Player Re-Identification in Sports Footage Technical Implementation Report

Author: Avishkar Pawar Company: Liat.ai

Assignment: AI/ML Intern - Option 2: Re-Identification in a Single Feed

Date: June 2025

Executive Summary

This report presents a comprehensive solution for player re-identification in soccer footage, addressing the challenge of maintaining consistent player identities when they exit and re-enter the camera frame. The system successfully achieved **96.27% accuracy in player re-identification** using a hybrid approach combining YOLOv11 object detection with ResNet18-based appearance embeddings.

Key Achievements:

- Successfully implemented real-time player tracking and re-identification
- Achieved primary objective with 96.27% player re-ID accuracy
- Developed modular, extensible architecture for sports analytics
- Created comprehensive evaluation framework with detailed metrics

1. Problem Statement & Objectives

Primary Objective

Given a 15-second soccer video (15sec_input_720p.mp4), identify each player and ensure that players who go out of frame and reappear are assigned the same identity as before.

Technical Challenges

- 1. **Object Detection:** Reliable detection of players, ball, goalkeeper, and referees in dynamic sports footage
- 2. Re-identification: Maintaining consistent IDs when objects temporarily leave the frame
- 3. **Real-time Performance:** Processing video at acceptable frame rates (~17 FPS target)
- 4. Occlusion Handling: Managing scenarios where players overlap or are partially hidden
- 5. **Scale Variations:** Handling objects of different sizes (ball vs. players)

2. System Architecture

2.1 Overall Pipeline

Input Video \rightarrow Detection \rightarrow Feature Extraction \rightarrow Tracking \rightarrow Visualization \rightarrow Output Video

Frame YOLO v11 ResNet18 Enhanced Annotated

Capture Detection Embeddings Tracker Video

2.2 Core Components

Detection Module (utils/detection.py)

- Model: YOLOv11 with custom confidence thresholds
- Classes: Ball (0), Goalkeeper (1), Player (2), Referee (3)
- Optimization: Class-specific confidence thresholds for improved accuracy

Tracking Module (utils/tracking.py)

- Core: EnhancedTracker with multi-modal similarity scoring
- Features: Appearance embeddings, spatial tracking, size consistency
- Re-ID: Advanced re-identification logic with similarity thresholds

Visualization Module (utils/visualization.py)

- Output: Color-coded bounding boxes with persistent IDs
- Colors: Red (Ball), Yellow (Goalkeeper), Green (Players), Blue (Referees)

Evaluation Module (evaluate.py)

- Metrics: Detection accuracy, ID switches, re-ID success rate, FPS
- Reporting: Comprehensive performance analysis with pass/fail criteria

3. Technical Implementation

3.1 Object Detection Strategy

class Detector:

```
def __init__(self, model_path, conf_thres=0.25, iou_thres=0.5):
    self.model = YOLO(model_path)
    self.class_conf_thres = {
        0: 0.2, # Ball - Lower threshold for small objects
        1: 0.25, # Goalkeeper
        2: 0.25, # Player
        3: 0.2 # Referee
}
```

Key Innovations:

- Adaptive Thresholds: Class-specific confidence thresholds optimized through experimentation
- Initial Challenge: Original threshold of 0.4 yielded zero detections
- Solution: Reduced to 0.25 with class-specific fine-tuning

3.2 Feature Extraction & Embeddings

Technical Approach:

- Backbone: Pre-trained ResNet18 for appearance feature extraction
- **Optimization:** 64×64 resolution for computational efficiency
- Normalization: Standard ImageNet preprocessing for robust embeddings

3.3 Multi-Modal Similarity Scoring

The system employs a sophisticated similarity calculation combining three modalities: def calculate_similarity(self, features1, features2):

```
# Spatial similarity based on center distance
spatial_sim = 1.0 / (1.0 + spatial_dist / self.max_distance_threshold)
# Size consistency check
size_sim = min(size1, size2) / max(size1, size2)
# Appearance similarity using cosine distance
appearance_sim = cosine_similarity(emb1, emb2)
```

Weighted combination (class-dependent)

```
weights = [0.3, 0.5, 0.2] if class_id == 0 else [0.4, 0.4, 0.2]
```

total_sim = weights[0] * spatial_sim + weights[1] * appearance_sim + weights[2] * size_sim

Weighting Strategy:

- Ball Tracking: Higher weight on appearance (50%) due to unique visual characteristics
- Player Tracking: Balanced approach with equal spatial and appearance weighting (40% each)
- Size Component: 20% weight for basic consistency checking

3.4 Enhanced Tracking Algorithm

class EnhancedTracker:

Core Features:

- **Temporal Persistence:** Objects can disappear for up to 75 frames (~3 seconds)
- **Similarity Threshold:** 0.35 threshold optimized through experimentation
- **Distance Limiting:** Maximum 100-pixel movement between frames

Re-identification Logic:

- 1. **Matching Phase:** Compare new detections with existing tracks
- 2. **Assignment:** Hungarian algorithm-style optimal assignment
- 3. New ID Creation: Unmatched detections receive new IDs
- 4. **Cleanup:** Remove tracks that exceed disappearance limit

4. Performance Analysis

4.1 Detection Accuracy Results

Object Class Detected/Frame Target Status

Ball 0.95 ± 0.18 ~1 **V** Pass

Goalkeeper 0.88 ± 0.25 ~1 \checkmark Pass

Player 12.77 ± 2.15 ~16 ▲ Below Target

Referee 1.82 ± 0.44 ~2 **V** Pass

4.2 Re-Identification Performance

Metric Ball Goalkeeper Player Referee

Re-ID Success Rate 45.5% 72.3% **96.27%** 68.9%

ID Switches 3 2 4 2

Target Re-ID Rate >80% >80% >80% >80%

Status X X V

4.3 System Efficiency

Processing Speed: 63.87 FPS (estimated, possibly inflated due to logging methodology)

• Target FPS: ~17 FPS

• Memory Usage: Efficient with ResNet18 backbone

• Real-time Capability: Exceeds real-time requirements

5. Challenges & Solutions

5.1 Technical Challenges Encountered

Challenge 1: Initial Detection Failure

• **Problem:** conf_thres=0.4 yielded zero detections

Root Cause: Overly conservative threshold for sports footage

• **Solution:** Reduced to 0.25 with class-specific optimization

• **Result:** Successful detection across all object classes

Challenge 2: Player Occlusion

• **Problem:** Reduced detection count (12.77 vs. 16 expected)

• Root Cause: Player overlap and partial occlusion in dense gameplay

Mitigation: Enhanced similarity scoring with temporal consistency

• Impact: Still achieved primary objective for player re-ID

Challenge 3: Small Object Re-identification

Problem: Low re-ID rates for ball and goalkeeper

Root Cause: Limited visual features in small/distant objects

Approach: Lightweight 64×64 embeddings, increased appearance weighting

• Outcome: Partial success, requires future optimization

Challenge 4: ID Switch Minimization

• **Problem:** ID switches caused by inconsistent detections

- Solution: Increased disappearance tolerance (75 frames) and optimized similarity threshold
- **Result:** Acceptable ID switch rates for primary targets

5.2 Performance Optimizations

Detection Optimization:

```
self.class_conf_thres = {0: 0.2, 1: 0.25, 2: 0.25, 3: 0.2}
```

Tracking Optimization:

```
max_disappeared_frames=75 #~3 seconds tolerance
```

similarity_threshold=0.35 # Optimized through experimentation

Feature Extraction Optimization:

transforms.Resize((64, 64)) # Balanced accuracy vs. speed

6. Code Architecture & Modularity

6.1 Project Structure

```
player_reid/

— main.py # Main processing pipeline

— evaluate.py # Performance evaluation

— utils/

— detection.py # YOLO detection wrapper

— tracking.py # Enhanced tracking system

— visualization.py # Annotation and display

— logs/ # Logging output

— output/ # Processed videos

— requirements.txt # Dependencies
```

6.2 Design Principles

Modularity

- Separation of Concerns: Each component handles specific functionality
- Interface Consistency: Standardized data flow between modules
- Extensibility: Easy to add new features or replace components

Error Handling

try:

logger.info("Starting evaluation")

```
evaluate_performance()
```

except Exception as e:

logger.error(f"Evaluation failed: {str(e)}")

raise

Comprehensive Logging

• **Detection Logs:** Frame-by-frame detection results

• Tracking Logs: ID assignments and re-identification events

• Evaluation Logs: Performance metrics and analysis

7. Evaluation Framework

7.1 Automated Testing Pipeline

The evaluation system provides comprehensive performance analysis:

def evaluate_performance(detection_log_path, tracking_log_path, output_video_path):

Parse detection and tracking logs

Calculate performance metrics

Generate detailed report

Provide pass/fail assessment

7.2 Key Metrics

Detection Accuracy

- Average objects detected per frame
- Standard deviation for consistency
- Class-specific performance analysis

Tracking Quality

- ID switch counting
- Re-identification success rate
- Temporal consistency analysis

System Performance

- Frame processing rate (FPS)
- Resource utilization
- Real-time capability assessment

7.3 Validation Criteria

The system includes specific pass/fail criteria:

Detection Status

```
status = 'Pass' if (14 <= avg_players <= 18 and avg_ball >= 0.8 and avg_goalkeeper >= 0.8 and avg_referee >= 1.5) else 'Fail'
```

Re-ID Status

status = 'Pass' if all(reid_success[c] > 80 for c in classes) else 'Fail'

8. Results & Achievements

8.1 Primary Objective: ACHIEVED

Player Re-Identification: 96.27% Success Rate

- Exceeds 80% target threshold significantly
- Demonstrates robust tracking through occlusion
- Maintains ID consistency during re-entry events

8.2 Secondary Objectives: Partial Success

Ball Tracking: 45.5% re-ID rate

- Challenges with small object appearance features
- Acceptable for secondary objective

Goalkeeper Tracking: 72.3% re-ID rate

- Improved over ball tracking due to larger size
- Below target but functional

Referee Tracking: 68.9% re-ID rate

- Similar challenges to goalkeeper
- Adequate for auxiliary tracking

8.3 System Performance

Processing Efficiency: Exceeds real-time requirements

- Estimated 63.87 FPS processing speed
- Well above 17 FPS target for real-time application

Resource Efficiency: Optimized for practical deployment

- ResNet18 backbone balances accuracy and speed
- 64×64 image resolution reduces computational load

9. Future Work & Improvements

9.1 Short-term Enhancements

Model Fine-tuning

```
# Proposed: Soccer-specific YOLOv11 training
fine_tune_model = YOLO('yolov11n.pt')
fine_tune_model.train(data='soccer_dataset.yaml', epochs=100)
```

Predictive Tracking

```
# Proposed: Kalman filter integration

class PredictiveTracker(EnhancedTracker):

def __init__(self):

self.kalman_filters = {} # Per-object motion prediction
```

Embedding Optimization

```
# Proposed: MobileNet replacement for speed
self.model = models.mobilenet_v2(pretrained=True)
```

9.2 Long-term Research Directions

Advanced Re-identification

- Transformer-based embeddings for better feature representation
- Attention mechanisms for focusing on discriminative features
- Multi-scale feature fusion for handling scale variations

Temporal Modeling

- LSTM-based trajectory prediction for motion forecasting
- Graph neural networks for player interaction modeling
- Temporal attention for long-range dependency modeling

Domain Adaptation

- Cross-stadium generalization for different venues
- Weather condition robustness for various lighting
- Camera angle adaptation for multi-view consistency

9.3 Performance Optimizations

Real-time Deployment

- **Model quantization** for mobile deployment
- Batch processing optimization for GPU utilization
- Memory management for long video sequences

Accuracy Improvements

- Ensemble methods combining multiple detectors
- Active learning for continuous model improvement
- Synthetic data augmentation for rare scenarios

10. Technical Specifications

10.1 System Requirements

Hardware Requirements:

- NVIDIA GPU with CUDA support (recommended)
- Minimum 8GB RAM
- Python 3.8+ environment

Software Dependencies:

```
ultralytics==8.0.196
```

deep-sort-realtime==1.3.2

opency-python==4.8.0.76

torch==2.0.1

numpy==1.24.3

scipy==1.10.1

10.2 Input/Output Specifications

Input:

• Video format: MP4, 720p resolution

• Duration: 15 seconds (expandable)

• Frame rate: ~25 FPS

Output:

- Annotated video with color-coded bounding boxes
- Comprehensive evaluation report
- Detailed logging for debugging and analysis

10.3 Configuration Parameters

```
# Detection Configuration
```

CONF_THRESHOLD = 0.25

IOU_THRESHOLD = 0.5

CLASS_CONF_THRESHOLDS = {0: 0.2, 1: 0.25, 2: 0.25, 3: 0.2}

Tracking Configuration

MAX_DISAPPEARED_FRAMES = 75

SIMILARITY_THRESHOLD = 0.35

MAX_DISTANCE_THRESHOLD = 100.0

Embedding Configuration

EMBEDDING_SIZE = (64, 64)

FEATURE_DIMENSION = 512

11. Conclusion

This Player Re-Identification system successfully addresses the core challenge of maintaining consistent player identities in sports footage. With a **96.27% success rate in player re-identification**, the system exceeds the primary objective requirements and demonstrates the effectiveness of combining modern object detection with appearance-based tracking.

11.1 Key Contributions

- 1. **Hybrid Architecture:** Successfully integrated YOLOv11 detection with ResNet18-based reidentification
- 2. Optimization Strategy: Developed class-specific optimization techniques for sports footage
- 3. Evaluation Framework: Created comprehensive metrics for tracking system assessment
- 4. Modular Design: Implemented extensible architecture for future enhancements

11.2 Impact & Applications

The developed system has immediate applications in:

- Sports Analytics: Player performance tracking and game analysis
- Broadcast Enhancement: Automated player identification for viewers
- Coaching Tools: Tactical analysis and player movement studies
- Security Systems: Multi-object tracking in crowded environments

11.3 Technical Excellence

The implementation demonstrates:

- Robust Engineering: Comprehensive error handling and logging
- Performance Optimization: Balanced accuracy and computational efficiency
- Scalable Architecture: Modular design supporting future enhancements
- Thorough Evaluation: Detailed metrics and validation framework

Despite challenges with secondary object classes (ball, goalkeeper, referee), the system's primary achievement of **96.27% player re-identification accuracy** validates the approach and fulfills the assignment's core requirements. The modular architecture and comprehensive evaluation framework provide a solid foundation for future development and deployment in production environments.

References & Acknowledgments

Technologies Used:

- YOLOv11 (Ultralytics) for object detection
- ResNet18 (PyTorch) for feature extraction
- OpenCV for video processing
- scikit-learn for similarity metrics

Assignment Context:

- Company: Liat.ai
- Position: AI/ML Intern Assignment
- Option 2: Re-Identification in a Single Feed

This report demonstrates a comprehensive approach to sports video analysis, combining state-of-theart computer vision techniques with practical engineering considerations to deliver a working solution that exceeds primary objectives while identifying clear paths for future improvement.