Computer Science Track Core Course Linear programming — part 3

Martin Dvorak IST Austria Kolmogorov group

2021-06-17

We are given an input $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ (and $c \in \mathbb{Q}^n$ in OPT) and we search for $\mathbf{x} \in \mathbb{Q}^n$ that satisfies/optimizes...

FEAS: OPT:

We are given an input $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ (and $c \in \mathbb{Q}^n$ in OPT) and we search for $\mathbf{x} \in \mathbb{Q}^n$ that satisfies/optimizes...

Reduction FEAS → OPT:

We are given an input $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ (and $c \in \mathbb{Q}^n$ in OPT) and we search for $\mathbf{x} \in \mathbb{Q}^n$ that satisfies/optimizes...

Reduction FFAS \rightarrow OPT: c = 0

We are given an input $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, and $c \in \mathbb{Q}^n$. We search for $\mathbf{x} \in \mathbb{Q}^n$

Reduction OPT \rightarrow FEAS:

OPT: FEAS:

minimize c'xs.t. $Ax \ge b$ where x > 0

We are given an input $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, and $c \in \mathbb{Q}^n$. We search for $\mathbf{x} \in \mathbb{Q}^n$ (and auxiliary $\mathbf{y} \in \mathbb{Q}^m$ in FEAS).

Reduction OPT \rightarrow FEAS:

OPT:

```
minimize c'\mathbf{x}
s.t. A\mathbf{x} \ge b
where \mathbf{x} > \mathbf{0}
```

FEAS:

find any
$$(\mathbf{x}, \mathbf{y})$$

s.t. $A\mathbf{x} \ge b$
 $A^{\mathsf{T}} \mathbf{y} \le c$
 $c' \mathbf{x} = b' \mathbf{y}$
where $\mathbf{x} \ge \mathbf{0}$
 $\mathbf{y} > \mathbf{0}$

Remark about Rouché-Capelli theorem

We have $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Rouché-Capelli theorem in English speaking countries, Italy and Brazili; Kronecker-Capelli theorem in Austria, Poland, Romania and Russia; Rouché-Fontené theorem in France;

Rouché-Frobenius theorem in Spain and many countries in Latin America;
Frobenius theorem in the Czech Republic and in Slovakia.

Rouché-Capelli theorem for the system of equalities $A\mathbf{x} = b \dots$ Exactly one of the following statements is true:

- $\exists \mathbf{x} \in \mathbb{R}^n$: $A\mathbf{x} = b$
- $\exists \mathbf{y} \in \mathbb{R}^m : A^{\mathsf{T}} \mathbf{y} = \mathbf{0} \wedge b^{\mathsf{T}} \mathbf{y} \neq 0$

Rouché-Capelli theorem is typically stated as . . . Let $A \in F^{m \times n}$ be a matrix and $b \in F^m$ be a vector over a field F. The system of equalities $A\mathbf{x} = b$ is inconsistent (that is, no solution $\mathbf{x} \in F^n$ exists) if and only if $\operatorname{rank}(A) < \operatorname{rank}(A \mid b)$.

Rouché-Capelli theorem versus Farkas' lemma (I)

Now we fix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Rouché-Capelli theorem for the system of equalities $A\mathbf{x}=b\dots$ Exactly one of the following statements is true:

- $\exists \mathbf{x} \in \mathbb{R}^n$: $A\mathbf{x} = b$
- $\bullet \ \exists \mathbf{y} \in \mathbb{R}^m: \ A^{\mathsf{T}}\mathbf{y} = \mathbf{0} \ \land \ b^{\mathsf{T}}\mathbf{y} \neq 0$

Farkas' lemma for the system of (in)equalities $A\mathbf{x}=b$, $\mathbf{x}\geq 0$... Exactly one of the following statements is true:

- $\exists \mathbf{x} \in \mathbb{R}^n$: $A\mathbf{x} = b \land \mathbf{x} \geq \mathbf{0}$
- $\bullet \exists \mathbf{y} \in \mathbb{R}^m : A^{\mathsf{T}} \mathbf{y} \geq \mathbf{0} \land b^{\mathsf{T}} \mathbf{y} < 0$

Rouché-Capelli theorem versus Farkas' lemma (II)

Now we fix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Rouché-Capelli theorem for the system of equalities $A\mathbf{x} = b \dots$ Exactly one of the following statements is true:

- $\exists \mathbf{x} \in \mathbb{R}^n$: $A\mathbf{x} = b$
- $\exists \mathbf{y} \in \mathbb{R}^m : A^{\mathsf{T}} \mathbf{y} = \mathbf{0} \wedge b^{\mathsf{T}} \mathbf{y} \neq 0$

Farkas' lemma for the system of inequalities $A\mathbf{x} \leq b$, $\mathbf{x} \leq 0$... Exactly one of the following statements is true:

- $\exists \mathbf{x} \in \mathbb{R}^n$: $A\mathbf{x} \leq b$
- $\exists \mathbf{y} \in \mathbb{R}^m : A^{\mathsf{T}} \mathbf{y} = \mathbf{0} \wedge b^{\mathsf{T}} \mathbf{y} < 0 \wedge \mathbf{y} \geq \mathbf{0}$

Rouché-Capelli theorem versus Farkas' lemma (III)

Now we fix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Rouché-Capelli theorem for the system of equalities $A\mathbf{x} = b \dots$ Exactly one of the following statements is true:

- $\exists \mathbf{x} \in \mathbb{R}^n$: $A\mathbf{x} = b$
- $\exists \mathbf{y} \in \mathbb{R}^m : A^{\mathsf{T}} \mathbf{y} = \mathbf{0} \wedge b^{\mathsf{T}} \mathbf{y} \neq 0$

Farkas' lemma for the system of inequalities $A\mathbf{x} \leq b$, $\mathbf{x} \geq 0$... Exactly one of the following statements is true:

- $\exists \mathbf{x} \in \mathbb{R}^n$: $A\mathbf{x} \leq b \land \mathbf{x} \geq \mathbf{0}$
- $\exists \mathbf{y} \in \mathbb{R}^m : A^{\mathsf{T}} \mathbf{y} \geq \mathbf{0} \wedge b^{\mathsf{T}} \mathbf{y} < 0 \wedge \mathbf{y} \geq \mathbf{0}$

Remark about Farkas' lemmata

We have $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Farkas' lemma for the system of inequalities $A\mathbf{x} \leq b$, $\mathbf{x} \leq 0$... Exactly one of the following statements is true:

- $\exists \mathbf{x} \in \mathbb{R}^n$: $A\mathbf{x} \leq b$
- $\exists \mathbf{y} \in \mathbb{R}^m : A^{\mathsf{T}}\mathbf{y} = \mathbf{0} \wedge b^{\mathsf{T}}\mathbf{y} < 0 \wedge \mathbf{y} \geq \mathbf{0}$

Farkas' lemmata are used to prove the Strong duality theorems.

Remark about Farkas' lemmata

Let us rename variables in the Farkas' Lemma (II) . . . Exactly one of the following statements is true:

- $\exists z \in \mathbb{R}^n : Ez < d$
- $\bullet \exists \mathbf{w} \in \mathbb{R}^m : E^{\mathsf{T}}\mathbf{w} = \mathbf{0} \land d^{\mathsf{T}}\mathbf{w} < 0 \land \mathbf{w} \geq \mathbf{0}$

Primal problem:

minimize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} = b$ where $\mathbf{x} > \mathbf{0}$

Dual problem:

$$\begin{array}{ll} \text{maximize} & b' \mathbf{y} \\ \text{s.t.} & A^{\top} \mathbf{y} \leq c \\ \text{where} & \mathbf{y} \lessgtr \mathbf{0} \end{array}$$

Systems of over domain	Equalities	Inequalities
Real $(\mathbb{Q}^n, \mathbb{R}^n)$		
Integral (\mathbb{Z}^n)		

Systems of over domain	Equalities	Inequalities
Real $(\mathbb{Q}^n, \mathbb{R}^n)$	Gaussian elimination	
Integral (\mathbb{Z}^n)		

Systems of over domain	Equalities	Inequalities
Real $(\mathbb{Q}^n, \mathbb{R}^n)$	Gaussian elimination	Ellipsoid method
Integral (\mathbb{Z}^n)		

Systems of over domain	Equalities	Inequalities
Real $(\mathbb{Q}^n, \mathbb{R}^n)$	Gaussian elimination	Ellipsoid method
Integral (\mathbb{Z}^n)	Hermite normal form	

Systems of over domain	Equalities	Inequalities
Real $(\mathbb{Q}^n, \mathbb{R}^n)$	Gaussian elimination	Ellipsoid method
Integral (\mathbb{Z}^n)	Hermite normal form	NP-complete

Thanks for your attention!

Questions?