The following <u>Listing of the Claims</u> will replace all prior versions and all prior listings of the claims in the present application:

Listing of The Claims:

1. (Allowed): A composition comprising the formula:

wherein:

 R_1 - R_5 may be the same or different and are independently selected from the group consisting of H, alkyl (1 to 10 carbon atoms), benzyl, sulfonate, phosphonate, NO_2 , CF_3 , halogen, O- R_6 , -(C=O)OR $_6$, or -OCH $_2$ (C=O)R $_6$ and a salt, wherein R $_6$ is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

 X_1 and X_2 may be the same or different and X at least one of X_1 or X_2 is a leaving group; and linker is a moiety joining a nitrogen to a detectable marker, D.

- 2. (Allowed): The composition of claim 1, wherein said leaving group is selected from the group consisting of NO₃, halogen CN, OCOR₇, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5 demethyl-phenyl-4-sulfate, wherein R₇ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₆, -(C=O)OR₆, -OCH₂(C=O)R₆ and a salt.
- 3. (Allowed): The composition of claim 1 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A^{-B}$$

$$E^{=}D$$

$$-A^{-B}$$

$$Cis \text{ or trans}$$

and A, B, D, and E are the same or different and are selected from the group consisting of CH, N, O and S.

- 4. (Allowed): The composition of claim 1 wherein the detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 5. (Allowed): A nucleic acid comprising a composition of claim 1.
- 6. (Allowed): The nucleic acid of claim 5 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 7. (Allowed): A probe comprising a composition of claim 1.
- 8. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 1 with said nucleic acid.
- 9. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 6 and detecting signal from said detectable marker.
- 10. (Allowed): A composition comprising the formula:

$$R_3$$
 R_2
 R_4
 R_5
 N
 N
 N
 N
 N
 N
 N

wherein:

 R_1 - R_5 may be the same or different and are independently selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₆, -(C=O)OR₆, or - OCH₂(C=O)R₆ and a salt, wherein R₆ is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

 X_1 and X_2 may be the same or different and X_2 at least one of X_1 and X_2 is a leaving group; and

linker is a moiety joining a nitrogen to a detectable marker, D.

- 11. (Allowed): The composition of claim 10, wherein said leaving group is selected from the group consisting of NO₃, halogen, CN, OCOR₇, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₇ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₆, -(C=O)OR₆, -OCH₂(C=O)R₆ and a salt.
- 12. (Allowed): The composition of claim 10 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A B \qquad -A B \qquad cis or trans$$

- 13. (Allowed): The composition of claim 10 wherein the detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 14. (Allowed): A nucleic acid comprising a composition of claim 10.
- 15. (Allowed): The nucleic acid of claim 14 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 16. (Allowed): A probe comprising a composition of claim 10.
- 17. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 10 with said nucleic acid.
- 18. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 15 and detecting signal from said detectable marker.
- 19. (Allowed): A composition comprising the formula:

Y is selected from the group consisting of O, S, and C;

 R_1 is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO_2 , CF_3 , halogen, $O-R_2$, $-(C=O)OR_2$, $-OCH_2(C=O)R_2$, and a salt, wherein R_2 is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

 X_1 and X_2 are the same or different and X_2 at least one of X_1 or X_2 is a leaving group;

linker is a moiety joining a nitrogen to a detectable marker, D, and u and v are the same or different and are an integer from 1 to 10.

- 20. (Allowed): The composition of claim 19, wherein said leaving group is selected from the group consisting of NO₃, halogen, CN, OCOR₃, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₃ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₂, -(C=O)OR₂, or -OCH₂(C=O)R₂ and a salt.
- 21. (Allowed): The composition of claim 19 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A B \qquad Cis or trans$$

- 22. (Allowed): The composition of claim 19 wherein said detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 23. (Allowed): A nucleic acid comprising a composition of claim 19.
- 24. (Allowed): The nucleic acid of claim 23 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 25. (Allowed): A probe comprising a composition of claim 19.
- 26. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 19 with said nucleic acid.

- 27. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 25 and detecting signal from said detectable marker.
- 28. (Allowed): A composition comprising the formula:

$$R_1$$
 R_2 R_1 R_2 R_1 R_2 R_3 R_4 R_4 R_5 R_4 R_5 R_5 R_6 R_7 R_8 R_8 R_8 R_9 R_9

-Y is selected from the group consisting of O, S, and C;

 R_1 - R_3 may be the same or different and are independently selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₄, -(C=O)OR₄, or -OCH₂(C=O)R₄ and a salt, wherein R₄ is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

 X_1 and X_2 are the same or different and X at least one of X_1 or X_2 is a leaving group; and linker is a moiety joining a nitrogen to a detectable marker, D.

- 29. (Allowed): The composition of claim 28, wherein said leaving group is selected from the group consisting of No₃ NO₃, halogen, CN, OCOR₅, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate wherein R₅ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₄, -(C=O)OR₄, -OCH₂(C=O)R₄ and a salt.
- 30. (Allowed): The composition of claim 28 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n,

p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A^{-B} \qquad -A^{-B} \qquad cis \text{ or trans}$$

- 31. (Allowed): The composition of claim 28 wherein said detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 32. (Allowed): A nucleic acid comprising a composition of claim 28.
- 33. (Allowed): The nucleic acid of claim 32 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 34. (Allowed): A probe comprising a composition of claim 28.
- 35. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 28 with said nucleic acid.
- 36. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 34 and detecting signal from said detectable marker.
- 37. (Allowed): A composition comprising the formula:

Y is selected from the group consisting of O, S, and C;

 R_1 - R_3 may be the same or different and are independently selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO_2 , CF_3 , halogen, $O-R_4$, -(C=O)OR₄, or - OCH₂(C=O)R₄ and a salt, wherein R₄ is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

 X_1 and X_2 are the same or different and X at least one of X_1 or X_2 is a leaving group; and linker is a moiety joining a nitrogen to a detectable marker, D.

- 38. (Allowed): The composition of claim 37, wherein said leaving group is selected from the group consisting of No₃ No₃, halogen, CN, OCOR₅, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₅ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₄, -(C=O)OR₄, -OCH₂(C=O)R₄ and a salt.
- 39. (Allowed): The composition of claim 37 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A^{-B} \qquad -A^{-B} \qquad cis \text{ or trans}$$

- 40. (Allowed): The composition of claim 37 wherein said detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 41. (Allowed): A nucleic acid comprising a composition of claim 37.
- 42. (Allowed): The nucleic acid of claim 41 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 43. (Allowed): A probe comprising a composition of claim 37.
- 44. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 37 with said nucleic acid.
- 45. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 43 and detecting signal from said detectable marker.
- 46. (Allowed): A composition comprising the formula

$$R_1$$
 N Linker-D X_1 X_2

Z is selected from the group consisting of (CH₂)n, and (CH₂)nO(CH₂)m, wherein m and n are integers from 2 to 8, inclusive;

 R_1 is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO_2 , CF_3 , halogen, $O-R_2$, $-(C=O)OR_2$, or $-OCH_2(C=O)R_2$ and a salt, wherein R_2 is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

 X_1 and X_2 are the same or different and X at least one of X_1 and X_2 is a leaving group; and

linker is a moiety joining a nitrogen to a detectable marker, D.

- 47. (Allowed): The composition of claim 46, wherein said leaving group is selected from the group consisting of No₃, halogen, CN, OCOR₃, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₃ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₂, -(C=O)OR₂, -OCH₂(C=O)R₂ and a salt.
- 48. (Allowed): The composition of claim 46 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A^{-B} \qquad -A^{-B} \qquad cis or trans$$

- 49. (Allowed): The composition of claim 46 wherein said detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 50. (Allowed): A nucleic acid comprising a composition of claim 46.
- 51. (Allowed): The nucleic acid of claim 50 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 52. (Allowed): A probe comprising a composition of claim 46.

- 53. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 46 with said nucleic acid.
- 54. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 52 and detecting signal from said detectable marker.
- 55. (Allowed): A composition comprising the formula

Z is selected from the group consisting of $(CH_2)_n$, and $(CH_2)_nO(CH_2)_m$, wherein m and n are integers from 2 to 8, inclusive;

 R_1 and R_2 may be the same or different and are selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₃, -(C=O)OR₃, or - OCH₂(C=O)R₃ and a salt, wherein R₃ is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

X₄ is a leaving group; and

linker is a moiety joining a detectable marker, D to the platinum ion.

- 56. (Allowed): The composition of claim 55, wherein said leaving group is selected from the group consisting of NO₃, halogen, CN, OCOR₄, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₄ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₃, -(C=O)OR₃, -OCH₂(C=O)R₃ and a salt.
- 57. (Allowed): The composition of claim 55 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p,

COAr(CH₂)_n(CH=CH)_m(CH₂)_p, NH₂(CH₂)_nQ, NH₂((CH₂)_nO)_m(CH₂)_tQ, NH₂(CH₂)_mAr(CH₂)_nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A^{-B} \qquad -A^{-B} \qquad cis \text{ or trans}$$

- 58. (Allowed): The composition of claim 55 wherein said detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 59. (Allowed): A nucleic acid comprising a composition of claim 55.
- 60. (Allowed): The nucleic acid of claim 59 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 61. (Allowed): A probe comprising a composition of claim 55.
- 62. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 55 with said nucleic acid.
- 63. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 61 and detecting signal from said detectable marker.
- 64. (Allowed): A composition comprising the formula:

 R_1 - R_6 may be the same or different and are independently selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO_2 , CF_3 , halogen, $O-R_7$, -(C=O)OR₇, or - OCH₂(C=O)R₇ and a salt, wherein R₇ is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

X is a leaving group; and

linker is a moiety joining a detectable marker, D to the platinum ion.

- 65. (Allowed): The composition of claim 64, wherein said leaving group is selected from the group consisting of No₃ NO₃, halogen, CN, OCOR₈, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₈ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₇, -(C=O)OR₆, OCH₂(C=O)R₇ and a salt.
- 66. (Allowed): The composition of claim 64 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = AB - AB - AB - Cis or trans$$

and A, B, D, and E are the same or different and are selected from the group consisting of CH, N, O and S.

- 67. (Allowed): The composition of claim 64 wherein the detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 68. (Allowed): A nucleic acid comprising a composition of claim 64.
- 69. (Allowed): The nucleic acid of claim 68 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 70. (Allowed): A probe comprising a composition of claim 64.
- 71. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 67 with said nucleic acid.
- 72. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 70 and detecting signal from said detectable marker.
- 73. (Allowed): A composition comprising the formula

wherein

 R_1 - R_6 may be the same or different and are independently selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO_2 , CF_3 , halogen, $O-R_7$, -(C=O)OR₇, or - OCH₂(C=O)R₇ and a salt, wherein R_7 is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

X is a leaving group; and

linker is a moiety joining a detectable marker, D, to the platinum ion.

- 74. (Allowed): The composition of claim 73, wherein said leaving group is selected from the group consisting of No₃ NO₃, halogen, CN, OCOR₈, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₈ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₇, -(C=O)OR₆, -OCH₂(C=O)R₇ and a salt.
- 75. (Allowed): The composition of claim 73 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A B \qquad Cis or trans$$

- 76. (Allowed): The composition of claim 73 wherein the detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 77. (Allowed): A nucleic acid comprising a composition of claim 73.
- 78. (Allowed): The nucleic acid of claim 77 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 79. (Allowed): A probe comprising a composition of claim 73.

- 80. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 73 with said nucleic acid.
- 81. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 79 and detecting signal from said detectable marker.
- 82. (Allowed): A composition comprising the formula:

Y is selected from the group consisting of O, S, and C;

 R_1 - R_4 may be the same or different and are independently selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O- R_5 , -(C=O)OR₅, or -OCH₂(C=O)R₅ and a salt, wherein R₅ is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

X is a leaving group; and

linker is a moiety joining a detectable marker, D, to the platinum ion.

- 83. (Allowed): The composition of claim 82 wherein said leaving group is selected from the group consisting of No₃ NO₃, halogen, CN, OCOR₆, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₆ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₅, -(C=O)OR₅, -OCH₂(C=O)R₅ and a salt.
- 84. (Allowed): The composition of claim 82 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n,

p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = A^{-B}$$

$$E^{=}D$$

$$-A^{-B}$$

$$Gis \text{ or trans}$$

- 85. (Allowed): The composition of claim 82 herein the detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 86. (Allowed): nucleic acid comprising a composition of claim 82.
- 87. (Allowed): The nucleic acid of claim 86 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 88. (Allowed): A probe comprising a composition of claim 82.
- 89. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 82 with said nucleic acid.
- 90. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 88 and detecting signal from said detectable marker.
- 91. (Allowed): A composition comprising the formula:

Y is selected from the group consisting of O, S, and C;

 R_1 - R_4 may be the same or different and are independently selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O- R_5 , -(C=O)OR₅, or -OCH₂(C=O)R₅ and a salt, wherein R₅ is a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl having 1-10 carbons;

X is a leaving group; and

linker is a moiety joining a detectable marker, D, to the platinum ion.

- 92. (Allowed): The composition of claim 91, wherein said leaving group is selected from the group consisting of NO₃, halogen, CN, OCOR₆, OCO-Phenyl, OCOCH₂OC(Phenyl)₃, O-Trityl and 3,5-dimethyl-phenyl-4-sulfate, wherein R₆ is selected from the group consisting of H, methyl, benzyl, sulfonate, phosphonate, NO₂, CF₃, halogen, O-R₅, -(C=O)OR₅, -OCH₂(C=O)R₅ and a salt.
- 93. (Allowed): The composition of claim 91 wherein said linker is selected from the group consisting of: (CH₂)n, (CH₂)n(CH=CH)mO(CH=CH)p(CH₂)q, CO(CH₂)n(CH=CH)m(CH₂)p, COAr(CH₂)n(CH=CH)m(CH₂)p, NH₂(CH₂)nQ, NH₂((CH₂)nO)m(CH₂)tQ, NH₂(CH₂)mAr(CH₂)nQ, wherein m, n, p, q and t are integers from 0 to 8, inclusive, and m, n, p, q and t are the same or different, wherein Q is selected from the group consisting of CONH, NHCO, -S-S-, NHCSNH, NHCSO, wherein

$$Ar = AB - AB - AB - Cis or trans$$

- 94. (Allowed): The composition of claim 91 wherein the detectable marker, D, is selected from the group consisting of a fluorophore, a chromophore, a radiolabel, an enzyme and an affinity tag.
- 95. (Allowed): A nucleic acid comprising a composition of claim 91.
- 96. (Allowed): The nucleic acid of claim 95 wherein said composition forms a non-covalent adduct with said nucleic acid.
- 97. (Allowed): A probe comprising a composition of claim 91.
- 98. (Allowed): A method of labeling a nucleic acid, said method comprising the step of contacting a composition of claim 91 with said nucleic acid.
- 99. (Allowed): A method of probing a nucleic acid array, said method comprising the steps of contacting said array with a probe of claim 97 and detecting signal from said detectable marker.
- 100. (Presently Amended): A method of making a platinum labeling compound that comprises a stabilizing bridge, the method comprising the step of contacting potassium tetrachloroplatinate (II) with an aliphatic a cycloaliphatic diamine labeled with a detectable marker, wherein said contacting results in a cis-platinum dichloride labeling compound.
- 101. (Cancelled herein)
- 102. (Presently Amended): The method of claim 101 100 wherein said cycloaliphatic diamine is a 1, 2-cycloaliphatic diamine.
- 103. (Presently Amended): The method of claim 101 100 wherein said cycloaliphatic diamine is a cyclohexyl diamine.
- 104. (Original): The method of claim 103 wherein said cyclohexyl diamine is a 1,2-cyclohexyl diamine.

105. (Original): The method of claim 100 wherein said contacting is performed in aqueous solution at a pH of about 1.5 to 5.5 and at a temperature of about 65°C.