#### Seri bahan kuliah Algeo #13 – Update 2023

# Vektor di Ruang Euclidean (bagian 3)

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

## Perkalian Silang (cross product)

• Jika  $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$  dan  $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$  adalah dua vektor di R³ maka perkalian silang (*cross product*) antara  $\mathbf{u}$  dan  $\mathbf{v}$  adalah

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

$$\mathbf{u} \times \mathbf{v} = (\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix})$$

Tips: 
$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$
  $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$   $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$   $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$ 

• Perkalian silang menghasilkan vektor, perkalian titik menghasilkan skalar

**Contoh 1**: Misalkan  $\mathbf{u} = (0, 1, 7) \text{ dan } \mathbf{v} = (1, 4, 5), \text{ maka}$ 

$$\begin{bmatrix} 0 & 1 & 7 \\ 1 & 4 & 5 \end{bmatrix}$$

$$\mathbf{u} \times \mathbf{v} = (\begin{vmatrix} 1 & 7 \\ 4 & 5 \end{vmatrix}, -\begin{vmatrix} 0 & 7 \\ 1 & 5 \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ 1 & 4 \end{vmatrix})$$
$$= (5 - 28, -(0 - 7), 0 - 1)$$
$$= (-23, 7, -1)$$



- Jika  $\mathbf{u} \times \mathbf{v} = \mathbf{w}$  maka  $\mathbf{w} \perp \mathbf{u}$  dan  $\mathbf{w} \perp \mathbf{v}$
- Pada Contoh 1 sebelumnya,  $\mathbf{u} = (0, 1, 7)$  dan  $\mathbf{v} = (1, 4, 5)$ , dan sudah dihitung:

$$(0, 1, 7) \times (1, 4, 5) = (-23, 7, -1)$$
  
**u v w**

$$\mathbf{w} \cdot \mathbf{u} = (-23, 7, -1) \cdot (0, 1, 7) = (-23)(0) + (7)(1) + (-1)(7)$$
  
= 0 + 7 - 7 = 0  $\rightarrow \mathbf{w} \perp \mathbf{u}$ 

$$\mathbf{w} \cdot \mathbf{v} = (-23, 7, -1) \cdot (1, 4, 5) = (-23)(1) + (7)(4) + (-1)(5)$$
  
= -23 + 28 - 5 = 0  $\rightarrow \mathbf{w} \perp \mathbf{v}$ 



## Sifat-sifat Perkalian Silang

#### THEOREM 3.5.2 Properties of Cross Product

If  $\mathbf{u}$ ,  $\mathbf{v}$ , and  $\mathbf{w}$  are any vectors in 3-space and k is any scalar, then:

- (a)  $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
- (b)  $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
- (c)  $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$
- (d)  $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
- (e)  $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
- (f)  $\mathbf{u} \times \mathbf{u} = 0$

## Perkalian Silang dan Perkalian Titik

#### THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

If u, v, and w are vectors in 3-space, then

(a) 
$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$
 ( $\mathbf{u} \times \mathbf{v}$  is orthogonal to  $\mathbf{u}$ )

(b) 
$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$
 ( $\mathbf{u} \times \mathbf{v}$  is orthogonal to  $\mathbf{v}$ )

(c) 
$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$
 (Lagrange's identity)

(d) 
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$
 (relationship between cross and dot products)

(e) 
$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$
 (relationship between cross and dot products)

• Menurut kesamaan Lagrange (Teorema 3.5.1(c)):

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - (\mathbf{u} \cdot \mathbf{v})^{2}$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - (\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta)^{2}$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - (\|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \cos^{2} \theta)$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} (1 - \cos^{2} \theta)$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \sin^{2} \theta$$

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

 $\theta$  adalah sudut antara **u** dan **v** 

## Perkalian Silang Vektor Satuan Standard

• Vektor satuan standard di R<sup>2</sup> adalah i dan j:

$$i = (1, 0) dan j = (0, 1)$$

• Setiap vektor  $\mathbf{v} = (v_1, v_2)$  di  $R^2$  dapat dinyatakan sebagai kombinasi linier

$$\mathbf{v} = \mathbf{v}_1 \mathbf{i} + \mathbf{v}_2 \mathbf{j}$$

• Vektor satuan standard di R<sup>3</sup> adalah i, j, dan k:

$$i = (1, 0, 0), j = (0, 1, 0), dan k = (0, 0, 1),$$

• Setiap vektor  $\mathbf{v} = (v_1, v_2, v_3)$  di R³ dapat dinyatakan sebagai kombinasi liner  $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ 



• Perkalian silang i dan j: i = (1, 0, 0) dan j = (0, 1, 0), maka

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{i} \times \mathbf{j} = (\begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}, -\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix})$$

$$= (0, 0, 1) = k$$

• 
$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$
  $\mathbf{j} \times \mathbf{k} = \mathbf{i}$   $\mathbf{k} \times \mathbf{i} = \mathbf{j}$   $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$   $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$   $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$ 



• Misalkan  $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) = \mathbf{u}_1 \mathbf{i} + \mathbf{u}_2 \mathbf{j} + \mathbf{u}_3 \mathbf{k}$  $dan \mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \mathbf{v}_1 \mathbf{i} + \mathbf{v}_2 \mathbf{j} + \mathbf{v}_3 \mathbf{k}$ 

maka, dengan menggunakan ekspansi kofaktor:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_2 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

Contoh 2: Lihat kembali Contoh 1,

$$\mathbf{u} = (0, 1, 7) = \mathbf{j} + 7\mathbf{k}$$
  
 $\mathbf{v} = (1, 4, 5) = \mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ 

maka

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 7 \\ 1 & 4 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 7 \\ 4 & 5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 0 & 7 \\ 1 & 5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 0 & 1 \\ 1 & 4 \end{vmatrix} \mathbf{k}$$
$$= (5 - 28)\mathbf{i} - (0 - 7)\mathbf{j} + (0 - 1)\mathbf{k}$$
$$= -23\mathbf{i} + 7\mathbf{j} - \mathbf{k}$$

## Aplikasi Geometri Perkalian Silang

#### 1. Menghitung luas area parallelogram

Parallelogram: area paralel yang dibentuk oleh dua buah vektor



**Jadi,**  $\|\mathbf{u} \times \mathbf{v}\|$  menyatakan luas area paraleogram yang ditentukan oleh vektor  $\mathbf{u}$  dan  $\mathbf{v}$ 

**Contoh 3**: Tentukan luas segitiga yang ditentukan oleh titik  $P_1(2, 2, 0)$ ,  $P_2(-1, 0, 2)$ , dan  $P_3(0, 4, 3)$ .



Penyelesaian: luas segitiga = ½ luas parallelogram

$$\mathbf{u} = \overrightarrow{P_1 P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1} = (-1, 0, 2) - (2, 2, 0)$$
  
= (-3, -2, 2)

$$\mathbf{v} = \overrightarrow{P_1 P_3} = \overrightarrow{OP_3} - \overrightarrow{OP_1} = (0, 4, 3) - (2, 2, 0)$$
  
= (-2, 2, 3)

$$\mathbf{u} \times \mathbf{v} = (\begin{vmatrix} -2 & 2 \\ 2 & 3 \end{vmatrix}, -\begin{vmatrix} -3 & 2 \\ -2 & 3 \end{vmatrix}, \begin{vmatrix} -3 & -2 \\ -2 & 2 \end{vmatrix})$$
  
= (-10, 5, -10)

Luas parallelogram:

$$\|\mathbf{u} \times \mathbf{v}\| = \sqrt{(-10)^2 + (5)^2 + (-10)^2} = \sqrt{225} = 15$$

Luas segitiga  $P_1P_2P_3 = \frac{1}{2}(15) = 7.5$ 

#### 2. Menghitung volume parallelepide

Parallelepide: bangun tiga dimensi yang dibentuk oleh tiga buah vektor di R<sup>3</sup>.





Tinjau tiga vektor:

$$\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$$
  
 $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$   
 $\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$ 

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \cdot \begin{pmatrix} v_2 & v_3 \\ w_2 & w_3 \end{pmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k}$$

$$= \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} u_1 - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} u_2 + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} u_3$$

$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \longrightarrow \text{determina}$$

Nilai mutlak dari determinan, atau  $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$ , menyatakan volume parallelepiped

**Contoh 4:** Tentukan volume *paralellepiped* yang dibentuk oleh tiga buah vektor  $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}$ ,  $\mathbf{v} = \mathbf{i} + 4\mathbf{j} - 4\mathbf{k}$ , dan  $\mathbf{w} = 3\mathbf{j} + 2\mathbf{k}$ 

#### Penyelesaian:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix}$$

$$= 3 \begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} + (-5) \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$

$$= 60 + 4 - 15$$
  
 $= 49$ 

Volume parallelepiped adalah |49| = 49

### Tafsiran Geometri Determinan

- Kembali ke determinan
- Misalkan  $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$  dan  $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2)$  adalah vektor-vektor di R<sup>2</sup>. Nilai mutlak dari determinan

$$\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}$$

kalo 2 dimensi, determinan = luas

menyatakan luas *parallelogram* yang dibentuk oleh **u** dan **v**.



• Misalkan  $\mathbf{u} = (u_1, u_2, u_3), \mathbf{v} = (v_1, v_2, v_3), dan \mathbf{w} = (w_1, w_2, w_3), adalah vektor-vektor di R<sup>3</sup>. Nilai mutlak dari determinan$ 

$$\begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

kalo 3 dimensi, determinan = volume

menyatakan volume parallelepiped yang dibentuk oleh u, v dan w.



**Contoh 5:** Tentukan luas *paralellogram* yang dibentuk oleh dua buah vektor  $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$  dan  $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$ 

#### Penyelesaian:

$$\det\begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} = \begin{vmatrix} 4 & 3 \\ 3 & -4 \end{vmatrix} = -16 - 9 = -25$$

Luas parellogram yang dibentuk oleh  $\mathbf{u}$  dan  $\mathbf{v}$  adalah |-25| = 25

**Contoh 6:** Misalkan tiga buah vektor di R<sup>3</sup> berikut memiliki titik asal yang sama  $\mathbf{u} = (1, 1, 2)$ ,  $\mathbf{v} = (1, 1, 5)$ , dan  $\mathbf{w} = (3, 3, 1)$ 

Perlihatkan bahwa ketiga buah vektor tersebut terletak pada satu bidang yang sama.

Penyelesaian:

$$\det\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 5 \\ 3 & 3 & 1 \end{bmatrix} = (1) \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} - (1) \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} + (2) \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix}$$

$$= (1)(-14) - (1)(-14) + (2)(0) = -14 + 14 + 0 = 0$$

Karena determinan = 0, berarti volume *parallelpiped* = 0, dengan kata lain ketiga buah vektor tersebut terletak pada satu bidang yang sama.

## Latihan (Kuis 2022)

Diketahui vektor  $\mathbf{u} = (5, -2, 1), \mathbf{v} = (4, -1, 1), dan \mathbf{w} = (1, -1, 0)$  memiliki titik asal yang sama

- a) Tunjukkan bahwa ketiga vektor tersebut terletak pada bidang yang sama.
- b) Dengan menggunakan nomal bidang, tentukan persamaan bidang pada soal a)
- c) Tentukan jarak dari titik P(3, -2, 0) ke bidang pada soal a) di atas

#### Jawaban:

a) Ada banyak cara untuk menunjukkan tiga buah vektor terletak dalam satu bidang yang sama, salah satunya adalah dengan menunjukkan bahwa volume parallelpide yang dibentuk oleh ketiga vektor tersebut sama dengan nol.

$$V = \begin{vmatrix} 5 & -2 & 1 \\ 4 & -1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = 0$$

Karena volume parallelpide sama dengan 0, maka tiga buah vektor tersebut terletak pada satu bidang

#### b) Persamaan bidang:

Tentukan normal terlebih dahulu

$$\mathbf{n} = \mathbf{u} \times \mathbf{v} = (5, -2, 1) \times (4, -1, 1) = (-1, -1, 3)$$

Persamaan bidang dengan  $\mathbf{n} = (a, b, c) = (-1, -1, 3)$  dan melalui (x0, y0, z0) = (5, -2, 1) sebagai acuan adalah:

$$a(x-x0) + b(y-y0) + c(z-z0) = 0$$

$$-(x-5) - 1(y+2) + 3(z-1) = 0$$

$$-x + 5 - y - 2 + 3z - 3 = 0$$

$$x + y - 3z = 0$$

Jika menggunakan titik (4,-1,1) sebagai acuan, maka

$$a(x-x0) + b(y-y0) + c(z-z0) = 0$$

$$-(x-4) - 1(y+1) + 3(z-1) = 0$$

$$-x + 4 - y - 1 + 3z - 3 = 0$$

$$x + y - 3z = 0$$

Jika menggunakan titik (1,-1,0) sebagai acuan, maka

$$a(x-x0) + b(y-y0) + c(z-z0) = 0$$

$$-(x-1) - 1(y+1) + 3(z-0) = 0$$

$$-x + 1 - y - 1 + 3z - 0 = 0$$

$$x + y - 3z = 0$$

Hasilnya sama

c) Tentukan jarak dari titik P(3, -2, 0) ke bidang x + y - 3z = 0 adalah

$$d = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|(1)(3) + (1)(-2) + (-3)(0) + 0|}{\sqrt{(1)^2 + (1)^2 + (-3)^2}} = \frac{|1|}{\sqrt{11}} = \frac{1}{\sqrt{11}} = \frac{1}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}} = \frac{1}{11}\sqrt{11}$$

## Latihan (Kuis 2021)

Diketahui tiga buah titik P(2, 6, 1), Q(4, 2, 8), dan R(-8, 4, 10).

- a) Dengan menggunakan normal bidang, tentukan persamaan bidang yang melalui titik P,
   Q, dan R
- b) Jika S(-2, 0, 1) adalah sebuah titik yang tidak terletak pada bidang dari jawaban a di atas, tentukan panjang proyeksi vektor PS pada vektor PQ tersebut dan sudut yang dibentuk vektor PS dengan PQ.

#### Jawaban:

a) Normal bidang:  $\mathbf{n} = \mathbf{PQ} \times \mathbf{PR}$   $\mathbf{PQ} = (4, 2, 8) - (2, 6, 1) = (2, -4, 7)$  $\mathbf{PR} = (-8, 4, 10) - (2, 6, 1) = (-10, -2, 9)$ 

$$\mathbf{n} = \mathbf{PQ} \times \mathbf{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & 7 \\ -10 & -2 & 9 \end{vmatrix} = -22\mathbf{i} - 88\mathbf{j} - 44\mathbf{k}$$

Jadi, 
$$\mathbf{n} = (-22, -88, -44)$$

Persamaan bidang yang melalui titik P sebagai acuan adalah:

$$a(x-x0) + b(y-y0) + c(z-z0) = 0$$

$$-22(x-2) - 88(y-6) - 44(z-1) = 0$$

$$-22x + 44 - 88y + 528 - 44z + 44 = 0$$

$$-22x - 88y - 44z + 616 = 0$$

$$x + 4y + 2z - 28 = 0$$

b) **PS** = 
$$(-2, 0, 1) - (2, 6, 1) = (-4, -6, 0)$$

Proyeksi vektor **PS** pada vektor **PQ** misalkan adalah **x**:

$$= \frac{\mathbf{PS} \cdot \mathbf{PQ}}{\|\mathbf{PQ}\|^2} \mathbf{PQ} = \frac{(-4)(2) + (-6)(-4) + (0)(7)}{2^2 + (-4)^2 + (7)^2} (2, -4, 7) = \frac{16}{69} (2, -4, 7) = \left(\frac{32}{69}, -\frac{64}{69}, \frac{112}{69}\right)$$
Panjang  $\mathbf{x} = \|\mathbf{x}\| = \sqrt{(\frac{32}{69})^2 + (-\frac{64}{69})^2 + (\frac{112}{69})^2} = \frac{16}{69} \sqrt{69}$ 

Sudut yang dibentuk oleh vektor PS dan vektor PQ adalah:

$$\cos \theta = \frac{\mathbf{PS} \cdot \mathbf{PQ}}{\|\mathbf{PS}\| \|\mathbf{PQ}\|} = \frac{(-4)(2) + (-6)(-4) + (0)(7)}{\sqrt{(-4)^2 + (-6)^2 + 0^2} \sqrt{2^2 + (-4)^2 + (7)^2}} = \frac{16}{\sqrt{52}\sqrt{69}} = \frac{16}{\sqrt{3588}} = 0.267$$

$$\theta = 74.51^{\circ}$$

## Latihan (Kuis 2022)

Diketahui empat buah titik A(0,1,0); B(2,1,2), C(3,2,1); D(3,1,2).

- a) Hitunglah luas segitiga yang dibentuk oleh A,C, dan D
- b) Jika tiga titik A,C,D merupakan alas dari paralelpiped A,B,C,D, hitunglah volumenya.

Jawaban: (halaman sebelah)

#### Jawaban a)

Calculate cross product of vectors:

$$\overline{c} = \overline{AC} \times \overline{AD}$$

$$\overline{AC} \times \overline{AD} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ AC_x & AC_y & AC_z \\ AD_x & AD_y & AD_z \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 1 & 1 \\ 3 & 0 & 2 \end{vmatrix} = \mathbf{i}(1 \cdot 2 - 1 \cdot 0) - \mathbf{j}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(2 - 0) - \mathbf{j}(6 - 3) + \mathbf{k}(0 - 3) = \mathbf{i}(2 - 0) - \mathbf{j}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(2 - 0) - \mathbf{j}(6 - 3) + \mathbf{k}(0 - 3) = \mathbf{i}(2 - 0) - \mathbf{j}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(2 - 0) - \mathbf{j}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(2 - 0) - \mathbf{j}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(2 - 0) - \mathbf{j}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(2 - 0) - \mathbf{j}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(2 - 0) - \mathbf{j}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{k}(3 \cdot 0 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{i}(3 \cdot 2 - 1 \cdot 3) = \mathbf{i}(3 \cdot 2 - 1 \cdot 3) + \mathbf{i}(3 \cdot 2 - 1$$

$$= \{2; -3; -3\}$$

Calculate magnitude of a vector:

$$|\overline{c}| = \sqrt{c_x^2 + c_y^2 + c_z^2} = \sqrt{2^2 + (-3)^2 + (-3)^2} = \sqrt{4 + 9 + 9} = \sqrt{22}$$

#### Calculate triangle area:

$$A = \frac{1}{2}\sqrt{22} = \frac{\sqrt{22}}{2} \approx 2.345207879911715$$

#### Jawaban b)

Calculate vector by initial and terminal points:

= -2

Volumenya |-2| = 2

## **TAMAT**