# (19)日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

# 特開平5-72171

(43)公開日 平成5年(1993)3月23日

| (51) Int.Cl. <sup>5</sup> |        | 識別記号        | 庁内整理番号     | FΙ | 技術表示箇所 |
|---------------------------|--------|-------------|------------|----|--------|
| G 0 1 N                   | 27/327 |             |            |    |        |
|                           | 27/28  | $3\ 3\ 1$ Z | 7235 - 2 J |    |        |

7235-2 J

G01N 27/30 353 B

|          |                 | 審査請求 未請求 請求項の数2(全 5 頁)                                                                          |
|----------|-----------------|-------------------------------------------------------------------------------------------------|
| (21)出願番号 | 特願平3-233184     | (71)出願人 000002945<br>オムロン株式会社                                                                   |
| (22)出願日  | 平成3年(1991)9月12日 | 京都府京都市右京区花園土堂町10番地<br>(72)発明者 滝沢 耕一<br>京都市下京区中堂寺南町17番地 サイエン<br>スセンタービル 株式会社オムロンライフ<br>サイエンス研究所内 |
|          |                 | (72)発明者 中嶋 聡<br>京都市下京区中堂寺南町17番地 サイエン<br>スセンタービル 株式会社オムロンライフ<br>サイエンス研究所内                        |
|          |                 | (74)代理人 弁理士 中村 茂信                                                                               |
|          |                 | 最終頁に続く                                                                                          |

### (54) 【発明の名称】 酵素電極

### (57)【要約】

【目的】 専用の製造装置が不要であり、電極特性のバ ラツキが少なく、応答速度が速く、測定精度の高い、か つ安価な酵素電極を提供する。

【構成】 絶縁性電極支持基板1の上面に作用電極21 の感応部21 aを形成し、他の面に作用電極21のリー ド部21bを形成し、感応部21aとリード部21bを スルーホール21sで接続し、作用電極21、参照電極 22上に固定化酵素膜3を形成した。



#### 【特許請求の範囲】

【請求項1】絶縁性電極支持基板と、この絶縁性電極支 持基板上に形成された感応部とリード部を持つ作用電極 を含み、少なくとも2つ以上の膜状の電極と、この電極 に対して接続部を除いて直接一体に被覆形成された固定 化酵素膜とからなる酵素電極において、

少なくとも作用電極の感応部とリード部分の一部または 全部が反対面に形成され、感応部とリード部は、一個ま たは複数個のスルーホールを通して導通が保たれている ことを特徴とする酵素電極。

【請求項2】作用電極の感応部の面積に対し、参照電極 の面積を2倍以上に設定し、感応部と接続部を露出させ た形で保持部材に封入したことを特徴とする請求項1記 載の酵素電極。

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、酵素電極であって、 更に詳しく言えば、簡単且つ製造容易な構造で、応答速 度の速いプレーナ型酵素電極に関する。

#### [0002]

【従来の技術】近年、図9、図10に示すようなプレー ナ型酵素電極が提案されている。この酵素電極は、絶縁 性電極支持基板1'とこの絶縁性電極支持基板1'上に 形成された下地電極(作用電極21'と参照電極22' とから成る) 2'と、この下地電極2'を含む絶縁性電 極支持基板1'上に形成される絶縁性保護膜(感光性樹 脂) 6と、この絶縁性保護膜6上に形成される固定化酵 素膜(電極側の第1の高分子膜31、と中間層である固 定化酵素層32′と表面側の第2の高分子膜33′の三 層構造) 3'とから構成されている。

【0003】上記図9、図10に示した近年提案されて いるプレーナ型酵素電極では、絶縁性電極支持基板1' と固定化酵素膜(電極側の第1の高分子膜31') 3' との間に絶縁性保護膜(感光性樹脂膜) 6が介在してあ る。この絶縁性保護膜(感光性樹脂膜)6は、絶縁性電 極支持基板1'上に、感光性樹脂を塗布し、フォトマス クをかけて露光し、現像、リンスすることにより、絶縁 性電極支持基板1'の接続部21' c、22' c 及び作 用電極21'の感応部21'aと参照電極22の感応部 22'aを除いて形成される。

#### [0004]

【発明が解決しようとする課題】図7は、作用電極の感 応部と参照電極の感応部の面積比の応答速度に対する影 響を示す説明図である。図示例では、作用電極の感応部 を「1」としたときの参照電極の感応部の面積比を横軸 にとり、応答速度を縦軸にとっている。この説明図よ り、作用電極の感応部と参照電極の感応部の面積比が 1:1の時は、応答速度が遅く(約40秒と遅く)、作 用電極の感応部の面積が「1」に対し参照電極の感応部 の面積が「2」以上である時、応答速度が速い(約 $20-50-m \times 50$ mm、厚さ $100\mu$ のポリイミドフィルムが用

秒と速い) ことが明らかとなっている。従って、迅速な 応答速度を得るためには、作用電極感応部の面積に対し 参照電極感応部の面積比を「2」以上とする必要があ

【0005】しかしながら、上記した従来のプレーナ型 酵素電極では、製造工程にフォトリソグラフィー技術を 用いているため、以下に列記する問題点を有している。 ①微細な感応部を定めるにはフォトリソグラフィーが最 適であるが、このフォトリソグラフィーの工程が非常に 10 煩雑で時間を要する。また、専用の製造装置が必要とな るばかりでなく、フォトリソグラフィー工程が歩留まり 劣化の一因をなし、コストダウンの大きな妨げとなる。 ②作用電極感応部面積の僅かな差異が電極出力に影響を 与える。また、リンスの不徹底による作用電極感応部面 への各種物質付着により、電極出力の低下や電極間の特 性のバラツキを増大させ、測定精度に悪影響を及ぼす。

【0006】この発明は、上記問題点に着目してなされ たものであって、専用の製造装置が不要であり、電極特 性のバラツキが少なく、応答速度が速く、測定精度の高 20 い、且つ安価な酵素電極を提供することを目的とする。

#### [0007]

【課題を解決するための手段及び作用】上記目的を達成 するために、この発明の酵素電極は、絶縁性電極支持基 板と、この絶縁性電極支持基板上に形成された感応部と リード部を持つ作用電極を含み、少なくとも2つ以上の 膜状の電極と、この電極に対して接続部を除いて直接一 体に被覆形成された固定化酵素膜とからなるものにおい て、少なくとも作用電極の感応部とリード部分の一部ま たは全部が反対面に形成され、感応部とリード部は、一 30 個または複数個のスルーホールを通して導通が保たれる ようにしている。

【0008】これにより、フォトリソグラフィー工程が 省略できる。すなわち、感応部に続くリード部が感応部 の裏面にあるためにフォトリソグラフィー工程を用いて 感応部を形成した場合と同様に面積精度を得ることがで きる。また、作用電極感応部面への各種物質の付着もな くなる。

#### [0009]

【実施例】以下、実施例により、この発明をさらに詳細 40 に説明する。図1、図2は、この発明の一実施例を示す 酵素電極の斜視図、及び断面図である。この実施例酵素 電極は、血液中のグルコース測定用のものであり、絶縁 性電極支持基板1と、この絶縁性電極支持基板1上に形 成された下地電極2と、接続部21c、22cを除いて 直接一体に被覆形成された固定化酵素膜3とから構成さ れている、これが保持部材4に保持されて使用される。

【0010】図8の(a)(b)(c)は、実施例酵素 電極の製造工程を示す説明図である。図において、スル ーホールを持つ絶縁性電極支持基板1は、例えば50m いられる。そして、このプラスチックフィルム等の絶縁 性電極支持板1上に、作用電極21と参照電極22の感 応部21a、22aと接続部21c、22cがスルーホ ール21s、22sを含んで形成され、続いて、絶縁性 電極支持板1の反対面に作用電極21と参照電極22の リード部21b、22bが形成され、スルーホール21 s、22sによりそれぞれ感応部21a、22aと接続 部21 c、22 cに導通されている。この作用電極21 と参照電極22とで一対の下地電極2が形成される。

【0011】この下地電極2は、スパッタリング、真空 蒸着、イオンプレーティング等の手段を用いて、白金 (Pt)を帯状に膜形成する。実施例では、下地電極2 は、2mm×20mm、厚さ1500Åの膜形成が行わ れている。この下地電極2の電極材料としては、白金に 限定されるものではなく、形成手段もメッキや箔の粘着 等で実施してもよい〔図8の(a)参照〕。

【0012】更に、絶縁性電極支持基板1上には、接続 部21 c、22 cを除いて固定化酵素膜3が形成され る。この固定化酵素膜3は、電極側の第1の高分子膜3 1と、中間層である固定化酵素層32と、表面側の第2 の高分子膜33を積層した三層構造である〔図8の(b) (c)参照]。実施例では、第1の高分子膜31及び第2 の高分子膜33には、ナフィオンを採用している。ナフ ィオン(Nafion)は、アメリカ・デュポン社の商品名で、 陽イオン交換性の高分子Povlperfluorosulfuricacidで ある。このナフィオンは、5%溶液(溶媒は低級アルコ ール)が市販されており、膜形成は容易である。

【0013】本実施例では、ディップコーティングによ り膜形成している。この際、図8の(b)のように、絶 緑性電極支持基板1を半分に切断してディップコーティ ングする。また、固定化酵素層32は酵素液よりディッ プコーティングして膜形成される。酵素液は、0.1モ ルのリン酸緩衝液(pH7.0)に、酵素グルコースオ キシダーゼ (GOD) 10%、牛血清アルブミン7.5 %及びグルタルアルデヒド0.5%の濃度になるように 調整して実施される。酵素膜3装着後、1個の酵素電極 に切り取って使用する〔図1参照〕。

【0014】次に、作用電極21と参照電極22の配置 パターン例を図3に示す。作用電極21のリード部21 bがスルーホール21sを通して感応部21aと接続部 21 c の導通を保ちながら、絶縁性電極支持基板1の反 対面に形成されている。参照電極22は、感応部22 a、リード部22b、接続部22cともすべてが作用電 極21の感応部21aと同一面上に形成される。つま り、作用電極21、参照電極22ともに感応部21a、 22 a と、接続部21 c、22 c は同一面上にある。

【0015】図4は、作用電極21と参照電極22の他 の配置パターン例を示している。作用電極21、参照電 極22ともに、スルーホール21s、22sを通して感 応部21a、22aとリード部21b、22bの導通を 50 の応答速度に対する影響を示す説明図である。

保ちながら、感応部21a、22a以外は絶縁性電極支 持基板1の反対面に形成されている。図5は、作用電極 21と参照電極22のさらに他の配置パターン例を示し ている。作用電極21は、スルーホール21sを通して 感応部21aとリード部21bの導通を保ちながら、感 応部21a以外は絶縁性電極支持基板1の反対側にあ る。参照電極22は、すべて作用電極21の感応部21 aと同一面上に形成されている。したがって、作用電極 21の接続部21cと参照電極22の接続部22cは互 10 いに反対面に形成されている。

【0016】図6は、作用電極21と参照電極22のさ らに他の配置パターン例を示している。作用電極21、 参照電極22ともに、リード部21b、22bがスルホ ール21s、22sを通して感応部21a、22aと接 続部21c、22cの導通を保ちながら絶縁性電極支持 基板1の反対面に形成されている。また、この例では、 スルーホール21g、22gが複数個形成されている。

【0017】なお、図3ないし図6に示した例でも、参 照電極22の感応部22aの面積は作用電極21のそれ 20 に対し、2倍以上としている。これにより、極めて迅速 な応答速度が得られる。

#### [0018]

【発明の効果】この発明によれば、絶縁性電極支持基板 と、この絶縁性電極支持基板 Lに形成された少なくとも 2つ以上の膜状の電極の、少なくとも作用電極の感応部 とリード部分の一部または全部が反対面に形成され、感 応部とリード部はスルーホールを通して導通が保たれて いるので、従って、この構成の酵素電極ではフォトリソ グラフィー工程が省略できる。このため、製造時間の短 30 縮は勿論、専用の製造装置が不要であり、大幅なコスト ダウンを実現できる。

【0019】また、作用電極感応部面への各種物質の付 着がなく、電極出力の低下や電極間の特性のパラツキが なくなり、測定精度が向上する。更に、作用電極感応部 面と酵素層がより密着するため、迅速な応答速度が得ら れる。

#### 【図面の簡単な説明】

【図1】この発明の一実施例を示す酵素電極の斜視図で ある。

【図2】同実施例酵素電極の断面図である。

【図3】同実施例酵素電極の作用電極と参照電極の配置 パターン例を示す図である。

【図4】同実施例酵素電極の作用電極と参照電極の他の 配置パターン例を示す図である。

【図5】同実施例酵素電極の作用電極と参照電極のさら に他の配置パターン例を示す図である。

【図6】同実施例酵素電極の作用電極と参照電極のさら に他の配置パターン例を示す図である。

【図7】作用電極の感応部と参照電極の感応部の面積比

(4)

特開平5-72171

5

【図8】図1に示す酵素電極の製造方法を説明するための図である。

【図9】従来の酵素電極の斜視図である。

【図10】同従来の酵素電極の断面図である。

【符号の説明】

- 1 絶縁性電極支持基板
- 2 下地電極

- 3 固定化酵素膜
- 2 1 作用電極
- 22 参照電極
- 21a 作用電極の感応部
- 21b 作用電極のリード部
- 21 c 作用電極の接続部

【図1】

[図2] [図3]

6









# フロントページの続き

# (72)発明者 荒井 真人

京都市下京区中堂寺南町17番地 サイエン スセンタービル 株式会社オムロンライフ サイエンス研究所内

# (72)発明者 遠藤 英樹

京都市下京区中堂寺南町17番地 サイエンスセンタービル 株式会社オムロンライフサイエンス研究所内