Apellido y Nombres:		
DNI:	Padrón:	Código Asignatura:
		Profesor:
Correo electrónico:		

Análisis Matemático III. Examen Integrador. Quinta fecha. 3 de marzo de 2023.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. Se tiene una placa plana y homogénea que coincide con el semicírculo $\{(x,y)\in\mathbb{R}^2:x^2+y^2<1,\,y>0\}$ tal que la temperatura es de 0^oC en su frontera recta y de 10^oC en su frontera curva. La constante de difusividad térmica en la placa es igual a 1. Plantear un problema de ecuaciones diferenciales en derivadas parciales que modele la distribución estacionaria de temperatura en la situación descripta y hallar la solución expresada en función de las variables x,y.

Ejercicio 2. Para cada una de las siguientes funciones definidas en el intervalo $[-\pi, \pi]$:

$$f(x) = \operatorname{sen}(x^2 - \pi^2)$$
 $f(x) = \begin{cases} \operatorname{sen}(x^2 - \pi^2) & -\pi \leqslant x < 0 \\ \operatorname{sen}(x + \frac{\pi}{2}) & 0 \leqslant x < \pi \end{cases}$

decidir si su serie trigonométrica de Fourier en el intervalo $[-\pi,\pi]$ converge puntualmente. En caso afirmativo, indicar a qué converge en cada $x\in\mathbb{R}$ y analizar si la convergencia es uniforme.

Ejercicio 3. Resolver;

$$\begin{cases} u_{tt} = u_{xx} + 4x & 0 < x < L, t > 0 \\ u(0, t) = u(L, t) = 0 & t \geqslant 0 \\ u(x, 0) = 0 & 0 \leqslant x \leqslant L \\ u_t(x, 0) = 1 & 0 \leqslant x \leqslant L \end{cases}$$

Ejercicio 4. Estudiar la convergencia de $\int_{0}^{\infty} \frac{t \operatorname{sen} t}{1+t^{2}} dt$. Explicar cómo calcular dicha

integral aplicando: (i) teoría de residuos, (ii) la transformada de Fourier de $ae^{-b|x|}$. Calcularla mediante alguno de los dos métodos.

Ejercicio 5. Resolver para $t \ge 0$ el siguiente sistema de ecuaciones diferenciales ordinarias, utilizando transformada de Laplace.

$$\begin{cases} -x' + 2y' - 3x + 6y = 0 \\ x' + y' + 4x + 3y = 11 \end{cases}$$

sujeto a las condiciones iniciales $x(0^+) = y(0^+) = 0$.