Recursion and Dynamic Programming

Biostatistics 615/815 Lecture 5

Last Lecture

- Principles for analysis of algorithms
 - Empirical Analysis
 - Theoretical Analysis
- Common relationships between inputs and running time
- Described two simple search algorithms

Recursive refers to ...

A function that is part of its own definition

$$\textbf{e.g.} \quad Factorial(N) = \begin{cases} N \cdot Factorial(N-1) & \text{if N} > 0 \\ \\ 1 & \text{if N} = 0 \end{cases}$$

A program that calls itself

Key Applications of Recursion

- Dynamic Programming
 - Related to Markov processes in Statistics
- Divide-and-Conquer Algorithms

Tree Processing

Recursive Function in C

```
int factorial (int N)
{
  if (N == 0)
    return 1;
  else
    return N * factorial(N - 1);
}
```

Key Features of Recursions

Simple solution for a few cases

- Recursive definition for other values
 - Computation of large N depends on smaller N
- Can be naturally expressed in a function that calls itself
 - Loops are sometimes an alternative

A Typical Recursion: Euclid's Algorithm

- Algorithm for finding greatest common divisor of two integers a and b
 - If a divides b
 - GCD(a,b) is a
 - Otherwise, find the largest integer t such that
 - at + r = b
 - GCD(a,b) = GCD(r,a)

Euclid's Algorithm in C

```
int gcd (int a, int b)
{
  if (a == 0)
   return b;
}
```

Evaluating GCD(4458, 2099)

```
gcd(2099, 4458)
gcd(350, 2099)
gcd(349, 350)
gcd(1, 349)
gcd(0, 1)
```

Divide-And-Conquer Algorithms

- Common class of recursive functions
- Common feature
 - Process input
 - Divide input in smaller portions
 - Recursive call(s) process at least one portion
- Recursion may sometimes occur before input is processed

Recursive Binary Search

```
int search(int a[], int value, int start, int stop)
  // Search failed
  if (start > stop)
     return -1;
  // Find midpoint
  int mid = (start + stop) / 2;
  // Compare midpoint to value
  if (value == a[mid]) return mid;
  // Reduce input in half!!!
  if (value < a[mid])</pre>
     return search(a, start, mid - 1);
  else
     return search(a, mid + 1, stop);
```

Recursive Maximum

```
int Maximum(int a[], int start, int stop)
{
  int left, right;

  // Maximum of one element
  if (start == stop)
     return a[start];

  left = Maximum(a, start, (start + stop) / 2);
  right = Maximum(a, (start + stop) / 2 + 1, stop);

  // Reduce input in half!!!
  if (left > right)
     return left;
  else
     return right;
}
```

An inefficient recursion

Consider the Fibonacci numbers

$$Fibonacci(N) = \begin{cases} 0 & \text{if } N = 0 \\ 1 & \text{if } N = 1 \end{cases}$$

|Fibonacci(N-1) + Fibonacci(N-2)|

Fibonacci Numbers

```
int Fibonacci(int i)
{
   // Simple cases first
   if (i == 0)
       return 0;

if (i == 1)
       return 1;

return Fibonacci(i - 1) + Fibonacci(i - 2);
}
```

Terribly Slow!

Calculating Fibonacci Numbers Recursively

What is going on? ...

Faster Alternatives

- Certain quantities are recalculated
 - Far too many times!
- Need to avoid recalculation
 - Ideally, calculate each unique quantity once.

Dynamic Programming

A technique for avoiding recomputation

Can make exponential running times

become linear!

Bottom-Up Dynamic Programming

- Evaluate function starting with smallest possible argument value
 - Stepping through possible values, gradually increase argument value
- Store all computed values in an array
- As larger arguments evaluated, precomputed values for smaller arguments can be retrieved

Fibonacci Numbers in C

```
int Fibonacci(int i)
{
  int fib[LARGE_NUMBER], j;

fib[0] = 0;
  fib[1] = 1;

for (j = 2; j <= i; j++)
    fib[j] = fib[j - 1] + fib[j - 2];

return fib[i];
}</pre>
```

Fibonacci With Dynamic Memory

```
int Fibonacci(int i)
  int * fib, j, result;
  if (i < 2) return i;
  fib = malloc(sizeof(int) * (i + 1));
  fib[0] = 0; fib[1] = 1;
  for (j = 2; j \le i; j++)
      fib[j] = fib[j - 1] + fib[j - 2];
  result = fib[i];
  free (fib);
  return result;
```

Top-Down Dynamic Programming

Save each computed value as final action of recursive function

 Check if pre-computed value exists as the first action

Fibonacci Numbers

```
// Note: saveF should be a global array initialized all zeros
int Fibonacci(int i)
{
    // Simple cases first
    if (saveF[i] > 0)
        return saveF[i];

if (i <= 1)
        return i;

// Recursion
    saveF[i] = Fibonacci(i - 1) + Fibonacci(i - 2);
    return saveF[i];
}</pre>
```

Much less recursion now...

Dynamic Programming Top-down vs. Bottom-up

 In bottom-up programming, programmer has to do the thinking by selecting values to calculate and order of calculation

 In top-down programming, recursive structure of original code is preserved, but unnecessary recalculation is avoided.

Examples of Useful Settings for Dynamic Programming

Calculating Binomial Coefficients

Evaluating Poisson-Binomial Distribution

Binomial Coefficients

 The number of subsets with k elements from a set of size N

$$\binom{N}{k} = \binom{N-1}{k} + \binom{N-1}{k-1}$$

$$\binom{N}{0} = \binom{N}{N} = 1$$

Bottom-Up Implementation in C

Top-Down Implementation (I)

Top-Down Implementation (II)

```
int Choose(int N, int k)
{
    // Check if this is an easy case
    if (N == k || k == 0)
        return 1;

    // Or a previously examined case
    if (choices[N][k] > 0)
        return choices[N][k];

    // If neither of the above helps, use recursion
    choices[N][k] = Choose(N - 1, k - 1) + Choose(N - 1, k);

    return choices[N][k];
}
```

Poisson-Binomial Distribution

• $X_1, X_2, ..., X_n$ are Bernoulli random variables

• Probability of success is p_k for X_k

• $\sum_{k} X_{k}$ has Poisson-Binomial Distribution

Recursive Formulation

$$P_1(0) = 1 - p_1$$

 $P_1(1) = p_1$

$$P_{j}(0) = (1 - p_{j})P_{j-1}(0)$$

$$P_{j}(j) = p_{j}P_{j-1}(j-1)$$

$$P_{j}(i) = p_{j}P_{j-1}(i-1) + (1 - p_{j})P_{j-1}(i)$$

Summary

- Recursive functions
 - Arise very often in statistics
- Dynamic programming
 - Bottom-up Dynamic Programming
 - Top-down Dynamic Programming
- Dynamic program is an essential tool for statistical programming

Good Programming Practices

- Today's examples used global variables
 - Variables declared outside a function
 - Accessible throughout the program
- In general, these should be used sparingly
- Two alternatives are:
 - Using static variables that are setup on the first call
 - Using C++ to group a function and its data

Function with Built-In Initialization

```
int Choose(int N, int k)
   static int valid = 0, choices[MAX N][MAX N], i, j;
   // Check if we need to initialize data
  if (valid == 0)
      for (i = 0; i < MAX N; i++)</pre>
         for (j = 0; j < MAX N; j++)
             choices[i][j] = 0;
      valid = 1;
  // Check if this is an easy case
   if (N == k | | k == 0) return 1;
  // Or a previously examined case
   if (choices[N][k] > 0) return choices[N][k];
   // If neither of the above helps, use recursion
   choices[N][k] = Choose(N - 1, k - 1) + Choose(N - 1, k);
  return choices[N][k];
   }
```

C++ Declarations (for .h file)

C++ Code (for .cpp file)

```
Choose::Choose()
   for (int i = 0; i < MAX N; i++)</pre>
      for (int j = 0; j < MAX N; <math>j++)
          choices[i][j] = 0;
int Choose::Evaluate()
   // Check if this is an easy case
   if (N == k | | k == 0) return 1;
   // Or a previously examined case
   if (choices[N][k] > 0) return choices[N][k];
   // If neither of the above helps, use recursion
   choices [N] [k] = Choose (N - 1, k - 1) + Choose (N - 1, k);
   return choices[N][k];
```

Using C++ Code

```
#include "Choose.h"

int main()
{
   Choose choices;

   // Evaluate 20_choose_10
   choices.Evaluate(20, 10);

   // Evaluate 30_choose_10
   choices.Evaluate(30, 10);

   return 0;
}
```

Reading

Sedgewick, Chapters 5.1 – 5.3