Higher School Certificate Preliminary Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- All necessary working should be shown in every question
- Board approved calculators may be used
- A table of standard integrals is provided
- Write your student number and/or name at the top of every page

Total marks - 72

Attempt All Questions 1-6

All Questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME....

Marks

Question 1

Begin a new booklet

(a)(i) Show that $\frac{1}{p^2 + pq} + \frac{1}{q^2 + pq} = \frac{1}{pq}$.

(ii) Hence express $\frac{1}{5}$ in the form $\frac{1}{a} + \frac{1}{b}$ for some positive integers a and b.

(b)

ABCD is a quadrilateral inscribed in a circle with centre O. $\angle DAB = 36^{\circ}$. Find, giving reasons

(i) the size of $\angle DOB$.

1

(ii) the size of $\angle BCD$.

1

(c)

BC is a diameter of a circle. The tangent to the circle at A meets BC produced at D. E is the point on BC such that AC bisects $\angle DAE$.

(i) Give a reason why $\angle DAC = \angle ABC$.

1

(ii) Hence show that AE is perpendicular to BC.

Marks

2

2

1

- (d) The equation $x^3 + px^2 + qx + pq = 0$, where $p \neq 0$ and $q \neq 0$, has three real roots α , β and γ .
 - (i) By considering the relationships between the roots and the coefficients of the equation, show that $(\alpha + \beta + \gamma) \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right) = 1$.
 - (ii) Show that -p is a root of the equation. Hence show that q < 0.

Question 2

Begin a new booklet

(a)(i) Show that
$$x^2 + bx + c = \left(x + \frac{b}{2}\right)^2 + \frac{4c - b^2}{4}$$
.

- (ii) Hence find the coordinates of the vertex of the parabola $y = x^2 + bx + c$.
- (b) The point P(2,5) lies on the graph of the odd polynomial function y = P(x). Find, with reasons,
 - (i) the remainder when P(x) is divided by (x-2).
 - (ii) the remainder when P(x) is divided by (x+2).

Student name / number

Marks

(c)

ABCD is a quadrilateral inscribed in a circle. CA = CB. AD is produced to E.

(i) Give a reason why $\angle BDC = \angle BAC$.

Manage

(ii) Hence show that DC bisects $\angle EDB$.

3

(d)

The graph of the monic cubic polynomial P(x) cuts the x-axis at x = -2, touches the x-axis at x = 1 and has a maximum turning point at x = -1.

(i) Show that $P(x) = x^3 - 3x + 2$.

2

(ii) Find the set of values of k such that the equation P(x) = k has three distinct real roots.

Begin a new booklet

Marks

(a) Solve the inequality $\frac{6}{x^2} \le \frac{x-5}{x}$.

3

(b) A(-3,2) and B(5,6) are two vertices of an acute angled triangle ABC. The side BC has equation x + 2y - 17 = 0. Find the size of the angle between the sides AB and BC correct to the nearest degree.

3

(c) Solve the equation $\sin 2x + \cos x = 0$ for $0^{\circ} \le x \le 360^{\circ}$.

3

(d)(i) Express $\tan\left(45^\circ + \frac{x}{2}\right)$ in terms of t where $t = \tan\frac{x}{2}$.

Veneza

(ii) Hence show that $\frac{1+\sin x}{\cos x} = \tan\left(45^\circ + \frac{x}{2}\right)$.

Marks

Question 4

Begin a new booklet

(a) $A(24, \log_{10} 24)$ and $B(3, \log_{10} 3)$ are two points. Find in simplest exact form the coordinates of the point P which divides the interval AB internally in the ratio 2:1.

3

(b)

3

The standard model Egyptian pyramid has a square base ABCD whose diagonals intersect at O. The top of the pyramid lies directly above O. Its height OT is x units and the perimeter of its base ABCD is $2\pi x$ units. Find, correct to the nearest minute, the angle of elevation of T from A.

(c) Express $\tan 45^{\circ}$ in terms of $\tan 22\frac{1}{2}^{\circ}$ and hence find the value of $\tan 22\frac{1}{2}^{\circ}$ in simplest exact form.

3

(d)(i) Show that $\sqrt{2}\cos(x-45^\circ) = \cos x + \sin x$.

The state of

(ii) Hence solve the equation $\cos x + \sin x = \frac{1}{\sqrt{2}}$ for $0^{\circ} \le x \le 360^{\circ}$.

Begin a new booklet

Marks

(a) Sketch the graph of the function $f(x) = 2^{-|x|}$.

2

(b) Find
$$\lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$
.

2

- (c) Find the number of ways in which the letters of the word SQUARE can be arranged in a straight line
 - (i) without restriction.

1

(ii) so that consonants occupy the two end positions.

1

(iii) so that exactly two vowels are next to each other.

2

- (d) A group of students comprises 3 Year 11 girls, 2 Year 11 boys, 2 Year 12 girls and 2 Year 12 boys. Find the number of ways in which 6 members of this group can be chosen
 - (i) without restriction.

1

(ii) so as to include more boys than girls.

-

(iii) so as to include an equal number of Year 11 girls and Year 12 girls.

2

Begin a new booklet

Marks

- (a) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points which move on the parabola $x^2 = 4ay$ so that the chord PQ subtends a right angle at the origin.
 - (i) Show that PQ has equation (p+q)x 2y = 2apq.

2

(ii) Show that pq = -4 and hence show that PQ always passes through a fixed point on the y-axis.

2

(b)(i) Use differentiation to show that the normal to the parabola $x^2 = 4ay$ at the point $T(2at, at^2)$ has equation $x + ty = 2at + at^3$.

2

(ii) Hence show that for $t \neq 0$ this normal meets the parabola again at the point $R(2ar, ar^2)$ where $r = \frac{-(t^2 + 2)}{t}$.

2

(c)(i) Show that $\cos(k-1)x - \cos(k+1)x = 2\sin kx \sin x$.

percept

(ii) Hence show that for $\sin x \neq 0$ $\sin x + \sin 2x + \sin 3x + \dots + \sin nx = \frac{1 + \cos x - \cos nx - \cos (n+1)x}{2\sin x}.$

a. Outcomes assessed: P4

Marking Guidelines

Criteria	Marks
i • selects appropriate common denominator and simplifies	1
ii \bullet substitutes appropriate values for p and q then simplifies denominators	1

Answer

i.
$$\frac{1}{p^2 + pq} + \frac{1}{q^2 + pq} = \frac{1}{p(p+q)} + \frac{1}{q(p+q)}$$
$$= \frac{q+p}{pq(p+q)}$$
$$= \frac{1}{pq}$$

ii.
$$p = 5$$
, $q = 1 \implies \frac{1}{5} = \frac{1}{5^2 + 5} + \frac{1}{1^2 + 5}$

$$\therefore \frac{1}{5} = \frac{1}{30} + \frac{1}{6}$$

b. Outcomes assessed: PE3

Marking Guidelines

Marks
1
1

Answer

i. $\angle DOB = 72^{\circ}$ (\angle subtended at the centre is twice \angle subtended at the circumference by arc DB)

ii. $\angle BCD = 144^{\circ}$ (opposite \angle 's of cyclic quadrilateral ABCD are supplementary)

c. Outcomes assessed: PE2, PE3

Marking Guidelines

was king Guidelines	
Criteria	Marks
i • quotes alternate segment theorem	1
ii • deduces $\angle ABC = \angle EAC$	1
• explains why $\angle BAE + \angle ABE = 90^{\circ}$	1
• deduces $AE \perp BC$ giving a reason	Î

Answer

O is the centre of the circle.

i. The angle between a tangent to a circle and a chord drawn from the point of contact is equal to any angle subtended by that chord in the alternate segment.

ii. $\angle DAC = \angle EAC$ (given AC bisects $\angle DAE$) $\therefore \angle ABC = \angle EAC$ (both equal to $\angle DAC$)

But $\angle BAC = 90^{\circ}$ (angle in a semicircle is a right angle)

 $\therefore \angle BAE + \angle EAC = 90^{\circ}$ (by addition of adjacent angles)

 $\therefore \angle BAE + \angle ABE = 90^{\circ} \ (\angle ABE, \angle ABC \ same \ angle)$

 $\therefore \angle AEB = 90^{\circ} \ (\angle sum \ of \ \triangle ABE \ is \ 180^{\circ})$

 $\therefore AE \perp BC$

d. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
i • expresses the sum of the reciprocals of the roots in terms of $\alpha\beta\gamma$ and $\alpha\beta + \beta\gamma + \gamma\alpha$	1
• substitutes for $\alpha + \beta + \gamma$, $\alpha\beta\gamma$ and $\alpha\beta + \beta\gamma + \gamma\alpha$ then simplifies given product	1
ii • shows $-p$ is a root of the equation	1
• deduces remaining roots are opposites and their product is q , hence $q < 0$	1

Answer

i.
$$\alpha, \beta, \gamma$$
 are real roots of $x^3 + px^2 + qx + pq = 0$, $p \neq 0, q \neq 0$

$$(\alpha + \beta + \gamma) \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right) = (\alpha + \beta + \gamma) \left(\frac{\beta \gamma + \gamma \alpha + \alpha \beta}{\alpha \beta \gamma} \right)$$

$$= (-p) \left(\frac{q}{-pq} \right)$$

$$=1$$

ii.
$$(-p)^3 + p(-p)^2 + q(-p) + pq = -p^3 + p^3 - qp + pq = 0$$

Hence -p is a root of the equation.

Let
$$\alpha$$
 be the root $-p$. Then $\alpha + \beta + \gamma = -p \implies \beta + \gamma = 0$ $\therefore \gamma = -\beta$

and
$$\alpha\beta\gamma = -pq \implies \beta\gamma = q \qquad \therefore q = -\beta^2$$

But β is real and $pq \neq 0 \implies \beta \neq 0$. $\therefore \beta^2 > 0$ and hence q < 0.

Question 2

a. Outcomes assessed: P4

Marking Guidelines

Traditing Guidelines		
Criteria	Marks	
i • completes the square or expands RHS and simplifies	1	ĺ
ii • writes the coordinates of the vertex	1	

2

Answer

i.
$$x^2 + bx + c = x^2 + 2\frac{b}{2}x + \left(\frac{b}{2}\right)^2 + c - \left(\frac{b}{2}\right)^2$$

$$= \left(x + \frac{b}{2}\right)^2 + c - \frac{b^2}{4}$$

$$= \left(x + \frac{b}{2}\right)^2 + \frac{4c - b^2}{4}$$

ii. This quadratic expression has a minimum value of
$$\frac{4c-b^2}{4}$$
 when $x=-\frac{b}{2}$.

Hence the parabola has vertex

$$\left(-\frac{b}{2}, \frac{4c-b^2}{4}\right)$$

b. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
i • applies remainder theorem	1
ii • deduces $P(-2) = -5$ and applies remainder theorem	1
	1 1

Answer

- i. P(2) = 5. Hence by remainder theorem, division of P(x) by (x-2) leaves a remainder of 5.
- ii. P(x) odd $\Rightarrow P(-2) = -P(2) = -5$. Hence, applying the remainder theorem, remainder on division by (x+2) is -5.

c. Outcomes assessed: PE2, PE3

Marking Guidelines

8	
Criteria	Marks
i • quotes appropriate circle property	1
ii • deduces $\angle BAC = \angle ABC$, quoting appropriate property of an isosceles triangle	1
• deduces $\angle EDC = \angle ABC$, quoting appropriate property of cyclic quadrilateral	1
• deduces $\angle BDC = \angle EDC$ to prove required result	1

Answer

- i. $\angle BDC = \angle BAC$ since angles subtended at the circumference by the same arc BC are equal.
- ii. $\angle BAC = \angle ABC$ (in $\triangle ABC$, \angle 's opp. equal sides CA, CB are equal)
 - $\angle EDC = \angle ABC$ (exterior \angle of cyclic quad. ABCD is equal to opposite interior \angle)
 - $\therefore \angle BAC = \angle EDC \ (both \ equal \ to \ \angle ABC)$
 - $\therefore \angle BDC = \angle EDC \ (both equal to \angle BAC)$
 - Hence DC bisects $\angle EDB$.

d. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria Criteria	Marks
• writes $P(x)$ in factored form	1
• expands and simplifies this expression	1
ii • finds y coordinate of maximum turning point	1
• deduces $0 < k < 4$ by considering nature of intersections of line $y = k$ with the curve	1

- i. $P(x) = (x-1)^2(x+2)$ $= (x^2 - 2x + 1)(x + 2)$ $= x^3 - 2x^2 + x + 2x^2 - 4x + 2$ $= x^3 - 3x + 2$
- ii. P(x) = k has 3 distinct real roots if line y = k cuts the curve in 3 distinct points. Since P(-1) = 4, this occurs for 0 < k < 4.

a. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
writes equivalent quadratic inequality	1
• applies an appropriate method of solution, obtaining at least one inequality for x	1
• writes two inequalities for x, indicating how they are to be combined	1

Answer

$$\frac{6}{x^2} \le \frac{x-5}{x}$$

$$6 \le x (x-5), \quad x \ne 0$$

$$0 \le x^2 - 5x - 6$$

$$0 \le (x-6)(x+1)$$

:. by inspection of the graph,

$$x \le -1$$
 or $x \ge 6$

b. Outcomes assessed: P4

Marking Guidelines

Tradition Generality	
Criteria	Marks
• finds the gradients of AB and BC	1
• writes a numerical expression for tan $\angle ABC$	1
• finds the size of the angle to the nearest degree	

Answer

$$A(-3,2)$$
 and $B(5,6)$

Gradient of side AB is $\frac{4}{8} = \frac{1}{2}$.

$$BC: x + 2y - 17 = 0$$
 has gradient $-\frac{1}{2}$.

Since the triangle is acute angled,

$$\tan \angle ABC = \frac{\left| \frac{1}{2} - \left(-\frac{1}{2} \right) \right|}{1 + \frac{1}{2} \left(-\frac{1}{2} \right)}$$

$$\therefore \tan \angle ABC = \frac{1}{\left(\frac{3}{4}\right)} = \frac{4}{3}$$

 $\therefore \angle ABC \approx 53^{\circ}$ (to the nearest degree)

c. Outcomes assessed: P4

Marking Guidelines

Trial ding durdennes	
Criteria	Marks
• writes an equivalent equation in terms of $\sin x$ and $\cos x$	1
• shows one possibility is $\cos x = 0$ giving corresponding solutions for x	1
• writes remaining solutions for x derived from $\sin x = -\frac{1}{2}$	1
la .	

$$\sin 2x + \cos x = 0, \quad 0^{\circ} \le x \le 360^{\circ}$$
$$2\sin x \cos x + \cos x = 0$$

$$\cos x \left(2\sin x + 1 \right) = 0$$

$$\therefore \cos x = 0 \text{ or } \sin x = -\frac{1}{2}, \quad 0^{\circ} \le x \le 360^{\circ}$$

$$\therefore x = 90^{\circ}, 270^{\circ}, 210^{\circ}, 330^{\circ}$$

d. Outcomes assessed: P4

Marking Guidelines

Criteria	Marks
i • uses compound angle formula to obtain required result	1
ii • substitutes for $\sin x$ and $\cos x$ in terms of t	1
 rearranges and simplifies to show required result 	1

Answer

i.
$$\tan\left(45^{\circ} + \frac{x}{2}\right) = \frac{\tan 45^{\circ} + \tan\frac{x}{2}}{1 - \tan 45^{\circ} \tan\frac{x}{2}}$$
$$= \frac{1+t}{1-t}$$

ii.
$$\frac{1+\sin x}{\cos x} = \left(1 + \frac{2t}{1+t^2}\right) \div \frac{1-t^2}{1+t^2}$$
$$= \frac{1+t^2+2t}{1+t^2} \times \frac{1+t^2}{1-t^2}$$
$$= \frac{(1+t)^2}{(1+t)(1-t)}$$
$$= \frac{(1+t)}{(1-t)}$$
$$\therefore \frac{1+\sin x}{\cos x} = \tan\left(45^\circ + \frac{x}{2}\right)$$

Question 4

a. Outcomes assessed: P4

Marking Guidelines

Criteria	Marks
• writes x coordinate of P in simplest form	1
• writes numerical expression for exact y coordinate of P	1
• expresses y coordinate in simplest exact form	1

$$\frac{A(24, \log_{10} 24) \qquad B(3, \log_{10} 3)}{2} \\
\frac{2}{P\left(\frac{6+24}{2+1}, \frac{2\log_{10} 3 + \log_{10} 24}{2+1}\right)}$$

But
$$2\log_{10} 3 + \log_{10} 24 = \log_{10} (3^2 \times 24)$$

= $\log_{10} (3^3 \times 2^3)$
= $3\log_{10} 6$

$$\therefore P$$
 has coordinates $(10, \log_{10} 6)$

b. Outcomes assessed: P4, PE1

Marking Guidelines

Criteria Criteria	Marks
• finds AO in terms of x	1
• finds tan \(\angle TAO\)	1
• finds the required angle of elevation correct to the nearest minute	1

Answer

Using Pythagoras, the diagonal d of a square of side s is given by $d^2 = 2s^2 \Rightarrow d = s\sqrt{2}$. Also the diagonals of a square bisect each other.

$$\therefore AO = \frac{1}{2}AC = \frac{1}{2}\sqrt{2} AB.$$
But $AB = \frac{1}{4}(2\pi x)$.

Hence $AO = \frac{1}{4}\pi x \sqrt{2}$.

$$\therefore \tan \angle TAO = \frac{x}{\frac{1}{4}\pi x\sqrt{2}} = \frac{4}{\pi\sqrt{2}}$$

Hence angle of elevation $\angle TAO$ is $42^{\circ}0'$ (to the nearest minute).

c. Outcomes assessed: P4

Marking Guidelines

Criteria	Marks
• expresses $\tan 45^{\circ}$ in terms of $\tan 22\frac{1}{2}^{\circ}$	1
• writes a quadratic equation with one root $\tan 22\frac{1}{2}^{\circ}$	1
• solves this equation to find this root in simplest exact form	1

Answer

$$\tan 45^{\circ} = \frac{2 \tan 22 \frac{1}{2}^{\circ}}{1 - \tan^{2} 22 \frac{1}{2}^{\circ}} \qquad \text{Then } \frac{2t}{1 - t^{2}} = 1 \text{ and } t > 0. \qquad \therefore t > 0 \Rightarrow t = \frac{-2 + 2\sqrt{2}}{2}$$

$$2t = 1 - t^{2} \qquad \qquad = -1 + \sqrt{2}$$

$$t^{2} + 2t - 1 = 0$$

$$\therefore t = \frac{-2 \pm \sqrt{8}}{2} \qquad \text{Hence } \tan 22 \frac{1}{2}^{\circ} = \sqrt{2} - 1$$

d. Outcomes assessed: P4

Marking Guidelines

1. Aut 1 mag Cultural leads	
Criteria	Marks
i • uses compound angle formula to obtain result	1
ii • finds one solution for x from value of $cos(x-45^\circ)$	1
• finds second solution for x	1

i.
$$\cos(x - 45^\circ) = \cos x \cos 45^\circ + \sin x \sin 45^\circ$$

 $= \frac{1}{\sqrt{2}} \cos x + \frac{1}{\sqrt{2}} \sin x$
ii. $\cos x + \sin x = \frac{1}{\sqrt{2}}$, $0^\circ \le x \le 360^\circ$
 $\cos(x - 45^\circ) = \frac{1}{2}$, $-45^\circ \le x - 45^\circ \le 315^\circ$
 $x - 45^\circ = 60^\circ$, 300°
 $x = 105^\circ$, 345°

a. Outcomes assessed: P5

Marking Guidelines

Criteria	Marks
• sketches curve of correct shape for $x \ge 0$ with y intercept 1 and x-axis as asymptote	1
• sketches correct shape for $x \le 0$, with symmetry in the y-axis	1

Answer

b. Outcomes assessed: P8

Marking Guidelines

Criteria	Marks
• simplifies algebraic expression in x and h	1
• takes limit	1

Answer

$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{x - (x+h)}{hx(x+h)}$$

$$= \frac{-h}{hx(x+h)}$$

$$= \frac{-1}{x(x+h)}$$

$$\therefore \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{-1}{x(x+h)}$$

$$= \frac{-1}{x^2}$$

c. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
i • writes the number of arrangements	1
ii • writes the number of arrangements	
iii • applies a systematic counting procedure with some success	1
 calculates the number of arrangements. 	1

7

Answer

i.
$$6! = 720$$

ii.
$${}^{3}P_{2} \times 4! = 144$$

iii. Select the two vowels V_1 , V_2 to be side by side in order 3P_2 ways.

Then V_1, V_2, V_3, S, Q, R can be arranged in 5! ways.

In $2\times4!$ of these arrangements, V_3 is next to V_1 , V_2 .

Hence required number of arrangements is ${}^{3}P_{2}(5!-2\times4!)=432$

d. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
i • writes down number of ways	1
ii • writes down number of ways	1
iii • applies a systematic counting procedure with some success	1
• calculates the number of ways	1

Answer

- i. 6 to be chosen from a group of 9, hence ${}^{9}C_{6} = 84$ ways
- ii. Group has 5 girls and 4 boys. Hence chosen 6 comprises 4 boys and 2 girls. \therefore ${}^4C_4 \times {}^5C_2 = 10$ ways.
- iii. Group has 3 Yr 11 girls, 2 Yr 12 girls and 4 boys. The possible choices are listed below:

Yr 11 girls	Yr 12 girls	boys	number of ways
1	1	4	${}^{3}C_{1} \times {}^{2}C_{1} \times {}^{4}C_{4} = 6$
2	2	2	${}^{3}C_{2} \times {}^{2}C_{2} \times {}^{4}C_{2} = 18$

Hence 6 + 18 = 24 ways.

Question 6

a. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
i • finds gradient of PQ	1
• shows equation of PQ has required form	
ii • shows $pq = -4$	1
• shows y intercept of PQ is independent of p and q	1

8

Answer

i.
$$P(2ap, ap^2)$$
, $Q(2aq, aq^2)$
gradient $PQ = \frac{a(p^2 - q^2)}{2a(p-q)}$

$$= \frac{(p-q)(p+q)}{2(p-q)}$$

$$= \frac{1}{2}(p+q)$$

$$y - ap^{2} = \frac{1}{2}(p+q)(x-2ap)$$

$$2y - 2ap^{2} = (p+q)x - 2ap(p+q)$$

$$2y = (p+q)x - 2apq$$

$$2apq = (p+q)x - 2y$$

ii. gradient
$$OP = \frac{ap^2}{2ap} = \frac{p}{2}$$

Similarly OQ has gradient $\frac{q}{2}$

$$\therefore OP \perp OQ \implies \frac{p}{2} \times \frac{q}{2} = -1$$
$$\therefore pq = -4$$

Hence PQ has equation (p+q)x - 2y = -8aand y intercept 4a, which is independent of p and q.

 $\therefore PQ$ passes through the fixed point (0, 4a).

b. Outcomes assessed: PE4

Marking Guidelines

Criteria	Marks
i • uses differentiation to find the gradient of the normal	1
• shows the equation of the normal has the required form	1
ii • substitutes coordinates of R into equation of normal	1
• rearranges to obtain r in terms of t	1

Answer

i.
$$x = 2at$$
 $y = at^2$

$$\frac{dx}{dt} = 2a$$

$$\frac{dy}{dt} = 2at$$

$$\therefore \frac{dy}{dx} = \frac{2at}{2a} = t$$

Normal at T has gradient $-\frac{1}{t}$ and equation

$$y - at^{2} = -\frac{1}{t}(x - 2at)$$
$$t y - at^{3} = -x + 2at$$
$$x + t y = 2at + at^{3}$$

ii. $R(2ar, ar^2)$ lies on this normal if

$$2ar + t ar^{2} = 2at + at^{3}$$

$$2(r - t) = t (t^{2} - r^{2})$$

$$2(r - t) = -t (r - t)(r + t)$$

R and T are distinct points on the parabola. $\therefore r \neq t$. Hence, cancelling (r-t),

$$r + t = -\frac{2}{t}$$

$$r = -\left(t + \frac{2}{t}\right)$$

$$r = \frac{-(t^2 + 2)}{t}$$

c. Outcomes assessed: P4, PE6

Marking Guidelines

Criteria	Marks	
i • uses compound angle formula on each term on LHS then simplifies	1	
ii • repeatedly uses result for $k = 1, 2, 3,, n$	1	
• adds and simplifies	1	
• divides by $2\sin x$ to obtain required result	1	

Answer

i.
$$\cos(k-1)x = \cos(kx-x) = \cos kx \cos x + \sin kx \sin x$$

 $\cos(k+1)x = \cos(kx+x) = \cos kx \cos x - \sin kx \sin x$
 $\therefore \cos(k-1)x - \cos(k+1)x = 2\sin kx \sin x$

ii.
$$2\sin x \sin x = 1 - \cos 2x$$
$$2\sin 2x \sin x = \cos x - \cos 3x$$
$$2\sin 3x \sin x = \cos 2x - \cos 4x$$
$$2\sin 4x \sin x = \cos 3x - \cos 5x$$
...

$$2\sin(n-1)x\sin x = \cos(n-2)x - \cos nx$$

$$2\sin nx \sin x = \cos(n-1)x - \cos(n+1)x$$

$$\therefore 2\sin x \sin x + 2\sin 2x \sin x + 2\sin 3x \sin x + ... + 2\sin nx \sin x = 1 + \cos x - \cos nx - \cos(n+1)x$$

$$\therefore \sin x + \sin 2x + \sin 3x + ... + \sin nx = \frac{1 + \cos x - \cos nx - \cos(n+1)x}{2\sin x}$$

Independent Preliminary Examination 2007 Mathematics Extension 1 Mapping Grid

mucpendent Pr		eliminary Examination 2007 Mathematics Extension	· · · · · · · · · · · · · · · · · · ·	1 Mapping Grid	
			Syllabus	Targeted	
Question	Marks	Content	Outcomes	Performance	
				Bands	
1 ai	1	Basic arithmetic and algebra	P4	E2-E3	
ii	1	Basic arithmetic and algebra	P4	E2-E3	
b i	1	Circle geometry	PE3	E2-E3	
ii	1	Circle geometry	PE3	E2-E3	
c i	1	Circle geometry	PE3	E2-E3	
ii	3	Circle geometry	PE2, PE3	E2-E3	
d i	2	Polynomials	PE3	E2-E3	
ii	2	Polynomials		 	
11	2	Polynomiais	PE2, PE3	E2-E3	
	1		7.4	F0 F0	
2 a i	1	Quadratic polynomial and the parabola	P4	E2-E3	
ii	1	Quadratic polynomial and the parabola	P4	E2-E3	
bi	1	Polynomials	PE3	E2-E3	
ii	1	Polynomials	PE3	E2-E3	
c i	1	Circle geometry	PE3	E2-E3	
ii	3	Circle geometry	PE2, PE3	E2-E3	
d i	2	Polynomials	PE2, PE3	E2-E3	
ii	2	Polynomials	PE2, PE3	E2-E3	
			·		
3 a	3	Inequalities	PE3	E2-E3	
b	3	Angle between two lines	P4	E2-E3	
С	3	Further trigonometry	P4	E2-E3	
d i	1	Further trigonometry	P4	E2-E3	
ii	2	Further trigonometry	P4	E2-E3	
4 a	3	Division of an interval	P4	E2-E3	
ь	3	3D trigonometry	P4, PE1	E3-E4	
С	3	Further trigonometry	P4	E2-E3	
di	1	Further trigonometry	P4	E2-E3	
ii	2	Further trigonometry	P4	E2-E3	
11	2	1 dither digonometry	<u> </u>	1:2-1:3	
5 a	2	Real functions	P5	E2-E3	
b	2	Differentiation	P8		
c i	1	Permutations and combinations		E2-E3	
ii	1 1	Permutations and combinations Permutations and combinations	PE3	E2-E3	
iii	2	†	PE3	E2-E3	
d i	 	Permutations and combinations	PE2, PE3	E3-E4	
ii	1 1	Permutations and combinations	PE3	E2-E3	
		Permutations and combinations	PE3	E2-E3	
iii	2	Permutations and combinations	PE2, PE3	E3-E4	
		D.			
6 ai	2	Parametric representation	PE3	E3-E4	
ii	2	Parametric representation	PE3	E3-E4	
b i	2	Parametric representation	PE4	E3-E4	
ii	2	Parametric representation	PE4	E3-E4	
c i	1	Further trigonometry	P4	E2-E3	
ii	3	Further trigonometry	PE6	E3-E4	
			·		
			•		