctg cggggaactc agcaacggtt 300
 tetteateca ggaceagatt getetggtgg agaggggggg etgeteette 350
 ctctccaaga ctcgggtggt ccaggagcac ggcgggcggg cggtgatcat 400
 ctctgacaac gcagttgaca atgacagctt ctacgtggag atgatccagg 450
 acagtaccca gcgcacaget gacateceeg ceetetteet geteggeega 500
 gacggctaca tgatccgccg ctctctggaa cagcatgggc tgccatgggc 550
 catcatttcc atcccagtca atgtcaccag catccccacc tttgagctgc 600
 tgcaaccgcc ctggaccttc tggtagaaga gtttgtccca cattccagcc 650
 ataagtgact ctgagctggg aaggggaaac ccaggaattt tgctacttgg 700
 aatttggaga tagcatctgg ggacaagtgg agccaggtag aggaaaaggg 750
 cccagggccc ccaagggtgt ctcatgctac aagaagaggc aagagacagg 850
 ccccaggget tetggetaga accegaaaca aaaggagetg aaggeaggtg 900
 gcctgagage catctgtgac ctgtcacact cacctggctc cagcctcccc 950
tacccagggt ctctgcacag tgaccttcac agcagttgtt ggagtggttt 1000
aaagagctgg tgtttgggga ctcaataaac cctcactgac tttttagcaa 1050
taaagcttct catcagggtt gcaaaaaaaa aaaaaaaaa aaaaaaaa 1098
<212> PRT
<213> Homo sapiens
<400> 376
```

- <210> 376
- <211> 188

- Met Val Pro Gly Ala Ala Gly Trp Cys Cys Leu Val Leu Trp Leu
- Pro Ala Cys Val Ala Ala His Gly Phe Arg Ile His Asp Tyr Leu
- Tyr Phe Gln Val Leu Ser Pro Gly Asp Ile Arg Tyr Ile Phe Thr
- Ala Thr Pro Ala Lys Asp Phe Gly Gly Ile Phe His Thr Arg Tyr 55
- Glu Gln Ile His Leu Val Pro Ala Glu Pro Pro Glu Ala Cys Gly
- Glu Leu Ser Asn Gly Phe Phe Ile Gln Asp Gln Ile Ala Leu Val

Glu Arg Gly Gly Cys Ser Phe Leu Ser Lys Thr Arg Val Val Gln 95 100 Glu His Gly Gly Arg Ala Val Ile Ile Ser Asp Asn Ala Val Asp Asn Asp Ser Phe Tyr Val Glu Met Ile Gln Asp Ser Thr Gln Arg 125 130 Thr Ala Asp Ile Pro Ala Leu Phe Leu Leu Gly Arg Asp Gly Tyr Met Ile Arg Arg Ser Leu Glu Gln His Gly Leu Pro Trp Ala Ile 160 Ile Ser Ile Pro Val Asn Val Thr Ser Ile Pro Thr Phe Glu Leu 175 Leu Gln Pro Pro Trp Thr Phe Trp 185 <210> 377 <211> 496 <212> DNA <213> Artificial <220> <221> unsure <222> 396. <223> unknown base <400> 377 totgoctoca otgototgtg otgggatoat ggaacttgca otgotgtgtg 50 ggctggtggt gatggctggt gtgattccaa tccagggcgg gatcctgaac 100 ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctctccta 150 ctggccctac ggctgtcact gcggactagg tggcagaggc caacccaaag 200 atgccacgga ctggtgctgc cagacccatg actgctgcta tgaccacctg 250 aagacccagg ggtgcggcat ctacaaggac aacaacaaaa gcagcataca 300 ttgtatggat ttatctcaac gctattgttt aatggctgtg tttaatgtga 350 tctatctgga aaatgaggac tccgaataaa aagctattac tawttnaaaa 400 <210> 378 <211> 116 <212> PRT <213> Homo sapiens <400> 378

Met Glu Leu Ala Leu Leu Cys Gly Leu Val Val Met Ala Gly Val Ile Pro Ile Gln Gly Gly Ile Leu Asn Leu Asn Lys Met Val Lys Gln Val Thr Gly Lys Met Pro Ile Leu Ser Tyr Trp Pro Tyr Gly 35 Cys His Cys Gly Leu Gly Gly Arg Gly Gln Pro Lys Asp Ala Thr Asp Trp Cys Cys Gln Thr His Asp Cys Cys Tyr Asp His Leu Lys Thr Gln Gly Cys Gly Ile Tyr Lys Asp Asn Asn Lys Ser Ser Ile His Cys Met Asp Leu Ser Gln Arg Tyr Cys Leu Met Ala Val Phe 95 100 Asn Val Ile Tyr Leu Glu Asn Glu Asp Ser Glu 110 115 <210> 379 <211> 24 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-24 <223> Synthetic construct. <400> 379 ctgcctccac tgctctgtgc tggg 24 <210> 380 <211> 24 <212> DNA <213> Artificial <220> <221> Artificial Sequence <222> 1-24 <223> Synthetic construct. <400> 380 cagagcagtg gatgttcccc tggg 24 <210> 381 <211> 45 <212> DNA <213> Artificial <220>

<221> Artificial Sequence

<222> 1-45

<223> Synthetic construct. <400> 381 ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctc 45 <210> 382 <211> 764 <212> DNA <213> Homo sapiens <400> 382 ctcgcttctt ccttctggat gggggcccag ggggcccagg agagtataaa 50 ggcgatgtgg agggtgcccg gcacaaccaq acgcccaqtc acaggcgaga 100 gccctgggat gcaccggcca gaggccatgc tgctgctgct cacgcttgcc 150 ctcctggggg gccccacctg ggcagggaag atgtatggcc ctggaggagg 200 caagtatttc agcaccactg aagactacga ccatgaaatc acagggctgc 250 gggtgtctgt aggtcttctc ctggtgaaaa gtgtccaggt gaaacttgga 300 gactcctggg acgtgaaact gggagcctta ggtgggaata cccaggaagt 350 caccetgeag ecaggegaat acateacaaa agtetttgte geettecaag 400 ctttcctccg gggtatggtc atgtacacca gcaaggaccg ctatttctat 450 tttgggaagc ttgatggcca gatctcctct gcctacccca gccaagaggg 500 gcaggtgctg gtgggcatct atggccagta tcaactcctt ggcatcaaga 550 gcattggctt tgaatggaat tatccactag aggagccgac cactgagcca 600 ccagttaatc tcacatactc agcaaactca cccgtgggtc gctagggtgg 650 ggtatggggc catccgagct gaggccatct gtgtggtggt ggctgatggt 700 actggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa 750 gcttctgcag aaaa 764

<210> 383

<211> 178

<212> PRT

<213> Homo sapiens

<400> 383

Met His Arg Pro Glu Ala Met Leu Leu Leu Leu Thr Leu Ala Leu
1 5 10

Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly 20 25 30

Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr 35 40 45

Gly Leu Arg Val Ser Val Gly Leu Leu Val Lys Ser Val Gln 50 Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr Ile Thr Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met Val Met Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly 110 115 120 Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val 130 Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly 145 Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg <210> 384 <211> 2379

<212> DNA

<213> Homo sapiens

<400> 384 gctgagcgtg tgcgcggtac ggggctctcc tgccttctgg gctccaacgc 50 agctctgtgg ctgaactggg tgctcatcac gggaactgct gggctatgga 100 atacagatgt ggcageteag gtageeceaa attgeetgga agaatacate 150 atgtttttcg ataagaagaa attgtaggat ccagttttt ttttaaccgc 200 cccctcccca ccccccaaaa aaactgtaaa gatgcaaa'aa cgtaatatcc 250 atgaagatcc tattacctag gaagattttg atgttttgct gcgaatgcgg 300 tgttgggatt tatttgttct tggagtgttc tgcgtggctg gcaaagaata 350 atgttccaaa atcggtccat ctcccaaggg gtccaatttt tcttcctggg 400 tgtcagcgag ccctgactca ctacagtgca gctgacaggg gctgtcatgc 450 aactggcccc taagccaaag caaaagacct aaggacgacc tttgaacaat 500 acaaaggatg ggtttcaatg taattaggct actgagcgga tcagctgtag 550 cactggttat agccccact gtcttactga caatgctttc ttctgccgaa 600 cgaggatgcc ctaagggctg taggtgtgaa qqcaaaatqq tatattqtga 650

BI

atctcagaaa ttacaggaga taccctcaag tatatctgct ggttgcttag 700 gtttgtccct tcgctataac agccttcaaa aacttaagta taatcaattt 750 aaagggctca accagctcac ctggctatac cttgaccata accatatcag 800 caatattgac gaaaatgctt ttaatggaat acgcagactc aaagagctga 850 ttcttagttc caatagaatc tcctattttc ttaacaatac cttcagacct 900 gtgacaaatt tacggaactt ggatctgtcc tataatcagc tgcattctct 950 gggatctgaa cagtttcggg gcttgcggaa gctgctgagt ttacatttac 1000 ggtctaactc cctgagaacc atccctgtgc gaatattcca agactgccgc 1050 aacctggaac ttttggacct gggatataac cggatccgaa gtttagccag 1100 gaatgtettt getggeatga teagaeteaa agaaetteae etggageaea 1150 atcaattttc caagetcaac etggeeettt ttecaaggtt ggteageett 1200 cagaaccttt acttgcagtg gaataaaatc agtgtcatag gacagaccat 1250 gteetggace tggageteet tacaaagget tgatttatea ggeaatgaga 1300 tegaagettt cagtggaece agtgttttee agtgtgteee gaatetgeag 1350 cgcctcaacc tggattccaa caagctcaca tttattggtc aagagatttt 1400 ggattcttgg atatccctca atgacatcag tcttgctggg aatatatggg 1450 aatgcagcag aaatatttgc tcccttgtaa actggctgaa aagttttaaa 1500 ggtctaaggg agaatacaat tatctgtgcc agtcccaaag agctgcaagg 1550 agtaaatgtg atcgatgcag tgaagaacta cagcatctgt ggcaaaagta 1600 ctacagagag gtttgatctg gccagggctc tcccaaagcc gacgtttaag 1650 cccaagetee ccaggeegaa geatgagage aaaceeegtt tgeeceegae 1700 ggtgggagcc acagagcccg gcccagagac cgatgctgac gccgagcaca 1750 tetettteea taaaateate gegggeageg tggegetttt eetgteegtg 1800 ctcgtcatcc tgctggttat ctacgtgtca tggaagcggt accctgcgag 1850 catgaagcag ctgcagcagc gctccctcat gcgaaggcac aggaaaaaga 1900 aaagacagtc cctaaagcaa atgactccca gcacccagga attttatgta 1950 gattataaac ccaccaacac ggagaccagc gagatgctgc tgaatgggac 2000 gggaccctgc acctataaca aatcgggctc cagggagtgt gaggtatgaa 2050 ccattgtgat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100

ttgaactctg gtgactatca agggaacgcg atgcccccc tccccttccc 2150
tctccctctc actttggtgg caagatcctt ccttgtccgt tttagtgcat 2200
tcataatact ggtcattttc ctctcataca taatcaaccc attgaaattt 2250
aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300
ttgtataaga ccctttactg attccattaa tgtcgcattt gttttaagat 2350
aaaacttctt tcataggtaa aaaaaaaaa 2379

<210> 385

<211> 513

<212> PRT

<213> Homo sapiens

<400> 385

Met Gly Phe Asn Val Ile Arg Leu Leu Ser Gly Ser Ala Val Ala 1 5 10 15

Leu Val Ile Ala Pro Thr Val Leu Leu Thr Met Leu Ser Ser Ala 20 25 30

Glu Arg Gly Cys Pro Lys Gly Cys Arg Cys Glu Gly Lys Met Val 35 40 45

Tyr Cys Glu Ser Gln Lys Leu Gln Glu Ile Pro Ser Ser Ile Ser 50 55 60

Ala Gly Cys Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Gln Lys
65 70 75

Leu Lys Tyr Asn Gln Phe Lys Gly Leu Asn Gln Leu Thr Trp Leu $80 \hspace{1cm} 85 \hspace{1cm} 90$

Tyr Leu Asp His Asn His Ile Ser Asn Ile Asp Glu Asn Ala Phe 95 100 105

Asn Gly Ile Arg Arg Leu Lys Glu Leu Ile Leu Ser Ser Asn Arg 110 115 $_{\dots}$ 120

Ile Ser Tyr Phe Leu Asn Asn Thr Phe Arg Pro Val Thr Asn Leu 125 130 135

Arg Asn Leu Asp Leu Ser Tyr Asn Gln Leu His Ser Leu Gly Ser 140 145 150

Glu Gln Phe Arg Gly Leu Arg Lys Leu Leu Ser Leu His Leu Arg 155 160 165

Ser Asn Ser Leu Arg Thr Ile Pro Val Arg Ile Phe Gln Asp Cys

Arg Asn Leu Glu Leu Leu Asp Leu Gly Tyr Asn Arg Ile Arg Ser 185 190 195

Leu Ala Arg Asn Val Phe Ala Gly Met Ile Arg Leu Lys Glu Leu

				200					205					210
His	Leu	Glu	His	Asn 215	Gln	Phe	Ser	Lys	Leu 220	Asn	Leu	Ala	Leu	Phe 225
Pro	Arg	Leu	Val	Ser 230	Leu	Gln	Asn	Leu	Tyr 235	Leu	Gln	Trp	Asn	Lys 240
Ile	Ser	Val	Ile	Gly 245	Gln	Thr	Met	Ser	Trp 250	Thr	Trp	Ser	Ser	Leu 255
Gln	Arg	Leu	Asp	Leu 260	Ser	Gly	Asn	Glu	Ile 265	Glu	Ala	Phe	Ser	Gly 270
Pro	Ser	Val	Phe	Gln 275	Cys	Val	Pro	Asn	Leu 280	Gln	Arg	Leu	Asn	Leu 285
Asp	Ser	Asn	Lys	Leu 290	Thr	Phe	Ile	Gly	Gln 295	Glu	Ile	Leu	Asp	Ser 300
Trp	Ile	Ser	Leu	Asn 305	Asp	Ile	Ser	Leu	Ala 310	Gly	Asn	Ile	Trp	Glu 315
Cys	Ser	Arg	Asn	Ile 320	Cys	Ser	Leu	Val	Asn 325	Trp	Leu	Lys	Ser	Phe 330
Lys	Gly	Leu	Arg	Glu 335	Asn	Thr	Ile	Ile	Cys 340	Ala	Ser	Pro	Lys	Glu 345
Leu	Gln	Gly	Val	Asn 350	Val	Ile	Asp	Ala	Val 355	Lys	Asn	Tyr	Ser	Ile 360
Cys	Gly	Lys	Ser	Thr 365	Thr	Glu	Arg	Phe	Asp 370	Leu	Ala	Arg	Ala	Leu 375
Pro	Lys	Pro	Thr	Phe 380	Lys	Pro	Lys	Leu	Pro 385	Arg	Pro	Lys	His	Glu 390
Ser	Lys	Pro	Pro	Leu 395	Pro	Pro	Thr	Val	Gly 400	Ala	Thr	Glu	Pro	Gly 405
Pro	Glu	Thr	Asp	Ala 410	Asp	Ala	Glu	His	Ile 415	Ser	Phe	His	Lys	Ile 420
Ile	Ala	Gly	Ser	Val 425	Ala	Leu	Phe	Leu	Ser 430	Val	Leu	Val	Ile	Leu 435
Leu	Val	Ile	Tyr	Val 440	Ser	Trp	Lys	Arg	Tyr 445	Pro	Ala	Ser	Met	Lys 450
Gln	Leu	Gln	Gln	Arg 455	Ser	Leu	Met	Arg	Arg 460	His	Arg	Lys	Lys	Lys 465
Arg	Gln	Ser	Leu	Lys 470	Gln	Met	Thr	Pro	Ser 475	Thr	Gln	Glu	Phe	Tyr 480
Val	Asp	Tyr	Lys	Pro 485	Thr	Asn	Thr	Glu	Thr 490	Ser	Glu	Met	Leu	Leu 495

```
Asn Gly Thr Gly Pro Cys Thr Tyr Asn Lys Ser Gly Ser Arg Glu
                  500
                                      505
                                                           510
 Cys Glu Val
<210> 386
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 386
 ctgggatctg aacagtttcg gggc 24
<210> 387
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 387
 ggtccccagg acatggtctg tccc 24
<210> 388
<211> 48
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-48
<223> Synthetic construct.
<400> 388
gctgagttta catttacggt ctaactccct gagaaccatc cctgtgcg 48
<210> 389
<211> 1449
<212> DNA
<213> Homo sapiens
<400> 389
agttctgaga aagaaggaaa taaacacagg caccaaacca ctatcctaag 50
 ttgactgtcc tttaaatatg tcaagatcca gacttttcag tgtcacctca 100
gcgatctcaa cgatagggat cttgtgtttg ccgctattcc agttggtgct 150
ctcggaccta ccatgcgaag aagatgaaat gtgtgtaaat tataatgacc 200
```

aacaccctaa tggctggtat atctggatcc tcctgctgct ggttttggtg 250 gcagctcttc tctgtggagc tgtggtcctc tqcctccagt gctggctgag 300 gagaccccga attgattctc acaggcgcac catggcagtt tttgctgttg 350 gagacttgga ctctatttat gggacagaag cagctgtgag tccaactgtt 400 ggaattcacc ttcaaactca aacccctgac ctatatcctg ttcctgctcc 450 atgttttggc cctttaggct ccccacctcc atatgaagaa attgtaaaaa 500 caacctgatt ttaggtgtgg attatcaatt taaagtatta acgacatctg 550 taattccaaa acatcaaatt taggaatagt tatttcagtt gttggaaatg 600 tccagagatc tattcatata gtctgaggaa ggacaattcg acaaaagaat 650 ggatgttgga aaaaattttg gtcatggaga tgtttaaata gtaaagtagc 700 aggettttga tgtgteactg etgtateata ettttatget acacaaceaa 750 attaatgett etecaetagt atecaaaeag geaacaatta ggtgetggaa 800 gtagtttcca tcacatttag gactccactg cagtatacag cacaccattt 850 tctgctttaa actctttcct agcatggggt ccataaaaat tattataatt 900 taacaatagc ccaagccgag aatccaacat gtccagaacc agaaccagaa 950 agatagtatt tgaatgaagg tgaggggaga gagtaggaaa aagaaaagtt 1000 tggagttgaa qqqtaaaqqa taaatqaaqa qqaaaaqqaa aaqattacaa 1050 gtctcagcaa aaacaagagg ttttatgccc caacctgaag aggaagaaat 1100 tgtagataga aggtgaagga gattgctgaa gatatagagc acatataatg 1150 ccaacacggg gagaaaagaa aatttcccct tttacagtaa tgaatgtggc 1200 ctccatagtc catagtgttt ctctggagcc tcagggcttg gcatttattg 1250 cagcatcatg ctaagaacct teggeatagg tatetgttee catgaggact 1300 gcagaagtag caatgagaca tetteaagtg gcattttggc agtggccate 1350 agcaggggga cagacaaaaa catccatcac agatgacata tgatcttcag 1400 ctgacaaatt tgttgaacaa aacaataaac atcaatagat atctaaaaa 1449 <210> 390 <211> 146 <212> PRT <213> Homo sapiens <400> 390

10

Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr

```
Ile Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp
                  20
                                       25
 Leu Pro Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln
 His Pro Asn Gly Trp Tyr Ile Trp Ile Leu Leu Leu Val Leu
                  50
 Val Ala Ala Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys
 Trp Leu Arg Arg Pro Arg Ile Asp Ser His Arg Arg Thr Met Ala
                  80
                                      85
 Val Phe Ala Val Gly Asp Leu Asp Ser Ile Tyr Gly Thr Glu Ala
 Ala Val Ser Pro Thr Val Gly Ile His Leu Gln Thr Gln Thr Pro
                 110
                                     115
 Asp Leu Tyr Pro Val Pro Ala Pro Cys Phe Gly Pro Leu Gly Ser
                                     130
 Pro Pro Pro Tyr Glu Glu Ile Val Lys Thr Thr
<210> 391
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-26
<223> Synthetic construct.
<400> 391
cttttcagtg tcacctcagc gatctc 26
<210> 392
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 392
ccaaaacatg gagcaggaac agg 23
```

<210> 393 <211> 47 <212> DNA

<213> Artificial

368

<220> <221> Artificial Sequence <222> 1-47 <223> Synthetic construct. <400> 393 ccagttggtg ctctcggacc taccatgcga agaagatgaa atgtgtg 47 <210> 394 <211> 2340 <212> DNA <213> Homo sapiens <400> 394 gagoggagta aaatotocao aagotgggaa caaacotogt cocaactoco 50 acccaccggc gtttctccag ctcgatctgg aggctgcttc gccagtgtgg 100 gacgcagctg acgcccgctt attagctctc gctgcgtcgc cccggctcag 150 aageteegtg geggeggega eegtgaegag aageeeaegg eeageteagt 200 tctcttctac tttgggagag agagaaagtc agatgcccct tttaaactcc 250 ctcttcaaaa ctcatctcct gggtgactga gttaatagag tggatacaac 300 cttgctgaag atgaagaata tacaatattg aggatatttt tttctttttt 350 ttttcaagtc ttgatttgtg gcttacctca agttaccatt tttcagtcaa 400 gtctgtttgt ttgcttcttc agaaatgttt tttacaatct caagaaaaaa 450 tatgtcccag aaattgagtt tactgttgct tgtatttgga ctcatttggg 500 gattgatgtt actgcactat acttttcaac aaccaagaca tcaaagcagt 550 gtcaagttac gtgagcaaat actagactta agcaaaagat atgttaaagc 600 tctagcagag gaaaataaga acacagtgga tgtcgagaac ggtgcttcta 650 tggcaggata tgcggatctg aaaagaacaa ttgctgtcct tctggatgac 700 attttgcaac gattggtgaa gctggagaac aaagttgact atattgttgt 750

gaatggctca gcagccaaca ccaccaatgg tactagtggg aatttggtgc 800

cagtaaccac aaataaaaga acgaatgtct cgggcagtat cagatagcag 850

ttgaaaatca ccttgtgctg ctccatccac tgtggattat atcctatggc 900

agaaaagctt tataattgct ggcttaggac agagcaatac tttacaataa 950

aagctctaca cattttcaag gagtatgctg gattcatgga actctaattc 1000

tgtacataaa aattttaaag ttatttgttt gctttcaggc aagtctgttc 1050

aatgctgtac tatgtcctta aagagaattt ggtaacttgg ttgatgtggt 1100

aaatgaaaac actgaaaaac atggattcat ttctataaca catttattta 1200 agtatataac acgttttttg gacaagtgaa gaatgtttaa tcattctgtc 1250 atttgttctc aatagatgta actgttagac tacggctatt tgaaaaaatg 1300 tgcttattgt actatatttt gttattccaa ttatgagcag agaaaggaaa 1350 tataatgttg aaaataatgt tttgaaatca tgacccaaag aatgtattga 1400 tttgcactat ccttcaqaat aactqaaqqt taattattqt atatttttaa 1450 aaattacact tataagagta taatcttgaa atgggtagca gccactgtcc 1500 attacctatc gtaaacattg gggcaattta ataacagcat taaaatagtt 1550 gtaaactcta atcttatact tattgaagaa taaaagatat ttttatgatg 1600 agagtaacaa taaagtattc atgatttttc acatacatga atgttcattt 1650 aaaagtttaa teetttgagt gtetatgeta teaggaaage acattattte 1700 catatttggg ttaattttgc ttttattata ttggtctagg aggaagggac 1750 tttggagaat ggaactcttg aggactttag ccaggtgtat ataataaagg 1800 taagagtatc ctttatgaaa ttttgaattt gtataacaga tgcattagat 1900 attcatttta tataatggcc acttaaaata agaacattta aaatataaac 1950 tatgaagatt gactatcttt tcaggaaaaa agctgtatat agcacaggga 2000 accctaatct tgggtaattc tagtataaaa caaattatac ttttatttaa 2050 atttcccttg tagcaaatct aattgccaca tggtgcccta tatttcatag 2100 tatttattct ctatagtaac tgcttaagtg cagctagctt ctagatttag 2150 actatataga atttagatat tgtattgttc gtcattataa tatgctacca 2200 catgtagcaa taattacaat attttattaa aataaatatg tgaaatattg 2250 acctttatgt gaagaaatta attatatgcc attgccaggt 2340 <210> 395 <211> 140 <212> PRT <213> Homo sapiens

aagcagatag gtgagttttg tataaatctt ttgtgtttga gatcaagctg 1150

<400> 395

Met Phe Phe Thr Ile Ser Arg Lys Asn Met Ser Gln Lys Leu Ser

Leu Leu Leu Val Phe Gly Leu Ile Trp Gly Leu Met Leu Leu His Tyr Thr Phe Gln Gln Pro Arg His Gln Ser Ser Val Lys Leu Arg Glu Gln Ile Leu Asp Leu Ser Lys Arg Tyr Val Lys Ala Leu Ala Glu Glu Asn Lys Asn Thr Val Asp Val Glu Asn Gly Ala Ser Met Ala Gly Tyr Ala Asp Leu Lys Arg Thr Ile Ala Val Leu Leu Asp Asp Ile Leu Gln Arg Leu Val Lys Leu Glu Asn Lys Val Asp Tyr Ile Val Val Asn Gly Ser Ala Ala Asn Thr Thr Asn Gly Thr Ser Gly Asn Leu Val Pro Val Thr Thr Asn Lys Arg Thr Asn Val 125 Ser Gly Ser Ile Arg 140 <210> 396 <211> 2639 <212> DNA <213> Homo sapiens <400> 396 cgcggccggg ccgccggggt gagcgtgccg aggcggctgt ggcgcaggct 50 tccagccccc accatgccgt ggcccctgct gctgctgctg gccgtgagtg 100 gggcccagac aacceggcca tgcttccccg ggtgccaatg cgaggtggag 150

tecagecece accatgecy gagecetyet getgetgety geegtgagty 100 gggeceagae aacceggeca tgetteceeg ggtgecaatg egaggtggag 150 acctteggee ttttegacag etteageety acteggggg attgaagegg 200 eetgggeee eacaaccage eggggeeeat eetetggae acageceaet 250 tggaeetye etecaaccgg etggagatgg tgaatgagte ggtgttggeg 300 gggeeggget acacgaegt ggetggeety gateteagee acaacctget 350 eaceageate teaceaety eetteteeeg eetteegee acaacctget 350 eaceageate teaceaety etgacagee tgeeggee acaacctget 350 eaceageate teaceaety etgacagee tgeeggee agagetteaee 450 ageteaeee tgagegget gaacettage eacaaccage teegggaggt 500 eteagtget geetteaega egaacettage eacaaccage teegggaggt 500 eteagtget geetteaega egaacagtea gggeeggea etacacgtg 550 accteteea eaaccteatt eacegeeteg tgeeeeaeee eacagaggee 600 ggeetgeetg egeeeaccat teagageetg aacctggeet ggaacctgget ggaacctgget 650

ccatgccgtg cccaacctcc gagacttgcc cctgcgctac ctgagcctgg 700 atgggaacce tetagetgte attggteegg gtgeettege ggggetggga 750 ggccttacac acctgtctct ggccagcctg cagaggctcc ctgagctggc 800 gcccagtggc ttccgtgagc taccgggcct gcaggtcctg gacctgtcgg 850 gcaaccccaa gcttaactgg gcaggagctg aggtgttttc aggcctgagc 900 tccctgcagg agctggacct ttcgggcacc aacctggtgc ccctgcctga 950 ggcgctgctc ctccacctcc cggcactgca gagcgtcagc gtgggccagg 1000 atgtgcggtg ccggcgcctg gtgcgggagg gcacctaccc ccggaggcct 1050 ggctccagcc ccaaggtgcc cctgcactgc gtagacaccc gggaatctgc 1100 tgccaggggc cccaccatct tgtgacaaat ggtgtggccc agggccacat 1150 aacagactgc tgtcctgggc tgcctcaggt cccgagtaac ttatgttcaa 1200 tgtgccaaca ccagtgggga gcccgcaggc ctatgtggca gcgtcaccac 1250 aggagttgtg ggcctaggag aggctttgga cctgggagcc acacctagga 1300 gcaaagtete acceptttgt ctacgttget teeceaaace atgageagag 1350 ggacttcgat gccaaaccag actcgggtcc cctcctgctt cccttcccca 1400 cttatccccc aagtgccttc cctcatgcct gggccggcct gacccgcaat 1450 gggcagaggg tgggtgggac cccctgctgc agggcagagt tcaggtccac 1500 tgggctgagt gtccccttgg gcccatggcc cagtcactca ggggcgagtt 1550 tettttetaa eatageeett tetttgeeat gaggeeatga ggeeegette 1600 atccttttct atttccctag aaccttaatg gtagaaggaa ttgcaaagaa 1650 tcaagtccac ccttctcatg tgacagatgg ggaaactgag gccttgagaa 1700 ggaaaaaggc taatctaagt tcctgcgggc agtggcatga ctggagcaca 1750 gesteetges tessageseg gasseaatgs actitetigt etestetaat 1800 aagccccacc ctccccgcct gggctcccct tgctgccctt gcctgttccc 1850 cattagcaca ggagtagcag cagcaggaca ggcaagagcc tcacaagtgg 1900 gactetggge ctetgaceag etgtgeggea tgggetaagt caetetgeee 1950 ttcggagcct ctggaagctt agggcacatt ggttccagcc tagccagttt 2000 ctcaccctgg gttggggtcc cccagcatcc agactggaaa cctacccatt 2050 ttcccctgag catcctctag atgctgcccc aaggagttgc tgcagttctg 2100

B1

<210> 397

<211> 353

<212> PRT

<213> Homo sapiens

<400> 397

Met Pro Trp Pro Leu Leu Leu Leu Leu Ala Val Ser Gly Ala Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Thr Arg Pro Cys Phe Pro Gly Cys Gln Cys Glu Val Glu Thr 20 25 30

Phe Gly Leu Phe Asp Ser Phe Ser Leu Thr Arg Val Asp Cys Ser 35 40 45

Gly Leu Gly Pro His Ile Met Pro Val Pro Ile Pro Leu Asp Thr 50 , 55 60

Ala His Leu Asp Leu Ser Ser Asn Arg Leu Glu Met Val Asn Glu 65 70 75

Ser Val Leu Ala Gly Pro Gly Tyr Thr Thr Leu Ala Gly Leu Asp $80 \\ 85 \\ 90$

Leu Ser His Asn Leu Leu Thr Ser Ile Ser Pro Thr Ala Phe Ser 95 100 105

Arg Leu Arg Tyr Leu Glu Ser Leu Asp Leu Ser His Asn Gly Leu
110 115 120

Thr Ala Leu Pro Ala Glu Ser Phe Thr Ser Ser Pro Leu Ser Asp 125 130 135

Val Asn Leu Ser His Asn Gln Leu Arg Glu Val Ser Val Ser Ala 140 145 150

<211> 23 <212> DNA

```
Phe Thr Thr His Ser Gln Gly Arg Ala Leu His Val Asp Leu Ser
                  155
                                      160
 His Asn Leu Ile His Arg Leu Val Pro His Pro Thr Arg Ala Gly
                  170
 Leu Pro Ala Pro Thr Ile Gln Ser Leu Asn Leu Ala Trp Asn Arg
                  185
                                      190
 Leu His Ala Val Pro Asn Leu Arg Asp Leu Pro Leu Arg Tyr Leu
                  200
 Ser Leu Asp Gly Asn Pro Leu Ala Val Ile Gly Pro Gly Ala Phe
                  215
                                      220
 Ala Gly Leu Gly Gly Leu Thr His Leu Ser Leu Ala Ser Leu Gln
                                      235
 Arg Leu Pro Glu Leu Ala Pro Ser Gly Phe Arg Glu Leu Pro Gly
                 245
                                      250
                                                           255
 Leu Gln Val Leu Asp Leu Ser Gly Asn Pro Lys Leu Asn Trp Ala
 Gly Ala Glu Val Phe Ser Gly Leu Ser Ser Leu Gln Glu Leu Asp
                 275
                                                           285
 Leu Ser Gly Thr Asn Leu Val Pro Leu Pro Glu Ala Leu Leu Leu
                 290
                                      295
 His Leu Pro Ala Leu Gln Ser Val Ser Val Gly Gln Asp Val Arg
                 305
                                      310
 Cys Arg Arg Leu Val Arg Glu Gly Thr Tyr Pro Arg Arg Pro Gly
 Ser Ser Pro Lys Val Pro Leu His Cys Val Asp Thr Arg Glu Ser
                 335
 Ala Ala Arg Gly Pro Thr Ile Leu
                 350
<210> 398
<211> 23
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 398
ccctgccagc cgagagette acc 23
<210> 399
```

```
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.
<400> 399
ggttggtgcc cgaaaggtcc agc 23
<210> 400
<211> 44
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-44
<223> Synthetic construct.
<400> 400
caaccccaag cttaactggg caggagctga ggtgttttca ggcc 44
<210> 401
<211> 1571
<212> DNA
<213> Homo sapiens
<400> 401
gatggcgcag ccacagcttc tgtgagattc gatttctccc cagttcccct 50
gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaaggg 100
gaggctatat gcgtcaattc cccaaaacaa gttttgacat ttcccctgaa 150
atgtcattct ctatctattc actgcaagtg cctgctgttc caggccttac 200
ctgctgggca ctaacggcgg agccaggatg gggacagaat aaaggagcca 250
cgacctgtgc caccaactcg cactcagact ctgaactcag acctgaaatc 300
 ttctcttcac gggaggcttg gcagtttttc ttactcctgt ggtctccaga 350
tttcaggcct aagatgaaag cctctagtct tgccttcagc cttctctctg 400
ctgcgtttta tctcctatgg actccttcca ctggactgaa gacactcaat 450
ttgggaagct gtgtgatcgc cacaaacctt caggaaatac gaaatggatt 500
ttctgagata cggggcagtg tgcaagccaa agatggaaac attgacatca 550
gaatcttaag gaggactgag tctttgcaag acacaaagcc tgcgaatcga 600
tgctgcctcc tgcgccattt gctaagactc tatctggaca gggtatttaa 650
aaactaccag acccctgacc attatactct ccggaagatc agcagcctcg 700
```

ccaattcctt tcttaccatc aagaaggacc tccggctctc tcatgcccac 750

BI

atgacatgcc attgtgggga ggaagcaatg aagaaataca gccagattct 800 gagtcacttt gaaaagctgg aacctcaggc agcagttgtg aaggctttgg 850 gggaactaga cattcttctg caatggatgg aggagacaga ataggaggaa 900 agtgatgctg ctgctaagaa tattcgaggt caagagctcc agtcttcaat 950 acctgcagag gaggcatgac cccaaaccac catctcttta ctgtactagt 1000 cttgtgctgg tcacagtgta tcttatttat gcattacttg cttccttgca 1050 tgattgtctt tatgcatccc caatcttaat tgagaccata cttgtataag 1100 atttttgtaa tatctttctg ctattggata tatttattag ttaatatatt 1150 tatttatttt ttgctattta atgtatttat ttttttactt ggacatgaaa 1200 ctttaaaaaa attcacagat tatatttata acctgactag agcaggtgat 1250 gtatttttat acagtaaaaa aaaaaaacct tgtaaattct agaagagtgg 1300 ctaggggggt tattcatttg tattcaacta aggacatatt tactcatgct 1350 gatgctctgt gagatatttg aaattgaacc aatgactact taggatgggt 1400 tgtggaataa gttttgatgt ggaattgcac atctacctta caattactga 1450 ccatccccag tagactcccc agtcccataa ttgtgtatct tccagccagg 1500 aatcctacac ggccagcatg tatttctaca aataaagttt tctttgcata 1550 ccaaaaaaaa aaaaaaaaa a 1571

<210> 402

<211> 261

<212> PRT

<213> Homo sapiens

<400> 402

Met Arg Gln Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met 1 5 10 15

Ser Phe Ser Ile Tyr Ser Leu Gln Val Pro Ala Val Pro Gly Leu 20 25 30

Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gln Asn Lys
35 40 45

Gly Ala Thr Thr Cys Ala Thr Asn Ser His Ser Asp Ser Glu Leu
50 55 60

Arg Pro Glu Ile Phe Ser Ser Arg Glu Ala Trp Gln Phe Phe Leu
65 70 75

Leu Leu Trp Ser Pro Asp Phe Arg Pro Lys Met Lys Ala Ser Ser 80 85 90

```
Leu Ala Phe Ser Leu Leu Ser Ala Ala Phe Tyr Leu Leu Trp Thr
 Pro Ser Thr Gly Leu Lys Thr Leu Asn Leu Gly Ser Cys Val Ile
 Ala Thr Asn Leu Gln Glu Ile Arg Asn Gly Phe Ser Glu Ile Arg
                 125
                                      130
 Gly Ser Val Gln Ala Lys Asp Gly Asn Ile Asp Ile Arg Ile Leu
 Arg Arg Thr Glu Ser Leu Gln Asp Thr Lys Pro Ala Asn Arg Cys
 Cys Leu Leu Arg His Leu Leu Arg Leu Tyr Leu Asp Arg Val Phe
 Lys Asn Tyr Gln Thr Pro Asp His Tyr Thr Leu Arg Lys Ile Ser
                 185
                                      190
                                                          195
 Ser Leu Ala Asn Ser Phe Leu Thr Ile Lys Lys Asp Leu Arg Leu
                 200
                                      205
 Ser His Ala His Met Thr Cys His Cys Gly Glu Glu Ala Met Lys
                 215
                                      220
 Lys Tyr Ser Gln Ile Leu Ser His Phe Glu Lys Leu Glu Pro Gln
                                      235
 Ala Ala Val Val Lys Ala Leu Gly Glu Leu Asp Ile Leu Leu Gln
 Trp Met Glu Glu Thr Glu
<210> 403
<211> 28
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-28
<223> Synthetic construct.
<400> 403
ctcctgtggt ctccagattt caggccta 28
<210> 404
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-26
<223> Synthetic construct.
```

```
<400> 404
 agtcctcctt aagattctga tgtcaa 26
<210> 405
<211> 998
<212> DNA
<213> Homo sapiens
<400> 405
 ccgttatcgt cttgcgctac tgctgaatgt ccgtcccgga ggaggaggag 50
 aggettttgc cgctgaccca gagatggccc cgagcgagca aattectact 100
 gtccggctqc gcggctaccg tggccgagct agcaaccttt cccctggatc 150
 tcacaaaaac tcgactccaa atgcaaggag aagcagctct tgctcggttg 200
 ggagacggtg caagagaatc tgccccctat aggggaatgg tgcgcacagc 250
 cctagggatc attgaagagg aaggctttct aaagctttgg caaggagtga 300
 caccegocat ttacagacae gtagtgtatt etggaggteg aatggteaca 350
 tatgaacatc tccgagaggt tgtgtttggc aaaagtgaag atgagcatta 400
 tcccctttgg aaatcagtca ttggagggat gatggctggt gttattggcc 450
 agtttttagc caatccaact gacctagtga aggttcagat gcaaatggaa 500
 ggaaaaagga aactggaagg aaaaccattg cgatttcgtg gtgtacatca 550
 tgcatttgca aaaatcttag ctgaaggagg aatacgaggg ctttgggcag 600
 gctgggtacc caatatacaa agagcagcac tggtgaatat gggagattta 650
 accacttatg atacagtgaa acactacttg gtattgaata caccacttga 700
 ggacaatatc atgactcacg gtttatcaag tttatgttct ggactggtag 750
 cttctattct gggaacacca gccgatgtca tcaaaagcag aataatgaat 800
 caaccacgag ataaacaagg aaggggactt ttgtataaat catcgactga 850
 ctgcttgatt caggctgttc aaggtgaagg attcatgagt ctatataaag 900
 gctttttacc atcttggctg agaatgaccc cttggtcaat ggtgttctgg 950
 cttacttatg aaaaaatcag agagatgagt ggagtcagtc cattttaa 998
<210> 406
<211> 323
<212> PRT
<213> Homo sapiens
<400> 406
Met Ser Val Pro Glu Glu Glu Glu Arg Leu Leu Pro Leu Thr Gln
```

10

Arg Trp Pro Arg Ala Ser Lys Phe Leu Leu Ser Gly Cys Ala Ala Thr Val Ala Glu Leu Ala Thr Phe Pro Leu Asp Leu Thr Lys Thr Arg Leu Gln Met Gln Gly Glu Ala Ala Leu Ala Arg Leu Gly Asp Gly Ala Arg Glu Ser Ala Pro Tyr Arg Gly Met Val Arg Thr Ala Leu Gly Ile Ile Glu Glu Gly Phe Leu Lys Leu Trp Gln Gly Val Thr Pro Ala Ile Tyr Arg His Val Val Tyr Ser Gly Gly Arg Met Val Thr Tyr Glu His Leu Arg Glu Val Val Phe Gly Lys Ser Glu Asp Glu His Tyr Pro Leu Trp Lys Ser Val Ile Gly Gly Met 130 Met Ala Gly Val Ile Gly Gln Phe Leu Ala Asn Pro Thr Asp Leu 145 Val Lys Val Gln Met Gln Met Glu Gly Lys Arg Lys Leu Glu Gly Lys Pro Leu Arg Phe Arg Gly Val His His Ala Phe Ala Lys Ile Leu Ala Glu Gly Gly Ile Arg Gly Leu Trp Ala Gly Trp Val Pro Asn Ile Gln Arg Ala Ala Leu Val Asn Met Gly Asp Leu Thr Thr 200 205 Tyr Asp Thr Val Lys His Tyr Leu Val Leu Asn Thr Pro Leu Glu 220 Asp Asn Ile Met Thr His Gly Leu Ser Ser Leu Cys Ser Gly Leu Val Ala Ser Ile Leu Gly Thr Pro Ala Asp Val Ile Lys Ser Arg Ile Met Asn Gln Pro Arg Asp Lys Gln Gly Arg Gly Leu Leu Tyr 260 Lys Ser Ser Thr Asp Cys Leu Ile Gln Ala Val Gln Gly Glu Gly 280 Phe Met Ser Leu Tyr Lys Gly Phe Leu Pro Ser Trp Leu Arg Met 295

Thr Pro Trp Ser Met Val Phe Trp Leu Thr Tyr Glu Lys Ile Arg

305 310 315

Glu Met Ser Gly Val Ser Pro Phe 320

<210> 407

<211> 31

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-31

<223> Synthetic construct.

<400> 407

cgcggatccc gttatcgtct tgcgctactg c 31

<210> 408

<211> 34

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-34

<223> Synthetic construct.

<400> 408

gcggaattct taaaatggac tgactccact catc 34

<210> 409

<211> 1487

<212> DNA

<213> Homo sapiens

<400> 409

cggacgcgtg ggcgcgggac gccggcaggg ttgtggcgca gcagtctcct 50

teetgegege gegeetgaag teggegtggg egtttgagga agetgggata 100

cagcatttaa tgaaaaattt atgcttaaga agtaaaa'atg gcaggcttcc 150

tagataattt tcgttggcca gaatgtgaat gtattgactg gagtgagaga 200

agaaatgctg tggcatctgt tgtcgcaggt atattgtttt ttacaggctg 250

gtggataatg attgatgcag ctgtggtgta tcctaagcca gaacagttga 300

accatgcctt tcacacatgt ggtgtatttt ccacattggc tttcttcatg 350

ataaatgctg tatccaatgc tcaggtgaga ggtgatagct atgaaagcgg 400

ctgtttagga agaacaggtg ctcgagtttg gcttttcatt ggtttcatgt 450

tgatgtttgg gtcacttatt gcttccatgt ggattctttt tggtgcatat 500

gttacccaaa atactgatgt ttatccggga ctagctgtgt tttttcaaaa 550

131

tgcacttata ttttttagca ctctgatcta caaatttgga agaaccgaag 600 agctatggac ctgagatcac ttcttaagtc acattttcct tttgttatat 650 tctgtttgta gataggtttt ttatctctca gtacacattg ccaaatggag 700 tagattgtac attaaatgtt ttgtttcttt acatttttat gttctgagtt 750 ttgaaatagt tttatgaaat ttctttattt ttcattgcat agactgttaa 800 tatgtatata atacaagact atatgaattg gataatgagt atcagttttt 850 tattcctgag atttagaact tgatctactc cctgagccag ggttacatca 900 tcttgtcatt ttagaagtaa ccactcttgt ctctctggct gggcacggtg 950 qctcatqcct qtaatcccaq cactttqqqa qqccqaqqcq gqccgattgc 1000 ttqaqqtcaa qtqtttqaqa ccaqcctqqc caacatggcg aaaccccatc 1050 tactaaaaat acaaaaatta gccaggcatg gtggtgggtg cctgtaatcc 1100 cagctacctg ggaggctgag gcaggagaat cgcttgaacc cggggggcag 1150 aggttqcaqt qagctqaqtt tqcqccactq cactctagcc tgggggagaa 1200 agtgaaactc cctctcaaaa aaaagaccac tctcagtatc tctgatttct 1250 gaagatgtac aaaaaaatat agcttcatat atctggaatg agcactgagc 1300 cataaaaggt tttcagcaag ttgtaactta ttttggccta aaaatgaggt 1350 ttttttggta aagaaaaaat atttgttctt atgtattgaa gaagtgtact 1400 tttatataat gatttttaa atgcccaaag gactagtttg aaagcttctt 1450 ttaaaaagaa ttoototaat atgactttat gtgagaa 1487 -

<210> 410

<211> 158

<212> PRT

<213> Homo sapiens

<400> 410

Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys Glu Cys 1 5 10 15

Ile Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val Ala 20 25 30

Gly Ile Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala 35 40 45

Val Val Tyr Pro Lys Pro Glu Gln Leu Asn His Ala Phe His Thr 50 55 60

Cys Gly Val Phe Ser Thr Leu Ala Phe Phe Met Ile Asn Ala Val
65 70 75

```
Ser Asn Ala Gln Val Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu
 Gly Arg Thr Gly Ala Arg Val Trp Leu Phe Ile Gly Phe Met Leu
 Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala
                110
                                      115
 Tyr Val Thr Gln Asn Thr Asp Val Tyr Pro Gly Leu Ala Val Phe
 Phe Gln Asn Ala Leu Ile Phe Phe Ser Thr Leu Ile Tyr Lys Phe
                 140
                                      145
 Gly Arg Thr Glu Glu Leu Trp Thr
                 155
<210> 411
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.
<400> 411
gtttgaggaa gctgggatac 20
<210> 412
<211> 20
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.
<400> 412
ccaaactcga gcacctgttc 20
<210> 413
<211> 40
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-40
<223> Synthetic construct.
<400> 413
atggcaggct tcctagataa ttttcgttgg ccagaatgtg 40
```

<210> 414

```
<211> 1337
<212> DNA
<213> Homo sapiens
```

<400> 414 gttgatggca aacttcctca aaggagggc agagcctgcg cagggcagga 50 gcagctggcc cactggcggc ccgcaacact ccgtctcacc ctctgggccc 100 actgcatcta gaggagggcc gtctgtgagg ccactacccc tccagcaact 150 gggaggtggg actgtcagaa gctggcccag ggtggtggtc agctgggtca 200 gggacctacg gcacctgctg gaccacctcg ccttctccat cgaagcaggg 250 aagtgggagc ctcgagccct cgggtggaag ctgaccccaa gccacccttc 300 acctggacag gatgagagtg tcaggtgtgc ttcgcctcct ggccctcatc 350 tttgccatag tcacgacatg gatgtttatt cgaagctaca tgagcttcag 400 catgaaaacc atccgtctgc cacgctggct ggcagcctcg cccaccaagg 450 agatccaggt taaaaagtac aagtgtggcc tcatcaagcc ctgcccagcc 500 aactactttg cgtttaaaat ctgcagtggg gccgccaacg tcgtgggccc 550 tactatgtgc tttgaagacc gcatgatcat gagtcctgtg aaaaacaatg 600 tgggcagagg cctaaacatc gccctggtga atggaaccac gggagctgtg 650 ctgggacaga aggcatttga catgtactct ggagatgtta tqcacctagt 700 gaaattcctt aaagaaattc cggggggtgc actggtgctg gtggcctcct 750 acgacgatcc agggaccaaa atgaacgatg aaagcaggaa actcttctct 800 gacttgggga gttcctacgc aaaacaactg ggcttccggg acagctgggt 850 cttcatagga gccaaagacc tcaggggtaa aagccccttt gagcagttct 900 taaagaacag cccagacaca aacaaatacg agggatggcc agagctgctg 950 gagatggagg gctgcatgcc cccgaagcca ttttagggtg gctgtggctc 1000 ttcctcagcc aggggcctga agaagctcct gcctgactta ggagtcagag 1050 cccggcaggg gctgaggagg aggagcaggg ggtgctgcgt qqaaqgtqct 1100 gcaggtcctt gcacgctgtg tcgcgcctct cctcctcgga aacagaaccc 1150 tcccacagca catcctaccc ggaagaccag cctcagaggg tccttctgga 1200 accagctgtc tgtggagaga atggggtgct ttcgtcaggg actgctgacg 1250 gctggtcctg aggaaggaca aactgcccag acttgagccc aattaaattt 1300 tatttttgct ggttttgaaa aaaaaaaaa aaaaaaa 1337


```
<210> 415
<211> 224
<212> PRT
<213> Homo sapiens
<400> 415
 Met Arg Val Ser Gly Val Leu Arg Leu Leu Ala Leu Ile Phe Ala
 Ile Val Thr Trp Met Phe Ile Arg Ser Tyr Met Ser Phe Ser
 Met Lys Thr Ile Arg Leu Pro Arg Trp Leu Ala Ala Ser Pro Thr
 Lys Glu Ile Gln Val Lys Lys Tyr Lys Cys Gly Leu Ile Lys Pro
 Cys Pro Ala Asn Tyr Phe Ala Phe Lys Ile Cys Ser Gly Ala Ala
 Asn Val Val Gly Pro Thr Met Cys Phe Glu Asp Arg Met Ile Met
 Ser Pro Val Lys Asn Asn Val Gly Arg Gly Leu Asn Ile Ala Leu
 Val Asn Gly Thr Thr Gly Ala Val Leu Gly Gln Lys Ala Phe Asp
 Met Tyr Ser Gly Asp Val Met His Leu Val Lys Phe Leu Lys Glu
                 125
 Ile Pro Gly Gly Ala Leu Val Leu Val Ala Ser Tyr Asp Asp Pro
 Gly Thr Lys Met Asn Asp Glu Ser Arg Lys Leu Phe Ser Asp Leu
                 155
 Gly Ser Ser Tyr Ala Lys Gln Leu Gly Phe Arg Asp Ser Trp Val
                                     175
 Phe Ile Gly Ala Lys Asp Leu Arg Gly Lys Ser Pro Phe Glu Gln
 Phe Leu Lys Asn Ser Pro Asp Thr Asn Lys Tyr Glu Gly Trp Pro
 Glu Leu Leu Glu Met Glu Gly Cys Met Pro Pro Lys Pro Phe
                 215
                                     220
<210> 416
<211> 21
<212> DNA
<213> Artificial
<220>
```

<221> Artificial Sequence

```
<222> 1-21
<223> Synthetic construct.
<400> 416
 gccatagtca cgacatggat g 21
<210> 417
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 417
 ggatggccag agctgctg 18
<210> 418
<211> 26
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-26
<223> Synthetic construct.
<400> 418
 aaagtacaag tgtggcctca tcaagc 26
<210> 419
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 419
tctgactcct aagtcaggca ggag 24
<210> 420
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
```

attctctcca cagacagctg gttc 24

<400> 420

```
<210> 421
<211> 46
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.
<400> 421
.gtacaagtgt ggcctcatca agccctgccc agccaactac tttgcg 46
<210> 422
<211> 1701
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1528
<223> unknown base
<400> 422
gagactgcag agggagataa agagagagg caaagaggca gcaagagatt 50
 tgtcctgggg atccagaaac ccatgatacc ctactgaaca ccgaatcccc 100
tggaagccca cagagacaga gacagcaaga gaagcagaga taaatacact 150
 cacgccagga gctcgctcgc tctctctct tctctctcac tcctccctcc 200
ctctctctct gcctgtccta gtcctctagt cctcaaattc ccagtcccct 250
gcaccccttc ctgggacact atgttgttct ccgccctcct gctggaggtg 300
atttggatcc tggctgcaga tgggggtcaa cactggacgt atgagggccc 350
acatggtcag gaccattggc cagcctctta ccctgagtgt ggaaacaatg 400
cccagtcgcc catcgatatt cagacagaca gtgtgacatt tgaccctgat 450
ttgcctgctc tgcagcccca cggatatgac cagcctggca ccgagccttt 500
ggacctgcac aacaatggcc acacagtgca actetetetg ccetetacce 550
 tgtatctggg tggacttccc cgaaaatatg tagctgccca gctccacctg 600
cactggggtc agaaaggatc cccagggggg tcagaacacc agatcaacag 650
tgaagccaca tttgcagagc tccacattgt acattatgac tctgattcct 700
atgacagett gagtgagget getgagagge eteagggeet ggetgteetg 750
ggcatcctaa ttgaggtggg tgagactaag aatatagctt atgaacacat 800
```

tctgagtcac ttgcatgaag tcaggcataa agatcagaag acctcagtgc 850

```
ctcccttcaa cctaagagag ctgctcccca aacagctggg gcagtacttc 900
 cgctacaatg gctcgctcac aactccccct tgctaccaga gtgtgctctg 950
 gacagttttt tatagaaggt cccagatttc aatggaacag ctggaaaagc 1000
 ttcaggggac attgttctcc acagaagagg agccctctaa gcttctggta 1050
 cagaactacc gagcccttca gcctctcaat cagcgcatgg tctttgcttc 1100
tttcatccaa gcaggatect egtataccae aggtgaaatg etgagtetag 1150
 gtgtaggaat cttggttggc tgtctctgcc ttctcctggc tgtttatttc 1200
attgctagaa agattcggaa gaagaggctg gaaaaccgaa agagtgtggt 1250
cttcacctca gcacaagcca cgactgaggc ataaattcct tctcagatac 1300
catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350
gggtgtagga tctggccaga aacactgtag gagtagtaag cagatgtcct 1400
ccttcccctg gacatctctt agagaggaat ggacccaggc tgtcattcca 1450
ggaagaactg cagageette ageeteteea aacatgtagg aggaaatgag 1500
gaaatcgctg tgttgttaat gcagaganca aactctgttt agttgcaggg 1550
gaagtttggg atatacccca aagtcctcta cccctcact tttatggccc 1600
tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650
gaagttgtat atttttgatc aatatatttg gaaattaaag tttctgactt 1700
t 1701
```

<210> 423

<211> 337

<212> PRT

<213> Homo sapiens

<400> 423

Met Leu Phe Ser Ala Leu Leu Leu Glu Val Ile Trp Ile Leu Ala 1 5 10 15

Ala Asp Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln
20 25 30

Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln 35 40 45

Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp 50 55 60

Leu Pro Ala Leu Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu
65 70 75

Pro Leu Asp Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu

80 85 90

Pro Ser Thr Leu Tyr Leu Gly Gly Leu Pro Arg Lys Tyr Val Ala 100 Ala Gln Leu His Leu His Trp Gly Gln Lys Gly Ser Pro Gly Gly Ser Glu His Gln Ile Asn Ser Glu Ala Thr Phe Ala Glu Leu His Ile Val His Tyr Asp Ser Asp Ser Tyr Asp Ser Leu Ser Glu Ala Ala Glu Arg Pro Gln Gly Leu Ala Val Leu Gly Ile Leu Ile Glu Val Gly Glu Thr Lys Asn Ile Ala Tyr Glu His Ile Leu Ser His 170 Leu His Glu Val Arg His Lys Asp Gln Lys Thr Ser Val Pro Pro 185 190 Phe Asn Leu Arg Glu Leu Leu Pro Lys Gln Leu Gly Gln Tyr Phe 200 Arg Tyr Asn Gly Ser Leu Thr Thr Pro Pro Cys . Tyr Gln Ser Val 215 220 225 Leu Trp Thr Val Phe Tyr Arg Arg Ser Gln Ile Ser Met Glu Gln Leu Glu Lys Leu Gln Gly Thr Leu Phe Ser Thr Glu Glu Glu Pro 250 Ser Lys Leu Leu Val Gln Asn Tyr Arg Ala Leu Gln Pro Leu Asn 265 Gln Arg Met Val Phe Ala Ser Phe Ile Gln Ala Gly Ser Ser Tyr 275 285 Thr Thr Gly Glu Met Leu Ser Leu Gly Val Gly Ile Leu Val Gly Cys Leu Cys Leu Leu Leu Ala Val Tyr Phe Ile Ala Arg Lys Ile Arg Lys Lys Arg Leu Glu Asn Arg Lys Ser Val Val Phe Thr Ser

Ala Gln Ala Thr Thr Glu Ala 335

320

<210> 424

<211> 18

<212> DNA

<213> Artificial

325

```
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 424
gtaaagtcgc tggccagc 18
<210> 425
<211> 18
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.
<400> 425
cccgatctgc ctgctgta 18
<210> 426
<211> 24
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.
<400> 426
ctgcactgta tggccattat tgtg 24
<210> 427
<211> 45
<212> DNA
<213> Artificial
<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.
<400> 427
cagaaaccca tgatacccta ctgaacaccg aatcccctgg aagcc 45
<210> 428
<211> 1073
<212> DNA
<213> Homo sapiens
<400> 428
 aatttttcac cagagtaaac ttgagaaacc aactggacct tgagtattgt 50
 acattttgcc tcgtggaccc aaaggtagca atctgaaaca tgaggagtac 100
gattctactg ttttgtcttc taggatcaac tcggtcatta ccacagctca 150
```

31

aacctgcttt gggactccct cccacaaaac tggctccgga tcagggaaca 200 ctaccaaacc aacagcagtc aaatcaggtc tttccttctt taagtctgat 250 accattaaca cagatgetca caetggggee agatetgeat etgttaaate 300 ctgctgcagg aatgacacct ggtacccaga cccacccatt gaccctggga 350 gggttgaatg tacaacagca actgcaccca catgtgttac caatttttgt 400 cacacaactt ggagcccagg gcactatcct aagctcagag gaattgccac 450 aaatcttcac gagcctcatc atccattcct tgttcccggg aggcatcctg 500 cccaccagtc aggcagggc taatccagat gtccaggatg gaagccttcc 550 agcaggagga gcaggtgtaa atcctqccac ccagggaacc ccagcaggcc 600 gcctcccaac tcccagtggc acagatgacg actttgcagt gaccacccct 650 gcaggcatcc aaaggagcac acatgccatc gaggaagcca ccacagaatc 700 agcaaatgga attcagtaag ctgtttcaaa ttttttcaac taaqctgcct 750 cgaatttggt gatacatgtg aatctttatc attgattata ttatggaata 800 gattgagaca cattggatag tcttagaaga aattaattct taatttacct 850 gaaaatattc ttgaaatttc agaaaatatg ttctatgtag agaatcccaa 900 cttttaaaaa caataattca atggataaat ctgtctttga aatataacat 950 tatgctgcct ggatgatatg catattaaaa catatttgga aaactggaaa 1000 aaaaaaaaa aaaaaaaaa aaa 1073

- <210> 429
- <211> 209
- <212> PRT
- <213> Homo sapiens
- <400> 429
- Met Arg Ser Thr Ile Leu Leu Phe Cys Leu Leu Gly Ser Thr Arg $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$
- Ser Leu Pro Gln Leu Lys Pro Ala Leu Gly Leu Pro Pro Thr Lys 20 25 30
- Leu Ala Pro Asp Gln Gly Thr Leu Pro Asn Gln Gln Gln Ser Asn 35 40 45
- Gln Val Phe Pro Ser Leu Ser Leu Ile Pro Leu Thr Gln Met Leu 50 55 60
- Thr Leu Gly Pro Asp Leu His Leu Leu Asn Pro Ala Ala Gly Met 65 70 75

Thr Pro Gly Thr Gln Thr His Pro Leu Thr Leu Gly Gly Leu Asn Val Gln Gln Leu His Pro His Val Leu Pro Ile Phe Val Thr Gln Leu Gly Ala Gln Gly Thr Ile Leu Ser Ser Glu Glu Leu Pro 115 Gln Ile Phe Thr Ser Leu Ile Ile His Ser Leu Phe Pro Gly Gly Ile Leu Pro Thr Ser Gln Ala Gly Ala Asn Pro Asp Val Gln Asp Gly Ser Leu Pro Ala Gly Gly Ala Gly Val Asn Pro Ala Thr Gln 160 Gly Thr Pro Ala Gly Arg Leu Pro Thr Pro Ser Gly Thr Asp Asp 170 175 Asp Phe Ala Val Thr Thr Pro Ala Gly Ile Gln Arg Ser Thr His Ala Ile Glu Glu Ala Thr Thr Glu Ser Ala Asn Gly Ile Gln

120

180

<210> 430

<211> 1257

<212> DNA

<213> Homo Sapien

<400> 430

ggagagaggc gcgcgggtga aaggcgcatt gatgcagcct gcggcggcct 50 cggagcgcgg cggagccaga cgctgaccac gttcctctcc tcggtctcct 100 ccgcctccag ctccgcgctg cccggcagcc gggagccatg cgaccccagg 150 gccccgccgc ctccccgcag cggctccgcg gcctcctgct gctcctgctg 200 ctgcagctgc ccgccgtc qagcgcctct qagatcccca aggggaagca 250 aaaggcgcag ctccggcaga gggaggtggt ggacctgtat aatggaatgt 300 gcttacaagg gccagcagga gtgcctggtc gagacgggag ccctggggcc 350 aatgttattc cgggtacacc tgggatccca ggtcgggatg gattcaaagg 400 agaaaagggg gaatgtctga gggaaagctt tgaggagtcc tggacaccca 450 actacaagca gtgttcatgg agttcattga attatggcat agatcttggg 500 aaaattgcgg agtgtacatt tacaaagatg cgttcaaata gtgctctaag 550 agttttgttc agtggctcac ttcggctaaa atgcagaaat gcatgctgtc 600 agcgttggta tttcacattc aatggagctg aatgttcagg acctcttccc 650

BI

attgaageta taatttattt ggaccaagga agecetgaaa tgaattcaac 700 aattaatatt categeactt ettetgtgga aggactttgt gaaggaattg 750 gtgetggatt agtggatgtt getatetggg ttggeacttg tteagattac 800 ecaaaaggag atgettetac tggatggaat teagttete geateattat 850 tgaaggaacta ecaaaataaa tgettaatt tteatttget acetetttt 900 ttattatgee ttggaatggt teacttaaat gacatttaa ataagtttat 950 gtatacatet gaatgaaaag eaaagetaaa tatgttaca gaccaaagtg 1000 tgatteaca etgtttaa atetageatt atteatttg etteaateaa 1050 aagtggtte aatatttt ttagttggt agaataett etteatagte 1100 acattetee aacetataat ttggaatatt gttgtggtet tttgttttt 1150 etettagtat ageatttta aaaaaatata aaagetacea atetttgtac 1200 aatttgtaaa tgttaagaat ttttttata tetgttaaat aaaaattatt 1250 teeaaca 1257

<210> 431

<211> 243

<212> PRT

<213> Homo Sapien

<400> 431

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala 20 25 30

Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg 35 40 45

Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala
50 55 60

Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro
65 70 75

Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys 80 85 90

Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn 95 100 105

Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu 110 115 120

Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 125 130 135

Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln 170 175 Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp 205 Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Glu Glu 235 Leu Pro Lys <210> 432 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 432 aggacttgcc ctcaggaa 18 <210> 433 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 433 cgcaggacag ttgtgaaaat a 21 <210> 434 <211> 21 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe

<400> 434

<210> 435

atgacgctcg tccaaggcca c 21

```
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 435
cccacctgta ccaccatgt 19
<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 436
 actccaggca ccatctgttc tccc 24
<210> 437
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 437
aagggctggc attcaagtc 19
<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 438
tgacctggca aaggaagaa 19
<210> 439
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 439
cagccaccct ccagtccaag g 21
<210> 440
<211> 19
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 440
 gggtcgtgtt ttggagaga 19
<210> 441
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 441
 ctggccctca gagcaccaat 20
<210> 442
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 442
 tcctccatca cttcccctag ctcca 25
<210> 443
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 443
ctggcaggag ttaaagttcc aaga 24
<210> 444
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 444
aaaggacacc gggatgtg 18
<210> 445
<211> 26
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

<220>

```
<400> 445
 agcgtacact ctctccaggc aaccag 26
<210> 446
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 446
 caattctgga tgaggtggta ga 22
<210> 447
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 447
 caggactgag cgcttgttta 20
<210> 448
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 448
 caaagcgcca agtaccggac c 21
<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 449
ccagacetea gecaggaa 18
<210> 450
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 450
```

ccctagctga ccccttca 18

```
<210> 451
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 451
 tctgacaagc agttttctga atc 23
<210> 452
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 452
 ctctcccct cccttttcct ttgttt 26
<210> 453
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 453
 ctctggtgcc cacagtga 18
<210> 454
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 454
ccatgcctgc tcagccaaga a 21
<210> 455
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 455
caggaaatct ggaaacctac agt 23
<210> 456
<211> 20
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 456
 ccttgaaaag gacccagttt 20
<210> 457
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 457
 atgagtcgca cctgctgttc cc 22
<210> 458
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 458
 tagcagctgc ccttggta 18
<210> 459
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 459
aacagcaggt gcgactcatc ta 22
<210> 460
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 460
tgctaggcga cgacacccag acc 23
<210> 461
<211> 18
<212> DNA
<213> Artificial Sequence
```

<220>

```
<223> Synthetic oligonucleotide probe
<400> 461
 tggacacgtg gcagtgga 18
<210> 462
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 462
tcatggtctc gtcccattc 19
<210> 463
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 463
 caccatttgt ttctctgtct ccccatc 27
<210> 464
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 464
ccggcatcct tggagtag 18
<210> 465
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 465
tccccattag cacaggagta 20
<210> 466
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 466

```
aggetettge etgteetget get 23
<210> 467
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 467
 gcccagagtc ccacttgt 18 .
<210> 468
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 468
actgctccgc ctactacga 19
<210> 469
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 469
aggcatcctc gccgtcctca 20
<210> 470
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 470
aaggccaagg tgagtccat 19
<210> 471
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 471
cgagtgtgtg cgaaacctaa 20
```

<210> 472

```
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 472
tcagggtcta catcagcctc ctgc 24
<210>. 473
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 473
aaggccaagg tgagtccat 19
<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 474
cctactgagg agccctatgc 20
<210> 475
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 475
tccaggtgga ccccacttca gg 22
<210> 476
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 476
gggaggctta taggcccaat ctgg 24
<210> 477
<211> 50
<212> DNA
<213> Artificial Sequence
```

```
BI
```

?

<220> <223> Synthetic oligonucleotide probe

<400> 477 ggcttcagca gcacgtgtga agtcgaagtc gcagtcacag atatcaatga 50