

Boolean Expression to its simplest form using K-map

SHAIK KHAJA MASTAN AHMED

19pa1a04e9@vishnu.edu.in

IITH - Future Wireless Communication-(FWC22032)

Contents

1 Introduction12 karnaugh-map13 Components14 Truth table for given expression15 Connections and results16 Logic Circuit2

1 Introduction

K maps are used to Simplify Boolean Expressions. The given Expression to solve is F(S3,S2,S1,S0)=(1,5,6,7,11,12,13,15)

2 karnaugh-map

Y=S0S1'S3'+S1S2S3'+S1'S2S3+S0S1S3

3 Components

Component	value	quantity
Resistor	220 ohm	1
Arduino	UNO	1
LED		1
Bread board		1
Jumper wires	M-M	10

Table 1:

4 Truth table for given expression

S 3	S2	S1	S0	Υ
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Table 2:

5 Connections and results

Also make connections to arduino $\ensuremath{\mathsf{UNO}}$,led and inputs based on table3.

Arduino UNO	5	4	3	2	8	gnd
Input	S3	S2	S1	S0		
led					+	-

Table 3:

Sample input	S 3	S2	S1	S0	LED
1	0	0	0	0	OFF
2	0	0	0	1	ON

Table 4:

Code Link:

 $\begin{array}{c} {\sf https://github.com/19pa1a04e9/FWC-IITH/blob/main/}\\ {\sf Assignment-1/main.cpp} \end{array}$

6 Logic Circuit

Figure 1: Logic circuit using four 2-input NAND gates