Métodos Numéricos - 2017 OBLIGATORIO 2

Interpolación en Confiabilidad de Redes

El cometido del presente obligatorio es incursionar en el área de Confiabilidad de Redes, y la aplicación de Métodos Numéricos para el cálculo del polinomio confiabilidad de una red. A continuación se define el polinomio que es objeto de estudio, y dos métodos basados en interpolación para su deducción.

Se considera una red representada por un grafo simple G=(V,E) con m=|E| aristas y n=|V| vértices. Sabemos que los vértices son perfectos (no fallan), mientras que sus aristas fallan independientemente con igual probabilidad $p\in[0,1]$. Denotemos mediante F_i a la cantidad de subgrafos conexos de G que tienen exactamente m-i aristas. La confiabilidad clásica, denotada mediante $R_G(p)$, es la probabilidad de que la red resultante sea conexa, y se calcula de la siguiente manera:

$$R_G(p) = \sum_{i=0}^{m} F_i p^{m-i} (1-p)^i$$
 (1)

Obsérvese que $R_G(p)$ es un polinomio en la variable p, y sus coeficientes son enteros.

Método 1 - Monte Carlo Crudo (MCC)

- 1. Elegir m+1 abscisas $0 \le p_0 < \ldots < p_m \le 1$.
- 2. Para cada p_i elegido, sortear N subgrafos aleatorios independientes de $G_{(i,j)}$, $j=1,\ldots,N$, siguiendo una ley Bernoulli de éxito p_i en cada arista. Si $G_{(i,j)}$ es conexo ponemos $\phi(i,j)=1$; en caso contrario $\phi(i,j)=0$.
- 3. Estimar $R_G(p_i)$ mediante $R'(p_i) = \frac{1}{N} \sum_{j=1}^N \phi(i,j)$
- 4. Aplicar interpolación polinómica por los puntos $(p_i, R'(p_i))$ para obtener el polinomio R'(p).
- 5. Redondear los coeficientes de R'(p) a valores enteros.

Método 2 - F-Monte Carlo (FMC)

- 1. Para cada i, sortear N subgrafos aleatorios independientes con m-i aristas $G_{(i,j)}$, $j=1,\ldots,N$ con equiprobabilidad. Si $G_{(i,j)}$ es conexo ponemos $\phi(i,j)=1$; en caso contrario $\phi(i,j)=0$.
- 2. Estimar el coeficiente F_i mediante $F_i' = \binom{N}{i} \frac{1}{N} \sum_{j=1}^{N} \phi(i,j)$.
- 3. Construir el polinomio R'(p) reemplazando los coeficientes en la Expresión (1).

La intención de este obligatorio es familiarizarse con la aplicación de los métodos FMC, MCC y otros métodos para la estimación del polinomio confiabilidad de una red. Asimismo, hacer uso de diferentes métodos de interpolación polinómica para su obtención, utilizando abscisas tanto equiespaciadas como no equiespaciadas.

1. Fundamentos

- 1. Leer el artículo [2]. Indicar si se utiliza interpolación equiespaciada o no.
- 2. ¿Cuál es la cantidad de coeficientes del polinomio confiabilidad estimados en [2]?
- 3. Indicar el modo de redondeo utilizado.

2. Análisis Experimental

- 1. Calcular de forma analítica F_i para los grafos C_n y P_n .
- 2. Estudiar el rendimiento de MCC para estimar $R_{C_n}(p)$ y $R_{P_n}(p)$, para $n \in \{5, 10, 50\}$. Se recomienda variar las abscisas de interpolación y N.
- 3. Repetir la parte anterior con FMC.
- 4. Repetir 2 y 3, considerando las sugerencias del artículo [1].
- 5. Mostrar un grafo donde ambos métodos fallan con abscisas equiespaciadas y N=100.

3. Profundización

- Explicar detalladamente el algoritmo de arista contracción-sustracción para el cálculo exacto de la confiabilidad de una red.
- 2. Calcular el orden computacional del algoritmo anterior.
- Seleccionar grafos de prueba, y mostrar el rendimiento de las técnicas de estimación desarrolladas en contraste con la solución exacta obtenida mediante sustracción-contracción.

Referencias

- [1] Trefethen Lloyd N. Six Myths of Polynomial Interpolation and Quadrature. Technical report, Oxford University, July 2011.
- [2] F. Robledo, P. Romero, and P. Sartor. A novel interpolation technique to address the edge-reliability problem. In 2013 5th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pages 187–192, Sept 2013.