Estudio sobre Sistemas de Recomendación y Predicción basados en el procesamiento del lenguaje natural

Hugo Ferrando Seage 23 de julio de 2017

Universidad Europea de Madrid Escuela de Arquitectura, Ingeniería y Diseño

Introducción

Introducción

Los recomendadores son una parte esencial de cualquier servicio de Video on Demand (VOD). Tanto Netflix como Movistar+, Amazon Hulu y HBO cuentan con sus propios sistemas.

También existen webs que usan sus recomendadores como IMDb o FilmAffinity. Incluso existen servicios comerciales que se dedican a productivizar su sistema de recomendación, como Jinni.

1

Introducción

Existen tres grandes tipos de sistemas de recomendación:

- · Filtrado Colaborativo
- · Filtrado por contenido
- · Sistemas híbridos

Filtrado Colaborativo

Consiste en emparejar usuarios que tengan gustos similares y recomendar en base a esos datos.

Normalmente se representa usando una matriz bidimensional donde las filas representan usuarios y la columnas representan productos.

Los usuarios deben puntuar los contenidos, o se pueden usar otras metricas.

Filtrado por Contenido

Consiste en la creación de un modelo que determina la similitud entre productos en base a algún criterio.

Ese criterio puede ser cualquier elemento del producto. Para películas puede ser el género. Para restaurantes el tipo de cocina. Etc.

Filtrado Híbrido

Usan una combinación de ambas técnicas para complementar las recomendaciones.

Objetivos

Objetivos

- · Contruir un recomendador de películas
- · Crear el modelo en base a tres algoritmos
 - · LSA
 - · Doc2Vec
 - · E-Modelo
- Comparar y optimizar modelos
- · Crear una interfáz desde donde poder probarlos

Metodología

Metodología

La metodología usada ha sido ágil, basada en MVPs.

Descarga de datos

Descarga de datos

Para entrenar los modelos es necesario obtener una gran cantidad de textos. Para ello se ha creado un crawler usando Spidy, que descarga información y críticas de las top 1000 películas de IMDb.

Descarga de datos

Limpieza de textos

Limpieza de textos

Antes de crear los modelos es necesario hacer un pretratado de los textos.

Ejemplo

Zeus is a Greek God.

POS Tagger

Hiperónimos

Zeus is a country deity.

Nombres propios

Es necesario eliminar los nombres propios para que no se relacionen películas con personajes que tienen el mismo nombre.

is a country deity.

Stopwords

country deity

Stemmer

counti deiti

LSA

LSA

Latent Semantic Analysis trata de extraer conceptos de cada texto y analizar la relación entre documentos.

TF-IDF

Term Frequency-Inverse Document Frequency calcula lo relevante que es cada palabra del vocabulario dentro de cada texto.

		Sals	just	100m	dead	8545	ShiP	nother
	The Matrix	(0,39	0,16	0,19	0,01	0,25	0,79	0,27
	Alien	0,12	0,12	0,06	0,46	0,21	0,07	0,83
tfidf =	Serenity	0,46	0,55	0,15	0,55	0,22	0,27	0,11
	Casablanca	0,00	0,60	0,51	0,00	0,00	0,60	0,00
	Amelie	0,41	0,00	0,35	0,83	0,00	0,00	0,00

SVD

El siguiente paso es descomponer la matriz en valores singulares.

Matriz Palabra-Concepto.

Matriz de relevancia de Conceptos.

$$\Sigma = \begin{pmatrix} 12,4 & 0 & 0 \\ 0 & 9,5 & 0 \\ 0 & 0 & 1,3 \end{pmatrix}$$

Matriz Película-Concepto.

	Matrix	Alien	serenity	Casablanca	Amelie
Sci-Fi topic	0,56	0,59	0,56	0,09	0,09
$V^T = Romance topic$	0,12	-0,02	0,12	-0,69	-0,69
Ruido	0,40	-0,80	0,40	0,09	0,09

Los conceptos menos relevantes se pueden eliminar.

	Matit	Ailen	serenital	Casablanca	Arrelie
Sci-Fi topic v^T —	0,56	0,59	0,56	0,09	0,09
Romance topic	0,12	-0,02	0,12	-0,69	-0,69

Similitud Coseno

$$\cos\left(\begin{pmatrix} 0,56\\ 0,12 \end{pmatrix}, \begin{pmatrix} 0,59\\ -0,02 \end{pmatrix}\right) = 0,97 \tag{1}$$

Figura 1: Alta similitud entre Matrix y Alien

$$\cos\left(\begin{pmatrix} 0,56\\ 0,12 \end{pmatrix}, \begin{pmatrix} 0,09\\ -0,69 \end{pmatrix}\right) = -0,08 \tag{2}$$

Figura 2: Baja similitud entre Matrix y Amelie

Doc2Vec

Word2Vec es un algoritmo creado por Google en 2013. Es conceptualmente similar a LSA, pero teniendo en cuenta cada palabra dentro de su contexto.

Es decir, calcula la probabilidad de que una palabra esté en la vecindad de otra palabra en el vocabulario.

En primer lugar se guardan las parejas de palabras dentro de una ventana.

Cuadro 1: Ventana deslizante en Word2Vec

Las palabras del vocabulario se convierten a vectores one-hot.

Palabra	Posición por orden alfabético	Vector
fox	2/3	[0, 1, 0]
dog	1/3	[1, 0, 0]
zebra	3/3	[0, 0, 1]

Cuadro 2: Vectores one-hot

Con los datos obtenidos se entrena una red neuronal con una capa oculta.

Word2Vec

La capa de input tiene tantas neuronas como palabras en el vocabulario. La función de activación es lineal.

h tiene tantas neuronas como componentes se quieran extraer.

La capa output tienen tantos vectores como el numero de componentes de la ventata.

Doc2Vec

Word2Vec trabaja a nivel de palabras. Doc2Vec extiende el algoritmo para hacer comparaciones entre documentos.

Optimización

Optimización

Para cada modelo hay unos parametros que se pueden ajustar.

Parametros LSA

- · Numero de 'features'
- · Numero de componentes
- · Frecuencia Minima de Documentos
- · Frecuencia Máxima de Documentos

Parametros Doc2Vec

- · Size
- Window
- · Minimum Word Count
- Iteraciones

Optimización LSA

Optimización LSA

Optimización LSA

Optimización Doc2Vec

Optimización Doc2Vec

Optimización Doc2Vec

Demo

Demo

https://moviepepper.hugofs.com