CSE 260 Digital Logic Design

Combinational Circuit-3

BRAC University

Arithmetic Circuits: Comparator

- Magnitude comparator: compares 2 values A and B, to see if A>B, A=B or A<B.
- How do we compare two 4-bit values A $(a_3a_2a_1a_0)$ and B $(b_3b_2b_1b_0)$?

If
$$(a_3 > b_3)$$
 then $A > B$
If $(a_3 < b_3)$ then $A < B$
If $(a_3 = b_3)$ then if $(a_2 > b_2)$

Equality Comparator

$$Z = ! (X \oplus Y)$$

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

4-Bit Equality Comparator


```
FIELD A = [A0..3];
FIELD B = [B0..3];
FIELD C = [C0..3];
```

4-bit Equality Detector

4-bit Magnitude Comparator

Note: here EQ stands for 'equal', LT stands for 'less than' and GT stands for 'greater than'.

How can we find A_GT_B?

How many rows would a truth table have?

$$2^8 = 256!$$

A3 & !B3

Why?

Because A3 = B3 and

$$A2 > B2$$

i.e. C3 = 1 and
 $A2 \& !B2 = 1$

Therefore, the next term in the logic equation for A_GT_B is C3 & A2 & !B2

Therefore, the next term in the logic equation for A_GT_B is C3 & C2 & A1 & !B1

A1 & !B1 = 1


```
A_GT_B = A3 & !B3
+ C3 & A2 & !B2
+ C3 & C2 & A1 & !B1
+ .....
Because A3 = B3 and
A2 = B2 and
```

$$A1 = B1$$
 and $A0 > B0$
i.e. $C3 = 1$ and $C2 = 1$ and $C1 = 1$ and $A0 & !B0 = 1$

Therefore, the last term in the logic equation for A_GT_B is C3 & C2 & C1 & A0 & !B0


```
A_GT_B = A3 & !B3
+ C3 & A2 & !B2
+ C3 & C2 & A1 & !B1
+ C3 & C2 & C1 & A0 & !B0
```


Arithmetic Circuits: Comparator

Let $A = A_3 A_2 A_1 A_0$, $B = B_3 B_2 B_1 B_0$; $x_i = A_i B_i + A_i' B_i'$

Note: This is the circuit of Magnitude compar-ator !!! All previous

All previous slides where for just understan-ding!

Important points

- Note: We start by comparing digits in from MSB position. If those digits are equal, then we compare next 2 lower significant pairs of digits.
- Same circuit of previous slide can be used for comparing relative magnitude of 2 BCD digits.

Arithmetic Circuits: Comparator

Block diagram of a 4-bit magnitude comparator