Numerical Analysis: Basic Course

Assignment 1

Problem 1

Determine a polyomial p of degree smaller or equal to three that fulfills p(-1)=2, p(0)=6, p(2)=4 and p(3)=30 in

- a) the Lagrange basis and
- b) the Newton basis.

Problem 2

Prove the following theorem:

Given n+1 data points (t_i, y_i) with mutually different t_i , there is a unique polynomial $p \in \mathcal{P}_n$ of degree n which solves the interpolation problem

$$p(t_i) = y_i, \quad i = 0, ..., n.$$

Problem 3

Write a python program that plots a given function and an interpolation polynomial. To test this, use the following cases:

- a) $f(t) = \exp(-4x^2)$, $t \in [-1, 1]$. As data, use equidistant nodes that include the endpoints and the function values in those nodes. The number of nodes should be 5, then 12.
- b) $f(t) = 1/(1+25x^2)$, $t \in [-1,1]$. As data, use equidistant nodes that include the end points and the function values in those nodes. The number of nodes should be 15, then 21.

What do you see?

Return: Tuesday, March 31st