DD2448 Foundations of Cryptography Lecture 12

Douglas Wikström
KTH Royal Institute of Technology
dog@kth.se

April 28, 2020

Definition. Let G be a cyclic group of order q and let g be a generator G. The **discrete logarithm** of $y \in G$ in the basis g (written $\log_g y$) is defined as the unique $x \in \{0,1,\ldots,q-1\}$ such that

$$y = g^{x}$$
.

Compare with a "normal" logarithm! ($\ln y = x \text{ iff } y = e^x$)

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7,12) = 1.

What is $\log_7 3$?

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7,12) = 1.

What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9)$

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7,12) = 1.

What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{13}^* .

What is log₇ 9?

Example. 7 is a generator of \mathbb{Z}_{12} additively, since gcd(7,12) = 1.

What is $\log_7 3$? $(9 \cdot 7 = 63 = 3 \mod 12$, so $\log_7 3 = 9$)

Example. 7 is a generator of \mathbb{Z}_{13}^* .

What is $\log_7 9$? $(7^4 = 9 \mod 13, \text{ so } \log_7 9 = 4)$

Discrete Logarithm Assumption

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm (DL) Assumption** in G states that if generators g_n and y_n of G_{q_n} are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g_n, y_n) = \log_{g_n} y_n\right]$$

is negligible.

Discrete Logarithm Assumption

Let G_{q_n} be a cyclic group of prime order q_n such that $\lfloor \log_2 q_n \rfloor = n$ for $n = 2, 3, 4, \ldots$, and denote the family $\{G_{q_n}\}_{n \in \mathbb{N}}$ by G.

Definition. The **Discrete Logarithm (DL) Assumption** in G states that if generators g and y of G are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g,y) = \log_g y\right]$$

is negligible.

We usually remove the indices from our notation!

Diffie-Hellman Assumption

Definition. Let g be a generator of G. The **Diffie-Hellman** (**DH**) **Assumption** in G states that if $a,b\in\mathbb{Z}_q$ are randomly chosen, then for every polynomial time algorithm A

$$\Pr\left[A(g^a,g^b)=g^{ab}\right]$$

is negligible.

Decision Diffie-Hellman Assumption

Definition. Let g be a generator of G. The **Decision Diffie-Hellman (DDH) Assumption** in G states that if $a,b,c\in\mathbb{Z}_q$ are randomly chosen, then for every polynomial time algorithm A

$$\left| \mathsf{Pr} \left[A(g^a, g^b, g^{ab}) = 1 \right] - \mathsf{Pr} \left[A(g^a, g^b, g^c) = 1 \right] \right|$$

is negligible.

Relating DL Assumptions

- ► Computing discrete logarithms is at least as hard as computing a Diffie-Hellman element g^{ab} from g^a and g^b .
- ► Computing a Diffie-Hellman element g^{ab} from g^a and g^b is at least as hard as distinguishing a Diffie-Hellman triple (g^a, g^b, g^{ab}) from a random triple (g^a, g^b, g^c) .
- ► In most groups where the DL assumption is conjectured, DH and DDH assumptions are conjectured as well.
- ► There exists special elliptic curves where DDH problem is easy, but DH assumption is conjectured!

Security of El Gamal

- Finding the secret key is equivalent to DL problem.
- Finding the plaintext from the ciphertext and the public key and is equivalent to DH problem.
- ▶ The CPA security of El Gamal is equivalent to DDH problem.

Brute Force and Shank's

Let G be a cyclic group of order q and g a generator. We wish to compute $\log_g y$.

- **Brute Force.** O(q)
- **Shanks.** Time and **Space** $O(\sqrt{q})$.
 - 1. Set $z = g^m$ (think of m as $m = \sqrt{q}$).
 - 2. Compute z^i for $0 \le i \le q/m$.
 - 3. Find $0 \le j \le m$ and $0 \le i \le q/m$ such that $yg^j = z^i$ and output x = mi j.

Birthday Paradox

Lemma. Let q_0, \ldots, q_k be randomly chosen in a set S. Then

- 1. the probability that $q_i=q_j$ for some $i\neq j$ is approximately $1-\mathrm{e}^{-\frac{k^2}{2s}}$, where s=|S|, and
- 2. with $k \approx \sqrt{-2s \ln(1-\delta)}$ we have a collision-probability of δ .

Proof.

$$\left(\frac{s-1}{s}\right)\left(\frac{s-2}{s}\right)\cdot\ldots\cdot\left(\frac{s-k}{s}\right)\approx\prod_{i=1}^k e^{-\frac{i}{s}}\approx e^{-\frac{k^2}{2s}}.$$

Pollard- ρ (1/2)

Partition G into S_1 , S_2 , and S_3 "randomly".

▶ Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

Pollard- ρ (1/2)

Partition G into S_1 , S_2 , and S_3 "randomly".

▶ Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

▶ Each $\alpha_i = g^{a_i} y^{b_i}$, where $a_i, b_i \in \mathbb{Z}_q$ are known!

Pollard- ρ (1/2)

Partition G into S_1 , S_2 , and S_3 "randomly".

▶ Generate "random" sequence $\alpha_0, \alpha_1, \alpha_2 \dots$

$$\alpha_0 = g$$

$$\alpha_i = \begin{cases} \alpha_{i-1}g & \text{if } \alpha_{i-1} \in S_1 \\ \alpha_{i-1}^2 & \text{if } \alpha_{i-1} \in S_2 \\ \alpha_{i-1}y & \text{if } \alpha_{i-1} \in S_3 \end{cases}$$

- ▶ Each $\alpha_i = g^{a_i} y^{b_i}$, where $a_i, b_i \in \mathbb{Z}_q$ are known!
- ▶ If $\alpha_i = \alpha_j$ and $(a_i, b_i) \neq (a_j, b_j)$ then $y = g^{(a_i a_j)(b_j b_i)^{-1}}$.

Pollard- ρ (2/2)

- ▶ If $\alpha_i = \alpha_i$, then $\alpha_{i+1} = \alpha_{j+1}$.
- ▶ The sequence $(a_0, b_0), (a_1, b_1), \ldots$ is "essentially random".
- ► The Birthday bound implies that the (heuristic) expected running time is $O(\sqrt{q})$.
- We use "double runners" to reduce memory.

▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_j,i}$ as an **integer**.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_j,i}$ as an **integer**.
 - 2. If g^{s_j} factored in \mathcal{B} and $e_j = (e_{j,1}, \dots, e_{j,B})$ is linearly independent of e_1, \dots, e_{j-1} , then $j \leftarrow j+1$.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
 - 1. Choose $s_j \in \mathbb{Z}_q$ randomly and attempt to factor $g^{s_j} = \prod_i p_i^{e_j,i}$ as an **integer**.
 - 2. If g^{s_j} factored in \mathcal{B} and $e_j = (e_{j,1}, \dots, e_{j,B})$ is linearly independent of e_1, \dots, e_{j-1} , then $j \leftarrow j+1$.
 - 3. If j < B, then go to (1)

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.

- ▶ Let $\mathcal{B} = \{p_1, \dots, p_B\}$ be a set of small prime **integers**.
- ▶ Compute $a_i = \log_g p_i$ for all $p_i \in \mathcal{B}$.
- ► Repeat:
 - 1. Choose $s \in \mathbb{Z}_q$ randomly.
 - 2. Attempt to factor $yg^s = \prod_i p_i^{e_i}$ as an **integer**.
 - 3. If a factorization is found, then output $(\sum_i a_i e_i s) \mod q$.

Excercise: Why doesn't this work for any cyclic group?