

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Análise I

24 de Maio de 2018

(1) Suponha que a soma dos n primeiros termos da série $\sum_{n=1}^{\infty}a_n$ é

$$S_n = a_1 + a_2 + \dots + a_n = \frac{2n}{3n+5}.$$

Essa série é convergente? Em caso positivo, encontre sua soma.

(2) Dadas as séries abaixo, verifique se elas convergem ou divergem. Se convergir, encontre sua soma.

(a)
$$\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1+3^n}{2^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{3}{n(n+1)} + \frac{1}{2^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{e^n}{n^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{e^n}$$

(3) Para quais valores de $x \in \mathbb{R}$ a série $\sum_{n=1}^{\infty} x^n$ converge? Encontre sua soma para estes valores.

(4) O termo geral da série $\sum_{n=1}^{\infty} \ln(1+1/n)$ tende a zero. Mostre, todavia, que ela é divergente, obtendo uma forma simples para sua reduzida S_n .

(5) Prove que se $\sum a_n$ é uma série convergente de termos positivos, então $\sum a_n^2$ é convergente.

(6) Sejam $\sum a_n$ uma série convergente de termos positivos e (b_n) uma sequência limitada de elementos positivos. Prove que $\sum a_n b_n$ converge.

(7) Supondo $a_n \ge 0$ e $a_n \to 0$, prove que $\sum a_n$ converge ou diverge se, e somente se, $\sum a_n/(1+a_n)$ converge ou diverge, respectivamente.

Gabarito

$$(1) \sum_{n=1}^{\infty} a_n = \frac{2}{3}.$$

(2) (a) Diverge

(b) Diverge

(c)
$$\sum_{n=1}^{\infty} \frac{3}{n(n+1)} + \frac{1}{2^n} = 4$$

(d) Diverge

(e)
$$\sum_{n=1}^{\infty} \frac{1}{e^n} = \frac{1}{e-1}$$

(3) $\sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$

$$(3) \sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$$