¿Qué hace el programa higgs4mu_select al ejecutarse? Física + Programación, paso a paso

Aldo

29 de septiembre de 2025

Objetivo y panorama general

Objetivo del ejecutable

- Selectionar eventos con 4 muones (4 μ) compatibles con $H \to ZZ^* \to 4\mu$.
- Aplicar preselecciones por muón: p_T , $|\eta|$, ID, aislamiento (ISO), IP (|dxy|, |dz|), SIP3D.
- Construir y elegir el **pareo OS-OS** óptimo \Rightarrow formar $Z_a \approx M_Z$ y Z_b (off-shell).
- Aplicar cortes finales (20/10 en Z_a ; opcional 20/10/7/5 en 4μ ; ventanas de masa).
- ullet Guardar histogramas y un TTree con variables clave del sistema 4μ .

Entradas → **Salidas**

- Entrada: ROOT con TTree (p. ej. analisis_final_clasificados.root:Events).
- Salida: ROOT con histogramas + FourMuTree (p. ej. out_zz4mu.root).

Aldo 29 de septiembre de 2025

Cómo se ejecuta y cómo lee la configuración

Ejemplo de ejecución

```
g++ -std=c++17 higgs4mu_select.cpp -o higgs4mu_select \
    $(root-config --cflags --libs) -02 -DCOMPILE_STANDALONE

./higgs4mu_select analisis_final_clasificados.root Events out_zz4mu.root \
    --comb-search \
    --pt-lead=20 --pt-sub=10 \
    --mza-min=50 --mza-max=106 --mzb-min=12 --mzb-max=120
```

Parsing de argumentos (programación)

- main() fija por defecto: archivo de entrada, TTree y archivo de salida.
- parse_cli() interpreta flags numéricos y booleanos (-use-iso, -comb-search, etc.).
- Se imprime un **resumen de configuración** para reproducibilidad.

Razonamiento físico

- Los cortes y ventanas controlan balance señal/ruido y la región cinemática de interés para $H \to ZZ^*$.
- Se prioriza que Z_a esté cerca de $M_Z \Rightarrow$ se minimiza $|m_{Z_a} M_Z|$.

Apertura de ROOT y activación de ramas

Programación

- TFile fin(..., READ) y TTree* tr = fin.Get(treeName).
- tr->SetBranchStatus(*;0) y luego se activan **sólo** las ramas necesarias (performance).
- Obligatorias: numbermuon, muon_pt/eta/phi, muon_ch, muon_isLoose/Medium/Tight.
- Opcionales (IP/SIP): muon_dxy, muon_dz, muon_sip3d (conexión condicional).
- ISO: si -use-iso, conectar muon_pfreliso04DBCorr u otra vía -iso-branch=.

Física

• Las ramas contienen la kinemática, carga, calidad e información de aislamiento/impacto para un 4μ "limpio".

Aldo H-- ZZ -- 4µ 29 de septiembre de 2025

Reserva de salidas: histogramas y TTree

Programación

- Cutflow global h_cutflow con 11 pasos.
- Pares: h_mZij_best (siempre) y h_mZij_pre (diagnóstico opcional).
- Finales: h_mZa, h_mZb, h_m4mu.
- Por categorías: AllTight/AllMedium/AllLoose y por composición T{nT}M{nM}L{nL}.
- TTree FourMuTree: masas, 4-vector del sistema, categoría, niveles por muón e índices de origen.

Física

- h_mZa muestra un pico en Z; h_m4mu puede insinuar H cerca de 125 GeV.
- El TTree permite rehacer cortes y estudios de sistema.

Aldo 29 de septiembre de 2025

Preselección por etapas (pipeline instrumentado)

Etapas

- **1 PT**: $p_T > \text{PT_MIN_BASE}$.
- $|\eta|$: si APPLY_ETA, exigir $|\eta| <$ ETA_MAX.
- ID ≥ Loose: si APPLY_ID.
- ISO: si USE_ISO y la rama existe, $relISO \leq ISO_MAX$.
- **1 IP** (dxy, dz): si APPLY_IP y existen ramas, $|dxy| < DXY_MAX$, $|dz| < DZ_MAX$.
- **SIP3D**: si APPLY_SIP y existe, $|SIP3D| < SIP3D_MAX$.

Programación

- Tubería de índices: idx_all \to idx_pt \to idx_eta \to idx_id \to idx_iso \to idx_ip \to idx_sip.
- En cada etapa, histogramas diagnósticos "after X" y un cutflow por etapas (h_evt_pre_cf).

Física

- PT/η : aceptación y calidad de reconstrucción.
- ID/ISO: pureza de muones prompt; IP/SIP: supresión de no-prompt o mal medidos.

Construcción del cuádruple y pareo OS-OS

Programación

- Con muones que sobreviven todas las etapas:
 - Top4: si USE_COMB_SEARCH=false, ordena por p_T y toma los 4 mayores.
 - Combinatorio: si USE_COMB_SEARCH=true, prueba todas las combinaciones de 4 muones.
- Para cada cuádruple, evaluar combinaciones OS-OS: (12+34), (13+24), (14+23).
- Criterio lexicográfico de óptimo:
 - ① Minimizar $|m_{Za} M_Z|$.
 - ② Minimizar $|m_{Zb} M_Z|$.

Física

- En $H o ZZ^*$ se espera un bosón Z on-shell $(Z_a \approx M_Z)$ y otro off-shell.
- Elegir la combinación adecuada mejora la pureza del canal 4μ .

Aldo

Cortes finales sobre el candidato 4μ

Programación

- Corte en p_T de Z_a : exige PT_LEAD, PT_SUB (20/10 típico).
- Corte 20/10/7/5 en 4μ (opcional): si ENFORCE_4MU_PT.
- Ventanas de masa: $m_{Za} \in (MZA_MIN, MZA_MAX), m_{Zb} \in (MZB_MIN, MZB_MAX).$
- Sanity check: $m_{4\mu} > 0$.

Física

- 20/10 y 20/10/7/5 están motivados por triggers y aceptancia.
- Ventanas de masa recortan regiones de fondo, manteniendo señal potencial.

Aldo 29 de septiembre de 2025

Relleno de histogramas y del TTree

Programación

- Pares del pareo ganador: h_mZij_best (sólo las dos parejas efectivas, Z_a y Z_b).
- Finales: h_mZa, h_mZb, h_m4mu.
- Por categorías: AllTight/AllMedium/AllLoose.
- Por composición: m4mu_by_comp_*, mZa_by_comp_*, mZb_by_comp_*.
- FourMuTree: masas, 4-vector del sistema, índices, niveles y pairing_code.

Física

• h_mZa \Rightarrow pico en Z. h_m4mu \Rightarrow posible exceso cerca de 125 GeV.

Aldo 29 de septiembre de 2025

Cutflow y escritura del archivo de salida

Programación

- Cutflow (11 pasos): desde All entries hasta filled.
- Escritura en out_zz4mu.root de todos los histogramas y del FourMuTree.

Física

• El cutflow diagnostica dónde se pierden eventos y orienta la optimización de cortes (mejor S/\sqrt{B}).

Aldo 29 de septiembre de 2025

Perfiles de ejecución recomendados

Realzar el pico en Z (control)

• -mza-min=80 -mza-max=100 -pt-min=5 -eta-max=2.4 -use-iso -iso-max=0.35 -sip3d-max=4

Buscar señal de Higgs (más estricto)

• -comb-search -pt-lead=20 -pt-sub=10 -enforce-4mu-pt -mza-min=50 -mza-max=106 -mzb-min=12 -mzb-max=120

Diagnóstico de emparejamientos

• -fill-pairs-pre para histogramas de pares *antes* de elegir el mejor.

Aldo 29 de septiembre de 2025

Problemas comunes y soluciones

- Crash/compilación por IP/SIP: asegurar declaración y conexión condicional de muon_dxy/dz/sip3d.
- ISO no existe: omitir -use-iso o ajustar -iso-branch= al nombre correcto.
- Muy pocos eventos: revisar h_evt_pre_cf para identificar la etapa que vacía y relajar ese corte.
- Pareos raros: usar -comb-search y/o inspeccionar h_mZij_pre.

Aldo 29 de septiembre de 2025

Física vs Programación (visión de conjunto)

Física

- 4μ de bosones Z prompt.
- $Z_a \approx M_Z$, Z_b off-shell.
- Cortes motivados por triggers/aceptancia.
- Señal: posible exceso en $m_{4\mu}\sim 125\, {
 m GeV}.$

Programación

- Pipeline de preselección instrumentado y trazable.
- Pareo OS-OS óptimo con criterio lexicográfico.
- Histos + TTree para análisis posteriores.

13 / 19

Cutflow para auditoría y tuning.

Apéndice: variables del TTree FourMuTree

- 4-vector sistema: mass4mu, pt_4mu, eta_4mu, phi_4mu, px4mu, py4mu, pz4mu, E4mu.
- Pares: mZa, mZb, $dMZa = |mZa M_Z|$, $dMZb = |mZb M_Z|$.
- Clasificación: category (3=AllTight, 2=AllMedium, 1=AllLoose, 0=Unclassified), nT, nM, nL.
- Trazabilidad: mu_levels[4], idxSel[4], idxZa[2], idxZb[2], pairing_code.

Aldo 11-2ZZ -- 4y 29 de septiembre de 2025

Código: ejemplo de ejecución reproducible

```
./higgs4mu_select analisis_final_clasificados.root Events out_zz4mu.root \
--comb-search --pt-lead=20 --pt-sub=10 --enforce-4mu-pt \
--mza-min=50 --mza-max=106 --mzb-min=12 --mzb-max=120
```

Sugerencia: guarda el comando en un .sh con fecha y seed (si aplica) para trazabilidad.

Aldo 29 de septiembre de 2025

Resultados: m_{Z_a}

Resultados: m_{Z_b}

Resultados: $m_{4\mu}$ (completo y zoom 80–130 GeV)

 $m_{4\mu}$ (completo)

 $m_{4\mu}$ (zoom 80–130 GeV)

18 / 19

Aldo 19-22 - 20 de septiembre de 2025

¡Gracias! Codigo en GitHub

Aldo Bayes 29 de septiembre de 2025