Interval Estimation

Yanrong Yang

Research School of Finance, Actuarial Studies and Statistics
The Australian National University

April 26, 2017

Content

- Definition of Interval Estimation
- Examples to Illustrate How to Find Interval Estimators
- Summary

Interval Estimator

Let Y_1, \ldots, Y_n be a sample from a population whose probability distribution depends on an unknown parameter θ .

Definition (Interval Estimator or Confidence Interval)

Suppose that we can find two functions of Y_1,\ldots,Y_n which are denoted by $L=g(Y_1,\ldots,Y_n),\ U=h(Y_1,\ldots,Y_n),$ such that $P(L\leq\theta\leq U)=1-\alpha.$ Then [L,U] is a $100(1-\alpha)\%$ confidence interval (CI) for $\theta.$

- L: the lower bound (LB);
- 2 *U*: the upper bound (UB);
- **3** 1α : the coverage coefficient.

Question: Suppose that 6.2 is a number chosen randomly between 0 and c. Find an 80% confidence interval for c.

Analysis:

- $Y_1 \sim U(0,c), n=1.$
- ② A pivotal quantity $X = Y_1/c \sim U(0,1)$.
- **3** $0.8 = P(0.1 \le X \le 0.9) = P(0.1 \le Y_1/c \le 0.9) = P(10Y_1/9 \le c \le 10Y_1).$
- **1** $[10Y_1/9, 10Y_1]$ is an 80% CI for c.

Remark

According to the definition of CI, $1-\alpha=0.8$ is the coverage coefficient; $L=g(Y_1)=10Y_1/9$ is the lower bound; and $U=h(Y_1)=10Y_1$ is the upper bound.

Different Styles of CIs

There are three kinds of Cls, including central Cl, upper range Cl and lower range Cl.

Definition

 $I=[L,U]=[g(Y_1,\ldots,Y_n),h(Y_1,\ldots,Y_n)]$ be a $100(1-\alpha)\%$ confidence interval for θ .

- ① Upper range CI: $[L, \infty)$, i.e. $P(\theta \ge L) = 1 \alpha$.
- 2 Lower range CI: $(-\infty, U]$, i.e. $P(\theta \le U) = 1 \alpha$.

Question: Find an upper and a lower range CI for c in Example 4. **Analysis**:

- **1** $0.8 = P(X \le 0.8) = P(Y_1/c \le 0.8) = P(5Y_1/4 \le c).$
- ② An upper range 80% CI for c is $[5Y_1/4, \infty)$.
- $0.2 = P(X \ge 0.2) = P(Y_1/c \ge 0.2) = P(c \le 5Y_1).$
- A lower range 80% CI for c is $(-\infty, 5Y_1]$.

Remark

In Example 4, $Y_1=6.2$. Then the upper range and lower range CIs are $[7.75,\infty)$ and $(-\infty,31]$ respectively. For the lower range CI, since c should be non-negative and no less than $Y_1=6.2$, a refined lower range CI is [6.2,31].

Question: Suppose that 1.2, 3.9 and 2.4 are a random sample from a normal distribution with variance 7. Find a 95% confidence interval for the normal mean.

Analysis:

- **1** $Y_1, \ldots, Y_n \sim N(\mu, \sigma^2), n = 3, \sigma^2 = 7.$
- 2 A pivotal quantity $Z = \frac{\bar{Y} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$.
- $\begin{array}{ll} \mathbf{3} & 1-\alpha = P(-z_{\alpha/2} < Z < z_{\alpha/2}) = \\ & P\left(-z_{\alpha/2}\sigma/\sqrt{n} < \bar{Y} \mu < z_{\alpha/2}\sigma/\sqrt{n}\right) = \\ & P\left(\bar{Y} z_{\alpha/2}\sigma/\sqrt{n} < \mu < \bar{Y} + z_{\alpha/2}\sigma/\sqrt{n}\right). \end{array}$

Remark

In this Example, $1-\alpha=0.95,\ z_{\alpha/2}=z_{0.025}=1.96,\ n=3,\ \bar{y}=2.5,\ \sigma^2=7.$

Question: Suppose that 1.2, 3.9 and 2.4 are a random sample from a normal distribution with unknown variance. Find a 95% confidence interval for the normal mean.

Analysis:

- **1** $Y_1, \ldots, Y_n \sim N(\mu, \sigma^2), n = 3.$
- ② A pivotal quantity $T = \frac{\bar{Y} \mu}{S/\sqrt{n}} \sim t(n-1)$.

Remark

$$t_{\alpha/2}(n-1) = t_{0.025}(2) = 4.303.$$

Question: 200 people were randomly sampled from the population of Australia, and their heights measured. The sample mean was 1.673 and the sample standard deviation was 0.310. Find a 95% confidence interval for the average height of all Australians.

- \bullet Y_i is the *i*th height, $i=1,\ldots,n$.
- $n = 200, \ \bar{Y} = 1.673, \ S = 0.310.$
- $\textbf{3} \ \, \text{A pivotal quantity} \ \, \frac{\bar{Y} \mu}{\sigma/\sqrt{n}} \dot{\sim} N(0,1).$
- $Z = \frac{\bar{Y} \mu}{S/\sqrt{n}} = \frac{\bar{Y} \mu}{\sigma/\sqrt{n}} \cdot \frac{S}{\sigma} \sim N(0, 1)$ is a practical pivotal quantity.
- $\bullet \ \ {\rm A} \ 1-\alpha \ {\rm CI} \ {\rm for} \ \mu \ {\rm is} \ (\bar{Y}-z_{\alpha/2}S/\sqrt{n},\bar{Y}+z_{\alpha/2}S/\sqrt{n}).$

Question: Suppose that we toss a bent coin 100 times and get 72 heads. Find a 95% confidence interval for the probability of a head.

- Y: the number of heads out of the n = 100 tosses; p: the probability of a head on a single toss.
- ② $Y \sim Bin(n, p)$ and its value is y = 72.
- $Y = \sum_{i=1}^{n} Y_i$, $Y_i \sim Bern(p)$ and then by CLT, $Y \sim N(Np, np(1-p))$.

$$1 - \alpha = P\left(-z_{\alpha/2} < \frac{Y - np}{\sqrt{np(1-p)}} < z_{\alpha/2}\right) =$$

$$P\left(\left[\frac{Y - np}{\sqrt{np(1-p)}}\right]^2 < z_{\alpha/2}^2\right) =$$

$$P\left(p^2(1 + z_{\alpha/2}^2/n) - p(2Y/n + z_{\alpha/2}^2/n) + Y^2/n^2 < 0\right) = P(a < p < b).$$

Example 9 continuing

where a and b are the roots of the quadratic equality $p^2(1+z_{\alpha/2}^2/n)-p\left(2\hat{p}+z^2/n\right)+\hat{p}^2$. So the $1-\alpha$ CI for p is

$$\left(\frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} + \frac{z_{\alpha/2}^2}{4n^2}}{1 + \frac{z_{\alpha/2}^2}{n}}\right).$$

Another Approach for Example 9

Another pivotal quantity

$$Z_2 = \frac{Y - np}{\sqrt{n\hat{p}(1-\hat{p})}} = \frac{Y - np}{\sqrt{np(1-p)}} \cdot \frac{\sqrt{np(1-p)}}{\sqrt{n\hat{p}(1-\hat{p})}} \dot{\sim} N(0,1).$$

2
$$1 - \alpha = P\left(-z_{\alpha/2} < \frac{Y - np}{\sqrt{n\hat{p}(1-\hat{p})}} < z_{\alpha/2}\right) = P\left(\frac{Y}{n} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} < p < \frac{Y}{n} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right).$$

CI for the difference between two population means

Consider two samples $X_1,\ldots,X_n\sim i.i.d.(\mu_X,\sigma_X^2)$ and $Y_1,\ldots,Y_m\sim i.i.d.(\mu_Y,\sigma_Y^2).$ $(X_1,\ldots,X_n)\perp (Y_1,\ldots,Y_m).$ The goal is to construct a $1-\alpha$ CI for $\mu_X-\mu_Y.$

As n and m are large, approximate CI can be found by

- $\textbf{0} \quad \sigma_X^2 \text{ and } \sigma_Y^2 \text{ are known: pivotal quantity } \frac{\bar{X} \bar{Y} (\mu_X \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \dot{\sim} N(0,1).$
- $\textbf{2} \quad \sigma_X^2 \text{ and } \sigma_Y^2 \text{ are unknown: } \frac{\bar{X} \bar{Y} (\mu_X \mu_Y)}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}} \dot{\sim} N(0,1).$

As n and m are fixed, moreover, X_i and Y_i are normal,

- $\textbf{0} \quad \sigma_X^2 \text{ and } \sigma_Y^2 \text{ are known: pivotal quantity } \frac{\bar{X} \bar{Y} (\mu_X \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim N(0,1).$

Some Technique

Why the statistic $\frac{\bar{X}-\bar{Y}-(\mu_X-\mu_Y)}{\sqrt{\frac{\sigma_X^2}{n}+\frac{\sigma_Y^2}{m}}}\dot{\sim}N(0,1)$?

- $\textbf{ 1 By CLT, we have } \frac{\bar{X} \mu_X}{\sqrt{\sigma_X^2/n}} \stackrel{d}{\longrightarrow} N(0,1) \text{ and } \frac{\bar{Y} \mu_Y}{\sqrt{\sigma_Y^2/m}} \stackrel{d}{\longrightarrow} N(0,1).$
- $2 \frac{\bar{X} \mu_X}{\sqrt{\sigma_Y^2/m}} = \frac{\sqrt{\sigma_X^2/n}}{\sqrt{\sigma_Y^2/m}} \cdot \frac{\bar{X} \mu_X}{\sqrt{\sigma_X^2/n}} \xrightarrow{d} N\left(0, \frac{\sigma_X^2}{\sigma_Y^2} \cdot \lim \frac{m}{n}\right).$

Question: You have a bent \$1 coin and a bent \$2 coin. You toss the \$1 coin 200 times and get 108 heads. You toss the \$2 coin 300 times and get 141 heads. Find a 90% CI for the difference between the probability of a head on the \$1 coin and the probability of a head on the \$2 coin.

- $\textbf{2} \ \text{A pivotal quantity is} \ \frac{\hat{p}-\hat{q}-(p-q)}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}+\frac{\hat{q}(1-\hat{q})}{m}}} \dot{\sim} N(0,1).$
- $\begin{array}{l} \text{ 3} & 1-\alpha = P\left(-z_{\alpha/2} < \frac{\hat{p}-\hat{q}-(p-q)}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{\hat{q}(1-\hat{q})}{m}}} < z_{\alpha/2}\right) = P\left(a < p-q < b\right) \\ & \text{ with } a = \hat{p} \hat{q} z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{\hat{q}(1-\hat{q})}{m}} \text{ and } \\ & b = \hat{p} \hat{q} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{\hat{q}(1-\hat{q})}{m}}. \end{array}$

Question: Suppose that $Y_1, \ldots, Y_n \sim i.i.d.N(\mu, \sigma^2)$. Find a $1 - \alpha$ CI for σ^2 .

- **1** A pivotal quantity is $Z = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$.

Summary

- Distinguish point estimation and interval estimation;
- how to find an interval estimation or confidence interval;
- exact CI and Approximate CI.