

Prof. Dr. Markus Banagl Mathematisches Institut Im Neuenheimer Feld 205 69120 Heidelberg Telefon (06221) 54-14211 E-Mail banagl@mathi.uni-heidelberg.de Heidelberg, den 7. Dezember 2021

ALGEBRAISCHE TOPOLOGIE I ÜBUNGSAUFGABEN 8

DEADLINE: Do. 16. Dez. 2021, 15:00.

- 1. Die geschlossene orientierte Fläche S_g vom Geschlecht $g=0,1,2,\ldots$ erhält man, indem man an die Sphäre S^2 g "Henkel" $S^1 \times I$ entlang des Randes anklebt, nachdem man vorher entsprechend kleine disjunkte offene Kreisscheiben aus der Sphäre entfernt hat. Berechnen Sie die Fundamentalgruppe von S_g . (Hinweis: Repräsentieren Sie die Fläche durch ein Polygon mit Identifizierungen der Kanten.) Berechnen Sie auch die Abelisierung $\pi_1/[\pi_1,\pi_1]$ dieser Gruppen. Zeigen Sie mit Hilfe dieser Abelisierungen, dass S_g und S_h nicht homotopieäquivalent sind, wenn $g \neq h$.
- 2. Sei X die Vereinigung der Einheitssphäre S^2 im \mathbb{R}^3 mit einem Geradensegment, das Nordund Südpol verbindet. Berechnen Sie $\pi_1(X)$. Sei Y die Vereinigung der Einheitssphäre mit einer Kreisscheibe vom Radius 1, die in der x,y-Ebene (horizontalen Ebene) liegt. Berechnen Sie $\pi_1(Y)$.
- 3. Sei $\mathbb{R}P^2$ überdeckt durch offene Mengen U_1,\ldots,U_n , wobei jedes U_i homöomorph zur Ebene \mathbb{R}^2 ist. Setze $V_i=U_1\cup\cdots\cup U_i$ für $1\leq i< n$. Zeigen Sie, dass es ein $i\leq n$ gibt, sodass $U_i\cap V_{i-1}$ leer oder nicht zusammenhängend ist.
- 4. Zeigen Sie, dass für den Randoperator im singulären Kettenkomplex eines Raums die Identität $\partial_{k-1} \circ \partial_k = 0$ gilt.