Interaction Analysis for Multi-Loop Control

Multivariable Process Control

- Industrial Processes
 - multivariable (multiple inputs influence same output) and exhibit strong interaction among the variables
- Conventional Control scheme
 - Multiple Single Input Single Output PID controllers used for controlling plant (Multi-Loop Control)
- Consequences
 - Loop Interactions
 - Lack of coordination between different PID loops
 - Neighboring PID loops can co-operate with each other or end up opposing / disturbing each other

Shell Control Problem

Controlled Outputs :

- (y1) Top End Point
- (y2) Side Endpoint
- (y3) Bottom Reflux Temperature

Manipulated Inputs :

- (u1) Top Draw
- (u2) Side Draw
- (u3) Bottom Reflux Duty

Unmeasured Disturbances:

- (d₁) Upper reflux
- (d₂) Intermediate reflux

Shell Control Problem

- Control Scheme 1
 - PID-1: (y1) Top End Point (u1) Top Draw
 - PID-2: (y2) Side Endpoint (u2) Side Draw
 - PID-3: (y3) Bottom Reflux Temperature (u3) Bottom Reflux Duty
- Control Scheme 2
 - PID-1: (y2) Side End Point (u1) Top Draw
 - PID-2: (y1) Top Endpoint (u2) Side Draw
 - PID-3: (y3) Bottom Reflux Temperature –(u3) Bottom Reflux Duty

How to examine above options systematically and reach a decision ?

Tennesse Eastman Problem

Primary Controlled Variable: G conc in Product and Product flow rate

Input - Output Variables

Controlled	Penalty	Manipulated	Penalty on
variable	on error	Input	input moves
		Reactor level setpoint	1
		Stripper level setpoint	1
% G in product	5	Separator level setpoint	1
production rate, F11	5	Reactor pressure setpoint	0.2
% B in purge	10	F1	1
% A in feed	2	F2	1
% E in feed	5	F4	1
reactor pressure	5	F8	1
		Reactor temperature	1
		Separator temperature	1

Loop Interactions

- Large loop interactions :
 - can lead to poor quality of control due to lack of coordination among PID controllers
- Solution strategy:
 - Choose controller pairing with minimal interactions
 - De-tune the controllers to minimize loop interactions
 - Design multi-variable controllers, which simultaneously
 Change all inputs by considering errors in all the outputs

Quadruple Tank Process

Schematic of Quadruple Tank Process

Block Diagram: Quad Tank

Loop Interactions: Quad Tank

Interaction Analysis

Assume a loop pairing say y_1-u_1 and perform the following experiments

- With all loops open, make a step change in u_1 to u_1 + Δu and measure the change in output Δy_1 .
- We will term this as a direct effect.
- With all loops except the u_1-y_1 loop closed, repeat the same change in u_1 .
- There will be change in y₁ because of the direct effect but also there will be a retaliatory effect because u₂ changes to keep y₂ constant.
- We will term this change as $\Delta y_1 + \Delta y_{1r}$

Interaction Analysis

• Ratio of these two terms can be defined as λ_{11} (for the y1-u1 pairing) as

$$\lambda_{11} = \Delta y_1 / (\Delta y_1 + \Delta y_{1r})$$

This is called relative gain

- Compute relative gain for each assumed input/output pairing
- Depending on the values of this index for various assumed loop pairings (step 1), decision can be taken on the final loop pairing.
- This decision making is based on steady state analysis only.

Relative Gain Array (RGA)

RGA: A measure of loop interaction used for deciding loop pairing of SISO controllers

$$\lambda_{ij} = \frac{\left[\Delta \mathbf{y}_i \, / \, \Delta \mathbf{u}_j \, \right]_{\text{open_loop}}}{\left[\Delta \mathbf{y}_i \, / \, \Delta \mathbf{u}_j \, \right]_{\text{all but } \mathbf{y}_i - \mathbf{u}_j \text{loop closed}}}$$

y: Measured outputs

u: Manipulated Inputs

 $[\Delta y_i / \Delta u_j]$: Steady state gain / sensitivity

between i'th op and j'th i/p

Calculation of RGA

Let us assume pairing y_1 - u_1

Steady state model

$$\Delta y_1 = k_{11} \Delta u_1 + k_{12} \Delta u_2$$

 $\Delta y_2 = k_{21} \Delta u_1 + k_{22} \Delta u_2$

 k_{ij} : Stesdy state gain / sensitivity between output i and input j

$$\left[\frac{\Delta y_1}{\Delta u_1}\right]_{Open-Loop} = k_{11}$$

Calculation of RGA

Now consider the situation where y_2-u_2 loop is closed and perfectly controlled

$$\Delta y_2 = k_{21} \Delta u_1 + k_{22} \Delta u_2 = 0$$
$$\Delta u_2 = -(k_{12} / k_{22}) \Delta u_1$$

$$\Delta y_1 = k_{11} \Delta u_1 + k_{12} \Delta u_2 = \left[k_{11} - \frac{k_{12} k_{21}}{k_{22}} \right] \Delta u_1$$

Calculation of RGA

$$\left[\frac{\Delta y_{1}}{\Delta u_{1}}\right]_{y_{2}-u_{2} Loop Closed} = \left[k_{11} - \frac{k_{12}k_{21}}{k_{22}}\right]$$

$$\Rightarrow \lambda_{11} = \frac{1}{\left[1 - \frac{k_{12}k_{21}}{k_{11}k_{22}}\right]}$$

Other relative gains can be easily computed as follows

$$\lambda_{12} = \lambda_{21} = 1 - \lambda_{11}$$
$$\lambda_{22} = \lambda_{11}$$

RGA Matrix (Λ) for 2×2 system

$$\Lambda = \begin{bmatrix} \lambda & 1 - \lambda \\ 1 - \lambda & \lambda \end{bmatrix}$$

RGA is independent of variable scaling

Wood-Berry Column

Pilot scale distillation column

$$\begin{bmatrix} x_D(s) \\ x_B(s) \end{bmatrix} = \begin{bmatrix} \frac{12.8e^{-s}}{16.7s+1} & \frac{-18.9e^{-3s}}{21s+1} \\ \frac{6.6e^{-7s}}{10.9s+1} & \frac{-19.4e^{-s}}{14.4s+1} \end{bmatrix} \begin{bmatrix} R(s) \\ S(s) \end{bmatrix}$$
Distillate Composition

Steady Stete Gain Matrix
$$\begin{bmatrix} \Delta x_D \\ \Delta x_B \end{bmatrix} = \begin{bmatrix} 12.8 & -18.9 \\ 6.6 & -19.4 \end{bmatrix} \begin{bmatrix} \Delta R \\ \Delta S \end{bmatrix}$$
Bottom Composition

Steam Flow-rate

Wood-Berry Column

$$\lambda = 1/0.498$$

$$RGA(\Lambda) = \begin{bmatrix} 2.0019 & -1.0019 \\ -1.0019 & 2.0019 \end{bmatrix}$$

Any loop pairing will result in loop interactions

Pairing

$$k_c$$
 τ_I (min)

 $x_D - R$
 0.604
 16.37

 $x_B - B$
 -0.127
 14.46

Wood-Berry Column

Multi-Loop PID Control Change in closed loop behavior due to loop interactions

RGA calculation for MIMO Process

 $\frac{\partial \mathbf{y}_i}{\partial \mathbf{u}_j} = \mathbf{K}_{ij}$ (steady state gain between input j and output i)

Steady state model : $\mathbf{y} = \mathbf{K}\mathbf{u} \Rightarrow \mathbf{u} = \mathbf{K}^{-1}\mathbf{y} = \widetilde{\mathbf{K}}\mathbf{y}$

When all but $\mathbf{y}_i - \mathbf{u}_i$ loop are closed and perfectly controlled

$$\begin{aligned} \mathbf{y} &= \begin{bmatrix} 0 & \dots & \mathbf{y}_i & \dots & 0 \end{bmatrix}^T \\ &= \begin{bmatrix} \frac{\partial \mathbf{u}_1}{\partial \mathbf{u}_j} \\ \vdots \\ \frac{\partial \mathbf{u}_n}{\partial \mathbf{u}_j} \end{bmatrix} &= \begin{bmatrix} \mathbf{K} \\ \left(\frac{\partial \mathbf{y}_i}{\partial \mathbf{u}_j} \right)_c \\ \vdots \\ 0 \end{bmatrix} &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{M}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{M}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{M}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{M}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{M}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{M}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{M}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{M}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\ \vdots \\ \mathbf{K}_{ni} \end{bmatrix}^{\mathbf{A} \cdot \cdots \cdot} \\ &= \begin{bmatrix} \mathbf{K}_{1i} \\$$

MIMO RGA Calculation

For general (n×n)system Given Steady Stage Gain Matrix **K**

$$\mathsf{RGA}\left(\Lambda\right) = \mathbf{K} \otimes \left(\mathbf{K}^{-1}\right)^{\!\! T}$$

where ⊗ denotes Schur Product

(element by element multiplication of two matrices)

Properties

- Summation of all elements in any row = 1
- 2. Summation of all elements in any column = 1
- RGA is independent of scaling used for input of output variables

Analysis of RGA

- If $\lambda_{11} = 1 \Rightarrow$ retaliatory action is not present. So assumed loop pairing is correct because there is no interaction from the other loop.
- If $0 < \lambda_{11} < 1 \Rightarrow$ retaliatory action is comparable to the direct action but is in the same direction. The assumed loop pairing may be chosen only if the index is closer to 1 (say 0.8).
- If $\lambda_{11} = 0 \Rightarrow$ Retaliatory action is much greater than the direct action. The assumed loop pairing is incorrect. The loop pairing u_1-y_2 is preferable

$$\bullet \ \lambda = \frac{K_d}{K_d + K_r}$$

- $\lambda = 1$ means $K_r = 0$
- $\lambda < 1$ means K_r finite
- $\lambda > 1$ when $|K_d| > |K_r|$ but direction of Kr is opposite to Kd
- Control objective: m,x by manipulating m1 and m2
- Desired value for m and x is m* and x*. Find RGA

Analysis of RGA

 If λ₁₁ > 1 ⇒ Retaliatory action is in opposite direction to the direct action but is smaller in magnitude than the direct. The assumed loop pairing may be chosen only if the index is close to 1.

 If λ11 < 0, Retaliatory effect is larger and opposite in direction to the main effect. Do not choose this loop pairing.

Suggested Loop Pairing

Refinery Distillation Column

$$RGA = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \\ y_1 & 0.931 & 0.15 & 0.08 & -0.164 \\ -0.011 & -0.429 & 0.286 & 1.154 \\ -0.135 & 3.314 & -0.27 & -1.91 \\ y_4 & 0.215 & -2.03 & 0.9 & 1.919 \end{bmatrix}$$

Outputs

 Y_1 : Top Composition Y_2 : Bottom Composition Y_3 : Side stream 1 Composition Y_4 : Side Stream 2 Composition

Inputs

u₁: Top Draw u₂: Bottom Draw u₃: Side Draw 1 u₄: Side Draw 2

RGA analysis: Non-square System

Consider process with 2 measurements and 3 inputs

$$\begin{bmatrix} \Delta y_1 \\ \Delta y_2 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.07 & 0.04 \\ 0.004 & -0.003 & -0.001 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

Best
$$\Delta u_1 \quad \Delta u_2$$
 Combination $RGA_1 = \frac{\Delta y_1}{\Delta y_2} \begin{bmatrix} 0.84 & 0.16 \\ 0.16 & 0.84 \end{bmatrix}$ $\Delta u_2 \quad \Delta u_3$ $\Delta u_2 \quad \Delta u_3$ $AU_3 \quad AU_4 \quad AU_5 \quad AU_5 \quad AU_6 \quad AU_6$

Singular Value Analysis

Powerful analytical tool for

- Selection of controlled, measured and manipulated variables
- Determination of best multi-loop configuration
- Evaluation of robustness (insensitivity to changes in plant behavior) of a control scheme

$$\Delta \mathbf{Y} = \mathbf{K}\Delta \mathbf{U}$$
 (**K**: Steady State Gain Matrix)
Singular Values $(\sigma_1, \sigma_2, ... \sigma_r) \equiv$
+ve Square Root of Eigen-values of $\mathbf{K}^T \mathbf{K}$
Roots of polynomial

$$\det(s\mathbf{I} - \mathbf{K}^T \mathbf{K}) = 0$$

Condition Number (CN) =
$$\|\mathbf{K}\|_2 \|\mathbf{K}^{-1}\|_2 = \frac{\max(\sigma_i)}{\min(\sigma_i)}$$

Singular Value Analysis

- Non-square systems (number of inputs not equal to number of outputs)
 - SVA can be used to find a square subset with least difficulties in control

- Larger condition number implies difficulties in controlling a system
 - Among multiple possibilities, choose subset with minimum condition number

 Limitation: Singular values are dependent on scaling of input and output variables

Singular Value Decomposition

$$K = W \Sigma V^{T}$$

 Σ is diagonal matrix of singular values $(\sigma_1, \sigma_2, ..., \sigma_r)$

The singular values are the positive square roots of the eigenvalues of

$$K^TK$$
 ($r = \text{rank of } K^TK$)

W, V are input and output singular vectors Columns of W and V are orthonormal. Also

$$WW^{T} = I$$
$$VV^{T} = I$$

Calculate Σ , W, V using MATLAB (svd = singular value decomposition)

Condition number (CN) is the ratio of the largest to the smallest singular value and indicates if *K* is ill-conditioned.

Singular Value Analysis

SVD of K : $K = W \Sigma V^T$

Pairing rule:

Output associated with the largest magnitude element (without regard to sign) of the W_1 vector with the manipulated variable associated with the largest magnitude element (without regard to sign) of the V_1 vector. Same logic will apply for $W_2 - V_2$... $W_n - V_n$ vectors.

Alternate Method

- Arrange the singular values in order of largest to smallest and look for any $\sigma_i/\sigma_{i-1} > 10$; then one or more inputs (or outputs) can be deleted.
- Delete one row and one column of *K* at a time and evaluate the properties of the reduced gain matrix.

Example

$$K = \begin{bmatrix} 0.48 & 0.90 & -0.006 \\ 0.52 & 0.95 & 0.008 \\ 0.90 & -0.95 & 0.020 \end{bmatrix} \quad \text{RGA} = \begin{bmatrix} -2.4376 & 3.0241 & 0.4135 \\ 1.2211 & -0.7617 & 0.5407 \\ 2.2165 & -1.2623 & 0.0458 \end{bmatrix}$$

$$\boldsymbol{W} = \begin{bmatrix} 0.5714 & 0.3766 & 0.7292 \\ 0.6035 & 0.4093 & -0.6843 \\ -0.5561 & 0.8311 & 0.0066 \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} 1.618 & 0 & 0 \\ 0 & 1.143 & 0 \\ 0 & 0 & 0.0097 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1.618 & 0 & 0 \\ 0 & 1.143 & 0 \\ 0 & 0 & 0.0097 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 0.0541 & 0.9984 & 0.0151 \\ 0.9985 & -0.0540 & -0.0068 \\ -0.0060 & 0.0154 & -0.9999 \end{bmatrix}$$

Furnace Control

$$\begin{bmatrix} T_{HC}(s) \\ O_2(s) \end{bmatrix} = \begin{bmatrix} \frac{-13.235e^{-4s}}{4.22s+1} & \frac{226.95e^{-4s}}{4.75s+1} \\ \frac{0.1445e^{-4s}}{4.434s+1} & \frac{-1.96e^{-4s}}{3.98s+1} \end{bmatrix} \begin{bmatrix} F_{air}(s) \\ F_{fuel}(s) \end{bmatrix}$$

$$\lambda = -3.778$$
 Singular Values $\sigma_1 = 227.34 \ \sigma_2 = 0.0302$ Suggested Pairing $\sigma_1 = 227.34 \ \sigma_2 = 0.0302$ Condition Number = 7530.5

Suggested Pairing

$$T_{HC} - F_{fuel}$$
 and $O_2 - F_{air}$

Singular Values

$$\sigma_1 = 227.34$$
 $\sigma_2 = 0.0302$

Large CN: Difficult to Control

4-Component Distillation Column

Table 18.2 Condition Numbers for the Gain Matrices Relating Column Controlled Variables to Various Sets of Manipulated Variables (Roat et al., 1986)

Controlled Variables

 x_D = Mole fraction of propane in distillate D

 x_{64} = Mole fraction of isobutane in tray 64 sidedraw

 x_{15} = Mole fraction of *n*-butane in tray 15 sidedraw

 $x_B =$ Mole fraction of isopentane in bottoms B

Possible Manipulated Variables

L = Reflux flow rate B = Bottoms flow rate

D = Distillate flow rate $S_{64} = Sidedraw$ flow rate at tray 64

V =Steam flow rate $S_{15} =$ Sidedraw flow rate at tray 15

Strategy Numbera	Manipulated Variables	Condition Number
1	L/D , S_{64} , S_{15} , V	9,030
2	V/L , S_{64} , S_{15} , V	60,100
3	$D/V, S_{64}, S_{15}, V$	116,000
4	D, S_{64}, S_{15}, V	51.5
5	L, S_{64}, S_{15}, B	57.4
6	L, S_{64}, S_{15}, V	53.8

^a In each control strategy, the first controlled variable is paired with the first manipulated variable, and so on. Thus, for Strategy 1, x_D is paired with L/D, and x_B is paired with V.

Niederlinsky Index

- Consider MIMO system whose inputs and outputs are paired as $y_1 u_1, y_2 u_2, \dots, y_n u_n$ i.e, Transfer Function matrix G(s) is arranged such that transfer functions relating paired inputs and outputs are arranged along the diagonal.
- Further, let each element of G(s) be (a) rational and (b) open loop stable.
- Also, let n SISO feedback controllers with integral action be designed such that each SISO loop is stable when all the rest (n-1) loops are open.
- Under these assumptions, the multi-loop control system will be unstable for all possible values of controller parameters if the Niederlinsky Index (NI) defined as $N_i = \frac{\det[G(0)]}{\prod_{i=1}^n G_{ii}(0)} < 0$

Furnace Control

$$\begin{bmatrix} T_{HC}(s) \\ O_2(s) \end{bmatrix} = \begin{bmatrix} \frac{-13.235e^{-4s}}{4.22s+1} & \frac{226.95e^{-4s}}{4.75s+1} \\ \frac{0.1445e^{-4s}}{4.434s+1} & \frac{-1.96e^{-4s}}{3.98s+1} \end{bmatrix} \begin{bmatrix} F_{air}(s) \\ F_{fuel}(s) \end{bmatrix}$$

$$RGA(\Lambda) = \begin{bmatrix} -3.778 & 4.778 \\ 4.778 & -3.778 \end{bmatrix}$$

Suggested Pairing: $T_{HC} - F_{fuel}$ and $O_2 - F_{air}$

Rearrange tarnsfer function matrix such that paired variables are on main diagonal

$$\begin{bmatrix} T_{HC}(s) \\ O_2(s) \end{bmatrix} = \begin{bmatrix} \frac{226.95e^{-4s}}{4.75s + 1} & \frac{-13.235e^{-4s}}{4.22s + 1} \\ \frac{-1.96e^{-4s}}{3.98s + 1} & \frac{0.1445e^{-4s}}{4.434s + 1} \end{bmatrix} \begin{bmatrix} F_{fuel}(s) \\ F_{air}(s) \end{bmatrix}$$

$$Ni = det \begin{bmatrix} 226.95 & -13.235 \\ -1.96 & 0.1445 \end{bmatrix} \times \frac{1}{226.96 \times 0.1445} = 0.209 > 0$$

⇒ Process is integral controllable

Multi-Loop PID Control

 After selection of loop pairings with minimum interactions, one can design controllers for individual loops.

- Presence of interaction and retaliatory effects from other loops may require that the controller be detuned for acceptable performance.
 - BLT Detuning method
 - Sequential Loop Tuning
 - Independent Loop Tuning

Biggest Log Modulus Tuning (BLT)

SISO Loop Design Review:

- Characteristic Eqn. $1 + g_c(s)$ $g_p(s) = 1 + G_{OL}(s) = 0$
- Nyquist Plot: depicts real part of $G_{OL}(s)$ on X-axis and imaginary part of $G_{OL}(s)$ on Y-axis as $\omega \to \infty$

Nyquist Stability Criteria:

- A feedback control system will be unstable if the Nyquist plot of $G(j\omega)$ encircles point (-1,0) as $\omega \to \infty$
- The number of encirclements correspond to the number of roots of the characteristic equation that lie in R.H.P. of s –plane assuming that the process is open loop stable.

BLT Method

A measure of distance of $G_{OL}(j\omega)$ contour from (-1,0) is given as

$$L_c(s) = 20 \log \left| \frac{G_{OL}(s)}{1 + G_{OL}(s)} \right|$$

Suggested design specification for Log Modulus: $L_c^{max} \le 2 \ dB$ Log Modulus Design:

Iteratively choose PI controller parameters K_c , τ_I such that the design specification is met.

Multivariable Process:

$$Y(s) = \{ [I + G_c(s)G_p(s)]^{-1}G_p(s)G_c(s) \} R(s)$$

Characteristic Eqn. : $\det[I + G_c(s)G_p(s)] = 0$

BLT Method

Define $f(s) = -1 + \det[I + G_c(s)G_p(s)]$

Encirclement of (-1,0) by $f(j\omega)$ would indicate instability.

Define a multivariable closed loop log modulus as

$$L_c^m = 20 \log \left| \frac{f(s)}{1 + f(s)} \right|$$

Suggested design specification for Log Modulus: $L_c^m \leq 2n \ dB$ for n-dimension system

Tuning Procedure

- Calculate Ziegler -Nichol's tuning for n individual PI controllers
- Assume a factor F such that 2 ≤ F ≤ 5
- De tune PI controllers as follows:
- $K_{c,j} = K_j^{ZN}/F$ $\tau_{I,j} = \tau_I^{ZN}F$ for j=1,2,.. N
- Iteratively choose F such that criteria $L_c^m = 2n$ is satisfied.

BLT: Example

TABLE 4.1.
Process Open-Loop Transfer Functions of 2 × 2 Systems

	TS (Tyreus stabilizer)	WB (Wood and Berry)	VL (Vinante and Luyben)	(Wardle and Wood)
G ₁₁	$-0.1153(10S + 1)e^{-0.15}$	12.8e - s	$-2.2e^{-5}$	0.126e -6S
	$(4S + 1)^3$	16.7S + 1	7S + 1	60S + 1
C	$0.2429e^{-2S}$	$-18.9e^{-3S}$	$1.3e^{-0.35}$	$-0.101e^{-125}$
G_{12}	$(33S + 1)^2$	21S + 1	7S + 1	(48S + 1)(45S + 1)
G_{21}	$-0.0887e^{-12.65}$	$6.6e^{-7S}$	$-2.8e^{-1.85}$	$0.094e^{-85}$
	(43S + 1)(22S + 1)	10.9S + 1	9.5S + 1	38S + 1
G_{22}	$0.2429e^{-0.17S}$	$-19.4e^{-35}$	$4.3e^{-0.35S}$	$-0.12e^{-8S}$
	(44S + 1)(20S + 1)	14.4S + 1	9.2S + 1	35S + 1

BLT: Example

TABLE 4.2. 2 × 2 Systems

	TS (Tyreus stabilizer)	WB (Wood and Berry)	VL (Vinante and Luyben)	WW Wardle and Wood		
RGA	4.35	2.01	1.63	2.69		
NI empirical	+0.229	+0.498	+0.615	+0.372		
K_c	-30,30	0.2, -0.04	-2.38, 4.39	18, -24		
τ_I	00	4.44, 2.67	3.16, 1.15	19, 24		
L_c Z-N	1.74	10.1	13.3	8.4		
K_c	-166.2,706	0.96, -0.19	-2.40, 4.45	59, -28.5		
τ_I	2.06, 8.01	3.25, 9.20	3.16, 1.15	19.3, 24.6		
L_c	unstable	unstable	13.3	18.5		
BLT						
F	10	2.55	2.25	2.15		
K_c	-16.6, 70.6	0.375, -0.075	-1.07, 1.97	27.4, -13.3		
$ au_I$	20.6, 80.1	8.29, 23.6	7.1, 2.58	41.4, 52.9		

BLT: Example

FIGURE 4.3. (a) X₁ Set Point Responses of TS and WB; (b) X₁ Set Point Response of VI and WW. Solid lines are BLT settings. Dashed lines are empirical settings.

Principles of Decoupling

Main loop $y_1 - u_1$, $y_2 - u_2$,..., $y_n - u_n$, couplings

desirable for control

Cross-couplings, $y_i - u_j (i \neq j)$

➤ undesirable; loop interactions

Eliminates the *effect* of the undesired cross-couplings

improve control performance.

Objective is to *compensate* for interactions by cross-couplings

>not to "eliminate" the cross-couplings; impossibility, require altering the physical nature of the system.

Simplified Decoupling

Two compensator blocks g_{l1} and g_{l2} .

Controller outputs v_1 and v_2 , actual control on the process u_1 and u_2 .

Without the compensator, $u_1 = v_1$ and $u_2 = v_2$, and the process model

$$y_1 = g_{11}u_1 + g_{12}u_2$$

$$y_1 = g_{21}u_1 + g_{22}u_2$$

Compensator, Loop 2 "informed" of changes in v_1 by g_{12} , u_2 is adjusted. The same for Loop 1

Simplified Decoupler Design

$$y_{1} = g_{11}u_{1} + g_{12}u_{2} \Rightarrow u_{1} = v_{1} + g_{11}v_{2} \Rightarrow u_{2} = v_{2} + g_{12}v_{1} \Rightarrow u_{2} = v_{2} + g_{11}g_{11}v_{2} \Rightarrow u_{2} = (g_{21} + g_{22}g_{12})v_{1} + (g_{12} + g_{11}g_{11})v_{2} \Rightarrow u_{2} = (g_{21} + g_{22}g_{12})v_{1} + (g_{22} + g_{21}g_{11})v_{2} \Rightarrow u_{2} = (g_{11} - \frac{g_{12}g_{21}}{g_{11}})v_{1} \Rightarrow u_{2} = (g_{11} - \frac{g_{12}g_{21}}{g_{22}})v_{1} \Rightarrow u_{2} = (g_{22} - \frac{g_{12}g_{21}}{g_{11}})v_{2} \Rightarrow u_{2} = (g_{22} - \frac{g_{12}g_{21}}{g_{21}})v_{2} \Rightarrow u_{2} = (g_{22} - \frac{g_{12}g_{21}}{g_{21}})v_{2} \Rightarrow u_{2} = (g_{22} - \frac{g_{12}g_{21}}{g_{21}})v_{2} \Rightarrow u_{2} = (g_{22} - \frac{g_{22}g_{21}}{g_{21}})v_{2} \Rightarrow u_{2} = (g_{22} - \frac{g_{22}g_{21}}{g_{22}})v_{2} \Rightarrow u_{2} \Rightarrow u_{2} \Rightarrow u_{2} \Rightarrow u_{2} \Rightarrow u_{2} \Rightarrow u_$$

Example: Wood Berry Distillation Column

$$G(s) = \begin{bmatrix} \frac{12.8e^{-s}}{16.7s + 1} & \frac{-18.9e^{-3s}}{21.0s + 1} \\ \frac{6.6e^{-7s}}{10.9s + 1} & \frac{-19.4e^{-3s}}{14.4s + 1} \end{bmatrix}$$

simplified decoupler

$$g_{I1} = 1.48 \frac{(16.7s + 1)e^{-2s}}{21.0s + 1}$$
 $g_{I2} = 0.34 \frac{(14.4s + 1)e^{-4s}}{10.9s + 1}$

actual implementation

$$u_1 = v_1 + 1.48 \frac{(16.7s + 1)e^{-2s}}{21.0s + 1} v_2$$

$$u_2 = v_2 + 0.34 \frac{(14.4s + 1)e^{-4s}}{10.9s + 1} v_1$$

Difficulties in simplied Decoupler design

larger than 2 x 2, decoupling become tedious.

3x3, six compensator.

NxN: (N^2-N) compensators.

Generalized Decoupler Design

MIMO process

$$y = G u$$
 $u = G_I v \implies y = GG_I v$

To eliminate interactions, y to v : a diagonal matrix; $G_R(s)$.

$$GG_I = G_R(s) \implies y = G_R(s) v$$

Choose G_i such that

$$G_I = G^{-1}G_R(s)$$

Selected to provide desired decoupled behavior with the simplest form

➤ A commonly employed choice

$$G_R(s) = Diag[G(s)]$$

Example: Wood Berry Distillation Column

Generalized decoupling:

$$G_{R}(s) = \begin{bmatrix} \frac{12.8e^{-s}}{16.7s+1} & 0 \\ 0 & \frac{-19.4e^{-3s}}{14.4s+1} \end{bmatrix} G^{-1}(s) = \frac{1}{\Delta} \begin{bmatrix} \frac{-19.4e^{-3s}}{14.4s+1} & \frac{18.9e^{-3s}}{21.0s+1} \\ \frac{-6.67e^{-7s}}{10.9s+1} & \frac{12.8e^{-s}}{16.7s+1} \end{bmatrix} G_{I} = \begin{bmatrix} g_{I11} & g_{I12} \\ g_{I21} & g_{I22} \end{bmatrix}$$

$$\Delta = \frac{-248.32(21.0s+1)(10.9s+1)e^{-4s} + 124.74(16.7s+1)(14.4s+1)e^{-10s}}{(21.0s+1)(10.9s+1)(16.7s+1)(14.4s+1)}$$

$$g_{I11} = \frac{-248.32(21.0s+1)(10.9s+1)}{124.74(16.7s+1)(14.4s+1)e^{-6s} - 248.32(21.0s+1)(10.9s+1)}$$

$$g_{I12} = \frac{-366.66(16.7s+1)(10.9s+1)e^{-2s}}{124.74(16.7s+1)(14.4s+1)e^{-6s} - 248.32(21.0s+1)(10.9s+1)}$$

$$g_{I21} = \frac{84.48(21.0s+1)(14.4s+1)}{124.74(16.7s+1)(14.4s+1)e^{-6s} - 248.32(21.0s+1)(10.9s+1)}$$

$$g_{I21} = \frac{84.48(21.0s+1)(14.4s+1)}{124.74(16.7s+1)(14.4s+1)e^{-6s} - 248.32(21.0s+1)(10.9s+1)}$$

$$g_{I22} = g_{I11}$$

The actual implementation:

$$u_1 = g_{I11}v_1 + g_{I12}v_2$$

$$u_2 = g_{I21}v_1 + g_{I22}v_2$$

Steady State Decoupler Design

Steady-state decoupling: uses steady-state gain of transfer function 2 x 2 system

Simplified steady-state decoupling

$$g_{I1} = -\frac{K_{12}}{K_{11}}, \quad g_{I2} = -\frac{K_{21}}{K_{22}}$$

Generalized steady-state decoupling

$$G_I = K^{-1}K_R$$

Very easy to design and implement, first technique to try;

- ➤ideal decoupler only if dynamic interactions persistent
- ➤ big performance improvements with very little work or cost
- most often applied in practice.

Example: Wood Berry Distillation Column

$$K = \begin{bmatrix} 12.8 & -18.9 \\ 6.6 & -19.4 \end{bmatrix} \qquad \longleftarrow \qquad G(s) = \begin{bmatrix} \frac{12.8e^{-s}}{16.7s + 1} & \frac{-18.9e^{-3s}}{21.0s + 1} \\ \frac{6.6e^{-7s}}{10.9s + 1} & \frac{-19.4e^{-3s}}{14.4s + 1} \end{bmatrix}$$

Simplified steady-state decoupling

$$g_{I1} = -\frac{-18.9}{12.8} = 1.48, \quad g_{I2} = -\frac{6.6}{-19.4} = 0.34 \implies u_1 = v_1 + 1.48v_2$$

 $u_2 = v_2 + 0.34v_1$

Generalized steady-state decoupling

$$K_R = \begin{bmatrix} 12.8 & 0 \\ 0 & -19.4 \end{bmatrix} \implies G_I = \begin{bmatrix} 2.01 & 2.97 \\ 0.68 & 2.01 \end{bmatrix} \implies \begin{aligned} u_1 &= 2.01v_1 + 2.97v_2 \\ u_2 &= 0.68v_1 + 2.01v_2 \end{aligned}$$

Simplified Vs Generalized Decoupler

Simplified decoupling: "equivalent" open-loop decoupled system

$$y_{1} = \left(g_{11} - \frac{g_{12}g_{21}}{g_{22}}\right)v_{1} = \left(\frac{12.8e^{-s}}{(16.7s + 1)} - \frac{18.9 \times 6.6(14.4s + 1)e^{-7s}}{19.4(21.0s + 1)(10.9s + 1)}\right)v_{1}$$

$$y_{2} = \left(g_{22} - \frac{g_{12}g_{21}}{g_{11}}\right)v_{2} = \left(\frac{-19.4e^{-3s}}{(14.4s + 1)} - \frac{18.9 \times 6.6(16.7s + 1)e^{-9s}}{12.8(21.0s + 1)(10.9s + 1)}\right)v_{2}$$

much more complicated than G_R specified in the *Generalized* decoupling \triangleright Difficult to tune controller

Generalized decoupling:

tuning and performance better than for *Simplified* decoupling >complicated decoupler

Challenges in Decoupler Design

Perfect decouple if model perfect - impossible in practice.

The simplified decoupling similar to feedforward controllers realization problems, time delay elements

Perfect dynamic decouplers based on model inverses.

>can only be implemented if inverses causal and stable.

2 x 2 compensators, g_{l1} and g_{l2} must be causal (no $e^{+\alpha s}$ terms) and stable

- Frime delays in g_{11} smaller than time delays in g_{12}
- ➤ time delays in g₂₂ smaller than time delays in g₂₁
- >g₁₁ and g₂₂ no RHP zeros
- ightharpoonupg₁₂ and g₂₁ must no RHP poles

Challenges in Decoupler Design

Adding delays to the inputs $u_1, u_2, ..., u_n$, by define: $G_m = GD$

$$D(s) = \begin{bmatrix} e^{-d_{11}s} & & & 0 \\ & e^{-d_{22}s} & & & \\ & & \ddots & & \\ 0 & & & e^{-d_{nn}s} \end{bmatrix}$$

Simplified decoupling: requiring the smallest delay in each row on the diagonal, designed by using G_m .

Generalized decoupling: use modified process G_m so that $G_I = (GD)^{-1}G_R$ are causal which requiring that $G_R^{-1}(GD)$ have the smallest delay in each row on the diagonal.

Example Problem

$$G(s) = \begin{bmatrix} \frac{12.8e^{-4s}}{16.7s + 1} & \frac{-18.9e^{-3s}}{21.0s + 1} \\ \frac{6.67e^{-10s}}{10.9s + 1} & \frac{-19.4e^{-3s}}{14.4s + 1} \end{bmatrix}$$
 Smallest delay in each row is not on diagonal, simplified decoupling compensator becomes:
$$g_{I1} = 1.48 \frac{(16.7s + 1)e^{s}}{21.0 + 1}$$

$$g_{I1} = 1.48 \frac{(16.7s + 1)e^s}{21.0s + 1}$$

Design D(s) to add a time delay of 1 minute to the input u_2 , i.e.:

$$D(s) = \begin{bmatrix} 1 & 0 \\ 0 & e^{-s} \end{bmatrix}$$

$$G_m = GD = \begin{bmatrix} \frac{12.8e^{-4s}}{16.7s + 1} & \frac{-18.9e^{-4s}}{21.0s + 1} \\ \frac{6.67e^{-10s}}{10.9s + 1} & \frac{-19.4e^{-4s}}{14.4s + 1} \end{bmatrix}$$

$$g_{I1} = 1.48 \frac{(16.7s + 1)}{21.0s + 1}$$

$$g_{I2} = 0.34 \frac{(14.4s + 1)e^{-6s}}{10.9s + 1}$$

$$g_{I1} = 1.48 \frac{(16.7s + 1)}{21.0s + 1}$$
$$g_{I2} = 0.34 \frac{(14.4s + 1)e^{-6s}}{10.9s + 1}$$

Example Problem

Alternate Solution

$$G(s) = \begin{bmatrix} \frac{12.8e^{-4s}}{16.7s + 1} & \frac{-18.9e^{-3s}}{21.0s + 1} \\ \frac{6.67e^{-10s}}{10.9s + 1} & \frac{-19.4e^{-3s}}{14.4s + 1} \end{bmatrix}$$

$$g_{I1} = 1.48 \frac{(16.7s + 1)e^{s}}{21.0s + 1}$$

As time prediction term much small than time constant, drop prediction

$$g_{I1} = 1.48 \frac{(16.7s + 1)}{21.0s + 1}$$

Effective time constant of g_{12} and g_{11} are similar $16.7 + 4 \Leftrightarrow 21 + 3$

Steady-state decoupling

$$g_{11} = 1.48$$

Partial Decoupling

Consider partial decoupling if

- some of the loop interactions are weak
- some of the loops need not have high performance

Partial decoupling focused on a subset of control loops

- ➤ interactions are important, and/or
- high performance control is required.

Consider partial decoupling for 3x3 or higher systems

main advantage: reduction of dimensionality.

Partial Decoupling Example

Grinding circuit analysis

- \triangleright Least sensitive variables y_2
- Most interaction: Loops 1 and 3,
- Decouplers: loops 1 and 3,
- ➤ Loop 2 without decoupling.

and 3,
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} \frac{119}{217s+1} & \frac{153}{337s+1} & \frac{-21}{10s+1} \\ \frac{0.00037}{500s+1} & \frac{0.000767}{33s+1} & \frac{-0.00005}{10s+1} \\ \frac{930}{500s+1} & \frac{-667e^{-320s}}{166s+1} & \frac{-1033}{47s+1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

the transfer function matrix for the subsystem

$$\begin{bmatrix} y_1 \\ y_3 \end{bmatrix} = \begin{bmatrix} \frac{119}{217s+1} & \frac{-21}{10s+1} \\ \frac{930}{500s+1} & \frac{-1033}{47s+1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_3 \end{bmatrix}$$

using the simplified decoupling approach

$$g_{I1} = \frac{\frac{21}{10s+1}}{\frac{119}{217s+1}} = \frac{0.176(217s+1)}{10s+1}; \quad g_{I3} = \frac{\frac{930}{500s+1}}{\frac{1033}{47s+1}} = \frac{0.0(47s+1)}{500s+1}$$