Feature Extraction (PCA & LDA)

CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013

Soleymani

Outline

- What is feature extraction?
- Feature extraction algorithms
 - Linear Methods
 - Unsupervised: Principal Component Analysis (PCA)
 - □ Also known as Karhonen-Loeve (KL) transform
 - Supervised: Linear Discriminant Analysis (LDA)
 - ☐ Also known as Fisher's Discriminant Analysis (FDA)

Dimensionality Reduction: Feature Selection vs. Feature Extraction

- Feature selection
 - Select a subset of a given feature set
- ▶ Feature extraction (e.g., PCA, LDA)
 - A linear or non-linear transform on the original feature space

$$\begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \rightarrow \begin{bmatrix} x_{i_1} \\ \vdots \\ x_{i_{d'}} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \rightarrow \begin{bmatrix} y_1 \\ \vdots \\ y_{d'} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$
Feature
Selection
$$(d' < d)$$
Feature
Extraction

Feature Extraction

- Mapping of the original data onto a lower-dimensional space
 - Criterion for feature extraction can be different based on problem settings
 - Unsupervised task: minimize the information loss (reconstruction error)
 - Supervised task: maximize the class discrimination on the projected space
- In the previous lecture, we talked about feature selection:
 - Feature selection can be considered as a special form of feature extraction (only a subset of the original features are used).
 - Example:

$$\mathbf{X'} = \mathbf{X} \times \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{X} \in \mathbb{R}^{N \times 4}$$
$$\mathbf{X'} \in \mathbb{R}^{N \times 2}$$

Second and thirth features are selected

Feature Extraction

Unsupervised feature extraction:

Supervised feature extraction:

$$X = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \cdots & x_d^{(N)} \end{bmatrix}$$
Feature Extraction
$$Y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$
Feature Extraction
$$X' = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \cdots & x_d^{(N)} \end{bmatrix}$$

Linear Transformation

For linear transformation, we find an explicit mapping $f(x) = A^T x$ that can transform also new data vectors.

Linear Transformation

Linear transformation are simple mappings

$$\mathbf{x'} = \mathbf{A}^T \mathbf{x} \quad (\mathbf{x'}_j = \mathbf{a}_j^T \mathbf{x}) \quad j = 1, ..., d$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1d'} \\ a_{21} & a_{22} & \dots & a_{2d'} \\ \vdots & \ddots & \vdots \\ a_{d1} & a_{d2} & \dots & a_{dd'} \end{bmatrix}$$

$$\mathbf{a}_{1} \qquad \mathbf{a}_{d2} \qquad \mathbf{a}_{d'} \qquad \mathbf{a}_{$$

Linear Dimensionality Reduction

- Unsupervised
 - Principal Component Analysis (PCA) [we will discuss]
 - Independent Component Analysis (ICA)
 - Singular Value Decomposition (SVD)
 - Multi Dimensional Scaling (MDS)
 - Canonical Correlation Analysis (CCA)
- Supervised
 - Linear Discriminant Analysis (LDA) [we will discuss]

Unsupervised Feature Reduction

- Visualization: projection of high-dimensional data onto 2D or 3D.
- Data compression: efficient storage, communication, or and retrieval.
- Noise removal: to improve accuracy by removing irrelevant features.
 - As a preprocessing step to reduce dimensions for classification tasks

Principal Component Analysis (PCA)

- ▶ The "best" subspace:
 - Centered at the sample mean
 - The axes have been rotated to new (principal) axes such that:
 - Principal axis I has the highest variance
 - Principal axis 2 has the next highest variance, and so on.
 - The principal axes are uncorrelated
 - ▶ Covariance among each pair of the principal axes is zero.
- Goal: reducing the dimensionality of the data while preserving the variation present in the dataset as much as possible.

Principal Component Analysis (PCA)

- Principal Components (PCs): orthogonal vectors that are ordered by the fraction of the total information (variation) in the corresponding directions
- PCs can be found as the "best" eigenvectors of the covariance matrix of the data points.
 - If data has a Gaussian distribution $N(\mu, \Sigma)$, the direction of the largest variance can be found by the eigenvector of Σ that corresponds to the largest eigenvalue of Σ

Covariance Matrix

$$\boldsymbol{\mu}_{\boldsymbol{x}} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_d \end{bmatrix} = \begin{bmatrix} E(x_1) \\ \vdots \\ E(x_d) \end{bmatrix}$$

$$\Sigma = E[(x - \mu_x)(x - \mu_x)^T]$$

ML estimate of covariance matrix from data points $\{x^{(i)}\}_{i=1}^N$:

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{N} \left(\widetilde{\boldsymbol{X}}^T \widetilde{\boldsymbol{X}} \right)$$

$$\widetilde{X} = \begin{bmatrix} x^{(1)} - \widehat{\mu} \\ \vdots \\ x^{(N)} - \widehat{\mu} \end{bmatrix} \qquad \widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$$

Mean-centered data

Eigenvalues and Eigenvectors: Geometrical Interpretation

- Covariance matrix is a PSD matrix C
 - corresponding to a hyper-ellipsoidal in an d-dimensional space

$$\boldsymbol{C} = [\boldsymbol{v}_1 \ \boldsymbol{v}_2] \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} [\boldsymbol{v}_1 \ \boldsymbol{v}_2]^T$$

 μ_1

PCA: Steps

- Input: $N \times d$ data matrix X (each row contain a d dimensional data point)
 - $\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$

 - $\Sigma = \frac{1}{N} \widetilde{X}^T \widetilde{X}$ (Covariance matrix)
 - ightharpoonup Calculate eigenvalue and eigenvectors of Σ
 - Pick d' eigenvectors corresponding to the largest eigenvalues and put them in the columns of $A = [v_1, ..., v_{d'}]$
 - $X' = A^T X$

First PC d'-th PC

Another Interpretation: Least Squares Error

- PCs are linear least squares fits to samples, each orthogonal to the previous PCs:
 - First PC is a minimum distance fit to a vector in the original feature space
 - Second PC is a minimum distance fit to a vector in the plane perpendicular to the first PC

Another Interpretation: Least Squares Error

Another Interpretation: Least Squares Error

Least Squares Error and Maximum Variance Views Are Equivalent (1-dim Interpretation)

Minimizing sum of square distances to the line is equivalent to maximizing the sum of squares of the projections on that line (Pythagoras).

PCA: Uncorrelated Features

$$\mathbf{x}' = \mathbf{A}^T \mathbf{x}$$

$$\mathbf{R}_{\mathbf{x}'} = E[\mathbf{x}' {\mathbf{x}'}^T] = E[\mathbf{A}^T \mathbf{x} {\mathbf{x}}^T \mathbf{A}] = \mathbf{A}^T E[\mathbf{x} {\mathbf{x}}^T] \mathbf{A} = \mathbf{A}^T \mathbf{R}_{\mathbf{x}} \mathbf{A}$$

If $A = [a_1, ..., a_d]$ where $a_1, ..., a_d$ are orthonormal eighenvectors of R_x :

$$\mathbf{R}_{\mathbf{x}'} = \mathbf{A}^T \mathbf{R}_{\mathbf{x}} \mathbf{A} = \mathbf{A}^T (\mathbf{A}^T \mathbf{\Lambda} \mathbf{A}) \mathbf{A} = \mathbf{\Lambda}$$

$$\Rightarrow \forall i \neq j \ (i, j = 1, ..., d) \ E[\mathbf{x}_i' \mathbf{x}_j'] = 0$$

then mutually uncorrelated features are obtained

Completely uncorrelated features avoid information redundancies

PCA Derivation (Correlation Version): Mean Square Error Approximation

Incorporating all eigenvectors in $A = [a_1, ..., a_d]$:

$$x' = A^T x \Rightarrow Ax' = AA^T x = x$$
$$\Rightarrow x = A^T x'$$

ightharpoonup If d'=d then x can be reconstructed exactly from x'

PCA Derivation (Correlation Version): Mean Square Error Approximation

- Incorporating only d' eigenvectors corresponding to the largest eigenvalues $\pmb{A} = [\pmb{a}_1, ..., \pmb{a}_d] \ (d' < d)$
- It minimizes MSE between x and $\hat{x} = A^T x'$:

$$J(A) = E[\|x - \widehat{x}\|^{2}] = E[\|x - A^{T}x'\|^{2}] = E\left[\left\|\sum_{j=d'+1}^{d} x_{j}'a_{j}\right\|^{2}\right]$$

$$= E\left[\sum_{j=d'+1}^{d} \sum_{k=d'+1}^{d} x_{j}'a_{j}^{T}a_{k}x_{k}'\right] = E\left[\sum_{j=d'+1}^{d} x_{j}'^{2}\right] = \sum_{j=d'+1}^{d} E[x_{j}'^{2}]$$

$$= \sum_{j=d'+1}^{d} a_{j}^{T} E[xx^{T}]a_{j} = \sum_{j=d'+1}^{d} a_{j}^{T} R_{x}a_{j} = \sum_{j=d'+1}^{d} \lambda_{j}$$
Sum of the $d - d'$ smallest eigenvalues

PCA Derivation (Correlation Version): Relation between Eigenvalues and Variances

The j-th largest eigenvalue of R_x is the variance on the j-th PC:

$$var(x_i') = \boldsymbol{a}_i^T \boldsymbol{R}_x \boldsymbol{a}_j = \lambda_j$$

PCA Derivation (Correlation Version): Mean Square Error Approximation

- In general, it can also be shown MSE is minimized compared to any other approximation of \boldsymbol{x} by any d'-dimensional orthonormal basis
 - without first assuming that the axes are eigenvectors of the correlation matrix, this result can also be obtained.
- If the data is mean-centered in advance, R_x and C_x (covariance matrix) will be the same.
 - However, in the correlation version when $C_x \neq R_x$ the approximation is not, in general, a good one (although it is a minimum MSE solution)

PCA on Faces: "Eigenfaces"

ORL Database

Some Images

PCA on Faces: "Eigenfaces"

PCA on Faces:

x is a $112 \times 92 = 10304$ dimensional vector containing intensity of the pixels of this image

Feature vector=
$$[x'_1, x'_2, ..., x'_{d'}]$$

 $x_i' = PC_i^T x$ \longrightarrow The projection of x on the i-th PC

 $+x_1' \times$

 $+x_2' \times$

+…

Average Face

PCA on Faces: Reconstructed Face

d'=1 d'=2 d'=4 d'=8 d'=16 **Original** d'=32 d'=64 d'=128 **Image** d'=256

PCA Drawback

- An excellent information packing transform does not necessarily lead to a good class separability.
 - The directions of the maximum variance may be useless for classification purpose

Independent Component Analysis (ICA)

PCA:

- The transformed dimensions will be uncorrelated from each other
- Orthogonal linear transform
- Only uses second order statistics (i.e., covariance matrix)

ICA:

- The transformed dimensions will be as independent as possible.
- Non-orthogonal linear transform
- High-order statistics are used

Uncorrelated and Independent

Uncorrelated: $cov(X_1, X_2) = 0$

Independent: $P(X_1, X_2) = P(X_1)P(X_2)$

- Gaussian
 - ▶ Independent ⇔ Uncorrelated
- ▶ Non-Gaussian
 - ▶ Independent ⇒ Uncorrelated
 - ▶ Uncorrelated ⇒ Independent

PCA vs. ICA

1 class 2 class 2 class 3 class cubic (orthogonal) (non-orthogonal) (non-orthogonal) linear

Kernel PCA

Kernel extension of PCA

data (approximately) lies on a lower dimensional non-linear space

Kernel PCA

▶ Hilbert space: $x \to \phi(x)$ (Nonlinear extension of PCA)

$$\boldsymbol{C} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) \boldsymbol{\phi}(\boldsymbol{x}^{(i)})^{T}$$

 \blacktriangleright All eigenvectors of C lie in the span of the mapped data points,

$$oldsymbol{c} oldsymbol{v} = \lambda oldsymbol{v}$$
 $oldsymbol{v} = \sum_{i=1}^{N} oldsymbol{\phi}(x^{(i)})$

After some algebra, we have:

$$K\alpha = N\lambda\alpha$$

Linear Discriminant Analysis (LDA)

Supervised feature extraction

▶ Fisher's Linear Discriminant Analysis :

- Dimensionality reduction
 - Finds linear combinations of features with large ratios of betweengroups to within-groups scatters (as discriminant new variables)
- Classification
 - Example: Predicts the class of an observation x by the class whose mean vector is the closest to x in the space of the discriminant variables

Good Projection for Classification

- What is a good criterion?
 - Separating different classes in the projected space
 - As opposed to PCA, we use also the labels of the training data

Good Projection for Classification

- What is a good criterion?
 - Separating different classes in the projected space
 - As opposed to PCA, we use also the labels of the training data

Good Projection for Classification

- What is a good criterion?
 - Separating different classes in the projected space
 - As opposed to PCA, we use also the labels of the training data

LDA Problem

- Problem definition:
 - C = 2 classes
 - $\{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$ training samples with N_1 samples from the first class (C_1) and N_2 samples from the second class (C_2)
 - lacktriangle Goal: finding the best direction $m{w}$ that we hope will enable accurate classification
- The projection of sample x onto a line in direction w is $w^T x$
- What is the measure of the separation between the projected points of different classes?

Measure of Separation in the Projected Direction

Is the direction of the line jointing the class means is a good candidate for w?

Measure of Separation in the Projected Direction

- The direction of the line jointing the class means is the solution of the following problem:
 - Maximizes the separation of the projected class means

$$\max_{\mathbf{w}} J(\mathbf{w}) = (\mu'_1 - \mu'_2)^2 \qquad \qquad \mu'_1 = \mathbf{w}^T \ \mu_1 \text{s. t. } ||\mathbf{w}|| = 1 \qquad \qquad \mu'_2 = \mathbf{w}^T \ \mu_2$$

- What is the problem with the criteria considering only $|\mu_1' \mu_2'|$?
 - It does not consider the variances of the classes

- Fisher idea: maximize a function that will give
 - large separation between the projected class means
 - while also achieving a small variance within each class, thereby minimizing the class overlap.

$$J(\mathbf{w}) = \frac{|\mu_1' - \mu_2'|^2}{s_1'^2 + s_2'^2}$$

▶ The scatters of the original data are:

$$s_1^2 = \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_1} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_1\|^2$$
$$s_2^2 = \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_2} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_2\|^2$$

▶ The scatters of projected data are:

$$s_{1}^{\prime 2} = \sum_{\boldsymbol{x}^{(i)} \in \mathcal{C}_{1}} \| \boldsymbol{w}^{T} \boldsymbol{x}^{(i)} - \boldsymbol{w}^{T} \boldsymbol{\mu}_{1} \|^{2}$$

$$s_{2}^{\prime 2} = \sum_{\boldsymbol{x}^{(i)} \in \mathcal{C}_{2}} \| \boldsymbol{w}^{T} \boldsymbol{x}^{(i)} - \boldsymbol{w}^{T} \boldsymbol{\mu}_{2} \|^{2}$$

$$J(\mathbf{w}) = \frac{|\mu_1' - \mu_2'|^2}{s_1'^2 + s_2'^2}$$

$$|\mu_1' - \mu_2'|^2 = |\mathbf{w}^T \boldsymbol{\mu}_1 - \mathbf{w}^T \boldsymbol{\mu}_2|^2$$
$$= \mathbf{w}^T (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \mathbf{w}$$

$$s_1'^2 = \sum_{\mathbf{x}^{(i)} \in \mathcal{C}_1} \| \mathbf{w}^T \mathbf{x}^{(i)} - \mathbf{w}^T \boldsymbol{\mu}_1 \|^2$$

$$= \mathbf{w}^T \left(\sum_{\mathbf{x}^{(i)} \in \mathcal{C}_1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}_1) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_1)^T \right) \mathbf{w}$$

$$J(\boldsymbol{w}) = \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{S}_W \boldsymbol{w}}$$

Between-class
$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T$$

Within-class scatter matrix

$$S_W = S_1 + S_2$$

$$S_1 = \sum_{x^{(i)} \in C_1} (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

$$S_2 = \sum_{x^{(i)} \in C_2} (x^{(i)} - \mu_2) (x^{(i)} - \mu_2)^T$$

LDA Derivation

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \frac{\frac{\partial \mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\partial \mathbf{w}} \times \mathbf{w}^T \mathbf{S}_W \mathbf{w} - \frac{\partial \mathbf{w}^T \mathbf{S}_W \mathbf{w}}{\partial \mathbf{w}} \times \mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\left(\mathbf{w}^T \mathbf{S}_W \mathbf{w}\right)^2} = \frac{\left(2\mathbf{S}_B \mathbf{w}\right) \mathbf{w}^T \mathbf{S}_W \mathbf{w} - \left(2\mathbf{S}_W \mathbf{w}\right) \mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\left(\mathbf{w}^T \mathbf{S}_W \mathbf{w}\right)^2}$$

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 0 \Longrightarrow \mathbf{S}_B \mathbf{w} = \lambda \mathbf{S}_W \mathbf{w}$$

LDA Derivation

$$\mathbf{S}_{B}\mathbf{w} = \lambda \mathbf{S}_{W}\mathbf{w}$$
 $\mathbf{S}_{W}^{-1}\mathbf{S}_{B}\mathbf{w} = \lambda \mathbf{w}$

• $S_B x$ for any vector x points in the same direction as $\mu_1 - \mu_2$:

$$\mathbf{S}_{B} \mathbf{x} = (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})^{T} \mathbf{x} = \alpha(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})$$
$$\mathbf{w} = \mathbf{S}_{W}^{-1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})$$

▶ Thus, we can solve the eigenvalue problem immediately

LDA Algorithm

- ▶ μ_1 and μ_2 ← mean of samples of class I and 2 respectively
- ▶ S_1 and S_2 ← scatter matrix of class I and 2 respectively
- $S_W = S_1 + S_2$
- $S_B = (\mu_1 \mu_2)(\mu_1 \mu_2)^T$
- Feature Extraction
 - $w = S_w^{-1}(\mu_1 \mu_2)$ as the eigenvector corresponding to the largest eigenvalue of $S_w^{-1}S_b$
- ▶ Classification
 - $w = S_w^{-1}(\mu_1 \mu_2)$
 - Using a threshold on $w^T x$, we can classify x

Multi-Class LDA (MDA)

- ▶ C > 2: the natural generalization of LDA involves C 1 discriminant functions.
 - The projection from a d-dimensional space to a (C-1)-dimensional space (tacitly assumed that $d \ge C$).

$$S_W = \sum_{j=1}^C S_j$$

$$S_B = \sum_{j=1}^C N_j (\mu_j - \mu) (\mu_j - \mu)^T$$

$$\mu_{j} = \frac{\sum_{x^{(i)} \in C_{j}}^{x^{(i)}} x^{(i)}}{N_{j}} \quad j = 1, ..., C$$

$$\mu = \frac{\sum_{i=1}^{N} x^{(i)}}{N}$$

$$S_{j} = \sum_{x^{(i)} \in C_{j}} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T} \quad j = 1, ..., C$$

Multi-Class LDA

- $W = [w_1 \ w_2 \ ... \ w_{C-1}]$
- $\mathbf{x}' = \mathbf{W}^T \mathbf{x}$
- Means and scatters after transform $x' = W^T x$:

 - $S_W' = W^T S_W W$

Multi-Class LDA: Objective Function

- We seek a transformation matrix W that in some sense "maximizes the ratio of the between-class scatter to the within-class scatter".
- A simple scalar measure of scatter is the **determinant** of the scatter matrix.

Multi-Class LDA: Objective Function

$$J(\boldsymbol{W}) = \frac{|\boldsymbol{W}^T \boldsymbol{S}_B \boldsymbol{W}|}{|\boldsymbol{W}^T \boldsymbol{S}_W \boldsymbol{W}|}$$
 determinant

The solution of the problem where $W = [w_1 \ w_2 \ ... \ w_{C-1}]$: $S_B w_i = \lambda_i S_W w_i$

It is a generalized eigenvectors problem.

Multi-Class LDA: $d' \leq C - 1$

- $rank(S_B) \leq C 1$
 - ▶ S_B is the sum of C matrices $(\mu_j \mu)(\mu_j \mu)^T$ of rank (at most) one and only C 1 of these are independent,
 - \Rightarrow atmost C-1 nonzero eigenvalues and the desired weight vectors correspond to these nonzero eigenvalues.

Multi-Class LDA: Other Objective Functions

There are many possible choices of criterion for multiclass LDA, e.g.:

$$J(\boldsymbol{W}) = tr(\boldsymbol{S}_{W}^{\prime-1}\boldsymbol{S}_{B}^{\prime}) = tr((\boldsymbol{W}^{T}\boldsymbol{S}_{W}\boldsymbol{W})^{-1}(\boldsymbol{W}^{T}\boldsymbol{S}_{B}\boldsymbol{W}))$$

- The solution is given by solving a generalized eigenvalue problem $S_w^{-1}S_b$
 - Solution: eigen vectors corresponding to the largest eigen values constitute the new variables

LDA Criterion Limitation

- When $\mu_1 = \mu_2$, LDA criterion can not lead to a proper projection (J(w) = 0)
 - However, discriminatory information in the scatter of the data may be helpful

If classes are non-linearly separable they may have large overlap when projected to any line

LDA implicitly assumes Gaussian distribution of samples of each class

Issues in LDA

- \blacktriangleright Singularity or undersampled problem (when N < d)
 - Example: gene expression data, images, text documents
- ▶ Can reduces dimension only to $d' \le C 1$ (unlike PCA)
- Approaches to avoid these problems:
 - ▶ PCA+LDA, Regularized LDA, Locally FDA (LFDA), etc.

Summary

- Although LDA often provide more suitable features for classification tasks, PCA might outperform LDA in some situations such as:
 - when the number of samples per class is small (overfitting problem of LDA)
 - when the training data non-uniformly sample the underlying distribution
 - when the number of the desired features is more than C-1

- Advances in the recent decade:
 - Semi-supervised feature extraction
 - Nonlinear dimensionality reduction

