第九章 醛酮醌 (1)

主要内容

- 醛酮的分类,命名及制备方法
- 醛酮的化学性质 (I)

醛酮羰基的碱性及亲核性

醛酮与亲核试剂的亲核加成反应

一. 醛酮的类型和命名

羰基 carbonyl

■ 醛和酮

醛 (aldehyde)

酮 (Ketone)

■醛、酮的分类

脂肪族醛、酮

芳香族醛、酮

$$C = C \qquad H(R)$$

 α , β -不饱和醛、酮

■醛酮的命名

四豆醛

反-2-丁烯醛

(E)-but-2-enal

甲基乙基甲酮

丁酮

1-环己基-2-丁酮

butanone

1-cyclohexylbutan-2-one

3-氧代 (正) 戊醛

3-oxopentanal

5,5-二甲基-1,3-环己二酮

5,5-dimethylcyclohexane-1,3-dione

苯甲醛

benzaldehyde

水杨醛

CHO

2-羟基苯甲醛

2-hydroxybenzaldehyde

OH

呋喃甲醛

furan-2-carbaldehyde

乙酰苯

苯乙酮

acetophenone

查尔酮 (chalcone)

1,3-二苯基丙烯酮

(E)-chalcone

二. 醛、酮的制备

- 1. 几种已知的方法
 - 炔烃的水解

RC=CH
$$\frac{H_2O}{Hg^{++}}$$
 R-C-CH₃ 末端炔 甲基酮

$$H-C \equiv C-H$$
 $R-X$
 $R-C \equiv C-H$
 H_2O
 H_3^{++}
 $R-C = C-CH_3$
 $R-C \equiv C-H$
 $R-C \equiv C-H$

- ■氧化法
- 氧化醇

• 氧化烯烃

$$R^1$$
 R^2 R^3 R^3 R^4 R^4

■补充:通过二卤代物水解合成芳香醛、酮

ArCH₃
$$\xrightarrow{X_2 / hv \text{ or } \Delta}$$
 ArCHX₂ $\xrightarrow{H_2O}$ ArCH=O

ArCH₂Ar'
$$\xrightarrow{X_2 / hv \text{ or } \Delta}$$
 Ar \xrightarrow{X} Ar \xrightarrow{X} Ar $\xrightarrow{H_2O}$ Ar $\xrightarrow{H_2O}$ Ar \xrightarrow{C} Ar'

间接氧化

三.醛、酮的性质(1)

醛、酮的结构

醛分子中羰基至少要与一个氢原子直接相连, 故醛基一定位于链端。

酮分子中的羰基与两个烃基直接相连,故羰基必然位于碳链中间。

羰基氧有弱碱性

性质分析

1. 羰基氧的碱性(与H+或Lewis酸的作用)

2. 醛酮羰基上的亲核加成反应(1)

■ 一些常见的与羰基加成的亲核试剂

	亲核试剂	相应试剂	亲核能力
负离子型 :Nu	R [⊖] R-C≡C H [⊖]	RMgBr, RLi R-C≡CMgBr , R-C≡CNa LiAlH₄, NaBH₄	强
	CN HO₃S [©]	NaCN NaHSO ₃	较强
分子型 :NuH	H_2NR , HNR_2 HOR H_2O		不强

- 醛酮与负离子型亲核试剂加成的两种形式
 - 不可逆型(强亲核试剂的加成)

:Nu[⊖] = RMgBr, RLi, R−C≡CMgBr, R−C≡CNa , LiAlH₄, NaBH₄

• 可逆型 (一般亲核试剂的加成)

$$: Nu^{\circ} = NaCN, NaHSO_3$$

2.1 醛酮与 RMgX 或 RLi 的加成

$$\begin{array}{c|c} & & & \\ &$$

2.2 醛酮与炔化物的加成

2.3 醛酮与LiAIH4或 NaBH4还原反应

R'CHO
$$\frac{\text{LiAlH}_4}{\text{or NaBH}_4}$$
 $\frac{\text{H}_2\text{O}}{\text{R}-\text{CH}_2-\text{OH}}$ $\frac{\text{OH}}{\text{R'-CH}-\text{R}}$ $\frac{\text{CH}_2-\text{OH}}{\text{Or NaBH}_4}$ $\frac{\text{H}_2\text{O}}{\text{Or NaBH}_4}$ $\frac{\text{H}_2\text{O}}{\text{C-H}}$ $\frac{\text{CH}_2-\text{OH}}{\text{C-H}}$ $\frac{\text{OH}}{\text{C-H}}$

理论用量: LiAlH₄ (NaBH₄):醛酮=1:4

实际用量: 过量

■ LiAlH₄与 NaBH₄ 的比较:

	试剂要求	反应速度	还原能力	反应选择性
LiAIH4	无水	快	强	较差
NaBH ₄	可有水	较慢	较弱(温和)	较好

■ LiAlH₄和NaBH₄还原羰基的立体选择性

2.4 醛酮与与NaCN的加成

反应范围: 醛、脂肪族甲基酮和少于8个碳原子的环酮可以反应。 ArCOR和ArCOAr难反应。

HCN与羰基化合物的加成是受碱催化的,微量碱的加入不但使反应迅速完成,而且产率也能提高,说明反应的速率控制步骤是CN⁻对羰基的攻击。HCN是弱酸,加入碱,会加大HCN在水中的解离。

•机理:

$$HCN + OH^{\Theta} \longrightarrow CN^{\Theta} + H_2O$$

■ 合成上进一步应用

用丙酮为原料合成有机玻璃单体——α-甲基丙烯酸甲酯

2.5 与NaHSO₃加成

醛 (芳香醛、脂肪醛)

脂肪族甲基酮,少于8个碳的环酮

应用: 醛或甲基酮的

分析、纯化

产物 α -羟基磺酸盐为白色结晶,不溶于饱和的亚硫酸氢钠溶 液中,容易分离出来;与酸或碱共热,又可得原来的醛、酮。 故此反应可用以提纯醛、酮。醛、脂肪族甲基酮和少于8个碳 原子的环酮可以反应。

鉴别化合物 b 分离和提纯醛、酮

R
$$C = O$$
 $A = O$ A

c 用与制备羟基腈, 是避免使用挥发性的剧毒物HCN而合成羟基腈 的好方法。

PhCHO
$$\xrightarrow{\text{NaHSO}_3}$$
 PhCHSO₃Na $\xrightarrow{\text{NaCN}}$ PhCHCN $\xrightarrow{\text{HCI}}$ PhCHCOOH $\xrightarrow{67\%}$

本次课小结:

- •醛酮的分类及命名
- •醛酮的制备方法
- 醛酮的结构特点,可能进行的四类化学反应分析
- 醛酮的化学性质(部分)
 - (1) 醛酮羰基的碱性及亲核性
 - (2) 醛酮与亲核试剂的亲核加成反应(与负离子型亲核试剂的加成)