

(9) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift

® DE 100 57 818 A 1

(1) Aktenzeichen: 100 57 818.7 Anmeldetag: 21. 11. 2000 (43) Offenlegungstag: 23. 5.2002

⑤ Int. Cl.⁷: F 16 H 7/08 F 02 B 67/06

(1) Anmelder:

INA-Schaeffler KG, 91074 Herzogenaurach, DE; ContiTech Antriebssysteme GmbH, 30165 Hannover, DE

(74) Vertreter:

BEST AVAILABLE COPY

Matschkur Lindner Blaumeier Patent- und Rechtsanwälte, 90402 Nürnberg

© Erfinder:

Bonkowski, Manfred, Dipl.-Ing., 30900 Wedemark, DE; Bogner, Michael, Dipl.-Ing., 90542 Eckental, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 198 49 886 A1 DE 196 09 420 A1 43 17 949 A1 DE 43 06 360 A1 DE DE 30 43 287 A1 DE 73 15 940 U DE 70 32 415 U 68 04 829 U DE 689 03 050 T2 DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- 3 Zugmitteltrieb für einen Startergenerator
- Die Erfindung bezieht sich auf einen Zugmitteltrieb (1) bestimmt für einen Antrieb von Aggregaten einer Brennkraftmaschine, dessen Zugmittel (5) die Riemenscheiben (3, 4) des Zugmittels (5) verbindet und ein schwenkbar gelagerter Startergenerator (2) über ein Federelement abgestützt ist.

Beschreibung

Gebiet der Erfindung

100011 Die vorliegende Erfindung betrifft einen Zugmitteltrieb, der für einen Antrieb von Aggregaten einer Brennkraftmaschine, insbesondere zum Antrieb eines Startergenerators, bestimmt ist. Der Zugmitteltrieb umfasst dabei ein Zugmittel, wie einen Riemen, vorzugsweise einen Keilrippenriemen, der alle Riemen-Scheiben des Zugmitteltriebs 10 bzw. der anzutreibenden Aggregate verbindet.

Hintergrund der Erfindung

10002] Derartige Zugmitteltriebe dienen zum Antrieb von Aggregaten, wie beispielsweise Wasserpumpe, Klimakompressor, Generator sowie einer Lenkhilfspumpe. Als Zugmittel für einen derartigen Aggregatetrieb ist ein als Endlosriemen gestaltetes Zugmittel vorgeschen. Für die Funktion der einzelnen Aggregate sowie zur Erzielung einer hohen 20 Lebensdauer des Zugmittels ist ein möglichst schlupffreier Antrieb aller Aggregate erforderlich. Bekannt ist dazu eine Spannvorrichtung bzw. ein Spannsystem vorzuschen, bei dem eine Spannrolle kraftbeaufschlagt an dem Zugmittel geführt ist. Zur Erzielung einer Vorspannung des Zugmittels 25 sind sowohl mechanische als auch hydraulisch wirkende Spannvorrichtungen bzw. Spannsysteme bekannt.

[0003] Das Dokument DE 43 06 360 A1 zeigt eine Spannvorrichtung, die einen Exzenter umfasst, der auf einer in einer Lagerhülse eingesetzten Welle befestigt ist. Auf der Mantelfläche des Exzenters ist ein Radiallager angeordnet, über das eine Spannrolle drehbar gelagert ist. Die Vorrichtung ist mit einem zweiarmigen Gehäuse an der Brennkraftmaschine befestigt. Eine Vorspannkraft wird erzeugt mittels einer Torsionsfeder, die konzentrisch zu der Welle bzw. einer Lagerhülse angeordnet ist und die mit einem Federende an dem Exzenter und mit dem weiteren Federende an dem Gehäuse abgestützt ist. Die von der Torsionsfeder ausgeübte Kraft bewirkt eine kraftschlüssige Abstützung der Spannrolle an dem Zugmittel.

[0004] Aus der DE 196 09 420 A1 ist eine Spannvorrichtung mit einem mechanisch-hydraulischen Betätigungselement bekannt. Diese Vorrichtung umfasst ein Gehäuse, in dem zentrisch ein Zylinder angeordnet ist, zur Aufnahme eines längsverschiebbaren Kolbens. In axialer Verlängerung 45 des Kolbens ist endseitig ein Befestigungsauge vorgeschen, mit dem das Hydraulikelement schwenkbar an einem Spannrollenträger befestigt werden kann. Ein weiteres Befestigungsauge ist am Gehäuse angeordnet, mit dem die Spannvorrichtung schwenkbar an der Brennkraftmaschine 50 befestigt ist. Der längsverschiebbar im Zylinder eingesetzte Kolben ist federkraftbeaufschlagt und begrenzt einen Druckraum in dem Zylinder. Eine Kolbenbewegung bewirkt einen Volumenaustausch des Hydraulikstuids zwischen dem Druckraum und dem Gehäuse.

[0005] Die bekannten Zugmitteltriebe sind vorgesehen zum Antrieb von mehreren Aggregaten, wodurch das alle Riemenscheiben verbindende Zugmittel einer hohen Wechselbiege-Beanspruchung unterliegt. Die Lebensdauer des Zugmittels ist bei einem derartigen Zugmittellayout begrenzt, insbesondere bei Übertragung hoher Antriebsmomente.

Zusammenfassung der Erfindung

[0006] Ausgehend von den Nachteilen bekannter Lösungen ist es Aufgabe der Erfindung, einen Zugmitteltrieb zu schaffen, der zur Übertragung hoher Antriebsmomente ge-

eignet ist und eine hohe Lebensdauer des Zugmittels gewährleistet.

[0007] Zur Lösung dieser Problemstellung ist gemäß der Erfindung ein Zugmitteltrich vorgesehen, der zumindest zwei Riemenscheiben umfaßt und keine separate Spannvorrichtung einschließt. Der erfindungsgemäße Zugmitteltrieb kann somit als ein Zweischeibentrieb ausgelegt werden, bei dem das Zugmittel ausschließlich die Antriebs-Riemenscheibe und die Abtriebs-Riemenscheibe verbindet. Diese Auslegung verursacht keine nachteilige Wechselbiege-Beanspruchung des Zugmittels und stellt damit für die Beanspruchung des Zugmittels einen Idealfall dar, ohne eine zusätzliche, nachteilige Störgröße. Der erfindungsgemäße, vorzugsweise als ein Zweischeibentrieb ausgelegte Zugmittellrieb eignet sich folglich für hohe Antriebsmomente, die insbesondere für den Startmodus eines Startergeneratorbetriebs erforderlich sind, ohne Beeinträchtigung der Zugmittel-Lebensdauer.

[0008] Zur Beeinflussung der Zugmittel-Vorspannung schließt der erfindungsgemäße Zugmitteltrieb einen schwenkbar angelengten Startergenerator ein sowie ein Federelement, mit dem der Startergenerator beispielsweise an dem Gehäuse der Brennkraftmaschine abgestützt ist. Eine derartige Anordnung des Startergenerators ermöglicht eine wirkungsvolle Einflußnahme auf die Vorspannung des Zugmittels. Der Startergeneratorbetrieb erfordert unterschiedliche Zugmittel-Vorspannungen, abhängig von dem Betriebsmodus des Startergenerators, d.h. einem Startbetrieb der Brennkraftmaschine, bei dem der Startergenerator die Brennkraftmaschine antreibt, oder dem Normalbetrieb bzw. Generatorbetrieb, bei dem der Antrieb des Startergenerators von der Brennkrastmaschine erfolgt. Durch eine Variierung der Anordnung und/oder der Dimensionierung des Federelementes in Verbindung mit einer entsprechenden Lage von dem Drehpunkt des Startergenerators kann die Vorspannung unmittelbar beeinflußt werden. Beispielsweise kann damit für den Startbetrieb eine höhere Vorspannung des Zugmittels realisiert werden als im Normalbetrieb.

[0009] Der erfindungsgemäße, vorzugsweise als ein Zweischeibentrieb ausgelegte Zugmitteltrieb in Verbindung mit dem schwenkbar gelagerten, sedernd abgestützten Startergenerator erfordert vorteilhast keine separate Spannvorrichtung. Damit stellt sich ein entscheidender Kostenvorteil ein, wobei sich gleichzeitig der erforderliche Bauteileumfang reduziert. Der erfindungsgemäße Zweischeibentrieb mit nahe zueinander angeordneten Riemenscheiben reduziert weiterhin die Amplitude der Zugmittel-Schwingungen, was sich vorteilhast auf die Geräuschentwicklung des Zugmitteltriebs auswirkt. Der erfindungsgemäße Zugmitteltrieb stellt damit einen Idealsall für das eingesetzte Zugmittel dar. Im Vergleich zu bisherigen Zugmitteltrieben sind erhöhte Vorspannkräste und Zugmittelkräste realisierbar, verbunden mit einer gesteigerten Lebensdauer des Zugmittels.

[0010] Weitere, vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche 2 bis 9.
[0011] Das Startergeneratorkonzept sieht vor, dass, abhängig von dem Betriebsmodus, die Brennkraftmaschine gestartet oder elektrische Energie erzeugt wird. Wahlweise wird ein Drehmoment von dem Startergenerator oder der Brennkraftmaschine über die entsprechende Riemenscheibe in das Zugmittel eingeleitet. Damit verbunden ist ein Wechsel des Leertrums und des Zugtrums in dem Zugmittel zwischen den Riemenscheiben der Brennkraftmaschine und des Startergenerators. Abhängig von der Generatorausgangsleistung verändert sich das in dem Generator induzierte Moment. Proportional zu dem induzierten Moment verändert sich das Gegendrehmoment des Startergenerators-Gehäu-

262

4

[0012] Gemäß einer weiteren Ausgestaltung der Erfindung ist der Startergenerator exzentrisch gelagert. Dabei bietet es sich an, den Drehpunkt an der Außenkontur des Generatorgehäuses vorzusehen. Die exzentrische Lagerung des Startergenerators ermöglicht, dass die Gewichtskraft des Startergenerators Einfluss auf die Vorspannkraft des Zugmittels nimmt. Beispielsweise reduziert eine Verlagerung des Drehpunkts des Startergenerators in Richtung einer Wirklinie der resultierenden Zugmittelkraft die Vorspannkraft des Zugmittels. Eine Abstimmung der von dem Federelement ausgeübten Kraftkomponente in Verbindung mit der Drehpunktlage ermöglicht die erforderliche, differenzierte Vorspannung des Zugmittels zwischen dem Startbetrieb und dem Normalbetrieb des Startergenerators.

[0013] In dem Startbetrieb des Startergenerators stellt sich dabei folgendes Gleichgewicht der Drehmomente ein. Das von dem Federelement in Verbindung mit dem zugehörigen Hebelarm erzeugte Drehmoment, gemeinsam mit dem sich im Generatorgehäuse einstellenden Drehmoment, entspricht dem Drehmoment, welches durch die resultierende Kraft der 20 im Zugtrum und im Leertrum wirkenden Kräfte und dem zugehörigen Hebelarm ausgelöst wird. Die Summe aller in dem Drehpunkt wirkenden Drehmomente ist Null. Daraus ergibt sich die von dem Federelement autzubringende Mindestfederkraft. Diese Mindestfederkraft ist so auszulegen, 25 dass sowohl im Startbetrieb als auch im Normalbetrieb das Zugmittel ausreichend vorgespannt ist. Das von der Gewichtskraft des Startergenerators verursachte Drehmoment ist bei der Drehmomentbetrachtung vernachlässigt.

[0014] Ebenfalls stellt sich im Normalbetrieb, dem gene- 30 ratorischen Betrieb des Startergenerators, ein Gleichgewicht der Drehmomente ein. Dabei wird an der Generatorscheibe ein Drehmoment induziert, wodurch das Gehäuse des Startergenerators ein Gegendrehmoment erfährt. Übereinstimmend mit der Drehrichtung des Gegendrehmomentes wirkt das von der resultierenden Kraft der Zugmitteltrums in Verbindung mit dem zugehörigen Hebelarm erzeugte Drehmoment. Die gleichgerichteten, sich addierenden Drehmomente wirken dem von der Kraft des Federmittels in Verbindung mit dem zugehörigen Hebelarm erzeugten Drehmo- 40 ment entgegen. Damit verbunden stellt sich für den Normalbetrieb im Vergleich zu dem Startbetrieb eine niedrigere Vorspannkraft des Zugmittels ein. Diese Drehmomentbetrachtung berücksichtigt nicht das von dem Startergeneratorgewicht verursachte Drehmoment.

[0015] Eine weitere Ausgestaltung der Erfindung bezieht sich auf das Federelement, das gemäß der Erfindung als eine Federdämpfer-Einheit ausgeführt werden kann. Ein derartiges Bauteil nimmt Einfuß auf die Vorspannung des Zugmittels und begünstigt außerdem die Laufruhe des Zugmittels und begünstigt außerdem die Laufruhe des Zugmittelstiebs, wodurch ein weitestgehend schwingungsfreier Umlauf des Zugmittels erreicht werden kann. Die Federdämpfer-Einheit kompensiert stoßartige, impulsartige Belastungen des Zugmitteltriebs, hervorgerufen durch den Ungleichförmigkeitsgrad der Brennkraftmaschine sowie eine nicht 55 konstante Leistungsaufnahme des Startergenerators.

[0016] Alternativ zu einer Federdämpfungs-Einheit schließt die Erfindung ebenfalls eine getrennte Anordnung ein. Neben einem Federelement, das vorzugsweise zwischen dem Gehäuse des Startergenerators und beispielsweise dem 60 Kurbelgehäuse einer Brennkraftmaschine angeordnet ist, ist die Dämpfungseinheit mit der Lagerung des Startergenerators kombiniert. Weiterhin umfasst die Erfindung ebenfalls eine sowohl von der Federeinheit als auch von der Lagerung des Startergenerators getrennt angeordnete Dämpfungseinheit.

[0017] Ein weiteres Konstruktionsmerkmal der Erfindung bezieht sich auf die Gestaltung des Federelementes bzw. der

Federdämpfer-Einheit. Diese Bauteile können gemäß der Erfindung sowohl mechanisch als auch hydraulisch wirkend ausgelegt sein.

Kurze Beschreibung der Zeichnungen

[0018] Ein bevorzugtes Ausführungsbeispiel, abgebildet in zwei Figuren, verdeutlicht die Erfindung. Es zeigen:

[0019] Fig. 1 in einer schematischen Darstellung den erfindungsgemäßen Zugmitteltrieb in einem Startbetrieb des Startergenerators;

[0020] Fig. 2 den Zugmitteltrieb gemäß Fig. 1 im Normalbetrieb.

Detaillierte Beschreibung der Zeichnungen

[0021] Die Fig. 1 zeigt einen Zugmitteltrich 1 zum Antrieb eines Startergenerators 2, in einer schematischen Darstellung. Dabei umfasst der Zugmitteltrieb 1 zwei Riemenscheiben 3, 4, die über ein Zugmittel 5, vorzugsweise einen Riemen, verbunden sind. Die Riemenscheibe 3 ist dabei über eine Kurbelwelle 6 mit einer Brennkraftmaschine 7 verbunden. Die weitere Riemenscheibe 4 steht unmittelbar mit dem Startergenerator 2 in Verbindung. Mit dem Startergenerator 2 kann die Brennkraftmaschine 7 gestartet oder elektrische Energie erzeugt werden. Abhängig von dem Betriebsmodus, dem Startbetrieb oder dem Normalbetrieb des Startergenerators 2, wird ein Drehmoment von dem Startergenerator 2 oder der Brennkraftmaschine 7 über die Riemenscheibe 3 oder die Riemenscheibe 4 in das Zugmittel 5 eingeleitet. Damit verbunden ist ein Wechsel des Leertrums und des Zugtrums im Zugmittel 5. Der Startergenerator 2 umfasst ein Gehäuse 8 mit integriertem Rotor, an dem die Riemenscheibe 4 drehstarr befestigt ist. Das Gehäuse 8 des Startergenerators 2 ist exzentrisch schwenkbar an der Brennkraftmaschine 7 gelagert. Dazu ist das Gehäuse 8 über ein Lagerauge 9 mit der Brennkraftmaschine 7 verbunden. Zur Erzielung einer definierten Vorspannkraft des Zugmittels 5, die erforderlich ist für einen schlupffreien Antrieb, dient ein Federelement 10, das zwischen der Brennkraftmaschine 7 und einem weiteren Lagerauge 11 des Gehäuses 8 eingesetzt ist und eine im Gegenuhrzeigersinn gerichtete Kraftkomponente auf den Startergenerator 2 ausübt.

[0022] In Fig. 1 sind die im Startbetrieb des Startergenera-45 tors 2 sich ergebenden Drehmomente mit Richtungspfeilen versehen. In dem Startmodus erfolgt vom Startergenerator 2 ein Antrieb der Brennkraftmaschine 7. Dabei erzeugt der Startergenerator 2 ein im Uhrzeigersinn gerichtetes Drehmoment M₁. Ein Trum 12 des Zugmittels 5 wird dabei zum Zugtrum und der Trum 13 zum Leertrum des Zugmittels 5. Entsprechend ist die sich im Trum 12 einstellende Zugmittelkraft F₂₂ größer als die sich im Trum 13 einstellende Zugmittelkraft Fz1. Die voneinander abweichenden, gleichgerichteten Zugmittelkräfte bewirken eine resultierende Zugmittelkraft, die, bezogen auf einen Drehpunkt 14, der Lagerung des Startergenerators 2 über einen Hebelarm ein im Uhrzeigersinn wirkendes Drehmoment M3 entwickeln, Das Drehmoment M₃ steht im Gleichgewicht zu den im Gegenuhrzeigersinn wirkenden Drehmomenten M2 und M4. Das Drehmoment M2 stellt sich im Gehäuse 8 des Startergenerators 2 ein. Das weitere Drehmoment M4 wird von dem Federelement 10 mit dem resultierenden Hebelarm zum Drehpunkt 14 gebildet. Die Vorspannkräfte des Zugmittels 5, d. h. die Zugmittelkräfte F₂₂ und F₂₁, sind beeinflussbar durch das Federelement 10 sowie durch eine Verlagerung des Drehpunktes 14, d. h. dem Lagerauge 9 des Startergenerators 2.

[0023] Die Fig. 2 zeigt den Zugmitteltrieb 1 im Normalbe-

15

20

25

30

35

40

5

trieb bzw. Generatorbetrieb, bei dem der Startergenerator 2, angetrieben durch die Brennkraftmaschine 7, Energie erzeugt. Die im Uhrzeigersinn umlaufende Riemenscheibe 3 der Brennkraftmaschine 7 führt dazu, dass im Zugmittel 5 der Trum 13 zum Zugtrum und der Trum 12 zum Leertrum wird. Damit verbunden übertrifft die Zugmittelkraft Fz1 die sich im Leertrum einstellende Zugmittelkraft F₂₂. Im Vergleich zu Fig. 1 stellt sich weiterhin eine Drehrichtungsumkehr des Drehmoments M2 in dem Gehäuse 8 des Startergenerators 2 ein. Ein Gleichgewicht der Drehmomente ergibt 10 sich durch eine Addition der Drehmomente M2 und M3, die dem von dem Federelement 10 mit dem entsprechenden Hebelarm ausgelösten Drehmoment M4 entsprechen.

Bezugszahlen

- 1 Zugmitteltrieb
- 2 Startergenerator
- 3 Riemenscheibe
- 4 Riemenscheibe
- 5 Zugmittel
- 6 Kurbelwelle
- 7 Brennkraftmaschine
- 8 Gehäuse
- 9 Lagerauge
- 10 Federelement
- 11 Lagerauge
- 12 Trum
- 13 Trum
- 14 Drehpunkt
- M₁ Generator-induziertes Drehmoment
- M₂ Drehmoment im Generatorgehäuse
- M₃ Drehmoment, erzeugt durch die resultierenden Zugmittelkräfte
- M4 Drehmoment, erzeugt durch das Federelement
- FF Kraftkomponente des Federelementes
- Fz1 Zugmittelkraft
- F_{z2} Zugmittelkraft

Patentansprüche

- 1. Zugmitteltrieb, bestimmt für einen Antrich von Aggregaten einer Brennkraftmaschine, insbesondere eines riemengetriebenen Startergenerators (2), wobei der Zugmitteltrieb (1) zumindest als ein Zweischeibentrieb 45 ausgeführt ist, dessen Zugmittel (5) alle Riemenscheiben (3, 4) des Zugmitteltriebs (1) verbindet und der Startergenerator (2) schwenkbar gelagert über ein eine Vorspannkraft des Zugmittels (5) beeinflussendes Federelement (10) abgestützt ist.
- 2. Zugmitteltrieb nach Anspruch 1, wobei abhängig von einem Betriebsmodus, einem Startbetrieb und einem Normalbetrieb, ein Wechsel des Leertrums und des Zugtrums in dem Zugmittel (5) erfolgt.
- 3. Zugmitteltrieb nach Anspruch 1, wobei der Starter- 55 generator (2) exzentrisch gelagert ist und dazu ein Gehäuse (8) des Startergenerators (2) an einer Außenkontur ein Lagerauge (10) aufweist.
- 4. Zugmitteltrieb nach Anspruch 1, bei dem im Startbetrieb ein von dem Federelement (10) mit dem resul- 60 tierenden Hebelarm erzeugtes Drehmoment (M4) gemeinsam mit dem Drehmoment (M2) im Gehäuse (8) des Startergenerators (2) in einem Gleichgewicht zu einem von der resultierenden Kraft der Zugmitteltrums crzeugten Drehmoment (M3) steht.
- 5. Zugmitteltrieb nach Anspruch 1, bei dem in einem Normalbetrieb das von dem Federelement (10) mit dem resultierenden Hebelarm erzeugte Drehmoment

6

- (M₄) übereinstimmt mit einer Addition der Drehmomente (M₂) ini Gehäuse (8) des Startergenerators (2) sowie dem von der resultierenden Kraft des Zugmitteltrums (12, 13) erzeugten Drehmoment (M3).
- 6. Zugmitteltrieb nach Anspruch 1, wobei das Federelement (10) als eine Federdämpfer-Einheit ausgeführt
- 7. Zugmitteltrieb nach Anspruch 1, wobei die Lagerung des Startergenerators (2) mit einer Dämpfungseinheit kombiniert ist.
- 8. Zugmitteltrieb nach Anspruch 1, mit einem mechanisch wirkenden Federelement (10) oder einer mechanisch wirkenden Federdämpfer-Einheit.
- Zugmitteltrieb nach Anspruch 1, mit einem hydraulisch wirkenden Federelement (10) oder einer hydraulisch wirkenden Federdämpfer-Einheit,

Hierzu 2 Scite(n) Zeichnungen

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 57 818 A1 F 16 H 7/08 23. Mai 2002

