Introduction Digital Computing

Homework 2 – Logic Gates and Waveforms

Stude	Student's Name:			
	You have to show all work in order to receive full credit			
1.	The number of output combinations for a 6-input logic gate is:			

- 2. A owner of a house wants to design a lamp that works with the following specifications:
 - A lamp in a room is operated from two switches, one at the *front* and one at the *back* of the room.
 - The lamp is to be ON if both of the switches are ON.
 - The lamp is to be OFF if one of the switches is OFF.

According to the description:

a) Create a truth table, with all possible inputs combination, that represents the description above

In	Output	
Front switch	Back switch	Lamp

- b) According to the truth table in question a), the best logic gate to perform the operation is:
- 3. If four NOT gates are connected in series and the input to the first gate is a **HIGH** (1), the output of the **third** gate is: _____ and the **forth** gate is: _____

4. What is the truth table for an **NAND** gate is:

Truth Table 2-input NAND gate				
Inputs		Output		
A	В	Y		
0	0			
0	1			
1	0			
1	1			

5. Given the input A, find the output Y of the given gate:

6. Given the input A and B, find the output Y of the given gate:

$$A = 0100 \ 1011_2$$
 $B = 1110 \ 1101_2$
 $B = \frac{A}{B}$
 $B = \frac{A}{B}$

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 0101_2$ $B = 0110 \ 0101_2$

$$A = 1100 \ 1100_2$$
 $B = 1010 \ 0011_2$
A B B

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 0101_2$
A B B

$$A = 0100 \ 1011_2$$

 $B = 1110 \ 1101_2$
A B Y = _____

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 1101_2$
 $B = 0110 \ 1101_2$
 $A = 0.0000$
 $A = 0.00000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0$

7. Given the input waveform A and B, find the output Y of the given logic gate

8. Given the input waveform A, B, and C, find the output Y of the given logic gate

9. Given the input waveform A, B, and C, find the output Y of the given logic gate

