Word-Piece Model

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

> Al Robotics KR NLP Study 정지용

Word-Piece Model?

- Out of Vocabulary(OOV) Problem
 - Neural Machine Translation 은 고정된 크기의 단어 사전 사용
 - 사전에 없는 단어가 등장하는 경우, 이 단어를 처리하는 방안 필요
- OOV words 를 translation하기 위한 두가지 접근 방안
 - 1) simply copy rare words
 - 2) Sub-word units
 - 1) Character Model
 - 2) Mixed Word & Character Model
 - 3) Wordpiece Model
- Balance between the flexibility of characters and efficiency of words

cf) Mixed Word & Character Model

- 고정된 크기의 단어 사전에 포함된 단어는 단어로 사용하고 그외의 OOV 단어는 character 로 변환하되 prefix 태그를 붙여서 사용
 - 시작문자 :
 - 중간문자 : <M>
 - 끝 문자 : <E>

- Source & target sentence 둘다 적용
- 후처리 단계에서 prefix를 제거하여 원래 단어로 tokenization

- language-model likelihood 를 최대화하는 방법으로 학습
- Byte Pair Encoding 알고리즘(Sennirch at el, 2015) 과 유사
- 글자단위에서 점차적으로 단어 집합을 만들어내는 Bottom-up 방식

Step

- 1) 초기 단어 집합을 Unicode character 집합으로 변환하여 inventory 구성
- 2) inventory에 있는 유니그램을 쌍을 구성
- 3) 초기 단어 집합에 빈도수가 가장 높은 쌍을 하나의 유니그램으로 변환하여 inventory 재구성
- 4) 미리 정한 단어 유닛의 갯수에 도달할때까지 2), 3) 과정 반복

• 예시 (참고 : https://wikidocs.net/22592)

newest: 6, widest: 3

```
# dictionary
l o w : 5, l o w e r : 2, n e w e s t : 6, w i d e s t : 3

# vocabulary
l, o, w, e, r, n, w, s, t, i, d

# dictionary update!
l o w : 5,
l o w e r : 2,
```

```
# vocabulary update!
l, o, w, e, r, n, w, s, t, i, d, es
```

• 예시 (참고 : https://wikidocs.net/22592)

```
# dictionary update!
low: 5,
lower: 2,
n e w est : 6,
widest: 3
# vocabulary update!
l, o, w, e, r, n, w, s, t, i, d, es, est
# dictionary update!
low:5,
lower: 2,
n e w est : 6,
widest: 3
# vocabulary update!
l, o, w, e, r, n, w, s, t, i, d, es, est, lo
```

• 예시 (참고 : https://wikidocs.net/22592)

```
# dictionary update!
low : 5,
low e r : 2,
newest : 6,
widest : 3
```

```
# vocabulary update!
l, o, w, e, r, n, w, s, t, i, d, es, est, lo, low, ne, new, newest, wi, wid, widest
```

Apply Word-Piece Model

- 미리 학습된 Word-Piece Model (WPM) 을 토대로 단어 분리
- 예시)

Original) Jet makers feud over seat width with big orders at stake WPM) _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

- 단어의 시작에는 _ 붙임
- 실험 결과 8k ~ 32k 정도로 단어를 분리했을 때, 학습 성능 및 정확도가 좋았음

Experiments

• 212K Source words 와 80k Target words 로 구성된 단어 사전으로 실험

Table 4: Single model results on WMT En→Fr (newstest2014)

	******	1 /11 (110 11 00 00 00 00 11)
Model	BLEU	CPU decoding time
		per sentence (s)
Word	37.90	0.2226
Character	38.01	1.0530
WPM-8K	38.27	0.1919
<u>WPM-16K</u>	37.60	0.1874
WPM-32K	38.95	0.2118
Mixed Word/Character	38.39	0.2774
PBMT [15]	37.0	
LSTM (6 layers) [31]	31.5	
LSTM (6 layers $+$ PosUnk) [31]	33.1	
Deep-Att [45]	37.7	
Deep-Att + PosUnk [45]	39.2	

Table 5: Single model results on WMT En→De (newstest2014)

Model	BLEU	CPU decoding time
		per sentence (s)
Word	23.12	0.2972
Character (512 nodes)	22.62	0.8011
WPM-8K	23.50	0.2079
<u>WPM-16K</u>	24.36	0.1931
WPM-32K	24.61	0.1882
Mixed Word/Character	24.17	0.3268
PBMT [6]	20.7	
RNNSearch [37]	16.5	
RNNSearch-LV [37]	16.9	
RNNSearch-LV [37]	16.9	
Deep-Att [45]	20.6	

Google's Neural Machine Translation System

- Neural Machine Translation 이 실제 서비스에서 사용되기 힘든 이유 해결
- 기존 NMT의 문제점
 - training 과 Inference 할때 많은 시간과 연산 리소스 필요
 - Rare word 에 대한 처리 문제
 - Input sentence 전체를 커버하지 않고 번역하는 문제
- GNMT 의 특징
 - 8개의 LSTM Encoder 와 8개의 LSTM Decoder 그리고 Attention 모듈
 - 학습속도를 올리기 위해, 모델 및 데이터 병렬 구조
 - Inference 속도를 올리기 위해, low-precision 연산 사용
 - Rare word 에 대한 처리를 word-piece model 로 해결
 - beam search 알고리즘을 통해 output sentence 가 input 의 모든 단어를 커버하도록 함

Model Architecture

Model Architecture

- X : Sequence of Source Sentence $X=x_1,x_2,x_3,...,x_M$
- Y : Sequence of Target Sentence $Y=y_1,y_2,y_3,...,y_N$

$$\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_M} = EncoderRNN(x_1, x_2, x_3, ..., x_M)$$

$$P(Y|X) = P(Y|\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, ..., \mathbf{x_M})$$

$$= \prod_{i=1}^{N} P(y_i|y_0, y_1, y_2, ..., y_{i-1}; \mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, ..., \mathbf{x_M})$$

• \mathbf{a}_i : context vector

$$s_t = AttentionFunction(\mathbf{y}_{i-1}, \mathbf{x}_t) \quad \forall t, \quad 1 \leq t \leq M$$
 $p_t = \exp(s_t) / \sum_{t=1}^{M} \exp(s_t) \quad \forall t, \quad 1 \leq t \leq M$
 $\mathbf{a}_i = \sum_{t=1}^{M} p_t.\mathbf{x}_t$

Residual Connections

기존

Residual Connections

$$\mathbf{c}_t^i, \mathbf{m}_t^i = \mathrm{LSTM}_i(\mathbf{c}_{t-1}^i, \mathbf{m}_{t-1}^i, \mathbf{x}_t^{i-1}; \mathbf{W}^i)$$
 $\mathbf{x}_t^i = \mathbf{m}_t^i$
 $\mathbf{c}_t^{i+1}, \mathbf{m}_t^{i+1} = \mathrm{LSTM}_{i+1}(\mathbf{c}_{t-1}^{i+1}, \mathbf{m}_{t-1}^{i+1}, \mathbf{x}_t^i; \mathbf{W}^{i+1})$

$$\mathbf{c}_t^i, \mathbf{m}_t^i = \mathrm{LSTM}_i(\mathbf{c}_{t-1}^i, \mathbf{m}_{t-1}^i, \mathbf{x}_t^{i-1}; \mathbf{W}^i)$$
 $\mathbf{x}_t^i = \mathbf{m}_t^i + \mathbf{x}_t^{i-1}$
 $\mathbf{c}_t^{i+1}, \mathbf{m}_t^{i+1} = \mathrm{LSTM}_{i+1}(\mathbf{c}_{t-1}^{i+1}, \mathbf{m}_{t-1}^{i+1}, \mathbf{x}_t^i; \mathbf{W}^{i+1})$

Bi-directional Encoder for First Layer

• 충분히 context 를 고려하기 위해 bottom encoder layer 에만 적용

Model Parallelism

- Training 속도를 올리기 위해 모델 병렬화와 데이터 병렬화 모두 사용
- 데이터 병렬화
 - Downpour SGD 이용
 - 모델 파라미터를 모든 장비가 공유
 - Adam 과 SGD 결합된 알고리즘을 이용하여 비동기적으로 모델 파라미터 업데이트
- 모델 병렬화
 - 다중 GPU 장비를 활용하여 각 레이어마다 다른 GPU 할당
 - Bottom layer 말고는 모두 uni-directional 구조이기 때문에 i번째 레이어가 다끝나기 전에 i+1 레이어 시작 가능

Training Criteria

• N 개의 input-output sequence pairs $\mathcal{D} \equiv \left\{ (X^{(i)}, Y^{*(i)}) \right\}_{i=1}^N$

$$\mathcal{O}_{\mathrm{ML}}(oldsymbol{ heta}) = \sum_{i=1}^N \log P_{ heta}(Y^{*(i)} \mid X^{(i)})$$

- Objective function이 평가지표 (BLEU) 를 제대로 반영 못하는 문제
- Reward 도입 $r(Y,Y^{*(i)})$

$$\mathcal{O}_{\mathrm{RL}}(oldsymbol{ heta}) = \sum_{i=1}^{N} \sum_{Y \in \mathcal{Y}} P_{ heta}(Y \mid X^{(i)}) \ r(Y, Y^{*(i)})$$

$$\mathcal{O}_{\mathrm{Mixed}}(\boldsymbol{\theta}) = \alpha * \mathcal{O}_{\mathrm{ML}}(\boldsymbol{\theta}) + \mathcal{O}_{\mathrm{RL}}(\boldsymbol{\theta})$$

Quantizable Model and Quantized Inference

- inference 시 속도를 올리기 위해 사용
- 소수점 연산을 8bit 혹은 16bit 고정소수점 정수로 변환하여 연산
- quantization error 를 줄이기 위해 constraints 추가

$$\mathbf{c'}_t^i, \mathbf{m}_t^i = \text{LSTM}_i(\mathbf{c}_{t-1}^i, \mathbf{m}_{t-1}^i, \mathbf{x}_t^{i-1}; \mathbf{W}^i)$$

$$\mathbf{c}_t^i = \max(-\delta, \min(\delta, \mathbf{c'}_t^i))$$

$$\mathbf{x'}_t^i = \mathbf{m}_t^i + \mathbf{x}_t^{i-1}$$

$$\mathbf{x}_t^i = \max(-\delta, \min(\delta, \mathbf{x'}_t^i))$$

$$\mathbf{c'}_t^{i+1}, \mathbf{m}_t^{i+1} = \text{LSTM}_{i+1}(\mathbf{c}_{t-1}^{i+1}, \mathbf{m}_{t-1}^{i+1}, \mathbf{x}_t^i; \mathbf{W}^{i+1})$$

$$\mathbf{c}_t^{i+1} = \max(-\delta, \min(\delta, \mathbf{c'}_t^{i+1}))$$

Decoder

- decoding 과정에서 Beam search를 사용하여 score function을 최대화 하는 Y 탐색
- 두가지 정제 로직 사용
 - Converage penalty: input 데이터를 충분히 사용하였는지 판단
 - Length normalization : 길이가 다른 문장에 대한 정규화 (긴 문장이 손해보기 때문에)

$$s(Y,X) = \log(P(Y|X))/lp(Y) + cp(X;Y)$$

$$lp(Y) = \frac{(5+|Y|)^{\alpha}}{(5+1)^{\alpha}}$$

$$cp(X;Y) = \beta * \sum_{i=1}^{|X|} \log(\min(\sum_{j=1}^{|Y|} p_{i,j}, 1.0)),$$

감사합니다