1

Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula

1	Mason's Gain Formula		1	1 2 Bode Plot		
2	Bode Plot		1	1 2.1 Introduction		
		luction	1 1	2.2 E 1		
3	Second order System 3.1 Damping		1	3 Second order System		
			1 1	3 1 Damping		
4	Routh Hurwitz Criterion 4.1 Routh Array		1	3.2 Example		
			1	1 4 Routh Hurwitz Criterion		
		nal Stability ity	1 1	4.1.70		
5	State-Space Model		1	1 4.2 Marginal Stability		
	5.1 Contr	ollability and Observability and Order System	1 2	T.J DIMITILIA		
	·		•	5 STATE-SPACE MODEL		
6	Nyquist Plot		2			
7	Phase Margin		2	5.1 Controllability and Observability 5.1. Consider the state space realization:		
8	Gain Margin		2	-	.1)	
9	Compensators		2	$2 \qquad \qquad \left(\dot{x}_2(t) \right) \left(0 -9 \right) \left(x_2(t) \right) \left(45 \right)^{u(t)} (3.1)$	••)	
		Lead	2	with initial conditions:		
10	Oscillator		2	$ \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $ (5.1)	.2)	

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

, where u(t) denotes unit step function. Find the value of $\lim_{t\to\infty} \left| \sqrt{x_1^2(t) + x_2^2(t)} \right|$

5.2. **Solution:** The state space model is given in the form:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \tag{5.2.1}$$

X(s) can be directly determined using the below formula :

$$X(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}U(s) + (s\mathbf{I} - \mathbf{A})^{-1}x(0)$$
(5.2.2)

Where:

$$A = \begin{pmatrix} 0 & 0 \\ 0 & -9 \end{pmatrix} \tag{5.2.3}$$

$$B = \begin{pmatrix} 0\\45 \end{pmatrix} \tag{5.2.4}$$

$$x(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{5.2.5}$$

$$u(t) = unit \ step \ function$$

$$\implies U(s) = \frac{1}{s}$$
(5.2.6)

$$X(s) = \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & -9 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 45 \end{pmatrix} \frac{1}{s} + \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & -9 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(5.2.7)

Solving X(s):

$$X(s) = \begin{pmatrix} s & 0 \\ 0 & s+9 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 45 \end{pmatrix} \frac{1}{s}$$
 (5.2.8)

$$= \begin{pmatrix} 0\\ \frac{45}{s(s+9)} \end{pmatrix} \tag{5.2.9}$$

Hence:

$$X(s) = \begin{pmatrix} X_1(s) \\ X_2(s) \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{45}{s(s+9)} \end{pmatrix}$$
 (5.2.10)

By comparing elements in the matrices:

$$X_1(s) = 0 \implies x_1(t) = 0$$
 (5.2.11)

Using this result we can simplify the required expression as follows:

$$\lim_{t \to \infty} \left| \sqrt{x_1^2(t) + x_2^2(t)} \right| = \left| \lim_{t \to \infty} x_2(t) \right|$$
 (5.2.12)

Using the final value theorem:

$$\left| \lim_{t \to \infty} x_2(t) \right| = \left| \lim_{s \to 0} s X_2(s) \right|$$

$$= \left| \lim_{s \to 0} \left(s \frac{45}{s(s+9)} \right) \right|$$

$$= \left| \lim_{s \to 0} \left(\frac{45}{s+9} \right) \right|$$

$$= \left| \frac{45}{9} \right|$$

$$= |5|$$

$$= 5$$

Hence
$$\lim_{t\to\infty} \left| \sqrt{x_1^2(t) + x_2^2(t)} \right| = 5$$

- 5.3. verify the answer with python code https://github.com/Surya291/EE2227-Control-systems/tree/master/Codes
- 5.2 Second Order System
 - 6 Nyquist Plot
 - 7 Phase Margin
 - 8 GAIN MARGIN
 - 9 Compensators
- 9.1 Phase Lead
- 10 OSCILLATOR