Ma/CS 6a

Class 15: Flows and Bipartite Graphs

By Adam Sheffer

Reminder: Flow Networks

• A *flow network* is a digraph G = (V, E), together with a *source* vertex $s \in V$, a *sink* vertex $t \in V$, and a *capacity function* $c: E \to \mathbb{N}$.

Reminder: Flow in a Network

- Given a flow network G = (V, E, s, t, c), a flow in G is a function $f: E \to \mathbb{N}$ that satisfies
 - Every $e \in E$ satisfies $f(e) \le c(e)$.
 - Every $v \in V \setminus \{s, t\}$ satisfies

Example: Flow

- The capacities are in red.
- The flow is in blue.

Reminder: Cuts

- A *cut* is a partitioning of the vertices of the flow network into two sets S, T such that $s \in S$ and $t \in T$.
- The size of a cut is the sum of the capacities of the edges from S to T.

Reminder: Max Flow - Min Cut

 Max flow – min cut theorem. In every flow network, the size of the minimum cut is equal to the size of the maximum flow.

Reminder: Matchings

- A *matching* of an undirected graph *G* is a set of vertex-disjoint edges of *G*.
- The size of a matching is the number of edges in it.
- A maximum matching of G is a matching of maximum size.

Flows and Bipartite Matchings

• **Problem.** given a bipartite graph $G = (V_1 \cup V_2, E)$, use a flow algorithm to find a maximum matching of G.

Flows and Bipartite Matchings (2)

- Direct the edges from V_1 to V_2 .
- Add a source s and edges from it to every vertex of V₁. Similarly, add a sink t.
- Direct edges to the right and set capacities to 1.

Flows and Bipartite Matchings (3)

- There is a bijection between the perfect matchings of *G* and the flows of the network.
- A max matching corresponds to a max flow.

Machines and Jobs

- Problem. We are given n machines and m tasks that the machines need to do.
 - The i'th machine performs at most n_i tasks.
 - Every machine has a subset of the tasks that it is able to do.
 - Describe an algorithm for assigning the tasks (or stating that no valid assignment exists).

Solution

We wish to find a flow of size m.

Indegree and Outdegree

- Consider a digraph G = (V, E).
 - The *indegree* of a vertex $v \in V$ is the number of edges of E are directed into it.
 - The *outdegree* of a vertex $v \in V$ is the number of edges of E are directed out of it.

Subgraphs with Bounded Degrees

Problem. Given a directed graph
G = (V, E), describe an algorithm for finding a subset of the edges E' ⊂ E so that every vertex of V has an indegree and an outdegree of exactly 1 in (V, E') (or announce that such a set does not exist).

Solution

- Build a bipartite graph $G^* = (U \cup W, E^*)$ such that V = U = W.
 - Write $V = \{v_1, ..., v_n\}$, $U = \{u_1, ..., u_n\}$, and $W = \{w_1, ..., w_n\}$.
 - \circ For every edge $(v_i, v_j) \in E$, we add $(u_i, w_j) \in E^*$.
- Check whether there exists a perfect matching in G*.
 - If so, return the edges of the matching.
 - Otherwise, no valid subset exists.

Example: Building G^*

Correctness

- An edge $(v_i, v_j) \in E$ contributes 1 to the outdegree of v_i and to the indegree of v_i .
- In the bipartite graph, it corresponds to (u_i, w_j) , contributing 1 to the degrees of u_i, w_j .
- Consider a subset of the edges $E' \subset E$ and the degrees that the degrees that E' induces.
 - A vertex v_i has indegree and outdegree 1 iff both u_i and w_i have a degree of 1.
 - Every degree in the bipartite subgraph is 1 iff every indegree and outdegree is 1 in the induced subgraph.

Directing a Graph with Degree Constrains

• **Problem.** Given an undirected graph G = (V, E), which might not be simple, describe an algorithm that directs each of the edges of G, such that no outdegree is larger than 3.

Solution

• We build a flow network:

Solution (cont.)

• There is a valid orientation of the edges if and only if the size of the maximum flow is |E|.

Correctness (Sketch)

• There is a flow of size |E| in the network.

If and only if

 There is a flow where every vertex on the right side of the network receives a flow of 1 from one of its two neighbors.

If and only if

 There is an orientation of the edges of G such that every outdegree is at most 3.

A Mice Maze

- **Problem.** A maze consists of n^2 rooms in the form of an $n \times n$ matrix:
 - Between every two adjacent rooms there is a tunnel containing cheese.
 - Every room on the border of the maze contains a tunnel out, also with cheese.
 - m mice are placed in distinct rooms.
 - A mouse only enters tunnels with cheese in them, and then eats this cheese.
- Describe an algorithm for finding whether all m mice can escape the maze.

An Illustration

Solution

- We turn the maze into a flow network:
 - Every room is a vertex.
 - Every tunnel is a pair of anti-parallel edges.
 - The capacities are all 1.
 - The source is an additional vertex with an edge to every cell that contains a mouse.
 - The sink is an additional vertex with an edge from every exit tunnel.
 - All the mice can escape if and only if the maximum flow is of size m.

Back to MSTs

- Problem. Consider a connected undirected graph G = (V, E), a weight function w: E → N, an edge e ∈ E, and an integer k > 0. Describe an efficient algorithm for checking whether we can remove at most k edges from G so that e is in every MST of the resulting graph.
- Restrictions.
 - G has to remain connected after the removal.
 - Since k is large, we are not allowed to try all $\sim n^k$ sets of at most k edges.

Warm-up

- Set e = (u, v) and d = w(e).
- When is *e* in every MST of *G*?
 - If in every other path between u and v there is an edge with a weight larger than d.

Warm-up #2

- Set e = (u, v) and d = w(e).
- When is e in every MST of G after removing at most one edge of E?
 - $^{\circ}$ If after removing at most one edge every other path between u and v contains an edge with a weight larger than d.

Solution

- Set e = (u, v) and d = w(e).
- We wish to remove up to k edges, so that every other path between u and v contains an edge of weight larger than d.
- How can we do that?
 - Remove from G every $e' \in E$ with w(e') > d (These are ignored, and not part of the chosen subset).
 - We get a problem that was solved in the previous lecture: Finding the minimum subset of edges such that its removal disconnects s from t.

The End: An Exciting New Discovery!

