

Ph.D defense

Ludovic Thomas

Supervised by Ahlem Mifdaoui and Jean-Yves Le Boudec

September 12th, 2022

Safety-critical applications

Public networks (e.g., the Internet)

Best-effort service

Safety-critical applications

Public networks
(e.g., the Internet)

Time-Sensitive
Networks

Deterministic Service

Bounded
Latency

+ no loss
by congestion

Safety-critical applications

IEEE Time-Sensitive Networking (TSN)
IETF Deterministic Networking (DetNet)

Safety-critical applications

Bounded Latency

New services offered by time-sensitive networks

Easy Reconfiguration

> High Reliability

Time Synchronization

New mechanisms

New services offered by

Outline of this Presentation

Network Calculus

Guaranteed upper bounds?

Guaranteed upper bounds?

Arrival Curve α upper-bounds the maximum amount of traffic of the flow over any interval Leaky-Bucket $\gamma_{r,b}$ Backlog? data rate 1 flow bo System $\forall t > 0, \ \gamma_{r,b}(t) = rt + b$ D? time interval t Guaranteed upper bounds?

Service Curve β

lower-bounds the minimum amount of service offered to the flow

Rate-Latency $\beta_{R,T}$ Bounded-Delay δ_D data $\delta_D(t) = \begin{cases} 0 & t \leq D \\ +\infty & t > D \end{cases}$

$$|\cdot|^+ = \max(0,\cdot)$$

^{- [}Le Boudec, Thiran 2001] Jean-Yves Le Boudec and Patrick Thiran [2001]. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Berlin Heidelberg: Springer-Verlag, ISBN: 978-3-540-42184-9

Network Calculus Main Result [Le Boudec, Thiran 2001]

Knowing $\alpha_{f,in}$ and β_{S}

■ Backlog upper-bound

^{- [}Le Boudec, Thiran 2001] Jean-Yves Le Boudec and Patrick Thiran [2001]. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Berlin Heidelberg: Springer-Verlag, ISBN: 978-3-540-42184-9

^{- [}Le Boudec, Thiran 2001] Jean-Yves Le Boudec and Patrick Thiran [2001]. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Berlin Heidelberg: Springer-Verlag, ISBN: 978-3-540-42184-9

Network Calculus Main Result [Le Boudec, Thiran 2001]

Knowing $\alpha_{f,in}$ and β_{S}

- Backlog upper-bound
- Delay upper-bound
- Output arrival curve $\alpha_{f,out} = \alpha_{f,in} \oslash \beta_{S}$

^{- [}Le Boudec, Thiran 2001] Jean-Yves Le Boudec and Patrick Thiran [2001]. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Berlin Heidelberg: Springer-Verlag. ISBN: 978-3-540-42184-9

 \oslash : min-plus deconvolution. $(\mathfrak{f} \oslash \mathfrak{g}) : t \mapsto \sup_{u>0} \{\mathfrak{f}(t+u) - \mathfrak{g}(u)\}$

Network Calculus Main Result [Le Boudec, Thiran 2001]

Knowing $\alpha_{f,in}$ and β_{S}

- Backlog upper-bound
- Delay upper-bound
- \blacksquare Output arrival curve $\alpha_{f,out} = \alpha_{f,in} \oslash \beta_{S}$

^{- [}Le Boudec, Thiran 2001] Jean-Yves Le Boudec and Patrick Thiran [2001]. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Berlin Heidelberg: Springer-Verlag. ISBN: 978-3-540-42184-9

 \oslash : min-plus deconvolution. $(\mathfrak{f} \oslash \mathfrak{g}) : t \mapsto \sup_{u \ge 0} \{\mathfrak{f}(t+u) - \mathfrak{g}(u)\}$

FIFO: First in, first out

Ludovic Thomas

FIFO: First in, first out

Ludovic Thomas

FIFO: First in, first out

Ludovic Thomas

From a Multiclass Network to *n* FIFO Classes: We Focus on **One Class**

From a Multiclass Network to *n* FIFO Classes: We Focus on **One Class**

Compositionnal approaches: compute end-to-end latency bounds in FIFO networks (active research field).

Properties of TFA (Total Flow Analysis)

■ Optimal worst-case upper bounds are not guaranteed.

Properties of TFA (Total Flow Analysis)

■ Optimal worst-case upper bounds are not guaranteed.

but

scalable (linear complexity with the network's size) and **flexible** (new models are easy to integrate)

Output port B

Zoom on B

TFA is limited to networks with an acyclic graph G: feed-forward networks.

Multi-Path Topologies

Graph induced by flows G:

Graph induced by flows G:

End-to-end latency bounds?

Fixed-Point Total Flow Analysis (FP-TFA)

FP-TFA is based on Total Flow Analysis with improvements Packetizer Packetizer Packetizer Packetizer Output port B Packetizer Input port Packetizer Packetizer Packetizer Packetizer

Fixed-Point Total Flow Analysis (FP-TFA): An Improved TFA

FP-TFA is based on Total Flow Analysis with improvements

^{- [}Mohammadpour, Stai, Le Boudec 2019] E. Mohammadpour, E. Stai, and J.-Y. Le Boudec [2019]. "Improved Delay Bound for a Service Curve Element with Known Transmission Rate". In: IEEE Networking Letters. DOI: 10.1109/LNET.2019.2927143

Leaky-bucket-constrained flows, cuts and fixed-point.

Leaky-bucket-constrained flows, cuts and fixed-point.

Theorem (Validity of the fixed-point)

If the network is **initialy empty**, and if \overline{b} is non negative and such that $\mathcal{FF}(\overline{b}) = \overline{b}$, then the network is stable and \overline{b} is a valid bound for the bursts at the cuts.

Leaky-bucket-constrained flows, cuts and fixed-point.

Theorem (Validity of the fixed-point)

If the network is **initialy empty**, and if \overline{b} is non negative and such that $\mathcal{F}\mathcal{F}(\overline{b}) = \overline{b}$, then the network is stable and \overline{b} is a valid bound for the bursts at the cuts.

^{- [}Bouillard, Boyer, Le Corronc 2018] Anne Bouillard, Marc Boyer, and Euriell Le Corronc [2018]. Deterministic Network Calculus: From Theory to Practical Implementation. Wiley. ISBN: 978-1-84821-852-9

Leaky-bucket-constrained flows, cuts and fixed-point.

Theorem (Validity of the fixed-point)

If the network is **initialy empty**, and if \overline{b} is non negative and such that $\mathcal{F}\mathcal{F}(\overline{b}) = \overline{b}$, then the network is stable and \overline{b} is a valid bound for the bursts at the cuts.

^{- [}Bouillard, Boyer, Le Corronc 2018] Anne Bouillard, Marc Boyer, and Euriell Le Corronc [2018]. Deterministic Network Calculus: From Theory to Practical Implementation. Wiley. ISBN: 978-1-84821-852-9

Leaky-bucket-constrained flows, cuts and fixed-point.

Theorem (Validity of the fixed-point)

If the network is **initialy empty**, and if \overline{b} is non negative and such that $\mathcal{F}\mathcal{F}(\overline{b}) = \overline{b}$, then the network is stable and \overline{b} is a valid bound for the bursts at the cuts.

Before our result

[Bouillard, Boyer, Le Corronc 2018]

Sometimes, no fixed-point can be found!

[Andrews 2009]

There exist FIFO networks with cyclic dependencies and arbitrarily small load that are **unstable** (unbounded latencies).

^{- [}Andrews 2009] Matthew Andrews [July 2009]. "Instability of FIFO in the Permanent Sessions Model at Arbitrarily Small Network Loads". In: ACM Trans. Algorithms 5.3. DOI: 10.1145/1541885.1541894

Traffic Regulators Break Cyclic Dependencies and Remove Instability Issues

Traffic Regulators Break Cyclic Dependencies and Remove Instability Issues

TSN Asynchronous Traffic Shaping (ATS)

Place regulators only at few strategic places: Low-Cost Acyclic Network (LCAN)

Multi-path Topologies: Our Contributions

Contribution	Multipath topologies
End-to-end latency bounds	FP-TFA
Traffic regulators (PFRs and IRs)	LCAN

Ludovic Thomas, Jean-Yves Le Boudec, and Ahlem Mifdaoui [Dec. 2019]. "On Cyclic Dependencies and Regulators in Time-Sensitive Networks". In: 2019 IEEE Real-Time Systems Symposium (RTSS). DOI: 10.1109/RTSS46320.2019.00035

FP-TFA: Fixed-point total flow analysis LCAN: Low-cost acyclic network

Ph.D. defense, 2022-09-12

Redundancy Mechanisms

In TSN: Frame replication and elimination for redundancy [IEEE 802.1CB] (FRER) In DetNet: Packet replication and elimination functions [RFC 8655] (PREF)

^{- [}IEEE 802.1CB] "IEEE Standard for Local and Metropolitan Area Networks-Frame Replication and Elimination for Reliability" [Oct. 2017]. In: IEEE Std 802.1CB-2017. DOI: 10.1109/IEEESTD.2017.8091139

^{- [}RFC 8655] Norman Finn, Pascal Thubert, Balázs Varga, and János Farkas [2019]. "Deterministic Networking Architecture". In: RFC 8655, DOI: 10.17487/REC8655

PRF Packet Replication Function

PRF Packet Replication Function

PRF Packet Replication Function
PEF Packet Elimination Function

PRF Packet Replication Function
PEF Packet Elimination Function

PRF Packet Replication Function **PEF** Packet Elimination Function

PRF Packet Replication Function
PEF Packet Elimination Function

■ Output of PEF bursty, mis-ordered ⇒ Can we bound the burstiness and mis-ordering at the PEF's output?

- Output of PEF bursty, mis-ordered ⇒ Can we bound the burstiness and mis-ordering at the PEF's output?
- lacktriangle Output bursty \rightarrow leads to high delay in downstream \Rightarrow Place a traffic regulator after the PEF ?

Theorem: PEF Output Arrival Curve

Theorem: PEF Output Arrival Curve

• $\alpha_{f,PEF}$ in is an arrival curve at PEF out

Theorem: PEF Output Arrival Curve

• $\alpha_{f,PFF}$ in is an arrival curve at PEF out

• $\forall a$, diamond ancestor,

Theorem: PEF Output Arrival Curve

• $\alpha_{f,PEF}$ in is an arrival curve at PEF out

• $\forall a$, diamond ancestor,

Theorem: PEF Output Arrival Curve

• $\alpha_{f,PEF}$ in is an arrival curve at PEF out

Theorem: PEF Output Arrival Curve

• α_{f, PFFin} is an arrival curve at PEF^{out}

⇒ Combine:

The min-plus convolution of all above arrival curves is an arrival curve at PEFout.

Applying our Result to the Toy Example Provides a Tight Output Arrival Curve

Applying our Result to the Toy Example Provides a Tight Output Arrival Curve

Applying our Result to the Toy Example Provides a Tight Output Arrival Curve

 $\alpha_{f,\text{PEF}^{\text{in}}} = \gamma_{2r_0,4b_0}$

■ B is diamond ancestor

$$\alpha_f^{B \to \text{PEF}} = \left(\alpha_{f, a^{\text{out}}} \oslash \delta_{\left(D_{\text{max}}^{a \to \text{PEF}} - d_{\text{min}}^{a \to \text{PEF}}\right)}\right)$$
$$= \gamma_{r_0, b_0} \oslash \delta_7 = \gamma_{r_0, 8b_0}$$

Toy example:

Applying our Result to the Toy Example Provides a Tight Output Arrival Curve

■ B is diamond ancestor

$$\alpha_f^{B \to \text{PEF}} = \left(\alpha_{f,a^{\text{out}}} \oslash \delta_{\left(D_{\text{max}}^{a \to \text{PEF}} - d_{\text{min}}^{a \to \text{PEF}}\right)}\right)$$
$$= \gamma_{r_0,b_0} \oslash \delta_7 = \gamma_{r_0,8b_0}$$

Applying our Result to the Toy Example Provides a Tight Output Arrival Curve

- $\alpha_{f,PEF^{in}} = \gamma_{2r_0,4b_0}$
- B is diamond ancestor

$$\alpha_f^{B \to \text{PEF}} = \left(\alpha_{f, a^{\text{out}}} \oslash \delta_{\left(D_{\text{max}}^{a \to \text{PEF}} - d_{\text{min}}^{a \to \text{PEF}}\right)}\right)$$
$$= \gamma_{r_0, b_0} \oslash \delta_7 = \gamma_{r_0, 8b_0}$$

Toy example: | S | In | Packet | Replication | Function (PRF) | Packet | Perf(f) | Out | | $\gamma_{r_0,b_0} = \gamma_{1,1}$ | $\alpha_{f_0,\text{PEF}^{in}} = \gamma_{2r_0,4b_0}$

Question 1

Output of PEF bursty, mis-ordered \Rightarrow Can we bound the burstiness and mis-ordering at the PEF's output?

Question 1

Output of PEF bursty, mis-ordered ⇒ Can we bound the burstiness and mis-ordering at the PEF's output?

■ Yes! Using novel network-calculus results.

Question 1

Output of PEF bursty, mis-ordered ⇒ Can we bound the burstiness and mis-ordering at the PEF's output?

■ Yes! Using novel network-calculus results.

Question 2

Output bursty \rightarrow leads to high delay in downstream \Rightarrow Place a traffic regulator after the PEF ?

Redundancy Mechanisms: Our Contributions

Contribution	Multipath topologies	Redundancy mechanisms
Network-calculus		Network-calculus model
toolboxes		for redundancy mechanisms
End-to-end	FP-TFA	
latency bounds		
latericy bounds		
Traffic regulators	LCAN	IR Instability Result
	LCAN	IR Instability Result Bounded penalty with PFR.
Traffic regulators	LCAN	

Ludovic Thomas, Ahlem Mifdaoui, and Jean-Yves Le Boudec [2022]. "Worst-Case Delay Bounds in Time-Sensitive Networks With Packet Replication and Elimination". In: IEEE/ACM Transactions on Networking. DOI: 10.1109/TNET.2022.3180763

IR: Interleaved regulator (=TSN ATS)

Time Synchronization and Clock Non-Idealities

Easy Reconfiguration

> High Reliability

Time Synchronization

Discussions raised for TSN Asynchronous Traffic Shaping [IEEE 802.1Qcr]

^{- [}IEEE 802.1Qcr] "IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks - Amendment 34" [Nov. 2020]. "IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks - Amendment 34:Asynchronous Traffic Shaping". In: IEEE Std 802.1Qcr-2020 (Amendment to IEEE Std 802.1Qc2018 as amended by IEEE Std 802.1Qcr-2018, IEEE Std 802.1Qcv-2019, and IEEE Std 802.1Qcx-2020. DOI: 10.1109/IEEESTD.2020.9253013

Discussions raised for TSN Asynchronous Traffic Shaping [IEEE 802.1Qcr]

^{- [}IEEE 802.1Qcr] "IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks - Amendment 34" [Nov. 2020]. "IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks - Amendment 34:Asynchronous Traffic Shaping". In: IEEE Std 802.1Qcr-2020 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std 802.1Qcr-2018, IEEE Std 802.1Qcc-2018. IEEE Std 802.1Qcv-2019. and IEEE Std 802.1Qcx-2020). DOI: 10.1109/IEEESTD.2020.9253013

– [ITU G.810] ITU [1996]. "Definitions and Terminology for Synchronization Networks". In: ITU G.810 \mathcal{H}_{TAL} : international atomic time ("true time")

- [ITU G.810] ITU [1996]. "Definitions and Terminology for Synchronization Networks". In: ITU G.810

Non-synchronized model (ρ, η) :

$$\forall t, s$$

$$d_{i\leftarrow g}(t)-d_{i\leftarrow g}(s)\leq (t-s)
ho+\eta$$

Parameters

Clock-stability bound

η Time-jitter bound

- [ITU G.810] ITU [1996]. "Definitions and Terminology for Synchronization Networks". In: ITU G.810

 \mathcal{H}_{TAI} : international atomic time ("true time")

Parameters

 ρ Clock-stability bound

n Time-jitter bound

Non-synchronized model (ρ, η) :

$$orall t, s \quad rac{1}{
ho}(t-s-oldsymbol{\eta}) \leq d_{i\leftarrow g}(t) - d_{i\leftarrow g}(s) \leq (t-s)oldsymbol{
ho} + oldsymbol{\eta}$$

– [ITU G.810] ITU [1996]. "Definitions and Terminology for Synchronization Networks". In: ITU G.810

 \mathcal{H}_{TAI} : international atomic time ("true time")

Non-synchronized model (ho,η) : $\forall i,g$,

$$\forall t, s \quad \frac{1}{\rho}(t-s-\eta) \leq d_{i\leftarrow g}(t) - d_{i\leftarrow g}(s) \leq (t-s)\rho + \eta$$

Parameters

Clock-stability boundTime-jitter bound

In TSN [IEEE 802.1AS]

 $\rho = 1 + 200 \mathrm{ppm}$

 $\eta = 4$ ns

- [ITU G.810] ITU [1996]. "Definitions and Terminology for Synchronization Networks". In: ITU G.810

 \mathcal{H}_{TAI} : international atomic time ("true time")

Synchronized model (ρ, η) : $\forall i, g$,

$$egin{aligned} orall t,s & rac{1}{
ho}(t-s-oldsymbol{\eta}) \leq d_{i\leftarrow g}(t) - d_{i\leftarrow g}(s) \leq (t-s)oldsymbol{
ho} + oldsymbol{\eta} \ orall t, & |d_{i\leftarrow g}(t)-t| \leq oldsymbol{\Delta} \end{aligned}$$

Parameters

ρ Clock-stability bound

 η Time-jitter bound

△ Synchronization precision

In TSN [IEEE 802.1AS]

 $ho = 1 + 200 \mathrm{ppm}$

 $\eta = {\tt 4ns}$

 $\Delta=1\mu$ s

- [IEEE 802.1AS] "IEEE Standard for Local and Metropolitan Area Networks-Timing and Synchronization for Time-Sensitive Applications" [June 2020]. In: IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011). DOI: 10.1109/IEEESTD.2020.9121845

Proposition [Changing clock for a duration]

$$\max\left(0, \frac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \min\left(\boldsymbol{\rho}\chi^{\mathcal{H}_i} + \boldsymbol{\eta}, \chi^{\mathcal{H}_i} + 2\Delta\right)$$

Proposition [Changing clock for a duration]

$$\max\left(0,\frac{\chi^{\mathcal{H}_i}-\eta}{\rho},\chi^{\mathcal{H}_i}-2\Delta\right)\leq \chi^{\mathcal{H}_g}\leq \min\left(\rho\chi^{\mathcal{H}_i}+\eta,\chi^{\mathcal{H}_i}+2\Delta\right)$$

Proposition [Changing clock for a duration]

$$\max\left(0, \frac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \min\left(\boldsymbol{\rho}\chi^{\mathcal{H}_i} + \boldsymbol{\eta}, \chi^{\mathcal{H}_i} + 2\Delta\right)$$

Proposition [Changing clock for a duration]

$$\mathsf{max}\left(0, \tfrac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \mathsf{min}\left(\textcolor{red}{\rho} \chi^{\mathcal{H}_i} + \boldsymbol{\eta}, \chi^{\mathcal{H}_i} + 2\Delta\right)$$

Proposition [Changing clock for a duration]

$$\max\left(0, \frac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \min\left(\boldsymbol{\rho}\chi^{\mathcal{H}_i} + \boldsymbol{\eta}, \chi^{\mathcal{H}_i} + 2\boldsymbol{\Delta}\right)$$

Proposition [Changing clock for a duration]

$$\max\left(0, \frac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \min\left(\frac{\rho}{\rho} \chi^{\mathcal{H}_i} + \frac{\boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} + 2\frac{\Delta}{\rho} \right)$$

 $\Delta \triangleq +\infty$ if non-synchronized

Proposition [Changing clock for an arrival curve]

$$\alpha_f^{\mathcal{H}_g}: t \mapsto \alpha_f^{\mathcal{H}_i} \left(\min \left[\rho t + \eta, t + 2 \Delta \right] \right)$$

Proposition [Changing clock for a duration]

$$\mathsf{max}\left(0, \tfrac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \mathsf{min}\left(\rho \chi^{\mathcal{H}_i} + \boldsymbol{\eta}, \chi^{\mathcal{H}_i} + 2\Delta\right)$$

 $\Delta \triangleq +\infty$ if non-synchronized

Proposition [Changing clock for an arrival curve]

$$\alpha_f^{\mathcal{H}_g}: t \mapsto \alpha_f^{\mathcal{H}_i} \left(\min \left[\rho t + \eta, t + 2 \Delta \right] \right)$$

Regulators and Non-Synchronized Clocks: Unbounded Latencies

 \mathcal{H}_{TAI} : international atomic time ("true time")

Regulators and Non-Synchronized Clocks: Unbounded Latencies

Non-synchronized model: ρ, η

Combination of Traffic Regulators with a Time-Synchronization Protocol

Synchronized model: ρ, η, Δ

Combination of Traffic Regulators with a Time-Synchronization Protocol

Synchronized model: ρ, η, Δ

 \mathcal{H}_{TAI} : international atomic time ("true time")

Combination of Traffic Regulators with a Time-Synchronization Protocol

Synchronized model: ρ, η, Δ

 \mathcal{H}_{TAI} : international atomic time ("true time")

^{- [}Aguirre Rodrigo 2020] Guillermo Aguirre Rodrigo [2020]. Simulation of Instability in Time-Sensitive Networks with Regulators and Imperfect Clocks. EPFL/LCA2

^{- [}Aguirre Rodrigo 2020] Guillermo Aguirre Rodrigo [2020]. Simulation of Instability in Time-Sensitive Networks with Regulators and Imperfect Clocks. EPFL/LCA2

^{- [}Aguirre Rodrigo 2020] Guillermo Aguirre Rodrigo [2020]. Simulation of Instability in Time-Sensitive Networks with Regulators and Imperfect Clocks. EPFL/LCA2

Time Synchronization: Our Contributions

Contribution	Multipath topologies	Redundancy mechanisms	Time Synchronization
Network-calculus		Network-calculus model	Network-calculus model for non-
toolboxes		for redundancy mechanisms	ideal clocks (sync/non-sync).
End-to-end	FP-TFA		Two end-to-end strategies
latency bounds			
Traffic regulators	L CAN IR Insta		ability Results
(PFRs and IRs)	LCAN	Bounded penalty with PFR.	Bounded penalty with sync PFR.
		Solution: POF	Solutions: ADAM and
		(Packet Ordering Function)	rate-and-burst cascade

Ludovic Thomas and Jean-Yves Le Boudec [June 9, 2020]. "On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks". In: *Proceedings of the ACM on Measurement and Analysis of Computing Systems* 4.2. DOI: 10.1145/3392145

PFR: Per-flow regulator

Experimental modular TFA, a Tool for End-to-end Latency Bounds

Contribution	Multipath topologies	Redundancy mechanisms	Time Synchronization
Network-calculus		Network-calculus model	Network-calculus model for non-
toolboxes		for redundancy mechanisms	ideal clocks (sync/non-sync).
End-to-end	FP-TFA		Two end-to-end strategies
latency bounds			
Traffic regulators	IR Insta		ability Results
Traffic regulators	LCAN	iii iiiste	ibility iteaulta
(PFRs and IRs)	LCAN	Bounded penalty with PFR.	Bounded penalty with sync PFR.
0	LCAN		
0	LCAN	Bounded penalty with PFR.	Bounded penalty with sync PFR.

Ph.D. defense, 2022-09-12

Application to an Industrial Use-Case

Contribution	Multipath topologies	Redundancy mechanisms	Time Synchronization
Network-calculus		Network-calculus model	Network-calculus model for non-
toolboxes		for redundancy mechanisms	ideal clocks (sync/non-sync).
End-to-end latency bounds	FP-TFA		Two end-to-end strategies
Traffic regulators	LCAN	IR Insta	ability Results
(PFRs and IRs)	LCAN	Bounded penalty with PFR.	Bounded penalty with sync PFR.
		Solution: POF	Solutions: ADAM and
		(Packet Ordering Function)	rate-and-burst cascade
Tools	experimental modular TFA (xTFA)		
Application	Validation on an industrial use-case		

PFR: Per-flow regulator

Use-Case: A Multi-path Topology

Based on the Volvo Core TSN Network

Nicolas Navet, Hoai Hoang Bengtsson, and Jörn Migge [Feb. 12, 2020]. "Early-Stage Bottleneck Identification and Removal in TSN Networks".

Use-Case: A Multi-path Topology

Based on the Volvo Core TSN Network

Nicolas Navet, Hoai Hoang Bengtsson, and Jörn Migge [Feb. 12, 2020]. "Early-Stage Bottleneck Identification and Removal in TSN Networks".

Profile	Payload size	Period at source
S	64B	$81 \mu s$
M1	92B	324μ s
M2	121B	$567\mu s$
В	150B	810μ s

Use-Case: A Multi-path Topology

Based on the Volvo Core TSN Network

Nicolas Navet, Hoai Hoang Bengtsson, and Jörn Migge [Feb. 12, 2020]. "Early-Stage Bottleneck Identification and Removal in TSN Networks".

Profile	Payload size	Period at source
S	64B	81μ s
M1	92B	324μ s
M2	121B	567μ s
В	150B	810μ s

Use-Case: A Multi-path Topology with Redundancy Mechanisms

60

Use-Case: Multi-path Topology with Redundancy Mechanisms and Time-Synchronization

Tightly-synchronized $\Delta=1\mu$ s

Use-Case: Multi-path Topology with Redundancy Mechanisms and Time-Synchronization

Take-away

- Our model provides better latency bounds than those that assume redundancy only at end-systems.
- Clock non-idealities can be neglected in tightly synchronized networks that contain no regulator.

Take-away

- Redundancy and clock non-idealities cannot be neglected when configuring IR / TSN ATS.
- If properly configured, TSN ATS reduce latency bounds when combined with redundancy mechanisms.

Summary of our contributions

Contribution	Multipath topologies	Redundancy mechanisms	Time-Synchronization	
Network-calculus		Network-calculus model	Nework-calculus model for non-	
toolboxes		for redundancy mechanisms	ideal clocks (sync/non-sync).	
End-to-end latency bounds		FP-TFA	Two end-to-end strategies	
Traffic regulators	LCAN		tability Results	
(PFRs and IRs)	LCAN	Bounded penalty with PFR. Solution: Reordering	Bounded penalty with sync PFR. Solutions: ADAM and rate-and-burst cascade	
Tools	experimental modular TFA (xTFA)			
10015			ns-3 module	
	Validation on an industrial use-case			

FP-TFA: Fixed-point total flow analysis LCAN: Low-cost acyclic network

PFR: Per-flow regulator IR: Interleaved regulator (=TSN ATS)

Perspectives

Implement the model of redundancy mechanisms and non-ideal clocks in other compositional approaches

- Non-ideal clocks:
 - Service-curve-oriented approaches (SFA, PMOO) can benefit from the service-curve result.
 - Linear-constraints-oriented approaches can write the time models as linear constraints.
- Redundancy mechanisms: Results for service curves are missing!

SFA: Separated Flow Analysis

TSN ATS: TSN Asynchronous Traffic Shaping

Perspectives

Implement the model of redundancy mechanisms and non-ideal clocks in other compositional approaches

- Non-ideal clocks:
 - Service-curve-oriented approaches (SFA, PMOO) can benefit from the service-curve result.
 - Linear-constraints-oriented approaches can write the time models as linear constraints.
- Redundancy mechanisms: Results for service curves are missing!

The Quest for a Service Curve for TSN ATS

Does TSN ATS have a network calculus service-curve model?

⇒ Probably not (instability is too easy to achieve)

SFA: Separated Flow Analysis

TSN ATS: TSN Asynchronous Traffic Shaping

List of Publications

- Ludovic Thomas, Jean-Yves Le Boudec, and Ahlem Mifdaoui [Dec. 2019]. "On Cyclic Dependencies and Regulators in Time-Sensitive Networks". In: 2019 IEEE Real-Time Systems Symposium (RTSS). DOI: 10.1109/RTSS46320.2019.00035
- Ludovic Thomas and Jean-Yves Le Boudec [June 9, 2020]. "On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks". In: *Proceedings of the ACM on Measurement and Analysis of Computing Systems* 4.2. DOI: 10.1145/3392145
- Ludovic Thomas, Ahlem Mifdaoui, and Jean-Yves Le Boudec [2022]. "Worst-Case Delay Bounds in Time-Sensitive Networks With Packet Replication and Elimination". In: IEEE/ACM Transactions on Networking. DOI: 10.1109/TNET.2022.3180763

Bibliography I

- [Aguirre Rodrigo 2020] Aguirre Rodrigo, Guillermo (2020). Simulation of Instability in Time-Sensitive Networks with Regulators and Imperfect Clocks. EPFL/LCA2. 80 pp. URL:
 - https://infoscience.epfl.ch/record/294616.
- [Andrews 2009] Andrews, Matthew (July 2009). "Instability of FIFO in the Permanent Sessions Model at Arbitrarily Small Network Loads". In: ACM Trans. Algorithms 5.3, 33:1–33:29. ISSN: 1549-6325. DOI: 10.1145/1541885.1541894. URL:
- http://doi.acm.org/10.1145/1541885.1541894 (visited on 04/10/2019).

 [Bouillard, Boyer, Le Corronc 2018] Bouillard, Anne, Marc Boyer, and Euriell Le Corronc (2018). Deterministic
 - Network Calculus: From Theory to Practical Implementation. Networks and Telecommunications. Wiley. ISBN: 978-1-84821-852-9. URL:
 - http://doi.org/10.1002/9781119440284.
- [Finn, et al. 2019] Finn, Norman et al. (2019). "Deterministic Networking Architecture". In: RFC 8655. ISSN: 2070-1721. DOI: 10.17487/RFC8655. URL: https://www.rfc-editor.org/info/rfc8655 (visited on 06/07/2021).
- [Le Boudec, Thiran 2001] Le Boudec, Jean-Yves and Patrick Thiran (2001). Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Lecture Notes in Computer Science, Lect.Notes Computer. Tutorial. Berlin Heidelberg: Springer-Verlag. ISBN: 978-3-540-42184-9. URL: https://www.springer.com/us/book/9783540421849 (visited on 02/04/2019).

Bibliography II

- [Mifdaoui, Leydier 2017] Mifdaoui, Ahlem and Thierry Leydier (Dec. 2017). "Beyond the Accuracy-Complexity Tradeoffs of Compositional Analyses Using Network Calculus for Complex Networks". In: 10th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (Co-Located with RTSS 2017). Paris, France, pp. 1–8. URL: https://hal.archives-ouvertes.fr/hal-01690096 (visited on 04/12/2019).
- [Mohammadpour, Stai, Le Boudec 2019] Mohammadpour, E., E. Stai, and J.-Y. Le Boudec (2019). "Improved Delay Bound for a Service Curve Element with Known Transmission Rate". In: IEEE Networking Letters, pp. 1–1. DOI: 10.1109/LNET.2019.2927143. URL: http://doi.org/10.1109/LNET.2019.2927143.
- "IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks Amendment 34" (Nov. 2020). "IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks Amendment 34:Asynchronous Traffic Shaping". In: IEEE Std 802.1Qcr-2020 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std 802.1Qcp-2018, IEEE Std 802.1Qcc-2018, IEEE Std 802.1Qcy-2019, and IEEE Std 802.1Qcx-2020), pp. 1–151. DOI: 10.1109/IEEESTD.2020.9253013.

Bibliography III

- [IEEE 802.1CB] "IEEE Standard for Local and Metropolitan Area Networks–Frame Replication and Elimination for Reliability" (Oct. 2017). In: IEEE Std 802.1CB-2017, pp. 1–102. DOI: 10.1109/IEEESTD.2017.8091139.
- [IEEE 802.1AS] "IEEE Standard for Local and Metropolitan Area Networks—Timing and Synchronization for Time-Sensitive Applications" (June 2020). In: IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421. DOI: 10.1109/IEEESTD.2020.9121845.
 - [ITU G.810] ITU (1996). "Definitions and Terminology for Synchronization Networks". In: ITU G.810. URL: https://www.itu.int/rec/T-REC-G.810-199608-I/en (visited on 10/14/2019).
 - [RFC 793] Transmission Control Protocol (Sept. 1981). RFC 793. DOI: 10.17487/RFC0793. URL: https://rfc-editor.org/rfc/rfc793.txt.

Computing End-to-end Latency Bounds in the True Time with TFA

End-To-End Latency Bounds

If f is alone:

Theorem (Concatenation)

Also known as Pay Burst Only Once (PBOO)

 \otimes : min-plus convolution. $(\mathfrak{f} \otimes \mathfrak{g}) : t \mapsto \inf_{0 \leq s \leq t} \{\mathfrak{f}(t-s) + \mathfrak{g}(s)\}$

The Always In TAI Strategy

Figure: Illustration of the strategy "always in \mathcal{H}_{TAI} " for the example

The Always In Local Time

Figure: End-to-end latency bounds as a function of the path length, obtained either with the "always in TAI" strategy or with the "always in local time strategy", in synchronized and non-synchronized networks.

Proposition [Changing clock for a duration]

$$\max\left(0, \frac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \min\left(\boldsymbol{\rho}\chi^{\mathcal{H}_i} + \boldsymbol{\eta}, \chi^{\mathcal{H}_i} + 2\Delta\right)$$

Proposition [Changing clock for a duration]

$$\mathsf{max}\left(0, \tfrac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \mathsf{min}\left(\textcolor{red}{\rho} \chi^{\mathcal{H}_i} + \textcolor{red}{\boldsymbol{\eta}}, \chi^{\mathcal{H}_i} + 2\textcolor{red}{\Delta}\right)$$

Proposition [Changing clock for a duration]

$$\max\left(0,\frac{\chi^{\mathcal{H}_i}-\eta}{\rho},\chi^{\mathcal{H}_i}-2\Delta\right)\leq \chi^{\mathcal{H}_g}\leq \min\left(\rho\chi^{\mathcal{H}_i}+\eta,\chi^{\mathcal{H}_i}+2\Delta\right)$$

Proposition [Changing clock for a duration]

$$\mathsf{max}\left(0, \tfrac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \mathsf{min}\left(\textcolor{red}{\rho} \chi^{\mathcal{H}_i} + \boldsymbol{\eta}, \chi^{\mathcal{H}_i} + 2\Delta\right)$$

Proposition [Changing clock for a duration]

$$\max\left(0, \frac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \min\left(\frac{\rho}{\rho} \chi^{\mathcal{H}_i} + \frac{\boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} + 2\Delta\right)$$

Proposition [Changing clock for a duration]

$$\mathsf{max}\left(0, \tfrac{\chi^{\mathcal{H}_i} - \boldsymbol{\eta}}{\rho}, \chi^{\mathcal{H}_i} - 2\Delta\right) \leq \chi^{\mathcal{H}_g} \leq \mathsf{min}\left(\boldsymbol{\rho}\chi^{\mathcal{H}_i} + \boldsymbol{\eta}, \chi^{\mathcal{H}_i} + 2\Delta\right)$$

 $\Delta \triangleq +\infty$ if non-synchronized

Proposition [Changing clock for an arrival curve]

$$\alpha_f^{\mathcal{H}_g}: t \mapsto \alpha_f^{\mathcal{H}_i} \left(\min \left[\rho t + \eta, t + 2 \Delta \right] \right)$$

Proposition [Changing clock for a duration]

$$\max\left(0,\frac{\chi^{\mathcal{H}_i}-\eta}{\rho},\chi^{\mathcal{H}_i}-2\Delta\right)\leq \chi^{\mathcal{H}_g}\leq \min\left(\textcolor{red}{\rho}\chi^{\mathcal{H}_i}+\textcolor{red}{\eta},\chi^{\mathcal{H}_i}+2\textcolor{red}{\Delta}\right)$$

 $\Delta \triangleq +\infty$ if non-synchronized

Proposition [Changing clock for an arrival curve]

$$\alpha_f^{\mathcal{H}_g}: t \mapsto \alpha_f^{\mathcal{H}_i} \left(\min \left[\rho t + \eta, t + 2 \Delta \right] \right)$$

