1-2-1.로그의 뜻과 성질

수학 계산력 강화

(1)로그의 정의와 기본 성질

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 로그의 정의

(1) 로그의 정의

: a>0, $a\neq 1$ 일 때, 양수 N에 대하여 $x = \log_a N$ 밑 $a^x = N$ 을 만족시키는 실수 x를 a를 **밑**으로 하는 N의 로그라 하고 기호로는 $\log_{n}N$ 과 같이 나타낸다. 이때 N을 $\log_a N$ 의 **진수**라 한다.

(2) 로그의 밑과 진수의 조건 ① 밑의 조건 : a > 0, $a \neq 1$

② 진수의 조건 : <u>N>0</u>

☑ 다음 등식을 로그를 사용하여 나타내어라.

1.
$$125^{\frac{1}{3}} = 5$$

2.
$$5^{\frac{1}{2}} = \sqrt{5}$$

3.
$$3^4 = 81$$

4.
$$10^{-3} = 0.001$$

5.
$$2^{-3} = \frac{1}{8}$$

6.
$$10^4 = 10000$$

7.
$$\left(\frac{1}{5}\right)^{-3} = 125$$

☑ 다음 등식을 만족하는 x의 값을 구하여라.

8.
$$\log_x 2 = 4$$

9.
$$\log_x 16 = 4$$

10.
$$\log_{\frac{1}{3}} x = -2$$

11.
$$\log_3 x = 4$$

12.
$$\log_x 100000 = 5$$

13.
$$\log_3 x = -4$$

14.
$$\log_4 \frac{1}{64} = x$$

15.
$$\log_2 1024 = x$$

16.
$$\log_x \frac{1}{100} = -2$$

$lacksymbol{\square}$ 다음 값이 존재하기 위한 실수 x의 값의 범위를 구하여

17.
$$\log_{x+2} 3$$

18.
$$\log_2(x+1)$$

19.
$$\log_{x-1} 7$$

20.
$$\log_3(x+1)$$

21.
$$\log_{x-2} (5-x)$$

22.
$$\log_{x+3}(x-1)$$

23.
$$\log_x (x^2 + 2x - 3)$$

24.
$$\log_{x-1}(-x^2+2x+24)$$

25.
$$\log_{x+1}(x^2-2x-8)$$

26.
$$\log_5(x^2-x-12)$$

27.
$$\log_3(x-1)(x-4)$$

28.
$$\log_{x-2}(x^2-8x+15)$$

29.
$$\log_{x-1} (-x^2 + 3x + 10)$$

02 / 로그의 성질

$$a>0$$
, $a\neq 1$, $M>0$, $N>0일 때$

- (1) $\log_a 1 = 0$, $\log_a a = 1$
- (2) $\log_a MN = \log_a M + \log_a N$

(3)
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

(4)
$$\log_a M^k = k \log_a M$$
 (단, k 는 실수)

☑ 다음 식의 값을 구하여라.

30.
$$\log_5 1$$

31.
$$\log_2 2^{\frac{3}{7}}$$

32.
$$\log_{10} \sqrt{0.01}$$

33.
$$\log_7 7^{-4}$$

- **34.** $\log_2 0.25$
- **35.** $\log_{49} \sqrt{343}$
- **36.** $\log_2 \sqrt[3]{16}$
- **37.** $\log_{12} \frac{1}{144}$
- **38.** $2 \log_5 \sqrt{5}$
- **39.** $\log_{0.25} 4$
- **40.** $\log_{2\sqrt{2}} \sqrt[4]{32}$
- **41.** $\log_{125} \sqrt[3]{25}$
- **42.** $\log_3 63 \log_3 7$
- **43.** $9^{\frac{3}{2}} + \log_3 81$

- **44.** $\log_6 3 + \log_6 12$
- **45.** $\log_2 18 2 \log_2 6$
- **46.** $\log_4 2 + \log_4 8$
- **47.** $\log_2 16 + \log_2 \frac{1}{8}$
- **48.** $\log_3 24 + 3 \log_3 \frac{3}{2}$
- **49.** $\log_{12} 4 + \log_{12} 3$
- **50.** $\log_3 36 + \log_3 \frac{1}{4}$
- **51.** $\log_6 \frac{8}{3} + \log_6 \frac{27}{2}$
- **52.** $\log_8 \frac{1}{2} \log_8 \frac{1}{128}$
- **53.** $\log_2 \sqrt[3]{128} + \log_2 \sqrt[3]{4}$
- **54.** $\log_{\frac{1}{2}} \frac{1}{3} \log_{\frac{1}{2}} \frac{1}{24}$

55.
$$\log_6 72 - \log_6 \frac{1}{3}$$

56.
$$\log_3 6 + \log_3 2 - \log_3 4$$

57.
$$\log_3 \sqrt{27} - \log_3 \frac{1}{\sqrt{3}}$$

58.
$$\log_2 \frac{4}{3} + 2 \log_2 \sqrt{12}$$

59.
$$\frac{1}{\sqrt[3]{8}} \times \log_3 81$$

60.
$$\log_2 \sqrt{3} + \frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \sqrt[3]{6}$$

61.
$$\log_2 12 + \log_2 \frac{1}{3} + \log_2 6 - 2\log_2 \sqrt{3}$$

62.
$$\log_{\sqrt{3}} 2\sqrt{3} - \log_9 \frac{9}{16} + 2\log_{\frac{1}{3}} \frac{4}{3}$$

63.
$$\log_5 \sqrt{6} - \log_{25} 3 - \frac{3}{2} \log_5 \sqrt[3]{2}$$

64.
$$3\log_3 2 + \frac{1}{2}\log_3 5 - \log_3 8\sqrt{5}$$

65.
$$\log_6 45 + \log_6 20 - 2 \log_6 5$$

66.
$$\frac{1}{2}\log_2 12 + \log_2 \sqrt{6} - \log_2 \frac{3}{2}$$

67.
$$\log_2 3 - \log_2 \frac{9}{2} + \log_2 12$$

68.
$$\log_{\frac{1}{3}} \frac{\sqrt{3}}{2} + \log_{\frac{1}{3}} 2\sqrt{3}$$

69.
$$\frac{2}{3}\log_3\sqrt{10} - \frac{2}{3}\log_3\frac{1}{2} + 2\log_3\sqrt[3]{5}$$

70.
$$\log_2(\log_3 25) + \log_2(\log_5 9)$$

- \square $\log_{10} 2 = a$, $\log_{10} 3 = b$ 일 때, 다음을 a, b로 나타내어라.
- **71.** $\log_{10} 5$
- **72.** $\log_{10} 45$
- **73.** log₁₀ 60
- **74.** $\log_{10} \sqrt[4]{15}$
- **75.** $\log_{10} \left(\frac{4}{5}\right)^3$
- **76.** $\log_{10} 0.072$
- **77.** $\log_{10} \sqrt{72}$
- **78.** $\log_{10} 24$
- **79.** $\log_{10} \frac{8}{27}$

- **80.** $\log_{10} \frac{9}{32}$
- **81.** $\log_{10} \frac{1}{125}$

4

정답 및 해설

1)
$$\log_{125} 5 = \frac{1}{3}$$

2)
$$\log_5 \sqrt{5} = \frac{1}{2}$$

3)
$$4 = \log_3 81$$

4)
$$\log_{10} 0.001 = -3$$

5)
$$\log_2 \frac{1}{8} = -3$$

6)
$$\log_{10} 10000 = 4$$

7)
$$\log_{\frac{1}{5}} 125 = -3$$

8)
$$\sqrt[4]{2}$$

$$\Rightarrow \log_x 2 = 4$$
에서 $x^4 = 2$

$$x = 2^{\frac{1}{4}} = \sqrt[4]{2}$$

$$\Rightarrow \log_x 16 = 4$$
에서 $x^4 = 16$

$$\therefore x = 16^{\frac{1}{4}} = (2^4)^{\frac{1}{4}} = 2$$

10) 9

$$\Rightarrow \log_{\frac{1}{3}} x = -2 \text{ odd } x = \left(\frac{1}{3}\right)^{-2} = 9$$

- $\Rightarrow \log_3 x = 4$ 에서 $x = 3^4 = 81$
- 12) 10

다
$$\log_x 100000 = 5$$
에서 $x^5 = 100000$ 이대, $100000 = 10^5$ 이므로 $x^5 = 10^5$ $\therefore x = 10$

13)
$$\frac{1}{81}$$

$$\Rightarrow \log_3 x = -40 \text{ M/ } x = 3^{-4} = \frac{1}{81}$$

$$14) -3$$

$$ightharpoonup \log_4 \frac{1}{64} = x$$
에서 $4^x = \frac{1}{64}$ 이때, $\frac{1}{64} = 4^{-3}$ 이므로 $4^x = 4^{-3}$ $\therefore x = -3$

다
$$\log_2 1024 = x$$
에서 $2^x = 1024$ 이대. $1024 = 2^{10}$ 이므로 $2^x = 2^{10}$ $\therefore x = 10$

$$\Rightarrow \log_x \frac{1}{100} = -2 \text{ online} \quad x^{-2} = \frac{1}{100}$$

$$1 \quad (1)^2$$

$$\frac{1}{x^2} = \left(\frac{1}{10}\right)^2$$

$$x^2 = 10^2 \qquad \qquad \therefore \quad x = \pm 10$$

그런데 x > 0이므로 x = 10

17) -2 < x < -1 또는 x > -1

$$\Rightarrow$$
 밑 조건에서 $x+2>0$, $x+2\neq 1$

$$\therefore x > -2, x \neq -1$$

∴
$$-2 < x < -1$$
 또는 $x > -1$

18)
$$x > -1$$

$$\Rightarrow$$
 진수의 조건에서 $x+1>0$ $\therefore x>-1$

19)
$$1 < x < 2$$
 또는 $x > 2$

다 밑의 조건에서
$$x-1>0$$
, $x-1\neq 1$
즉, $x>1$, $x\neq 2$ 이므로 $1< x<2$ 또는 $x>2$

20)
$$x > -1$$

$$\Rightarrow$$
 진수의 조건에서 $x+1>0$ $\therefore x>-1$

21)
$$2 < x < 3$$
 또는 $3 < x < 5$

또, 진수의 조건에서
$$5-x>0$$

22) x > 1

$$\Rightarrow$$
 밑의 조건에서 $x+3>0$, $x+3\neq 1$

$$-3 < x < -2$$
 도는 $x > -2$ ····· ①

또, 진수의 조건에서
$$x-1>0$$
 $\therefore x>1 \cdots \cdots$ ©

$$\bigcirc$$
, \bigcirc 의 공통범위이므로 $x > 1$

23) x > 1

$$\Rightarrow$$
 (i) 밑 조건에서 $x > 0, x \neq 1$

(ii) 진수 조건에서
$$x^2+2x-3>0$$

$$(x+3)(x-1) > 0$$

(i), (ii)에서
$$x > 1$$

24) 1 < x < 2 또는 2 < x < 6

$$\Rightarrow$$
 밑의 조건에서 $x-1>0, x-1\neq 1$

즉, *x* > 1, *x*≠2이므로

$$1 < x < 2$$
 $\subseteq x > 2 \cdots$

또, 진수의 조건에서
$$-x^2 + 2x + 24 > 0$$
,

$$x^2 - 2x - 24 < 0$$

$$1 < x < 2$$
 또는 $2 < x < 6$

25)
$$x > 4$$

- \Rightarrow 밑의 조건에서 x+1>0, $x+1\neq 1$
 - 즉, *x* >−1, *x*≠0이므로
 - -1 < x < 0 또는 x > 0

····· 🗇

- 또, 진수의 조건에서
- $x^2-2x-8>0$, (x+2)(x-4)>0
- $\therefore x < -2 \subseteq x > 4$

- \bigcirc , \bigcirc 의 공통 범위이므로 x>4
- 26) x < -3 또는 x > 4
- \Rightarrow 진수의 조건에서 $x^2-x-12>0$

(x+3)(x-4) > 0 $\therefore x < -3 \subseteq x > 4$

- 27) x < 1 또는 x > 4
- \Rightarrow 진수의 조건에서 (x-1)(x-4) > 0
 - $\therefore x < 1 \subseteq x > 4$
- 28) 2 < x < 3 또는 x > 5
- \Rightarrow 밑의 조건에서 x-2>0, $x-2\neq 1$
 - 즉, *x* > 2, *x*≠3이므로
 - 2 < x < 3 또는 x > 3 ····· \bigcirc
 - 또, 진수의 조건에서 $x^2 8x + 15 > 0$
 - (x-3)(x-5) > 0
 - $\therefore x < 3$ 또는 x > 5 \cdots
 - \bigcirc , \bigcirc 의 공통범위이므로 2 < x < 3 또는 x > 5
- 29) 1 < x < 2 또는 2 < x < 5
- \Rightarrow (i) 밑 조건에서 x-1>0, $x-1\neq 1$
 - $\therefore x > 1, x \neq 2$
 - (ii) 진수 조건에서 $-x^2+3x+10>0$
 - $x^2 3x 10 < 0$
 - (x+2)(x-5) < 0 : -2 < x < 5
 - (i), (ii)에서 1<x<2 또는 2<x<5
- 30) 0
- 31) $\frac{3}{7}$
- 32) -1
- $\Rightarrow \log_{10} \sqrt{0.01} = \log_{10} (10^{-2})^{\frac{1}{2}} = \log_{10} 10^{-1} = -1$
- 33) -4
- 34) -2
- $\Rightarrow \ \log_2 0.25 = \log_2 \frac{1}{4} = \log_2 2^{-2} = \ 2 \log_2 2 = \ 2$
- 35) $\frac{3}{4}$
- \Rightarrow $\log_{49} \sqrt{343} = x$ 로 놓으면 로그의 정의에 의하여

$$49^x = \sqrt{343}$$
이므로 $(7^2)^x = \sqrt{7^3}$

$$7^{2x} = 7^{\frac{3}{2}}$$
에서 $2x = \frac{3}{2}$ $\therefore x = \frac{3}{4}$

$$\log_{49} \sqrt{343} = \frac{3}{4}$$

- $\Rightarrow \log_2 \sqrt[3]{16} = \log_2 16^{\frac{1}{3}} = \log_2 2^{\frac{4}{3}} = \frac{4}{2}$
- 37) -2
- $\Rightarrow \log_{12} \frac{1}{144} = \log_{12} \left(\frac{1}{12}\right)^2 = \log_{12} 12^{-2} = -2$
- $\Rightarrow 2 \log_5 \sqrt{5} = \log_5 (\sqrt{5})^2 = \log_5 5 = 1$
- 39) -1
- □ log_{0.25} 4 = x로 놓으면 로그의 정의에 의하여

$$0.25^x = 4$$
이므로 $\left(\frac{1}{4}\right)^x = 4$

- $4^{-x} = 4$ $\therefore x = -1$
- $\log_{0.25} 4 = -1$
- 40) $\frac{5}{6}$
- $\Rightarrow \log_{2\sqrt{2}} \sqrt[4]{32} = x$ 로 놓으면 로그의 정의에 의하여

$$(2\sqrt{2})^x = \sqrt[4]{32}$$
이므로 $(2^{\frac{3}{2}})^x = 2^{\frac{5}{4}}$

$$2^{\frac{3}{2}x} = 2^{\frac{5}{4}}$$
에서

$$\frac{3}{2}x = \frac{5}{4} \qquad \therefore \quad x = \frac{5}{6}$$

$$\therefore \log_{2\sqrt{2}} \sqrt[4]{32} = \frac{5}{6}$$

- 41) $\frac{2}{9}$
- $\ \
 ightharpoons \ \log_{125}\sqrt[3]{25} = x$ 로 놓으면 로그의 정의에 의하여

$$125^x = \sqrt[3]{25}$$
이므로 $(5^3)^x = 5^{\frac{2}{3}}$

$$5^{3x} = 5^{\frac{2}{3}}$$
에서

$$3x = \frac{2}{3}$$
 $\therefore x = \frac{2}{9}$

$$\log_{125} \sqrt[3]{25} = \frac{2}{9}$$

- $\Rightarrow \log_3 63 \log_3 7 = \log_3 \frac{63}{7} = \log_3 9 = \log_3 3^2 = 2$
- 43) 31
- $\Rightarrow 9^{\frac{3}{2}} + \log_3 81 = (3^2)^{\frac{3}{2}} + \log_3 3^4 = 3^{2 \times \frac{3}{2}} + 4 \log_3 3$ = 27 + 4 = 31
- 44) 2

$$\Rightarrow \log_6 3 + \log_6 12 = \log_6 (3 \times 12) = \log_6 36$$
$$= \log_6 6^2 = 2 \log_6 6 = 2$$

$$45) -1$$

$$\begin{array}{l} \Leftrightarrow \ \log_2 18 - 2 \log_2 6 \\ = \log_2 \left(2 \cdot 3^2 \right) - 2 \log_2 \left(2 \cdot 3 \right) \\ = \log_2 2 + 2 \log_2 3 - 2 (\log_2 2 + \log_2 3) \\ = 1 + 2 \log_2 3 - 2 - 2 \log_2 3 \\ = -1 \end{array}$$

$$\Rightarrow \log_2 16 + \log_2 \frac{1}{8} = \log_2 \left(16 \times \frac{1}{8} \right) = \log_2 2 = 1$$

48) 4

$$\begin{array}{l} \Longrightarrow \ \log_3 24 + 3 \log_3 \frac{3}{2} \\ = \log_3 \left(2^3 \cdot 3 \right) + 3 (\log_3 3 - \log_3 2) \\ = \log_3 2^3 + \log_3 3 + 3 \log_3 3 - 3 \log_3 2 \\ = 3 \log_3 2 + 1 + 3 - 3 \log_3 2 \\ = 4 \end{array}$$

49) 1

$$\Rightarrow \log_{12} 4 + \log_{12} 3 = \log_{12} (4 \times 3) = \log_{12} 12 = 1$$

50) 2

$$\Rightarrow \log_3 36 + \log_3 \frac{1}{4} = \log_3 \left(36 \times \frac{1}{4}\right) = \log_3 9 = \log_3 3^2 = 2$$

51) 2

$$\Rightarrow \log_6 \frac{8}{3} + \log_6 \frac{27}{2} = \log_6 \left(\frac{8}{3} \times \frac{27}{2} \right)$$
$$= \log_6 36 = \log_6 6^2 = 2$$

52) 2

$$\Rightarrow \log_8 \frac{1}{2} - \log_8 \frac{1}{128}$$

$$= \log_8 \left(\frac{1}{2} \div \frac{1}{128} \right) = \log_8 \left(\frac{1}{2} \times 128 \right)$$

$$= \log_8 64 = \log_8 8^2 = 2$$

$$\Rightarrow \log_2 \sqrt[3]{128} + \log_2 \sqrt[3]{4}$$

$$= \log_2 \left(\sqrt[3]{128} \times \sqrt[3]{4} \right) = \log_2 \sqrt[3]{512}$$

$$= \log_2 2^{\frac{9}{3}} = \log_2 2^3 = 3$$

$$54) -3$$

$$\Rightarrow \log_{\frac{1}{2}} \frac{1}{3} - \log_{\frac{1}{2}} \frac{1}{24}$$

$$\begin{split} &= \log_{\frac{1}{2}} \left(\frac{1}{3} \div \frac{1}{24} \right) = \log_{\frac{1}{2}} \left(\frac{1}{3} \times 24 \right) \\ &= \log_{\frac{1}{2}} 8 = \log_{\frac{1}{2}} \left(\frac{1}{2} \right)^{-3} = -3 \end{split}$$

55) 3

$$\Rightarrow \log_6 72 - \log_6 \frac{1}{3} = \log_6 \left(72 \div \frac{1}{3} \right) = \log_6 \left(72 \times 3 \right)$$
$$= \log_6 216 = \log_6 6^3 = 3$$

56) 1

57) 2

$$\Rightarrow \log_3 \sqrt{27} - \log_3 \frac{1}{\sqrt{3}}$$

$$= \log_3 \frac{\sqrt{27}}{\frac{1}{\sqrt{3}}} = \log_3 \sqrt{81} = \log_3 9$$

$$= \log_3 3^2 = 2$$

58) 4

$$\Rightarrow \log_2 \frac{4}{3} + 2\log_2 \sqrt{12}$$

$$= \log_2 \frac{4}{3} + \log_2 12 = \log_2 \left(\frac{4}{3} \times 12\right)$$

$$= \log_2 16 = \log_2 2^4 = 4\log_2 2 = 4$$

$$\Rightarrow \frac{1}{\sqrt[3]{8}} \times \log_3 81 = \frac{1}{\sqrt[3]{2^3}} \times \log_3 3^4 = \frac{1}{2} \times 4 = 2$$

60)
$$-1$$

61) 3

$$\Rightarrow \log_2 12 + \log_2 \frac{1}{3} + \log_2 6 - 2\log_2 \sqrt{3}$$

$$= \log_2 \left(\frac{12 \cdot \frac{1}{3} \cdot 6}{3} \right) = \log_2 8 = 3$$

62) 2

$$\begin{split} & \Rightarrow \log_{\sqrt{3}} 2\sqrt{3} - \log_9 \frac{9}{16} + 2\log_{\frac{1}{3}} \frac{4}{3} \\ & = \log_{\frac{1}{3^2}} 2\sqrt{3} - \log_{3^2} \frac{9}{16} + 2\log_{3^{-1}} \frac{4}{3} \\ & = \log_3 12 - \log_3 \frac{3}{4} - \log_3 \frac{16}{9} \\ & = \log_3 \left(\frac{12}{\frac{3}{4} \cdot \frac{16}{9}}\right) \\ & = \log_3 9 = 2 \end{split}$$

63) 0

$$\begin{aligned} & \Rightarrow & \log_5 \sqrt{6} - \log_{25} 3 - \frac{3}{2} \log_5 \sqrt[3]{2} \\ & = \frac{1}{2} \log_5 6 - \frac{1}{2} \log_5 3 - \frac{1}{2} \log_5 2 \\ & = \frac{1}{2} \log_5 \left(\frac{6}{3 \cdot 2}\right) \\ & = \frac{1}{2} \log_5 1 = 0 \end{aligned}$$

- 64) 0
- 65)2

$$\begin{array}{l} \Longrightarrow \log_6 45 + \log_6 20 - 2\log_6 5 \\ = \log_6 45 + \log_6 20 - \log_6 5^2 \\ = \log_6 \frac{45 \times 20}{25} = \log_6 36 \\ = \log_6 6^2 = 2 \end{array}$$

66)
$$\frac{5}{2}$$

$$\Rightarrow \frac{1}{2} \log_2 12 + \log_2 \sqrt{6} - \log_2 \frac{3}{2}$$

$$= \log_2 12^{\frac{1}{2}} + \log_2 \sqrt{6} - \log_2 \frac{3}{2}$$

$$= \log_2 \sqrt{12} + \log_2 \sqrt{6} - \log_2 \frac{3}{2}$$

$$= \log_2 \left(\sqrt{12} \times \sqrt{6} \div \frac{3}{2}\right)$$

$$= \log_2 4 \sqrt{2} = \log_2 2^{\frac{5}{2}} = \frac{5}{2}$$

- $\Rightarrow \log_2 3 \log_2 \frac{9}{2} + \log_2 12 = \log_2 \frac{3 \times 12}{\frac{9}{2}} = \log_2 8$ $= \log_2 2^3 = 3$

$$\begin{array}{l} \Longrightarrow \ \log_{\frac{1}{3}} \frac{\sqrt{3}}{2} + \log_{\frac{1}{3}} 2\sqrt{3} = \log_{\frac{1}{3}} \left(\frac{\sqrt{3}}{2} \times 2\sqrt{3} \right) \\ = \log_{\frac{1}{3}} 3 = \log_{\frac{1}{3}} \left(\frac{1}{3} \right)^{-1} = -1 \end{array}$$

69) log₃10

$$\Rightarrow \frac{2}{3}\log_3\sqrt{10} - \frac{2}{3}\log_3\frac{1}{2} + 2\log_3\sqrt[3]{5}$$

$$= \log_3\left(10^{\frac{1}{2}}\right)^{\frac{2}{3}} - \log_3\left(2^{-1}\right)^{\frac{2}{3}} + \log_3\left(5^{\frac{1}{3}}\right)^2$$

$$= \log_3\left\{\frac{\left(10\right)^{\frac{1}{3}} \cdot \left(5\right)^{\frac{2}{3}}}{\left(2\right)^{-\frac{2}{3}}}\right\}$$

$$= \log_{3} \left\{ \frac{(2)^{\frac{1}{3}} \cdot (5)^{\frac{1}{3}} \cdot (5)^{\frac{2}{3}}}{(2)^{-\frac{2}{3}}} \right\}$$

$$= \log_{3}(2 \cdot 5)$$

$$= \log_{3}10$$

- $\Rightarrow \log_2(\log_3 25) + \log_2(\log_5 9)$ $=\log_2\{(\log_3 25) \times (\log_5 9)\}$ $=\log_2\{(2\log_3 5)\times(\log_5 9)\}$ $=\log_2(2\log_3 9)$ $= \log_2(4\log_3 3)$ $= log_2 4$ =2
- 71) 1-a

$$\Rightarrow \log_{10} 5 = \log_{10} \frac{10}{2} = \log_{10} 10 - \log_{10} 2 = 1 - a$$

- $\Rightarrow \log_{10} 45 = \log_{10} (5 \times 3^2) = \log_{10} 5 + \log_{10} 3^2$ $=\log_{10}\frac{10}{2}+2\log_{10}3$ $=\log_{10} 10 - \log_{10} 2 + 2 \log_{10} 3$ =-a+2b+1
- 73) a+b+1
- $\Rightarrow \log_{10} 60 = \log_{10} (2 \times 3 \times 10)$ $=\log_{10} 2 + \log_{10} 3 + \log_{10} 10 = a + b + 1$
- 74) $\frac{1}{4}(-a+b+1)$

$$\Rightarrow \log_{10} \sqrt[4]{15} = \frac{1}{4} \log_{10} 15 = \frac{1}{4} \log_{10} (3 \times 5)$$

$$= \frac{1}{4} (\log_{10} 3 + \log_{10} 5)$$

$$= \frac{1}{4} (\log_{10} 3 + \log_{10} 10 - \log_{10} 2)$$

$$= \frac{1}{4} (-a + b + 1)$$

- 75) 9a-3
- $\Rightarrow \log_{10} \left(\frac{4}{5}\right)^3 = 3(\log_{10} 4 \log_{10} 5)$ $=3(\log_{10} 2^2 - \log_{10} 5)$ $=3\left(2\log_{10}2-\log_{10}\frac{10}{2}\right)$ $=3(2\log_{10}2-(\log_{10}10-\log_{10}2))$ $=3\{2a-(1-a)\}=3(3a-1)$ =9a-3
- 76) 3a+2b-3

$$\Rightarrow \log_{10} 0.072 = \log_{10} \frac{72}{1000} = \log_{10} \frac{2^3 \times 3^2}{10^3}$$
$$= \log_{10} 2^3 + \log_{10} 3^2 - \log_{10} 10^3$$
$$= 3 \log_{10} 2 + 2 \log_{10} 3 - 3$$
$$= 3a + 2b - 3$$

77)
$$\frac{3}{2}a + b$$

$$\Rightarrow \log_{10} \sqrt{72} = \log_{10} 72^{\frac{1}{2}} = \frac{1}{2} \log_{10} 72$$

$$= \frac{1}{2} \log_{10} (2^3 \times 3^2)$$

$$= \frac{1}{2} (3 \log_{10} 2 + 2 \log_{10} 3)$$

$$= \frac{1}{2} (3a + 2b) = \frac{3}{2} a + b$$

78)
$$3a+b$$

$$\begin{array}{l} \Longrightarrow \ \log_{10} 24 = \log_{10} \left(2^3 \times 3 \right) = \log_{10} 2^3 + \log_{10} 3 \\ = 3 \log_{10} 2 + \log_{10} 3 \\ = 3a + b \end{array}$$

79)
$$3a - 3b$$

$$\Rightarrow \log_{10} \frac{8}{27} = \log_{10} \frac{2^3}{3^3} = \log_{10} 2^3 - \log_{10} 3^3$$
$$= 3 \log_{10} 2 - 3 \log_{10} 3 = 3a - 3b$$

80)
$$2b-5a$$

$$\Rightarrow \log_{10} \frac{9}{32} = \log_{10} \frac{3^2}{2^5} = \log_{10} 3^2 - \log_{10} 2^5$$
$$= 2 \log_{10} 3 - 5 \log_{10} 2 = 2b - 5a$$

81)
$$3a-3$$

$$\Rightarrow \log_{10} \frac{1}{125} = \log_{10} 5^{-3} = -3 \log_{10} 5$$
$$= -3 \log_{10} \frac{10}{2} = -3(1-a) = 3a - 3$$