H3a Diffusion Monte Carlo

Here you are asked to implement the Diffusion Monte Carlo (DMC) technique. You will first study the one-dimensional Morse potential and then the helium atom. Atomic units (a.u.) will be used, i.e. $\hbar=e=m_e=4\pi\epsilon_0=1$. For information about the DMC technique, see Lecture notes "Quantum Structure".

Task

1. Consider first a particle with mass m moving in the one-dimensional Morse potential

 $V(x) = D \left[1 - e^{-ax} \right]^2$.

The well-depth is D and for small oscillations we have the frequency

$$\omega_0 = \sqrt{\frac{2a^2D}{m}}$$

around the minimum. Assume that the particle is an electron ($m = m_e$), the well-depth is $D = E_H/2$ and $a = a_0^{-1}$. In atomic units the potential is then given by

$$V(x) = \frac{1}{2} [1 - e^{-x}]^2$$
 ; $\omega_0 = 1$,

with the solution for the ground-state given by [1]

$$\Phi_0(x) = \sqrt{2} \exp\left[-e^{-x} - x/2\right] \; ; \; E_0 = \frac{3}{8} \; ,$$

with the normalisation

$$\int_{-\infty}^{\infty} |\Phi_0(x)|^2 dx = 1.$$

You should now determine the ground-state energy and wave function using diffusion Monte Carlo without importance sampling. Use the decomposition

$$e^{-\mathcal{L}\Delta\tau} \simeq e^{-\mathcal{L}_R\Delta\tau}e^{-\mathcal{L}_D\Delta\tau} + \mathcal{O}(\Delta\tau^2)$$

Place $N_0 = 200$ walkers equidistant between -5 < x < 5. Choose the values $E_T = 0.5$ and $\Delta \tau = 0.02$.

- For all walkers:
 - displace each walker according to the diffusive part

- evaluate the weight factor W(x) and eliminate or create walkers
- Update E_T so that the number of walkers eventually will stabilize around the value N_0 . For the damping parameter use $\gamma = 0.5$.
- Repeat many times.

Plot your result for E_{T} and the number of walkers as function of time τ . Does the simulation result stabilize, equilibrate, when τ is increasing? It should approach the correct ground-state energy.

When the system is stabilized you can determine the ground-state energy and ground-state wave function. What value do you obtain for the ground-state energy? Compare with the exact result. Plot your result for the ground-state wave function and compare that with the analytical result. (6p)

2. Consider now the helium atom.

$$\mathcal{H} = -\frac{1}{2}(\nabla_1^2 + \nabla_2^2) - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}}$$

Use the same algorithm as above. However in this case the walkers are not moving in one-dimension. You have to generalize to 6 dimensions $\mathcal{R} = (x_1, y_1, z_1, x_2, y_2, z_2)$.

Initially it is efficient to place the random walkers at some likely positions. In the radial direction we have from the central-field approximation that the wave-function is proportional to $r^2 \exp{-Zr}$. This has a maximum at r=2/Z, which implies that $r_{max}=1$ for Z=2 and $r_{max}=1.2$ for Z=27/16. Furthermore, to obtain a uniform distribution of points on the sphere the polar angle θ can not be chosen uniformly since the area element $d\Omega=\sin\theta\,d\theta\,d\varphi$ is a function of θ . Therefore, use the following initial values for each random walker:

$$r_1 = 0.7 + \mathcal{U}_1$$

$$\theta_1 = \arccos(2 \mathcal{U}_2 - 1)$$

$$\varphi_1 = 2\pi \mathcal{U}_3$$

$$r_2 = 0.7 + \mathcal{U}_4$$

$$\theta_2 = \arccos(2 \mathcal{U}_5 - 1)$$

$$\varphi_2 = 2\pi \mathcal{U}_6$$

where U_i are 6 different independent uniform random numbers on [0,1]. The corresponding cartesian coordinates are

$$x_1 = r_1 \sin \theta_1 \cos \varphi_1$$

 $y_1 = r_1 \sin \theta_1 \sin \varphi_1$

 $z_1 = r_1 \cos \theta_1$ $x_2 = r_2 \sin \theta_2 \cos \varphi_2$ $y_2 = r_2 \sin \theta_2 \sin \varphi_2$ $z_2 = r_2 \cos \theta_2$

Place $N_0 = 1000$ walkers according to the above scheme and choose the values $E_T = -3.0$. A suitable number for the time-step is $\Delta \tau = 0.01$. Without importance sampling the algorithm is quite inefficient and a short time-step is required to obtain reasonably stable results.

- For all walkers:
 - displace each walker according to the diffusive part
 - evaluate the weight factor $W(\mathcal{R})$ and eliminate or create walkers
- Update E_{T} so that the number of walkers eventually will stabilize around the value N_0 . For the damping parameter use $\gamma = 0.5$.
- Repeat many times.

In this case you will find that the algorithm is less efficient. However, try to convince yourself that the program is working correctly in 6 dimensions. Plot your result for E_{T} and the number of walkers as function of time τ . If you want you can store your last configuration and use it in the next sub-task, no 3, as initial condition. (2 p)

3. The algorithm can be made more efficient by using **importance sampling**. One then introduces a trial wavefunction $\Psi_{\mathsf{T}}(\mathcal{R})$ that mimics the real wave function $\Psi(\mathcal{R})$.

For helium we can use the trial wave-function

$$\Psi_T(\mathcal{R}) = \exp[-2r_1] \exp[-2r_2] \exp\left[\frac{r_{12}}{2(1+\alpha r_{12})}\right]$$

which is parametrized with a single variational parameter α . The corresponding expression for the local energy is

$$E_L(\mathcal{R}) = -4 + \frac{(\hat{r}_1 - \hat{r}_2) \cdot (r_1 - r_2)}{r_{12}(1 + \alpha r_{12})^2} - \frac{1}{r_{12}(1 + \alpha r_{12})^3} - \frac{1}{4(1 + \alpha r_{12})^4} + \frac{1}{r_{12}}$$

where \hat{r}_i denote a unit vector along r_i , for i = 1, 2. This is the same trial wave-function as used in the homework problem H2b Variational Monte Carlo. More information can be found in the Lecture notes "Quantum structure".

The original Schrödinger equation is then transformed to a Fokker-Planck equation (see Lecture notes "Quantum structure") for the function $f(\mathcal{R},\tau) = \Psi_{\mathsf{T}}(\mathcal{R})\Psi(\mathcal{R},\tau)$. A drift part is then added that "pushes" the random walkers into more important regions. Using the trial wave-function above an expression for the drift velocity $v_F(\mathcal{R})$ can be derived. For the first three components (x_1,y_1,z_1) we obtain the expression

$$v_F(\mathcal{R}) = -2\hat{r}_1 - \frac{1}{2(1 + \alpha r_{12})^2}\hat{r}_{12}$$

and for the next three components (x_2, y_2, z_2)

$$v_F(\mathcal{R}) = -2\hat{r}_2 - \frac{1}{2(1 + \alpha r_{12})^2}\hat{r}_{12}$$

where \hat{r}_{12} denote a unit vector along $r_{12} \equiv r_2 - r_1$, i.e. $\hat{r}_{12} = r_{12}/r_{12}$ and $|r_{12}| = r_{12}$. For more details, see the Lecture notes "Quantum structure".

Now perform a diffusion Monte Carlo (DMC) study of helium using importance sampling. For the α -value in the trial wave-function use $\alpha=0.15$. This value can be obtained in a variational Monte Carlo (VMC) study of helium.

Use N_0 =1000, $\Delta \tau$ =0.1 and E_{T} =-3.0. For the damping parameter use γ =0.5. You can test to vary the damping parameter γ . As starting configuration use either the description in sub-task no 2, or the last configuration from the previous sub-task (no 2). This configuration should contain about N=1000 random walkers. In this case you could also use the last value for E_{T} from the previous sub-task (no 2) as your initial value for E_{T} .

First use the decomposition

$$e^{-\mathcal{L}\Delta\tau} \simeq e^{-\mathcal{L}_R\Delta\tau} e^{-\mathcal{L}_D\Delta\tau} e^{-\mathcal{L}_F\Delta\tau} + \mathcal{O}(\Delta\tau^2)$$

To update the drift part use

$$\mathcal{R}(\Delta \tau) = \boldsymbol{v}_F(\mathcal{R}') \Delta \tau + \mathcal{R}'$$

Run and update E_{T} along the simulation. Verify that E_{T} stabilizes when τ is increasing and approaches a reasonable value for the ground-state energy. Plot your result for E_{T} and the number of walkers as function of time τ . What value do you obtain for the ground-state energy?

Change to the more accurate decomposition

$$e^{-\mathcal{L}\Delta\tau} \simeq e^{-\mathcal{L}_F\Delta\tau/2} e^{-\mathcal{L}_D\Delta\tau/2} e^{-\mathcal{L}_R\Delta\tau} e^{-\mathcal{L}_D\Delta\tau/2} e^{-\mathcal{L}_F\Delta\tau/2} + \mathcal{O}(\Delta\tau^3)$$

and then update the drift part according to

$$\mathcal{R}(\Delta \tau) = v_F(\mathcal{R}_{1/2})\Delta \tau + \mathcal{R}'$$
, with $\mathcal{R}_{1/2} = v_F(\mathcal{R}')\Delta \tau / 2 + \mathcal{R}'$

Repeat the simulation and verify again that E_{T} stabilizes when τ is increasing and approach a reasonable value for the ground-state energy. Plot your result for E_{T} and the number of walkers as function of time τ . What value do you obtain for the ground-state energy? (6 p)

4. You should now have a working program for a diffusion Monte Carlo (DMC) study of the helium atom. Due to the finite size of the time step $\Delta \tau$ you do not obtain the exact result. You should now extrapolate your result and extract the exact value.

Using the decomposition

$$e^{-\mathcal{L}\Delta\tau} \simeq e^{-\mathcal{L}_R\Delta\tau} e^{-\mathcal{L}_D\Delta\tau} e^{-\mathcal{L}_F\Delta\tau}$$

the ground-state energy should scale linearly with the time step $\Delta \tau$ and by using

$$e^{-\mathcal{L}\Delta\tau} \simeq e^{-\mathcal{L}_F\Delta\tau/2} e^{-\mathcal{L}_D\Delta\tau/2} e^{-\mathcal{L}_R\Delta\tau} e^{-\mathcal{L}_D\Delta\tau/2} e^{-\mathcal{L}_F\Delta\tau/2}$$

the scaling should become quadratic in $\Delta \tau$. Perform calculations for some $\Delta \tau$ -values in the interval $0 < \Delta \tau \le 0.4$ using the two different decompositions above. Notice, when you reduce the time-step $\Delta \tau$, increase the number of steps in the DMC algorithm, accordingly.

Plot your final results for the ground-state energy as function of $\Delta \tau$ and extrapolate to zero. What is your best estimate of the ground-state energy for helium? (2 p)

References

[1] L. Infeld and T. E. Hull, Rev. Mod. Phys. **23**, 21 (1951).