

Universidad Nacional de Colombia Facultad de Ciencias Topología General Taller II

Mateo Andrés Manosalva Amaris
Sergio Alejandro Bello Torres

1. Muestra que los números racionales $\mathbb Q$ no son localmente compactos

Demostración. Consideremos $\mathbb Q$ como subespacio de $\mathbb R$ con la topología usual, el punto $0\in\mathbb Q$ y una vecindad $U\subset\mathbb Q$ de 0, como U es abierto, por la propiedad arquimediana de los números racionales, existe $n\in\mathbb N$ tal que $\mathbb Q\cap\left(-\frac1n,\frac1n\right)\subset U$, por la densidad de los irracionales en los reales, existe un irracional x en el intervalo $\left(-\frac1n,\frac1n\right)$ y por la propiedad arquimediana, existe un natural $k\in\mathbb N$ tal que $\left[r-\frac1k,r+\frac1k\right]\subset\left(-\frac1n,\frac1n\right)$, note que $\left[r-\frac1k,r+\frac1k\right]\cap\mathbb Q$ es cerrado en $\mathbb Q$, luego, si existiera un compacto que contiene a U, $\left[r-\frac1k,r+\frac1k\right]\cap\mathbb Q$ sería compacto pues es un subconjunto cerrado de un compacto, sin embargo

$$\bigcap_{n \ge k}^{\infty} \left(\left[r - \frac{1}{n}, r + \frac{1}{n} \right] \cap \mathbb{Q} \right) = \emptyset$$

De esta manera, $\left[r-\frac{1}{k},r+\frac{1}{k}\right]\cap\mathbb{Q}$ no es compacto y por lo tanto \mathbb{Q} no es localmente compacto.

2. Sea $\{X_{\alpha}\}$ una familia indexada de espacios no vacíos.

- *a*) Demuestra que si $\prod X_{\alpha}$ es localmente compacto, entonces cada X_{α} es localmente compacto y X_{α} es compacto para todos los valores de α , salvo un número finito.
- b) Prueba el recíproco, asumiendo el teorema de Tychonoff.
- 3. Sea X un espacio localmente compacto. Si $f: X \to Y$ es continua, ¿se sigue que f(X) es localmente compacto? ¿Qué ocurre si f es continua y abierta? Justifica tu respuesta.
- 4. Demuestra que $[0,1]^\omega$ no es localmente compacto en la topología uniforme.
- 5. Si $f: X_1 \to X_2$ es un homeomorfismo entre espacios Hausdorff localmente compactos, demuestra que f se extiende a un homeomorfismo de sus compactificaciones por un punto.
- 6. Demuestra que la compactificación por un punto de \mathbb{R} es homeomorfa al círculo S^1 .
- 7. Demuestra que la compactificación por un punto de S_{Ω} es homeomorfa a \bar{S}_{Ω} .
- 8. Demuestra que la compactificación por un punto de \mathbb{Z}_+ es homeomorfa al subespacio $\{0\} \cup \{1/n \mid n \in \mathbb{Z}_+\}$ de \mathbb{R} .

Demostración. Sea $\mathbb{Z}_+ \cup \{\infty\}$ la compactificación a un punto de \mathbb{Z}_+ , veamos que \mathbb{Z}_+ y $A = \left\{\frac{1}{n}: n \in Z_+\right\}$ como subespacios de \mathbb{R} poseen la topología discreta. Sea $n \in \mathbb{Z}_+$, note que $\left(n-\frac{1}{2},n+\frac{1}{2}\right)\cap\mathbb{Z}_+=\{n\}$, por lo tanto los puntos son abiertos en Z_+ , de donde se sigue que \mathbb{Z}_+ posee la topología discreta. Ahora sea $\frac{1}{n} \in A$, note que $\left(\frac{1}{n}-\frac{1}{2n(n+1)},\frac{1}{n}+\frac{1}{2n(n+1)}\right)\cap A=\{\frac{1}{n}\}$, con lo cual, razonando de la misma manera que en el caso anterior, A posee la topología discreta, así la función

$$f: \mathbb{Z}_+ \longrightarrow A$$

$$n \longmapsto f(n) = \frac{1}{n}$$

Es un homeomorfismo, luego, por el punto 5, sus compactificaciones a un punto son homeomorfas. Para mostrar que la compactificación a un punto de A es $A \cup \{0\}$ basta ver que $A' = \{0\}$ luego $\overline{A} = \{0\} \cup A$, como $A \cup \{0\} \subset \mathbb{R}$ es cerrado y acotado, es compacto y difiere en un punto de A.

- 9. Demuestra que si G es un grupo topológico localmente compacto y H es un subgrupo, entonces G/H es localmente compacto.
- 10. Demuestra que si X es un espacio de Hausdorff localmente compacto en el punto x, entonces para cada vecindad U de x, existe una vecindad V de x tal que \bar{V} es compacto y $\bar{V} \subset U$.