

Hiring Salary Prediction

A company hires candidates based on:

- Years of experience
- Written test score (out of 10)
- Interview score (out of 10)

The HR department wants to automate the salary prediction process using machine learning. This project aims to build a Linear Regression model that will predict a candidate's salary based on these three factors.

Q Objective

Build and train a Linear Regression model using historical hiring data and use it to predict salaries for the following candidates:

- 1. Candidate A: 2 years experience, 9 test score, 6 interview score
- 2. Candidate B: 12 years experience, 10 test score, 10 interview score

```
In [8]: import pandas as pd
         import numpy as np
         from sklearn import linear model
         from word2number import w2n
In [15]: # Importing Data
         Hiring_data = pd.read_csv("/Users/priyanshi/Downloads/hiring.csv")
```

Hiring data

Out[15]:		experience	test_score(out of 10)	interview_score(out of 10)	salary(\$)
	0	NaN	8.0	9	50000
	1	NaN	8.0	6	45000
	2	five	6.0	7	60000
	3	two	10.0	10	65000
	4	seven	9.0	6	70000
	5	three	7.0	10	62000
	6	ten	NaN	7	72000
	7	eleven	7.0	8	80000

In [16]: #Filling Missing value

Hiring_data.experience = Hiring_data.experience.fillna("zero")
Hiring_data

Out [16]: experience test_score(out of 10) interview_score(out of 10) salary(\$)

0	zero	8.0	9	50000
1	zero	8.0	6	45000
2	five	6.0	7	60000
3	two	10.0	10	65000
4	seven	9.0	6	70000
5	three	7.0	10	62000
6	ten	NaN	7	72000
7	eleven	7.0	8	80000

```
In [17]: # converting word to number
Hiring_data.experience = Hiring_data.experience.apply(w2n.word_to_num)
Hiring_data
```

Out[17]:		experience	test_score(out of 10)	interview_score(out of 10)	salary(\$)
	0	0	8.0	9	50000
	1	0	8.0	6	45000
	2	5	6.0	7	60000
	3	2	10.0	10	65000
	4	7	9.0	6	70000
	5	3	7.0	10	62000
	6	10	NaN	7	72000
	7	11	7.0	8	80000

```
import math
   mean_test_score = math.floor(Hiring_data['test_score(out of 10)'].mean())
   mean_test_score
```

Out[22]: **7**

```
In [23]: Hiring_data['test_score(out of 10)'] = Hiring_data['test_score(out of 10)'].fillna(mean_test_score)
    Hiring_data
```

Out[23]:		experience	test_score(out of 10)	interview_score(out of 10)	salary(\$)
	0	0	8.0	9	50000
	1	0	8.0	6	45000
	2	5	6.0	7	60000
	3	2	10.0	10	65000
	4	7	9.0	6	70000
	5	3	7.0	10	62000
	6	10	7.0	7	72000
	7	11	7.0	8	80000

```
In [31]: # Define X and y

X = Hiring_data[['experience','test_score(out of 10)','interview_score(out of 10)']] # Independent variable
y = Hiring_data['salary($)'] # Dependent variable

# Train the model
reg = linear_model.LinearRegression()
reg.fit(X, y)

# Convert DataFrame to NumPy array before training
reg.fit(X.values, y)
Out[31]: 

* LinearRegression ** **Dependent variable**

# Dependent variable*

# Dependent variable*

# Dependent variable*

# LinearRegression()

**Dependent variable*

# Dependent variable*

# Dependent variable*

# LinearRegression()

**Dependent variable*

# Dependent variable*

# Dependent variable*

# Dependent variable*

# Dependent variable*

# LinearRegression()

**Dependent variable*

# Dependent variabl
```

Candidate A: 2 years experience, 9 test score, 6 interview score Predicted Salary: 53713

```
In [32]: reg.predict([[2,9,6]])
```

```
Out[32]: array([53713.86677124])
```

Candidate B: 12 years experience, 10 test score, 10 interview score Predicted Salary:93747

```
In [34]: reg.predict([[12,10,10]])
Out[34]: array([93747.79628651])
In []:
```