IN THE ABSTRACT:

ABSTRACT

The present invention relates to a method of treating inflammatory, tissue repair and infectious conditions in a mammal suffering therefrom which comprises administering to a mammal in need thereof an effective amount of a cyclic compound selected from the group consisting of cyclopentane, cyclohexane, cycloheptane, monosaccharide, disaccharide, trisaccharide, tetrasaccharide, piperidine, tetrahydrothiopyran, 5-oxotetrahydrothiopyran, 5,5-dioxotetrahydrothiopyran, tetrahydroselenopyran, tetrahydrofuran, pyrrolidine, tetrahydrothiophene, 5-oxotetrahydrothiophene, 5-oxotetrahydrothiophene, 5-oxotetrahydrothiophene, tetrahydroselenophene, benzene, cumene, mesitylene, naphthalene and phenanthrene, in which said cyclic compound is substituted by at least three vicinal phosphorus containing radicals of the formula:

a)
$$Y^3$$
 Y^5 Y^8 Y^6 Y^7 Y^8 Y^9 Y