Local Illumination

Tobias Ritschel

Introduction

- Local illumination
 - How a point light and one surface location interact
 - Valid for ray-tracing and for z buffer (projection)
 - Notation
 - I_r Intensity radiating from the object (What we're looking for)
 - I_i Normalized intensity of the light (Characteristic of the light)
 - k proportion of the light reflected rather than absorbed by the material (Characteristic of the surface; varies with light wavelength)

Visual features

Main idea

Color

- Light has different wavelengths
- Illumination is independent
- Red-in-green-out odes not exist (exception: fluorescencence)
- We do all computation independently on RGB 3vectors

Ambient Light

- Approximation to global illumination
 - Each object is illuminated to a certain extent by "stray" light
 - Constant across a whole object
- Often used simply to make sure everything is lit, just in case it isn't struck by light direct from a light source

Ambient Light

• Ambient light usually set for whole scene (I_a)

• Each object reflects only a proportion of that (k_a)

• So far then $I_r = k_a I_a$

The Image - Ambient

Lambert's Law

- Diffuse reflector scatters light
- Assume equality in all directions
- Called Lambertian surface
- Angle of incoming light is still critical

Lambert's Law

- Incoming intensity of light is proportional to d
- d is proportional to $\cos \theta = \langle \mathbf{n}, \mathbf{l} \rangle^+ = \max(0, \langle \mathbf{n}, \mathbf{l} \rangle)$
- No negative length or light
- Reflected intensity proportional to $\cos \theta$

Diffuse Light

 The normalised intensity of the light incident on the surface due to a ray from a light source

The light reflected due to Lambert's law

• Proportion of light reflected rather than absorbed ($k_{
m d}$)

Normals

To do Lambertian shading, we need the normal n
 of a sphere at p at the intersection point x

Lighting Equation #2

$$I_{\rm r} = k_{\rm a}I_{\rm a} + k_{\rm d}I_{\rm i} < {\bf n}, {\bf l} > +$$

• Ambient and diffuse components $k_{\rm a}$ and $k_{\rm a}$

Multiple Lights?

- Light adds linear
- Just add

$$I_{\rm r} = k_{\rm a}I_{\rm a} + k_{\rm d}I_{\rm 1} < {\bf n}, {\bf l} > + k_{\rm d}I_{\rm 2} < {\bf n}, {\bf l} > + \dots$$

 We see importance of clamping: Adding without clamping, lights would cancel! Not in this universe

The Image - Diffuse

Perfect Specularity

Would almost never see the specular highlight

Imperfect Specularity (Phong)

- e is the direction to the eye
- n is the normal

• I is the direction to the light

h bisects e and l

Specular Component

- *m* is the power of the light (shininess)
 - High m imply sharp, small highlights
 - Low m imply blurred, large highlights

Specular phenomenology

$$k_{\rm s}I_{\rm i}<{\bf h},{\bf n}>^m$$

Lighting Equation #3

$$I_{\rm r} = k_{\rm a}I_{\rm a} + I_{\rm i} (k_{\rm d} < {\bf n}, {\bf l})^{+} + k_{\rm s} (< {\bf h}, {\bf n})^{+})^{m}$$

- Ambient, diffuse & specular components
- Again if there are multiple lights there is a sum of the specular and diffuse components for each light

The Image – Specular

Web Page

- Web page for exercises (soon)
- Web page for demos (now)

cg.cs.ucl.ac.uk

Conclusions

- We can now colour the pixels by combining
 - Ambient light
 - Diffuse reflections
 - Specular reflections
 - Summed over several light sources
- We need
 - Shadows
 - Better model for light reflection of the object: BRDF
 - Global illumination