

D-A126 998 THE ELECTROCHEMISTRY OF POLYACETYLENE: APPLICATION IN 1/1
HIGH POWER DENSITY..(U) PENNSYLVANIA UNIV PHILADELPHIA
DEPT OF CHEMISTRY A G MACDIARMID ET AL JAN 83 TR-83-2
UNCLASSIFIED N00014-81-K-0648 F/G 7/4 NL

END
DATA
FILED
5 83
DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

(13)

OFFICE OF NAVAL RESEARCH

Contract N00014-81-K-0648

Task No. NR-356-842

TECHNICAL REPORT NO. 83-2

AD A126958

The Electrochemistry of Polyacetylene:

Application in High Power Density Rechargeable Batteries

by

A. G. MacDiarmid, M. Aldissi, R. B. Kaner,

M. Maxfield, and R. J. Mammone

Accepted for Publication

in

The Proceedings of the Electrochemical Society,

May, 1983, San Francisco, CA.

University of Pennsylvania
Department of Chemistry
Philadelphia, Pennsylvania, 19104

DTIC
ELECTED
APR 18 1983
S D
A B

January 1983 .

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited

83 04 15 093

DMC FILE COPY

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report No. 83-2	2. GOVT ACCESSION NO. AD-A126998	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) The Electrochemistry of Polyacetylene: Application in High Power Density Rechargeable Batteries		5. TYPE OF REPORT & PERIOD COVERED Interim Technical Report
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) A. G. MacDiarmid, M. Aldissi, R. B. Kaner, M. Maxfield, and R. J. Mammone		8. CONTRACT OR GRANT NUMBER(s) N00014-81-K-0648
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry University of Pennsylvania Philadelphia, PA 19104		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR-356-842
11. CONTROLLING OFFICE NAME AND ADDRESS Department of the Navy Office of Naval Research Arlington, VA 22217		12. REPORT DATE January 1983
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 1
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) This document has been approved for public release and sale; its distribution is unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Accepted for publication in: The Proceedings of the Electrochemical Society, May, 1983, San Francisco, CA.		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Rechargeable batteries, (CH_x) film, polycarbanion species, coulombic efficiencies, aqueous electrochemistry of (CH_x) , p-doped (CH_x) .		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The best overall performance of rechargeable batteries using polyacetylene as both anode- and cathode-active materials are obtained from cells having a neutral (CH_x) cathode and n-doped anode in the charged state. It has been found that it is possible to chemically and electrochemically p-dope (CH_x) to the metallic regime in aqueous solution.		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (when Data Entered)

THE ELECTROCHEMISTRY OF POLYACETYLENE: APPLICATION

IN HIGH POWER DENSITY RECHARGEABLE BATTERIES:

by A. G. MacDiarmid, M. Aldissi, R. B. Kaner,

M. Maxfield and R. J. Mammone

Department of Chemistry

University of Pennsylvania

Philadelphia, Pennsylvania 19104

The fact that $(CH)_x$ film can be oxidized and reduced in reversible electrochemical reactions makes it an interesting material to study as a potentially useful electroactive material.

(1) RECHARGEABLE BATTERIES USING $(CH)_x$ FILM AS ELECTRODES^{1,2}

Four chief type of batteries employing $(CH)_x$ electrodes have been studied:

- (1) p-doped $(CH)_x$ cathode plus Li anode.
- (2) neutral $(CH)_x$ cathode plus Li anode.
- (3) p-doped $(CH)_x$ cathode plus n-doped $(CH)_x$ anode.
- (4) neutral $(CH)_x$ cathode plus n-doped $(CH)_x$ anode.

In so far as overall performance is concerned type (4) above is the best all-polymer cell so far developed. Since both neutral and reduced $(CH)_x$ have good stability in an electrolyte of 1M LiClO₄ in tetrahydrofuran a voltaic cell can be constructed using $(CH)_x$ as the cathode and (CH^{-y}) as the anode. During discharge the (CH^{-y}) gives up an electron to the $(CH)_x$ producing the net overall reaction:

where Li acts as the counter cation to stabilize the polycarbonion species. A cell of this type using 1/2 electrochemically reduced $(CH)_x$ for the anode and neutral $(CH)_x$ for the cathode has a potential of ~ 1.0V and a short circuit current of ~ 3mA/cm² of $(CH)_x$. The cells shows excellent stability, losing only ~ 0.02V during a six month period. They are fully rechargeable with coulombic efficiencies >99%. They are the first stable, rechargeable batteries developed in which both the cathode and anode active materials are organic polymers.

(2) AQUEOUS ELECTROCHEMISTRY OF $(CH)_x$

When trans- $(CH)_x$ film is p-doped i.e., oxidized by bromine, arsenic pentafluoride, etc. its conductivity increases by ca. eight orders of magnitude and it is converted to an "organic metal" having all the electronic properties of a conventional metal. All such p-doped material is, however, decomposed by water. Until the present study was undertaken the only apparent exception to this water instability involved the electrochemical p-doping of a piece of $(CH)_x$ film when it was placed in an aqueous 0.5M solution of KI and was attached to the positive terminal of a 9V dry cell, the other terminal being attached to a platinum counter electrode immersed in the solution. Doping took place in a few minutes to give $(CH_{10.07})_x$ having a conductivity in the metallic regime. The sum of the elemental analyses for C, H, and I was 99.8%. This showed that no reaction with water, to incorporate oxygen into the $(CH)_x$ had taken place. As time proceeded, we began to believe that the analysis must have been in error, and that oxygen surely must have been incor-

porated during the doping process. However, very recently the experiment was repeated (at a smaller voltage) and similar results were obtained. The non-aqueous electrochemistry of $(CH)_x$ has now been extended to another system as described below.

A piece of $(CH)_x$ film (2 cm x 2 cm) and a piece of Pt foil were placed in a saturated solution ~ 0.5M NaAsF₆ in 50% aqueous HF. The $(CH)_x$ was attached to the positive electrode and the Pt to the negative electrode respectively of a d.c. power supply. A constant potential of 1.0V was applied between the electrodes for ~ 30 minutes and the film was then washed in 50% HF and pumped in the vacuum system for 18 hours. In several different experiments, carried out under slightly different conditions, flexible, golden films having good metallic conductivity (ca. 10 to 100 $\Omega^{-1}cm^{-1}$) were obtained. It was most surprising to find that the films contained no oxygen. The F content varied from one preparation to another, e.g. $[CH^{+0.026}(AsF_5)_x]^{0.026}_x$; $(C+H+As+F = 100.2\%)$ and $[(CH^{+0.029}(AsF_4)_x]^{0.029}_x$; $(C+H+As+F = 100.3\%)$.

The nature of the dopant species and the cause of the variable F content is currently being investigated. It is believed that the dopant probably consists of a mixture of the $(AsF_6)^-$ and $(AsF_4)^-$ ions. The fact that $(CH)_x$ can be doped to the metallic regime either with iodine or with arsenic-fluorine species without the inclusion of oxygen is most surprising in view of the fact that p-doped $(CH)_x$ is believed to consist of polycarbonium ions. It is possible that the extent of delocalization of the positive charge is so great that, at least in certain cases, nucleophilic attack of the positive carbon atoms by water does not occur. Whatever the reason for the unexpected stability, these observations open up a whole new area of aqueous chemistry for conducting polymers.

The present results suggest that electrochemical studies not only of $(CH)_x$ but also of other conducting polymers represent an extensive area for further research not only of fundamental scientific interest but also of possible potential technological value.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research and the Defense Advanced Research Projects Agency (through a grant monitored by the Office of Naval Research) and by the Department of Energy, Contract No. DE-AC02-81-ER10832.

REFERENCES

- (1) A.G. MacDiarmid and A.J. Heeger, *Synth. Met.*, 1, 101 (1979/80); A.J. Heeger and A.G. MacDiarmid in *The Physics and Chemistry of Low Dimensional Solids*, ed. L. Alcacer (D. Reidel Publishing Co., Dordrecht, Holland, 1979).
- (2) P.J. Nigrey, A.G. MacDiarmid and A.J. Heeger, *J. Chem. Soc., Chem. Commun.*, 594 (1979); P.J. Nigrey, D. MacInnes, Jr., D.P. Nairns, A.G. MacDiarmid and A.J. Heeger in "Conducting Polymers", R.B. Seymour, Editor, p.227, Plenum Publishing Corp., New York (1981); P.J. Nigrey, D. MacInnes, Jr., D.P. Nairns, A.G. MacDiarmid, and A.J. Heeger, *J. Electrochem. Soc.*, 128, 1651 (1981); K. Kaneko, M. Maxfield, D.P. Nairns, A.G. MacDiarmid and A.J. Heeger, *J. Chem. Soc. Faraday Trans.*, in press (1982).
- (3) P.J. Nigrey, A.G. MacDiarmid, and A.J. Heeger, *J.C.S. Chem. Commun.*, 594 (1979).

For

& I

PD

tion

By	Distribution/	Availability Codes
OIC		
A		

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Office of Naval Research Attn: Code 413 800 North Quincy Street Arlington, Virginia 22217		2	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152
ONR Pasadena Detachment Attn: Dr. R. J. Marcus 1030 East Green Street Pasadena, California 91106	!		Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Department of the Navy Washington, D.C. 20360	1		Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12		Dean William Tolles Naval Postgraduate School Monterey, California 93940
Dr. Fred Saalfeld Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1		Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380
U.S. Army Research Office Attn: CRD-AA-IP P. O. Box 12211 Research Triangle Park, N.C. 27709	1		Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401
Mr. Vincent Schaper DTNSRDC Code 1803 Annapolis, Maryland 21402	1		Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19111
Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1		Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801

TECHNICAL REPORT DISTRIBUTION LIST, 356B

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Dr. C. L. Shilling Union Carbide Corporation Chemical and Plastics Tarrytown Technical Center Tarrytown, New York	1	Dr. G. Goodman Globe-Union Incorporated 5757 North Green Bay Avenue Milwaukee, Wisconsin 53201	1
Dr. R. Soulen Contract Research Department Pennwalt Corporation 900 First Avenue King of Prussia, Pennsylvania 19406	1	Dr. E. Fischer, Code 2853 Naval Ship Research and Development Center Annapolis Division Annapolis, Maryland 21402	
Dr. A. G. MacDiarmid University of Pennsylvania Department of Chemistry Philadelphia, Pennsylvania 19174	1	Dr. Martin H. Kaufman Code 38506 Naval Weapons Center China Lake, California 93555	1
Dr. H. Allcock Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802	1	Dr. C. Allen University of Vermont Department of Chemistry Burlington, Vermont 05401	1
Dr. M. Kenney Case-Western University Department of Chemistry Cleveland, Ohio 44106	1	Professor R. Drago Department of Chemistry University of Florida Gainesville, FL 32611	1
Dr. R. Lenz University of Massachusetts Department of Chemistry Amherst, Massachusetts 01002	1	Dr. D. L. Venezky Code 6130 Naval Research Laboratory Washington, D.C. 20375	1
DR. M. David Curtis University of Michigan Department of Chemistry Ann Arbor, Michigan 48105	1	COL R. W. Bowles, Code 100M Office of Naval Research 800 N. Quincy Street Arlington, Virginia 22217	1
NASA-Lewis Research Center Attn: Dr. T. T. Serafini, MS 49-1 21000 Brookpark Road Cleveland, Ohio 44135	1	Professor T. Katz Department of Chemistry Columbia University New York, New York 10027	1
Dr. J. Griffith Naval Research Laboratory Chemistry Section, Code 6120 Washington, D.C. 20375	1	Professor James Chien Department of Chemistry University of Massachusetts Amherst, Massachusetts 01002	1

47-1114-N-100
S-356A-L

TECHNICAL REPORT DISTRIBUTION LIST, 356B

	No. <u>Copies</u>		No. <u>Copies</u>
Professor Malcolm B. Polk Department of Chemistry Atlanta University Atlanta, Georgia 30314	1	Dr. Alan J. Heeger Dept. of Physics University of California Santa Barbara, CA 93106	1
Dr. G. Bryan Street IBM Research Laboratory, K32/281 San Jose, California 95193	1	Dr. Frank Karasz Dept. of Polymer Science and Engng. University of Massachusetts Amherst, MA 01003	1
Professor Michael Moran Department of Chemistry West Chester State College West Chester, Pennsylvania 19401	1		
Dr. K. Paciorek Trasystems, Inc. P. O. Box 19605 Irvine, California 92715	1		
Dr. D. B. Cotts SRI International 333 Ravenswood Avenue Menlo Park, California 94025	1		
Professor D. Seyferth Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139	1		
Dr. Kurt Baum Fluorochem, Inc. 680 S. Ayon Avenue Azusa, California 91702	1		

