Table of Contents

QUESTION 1:	
QUESTION 2:	
QUESTION 3:	
QUESTION 4:	
QUESTION 5:	
QUESTION 6:	
QUESTION 7:	
QUESTION 8:	
ALL FUNCTIONS SUPPORTING THIS CODE	28
EET CIVETIONS SCITCINITY THIS CODE	

clear;

QUESTION 1:

```
% Function is at the bottom in the supporting code section
% function out = f(theta)

% Testing theta = pi/4
val1 = f(pi/4);

% Testing theta = -pi/4
val2 = f(-pi/4);

fprintf('f(pi/4) = %.10f\n', val1);
fprintf('f(-pi/4) = %.10f\n', val2);

% Both are close to 0, so we are good
```

QUESTION 2:

```
% Plotting f(theta) on [-pi, pi]
theta_vals = -pi:0.01:pi;

f_vals = f(theta_vals);

figure(1)
plot(theta_vals, f_vals)
xlabel('\theta (radians)')
ylabel('f(\theta)')
title('Plot of f(\theta) on [-\pi, \pi]')
yline(0, '--r');
xline(pi/4, '--g', '\pi/4');
xline(-pi/4, '--g', '-\pi/4');
drawnow;
% Plot clearly shows that there are roots at +/- pi/4
```


QUESTION 3:

```
% Pose from Figure 1.15 (a)
% Connected to (0, 0) aka (x, y)
u1 = 1; v1 = 2;
% Connected to (x1, 0)
u2 = 2; v2 = 1;
% Connected to (x2, y2)
u3 = 2; v3 = 3;
x1 = 4; x2 = 0; y2 = 4;
figure(2)
plot([u1 u2 u3 u1], [v1 v2 v3 v1], 'r'); hold on
                                                        % Platform triangle
plot([0 x1 x2], [0 0 y2], 'bo')
                                                       % Base anchors
plot([u1 u2 u3], [v1 v2 v3], 'ro', 'MarkerSize', 8, 'MarkerFaceColor', 'r')
% Platform joints
plot([u1 0], [v1 0], 'k--') % p1
plot([u2 x1], [v2 0], 'k--') % p2
plot([u3 x2], [v3 y2], 'k--') % p3
title('Figure 1.15 (a)')
xlabel('x')
```

```
ylabel('y')
drawnow;
% Pose from Figure 1.15 (b)
% Connected to (0, 0) aka (x, y)
u1 = 2; v1 = 1;
% Connected to (x1, 0)
u2 = 3; v2 = 2;
% Connected to (x2, y2)
u3 = 1; v3 = 2;
x1 = 4; x2 = 0; y2 = 4;
figure(3)
plot([u1 u2 u3 u1], [v1 v2 v3 v1], 'r'); hold on
                                                   % Platform triangle
plot([0 x1 x2], [0 0 y2], 'bo')
                                                        % Base anchors
plot([u1 u2 u3], [v1 v2 v3], 'ro', 'MarkerSize', 8, 'MarkerFaceColor', 'r')
% Platform joints
plot([u1 0], [v1 0], 'k--') % p1
plot([u2 x1], [v2 0], 'k--') % p2
plot([u3 x2], [v3 y2], 'k--') % p3
title('Figure 1.15 (b)')
xlabel('x')
ylabel('y')
drawnow;
% Here, we're just reproducing Figure 1.15 (a) and (b)
```


Х

QUESTION 4:

```
% Forward kinematics is when we compute (x, y) and theta for each given p1,
% p2, and p3
% The inverse kinematic problem is when we find p1, p2, p3, given x, y, and
% theta
% The new f(theta) function is in the supporting functions section at the
% bottom (f 4(theta))
% Plotting f_4(theta) on [-pi, pi]
theta_vals = -pi:0.01:pi;
f vals = f variable p2(theta vals, 5); % p2=5
figure(4)
plot(theta vals, f vals)
xlabel('\theta (radians)')
ylabel('f(\theta)')
title('Plot of f(\theta) on [-\pi, \pi]')
yline(0, '--r');
drawnow;
% Finding the four theta values (guesses are from eyeballing the graph)
```

```
p2 = 5;
f p2 = @(theta) f variable p2(theta, p2);
theta1 = fzero(f p2, -0.72);
theta2 = fzero(f p2, -0.33);
theta3 = fzero(f p2, 1.14);
theta4 = fzero(f p2, 2.11);
thetas = [theta1 theta2 theta3 theta4];
% From the above it appears that our roots are at:
% theta = -0.7208, -0.3310, 1.1437, and 2.1159 radians
figure (5)
plot(theta vals, f vals)
xlabel('\theta (radians)')
vlabel('f(\theta)')
title('Plot of f(\theta) on [-\pi, \pi] with roots')
yline(0, '--r');
xline(theta1, '--r', '-0.7208');
xline(theta2, '--r', '-0.3310');
xline(theta3, '--r', '1.1437');
xline(theta4, '--r', '2.1159');
drawnow;
% Since we're asked to solve the forward kinematics problem, we need to
% solve for x and y now (we just solved for theta)
% Finding the x and y coordinates for the four poses
% Created a new function at the bottom called
% forward kinematics variable p2
[x 1 y 1] = forward kinematics variable p2(theta1, p2);
[x 2 y 2] = forward kinematics variable p2(theta2, p2);
[x 3 y 3] = forward kinematics variable p2(theta3, p2);
[x \ 4 \ y \ 4] = forward kinematics variable p2(theta4, p2);
xs = [x 1 x 2 x 3 x 4];
ys = [y 1 y 2 y 3 y 4];
% It was found that
% (x 1, y 1) = (-1.3784, 4.8063)
% (x 2, y 2) = (-0.9147, 4.9156)
% (x 3, y 3) = (4.4818, 2.2167)
% (x 4, y 4) = (4.5718, 2.0244)
% Now we need to plot the four poses
% Helper function is in the supporting functions section
for i = 1:4
    draw pose (5+i, xs(i), ys(i), thetas(i), 4, i);
end
% The strut lengths are correct!!!
Pose 1: p1 = 5.0000, p2 = 5.0000, p3 = 3.0000
Pose 2: p1 = 5.0000, p2 = 5.0000, p3 = 3.0000
```

Pose 3: p1 = 5.0000, p2 = 5.0000, p3 = 3.0000Pose 4: p1 = 5.0000, p2 = 5.0000, p3 = 3.0000

QUESTION 5:

```
% Here we are changing p2 to 7 and resolving problem 4
% Plotting f(theta) on [-pi, pi]
theta vals = -pi:0.01:pi;
f vals = f variable p2(theta vals, 7); % p2=7
figure(10)
plot(theta vals, f vals)
xlabel('\theta (radians)')
ylabel('f(\theta)')
title('Plot of f(\theta) on [-\pi, \pi] for Question #5')
yline(0, '--r');
drawnow;
% The problem states that there are now six poses
% Finding the six theta values (guesses are from eyeballing the graph)
p2 = 7;
f p2 = @(theta) f variable p2(theta, p2);
theta1 = fzero(f p2, -0.68);
theta2 = fzero(f p2, -0.36);
theta3 = fzero(f p2, 0.03);
theta4 = fzero(f p2, 0.44);
theta5 = fzero(f p2, 0.97);
theta6 = fzero(f p2, 2.5);
thetas = [theta1 theta2 theta3 theta4 theta5 theta6];
% From the above it appears that our roots are at:
% theta = -0.6732, -0.3547, 0.0378, 0.4589, 0.9777, and 2.5139 rad
figure(11)
plot(theta vals, f vals)
xlabel('\theta (radians)')
ylabel('f(\theta)')
title('Plot of f(\theta) on [-\pi, \pi] with roots')
yline(0, '--r');
xline(theta1, '--r', '-0.6732');
xline(theta2, '--r', '-0.3547');
xline(theta3, '--r', '0.0378');
xline(theta4, '--r', '0.4589');
xline(theta5, '--r', '0.9777');
xline(theta6, '--r', '2.5139');
drawnow;
% Since we're asked to solve the forward kinematics problem, we need to
% solve for x and y now (we just solved for theta)
% Finding the x and y coordinates for the four poses
[x 1 y 1] = forward kinematics variable p2(theta1, p2);
```

```
[x 2 y 2] = forward kinematics variable p2(theta2, p2);
[x 3 y 3] = forward kinematics variable p2(theta3, p2);
[x 4 y 4] = forward kinematics variable p2(theta4, p2);
[x 5 y 5] = forward kinematics variable p2(theta5, p2);
[x 6 y 6] = forward kinematics variable p2(theta6, p2);
xs = [x 1 x 2 x 3 x 4 x 5 x 6];
ys = [y 1 y 2 y 3 y 4 y 5 y 6];
% It was found that
% (x 1, y 1) = (-4.3148, 2.5264)
% (x 2, y 2) = (-4.8049, 1.3831)
% (x_3, y_3) = (-4.9490, 0.7121)
% (x_4, y_4) = (-0.8198, 4.9323)
% (x 5, y 6) = (2.3036, 4.4378)
% (x 5, y 6) = (3.2157, 3.8287)
% Now we need to plot the four poses
% Helper function is in the supporting functions section
for i = 1:6
    draw pose(11+i, xs(i), ys(i), thetas(i), 5, i);
    drawnow;
end
% The strut lengths are correct!!!
Pose 1: p1 = 5.0000, p2 = 7.0000, p3 = 3.0000
Pose 2: p1 = 5.0000, p2 = 7.0000, p3 = 3.0000
Pose 3: p1 = 5.0000, p2 = 7.0000, p3 = 3.0000
Pose 4: p1 = 5.0000, p2 = 7.0000, p3 = 3.0000
Pose 5: p1 = 5.0000, p2 = 7.0000, p3 = 3.0000
Pose 6: p1 = 5.0000, p2 = 7.0000, p3 = 3.0000
```


QUESTION 6:

```
% Now we need to find a strut length p2, for which there are only two
% poses. It is found that when p2=4, there are only two poses
theta vals = -pi:0.01:pi;
p2 range = 1:7; % Test p2 values between 1 and 7
target_num_roots = 2;
found = false;
for p2 = p2 range
    f vals = f variable p2(theta vals, p2);
    sign\_changes = sum(abs(diff(sign(f\_vals))) == 2); % # of times f(theta)
crosses 0
    if sign changes == target num roots
        fprintf("Found p2 = %.2f with exactly %d posesn", p2,
target_num_roots);
        found = true;
        break
    end
end
if ~found
    fprintf("No p2 in range [%0.2f, %0.2f] gives exactly %d posesn", ...
        p2_range(1), p2_range(end), target_num_roots);
```

```
end
% Here we are changing p2 to 4
% Plotting f(theta) on [-pi, pi]
theta vals = -pi:0.01:pi;
f vals = f variable p2(theta vals, 4); % p2=4
figure(18)
plot(theta vals, f vals)
xlabel('\theta (radians)')
ylabel('f(\theta)')
title('Plot of f(\theta) on [-\pi, \pi] for Question #6')
vline(0, '--r');
drawnow;
% Finding the six theta values (guesses are from eyeballing the graph)
f p2 = @(theta) f variable p2(theta, p2);
theta1 = fzero(f p2, 1.32);
theta2 = fzero(f p2, 1.77);
thetas = [theta1 theta2];
% theta vals are 1.3316 and 1.7775 rad
% Since we're asked to solve the forward kinematics problem, we need to
% solve for x and y now (we just solved for theta)
\mbox{\%} Finding the x and y coordinates for the four poses
[x 1 y 1] = forward kinematics variable p2(theta1, p2);
[x 2 y 2] = forward kinematics variable p2(theta2, p2);
xs = [x 1 x 2];
ys = [y 1 y 2];
% It was found that
% (x 1, y 1) = (4.8907, 1.0399)
% (x_2, y_2) = (4.8992, 0.9992)
% Now we need to plot the four poses
% Helper function is in the supporting functions section
for i = 1:2
    draw pose(18+i, xs(i), ys(i), thetas(i), 6, i);
end
Found p2 = 4.00 with exactly 2 poses
Pose 1: p1 = 5.0000, p2 = 4.0000, p3 = 3.0000
Pose 2: p1 = 5.0000, p2 = 4.0000, p3 = 3.0000
```


QUESTION 7:

```
theta vals = -pi:0.01:pi;
p2 range = 0:0.01:13;
pose_counts = zeros(size(p2_range));
for i = 1:length(p2 range)
   p2 = p2 range(i);
    f vals = f variable p2(theta vals, p2);
    pose_counts(i) = sum(abs(diff(sign(f_vals))) == 2); % number of real
end
% Plot how the number of real roots changes with p2
figure (21);
plot(p2 range, pose counts, '-o');
xlabel('p_2 value');
ylabel('Number of Real Roots (Poses)');
title('Number of Poses vs. p 2');
grid on;
% Based on the graph, it appears that:
% there are 0 poses when p2 < 3.7 and when p2 > 9.27
\mbox{\$} there are 2 poses when 3.7 < p2 < 4.86 and 7.85 < p2 < 9.26
% there are 4 poses when 4.87 < p2 < 6.96 and 7.03 < p2 < 7.84
% there are 6 poses when 6.97 < p2 < 7.02
```


QUESTION 8:

```
% 1. Define base attachment points (fixed)
B = [... % Each row is a point (xi, yi, zi)
   200, 0, 0;
   100, 173.2, 0;
  -100, 173.2, 0;
   -200, 0, 0;
   -100, -173.2, 0;
   100, -173.2, 0
];
% 2. Define platform attachment points (in platform frame)
P = [... \% Each row is a point (xi, yi, zi)]
    100, 0, 0;
    50, 86.6, 0;
   -50, 86.6, 0;
   -100, 0, 0;
    -50, -86.6, 0;
    50, -86.6, 0
];
% 3. Define leg lengths (example values)
L = [250; 240; 245; 260; 255; 250]; % Length of each leg
% 4. Objective function to minimize
f obj = @(x) stewart error(x, B, P, L);
% 5. Initial guess for pose: [x, y, z, alpha, beta, gamma]
x0 = [0; 0; 200; 0; 0; 0]; % Start near z = 200 mm, no rotation
% 6. Use fsolve to solve
options = optimoptions('fsolve', 'Display', 'iter', 'TolFun', 1e-10);
[x sol, fval, exitflag] = fsolve(f obj, x0, options);
disp('Estimated pose:')
disp(['x = ', num2str(x_sol(1)), ', y = ', num2str(x_sol(2)), ...
      ', z = ', num2str(x sol(3))])
disp(['alpha = ', num2str(x sol(4)), ', beta = ', num2str(x sol(5)), ...
      ', gamma = ', num2str(x sol(6))])
% visualize stewart(B, P, x sol);
interactive stewart(B, P);
                                             Norm of
                                                         First-order
Trust-region
Iteration Func-count
                         ||f(x)||^2
                                                step
                 radius
optimality
    0
                         1.00631e+09
3.43e+08
                      1
     1
                          9.48743e+08
                                          0.0959583
              14
```

1.03e+08	1		
2	21	9.12547e+08	1
2.89e+08	1	3,1201,010	_
3	22	9.12547e+08	2.5
2.89e+08	2.5		
4	29	7.65115e+07	0.625
3.88e+08	0.625		
5	36 1.56	1.81799e+07	1.5625
2.3e+07 6	43	1.80569e+07	3.90625
9.08e+06	3.91	1.0000000	3.70023
7	44	1.80569e+07	3.90625
9.08e+06	3.91		
8	51	1.80381e+07	0.976562
5.86e+05	0.977		
9	52	1.80381e+07	2.44141
5.86e+05 10	2.44 53	1.80381e+07	0.610352
5.86e+05	0.61	1.00301e107	0.010332
11	60	1.8038e+07	0.152588
9.78e+04	0.153		
12	67	1.8038e+07	0.152588
3.34e+05	0.153	1 00050 .05	0 150500
13 9.78e+04	74 0.153	1.80379e+07	0.152588
14	81	1.80379e+07	0.152588
2.19e+05	0.153	1.000,30.0,	0.102000
15	88	1.80379e+07	0.152588
9.78e+04	0.153		
16	95	1.80379e+07	0.152588
1.4e+05 17	0.153 96	1.80379e+07	0.152588
1.4e+05	0.153	1.003/90+0/	0.132300
18	103	1.80379e+07	0.038147
9.75e+04	0.0381		
19	110	1.80379e+07	0.038147
1.27e+05	0.0381		
20	117	1.80379e+07	0.0953674
1.01e+05 21	0.0954 124	1.80379e+07	0.0953674
1.05e+05	0.0954	1.003/36/07	0.0933074
22	131	1.80379e+07	0.0953674
9.71e+04	0.0954		
23	138	1.80379e+07	0.0953674
9.86e+04	0.0954	1 00270-107	0 0053674
24 9.7e+04	145 0.0954	1.80379e+07	0.0953674
25	152	1.80379e+07	0.0953674
9.82e+04	0.0954		
26	159	1.80379e+07	0.0953674
9.68e+04	0.0954	1 00050 55	0 00=====
27	166 0.0954	1.80379e+07	0.0953674
9.8e+04 28	0.0954 173	1.80378e+07	0.0953674
20	<u> </u>	1.000,00,00	3.030074

9.67e+04	0.0954		
29	180	1.80378e+07	0.0953674
9.82e+04	0.0954		
30	187	1.80378e+07	0.0953674
9.7e+04	0.0954		
31	194	1.80378e+07	0.0953674
9.83e+04	0.0954		
32	201	1.80378e+07	0.0953674
9.68e+04	0.0954		
33	208	1.80378e+07	0.0953674
9.8e+04	0.0954		
34	215	1.80378e+07	0.0953674
9.67e+04	0.0954	1 00070 .07	0.0050674
35	222	1.80378e+07	0.0953674
9.81e+04	0.0954 229	1 00270-107	0 0052674
36 9.67e+04	0.0954	1.80378e+07	0.0953674
37	236	1.80378e+07	0.0953674
9.81e+04	0.0954	1.003/00/07	0.0933074
38	243	1.80378e+07	0.0953674
9.67e+04	0.0954	1.00070070	0.0300071
39	250	1.80378e+07	0.0953674
9.91e+04	0.0954		
40	257	1.80378e+07	0.0953674
9.65e+04	0.0954		
41	264	1.80378e+07	0.0953674
9.79e+04	0.0954		
42	271	1.80377e+07	0.0953674
9.65e+04	0.0954		
43	278	1.80377e+07	0.0953674
1.04e+05	0.0954	1 00000	0 0050654
44	285	1.80377e+07	0.0953674
9.64e+04 45	0.0954 292	1.80377e+07	0.0953674
9.79e+04	0.0954	1.003//6+0/	0.0933674
46	299	1.80377e+07	0.0953674
9.64e+04	0.0954	1.003//0/0/	0.0333071
47	306	1.80377e+07	0.0953674
9.77e+04	0.0954		
48	313	1.80377e+07	0.0953674
9.64e+04	0.0954		
49	320	1.80377e+07	0.0953674
9.77e+04	0.0954		
50	327	1.80377e+07	0.0953674
9.64e+04	0.0954		
51	334	1.80377e+07	0.0953674
9.79e+04	0.0954	1 00077 : 07	0.0050654
52	341	1.80377e+07	0.0953674
9.64e+04	0.0954 348	1.80377e+07	0.0953674
53 9.76e+04	0.0954	1.003//870/	0.09030/4
54	355	1.80377e+07	0.0953674
9.62e+04	0.0954	1.000//010/	0.0000074
55	362	1.80377e+07	0.0953674

9.74e+04	0.0954		
56	369	1.80377e+07	0.0953674
9.61e+04	0.0954		
57	376	1.80377e+07	0.0953674
9.74e+04	0.0954		
58	383	1.80377e+07	0.0953674
9.6e+04	0.0954		
59	390	1.80376e+07	0.0953674
9.74e+04	0.0954		
60	397	1.80376e+07	0.0953674
9.62e+04	0.0954	1 00276-107	0 0052674
61 1.02e+05	404 0.0954	1.80376e+07	0.0953674
62	411	1.80376e+07	0.0953674
9.64e+04	0.0954	1.003/00/07	0.0933074
63	418	1.80376e+07	0.0953674
1.08e+05	0.0954		
64	425	1.80376e+07	0.0953674
9.65e+04	0.0954		
65	432	1.80376e+07	0.0953674
9.88e+04	0.0954		
66	439	1.80376e+07	0.0953674
9.64e+04	0.0954	4 00000	
67	446	1.80376e+07	0.0953674
9.76e+04 68	0.0954 453	1.80376e+07	0.0953674
9.64e+04	0.0954	1.003/0e/0/	0.0955074
69	460	1.80376e+07	0.0953674
9.77e+04	0.0954		
70	467	1.80376e+07	0.0953674
9.64e+04	0.0954		
71	474	1.80376e+07	0.0953674
9.79e+04	0.0954		
72	481	1.80376e+07	0.0953674
9.66e+04 73	0.0954 488	1.80376e+07	0.0953674
9.81e+04	0.0954	1.003/00+0/	0.0933674
74	495	1.80375e+07	0.0953674
9.66e+04	0.0954	1.000700707	0.0300071
75	502	1.80375e+07	0.0953674
9.78e+04	0.0954		
76	509	1.80375e+07	0.0953674
9.64e+04	0.0954		
77	516	1.80375e+07	0.0953674
9.76e+04	0.0954	4 00000	0 0050654
78	523	1.80375e+07	0.0953674
9.63e+04 79	0.0954 530	1.80375e+07	0.0953674
9.76e+04	0.0954	1.000/00/00/	0.000074
80	537	1.80375e+07	0.0953674
9.61e+04	0.0954		
81	544	1.80375e+07	0.0953674
9.74e+04	0.0954		
82	551	1.80375e+07	0.0953674

9.59e+04	0.0954		
83	558	1.80375e+07	0.0953674
9.73e+04	0.0954		
84	565	1.80375e+07	0.0953674
9.62e+04	0.0954		
85	<i>572</i>	1.80375e+07	0.0953674
9.74e+04	0.0954		
86	579	1.80375e+07	0.0953674
9.62e+04	0.0954		
87	586	1.80375e+07	0.0953674
9.76e+04	0.0954		
88	593	1.80375e+07	0.0953674
9.64e+04	0.0954		
89	600	1.80374e+07	0.0953674
9.77e+04	0.0954		

Solver stopped prematurely.

fsolve stopped because it exceeded the function evaluation limit, options. MaxFunctionEvaluations = 6.000000e+02.

Estimated pose:

x = 0.052786, y = -0.99558, z = 205.3665 alpha = -0.075693, beta = 0.067383, gamma = -0.73633

ALL FUNCTIONS SUPPORTING THIS CODE

```
% First f(theta) function
function out = f(theta)
    % Platform lengths
   L1 = 2;
    L2 = sqrt(2);
    L3 = sqrt(2);
    % Angle across from L1
    gamma = pi / 2;
   % Strut lengths
   p1 = sqrt(5);
   p2 = sqrt(5);
   p3 = sqrt(5);
   % Strut base positions
    % Got these from Figure 1.15
    x1 = 4;
    x2 = 0;
    y2 = 4;
   A2 = L3 * cos(theta) - x1;
```

```
B2 = L3 * sin(theta);
    A3 = L2 * (cos(theta) * cos(gamma) - sin(theta) * sin(gamma)) - x2;
    B3 = L2 * (cos(theta) * sin(gamma) + sin(theta) * cos(gamma)) - y2;
    N1 = B3 .* (p2^2 - p1^2 - A2.^2 - B2.^2) - B2 .* (p3^2 - p1^2 - A3.^2 - B2.^2)
B3.^2);
    N2 = -A3 .* (p2^2 - p1^2 - A2.^2 - B2.^2) + A2 .* (p3^2 - p1^2 - A3.^2 - B2.^2)
B3.^2);
    D = 2 * (A2 .* B3 - B2 .* A3);
    out = N1.^2 + N2.^2 - p1.^2 * D.^2;
end
% f(theta) function with ability to change p2
function out = f variable p2(theta, p2)
    L1 = 3; L2 = 3 * sqrt(2); L3 = 3;
    gamma = pi / 4;
    p1 = 5; p3 = 3;
    x1 = 5; x2 = 0; y2 = 6;
   A2 = L3 * cos(theta) - x1;
    B2 = L3 * sin(theta);
    A3 = L2 * (cos(theta) * cos(gamma) - sin(theta) * sin(gamma)) - x2;
    B3 = L2 * (cos(theta) * sin(gamma) + sin(theta) * cos(gamma)) - y2;
   N1 = B3 .* (p2^2 - p1^2 - A2.^2 - B2.^2) - B2 .* (p3^2 - p1^2 - A3.^2 - p1^2)
B3.^2);
    N2 = -A3 .* (p2^2 - p1^2 - A2.^2 - B2.^2) + A2 .* (p3^2 - p1^2 - A3.^2 - B2.^2)
B3.^2);
    D = 2 * (A2 .* B3 - B2 .* A3);
    out = N1.^2 + N2.^2 - p1.^2 * D.^2;
end
% Forward kinematics problem solver with variable p2
function [x, y] = forward kinematics variable p2(theta, p2)
    % Platform lengths
    L1 = 3;
    L2 = 3 * sqrt(2);
    L3 = 3;
    % Angle across from L1
    gamma = pi / 4;
    % Strut lengths
   p1 = 5;
    p3 = 3;
    % Strut base positions
    x1 = 5;
    x2 = 0;
```

```
y2 = 6;
   % Compute intermediate terms
   A2 = L3 * cos(theta) - x1;
   B2 = L3 * sin(theta);
   A3 = L2 * (cos(theta) * cos(gamma) - sin(theta) * sin(gamma)) - x2;
   B3 = L2 * (cos(theta) * sin(gamma) + sin(theta) * cos(gamma)) - y2;
    % Numerators and denominator
   N1 = B3 .* (p2^2 - p1^2 - A2.^2 - B2.^2) - B2 .* (p3^2 - p1^2 - A3.^2 - B2.^2)
B3.^2);
   N2 = -A3 .* (p2^2 - p1^2 - A2.^2 - B2.^2) + A2 .* (p3^2 - p1^2 - A3.^2 - B2.^2)
B3.^2);
    D = 2 * (A2 .* B3 - B2 .* A3);
   % Solve for x and y
    x = N1 / D;
    y = N2 / D;
end
function draw pose(fig num, x, y, theta, question number, pose index)
    % Constants
   L2 = 3 * sqrt(2);
   L3 = 3;
    gamma = pi/4;
   x1 = 5; x2 = 0; y2 = 6;
   % Triangle corner positions
   u1 = x;
   v1 = y;
   u2 = x + L3 * cos(theta);
   v2 = y + L3 * sin(theta);
   u3 = x + L2 * cos(theta + gamma);
   v3 = y + L2 * sin(theta + gamma);
    % Compute strut lengths
   p1 = norm([u1, v1] - [0, 0]);
   p2 = norm([u2, v2] - [x1, 0]);
   p3 = norm([u3, v3] - [x2, y2]);
    % Plot
    figure(fig num)
   plot([u1 u2 u3 u1], [v1 v2 v3 v1], 'r'); hold on
   plot([0 x1 x2], [0 0 y2], 'bo')
   plot([u1 u2 u3], [v1 v2 v3], 'ro', 'MarkerSize', 8, 'MarkerFaceColor',
'r')
   plot([u1 0], [v1 0], 'k--')
                                  % p1
   plot([u2 x1], [v2 0], 'k--')
   plot([u3 x2], [v3 y2], 'k--') % p3
    % Pose label
    title str = sprintf('Pose %d (\\theta = %.2f)', pose index, theta);
```

```
title(title str)
    xlabel('x')
    ylabel('y')
    axis equal
    grid on
    % Print strut lengths
    fprintf("Pose %d: p1 = %.4f, p2 = %.4f, p3 = %.4f\n", pose index, p1,
p2, p3);
end
function F = stewart error(x, B, P, L)
    % Inputs:
    % x = [x; y; z; alpha; beta; gamma]
    pos = x(1:3);
                           % Translation vector
    alpha = x(4); beta = x(5); gamma = x(6); % Roll, pitch, yaw
    % Rotation matrix (ZYX order)
    Rz = [\cos(gamma) - \sin(gamma) 0;
          sin(gamma) cos(gamma) 0;
          0 0 1];
    Ry = [\cos(beta) \ 0 \ \sin(beta);
          0 1 0;
          -sin(beta) 0 cos(beta)];
    Rx = [1 \ 0 \ 0;
          0 cos(alpha) -sin(alpha);
          0 sin(alpha) cos(alpha)];
    R = Rz * Ry * Rx;
    F = zeros(6,1);
    for i = 1:6
        L vec = pos + R * P(i,:)' - B(i,:)';
        F(i) = norm(L vec)^2 - L(i)^2; % Constraint: length match
    end
end
function visualize stewart(B, P, pose, ax)
    if nargin < 4
        figure;
        ax = gca;
    end
    % Extract pose
    pos = pose(1:3);
    alpha = pose(4);
    beta = pose(5);
    gamma = pose(6);
    % Rotation matrix
    Rz = [\cos(gamma), -\sin(gamma), 0;
```

```
sin(gamma), cos(gamma), 0;
                       Ο,
    Ry = [\cos(beta), 0, \sin(beta);
              1, 0;
         -sin(beta), 0, cos(beta)];
    Rx = [1, 0, 0;
          0, cos(alpha), -sin(alpha);
          0, sin(alpha), cos(alpha)];
    R = Rz * Ry * Rx;
    % Transform
    P \text{ world} = (R * P')' + pos';
    B loop = [B; B(1,:)];
    P loop = [P world; P world(1,:)];
    % --- Plot in the given axes ---
    cla(ax);
    axes(ax); %#ok<LAXES>
   hold on; grid on; axis equal;
    xlabel('X'); ylabel('Y'); zlabel('Z');
   title('Stewart Platform Visualization');
   view(3);
    % Plot
   plot3(ax, B loop(:,1), B loop(:,2), B loop(:,3), 'bo-', 'LineWidth', 2);
   plot3(ax, P loop(:,1), P loop(:,2), P loop(:,3), 'ro-', 'LineWidth', 2);
    for i = 1:6
        plot3(ax, [B(i,1), P world(i,1)], \dots
                 [B(i,2), P world(i,2)], ...
                 [B(i,3), P world(i,3)], 'k--', 'LineWidth', 1.5);
    end
    legend(ax, 'Base', 'Platform', 'Struts')
end
function interactive stewart(B, P)
    figure('Name', 'Interactive Stewart Platform');
    % Initial pose
   pose = [0; 0; 200; 0; 0; 0]; % [x y z alpha beta gamma]
    % Create sliders for each parameter
    labels = {'X', 'Y', 'Z', 'Roll (\alpha)', 'Pitch (\beta)', 'Yaw (\gamma)'};
   mins
         = [-100, -100, 150, -pi, -pi, -pi];
          = [ 100, 100, 300, pi, pi, pi];
   maxs
   sliders = gobjects(1,6);
    for i = 1:6
        uicontrol('Style', 'text', 'String', labels{i}, ...
            'Position', [20, 400 - 50*i, 80, 20]);
        sliders(i) = uicontrol('Style', 'slider', ...
            'Min', mins(i), 'Max', maxs(i), ...
            'Value', pose(i), ...
```

```
'Position', [100, 400 - 50*i, 300, 20], ...
            'Callback', @(src, ~) update plot());
    end
    % Axes for visualization
    ax = axes('Position', [0.5 0.2 0.45 0.7]);
    view(3); grid on; axis equal;
    xlabel('X'); ylabel('Y'); zlabel('Z');
    title('Stewart Platform Pose');
    % Initial plot
    update plot();
    % Update function
    function update plot()
        for i = 1:6
            pose(i) = sliders(i).Value;
        end
        cla(ax);
        axes(ax);
        visualize_stewart(B, P, pose, ax);
    end
end
f(pi/4) = -0.0000000000
f(-pi/4) = -0.0000000000
```

Published with MATLAB® R2024b