

(11) EP 0 791 656 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 27.08.1997 Bulletin 1997/35

(21) Application number: 97301066.3

(22) Date of filing: 19.02.1997

(51) Int CL⁶: **C12N 15/52**, C12N 9/00, C12N 15/63, C12P 19/62, C12P 17/08

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
PT SE

RO

(30) Priority: 22.02.1996 US 12050

Designated Extension States:

(71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)

(72) Inventors:

 Burgett, Stanley Gene Indianapolis, Indiana 46227 (US)

- Kuhstoss, Stuart Allen Indianapolis, Indiana 46256 (US)
- Rao, Ramachandra Nagaraja Indianapolis, Indiana 46260 (US)
- Richardson, Mark Alan Bloomington, Indiana 46408 (US)
- Rosteck, Paul Robert, Jr. Indianapolis, Indiana 46237 (US)
- (74) Representative: Tapping, Kenneth George et al Lilly Industries Limited European Patent Operations Erl Wood Manor Windlesham Surrey GU20 6PH (GB)

(54) Platenolide synthase gene

(57) A DNA molecule isolated from Streptomyces

ambofaciens encodes the multi-functional proteins which direct the synthesis of the polyketide platenolide.

Description

30

35

45

The present invention is directed to the DNA isolated from *Streptomyces ambofaciens* responsible for encoding the multi-functional proteins which direct the synthesis of the polyketide platenolide. The present invention also is directed to use of that DNA to produce compounds exhibiting antibiotic activity based on the platenolide structure, including specifically spiramycin and spiramycin analogues and derivatives.

Spiramycin is a macrolide antibiotic useful in both veterinary and human medicine produced by *Streptomyces ambofaciens* (ATCC 15154). Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. Spiramycin's antibiotic activity is believed to be due to its inhibition of protein synthesis by a mechanism that involves binding of the antibiotic to a ribosome. Spiramycin is structurally similar to another antibiotic, tylosin, and the biosynthetic pathways of both are known to be similar.

The biosynthesis of tylosin has been thoroughly investigated (Baltz et al., Antimicrobial Agents and Chemotherapy, 20(2):214-225(1981); Beckmann et al., Genetics and Molecular Biology of Industrial Microorganisms, (1989):176-186). Polyketides are synthesized via a common mechanistic scheme thought to be related to fatty acid synthesis. The cyclic lactone framework is prepared by a series of condensations involving small carboxylic acid residues. Modifications of the structure, such as ketoreduction, dehydration and enolylreduction, also occur during the processing. The synthesis is driven by a set of large multi-functional polypeptides, referred to as polyketide synthases.

PCT Publication WO 93/13663 describes the organization of the gene encoding the polyketide synthase of Saccharapolyspora ezythraea. The gene is organized in modules, with each module effecting one condensation step. The precise sequence of chain growth and the processing of the growing chain is determined by the genetic information in each module. This PCT application describes an approach for synthesizing novel polyketide structures by manipulating in several ways the DNA governing the biosynthesis of the cyclic lactone framework. In order to adapt this methodology to other polyketides, however, the DNA molecules directing the biosynthetic processing must first be isolated.

The present invention is directed to the DNA sequence for the gene cluster responsible for encoding platenolide synthase, the building machinery of platenolide which is the basic building block of spiramycin. As a result, the present invention provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide, arising from modifications of this DNA sequence designed to change the number and type of carboxylic acids incorporated into the growing polyketide chain and to change the kind of post-condensation processing that is conducted.

The present invention provides a DNA molecule comprising an isolated DNA sequence that encodes a platenolide synthase domain. Thus, the present invention provides the DNA molecule of SEQ ID NO:1 and DNA molecules that contain submodules thereof. The present invention also provides the products encoded by said DNA molecules, recombinant DNA expression vectors, and transformed microbial host cells. The present invention is further directed to a method of screening for new antibiotics based on the platenolide structure.

Figure 1 shows the map of the srmG region of the *S. ambofaciens* DNA. Distances in kb are shown relative to the beginning of srmG. Open reading frames (ORF) are indicated by block arrows. The srmG DNA (0-42 kb) is the plate-nolide PKS region. The indicia Ap, G, E, K, P, and X denote restriction sites Apal, Bglll, EcoRl, Kpnl, Pstl and Xhol, respectively. Predicted domains for the srmG DNA are labeled as shown. ACP stands for acyl carrier protein; AT stands for acyltransferase; DH stands for dehydratase; ER stands for enoylreductase; KR stands for ketoreductase; KS stands for ketosynthase; and KS' stands for a ketosynthase-like domain in which a glutamine residue is present in the position occupied by an active site cysteine in a normal ketosynthase. KR' is a domain that resembles a ketoreductase but which is predicted to be inactive.

Figure 2 demonstrates the biosynthetic pathway for platenolide synthesis. A denotes malonyl-CoA; B denotes ethylmalonyl-CoA; P denotes methylmalonyl-CoA; C2 denotes a CoA derivative related to malonyl-CoA but of unknown structure.

Figure 3 shows the map of two clones that span the whole region of the srmG DNA.

The term polyketide defines a class of molecules produced through the successive condensation of small carboxylic acids. This diverse group includes plant flavonoids, fungal aflatoxins, and hundreds of compounds of different structures that exhibit antibacterial, antifungal, antitumor, and anthelmintic properties. Some polyketides produced by fungi and bacteria are associated with sporulation or other developmental pathways; others do not yet have an ascribed function. Some polyketides have more than one pharmacological effect. The diversity of polyketide structures reflects the wide variety of their biological properties. Many cyclized polyketides undergo glycosidation at one or more sites, and virtually all are modified during their synthesis through hydroxylation, reduction, epoxidation, etc.

A common feature of compounds in this class is that their synthesis is directed by a complex of multi-functional peptides, termed a "polyketide synthase". Molecular genetic analysis of polyketide synthase genes has revealed two distinct classes of enzymes operating for different polyketides: (a) the aromatics, which are made through an essentially iterative process; (b) the complex polyketides, which comprise several repeats of the same activities arranged in few, very large polypeptides. A common feature among complex polyketide synthase genes is that they are generally arranged in several open reading frames (ORFs), each of which contains one or more repeated units, designated mod-

ules. Each module processes one condensation step and typically requires several activities accomplished by several enzymes including acyl carrier protein (ACP), β-ketosynthase (KS), and acyltransferase (AT).

Therefore a "module" is defined as the genetic element encoding a multi-functional protein segment that is responsible for all of the distinct activities required in a single round of synthesis, i.e., one condensation step and all the β-carbonyl processing steps associated therewith. Each module encodes an ACP, a KS, and an AT activity to accomplish the condensation portion of the synthesis, and selected post-condensation activities to effect β-carbonyl processing. Each module is therefore, further characterized by the inclusion of submodules that are responsible for encoding the distinct activities of a complex polyketide synthase. A "submodule" thus is defined as the portion of the polyketide synthase DNA sequence that encodes a distinct activity, or "domain". A distinct activity or domain is commonly understood to mean that part of the polyketide synthase polyprotein necessary for a given distinct activity.

The protein segments corresponding to each module are called synthase units (SUs). Each SU is responsible for one of the fatty acid-like cycles required for completing the polyketide; it carries the elements required for the condensation process, for selecting the particular extender unit (a coenzyme A thioester of a dicarboxylate) to be incorporated, and for the extent of processing that the β -carbon will undergo. After completion of the cycle, the nascent polyketide is transferred from the ACP it occupies to the KS of the next SU utilized, where the appropriate extender unit and processing level are introduced. This process is repeated, employing a new SU for each elongation cycle, until the programmed length has been reached. As in synthesis of long chain fatty acids, the number of elongation cycles determines the length of the molecule. However, whereas fatty acid synthesis involves a single SU used iteratively, formation of complex polyketides requires participation of a different SU for each cycle, thereby ensuring that the correct molecular structure is produced. The composition of the polyketide synthase gene modules are variable. Some carry the full complement of β -ketoreductase(KR), dehydratase(DH), and enoylreductase(ER) domains, and some encode a particular domain only or lack a functional domain, although much of the sequence is preserved.

This variable composition of the modules, which correlate with the asymmetry in the synthesis of the polyketide precursor, enable a specific step to be assigned to each module. Since each enzymatic activity is involved in a single biochemical step in the pathway, loss of any one activity should affect only a single step in the synthesis. Knowledge of the correlation between the structure of the polyketide and the organization of the polyketide synthase genes enables one to produce altered genes selectively which produce a polyketide derivative with predicted structure.

Because the degree of processing appears to depend on the presence of functional domains in a particular SU, inactivation of a KR, DH, or ER will result in a polyketide less processed at a single site, but only if the altered chain thus produced can be utilized as a substrate for the subsequent synthesis steps. Thus, the inactivation of one of these domains should result in the formation of a polyketide retaining a ketone, hydroxyl, or site of unsaturation at the corresponding position. This rationale has led to the successful production of altered erythromycin derivatives from strains in which a KR or an ER domain had been inactivated.

Thus, one can engineer polyketide pathways by genetic intervention of the polyketide synthase and by adding or eliminating modification steps. Many of the enzymes involved in postpolyketide modifications do not seem to have absolute specificity for a particular structure. In addition one can also select the desired components from a library of polyketide and postpolyketide biosynthesis genes and combine them to produce novel structures.

The present invention provides, in particular, the DNA sequence encoding the polyketide synthase responsible for biosynthesis of platenolide, i.e., platenolide synthase. Platenolide itself is the foundation for spiramycin-related polyketides. The platenolide synthase DNA sequence, which defines the platenolide synthase gene cluster, directs biosynthesis of the platenolide polyketide by encoding the various distinct activities of platenolide synthase.

The gene cluster for platenolide synthase, like other polyketide biosynthetic genes whose organization has been elucidated, is characterized by the presence of several ORFs, each of which contains one or more repeated units termed modules as defined above. Each module also further includes submodules as defined above. Organization of the platenolide synthase gene cluster derived from *Streptomyces ambofaciens* is shown in Figure 1. The accompanying synthetic pathway and the specific carboxylic acid substrates that are used for each condensation reaction and the post-condensation activities of platenolide synthesis are indicated in Figure 2.

A preferred DNA molecule comprising the platenolide synthase gene cluster isolated from *Streptomyces ambofaciens* is represented by SEQ ID NO: 1. Other preferred DNA molecules of the present invention include the various ORFs of SEQ ID NO: 1 that encode individual multi-functional polypeptides. These are represented by ORF1, 350 to 14002, ORF2, 14046 to 20036, ORF3, 20110 to 31284, ORF4, 31329 to 36071, and ORF5, 36155 to 41830 all in SEQ ID NO: 1. The predicted amino acid sequences of the various peptides encoded by these sequences are shown in SEQ ID NO: 2, 3, 4, 5, and 6.

Yet other preferred DNA molecules of the present invention include the modules that encode all the activities necessary for a single round of synthesis. These are represented by starter module 392 to 3424, module 1, 3527 to 8197, module 2, 8270 to 13720, module 3, 14148 to 19730, module 4, 20215 to 24678, module 5, 24742 to 31002, module 6, 31428 to 35837, and module 7, 36257 to 41395 all in SEQ ID NO: 1. The predicted amino acid sequences of the various synthase units encoded by these modules are represented by starter SU 15 to 1025, SU1, 1060 to 2616,

55

and SU2, 2641 to 4457 in SEQ ID NO: 2; SU3, 35 to 1895 in SEQ ID NO: 3; SU4, 36 to 1523, and SU5, 1545 to 3631 in SEQ ID NO: 4; SU6, 34 to 1503 in SEQ ID NO: 5; SU7, 35 to 1747 all in SEQ ID NO: 6.

Still other preferred DNA molecules include the various submodules that encode the various domains of platenolide synthase. These submodules are represented by KS'(s), 392 to 1603, AT(s), 1922 to 2995, and ACP(s), 3173 to 3424 of starter module in SEQ ID NO:1; KS1, 3527 to 4798, AT1, 5135 to 6208, KR1, 7043 to 7597, and ACP1, 7946 to 8197 of module 1 in SEQ IN NO: 1; KS2, 8270 to 9541, AT2, 9899 to 10909, DH2, 10985 to 11530, KR2, 12596 to 13153, and ACP2, 13469 to 13720 of module 2 in SEQ ID NO: 1; KS3, 14148 to 15422, AT3, 15789 to 16844, DH3, 16914 to 17510, KR3, 18612 to 19166, and ACP3, 19479 to 19730 of module 3 in SEQ ID NO: 1; KS4, 20215 to 21486, AT4, 21889 to 22872, KR'4, 23638 to 24159, and ACP4, 24484 to 24678 of module 4 in SEQ ID NO: 1; KS5, 24742 to 26016, AT5, 26371 to 27381, DH5, 27442 to 27966, ER5, 28843 to 29892, KR5, 29905 to 30462, and ACP5, 30760 to 31002 of module 5 in SEQ ID NP: 1; KS6, 31428 to 32696, AT6, 33024 to 34022, KR6, 34770 to 35327, and ACP6, 35586 to 35837 of module 6 in SEQ ID NO: 1; KS7, 36257 to 37528, AT7, 37898 to 38905, KR7, 39851 to 40408, ACP7, 40658 to 40909, and TE, 41297 to 41395 of module 7 in SEQ ID NO: 1. The predicted amino acid sequences of the various domains encoded by these submodules are represented by KS'(s), 15 to 418, AT(s), 525 to 882, and ACP(s), 942 to 1025 of starter SU in SEQ ID NO:2; KS1, 1060 to 1483, AT1, 1596 to 1953, KR1, 2232 to 2416, and ACP1, 2533 to 2616 of SU1 in SEQ IN NO: 2; KS2, 2641 to 3064, AT2, 3184 to 3520, DH2, 3546 to 3727, KR2, 4083 to 4268, and ACP2, 4374 to 4457 of SU2 in SEQ ID NO: 2; KS3, 35 to 459, AT3, 582 to 933, DH3, 957 to 1155, KR3, 1523 to 1707, and ACP3, 1812 to 1895 of SU3 in SEQ ID NO: 3; KS4, 36 to 459, AT4, 594 to 921, KS94, 1177 to 1350, and ACP4, 1459 to 1523 of SU4 in SEQ ID NO: 4; KS5, 1545 to 1969, AT5, 2088 to 2424, DH5, 2445 to 2619, ER5, 2912 to 3261, KR5, 3266 to 3451, and ACP5, 3551 to 3631 of SU5 in SEQ ID NO: 4; KS6, 34 to 456, AT6, 566 to 898, KR6, 1148 to 1333, and ACP6, 1420 to 1503 of SU6 in SEQ ID NO: 5; KS7, 35 to 458, AT7, 582 to 917, KR7, 1233 to 1418, ACP7, 1502 to 1585, and TE, 1715 to 1747 of SU7 in SEQ ID NO: 6.

Although not wishing to be bound to any particular technical explanation, a sequence similarity exists among domain boundaries in various polyketide synthase genes. Thus, one skilled in the art is able to predict the domain boundaries of newly discovered polyketide synthase genes based on the sequence information of known polyketide synthase genes. In particular, the boundaries of submodules, domains, and open reading frames in the instant application are predicted based on sequence information disclosed in this application and the locations of the domain boundaries of the erythromycin polyketide synthase (Donadio et al., *GENE*, 111 51-60 (1992)). Furthermore, the genetic organization of the platenolide synthase gene cluster appears to correspond to the order of the reactions required to complete synthesis of platenolide. This means that the polyketide synthase DNA sequence can be manipulated to generate predictable alterations in the final platenolide product.

The DNA sequence of the platenolide synthase gene can be determined from recombinant DNA clones prepared from the DNA of *Streptomyces ambofaciens*, in particular strain ATCC 15154. The platenolide synthase gene is contained in recombinant DNA vectors pKC1080 and pKC1306 (Figure 1), which are available from the National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604-3999, in *E. coli* DH10B under accession numbers B-21500 for pKC1080 (deposited Sep 21, 1995) and B-21499 for pKC1306 (deposited Sep 21, 1995) respectively.

Techniques of isolating bacterial DNA are readily available and well known in the art. Any such techniques can be employed in this invention. In particular DNA from these deposited cultures can be isolated as follows. Lyophils of *E. coli* DH10B/pKC1080 or *E. coli* DH10B/pKC1306 are plated onto L-agar (10 g tryptone, 10 g NaCl, 5 g yeast extract, and 15 g agar per liter) plates containing 100 μg/ml apramycin to obtain a single colony isolate of the strain. This colony is used to inoculate about 500 ml of L-broth (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter) containing 100 μg/ml apramycin, and the resulting culture is incubated at 37°C with aeration until the cells reach stationary phase. Cosmid DNA can be obtained from the cells in accordance with procedures known in the art (see e.g., Rao et al., 1987 in Methods in Enzymology, 153:166).

40

45

DNA of the current invention can be sequenced using any known techniques in the art such as the dideoxynucle-otide chain-termination method (Sanger, et al., Proc. Natl. Acad. Sci. 74:5463 (1977)) with either radioisotopic or fluorescent labels. Double-stranded, supercoiled DNA can be used directly for templates in sequence reactions with sequence-specific oligonucleotide primers. Alternatively, fragments can be used to prepare libraries of either random, overlapping sequences in the bacteriophage M13 or nested, overlapping deletions in a plasmid vector. Individual recombinant DNA subclones are then sequenced with vector-specific oligonucleotide primers. Radioactive reaction products are electrophoresed on denaturing polyacrylamide gels and analyzed by autoradiography. Fluorescently labeled reaction products are electrophoresed and analyzed on Applied Biosystems (ABI Division, Perkin Elmer, Foster City, CA 94404) model 370A and 373A or Dupont (Wilmington, DE) Genesis DNA sequencers. Sequence data are assembled and edited using Genetic Center Group (GCG, Madison, WI) programs GelAssemble and Seqed or the ABI model 670 Inherit Sequence Analysis system and the AutoAssembler and SeqEd programs.

Polypeptides corresponding to a domain, a submodule, a module, a synthesis unit (SU), or an open reading frame can be produced by transforming a host cell such as bacteria, yeast, or eukaryotic cell-expression system with the

cDNA sequence in a recombinant DNA vector. It is well within one skilled in the art to choose among host cells and numerous recombinant DNA expression vectors to practice the instant invention. Multifunctional polypeptides of polyketide platenolide synthase can be extracted from platenolide-producing bacteria such as *Streptomyces ambofaciens* or translated in a cell-free in vitro translation system. In addition, the techniques of synthetic chemistry can be employed to synthesize some of the polypeptides mentioned above.

Procedures and techniques for isolation and purification of proteins produced in recombinant host cells are known in the art. See, for example, Roberts et al., Eur. J. Biochem. 214, 305-311, (1993) and Caffrey et al., FEBS 304, 225-228 (1992) for detailed description of polyketide synthase purification in bacteria. To achieve a homogeneous preparation of a polypeptide, proteins in the crude cell extract can be separated by size and/or charge through different columns well known in the art once or several times. In particular the crude cell extract can be applied to various cellulose columns commercially available such as DEAE-cellulose columns. Subsequently the bound proteins can be eluted and the fractions can be tested for the presence of the polyketide platenolide synthase or engineered derivative protein. Techniques for detecting the target protein are readily available in the art. Any such techniques can be employed for this invention. In particular the fractions can be analysized on Western blot using antibodies raised against a portion or portions of such polyketide platenolide synthase proteins. The fractions containing the polyketide platenolide synthase protein can be pooled and further purified by passing through more columns well known in the art such as applying the pooled fractions to a gel filtration column. When visualized on SDS-PAGE gels homogeneous preparations contain a single band and are substantially free of other proteins.

Knowledge of the platenolide synthase DNA sequence, its genetic organization, and the activities associated with particular open reading frames, modules, and submodules of the gene enables production of novel polyketides having a predicted structure that are not otherwise available. Modifications may be made to the DNA sequence that either alter the initial carboxylic acid building block used or alter the building block added at any of the condensation steps. The platenolide synthase gene may also be modified to alter the actual number of condensation steps done, thereby changing the size of the carbon backbone. Submodules that are part of the present invention may be selectively inactivated thereby giving rise to predictable, novel polyketide structures. Modifications to portions of the DNA sequence that encode the post-condensation processing activities will alter the functional groups appearing at the various condensation sites on the carbon chain backbone.

One skilled in the art is fully familiar with the degeneracy of the genetic code. Consequently, the skilled artisan can modify the specific DNA sequences provided by this disclosure to provide proteins having the same or improved characteristics compared to those polypeptides specifically provided herein. Also, one skilled in the art can modify the DNA sequences to express an identical protein to those provided, albeit expressed at higher levels. Furthermore, one skilled in the art is familiar with means to prepare synthetically, either partially, or in whole, DNA sequences which would be useful in preparing recombinant DNA vectors or coding sequences which are encompassed by the current invention. Additionally, recombinant means for modifying the DNA sequences provided may include for example site-directed deletion or site-directed mutagenesis. These techniques are well known to those skilled in the art and require no further elaboration here. Consequently, as used herein, DNA which is isolated from natural sources, prepared synthetically or semi-synthetically, or which are modified by recombinant DNA methods, are within the scope of the present invention.

Likewise, those skilled in the art will recognize that the polypeptides of the invention may be expressed recombinantly. Alternatively, these polypeptides may be synthesized as well, either in whole or in part, by conventional known non-recombinant techniques; for example, solid-phase synthesis. Thus, the present invention should not be construed as necessarily limited to any specific vector constructions or means for production of the specific polyketide synthase molecules exemplified. These alternate means for preparing the present polypeptides are meant to be encompassed by the present invention.

Many cyclized polyketides undergo glycosidation at one or more sites. Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. The process of converting platenolide to spiramycin is well known in the art. The present invention also provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide. The principles have already been described above. In addition, any product resulting from post-transcriptional or post-translational modification in vivo or in vitro based on the DNA sequence information disclosed here are meant to be encompassed by the present invention.

The following example is provided for exemplification purposes only and is not intended to limit the scope of the invention which has been described in broad terms above.

Example 1:

20

40

50

Specific experimental details and results from the sequencing of platenolide synthase.

The DNA sequence of the S. ambofaciens platenolide synthase (srmG) gene can be obtained by sequencing inserts of recombinant DNA subclones containing contiguous or overlapping DNA segments of the region indicated in

Figure 3. All sequences representing srmG are fully contained in the overlapping cosmid clones pKC1080 and pKC1306 (Figure 3). The sequence can be obtained by subcloning and sequencing the fragments bounded by Nrul sites at position 1, 0.3 kb, 8.2 kb, 14.1 kb, 20.2 kb, 29.5 kb, 31.4 kb, 41.1 kb and 42.0 kb. In order to obtain the srmG region on a single fragment, the 25.0 kb fragment bounded by the Nrul site at position 1 and the Sful site at 25.0 kb should be isolated from a partial digestion of pKC1080 with restriction enzymes Nrul and Sful. The 17.8 kb DNA fragment bounded by the Sful sites at 25.0 kb and 42.8 kb should be isolated from a digestion of pKC1306 with the restriction enzyme Sful. The resulting fragments should be ligated and cloned in an appropriate recombinant DNA vector. Clones containing the correct orientation of the two ligated fragments can be identified by restriction enzyme site mapping.

The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be construed as limited to the particular forms disclosed, since they are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: ELI LILLY AND COMPANY (B) STREET: Lilly Corporate Center (C) CITY: Indianapolis (D) STATE: Indiana (E) COUNTRY: United States of America (F) ZIP: 46285
	(ii) TITLE OF INVENTION: PLATENOLIDE SYNTHASE GENE
15	(iii) NUMBER OF SEQUENCES: 6
20	 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: K. G. Tapping (B) STREET: Erl Wood Manor (C) CITY: Windlesham (D) STATE: Surrey (E) COUNTRY: United Kingdom (F) ZIP: GU20 6PH
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: Macintosh (C) OPERATING SYSTEM: Macintosh 7.0 (D) SOFTWARE: Microsoft Word 5.1
30	
35	
40	
	(2) INFORMATION FOR SEQ ID NO:1:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44377 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: DNA (genomic)
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 35014002
55	(ix) FEATURE: (A) NAME/KEY: CDS

(B) LOCATION: 14046..20036

(ix) FEATURE:

(A) NAME/REY: CDS
(B) LOCATION: 20110..31284

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 31329..36071

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 36155..41830

15

20

25

30

40

45

50

55

5

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GACCGCTCGG GGAGACCTGA CATATTCGTC GCGAAGTGGT TGTCCGCGCC GCGAGGTACT	60
GAAATCTTCT CCGCTCGCCC AGGACTCCGC GTGCAGGTCA CCGGAGTGCG CGACCGGCCG	120
GGACGTCGGA GCGCCGACCC TGCGGACCTG GTGCGATGCC GTGTGGTCCC GCATGATCCC	180
GCGCCGTCTC CGGTGACGAG AATCGGTGGA CAATCTCCGA ACTTGACACA ATTGATTGTC	240
GTTCACCGGC CGTTCCTGTC GCCCGGCAGT TCGCCCGGTG TACGCTCGGG AAGATCAAGA	300
AAAGGCAGAA AAGCCACGGC GTGGTACGGC GAACATATGA GGGATGCAGG TGTCTGGAGA	360
ACTCGCGATT TCCCGCAGTG ACGACCGGTC CGACGCCGTT GCCGTGGTCG GAATGGCGTG	420
CCGGTTTCCC GGCGCCCCGG GAATTGCCGA ATTCTGGAAA CTGCTGACCG ACGGAAGGGA	480
CGCGATCGGC CGGGACGCCG ACGGCCGCCGC GCGCGCATG ATCGAGGCGC CCGGCGACTT	540
CGACGCCGCC TTCTTCGGCA TGTCACCCCG CGAGGCCGCC GAGACCGACC CCCAGCAGCG	600
CCTGATGCTC GAACTCGGCT GGGAGGCTCT GGAGGACGCC GGCATCGTCC CCGGCTCCCT	660
GCGCGGCGAG GCGGTCGGCG TCTTCGTCGG GGCCATGCAC GACGACTACG CCACCCTGCT	720
CCACCGCGCC GGCGCCGCG TCGGCCCCCA CACCGCCACC GGCCTCCAGC GCGCCATGCT	780
CGCCAACCGG CTCTCCTACG TCCTGGGGAC GCGCGGCCCC AGCCTCGCGG TCGACACCGC	840
CCAGTCGTCC TCCCTGGTCG CCGTGGCCCT CGCCGTCGAG AGCCTGCGGG CCGGCACCTC	900
CCGCGTCGCC GTCGCCGGGG GCGTCAACCT GGTCCTCGCC GACGAGGGAA CGGCCGCCAT	960
GGAACGCCTC GGCGCGCTGT CACCCGACGG CCGCTGCCAC ACCTTCGACG CCCGTGCCAA	1020
CGGCTATGTC CGCGGTGAGG GCGGCGCCGC CGTCGTCCTG AAGCCCCTCG CCGACGCCCT	1080
GGCCGACGGG GACCCCGTGT ACTGCGTGGT GCGTGGCGTC GCCGTCGGCA ACGACGGCGG	1140
CGGCCCCGGG CTGACCGCTC CCGACCGCGA GGGACAGGAG GCGGTGCTCC GGGCCGCCTG	1200
CGCCCAGGCC CGGGTCGACC CCGCCGAGGT GCGTTTCGTC GAACTGCACG GCACGGGAAC	1260

	CCCCCTGGGC	GACCCGGTCG	AGGCACACGC	CCTCGGCGCG	GTGCACGGCT	CCGGTCGGCC	1320
	GGCCGACGAC	CCCCTGCTGG	TGGGGTCGGT	GAAGACCAAC	ATCGGCCACC	TGGAGGGCGC	1380
5	CGCCGGCATC	GCGGGCCTGG	TCAAGGCCGC	ACTGTGCCTG	CGGGAACGCA	CCCTTCCCGG	1440
	CTCGCTGAAC	TTCGCCACCC	CCTCTCCGGC	CATCCCGCTG	GACCAGCTCC	GGCTGAAGGT	1500
10	GCAGACCGCT	GCCGCCGAGC	TGCCGCTCGC	ccccccccc	GCACCCCTGC	TGGCGGGTGT	1560
,,,	CAGTTCGTTC	GGCATCGGTG	GCACCAACTG	CCATGTGGTC	CTGGAACACC	TGCCCTCCCG	1620
	GCCCACCCCG	GCCGTCTCCG	TCGCCGCCTC	GCTTCCGGAC	GTCCCGCCGC	TGTTGTTGTC	1680
15	CCCCCCCTCC	GAGGGGGCGT	TGCGGGCGCA	GCCGCTGCGG	TTGGGTGAGT	ACGTGGAGCG	1740
	GGTGGGCGCG	GATCCGCGGG	ATGTGGCTTA	TTCGCTGGCT	TCGACGCGGA	CTCTTTTCGA	1800
	GCACCGTGCG	GTGGTGCCGT	GTGGTGGGCG	TGGGGAGCTC	GTCGCTGCTC	TTCGTCCGTT	1860
20	TCCTCCCGGG	AGGGTGTCTG	GGGTGTGCG	GTCCGGGCGG	GCTGTGCCGG	CTCCCCTCCC	1920
	GCTCTTCTTC	ACGGGTCAGG	GTGCGCAGTG	GGTTGGTATG	GGGCGTGGGT	TGTATGCGGG	1980
25	GGCTGGGGTG	TTTGCGGAGG	TGCTGGATGA	GCTCTTGTCG	ATGGTGGGG	AGGTGGATGG	2040
25	TCCCTCCTTC	CGGGATGTGA	TGTTCGGCGA	CGTCGACGTG	GACGCGGGTG	CCGGGGCTGA	2100
	TGCGGGTGCC	GCTGCGGGTG	CTGGGGTCGG	TTCTGGTTCC	GCTTCTCTGG	GTGGGTTGTT	2160
30	GGGTCGGACG	GAGTTTGCTC	AGCCTGCGTT	GTTTGCGTTG	GAGGTGGCGT	TCTTCCGGC	2220
	GTTGGAGGCT	CGGGGTGTGG	AGGTGTCGGT	GCTGTTGGGT	CATTCGGTGG	GGGAGGTGGC	2280
	TGCTGCGTAT	GTGGCGGGG	TGTTGTCGTT	GGGTGATGCG	GTGCGGTTGG	TGGTGGCGCG	2340
35	CCCTCCCTTC	ATGGGTGGGT	TGCCGGTGGG	TGGGGGGATG	TGGTCGGTGG	GGGCGTCGGA	2400
	CTCCCTCCTC	CGGGGGTTG	TTGAGGGGTT	GGGGGAGTGG	GTGTCGGTTG	CGGCGGTGAA	2460
40	TCCCCCCCC	TCGCTGCTGT	TGTCGGGTGA	TGTGGGTGTG	CTGGAGTCGG	TGGTTGCCTC	2520
40	GCTGATGGGG	GATGGGGTGG	AGTGCCGGCG	GTTGGATGTG	TCGCATGGGT	TTCATTCGGT	2580
	GTTGATGGAG	CCGCTGTTGG	GGGAGTTCCG	GGGGGTTGTG	GAGTCGTTGG	AGTTCGGTCG	2640
45	GCTGCGGCCG	GCTCTCCTCC	TGGTGTCGGG	TGTGTCGGGT	CCCCTCCTCC	GTTCGGGGGA	2700
	GTTGGGGGAT	CCGGGGTATT	GGGTGCGTCA	TGCGCGGGAG	GCGGTGCGTT	TCGCGGATGG	2760
	GGTGGGGGTG	GTGCGTGGTC	TGGGTGTGGG	GACGTTGGTG	GAGGTGGGTC	CGCATGGGGT	2820
50	GCTGACGGG	ATGGCGGGTG	AGTGCCTGGG	GGCCGGTGAT	GATGTGGTGG	TGGTGCCGGC	2880
	GATGCGGCGG	GCCGTGCGG	AGCGGGAGGT	GTTCGAGGCG	GCGCTGGCGA	CGGTGTTCAC	2940
<i>EE</i>	CCGGGACGCC	GGCCTGGACG	CCACGGCACT	CCACACCGGG	AGCACCGGCC	GGCGCATCGA	3000
55	CCTCCCCACC	TACCCCTTCC	AACGCCGTAC	CCACTGGTCG	CCCGCGCTGA	GCCGGCCGGT	3060

		CACGGCCGAC	GCCGGGGCGG	GTGTGACCGC	CACCGATGCC	GTGGGGCACA	GCGTCTCCCC	3120
	5	GGACCCGGAG	AGCACCGAGG	GGACGTCCCA	CAGGGACACG	GACGACGAGG	CGGACTCGGC	3180
		GTCACCGGAG	CCGATGTCCC	CCGAGGATGC	CGTCCGCCTG	GTCCGCGAGA	GCACCGCGC	3240
		CCTCCTGGGC	CACGACGATC	CCGGCGAGGT	CGCGCTCGAC	CGCACCTTCA	CCTCCCAGGG	3300
1	0	CATGGACTCG	GTGACCGCGG	TCGAGCTGTG	CGACCTGCTG	AAGGCCCCT	CGGGGCTCCC	3360
		CCTCGCCGCC	ACGCTGGTCT	ACGACCTGCC	CACCCCCCCT	GCCGTCGCCG	AGCACATCGT	3420
	_	GGAAGCCGCG	GGCGGGCCGA	AGGACTCGGT	TGCCGGTGGG	CCCGGAGTGC	TCTCGTCGGC	3480
1	5	CGCGGTAGGG	GTGTCGGACG	ccceeecee	CAGCCGGGAC	GACGACGACC	CGATCGCCAT	3540
		CGTGGGTGTC	GGCTGCCGGC	TCCCCGGCGG	CGTCGACTCG	CGCGCCGCTC	TCTGGGAGCT	3600
2	0	GCTGGAGTCC	GGCGCCGACG	CCATCTCGTC	CTTCCCCACC	GACCGCGGCT	GGGACCTCGA	3660
		CGGGCTGTAC	GACCCCGAGC	CCGGGACGCC	CGGCAAGACC	TATGTGCGGG	AGGGCGGGTT	3720
		CCTGCACTCG	GCGGCCGAGT	TCGACGCGGA	GTTCTTCGGG	ATATCGCCGC	GCGAGGCCAC	3780
2	25	GGCCATGGAC	CCGCAGCAGC	GCTTGCTGCT	GGAAGCGTCG	TGGGAGGCCC	TCGAGGACGC	3840
		CGGAGTGCTC	CCCGAGTCAC	TGCGCGGCGG	CGACGCCGGA	GTGTTCGTCG	GCGCCACCGC	3900
		ACCGGAGTAC	GGGCCGAGGC	TTCACGAGGG	AGCGGACGGA	TACGAGGGGT	ACCTGCTCAC	3960
3	80	CGGCACCACC	GCGAGCGTGG	CCTCCGGCCG	GATCGCCTAC	ACCCTCGGCA	CCGGCGGACC	4020
		GGCGCTCACC	GTCGACACCG	CCTCCTC	GTCCCTGGTG	GCGCTGCACC	TGGCCGTGCA	4080
3	15	GCCCTCCCC	CGGGGCGAGT	GCGGGCTGGC	TCTGGCGGGC	GGCGCCACGG	TGATGTCGGG	4140
		GCCCGGCATG	TTCGTGGAGT	TCTCGCGGCA	GCGCGGGCTC	GCCCCCGACG	GCCGCTGCAT	4200
		GCCGTTCTCC	GCCGATGCCG	ACGGTACGGC	CTGGTCCGAG	GGTGTCGCCG	TACTGGCACT	4260
4	10	GGAGCGGCTC	TCCGACGCCC	GGCGTGCGGG	ACACCGGGTG	CTGGGCGTGG	TGCGGGGCAG	4320
		TGCGGTCAAC	CAGGACGGTG	CCAGCAACGG	CCTGACCGCT	CCCAACCGCT	CCGCGCAGGA	4380
		GGGCGTCATC	CGAGCTGCCC	TGGCCGACGC	CGCCTCGCG	CCGGGTGACG	TGGACGCGGT	4440
4	5	GGAGGCGCAC	GGTACGGGGA	CGGCGCTGGG	CGATCCGATC	GAGGCGAGCG	CGCTGCTGGC	4500
		CACGTACGGG	CGTGAGCGGG	TGGGCGACCC	CTTGTGGCTC	GGGTCGCTGA	AGTCCAACGT	4560
5	0	CGGTCACACC	CAGGCCGCCG	CGGGGCCGC	GGCTGTGGTC	AAGATGCTGC	TTGCCCTGGA	4620
		GCACGGCACG	CTGCCGCGGA	CACTTCACGC	GGACCGGCCC	AGCACGCACG	TCGACTCGTC	4680
		GTCGGGCACC	GTCGCCCTGC	TGGCAGAGGC	GCGCCGGTGG	CCCCGGCGGT	CGGACCGCCC	4740
5	5	GCGCCGGGCG	GCTGTGTCGT	CGTTCGGGAT	CAGTGGGACG	AACGCGCATC	TGATCATCGA	4800

	GGAGGCGCCG	GAGTGGGTCG	AGGACATCGA	CGGCGTCGCT	GCTCCTGACC	GCGGTACCGC	4860
	GGACGCGGCT	GCTCCGTCGC	CCCTCTTCTT	GTCCGCGCGG	TCGGAGGGGG	CCTTCCGGCC	4920
5	GCAGGCGGTG	CCCTTCCCTC	AGTACGTGGA	CCCCCTCCCT	GCGGATCCGC	GGGATGTGGC	4980
	TTATTCGCTG	GCTTCGACGC	GGACTCTTTT	CGAGCACCGT	GCGGTGGTGC	CCTCTCCTCC	5040
10	GCGTGGGGAG	CTCGTCGCTG	CTCTTGGTGG	GTTTGCTGCC	GGGAGGGTGT	CTGGGGGTGT	5100
	GCGGTCCGGG	CGGGCTGTGC	CGGGTGGGGT	CCCCCTCTTC	TTCACGGGTC	AGGGTGCGCA	5160
	CTCCCTTCCT	ATGGGGCGTG	GGTTGTATGC	CCCCCCTCCC	GTGTTTGCGG	AGGTGCTGGA	5220
15	TGAGGTGTTG	TCGATGGTGG	GGGAGGTGGA	TGGTCGGTCG	TTGCGGGATG	TGATGTTCGG	5280
	CGACGTCGAC	GTGGACGCGG	GTGCCGGGGC	TGATGCGGGT	GCCGGTGCGG	CTCCTGCCCT	5340
	CGGTTCTGGT	TCCGGTTCTG	TGGGTGGGTT	CTTCCCTCCC	ACGGAGTTTG	CTCAGCCTGC	5400
20	GCTGTTTGCG	TTGGAGGTGG	CGTTGTTCCG	GGCGTTGGAG	CCTCCCCCTC	TGGAGGTGTC	5460
	GCTCCTGTTG	GGTCATTCGG	TGGGGGAGGT	GGCTGCTGCG	TATGTGGCGG	GCCTCTTCTC	5520
25	GTTGGGTGAT	GCGGTGCGGT	TGGTGGTGGC	CCCCCCTCCC	TTGATGGGTG	CCTTCCCCCT	5580
	GGGTGGGGG	ATGTGGTCGG	TGGGGGCGTC	GGAGTCGGTG	GTGCGGGGG	TTCTTGAGGG	5640
	CTTCCCCCAC	TGGGTGTCGG	TTGCGGCGGT	GAATGGGCCG	CCCTCCCTCC	TCTTCTCCCC	5700
30	TGATGTGGGT	GTGCTGGAGT	CGGTGGTTGC	CTCGCTGATG	GGGGATGGGG	TGGAGTGCCG	5760
	GCGGTTGGAT	GTGTCGCATG	GGTTTCATTC	GGTGTTGATG	GAGCCGGTGT	TGGGGGAGTT	5820
	CCGGGGGGTT	GTGGAGTCGT	TGGAGTTCGG	TCGGGTGCGG	CCCCCTCTCC	TECTECTETC	5880
35	GGGTGTGTCG	GCTGGGGTGG	TGGGTTCGGG	GGAGTTGGGG	GATCCGGGGT	ATTGGGTGCG	5940
	TCATGCGCGG	GAGGCGGTGC	GTTTCGCGGA	TGGGGTGGGG	GTGGTGCGTG	CTCTCCCTCT	6000
40	GGGGACGTTG	GTGGAGGTGG	GTCCGCATGG	GGTGCTGACG	GGGATGGCGG	GTGAGTGCCT	6060
	GGGGGCCGGT	GATGATGTGG	TGGTGGTGCC	GCCGATGCGG	CGGGGCCGTG	CGGAGCGGGA	6120
	GGTGTTCGAG	GCGGCGCTGG	CGACGGTGTT	CACCCGGGAC	CCCCCCTCC	ACCCACGC	6180
45	ACTCCACACC	GGGAGCACCG	GCCGGCGCAT	CGACCTCCCC	ACCTACCCCT	TCCAACGCGA	6240
	CCGCTACTGG	CTGGACCCCG	TTCGCACCGC	CCTGACCGGC	GTCGAGCCCG	CCGGCTCGCC	6300
	GCCGGACGCT	CGGGCCACTG	AGCGGGGACG	GTCGACGACG	GCCGGGATCC	GCTACCGCGT	6360
50	CGCTTGGCAG	CCGGCCGTCG	TCGACCGCGG	CAACCCCGGG	CCTGCCGGTC	ATGTGCTGCT	6420
	TCTGGCCCCG	GACGAGGACA	CCCCCGACTC	CGGACTCGCC	CCCGCGATCG	CACGTGAACT	6480
55	CGCCGTGCGC	GGGCCGAGG	TCCACACCGT	CGCCGTGCCG	GTCGGTACAG	GCCGGGAGGC	6540
-	AGCCGGGGAC	CTCTTCCGGG	CCGCCGGTGA	CCCTCCCCCC	CGCAGCACCC	GACTTCTGTG	6600

	GCTCGCCCCG GCCGAGCCGG ACGCGGCCGA CGCCGTCGCC CTCGTCCAGG CGCTGGGCGA	6660
5	GGCGGTACCC GAAGCCCCGC TCTGGATCAC CACCCGTGAG GCGGCGGCCG TGCGGCCGCA	6720
	CGAGACCCCT TCCGTCGGGG GCGCTCAGCT GTGGGGACTC GGACAGGTCG CCGCCCTCCA	6780
	ACTEGEGEGE CECTEGEGEC CCTTGCCGGA CCTGCCCGGG AGTGCGTCGC CCGCGGTGCT	6840
10	CCGTACGTTC GTCGGGGGCC TGCTCGCCGG GGGAGAGAAC CAGTTCGCGG TACGGCCCTC	6900
	CGGCGTCCAT GTCCGCCGTG TGGTTCCCGC GCCCGTCCCC GTCCCGGCCT CCGCTCGCAC	6960
15	CGTCACCACG GCCCCCGCCA CCGCCGTCGG CGAGGACGAC CGGAACGACA CCTCGGACGT	7020
13	GGTCGTGCCG GACGACCGGT GGTCCTCCGG CACCGTACTG ATCACCGGGG GCACCGGTGC	7080
	CCTGGGTGCG CAGGTCGCCC GCAGGCTCGC CCGGTCGGGC GCCGCGCGTC TGCTCCTGGT	7140
20	GGGCCGGCGC GGCGCGGCG GCCCCGGAGT GGGCGAACTC GTCGAGGAGC TGACGGCGCT	7200
	CGGTTCCGAA GTGGCCGTCG AGGCCTGCGA CGTCGCCGAC CGGGACGCAC TGCCCGCGCT	7260
	CCTCGCGGGC CTCCCCGAGG AGCGGCCCCT CGTCGCCGTA CTGCACGCGG CAGGTGTGCT	7320
25	CGACGACGGT GTGCTCGACT CGCTCACCTC CGACCGGGTG GACGCCGTAC TGCGGGACAA	7380
	GGTCACCGCC GCCCGTCACC TGGACGAGCT GACCGCGGAC CTTCCGCTCG ACGCCTTCGT	7440
20	GCTCTTCTCC TCCATCGTCG GCGTGTGGGG CAACGGAGGG CAGGCCGTCT ACGCGGCCGC	7500
30	CAACGCCGCG CTCGACGCCC TGGCGCAGCG GCGCCGGGCC AGGGGAGCCC GTGCCGCCTC	7560
	GATCGCCTGG GGGCCGTGGG CCGGTGCCGG AATGGCCTCC GGAACGGCGG CGAAGTCCTT	7620
35	CGAACGGAC GGCGTCACGG CCCTGGACCC CGAGCGCGCG CTCGACGTCC TCGACGACGT	7680
	GGTGGGCGCC GGCGGGACCT CTGCCGCAGG GACGCACGCG GCCGGCGAGA GCTCCCTGCT	7740
	CGTCGCCGAC GTGGACTGGG AGACCTTCGT CGGGCGTTCG GTCACCCGCC GTACCTGGTC	7800
40	GCTCTTCGAC GGCGTCTCCG CCGCCCGTTC GGCGCGTGCC GGCCATGCCG CGGACGACCG	7860
	TGCCGCTCTC ACCCCAGGGA CGCGGCCGGG CGACGGCGCA CCGGGCGGG	7920
45	CGGGGGCGAG GGCCGGCCGT GGCTCTCCGT CGGCCCCTCG CCGGCGGAAC GCCGTCGTGC	7980
45	TOTGCTCACG CTTGTGCGCT CGGAGGCCGC CGGGATCCTG CGCCACGCCT CGCCCGACGC	8040
	GGTCGACCCG GAGCTGGCCT TCCGGTCCGC CGGGTTCGAC TCCCTCACCG TTCTCGAACT	8100
50	GCGTAACCGC CTGACCGCTG CCACCGGCCT GAACCTGCCG AACACGCTGC TCTTCGACCA	8160
	CCCGACCCC CTCTCGCTCG CCTCCCACCT GCACGACGAA CTGTTCGGTC CCGACAGCGA	8220
	GGCGGAGCCG GCAGCGGCCG CCCCCACGCC GGTCATGGCC GACGAGCGTG AGCCGATCGC	8280
55	GATCGTGGGC ATGGCGTGCC GTTACCCGGG CGGTGTGGCG TCGCCGGACG ACCTGTGGGA	8340

	CCTGGTGGCC	GGTGACGGGC	ACACGCTCTC	CCCGTTCCCG	GCCGACCGTG	GCTGGGACGT	8400
	CGAGGGGCTG	TACGACCCGG	AGCCGGGGGT	GCCGGGCAAG	AGCTATGTAC	GGGAAGGCGG	8460
5	GTTCCTGCGT	TCCGCGGCCG	AGTTCGACGC	GGAGTTCTTC	GGGATATCGC	CGCGCGAGGC	8520
	CACGGCCATG	GACCCGCAGC	AGCGGTTGCT	GCTGGAGACG	TCGTGGGAGG	CGCTGGAGCG	8580
10	GGCCGGCATC	GTTCCGGACT	CGCTGCGCGG	CACCCGGACC	GGTGTCTTCA	GCGGCATCTC	8640
	CCAGCAGGAC	TACGCGACCC	AGCTGGGGGA	CGCCGCCGAC	ACCTACGGCG	GCCATGTGCT	8700
	CACGGGGACC	CTCGGCAGTG	TGATCTCCGG	TCGGGTTGCC	TATGCGTTGG	GGTTGGAGGG	8760
15	GCCGGCGCTG	ACGGTGGACA	CGGCGTGTTC	GTCGTCGTTG	GTGGCGTTGC	ATCTGGCGGT	8820
	GCAGTCGTTG	CGGCGGGGTG	AGTGTGATCT	GGCGTTGGCC	GGTGGGGTGA	CGGTGATGGC	8880
	GACGCCGACG	GTGTTCGTGG	AGTTCTCGCG	GCAGCGGGG	CTGGCGGCGG	ACGGGCGGTG	8940
20	CAAGGCGTTC	GCGGAGGGTG	CGGACGGGAC	GCCGTCGCCG	GAGGGTGTGG	GTGTGCTGCT	9000
	GGTGGAGCGG	CTTTCCGACG	CGCGCCGCAA	CGGTCATCGG	GTGCTGGCGG	TGCTGCGGGG	9060
25	CAGTGCGGTC	AATCAGGACG	GTGCGAGCAA	TGGGCTGACG	GCGCCGAGTG	CTCCGCGCA	9120
	GCAGCGGGTG	ATCCGTGAGG	CGCTGGCTGA	TGCGGGGCTG	GTGCCCGCCG	ACGTGGATGT	9180
	GGTGGAGGCG	CACGGTACGG	GGACGGCGCT	GGGTGATCCG	ATCGAGGCGG	GTGCGCTGCT	9240
30	GGCCACGTAC	GGGCGGGAGC	GGGTCGGCGA	TCCGTTGTGG	CTCGGGTCGT	TGAAGTCGAA	9300
	CATCGGGCAT	GCGCAGGCGG	CTGCGGGTGT	GGGTGGTGTG	ATCAAGGTGG	TGCAGGGGAT	9360
	GCGGCATGGG	TCGTTGCCGC	GGACGCTGCA	TGTGGATGCG	CCGTCGTCGA	AGGTGGAGTG	9420
35	CCCTTCCCCT	GCGGTGGAGC	TGCTGACCGA	GACCCGGTCG	TGGCCGCGGC	GCCTCGAGCG	9480
	GGTGCGGCGG	GCCGCGGTGT	CGGCGTTCGG	GGTGAGCGGG	ACCAACGCCC	ATGTGGTCCT	9540
40	GGAGGAAGCG	CCGGCGGAGG	CCGGGAGCGA	GCACGGGGAC	GGCCCTGAAC	CTGAGCGGCC	9600
	CGACGCGGTG	ACGGGTCCGT	TGTCGTGGGT	GCTTTCTGCG	CGGTCGGAGG	GGCGTTGCG	9660
	GGCGCAGGCG	GTGCGGTTGC	GTGAGTGTGT	GGAGCGGGTG	GGTGCGGATC	CCCCCGATCT	9720
45	GCCGCGGTCG	TTGGTGGTGT	CCCCTCCCTC	GTTCGGTGAG	CCTCCCCTCC	TGGTGGGCCG	9780
	GGGCGTGAG	GAGTTGCTGG	CGGGTCTGGA	TGTGGTGGCT	GCCGGGGCTC	CTCTCCCTCT	9840
	CTCTTCGGGG	CCCGGTGCTG	TCCTCCCCCC	GACTCCCGTG	CGGGGTCGTG	CCCTCCCCCT	9900
50	GTTGTTCACG	GCTCAGGGTG	CGCAGTGGGT	TGGTATGGGG	CGTGGGTTGT	ATGCGGGGG	9960
	TGGGTGTTT	GCGGAGGTGC	TGGATGAGGT	GTTGTCGGTG	GTGGGGGAGG	TGGATGGTCG	10020
55	GTCGTTGCGG	GATCTGATCT	TCGCGGATGC	TGACTCGGTT	TTGGGTGGGT	TGTTGGGTCG	10080
	GACGGAGTTT	GCTCAGCCTG	CGTTGTTTGC	CTTCCACCTC	CCCTTCTTCC	GGCCTTGGA	10140

	GGCTCGGGGT	GTGGAGGTGT	CGGTGGTGTT	GGGTCATTCG	GTGGGGGAGG	TGGCTGCTGC	10200
5	GTATGTGGCG	GGGGTGTTGT	CGTTGGGTGA	TGCGGTGCGG	TTGGTGGTGG	CCCCCCCTCC	10260
	GTTGATGGGT	GGGTTGCCGG	TCCCTCCCCC	GATGTGGTCG	GTGGGGGGGT	CGGAGTCGGT	10320
	GGTGCGGGG	GTTGTTGAGG	GGTTGGGGGA	GTGGGTGTCG	GTTGCGGCGG	TGAATGGGCC	10380-
10	GCGGTCGGTG	GTGTTGTCGG	GTGATGTGGG	TGTGCTGGAG	TCGGTGGTTG	TCACGCTGAT	10440
	GGGGGATGGG	GTGGAGTGCC	GGCGGTTGGA	TGTGTCGCAT	GGGTTTCATT	COGTGTTGAT	10500
	GGAGCCGGTG	TTGGGGGAGT	TCCGGGGGGT	TGTGGAGTCG	TTGGAGTTCG	CTCGGGTGCG	10560
15	GCCGGGTGTG	GTGGTGGTGT	CGGGTGTGTC	CCCTCCCCTC	GTGGGTTCGG	GGGAGTTGGG	10620
	GGATCCGGGG	TATTGGGTGC	GTCATGCGCG	GGAGGCGGTG	CGTTTCGCGG	ATGGGGTGGG	10680
20	GGTGGTGCGT	GGTCTGGGTG	TGGGGACGTT	GGTGGAGGTG	GGTCCGCATG	GGGTGCTGAC	10740
	GGGGATGGCG	GGTCAGTGCC	TGGAGGCCGG	TGATGATGTG	GTGGTGGTGC	CGCCGATGCG	10800
	GCGGGGCCGT	CCGGAGCGGG	AGGTGTTCGA	GGCGGCGCTG	GCGACGGTGT	TCACCCGGGA	10860
25	CCCCCCCTC	GACGCCACGA	CACTCCACAC	CGGGAGCACC	GGCCGACGCA	TCGACCTCCC	10920
	CACCTACCCC	TTCCAACACA	ACCGCTACTG	GGCAACCGGC	TCAGTGACCG	GTGCGACCGG	10980
	CACCTCGGCA	GCCGCGCGCT	TCGGCCTGGA	GTGGAAGGAC	CACCCCTTCC	TCAGCGGCGC	11040
30	CACGCCGATA	GCCGGCTCCG	GCGCGCTGCT	CCTCACCGGC	AGGGTGGGGC	TCGCTGCCCA	11100
	CCCGTGGCTG	GCCGACCACG	CCATCTCCGG	CACGGTGCTG	CTCCCCGGAA	CGGCGATCGC	11160
35	CGACCTGCTG	CTGCGGGGGG	TCGAGGAGGT	CGGCGCCGGA	GGGGTCGAGG	AACTGACGCT	11220
	CCATGAGCCC	CTGCTCCTCC	CCGAGCGAGG	CGGCCTGCAC	GTCCAGGTGC	TGGTCGAGGC	11280
	GGCGACGAG	CAGGGACGGC	GTGCCGTGGC	AGTCGCCGCA	CGCCCGGAGG	GCCCTGGGCG	11340
40	GGACGGTGAG	GAACAGGAGT	GGACCCGGCA	CGCGGAAGGC	GTGCTCACCT	CCACCGAGAC	11400
	GGCCGTTCCG	GACATGGGCT	GGGCCGCCGG	GCCTGGCCG	CCGCCCGGTG	CCGAGCCGAT	11460
45	CGACGTCGAG	GAGCTGTACG	ACGCGTTCGC	CGCGGACGGC	TACGGCTACG	GCCCGGCCTT	11520
45	CACCGCACTG	TCCGGCGTGT	GGCGTCTCGG	CGACGAACTC	TTCGCCGAGG	TCCGCCGCC	11580
	CGCGGGGGGC	GCGGGCACGA	CCGGTGACGG	TTTCGGCGTC	CACCCCGCAC	TCTTCGATGC	11640
50	GGCCCTCCAC	CCGTGCCGCG	CCGGCGGGCT	GCTGCCCGAC	ACGGGCGGCA	CCACCTGGGC	11700
	GCCGTTCTCC	TGGCAGGGCA	TCGCGCTCCA	CACCACCGGA	GCCGAGACGC	TCCCCGTCAG	11760
	ACTGGCCCCT	GCGGCCGGCG	GCACCGAGTC	GCCTTCTCC	GTACAGGCCG	CCGACCCGGC	11820
55	GGGCACCCCG	GTCCTCACCC	TCGACGCACT	GCTGCTCCGC	CCGGTGACCC	TGGGGAGGGC	11880

		CGACGCGCCG	CAACCGCTGT	ACCGCGTCGA	CTGGCAGCCG	GTCGGCCAGG	GGACCGAGGC	11940
	5	CTCCGGCGCC	CAGGGCTGGA	CCCTCCTCCC	GCAGGCCGCG	GCCGAGACGG	TCGCGCAGCC	12000
		CGCCGCCCAT	GCGGACCTCA	CCGCCCTGCG	TACGGCTGTG	GCCGCGGCGG	GAACACCCGT	12060
		GCCCCGGCTG	CTGGTCGTGT	CGCCGGTGGA	CACCCGGCTG	GACGAGGGC	CGGTGCTGGC	12120
1	o	GGACGCCGAG	GCTCGGGCCC	GTGCGGGTGA	CGGCTGGGAC	GACGATCCCC	TACGTGTCGC	12180
		CCTCGGGCGC	GGCCTGACCC	TGGTCCGGGA	GTGGGTCGAG	GACGAACGGT	TGGCGGACTC	12240
		CCGGCTCGTC	GTCCTCACCC	CTCCCCCCT	GCCGCCCGT	CCCGGCGATG	TGCCGGACCT	12300
1	5	GACAGGTGCG	GCCCTGTGGG	GGCTGCTCCG	CTCCGCGCAG	TCGGAGTATC	CGGACCGCTT	12360
		CACCCTCATC	GACGTGGACG	ATTCCCCCGA	GTCCCGTGCG	GCTCTGCCCC	GGGCTCTGGG	12420
	10	ATCGGCCGAG	CGACAACTCG	CCCTGCGGAC	GGGCGACGTG	CTGGCGCCGG	CCCTGGTCCC	12480
2	20	GATGGCCACC	ceccecee	AGACCACTCC	AGCGACGGCG	GTCGCCTCGG	CGACAACACA	12540
		GACACAGGTC	ACCGCGCCCG	CTCCCGACGA	CCCGGCTGCG	GATGCCGTGT	TCGACCCGGC	12600
2	25	GGGCACCGTA	CTGATCACCG	GCGGCACCGG	CGCCCTGGGA	CGGCGTGTCG	CCTCGCACCT	12660
		CGCGCGCCGG	TACGGCGTAC	GCCACATGCT	TCTGGTCAGC	AGGCGTGGAC	CGGACGCCCC	12720
		CGAGGCCGGT	CCCCTGGAAC	GGGAACTCGC	CGGTCTCGGA	GTCACCGCCA	CCTTCCTGGC	12780
3	10	ATGCGACCTC	ACCGACATCG	AGGCCGTACG	GAAGGCCGTC	GCCGCGGTGC	CGTCGGACCA	12840
		CCCGCTGACC	GGTGTGGTGC	ACACCGCCGG	CGTGCTGGAC	GACGGCGCCC	TGACCGGCCT	12900
		GACCCGGCAA	CGCCTCGACA	CCGTGCTGCG	GCCCAAGGCC	GACGCCGTGC	GGAACCTCCA	12960
3	15	CGAGGCGACC	CTCGACCGGC	CCCTCCCCCC	GTTCGTCCTG	TTCTCCGCCG	CCGCCGGACT	13020
		CCTGGGCCGC	CCCGGGCAGG	CCTCCTACGC	CGCCGCCAAC	GCGGTCCTCG	ACGCGCTCGC	13080
4	0	GGGAGCCCGC	cecececce	GACTGCCCGC	AGTGTCCCTG	GCGTGGGGCC	TGTGGGACGA	13140
		GCAGACGGGC	ATGGCAGGAG	GCCTCGACGA	GATGGCCCTG	CGCGTGCTGC	GCCGGGACGG	13200
		CATCGCCGCG	ATGCCTCCGG	AGCAGGGGCT	CGAACTGCTC	GACCTGGCCC	TGACCGGACA	13260
4	5	CCGGGACGGA	CCCGCCGTCC	TCGTCCCCCT	CCTCCTCGAC	ccccccccc	TGCGCCGCAC	13320
		GGCGAAGGAG	cecececee	CCACGATGTC	CCCCTTGCTG	CCCCCCTCC	TGCCCGCCGC	13380
		CCTGCGCCGC	AGCGGTGGAG	CCGGCGCCCC	CGCGGCGGCC	GACCGGCACG	GCAAGGAGGC	13440
5	0	GGACCCCGGT	GCGGGACGCC	TCGCAGGGAT	GGTGGCACTC	GAAGCGGCGG	AGCGTTCCGC	13500
		GCCGTCCTT	GAGCTGGTCA	CCGAACAGGT	CGCCGAGGTC	CTCGGCTACG	CCTCCCCCCC	13560
_	-	GGAGATCGAG	CCCGAACGAC	CCTTCCGGGA	GATCGGCGTC	GACTCCCTGG	CGGCGGTGGA	13620
5.	J	GCTGCGCAAC	CGGCTCAGCC	CTCTCCTCCC	CCTGCGGTTG	CCGACCACGC	TCTCCTTCGA	13680

	CCACCCACG CCGAAGGACA TGGCGCAGCA CATCGACGGG CAGCTCCCCC GCCCGGCCGG	13740
5	AGCCTCGCCC GCGGACGCAG CGCTGGAAGG GATCGGCGAC CTCGCGCGGG CGGTCGCCCT	13800
	GCTGGGCACG GGCGACGCCC GCCGGGCCGA GGTACGAGAG CAGCTCGTCG GACTGCTGGC	13860
10	CGCGCTCGAC CCACCTGGGC GGACGGGCAC CGCCGCACCC GGCGTCCCCT CCGGTGCCGA	13920
10	TGGCGCGGAA CCGACCGTGA CGGACCGGCT CGACGAGGCG ACCGACGACG AGATCTTCGC	13980
	CTTCCTGGAC GAGCAGCTGT GACCACACCG TGGACCGACC GCATGCCGAG GAGTTGGTGG	14040
15	CAGCAATGAC CGCCGAGAAC GACAAGATCC GCAGCTACCT GAAGCGTGCC ACCGCCGAAC	14100
	TGCACCGGAC CAAGTCCCGC CTGGCCGAGG TCGAGTCGGC GAGCCGCGAG CCGATCGCGA	14160
	TCGTGGGCAT GGCGTGCCGT TACCCGGGCG GTGTGGCGTC GCCGGACGAC CTGTGGGACC	14220
20	TGGTGGCAGC CGGTACGGAC GCGGTCTCCG CGTTCCCCGT CGACCGTGGC TGGGACGTCG	14280
	AGGGGCTGTA CGACCCCGAT CCGGAGGCGG TGGGGCGTAG TTACGTGCGG GAGGGCGGGT	14340
	TCCTGCACTC GGCGGCCGAG TTCGACGCGG AGTTCTTCGG GATCTCGCCC CGTGAGGCGG	14400
25	CGGCGATGGA TCCGCAGCAG CGGTTGCTGC TGGAGACGTC GTGGGAGGGG CTGGAGCGGG	14460
	CGGGGATCGT CCCCGCGTCG CTGCGCGGCA CCCGTACCGG CGTCTTCACC GGCGTCATGT 1	14520
30	ACGACGACTA CGGGTCGCGG TTCGACTCGG CTCCGCCGGA GTACGAGGGC TACCTCGTGA 1	14580
50	ACGCCAGCGC CGGCAGCATC GCGTTCCGGTC GGGTTGCCTA TGCGTTGGGG TTGGAGGGGC 1	14640
	CGGCGCTGAC GGTGGACACG GCGTGTTCGT CGTCGTTGGT GGCGTTGCAT CTGGCGGTGC 1	14700
35	ACTCCTTGCG GCGGGTGAG TCTGATCTGG CGTTGGCCGG TGGGGTGACG GTGATGGCGA 1	4760
	CGCCGACGGT GCTCGTGGAG TTCTCGCGGC AGCGGGGGCT GGCGGCGGAC GGGCGGTGCA 1	4820
	AGGCGTTCGC GGAGGGTGCG GACGGGACGG CGTGGGCCGGA GGGTGTGGGC GTGCTGCTGG 1	4880
40	TGGAGCGGCT CTCCGACGCC CGCCGCAATG GCCATCGGGT GCTGGCGGGCA 1	4940
	GTGCGGTCAA TCAGGACGGT GCGAGCAACG GGCTGACGGC GCCGAGTGGT CCTGCGCAGC 1	5000
	AGCGGGTGAT CCGTGAGGCG CTGGCCGACG CGGGGCTGAC GCCCGCCGAC GTCGACGCGG 1	5060.
45	TCGAGGCGCA CGGCACCGGC ACACCCCTGG GCGACCCCAT CGAGGCGGGT GCGTTGCTGG 19	5120
	CCACCTATGG CAGTGAGCGC CAGGGCCAAG GTCCGTTGTG GTTGGGGTCG TTGAAGTCGA 19	5180
50	ACATCGGGCA TGCGCAGGCG GCTGCGGGTG TGGGTGGCGT GATCAAGGTG GTGCAGGCGA 19	5240
	TECESCATES STEETITECES COGACGETES ATSTEGATES GEOGREGICS AACGTGGAGT 15	5300
	GGGCTTCGGG TGCGGTGGAG CTGCTGACCG AGACCCGGTC GTGGCCGGGG CGGGTGGAGC 15	5360
55	GGGTGCGCG GGCCGCGGTG TCGGCGTTCG GGGTGAGCGG GACCAACGCC CATGTGGTCC 15	5420

	TGGAGGAAGC GCCGGCGAG GCCGGGAGCC AGCACGGGA CGGCCCTGAA CCCGAGCGGC	15480
	CCGACGCGGT GACGGGTCCG TTCTCGTGGG TGCTTTCTGC GCGGTCGGAG GGGGCGTTGC	15540
5	GGGCGCAGGC GGTGCGGTTG CGTGAGTGTG TGGAGCGGGT GGGTGCGGAT CCGCGGGATG	15600
	TOGCOGOGTC GTTGGTGGTC TCGCCTGCCGT CGTTCGGTCA GCGTGCGGTG GTGGTGGGCC	15660
10	GGGGGCGTGA GGAGTTGCTG GCGGGTCTGG ATGTGGTGGC TGCCGGGGCT CCTGTGGGTG	15720
	TGTCCGGGG CGTGTCTTCG GGGGCCGGTC CTCTCGTGCG GGGGAGTGCC GTCCGGGGTC	15780
	CTCGCGTGGG GGTGTTGTTC ACGGGTCAGG GTGCGCAGTG GGTTGGTATG GGGCGTGGGT	15840
15	TOTATGCGGG GGGTGGGGTG TTTGCGGAGG TGCTGGATGA GGTGTTGTCG GTGGTGGGG	15900
	AGGTGGGGG TTGGTCGTTG CGGGATGTGA TGTTCGGCGA CGTCGACGTG GACGCGGGTG	15960
	CCGGGGCTGA TGCGGGTGTC GGTTCGGGTG TTGGTGTGGG TGGGTTGTTG GGTCGGACGG	16020
20	AGTTTGCTCA GCCTGCGTTG TTTGCGTTGG AGGTGGCGTT GTTCCGGGCG TTGGAGGCTC	16080
	GGGGTGTGGA GGTGTCGGTG GTGTTGGGTC ATTCGGTGGG GGAGGTGGCT GCTGCGTATG	16140
25	TGGCGGGGT CTTGTCGTTG GGTGATGCGG TGCGGTTGGT GGTGGCGCGG GGTGGGTTGA	16200
25	TGGGTGGGTT GCCGGTGGGT GGGGGGATGT GGTCGGTGGG GGCGTCGGAG TCGGTGGTGC	16260
	GCCCCCTTCT TGAGGCCTTG GGGGAGTGGG TGTCGCTTGC GGCGGTGAAT GGGCCGCGGT	16320
30	COGTOCTOTT CTCCCCTCAT CTCCCTCTCC TCGAGTCCCT CCTTCCCTCC CTGATCGCCC	16380
	ATGGGGTGGA GTGCCGGCGG TTGGATGTGT CGCATGGGTT TCATTCGGTG TTGATGGAGC	16440
	COGTOTTOGG CGAGTTCCGG CGCGTTGTCG AGTCGTTCGA CTTCCGTCGG CTGCCGCCCGG	16500
35	GTGTGGTGGT GGTGTCGAGT GTGTCGGGTG GGGTGGTGGG TTCGGGGGATC	16560
	COGGGTATTG GGTGCGTCAT GCGCGGGAGG CGGTGCGTTT CGCGGATGGG GTGGGGGTGG	16620
	TOCOTOCTCT GCGTGTGGGG ACGTTGGTGG AGGTGGGTGC GCATGGGGTG CTGACGGGGA	16680
40	TGGCGGGTGA GTGCCTGGGG GCCGGTGATG ATGTGGTGGT GGTGCCGGGG ATGCGGCGGG	16740
	GCCGTGCGGA GCGGGAGGTG TTCGAGGCGG CGCTGGCGAC GGTGTTCACC CGGGACGCCG	16800
45	GCCTGGACGC CACGACACTC CACACCGGGA GCACCGGCCG ACGCATCGAC CTCCCCACCT	16860
	ACCCCTTCCA ACACGACCGC TACTGGCTGG CCGCCCCGTC CCGGCCCAGG ACGGACGGGC	16920
	TGTCGGCGGC GGGTCTGCGC GAGGTGGAGC ACCCCCTGCT CACCGCCGCC GTGGAACTGC	16980
50	CCGGCACCGA CACCGAGGTG TGGACCGGCC GCATATCCGC TGCCGACCTG CCCTGGCTCG	17040
	CCGACCACCT GGTGTGGGAC CGAGGCGTGG TGCCGGGGAC CGCGCTGCTG GAGACGGTGC	17100
	TCCAGGTGGG AAGCCGGATC GGTCTGCCGC GCGTCGCCGA ACTGGTCCTG GAGACGCCGC	17160
55	TGACCTGGAC GTCGGACCGC CCGCTCCAGG TCCGGATCGT CGTGACCGCT GCCGCCACCG	17220

	ccccccccc	CCCCCCTGAG	CTGACCCTCC	ACTCGCGGCC	CGAGCCCGTG	CCCCCCTCCT	17280
5	CGTCCTCCCC	GAGTCCCGCC	TCTCCCCCCC	ACCTCACGGC	GCAGGAGAGC	GACGACGACT	17340
	GGACCCGGCA	TGCCTCAGGG	CTGCTCGCCC	CGGCTGCCGG	CCTCGCCGAC	GACTTCGCCG	17400
	AGCTCACCGG	CGCCTGGCCC	CCCGTCGGCG	CCGAGCCCCT	CGACCTCGCC	GGTCAGTACC	17460
10	CGCTCTTCGC	AGCCGCCGGA	GTGCGCTACG	AAGGCGCCTT	CCGAGGGCTG	CGCGCGGCAT	17520
	GCCTCGAGG	CGACGAGGTC	TTCGCCGACG	TACGGCTGCC	CGACGCGCAC	GCGGTCGACG	17580
15	CTGATCGTTA	CGGGGTGCAC	CCCGCCCTGC	TCGACGCGGT	GCTCCACCCG	ATCGCCTCGC	17640
	TGGACCCGCT	GGGCGACGGC	GGGCACGGTC	TGCTGCCGTT	CTCCTGGACC	GACGTACAGG	17700
	GACACGGCGC	CGGCGGACAC	GCCCTCCCCC	TACGGGTGGC	GGCCGTCGAC	GCCGCGCGCG	17760
20	TGTCGGTCAC	CGCGGCCGAC	CACGCGGGCA	ACCCGGTGTT	ATCCGCCCGG	TCCCTGGCAC	17820
	TGCGTCGTAT	CACCGCGGAC	CGGCTTCCCG	CCGCGCCCGT	CGCCCCTCTC	TACCGCGTGG	17880
	ACTGGCTGCC	GTTCCCGGGT	CCGGTGCCCG	TATCCGCGGG	CGGCCGCTGG	GCGGTCGTCG	17940
25	GACCCGAGGC	CGAAGCCACG	GCTGCCGGAC	TGCGTGCGGT	GGGCCTCGAC	GTGCGTACCC	18000
	ATGCGCTCCC	CCTCGGAGAG	CCCCTGCCTC	CGCAGGCCGG	TACCGACGCG	GAGGTGATCA	18060
	TCCTCGACCT	GACCACCACC	GCAGCCGGCC	GTACGGCGTC	GGACGGGGG	CGGCTCAGTC	18120
30	TCCTCGACGA	CCTCCCTCCC	ACGGTGCGCC	GGACCCTCGA	AGCCGTACAG	GCCGCCTCG	18180
	CCGACACCGA	AACGGCCCCC	GACGTCGACG	TCCGTACGGC	cecececcc	CGCACAGCCG	18240
35	CCCGTACAAG	CCCCCCCTG	GACACCCCCA	CGGGAGCCCG	CACCGCTGAC	cccccccc	18300
	TCGTCGTCCT	GACCCGGGGC	GCGGCCGGAC	CCGAGGGAGG	CGCGGCCGAT	CCCGCGGGTG	18360
	CCGCTGTCTG	GGGGCTCGTC	CGGGTCGCCC	AGGCCGAACA	GCCCGGCCGC	TTCACCCTGG	18420
40	TGGACGTCGA	CGGCACCCAG	GCGTCGCTGC	GGCCCTGCC	CGGTCTGCTG	GCCACGGATG	18480
	CCGGCCAGTC	CCCCGTCCCC	GACGGACGTG	TCACCGTCCC	GCGCCTCGTC	CCGGTGGCCG	18540
	ACCCCGTCCC	CCACGGCGGC	GGCACGGCGG	CCGACGGGAC	GGGTGCCGGC	GAGCCGTCCG	18600
45	CGACCCTGGA	CCCCGAAGGC	ACCGTGCTCA	TCACCGGCGG	CACCGGAGCA	CTGGCCGCGG	18660
	3AAACCGCCCC	GCACCTGGTC	GACCGGCACA	AGGTGCGCCA	TCTCCTGCTG	GTGGGCAGGC	18720
50	GCGGTCCCGA	CCCACCCCCC	GTCGATCGAC	TGGTCGCCGA	GTTGACCGAG	TCGGGTGCCG	18780
	AGGTCGCCGT	ACGGGCCTGT	GACGTCACGG	ACCGCGACGC	CCTGCGCCGC	CTGCTCGACG	18840
	CACTCCCCGA	CGAACACCCG	CTGACCTGCG	TGGTGCACAC	CCCCCCCTC	CTCGACGACG	18900
55	GCGTGCTCTC	CGCCCAGACG	GCCGAGCGGA	TCGACACGGT	CCTCCCCCCC	AAGGCCGACG	18960

	CCGCCGTCCA	CCTGGACGAG	CTGACCCGGG	AGATCGGACG	CCTCCCCTC	GTGCTGTACT	19020
_	CCTCGGTCTC	GCCACCCTG	GGCAGCGCGG	GGCAGGCCGG	GTACGCGGCG	GCCAACGCCT	19080
5	TCATGGACGC	GCTGGCCGCC	CCCCCCTCCC	CCGCCGGGCA	CCCCGCGCTG	TCGCTCGGCT	19140
	GGGGCTGGTG	GTCCGGGGTG	GGTCTCGCCA	CCGGACTGGA	CGGAGCGGAC	GCGCGCGCG	19200
10	TCAGGCGCTC	GGGTCTCGCC	CCGCTCGACG	ccecccccc	ACTGGACCTG	CTCGACCGGG	19260
	CGCTGACCCG	GCCCGAGCCG	GCCCTGCTGC	CCGTGCGGCT	CGACCTGCGC	ecceceece	19320
	GTGCCACCGC	TCTCCCGGAG	GTCCTGCGTG	ACCTGGCCGG	CGTACCGGCG	GACGCCCGCA	19380
15	GCACGCCCGG	GCCCCCGCGCG	GGCACCGGGG	ACGAGGACGG	TGCCGTGCGC	CCTGCCCCCG	19440
	CCCCGCCGA	CCCCCCCCC	ACGCTGGCCG	CGCGGCTCGC	GGGACGTTCC	GCACCCGAGC	19500
	GTACGGCTCT	CCTGCTCGAC	CTGGTGCGGA	CCGAGGTCGC	GCCGGTGCTC	GGACACGGCG	19560
20	ACCCCGCCGC	GATCGGCGCC	GCCCGCACCT	TCAAGGACGC	CGGATTCGAC	TCCCTCACCG	19620
	CTGTCGACCT	CCGCAACCGG	CTGAACACAC	GCACCGGACT	GCGGCTGCCC	GCGACCCTCG	19680
25	TCTTCGACCA	CCCCACACCG	CTCGCCCTCG	CCGAACTCCT	GCTCGACGGG	CTGGAGGCGG	19740
20	CCGGTCCAGC	GGAACCGGCC	GCTGAGGTCC	CGGACGAAGC	GGCCGGTGCC	GAGACCCTGT	19800
	CCGCCGTGAT	CGACCGGCTG	GAACGCAGCC	TCGCCGCGAC	CGACGACGGC	GACGCCCGGG	19860
30	TCCGCGCGGC	ACGGCGGCTG	CGCGGCCTGC	TGGACGCGCT	CCCCGCCGGT	CCCGGTGCCG	19920
	CGTCCGGTCC	GGATGCCGGA	GAGCACGCCC	CCGGTCGCGG	CGACGTGGTG	ATCGACCGGC	19980
	TCAGGTCGGC	CTCCGACGAC	GACTTGTTCG	ACCTGCTCGA	CAGCGACTTC	CAGTGAGCCG	20040
35	GACCGCGCCG	CGCGCCGACC	GCTGAACCGC	TCTTCACCCA	GACCCACGAG	ACCACGCCTG	20100
	AGGAGAACCG	TGTCTGCGAC	CAACGAGGAG	AAGTTGCGGG	AGTACCTGCG	GCGCGCGATG	20160
	GCCGACCTGC	ACAGCGCACG	AGAGCGGTTG	CGCGAGGTCG	AGTCGGCGAG	CCGTGAGCCG	20220
40	ATCGCGATCG	TGGGCATGGC	GTGCCGTTAC	CCGGGCGGTG	TGGCGTCGCC	GGAGGAGCTG	20280
	TGGGACCTGG	TGGCCGCCGG	TACGGACGCG	ATCTCCCCGT	TCCCCGTCGA	CCGCCGCTCG	20340
45	GACGCCGAGG	GTCTGTACGA	CCCGGAGCCG	GGGGTGCCGG	GCAAGAGCTA	CCTCCCCCAG	20400
	GCCGCGTTCC	TGCACTCGGC	GGCCGAGTTC	GACGCGGAGT	TCTTCGGGAT	CTCGCCGCGT	20460
	GAGGCGGCGG	CGATGGATCC	GCAGCAGCGG	TTGCTGCTGG	AGACGTCGTG	GGAGGCGCTG	20520
50	GAGCGGGCCG	GGATCGTCCC	CGCGTCGCTG	CGCGGCACCC	GTACCGGCGT	CTTCACCGGC	20580
	GTCATGTACC	ACGACTACGG	CAGCCACCAG	GTCGGCACCG	CCGCCGATCC	CAGTGGACAG	20640
	CTCGGCCTCG	GCACCGCGG	GAGCGTCGCC	TCGGGCCGGG	TGGCGTACAC	CCTCGGTCTA	20700
55	CAGGGGCCGG	CCGTGACCAT	GGACACGGCA	TGCTCGTCCT	CGCTGGTGGC	GTTGCACCTG	20760

	GCGGTGCAG	T CCTTCCCCCC	GGGCGAGTGC	GATCTCGCGT	TGGCCGGCG	GCCGACCGTC	20820
	TTGGCGACG	C CCACGGTGT	CGTGGAGTTC	TCGCGGCAAC	GGGGGCTGG	GCCGGACGGA	20880
	CGCTGCAAG	G CGTTCGCGG!	GGGCGCCGAC	GGCACGGCGI	GGCCGAGG	CCCCCCTCTC	20940
		G AGCGGCTCTC	CGACGCCCGC	CGCAACGGCC	ATCGGGTGC	CGCGGTGGTG	21000
1	CGGGGCAGC	G CGGTCAACCA	GGACGGTGCC	AGCAACGGCC	TCACCGCAC	CAGCGGGCCC	21060
	GCCCAGCAGC	GGGTGATCCG	TGACGCGCTG	GCCGACGCGG	GGCTGACGC	CGCCGACGTG	21120
1	GACGCGGTCC	AGGCGCACGG	CACCGGCACA	CCGCTCGGCG	ACCCGATCGA	GCCCGCCCC	21180
	CTGATGGCCA	CCTACGGCAG	TGAACGGGTG	GGCGACCCGC	TGTGGCTGGG	TTCGCTGAAG	21240
	TCGAACATC	GACACACCCA	GCCCCCCCC	GGAGCCGCCG	GCGTCATCAA	GATGGTGCAG	21300
2	GCGTTACGGC	AGTCCGAGCT	GCCGCGCACC	CTGCACGTCG	ACGCGCCCTC	GCCAAGGTC	21360
	GAATGGGACG	CCCCCCCCT	GCAACTGCTC	ACCGGCGTCC	GGCCATGGCC	CCGGCGCGAG	21420
	CACAGGCCCC	GCCGCCCCC	GGTCTCCGCC	TTCGGCGTCA	GCGGCACCAA	CGCCCACGTC	21480
2	ATCATCGAGG	AACCGCCCGC	GGCCGGTGAC	ACCTCGCCCG	CCGGCGACAC	CCCTGAGCCG	21540
	GGCGAGGCGA	CCCCGTCCCC	CTCCACCGCG	GCCGGGCCGT	CGTCCCCCTC	CGCGGTGGCC	21600
30		CCCCCTCCTC	CCCGGCCGTG	GTCTGGCCCC	TGTCCGCCGA	GACCGCCCCC	21660
3		CCCAGGCCGC	CCGCCTGCGG	GCGCACCTCG	AACGCCTCCC	CGGCACCTCG	21720
	CCGACCGACA	TCGGCCACGC	CCTGGCCGCC	GAACGCGCCG	CCCTCACCCG	ACGCGTCGTG	21780
3.	ĊTGCTCGGCG	ACGACGGAGC	CCCGGTCGAC	OCACTCGCCG	CCCTCGCCGC	CGGCGAGACC	21840
	ACCCCGACG	CCGTCCACGG	CACCGCGGCG	GACATCCGCC	GGGTCGCCTT	CGTGTTCCCC	21900
	GGCCAGGGTT	CCCAGTGGGC	CGGGATGGGC	GCCGAACTGC	TGGACACGGC	CCCGGCCTTC	21960
40	GCCGCCGAAC	TGGACCGCTG	CCAGGGCGCG	CTCTCCCCGT	ACGTGGACTG	GAACCTCGCG	22020
	GACGTGCTGC	GCGGCGCGCC	CGCGGCGCCC	GCCTCGACC	GGGTCGACGT	CGTCCAGCCG	22080
	GCCACCTTCG	CCGTCATGGT	GGGACTCGCC	GCGCTGTGGC	GCTCCCTCGG	GGTCGAACCC	22140
45	GCCGCCGTCA	TCGGCCACTC	CCAGGGGGAG	ATCGCCGCGG	CCTGCGTGGC	GGCGCGCTC	22200
	TCCCTGGAGG	ACGCCGCCCG	GATCGTGGCC	CTGCGCTCCC	AGGTCATCGC	CCGCGAACTG	22260
50	ecceeccee	GCGGCATGGC	CTCGGTGGCC	CTGCCCGCGG	CGGAGGTCGA	GCCCCCCTG	22320
30	GCCGGCGCG	TCGAGATCGC	CGCCGTCAAC	GCCCCGGCT	CGACCGTCGT	CTGCGGAGAG	22380
	CCCGGCGCCC	TGGAGGCGTT	GCTCGTCACG	CTGGAGAGCG	AAGGCACCCG	GGTCCGCCGC	22440
55	ATCGACGTCG	ACTACGCGTC	CCACTCCCAC	TACGTCGAGA	GCATCCGGGC	GGAACTCGCC	22500

	ACCGTCCTCG	GCCCCGTCCG	GCCGCGGAGG	GCCGACGTCC	CCTTCTACTC	CACCGTCGAG	22560
5	GCGGCGCTCC	TCGACACCGC	CACCCTGGAC	GCCGACTACT	GGTACCGCAA	CCTGCGCCTC	22620
	CCGGTGCGCT	TCGAGCCGAC	CGTACGCGCC	ATGCTCGACG	ACGGCGTCGA	CGCGTTCGTG	22680
	GAGTGCTCCG	CGCATCCCGT	CCTGACCGTC	GCCTCCCCC	AGACCGTGGA	GAGCGCCGGC	22740
10	GGCGCGGTCC	CGGCCCTCGC	TTCGCTGCGC	CGCGACGAGG	GCGGGCTGCG	GCGCTTCCTC	22800
	ACCTCCGCCG	CCGAGGCCCA	GCTCCTCCGC	GTCCCCGTGG	ACTGGGCGAC	GCTCCGCCCA	22860
	GGCGCCGGCC	GGGTGGACCT	GCCGACCTAC	GCCTTCCAGC	GCGAACGCCA	CTGGGTCGGC	22920
15	CCCGCCCGGC	CCGACTCCGC	GGCGACGGCC	GCCACGACCG	GTGACGACGC	CCCGGAGCCC	22980
	GGAGACCGGC	TCGGCTACCA	CCTCCCCTCC	AAGGGACTGC	GCTCCACCAC	CGGCGGCTGG	23040
	CGCCCCGGCC	TGCGCCTGCT	GATCGTGCCC	ACCGGGGACC	AGTACACCGC	CCTCGCCGAC	23100
20	ACCCTGGAAC	AGGCGGTCGC	CTCCTTCGGC	GGAACGGTCC	GCCGCGTCGC	CTTCGACCCG	23160
	GCACGCACCG	GACGCGCCGA	GCTGTTCGGC	CTGCTCGAGA	CGGAGATCAA	CGCCGACACC	23220
25	GCCGTCACCG	GCGTCGTCTC	GCTGCTCGGA	CTGTGCACCG	ACGGCAGGCC	GGACCACCCC	23280
	GCCGTGCCCG	TCGCCGTCAC	CGCCACCCTC	GCCCTCGTCC	AGGCCCTGGC	CGACCTCGGC	23340
	AGCACCGCAC	CGCTGTGGAC	CGTCACCTGC	GCCCCGTCG	CCACCGCCCC	CGACGAACTG	23400
30	CCGTGCACCG	CCGGTGCCCA	GCTCTCGGGC	CTGGGCCGGG	TGGCCGCGCT	CCACCTCCCC	23460°
	GAGGTGTGGG	GCGGCCTCAT	CGACCTTCCC	ececeecce	ACGCCCGGGT	CCTGGACCGT	23520
	CTCGCCGGCG	TCCTCGCCGA	ACCCGGCGGC	GAGGACCAGA	TCGCCGTACG	GATGGCGGC	23580
35	GTCTTCGGCC	GCCGGGTCCT	GCGGAACCCG	GCCGACTCCC	GCCCCCGGC	CTGGCGCGCC	23640
	CGGGGCACCG	TCCTCATCGC	CGGCGACCTC	ACGACGGTGC	CCGGCCGACT	GETCCGGTCC	23700
40	CTCCTCGAGG	ACGGCGCGGA	CCCCCTCCTC	CTGGCCGGAC	CCGACGCCCC	CGCACAGGCC	23760
40	GCCGCCGCCG	GACTGACCGG	CCTCTCCCTC	GTCCCCGTGC	GCTGCGACGT	CACCGACCGC	23820
	GCCGCACTGG	CCGCGCTGCT	CGACGAGCAC	GCGCCCACCG	TCGCCGTGCA	OCCCCCCCCCC	23880
45	CTGGTGCCCC	TGGCGCCGCT	GCGGGAGACG	GCACCCGGCG	ACATCGCCGC	CCCCTCCCC	23940
	GCCAAGACCA	CGCCCGCCGG	CCACCTGGTC	GACCTGGCGC	ceccecece	CCTCGACGCG	24000
	CTGGTGCTGT	TCTCCTCGGT	CTCCGGAGTG	TGGGGCGCG	CGGCCCAGGG	CGCTACGCG	24060
50	GCCGCCAGCG	CGCACCTCGA	CGCGCTGGCC	GAACGCGCCC	ececcecee	GCTGCCCGCG	24120
	TTCTCCGTGG	CCTGGAGCCC	CTGGGCCGGA	GCACGCCCG	CCGACGGTGC	CGAGGCGGAG	24180
	TTCCTCAGCC	GCCGCGGCT	GGCTCCCCTC	GACCCCGACC	AGGCGGTGCG	GACCCTGCGC	24240
55	CGCATGCTGG	AGCGCGGCAG	CGCCTGCGGT	GCGGTCGCCG	ACGTCGAGTG	GAGCCGGTTC	24300

	GCCGCCTCCT	ACACCTGGGT	GCGTCCCGCC	GTACTCTTCG	ACGACATCCC	GCACGTGCAG	24360
5	CGGCTGCGCG	CGGCCGAACT	CGCCCCGAGC	ACCGGAGACT	CGACCACCTC	CGAACTCGTC	24420
	CGCGAGCTGA	CCGCGCAGTC	CGGCCACAAG	CGGCACGCCA	CCCTGCTGCG	GCTGGTGCGC	24480
	GCACACGCCG	CCGCCGTCCT	CGGACAGTCC	TCCGGCGACG	CGGTGAGCAG	ccccccccc	24540
10	TTCCGCGACC	TCGGCTTCGA	CTCGCTGACC	GCCCTCGAAC	TGCGCGACCG	GCTCAGCACC	24600
	AGCACCGGGC	TCAAACTGCC	CACCTCCCTG	GTCTTCGACC	ACTCCAGCCC	GCCCCCCCTC	24660
15	GCCCGGCACC	TCGGTGAGGA	ACTCCTCGGC	CGGAACGACA	CCGCCGACCG	GCCGCCCCC	24720
	GACACCCCGG	TACGGACGGA	CGAGCCCATC	GCCATCATCG	GCATGGCCTG	CCGGCTGCCC	24780
	GCCGGGGTGC	AGTCCCCCGA	GGACCTGTGG	GACCTGCTGA	CCGGTGGGAC	CGACGCCATC	24840
20	ACCCCCTTCC	CGACCAACCG	GGGATGGGAC	AACGAGACCC	TCTACGACCC	CGACCCCGAC	24900
	TCGCCCGGGC	ACCACACCTA	CGTGCGCGAG	GCCGGGTTCC	TGCACGACGC	GCCGAGTTC	24960
	GACCCCGGCT	TCTTCGGCAT	CAGCCCCCGC	GAGGCCCTGG	CCATGGACCC	GCAGCAGCGG	25020
25	CTGATCCTGG	AGACGTCCTG	GGAGTCCTTC	GAACGGGCCG	GCATCGACCC	GGTCGAACTG	25080
	CGCGGCAGCC	GCACCGGGGT	CTTCGTCGGC	ACCAACGGAC	AGCACTACGT	GCCGCTCCTC	25140
	CAGGACGGCG	ACGAGAACTT	CGACGGCTAC	ATCGCCACCG	GCAACTCCGC	CAGCGTGATG	25200
30	TCCGGCCGGC	TCTCCTACGT	CTTCGGACTG	GAGGGCCCCG	CCGTCACCGT	CGACACCGCC	25260
	TGCTCGGCCT	CCCTGGCCGC	ACTGCACCTG	GCGGTGCAGT	CACTGCGCCG	CGGCGAATGC	253 20
35	GACTACGCCC	TCGCCGGCGG	GGCCACGGTG	ATGTCCACCC	CCGAGATGCT	GGTGGAGTTC	25380
	GCCCGTCAGC	GAGCGGTGTC	TTCGGCAT CAGCCCCCGC GAG ACGTCCTG GGAGTCCTTC GAA ACCGGGGT CTTCGTCGGC ACC GAGAACTT CGACGGCTAC ATC TCCTACGT CTTCGGACTG GAG CTGGCCGC ACTGCACCTG GCG GCCGGCGG GGCCACGGTG ATG GCCGGAGGG AGCCGGGATG CTG CCGGTACT GGCGGTGGTG CGG ACCGCACC CAGCGGGCCC GCC CTGACGCC CGCCGACGTG GAC	CGCAGCAAGG	CCTTCCCCGA	GCCGCCGAC	25440
	GGGTCGGTC	TCGCCGAGGG	AGCCGGGATG	CTGCTCGTGG	AGCGGCTGTC	GGAGGCGCAG	25500
40	AAGAAGGCC	ATCCGGTACT	GGCGGTGGTG	CGGGGCAGTG	CCGTCAACCA	GGACGGTGCC	25560
	AGCAACGGCC	TCACCGCACC	CAGCGGGCCC	GCCCAGCAGC	GGGTGATACG	GGAGGCGCTG	25620
	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	GACGCGGTCG	AGGCGCACGG	CACCGGCACG	25680
45	CCGCTCGGCG	ACCCCATCGA	GCCGGCGCG	CTGCTCGCCA	CGTACGGCCG	GGACCGGCGC	25740
	GACGGCCCGC	TCTGGCTGGG	TTCGCTGAAG	TCGAACATCG	GGCACACCCA	eccecece	25800
50	GCCTGCCCG	GGGTGATCAA	GATGGTGCTG	GCCCTCCGCC	ACGGCGAGCT	CCCCCCCACC	258 60
	CTGCACGCGT	CGACGCCGTC	GTCCAGGATC	GATTGGGACG	CGGGCGCCGT	CCACTTCCTC	25920
	GACGAGGCCA	GCCCTGGCT	CCAGCGGGCC	GAGGGGCCGC	ccccccccc	CATCTCCTCG	25980
55	TTCGGCATCA	GCGGCACCAA	CGCGCACCTC	GTCATCGAGG	AGCCGCCGGA	GCCCACCGCG	26040

	CCCGAACTGC	TCGCGCCCGA	ACCGGCCGCC	GACGGCGACG	TCTGGTCCGA	CCACTCCTCC	26100
5	CACGAGGTGA	CCGTGCCCCT	GATGATGTCC	GCGCACAACG	AAGCCGCCCT	GCGCGACCAG	26160
J	GCGCGGCGCC	TGCGCGCCGA	CCTGCTCGCC	CACCCCGAGC	TGCACCCGGC	CGACGTCGGC	26220
	TACACCCTCA	TCACCACCCG	CACCCGGTTC	GAGCAGCGGG	CCGCCGTCGT	CGGCGAGAAC	26280
10	TTCACGGAGC	TGATCGCGGC	CCTCGACGAC	CTCGTCGAAG	GCCGACCGCA	CCCGCTCGTG	26340
	CTGCGGGGCA	CCGCCGGCAC	CTCCGACCAG	GTCGTGTTCG	TCTTCCCCGG	CCAGGGCTCG	26400
	CAGTGGCCCG	AGATGGCCGA	CGGGCTGCTG	GCCCGCTCCA	GCGGCTCCGG	CTCCTTCCTG	26460
15	GAGACCGCCC	GCGCCTGCGA	CCTCGCGCTC	CGGCCCCACC	TCGGCTGGTC	CGTCCTGGAC	26520
	GTACTGCGCC	GGGAACCCGG	CGCGCCCTCG	CTCGACCGGG	TCGACGTGGT	GCAGCCCGTG	26580
	CTGTTCACCA	TGATGGTCTC	GCTCGCCGAG	ACGTGGCGTT	CGCTGGGCGT	CGAACCGGCC	26640
20	GCGGTCGTCG	GTCACTCCCA	GGGCGAGATC	GCCGCCGCCT	ACGTCGCCGG	CGCCCTGACG	26700
	CTGGACGACG	CGGCGCGCAT	CGTCGCCCTG	CGCAGCCAGG	CGTGGCTGCG	GCTGGCCGGC	26760
25	AAGGGCGGCA	TGGTCGCCGT	GACCCTGTCC	GAACGCGACC	TGCGTCCCCG	CCTGGAGCCC	26820
20	TGGAGCGACC	GGCTCGCCGT	CGCCGCCGTC	AACGGCCCCG	AGACCTGCGC	CGTCTCCGGG	26880
	GACCCGGACG	CCCTGGCGGA	GCTGGTCGCC	GAACTCGGTG	CGGAGGGCGT	GCACGCCCGC	26940
30	CCCATCCCCG	GCGTCGACAC	CGCCGGGCAC	TCGCCGCAGG	TCGACACGCT	GGAGGCCCAC	27000
	CTGCGGAAGG	TGCTCGCGCC	CGTCGCGCCC	CGCACCTCCG	ACATCCCGTT	CTACTCGACG	27060
	GTCACCGGAG	GACTGATCGA	CACCGCCGAG	CTGGACGCCG	ACTACTGGTA	CCGCAACATG	27120
35	CGCGAGCCGG	TGGAGTTCGA	GCAGGCCACC	CGCGCCCTGA	TCGCCGACGG	CCACGACGTG	27180
	TTCCTGGAGT	CGAGCCCGCA	CCCCATGCTG	GCCGTCTCCC	TCCAGGAGAC	GATCAGCGAC	27240
	GCCGGTTCCC	CGCCGCCCT	CCTCGGCACC	CTGCGGCGCG	GCCAGGGCGG	CCCCCCCTCG	27300
40	CTGGGCGTCG	CCCTCTGCCG	CGCCTACACC	CACGGCCTGG	AGATCGACGC	CGAGGCCATC	27360
	TTCGGCCCCG	ACTCACGCCA	GGTGGAACTG	CCCACGTACC	CCTTCCAGCG	CGAGCGCTAC	27420
45	TGGTACAGCC	CCGGCCACCG	CGGTGACGAC	CCCGCCTCCC	TCGGTCTGGA	CCCCGTCGAC	27480
	CACCCGCTGC	TGGGCAGCGG	CGTCGAACTG	CCGGAGTCCG	GTGACCGGAT	GTACACCGCA	27540
50	CGGCTGGGCG	CCGACACCAC	CCCGTGGCTG	GCCGACCACG	CGCTGCTGGG	CTCCCCCCTC	27600
	CTGCCCGGCG	CCGCCTTCGC	CGACCTGGCG	CTCTGGGCCG	GCCGCCAGGC	CGCACCGC	27660
	CGCGTCGAGG	AGCTCACCCT	GCCGCGCCC	CTGGTGCTGC	CCGGCTCCGG	CCCTCTCCCC	27720
	CTGCGGCTGA	ACGTCGGCGC	CCCGGGCACC	GACGACGCCC	GCCGCTTCGC	CCTGCACGCC	27780
55	CGCGCCGAGG	GCGCCACGGA	CTGGACCCTG	CACGCCGAGG	GGCTGCTCAC	CGCGCAGGAC	27840

		ACGGCCGACG	CGCCGGACGC	CTCGGCGGCC	ACCCCGCCCC	CCGGCGCCGA	ACAACTGGAC	27900
	5	ATCGGCGACT	TCTACCAGCG	CTTCTCCGAA	CTCGGTTACG	GCTACGGCCC	GTTCTTCCGG	27960
		GGACTGGTGA	GCGCCCACCG	CTGCGGCCCC	GACATCCACG	CGGAGGTCGC	GCTGCCCGTC	28020
		CAGGCGCAGG	GCGACGCGGC	CCGCTTCGGC	ATCCATCCCG	CGCTGCTGGA	CGCGGCGCTG	28080
	10	CAGACCATGA	GCCTCGGGGG	CTTCTTCCCC	GAGGACGGCC	GCGTCCGCAT	GCCGTTCGCC	28140
		CTGCGCGGCG	TTCGGCTGTA	CCGCGCCGGA	GCCGACCGGC	TGCACGTGCG	CGTCTCGCCC	28200
	15	GTCTCCGAGG	ACGCGGTCCG	CATCAGGTGC	GCCGACGGCG	AGGGACGCC	GGTCGCCGAG	28260
		ATCGAGTCCT	TCATCATGCG	GCCGGTCGAC	CCGGGACAGC	TCCTGGGCGG	CCGCCCGGTC	28320
		GGCGCCGACG	CGCTCTTCCG	CATCGCCTGG	CGGGAACTCG	CCGCCGGCCC	GGGCACCCGT	28380
	20	ACCGGCGACG	GCACCCCTCC	CCCGGTGCGC	TGGGTGCTGG	CGGGACCCGA	CGCGCTCGGC	28440
		CTGGCCGAGG	CGGCCGACGC	CCACCTGCCC	GCCGTTCCCG	GCCCGGACGG	CGCACTGCCG	28500
		TCCCCGACGG	GACGCCCGGC	GCCGGACGCC	GTCGTGTTCG	CGGTCCGTGC	CGGGACCGGC	28560
	25	GACGTCGCCG	CCGACGCGCA	CACCGTGGCC	TGCCGGGTGC	TGGACCTCGT	CCAGCGCCGG	28620
		CTCGCGGCCC	CGGAGGCCC	GGACGGCGCC	CGCCTGGTGG	TGGCCACCCG	CGGCGCGGTC	28680
	••	GCCGTACGCG	ACGACGCCGA	GGTGGACGAC	CCGGCCGCGG	CCGCCGCGTG	GGGCCTGCTG	28740
	30	CGCTCCGCGC	AGGCCGAGGA	GCCCGGCCGG	TTCCTGCTCG	TGGACCTGGA	CGACGACCCG	28800
		GCGTCCGCCC	GGGCGCTGAC	CGACGCCCTC	GCCTCCGGCG	AACCGCAGAC	CGCGGTCCGG	28860
	35	GCCGGGACGG	TGTACGTGCC	CCGGCTGGAG	CGGGCCGCCG	ACCGCACGGA	CGGCCGCTC	28920
		ACCCCGCCCG	ACGACGGTGC	CTGGCGGCTG	GGCCGGGGCA	CCGACCTCAC	CCTCGACGGC	28980
		CTCGCCCTGG	TGCCCGCCCC	GGACGCCGAG	GCGCCGCTGG	AGCCCGGCCA	GGTGCGCGTC	29040
	40	GCCGTACGCG	CCGCGGGCGT	CAACTTCCGC	GACGCCCTCA	TCGCCCTCGG	CATGTACCCG	29100
		GGCGAGGCGG	AGATGGGAAC	GGAGGGCGCC	GGCACCGTCG	TCGAGGTCGG	CCCCGCGTC	29160
		ACCGGTGTCG	CCGTCGGCGA	CCGCGTGCTC	GCCTCTGGG	ACGGCGGCCT	GGCCCGCTG	29220
	45	TGCGTGGCCG	ACCACCGGCT	GCTCGCCCCC	GTCCCGGACG	GCTGGTCCTA	CGCCCAGGCC	29280
		GCCTCGGTCC	CCGCGGTGTT	CCTCAGCGCC	TACTACGGTC	TGGTCACCCT	GCCCGCCTC	29340
	50	AGGCCGGGG	AGCGGGTGCT	CGTGCACGCC	GCCGCCGGGG	GCGTCGGCAT	GCCCGCGGTG	29400
50	30	CAGATCGCCC	GCCACCTCGG	CGCGGAGGTG	CTGGCCACCG	CGAGCCCCGG	CAAGTGGGAC	29460
		GCCCTGCGCG	CCATGGGCAT	CACCGACGAC	CACCTCGCCT	CCTCCCGCAC	CCTCGACTTC	29520
	55	GCGACCGCCT	TCACCGGAGC	GGACGGCACG	TCCCGCGCGG	ACGTCGTCCT	GAACTCGCTC	29580

	ACCAAGGAGT	TCGTGGACGC	CTCCCTCGGG	CTGCTCCGTC	CGGGCGGCCG	GTTCCTGGAG	29640
						CGGGGTGCGC	29700
5						GCTGCGGGAA	29760
		TGTTCGCCGC					29820
10		CGGACGCCCT					29880
70		CGCCCGCCTG					29940-
		GCCGCATCGC					30000
15		GCCGGGGCCC					_0.00.
		CGTCGGCCAC					30060
		CCGCCATACC					30120
20		ACGGCGTGCT					30180
							30240
		AGGCCGCCGT					30300
25		TCTCCTCCAG					30360
		CCACCCTCGA					30420
		CCTGGGGTCT					30480
30		AGCGGCGCTT					30540
		TCGACGCCGC					30600
35		CGCTGCGCGC					30660
55		CGACCGGGTC					30720
	GGGACCGTCG	GCGAGCCGCT	CGCCGAGCGG	TTGGCCGGAC	TCTCCGCCGA	GGAACGCCAC	30780
40	GACCGGCTGC	TCGGCCTGGT	CGGCGAACAC	GTGGCCGCGG	TACTGGGCCA	CGGCTCCGCC	30840
	GCCGAGGTCC	GGCCCGACCG	GCCGTTCCGC	GACCTCCCCT	TCGACTCGCT	CACGGCCGTG	30900
	GAACTGCGCA	ACCGGATGGC	GGCGGTCACC	GGGGTCAGGC	TCCCCGCCAC	CCTGGTCTTC	30960
45	GACCACCCCA	ccccccccc	GCTGTCCTCG	CACCTCGACG	GCCTGCTGGC	CCCGGCACAG	31020
	CCGGTCACCA	CCACACCGCT	GCTGTCCGAA	CTGGACCGCA	TCGAGGAGGC	CCTGGCCGCC	31080
50	CTCACCCCCG	AGCACCTCGC	GGAGCTCGCC	CCCGCCCCCG	ACGACCGGGC	CGAGGTCGCC	31140
	CTGCGCCTGG	ACGCCCTGGC	CGACCGCTGG	CGCGCCCTGC	ACGACGCCCC	GCCCGGCGCC	31200
	GACGACGACA	TCACCGACGT	GCTGAGCAGC	GCCGACGACG	ACGAGATCTT	CCCCTTCATC	31260
	GACGAGCGGT	ACGGCACGTC	GTGACCGCCG	GCCCGGAGCC	CCGCCCGTCA	TCGAAAGGAA	31320
55	GCACCACCAT	GGCGAACGAA	GAGAAGCTGC	GCGCCTACCT	CAAGCGCGTG	ACGGGTGAGC	31380

TGCTGCACGC CGGTGCCGAC GCGGTGGGCC CGGCCCCCGC CGACCGCGCC TGGGACGTGG 31! AGGGAAGGTA CTCGCCCGAC CCCCGACACGC CCGGCACCTC GTACTGCCGC AAGGGCGGCT 31! TCGTGCAGGG GGCCGACCGG TTCGACCCG CCCTCTTCGG CATCTGCCC AACGACGCGC 31! TCACCATGGA CCCCCAGCAG CGGCTGCTGC TGGAGGCCGC CTGGAGGCGGC 31! AGAGCGCTA CCACCAGCAG CGGCTGCTGC TGGAGGCCGG CTGTGTCGCC CAGGGCGGGG 31! AGAGCGCTA CCACCAGCAG CGGCTGCTGC TGGAGGCCGG CGTGTTCGCC CGGGCGTGGG 31! AGAGCGCTA CCACAAGGGC GTCGAAGGGC TCGAAGCCGA TCTGGAGGCC CAACTCCTGG 31! CCGGCATCGT CAGCATCACC GCCGGCCGCG TCGCCTACGC CTGGGCCTG GAGGCCCGG 31: CCGCTGACGAT CGACACGGCC TGCTCTCTCT CGCTGGTGGC ACTGCACCTG GCGGTCAGT 31: CACTGCGCCG GGGCGAGTGC GACCTCGCAC TGGCGGCGCG CCCCACGGCT ATCGCCGACT 32: CCCTCACGCG GGGCGAGTGC GACCTCGCAC TGGCGGCGCG CCCCCGACCGG CGTGCAAGC 32: TCGCGCTTCT CACCCAGTTC TCCCGGCAGC CGCGGGCGCG CCCCCGACCGG CGTGCAAGC 32: AGCGGCTGTC GAACGGCCC CGCAACCGGC CCCCCGACCGG CGCGGGATG CTCCTGGTCG 32: AGCGGCTGTC GGACGCCCG CGCAACCGGC ACCCGGTGCT GCCGGGGATG CTCCTGGTCG 32: AGCGGCTGTC GGACGCCCG CGCAACCGGC ACCCGGTGCT GCCGGGGATG CTCCTGGTCG 32: AGCGGCACCAC GACCGGCTGG CGCAACCGGC TGACCGGCGCG CTCATGGCA 32: CCGTCAACCA GGACGGTGG ACCACTGGC GGCTGACCGC CGCGACGGGC CTCATGGCA 32: AGGCGCACGG CACCGGCACG CCCCTCGGCG ACCCCATCGA GGCCGGCGC CTCATGGCA 32: AGGCGCACCG CACCGGCACG CCCCTCGGCG ACCCCATCGA GGCCGGCGC CTCATGGCA 32: AGGCACACCCA GGCCGCCCC GGCCTTGGCC GGCTGATCAA GATCGTGCTG CGCCACCAC 32: ACCGTGAAGCT GCCGCCCCC CGCCTGGCCG GGCTGATCAA GATCGTGCTG CGCCTCGCC GACCACCA GCCGCCGCC CGCCGCCCC CGCCCGCC		TGCACCGGGC CA	CCGAGCAG	CTGCGTGCCC	TGGACCGGCG	GCCCACGAG	CCGATCGCGA	31440
TOGGGAAGGTA CTGGCCCGAC CCCGACACGC CCGGCACCTC GTACTGCCGC GAGGGGGGGT 310 TCGTGCAGGG GGCCGACCGG TTCGACCCCG CCCTCTTCGG CATCTGCCC AACGAGGCGC 310 TCACCATGGA CCCCCAGCAG CGGCTGCTGC TGGAGACCTC CTGGAGGCG CTGGAGCGAG 311 CCGGTCTGGA CCCCCAGCAG CGGCTGCTGC TGGAGGCCG CGTGTTCGCC GAGGGCGAGGG CTGGAAGCGAG 311 AGAGCGGCTA CCAGAAGGGC GTCGAAGGGC TCGAAGCCGA TCTGGAGGCC CAACTCCTGG 318 CCGGCATCGT CAGCTTCACC GCCGGCCGGC TCGCCTACGC CCTGGGCCTG GAGGCCCGG 311 CCGCTGACGAT CGACACGGCC TGCTCCTCGT CGCTGGGCG ACTGCACCTG GAGGCCCGG 311 CACTCCCCCC GGCGAGTGC GACCTCGCA TGGCGGCGG CCCCACCGAT 312 CACTCCCCCC GGCGAGTGC GACCTCGCAC TGGCGGCGG CCCCCGACCGC CACTCCACCT 320 TCGGCCTCTT CACCCAGTTC TCCCGGCAGC GGGGGCTGG CCCCGACCGG CGGTGCAAGG 321 AGCGGCTGTT CACCCAGTTC TCCCGGCAGC GCGGGCTGG CCCCGACCGG CGGTGCAAGG 321 AGCGGCTGTC GACCGCCGC CGCAACCGGC CCCCCGACGG CGGTGCAAGG 321 AGCGGCTGTT CACCCAGTTC TCCCGGCAGC CCCCCGAGGG CGGTGCAGC CTGCTCAGGG ACCGGTGTT CACCCAGTTC TCCCGGCAGC CCCCCGAGGG CGGGGATG CTGCTGGTGG 321 AGCGGCTGTC GGACGCCCG CGCAACCGGC ACCCGGTGCT GCCGGGAGTG CTGCTGGTGG 322 CCGTCAACCA GGACGGCCG CGCAACCGGC ACCCGGTGCT GCCGGACGTG CCGCCACCAG 322 AGGCGCACGG CACCGGCAGG CCGCTCGGCG GACCCAGCGG CTCATGGCGA 323 AGGCGCACGG CACCGGCAGG CCGCTCGGCG GACCCAGCGC CCCCGACCGG CTCATGGCGA 324 AGGCGCACGC CACCGGCACC CGCCTCGGCG GACCCAGCGC CTCATGGCGA 325 ACGGTGAGCT GCGCCGCCC GGCGTGGCC GGCGTGATCAA GATGGTGCTG GACGCGGCC CCGACCAGC CCGCCCGCC CGGCCACCA 325 ACGGTGAGCT GCGCCGCCC CGCCACCAG GCCCCCGC CCGCCCACCA 327 ACGGGGCCCC GGCGCCCCC CGCCAGCGC CCGCCCGCC	5	TCGTCGGGGC GG	CCTGCCGA	CTCCCCGGCG	GCGTCGAGAG	TCCGGACGAC	CTGTGGGAGC	31500
TEGRICAGES GECCACCES TREGACCECE CECTETTES CATETESCEC AACGAGGEGE 310 TEACCATGA CECCAGEAS COGCTOCTOC TEGRACCEC CTGGGAGGEGE CTGAGGGAG 317 CEGGTETGA CECCAGTCC CTGGCGGGA GECGGACCG CGTGTTCGC GGGGGTGGG 318 AGAGCGGCTA CCAGAAGGGC GTGAAGGGC TEGAAGCCGA TETGGAGGCC CAACTCCTGG 318 CEGGCATCGT CAGCTTCACC GECGGCCGG TEGCCTACGC CTGGGCCTG GAGGGCCCGG 319 CGCTGACGAT CGACACGGCC TGCTCTCGT CGCTGGTGC ACTGCACCTG GAGGGCCCGG 319 CACTGCGCC GGGCGAGTGC GACCTCGCAC TGGCGGCGC CCCCGACGGT ATCGCCGACT 320 CACTGCGCCG GGGCGAGTGC GACCTCGCAC TGGCGGCGC CCCCGACGGT ATCGCCGACT 320 TCGCGCTTT CACCCAGTTC TCCCGGCAGC GGGGGCTGC CCCCGACGGC CGTGCACGAC 321 AGCGGCTGTC GACCGCGAC GGCTTCGGCC CCCCCCAAGGG CGCGGGGATG CTGCTGGTCG 321 AGCGGCTGTC GACCGCCGAC GGCTTCGGCC CCCCCCAAGGG CGCGGGGATG CTGCTGGTCG 321 CCGTCAACCA GGACGGCCGA GGCTTCGGCC CCGCCCAAGGG CGCGGGGATG CTGCTGGTCG 322 GGGTGATCCG TGAGGCCCGC CGCCAACGGC GACTGGTCCT GCCCACAGG 322 AGGCGCACGG CACCGGCAC CCCCCACGCG GGCTGACGCC CGCCGACGG CACCGCACGC 322 AGGCGCACGG CACCGGCAC CCCCCACGCG GGCTGACGCC CGCCGACCGC GACTGGTCCT GCCACACACC 322 GGCACACCCA GGCCGCCCC CGCCTCGGCC ACCCCATCGA GGCCGGCGC CTCATGGCA 324 GGCGCACCCA GGCCGCCCC CGCCTCGCC ACCCCATCGA GGCCGGCGC CTCATGGCA 325 ACGGTGAGCT GCGCGCCCC CGCCTGCCC CGCCTACCAC GACGGGTCC CCCCACCAC 325 ACGGTGAGCT GCGCGCCCC CGCCTGCCC CGGCGACCTC CTCCAGGATC GAACGGCCC CGCCGCCCC CGCCGCCCC CGCCCACCA 326 ACGGGCGCCGC CGACCTCCC CTGCACGCCT CTCCAGGATC GAACGGCCC CGCCGCCCC CCGCCCACCA 327 ACGAGCCCCC CGCCCCCCC CGGCCTGCC CGGCCACCA CCCCCCCCC CCGCCCACCA 327 ACGAGCCCCC CGCCCCCCC CGGCCCCCC CGGCCCCCC CCGCCCCCC		TGCTGCACGC CG	GTGCCGAC	GCGGTCGGCC	CGCCCCCCC	CGACCGCGGC	TGGGACGTGG	31560
TCGTGCAGGG GGCCGACCGG TTCGACCCCG CCCTCTTCGG CATCTCGCCC AACGAGGCGC 311 TCACCATGGA CCCCCAGCAG CGGCTGCTGC TGGAGACCTC CTGGGAGGGG CTGGAGCGAG 317 AGAGCGGCTA CCAGAAGGGC CTGCAAGGGC TCGAAGCCGA TCTGGAGGGC CAACTCCTGG 318 CCGGCATCGT CAGCTTCACC GCCGGCCGG TCGCCTACGC CCTGGGCCTG GAGGGCCCGG 319 CCGGCATCGT CAGCTTCACC GCCGGCCGG TCGCCTACGC CCTGGGCCTG GAGGGCCCGG 319 CCGCTGACGAT CGACAGGGC TGCTCTCGT CGCTGTGGC ACTGCACCTG GCGGTGCAGT 319 CACTGCGCCG GGGCGAGTGC GACCTCCGCA TGGCGGGCGC CCCCCACGGTC ATCGCCGACT 320 TCGGGCTCTT CACCCAGTTC TCCCGGCAGC GCGGGCTGC CCCCGACGGT ATCGCCGACT 320 AGCGGCTGTC GACCGCCGC GGCTTCGGCC CCGCCGAGGG CGCGGGGATG CTGCTGGTGG 321 AGCGGCTGTC GACAGGCCGAC GGCTTCGGCC CCGCCGAGGG CGCGGGGATG CTGCTGGTGG 321 AGCGGCTGTC GACAGGCCGAC GGCTTCGGCC CCGCCGAGGG CGCGGGGATG CTGCTGGTGG 322 CCGTCAACCAA GGACGGCCGAC GCCTACGGCC ACCCGGTGCT GCGGGGAGGC CGCGGAGATG CTGCTGGTGG 322 AGGGCCACGG CACCGGCACG CGCCAACGGC ACCCGGTGCT GCGCGAGCAGC 322 AGGGCCACGG CACCGGCACG CCGCAACGGC GGCTGACGCC CGCCGACGTG GACGCGGTGG 322 AGGCGCACGG CACCGGCACG CCGCTCGGCG GGCTGACGCC CGCCGACCTG GACGCGGTGC CCGTCAACCCA GGCCGCCCGC CCGCCACCTG GACGCGCGC CTCATGGCGA 322 CCTTACGGGCA CCAACGGAC CCGCTCGGCG GGCTGACCGC CTCATGGCGA 322 ACGGTGAGCT GCCGCCCCC GGCGTGCCC GGCGTGCC CTCCACGGAT TCGCTGAAG TCGAACATCG 324 GCCGAACACCA GGCCGCCCC GGCGTGCCC GGCGTGCC CCGCCGCGC CTCATGGCGC 325 ACGGTGAGCT GCCGCGCCC CTCCACGCGT CGACGGCTC CTCCACGATT GAACATCG 327 ACGGCCACCC GAGCTTCCTC GACGAGCCA GCCCTGCC CCGGCCTCC CCGCCACCA 327 AGGAGCCGCC CGCCCGCCC GAGCCCGC GAGCCCCC CCGGCCCCC CCGCCCACCA 327 AGGAGCCGCC CGCCCGCCC GAGCCCGC GACCCCCC CCGCCCCCC CCGCCCCCC CCGCCCCCC CCGCCCCCC		AGGGAAGGTA CT	CGCCCGAC	CCCGACACGC	CCGGCACCTC	GTACTGCCGC	GAGGGGGGCT	31620
AGAGCGCTA CCACAGCC GTCGAAGGC GCGGACCG CGTGTTCGCC GGGCGTGGG 318 AGAGCGGCTA CCAGAAGGC GTCGAAGGC TCGAAGCCGA TCTGGAGGCC CAACTCCTGG 318 CCGGCATCGT CAGCTTCACC GCCGGCCGC TCGCCTACGC CCTGGCCTG GAGGGCCCGG 319 CACTGCGCC GGGCGAGTC GACCTCGCA TGGCGGCCGC ACTGCACCTG GCGGTGCAGT 320 CACTGCGCC GGGCGAGTC GACCTCGCAC TGGCGGCCGC CCCCGACGGC CATGCCACCT 320 TCGCGCTCTT CACCCAGTTC TCCCGGCAGC GCGGGCTCGC CCCCGACGGC CATGCTACAGG 321 AGCGGCTGTC GGACGCCCGC CGCAACGGC ACCCGGTGCT GCGCGACGG CAGTGCAAGG 321 AGCGGCTGTC GGACGCCCGC CGCAACGGC ACCCGGTGCT GCGCGAGGG CAGTGCTAGG 321 CCGTCAACCA GGACGGCCGA GGCTTCGGCC ACCCGGTGCT GCGCAGCAGT 322 GGGTGATCCG TGAGGCGCTG CCCCAACGGC ACCCGGTGCT GCGCAGCAGT 322 AGGGGCACCG CACCGGCAGC CGCTCGGCG ACCCGGTGCT GCGCAGCAGC 322 AGGGGCACCCA GGACGGCCG CGCTCGGCG GGCTGACGCC CACCGACGG CTCATGGCG 324 GGCACACCCA GGCCGCCCC CGCCACGCG GGCTGATCAA GATGGTGCT GCGCAGCAGC 324 ACGGTGAGCT GCGCGCCCC CGCCTGGCC GGCTGATCAA GATGGTGCT GCGCAGCAGC 324 ACGGTGAGCT GCGCGCCCC CTGCACGCG GGCTGATCAA GATGGTGCT GCGCTGGCC 325 ACGGTGAGCT GCGGCGCCC CGCGTGGCC GGCTGATCAA GATGGTGCT GCGCTGGCC 325 ACGGTGAGCT GCGCGCCCC CTGCACGCGT CGACGGCTC CTCCAGGATC GAATGGGACG 325 ACGGGCGCCGT GGAGTTGCTG GACGAGGCCA GGCCCTGGCC CCGGCCACCA 327 AGGAGCCGCC GGCCTGCCC GGCGGCCCA GCCCCTGCCC CCGGCCACCA 327 AGGAGCCGCC GCCCCGGCCG GAGCCCGAG AGCCCCGCC CCGGCCACCA 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAG AGCCCCGCC CCGGCCACCA 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAG AGCCCGCCC	10	TCGTGCAGGG GG	CCGACCGG	TTCGACCCCG	CCCTCTTCGG	CATCTCGCCC	AACGAGGCGC	31680
AGAGCGGCTA CCAGAAGGGC GTCGAAGGGC TCGAAGCCGA TCTGGAGGCC CAACTCCTGG 318 CCGGCATCGT CAGCTTCACC GCCGGCCGC TCGCCTACGC CCTGGGCCTG GAGGGCCGG 319 CGCTGACGAT CGACACGGCC TGCTCCTCGT CGCTGGCGC ACTGCACCTG GCGGTGCAGT 319 CACTGCGCCG GGGCGAGTGC GACCTCGCAC TGGCGGCGCG CGCCACGGTC ATCGCCGACT 320 TCGCGCTCTT CACCCAGTTC TCCCGGCAGC GCGGGCTCGC CCCCGACGGC CGCTGCAAGG 321 AGCGGCTGTC GGACGCCCGC CGCAACGGC ACCCGGTGCAGG CGCGCGCAGGT ATCGCCGACT 320 AGCGGCTGTC GGACGCCCGC CGCAACGGC ACCCGGTGCT GGCGGTGGTG CTGCTGGTCG 321 AGCGGCTGTC GGACGGCCGC CGCAACGGC ACCCGGTGCT GGCGGTGGT CGCGGCAGTG 322 CCGTCAACCA GGACGGTGCG AGCAATGGC TGACGGCGCC GAGTGGTCCT GCGCAGCAGC 322 AGGCGCACCG CACCGGCAGC CGCTACGGC GGCTGACGCC CGCCGACGTC GACCGCGTGG 323 AGGCGCACCG CACCGGCACG CGCTCGGCG GGCTGACGCC CGCCGACGTC GACCGCGTGG 324 AGGCGCACCCA GGCCGCCCC GGCGACCCCC TGTGGCTGGG TTCGCTGAAG TCGAACATCG 324 GGCACACCCA GGCCGCCCC GGCGTGCCG GGGTGATCAA GATGGTGCTG GCGCTGCCC 325 ACGGTGAGCT GCCGCCCCC CTGCACGCGT CGACCGCTC CTCCAGGATC GAATGGGACG 325 ACGGTGAGCT GCCGCCCCC CTCCACGCGT CGACCGCTC CTCCAGGATC GAATGGGACG 325 ACGGGCGCCGT GGAGTTGCTG GACGAGCCA GGCCCTGCC CCGGCGTGCC GAAGGGCCCC 326 CCGGGCGCGC CACCCGCCC GACCGACCAA GCCCCACCA CACCACCA 327 AGGAGCCCC CGCCCGCCC GACCGCACCAC GGCCCTGCC CCGGCCACCA 327 AGGAGCCCC CGCCCGCCC GACCGCACC GACCACCAA CCCGCCCCC CCCGCCACCA 327 CCGCCCACCCT GGCCGCCCA GACCCGACC GACCCACCA CCCGCCCCC CCCGCCACCA 327 CCACCCCTCC GCCCGCCC GACGAGATCA CCCCCGCCGC CCCGCCCCCC CCCGCCCACCA 328 CCACCCCTCC GCCCGCCC GACGAGATCA CCCCCCCCCA CGACGACCCC CCCACCACCA 328 CCACCCCTCC CCCCGCCCC GACGAGATCA CCCCCCCCC CCCACCCCCC CCCACCCCCACA 328 CCACCCCTCC CCCCGCCCC CCCGCCCCC CCCGCCCCCC CCCACCCCCC CCCACCCCCC CCCCCCCC		TCACCATGGA CC	CCCAGCAG	CGGCTGCTGC	TGGAGACCTC	CTGGGAGGCG	CTGGAGCGAG	31740
CCGGCATCGT CAGCTTCACC GCCGGCCGCG TCGCCTACGC CCTGGGCCTG GAGGGCCCGG CGCTGACGAT CGACACGGCC TGCTCCTCGT CGCTGGTGC ACTGCACCTG GCGGTGCAGT CACTGCGCCG GGGCGAGTGC GACCTCGCAC TGGCGGGCGG GCCCACGGTC ATCGCCGACT TCGCGCTCTT CACCCAGTTC TCCCGGCAGC GCGGGCTCGC CCCCGACGGG CGCTGCAAGG TCGCGCTCTT CACCCAGTTC TCCCGGCAGC GCGGGCTCGC CCCCGACGGG CGGTGCAAGG ACCGGCTGTC GGACGCCCGC CGCAACGGCC ACCCGGTGCT GCCGGACGG CGGGGCAGTG ACCGGCTGTC GGACGCCCGC CGCAACGGCC ACCCGGTGCT GCGGGGATG CTGCTGGTCG CCGTCAACCA GGACGGTGCG AGCAATGGGC TGACGGCGCC GAGTGGTCCT GCCCACACGC GGGTGATCCG TGAGGCGCTG CCCGACGGGC GACTGGTCCT GCCCACGACG AGGCGCACGG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGGCGG CTCATCGCGA AGGCGCACGG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGGCGG CTCATCGCGA AGGCGCACCCA GGCCGCCCC GGCGTCGCCG ACCCCATCGA GGCCGGCGCG CTCATCGCGA GGCACACCCA GGCCGCCCC GGCGTCGCCG GGGTGATCAA GATGGTGCTG GCGCTGCCC ACCGTGAGGCT GCCGCCCCC GGCGTGCCG GGGTGATCAA GATGGTGCTG GCGCTGCCC ACGGTGAGCT GCCGCCCCC GGCGTGCCG GGGTGATCAA GATGGTGCTG GCGCTGCCC ACGGCGCCCGT GGAGTTGCTG GACGAGGCCA GGCCCTGCCC CCCGACGTC GAACGGCCGC GCCGGCCCGC GAGTTGCTC GACGAGCCA GGCCCTGCC CCCGGCGTGCC GAACGGCCGC CCGCGCCCGC GAGTTGCTC GACGAGCCA GGCCCTCGC CCGGCCACCA AGGAGCCGC CGCCCGCCC GAGCCCGAGG AGCCCCGCA GCCCCCCCC	15	CCGGTCTGGA CC	CCCAGTCC	CTGGCGGGCA	GCCGGACCGG	CCTCTTCCCC	GGGGCGTGGG	31800
CGCTGACGAT CGACACGGCC TGCTCCTCGT CGCTGGTGCC ACTGCACCTG GCGGTGCAGT CACTGCGCCG GGGCGAGTGC GACCTCGCAC TGGCGGGCGC GCCCACGGTC ATCGCCGACT TCGCGCTCTT CACCCAGTTC TCCCGGCAGC GCGGGCTCGC CCCCGACGGC CGGTGCAAGG 225 CCTTCGGTGA GACGGCCGAC GGCTTCGGCC CCGCCGAGGG CGGGGGATG CTGCTGGTCG AGCGGCTGTC GGACGCCCGC CGCAACGGC ACCCGGTGCT GGCGGGATG CTGCTGGTCG AGCGGCTGTC GGACGCCCGC CGCAACGGC ACCCGGTGCT GGCGGTGGTC CGCCAGCAGC CCGTCAACCA GGACGGTGCG AGCAATGGGC TGACGGGCCC GAGTGGTCCT GCGCAGCAGC AGGCGCACCG CACCGGCACG CCGCTCGGCG GGCTGACCGC GACGCGGTCG ACCCGGTCG ACGCGGTCG AGGCGCACCG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGGCGC CTCATGGCGA 324 GGCACACCCA GGCCGCCGC GGCGTGGCCG GGGTGATCAA GATGGTGCTG GCGCTGCGCC GGCACACCCA GGCCACCCAC GGCCGCCCC GGCGTGGCCC GGCGTGGTCC GAACGGCCC GCCGCCGCC GGCGTGGCCC GGCGTGGCCC GGCGTGGCCC GGCGGCGCC CCGCCGCCCC CCGGCGCGCC GAACGGCCCC CTGCACGGCC GGCGCGCCC CCGGCGCGCC GAACGGCCCC CGGCGGCGCC CCGGCGCGCC CCGGCGCCCC CCGGCGCCCC CCGGCCGCC		AGAGCGGCTA CC	AGAAGGGC	GTCGAAGGGC	TCGAAGCCGA	TCTGGAGGCC	CAACTCCTGG	31860
TOGGEGEGE GGGCGAGTGC GACCTCGCAC TGGCGGGGG CGCCACGGTC ATCGCCGACT TCGCGCTCTT CACCCAGTTC TCCCGGCAGC GCGGGCTCGC CCCGGACGG CGGTGCAAGG 225 CCTTCGGTGA GACGGCCGAC GGCTTCGGCC CCGCCGAGGG CGCGGGGATG CTGCTGGTCG AGCGGCTGTC GGACGCCCGC CGCAACGGGC ACCCGGTGCT GCGGGGATG CTGCGTGTGG AGCGGCTGTC GGACGCCCGC CGCAACGGGC ACCCGGTGCT GCGGGGATG CGGGGCAGTG CCGTCAACCA GGACGGTGCG AGCAATGGGC TGACGGGCCC GACTGGTCCT GCGCACAGC AGGCGCACGG CACCGGCACG CCGCCACGGG GGCTGACGCC CGCCGACCAGC GACGCGTCG AGGCGCACGG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGGCGC CTCATGGCGA 324 GGCACACCCA GGCCGCCAC GGCGACCCGC TGTGGCTGGG TTCGCTGAAG TCGAACATCG 324 GGCACACCCA GGCCGCCCC GGCGTGCCG GGGTGATCAA GATGGTGCTG GCGCTGCCC 325 ACGGTGAGCT GCCGCCACC CTGCACGGGT CGACGGGTC CTCCAGGATC GAATGGGAC 326 GCCGGCGCGG CATCTCCTCG TTCGGCATCA GGCCCTGGCC CCGGCGTGCC GAAGGGCCGC GACGGCCGC CCGCCCACCA ACCCGGCCCC CCGCCCACCA GCCCGCCC		CCGGCATCGT CAG	GCTTCACC	GCCGGCCGCG	TCGCCTACGC	CCTGGGCCTG	GAGGGCCCGG	31920
TCGCGCTCTT CACCCAGTTC TCCCGGCAGC GCGGGCTCGC CCCCGACGG CGGTGCAAGG 321 CCTTCGGTGA GACGGCCGAC GGCTTCGGCC CGGCCGAGGG CGCGGGATG CTGCTGGTCG 321 AGCGGCTGTC GGACGCCCGC CGCAACGGC ACCCGGTGCT GGCGGTGGTG CGGGGAGTG 322 CCGTCAACCA GGACGGTGCG AGCAATGGGC TGACGGCGCC GAGTGGTCCT GCGCAGCAGC 322 AGGCGCACGG CACCGGCACG CCGCCGACGCG GGCTGACGCC CGCCGACGTC GACGCGGTCG 323 AGGCGCACGC CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGCGCG CTCATGGCGA 324 CGTACGGGCA CGAACGGACG GGCGTGGCG ACCCCATCGA GGCCGGCGG CTCATGGCGA 324 GGCACACCCA GGCCGCCGCC GGCGTGGCG GGGTGATCAA GATGGTGCTG GCGCTGCGCC 325 ACGGTGAGCT GCCGCCGCC CTGCACGCGT CGACGGCGTC CTCCAGGATC GAATGGGACG 325 ACGGTGAGCT GCGCGCCCC CTGCACGCGT CGACGGCGTC CTCCAGGATC GAATGGGACG 325 GCCGGGCCGG CATCTCCTCG TTCGGCATCA GCCCTGGCC CGGGCGCCCC CCGCCCACCA 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGGCCCGGCA GCCGCCCCCC CCGGCCACCA 327 CCGCCGCCCCC CGCCCGGCCG GAGCCCGAGG AGGCCCGCGC CCGCCCCCC CCGCCCACCA 327 CCGCCGCACCT GGCCGGCCAC GAGGAGATCA CCGCCGCCGC CCGCCCACCA 328 CCGCCGCACCT GCCCGGCCG GAGCCCGAGG CGCCCCCGC CCGCCCCCC CCGCCCCCCA 328 CCACCCCTCC CGCCGGCCG GAGCCCGAGG CGCCCCCGC CCGCCCCCC CCGCCCCCCA 328 CCACCCCTCC CGCCGCCCC CCCGCGCGCC CGCCCCCCC CCGCCCCCC	20	CGCTGACGAT CG	ACACGGCC	TGCTCCTCGT	CGCTGGTGGC	ACTGCACCTG	GCGGTGCAGT	31980
25 CCTTCGGTGA GACGGCCGAC GGCTTCGGCC CCGCCGAGGG CGCGGGGATG CTGCTGGTCG 321 AGCGGCTGTC GGACGCCCGC CGCAACGGC ACCCGGTGCT GGCGGTGGTG CGGGCAGTG 322 CCGTCAACCA GGACGGTGCG AGCAATGGGC TGACGGCGCC GAGTGGTCCT GCGCAGCAGC 322 AGGCGCACGG TGAGGCCCTG GCCGACGGC GGCTGACGCC CGCCGACGTC GACGCGGTCG 323 AGGCGCACGG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGCGCGC CTCATGGCGA 324 GGCACACCCA GGCCGCCCC GGCGTCGCCG TGTGGCTGAAG TCGAACATCG 324 ACGGTGAGCT GCCGCCGCC GGCGTGGCCG GGGTGATCAA GATGGTGCTG GCGCTGCGCC 325 ACGGTGAGCT GCCGCGCACC CTGCACGGCT CGACGGCGTC CTCCACGGAT GAATGGGACG 325 CCCGGGCCGGC CATCTCCTCG TTCGGCATCA GCCCCTGGCC CCGGCGTGCC GACGGCCCGC CCCGGCCGCC GACGGCCGC GACCGACC		CACTGCGCCG GGC	GCGAGTGC	GACCTCGCAC	TGGCGGGGGG	CGCCACGGTC	ATCGCCGACT	32040
AGCGGCTGTC GGACGCCCGC CGCAACGGGC ACCCGTGTCT GGCGGTGTGT CGGGGCAGTG CCGTCAACCA GGACGGTGCG AGCAATGGGC TGACGGCGCC GAGTGGTTCT GCGCAGCAGC GGGTGATCCG TGAGGCGCTG GCCGACGCGG GGCTGACGCC CGCCGACGTG GACGCGGTCG AGGCGCACGG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGGCGCG CTCATGGCGA 324 CGTACGGCA CGAACGGACG GGCGACCCGC TGTGGCTGGA TTCGCTGAAG TCGAACATCG 324 GGCACACCCA GGCCGCCGCC GGCGTGGCCG GGCTGATCAA GATGGTGCTG GCGCTGCGCC 325 ACGGTGAGCT GCCGCCGCC CTGCACGCGT CGACGGCGTC CTCCAGGATC GAATGGGACG 325 ACGGTGAGCT GCCGCGCACC CTGCACGCGT CGACGGCGTC CTCCAGGATC GAATGGGACG 325 GCCGGGCGCGT GGAGTTGCTC GACGAGGCCA GCCCCTGCC CGAGGGCCGC 326 GCCGGGCCGCC CGCCCGGCCG GAGCCCGAGA CGCGCCACCA CGCGCACCAC 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGCCCGCCGC CCCGCCACCA 327 CCGCCCCCCC GCCCGGCCG GAGCCCGAGG AGCCCGCCGC CCCGCCCACCA 327 CCGCCCCCCC GCCCGGCCC GCCGGCGCC GATCCCTGCC CGAGGACCCC CCCGCCACCA 328 CCGCCCCCCC GCCCGGCCC CCCGGCCGC CGCGCCCCCC		TCGCGCTCTT CAC	CCCAGTTC	TCCCGGCAGC	GCGGGCTCGC	CCCCGACGG	CGGTGCAAGG	32100
GGGTGATCCA GGACGGTGCG AGCAATGGGC TGACGGCGCC GAGTGGTCCT GCGCAGCAGC 3223 GGGTGATCCG TGAGGCGCTG GCCGACGGG GGCTGACGGC CGCCGACGTG GACGCGGTCG 3234 AGGCGCACGG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGGCGG CTCATGGCGA 3244 GGCACACCCA GGACGGACG GGCGACCCGC TGTGGCTGGAG TCCGACACACCC 3245 GGCACACCCA GGCCGCCGCC GGCGTGGCCG GGGTGATCAA GATGGTGCTG GCGCTGCGCC 3255 ACGGTGAGGCT GCCGCGCCCC CTGCACGGCT CGACGGCTC CTCCAGGATC GAATGGGACG 3255 40 CGGGCGCCGG GGAGTTGCTG GACGAGGCCA GGCCCTGCCC CCGGCGTGCC GACGGCCGC GACGGCCGC GACGAGCCCC CTCCAGGACCA GGCCCGCCCC GACGGCCCC GACGGCCCC GACGGCCCC GACGGCCCC CCGCCGCCCC GACGGCCCC GACGGCCCC GACGGCCCC GACGGCCCC GCCCCCCC GCCCCCCC GCCCCCCC GCCCCCC	25	CCTTCGGTGA GAG	CGGCCGAC	GGCTTCGGCC	CCGCCGAGGG	CGCGGGGATG	CTGCTGGTCG	32160
GGGTGATCCG TGAGGCGCTG GCCGACGGGG GGCTGACGGC CGCCGACGTG GACGCGGTGG 323 AGGCGCACGG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGGCGG CTCATGGCGA 324 CGTACGGGCA CGAACGGACG GGCGACCCGC TGTGGCTGAG TCGAACATCG 324 GGCACACCCA GGCCGCCGCC GGCGTGCCG GGGTGATCAA GATGGTGCTG GCGCTGCGCC 325 ACGGTGAGGT GCCGCGCACC CTGCACGGTT CGACGGCGTC CTCCAGGATC GAATGGGACG 325 40 CGGGCGCCGT GGAGTTGCTG GACGAGGCCA GGCCCTGGCC CGGCGTGCC GAAGGGCCGC 326 GCCGGGCGGG CATCTCCTCG TTCGGCATCA GCGGCACCAA CGCGCACCTC GTCATCGAGG 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGGCCGCGCC CCGGCCACCA 327 45 CCGTCCTCCC GCTGTCGGCC GCCGGCGCG GATCCCTGGC CGAGGACGCC CCCAGGCTCG 328 CCGCCGCACCT GGCCGGCCAC GAGGAGATCA CCGCCGCCGC CGCACGCCCCA 328 CCACCCGTGC CGCCGCCCAC GAGGAGATCA CCGCCGCCGC CGCCCCGCC TCCGCCGCCA 328 CCACCCGTGC CGCCGCCCCC GAGGAGACCC CGGCGTCACC GTCCGCCGCA 329 CCACCCGTGC CGCGCCTCTCG CACCGGGCCT CGGTCCTGGC CGGCGCTCCA 329 CCACCCGTGC CGCGCCCCC GAGGAGGACA GGAAGGACCC CGGCGCTCAC 3300 TCGACAGGCT GACCGCCCCC GTCTTCGTCT TCCCGGGACA GGGCTCCCAG TGGACCGGCA 3300 CGGGCAGCGG CCGCCCCCC GTCTTCGTCT TCCCGGGACA GGGCTCCCAG TGGACCGGCA 3300 TCGCCCCCCAA ACTCCTCCAA ACCCCACCCC TCCCCGCGACA GGGCTCCCAG TGGACCGGCA 3300		AGCGGCTGTC GG	ACGCCCGC	CGCAACGGGC	ACCCGGTGCT	GGCGGTGGTG	CGGGGCAGTG	32220
AGGCGACGG CACCGGCACG CCGCACGGG GGCTGACGGC CGCCGACGTC GACGCGGTCG 324 AGGCGCACGG CACCGGCACG CCGCTCGGCG ACCCCATCGA GGCCGGCGGC CTCATGGCGA 324 CGTACGGGCA CGAACGGACG GGCGACCCGC TGTGGCTGGG TTCGCTGAAG TCGAACATCG 324 GGCACACCCA GGCCGCCGC GGCGTGGCCG GGGTGATCAA GATGGTGCTG GCGCTGCGCC 325 ACGGTGAGCT GCCGGCGACC CTGCAACGCGT CGACGGCGTC CTCCAAGGATC GAATGGGACG 325 CGGGGCGCGGT GGAGTTGCTG GACGAGGCCA GGCCCTGGCC CCGGCGTGCC GAAGGGCCGC 326 GCCGGGCCGGG CATCTCCTCG TTCGGCATCA GCGGCACCAA CGCGCCACCTC GTCATCGACG 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGACG AGGCCGCCGCC CCGGCCACCA 327 CCGTCCTCCC GCTGTCGGCC GCCGGCGCG GATCCCTGCG CGAGCAGGCC CGCACCACCA 328 CCGCGCACCT GGCCGGCCAC GAGGAGATCA CCGCCGCCGC CGCCCACCCA 328 CCACCCGTGC CGCCGCCCAC GAGGAGATCA CCGCCGCCGC CGACGACCGC CGCCGCCCACA 328 CCACCCCGTGC CGCCGCCCCC GACGGGCCCT CGGTCCTGGC CGACGACCGC CGCCGCCCACA 328 CCACCCGTGC CGCCGCCCCC GACGGGCCC CGGCCGCCC CCGCCCCCCACA 329 TCGACAGGCT GACCGCGCTG GCGGAGGACA GGAAGGACCC CGGCGCTGA 3306 CGGGCAGCGG CCGCCCCCC GTCTTCGTCT TCCCGGGACA GGGCTCCCAG TGCACGGCCA 3306 TGGACAGGGG CCGGCCCCCC GTCTTCGTCT TCCCGGGACA GGGCTCCCAG TGCACGGCCA 3306 TGGCCCCCCAA ACTCCTCCAC ACCGCACCG TGCTTCGGCC AGGCTCCCAG TGCACGGCCA 3306 TGGCCCCCCAA ACTCCTCCAC ACCGCACCG TGCTTCGGCCAA GGGCTCCCAG TGCACCGGCA 3306 TGGCCCCCCAA ACTCCTCCAC ACCGCACCG TGCTTCGGCCAA GGGCTCCCAG TGCACCGGCA 3306 TGCCCCCCCCAA ACTCCTCCACA ACCGCACCG TGCTTCCCCAG TGCACCGGCCA 3306 TGCCCCCCCCAA ACTCCTCCAC ACCGCACCAC TGCTTCCCAG TGCACCGGCA 3306 TGCCCCCCCCAA ACTCCTCCACA ACCGCACCAC TGCTTCCCAG TGCACCGGCAA 3306 TGCCCCCCCCAA ACTCCTCCAC TCCTCCCAC TGCTCCCAG TGCACCGCCAA 3306 TCGCCCCCCCAA ACTCCTCCAC ACCGCACCAC TCCTCCCAG TGCACCGCCAA 3306 TCGCCCCCCCAA ACTCCTCCAA ACCGCACCCC TCCTCCCAG TGCACCGCCAA 3306 TCGCCCCCCCCAA ACTCCTCCAA ACCGCACCAC TCCCCCCCAC TCCCCCCCCCC		CCGTCAACCA GGA	ACGGTGCG	agcaa tgg gc	TGACGGCGCC	GAGTGGTCCT	GCGCAGCAGC	32280
CGTACGGCA CGAACGGACG GGCGACCCGC TGTGGCTGGG TTCGCTGAAG TCGAACATCG 324 GGCACACCCA GGCCGCCGC GGCGTGGCCG GGGTGATCAA GATGGTGCTG GCGCTGCGCC 325 ACGGTGAGCT GCCGCGCACC CTGCACGCGT CGACGGCGTC CTCCAGGATC GAATGGGACG 325 CGGGCGCCGT GGAGTTGCTG GACGAGGCCA GGCCCTGGCC CCGGCGTGCC GAGGGGCCGC 326 GCCGGGCGGG CATCTCCTCG TTCGGCATCA GCGCCACCAA CGCGCACCTC GTCATCGAGG 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGGCCGGCGA GCCGCCCGC	30	GGGTGATCCG TG	AGGCGCTG	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	GACGCGGTCG	32340
GGCACACCCA GGCCGCCGCC GGCGTGGCCG GGGTGATCAA GATGGTGCTG GCGCTGCGCC 325 ACGGTGAGCT GCCGCGCACC CTGCACGCGT CGACGGCGTC CTCCAGGATC GAATGGGACG 325 CGGGCGCCGT GGAGTTGCTG GACGAGGCCA GGCCCTGGCC CCGGCGTGCC GAGGGGCCGC 326 GCCGGGCGGG CATCTCCTCG TTCGGCATCA GCGGCACCAA CGCGCACCTC GTCATCGAGG 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGGCCGCGCA GCCGCCCGC		AGGCGCACGG CAC	CCGCCACG	CCGCTCGCCG	ACCCCATCGA	GCCCGCCGC	CTCATGGCGA	32400
ACGGTGAGCT GCCGCGCACC CTGCACGCGT CGACGGCGTC CTCCAGGATC GAATGGGACG 325 40 CGGGCGCCGT GGAGTTGCTG GACGAGGCCA GGCCCTGGCC CCGGCGTGCC GAGGGGCCGC 326 GCCGGGCGGG CATCTCCTCG TTCGGCATCA GCGGCACCAA CGCGCACCTC GTCATCGAGG 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGGCCGGCGA GCCGCCCGC	35	CGTACGGGCA CGA	AACGGACG	GGCGACCCGC	TCTCGCTGGG	TTCGCTGAAG	TCGAACATCG	32460
CGGGCGCGT GGAGTTGCTG GACGAGGCCA GGCCCTGGCC CCGGCGTGCC GAGGGGCCGC 326 GCCGGGCGGG CATCTCCTCG TTCGGCATCA GCGGCACCAA CGCGCACCTC GTCATCGAGG 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGGCCGCGCA GCCGCCCGC		GGCACACCCA GGC	CCCCCCC (GCCTCCCC	GGGTGATCAA	GATGGTGCTG	CCCCTGCGCC	32520
AGGAGCCGCC CATCTCCTCG TTCGGCATCA GCGGCACCAA CGCGCACCTC GTCATCGAGG 327 AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGGCCGCGCA GCCGCCCGC		ACGGTGAGCT GCC	GCGCACC (CTGCACGCGT	CGACGCCGTC	CTCCAGGATC	GAATGGGACG	32580
AGGAGCCGCC CGCCCGGCCG GAGCCCGAGG AGGCCGCGCA GCCGCCCGC	40	CGGGCGCCGT GG	AGTTGCTG (GACGAGGCCA	GCCCTGGCC	CCGGCGTGCC	GAGGGGCCGC	32640
CCGTCCTCCC GCTGTCGCC GCCGGCGCGC GATCCCTGCG CGAGCAGGCC CGCAGGCTCG 328; CCGCGCACCT GGCCGGCCAC GAGGAGATCA CCGCCGCCGA CGCCGCCGC TCCGCCGCCA 328; CCACCCGTGC CGCGCTCTCG CACCGGGCCT CGGTCCTGGC CGACGACCGC CGGCGCTGA 329; TCGACAGGCT GACCGCGCTG GCGGAGGACA GGAAGGACCC CGGCGTCACC GTCCGCGAGG 330; CGGGCAGCGG CCGCCCCCC GTCTTCGTCT TCCCGGGACA GGGCTCCCAG TGGACGGCCA 330; TCGCCGCCGA ACTCCTCGAC ACCGGAGGGC TGTTTCGTCT CCCGGGACA GAGCTCCCAG TGGACGGCCA 330;		GCCGGGCGGG CAT	CTCCTCG	TTCGGCATCA	GCGGCACCAA	CGCGCACCTC	GTCATCGAGG	32700
CCGCCCCCCA ACTICCTICAL ACCIONAGES MATERIALS CARGOSCIC COCAGGCCCA 3280 CCGCCCCCCA ACTICCTICAL ACCIONAGES MATERIALS CARGOSCIC COCAGGCCCA 3280 3280 CCACCCCCCA GGCCGCCCA CCGCCCCCCA CCCCCCCC		AGGAGCCGCC CGC	CCCGCCCG (GAGCCCGAGG	AGGCCGCGCA	GCCGCCCGCC	CCGGCCACCA	32760
CCACCCGTGC CGCGCTCTCG CACCGGGCCT CGGTCCTGGC CGACGACCGG CGGCGCTGA 329.6 TCGACAGGCT GACCGCGCTG GCGGAGGACA GGAAGGACCC CGGCGTCACC GTCCGCGAGG 330.6 CGGGCAGCGG CCGCCCCCC GTCTTCGTCT TCCCGGGACA GGGCTCCCAG TGGACGGCCA 330.6 TCCCCGCCGA ACTCCTCCAC ACCCGACGCG TGTTTCGTCT CACCGCGACA CACCGCCCAG TGGACGGCCA 330.6	45	CCGTCCTCCC GCT	TCTCCCCC (scceececec	GATCCCTGCG	CGAGCAGGCC	CGCAGGCTCG	32820
TCGACAGGCT GACCGCGCTG GCGGAGGACA GGAAGGACCC CGGCGTCACC GTCGGCGAGG 3300 CGGGCAGCGG CCGCCCCCC GTCTTCGTCT TCCCGGGACA GGGCTCCCAG TGGACGGGCA 3300		CCGCGCACCT GGC	CCGCCAC (GAGGAGATCA	CCGCCGCCGA	CGCCGCCCGC	TCCGCCGCCA	32880
TCGACAGGCT GACCGCGCTG GCGGAGGACA GGAAGGACCC CGGCGTCACC GTCGGCGAGG 3300 CGGGCAGCGG CCGGCCCCCC GTCTTCGTCT TCCCGGGACA GGGCTCCCAG TGGACGGGCA 3300	50	CCACCCGTGC CGC	CCTCTCC (CACCGGGCCT	CGGTCCTGGC	CGACGACCGG	CGGCGCTGA	32940
TOTOCOCOCO ACTICACA ACCOCATOCO TOTOCOCO COLORO CALABORA C	50	TCGACAGGCT GAC	CCCCCTC C	GCGGAGGACA	GGAAGGACCC (CGGCGTCACC	CTCCGCGAGG	33000
TGGGCGCGA ACTCCTGGAC AGGGCACCGG TCTTCCGCGC CAAGGCCGAG GAGTGCGCGC 3312		CGGGCAGCGG CCG	CCCCCC (STCTTCGTCT '	TCCCGGGACA (GGGCTCCCAG	TGGACGGGCA	33060
	55	TGGGCGCCGA ACT	CCTGGAC A	AGGCACCGG '	TCTTCCGCGC (CAAGGCCGAG	GAGTGCGCGC	33120

	GGGCCCTCGC	GGCCCACCTC	GACTGGTCGG	TGCTCGACGT	CCTGCGCGAC	ccccccccc	33180
5	CCCCGCCGAT	CGACCGCGCG	GACGTCGTCC	AGCCGACCCT	GTTCACCATG	ATGGTCTCCC	33240
-	TCGCGGCGCT	GTGGGAGTCC	CACGGTGTAC	GCCCGCCGC	CCTCCTCCCC	CACTCCCAAG	33300
	GCGAGATCGC	CGCCGCCCAC	GCGGCCGGTG	CCCTGTCCCT	CGACGACGCG	GCCCGCGTGA	33360
10	TCGCCGAGCG	CAGCAGGCTC	TGGAAGCGGC	TGGCCGGAAA	CGGCGGCATG	CTCTCCGTGA	33420
	TGGCCCCGGC	CGACCGGGTC	CGCGAACTGA	TGGAGCCCTG	GGCGGAGCGG	ATGTCCGTGG	33480
	CCGCCGTCAA	CGGCCCCGCC	TCGGTCACCG	TGGCCGGTGA	CCCCCCCCCCCC	CTGGAGGAGT	33540
15	TCGGCGGCCG	GCTCTCCGCC	GCCGGGGTGC	TGCGCTGGCC	CCTCGCCGGC	GTCGACTTCG	33600
	CCGGACACTC	ACCCCAGGTG	GAGCAGTTCC	GCGCCGAGCT	CCTCGACACG	CTGGGCACCG	33660
	TCCGCCCGAC	CGCCGCCCGG	CTGCCCTTCT	TCTCCACCGT	GACCGCCGCG	GCGCACGAGC	33720
20	CCGAAGGCCT	GGACGCCGCG	TACTGGTACC	GGAACATGCG	CGAACCCGTG	CACTTCCCCT	33780
	CCACCCTGCG	GACGCTGCTG	CGCGAGGGCC	ACCGCACCTT	CGTCGAGATG	GCCCGCACC	33840
25	CCCTGCTGGG	CGCCGCGATC	GACGAGGTCG	CCGAGGCCGA	GGGCGTGCAC	GCCACCGCCC	33900
	TCGCCACCCT	CCACCGCGGC	TCCGGCGGCC	TGGACCGGTT	CCGCTCCTCG	CTGGGCGCCG	33960
•	CGTTCGCCCA	CGGAGTACGG	GTCGACTGGG	ACGCCCTCTT	CGAGGGCTCC	GCCCCCCCC	34020
30	GGGTCCCGCT	GCCCACCTAC	GCCTTCAGCC	GGGACCGGTA	CTGGCTGCCC	ACCGCCATCG	34080
	GCCGGCGCGC	CGTCGAGGCG	GCCCCCGTCG	ACGCGTCCGC	cccccccc	TACCGCGTCA	34140
	CCTGGACACC	CGTGGCATCC	GACGACTCCG	GCCGGCCCTC	CGGGCGCTGG	CTGCTGGTGC	34200
35	AGACCCCCGG	CACCGCGCCG	GACGAGGCGG	ACACCGCGGC	GTCGGCCCTC	CCTCCCCCCC	34260
	GGGTGGTCGT	GGAGCGCTGC	CTGCTGGATC	CCACCGAGGC	CGCGCGCGTC	ACGCTCACCG	34320
	AGCGACTGGC	CGAACTGGAC	GCGCAGCCGG	AGGCCTGGC	CGGCGTGCTG	GTGCTGCCCG	34380
40	GCCGTCCGCA	GAGCACCGCA	CCGGCCGACG	CCTCCCCGCT	CGACCCGGGG	ACGCCCCCC	34440
	TCCTGCTCGT	GGTCCAGGCC	GTGCCGGACG	CCGCTCCGAA	GCCCGGATC	TGGGTGGTGA	34500
45	CGCGGGGTGC	GCTGCCGCTG	CCCTCCCCTC	AGGTGCCGTG	TGCGGTGGGT	CCCCCCCTCT	34560
	GGGGTCTGGG	GCGGGTGGCT	GCGTTGGAGG	TGCCGGTGCA	CTCCCCTCCC	TTGGTGGATG	34620
	TGGCGGTGGG	GCCCCCTCTC	CGTGAGTGGC	GTCGTGTGGT	GGGTGTGGTT	CCGGGGGGTG	34680
50	GTGAGGATCA	GGTGGCGGTG	CGTGGTGGGG	CTCTCTTCGG	TCGTCGTCTG	CTCCCTCTCC	34740
	GCGTGCGGG	TGGTTCGGGG	GTGTGGCGTG	CCCCCCCCTC	TGTGGTGGTG	ACGCGTCCGT	34800
	TGGGTGGTGT	GGGGGGTCAT	GTGGCGCGGT	GGTTGGCGCG	TTCGGGTGCG	GAGCATGTGG	34860
55	TCTTCCCGGC	GCGTCGGGGT	GGTGGGGTTG	TGGGGGCGGT	GGAGTTGGAG	CCCCACTTCC	34920

	TGGGGTTGGG	GGCGAAGGTG	ACGTTCGTTT	CGTGTGATGT	GGGGGATCGG	GCGTCGATGG	34980
5	TGGGGTTGTT	CCCTCTCCTC	GAGGGGTTGG	CCCTCCCCTT	CCCTCCTCTC	TTTCATGCGG	35040
	CGGGGGTGGC	TCAGGTGTCG	GCCTTCCCTC	AGGTGTCGTT	GCCGCYGCCC	GCTCCTCTCT	35100
	TGGGGGTAA	GCCGCTCCCC	GCTGAGTTGT	TGGACGAGTT	GACGCCCCCT	GTGGAGCTGG	35160
10	ATGCGTTCGT	GTTGTTCTCG	TCGGGTGCTG	GGGTGTGGGG	GAGTGGGGG	CAGTCGGTGT	35220
	ATGCGGCGGC	CAATGCGCAT	CTGGATGCGT	TGGCGGAGCG	TCGTCGTGCG	CAGGGGCGTC	35280
15	CCGCGACCTC	CGTCGCCTGG	GGCCTGTGGG	GCGGCGAGGG	CATGGGAGCG	GACGAAGGCG	35340
	TCACGGAGTT	CTACGCCGAG	CGCGGCCTCG	CCCCCATGCG	GCCCGAGTCG	GGCATCGAGG	35400
	CACTGCACAC	GGCACTGAAC	GAGGGCGACA	CCTGCGTCAC	GGTCGCCGAC	ATCGACTGGG	35460
20	AACACTTCGT	CACCGGGTTC	ACCGCCTACC	GGCCCAGCCC	GCTGATCTCC	GACATCCCCC	35520
	AGGTCCGCGC	GTTGCGCACG	CCCGAACCCA	CCGTGGACGC	CTCGGACGGA	CTGCGCCGGC	35580
25	GCGTCGACGC	CGCCCTCACC	CCGCGCGAGC	GCACCAAGGT	CCTGGTCGAC	CTGGTCCGCA	35640
	CGCTGGCGGC	GGAGGTCCTC	GGTCACGACG	GGATCGGCGG	CATCGGCCAC	GACGTGGCCT	35700
	TCCGGGACCT	CGGCTTCGAC	TCGCTGGCCG	CGGTGCGGAT	ccccccccc	CTGGCCGAGG	35760
30	CGACCGGACT	CGTACTGCCC	GCGACGGTCA	TCTTCGACCA	CCCCACCCTG	GACCGGCTCG	35820
00	GCGGCGCCT	GCTGGAGCGG	CTGTCCGCGG	ACGAACCCGC	GCCCGCCGGG	GCGCCGGAGC	35880
	CCGCCGGGG	GAGGCCCGCG	ACCCCACCGC	CCGCACCGGA	GCCGGCCGTC	CACGACGCCG	35940
35	ACATCGACGA .	ACTCGACGCG	GACGCCCTGA	TCCGGCTGGC	CACGGGAACC	GCCGGACCGG	36000
	CCGACGCCAC	GCCGGCCGAC	ecceccccc	ACGCGGCGGC	GACCGCCCCC	GACGGAGCAC	36060
	CGGAGCAGTA	GCGCGCCCTC	ACCGGCGCGC	CGACCGGCGG	AGCGCCGTAC	CGCCGACGCC	36120
40	CCCCACAGCC	AGCGAGCAGA	CGAGGAAGCC	GAAGATGTCA	CCGTCCATGG	ACGAAGTGCT	36180
	GGGTGCGCTG	CGCACCTCCG	TCAAGGAGAC	CGAGCGGCTG	CGCCGGCACA	ACCGGGAGCT	36240
.=	CCTGGCCGGC	GCGCACGAGC	CGGTCGCCAT	CGTGGGCATG	GCCTGCCGCT	ACCCCGGTGG	36300
45	CGTGAGCACC (CCGGACGACC	TGTGGGAGCT	CGCCGCGGAC	GGCGTCGACG	CGATCACCCC	36360
	CTTCCCGGCC	GACCGGGGCT	GGGACGAGGA	CGCCGTCTAC	TCGCCCGACC	CCGACACCCC	36420
50	CGGCACCACC	PACTGCCGTG	AGGGCGGCTT (CCTCACCGGC	GCCGGGGACT	TCGACGCGGC	36480
	CTTCTTCGGC 7	ATCTCGCCGA	ACGAGGCGCT (CCTGATGGAC	CCGCAGCAGC	CCTCTTCCT	36540
	GGAGACGTCG 1	rgggagacgt 1	TGGAGCGGGC (CGGCATCGTC	CCCGCGTCGC	TGCGCGGCAG	36600
55	CCGTACCGGT (STCTTCGTCG (GAGCCGCGCA (CACGGGATAC	GTCACCGACA	CCGCGCGAGC	36660

	GCCCGAGGC ACCGAGGCT ATCTGCTGAC GGGCAACGCC GATGCCGTCA TGTCCGGCCG 367	720
5	GATCGCCTAC TCCCTGGGTC TGGAGGGGCC GGCGCTGACG ATCGGGACGG CCTGCTCGTC 367	780
	GTCGTTGGTG GCGTTGCATC TGGCGGTGCA GTCGTTGCGG CGGGGGGAGT GCGACCTGGC 368	340
	GTTGGCCGGC GGCGTCGCGG TCATGCCCGA CCCGACGGTG TTCGTGGAGT TCTCGCGGCA 369	00
10	GCGGGGGCTG GCGGTGGAC GGCGTTCGCG GAGGGTGCGG ACGGGACGGC 369	60
	GTGGGCGGAG GGAGTGGGTG TGCTGCTGGT GGAGCGGCTT TCCGACGCGC GCCGCAATGG 370	20
	CCATCGGGTG CTGGCGGTGG TGCGGGCAG TGCGGTCAAT CAGGACGGGG CGAGCAATGG 370	80
15	GCTGACGGCG CCGAGTGGTC CTGCGCAGCA GCGGGTGATC CGTGAGGCGC TGGCTGATGC 371	40
	GGGGCTGACG CCCGCCGACG TGGATGTGGT GGAGGCGCAC GGTACGGGGA CGCCGTTGGG 372	00
20	TGATCCGATC GAGGCGGGTG CGTTGCTGGC CACGTACGGG CGGGAGCGGG TCGGTGATCC 372	60
20	TTTCTCGTTC CGGTCGTTGA AGTCGAACAT CGGGCATGCG CAGGCGGCTG CGGGTGTGGG 373	20
	TEGTETGATE AAGGTEGTEC AGGCGATEGE GCATEGETCE TTGCCGCGGA CGCTGCATGT 373	80
25	GGATGCGCCG TCGTCGAAGG TGGAGTGGGC TTCGGGTGCG GTGGAGCTGC TGACCGAGGG 374	40
	CCGGTCGTGG CCGCGGGGGG TGGAGCGGGT GCGGCGGGCC GCGGTGTCGG CGTTCGGGGT 375	00
	GAGCGGGACC AACGCCCATG TGGTCCTGGA GGAAGCACCG GTCGAGGCCG GGAGCGAGCA 3756	60
30	CGGGGACGGC CCCGGACCCG ACCGGCCCGA CGCCGTGACG GGTCCGCTCC CCTGGGTGCT 3762	20
	CTCGGCACGC TCGCGGGAGG CGCTGCGCGG CCAGGCCGGA CGACTCGCCG CTCTCGCCCG 3768	30
	CCAGGGGCGC ACGGAGGGCA CCGGCGGCGG CAGCGGACTC GTCGTCCCCG CGGCCGACAT 3774	10
35	CGGATACTCC CTGGCCACCA CCAGGGAGAC CCTGGAGCAC CGGGCGGTGG CGCTGGTGCA 3780	0
	GGAGAACCGG ACGCCCGCGG AGGACCTCGC CGCGCTGGCC GCCGGCCGCA CACCGGAGAG 3786	0
40	CGTGGTCACG GGTGTCGCGC GACGTGGCCG CGGGATCGCC TTCCTCTGCT CGGGGCAGGG 3792	0
	CGCCCAGCGG CTCGGCGCCCG GTCGGGAGCT CCGCGGCAGG TTCCCCGTCT TCGCCGACGC 3798	0
	CCTCGACGAG ATCGCGGCGG AGTTCGACGC CCACCTCGAA CGCCCTCTCC TGTCGGTGAT 3804	0
45	GTTCGCCGAG CCCGCCACGC CGGACGCCGC ACTCCTCGAC CGCACCGACT ACACCCAGCC 3810	0
	GGCCCTCTTC GCGGTGGAGA CCGCGCTCTT CCGGCTCCTG GAGAGCTGGG GCCTGGTCCC 3816	0
50	GGACGTCCTC GTGGGCCACT CGATCGGCGG TCTGGTGGCG GCTCACGTGG CGGGCGTCTT 3822	0
	CTCTGCGGCC GACGCGGCCC GGCTGGTCTC CGCACGCGGC CGGCTCATGC GGGCCCTGCC 3828	0
	CGAGGGCGGC GCGATGGCGG CCGTGCAGGC CACCGAGCGG GAGGCCGCCG CGCTGGAGCC 3834	0
55	CGTCGCCGCC GGCGGCGCG TGGTCGCCGC GGTCAACGGC CCGCAGGCCC TCGTGCTCTC 38400	0
93	CGGGGACGAG GCGGCCGTAC TGGCGGCGGC CGGTGAACTG GCCGCCCGCG GACGCCGCAC 38460)

	CAAGCGCCTG AGGGTGAGCC ACGCCTTCCA CTCACCCCGT ATGGACGCCA TGCTCGCCGA	38520
5	CTTCCGCGCG GTGGCGGACA CGGTCGACTA CCACGCCCCC CGGCTGCCGG TCGTCTCCGA	38580
	AGTGACCGGC GACCTCGCCG ACGCCGCCCA GCTGACCGAC CCCGGCTACT GGACCCGCCA	38640
	GGTGCGGCAG CCGGTGCGCT TCGCCGACGC CGTGCGCACC GCGAGCGCCCC GGGACGCCGC	38700
10	GACCTTCATC GAGCTCGGGC CCGACGCCGT CCTGTGCGGC ATGGCGGAGG AGTCCCTGGC	38760
	CGCGGAGGCC GACGTCGTGT TCGCCCCGGC ACTGCGCCGC GGGCGCCCGG AGGGCGACAC	38820
15	CGTGCTCCGG GCCGCGCGA GCGCGTACGT CCGCGGCGCG GGCCTCGACT GGGCCGCGCT	38880
	CTACGGCGGC ACGGGAGCCC GCCGCACCGA CCTGCCCACC TACGCCTTCC AGCACAGCCG	38940
	CTACTGGCTC GCCCCGGCT CGGCCGCGGT CGCCCCCGCG ACGGCCGCCC CCTCCGTCCG	39000
20	ATCCGTGCCG GAAGCCGAGC AGGACGGGGC GCTGTGGGCC GCCGTGCACGT	39060
	CGCCTCGGCC GCGGCGCGAC TGGGCGCCGA CGACGCCGGT ATCGAACACG AACTGCGCGC	39120
	GGTCCTGCCG CACCTGGCCG CCTGGCACGA CCGCGACCGC GCGACCGCGC GGACCGCGG	39180
25	CCTGCACTAC CGCGTCACCT GGCAGGCGAT CGAGGCAGAC GCTGTCAGGT TCAGCCCCTC	39240
	GGATCGCTGG CTGATGGTCG AGCATGGGCA GCACACGGAA TGCGCGGACG CCGCGGAACG	39300
	GGCGCTGCGC GCGGCCGGCG CGGAGGTCAC CCGCCTGGTG TGGCCGCTGG AGCAGCACAC	39360
30	CGGATCACCG CGGACGGAGA CCCCGGACCG CGGCACCCTG GCGGCCCGGC TGGCCGAGCT	39420
	CGCACGGAGC CCGGAGGGCC TGGCCGGCGT GCTGCTGCTC CCCGACTCGG GCGCTGCCGC	39480
35	GGTCGCCGGG CACCCCGGGC TGGACCAGGG AACGGCGGCG GTGCTGCTGA CGATCCAGGC	39540
	ACTGACCGAC GCCGCGCTGC GGGCACCGCT GTGGGTGGTG ACGCGGGGTG CGGTGGCGGT	39600
	GGGGTCGGGT GAGGTGCCGT GTGCGGTGGGG TGCGCGGGTG TGGGGTCTGG GGCGGGTGGC	39660
40	TGCGTTGGAG GTGCCGGTGC AGTGGGGTTGG GTTGGTGGAT GTGGCGGTGG GGGCGGGTGT	39720
	GCGTGAGTGG CGTCGTGTGG TGGCTGTGGT TGCGCGCGCT GGTGAGGATC ACGTGGCGGT	39780
	GCGTGGTGGG GCGTGTTCG GTCGTCGTCT GGTGGGTG	39840
45	GGTGTGGCGT GCGCGGGGT GTGTGGTGGT GACGGGTGGG TTGGGTGGTG TGGCGGGTCA	39 90 0
	TGTGGCGCGG TGGTTGGCGC GTTCGGGTGC GGAGCATGTG GTGTTGGCGG GGCGTCGGGG	39960
50	TGGTGGGGTT GTGGGGCGC TGGAGTTGGA GCGGGAGTTG GTGGGGTTGG GGGCGAAGGT	40020
30	GACGITCGIT TCGTGTGATG TGGGGGATCG GGCGTCGGTG GTGGGGTTGT TGGGTGTGGT	40080
	GGAGGGGTTG GGGGTGCCGT TGCGTGGTGT GTTTCATGCG GCGGGGGTGG CTCAGGTGTC	40140
55	GGGGTTGGGT GAGGTGTCGT TGGCGGAGGC GGGTGGTGTC TTGGGGGGGTA AGGCCGCTGGG	40200

	GCTGAGTTG	TTGGACGAGT	TGACGGCGGG	TGTGGAGCTG	GATGCGTTCG	TOTTGTTCTC	40260
5	CTCCCCTCCT	GCCTCTCCC	GGAGTGGGGG	GCAGTCGGTG	TATGCGGCGG	CCAATGCGCA	40320
	TCTGGATGCG	TTGGCGGAGC	GTCGTCGTGC	GCAGGGGCGT	CCCGCGACCT	CCCTCCCCTG	40380
	CCCCCTCC	GACGCCGACG	GCATGGGCGA	GATGGCGCCC	GAGGGCTACT	TOGCCCGCCA	40440
10	CCCCCTCCCC	CCGCTCCACC	CCGAGACGGC	GCTCACCGCC	CTGCACCAGG	CCATCGACGG	40500
	CGGCGAAGCC	ACGGTCACCG	TGGCGGACAT	CGACTGGGAA	CGGTTCGCCC	CCGCCTTCAC	40560
	CGCCTTCCGT	CCCAGCCCCC	TGATCGCCGG	CATCCCCGCG	GCCCGTACGG	cacccccccc	40620
15	cescesece	GCCGAGGACA	CCCCCACCGC	CCCCGGCCTC	CTGCGGGCGC	GCCCGAGGA	40680
	ccacccaca	CTCGCCCTGG	ACCTGGTGCT	CCGCCACGTC	GCGGCGGTCC	TOGGCCACTC	40740
20	CGAGGACGCC	CGGGTCGACG	CCCGGGCCCC	CTTCCGGGAC	CTCGGCTTCG	ACTCGCTCGC	40800
20	CGCCGTGCGG	CTGCGCCGCC	GGCTGGCCGA	GGACACCGGG	CTCGACCTGC	CCGGCACCCT	40860
	CGTCTTCGAC	CACGAGGACC	CCACCGCGCT	GGCCCACCAC	CTGGCCGGCC	TCGCCGACGC	40920
25	GGGGACCCCC	GGCCCCCAGG	AGGGCACGGC	TCGGGCCGAG	AGCGGGCTGT	TCGCCTCCTT	40980
	ccacaccacc	GTCGAACAGC	GCAGGTCGAG	CGAGGTCGTG	GAGCTGATGG	CCGACCTGGC	41040
	GCCGTTCCGG	CCCGCCTACT	CCCGGCAGCA	CCCCCCTCC	GCCGCCCCG	CGCCCGTACC	41100
30	CCTCGCGACC	GGACCGGCGA	CGCGTCCCAC	GCTGTACTGC	TGCGCCGGCA	CCGCGGTCGG	41160
	CTCCGGGCCC	GCCGAGTACG	TCCCGTTCGC	CGAACGACTG	CGCGGCGTCC	GGGAGACGGT	41220
	CCCCCTTCCC	CTGTCCGGCT	TCGGCGACCC	CGCGGAACCG	ATGCCCGCAT	CGCTCGACGC	41280
35	GCTGATCGAG	GTCCAGGCCG	ACGTCCTCCT	GGAGCACACC	GCGGGCAAGC	CCTTCGCCCT	41340
	CGCCGGCCAC	TCCGCCGGCG	CGAACATCGC	CCACGCCCTG	ccccccccc	TGGAGGAACG	41400
40	CGGCTCGGGC	CCCGCAGCCG	TCGTACTGAT	GGACGTCTAC	CGTCCCGAGG	ACCCCGGTGC	41460
	GATGGGCGAG	TGGCGCGACG	ACCTGCTCAG	CTGGGCGCTC	GAACGCAGCA	COGTGCCCCT	41520
	GGAGGACCAC	CGGCTCACCG	CCATGGCCGG	CTATCAGCGG	CTGGTGCTCG	GAACCCGGCT	41580
45	CACCGCCCTC	GAAGCCCCCG	TCCTGCTGGC	CCGGGCGTCC	GAACCCCTGT	GCGCGTGGCC	41640
	GCCCGCGGGC	GGGGCGCGGG	GCGACTGGCG	GTCCCAGGTC	CCGTTCGCAC	GGACCGTCGC	41700
	CGACGTGCCC	GGCAACCACT	TCACCATGCT	CACCGAACAC	GCCCGGCACA	CCGCGTCCCT	41760
50	GGTGCACGAA	TGGCTGGACA	GCCTCCCGCA	CCAGCCCGGT	ccccccccc	TCACCGGAGG	41820
	GAAACACTGA	TGTACGCCGA	CGACATCGCG	GCCGTCTACG	ACCTGGTCCA	CGACGGGAAG	41880
<i>EE</i>	GGGAAGGACT	ACCGGCAGGA	GGCCGAGGAG .	ATCGCCGCAC '	TCGTGCGCGT	CCACCGGCCG	41940
55	GCCCCCGGA	CCCTGCTCGA	CGTGGCCTGC (GGCXCCGGCC /	AGCACCTGCA	CCACCTGGAC	42000

	GGCCTCTTCG	ACCACGTCGA	GGGCCTGGAA	CTCTCCGCCG	ACATGCTGGC	CCTCGCGACC	42060
5	GGCCGGAACC	CCGGTGTCAC	CTTCCACCAA	GGGGACATGC	GCTCGTTCTC	CCTCGCACGC	42120
	CGGTTCGACG	CGGTGACCTG	CATGTTCAGC	TCCATAGGCC	ACCTGCGGAC	CACCGACGAA	42180
	CTCGACAGCA	CGCTGCGGGC	CTTCACCGAC	CACCTCGAAC	CGTCCGGCGT	CATCGTCGTC	42240
10	GAACCCTGGT	GGTTCCCCGA	GTCCTTCACC	CCCGGTTACG	TCGGCGCCAG	CATCACGGAG	42300
	GCGGGCGAGC	GCACCGTCTG	CCGGGTCTCG	CACTCCGTAC	GGGAGGGGAA	CCCCACCCCC	42360
15	ATCGAGGTGC	ACTACCTCCT	CGCCGGACCC	GCCGCCTCC	GTCACCTGAC	CGAGGACCAC	42420
	ACCATCACCC	TGTTCCCGCG	CGCCGACTAC	GAGGCGGCCT	TCGAGCGCGC	CGGCTGCGAC	42480
	GTGGTCTACC	AGGAAGGCGG	CCCGTCCGGT	CGCGGGCTGT	TCATCGGCAC	CCCCCCCTGA	42540
20	CCCGGTGCCG	ACGCGGACCG	ccccccccc	GAGGCGGGTT	GCCCCGACCC	ACCCGCACA	42600
	CCCGGGTCCC	CCGATCGTGC	GAGCGCCCCC	ATCGACCCGA	GAAGAAAGGC	AGGGCAGCCA	42660
	TGCCCACCCT	TGCCACGGAA	ACGGCCCCCG	CGAGCACGAG	CACGAGCGCG	GCACGAGCA	42720
25	CGGGCGTCCG	TGCGCTCGGC	CGTCGGCTCC	AGCTGACCCG	GGCCGCACAC	TOGTOCCCCG	42780
	GCAACCAGGG	CGACCCGTAC	GCGCTGATCC	TGCGCGCCGT	CGCCGACCCC	GAGCCGTTCG	42840
30	AACGGGAGAT	CCGCGCCCCC	GGACCGTGGT	TCCGCAGCGA	ACAGCTGGAC	GCCTGGGTGA	42900
30	CCGCGGACCC	CGAGGTGGCG	GCGGCCGTCC	TGGCCGACCC	GCGCTTCGGC	ACGCTGGACC	42960
	GGGCCGGACG	CCGCCCGGAC	GAGGAACTGC	TGCCCCTCGC	CGAGGCGTTC	CCCCACCACG	43020
35	AACGCGCGGA	GCTCGTACGC	CTGCGGGCGC	TGGCCGCCCC	GGTGCTCAGC	CCCTACCCCC	43080
	CGGCCCAGGC	GCCCTGCGCG	GCGCGCACCA	CCGCCCGCAG	AGTGCTCGGC	CCCCTCCTCC	43140
	CCACCGGTGA	CGCCGGGTTC	GACCTTGTCG	GCGAGGTCGC	CCGGCCCTAC	GCCGTCGAGC	43200
40	TGATGCTCAG	GCTCCTCGGA	GTGCCGGGCC	GCGACCGCGC	CACCGCCGCG	CGGGCACTCG	43260
	CCGCCTGCGG	CCCCCAGCTC	GACGCCCGGA	TGGCCCCGCA	ACTGCTGACC	GTGGCCCGGG	43320
	AGTCCGCCGA	CGCCGTCCGC	ACACTGGCCG	ACCTGGTCCC	CGAGCTCGTC	CCCGAGAAGT	43380
45	CCCGGGCCT	CGGGAACGCC	GAGCCCCGGC	CCGACGACGT	GCTCGCCCTC	CTCCTGCACG	43440
	ACGGCGTCGC	CCCCGGCGAC	GTCGAGCGCA	TCGCGCTGCT	CCTCGCGGTC	GCCCCACCCG	43500
50	AACCCGTCGT	CACCGCCGTC	GCGCACACGG	TCCACCGGCT	GCTCGGCCGG	CCGGGGGAGT	43560
	GGGAGAGGC	CCGCCGGACG	cceccecee	CGAACGCCGT	CGACCAGGTG	CTGCGCGAGC	43620
	GCCCCCCGGC	CCGGCTGGAG	AACCGGGTCG	CGCACACCGG	CCTCGAACTC	GCCGCCCCC CC	43680
55	GGATCACCGC	CGACGAGCAC	GTCGTGGTGC	TGGCCGCCGC	CGGACGGGAG	ATCCCCGGGC	43740

	CGGAGCCGCT CGGGGGGGCCC GACGGACCGC ACCTGGCGCT CGCCCTCCCG CTGATCCGCC	43800
5	TGGCCGCCAC CACCGCGGTC CAGGTCACGG CCGGCCGT GCCCGGCCTG CGGGCCGAGG	43860
	GACCGCCCCT GACCCGGCCG CGGTCACCGG TCCTGGGCGC CTGCGGCCCGC CTCCGGGTCC	43920
	ACCCGGGATG ACCCCGCCGT CCGTACGCCC CCTCCCAGAC CGGAGCCGCT GTGCGCGTCC	43980
10	TGCTGACATC CCTCGCCCAC AACACCCACT ACTACAGTCT GGTGCCCCTC GCCTGGGCGC	44040-
	TGCGCGCCGC CGGGCACGAG GTACGGGTGG CGAGCCCGCC CTCCCTCACC GACGTCATCA	44100
	CCTCCACCGG TCTGACCGCC GTACCGGTGG GCGACGACCG ACCGGCCGCG GAGCTGCTCG	44160
15	CCGAGATGGG CAGAGACCTC GTCCCCTACC AGAGGGGCTT CGAGTTCGGT GAGGTGGAGA	44220
	3GCGAGGAGGA GACCACCTGG GAGTACCTGC TCGGCCAGCA GAGCATGATG GCCGCCCTGT	44280
20	GCTTCGCCCC GTTCAACGGC GCCGCCACGA TGGACGAGAT CGTCGACTTC GCCCGTGGCT	44340
	GGCGGCCCGA CCTGGTCGTG TGGGAACCCT GGACCTA	44377
	(2) INFORMATION FOR SEQ ID NO:2:	
25		
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 4550 amino acids	
	(B) TYPE: amino acid (D) TOPOLOGY: unknown	
30	(ii) MOLECULE TYPE: peptide	
50	(/ NOBBCOBE TIFE: peptide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
35	Met Ser Gly Glu Leu Ala Ile Ser Arg Ser Asp Asp Arg Ser Asp Ala	
	10 15	
	Val Ala Val Val Gly Met Ala Cys Arg Phe Pro Gly Ala Pro Gly Ile 20 25 30	
40	Ala Glu Phe Trp Lys Leu Leu Thr Asp Gly Arg Asp Ala Ile Gly Arg	
	40 45	
	Asp Ala Asp Gly Arg Arg Gly Met Ile Glu Ala Pro Gly Asp Phe 50 60	
45	Asp Ala Ala Phe Phe Gly Met Ser Pro Arg Glu Ala Ala Glu Thr Asp	
	75 80	
	Pro Gln Gln Arg Leu Met Leu Glu Leu Gly Trp Glu Ala Leu Glu Asp	

85

50

55

Ala Gly Ile Val Pro Gly Ser Leu Arg Gly Glu Ala Val Gly Val Phe 100 100 110

Val Gly Ala Met His Asp Asp Tyr Ala Thr Leu Leu His Arg Ala Gly 115 120 125

		130)				135	i				140)			Leu
5	Ala 145	Asn	Arg	Leu	Ser	Tyr 150	Val	Leu	Gly	Thr	155		Pro	Ser	Leu	1 Ala 160
	Val	Asp	Thr	Ala	Gln 165	Ser	Ser	Ser	Leu	Val 170		Val	Ala	Leu	Ala 175	Val
10	Glu	Ser	Leu	Arg 180	Ala	Gly	Thr	Ser	Arg 185		Ala	Val	Ala	Gly 190		Val
	Asn	Leu	Val 195	Leu	Ala	Asp	Glu	Gly 200		Ala	Ala	Met	G1u 205		Leu	Gly
15	Ala	Leu 210	Ser	Pro	Asp	Gly	Arg 215		His	Thr	Phe	220		Arg	Ala	Asn
20	Gly 225	Tyr	Val	Arg	Gly	Glu 230	Gly	Gly	Ala	Ala	Val 235		Leu	Lys	Pro	Leu 240
	Ala	Asp	Ala	Leu	Ala 245	Asp	Gly	Asp	Pro	Val 250	Tyr	Суз	Val	Val	Arg 255	
25	Val	Ala	Val	Gly 260	Asn	Asp	Gly	Gly	Gly 265	Pro	Gly	Leu	Thr	Ala 270	Pro	Asp
	Arg	Glu	Gly 275	Gln	Glu	Ala	Val	Leu 280	Arg	Ala	Ala	Суз	Ala 285	Gln	Ala	Arg
30	Val	Asp 290	Pro	Ala	Glu	Val	Arg 295	Phe	Val	Glu	Leu	His 300	Gly	Thr	Gly	Thr
	Pro 305	Val	Gly	Asp	Pro	Val 310	Glu	Ala	His	Ala	Leu 315	Gly	Ala	Val	His	Gly 320
35	Ser	Gly	Arg	Pro	Ala 325	Asp	Asp	Pro	Leu	Leu 330	Val	Gly	Ser	Val	Lys 335	Thr
	Asn	Ile	Gly	His 340	Leu	Glu	Gly	Ala	Ala 345	Gly	Ile	Ala	Gly	Leu 350	Val	Lys
40	Ala	Ala	Leu 355	Суз	Leu	Arg	Glu	Arg 360	Thr	Leu	Pro	Gly	Ser 365	Leu	Asn	Phe
	Ala	Thr 370	Pro	Ser	Pro	Ala	Ile 375	Pro	Leu	Asp	Gln	Leu 380	Arg	Leu	Lys	Val
45	Gln 385	Thr	Ala	Ala	Ala	Glu 390	Leu	Pro	Leu	Ala	Pro 395	Gly	Gly	Ala		Leu 400
50	Leu	Ala	Gly	Val	Ser 405	Ser	Phe	Gly	Ile	Gly 410	Gly	Thr	Asn		His 415	Val
	Val	Leu	Glu	His 420	Leu :	Pro	Ser .	Arg	Pro 425	Thr	Pro .	Ala		Ser '	Val	Ala
55	Ala	Ser	Leu 435	Pro .	Asp '	Val	Pro 1	Pro 1 440	Leu :	Leu i	Leu .		Ala . 445	Arg :	Ser	Glu

	Gly	/ Ala 450	Leu)	Arg	Ala	Gln	Ala 455	Val	Arg	Leu	Gly	Glu 460		Va]	Glu	Arg
5	Va]	Gly	Ala	Asp	Pro	Arg 470		Val	Ala	Tyr	Ser 475		Ala	Ser	Thi	Arg 480
	Thr	Leu	Phe	Glu	His 485		λla	Val	Val	Pro	Суз	Gly	Gly	Arg	Gly 495	Glu
10	Leu	Val	Ala	Ala 500	Leu	Gly	Gly	Phe	Ala 505	Ala	Gly	Arg	Val	Ser 510	Gly	Gly
	Val	Arg	Ser 515	Gly	Arg	Ala	Val	Pro 520		Gly	Val	Gly	Val 525		Phe	Thr
15	Gly	Gln 530	Gly	Ala	Gln	Trp	Val 535		Met	Gly	Arg	Gly 540		Tyr	Ala	Gly
20	Gly 545	Gly	Val	Phe	Ala	Glu 550	Val	Leu	Asp	Glu	Val 555	Leu	Ser	Met	Val	Gly 560
20	Glu	Val	Asp	Gly	Arg 565	Ser	Leu	Arg	Asp	Val 570	Met	Phe	Gly	Asp	Val 575	Asp
25	Val	qeA	Ala	Gly 580	Ala	Gly	Ala	Asp	Ala 585	Gly	Ala	Gly	Ala	Gly 590	Ala	Gly
	Val	Gly	Ser 595	Gly	Ser	Gly	Ser	Val 600	Gly	Gly	Leu	Leu	Gly 605	Arg	Thr	Glu
30	Phe	Ala 610	Gln	Pro	Ala	Leu	Phe 615	Ala	Leu	Glu	Val	Ala 620	Leu	Phe	Arg	Ala
	Leu 625	Glu	Ala	Arg	Gly	Val 630	Glu	Val	Ser	Val	Val 635	Leu	Gly	His	Ser	Val 640
35	Gly	Glu	Val	Ala	Ala 645	Ala	Tyr	Val	Ala	Gly 650	Val	Leu	Ser	Leu	G1y 655	Asp
	Ala	Val	Arg	Leu 660	Val	Val	Ala	Arg	Gly 665	Gly	Leu	Met	Gly	Gly 670	Leu	Pro
40	Val	Gly	Gly 675	Gly	Met	Trp	Ser	Val 680	Gly	Ala	Ser	Glu	Ser 685	Val	Val	λ rg
	Gly	Val 690	Val	Glu	Gly	Leu	Gly 695	Glu	Trp	Val	Ser	Val 700	Ala	Ala	Val	Asn
45	Gly 705	Pro	Arg	Ser	Val	Val 710	Leu	Ser	Gly		Val 715	Gly	Val	Leu	Gl u	Ser 720
50	Val	Val	Ala	Ser	Leu 725	Met	Gly	Asp		Val 730	Glu	Суз	Arg	Arg	Leu 735	Asp
	Val	Ser	His	Gly 740	Phe	His	Ser		Leu 745	Met	Glu	Pro		Leu 750	Gly	Glu
55	Phe	Arg	Gly 755	Val	Val	Glu	Ser	Leu 760	Glu	Phe ·	Gly		Val 765	Arg	Pro	Gly

	Val	Val 770	Val	Val	Ser	Gly	Val 775	Ser	Gly	Gly	Val	Val 780	Gly	Ser	Gly	Glu
5	Leu 785	Gly	qeA	Pro	Gly	Tyr 790	Ттр	Val	Arg	His	Ala 795	Arg	Glu	Ala	Val	Arg 800
10	Phe	Ala	Asp	Gly	Val 805	Gly	Val	Val	Arg	Gly 810	Leu	Gly	Val	Gly	Thr 815	Leu
	Val	Glu	Val	Gly 820	Pro	His	Gly	Val	Leu 825	Thr	Gly	Met	Ala	Gly 830	Glu	Cys
	Leu	Gly	Ala 835	Gly	Asp	Asp	Val	Val 840	Val	Val	Pro	Ala	Met 845	Arg	Arg	Gly
15	Arg	Ala 850	Glu	Arg	Glu	Val	Phe 855	Glu	Ala	Ala	Leu	Ala 860	Thr	Val	Phe	Thr
20	Arg 865	Asp	Ala	Gly	Leu	Asp 870	Ala	Thr	Ala	Leu	His 875	Thr	Gly	Ser	Thr	Gly 880
	Arg	Arg	Ile	Asp	Leu 885	Pro	Thr	Tyr	Pro	Phe 890	Gln	Arg	Arg	Thr	His 895	Trp
25	Ser	Pro	Ala	Leu 900	Ser	Arg	Pro	Val	Thr 905	Ala	Asp	Ala	Gly	Ala 910	Gly	Val
	Thr	Ala	Thr 915	Asp	Ala	Val	Gly	His 920	Ser	Val	Ser	Pro	Asp 925	Pro	Glu	Ser
30	Thr	Glu 930	Gly	Thr	Ser	His	Arg 935	Asp	Thr	Asp	Asp	Glu 940	Ala	Asp	Ser	Ala
	Ser 945	Pro	Glu	Pro	Met	Ser 950	Pro	Glu	Asp	Ala	Val 955	Arg	Leu	Val	Arg	Glu 960
35	Ser	Thr	Ala	Ala	Val 965	Leu	Gly	His	Asp	Азр 970	Pro	Gly	Glu	Val	Ala 975	Leu
	Asp	Arg	Thr	Phe 980	Thr	Ser	Gln	Gly	Met 985	Asp	Ser	Val	Thr	Ala 990	Val	Glu
40	Leu	Суз	Asp 995	Leu	Leu	Lys	Gly	Ala 1000		Gly	Leu	Pro	Leu 1005		λla	Thr
45	Leu	Val 1010	Tyr)	Ąsp	Leu	Pro	Thr 1015		Arg	Ala	Val	Ala 1020		His	Ile	Val
	Glu 1025		Ala	Gly	Gly	Pro 1030		Asp	Ser	Val	Ala 1035		Gly	Pro	Gly	Val 1040
50	Leu	Ser	Ser	Ala	Ala 1045		Gly	Val	Ser	Asp 1050		Arg	Gly	Gly	Ser 1055	
	Asp	Asp	yab	Asp 1060		Ile	Ala	Ile	Val 1065		Val	Gly	Сув	Arg 1070		Pro
55	Gly	Gly	Val 1075		Ser	Arg	Ala	Ala 1080		Trp	Glu	Leu	Leu 1085		Ser	Gly

	Ala	Asp 109		Ile	Ser	Ser	Phe 109		Thr	Asp	Arg	Gly 110		Asp	Leu	yab
5	Gly 110	Leu 5	Туг	Asp	Pro	Glu 111		Gly	Thr	Pro	Gly 111		Thr	Tyr	Val	Arg 1120
10	Glu	Gly	Gly	Phe	Leu 112		Ser	Ala	Ala	Glu 113		Asp	Ala	Glu	Phe 113	
,,,	Gly	Ile	Ser	Pro 114		Glu	Ala	Thr	Ala 114		Asp	Pro	Gln	Gln 115		Leu
15	Leu	Leu	Glu 1155	Ala 5	Ser	Trp	Glu	Ala 116	Leu)	Glu	Asp	Ala	Gly 116		Leu	Pro
	Glu	Ser 117	Leu 0	Arg	Gly	Gly	Asp 117		Gly	Val	Phe	Val 118		Ala	Thr	Ala
20	1189	5	Tyr			119	0				1195	5				1200
			Leu		1205	5				1210)				1219	5
25	Tyr	Thr	Leu	Gly 1220	Thr	Gly	Gly	Pro	Ala 122		Thr	Val	Дзр	Thr 1230		Сув
	Ser	Ser	Ser 1235	Leu	Val	Ala	Leu	His 1240		Ala	Val	Gln	Ala 1245		Arg	Arg
30	Gly	Glu 1250	Cys)	Gly	Leu	Ala	Leu 1255		Gly	Gly	Ala	Thr 1260		Met	Ser	Gly
	Pro 1265	Gly	Met	Phe	Val	Glu 1270		Ser	Arg		Arg 1275		Leu	Ala	Pro	Asp 1280
35	Gly	Arg	Сув	Met	Pro 1285	Phe	Ser	Ala	Asp	Ala 1290		Gly	Thr	Ala	Trp 1295	
	Glu	Gly	Val	Ala 1300	Val	Leu	Ala	Leu	Glu 1305		Leu	Ser	Asp	Ala 1310	-	Arg
40	Ala	Gly	His 1315	Arg	Val	Leu		Val 1320		Arg	Gly	Ser	Ala 1325		Asn	Gln
	Asp	Gly 1330	Ala	Ser	Asn	Gly	Leu 1335	Thr	Ala	Pro .		Arg 1340		Ala	Gln	Glu
45	Gly 1345	Val	Ile .	Arg	Ala	Ala 1350	Leu	Ala	Asp		Gly 1355	Leu	Ala	Pro		Asp 1360
50	Val	Asp	Ala	Val	Glu 1365	Ala	His	Gly		Gly ' 1370		Ala	Leu ·		Asp 1375	Pro
	Ile	Glu	Ala	Ser 1380	Ala :	Leu	Leu	Ala	Thr 1385	Tyr	Gly /	Arg		Arg ' 1390	Val (Gly
55	Asp	Pro	Leu ' 1395	Trp :	Leu (Gly		Leu : 1400	Lys	Ser /	Asn '		Gly 1 1405	His '	Thr (Gln

_	Ala	Ala 141	Ala .0	Gly	/ Ala	Ala	14:		l Va	l Lys	Met	142		Ala	Leu	Glu
5	His 142	Gly 5	Thr	Leu	Pro	143		r Lei	u His	s Ala	143		Pro	Ser	Thr	His 1440
10	Val	Asp	Trp	Ser	Ser 144		Th:	r Vai	l Ala	145		Ala	Glu	Ala	Arg 145	_
	Trp	Pro	Arg	Arg 146		Asp	Arg	g Pro	146	Arg	Ala	Ala	Val	Ser 147		Phe
15	Gly	Ile	Ser 147	G1y 5	Thr	Asn	Ala	His 148		ılle	Ile	Glu	Glu 148		Pro	Glu
	Trp	Val 149	Glu 0	Asp	Ile	Asp	Gly 149		Ala	Ala	Pro	Asp 150		Gly	Thr	Ala
20	Asp 150	Ala 5	Ala	Ala	Pro	Ser 151	Pro 0	Leu	Leu	Leu	Ser 151		Arg	Ser	Glu	Gly 1520
	Ala	Leu	Arg	Ala	Gln 152	Ala 5	Val	Arg	Leu	Gly 153		Tyr	Val	Glu	Arg 153	
25	Gly	Ala	Asp	Pro	Arg 0	λsp	Val	Ala	Tyr 154	Ser 5	Leu	Ala	Ser	Thr 1550		Thr
	Leu	Phe	Glu 1555	His 5	Arg	Ala	Val	Val 156	Pro	Cys	Gly	Gly	Arg 1565	Gly	Glu	Leu
30	Val	Ala 1570	Ala)	Leu	Gly	Gly	Phe 157	Ala 5	Ala	Gly	Arg	Val 1580		Gly	Gly	Val
	Arg 1585	Ser	Gly	Arg	Ala	Val 1590	Pro	Gly	Gly	Val	Gly 1595		Leu	Phe	Thr	Gly 1600
35	Gln	Gly	Ala	Gln	Trp 1605	Val	Gly	Met	Gly	Arg 1610	Gly)	Leu	Tyr	Ala	Gly 1615	
	Gly	Val	Phe	Ala 1620	Glu)	Val	Leu	λsp	Glu 1625		Leu	Ser	Met	Val 1630		Glu
40	Val	Asp	Gly 1635	Arg	Ser	Leu	Arg	Asp 1640	Val	Met	Phe		Asp 1645		yab	Val
45	Asp .	Ala 1650	Gly	Ala	Gly	Ala	Азр 1655	Ala	Gly	Ala		Ala 1660		Ala	Gly	Val
	Gly 1665	Ser	Gly	Ser	Gly	Ser 1670	Val	Gly	Gly	Leu	Leu 1675		λrg	Thr		Phe 1680
50	Ala (Gln	Pro .	Ala	Leu 1685	Phe	Ala	Leu	Glu	Val 1690		Leu	Phe .		Ala 1 1695	Leu
	Glu i	Ala .	Arg (Gly 1700	Val (Glu	Val	Ser	Val 1705	Val	Leu (Gly :		Ser '	Val (Sly
55	Glu 1	Val i	Ala 2 1715	Ala	Ala '	Tyr	Val .	Ala 1720	Gly	Val :	Leu :		Leu (1725	Sly i	Asp A	Ala

_	Val	Arg 1730		Val	Val	Ala	Arg 173		Gly	Leu	Met	Gly 174		Leu	Pro	Val
5	Gly 1745		Gly	Met	Trp	Ser 1750		Gly	Ala	Ser	Glu 1755		Val	Val	Arg	Gly 1760
10	Val	Val	Glu	Gly	Leu 1765		Glu	Trp	Val	Ser 1770	Val	λla	Ala	Val	Asn 177!	
	Pro	Arg	Ser	Val 1780		Leu	Ser	Gly	Asp 1785		Gly	Val	Leu	Glu 1790		Val
15	Val	Ala	Ser 1795		Met	Gly	Asp	Gly 1800		Glu	Cys	Arg	Arg 180		Asp	Val
	Ser	His 1810	-	Phe	His	Ser	Val 181		Met	Glu	Pro	Val 1820		Gly	Glu	Phe
20	Arg 1825	_	Val	Val	Glu	Ser 1830		Glu	Phe	Gly	Arg 1835		Arg	Pro	Gly	Val 1840
	Val	Val	Val	Ser	Gly 1845		Ser	Gly	Gly	Val 1850	Val	Gly	Ser	Gly	Glu 1855	
25	Gly	Asp	Pro	Gly 1860		Trp	Val	Arg	His 1865		Arg	Glu	Ala	Val 1870	_	Phe
	Ala	Asp	Gly 1875		Gly	Val	Val	Arg 1880	_	Leu	Gly	Val	Gly 1885		Leu	Val
30	Glu	Val 1890		Pro	His	Gly	Val 1895		Thr	Gly	Met	Ala 1900	_	Glu	Cys	Leu
	Gly 1905	Ala		Asp	qeA	Val 1910	Val		Val	Pro	Ala 1915	Met		Arg	Gly	Àrg 1920
35	Ala	Glu	Arg	Glu	Val 1925		Glu	Ala	Ala	Leu 1930	Ala	Thr	Val	Phe	Thr 1935	
	qzA	Ala	Gly	Leu 1940		Ala	Thr	λla	Leu 1945		Thr	Gly	Ser	Thr 1950	_	Arġ
40	Arg	Ile	Asp 1955		Pro	Thr	Tyr	Pro 1960		Gln	Arg	Asp	Arg 1965		Trp	Leu
45		Pro 1970		Arg				Thr			Glu			Gly	Ser	Pro
	Ala 1985		Ala	Arg	Ala	Thr 1990		Arg	Gly	Arg	Ser 1995		Thr	λla		Ile 2000
50	Arg	Tyr	Arg		Ala 2005	_	Gln	Pro		Val 2010	Val	Asp	Arg	-	As n 2015	
	Gly	Pro		Gly 2020		Val	Leu		Le u 2025		Pro	Asp	Glu	Asp 2030		Ala
55	Asp		Gly 2035		Ala	Pro		Ile 2040		Arg	Glu		Ala 2045		Arg	Gly

	Ala	Glu 2050		His	Thr	Val	Ala 205		Pro	Val	Gly	Thr 2060		λrg	Glu	λla
5	Ala 2065		Asp	Leu	Leu	Arg 207(λla	Gly	Asp	Gly 2075		Ala	Arg	Ser	Thr 2080
10	Arg	Val	Leu	Trp	Leu 2085		Pro	Ala	Glu	Pro 2090	qeA (Ala	Ala	Asp	Ala 2099	
	Ala	Leu	Val	Gln 2100		Leu	Gly	Glu	Ala 2105		Pro	Glu	Ala	Pro 211		Trp
15	Ile	Thr	Thr 2115		Glu	Ala	Ala	Ala 2120		Arg	Pro	Asp	Glu 2129		Pro	Ser
	Val	Gly 2130		Ala	Gln	Leu	Trp 2135		Leu	Gly	Gln	Val 2140		Ala	Leu	Glu
	Leu 2145	_	Arg	Arg	Trp	Gly 2150		Leu	Ala	Asp	Leu 2155		Gly	Ser	Ala	Ser 2160
	Pro	Ala	Val	Leu	Arg 2169		Phe	Val	Gly	Ala 2170	Leu)	Leu	Ala	Gly	Gly 2175	
25	Asn	Gln	Phe	Ala 2180		Arg	Pro	Ser	Gly 2185		His	Val	Arg	Arg 2190		Val
			2195	i				2200)		Arg		2205	5		
30	Pro	Ala 2210		Ala	Val	Gly	Glu 2215		Ala	Arg	Asn	Asp 2220		Ser	λsp	Val
35	2225	5				2230)				Thr 2235	5				2240
			_		2245	i				2250					2255	•
	GIÀ	Ala	Ala	Arg 2260		Leu	Leu	Val	G1y 2265	-	Arg	GIA	Ala	A1a 2270	_	Pro
40	Gly	Val	Gly 2275		Leu	Val	Glu	Glu 2280		Thr	λla	Leu	Gly 2285		Glu	Val
45	Ala	Val 2290		Ala	Cys		Val 2295		Хsр	Arg	yab	Ala 2300		λla	λla	Leu
	Leu 2305		Gly	Leu	Pro	Glu 2310		Arg	Pro	Leu	Val 2315		Val	Leu	His	Ala 2320
50	Ala	Gly	Val	Leu	Asp 2325	_	Gly	Val	Leu	Авр 2330	Ser	Leu	Thr	Ser	λs р 2335	_
	Val	qzA	Ala	Val 2340		Arg	Asp	Lys	Val 2345		Ala	Ala	Arg	His 2350		qaA
55	Glu	Leu	Thr 2355		Asp	Leu	Pro	Leu 2360	_	Ala	Phe	Val	Leu 2365		Ser	Ser

_	Ile Val Gly Val Trp Gly Asn Gly Gly Gln Ala Val Tyr Ala Ala Ala 2370 2375 2380	L
5	Asn Ala Ala Leu Asp Ala Leu Ala Gln Arg Arg Arg Ala Arg Gly Ala 2385 2390 2395 240	
10	Arg Ala Ala Ser Ile Ala Trp Gly Pro Trp Ala Gly Ala Gly Met Ala 2405 2410 2415	L
	Ser Gly Thr Ala Ala Lys Ser Phe Glu Arg Asp Gly Val Thr Ala Leu 2420 2425 2430	
15	Asp Pro Glu Arg Ala Leu Asp Val Leu Asp Asp Val Val Gly Ala Gly 2435 2440 2445	
	Gly Thr Ser Ala Ala Gly Thr His Ala Ala Gly Glu Ser Ser Leu Leu 2450 2455 2460	
20	Val Ala Asp Val Asp Trp Glu Thr Phe Val Gly Arg Ser Val Thr Arg 2465 2470 2475 248	0
	Arg Thr Trp Ser Leu Phe Asp Gly Val Ser Ala Ala Arg Ser Ala Arg 2485 2490 2495	
25	Ala Gly His Ala Ala Asp Asp Arg Ala Ala Leu Thr Pro Gly Thr Arg 2500 2505 2510	
	Pro Gly Asp Gly Ala Pro Gly Gly Ser Gly Gln Asp Gly Glu Gly 2515 2520 2525	
30	Arg Pro Trp Leu Ser Val Gly Pro Ser Pro Ala Glu Arg Arg Ala 2530 2535 2540	
35	Leu Leu Thr Leu Val Arg Ser Glu Ala Ala Gly Ile Leu Arg His Ala 2545 2550 2555 2560)
	Ser Ala Asp Ala Val Asp Pro Glu Leu Ala Phe Arg Ser Ala Gly Phe 2565 2570 2575	
40	Asp Ser Leu Thr Val Leu Glu Leu Arg Asn Arg Leu Thr Ala Ala Thr 2580 2585 2590	
	Cly Leu Asn Leu Pro Asn Thr Leu Leu Phe Asp His Pro Thr Pro Leu 2595 2600 2605 Ser Leu Ala Ser His Leu His Asp Glu Leu Phe Gly Pro Asp Ser Glu	
45	2615 2620	
	Ala Glu Pro Ala Ala Ala Ala Pro Thr Pro Val Met Ala Asp Glu Arg 2625 2630 2635 2640	
50	Glu Pro Ile Ala Ile Val Gly Met Ala Cys Arg Tyr Pro Gly Gly Val 2645 2650 2655	
	Ala Ser Pro Asp Asp Leu Trp Asp Leu Val Ala Gly Asp Gly His Thr 2660 2665 2670	
55	Leu Ser Pro Phe Pro Ala Asp Arg Gly Trp Asp Val Glu Gly Leu Tyr 2675 2680 2685	

	Asp Pro 269		/ Val Pro 2699		Tyr Val Arg 2700	Glu Gly Gly
5	Phe Leu 2705	Arg Ser Ala	Ala Glu 2710	Phe Asp Ala	Glu Phe Phe 2715	Gly Ile Ser 2720
10	Pro Arg	Glu Ala Thi 272		Asp Pro Gln 273		Leu Leu Glu 2735
	Thr Ser	Trp Glu Ala 2740	Leu Glu	Arg Ala Gly 2745	Ile Val Pro	Asp Ser Leu 2750
15	Arg Gly	Thr Arg Thi 2755	Gly Val	Phe Ser Gly 2760	Ile Ser Gln 276	Gln Asp Tyr 5
	Ala Thr 2770		Asp Ala 2775		Tyr Gly Gly 2780	His Val Leu
20	Thr Gly 2785	Thr Leu Gly	Ser Val 2790	Ile Ser Gly	Arg Val Ala 2795	Tyr Ala Leu 2800
	Gly Leu	Glu Gly Pro 280		Thr Val Asp 2810		Ser Ser Ser 2815
25	Leu Val	Ala Leu His 2820	Leu Ala	Val Gln Ser 2825	Leu Arg Arg	Gly Glu Cys 2830
	Asp Leu	Ala Leu Ala 2835		Val Thr Val 2840	Met Ala Thr 284	Pro Thr Val
30	Phe Val 2850	Glu Phe Ser	Arg Gln 2855		Ala Ala Asp 2860	Gly Arg Cys
35	Lys Ala 2865	Phe Ala Glu	Gly Ala 2 2870		Ala Trp Ala 2875	Glu Gly Val 2880
33	Gly Val	Leu Leu Val 288	Glu Arg 1 5	Leu Ser Asp 2890		Asn Gly His 2895
40	Arg Val	Leu Ala Val 2900	Val Arg (Gly Ser Ala 2905	Val Asn Gln	Asp Gly Ala 2910
	Ser Asn	Gly Leu Thr 2915	Ala Pro	Ser Gly Pro 2920	Ala Gln Gln 2925	
45	Arg Glu 2930	Ala Leu Ala	Asp Ala (2935	Gly Leu Val	Pro Ala Asp 2940	Val Asp Val
	2945		2950	Thr Ala Leu (Gly Arg Glu)	2955	2960
50		2969	5	2970		2975
		2980		Asn Ile Gly 1 2985		2990
55	GIA AST	Gly Gly Val 2995	Tie Tas A	Val Val Gln (1000	Gly Met Arg 3005	

	Leu	Pro 301		Thr	Leu	His	Val 301		Ala	Pro	Ser	Ser 302		Val	Glu	Trp
5	Ala 302	Ser 5	Gly	Ala	Val	Glu 303		Leu	Thr	Glu	Thr 303		Ser	Trp	Pro	Arg 3040
10	Arg	Val	Glu	Arg	Val 304		Arg	Ala	Ala	Val 305		Ala	Phe	Gly	Val 305	
	Gly	Thr	Asn	Ala 306		Val	Val	Leu	G1u 306		Ala	Pro	Ala	Glu 307		Gly
15	Ser	Glu	His 307		Asp	Gly	Pro	Glu 308		Glu	Arg	Pro	Asp 308!		Val	Thr
	Gly	Pro 309	Leu 0	Ser	Trp	Val	Leu 309		Ala	Arg	Ser	Glu 310		Ala	Leu	Arg
20	Ala 3109		Ala	Val	Arg	Leu 3110		Glu	Cys	Val	Glu 311		Val	Gly	Ala	Asp 3120
	Pro	Arg	Asp	Val	Ala 3125		Ser	Leu	Val	Val 313		Arg	Ala	Ser	Phe 313	-
25	Glu	Arg	Ala	Val 3140	Val	Val	Gly	Arg	Gly 314		Glu	Glu	Leu	Leu 3150		Gly
	Leu	Asp	Val 3155		Ala	Ala	Gly	Ala 3160		Val	Gly	Val	Ser 3169		Gly	Ala
30	Gly	Ala 3170	Val	Val	Arg		Ser 317		Val	Arg	Gly	Arg 3180		Val	Gly	Val
or.	Leu 3185	Phe	Thr	Gly		Gly 3190		Gln	Trp	Val	Gly 3195		Gly	Arg	Gly	Leu 3200
35	Tyr	Ala	Gly	Gly	G1y 3205		Phe	Ala	Glu	Val 3210		Asp	Glu		Leu 3215	
40	Val	Val	Gly	Glu 3220	Val	Asp	Gly	Arg	Ser 3225		λrg	As p		Met 3230		Ala
	Asp	λla	Авр 3235	Ser	Val	Leu	Gly	Gly 3240		Leu	Gly		Thr 3245		Phe	Ala
45	Gln	Pro 3250	Ala	Leu	Phe .		Leu 3255		Val	Ala		Phe 3260		Ala	Leu	Glu
	Ala 3265	Arg	Gly	Val		Val 3270		Val	Val	Leu	Gly 3275		Ser	Val (_	Glu 3280
50	Val /	Ala	Ala .		Tyr ' 3285	Val 1	Ala	Gly		Leu 3290		Leu	Gly .	_	Ala 3295	Val
	Arg 1	Leu		Val . 3300	Ala Z	Arg (Gly		Leu 3305		Gly	Gly		Pro '	Val (Sly
55	Gly (Met ' 3315	Trp	Ser \	Val (Ala 3320		Glu	Ser				Gly '	Val

	Val	Glu 333	_	Leu	Gly	Glu	Trp 333		Ser	Val	Ala	Ala 334		Asn	Gly	Pro
5	Arg 334!		Val	Val	Leu	Ser 3350		Ąsp	Val	Gly	Val 3355		Glu	Ser	Val	Val 3360
10	Val	Thr	Leu	Met	Gly 3365		Gly	Val	Glu	Cys 337		Arg	Leu	qeA	Val 337	
	His	Gly	Phe	His 3380		Val	Leu	Met	Glu 3389		Val	Leu	Gly	Glu 339		Arg
15	Gly	Val	Val 3399	Glu 5	Ser	Leu	Glu	Phe 340		Arg	Val	Arg	Pro 340		Val	Val
	Val	Val 341		Gly.	Val	Ser	Gly 341	_	Val	Val	Gly	Ser 342		Glu	Leu	Gly
	Asp 3425		Gly	Tyr	Trp	Val 3430	_	His	Ala	Arg	Glu 3435		Val	Arg	Phe	Ala 3440
	Asp	Gly	Val	Gly	Val 3445		Arg	Gly	Leu	Gly 3450		Gly	Thr	Leu	Val 3455	
25	Val	Gly	Pro	His 3460		Val	Leu	Thr	Gly 3465		Ala	Gly	Gln	Cys 3470		Glu
	Ala	Gly	Asp 3475	qeA	Val	Val	Val	Val 3480		Ala	Met	Arg	Arg 3489		Arg	Pro
30	Glu	Arg 3490		Val	Phe	Glu	Ala 3495		Leu	Ala	Thr	Val 3500		Thr	Arg	Asp
	Ala 3505	_	Leu	Asp	Ala	Thr 3510		Leu	His	Thr	Gly 3515		Thr	Gly	Arg	Arg 3520
35	Ile	qzA	Leu	Pro	Thr 3525		Pro	Phe	Gln	His 3530		Arg	Туг	Trp	Ala 3535	
40	Gly	Ser	Val	Thr 3540		Ala	Thr	Gly	Thr 3545		Ala	Ala	Ala	Arg 3550		Gly
	Leu	Glu	Trp 3555	Lys	qeA	His	Pro	Phe 3560		Ser	Gly	Ala	Thr 3565		Ile	Ala
45	Gly	Ser 3570	_	Ala	Leu		Leu 3575		Gly	Arg		Gly 3580		Ala	λla	His
	Pro 3585		Leu	Ala	Asp	His 3590		Ile	Ser	Gly	Thr 3595		Leu	Leu	Pro	3600
50	Thr	Ala	Ile	Ala	Asp 3605		Leu	Leu	Arg	Ala 3610		Glu	Glu	Val	Gly 3615	
	Gly	Gly	Val	Glu 3620		Leu	Thr		His 3625		Pro	Leu	Leu	Leu 3630		Glu
55	Arg		Gly 3635	Leu	His	Val	Gln	Val 3640		Val	Glu	Ala	Ala 3645	_	Glu	Gln

5	Gly	Arg 365		Ala	Val	Ala	Val 365	Ala 5	λla	Arg	Pro	Glu 366		Pro	Gly	Arg
J	3665	_	Glu	Glu	Gln	Glu 3670		Thr	Arg	His	Ala 367!		Gly	Val	Leu	Thr 3680
10	Ser	Thr	Glu	Thr	Ala 3689		Pro	yab	Met	Gly 3690		Ala	Ala	Gly	Ala 369	
	Pro	Pro	Pro	Gly 3700		Glu	Pro	Ile	Asp 3709		Glu	Glu	Leu	Tyr 371	-	Ala
15	Phe	Ala	Ala 3715	-	Gly	Tyr	Gly	Tyr 3720	_	Pro	Ala	Phe	Thr 3729		Leu	Ser
	Gly	Val 3730	_	Arg	Leu	Gly	Asp 3735	Glu 5	Leu	Phe	Ala	Glu 3740		Arg	Arg	Pro
20	Ala 3745		Gly	Ala	Gly	Thr 3750		Gly	ysb	Gly	Phe 3759	-	Val	His	Pro	Ala 3760
	Leu	Phe	yab	Ala	Ala 3769		His	Pro	Trp	Arg 377(Gly	Gly	Leu	Leu 3779	
25	Asp	Thr	Gly	Gly 3780		Thr	Trp	Ala	Pro 3785		Ser	Trp	Gln	Gly 3790		Ala
	Leu	His	Thr 3795		Gly	Ala	Glu	Thr 3800		Arg	Val	Arg	Leu 3805		Pro	Ala
30		Gly 3810		Thr	Glu	Ser	Ala 3819	Phe	Ser	Val	Gln	Ala 3820		Asp	Pro	Ala
	Gly 3825		Pro	Val	Leu	Thr 3830		Asp	Ala	Leu	Leu 3835		Arg	Pro	Val	Thr 3840
35	Leu	Gly	Arg	Ala	Asp 3845		Pro	Gln	Pro	Leu 3850		Arg	Val	qe	Trp 3855	
40	Pro	Val		Gln 3860		Thr	Glu	Ala	Ser 3865		Ala	Gln	Gly	Trp 3870		Val
	Leu	Gly	Gln 3875		Ala	Ala	Glu	Thr 3880		Ala	Gln		Ala 3885		His	Ala
45		Leu 3890						Ala						Thr	Pro	Val
	Pro 3905		Leu	Va1	Val	Val 3910		Pro	Val	Asp	Thr 3915		Leu	Asp		Gly 3920
50	Pro	Val	Leu	Ala	Asp 3925		Glu	Ala		Ala 3930		Ala	Gly		Gly 3935	-
	Дзр	yab		Pro 3940		Arg	Val	Ala	Leu 3945		Arg	Gly		Thr 3950		Val
55	Arg	Glu	Trp 3955		Glu	Asp		Arg 3960		Ala	Asp		Arg 3965		Val	Val

5	Leu	397		Gly	Ala	Val	Ala 397		Gly	Pro	Gly	398 dek		Pro	Asp	Leu
	Thr 398		Ala	Ala	Leu	Trp 399		Leu	Leu	Arg	Ser 399		Gln	Ser	Glu	Tyr 4000
10	Pro	Asp	Arg	Phe	Thr		Ile	Asp	Val	Asp		Ser	Pro	Glu	Ser 401	Arg
	Ala	Ala	Leu	Pro 402	Arg		Leu	Gly	Ser 402	Ala		Arg	Gln	Leu 403	λla	Leu
15	Arg	Thr	Gly 403		Val	Leu	Ala	Pro 404		Leu	Val	Pro	Met 404		Thr	Arg
	Pro	Ala 405		Thr	Thr	Pro	Ala 405		Ala	Val	Ala	Ser 406		Thr	Thr	Gln
20	Thr 406		Val	Thr	Ala	Pro 407		Pro	qeA	Авр	Pro 4079		Ala	Asp	Ala	Val 4080
	Phe	Asp	Pro	Ala	Gly 4085		Val	Leu	Ile	Thr 4090		Gly	Thr	Gly	Ala 4099	
25	Gly	Arg	Arg	Val 4100	Ala	Ser	His	Leu	Ala 4105		Arg	Tyr	Gly	Val 4110		His
	Met	Leu	Leu 411		Ser	Arg	Arg	Gly 4120		Двр	Ala	Pro	Glu 412		Gly	Pro
30	Leu	Glu 413	Arg 0	Glu	Leu	Ala	Gly 4135		Gly	Val	Thr	Ala 414(Phe	Leu	Ala
25	Cys 414		Leu	Thr	Asp	11e 4150		Ala	Val	Arg	Lys 4155		Val	Ala	Ala	Val 4160
35	Pro	Ser	Asp	His	Pro 4165	Leu	Thr	Gly	Val	Val 4170		Thr	Ala	Gly	Val 4175	
40	Asp	qeA	Gly	Ala 4180	Leu)	Thr	Gly	Leu	Thr 4185		Gln	Arg	Leu	Asp 4190		Val
	Leu	Arg	Pro 4195	Lys	Ala	Asp	Ala	Val 4200		A sn	Leu	His	Glu 4205		Thr	Leu
45	Asp	Arg 4210	Pro	Leu	Arg	Ala	Phe 4215		Leu	Phe	Ser	Ala 4220		Ala	Gly	Leu
	Leu 4225	Gly	Arg	Pro		Gln 4230		Ser	Tyr		Ala 4235		Asn	Ala		Leu 4240
50	Asp	Ala	Leu	Ala	Gly 4245		Arg	Arg		Ala 4250		Leu	Pro		Val 4255	
	Leu	Ala	Trp	Gly 4260		Trp	qeÁ		Gln 4265		Gly :	Met	Ala	Gly 4270		Leu
55	Asp	Glu	Met 4275		Leu	Arg		Leu 4280		Arg .	Asp (Ile 4285		Ala I	Met

5	Pro	Pro 429		Gln	Gly	Leu	Glu 429		Leu	yab	Leu	Ala 430		Thr	Gly	His
	Arg 430		Gly	Pro	Ala	Val 431		Val	Pro	Leu	Leu 431	_	Asp	Gly	Ala	Ala 4320
10	Leu	Arg	Arg	Thr	Ala 432		Glu	Arg	Gly	Ala 433		Thr	Met	Ser	Pro 433	
	Leu	Arg	Ala	Leu 434	Leu 0	Pro	Ala	λla	Leu 434!		Arg	Ser	Gly	Gly 435		Gly
15			4355	5	Ala			436)				436	5	_	
	Gly	Arg 437		Ala	Gly	Met	Val 4375		Leu	Glu	Ala	Ala 438		Arg	Ser	Ala
20	Ala 4385	Val	Leu	Glu	Leu	Val 4390		Glu	Gln	Val	Ala 4399		Val	Leu	Gly	Tyr 4400
	λla	Ser	Ala	Ala	Glu 4405	Ile	Glu	Pro	Glu	Arg 4410		Phe	Arg	Glu	Ile 4415	_
25	Val	Asp	Ser	Leu 4420	Ala)	Ala	Val	Glu	Leu 4429		Asn	Arg	Leu	Ser 4430	_	Leu
	Val	Gly	Leu 4435	Arg	Leu	Pro	Thr	Thr 4440		Ser	Phe	Asp	His 4445		Thr	Pro
30	Lys	Азр 4450	Met	Ala	Gln	His	Ile 4455		Gly	Gln	Leu	Pro 4460		Pro	Ala	Gly
35	λla 4465	Ser	Pro	Ala	Asp	Ala 4470	Ala	Leu	Glu	Gly	Ile 4475		Asp	Leu		Arg 4480
	λla	Val	Ala	Leu	Leu 4485	Gly	Thr	Gly	Asp	Ala 4490		Arg	λla		Val 4495	
40	Glu	Gln	Leu	Val 4500	Gly	Leu	Leu		Ala 4505		λsp	Pro		Gly 4510		Thr
	Gly	Thr	Ala 4515	Ala	Pro	Gly		Pro 4520		Gly	Ala		Gly 4525		Glu	Pro
45	Thr	Val 4530	Thr	Asp	Arg		Asp 4535	Glu	Ala	Thr		Asp 4540	Glu	Ile	Phe .	Ala
	Phe 4545		Asp (Glu		Leu 4550										
50	(2)	INFO	RMAT	ION	FOR :	SEQ	ID N	0:3:								
		(i)	(A) LE	e ch Ngth	: 19	96 au	mino	S: aci	ds						
55					PE: 0											

(ii) MOLECULE TYPE: peptide

5		(xi) SE	QUEIN	CE D	escr:	IPTI	ON:	SEQ :	ID N	0:3:					
	Met 1	Thr	Ala	Glu	Asn 5	λsр	Lys	Ile	Arg	Ser 10	Tyr	Leu	Lys	Arg	Ala 15	Thr
10	Ala	Glu	Leu	His 20	Arg	Thr	Lys	Ser	Arg 25	Leu	Ala	Glu	Val	Glu 30	Ser	Ala
45	Ser	λrg	Glu 35	Pro	Ile	Ala	Ile	Val 40	Gly	Met	Ala	Суз	Arg 45	Tyr	Pro	Gly
15	Gly	Val 50	Ala	Ser	Pro	Asp	Asp 55	Leu	Trp	Asp	Leu	Val 60	Ala	Ala	Gly	Thr
	Asp 65	Ala	Val	Ser	Ala	Phe 70	Pro	Val	yab	Arg	Gly 75	Trp	Asp	Val	Glu	Gly 80
20	Leu	Tyr	Asp	Pro	As p 85	Pro	Glu	Ala	Val	Gly 90	Arg	Ser	Tyr	Val	Arg 95	Glu
25	Gly	Gly	Phe	Leu 100	His	Ser	Ala	Ala	Glu 105	Phe	qeA	Ala	Glu	Phe 110	Phe	Gly
25	Ile	Ser	Pro 115	Arg	Glu	Ala	Ala	Ala 120	Met	Asp	Pro	Gln	Gln 125	Arg	Leu	Leu
30	Leu	Glu 130	Thr	Ser	Trp	Glu	Ala 135	Leu	Glu	Arg	Ala	Gly 140	Ile	Val	Pro	Ala
	Ser 145	Leu	Arg	Gly	Thr	Arg 150	Thr	Gly	Val	Phe	Thr 155	Gly	Val	Met	Tyr	Asp 160
35	qaA	Tyr	Gly	Ser	Arg 165	Phe	Asp	Ser	Ala	Pro 170	Pro	Glu	Tyr	Glu	Gly 175	Tyr
	Leu	Val	Asn	Gly 180	Ser	Ala	Gly	Ser	Ile 185	Ala	Ser	Gly	Arg	Val 190	Ala	Tyr
40	Ala	Leu	Gly 195	Leu	Glu	Gly	Pro	Ala 200	Leu	Thr	Va1	Ж₽	Thr 205	Ala	Cys	Ser
	Ser	Ser 210	Leu	Val	Ala	Leu	His 215	Leu	Ala	Val	Gln	Ser 220	Leu	Arg	Arg	Gly
45	Glu 225	Суз	Asp	Leu	Ala	Leu 230	Ala	Gly	Gly	Val	Thr 235	Va1	Met	Ala	Thr	Pro 240
	Thr	Val	Leu	Val	Glu 245	Phe	Ser	Arg	Gln	Arg 250	Gly	Leu	Ala	Ala	Asp 255	Gly
50	λrg	Cys	Lys	Ala 260	Phe	Ala	Glu	Gly	Ala 265	Азр	Gly	Thr	Ala	Trp 270	Ala	Glu
55	Gly	Val	Gly 275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Asp	Ala 285	Arg	Arg	Asn
	Gly	His	Arg	Val	Leu	Ala	Val	Val	Arg	Gly	Ser	Ala	Val	neA	Gln	Asp

		290					295					300				
5	Gly 305	Ala	Ser	Asn	Gly	Leu 310	Thr	Ala	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
	Val	Ile	Arg	Glu	Ala 325	Leu	λla	As p	Ala	Gly 330	Leu	Thr	Pro	Ala	А вр 335	Val
10	Asp	Ala	Val	Glu 340	Ala	Ris	Gly	Thr	Gly 3 4 5	Thr	Pro	Leu	Gly	yab 320	Pro	Ile
15	Glu	Ala	Gly 355	Ala	Leu	Leu	λla	Thr 360	Tyr	Gly	Ser	Glu	Arg 365	Gln	Gly	Gln
15	Gly	Pro 370	Leu	Trp	Leu	Gly	Ser 375	Leu	Lys	Ser	Asn	Ile 380	Gly	His	λla	Gln
20	A1a 385	Ala	Ala	Gly	Val	Gly 390	Gly	Val	Ile	Lys	Val 395	Val	Gln	Ala	Met	Arg 400
	His	Gly	Ser	Leu	Pro 405	λrg	Thr	Leu	His	Val 410	Asp	Ala	Pro	Ser	Ser 415	Lys
25			Trp Arg	420		_			425					430	•	
			435					440					445			
30 .	Gly	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Val	Leu	Glu 460	Glu	Ala	Pro	Ala
	Glu 465	Ala	Gly	Ser	Glu	His 470	Gly	Дзр	Gly	Pro	Glu 475	Pro	Glu	Arg	Pro	Asp 480
35	Ala	Val	Thr	Gly	Pro 485	Leu	Ser	Trp	Val	Leu 490	Ser	Ala	Arg	Ser	Glu 495	Gly
	Ala	Leu	Arg	λla 500	Gln	λla	Val	Arg	Leu 505	Arg	Glu	Суз	Val	Glu 510	Arg	Val
40	Gly	Ala	Asp 515	Pro	λrg	Хар	Val	Ala 520	Gly	Ser	Leu	Val	Va1 525	Ser	Arg	Ala
	Ser	Phe 530	Gly	Glu	Arg	Ala	Val 535	Val	Val	Gly	Arg	Gly 540	Arg	Glu	Glu	Leu
45	Leu 545	Ala	Gly	Leu	Asp	Val 550	Val	Ala	Ala	Gly	Ala 555	Pro	Val	Gly	Val	Ser 560
	Gly	Gly	Val	Ser	Ser 565	Gly	λla	Gly	Ala	Val 570	Val	Arg	Gly	Ser	Ala 575	Val
50	Arg	Gly	Arg	Gly 580	Val	Gly	Val	Leu	Phe 585	Thr	Gly	Gln	Gly	Ala 590	Gln	Trp
55	Val	Gly	Met 595	Gly	Arg	Gly	Leu	Tyr 600	Ala	Gly	Gly	Gly	Val 605	Phe	Ala	Glu
	Val	Leu	Asp	Glu	Val	Leu	Ser	Val	Val	Gly	Glu	Val	Gly	Gly	Trp	Ser

		610)				615	;				620	l			
5	Le 62	u Arg	J Asp	Val	Met	Phe 630		Asp	Val	Азр	Val 635		Ala	Gly	Ala	Gly 640
	A)	a Asp	Ala	Gly	Val 645		Ser	Gly	Val	Gly 650		Gly	Gly	Leu	655	
10	λι	g Thr	Glu	Phe 660		Gln	Pro	Ala	Leu 665		Ala	Leu	Glu	Val 670		Leu
15	Ph	e Arg	Ala 675		Glu	Ala	Arg	Gly 680		Glu	Val	Ser	Val 685		Leu	Gly
	Hi	5 Ser 690		Gly	Glu	Val	Ala 695		Ala	Tyr	Val	Ala 700	Gly	Val	Leu	Ser
20	Le 70	u Gly 5	Asp	Ala	Val	Arg 710		Val	Val	Ala	Arg 715	Gly	Gly	Leu	Met	Gly 720
	G1	y Leu	Pro	Val	Gly 725	Gly	Gly	Met	Trp	Ser 730	Val	Gly	Ala	Ser	Glu 735	
25	Va	l Val	Arg	Gly 740	Val	Val	Glu	Gly	Leu 745	Gly	Glu	Trp	Val	Ser 750	Val	Ala
	Al	a Val	Asn 755	Gly	Pro	Arg	Ser	Val 760	Val	Leu	Ser	Gly	Asp 765	Val	Gly	Val
30		u Glu 770					775					780				_
	78					790					795					800
35	Le	ı Gly	Glu	Phe	Arg 805	Gly	Val	Val	Glu	Ser 810	Leu	Glu	Phe	Gly	Arg 815	Val
	Ar	J Pro	Gly	Val 820	Val	Val	Val	Ser	Ser 825	Val	Ser	Gly	Gly	Val 830	Val	Gly
40	Se	r Gly	Glu 835	Leu	Gly	Asp	Pro	Gly 840	Tyr	Trp	Val	Arg	His 845	Ala	λ rg	Glu
	Ala	850	Arg	Phe	Ala	Asp	Gly 855	Val	Gly	Val	Val	Arg 860	Gly	Leu	Gly	Val
45	G1 ₃ 869	Thr	Leu	Val	Glu	Va1 870	Gly	Pro	His	Gly	Val 875	Leu	Thr	Gly	Met	Ala 880
50	Gly	/ Glu	Сув	Leu	Gly 885	Ala	Gly	Asp	Asp	Val 890	Val	Val	Val	Pro	Ala 895	Met
	Arg) Arg	Gly	Arg 900	Ala	Glu	Arg	Glu	Val 905	Phe	Glu	Ala	Ala	Leu 910	Ala	Thr
<i>55</i>	Va]	Phe	Thr 915	Arg	As p	Ala	Gly	Leu 920	Asp	Ala	Thr	Thr	Leu 925	His	Thr	Gly
	Ser	Thr	Gly	Arg	Arg	Ile	qaA	Leu	Pro	Thr	Tyr	Pro	Phe	Gln	His	qeA

		930)				935	i				940)			
5	Arg 945		Trp	Leu	Ala	Ala 950		Ser	Arg	Pro	Arg 955		Asp	Gly	Leu	Ser 960
	Ala	Ala	Gly	Leu	Arg 965		Val	Glu	His	Pro 970		Leu	Thr	λla	λla 975	Val
10	Glu	Leu	Pro	Gly 980		Asp	Thr	Glu	Val 985		Thr	Gly	Arg	11e 990		Ala
	Ala	Asp	Leu 995		Trp	Leu	Ala	Asp 100		Leu	Val	Trp	Asp 100		Gly	Val
15	Val'	Pro 101		Thr	Ala	Leu	Leu 101		Thr	Val	Leu	Gln 102		Gly	Ser	Arg
20	Ile 102	Gly 5	Leu	Pro	Arg	Val 103		Glu	Leu	Val	Leu 103		Thr	Pro	Leu	Thr 1040
	Trp	Thr	Ser	Asp	Arg 104		Leu	Gln	Val	Arg 105		Val	Val	Thr	Ala 105	Ala S
25	Ala	Thr	Ala	Pro 1060	Gly)	Gly	Ala	Arg	Glu 106		Thr	Leu	His	Ser 107		Pro
	Glu	Pro	Val 107		Ala	Ser	Ser	Ser 108		Pro	Ser	Pro	Ala 108		Pro	Arg
30	His	Leu 109	Thr 0	Ala	Gln	Glu	Ser 109		yab	dsĄ	Trp	Thr 110		His	Ala	Ser
	Gly 1105	Leu	Leu	Ala	Pro	Ala 111		Gly	Leu	Ala	Asp 1115		Phe	Ala	Glu	Leu 1120
35	Thr	Gly	Ala	Trp	Pro 1125	Pro	Val	Gly	Ala	Glu 1130		Leu	Asp	Leu	Ala 1139	_
	Gln	Tyr	Pro	Leu 1140	Phe	Ala	Ala	Ala	Gly 1145		Arg	Tyr	Glu	Gly 115	Ala	Phe
40	Arg	Gly	Leu 1155	Arg	Ala	Ala	Trp	Arg 1160		Gly	Asp	Glu	Val 1169		Ala	Asp
	Val	Arg 1170	Leu)	Pro	Asp	Ala	His 1175		Val	Asp	Ala	Asp 1180		Tyr	Gly	Val
45	His 1185	Pro	Ala	Leu	Leu	Asp 1190		Val	Leu	His	Pro 1195		Ala	Ser	Leu	Азр 1200
	Pro	Leu	Gly	Asp	Gly 1205		His	Gly	Leu	Leu 1210		Phe	Ser	Trp	Thr 1215	_
50	Val	Gln	Gly	His 1220	Gly	Ala	Gly	Gly	His 1225		Leu	Arg		Arg 1230		Ala
55	Ala	Val	Asp 1235	Gly	Gly	Ala	Val	Ser 12 4 0		Thr	Ala		Asp 1245		Ala	Gly
	Asn	Pro	Val	Leu	Ser	Ala	Arg	Ser	Leu	Ala	Leu .	Arg	Arg	Ile	Thr	Ala

		125	0				125	5				126	0			
5	Asp 126		Leu	Pro	Ala	Ala 127		Val	Ala	Pro	Leu 127	-	λrg	Val	Asp	Trp 1280
	Leu	Pro	Phe	Pro	Gly 128		Val	Pro	Val	Ser 129		Gly	Gly	λrg	Trp 129	Ala 5
10	Val	Val	Gly	Pro 130		Ala	Glu	Ala	Thr 130		Ala	Gly	Leu	Arg 131		Val
	Gly	Leu	Asp 131		Arg	Thr	His	Ala 132		Pro	Leu	Gly	Glu 132		Leu	Pro
15	Pro	Gln 133		Gly	Thr	Asp	Ala 133		Val	Ile	Ile	Leu 134		Leu	Thr	Thr
20	Thr 134		Ala	Gly	Arg	Thr 135		Ser	Asp	Gly	Gly 1359		Leu	Ser	Leu	Leu 1360
	Asp	Glu	Val	Arg	Ala 1369		Val	Arg	Arg	Thr 1370		Glu	Ala	Val	Gln 1375	
25	Arg	Leu	Ala	Asp 1380		Glu	Thr	Ala	Pro 138		Val	yab	Val	Arg 1390		Ala
	Ala	Arg	Pro 1395		Thr	Ala	Ala	Arg 1400		Ser	Pro	Arg	Val 1409	. •	Thr	Arg
30	Thr	Gly 1410	Ala	Arg	Thr	Ala	Asp 1415		Pro	Arg	Leu	Val 1420		Leu	Thr	Arg
	Gly 1425		Ala	Gly	Pro	Glu 1430		Gly	Ala	Ala	Аз р 1435		Ala	Gly	Ala	Ala 1440
35	Val	Trp	Gly	Leu	Val 1449		Val	Ala	Gln	Ala 1450		Gln	Pro	Gly	Arg 1455	
	Thr	Leu	Val	Asp 1460		Asp	Gly	Thr	Gln 1469		Ser	Leu	λrg	Ala 1470		Pro
40	Gly	Leu	Leu 1475		Thr	qeA	λla	Gly 1480		Ser	Ala	Val	Arg 1485		Gly	Arg
	Val	Thr 1490	Val	Pro	Arg	Leu	Val 1495	Pro		Ala	qeA	Pro 1500	Val		His	Gly
45	Gly 1505		Thr	Ala	Ala	Asp 1510		Thr	Gly	Ala	Gly 1515		Pro	Ser		Thr 1520
	Leu	Asp	Pro	Glu	Gly 1525		Val	Leu	Ile	Thr 1530		Gly	Thr	_	Ala 1535	
50	Ala	Ala	Glu	Thr 1540		Arg	His	Leu	Val 1545		Arg	His	Lys	Val 1550	-	His
55	Leu	Leu	Leu 1555		Gly	Arg		Gly 1560		Asp	Ala	Pro	Gly 1565		qeA	Arg
	Leu	Val	Ala	Glu	Leu	Thr	Glu	Ser	Gly	Ala	Glu	Val	Ala	Val	Arg .	Ala

	1570		1575	1580	
5	Cys Asp Val 1585	Thr Asp Arg 1590		Arg Leu Leu Asp 1595	Ala Leu 1600
	Pro Asp Glu	His Pro Leu 1605	Thr Cys Val Val	His Thr Ala Gly	Val Leu 1615
10	Asp Asp Gly	Val Leu Ser 1620	Ala Gln Thr Ala 1625	Glu Arg Ile Asp 163	
	Leu Arg Pro 163		Ala Ala Val His 1640	Leu Asp Glu Leu 1645	Thr Arg
15	Glu Ile Gly 1650	Arg Val Pro	Leu Val Leu Tyr 1655	Ser Ser Val Ser 1660	Ala Thr
20	Leu Gly Ser 1665	Ala Gly Gln 1670		Ala Ala Asn Ala 1675	Phe Met 1680
	Asp Ala Leu	Ala Ala Arg 1685	Arg Cys Ala Ala 169	Gly His Pro Ala	Leu Ser 1695
25	Leu Gly Trp	Gly Trp Trp 1700	Ser Gly Val Gly 1705	Leu Ala Thr Gly	•
	Gly Ala Asp 1719	Ala Ala Arg	Val Arg Arg Ser 1720	Gly Leu Ala Pro 1725	Leu Asp
30	Ala Gly Ala 1730		Leu Leu Asp Arg 1735	Ala Leu Thr Arg 1740	Pro Glu
	Pro Ala Leu 1745	Leu Pro Val 1750	Arg Leu Asp Leu	Arg Ala Ala Ala 1755	Gly Ala 1760
35	Thr Ala Leu	Pro Glu Val	Leu Arg Asp Leu 177(Ala Gly Val Pro	Ala Asp 1775
	Ala Arg Ser	Thr Pro Gly . 1780	Ala Ala Ala Gly 1785	Thr Gly Asp Glu 1790	
40	Ala Val Arg 1795	Pro Ala Pro	Ala Pro Ala Asp 1800	Ala Ala Gly Thr	Leu Ala
	Ala Arg Leu 1810		Ser Ala Pro Glu 1815	Arg Thr Ala Leu :	Leu Leu
45	Asp Leu Val 1825	Arg Thr Glu 1	Val Ala Ala Val	Leu Gly His Gly a	
			Arg Thr Phe Lys 1850	Asp Ala Gly Phe	1840 Asp Ser 1855
50	Leu Thr Ala	Val Asp Leu <i>I</i> 1860	Arg Asn Arg Leu 1865	Asn Thr Arg Thr (Gly Leu
	Arg Leu Pro 1875	Ala Thr Leu \	/al Phe Asp His 1880	Pro Thr Pro Leu 1 1885	Ala Leu
55	Ala Glu Leu	Leu Leu Asp C	Sly Leu Glu Ala	Ala Gly Pro Ala (Glu Pro

		189	0				189	5				190	0			
5	Ala 190	Ala 5	Glu	val	Pro	Asp 191	Glu 10	a Ala	Ala	a Gly	Ala 191		Thi	Leu	Ser	Gly 1920
	Val	Ile	e Asp	Arg	Leu 192	Glu 5	Arg	Ser	Leu	Ala 193		Thr	. Ast	Asp	Gly 193	Asp 5
10	Ala	Arg	Val	Arg 194	Ala O	Ala	Arg	Arg	194		Gly	Leu	Leu	195		Leu
	Pro	Ala	Gly 195	Pro	Gly	Ala	Ala	Ser 196		Pro	A sp	Ala	Gly 196		His	Ala
15	Pro	Gly 197	Arg 0	Gly	qeA	Val	Val 197		Asp	Arg	Leu	Arg 198		Ala	Ser	Asp
20	Asp 198	Asp 5	Leu	Phe	Asp	Leu 199		Asp	Ser	. Y ab	Phe 199		i			
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO : 4	:							
25		(i	C	QUEN A) LI B) T D) T	engti Ype:	H: 3 ami:	724 . no a	amin cid	o ac	ids						
30		(ii) MO	LECUI	LE T	YPE:	pep	tide								
••		(xi) Seq	QUEN	CE DI	escr:	IPTI(ON:	SEQ :	ID N	D: 4 :					
<i>35</i>	Met 1	Ser	Ala	Thr	Asn 5	Glu	Glu	Lys	Leu	Arg 10	Glu	Tyr	Leu	Arg	Arg 15	Ala
	Met	Ala	Asp	Leu 20	His	Ser	Ala	λrg	Glu 25	Arg	Leu	Arg	Glu	Val 30	Glu	Ser
40	Ala	Ser	Arg 35	Glu	Pro	Ile	Ala	Ile 40	Val	Gly	Met	λla	Cys 45	Arg	Tyr	Pro
	Gly	Gly 50	Val	Ala	Ser	Pro	G1u 55	Glu	Leu	Trp	Asp	Leu 60	Val	Ala	λla	Gly
45	Thr 65	Asp	Ala	Ile	Ser	Pro 70	Phe	Pro	Val	Asp	Arg 75	Gly	Trp	Asp	Ala	Glu 80
	Gly	Leu	Tyr	Asp	Pro 85	Glu	Pro	Gly	Val	Pro 90	Gly	Lys	Ser	Tyr	Val 95	Arg
50	Glu	Gly	Gly	Phe 100	Leu	His	Ser	Ala	Ala 105	Glu	Phe	Asp	Ala	Glu 110	Phe	Phe
	Gly	Ile	Ser 115	Pro	Arg	Glu	Ala	Ala 120		Met	Asp	Pro	Gln 125	Gln	Arg	Leu
55	Leu	Leu 130	Glu	Thr	Ser	Trp	Glu 135	Ala	Leu	Glu	Arg	Ala 140	Gly	Ile	Val	Pro

_	Ala 145		Leu	Arg	Gly	Thr 150		Thr	Gly	Val	Phe 155		Gly	Val	Met	Tyr 160
5	His	Asp	Tyr	Gly	Ser 165	His	Gln	Val	Gly	Thr 170	Ala	Ala	Ąsp	Pro	Ser 175	Gly
10	Gln	Leu	Gly	Leu 180	Gly	Thr	Ala	Gly	Ser 185	Val	Ala	Ser	Gly	Arg 190	Val	Ala
	Tyr	Thr	Leu 195	Gly	Leu	Gln	Gly	Pro 200	Ala	Val	Thr	Met	Asp 205	Thr	Ala	Сув
15	Ser	Ser 210	Ser	Leu	Val	Ala	Leu 215	His	Leu	Ala	Val	Gln 220	Ser	Leu	Arg	Arg
	Gly 225	Glu	Cys	Asp	Leu	Ala 230	Leu	Ala	Gly	Gly	Ala 235	Thr	Val	Leu	Ala	Thr 240
20	Pro	Thr	Val	Phe	Val 245	Glu	Phe	Ser	Arg	Gln 250	Arg	Gly	Leu	Ala	Ala 255	Asp
	Gly	Arg	Cys	Lys 260	Ala	Phe	Ala	Glu	Gly 265	Ala	Asp	Gly	Thr	Ala 270	Trp	Ala
25	Glu	Gly	Ala 275	Gly	Val	Leu	Leu	Val 280	Glu	Arg	Leu	Ser	Asp 285	Ala	Arg	Arg
	neA	Gly 290	His	Arg	Val	Leu	Ala 295	Val	Val	Arg	Gly	Ser 300	Ala	Val	Asn	Gln
30	Asp 305	Gly	Ala	Ser	Asn	Gly 310	Leu	Thr	Ala	Pro	Ser 315	Gly	Pro	Ala	Gln	Gln 320
35	Arg	Val	Ile	Arg	Asp 325	Ala	Leu	Ala	qeA	Ala 330	Gly	Leu	Thr	Pro	λla 335	Asp
	Val	Asp	Ala	Val 340	Glu	Ala	His	Gly	Thr 345	Gly	Thr	Pro	Leu	Gly 350	Asp	Pro
40	Ile	Glu	Ala 355	Gly	Ala	Leu	Met	Ala 360	Thr	Tyr	Gly	Ser	Glu 365	λrg	Val	Gly
	Asp	Pro 370	Leu	Trp	Leu	Gly	Ser 375	Leu	Lys	Ser	Asn	Ile 380	Gly	His	Thr	Gln
45	Ala 385	Ala	Ala	Gly	Ala	Ala 390	Gly	Val	Ile	Lys	Met 395	Val	Gln	Ala	Leu	Arg 400
	Gln	Ser	Glu	Leu	Pro 405	Arg	Thr	Leu	His	Val 410	qeA	Ala	Pro	Ser	Ala 415	Lys
50	Val	Glu	Trp	Asp 420	Ala	Gly	λla	Val	Gln 425	Leu	Leu	Thr	Gly	Val 430	Arg	Pro
	Trp		Arg 435	Arg	Glu	His	λ rg	Pro 440	Arg	Arg	Ala	Ala	Val 445	Ser	λla	Phe
55	Gly	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Ile	Ile	Glu 460	Glu	Pro	Pro	Ala

	Ala 465		Asp	Thr	Ser	Pro 470	λla	Gly	qek	Thr	Pro 475		Pro	Gly	Glu	Ala 480
5	Thr	Ala	Ser	Pro	Ser 485	Thr	λla	λla	Gly	Pro 490	Ser	Ser	Pro	Ser	Ala 495	Val
10	Ala	Gly	Pro	Leu 500	Ser	Pro	Ser	Ser	Pro 505	Ala	Val	Val	Trp	Pro 510	Leu	Ser
	Ala	Glu	Thr 515		Pro	Ala	Leu	Arg 520	λla	Gln	Ala	Ala	Arg 525	Leu	Arg	λla
15	His	Leu 530	Glu	Arg	Leu	Pro	Gly 535	Thr	Ser	Pro	Thr	Asp 540		Gly	His	Ala
	Leu 545	Ala	Ala	Glu	Arg	Ala 550	Ala	Leu	Thr	Arg	Arg 555	Val	Val	Leu	Leu	Gly 560
20	dsy	Asp	Gly	Ala	Pro 565	Val	yab	Ala	Leu	Ala 570	Ala	Leu	Ala	Ala	Gly 575	Glu
	Thr	Thr	Pro	Asp 580	Ala	Val	His	Gly	Thr 585	Ala	Ala	Asp	Ile	Arg 590	Arg	Val
25	Ala	Phe	Val 595	Phe	Pro	Gly	Gln	Gly 600	Ser	Gln	Trp	Ala	Gly 605	Met	Gly	Ala
	Glu	Leu 610	Leu	qeA	Thr	Ala	Pro 615	Ala	Phe	Ala	Ala	Glu 620	Leu	Asp	Arg	Cys
30	Gln 625	Gly	Ala	Leu	Ser	Pro 630	Tyr	Val	Двр	Trp	Asn 635	Leu	Ala	qeA	Val	Leu 640
<i>35</i>	Arg	Gly	Ala	Pro	Ala 645	Ala	Pro	Gly	Leu	Asp	Arg	Val	Asp	Val	Val 655	Gln
	Pro	Ala	Thr	Phe 660	Ala	Val	Met	Val	Gly 665	Leu	Ala	Ala	Leu	Trp 670	λrg	Ser
40	Leu	Gly	Val 675	Glu	Pro	λla	Ala	Val 680	Il•	Gly	His	Ser	Gln 685	Gly	Glu	Ile
		690					695					700			Ala	
45	11e 705	Val	Ala	Leu	Arg	Ser 710	Gln	Val	Ile	Ala	Arg 715	Glu	Leu	Ala	Gly	Arg 720
	Gly	Gly	Met	Ala	Ser 725	Val	Ala	Leu	Pro	Ala 730	Ala	Glu	Val	Glu	Ala 735	Arg
50	Leu	Ala	Gly	Gly 740	Val	Glu	Ile	Ala	Ala 7 4 5	Val	Asn	Gly	Pro	Gly 750	Ser	Thr
	Val	Val	Cys 755	Gly	Glu	Pro	Gly	Ala 760	Leu	Glu	Ala	Leu	Leu 765	Val	Thr	Leu
55	Glu	Ser 770	Glu	Gly	Thr	Arg	Val 775	Arg	Arg	Ile	Asp	Val 780	Asp	Tyr	Ala	Ser

5	His 785		His	Tyr	Val	Glu 790		Ile	Arg	Ala	Glu 795	Leu	Ala	Thr	Val	Leu 800
	Gly	Pro	Val	Arg	Pro 805	λ rg	Arg	Gly	Yab	Val 810	Pro	Phe	Tyr	Ser	Thr 815	Val
10	Glu	Ala	Ala	Leu 820	Leu	Ąsp	Thr	Ala	Thr 825		yab	Ala	Asp	Tyr 830	Trp	Tyr
	Arg	Asn	Leu 835	Arg	Leu	Pro	Val	Arg 840	Phe	Glu	Pro	Thr	Val 845	Arg	Ala	Met
15	Leu	Asp 850	yab	Gly	Val	yab	Ala 855	Phe	Val	Glu	Суз	Ser 860	Ala	His	Pro	Val
	Leu 865		Val	Gly	Val	Arg 870	Gln	Thr	Val	Glu	Ser 875	Ala	Gly	Gly	Ala	Val 880
20	Pro	Ala	Leu	Ala	Ser 885	Leu	Arg	Arg	Asp	Glu 890	Gly	Gly	Leu	Arg	Arg 895	Phe
	Leu	Thr	Ser	Ala 900	Ala	Glu	Ala	Gln	Val 905	Val	Gly	Val	Pro	Val 910	Asp	Trp
25	Ala	Thr	Leu 915	Arg	Pro	Gly	Ala	Gly 920	Arg	Val	Asp	Leu	Pro 925	Thr	Tyr	Ala
	Phe	Gln 930	Arg	Glu	Arg	His	Trp 935	Val	Gly	Pro	Ala	Arg 940	Pro	Хsр	Ser	Ala
30	Ala 945	Thr	Ala	Ala	Thr	Thr 950	Gly	qeA	Asp	Ala	Pro 955	Glu	Pro	Gly	Asp	Arg 960
35	Leu	Gly	Tyr	His	Val 965	Ala	Trp	Lys	Gly	Leu 970	Arg	Ser	Thr	Thr	Gly 975	Gly
	Trp	Arg	Pro	Gly 980	Leu	Arg	Leu	Leu	Ile 985	Val	Pro	Thr	Gly	As p 990	Gln	Tyr
40	Thr	Ala	Leu 995	Ala	Asp	Thr	Leu	Glu 1000		Ala	Val	Ala	Ser 100		Gly	Gly
	Thr	Val 1010	Arg	Arg	Val	Ala	Phe 1015		Pro	λla	λrg	Thr 1020		Arg	Ala	Glu
45	Leu 102	Phe 5	Gly	Leu	Leu	Glu 1030		Glu	Ile	Asn	Gly 1035		Thr	Ala	Val	Thr 1040
	Gly	Val	Val	Ser	Leu 1045		Gly	Leu	Суз	Thr 1050		Gly	Arg	Pro	Asp 1055	
50	Pro	Ala	Val	Pro 1060		Ala	Val	Thr	Ala 1065		Leu	Ala	Leu	Val 1070		Ala
	Leu	Ala	Asp 1075		Gly	Ser	Thr	Ala 1080		Leu	Trp	Thr	Val 1085		Cys	Gly
55	Ala	Val 1090		Thr	Ala	Pro	Asp 1095		Leu	Pro	Cys	Thr 1100		Gly	Ala	Gln

5	Leu Trp Gly Leu Gly Arg Val Ala Ala Leu Glu Leu Pro Glu Val Tr 1105 1110 1115 11	P 20
	Gly Gly Leu Ile Asp Leu Pro Ala Arg Pro Asp Ala Arg Val Leu As 1125 1130 1135	p
10	Arg Leu Ala Gly Val Leu Ala Glu Pro Gly Gly Glu Asp Gln Ile Al 1140 1145 1150	a
	Val Arg Met Ala Gly Val Phe Gly Arg Arg Val Leu Arg Asn Pro Al. 1155 1160 1165	a
15	Asp Ser Arg Pro Pro Ala Trp Arg Ala Arg Gly Thr Val Leu Ile Al. 1170 1175 1180	a
	Gly Asp Leu Thr Thr Val Pro Gly Arg Leu Val Arg Ser Leu Leu Gl 1185 1190 1195 120	
20	Asp Gly Ala Asp Arg Val Val Leu Ala Gly Pro Asp Ala Pro Ala Gli 1205 1210 1215	1
	Ala Ala Ala Gly Leu Thr Gly Val Ser Leu Val Pro Val Arg Cys 1220 1225 1230	J
25	Asp Val Thr Asp Arg Ala Ala Leu Ala Ala Leu Leu Asp Glu His Ala 1235 1240 1245	l .
	Pro Thr Val Ala Val His Ala Pro Pro Leu Val Pro Leu Ala Pro Leu 1250 1255 1260	ı
30	Arg Glu Thr Ala Pro Gly Asp Ile Ala Ala Ala Leu Ala Ala Lys Thr 1265 1270 1275 128	
35	Thr Ala Ala Gly His Leu Val Asp Leu Ala Pro Ala Ala Gly Leu Asp 1285 1290 1295	
	Ala Leu Val Leu Phe Ser Ser Val Ser Gly Val Trp Gly Gly Ala Ala 1300 1305 1310	
40	Gln Gly Gly Tyr Ala Ala Ala Ser Ala His Leu Asp Ala Leu Ala Glu 1315 1320 1325	
	Arg Ala Arg Ala Ala Gly Val Pro Ala Phe Ser Val Ala Trp Ser Pro 1330 1335 1340	
45	Trp Ala Gly Gly Thr Pro Ala Asp Gly Ala Glu Ala Glu Phe Leu Ser 1345 1350 1355 1360)
	Arg Arg Gly Leu Ala Pro Leu Asp Pro Asp Gln Ala Val Arg Thr Leu 1365 1370 1375	
50	Arg Arg Met Leu Glu Arg Gly Ser Ala Cys Gly Ala Val Ala Asp Val 1380 1385 1390	
	Glu Trp Ser Arg Phe Ala Ala Ser Tyr Thr Trp Val Arg Pro Ala Val 1395 1400 1405	
55	Leu Phe Asp Asp Ile Pro Asp Val Gln Arg Leu Arg Ala Ala Glu Leu 1410 1415 1420	

	142		Ser	Thr	Gly	Asp 143		Thr	Thr	Ser	Glu 143		Val	Arg	Glu	Leu 1440
5	Thr	Ala	Gln	Ser	Gly 144		Lys	Arg	His	145		Leu	Leu	λrg	Leu 145	
	Arg	Ala	His	Ala 146		Ala	Val	Leu	Gly 146		Ser	Ser	Gly	Asp 147		Val
10	Ser	Ser	Ala 147		Ala	Phe	Arg	Asp 148		Gly	Phe	qeA	Ser 148		Thr	Ala
15	Leu	Glu 149		Arg	Asp	Arg	Leu 149		Thr	Ser	Thr	Gly 150		Lys	Leu	Pro
	150	5				151					151	5			_	1520
20	Leu	Gly	Glu	Glu	Leu 152		Gly	Arg	Asn	Asp 153		Ala	Asp	Arg	Ala 153	-
	Pro	Аsp	Thr	Pro 154	Val	Arg	Thr	Aap	Glu 154		Ile	Ala	Ile	Ile 155	-	Met
25	Ala	Сув	Arg 155	Leu 5	Pro	Gly	Gly	Val 156		Ser	Pro	Glu	Asp 156		Trp	Asp
	Leu	Leu 1570	Thr)	Gly	Gly	Thr	Asp 1579		Ile	Thr	Pro	Phe 1580		Thr	Asn	Arg
30	Gly 1585	Trp	Asp	Asn	Glu	Thr 1590	Leu)	Tyr	As p	Pro	Asp 1595		Asp	Ser	Pro	Gly 1600
	His	His	Thr	Tyr	Val 1605		Glu	Gly	Gly	Phe 1610		His	Asp	Ala	Ala 1615	
35	Phe	Asp	Pro	Gly 1620	Phe	Phe	Gly	Ile	Ser 1629		Arg	Glu	Ala	Leu 1630		Met
	yab	Pro	Gln 1635	Gln	Arg	Leu	Ile	Leu 1640		Thr	Ser		Glu 1645		Phe	Glu
40	Arg	Ala 1650	Gly	Ile	Asp	Pro	Val 1655		Leu	Arg		Ser 1660		Thr	Gly	Val
45	Phe 1665	Val	Gly	Thr	Asn	Gly 1670	Gln	His	Tyr		Pro 1675		Leu	Gln		Gly 1680
	Asp				1685					1690					1695	
50	Met			1700					1705	•				1710		
	Thr		1715					1720					1725			
55	Val	Gln 1730	Ser	Leu .	Arg	Arg	Gly 1735	Glu	Cys	Asp '		Ala 1 1740	Leu	Ala (Gly (Sly

	Ala 174		Val	Met	Ser	Thr 175		Glu	Met	Leu	Val 175		Phe	Ala	λrg	Gln 1760
5	λrg	Ala	Val	Ser	Pro 176		Gly	Arg	Ser	Lys 177		Phe	Ala	Glu	Ala 177	
	Азр	Gly	Val	Gly 178		Ala	Glu	Gly	Ala 178		Met	Leu	Leu	Val 179		λrg
10	Leu	Ser	Glu 179	Ala 5	Gln	Lys	Lys	Gly 180		Pro	Val	Leu	Ala 180		Val	Arg
15	Gly	Ser 181		Val	Asn	Gln	Asp 181		Ala	Ser	Asn	Gly 182		Thr	Ala	Pro
	Ser 182	Gly 5	Pro	Ala	Gln	Gln 183		Val	Ile	Arg	Glu 183		Leu	Ala	Asp	Ala 1840
20	Gly	Leu	Thr	Pro	Ala 184		Val	Asp	Ala	Val 185		Ala	His	Gly	Thr 1855	_
		Pro		1860	0				1869	5				1870)	=
25	Gly	Arg	Asp 1879		Arg	Asp	Gly	Pro 188		Trp	Leu	Gly	Ser 188		Lys	Ser
	Asn	Ile 1890	Gly)	His	Thr	Gln	Ala 189		Ala	Gly	Val	Ala 1900		Val	Ile	Lys
30	Met 190	Val 5	Leu	Ala	Leu	Arg 1910		Gly	Glu	Leu	Pro 1919		Thr	Leu	His	Ala 1920
	Ser	Thr	Ala	Ser	Ser 1925		Ile	Asp	Trp	Asp 1930		Gly	Ala	Val	Glu 1935	
35	Leu	Asp	Glu	Ala 1940		Pro	Trp	Leu	Gln 1945		λla	Glu	Gly	Pro 1950	-	Arg
	Ala	Gly	Ile 1955		Ser	Phe	Gly	Ile 1960		Gly	Thr	Asn	Ala 1965		Leu	Val
40	Ile	Glu 1970	Glu	Pro	Pro	Glu	Pro 1975		Ala	Pro	Glu	Leu 1980		Ala	Pro	Glu
45	Pro 1985	Ala	Ala	Asp	Gly	Asp 1990		Trp	Ser		Glu 1995		Trp	His		Val 2000
	Thr	Val	Pro	Leu	Met 2005	Met	Ser	Ala	His	Asn 2010	Glu	Ala	Ala		Arg 2015	Asp
50	Gln	Ala	Arg	Arg 2020	Leu	Arg	Ala		Leu 2025		Ala	His		Glu 2030		His
	Pro	Ala	Asp 2035	Val	Gly	Tyr		Leu 2040		Thr	Thr		Thr 2045		Phe (Glu
55	Gln	Arg 2050	Ala	Ala	Val	Val	Gly 2055	Glu	Asn	Phe		Glu 2060	Leu	Ile .	Ala i	Ala

	Leu 206		Asp	Leu	Val	Glu 207		λ rg	Pro	His	Pro 207		Val	Leu	Arg	Gly 2080
5	Thr	Ala	Gly	Thr	Ser 208		Gln	Val	Val	Phe 209		Phe	Pro	Gly	Gln 209	_
	Ser	Gln	Trp	Pro 210		Met	Ala	Asp	Gly 210		Leu	Ala	Arg	Ser 211		Gly
10	Ser	Gly	Ser 211		Leu	Glu	Thr	Ala 212	Arg 0	Ala	Cys	Asp	Leu 212		Leu	Arg
15	Pro	His 213		Gly	Trp	Ser	Val 213		Asp	Val	Leu	Arg 214	_	Glu	Pro	Gly
	Ala 214		Ser	Leu	Asp	Arg 215		yab	Val	Val	Gln 215		Val	Leu	Phe	Thr 2160
20	Met	Met	Val	Ser	Leu 2169		Glu	Thr	Trp	Arg 217		Leu	Gly	Val	Glu 217	
	Ala	Ala	Val	Val 2180		His	Ser	Gln	Gly 218		Ile	Ala	Ala	Ala 219	_	Val
25	Ala	Gly	Ala 2195		Thr	Leu	Asp	Asp 2200	Ala)	Ala	Arg	Ile	Val 220		Leu	Arg
	Ser	Gln 2210		Trp	Leu	λrg	Leu 221		Gly	Lys	Gly	Gly 2220		Val	λla	Val
30	Thr 2225		Ser	Glu	Arg	Asp 2230		Arg	Pro	Arg	Leu 2235	Glu		Trp	Ser	Asp 2240
	Arg	Leu	Ala	Val	Ala 2245		Val	Asn	Gly	Pro 2250		Thr	Сув	Ala	Val 2255	
35	Gly	A sp	Pro	Asp 2260		Leu	Ala	Glu	Leu 2265		Ala	Glu	Leu	Gly 2270		Glu
40	Gly	Val	His 2275		λrg	Pro	Ile	Pro 2280	Gly)	Val	Asp	Thr	Ala 2285	_	Ris	Ser
,	Pro	Gln 2290	Val	Asp	Thr	Leu	Glu 2295		His	Leu	Arg	Lys 2300		Leu	λla	Pro
45	Val 2305	Ala	Pro	Arg	Thr	Ser 2310	Asp	Ile	Pro	Phe	Tyr 2315		Thr	Val		Gly 2320
	Gly	Leu	Ile		Thr 2325		Glu	Leu	qeA	Ala 2330		Tyr	Trp		Arg 2335	
50	Met	Arg	Glu	Pro 2340		Glu	Phe		Gln 2345		Thr	Arg	Ala	Leu 2350		Ala
	Asp	Gly	His 2355		Val	Phe		Glu 2360	Ser	Ser	Pro		Pro 2365		Leu	Ala
55	Val	Ser 2370	Leu	Gln	Glu		Ile 2375		Asp	Ala		Ser 2380		Ala	Ala	Val

	238		Thr	Leu	Arg	Arg 239	-	Gln	Gly	Gly	239		Trp	Leu	Gly	Val 2400
5	Ala	Leu	Суз	Arg	Ala 240		Thr	His	Gly	Leu 241		Ile	qeA	Ala	Glu 241	
	Ile	Phe	Gly	Pro 242		Ser	Arg	Gln	Val 242	Glu 5	Leu	Pro	Thr	Tyr 243		Phe
10	Gln	Arg	Glu 243		Tyr	Trp	Tyr	Ser 244		Gly	His	Arg	Gly 244		λsp	Pro
15	Ala	Ser 245		Gly	Leu	Asp	Ala 245		Asp	His	Pro	Leu 246		Gly	Ser	Gly
	Val 246	Glu 5	Leu	Pro	Glu	Ser 247		yab	Arg	Met	Tyr 247		Ala	Arg	Leu	Gly 2480
20	Ala	qsA	Thr	Thr	Pro 2489		Leu	Ala	Asp	His 249		Leu	Leu	Gly	Ser 2499	
	Leu	Leu	Pro	Gly 250		Ala	Phe	Ala	Asp 250	Leu 5	Ala	Leu	Trp	Ala 2510	_	Arg
25	Gln	Ala	Gly 251	Thr 5	Gly	Arg	Val	Glu 252		Leu	Thr	Leu	Ala 2525		Pro	Leu
	Val	Leu 253	Pro 0	Gly	Ser	Gly	Gly 2535		Arg	Leu	Arg	Leu 2540		Val	Gly	Ala
30	Pro 2545	Gly 5	Thr	qeA	qeA	Ala 255(Arg	Phe	Ala	Val 2555		Ala	Arg	Ala	Glu 2560
	Gly	Ala	Thr	Asp	Trp 2565		Leu	His	Ala	Glu 2570		Leu	Leu		Ala 2575	
35	Asp	Thr	Ala	Asp 2580		Pro	qzA	Ala	Ser 2589	Ala	λla	Thr	Pro	Pro 2590	Pro	Gly
40	Ala	Glu	Gln 2595	Leu	dsv	Ile	Gly	Asp 2600		Tyr	Gln	Arg	Phe 2605		Glu	Leu
40	Gly	Tyr 2610	Gly)	Tyr	Gly	Pro	Phe 2615		Arg	Gly	Leu	Val 2620		Ala	His	Arg.
<i>45</i>	Cys 2625	Gly	Pro	qeA	Ile	His 2630	Ala	Glu	Val	Ala	Leu 2635		Val	Gln .		Gln 2640
	Gly	Asp	Ala	Ala	Arg 2645	Phe	Gly	Ile	His	Pro 2650		Leu	Leu		Ala 2655	Ala
50	Leu	Gln	Thr	Met 2660	Ser	Leu	Gly	Gly	Phe 2665	Phe	Pro	Glu		Gly 2 2670	Arg '	Val
	Arg	Met	Pro 2675	Phe	Ala	Leu		Gly 2680		Arg	Leu		Arg 2685	Ala (Gly /	Ala
55	Asp	Arg 2690	Leu	His	Val .	Arg	Val 2695	Ser	Pro	Val		Glu . 2700	Asp .	Ala V	Val i	Arg

	Ile Arg 2705	Cys Ala	Asp Gly 271		Arg Pro	Val Ala 2715	Glu Ile	Glu Ser 2720
5	Phe Ile	Met Arg	Pro Val 2725	l Asp Pro	Gly Gln 273		Gly Gly	Arg Pro 2735
10	Val Gly	Ala Asp 274		Phe Arg	Ile Ala 2745	Trp Arg	Glu Leu 2750	
10	Gly Pro	Gly Thr 2755	Arg Thr	Gly Asp 276	Gly Thr	Pro Pro	Pro Val 2765	Arg Trp
15	Val Leu 277	Ala Gly 0	Pro Asp	Ala Leu 2775	Gly Leu	Ala Glu 2780		Asp Ala
	His Leu 2785	Pro Ala	Val Pro 279	Gly Pro	Asp Gly	Ala Leu 2795	Pro Ser	Pro Thr 2800
20	Gly Arg	Pro Ala	Pro Asp 2805	Ala Val	Val Phe 2810		Arg Ala	Gly Thr 2815
	Gly Asp	Val Ala 2820		Ala His	Thr Val 2825	Ala Cys	Arg Val 2830	
25	Leu Val	Gln Arg 2835	Arg Leu	Ala Ala 284	Pro Glu 0		Asp Gly 2845	Ala Arg
	Leu Val 2850	Val Ala	Thr Arg	Gly Ala 2855	Val Ala	Val Arg 2 2860		Ala Glu
30	Val Asp 2865	Asp Pro	Ala Ala 287	Ala Ala O	Ala Trp	Gly Leu 1 2875	Leu Arg	Ser Ala 2880
35	Gln Ala	Glu Glu	Pro Gly 2885	Arg Phe	Leu Leu 2890		_	Asp Asp 2895
	Pro Ala	Ser Ala 2900	Arg Ala	Leu Thr	Asp Ala : 2905	Leu Ala S	Ser Gly (2910	Glu Pro
40		2915		2920		2	2925	•
	2930			2935	Leu Thr	2940		
45	2945		2950)		2955		2960
	Val Pro	Ala Pro	Asp Ala 2965	Glu Ala	Pro Leu (2970	Glu Pro G		/al Arg 2975
50	Val Ala	Val Arg 2980	Ala Ala	Gly Val	Asn Phe 1 2985	Arg Asp A	la Leu 1 2990	lle Ala
	Leu Gly	Met Tyr 2995	Pro Gly	Glu Ala 3000	Glu Met (lu Gly 2 005	la Gly
55	Thr Val 3010	Val Glu	Val Gly	Pro Gly 3015	Val Thr (31y Val A 3020	la Val d	Sly Asp

	Arg 302	y Val 25	l Leu	Gly	Leu	Tr:		Gly	/ Gly	/ Leu	Gly 303		Leu	Cys	Val	Ala 3040
5	Asp	His	Arg	Leu	Leu 304	λla 5	Pro	Val	Pro	A sp 305		Trp	Ser	Tyr	Ala 305	
	Ala	Ala	Ser	Val 306	Pro 0	λla	Val	Phe	306	Ser 5	Ala	Tyr	Tyr	Gly 307		Val
10	Thr	Leu	Ala 307		Leu	Arg	Pro	Gly 308		Arg	Val	Leu	Val 308		Ala	Ala
15	Ala	Gly 309	Gly	Val	Gly	Met	Ala 309	Ala 5	Val	Gln	Ile	Ala 310		His	Leu	Gly
	Ala 310	Glu 5	Val	Leu	Ala	Thr 311	Ala O	Ser	Pro	Gly	Lys 311		Asp	Ala	Leu	Arg 3120
20	Ala	Met	Gly	Ile	Thr 3129	qeA 5	Asp	His	Leu	Ala 313		Ser	Arg	Thr	Leu 313	
	Phe	Ala	Thr	Ala 314	Phe 0	Thr	Gly	Ala	Asp 314	Gly 5	Thr	Ser	Arg	Ala 315	_	Val
25	Val	Leu	Asn 315	Ser 5	Leu	Thr	Lys	Glu 316	Phe 0	Val	Asp	Ala	Ser 316		Gly	Leu
	Leu	Arg 317	Pro 0	Gly	Gly	Arg	Phe 317	Leu 5	Glu	Leu	Gly	Lys 318(dsĄ	Val	Arg
30	Asp	Pro 5	Glu	Arg	Ile	Ala 319	Ala O	Glu	His	Pro	Gly 3199		Arg	Tyr	Arg	Ala 3200
35					3205	•				Ala 3210)				3215	i
				3220)				3225					3230)	
40			3235	•				3240)	Asp			3245	;		
		3250	,				3255	5		Leu		3260	ı			
45	3265	•				3270)			Gly Arg	3275					3280
					3285					3290 Gly					3295	
50				3300					3305					3310		
			3315					3320					3325			-
55	nop	3330	Ser	nap .	nig 1	rsb	3335	val	AIG	Gly :		Leu . 3340	Ala (Gly :	Ile	Pro

	Ala 334		His	Pro	Leu	Thr 335		Val	Val	His	Ser 335		Gly	Val	Leu	Asp 3360
5	λsp	Gly	Val	Leu	Pro 336		Leu	Thr	Pro	Glu 337		Met	Arg	Arg	Val 337	Leu 5
	Arg	Pro	Lys	Val 338		Ala	Ala	Val	His 338	Leu 5	Asp	Glu	Leu	Thr 339		qeA
10	Leu	qeA	Leu 339		Ala	Phe	Val	Leu 340		Ser	Ser	Ser	Ala 340		Leu	Leu
15	Gly	Ser 341		Ala	Gln	Gly	Asn 341		Ala	Ala	Ala	Asn 342		Thr	Leu	Asp
	Ala 342	Leu 5	Ala	Ala	Arg	Arg 343		Ser	Leu	Gly	Leu 343		Ser	Val	Ser	Leu 3440
20	Ala	Trp	Gly	Leu	Trp 3445		Asp	Thr	Ser	Arg 3450		Ala	His	Ala	Leu 345	-
	Gln	Glu	Ser	Leu 3 4 60	Gln)	Arg	Arg	Phe	Ala 346	Arg 5	Ser	Gly	Phe	Pro 347		Leu
25	Ser	Ala	Thr 3475	Leu	Gly	Ala	Ala	Leu 348		Asp	Ala	Ala	Leu 3489		Val	Asp
	Glu	Ala 3490	Val	Gln	Val	Pro	Met 3499		Phe	Asp	Pro	Ala 3500		Leu	Arg	Ala
30	Thr 3505	Gly	Ser	Val	Pro	Ala 3510		Leu	Ser	Asp	Leu 3515		Gly	Ser	Ala	Pro 3520
35	Ala	Thr	Gly	Ser	Ala 3525	Ala	Pro	Ala	Ser	Gly 3530		Leu	Pro	Ala	Pro 3535	-
-	Ala	Gly	Thr	Val 3540	Gly	Glu	Pro	Leu	Ala 3545	Glu	Arg	Leu	Ala	Gly 3550		Ser
40	Ala	Glu	Glu 3555	Arg	His	As p	Arg	Leu 3560		Gly	Leu	Val	Gly 3565		His	Va1
	λla	Ala 3570	Val	Leu	Gly	His	Gly 3575	Ser	Ala	Ala	Glu	Val 3580		Pro	Asp	Arg
45	Pro 3585	Phe	Arg	Glu		Gly 3590		qeA	Ser	Leu	Thr 3595		Val	Glu		Arg 3600
	A sn	Arg	Met		Ala 3605		Thr	Gly		Arg 3610		Pro	Ala		Leu 3615	
50	Phe	Ąsp	His	Pro 3620	Thr	Pro	Ala		Leu 3625		Ser	His		Asp 3630		Leu
	Leu			Ala		Pro			Thr		Pro		Leu 3645	Ser	Glu :	Leu
55	Asp	Arg 3650		Glu (Glu /		Leu 3655		Ala	Leu		Pro 3660	Glu	His	Leu .	Ala

	G1u 366		ı Ala	Pro	Ala	367		Asp	Arg	, Ala	Glu 367		Ala	Leu	ı Arg	J Leu 3680
5	yab	Ala	Leu	Ala	Asp 368		Trp	Arg	, Ala	1 Leu 369		Asp	Gly	/ Ala	369	Gly 5
	Ala	Asp	yat	370		Thr	Asp	Val	Leu 370		Ser	Ala	Asp	371	-	Glu
10	Ile	Phe	371		Ile	Asp	Glu	Arg 372		Gly	Thr	Ser				
15	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO : 5	:							
		(i	(A) L B) T	CE C ENGT YPE: OPOL	H: 1 ami:	580 - no a	amin cid	o ac	ids						
20		(ii			LE T											
25					CE DI											
	Met 1	Ala	Asn	Glu	Glu 5	Lys	Leu	Arg	Ala	Tyr 10	Leu	Lys	Arg	Val	Thr 15	Gly
30	Glu	Leu	His	Arg 20	Ala	Thr	Glu	Gln	Leu 25	Arg	Ala	Leu	Asp	Arg 30	Arg	Ala
	His	Glu	Pro 35	Ile	Ala	Ile	Val	Gly 40	Ala	Ala	Суз	Arg	Leu 45	Pro	Gly	Gly
35	Val	Glu 50	Ser	Pro	Asp	Asp	Leu 55	Trp	Glu	Leu	Leu	His 60	Ala	Gly	Ala	Азр
	Ala 65	Val	Gly	Pro	Ala	Pro 70	Ala	Asp	Arg	Gly	Trp 75	Asp	Val	Glu	Gly	Arg 80
40	Tyr	Ser	Pro	Asp	Pro 85	qeK	Thr	Pro	Gly	Thr 90	Ser	Tyr	Cys	Arg	Glu 95	Gly
	Gly	Phe	Val	Gln 100	Gly	Ala	Asp	Arg	Phe 105	Asp	Pro	Ala	Leu	Phe 110	Gly	Ile
45	Ser	Pro	Asn 115	Glu	Ala	Leu	Thr	Met 120	Asp	Pro	Gln	Gln	Arg 125	Leu	Leu	Leu
50	Glu	Thr 130	Ser	Trp	Glu	Ala	Leu 135	Glu	Arg	Ala	Gly	Leu 140	Asp	Pro	Gln	Ser
	Leu 145	Ala	Gly	Ser	Arg	Thr 150	Gly	Val	Phe	Ala	Gly 155	Ala	Trp	Glu	Ser	Gly 160
55					Val 165					170					175	
	neu	wra	GTĀ	TTG	Val .	∍er	rne	ınr	Ala	GIY	Arq	val	Ala	Tyr	Ala	Leu

				18	0				18	5				19	0	
5	G1	y Le	19!	u Gly 5	y Pr	o Ala	a Le	u Th 20	r Il 0	e As	p Th	r Al	a Cy 20		r Se	r Se
	Le	u Va:	l Ala	Let	ı Hi:	s Lev	21!	a Va 5	1 G1	n Se	r Le	u Ar 22		g Gl	y Gl	u Cys
10	As 22	p Let 5	ı Ala	Lev	a Ala	230	/ Gl ₃	/ Ala	a Th	r Val	l I14 235		a As	p Ph	e Al	a Leu 240
	Ph	e Thi	Glr	Phe	Ser 245	r Arg	g Glr	a Arg	g Gly	/ Let 250	ı Ala	a Pr	o As	Gl ₂	y Ar	g Cys 5
15	Ly	s Ala	Phe	Gly 260	Glu	ı Thr	Ala	ı Ası	Gl ₃ 265	/ Phe	Gly	/ Pro	o Ala	Gl: 27		y Ala
	Gly	/ Met	Leu 275	Leu	Val	Glu	Arg	280	ı Ser	. yat	Ala	Arg	285		Gl _y	/ His
20	Pro	Val 290	Leu	Ala	Val	. Val	Arg 295	Gly	/ Ser	Ala	Val	Asr 300	n Glr	As <u>ı</u>	G13	/ Ala
25	Se ₁ 305	Asn	Gly	Leu	Thr	Ala 310	Pro	Ser	Gly	Pro	Ala 315	Glr	Gln	Arg	y Val	Ile 320
	Arg	Glu	Ala	Leu	Ala 325	Asp	Ala	Gly	Leu	Thr 330	Pro	Ala	Asp	Val	. Asp	Ala
30	Val	Glu	Ala	His 340	Gly	Thr	Gly	Thr	Pro 345	Leu	Gly	Asp) Pro	Ile 350		Ala
	Gly	Ala	Leu 355	Met	Ala	Thr	Tyr	Gly 360	His	Glu	Arg	Thr	Gly 365	Asp	Pro	Leu
35	Trp	Leu 370	Gly	Ser	Leu	Lys	Ser 375	Asn	Ile	Gly	His	Thr 380		Ala	λla	Ala
	Gly 385	Val	Ala	Gly	Val	Ile 390	Ļys	Met	Val	Leu	Ala 395	Leu	Arg	His	Gly	Glu 400
40	Leu	Pro	Arg	Thr	Leu 405	His	Ala	Ser	Thr	Ala 410	Ser	Ser	Arg	Ile	Glu 415	Trp
	Двр	Ala	Gly	Ala 420	Val	Glu	Leu	Leu	Asp 425	Glu	Ala	Arg	Pro	Trp 430	Pro	Arg
45	Arg	Ala	Glu 435	Gly	Pro	Arg	Arg	Ala 440	Gly	Ile	Ser	Ser	Phe 445	Gly	Ile	Ser
50	Gly	Thr 450	yau	Ala	His	Leu	Val 455	Ile	Glu	Glu	Glu	Pro 460	Pro	Ala	Arg	Pro
	Glu 465	Pro	Glu	Glu .	λla	Ala 470	Gln	Pro	Pro	Ala	Pro 475	Ala	Thr	Thr	Val	Leu 480
55	Pro	Leu	Ser .	Ala i	Ala 485	Gly .	Ala .	Arg	Ser	Leu . 490	Arg (Glu	Gln		A rg 4 95	Arg

	Leu	Ala	Ala	His 500	Leu	Ala	Gly	His	G1u 505		Ile	Thr	Ala	Ala 510		Ala
5			515					520					525	-		Ser
	Val	Leu 530	Ala	Asp	Asp	Arg	Arg 535		Leu	Ile	Asp	Arg 540		Thr	Ala	Leu
10	Ala 545	Glu	Ąsp	Arg	Lys	Asp 550		Gly	Val	Thr	Val 555		Glu	Ala	Gly	Ser 560
	Gly	Arg	Pro	Pro	Val 565		Val	Phe	Pro	Gly 570	Gln	Gly	Ser	Gln	Trp 575	Thr
15	Gly	Met	Gly	Ala 580	Glu	Leu	Leu	Asp	Arg 585	Ala	Pro	Val	Phe	A rg 590	Ala	Lys
	Ala	Glu	Glu 595	Cys	Ala	Arg	Ala	Leu 600	Ala	Ala	His	Leu	Asp	_	Ser	Val
20	Leu	Asp 610	Val	Leu	Arg	Asp	Ala 615	Pro	Gly	Ala	Pro	Pro 620		Asp	Arg	Ala
25	Asp 625	Val	Val	Gln	Pro	Thr 630	Leu	Phe	Thr	Met	Met 635	Val	Ser	Leu	Ala	Ala 640
	Leu	Trp	Glu	Ser	His 6 4 5	Gly	Val	Arg	Pro	Ala 650	Ala	Val	Val	Gly	His 655	Ser
30	Gln	Gly	Glu	Ile 660	Ala	Ala	Ala	His	Ala 665	Ala	Gly	Ala	Leu	Ser 670	Leu	Asp
	Asp	Ala	Ala 675	Arg	Val	Ile	Ala	Glu 680	Arg	Ser	Arg	Leu	Trp 685	Lys	Arg	Leu
35	Ala	Gly 690	Asn	Gly	Gly	Met	Leu 695	Ser	Val	Met	Ala	Pro 700	Ala	Asp	Arg	Val
	Arg 705	Glu	Leu	Met	Glu	Pro 710	Trp	Ala	Glu	Arg	Met 715	Ser	Val	Ala	λla	Val 720
40	Asn	Gly	Pro	Ala	Ser 725	Val	Thr	Val	Ala	Gly 730	Asp	Ala	Arg	Ala	Leu 735	Glu
	Glu	Phe	Gly	Gly 740	Arg	Leu	Ser	Ala	Ala 745	Gly	Val	Leu	λrg	Trp 750	Pro	Leu
45	Ala	Gly	Val 755	Asp	Phe	Ala	Gly	His 760	Ser	Pro	Gln	Val	Glu 765	Gln	Phe	Arg
50	Ala	Glu 770	Leu	Leu	yab	Thr	Leu 775	Gly	Thr	Val		Pro 780	Thr	Ala	Ala	A rg
-	Leu 785	Pro	Phe	Phe	Ser	Thr 790	Val	Thr	Ala		Ala 795	His	Glu	Pro	Glu	Gly 800
55	Leu	yab	Ala	Ala	Tyr 805	Ттр	Tyr	Arg		Met 810	Arg	Glu	Pro		Glu 815	Phe

	Ala	Ser	Thr	Leu 820	Arg	Thr	Leu	Leu	Arg 825	Glu	Gly	His	Arg	Thr 830	Phe	Val
5	Glu	Met	Gly 835	Pro	His	Pro	Leu	Leu 840	Gly	Ala	Ala	Ile	Азр 845	Glu	Val	Ala
	Glu	Ala 850	Glu	Gly	Val	His	Ala 855	Thr	Ala	Leu	Ala	Thr 860	Leu	His	Arg	Gly
10	Ser 865	Gly	Gly	Leu	Asp	Arg 870	Phe	Arg	Ser	Ser	Val 875	Gly	Ala	Ala	Phe	Ala 880
	His	Gly	Val	Arg	Val 885	yab	Trp	Asp	Ala	Leu 890	Phe	Glu	Gly	Ser	Gly 895	Ala
15	Arg	Arg	Val	Pro 900	Leu	Pro	Thr	Tyr	Ala 905	Phe	Ser	Arg	Asp	Arg 910	Tyr	Trp
	Leu	Pro	Thr 915	Ala	Ile	Gly	Arg	Arg 920	Ala	Val	Glu	Ala	Ala 925	Pro	Val	Asp
20	Ala	Ser 930	Ala	Pro	Gly	Arg	Tyr 935	Arg	Val	Thr	Trp	Thr 940	Pro	Val	Ala	Ser
25	Asp 945	Asp	Ser	Gly	Arg	Pro 950	Ser	Gly	Arg	Trp	Leu 955	Leu	Val	Gln	Thr	Pro 960
	_			Pro	965			_		970					975	
30				Va1 980					985		_			990		
			995	Leu				1000)				1009	5		
35		1010)	Gly			1019	5				1020)			
	1029	5		Ala		1030)				1035	5				1040
40				Ala	1049	5				1050)				1055	•
45				Gly 1060)				1065	5				1070)	
43			1075					1080)				1085	•		
50		1090)	Trp			1095	5				1100)		_	
	110	5		Arg		1110)				1119	5				1120
55	Gln	Val	Ala	Val	Arg 1129		Gly	Gly	Val	Phe 1130		Arg	Arg		Val 1135	

	Va:	l Gly	/ Val	Arg 114	Gly 0	Gly	/ Ser	Gly	Val 114	Trp 5	Arg	, Ala	Arg	Gly 115		Val
5	Va.	l Val	115	Gly 5	Gly	Leu	Gly	Gly 116	Val	Gly	Gly	' His	Val 116		Arg	Trp
	Let	117	Arg 70	Ser	Gly	Ala	Glu 117	His 5	Val	Val	Leu	Ala 118		Arg	Arg	Gly
10	Gly 118	Gly	Val	Val	Gly	Ala 119	Val	Glu	Leu	Glu	Arg 119	Glu 5	Leu	Val	Gly	Leu 1200
	Gly	Ala	Lys	Val	Thr 120	Phe 5	Val	Ser	Суз	Asp 121	Val 0	Gly	Asp	Arg	Ala 121	Ser 5
15	Met	. Val	Gly	Leu 122	Leu 0	Gly	Val	Val	Glu 122	Gly	Leu	Gly	Val	Pro 123		Arg
	Gly	Val	Phe 123	His 5	Ala	Ala	Gly	Val 124	Ala	Gln	Val	Ser	Gly 124	Leu	Gly	Glu
20	Val	Ser 125	Leu 0	Ala	Glu	Ala	Gly 125	Gly 5	Val	Leu	Gly	Gly 126		Ala	Val	Gly
as.	Ala 126	Glu 5	Leu	Leu	Asp	Glu 1270	Leu 0	Thr	Ala	Gly	Val 127	Glu S	Leu	Asp	Ala	Phe 1280
25	Val	Leu	Phe	Ser	Ser 1289	Gly	Ala	Gly	Val	Trp 129	Gly 0	Ser	Gly	Gly	Gln 129	
30	Val	Tyr	Ala	Ala 1300	Ala)	Asn	Ala	His	Leu 1305	Asp	Ala	Leu	Ala	Glu 1310		Arg
	Arg	Ala	Gln 1315	Gly	Arg	Pro	Ala	Thr 1320	Ser	Val	Ala	Trp	Gly 1325		Trp	Gly
35	Gly	Glu 133	Gly 0	Met	Gly	Ala	Asp 1335	Glu	Gly	Val	Thr	Glu 1340		Tyr	Ala	Glu
	Arg 134	Gly 5	Leu	Ala	Pro	Met 1350	Arg	Pro	Glu	Ser	Gly 1359	Ile	Glu	Ala		His 1360
40	Thr	Ala	Leu	Asn	Glu 1365	Gly	Asp	Thr	Cys	Val 1370	Thr	Val	Ala		Ile 1375	
	Trp	Glu	His	Phe 1380	Val	Thr	Gly	Phe	Thr 1385	Ala	Tyr	Arg	Pro	Ser 1390	Pro	Leu
45	Ile	Ser	Asp 1395	Ile	Pro	Gln	Val	Arg 1400	Ala	Leu	Arg	Thr	Pro 1405		Pro	Thr
50	Val	Asp 1410	Ala	Ser	Asp	Gly	Leu 1415	Arg	Arg	Arg	Val	Asp 1420	Ala	Ala :	Leu '	Thr
	Pro 1425	Arg	G1u	Arg	Thr	Lys 1430	Val :	Leu '	Val.	Asp	Leu 1435	Val	Arg '	Thr '		Ala 1440
55	Ala	Glu	Val :	Leu (Gly 1 1445	His /	Asp (Gly :	Ile	Gly (Gly	Ile (Gly :		Asp '	Val

	N10	a Pne	e Arç	146		1 G13	/ Phe	e Ası	Ser 146		u Ala	a Ala	a Va	1 Ar	_	t Arg	
5	Gly	/ Arg	147	1 A la 75	Glu	a Ala	Thr	Gly 148	/ Leu 30	ı Val	l Leu	ı Pro	2 Al		r Val	l Ile	
	Phe	149	His	Pro	Thr	Va]	. Asp 149	Arg	J Leu	ı Gly	y Gly	/ Ala 150		u Lei	ı Glu	ı Arg	
10	Le: 150	ı Ser)5	Ala	Asp	Glu	Pro 151	Ala .0	Pro	Gly	, Gly	/ Ala 151		Gl:	u Pro	Ala	Gly 1520	
15	Gly	Arg	Pro	Ala	Thr 152	Pro	Pro	Pro	Ala	Pro 153		Pro	Ala	a Val	153	Asp 5	
,,	Ala	Asp	Ile	154	Glu 0	Leu	Asp	Ala	Asp 154		Leu	Ile	Arg	J Let 155		Thr	
20	Gly	Thr	Ala 155	Gly 5	Pro	Ala	Asp	Gly 156	Thr 0	Pro	Ala	Asp	Gly 156		Pro	Asp	
	Ala	Ala 157	Ala 0	Thr	Ala	Pro	Asp 157		Ala	Pro	Glu	Gln 158					
25	(2)	INF															
30		(i	(.	QUEN A) L B) T D) T	ENGT: YPE:	H: 1 ami:	891 no a	amin cid	o ac	ids							
		(ii) MO:	LECU	LE T	YPE:	pep	tide									
35		(xi) SE	QUEN	CE D	ESCR:	IPTI	ON:	SEQ :	ID N	0:6:						
	Met 1	Ser	Pro	Ser	Met 5	Asp	Glu	Val	Leu	Gly 10	Ala	Leu	Arg	Thr	Ser 15	Val	
40	Lys	Glu	Thr	Glu 20	Arg	Leu	Arg	Arg	His 25	Asn	Arg	Glu	Leu	Leu 30	Ala	Gly	
	Ala	His	Glu 35	Pro	Val	Ala	Ile	Val 40	Gly	Met	Ala	Суз	Arg 45	Tyr	Pro	Gly	
45	Gly	Val 50	Ser	Thr	Pro	Asp	Азр 55	Leu	Trp	Glu	Leu	Ala 60	Ala	Asp	Gly	Val	
	Asp 65	Ala	Ile	Thr	Pro	Phe 70	Pro	Ala	Asp	Arg	Gly 75	Trp	Asp	Glu	Дзр	A la 80	
50	Val	Tyr	Ser	Pro	Asp 85	Pro	ysb	Thr	Pro	Gly 90	Thr	Thr	Tyr	Cys	A rg 95	Glu	
e c	Gly	Gly	Phe	Leu 100	Thr	Gly	Ala	Gly	Asp 105	Phe	Asp	Ala	Ala	Phe 110	Phe	Gly	
55	Ile	Ser	Pro	Asn	Glu	Ala	Leu	Val	Met	Asp	Pro	Gln	Gln	Arg	Leu	Leu	

			11	5				12	0				12	5		
5	Le	130	u Th: O	r Se	r Tri	Glu	13:	r Le	u Gl	u Ar	, Ala	Gl;		e Va	l Pr	o Ala
	Ser 145	r Leu	u Ar	g Gly	/ Ser	150	y Thi	r Gl	y Va	l Phe	Val		y Ala	a Ale	a Hi	s Thr 160
10	Gly	/ Tyı	r Val	l Thi	165	Thi	Ala	a Ar	Ala	170		Gly	Th i	r Glu	G1 ₃	y Tyr 5
	Leu	l Leu	Thi	180	Asn	Ala	y Yai	Ala	189	Met	Ser	Gly	/ Arg	Ile 190		Tyr
15	Ser	Leu	1 Gly 195	/ Leu	Glu	Gly	Pro	200	Let	ı Thr	Ile	Gly	Thi 205		Cys	s Ser
	Ser	Ser 210	Leu	Val	Ala	Leu	His 215	Leu	Ala	Val	Gln	Ser 220		ı Arg	Arç	Gly
20	Glu 225	Cys	Asp	Leu	Ala	Leu 230	Ala	Gly	Gly	Val	Ala 235	Val	Met	Pro	Asp	Pro 240
25	Thr	Val	Phe	Val	Glu 245	Phe	Ser	Arg	Gln	Arg 250	Gly	Leu	Ala	Val	Asp 255	Gly
				200					265					270		Glu
	Gly	Val	Gly 275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Asp	Ala 285	Arg	Arg	Asn
30	Gly	His 290	Arg	Val	Leu	Ala	Val 295	Val	Arg	Gly	Ser	Ala 300	Val	Asn	Gln	Ąsp
35	Gly 305	Ala	Ser	Asn	Gly	Leu 310	Thr	Ala	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
	Val	Ile	Arg	Glu	Ala 325	Leu	Ala	Asp	Ala	Gly 330	Leu	Thr	Pro	Ala	Asp 335	Val
40	Asp	Val	Val	Glu 340	Ala	His	Gly	Thr	Gly 345	Thr	λla	Leu	Gly	350	Pro	Ile
	Glu	Ala	Gly 355	Ala	Leu	Leu	λla	Thr 360	Tyr	Gly	Arg	Glu	Arg 365	Val	Gly	Asp
45	Pro	Leu 370	Trp	Leu	Gly	Ser	Leu 375	Lys	Ser	λsn	Ile	Gly 380	His	Ala	Gln	Ala
	Ala 385	Ala	Gly	Val	Gly	Gly 390	Val	lle	Lys	Val	Va1 395	Gln	Ala	Met	Arg	His 400
50	Gly	Ser	Leu	Pro	Arg 405	Thr	Leu	His	Val	Asp 410	Ala	Pro	Ser	Ser	Lys 415	Val
- -	Glu	Trp	Ala	Ser 420	Gly	Ala	Val	Glu	Leu 425	Leu	Thr	Glu	Gly	Arg 430	Ser	Trp
55	Pro	Arg	Arg	Val	Glu .	Arg	Val	Arg	λrg	Ala .	Ala '	Val	Ser	Ala	Phe	Gly

			435	5				440)				449	5		
5	Va]	Ser 450	Gly	Thr	Asn	Ala	His 455		l Val	Leu	Glu	G1u 460		Pro	Va]	Glu
	Ala 465	Gly	Ser	Glu	His	Gly 470))	G13	/ Pro	Gly	Pro 475		Arg	, Pro) Asp	Ala 480
10	Val	Thr	Gly	Pro	Leu 485	Pro	Trp	Va]	Leu	Ser 490		Arg	Ser	Arg	Glu 495	
	Leu	Arg	Gly	Gln 500	Ala	Gly	Arg	Leu	Ala 505		Leu	Ala	Arg	Glr 510		Arg
15	Thr	Glu	Gly 515	Thr	Gly	Gly	Gly	Ser 520	Gly	Leu	Val	Val	Pro 525		Ala	Asp
	Ile	Gly 530	Tyr	Ser	Leu	Ala	Thr 535	Thr	Arg	Glu	Thr	Leu 540		His	Arg	Ala
20	Val 545	Ala	Leu	Val	Gln	Glu 550	Asn	Arg	Thr	Ala	Gly 555	Glu	Asp	Leu	Ala	Ala 560
25				Gly	565					570					575	
				Gly 580					585					590		
30			595	Gly				600					605			_
		610		Glu			615					620				
35	625			Val		630					635					640
				Thr	645					650					655	
40				Arg 660					665					670		
	Val	Gly	His 675	Ser	Ile	Gly	Gly	Leu 680	Val	Ala	Ala	His	Val 685	Ala	Gly	Val
45	Phe	Ser 690	Ala	λla	Asp	Ala	Ala 695	λrg	Leu	Val	Ser	Ala 700	Arg	Gly	Arg	Leu
	Met 705	Arg	Ala	Leu	Pro	Glu 710	Gly	Gly	Ala	Met	Ala 715	Ala	Val	Gln	Ala	Thr 720
50	Glu	Arg	Glu	Ala	Ala 725	Ala	Leu	Glu	Pro	Val 730	Ala	Ala	Gly	Gly	Ala 735	Val
<i>EE</i>	Val	Ala	Ala	Val 740	Asn	Gly	Pro	Gln	Ala 745	Leu	Val	Leu	Ser	Gly 750	Asp	Glu
55	Ala	Ala	Val	Leu	Ala	Ala	Ala	Gly	Glu	Leu	Ala	Ala	Arg	Gly	Arg	Arg

				755	5				760)				769	5		
	5	Thr	770	Arg	J Leu	Arç	y Val	Ser 775		Ala	Phe	e His	Se: 780		Ar	g Me	t Asp
		Ala 785	Met	Leu	a Ala	, Asp	790		Ala	Va)	l Ala	799		: Val	l As _l	р Туг	r His 800
	10	Ala	Pro	Arg	, Leu	805	Val	Val	Ser	Glu	Val 810		Gly	, yat	Let	2 Ala 819	a Asp
		Ala	Ala	Gln	Leu 820	Thr	Asp	Pro	Gly	Tyr 825		Thr	Arg	Glr	Val 830		g Gln
	15	Pro	Val	Arg 835	Phe	Ala	Asp	Ala	Val 840	Arg	Thr	Ala	Ser	Ala 845		j Asp	Ala
		Ala	Thr 850	Phe	Ile	Glu	Leu	Gly 855	Pro	Asp	Ala	Val	Leu 860		Gly	' Met	Ala
	20	Glu 865	Glu	Ser	Leu	Ala	Ala 870	Glu	Ala	Asp	Val	Val 875		Ala	Pro	Ala	Leu 880
	25	Arg	Arg	Gly	Arg	Pro 885	Glu	Gly	Asp	Thr	Val 890		Arg	Ala	Ala	Ala 895	Ser
		Ala	Tyr	Val	Arg 900	Gly	Ala	Gly	Leu	Asp 905	Trp	Ala	Ala	Leu	Tyr 910		Gly
	30	Thr	Gly	Ala 915	Arg	Arg	Thr	Asp	Leu 920	Pro	Thr	Tyr	Ala	Phe 925	Gln	His	Ser
		Arg	Tyr 930	Trp	Leu	Ala	Pro	Ala 935	Ser	Ala	Ala	Val	Ala 940	Pro	Ala	Thr	Ala
	35	Ala 945	Pro	Ser	Val	Arg	Ser 950	Val	Pro	Glu	Ala	Glu 955	Gln	Asp	Gly	Ala	Leu 960
					Val	965					970					975	
	40	Gly	Ala	Asp	980 y ab	Ala	Gly	Ile	Glu	His 985	Glu	Leu	Arg	Ala	Val 990	Leu	Pro
		His	Leu	Ala 995	Ala	Trp	His	Asp	Arg 1000	Asp)	Arg	Ala	Thr	Ala 100	Arg	Thr	Ala
	45	Gly	Leu 1010	His)	Tyr	Arg	Val	Thr 1019	Trp	Gln	Ala	Ile	Glu 1020		Asp	Ala	Val
		Arg 1025	Phe	Ser	Pro	Ser	Asp 1030	Arg	Trp	Leu	Met	Val 1035		His	Gly	Gln	His 1040
•	50	Thr	Glu	Суѕ	Ala	Asp 1045	Ala	Ala	Glu	Arg	Ala 1050		Arg	Ala	Ala	Gly 1055	
		Glu	Val	Thr	Arg 1060	Leu	Val	Trp	Pro	Leu 1065		Gln	His	Thr	Gly 1070		Pro
	55	Arg	Thr	Glu	Thr	Pro	qeA	Arg	Gly	Thr	Leu	Ala	λla	Arg	Leu	Ala	Glu

			107	5				108	30				108	35		
5	Leu	Ala 109	Arg 0	Ser	Pro	Glu	Gly 109	Leu 5	Ala	Gly	Val	Leu 110		ı Lev	Pro	q e A
	Ser 1105	Gly 5	Gly	Ala	Ala	Val 111	Ala 0	Gly	His	Pro	Gly 111		Asp	Glm	Gly	Thr 1120
10	Ala	Ala	Val	Leu	Leu 112	Thr 5	lle	Gln	Ala	Leu 113	Thr 0	Asp	Ala	Ala	Val	Arg 5
	Ala	Pro	Leu	Trp	Val 0	Val	Thr	Arg	Gly 114		Val	Ala	Val	Gly 115		Gly
15	Glu	Val	Pro 115	Cys 5	Ala	Val	Gly	Ala 116	Arg 0	Val	Trp	Gly	Leu 116		Arg	Val
	Ala	Ala 1170	Leu)	Glu	Val	Pro	Val 117	Gln 5	Trp	Gly	Gly	Leu 118		Asp	Val	Ala
20	Val 1185	Gly	Ala	Gly	Val	Arg 119	Glu 0	Trp	Arg	Arg	Val 119		Gly	Val	Val	Ala 1200
25	Gly	Gly	Gly	Glu	Asp 1205	Gln 5	Val	Ala	Val	Arg 121		Gly	Gly	Val	Phe 121	
	Arg	Arg	Leu	Val 1220	Gly)	Val	Gly	Val	Arg 122	Gly 5	Gly	Ser	Gly	Val 123	Trp	A rg
30	Ala .	Arg	Gly 1235	Сув	Val	Val	Val	Thr 1240	Gly Gly	Gly	Leu	Gly	Gly 124		Gly	Gly
	His	Val 1250	Ala	Arg	Trp	Leu	Ala 1255	Arg	Ser	Gly	Ala	Glu 1260		Val	Val	Leu
35	Ala (Gly	Arg	Arg	Gly	Gly 127(Gly)	Val	Val	Gly	Ala 1275		Glu	Leu	Glu	A rg 1280
	Glu 1	Leu	Val	Gly	Leu 1285	Gly	Ala	Lys	Val	Thr 1290	Phe	Val	Ser	Суз	Asp 1295	
40	Gly 1	Asp .	Arg	Ala 1300	Ser	Va1	Val	G1y	Leu 1305	Leu	Gly	Val	Val	Glu 1310		Leu
	Gly V		T2 T2					1320	1				1725			
45		1330					1335					1340				
	Gly I 1345					1350					1355					1360
50	Glu I			,	1365					1370					1375	
55	Ser G	ly (Gly (Gln : 1380	Ser '	Val	Tyr .	Ala .	λla 1385	Ala i	Asn i	Ala I		Leu . 1390	Asp .	Ala
	Leu A	la C	31u /	Arg 1	Arg /	Arg .	Ala (Gln (Gly i	Arg 1	Pro Z	Ala '	Thr :	Ser '	Val .	Ala

		1395	1400	1405
5	Trp Gly 141	Pro Trp Asp	Gly Asp Gly Met Gl 1415	y Glu Met Ala Pro Glu Gly 1420
	Tyr Phe 1425	Ala Arg His	Gly Val Ala Pro Le 1430	ou His Pro Glu Thr Ala Leu 1435 1440
10	Thr Ala	Leu His Gln 1445	Ala Ile Asp Gly Gl	y Glu Ala Thr Val Thr Val 50 1455
	Ala Asp	Ile Asp Trp 1460	Glu Arg Phe Ala Pr 1465	o Gly Phe Thr Ala Phe Arg 1470
15	Pro Ser	Pro Leu Ile 1475	Ala Gly Ile Pro Al 1480	a Ala Arg Thr Ala Pro Ala 1485
	Ala Gly 1490	Arg Pro Ala	Glu Asp Thr Pro Th 1495	r Ala Pro Gly Leu Leu Arg 1500
20	Ala Arg 1505	Pro Glu Asp	Arg Pro Arg Leu Ala 1510	a Leu Asp Leu Val Leu Arg 1515 1520
25	His Val	Ala Ala Val 1 1525	Leu Gly His Ser Glo 15	ı Asp Ala Arg Val Asp Ala 30 1535
	Arg Ala	Pro Phe Arg 2 1540	Asp Leu Gly Phe Asp 15 4 5	o Ser Leu Ala Ala Val Arg 1550
30	Leu Arg	Arg Arg Leu 1 1555	Ala Glu Asp Thr Gly 1560	Leu Asp Leu Pro Gly Thr 1565
	Leu Val 1570	Phe Asp His C	Glu Asp Pro Thr Ala 1575	Leu Ala His His Leu Ala 1580
35	Gly Leu 1585	Ala Asp Ala G 1	Gly Thr Pro Gly Pro 1590	Gln Glu Gly Thr Ala Arg 1595 1600
	Ala Glu	Ser Gly Leu F 1605	Phe Ala Ser Phe Arg 161	Ala Ala Val Glu Gln Arg 0 1615
40	Arg Ser	Ser Glu Val V 1620	al Glu Leu Met Ala 1625	Asp Leu Ala Ala Phe Arg 1630
	Pro Ala 1	Tyr Ser Arg G 1635	In His Pro Gly Ser 1640	Gly Arg Pro Ala Pro Val 1645
45	Pro Leu <i>1</i> 1650	Ala Thr Gly P	ro Ala Thr Arg Pro 1655	Thr Leu Tyr Cys Cys Ala 1660
50	-	4.1	0,0	Tyr Val Pro Phe Ala Glu 1675 1680
00		1003	1690	Leu Pro Leu Ser Gly Phe 1695
55		1,00	1/05	Leu Asp Ala Leu Ile Glu 1710
	Val Gln A	la Asp Val Le	eu Leu Glu His Thr	Ala Gly Lys Pro Phe Ala

			171	5				172	0				172	5		
5	Leu	Ala 173	Gly 0	His	Ser	Ala	Gly 173		Asn	Ile	Ala	His 174		Leu	Ala	Ala
	Arg 174	Leu 5	Glu	Glu	Arg	Gly 175		Gly	Pro	Ala	Ala 175		Val	Leu	Met	Asp 1760
10	Val	Tyr	Arg	Pro	Glu 1769		Pro	Gly	Ala	Met 1770		Glu	Trp	Arg	Asp 1779	
	Leu	Leu	Ser	Trp 1780		Leu	Glu	Arg	Ser 1785		Val	Pro	Leu	Glu 1790		His
15	Arg	Leu	Thr 1799	Ala	Met	Ala	Gly	Tyr 1800		Arg	Leu	Val	Leu 1809		Thr	Arg
	Leu	Thr 1810	Ala)	Leu	Glu	Ala	Pro 1815	Val	Leu	Leu	Ala	Arg 1820		Ser	Glu	Pro
20	Leu 1825	Суз	Ala	Trp	Pro	Pro 1830	Ala	Gly	Gly	Ala	Arg 1835		Asp	Trp	Arg	Ser 1840
25	Gln	Val	Pro	Phe	Ala 1845	Arg	Thr	Val	Ala	Asp 1850	Val	Pro	Gly	Asn	His 1855	
	Thr	Met	Leu	Thr 1860	Glu	His	Ala	Arg	His 1865	Thr	Ala	Ser	Leu	Val 1870		Glu
30	Trp	Leu	Asp 1875	Ser	Leu	Pro	His	Gln 1880	Pro	Gly	Pro	Ala	Pro 1885		Thr	Gly
	Gly	Lys 1890														
35																

Claims

40

45

50

- An isolated DNA molecule consisting of a nucleotide sequence that encodes a polypeptide wherein said polypeptide consists of a platenolide synthase domain.
- 2. The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 392 to 1603, 1922 to 2995, 3173 to 3424, 3527 to 4798, 5135 to 6208, 7043 to 7597, 7946 to 8197, 8270 to 9541, 9899 to 10909, 10985 to 11530, 12596 to 13153, 13469 to 13720, 14148 to 15422, 15789 to 16844, 16914 to 17510, 18612 to 19166, 19479 to 19730, 20215 to 21486, 21889 to 22872, 23638 to 24159, 24484 to 24678, 24742 to 26016, 26371 to 27381, 27442 to 27966, 28843 to 29892, 29905 to 30462, 30760 to 31002, 31428 to 32696, 33024 to 34022, 34770 to 35327, 35586 to 35837, 36257 to 37528, 37898 to 38905, 39851 to 40408, 40658 to 40909, and 41297 to 41395 all in SEQ ID NO: 1.
- 3. A polypeptide consisting of an amino acid sequence wherein said polypeptide consists of a platenolide synthase domain.
- 4. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:
- (a) amino acids 15 to 418, 525 to 882, 942 to 1025, 1060 to 1483, 1596 to 1953, 2232 to 2416, 2533 to 2616, 2641 to 3064, 3184 to 3520, 3546 to 3727, 4083 to 4268, and 4374 to 4457 all in SEQ ID NO: 2; (b) amino acids 35 to 459, 582 to 933, 957 to 1155, 1523 to 1707, and 1812 to 1895 all in SEQ ID NO: 3; (c) amino acids 36 to 459, 594 to 921, 1177 to 1350, 1459 to 1523, 1545 to 1969, 2088 to 2424, 2445 to 2619, 2912 to 3261, 3266 to 3451, and 3551 to 3631 all in SEQ ID NO: 4;

- (d) amino acids 34 to 456, 566 to 898, 1148 to 1333, and 1420 to 1503 all in SEQ ID NO: 5; and
- (e) amino acids 35 to 458, 582 to 917, 1233 to 1418, 1502 to 1585, 1715 to 1747 all in SEQ ID NO: 6.
- The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 392 to 3424, 3527 to 8197, 8270 to 13720, 14148 to 19730, 20215 to 24678, 24742 to 31002, 31428 to 35837, and 36257 to 41395 all in SEQ ID NO: 1.
 - 6. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:
 - (a) amino acids 15 to 1025, 1060 to 2616, and 2641 to 4457 all in SEQ ID NO: 2:
 - (b) amino acids 35 to 1895 in SEQ ID NO: 3:
 - (c) amino acids 36 to 1523, and 1545 to 3631 all in SEQ ID NO: 4;
 - (d) amino acids 34 to 1503 in SEQ ID NO: 5; and
 - (e) amino acids 35 to 1747 in SEQ ID NO: 6.

15

5

10

- The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 350 to 14002, 14046 to 20036, 20110 to 31284, 31329 to 36071, and 36155 to 41830 all in SEQ ID NO: 1.
- A homogenous preparation of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 3, 4, 5, and 6.
 - 9. An isolated DNA molecule consisting of nucleotide sequence of SEQ ID NO: 1
- 25 10. A recombinant DNA vector comprising the DNA molecule of claim 1.
 - 11. A recombinant DNA vector comprising the DNA molecule of claim 2.
 - 12. A recombinant DNA vector comprising the DNA molecule of claim 5.
 - 13. A recombinant DNA vector comprising the DNA molecule of claim 7.
 - 14. A recombinant DNA vector comprising the DNA molecule of claim 9.
- 35 15. A host cell transformed with a recombinant DNA vector of Claim 10.
 - 16. A host cell transformed with a recombinant DNA vector of Claim 11.
 - 17. A host cell transformed with a recombinant DNA vector of Claim 12.

40

30

- 18. A host cell transformed with a recombinant DNA vector of Claim 13.
- 19. A host cell transformed with a recombinant DNA vector of Claim 14.
- 45 20. The recombinant DNA vector deposited under accession number NRRL B-21500.
 - 21. The recombinant DNA vector deposited under accession number NRRL B-21499.

50

55

Fig. 1

KS.7 AT KR ACD TE	Module 7	ORF 5	KR ACP	e 6	V
KS-4 AT KR ACP KS-5 AT DH ER KR ACP	Module 4 Module 5	ORF 3	KS-6 AT DH KR ACP	Module 6	7 HAO
KS-2 AT DH KR ACP	Module 2		KS-3 AT DH KR ACP	Module 3	ORF 2
KS AT ACP KS-1 AT KR ACP KS-	Module 1	ORF1			
KS AT ACP	Starter				

Fig. 2

