DISCUSSION CLASS: COS1501

COS1501 THEORETICAL COMPUTER SCIENCE 1

SCHOOL OF COMPUTING

CONTENTS

- Sets: Question 1; study units 3, 4
- Relations: Question 2; study units 5, 6
- Functions: Question 3; study units 6.5, 7
- Operations: Question 4; study unit 8
- Logic: Question 5; study units 9, 10
- Mixed concepts: Question 6

SETS (Study Guide, pp. 40 - 43)

Subset: A ⊆ B every element of A also element of B

Form subsets: throw away some element(s) from B

Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Difference: $A - B = \{x \mid x \in A \text{ and } x \notin B\}$

Complement: $A' = \{x \mid x \in U \text{ and } x \notin A\}$

SUBSETS (Study Guide, pp. 40, 44)

Subset: $A \subseteq B$

Proper subset: A ⊂ B

Example:

Let $C = {\emptyset, \{a\}}$ 2 elements in C namely \emptyset and $\{a\}$ Cardinality: |C| = 2

Form subsets of C:

Throw away:

- both elements to form subset { };
- element \emptyset to form subset $\{\{a\}\}$;
- element {a} to form subset {Ø};
- no element then $C \subseteq C$.

Subsets of C: $\{\}$, $\{\{a\}\}$, $\{\emptyset\}$ and C.

Powerset:

$$P(C) = \{\{\}, \{\{a\}\}, \{\emptyset\}, C\}$$

VENN DIAGRAMS (Study Guide, pp. 48 - 51)

Question 1

Use Venn diagrams to investigate whether, for all $A,B,C \subseteq U$,

$$A \cup (B \cap C') = (A + B) - C.$$

If an identity, give proof; if not, give a counterexample.

Solution: Left-hand side:

Is $A \cup (B \cap C') = (A + B) - C$ an identity?

Left-hand side:

Right-hand side:

LHS ≠ RHS:

 $A \cup (B \cap C') = (A + B) - C$ is not an identity.

Provide counterexample.

Left-hand side:

A U (B n C') C

Right-hand side:

Counterexample: Choose $a \in A$, B and C.

Let
$$U = \{a, b, c\}, A = \{a\}, B = \{a, b\} \text{ and } C = \{a\}.$$

L-H:
$$A \cup (B \cap C')$$
 R-H: $(A + B) - \{a\} \cup (\{a,b\} \cap \{b,c\})$ = $\{b\} - \{a\} \cup \{b\}$ = $\{b\} - \{a\} \cup \{b\}$ L-H\neq R-H

R-H:
$$(A + B) - C$$

 (b,c) = $\{b\} - \{a\}$
= $\{b\}$
 $L-H \neq R-H$

(Study Guide, pp. 55, 72)

Set equality:

For any sets A, B \subseteq U,

 $A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A.$

To prove A = B: prove that $x \in A$ iff $x \in B$

Cartesian product:

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

Example:

Suppose $A = \{2, 3, 4\}$ and $B = \{5, 6\}$, then

$$A \times B = \{ (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6) \}$$

Question 1b)

Determine whether, for all X, Y, W \subseteq U, $(X - Y) \times W \subseteq (X \times W) - (Y \times W)$. Solution:

Suppose
$$(p,q) \in (X-Y) \times W$$
,
then $p \in (X-Y)$ and $q \in W$
i.e. $(p \in X \text{ and } p \notin Y)$ and $q \in W$
i.e. $(p \in X \text{ and } q \in W)$ and $(p \notin Y \text{ and } q \in W)$
i.e. $(p,q) \in (X \times W)$ and $(p,q) \notin (Y \times W)$
i.e. $(p,q) \in (X \times W) - (Y \times W)$.
Thus $(X-Y) \times W \subset (X \times W) - (Y \times W)$.

Handy notations:

an even number can be expressed as 2n, an odd number as 2m + 1, and a multiple of three as 3t, for some n, m, $t \in \mathbb{Z}$

Two consecutive numbers: k and k + 1 for some $k \in \mathbb{Z}$.

RELATIONS (Study Guide, pp.74 - 78)

 $R \subseteq A \times A$: R a binary relation *from A to A* (or *on A*).

R reflexive on A: $\forall x \in A, (x, x) \in R$.

R irreflexive: $\forall x \in A, (x, x) \notin R$.

R symmetric: $\forall x, y \in A$, if $(x, y) \in R$, then $(y, x) \in R$.

R antisymmetric: $\forall x, y \in A$, if $x \neq y$ and $(x, y) \in R$, then $(y, x) \notin R$.

if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

R on A satisfies *trichotomy*: $\forall x, y \in A$, such that $x \neq y$ we have $(x, y) \in R$ or $(y, x) \in R$.

E.g. R on \mathbb{Z} : $(v, w) \in R$ iff w - v = 7k, $k \in \mathbb{Z}$. Note order of variables: $(x, y) \in R$: y - x = 7k $(y, z) \in R$: z - y = 7m $(x, z) \in R$: z - x = 7t

Def: R transitive: $\forall x, y, z \in \mathbb{Z}$, if $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$, then $(x, z) \in \mathbb{R}$.

Proof: Assume $(x, y) \in R$ and $(y, z) \in R$, then y - x = 7k ① and z - y = 7m ② ① + ②: z - x = 7(k + m), thus $(x, z) \in R$. (Study Guide, pp. 84 - 88)

Kinds of Relations:

R on A

weak partial order:
 reflexive on A, antisymmetric, and
 transitive.

• strict partial order: irreflexive, antisymmetric, and transitive.

Weak or strict total (or linear) order also satisfies trichotomy.

Weak or strict total (or linear) order also UNISA

(Study Guide, pp. 90 – 92, 94)

A relation R on A is an equivalence relation iff R is reflexive on A, symmetric, & transitive.

Equivalence classes:

 $[x] = \{y \mid y \in A \text{ and } x R y\}$

Say $[x_1]$ & $[x_2]$ eq. classes of R: $[x_1]$, $[x_2] \subseteq A$, then

 $P = \{[x_1], [x_2]\}$ is a partition of A:

- $[x_1] \neq \emptyset$, $[x_2] \neq \emptyset$,
- $[x_1] \cap [x_2] = \emptyset$, and
- $[x_1] \cup [x_2] = A$

Question 2a)

R on \mathbb{Z} : $(x, y) \in R$ iff y - x is even.

Prove: R an equivalence relation. Show equivalence classes.

Solution:

Eq. rel: Reflexive on \mathbb{Z} , symmetric & transitive

y - x is even, i.e. multiple of two, so

y - x = 2k for some $k \in \mathbb{Z}$.

Reflexivity: (Is $(x, x) \in \mathbb{R}$ for all $x \in \mathbb{Z}$?

i.e. is x - x = 2k for all $x \in \mathbb{Z}$?)

Proof:

For all $x \in \mathbb{Z}$, x - x = 0 = 2(0) with $0 \in \mathbb{Z}$. Hence $(x, x) \in \mathbb{R}$.

Thus R is reflexive on \mathbb{Z} .

```
Symmetry: (If (x, y) \in R, is (y, x) \in R?)
Suppose (x, y) \in \mathbb{R},
then y-x=2k for some k \in \mathbb{Z} ①
- ①: -(y-x) = -(2k)
i.e. x-y=2(-k), -k \in \mathbb{Z}
Thus (y, x) \in R, hence R is symmetric.
Transitivity: (If (x, y) \in R \& (y, z) \in R. Is (x, z) \in R?)
Suppose (x, y) \in \mathbb{R} and (y, z) \in \mathbb{R} then
y - x = 2k ① and z - y = 2m ②
① + ②: (y - x) + (z - y) = 2k + 2m
```

i.e. $z-x = 2(k+m), (k+m) \in \mathbb{Z}$

Thus $(x, z) \in R$, hence R is transitive.

```
Equivalence classes of R:
[x] = \{ y \mid (x, y) \in R \} = \{ y \mid y - x = 2k \text{ for some } k \in \mathbb{Z} \}
                             = \{ y \mid y = 2k + x \text{ for some } k \in \mathbb{Z} \}
Let x = 0:
[0] = \{ y \mid y = 2k + 0, \text{ for some } k \in \mathbb{Z} \}
    = \{..., -8, -6, -4, -2, 0, 2, 4, 6, 8,...\} (even integers)
Let x = 1:
[1] = { y | y = 2k + 1, for some k \in \mathbb{Z} }
    = \{ ..., -7, -5, -3, -1, 1, 3, 5, 7, ... \} (odd integers)
Try x = ...-4, -2, 2, 4,... then ...= [-4] = [-2] = [0] = [2] = [4] = ...
Try x = ...-3, -1, 3, 5, ... then ... = [-3] = [-1] = [1] = [3] = [5] = ...
Two eq classes: [0] \cup [1] = \mathbb{Z}.
(S = \{ [0], [1] \}  partition of \mathbb{Z}.)
```

Question 2

R on
$$\mathbb{Z}$$
:
 $(x, y) \in R \text{ iff } mx = y \text{ for some } m \in \mathbb{Z}^+.$
 $(y \text{ is a multiple of } x)$

bi) Give element in R & element not in R.

Solution:
$$(3, 12) \in \mathbb{R}$$
 $(3 \times 4 = 12);$ $(3, 4) \notin \mathbb{R}$ (4 is not a multiple of 3)

R is a weak partial order on $\mathbb Z$ because R is reflexive on $\mathbb Z$, antisymmetric, and transitive.

R does not satisfy trichotomy: Counterexample: (3, 4) ∉ R and (4, 3) ∉ R

FUNCTIONS (Study Guide, pp. 98 – 114)

$$R \subseteq X \times Y$$
:

domain of R: $dom(R) \subseteq X$,

range of R: $ran(R) \subseteq Y$ (codomain = Y)

- dom(R) = $\{x \mid \text{for some } y \in Y, (x, y) \in R\}$
- $ran(R) = \{y \mid for some x \in X, (x, y) \in R\}$

R is function iff R is functional and dom(R)=X. (functional: each $x \in A$ appears exactly once as first co-ordinate)

Function denoted by R: $X \rightarrow Y$.

Ex. f:
$$\mathbb{Z} \rightarrow \mathbb{Z}$$
 is def. by $f(x) = x + 2$

Graph for f:

Consider function h: $A \rightarrow B$:

h *injective*: if $h(a_1) = h(a_2)$ then $a_1 = a_2$

h surjective: ran(h) = B

h bijective iff h injective & surjective

Images (Study Guide, pp. 110 – 111)

Ex: function f: $\mathbb{Z} \rightarrow \mathbb{Z}$ is def by $f(x) = x^2 - 3x$ and function g: $\mathbb{Z} \rightarrow \mathbb{Z}$ is def by g(x) = 5x + 4

The image of x under f: $f(x) = x^2 - 3x$

[Examples: $f(u) = u^2 - 3u$ or even

$$f(m + 1) = (m + 1)^2 - 3(m + 1)$$
 etc.]

 $f \circ g(x) = f(g(x)) = (g(x))^2 - 3g(x)$ (image of x under $f \circ g$)

i.e.
$$f(5x + 4) = (5x + 4)^2 - 3(5x + 4)$$

UNISA college of science, engineering and technology

- - -

```
Question 3 fon Z: (x, y) \in f iff y = 3x - 1
g on Z: (x, y) \in g iff y = 3 - x
(a)Prove f a function: f: Z \rightarrow Z (i.e. f functional & dom (f)=Z)
```

Solution:

Is f functional? Yes.

```
Suppose (x, y) \in f and (x, z) \in f,
then y = 3x - 1 and z = 3x - 1
i.e. y = 3x - 1 = z
i.e. y = z.
```

ls dom (f) = Z? Yes.

$$\begin{aligned} &\text{dom(f)} = \{ \text{ x } | \text{ for some } y \in \mathbb{Z}, \text{ } (x, y) \in f \} \\ &= \{ \text{ x } | \text{ for some } y \in \mathbb{Z}, \text{ } y = 3x - 1 \} \\ &= \{ \text{ x } | \text{ } 3x - 1 \text{ is an integer} \} \\ &= \mathbb{Z} \end{aligned}$$

Question 3b)

f (y = 3x - 1) and g (y = 3 - x) functions on \mathbb{Z} . Which function not bijective? Do two tests on it.

Solution:

f not bijective: injective (one-to-one); but not surjective (not onto).

f injective:

Suppose f(u) = f(v) for some $u, v \in \mathbb{Z}$, then 3u - 1 = 3v - 1 i.e. u = v.

<u>f not surjective:</u> Counterexample:

Choose y = 3.

There is no $x \in \mathbb{Z}$ such that f(x) = y, i.e. such that 3x - 1 = 3. $(x = 4/3 \notin \mathbb{Z}$.)

Hence $3 \notin ran(f)$ and thus $ran(f) \neq Z$.

Question 3 c) Give inverse of bijective function g.

Solution:
$$g(y = 3 - x)$$
 is bijective.
 $(y, x) \in g^{-1}$ iff $(x, y) \in g$
iff $y = 3 - x$
iff $x = 3 - y$
Hence g^{-1} : $Z \times Z$ def. by $g^{-1}(y) = 3 - y$
Question 3 d) Determine $f \circ g$. $(f(x) = 3x - 1; g(x) = 3 - x)$
Solution: $f \circ g(x) = f(g(x))$
 $= f(3 - x)$ (replace $g(x)$ by $3 - x$))
 $= 3(3 - x) - 1$ ($f(x) = 3x - 1$))
 $= 8 - 3x$

Thus $f \circ g$: $\mathbb{Z} \times \mathbb{Z}$ is def. by $f \circ g(x) = 8 - 3x$.

OPERATIONS (Study Guide, pp. 119 – 122)

Ex. Binary operation \Diamond : $X \times X \to X$

commutative:

$$x \diamond y = y \diamond x$$
 for all $x, y \in X$.

· associative:

$$(x \diamond y) \diamond z = x \diamond (y \diamond z)$$
 for all $x, y, z \in X$.

an identity element:

$$e \diamond x = x \diamond e = x$$
 for all $x \in X$.

Question 4

Let
$$X = \{ b, c, d \}$$

ai) Give example of binary operation * on X in a table:

* is commutative & has identity element.

Solution:

*	b	С	d
b	b	C	d
С	С	С	C
d	d	С	d

*	<u>b</u>	С	d
<u>b</u>	b	C	d
С	C	С	С
d	d	С	d

Commutative: Symmetry around diagonal from top left to bottom right corner. b is the identity element.

Question 4 Let X = { b, c, d }
aii) Show that your operation has both these properties,
and name the identity element. Solution:

Commutative

Check commutativity:

Diagonal top left to bottom right.

Identity element: b, because

*	b	C	d
b	b	C	d
С	C	C	C
d	d	C	d

Question 4 Let
$$X = \{ b, c, d \}$$

aiii) Using your table, test for associativity (one ex.).

Decide from example: Does your binary operation has the property of associativity?

*

b

C

C

Justify your answer.

Solution:

$$(b*c)*d = c*d = c$$
 and $b*(c*d) = b*c = c$

Example shows associativity, d d

but <u>one</u> example does not show that it is true for all possible combinations.

Question 4

bi) Let $Y = \{\emptyset, \{\emptyset\}\}$. Complete the following table for the binary operation \cap (intersection) on Y:

\cap	Ø	{∅ }
Ø		
{∅ }		

Solution:

Question 4 Let
$$Y = \{\emptyset, \{\emptyset\}\}\$$

bii) Write \cap in list notation.

\cap	Ø	{∅}
Ø	Ø	Ø
{∅}	Ø	{∅}

Solution:

 $\emptyset \cap \emptyset = \emptyset$, so (\emptyset,\emptyset) , \emptyset) is an element in the set;

 $\emptyset \cap \{\emptyset\} = \emptyset$, so $(\emptyset, \{\emptyset\}), \emptyset$) is an element in set; etc.

Note:

 \emptyset = { } (\emptyset has **no** elements) and

 $\{\emptyset\}$ has one element namely \emptyset , so \emptyset and $\{\emptyset\}$ has no common elements, thus $\emptyset \cap \{\emptyset\} = \emptyset$.

\cap in list notation:

 $\{ ((\varnothing,\varnothing),\varnothing),((\varnothing,\{\varnothing\}),\varnothing),((\{\varnothing\},\varnothing),\varnothing),\varnothing \},$ $((\{\emptyset\},\{\emptyset\}),\{\emptyset\}))$

LOGIC (Study Guide, study units 9 & 10)

Connectives for declarative statements p & q: \land , \lor , \rightarrow , \leftrightarrow

	•	
р	q	conjunction
		p∧q
T	T	T
T	F	F
F	T	F
F	F	F

р	q	conditional
		$p \to q$
Т	T	T
Т	H.	F
F	T	T
F	F	T

р	q	disjunction
		p∨ q
T	T	T
T	F	T
F	T	T
F	F	F

n	q	biconditional
р	4	$p \leftrightarrow q$
Т	Т	T
T	F	F
F	T	F
F	F	T

Declarative statement True or False Compound statement always true: *tautology* Compound statement always false: *negation*

Statements p and q *logically equivalent*: $p = q \text{ iff } p \leftrightarrow q \text{ a tautology}$

De Morgan's laws:

•
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

•
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

Universal quantifiers e.g.:

• "For all $x \in \mathbb{Z}$..." i.e. " $\forall x \in \mathbb{Z}$..."

Existential quantifiers e.g.:

• "There exists an $x \in \mathbb{Z}$..." i.e. " $\exists x \in \mathbb{Z}$..."

Predicate P(x):

- P(x) is true for any variable $x \in A$ that satisfies the property, and P(x) is false otherwise.
- e.g. if P(x) is the pred. "x is an even integer": True for all even integers and false for all odd integers.

Negation:

¬ (∀ x ∈ A, P(x)) i.e. ∃ x ∈ A, ¬ P(x)
 ¬ (∃ x ∈ A, P(x)) i.e. ∀ x ∈ A, ¬ P(x)

 I.e. ∀ x ∈ A, ¬ P(x)

Question 5a)

Write the English sentence

'If the wind is blowing then it will bring wind or rain' in symbolic logic notation.

Use

the letter t for 'the wind is blowing', the letter d for 'it will bring wind' and the letter h for 'it will bring rain'.

Solution:

Symbolic logic notation:

$$t \rightarrow (d \lor h)$$

Question 5b)

Use the double negation property and De Morgan's laws to rewrite the following expression as an equivalent statement that does not have the not symbol (¬) outside parentheses.

Solution:

Question 5c)

Use a **truth table** to determine whether the compound statement $(\neg p \lor q) \land [\neg (p \rightarrow q)]$

is a tautology, a contradiction or neither.

Solution:

р	q	٦р	p ∨ qr	$p \rightarrow q$	¬(p → q)	
						$[\neg (p \rightarrow q)]$
Т	T	L	T	T	F	F
T	F	F	F	F	Т	F
F	Т	Т	Т	Т	F	F
F	F	Т	Т	Т	F	F

All values false, the statement is a contradiction.

Question 5d)

Let $D = \{1, 2, 4\}$. Provide negation of following statement:

$$\forall x \in D, 4x + 1 \le 16$$

Which is true, the original statement or the negation?

Solution:

Negation:
$$\exists x \in D, 4x + 1 > 16$$

4x + 1 > 16 true for x = 4.

So there exists an $x \in D$ such that 4x + 1 > 16.

Thus negation is true.

Question 5e)

Prove "for any $n \in \mathbb{Z}$, if $5n^2$ is odd then n is odd" $(p \rightarrow q)$ by using contrapositive of given statement.

Solution:

(To prove: $(\neg q) \rightarrow (\neg p)$,

i.e. if n is not odd, then 5n² is not odd,

i.e. if n is even then $5n^2$ is even.)

Suppose n is even, then n=2k, for some $k \in \mathbb{Z}$.

Then $5n^2 = 5(2k)^2 = 5(4k^2) = 2(10k^2)$ i.e. $5n^2$ is even.

Question 5f)

Prove by **contradiction** (reduction ad absurdum) that for any integer n, if $n^2 + 2n$ is even then n is even.

Solution:

Suppose n² + 2n is even.

Two possibilities: either n is odd or n is even. Suppose n is odd, i.e. n = 2k + 1 for some $k \in \mathbb{Z}$.

Then
$$n^2 + 2n = (2k + 1)^2 + 2(2k + 1)$$

= $4k^2 + 8k + 3$
= $(4k^2 + 8k + 2) + 1$
= $2(2k^2 + 4k + 1) + 1$, i.e. $n^2 + 2n$ is odd

This contradicts initial supposition, so questionable supposition wrong, thus n is even if n^2+2n is even.

MIXED

Power set of A: set that has as members all the subsets of A Example:

A = {1, {1}}: 2 elements: 1 and {1} (n = 2) \mathcal{P} (A) = { \emptyset , {1}, {{1}}, {1, {1}} } (nr of elements: 2 to power n)

Ex. of factorisation:

$$x^2 - 4x + 3 < 0$$

i.e.
$$(x - 3)(x - 1) < 0$$

then
$$(x-3) > 0$$
 and $(x-1) < 0 (+ x - = -)$

i.e.
$$x > 3$$
 and $x < 1$

OR

$$(x-3) < 0$$
 and $(x-1) > 0$

i.e.
$$x < 3$$
 and $x > 1$,

Question 6 Let $A = \{1, 2, 3\}, B = \{0, 1\} \text{ and } C = \{\emptyset\}.$

a) Give A + B and an equivalence relation on A + B (not identity relation).

Solution: A+B=
$$\{0, 2, 3\}$$
 Equivalence relation on A+B: $\{(0, 0), (2, 2), (3, 3), (0, 2), (2, 0)\}$

b) Determine values of sets:

$$\mathcal{P}(B) \cap \mathcal{P}(C); \mathcal{P}(B \cap C); \mathcal{P}(B) - \mathcal{P}(C); \mathcal{P}$$
(B)+ $\mathcal{P}(C)$
Solution:

$$P(B)=\{\emptyset, \{0\}, \{1\}, \{0,1\}\}; P(C)=\{\emptyset, \{\emptyset\}\};$$

hence $P(B) \cap P(C) = \{\emptyset\}.$

$$B \cap C = \emptyset$$
; hence $P(B \cap C) = \{\emptyset\}$.

$$P(B) - P(C) = \{\{0\}, \{1\}, \{0,1\}\}$$

Question 6 Let A = $\{1, 2, 3\}$, B = $\{0, 1\}$ and C = $\{\emptyset\}$.

c) Give injective function on $B \times B$.

Solution:

$$B \times B = \{ (0, 0), (0, 1), (1, 0), (1, 1) \};$$

Injective function on $B \times B$:

$$\{((0,0), (0,0)), ((0, 1), (0, 1)), ((1, 0), (1, 0)), ((1, 1), (1, 1))\}$$

d) Give example of surjective function from B \times B to B \cup C.

Solution: Surjective: Ran(f) = B \cup C. Function: Each member of B×B must appear only once as first co-ordinate.

$$B \times B = \{ (0,0), (0,1), (1,0), (1,1) \}$$
 and $B \cup C = \{ 0, 1, \emptyset \}$

Surjective function:
$$\{ ((0,0), 0), ((0,1), 1), ((1,0), 1), ((1,1), \emptyset) \}$$

Question 6 Let A = $\{1, 2, 3\}$, B = $\{0, 1\}$ and C = $\{\emptyset\}$.

e) Give simplest equivalence relation on P (C).

Solution:

Relation: Reflexive on P (C), symmetric and transitive.

$$P(C) = \{ \emptyset, \{ \emptyset \} \}$$

Simplest equivalent relation on P (C):

Identity relation: $\{(\emptyset, \emptyset), (\{\emptyset\}, \{\emptyset\})\}$

f) Give a partition of B.

Solution:

{{0,1}} or {{0}, {1}}