Parcial 2: Instrumentación Nuclear.

Andrés Felipe Pinzón Harker

4 de marzo de 2025

Dado el espectro de la fig. 1 del documento 22Na-previa2.csv, acerca del elemento isotópico 22 Na se pueden distinguir 3 picos con origen según el decaimiento general [1]: primer pico de energía $E_1=33\,\mathrm{keV}$ originado por aniquilación de pares positrón-electrón; segundo pico de energía $E_2=1274\,\mathrm{keV}$ por desexitación gamma; y el tercer y último pico de energía $E_3=1785\,\mathrm{keV}$ como pico suma de las radiaciones previas.

Figura 1: Espectro del ²²Na en escala log.

Los ajustes se hacen a partir de la ec. 0.1, que representa la gaussiana con fondo recto G(x)

$$G(x) = A \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) + b_0 + b_1 x,$$
(0.1)

donde x es el canal en unidades de canales, A es la amplitud dada en cuentas, μ el centroide dado en canales, σ la desviación estándar dada en canales y los parámetros b_0 y b_1 los ajustes de la recta de fondo en unidades de cuentas y cuentas/canales, respectivamente.

Ahora vemos los ajustes en las figs.

Figura 2: Primer pico asociado a energía $E_1=511\,\mathrm{keV}$ con parámetros de ajuste dados en tab. 1.

Figura 3: Segundo pico asociado a energía $E_2=1274\,\mathrm{keV}$ con parámetros de ajuste dados en tab. 1.

Figura 4: Tercer pico asociado a energía $E_3=1785\,\mathrm{keV}$ con parámetros de ajuste dados en tab. 1.

Pico	I (cuentas)	μ (canal)	σ (canal)
E_1	\ /	$2.61544(22) \times 10^2$	()
E_2	$6.8319(7) \times 10^4$	$6.49899(12) \times 10^2$	$1.7172(15) \times 10^{1}$
E_3	$4.2577(5) \times 10^4$	$9.3083(16) \times 10^2$	$2.0229(19) \times 10^1$

Tabla 1: Resumen de los resultados obtenidos con sus respectivas incertidumbres para el ajuste realizado al $^{40}{\rm K}.$

La calibración estará dada por la energía E_i y el valor del canal μ_i de cada pico. Se determina entonces que los valores de la linealización de la forma

$$E_{\gamma}(\text{keV}) = a_0 + a_1 \times x \text{ (canal)}$$
(0.2)

donde E_{γ} es la energía del pico, a_0 en keV y a_1 en keV/canal. Se obtiene el resultado en la tabla

Parámetro	Valor	Unidades
a_0 a_1	7.48(9) 1.926(30)	keV keV/canal

Tabla 2: Parámetros ajustados de las muestras de referencia y de estudio para una energía de 1461 keV.

Para determinar los bordes Compton, se utiliza la ec. 0.4

$$E_C = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{511 \,\text{keV}}} \tag{0.3}$$

Y para la retrodispersión se utiliza

$$E_R = \frac{E_{\gamma}}{1 + \frac{2E_{\gamma}}{511 \,\text{keV}}} \tag{0.4}$$

E_{γ}	E_C	E_R		
keV				
E_1	511	255.5		
E_2	853	426.8		
E_3	1162	531.5		

Se detallan los bordes de Compton E_c y los picos de retrodispesión E_R en la fig. 5.

Figura 5: Espectro calibrado para el isótopo $^{22}{\rm Na}.$ Véase que en el punto $E_{\gamma}=511\,{\rm keV}$ se solapan.

Ahora se estudia el espectro del $^{137}\mathrm{Cs}$ con fondo, cuando se realiza la resta con el fondo obtenemos la fig. 6.

Figura 6: Espectro resta del ¹³⁷Cs mostrando solo canales con espectro.

Figura 7: Espectro resta calibrado del ¹³⁷Cs. Se observa que la calibración no coincide con los picos, se hace entonces un ajuste de último momento para asociar los picos a los requerido.

Figura 8: Espectro resta calibrado ¹³⁷Cs (hecho a las malas porque la calibración no funciono).

Dada la ec
. 0.5 de la eficiencia relativa ϵ

$$\epsilon(\%) = \frac{I_{\gamma}(\text{conteos})}{A(\text{Bq})b_{\gamma}(\%)} \tag{0.5}$$

Si se toma $\epsilon(33\,\mathrm{keV})/\epsilon(662\,\mathrm{keV})$, dado que es el mismo elemento isotópico ¹³⁷Cs, luego la actividad A será la misma. Así, podríamos cancelar ese valor y obtener

$$f(I, b_{\gamma}) = \frac{I}{b_{\gamma}} \to r = \frac{I(33 \text{ keV})b_{\gamma}(662 \text{ keV})}{I(662 \text{ keV})b_{\gamma}(33 \text{ keV})}$$
 (0.6)

Se extraen los picos de interés y se ajusta como previamente

Figura 9: Primer pico asociado a energía $E_1=33\,\mathrm{keV}$ con parámetros de ajuste dados en tab.

Figura 10: Segundo pico asociado a energía $E_2=661\,\mathrm{keV}$ con parámetros de ajuste dados en tab.

Y se reportan en la tabla 3 los ajustes con los valores pedidos.

Pico	I (cuentas)	μ (canal)	σ (canal)
E_1 E_2	\ /	$3.4053(62) \times 10^{1}$ $6.1410(60) \times 10^{2}$	\ /

Tabla 3: Resultados obtenidos del ajuste.

El ´'branching" ratio b_{γ} se extrae del diagrama de decaimiento como los porcentajes según lo que queramos obtener, es decir, si tenemos la fig. 11, observamos que para obtener el pico $E=661\,\mathrm{keV}$ tomaría primero decaer por β^- al estado excitado $11/2^-$ del isótopo ¹³⁷Ba con un 94.57 % y luego caer desexcitarse al estado base con una probabilidad de 85.01 %. Luego basta multiplicar estos porcentajes para obtener el decaimiento exclusivo de esa energia E.

Figura 11: Diagrama de decaimiento tomado de referencia[1]

Pero para el pico $E=33\,\mathrm{keV}$ de rayos X, no depende de este forma de branching sino tan solo tomamos el porcentaje de las capas que nos suministra la tabla, en este caso $b_{\gamma}=80.7\,\%$ Luego obtenemos la tabla ??, donde se reportan los resultados obtenidos por cada b_{γ} calculado

$E_{\gamma} (\text{keV})$	I (cuentas)	b_{γ} (%)	f (cuentas) $\times 10^5$
33	$8.236(22) \times 10^4$	80.4	1.024(7)
662	$5.1297(23) \times 10^5$	80.7 %	6.36(5)

Finalmente, cálculamos los debidos cocientes para determinar r como

$$r = f(33 \text{ keV})/f(661 \text{ keV}) = 0.1612(16)$$
 (0.7)

con r sin unidades, pues es un cociente.

Referencias

[1] M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenko, R. Helmer, F. Kondev, D. MacMahon, and K. Lee, *Table of Radionuclides*, vol. 3 of *Monographie BIPM-5*. Pavillon de Breteuil, F-92310 Sèvres, France: Bureau International des Poids et Mesures, 2006.