subgraph2vec					
Article	Data	Data	Comments or Questions		
Narayanan A ,	Aim:	Key results:	When subgraph of		
Chandramohan M ,	Learning latent representations	Benchmark Datasets	degree 0 are		
Chen L , et al.	of rooted subgraphs from large	$\textbf{Table 3: Average Accuracy } (\pm \ \text{std dev.}) \ \ \text{for subgraph 2vec and state-of-the-art graph kernels on benchmark graph classification datasets}$	considered,		
subgraph2vec:	graphs.		subgraph2vec provides		
Learning		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	node embeddings.		
Distributed	Contributions:	Clone Detection	How can we get the		
Representations of	 Propose subgraph2vec. 	Table 5: Clone Detection - Results	initial labels for each		
Rooted Sub-graphs	 Develop a modified 	$ \begin{array}{ c c c c c c } \hline Kernel & WL [6] & Deep WL_{YV} [7] & subgraph2vec \\ \hline Pre-training duration & - & 421.7 s & 409.28 s \\ & ARI & 0.67 & 0.71 & 0.88 \\ \hline \end{array} $	node? ✓		
from Large	version of the skipgram	ARI 0.07 0.71 0.88	What is the Deep WL		
Graphs[J]. 2016.	language model.	Malware Detection	kernel? ✓		
	Discuss how	Table 7: Malware Detection - Results			
	subgraph2vec's	Classifier WL [6] Deep WL _{YV} [7] subgraph2vec			
	representation learning	*			
	technique would help to	Background:			
	build the deep learning	language model			
	variant of WL kernel.				
	A 12 (2	Methods:			
	Applications:	Generate rooted subgraphs: WL Relabeling Process			
	 graph classification and 	Embeddings of those subgraphs: Radial Skip Gram Model			
	clustering tasks • Approximate the probability distribution: Negative Sampling				
	 code clone detection 	for each $sg_{cont} \in context_v^{(d)}$ do			
	 malware detection 	$ > \qquad \qquad J(\Phi) = -\log_{v} \Pr\left(sg_{cont} \Phi(sg_{v}^{(d)})\right) $			

graph matching					
Article	Data	Data	Comments or Questions		
Sussman Daniel,	Aim:	Key results:	● 三种padding方法没看		
Park Youngser,	Finding the vertex correspondence between	Finding Kenyon Cells in a Drosophila Connectome	明白。。		
Priebe Carey E, et al. Matched Filters for Noisy Induced Subgraph Detection 2019,	two noisy graphs with different number of vertices where the smaller graph is still large. Contributions: Proposed a number of padding methods to transform the noisy subgraph detection problem into a graph matching problem.	(b) Drosophila right Keryon cells (a) and (b) show adjacency matrices for the two Drosophila correspond to a directed edge being present. The first sphere are the X-cells. Fanel (c) shows the number of times that each node in the left hemisphere. Fig. 5. Connectomes and matching analysis of the Drosophila connectomes.			
	Applications	Background:			
	 Applications: determining whether a particular activity pattern is present in a social network detecting certain shapes in an image 	 Subgraph Isomorphism Graph Matching Algorithms Statistical Models Methods:			
	discovering motifs in brain networks	 Padding Approaches: Naive Padding, Centered Padding, Oracle Padding Graph Matching Approaches: FAQ algorithm 			