Let's go cisco live! #CiscoLive

Inspect and Optimize the Performance of Ansible Playbooks

Weigang Huang, Pablo Bonilla Senior Software Architect DEVNET-2104

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#DEVNET-2104

- Introduction
- About CNC
- Best practices of tuning Ansible performance
- Playbook Inspection and Optimization
- Demo
- Summary

Introduction

Focus of the Session

- This session is **not** to:
 - Teach Ansible basics
 - Teach CNC basics

Focus of the Session

- This session is **not** to:
 - Teach Ansible basics
 - Teach CNC basics

So, what is this session about?

- Improve playbook performance by using:
 - Callbacks
 - Plugins
 - Ansible facts
 - Code Adjustments

About Crosswork Network Controller (CNC)

Crosswork Network Controller - Topology

Crosswork Network Controller - Devices

Crosswork Network Controller - Collection Jobs

The Requested Report...

hostname	ip	device_uuid	ssh	snmp_poll	syslog_col	gnmi_kafka	unique_snm pv3_engine _id	Gps_conf	passed_all	cdg_vip	software
Node-5	198.19.1.5	d6378d9b	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198.18.1.220	7.7.1
Node-3	198.19.1.3	f288da6e	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198.18.1.220	7.7.1
Node-4	198.19.1.4	1f52da5d	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198.18.1.220	7.7.1
Node-1	198.19.1.1	933a5b8b	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198.18.1.220	7.7.1
Node-2	198.19.1.2	064939ea	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198.18.1.220	17.6.1a
Node-7	198.19.1.7	9cc8a130	Yes	Yes	Yes	Yes	Yes	Yes	Yes	198.18.1.220	7.7.1
Node-8	198.19.1.8	75cf1a0f	Yes	Yes	No	Yes	Yes	Yes	No	198.18.1.220	7.7.1
Node-1001	10.0.0.1	38b77ebd	No	No	No	Yes	Yes	Yes	No	198.18.1.220	na
Node-1002	10.0.0.2	539078d2	No	No	No	Yes	Yes	Yes	No	198.18.1.220	na
Node-1003	10.0.0.3	46267a63	No	No	No	Yes	Yes	Yes	No	198.18.1.220	na

Best practices of tuning Ansible performance

Best practices of tuning Ansible performance

Time Consumption

 Use callback plugins for task time detection

Resource Utilization

 Use callback plugins for mem/CPU detection

Playbook Design

- Modular approach
- Use modules, variables, roles, inventory
- Use templates, tags

Ansible Settings

- Disable fact gathering
- Use execution strategies (Linear/Free)
- Use async tasks

Connectivity

- Configure parallelism(Forks)
- Configure SSH optimization (Timers/Sessions/Mitogen)
- Disable SSH host key check

Playbook Inspection and Optimization

Time Analysis

Callback	Description	Enablement	
ANSIBLE.POSIX. TIMER	Adds total play duration to the play stats.	In: ansible.cfg	
ANSIBLE.POSIX. PROFILE_ROLES	Adds timing information to roles.	Add: callback_whitelist= timer, profile_roles,	
ANSIBLE.POSIX. PROFILE_TASKS	Ansible callback plugin for timing individual tasks and overall execution time.	profile_tasks	

Time Analysis Example

TIMER

Playbook run took 0 days, 0 hours, 2 minutes, 39 seconds

PROFILE_ROLES

 Monday 22 May 2023 14:32:13 -0400 (0:00:00.340)
 0:02:39.106

 CONNECTIVITY-CHECK
 154.75s

 GET_CROSSWORK_AUTHENTICATION
 1.60s

total 159.08s

PROFILE_TASKS

CONNECTIVITY-CHECK: Create a dictionary with device UUID and SNMPv3 engineID

CONNECTIVITY-CHECK: Create device_connectivity_full_list in CSV format

1.52s

CONNECTIVITY-CHECK: Invoke collection job 1 status (one API call)

0.78s

cisco Live!

Resource Analysis

Callback	Description	Enablement	
COMMUNITY.GENERAL. CGROUP_MEMORY_RECAP	This is an Ansible callback plugin that profiles maximum memory usage of Ansible and individual tasks and displays a recap at the end using cgroups.	 Install cgroup-tools In: ansible.cfg Add: callback_whitelist = cgroup_memory_recap, 	
ANSIBLE.POSIX. CGROUP_PERF_RECAP	This is an Ansible callback plugin that utilizes cgroups to profile system activity of Ansible and individual tasks and display a recap at the end of the playbook execution.	cgroup_perf_recap 3. Add the user to cgroup 4. Run the playbook using the cgroup	

Resource Analysis Example

CGROUP_MEMORY_RECAP

Execution Maximum: 1149.34MB

Gathering Facts (0000000002e): 110.86MB

CONNECTIVITY - CHECK: Invoke API to obtain device UUID from CW (0000000000e): 411.53MB

CONNECTIVITY-CHECK: Create a dictionary with UUIDs and SNMPv3 engineID (00000000000): 1149.34MB

ONNECTIVITY-CHECK: Invoke collection job 1 status (one API call) (00000000013): 326.39MB

CONNECTIVITY-CHECK: Create device_connectivity_full_list in CSV format (00000000022): 447.68MB

...

Resource Analysis Example

CGROUP_PERF_RECAP cpu Execution Maximum: 129.24% pids Execution Maximum: 20.00 cpu: Gathering Facts (00000000002e): 109.07% CONNECTIVITY-CHECK: Invoke API to obtain device UUID from CW (00000000000): 108.67% CONNECTIVITY-CHECK: Create a dictionary with UUIDs and SNMPv3 engineID (00000000000): 129.24% CONNECTIVITY-CHECK: Invoke collection job 1 status (one API call) (00000000013): 106.48% CONNECTIVITY-CHECK: Create device connectivity full list in CSV format (00000000022): 113.79% pids: Gathering Facts (00000000002e): 12.00 CONNECTIVITY-CHECK: Invoke API to obtain device UUID from to CW (00000000000): 11.00 CONNECTIVITY-CHECK: Create a dictionary UUIDs and SNMPv3 engineID (00000000000f): 9.00 CONNECTIVITY-CHECK: Invoke collection job 1 status (one API call) (00000000013): 11.00 CONNECTIVITY-CHECK: Create device_connectivity_full_list in CSV format (00000000022): 20.00

The Requested Report... Playbook Inspection

Resource Analysis Example

Time Consumption

- The full playbook was taking 30 min to complete
- Tasks creating a custom list of dictionaries was consuming 68% (≈ 20min)

^{*}Values were taken on an m5.2xlarge EC2 Instance

The Requested Report... Playbook Inspection

Resource Analysis Example

Time Consumption	Resource Utilization
 The full playbook was taking 30 min to complete Tasks creating a custom list of dictionaries was consuming 68% (≈ 20min) 	 The playbook caused memory exhaustion. Tasks creating custom dictionary list using 92% of total memory.

^{*}Values were taken on an m5.2xlarge EC2 Instance

The Requested Report... Playbook Optimization

Design Analysis

Playbook Design

Problem

- Inefficient data filtering in creating dictionary list:
 - Using Traditional loop control

The Requested Report... Playbook Optimization

Design Analysis

Playbook Design Problem Solution Refactor the tasks functions: Inefficient data filtering in creating dictionary list: Use of ison_query (JMESPath Query) Using Traditional loop control Pre-filter data before analyzing

The Requested Report... Playbook Optimization

Design Example

Playbook Design Initial **Optimized** - name: create a dictionary with device UUID and SNMPv3 engineID - name: create a dictionary with device UUID and SNMPv3 engineID set fact: set fact: device_snmp_engineID: "{{ device_snmp_engineID | default([]) | device_snmp_enginelD: "{{ device_snmp_enginelD | default({}) | combine ({ item.0.uuid : item.1.snmpv3_engine_id }) }}" combine({ item.uuid: item.connectivity_info[].snmpv3_engine_id }) }}" loop: "{{ getDeviceUUIDOutputFULL.json.data | json_query('[? port loop_control: == `161` && connectivity info[? snmpv3 engine id]].{uuid: uuid, label: "{{item.0.host_name}}" connectivity info: connectivity info}') }}" when: (device_list_length | int == 0 or loop_control: item.0.host_name.split('.')[0] in device_list | map('trim')) and item.1.port == 161 and item.1.snmpv3_engine_id is defined label: "{{ item.connectivity_info | map(attribute='host_name') | first }}" with_subelements: when: device list length | int == 0 or - "{{getDeviceUUIDOutputFULL.json.data}}"

- connectivity_info

map('trim')

item.connectivity_info[0].host_name.split('.')[0] in device_list |

The Requested Report... Playbook Inspection

Resource Analysis After Optimization

Time Consumption

• The playbook is taking <10 min to complete

^{*}Values were taken on an m5.2xlarge EC2 Instance

The Requested Report... Playbook Inspection

Resource Analysis After Optimization

Time Consumption	Resource Utilization
The playbook is taking <10 min to complete	The playbook is using < 8GB of memory to complete

^{*}Values were taken on an m5.2xlarge EC2 Instance

Demo

Summary

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

How:

- 1 Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- 4 Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive

Demo Backup

Original Playbook

PLAY RECAP localhost: ok=24 changed=8 unreachable=0 failed=0 skipped=3 rescued=0 ignored=0 Playbook run took 0 days, 0 hours, 2 minutes, 56 seconds <OMITTED> CONNECTIVITY-CHECK: Invoke nodes guery API to obtain device UUID for devices that are onboarded to CW ------ 46.71s <OMITTED> Thursday 25 May 2023 18:04:25 -0400 (0:00:00.311) 0:02:56.540 CONNECTIVITY-CHECK ----- 173.89s GET CROSSWORK AUTHENTICATION ------ 1 92s <OMITTED> total ------ 176.52s CGROUP PERF RECAP Memory Execution Maximum: 1584.15MB cpu Execution Maximum: 187.41% pids Execution Maximum: 25.00 memory: CONNECTIVITY-CHECK: Create a dictionary with device UUID and SNMPv3 engineID (a306de6e-b67a-951f-8724-000000000000f): 1584.15MB <OMITTED> cpu: CONNECTIVITY-CHECK: Create a dictionary with device UUID and SNMPv3 engineID (a306de6e-b67a-951f-8724-00000000000f): 187.41% <OMITTED> pids: GET CROSSWORK AUTHENTICATION: Get.ticket.step1 (a306de6e-b67a-951f-8724-000000000000ad): 25.00 <OMITTED> CGROUP MEMORY RECAP Execution Maximum: 1584.15MB <OMITTED> CONNECTIVITY-CHECK: Create a dictionary with device UUID and SNMPv3 engineID (a306de6e-b67a-951f-8724-000000000000f): 1584.15MB

Optimized Playbook

PLAY RECAP

localhost: ok=38 changed=3 unreachable=0 failed=0 skipped=3 rescued=0 ignored=0

Playbook run took 0 days, 0 hours, 0 minutes, 52 seconds

<OMITTED>

Thursday 25 May 2023 18:07:58 -0400 (0:00:00.641) 0:00:52.889 *********

CONNECTIVITY-CHECK ------ 50.06s GET_CROSSWORK_AUTHENTICATION ----- 2.08s <OMITTED>

total ----- 52.87s

CGROUP PERF RECAP

Memory Execution Maximum: 857.13MB cpu Execution Maximum: 121.70% pids Execution Maximum: 32.00

memory:

CONNECTIVITY-CHECK: Generate device connectivity in CSV format for ansible version >=2.10.0 (a306de6e-b67a-e9b3-8a93-00000000002e): 857.13MB < OMITTED>

cpu:

CONNECTIVITY-CHECK: Invoke nodes guery API to obtain device UUID for devices that are onboarded to CW (a306de6e-b67a-e9b3-8a93-00000000000f): 121.70%

<OMITTED>

pids:

CONNECTIVITY-CHECK: Invoke collection job 2 status (one API call) (a306de6e-b67a-e9b3-8a93-00000000001c): 32.00

<OMITTED>

CGROUP MEMORY RECAP Execution Maximum: 857.13MB

<OMITTED>

CONNECTIVITY-CHECK: Generate device connectivity in CSV format for ansible version >= 2.10.0 (a306de6e-b67a-e9b3-8a93-000000000002e): 857.13MB

•••

Backup Slides

Crosswork Network Controller - Solution Overview

Service Provisioning (L2VPN & L3VPN)

Service-Oriented Transport Provisioning (Segment Routing & RSVP-TE)

Bandwidth Optimization (Local Congestion Mitigation)

Real-time Network Optimization

Topology & Inventory

Performance monitoring & closed loop

Network Maintenance

Initial Setup - Secure ZTP (Day-0)

