

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

- **▼** Dynamic dv/dt Rating
- **▼** Repetitive Avalanche Rated
- **▼** Fast Switching
- **▼** Simple Drive Requirement

$\begin{array}{ccc} {\sf BV_{DSS}} & 600/650/700 {\sf V} \\ {\sf R_{DS(ON)}} & 3.6 \, \Omega \\ {\sf I_D} & 3.3 {\sf A} \end{array}$

Description

AP03N70 series are specially designed as main switching devices for universal 90~265VAC off-line AC/DC converter applications.TO-220 type provide high blocking voltage to overcome voltage surge and sag in the toughest power system with the best combination of fast switching,ruggedized design and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications. The device is suited for switch mode power supplies ,DC-AC converters and high current high speed switching circuits.

Absolute Maximum Ratings

Parameter	Rating	Units	
Drain-Source Voltage - /A	/H 600/650/700	V	
Gate-Source Voltage	± 30	V	
Continuous Drain Current, V _{GS} @ 10V	3.3	А	
Continuous Drain Current, V _{GS} @ 10V	2.1	Α	
Pulsed Drain Current ¹	13.2	Α	
Total Power Dissipation	45	W	
Linear Derating Factor	0.36	W/°C	
Single Pulse Avalanche Energy ²	85	mJ	
Avalanche Current	3.3	Α	
Repetitive Avalanche Energy	3.3	mJ	
Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$	
Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$	
	Drain-Source Voltage Gate-Source Voltage Continuous Drain Current, V _{GS} @ 10V Continuous Drain Current, V _{GS} @ 10V Pulsed Drain Current ¹ Total Power Dissipation Linear Derating Factor Single Pulse Avalanche Energy ² Avalanche Current Repetitive Avalanche Energy Storage Temperature Range	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Thermal Data

Symbol	Parameter		Value	Unit	
Rthj-c	Thermal Resistance Junction-case	Max.	2.8	°C/W	
Rthj-a	Thermal Resistance Junction-ambient	Max.	62	°C/W	

Electrical Characteristics@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =1mA / -	600	-	-	V
		V_{GS} =0V, I_D =1mA / A	650	-	-	V
		V_{GS} =0V, I_D =1mA / H	700	-	-	V
$\Delta\mathrm{BV}_\mathrm{DSS}/\Delta\mathrm{T}_\mathrm{j}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D =1mA	-	0.6	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =1.6A	-	-	3.6	Ω
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	2	-	4	V
g _{fs}	Forward Transconductance	V _{DS} =10V, I _D =1.6A	-	2	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V _{DS} =600V, V _{GS} =0V	-	-	10	uA
	Drain-Source Leakage Current (T _j =150°C)	V _{DS} =480V, V _{GS} =0V	-	-	100	uA
I _{GSS}	Gate-Source Leakage	$V_{GS} = \pm 30V$	-	-	±100	nA
Q_g	Total Gate Charge ³	I _D =3.3A	-	11.4	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =480V	-	3.1	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =10V	-	4.2	-	nC
t _{d(on)}	Turn-on Delay Time ³	V _{DD} =300V	-	8.4	-	ns
t _r	Rise Time	I _D =3.3A	-	6	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=10\Omega, V_{GS}=10V$	-	17.7	-	ns
t _f	Fall Time	$R_D=91\Omega$	-	5.9	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	600	-	pF
C _{oss}	Output Capacitance	V _{DS} =25V	-	45	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	4	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
I _S	Continuous Source Current (Body Diode)	$V_D = V_G = 0V$, $V_S = 1.5V$	ı	1	3.3	Α
I _{SM}	Pulsed Source Current (Body Diode) ¹		ı	•	13.2	Α
V_{SD}	Forward On Voltage ³	$T_j=25^{\circ}$ C, $I_S=3.3$ A, $V_{GS}=0$ V	-	-	1.5	V

Notes:

- 1. Pulse width limited by safe operating area.
- 2.Starting $T_j\!\!=\!\!25^{o}C$, $V_{DD}\!\!=\!\!50V$, L=15mH , $R_{G}\!\!=\!\!25\,\Omega$, $I_{AS}\!\!=\!\!3.3A.$
- 3. Pulse width \leq 300us , duty cycle \leq 2%.

Ordering Code

AP03N70P- \underline{X} : X Denote BV_{DSS} Grade

Blank = BV_{DSS} 600V

A = BV_{DSS} 650V

 $H = BV_{DSS} 700V$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 5. Maximum Drain Current v.s. Case Temperature

Fig 6. Typical Power Dissipation

Fig 7. Maximum Safe Operating Area

Fig 8. Effective Transient Thermal Impedance

Fig 9. Gate Charge Characteristics

Fig 10. Typical Capacitance Characteristics

Fig 12. Gate Threshold Voltage v.s. Junction Temperature

Fig 13. Switching Time Circuit

Fig 14. Switching Time Waveform

Fig 15. Gate Charge Circuit

Fig 16. Gate Charge Waveform

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.