PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-141945

(43)Date of publication of application: 17.05.2002

(51)Int.CI.

H04L 12/56

H04L 12/46

H04L 12/28

HO4N 7/08

HO4N 7/081

HO4N 7/32

(21)Application number: 2000-337396 (71)Applicant: SONY CORP

(22)Date of filing:

06.11.2000

(72)Inventor: FURUKAWA MINORU

(54) DATA TRANSMISSION SYSTEM AND DATA TRANSMISSION METHOD, AND **PROGRAM STORAGE MEDIUM**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a system that can transfer data in response to the importance of transmitted/received data. SOLUTION: When the IP packet transmission of e.g. MPEG images is performed as data transferred via a network, whether any of I, P, B pictures is included in the packet is discriminated and a priority in response to the importance is set as header information. Concretely when the MPEG image includes the I picture with high importance at its reproduction, high priority is placed on priority set to a TOS(Type Of Service) field of an IP header, when data in the packet is only the B

picture, low priority is placed and bits are set to the TOS. The missing and delay possibility of the I picture with high priority is reduced in the network and reproduction at a receiver side can more accurately be carried out.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-141945 (P2002-141945A)

(43)公開日 平成14年5月17日(2002.5.17)

					(40) 24 6	114	MA11-071	11 11 (2002. 3. 11)
(51) Int.Cl.7		殿別記号	FΙ					テーマコート*(参考)
H04L	12/56		H041	<u>ا</u> ا	11/20		102F	5 C 0 5 9
	12/46				11/00		310C	5 C 0 6 3
	12/28	•	H 0 4 1	N	7/08		Z	5 K O 3 O
H 0 4 N	7/08				7/137		Z	5 K O 3 3
	7/081							
		審査請求	未請求	青 求	項の数13	OL	(全 15 頁)	最終頁に続く
(21)出願番号		特願2000-337396(P2000-337398)	(71)出願人 000002185 ソニー株式会社					
(22)出願日		平成12年11月 6 日(2000.11.6)						17年35日
(CD) HINNE		Main 11/3 0 (2000: 11:0)	(72)発	東京都品川区北品川6丁目7番3(72)発明者 古川 実			11 11 11 100.3	
			()				北品川6丁目	17番35号 ソニ
		·			一株式			
			(74)代理人 100101801			301		
					弁理士	田山	英治 (タ	2名)
•								最終頁に続く

(54) 【発明の名称】 データ送信装置、およびデータ送信方法、並びにプログラム記憶媒体

(57) 【要約】

【課題】 送受信するデータの重要度に応じたデータ転送を可能とするシステムを提供する。

【解決手段】 ネットワークを介して転送するデータとして例えばMPEG画像のIPパケット送信を行なう場合、MPEG画像内のIピクチャ、Pピクチャ、Bピクチャのいずれがパケット内に含まれるかを判別して、重要度に応じた優先度をヘッダ情報として設定する。具体的にはパケットに、MPEG再生時に重要度の高いIピクチャを含む場合、IPヘッダのTOSフィールドに設定する優先度を高優先度とし、パケット内のデータがBピクチャのみの場合を低優先度としてTOSにビットを設定する。優先度の高いIピクチャはネットワークにおいて消失、遅延可能性が低減され、受信側での再生がより正確に実行可能となる。

【特許請求の範囲】

【請求項1】データ送信装置において、

転送データを通信プロトコルに従ったパケットとして生 成するパケット生成手段を有し、

前記パケット生成手段は、

各パケットに格納するデータの重要度を識別して、該識別重要度に応じた優先情報をヘッダ情報に設定してパケット生成処理を実行する構成を有することを特徴とするデータ送信装置。

【請求項2】前記パケット生成手段は、

前記データの重要度を、他データからの参照情報を含む データを高重要度のデータとして高い優先情報を設定 し、他データからの参照情報を含まないデータを低重要 度のデータとして低い優先情報を設定する構成を有する ことを特徴とする請求項1に記載のデータ送信装置。

【請求項3】前記パケット生成手段の生成するパケット に格納するデータは、MPEGデータであり、

前記パケット生成手段は、

各データパケットに格納するデータにMPEGデータを構成するIピクチャ、Pピクチャ、Bピクチャのいずれが含まれるかに応じた優先情報をヘッダ情報に設定してパケット生成処理を実行する構成を有することを特徴とする請求項1に記載のデータ送信装置。

【請求項4】前記パケット生成手段は、

IP (Internet Protocol) に従った I Pヘッダ中の優先情報設定フィールドに、各 I Pパケットに格納するデータの重要度に応じた優先情報を設定して I Pパケット生成処理を実行する構成を有することを特徴とする請求項1に記載のデータ送信装置。

【請求項5】前記パケット生成手段の設定する優先情報は、QoS (Quality of Service) に従ったサービス品質に対応付けられた情報であることを特徴とする請求項1に記載のデータ送信装置。

【請求項6】前記パケット生成手段の設定する優先情報は、帯域保証データ転送としてのギャランティ型、または、帯域非保証データ転送としてのベストエフォート型のいずれかの選択基準として対応付けられた情報であることを特徴とする請求項1に記載のデータ送信装置。

【請求項7】データ送信方法において、

転送データを通信プロトコルに従ったパケットとして生成するパケット生成ステップを有し、

前記パケット生成ステップは、

各パケットに格納するデータの重要度を識別し、該識別 された重要度に応じた優先情報をヘッダ情報に設定する 処理を実行することを特徴とするデータ送信方法。

【請求項8】前記パケット生成ステップにおいて、 前記データの重要度を、他データからの参照情報を含む データを髙重要度のデータとして高い優先情報を設定 し、他データからの参照情報を含まないデータを低重要 度のデータとして低い優先情報を設定することを特徴と する請求項7に記載のデータ送信方法。

【請求項9】前記パケット生成ステップにおいて生成するパケットに格納するデータは、MPEGデータであり、

05 前記パケット生成ステップは、

各データパケットに格納するデータにMPEGデータを 構成する I ピクチャ、Pピクチャ、Bピクチャのいずれ が含まれるかに応じた優先情報をヘッダ情報に設定して パケット生成処理を実行することを特徴とする請求項7 10 に記載のデータ送信方法。

【請求項10】前記パケット生成ステップは、

IP (Internet Protocol) に従った IP ヘッダ中の優先情報設定フィールドに、各IPパケッドに格納するデータの重要度に応じた優先情報を設定してIPパケット 生成処理を実行することを特徴とする請求項7に記載のデータ送信方法。

【請求項11】前記パケット生成ステップにおいて設定する優先情報は、QoS (Quality of Service) に従ったサービス品質に対応付けられた情報であることを特徴20 とする請求項7に記載のデータ送信方法。

【請求項12】前記パケット生成ステップにおいて設定する優先情報は、帯域保証データ転送としてのギャランティ型、または、帯域非保証データ転送としてのベストエフォート型のいずれかの選択基準として対応付けられた情報であることを特徴とする請求項7に記載のデータ

だ情報であることを特徴とする請求項でに記載のデータ 送信方法。
【請求項13】データ送信処理をコンピュータ・システ

1請求項13】データ送信処理をコンピュータ・システム上で実行せしめるコンピュータ・プログラムを提供するプログラム記憶媒体であって、前記コンピュータ・プ30 ログラムは、

転送データを通信プロトコルに従ったパケットとして生成するパケット生成ステップを有し、

前記パケット生成ステップは、

各パケットに格納するデータの重要度を識別し、該識別 35 された重要度に応じた優先情報をヘッダ情報に設定する 処理を実行するステップをを含むことを特徴とするプロ グラム記憶媒体。

【発明の詳細な説明】

[0001]

40 【発明の属する技術分野】本発明は、データ送信装置、 およびデータ送信方法、並びにプログラム記憶媒体に関 する。さらに詳細には、異なる重要度を有するデータの 混在データを転送する処理において、重要度に応じた転 送処理を実行することにより、転送データの品質低下を

45 防止することを可能としたデータ送信装置、およびデー タ送信方法、並びにプログラム記憶媒体に関する。

[0002]

【従来の技術】現在、インターネット通信など、様々な 通信媒体を介して様々なデータ転送が行なわれている。

50 昨今では、画像データ、特に動画像データのネットワー

クを介した転送が盛んに行なわれている。画像データ、特に動画データは通常、送信側で符号化(圧縮)処理によりデータ量を減少させ、受信側で復号(伸長)処理を実行して再生する処理が行なわれる。

【0003】画像圧縮処理の最も知られた手法にMPEG(Moving Pictures Experts Group)圧縮技術がある。このMPEG圧縮により生成されるMPEGストリームをIP(Internet Protocol)に従ったIPパケットに格納してインターネット上を転送させる画像データ転送は今後、急速に盛んになるであろうことが予測される。

【0004】MPEGなどに代表される圧縮画像を、IPネットワークを用いて伝送する場合、データ符号化方式に関する情報や、タイムスタンプをヘッダ情報として持ち、リアルタイムでのデータ送受信を可能としたRTP(Real-time Transport Protocol)プロトコルを用いて、パケット伝送することが多い。しかし、IPネットワークは一般的に無保証のネットワークであり、パケットが伝送経路中でエラーによりダメージを受けたり、パケットがドロップしたりすることは珍しいことではない。

【0005】圧縮画像にはそのフォーマット上、画像を構成する上で特に重要な情報を含む部分、例えばMPE Gでは、Iピクチャ等が点在しており、ネットワークのエラー等により、この重要な部分を含むパケットが失われたような場合には、画像的にも非常に大きなダメージが発生する。具体的には、例えばMPEG圧縮画像における、Iピクチャが失われた場合、その前後数フレームが復元不可能となる。

【0006】一方、最近ではネットワーク上でのデータ 転送の品質を保証したQoS(Quality of Service)や CoS(Class of Service)を提供するような高付加価値 型のネットワークも現実のものとなって来たが、これら のサービスは未だ一般的に高コストなサービスであり、 ネットワークの利用者は、低コストだが低信頼性のネットワークと、高コストだが高信頼性のネットワークとの トレードオフを迫られることになる。

[0007]

【発明が解決しようとする課題】本発明は、例えばMPEG圧縮の実行されたデータのように重要度の異なるデータが混在したデータ転送において、重要度に応じたデータ転送処理を実行して、ネットワーク上においてパケット消失等のエラーが発生しても、受信データの品質低下を最小限にとどめることを可能としたデータ送信装置、およびデータ送信方法を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明の第1の側面は、 データ送信装置において、転送データを通信プロトコル に従ったパケットとして生成するパケット生成手段を有 し、前記パケット生成手段は、各パケットに格納するデータの重要度を識別して、該識別重要度に応じた優先情報をヘッダ情報に設定してパケット生成処理を実行する 構成を有することを特徴とするデータ送信装置にある。

 10009】さらに、本発明のデータ送信装置の一実施 態様において、前記パケット生成手段は、前記データの 重要度を、他データからの参照情報を含むデータを高重 要度のデータとして高い優先情報を設定し、他データか らの参照情報を含まないデータを低重要度のデータとし て低い優先情報を設定する構成を有することを特徴とす る。

【0010】さらに、本発明のデータ送信装置の一実施態様において、前記パケット生成手段の生成するパケットに格納するデータは、MPEGデータであり、前記パ15 ケット生成手段は、各データパケットに格納するデータにMPEGデータを構成するIピクチャ、Pピクチャ、Bピクチャのいずれが含まれるかに応じた優先情報をヘッダ情報に設定してパケット生成処理を実行する構成を有することを特徴とする。

20 【0011】さらに、本発明のデータ送信装置の一実施 態様において、前記パケット生成手段は、IP (Intern et Protocol) に従ったIPヘッダ中の優先情報設定フ ィールドに、各IPパケットに格納するデータの重要度 に応じた優先情報を設定してIPパケット生成処理を実 25 行する構成を有することを特徴とする。

【0012】さらに、本発明のデータ送信装置の一実施態様において、前記パケット生成手段の設定する優先情報は、QoS(Quality of Service)に従ったサービス品質に対応付けられた情報であることを特徴とする。

30 【0013】さらに、本発明のデータ送信装置の一実施 態様において、前記パケット生成手段の設定する優先情 報は、帯域保証データ転送としてのギャランティ型、ま たは、帯域非保証データ転送としてのベストエフォート 型のいずれかの選択基準として対応付けられた情報であ 35 ることを特徴とする。

【0014】さらに、本発明の第2の側面は、データ送信方法において、転送データを通信プロトコルに従ったパケットとして生成するパケット生成ステップを有し、前記パケット生成ステップは、各パケットに格納するデータの重要度を識別し、該識別された重要度に応じた優先情報をヘッダ情報に設定する処理を実行することを特徴とするデータ送信方法にある。

【0015】さらに、本発明のデータ送信方法の一実施態様において、前記パケット生成ステップにおいて、前記データの重要度を、他データからの参照情報を含むデータを高重要度のデータとして高い優先情報を設定し、他データからの参照情報を含まないデータを低重要度のデータとして低い優先情報を設定することを特徴とする

50 【0016】さらに、本発明のデータ送信方法の一実施

態様において、前記パケット生成ステップにおいて生成するパケットに格納するデータは、MPEGデータであり、前記パケット生成ステップは、各データパケットに格納するデータにMPEGデータを構成するIピクチャ、Pピクチャ、Bピクチャのいずれが含まれるかに応じた優先情報をヘッダ情報に設定してパケット生成処理を実行することを特徴とする。

【0017】さらに、本発明のデータ送信方法の一実施態様において、前記パケット生成ステップは、IP(Internet Protocol)に従ったIPヘッダ中の優先情報設定フィールドに、各IPパケットに格納するデータの重要度に応じた優先情報を設定してIPパケット生成処理を実行することを特徴とする。

【0018】さらに、本発明のデータ送信方法の一実施態様において、前記パケット生成ステップにおいて設定する優先情報は、QoS(Quality of Service)に従ったサービス品質に対応付けられた情報であることを特徴とする。

【0019】さらに、本発明のデータ送信方法の一実施態様において、前記パケット生成ステップにおいて設定する優先情報は、帯域保証データ転送としてのギャランティ型、または、帯域非保証データ転送としてのベストエフォート型のいずれかの選択基準として対応付けられた情報であることを特徴とする。

【0020】さらに、本発明の第3の側面は、データ送信処理をコンピュータ・システム上で実行せしめるコンピュータ・プログラムを提供するプログラム記憶媒体であって、前記コンピュータ・プログラムは、転送データを通信プロトコルに従ったパケットとして生成するパケット生成ステップを有し、前記パケット生成ステップは、各パケットに格納するデータの重要度を識別し、該識別された重要度に応じた優先情報をヘッダ情報に設定する処理を実行するステップをを含むことを特徴とするプログラム記憶媒体にある。

【0021】なお、本発明の第3の側面に係るプログラム記憶媒体は、例えば、様々なプログラム・コードを実行可能な汎用コンピュータ・システムに対して、コンピュータ・プログラムをコンピュータ可読な形式で提供する媒体である。

【0022】このようなプログラム記憶媒体は、コンピュータ・システム上で所定のコンピュータ・プログラムの機能を実現するための、コンピュータ・プログラムと記憶媒体との構造上又は機能上の協働的関係を定義したものである。換言すれば、該記憶媒体を介してコンピュータ・プログラムをコンピュータ・システムにインストールすることによって、コンピュータ・システム上では協働的作用が発揮され、本発明の他の側面と同様の作用効果を得ることができるのである。

【0023】本発明のさらに他の目的、特徴や利点は、 後述する本発明の実施例や添付する図面に基づくより詳 細な説明によって明らかになるであろう。

[0024]

【発明の実施の形態】図1に本発明のデータ送信装置の実施例を説明するブロック図を示す。本実施例において は、送受信するデータとして汎用圧縮方式のフォーマットであるMPEG (Moving Pictures Experts Group)により圧縮したデータ特にMPEG2を適用した例として説明するが、他の圧縮方式例えばMPEG4などにおいても同様に適用可能である。

10 【0025】MPEG2は、高品位な画像圧縮処理を実現する技術である。現在最も多く使用されているMPEG2の圧縮方法は、画面内の相関を利用した圧縮である離散コサイン変換(Discrete Cosine Transform; DCT)、画面間の相関に基づく圧縮としての動き補償、符号列の相関に基づく圧縮としてのハフマン符号化を組み合わせた圧縮手法である。MPEG2では、動き補償を用いた予測符号化を行うために、図2に示すようにIピクチャ、Pピクチャ、Bピクチャと呼ぶ3つの要素によるGOP(Group Of Pictures)構造を採用している。

20 【0026】 Iピクチャ (Intra 符号化画像) は、フィールド内符号化により作られるもので、前画像からの予測符号化を行わない画像データである。予測符号化を使って作った画像ばかり並んでいると、ランダムアクセスが行われた場合、それに応じて瞬時に画面を出すことができない。そこで、定期的にアクセスの基準となるものを作ってランダムアクセスにも対応できるようにしている。 I ピクチャは、いわば、GOPの独立性を持つため存在する。

【0027】Iピクチャの出現する頻度は、それぞれの アプリケーションに必要とされるランダムアクセスの性能によって決定されるが、普通1フィールドに1枚(1フレームに2枚)、即ち画像15枚に1枚の割合である。Iピクチャ1枚のデータ量は、Pピクチャ1枚の2~3倍、Bピクチャ1枚の5~6倍に相当する。GOP 25 とは、1つのIピクチャから次のIピクチャまでの間のピクチャのグループのことである。従って、このグループ内のピクチャ間で画像予測が行われることになる。

【0028】 Pピクチャ (Predictive符号化画像) は、 1つ前の画像から予測符号化を行って作られる画像で、

40 Iピクチャに基づいて作られる。 "フレーム内符号化画像"である Iピクチャに対して、Pピクチャは"フレーム間準方向予測符号化画像"と定義づけられる。

【0029】Bピクチャ (Bidirectionally predictive 符号化画像) は、"双方向予測符号化画像"である。B ピクチャは、前後の2枚のIピクチャまたはPピクチャからの予測を行うことで作られる。

【0030】 I ピクチャ、Pピクチャ、BピクチャのG OP内での配列例を図3に示す。GOPの初めにある I ピクチャから1段目の予測は、前方即ち順方向に行わ れ、Pピクチャが作られる。この際、Pピクチャは後か

ら作られる複数のBピクチャを飛び越す形で配置される。

【0031】2段目の予測は、最初のIピクチャと1段目で符号化されたPピクチャの2枚から、その2枚の間に、つまり、両方向の予測によって、複数のBピクチャが作られる。さらに、1枚目のPピクチャと2枚目のPピクチャの間にも、同じように複数のBピクチャが作られる。Bピクチャは、復号化に当たって、2本の動きベクトルと2枚(前と後)の参照画像を用いて動き補償する。MPEGの特徴である両方向予測は、予測において時間的に過去の画像と未来の画像の2つを用いるために、高い予測効率を得られるという特徴がある。

【0032】本実施例では、MPEG2により圧縮されたデータをIPパケット (MPEG over IP) としてネットワーク上に送信する。そのため、データ送信側では、パケット生成 (パケタイズ処理) を実行し、データ受信側ではパケット展開 (デパケタイズ処理) を実行する。

【0033】図1の本発明のデータ送受信装置100 は、MPEG圧縮伸長を実行するとともにパケット生 成、展開処理を実行するMPEG処理PCIボード10 1、通信ネットワークであるLANとのインタフェース として機能するイーサネット(登録商標)カード10 2、マウス15、キーボード16等の入力機器との入出 カインタフェース103、さらに、MPEG処理PCI ボード101でのデータ処理、イーサネットカード10 2を介するデータ通信処理、入出力インタフェース10 3を介する入力データ等の処理を制御するホストCPU 104、ホストCPU104により制御実行される各種 プログラムの格納、データの格納、ホストCPU104 のワークエリアとして機能するRAM、ROMからなる ホストメモリ105を有する。MPEG処理PCIボー ド101、イーサネットカード102、およびホストC PU104は、それぞれPCIバス106に接続され、 相互のデータ送受信が可能な構成を持つ。

【0034】MPEG処理PCIボード101は、図1に示すように、例えばビデオカメラ11からの画像データ、マイク12からの音声データを入力し、MPEG2圧縮処理、符号化多重化処理、パケット生成処理(パケタイズ)を実行し、最終的にMPEGトランスポートストリーム(TS)データを格納したIPパケットを生成する。生成されたIPパケットは、PCIバス106上に出力され、イーサネットカード102を介してLANに出力され、IPパケットのヘッダに設定された宛先アドレスに配信される。

【0035】また、LANを介して入力するIPパケット化されたMPEGトランスポートストリーム(TS)データは、イーサネットカード102を介してPCIバス106上に出力されて、MPEG処理PCIボード101では入力される。MPEG処理PCIボード101では入力データのパケット展開処理(デパケタイズ)を実

行し、MPEG圧縮データを抽出後、復号処理を実行して、ディスプレイ13、スピーカ14において再生、出力する。

【0036】MPEG処理PCIボード101の構成を 05 図4に示す。ビデオカメラ11から入力される動画データは、MPEG2ビデオエンコーダ201は、入力動画像データに基づいてMPEGビテオストリームを生成する。また、マイク12から入力される音声データは、M 10 PEG2オーディオエンコーダ202に入力される。M PEG2オーディオエンコーダ202は、入力音声データに基づいてMPEGオーディオストリームを生成する。

【0037】MPEG2ビデオエンコーダ201、MP 15 EG2オーディオエンコーダ202これらの2つのスト リームは、MPEGマルチプレクサ203に入力されて MPEG2トランスポートストリームとして多重化され る。トランスポートストリーム (TS) は、各々が所定 のデータ量に区切られたパケットストリームであり、L 20 AN等のネットワーク出力されるIPパケット中には複 数のMPEG-TSパケット(図5参照)が含まれる。 【0038】MPEGマルチプレクサ203の生成した MPEG2トランスポートストリームは、さらに、RT Pパケット生成手段204において、MPEG2トラン 25 スポートストリームに対するRTPヘッダが付加されて RTPパケットが生成され、UDP (User Datagram Pr otocol) パケット生成手段205において、RTPパケ ットに対するUDPヘッダが付加されてUDPパケット が生成され、IPパケット生成手段206において、U 30 DPパケットに対するIPヘッダが付加されてIPパケ ットが生成され、PCIインタフェース207を介して PCIバス106に出力されて、図1に示すイーサネッ トカード102からネットワーク上に出力される。

【0039】このようにネットワーク上に出力された I Pパケットは、イーサネットカード102、PCIバス 106を介してMPEG処理PCIカードに入力され、PCIインタフェース207からIPパケット展開手段 208に入力されてIPパケットの展開、すなわち IP ヘッダ情報に従ったパケット展開処理実行され、UDP パケット展開手段 209において、UDPパケット展開 処理が実行され、最後にRTPパケット展開手段 210においてRTPヘッダに従った展開処理によってMPE G 2トランスポートストリームが取り出される。RTPパケットは、後述するようにタイムスタンプを持ち、タイムスタンプに基づいて、ネットワーク転送における遅延ゆらぎ、到着順序などが修正、吸収される。

【0040】取り出されたMPEG2トランスポートストリームは、MPEGデマルチプレクサ211において、MPEGビデオストリームと、MPEGオーディオ50 ストリームに分離され、それぞれMPEGビデオデコー

ダ212、MPEGオーディオデコーダ213において 復号処理が実行されて、ディスプレイ13、スピーカ1 4において再生される。

【0041】IPネットワークによるビデオ会議、ビデオオンデマンド(VOD)などのデータ転送では、データの途切れない供給が重視されるので、一般にTCP(Transmission Control protocol)などの再送処理を実行するプロトコルはあまり使用されず、再送処理を行なわないUDPが使用される。ただしTCPを使用して送受信することも可能である。

【0042】UDPは、アプリケーションプロセスがリモートマシン上の他のアプリケーションのプロセスへデータを転送することを最小のオーバヘッドで行なえるように設計されている。そのため、UDPのヘッダに入る情報は、送信元ポート番号、宛先ポート番号、データ長、チェックサムのみであり、TCP(Transmission Control protocol)などのようにパケット順序を識別するデータフィールドがない。

【0043】そこで、IPネットワークにおけるリアルタイムの画像、音声データの送受信プロトコルとしてリアルタイム・トランスポート・プロトコル:RTP (Re al-time Transport Protocol) が使用される。RTPはトランスポート層に位置し、一般にUDP上で用いられる。

【0044】図5にMPEGトランスポートストリームをRTP, UDP, IPによりパケット化したIPパケットの構成中のRTPへッダの詳細を示す。RTPへッダには、バージョン番号(v)、パディング(P)、拡張へッダ(X)の有無、送信元数(CRSC:Contributing Source)、マーカ情報(M)、ペイロードタイプ、シーケンス番号、RTPタイムスタンプ、同期送信元識別子、および寄与送信元(CSRC)識別子の各フィールドが設けられている。RTPへッダに付与されたタイムスタンプによりRTPパケットの展開時に処理時間の制御が実行され、リアルタイム画像、または音声の再生制御が可能となる。なお、図5に示すように、圧縮データとしてのMPEGトランスポートストリームは、IPパケット中に複数格納される。

【0045】図6にMPEGトランスポートストリームをRTP, UDP, IPによりパケット化したIPパケットの構成中のUDP (User Datagram Protocol) ヘッダの詳細を示す。UDPはコネクションレス型のサービスを提供するプロトコルであり、シンプルなヘッダ構成を持つ。図に示すようにUDPヘッダには、送信元ポート番号、宛先ポート番号、データ長としてのヘッダとデータ長の総バイト数を示す長さ。UDPパケットの信頼性保証値としてのチェックサムを有する。UDPはこのようにシンプルな構成であるため、制御が簡素化される

【0046】本発明においては、UDPフォーマットで

はなく、TCP(Transmission Control protocol)フォーマットを使用することも可能である。TCPを使用したMPEGトランスポートストリームパケット構成を図7に示す。TCPへッダには、送信元ポート番号、宛先05 ポート番号、データパケットの先頭がそのデータの送信初めから何バイトにあたるかをバイト数で示したデータ順序を示すシーケンス番号。相手から次に送られるデータの送信シーケンス番号を示す受信確認番号。ヘッダ長、TCPセグメントの処理方法などのコードビットか10 らなるヘッダ情報。データの残り受信可能バイト数を示すウィンドウサイズ。TCPパケットの信頼性保証値としてのチェックサム。緊急処理を要するデーターを示す緊急ポインタを有する。

【0047】次に、図8にMPEGトランスポートスト

15 リームをRTP, UDP (TCP), IPによりパケット化したIPパケットの構成中のIPへッダの詳細を示す。IPv4、IPv6等のバージョンを示すバージョン、ヘッダ長、さらに、優先度情報を格納したTOS (Type of Service) フィールド、パケットの長さ、パ20 ケットの識別子、IP層でのデータ分割 (フラグメント) に関する制御情報としてのフラグ、分割 (フラグメント) サレタデータの場所を示す断片オフセット、データの破棄までの時間情報を示すTTL (Time to Live)、上位層で利用されるプロトコル (4: IP, TC P: 7, UDP: 17…) ヘッダのチェックサム、送信元IPアドレス、宛て先IPアドレスを有する。

【0048】IPへッダ中のTOS(Type of Servic e)フィールドは、データの優先度を定義したり、どのようなタイプのデータ転送を行なうかを決定するフィー30 ルドである。図9(a)にTOSフィールドの詳細を示す。TOSフィールドは8ビット構成を持ち、最初の3ビットに優先度情報が格納される。[000]が優先度なし、[100]が最優先となる。次の4ビットは、上位層のプロトコルに従ってどのような転送を行なうかを35 指定するフィールドであり、速度優先、信頼性優先など、設定ビットによって取り扱いを決定する。

【0049】図9(b)は、TOSフィールドを異なる態様で使用し優先度情報を格納する構成としたDS(Differentiated Service)フィールド構成を示す。DSフィールドは8ビット構成であり、最初の6ビットに優先情報を設定する。 [xxxxx0]が標準使用(スタンダード)、 [xxxx11]が実験またはローカル使用など、細かな優先情報の定義が可能な構成を持つ。なお、DSフィールドは、IPv4では前述のTOSフィールドに格納されるが、IPv6ではトラフィックフィールドに格納される。

【0050】本発明のMPEGトランスポートストリーム (MPEG-TS) のデータ転送においては、IPパケットに格納されたMPEGトランスポートストリーム (MPEG-TS) に含まれるピクチャに応じて上述の

50

TOSフィールドまたはDSフィールド等のデータ転送の優先度情報を設定する。

【0051】なお、図8で説明したIPヘッダはIPv 4のヘッダ構成である。IPv6のヘッダにも優先情報 格納フィールドがあり、IPv6の優先情報は、混雑制 御タイプ (congestion-controlled) と、混雑非制御タ イプ (Non-congestion-controlled) とがある。混雑制 御タイプ (congestion-controlled) は、確実なデータ 転送を制御する優先順位であり、0~7までの優先順位 が設定され、例えばネットワーク管理やリモートログイ ンなどに高い優先順位を設定し、電子メールなどに低い 優先順位を設定するなどの利用が可能である。混雑非制 御タイプ (Non-congestion-controlled) は、リアルタ イム性を要求されるサービスで利用され、8~15まで の優先順位が設定され、優先順位の低いもの (ex. 優 先度8)には狭い帯域を設定し、高いもの(ex.優先 度15)には広い帯域を設定し、帯域確保が十分でない 場合は、優先順位の低いもの(ex. 優先度8)を破棄 し、高いもののみを送付するような構成とする処理が実 行される。

【0052】図1のMPEG処理PCIポート101におけるエンコード処理時のパケタイズ処理(パケット生成処理)において、MPEGトランスポートストリーム(MPEG-TS)に含まれるピクチャとして、Iピクチャ、Pピクチャ、Bピクチャのいずれが含まれるかに応じて、優先度を設定する。

【0053】図10にIPパケット生成手段206におけるパケット内の格納ピクチャ種別に応じて優先情報を設定する処理構成をブロック図として示す。IPパケット生成手段206は、UDPパケット生成手段205からUDPパケットを受領する。UDPパケットは、MPEGトランスポートストリームを格納したRTPパケットをUDPへッダを生成したUDPパケットとして構成したものであり、データ部にMPEGトラントポートストリームパケットを格納している。

【0054】UDPパケットは、IPパケット生成手段206のUDPパケット格納データ識別手段701において、UDPパケットに格納されたMPEGトラントポートストリーム(MPEG-TS)パケットを識別する。識別は、格納されたMPEG-TSにIピクチャが含まれるか否かの判定として実行される。前述したようにIピクチャは他のPピクチャ、Bピクチャの参照情報を含むピクチャであり、重要度の高いピクチャである。

【0055】UDPパケット格納データ識別手段701において、パケット内にIピクチャが含まれているか否かの判定結果は、IPヘッダ情報生成手段702に出力され、Iピクチャが含まれているUDPパケットであれば、前述のTOSまたはDSフィールドに高優先度のビットを設定する。また、Iピクチャの含まれないパケットである場合には、低優先度のビットを、前述のTOS

またはDSフィールドに設定する。

【0056】IPヘッダ情報生成手段702では、パケット内のピクチャ種別に従った優先度情報を含むその他のヘッダ情報を生成してIPパケタイズ処理手段70305にIPヘッダを持つIPパケットが生成されてPCIインタフェース207を介して宛て先アドレスに対して送信される。なお、図10では、説明のために各処理ブロックを機能的に分離して示しているが、一連の処理はシーケンス処理としてCPU制御によって実行可能である。

【0057】上記した例では、RTPパケットにIピクチャが含まれるか否かの判定に基づいて2つの種類の優先度を優先度情報として設定する例として説明したが、このような2つの種類の優先度を設定する例に限らず、15 Iピクチャを含むパケットを最優先度、Pピクチャを含むパケットを中優先度、Bピクチャのみのパケットを低優先度とする構成や、あるいはパケット内に含まれるIピクチャ、Pピクチャ、Bピクチャの個数、割合等に基づいてさらに細かな優先度情報を記録する構成としても20 よい。

【0058】データ符号化、パケット生成処理を実行するデータ送信側では、上述した処理を実行して、ネットワークにIPパケットを送信する。ネットワークに送信されたIPパケットは、ネットワークに配置されたルータを経由して宛て先アドレスに対して転送される。ネットワークの概念図を図11に示す。

【0059】データ送信側の画像伝送装置801は、前述の図1の構成を持ち、図4を用いて説明したMPEGエンコード(符号化)、パケタイズを実行する。画像伝30 送装置801において生成されたIPパケットは、ルータ802を介してインターネット等のネットワーク803に送出される。IPパケットには前述のピクチャ種別に応じた優先度がヘッダ情報として付加されている。IPパケットは、ネットワーク上の複数のルータ804、35805、806、807を介して宛て先アドレスに対応するルータ808に到着し、受信側の画像伝送装置809においてパケット展開、復号(デコード)処理され再

【0060】図11に示すように、ネットワーク上には 40 複数のルータが接続され、各ルータ801において、前 述した優先度に従って設定されたUDPへッダ中の宛て 先ポート番号に従ってデータ転送処理がなされる。

【0061】各ルータにおける優先度情報に従った処理を説明する図を図12に示す。ルータにネットワークを 45 介して到着するIPパケットは、IPパケットのヘッダ情報を読み取り、ヘッダに従った処理がなされる。ここでは、例えばTOSフィールドに格納された優先度に関する処理についてのみ説明する。

【0062】 I Pパケットのヘッダに格納された優先度 50 情報に従って、それぞれが異なる待ち行列としてのキュ ー(待ち行列)に振り分けられる。図12の例では、ル ータは4つの優先度に区分されたキューを持つ。

【0063】ここで、例えばIPヘッダのTOSフィールド値が、画像送信側の装置において、

I ピクチャを持つパケット: [0 x 0 3] Pピクチャを持つパケット: [0 x 0 2]

Bピクチャを持つパケット: [0 x 0 1]

上記以外のパケット:[0x00]

とする設定を行なっていたと仮定する。

【0064】ルータ内では、

キューAにTOSの値 [0 x 0 3] のパケット キューBにTOSの値 [0 x 0 2] のパケット キューCにTOSの値 [0 x 0 1] のパケット キューAにTOSの値 [0 x 0 0] のパケット を振り分ける処理を行なう。

【0065】ルータにおける各キューの処理は、A:B:C:Dにおいて、4:3:2:1の処理比率でパケット出力を実行する。従ってキューAに格納されたパケットが最優先度で転送処理が実行され、次がキューB、キューC、キューDの順序となる。

【0066】結果として、TOSに $[0 \times 03]$ の設定された $I \vee U$ でかける場合を使っています。 なれた $I \vee U$ では、TOSに $[0 \times 02]$ の設定された $I \vee U$ でが次の優先度で処理され、 $[0 \times 01]$ の設定された $I \vee U$ の表示で、一夕受信側の画像伝送装置 $I \vee U$ の の では、最も優先度の高い $I \vee U$ アントをより確実に受信可能となる。

【0067】図12に示すルータにおける優先度に応じたキューを用いた処理例は、1つの処理例であり、その他、処理速度、転送確実性の確認処理など、データ転送に関わる様々な処理を優先度に応じて異ならせることが可能である。

【0068】データ転送の品質、クラスを振り分ける方式としてQoS(Quality of Service)、CoS(Class of Service)がある。これらは、ネットワークを介したデータ転送における遅延、ゆらぎ(伝送のばらつき)、最低保証速度、ピーク速度などをパラメータとして設定している。これらの処理態様を前述のIPヘッダ中のTOSフィールドまたはDSフィールドに設定された値(優先情報)に従って、ルータ、その他のデータ転送、中継手段での処理態様を変更することで、優先度の高いパケットをより高い確率で宛て先に確実に遅延なく送信することが可能となる。この場合のIPヘッダの優先情報は、QoS(Quality of Service)に従ったサービス品質に対応付けられた情報としての機能を持つ。

【0069】また、データ転送処理として、帯域を保証 するギャランティ型転送処理と、ネットワーク混雑時に 帯域を保証しないベストエフォート型転送処理があり、これらの処理形態を前述のIPヘッダ中のTOSフィールドまたはDSフィールドに設定された値(優先情報)に従って変更することで、優先度の高いパケットをより05 高い確率で宛て先に確実に遅延なく送信することが可能となる。この場合のIPヘッダの優先情報は、帯域保証データ転送としてのギャランティ型、または、帯域非保証データ転送としてのベストエフォート型のいずれかの選択基準として対応付けられた情報としての機能を持10 つ。

【0070】図13にデータ符号化、パケタイズを行な うデータ送信側の処理フローを示す。図13の処理フロ ーについて説明する。

【0071】まず、図4に示すMPEGビデオエンコー15 ダ201、MPEGオーディオエンコーダ202においてエンコード(符号化)され、MPEGマルチプレクサ203において生成されたMPEGトランスポートストリームがRTPパケット生成手段204に入力(S101)されて、RTPパケット生成手段204においてRTPペッグにシーケンス番号他のヘッダ情報が書き込まれ(S102)、RTPパケットが生成(S103)される。

【0072】その後、RTPパケットはUDPパケット 生成手段205に入力されて、UDPヘッダの付加によ 5 り、UDPパケットが生成(S104)される。

【0073】次にUDPパケットはIPパケット生成手段に入力されて、UDPパケットにIピクチャが含まれるか否かの判定(S105)がなされる。なお、ここではパケット内にIピクチャを含むか含まないかの2つの30種類のパケット判別を行なう例を示す。

【0074】パケットにIピクチャを含む場合は、ステップS107に進みIPヘッダのTOSフィールドに優先度の高いタイプ番号(ビット)を設定する。また、パケットにIピクチャを含まない場合は、ステップS106に進みIPヘッダのTOSフィールドに優先度の低いタイプ番号(ビット)を設定する。

【0075】TOSフィールドを含むIPヘッダ情報が 生成されるとステップS108においてIPパケットが 生成され、生成されたIPパケットは、ネットワークイ 40 ンタフェース207に書き込まれる。これらの処理がエ ンコーダから読み出されるMPEGトランスポートスト リームについて順次、実行され、生成されたIPパケッ トがネットワークインタフェースに書き込まれ(S10 9)た後、ネットワークに出力(S110)される。

5 【0076】これらのIPパケットを受信する受信装置における処理フローを図14に示す。図4を参照しながら処理フローを説明する。ネットワークインタフェース207から受信したIPパケットを読み出し(S201)、読み出したIPパケットの展開処理をIPパケットの展開処理をIPパケットの展開処理をIPパケットの展開処理をIPパケットの

50 ト展開手段208において実行してUDPパケットを取

り出し、UDPパケット展開処理をUDPパケット展開処理手段209において実行し、RTPパケットを取り出し(S202)、RTPパケット展開処理手段において、RTPパケットのへッダ情報として格納されたシーケンス番号に応じて到着パケットの順番を並び替える(S203)。さらに、並び替えられたRTPパケットの順にRTPパケットのペイロードである実データとしてのMPEGトランスポートストリームデータをMPEGデマルチプレクサ211に入力(S204)し、MPEGボデコーダ212、MPEGオーディオデコーダ213において復号(デコード)処理を実行してディスプレイ13、スピーカ14において再生する。

【0077】このようにして、RTPパケットのシーケンス番号に従うことにより画像(音声)データの再生処理が可能となる。なお、図13,14に示す処理フローにおいてはUDPを用いたパケット処理について説明したが、TCPによるパケット構成としても同様の処理が可能である。

【0078】また、上述したデータ転送処理例は、MPEG圧縮データを例にして説明したが、MPEGデータに限らず、異なる重要度を持つデータによって構成される一連のデータをパケット化して転送する場合には、上記と同様の優先度付与によるデータ転送が可能である。

【0079】データの重要度設定手法としては、MPE GにおけるIピクチャ、Pピクチャ、Bピクチャと同様、他のピクチャの参照情報を持つIピクチャを最優先とし、Bピクチャのように他ピクチャに対する参照情報を持たないデータを低優先度にする方法がある。さらに、前述したようにパケット内のデータ構成に応じて3種類以上の優先度を設定するようにしてもよい。

【0080】このようにネットワークを介して転送するデータにデータ種類に応じた優先度を設定して転送することにより、重要な情報 (ex. 参照情報)を持つデータが優先的に処理されることになり、データ受信側での処理において、再生不能等のエラーの発生する可能性を低下させることが可能となる。

【0081】以上、特定の実施例を参照しながら、本発明について詳解してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が該実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本発明の要旨を判断するためには、冒頭に記載した特許請求の範囲の欄を参酌すべきである。

[0082]

【発明の効果】以上説明してきたように、本発明のデータ送信装置、データ受信装置、およびデータ送信方法、並びにプログラム記憶媒体によれば、データ送信側において、データを格納したデータパケットのヘッダ情報にパケット内の格納データ種別に応じた優先度を設定してネットワークに送出する構成としたので、重要な情報を

含むパケットが優先的に処理され、ネットワーク途中で 破棄されたり、転送遅れが発生するなどの事態が低減さ れ、データ受信側での再生がエラーのない処理として実 現できる。

05 【0083】さらに、本発明のデータ送信装置、データ 受信装置、およびデータ送信方法、並びにプログラム記 憶媒体によれば、MPEG圧縮データの転送処理におい て、データを格納したデータパケットのヘッダ情報にパ ケット内の格納データとしてIピクチャ、Pピクチャ、

10 Bピクチャを含むか否かによって優先度を設定してネットワークに送出する構成としたので、重要な情報を含む例えばIピクチャが優先的に処理され、ネットワーク途中で破棄されたり、転送遅れが発生するなどの事態が低減され、データ受信側での再生がエラーのない処理として実現できる。

【図面の簡単な説明】

【図1】本発明のシステム構成の概要を説明する図である。

【図2】MPEG画像データの構成を説明する図であ 20 る。

【図3】MPEG画像データの参照構成を説明する図である。

【図4】本発明のMPEG処理PCIボード構成を示す ブロック図である。

25 【図5】本発明のシステムにおいて転送されるIPパケットにおけるRTPヘッダ構成を説明する図である。

【図6】本発明のシステムにおいて転送されるIPパケットにおけるUDPヘッダ構成を説明する図である。

【図7】本発明のシステムにおいて転送されるIPパケ30 ットにおけるTCPヘッダ構成を説明する図である。

【図8】本発明のシステムにおいて転送されるIPパケットにおけるIPヘッダ構成を説明する図である。

【図9】本発明のシステムにおいて転送されるIPパケットにおけるIPヘッダの優先度情報フィールド構成を35 説明する図である。

【図10】本発明のシステムにおいて転送されるパケットにおける優先度情報設定処理構成を説明する図である。

【図11】本発明のシステムにおいて転送されるIPパ40 ケットの転送ネットワーク構成を説明する図である。

【図12】本発明のシステムにおいて転送される I Pパケットの優先度に基づくルータでの処理例を説明する図である。

【図13】本発明のシステムにおいて転送されるIPパ 45 ケットの送信側での優先度設定を伴うパケット生成処理 を説明するフロー図である。

【図14】本発明のシステムにおいて転送されるIPパケットの受信側での処理を説明するフロー図である。

【符号の説明】

50 11 ビデオカメラ

特開2002-141945

- 12 マイク
- 13 ディスプレイ
- 14 スピーカ
- 15 マウス
- 16 キーボード
- 101 MPEG処理PCIボード
- 102 イーサネットカード
- 103 入出力インタフェース
- 104 ホストCPU
- 105 ホイストメモリ
- 106 PCIバス
- 201 MPEGビデオエンコーダ
- 202 MPEGオーディオエンコーダ
- 203 MPEGマルチプレクサ

- 204 RTPパケット生成手段
- 205 UDPパケット生成手段
- 206 IPパケット生成手段
- 207 PCIインタフェース
- 05 208 IPパケット展開手段
 - 209 UDPパケット展開手段
 - 210 RTPパケット展開手段
 - 211 MPEGデマルチプレクサ
 - 212 MPEGビデオデコーダ
- 10 2·13 MPEGオーディオデコーダ
 - 701 UDPパケット格納データ識別手段
 - 702 IPヘッダ情報生成手段
 - 703 IPパケタイズ処理手段

[図1]

【図14】

【図2】

【図3】

【図4】

【図9】

(a)TOS

優先度情報	転送方法	リザーブ
(3ピット)	(4ピット)	(1ピット)

(b)DS

【図5】

【図6】

【図10】

【図7】

【図8】

【図11】

【図12】

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

H 0 4 N 7/32

F ターム(参考) 5C059 KK34 MA00 MA05 MA14 PP05 35

PP06 PP07 RB04 RB09 RE06

SS06 TA74 TB03 TC24 TD13

UA02 UA05

5C063 AA01 AB03 AB07 AC01 CA11

CA23 CA36

40

5K030 GA12 HA08 HB02 HC01 JA05

JT03 KX29 LC01

5K033 AA05 CC01 DA01 DA13