5 CLAIMS

10

15

20

25

We claim:

- A computerized method for dental imaging comprising:
 receiving a plurality of two-dimensional images of a oral cavity; and
 generating at least one three-dimensional image of the oral cavity from the
 plurality of two-dimensional images.
- 2. The computerized method of claim 1, wherein the plurality of two-dimensional images further comprises a plurality of two-dimensional optical images.
- 3. The computerized method of claim 1, further comprising: constructing a physical cast of the oral cavity from the three-dimensional image.
- 4. The computerized method of claim 1, further comprising:

 generating the plurality of two-dimensional images of the oral cavity from a

 common reference point in three-dimensional space.
- 5. The computerized method of claim 1, wherein the generating further comprises: generating shape-from-shading data from the plurality of two-dimensional images using a shape-from-shading process, the shape-from-shading data comprising a first plurality of three-dimensional points;
 - generating range data comprising a second plurality of three-dimensional points from the plurality of two-dimensional images using a range-data process;
 - fusing the range data to the shape-from-shading data, yielding fused data comprising a third plurality of three-dimensional points;
 - registering the fused data, yielding registered data comprising a fourth plurality of three-dimensional points; and
 - triangulating the registered data, yielding the at least one three-dimensional image of the oral cavity.

35

30

25

5

10

15

- 6. The computerized method of claim 5, wherein the generating shape-from-shading data further comprises:
 - estimating the direction of the illuminant from the plurality of two-dimensional images, in reference to camera intrinsic parameters; and
 - determining a solution to a brightness equation, yielding the shape-from-shading data comprising a first plurality of three-dimensional points.
 - 7. The computerized method of claim 5, wherein the fusing the range data to the shape-from-shading data further comprises:
 - calculating the error difference in available depth measurements of the range data and the shape-from-shading data;
 - approximating a surface the fits the error difference, yielding an approximated surface; and
 - correcting the shape-from-shading data from the approximated surface, yielding fused data comprising a third plurality of three-dimensional points;
 - 8. A computer-readable medium having computer-executable instructions to cause a computer to perform a method comprising:
 - receiving a plurality of two-dimensional optical images of an oral cavity; and generating at least one three-dimensional image of the oral cavity from the plurality of two-dimensional images.
 - 9. The computerized method of claim 8, further comprising: constructing a physical cast of the oral cavity from the three-dimensional image.
- 30 10. The computerized method of claim 8, further comprising:

 generating the plurality of two-dimensional images of the oral cavity from a

 common reference point in three-dimensional space.
 - 11. The computerized method of claim 8, wherein the generating further comprises:

25

30

- generating shape-from-shading data from the plurality of two-dimensional images
 using a shape-from-shading process, the shape-from-shading data
 comprising a first plurality of three-dimensional points;
 generating range data comprising a second plurality of three-dimensional points
 from the plurality of two-dimensional images using a range-data process;
 fusing the range data to the shape-from-shading data, yielding fused data
 comprising a third plurality of three-dimensional points;
 registering the fused data, yielding registered data comprising a fourth plurality of
 three-dimensional points; and
 triangulating the registered data, yielding the at least one three-dimensional image
 of the oral cavity.
 - 12. The computerized method of claim 11, wherein the generating shape-from-shading data further comprises:

estimating the direction of the illuminant from the plurality of two-dimensional images, in reference to camera intrinsic parameters; and

determining a solution to a brightness equation, yielding the shape-from-shading data comprising a first plurality of three-dimensional points.

13. The computerized method of claim 11, wherein the fusing the range data to the shape-from-shading data further comprises:

calculating the error difference in available depth measurements of the range data and the shape-from-shading data;

approximating a surface the fits the error difference, yielding an approximated surface; and

correcting the shape-from-shading data from the approximated surface, yielding fused data comprising a third plurality of three-dimensional points;

14. A three-dimensional digital image of a human oral cavity produced by the process comprising:

20

25

	•
5	generating a plurality of two-dimensional optical images of the oral cavity from a
	common reference point in three-dimensional space;
	generating shape-from-shading data from the plurality of two-dimensional images
	using a shape-from-shading process, the shape-from-shading data
	comprising a first plurality of three-dimensional points;
10	generating range data comprising a second plurality of three-dimensional points
	from the plurality of two-dimensional images using a range-data process;

from the plurality of two-dimensional images using a range-data process; fusing the range data to the shape-from-shading data, yielding fused data comprising a third plurality of three-dimensional points;

registering the fused data, yielding registered data comprising a fourth plurality of three-dimensional points; and

triangulating the registered data, yielding the one three-dimensional image of the oral cavity.

15. The three-dimensional digital image of a human oral cavity of claim 14, produced by the process wherein generating shape-from-shading data further comprises:

estimating the direction of the illuminant from the plurality of two-dimensional images, in reference to camera intrinsic parameters.

16. A system for dental diagnosis comprising:

a processor; and

software means operative on the processor for generating a three-dimensional image of a human jaw, including generating shape-from-shading data that is generated from a direction of an illuminant of the jaw that is estimated in reference to camera intrinsic parameters.

30

17. A computerized system comprising:

a digitizer providing five degrees of freedom, having an arm;
a charge coupled device camera, rigidly mounted on the arm of the digitizer; and
a computer, operably coupled to the digitizer and the camera; receiving coordinate
measurements from the digitizer and a plurality of two-dimensional

35

25

30

15

5

images from the camera; and generating a digital three-dimensional model from the coordinate measurements and from the plurality of two-dimensional images.

- 18. The computerized system of claim 17, further comprising:

 a rapid prototyping machine operably coupled to the computer, receiving the digital three-dimensional model and generating a physical model of the digital three-dimensional model.
 - 19. The computerized system of claim 17, further comprising:
 a display operably coupled to the computer, receiving the digital threedimensional model and generating an image of the digital threedimensional model.
 - 20. The computerized system of claim 17, the computer further comprises:
 a computer readable medium comprising means of:
 generating shape-from-shading data from the plurality of two-dimensional images
 using a shape-from-shading process, the shape-from-shading data
 comprising a first plurality of three-dimensional points;
 generating range data comprising a second plurality of three-dimensional points
 from the plurality of two-dimensional images using a range-data process;
 fusing the range data to the shape-from-shading data, yielding fused data
 comprising a third plurality of three-dimensional points;
 registering the fused data, yielding registered data comprising a fourth plurality of
 - triangulating the registered data, yielding the one three-dimensional image of the oral cavity.

three-dimensional points; and