Combining Radiomics and Deep Features for Lung Nodule Malignancy Prediction

Anthony Jatobá <aeaj@ic.ufal.br>
Igor Theotônio <icat@ic.ufal.br>
Eduardo Moraes <emmv@ic.ufal.br>
Vinícius Costa <mvsc@ic.ufal.br>

Introduction

Lung Cancer

- Lung cancer is the leading cause of cancer-related death worldwide
 - 1.8 million new lung cancer cases (2012)
 - 18.4% of the total cancer deaths
- Early detection is crucial
 - Survival rates can get up to 70-90% for stage I tumours
 - But only 15-19% for tumours detected in advanced stages

Computed Tomography

- Computed Tomography (CT) scan is the preferred method for lung cancer screening.
 - CT scans produces a high definition and contrast image that allows for a better tumour characterization;
- Radiologists have to carefully evaluate each image generated by a <u>CT scan</u>

Computer-aided Diagnosis (CADx)

- Computer-aided Diagnosis (CADx) systems emerge as a tool to assist the diagnosis by giving a second opinion to the radiologist;
- Two "classes" of systems:
 - Handcrafted features based approaches
 - Deep learning based approaches

Radiomics

The extraction of a large number of features from digital medical images

Deep Learning

 Deep Learning models can learn abstract representations, as well as perform a given task;

Motivation

Why combine deep features and radiomics?

- It is hard to predefine quantitative features, such as radiomics, that fully reflect the unique characteristics of a lesion
- CNNs require large scale annotated datasets to learn the representative nature of lesions
- Combining both approaches can enhance a predictive models' performance

Why multi-objective optimization?

- Optimization works on the subject optimize either accuracy or AUC
 - Accuracy is not a adequate metric for unbalanced sets of data
 - AUC summarizes performance over unused areas from the ROC curve.
- Sensitivity and specificity can be taken in account
 - Conflicting metrics!
 - Reflects on AUC
- Freedom to select more sensitive/specific models

Objectives

Objectives

- Assess multi-objective optimization performance in selecting radiomics and deep features for lung nodules malignancy prediction;
- Compare multi-objective optimization to a mono-objective optimization in regards to performance;

Experiments

Data

- LIDC-IDRI dataset
 - 897 nodules (616 benign, 281 malignant)
- 121 3D radiomics features from nodules and parenchyme
 - o Intensity, shape, texture, margin
- 3D deep features

Models

- Support Vector Machines
 - Default parameters and balanced classes weight;
- 3D CNN: custom architecture found through random search
 - Convolucional Layer: 64 units and 3x3x3 kernel
 - Maxpooling layer: 2x2x2 kernel
 - Dense layer: 128 units and dropout rate of 0.43
 - Dense Layer: 64 units and dropout rate of 0.33

Experiments

For *radiomics* and *deep+radiomics* features:

- Run model for all features
- Run model for features selected by GA (AUC)
- Run model for features selected by NSGA (sens/spec)

Each experiment is performed 30 times for statistical significance.

Performance Evaluation

- Metrics: accuracy, sensitivity, specificity, AUC
- ROC curves
- Pareto front
- Validation: 10-fold cross validation
- Statistical test to ensure results significance

Results and Discussion

GA optimization

Overview

Base	Seleção	Acurácia	Sens.	Espec.	AUC
radiomics	- GA NSGA-II	81.8 ± 3.7	85.7 ± 6.2	80.0 ± 4.8	0.889 ± 0.033 0.907 ± 0.029 0.899 ± 0.033
deep + radiomics	- GA NSGA-II	83.2 ± 3.8	83.5 ± 6.9	83.0 ± 4.7	0.894 ± 0.035 0.908 ± 0.030 0.902 ± 0.031

GA - AUC vs Generation 0.915 0.910 0.905 AUC 0.900 0.895 0.890 Radiomics Deep + Radiomics 0.885 -

40

60

80

100

20

0

NSGA-II

Pareto Front

Conclusion

Conclusions

- The inclusion of deep features increased overall performance by a small amount
- GA optimization led to better results on this metric
 - NSGA-II allows the choice for models with different sensitivity/specificity values

Thank you!