Probabilité

		Probabilité			Propriétés
А	un	événement $P(A) = [0; 1]$	de	Ω.	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A) = 1 - P(A^{c})$

$f: R \to R$ est une densité de probabilité d'une variable aléatoire :

$f(x) \ge 0$	f(x) est continue par morceau	$\int f(x)dx = 1$
	$P(X\epsilon[a;b]) = \int_{a}^{\infty} f(x)dx$	J

$f: R \to R$ est une fonction de répartition d'une variable aléatoire:

f est continue à droite	f est croissante	$\lim_{\substack{-\infty\\ \text{lim } f = 1}} f = 0$
-------------------------	------------------	---

Propriété : Pour le calcul de l'air sous la courbe, on peut utiliser la propriété suivante :

$$F(b-a) = F(b) - F(a)$$

Indicateurs

Espérance	Variance
$E[X] = \int_{-\infty}^{+\infty} Xx dx$	$Var[X] = \int_{-\infty}^{+\infty} X(x - E[x])^2 dx$

Moyenne et espérance

Espérance	Moyenne
Valeur théorique moyenne.	Valeur moyenne obtenue pour une
	expérience.

Remarque : L'espérance est une valeur théorique alors que la moyenne est la valeur obtenue à partir estimée des données.

Propriété

L'espérance est linéaire	Variance
E(aX + Y) = aE(X) + E(Y)	$Var(aX + b) = a^2 Var(X)$

Lois continues

Loi	Paramètres	Densité de probabilité	Fonction de répartition
Exponentielle	$\lambda > 0$	x < 0, f(x) = 0	x < 0, F(x) = 0
$E(\lambda)$		sinon $\lambda e^{-\lambda x}$	sinon $1 - e^{-\lambda x}$
Uniforme	a < b	$x \in [a;b], \frac{1}{b-a}$	x < a, F(x) = 0
U(a,b)		sinon f(x) = 0	$x \in [a; b], \frac{x - a}{b - a}$
			sinon 1
Normale	Espérance <i>m</i>	$e^{\frac{-(x-m)^2}{2\sigma^2}}$	On se ramène à
$N(m; \sigma^2)$	Écart-type $\sigma>0$	$\sqrt{2\pi\sigma^2}$	N(0; 1):
			X-m
			σ

Loi	Espérance	Quantiles q_{lpha}	Variance
Exponentielle	$\frac{1}{2}$	$\frac{1}{\lambda} \ln \left(\frac{1}{1-\alpha} \right)$	$\sigma^2 = \frac{1}{\lambda^2}$
$E(\lambda)$	$\overline{\lambda}$	$\lambda 1-\alpha'$	λ²
Uniforme	$\frac{a+b}{a}$	$\alpha b + (1 - \alpha)a$	$\sigma^2 = \frac{(b-a)^2}{12}$
U(a,b)	2		12
Normale	m	Se reporter à la table	σ^2
$N(m; \sigma^2)$		$Z = \frac{X - m}{\sigma}$	

<u>NB</u> l'espérance et l'écart type sont utiles pour retrouver les paramètres de la loi.

Lecture de la table de la loi Normale : on prend toujours la valeur inférieure.

Statistique

Échantillon réalisation n fois indépendamment d'une variable aléatoire X de la loi f_x et de fonction de répartition F_x on note $(X_1, ... X_n)$

Estimateurs des indicateurs et théorie des grands nombres

La moyenne empirique convergent vers l'espérance de la loi lorsque l'échantillon augmente.

Espérance (appelé moyenne)	Variance
$\hat{\mathbf{E}} = moyenne$	$s^2 = \frac{n}{n-1} Var(x)$

Théorème central limite

La somme de variables aléatoires converge vers une loi normale

$$\sum X_i \to N(n\mu, n\sigma^2)$$

L'application directe de la loi permet de déduire un intervalle de confiance pour la moyenne :

$$E^{\wedge} \in I_c = [m - 1.95 \times \frac{s}{\sqrt{n}}; m - 1.95 \times \frac{s}{\sqrt{n}}]$$

Avec m la moyenne et s l'écart type de l'échantillon.