in Apilonia sa

SEQUENCE LISTING

 $(x_1, x_2, \dots$

<110>	Elizabeth J. Ackermann C. Frank Bennett Hong Zhang Andrew T. Watt William Ricketts Nicholas M. Dean	
<120>	ANTISENSE MODULATION OF FLIP-C EXPRESSION	
<130>	RTS-0202	
<160>	133	
<210> <211> <212> <213>	1 20 DNA Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	1	
tccgtcatc	g ctcctcaggg	20
<210>	2	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	2	2.0
atgeattete	g cccccaagga	20
<210>	3	
<211>	2770	
<212>	DNA	
<213>	Mus musculus	
<220>		
<221> CDS		
<222> (75)	(1529)	
	3	
ggettetegt	ggttcccaga gccctgctta atggatggag actggacgag aacctggctg	60
ctgtggttct	gaac atg gcc cag agc cct gtg tct gcc gag gtc att cac Met Ala Gln Ser Pro Val Ser Ala Glu Val Ile His 1 5 10	110
cag gtg ga	a gag tgt ctt gat gaa gac gag aag gag atg atg ctc ttc	158
Gln Val Gl	u Glu Cys Leu Asp Glu Asp Glu Lys Glu Met Met Leu Phe	
1.		

i de la completa de la com

			-				ı As	-		_		o As	_	_	g gac g Asp	206
	_	_	_		_	Gli	_		-	-	ı Se:		_		c ttg r Leu 60	254
					Arg					Ası			-		g atc g Ile	302
									Asp					g Ası	c cct n Pro	350
								Leu					e Gly		g agc ı Ser	398
tta (Leu)												Thr				446
agg (Arg 1	_				-		_		_	_	Āsp	_	_		_	494
gat (Asp I	_			-	_			_				_		_	Gln	542
ttg a Leu A		Leu :					_	_				_		_	_	590
aac a Asn T	hr 1			-				_					_	_		638
aat a Asn M										Lys						686
aac t Asn S 205				Gln												734
tac c Tyr A			Ser (Val								782
gga g Gly A		he L					Ile									830
agc as Ser Ly	ys P					Cys :										878
aca aa	aa t	at c	tt c	aa q	gag a	acc	ttc	act	tcc	ctg	ggc	tat	cat	atc	cag	926

and a space and an experience of the specifical content of the con

Thr	Lys 270	Tyr	Leu	Gln	Glu	Thr 275	Phe	Thr	Ser	Leu	Gly 280	Tyr	His	Ile	Gln	
ctt Leu 285	ttc Phe	ttg Leu	ttt Phe	ccc Pro	aag Lys 290	tca Ser	cat His	gac Asp	ata Ile	acc Thr 295	cag Gln	att Ile	gtt Val	cgc Arg	cga Arg 300	974
tat Tyr	gca Ala	agt Ser	atg Met	gcc Ala 305	caa Gln	cat His	caa Gln	gac Asp	tat Tyr 310	gac Asp	agc Ser	ttt Phe	gca Ala	tgt Cys 315	gtt Val	1022
ctg Leu	gtg Val	agc Ser	cta Leu 320	gga Gly	ggc Gly	tcc Ser	caa Gln	agc Ser 325	atg Met	atg Met	ggc Gly	aga Arg	gat Asp 330	caa Gln	gtt Val	1070
cac His	tca Ser	999 335	ttc Phe	tcc Ser	ttg Leu	gat Asp	cat His 340	gtc Val	aag Lys	aac Asn	atg Met	ttc Phe 345	acg Thr	Gly 333	gac Asp	1118
acg Thr	tgc Cys 350	cct Pro	tct Ser	ctc Leu	aga Arg	ggg Gly 355	aag Lys	cca Pro	aag Lys	ctc Leu	ttt Phe 360	ttt Phe	att Ile	cag Gln	aac Asn	1166
tat Tyr 365		tcg Ser	tta Leu	ggt Gly	agc Ser 370	cag Gln	ttg Leu	gaa Glu	gat Asp	agc Ser 375	agc Ser	ctg Leu	gag Glu	gta Val	gat Asp 380	1214
	cca Pro	tca Ser	ata Ile	aaa Lys 385	aat Asn	gtg Val	gac Asp	tct Ser	aag Lys 390		ctg Leu	caa Gln	ccc Pro	aga Arg 395	cac His	1262
tgc Cys	aca Thr	act Thr	cac His	Pro	gaa Glu	gct Ala	gat Asp	atc Ile 405	ttt Phe	tgg Trp	agc Ser	ctg Leu	tgc Cys 410	aca Thr	gca Ala	1310
gac Asp	gta Val	tct Ser	His	ttg Leu	gag Glu	aag Lys	CCC Pro) 2CT	agc Ser	tca Ser	tcc Ser	tct Ser 425		tat Tyr	ctg Leu	1358
ca <u>c</u> Glr	aag Lys	Lev	tcc Ser	cag Gln	cag Gln	ctg Leu 435	∟ьу⊧	caa Glr	ggo Gly	agg Arg	g aga g Arc 440		cca Pro	cto Lev	gtg Val	1406
gad Asp	Let	cac ı His	c gtt s Val	gaa LGlu	cto Lev 450	ı Met	gac : Asp	aaa Lys	gtg Val	tat Typ 455		g tgg a Trp	g aac Asr	agt Ser	ggt Gly 460	1454
gtt Val	tcg L Sei	g to	t aag r Lys	g gag s Glu 465	т г.	tac Tyr	ago Ser	c cto	ago 1 Sei 470		g caq ı Glı	g cad	c act	cto Lev 475	g agg 1 Arg	1502
aaq Ly:	g aaa s Ly:	a ct	c ato u Ilo 48	e Lei	g gct ı Ala	cct a Pro	acq Th:	g tga r 489		accc	caga	ccg	ttggt	gt		1549
tc	ttgg	tata	tca	tcca	ggg t	ggc	ggct	tg g	agca	gagc	t tg	gcgg	ttac	ggc	tgcttct	1609
															catgago	
															ctaaact	

			-			
tccctact	ta cattccttag	tcggatgttt	tgccagagtg	tggagaacag	taagacataa	1789
acctattg	tt tgtttgttt	tttggggggg	aggttatcta	ccaagttata	ccaagttatt	1849
gtatgggt	gt atagtgtata	gtggttcaag	attctgaatg	taacttgaga	cttacctgag	1909
tttgtcat	gc gactgggtaa	attgtttcta	tggcacatct	aatcatttaa	taagtaatta	1969
cctcatta	ag tacccattgc	ttcaggactt	tcacattggc	caccaatttc	tgtgacccag	2029
ctccacati	t atattctctt	tcggcaaaac	caaatttcat	tatgtctgtt	taatatctac	2089
agtctaatq	gc tttgtaagac	atctagatag	gaaaaatagt	tacccatgag	cacaggaggg	2149
ctggcctga	c cctcaccage	tgtgcagtgg	cttcggtgaa	aggagaatga	gccctactcc	2209
ttgaaaggt	t gtagtgcttg	ggagagcagt	ctgtaccttg	cctgggcagc	acagtagagc	2269
cagccccaa	g aacacaacag	tgagtggggg	agcttgccct	ggttggctca	ggatcaggaa	2329
acaggaggg	a tgaccaactt	ggggctttga	ggtggcccac	cccagcatcc	atatcatctg	2389
tgaactgcc	a gagcctgtga	aggggcgggt	cctgtagaac	taaggctgca	ggatctccat	2449
gacacaggg	c aacaacaggg	tatctgagaa	gggtccccgt	gagggtccag	tatttatagt	2509
gcaccagaa	g ccagaggcct	cggatcagac	aatgacccat	tgcactgagt	aaagatgtaa	2569
gtgaatgag	t gaagatgtgt	gggcacacgg	aaatactgag	ggacacacac	aagcttttat	2629
ggagatgtt	t gtttgtttgt	ttgtttgttt	tttgtttctt	tggcaggaac	agattgcaag	2689
ggcagagag	t agataaggaa	gctggagaca	tgagtggggt	tgggtgcatg	atatagaatt	2749
cacaaagaa	a aaaaaaaaaa	a				2770
<210> <211> <212> <213>	4 20 DNA Artificial So PCR Primer 4 a gaccgttggt 5 18 DNA Artificial So					20
<223>	PCR Primer					
<400>	5					

agccgtaacc gccaagct

a suma a la comunidad. A proposition de la compacta de la compacta de la comunidad de la comunidad de la comunidad de la comunidad de

 $\psi(s,\lambda_{2},\gamma_{2})$

```
<210>
 <211>
           23
 <212>
           DNA
 <213>
          Artificial Sequence
 <220>
 <223>
           PCR Probe
 <400>
                                                                     23
 ccaagccgcc accctggatg ata
 <210>
         20
 <211>
 <212>
         DNA
 <213>
         Artificial Sequence
 <220>
 <223>
         PCR Primer
 <400>
                                                                     20
 ggcaaattca acggcacagt
<210>
<211>
         20
         DNA
<212>
         Artificial Sequence
<213>
<220>
<223>
        PCR Primer
<400>
gggtctcgct cctggaagct
                                                                     20
<210>
<211>
          27
<212>
        DNA
<213>
       Artificial Sequence
<220>
<223>
       PCR Probe
<400>
aaggccgaga atgggaagct tgtcatc
                                                                    27
<210> 10
<211> 1062
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (294)...(959)
<400> 10
gcacgagcgg cacgagtaga cttctataga tccctttcta tagaacttaa tctacttaag
tcagggagac cacccagaag gaaagagccc atactttcaa tcttaggcat aagttagctt 120
```

- The contribution of Mills of the substitution of the contribution of the substitution of the substitutio

gat	aaga	attt	tcag	gaaaa	aat	tccct	ttta	aa c	cacag	gaact		ccca	ctgg	aaag	ggatto	et 18
gaa	agaa	atg	aagt	cago	ccc	tcaga	aat	ga ag	gttga	actgo	c ctg	gctg	gctt	tcts	gttgac	t 24
ggc	:ccgg	gagc	tgta	actgo	caa 🤉	gacco	ttgt	g ag	gctto	ccta	a gto	ctaaq	gagt	agg	atg Met 1	29
	_	_	_	. Ile		_	_	_	Glu	-		_		Asp	gag Glu	34
-		_	Leu			_	_	Arg	_	_	_		Asp		gtt Val	392
		Asn				ctt Leu 40	Leu					Glu			aag Lys	44(
_		-		_	_	gct Ala	-	_			Arg	_		_		488
_	_			_		ttg Leu	_	_	_							536
						cac His		_	_	_		_	_			584
						ttg Leu										632
		_	_	_		atg Met 120		_		_		-	-			680
						gtt Val										728
	_		_	_		tta Leu	-		-						_	776
ata Ile						atc Ile										824
gca Ala										_						872
ctc a Leu 1	_	_							_	Ile						920

the second of th

turk syns start

_	s Pr	_		_		e Le			_		r Me	-	a tt	aaca	tgga	969
ac	tgcc	tcta	ctt	aatc	att	ctga	atga	tt a	aatc	gttt	c at	tttc	taaa	. tgt	gtaaaa	a 1029
aa	aaaa	aaaa	aaa	aaaa	act	cgag	9999	gg c	cc					_		1062
<2 <2	10> 11> : 12> ! 13> !	2143 DNA	sap:	iens												
<2	20> 21> (22>			(1825	5)											
	00> 1 ggggt		gact	cggo	ect o	cacac	cagto	ga gt	rgccg	ggcta	a ttg	ggact	ttt	gtc	cagtgad	e 60
ago	etgas	gaca	acaa	ıggad	ca c	ggga	ıggaç	gg tg	gtago	gagag	g aag	geged	gcg	aaca	agcgato	120
gco	cago	cacc	aagt	ccgc	ett o	cagg	ıcttt	c gg	gtttc	cttte	g cct	ccat	ctt	gggt	gegeet	180
tcc	cggc	gtc	tagg	ggag	ıcg a	aggo	tgag	ıg t <u>e</u>	ggcag	cggc	ago	gagag	tcc	ggcd	gcgaca	240
gga	cgaa	ctc	cccc	actg	ga a	agga	ttct	g aa	agaa	atga	agt	cago	cct	caga	aatgaa	300
att	gact	acc	tact	aact	tt c	tatt	gact	a ac	ccaa	aget	ota	atac	aacr	acco	ttgtga	360
900	J	500	cgcc	5500			5-00	9 30	,0055	ague	900	cege	uug	4000	5 - 5 -	. 500
						g at Me	g tc	t go	t ga	a gt u Va	c at	с са	t ca	ıg gt	t gaa l Glu 10	412
gct gaa	tccc gca	tag ctt	tcta gat	agag aca	ta g gat	g at Me gag	g tc t Se 1 aag	t gc r Al gag	t ga a Gl	a gt u Va ctg	c at l Il 5	c ca e Hi ttt	t ca s Gl ttg	ıg gt n Va	t gaa l Glu l0 cgg Arg	
gct gaa Glu gat	gca Ala gtt	ctt Leu . gct	tcta gat Asp ata	agag aca Thr 15 gat	ta g gat Asp gtg	g at Me gag Glu gtt	g tc t Se l aag Lys	t go r Al gag Glu	atg atg Met 20	a gt u Va ctg Leu gtc	c at 1 I1 5 ctc Leu	c ca e Hi ttt Phe gac	t cas Gl	g gt n Va tgc Cys 25 ctg	t gaa 1 Glu 10 cgg Arg	412
gat Glu gat Asp	gca Ala gtt	ctt Leu .gct Ala	gat Asp ata Ile 30	agag aca Thr 15 gat Asp	gat Asp gtg Val	g at Me gag Glu gtt Val	g tc t Se l aag Lys cca Pro	gag Glu cct Pro 35	atg Aet 20 aat Asn	a gt u Va ctg Leu gtc Val	c at 1 I1 5 Ctc Leu agg Arg	c ca e Hi ttt Phe gac Asp	t cas Gl ttg Leu ctt Leu 40 gct	g gt n Va tgc Cys 25 ctg Leu	t gaa l Glu l0 cgg Arg gat Asp	412 460
gat Glu gat Asp att Ile	gca Ala gtt Val	ctt Leu gct Ala cgg Arg 45	gat Asp ata Ile 30 gaa Glu	agag aca Thr 15 gat Asp aga Arg	gat Asp gtg Val ggt Gly	g at gag Glu gtt Val aag Lys	g tc t Se 1 aag Lys cca Pro ctg Leu 50	gag Glu cct Pro 35 tct Ser	a Gl a Gl atg Met 20 aat Asn gtc Val	a gt u Va ctg Leu gtc Val ggg Gly	c at l I1 ctc Leu agg Arg gac Asp	c ca e Hi ttt Phe gac Asp ttg Leu 55	t cas Gl ttg Leu ctt Leu 40 gct Ala	g gt n Va tgc Cys 25 ctg Leu gaa Glu	t gaa l Glu l0 cgg Arg gat Asp ctg Leu	412 460 508
gaaa Glu gat Asp att Ile ctc Leu	gca Ala gtt Val tta Leu tac	ctt Leu .gct Ala cgg Arg 45 aga Arg	gat Asp ata Ile 30 gaa Glu gtg Val	agag aca Thr 15 gat Asp aga Arg agg	gat Asp gtg Val ggt Gly cga Arg	g at Me gag Glu gtt Val aag Lys ttt Phe 65	g tc t Se l aag Lys cca Pro ctg Leu 50 gac Asp	gag Glu cct Pro 35 tct Ser ctg Leu	a tga a Gl atg Met 20 aat Asn gtc Val ctc Leu ctc	a gt u Va ctg Leu gtc Val ggg Gly aaa Lys	c atl II 5 ctc Leu agg Arg gac Asp cgt Arg 70 aac	c ca e Hi ttt phe gac Asp ttgu 55 atc Ile cct	t cas Gl ttg Leu ctt Leu 40 gct Ala ttg Leu cac	g gt n Va tgc Cys 25 ctg Leu gaa Glu aag Lys	t gaa l Glu l0 cgg Arg gat Asp ctg Leu atg Met	412 460 508 556
gaaa Glu gat Asp att Ile ctc Leu gac Asp 75	gca Ala gtt Val tta Leu tac Tyr 60	ctt Leu .gct Ala cgg Arg 45 aga Arg	gat Asp ata Ile 30 gaa Glu gtg Val gct Ala	agag aca Thr 15 gat Asp aga Arg agg Yal	gat Asp gtg Val ggty cga Arg gag Glu 80	g ate Me gagulu gtt Val aag Lys ttt Phe 65 acc Thr	g tc t Se l aag Lys cca Pro ctg Leu 50 gac Asp cac His	gagglu cct Pro 35 tct Ser ctg Leu ctg Leu gag	a tga a Gl atg Met 20 aat Asn gtc Val ctc Leu ctc Leu att	a gt u Va ctg Leu gtc Val ggg Gly aaa Lys agg Arg 85	c atl II 5 ctc Leu agg Arg gac Asp cgt Arg 70 aac Asn gag	c ca e Hi ttt Phe gac Asp tteu 55 atc Ile cro	t cas Gl ttg Leu ctt Leu 40 gct Ala ttg Leu cac His	tgc Cys 25 Ctg Leu gaa Glu aag Lys Ctt Leu	t gaa l Glu l0 cgg Arg gat Asp ctg Leu atg Met Val 90 aaa	412 460 508 556

	_	-	e Sei			_		r Phe	-	-			. Va		g ttg 1 Leu	
		Lei			_	_	Pro	_			_	Leu		_	a aaa 1 Lys	844
	Leu					Arg					Thr				aag Lys 170	892
					Gln										ctc Leu	940
	_	_		Gln	_	-		aag Lys 195	_					Phe		988
				_	_		_	caa Gln	-		_	-	_			1036
_			_			_		tcc Ser		_	_		_	_		1084
_		_	_			-		aga Arg		_	_	_	_	_		1132
			_	_			_	tgc Cys								1180
	-	_					_	ggc Gly 275		-	_	_			_	1228
		_	_					cag Gln						_	_	1276
_				_	_		_	agc Ser			_	_	_		_	1324
								ggt Gly	Val							1372
ctc Leu																1420
tat Tyr		Ala		_		_	Met				_	Asn				1468

anganin sa kisangangangan panan manangangangan na manah sa mina mina dan na mina at a sa sa sa sa sa sa sa sa Panangangan na manangangangan panan manangan manangan na manangan na mina manangan sa sa sa sa sa sa sa sa sa s

and Mack te

140 755 77

tca gag ggc cag ctg gag gac agc ctc ttg gag gtg gat ggg cca 1516 Ser Glu Gly Gln Leu Glu Asp Ser Ser Leu Leu Glu Val Asp Gly Pro 370 365 gcg atg aag aat gtg gaa ttc aag gct cag aag cga ggg ctg tgc aca 1564 Ala Met Lys Asn Val Glu Phe Lys Ala Gln Lys Arg Gly Leu Cys Thr 385 380 gtt cac cga gaa gct gac ttc ttc tgg agc ctg tgt act gcg gac atg 1612 Val His Arg Glu Ala Asp Phe Phe Trp Ser Leu Cys Thr Ala Asp Met 400 395 tee etg etg gag eag tet eac age tea eea tee etg tae etg eag tge 1660 Ser Leu Leu Glu Gln Ser His Ser Ser Pro Ser Leu Tyr Leu Gln Cys 420 ctc tcc cag aaa ctg aga caa gaa aga aaa cgc cca ctc ctg gat ctt 1708 Leu Ser Gln Lys Leu Arg Gln Glu Arg Lys Arg Pro Leu Leu Asp Leu 435 cac att gaa ctc aat ggc tac atg tat gat tgg aac agc aga gtt tct 1756 His Ile Glu Leu Asn Gly Tyr Met Tyr Asp Trp Asn Ser Arg Val Ser 450 gcc aag gag aaa tat tat gtc tgg ctg cag cac act ctg aga aag aaa 1804 Ala Lys Glu Lys Tyr Tyr Val Trp Leu Gln His Thr Leu Arg Lys Lys 465 1855 ctt atc ctc tcc tac aca taa gaaaccaaaa ggctgggcgt agtggctcac Leu Ile Leu Ser Tyr Thr 475 acctgtaatc ccagcacttt gggaggccaa ggagggcaga tcacttcagg tcaggagttc 1915 gagaccagcc tggccaacat ggtaaacgct gtccctagta aaaatacaaa aattagctgg 1975 gtgtgggtgt gggtacctgt attcccagtt acttgggagg ctgaggtggg aggatctttt 2035 gaacccagga gttcagggtc atagcatgct gtgattgtgc ctacgaatag ccactgcata 2095 2143 ccaacctggg caatatagca agatcccatc tctttaaaaa aaaaaaaa 12 <210> 20 <211> DNA <212> Artificial Sequence <213> <220> PCR Primer <223> 12 20 <400> tgtgccggga tgttgctata 13 <210> 24 <211> DNA <212> Artificial Sequence <220>

in the contract of the article for highly wheat the court for each hearth over the court of the court of

 $\psi_{sp,s_{k-1}}$

```
<223>
          PCR Primer
 <400>
         13
 cagcttacct ctttcccgta aaat
                                                                      24
 <210>
           14
 <211>
           29
 <212>
           DNA
          Artificial Sequence
 <213>
 <220>
 <223>
          PCR Probe
 <400>
       14
 tggttccacc taatgtcagg gaccttctg
                                                                     29
 <210>
         15
 <211>
 <212>
         DNA
 <213>
         Artificial Sequence
 <220>
 <223>
          PCR Primer
 <400>
         15
tccacagccc attcagcaa
                                                                    19
<210>
         16
<211>
          21
         DNA
<212>
         Artificial Sequence
<213>
<220>
<223>
         PCR Primer
<400>
         16
gcgtctcagt ggtcccattt g
                                                                    21
<210>
         17
<211>
         21
<212>
         DNA
<213>
         Artificial Sequence
<220>
       PCR Probe
<223>
<400>
       17
cgtcagcggc cccgagagag t
                                                                   21
<210>
         18
<211>
         21
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
        PCR Primer
```

and the second of the second o

<400> 18 atgtctgctg aagtcatcca t	21
<210> 19 <211> 21 <212> DNA <213> Artificial Sequence	
<220>	
<400> 19 attgctgctt ggagaacatt c	21
<210> 20 <211> 2413 <212> DNA <213> Mus musculus <220> <221> CDS	
<222> (172)(1617)	
<400> 20 gaattccgag cctctcaagc ggccacttag ggccggacag agtgtctcta ttgcaagaac	60
tctgagagaa atgaagagag tcctcagcaa tgatgttggc ttctcgtggt tcccagagcc	120
ctgcttaatg gatggagact ggacgagaac ctggctgctg tggttctgaa c atg gcc Met Ala 1	177
cag agc cct gtg tct gcc gag gtc att cac cag gtg gaa gag tgt ctt Gln Ser Pro Val Ser Ala Glu Val Ile His Gln Val Glu Glu Cys Leu 5 10 15	225
gat gaa gac gag aag gag atg atg ctc ttc ctg tgt aga gat gtg act Asp Glu Asp Glu Lys Glu Met Met Leu Phe Leu Cys Arg Asp Val Thr 20 25 30	273
gag aac ctg gct gca cct aac gtc agg gac ctc ctg gat agc tta agt Glu Asn Leu Ala Ala Pro Asn Val Arg Asp Leu Leu Asp Ser Leu Ser 35 40 45 50	321
gag aga ggc cag ctc tct ttt gct acc ttg gct gaa ttg ctc tac aga Glu Arg Gly Gln Leu Ser Phe Ala Thr Leu Ala Glu Leu Leu Tyr Arg 55 60 65	369
gtg agg cgg ttt gac ctt ctc aag agg atc ttg aag aca gac aaa gca Val Arg Arg Phe Asp Leu Leu Lys Arg Ile Leu Lys Thr Asp Lys Ala 70 75 80	417
acc gtg gag gac cac ctg cgc aga aac cct cac ctg gtt tct gat tat Thr Val Glu Asp His Leu Arg Arg Asn Pro His Leu Val Ser Asp Tyr 85 90 95	465
agg gtc ctg ctg atg gag att ggt gag agc tta gat cag aac gat gta Arg Val Leu Met Glu Ile Gly Glu Ser Leu Asp Gln Asn Asp Val 100 105 110	513

en ja akta kanadakunti jaka ada talaukuntukuntukuntukuntukuntukun Nadaki ada hanukuntukuntukuntukuntukuntukuntu 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908 – 1908

tcc Ser 115	tcc Ser	tta Leu	gtt Val	ttc Phe	ctt Leu 120	aca Thr	agg Arg	gat Asp	tac Tyr	aca Thr 125	ggc Gly	aga Arg	ggc Gly	aag Lys	ata Ile 130	561
gcc Ala	aag Lys	gac Asp	aag Lys	agt Ser 135	ttc Phe	ttg Leu	gat Asp	ctg Leu	gtg Val 140	att Ile	gaa Glu	ttg Leu	gag Glu	aaa Lys 145	ctg Leu	609
aat Asn	cta Leu	att Ile	gct Ala 150	tca Ser	gac Asp	caa Gln	ttg Leu	aat Asn 155	ttg Leu	tta Leu	gaa Glu	aaa Lys	tgc Cys 160	ctg Leu	aag Lys	657
aac Asn	atc Ile	cac His 165	aga Arg	ata Ile	gac Asp	ttg Leu	aac Asn 170	aca Thr	aag Lys	atc Ile	cag Gln	aag Lys 175	tac Tyr	acc Thr	cag Gln	705
tcc Ser	agc Ser 180	caa Gln	gga Gly	gca Ala	aga Arg	tca Ser 185	aat Asn	atg Met	aat Asn	act Thr	ctc Leu 190	cag Gln	gct Ala	tcg Ser	ctc Leu	753
cca Pro 195	aaa Lys	ttg Leu	agt Ser	atc Ile	aag Lys 200	tat Tyr	aac Asn	tca Ser	agg Arg	ctc Leu 205	cag Gln	aat Asn	glà aaa	cga Arg	agt Ser 210	801
aaa Lys	gag Glu	cca Pro	aga Arg	ttt Phe 215	gtg Val	gaa Glu	tac Tyr	cgt Arg	gac Asp 220	agt Ser	caa Gln	aga Arg	aca Thr	ctg Leu 225	gtg Val	849
aag Lys	aca Thr	tcc Ser	atc Ile 230	cag Gln	gaa Glu	tca Ser	gga Gly	gct Ala 235	ttt Phe	tta Leu	cct Pro	ccg Pro	cac His 240	atc Ile	cgt Arg	897
gaa Glu	gag Glu	act Thr 245	tac Tyr	agg Arg	atg Met	cag Gln	agc Ser 250	aag Lys	ccc Pro	cta Leu	gga Gly	atc Ile 255	tgc Cys	ttg Leu	atc Ile	945
att Ile	gat Asp 260	tgt Cys	att Ile	ggc Gly	aac Asn	gac Asp 265	aca Thr	aaa Lys	tat Tyr	ctt Leu	caa Gln 270	gag Glu	acc Thr	ttc Phe	act Thr	993
tcc Ser 275	ctg Leu	ggc Gly	tat Tyr	cat His	atc Ile 280	cag Gln	ctt Leu	ttc Phe	ttg Leu	ttt Phe 285	ccc Pro	aag Lys	tca Ser	cat His	gac Asp 290	1041
ata Ile	acc Thr	cag Gln	att Ile	gtt Val 295	cgc Arg	cga Arg	tat Tyr	gca Ala	agt Ser 300	atg Met	gcc Ala	caa Gln	cat His	caa Gln 305	gac Asp	1089
tat Tyr	gac Asp	agc Ser	ttt Phe 310	gca Ala	tgt Cys	gtt Val	ctg Leu	gtg Val 315	agc Ser	cta Leu	gga Gly	ggc	tcc Ser 320	GIII	agc Ser	1137
atg Met	atg Met	ggc Gly 325	Arg	gat Asp	caa Gln	gtt Val	cac His 330	Ser	Gly 999	ttc Phe	tcc Ser	ttg Leu 335	gat Asp	cat His	gtc Val	1185
aag Lys	aac Asn 340	Met	ttc Phe	acg Thr	Gly 333	gac Asp 345	acg Thr	tgc Cys	cct Pro	tct Ser	ctc Leu 350	ALG	gly ggg	aag Lys	cca Pro	1233
aag	ctc	ttt	ttt	att	cag	aac	tat	gag	tcg	tta	ggt	agc	cag	ttg	gaa	1281

Lys Leu Phe Phe Ile Gln Asn Tyr Glu Ser Leu Gly Ser Gln Leu Glu 365 gat age age ctg gag gta gat ggg cca tca ata aaa aat gtg gac tct 1329 Asp Ser Ser Leu Glu Val Asp Gly Pro Ser Ile Lys Asn Val Asp Ser 375 380 1377 aag ccc ctg caa ccc aga cac tgc aca act cac cca gaa gct gat atc Lys Pro Leu Gln Pro Arg His Cys Thr Thr His Pro Glu Ala Asp Ile 395 1425 ttt tgg agc ctg tgc aca gca gac gta tct cac ttg gag aag ccc tcc Phe Trp Ser Leu Cys Thr Ala Asp Val Ser His Leu Glu Lys Pro Ser 410 age tea tee tet gtq tat etq caq aag etc tee cag cag etg aag caa 1473 Ser Ser Ser Val Tyr Leu Gln Lys Leu Ser Gln Gln Leu Lys Gln 425 ggc agg aga cgc cca ctc gtg gac ctc cac gtt gaa ctc atg gac aaa 1521 Gly Arg Arg Pro Leu Val Asp Leu His Val Glu Leu Met Asp Lys 440 445 1569 gtg tat gcg tgg aac agt ggt gtt tcg tct aag gag aaa tac agc ctc Val Tyr Ala Trp Asn Ser Gly Val Ser Ser Lys Glu Lys Tyr Ser Leu 455 age ctg cag cac act ctg agg aag aaa ctc atc ctg gct cct acg tga 1617 Ser Leu Gln His Thr Leu Arg Lys Leu Ile Leu Ala Pro Thr 470 475 gaaccccaga ccgttggtgt tcttggtata tcatccaggg tggcggcttg gagcagagct tggcggttac ggctgcttct ggctgcttct ggctctgccg tgagtcctgg cctagggttc tectgtgeac aggeatgage egtaaceetg tgeetgggaa acgteteact eccgeegeeg tgcctttacc tctctaaact tccctactta cattccttag tcggatgttt tgccagagtg 1857 tggagaacag taagacataa acctattgtt tgtttgtttt tttggggggg aggttatcta ccaagttata ccaagttatt gtatgggtgt atagtgtata gtggttcaag atttgacact 1977 gaatgtaact tgagacttac ctgagtttgt catgcgactg ggtaaattgt ttctatggca catctaatca tttaataagt aattacctca ttaagtaccc attgcttcag gactttcaca 2097 ttggccacca atttctqtqa cccaqctcca catttatatt ctctttctqc aaaaccaaat ttcattatgt ctgtttaata tctacagtct aatgctttgt aagacatcta gatagaaaaa 2217 tagttaccca tgagcacaga agggctggcc tgaccctcac cagctgtgca gtggcttcgg 2277 tgaaggagaa tgagccctac tccttgaagg ttgtagtgct tgggagagca gtctgtacct 2337 2397 tgcctgggca gcacagtaga gccagcccca agaacacaac agtgagtggg ggagcttgcc ctggttggct caggat 2413

The second section is a second second

<210> 21

in the

fraggiorit.

<211> 1611 <212> DNA <213> Mus musculus <220> <221> CDS <222> (75)...(731) <400> 21 ggcttctcgt ggttcccaga gccctgctta atggatggag actggacgag aacctggctg 60 ctgtggttct gaac atg gcc cag agc cct gtg tct gcc gag gtc att cac 110 Met Ala Gln Ser Pro Val Ser Ala Glu Val Ile His cag gtg gaa gag tgt ctt gat gaa gac gag aag gag atg atg ctc ttc 158 Gln Val Glu Glu Cys Leu Asp Glu Asp Glu Lys Glu Met Met Leu Phe ctg tgt aga gat gtg act gag aac ctg gct gca cct aac gtc agg gac 206 Leu Cys Arg Asp Val Thr Glu Asn Leu Ala Ala Pro Asn Val Arg Asp 35 etc etg gat age tta agt gag aga gge cag etc tet ttt get ace ttg 254 Leu Leu Asp Ser Leu Ser Glu Arg Gly Gln Leu Ser Phe Ala Thr Leu 50 55 gct gaa ttg ctc tac aga gtg agg cgg ttt gac ctt ctc aag agg atc 302 Ala Glu Leu Leu Tyr Arg Val Arg Arg Phe Asp Leu Leu Lys Arg Ile 65 70 ttg aag aca gac aaa gca acc gtg gag gac cac ctg cgc aga aac cct 350 Leu Lys Thr Asp Lys Ala Thr Val Glu Asp His Leu Arg Arg Asn Pro 80 85 cac ctg gtt tct gat tat agg gtc ctg ctg atg gag att ggt gag agc 398 His Leu Val Ser Asp Tyr Arg Val Leu Leu Met Glu Ile Gly Glu Ser 95 100 105 tta gat cag aac gat gta tcc tcc tta gtt ttc ctt aca agg att aca 446 Leu Asp Gln Asn Asp Val Ser Ser Leu Val Phe Leu Thr Arg Ile Thr 110 115 agg gat tac aca ggc aga ggc aag ata gcc aag gac aag agt ttc ttg 494 Arg Asp Tyr Thr Gly Arg Gly Lys Ile Ala Lys Asp Lys Ser Phe Leu 125 130 135 gat ctg gtg att gaa ttg gag aaa ctg aat cta att gct tca gac caa 542 Asp Leu Val Ile Glu Leu Glu Lys Leu Asn Leu Ile Ala Ser Asp Gln 150 ttg aat ttg tta gaa aaa tgc ctg aag aac atc cac aga ata gac ttg 590 Leu Asn Leu Leu Glu Lys Cys Leu Lys Asn Ile His Arg Ile Asp Leu 160 165 aac aca aag atc cag aag tac acc cag tcc agc caa gga gca aga tca 638 Asn Thr Lys Ile Gln Lys Tyr Thr Gln Ser Ser Gln Gly Ala Arg Ser 180 aat atg aat act ctc cag gct tcg ctc cca aaa ttg agt atc aag tat 686 Asn Met Asn Thr Leu Gln Ala Ser Leu Pro Lys Leu Ser Ile Lys Tyr

and the second place and the contract contraction of the second of the second of the second of the second of t The second of 190 195 200

e Silvana

aac tca agg gtg agt ctg gag cca gtg tat gga gta cca gca tga Asn Ser Arg Val Ser Leu Glu Pro Val Tyr Gly Val Pro Ala 205 210 215	731
accagtetea gagatgtaat aaaaataaae ateteattte atatgetgta atagetaaae	791
aaattotgat.agatatgtgt ttgattaaga atgtgtataa tttottatga ttataaacot	851
tagtagtgtt caaaaatata tttggaaaaa tttatgaaat atataacaag aaaataattt	911
ttgtgcccat tatctgggca tgactactgt ggaaagcttt cttttagtct ctgtcctatg	971
tgcattagca aatgtgtcta tttatacagt tgaatatctt tttcatcttt gtttctttga	1031
agagtcaatt ttaaaaatta aagtaggtag aatgtaccca tagaaagaaa aagttaaatg	1091
tecceaaaga gattttaaag ttgttteett etaceteaeg gaacteatgt eetaceteet	1151
teetgttaag gagaetaate tagaecagtt tettetataa eeatgeacag agaatetace	1211
cacagagtgt ctacttttat acaagtggta gcatatcatg tctgctcttc tgaacagaga	1271
ctccttagat attgttccat atagttaata ggagattgtt tcgacttaat tattatttgt	1331
attattttga atgatacccc taccctttta tcttcttttg agacaagaac ttacctgtaa	1391
tccagcctgg cctggaatcc attatgtaac ctaggctggc cttgaacttg caatgagcct	1451
cctcttgctt cagcctcctc gggctcatgg cttccatttt ctgcatgtac taaaatgtat	1511
ttagttcttt cttgctgatg tataaattgc ctcctttcct ttgttactag aaacaatgct	1571
gcaaaataaa cttcctgatt cttaaaaaaaa aaaaaaaaaa	1611
<210> 22 <211> 551 <212> DNA <213> Mus musculus	
<220> <221> unsure <222> 521 <223> n=a, c, g or t	
<400> 22 cgtctccatt ttgcggaccc taaagcacgc agcgaagtct ctgatacctg agcctctcaa	60
gcggccactt atggccggac agtgtctcgt tcgatccagt tttctggtgg tctccagcga	120
agacaggcga caaagccgtt gttgagtggg atgggccggc gaccgcccgg tagtgtctct	180
attgcaagaa ctctgagaga aatgaagaga gtcctcagca atgatgttgg cttctcgtgg	240
ttcccagagc cctgcttaat ggatggagac tggacgagaa cctggctgct gtggttctga	300
	360
acatggccca gagccctgtg tctgccgagg tcattcacca ggtggaagag tgtcttgatg	420
aagacgagaa ggagatgatg ctcttcctgt gtagagatgt gactgagaac ctggctgcac	1 2 U

international est a mentre en l'est en region que mentre de mandre de mange par par entre par entre est anne a L'est en l'est anne de le le le le region de l'est de mandre de l'est de l'est de l'est de l'est de l'est de l

			16			
ctaacgtc	ag ggacctcctg	gatagcttaa	gtgagagagg	ccagctctct	tttgctacct	480
tggctgaa	tt gctctacaga	gtgagcctag	gaggctccca	nagcatgatg	ggcagagatc	540
aagttcac	tc a					551
<210>	23					
<211>	20					
<212>	DNA					
<213>	Artificial S	equence				
<220>						
<223>	Antisense Ol	igonucleoti	ide			
<400>	23					
taagtggc	cg cttgagaggc					20
<210>	24					
<211>	20					
<212>	DNA					
<213>	Artificial S	equence				
<220>						
<223>	Antisense Ol:	igonucleoti	de			
<400>	24					
gccctaagt	g gccgcttgag					20
<210>	25					
<211>	20					
<212>	DNA					
<213>	Artificial Se	equence				
<220>						
<223>	Antisense Oli	gonucleoti.	de			
<400>	25					
actctgtcc	g gccctaagtg					20
<210>	26					
<211>	20				•	
<212>	DNA					
<213>	Artificial Se	quence				
<220>						
<223>	Antisense Oli	gonucleotio	de			
<400>	26					
ggctctggg	a accacgagaa					20
<210>	27					
<211>	20					
<212>	DNA					
<213>	Artificial Se	quence				
<220>						

And the second s

4 12 3

<223>	Antisense Oligonucleotide	
<400>	27	
	tcc atccattaag	20
J		
<210>	28	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	28	
		20
geeeeggg	rcc atgttcagaa	2.0
<210>	29	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
.220		
<220> <223>	Antigonas Oligonus Loctido	
<223>	Antisense Oligonucleotide	
<400>	29	
gacctcgg	ca gacacagggc	20
.210.	20	
<210>	30	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	30	
catctcta	ca caggaagagc	20
<210>	31	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Antisense Oligonucleotide	
<400>	31	
	gg aggtccctga	20
gecaccag		
<210>	32	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
-220-		
<220> <223>	Antisense Oliconucleotido	
~~~>	Antisense Oligonucleotide	

```
<400>
          32
                                                                        20
 cttaagctat ccaggaggtc
 <210>
           33
 <211>
           20
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
           Antisense Oligonucleotide
 <223>
 <400>
           33
                                                                       20
 cctccacggt tgctttgtct
 <210>
          34
 <211>
           20
 <212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
          Antisense Oligonucleotide
<400>
          34
gcaggtggtc ctccacggtt
                                                                       20
<210>
          35
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          35
                                                                       20
atcagcagga ccctataatc
<210>
          36
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          36
                                                                      20
atcttgcctc tgcctgtgta
          37
<210>
<211>
          20
<212>
          DNA
         Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
```

hydeker

```
<400> 37
 ctaacaaatt caattggtct
                                                                       20
 <210>
           38
 <211>
 <212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
           38
 ccttggctgg actgggtgta
                                                                      20
 <210>
          39
 <211>
           20
 <212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
         Antisense Oligonucleotide
 <400>
 tgctccttgg ctggactggg
                                                                      20
<210>
          40
 <211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
          Antisense Oligonucleotide
<223>
<400>
         40
                                                                      20
cacggtattc cacaaatctt
<210>
          41
<211>
          20
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
         41
                                                                     20
aaagctcctg attcctggat
<210>
          42
<211>
          20
<212>
         DNA
<213>
         Artificial Sequence
<220>
       Antisense Oligonucleotide
<223>
<400>
         42
```

Andre franklight frankligher in great frankligher in de great frankligher fran

4. 3. 1. 1.

	20	
tctgca	teet gtaagtetet	20
<210>	43	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Antisense Oligonucleotide	
<400>	43	
caatgat	caa gcagattcct	20
<210>	44	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	44	
	ggg aagtgaaggt	20
3	5555 • 5 • · · · · 5 5 • · · · · · · · · ·	-
<210>	45	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	45	
agtettga	atg ttgggccata	20
210		
<210>	46	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	46	
ctgtcata	gt cttgatgttg	20
<210>	47	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
•		
<400>	47	
tcctaggc	tc accagaacac	20

enda est seenaku dibawa en le engan ka madan sakiba en kan wentengi pesakabahahadi an tentenga tentenga en le Tanan en legisar en le engan ka madan sakiba en kan wentengi pesakabahahadi an tentenga en legis kan tentenga e

(4. Archer

```
<210>
           48
 <211>
            20
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
           48
 atcatgcttt gggagcctcc
                                                                         20
 <210>
           49
           20
 <211>
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
          49
                                                                        20
 tgaacttgat ctctgcccat
 <210>
           50
 <211>
           20
 <212>
           DNA
           Artificial Sequence
<220>
<223>
           Antisense Oligonucleotide
          50
caaggagaac cctgagtgaa
                                                                        20
        . 51
<210>
<211>
           20
<212>
          DNA
<213>
         Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          51
gtgaacatgt tcttgacatg
                                                                        20
<210>
          52
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
gtccccgtg aacatgttct
                                                                       20
```

in the second term at the confidence of the second term and the confidence of the confidence of the second term

. Section 25

```
<210>
           53
 <211>
           20
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
           53
 <400>
                                                                       20
 ccctctgaga gaagggcacg
 <210>
          54
           20
 <211>
 <212>
           DNA
           Artificial Sequence
 <220>
 <223>
         Antisense Oligonucleotide
 <400>
          54
 cgactcatag ttctgaataa
                                                                       20
 <210>
           55
 <211>
           20
 <212>
          DNA
 <213>
          Artificial Sequence
<220>
<223>
         Antisense Oligonucleotide
<400>
         55
                                                                      20
tcagcttctg ggtgagttgt
<210>
          56
<211>
          20
          DNA
<212>
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          56
                                                                      20
ctgggagagc ttctgcagat
<210>
          57
<211>
          20
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         Antisense Oligonucleotide
         57
<400>
gggttctcac gtaggagcca
                                                                      20
```

a consistency and according in a probability but the confidence which is a considerable of a continue of a con-

Bonners.

```
<210>
           58
           20
 <211>
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
           58
 ccgactaagg aatgtaagta
                                                                        20
 <210>
           59
 <211>
           20
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
           59
                                                                       20
 ctctggcaaa acatccgact
 <210>
          60
 <211>
           20
 <212>
          DNA
 <213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          60
                                                                       20
acaaacaata ggtttatgtc
<210>
          61
<211>
          20
       DNA
<212>
<213>
         Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
         61
aatcttgaac cactatacac
                                                                      20
<210>
          62
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
        Antisense Oligonucleotide
<400>
          62
ggtaattact tattaaatga
                                                                      20
```

intermetarijan ministrijaja iligraping men great interacija nervitari a mangari a matematika na mangari na mangari na matematika na matematika

<210>

44, 454, 45

<211>

20

and we consider the configuration of the configurat

bar kal<mark>amang kanang kalam</mark>ita barang mang mang mang barang mang mang mengang mengang mengang menang menang mengan

```
20
 <211>
 <212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
         Antisense Oligonucleotide
 <400>
 ctgaagcaat gggtacttaa
                                                                      20
 <210>
          64
 <211>
          20
 <212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
         Antisense Oligonucleotide
 <400>
 agaaattggt ggccaatgtg
                                                                     20
<210>
          65
 <211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          65
caaggagtag ggctcattct
                                                                     20
<210>
          66
         20
<211>
<212>
         DNA
<213>
        Artificial Sequence
<220>
<223>
         Antisense Oligonucleotide
<400>
                                                                     20
caacctttca aggagtaggg
<210>
         67
<211>
         20
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
       Antisense Oligonucleotide
<400>
        67
aagcactaca acctttcaag
                                                                    20
<210>
         68
```

 $(V_1, \dots, V_r)$ 

and the

 $(\mathbf{x},\mathbf{x}) = (\mathbf{x},\mathbf{y}) + (\mathbf{x},\mathbf{y}) + (\mathbf{x},\mathbf{y}) + (\mathbf{x},\mathbf{y}) + (\mathbf{y},\mathbf{y}) +$ 

and the second of the property of the property

```
<212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
           68
                                                                       20
 caaggtacag actgctctcc
 <210>
           69
 <211>
           20
 <212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
         Antisense Oligonucleotide
 <400>
         69
 ccactcactg ttgtgttctt
                                                                       20
<210>
          70
<211>
          20
 <212>
          DNA
 <213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          70
agctcccca ctcactgttg
                                                                      20
<210>
          71
<211>
          20
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         Antisense Oligonucleotide
<400>
         71
gccaaccagg gcaagctccc
                                                                      20
          72
<210>
<211>
          20
<212>
          DNA
<213>
         Artificial Sequence
<220>
<223>
        Antisense Oligonucleotide
<400>
ctgatcctga gccaaccagg
                                                                      20
<210>
          73
<211>
         20
<212>
         DNA
```

44,000

Commence to recently that the management of the contract of the contract of the contract of the contract of the

```
<213>
           Artificial Sequence
 <220>
           Antisense Oligonucleotide
 <223>
 <400>
                                                                        20
 tcagtgcaat gggtcattgt
 <210>
          74
 <211>
          20
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
           Antisense Oligonucleotide
 <223>
 <400>
           74
                                                                       20
 aatctgttcc tgccaaagaa
<210>
           75
 <211>
           20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
          75
<400>
ctcatgtctc cagcttcctt
                                                                       20
<210>
          76
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          76
                                                                       20
gaattctata tcatgcaccc
          77
<210>
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
          Antisense Oligonucleotide
<223>
                                                                      20
acagcatatg aaatgagatg
<210>
          78
<211>
          20
<212>
         DNA
         Artificial Sequence
```

```
<220>
 <223>
           Antisense Oligonucleotide
 <400>
           78
 taagaaatta tacacattct
                                                                        20
 <210>
           79
 <211>
           20
 <212>
           DNA
 <213>
          Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
          79
 atatatttt gaacactact
                                                                       20
 <210>
          80
 <211>
           20
 <212>
           DNA
 <213>
          Artificial Sequence
 <220>
 <223>
         Antisense Oligonucleotide
<400>
         80
                                                                       20
tcatgcccag ataatgggca
<210>
          81
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
       . Antisense Oligonucleotide
<400>
        81
ctaaaagaaa gctttccaca
                                                                       20
<210>
          82
<211>
          20
<212>
          DNA
          Artificial Sequence
<213>
<220>
<223>
          Antisense Oligonucleotide
<400>
          82
gaggtagaag gaaacaactt
                                                                      20
<210>
          83
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
```

engapanag nggapagapanana, enggere e Magya, ng aseringa

programs on a second contract of the second contract of

ranger of a more than the experience of the contrapt for any application and an artificial and the contraction

1,000,000

```
<220>
 <223>
           Antisense Oligonucleotide
 <400>
           83
                                                                       20
 cttaacagga aggaggtagg
 <210>
          84
 <211>
          20
 <212>
           DNA
           Artificial Sequence
 <213>
 <220>
 <223>
          Antisense Oligonucleotide
 <400>
          84
 ggtctagatt agtctcctta
                                                                       20
<210>
          85
 <211>
          20
 <212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
         Antisense Oligonucleotide
<400>
         85
                                                                      20
tctgtgggta gattctctgt
<210>
          86
<211>
          20
<212>
          DNA
         Artificial Sequence
<213>
<220>
<223>
         Antisense Oligonucleotide
<400>
         86
                                                                      20
tgtataaaag tagacactct
<210>
         87
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
         87
                                                                      20
agtctctgtt cagaagagca
<210>
          88
<211>
          20
<212>
         DNA
<213>
        Artificial Sequence
<220>
```

managakhannya kangan anto o dalahangan alia bir Kilaman (1927), a anto a gungahannan bir manahban man bira se

44,65

```
<223>
           Antisense Oligonucleotide
 <400>
           88
 gaaacaatct cctattaact
                                                                         20
 <210>
           89
 <211>
           20
 <212>
           DNA
 <213>
          Artificial Sequence
 <220>
           Antisense Oligonucleotide
 <223>
 <400>
 ttaagtcgaa acaatctcct
                                                                        20
<210>
          90
<211>
           20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
           Antisense Oligonucleotide
                                                                        20
agttcttgtc tcaaaagaag
<210>
           91
<211>
           20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
                                                                        20
aggctggatt acaggtaagt
<210>
          92
<211>
          20
<212>
          DNA
          Artificial Sequence
<213>
<220>
<223>
          Antisense Oligonucleotide
<400>
          92
                                                                       20
gctgaagcaa gaggaggctc
<210>
          93
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
```

i provincia de la completa de la co

```
<400>
          93
 tttatacatc agcaagaaag
                                                                        20
 <210>
          94
 <211>
           20
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
           94
 tttttaagaa tcaggaagtt
                                                                        20
 <210>
           95
 <211>
           20
 <212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
          Antisense Oligonucleotide
 <400>
          95
 ataagtggcc gcttgagagg
                                                                       20
<210>
          96
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
         96
gccataagtg gccgcttgag
                                                                       20
<210>
          97
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          97
ggagaccacc agaaaactgg
                                                                       20
<210>
          98
<211>
          20
<212>
          DNA
          Artificial Sequence
<213>
<220>
<223>
          Antisense Oligonucleotide
```

t matematical construction of the confidence of the property of the confidence of the confidence of

```
<400>
          98
 agagacacta ccgggcggtc
                                                                       20
           99
 <210>
 <211>
           20
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
           99
 agttcttgca atagagacac
                                                                      20
 <210>
          100
 <211>
          20
 <212>
           DNA
           Artificial Sequence
 <213>
 <220>
 <223>
          Antisense Oligonucleotide
 <400>
         100
 aagccaacat cattgctgag
                                                                      20
<210>
          101
 <211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
        101
tctactcgtg ccgctcgtgc
                                                                       20
<210>
          102
<211>
          20
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
         102
<400>
gcctaagatt gaaagtatgg
                                                                      20
          103
<210>
<211>
          20
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
        Antisense Oligonucleotide
<400>
         103
```

ngananga sa naminggapung menganggang bagang panggapung namin namin

e proportion of the engineering experience with the property of the engineering of the en

	32	
atagcaad	cat cccggcacaa	20
<210>	104	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Antisense Oligonucleotide	
<400>	104	
ccaagtcc	cc gacagacagc	20
<210>	105	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	105	
agcaggtca	aa atcgcctcac	20
	-	
<210>	106	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	106	
	g taateettea	20
005500000		20
<210>	107	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
-400	107	
<400>	107	20
teettgett	a tettgeeteg	20
<210>	108	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense Oligonucleotide	
<400>	108	
	a acagactgct	20

ung talah dan kelalah dan menggan kelalah kelalah dan kelalah dan kelalah dan kelalah dan kelalah dan bermulah Membergan menggan menggan kelalah dan kelalah dan kelalah dan kelalah dan bermulah dan bermulah dan bermulah d - 2 -

te de la completa la completa com esta como como com com<mark>a propriato en la completa politica de la co</mark>sta de la co

```
<210>
           109
           20
 <211>
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
           Antisense Oligonucleotide
 <223>
 <400>
          109
                                                                        20
 gtgttatcat cctgaagtta
 <210>
           110
 <211>
           20
           DNA
 <212>
 <213>
          Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
<400>
         110
tcacatggaa caatttccaa
                                                                        20
<210>
         111
<211>
          20
<212>
          DNA
<213>
         Artificial Sequence
<220>
          Antisense Oligonucleotide
<223>
<400>
                                                                       20
gttaatcaca tggaacaatt
<210>
       . 112
<211>
          20
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         Antisense Oligonucleotide
<400>
        112
                                                                       20
agaggcagtt ccatgttaat
<210>
          113
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
         113
                                                                       20
aatgattaag tagaggcagt
<210>
          114
```

 $(J_{ij})_{ij} = (J_{ij})_{ij} + (J_{ij})_{ij$ 

```
<211>
           20
 <212>
           DNA
 <213>
           Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
           114
  gatttaatca ttcagaatga
                                                                         20
 <210>
           115
 <211>
           2.0
 <212>
           DNA
 <213>
          Artificial Sequence
 <220>
 <223>
           Antisense Oligonucleotide
 <400>
          115
 acacatttag aaaatgaaac
                                                                         20
 <210>
          116
 <211>
           20
 <212>
          DNA
 <213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          116
                                                                        20
gccagcaggc agtcaacttc
<210>
          117
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
<400>
          117
gtcttgcagt acagetccgg
                                                                        20
<210>
         118
<211>
         20
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         Antisense Oligonucleotide
<400>
         118
ttcagcagac atcctactct
                                                                        20
<210>
          119
<211>
          20
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          Antisense Oligonucleotide
```

225,89

```
<400>
         119
                                                                      20
tggatgactt cagcagacat
<210>
         120
<211>
         20
         DNA
<212>
          Artificial Sequence
<213>
<220>
          Antisense Oligonucleotide
<223>
<400>
         120
                                                                      20
ccaagtcccc gacagacagc
<210>
         121
<211>
          20
          DNA
<212>
          Artificial Sequence
<220>
        Antisense Oligonucleotide
<223>
<400>
          121
                                                                      20
acttgtccct gctccttgaa
<210>
         122
<211>
          20
<212>
         DNA
         Artificial Sequence
<213>
<220>
        Antisense Oligonucleotide
<223>
        122
<400>
                                                                      20
cccattatgg agcctgaagt
<210>
          123
       . 20
<211>
<212>
         DNA
<213>
        Artificial Sequence
<220>
        Antisense Oligonucleotide
<223>
<400> 123
                                                                      20
ttacttctcc cattatggag
         124
<210>
<211>
         20
<212>
        DNA
        Artificial Sequence
<220>
         Antisense Oligonucleotide
<223>
<400>
         124
                                                                     20
agcgccaagc tgttccttaa
<210>
         125
<211>
         20
```

a Contract to refer to the contract the factor of the first contract of the co

بردانه بإيده

Magnetic see that the control of the experience of the control of the control of the control of the control of

<del>Makalah penjagananan jenganan penganan penganan biban kanal</del> at bibang pengan-biban pengan biban bibang pengan-bib

```
<212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
         Antisense Oligonucleotide
 <400>
        125
 gcttgctctt catcttgtat
                                                                      20
 <210>
          126
 <211>
          20
 <212>
          DNA
 <213>
          Artificial Sequence
 <220>
 <223>
         Antisense Oligonucleotide
         126
 cattgccaat gcaatcgatt
                                                                      20
 <210>
         127
 <211>
          20
 <212>
          DNA
<213>
         Artificial Sequence
<220>
<223>
        Antisense Oligonucleotide
<400>
         127
gctggccctc tgacaccaca
                                                                     20
<210>
          128
<211>
          20
<212>
         DNA
<213>
         Artificial Sequence
<220>
       Antisense Oligonucleotide
<223>
<400> . 128
cgcccagcct tttggtttct
                                                                     20
<210>
        129
         20
<211>
<212>
         DNA
         Artificial Sequence
<213>
<220>
        Antisense Oligonucleotide
<223>
<400>
         129
ccctccttgg cctcccaaag
                                                                     20
         130
<210>
<211>
         20
<212>
         DNA
<213> Artificial Sequence
<220>
         Antisense Oligonucleotide
<223>
```

<pre>&lt;210&gt; 131 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence </pre> <pre>&lt;220&gt; &lt;223&gt; Antisense Oligonucleotide </pre> <pre>&lt;400&gt; 131 gctatgaccc tgaactcctg</pre>	<400> ccacaccca	130 ac acccagctaa	20
<pre>&lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 131 gctatgaccc tgaactcctg</pre>	<210>	131	
<pre>&lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 131 gctatgaccc tgaactcctg</pre>			
<pre></pre>	<212>	DNA	
<pre>&lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 131 gctatgaccc tgaactcctg</pre>	<213>	Artificial Sequence	
<pre>&lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 131 gctatgaccc tgaactcctg</pre>			
<pre></pre>			
gctatgaccc tgaactcctg 20  <210> 132 <211> 20 <212> DNA <213> Artificial Sequence  <220> <223> Antisense Oligonucleotide  <400> 132 tcatgcctct cctgctagat 20  <210> 133 <211> 20 <212> DNA <213> Artificial Sequence  <220> <221> control Oligonucleotide  <220> <223> control Oligonucleotide  <220> <221> unsure <222> (1) (20) <223> n=a, c, g or t  <400> 133	<223>	Antisense Oligonucleotide	
gctatgaccc tgaactcctg 20  <210> 132 <211> 20 <212> DNA <213> Artificial Sequence  <220> <223> Antisense Oligonucleotide  <400> 132 tcatgcctct cctgctagat 20  <210> 133 <211> 20 <212> DNA <213> Artificial Sequence  <220> <221> control Oligonucleotide  <220> <223> control Oligonucleotide  <220> <221> unsure <222> (1) (20) <223> n=a, c, g or t  <400> 133	<400>	131	
<pre> &lt;210&gt;</pre>			20
<pre>&lt;211&gt;    20 &lt;212&gt;    DNA &lt;213&gt;    Artificial Sequence  &lt;220&gt; &lt;223&gt;    Antisense Oligonucleotide  &lt;400&gt;    132 tcatgcctct cctgctagat</pre>	5 5		
<pre> &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 132 tcatgcctct cctgctagat 20  &lt;210&gt; 133 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t  &lt;400&gt; 133</pre>	<210>	132	
<pre>&lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 132 tcatgcctct cctgctagat 20  &lt;210&gt; 133 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt; 133</pre>	<211>	20	
<pre> &lt;220&gt; &lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 132 tcatgcctct cctgctagat 20  &lt;210&gt; 133 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt; 133</pre>		DNA	
<pre>&lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 132 tcatgcctct cctgctagat 20  &lt;210&gt; 133 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt; 133</pre>	<213>	Artificial Sequence	
<pre>&lt;223&gt; Antisense Oligonucleotide  &lt;400&gt; 132 tcatgcctct cctgctagat 20  &lt;210&gt; 133 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt; 133</pre>	<2205		
<pre>&lt;400&gt; 132 tcatgcctct cctgctagat 20  &lt;210&gt; 133 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt; 133</pre>		Antisense Oligonucleotide	
<pre>tcatgcctct cctgctagat  &lt;210&gt;</pre>			
<pre> &lt;210&gt; 133 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artificial Sequence  &lt;220&gt; &lt;223&gt; control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt; 133</pre>	<400>	132	
<pre>&lt;211&gt;     20 &lt;212&gt;     DNA &lt;213&gt;     Artificial Sequence  &lt;220&gt; &lt;223&gt;     control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt;     133</pre>	tcatgcctc	t cctgctagat	20
<pre>&lt;211&gt;     20 &lt;212&gt;     DNA &lt;213&gt;     Artificial Sequence  &lt;220&gt; &lt;223&gt;     control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt;     133</pre>	-2105	122	
<pre>&lt;212&gt;</pre>			
<213> Artificial Sequence  <220> <223> control Oligonucleotide  <220> <221> unsure <222> (1) (20) <223> n=a, c, g or t  <400> 133			
<pre>&lt;220&gt; &lt;223&gt; control Oligonucleotide  &lt;220&gt; &lt;221&gt; unsure &lt;222&gt; (1) (20) &lt;223&gt; n=a, c, g or t &lt;400&gt; 133</pre>			
<223> control Oligonucleotide  <220> <221> unsure <222> (1) (20) <223> n=a, c, g or t  <400> 133	(213)	THE THE SEQUENCE	
<220> <221> unsure <222> (1) (20) <223> n=a, c, g or t <400> 133	<220>		
<221> unsure <222> (1) (20) <223> n=a, c, g or t <400> 133	<223>	control Oligonucleotide	
<221> unsure <222> (1) (20) <223> n=a, c, g or t <400> 133	0.0.0		
<222> (1) (20) <223> n=a, c, g or t <400> 133			
<223> n=a, c, g or t <400> 133			
<400> 133			
	<223> II=a,	c, g or c	
nnnnnnnn nnnnnnnn 20	<400>	133	