Introduction to Linear Algebra Midterm 2 Review Class

 $\mathsf{Wang}\ \mathsf{Tianyu}^1$

Fall, 2019

Outline

- Content
- Vector Space Review
- Spanning Set
- 4 Linear Independence
- Basis and Dimension
- 6 Rank
- Homomorphism
- Isomorphism
- Oordinate

Content

- 20' True / False
 - look carefully at your quiz and questions on slides
 - 4' Vector space & linear independence
 - check about the **abstract** definition of vector space, not just specific one we get used to
 - 5' Fundamental subspaces
 - know clearly how to find out those subspaces in general
 - 6' Linear transformation
 - relate the terms involved to the properties of matrix, specifically **Equivalence Theorem**
 - Equivalence I neorem
 - 5' Homomorphism & isomorphism & coordinate
 - apply these concepts to real problems, e.g., solving tricky integrals
- 10' Proof
 - look at those short but nontrivial proofs on slides, especially vector space, linear independence, spanning set and linear transformation

Vector Space

Vector space is a concept that brings various objects in Mathematics into same scenario. It consists of four parts:

- lacktriangle Scalar field (\mathcal{F})
- $oldsymbol{\circ}$ Set of vectors (\mathcal{V})
- Vector addition
- Multiplication between scalar and vectors

Here the word "vector" means not only those ordinary vectors in **Euclidean Space** (\mathbb{R}^n) , but arbitrary set of mathematical objects following some rules.

Scalar Field

A scalar field can be either **real** or **complex**. For this field there should be also two operations:

- Scalar addition
- Scalar multiplication

The two operations are different things compared with the two operations in the previous page (3 and 4).

There are 9 axioms that a scalar field should follow. In particular, you should pay attention to (all of them are **unique**)

- Additive identity: $\mathbf{0} + \alpha = \alpha$
- Multiplicative identity: $\mathbf{1} \cdot \alpha = \alpha$
- Additive inverse: $\alpha + (-\alpha) = 0$
- Multiplicative inverse: $\alpha \cdot \alpha^{-1} = 1$

Set of Vectors

There are 10 axioms for the set of vectors \mathcal{V} and the scalar field \mathcal{F} . If all of them are satisfied, then we say \mathcal{V} is a vector space over \mathcal{F} .

In practice we check the vector space in the following order:

- Axiom 9,10 (closure of addition and scalar multiplication)
- Axiom 6,7,8 (existence of additive identity, additive inverse and multiplicative identity)
- Axiom 1-5 (commutive, associative and distributive law)

Note: A field is not equivalent to a vector space.

Scalar Field and Vector Space

Question 1: Show the following are scalar fields

- $\textbf{ 0} \ \ \, \text{Galois field: } \{0,1\} \ \, \text{using } \textbf{xor} \ \, \text{as addition and } \textbf{and as multiplication}.$
- $\{ \begin{bmatrix} x & -y \\ y & x \end{bmatrix} | x, y \in \mathbb{R} \} \text{ using normal matrix addition and multiplication.}$

Question 2: Use the properties of vector space to show that if u + v = u + w, then v = w.

Question 3: Check whether $\{\mathbf{A} \in \mathcal{M}_{2\times 2} \mid \det(\mathbf{A}) = 0\}$ is a subspace of $\mathcal{M}_{2\times 2}$.

Subspace

Some small observations:

- When checking whether \mathcal{H} is a subspace of \mathcal{V} , only the closure of addition and scalar multiplication needs to be checked;
- Any subset of \mathbb{R}^3 that does not include the origin is **NOT** a subspace of \mathbb{R}^3 ;
- The set of all possible linear combinations of the vectors in $\mathcal S$ is a subspace of $\mathcal V$.

Spanning Set

Two important facts:

- Spanning set of S is the smallest subspace of V that contains S;
- Two sets of vectors in space \mathcal{V} span to the same set **if and only if** all vectors in one set are contained in the spanning set of the other. (This directly gives us the fact that $\operatorname{span}(\mathcal{S}) = \operatorname{span}(\mathcal{S})$)

Two important types of problems:

- Given a nonempty set S of vectors in \mathbb{R}^n and a vector \mathbf{v} in \mathbb{R}^n , determine if \mathbf{v} is a linear combination of the vectors in S;
- Given a nonempty set S of vectors in \mathbb{R}^n , determine whether S span \mathbb{R}^n .

Linear Independence

- ① Determine linear independence (basic): consider vectors \mathbf{v}_1 and \mathbf{v}_2 , and then consider whether $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \mathbf{x} = 0$ has only the trivial solution;
- The Vandemonde matrix V is invertible if it is from using n distinct x;
- If the Wronskian of a set of functions is not identically zero, then the functions form a linearly independent set (its negative and inverse statements are not true);

Fundamental Subspaces

There are basically four fundamental subspaces of a given matrix **A**:

- Null space $(\mathbf{A}\mathbf{x} = 0)$
- Left-hand null space ($\mathbf{A}^{\mathrm{T}}\mathbf{y}=0$)
- Row space $(span\{\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_m\})$
- Column space (span{ $\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n$ })

Note: Elementary row operation will change column space of a matrix, but not the row space and null space, and it does not change the linear dependency of columns.

If for a $m \times n$ matrix **A** of rank r, another nonsingular matrix **E** transform A into row-echelon form, then the last (m-r) rows of **E** spans null(\mathbf{A}^{T}).

Fundamental Subspaces

Ways to find the fundamental subspaces:

- Null space & left-hand null space:
 - Reduce the matrix to its rref. Solve the homogeneous equation and obtain a parametric representation of solution. Rewrite the solution as a linear combination of vectors.
 - ② Consider $\mathbf{EA} = \mathbf{U}$ and $\mathbf{E} = \begin{bmatrix} \mathbf{E_1} \\ \mathbf{E_2} \end{bmatrix}$ can find the left-hand null space and null space.
- Column space & row space:
 - Reduce the matrix to its rref and obtain a basis for the row space easily. For the column space, just mark the pivot columns in rref and index the corresponding columns in the original matrix.

Basis and Dimension

Some important facts:

- Basis is equivalent to a minimal spanning set of a vector space, as well as the maximal linearly independent subset;
- **Dimension** of a vector space is the number of vectors in the basis of that space;
- The dimension (degrees of freedom) of a subspace of a vector space $\mathcal V$ is always less than or equal to $\dim(\mathcal V)$ and if the equality is satisfied, the subspace is just $\mathcal V$ itself;
- The dimension of a vector space $\mathcal{V} \subset \mathbb{R}^n$ is different from the number of components contained in the individual vectors from \mathcal{V} ;
- A set of vectors that contain the zero vector is linearly dependent;
- Find the extension set for a given linearly independent set in \mathbb{R}^n .

Back to Rank

We can define the rank of any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as:

- the number of pivots when performing Gauss elimination;
- the maximum number of linearly independent columns of A, which also can be denoted as dim(col(A));
- the dimension of row space, denoted as dim(row(A)).

Sometimes it's quite useful to consider the fact that rank of any submatrix \mathbf{A}_i is **less than or equal to** the rank of the matrix \mathbf{A} .

Sum of Vector Spaces

If $\mathcal X$ and $\mathcal Y$ are subspaces of a vector space $\mathcal V$, then the sum of $\mathcal X$ and $\mathcal Y$ is defined to be the set of all possible sums of vectors from $\mathcal X$ with vectors from $\mathcal Y$. That is, $\mathcal X+\mathcal Y=\{x+y|x\in\mathcal X,y\in\mathcal Y\}$.

- $\dim(\mathcal{X} + \mathcal{Y}) = \dim\mathcal{X} + \dim\mathcal{Y} \dim(\mathcal{X} \cap \mathcal{Y});$
- $rank(A + B) \le rank(A) + rank(B)$ for any matrices $A, B \in \mathcal{M}_{m \times n}$.

Rank of Matrix Multiplication

1 If **A** is a matrix of $m \times n$ and **B** is a matrix of $n \times r$, then

$$\operatorname{rank}(\boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{B}}) = \operatorname{rank}(\boldsymbol{\mathsf{B}}) - \dim(\operatorname{null}(\boldsymbol{\mathsf{A}}) \cap \operatorname{col}(\boldsymbol{\mathsf{B}}))$$

- $oldsymbol{0}$ rank $(\mathbf{A}\mathbf{B}) \leq \min(\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B}))$ [consider the subspace];
- If **B** is invertible, then $rank(\mathbf{AB}) = rank(\mathbf{A}) [rank((AB)B^{-1}) \le rank(AB)]$; If **A** is invertible, then $rank(\mathbf{AB}) = rank(\mathbf{B})$;
- rank(**AB**) not necessarily equal to rank(**BA**), e.g., $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

and
$$\mathbf{B} = \begin{bmatrix} -1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 where column vectors of \mathbf{B} lie in the null space of \mathbf{A} .

Rank of Matrix Multiplication

Question: Show that if matrices A, B, C, D satisfy the following multiplication

$$D = ABC$$

while ${\bf A}$ and ${\bf C}$ are two invertible square matrices, then ${\sf rank}({\bf D})={\sf rank}({\bf B}).$

<u>Solution</u>: $\operatorname{rank}(\mathbf{D}) = \operatorname{rank}(\mathbf{ABC}) \leq \operatorname{rank}(\mathbf{BC}) \leq \operatorname{rank}(\mathbf{B})$. As **A** and **C** are invertible, we have $\mathbf{B} = \mathbf{A}^{-1}\mathbf{DC}^{-1}$. To this end, we have $\operatorname{rank}(\mathbf{B}) \leq \operatorname{rank}(\mathbf{D})$. Combining the two inequalities, we conclude that $\operatorname{rank}(\mathbf{B}) = \operatorname{rank}(\mathbf{D})$.

This essentially reveals very interesting facts regarding several decomposition methods (*i.e.*, eigenvalue, SVD) that will be covered later. Intuitively the middle matrix $\bf B$ already contains the major information of original matrix $\bf D$.

Nullity

1 If **A** is a matrix with *n* columns, then

$$\operatorname{rank}(\mathbf{A}) + \operatorname{nullity}(\mathbf{A}) = n$$

which can be understood by the concept of leading variables and free variables:

- nullity() = 0 can be added into equivalence theorem;
- **3** For system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$, we have
 - it has solution if and only if $b \in col(A)$;
 - if \mathbf{x}_p is a particular solution, then the general solution can be represented as $\{\mathbf{x}_p + \mathbf{x}_c | \mathbf{x}_c \in \text{null}(\mathbf{A})\}$.

Transformation

Matrix multiplication $\mathbf{y}=\mathbf{A}\mathbf{x}$ defines a matrix transformation $T_{\mathbf{A}}:\mathbb{R}^n\to\mathbb{R}^m$ and \mathbf{A} is the transformation matrix. Specifically, if m=n, then $T_{\mathbf{A}}$ is known as a matrix operator. The codomain \mathbb{R}^m of $T_{\mathbf{A}}$ is larger or equal than the range of it.

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation **if and only if** for all **u** and **v** in \mathbb{R}^n and α in \mathcal{F} :

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v});$
- $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u}).$

Two matrix transformations are the same **if and only if** their transformation matrices are the same (one-to-one correspondence).

Standard Matrix

The matrix with the image vectors of the standard vectors as its columns

$$[T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \cdots \ T(\mathbf{e}_n)]$$

is called the **standard matrix** for the transformation.

A matrix transformation $T_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if $T_{\mathbf{A}}$ maps distinct vectors in \mathbb{R}^n into distinct vectors in \mathbb{R}^m .

A matrix transformation is said to be **onto** if every vector in \mathbb{R}^m is the image of at least one vector in \mathbb{R}^n .

One-to-One

Quiz 3 Question 3:

Let $\mathcal U$ and $\mathcal V$ be finite dimensional vector spaces over a scalar field $\mathcal F$. Consider $\mathcal T:\mathcal U\to\mathcal V$. Show if $\dim(\mathcal U)>\dim(\mathcal V)$, then $\mathcal T$ cannot be one-to-one.

Solution: Recall T being one-to-one is equivalent to kernel(T) = $\{0\}$. Therefore we need to show kernel(T) cannot be $\{0\}$. As T is not necessarily onto, we can state that $\dim(\operatorname{range}(T)) \leq \dim(\mathcal{V})$. Thus $\operatorname{rank}(T) \leq \dim(\mathcal{V}) < \dim(\mathcal{U})$ holds. In the meantime, T can be represented as a matrix with $\dim(\mathcal{V}) \times \dim(\mathcal{U})$. Recall the relationship $\operatorname{rank}(T) + \operatorname{nullity}(T) = n = \dim(\mathcal{U})$, we can conclude that $\operatorname{nullity}(T) \geq 1$ and hence $\operatorname{kernel}(T)$ cannot be $\{0\}$.

Intuitively, this says that some vectors in \mathcal{U} have to be mapped to "finished" vectors in \mathcal{V} as the capacity of \mathcal{V} is not large enough.

Kernel and Range

- kernel($T_{\mathbf{A}}$) = null(\mathbf{A});
- 2 range($T_{\mathbf{A}}$) = col(\mathbf{A});
- Now three extra statements can be added into equivalence theorem:
 - $kernel(T_A) = \{0\};$
 - $T_{\mathbf{A}}$ is one-to-one;
 - range($T_{\mathbf{A}}$) = \mathbb{R}^n ;
- \bullet if $\mathbf{m} = \mathbf{n}$, then the following statements are equivalent:
 - T_A is one-to-one;
 - $\operatorname{kernel}(T_{\mathbf{A}}) = \{\mathbf{0}\};$
 - T is onto, range(T_A) = n.

Linear Transformation

A linear transformation T is invertible **if and only if** it is **one-to-one** and **onto**. Do not get confused with what the equivalence theorem states, which only holds for the linear transformation with the same dimension.

Isomorphism between spaces $\mathcal U$ and $\mathcal V$ is a linear transformation from $\mathcal U$ to $\mathcal V$ which is one-to-one and onto. And in this case $\mathcal U$ and $\mathcal V$ are isomorphic to each other, denoted as $\mathcal U\widetilde =\mathcal V$.

- **①** Every real *n*-dimensional vector space is isomorphic to \mathbb{R}^n ;
- ② One specific category of isomorphism above is $\mathbf{u} \to [\mathbf{u}]_{\mathcal{S}}$, where \mathcal{S} is a basis for a vector space \mathcal{V} .

Transition Matrix

A transition matrix is a matrix to transform a coordinate vector on a basis \mathcal{B} into the coordinate vector on another basis \mathcal{B}' for a vector space \mathcal{V} . It can be presented as

$$\mathbf{P}_{\mathcal{B} \to \mathcal{B}'} = [\ [\mathbf{u}_1]_{\mathcal{B}'}\ [\mathbf{u}_2]_{\mathcal{B}'}\ \cdots\ [\mathbf{u}_n]_{\mathcal{B}'}\]$$

- **1** The inverse of this matrix is the transform matrix from \mathcal{B}' to \mathcal{B} ;
- Transition matrix from standard basis to another basis is just an alignment of the vectors in that basis.

Set of Linear Transformations

For each pair of vector spaces \mathcal{U} and \mathcal{V} over \mathcal{F} , the set $\mathcal{L}(\mathcal{U},\mathcal{V})$ of all linear transformations from \mathcal{U} and \mathcal{V} is a vector space over \mathcal{F} .

Suppose $\mathcal{B}_{\mathcal{U}} = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ and $\mathcal{B}_{\mathcal{V}} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m\}$ are bases for \mathcal{U} and \mathcal{V} , respectively, and let B_{jj} be the linear transformation from \mathcal{U} into \mathcal{V} defined by

$$B_{ji}(\mathbf{u}) = \gamma_j \mathbf{v}_i$$
, where $\begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{bmatrix} = [\mathbf{u}]_{\mathcal{B}_{\mathcal{U}}}$,

then $\mathcal{B}_{\mathcal{L}} = \{B_{ji}\}_{j=1...n}^{i=1...m}$ is a basis for $\mathcal{L}(\mathcal{U}, \mathcal{V})$.

Coordinate

As an extension of original **standard matrix**, we want to evaluate the change of coordinate for any linear transformation,

and the matrix transformation is just

$$[T]_{\mathcal{B}_{\mathcal{U}}\mathcal{B}_{\mathcal{V}}} = \left[[T(\mathbf{u}_1)]_{\mathcal{B}_{\mathcal{V}}} \ [T(\mathbf{u}_2)]_{\mathcal{B}_{\mathcal{V}}} \ \cdots \ [T(\mathbf{u}_n)]_{\mathcal{B}_{\mathcal{V}}} \right]$$

Thanks!
Good luck for your exam!