Pitch Detector

ISPR - Midterm 1 Assignment 3

Filippo Baroni

March 30, 2021

Autocorrelogram

The autocorrelogram Auto_y measures the correlation of a signal y with itself at different time lags:

$$\mathsf{Auto}_{\mathbf{y}}[\tau] = \frac{1}{\|\mathbf{y}\|^2} \sum_{t=0}^{N-\tau-1} \mathbf{y}[t] \cdot \mathbf{y}[t+\tau].$$

▶ It can be computed by convolution, but for a small set of time lags (window) the naive implementation is more efficient.

```
def autocorrelogram(y, window):
b, e = window
a = np.array([np.dot(y[0 : y.size - tau],y[tau :])
     for tau in range(b, e)])
return a / a[0]
```

Finding the Pitch

- Peaks in the autocorrelogram correspond to periods of the signal y.
- ► The minimal period τ_0 of **y** is the smallest maximum point of the autocorrelogram **after 0**.

Results

Instrument	Note	Autocorrelogram	Pitch	Error
Oboe	C6		1046 Hz	0.01%
Clarinet	C6	0 40 60 80 100	1049 Hz	0.2 %
Keyboard (homemade)	G3	0 100 200 300 400 500 600	196.7 Hz	0.3 %
Voice (homemade)	D3	0 50 100 150 200 250 300	145.1 Hz	1%

Real-time Pitch Detection

- ▶ This algorithm is fast enough to run in real-time.
- pyaudio for microphone input, pyglet for graphics.
- ► And now, a live demonstration!

