

SEGUIMIENTO DE LA DIVERSIDAD BIOLÓGICA

Teoría y prácticas: 08-12 de marzo-2024

Profesor

Dr. José Jiménez (CSIC-IREC) teléfono (IREC): 926 295450 email: Jose.Jimenez@csic.es

Descripción del curso

El objetivo de este curso es dotar al alumno de la información y técnicas para el seguimiento de especies de fauna y flora, mediante el uso de modelos que integran variables espaciales y permiten trabajar con detectabilidad imperfecta.

Objetivos del curso y aprendizaje previsto

Al final de esta asignatura, los estudiantes:

- Conocerán el uso de software para analizar datos de seguimiento demográfico de poblaciones para identificar tendencias.
- Sabrán determinar la utilidad de los análisis determinísticos y estocásticos ante presiones ambientales.
- Identificarán los parámetros demográficos y su evaluación para afrontar actuaciones de gestión.

Libro de texto

No hay libro de texto de la asignatura. Se recomiendan los libros del apartado "Referencias", que permitirán además ampliar conocimientos.

Evaluación

La evaluación se basará en:

	Puntos	Porcentaje
Preguntas en clase	10	20~%
$Trabajos^*$	30	60%
Exámenes**	5	10~%
Participación en clase	5	10 %

^{*}Los trabajos se presentarán antes del día 30 de marzo. Aquellos trabajos presentados fuera de plazo se penalizarán con 1 punto por cada 3 días de retraso.

^{**}Los estudiantes analizarán un conjunto de datos real que se suministrará para el examen con uno de los modelos estudiados.

Asistencia

Es imprescindible la asistencia. Las preguntas y la participación evaluable se harán a lo largo de las sesiones de teoría y prácticas.

Ordenadores y software instalado requerido

Los ordenadores (portátiles) son imprescindibles para el correcto aprovechamiento de la asignatura. Aseguraos de tener acceso a la web. Deberá tener instalado el siguiente software:

- La última versión de R (https://cran.r-project.org/), con los paquetes coda, lattice, nimble (leed las instrucciones específicas que incluyo en la documentación del curso).
- El software JAGS (https://sourceforge.net/projects/mcmc-jags/)
- Un editor de texto, como Tinn-R (recomiendo instalar la versión que suministro con la documentación del curso), o bien Notepad++ (https://notepad-plus-plus.org/downloads/v7.9.1/). El uso de RStudio también es posible, aunque no recomendado.

Material de clase

Para el correcto seguimiento de la asignatura hay que estar familiarizado con el uso de **R**. Se han repartido presentaciones (en pdf) y códigos anotados (también en pdf) para todos los modelos, y scripts (en texto plano) para facilitar su ejecución.

Programa de la asignatura

Fecha	Teoría	Prácticas
MODELOS		
08 marzo	Introducción sobre la asignatura	
$08~\mathrm{marzo}$	Modelos de Ocupación (Occ)	Lab1 Ejercicios
08 marzo	Modelos N-mixtos (N-mix)	Lab2. Ejercicios
$08~\mathrm{marzo}$	Muestreo jerárquico de distancias (HDS)	Lab3. Ejercicios
11 marzo	Captura-recaptura espacial (SCR)	Lab4. Ejercicios SCR
$11 \mathrm{marzo}$	Marcaje-reavistamiento espacial (SMR)	Ejercicios SMR
11 marzo	Conteos espaciales (UN-SCR)	Ejercicios UN-SCR
$11~\mathrm{marzo}$	Caso práctico de repaso	SCR con zorro
12 marzo	Matrices de población	Ejercicios con matrices
$12 \mathrm{marzo}$	Modelos Cormack-Jolly-Seber	Ejercicio CJS
12 marzo	Modelos de población integrados (IPM)	Lab5. IPM
12 marzo	Integración IPM-PVA	Análisis PVA con IPM

REFERENCIAS

- Kéry, M., & Schaub, M. (2012). Bayesian population analysis using WinBUGS. A hierarchical perspective. Academic Press / Elsevier. doi:10.1016/B978-0-12-387020-9.00014-6
- Kéry, M., & Royle, J. A. (2016). Applied Hierarchical Modeling in Ecology Analysis of distribution, abundance and species richness in R and BUGS (1st ed., Vol. 1). Academic Press / Elsevier.
- Kéry, M., & Royle, J. A. (2020). Applied Hierarchical Modeling in Ecology. Analysis of distribution, abundance and species richness in R and BUGS. Volume 2. Dynamic and Advanced Models. doi:10.1016/c2013-0-19160-x
- Royle, J. A., Chandler, R. B., Sollmann, R., & Gardner, B. (2014). Spatial capture-recapture. Waltham, Massachusetts: Elsevier, Academic Press. doi:10.1016/B978-0-12-405939-9.00026-8
- Schaub M, & Kéry M (2022) Integrated Population Models: Theory and Ecological Applications with R and JAGS, First Edit. Elsevier