Let X be a smooth, projective and absolutely irreducible curve over a field \mathbf{F}_q of q elements. In this note we estimate $\#X(\mathbf{F}_{q^2})$ following Stepanov and Bombieri. Let g denote the genus of X.

Theorem 1. If $q > (g+1)^2$, then $\#X(\mathbf{F}_{q^2}) \le q^2 + (2g+1)q$.

We may assume that $X(\mathbf{F}_{q^2}) \neq \emptyset$ and choose a point $\infty \in X(\mathbf{F}_{q^2})$. For f in the function field $\mathbf{F}_{q^2}(X)$ we let $\deg f$ denote the order of the pole of f at ∞ . For $a \in \mathbf{Z}$ we put

$$H_a = \{ f \in \mathbf{F}_{q^2}(X) : f \text{ has no poles outside } \infty \text{ and satisfies deg } f \leq a \}.$$

The spaces H_a are finite dimensional \mathbf{F}_{q^2} -subvector spaces of $\mathbf{F}_{q^2}(X)$. When a > 2g - 2, the Riemann-Roch Theorem implies that they have dimension a - g + 1. By H_a^q we denote the \mathbf{F}_{q^2} -vector space $\{f^q: f \in H_a\}$. The dimensions of the vector spaces H_a and H_a^q are equal. For $a, b \in \mathbf{Z}$ we denote by $H_a^q H_b$ the \mathbf{F}_{q^2} -vector space generated by the functions $f^q g$ where $f \in H_a$ and $g \in H_b$.

Lemma 2. If b < q, then

$$\dim H_a^q H_b = \dim H_a \cdot \dim H_b.$$

Proof. Let e_1, \ldots, e_d be an \mathbf{F}_{q^2} -basis of H_a and let $f_1, \ldots, f_{d'}$ be an \mathbf{F}_{q^2} -basis of H_b . The lemma follows if we show that the products $e_i^q f_j$ form an \mathbf{F}_{q^2} -basis of $H_a^q H_b$.

It is clear that the functions $e_i^q f_j$ generate $H_a^q H_b$. Since we have

$$\deg e_i^q f_j = q \deg e_i + \deg f_j,$$

the inequality deg $f_j \leq b < q$ implies that the orders of the poles of the functions $e_i^q f_j$ at infinity are all different. Therefore, for certain coefficients $\lambda_{ij} \in \mathbf{F}_{q^2}$ the \mathbf{F}_{q^2} -linear combination $\sum_{i,j} \lambda_{ij} e_i^q f_j$ is the zero function, then necessarily $\lambda_{ij} = 0$ for all i, j.

This proves the lemma.

From now on we assume b < q. Then Lemma 2 implies that the \mathbf{F}_q -linear map

$$\vartheta: H_a^q H_b \longrightarrow H_a H_b^q$$

given by

$$\lambda e_i^q f_j \mapsto \lambda^q e_i f_j^q, \quad (\text{for } 1 \le i \le d, \ 1 \le j \le d' \text{ and } \lambda \in \mathbf{F}_{q^2})$$

is well defined. The key observation in the proof of Theorem 1 is the following.

Remark. If $F \in \ker \vartheta$, then F is zero in all points of $X(\mathbf{F}_{q^2}) - \{\infty\}$.

Proof. Let $P \neq \infty$ be in $X(\mathbf{F}_{q^2})$ and let $F = \sum \lambda_{ij} e_i^q f_j$ be in the kernel of ϑ . Then

$$F(P)^{q} = \sum_{i} \lambda_{ij}^{q} e_{i}(P)^{q^{2}} f_{j}(P)^{q} = \sum_{i} \lambda_{ij}^{q} e_{i}(P) f_{j}(P)^{q} = (\sum_{i} \lambda_{ij}^{q} e_{i} f_{j}^{q})(P) = \vartheta(F)(P) = 0$$

and therefore F(P) = 0. Here the second equality follows from the fact that P is in $X(\mathbf{F}_{q^2})$, so that $f(P) = f(P)^{q^2}$ for every function $f \in \mathbf{F}_{q^2}(X)$.

If the function F in the "key" remark is not zero, then we obtain the estimate

$$\#X(\mathbf{F}_{q^2}) - 1 \le \#\{\text{zeroes of } F\} = \#\{\text{poles of } F\} = \deg(F) \le aq + b.$$
 (*)

The rightmost inequality follows from the fact that $H_a^q H_b$ is contained in H_{aq+b} . The existence of a non-zero function F is guaranteed when a, b have the property that

$$\dim H_a^q H_b > \dim H_a H_b^q$$
.

Since b < q, Lemma 3 implies that the dimension of $H_a^q H_b$ is dim $H_a \cdot \dim H_b$. Under the assumption a, b > 2g-2 this is (a-g+1)(b-g+1) by Riemann-Roch. Lemma 3 does not apply to $H_a H_b^q$. This is in some sense the point of the proof. But since $H_a H_b^q$ is contained in H_{a+bq} , the dimension of $H_a H_b^q$ is at most dim $H_{a+bq} = a + bq - g + 1$. So a non-zero function F exists when

$$(a-g+1)(b-g+1) > a+bq-g+1.$$

Theorem 1 is now proved by suitably chosing a and b. In order to deduce a good estimate from the inequality (*), we choose a as small as possible. If $a \le q+g-1$, the inequality (a-g+1)(b-g+1) > a+bq-g+1 clearly does not hold. We need to take a a little larger. A good choice is a=q+2g. The choice of b is not so critical. We take b=q-1. Since $q>(g+1)^2$, we have a,b>2g-2 and (a-g+1)(b-g+1)>a+bq-g+1, so everything is fine. These choices of a,b lead to the estimate $\#X(\mathbf{F}_{q^2}) \le 1+aq+b=q^2+(2g+1)q$ as required.