Using Wasserstein GAN (with RL) for Natural Language Generation

Guan-Yuan Chen

SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

AAAI-17

Lantao Yu[†], Weinan Zhang^{†*}, Jun Wang[‡], Yong Yu[†]

The problem of GAN on NLG

A major reason lies in that the discrete outputs from the generative model make it difficult to pass the gradient update from the discriminative model to the generative model.

The problem of GAN on RNN sampling

SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

AAAI-17

Lantao Yu[†], Weinan Zhang^{†*}, Jun Wang[‡], Yong Yu[†]

Algorithm 1 Sequence Generative Adversarial Nets

```
Require: generator policy G_{\theta}; roll-out policy G_{\beta}; discriminator
     D_{\phi}; a sequence dataset \mathcal{S} = \{X_{1:T}\}
 1: Initialize G_{\theta}, D_{\phi} with random weights \theta, \phi.
 2: Pre-train G_{\theta} using MLE on \mathcal{S}
 3: \beta \leftarrow \theta
 4: Generate negative samples using G_{\theta} for training D_{\phi}
 5: Pre-train D_{\phi} via minimizing the cross entropy
 6: repeat
        for g-steps do
 8:
           Generate a sequence Y_{1:T} = (y_1, \dots, y_T) \sim G_{\theta}
 9:
           for t in 1:T do
               Compute Q(a = y_t; s = Y_{1:t-1}) by Eq. (4)
10:
11:
           end for
            Update generator parameters via policy gradient Eq. (8)
13:
        end for
14:
        for d-steps do
15:
            Use current G_{\theta} to generate negative examples and com-
           bine with given positive examples S
            Train discriminator D_{\phi} for k epochs by Eq. (5)
16:
        end for
17:
18:
        \beta \leftarrow \theta
19: until SeqGAN converges
```

$$Q_{D_{\phi}}^{G_{\theta}}(s = Y_{1:t-1}, a = y_{t}) =$$

$$\begin{cases} \frac{1}{N} \sum_{n=1}^{N} D_{\phi}(Y_{1:T}^{n}), Y_{1:T}^{n} \in MC^{G_{\beta}}(Y_{1:t}; N) & \text{for } t < T \\ D_{\phi}(Y_{1:t}) & \text{for } t = T, \end{cases}$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{Y_{1:t-1} \sim G_{\theta}} \left[\sum_{y_t \in \mathcal{Y}} \nabla_{\theta} G_{\theta}(y_t | Y_{1:t-1}) \cdot Q_{D_{\phi}}^{G_{\theta}}(Y_{1:t-1}, y_t) \right].$$

$$\tag{6}$$

$$\theta \leftarrow \theta + \alpha_h \nabla_{\theta} J(\theta),$$
 (8)

$$\min_{\phi} - \mathbb{E}_{Y \sim p_{\text{data}}}[\log D_{\phi}(Y)] - \mathbb{E}_{Y \sim G_{\theta}}[\log(1 - D_{\phi}(Y))]. \quad (5)$$

Adversarial Training Step:

- 1. Update D
- 2. Copy the Generator be the Rollout LSTM
- 3. Update G by Policy Gradient
- 4. Calculate the NLL by Target LSTM

Algorithm	Random	MLE	SS	PG-BLEU	SeqGAN
NLL	10.310	9.038	8.985	8.946	8.736
<i>p</i> -value	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	

Problems of GAN:

Mode collapse problem, The loss of G and D represent nothing (about the convergence)

http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

Algorithm	Random	MLE	SS	PG-BLEU	SeqGAN
NLL	10.310	9.038	8.985	8.946	8.736
<i>p</i> -value	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	

$$\mathrm{JSD}(P \parallel Q) = rac{1}{2}D(P \parallel M) + rac{1}{2}D(Q \parallel M)$$
 where $M = rac{1}{2}(P + Q)$

Earth Mover's Distance

Wasserstein GAN

Martin Arjovsky¹, Soumith Chintala², and Léon Bottou^{1,2} 2017

Wasserstein GAN

Generative Adversarial Nets

$$\max_{\|f\|_{L} \le 1} \mathbb{E}_{x \sim \mathbb{P}_{r}}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\nabla_{\theta} W(\mathbb{P}_r, \mathbb{P}_{\theta}) = -\mathbb{E}_{z \sim p(z)} [\nabla_{\theta} f(g_{\theta}(z))]$$

Wasserstein GAN

```
Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values \alpha = 0.00005, c = 0.01, m = 64, n_{\text{critic}} = 5.
Require: : \alpha, the learning rate. c, the clipping parameter. m, the batch size.
     n_{\text{critic}}, the number of iterations of the critic per generator iteration.
Require: w_0, initial critic parameters. \theta_0, initial generator's parameters.
 1: while \theta has not converged do
          for t = 0, ..., n_{\text{critic}} do
               Sample \{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r a batch from the real data.
 4: Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.

5: g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)}))\right]
     w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)
     w \leftarrow \text{clip}(w, -c, c)
          end for
          Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
                                                                                            Improved Training of Wasserstein GANs
          g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))
                                                                                             Ishaan Gulrajani<sup>1</sup>, Faruk Ahmed<sup>1</sup>, Martin Arjovsky<sup>2</sup>
          \theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, g_{\theta})
                                                                                                                  2017
12: end while
```


Using Wasserstein GAN (with RL) for Natural Language Generation

方法:

以character-based的方式建構language generator(GRU)。

以RNN(GRU)的方式建構discriminator。

分別以Original GAN and Wasserstein GAN with Policy Gradient 之方式,訓練discriminator與generator。

Dataset: 7200 abstracts of Arxiv papers about neural networks (from Stanford CS 20SI)

$$J^{(D)} = -E_{x \sim p_{data}}[D(x)] + E_{z \sim p_z}[D(G(z))] \quad (1)$$

$$\theta_d = \theta_d - \eta RMSProp(\theta_d, g_{\theta_d}), \quad \theta_d \leftarrow clip(\theta_d, c, -c) \quad (2)$$

其中,θ_d 為 discriminator 的參數。另定義 a prior on input noise variables p_z(z) (from a random normal distribution),作為 generator function 初始的 input value。細部的 procedure 與 algorithm 之定義如下:

Algorithm Wasserstein GAN with RL

Require: generator G_{θ_g} ; discriminator D_{θ_d} ; a sequence dataset $S = \{X_{1:T}\}$; roll-out policy G_{ϕ}

1: Initialize G_{θ_g} , D_{θ_d} with random weights θ_g , θ_d ;

2: $\phi \leftarrow \theta_o$

3: Generate negative samples using $G_{ heta_v}$ for training $D_{ heta_d}$

4: repeat

- 5: Pre-train $G_{\theta_{\sigma}}$ using MLE on S
- 6: for g-steps do
- 7: Generate a sequence $Y_{1:T} = (y_1, \dots, y_T) \sim G_{\theta_{\sigma}}$
- 8: **for** t in 1 : T **do**
- 9: Compute $Q(a = y_t; s = Y_{1:t-1})$ by Eq. (4) in [2]

10: end for

11: Update generator parameters via policy gradient Eq. (8) in [2]

12: end for

13: for d-steps do

14: Use current $G_{ heta_g}$ to generate negative examples and combine with given positive example

15: Train discriminator D_{θ_d} for 5 epochs by Eq. (1) and (2)

16: end for

17: $\phi \leftarrow \theta_g$

18: **until** D_{θ_J} converges

Result

RNN Stack: 3, Hidden Size of G: 200, Hidden Size of D: 200

SeqGAN WGAN with PG, clipping value: 5

the activation of the network are a difficulties of the network are a

in neural networks in machine learning. One of techniques have yielded recognition, type. We study the conventional layer-wise pre-training to the individual models and deep neural networks as part of a method for stochastic gradient and analyzing algorithms. This parallel learning architectures are generic and deep neural network architectures. The gradients. In this paper, we propose a novel approach for nonlinear unit, to the recently proposed deep RNNs benefit

Result

RNN Stack: 3, Hidden Size of G: 200, Hidden Size of D: 200

SeqGAN WGAN with PG, clipping value: 5

the activation of the network are a difficulties of the network are a

a fixed-point of computational complexity. Thus, we propose a new synchronization protocol that can be model distributed operation recent to train leventigation and dimensionality reduction in a data of noness of our methods on the same datasets in the relevant features of acoustic framework for example, representations of the approaches with a computationally expensive to train and deep learning architecture can be trained using standard points that by

Result

Result: Discriminator loss RNN Stack 3, Hidden size of G 200, D 200

Result: Mean NLL RNN Stack 3, Hidden size of G 200, D 200

References:

[1] Martin Arjovsky, Soumith Chintala, and Leon Bottou Wasserstein GAN 2017 [2] Lantao Yuy, Weinan Zhangy, Jun Wangz, Yong Yu SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient 2017 [3] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville Improved Training of Wasserstein GANs 2017 [4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza Generative Adversarial Nets 2014 [5] https://vincentherrmann.github.io/blog/wasserstein/ Wasserstein GAN and the Kantorovich-Rubinstein Duality [6] https://github.com/LantaoYu/SeqGAN Implementation of Sequence Generative Adversarial Nets with Policy Gradient [7] http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ An introduction to Generative Adversarial Networks (with code in TensorFlow) [8] http://web.stanford.edu/class/cs20si/ CS 20SI: Tensorflow for Deep Learning Research