

Indian Association for Research in Computing Science

Excellence in Computing. Provably.

MEMBERS

Zonal Computing Olympiad 2011, 4 Dec 2010

2:00 pm-5:00 pm IST

Problem 2: Balancing Act

Your team is playing a chess tournament against a visiting team. Your opponents have arrived with a team of M players, numbered 1,2,...,M. You have N players, numbered 1,2,...,N from which to choose your team, where $N \geq M$.

Each of the M players from the visiting team must be paired up with one of your N players. The tournament rules insist that the pairings must respect the order that has been fixed for both teams. That is, when you pick players i_1 , i_2 ,..., i_M , to play against opponents numbered 1,2,...,M, it must be the case that $i_1 < i_2 < ... < i_M$, in terms of the order 1,2,...,N in which your players are listed.

You want to ensure a good fight, so you plan to pick your team so that the teams are as evenly balanced as possible. Each player j on your team has a numerical score YS(j) that represents his or her playing ability. Likewise, each player i in the opponent team has a playing ability indicated by a numerical score OS(i). The difference in strength between a player i_i from your team and his or her opponent *j* on the visiting team is the absolute value $|YS(i_i) - OS(j)|$. The imbalance of a pairing is the sum of these differences across all M match-ups in the pairing. Your aim is to minimize this imbalance.

For instance suppose you have six players, whose strengths are as follows.

Home Team							
i	1	2	3	4	5	6	
YS(i)	2	3	4	1	5	7	

Also, suppose that the visiting team has three players, whose strengths are as follows.

Visiting Team						
i	1	2	3			
OS(i)	2	9	2			

In this situation, the most balanced pairing is (1,1), (3,2) and (4,3), which yields an imbalance of |YS(1)-OS(1)|+|YS(3)-OS(2)|+|YS(4)-OS(3)|=|2-2|+|4-9|+|1-2|=6.

Related:

Overview Current Study Material Online Judge Archives

Your task is to read a description of the two teams and calculate the overall imbalance in the most balanced pairing.

Input format

The first line of input contains two integers N and M, $N \ge M$, the number of players on the home team and the visiting team, respectively. The second line of input contains N positive integers, the strengths of the home team players in the order 1,2,...,N. The third line of input contains M integers, the strengths of the visiting team players in the order 1,2,...,M.

Output format

A single line with a single integer indicating the sum of the differences in strengths in the most balanced pairing.

Testdata

You may assume that $1 \le M \le N \le 2000$. All players' strengths are in the range [1,2000].

Sample Input

```
6 3
2 3 4 1 5 7
2 9 2
```

Sample Output

6

Time and memory limits

The time limit for this task is 2 seconds. The memory limit is 64MB.

Products Terms and Conditions Privacy Policy Refunds Contact Us

Copyright (c) IARCS 2003-2018; Last Updated: 28 Oct 2011