

<TÍTULO DO PLANO DE TRABALHO DO ALUNO>(AQUI ESCREVE MIGMASTATS?)

Relatório Final das atividades do Programa Institucional de Bolsas de Iniciação Científica e Voluntário PIBIC Edital 2021

Aluno

Rodrigo Ferraz Souza Engenharia de Computação Programa PIBIC

Orientador

Antônio Carlos Sobieranski <Departamento/Unidade Acadêmica> (não sei o que é isso)

Projeto de Pesquisa

Análise Estatística do Dataset MIGMA (ver depois no doc que eu assinei)

Resumo

no máximo 1 página

Sumário

1 Introdução					4	
2 Objetivos						
3	Materiais e Métodos					
	3.1	Correl	n os múculos da Face	5		
3.2 Experimentos						
		3.2.1	Experimento 1 - Analise dos rostos e coleta dos dados de LandMarks			
			3.2.1.1	Descrição dos Arquivos	5	
			3.2.1.2	Procedimentos	6	
			3.2.1.3	Remoções do Dataset Neste Experimento	6	
			3.2.1.4	Exemplo de Máscara gerada com os Landmarks obtidos	7	
			3.2.1.5	Vídeo das Faces e Máscaras	7	
		3.2.2	Experim	nento 2 - Processamentos dos Dados Obtidos no Experimento 1	7	
			3.2.2.1	Primeira Abordagem - Todos os Pontos (Foi abandonada)	7	
			3.2.2.2	Segunda abordagem - Pontos com alta variação em relação à face neutra	8	
			3.2.2.3	Remoções do dataset	9	
		3.2.3	Experim	nento 3 - Visualisação dos Dados	9	
			3.2.3.1	Gráfcos de PseudoClustering	9	
			3.2.3.2	Analise da distribuição das distancias da segunda abordagem do experimento 2	9	
			3.2.3.3	Cluster com Kmeans dos Pontos acima da Média (PAV)	9	
			3.2.3.4	Remoções do Dataset	9	
		3.2.4	Experim	nento 4 - Cálculo de Correlações	9	
3.2.5 Experimento 5 - Testes de Hipóteses				nento 5 - Testes de Hipóteses	10	
			3.2.5.1	pessoa com score mais alto em depressão tende a ter uma media maior das distancias da face neutra pra neutra media dos participantes	10	
4	Res	ultado	s e Discu	ISSÃO	10	
	4.1 Máscaras					
	4.1.1 Máscaras médas nor expressão					

5	Con	clusõe		12			
		4.3.1	Testes	12			
	4.3	Proble	ema de Aquisição	12			
	4.2	Correl	Correlações Mais Fortes				
		4.1.5	Grupos Faciais	11			
		4.1.4	Distância entre os pontos da expressão Neutra Não Supervisionada	11			
		4.1.3	Comparações entre máscaras médias supervisionadas e não supervisionadas	10			
		4.1.2	Diferenças entre Supervisionado e Não SUpervisionado	10			

1 Introdução

Exemplo de referência para figura

Como visto na Figura 1 . . .

Figura 1: Testing levels based on software development phase (Sommerville, 2011).

Exemplo de referência para bibliografia

De acordo com [?] ...

2 Objetivos

Descrever o objetivo geral. Elencar e explicar cada um dos objetivos específicos.

Objetivos específicos

- Objetivo específico 1 :
- Objetivo específico 2 :

3 Materiais e Métodos

Descrever aqui o que foi feito durante o projeto e colocar o fluxograma. Todo o projeto foi desenvolvido e documentado no Github (colocar o link)

3.1 Correlação com os múculos da Face

Aqui foi tentado fazer algumas correlações com os músculos faciais, contudo, ao que foi descoberto no item ?? sobre a analise de exprsssões em vídeos e a alta complexidade dos músculos, foi abandonada esta estratégia e optado por fazer a redução dos dados para otimizar a análise utilizando agrupamento por KMeans descrito no item ??.

3.2 Experimentos

3.2.1 Experimento 1 - Analise dos rostos e coleta dos dados de Land-Marks

O objetivo é coletar os dados para que possam ser analisados e correlacionados posteriormente.

Foi analisada cada imagem de cada pessoa em cada uma das expressões e o resultado será salvo na pasta processed da seguinte forma.

3.2.1.1 Descrição dos Arquivos

analyser.py

Anda de pasta em pasta do dataset e salva os .csv em processed na pasta raiz do projeto

draw_triangles.py

Anda pelas pastas de processed e, a partir dos csv, gera as mascaras e as salva em .jpg no mesmo diretório

error_verifier.py

Verifica e exclui as inconsistencias encontradas no dataset, como pastas com numeros equivocados de imagens, e casos nos quais faces não foram reconhecidas

· face mesh.py

Uma classe para extrair os pontos da face

· face adjustments.py

Faz as transformações na imagem a partir dos pontos extraidos, de acordo com as definições abaixo

3.2.1.2 Procedimentos

Para melhor analisar as imagens posteriormente um padrão será adotado, e ele será o seguinte:

- Todas as imagens serão rotacionadas para que os olhos fiquem sempre na mesma linha (alignEyes)
- O ponto 10 é deixado sempre na altura 25 e no centro da imagem, com a distancia entre o ponto 10 e o ponto 152 sendo de 1500px (alignFace)

Colocar aqui uma imagem com as linhas mostrando o tamanho do rosto sendo 1500px

- A imagem será recortada em um retangulo, deixando apenas o rosto centralizado, com margem de 25px.
- A imagem será deixada com 1900px X 2500px sem redimensionar, apenas colocando bordas pretas nas laterais e em baixo para completar o tamanho
- · somente então será salva com os dados relativos a imagem no fim deste processo

Colocar aqui o bloco do experimento 1 do fluxograma

3.2.1.3 Remoções do Dataset Neste Experimento

3.2.1.3.1 Motivo: Número incorreto de fotos em uma pasta do usuário

nos casos em que foi detectado que uma das pastas do usuário continha um numero diferente de 3 fotos, todas as pastas dele foram removidas da analise. Os usuários que esta regra foi aplicada são os que seguem, com as seguintes observações:

- 00541 4 imagens em 00/00
- 02069 11 imagens em 00/00
- 05669 7 imagens em 00/00
- 06644 2 imagens em 00/00

3.2.1.4 Exemplo de Máscara gerada com os Landmarks obtidos

colocar a imagem aqui da mascara com o fundo preto

3.2.1.5 Vídeo das Faces e Máscaras

Fui obrigado a colocar o video no drive pois ele acabou ficando ridiculamente pesado (cerca de 4,5gb) O codec utilizado não é suportado pelo reprodutor do windows, abra o video com o VLC que irá ser lido normalmente. O as imagens utilizadas no video tem 1/3 de seu tamanho original, para reduzir o tamanho do mesmo. Deixando-o com a resolução de 1666x633 px (colocar o link pro vídeo ou um print dele sla) No video as informações estão dispostas da seguinte forma:

- · Na esquerda está o rosto cortado da pessoa
- Na direita a máscara extraida deste rosto
- no meio estão o tipo/expressão (ids) e o id da pessoa, respectivamente
- a cada troca de pasta (tipo ou expressão) é mostrado por 2s uma imagem do novo diretorio com os ids (tipo/expressão)

3.2.2 Experimento 2 - Processamentos dos Dados Obtidos no Experimento 1

O objetivo aqui é tentar encontrar um padrão para os dados obtidos no experimento 1, e fazer um processamento dos dados para que possam ser utilizados no experimento 3.

3.2.2.1 Primeira Abordagem - Todos os Pontos (Foi abandonada)

3.2.2.1.1 Parte 1

Para cada uma das máscaras de um usuário, obter as distâncias de cada ponto desta máscara para sua mascára neutra não supervisionada (00/00). Com esses dados, também gerar distâncias médias para a neutra NS de todos os usuários

3.2.2.1.2 Parte 2

A partir dos dados gerados na parte 1, que são MUITOS, reduzílos a alguns números que, em teoria, representam a mascara daquela pessoa. Os resultados que serão coletados são os que seguem:

 Média de diferença entre as distancias da máscara em análise para todas as distancias da máscara neutra NS média

Isso significa que eu tiro a distancia do Ponto X para todos os outros pontos da máscara em análise e faço o mesmo para a másca de referencia, que é a Neutra NS. Tendo esses 2 .csv de 468x486 linhas cada, faço a diferença entre cada uma das relações e coloco em um .csv com 468x486 (isso não é uma matriz, é uma multiplicação msm) linhas

 Média de diferença entre as distancias da máscara em análise para todas as distancias da máscara neutra NS média, agrupado por músculos (Ver MuscleCorrelation)

Faço a mesma coisa que no item acima, contudo a média será feita por músculos

 Média de diferença entre as distancias da máscara em análise para todas as distancias da máscara neutra NS média, agrupado por GRUPOS musculares

Faço a mesma coisa que no item acima, contudo a média será feita por grupos musculares

Todos os dados citados acima serão salvos em .cvs's, de acordo com a relação dos arquivos gerados

```
/processed

/pattern_analysis

/pattern_analysis

/[id_pessoa]

/ [id_pessoa]

/ wexp-tp_00-00.csv (A diferença entre cada ponto das expressões para o neutro NS)

/ mean-dists_allp-allp.csv (A media de distancia entre cada ponto das expressões para

/ mean-diff-dists_allp-allp.csv (A diferença entre cada ponto das expressões para
```

Contudo como foi dito no item ?? foi abandonada a questão de agrupamento de pontos por músculos epor conta disso, foi adotada a abordagem descrita no próximo item.

3.2.2.2 Segunda abordagem - Pontos com alta variação em relação à face neutra

Neste experimento apenas serão analisados os pontos e suas contrapartes na expressão neutra. A primeira parte foi calcular a média de distancia de cada ponto de todas as 16 máscaras para a neutra e então selecionei todos os pontos que a distancia é superior a média da máscara em todas as máscaras. 77 pontos foram selecionados

(não sei se é interessante colocar os graficos de distancias de cada uma das mascaras) (e eu acho que essa imagem é um resultado, logo nao deveria estar nessa section deveria estar na proxima tb)

Com estes 77 pontos em mão, para cada máscara foi calculada a média deles, criando o arquivo masks means pav.csv pav = points above average

3.2.2.3 Remoções do dataset

• Usuário 06644: Não fez todas as capturas

3.2.3 Experimento 3 - Visualisação dos Dados

3.2.3.1 Gráfcos de PseudoClustering

3.2.3.2 Analise da distribuição das distancias da segunda abordagem do experimento 2

3.2.3.3 Cluster com Kmeans dos Pontos acima da Média (PAV)

Como foram selecionados 77 pontos, houve uma sobrecarga de dados para fazer a analise. Então foi utilizada esta técnica de clusterização para reduzir a quantidade de dados. Os 77 pontos foram dividos em 6 grupos, mostrados na imagem abaixo (tb n sei se é aqui que eu dvo colocar a img) A relação ponto-grupo esta salvo no arquivo points_above_average.csv Para a execução dos testes na secção 04 será utilizada a média de cada de distância de cada ponto

3.2.3.3.1 Expansão dos grupos

Dois novos grupos serão adicionados para analise arbitrariamente para ser feita uma visualização da relação do tamanho do sorriso com a contração dos olhos, para verificar se o sorriso é, de fato verdadeiro. Esta nova relação de grupos está no arquivo points above average expanded.csv

3.2.3.4 Remoções do Dataset

02935: Não respondeu aos questionários

3.2.4 Experimento 4 - Cálculo de Correlações

aqui eu vou escrever depois pq eu não anotei no github...

3.2.5 Experimento 5 - Testes de Hipóteses

3.2.5.1 pessoa com score mais alto em depressão tende a ter uma media maior das distancias da face neutra pra neutra media dos participan-

tes isso aqui serviu p testar se os sorrisos eram verdadeiros explicar que eu vou fazer o teste com o score bdi e o kmeans expandido pra pegar a contração do olho

4 Resultados e Discussão

4.1 Máscaras

4.1.1 Máscaras médas por expressão

4.1.2 Diferenças entre Supervisionado e Não SUpervisionado

Notou-se que:

- Na 05 (Alegria) foi mais comum rostos mais expressivos e com sorrisos maiores na captura não supervisionada do que na supervisionada.
- Na 07 (Surpresa) aconteceu o oposto da 05, pois foi mais comum bocas com uma amplitude de abertura maior nas capturas supervisionadas do que nas não supervisionadas

4.1.3 Comparações entre máscaras médias supervisionadas e não supervisionadas

A coluna da esquerda representa as mascaras não supervisionadas e a da direita as supervisionadas. A cada Bloco de imagem são apresentadas 4 imagens sendo duas máscaras "fantasmas" e duas de pontos médios. A máscara fantasma apresenta os vetígios de todas as mascaras analisadas simultaneamente, reforcando os pixels onde as linhas mais aparecem. A máscara de pontos médios apenas faz uma média das posições x,y de cada um dos landmarks da expressão e dsenha uma máscara a partir disso.

COLOCAR AS IMAGENS AQUI

4.1.4 Distância entre os pontos da expressão Neutra Não Supervisionada

Aqui foram geradas visualizações das máscaras obtendo a distancia entre os landmarks da máscara média de uma dada expressão para a média da Neutra não supervisionada. E para gerar o heatmap foi pintado um triângulo com o valor médio dos 3 vétices que o compoem.

COLOCAR AS IMAGENS AQUI DA ESCALA DINAMICA (ACHO QUE AQUELA COR TA ÓTIMA)

4.1.5 Grupos Faciais

Como foi dito no item ?? foram separados 77 pontos cujas distâncias até seu correspondente na neutra NS são maiores que a média do restante de sua máscara. Para obter estes pontos foram analisados os seguintes dados aqui representados em gráficos:

COLOCAR OS GRÁFICOS AQUI

E então foram separados nos seguintes pontos destacados em vermelho

COLOCAR A IMAGEM COM OS PONTOS DESTACADOS AQUI (NÃO COLOCAR ELA NO 3)

E conforme foi observado pelo bolsista, a quantidade de dados ainda era absurdamente grande, portanto foi necessário reduzir a quantidade de dados para aumentar a velocidade de processamento. Para tal foi utilizado o método de K-means para reduzir a quantidade de dados. Gerando os seguintes grupos de pontos

COLOCAR A IMAGEM DO KMEANS PADRÃO

4.2 Correlações Mais Fortes

Conforme foi discutido no item ?? os testes de correlação foram feitos utilizando os grupos faciais obtidos pelo método de clusterização Kmeans, e correlacionando-os com os scores dos questionários psiquiátricos descritos no item ??. (é seria legal descrever eles e colocar eles no apendice talvez, ou anexo sla)

Algumas correlações fortes foram encontradas, como a Beck Anxiety Inventory VERSUS Obsessive-Compulsive Inventory, contudo como este tipo de correlação entre scores dos questionários ja foi amplamente discutido na literatura, não foi dispendido tempo para analisá-los.

As melhores crrelações obtidas foram:

- Grupo 02 da Alegria n\u00e3o supervisionada VERSUS Adult Self-Report Scale (Hiperatividade)
 - spearmanr

pvalue = 0.0001702527593707 rvalue = 0.2122881902011349

- pearsonr

pvalue = 6.888895152022905e-05 rvalue = 0.2244339895379587

- Grupo 02 da Alegria supervisionada VERSUS Adult Self-Report Scale (Hiperatividade)
 - spearmanr

pvalue = 0.0003732745538004 rvalue = 0.2011662537681749

- pearsonr

pvalue = 0.0043378892933926 rvalue = 0.1618568566694145

4.3 Problema de Aquisição

4.3.1 Testes

Para avaliar a hipótese de que um sorriso verdadeiro contrai os olhos e que pessoas com score alto no DBI não expressam sorrisos tão fortes, foi criado mais 2 grupos faciais arbitrarios na mascara, apresentados abaixo:

COLOCAR KMEANS EXPANDIDO AQUI

Com isso, seria possivel verificar a média de distância do grupo 5 com o grupo 6 e do grupo 1 com o grupo 7. Assim, seria esperado encontrar dados como o exemplo abaixo:

COLOCAR O GRAFICO esperado

Contudo o que foi encontado foi:

COLOCAR UNS PRINTS E LINKS PROS HTML INTERATIVOS

E observando os gráficos nota-se que não condiz com o que era esperado, portanto pode-se inferir que a coleta criou este erro ou a premissa da hipótese era falsa. Além disso, para a analise de expressões faciais é necessário que hajam videos da expressão surgindo e se dissipando (buscar referencia disso)

5 Conclusões