Econometrics and Applications

Kirby CHEN

Academic Year 2024-2025

Contents

1	Lec	ture 3: Endogeneity and Instrumental Variables	1
	1.1	Motivation and Overlook	1
	1.2	Math Section	4
	1.3	Two-Stage Least Squares (2SLS)	10

1 Lecture 3: Endogeneity and Instrumental Variables

1.1 Motivation and Overlook

Example:

- Omitted variables bias
- Measurement error
- Simultaneous equations bias (reverse causality)

Our Goal

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

The endogenous variable x has a real impact on Y, and we aim to find the true value of β_1 .

1. Using an Instrumental Variable to Derive the Model's Covariance

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Taking the covariance of both sides with the instrumental variable z:

$$cov(Y, z) = cov(\beta_0 + \beta_1 X + \varepsilon, z)$$

Expanding the covariance expression:

$$cov(Y, z) = cov(\beta_0, z) + \beta_1 \times cov(X, z) + cov(\varepsilon, z)$$

Since the instrumental variable z is uncorrelated with both β_0 and the error term ε , these covariance terms disappear:

$$cov(Y, z) = \beta_1 \times cov(X, z)$$

Solving for β_1 :

$$\beta_1 = \frac{\text{cov}(Y, z)}{\text{cov}(X, z)}$$

Instrumental Variables (IV) estimator of β_1 , β_{IV} .

2. Reduced-form Equation: Indirect Least Square, ILS

$$x = \delta_0 + \delta_1 \times z + u$$

$$Y = \pi_0 + \pi_1 \times z + v$$

Reduced-form equation: Writing an endogenous variable in terms of exogenous variables.

$$x = \delta_0 + \delta_1 \times z + u$$

$$Y = \pi_0 + \pi_1 \times z + v$$

$$\delta_1 = \frac{\operatorname{cov}(x, z)}{\operatorname{var}(z)}$$

$$\pi_1 = \frac{\operatorname{cov}(Y, z)}{\operatorname{var}(z)}$$

We know:

$$Y = \beta_0 + \beta_1 \times x + \varepsilon$$

Regression coefficient:

$$\beta_1 = \frac{\text{cov}(Y, x)}{\text{var}(x)}$$

Using the instrumental variable:

$$\frac{\pi_1}{\delta_1} = \frac{\frac{\text{cov}(Y,z)}{\text{var}(z)}}{\frac{\text{cov}(x,z)}{\text{var}(z)}} = \frac{\text{cov}(Y,z)}{\text{cov}(x,z)} = \beta_{IV} = \beta_1$$

$$x = \delta_0 + \delta_1 \times z + u$$

$$Y = \pi_0 + \pi_1 \times z + v$$

$$\delta_1 = \frac{\operatorname{cov}(x, z)}{\operatorname{var}(z)}$$

$$\pi_1 = \frac{\text{cov}(Y, z)}{\text{var}(z)}$$

*Reduced-form Equation

$$x = \delta_0 + \delta_1 \times z + u$$

$$Y = \pi_0 + \pi_1 \times z + v$$

$$\delta_1 = \frac{\operatorname{cov}(x, z)}{\operatorname{var}(z)}$$

$$\pi_1 = \frac{\text{cov}(Y, z)}{\text{var}(z)}$$

*Indirect Least Squares (ILS) Method

$$Y = \beta_0 + \beta_1 \times x + \varepsilon$$

$$= \beta_0 + \beta_1 \times (\delta_0 + \delta_1 \times z + u) + \varepsilon$$

$$= \beta_0 + \beta_1 \times \delta_0 + \beta_1 \times \delta_1 \times z + \beta_1 \times u + \varepsilon$$

$$= (\beta_0 + \beta_1 \times \delta_0) + \beta_1 \times \delta_1 \times z + (\beta_1 \times u + \varepsilon)$$

$$\pi_0 = \beta_0 + \beta_1 \times \delta_0, \quad \pi_1 = \beta_1 \times \delta_1, \quad v = \beta_1 \times u + \varepsilon$$

Question: when IVs more than endogenous variables, the above two method fails.

3. Two Stage Least Squares (2SLS/TSLS)

*First Stage

$$x = \delta_0 + \delta_1 \times z + u$$

$$x = \hat{\delta_0} + \hat{\delta_1} \times z + \hat{u}$$

$$\hat{x} = \delta_0 + \delta_1 \times z$$

*Second Stage

$$Y = \beta_{0,2SLS} + \beta_{1,2SLS} \times \hat{x} + \varepsilon_{2SLS}$$

*Does the Model Have Endogeneity?

$$Y = \beta_0 + \beta_1 \times x + \varepsilon$$
$$= \beta_0 + \beta_1 \times (\hat{x} + \hat{u}) + \varepsilon$$
$$= \beta_0 + \beta_1 \times \hat{x} + \beta_1 \times \hat{u} + \varepsilon$$

$$cov(\hat{x}, \varepsilon_{2SLS}) = cov(\hat{x}, \beta_1 \times \hat{u} + \varepsilon)$$

$$= \beta_1 \times \text{cov}(\hat{x}, \hat{u}) + \text{cov}(\hat{x}, \varepsilon) = 0$$

When there exists many IVs:

*First Stage

$$x = \delta_0 + \delta_1 \times z_1 + \delta_2 \times z_2 + u$$
$$\hat{x} = \hat{\delta_0} + \hat{\delta_1} \times z_1 + \hat{\delta_2} \times z_2$$

*Second Stage

$$Y = \beta_{0.2SLS} + \beta_{1.2SLS} \times \hat{x} + \varepsilon_{2SLS}$$

1.2 Math Section

Assumption:

- 1. Linearity: $Y = X\beta + \epsilon$.
- 2. Full rank: rank(X) = k.
- 3. Exogeneity: $\mathbb{E}[\epsilon|X] = 0$.

Law of iterated expectations:

$$\mathbb{E}[\epsilon] = \mathbb{E}[\mathbb{E}[\epsilon|X]] = \mathbb{E}[0] = 0.$$

4. Homoscedasticity and nonautocorrelation:

$$\operatorname{Var}(\epsilon_i|X) = \sigma^2, \quad i = 1, 2, \dots, n.$$

$$\operatorname{Var}(\epsilon_i, \epsilon_i|X) = 0, \quad i \neq j, \quad \operatorname{Var}(\epsilon_i \epsilon) = \sigma^2 I.$$

5. X may be fixed and random.

We assume that there is an additional vector of variables z_i , with $L \geq k$.

- (1) **Exogeneity**: z_i is uncorrelated with disturbance ϵ_i .
- (2) **Relevance**: z_i is correlated with explanatory variable x_i .

- (3) Homoscedasticity: $\mathbb{E}[\epsilon_i^2|z_i] = \sigma^2$.
- (4) Random Sampling $(x_i, z_i, \epsilon_i) \stackrel{iid}{\sim}$.
- (5) Moments of x_i and z_i :

$$\mathbb{E}[x_i x_i'] = Q_{XX} < \infty, \quad \operatorname{rank}(Q_{XX}) = k.$$

$$\mathbb{E}[z_i z_i'] = Q_{ZZ} < \infty, \quad \operatorname{rank}(Q_{ZZ}) = L.$$

$$\mathbb{E}[z_i x_i'] = Q_{ZX} < \infty, \quad \operatorname{rank}(Q_{ZX}) = k.$$

$$(L \times k) \quad (\text{since } L \ge k).$$

(6) Exogeneity of Instruments:

$$\mathbb{E}[\epsilon_i|b_i] = 0.$$

1. OLS is biased.

$$\hat{\beta} = \beta + (X'X)^{-1}X'\epsilon.$$

$$\mathbb{E}[\hat{\beta}|X] = \beta + \mathbb{E}[(X'X)^{-1}X'\epsilon|X].$$

$$= \beta + (X'X)^{-1}X'\mathbb{E}[\epsilon|X].$$

$$= \beta + (X'X)^{-1}X'\eta \neq \beta$$

(biased).

2. OLS is inconsistent in big sample.

Recall:
$$\mathbb{E}[\epsilon|X] = 0$$
, $\mathbb{E}[\epsilon_i x_i]$

$$= \mathbb{E}\left[\mathbb{E}[\epsilon_i x_i | X]\right] = \mathbb{E}\left[x_i \mathbb{E}[\epsilon_i | X]\right] = 0.$$

2. OLS is inconsistent.

$$\hat{\beta} = \beta + (X'X)^{-1}X'\epsilon = \beta + \left(\frac{1}{n}\sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^{n} x_i \epsilon_i\right).$$

$$\frac{1}{n}\sum_{i=1}^{n} x_i x_i' \xrightarrow{p} Q_{XX}$$

 $\mathbb{E}[x_i \epsilon_i] = \mathbb{E}[x_i \eta] \neq 0.$

$$\frac{1}{n} \sum_{i=1}^{n} x_i \epsilon_i \xrightarrow{p} \eta \neq 0.$$

$$\Rightarrow \hat{\beta} \xrightarrow{p} \neq \beta.$$

moment non.

$$\mathbb{E}[x_i \epsilon_i] = \mathbb{E}[x_i (y_i - x_i' \beta)] = 0.$$

OLS?

3. A method of moment estimator β_{mom} sets the sample analogue to 0:

$$\frac{1}{n}\sum_{i=1}^{n}x_i(y_i - x_i'\beta_{\text{mom}}) = 0.$$

$$\sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i x_i'\right) \beta_{\text{mom}} = 0.$$

$$\left(\sum_{i=1}^{n} x_i x_i'\right) \beta_{\text{mom}} = \sum_{i=1}^{n} x_i y_i.$$

$$\beta_{\text{mom}} = \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\sum_{i=1}^{n} x_i y_i\right).$$

$$= (X'X)^{-1}X'y = \beta_{ols}.$$

IV Model Assumptions

• (1), (2), (3) were replaced with (7).

$$\mathbb{E}[x_i|z_i] = 0.$$

$$\mathbb{E}[z_i \epsilon_i] = \mathbb{E}[\mathbb{E}[z_i \epsilon_i | z_i]] = \mathbb{E}[z_i \mathbb{E}[\epsilon_i]] = 0.$$

$$\mathbb{E}[z_i(y_i - x_i'\beta)] = 0.$$

(In sample),

$$\frac{1}{n} \sum_{i=1}^{n} z_i'(y_i - x_i'\beta_{IV}) = 0.$$

$$\sum_{i=1}^{n} z_i y_i - \left(\sum_{i=1}^{n} z_i x_i'\right) \beta_{IV} = 0.$$

$$\left[\sum_{i=1}^{n} z_i x_i'\right] \beta_{IV} = \sum_{i=1}^{n} z_i y_i.$$

If L = k, then

$$\beta_{IV} = \left(\sum_{i=1}^{n} z_i x_i'\right)^{-1} \left(\sum_{i=1}^{n} z_i y_i\right).$$

$$\beta_{IV} = (Z'X)^{-1} Z'y.$$

$$\beta_{OLS} = (X'X)^{-1} X'y.$$

WTS: Consistency

When L = k, $\mathbb{E}[z_i x_i'] = Q_{ZX}$, and:

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'y.$$

$$= (Z'X)^{-1}Z'(X\beta + \epsilon).$$

$$= \beta + (Z'X)^{-1}Z'\epsilon.$$

$$= \beta + \left(\frac{1}{n}\sum_{i=1}^{n}z_{i}x'_{i}\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}z_{i}\epsilon_{i}\right).$$

$$\stackrel{p}{\to} \mathbb{E}[z_{i}x'_{i}] = Q_{ZX}, \quad \text{for using WLLN.}$$

$$\Rightarrow \hat{\beta}_{IV} \stackrel{p}{\to} \beta + (\mathbb{E}[z_{i}x'_{i}])^{-1}\mathbb{E}[z_{i}\epsilon_{i}].$$

$$\mathbb{E}[z_{i}\epsilon_{i}] = \mathbb{E}[\mathbb{E}[z_{i}\epsilon_{i}|z_{i}]] = \mathbb{E}[z_{i}\mathbb{E}[\epsilon_{i}|z_{i}]].$$

$$= \mathbb{E}[z_{i} \cdot 0] = 0.$$

$$\Rightarrow \hat{\beta}_{IV} \stackrel{p}{\to} \beta.$$

IV estimator is consistent.

WTS: Asymptotic normality proof

$$\hat{\beta}_{IV} - \beta = \left(\frac{1}{n} \sum_{i=1}^{n} z_i x_i'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} z_i \epsilon_i\right).$$

By CLT,

$$\sqrt{n}(\hat{\beta}_{IV} - \beta) = \left[\frac{1}{n} \sum_{i=1}^{n} z_i x_i'\right]^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} z_i \epsilon_i\right).$$

$$\xrightarrow{p} Q_{ZX}$$

$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} z_i \epsilon_i \right) = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} z_i \epsilon_i - \mathbb{E}[z_i \epsilon_i] \right).$$

$$\xrightarrow{d} N(0, \sigma^2 Q_{ZZ}).$$

$$Var(z_i \epsilon_i) = \mathbb{E}z_i \epsilon_i - 0'.$$
$$= \mathbb{E}[z_i \epsilon_i \epsilon_i' z_i'] = \mathbb{E}[\epsilon_i^2 z_i z_i'].$$

 $= \mathbb{E}[\mathbb{E}[\epsilon_i^2|z_i]z_iz_i'].$

$$= \sigma^2 \mathbb{E}[z_i z_i'] = \sigma^2 Q_{ZZ}.$$

By Slutsky's theorem,

$$\sqrt{n}(\hat{\beta}_{IV} - \beta) \to dN(0, \sigma^2 Q_{ZX}^{-1} Q_{ZZ} Q_{ZX}^{-1}).$$

Consistency.

But IV is biased:

$$\hat{\beta}_{IV} = \beta + (Z'X)^{-1}Z'\epsilon.$$

$$\mathbb{E}[\hat{\beta}_{IV}|X,Z] = \beta + (Z'X)^{-1}Z'\mathbb{E}[\epsilon|X,Z] \neq \beta.$$

Matrix dimensions:

$$Z: n \times L, \quad Z': L \times n, \quad X: n \times k.$$

 $\hat{\beta}_{IV} = (Z'X)^{-1}Z'y.$

$$L > k$$
.

When L > k:

$$X \to Z$$
 projection.

$$P_Z = Z(Z'Z)^{-1}Z'.$$

$$= ZCZ'Z'.$$

$$L$$
 L Z Z . . .

$$\hat{X} = P_Z X.$$

$$\hat{X} = Z(Z'Z)^{-1}Z'X.$$

$$L \times L$$
, $L \times n$, $L \times k$.

$$\hat{\beta}_{IV} = (\hat{X}'\hat{X})^{-1}\hat{X}'y.$$

$$= (X'P_ZX)^{-1}X'P_Zy.$$

Replaced the Z.

Question: Does the instrumental variable z need to be uncorrelated with the dependent variable y?

No!

• The instrumental variable z affects the dependent variable y through the endogenous variable x:

$$z \to x \to y$$

• The instrumental variable z does not directly affect the dependent variable y:

$$cov(z, y|x) = 0$$

• The instrumental variable z can and must influence the dependent variable y only through the endogenous variable x.

Suppose that there is a set of instrumental variables $Z = (Z_0 \quad Z_1 \quad \dots Z_K)$ that meet the following condition:

- 1. plim $n^{-1}Z'X = Q_{ZX}$ (non-singular)
- 2. plim $n^{-1}Z'Z = Q_{ZZ}$ (positive definite)
- 3. plim $n^{-1}Z'u = 0$

$$Y = X\beta + u \Rightarrow Z'Y = Z'X\beta + Z'u$$

Let $\tilde{\beta}$ be an estimator of β . Then we have:

$$Z'Y = Z'X\tilde{\beta} + Z'\tilde{u} \Rightarrow Z\tilde{U} =$$

$$Z'(Y - X\tilde{\beta}) \Rightarrow \tilde{u} = Y - X\tilde{\beta}$$

$$(Z'\tilde{u})(Z'\tilde{u}) = (Z'Y - Z'X\tilde{\beta})'(Z'Y - Z'X\tilde{\beta})$$

$$= Y'Z'ZY - 2\tilde{\beta}'X'Z'ZY + \tilde{\beta}'X'Z'Z'X\tilde{\beta}$$

$$\frac{\partial(Z'\tilde{u})(Z'\tilde{u})}{\partial\tilde{\beta}} = -2X'Z'ZY + 2X'Z'Z'X\tilde{\beta} = 0$$

hence $X'Z'ZY = X'Z'X'\tilde{\beta}$. Then premultiplying by $(X'Z)^{-1}$ leads to

$$\tilde{\beta}^{IV} = (Z'X)^{-1}Z'Y$$

We further have:

$$\begin{split} \tilde{\beta}^{IV} &= (Z'X)^{-1}Z'(X\beta + u) \\ &= \beta + (Z'X)^{-1}Z'u \\ \text{plim } \tilde{\beta}^{IV} &= \beta + \left[\text{plim} \left(\frac{Z'X}{n} \right) \right]^{-1} \cdot \text{plim} \frac{Z'u}{n} \\ &= \beta + Q_{ZX}^{-1} \cdot 0 = \beta \end{split}$$

Therefore $\tilde{\beta}^{IV}$ is consistent.

1.3 Two-Stage Least Squares (2SLS)