Section (5)

Physics (I)

Revision

The expressions for **kinetic energy** $E = \frac{1}{2}mv^2$ (where m is the mass of the body and v is its speed) and **potential energy** E = mgh (where g is the acceleration due to gravity and h is the height of the body) look very different but both describe energy. One way to see this is to note that they have the same dimension.

Solution:

Dimension of kinetic energy

$$\frac{1}{2}mv^{2} \Rightarrow M(LT^{-1})^{2} \qquad mgh \Rightarrow M(LT^{-2})L$$

$$= ML^{2}T^{-2} \qquad = ML^{2}T^{-2}$$

Both expressions have the same dimensions, they can therefore be added and subtracted from each other.

Dimension of **potential energy**

2)

In a 100-m linear accelerator, an electron is accelerated to 1.00% of the speed of light ($c = 3x10^8 \text{ m/s}$) in 40.0 m. (a) What is the electron's acceleration during this 40.0 m?

$$v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$$
: $\left[0.01(3 \times 10^8 \text{ m/s})\right]^2 = 0 + 2a_x(40 \text{ m})$

$$a_x = \frac{(3 \times 10^6 \text{ m/s})^2}{80 \text{ m}} = 1.12 \times 10^{11} \text{ m/s}^2$$

3)

Two vectors are give by $\mathbf{A} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $\mathbf{B} = -\mathbf{i} + 2\mathbf{j} + B_z\mathbf{k}$. The magnitude of the resultant $\mathbf{A} + \mathbf{B}$ is 6. What are the two possible values of B_z .

Solution:

	The sum of the two vectors is:
A + B = (2i	$(i + 3j + k) + (-i + 2j + B_z k) = i + 5j + (1 + B_z)k$
	The magnitude of this vector is:
	$ A + B = \sqrt{1 + 25 + (1 + B_z)^2} = 6$
	Solving for B_z :
	$26 + (1 + B_z)^2 = 36$
	$B_z = \pm \sqrt{10} - 1$
	$B_z = 2.16; -4.16$

MCO

Which one of the quantities below has dimensions equal to $\left[\frac{ML}{T^2}\right]$?

mv a. mv^2

 $\frac{mv^2}{c}$

mrv d.

 $\frac{mv^2}{v^2}$

Ans: C

The average speed of a moving object during a given interval of time is always:

- A. the magnitude of its average velocity over the interval
- B. the distance covered during the time interval divided by the time interval
- C. one-half its speed at the end of the interval

Ans: B

The coordinate-time graph of an object is a straight line with a positive slope. The object has:

- A. constant displacement
- B. steadily increasing acceleration
- C. steadily decreasing acceleration
- D. constant velocity
- E. steadily increasing velocity

Ans: D

An object is thrown vertically upward at 35 m/s. Taking $g = 10 \text{ m/s}^2$, the velocity of the object 5 s later is:

- A. 7.0 m/s up
- B. 15 m/s down
- C. 15 m/s up
- D. 85 m/s down
- E. 85 m/s up

Ans: B

If $\vec{A} = 12\hat{i} - 16\hat{j}$ and $\vec{B} = -24\hat{i} + 10\hat{j}$, what is the direction of the vector $\vec{C} = 2\vec{A} - \vec{B}$?

-49°

-41°

-90° +49°

+21° e.

If two collinear vectors $\vec{\bf A}$ and $\vec{\bf B}$ are added, the resultant has a magnitude equal to 4.0. If $\vec{\bf B}$ is subtracted from \mathbf{A} , the resultant has a magnitude equal to 8.0. What is the magnitude of \mathbf{A} ?

2.0 a.

3.0 b. 4.0

c.

5.0 d. 6.0

Starting from one oasis, a camel walks 25 km in a direction 30° south of west and then walks 30 km

toward the north to a second oasis. What distance separates the two oases? 15 km a.

48 km

 $28 \, \mathrm{km}$

53 km

55 km e. Vectors \vec{A} and \vec{B} each have magnitude L. When drawn with their tails at the same point, the angle between them is 60° . The magnitude of the vector product $\vec{A} \times \vec{B}$ is:

- A. $L^2/2$
- B. L^2
- C. $\sqrt{3}L^2/2$
- D. $2L^2$
- E. none of these

Ans: C

The value of $\hat{i} \cdot (\hat{j} \times \hat{k})$ is:

- A. zero
- B. +1
- C_{-1}
- D. 3
- E. √3

Ans: B