EI J2 M5

MATHEMATIK

2011-12

Stunde vom 15.09.2011

 $a \cdot b = 0,$ wenn $a_1b_1+a_2b_2+a_3b_3$ =0

In dieser Stunde sind wir wieder in unser Thema "Geometrie" eingestiegen und haben die Begriffe Abstand und Skalarprodukt wiederholt. Außerdem haben wir noch einmal die Darstellungsmöglichkeiten von Ebenen notiert.

Tafelbild

Wir haben als Einstieg einen Vektor gesucht, der auf den Vektoren v=(1,2,3) bzw. u=(2,0,1) senkrecht steht. Eine Lösung war w=(2,5,-4). Die Lösung ist nicht eindeutig, da beliebige Vielfache von w auch die obige Bedingung erfüllen!

a
$$\bot$$
 b wenn
 $a \cdot b = 0$!
 $w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$, $w \bot v$
 $w \cdot v = 0$
 $w \cdot v = 0$

Danach habt ihr euch probiert:

Wir haben danach das Problem durchgesprochen, wie man den Abstand des Punktes V=(1|2|3) von der Geraden g: x=(1,0,0)+t(1,1,1) bestimmen kann. Dafür haben wir die Normalform der Ebene wiederholt und eure HA notiert:

Die WADI-Aufgaben hierzu habe ich notiert bzw. sprecht mich an, wenn Fragen offen blieben!