Lec 12: Support Vector Machine (SVM)

Ailin Zhang

2022-10-24

Agenda

- Classification, outcome, and logistic loss
- Perceptron and margin
- SVM
- Primal form
- Dual form

Warm up: Logsitic Regression

obs	$X_{n \times p}$	$\mathbf{Y}_{n \times 1}$
1		
2		
i	$X_i^{ op}$	Уi
n		

Let $\eta_i = X_i^{\top} \beta$ be the score, then

$$p_i = \sigma(\eta_i) = rac{1}{1 + e^{-\eta_i}} = rac{1}{1 + e^{-X_i^{ op}eta}} = rac{e^{X_i^{ op}eta}}{1 + e^{X_i^{ op}eta}}, \ 1 - p_i = rac{1}{1 + e^{X_i^{ op}eta}}$$

 $\eta_i = \log(\frac{p_i}{1-p_i}) = logit(p_i) = \log odds ratio$

IRLS

$$I(\beta) = -\sum_{i=1}^{n} \hat{w}_i (\hat{y}_i - x_i^T \Delta \beta)^2.$$

Where $w_i=p_i(1-p_i)$, $\hat{y_i}=rac{\hat{e_i}}{\hat{w_i}}$

Recall linear regression:

$$\sum_{i=1}^{n} (y_i - x_i^T \beta)^2.$$

$$\beta^{(t+1)} = \beta_t + \left(\sum_{i=1}^n w_i X_i X_i^{\top}\right)^{-1} \left(\sum_{i=1}^n w_i X_i \hat{y}_i\right)$$

$$= \left(\sum_{i=1}^n w_i X_i X_i^{\top}\right)^{-1} \left[\sum_{i=1}^n w_i X_i \left(X_i^{\top} \beta^{(t)} + \frac{y_i - p_i}{w_i}\right)\right].$$

Perceptron

- Perceptron is a binary classifier: $\hat{y}_i = sign(\mathbf{X}_i^{\top} \boldsymbol{\beta})$.
- Logistic Regression is a soft version of perception
- Logistic Regression is also a generalized linear model (GLM)

Perceptron Model

The perceptron model $y_i = \operatorname{sign}(X_i^{\top}\beta)$, where $y_i \in \{+1, -1\}$

The gradient learning algorithm can be modified into the perceptron algorithm:

Starting from $\beta_0 = 0$,

$$\beta^{(t+1)} = \beta^{(t)} + \sum_{i=1}^{n} \delta_i y_i X_i,$$

where $\delta_i = 1(y_i \neq \operatorname{sign}(X_i^{\top}\beta^{(t)}))$ to determine whether $\beta^{(t)}$ makes a mistake in classifying y_i .

The algorithm can be considered the gradient descent algorithm for the loss function

$$loss(\beta) = \sum_{i=1}^{n} \max(0, -y_i X_i^{\top} \beta)$$

Margin

$$loss(\beta) = \sum_{i=1}^{n} \max(0, -y_i X_i^{\top} \beta) = \sum_{i=1}^{n} \max(0, -margin_i),$$

- $\max(0, -margin_i) = 0$ if $margin_i \ge 0$, i.e., no mistake is made
- $\max(0, -margin_i) = -margin_i$ if $margin_i < 0$.

Again the algorithm learns from the mistakes.

Support Vector Machine - Motivation

Consider the perceptron $y_i = \operatorname{sign}(X_i^{\top}\beta)$:

- It separates the positive examples and negative examples by projecting the data on vector β ,
- ② It separates the examples by a hyperplane that is perpendicular to β .

If the positive examples and negative examples are separable, there are be many separating hyperplanes.

We want to choose the one with the **maximum margin** in order to guard against the random fluctuations in the unseen testing examples.

Support Vector Machine

The idea of support vector machine (SVM) is to find the β , so that

- for positive examples $y_i = +, X_i^{\top} \beta \ge 1$,
- ② for negative examples $y_i = -$, $X_i^{\top} \beta \leq -1$.

Here we use +1 and -1, because we can always scale β .

The decision boundary is decided by the training examples that lies on the margin. Those are the support vectors.

Support Vector Machine

Let u be an unit vector that has the same direction as β . $u = \frac{\beta}{|\beta|}$.

Suppose X_i is an example on the margin (i.e., support vector), the projection of X_i on u is

$$\langle X_i, u \rangle = \langle X_i, \frac{\beta}{|\beta|} \rangle = \frac{X_i^{\top} \beta}{|\beta|} = \frac{\pm 1}{|\beta|}.$$

So the margin is $1/|\beta|$. In order to maximize the margin, we should minimize $|\beta|$ or $|\beta|^2$. Hence, the SVM can be formulated as an optimization problem as follows:

$$\begin{aligned} & \text{minimize} & & \frac{1}{2}|\beta|^2, \\ & \text{subject to} & & y_i X_i^\top \beta \geq 1, \forall i. \end{aligned}$$

Recall $X_i^{\top}\beta$ is the score, and $y_iX_i^{\top}\beta$ is the individual margin of observation i. This is the **primal form** of SVM.

Dual Form: Lagrange Multiplier

Let
$$\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n)$$
, where $\alpha_i \ge 0$

$$L(\beta, \alpha) = \frac{1}{2} |\beta|^2 + \sum_{i=1}^n \alpha_i (1 - y_i X_i^\top \beta)$$

The idea is to solve an unconstrained problem because it is easier to solve.

Dual Form: Lagrange Multiplier and saddle point

Dual Form

The primal form of SVM is max margin, and the dual form of SVM is min distance.

max margin = min distance

The margin between the two sets is defined by the minimum distance between two.

Dual Form - Convex Hull

Let $X_+ = \sum_{i \in +} c_i X_i$ and $X_- = \sum_{i \in -} c_i X_i$ $(c_i \geq 0, \sum_{i \in +} c_i = 1, \sum_{i \in -} c_i = 1)$ be two points in the positive and negative convex hulls. The margin is $\min |X_+ - X_-|^2$.

$$\begin{aligned} |X_{+} - X_{-}|^{2} &= \left| \sum_{i \in +} c_{i} X_{i} - \sum_{i \in -} c_{i} X_{i} \right|^{2} \\ &= \left| \sum_{i} y_{i} c_{i} X_{i} \right|^{2} \\ &= \sum_{i,j} c_{i} c_{j} y_{i} y_{j} \langle X_{i}, X_{j} \rangle, \\ \text{subject to} \quad c_{i} \geq 0, \sum_{i} c_{i} = 1, \sum_{i} c_{i} = 1. \end{aligned}$$

Solvable with sequential minimal optimization