Centre universitaire - Salhi Ahmed - de Naâma

Institut des sciences et de la Technologie

Département : Mathématiques et Informatique

3^{ème} Année Licence Informatique Matière : Sécurité Informatique

Fiche TD: 04

Exercice 01:

- 1) En utilisant l'algorithme d'exponentiation rapide, calculez : 47¹² mod 17 $35^{11} \mod 19$ $15^7 \mod 43$
- 2) Calculez l'inverse dans les cas suivants :

8⁻¹ mod 24 7⁻¹ mod 12

5⁻¹ mod 19

Exercice 02 : Un exemple de chiffrement affine

La lettre associée à l'entier x est codée par la lettre associée à f(x), reste de la division euclidienne de 21x + 11 par 26.

- 1) Codez le mot RIGOLO.
- 2) Déterminez 21⁻¹ modulo 26.
- 3) En déduire la fonction de décodage (à partir de la congruence $f(x) \equiv 21x + 11[26]$, trouver $x \equiv \dots [26]$).
- 4) Décoder le mot GLB.

Exercice 03: Chiffrement/Déchiffrement RSA

On considère la clef publique RSA (11, 319), c'est-à-dire pour n = 319 et e = 11.

- 1) Quel est le chiffrement avec cette clé du message M = 100 ?
- 2) Calculez d la clé privée correspondant à la clé publique e.
- 3) Déchiffrez le message C = 133 (sachant que $133^{25} \equiv 133 \mod 319$).
- 4) Le message chiffré 625 peut-il résulter d'un chiffrement avec la clé publique ?

Exercice 04: Echange de clés Diffie-Hellman

Déterminez la clé commune d'Alice et Bob dans le cas où p = 419 et g = 7, et Alice choisit un nombre secret a = 178 et Bob choisit b = 344.