

Ana Lúcia de Moura

Revisitando co-rotinas

Tese de Doutorado

Tese apresentada ao Programa de Pós–graduação em Informática do Departamento de Informática da PUC–Rio como parte dos requisitos parciais para obtenção do título de Doutor em Informática

Orientador: Prof. Roberto Ierusalimschy

Ana Lúcia de Moura

Revisitando co-rotinas

Tese apresentada ao Programa de Pós–graduação em Informática do Departamento de Informática do Centro Técnico Científico da PUC–Rio como parte dos requisitos parciais para obtenção do título de Doutor em Informática. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Roberto Ierusalimschy

Orientador

Departamento de Informática — PUC-Rio

Prof. Noemi Rodriguez

Departamento de Informática - PUC-Rio

Prof. Edward Hermann Hauesler

Departamento de Informática - PUC-Rio

Prof. Roberto da Silva Bigonha

Departamento de Ciência da Computação - UFMG

Prof. Anamaria Martins Moreira

Departamento de Informática e Matemática Aplicada – UFRN

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico — PUC-Rio

Rio de Janeiro, 10 de Setembro de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ana Lúcia de Moura

Graduou—se em Matemática, modalidade Informática, na Universidade Federal do Rio de Janeiro em 1979. Obteve o título de Mestre em Informática pela PUCRio em 2000.

Ficha Catalográfica

Moura, Ana Lúcia de

Revisitando co-rotinas/ Ana Lúcia de Moura; orientador: Roberto Ierusalimschy. — Rio de Janeiro : PUC-Rio, Departamento de Informática, 2004.

102 f: il.; 29,7 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Informática.

Inclui referências bibliográficas.

1. Informática – Teses. 2. Linguagens de programação. 3. Construções de controle. 4. Co-rotinas. 5. Continuações. 6. Modelos de concorrência. I. Ierusalimschy, Roberto. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

Agradecimentos

Ao Roberto, pela confiança, amizade e incentivo, e pelo muito que cresci e aprendi durante a realização deste trabalho.

À Noemi, pelos presentes que são seu exemplo, companhia e amizade.

Ao Rafael, grande companheiro, por seu carinho e compreensão. A ele, por quem tudo é possível, dedico esta tese.

Ao Paulo, pelo apoio sem o qual a conclusão deste trabalho não teria sido possível.

Aos muitos amigos que fiz nesses anos, e tenho grande alegria em manter. Júlia, Letícia, Isabel, Cristina, Silvana, Cecília, Clarissa, Carlos, Clínio, Renato, Tomás, André, Diego, muito obrigada por seu carinho e paciência.

A Hélia Ziller, Cláudia Lisboa e Ricardo Aquino, pelo suporte e incentivo para o fechamento desta etapa.

Ao Tecgraf, pelo privilégio de participar de seu grupo de pesquisa e desenvolvimento.

Ao Cnpq, pelo apoio financeiro.

Aos meus pais e à minha irmã Cristina, por seu amor.

Resumo

Moura, Ana Lúcia de; Ierusalimschy, Roberto. **Revisitando corotinas**. Rio de Janeiro, 2004. 102p. Tese de Doutorado — Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo deste trabalho é defender o resgate do conceito de co-rotinas como uma construção de controle poderosa e conveniente, que pode substituir tanto continuações de primeira classe como threads com um conceito único e mais simples. Para suprir a ausência de uma definição precisa e adequada para o conceito de co-rotinas, propomos um novo sistema de classificação, e introduzimos o conceito de co-rotinas completas, para o qual provemos uma definição formal, baseada em uma semântica operacional. Demonstramos a seguir a equivalência de poder expressivo entre co-rotinas completas simétricas e assimétricas e entre co-rotinas completas e continuações one-shot tradicionais e parciais, discutindo as vantagens de corotinas completas assimétricas em relação a co-rotinas simétricas e continuações de primeira classe. Finalmente, analizamos os benefícios e desvantagens associados aos diversos modelos de concorrência, justificando a adoção de modelos alternativos a multithreading e o oferecimento de co-rotinas como uma construção básica de concorrência, adequada à implementação desses modelos.

Palavras-chave

co-rotinas; construções de controle; continuações; modelos de concorrência; threads.

Abstract

Moura, Ana Lúcia de; Ierusalimschy, Roberto. Revisiting coroutines. Rio de Janeiro, 2004. 102p. PhD. Thesis — Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The purpose of this work is to defend the revival of coroutines as a powerful and convenient control construct, which can replace both first-class continuations and threads with a single and simpler concept. In order to provide an adequate and precise definition of the concept of coroutines, we propose a new classifying system, and introduce the concept of complete coroutines, for which we provide a formal definition based on an operational semantics. We then demostrate that complete symmetric coroutines and complete asymmetric coroutines have equivalent expressive power, as well as complete coroutines and one-shot traditional and partial continuations. We also discuss the advantages of using complete asymmetric coroutines instead of symmetric coroutines or first-class continuations. Finally, we analyse the benefits and problems associated with different concurrency models, and argue in favor of the replacement of multithreading with alternative concurrency models and the provision of coroutines as a basic concurrency construct, adequate for the implementation of these alternative models.

Keywords

coroutines; control constructs; continuations; concurrency models; threads.

Conteúdo

1	Introdução	11
1.1	Objetivos e organização do trabalho	14
2	Um sistema de classificação para co-rotinas	16
	Co-rotinas simétricas e assimétricas	16
	Co-rotinas de primeira classe e confinadas	20
2.3	Co-rotinas stackful	22
2.4	Co-rotinas completas	23
3	Co-rotinas completas assimétricas	25
3.1	Operadores de co-rotinas completas assimétricas	25
3.2	Semântica operacional	26
3.3	Co-rotinas em Lua	29
4	Co-rotinas completas e continuações one-shot	34
4.1	Equivalência de co-rotinas completas simétricas e assimétricas	35
4.2	Continuações one-shot	39
4.3	Continuações parciais one-shot	44
4.4	Questões de conveniência e eficiência	49
5	Co-rotinas completas como construção genérica de controle	56
5.1	·	56
5.2	•	59
5.3		60
5.4		61
	Tratamento de Exceções	64
5.6	Evitando interferências entre ações de controle	66
6	Co-rotinas completas e programação concorrente	68
6.1	Análise de modelos de concorrência	69
6.2	Gerência cooperativa de tarefas	76
6.3	o ,	82
6.4	Co-rotinas versus <i>threads</i>	84
7	Conclusão	86
Α	Gerência cooperativa de tarefas com co-rotinas completas assimétricas	97

Lista de Figuras

2.1	Transferência de controle com co-rotinas simétricas	17
2.2	Transferência de controle com co-rotinas assimétricas	17
2.3	Co-rotinas stackful e não stackful	22
3.1	Implementando um iterador com co-rotinas Lua	32
3.2	Combinando duas árvores binárias	33
4.1	Implementando co-rotinas simétricas com assimétricas	36
4.2	Implementando co-rotinas assimétricas com simétricas	38
4.3	Implementação de continuações <i>one-shot</i>	42
4.4	Continuações <i>one-shot</i> com co-rotinas simétricas	43
4.5	Gerador de fatoriais com subcontinuações	45
4.6	Subcontinuações <i>one-shot</i> com co-rotinas assimétricas	48
4.7	Subcontinuações <i>one-shot</i> com co-rotinas simétricas	50
4.8	Erros de execução em co-rotinas simétricas e assimétricas	52
4.9	Pilha de um programa com co-rotinas simétricas e assimétricas	53
5.1	O padrão produtor–consumidor com co-rotinas assimétricas	57
5.2	Implementação de um <i>pipeline</i> com co-rotinas assimétricas	58
5.3	Resolução de um problema multi-partes	60
5.4	Gerador de fatoriais com co-rotinas assimétricas	61
5.5	Progamação orientada por metas: pattern-matching	63
5.6	Implementação de um mecanismo de tratamento de exceções	65
5.7	Criação e manipulação de exceções	66
5.8	Evitando interferências entre ações de controle	67
6.1	Gerência cooperativa de tarefas com co-rotinas assimétricas	77
6.2	Operação de entrada ou saída não bloqueante	79
6.3	Orientação a eventos com suporte de co-rotinas	83
A.1	Gerência cooperativa de tarefas com pool de co-rotinas	98
A.2	Gerência cooperativa de tarefas com E/S não bloqueante	99
A.3	Implementação de um semáforo binário	100
A.4	Implementação de sincronização por condições	101
A.5	Gerência cooperativa de tarefas com sincronização	102

Temos a responsabilidade de trabalhar, de exercer nossos talentos e capacidades, de contribuir para a vida com nossa energia. Nossa natureza é criativa e, ao expressá-la, geramos constantemente mais entusiasmo e criatividade, estimulando um processo contínuo de contentamento no mundo à nossa volta. Trabalhar de bom grado, com toda a nossa energia e entusiasmo, é o modo que temos de contribuir para a vida.

Tarthang Tulku, O caminho da habilidade.