FUNDAMENTOS E TÉCNICAS EM CIÊNCIAS DE DADOS

PROF. JOSENALDE OLIVEIRA

josenalde.oliveira@ufrn.br https://github.com/josenalde/datascience

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS - UFRN

OBJETIVOS

O(a) discente selecionará, com base na origem dos dados, as ferramentas e técnicas para pré-processamento (limpeza), tratamento e processamento de dados, com a respectiva saída gráfica ou textual para auxílio à tomada de decisão. Adquirirá uma visão ampla dos softwares, bibliotecas, métodos estatísticos e linguagens utilizadas na área de ciência de dados, de modo a incorporar tais soluções no desenvolvimento de software.

CONTEÚDO

Introdução a ciência de dados; Ciclo de vida do dado; Tecnologias para ciência de dados (linguagem e APIs); Coleta de dados; Armazenamento não relacional; Transformação; Análise e Visualização.

PLANO DE CURSO

ARMAZENAMENTO

DESCRIÇÃO,

Introdução a ciência de dados e Big Data; dados Banco de não relacionais (desnormalização); Conceitos e definições sobre Ciência dos Dados; produção de dados; armazenamento; análise de dados; visualização, agrupamento. Caracterização, importância das etapas de modelagem e análise científica de dados. Ferramentas e linguagens para análise científica de dados. Introdução a mineração de dados; Análise de dados de redes sociais. Modelagem de dados em grafos. Introdução a raspagem de dados (scraping). Coleta de dados estruturados não estruturados. Desenvolvimento de raspadores de dados (scrapers). Ética e legislação sobre a raspagem de dados.

Aquisição e formatação de dados. Análise estatística de dados. Agrupamento e classificação de dados. Visualização científica de dados. Principais conceitos para gerenciamento de Big Data; Tecnologias para Big Data; Técnicas estatísticas de predição; Data Discovery, OLAP Visualização de Dados; Processamento paralelo e distribuído de dados; Visualização de dados: estática e interativa. Painéis de visualização (dashboards).

O que define um projeto de ciência de dados? A melhoria de algum aspecto no/do cliente

PLANO DE CURSO

Referências

Notas de aula .pdf disponibilizadas de autoria do docente (slides)

IGUAL, Laura; SEGUÍ, Santi. Introduction to Data Science: a Python approach to conceptechniques and applications. Springer, 2017.

https://github.com/DataScienceUB/introduction-datascience-python-book

AMARAL, Fernando. Introdução à Ciência de Dados: mineração de dados e big data. Rio Janeiro: Alta Books, 2016.

GODSCHIMIDT, R. et al. Data Mining. LTC, 2015. (10 na BCZM)

FAVERO, L. P. et al. Análise de dados. Campus, 2009 (10 na BCZM)

BORGES, L. E. Python para desenvolvedores. Novatec, 2014. (BCZM)

* McKINSEY, Wes. Python para análise de dados. São Paulo: Novatec, 2018.

https://github.com/wesm/pydata-book

https://github.com/josenalde/datascience

www.kaggle.com

Complementar:

KELLEHER, John D.; TIERNEY, Brendan. Data Science. MIT Press, 2018.

BRUCE, P.; BRUCE, A. Estatística prática para cientistas de dados: 50 conceitos essenciais. Rio de

Janeiro: Alta Books, 2019

Emmanuel Passos

>FERRAMENTAS (SUGERIDAS)

• Dentro da miríade (crescente) de ferramentas, é selecionado um ambiente interativo (Jupyter notebooks) baseado em **Python** para desenvolvimento de nossos estudos, a partir do qual bibliotecas e recursos extras vão sendo apresentados/explorados no tempo...

import csv

>FERRAMENTAS (SUGERIDAS)

• Ganho de produtividade...


```
import pandas as pd
acervobczm = pd.read_csv('../datasets/acervoaquisicao.csv', sep=';')
```

- Provê estruturas de dados de alto nível para dados estruturados ou tabulares (Series, DataFrames)
- Início: 2010 (chave para o Python ganhar espaço em CD
- Facilita reformatação, manipulação, agregação, seleção
- Tratamento flexível para dados ausentes

- Provê objeto array multidimensional *ndarray* rápido e eficiente (alto desempenho) que as estruturas built-in
 - Funções para processamento dos arrays
- Algebra linear, Fourier, aleatórios etc.
- Escrita e leitura de blocos ndarray em disco
- API C para interoperabilidade C-python numPy

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import statsmodels as sm

with open('../datasets/acervoaquisicao.csv', encoding='utf8') as f:
 reader = csv.DictReader(f, delimiter=';')
 for row in reader:
 print(row['titulo'])

ADS-UFRN: FUNDAMENTOS E TÉCNICAS EM CIÊNCIAS DE DADOS, PROF. JOSENALDE OLIVEIRA

6

>FERRAMENTAS (SUGERIDAS)

Qual linguagem base devo utilizar?
 Ver esta análise <u>aqui</u>

Example 1: European Food Consumption

Step 3a: Perform PCA

R

```
out.cor <- princomp(data, cor=TRUE)

lambda_perc <- out.cor$sdev^2/sum(out.cor$sdev^2)

V <- out.cor$loadings

Y <- cor(data) %+% V # Y = XV

PC <- out.cor$scores # PC = (standardized dataset) V

### Compare with ?prcomp and ?svd
```

Python

Ambas possuem suas especificidades, qualidades e, em geral, a escolha principal tem sido associada ao background do desenvolvedor, se em computação (python) ou de matemática/estatística (R)

OBS: python necessário para a análise de dados (codificação)

>JUPYTER LAB (NOTEBOOK):

Anaconda Navigator

>JUPYTER LAB (NOTEBOOK):

- Ambiente para execução interativa (Ipython), com mescla de código interpretável, texto, imagens, LaTeX — linguagem Markdown e HTML
- No Anaconda Prompt:
 - conda update jupyter
 - notebook jupyter

- Baseado no projeto Ipython (Fernando Pérez, 2001...)
- Projeto Jupyter (2014...)
- Desenvolvimento baseado no fluxo execução-exploração ao invés de edição-compilação-execução
- Em ciência de dados, as análises envolvem exploração, tentativa e erro e iteração

GOOGLE COLAB

🗰 O que é o Colaboratory?

O Colaboratory ou "Colab" permite escrever código Python no seu navegador, com:

- · Nenhuma configuração necessária
- · Acesso gratuito a GPUs
- · Compartilhamento fácil

Você pode ser um **estudante**, um **cientista de dados** ou um **pesquisador de IA**, o Colab pode facilitar seu trabalho. Assista ao vídeo <u>Introdução</u> <u>ao Colab</u> para saber mais ou simplesmente comece a usá-lo abaixo!

- Desenvolvimento online com integração Gdrive e Github

Dito isto...

The Periodic Table of Data Science Data-Science-Periodic-Table.pdf

An overview of key companies, resources and tools in data science (as of 4/12/2017)

Dc	Ga General	Sd
DataCamp	Assembly	Strata Data
Sb	M	Od
SpringBoard	Metis	ODSC
Ex	Di	Tc Tableau
Edx	Data Incubator	Conference
С	In	U
Coursera	Insight	UseR!
Uda	Dsa	Pd
Udacity	NYC Data Science Academy	PyData
Ude	G	Paw
Udemy	Galvanize	Predictive Analytics World
Ps	Dsg	Kdd
Pluralsight	Data Science for Social Good	ACM SIGKDD Conference
Ly	Dsy	Трс
Lynda	Data Society	Teradata Partners Conference
Tt	Dsj	Icd IEEE International
TeamTreeHouse	Data Science Dojo	Conference on Data Mining
Bdu Big Data		

						Symbol —	Г)c]									
						Name	Data	Camp										
						l		_	J									
	Courses		Data		1		Search	& Data N	Management			Collabora	ition	- 1			News, Newslette	rs & Blogs
	Boot camps		Projects & Ch	allenges, Compe	titions		Machin	ne Learni	ng & Stats			Commun	ity & Q&	A		1	Podcasts	
	Conferences		Programming	Languages & Di	stributions		Data Vi	isualizati	on & Reporting									
Py	Js	Vb	Pgs	Sli	Ah Apache	W	F	Bml	Kn		Sm	Pb	'	Obi	Shn	l .	Ddl Domino Data	De Data Science
Python	JavaScript	Visual Basic	PostgreSQL	SQLite	Hadoop	Weka	Bi	gML	Knime	Spark	k MlLib	Power BI	Ora	acle BI	Shiny	y	Lab	Experience
R	Ср	Sc	Ar	Bq	Hw	0	I	Dar	Lib	1	Но	Во		Alt	Mpl	l	Nt	Rs
R	C++	Scala	Amazon Redshift	Google BigQuery	Hortonworks	Oracle	Data	Robot	LibSVM	Н	120	BusinessObje	cts Al	teryx	Matplot	tlib	Nteract	Rstudio
s	Pl	Ca	Hb	Td	cı	Mss	I	Rm	Mat		Th	Sp		Sav	Ply		Ro	Be
SQL	Perl	Cassandra	HBase	Teradata	Cloudera	Microsoft SQL server	Rapio	dMiner	Mathematica	Th	neano	Spotfire		Visual alytics	Plotly	у	Rodeo	Beaker Notebook
В	Mr	P	Mdb	То	Aem	Spl	(Cho	Mah		Aml	QI		Po	Me		Spy	Ze
Bash	Microsoft R Open	Pig	Mongo DB	Toad	Amazon Elastic Mapreduce	Splunk	Ch	orus	Mahout		Machine arning	Qlikview	Pow	erPivot	Micros Excel		Spyder	Apache Zeppelin
Mtl	Су	Im	К	Ms	Mar	Sr		Tf	St		D	Co		Gch	Pe		Dst	Ju
Matlab	Canopy	Impala	Kafka	MySQL	MapR	Solr	Tens	orflow	Stata	1	D3	Cognos	Goog	le Charts	Pental	ho	Data Science Studio	Jupyter
J	An	Sp	Hi	Idb	Lu	El		Sk	Da	1	Му	Aa		T	В		Db	Gh
Java	Anaconda	Spark	Hive	IBM DB2	Lucene	ElasticSearch	Sciki	t-Learn	Dato/Graphla	Micro	ostrategy	Adobe Analytics	Ta	bleau	Bokel	h	Databricks notebook	Github
Dw		Fte			Dg	К		I		So	c		Qu	A		Dse		
Data.world	Quandl	FiveThirtyEight	Socrata	Google Public	Data.gov	Kaggle		Rec		tack erflow	Cro Valid		Quora	Analy Vidl		Data Sc tack Exc		
St	Uci UCI Machine	Wb	At Academic	Bf	Dk	Dd		N	Au I	ldm								

Kdn	Ibd
KDnuggets	insideBIGDATA
Rb	Pp
R-Bloggers	PlanetPython
Hn	Dt
HackerNews	DataTau
Dsc	Dsr
Data Science	Data Science
Central	Roundup
Dsw	Or
Data Science	
Weekly	O'Reilly
Dr	Pw
	Python
Data Elixir	Weekly
Rw	Pd
	Partially
R Weekly	Derivative
Bds	Tm
Becoming a	Talking
Data Scientist	Machines
Ds	Dsk
Data Stories	Data Skeptic
Ld	Ns
Linear	Not So Standard
Digressions	Deviations

ELEMENTOS BASE: DADO, INFORMAÇÃO, SISTEMA,

CONHECIMENTO

Sistema de informação

Informação: dado analisado e com algum significado X Conhecimento: informação interpretada, entendida e aplicada

 Sabemos que os dados podem vir de várias FONTES (do ponto de vista de codificação entender os formatos e como atuar sobre os mesmos (ler, manipular)

Data Files (XML, CSV, Excel, JSON, ...)

Database (MySQL, Oracle, ...)

API

Sites

Text and reports

Maps

Image and videos

Social Media

- Na aquisição de dados, independente da fonte, pode comprometer o conhecimento, se os dados não apresentam tais características (não necessariamente todas, mas conjuntos razoáveis e lógicos)
 - **Relevantes**: são importantes para o tomador de decisões. Exemplo: se o preço de um tecido vai subir não é relevante para um fabricante de circuitos integrados
 - **Simples**: dados sofisticados e/ou detalhados podem não ser necessários. Sobrecarga de informações dificulta tomada de decisão ao invés de auxiliar
 - Apresentadas no momento exato: saber como foi o tempo semana passada não ajuda a definir que roupa devo usar hoje
 - Verificáveis: deve ser possível checar dados para garantir que estejam corretos,
 checando por exemplo várias fontes (inclusive 'conflitantes') V/F, percentual V/F
 - Acessíveis/seguras: fácil acesso para usuários autorizados, com o formato correto e no momento correto

• Sobre APIs:

- Alguns exemplos públicos:
 - IPEADATA: Dados macroeconômicos e sociais, dispostos por meio de uma API pública e também lib's em Python e R séries temporais https://t.co/1pj42EAyTi
 - https://www.luanborelli.net/ipeadatapy/docs/usage/getting_started.html
 - **IBGE:** possui diversos dados diferentes sobre o Brasil, desde informações sobre nomes, passando por CNAEs até localidades e malhas geográficas https://t.co/X2L7HgBks3
 - Receita Federal: consultar empresas por CNPJ? Ou fazer uma análise de quadro societário?
 https://t.co/DPN7kY6tGH
 - CNO (Cadastro Nacional de Obras): dataset público para explorar suas habilidades em análise e visualização de dados https://t.co/HCf6qVsP4F
 - SIMBA: sobre a fauna marinha brasileira https://t.co/6Ck3yL4Yp0
 - Embrapa: https://www.agroapi.cnptia.embrapa.br/portal/
 - UFRN: https://api.ufrn.br/servicos.html
 - Catálogo completo: https://www.gov.br/conecta/catalogo/

- Exemplo de dado X informação X conhecimento
 - Projeto palmaS (UFRN@Tapioca, EMPARN 11.2019...)

Conhecimento (negócio): tratamento A, em relação ao tratamento B possui eficácia X, devido à ..., sendo recomendado a aplicação da seguinte forma: ...

Dado: imagem da presença de uma praga chamada cochonilha de escama na palma forrageira após aplicação de determinado tratamento (produto etc.)

Informação: contagem das cochonillas fêmeas = 114

- Exemplo de dado X informação X conhecimento
 - Projeto palmaS (UFRN@Tapioca, EMPARN 11.2019...)

Processo (clusterização)

Extração de características de cor e geometria (PDI) DATASET

Conhecimento (negócio): tratamento A, em relação ao tratamento B possui eficácia X, devido à ..., sendo recomendado a aplicação da seguinte forma: ...

Dado: imagem da presença de uma praga chamada cochonilha de escama na palma forrageira após aplicação de determinado tratamento (produto etc.)

Informação: contagem das cochonillas de estágio 1: x de estágio 2 e 3: y

Portanto, estudos de ciência de dados em nosso contexto:

Desenvolvedor Danger zone! Negócio Hacking Substantive Expertise **Data Science** Traditional Machine Learning Research **Math and Statistics Técnicas** Knowledge estatísticas

Devido a sua natureza interdisciplinar, requer intersecção de habilidades (codificação, negócio, matemática e estatística)

Necessário para trabalhar com massa de dados que precisa ser adquirida, limpa e manipulada

Permite a escolha de métodos e ferramentas para extrair conhecimento a partir dos dados

Conhecimento do negócio para demandar questões, estabelecer hipóteses e interpretar os resultados

Pesquisa tradicional com aplicações estatísticas ao domínio do problema

Isoladamente não requer conhecimento do negócio, pois pode-se limitar a aplicação de algoritmos, sem propósito individualmente

Pode levar a análises incorretas, pela falta de métodos matemáticos e estatísticos rigorosos

Fonte: <u>Kirk Bourne</u>

Portanto, estudos de ciência de dados em nosso contexto:

Diferencial: Agregar Explicações aos modelos (Explainable AI – XAI)

Exemplo: TADS@UFRN

Exemplo: Prof. Marcus Nunes — Dept. Estatística UFRN

https://introbigdata.org/

ADS-UFRN: FUNDAMENTOS E TÉCNICAS EM CIÊNCIAS DE DADOS, PROF. JOSENALDE OLIVEIRA

Explainable artificial intelligence (XAI) is a set of processes and methods that allows human users to comprehend and trust the results and output created by machine learning algorithms. Explainable AI is used to describe an AI model, its expected impact and potential biases. It helps characterize model accuracy, fairness, transparency and outcomes in AI-powered decision making. Explainable AI is crucial for an organization in building trust and confidence when putting AI models into production. AI explainability also helps an organization adopt a responsible approach to AI development.

Google Tradutor

A inteligência artificial explicável (XAI) é um conjunto de processos e métodos que permite que usuários humanos compreendam e confiem nos resultados e saídas criados por algoritmos de aprendizado de máquina. A IA explicável é usada para descrever um modelo de IA, seu impacto esperado e possíveis vieses. Ele ajuda a caracterizar a precisão, a imparcialidade, a transparência e os resultados do modelo na tomada de decisões com inteligência artificial. A IA explicável é crucial para uma organização construir confiança ao colocar modelos de IA em produção. A explicabilidade da IA também ajuda uma organização a adotar uma abordagem responsável para o desenvolvimento da IA.

• Portanto, sistemas coletam feedbacks do usuário para tuning dos

modelos:

Google Tradutor

≡ Ajuda do Google Translate

Q Descreva o problema

ntral de Ajuda Comunica

Para ajudar outras pessoas a entenderem melhor seu idioma, envie feedback para Contribuir para o Tradutor. Os idiomas escritos usados com frequência na Web, ass idiomas com colaboradores entusiasmados que podem ajudar a melhorar a qualida traduções, recebem atenção especial.	sim como
Saiba mais sobre o Contribuir para o Tradutor 🗹 .	
Traduções revisadas por colaboradores	
Ao revisar traduções, você contribui com o Google Tradutor. Se a revisão for marca correta, ela poderá ser mostrada com um ícone 🔗.	da como
Tornar-se um colaborador	~
Traduzir uma nova palavra ou frase	~
Dicas de tradução	~
Validar traduções e contribuir na página inicial do Google Tradutor	~
Avaliar e sugerir traduções	~
Revisar o histórico de contribuições de tradução	

Google Tradutor

- 🗏 Ajudar a melhorar o Google Tradutor
- Enviar feedback ao Tradutor

Exemplo de demanda atual:

<u>Cientista de dados – aplicações agrícolas</u> – análise espacial/sigs