

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 7: Noções de Aterramento Elétrico – Aula 13

Instalações Elétricas I Engenharia Elétrica

7.1- Introdução

- O que é um aterramento elétrico ?
 - Aterramento refere-se a terra propriamente dita.
 - Quando algo está aterrado eletricamente, dizemos que está ligado à terra.
 - A terra, isto é, o solo pode ser considerado um condutor por meio do qual a corrente elétrica pode fluir, dispersando-se.
- Em geral, os sistemas elétricos não precisam estar conectados a terra para funcionarem.
- A terra representa um ponto de referência, com potencial nulo, sendo uma boa escolha.
- Em equipamentos eletrônicos uma referência de potencial zero é importante.

Introdução

Introdução

- Objetivos básicos do aterramento elétrico:
 - Aterrar significa ligar intencionalmente um condutor fase, ou mais comum, o neutro à terra.
 - Tem como objetivo principal controlar a tensão em relação à terra, dentro de limites previsíveis.
 - Fornecer um caminho para circulação de correntes, que permitirão a detecção de uma ligação indesejada entre condutores vivos e a terra.
 - Dispositivos automáticos como disjuntores termomagnéticos e dispositivos diferenciais residuais podem ser usados para detectar a corrente de falta entre fase e terra (dependendo do esquema de aterramento).
 - Limitando as tensões em relação à terra pode-se:
 - Limitar o esforço da tensão na isolação dos condutores.
 - Reduzir os perigos do choque elétrico para pessoas.

Introdução

- Por que deve-se preferir os sistemas aterrados?
 - Permite obter proteção da pessoas e do patrimônio contra correntes de falta na instalação.
 - Propicia um caminho seguro, de baixa resistência elétrica para as correntes induzidas por descargas atmosféricas.
- Sistemas não aterrados
 - Muito populares na década de 20.

7.2 – Funções Básicas dos Sistemas de Aterramento

Segurança Pessoal

Figura 3B - Sem aterramento, o único caminho é o corpo.

Figura 3A - Com aterramento, a corrente praticamente não circula pelo corpo.

Funções Básicas dos Sistemas de Aterramento

Desligamento Automático

- Controle das Tensões
 - Permite um controle das tensões desenvolvidas no solo, quando uma falta retorna pela terra até a fonte ou quando ocorre uma descarga atmosférica.

Funções Básicas dos Sistemas de Aterramento

Cargas estáticas

Figura 5A - Corpo (estruturas, suportes, carcaças, etc.) isolado da terra, com carga acumulada

Figura 5B - Corpo ligado à terra.

Equipamentos eletrônicos

7.3 – Aterramento e equipotencialização

- Nas instalações elétricas existem três tipos de aterramento:
 - Aterramento funcional:
 - Consiste na ligação à terra de um dos condutores do sistema, geralmente o condutor PEN (neutro e proteção elétrica);
 - Esta relacionado com o funcionamento correto, seguro e confiável da instalação.
 - Aterramento de proteção:
 - Consiste na ligação à terra as massas da instalação e elementos condutores estranhos a instalação;
 - Tem por objetivo a proteção contra choques elétricos.
 - Aterramento de trabalho:
 - Tem como finalidade tornar possível, sem perigo de acidente, atividades de manutenção em parte da instalação normalmente sobe tensão;
 - Chamado de aterramento provisório.

Prescrições da NBR 5410 (Eletrodo de aterramento)

- A NBR 5410/2004 define que o aterramento é uma infraestrutura e faz parte da edificação, denominada de eletrodo de aterramento.
- Pode ser da seguinte forma:
 - Preferencialmente, uso das próprias armaduras de concreto da fundações, sendo suficiente para obter um eletrodo de aterramento;
 - Uso de fitas, barras e cabos metálicos, especialmente previstos, imersos no concreto de fundações, formando um anel em toda a edificação;
 - Uso de malhas metálicas enterradas, no nível das fundações, cobrindo a área da edificação e completada, quando necessária por hastes verticais radialmente;
 - No mínimo, uso de anel metálico enterrado, circundando o perímetro da edificação e complementado quando necessário por hastes verticais e/ou cabos dispostos radialmente.

Prescrições da NBR 5410 (Eletrodo de aterramento)

- A NBR 5410/2004 proíbe o uso de canalizações metálicas de água como eletrodo de aterramento.
- Segundo a NBR 5419/2015:
 - Mastros de Antenas devem ser incorporados ao Sistema de Proteção contra Descargas Atmosféricas (SPDA);
 - Um bom aterramento deve possuir uma resistência de valor inferior a 10 Ohms.
- Um bom aterramento depende:
 - Da resistividade do solo (tipo de solo);
 - Comprimento de cada haste (eletrodos);
 - Número de hastes em paralelo.

Tipos de Eletrodo de Aterramento

■ Eletrodos de aterramento mais comumente utilizáveis, de acordo com a NBR 5410

Material	Superfície	Forma	Dimensões mínimas			
			Diâmetro mm	Seção mm²	Espessura do material em mm	Espessura média do revestimento µm
Aço	Zincada a quente¹ ou inoxidável¹	Fita ²		100	3	70
		Perfil		120	3	70
		Haste de seção circular ³	15			70
		Cabo de seção circular		95		50
		Tubo	25		2	55
	Capa de cobre	Haste de seção circular ³	15			2.000
	Revestida de cobre por eletrodeposição	Haste de seção circular ³	15			254
Cobre	Nu ¹	Fita		50	2	
		Cabo de seção circular		50		
		Cordoalha	1,8 (cada veia)	50		
		Tubo	20		2	
	Zincada	Fita ²		50	2	40

Notas:

- 1. Pode ser utilizado para embutir no concreto.
- 2. Fita com cantos arredondados.
- Para eletrodo de profundidade.

Tipos de Eletrodo de Aterramento

- Hastes de aterramento
 - Possuem formato alongado;
 - Tem com função injetar a corrente de forma a dispersá-la, perturbando o menor possível a superfície;
 - A seção da haste pode ser cilíndrica, maciça ou tubular;
 - Geralmente as hastes possuem formato cilíndrico, com alma de aço e coberta com um espessura de cobre de no mínimo 254 microns (Haste tipo Copperweld);
 - Muito utilizado no aterramento elétrico do padrão de energia elétrica (obrigatório).

Tipos de Eletrodo de Aterramento

Conexões aos Eletrodos de Aterramento

- A conexão dos condutores de aterramento aos eletrodos são realizadas por três sistemas:
 - Dispositivos mecânicos
 - Facilmente encontrados, simples de instalar.
 - São desconectados com facilidade e permitem medir a resistência de aterramento.
 - Solda Exotérmica
 - Realiza uma conexão permanente e sem resistência de contato.
 - Muito utilizados em ligações de malhas de aterramento.
 - Somente deve ser realizado por mão de obra especializada.
 - Conexão por compressão
 - Fácil instalação, apresenta baixa resistência de aterramento.
 - Não pode ser desconectado para medições de resistência de aterramento.

Solda Exotérmica

• Caixa de inspeção, haste Copperweld 2,40 m, conectores do tipo cabo haste ou do tipo grampo, condutor na cor verde-amarela ou verde, terminal à pressão, balde com água, britas e ferramentas.

Medição da Resistência de Aterramento

- Como medir a resistência de aterramento?
 - Terrômetro

Equipotencialização

- Equipotencializar significa deixar todas as massas e objetos estranhos da instalação elétrica no mesmo potencial.
- O que se ganha com isso?
 - São reduzidos os riscos de choque elétrico, incêndios e explosões dentro da edificação.
- A NBR 5410/2004 define que em cada edificação deve ser realizada um equipotencialização, reunindo os seguintes elementos:
 - Armaduras de concreto e outras estruturas metálicas da edificação;
 - Tubulações de água, gás, esgoto, ar condicionado, vapor, bem como os elementos estruturais a elas associadas;
 - Condutores metálicos das linhas de energia e de sinal que entram e/ou saem da edificação;
 - Blindagens, armações, coberturas e capas metálicas de cabo de linhas de energia e de sinal que entram e/ou saem da edificação;
 - Condutores de proteção das linhas de energia e de sinal que entram e/ou saem da edificação;
 - Os condutores de interligação provenientes de outros eletrodos de aterramento porventura existentes ou previsto no entorno da edificação;
 - O condutor neutro da alimentação elétrica, salvo se não existir ou se a edificação tiver que ser alimentada, por qualquer motivo, em esquema TT ou IT;
 - Os condutores de proteção principal da instalação elétrica (interna) da edificação.

Equipotencialização

- Barramento e Equipotencialização Principal (BEP)
 - É um dispositivo tipo barra, que reúne:
 - condutor de aterramento;
 - condutor(es) de equipotencialidade principal(is);
 - condutores de descida de pára-raios;
 - condutores de proteção principais.
 - neutro.
 - Deve estar o mais próximo da entrada da alimentação elétrica.
 - Admite-se usar a barra PE do quadro de distribuição principal de baixa tensão.

Equipotencialização

