FORMULARIO DE CÁLCULO I

FORMULAS DE ÁLGEBRA

KAIZEN SOFTWARE

PRODUCTOS NOTABLES

$x^2 - y^2 = (x - y)(x + y)$	$(x \pm y)^3 = x^3 \pm 3x^2y + 3xy^2 \pm y^3$ $(x \pm a)(x \pm b) = x^2 \pm (a + b)x + ab$ $(x + y)^2 + (x - y)^2 = 2(x^2 + y^2)$	FORMULA GENERAL $ax^2 + bx + c = 0$; $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Si $b^2 - 4ac > 0$ raices reales distintas Si $b^2 - 4ac = 0$ raices reales iguales Si $b^2 - 4ac < 0$ raices complejas
	(4)	(1)(2)

EL BINOMIO DE NEWTON $(a+b)^n = a^n + \frac{n}{1!}a^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^3 + \dots + b^n$ LOGARITMOS Definición: $\log_b N = x$ $b^x = N$ Donde: N > 0, b > 0 y $b \ne 1$ Propiedades:

EddAld I 1403 Definition.	$108b^{14}-x$ $b=14$ Dollac.	N > 0, b > 0 y b + 1	Tropicuaucs.
$\log_b A + \log_b B = \log_b(AB)$	$\log_b A^n = n \log_b A$	$b^{\log_b A} = A$	$(\log_b a)(\log_a b) = 1$
$\log_b A - \log_b B = \log_b (A/B)$	$\log_b \sqrt[n]{A} = \frac{1}{n} \log_b A$	$\log_b A = \log_{(b^n)}(A^n)$	$\operatorname{Colog_b} N = \log_b \left(\frac{1}{N}\right) = -\log_b N$
$\log_b b = 1 ; \log_b 1 = 0$	$\log_b A = (\log_a A)/(\log_a b)$	$\log_b A = \log_{(\sqrt[n]{b})}(\sqrt[n]{A})$	Antilog _b $x = b^x$

FÓRMULAS DE TRIGONOMETRÍA

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\pi}{2} \cong 1.57$
	Z
sen α 0 $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ 1 $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ 0 -1 0 $\tanh x = (e^x - e^{-x})/(e^x + e^{-x})$ $\cosh^2 x - \sinh^2 x = 1$	$\sqrt{\pi} \cong 1.77$ $\mathbf{e} \cong 2.72$
$\cos \alpha$ 1 $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ 0 $-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$ -1 0 1 $\operatorname{sech}^2 x = 1 - \tanh^2 x$ $\operatorname{csch}^2 x = \coth^2 x - 1$	$e^2 \cong 7.38$
$\tan \alpha$ 0 $\frac{\sqrt{3}}{3}$ 1 $\sqrt{3}$ ∞ $-\sqrt{3}$ -1 $-\frac{\sqrt{3}}{3}$ 0 $-\infty$ 0 $\arcsin x = \ln(x + \sqrt{x^2 + x^2})$	$\sqrt{2} \sim 0.70$
$2\sqrt{2}$ $2\sqrt{2}$ arccosn $x = \ln(x + \sqrt{x^2 - x^2})$	$\sqrt{3} \cong 1.73$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{\sqrt{3}} \cong 0.57$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

FORMULAS DE GEOMETRÍA

	Triáng	ulo	Cuadrado	Rec	ctángulo	Ci	írculo	Elipse		Paralelogra	mo	Tra	pecio	Sector circular
Área	$\frac{1}{2}$ bł	1	a ²		ab	,	πr²	πab		bh		(a +	<u>b)</u> h	$\pi r^2 \frac{\theta}{360}$
Perímetro			4a	2a	a + 2b		2πr							
	Cubo	P	Paralelepípedo)	Tetraec	dro	Cili	indro		Cono	Pir	ámide	Esfera	Elipsoide
Área	6a ²	2((ab + ac + bc)	c)	$\sqrt{3}a^2$	2	2πrh	$+2\pi r^{2}$	1	$\tau rg + \pi r^2$			$4\pi r^2$	
Volumen	a ³		abc		$\frac{1}{12}\sqrt{2}$	a ³	π	r²h		$\frac{1}{3}\pi r^2 h$	$\frac{1}{3}$	A _b h	$\frac{4}{3}\pi r^3$	$\frac{4}{3}$ mabc

INECUACIONES

$(a,b) = \{x \in \mathbb{R} : a < x < b\}$	$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$	Si $a < b$ y $c < 0 \rightarrow ac > cb$	
$ a = \begin{cases} a & si & a \ge 0 \\ -a & si & a < 0 \end{cases}$	Si: $x, b \in \mathbb{R}, b > 0$ Entonces	Si: $x, b \in \mathbb{R}, b > 0$ Entonces	Si: $a, b \in \mathbb{R}$ Entonces
(-a si a < 0)	$ x \le b \iff -b < x < b$	$ x \ge b \iff x \le -b \lor x \ge b$	ab = a b
Si: $a,b \in \mathbb{R}, b \neq 0$ Entonces	Si: $a, b \in \mathbb{R}$ Entonces	Si: $a, b \in \mathbb{R}$ Entonces	$ x^n = x ^n$
a/b = a / b	$ a+b \le a + b $	a-b = b-a	

OPERACIONES	а	es positivo
OFERACIONES	а	C2 DO2ICIVO

$\frac{\frac{0}{a} = 0}{\frac{a}{0} = \infty}$	8	= 0 = ∞	$\frac{\frac{\infty}{a} = \infty}{\frac{a}{\infty} = 0}$	$a^{0} = 1$ $a + \infty = \infty$ $a \infty = \infty$		∞°: ∞∞ ∞+∞	= ∞	$0^{\infty} = 0$ $a^{\infty} = \infty \text{ si a :}$ $a^{\infty} = 0 \text{ si a <}$		
INDETERMINACIO	ONES	$\frac{0}{0}$	8	$\infty - \infty$	0 · o	×	∞_0	1∞		00
LÍMITES COMUNES $\lim_{x \to 0} \frac{\sin(x)}{\frac{x}{x}} = 1$ $\lim_{x \to 0} \frac{\tan(x)}{\frac{x}{x}} = 1$		$\lim_{x\to 0} \frac{1}{x}$	$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$		$\lim_{x\to 0} \lim_{x\to \infty}$	$(1+x)^{1/x} = e$ $\left(1+\frac{1}{x}\right)^{x} = e$	li	$\lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$ $\lim_{x \to 0} \frac{a^{x} - 1}{x} = \ln(a)$		

DERIVADAS Definición: $F'(x) = \frac{dF}{dx} = y' = \frac{dy}{dx} = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$; $h = \Delta x$ Es el incremento de 'x'

$(a)' = 0 (ax)' = a (xm)' = m xm-1 (\sqrt{x})' = \frac{1}{2\sqrt{x}} (a^x)' = a^x \text{lna} (e^x)' = e^x (\text{lnx})' = 1/x (\text{log}_b x)' = \frac{1}{x \text{lnb}}$	(senx)' = (cosx)' = (cosx)' = (cotx)' = (cot	-senx sec ² x - csc ² x secx tanx -cscx cotx	(arci	$y' = u^{v} (v' \ln u + u' v/u)$ $\operatorname{sen} x)' = 1/\sqrt{1 - x^{2}}$ $\operatorname{cos} x)' = -1/\sqrt{1 - x^{2}}$ $\operatorname{ctan} x)' = 1/(x^{2} + 1)$ $\operatorname{cot} x)' = -1/(x^{2} + 1)$ $\operatorname{secx} y' = 1/(x\sqrt{x^{2} - 1})$ $\operatorname{cscx} y' = -1/(x\sqrt{x^{2} - 1})$	$(x^{x})' = x^{x}(\ln x + 1)$ $(x)' = x /x, x \neq 0$ $(senhx)' = coshx$ $(coshx)' = senhx$ $(tanhx)' = sech^{2}x$ $(cothx)' = -csch^{2}x$ $(sechx)' = -sechx tanhx$ $(cschx)' = -cschx cothx$	
EC. RECTA (Punto –	Pendiente)	Pendient	e	Pendiente ortogonal	Ángulo	Ángulo entre pendientes
$y - y_0 = m(x - x_0)$ $m = f'(x)$		$m = f'(x_0)$)	$m = -1/f'(x_0)$	$\theta = \arctan(m)$	$\varphi = \arctan(\frac{m_1 - m_2}{1 + m_1 m_2})$

CRITERIOS PARA HALLAR LOS MÁXIMOS Y MÍNIMOS

Criterio de la 2da derivada	Criterio de la 1ra derivada	Criterio de comparación	Con dominios de crecimiento
$f''(x_0) > 0 \exists m\text{in}.$ $f''(x_0) < 0 \exists m\text{ax}.$ $x_0 = \text{Es un punto critico}$	Sea: $x_1 < x < x_2$ $f'(x_1) < 0 \ y \ f'(x_2) > 0 \ \exists \ min$ $f'(x_1) > 0 \ y \ f'(x_2) < 0 \ \exists \ máx$ $x \ \text{es el punto critico}$ $x_1, x_2 \ \text{son muy cercanos a } x$	Sea: $x_1 < x < x_2$ $f(x) < f(x_1) y \ f(x) < f(x_2) \exists \ min$ $f(x) > f(x_1) y \ f(x) > f(x_2) \exists \ max$ $x \ es \ el \ punto \ critico$ x_1 , x_2 tienen que ser muy cercanos a x	Si en el punto crítico pasa de decreciente a creciente ∃ mín Si en el punto crítico pasa de creciente a decreciente ∃ máx (Siempre que en el punto crítico ∄ un punto de inflexión y ∄ asintota vertical)

INTEGRALES

AREA $A = \int_{a}^{b} [F(x)]^{b}$	$f(x) - g(x) dx = \int_{c}^{d} [F(y) - g(y)] dy$		AREA DE SUP <u>ERFICIE D</u> E	REVOLUCIÓN	
F(x) Es la curva supe	erior g(x) Es la curva inferior	$S_X = 2\pi \int_a^b y \sqrt{1 + (\frac{dy}{dx})^2} dx = 2\pi \int_c^d y \sqrt{1 + (\frac{dx}{dy})^2} dy$			
F(y) Es la curva dere	echa g(y) Es la curva izquierda		' <u></u>	•	
	$- [g(x)]^{2} dx = 2\pi \int_{c}^{d} y [F(y) - g(y)] dx$		$S_y = 2\pi \int_a^b x \sqrt{1 + (\frac{dy}{dx})^2} dx = 2\pi \int_c^d x \sqrt{1 + (\frac{dx}{dy})^2} dy$		
u	C		CENTRO GEOMÉTRICO		
	$(x) - g(x) dx = \pi \int_{c}^{d} [F(y)]^{2} - [g(y)]^{2}$	dy	$\overline{x} = \frac{\int_a^b x[F(x) - g(x)] dx}{\int_a^b [F(x) - g(x)] dx} = \frac{\frac{1}{2} \int_c^d [F(y) - g(y)]^2 dy}{\int_c^d [F(y) - g(y)] dy}$		
LONGITUD DE ARC	·		$\int_{a}^{b} [F(x) - g(x)] dx$	$\int_{c}^{d} [F(y) - g(y)] dy$	
$L = \int_a^b \sqrt{1 + (\frac{dy}{dx})^2} dx$	$x = \int_{c}^{d} \sqrt{1 + (\frac{dx}{dy})^2} dy = \int_{m}^{n} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dy$	lt	$\bar{V} = \frac{\frac{1}{2} \int_{a}^{b} [F(x) - g(x)]^{2} dx}{b}$	$= \frac{\int_{c}^{d} y[F(y)-g(y)] dy}{1}$	
,	,		$\int_{a}^{b} [F(x) - g(x)] dx$	$\int_{C}^{a} [F(y) - g(y)] dy$	
Sustitución	$\sqrt{x^2 + a^2}$	$\sqrt{x^2}$	$-a^2$	$\sqrt{a^2-x^2}$	
Trigonométrica	$x = a \tan \theta$; $\sqrt{x^2 + a^2} = a \sec \theta$	$x = a \sec \theta$; $$	$\sqrt{x^2 - a^2} = a \tan \theta$	$x = a sen \theta$; $\sqrt{a^2 - x^2} = a cos \theta$	

En la siguientes integrales se debe añadir al final la constante +C (solo si se trabaja con integrales indefinidas)

$\int a dx = ax$ $\int x dx = \frac{x^2}{2}$ $\int x^n dx = \frac{x^{n+1}}{n+1} \text{ solo si: } n \neq -1$ $\int \frac{1}{x} dx = \ln x $ $\int e^x dx = e^x$ $\int a^x dx = a^x / \ln a$ $\int \ln x dx = x \ln x - x$ $\int \text{senx } dx = -\cos x$ $\int \cos x dx = -\sin x$ $\int \cot x dx = \ln \cos x $ $\int \cot x dx = \ln \sec x $ $\int \sec^2 x dx = \tan x$ $\int \csc^2 x dx = -\cot x$ $\int \sec x dx = \ln \sec x + \tan x $ $\int \csc x dx = \frac{1}{\ln \sec x + \tan x }$ $\int \csc x dx = \frac{1}{\ln \csc x + \cot x }$ $\int \sec x \tan x dx = \sec x$ $\int \csc x \cot x dx = -\csc x$	$ \int u dv = uv - \int v du (Integración por partes) $ $ \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} $ $ \int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \frac{a + x}{a - x} $ $ \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \frac{x - a}{x + a} $ $ \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln x + \sqrt{x^2 + a^2} $ $ \int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} $ $ \int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln x + \sqrt{x^2 - a^2} $ $ \int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln x + \sqrt{x^2 \pm a^2} $ $ \int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} $ $ \int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln x + \sqrt{x^2 - a^2} $ $ \int \arctan x dx = \arctan x - \frac{1}{2} \ln 1 + x^2 $ $ \int \operatorname{arcsenx} dx = x \operatorname{arcsenx} + \sqrt{1 - x^2} $ $ \int e^{ax} dx = e^{ax} / a $ $ \int \operatorname{sen}(ax) dx = -(1/a) \cos(ax) $	$\int \cos(ax) dx = (1/a) sen(ax)$ $\int xe^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$ $\int x^m e^{ax} dx = \frac{x^m}{a} e^{ax} - \frac{m}{a} \int x^{m-1} e^{ax} dx$ $\int x^m (\ln x)^n dx = \frac{x^{m+1} (\ln x)^n}{m+1} - \frac{n}{m+1} \int x^m (\ln x)^{n-1} dx$ $\int x^m \ln x dx = x^{m+1} (\frac{\ln x}{m+1} - \frac{1}{(m+1)^2})$ $\int (\ln x)^m dx = x (\ln x)^m - m \int (\ln x)^{m-1} dx$ $\int e^{ax} senbx dx = \frac{e^{ax}}{a^2 + b^2} (asenbx - bcosbx)$ $\int e^{ax} cosbx dx = \frac{e^{ax}}{a^2 + b^2} (acosbx + bsenbx)$ $\int x^m senbx dx = \frac{-x^m}{b} cosbx + \frac{m}{b} \int x^{m-1} cosbx dx$ $\int x^m cosbx dx = \frac{x^m}{b} senbx - \frac{m}{b} \int x^{m-1} senbx dx$ $\int sen^m x dx = \frac{-sen^{m-1}x cosx}{m} + \frac{m-1}{m} \int sen^{m-2}x dx$ $\int cos^m x dx = \frac{cos^{m-1}x senx}{m-1} + \frac{m-1}{m} \int cos^{m-2}x dx$ $\int tan^m x dx = \frac{tan^{m-1}x}{m-1} - \int tan^{m-2}x dx$ $\int sec^m x dx = \frac{sec^{m-2}x tanx}{m-1} + \frac{m-2}{m-1} \int sec^{m-2}x dx$
---	--	---