Chapitre 17: Polynômes

Dans tout le chapitre \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

Ensemble $\mathbb{K}[X]$ 1

1.1 Définitions

Définition

• On appelle **polynôme** P à coefficients dans \mathbb{K} en l'indéterminée X tout objet de la forme :

$$P = \sum_{k=0}^{n} a_k X^k$$

où $n \in \mathbb{N}$, $a_0, ..., a_n \in \mathbb{K}$.

L'ensemble des polynômes à coefficients dans \mathbb{K} en l'indéterminée X est noté $\mathbb{K}[X]$.

Remarque : On peut poser : $\forall k > n$, $a_k = 0$ et écrire $P = \sum_{k > 0} a_k X^k$ avec (a_k) une suite nulle à partir d'un certain rang.

Exemple : $P = 2 + X + X^2$ est un polynôme de $\mathbb{R}[X]$.

Définition

On dit que deux polynômes $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k \in \mathbb{K}[X]$ sont égaux si et seulement si ils ont les mêmes

$$P = Q \iff \forall k \in [0, n], a_k = b_k$$

Définition

On appelle polynôme nul le polynôme dont tous les coefficients sont nuls.

Définition

Soit $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{m} b_k X^k \in \mathbb{K}[X]$. Soit $\lambda \in \mathbb{K}$. On définit :

- la somme : $P + Q = \sum_{k=0}^{\max(n,m)} (a_k + b_k) X^k$
- le produit par $\lambda : \lambda . P = \sum_{k=0}^{n} (\lambda a_k) X^k$
- le produit des polynômes : $P \times Q = \sum_{k=0}^{n+m} c_k X^k$ où $\forall k \in [0, n+m], \ c_k = \sum_{l=0}^k a_l b_{k-l} = \sum_{l,j \in [0,k]}^k a_l b_j$

Remarque : Si $P, Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$, P + Q, $\lambda . P$ et $P \times Q \in \mathbb{K}[X]$ **Exemple :** Notons $P = 1 + 2X + 3X^2$ et Q = 3 - X. Alors $P + Q = 4 + X + 3X^2$ et $P \times Q = 3 + 5X + 7X^2 - 3X^3$.

Proposition: Propriétés de +

Soit $(P, Q, R) \in \mathbb{K}[X]^3$.

- (P+Q)+R=P+(Q+R) (Associativité)
- P + Q = Q + P (Commutativité).
- 0 + P = P + 0 = P

Proposition: Propriétés de ×

Soit $(P, Q, R) \in \mathbb{K}[X]^3$ et soit $\lambda \in \mathbb{K}$.

- $(P \times Q) \times R = P \times (Q \times R)$ (Associativité de ×).
- $P \times Q = Q \times P$ (Commutativité de \times).
- $1 \times P = P \times 1 = P$.
- $P \times (Q + R) = (P \times Q) + (P \times R)$ (distributivité de \times sur +).
- $\lambda \cdot (P \times Q) = (\lambda \cdot P) \times Q = P \times (\lambda \cdot Q)$.

Démonstration. Notons $P = \sum_{k=0}^{n} a_k X^k$, $Q = \sum_{k=0}^{n} b_k X^k$ et $R = \sum_{k=0}^{n} c_k X^k \in \mathbb{K}[X]$.

• On note également $PQ = \sum_{k=0}^{2n} d_k X^k$, $QR = \sum_{k=0}^{2n} e_k X^k$, $(P \times Q) \times R = \sum_{k=0}^{3n} g_k X^k$ et $P \times (Q \times R) = \sum_{k=0}^{3n} h_k X^k$. Soit $k \in [0,3n]$, on a alors :

$$g_{k} = \sum_{l=0}^{k} d_{l} c_{k-l}$$
$$= \sum_{l=0}^{n} \sum_{m=0}^{l} a_{m} b_{l-m} c_{k-l}$$

De même, on a:

$$h_{k} = \sum_{m=0}^{k} a_{m} e_{k-m}$$

$$= \sum_{m=0}^{k} \sum_{p=0}^{k-m} a_{m} b_{p} c_{k-m-p}$$

$$= \sum_{m=0}^{k} \sum_{l=m}^{k} a_{m} b_{l-m} c_{k-l} a_{k} \quad \text{en posant } l = m+p$$

Or,

$$\left\{ \begin{array}{l} 0 \leq m \leq k \\ m \leq l \leq k \end{array} \right. \iff \left\{ \begin{array}{l} 0 \leq m \leq l \\ 0 \leq l \leq k \end{array} \right.$$

Ainsi:

$$h_k = \sum_{l=0}^k \sum_{m=0}^l a_m b_{l-m} c_{k-l}$$
$$= g_k$$

Ainsi, on a:

$$\forall k \in [0, 3n], h_k = g_k$$

donc $(P \times Q) \times R = P \times (Q \times R)$.

• On note $QP = \sum_{k=0}^{2n} d'_k X^k \in \mathbb{K}[X]$. Soit $k \in [0, 2n]$, on a:

$$d_k = \sum_{l=0}^k a_l b_{k-l}$$

$$= \sum_{m=0}^k a_{k-m} b_m \quad \text{en posant } m = k-l$$

$$= d'_k$$

donc $P \times Q = Q \times P$.

• Notons
$$P \times 1 = \sum_{k=0}^{n} p_k X^k$$
 et $1 = \sum_{k=0}^{n} r_k X^k$.
On a: $\forall k \in \mathbb{N}$, $r_k = \delta_{k,0}$. Soit $k \in [0, n]$, on a:

$$p_k = \sum_{l=0}^k a_l r_{k-l}$$
$$= \sum_{l=0}^k a_l \delta_{k-l,0}$$
$$= a_k$$

 $\operatorname{donc} P \times 1 = P.$

Par commutativité, on a également, $1 \times P = P$.

• On note $Q + R = \sum_{k=0}^{n} s_k X^k$, $P \times R = \sum_{k=0}^{n} t_k X^k$, $P \times (Q + R) = \sum_{k=0}^{2n} u_k X^k$ et $P \times Q + P \times R = \sum_{k=0}^{2n} v_k X^k$. Soit $k \in [0, 2n]$, on a:

$$u_{k} = \sum_{l=0}^{k} a_{l} s_{k-l}$$

$$= \sum_{l=0}^{k} a_{l} (b_{k-l} + c_{k-l})$$

$$= \sum_{l=0}^{k} a_{l} b_{k-l} + \sum_{l=0}^{k} a_{l} c_{k-l}$$

$$= d_{k} + t_{k}$$

$$= v_{k}$$

Donc $P \times (Q + R) = P \times Q + P \times R$.

Définition

Soit $P \in \mathbb{K}[X]$, pour tout $n \in \mathbb{N}$, on définit par récurrence P^n en posant $P^0 = 1$, et $\forall n \in \mathbb{N}$, $P^{n+1} = P^n \times P$.

Définition

Soit $P = \sum_{k=0}^{n} a_k X^k$, $Q = \sum_{i=0}^{m} b_i X^i \in \mathbb{K}[X]$. On définit le polynôme composé, noté $P \circ Q$ ou P(Q) par :

$$P \circ Q = \sum_{k=0}^{n} a_k Q^k = \sum_{k=0}^{n} a_k \left(\sum_{l=0}^{m} b_l X^l \right)^k.$$

Exemple : $(X^2 + 1) \circ (X - 2) = (X - 2)^2 + 1 = X^2 - 4X + 5$.

 $(X-2) \circ (X^2+1) = X^2+1-2 = X^2-1.$

Remarque : La composition de polynômes justifie l'écriture $P = P(X) = P \circ X = P$.

Proposition: Formule du binôme de Newton

Soit $(P, Q) \in \mathbb{K}[X]^2$ et $n \in \mathbb{N}$, on a

$$(P+Q)^n = \sum_{k=0}^n \binom{n}{k} P^k Q^{n-k}.$$

Proposition: Formule de Bernoulli

Pour $(P,Q) \in \mathbb{K}[X]^2$ et $n \in \mathbb{N}^*$, on a

$$P^{n} - Q^{n} = (P - Q) \sum_{k=0}^{n-1} P^{k} Q^{n-1-k}.$$

1.2 Degré d'un polynôme

Définition

Soit $P = \sum_{k=0}^{m} a_k X^k$ un polynôme.

Si P est non nul, on appelle **degré du polynôme** P le plus grand entier naturel n tel que $a_n \neq 0$. On note cet entier $\deg(P)$.

Si P = 0, on pose $deg(P) = -\infty$ par convention.

Si $deg(P) = n \in \mathbb{N}$, le coefficient a_n est appelé coefficient dominant de P.

On dit que P est **unitaire** si et seulement si son coefficient dominant est égal à 1.

Remarque:

• Si P est non nul, on a donc $P = \sum_{k=0}^{\deg(P)} a_k X^k$.

Attention, lorsque l'on écrit $P = \sum_{k=0}^{n} a_k X^k$, on n'a pas forcément, $\deg(P) = n$, on sait seulement que $\deg(P) \le n$.

• $P \neq 0 \iff \deg(P) \in \mathbb{N}$.

Exemple : $X^{2020} - 1$ est unitaire de degré 2020.

Proposition: Degré de la somme, du produit, de la composée

Soit P, $Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$. Alors :

1. $deg(P+Q) \le max(deg(P), deg(Q))$;

De plus, si $deg(P) \neq deg(Q)$, alors deg(P + Q) = max(deg(P), deg(Q));

2. Si $\lambda \in \mathbb{K}^*$, $\deg(\lambda P) = \deg(P)$ et si $\lambda = 0$ alors $\deg(\lambda P) = -\infty$;

3. deg(PQ) = deg(P) + deg(Q);

4. Si $deg(Q) \ge 1$, $deg(P \circ Q) = deg(P) \times deg(Q)$.

Démonstration. 1. Si P = 0, P + Q = Q et deg(P + Q) = deg(Q), donc on a le résultat souhaité. De même si Q = 0.

Supposons $P \neq 0$ et $Q \neq 0$ et notons $P = \sum_{k=0}^{p} a_k X^k$ avec $p = \deg(P) \in \mathbb{N}$ et $a_p \neq 0$, $Q = \sum_{k=0}^{q} b_k X^k$ avec $q = \deg(Q) \in \mathbb{N}$ et $b_q \neq 0$.

Par définition, $P + Q = \sum_{k=0}^{\max(p,q)} (a_k + b_k) X^k$.

Ainsi, $deg(P + Q) \le max(p, q)$.

Si $p \neq q$, par exemple p > q, alors $\max(p, q) = p$ et $a_p + b_p = a_p \neq 0$.

Ainsi deg((P + Q) = max(p, q)).

2. Soit $\lambda \in \mathbb{K}$, si $\lambda = 0$ alors $\lambda P = 0$ donc $\deg(\lambda P) = -\infty$.

Supposons $\lambda \in \mathbb{K}^*$.

Si P = 0 alors $\lambda P = 0$ donc $\deg(P) = \deg(\lambda P)$.

Supposons $P \neq 0$ et notons $P = \sum_{k=0}^{p} a_k X^k$ avec $p = \deg(P)$ donc $a_p \neq 0$.

Par définition $\lambda P = \sum_{k=0}^{p} (\lambda a_k) X^k$ donc $\deg(\lambda P) \leq p$.

De plus, $\lambda a_p \neq 0$ donc $\deg(\lambda P) = p = \deg(P)$.

3. Si P = 0 ou Q = 0 alors PQ = 0 et on a le résultat.

Supposons $P \neq 0$ et $Q \neq 0$ et notons $P = \sum_{k=0}^{p} a_k X^k$ avec $p = \deg(P)$ et $a_p \neq 0$, $Q = \sum_{k=0}^{q} b_k X^k$ avec $q = \deg(Q)$ et $b_q \neq 0$.

Par définition $PQ = \sum_{k=0}^{p+q} c_k X^k$.

On a : $c_{p+q} = \sum_{k=0}^{p+q} a_l b_{p+q-l} = \sum_{l=0}^{p-1} a_l b_{p+q-l} + a_p b_q + \sum_{l=p+1}^{p+q} a_l b_{p+q-l}$ Or, : si $l \in [0, p-1]$, $p+q-l \ge p+q-(p-1) \ge q+1$

donc $b_{p+q-l} = 0$;

si $l \in [p+1, p+q], a_l = 0.$

Ainsi, on obtient : $c_{p+q} = a_p b_q$ donc $c_{p+q} \neq 0$.

Ainsi, deg(PQ) = p + q = deg(P) + deg(Q).

4. Supposons $deg(Q) \ge 1$.

Si P = 0 alors, $P \circ Q = 0$ et la propriété est vraie.

Supposons désormais $P \neq 0$ et notons $P = \sum_{k=0}^{p} a_k X^k$ avec $p = \deg(P) \in \mathbb{N}$ et $a_p \neq 0$.

On a par définition

$$P \circ Q = \sum_{k=0}^{p} a_k Q^k$$

Montrons que pour tout $k \in \mathbb{N}$, $\deg(Q^k) = k\deg(Q)$. Soit $k \in \mathbb{N}$, on a : $\deg(Q^{k+1}) = \deg(Q^k \times Q) = \deg(Q^k) + \deg(Q)$.

Ainsi, la suite $(\deg(Q^k))_{k\in\mathbb{N}}$ est une suite arithmétique de raison $\deg(Q)$ et de premier terme $\deg(Q^0) = \deg(1) = 0$.

Ainsi : $\forall k \in \mathbb{N}$, $\deg(Q^k) = k \deg(Q)$.

De plus :
$$P \circ Q = a_n X^n + \sum_{k=0}^{n-1} a_k Q^k$$
. Or, $\deg(a_n Q^n) = \deg(Q^n) = n \deg(Q)$ et $\deg\left(\sum_{k=0}^{n-1} a_k Q^k\right) \le \max\left(\deg(a_k Q^k, k \in [0, n-1])\right)$.
$$\le \max\left(\deg(Q^k, k \in [0, n-1])\right)$$
$$\le \max\left(\deg(k \deg(Q), k \in [0, n-1])\right)$$
$$\le (n-1) \deg(Q)$$

Ainsi, $a_n Q^n$ et $\sum_{k=0}^{n-1} a_k Q^k$ sont de degrés distincts.

$$\operatorname{Ainsi}: \operatorname{deg}(P \circ Q) = \max \left(\operatorname{deg}(a_n Q^n), \operatorname{deg}\left(\sum_{k=0}^{n-1} a_k Q^k\right) \right) = \max \left(n\operatorname{deg}(Q), (n-1)\operatorname{deg}(Q)\right) = n\operatorname{deg}(Q).$$

Remarque: Si P et Q sont non nuls, on a prouvé que le coefficient dominant de PQ est le produit des coefficients dominants de P et de Q.

Exemple : Soit $n \in \mathbb{N}^*$, déterminer le degré et le coefficient dominant de $P_n = (X+1)^n - (X-1)^n$.

On a directement $deg(P_n) \le max(deg((X+1)^n), deg((X-1)^n)) \le n$.

Par le binôme de Newton, on a :

$$(X+1)^n = \sum_{k=0}^n \binom{n}{k} X^k$$
 et $(X+1)^n = \sum_{k=0}^n \binom{n}{k} X^k (-1)^{n-k}$.

Ainsi,

• le coefficient de X^n de $(X+1)^n$ vaut $\binom{n}{n} = 1$. le coefficient de X^n de $(X-1)^n$ vaut $\binom{n}{n} = 1$.

Ainsi, le coefficient de X^n dans P_n vaut 0 donc $\deg(P) \le n - 1$.

• De plus, le coefficient de X^{n-1} de P_n vaut $\binom{n}{n-1} - \binom{n}{n-1}(-1) = n+n=2n$. Or, $2n \neq 0$ donc $\deg(P_n) = n - 1$ et le coefficient coefficient dominant de P_n vaut 2n.

Exemple:

Soit pour tout entier naturel $n \in \mathbb{N}$, $P_n = (X^2 + 1)^{2n} - (X^2 - 1)^{2n}$. On a deg $(P_n) \le 4n$.

D'après la binôme de newton, on a :

$$P_n = \sum_{k=0}^{2n} {2n \choose k} X^{2k} - \sum_{k=0}^{2n} {2n \choose k} (-1)^{2n-k} X^{2k}.$$

- le coefficient de X^{4n} de P_n vaut $\binom{2n}{2n} \binom{2n}{2n} (-1)^{2n-2n} = 0$. Donc $\deg(P_n) \le 4n 1$.
- le coefficient en X^{4n-1} de P_n vaut 0. En effet, il n'y a que des termes à la puissance paires dans P_n donc $\deg(P_n) \leq 4n-2$
- le coefficient en X^{2n-2} de P_n vaut $\binom{2n}{2n-1} \binom{2n}{2n-1} (-1)^{2n-(2n-1)} = 2n + 2n = 4n$. Or, $4n \neq 0$

Ainsi P est de degré 4n-2 et son coefficient dominant vaut 4n.

Exemple:

On souhaite résoudre l'équation : $P(X^2) = (X^2 + 1)P$. Considérons P un polynôme non nul. Si P est solution alors en prenant le degré dans cette identité, on obtient $2\deg(P) = 2 + \deg(P)$, donc $\deg(P) = 2$. Soit *P* de degré 2, il existe $(a, b, c) \in \mathbb{K}^* \times \mathbb{K}^2$ tel que $P(X) = aX^2 + bX + c$.

$$P \text{ est solution} \iff aX^4 + bX^2 + c = aX^4 + bX^3 + (a+c)X^2 + bX + c$$

$$\iff \begin{cases} a = a \\ b = 0 \\ a + c = b \end{cases}$$

Ainsi l'ensemble des polynômes satisfaisant cette identité est :

$$\{aX^2 - a | a \in \mathbb{K}\}.$$

Proposition

$$\forall P, Q \in \mathbb{K}[X], PQ = 0 \iff P = 0 \text{ ou } Q = 0$$

Démonstration. Si P = 0 ou Q = 0 alors PQ = 0.

On prouve la réciproque par contraposée.

Supposons que $P \neq 0$ et $Q \neq 0$, alors $\deg(PQ) = \deg(P) + \deg(Q) \geq 0$. Ainsi $PQ \neq 0$. Par contraposée, on a le résultat.

Proposition: Éléments inversibles

Soit $P \in \mathbb{K}[X]$, on a:

 $(\exists Q \in \mathbb{K}[X], P \times Q = 1) \iff P \in \mathbb{K}^*.$

Démonstration. • Soit $P \in \mathbb{K}[X]$. Si $P = p \in \mathbb{K}^*$. Posons $Q = \frac{1}{p}$ convient. On a PQ = 1.

• Réciproquement, supposons qu'il existe $Q \in \mathbb{K}[X]$ tel que $P \times Q = 1$. Alors, $P \neq 0$ et $Q \neq 0$. De plus, en prenant le degré dans cette équation, on obtient : $\deg(P) + \deg(Q) = 0$. Comme $\deg(P)$ et $\deg(Q)$ sont des entiers naturels, on en déduit que $\deg(P) = \deg(Q) = 0$. Ainsi, on a $P \in \mathbb{K}^*$.

Définition

Soit $n \in \mathbb{N}$, on note $\mathbb{K}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à n:

$$\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] \mid \deg(P) \le n \}$$

Remarque : Pour tout $n \in \mathbb{N}$, $0 \in \mathbb{K}_n[X]$ car $-\infty \le n$.

Proposition

Soit $n \in \mathbb{N}$. L'ensemble $\mathbb{K}_n[X]$ est stable par combinaison linéaire :

$$\forall \lambda, \mu \in \mathbb{K}, \forall P, Q \in \mathbb{K}_n[X], \quad \lambda P + \mu Q \in \mathbb{K}_n[X].$$

Démonstration. Soit $\lambda, \mu \in K$ et $P, Q \in \mathbb{K}_n[X]$. Alors on a :

$$\deg(\lambda P + \mu Q) \le \max(\deg(\lambda P), \deg(\mu Q)) \le \max(\deg(P), \deg(Q)) \le n.$$

Ainsi on a bien $\lambda P + \mu Q \in \mathbb{K}_n[X]$.

Remarque: $\mathbb{K}_n[X]$ n'est pas stable par produit en général. Il est stable par produit si et seulement si n=0. EN effet :

- Si n=0: Soit $P,Q\in\mathbb{K}_0[X]$, on a $\deg(P)\leq 0$ et $\deg(Q)\leq 0$ d'où $\deg(PQ)=\deg(P)+\deg(Q)\leq 0$ donc $PQ\in\mathbb{K}_0[X]$.
- Pour la réciproque, on raisonne par contraposée. Supposons que $n \in \mathbb{N}^*$, on a $X^n \in \mathbb{K}_n[X]$ mais $X^n \times X^n = X^{2n}$ avec 2n > n car $n \ge 1$ donc $\mathbb{K}_n[X]$ n'est pas stable par produit.

1.3 Fonctions polynomiales

Définition

Soit $n \in \mathbb{N}$ et $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$. La fonction :

$$\widetilde{P}: \left\{ \begin{array}{ccc} \mathbb{K} & \to & \mathbb{K} \\ x & \mapsto & \sum\limits_{k=0}^{n} a_k x^k. \end{array} \right.$$

est appelée fonction polynomiale associée au polynôme P.

Proposition

Soit $P, Q \in \mathbb{K}[X]$ et $(\lambda, \mu) \in \mathbb{K}^2$. Alors :

$$\widetilde{\lambda P + \mu Q} = \lambda \widetilde{P} + \mu \widetilde{Q}$$
 et $\widetilde{PQ} = \widetilde{P}\widetilde{Q}$

Définition

Soit $a \in \mathbb{K}$ et $P \in \mathbb{K}[X]$. On appelle évaluation de P en a le nombre $\widetilde{P}(a)$. Par abus de notation, on le notera P(a), et on parlera de la valeur de P en a.

2 Divisibilité et division euclidienne dans $\mathbb{K}[X]$

2.1 Divisibilité dans $\mathbb{K}[X]$

Définition

Soit $A, B \in \mathbb{K}[X]$. On dit que B divise A dans $\mathbb{K}[X]$ ou que A est **un multiple de** B dans $\mathbb{K}[X]$ et on note B|A s'il existe $Q \in \mathbb{K}[X]$ tel que : A = BQ.

Remarque : Si $B \mid A$ avec $A \neq 0$ alors, $\deg(B) \leq \deg(A)$. En effet, si $B \mid A$, il existe $C \in \mathbb{K}[X]$ tel que A = BC Or, $A \neq 0$ donc $C \neq 0$ d'où, $\deg(C) \in \mathbb{N}$. On a alors $\deg(A) = \deg(B) + \deg(C) \geq \deg(B)$.

Exemple:

- X^p divise X^n si et seulement si $p \le n$.
- Tout polynôme divise 0. Un polynôme constant non nul divise tout polynôme.
- X-1 divise X^n-1 . En effet, $X^n-1=(X-1)\sum_{k=0}^{n-1}X^k$. De même, X+1 divise $X^{2n+1}+1$. En effet, $X^{2n+1}+1=X^{2n+1}-(-1)^{2n+1}$.
- Dans $\mathbb{C}[X]$ (mais pas dans $\mathbb{R}[X]$), X i divise $X^2 + 1$.

Exemple:

Soit $n \in \mathbb{N}^*$, d'après le binôme de Newton, on a :

$$(X+1)^n - nX - 1 = \sum_{k=0}^n \binom{n}{k} X^k - nX - 1 = \sum_{k=2}^n \binom{n}{k} X^k = X^2 \sum_{k=2}^n \binom{n}{k} X^{k-2} = X^2 \sum_{k=0}^{n-2} \binom{n}{k} X^k$$

avec
$$\sum_{k=0}^{n-2} \binom{n}{k} X^k \in \mathbb{K}[X]$$
.

Ainsi, on a bien : $X^{2}|(X+1)^{n} - nX - 1$.

Si n = 0, $(X + 1)^n - nX - 1 = 0$ donc X^2 divise $(X + 1)^n - nX - 1$.

Proposition: Caractérisation des polynômes associés

Soit $A, B \in \mathbb{K}[X]$. Alors:

$$A|B \text{ et } B|A \Longleftrightarrow \exists \lambda \in \mathbb{K}^*, \ A = \lambda B$$

Dans ce cas, A et B sont dits associés.

Démonstration.

- (ii) implique (i) immédiat.
- Si A|B et B|A, on peut trouver deux polynômes C, D tels que B = AC et A = BD.
 - Si A = 0 alors comme B = AD, B = 0 et donc toute valeur de $\lambda \in \mathbb{K}^*$ convient.
 - Si $A \neq 0$, on a : Ainsi $A = A \times (CD)$ et $A \neq 0$, on obtient CD = 1, et donc $C, D \in \mathbb{K}^*$. Ainsi il existe bien $\lambda \in \mathbb{K}^*$ tel que $B = \lambda A$.

2.2 Division euclidienne dans $\mathbb{K}[X]$

Théorème de la division euclidienne

Soit $A, B \in \mathbb{K}[X]$ tels que $B \neq 0$. Alors, il existe un unique couple $(Q, R) \in (\mathbb{K}[X])^2$ tel que :

$$\begin{cases} A = BQ + R \\ deg(R) < deg(B) \end{cases}$$

On appelle Q quotient et R le reste dans la division euclidienne de A par B.

Démonstration. Existence : Soit $B \neq 0$. Notons $p \in \mathbb{N}$ le degré de B et $B = \sum_{k=0}^p b_k X^k$ avec $b_p \neq 0$.

On raisonne par récurrence sur le degré de A.

Pour tout $n \in \mathbb{N}$, on considère la propriété :

 $\mathcal{P}(n)$: « Pour tout polynôme A tel que $\deg(A) < n$, il existe $(Q,R) \in \mathbb{K}[X]^2$ tel que A = BQ + R et $\deg(R) < \deg(B)$. »

- Pour n = 0. Soit $A \in \mathbb{K}[X]$ tel que $\deg(A) < 0$. Alors A = 0 et on a le résultat en posant (Q, R) = (0, 0) ($\deg(R) < \deg(B)$ car $B \neq 0$).
- Soit $n \in \mathbb{N}$, supposons que $\mathcal{P}(n)$ est vraie. Soit $A \in \mathbb{K}[X]$ tel que $\deg(A) < n+1$ i.e. $\deg(A) \le n$.
 - Si $\deg(A) < n$, par hypothèse de récurrence, il existe $(Q,R) \in \mathbb{K}[X]$ tel que A+BQ+R et $\deg(R) < \deg(B)$. On suppose désormais que $\deg(A) = n$ et on note $A = \sum_{k=0}^{n} a_k X^k$ avec $a_n \neq 0$.
 - Si $\deg(B) > n$ en posant (Q, R) = (0, A), on a A = BQ + R et $\deg(R) = n < \deg(B)$.
 - Supposons donc $deg(B) = p \le n$. On pose:

$$T = A - \frac{a_n}{b_n} X^{n-p} B.$$

On a:

$$\deg(T) \le \max(\deg(A), \deg(\frac{a_n}{b_p} X^{n-p} B)$$

$$\le \max(n, \deg(X^{n-p} B))$$

$$\le \max(n, \deg(X^{n-p}) + \deg(B))$$

$$\le \max(n, n)$$

$$\le n$$

De plus, le coefficient de X^n de T vaut : $a_n - \frac{a_n}{b_p} b_p = 0$.

Ainsi, $\deg(T) \leq n-1.$ Par hypothèse de récurrence, il existe $(Q_1,R) \in \mathbb{K}[X]^2$ tel que :

$$T = BQ_1 + R$$
 et $\deg(R) < \deg(B)$

Ainsi,
$$A = T + \frac{a_n}{b_p}X^{n-p}B = BQ_1 + \frac{a_n}{b_p}X^{n-p}B + R = B(Q_1 + \frac{a_n}{b_p}X^{n-p}) + R$$
. En posant $Q = Q_1 + \frac{a_n}{b_p}X^{n-p}$, on obtient $A = BQ + R$ et $\deg(R) < \deg(B)$.

Donc $\mathcal{P}(n+1)$ est vraie.

• En conclusion, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie, et on a l'existence.

Unicité : Soit (Q_1, R_1) et (Q_2, R_2) tels que :

$$A = BQ_1 + R_1 \quad \deg(R_1) < \deg(B)$$

$$A = BQ_2 + R_2 \quad \deg(R_2) < \deg(B)$$

On a alors : $R_2 - R_1 = B(Q_1 - Q_2)$.

Si $Q_1 \neq Q_2$, on a alors:

$$\deg(R_2 - R_1) = \deg((Q_1 - Q_2)B) = \deg(Q_1 - Q_2) + \deg(B) \ge \deg(B)$$

et, d'autre part:

$$deg(R_2 - R_1) \le max(deg(R_2), deg(R_1)) < deg(B)$$

ce qui est contradictoire. Donc $Q_1 = Q_2$ et par suite, $R_1 = R_2$.

Exemple : Déterminons le quotient et le reste dans la division euclidienne de :

1.
$$X^3 - 3X^2 + 3X + 1$$
 par $X - 2$.

$$\begin{array}{c|cccc}
X^3 - 3X^2 + 3X + 1 & X - 2 \\
-(X^3 - 2X) & X^2 - X + 1 \\
-X^2 + 3X + 1 & X^2 - X + 1 \\
-(-X^2 + 2X) & X + 1 \\
-(X - 2) & 3
\end{array}$$

Ainsi la division euclidienne de $X^3 - 3X^2 + 3X - 1$ par X - 2 est $X^3 - 3X^2 + 3X + 1 = (X - 2)(X^2 - X + 1) + 3$. 2. de $X^5 + 4X^4 + 2X^3 + X^2 - X - 1$ par $X^3 - 2X + 3$.

Ainsi, la division euclidienne de $X^5 + 4X^4 + 2X^3 + X^2 - X - 1$ par $X^3 - 2X + 3$ est : $X^5 + 4X^4 + 2X^3 + X^2 - X - 1 = (X^3 - 2 + 3)(X^2 + 4X + 4) + 6X^2 - 5X - 13$.

Proposition

Soit $A, B \in \mathbb{K}[X]$ avec $B \neq 0$. On a : B divise A si et seulement si le reste de la division euclidienne de A par B est nul.

Démonstration. ⇒ Si B|A, alors il existe $Q \in \mathbb{K}[X]$ tel que A = BQ. L'unicité dans la division euclidienne prouve que Q et 0 sont respectivement les quotient et reste de la division euclidienne de A par B, puisque $\deg(0) = -\infty$ et $\deg(B) \in \mathbb{N}$ donc $\deg(0) < \deg(B)$.

 \Leftarrow Si le reste de la division euclidienne de A par B est nul, on obtient qu'il existe $Q \in \mathbb{K}[X]$ tel que A = BQ + 0 = BQ. Donc on a bien B|A.

3 Dérivation dans $\mathbb{K}[X]$

Définition

Soit $n \in \mathbb{N}$, soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$. On appelle polynôme dérivé de P et on note P' le polynôme défini par :

$$P' = \sum_{k=1}^{n} k a_k X^{k-1} = \sum_{l=0}^{n-1} (l+1) a_{l+1} X^l.$$

Remarque : La dérivée de la fonction polynomiale associée à P est égal à la fonction polynomiale de la dérivée P, autrement dit $\tilde{P}' = (P')$.

Proposition

Soit $P, Q \in \mathbb{K}[X]$ des polynômes. On a :

- 1. Si $deg(P) \ge 1$, on a deg(P') = deg(P) 1.
- 2. $P' = 0 \Leftrightarrow P$ est constant.
- 3. La dérivation est linéaire : $\forall \lambda, \mu \in \mathbb{K}$, $(\lambda P + \mu Q)' = \lambda P' + \mu Q'$.
- 4. $(P \times Q)' = P' \times Q + P \times Q'$.
- 5. $(P \circ Q)' = Q' \times (P' \circ Q)$

Démonstration. 1. On note $P = \sum_{k=0}^{p} a_k X^k$ avec $\deg(P) = p > 0$ et donc $a_p \neq 0$.

Par définition, $P' = \sum_{k=0}^{p-1} (k+1)a_{k+1}X^k$. Ainsi, $\deg(P') \le p-1$. De plus, $pa_p \ne 0$, donc $\deg(P') = p-1$.

2. Si P est un polynôme constant, alors P' = 0.

Pour la réciproque, on raisonne par contraposée.

Supposons P non constant alors, $\deg(P) \ge 1$, alors d'après le point précédent, on a $\deg(P') = \deg(P) - 1 \in \mathbb{N}$ donc $P' \ne 0$.

3. Notons $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k$ $(n \ge \max(\deg(P), \deg(Q)))$.

Soient $\lambda, \mu \in \mathbb{K}$, on a : On a $\lambda P + \mu Q = \sum_{k=0}^{n} (\lambda a_k + \mu b_k) X^k$, donc

$$(\lambda P + \mu Q)' = \sum_{k=0}^{n-1} (k+1)(\lambda a_{k+1} + \mu b_{k+1})X^k = \lambda \sum_{k=0}^{n-1} (k+1)a_{k+1}X^k + \mu \sum_{k=0}^{n-1} (k+1)b_{k+1}X^k = \lambda P' + \mu Q'.$$

4. Notons $PQ = \sum_{k=0}^{2n} c_k X^k$, $P'Q + PQ' = \sum_{k=0}^{2n-1} u_k X^k$ et $(PQ)' = \sum_{k=0}^{2n-1} v_k X^k$.

On a:
$$P' = \sum_{k=0}^{n-1} (k+1) a_{k+1} X^k$$
 et $Q' = \sum_{k=0}^{n-1} (k+1) b_{k+1} X^k$.

De plus :

$$\forall k \in [0, 2n], c_k = \sum_{l=0}^{k} a_l b_{k-l}$$

Soit $k \in [0, 2n - 1]$, on a:

$$v_k = (k+1)c_{k+1}$$

De plus:

$$\begin{aligned} u_k &= \sum_{l=0}^k (l+1)a_{l+1}b_{k-l} + \sum_{l=0}^k a_l(k+1-l)b_{k+1-l} \\ &= \sum_{m=1}^{k+1} ma_mb_{k+1-m} + \sum_{l=0}^k a_l(k+1-l)b_{k+1-l} \quad \text{en posant le changement de variable } m = l+1 \\ &= \left(\sum_{m=1}^k ma_mb_{k+1-m}\right) + (k+1)a_{k+1}b_0 + (k+1)a_0b_{k+1} + \left(\sum_{l=1}^k a_l(k+1-l)b_{k+1-l}\right) \\ &= (k+1)a_{k+1}b_0 + (k+1)a_0b_{k+1} + \sum_{l=1}^k (la_lb_{k+1-l} + a_l(k+1-l)b_{k+1-l}) \\ &= (k+1)a_{k+1}b_0 + (k+1)a_0b_{k+1} + \sum_{l=1}^k (l+k+1-l)a_lb_{k+1-l} \\ &= (k+1)\left[a_{k+1}b_0 + a_0b_{k+1} + \sum_{l=1}^k a_lb_{k+1-l}\right] \\ &= (k+1)\sum_{l=0}^{k+1} a_lb_{k+1-l} \\ &= (k+1)c_{k+1} \\ &= v_k \end{aligned}$$

Ainsi, on a (PQ)' = P'Q + PQ'.

- 5. Pour tout $n \in \mathbb{N}^*$, on considère la propriété $\mathscr{P}(n)$: « $(P^n)' = nP'P^{n-1}$ ». Montrons par récurrence que pour tout $n \in \mathbb{N}^*$, \mathscr{P}^n est vraie.
 - Pour n = 1, on a $P' = 1 \times P'P^0$. donc $\mathcal{P}(1)$ est vraie.
 - Soit $n \in \mathbb{N}^*$, supposons que $\mathscr{P}(n)$ est vraie. On a $(P^{n+1})' = (P^n \times P)' = (P^n)'P + P^nP'$ (d'après le point précédent) Donc $(P^{n+1})' = nP'P^{n-1}P + P^nP' = (n+1)P'P^n$. Ainsi on a $\mathscr{P}(n+1)$ est vraie.
 - En conclusion : $\forall n \in \mathbb{N}^*$, $(P^n)' = nP'P^{n-1}$.

Soit $P = \sum_{k=0}^{n} a_k X^k$, on a $P \circ Q = \sum_{k=0}^{n} a_k Q^k$. Par linéarité, on en déduit que

$$(P \circ Q)' = \sum_{k=0}^{n} a_k (Q^k)' = \sum_{k=1}^{n} a_k k Q' Q^{k-1} = Q' \sum_{k=1}^{n} k a_k Q^{k-1}$$

Or,
$$P' = \sum_{k=1}^{n} k a_k X^{k-1}$$
 donc $P' \circ Q = \sum_{k=1}^{n} k a_k Q^{k-1}$.
D'où $(P \circ Q)' = Q' \times P' \circ Q$.

Définition

Soit $P \in \mathbb{K}[X]$. On définit par récurrence les polynômes dérivés successifs de P en posant

$$P^{(0)} = P \text{ et } \forall n \in \mathbb{N}, P^{(n+1)} = (P^{(n)})'$$

Exemple : Soit $a \in \mathbb{K}$ et soit $n \in \mathbb{N}$. Soit $p \in \mathbb{N}$, on a :

$$((X-a)^n)^{(p)} = \begin{cases} \frac{n!}{(n-p)!} (X-a)^{n-p} & \text{si } p \in [0, n] \\ 0 & \text{si } p > n \end{cases}$$

Démonstration. Raisonnons par récurrence.

- Pour p = 0, on a $((X a)^n)^{(0)} = (X a)^n$.
- Soit $p \in [0, n-1]$, supposons que $((X-a)^n)^{(p)} = \frac{n!}{(n-p)!} (X-a)^{n-p}$. Alors, on a :

$$(X-a)^{n})^{(p+1)} = ((X-a)^{n})^{(p)})'$$

$$= \left(\frac{n!}{(n-p)!}(X-a)^{n-p}\right)'$$

$$= \frac{n!}{(n-p)!}((X-a)^{n-p})'$$

$$\frac{n!}{(n-p)!}(n-p)(X-a)^{n-p-1}$$

$$= \frac{n!}{(n-p-1)!}(X-a)^{n-p-1}$$

- Ainsi, on a : $\forall p \in [0, n]$, $((X a)^n)^{(p)} = \frac{n!}{(n-p)!} (X a)^{n-p}$.
- En particulier, on a : $((X-a)^n)^{(n)} = \frac{n!}{0!}(X-a)^0 = n!$. Ainsi, on a : $\forall p > n$, $((X-a)^n)^{(p)} = 0$.

Proposition

Soit P et Q des éléments de $\mathbb{K}[X]$.

- Pour tout λ , $\mu \in \mathbb{K}$, on a: $\forall n \in \mathbb{N}$, $(\lambda P + \mu Q)^{(n)} = \lambda P^{(n)} + \mu Q^{(n)}$
- Si $\deg(P) = n$, alors $P^{(k)} = 0$ pour tout k > n et $\deg(P^{(k)}) = \deg(P) k$ pour tout $k \in [0, n]$.

Proposition: Formule de Leibniz

Soit $P, Q \in \mathbb{K}[X]$ des polynômes, $n \in \mathbb{N}$. On a :

$$(P \times Q)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}.$$

Démonstration. La preuve est identique à celle réalisée dans le chapitre dérivation.

Proposition: Formule de Taylor

Soit $n \in \mathbb{N}$. Soit $P \in \mathbb{K}_n[X]$ et $a \in \mathbb{K}$. Alors :

$$P = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}.$$

Démonstration. Pour tout $n \in \mathbb{N}$, on considère la propriété $\mathscr{P}(n)$: « $\forall P \in \mathbb{K}_n[X], P = \sum_{k=0}^n \frac{P^{(k)}(a)}{k!} (X-a)^k$ ». Montrons par récurrence que pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

- Soit $P \in \mathbb{K}_0[X]$. Alors, $\deg(P) \leq 0$ donc P est constant, donc P = P(a). Ainsi, $\mathscr{P}(0)$ est vraie.
- Soit $n \in \mathbb{N}$, supposons que $\mathcal{P}(n)$ est vraie.

Soit
$$P \in \mathbb{K}_{n+1}[X]$$
. Alors $\deg(P) \le n+1$ donc $\deg(P') \le n$, donc par hypothèse de récurrence, $P' = \sum_{k=0}^{n} \frac{(P')^k}{k!} (a) (X-a)^k = \sum_{k=0}^{n} \frac{P^{(k+1)}(a)}{k!} (X-a)^k$. Soit $Q = \sum_{k=0}^{n+1} \frac{P^{(k)}(a)}{k!} (X-a)^k$. On a

$$Q' = \sum_{k=1}^{n+1} \frac{P^{(k)}(a)}{k!} k(X-a)^{k-1} = \sum_{k=1}^{n+1} \frac{P^{(k)}(a)}{(k-1)!} (X-a)^{k-1} = \sum_{k=0}^{n} \frac{P^{(k+1)}(a)}{k!} (X-a)^k = P'$$

donc (Q-P)'=0. Ainsi Q-P est constant. En prenant la valeur en a, on obtient Q-P=Q(a)-P(a)=P(a)-P(a)=0, donc P = Q et on a prouvé $\mathcal{P}(n+1)$.

• En conclusion, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

Remarque : Si $P = \sum_{k=0}^{n} a_k X^k$, en prenant a = 0 dans la formule de Taylor, on obtient par identification des coefficients : $\forall k \in [0, n], \ a_k = \frac{P^{(k)}(0)}{k!}.$

Racines d'un polynôme

4.1 Racines

Définition

On dit que $a \in \mathbb{K}$ est une **racine** dans \mathbb{K} d'un polynôme $P \in \mathbb{K}[X]$ si P(a) = 0.

Exemple:

- Tout polynôme de degré 1 a une racine : la racine de aX + b (avec $a \ne 0$) est $-\frac{b}{a}$.
- Pour un polynôme de degré 2, l'existence de racines dépend de \mathbb{K} : par exemple $X^2 + 1$ n'a pas de racine dans \mathbb{R} , il a les racines $\pm i$ dans \mathbb{C} .

Proposition

Soit $a \in \mathbb{K}$ et $P \in \mathbb{K}[X]$.

- Le reste dans la division euclidienne de P par (X a) est P(a).
- a est racine de P si et seulement si X a divise P.

Démonstration. Soit $a \in \mathbb{K}$ et $P \in \mathbb{K}[X]$. Ecrivons la division euclidienne de P par (X - a): il existe $(Q, R) \in \mathbb{K}[X]^2$ tel que P = (X - a)Q + R et deg(R) < 1 donc R est constant : R = R(a). En évaluant cette égalité en A, on obtient P(a) = (a - a)Q(a) + R(a) = R(a). Ainsi, R = R(a) = P(a).

En gardant les mêmes notations : (X - a)|P si et seulement si P = 0 si

Exemple : Considérons le polynôme $P = X^3 - X + 6$. On voit que -2 est racine évidente de P. Par la proposition précédente, P se factorise par (X + 2). Pour obtenir sa factorisation, on peut :

• soit écrire $P = (X+2)(aX^2+bX+c)$ avec $(a,b,c) \in \mathbb{K}^3$ puis développer et identifier les coefficients : Soit $(a,b,c) \in \mathbb{K}^3$

$$P = (X-2)(aX^{2} + bX + c)$$

$$\iff X^{3} - X + 6 = aX^{3} + X^{2}(b+2a) + X(c+2b) + 2c$$

$$\iff \begin{cases} a = 1 \\ b+2a = 0 \\ c+2b = -1 \\ 2c = 6 \end{cases}$$

$$\iff \begin{cases} a = 1 \\ b = -2 \\ c = 3 \end{cases}$$

Ainsi, $P = (X + 2)(X^2 - 2X + 3)$.

• soit faire la division euclidienne de *P* par (*X* + 2) : le quotient correspond à l'autre facteur de la factorisation et le reste doit être nul .

$$\begin{array}{c|cccc}
X^3 - X + 6 & X + 2 \\
\hline
-(X^3 + 2X^2) & X^2 - 2X + 3 \\
-2X^2 - X + 6 & \\
-(-2X^2 - 4X) & 3X + 6 & \\
& 0 & & \\
\end{array}$$

Proposition

Soit $P \in \mathbb{K}[X]$, $n \in \mathbb{N}^*$ et $a_1, \dots a_n \in \mathbb{K}$ deux à deux distincts.

 a_1, a_2, \dots, a_n sont racines de P si et seulement si $\prod_{i=1}^n (X - a_i)|P$.

 $\begin{array}{ll} \textit{D\'{e}monstration}. & \Leftarrow \text{ Si } \prod_{i=1}^n (X-a_i) | P, \text{ alors il existe } Q \in \mathbb{K}[X] \text{ tel que } P = \prod_{i=1}^n (X-a_i) Q(X). \text{ Soit } k \in \llbracket 1, n \rrbracket, \text{ en \'{e}valuant en } a_k, \text{ on obtient } P(a_k) = 0 \text{ donc } a_k \text{ est racine de } P. \end{array}$

Donc a_1 , ... a_n sont racines de P

- ⇒ Pour tout $n \in \mathbb{N}^*$, on note $\mathcal{P}(n)$ la propriété : « tout polynôme qui admet n racines distinctes deux à deux, notées $a_1,...,a_n$ est divisible par $\prod_{i=1}^n (X-a_i)$. »
 - Pour n = 1, on a le résultat avec une proposition précédente.
 - Soit n∈ N*, supposons P(n) vraie.
 Soit P∈ K[X] admettant n+1 racines distinctes deux à deux que l'on note a₁,..., a_{n+1}.
 D'après l'hypothèse de récurrence, il existe Q∈ K[X] tel que :

$$P = Q \prod_{i=1}^{n} (X - a_i)$$

Comme a_{n+1} est racine de P, on a : $Q(a_{n+1})\prod_{i=1}^n(a_{n+1}-a_i)=P(a_{n+1})=0$. Or, $\prod_{i=1}^n(a_{n+1}-a_i)$ est un élément de \mathbb{K} non nul car les a_i sont 2 à 2 non nuls. Donc $Q(a_{n+1})=0$. Ainsi, il existe un polynôme $Q_1\in\mathbb{K}[X]$, tel que $Q=(X-a_{n+1})Q_1$. On obtient ainsi :

$$P = Q_1 \prod_{i=1}^{n+1} (X - a_i)$$

Donc
$$\prod_{i=1}^{n+1} (X - a_i) | P$$

• Pour tout $n \in \mathbb{N}$, la propriété est donc vraie.

Exemple:

Soit $n \in \mathbb{N}^*$. Posons $P_n = (X-2)^{2n} + (X-1)^n - 1$. On commence par remarquer que $X^2 - 3X + 2 = (X-2)(X-1)$. Ainsi, $X^2 - 3X + 2 | (X-2)^{2n} + (X-1)^n - 1$ si et seulement si 1 et 2 sont racines de P_n si et seulement si $P_n(2) = P_n(1) = 0$. Or, $P_n(2) = 0$ et $P_n(1) = (-1)^{2n} - 1 = 0$. Ainsi, $X^2 - 3X + 2 | (X-2)^{2n} + (X-1)^n - 1$.

Corollaire

Un polynôme non nul de degré $n \in \mathbb{N}$ a au plus n racines deux à deux distinctes.

Démonstration. Soit P un polynôme non nul admettant pour racines les p éléments de \mathbb{K} deux à deux distincts $a_1,...,a_p$. Alors, d'après la proposition précédente, $\prod_{k=1}^p (X-a_k) \mid P$. On a donc $p \le \deg(P)$. □

Corollaire

- Un polynôme de $\mathbb{K}_n[X]$ ayant au moins n+1 racines deux à deux distinctes est le polynôme nul.
- Le seul polynôme qui possède une infinité de racines (distinctes) est le polynôme nul.

Corollaire

Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme, on a l'équivalence :

 $P=0 \ (\text{ c'est à dire}: \forall k \in [\![0,n]\!], \ a_k=0 \) \quad \Longleftrightarrow \quad \widetilde{P}=0 \ (\text{ c'est à dire}: \forall t \in \mathbb{K}, \ \widetilde{P}(t)=0 \).$

Démonstration. On sait déja que si P = 0 alors $\tilde{P} = 0$ par définition de \tilde{P} .

Réciproquement, si $\widetilde{P}=0$ alors, P admet une infinité de racines donc P est le polynôme nul donc tous ses coefficients sont nuls.

Proposition

$$\mathbb{K}[X] \rightarrow \mathscr{F}(\mathbb{K}, \mathbb{K})$$
 $\stackrel{\mathcal{D}}{\longrightarrow} \stackrel{\widetilde{\mathcal{D}}}{\longrightarrow}$

est injective.

Démonstration. Soient $A, B \in \mathbb{K}[X]$. Supposons que $\widetilde{A} = \widetilde{B}$ d'où $\widetilde{A - B} = 0$ donc A - B = 0.

 $\textbf{Remarque:} \ \text{Ceci justifie qu'on puisse faire l'identification entre } P \ \text{et sa fonction polynomiale.}$

4.2 Ordre de multiplicité des racines d'un polynôme

Définition

Soit P un polynôme non nul de $\mathbb{K}[X]$ et $a \in \mathbb{K}$ une racine de P. On appelle ordre de multiplicité de la racine a, le plus grand entier $m \in \mathbb{N}^*$ tel que $(X - a)^m$ divise P, autrement dit, l'entier $m \in \mathbb{N}^*$ tel que :

$$(X-a)^m \mid P$$
 et $(X-a)^{m+1} \not P$

On dit alors que a est racine d'ordre m de P.

Remarque:

• Lorsque $m \ge 2$, on parle de racine multiple.

• Les racines d'ordre 1,2,3 de P sont respectivement appelées racines simples, doubles, triples de P.

Définition

Soit P un polynôme de $\mathbb{K}[X]$, $a \in \mathbb{K}$ et $m \in \mathbb{N}^*$. On dit que a est racine d'ordre au moins m de P si et seulement si $(X - a)^m \mid P$

Proposition

Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $m \in \mathbb{N}^*$. On a l'équivalence entre :

- $(X-a)^m$ divise P (i.e a est racine d'ordre au moins m de P)
- $P(a) = P'(a) = \cdots = P^{(m-1)}(a) = 0.$

Démonstration. \leftarrow Supposons que $P(a) = P'(a) = \cdots = P^{(m-1)}(a) = 0$. Soit $n \ge \max(\deg(P), m)$, en appliquant la formule de Taylor à P en a, on obtient :

$$P = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k} = \sum_{k=m}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k} = (X - a)^{m} \left(\sum_{k=m}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k-m} \right),$$

avec $\sum_{k=m}^{n} \frac{P^{(k)}(a)}{k!} (X-a)^{k-m} \in \mathbb{K}[X]$ car pour tout $k \in [m, n]$, $k-m \in \mathbb{N}$. Ainsi $(X-a)^m$ divise bien P.

⇒ Supposons que $(X - a)^m$ divise bien P. Alors il existe $Q \in \mathbb{K}[X]$ tel que $P = (X - a)^m Q$. Soit $k \in [0, m - 1]$, par la formule de Leibniz, on obtient :

$$P^{(k)} = \sum_{l=0}^{k} {k \choose l} ((X-a)^m)^{(l)} Q^{(k-l)}$$

$$= \sum_{l=0}^{k} {k \choose l} \frac{m!}{(m-l)!} (X-a)^{m-l} Q^{(k-l)}$$

$$= (X-a) \left(\sum_{l=0}^{k} {k \choose l} \frac{m!}{(m-l)!} (X-a)^{m-l-1} Q^{(k-l)} \right)$$

avec $m-l-1 \ge m-k-1 \ge 0$. Ainsi, en évaluant $P^{(k)}$ en a, on obtient $P^{(k)}(a) = 0$ pour tout $k \in [0, m-1]$.

Exemple : Posons $P_n = \left(\sum_{k=0}^{n-1} X^k\right)^2 - n^2 X^{n-1}$. Avec la proposition précédente, $(X-1)^2 | P_n$ si et seulement si 1 est racine de P_n d'ordre au moins 2 si et seulement si $P_n(1) = 0$ et $P'_n(1) = 0$.

Or,
$$P_n(1) = \left(\sum_{k=0}^{n-1} 1\right)^2 - n^2 = n^2 - n^2 = 0.$$

De plus,
$$P'_n = 2 \times \left(\sum_{k=0}^{n-1} X^k\right) \times \left(\sum_{k=1}^{n-1} k X^{k-1}\right) - n^2 (n-1) X^{n-2}$$
.

Ainsi,
$$P_n'(1) = 2 \times \left(\sum_{k=0}^{n-1} 1\right) \times \left(\sum_{k=1}^{n-1} k\right) - n^2(n-1) = 2 \times n \times \left(\sum_{k=1}^{n-1} k\right) - n^2(n-1) = 2 \times n \times \frac{n(n-1)}{2} - n^2(n-1) = 0.$$

On obtient ainsi, le résultat voulu.

Proposition

Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $m \in \mathbb{N}^*$. On a l'équivalence entre :

- 1. $(X-a)^m$ divise P et $(X-a)^{m+1}$ ne divise pas P (i.e a est racine d'ordre m de P);
- 2. $P(a) = P'(a) = \cdots = P^{(m-1)}(a) = 0$ et $P^{(m)}(a) \neq 0$.
- 3. il existe $Q \in \mathbb{K}[X]$ tel que $P = (X a)^m Q$ et $Q(a) \neq 0$

Démonstration. • (1) ⇒ (2) : Par la proposition précédente, on a déjà que $P(a) = P'(a) = \cdots = P^{(m-1)}(a) = 0$. De plus, si $P^{(m)}(a) = 0$, alors $(X - a)^{m+1}$ diviserait également P, ce qui n'est pas le cas. Donc $P^{(m)}(a) \neq 0$.

- (2) \Rightarrow (3) : D'après la proposition précédente, on a déjà que $(X-a)^m$ divise P, et il existe donc $Q \in \mathbb{K}[X]$ tel que $P = (X-a)^m Q$.
 - Montrons que $Q(a) \neq 0$. Par l'absurde. Supposons que Q(a) = 0 alors a est racine de Q donc (X a) divise Q. Ainsi, il existe $Q_1 \in \mathbb{K}[X]$ tel que $Q = (X a)Q_1$ donc $P = (X a)^{m+1}Q_1$. D'où $(X a)^{m+1}$ divise P. Avec la proposition précédente, on a alors $P^{(m)}(a) = 0$. D'où une contradiction. Donc $Q(a) \neq 0$.
- (3) \Rightarrow (1) : On a déjà que $(X-a)^m$ divise P. Supposons que $(X-a)^{m+1}$ divise aussi P, alors il existe $S \in \mathbb{K}[X]$ tel que $P = (X-a)^{m+1}S$. D'où l'égalité : $(X-a)^mQ = (X-a)^{m+1}S$ d'où Q = (X-a)S car $(X-a)^m \neq 0$. Mais alors Q(a) = 0 ce qui est contradictoire.

Exemple: Avec la caractérisation 3.

Le polynôme $P = (X-3)^4(X-2)^5$ admet 3 comme racine de multiplicité 4 et 2 comme racine de multiplicité 5.

Exemple:

Avec la caractérisation 2.

Soit $P = X^5 - 6X^4 + 14X^3 - 16X^2 + 9X - 2$. Montrer que 1 est racine de P et déterminer son ordre de multiplicité.

On a P(1) = 0, donc 1 est racine de P.

On calcule $P' = 5X^4 - 24X^3 + 42X^2 - 32X + 9$. On a P'(1) = 0, donc 1 est racine au moins double de P.

On calcule $P'' = 20X^3 - 72X^2 + 84X - 32$. On a P''(1) = 0, donc 1 est racine au moins triple de P.

On calcule $P^{(3)} = 60X^2 - 144X + 84$. On a $P^{(3)}(1) = 0$, donc 1 est racine de P de multiplicité au moins 4.

On calcule $P^{(4)} = 120X - 144$. On a $P^{(4)}(1) = -24 \neq 0$, donc 1 est racine de P de multiplicité 4.

En déduire une factorisation de P sous forme d'un produit de polynômes de degré 1.

Il existe $Q \in \mathbb{K}[X]$ tel que $P = (X - 1)^4 Q(X)$. Or, $\deg(Q) = \deg(P) - 4 = 1$. Ainsi, il existe $(\alpha, \beta) \in \mathbb{K}^* \times \mathbb{K}$ tels que $Q = \alpha X + \beta$. En égalisant les coefficients dominants de P et de $(X - 1)^4 Q$, on obtient : $\alpha = 1$. En égalisant les termes constants, on obtient : $\beta = -2$. Ainsi, $P = (X - 1)^4 (X - 2)$.

Proposition

Soit $P \in \mathbb{K}[X]$, $n \in \mathbb{N}^*$ $a_1, \dots, a_n \in \mathbb{K}$ deux à deux distincts, $m_1, \dots, m_n \in \mathbb{N}^*$. Alors :

Pour tout $i \in [1, n]$, a_i est racine de P de multiplicité au moins $m_i \iff \prod_{i=1}^n (X - a_i)^{m_i} | P$.

Démonstration. ← Supposons que $(X - a_1)^{m_1} \cdots (X - a_n)^{m_n}$ divise P.

Soit $i \in [1, n]$, on a en particulier que $(X - a_i)^{m_i}$ divise P. On en déduit que a_i est racine de P de multiplicité au moins m_i .

⇒ On procède par récurrence.

Pour tout $n \in \mathbb{N}$, on considère la propriété :

 $\mathcal{P}(n)$: « tout polynôme $P \in \mathbb{K}[X]$ admettant n racines 2 à 2 distinctes que l'on note $a_1,...,a_n$ d'ordre respectivement au moins égal à $m_1,...,m_n$ est divisible par $\prod_{i=1}^n (X-a_i)^{m_i}$. »

- Pour n = 1, la propriété est vraie par définition.
- Soit $n \in \mathbb{N}^*$, supposons $\mathcal{P}(n)$ vraie.

Considérons $P \in \mathbb{K}[X]$ admettant n+1 racines 2 à 2 distinctes que l'on note $a_1,...,a_{n+1}$ d'ordre respectivement au moins égal à $m_1,...,m_{n+1}$.

En particulier, p admet n racines 2 à 2 distinctes $a_1,...,a_n$ d'ordre respectivement au moins égal à $m_1,...,m_n$. Ainsi, d'après l'hypothèse de récurrence, il existe $B \in \mathbb{K}[X]$ tel que

$$P = B \prod_{i=1}^{n} (X - a_i)^{m_i}$$

De plus, $P(a_{n+1}) = 0$ donc $B(a_{n+1}) \prod_{i=1}^{n} (a_{n+1} - a_i)^{m_i} = 0$. Ainsi, $B(a_{n+1}) = 0$ car les a_i sont deux à deux distincts.

Ainsi, a_{n+1} est racine de B.

Notons r son ordre de multiplicité en tant que racine de B. On sait alors qu'il existe $B_1 \in \mathbb{K}[X]$ tel que :

$$B = (X - a_{n+1})^r B_1$$
 et $B_1(a_{n+1}) \neq 0$

On a alors:

$$P = (X - a_{n+1})^{r} \underbrace{B_{1} \prod_{i=1}^{n} (X - a_{i})^{m_{i}}}_{=B_{2}}$$

De plus, $B_2(a_{n+1}) = B_1(a_{n+1}) \times \prod_{i=1}^n (a_{n+1} - a_i)^{m_i} \neq 0$. Ainsi, a_{n+1} est une racine de P d'ordre r. Donc $m_{n+1} \leq r$. Par suite, $(X - a_{n+1})^{m_{n+1}} | (X - a_{n+1})^r$ donc $\prod_{i=1}^{n+1} (X - a_i)^{m_i}$ divise $(X - a_{n+1})^r \prod_{i=1}^n (X - a_i)^{m_i}$ et donc aussi P. On a ainsi montré la proposition au rang n+1.

• On a donc prouvé par récurrence que pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$ est vraie.

Corollaire

Soit $n \in \mathbb{N}$. Un polynôme (non nul) de degré n a au plus n racines comptées avec leur ordre de multiplicité.

Démonstration. Soit *P* un polynôme non nul admettant pour racines les *p* éléments de \mathbb{K} 2 à 2 distincts $a_1,...a_p$ d'ordre respectif égal à $m_1,...,m_p \in \mathbb{N}^*$.

Alors, par la proposition précédente, $\prod_{i=1}^{p} (X - a_i)^{m_i} | P$. Donc $\sum_{i=1}^{p} m_i \le \deg(P)$.

4.3 Polynômes scindés

Définition

Un polynôme P non nul est dit scindé sur \mathbb{K} s'il est constant ou s'il peut s'écrire comme produit de polynômes de $\mathbb{K}[X]$ de degré 1. Autrement dit, un polynôme non nul est scindé s'il existe $\lambda \in \mathbb{K}^*$ (le coefficient dominant de P), un entier naturel $n \in \mathbb{N}$ et des éléments $a_1, ..., a_n \in \mathbb{K}$ (les racines de P) tels que :

$$P = \lambda \prod_{i=1}^{n} (X - a_i)$$

Proposition

Soit $P \in \mathbb{K}[X]$ un polynôme de degré $n \ge 1$. On a équivalence entre :

- 1. *P* est scindé dans K;
- 2. la somme des multiplicités des racines de P est égale à deg(P).

Si c'est le cas, on a alors:

$$P = \lambda \prod_{k=1}^{n} (X - a_k)^{m_k}$$

où λ est le coefficient dominant de P, les $a_i \in \mathbb{K}$ sont les racines de P (deux à deux distinctes) dans \mathbb{K} et les $m_i \in \mathbb{N}^*$ leur multiplicité respective.

Démonstration. • (2) ⇒ (1): Notons $a_1, \dots, a_p \in \mathbb{K}$ les racines deux à deux distinctes de P dans \mathbb{K} , et $m_1, \dots, m_p \in \mathbb{N}^*$ leur multiplicité. Alors d'après une propriété précédente, $\prod_{k=1}^p (X - a_k)^{m_k}$ divise P. Il existe donc $Q \in \mathbb{K}[X]$ tel que :

$$P = \prod_{k=1}^{p} (X - a_k)^{m_k} Q.$$

En prenant les degrés, on obtient $\deg(P) = \sum_{i=1}^{p} m_i + \deg(Q)$, d'où avec l'hypothèse $\deg(Q) = 0$. Ainsi $Q = \lambda \in \mathbb{K}^*$, et P est bien scindé dans \mathbb{K} .

• (1) \Rightarrow (2) : Supposons P scindé sur \mathbb{K} de degré $n \geq 1$, alors on peut écrire $P = \lambda \prod_{k=1}^{n} (X - a_k)$ où $\lambda \in \mathbb{K}^*$, $n \in \mathbb{N}^*$ et $a_1, ..., a_n \in \mathbb{K}$. En regroupant entre eux les a_k et quitte à les renuméroter, on peut écrire :

$$P = \lambda \prod_{k=1}^{p} (X - a_k)^{m_k} \tag{*}$$

avec $a_1, ..., a_p$ deux à deux distincts et $m_1, ..., m_p \in \mathbb{N}^*$. Alors avec les caractérisations des racines multiples (la 3ème), on en déduit immédiatement que pour tout $i \in [1, p]$, a_i est racine de P de multiplicité m_i . L'égalité (*) entraine alors

$$\sum_{i=1}^{P} m_i = \deg(P).$$

Exemple:

- Soit $P = X^5 + 3X^4 + 3X^3 + X^2 = X^2(X^3 + 3X^2 + 3X + 1) = X^2(X + 1)^3$. Ainsi, P est scindé sur \mathbb{R} et \mathbb{C} .
- Le polynôme $P = X^2 + 1$ est scindé sur \mathbb{C} car P = (X i)(X + i). En revanche, si on le considère comme un polynôme de $\mathbb{R}[X]$, il n'est pas scindé, car il n'admet pas de racine réelle. En effet, pour tout $t \in \mathbb{R}$, $t^2 + 1 > 0$. Il n'est donc pas scindé sur \mathbb{R} .
- Le polynôme X^n-1 est scindé sur $\mathbb C$. On connait n racines distinctes de ce polynôme, les racines n-ièmes de l'unité $e^{\frac{2ik\pi}{n}}$, $k\in [0,n-1]$. Puisque le polynôme X^n-1 est de degré n et unitaire, on obtient grâce à la proposition précédente l'égalité :

$$X^{n}-1=\prod_{k=0}^{n-1}\left(X-e^{\frac{2ik\pi}{n}}\right).$$

5 Décomposition en facteurs d'irréductibles

Définition

On dit que $P \in \mathbb{K}[X]$ est irréductible dans $\mathbb{K}[X]$ si P est non constant et si les seuls diviseurs de P dans $\mathbb{K}[X]$ sont les polynômes constants non nuls (i.e les polynômes associés à 1) et les polynômes associés à P. Ainsi, un polynôme $P \in \mathbb{K}[X]$ est irréductible ssi :

- P est non constant
- $\forall A \in \mathbb{K}[X], A|P \implies \exists \lambda \in \mathbb{K}^*, A = \lambda \text{ ou } A = \lambda P$

Rappel: On dit que P et Q sont associés s'il existe $\lambda \in \mathbb{K}^*$ tel que $P = \lambda Q$.

Remarque : Les polynômes irréductibles dans $\mathbb{K}[X]$ jouent le rôle des nombres premiers dans \mathbb{N} .

Remarque:

- un polynôme $P \in \mathbb{K}[X]$ est irréductible ssi :
 - * P est non constant
 - * Si P = QR avec $Q, R \in \mathbb{K}[X]$ alors Q ou R est constant (non nul), l'autre étant associé à P.
- un polynôme $P \in \mathbb{K}[X]$ est irréductible ssi :
 - * P est non constant
 - * $\forall Q, R \in \mathbb{K}[X], P = QR \implies \deg(Q) = 0$ ou $\deg(R) = 0$.

Proposition

Tout polynôme de degré 1 est irréductible dans $\mathbb{K}[X]$.

Démonstration. Soit $P \in \mathbb{K}[X]$ un polynôme de degré 1.

P est donc non constant.

Considérons $B \in \mathbb{K}[X]$ un diviseur de P. Alors, il existe $C \in \mathbb{K}[X]$ tel que P = BC. On a alors B et C non nuls car P est non nul et $\deg(B) + \deg(C) = \deg(P) = 1$. Comme $\deg(B)$, $\deg(C) \in \mathbb{N}$ l'un des deux vaut 0 et l'autre vaut 1. C'est à dire que l'un des polynômes B et C est constant non nul et l'autre est donc associé à P. Ainsi les seuls diviseurs de P sont les polynômes constants et les polynômes associés à P donc P est irréductible.

5.1 Factorisation dans $\mathbb{C}[X]$

Théorème Théorème de d'Alembert-Gauss

Tout polynôme non constant de $\mathbb{C}[X]$ possède au moins une racine dans $\mathbb{C}.$

Démonstration. Admis

Proposition

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.

Démonstration. On a déjà que les polynômes de degré 1 sont irréductibles (propriété précédente).

Réciproquement, soit P un polynôme irréductible. Alors, P est non constant. Par le Théorème de d'Alembert Gauss, P admet une racine dans \mathbb{C} que l'on note a. Ainsi, (X-a) divise P. Comme de plus P est irréductible, on en déduit que P et (X-a)sont associés donc P est de degré 1.

Proposition

Tout polynôme non nul de $\mathbb{C}[X]$ est scindé.

Démonstration. Pour tout $n \in \mathbb{N}$, on note $\mathscr{P}(n)$: « tout polynôme de $\mathbb{C}[X]$ de degré n est scindé ». Montrons par récurrence que pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$ est vraie.

• Pour n = 0: $P \in \mathbb{K}^*$ est bien scindé, donc $\mathcal{P}(0)$ est vraie.

est scindé : il existe $\lambda \in \mathbb{K}^*$, $n \in \mathbb{N}$ et $a_1, ... a_n \in \mathbb{K}$ tel que :

• Soit $n \in \mathbb{N}$ et supposons $\mathcal{P}(n)$ vraie. Soit *P* de degré n+1. D'après le Théorème de d'Alembert Gauss, *P* admet au moins une racine $a \in \mathbb{C}$. Alors (X-a) divise P et il existe $Q \in \mathbb{K}[X]$ tel que P = (X - a)Q. De plus, Q est non nul et $\deg(Q) = n$. Ainsi, par hypothèse de récurrence, Q

$$Q = \lambda \prod_{k=1}^{n} (X - a_k).$$

Ainsi $P = \lambda(X - a) \prod_{k=1}^{n} (X - a_k)$ et P est scindé, donc $\mathcal{P}(n+1)$ est vraie.

• Ainsi, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

Proposition

Factorisation dans $\mathbb{C}[X]$

Soit P un polynôme non nul de $\mathbb{C}[X]$, alors P s'écrit de façon unique (à l'ordre près des facteurs) sous la forme :

$$P = \lambda \prod_{k=1}^{n} (X - a_k)^{m_k}$$

où $n \in \mathbb{N}$, λ est le coefficient dominant de P, a_1, \dots, a_n sont les racines deux à deux distinctes de P de multiplicité $m_1, \cdots, m_n \in \mathbb{N}^*$.

5.2 Factorisation dans $\mathbb{R}[X]$

Remarque:

- Dans $\mathbb{R}[X]$, tout polynôme n'est pas nécessairement scindé. Un polynôme du second degré à discriminant strictement négatif, par exemple, n'admet pas de racines dans \mathbb{R} .
- On ne peut donc pas factoriser un polynôme de $\mathbb{R}[X]$ sous la même forme que plus haut.

Proposition

Soit $P \in \mathbb{R}[X]$. Si $a \in \mathbb{C} \setminus \mathbb{R}$ est racine de P, alors \overline{a} est aussi racine de P, de même multiplicité que a.

Démonstration. Notons $P = \sum_{k=0}^{n} a_k X^k$, avec $n = \deg(P)$ et $a_0, \ldots, a_n \in \mathbb{R}$.

Supposons que a est racine de P.

On a

$$P(\overline{a}) = \sum_{k=0}^{n} a_k(\overline{a})^k = \sum_{k=0}^{n} a_k \overline{a^k} = \sum_{k=0}^{n} \overline{a_k a^k} = \overline{P(a)} = 0$$

donc \overline{a} est racine de P.

Notons m la multiplicité de a comme racine de P.

Soit $k \in [0, m-1]$, $P^{(k)}(a) = 0$ et $P^{(k)}$ est à coefficients réels, donc le raisonnement ci-dessus montre que $P^{(k)}(\overline{a}) = 0$. Supposons que $P^{(m)}(\overline{a}) = 0$. Comme $P^{(m)}$ est à coefficients réels, on aurait alors $P^{(m)}(\overline{\overline{a}}) = 0$ soit $P^{(m)}(a) = 0$... absurde! Ainsi $P^{(m)}(\overline{a}) \neq 0$ et \overline{a} est racine de P de multiplicité m.

Proposition

Les polynômes irréductibles de $\mathbb{R}[X]$ sont

- les polynômes de degré 1;
- les polynômes de degré 2 dont le discriminant est strictement négatif.

Démonstration. • On a déjà vu que les polynômes de degré 1 sont irréductibles.

Soit P un polynôme de degré 2 de discriminant strictement négatif. Soit $A \in \mathbb{R}[X]$ un diviseur de P. Alors, il existe $B \in \mathbb{R}[X]$ tel que P = AB. De plus, on sait que $A \neq 0$, $B \neq 0$ et $\deg(A) + \deg(B) = 2$.

Si deg(A) = 1 alors, A et donc P ont une racine réelle. Absurde.

Donc deg(A) = 0 ou deg(A) = 2. Ainsi, deg(A) = 0 ou deg(B) = 0. Ainsi, A ou B est constant non nul donc A est constant ou associé à P.

Ainsi, tout diviseur de P est constant ou associé à P.

- Réciproquement, soit $P \in \mathbb{R}[X]$ un polynôme irréductible. Alors P est non constant. Donc d'après le théorème de d'Alembert-Gauss, il admet une racine a dans \mathbb{C} .
 - Si $a \in \mathbb{R}$, X a divise P dans $\mathbb{R}[X]$ donc P est associé à X a puisque P est irréductible donc $\deg(P) = 1$.
 - Si $a \in \mathbb{C} \setminus \mathbb{R}$, et alors \overline{a} est racine de P par la proposition précédente. Ainsi $R = (X a)(X \overline{a}) = X^2 2\operatorname{Re}(a)X + |a|^2$ divise P dans $\mathbb{C}[X]$. Ainsi, il existe $Q \in \mathbb{C}[X]$ tel que P = RQ. On a alors : $\overline{P} = \overline{RQ}$. Or, $P, R \in \mathbb{R}[X]$ donc $P = R\overline{Q}$. Par unicité de la division euclidienne dans $\mathbb{C}[X]$, on a $Q = \overline{Q}$ donc $Q \in \mathbb{R}[X]$.

Ainsi, R divise P dans $\mathbb{R}[X]$ donc P est associé à R (car P est irréductible).

De plus, le discriminant de R vaut $4(\operatorname{Re}(a)^2 - |a|^2) < 0$ car $a \in \mathbb{C} \setminus \mathbb{R}$. Ainsi, P est un polynôme de degré 2 de discriminant strictement négatif.

Proposition

Factorisation dans $\mathbb{R}[X]$

Soit P un polynôme non nul de $\mathbb{R}[X]$, alors P s'écrit de manière unique (à l'ordre près) sous la forme

$$P = \lambda \prod_{i=1}^{p} (X - a_i)^{m_i} \prod_{j=1}^{q} (X^2 + b_j X + c_j)^{n_j}$$

où $p,q\in\mathbb{N},\ \lambda\in\mathbb{R}$ est le coefficient dominant de $P,\ a_1,...,a_p$ sont les racines réelles deux à deux distinctes de P de multiplicités respectives $m_1,...,m_p\in\mathbb{N}^*$, les couples de réels $(b_1,c_1),...,(b_q,c_q)$ sont deux à deux distincts et tels que pour tout $k\in [1,q],\ b_k^2-4c_k<0$ et $n_1,...,n_q\in\mathbb{N}^*$.

Méthode:

Pour obtenir en pratique une factorisation d'un polynôme P dans $\mathbb{R}[X]$, il suffit de faire la factorisation de P dans $\mathbb{C}[X]$ puis de regrouper les termes complexes non réels qui sont conjugués.

Exemple:

Factorisons le polynôme $X^n - 1$ dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$ ($n \ge 1$). On a déjà obtenu la factorisation dans $\mathbb{C}[X]$:

$$X^n - 1 = \prod_{k=0}^{n-1} \left(X - e^{\frac{2ik\pi}{n}} \right).$$

Pour obtenir la factorisation dans $\mathbb{R}[X]$, on doit distinguer les cas où n est pair et impair. Soit $n \in \mathbb{N}^*$

• Si n est pair, il existe $p \in \mathbb{N}^*$ tel que n = 2p. P admet deux racines réelles. On a en regroupant les termes complexes

conjugués:

$$X^{2p} - 1 = (X - 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \left(X - e^{\frac{2ip\pi}{n}} \right) \prod_{k=p+1}^{2p-1} \left(X - e^{\frac{2ik\pi}{n}} \right)$$

$$= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{k=p+1}^{2p-1} \left(X - e^{\frac{2ik\pi}{n}} \right)$$

$$= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{l=1}^{p-1} \left(X - e^{\frac{(2in\pi - 2il\pi)}{n}} \right) \quad \text{en posant } k = n - l = 2p - l$$

$$= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{l=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right)$$

$$= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X - e^{\frac{2ik\pi}{n}} \right) \left(X - e^{\frac{-2ik\pi}{n}} \right)$$

$$= (X - 1)(X + 1) \prod_{k=1}^{p-1} \left(X^2 - 2\cos(\frac{2k\pi}{n})X + 1 \right).$$

• Si n est impair, il existe $p \in \mathbb{N}$ tel que n = 2p + 1. P admet une seule racine réelle. On obtient de même :

$$X^{2p+1} - 1 = (X - 1) \prod_{k=1}^{p} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{k=p+1}^{2p} \left(X - e^{\frac{2ik\pi}{n}} \right)$$

$$= (X - 1) \prod_{k=1}^{p} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{l=1}^{p} \left(X - e^{\frac{(2in\pi - 2il\pi)}{n}} \right) \text{ en posant } k = n - l = 2p + 1 - l$$

$$= (X - 1) \prod_{k=1}^{p} \left(X - e^{\frac{2ik\pi}{n}} \right) \prod_{l=1}^{p} \left(X - e^{\frac{-2il\pi}{n}} \right)$$

$$= (X - 1) \prod_{k=1}^{p} \left(X - e^{\frac{2ik\pi}{n}} \right) \left(X - e^{-\frac{2ik\pi}{n}} \right)$$

$$= (X - 1) \prod_{k=1}^{p} \left(X^2 - 2\cos(\frac{2k\pi}{n})X + 1 \right).$$

5.3 Relations entre coefficients et racines

Rappelons le résultat suivant.

Proposition Relations coefficients racines

Soit $P(X) = aX^2 + bX + c \in \mathbb{K}[X]$ avec $a \neq 0$. Soit $\alpha_1, \alpha_2 \in \mathbb{K}$. Alors:

$$\alpha_1, \alpha_2$$
 sont les racines de P \Leftrightarrow
$$\begin{cases} \alpha_1 + \alpha_2 = -\frac{b}{a} \\ \alpha_1 \alpha_2 = \frac{c}{a} \end{cases}$$

Démonstration. \Rightarrow Si α_1, α_2 sont les racines de P, alors P est scindé et $P = a(X - \alpha_1)(X - \alpha_2)$.

En développant, on obtient $P = aX^2 - a(\alpha_1 + \alpha_2)X + a\alpha_1\alpha_2$. En identifiant les coefficients, on obtient $\begin{cases} \alpha_1 + \alpha_2 = -\frac{b}{a} \\ \alpha_1\alpha_2 = \frac{c}{a} \end{cases}$

$$\iff \text{Supposons que} \begin{cases} \alpha_1 + \alpha_2 = -\frac{b}{a} \\ \alpha_1 \alpha_2 = \frac{c}{a} \end{cases} \text{ .Alors } a(X - \alpha_1)(X - \alpha_2) = aX^2 - a(\alpha_1 + \alpha_2)X + a\alpha_1\alpha_2 = aX^2 + bX + xc = P \text{ donc } \alpha_1, \alpha_2 \text{ sont racines de } P. \end{cases}$$

Ce résultat se généralise aux polynômes de degré n de la manière suivante.

Proposition: Relations coefficients/racines

Soit $P \in \mathbb{K}[X]$ un polynôme de degré $n \in \mathbb{N}^*$, scindé dans $\mathbb{K}[X]$ dont les racines sont x_1, \dots, x_n (chacune étant écrite autant de fois que sa multiplicité). Si $P = \sum_{k=0}^{n} a_k X^k$ (avec $a_n \neq 0$), alors

$$\sum_{i=1}^{n} x_i = -\frac{a_{n-1}}{a_n} \quad \text{et} \quad \prod_{i=1}^{n} x_i = (-1)^n \frac{a_0}{a_n}.$$

Démonstration. Comme P est scindé, et les x_i sont ses racines, P s'écrit sous la forme $a_n \prod_{i=1}^n (X - x_i)$. En évaluant en 0, on obtient : $a_n(-1)^n \prod_{i=1}^n x_i$ ce qui correspond au terme constant donc $a_0 = a_n(-1)^n \prod_{i=1}^n x_i$ ce qui nous donne $\prod_{i=1}^n x_i = (-1)^n \frac{a_0}{a_n}$. En développant l'expression de P, on obtient que le coefficient de X^{n-1} de P vaut $-a_n \sum_{i=1}^n x_i$ donc $a_{n-1} = -a_n \sum_{i=1}^n x_i$, ce qui donne $\sum_{i=1}^n x_i = -\frac{a_{n-1}}{a_n}$.

Exemple : Soit $P = X^n - 1$. Les racines de P dans $\mathbb C$ sont les racines n-ièmes de l'unité. Il y en a $n = \deg(X^n - 1)$, donc P est scindé. D'après les relations coefficients racines, $\sum_{\omega \in \mathbb U_n} \omega = -\frac{0}{1} = 0$ et $\prod_{\omega \in \mathbb U_n} \omega = \frac{(-1)^{n+1}}{1} = (-1)^{n+1}$.