1 Matching

1.
$$r = \cos(\theta)$$

2.
$$r = -2\cos(\theta)$$

3.
$$r = 3 + 2\sin(\theta)$$

4.
$$r = 3 - 2\sin(\theta)$$

5.
$$r = 4 + 2\cos(\theta)$$

6.
$$r = 4\sin(3\theta)$$

7.
$$r = 4\cos(3\theta)$$

8.
$$r = 4\sin(\theta) + \cos(\theta)$$

9.
$$r = 4\sin^2(\theta)$$

10.
$$r = 3\sec(\theta)$$

11.
$$r = \theta/2$$

12.
$$r = 3\csc(\theta)$$

2 Multiple Choice

1.	Convert the polar coordinate to rectangular coordinates: $(-2, 2\pi/3)$ A. $(1, -\sqrt{3})$	
	B. $(1, \sqrt{3})$	
	C. $(1, 1/\sqrt{3})$	
	D. $(-1, 1/\sqrt{3})$	
	E. $(\sqrt{3},1)$	
2.	Convert the polar coordinate to rectangular coordinates: $(4, -\pi/2)$ A. $(0, -4)$	1
	B. $(0,4)$	
	C. $(4,0)$	
	D. $(-4,0)$	
	E. $(4, -4)$	
3.	Convert the rectangular coordinate to polar coordinates: $(15, 5\sqrt{3})$ A. $(10\sqrt{3}, \frac{\pi}{6})$	2
	B. $(10\sqrt{3}, \frac{\pi}{3})$	
	C. $(\sqrt{30}, \frac{\pi}{6})$	
	D. $(10\sqrt{3}, \frac{\pi}{3})$	
	E. $(10\sqrt{3}, \frac{\pi}{4})$	
4.	Convert the rectangular coordinate to polar coordinates: $(-12, -12)$ A. $(12\sqrt{2}, -\frac{3\pi}{4})$	3
	B. $(12\sqrt{2}, \frac{3\pi}{4})$	
	C. $(12\sqrt{2}, -\frac{\pi}{4})$	
	D. $(2\sqrt{12}, \frac{3\pi}{4})$	
	E. $(2\sqrt{12}, -\frac{5\pi}{4})$	
		4

- 5. Convert the rectangular equation to polar: $x^2 + y^2 = 16$
 - A. r = 4
 - B. r = 16
 - C. $r = \frac{16}{2\sin\theta}$
 - D. $r = 4\sin\theta$
 - E. $r = 16\sin\theta$
- 6. Convert the rectangular equation to polar: 2xy = 1
 - A. $r^2 = \frac{1}{2\sin\theta\cos\theta}$
 - B. $r = \frac{1}{2\sin(2\theta)}$
 - C. $r = \frac{1}{2(\sin\theta + \cos\theta)}$
 - D. $r^2 = \frac{1}{2}\sec(\theta)\csc(\theta)$
 - E. $r^2 = 1 2\sin(\theta)\cos(\theta)$
- 7. Convert the polar equation to rectangular: $\theta = 2\pi/3$
 - A. $y = -\sqrt{3}x$
 - B. $y = \sqrt{3}x$
 - C. $y = -(1/\sqrt{3})x$
 - D. $x + y = \sqrt{3}$
 - E. None of the above
- 8. Convert the polar equation to rectangular: $r = \frac{2}{1 + \sin \theta}$

A.
$$x^2 + y^2 = (y - 2)^2$$

- B. $x^2 y^2 = (x + y)$
- C. $x^2 + y^2 + y = 4$
- D. $x^2 + xy y^2 = 4$
- E. None of the above

5.	

- 9. Find the intersection points of $r = 3\cos\theta$ and $r = \sqrt{3}\sin\theta$
 - A. $\{2\pi/3, 5\pi/3\}$
 - B. $\{\pi/3, 5\pi/6\}$
 - C. $\{4\pi/3, 7\pi/3\}$
 - D. $\{5\pi/6, 11\pi/6\}$
 - E. $\{2\pi/3, 4\pi/3\}$

9. _____

3 FRQ

Calculator Active - 2008.1 BC Exam (Form B)

A particle moving along a curve in the xy-plane has position (x(t),y(t)) at time $t\geq 0$ with

$$\frac{dx}{dt} = \sqrt{3t}$$
 and $\frac{dy}{dt} = 3\cos\left(\frac{t^2}{2}\right)$

The particle is at position (1,5) at time t=4.

- 1. Find the acceleration vector at time t = 4.
- 2. Find the y-coordinate of the position of the particle at time t=0.
- 3. On the interval $0 \le t \le 4$, at what time does the speed of the particle first reach 3.5 ?
- 4. Find the total distance traveled by the particle over the time interval $0 \le t \le 4$.