<u>Database Management Systems</u> UNIT-04_(MCQ)

1.	The relationa	ıl algebra is		
	A. a pro	<mark>cedural query language.</mark>		
	B. theo	ry that not uses algebraic structures		
	C. is a n	on procedural query language.		
	D. Both	a&b		
2	σ salary>90000 (instructor) is			
۷.	A. Select instructor whose salary is above 90000			
		t instructor whose salary is above 90000		
		e instructor whose salary is less than 90000		
		e instructor whose salary is above 90000 e instructor whose salary is less than 90000		
	D. Delet	e instructor whose salary is less than 90000		
3.	· ·	= "Physics" ∧ salary >90000 (instructor)		
		t instructor in physics dept whose salary is greater than 90000		
		t instructor in physics dept whose salary is less than 90000		
		ove instructor in physics dept whose salary is greater than 90000		
	D. Remo	ove instructor in physics dept whose salary is less than 90000		
4.	П ID, name, salary (instructor)			
	A. Finds	all the name in list		
	B. Finds	all the salary in the list		
	C. Finds	all the id in the list		
	D. Proje	ct operation list-id, name, salary		
5.	П course id (Π course id (σ semester = "Fall" Λ year=2009 (section))		
	•	et all the courses taught in fall 2009		
	B. Remo	ove all the courses taught in fall 2009		
	C. Selec	t the section in fall 2009		
	D. None	of the above		
6.	r-s is relatior	nal algebra meaning		
		ifference finds the tuple that are in one relation but are not in another		
		duces a relation containing those tuples in r but not in s.		
	C. Both			
	D. None	of the above		
7.	_			
	A. Riaht	t outer join		
		outer join		
		t inner join		
	•	t outer join		
	D. INGIII			

 8. account ← account − σ branch-name = "Perryridge" (account) is						
9. r ← r ∪ E is meant for						
A. Used to insertion of a single tuple which is expressed by relational algebra						
 E B. Used to deletion of a single tuple which is expressed by relational algebra E C. Used to update of a single tuple which is expressed by relational algebra E D. Both a&b 						
 10. Bad relational database design will result: A. Repetition of information B. Inability to represent certain information C. Both a & b D. None of the above 						
11. Consider relations schema is lending-schema=(branch-name, branch-city,						
assets, customer-name, loan number, amount) the redundancy in these is:						
A. Branch-name, branch-city, assetsB. Customer-name, loan number, amount						
C. Branch-name, loan number, amount						
D. Branch-city, assets, amount						
12. Functional dependency						
A. Avoid data redundancy						
B. Used to identify bad design						
C. Help to maintain quality of database						
D. All of the above						
13. Normalization is a						
A. Method to organize a data to avoid data redundancy						
B. Method to avoid insertion/update/deletion anomaly						
C. Both a&b D. None of the above						
D. NOTE OF THE ADOVE						

Emp-no	Emp-name	Salary	City
1	DANA	50000	LONDON
2	ANDREW	25000	токуо

In the above table is functional dependent on

- A. Emp-name, emp-no
- B. Salary, emp-no
- C. City, emp-no
- D. All of the above
- 15. Insert anomaly
 - A. This refers to the situation when it is impossible to insert certain types of data into the database.
 - B. The deletion of data leads to unintended loss of additional data, data that we had wished to preserve.
 - C. This refers to the situation where updating the value of a column leads to database inconsistencies
 - D. All of the above
- 16. Update anomaly is
 - A. This refers to the situation where updating the value of a column leads to database inconsistencies
 - B. The deletion of data leads to unintended loss of additional data, data that we had wished to preserve.
 - C. This refers to the situation when it is impossible to insert certain types of data into the database.
 - D. All of the above
- 17. The condition for the first norm is......
 - A. Contains only atomic values
 - B. There are no repeating groups
 - C. Both a&b
 - D. None of the above
- 18. Condition for second norm form:
 - A. It must be in first norm form
 - B. All non key attributes are fully functional dependent on primary key
 - C. Both a&b

- D. None of the above
- 19. The condition for BOYCE-CODD Normal for every dependency x->y:
 - A. Y is subset of x
 - B. X is super key from schema
 - C. Both a & b
 - D. None of the above