LED I-V CURVE

PHOTOTRANSISTOR I-V CURVE

TRANSIENTS

Transients occur everywhere! · Ice cube tray · Car accelarating from red light · Oven warmup · Response to Federal Reserve Interest · Acceptance of social change They non-zero response times to instantaneous changes. Systems with transients are called Dynamical Systems. They have demanics.

CAPACITORS & INDUCTORS HAVE DYNAMICS

Water analogy;

PUMP STEETCHARIG IMPERMEABLE MEMBRANG

Pump forces water nitotents, causing membrane to stretch. Membrane trues to force water back out of tanks.

ELECTRICAL VERSION OF WATER TANK MEMBRANE

As gf, of Epushes harder on carriers
to move clockwise.
When $v_c = V_s$, current stops.

CAPACITORS HATE CHANGE IN VOLTAGE

and will course or allow any annual of current to prevent a change of at least for an infinites; mal amount of turns.

t=0 tot=0+
is important!

ic= C dwill

For a step change in vo(ti), the cap acts like a short OR an ideal voltage source, for an infinitesimal amount of time!
Whatever is needed to prevent a change in vo.

 $\left(v_{c}(o^{+})=v_{c}(o^{-})\right)$

$$V_{s} = \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} V_{i}(o_{i}) = 0$$

We want of (t).

$$i_{R}(t) + i_{L}(t) = 0 \Rightarrow \frac{\nabla_{R}(t)}{R} + C \frac{dv_{L}(t)}{dt}$$

$$\frac{v_c - v_s}{R} + C \frac{av_c(\epsilon)}{at} = 0$$

 $\frac{\partial v_{r}}{\partial s} + \frac{1}{Rc}v_{c} = \frac{V_{r}}{Rc} P = \frac{1}{Rc} Q = \frac{V_{s}}{Rc}$ etre du 1 fre etre vo = etre Vs dt (ve e/rc) = e/re re ve et/re = Vs (re) et/re= Vr et/rete v= 1, + Ce +/RC ~(0-)=00 ~(o+)=V,+Ce0=0 v=(E)= Vs-Vse /rc=Vs(1-e /rc)

$$-V_s + \frac{i(0-) = 0}{i(0-) = 0}$$

TIME CONSTANT

The time it takes for vite to to complete 63.2% of its journey.

Symbol: T (lower case tau)

1- = 0.632

1-e-he = 1- = the j'y' t=PC, 1-=

LONG TIME: 5 ~ (all transients have died out)

