Chapter 4: Statistical Decision Theory *

4 Statistical Decision Theory

4.1 Basic Framework and Concepts

• To the usual statistical modeling framework from earlier

$$X, \quad \Theta, \quad \mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$$

we add the following elements

- 1. some "action space" \mathcal{A} with σ -algebra ϵ ,
- 2. a suitably measurable "loss function"

$$L(\theta, a): \Theta \times \mathcal{A} \to [0, \infty),$$

3. and (non-randomized) decision rules

$$\delta(x): (\mathcal{X}, \mathcal{B} \to (\mathcal{A}, \epsilon))$$

For data X, $\delta(x)$ is the action taken based on X.

To identify "good" devusuib rules δ , we have to average our X, which naturally leads to expectation.

• Risk function The mapping from $\Theta \to [0, \infty)$ given by

$$R(\theta, \delta) \equiv R_{\theta}L(\theta, \delta(X)) = \int_{\mathcal{X}} L(\theta, \delta(x)) dP_{\theta}(x)$$

is call the risk function for θ .

- $-\delta$ is at least as good as δ' if $R(\theta, \delta) \leq R(\theta, \delta')$ for all $\theta \in \Theta$
- $-\delta$ is better than δ' if $R(\theta, \delta) \leq R(\theta, \delta')$ for all $\theta \in \Theta$, and $R(\theta_0, \delta) < R(\theta_0, \delta')$ for some θ_0
- $-\delta$ and δ' are risk equivalent if $R(\theta, \delta) = R(\theta, \delta')$ for all $\theta \in \Theta$.
- $-\delta$ is best in a class of decision rules Δ if $\delta \in \Delta$, and δ is at least as good as any other $\delta' \in \Delta$
- Example: $X \sim N(\theta, 1), \theta \in \mathbb{R}$ with Δ = "the class of all estimators of θ ". There is no best element here. Prove by proposing two constant estimators and zero-one loss.
- If there is no best estimator,
 - Try a smaller and appropriate Δ , e.g. unbiased estimators.
 - Reduce the risk function $R(\theta, \delta)$ to a number and compare numbers for different δ 's, e.g.: averaging over θ according to some distribution G on Θ is a way to make "Bayes Risk" and look for "Bayes optimal" decision rules.
 - Maximize $R(\theta, \delta)$ over θ and seek to minimize over δ 's, i.e. mini-max procedures.
- Inadmissible: δ is inadmissible in Δ if there exists $\delta' \in \Delta$ that is better than δ .
- Admissible: δ is admissible in Δ if it is not inadmissible in Δ .

Note: One may never want to use an inadmissible rule, but there are decision problems where every rule is inadmissible.

• Behavorial decision rule: If for each $x \in \mathcal{X}$, ϕ_x is a distribution on (\mathcal{A}, ϵ) , then ϕ_x is called a behavorial decision rule.

^{*}STA643: Advanced Theory of Statistical Inference. Instructed by Dr. Daniel Nordman. Arranged by Zhiling Gu

- $-\mathcal{D}^* \equiv \{\phi_x\} \equiv$ the class of behaviorial decision rules
- $-\mathcal{D}\subset\mathcal{D}^*$ where

$$\mathcal{D} \equiv \{\delta(x)\} \equiv \text{the class of non-randomized decision rules } \delta: \mathcal{X} \to \mathcal{A}$$

- The risk function of a behaviial decision rule is defined as

$$R(\theta,\phi) = \int_{\mathcal{X}} \int_{\mathcal{A}} L(\theta,a) d\phi_x(a) dP_{\theta}(x)$$

- Randomized decision rule: A randomized decision rule ψ is a probability measure on $(\mathcal{D}, \mathcal{F})$ $(\delta, \text{ with a distribution } \psi, \text{ becomes a random object and we take decision } \delta(X).) Notes:$
 - Let $\mathcal{D}_* \equiv \{\psi\} \equiv$ the class of randomized decision rules.
 - It's possible to think of

$$\mathcal{D}\subset\mathcal{D}_*$$

by associating with $\delta \in \mathcal{D}$ a randomized decision rule ψ_{δ} which places mass 1 on δ (i.e. $,\psi_{\delta}(\{\delta\})=1)$

- The risk function of a randomized decision rule is defined as

$$R(\theta, \psi) = \int_{\mathcal{D}} R(\theta, \delta) d\psi(\delta) = \int_{\mathcal{D}} \int_{\mathcal{X}} L(\theta, \delta(x)) dP_{\theta}(x) d\psi(\delta)$$

- Among $(\mathcal{D}, \mathcal{D}^*, \mathcal{D}_*)$, \mathcal{D}^* is perhaps the most natural, while \mathcal{D}_* is the easiest to deal with in some proofs. A natural question is "When are \mathcal{D}^* and \mathcal{D}_* equivalent in termes of generating the same set of risk functions?' It is typically the case under certion space, distribution and loss functions conditions.
 - Example: $(\mathcal{D}, \mathcal{D}^*, \mathcal{D}_*)$ where Behavioural rule and Randomized rule has the same risk function.

$$X \sim \text{Bernoulli } (p), \text{ Estimation of } p \in \Theta \equiv [0,1] \equiv \mathcal{A}$$

$$\mathcal{X} = \{0, 1\}, \quad \mathcal{A} = [0, 1], \quad \delta \in D \iff (\delta(0), \delta(1)) \in [0, 1] \times [0, 1] \equiv \mathcal{A}_0$$

$$\mathcal{D} = \{\delta(x) : \mathcal{X} \to \mathcal{A}\} = \{\delta(x) \mid x = 0, 1 \text{ and } \delta(0), \delta(1) \in [0, 1]\}$$

$$\mathcal{D}^* = \{ \phi_x \mid x = 0, 1 \text{ and } \phi_0, \phi_1 \text{ are distributions on } \mathcal{A} \equiv [0, 1] \}$$

 $\mathcal{D}_* = \{ \psi \mid \psi \text{ is a probability measure on } (\mathcal{D}, \mathcal{F}) \}$

- * $\delta(0) = 0.3$, $\delta(1) = 0.7$ is non-randomized rule
- * $\phi_{X=0} \sim U(0,0.5), \phi_{X=1} \sim U(0.5,1)$ then $\phi_X \in D^*$
- * ψ on D, where ψ has a uniform distribution on $(0,0.5) \times (0.5,1)$ Note: if $\tilde{\delta}$ is randomly chosen according to ψ then we observe $X \in \{0,1\}$, we take $\tilde{\delta}(0)$ if X = 0, $\tilde{\delta}(1)$ if X = 1, so $\psi \in D_*$. That is, first determine the rule, then plug in the observed X.
- * Remark: ϕ_X and ψ in this case are equivalent because

$$\tilde{\delta}(0) \sim U(0, 0.5) \quad \tilde{\delta}(1) \sim U(0.5, 1)$$

- When D^* , D_* contain better tules that are better than those in D? For convex loss functions, rules in D^* , D_* are typically no better.
 - Lemma 51: Suppose that \mathcal{A} is a convex subset of \mathbb{R}^d and ϕ_x is a behavioral decision rule. Define a non-randomized decision rule by

$$\delta(x) = \int_{A} a d\phi_x(a)$$

assuming the integral exists. (In the case that d > 1, interpret $\delta(x)$ as vector-valued, and the integral as a vector of integrals over d coordinates of $a \in \mathcal{A}$.)

1. If $L(\theta, \cdot) : \mathcal{A} \to [0, \infty)$ is convex, then

$$R(\theta, \delta) \le R(\theta, \phi)$$

2. If $L(\theta, \cdot): \mathcal{A} \to [0, \infty)$ is strictly convex, $R(\theta, \phi) < \infty$ and $P_{\theta}(\{x \mid \phi_x \text{ is non-degenerate }\}) > 0$, then

$$R(\theta, \delta) < R(\theta, \phi)$$

Prove by Jensen's Inequality. This lemma shows randomization does not hlep in picking the best decisions. Next two lemmas shows averaging out the randomization will improve convex loss function.

– Corollary 52: Suppose that \mathcal{A} is a convex subset of \mathbb{R}^d , ϕ_x is a behavioral decision rule,

$$\delta(x) = \int_{\mathcal{A}} a d\phi_x(a)$$

assuming the integral exists.

1. If $L(\theta, a): \mathcal{A} \to [0, \infty)$ is convex in a for all θ , then δ is at least as good as ϕ

2. If $L(\theta, a): \mathcal{A} \to [0, \infty)$ is convex in a for all θ and, for some θ_0 , the function $L(\theta_0, a): \mathcal{A} \to [0, \infty)$ is strictly convex in $a, R(\theta_0, \phi) < \infty$ and $P_{\theta_0}(\{x \mid \phi_x \text{ is non-degenerate }\}) > 0$, then δ is better than ϕ

4.2 Finite Dimensional Geometry of Decision Theory

• A helpful device for understanding some of the basics of decision theory is the geometry involved when

$$\Theta = \{\theta_1, \dots, \theta_k\}$$

Assume that $R(\theta, \psi) < \infty$ for all $\theta \in \Theta$ and $\psi \in \mathcal{D}_*$. Note that in this case

$$R(\cdot,\psi):\Theta\to[0,\infty)$$

corresponds to a k-vector in $[0,\infty)^k$

Let $S = \{y_{\psi} = (y_1, y_2, \dots, y_k) \in \mathbb{R}^k \mid y_i = R(\theta_i, \psi) \text{ for all } i \text{ and some } \psi \in \mathcal{D}_*\} = \text{the set of all randomized risk vectors.}$

- Theorem 53: S is a convex set in \mathbb{R}^k
- Let $S^0 = \{y_\delta = (y_1, y_2, \dots, y_k) \in \mathbb{R}^k \mid y_i = R(\theta_i, \delta) \text{ for all } i \text{ and some } \delta \in \mathcal{D}\} = \text{the set of all non-randomized risk vectors. It turns out that } \mathcal{S} \text{ is the convex hull of } \mathcal{S}^0 \text{ (or, equivalently, the smallest convex set containing } \mathcal{S}^0 \text{ or the set of all convex combinations of points in } \mathcal{S}^0 \text{ or the intersection of all convex sets containing } \mathcal{S}^0 \text{)}$
- Lower Quadrant: Definition 54: For $x = (x_1, \ldots, x_k) \in \mathbb{R}^k$, the lower quadrant of x is

$$Q_x = \left\{ z = (z_1, \dots, z_k) \in \mathbb{R}^k \mid z_i \le x_i \text{ for all } i = 1, \dots, k \right\}$$

• Theorem 55: $y \in \mathcal{S}$ (or the decision rule giving rise to y) is admissible if and only if

$$Q_y \cap \mathcal{S} = \{y\}$$

• Definition 56: For \overline{S} the closure of S, the lower boundary of S is

$$\lambda(\mathcal{S}) = \left\{ y \in \mathbb{R}^k \mid Q_y \cap \overline{\mathcal{S}} = \{y\} \right\}$$

• Definition 57 : S is closed from below if $\lambda(S) \subset S$ Denote the set of admissible risk points as

$$A(\mathcal{S}) = \left\{ y \in \mathbb{R}^k \mid Q_y \cap \mathcal{S} = \{y\} \right\}$$

- Theorem 58: If S is closed (i.e., $S = \overline{S}$), then $\lambda(S) = A(S)$
- Theorem 59: If S is closed from below, then $\lambda(S) = A(S)$.

4.3 Complete Classes of Decision Rules

• Complete Class Definition 60: A class of decision rules $\mathcal{C} \subset \mathcal{D}^*$ is a complete class (for \mathcal{D}^*) if, for any given $\phi \notin \mathcal{C}$, there exists $\phi' \in \mathcal{C}$ such that ϕ' is better than ϕ .

Remark: This indicates C contains the best rules that we should focus on.

- Essentially Complete Class Definition 61 : $\mathcal{C} \subset \mathcal{D}^*$ is a called an essentially complete class (for \mathcal{D}^*) if, for any given $\phi \notin \mathcal{C}$, there exists $\phi' \in \mathcal{C}$ such that ϕ' is at least as good as ϕ .
- Minimal Complete Class Definition $62: \mathcal{C} \subset \mathcal{D}^*$ is a minimal complete class for \mathcal{D}^* if \mathcal{C} is complete and is a subset of any other complete class for \mathcal{D}^* . Denote the set of admissible rules in \mathcal{D}^* as $A(\mathcal{D}^*)$ in the following results.
- Theorem 63: If a minimal complete class C exists, then $C = A(D^*)$
- Theorem 64: If $A(\mathcal{D}^*)$ is a complete class, then $A(\mathcal{D}^*)$ is a minimal complete class. Note: The statement " $A(\mathcal{D}^*)$ is a minimal complete class" is, in general, incorrect. Minimimal complete class does not always exists, when \mathcal{S} is not closed and does not contain the minimum Q_y .