Algèbre linéaire Corrigé 3

Exercice 1. Montrer que l'ensemble $W = \{(x, y, z) : x, y, z \in \mathbb{R}, x + 2y + 2z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .

Solution 1. Soit V un \mathbb{R} -espace vectoriel et W un sous-ensemble de V. Pour montrer que W est un sous-espace vectoriel de V il suffit de montrer :

- (a) W est non vide (i.e. l'élément trivial de V appartient à W).
- (b) Pour tous $u, v \in W$ on a $u + v \in W$.
- (c) Pour tout $\lambda \in \mathbb{R}$ et tout $u \in W$, on a $\lambda u \in W$.

Ici $V = \mathbb{R}^3$ et on a bien $W \subset V$.

Soient $u_1 = (x_1, y_1, z_1), u_2 = (x_2, y_2, z_2) \in W$ et $\lambda \in \mathbb{R}$.

On a $(u_1 + u_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$ et

$$(x_1 + x_2) + 2(y_1 + y_2) + 2(z_1 + z_2) = (x_1 + 2y_1 + 2y_2) + (x_2 + 2y_2 + 2z_2)$$
$$= 0 + 0$$
$$= 0$$

où dans l'avant dernière égalité on a utilisé le fait que $u_1=(x_1,y_1,z_1)\in W$ et $u_2=(x_2,y_2,z_2)\in W$. Aussi, clairement, $x_1+x_2,y_1+y_2,z_1+z_2\in \mathbb{R}$. Ainsi $u_1+u_2\in W$.

Finalement $\lambda u_1 = (\lambda x_1, \lambda y_1, \lambda z_1), \ \lambda x_1, \lambda y_1, \lambda z_1 \in \mathbb{R}$ et

$$(\lambda x_1) + 2(\lambda y_1) + 2(\lambda z_1) = \lambda(x_1 + 2y_1 + 2z_1)$$

= $\lambda \cdot 0$
= 0

où dans l'avant dernière égalité on a utilisé le fait que $u_1 = (x_1, y_1, z_1) \in W$. Ainsi $\lambda u_1 \in W$. On a donc montré que le sous-ensemble W de $V = \mathbb{R}^3$ est bien un sous-espace vectoriel de V.

Exercice 2. Soit V un \mathbb{R} -espace vectoriel. On note $\mathbf{0}$ l'élément trivial de V. Montrer que si $\lambda \in \mathbb{R}$ alors $\lambda \cdot \mathbf{0} = \mathbf{0}$.

Solution 2. Comme 0 = 0 + 0, on a

$$\lambda \cdot \mathbf{0} = \lambda \cdot (\mathbf{0} + \mathbf{0})$$
$$= \lambda \cdot \mathbf{0} + \lambda \cdot \mathbf{0}.$$

En soustrayant $\lambda \cdot \mathbf{0}$ de chaque coté de la dernire égalité, on obtient $\mathbf{0} = \lambda \cdot \mathbf{0}$, comme voulu.

Exercice 3. Soit $V = \mathbb{R}^2$. Donner deux sous espaces vectoriels U_1 et U_2 de V tels que $U = U_1 \cup U_2$ n'est pas un sous espace vectoriel de V. (**Note.** En général, l'union U de deux sous espaces vectoriels U_1 et U_2 d'un \mathbb{R} -espace vectoriel V n'est pas un sous espace vectoriel de V.)

Solution 3. Prenons $U_1 = \{(t,t) : t \in \mathbb{R}\}$, $U_2 = \{(t,-t) : t \in \mathbb{R}\}$ et $U = U_1 \cup U_2$. Alors U_1 et U_2 sont des sous-espaces vectoriels de $V = \mathbb{R}^2$ et U est bien un sous-ensemble de V. Par contre U n'est

pas un sous-espace vectoriel de V. En effet $u_1=(1,1)\in U_1\subset U,\ u_2=(1,-1)\in U_2\subset U,$ mais $u_1+u_2=(2,0)\not\in U.$

Remarque. L'union de deux sous-espaces vectoriels (d'un même espace vectoriel) n'est en général pas un espace vectoriel.

Exercice 4. Donner un exemple d'un sous-ensemble $U \subset \mathbb{R}^2$ tel que U soit clos pour la multiplication par scalaires et U ne soit pas un sous-espace vectoriel de \mathbb{R}^2 .

Solution 4. Soit $U = U_1 \cup U_2$ où $U_1 = \{(t,t) : t \in \mathbb{R}\}$ et $U_2 = \{(t,-t) : t \in \mathbb{R}\}$. Alors U est un sous ensemble du \mathbb{R} -espace vectoriel $V = \mathbb{R}^2$ et U n'est pas un \mathbb{R} -espace vectoriel (voir exercice précédent). Pourtant U est clos sous la multiplication par scalaires. En effet soit $u \in U$ et $\lambda \in \mathbb{R}$. On a $u \in U_1$ ou $u \in U_2$. Si $u \in U_1$ alors u = (t,t) où $t \in \mathbb{R}$ et

$$\lambda u = \lambda(t, t) = (\lambda t, \lambda t) \in U_1,$$

et donc $\lambda u \in U$. Si $u \in U_2$ alors u = (t, -t) où $t \in \mathbb{R}$ et

$$\lambda u = \lambda(t, -t) = (\lambda t, -\lambda t) \in U_2,$$

et donc $\lambda u \in U$.

Exercice 5. Soient V un \mathbb{R} -espace vectoriel, et U, W deux sous espaces vectoriels de V. Montrer que $U \cap W$ est un sous espace vectoriel de V.

Solution 5. Soient V un \mathbb{R} -espace vectoriel et U, W deux sous espaces vectoriels de V. On doit montrer que $U \cap W$ est un sous espace vectoriel de V.

Bien sur $U \cap W$ est un sous ensemble de V. Aussi $U \cap W$ n'est pas vide. En effet, comme U et W sont des sous espaces vectoriels de V, l'élément trivial 0 de V appartient à U et à V, et donc $0 \in U \cap W$.

Soient $v_1, v_2 \in V$ et $\lambda \in \mathbb{R}$. Afin d'établir que $U \cap W$ est un sous espace vectoriel de V, il reste à montrer que $v_1 + v_2 \in U \cap W$ et $\lambda v_1 \in U \cap W$.

Comme $v_1, v_2 \in U$ et U est un \mathbb{R} -espace vectoriel, on a $v_1 + v_2 \in U$. Un raisonnement similaire donne que $v_1 + v_2 \in W$. Ainsi $v_1 + v_2 \in U \cap W$

Comme $v_1 \in U$ et U est un \mathbb{R} -espace vectoriel, on a $\lambda v_1 \in U$. De même $\lambda v_1 \in W$. Ainsi $\lambda v_1 \in U \cap W$. On a établi que $U \cap W$ est un sous espace vectoriel de V.

Exercice 6. Soit $\mathbb{P}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des polynômes en la variable x et à coefficients dans \mathbb{R} .

- (i) Soit $U = \{ax^2 + bx^5 : a, b \in \mathbb{R}\}$. Montrer que U est un sous-espace vectoriel de $\mathbb{P}(\mathbb{R})$.
- (ii) Trouver un sous-espace vectoriel W de $\mathbb{P}(\mathbb{R})$ tel que $\mathbb{P}(\mathbb{R}) = U \oplus W$.

Solution 6. Soit $V = \mathbb{P}(\mathbb{R})$.

(i) On doit montrer que $U=\{ax^2+bx^5:a,b\in\mathbb{R}\}$ est un sous-espace vectoriel de V. On a bien $U\subset V$ et $0\in U.$

Soient $\lambda \in \mathbb{R}$, $u_1 = a_1 x^2 + b_1 x^5 \in U$ et $u_2 = a_2 x^2 + b_2 x^5 \in U$. Notons que $a_i, b_i \in \mathbb{R}$ pout tout $i \in \{1, 2\}$.

On a

$$u_1 + u_2 = (a_1x^2 + b_1x^5) + (a_2x^2 + b_2x^5)$$
$$= (a_1 + a_2)x^2 + (b_1 + b_2)x^5.$$

Comme $a_1 + a_2, b_1 + b_2 \in \mathbb{R}$, on a bien $u_1 + u_2 \in U$.

Aussi

$$\lambda u_1 = \lambda (a_1 x^2 + b_1 x^5) = (\lambda a_1) x^2 + (\lambda b_1) x^5.$$

Comme $\lambda a_1, \lambda b_1 \in \mathbb{R}$, on a bien $\lambda u_1 \in \mathbb{R}$. Ainsi U est bien un sous-espace vectoriel de V.

(ii) Prenons $W = \{c_0 + c_1x + \dots + c_nx^n : c_2 = c_5 = 0\}$. Autrement dit W est l'ensemble des polynômes à coefficients réels tels que les coefficients de x^2 et x^5 sont nuls. Il est alors assez facile de montrer que W est un sous-espace vectoriel de V et que U + W = V. Aussi $U \cap W = 0$. On en déduit que $V = U \oplus W$.

Exercice 7. Prouver ou trouver un contre-exemple à l'énoncé suivant :

Enoncé. Soit V un \mathbb{R} -espace vectoriel. Si W_1 , W_2 , W_3 sont des sous-espaces vectoriels de V tels que $W_1 + W_3 = W_2 + W_3$, alors $W_1 = W_2$.

Solution 7. On donne un contre-exemple. Soit $W_1 = \{(t,t) : t \in \mathbb{R}\} = W_3 \subset \mathbb{R}^2$ et $W_2 = \{(0,0)\} \subset \mathbb{R}^2$. Alors, W_1 , W_2 et W_3 sont des sous-espaces vectoriels de $V = \mathbb{R}^2$, et $W_1 + W_3 = W_3$ et $W_2 + W_3 = W_3$. Ainsi on a bien $W_1 + W_3 = W_2 + W_3$. Mais $W_1 \neq 0 = W_2$.

Exercice 8. Soient V un \mathbb{R} -espace vectoriel et U, W des sous-espaces vectoriels de V tels que la somme U+W soit directe. Montrer que tout élément v de U+W s'écrit de manière unique sous la forme v=u+w avec $u\in U$ et $w\in W$.

Solution 8. Soit $v \in U + W$. Alors $v = u_1 + w_1$ avec $u_1 \in U$ et $w_1 \in W$. Supposons que $v = u_2 + w_2$ avec $u_2 \in U$ et $w_2 \in W$. Alors

$$u_1 + w_1 = u_2 + w_2$$

et donc

$$u_1 - u_2 = w_2 - w_1 \tag{1}$$

Comme U est un espace vectoriel, $u_1 - u_2 \in U$. De même $w_2 - w_1 \in W$. Par (1), on a donc $u_1 - u_2 = w_2 - w_1 \in U \cap W$. Or $U \cap W = 0$ (car la somme U + W est directe). On obtient $u_1 - u_2 = w_2 - w_1 = 0$, i.e.

$$u_1 = u_2 \quad \text{et} \quad w_1 = w_2$$

ce qu'il fallait démontrer.

Exercice 9. Prouver ou trouver un contre-exemple à l'énoncé suivant :

Enoncé. Soit V un \mathbb{R} -espace vectoriel. Si W_1 , W_2 , W_3 sont des sous-espaces vectoriels de V tels que $W_1 \oplus W_3 = W_2 \oplus W_3$, alors $W_1 = W_2$.

Indications. Penser à $V = \mathbb{R}^2$.

Solution 9. On donne un contre-exemple. Soit $W_1 = \{(0,t) : t \in \mathbb{R}\}$, $W_2 = \{(t,t) : t \in \mathbb{R}\}$ et $W_3 = \{(t,0) : t \in \mathbb{R}\}$. Alors W_1 , W_2 , W_3 sont des sous-espaces vectoriels de $V = \mathbb{R}^2$. Aussi $W_1 \cap W_3 = W_2 \cap W_3 = 0$ et $W_1 \oplus W_3 = W_2 \oplus W_3 = V$. Mais $W_1 \neq W_2$.

Exercice 10. Soit $V = \mathbb{P}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des polynômes en la variable x et à coefficients dans \mathbb{R} .

- (i) Soit $U = \{ p \in V : p(a) = p(b) \ \forall a, b \in \mathbb{R} \}$. Montrer que U est un sous-espace vectoriel de V.
- (ii) Soit $W = \{p \in V : p(0) = 0\}$. Montrer que W est un sous-espace vectoriel de V.
- (iii) Montrer que $V = U \oplus W$.

Solution 10. Soit $V = \mathbb{P}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des polynômes en la variable x et à coefficients dans \mathbb{R} .

(i) Soit $U = \{ p \in V : p(a) = p(b) \ \forall a, b \in \mathbb{R} \}$. On montre que U est un sous-espace vectoriel de V. On a bien $U \subset V$ et $0 \in U$.

Soient $p_1, p_2 \in U$ et $\lambda \in \mathbb{R}$. Comme $p_1 \in U$, il existe $\alpha_1 \in \mathbb{R}$ tel que $p_1(a) = \alpha_1$ pour tout $a \in \mathbb{R}$. De même, il existe $\alpha_2 \in \mathbb{R}$ tel que $p_2(a) = \alpha_2$ pour tout $a \in \mathbb{R}$. On a

$$(p_1 + p_2)(a) = p_1(a) + p_2(a) = \alpha_1 + \alpha_2$$

pour tout $a \in \mathbb{R}$. Ainsi $p_1 + p_2 \in U$. Aussi

$$(\lambda \cdot p_1)(a) = \lambda \cdot p_1(a) = \lambda \alpha_1.$$

Ainsi $\lambda \cdot p_1 \in U$. On a montré que U est bien un sous-espace vectoriel de V.

(ii) Soit $W = \{p \in V : p(0) = 0\}$. On montre que W est un sous-espace vectoriel de V. On a bien $W \subset V$ et $0 \in W$.

Soient $p_1, p_2 \in W$ et $\lambda \in \mathbb{R}$. On a

$$(p_1 + p_2)(0) = p_1(0) + p_2(0) = 0 + 0 = 0.$$

Ainsi $p_1 + p_2 \in W$. Aussi

$$(\lambda \cdot p_1)(0) = \lambda \cdot p_1(0) = \lambda \cdot 0 = 0.$$

Ainsi $\lambda \cdot p_1 \in W$. On a montré que W est bien un sous-espace vectoriel de V.

(iii) On montre que $V = U \oplus W$. On a $U \cap W = \{p \in V : p(a) = 0 \ \forall a \in \mathbb{R}\} = 0$. Donc $U + W = U \oplus W$. Clairement $U + W \subset V$. Il nous reste à montrer que $V \subset U + W$. Soit $p = a_0 + a_1x + \cdots + a_nx^n \in V$ (où $a_i \in \mathbb{R}$ pour $0 \le i \le n$). Alors $p = p_1 + p_2$ où $p_1 = a_0$ et $p_2 = a_1x + \cdots + a_nx^n$. Il est facile de vérifier que $p_1 \in U$ et $p_2 \in W$. Ainsi $p \in U + W$, et on a bien $V \subset U + W$.

Exercice 11. Soient $S = \{(1,2,3), (0,1,2)\}, T = \{(2,3,4), (0,0,1)\} \subset \mathbb{R}^3$.

- (i) Déterminer Vect(S) + Vect(T). Peut on trouver un sous ensemble R_1 de Vect(S) + Vect(T) tel que $Vect(R_1) = Vect(S) + Vect(T)$ et |R| = 3? Si oui, déterminer un tel ensemble R_1 .
- (ii) Déterminer $\text{Vect}(S) \cap \text{Vect}(T)$. En particulier, donner un sous ensemble R_2 de $\text{Vect}(S) \cap \text{Vect}(T)$ tel que $\text{Vect}(R_2) = \text{Vect}(S) \cap \text{Vect}(T)$ et $|R_2|$ soit le plus petit possible.
- (iii) La somme Vect(S) + Vect(T) est elle directe?

Solution 11. Soient $S = \{(1,2,3), (0,1,2)\}, T = \{(2,3,4), (0,0,1)\} \subset \mathbb{R}^3$.

(i) On détermine Vect(S) + Vect(T). Soit $v \in Vect(S) + Vect(T)$. Alors

$$v = a(1,2,3) + b(0,1,2) + c(2,3,4) + d(0,0,1)$$

où $a, b, c, d \in \mathbb{R}$. Ainsi

$$v = a(1,2,3) + b(0,1,2) + c(2(1,2,3) - (0,1,2)) + d(0,0,1)$$

= $(a+2c)(1,2,3) + (b-c)(0,1,2) + d(0,0,1)$.

Donc

$$Vect(S) + Vect(T) \subset Vect(\{(1,2,3), (0,1,2), (0,0,1)\}).$$

Clairement

$$Vect(\{(1,2,3),(0,1,2),(0,0,1)\}) \subset Vect(S) + Vect(T)$$

et donc

$$Vect(S) + Vect(T) = Vect(\{(1, 2, 3), (0, 1, 2), (0, 0, 1)\}).$$

(ii) On détermine $\operatorname{Vect}(S) \cap \operatorname{Vect}(T)$. Soit $v \in \operatorname{Vect}(S) \cap \operatorname{Vect}(T)$. Comme $v \in \operatorname{Vect}(S)$, on a v = a(1,2,3) + b(0,1,2) où $a,b \in \mathbb{R}$. Comme $v \in \operatorname{Vect}(T)$, on a v = c(2,3,4) + d(0,0,1). Donc

$$a(1,2,3) + b(0,1,2) = c(2,3,4) + d(0,0,1).$$

Ceci est équivalent à :

$$a(1,2,3) + b(0,1,2) - c(2,3,4) - d(0,0,1) = (0,0,0)$$

 $(a-2c,2a+b-3c,3a+2b-4c-d) = (0,0,0).$

On a donc le système

$$\begin{cases} a-2c & = 0 \\ 2a+b-3c & = 0 \\ 3a+2b-4c-d & = 0. \end{cases}$$

Mettons ce système sous forme matricielle :

$$A = \begin{pmatrix} 1 & 0 & -2 & 0 & & 0 \\ 2 & 1 & -3 & 0 & & 0 \\ 3 & 2 & -4 & -1 & & 0 \end{pmatrix}$$

Avec les opérations élémentaires : $L_1' = L_1$, $L_2' = L_2 - 2L_1$, $L_3' = L_3 - 3L_1$, on obtient :

$$A' = \begin{pmatrix} 1 & 0 & -2 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & -1 & 0 \end{pmatrix}.$$

Avec les opérations élémentaires : $L_1'' = L_1'$, $L_2'' = L_2'$, $L_3'' = L_3' - 2L_2'$, on obtient :

$$A'' = \begin{pmatrix} 1 & 0 & -2 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

Donc d = 0, b = -c, et a = 2c et

$$v = 2c(1, 2, 3) - c(0, 1, 2) = c(2, 3, 4).$$

On en déduit que

$$Vect(S) \cap Vect(T) \subset Vect\{(2,3,4)\}.$$

Comme
$$(2,3,4) = (1,2,3) + (0,1,2) \in Vect(S)$$
 et $(2,3,4) \in Vect(T)$, on a

$$\operatorname{Vect}\{(2,3,4)\} \subset \operatorname{Vect}(S) \cap \operatorname{Vect}(T)$$
.

On a donc montré:

$$Vect(S) \cap Vect(T) = Vect\{(2,3,4)\}.$$

(iii) La somme Vect(S) + Vect(T) n'est pas directe car $Vect(S) \cap Vect(T) \neq 0$.

Exercice 12. (Pas facile!) Soit $V = \{(x, y, z) : x, y, z \in \mathbb{R}, x + y + z = 1\}$. Soient $v = (x, y, z) \in V$, $v_1 = (x_1, y_1, z_1) \in V$, $v_2 = (x_2, y_2, z_2) \in V$ et $r \in \mathbb{R}$. Montrer que V est un \mathbb{R} -espace vectoriel sous les opérations suivantes :

$$v_1 + v_2 = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2 - 1, y_1 + y_2, z_1 + z_2)$$

 et

$$rv = r(x, y, z) = (rx - r + 1, ry, rz).$$

Solution 12. Soit $V = \{(x, y, z) : x, y, z \in \mathbb{R}, x + y + z = 1\}.$

(i) Soient $v = (x, y, z) \in V$, $v_1 = (x_1, y_1, z_1) \in V$, $v_2 = (x_2, y_2, z_2)$, $v_3 = (x_3, y_3, z_3) \in V$ et $r, r_1, r_2 \in \mathbb{R}$. On doit montrer que V est un \mathbb{R} -espace vectoriel sous les opérations suivantes :

$$v_1 + v_2 = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2 - 1, y_1 + y_2, z_1 + z_2)$$

et

$$rv = r(x, y, z) = (rx - r + 1, ry, rz).$$

Dans un premier temps, comme $v_1 + v_2 = (x_1 + x_2 - 1, y_1 + y_2, z_1 + z_2)$ et $x_1 + y_1 + z_1 = x_2 + y_2 + z_2 = 1$, on a

$$(x_1 + x_2 - 1) + (y_1 + y_2) + (z_1 + z_2) = (x_1 + y_1 + z_1) + (x_2 + y_2 + z_2) - 1 = 1 + 1 - 1 = 1$$

et donc $v_1 + v_2 \in V$. Aussi comme $rv = (rx - r + 1, ry, rz)$ et $x + y + z = 1$, on a $(rx - r + 1) + (ry) + (rz) = r(x + y + z) - r + 1 = r \cdot 1 - r + 1 = 1$

et donc $rv \in V$. On vérifie maintenant certains des axiomes :

(a) On a

$$v_1 + (v_2 + v_3) = (x_1 + y_1 + z_1) + (x_2 + x_3 - 1, y_2 + y_3, z_2 + z_3) = (x_1 + x_2 + x_3 - 2, y_2 + y_3, z_2 + z_3) = (v_1 + v_2) + v_3.$$

(b) On a

$$v_1 + v_2 = (x_1 + y_1 - 1, y_1 + y_2, z_1 + z_2) = v_2 + v_1.$$

- (c) On a v + (1,0,0) = (x,y,z) + (1,0,0) = (x,y,z) et $(1,0,0) \in V$. Donc (1,0,0) est l'élément trivial de V.
- (d) On a v + (2 x, -y, -z) = (x, y, z) + (2 x, -y, -z) = (1, 0, 0) et $(2 x, -y, -z) \in V$. Donc (2 - x, -y, -z) est l'opposé de v.
- (e) On a $1 \cdot v = 1 \cdot (x, y, z) = (1 \cdot x 1 + 1, 1 \cdot y, 1 \cdot z) = (x, y, z) = v$.
- (f) On a

$$(r_1 + r_2) \cdot v = ((r_1 + r_2)x - (r_1 + r_2) + 1, (r_1 + r_2)y, (r_1 + r_2)z)$$

$$= ((r_1x - r_1) + (r_2x - r_2) + 1, (r_1y) + (r_2y), (r_1z) + (r_2z))$$

$$= (r_1x - r_1 + 1, r_1y, r_1z) + (r_2x - r_2 + 1, r_2y, r_2z)$$

$$= r_1(x, y, z) + r_2(x, y, z)$$

$$= r_1 \cdot v + r_2 \cdot v.$$

(g) On a

$$r \cdot (v_1 + v_2) = r(x_1 + x_2 - 1, y_1 + y_2, z_1 + z_2)$$

$$= (r(x_1 + x_2 - 1) - r + 1, r(y_1 + y_2), r(z_1 + z_2))$$

$$= (rx_1 - r + rx_2 - r + 1, ry_1 + ry_2, rz_1 + rz_2)$$

$$= (rx_1 - r + 1, ry_1, rz_1) + (rx_2 - r + 1, ry_2, rz_2)$$

$$= r \cdot v_1 + r \cdot v_2$$

(ii) On peut prendre comme base de V : ((0,1,0),(0,0,1)).