Lab 9 TASK 3

Dr. W. Stewart

- Using myboot() make 95% (alpha=0.05) bootstrap intervals (iter=10000) for the population mean μ and record the plots when the following samples are used:
 - A) set.seed(39); sam=rnorm(25, mean=25, sd=10)
 - B) set.seed(30); sam=rchisq(20,df=3)
 - C) set.seed(40); sam=rgamma(30, shape=2, scale=3)
 - D) set.seed(10); sam=rbeta(20, shape1=3, shape2=4)
- In each of the above cases how close is the point estimate to the population value? HINT:
 You will need to calculate the population mean.
 - In each of the above cases does the interval contain the population value? (HINT: You will need to calculate the population mean. See MS chapter 5 or use Wikipedia)
 - Using myboot() make 80% (alpha=0.20) bootstrap intervals (iter=10000) for the population variance σ^2 and record the plots when the following samples are used:
 - A) set.seed(39); sam=rnorm(25, mean=25, sd=10)
 - B) set.seed(30); sam=rchisq(20,df=3)
 - C) set.seed(40); sam=rgamma(30, shape=2, scale=3)
 - D) set.seed(10); sam=rbeta(20,shape1=3,shape2=4)

Needs attention

Chi square

Notation	$\chi^2(k)$ or χ^2_k		
Parameters	$k \in \mathbb{N}^*$ (known as "degrees of freedom")		
Support	$x\in (0,+\infty)$ if $k=1$, otherwise		
	$x \in [0, +\infty)$		
PDF	$rac{1}{2^{k/2}\Gamma(k/2)} \; x^{k/2-1} e^{-x/2}$		
	$2^{k/2}\Gamma(k/2)$		
CDF	$\left \frac{1}{\Gamma(k/2)} \gamma\left(\frac{k}{2}, \frac{x}{2}\right) \right $		
Mean	k		
Median	$pprox kigg(1-rac{2}{9k}igg)^3$		
Mode	$\max(k-2,0)$		
Variance	2k		
Skewness	$\sqrt{8/k}$		
Ex.	$\frac{12}{k}$		
kurtosis	k		
Entropy	$\frac{1}{2} + \ln(2\Gamma(\frac{1}{2}))$		
	$+(1-rac{k}{2})\psi(rac{k}{2})$		
MGF	$(1-2t)^{-k/2}$ for $t<rac{1}{2}$		
CF	$(1-2it)^{-k/2}$ [1]		
PGF	$(1 - 2 \ln t)^{-k/2}$ for $0 < t < \sqrt{e}$		

Gamma distribution

Shape = 2 Scale = 3

$$\mu = 2 * 3 = 6$$

$$\sigma^2 = 2 * 3^2 = 18$$

Parameters	• k > 0 shape	• α > 0 shape
	• θ > 0 scale	• β > 0 rate
Support	$x \in (0, \infty)$	$x \in (0, \infty)$
PDF	$f(x) = rac{1}{\Gamma(k) heta^k} x^{k-1} e^{-rac{x}{ heta}}$	$f(x) = rac{eta^{lpha}}{\Gamma(lpha)} x^{lpha-1} e^{-eta x}$ $F(x) = rac{1}{\Gamma(lpha)} \gamma(lpha, eta x)$
CDF	$F(x) = \frac{1}{\Gamma(k)} \gamma\left(k, \frac{x}{\theta}\right)$	$F(x) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)$
Mean	$k\theta$	$\frac{\alpha}{\beta}$
Median	No simple closed form	No simple closed form
Mode	$(k-1)\theta$ for $k \ge 1$, 0 for $k < 1$	$\frac{\alpha-1}{\beta}$ for $\alpha \ge 1$, 0 for $\alpha < 1$
Variance	$k\theta^2$	$\frac{\alpha}{\beta^2}$
Skewness	$\frac{2}{\sqrt{k}}$	$\frac{2}{\sqrt{\alpha}}$
Ex. kurtosis	$\frac{6}{k}$	$\frac{6}{\alpha}$
Entropy	$k + \ln \theta + \ln \Gamma(k) + (1 - k)\psi(k)$	$egin{aligned} lpha - \ln eta + \ln \Gamma(lpha) \ + (1-lpha) \psi(lpha) \end{aligned}$
MGF	$(1 - \theta t)^{-k}$ for $t < \frac{1}{\theta}$	$\left(1 - \frac{t}{\beta}\right)^{-\alpha}$ for $t < \beta$
CF	$(1- heta it)^{-k}$	$\left(1-rac{it}{eta} ight)^{-lpha}$
Fisher information	$I(k, heta) = \left(egin{array}{cc} \psi^{(1)}(k) & heta^{-1} \ heta^{-1} & k heta^{-2} \end{array} ight)$	$I(lpha,eta) = egin{pmatrix} \psi^{(1)}(lpha) & -eta^{-1} \ -eta^{-1} & lphaeta^{-2} \end{pmatrix}$
	$k = rac{E[X]^2}{V[X]} \ V[X]$	$\alpha = \frac{E[X]^2}{V[X]} \ \beta = \frac{E[X]}{V[X]}$
	$ heta = rac{V[X]}{E[X]}$	

Beta

Parameters α > 0 shape (real) $\beta > 0$ shape (real) $x \in [0,1] \text{ or } x \in (0,1)$ $x^{\alpha-1}(1-x)^{\beta-1}$ $B(\alpha, \beta)$ where $\mathrm{B}(lpha,eta)=rac{\Gamma(lpha)\Gamma(eta)}{\Gamma(lpha+eta)}$ and Γ is the Gamma function. CDF $I_x(\alpha, \beta)$ (the regularized incomplete beta function) Mean $E[X] = \frac{\alpha}{\alpha + \beta}$ $\mathrm{E}[\ln X] = \psi(\alpha) - \psi(\alpha + \beta)$ $E[X \ln X] = \frac{\alpha}{\alpha + \beta} \left[\psi(\alpha + 1) - \psi(\alpha + \beta + 1) \right]$ (see section: Geometric mean) where ψ is the digamma function $I_{\frac{1}{2}}^{[-1]}(\alpha,\beta)$ (in general) Median $pprox rac{lpha - rac{1}{3}}{o + eta - rac{2}{3}} ext{ for } lpha, eta > 1$ Mode $\frac{\alpha-1}{\alpha+\beta-2}$ for $\alpha,\beta > 1$ any value in (0, 1) for $\alpha, \beta = 1$ $\{0, 1\}$ (bimodal) for $\alpha, \beta < 1$ 0 for $\alpha \le 1$, $\beta > 1$ 1 for $\alpha > 1$, $\beta \le 1$ $var[X] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ Variance $\operatorname{var}[\ln X] = \psi_1(\alpha) - \psi_1(\alpha + \beta)$ (see trigamma function and see section: Geometric variance) Skewness $2(\beta-\alpha)\sqrt{\alpha+\beta+1}$ $(\alpha + \beta + 2)\sqrt{\alpha\beta}$

$$\sigma^2 = 3*4/((3+4)^2(3+4+1)) = 0.03061224$$