

Optimization in Machine Learning: Lecture 5 Machine Learning Models

by Xiaolin Huang

xiaolinhuang@sjtu.edu.cn

SEIEE 2-429

Institute of Image Processing and Pattern Recognition

http://www.pami.sjtu.edu.cn/

1 Supervised Learning

2 Unsupervised Learning

Probability Modeling

Linear Regression

Linear regression

- from training data $\{a_i, b_i\}_{i=1}^m$, $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$,
- to establish a linear model

$$f(a) = x_0 + x_1 a_1 + \dots + x_n a_n = x^{\mathsf{T}} a$$

bias: now we can simply regard it as an additional dimension before investigating learning theory

matrix form

$$A = \begin{bmatrix} a_1^{\mathsf{T}} \\ a_2^{\mathsf{T}} \\ \vdots \\ a_m^{\mathsf{T}} \end{bmatrix} = [a_1, a_2, \dots, a_m]^{\mathsf{T}} \in \mathbf{R}^{m \times n} \qquad Ax \in \mathbf{R}^m, b \in \mathbf{R}^m$$

Least Squares

- residual $r_i = x^{\mathsf{T}} a_i b_i$
- squared residual $l(r_i) = r_i^2 = (x^T a_i b_i)^2$
- sum of the squared residual

$$\sum_{i=1}^{m} l(r_i) = \sum_{i=1}^{m} (x^{\mathsf{T}} a_i - b_i)^2$$

- convexity: nonnegative sum, composition of affine and quadratic functions
- (ordinary) least squares

$$\min_{x} \|Ax - b\|_{2}^{2} = (Ax - b)^{\mathsf{T}}(Ax - b) = x^{\mathsf{T}}A^{\mathsf{T}}x - 2b^{\mathsf{T}}Ax + b^{\mathsf{T}}b$$

Huber Loss

- LS is very sensitive to outlier
 - large residual is more likely to be an outlier
 - squared loss gives too much attention on outliers
 - linear loss consider all the residuals equally

- give squared penalty when the residual is small
- give linear penalty when the residual is large
- Huber loss

Huber Loss

- LS is very sensitive to outlier
 - large residual is more likely to be an outlier
 - squared loss gives too much attention on outliers
 - linear loss consider all the residuals equally
- an ideal loss function
 - give squared penalty when the residual is small

continuity

- give linear penalty when the residual is large
- Huber loss
 - $L_{\text{huber}}(r) = \begin{cases} r^2/2 & \text{if } |r| < c \\ c(|r| c/2) & \text{if } |r| \ge c \end{cases}$ smoothness

LAD and Quantile Regression

absolute residual, 11-norm estimation

$$|r_i| = \left| a_i^{\mathsf{T}} x - b_i \right|$$

least absolute derivations (LAD) regression

$$\min_{x} \|Ax - b\|_{1}$$

Overfitting

- the model complexity is too high
 - complex model: prefer simple model
 - large energy: as small as possible
 - effective region: prefer local basis rather than global one
- ridge regression Tikhonov regularization

$$\min_{x} |\gamma||x||_{2}^{2} + ||Ax - b||_{2}^{2}$$

Overfitting

- the model complexity is too high
 - complex model: prefer simple model
 - large energy: as small as possible
 - effective region: prefer local basis rather than global one
- ridge regressionTikhonov regularization

$$\min_{x} |\gamma| |x||_{2}^{2} + ||Ax - b||_{2}^{2}$$

Overfitting

- the model complexity is too high
 - complex model: prefer simple model
 - large energy: as small as possible
 - effective region: prefer local basis rather than global one

$$\min_{x} |\gamma||x||_{2}^{2} + ||Ax - b||_{2}^{2}$$

Generalization problem:

- risk on the unknown probability ρ : $\mathbf{R}_{\rho}(f)$
- risk on samples $z \sim \rho$: $R_z(f)$
- small $R_z(f)$ does not necessarily lead to small $R_\rho(f)$

• denote
$$f^* = \operatorname{argmin}_f \mathbf{R}_{\rho}(f)$$
 $f_F^* = \operatorname{argmin}_{f \in \mathbf{F}} \mathbf{R}_{\rho}(f)$

$$f_z^* = \operatorname{argmin}_{f \in F} \mathbf{R}_z(f)$$
 \widetilde{f}_z : the learned function

we have

$$\begin{split} E\left(\mathbf{R}_{\rho}(f_{z}^{*}) - \mathbf{R}_{\rho}(\widetilde{f}_{z})\right) \\ &= E\left(\mathbf{R}_{\rho}(f_{F}^{*}) - \mathbf{R}_{\rho}(f^{*})\right) + E\left(\mathbf{R}_{\rho}(f_{z}^{*}) - \mathbf{R}_{\rho}(f_{F}^{*})\right) + E\left(\mathbf{R}_{\rho}(f_{z}^{*}) - \mathbf{R}_{\rho}(\widetilde{f}_{z})\right) \end{split}$$

approximation error

estimation error

optimization error

- approximation error: learning capability of the functional space
 - enlarge the family of functions
- **estimation error:** gap between training data and test data
 - prefer a smaller family of functions, by e.g., prior knowledge
 - more data set

 $E\left(\mathbf{R}_{\rho}(f_{z}^{*})-\mathbf{R}_{\rho}(\widetilde{f}_{z})\right)$

optimization error:

• estimation error: gap between training data and test data

• prefer a smaller family of functions, by e.g., prior knowledge

consider more training data

- estimation error: gap between training data and test data
 - prefer a smaller family of functions, by e.g., prior knowledge

 $R\left(T_{i}\right) \leqslant R_{emp}\left(T_{i}\right) + \frac{1 \wedge N - h \eta}{s} \left(1 + \sqrt{1 + \frac{2R_{emp}\left(T_{i}\right) \lambda}{h N - h \eta}}\right)$

denote the VC dimension of f as h, then the following inequality holds with probability $1-\eta$

$$R_{\rho}(f) \le R_{\text{empirical}}(f) + \sqrt{\frac{h\left(\ln\left(\frac{2m}{h}\right) + 1\right) - \ln\left(\frac{\eta}{4}\right)}{m}}$$

few-shot learning

$$E\left(\mathbf{R}_{\rho}(f_{z}^{*}) - \mathbf{R}_{\rho}(\widetilde{f}_{z})\right)$$

$$= E\left(\mathbf{R}_{\rho}(f_{F}^{*}) - \mathbf{R}_{\rho}(f^{*})\right) + E\left(\mathbf{R}_{\rho}(f_{z}^{*}) - \mathbf{R}_{\rho}(f_{F}^{*})\right) + E\left(\mathbf{R}_{\rho}(f_{z}^{*}) - \mathbf{R}_{\rho}(\widetilde{f}_{z})\right)$$
approximation
estimation error
optimization error

estimation error

optimization error

- approximation error: learning capability of the functional space
 - enlarge the family of functions
- **estimation error:** gap between training data and test data
 - prefer a smaller family of functions, by e.g., prior knowledge
 - more data
- optimization error:
 - running longer time, make problem simple, consider less data

LASSO

- regularization term is useful to control model complexity
- LASSO: least absolute shrinkage and **selection** operator

$$\min_{x} \quad \gamma \sum_{j=1}^{n} |x_{j}| + \frac{1}{2} \sum_{i=1}^{m} (x^{T} a_{i} - b_{i})^{2}$$

- the use of 11 norm
 - sparsity

Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression

Robert Tibshirani

LASSO

- regularization term is useful to control
- LASSO: least absolute shrinkage and

$$\min_{x} \quad \gamma \sum_{j=1}^{n} |x_{j}| + \frac{1}{2} \sum_{i=1}^{m^{12}} x_{i}^{n}$$

sparsity

$$\min_{x} |\gamma|x| + 1/2(x-1)^2$$

$$f'(x) = \gamma \operatorname{sgn}(x) + (x - 1)$$

-1

$$x^* = 0$$
 if $\gamma > 1$

2

gamma=2

gamma=4

gamma=0.5

$$\min_{x} \ 1/2\gamma x^2 + 1/2(x-1)^2$$

$$f'(x) = \gamma x + (x - 1)$$

-2

-3

$$x^* \neq 0$$

Compressive Sensing

- Sparsity measurement:
 - 10 norm: $||x||_0 = \sum I(x_i \neq 0)$
 - 11 norm: $||x||_1 = \sum |x_i|$
- Compressive sensing/compressed sensing

$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} A \\ x \end{bmatrix}$$

• Around 2004, *Emmanuel Cand ès*, *Terence Tao*, and *David Donoho:* given knowledge about a signal's sparsity, the signal may be reconstructed with even fewer samples than the sampling theorem requires

LASSO and Compressive Sensing

- sparsity is one nature of big data
- the key is to find the a good representation that is sparse and accurate

electro-cardiography (ECG)

LASSO and **Compressive Sensing**

- sparsity is one nature of big data
- the key is to find the a good representation that is sparse and accurate

(c) Local variation

$$|X_{i,j} - X_{i+1,j}|$$

 $|X_{i,j} - X_{i,j+1}|$

Variant of Lasso: TV

• for an image $X \in \mathbb{R}^{n \times n}$, its total variation (TV) is defined as

$$||X||_{TV} = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sqrt{(X_{i,j} - X_{i+1,j})^2 + (X_{i,j} - X_{i,j+1})^2} \qquad ||X||_{TV} = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} |X_{i,j} - X_{i+1,j}| + |X_{i,j} - X_{i,j+1}| = \sum_{i=1}^{n-1} |X_{i,j} - X_{i$$

which is better?

$$\min_{X} \ \lambda \|X\|_{TV} + \|F - X\|_2^2 \mathrel{\ensuremath{\not=}}$$

Original

Noisy image *F*

Denoised image X

QUIZ

• if the vector has several groups and only a part of them are non-zero

regular 11 minimization does not help (why? and how to?)

$$\min_{x} \quad \gamma \sum_{i=1}^{n} |x_{i}| + \frac{1}{2} \sum_{i=1}^{m} (x^{\mathsf{T}} a_{i} - b_{i})^{2}$$

$$\min_{x} \quad \gamma \sum_{k=1} \sqrt{\sum_{i \in G_k} x_i^2} + \frac{1}{2} \sum_{i=1}^{m} (x^{\mathsf{T}} a_i - b_i)^2$$

Dictionary Learning

• LASSO is to learn the coefficient

$$\min_{x} \ \gamma \|x\|_{1} + \frac{1}{2} \|AX - b\|_{2}^{2}$$

• to learn the coefficient and the basis together

$$\min_{x,\Phi} \|\gamma \|x\|_1 + \frac{1}{2} \|A\Phi X - b\|_2^2$$

- non-convex
- Dictionary Learning
 - gradient descent
 - optimal direction iteration
 - K-means Singular Value Decomposition

Extension to Matrix

- matrix norm
 - entrywise sparsity

$$||A||_1 = \Sigma_i \Sigma_j |a_{ij}|$$

nuclear norm

$$||A||_* = \sum_{i=1}^n |\sigma_i(A)|$$

the largest *i*-th singular value

Frobenius norm

$$||A||_F = \sqrt{\Sigma_i \Sigma_j |a_{ij}|^2} = \sqrt{\operatorname{tr}(A^*A)} = \sqrt{\Sigma_i \sigma_i^2(A)}$$

norms induced by vector norms

$$||A||_{p} = \sup\{||Ax||_{p} : ||x||_{p} = 1\} = \begin{cases} \max_{j} \Sigma_{i} |a_{ij}|, & p = 1 \\ \sigma_{i}(A), & p = 2 \\ \max_{i} \Sigma_{j} |a_{ij}|, & p = \infty \end{cases}$$

Extension to Tensor

- if we go to even higher space
 - video
 - RGB depth
 - RGB-D in different angles

RGB-D in different angles/time

RGB-D in different angles/time/corners

https://www.quora.com/What-are-the-main-normalization-layers-in-artificial-neural-networks

https://www.researchgate.net/figure/The-illustrationof-a-Tucker-decomposition-and-b-CP-factorization-ofan-n-1-n-2-n_fig1_321902217

Linear Discriminant Analysis

- linear classification
 - from training data $\{a_i, b_i\}_{i=1}^m$, $a_i \in \mathbb{R}^n$, $b_i \in \{-1, +1\}$,
 - establish a linear model $x^{T}a$ to classify the two data sets
- Fisher Discriminant
 - push away the projected centers

$$\frac{1}{m_{+}} \sum_{i:b_{i}=1} x^{\mathsf{T}} a_{i} - \frac{1}{m_{-}} \sum_{i:b_{i}=-1} x^{\mathsf{T}} a_{i}$$

• from linearity

$$= \max_{x} x^{\mathsf{T}} (\overline{a_{+}} - \overline{a_{-}})$$

Linear Discriminant Analysis

- linear classification
 - from training data $\{a_i, b_i\}_{i=1}^m$, $a_i \in \mathbb{R}^n$, $b_i \in \{-1, +1\}$,
 - establish a linear model $x^{T}a$ to classify the two data sets
- Fisher Discriminant
 - push away the projected centers

$$\frac{1}{m_{+}} \sum_{i:b_{i}=1} x^{\mathsf{T}} a_{i} - \frac{1}{m_{-}} \sum_{i:b_{i}=-1} x^{\mathsf{T}} a_{i}$$

from linearity

$$\max_{x} \ x^{\mathsf{T}} (\overline{a_{+}} - \overline{a_{-}})$$

Linear Discriminant Analysis

within-class scatter (variance)

$$S_{+}^{2} = \sum_{i:b_{i}=1} (x^{\mathsf{T}} a_{i} - x^{\mathsf{T}} \overline{a_{+}})^{2}$$
 $S_{-}^{2} = \sum_{i:b_{i}=-1} (x^{\mathsf{T}} a_{i} - x^{\mathsf{T}} \overline{a_{-}})^{2}$

Fisher Discriminant

$$\max_{x} \frac{(x^{\mathsf{T}} \overline{a_{+}} - x^{\mathsf{T}} \overline{a_{-}})^{2}}{S_{+}^{2} + S_{-}^{2}}$$

Canonical Correlation Analysis

- if we have $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}^m$, two measurents for the same object
- find the common latent variable, i.e., to project them on the same space
- maximize the correlation between $x^{T}a_{i}$ and $y^{T}b_{i}$
- normalized by the variance
- CCA

$$\max_{x,y} \frac{x^{\mathsf{T}} \mathrm{cov}(A,B) y}{\sqrt{x^{\mathsf{T}} \mathrm{cov}(A,A) x} \sqrt{y^{\mathsf{T}} \mathrm{cov}(A,A) y}}$$

Margin-based Classification

- find a hyperplane to separate two classes
 - no misclassification
 - large margin

optimization problem

$$\max_{x,z} 2/\|x\|_2$$
s.t.
$$b_i(x^{\mathsf{T}}a_i + z) \ge 1$$

Support Vector Machine

linear SVM

$$\min_{x,z} ||x||_2^2$$

s.t. $b_i(x^Tb_i + z) \ge 1$

• if it is not linearly separable, the above problem is *infeasible*

$$\min_{x,z} \frac{1}{2} ||x||_2^2 + C \sum s_i$$

s.t. $b_i(x^T b_i + z) \ge 1 - s_i$
 $s_i \ge 0$

Hinge Loss

loss function + regularization term

$$\min_{x,z} \ \frac{1}{2} \|x\|_2^2 + C \sum_i L(b_i(x^{\mathsf{T}} a_i + z))$$

hinge loss

$$L(u) = \max\{0, 1 - u\}$$

 the convex approximation for misclassification loss

目录 Contents

1 Supervised Learning

2 Unsupervised Learning

Probability Modeling

Dimensionality reduction

• Find a low-dimensional surface to cover the training samples as wall as

possible

• linear surface: subspace

nonlinear surface: manifold learning

- one nature of big data
- An Example: images of human faces can be seen as vectors in a very high dimensional space. Actual faces reside in a small subspace of that large space.

Principle component analysis

- for a given dataset in \mathbb{R}^n , find a subspace to contain the information of the dataset as many as possible
- information \rightarrow distinguish data \rightarrow the variance
- find a direction that maximizes the data's variance

$$\max_{x^T x = 1} x^T C x$$

it should be zero-mean, otherwise, the covariance matrix will be?

Locally linear embedding

- another criteria for dimension reduction, local preservation
 - if a_i and a_j are similar, so their projections in lower space
- Locally Linear Embedding (LLE): a point could be represented by its neighborhood and the relationship should be preserved in reduction
 - find the neighborhood
 - find the relationship $a_0 = \sum x_i a_i$

$$\min_{x} \|a_0 - \sum x_i a_i\|_2$$

keep the relationship in reduction

$$\min_{b} \|b_0 - \sum x_i b_i\|_2$$

https://blog.csdn.net/qq 3068358

Clustering

 assignment of a set of observations into subsets so that observations in the same subset are *similar*

$$\min_{x_i \in \{1,2,...,k\}} \sum_{k} \sum_{x_i,x_i=k} d(a_i, a_j)$$

Distance/dissimilarity

- distance: (dis)similarity measures for two samples
 - identity error

$$d(a_i, a_j) = I(a_i \neq a_j)$$

squared distance

$$d(a_i, a_j) = ||a_i - a_j||_2^2$$

• lq distance

$$d(a_i, a_j) = \|a_i - a_j\|_q$$

Canberra distance

$$d(a_i, a_j) = \sum_{d} \frac{|a_{id} - a_{jd}|}{|a_{id} + a_{jd}|}$$

Distance/dissimilarity

- distance: (dis)similarity measures for two samples
 - identity error

$$d(a_i, a_j) = I(a_i \neq a_j)$$

squared distance

$$d(a_i, a_j) = \|a_i - a_j\|_2^2$$

• lq distance

$$d(a_i, a_j) = \|a_i - a_j\|_q$$

Canberra distance

$$d(a_i, a_j) = \sum_{d} \frac{|a_{id} - a_{jd}|}{|a_{id} + a_{jd}|}$$

Person Linear Correlation

$$\rho(x,y) = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum (x_{i} - \bar{x})^{2}} \sqrt{\sum (y_{i} - \bar{y})^{2}}}$$

Distance/dissimilarity

- distance: (dis)similarity measures for two samples
 - identity error

$$d(a_i, a_j) = I(a_i \neq a_j)$$

squared distance

$$d(a_i, a_j) = \|a_i - a_j\|_2^2$$

• lq distance

$$d(a_i, a_j) = \|a_i - a_j\|_q$$

Canberra distance

$$d(a_i, a_j) = \sum_{d} \frac{|a_{id} - a_{jd}|}{|a_{id} + a_{jd}|}$$

Person Linear Correlation

$$\rho(x,y) = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum (x_{i} - \bar{x})^{2}} \sqrt{\sum (y_{i} - \bar{y})^{2}}}$$

Metric Learning

https://en.wikipedia.org/wiki/L

- distance/similarity/dissimilarity/metric is very important
 - non-negative
 - identity
 - symmetry
 - subadditivity (triangle inequality)
- Mahalanobis distance

Differently labeled (impostor)

Differently labeled (impostor)

$$d_{M}(a,b) = \sqrt{(La - Lb)^{\mathsf{T}}(La - Lb)} = \sqrt{(a - b)^{\mathsf{T}}L^{\mathsf{T}}L(a - b)} = \sqrt{(a - b)^{\mathsf{T}}M(a - b)}$$

$$\min_{M} \sum_{i,j \in N_i} d(a_i, a_j) \text{ s. t.} \begin{cases} d(a_i, a_j) \leq d(a_i, a_l), \forall j \in N_i, l \notin N_i, \forall i \\ M \geqslant 0 \end{cases}$$

Metric Learning

https://en.wikipedia.org/wiki/L

- distance/similarity/dissimilarity/metric is very important
 - non-negative
 - identity
 - symmetry
 - subadditivity (triangle inequality)
- Mahalanobis distance

Differently labeled (impostor)

Differently labeled (impostor)

 $d_M(a,b) = \sqrt{(La-Lb)^{\mathsf{T}}(La-Lb)} = \sqrt{(a-b)^{\mathsf{T}}L^{\mathsf{T}}L(a-b)} = \sqrt{(a-b)^{\mathsf{T}}M(a-b)}$

$$\min_{M} \sum_{i,j \in N_i} d(a_i, a_j) + \lambda \sum_{i,j,l} \xi_{ijl} \quad \text{s. t.} \begin{cases} d(a_i, a_j) + 1 \leq d(a_i, a_l) + \xi_{ijl}, \forall j \in N_i, l \notin N_i, \forall i \\ \xi_{ijl} \geq 0 \\ M \geq 0 \end{cases}$$

Autoencoder

- autoencoder is to learn a representation (encoding) for a set of data
- autoencoder training
 - encoder ϕ
 - decoder ψ

$$\min_{\phi,\psi} \|X - \psi(\phi(X))\|$$

Autoencoder

sparse autoencoder denoising autoencoder anomaly detection

https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726

Semi-supervised Learning

- we have only labels for a part of data
 - supervised learning: to approach labels
 - unsupervised learning: to approach prior knowledge
- prior knowledge/assumptions
 - continuity assumption: close points are more likely to have the same label
 - cluster assumption: points in a cluster are more likely to have the same label
 - manifold assumption: data lie on a manifold

$$\min_{f} \lambda_{1} \sum_{\text{labelled}} \max\{1 - b_{i}f(a_{i}), 0\} + \lambda_{2} \sum_{\text{unlabelled}} (1 - |f(a_{i})|)^{2} + ||f||$$

label assgiment

Semi-supervised Learning

- we have only labels for a part of data
 - supervised learning: to approach labels
 - unsupervised learning: to approach prior knowledge
- prior knowledge/assumptions
 - continuity assumption: close points are more likely to have the same label
 - cluster assumption: points in a cluster are more likely to have the same label
 - manifold assumption: data lie on a manifold

$$\min_{f} \lambda \sum_{\text{labelled}} \max\{1 - b_i f(a_i), 0\} + \sum_{\text{all data}} w_{ij} \left(f(a_i) - f(a_j)\right)^2$$

Laplacian SVM

Semi-supervised Learning

- we have only labels for a part of data
 - supervised learning: to approach labels
 - unsupervised learning: to approach prior knowledge
- prior knowledge/assumptions
 - Graph (given or by local similarity) transduction

A. Iscen, et al. Label Propagation for Deep Semi-supervised Learning

Weakly-Supervised Learning

- learning from incomplete supervision
 - semi-supervised learning
 - active learning
- learning from inexact supervision
 - Graph-based

Weakly-Supervised Learning

- learning from incomplete supervision
 - semi-supervised learning
 - active learning
- learning from inexact supervision
- learning from inaccurate supervision
 - noise in label

目录 Contents

1 Supervised Learning

2 Unsupervised Learning

Probability Modeling

Maximum Likelihood Estimation

$$p(x_1, x_2, ..., x_m | \mu, \sigma) = \prod_{i=1}^m \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$\log p(x_1, x_2, ..., x_m | \mu, \sigma) = m \log \sqrt{2\pi} + m \log \sigma + \sum_{i=1}^{m} \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\frac{d\log p}{d\mu} = \sum_{i=1}^{m} (x_i - \mu) = 0$$

$$\frac{d \log p}{d \mu} = \sum_{i=1}^{m} (x_i - \mu) = 0 \qquad \frac{d \log p}{d \sigma} = \frac{m}{\sigma} - \frac{1}{\sigma^3} \sum_{i=1}^{m} (x_i - \mu)^2 = 0$$

$$\mu^* = \frac{1}{m} \sum_{i=1}^m x_i$$
 $\sigma^* = \sqrt{\frac{1}{m} \sum_{i=1}^m (x_i - \mu^*)^2}$

MLE for OLS

Minimizing the squared residuals
 is equivalent to maximizing the log
 probability of the correct answer
 under a Gaussian centered at zero

Logistic regression

• For a binary classification problem, the conditional probabilities of two classes (now, assume the label is 0 and 1) are

$$p(b = 1|x) = \rho(x^{\mathsf{T}}b), \qquad p(b = 0|x) = 1 - \rho(x^{\mathsf{T}}b)$$

A popular used assumption is

$$\rho(x^{\mathsf{T}}b) = \frac{1}{1 + \exp(-x^{\mathsf{T}}b)}$$

$$1 - \rho(x^{\mathsf{T}}b) = \frac{1}{1 + \exp(x^{\mathsf{T}}b)}$$

Logistic/sigmoid function

Logistic regression

• Therefore, log likelihood with given $\{a_i, b_i\}_{i=1}^m$ is

$$J(x) = \sum_{i} b_{i} \log(\rho(x^{T} a_{i})) + (1 - b_{i}) \log(1 - \rho(x^{T} a_{i}))$$
$$= \sum_{i} b_{i}(x^{T} a_{i}) - \log(1 + \exp(x^{T} a_{i}))$$

• The above is a concave function on x, and its maximization (maximum log likelihood) is convex and easy to solve.

$$\min_{x} J(x) = -\sum_{i} b_{i}(x^{\mathsf{T}} a_{i}) + \log(1 + \exp(x^{\mathsf{T}} a_{i}))$$

Mixed Gaussian and EM

- data come from several classes, each of which follows a specific but an unknown distribution, e.g, Gaussian mixture model
- the clustering can be molded $\max \ \Sigma_k \Sigma_{i \in C_k} \log p(a_i | \mu_k, \sigma_k)$

Maximum A Posteriori

$$x_{\text{MLE}} = \underset{x}{\operatorname{argmax}} p(A|x) = \underset{x}{\operatorname{argmax}} \Pi_i p(a_i|x)$$

Bayes' rule

$$p(x|A) = \frac{p(A|x)p(x)}{p(A)} \propto p(A|x)p(x) \quad \text{data } A \sim N(\mu, \sigma^2)$$

MAP

$$x_{\text{MAP}} = \underset{x}{\operatorname{argmax}} p(A|x) p(x)$$

- it can be used when we have prior-knowledge on x
- e.g., *x* is in a Laplacian distribution then it is sparse

$$p(\mu)p(A|\mu) = \frac{1}{\sigma_{\mu}\sqrt{2\pi}}e^{-\frac{(\mu-\mu_{0})^{2}}{2\sigma_{\mu}^{2}}} \prod \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(a_{i}-\mu)^{2}}{2\sigma^{2}}}$$

knowing $\mu \in N(\mu_0, \sigma_u^2)$

$$\mu_{\text{MAP}} = \min_{\mu} \quad \frac{(\mu - \mu_0)^2}{2\sigma_{\mu}^2} + \sum \frac{(a_i - \mu)^2}{2\sigma^2}$$

Neighbor embedding

- another criteria for dimension reduction, local preservation
 - if x_i and x_i are similar, so their projections in lower space
 - similarly, isotonic property: if $x_i > x_j$, so their projections in lower space
- Stochastic Neighbor Embedding (SNE) uses conditional probability to measure the distance between two points Gaussian distribution

$$p_{x_{j}|x_{i}} = \frac{\exp(-\|x_{i} - x_{j}\|^{2}/2\sigma_{i}^{2})}{\sum_{k \neq i} \exp(-\|x_{i} - x_{k}\|^{2}/2\sigma_{i}^{2})}$$
$$q_{y_{j}|y_{i}} = \frac{\exp(-\|y_{i} - y_{j}\|^{2}/2\sigma_{i}^{2})}{\sum_{k \neq i} \exp(-\|y_{i} - y_{k}\|^{2}/2\sigma_{i}^{2})}$$

centered at x_i

t-Stochastic Neighbor Embedding

• find the projected data y such that the Kullback-Leibler divergences between p and q, is minimized

$$C = \sum_{i} KL(P_i|Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

- KL-divergence is not symmetric. It focus more in the near samples
- SNE is hard to optimized: one can use joint probability instead of conditional

$$p_{x_j,x_i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq l} \exp(-\|x_k - x_l\|^2 / 2\sigma_i^2)}$$

- crowding problem
- t-SNE is to replace Gaussian distribution
 by student t-distribution

t-Stochasti

• find the project and q, is minin

- KL-diverge
- SNE is hard to

- crowding probl
- t-SNE is to rep by student t-di

t-Stochastic Neighbor Embe

• find the projected data y such that the Kul $\frac{30.25}{60.20}$ and q, is minimized

$$C = \Sigma_i KL(P_i|Q_i) = \Sigma_i \Sigma_i$$

• KL-divergence is not symmetric. It focus

SNE is hard to optimized: one can use joint probability instead of conditional

$$p_{x_j,x_i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq l} \exp(-\|x_k - x_l\|^2 / 2\sigma_i^2)}$$

- crowding problem
- t-SNE is to replace Gaussian distribution
 by student t-distribution
- flexible nonparametric method
- no form, not applicable to new data
- not very good for high dimensional
- not good for intrinsic dimensionality.

Variational Autoencoders

• variational autoencoders learn the parameters of a probability distribution representing the data, instead of a function used in VAE

$$\min_{\alpha,\beta} -E_{p_{\alpha}(h|x)}(\log q_{\beta}(z|h)) + KL(p_{\alpha}(h|x)||p(h))$$
reconstruction prior knowledge

1 Supervised Learning

2 Unsupervised Learning

Probability Modeling

Conclusion and Home Work

- modeling optimization for machine learning
 - regression: OLS, ridge regression, lasso, CS, TV,
 - classification: LDA, CCA, SVM,
 - unsupervised: PCA, LLE, EM, autoencoder, VAE
 - probability-related: MLE, MAP, EM, t-SNE, KL

• Find a topic you like from the above. Write down an introduction for its formulation, history, and frontiers. Preliminarily find an interesting problem you want to deal with and discuss with TAs.

THANKS

