3.6.1. Спектральный анализ электрических сигналов.

Дорогинин Д.В.

Цель работы: исследование спектра колебаний электрических сигналов.

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье.

Теория

Разложение сложных сигналов на периодические колебания

Используется разложение в сумму синусов и косинусов с различными аргументами или, как чаще его называют, разложение в ряд Φ уръе.

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1=\frac{2\pi}{T},$ где T — период повторения импульсов. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$
 (1)

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n).$$
 (2)

Если сигнал чётен относительно t=0, в тригонометрической записи остаются только члены с косинусами. Для нечетной наоборот.

Коэффициенты определяются по формуле

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
(3)

Здесь t_1 — время, с которого мы начинаем отсчет.

Сравнив формулы (1) и (2) можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2},$$

$$\psi_n = \arctan \frac{b_n}{a_n}.$$
(4)

Периодическая последовательность прямоугольных импульсов

Введем величину: $\Omega_1=\frac{2\pi}{T}$, где T — период повторения импульсов.

Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}.$$
 (5)

Здесь V_0 - амплитуда сигнала.

Поскольку наша функция четная, то $b_n = 0$.

Пусть T кратно τ . Тогда введем ширину спектра, равную $\Delta \omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедиться при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1. \tag{6}$$

Периодическая последовательность цугов

Возьмём цуги колебания $V_0\cos(\omega_0 t)$ с длительностью цуга τ и периодом повторений T. Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}} + \frac{\sin\left[\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}} \right). \tag{7}$$

Пусть T кратно τ . Тогда спектры последовательности прямоугильных сигналов и цугов аналогичны, но максимумы сдвинуты на ω_0 .

Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t. \tag{8}$$

Коэффициент m называется глубиной модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}. (9)$$

Простым тригонометрическим преобразованием уравнения (8) можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
 (10)

Ход работы

Исследование спектра периодических последовательностей прямоугольных импульсов

Устанавливаем прямоугольные колебания с $\nu_{\text{повт}} = 1$ к Γ ц (период T = 1 мс) и длительностью импульса $\tau = T/20 = 50$ мкс.

Получаем на экране спектр сигнала и, изменяя либо au, либо $u_{\text{повт}}$, наблюдаем, как изменяется спектр.

Теперь зафиксируем $\nu_{\text{повт}} = 1$ к Γ ц и $\tau = 50$ мкс. Для этих параметров измерим величину a_n и ν_n для первых 5 гармоник и сравним с рассчитанными значениями по формуле (5).

Теперь проведем измерения зависимости ширины спектра от $\Delta \nu$ и установим зависимость между $\Delta \nu$ и τ , полученную из формулы (6).

τ , MKC	50	75	100	125	150	175	200
$\Delta \nu$, к Γ ц	19.6	13.4	9.8	8.0	6.5	5.5	4.5
$1/\tau \cdot 10^3, c^{-1}$	20	13	10	8	7	6	5

$$\Delta \nu \tau \approx 1.000 \pm 0.018$$

В итоге получаем, что формула (6) довольно точно выполняется.

(a) $\nu_{\text{повт}}=1$ к Γ ц, au=50 мкс.

(b) $\nu_{\text{повт}}=1.5$ к Γ ц, au=50 мкс.

(c) $\nu_{\text{повт}}=2$ к Γ ц, au=50 мкс.

(d) $\nu_{\text{повт}} = 2.5$ к Γ ц, $\tau = 50$ мкс.

(e) $\nu_{\text{повт}} = 1 \ \text{к}\Gamma$ ц, $\tau = 60 \ \text{мкс}$.

(f) $\nu_{\text{повт}}=1$ к Γ ц, au=100 мкс.

(g) $\nu_{\text{повт}}=1$ к Γ ц, au=150 мкс.

Исследование спектра периодической последовательности цугов

Получаем на экране последовательность цугов с характерными параметрами: $\nu_0 = 50$ кГц, T=1 мс, число периодов в одном импульсе N=5 (длительность импульса $\tau = T/\nu_0 = 100$ мкс).

(а) Последовательность цугов.

(b) Спектр для цугов.

Теперь будем менять эти параметры по одному и зафиксируем несколько таких изменений:

(a) $\nu_0 = 50$ к Γ ц, T = 1 мс, N = 10.

(b) $\nu_0=50$ к Γ ц, T=1 мс, N=15.

(c) $\nu_0 = 50$ к Γ ц, T = 2.5 мс, N = 5.

(d) $\nu_0=50$ кГц, T=5 мс, N=5.

(a) $\nu_0 = 75 \text{ к}\Gamma\text{ц}, T = 1 \text{ мc}, N = 5.$

(b) $\nu_0 = 100 \ \text{к} \Gamma$ ц, $T = 1 \ \text{мс}, \ N = 5$.

Теперь зафиксируем $\nu_0=50$ к Γ ц, N=5. Для этих параметров измерим, меняя T ($\nu_{\text{повт}}$), зависимость $\delta \nu$ от τ .

$\Delta \nu$, к Γ ц	23	32	35	38	35	45
n	42	33	18	13	10	8
$ u_{\text{повт}}, \text{к}\Gamma$ ц	0.5	1.0	2.0	3.0	4.0	6.0

Итоговое отношение:

$$\boxed{\frac{\delta\nu}{\nu_{\text{\tiny HOBT}}} = 1.05 \pm 0.08}$$

Исследование спектра амплитудно модулированного сигнала

Выведем на экран картину амплитудно-модулированного сигнала с характерными параметрами: несущая частота $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=2$ к Γ ц, глубина модуляции - 50 % (m=0.5). Картины данного сигнала и его спектра будут выглядеть следующим образом:

(а) Амплитудно-модулированный сигнал.

(b) Спектр для $\nu_0 = 50$ к Γ ц, $\nu_{\text{мод}} = 2$ к Γ ц.

Найдем для него A_{max} и A_{min} и проверим справедливость формулы (9).

A_{max} , B	1.52
A_{min} , B	0.48
\overline{m}	0.52

Поскольку мы установили глубину модуляции на 0.5, а из теории у нас получилась 0.52, то мы видим, что формула (9) верна.

(a) $\nu_0=60$ к Г
ц, $\nu_{\text{мод}}=2$ к Г
ц.

(b) $\nu_0=70$ к Г
ц, $\nu_{\mbox{\scriptsize MOД}}=2$ к Гц.

(c) $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=8$ к Γ ц.

(d) $\nu_0=50$ к Γ ц, $\nu_{\text{мод}}=16$ к Γ ц.

Получим на экране спектр и будем изменять параметры сигнала: Из формулы (10) следует, что $a_{\text{осн}}=A_0$, а $a_{\text{бок}}=\frac{mA_0}{2}$.

m, %	10	25	50	75	100	
$a_{\text{бок}}, \text{ мB}$	360	820	1660	2320	3260	
$a_{\text{осн}}, \text{мB}$	6240	6240	6240	6240	6240	
$a_{ m 6ok}/a_{ m och}$	0.06	0.13	0.27	0.37	0.52	
$a_{\text{бок}}/a_{\text{осн}} \cdot m, \%$	57.7	52.6	53.2	49.6	52.2	
$a_{\text{6ok}}/a_{\text{och}} \cdot m = (53.1 \pm 1.3)\%$						

Из (10) имеем $\frac{a_{\rm fok}}{a_{\rm och}} \cdot m = 0.5$, что с высокой точностью повторяет наш результат.