Recurrent Neural Networks

James T. Kwok

Feedforward Neural Network

• output depends only on the current input

Learning with Sequences

video processing

machine translation

speech recognition

• acoustic features at successive time frames

Recurrent Neural Network (RNN)

- hidden layers and output depend from previous states of the hidden layers
- new state = function of (old state, input x_t at some time step)

Unfolding a RNN

- the same weights are used for different instances of the artificial neurons at different time steps
- multiple copies of the same network, each passing the old state to a successor
 - state: keeps some important aspects of the past sequence

Vanishing and Exploding Gradients

problem

vanishing gradients

• gradient signal gets so small that learning either becomes very slow or stops working altogether

exploding gradients

• gradient signal is so large that it can cause learning to diverge

Long Short-Term Memory (LSTM)

RNN

LSTM

Input Gate

$$\tilde{C}_t = \tanh(W_C[h_{t-1}, x_t] + b_C)$$

• creates a vector that can be added to the state

(input gate)
$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$$

 allows incoming signal to alter the state of the memory cell or block it

Cell State

Forget Gate

(forget gate)
$$f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)$$

- allow the cell to remember or forget its previous state
- information stays in the cell so long as its forget gate is on

$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t$$

● ⊙: elementwise multiplication

Output Gate

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$

 output gate can allow/prevent the state of the memory cell to have an effect on other neurons

$$h_t = o_t \odot \tanh(C_t)$$

Combination with Other Deep Networks

Example (image captioning)

image \rightarrow sequence of words

- use CNN to extract image features
- the LSTM is placed after the convolution layer of the CNN

Example: Activity Recognition

Example: Machine Translation

