Chemistry II

014

01 Nov. 2013 08.30am - 11.30am

REPUBLIC OF RWANDA

RWANDA EDUCATION BOARD

ADVANCED LEVEL NATIONAL EXAMINATIONS 2013

SUBJECT: CHEMISTRY

PAPER II: THEORY

COMBINATIONS: - BIOLOGY-CHEMISTRY-GEOGRAPHY (BCG)

- MATHEMATICS-CHEMISTRY-BIOLOGY (MCB)

- PHYSICS-CHEMISTRY-BIOLOGY (PCB)

- PHYSICS-CHEMISTRY-MATHEMATICS (PCM)

DURATION: 3 HOURS

INSTRUCTIONS:

- 1) Don't open this question paper until you are told so.
- 2) This paper consists of two sections: A and B.

• Section A: Attempt all questions.

(70 marks)

• **Section B**: Attempt any **three** questions.

(30 marks)

- 3) You do not need the Periodic Table.
- 4) Silent non-programmable calculators may be used.

SECTION A: ATTEMPT ALL QUESTIONS.

(70 marks) 1. Explain the following observations: a) Atomic radius of fluorine is smaller than that of Lithium. (Atomic number: F=9, Li=3) (2 marks) b) Solubility of sulphates of group II (a) elements (MgSO4, CaSO4, SrSO4, BaSO₄) decreases as you move down the group. (2 marks) c) Lead chloride (IV), PbCl4, is a covalent compound whereas lead chloride (II), PbCl2, is ionic. (2 marks) 2. a) Atomic number of magnesium is 12, atomic number of chlorine is 17: i. Write the electronic configuration of magnesium and that of chlorine (in terms of s, p, d...). (2 marks) ii. Write a balanced chemical equation of the reaction between (1 mark) magnesium and chlorine. b) In terms of advantages and disadvantages; give four (4) differences (2 marks) between soap and detergents. 3. Write a balanced chemical equation for the reaction between: a) Cold dilute nitric acid (HNO3) and Iron metal (Fe). (2 marks) b) Copper metal (Cu) and concentrated nitric acid (HNO₃). (2 marks) 4. a) Define "enthalpy of solution". (2 marks) b) Calculate the enthalpy change (in joules) when 400g of water at 25°C is (2 marks) heated up to 100°C. (Specific heat capacity of water is 4.2 J/g°C). 5. An electric current of 3.0 amperes is passed through a solution of Copper sulphate (CuSO₄) for 280 minutes. Equations: Anode: 4 OH- (aq) — \rightarrow 2 H₂O₍₁₎ +O_{2(g)} +4e Cathode: $Cu^{2+}_{(aq)} + 2e \longrightarrow Cu_{(s)}$ (2 marks) a) Calculate the mass (in g) of copper that is deposited. b) Calculate the volume of O_{2(g)} liberated at the anode (at room temperature and pressure). (1 mole of a gas occupies 24 dm3 at room temperature (2 marks) and pressure, 1 Faraday = 96500 C/mol, Atomic mass of Cu = 63.5) This question deals with colligative properties of solutions (a) and (b): 6. a) An aqueous solution of 1.10 g of a protein in 100 ml of a solution has an osmotic pressure of 3.93×10^{-3} atmosphere at 25°C (298K). (3 marks) Calculate the molar mass of the protein.(R = 0.08203 L. atm.mol-1 .K-1) b) A solution of 2.95 g of sulphur (molecules) in 100 g cyclohexane has a freezing point of 4.18°C. Pure cyclohexane has a freezing point of 6.5°C. (3 mark) i. Calculate the molecular mass of sulphur. (2 marks) ii. Calculate the molecular formula of sulphur. (Atomic mass of sulphur=32, Kf = 20.2°C Kg mol⁻¹). a) Draw 4 different structural isomers (that are non cyclic) of a compound 7. (4 marks) that is represented by the molecular formula of C₄H₈O₂. b) Complete and balance the following chemical equation:

Cl₂ + NaOH_(hot, concentrated) _____

(2 marks)

8.	Ammonia is produced by Haber-Bosch process according to the following						
•	equation: $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$, $\Delta H = -92KJmol^{-1}$						
	The state and compain what will happen to the position of equilibrium it:						
	a) Pressure	is decrease	ed. b) Tem	perature is decreased.		(4 marks)	
9.	Write the med	hanism of	reaction of	each chemical equation	ı :		
7 .	Write the mechanism of reaction of each chemical equation: a) $CH_2 = CH_2 + Br_2 \longrightarrow CH_2Br - CH_2Br$					(2 marks)	
	b) CH ₀ CH ₀ Cl ₂	+ OH- —		· CH ₂ =CH ₂ + H ₂ O +Cl ⁻		(2 marks)	
10.	b) CH ₃ CH ₂ Cl + OH——→ CH ₂ =CH ₂ + H ₂ O +Cl- An organic compound A is constituted of C, H and O.						
10.	Its percentage composition by mass is as follows:						
	C=66.7%; H=11.1%; and O=22.2% (Atomic mass: C=12, H=1, O=16)						
	a) Find the empirical formula of compound A.						
	b) Find the empirical formula of compound A if its molecular mass is 72.						
11.							
11.	converted (by using one step reaction equation or more than one step) into						
	the following compounds indicating reactants and conditions required. a) 2-Chloro propane. b) Amino butane (butyl amine).						
12.		_				(1 mark)	
14.	,			not generally considered	to be a	(2	
	, .		-	r of Zinc=30)	00 D0 a	(1 mark)	
		•		n metals are coloured.		(2 marks)	
13	· -		-		zinc ions (Zn2+)		
10.	3. a) Write a chemical equation (or equations) to describe how zinc ions (Zn ²⁺) act as: i. An acid; ii. A base. (2 ma)						
	b) Write a balanced chemical equation for the reaction between:						
	i. Hot Concentrated sulphuric acid (H ₂ SO ₄) and Carbon (C).						
			_	(HNO ₃) and Sulphur (S).		(2 marks)	
14.					•		
<i>x</i>							
	a) Draw a labelled diagram for industrial production of Aluminium.b) Write chemical equations that represent the reactions which take place						
	on the cathode and on the anode during this electrolysis. (2 marks)						
15.	- · · · · · · · · · · · · · · · · · · ·						
	shape. a) NH_3 b) IF_5 c) H_2O (3 marks)						
	- ,	ĺ	,			,	
	SECTION B: A	-	-	•	•		
16.	. Using appropriate equations of reaction by showing clearly the reagents,						
	conditions and using structural formulae of the organic compounds,						
	describe how the following compounds can be synthesized: a) Phenol to 4-Nitrobenzoic acid. b) Nitro Benzene to 2-Bromo Phenol. (10 marks)						
4	,			,		(10 marks)	
17.	/ 1						
	H_3PO_4 and you are required to obtain a buffer solution of pH=2 by adding solution of Na H_2PO_4 . What should be the concentration of the						
	salt (NaH ₂ PO ₄)? (Atomic mass: H=1, O=16, Na=23, P=31). (3 marks)						
	b) The table below shows the rates of reaction between substance A and B						
	at different concentrations.						
	Experiment	[A]	[B]	Initial rate of reaction			
		moldm-3	moldm-3	in moldm ⁻³ s ⁻¹			
	1.	0.50	0.50	2.0 ×10-2			
	2.	1.00	0.50	8.0 ×10-2			
	2	1 00	1 00	16.0 ×10.0	I		

16.0 ×10-2

3.

1.00

1.00

- i. Determine the overall order of reaction.
- ii. Calculate the rate constant indicating clearly its units.
- c) Suggest 2 processes used to obtain hydrogen gas on a large scale from water.
- 18. a) The molecular formula of alanine amino acid is CH₃CHNH₂COOH.
 - i. Why does alanine amino acid present optical stereoisomerism?
 - ii. Draw the 2 structures of alanine that represent its optical stereoisomers.
 - b) i. Draw the 2 structures of 1, 2-dichloroethene that represent its geometrical stereoisomerism.
 - ii. Write the structural formula of the monomer which is used to synthesize natural rubber (Isoprene)
 - iii. State 2 requirements for improving the physical properties of rubber when tyres are manufactured.
 - iv. State 2 monomers (or draw the structural formulae of the monomers) that are used to make polyester (terylene).
- 19. a) i. Define HESS' law.
 - ii. Calculate the enthalpy of reaction (X)

$$CO_{(g)} + 2H_{2(g)} + \frac{3}{2}O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)}; \Delta H_1^0 = -204.2 \text{Kcal}$$

$$CH_3OH_{(l)} + \frac{3}{2}O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)}; \Delta H_2^0 = -182.5 \text{ Kcal}$$

$$CO_{(g)} + 2H_{2(g)} \longrightarrow CH_3OH_{(l)}; \Delta H_3^0 = \mathbf{X} \text{ Kcal}$$

b) According to the data given below in relation to the reaction:

returning to the data given below in relation to the reaction.								
	[I-]	[BrO ³ -]	[H+]	Rate (moldm-3s-1)				
	(mol/dm³)	(mol/dm³)	(mol/dm^3)					
	0.10	0.10	0.10	3.0 × 10-4				
	0.14	0.18	0.10	7.56×10^{-4}				
	0.10	0.18	0.10	5040 × 10-4				
	0.31	0.18	0.20	1.67 × 10-3				

Equation

$$BrO_{3^{-}(aq)} + 9 I_{(aq)} + 6 H^{+} \longrightarrow 3I_{3^{-}(aq)} + Br_{(aq)} + 3H_{2}O_{(l)}$$

- i. Find the order of reaction with respect to:
 - I-, BrO₃- and H+
- ii. Find the overall order of reaction.
- iii. Find the rate constant K for the reaction.
- 20. a) Write the structural formula of the following molecules:
 - i. 3-Ethyl 2, 4-dimethyl pentane.
 - ii. 3, 4-Dimethyl pentan-2-ol.
 - b) Write a chemical equation for the cracking n-octane (CH₃CH₂CH₂CH₂CH₂CH₂CH₃).
 - c) Explain the following observations (use chemical equations to clarify your answer):
 - i. Zinc hydroxide precipitate, Zn(OH)₂, disappears (becomes soluble) when a solution of ammonia, NH₃, is added to it.
 - ii. Calcium phosphate, Ca₃(PO4)₂ is sparingly soluble in water but it dissolves in a solution of Nitric acid (HNO₃).

(2 marks)

(1 mark)

(3 marks)

(2 marks)

(2 marks)

(2 marks)

(1 mark)

(2 marks)

(2 marks)

(2 marks) (3 ma ;)

(3 marns)

(1 mark)

(1 mark)

(2 marks)

(2 marks)

(2 marks)

(2 marks)