Recursively Enumerable and Recursive Languages

class 18

Definition:

A language is recursively enumerable if some Turing machine accepts it

Let L be a recursively enumerable language

and M the Turing Machine that accepts it

For string w:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state or loops forever

Definition:

A language is recursive
if some Turing machine accepts it
and halts on any input string

In other words:

A language is recursive if there is a membership algorithm for it

Let L be a recursive language

and M the Turing Machine that accepts it

For string w:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state

We will prove:

- There is a specific language which is not recursively enumerable (not accepted by any Turing Machine)
- 2. There is a specific language which is recursively enumerable but not recursive

A Language which is not Recursively Enumerable

We want to find a language that is not Recursively Enumerable

This language is not accepted by any Turing Machine

Consider alphabet $\{a\}$

Strings: a, aa, aaa, aaaa, ...

 $a^1 \ a^2 \ a^3 \ a^4 \ \dots$

10

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$M_1, M_2, M_3, M_4, \dots$$

Example language accepted by M_i

$$L(M_i) = \{aa, aaaa, aaaaaaa\}$$

$$L(M_i) = \{a^2, a^4, a^6\}$$

Alternative representation

1 2 3 4	
	•••
$L(M_1)$ 0 1 0 1	•••
$L(M_2) \qquad 1 \qquad 0 \qquad 0 \qquad 1$	
$L(M_3)$ 0 1 1 1	
$L(M_4)$ 0 0 0 1	

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists from the 1's in the diagonal

. .

Consider the language \overline{L}

$$L = \{a^i : a^i \in L(M_i)\}$$

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

 \overline{L} consists of the 0's in the diagonal

. .

	a^1	a^2	a^3	a^4	•••
$L(M_1)$	0	1	0	1	
$L(M_2)$	1	0	0	1	
$L(M_3)$	0	1	1	1	
$L(M_4)$	0	0	0	1	
$\overline{L} = \{a^1, a^2, \ldots\}$					

Theorem:

Language \overline{L} is not recursively enumerable

Proof:

Assume for contradiction that $\overline{L}\,$ is recursively enumerable

There must exist some machine $\,M_{\,k}\,$ that accepts $\,\overline{L}\,$

$$L(M_k) = \overline{L}$$

	a^1	a^2	a^3	a^4		
$L(M_1)$	0	1	0	1		
$L(M_2)$	1	0	0	1		
$L(M_3)$	0	1	1	1		
$L(M_4)$	0	0	0	1		
Question: $M_k = M_1$?						

	a^1	a^2	a^3	a^4		
$L(M_1)$	0	1	0	1		
$L(M_2)$	1	0	0	1	•••	
$L(M_3)$	0	1	1	1		
$L(M_4)$	0	0	0	1		
Answer:	$M_k \neq M_k$	M_1		$1 \in L(M)$ $1 \notin L(M)$		21

	a^1	a^2	a^3	a^4	•••	
$L(M_1)$	0	1	0	1		
$L(M_2)$	1	0	0	1		
$L(M_3)$	0	1	1	1		
$L(M_4)$	0	0	0	1		
Question: $M_k = M_2$?						

	a^1	a^2	a^3	a^4	•••	
$L(M_1)$	0	1	0	1	•••	
$L(M_2)$	1	0	0	1		
$L(M_3)$	0	1	1	1		
$L(M_4)$	0	0	0	1		
Answer:	$M_k \neq 1$	M_2		$2^{2} \in L(N^{2})$ $2 \notin L(N^{2})$		23

	a^1	a^2	a^3	a^4		
$L(M_1)$	0	1	0	1		
$L(M_2)$	1	0	0	1	•••	
$L(M_3)$	0	1	1	1		
$L(M_4)$	0	0	0	1		
Question: $M_k = M_3$?						

	a^1	a^2	a^3	a^4		
$L(M_1)$	0	1	0	1	•••	
$L(M_2)$	1	0	0	1	•••	
$L(M_3)$	0	1	1	1		
$L(M_4)$	0	0	0	1		
Answer:	$M_k \neq M_k$	M_3		$3 \notin L(N)$ $3 \in L(N)$		25

Similarly: $M_k \neq M_i$ for any i Because either: $a^i \in L(M_k) \qquad \text{or} \qquad a^i \notin L(M_k)$ $a^i \notin L(M_i) \qquad a^i \in L(M_i)$

Non Recursively Enumerable \overline{L} Recursively Enumerable Recursive

A Language which is Recursively Enumerable and not Recursive

We want to find a language which

Is recursively enumerable

There is a Turing Machine that accepts the language But not recursive

The machine doesn't halt on some input

We will prove that the language

$$L = \{a^i : a^i \in L(M_i)\}$$

Is recursively enumerable but not recursive

22

	a^1	a^2	a^3	a^4	•••	_
$L(M_1)$	0	1	0	1		
$L(M_2)$	1	0	0	1	•••	
$L(M_3)$	0	1	1	1		
$L(M_4)$	0	0	0	1		
$L = \{a^3, a^4, \ldots\}$						

Theorem:

The language $L = \{a^i : a^i \in L(M_i)\}$

is recursively enumerable

34

Proof:

We will give a Turing Machine that accepts $\ L$

Turing Machine that accepts L

For any input string w

- Compute i, for which $w = a^i$
- Find Turing machine \boldsymbol{M}_i (using an enumeration procedure for Turing Machines)
- Simulate M_i on input a^i
- \cdot If $\,M_{\,i}\,$ accepts, then accept $\,w\,$

End of Proof

Observation:

Recursively enumerable

$$L = \{a^i : a^i \in L(M_i)\}$$

Not recursively enumerable

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

(Thus, also not recursive)

Theorem:

The language $L = \{a^i : a^i \in L(M_i)\}$

is not recursive

38

Proof:

Assume for contradiction that L is recursive

Then \overline{L} is recursive:

Take the Turing Machine M that accepts L

M halts on any input:

If M accepts then reject

If M rejects then accept

Therefore:

 \overline{L} is recursive

But we know:

 \overline{L} is not recursively enumerable thus, not recursive

CONTRADICTION!!!!

...

Therefore, L is not recursive

End of Proof

Non Recursively Enumerable \overline{L} Recursively Enumerable L

Turing acceptable languages and **Enumeration Procedures**

We will prove:

(weak result)

- · If a language is recursive then there is an enumeration procedure for it
- (strong result)
 A language is recursively enumerable if and only if there is an enumeration procedure for it

Theorem:

if a language L is recursive then there is an enumeration procedure for it

If the alphabet is $\{a,b\}$ then $ilde{M}$ can enumerate strings as follows:

> abaa ab ba bbaaa aab

Enumeration procedure Repeat: \widetilde{M} generates a string wM checks if $w \in L$ YES: print w to output NO: ignore wEnd of Proof

Example: $L=$	{b,ab,bb,aaa	<i>i,</i> }
\widetilde{M}	L(M)	Enumeration Output
a		
b	b	b
aa		
ab	ab	ab
ba		
bb	bb	bb
aaa	aaa	aaa
aab		
	•••••	49

Theorem:

if language $\,L\,$ is recursively enumerable then there is an enumeration procedure for it

If the alphabet is $\{a,b\}$ then \widetilde{M} can enumerate strings as follows: $\begin{array}{c} a \\ b \\ aa \\ ab \\ ba \\ ba \\ aba \\$

NAIVE APPROACH Enumeration procedure Repeat: \widetilde{M} generates a string w M checks if $w \in L$ YES: print w to output NO: ignore wProblem: If $w \notin L$ machine M may loop forever

If for any string w_i machine M halts in a final state then it prints w_i on the output

End of Proof

Theorem:

If for language $\,L\,$ there is an enumeration procedure then $\,L\,$ is recursively enumerable

Turing machine that accepts L

For input string w

Repeat:

• Using the enumerator,
generate the next string of L

• Compare generated string with w

If same, accept and exit loop

End of Proof

We have proven:

A language is recursively enumerable if and only if

there is an enumeration procedure for it