Assignment - 2 ARNAB BIR - 14MA20009

Problem:

Solving BVP using Block Tridiagonal Method

$$Y''' + 4Y'' + Y' - 6Y = 1$$

 $Y(0) = 0$
 $Y'(0) = 0$
 $Y'(1) = 1$

Code: (Python Script)

```
import sys
import numpy as np
import matplotlib.pyplot as plt
def block diagonal(a, b, c, d):
   n = len(d)
   b = np.zeros(a.shape)
    c = np.zeros(a.shape)
    d = np.zeros((n,2,1))
    c [0] = np.linalg.inv(b[0]).dot(c[0])
    d[0] = np.linalg.inv(b[0]).dot(d[0])
    for i in range (1,n):
        b_{i} = b_{i} - a_{i}.dot(c_{i-1})
        c_[i] = np.linalg.inv(b_[i]).dot(c[i])
        d_{[i]} = np.linalg.inv(b_{[i]}).dot((d[i] - a[i].dot(d_{[i-1]})))
    for i in range (n-2, -1, -1):
        d_[i] = d_[i] - c_[i].dot(d_[i+1])
```

```
return d
def bvp(1, r, h):
    n = int ((r-1) / (1.0*h))
    a = np.zeros((n-1,2,2))
   b = np.zeros((n-1,2,2))
    c = np.zeros((n-1,2,2))
    d = np.zeros((n-1,2,1))
    for i in range(n-1):
        # As i starts from 0, we define x = 1 + (i+1)*h
        x = 1 + (i+1) *h
        a[i] = np.array(([[1.0 / h**2 - 2/h, 0.0], [-h/2, -1.0]]))
        b[i] = np.array(([[-2.0 / h**2 + 1.0, 1/h**2 + 2.0/h], [-h/2, 1/h**2 + 2.0/h]))
1.0]]))
       b[i] = np.array(([[-2.0 / h**2 + 1.0, -6], [-h/2, 1.0]]))
        c[i] = np.array(([[1.0 / h**2 + 2/h, 0], [0, 0]]))
        d[i] = np.array(([[1],[0]]))
    d[0] = d[0] - a[0].dot(np.array(([[0.0], [0.0]])))
    \#d[n-2] = d[n-2] - c[n-2].dot(np.array(([[a2], [a4]])))
    d[n-2] = d[n-2] - np.array([[1/h**2 + 2/h], [0.0]])
    w = block diagonal(a, b, c, d)
    a1 = 0.0
    a3 = 0.0
    a4 = d[n-2][1] + h/2 + h/2*d[n-2][0]
    a2 = 1.0
    w = np.vstack(([np.array(([[a1], [a3]]))], w))
    return np.vstack((w, [np.array(([[a2], a4]))]))
def main():
    a = 0
   b = 1
   h1 = 0.1
   h2 = 0.05
   h3 = 0.02
    1 1 1
    x1 = np.linspace(a,b,(b-a)/h1+1)
    n = (b - a)/h1 + 1
    #x1 = x1[0:(b - a)/h1]
```

```
w1 = bvp(a, b, h1)
    #print w1
    z1 = w1[[range(w1.shape[0])],[0],[0]]
   y1 = w1[[range(w1.shape[0])],[1],[0]]
   y1 = y1[0]
    z1 = z1[0]
    #print y1, n
   y1[n-1] = h1*(z1[n-2]+1) / 2 + y1[n-2]
   print y1
   x2 = np.linspace(a,b,(b-a)/h2 +1)
    \#x2 = x2[0:(b - a)/h2]
   w2 = bvp(a, b, h2)
   y2 = w2[[range(w2.shape[0])],[1],[0]]
   y2 = y2[0]
   x3 = np.linspace(a,b,(b-a)/h3+1)
    #x3 = x3[0:(b - a)/h3]
   w3 = bvp(a, b, h3)
   y3 = w3[[range(w3.shape[0])], [1], [0]]
   y3 = y3[0]
    #print len(x3), len(y3)
   plt.ylabel('y')
   plt.xlabel('x')
   p1, p2, p3 = plt.plot(x3, np.interp(x3, x1, y1),
                          x3, np.interp(x3, x2, y2), x3, y3)
   plt.legend([p1, (p1, p2), (p1,p2,p3)], ["h = 0.1", "h = 0.05", "h =
0.005"], loc =4)
   plt.show()
   1 1 1
   h = [0.5, 0.1, 0.05, 0.01]
    for step in h:
     n = int((b - a)/step) + 1
     file = open("Resut h " + str(step) + ".txt", 'w')
     x = np.linspace(a,b,(b-a)/step+1)
     w = bvp(a, b, step)
     y= w[[range(w.shape[0])],[1],[0]]
```

```
z = w[[range(w.shape[0])],[0],[0]]
     y = y[0]
     z = z[0]
     y[n-1] = step*(z[n-2]+1) / 2 + y[n-2]
     file.write("Value of y(x) with respect to x: \ln x \cdot y(x) \cdot y(x)
     for i in xrange(n):
           file.write("\t^* + str(x[i]) + "\t^* + str(y[i]) + "\n^*)
           plt.plot(x, y, label="h={0}".format(step))
           plt.xlabel('x')
           plt.ylabel('y(x)')
           plt.legend(bbox to anchor=(2,2),
bbox transform=plt.gcf().transFigure)
           plt.legend(loc="upper left", bbox to anchor=[0, 1],
           ncol=2, shadow=True, title="Legend", fancybox=True)
           plt.savefig('Plot h ' + str(step) + '.png')
           plt.clf()
           #file.close()
     plt.legend(bbox to anchor=(2,2),
bbox transform=plt.gcf().transFigure)
     plt.legend(loc="upper left", bbox to anchor=[0, 1],
           ncol=2, shadow=True, title="Legend", fancybox=True)
    #plt.legend(bbox to anchor=(1.05, 1), loc=2,
bbox transform=plt.gcf().transFigure)
     plt.savefig('Plot_h.png')
     plt.show()
main()
```

Output:

For h = 0.5:

Value of y(x) with respect to x:

```
x y(x)

0.0 0.0

0.5 0.205882352941

1.0 0.661764705882
```

For h = 0.1:

Value of y(x) with respect to x:

```
y(x)
X
0.0
      0.0
0.1
      0.0122488896478
0.2
      0.0452578101855
0.3
      0.0928087770617
0.4
      0.150836683241
0.5
      0.216808096722
0.6
      0.289277865241
0.7
      0.367574503952
8.0
      0.45157871506
0.9
      0.54156915572
1.0
      0.638116698752
```

For h = 0.05:

```
Value of y(x) with respect to x:
```

```
x y(x)

0.0 0.0

0.05 0.00330831896801

0.1 0.0126821904435

0.15 0.0271165701181

0.2 0.0457857643067

0.25 0.0680158661792

0.3 0.0932613473902

0.35 0.121085198289

0.4 0.151142097412

0.45 0.183164165981

0.5 0.216948927438

0.55 0.252349147174

0.6 0.289264274801

0.65 0.327633251806
```

```
0.7 0.367428482056

0.75 0.408650792302

0.8 0.451325235228

0.85 0.495497609351

0.9 0.541231588662

0.95 0.588606370856

1.0 0.637714766571
```

For h = 0.01:

Value of y(x) with respect to x:

```
X
      y(x)
0.0
      0.0
0.01
      0.000141678206357
0.02
      0.000561633540095
0.03
      0.00124989446132
0.04
      0.0021968574259
0.05
      0.00339327494583
0.06
      0.00483024402741
0.07
      0.00649919497572
80.0
      0.00839188055405
0.09
      0.0105003654874
0.1
      0.0128170162992
0.11
      0.015334491472
0.12
      0.0180457319198
0.13
      0.0209439517659
0.14
      0.0240226294134
0.15
      0.0272754989014
0.16
      0.0306965415375
0.17
      0.0342799777982
0.18
      0.0380202594883
0.19
      0.0419120621523
0.2
      0.0459502777292
0.9
      0.541124883994
```

0.550463496659

0.91

0.92 0.559868460963 0.93 0.5693404989 0.94 0.5788803530950.95 0.5884887863210.96 0.59816658103 0.97 0.607914538916 0.98 0.6177334804890.99 0.6276242446741.0 0.637587688423

Plots:

