Fundamentals of Solid State Physics

Electronic PropertiesMetals and Insulators

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Electronic Properties of Materials

CMOS transistor

- Complementary Metal-Oxide-Semiconductor

SiO₂

Silicon

Summary

Formation of Band Gaps

Free electrons are perturbed by a periodic potential

Formation of Band Gaps

Free electrons are perturbed by a periodic potential

Q: Is it a metal or insulator?

State vs. Electron

energy state / level / orbital 能态 / 能级 / 轨道

determined by space, lattice, environments, ...

electron / phonon / ... 电子 / 声子 / ...

Energy States

How many energy states in each band?

$$N = 2 \cdot \frac{\text{size of FBZ}}{\text{density of } k \text{ points}}$$

$$= 2 \cdot \frac{2\pi / a}{2\pi / L_x}$$

$$= 2 \frac{L_x}{a}$$

$$= 2n$$

FBZ - First Brillouin Zone

N - total number of states

n = L/a - number of primitive cells

Q: How about 2D and 3D cases?

1D Chain of Monovalent Atoms

Each atom has one valence electron (Na, K, ...)

$$n = L/a$$

- = number of primitive cells
- = number of valence electrons

Electrons only fill half of the first band

1D Chain of *Monovalent* Atoms

Electrons only fill half of the first band

parabolic function

Free Electrons

Conductor

1D Chain of Monovalent Atoms

when E = 0, v = 0 no current

when $E \neq 0$, v > 0 electric current

$$\mathbf{j} = \sigma \mathbf{E}$$

1D Chain of *Divalent* Atoms

Each atom has two valence electrons (Mg, Ca, ...)

N = 2n
= total number of states

number of valence electrons = 2L/a = 2n

Electrons fill the entire band

1D Chain of *Divalent* Atoms

1D Chain of *Trivalent* Atoms

Each atom has three valence electrons (Al, Ga, ...)

N = 2n
= total number of states

number of valence electrons = 3L/a = 3n

Electrons start to fill the second band

1D Chain of *Trivalent* Atoms

1D Chain of Quadrivalent Atoms

Each atom has *four* valence electrons (C, Si, ...)

Q: How do electrons fill the bands? Is it a conductor, or an insulator?

1D Chain of *Divalent* Atoms

Each atom has two valence electrons (Mg, Ca, ...)

Electrons fill the entire band --->
insulator

But we know metals like Mg and Ca are conductors, why?

2D case

Assume square lattice, in the reciprocal space

Second BZ

2D case of *Monovalent* Atoms

Each atom has one valence electrons (Na, K, ...)

2D case of *Divalent* Atoms

Each atom has two valence electrons (Mg, Ca, ...)

2D case of *Divalent* Atoms

Each atom has two valence electrons (Mg, Ca, ...)

semimetal 半金属

2D Fermi Surface

simple square

3D Fermi Surface

simple cubic

generated with a tight binding model: http://home.cc.umanitoba.ca/~loly/fermisurf2.html

 Only electrons near the Fermi surface contribute to electrical (and thermal) conductivity in metals

$$\mathbf{\sigma} = e^2 \cdot \tau(E_F) \cdot \int_{\text{occupied}} \frac{2d\mathbf{k}}{(2\pi)^3} \cdot \frac{1}{\mathbf{M}^*(\mathbf{k})}$$

Ashcroft & Mermin, Chap.13

 Only electrons near the Fermi surface contribute to electrical (and thermal) conductivity in metals

compare

$$\sigma = ne \frac{v}{E} = ne \mu = \frac{ne^2 \tau}{m^*}$$

$$\sigma = ne \frac{v}{E} = ne \mu = \frac{ne^2 \tau}{m^*}$$

	Classical	Quantum
electron density	all valence electrons	electrons near Fermi surface
μ τ		(depend on <i>E</i> field)
velocity ν	average (depend on temperature)	Fermi velocity $ \mathcal{V}_{F} $
mass M	free electron $ m_0^{} $	effective mass m^*_{27}

3D Fermi Surface

3D Fermi Surface

nearly free electrons

3D case

copper (FCC)

3D case

copper (FCC): band structure

Example - Carbon

graphite $\sigma \sim 10^5 \text{ S/m}$

diamond $\sigma \sim 10^{-13} \text{ S/m}$

Example - Carbon

 $\sigma = ne\mu = \frac{ne^2\tau}{*}$

Temperature Dependence of σ

For metals

- \square n and m^* have weak dependence on T
- t has a strong dependence on T
- \blacksquare higher T ---> shorter τ ---> smaller μ ---> smaller σ

 $\sigma = ne\mu = 0$

Temperature Dependence of σ

For metals

- \square n and m^* have weak dependence on T
- t has a strong dependence on T
- \blacksquare higher T ---> shorter τ ---> smaller μ ---> smaller σ

https://www.thefabricator.com/

Summary

- Electronic properties of solids depend on
 - band structure
 - electron density
 - defects
 - temperature
 - electric field
 - **-** ...

Summary

Thank you for your attention