

A Linear-Time Algorithm For Finding Tree-Decompositions Of Small Treewidth

Maximilian F. Göckel - uzkns@student.kit.edu

Institut für Theoretische Informatik - Proseminar Algorithmen für NP-schwere Probleme

Tree-decomposition

Eine Baumzerteilung eines Graphen G = (V, E) ist ein Tupel (X, T) wo T = (I, F) ein Baum ist und $X = \{X_i | i \in I\}$ eine Familie von Teilmengen von V wobei jedes X_i einen Knoten in T darstellt.

- 1. $\bigcup_{i \in I} X_i = V$
- 2. $\forall (v, w) \in E : \exists i \in I : v, w \in X_i$
- 3. $\forall w \in X_i, X_j$: Jedes X_k im Pfad zwischen X_i, X_j enthält w

Tree-decomposition

Veranschaulichung

Figure: 1

Treewidth

Definition

Jede Baumzerteilung hat eine "Baumweite" (treewidth).

- Baumweite einer Zerteilung: $\max(|X_i|_{i \in I} 1)$ ("Zerteilungsweite")
- Baumweite eines Graphen: Minimale Zerteilungsweite aller Zerteilungen

Eine Baumzerteilung der Weite max. *k* heißt auch *k*-Baumzerteilung oder *k*-Zerteilung.

k-Trees

Kar kruher Institut für Technolog

Definition

Die folgenden Aussagen zu k-Bäumen sind äquivalent:

- 1. G = (V, E) ist ein k-Baum
- 2. G ist verbunden und hat eine k-Clique, aber keine (k+2)-Clique und
 - Jeder minimale Seperator von G ist eine k-Clique oder
 - \forall nicht-adjazenten Knotenpaare $x, y \in V \exists k$ Wege $x \rightarrow y$
- 3. *G* ist verbunden, $|E| = k|V| \frac{1}{2}k(k+1)$ und jeder minimale Seperator von *G* ist eine *k*-Clique
- 4. *G* hat Knoten *v* mit 3 Eigenschaften:
 - \bullet deg(v) = k und
 - Nachbarknoten von v formen eine k-Clique und
 - $G \setminus v$ ist k-Baum

Jeder komplette Graph mit k Knoten ist damit auch ein k-Baum.

k-Trees Erstellung

Andersherum: Ein k-Baum-Graph G mit $n \ge k$ Knoten kann aus einem k-Baum-Graph H = (V, E) mit n - 1 Knoten wie folgt erstellt werden:

- **2** Zu H einen Knoten u hinzufügen ($|V| = (n-1) \rightarrow |V| = n$)
- Knoten u mit bel. Knoten $v_1, ..., v_k$ verbinden

Damit wird Aussage 4 erfüllt.

Partial k-Trees

Definition

Graph G = (V, E) ist partieller k-Baum \Leftrightarrow

- G ist Teilgraph eines k-Baumes oder
- G hat Baumweite max. k

Baumzerteilung

Anwendungen

- Maximum-Weight Independent Set in Linearzeit lösbar
- Hohe Baumweite ⇔ Hohe Komplexität in der Systemanalyse
- Erkennung von partiellen k-Bäumen
- Pfadweite
- Graphen-Erkennungsalgorithmen

Knotentypen

Simplizial, freundlich, low- und highdegree

Ein Knoten v ist ...

- lacksquare ... "von niedrigem Grad" wenn deg(v) < d
 - $d = 2k^3 \cdot (k+1) \cdot (4k^2 + 12k + 16)$
 - Analog: Hoher Grad \Leftrightarrow deg(v) > d
 - Auch "low-deg.-" und "high-deg.-Knoten" genannt
- ... "Freundlich" wenn er low-deg. und adjazent zu einem weiteren low-deg.-Knoten ist
- ... "Simplizial" wenn alle Nachbarn in einer Clique sind
- \blacksquare ... "I-Simplizial" wenn simp. in G' und $\deg(v) \le k$ in G

Verbesserter Graph G'

Erstellung und Eigenschaften

$$G' = (V, E')$$
 ist $G = (V, E)$ mit Kanten $(v, w) \in E' \forall v, w \in V$ sodass v, w min. $k + 1$ gem. Nachbarn mit Grad max. k haben.

LEMMA 4.1.: $tw(G) \le k \Leftrightarrow tw(G') \le k$.

Außerdem ist jede k-Zerteilung von G auch eine k-Zerteilung von G' und umgekehrt.

Maximum Matching $M \subseteq E$

 $M \subseteq E$ ist Maxmimum Matching in $G = (V, E) \Leftrightarrow$ Keine 2 Kanten aus M haben gemeinsamen Endknoten und |M| maximal

Ein Maximum Matching kann in O(|V|) gefunden werden, wenn die Baumweite durch ein k gebunden ist.

Algorithmus

Kar kruher Institut für Technologi

Allgemeines

Eingabe: Graph G = (V, E) mit |V| = n und Konstante $k \in \mathbb{N}$. Der Graph wird als Adjazenzliste übergeben. Ausgabe in O(n):

- "Baumweite von G ist größer als k"
- "Baumweite von G ist maximal k"
 - Baumzerteilung von G mit Baumweite k

Für "sehr kleine" Graphen werden andere bekannte Algorithmen genutzt, ansonsten wird wie folgt vorgegangen:

Anzahl an Friendly-Knoten in G

LEMMA 4.2.: *G* hat Baumweite max. $k \leftarrow 1$ von 2 gilt mindestens:

- G hat min. $\frac{|V|}{4k^2+12k+16}$ =: λ Friendly-Knoten
- G' hat min. $\frac{1}{8k^2+24k+32} \cdot |V|$ I-simp.-Knoten

Algorithmus hat eine Fallunterscheidung ab λ Friendly-Knoten. Die Anzahl Friendly-Knoten in G wird mit n_f notiert.

Algorithmus

Fall: Min. λ Friendly-Knoten

- 1. Maximum-Matching $M \subseteq E$ finden
- 2. Jede Kante in M kontrahieren um Graphen $\widetilde{G}=(\widetilde{V},\widetilde{E})$ zu erhalten
- 3. Kompletten Algorithmus auf \widetilde{G} ausführen um Baumzerteilung (Y,T) von \widetilde{G} auszugeben
 - ightarrow Wenn Baumweite von $\widetilde{G} > k \Rightarrow$ STOP (LEMMA 3.4.)
- 4. Mit LEMMA 3.3. 2k + 1-Zerteilung (X, T) von G aus (Y, T) erstellen
- 5. Mit THEOREM 2.4. k-Zerteilung von G errechnen
 - \rightarrow Wenn Baumweite von $G > k \Rightarrow$ STOP

Fall 1

1. Maximum Matching $M \subseteq E$ finden

Ein Maximum Matching kann greedy in O(|V| + |E|) gefunden werden.

LEMMA 2.3.: "tw(G)
$$\leq k \Rightarrow |E| \leq k|V| - \frac{1}{2}k(k+1)$$
"

- $\Rightarrow |E| \in O(n)$
- \Rightarrow Max. Matching kann in O(n) gefunden werden

Fall 1

2. Jede Kante in M kontrahieren um Graphen \widetilde{G} zu erhalten

Eine Kante kann in O(1) kontrahiert werden, liegt der Graph als Adjazenzliste vor.

LEMMA 2.3.: "tw(*G*) $\leq k \Rightarrow |E| \leq k|V| - \frac{1}{2}k(k+1)$ "

- $\Rightarrow |M| \in O(|E|) \in O(|V|)$
- \Rightarrow Alle Kanten können in O(n) kontrahiert werden.

Fall 1

3. Kompletten Algorithmus auf \widetilde{G} ausführen um Baumzerteilung (Y, T)von G auszugeben

Ein Maximum Matching hat min.
$$\frac{n_f}{2 \cdot (2k^3(k+1)(4k^2+12k+16))}$$
 Kanten.

Für jeden Friendly-Knoten gilt:

- Er ist Endpunkt von einem $m \in M$ oder
- Er ist adjazent zu einem Friendly-Knoten, der Endpunkt ist
- $\Rightarrow \forall m \in M$ werden max. 2d Friendly-Knoten assoziiert, die Endpunkt sind oder adjazent zu einem Friendly-Endpunkt sind. ⇒: Ist ein Friendly-Knoten nicht assoziiert so ist M nicht maximal $\Rightarrow |M| \geq \frac{n_f}{2d}$

Fall 1

3. Kompletten Algorithmus auf \widetilde{G} ausführen um Baumzerteilung (Y,T) von \widetilde{G} auszugeben

Ein Maximum Matching hat min. $\frac{n_f}{2 \cdot (2k^3(k+1)(4k^2+12k+16))}$ Kanten.

$$\Rightarrow |\widetilde{V}| = (1 - \frac{1}{2d(4k^2 + 12k + 16)}) \cdot |V|$$

Fall 1

4. Mit LEMMA 3.3. Zerteilung (X, T) von G aus (Y, T) erstellen

$$f_M: V \mapsto \widetilde{V} = \begin{cases} f_M(v) = v & \text{Wenn } v \text{ nicht Endpunkt in } M \text{ ist} \\ f_M(v) = f_M(w) & \text{Der Knoten der bei der Kontraktion } (v, w) \in M \text{ bleibt} \end{cases}$$
 (Y, T) Zerteilung von \widetilde{G} , so ist (X, T) mit $X_i = \{v \in V | f_M(v) \in Y_i \}$ Zerteilung von G mit Weite max. $2k + 1$

Fall 1

- 5. k-Zerteilung von G errechnen
- 5.1. prüfen ob Weite von G > k ist \Rightarrow STOP

THEOREM 2.4.: " $\forall k, l \in \mathbb{N} \exists$ Linearzeitalgorithmus, welcher aus einem Graph G = (V, E) und einer *I*-Zerteilung prüft ob die Baumweite von G max. k ist und eine k-Zerteilung errechnet"

Laufzeit:
$$O(I^{l-2} \cdot ((2l+3)^{2l+3} \cdot (\frac{8}{3}2^{2k+2})^{2l+3})^{2l-1})) \in O(k^3)$$
 bei $I \in O(k)$

Algorithmus

Fall: Max. $\lambda - 1$ Friendly-Knoten

- 1. Improved-Graph G' berechnen $\rightarrow \exists$ I.simp.-Knoten v mit $deg(v) = k + 1 \Rightarrow STOP$
- 2. Alle I.simp.-Knoten in Menge SL und von G entfernen $\Rightarrow \widehat{G}$ entsteht $\rightarrow |SL| < c_2 \cdot |V| \Rightarrow \text{STOP}$ (THEOREM 4.2.)
- 3. Algorithmus rekursiv auf \widehat{G} ausführen \Rightarrow Ausgabe von Zerteilung (Y,T) von \widehat{G}
 - $\to \operatorname{\mathsf{tw}}(\widehat{\mathsf{G}}) > k \Rightarrow \operatorname{\mathsf{STOP}}(\widehat{\mathsf{G}} \operatorname{\mathsf{Teilgraph}} \operatorname{\mathsf{von}} \mathsf{G} \Rightarrow \operatorname{\mathsf{tw}}(\mathsf{G}) > k)$
- 4. Füge SL wieder in die Zerteilung (Y, T) ein
 - \Rightarrow Baumzerteilung (X, T) von G mit Baumweite max. k

Fall 2

- 1. Den Improved-Graph *G'* berechnen
- 1.1. Alle I-simp.-Knoten von G in Menge SL zusammenfassen

Wir definieren
$$Q = \{((v_i, v_j), -) | (v_i, v_j) \in E, i < j \} \cup \{((v_i, v_j), v) | v_i, v_j \in N_G(v), i < j \land deg(v) \le k \}$$

und
$$Q_{v_i,v_i} = \{((v_i,v_j),v)|v_i,v_j \text{ fest, } v \in V\} \subseteq Q$$

Fall 2

Q:

- **■** ((1,3), −)
- **■** ((1,4), −)
- **■** ((1,5), −)
- **■** ((1,7), −)
- **■** ((2,4), -)
- **■** ((2,5), -)
- **■** ((2,6), -)
- **■** ((2,7), −)

Fall 2

Q:

- **■** ((1,3), −)
- **■** ((1,4), −)
- ((1,5),-)
- **■** ((1,7), −)
- **■** ((2,4), −)
- **■** ((2,5), −)
- **■** ((2,6), −)
- ((2,0), -)
- **■** ((2,7), −)
- **(**(1,2),4)
- **(**(1,2),5)
- ((1,2),7)

$$Q_{v_i,v_j} = \{((v_i,v_j),v)|v_i,v_j \text{ fest, } v \in V\} \subseteq Q$$

Falls $|Q_{v_i,v_j}| \ge k \to (v_i,v_j) \in E'$, da v_i und v_j nun min. (k+1) gemeinsame Nachbarn haben.

Für jedes Element aus der oberen Menge und wenn $((v_i, v_j), -) \in Q$: Füge (v_i, v_j) für jedes $v \in V$ zu Q_v hinzu, sodass Q_v alle Kanten von Nachbarn von v enthält.

Fall 2

Der Graph G' = (V, E') kann also aus den verschiedenen Q_{v_i, v_j} ausgelesen werden.

Das finden von I-simp.-Knoten ist durch Q_v nun auch möglich: Da alle Nachbarn von v in Q_v sind, kann schnell geprüft werden ob $N_{G'}(v)$ eine Clique formt.

Fall 2

Queue Q für Menge Q, Array S aus Listen für die Q_V 's.

- 1. Knoten ordnen $(v_1, v_2 \dots v_n)$
- 2. $\forall (v_i, v_j) \in E, i < j : \text{Lege } ((v_i, v_j), -) \text{ auf } Q$
- 3. $\forall v \in V$: Lege alle $((v_i, v_j), v)$ mit $v_i, v_j \in N_G(v)$ und i < j auf Q
- 4. Bucket-sortiere *Q* zwei mal: Ein mal nach dem ersten, dann nach zweiten Eintrag

Fall 2

Sind nach dem Sortieren von Q(k+1) Einträge für gleiches (v_i,v_j) in Q untereinander $\to (v_i,v_j) \in E'$

Ist für solche v_i , v_j auch $((v_i, v_j), -)$ in Q: Füge für jedes $((v_i, v_j), v)$ das Tupel (v_i, v_j) in alle S[v] ein.

Ist in S[v] jedes v_i mit jedem v_j verbunden: $N'_G(v)$ bildet Clique $\Rightarrow v$ ist I-simp. $\Rightarrow v \in SL$

Fall 2

- 2. SL von G entfernen $\rightarrow \widehat{G} = (\widehat{V}, \widehat{E})$ entsteht
- 3. Algorithmus rekursiv auf \widehat{G} ausführen

Graph \widehat{G} hat nach Entfernung von $SL(1-c_2) \cdot |V|$ Knoten.

Wie in Fall 1 sind alle rekursiven Aufrufe in O(|V|) möglich.

Fall 2

- 4. Füge SL wieder in die Zerteilung (Y, T) ein
- 1. $\forall v \in SL$: Finde ein $Y_{i_v} \in Y$ in dem alle Nachbarn von v sind $(N_G(v) \subseteq Y_{i_v})$
- 2. Füge $Y_{j_v} = \{\{v\} \cup N_G(v)\}$ zu Y hinzu und mache es adjazent zu Y_{i_v}
 - \Rightarrow Baumzerteilung von G mit Baumweite max. k

 $Y_{i_{\nu}}$ existiert für jedes ν , da I.simp.-Knoten in G nicht adjazent sind und $N_{G}(\nu)$ eine Clique formt.

LEMMA 2.1.i): "(X, T) Zerteilung von G und $W \subseteq V$ formt Clique in $G \Rightarrow \exists i \in I : W \subseteq X_i$ "

Fall 2

- 4. Füge SL wieder in die Zerteilung (Y, T) ein
- $\forall I \leq k$: Nimm Queue Q_I wo alle Paare $((v_{i_1}, v_{i_2}, \dots v_{i_l}), i)$ für $v_{i_x} \in Y_i$ und für alle $i \in I$, $i_1 < i_2 \dots i_l$ hinzugefügt werden
- Füge zu jedem Q_l noch alle Paare $((v_{i_1}, v_{i_2}, \dots v_{i_l}), v)$ wo v l-simp. ist und $N_G(v) = \{(v_{i_1}, v_{i_2}, \dots v_{i_l} | i_1 < i_2 \dots i_l\}$
- Sortiere jedes Q_l *l*-mal, einmal für jedes v_{i_x} im Tupel. Es entsteht wieder eine Sortierung der v_i
- Für jedes Tupel ((...), v) kann nun schnell das Tupel ((...), i) gefunden werden
- Mache den neuen Knoten j_v mit $X_{i_j}\{v\} \cup N_G(v)$ zu dem i adjazent und füge ihn zu Y hinzu

Diese Schritte sind alle zusammen in O(n) ausführbar.

Abschluss

Sämtliche Operationen sind in O(n) wenn k Konstant ist.

Ist k nicht konstant, sondern als Variable Teil der Eingabe, so ist der Algorithmus nicht mehr linear. (Schritt 5.1. ist in $O(k^3)$)

Der konstante Faktor k^3 ist deutlich zu hoch für praktische Anwendung, selbst schon für k=4.

Allerdings wurde bei vielen Operationen grob geschätzt. Es ist zu erwarten, dass die Konstante noch sinken wird.

Erkenntnisse

Der Algorithmus ist Basis für zwei weitere Theoreme:

- ∃ Linearzeit-Erkennungsalgorithmus für jede Klasse an Graphen die nicht alle planaren Graphen enthält und in ihren Minoren abgeschlossen ist
- $\forall k \in \mathbb{N} : \exists$ Linearzeitalgo der prüft ob G = (V, E) Pfadweite max. k hat und eine Pfad-Zerteilung ausgibt

Außerdem ist die Erkennung von I.-simp.-Knoten sehr effizient und kann gut als Grundlage für andere Algorithmen genutzt werden.