

SHANGHAI JIAO TONG UNIVERSITY

大规模工程计算 -流体力学并行计算

印子斐

长聘教轨副教授

上海交通大学航空航天学院

01 计算流体力学简介

02 低速流动数值算法

03 MPI并行计算开发

04 计算流体力学实践

(相关内容见: AE9601 航空航天高性能计算; MS3406 粘性流体力学; AE2702 计算方法)

PART 01 计算流体力学简介

11

什么是计算流体力学 (CFD)

Colorful Fluids Dynamics?

Computational Fluids Dynamics

计算流体力学有什么用?

数值模拟是我们研究物理本质、解决工程问题的有力工具

▶ 计算流体力学的重要组成部分:

➤ 基本公式: Navier-Stokes 方程, 滤波或时间平均后的Navier-Stokes方程

▶ 数值离散: 偏微分方程的数值解

> 计算机科学: 高性能计算

可压缩流动Navier-Stokes方程

$$\frac{\partial}{\partial x_{i}}(\rho U_{i}) = 0$$

$$\left\{ \frac{\partial \rho U_{i}}{\partial t} + \frac{\partial}{\partial x_{j}}(\rho U_{j}U_{i}) = -\frac{\partial P}{\partial x_{i}} + \frac{\partial}{\partial x_{j}}(\mu \frac{\partial U_{i}}{\partial x_{j}}) \right.$$

$$\frac{\partial \rho E}{\partial t} + \frac{\partial}{\partial x_{j}}(\rho U_{j}E) + \frac{\partial}{\partial x_{j}}(U_{j}p) = -\frac{\partial q_{j}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}}(\tau_{ij}\frac{\partial U_{i}}{\partial x_{j}})$$

不可压缩流动的Navier-Stokes方程

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\left\{ \frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + v \frac{\partial^2 U_i}{\partial x_j \partial x_j} \right\}$$

实际工程计算求解的控制方程 ≠ NS方程

流体力学控制方程

工程上常用的是雷诺时均N-S方程,和大涡模拟(滤波NS方程)

➤ Spalart预计: 2080年超级计算机可以直接求解NS方程

> 工程设计一般关心流动的统计结果(计算量依然很大)

本质上工程求解的控制方程都是不准确的

"Essentially, all models are wrong,

but some are useful"

Your model has to be wrong...

... but that's o.k. if it's illuminating!

George E.P. Box

PART 02

低速流动的数值算法

(相关数值算法以开源软件OpenFOAM为例说明)

不可压缩流动的Navier-Stokes方程

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\left\{ \frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + v \frac{\partial^2 U_i}{\partial x_j \partial x_j} \right\}$$

常见的离散格式

常见的离散手段

o o o o o o Liquid phase (water)

浸没边界

0 0 0 0 0 0

非结构网格

混合网格

非结构网格的有限体积法的实现原理

有限体积法基本原理

▶ 高斯定理: 任意体积分转化为封闭曲面积分

$$\int_{V}
abla\cdot\mathbf{F}dV=igspace\int_{S}\mathbf{n}\cdot\mathbf{F}dS$$

其中, F为任意矢量, V是空间体积, S是空间 V的表面, n为 dS的单位法向量 标量场的梯度:

对任意标量场T, 计算梯度∇T

$$\int_{V} \nabla \cdot (\mathbf{c}T) dV = \oint_{S} \mathbf{n} \cdot (\mathbf{c}T) dS = \mathbf{c} \cdot \oint_{S} \mathbf{n}T dS$$

$$\int_{V} \nabla \cdot (\mathbf{c}T) dV = \int_{V} \mathbf{c} \cdot \nabla T dV$$

$$\rightarrow \int_{V} \mathbf{c} \cdot \nabla T dV = \mathbf{c} \cdot \int_{V} \nabla T dV$$

$$\rightarrow \int_{V} \mathbf{c} \cdot \nabla T dV = \mathbf{c} \cdot \int_{V} \nabla T dV$$

得到标量梯度计算公式

$$\int_{V}
abla TdV=iggledown_{S}\mathbf{n}TdS=iggredown_{S}d\mathbf{S}T$$

非结构网格的有限体积法的实现原理

有限体积法基本原理

> 矢量场的梯度:

对任意矢量场U, 计算梯度VU (或V⊗U, ⊗为张量积符号)

$$a \otimes b \equiv a \cdot b^T$$

于是 ∇⊗U可以表示为

$$\nabla \otimes U = \nabla \cdot U^{\mathsf{T}} = (\nabla U_1; \nabla U_2; \nabla U_3)$$

对其积分. 可得

$$\int_V
abla \otimes \mathbf{U} dV = \int_V (
abla U_1;
abla U_2;
abla U_3) dV = igg f_S (\mathbf{n} U_1; \mathbf{n} U_2; \mathbf{n} U_3) dS = igg f_S \mathbf{n} \otimes \mathbf{U} dS$$

化简后得到

$$\int_{V}
abla\otimes \mathbf{U}dV=igsplace _{S}\mathbf{n}\otimes \mathbf{U}dS=igsplace _{S}d\mathbf{S}\otimes \mathbf{U}$$

> 对于有限体积法的控制体,如何进一步计算梯度在体心 (P) 的值?

非结构网格的有限体积法的实现原理

有限体积法体心梯度的离散计算方法

> 首先计算体心位置:

$$\int_V (\mathbf{x} - \mathbf{x}_P) dV = 0$$

 \triangleright 假定场量 ϕ 在控制体单元内**线性变化**,控制体内任意一点x的 ϕ_x 满足:

$$\phi_{\mathbf{x}}pprox\phi_P+(
abla\phi)_P\cdot(\mathbf{x}-\mathbf{x}_P)$$

> 对控制体进行积分

$$\int_V \phi_{\mathbf{x}} dV = \int_V [\phi_P + (
abla \phi)_P \cdot (\mathbf{x} - \mathbf{x}_P)] dV = \phi_P V$$

$$\phi_P = rac{1}{V} \int_V \phi_{
m x} dV$$

▶ 因此,标量T在体心处的梯度可以表示为

$$(
abla T)_P = rac{1}{V} \int_V (
abla T) dV = rac{1}{V} \oint {}_S d{f S} T = rac{1}{V} \sum_{
m face} {f S}_{
m face} T_{
m face}$$

同理
$$(
abla\otimes \mathbf{U})_P = rac{1}{V}\sum_{\mathrm{face}}\mathbf{S}_{\mathrm{face}}\otimes \mathbf{U}_{\mathrm{face}}$$

对流扩散方程的离散

▶ 考虑一般形式的对流扩散方程, 其形式可以表示如下

$$\dfrac{\partial \phi}{\partial t} + \dfrac{
abla \cdot (\phi \mathbf{u})}{
abla \pi} - \dfrac{
abla \cdot (\gamma
abla \phi)}{
blue{thm}} = \underbrace{S_{\phi}(\phi)}_{\text{源项}}$$

> 对单元做体积分,可得

$$\int_{V_P} rac{\partial \phi}{\partial t} dV + \int_{V_P}
abla \cdot (\phi \mathbf{u}) dV - \int_{V_P}
abla \cdot (\gamma
abla \phi) dV = \int_{V_P} S_\phi(\phi) dV$$

▶ 通过高斯定理将对流项和扩散项的提积分转为面积分,则

$$\int_{V_P} rac{\partial \phi}{\partial t} dV + \sum_f [\mathbf{S}_f \cdot (\phi \mathbf{u})_f] - \sum_f [\mathbf{S}_f \cdot (\gamma
abla \phi)_f] = \int_{V_P} S_\phi(\phi) dV$$

▶ 首先处理时间项

$$\int_{V_P}rac{\partial \phi}{\partial t}dV=rac{\phi^n-\phi^o}{\Delta t}V_P$$

对流扩散方程的离散

> 考虑一般形式的对流扩散方程, 其形式可以表示如下

$$\dfrac{\partial \phi}{\partial t} + \dfrac{
abla \cdot (\phi \mathbf{u})}{
abla \pi} - \dfrac{
abla \cdot (\gamma
abla \phi)}{
bracket} = \dfrac{S_{\phi}(\phi)}{
abla \pi}$$
財散項或站性項

> 对流项的处理: 面心物理量通过体心插值得到

$$\phi_f = \lambda \phi_P + (1-\lambda)\phi_N \qquad \qquad \lambda = \overline{fN}/\overline{PN}$$

▶ 对流项可表示为

$$\sum_{f} [\mathbf{S}_f \cdot (\phi \mathbf{u})_f] = \underbrace{\sum_{f} [\lambda (\mathbf{S}_f \cdot \mathbf{u}_P)] \phi_P}_{ ext{P} \; ext{单元}} + \underbrace{\sum_{f} [(1 - \lambda) (\mathbf{S}_f \cdot \mathbf{u}_N) \phi_N]}_{ ext{5 P} \; ext{相邻的所有单元}}$$

- ightharpoonup 其中 ϕ_P 、 ϕ_N 是未知数
- > 系数填入线性方程组

f 代表面单元上的物理量 S_f 代表面法向向量 $|S_f|$ 代表面的面积 V_P 为控制体P 的体积 V_N 为控制体N 的体积

对流扩散方程的实现过程

对流扩散方程的离散

▶ 考虑一般形式的对流扩散方程, 其形式可以表示如下

$$\underbrace{rac{\partial \phi}{\partial t}}_{ ext{时间项}} + \underbrace{
abla \cdot (\phi \mathbf{u})}_{ ext{对流项}} - \underbrace{
abla \cdot (\gamma
abla \phi)}_{ ext{扩散项或站性项}} = \underbrace{S_{\phi}(\phi)}_{ ilde{i}ijj}$$

- ▶ 扩散项的处理:
 - > 只考虑正交网格:

$$-\sum_f [\mathbf{S}_f \cdot (\gamma
abla \phi)_f] = -\sum_f \gamma_f |\mathbf{S}_f| rac{\phi_N - \phi_P}{|\overline{PN}|}.$$

> 考虑非正交网格:

$$\mathbf{S}_f \cdot (\nabla \phi)_f = \underbrace{|\Delta| \frac{\phi_N - \phi_P}{|\overline{PN}|}}_{\text{E}\overline{\Sigma} \oplus \mathbb{F}} + \underbrace{\mathbf{k} \cdot (\nabla \phi)_f}_{\text{\#E}\overline{\Sigma} \oplus \mathbb{F} \oplus \mathbb{F}}$$

➤ 正交部分作为左端A系数, 非正交修正给出右端b

M

有限体积网格离散的描述方式

对流扩散方程的离散

Cell No. 0	0	1	2	3	4	5	6	7
Cell No. 1	1	2	9	8	5	11	10	6

控制体数组存储的是各控制体对应的顶点编号

Face ID						
0	1	2	6	5		
1	0	1	5	4		
2	0	3	7	4		
3	0	1	2	3		
4	2	3	7	6		
5	4	5	6	7		
6	1	8	9	2		
7	1	8	11	5		
8	5	11	10	6		
9	2	9	10	6		
10	8	9	10	11		

面的数组存储的是组成面的 顶点编号

Node ID	0	1	2	3	4	5	6	7	8	9	10	11
x coordinat e	0	1	1	0	0	1	1	0	2	2	2	2
y coordinat e	0	0	0	0	1	1	1	0	0	0	1	1
z coordinat e	0	顶点	数组	字储的	是每~	一	的坐杨	信息	0	– 1	– 1	0

Owner存储的是面一侧的控 制体编号

> Neighbor存储的是面另一侧的 顶点编号

在完成一般对流扩散方程的离散...

怎么把NS方程离散?

➤ 不可压缩NS方程:

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\left\{ \frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + v \frac{\partial^2 U_i}{\partial x_j \partial x_j} \right\}$$

▶ 动量方程:

$$\underbrace{\frac{\partial \phi}{\partial t}}_{\text{NRITE}} + \underbrace{\nabla \cdot (\phi \mathbf{u})}_{\text{NRITE}} - \underbrace{\nabla \cdot (\gamma \nabla \phi)}_{\text{ITRITE}} = \underbrace{S_{\phi}(\phi)}_{\text{IRITE}} \qquad \qquad \underbrace{\frac{\partial U_i}{\partial t}}_{\text{IRITE}} + \underbrace{U_j \frac{\partial U_i}{\partial x_j}}_{\text{NRITE}} - \frac{\partial}{\partial x_j} (v \frac{\partial U_i}{\partial x_j}) = -\frac{1}{\rho} \frac{\partial P}{\partial x_i}$$

> 连续性方程:

$$\frac{\partial U_i}{\partial x_i} = 0$$
 U_i 已经有输运方程了,如何耦合?

> SIMPLE: Semi-implicit Method for Pressure Linked Equations (Patankar & Spalding)

在完成一般对流扩散方程的离散...

那么怎么把NS方程离散?

> 不可压缩NS方程(定常举例):

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\{ U_j \frac{\partial U_i}{\partial x_j} - \frac{\partial}{\partial x_j} (v \frac{\partial U_i}{\partial x_j}) = -\frac{1}{\rho} \frac{\partial P}{\partial x_i}$$

- > 第一步: 组装动量方程的线性方程组
 - > 对流项离散:

$$\sum_{f} [\mathbf{S}_f \cdot (\phi \mathbf{u})_f] = \underbrace{\sum_{f} [\lambda (\mathbf{S}_f \cdot \mathbf{u}_P)] \phi_P}_{ ext{P} \; ext{单元}} + \underbrace{\sum_{f} [(1-\lambda) (\mathbf{S}_f \cdot \mathbf{u}_N) \phi_N]}_{ ext{与 P 相邻的所有单元}}$$

▶ 扩散项离散:

$$-\sum_f [\mathbf{S}_f \cdot (\gamma
abla \phi)_f] = -\sum_f \gamma_f |\mathbf{S}_f| rac{\phi_N - \phi_P}{|\overline{PN}|}$$

不可压缩流动的SIMPLE算法

通过解耦的方式,分别求解压强和动量方程,来满足质量守恒和动量守恒

- ▶ 第二步: 根据 AU_p = b求解U_p
 - ➤ 迭代法求解线性方程组: PBiCG、PBiCGStab等
- > 第三步: 重写动量线性方程组

$$AU_p = (L + D + U)U_p = \tilde{b} = b + \nabla p$$

$$DU_p = \tilde{b} - (L + U)U_p$$

$$> U_{p} = [\tilde{b} - (L + U)U_{p}]/D$$

$$\triangleright$$
 记为 $\tilde{U} = H_U/A_U$ 其中 $H_U = [\tilde{b} - (L + U)U_p], A_U = D$

Ũ不包含压强的影响

注: 正交网格下 $\tilde{b} = 0$

M

不可压缩流动的SIMPLE算法

通过解耦的方式,分别求解压强和动量方程,来满足质量守恒和动量守恒

> 第三步: 重写动量线性方程组

$$\widetilde{U} = H_U/A_U$$
 $\sharp \mapsto H_U = [\widetilde{b} - (L + U)U_p], A_U = D$

▶ 第四步: 求解压强泊松方程

$$\sum_{f} \left(\frac{\rho}{A_{U}} \right)_{f} (\nabla \mathbf{p})_{f} \cdot \mathbf{S} = \sum_{f} \rho \widetilde{\mathbf{U}} \cdot \mathbf{S}$$

▶ 第五步: 更新质量通量

$$F = \rho U_f \cdot S = \rho \widetilde{U} \cdot S - \left(\frac{\rho}{A_U}\right)_f (\nabla \mathbf{p})_f \cdot S$$

- ightharpoonup 已完成一次SIMPLE迭代,循环执行所有步骤直到 $\sum_{r} F = 0$
- ▶ 问题:
 - \triangleright 连续性方程去哪了? 什么是 $\sum_{f} F = 0$ 的物理含义?

SIMPLE方法通过联立连续性方程和动量方程,得到压强方程

> 根据动量方程的离散形式

$$\mathbf{A}\mathbf{U}_{\mathbf{p}} = (\mathbf{L} + \mathbf{D} + \mathbf{U})\mathbf{U}_{\mathbf{p}} = -\nabla\mathbf{p}$$

> 那么速度可以写成

$$a_P U_p = H_U - \nabla p$$
 $U_p = \frac{H_U}{a_P} - \frac{1}{a_P} \nabla p$

▶ 通过插值到面上

$$\mathbf{U}_f = (\frac{\mathbf{H}_U}{a_P})_f - (\frac{1}{a_P})_f (\nabla \mathbf{p})_f$$

▶ 引入连续性方程

$$\nabla \cdot \mathbf{U} = \sum_{f} \mathbf{S} \cdot \mathbf{U}_{f} = \mathbf{0}$$

不可压缩流动的SIMPLE算法

SIMPLE方法通过联立连续性方程和动量方程,得到压强方程

通过插值到面上并结合连续性方程

$$\mathbf{U}_f = (\frac{\mathbf{H}_{\mathbf{U}}}{a_P})_f - (\frac{1}{a_P})_f (\nabla \mathbf{p})_f$$

$$\nabla \cdot \mathbf{U} = \sum_{f} \mathbf{S} \cdot \mathbf{U}_{f} = \mathbf{0}$$

▶ 通过插值到面上并结合连续性方程

$$\sum_{f} \mathbf{S} \cdot \mathbf{U}_{f} = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} - \left(\frac{1}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \mathbf{0} \qquad \qquad \sum_{f} \mathbf{S} \cdot \left[\left(\frac{1}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} (\nabla \mathbf{p})_{$$

$$\sum_{f} \mathbf{S} \cdot \left[\left(\frac{1}{a_{P}} \right)_{f} (\nabla \mathbf{p})_{f} \right] = \sum_{f} \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_{U}}{a_{P}} \right)_{f} \right]$$

得到压强泊松方程(本质上就是求解连续性方程)

$$\nabla \cdot (\frac{1}{a_p} \nabla p) = \sum_f S \cdot [(\frac{H_U}{a_P})_f]$$

▶ 每个面上的质量通量可以写作

$$\mathbf{S} \cdot \mathbf{U}_f = \mathbf{S} \cdot \left[\left(\frac{\mathbf{H}_U}{a_P} \right)_f - \left(\frac{1}{a_P} \right)_f (\nabla \mathbf{p})_f \right] = \mathbf{0}$$

SIMPLE方法将动量方程和压强泊松方程转化为线性方程组

▶ 压强方程一般是对称的——共轭梯度法

input
$$A, b, x_0$$

 $r_0 = b - Ax_0$
 $p_0 = r_0$
for $k = 1, \dots$ until convergence do

$$\gamma_{k-1} = \frac{r_{k-1}^T r_{k-1}}{p_{k-1}^T A p_{k-1}}$$

$$x_k = x_{k-1} + \gamma_{k-1} p_{k-1}$$

$$r_k = r_{k-1} - \gamma_{k-1} A p_{k-1}$$

$$\delta_k = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}$$

$$p_k = r_k + \delta_k p_{k-1}$$
end for

- ➢ 对于非对称的动量方程,可以采用BiCG、BiCGStab、GMRES等算法
- > 此外对于大规模计算,还可以采用GAMG多重网格方法

PART 03 MPI并行计算开发

MPI是什么: 跨节点、节点内数据发送接受的标准接口

> 基本的MPI编程模式

早期的MPI编程模式

现代的MPI编程模式

> 基本的通信模式 (例子: 阻塞式点对点通信)

MPI常用的通信模式有点对点通信和收集通信

▶ 点对点通信

MPI send

MPI recv

> 收集通信

> 思考: 哪些是计算流体力学中常用的通信方式?

计算流体力学的基本步骤(回顾)

MPI可以帮助进行空间离散的并行化,不能解决时间步的拆分

> 求解过程

- ▶ 步骤一: 建立计算网格
- > 步骤二: 初始化流场解
- ▶ 步骤三: 时间迭代
 - > 组装动量线性方程组
 - > 求解动量方程
 - > 组装压强线性方程组
 - > 求解压强方程
- > 步骤四: 存储计算结果, 后处理

▶ 思考: 空间离散的并行化如何实现?

如右图的拆分方式,会得到怎样的线性方程组?

MPI可以帮助进行空间离散的并行化,不能解决时间步的拆分

> 对于任意的非结构网格, 编号顺序与空间无关

- > 网格划分之后必须要进行重新编号
 - ▶ 前提: 得到网格划分方案
 - ▶ 简单几何可以通过坐标定义
 - ▶ 复杂几何如何得到最优的划分方案?

网格划分和并行通讯之间的关系

▶ 以对流项离散举例:

$$\sum_f [\mathbf{S}_f \cdot (\phi \mathbf{u})_f] = \underbrace{\sum_f [\lambda (\mathbf{S}_f \cdot \mathbf{u}_P)] \phi_P}_{ ext{P} \; \hat{\mu}_{\widehat{\pi}}} + \underbrace{\sum_f [(1-\lambda)(\mathbf{S}_f \cdot \mathbf{u}_N) \phi_N]}_{ ext{b P 相邻的所有单元}}$$

▶ 任意网格面:

$$S_f \cdot (u\phi)_f = \lambda S_f \cdot (u\phi_P) + (1-\lambda) S_f \cdot (u\phi_N)$$

- ▶ 为了并行计算, 网格分块以后:
 - ➤ Rank 1需要把N的值传给Rank 0
 - ➤ Rank 0需要把P的值传给Rank 1

> 结论: 通讯成本与被切开的面的数量成正比

网格拆分需求

可以采用第三方工具帮助切分网格

- > 基本原则: 控制体之间相接的面被切开得越少越好!
- ➤ 给定控制体和控制体之间的链接信息 → 转化为图划分 (Graph Partitioning) 问题

示意图: 控制体、连接信息

图划分问题示意图

> 思考: 切分的过程是否只需要网格点连接信息即可? 需要网格点的具体坐标信息吗?

网格划分带来的是线性方程组重编号的需求

▶ 划分前的网格编号和线性方程组

> 划分后的网格编号和线性方程组

以Metis工具进行网格拆分的过程

- ▶ 以控制体标号的方式,将网格划分为多个处理器独立求解的控制体群组
- > 对于非结构有限体积法, 所需要的通信层数为一层

以Metis工具进行网格拆分的过程

- ➤ Metis只负责返回每一个控制体对应的 rank值
- ▶ 思考: 实际MPI通信需要什么?
- > 需要发送和接受数据的方向、数据量
- > 需要额外的程序来识别通信面

0	1	2	თ	
4	5	6	7	
8	9	10	11	
12	13	14	15	

Element ID for a mesh

Element ID	Rank
0	0
1	0
2	1
3	1
4	0
5	0
6	1
7	1
8	2
9	2
10	3
11	3
12	2
13	2
14	3
15	3

METIS assigned rank

步骤一

步骤二

在MPI_Comm_World体系下建立数据结构和线性方程组求解方法

处理器上存 在的控制体

内部面

通讯边界

物理边界

线性方程组的大规模并行求解

线性方程组求解器本身也需要并行化

➤ 求解NS方程所需要的线性方程组求解器有:

Linear Solver	Target
Conjugate Gradient (CG)	压强泊松方程
Stabilized Bi-Conjugate Gradient (BiCGstab)	动量方程

> 以共轭梯度法为例,每次迭代需要两次全局通信

required on numerator and denominators

线性方程组的大规模并行求解

针对大规模并行计算,线性方程组预处理也需要进行修改

▶ 常见的预处理方法 (为什么要预处理? 线性方程组的条件数、收敛性):

Preconditioner	Source	Target
Incomplete Cholesky (IC)	Implemented	PCG
Incomplete LU (ILU)	Calling MKL	GMRES, PBiCG

- ➤ 以矩阵的ILU分解为例, 有以下难点:
 - ➤ 每个处理器存储本地分块,LU依次分解效率很低

—— 只对A;i做局部LU分解、忽略非对角块的元素

- (ILUO, 忽略新增的非零元素

线性方程组的大规模并行求解

为了改进线性方程组的收敛性,可以对网格进行重编号

➤ 重编号可以显著降低矩阵的带宽 (bandwidth)

Original cell numbering & connectivity

RCM updated cell numbers

原始非零元素位置

排序后的非零元素位置

▶ 在什么时候进行网格重编号?

▶ 选择一: 先重编号然后进行并行分块——注意分块后的重编 号问题!

▶ 选择二: 先完成并行分块, 然后局部进行重编号

局部重编号示意图

PART 04 计算流体力学实践

volScalarField p

I0object

mesh

"p",

面向对象的程序架构:简单直接的偏微分方程和物理场的定义方式

- > 标量场、矢量场的简单模板化定义方式
- 计算流体力学的算子分为时间导数、对流项、扩散项、源项
- ➤ 基于SIMPLE算法,全局线性方程组的离散组装方法都可以模板化
- ▶ 举例: 动量方程的简单离散

$$\frac{\partial \rho U}{\partial t} + \nabla \cdot \phi U - \nabla \cdot \mu \nabla U = - \nabla \rho$$

```
solve
      fvm::ddt(rho, U)
    + fvm::div(phi, U)
    - fvm::laplacian(mu, U)
    - fvc::grad(p)
```

动量方程定义

场的定义方式

runTime.timeName(),

IOobject::MUST_READ,

IOobject::AUTO WRITE

Term description	Implicit/explicit	Mathematical expression	fvm::/fvc:: functions
Laplacian	Implicit/Explicit	$\nabla \cdot \Gamma \nabla \phi$	laplacian(Gamma,phi)
Time derivative	Implicit/Explicit	$\partial \phi/\partial t$	ddt(phi)
		$\partial ho \phi / \partial t$	ddt(rho, phi)
Convection	Implicit/Explicit	$\nabla \cdot (\psi)$	div(psi, scheme)
		$ abla \cdot (\psi \phi)$	div(psi, phi, word)
			div(psi, phi)
Source	Implicit	$ ho\phi$	Sp(rho, phi)
	Implicit/Explicit	170 1	SuSp(rho, phi)

OpenFOAM开源计算流体力学软件

Open Field Operation And Manipulation

> 下载算例

git clone git@gitlab.com:sjtu-saacfd/engineeringclass.git .

git clone https://gitlab.com/sjtu-saa-cfd/engineeringclass.git .

Wget https://gitlab.com/sjtu-saa-cfd/engineeringclass/-/archive/main/engineeringclass-main.tar.gz

➤ 加载OpenFOAM

armlogin.hpc.sjtu.edu.cn module load openfoam/v2012-gcc-10.3.1

sylogin.hpc.sjtu.edu.cn module load openfoam/2206-intel-2021.4.0

pilogin.hpc.sjtu.edu.cn module load openfoam/1912-gcc-7.4.0openmpi

压强梯度引起的边界层流动分离(Lardeau et al., 2012)

> 计算网格

> 计算结果

