

William Stallings
Computer Organization
and Architecture
10th Edition

+ Chapter 14

Processor Structure and Function

+

Processor Organization

Processor Requirements:

- The processor reads an instruction from memory (register, cache, main memory)
- Interpret instruction
 - The instruction is decoded to determine what action is required
- Fetch data
 - The execution of an instruction may require reading data from memory or an I/O module
- Process data
 - The execution of an instruction may require performing some arithmetic or logical operation on data
- Write data
 - The results of an execution may require writing data to memory or an I/O module
- In order to do these things the processor needs to store some data temporarily and therefore needs a small internal memory

Figure 14.1 The CPU with the System Bus

Figure 14.2 Internal Structure of the CPU

Register Organization

- Within the processor there is a set of registers that function as a level of memory above main memory and cache in the hierarchy
- The registers in the processor perform two roles:

User-Visible Registers

 Enable the machine or assembly language programmer to minimize main memory references by optimizing use of registers

Control and Status Registers

 Used by the control unit to control the operation of the processor and by privileged operating system programs to control the execution of programs

User-Visible Registers

Referenced by means of the machine language that the processor executes

Categories:

General purpose

 Can be assigned to a variety of functions by the programmer

• Data

• May be used only to hold data and cannot be employed in the calculation of an operand address

Address

- May be somewhat general purpose or may be devoted to a particular addressing mode
- Examples: segment pointers, index registers, stack pointer

Condition codes

- Also referred to as *flags*
- Bits set by the processor hardware as the result of operations

Table 14.1 Condition Codes

Advantages		Disadvantages	
1.	Because condition codes are set by normal	1.	Condition codes add complexity, both to
5	arithmetic and data movement instructions,		the hardware and software. Condition code
Į.	they should reduce the number of		bits are often modified in different ways
§	COMPARE and TEST instructions needed.		by different instructions, making life more
2.	Conditional instructions, such as BRANCH		difficult for both the microprogrammer
ğ	are simplified relative to composite		and compiler writer.
	instructions, such as TEST AND	2.	
5	BRANCH.		typically not part of the main data path, so
3.	Condition codes facilitate multiway		they require extra hardware connections.
ē.	branches. For example, a TEST instruction	3.	Often condition code machines must add
ş	can be followed by two branches, one on		special non-condition-code instructions for
ş	less than or equal to zero and one on		special situations anyway, such as bit
	greater than zero.		checking, loop control, and atomic
			semaphore operations.
4.	Condition codes can be saved on the stack	4.	In a pipelined implementation, condition
ê E	during subroutine calls along with other		codes require special synchronization to
	register information.		avoid conflicts.

Control and Status Registers

Four registers are essential to instruction execution:

- Program counter (PC)
 - Contains the address of an instruction to be fetched
- Instruction register (IR)
 - Contains the instruction most recently fetched
- Memory address register (MAR)
 - Contains the address of a location in memory
- Memory buffer register (MBR)
 - Contains a word of data to be written to memory or the word most recently read

⁺ Program Status Word (PSW)

Register or set of registers that contain status information

Common fields or flags include:

- Sign
- Zero
- Carry
- Equal
- Overflow
- Interrupt Enable/Disable
- Supervisor