Detekce vybraných aktivit diabetického pacienta 1. typu

Bc. David Pivovar

Vedoucí práce: Doc. Ing. Tomáš koutný, Ph.D.

Cíle práce

- Diabetes mellitus 1. typu chronické metabolické onemocnění
- Continuous glucose monitoring system (CGMS)
- Inzulinové pumpy
- Artificial pancreas
 - SmartCGMS

- 1) Detekce příjmu karbohydrátů
 - a) rekurentní neuronové sítě
 - b) detekce hran průběhu intersticiální glukózy
- 2) Detekce fyzické aktivity

Rekurentní neuronové sítě

- Obousměrná LSTM nebo GRU (128 neuronů, dropout 0.2, tanh)
- Dropout vrstva (0.5)
- Dense vrstva (128, ReLU)
- Dense vrstva (1)
- optimizer: Adam
- ztrátová funkce: MeanSquaredRoot
- N vstupních prvků
- velikost okna W

Detekce hran

Derivace funkce:

$$f'(x) = \frac{d}{dx}f(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

tg(α) - směrnice tečny

 $tg(\alpha) > 0 \Rightarrow f(x)$ je rostoucí

 $tg(\alpha) < 0 \Rightarrow f(x)$ je klesající

První difference:

$$\Delta IST = \frac{IST_t - IST_{t-1}}{\Delta t}$$

Detekce hran

Ohodnocení podle Δ IST:

th = [0.0125, 0.018] w = [2.25, 3]

Vývoj v Čase:

```
if activation[i] > 2:
for j in range(24):
  if activation[i-j] >= 2+0.2*j:
      activation[i] += 0.1*j
```


Výsledky detekce karbohydrátů

- 340 jídel
- měření 10 11 dnů / pacient
- 2 úrovně detekce nízká/vysoká pravděpodobnost

	Detekce hran	RNN	Detekce hran + RNN
Detekováno	289 (85 %)	169 (49,7 %)	299 (87,9 %)
Potvrzeno	167 (57,8%)	-	116 (38,8 %)
Falešně pozitivní	112	188	89
Zpoždění	27,54 min	21,04 min	22 min

Detekce fyzické aktivity

1. sada dat:

- srdeční tep
- počet kroků
- elektrodermální aktivita

2. sada dat:

- akcelerace
- elektrodermální aktivita

Detekce fyzické aktivity

Testované metody detekce:

- Metody strojového učení
- Hranice pro detekci

Volba ukazatelů:

- aktuální hodnota
- průměr za časové okno
- medián
- rozptyl
- rozdíl kvartilů

Výsledky detekce fyzické aktivity

1. sada dat:

- 5 pacientů
- 19 zadaných aktivit

	Srdeční tep	Kroky	Elektroderm. aktivita	Tep + Kroky	Tep + elektroderm.	Kroky + elektroderm.
Detekováno	16	17	13	15	8	10
Falešně pozitivní	122	73	8	28	1	2
Zpoždění	10,22 min	5,26 min	18,62 min	10,42 min	12,09 min	12,40 min

Výsledky detekce fyzické aktivity

2. sada dat:

- 4 pacienti
- 17 zadaných aktivit

	Akcelerace	Elektroderm. aktivita	Akcelerace + elektroderm.
Detekováno	16	10	6
Falešně pozitivní	64	43	10
Zpoždění	25,46 min	22,98 min	24,85 min

Děkuji za pozornost

Čím by bylo vhodné nahradit filtr Savitzky-Golay, aby umožnil výpočetně únosné on-line vyhlazování signálu?

- Akima spline
- Kalmanův filtr (+ Bergmanův model)

Dala by se metoda modifikovat tak, aby bylo možné přijaté karbohydráty kvantifikovat, popř. jak?

- Výpočet plochy pod křivkou detekovaných hran IST
 -> navzorkování dle zadaného množství karbohydrátů
- problém s vícečetným zadáním příjmu karbohydrátů
- možnost stanovit glykemický index

Jak by bylo vhodné implementovat realistický "error metric" signál, aby SmartCGMS mohl sám optimalizovat parametry pro jednotlivé pacienty?

- Problém detekce se zpožděním
- Metrika: čas detekce
- V případě nedetekování do určité doby hraniční hodnota
- Snaha solveru o minimalizaci času detekce