thingSoC

NEOLED Overview:

An Introduction to WS2812 LEDs

By @PatternAgents

Addressable LEDs

* WS2810/WS2812 (a.k.a. NEOPixels by Adafruit)
Integrates an LED driver chip with Red, Green, Blue LED's

@Pattern Agents

- * PatternAgents supplies Open Source Design Patterns for Hardware, Firmware, Software, and Applications.
- * A tailor or dressmaker is very familiar with the concept of a "pattern"; they select a "pattern" for the style of garment that they want to make, and then size that "pattern" for the customers individual measurements.
- * PatternAgents is doing the same thing for electronics, in embedded systems for communications, robotics, metering and automation.

WS2812 (SK6812) Color LEDs

- * Likely the most common addressable LED you'll find (called NEOPixels when you buy them at Adafruit!)
- * They use a serial bit stream (UART like) protocol that can be difficult for some microcontrollers or Linux single board computers (SBC) to drive directly (tight timing...)
- * It can also be difficult to drive and synchronize hundreds of WS2812 LEDs in multiple strings without hardware acceleration of some kind (special circuit, DMA, etc.)

Source: @PatternAgents

WS2812 Wiring

- Needs 5.0 Volt Power
- * Needs 5.0 Volt Signal
- Can draw AMPS of Power with many LEDs
- * Do NOT do this with more than a few LEDs, it can fry your Arduino boards...

Source : Sparkfun

WS2812 Wiring

* Best Practice is to power the LED strings separately:

WS2812 Timing

- * The older WS2810 was a 400KHz serial data signal
- * The newer WS2811/WS2812 are now 800KHz data signals

Data transfer time (TH+TL=1.25µs±300ns)

T0H	0 code ,high voltage time	0.4us	±150ns
T1H	1 code ,high voltage time	0.8us	±150ns
T0L	0 code, low voltage time	0.85us	±150ns
T1L	1 code ,low voltage time	0.45us	±150ns
RES	low voltage time	Above 50µs	

Source : Adafruit

WS2812 LED Color Order

Composition of 24bit data:

- * Eight (8) bits each for Green, Red, Blue
- * Different chips can use different color orders (beware!)
- * Some add White or Yellow LEDs for a 32 bit color pixel

Source: Adafruit

Arduino Libraries

- * Adafruit NeoPixel Library : Well written, supports AVR, ESP8266, SAMD, etc.
- * FastLeds Library:
 Optimized, with higher performance and update rates
- * Problems:
 - 1) Can interfere with other functions, like audio, servos, etc.
 - 2) Can use up a lot of the "scarce" memory resource
 - 3) Doesn't work well with the Edison, Currie, Galileo, etc.

Source: Adafruit

thingSoC is a OSHW Standard

Growing into a family of inter-operable products:

source: @PatternAgents

TSOC_NEOLED_EM

- * Eight (8) Channel RBG(Y) LED Driver Board (Embeddable Module)

 Makes driving LED arrays as easy as writing to an I2C memory
- * Reprogrammable for other functions (servo motors, etc.)
- Works with other thingSoC products
- * Coming soon to Crowd Supply here in Portland!

Source: @PatternAgents

Driving WS2812 with Edison

source: @PatternAgents

Driving WS2812 with Edison

- * While there are ways to drive WS2812 LEDs directly from the Edison (MRAA), they are not easy and have other problems.
- * Using the TSOC_NEOLED board eliminates the timing and voltage level translation issues for you.
- * The TSOC_NEOLED board looks like a simple I2C memory device to the Edison, simplifying your code.

source: @PatternAgents

TSOC_NEOLED Arduino Sketch Examples

Under the "examples" directory are several Arduino IDE examples for using the TSOC_NEOLED board with Arduino IDE. Using the Arduino "Wire" library for I2C communications, it is simple to control the TSOC_NEOLED

```
// Start the Arduino I2C Interface
wire.begin();
// Turn the first LED On (i.e. green LED #1)
// the LED's are (GRBY) color order in memory
byte row, column = 0;
Wire.beginTransmission(TSOC NEOLED I2CADDRESS); // Start the I2C transaction
Wire.write(row);
                                                 // Send the high byte of 16 bit memory address
Wire.write(column);
                                                 // Send the low byte of 16 bit memory address
Wire.write(TSOC NEOLED LED ON);
                                                 // Send a single data byte (we could send more...)
                                                 // End the I2C transaction
Wire.endTransmission();
// Turn the first LED Off (i.e. green LED #1)
// the LED's are (GRBY) color order in memory
Wire.beginTransmission(TSOC NEOLED I2CADDRESS); // Start the I2C transaction
Wire.write(row);
                                                 // Send the high byte of 16 bit memory address
Wire.write(column);
                                                 // Send the low byte of 16 bit memory address
Wire.write(TSOC NEOLED LED OFF);
                                                 // Send a single data byte (we could send more...)
Wire.endTransmission();
                                                 // End the I2C transaction
```

Hackster.io Platform

source: PatternAgents

Hackster.io Projects

source: PatternAgents

If you would like to help...

- * Sign Up for Hackster.IO
- * Please go to: https://www.hackster.io/thingsoc and "Click" on the blue "Following" button
- * Look for our Crowd Supply campaign coming soon!

Thank You!

Thank You!

Source: @PatternAgents