

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ И	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ	
КАФЕДРА КОМ	ИПЬЮТЕРНЫЕ СИСТЕМ	Ы И СЕТИ (ИУ6)
НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника		
Отчет		
Отчет		
по лабораторной работе № 3		
Название: Организация памяти суперскалярных ЭВМ		
Дисциплина: Архитектура ЭВМ		
<u> </u>	icki y pu 3Divi	
Студент гр. ИУ7-52Б		С.С. Беляк
J	(Подпись, дата) (И	.О. Фамилия)
Преподаватель		А. Ю. Попов
тр тодивитель	(Подпись, дата) (И	.О. Фамилия)

Цель работы

Цель работы - освоение принципов эффективного использования подсистемы памяти современных универсальных ЭВМ, обеспечивающей хранение и своевременную выдачу команд и данных в центральное процессорное устройство. Работа проводится с использованием программы для сбора и анализа производительности РСLAB.

Эксперимент №1: Исследования расслоения динамической памяти.

Цель эксперимента: определение способа трансляции физического адреса, используемого при обращении к динамической памяти.

На рисунке 1 представлен график, полученный в результате эксперимента с исходными параметрами:

Максимальное расстояния между читаемыми блоками (К) = 64;

Шаг увеличения расстояния между читаемыми 4-х байтовыми ячейками (5) = 64;

Размер массива (M) = 10.

Рисунок 1 – Эксперимент №1

Рисунок 2 – T1

Рисунок 3 – Т2

Минимальный шаг чтения динамической памяти, при котором происходит постоянное обращение к одному и тому же банку T1 = 640.

Объем данных, являющийся минимальной порцией обмена кэш-памяти верхнего уровня с оперативной памятью и соответствующий размеру линейки кэш-памяти верхнего уровня $\Pi=48$.

Количество банков памяти Б = 640/48 = 13. Расстояние (в байтах) между началом двух последовательных страниц одного банка T2 = 32768.

Размер одной страницы PC = T2/Б = 2521.

Полный объем памяти $O = 4\Gamma6 = 42949672966$.

Количество страниц физической оперативной памяти

 $C = O/(PC*F*\Pi) = 4F6/(2794*13*48) = 4294967296/1573104 = 2730.$

Вывод: Оперативная память неоднородна, и для обращения к последовательно расположенными данным может потребоваться различное количество времени. Поэтому, при создании программ необходимо учитывать расслоение памяти при обработке данных.

Эксперимент №2: Сравнение эффективности ссылочных и векторных структур

Цель эксперимента: оценка влияния зависимости команд по данным на эффективность вычислений.

На рисунке 4 представлен график, полученный в результате эксперимента с исходными параметрами.

Рисунок 4 – Эксперимент №2

Вывод: Список обрабатывался в 19,138781 раз дольше. Так как список обрабатывается дольше, выгоднее использовать массив.

Эксперимент №3: Исследование эффективности программной предвыборки

Цель эксперимента: выявление способов ускорения вычислений благодаря применению предвыборки данных.

Степень ассоциативности = 4. Размер TLB = 4Кб.

Рисунок 5 – Эксперимент №3

Обработка без загрузки таблицы страниц в TLB производилась в 1,38 раз дольше.

Вывод: Используя предвыборку, можно ускорить время работы программы за счет заблаговременной загрузки страниц в память.

Эксперимент №4: Исследование способов эффективного чтения оперативной памяти

Цель эксперимента: исследование возможности ускорения вычислений благодаря использованию структур данных, оптимизирующих механизм чтения оперативной памяти.

На рисунке 6 представлен график, полученный в результате эксперимента с исходными параметрами:

Рисунок 6 – Эксперимент №4

Неоптимизированная структура обрабатывалась в 1,5 раза дольше.

Вывод: Для ускорения работы алгоритмов, необходимо правильно упорядочить данные.

Эксперимент №5: Исследование конфликтов в кэш-памяти

Цель эксперимента: исследование влияния конфликтов кэш-памяти на эффективность вычислений.

Размер банка кэш-памяти данных первого и второго уровня L1 = 32 Кб, L2 = 32 Кб.

Степень ассоциативности кэш-памяти первого и второго уровня = 4. Размер линейки кэш-памяти первого и второго уровня = 4Кб.

На рисунке 7 представлен график, полученный в результате эксперимента с исходными параметрами

Рисунок 7 – Эксперимент №5

Чтение с конфликтами банков производилось в 16,072822 раз дольше.

Вывод: Выбирать данные следует не с таким шагом, чтобы они попадали в разные физические банки, а просто добавлять к этому смещение.

Эксперимент №6: Сравнение алгоритмов сортировки

На рисунке 8 представлен график, полученный в результате эксперимента с исходными параметрами:

Количество 64-х разрядных элементов массивов (M) = 12; Шаг увеличения размера массива (K) = 560.

Рисунок 8 – Эксперимент №6

QuickSort работал в 1,7026095 раз дольше Radix-Counting Sort. QuickSort работал в 1,8937055 раз дольше Radix-CountingSort, оптимизированного под 8-процессорную ЭВМ.

Вывод: Существует сортировка, работающая быстрее чем QuickSort.