Physics 2211 GPS Week 13

Problem #1

In the diagram on the right, six identical particles of mass m and speed v are moving relative to a point A, the current location of particle (5). The distance of these particles from point A is indicated in the diagram. The arrows indicate the directions of the particle's velocities.

As usual, +x is to the right, +y is up and +z is out of the page, towards you.

In the following calculations, remember that angular momen-tum is a vector.

(a) Calculate the angular momentum of particle 1 with respect to A.

$$T_{1A} = \overrightarrow{r}_{1A} \times \overrightarrow{p}_{1} = wmv \left(-\hat{\epsilon}\right)$$

(b) Calculate the angular momentum of particle 2 with respect to A.

$$\overline{L}_{2A} = \overline{r}_{2A} \times \overline{p}_2 = 0$$
 because \overline{r}_{2A} and \overline{p}_2 are antiparallel.

(c) Calculate the angular momentum of particle 3 with respect to A.

$$\vec{L}_{3A} = \vec{r}_{3A} \times \vec{p}_{3} = \omega m v (\hat{z})$$

(d) Calculate the angular momentum of particle 4 with respect to A.

$$\vec{L}_{4A} = \vec{r}_{4A} \times \vec{p}_{4} = dm \nu (+\hat{z})$$

(e) Calculate the angular momentum of particle 5 with respect to A.

$$\vec{L}_{5A} = \vec{r}_{5A} \times \vec{p}_5 = 0$$
 be cause $\vec{r}_{5A} = 0$.

(f) Calculate the angular momentum of particle 6 with respect to A.

(g) Calculate the total angular momentum of the system of particles with respect to A.

$$\overline{L}_{A} = \sum_{i} \overline{L}_{iA} = (\omega m v - \omega m v + d m v) \hat{z} = 2 d m v (\hat{z})$$

A barbell is mounted on a nearly frictionless axle through its center of mass. The rod has negligible mass and a length d. Each ball has a mass m. At the instant shown, there are four forces of equal magnitude F applied to the system, with the directions indicated. At this instant, the angular velocity is ω_i , counterclockwise (positive), and the bar makes an angle α (which is less than 45 degrees) with the horizontal.

(a) Calculate the magnitude of the net torque on the barbell about the center of mass.

$$\vec{c}_1 = \vec{r}_1 \times \vec{F}_1 = 0 \quad b/c \quad \vec{r}_1 = 0$$

$$\vec{c}_2 = \vec{r}_2 \times \vec{F}_2 = 0 \quad b/c \quad \vec{r}_2 = 0$$

$$\vec{c}_3 = \vec{r}_3 \times \vec{F}_3 = r_3 F_3 \sin \theta \quad (\hat{z}) = \frac{d}{2} F \sin (180^\circ - \alpha) \quad (\hat{z}) = \frac{dF}{2} \sin \alpha \quad (\hat{z})$$

$$\vec{c}_4 = \vec{r}_4 \times \vec{F}_4 = r_4 F_4 \sin \phi \quad (-\hat{z}) = \frac{dF}{2} F \sin (90^\circ + \alpha) \quad (-\hat{z}) = \frac{dF}{2} \cos \alpha \quad (-\hat{z})$$

$$\vec{c}_{Net} = \vec{c}_1 + \vec{c}_2 + \vec{c}_3 + \vec{c}_4 = \frac{dF}{2} \sin \alpha \quad (\hat{z}) + \frac{dF}{2} \cos \alpha \quad (-\hat{z})$$

$$\Rightarrow |\vec{c}_{Net}| = \frac{dF}{2} |\sin \alpha - \cos \alpha|$$

Since $< 45^{\circ}$, then $cos < > sin < > which means <math>|\vec{\tau}_4| > |\vec{\tau}_3|$ $\Rightarrow |\vec{\tau}_{12}| > |\vec{\tau}_{13}|$

- (b) Select the statement that accurately describes the situation in the figure:
 - A. α is less than 45 degrees, so the net torque on the system is in the clockwise direction. This means the torque is out of the page.
 - B. α is less than 45 degrees, so the net torque on the system is in the counterclockwise direction. This means the torque is into the page.
 - C. α is less than 45 degrees, so the net torque on the system is in the counterclockwise direction. This means the torque is out of the page.
 - D. α is less than 45 degrees, so the net torque on the system is in the clockwise direction. This means the torque is into the page.
- (c) Determine the moment of inertia, about the center of mass, for the barbell.

$$I_{CM} = m_1 r_1^2 + m_2 r_2^2 = m \left(\frac{d}{2}\right)^2 + m \left(\frac{d}{2}\right)^2 = \frac{md^2}{4} + \frac{md^2}{4} = \frac{2md^2}{4} = \frac{1}{2}md^2$$

1. You found a GT mobile in a store but it's missing a piece (a "T", of course). You buy it anyway and make a T to add to the mobile. You measure the lengths of all the (horizontal) arms of the mobile (measure-ments in the figure) and you find that Buzz has a mass of $m_b = 300$ g. What should be the mass of the T (m_T) , so that when you at-tach it the mobile stays balanced (unmoving)?

Hints: (1) a balanced mobile experiences zero net gravitational torque; (2) notice that the Wreck and GT are attached to an arm that is the same length as the arm holding up Buzz; (3) remember to use standard SI units in your final answer.

Let's balance each level of the mobile.

 $m_{\omega} \chi_{\omega} = m_{cT} \chi_{cT}$. Also, $m_{b} \chi_{b} = (m_{cT} + m_{\omega}) \chi_{b} \Rightarrow m_{b} = m_{cT} + m_{\omega}$. Therefore, the topmost right arm of the mobile has a combined mass of $2m_{b}$. Finally, balancing the top arms, $m_{+} \chi_{T} = (2m_{b}) \chi_{T}$

$$\Rightarrow m_{T} = \frac{2m_{b}X_{r}}{\chi_{T}} = \frac{2(.3k_{3})(0.03m)}{(0.08m)}$$
$$= 0.225 kg$$

Alternatively, $|\mathcal{T}_{\tau}| = |\mathcal{T}_{r}| \Rightarrow \chi_{r} F_{\tau} = \chi_{r} F_{r}$