Contents

1	Introdution	2			
2	Background				
	2.1 Definition of Heisenberg group	4			
	2.2 Schur's Lemma	4			
	2.3 Stone-Von Neumann Theorem	4			
	2.4 Projective Representation	5			
	2.5 Integration	5			
	2.6 Model	6			
	2.7 Induced representation	7			
	2.8 Models	7			
	2.9 Lattice model	8			
	2.10 character of second degree	8			
	2.11 Absolute value	9			
	2.12 Fourier transformation	9			
	2.13 Weil constant	10			
	2.14 Eigenspace decomposition	10			
3	Representation $(\mathcal{M}, K^{\times}, V)$ 11				
	3.1 Representation (ρ, H, V)	11			
	3.2 Projective representation (M, K^{\times}, V)	12			
	3.3 Weil Constant	12			
	3.4 Murase-Sugano Splitting	13			
4	Subgroups of K^{\times}	13			
	4.1 Notation θ , $\delta_{K/F}$ and U_l	13			
	4.2 Correspondence	14			
5		1 F			
	Space $V(\mathfrak{a})$	15			
	5.1 Notations v and t_x	15 16			
	5.2 Definition of $V(\mathfrak{a})$				
		19			
	5.4 Notation r, n_{ψ}, q and $\mu_{\mathfrak{a}}$	19			
6	Subrepresentation $(\mathcal{M}, K^{\times}, V(\mathfrak{a}))$ 21				
	6.1 Projection $\mathcal{P}_{\mathfrak{a}}$	21			
	6.2 Notation $U_{\mathfrak{a}}$ and $K_{\mathfrak{a}}$	22			
	6.3 Gauss sum	22			
	6.4 A lemma	24			
7	Subrepresentation $(\mathcal{M}, K^{\times}, V_{\mathbf{prim}}(\mathfrak{a}))$ 26				
	7.1 Inner product on V	26			
	7.2 Definition of $V_{\text{prim}}(\mathfrak{a})$	27			

8	Eigenfunctions			
	8.1	Eigencharacters	27	
	8.2	Projection operators	27	
	8.3	Eigenfunctions general case	28	
	8.4	Eigenfunctions when \mathcal{L} is an ideal	31	

1 Introdution

Let F be a finite extension of p-adic number field \mathbb{Q}_p and K a quadratic extension of F. Let $z\mapsto \bar{z}$ be the nontrivial F-automorphism in K. Define $K^1=\{z\in K^\times|z\bar{z}=1\}$. Fix an element $\kappa\in K$ that satisfies $\bar{\kappa}=-\kappa$. Define a symplectic form $\langle\ ,\ \rangle$ on K by formula $\langle x,y\rangle=Tr_{K/F}(\kappa\bar{x}y)$. Because now K is a symplectic space over F, we can consider the Heisenberg group H associated to K, which is the set $K\times F$ with group law $(x,s)(y,t)=(x+y,s+t+\frac{1}{2}\langle x,y\rangle)$ for $x,y\in K,\ t\in F$. The symplectic group Sp(K) could act on the Heisenberg group H through its action on K, i.e. $g\bullet (x,t)=(gx,t)$ for $g\in Sp(K)$, $(x,t)\in H$. Stone-Von Neumann theorem asserts that, if we fix a smooth irreducible central representation (ρ,H,V) , then for each $g\in Sp(K)$, there exits a $M\in GL(V)$ such that

$$M\rho(h) = \rho(g \bullet h)M \qquad \forall h \in H \tag{1}$$

Moreover for a fixed g, the choice of M is unique upto a scalar.

Denote by Sp(K) the subgroup of $Sp(K) \times GL(V)$ formed by pairs of (g, M) that satisfy (1). Projecting $\widetilde{Sp}(K)$ into the second coordinate gives us a representation $\widetilde{Sp}(K) \to GL(V)$. Projecting $\widetilde{Sp}(K)$ into the first coordinate gives us the exact sequence below.

$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow \widetilde{Sp}(K) \longrightarrow Sp(K) \longrightarrow 1$$

In [2], Murase and Sugano gives a splitting map from K^{\times} to $\widetilde{Sp}(K)$

$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow \widetilde{Sp}(K) \quad \longrightarrow \quad Sp(K) \longrightarrow 1$$

$$\nwarrow \quad \uparrow \quad K^{\times}$$

In above diagram, the map from K^{\times} to Sp(K) is a composition of two maps as follows

$$K^{\times} \longrightarrow K^1 \hookrightarrow Sp(K)$$

where the first map is defined by $z \mapsto \bar{z}/z$, and the sencond map is defined by $u \mapsto \text{multiplying}$ by u. If we compose the splitting map $K^{\times} \to \widetilde{Sp}(K)$ with $\widetilde{Sp}(K) \to GL(V)$, we got a representation $\mathcal{M}: K^{\times} \to GL(V)$, which we denote as $(\mathcal{M}, K^{\times}, V)$. In [2], \mathcal{M} is decomposed into a direct sum of eigenspaces, and \mathcal{M} is shown to be multiplicity free which means each eigenspace has dimension

one. Further, [2] gives a critirion for which character of K^{\times} appears as an eigencharacter.

In a different but equivalent setting, under the assumption 2 is a unit in F, [6] provides another splitting, and gives a different criterion of which character appears as an eigencharacter. When a character appears, [6] writes down an explicit formula for the eigenvector. The goal of our paper is to write down explicit formulas of eigenvectors without the assumption 2 is a unit in F.

Let us go into some details. Denote the integer ring of F,K by O_F, O_K individually and their unit groups by O_F^{\times} and O_K^{\times} . Fix a nontrivial additive character ψ of F. If L is a lattice in K, we define $L_* = \{x \in K | \psi(\langle x, y \rangle) = 1 \ \forall y \in L\}$. Fix a lattice \mathcal{L} in K that satisfies $\mathcal{L} = \mathcal{L}_*$ and $\frac{1}{2}(l+\bar{l}) \in \mathcal{L}$ for $l \in \mathcal{L}$. We further assume \mathcal{L} is an ideal in K. Denote by $\mathcal{S}(K)$ the space of locally constant compactly supported functions on K. The space V mentioned above is realized as follows

$$V = \{ \Phi \in \mathcal{S}(K) | \Phi(x+l) = \psi(\frac{1}{2}\langle x, l \rangle + \frac{1}{4}\langle l, \bar{l} \rangle) \Phi(x) \ \forall x \in K, \ \forall l \in \mathcal{L} \}$$

It can be seen that V has a basis $\{\Phi_{x,\mathcal{L}}|x\in K/\mathcal{L}\}$, where $\Phi_{x,\mathcal{L}}$ is the unique function in V that is supported on $x+\mathcal{L}$ and has value 1 at x.

Let $\mathfrak l$ be the ideal in K defined in section 8.4 and r the element in K defined in 5.4. For now we just need to know $\mathfrak l$ is some ideal and r is some element in K. Define $V(\mathfrak l)=\{\Phi\in V|\Phi \text{ is supported on } r+\mathfrak l_*\}$. If $\mathfrak a$ is an ideal of K contained in $\mathfrak l$ and $\mathfrak a_*=\alpha O_K$ for some $\alpha\in K$, define $V_{\mathrm{prim}}(\mathfrak a)=\{\Phi\in V|\Phi \text{ is supported on } r+\alpha O_K^\times\}$. Let's skip the detailed realization of $\mathcal M$ for now, but the representation $(\mathcal M,K^\times,V)$ can be decomposed into a direct sum of subrepresentations $V=V(\mathfrak l)\oplus (\oplus_{\mathfrak a\subsetneq \mathfrak l} V_{\mathrm{prim}}(\mathfrak a))$, where $\mathfrak a$ runs throught all ideals of K strictly contained in $\mathfrak l$.

Let $U_{\mathfrak{a}}$, $G_{\mathfrak{a}}$ be the subgroup of K^{\times} defined in section 6.2 and lemma 23 individually. Now the main result of this paper is the following.

- 1) The set $\{\Phi_{s,\mathcal{L}}|s\in r+\mathfrak{l}_*/\mathcal{L}\}$ is a basis of $V(\mathfrak{l})$ consisting of eigenfunctions.
- 2) A character χ appears in $V_{\text{prim}}(\mathfrak{a})$ if and only if $\chi|_{F^{\times}} = \omega$, $\chi(U_{\mathfrak{a}}) = 1$ and $\chi|_{G_{\mathfrak{a}}} = \chi_{r,\mathcal{L}} C_x$ for some $x \in \alpha O_K^{\times}$, where $\chi_{r,\mathcal{L}}$ is the eigencharacter associated to $\Phi_{r,\mathcal{L}}$ and

$$C_x(z) = \psi(\frac{1}{2}\langle ux, x \rangle + \frac{1}{2}\langle r, (1-u)x \rangle + \frac{1}{4}\langle (1-u)x, (1-\bar{u})\bar{x} \rangle)$$

with $u = \bar{z}/z$.

If χ appears, the eigenfunction associated to χ is given by

$$\sum_{z \in K^{\times}/G_{\mathfrak{g}}} \chi(z^{-1}) \chi_{r,\mathcal{L}}(z) \psi(\frac{1}{2} \langle ux, r \rangle) \Phi_{r+ux,\mathcal{L}}$$

Remark. In this introduction, for the purpose of both being simple and presenting the best result of the paper, we have made one assumption which does not always hold, that is \mathcal{L} is an ideal in K. Our paper presents how one can write down eigenfunctions without assuming \mathcal{L} is an ideal in K, but only when \mathcal{L} is an ideal in K, our solution is completely explicit.

2 Background

Denote by p a prime number. We are mostly interested in the case where p=2. Let F be a finite extension of \mathbb{Q}_p . Let K be a finite dimensional F-vector space equipped with a symplectic form $\langle \ , \ \rangle$. Hence K will also be mentioned by the name symplectic space. Recall that a **symplectic form** $\langle \ , \ \rangle$ on K is a non-degenerate bilinear form on K such that $\langle a,b\rangle = -\langle b,a\rangle$ for any vectors a,b in K. Start from section 3, K will actually be a qudratic extension of F.

Let ψ be a non-trivial continous group homomorphism from F to \mathbb{C}^1 , the multiplicative group of complex numbers with absolute value 1.

2.1 Definition of Heisenberg group

The **Heisenberg group** associated with the symplectic vector space K is the set $K \times F$, equipped with the product topology and the group law

$$(x,s)(y,t) = (x+y,s+t+\frac{1}{2}\langle x,y\rangle)$$
 $x,y\in K$ $s,t\in F$

We write H for the Heisenberg group we just defined. Two facts come in handy. First $t \mapsto (0,t)$ is a monomorphism from F to H and its image is the center of H; Second multiplication in H commutes in the following fashion $(x,s)(y,t) = (0,\langle x,y\rangle)(y,t)(x,s)$.

2.2 Schur's Lemma

Let G be a Hausdorff, locally compact toplogical group. Suppose G is a countable union of compact subsets. Suppose the unit element e has a neighborhood basis consisting of open compact sets.

A representation of G in a complex vector space E is a group homomorphism $\pi: G \to GL(E)$, where GL(E) is the set of linear automorphism of E. We say that π is **smooth**, if for any $\xi \in E$, the set $\{g \in G | \pi(g)\xi = \xi\}$ is open in G. We remark that E here is treated without any topology.

(Schur's lemma) Let π be a smooth representation of G in a complex vector space E. If a linear transformation $T: E \to E$ satisfies $T\pi(g) = \pi(g)T$ for $\forall g \in G$, then T is a scalar.

For a proof of the lemma, see page 18 in [1].

2.3 Stone-Von Neumann Theorem

Theorem (Stone, Von Neumann) Up to isomorphism, there is a unique smooth, irreducible representation π of H in a complex vector space E such that

$$\pi(0,t)\xi = \psi(t)\xi$$
 for all $t \in F$, $\xi \in E$

For a proof of the theorem, see page 28 in [3].

2.4 Projective Representation

A projective representation of a group G in a complex vector space E is a map $\rho: G \to GL(E)$ such that

$$\rho(x)\rho(y) = c(x,y)\rho(xy) \quad \forall x,y \in G$$

for some function $c: G \times G \to \mathbb{C}^{\times}$. A projective representation is not a representation in general. However if there is a function $\gamma: G \to \mathbb{C}^{\times}$ such that

$$c(x,y) = \gamma(xy)\gamma(x)^{-1}\gamma(y)^{-1} \quad \forall x,y \in G$$

then we see the map $\gamma \rho$ is representation. In this section we will see a projective representation of symplectic group.

The **symplectic group** of K is the group of F-linear automorphism in K that preserves the symplectic form $\langle \ , \ \rangle$. The symplectic group of K is denoted by Sp(K). Let G = Sp(K). We see G acts on H throught its action on K. We use a big dot to denote this action

$$q \bullet (x,t) = (qx,t)$$

where $g \in G$ and $(x, t) \in H$.

Let ρ be a representation of H in a complex vector space E that satisfies all the conditions in Stone-Von Neumann theorem. Let $g \in G$, then Stone-Von Neumann theorem asserts that there exists a linear isomorphism $M(g): E \to E$ that satisfies

$$M(g)\rho(h) = \rho(g \bullet h)M(g) \quad \forall h \in H$$
 (2)

Moreover Schur's lemma asserts that if another linear isomorphism $T: E \to E$ satisfies $T\rho(h) = \rho(g \bullet h)T$ for all $h \in H$, then T is a scalar times M(g). So M(g) is unique upto to scalar in \mathbb{C}^{\times} .

Now we make a choice of M(g) for all $g \in G$. Then we have a map $M: G \to GL(E)$. Let g_1, g_2 be any two elements in G. We see both $M(g_1g_2)$ and $M(g_1)M(g_2)$ can substitute for T in the equation $T\rho(h) = \rho(g_1g_2 \bullet h)T$. This means $M(g_1g_2)$ and $M(g_1)M(g_2)$ differ by a scalar in \mathbb{C}^{\times} . This means M is a projective representation of G.

Notice if G is a group that has a homorphism image in Sp(K), the above argument is still valid.

2.5 Integration

Let S(W) be the space of locally constant compactly supported functions on W. A **Haar measure** on W is a positive invariant linear function $\int: S(W) \to \mathbb{C}$. Being positive means that if $f \in S(W)$ and f > 0 then $\int f > 0$. Being invariant means that

$$\int f = \int f_x \quad \forall x \in W, \ f \in S(W)$$

where f_x is defined by $f_x(y) = f(x+y)$ for any $y \in W$. Haar measure is unique up to a positive scalar.

The exisitence of Haar measure and its uniqueness holds for any locally compact hausdorff topological group. For the groups considered in this paper, a short proof for exisitence and uniqueness can be found in page 10 in [1].

Let E be \mathbb{C} -vector space. A Haar measure $\int: S(W) \to \mathbb{C}$ can be extended to $\int: S(W) \otimes E \to E$, where $S(W) \otimes E$ should be identified with the space of locally constant compactly supported E-value functions on W. We refer readers to page 8 in [1]. If N is an open compact subset of W and $g: W \to E$ is a locally constant function, then $g1_N \in S(W) \otimes E$, where 1_N is the function that has value 1 on N and 0 elsewhere. We define $\int_N g = \int g1_N$.

If $g: W \to E$ is a locally constant funtion that satisfies

$$\int_{x+N} g = 0 \quad \forall x \in K \text{ and } x \notin N$$

for some open compact subgroup N of W, we define

$$\int_K g = \int_N g$$

Let W be a finite dimentional F-vector space equipped with a nondenegerate bilinear form $[\ ,\]$. Let L be a compact open subgroup of W. Then

$$\int_{L} \psi([x, y]) dx = \begin{cases} \int_{L} dx & x \in L_{*} \\ 0 & \text{otherwise} \end{cases}$$

where

$$L_* = \{ y \in W | \psi([l, y]) = 1 \ \forall l \in L \}$$

is also a compact open subgroup of W. The lower star notation is taken from page 38 in [5].

2.6 Model

Let G = Sp(K). Let ρ be a representation of H in a complex vector space E as in Stone-Von Neumann theorem. We saw in section 2.4 that there is a projective representation $M: G \to GL(E)$ associated with ρ . In this section we will see a general process of realizing M as integrals. For any $g \in G$, we will see an explicit construction of M(g) such that (2) holds.

Let $g \in G$, $\Phi \in E$. Denote by W the F-vector space $K/\ker(1-g)$. Define

$$M(g)\Phi = \int_{W} \psi(\frac{1}{2}\langle w, gw\rangle)\rho((1-g)w, 0)\Phi dw$$

We next check that this integral is well defined. The integrand is a well defined E-valuded function on W. Next let $x \in W$, and L an open compact subgroup of W sufficiently small that $\psi(\frac{1}{2}\langle l,gl\rangle)=1$ and $\rho((1-g)l,0)\Phi=\Phi$

for all $l \in L$. To shorten notation, denote $R(w) = \psi(\frac{1}{2}\langle w, gw \rangle)\rho((1-g)w, 0)$. It can be checked that

$$\int_{x+L} R(w)\Phi \ \mathrm{d}w = \Phi' \int_L \psi(\langle l, (1-g^{-1})x \rangle) \ \mathrm{d}l$$

where $\Phi' = \psi(\frac{1}{2}\langle x, gx\rangle)\rho((1-g)x, 0)\Phi$. The bilinear form $[x,y] := \langle x, (1-g^{-1})y\rangle$ on W is nondegenerate. If we define L_* with respect to $[\ ,\]$ as in section 2.5, we have $\int_{x+L} R(w)\Phi \ \mathrm{d}w = 0$ for $x \notin L_*$. Now if we choose L that also satisfies $L \subset L_*$, we have $\int_{x+L_*} R(w)\Phi \ \mathrm{d}w = 0$ if $x \notin L_*$. So the integal for $M(g)\Phi$ is defined in the sense in section 2.5.

To check (2) holds, we take $\Phi \in E$ and $(x,t) \in H$ and write out

$$\rho(g \bullet (x,t)) M(g) \Phi = \int_{W} \psi(\frac{1}{2} \langle w, gw \rangle) \rho(gx,t) \rho((1-g)w,0) \Phi \ \mathrm{d}w$$

One just need to make a change of variable $w \mapsto w + x$ to see the right side is also $M(q)\rho((x,t))\Phi$.

Above computation is taken from page 37-38 in [3]. For a proof that $M(g) \in GL(E)$ we refer the reader to page 39 in [3] or page 278 in [2].

2.7 Induced representation

Let h be a closed subgroup of H, and let $\rho: h \to \mathbb{C}^{\times}$ be a smooth representation of h in \mathbb{C} . Notice that that requiring the representation ρ to be smooth is the same as requiring ρ to be continous. Let $\operatorname{Ind}_h^H \mathbb{C}$ be the space of functions $f: H \to \mathbb{C}$ satisfying the following two conditions:

- 1) $f(ab) = \rho(a)f(b)$ for all $a \in h$, $b \in H$.
- 2) There is an open subgroup $h_f \subset H$ such that f(ba) = f(b) for all $a \in h_f$, $b \in H$.

A smooth representation π of H in $\operatorname{Ind}_h^H \mathbb{C}$ can be defined by formula $(\pi(a)f)(b) = f(ba)$. The representation π is said to be induced by ρ . We denote this representation often by $\operatorname{Ind}_h^H \rho$. See page 21 in [1].

If f is a function on H and $(x,t) \in H$, in this paper we write f(x,t) instead of f((x,t)).

2.8 Models

The representation in Stone-Von Neumann theorem can be realized as an induced representation.

Let A be a closed subgroup of K. We define A_* , the subgroup associated to A by duality, as follows.

$$A_* = \{z \in K | \psi(\langle a, z \rangle) = 1 \text{ for all } a \in A\}$$

Then A_* is a closed subgroup of K and $A_{**} = A$. If A_1, A_2 are two closed subgroup of K, we have $(A_1 + A_2)_* = (A_1)_* \cap (A_2)_*$. When $(A_1)_* + (A_2)_*$ is

closed, we have $(A_1 \cap A_2)_* = (A_1)_* + (A_2)_*$. For example when A_1 is open, hence $(A_1)_*$ is compact, then $(A_1)_* + (A_2)_*$ is closed.

Let A be a closed subgroup of K such that $A = A_*$. Suppose $\widetilde{\psi}: A \times F \to \mathbb{C}^1$ is a continous homomorhism such that $\widetilde{\psi}(0,t) = \psi(t)$ for any $t \in F$. It is a fact that $\mathrm{Ind}_{A \times F}^H \widetilde{\psi}$ is a realization of the representation of H that satisfies the condition in Stone-Von Neumann theorem. For a proof of this result, see page 28-29 in [3].

2.9 Lattice model

Let S(K) be the space of locally constant compactly supported functions on K. If A is compact, we claim that $\operatorname{Ind}_{A\times F}^H\widetilde{\psi}$ can be identified with the representation ρ of H in the space

$$\{\Phi \in S(K) | \Phi(x+a) = \widetilde{\psi}(a, \frac{1}{2}\langle x, a \rangle) \Phi(x) \quad \text{ for all } x \in K, \ a \in A\}$$

with the action

$$(\rho(y,t)\Phi)(x) = \psi(\frac{1}{2}\langle x,y\rangle + t)\Phi(x+y) \quad \text{for all } x \in K, \ (y,t) \in H \quad (3)$$

To see this, let $f \in \operatorname{Ind}_{A \times F}^H \mathbb{C}$. Notice $f(x,t) = \psi(t) f(x,0)$ for all $x \in K$, $t \in F$. If we define a function $\Phi : K \to \mathbb{C}$ by setting $\Phi(x) = f(x,0)$, we see f is completely decided by Φ . The identification is done by passing the properties of f and the action of ρ on f to those of Φ . It is not hard to see that Φ is locally constant, satisfies the expected transformation property and (3) holds. To see Φ is has a compact support we start with the following identity.

$$f((x,0)(a,0)) = \psi(\langle x,a\rangle)f((a,0)(x,0))$$
 for all $x \in K$, $a \in A$

When a is small, we have $f((x,0)(a,0)) = \Phi(x) = f((a,0)(x,0))$. So for a small enough open subgroup N of K, we have

$$\Phi(x) = \psi(\langle x, a \rangle)\varphi(x)$$
 for all $x \in K$, $a \in N \cap A$

If $\psi([x,a]) \neq 1$ for some $a \in N \cap A$, then $\Phi(x) = 0$. In another word if $x \notin (N \cap A)_* = N_* + A$, then $\varphi(x) = 0$. Because N_* and A are compact, Φ is compactly supported.

An F-lattice in K is an open compact subgroup of K which is closed under multiplication by elements in O_F , the integer ring of F. Let L be an F-lattice in K, we call the identification of $\operatorname{Ind}_{L\times F}^H \psi$ as above the lattice model of the representation in Stone-Von Neumann theorem.

2.10 character of second degree

If G_1 and G_2 are two abelian groups, a **bicharacter** of $G_1 \times G_2$ is a function $f: G_1 \times G_2 \to \mathbb{C}^1$ that satisfies

$$f(a + b, c) = f(a, c)f(b, c)$$
 $f(a, b + c) = f(a, b)f(a, c)$

A continuous function $f: K \to \mathbb{C}^1$ is called a **character of second degree** if the function $(a,b) \mapsto f(a+b)f(a)^{-1}f(b)^{-1}$ is a bicharacter of $K \times K$.

Suppose f is character of second degree of K. There exists a unique F-linear transformation T on K such that we have for all $a,b \in K$

$$f(a+b)f(a)^{-1}f(b)^{-1} = \psi(\langle a, T(b) \rangle)$$

We say f and T are associated with each other.

2.11 Absolute value

Let T be a F-linear automorphism in K. The **absolute value** of T, denoted as |T|, is defined by the following formula

$$\int_{K} \Phi(x)dx = |T| \int_{K} \Phi(T(x)) dx \quad \forall \Phi \in S(K)$$

If K is a finite extention of F. The absolute value of the automorphism in K given by $y \mapsto xy$ for some $x \in K^{\times}$, is denoted as $|x|_K$ and called the absolute value of x. Notice we have defined $|\cdot|_F$ if we take K = F. It is a fact that if K is a finite extension of F, the following holds

$$|x|_K = |N_{K/F}x|_F \quad \forall x \in K$$

For reference of this section, see page 3 and 139 in [5].

2.12 Fourier transformation

Fourier transforation of a function $\Phi \in S(K)$ is defined by

$$\hat{\Phi}(y) = \int_{\mathcal{K}} \Phi(x) \psi(\langle x, y \rangle) \, \mathrm{d}x$$

In this paper we choose the Haar measure such that $\hat{\Phi}(x) = \Phi(-x)$.

Let L be an F-lattice in K. If we denote $|L|=\int_L \ \mathrm{d}x,$ a consequence of our choice is that

$$|L||L_*| = 1$$

This is because $\hat{1}_L = |L|1_{L_*}$.

2.13 Weil constant

If $\Phi \in S(K)$ and f is a continous function on K then the convolution of Φ with f is given by

$$\Phi * f(x) = \int_K \Phi(y) f(x - y) \, \mathrm{d}y$$

Notice if f is a character of second degree on K, the Fourier transformation of f is not well defined.

(Theorem Weil) Let f be a character of second degree of K, associated to the nondegenerate F-linear transformation T on K. There exists a $\lambda(f) \in \mathbb{C}^1$ such that

$$\widehat{\Phi * f} = \lambda(f)\widehat{\Phi}\widehat{f} \quad \forall \Phi \in S(K)$$
(4)

where $\hat{}$ is the Fourier transformation operator except \hat{f} is defined by $\hat{f}(x) = |T|^{-\frac{1}{2}} f(T^{-1}(x))^{-1}$. \square

If we take Fourier transformation on both sides of (4) and evaluate at 0, we get

(Corollary Weil) Hypothesis being the same as in the Weil Theorem, we have

$$\int_K \Phi(x) f(-x) dx = \lambda(f) \int_K \hat{\Phi}(x) \hat{f}(x) dx \quad \forall \Phi \in S(K)$$

For the original statement of above theorem, see page 161 in [4]

2.14 Eigenspace decomposition

When we say (π, G, E) is a representation, we mean π is a representation of a group G in a complex vector space E. We also say E is an G-module.

(**Lemma-Definition**) Let E be an G-module. Then the following are equivalent:

- a) E is the direct sum of irreducible submodules.
- b) E is generated by its irreducible submodules.
- c) Each submodule $E' \subset E$ has a complement, a submodule E'' such that $E = E' \oplus E''$.

If E satisfied these conditions, we say E is **completely reducible**. The submodule of a completely reducible module is also completely reducible.

(**Lemma**) Let (π, G, E) be a representation, and N a normal subgroup of G of finite index. If N acts on E by scalar multiplication then π is completely reducible

proof. Let g_1, \dots, g_n be coset representatives of G/N, where n = [G:N]. If E_1 is a G-submodule of E, then there is a subvector space E_2 such that $E = E_1 \oplus E_2$ as vector spaces. Let P_0 be the projection of E onto E_1 along E_2 . If we set $P = \frac{1}{n} \sum_{i=1}^{n} \pi(g_i) P_0 \pi(g_i^{-1})$, then P does not depend on the choice of g_i s, and P is G-module homomorphism. Therefore, its kernel is a complement of E_1 . \square

These two lemmas are taken from pages 16-17 in [1].

(**Lemma**) Let (π, G, E) be a smooth irreducible representation, where G is an abelian group that satisfies the conditions in Schur's lemma in section 2.2. Then E is one dimensional.

Proof. If $g \in G$, then $\pi(g)$ is G-module automorphism on E. Schur's lemma implies G acts on E by scalar multiplication. However E is irreducible so E is one dimensional. \square

(**Theorem**) Let (π, G, E) be a smooth representation, where G is an abelian group that satisfies the conditions in Schur's lemma in section 2.2. Let N be a subgroup of G of finite index. If N acts on E by scalar multiplication then π is the direct sum of eigenspaces, one-dimensional subrepresentations.

3 Representation $(\mathcal{M}, K^{\times}, V)$

This section introduces the setup in [2], which is also the beginning point of our paper. From now on, F is a finite extension of \mathbb{Q}_p , and K is a quadratic extension of F. We fix a non-trivial continous group homomorphism $\psi: F \to \mathbb{C}^1$. Let κ be an element in K^{\times} with $\bar{\kappa} = -\kappa$, where $x \mapsto \bar{x}$ is the unique nontrivial field automorphism of K/F. One defines a symplectic form $\langle \ , \ \rangle$ on K by setting

$$\langle x, y \rangle = Tr_{K/F}(\kappa \bar{x}y) \qquad x, y \in K$$
 (5)

It is immediate that $\langle x, y \rangle = \langle \bar{y}, \bar{x} \rangle$ and $\langle zx, y \rangle = \langle x, \bar{z}y \rangle$ for $x, y, z \in K$.

Let H be the Heisenberg group associated with the symplectic space (K, \langle , \rangle) . Let \mathcal{L} be an F-lattice in K that satisfies the following two conditions

(i)
$$\mathcal{L} = \mathcal{L}_*$$
 (ii) $l \in \mathcal{L} \Rightarrow \frac{1}{2}(l + \bar{l}) \in \mathcal{L}$

Later we will construct lattice \mathcal{L} explicitly.

Remark. In [2], the authors fix κ from the beginning. However our main result in this paper depends in a crucial way on the choice of κ when 2 is not a unit in F.

3.1 Representation (ρ, H, V)

We define a continous group homomorphism $\widetilde{\psi}: \mathcal{L} \times F \to \mathbb{C}^1$ that satisfies $\widetilde{\psi}(0,t) = \psi(t)$ for all $t \in F$, by setting

$$\widetilde{\psi}(l,t) = \psi(\frac{1}{4}\langle l, \overline{l}\rangle + t)$$
 for all $l \in \mathcal{L}, \ t \in F$

We remark that if 2 is a unit in F , then $\psi(\frac{1}{4}\langle l, \bar{l}\rangle)=1$, hence $\widetilde{\psi}(l,t)=\psi(t)$.

It is a fact that, upto isomorphism, $\operatorname{Ind}_{\mathcal{L}\times F}^H\widetilde{\psi}$ is the unique smooth irreducible representation of H describe in Stone-Von Neumann theorem. We saw, in section 2.9 that it could be identified with a representation of ρ in the complex space V, where V is given by

$$V = \{ \Phi \in S(K) | \Phi(x+l) = \psi(\frac{1}{2}\langle x, l \rangle + \frac{1}{4}\langle l, \bar{l} \rangle) \Phi(x) \quad \text{ for all } x \in K, \ l \in \mathcal{L} \}$$

and the ρ is given by

$$(\rho(y,t)\Phi)(x) = \psi(\frac{1}{2}\langle x,y\rangle + t)\Phi(x+y)$$
 for all $x \in K$, $(y,t) \in H$

3.2 Projective representation (M, K^{\times}, V)

We denote $u = \bar{z}/z$ for any $z \in K^{\times}$. We define an action of K^{\times} on H as $z \bullet (x,t) = (ux,t)$ for all $z \in K^{\times}$, $(x,t) \in H$. Define a projective representation $M: K^{\times} \to GL(V)$. Let $\Phi \in V$, we put

$$M(z)\Phi = \begin{cases} \Phi & z \in F^{\times} \\ |1-u|_{K}^{1/2} \int_{K} \psi(\frac{1}{2}\langle x, ux \rangle) \rho((1-u)x, 0) \Phi & z \in K^{\times} - F^{\times} \end{cases}$$

We saw in section 2.6 that M is a projective representation of K^{\times} in V. So there exist a function $c: K^{\times} \times K^{\times} \to \mathbb{C}^{\times}$ such that

$$M(z_1)M(z_2) = c(z_1, z_2)M(z_1 z_2) \quad \forall z_1, z_2 \in K^{\times}$$
 (6)

We record a property of M, which we saw in section 2.6, below for later use.

$$M(z)\rho(x,t) = \rho(ux,t)M(z)$$
 for all $z \in K^{\times}$, $(x,t) \in H$ (7)

3.3 Weil Constant

Let $a \in F^{\times}$. We define a characher of second degree $f_a : K \to \mathbb{C}^1$ by putting

$$f_a(x) = \psi(ax\bar{x}) \quad \forall x \in K$$

The linear isomorphism T_a associated with f_a is given by

$$T_a(x) = ax/\kappa \quad \forall x \in K$$

Then we saw in section 2.13 there is a constant $\lambda(a) \in \mathbb{C}^1$ such that

$$\int_{K} \Phi(x)\psi(ax\bar{x}) dx = \lambda(a)|\kappa/a|_{K}^{1/2} \int_{K} \widehat{\Phi}(x)\psi(\kappa^{2}x\bar{x}/a) dx$$
 (8)

where the Haar measure is chosen as in section 2.13. In [2], $\lambda(a)$ is asserted to have the form

$$\lambda(a) = \lambda_K(\psi)\omega(a) \quad \forall a \in F^{\times}$$

where $\lambda_K(\psi) = \lambda(1)$, and ω is the group homomorphism on F^{\times} defined by

$$\omega(a) = \begin{cases} 1 & a \in N_{K/F}K^{\times} \\ -1 & \text{otherwise} \end{cases}$$

3.4 Murase-Sugano Splitting

One defines a function $\gamma: K^{\times} \to \mathbb{C}^{\times}$ as follows

$$\gamma(z) = \begin{cases} \omega(z) & z \in F^{\times} \\ \omega(\frac{z - \bar{z}}{\kappa}) / \lambda_K(\psi) & \text{otherwise} \end{cases}$$

and a map $\mathcal{M}: K^{\times} \to GL(V)$ as follows

$$\mathcal{M}(z) = \gamma(z)M(z)$$

It is shown in [2] that $c(z_1, z_2)$ as in equation (6) satisfies $c(z_1, z_2) = \gamma(z_1 z_2) \gamma(z_1)^{-1} \gamma(z_2)^{-1}$ for any $z_1, z_2 \in K^{\times}$.

(Theorem Murase-Sugano) The map \mathcal{M} is a smooth representation of K^{\times} in the complex vector space V.

4 Subgroups of K^{\times}

Let O_F , O_K be the ring of integers of F, K, and O_F^{\times} , O_K^{\times} be the group of units of O_F , O_K . Let π be a prime element in F and Π a prime element in K. Define $K^1 = \{u \in K | u\bar{u} = 1\}$. Any $u \in K^1$ can be written as \bar{z}/z for some $z \in K^{\times}$ according to Hilber 90.

4.1 Notation θ , $\delta_{K/F}$ and U_l

We know

$$O_K = xO_F \oplus yO_F$$

for some $x,y\in O_K$. If K/F is unramified, then one must have $x,y\in O_K^\times$ and one can divide both sides by x. If K/F is ramified one has $O_K=O_F\oplus \Pi O_F$. Either way one has $O_K=O_F\oplus \theta O_F$ for some $\theta\in O_K$. We fix such a θ . If K/F is unramified we know θ is unit. If K/F is ramified we take θ that is a prime element of K.

Define

$$\delta_{K/F} = \operatorname{ord}_F N_{K/F} (\theta - \bar{\theta})$$

It follows from the definition that if K/F is ramified then $(\bar{\theta}-\theta) \in \Pi^{\delta_{K/F}}O_K^{\times}$. Some other useful facts are that if K/F is unramified, then $\delta_{K/F} = 0$ and $O_F^{\times} \subset N_{K/F}K^{\times}$. If K/F is ramified, then $\delta_{K/F} > 0$ and $\delta_{K/F}$ is the smallest integer n such that $1 + \pi^n O_F \subset N_{K/F}K^{\times}$.

Define $U_0 = O_K^{\times}$. For integer $l \geq 1$, define

$$U_l = 1 + \Pi^l O_K$$

Suppose $l \ge 1$. Notice that if K/F is unramified, then $U_l = 1 + \pi^l O_K$; if K/F is ramified, then $U_{2l} = 1 + \pi^l O_K$.

4.2 Correspondence

Proposition 1 Suppose K/F is unramified. Let $z \in K^{\times}$, $u = \bar{z}/z$, and integer l > 0. Then

$$z \in F^{\times}U_l \iff u \in U_l$$

Proof. If l=0, the proof is trivial once we realize $F^{\times}O_F^{\times}=K^{\times}$. Now assume $l\geq 1$.

(\Rightarrow) Suppose $z \in U_l$, we need to show $u \in U_l$. Write $z = 1 + \pi^l x$ for some $x \in O_K$. Write $x = a + b\theta$ for some $a, b \in O_F$. Put these together we have $u - 1 = \pi^l b(\bar{\theta} - \theta)/z$. Both z and $\bar{\theta} - \theta$ are units, and $b \in O_F$, so $u - 1 \in \pi^l O_K$. Hence $u \in U_l$.

(\Leftarrow) Suppose $u \in U_l$, we need to show $z \in F^{\times}U_l$. Write z = cx for some $c \in F^{\times}$, $x \in O_K^{\times}$. Write $x = a + b\theta$ for some $a, b \in O_F$. Put these together we have $u - 1 = b(\theta - \theta)/x$. However $u \in U_l$, hence $b(\bar{\theta} - \theta)/x \in \pi^l O_K$. Both $\bar{\theta} - \theta$ and x are units, so $b \in \pi^l O_K$. Now $a = x - b\theta$ is a unit since x and θ are units and $b \in \pi^l O_K$. Moreover $a \in O_F$, so $a \in O_F^{\times}$. Finally $z = ca^{-1}(1 + ba^{-1}\theta)$, where $ca^{-1} \in F^{\times}$ and $1 + ba^{-1}\theta \in U_l$. Hence $z \in F^{\times}U_l$. \square

Lemma 1 Suppose K/F is ramfied. Let $z \in \Pi F^{\times}O_K^{\times}$ and $u = \bar{z}/z$. Then $u - 1 \in \Pi^{\delta_{K/F} - 1}O_K^{\times}$.

Proof. Write z=cx for some $c\in F^\times$, $x\in \Pi O_K^\times$. Write $x=a+b\theta$ for some $a,b\in O_F$. Notice a and $b\theta$ have different absolute values since θ is a prime element of K. The fact x is a prime element forces that $a\in \pi O_F$, $b\in O_F^\times$. Now $u-1=b(\bar{\theta}-\theta)/x$ with $b\in O_F^\times$, $\bar{\theta}-\theta\in \Pi^{\delta_{K/F}}O_K^\times$ and $x\in \Pi O_K^\times$. Hence $u-1\in \Pi^{\delta_{K/F}}O_K^\times$. \square

Proposition 2 Suppose K/F is ramified. Then $K^1 \subset U_{\delta_{K/F}-1}$ and for integer $m \geq 1$

$$K^1 \cap U_{2m+\delta_{K/F}} = K^1 \cap U_{2m+\delta_{K/F}-1}$$

Proof. We first show that $K^1 \subset U_{\delta_{K/F}-1}$. If $\delta_{K/F}=1$, this is obvious. So we assume $\delta_{K/F}>1$. Suppose $u\in K^1$, we need to show $u\in U_{\delta_{K/F}-1}$. Write $u=\bar{z}/z$ for some $z\in K^\times$. Notice K^\times is the disjoint union of $F^\times O_K^\times$ and $\Pi F^\times O_K^\times$. We make a choice of z such that either $z\in O_K^\times$ or $z\in \Pi O_K^\times$. Write $z=a+b\theta$ for some $a,b\in O_F$. Then $u-1=b(\bar{\theta}-\theta)/z$, where $b\in O_F$, $(\bar{\theta}-\theta)\in \Pi^{\delta_{K/F}}O_K^\times$ and $z^{-1}\in \Pi^{-1}O_K$. So $u\in U_{\delta_{K/F}-1}$.

Next we show the equality. Suppose $u \in K^1 \cap U_{2m+\delta_{K/F}-1}$, we need to show $u \in U_{2m+\delta_{K/F}}$. Write $u = \bar{z}/z$ for some $z \in O_K^{\times}$ or $z \in \Pi O_K^{\times}$. However if $z \in \Pi O_K^{\times}$, then $u-1 \in \Pi^{\delta_{K/F}-1} O_K^{\times}$ by lemma 1. But this is impossible since we assumed $u \in U_{2m+\delta_{K/F}-1}$ and $m \geq 1$. So z is a unit. Write $z = a + b\theta$ for some $a, b \in O_F$. Then $u-1 = b(\bar{\theta}-\theta)/z$. Hence $u \in U_{2m+\delta_{K/F}-1}$ implies $b \in \pi^m \Pi^{-1} O_K$. However the fact $b \in F^{\times}$ forces $b \in \pi^m O_K$. Now we look at $u-1 = b(\bar{\theta}-\theta)/z$ again and conclude $u \in U_{2m+\delta_{K/F}}$. \square

Proposition 3 Suppose K/F is ramified. Let $z \in K^{\times}$, $u = \bar{z}/z$, and integer $l \geq 0$. We have $F^{\times}U_{2l+1} = F^{\times}U_{2l}$ and

$$z \in F^{\times}U_{2l+1} \Longleftrightarrow u \in U_{2l+\delta_{K/F}}$$

Proof. We first show $F^{\times}U_{2l} = F^{\times}U_{2l+1}$.

(Case l=0) Suppose $z \in U_0$, we need to show $z \in F^{\times}U_1$. Write $z=a+b\theta$ for some $a, b \in O_F$. Then notice $a = z - b\theta$ is a unit since z is a unit, $b \in O_F$ and θ is a prime element. As a result, $z \in F^{\times}U_1$ since $z = a(1 + a^{-1}b\theta)$, where $a \in F^{\times}$ and $(1 + a^{-1}b\theta) \in U_1$.

(Case $l \geq 1$) Suppose $z \in U_{2l}$, we need to show $z \in F^{\times}U_{2l+1}$. Write $z=1+\pi^l x$ for some $x\in O_K$. Write $x=a+b\theta$ for some $a,b\in O_F$. Put these together we have $z = 1 + \pi^l a + \pi^l b\theta$. Notice $1 + \pi^l a$ is a unit in O_F and we denote it by c. Then $z = c(1 + c^{-1}b\pi^l\theta)$, where $c \in F^{\times}$ and $1 + c^{-1}b\pi^l\theta \in U_{2l+1}$. Hence $z \in U_{2l+1}$.

- Next we show $z \in F^{\times}U_{2l} \iff u \in U_{2l+\delta_{K/F}}$. (\Rightarrow) Suppose $z \in U_{2l}$, we need to show $u \in U_{2l+\delta_{K/F}}$. As we saw above we write $z = 1 + \pi^l a + \pi^l b\theta$ for some $a, b \in O_F$. Then $u - 1 = \pi^l b(\bar{\theta} - \theta)/z$. We see $b \in O_F$, $(\bar{\theta} - \theta) \in \Pi^{\delta_{K/F}}O_K^{\times}$, and z is a unit. Hence $u - 1 \in \pi^l \Pi^{\delta_{K/F}}O_K^{\times}$, i.e. $u \in U_{2l+\delta_{K/F}}$.
- (\Leftarrow) Suppose $u \in U_{2l+\delta_{K/F}}$, we will show $z \in F^{\times}U_{2l+1}$. First notice that zcan not be in $\Pi F^{\times}O_K^{\times}$. If otherwise, by lemma 1, $u-1 \in \Pi^{\delta_{K/F}-1}O_K$ which contradicts the assumption $u \in U_{2l+\delta_{K/F}}$ and $l \geq 0$. So z has to be in $F^{\times}O_K^{\times}$. Write z = cx for some $c \in F^{\times}$, $x \in O_K^{\times}$. Write $x = a + b\theta$ for some $a, b \in O_F$. The situation forces $a \in O_F^{\times}$. Meanwhile, $u - 1 = b(\bar{\theta} - \theta)/z$ and $u \in U_{2l + \delta_{K/F}}$ implies $b \in \pi^l O_K$. Now $z = ca(1 + a^{-1}b\theta)$ with $ca \in F^{\times}$ and $1 + a^{-1}b\theta \in U_{2l+1}$. So $z \in F^{\times}U_{2l+1}$. \square

Space $V(\mathfrak{a})$

Notations v and t_x 5.1

Define

$$v = -\frac{\bar{\theta}}{\theta - \bar{\theta}}$$

Following properties are handy for later computation

- (i) $v + \bar{v} = 1$
- (ii) If $\delta_{K/F} = 0$, then $v \in O_K^{\times}$. (iii) If $\delta_{K/F} > 0$, then $v \in \Pi^{1-\delta_{K/F}} O_K^{\times}$.

Lemma 2 Let $z \in K^{\times}$, $u = \bar{z}/z$. Then $v(1-u) \in O_K$. Moreover if K/F is ramified and $z \in O_K^{\times}$ then $v(1-u) \in \Pi O_K$.

Proof. If K/F is unramified, then $K^{\times} = F^{\times}O_{K}^{\times}$, and we can assume $z \in O_{K}^{\times}$. If K/F is ramified K^{\times} is the disjoint union of $F^{\times}O_{K}^{\times}$ and $\Pi F^{\times}O_{K}^{\times}$ and we can assume $z \in O_K^{\times}$ or $z \in \Pi O_K^{\times}$. We make these assumptions. Write $z = a + b\theta$ for some $a, b \in O_F$. So we have

$$v(1-u) = -b\bar{\theta}/z$$

Now if K/F is unramified, then both $\bar{\theta}$ and z are units and $b \in O_F$, so $v(1-u) \in O_K$. If K/F is ramified and $z \in \Pi O_K^{\times}$, then $\bar{\theta}/z$ is a unit and $b \in O_F$, so $v(1-u) \in O_K$. Similarly, if K/F ramifies and $z \in O_K^{\times}$, then $v(1-u) \in \Pi O_K$.

Define

$$t_x = \frac{1}{2}\langle x, vx \rangle$$
 for $x \in K$

Let $u \in K^1$, then $t_{ux} = t_x$ and the following holds

$$\frac{1}{2} < x, ux > -t_{(1-u)x} = < v(1-u)x, x > \quad \forall x \in K$$
 (9)

5.2 Definition of $V(\mathfrak{a})$

All through this paper an **ideal** means a nonzero fractional ideal. Let $\mathfrak a$ be an ideal of K. One defines

$$V(\mathfrak{a}) = \{ \Phi \in V | \rho(x, t_x) \Phi = \Phi \quad \forall x \in \mathfrak{a} \}$$

One sees that V is the union of all the $V(\mathfrak{a})$ s and if two ideals $\mathfrak{a} \subset \mathfrak{b}$, then $V(\mathfrak{b}) \subset V(\mathfrak{a})$.

Let \mathfrak{a} be an ideal of K, and $\Phi \in V(\mathfrak{a})$. On one hand $\Phi \in V$, hence the following

$$\Phi(x+l) = \psi(\frac{1}{2}\langle x, l \rangle + \frac{1}{4}\langle l, \bar{l} \rangle)\Phi(x) \qquad x \in K, l \in \mathcal{L}$$
 (10)

On the other hand $\rho(\alpha, t_{\alpha})\Phi = \Phi$ for any $\alpha \in \mathfrak{a}$, hence the following

$$\Phi(x+\alpha) = \psi(\frac{1}{2}\langle \alpha, x \rangle - t_{\alpha})\Phi(x) \qquad x \in K, \alpha \in \mathfrak{a}$$
 (11)

Equations (10) and (11) can be put into one relation

$$\Phi(x + \alpha + l) = A(x, \alpha, l)\Phi(x) \qquad x \in K, \alpha \in \mathfrak{a}, l \in \mathcal{L}$$
(12)

where

$$A(x,\alpha,l) = \psi(\frac{1}{2}\langle\alpha,x+l\rangle - t_\alpha + \frac{1}{2}\langle x,l\rangle + \frac{1}{4}\langle l,\bar{l}\rangle)$$

Definition 1 If a function on K satisfies relation (12), we say the function is almost constant on cosets of $\mathfrak{a} + \mathcal{L}$.

Lemma 3 Let \mathfrak{a} be an ideal of K. Let $\Phi \in V(\mathfrak{a})$. Suppose $\Phi(x) \neq 0$ for some $x \in K$, then

$$\psi(\langle x, w \rangle + t_w + \frac{1}{4} \langle w, \bar{w} \rangle) = 1 \qquad \forall w \in \mathfrak{a} \cap \mathcal{L}$$
 (13)

Proof. Let $w \in \mathfrak{a} \cap \mathcal{L}$. There are two expressions for $\Phi(x+w)$, one from (10) and another one from (11). Hence

$$\psi(\frac{1}{2}\langle x,w\rangle+\frac{1}{4}\langle w,\bar{w}\rangle)\Phi(x)=\psi(\frac{1}{2}\langle w,x\rangle-t_w)\Phi(x) \qquad \forall w\in\mathfrak{a}\cap\mathcal{L}$$

Then we cancel $\Phi(x)$ on both sides and rearrange the equality.

Proposition 4 Let \mathfrak{a} be an ideal of K, and $\Phi \in V(\mathfrak{a})$. Then Φ is almost constant on cosets of $\mathfrak{a} + \mathcal{L}$. If $\Phi(x) \neq 0$ for some $x \in K$, then Φ is supported on $x + \mathfrak{a}_* + \mathcal{L}$.

Proof. We only need to show Φ is supported on $x + \mathfrak{a}_* + \mathcal{L}$. Suppose Φ is nonzero at $x, y \in K$, then x, y both satisfy (13). As a result

$$\psi(\langle y - x, w \rangle) = 1$$
 $w \in \mathfrak{a} \cap \mathcal{L}$

In another word, $y - x \in \mathfrak{a}_* + \mathcal{L}$. So Φ is supported on $x + \mathfrak{a}_* + \mathcal{L}$.

Above proposition gives us a sense of what $V(\mathfrak{a})$ looks like. Later we will improve this proposition.

Let $\Phi \in V(\mathfrak{a})$. We take a closer look at relation (12). First notice $\Phi(x+\alpha+l)$ equals to either side of the following

$$A(x,\alpha,l)\Phi(x) = A(x,\alpha+w,l-w)\Phi(x)$$
(14)

where $x \in K$, $\alpha \in \mathfrak{a}$, $l \in \mathcal{L}$, $w \in \mathfrak{a} \cap \mathcal{L}$. Secondly notice $\Phi(x + \alpha + \beta + l + m)$ equals to either side of the following

$$A(x, \alpha + \beta, l + m)\Phi(x) = A(x + \alpha + l, \beta, m)A(x, \alpha, l)\Phi(x)$$
(15)

where $x \in K$ and $\alpha, \beta \in \mathfrak{a}$ and $l, m \in \mathcal{L}$.

Lemma 4 Let \mathfrak{a} be an ideal of K, and $x \in K$ such that

$$\psi(\langle x, w \rangle + t_w + \frac{1}{4} \langle w, \bar{w} \rangle) = 1 \qquad \forall w \in \mathfrak{a} \cap \mathcal{L}$$

Then

$$A(x,\alpha,l) = A(x,\alpha+w,l-w) \qquad \forall \alpha \in \mathfrak{a}, l \in \mathcal{L}, w \in \mathfrak{a} \cap \mathcal{L}$$
 (16)

if and only if $v\mathfrak{a} \subset \mathfrak{a}_* + \mathcal{L}$.

Proof. Direct calculation shows

$$A(x, \alpha + w, l - w) = \psi(-\langle x, w \rangle - t_w - \frac{1}{4} \langle w, \bar{w} \rangle) \psi(\langle w, \bar{v}\alpha \rangle) A(x, \alpha, l)$$

where $\alpha \in \mathfrak{a}, l \in \mathcal{L}, w \in \mathfrak{a} \cap \mathcal{L}$.

Now we see equation (16) holds if and only if

$$\psi(\langle w, \bar{v}\alpha \rangle) = 1 \qquad \forall \alpha \in \mathfrak{a}, w \in \mathfrak{a} \cap \mathcal{L}$$

This is equivalent to $v\mathfrak{a} \subset \mathfrak{a}_* + \mathcal{L}$. \square

Lemma 5 Let $x \in K$, then

$$A(x, \alpha + \beta, l + m) = A(x + \alpha + l, \beta, m)A(x, \alpha, l)$$
(17)

for any $\alpha, \beta \in \mathfrak{a}$, and $l, m \in \mathcal{L}$ if and only if $v\mathfrak{a} \subset \mathfrak{a}_*$.

Proof. Direct calculation shows

$$A(x, \alpha + \beta, l + m) = \psi(\langle v\alpha, \beta \rangle) A(x + \alpha + l, \beta, m) A(x, \alpha, l)$$

for any $\alpha, \beta \in \mathfrak{a}$ and $l, m \in \mathcal{L}$. So (17) holds if and only if $\psi(\langle v\alpha, \beta \rangle) = 1$ for any $\alpha, \beta \in \mathfrak{a}$. This is equivalent to $v\mathfrak{a} \subset \mathfrak{a}_*$. \square

Proposition 5 Let \mathfrak{a} be an ideal of K such that $v\mathfrak{a} \subset \mathfrak{a}_*$. Let $x \in K$ that satisfies

$$\psi(\langle x, w \rangle + t_w + \frac{1}{4} \langle w, \bar{w} \rangle) = 1 \qquad \forall w \in \mathfrak{a} \cap \mathcal{L}$$

If we define

$$\Phi_{x,\mathfrak{a}+\mathcal{L}}(y) = \begin{cases} A(x,\alpha,l) & y = x + \alpha + l \text{ for some } \alpha \in \mathfrak{a}, l \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$
 (18)

then $\Phi_{x,\mathfrak{a}+\mathcal{L}}$ is a nonzero function in $V(\mathfrak{a})$.

Proof. According to lemma 4, equation (16) holds, so $\Phi_{x,\mathfrak{a}+\mathcal{L}}$ is a well defined function. According to lemma 5, equation (17) holds, so $\Phi_{x,\mathfrak{a}+\mathcal{L}}$ satisfies (12). Lastly, $\Phi_{x,\mathfrak{a}+\mathcal{L}}(x) = 1$. So $\Phi_{x,\mathfrak{a}+\mathcal{L}}$ is a nonzero function in $V(\mathfrak{a})$. \square

Lemma 6 Let \mathfrak{a} be an ideal of K. Then there exists some $x \in K$ such that

$$\psi(\langle x, w \rangle + t_w + \frac{1}{4} \langle w, \bar{w} \rangle) = 1 \qquad \forall w \in \mathfrak{a} \cap \mathcal{L}$$

if and only if $v(\mathfrak{a} \cap \mathcal{L}) \subset \mathfrak{a}_* + \mathcal{L}$.

Proof. Define $f(w) = \psi(t_w + \frac{1}{4}\langle w, \bar{w} \rangle)$ Let $w_1, w_2 \in \mathfrak{a} \cap \mathcal{L}$ then

$$f(w_1 + w_2) = f(w_1)f(w_2)\psi(\langle vw_1, w_2 \rangle)$$

Now f(w) is a homomorphism on $\mathfrak{a} \cap \mathcal{L}$ if and only if $\psi(\langle vw_1, w_2 \rangle = 1$ for any $w_1, w_2 \in \mathfrak{a} \cap \mathcal{L}$ i.e. $v(\mathfrak{a} \cap \mathcal{L}) \subset \mathfrak{a}_* + \mathcal{L}$. On the other hand, f is a homophism on $\mathfrak{a} \cap \mathcal{L}$ if and only if there exist exists some $x \in K$ such that $f(w) = \psi(\langle w, x \rangle)$ for any $w \in \mathfrak{a} \cap \mathcal{L}$. \square

5.3 Relevant ideals

Definition 2 An ideal \mathfrak{a} of K is called **relevant** if $v\mathfrak{a} \subset \mathfrak{a}_*$.

Theorem 1 Let \mathfrak{a} be an ideal of K. Then $V(\mathfrak{a}) \neq 0$ if and only if \mathfrak{a} is relevant.

Proof. (\Rightarrow) Suppose $V(\mathfrak{a}) \neq 0$. Then there is a $\Phi \in V(\mathfrak{a})$ and $\Phi(x) \neq 0$ for some $x \in K$. The equation (15) holds, we cancel the $\Phi(x)$ in it to get equation (17). As a result of lemma 5, we have $v\mathfrak{a} \subset \mathfrak{a}_*$.

 (\Leftarrow) Suppose $v\mathfrak{a} \subset \mathfrak{a}_*$. According to lemma 6, there exists an $x \in K$ such that

$$\psi(\langle x, w \rangle + t_w + \frac{1}{4} \langle w, \bar{w} \rangle) = 1 \qquad \forall w \in \mathfrak{a} \cap \mathcal{L}$$

According to proposition 5, $\Phi_{x,\mathfrak{a}+\mathcal{L}}$ is a nonzero function in $V(\mathfrak{a})$. \square

5.4 Notation r, n_{ψ}, q and $\mu_{\mathfrak{a}}$

Let $\mathfrak c$ be the largest relevant ideal in K. So $V(\mathfrak a) \neq 0$ if and only if $\mathfrak a \subset \mathfrak c$. According to lemma 6 there exist an $r \in K$ such that

$$\psi(\langle r, w \rangle + t_w + \frac{1}{4} \langle w, \bar{w} \rangle) = 1 \qquad \forall w \in \mathfrak{c} \cap \mathcal{L}$$
 (19)

We fix such an \mathbf{r} .

Lemma 7 Let \mathfrak{a} be a relevant ideal of K. If $x \in r + \mathfrak{a}_* + \mathcal{L}$, and $\Phi_{x,\mathfrak{a}+\mathcal{L}}$ as in proposition 5, then $\Phi_{x,\mathfrak{a}+\mathcal{L}} \in V(\mathfrak{a})$. In particular all nonzero $V(\mathfrak{a})$ contains $\Phi_{r,\mathfrak{a}+\mathcal{L}}$.

Proof. By assumption of x, we have $\psi(\langle x-r,w\rangle=1$ for any $w\in\mathfrak{a}\cap\mathcal{L}$. This and equation (19) together imply $\psi(\langle x,w\rangle+t_w+\frac{1}{4}\langle w,\bar{w}\rangle)=1$ for any $w\in\mathfrak{a}\cap\mathcal{L}$. Now we quote proposition 5 to conclude that $\Phi_{x,\mathfrak{a}+\mathcal{L}}\in V(\mathfrak{a})$. \square

Lemma 8 Let \mathfrak{a} be an ideal of K. Then all functions in $V(\mathfrak{a})$ are supported on $r + \mathfrak{a}_* + \mathcal{L}$.

Proof. If $\Phi \in V(\mathfrak{a})$ and $\Phi(x) \neq 0$ for some $x \in K$. Then $\psi(\langle x, w \rangle + t_w + \frac{1}{4}\langle w, \overline{w} \rangle) = 1$ for any $w \in \mathfrak{a} \cap \mathcal{L}$ by lemma 3. Notice $\mathfrak{a} \subset \mathfrak{c}$, so if we refer to (19), we see $\psi(\langle x - r, w \rangle = 1$ for any $w \in \mathfrak{a} \cap \mathcal{L}$. So $x \in r + \mathfrak{a}_* + \mathcal{L}$. \square

Theorem 2 Let \mathfrak{a} be a relevant ideal of K. Then $V(\mathfrak{a})$ has a basis $\{\Phi_{x,\mathfrak{a}+\mathcal{L}}\}$ where x runs throught a representative set of $r + (\mathfrak{a}_* + \mathcal{L})/(\mathfrak{a} + \mathcal{L})$. In particular $V(\mathfrak{a})$ is finite dimensional.

Proof. By lemma 7 we know $\{\Phi_{x,\mathfrak{a}+\mathcal{L}}\}\subset V(\mathfrak{a})$. By lemma 8 we know all funtions in $V(\mathfrak{a})$ are supported on $r+\mathfrak{a}_*+\mathcal{L}$; We have seen before all funtions in $V(\mathfrak{a})$ are almost constant on cosets of $\mathfrak{a}+\mathcal{L}$. Such functions can be expressed as a unique linear combination of the $\Phi_{x,\mathfrak{a}+\mathcal{L}}$ s. \square

Denote by n_{ψ} the largest integer n such that $\psi(\pi^{-n}O_F) = 1$.

Lemma 9 Let $L = xO_F \oplus yO_F$ be an F-lattice in K, where $x, y \in K$. Then

$$L_* = \frac{1}{\pi^{n_\psi} \langle x, y \rangle} L$$

Proof. First notice $K = xF \oplus yF$. So any element in K can be written as ax + by for some $a, b \in F$. Now $ax + by \in L_*$ if and only if $\psi(a\langle x, y\rangle O_F) = \psi(b\langle x, y\rangle O_F) = 1$, which exactly means $a, b \in \pi^{-n_{\psi}}\langle x, y\rangle^{-1}O_F$. \square

We put

$$q = [O_F : \pi O_F]$$

Let $\operatorname{ord}_F: F^{\times} \to \mathbb{Z}$ be the group homomorphism that satisfies $\operatorname{ord}_F(\pi) = 1$. Let $a \in F^{\times}$, then $|a|_F = q^{-\operatorname{ord}_F(a)}$.

Let $\mathfrak{a} = \alpha O_K$ be an ideal in K, where $\alpha \in K^{\times}$. We define

$$\mu_{\mathfrak{a}} = \operatorname{ord}_{F}(\pi^{n_{\psi}} \frac{\kappa}{\theta - \bar{\theta}} N_{K/F} \alpha)$$

Lemma 10 Let \mathfrak{a} be an ideal of K, then $\mathfrak{a}_* = \frac{1}{\pi^{\mu_{\mathfrak{a}} + \delta_{K/F}}} \mathfrak{a}$.

Proof. If $\mathfrak{a} = \alpha O_K$ for some $\alpha \in K^{\times}$, then $\mathfrak{a} = \alpha O_F \oplus \alpha \theta O_F$. Therefore $\mathfrak{a}_* = \frac{1}{\pi^{n_\psi} \langle 1, \theta \rangle N_{K/F} \alpha} \mathfrak{a} = \frac{1}{\pi^{\mu_\mathfrak{a} + \delta_{K/F}}} \mathfrak{a}$. \square

Lemma 11 Let \mathfrak{a} be an ideal of K, then $|\mathfrak{a}| = \int_{\mathfrak{a}} dx = \frac{1}{a^{\mu_{\mathfrak{a}} + \delta_{K/F}}}$.

Proof. $|\mathfrak{a}_*| = |\mathfrak{a}\pi^{-\mu_{\mathfrak{a}}-\delta_{K/F}}| = |\mathfrak{a}||\pi^{-\mu_{\mathfrak{a}}-\delta_{K/F}}|_K = |\mathfrak{a}||\pi^{-2\mu_{\mathfrak{a}}-2\delta_{K/F}}|_F = |\mathfrak{a}||q^{2\mu_{\mathfrak{a}}+2\delta_{K/F}}|_F$. On the hand $|\mathfrak{a}_*||\mathfrak{a}| = 1$. So $|\mathfrak{a}|^2q^{2\mu_{\mathfrak{a}}+2\delta_{K/F}} = 1$ and we proved the lemma. \square

Proposition 6 Let \mathfrak{a} be a ideal of K. If K/F is unramified \mathfrak{a} is relevant if and only if $\mu_{\mathfrak{a}} \geq 0$. If K/F is ramified \mathfrak{a} is relevant if and only if $2\mu_{\mathfrak{a}} + \delta_{K/F} + 1 \geq 0$.

Proof. The condition $v\mathfrak{a} \subset \mathfrak{a}_*$ is equivalent to $v\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}} \in O_K$. If K/F is unramified, then $\delta_{K/F} = 0$ and $v \in O_K^{\times}$. If K/F is ramified, then $\delta_{K/F} > 0$ and $v \in \Pi^{1-\delta_{K/F}}O_K^{\times}$. The lemma follows from these facts. \square

As an application of theorem 2, we give a proof of a lemma in [] on the dimension of $V(\mathfrak{a})$.

Corollary 1 If $V(\mathfrak{a}) \neq 0$ then $\dim_{\mathbb{C}} V(\mathfrak{a}) = q^{\mu_{\mathfrak{a}} + \delta_{K/F}}$

Proof.
$$\dim_{\mathbb{C}} V(\mathfrak{a}) = \frac{|\mathfrak{a}_* + \mathcal{L}|}{|\mathfrak{a} + \mathcal{L}|} = \frac{|(\mathfrak{a} \cap \mathcal{L})_*|}{|\mathfrak{a} + \mathcal{L}|} = \frac{1}{|\mathfrak{a} + \mathcal{L}||\mathfrak{a} \cap \mathcal{L}|} = \frac{1}{|\mathfrak{a}||\mathcal{L}|} = \frac{1}{|\mathfrak{a}||\mathcal{L}|} = q^{\mu_{\mathfrak{a}} + \delta_{K/F}}$$
. \square

Remark. Our definition of $V(\mathfrak{a})$ coincides with the definition in [2] in the case where $\mu_{\mathfrak{a}} \geq 0$. When K/F is ramified and $\mu_{\mathfrak{a}} = -1$, our definition of $V(\mathfrak{a})$ coincides with $V^1(\Pi\mathfrak{a})$ in [2].

6 Subrepresentation $(\mathcal{M}, K^{\times}, V(\mathfrak{a}))$

6.1 Projection $\mathcal{P}_{\mathfrak{a}}$

Let \mathfrak{a} be an ideal of K. We define an operator $\mathcal{P}_{\mathfrak{a}} \in \operatorname{End}(V)$ by

$$\mathcal{P}_{\mathfrak{a}}\Phi = \frac{1}{|\mathfrak{a}|} \int_{\mathfrak{a}} \rho(x, t_x) \Phi \, dx \quad \Phi \in V$$

where $|\mathfrak{a}| = \int_{\mathfrak{a}} dx$.

Proposition 7 Let $z \in K^{\times}$, \mathfrak{a} be an ideal of K, and $\Phi \in V$. Then

$$\mathcal{M}(z)\mathcal{P}_{\mathfrak{a}}\Phi = \mathcal{P}_{\mathfrak{a}}\mathcal{M}(z)\Phi$$

Proof. Because M(z) commutes with $\rho(x,t)$ as in (7) and $t_{\bar{u}x}=t_x$, we have

$$\int_{\mathfrak{a}} M(z)\rho(x,t_x)\Phi \, dx = \int_{\mathfrak{a}} \rho(ux,t_x)M(z)\Phi \, dx$$
$$= \int_{\mathfrak{a}} \rho(x,t_{\bar{u}x})M(z)\Phi \, dx = \int_{\mathfrak{a}} \rho(x,t_x)M(z)\Phi \, dx$$

The lemma follows from this and the fact $\mathcal{M}(z)$ differ M(z) by a scalar. \square

Proposition 8 Let \mathfrak{a} be a relevant ideal in K, then

$$V(\mathfrak{a}) = \{ \Phi \in V \mid \mathcal{P}_{\mathfrak{a}} \Phi = \Phi \}$$

Proof. The only nontrivial part of the proof is to show if $\Phi \in V$, then $\mathcal{P}_{\mathfrak{a}}\Phi \in V(\mathfrak{a})$. Let $x,y \in \mathfrak{a}$, then the following holds

$$t_{x} + t_{y} + \frac{1}{2}\langle y, x \rangle - t_{x+y} = \frac{1}{2}\langle y, x \rangle - \frac{1}{2}\langle x, vy \rangle - \frac{1}{2}\langle y, vx \rangle$$
$$= \frac{1}{2}\langle x, (-1 - v + \bar{v})y \rangle = \frac{1}{2}\langle x, -2vy \rangle$$
$$= \langle -x, vy \rangle$$

with this preparation, the following is easy to see

$$\rho(y, t_y) \int_{\mathfrak{a}} \rho(x, t_x) \Phi \, dx = \int_{\mathfrak{a}} \rho(x + y, t_x + t_y + \frac{1}{2} \langle y, x \rangle) \Phi \, dx$$
$$= \int_{\mathfrak{a}} \psi(\langle -x, vy \rangle) \rho(x + y, t_{x+y}) \Phi \, dx$$
$$= \int_{\mathfrak{a}} \rho(x + y, t_{x+y}) \Phi \, dx = \int_{\mathfrak{a}} \rho(x, t_x) \Phi \, dx$$

where $\psi(\langle -x, vy \rangle) = 1$ is the place we use the condition $v\mathfrak{a} \subset \mathfrak{a}_*$. \square If we combine prosition 7, 8, we get

Proposition 9 Let \mathfrak{a} be a relevant ideal of K. Then $(\mathcal{M}, K^{\times}, V(\mathfrak{a}))$ is a sub-representation $(\mathcal{M}, K^{\times}, V)$. \square

6.2 Notation $U_{\mathfrak{a}}$ and $K_{\mathfrak{a}}$

Let \mathfrak{a} be a relevant ideal of K. If $\mu_{\mathfrak{a}} < 0$, define $U_{\mathfrak{a}} = 1 + \Pi^{2\delta_{K/F}-1}O_K$. If $\mu_{\mathfrak{a}} \geq 0$, Define

$$U_{\mathfrak{a}} = (1 + \pi^{\mu_{\mathfrak{a}} + \delta_{K/F}} O_K) \cap O_K^{\times}$$

If K/F is unramified, then $U_{\mathfrak{a}} = U_{\mu_{\mathfrak{a}}}$ for $\mu_{\mathfrak{a}} \geq 0$. If K/F is unramified then $U_{\mathfrak{a}} = U_{2\mu_{\mathfrak{a}}+2\delta_{K/F}}$ for $\mu_{\mathfrak{a}} \geq 0$.

Lemma 12 Let \mathfrak{a} be a relevant ideal of K, and K/F rainified. We have $U_{\mathfrak{a}} \subset F^{\times}U_{2\mu_{\mathfrak{a}}+2\delta_{K/F}}$.

Proof. The only case that needs a proof is when $\mu_{\mathfrak{a}} < 0$. In this case, $F^{\times}U_{\mathfrak{a}} = F^{\times}U_{2\delta_{K/F}-2} \subset F^{\times}U_{2\mu_{\mathfrak{a}}+2\delta_{K/F}}$ by proposition 3. \square

Let \mathfrak{a} be a relevant ideal in K. Define

$$K_{\mathfrak{a}} = F^{\times}U_{\mathfrak{a}}$$

Lemma 13 $K_{\mathfrak{a}}$ is a subgroup of K^{\times} of finite index.

Proof. We know $U_{\mathfrak{a}}$ is an open subgroup of K^{\times} . $K_{\mathfrak{a}}$ is union of cosets of $U_{\mathfrak{a}}$, hence it is open. As a result $K^{\times}/K_{\mathfrak{a}}$ is discrete. On the other hand $K^{\times}/K_{\mathfrak{a}}$ is the continous image of the compact set $O_K^{\times} \cup \Pi O_K^{\times}$ under the quotient map $K^{\times} \to K^{\times}/K_{\mathfrak{a}}$. So $K^{\times}/K_{\mathfrak{a}}$ is compact. So $K^{\times}/K_{\mathfrak{a}}$ is finite. \square

6.3 Gauss sum

Let \mathfrak{a} be an ideal of K and $a \in F^{\times}$, we define a Gauss sum

$$S_{\mathfrak{a}}(a) = \frac{1}{|\mathfrak{a}|} \int_{\mathfrak{a}} \psi(ax\bar{x}) \, dx$$

where $|\mathfrak{a}| = \int_{\mathfrak{a}} dx$.

Lemma 14 Let \mathfrak{a} be an ideal of K and $a \in F^{\times}$. We have

$$S_{\mathfrak{a}}(a) = S_{\mathfrak{a}_*}(\kappa^2/a)\lambda_K(\psi)\omega(a)|\kappa/a|_K^{1/2}|\mathfrak{a}|^{-1}$$

Proof. In equation (8), divide both sides by $|\mathfrak{a}|$ and replace Φ by $1_{\mathfrak{a}}$. \square

Lemma 15 Let \mathfrak{a} be an ideal of K and $a \in F^{\times}$. If $|a\pi^{\mu_{\mathfrak{a}}} \frac{\theta - \overline{\theta}}{\kappa}|_{K} \leq 1$, then $S_{\mathfrak{a}}(a) = 1$. If $|a\pi^{\mu_{\mathfrak{a}} + \delta_{K/F}} \frac{\theta - \overline{\theta}}{\kappa}| \geq 1$, then

$$S_{\mathfrak{a}}(a) = \lambda_K(\psi) |\kappa/a|_K^{1/2} \omega(a) |\mathfrak{a}|^{-1}$$

Proof. The condition $|a\pi^{\mu_{\mathfrak{a}}}\frac{\theta-\bar{\theta}}{\kappa}|_{K} \leq 1$ is designed so that $\psi(ax\bar{x})=1$ for any $x\in\mathfrak{a}$. So under this condition $S_{\mathfrak{a}}(a)=1$. The condition $|a\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}}\frac{\theta-\bar{\theta}}{\kappa}|\geq 1$ is designed so that $\psi(\kappa^{2}x\bar{x}/a)=1$ for any $x\in\mathfrak{a}_{*}$. So under this condition $S_{\mathfrak{a}_{*}}(\kappa^{2}/a)=1$. \square

Lemma 16 Suppose that $\delta_{K/F} = 0$. Then $\lambda_K(\psi) = \omega(\pi^{n_{\psi}})$.

Proof. Take $a \in F^{\times}$ and an ideal $\mathfrak a$ in K such that $|a\pi^{\mu_{\mathfrak a}} \frac{\theta - \bar{\theta}}{\kappa}|_{K} = 1$ then the result follows from the previous lemma . \square

Proposition 10 Let \mathfrak{a} be a relevant ideal of K, $z \in U_{\mathfrak{a}}$, $u = \bar{z}/z$. Then

$$S_{\mathfrak{a}}(a) = \lambda_K(\psi)|1 - u|_K^{\frac{1}{2}}\omega(\frac{\kappa}{z - \bar{z}})|\mathfrak{a}|^{-1}$$

where $a = \langle v, (1-u)^{-1} \rangle$.

Proof. Write a as $\kappa \frac{1-(1-u)v}{1-u}$ and notice $z \in O_K^{\times}$.

First suppose K/F is ramified. The assumption $z \in U_{\mathfrak{a}}$ implies $z \in F^{\times}U_{2\mu_{\mathfrak{a}}+2\delta_{K/F}}$. Then we have fact A: $u \in U_{2\mu_{\mathfrak{a}}+3\delta_{K/F}}$ by lemma 3. Meanwhile $|(1-u)v|_{K} < 1$ by lemma 2. So we have fact B: $|a|_{K} = |\frac{\kappa}{1-u}|_{K}$. Put A and B together we know $|a\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}}\frac{\theta-\bar{\theta}}{\kappa}| \geq 1$. So

$$S_{\mathfrak{a}}(a) = \lambda_K(\psi) |\kappa/a|_K^{1/2} \omega(a) |\mathfrak{a}|^{-1}$$
$$= \lambda_K(\psi) |1 - u|_K^{1/2} \omega(a) |\mathfrak{a}|^{-1}$$

In the ramified case it remains to show $\omega(a) = \omega(\frac{\kappa}{z-\bar{z}})$.

(Claim) If
$$(z-1)\bar{v} + (\bar{z}-1)v \in \pi^{\delta_{K/F}}O_F$$
, then $\omega(a) = \omega(\frac{\kappa}{z-\bar{z}})$.

We immediately prove the claim. From $(z-1)\bar{v}+(\bar{z}-1)v=z\bar{v}+\bar{z}v-1$, we know $z\bar{v}+\bar{z}v\in 1+\pi^{\delta_{K/F}}O_F$. So $\omega(z\bar{v}+\bar{z}v)=1$. However $a(z-\bar{z})/\kappa=z\bar{v}+\bar{z}v$. So $\omega(a(z-\bar{z})/\kappa)=1$. This finish the proof of the claim. Now we go check the condition in the claim holds.

If $\mu_{\mathfrak{a}} \geq 0$, $z \in U_{\mathfrak{a}}$ means we can write $z = 1 + \pi^{\mu_{\mathfrak{a}} + \delta_{K/F}} x$ for some $x \in O_F$. Write $x = s + t\theta$ for some $s, t \in O_F$. Because $x\bar{v} + \bar{x}v = x(1-v) + \bar{x}v = x + (\bar{x} - x)v = (s + t(\theta + \bar{\theta})) \in O_F$, we have $(z - 1)\bar{v} + (\bar{z} - 1)v = \pi^{\mu_{\mathfrak{a}} + \delta_{K/F}}(x\bar{v} + \bar{x}v) \in \pi^{\delta_{K/F}}O_F$.

If $\mu_{\mathfrak{a}} < 0$, $z \in U_{\mathfrak{a}}$ means $z - 1 \in \Pi^{2\delta_{K/F} - 1}O_K$. Because $v \in \Pi^{1 - \delta_{K/F}}O_K^{\times}$ and $\theta - \bar{\theta} \in \Pi^{\delta_{K/F}}O_K^{\times}$, we have $(z - 1)\bar{v} \in (\theta - \bar{\theta})O_K$. Write $(z - 1)\bar{v} = (\theta - \bar{\theta})x$ for some $x \in O_K$. Write $x = s + t\theta$ for some $s, t \in O_F$, then $(z - 1)\bar{v} + (\bar{z} - 1)v = (\theta - \bar{\theta})^2 t \in \pi^{\delta_{K/F}}O_F$.

Next suppose K/F is unramified. The assumption $z \in U_{\mathfrak{a}}$ implies $z \in U_{\mu_{\mathfrak{a}}}$. Then we have $u \in U_{\mu_{\mathfrak{a}}}$ by lemma 1. Another thing to notice is that $\delta_{K/F} = 0$.

If $|(1-u)|_K < 1$, then $|(1-u)v|_K < 1$ since $|v|_K = 1$. So we have $|a|_K = |\frac{\kappa}{1-u}|_K$. This and the condition on u results $|a\pi^{\mu_{\mathfrak{a}}}\frac{\theta-\bar{\theta}}{\kappa}| \geq 1$. So

$$\begin{array}{lcl} S_{\mathfrak{a}}(a) & = & \lambda_K(\psi) |\kappa/a|_K^{1/2} \omega(a) |\mathfrak{a}|^{-1} \\ & = & \lambda_K(\psi) |1-u|_K^{1/2} \omega(a) |\mathfrak{a}|^{-1} \end{array}$$

We have $a(z-\bar{z})/\kappa = z\bar{v} + \bar{z}v = z(1-(1-u)v)$. Notice both z and (1-(1-u)v) are units, so $a(z-\bar{z})/\kappa \in O_K^{\times}$. Hence $\omega(a(z-\bar{z})/\kappa) = 1$. So $\omega(a) = \omega(\frac{\kappa}{z-\bar{z}})$. Hence $S_{\mathfrak{g}}(a) = \lambda_K(\psi)|1-u|_K^{1/2}\omega(\frac{\kappa}{z-\bar{z}})|\mathfrak{g}|^{-1}$.

If $|(1-u)|_K = 1$, then the fact $u \in U_{\mu_{\mathfrak{a}}}$ forces $\mu_{\mathfrak{a}} = 0$. Then $|\mathfrak{a}| = 1$ by lemma 11. It can be checked $|a/\kappa|_K \leq 1$, so $|a\pi^{\mu_{\mathfrak{a}}}\frac{\theta-\bar{\theta}}{\kappa}| \leq 1$. Hence $S_{\mathfrak{a}}(a) = 1$. In order to prove the proposition, it remains to check that $\lambda_K(\psi)|1-u|_K^{\frac{1}{2}}\omega(\frac{\kappa}{z-\bar{z}})|\mathfrak{a}|^{-1} = 1$, which is simplified to $\lambda_K(\psi)\omega(\frac{\kappa}{z-\bar{z}}) = 1$.

To prove the last equality, recall $z \in O_K^{\times}$, and write $z = s + t\theta$ for some $s, t \in O_F$. Then $t = z(1-u)(\theta - \bar{\theta})^{-1}$ is a product of units so $t \in O_F^{\times}$, hence $\omega(t) = 1$. Suppose $\mathfrak{a} = \alpha O_K$ for some $\alpha \in K^{\times}$, then $\pi^{n_{\psi}} \frac{\kappa}{\theta - \theta} N_{K/F} \alpha = \pi^{\mu_{\mathfrak{a}}}$ by definition of $\mu_{\mathfrak{a}}$. But remember $\mu_{\mathfrak{a}} = 0$, so $\pi^{n_{\psi}} \frac{\kappa}{\theta - \theta} N_{K/F} \alpha = 1$. Meanwhile $\lambda_K(\psi) = \omega(\pi^{n_{\psi}})$ by lemma 16. Put these together, we see

$$\lambda_K(\psi)\omega(\frac{\kappa}{z-\bar{z}}) = \omega(t^{-1}\pi^{n_{\psi}}\frac{\kappa}{\theta-\bar{\theta}})$$
$$= \omega(t^{-1}N_{K/F}\alpha^{-1}) = 1 \quad \Box$$

6.4 A lemma

Lemma 17 Let $z \in K^{\times} - F^{\times}$, $u = \bar{z}/z$. Let $\mathfrak{a}, \mathfrak{b}$ be ideals of K subject to the conditions (i) $(1-u)\mathfrak{b} \subset \mathfrak{a}$. (ii) $v(1-u)\mathfrak{b} \subset \mathfrak{b}_*$. Then for $\Phi \in V(\mathfrak{a})$,

$$M(z)\Phi = |1 - u|_K^{\frac{1}{2}} \int_{(1 - u)^{-1}\mathfrak{b}_*} \psi(\frac{1}{2}\langle x, ux \rangle) \rho((1 - u)x, 0)\Phi \ dx$$

Proof. Let $x \in K$. Define $R_{\Phi}(x) = \psi(\frac{1}{2}\langle x, ux \rangle)\rho((1-u)x, 0)\Phi$. Put

$$I_x = \int_{x+h} R_{\Phi}(y) \, \mathrm{d}y$$

Because $v^{-1} \in O_K$ and $v(1-u)\mathfrak{b} \subset \mathfrak{b}_*$, one has $\mathfrak{b} \subset (1-u)^{-1}\mathfrak{b}^*$. Suppose $x \notin (1-u)^{-1}\mathfrak{b}_*$, we need to show $I_x = 0$.

$$I_{x} = \int_{\mathfrak{b}} R_{\Phi}(x+b) db$$

$$= \psi(\frac{1}{2} < x, ux >) \int_{\mathfrak{b}} \psi(<(1-u)b, x > +\frac{1}{2} < b, ub >)$$

$$\rho((1-u)x, 0)\rho((1-u)b, 0)\Phi db$$

Because $(1-u)\mathfrak{b} \subset \mathfrak{a}$ and $\Phi \in V(\mathfrak{a})$, the definition of $V(\mathfrak{a})$ enables us to replace $\rho((1-u)b,0)\Phi$ by $\psi(-t_{(1-u)b})\Phi$, so

$$I_x = R_{\Phi}(x) \int_{\mathfrak{h}} \psi(<(1-u)b, x> +\frac{1}{2} < b, ub> -t_{(1-u)b}) db$$

Next use equation (9)

$$I_x = R_{\Phi}(x) \int_{\mathfrak{b}} \psi(\langle (1-u)b, x \rangle) \psi(\langle v(1-u)b, b \rangle) db$$

The assumption $v(1-u)\mathfrak{b} \subset \mathfrak{b}_*$ makes $\psi(\langle v(1-u)b,b\rangle)=1$. So

$$I_x = R_{\Phi}(x) \int_{\mathfrak{b}} \psi(\langle (1-u)b, x \rangle) db$$
$$= R_{\Phi}(x) \int_{\mathfrak{b}} \psi(\langle b, (1-\bar{u})x \rangle) db$$

Now $x \notin (1-u)^{-1}\mathfrak{b}_* = (1-\bar{u})^{-1}\mathfrak{b}_*$ implies

$$\int_{b} \psi(< b, (1 - \bar{u})x >) \, \mathrm{d}b = 0$$

Hence $I_x = 0$. \square

Proposition 11 Let \mathfrak{a} be a relevant ideal of K. Then

$$\mathcal{M}(z)\Phi = \Phi$$
 $\forall z \in U_{\mathfrak{a}}, \forall \Phi \in V(\mathfrak{a})$

Proof. Let $z \in U_{\mathfrak{a}}$, $u = \bar{z}/z$ and $\Phi \in V(\mathfrak{a})$.

Step 1. If $z \in F^{\times}$. Then $z \in U_{\mathfrak{a}}$ implies $z \in (1 + \pi^{\delta_{K/F}} O_F) \cap O_F^{\times}$. So $\gamma(z) = \omega(z) = 1$ and $M(z)\Phi = \Phi$. As a result, we have $\mathcal{M}(z)\Phi = \gamma(z)M(z)\Phi = \Phi$. For the rest of the proof we assume $z \notin F^{\times}$.

Step 2. In this step we show $(1-u)\mathfrak{a}_*\subset\mathfrak{a}$ and $v(1-u)\mathfrak{a}_*\subset\mathfrak{a}$. Because $\frac{1}{v}\in O_K$, it suffice to show the second inclusion. Because $\mathfrak{a}_*=\frac{1}{\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}}}\mathfrak{a}$ by lemma 10. We reduce the proof to show $v(1-u)\in\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}}O_K$. First suppose K/F is unramified. Then $z\in U_{\mathfrak{a}}=U_{\mu_{\mathfrak{a}}}$ implies $u\in U_{\mu_{\mathfrak{a}}}$ by proposition 1, which means $1-u\in\pi^{\mu_{\mathfrak{a}}}O_K$ when $\mu_{\mathfrak{a}}\geq 1$. However $1-u\in\pi^{\mu_{\mathfrak{a}}}O_K$ still holds when $\mu_{\mathfrak{a}}=0$. So we have $1-u\in\pi^{\mu_{\mathfrak{a}}}O_K$. Now notice v is a unit and $\delta_{K/F}=0$, so $v(1-u)\in\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}}O_K$. Next we suppose K/F is ramified. Then $z\in U_{\mathfrak{a}}$ implies $z\in F^\times U_{2\mu_{\mathfrak{a}}+2\delta_{K/F}}$, which further implies $u\in U_{2\mu_{\mathfrak{a}}+3\delta_{K/F}}$ by proposition 3. So $1-u\in\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}}\Pi^{\delta_{K/F}}O_K$. Now $v\in\Pi^{1-\delta_{K/F}}O_K^\times$, so $v(1-u)\in\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}}\Pi O_K$. Therefore $v(1-u)\in\pi^{\mu_{\mathfrak{a}}+\delta_{K/F}}O_K$.

Step 3. Replace \mathfrak{b} in lemma 17 by \mathfrak{a}_* , we get

$$M(z)\Phi = |1 - u|^{\frac{1}{2}} \int_{\frac{1}{1-u}} \psi(\frac{1}{2}\langle x, ux \rangle) \rho((1-u)x, 0) \Phi \, dx$$

Because $\Phi \in V(\mathfrak{a})$ and $(1-u)x \in \mathfrak{a}$, we know $\rho((1-u)x,0)\Phi = \psi(-t_{(1-u)x})\Phi$. So

$$M(z)\Phi = |1 - u|_K^{\frac{1}{2}}\Phi \int_{\frac{1}{1-u}\mathfrak{a}} \psi(\frac{1}{2}\langle x, ux \rangle - t_{(1-u)x}) dx$$

Now apply (9), we have

$$M(z)\Phi = |1 - u|_K^{\frac{1}{2}} \Phi \int_{\frac{1}{1-u}\mathfrak{a}} \psi(\langle v(1-u)x, x \rangle) \, \mathrm{d}x$$
$$= |1 - u|_K^{-\frac{1}{2}} \Phi \int_{\mathfrak{a}} \psi(\langle vx, \frac{x}{1-u} \rangle) \, \mathrm{d}x$$
$$= |1 - u|_K^{-\frac{1}{2}} |\mathfrak{a}| S_{\mathfrak{a}}(a) \Phi$$

where $a = \langle v, \frac{1}{1-u} \rangle \in F^{\times}$.

Step 4.

$$\begin{array}{rcl} \mathcal{M}(z)\Phi & = & \gamma(z)M(z) \\ & = & \lambda_K(\psi)^{-1}\omega(\frac{z-\bar{z}}{\kappa})|1-u|_K^{-\frac{1}{2}}|\mathfrak{a}|S_{\mathfrak{a}}(a)\Phi \\ & = & \Phi \end{array}$$

where the last equality follows from proposition 10. \square

Remark. The statment of above proposition is contained in [2] with a different proof. When $\mu_{\mathfrak{a}} \geq 0$, above proposition is the lemma in page 292 in [2].

Corollary 2 Let \mathfrak{a} be a relevant ideal in K, $z \in K_{\mathfrak{a}}$ and $\Phi \in V(\mathfrak{a})$. If z = az' for some $a \in F^{\times}$ and $z' \in U_{\mathfrak{a}}$, then

$$\mathcal{M}(z)\Phi = \omega(a)\Phi$$

We see that \mathcal{M} is smooth, and $K_{\mathfrak{a}}$ acts on $V(\mathfrak{a})$ as scalar multiplication in the representation $(\mathcal{M}, K^{\times}, V(\mathfrak{a}))$. Hence $(\mathcal{M}, K^{\times}, V(\mathfrak{a}))$ is completely reducible. Because V is a union of all the $V(\mathfrak{a})$ s, $(\mathcal{M}, K^{\times}, V)$ is completely reducible, and so is its subrepresentations. Therefore any subrepresentations of $(\mathcal{M}, K^{\times}, V)$ is a direct sum of one dimensional representations.

7 Subrepresentation $(\mathcal{M}, K^{\times}, V_{\mathbf{prim}}(\mathfrak{a}))$

7.1 Inner product on V

We define an inner product on V by

$$(\Phi, \Phi') = \int_K \Phi(z) \overline{\Phi'(z)} dz \qquad \Phi, \Phi' \in V$$

Then the representation (ρ, H, V) is unitary. More importantly the representation $(\mathcal{M}, K^{\times}, V)$ is unitary.

Proposition 12 Let \mathfrak{a} be a relevant ideal in K. Then

$$(\mathcal{P}_{\mathfrak{a}}\Phi_1, \Phi_2) = (\Phi_1, \mathcal{P}_{\mathfrak{a}}\Phi_2) \qquad \forall \Phi, \Phi_2 \in V$$

where $\mathcal{P}_{\mathfrak{a}}$ is defined in section 6.1.

7.2 Definition of $V_{\mathbf{prim}}(\mathfrak{a})$

Let \mathfrak{a} be a relevant ideal in K. Define

$$V_{\text{prim}}(\mathfrak{a}) = \{ \Phi \in V(\mathfrak{a}) \mid (\Phi, \Psi) = 0 \text{ for any } \Psi \in V(\mathfrak{b}), \mathfrak{b} \supseteq \mathfrak{a} \}$$

It follows from the definiton that

$$V(\mathfrak{a}) = V_{\text{prim}}(\mathfrak{a}) \oplus V(\Pi^{-1}\mathfrak{a})$$

Because of proposition 12, we have

Proposition 13 Let \mathfrak{a} be a relevant ideal in K. Then $(\mathcal{M}, K^{\times}, V_{prim}(\mathfrak{a}))$ is a subrepsentation of $(\mathcal{M}, K^{\times}, V)$.

8 Eigenfunctions

8.1 Eigencharacters

A character of K^{\times} is a continuous group homomorphism $\chi: K^{\times} \to \mathbb{C}^{\times}$. Such an character has its image in \mathbb{C}^1 . Let $\Phi \in V$. If

$$\mathcal{M}(z)\Phi = \chi(z)\Phi \qquad \forall z \in K^{\times}$$
 (20)

for some character χ of K^{\times} and $\Phi \neq 0$, we say Φ is an **eigenfunction** of the representation $(\mathcal{M}, K^{\times}, V)$ and χ is the **eigencharacter** associated to Φ . If $\Phi \in W$ for some invariant subspace W of V, we also say χ is in W. Let \mathfrak{a} be a relevant ideal in K. If χ is an eigencharater in $V(\mathfrak{a})$, then $\chi|_{F^{\times}} = \omega$ and $\chi(U_{\mathfrak{a}}) = 1$ by lemma 2.

8.2 Projection operators

Let $\mathfrak a$ be a relevant ideal in K, and χ a charater of K^{\times} that satisfies $\chi|_{F^{\times}} = \omega$ and $\chi(U_{\mathfrak a}) = 1$. Define $P_{\chi,\mathfrak a} : V(\mathfrak a) \to V(\mathfrak a)$ by

$$P_{\chi,\mathfrak{a}}\Phi = \sum_{z \in K^{\times}/K_{\mathfrak{a}}} \chi(z^{-1})\mathcal{M}(z)\Phi \qquad \forall \Phi \in V(\mathfrak{a})$$

 $P_{\chi,\mathfrak{a}}$ is a well defined map and its image satisfies equation (20). We know χ appears in $V(\mathfrak{a})$ if and only if $P_{\chi,\mathfrak{a}}\Phi \neq 0$ for some $\Phi \in V(\mathfrak{a})$.

Proposition 14 Let $\mathfrak{a} \subset \mathcal{L}$ be a relevant ideal in K, and Φ a nonzero function in $V(\mathfrak{a})$. Then $V(\mathfrak{a})$ is generated by $\{\rho(x,0)\Phi|x\in\mathfrak{a}_*\}$.

Proof. Under the assumption $\mathfrak{a} \subset \mathcal{L}$, a function in V is in $V(\mathfrak{a})$ if and only if it is supported on $r + \mathfrak{a}_*$. So if $x \in \mathfrak{a}_*$, then $\rho(x,0)\Phi \in V(\mathfrak{a})$.

Let $\Phi' \in V(\mathfrak{a})$. Because (ρ, H, V) is irreducible, there are $c_i \in \mathbb{C}, (x_i, t_i) \in H$ such that

$$\Phi' = \sum_{i} c_i \rho(x_i, t_i) \Phi$$

Notice Φ' is supported on $r + \mathfrak{a}_*$, and $\rho(x_i, t_i)\Phi$ is supported on $-x_i + r + \mathfrak{a}_*$. We can multiply both sides of the equation by $1_{r+\mathfrak{a}_*}$ to eliminate the summands with $x_i \notin \mathfrak{a}_*$. \square

Corollary 3 Let $\mathfrak{a} \subset \mathcal{L}$ be a relevant ideal in K, and Φ a nonzero function in $V(\mathfrak{a})$, and χ a character of K^{\times} . Then χ appears in $V(\mathfrak{a})$ if and only if $P_{\chi,\mathfrak{a}}\rho(x,0)\Phi \neq 0$ for some $x \in \mathfrak{a}_*$.

Corollary 4 Let \mathfrak{c} be the largest relevant ideal in K. Let $\Phi_{\mathfrak{c}}$ be an eigenfunction in $V(\mathfrak{c})$ with eigenfunction $\chi_{\mathfrak{c}}$. If χ is an eigencharacter that appears in $V(\mathfrak{a})$ for some relevant ideal $\mathfrak{a} \subset \mathcal{L}$, then there is an $x \in \mathfrak{a}_*$ such that an eigenfunction associated to χ is given by

$$\sum_{z \in K^{\times}/K_{\mathfrak{a}}} \chi(z^{-1}) \chi_{\mathfrak{c}}(z) \rho(-ux, 0) \Phi_{\mathfrak{c}}$$

where $u = \bar{z}/z$.

Proof. Notice $\Phi_{\mathfrak{c}} \in V(\mathfrak{c}) \subset V(\mathfrak{a})$. By corollary 3, there is an $x \in \mathfrak{a}_*$ such that the eigenfunction associated to χ is given by $\sum_{z \in K^{\times}/K_{\mathfrak{a}}} \chi(z^{-1}) \Psi(z, x)$ where

$$\Psi(z,x) = \mathcal{M}(z)\rho(-x,0)\Phi_{\mathfrak{c}} = \chi_{\mathfrak{c}}(z)\rho(-ux,0)\Phi_{\mathfrak{c}}$$

8.3 Eigenfunctions general case

For $x \in K$, denote by $\Phi_{x,\mathcal{L}}$ the unique function in V that is supported on $x + \mathcal{L}$ and has value 1 at x. Denote by \mathfrak{l} the largest relevant ideal contained in \mathcal{L} . Let $D_{r,\mathcal{L}}$ be an open subgroup of K^{\times} that contains F^{\times} and stabilizes the one dimensional space spanned by $\Phi_{r,\mathcal{L}}$. Let $\chi_{r,\mathcal{L}}$ be a character on $D_{r,\mathcal{L}}$ that satisfies

$$\mathcal{M}(z)\Phi_{r,\mathcal{L}} = \chi_{r,\mathcal{L}}(z)\Phi_{r,\mathcal{L}} \quad \forall \in D_{r,L}$$

Lemma 18 Let $x \in K$.

$$\rho(-x,0)\Phi_{r,\mathcal{L}} = \psi(\frac{1}{2}\langle x,r\rangle)\Phi_{r+x,\mathcal{L}}$$

So $\rho(-x,0)\Phi_{r,\mathcal{L}}$ and $\Phi_{r+x,\mathcal{L}}$ differ only by a scalar.

Lemma 19 Let \mathfrak{a} be relevant ideals in K such that $\mathfrak{a} \subsetneq \mathfrak{l}$. If $\mathfrak{a}_* = \alpha O_K$ for some $\alpha \in K$, then $V_{prim}(\mathfrak{a})$ is generated by $\{\Phi_{r+x,\mathcal{L}}|x \in \alpha O_K^{\times}\}$,

Proof. By theorem 2, we know $V(\mathfrak{a})$ is generated by $\{\Phi_{r+x,\mathcal{L}}|x\in\mathfrak{a}_*\}$, and $V(\Pi^{-1}\mathfrak{a})$ is generated by $\{\Phi_{r+x,\mathcal{L}}|x\in\Pi\mathfrak{a}_*\}$. The conclusion follows from the fact that $V_{\text{prim}}(\mathfrak{a})=\{\Phi\in V(\mathfrak{a})|(\Phi,\Psi)=0\ \forall \Psi\in V(\Pi^{-1}\mathfrak{a})\}$. \square

Lemma 20 Let \mathfrak{a} be a relevant ideal in K such that $\mathfrak{a} \subsetneq \mathfrak{l}$. Let χ be a character on K^{\times} that satisfies $\chi|_{F^{\times}} = \omega$ and $\chi(U_{\mathfrak{a}}) = 1$. Write $\mathfrak{a} = \alpha O_K$ for some $\alpha \in K$. Then χ appear in $V_{prim}(\mathfrak{a})$ if and only if $P_{\chi,\mathfrak{a}}\rho(-x,0)\Phi_{r,\mathcal{L}} \neq 0$ for some $x \in \alpha O_K^{\times}$.

Proof. It suffices to notice $\{\rho(-x,0)\Phi_{r,\mathcal{L}}|x\in\alpha O_K^{\times}\}$ generates $V_{\text{prim}}(\mathfrak{a})$ by lemma 19. \square

Definition 3 Let $x \in K$. We say x is large enough if $\{z \in K^{\times} | (1-u)x \in \mathfrak{l}_*\} \subset D_{r,\mathcal{L}}$, where $u = \bar{z}/z$.

Lemma 21 Let $z \in K^{\times}$ and $u = \bar{z}/z$. Suppose $x \in K$ is large enough. The following are equivalent

- 1) The support of $\mathcal{M}(z)\Phi_{r+x,\mathcal{L}}$ and $\Phi_{r+x,\mathcal{L}}$ are the same.
- 2) The support of $\mathcal{M}(z)\Phi_{r+x,\mathcal{L}}$ and $\Phi_{r+x,\mathcal{L}}$ overlap.
- 3) $(1-u)x \in \mathcal{L}$.

Proof. 1) \Rightarrow 2) Obvious.

2) \Rightarrow 3) We have $\mathcal{M}(z)\Phi_{r,\mathcal{L}} \in V(\mathfrak{l})$ since $\Phi_{r,\mathcal{L}} \in V(\mathfrak{l})$, therefore $\mathcal{M}(z)\Phi_{r,\mathcal{L}}$ is supported on $r + \mathfrak{l}_*$. Now by

$$\mathcal{M}(z)\rho(-x,0)\Phi_{r,\mathcal{L}} = \rho(-ux,0)\mathcal{M}(z)\Phi_{r,\mathcal{L}}$$
(21)

we know $\mathcal{M}(z)\Phi_{r+x,\mathcal{L}}$ is supported on $ux+r+\mathfrak{l}_*$, which overlaps with $x+r+\mathcal{L}$, the support of $\Phi_{r+x,\mathcal{L}}$. Therefore $(1-u)x\in\mathfrak{l}_*$, hence $z\in D_{r,\mathcal{L}}$. As a result, $\mathcal{M}(z)\Phi_{r,\mathcal{L}}=\chi_{r,\mathcal{L}}(z)\Phi_{r,\mathcal{L}}$. With this knowledge and (21), we see $\mathcal{M}(z)\Phi_{r+x,\mathcal{L}}$ is supported on $ux+r+\mathcal{L}$. Now this overlaps with $x+r+\mathcal{L}$ means $(1-u)x\in\mathcal{L}$.

3) \Rightarrow 1) Since $\mathfrak{l} \subset \mathcal{L}$ hence $\mathcal{L} \subset \mathfrak{l}_*$, we know $(1-u)x \in \mathcal{L}$ implies $(1-u)x \in \mathfrak{l}_*$. Then $\mathcal{M}(z)\Phi_{r,\mathcal{L}} = t\Phi_{r,\mathcal{L}}$ for some $t \in \mathbb{C}^1$. Now (21) implies $\mathcal{M}(z)\Phi_{r+x,\mathcal{L}}$ is supported on $ux + r + \mathcal{L}$ which is the same as $x + r + \mathcal{L}$. \square

Lemma 22 Suppose $x \in K$ is large enough. Define

$$K(x,\mathcal{L}) = \{ z \in K^{\times} | (1-u)x \in \mathcal{L} \}$$

then $z \in K(x,\mathcal{L})$ if and only if $\mathcal{M}(z)\Phi_{r+x,\mathcal{L}} = t\Phi_{r+x,\mathcal{L}}$ for some $t \in \mathbb{C}^1$. In particular $K(x,\mathcal{L})$ is a group. Further

$$\mathcal{M}(z)\Phi_{r+x,\mathcal{L}} = \chi_{r,\mathcal{L}}(z)C_x(z)\Phi_{r+x,\mathcal{L}} \quad \forall z \in K(x,\mathcal{L})$$

where

$$C_x(z) = \psi(\frac{1}{2}\langle ux, x \rangle + \frac{1}{2}\langle r, (1-u)x \rangle + \frac{1}{4}\langle (1-u)x, (1-\bar{u})\bar{x} \rangle)$$

Proof. The first statement follows from lemma 21 and the fact that two functions in V which are supported on the same coset of \mathcal{L} differ only by a constant. We next prove the second statement.

$$\rho(x,0)\mathcal{M}(z)\rho(-x,0)\Phi_{r,\mathcal{L}} = \rho(x,0)\rho(-ux,0)\mathcal{M}(z)\Phi_{r,\mathcal{L}}$$
$$= \psi(\frac{1}{2}\langle ux,x\rangle)\rho((1-u)x,0)\chi_{r,\mathcal{L}}(z)\Phi_{r,\mathcal{L}}$$
(22)

Now $(1-u)x \in \mathcal{L}$. But if $l \in \mathcal{L}$, we have

$$\rho(l,0)\Phi_{r,\mathcal{L}} = \psi(\langle r,l\rangle + \frac{1}{4}\langle l,\bar{l}\rangle)\Phi_{r,\mathcal{L}}$$
(23)

Replace l by (1-u)x in (23) and put the result back in (22). We get

$$\rho(x,0)\mathcal{M}(z)\rho(-x,0)\Phi_{r,\mathcal{L}} = \chi_{r,\mathcal{L}}(z)C_x(z)\Phi_{r,\mathcal{L}} \qquad \Box$$

Definition 4 A relevant ideal \mathfrak{a} in K is said to be **small enough** if $\{z \in K^{\times} | (1-u)\mathfrak{a}_* \subset \mathfrak{l}_*\} \subset D_{r,\mathcal{L}}$.

Theorem 3 Let \mathfrak{a} be a relevant ideal in K small enough and $\mathfrak{a} \subsetneq \mathfrak{l}$, and χ a character on K^{\times} . Write $\mathfrak{a}_* = \alpha O_K$ for some $\alpha \in K$. Then χ appears in $V_{prim}(\mathfrak{a})$ if and only if χ satisfies

- 1) $\chi|_{F^{\times}} = \omega$, $\chi(U_{\mathfrak{a}}) = 1$
- 2) $\chi|_{K(x,\mathcal{L})} = \chi_{r,\mathcal{L}} C_x$ for some $x \in \alpha O_K^{\times}$, where $K(x,\mathcal{L})$ and C_x are as defined in lemma 22.

If χ appears in $V_{prim}(\mathfrak{a})$ and x is chose as in 2), an eigenfunction associated to χ is given by

$$\sum_{z \in K^{\times}/K(x,\mathcal{L})} \chi(z^{-1}) \mathcal{M}(z) \Phi_{r+x,\mathcal{L}}$$

Proof. Let $x \in \alpha O_K^{\times}$. Because

$$\{z \in K^{\times} | (1-u)x \subset \mathfrak{l}_*\} = \{z \in K^{\times} | (1-u)\mathfrak{a}_* \subset \mathfrak{l}_*\} \subset D_{r,\mathcal{L}}$$

we know x is large enough.

We consider

$$P_{\chi,\mathfrak{a}}\rho(-x,0)\Phi_{r,\mathcal{L}} = \sum_{z \in K^{\times}/K_{\mathfrak{a}}} \chi(z^{-1})\Psi(z,x)$$

where

$$\Psi(z,x) = \mathcal{M}(z)\rho(-x,0)\Phi_{r,\mathcal{L}}$$

By lemma 22 we have

$$\Psi(z,x) = \chi_{r,\mathcal{L}}(z)C_x(z)\rho(-x,0)\Phi_{r,\mathcal{L}} \qquad \forall z \in K(x,\mathcal{L})$$

Now the eigenfunction is

$$\begin{split} & \sum_{z \in K^{\times}/K_{\mathfrak{a}}} \chi(z^{-1}) \Psi(z,x) \\ = & \sum_{w \in K^{\times}/K(x,\mathcal{L})} \chi(w^{-1}) \mathcal{M}(w) \sum_{z \in K(x,\mathcal{L})/K_{\mathfrak{a}}} \chi(z^{-1}) \Psi(z,x) \\ = & Q \cdot E \end{split}$$

where

$$Q = \sum_{z \in K(x,\mathcal{L})/K_{\mathfrak{a}}} \chi(z^{-1}) \chi_{r,\mathcal{L}}(z) C_x(z)$$

and

$$E = \sum_{w \in K^{\times}/K(x,\mathcal{L})} \chi(w^{-1}) \mathcal{M}(w) \rho(-x,0) \Phi_{r,\mathcal{L}}$$

If $\mathcal{M}(w)\rho(-x,0)\Phi_{r,\mathcal{L}}$ and $\rho(-x,0)\Phi_{r,\mathcal{L}}$ have overlapping support, then $w \in K(x,\mathcal{L})$ by lemma 21. This means, in the sum of E, the term corresponding to w=1 is orthogonal to the other summands. Hence $E \neq 0$.

Now $P_{\chi,\mathfrak{a}}\rho(-x,0)\Phi_{r,\mathcal{L}} \neq 0$ if and only if $Q \neq 0$. However Q is a sum of group characters, since $z \mapsto \chi_{r,\mathcal{L}}(z)C_x(z)$ is an eigencharacter on $K(x,\mathcal{L})$ with eigenfunction $\rho(-x,0)\Phi_{r,\mathcal{L}}$. So $Q \neq 0$ if and only if

$$\chi(z) = \chi_{r,\mathcal{L}}(z)C_x(z) \qquad \forall z \in K(x,\mathcal{L})$$

The rest of theorem now follows \square

8.4 Eigenfunctions when \mathcal{L} is an ideal

Suppose \mathcal{L} is an ideal of K, and let $\mathfrak{l} = \frac{1}{v}\mathcal{L}$. Then $v\mathfrak{l} \subset \mathfrak{l}_*$, hence \mathfrak{l} is an relevant ideal. We know $V(\mathfrak{l})$ has a basis $\{\Phi_{s,\mathcal{L}}|s\in r+\mathfrak{l}_*/\mathcal{L}\}$. They are actually all eigenfunctions.

Theorem 4 If \mathcal{L} is an ideal of K. Let $\mathfrak{l} = \frac{1}{v}\mathcal{L}$, and $s \in r + \mathfrak{l}_*$. Then $\Phi_{s,\mathcal{L}}$ is an eigenfunction of \mathcal{M} with eigencharacter $\chi_{s,\mathcal{L}}$ defined in the proof.

Proof. We want to show that for any $z \in K^{\times}$, $\mathcal{M}(z)\Phi_{s,\mathcal{L}}$ is a scalar multiple of $\Phi_{s,\mathcal{L}}$. If $z \in F^{\times}$ then $\mathcal{M}(z)\Phi_{s,\mathcal{L}} = \omega(z)\Phi_{s,\mathcal{L}}$ by definition of \mathcal{M} . For the rest of the proof we assume $z \in K^{\times} - F^{\times}$. We know $\Phi_{s,\mathcal{L}} \in V(\mathfrak{l})$. We have $v(1-u) \in O_K$ by lemma 2, where $u = \bar{z}/z$. As a consequece we know $(1-u)\mathcal{L} \subset \mathfrak{l}$ and $v(1-u)\mathcal{L} \subset \mathcal{L}$. Now we apply Lemma 17 with $\mathfrak{a}, \mathfrak{b}$ and Φ in the lemma replaced by $\mathfrak{l}, \mathcal{L}$ and $\Phi_{s,\mathcal{L}}$. We have

$$M(z)\Phi_{s,\mathcal{L}} = |1 - u|_K^{\frac{1}{2}} \int_{\frac{1}{1 - u}\mathcal{L}} \psi(\frac{1}{2}\langle x, ux \rangle) \rho((1 - u)x, 0) \Phi_{s,\mathcal{L}} dx$$
$$= |1 - u|_K^{-\frac{1}{2}} \int_{\mathcal{L}} \psi(\frac{1}{2}\langle l, \frac{l}{1 - u} \rangle) \rho(l, 0) \Phi_{s,\mathcal{L}} dl$$

If we use the following formula

$$\rho(l,0)\Phi_{s,\mathcal{L}} = \psi(\langle s,l\rangle + \frac{1}{4}\langle l,\bar{l}\rangle)\Phi_{s,\mathcal{L}} \qquad \forall l \in \mathcal{L}$$

we have

$$M(z)\Phi_{s,\mathcal{L}} = B_s(z)\Phi_{s,\mathcal{L}}$$

where

$$B_s(z) = |1 - u|_K^{-\frac{1}{2}} \int_{\mathcal{L}} \psi(\frac{1}{2}\langle l, \frac{l}{1 - u}\rangle + \langle s, l \rangle + \frac{1}{4}\langle l, \bar{l} \rangle) dl$$

If we define

$$\chi_{s,\mathcal{L}}(z) = \begin{cases} \omega(z) & z \in F^{\times} \\ \lambda_{K}(\psi)^{-1} \omega(\frac{z - \bar{z}}{\kappa}) B_{s}(z) & z \in K^{\times} - F^{\times} \end{cases}$$

then we have

$$\mathcal{M}(z)\Phi_{s,\mathcal{L}} = \chi_{s,\mathcal{L}}(z)\Phi_{s,\mathcal{L}} \qquad \forall z \in K^{\times}$$

In many cases we we can decide $\chi_{s,\mathcal{L}}$ easily. If K/F is unramifed, then $\mu_{\mathfrak{l}}=0$ and $U_{\mathfrak{l}}=O_K^{\times}$. If K/F is ramified, then $\mu_{\mathfrak{l}}=-1$ and $U_{\mathfrak{l}}=U_{2\delta_{K/F}-1}$. However we have $\chi_{s,\mathcal{L}}(U_{\mathfrak{l}})=1$. If K/F is ramified and 2 is a unit in F. We can assume $\bar{\Pi}=-\Pi$. Then $B_s(\Pi)=1$ and $\chi_{r,\mathcal{L}}(\Pi)=\lambda_K(\psi)^{-1}\omega(\frac{2\Pi}{\kappa})$.

Lemma 23 Let $\mathfrak a$ be a relevant ideal. Write $\mathfrak a_* = \alpha O_K$ for some $\alpha \in K$. Let $x \in \alpha O_K^{\times}$

$$K(x,\mathcal{L}) = \begin{cases} K^{\times} & \mu_{\mathfrak{a}} \leq -1 \\ F^{\times}O_{K}^{\times} & \mu_{\mathfrak{a}} = 0 \\ F^{\times}(1 + \pi^{\mu_{\mathfrak{a}}/2}O_{K}) & \mu_{\mathfrak{a}} > 0 \ even \\ F^{\times}(1 + \pi^{(\mu_{\mathfrak{a}}+1)/2}O_{K}) & \mu_{\mathfrak{a}} > 0 \ odd \end{cases}$$

We denote this $K(x, \mathcal{L})$ as $G_{\mathfrak{a}}$.

Now if we take $D_{r,\mathcal{L}} = K^{\times}$, then any relevant ideal is small enough we have

Theorem 5 Let \mathfrak{a} be a relevant ideal in K such that $\mathfrak{a} \subsetneq \mathfrak{l}$ and χ a character on K^{\times} . Write $\mathfrak{a}_* = \alpha O_K$ for some $\alpha \in K$. Then χ appears in $V_{prim}(\mathfrak{a})$ if and only if χ satisfies

- 1) $\chi|_{F^{\times}} = \omega$, $\chi(U_{\mathfrak{g}}) = 1$
- 2) $\chi|_{G_{\mathfrak{a}}} = \chi_{r,\mathcal{L}} C_x$ for some $x \in \alpha O_K^{\times}$, where C_x are as defined in lemma 22. If χ appears in $V_{prim}(\mathfrak{a})$ and x is chosen as in 2), an eigenfunction associated to χ is given by

$$\sum_{z \in K^{\times}/G_{\mathfrak{a}}} \chi(z^{-1}) \chi_{r,\mathcal{L}}(z) \psi(\frac{1}{2} \langle ux, r \rangle) \Phi_{r+ux,\mathcal{L}}$$

where $u = \bar{z}/z$ and $\chi_{r,\mathcal{L}}$ is the eigencharacter associated to $\Phi_{r,\mathcal{L}}$.

Proof. This theorem follows from theorem 3 and the fact that $\mathcal{M}(z)\Phi_{r+x,\mathcal{L}} = \psi(\frac{1}{2}\langle r,x\rangle)\chi_{r,\mathcal{L}}(z)\psi(\langle ux,r\rangle)\Phi_{r+ux,\mathcal{L}}$. \square

References

- [1] I.N.Bernshtein and A.V.Zelevinskii. Representations of the group GL(n,F) where F is a non-archimedean local field. Russian Math. Surveys 31, 1976.
- [2] Atsushi Murase and Takashi Sugano. Local theory of primitive theta function. *Compositio Mathematica* 123, 2000.
- [3] Colette Mæglin, Marie-France Vignéras, and Jean-Loup Waldspurger. Correspondances de Howe sur un corps p-adique. Springer, 1987.
- [4] André Weil. Sur certain groupes d'opérateurs unitaries. *Acta Mathematica* 111, 1964.
- [5] André Weil. Basic Number Theory. Springer, 1973.
- [6] Tonghai Yang. Eigenfunctions of the weil representation of unitary group of one variable. *Trans. Amer.Math.Soc.350*, 1998.