Principles of EE I Laboratory Lab 7 Mesh and Nodal Analysis of AC Circuits

Student A	Student B
Full name:	Full name:
Chy dont mymbon	Ctry don't group how
Student number:	Student number:

I. Objectives

In this laboratory, you will investigate:

- 1. The AC mesh-current technique.
- 2. The AC node-voltage technique.
- 3. Generation of an AC source using a phase-shifting network.

II. Procedure

*You must provide all calculations in-details in separate sheets and/or simulation results as attachments

Figure 1. AC network used in the mesh-current analysis

Prelab: Calculation/Simulation:

Using the mesh-current technique to complete Table 1. Given that:

$$v_1(t) = 5\sin(2\pi 1000t + 0^\circ)$$
 [V]

$$v_2(t) = 3\sin(2\pi 1000t - 46^\circ)$$
 [V]

In-class procedure:

Construct the AC circuit shown in Figure 1. Using oscilloscope:

- a. To measure and record the input voltages v_1 and v_2 . Verify the phase shift between them.
- b. To measure the V_{Z1} , V_{Z2} , V_{Z3} . Students need to get the probe 1 and probe 2 connect correctly in the circuit.
- c. Compare the errors between calculated/simulated and measured values. Draw a conclusion about the accuracy of your simulation and measurements.

Table 1. Data for circuit in Figure 1

	V _{peak} ∠φ°	
	Calculated/simulated	Measured
V_{Z1}		
V_{Z2}		
V_{Z1}		
I_1		
I_2		

2. Node-voltage Analysis

Figure 2. AC circuit used in the Node -voltage Analysis

Prelab: Calculation/Simulation:

Using the mesh-current technique to complete Table 2. Given that:

$$v_1(t) = 5\sin(2\pi 1000t + 0^\circ)$$
 [V]

In-class procedure:

Construct the AC circuit shown in Figure 2. Using oscilloscope:

- a. To measure voltages and complete Table 2. Students need to get the probe 1 and probe 2 connect correctly in the circuit
- b. Compare the errors between calculated/simulated and measured values. Draw a conclusion about the accuracy of your simulation and measurements.

Table 2. Data for circuit in Figure 2

	$V_{peak} \angle \phi^{\circ}$	
	Calculated/ Simulated	Measured
V_{R1}		
V_{C1}		
V_{R2}		
V_{C2}		
V_{R3}		
V ₁₁		•
V_{22}		

Hints: $V_{11} \& V_{22}$ can be calculated via the Nodal Voltage Theorem as follow:

$$\frac{V_{11} - V_1}{Z_{R1}} + \frac{V_{11}}{Z_{C1}} \frac{V_{11} - V_{22}}{Z_{R2}} = 0$$

$$\frac{V_{22} - V_{11}}{Z_{R2}} + \frac{V_{22}}{Z_{C2}} + \frac{V_{22}}{Z_{R3}} = 0$$

$$\frac{V_{22} - V_{11}}{Z_{R2}} + \frac{V_{22}}{Z_{C2}} + \frac{V_{22}}{Z_{R3}} = 0$$