3. Отображения бинарных отношений

Понятие отображения бинарного отношения

Обычно буквы $f, g, h \dots$ как для функций.

Опр. Отображение $f:A \to B$ из множества A в множество B задано, если каждому элементу $x \in A$ соответствует элемент $y \in B$.

Обоз. f:A o B

Опр. y называется образом элемента x при отображении f(y = f(x)). Каждое отображение задаёт множество упорядоченных пар таких, что

$$\{(x,y):x\in A,y=f(x)\}\subseteq A imes B$$

Когда для отображения f могут существовать несколько различных элементов из A, имеющих один и тот же образ y_0 , такие элементы x называют **прообразами** элемента y_0 при отображении f.

$$\{x_1,x_2,x_2\}\subset A$$
 $f(x_1)=f(x_2)=f(x_3)=y_0$ Пример:

$$egin{aligned} y = \cos x & 0 \leq y_0 \leq 1 \ \{x: x = rccos y \pm 2\pi n, n \in \mathbb{N}\} \end{aligned}$$

Опр. Областью значения отображения f называется множество всех конечных элементов $y \in B$, для которых найдётся $x \in A$: y = f(x).

- 1. Отображение $f:A\to B$ называется инъективным (инъекция), если для каждого y из области значения отображения f существует единственный прообраз.
 - $y_1 = f(x_1), y_2 = f(x_2)$
 - $\bullet \ \ (y_1=y_2)\Rightarrow (x_1=x_2)$
- 2. Отображение $f: A \to B$ называется сюръективным (сюръекция), если область значений отображения f полностью совпадает с множеством B.
- 3. Отображение $f:A \to B$ называется биективным (биекция), если оно одновременно инъективно и сюръективно.
 - *Пример:* $y=\operatorname{arctg} x$ биекция на $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$ *Примечание:*

Смещение каждой точки окружности при повороте на угол вокруг центра есть биекция точек окружности на саму себя - автоморфизм.

Обобщение понятия отображения:

- 1. Если образ $y \in B$ определён не для каждого $x \in A$, имеет место частичное отображение.
- 2. Если отображение неоднозначное (некоторым элементам $x \in A$ соответствует не по одному элементу $y \in B$, то есть несколько образов), то имеет место соответствие множества A множеству B.

```
ho\subseteq A	imes B - задание соответствия из A в B 
ho=\varnothing - частный случай 
ho=A	imes B - универсальное соответствие
```

 $a,b:a\in A,b\in B$ $(a,b)\in
ho$ - упорядоченная пара входит в соответствие ho

Def(
ho) - область определения соответствия ho, множество всех первых компонентов упорядоченных пар, составляющих соответствие ho

$$Def(
ho) = \{x: (\exists y \in B), (x,y) \in
ho\}$$

Res(
ho) - область значений соответствия ho, множество всех вторых компонентов упорядоченных пар, составляющих соответствие ho

$$Res(
ho) = \{y : (\exists x \in A), (x,y) \in
ho\}$$

Опр. Сечением соответствия ρ по элементу $x_0 \in A$ называется множество $\rho(x_0)$ из вторых компонентов пар соответствия ρ таких, что первым компонентом является x_0

Обоз.
$$ho(x_0) = \{y : (x_0,y) \in
ho\}$$

Опр. Сечением соответствия ρ по множеству $E\subseteq A$ называется множество всех вторых компонентов пар соответствия ρ таких, что первый компонент входит в множество E

Обоз.
$$ho(E) = \{y : (x,y) \in
ho, x \in E\}$$

Опр. Обратным соответствием $ho^{-1} \subseteq B \times A$ называется соответствие, определяемое как множество пар (y,x) таких, что $(x,y) \in \rho$

Обоз.
$$ho^{-1}=\{(y,x):(x,y)\in
ho\}$$
 $(
ho^{-1})^{-1}=
ho$

Если задано отображение $f:A \to B$, то оно является соответствием Обратное ему отображение $f^{-1}:B \to A$ в общем случае соответствием не является