Discrete Mathematics MATH1064, Lecture 10

Extra exercises for Lecture 10

Section 2.2: Problems 50-53

Section 2.3: Problems 1-6, 8-10, 14, 26

2/13

If $f: X \to Y$ is a function, then:

- $oldsymbol{0}$ X is called the domain of f.
- \bigcirc Y is called the co-domain of f.
- **3** If $x \in X$, then f(x) is called the image of x.
- \bullet If $A \subseteq X$, then

$$f(A) = \{f(x) \mid x \in A\} = \{y \mid \exists x \in A : f(x) = y\} \subseteq Y$$

is called the image of A.

The entire set f(X) is called the range of f.

- If $y \in Y$, then $f^{-1}(y) = \{x \in X \mid f(x) = y\} \subseteq X$ is called the preimage of y.
- **⑤** If $B \subseteq Y$, then $f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subseteq X$ is called the preimage of B.

Don't confuse f^{-1} with $\frac{1}{f}$!

Equality of functions

Functions $f, g: X \to Y$ are equal, written f = g, if and only if

$$f(x) = g(x)$$
 for all $x \in X$.

Example: Are the functions $f,g: \mathbb{N} \to \mathbb{N}$ defined by f(n) = n! and $g(n) = n \times (n-1)!$ equal?

Note: f denotes a function and f(x) denotes an element of Y.

Example: sin is a function; sin(x) is just some number.

Floor and ceiling

Definition

Let $x \in \mathbb{R}$ be a real number. The floor of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \leq x < n+1$.

If
$$x = \pi$$
, then $\lfloor x \rfloor =$ If $x = -0.9999$, then $\lfloor x \rfloor =$ If $x = 6$, then $\lfloor x \rfloor =$

Definition

Let $x \in \mathbb{R}$ be a real number. The ceiling of x, denoted $\lceil x \rceil$, is the unique integer n such that $n-1 < x \le n$.

$$\begin{array}{ll} \text{If } x=\pi, \text{ then } \lceil x \rceil = & \text{If } x=-0.9999, \text{ then } \lceil x \rceil = \\ \text{If } x=e, \text{ then } \lceil x \rceil = & \text{If } x=5, \text{ then } \lceil x \rceil = \end{array}$$

5 / 13

Question

Definition

Let $x \in \mathbb{R}$ be a real number. The floor of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \leq x < n+1$.

True or false?

$$\forall x \in \mathbb{R} : |x - 1| = |x| - 1.$$

True! In fact a more general statement is also true:

Lemma

For all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, we have |x + n| = |x| + n.

Question

True or false?

 $\forall x, y \in \mathbb{R} : \lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor.$

Properties of functions

Let $f: X \to Y$. Then:

- f is onto, or surjective, or a surjection, if: $\forall y \in Y, \exists x \in X \text{ such that } f(x) = y.$ Every element of Y is the image of something.
- ② f is one-to-one, or injective, or an injection, if: $\forall x_1, x_2 \in X$, $f(x_1) = f(x_2) \rightarrow x_1 = x_2$. Different elements of X have different images.
- **1** If is a one-to-one correspondence, or bijective, or a bijection, if f is both one-to-one and onto.

The elements of X are "paired off" with the elements of Y.

What is this function?

- (1) one-to-one, (2) onto, (3) bijection, (4) none:
- $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 2n + 3
- $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by g((n, m)) = n + m
- $h: \mathbb{Z} \to \mathbb{Z}$ defined by h(n) = n + 5

• $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 2n + 3

•
$$g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
 defined by $g((n, m)) = n + m$

• $h: \mathbb{Z} \to \mathbb{Z}$ defined by h(n) = n + 5

Proving that a function is onto

Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(n) = \lfloor n/2 \rfloor$.

To show that f is onto, we need to show:

$$\forall y \in \mathbb{Z}, \ \exists x \in \mathbb{Z} \text{ such that } f(x) = y.$$

Proof: Consider any $y \in \mathbb{Z}$. Let x = 2y.

Then:

- $x \in \mathbb{Z}$; that is, x belongs to the domain;
- $\lfloor x/2 \rfloor = \lfloor 2y/2 \rfloor = \lfloor y \rfloor = y$, and so f(x) = y.

Therefore f is onto.

Proving that a function is one-to-one

Let $f: \mathbb{N} \to \mathbb{N}$ be defined by $f(n) = n^2$.

Is f one-to-one? Yes!

We need to show: $\forall x_1, x_2 \in X$, $f(x_1) = f(x_2) \rightarrow x_1 = x_2$.

Proof: Suppose $n, m \in \mathbb{N}$ such that f(n) = f(m).

Then $n^2 = m^2$.

This implies n = m or n = -m.

But $-m \notin \mathbb{N}$ unless m = 0. So we make two cases:

Case 1: If $m \neq 0$, then $-m \notin \mathbb{N}$ and so n = m.

Case 2: If m = 0, then n = 0, and so n = m.

Since in either case n = m, it follows that f is one-to-one.

Finite sets

Suppose X and Y are finite sets.

- **1** If |X| > |Y|, then there is **no** injective function $X \to Y$.
- ② If |X| < |Y|, then there is no surjective function $X \to Y$.
- **3** There is a bijective function $X \to Y$ if and only if |X| = |Y|.

Put differently:

- **1** If $f: X \to Y$ is injective, then $|X| \le |Y|$.
- ② If $f: X \to Y$ is surjective, then $|X| \ge |Y|$.
- **3** If $f: X \to Y$ is bijective, then |X| = |Y|.

For finite sets with |X| = |Y|, the following statements are equivalent:

- 2 $f: X \to Y$ is bijective
- **3** $f: X \rightarrow Y$ is surjective

Composition of functions

If $f: X \to Y$ and $g: Y \to Z$, then the composition

$$g \circ f \colon X \to Z$$

is defined by:

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in X$.

We sometimes write gf instead of $g \circ f$.

Example:

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 defined by $f(x, y) = x \cdot y$

$$g \colon \mathbb{R} \to \mathbb{R}^2$$
 defined by $g(x) = (\sin(x), x)$

Then $f \circ g$:

Then $g \circ f$: