Física Computacional.

Boletín ejercicios

Ecuación Unidimensional de Convección

Implementar los siguientes algoritmos en un programa que resuelva la ecuación unidimensional de convección:

Métodos Explícitos:

- **1*.-** Esquema *Forward in Time Centered in Space* (FTCS)
- **2*.-** Esquema *upwind*.
- **3*.-** Esquema *DuFort-Frankel*.

Métodos Implícitos:

- **4.-** Esquema totalmente implícito a dos niveles.
- **5.-** Esquema Crank-Nicolson.

Ecuación Unidimensional de Transporte

Implementar los siguientes algoritmos en un programa que resuelva la ecuación unidimensional de transporte:

Métodos Explícitos:

- **6*.-** Esquema *Forward in Time Centered in Space* (FTCS).
- **7*.-** Esquema *upstream*.
- **8*.-** Esquema *DuFort-Frankel*.

Métodos Implícitos:

- **9.-** Esquema totalmente implícito a dos niveles.
- **10.-** Esquema Crank-Nicolson.
- 11*.- Calcular la estabilidad y la consistencia de uno de los métodos anteriores.

Ecuaciones Multidimensionales. Método ADI

- difusion

 12.- Emplear el método explícito FTCS para integrar la ecuación de transportebidimensional.
- **13.-** Emplear el método semiimplícito ADI para integrar la ecuación de difusión bidimensional.

^{*} Problemas obligatorios para superar la asignatura. El resto son opcionales