EE 693 Quiz 1 Maximum Marks: 20

Time: 40 minutes Date 10.9.21

- Q.1 Suppose $\{A_n\}_{n=1}^{\infty}$ is a sequence of subsets of $\mathbb R$ given by $A_n=[1,\ 5-\frac{1}{n}]$. Find $\liminf_{n\to\infty}A_n$.
- Q.2. Suppose $\left\{X_n\right\}$ is a sequence of independent random variables with $P\left(\left\{X_n=n\right\}\right)=\frac{1}{n}$ and $P\left(\left\{X_n=0\right\}\right)=1-\frac{1}{n}$. Examine if (a) $\left\{X_n\right\} \xrightarrow{P} \left\{X=0\right\}$ as $n \to \infty$ and (b) $\left\{X_n\right\} \xrightarrow{m.s.} \left\{X=0\right\}$ as $n \to \infty$
- Q.3 $\left\{X_n\right\}$ is a sequence of independent Bernoulli random variables with $P\left(\left\{X_n=1\right\}\right)=\frac{1}{4}$ and $P\left(\left\{X_n=0\right\}\right)=\frac{3}{4}$ and $S_n=\sum_{i=0}^n X_i$. To what value $\frac{S_n}{n}$ converges in probability as $n\to\infty$?
- Q.4 . Consider a random variable X with the moment generating function $M_X(s) = e^{\frac{s^2}{2}}$. For the random variable X, find the the Chernoff bounds on $P(\{X \ge 3\})$.