Package 'mthapower'

October 13, 2022

Type Package
Title Sample Size and Power for Association Studies Involving Mitochondrial DNA Haplogroups
Version 0.1.1
Maintainer Aurora Baluja <mariauror@gmail.com></mariauror@gmail.com>
Description Calculate Sample Size and Power for Association Studies Involving Mitochondrial DNA Haplogroups. Based on formulae by Samuels et al. AJHG, 2006. 78(4):713-720. <doi:10.1086 502682="">.</doi:10.1086>
License GPL-3
Encoding UTF-8
LazyData true
Suggests ggplot2, car
<pre>URL https://github.com/aurora-mareviv/mthapower</pre>
BugReports https://github.com/aurora-mareviv/mthapower/issues
RoxygenNote 6.1.1
NeedsCompilation no
Author Aurora Baluja [aut, cre] (https://orcid.org/0000-0002-5204-0771)
Repository CRAN
Date/Publication 2019-05-14 09:40:03 UTC
R topics documented:
mthacases
Index

2 mthacases

mt	ha	ca	0	9
IIIL	на	La	-	ヒン

Sample size calculations - mtDNA haplogroups

Description

Determine the minimum number of cases (Ncmin), required to detect: either a change from p0 (haplogroup frequency in controls) to p1 (haplogroup frequency in cases), or a given OR, with a predefined confidence interval, in a study with Nh haplogroups. Note: I assume that case-control equations are valid for cohorts with a balanced number of cases and controls. This function may not be generalizable for all studies involving mtDNA haplogroups.

Usage

```
mthacases(p0 = p0, Nh = Nh, OR.cas.ctrl = OR.cas.ctrl,
  power = power, sig.level = sig.level)
```

Arguments

p0	the frequency of the haplogroup in the control population, (that is, the controls among exposed). It depends on haplogroup baseline frequency.
Nh	number of haplogroup categories. Usually 10 haplogroups plus one category for rare haplogroups: Nh <- 11.
OR.cas.ctrl	(p1 / (1-p1)) / (p0 / (1-p0)) the OR you want to detect with your data. It can be either a single value, or a sequence: OR.cas.ctrl <- 2; OR.cas.ctrl <- $seq(1.25,3 by=0.5)$.
power	the power to detect a given OR in my study (usually 80-90).
sig.level	the alpha error accepted. Can take 3 possible values: 0.05, 0.01 and 0.001 (see [Table 2] of Samuels et al.)

Value

Gives the result in a data frame, easy to print in a plot.

Author(s)

Author and maintainer: Aurora Baluja. Email: <mariauror@gmail.com>

References

- 1. DC Samuels, AD Carothers, R Horton, PF Chinnery. The Power to Detect Disease Associations with Mitochondrial DNA Haplogroups. AJHG, 2006. 78(4):713-720. DOI:10.1086/502682.
- 2. Source code: github.com/aurora-mareviv/mthapower.
- 3. Shiny app: aurora.shinyapps.io/mtDNA_power_calc.

mthapower 3

Examples

mthapower

Power calculations - mtDNA haplogroups

Description

For a given study size, determine the minimum effect size that can be detected with the desired power and significance level, in a study with Nh haplogroups. Note: I assume that case-control equations are valid for cohorts with a balanced number of cases and controls. This function may not be generalizable for all studies involving mtDNA haplogroups.

Usage

```
mthapower(n.cases = ncases, p0 = p0, Nh = Nh,
   OR.cas.ctrl = OR.cas.ctrl, sig.level = sig.level)
```

Arguments

n.cases	number of cases or controls from the study. It can be either a single value, or a sequence: n.cases <- 300; n.cases <- seq(50,500 by=10).
p0	the frequency of the haplogroup in the control population. It depends on haplogroup baseline frequency.
Nh	number of categories for haplogroups. Usually 10 haplogroups plus one category for rare haplogroups: Nh <- 11.
OR.cas.ctrl	(p1/(1-p1))/(p0/(1-p0)) the OR you want to detect with your data.
sig.level	the alpha error accepted. Can take 3 possible values: 0.05, 0.01 and 0.001 (see [Table 2] of Samuels et al).

Value

Calculates power given the number of cases and other parameters. The output is an object of class data.frame, ready to plot.

Author(s)

Author and maintainer: Aurora Baluja. Email: <mariauror@gmail.com>

4 mthapower

References

- 1. DC Samuels, AD Carothers, R Horton, PF Chinnery. The Power to Detect Disease Associations with Mitochondrial DNA Haplogroups. AJHG, 2006. 78(4):713-720. DOI:10.1086/502682.
- 2. Source code: github.com/aurora-mareviv/mthapower.
- 3. Shiny app: aurora.shinyapps.io/mtDNA_power_calc.

Examples

```
# Example 1:
pow <- mthapower(n.cases=203, p0=0.443, Nh=13, OR.cas.ctrl=2.33, sig.level=0.05)
# Example 2:
# Create data frames
pow.H150 <- mthapower(n.cases=seq(50,1000,by=50), p0=0.433, Nh=11,
                      OR.cas.ctrl=1.5, sig.level=0.05)
pow.H175 <- mthapower(n.cases=seq(50,1000,by=50), p0=0.433, Nh=11,
                      OR.cas.ctrl=1.75, sig.level=0.05)
pow.H200 <- mthapower(n.cases=seq(50,1000,by=50), p0=0.433, Nh=11,
                      OR.cas.ctrl=2, sig.level=0.05)
pow.H250 <- mthapower(n.cases=seq(50,1000,by=50), p0=0.433, Nh=11,
                      OR.cas.ctrl=2.5, sig.level=0.05)
# Bind the three data frames:
bindata <- rbind(pow.H150,pow.H175,pow.H200,pow.H250)</pre>
# Adds column OR to binded data frame:
bindataSOR < - rep(factor(c(1.50, 1.75, 2, 2.5)),
              times = c(nrow(pow.H150),
                        nrow(pow.H175),
                        nrow(pow.H200),
                        nrow(pow.H250)))
# Create plot:
# install.packages("car")
library(car)
scatterplot(power~ncases | OR, regLine=FALSE,
            smooth=FALSE,
            boxplots=FALSE, by.groups=TRUE,
            data=bindata)
```

Index

 $\begin{array}{c} \text{mthacases, 2} \\ \text{mthapower, 3} \end{array}$