Correction du QCM THL — Théorie des Langages

EPITA - Promo 2008

Octobre 2005

Attention, dans ces qcms il y a toujours une et une seule réponse valable. En particulier, lorsque plusieurs réponses sont possibles, prendre la plus restrictive.

1 Langages Rationnels

1.1 Langages rationnels

Le langage a^n est

Réponses possibles :

- × fini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- \times vide

Le langage $a^n b^n$ pour $n < 42^{51} - 1$ est

Réponses possibles :

- × infini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- × vide

Le langage $(ab)^n$ est

Réponses possibles :

- × fini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- × vide

Le langage $a^n b^m$, où n, m parcourent les entiers naturel, est

- × fini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- × vide

Le langage $a^n b^n$ est

Réponses possibles :

- × fini
- × rationnel
- → non reconnaissable par automate fini
- × vide

Le langage des nombres binaires premiers compris entre 0 et $2^{2^{2^2}} - 1$ est

Réponses possibles :

- \rightarrow rationnel
- × non reconnaissable par un automate fini déterministe
- × non reconnaissable par un automate fini nondéterministe
- × non reconnaissable par un automate fini à transitions spontanées

Les logins des étudiants 2008 constituent un langage

Réponses possibles :

- \rightarrow rationnel
- × non reconnaissable par un automate fini déterministe
- × non reconnaissable par un automate fini nondéterministe
- × non reconnaissable par un automate fini à transitions spontanées

Un langage quelconque est

Réponses possibles :

- → toujours inclus dans un langage rationnel
- × toujours inclus dans un langage hors-contexte
- × toujours inclus dans un langage sensible au contexte
- × peut ne pas être inclus dans un langage défini par une grammaire

Soit L_r est un langage rationnel. Si $L \subset L_r$, alors

- \times L est rationnel
- \times L est hors-contexte
- \times L est sensible au contexte
- \rightarrow L peut ne pas être définissable par une grammaire

1.2 Expressions rationnelles

Il est possible de tester si une expression rationnelle engendre un langage vide.

Réponses possibles :

- → Vrai
- × Faux
- X
- X

Il est possible de tester si une expression rationnelle engendre un langage infini.

Réponses possibles:

- → Vrai
- × Faux
- X
- X

L'expression rationnelle étendue [-+]?[0-9]+,[0-9]* n'engendre pas :

Réponses possibles :

- \rightarrow 42
- \times 42,
- $\times 42,4$
- \times 42,42

L'expression rationnelle étendue [-+]?[0-9] + (.[0-9]+)?(e[-+]?[0-9]+) n'engendre pas :

Réponses possibles :

- \times 42e42
- \rightarrow 42.e42
- \times 42.4*e*42
- \times 42.42e42

L'expression rationnelle étendue [a - zA - Z][a - zA - Z0 - 9]* n'engendre pas :

Réponses possibles :

- \rightarrow __STDC__
- × main
- × eval_expr
- \times exit_42

L'expression rationnelle étendue " $([a - zA - Z] | \setminus) +$ " engendre :

- × ""
- × "\""
- → "\\\\"
- × "\n" où \n représente le caractère « retour à la ligne »

1.3 Automates

Quelle est l'écriture la plus raisonnable?

Réponses possibles:

- × machine à état fini
- × machine à état finis
- → machine à états finie
- × machine à états finis

Un automate fini déterministe...

Réponses possibles :

- × n'est pas nondéterministe
- $\times\,\,$ n'est pas à transitions spontanées
- → n'a pas plusieurs états initiaux
- × n'a pas plusieurs états finaux

Soit une expression rationnelle α et un automate A. Il est possible de déterminer s'ils correspondent au même langage :

Réponses possibles :

- × vrai en temps constant
- → vrai en temps fini
- × faux en temps fini
- × faux en temps infini

Il est possible de tester si un automate est déterministe.

Réponses possibles :

- → Vrai
- × Faux
- ×
- X

Est-il possible de tester si un automate nondéterministe reconnaît un langage non vide?

- \rightarrow Oui.
- × Non.
- ×
- ×

Est-il possible de tester si un automate déterministe reconnaît un langage non vide?

Réponses possibles :

- → Oui.
- × Non.
- ×
- X

1.4 Divers

Il existe un formalisme qui permette une description finie de tout langage.

Réponses possibles :

- × Oui.
- \rightarrow Non.
- ×
- ×

L'équation $P \subset NP$ signifie

Réponses possibles :

- × un problème de résolution d'équations polynomiales est plus facile qu'un problème de résolution d'équations exponentielles
- → on ne perd pas de performances en ayant plus de CPU
- × les problèmes solubles dans un polynôme précipitent dans une solution non polynomiale
- \times un problème solvable par une machine de Turing à une bande P est solvable par une machine de Turing ayant en plus une bande N.

2 Hiérarchie de Chomsky

2.1 Grammaires

Quelle est la classe de la grammaire suivante?

$$P \rightarrow P inst ';'$$

 $P \rightarrow inst';'$

- → Rationnelle (Type 3)
- × Hors contexte (Type 2)
- × Sensible au contexte (Type 1)
- × Monotone (Type 1)

Quelle est la classe de la grammaire suivante?

$$A \rightarrow aABC$$

$$A \rightarrow abC$$

$$CB \rightarrow BC$$

$$bB \rightarrow bb$$

$$bC \rightarrow bc$$

$$cC \rightarrow cc$$

Réponses possibles :

- × Rationnelle (Type 3)
- × Hors contexte (Type 2)
- × Sensible au contexte (Type 1)
- → Monotone (Type 1)

Quelle est la classe de la grammaire suivante?

$$S \rightarrow abc$$

$$S \rightarrow aSQ$$

$$bQc \rightarrow bbcc$$

$$cQ \rightarrow Qc$$

Réponses possibles :

- × Rationnelle
- × Hors contexte
- × Sensible au contexte
- → Monotone

Quelle est la classe de la grammaire suivante?

$$S \rightarrow abC$$

$$S \rightarrow aSQ$$

$$bQC \rightarrow bbCC$$

$$CQ \rightarrow CX$$

$$CX \rightarrow QX$$

$$QX \rightarrow QC$$

$$C \rightarrow c$$

- × Rationnelle
- × Hors contexte
- → Sensible au contexte
- × Monotone

Quelle est la classe de la grammaire suivante?

$$S \rightarrow aSb$$

$$S \rightarrow c$$

Réponses possibles :

- × Rationnelle
- → Hors contexte
- × Sensible au contexte
- × Monotone

Quelle est la classe de la grammaire suivante?

$$S \rightarrow aS$$

$$S \rightarrow Sb$$

$$S \rightarrow c$$

Réponses possibles :

- × Rationnelle
- → Hors contexte
- × Sensible au contexte
- × Monotone

Quelle est la classe de la grammaire suivante?

$$S \rightarrow SaS$$

$$S \rightarrow c$$

Réponses possibles :

- × Rationnelle
- → Hors contexte
- × Sensible au contexte
- × Monotone

Quelle est la classe de la grammaire suivante?

$$S \rightarrow Sac$$

$$S \rightarrow c$$

- → Rationelle
- × Hors contexte
- × Sensible au contexte
- × Monotone

2.2 Machines abstraites

Un transducteur est

Réponses possibles :

- × un élément de transitor
- → une machine ayant une entrée et une sortie
- × un automate fini avec des transductions spontanées
- × un automate infini

Une machine de Turing nondéterministe

Réponses possibles :

- × ne sait pas ce qu'elle fait
- → est sûrement plus efficace qu'une machine de Turing déterministe
- × permet d'aboutir à une réponse là où les machines déterministes échouent
- × gèrent les ensembles flous

3 Grammaires Hors Contexte

3.1 Rationelle vs. ambiguë

Quelle propriété cette grammaire vérifie?

$$S \rightarrow Sac$$

$$S \rightarrow c$$

Réponses possibles :

- → Linéaire à gauche
- × Linéaire à droite
- × Hors contexte
- × Ambiguë

Quelle propriété cette grammaire vérifie?

$$S \rightarrow aSc$$

$$S \rightarrow c$$

- × Linéaire à gauche
- × Linéaire à droite
- → Hors contexte
- × Ambiguë

Quelle propriété cette grammaire vérifie?

$$S \rightarrow SpS$$

$$S \rightarrow n$$

Réponses possibles :

- × Linéaire à gauche
- × Linéaire à droite
- × Rationnelle
- → Ambiguë

3.2 Propriétés

Parmi les propriétés suivantes, laquelle est vérifiée pour toute grammaire hors contexte ambiguë?

Réponses possibles :

- → Elle produit un langage non vide
- × Elle produit un langage rationnel
- × Elle produit un langage infini
- × Elle produit un langage non rationnel

Une grammaire hors contexte est ambiguë ssi il existe

Réponses possibles :

- → un mot ayant deux arbres de dérivation.
- × un mot ayant une dérivation droite et une dérivation gauche.
- × une dérivation gauche (ou droite) ayant deux arbres de dérivation.
- × un automate nondéterministe qui reconnaisse ses arbres de dérivation.

4 Analyse Syntaxique

Si une grammaire hors contexte est non ambiguë

- \times elle est LL(1)
- \times elle est LL(k)
- → elle n'est pas nécessairement LL
- × elle produit nécessairement des conflits dans un parseur LL

4.1 LL(1)

Si une grammaire hors contexte est LL(1), alors

Réponses possibles :

- × elle n'est pas rationnelle
- × elle est rationnelle
- → elle n'est pas ambiguë
- × elle est ambiguë

Si une grammaire hors contexte est non ambiguë

Réponses possibles :

- \times elle est LL(1)
- \times elle est LL(k)
- → elle n'est pas nécessairement LL
- × elle produit nécessairement des conflits dans un parseur LL

LL(k) signifie

Réponses possibles:

- \times lecture en deux passes de gauche à droite, avec k symboles de regard avant
- \times lecture en deux passes de gauche à droite, avec une pile limitée à k symboles
- \rightarrow lecture en une passe de gauche à droite, avec k symboles de regard avant
- \times lecture en une passe de gauche à droite, avec une pile limitée à k symboles

4.2 LALR

Si un parseur LALR(1) a des conflits, alors sa grammaire

Réponses possibles :

- × est ambiguë
- \times n'est pas LR(1)
- \rightarrow n'est pas LR(0)
- × n'est pas déterministe

5 Correction