Application 0

Réglage de correcteurs P - Corrigé

La boucle de position est représentée figure ci-dessous. On admet que :

- $\blacktriangleright \ H(p) = \frac{\Omega_m(p)}{U_v(p)} = \frac{K_m'}{1 + \tau_m' p} = \frac{30}{1 + 5 \cdot 10^{-3} p} \, ;$
- $K_r = 4 \,\mathrm{V} \,\mathrm{rad}^{-1}$: gain du capteur de position;
- ► K_a : gain de l'adaptateur du signal de consigne $\alpha_e(t)$;
- ▶ le signal de consigne $\alpha_e(t)$ est exprimé en degrés;
- ▶ le correcteur C(p) est à action proportionnelle de gain réglable K_c ;
- ► N = 200: rapport de transmission.

Objectif

- ► On souhaite une marge de phase de 45°.
- ▶ On souhaite un écart de traı̂nage inférieur à 1° pour une consigne de vitesse de $105 \, ^{\circ} \, s^{-1}$.

Question 1 Déterminer la fonction de transfert $R(p) = \frac{\alpha_r(p)}{\Omega_m(p)}$ du réducteur.

Correction

Question 2 Déterminer le gain K_a de l'adaptateur.

Correction

Question 3 Déterminer, en fonction notamment de K'_m et t'_m , la fonction de transfert en boucle ouverte T(p) que l'on exprimera sous forme canonique. En déduire l'expression du gain de boucle, noté $K_{\rm BO}$.

Correction

On souhaite une marge de phase de 45°.

Question 4 Déterminer la valeur de *K*_{BO} permettant de satisfaire cette condition.

Correction

Question 5 En déduire la valeur du gain K_c du correcteur.

Etude d'un poste de palettisation de bidons. CCMP MP 2010.

C1-02

C2-04

Correction

Question 6 Déterminer l'écart de position. Conclure vis-à-vis des exigences du cahier des charges.

Correction

On souhaite un écart de traînage inférieur à 1° pour une consigne de vitesse de $105 \, ^{\circ} \, \mathrm{s}^{-1}$.

Question 7 Déterminer l'expression de $\alpha_e(t)$ correspondant à une consigne de vitesse de $105 \,^{\circ} \, \mathrm{s}^{-1}$. En déduire $\alpha_e(p)$.

Correction

Question 8 La valeur de K_{BO} définie précédemment permet-elle de satisfaire l'exigence de précision imposée par le cahier des charges? Conclure.

Correction

Éléments de correction

$$1. \ R(p) = \frac{1}{Np}.$$

2.
$$K_a = \frac{\pi}{180} K_r$$

1.
$$R(p) = \frac{1}{Np}$$
.
2. $K_a = \frac{\pi}{180} K_r$.
3. $T(p) = \frac{K_{BO}}{p(1+\tau'_m p)}$ avec $K_{BO} = \frac{K_c K'_m K_r}{N}$.
4. $K_{BO} = \frac{\sqrt{2}}{\tau'_m}$.
5. $K_c = \frac{\sqrt{2}N}{\tau'_m K'_M K_r}$.
6. $\varepsilon_S = 0$.
7. $\alpha_e(p) = \frac{105}{p^2}$.

$$4. K_{\rm BO} = \frac{\sqrt{2}}{\tau_m'}.$$

$$5. K_c = \frac{\sqrt{2N}}{\tau_m' K_M' K_r}.$$

$$\tau'_m K'_M K_r$$
6. $\varepsilon_S = 0$.

7.
$$\alpha_e(p) = \frac{105}{v^2}$$
.

8.
$$\varepsilon_d = \frac{105 K_a}{K_{BO}}$$