$$f(x)=0 \ \forall x\in M \implies f(x)=0 \ \text{п.в.}$$
 $f(x)=0$ п.в., $f(x)$ непрерывная $\implies f(x)=0$ п.в.

Ступенчатые функции

[a,b] разобьём точками x_i $i=\overline{0,n},\ x_0=a,\ x_n=b$

$$\Delta x_i = x_i - x_{i-1} \quad x_{i-1} < x_i$$

 $\phi(x) = c_i \quad (x_{i-1} < x < x_i)$

Рис. 1: ступенчатая функция

 ϕ, ψ - ступенчатые функции $\phi \leq \psi,$ если $\phi(x) \leq \psi(x)$ п.в. (во всех точках, кроме узлов)

Понятие интеграла Лебега

$$\int_{a}^{b} \phi(x)dx = \sum_{i=1}^{n} c_{i} \Delta x_{i}$$

Пусть $f(x) \leq 0$ $x \in [a,b]$ Если $\phi_n(x) \to f(x)$ п.в. и $0 \leq \phi_n(x) \leq \phi_{n+1}(x)$, то говорят, что ϕ_n сходится к f снизу (обозначение $\phi_n \uparrow f$)

Интеграл Лебега

Определение (Интеграл Лебега).

$$\phi_n \uparrow f, \; \exists \lim_{n \to \infty} \int_a^b \phi_n(x) dx = I$$
 - интеграл Лебега

$$I = \int_{a}^{b} f(x)dx$$

Замечание. Известно, что если несобственный интеграл от неограниченной функции сходится абсолютно, то существует интеграл Лебега с тем же значением

$$f(x) \ge 0 \quad x \in [a, b]$$

$$f_{+}(x) = \begin{cases} f(x), & f(x) \ge 0 \\ 0, & f(x) < 0 \end{cases}$$

$$f_{-}(x) = \begin{cases} 0, & f(x) > 0 \\ -f(x), & f(x) \le 0 \end{cases}$$

$$f = f_{+} - f_{-}$$

$$|f| = f_{+} + f_{-}$$

$$\begin{cases} \exists \int_{a}^{b} f_{+}(x) dx \\ \exists \int_{a}^{b} f_{-}(x) dx \end{cases} \implies \exists \int_{a}^{b} f(x) dx = \int_{a}^{b} f_{+}(x) dx - \int_{a}^{b} f_{-}(x) dx$$

Зафиксируем отрезок [a,b] и рассмотрим множество функций, для которых существует интеграл Лебега. Такое множество называется пространством Лебега L[a,b]

Свойства

1)
$$\int_{a}^{b} c dx = c(b-a)$$
2)
$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$
3) $f \in L$, $g(x) = f(x)$ $\text{fi.b} \implies g(x) \in L$
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx$$
4) $f(x) \geq g(x)$ $\text{fi.b.} \implies \int_{a}^{b} f dx \geq \int_{a}^{b} g dx$
5)
$$\int_{a}^{b} |f(x)| dx = 0 \iff f(x) = 0 \text{ fi.b.}$$
6) $f, g \in L$, $\lambda \in \mathbb{R} \implies \lambda f \pm g \in L$
$$\int_{a}^{b} (\lambda f \pm g) dx = \lambda \int_{a}^{b} f dx \pm \int_{a}^{b} g dx$$
7)
$$\int_{a}^{b} |f \pm g| \leq \int_{a}^{b} |f| dx + \int_{a}^{b} |g| dx$$

Теорема Лебега

Теорема (Лебега). Пусть $\{f_n(x)\}, f_n(x) \in L. f_n(x) \to f(x) \ n.s.,$ $|f_n(x)| \le \phi(x) \ n.s.,$ $npu \ достаточно \ больших <math>n \ge n_0. \ \phi(x) \in L$ Torda

$$f \in L$$
 $\int_{a}^{b} f_{n}(x)dx \to \int_{a}^{b} f(x)dx$

Сходимость в среднем

Определение (Сходимость в среднем). $f_n, f \in L$. $n \in \mathbb{N} \cup \{0\}$ Будем говорить f_n сходится в среднем (сходимость в среднем 1-го порядка) к f, если

$$\int_{a}^{b} |f_{n} - f| dx \to 0 \quad (f_{n} \xrightarrow{L} f)$$

Свойства

Теорема о непрерывности интеграла относительно сходимости

Теорема (о непрерывности интеграла относительно сходимости).

$$f_n \xrightarrow{L} f \implies \int_a^b f_n dx \to \int_a^b f dx$$

Доказательство.

$$\left| \int_{a}^{b} f_{n} dx - \int_{a}^{b} f dx \right| = \left| \int_{a}^{b} (f_{n} - f) dx \right| \le \int_{a}^{b} |f_{n} - f| dx \to 0$$

Теорема.

$$f_n \rightrightarrows f \ x \in [a,b] \implies f_n \xrightarrow{L} f$$

Доказательство.

$$\forall \epsilon > 0 \ \exists N(\epsilon) : \ \forall n > N \ \forall x \in [a, b] \implies |f_n - f| < \frac{\epsilon}{2(b - a)}$$

$$\int_{a}^{b} |f_n - f| dx < \frac{\epsilon}{2(b-a)} \int_{a}^{b} dx = \frac{\epsilon}{2} < \epsilon$$