Graßmannian manifolds

We consider natural numbers $0 \le k \le n$. The Grassmannian of k-planes in \mathbb{R}^n is

$$Gr(k,n) = \{L \subset \mathbb{R}^n : L \text{ is a vector subspace of dimension } k\}$$
.

Another common notation for Gr(k, n) is $Gr_k(\mathbb{R}^n)$. As before we let $V_{k,n}$ be the Stiefel manifold of k-frames in \mathbb{R}^n , with the subspace topology of $(\mathbb{R}^n)^k$. Every k-plane in \mathbb{R}^n has an orthonormal basis, so the map

$$V_{k,n} \longrightarrow Gr(k,n)$$
, $(v_1,\ldots,v_k) \longmapsto \operatorname{span}(v_1,\ldots,v_k)$

that sends a frame to its \mathbb{R} -linear space is surjective. We endow the Grassmannian G(k, n) with the quotient topology of $V_{k,n}$ through this surjective map.

Example 1. Since \mathbb{R}^n has only one 0-dimensional vector subspace and only one n-dimensional vector subspace, the Grassmannian G(0,n) and G(n,n) consists of a single point each. The Grassmannian G(1,n) is the projective space $\mathbb{R}P^{n-1}$.

Theorem 2. For every $0 \le k \le n$, the Grassmannian G(k,n) is a compact manifold of dimension $k \cdot (n-k)$.

Proof. To show that G(k,n) is a Hausdorff space, we exhibit an injective continuous map to another Hausdorff space. Given $L \in G(k,n)$, we let $p_L : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ denote the orthogonal projection onto the subspace L. Since L can be recovered from p_L as the image, the map

$$p: Gr(k,n) \longrightarrow \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R}^n), L \longmapsto p_L$$

is injective. The image of this map can be characterized as the set of those linear endomorphisms $q: \mathbb{R}^n \to \mathbb{R}^n$ that are self-adjoint (i.e., $q^* = q$), idempotent (i.e., $q \circ q = q$) and whose trace is k.

If (v_1, \ldots, v_k) is any orthonormal basis of the k-plane L, then the orthogonal projection is given by the formula

$$p_L(x) = \langle v_1, x \rangle \cdot v_1 + \ldots + \langle v_k, x \rangle \cdot v_k$$
.

So the composite

$$V_{k,n} \xrightarrow{\mathrm{span}} Gr(k,n) \xrightarrow{p} \mathrm{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R}^n) , \quad (v_1,\ldots,v_k) \longmapsto \sum_{i=1}^k \langle v_k, - \rangle \cdot v_k$$

is continuous, hence so is the map p. Since p is continuous and injective, and since $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R}^n)$ is a Hausdorff space, the Grassmannian Gr(k,n) is a Hausdorff space, too. Since the Stiefel manifold $V_{k,n}$ is compact, its quotient space Gr(k,n) is quasi-compact; so altogether, we have shown that the Grassmannian is a compact space.

To show that Gr(k,n) is a manifold we first parameterize a neighborhood of the particular k-plane $\mathbb{R}^k \oplus 0^{n-k}$ by the linear space $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^k, \mathbb{R}^{n-k})$. This will also show that Gr(k,n) has dimension $k \cdot (n-k)$, the dimension of the vector space $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^k, \mathbb{R}^{n-k})$. We define

$$U = \{ L \in Gr(k, n) : L \cap (0^k \times \mathbb{R}^{n-k}) = \{0\} \} .$$

This set contains $\mathbb{R}^k \oplus 0^{n-k}$, and we will now show that it is open inside the Grassmannian. We write

$$q: \mathbb{R}^n \longrightarrow \mathbb{R}^k, \quad q(x_1, \dots, x_n) = (x_1, \dots, x_k)$$

for the orthogonal projection onto the first k coordinates. The condition $L \cap (0^k \times \mathbb{R}^{n-k}) = \{0\}$ is equivalent to demanding that the restricted projection $q|_L : L \longrightarrow \mathbb{R}^k$ has a trivial kernel; since L and \mathbb{R}^k have the same dimension, this is equivalent to requiring $q|_L$ to be an isomorphism. If $(v_1, \ldots, v_k) \in V_{k,n}$ is any k-frame in \mathbb{R}^n that spans L, this in turn is equivalent to the requirement that the linear map

$$\mathbb{R}^k \longrightarrow \mathbb{R}^k$$
, $(x_1, \dots, x_k) \longmapsto q(x_1v_1 + \dots + x_kv_k)$

is an isomorphism. This last map is described by the $(k \times k)$ -matrix with columns $q(v_1), \ldots, q(v_k)$; so we conclude that a k-plane L belongs to U if and only if for some (and hence any) k-frame (v_1, \ldots, v_k) that spans L the $(k \times k)$ -matrix $(q(v_1), \ldots, q(v_k))$ is invertible. In other words:

(3)
$$\operatorname{span}^{-1}(U) = \{(v_1, \dots, v_k) \in V_{k,n} : (q(v_1), \dots, q(v_k)) \in GL_k(\mathbb{R})\}.$$

Since the assignment

$$V_{k,n} \longrightarrow M(k \times k; \mathbb{R}) , \quad (v_1, \dots, v_k) \longmapsto (q(v_1), \dots, q(v_k))$$

to the space of $k \times k$ square matrices is continuous, and since $GL_k(\mathbb{R})$ is open inside $M(k \times k, \mathbb{R})$, this shows that the set span⁻¹(U) is open in $V_{k,n}$. So the set U is open in Gr(k,n).

Now we exhibit a homeomorphism from the linear space $\operatorname{Hom}_R(\mathbb{R}^k,\mathbb{R}^{n-k})$ to the open set U. To this end we 'split' \mathbb{R}^n as $\mathbb{R}^k \oplus \mathbb{R}^{n-k}$ and use the map

$$\Gamma : \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^k, \mathbb{R}^{n-k}) \longrightarrow Gr(k, n)$$

$$\Gamma(f) = \operatorname{graph of} f = \{(x, f(x)) : x \in \mathbb{R}^k\}$$

that sends a linear map $f: \mathbb{R}^k \longrightarrow \mathbb{R}^{n-k}$ to its graph. This map factors as the composite

$$\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^k, \mathbb{R}^{n-k}) \xrightarrow{\operatorname{GS}} V_{k,n} \xrightarrow{\operatorname{span}} G(k,n)$$
,

where the first map sends f to the Gram-Schmidt orthonormalization of the linearly independent k-tuple $(e_1, f(e_1)), \ldots, (e_k, f(e_k))$; since the Gram-Schmidt process is continuous, so is the graph map. The image of Γ is clearly contained in the open set U. Also, for every $x \in \mathbb{R}^k$ we have

$$\Gamma(f) \cap (\{x\} \times \mathbb{R}^{n-k}) = \{(x, f(x))\},\,$$

so the linear map f can be recovered from its graph, and hence the map Γ is injective.

To show that Γ is a homeomorphism onto U, we recall from (3) that a k-frame (v_1, \ldots, v_k) spans a k-plane in U if and only if the square matrix $(q(v_1), \ldots, q(v_k))$ is invertible. We write

$$\bar{q}: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-k}, \quad q(x_1,\ldots,x_n) = (x_{k+1},\ldots,x_n)$$

for the orthogonal projection onto the last n-k coordinates. Because matrix multiplication and the inversion map of the general linear group $GL_k(\mathbb{R})$ are continuous, the map

$$\Psi: \operatorname{span}^{-1}(U) \longrightarrow \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^k, \mathbb{R}^{n-k}), \quad \Psi(v_1, \dots, v_k) = (\bar{q}(v_1), \dots, \bar{q}(v_k)) \cdot (q(v_1), \dots, q(v_k))^{-1}$$

is continuous. We will show that Ψ descends to a continuous inverse to the graph map Γ . To this end we consider any vector $x \in \mathbb{R}^k$ and we set $y = (q(v_1), \dots, q(v_k))^{-1}(x) \in \mathbb{R}^k$. Then

$$(x, \Psi(v_1, \dots, v_k)(x)) = (((q(v_1), \dots, q(v_k))(y), (\bar{q}(v_1), \dots, \bar{q}(v_k))(y))$$

$$= (q(y_1v_1 + \dots + y_kv_k), \bar{q}(y_1v_1 + \dots + y_kv_k))$$

$$= y_1v_1 + \dots + y_kv_k.$$

So the graph of $\Psi(v_1,\ldots,v_n)$ is given by

$$\Gamma(\Psi(v_1,\ldots,v_k)) = \operatorname{span}(v_1,\ldots,v_k).$$

Since Γ is injective, this shows in particular that the linear map $\Psi(v_1,\ldots,v_k)$ only depends on the span of (v_1,\ldots,v_k) . The restriction of the quotient map span : $V_{k,n}\longrightarrow Gr(k,n)$ is another quotient map

$$\operatorname{span} : \operatorname{span}^{-1}(U) \longrightarrow U$$
.

So the map Ψ descends to a well-defined and continuous map

$$\bar{\Psi}: U \longrightarrow \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^k, \mathbb{R}^{n-k}), \quad \bar{\Psi}(\operatorname{span}(v_1, \dots, v_k)) = (\bar{q}(v_1), \dots, \bar{q}(v_k)) \cdot (q(v_1), \dots, q(v_k))^{-1}$$

that is right inverse to the graph map Γ . Since the graph map is injective, the map $\bar{\Psi}$ is also left inverse to the graph map. Hence we have shown that the graph map Γ and the map $\bar{\Psi}$ are mutually inverse homeomorphisms.

Finally, we exploit the homogeneity of Gr(k, n) to exhibit a euclidean neighborhood of a general k-plane L. We choose an orthonormal basis (v_1, \ldots, v_k) of L and extend it to an orthonormal basis $(v_1, \ldots, v_k, v_{k+1}, \ldots, v_n)$ of \mathbb{R}^n . We let $A \in O(n)$ be the orthogonal matrix with columns (v_1, \ldots, v_n) . Then the map

$$A \cdot : Gr(k,n) \longrightarrow Gr(k,n)$$

that sends a k-plane to its image under A is continuous. Indeed, the following square commutes:

$$V_{k,n} \xrightarrow{(v_1, \dots, v_k) \mapsto (Av_1, \dots, Av_k)} V_{k,n}$$

$$\downarrow \text{span}$$

$$Gr(k, n) \xrightarrow{A.} Gr(k, n)$$

Since the upper horizontal map is continuous, so is the lower one, by the universal property of the quotient topology. We conclude that the map $A \cdot$ is a self-homeomorphism of the Grassmannian that takes the special k-plane $\mathbb{R}^k \oplus 0^{n-k}$ to the k-plane L. The set $A \cdot U$ is thus an open neighborhood of L that is homeomorphic to $\mathrm{Hom}_{\mathbb{R}}(\mathbb{R}^k,\mathbb{R}^{n-k})$. This completes the proof that Gr(k,n) is a compact manifold of dimension $k \cdot (n-k)$. \square

We write

$$\mathcal{P}_{k,n} = \{ q \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R}^n) : q^* = q^2 = q, \operatorname{trace}(q) = k \}$$

the set of linear endomorphisms of \mathbb{R}^n that are self-adjoint, idempotent and have trace k; we endow $\mathcal{P}_{k,n}$ with the subspace topology of the linear topology of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R}^n)$. In the proof of the previous theorem we have already used the bijective map

$$p: Gr(k,n) \longrightarrow \mathcal{P}_{k,n}$$

that sends a k-plane to its orthogonal projection; the inverse map sends an element of $\mathcal{P}_{k,n}$ to its image. We showed in the proof that this map is continuous; since Gr(k,n) is compact and $\mathcal{P}_{k,n}$ is Hausdorff, we can conclude:

Corollary 4. The map $p: Gr(k,n) \longrightarrow \mathcal{P}_{k,n}$ that sends a k-plane to its orthogonal projection is a homeomorphism.

We shall now show that the Grassmannians have a certain symmetry/duality property, in the sense that the Grassmannians Gr(k, n) and Gr(n - k, n) for complementary dimensions are homeomorphic.

Proposition 5. For all $0 \le k \le n$, the map

$$(-)^{\perp}$$
: $Gr(k,n) \longrightarrow Gr(n-k,n)$

that sends a k-plane L to its orthogonal complement L^{\perp} is a homeomorphism.

Proof. Given Corollary 4, this is easy: the orthogonal projections of L and L^{\perp} are complementary in the sense of the relation

$$p_L + p_{L^{\perp}} = \mathrm{Id}_{\mathbb{R}^n} .$$

So the following square of continuous maps commutes:

$$Gr(k,n) \xrightarrow{\mathcal{P}_{k,n}} \mathcal{P}_{k,n}$$

$$L \mapsto L^{\perp} \downarrow \qquad \qquad \downarrow q \mapsto \operatorname{Id}_{\mathbb{R}^n} - q$$

$$Gr(n-k,n) \xrightarrow{\cong} \mathcal{P}_{n-k,n}$$

The two horizontal maps are homeomorphisms by Corollary 4. The right vertical map is clearly continuous for the topology induced by the linear topology of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R}^n)$, and so is its inverse (which is given by the same formula). So the right vertical map is a homeomorphism, and hence the left vertical map is as well

We briefly mention the complex and quaternion Grassmannians, defined as

$$Gr^{\mathbb{C}}(k,n) = \{L \subset \mathbb{C}^n : L \text{ is a \mathbb{C}-vector subspace with } \dim_{\mathbb{C}}(L) = k\}$$
 and $Gr^{\mathbb{H}}(k,n) = \{L \subset \mathbb{H}^n : L \text{ is an \mathbb{H}-vector subspace with } \dim_{\mathbb{H}}(L) = k\}$.

These spaces carry the quotient topology of the respective complex and quaternion Stiefel manifolds. In particular, for n = 1 we recover the projective spaces

$$Gr^{\mathbb{C}}(1,n) = \mathbb{C}P^{n-1}$$
 and $Gr^{\mathbb{H}}(1,n) = \mathbb{H}P^{n-1}$.

Very much like in the real case one shows that $Gr^{\mathbb{C}}(k,n)$ and $Gr^{\mathbb{H}}(k,n)$ are compact manifolds of dimensions $2k \cdot (n-k)$ and $4k \cdot (n-k)$, respectively.