理论力学 CAI

- 前 刚体平面运动学
- 刚体的连体基 刚体位形的描述
- 刚体的平面运动

刚体姿态变化的描述

- 基点的位置、速度与加速度
- 刚体上给定点的位置、速度与加速度
- 相对刚体运动的任意点的位置、速度与加速度

理论力学 CAI

- 前 刚体平面运动学
- 刚体的连体基 刚体位形的描述
- 刚体的平面运动

基点的容置使与加速度

- 基点的位置、速度与加速度
- 刚体上给定点的位置、速度与加速度
- 相对刚体运动的任意点的位置、速度与加速度

理论力学 CAI

- 前章 刚体平面运动学
- 刚体的连体基 刚体位形的描述
- 刚体的平面运动 上 给定点

白基本特位置 速度与加速度

- 相对刚体运动的任意点的位置、速度与加速度

刚体平面运动学

刚体上给定点的位置、速度与 加速度

- 前言
- 给定点的位置
- 给定点的速度
- 刚体的瞬时速度中心
- 给定点的加速度

刚体平面运动学

刚体上给定点的位置、速度与 加速度

- 前言
- 给定点的位置
- 给定点的速度
- 刚体的瞬时速度中心
- 给定点的加速度

2018年10月18日

理论力学CAI 刚体平面运动学

刚体上给定点的位置、速度与加速度/前言

前言

- 刚体的给定点P
 - 与刚体固接的点
- 研究刚体上给定点的运动与 刚体运动的关系

100-

018年10月18日

刚体平面运动学

刚体上给定点的位置、速度与 加速度

- 前言
- 给定点的位置
- 给定点的速度
- 刚体的瞬时速度中心
- 给定点的加速度

理论力学CAI 刚体平面

刚体的连体基 刚体位形的描述/例

[例] 图示一正方体与连体基的关系。已知各时刻连体基的位形坐标为

t(s)	$x_{\rm C}$ (m)	$y_{\rm C}({\rm m})$	φ (deg)
0.0	0	0	0
1.0	1	1	-45
2.0	2	1	-90

求:每一时刻正方体上点A在 参考基上的位置

2018年10月18日

刚体上给定点的位置、速度与加速度/任意给定点 • 给定点P 的位置矢量的关系 $\vec{r}_P = \vec{r}_C + \vec{\rho}_P$ $\vec{e}^{\mathrm{r}}:$ $r_P^{\mathrm{r}} = r_C^{\mathrm{r}} + \rho_P^{\mathrm{r}} = r_C^{\mathrm{r}} + A^{\mathrm{rb}}\rho_P^{\mathrm{b}}$ $r_P = r_C + \rho_P = r_C + A\rho_P'$ $r_P = r_C + \rho_P = r_C + A\rho_P'$ $r_{\mathrm{r}} = r_{\mathrm{r}} + \rho_{\mathrm{r}} = r_{\mathrm{r}} + \rho_{\mathrm{r}} = r_{\mathrm{r}} + \rho_{\mathrm{r}}$

[例]

长为l曲柄作定轴转动, $\varphi = \pi t$

求时间由0到1秒曲柄端点P的轨迹

刚体上给定点的位置、速度与加速度/位置/例

[解] 建立参考基与连体基

刚体的位形

別件的
$$\Omega$$
形 $oldsymbol{q} = \begin{pmatrix} x_C & y_C & \varphi \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 0 & 0 & \pi \end{pmatrix}^{\mathrm{T}} & \bar{y}^{\mathrm{b}}$ 点 $oldsymbol{P}$ 在例体上的位置 $oldsymbol{
ho}_P' = \begin{pmatrix} l & 0 \end{pmatrix}^{\mathrm{T}}$ 点 $oldsymbol{P}$ 在参考基上的位置

点
$$P$$
在参考基上的位置
$$\begin{pmatrix} x_P \\ y_P \end{pmatrix} = \begin{pmatrix} x_C \\ y_C \end{pmatrix} + \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x_P' \\ y_P' \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \cos \pi & -\sin \pi \\ \sin \pi & \cos \pi \end{pmatrix} \begin{pmatrix} l \\ 0 \end{pmatrix} = \begin{pmatrix} l\cos \pi l \\ l\sin \pi l \end{pmatrix}$$

$$x_P = l\cos\pi t; \quad y_P = l\sin\pi t$$

2018年10月18

理论力学CAI 刚体平面运动学

刚体平面运动学

刚体上给定点的位置、速度与 加速度

- 前言
- 给定点的位置
- 给定点的速度
- 刚体的瞬时速度中心
- 给定点的加速度

给定点的速度

- 刚体的位形 $\vec{r}_C(t)$ A(t) 位形坐标阵 $q = \begin{pmatrix} x_C & y_C & \varphi \end{pmatrix}^T$
- 刚体的位形速度 $\vec{v}_C(t)$ $\vec{\omega}(t)$ 位形速度阵 $\vec{q} = \begin{pmatrix} v_{Cx} & v_{Cy} & \omega \end{pmatrix}^T$
- 给定点P在刚体上的位置 $\vec{\rho}_P$ 连体坐标阵 ${m \rho}_P' = (x_P' \ y_P')^{\mathrm{T}}$
- 给定点P的速度 $\vec{v}_P(t)$
- 研究给定点P的速度与刚体运动间的关系

 $\vec{v}_P(t) \sim \dot{q} q$

刚体上给定点的位置、速度与加速度/速度

• 给定点P的速度

$$\vec{r}_P = \vec{r}_C + \vec{\rho}_P$$

在参考基上对时间求导

$$\frac{\dot{\vec{r}_P} = \dot{\vec{r}_C} + \dot{\vec{\rho}_P}}{\vec{v}_P}$$

$$\vec{v}_P = \vec{\rho}_P + \vec{\omega} \times \vec{\rho}_P$$

$$\vec{\rho}_P$$
 连体矢量

点P的绝对速度

$$\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$$

2018年10月18日

$$\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$$

• 刚体作平动

$$\vec{\omega} = \vec{0}$$

点P的速度

$$\vec{v}_P = \vec{v}_C$$

刚体作平动时,任何瞬时刚体上任意点的绝对速度与基点 的绝对速度一致。

刚体上给定点的位置、速度与加速度/速度

$$\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$$

• 刚体定轴转动

$$\vec{v}_C = \vec{0}$$

点P的速度

$$\vec{v}_P = \vec{\omega} \times \vec{\rho}_P = \omega \vec{z} \times \vec{\rho}_P$$

点**P**的速度大小 $v_P = \omega \rho_P$

点P的速度方向 $\vec{v}_P \perp \vec{\rho}_P$ $//\hat{\vec{\rho}}_P$

刚体绕基点作定轴转动时,刚体上任意点的绝对速度方向 垂直于该点的矢径,大小与该点到基点的距离成正比。

• 平面一般运动刚体上给定点P的速度

$$\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$$

根据

刚体的平面一般运动分解为刚体 的平动与刚体定轴转动

对点P的速度公式进行变换

刚体上给定点的位置、速度与加速度/速度

• 平面一般运动刚体上给定点P的速度

$$\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$$

定义点的**平移牵连速度** $\vec{v}_{tP}^{c} = \vec{v}_{C} = \dot{\vec{r}_{C}}$ 方向平行于 \vec{v}_{c} \vec{y}^{r}

• 平面一般运动刚体上给定点P的速度 $\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$

方向平行于 \vec{v}_C \vec{y}^r

定义点的**转动牵连速度** $\vec{v}_{\omega P}^{\,\mathrm{e}} = \vec{\omega} \times \vec{\rho}_{P}$

方向 $\vec{v}_p \perp \vec{\rho}_p$ // $\hat{\vec{\rho}}_p$ 大小 $\omega \rho_p$

刚体上给定点的位置、速度与加速度/速度

• 平面一般运动刚体上给定点P的速度

$$\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$$

定义点的**平移牵连速度** $\vec{v}_{tP}^{e} = \vec{v}_{C}$

$$\vec{v}_{tP}^{e} = \vec{v}_{C}$$

方向平行于 \vec{v}_C \vec{y}^r

定义点的**转动牵连速度** $\vec{v}_{\omega P}^{e} = \vec{\omega} \times \vec{\rho}_{P}$

方向 $\vec{v}_p \perp \vec{\rho}_p$ // $\hat{\vec{\rho}}_p$ 大小 $\omega \rho_p$

定义点的**牵连速度** $\vec{v}_P^e = \vec{v}_{tP}^e + \vec{v}_{\omega P}^e$

刚体上任意给定点的绝对速度等于因刚体一般运动导致该点的 牵连速度

• 平面一般运动刚体上给定点P的速度

$$\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$$

$$\vec{v}_{tP}^{e} = \vec{v}_{C}$$

$$\vec{v}_{\omega P}^{e} = \vec{\omega} \times \vec{\rho}_{P}$$

$$\vec{v}_P = \vec{v}_{tP}^e + \vec{v}_{\omega P}^e$$

3个矢量的6个信息量间的关系。通过矢量几何可解决2个未知的信息量。

刚体上给定点的位置、速度与加速度/速度/例

[例]

一半径为r的刚性圆盘在平 面上作无滑动的滚动

这是一齿轮-齿条运动副的 抽象

圆盘的中心C的速度为v

试求圆盘上与平面的接 触点**P**的速度

剛体上给定点的位置、速度与加速度/速度/例 [解] 参考基 $O-\vec{e}^{\,\mathrm{r}}$ 连体基 $C-\vec{e}^{\,\mathrm{b}}$ $\vec{v}^{\,\mathrm{b}}$ $\vec{v}^{\,$

 \vec{x}^{r}

[解] 参考基 $O-\vec{e}^{\text{r}}$ 连体基 $C-\vec{e}^{\text{b}}$

刚体的速度关系

无滑动滚动 $x_C = r\varphi$

$$\dot{x}_C = r\dot{\varphi}$$
 $v_C = r\omega$

刚体上点P的速度

点的平移牵连速度 \vec{v}_{tP}^{e}

$$v_{tP}^{e} = v_{C} = \omega r$$

点的转动牵连速度 $\vec{v}_{\omega P}^{e}$

$$v_{\omega P}^{\rm e} = \omega \rho_P = \omega r$$

点的牵连速度

$$\vec{v}_{P}^{e} = \vec{v}_{tP}^{e} + \vec{v}_{\omega P}^{e} = \vec{0}$$

刚体上给定点的位置、速度与加速度/速度/例

[解] 参考基 $O - \vec{e}^{\text{r}}$ 连体基 $C - \vec{e}^{\text{b}}$

刚体的速度关系

无滑动滚动 $x_C = r\varphi$

$$\dot{x}_C = r\dot{\varphi}$$
 $v_C = r\omega$

刚体上点P的速度

点的平移牵连速度 \vec{v}_{tP}^{e}

$$v_{tP}^{e} = v_{C} = \omega r$$

点的转动牵连速度 $\vec{v}_{\omega P}^{\,\mathrm{e}}$

$$v_{\omega P}^{\rm e} = \omega \rho_{\rm P} = \omega r$$

点的牵连速度

$$\vec{v}_P^e = \vec{v}_{tP}^e + \vec{v}_{\omega P}^e = \vec{0}$$

 $\vec{x}^{\rm r}$

点的速度

$$\vec{v}_P = \vec{v}_P^e = \vec{0}$$

2018年10月18日

[例]

刚性杆AB长为I,其一端A着地, 一端B靠墙,可在铅垂面运动

现端点A以速度为v₄作匀速向右运

图示瞬时杆与水平面的夹角 ∠OAB为60度

试求该瞬时 杆AB的转动角速度 端点B与中点C的速度

以点B为对象

点B的绝对速度 \vec{v}_B 设定正向

点B的牵连速度 $v_{tB}^{e} = v_{A}$

 $v_{\omega B}^{\rm e} = \omega \rho_{\rm B} = \omega l$ 设定正向

方向已知 $//\vec{v}_{A}$

在参考基上的坐标式(或x-y轴投影式)

В

$$\vec{y}^{r}: \quad -v_{B} = -v_{\omega B}^{e} \sin \varphi$$

$$v_B = v_A / \sqrt{3}$$

刚体平面运动学

刚体上给定点的位置、速度与 加速度

- 前言
- 给定点的位置
- 给定点的速度
- 刚体的瞬时速度中心
- 给定点的加速度

刚体的瞬时速度中心

- <mark>某瞬时</mark>在刚体或在其延伸部分存在一个绝对速度为零的特殊 点*S*
- 点 S 为刚体在该瞬时的瞬时速度中心,简称为瞬心

刚体上给定点的位置、速度与加速度

• 瞬心的存在性

对于刚体上任一点的速度关系

$$\vec{v}_{S} = \vec{v}_{C} + \vec{\omega} \times \vec{\rho}_{S}$$

$$\vec{v}_{tS}^{e} = -\vec{v}_{\omega S}^{e} \qquad \vec{v}_{s} = \vec{0}$$

$$\vec{v}_{tS}^{e} = -\vec{v}_{\omega S}^{e}$$
 $\vec{v}_{s} = \vec{0}$

基点和瞬心的连线与基点的速度矢量垂直

瞬心的位置 $\vec{\rho}_S // \hat{\vec{v}}_C = \vec{z}^r \times \vec{v}_C$ $\rho_S = \frac{v_C}{\omega}$

刚体上给定点的位置、速度与加速度/瞬心

• 某瞬时建立以瞬心为基点的连体基

$$\vec{v}_P = \vec{v}_S + \vec{\omega} \times \vec{\rho}_P = \vec{\omega} \times \vec{\rho}_P$$

速度方向垂直于该点与瞬心的连线
大小与到瞬心的距离成正比

该瞬时刚体上的速度分布与刚体绕 瞬心作定轴转动的速度分布一致

称过瞬心垂直运动平面的转轴为刚体 的<mark>瞬时转动轴</mark>

- 意义
 - 研究刚体瞬时速度分布可先寻找该瞬时的瞬心着手

 \vec{y}^{r}

 \vec{r}_{C}

刚体上给定点的位置、速度与加速度/瞬心

• 瞬心位置的确定(根据物理性质)

根据物理性质作无滑动滚动圆盘在圆盘与地面的接触点的速度为零

该点为作无滑动滚动圆盘的瞬心

圆盘的瞬时速度分布

甲於力學CAI 刚体平面运动学

刚体上给定点的位置、速度与加速度/瞬心

• 瞬心概念的应用

可以方便处理刚体的速度分析的问题

[例]

刚性杆AB长为I,其一端A着地, 一端B靠墙,可在铅垂面运动

现端点A以速度为va作匀速向右运

图示瞬时杆与水平面的夹角 **∠OAB**为60度

试求该瞬时 杆AB的转动角速度 端点B与中点C的绝对速度

刚体上给定点的位置、速度与加速度/瞬心/例

[解]根据约束定义点A与B的绝对速度的方向,再确定瞬心S的位置

В

$$x_s = l \sin \varphi = \frac{l}{2}$$
 $y_s = l \cos \varphi = \frac{\sqrt{3}}{2}l$

根据绕瞬心转动的速度分布

$$v_A = \omega y_s$$

杆角速度

$$\omega = \frac{v_A}{y_s} = \frac{2v}{l\sqrt{3}}$$

点B的速度
$$v_B = \omega x_S = \frac{v}{\sqrt{3}}$$

点
$$C$$
的速度 $S_C = \overline{AC} = l/2$

$$v_C = \omega S_C = \frac{v}{\sqrt{3}}$$

 $v_C = \omega S_C = \frac{v}{\sqrt{3}}$ \vec{v}_C 与水平线的夹角为 $\pi/6$

$$\varphi = \frac{\pi}{6}$$

[例]

刚性杆AB长为l,其一端A 着地,一端B靠墙,可在铅 垂面运动

现端点A以速度为v_A作匀速 向右运动

试求瞬心定轨迹与动轨迹

刚体上给定点的位置、速度与加速度/瞬心/例

[解]讨论瞬心的定轨迹或动轨迹须在任意时刻的位形下进行

某时刻i刚体的瞬心S,定轨迹点S' 瞬心定轨迹点S'在 \bar{e}^{T} 的坐标

$$x_{s'} = l \sin \varphi \qquad y_{s'} = l \cos \varphi$$
$$x_{s'}^2 + y_{s'}^2 = l^2$$

瞬心定轨迹

以点0为圆心,半径为l的1/4圆

2018年10月18日

某时刻t刚体的瞬心S, 定轨迹点S

瞬心S在 $\vec{e}^{\,b}$ 的坐标

$$x'_{s} = \overline{AS} \sin \varphi = l \cos \varphi \sin \varphi = \frac{l}{2} \sin 2\varphi$$

$$y'_{s} = \overline{AS} \cos \varphi = l \cos^{2} \varphi = \frac{l}{2} (\cos 2\varphi + 1)$$

$$y'_s = \overline{AS}\cos\varphi = l\cos^2\varphi = \frac{l}{2}(\cos 2\varphi + 1)$$

动轨迹方程

$$\left(y_s' - \frac{l}{2}\right)^2 + x_s'^2 = \frac{l^2}{4}$$

以点C为圆心,半径为l/2的半圆

刚体上给定点的位置、速度与加速度/瞬心

刚体的运动理解为瞬心动轨迹在瞬心定轨迹上作无滑动的滚动

刚体平面运动学

- 小结
 - 利用瞬心的概念解决速度分析问题有时会很方便
 - 要求能熟练找到刚体的瞬心
 - 熟悉瞬心动轨迹与定轨迹的概念

刚体平面运动学

刚体上给定点的位置、速度与 加速度

- 前言
- 给定点的位置
- 给定点的速度
- 刚体的瞬时速度中心
- 给定点的加速度

给定点的加速度

- 刚体的位形 $\vec{r}_C(t)$ A(t) 位形坐标阵 $q = \begin{pmatrix} x_C & y_C & \varphi \end{pmatrix}^T$
- 刚体的位形速度 $\vec{v}_c(t)$ $\bar{\omega}(t)$ 位形速度阵 $\dot{q} = \begin{pmatrix} v_{Cx} & v_{Cy} & \omega \end{pmatrix}^T$
- 刚体的位形加速度 $\vec{a}_{c}(t)$ $\vec{\alpha}(t)$ 位形加速度阵 $\ddot{q} = \begin{pmatrix} a_{cx} & a_{cy} & \alpha \end{pmatrix}^{T}$
- 给定点P在刚体上的位置 $\vec{\rho}_P$

- 给定点P的加速度 $\vec{a}_P(t)$
- 研究给定点P的加速度与刚体运动间的关系

 $\vec{a}_p(t) \sim \ddot{q} \dot{q} q$

 \vec{y}^{r}

刚体上给定点的位置、速度与加速度/加速度

• 给定点 P的加速度

$$\vec{r}_P = \vec{r}_C + \vec{\rho}_P$$

$$\dot{\vec{r}}_P = \dot{\vec{r}}_C + \dot{\vec{\rho}}_P = \vec{v}_C + \vec{\omega} \times \vec{\rho}_P$$

$$\frac{\ddot{\vec{r}}_P}{\vec{a}_P} = \frac{\ddot{\vec{r}}_C}{\vec{a}_C} + \frac{\ddot{\vec{\rho}}_P}{\ddot{\vec{\rho}}_P}$$

$$\frac{\ddot{\vec{\rho}}_P}{\vec{a}_C} = \vec{\alpha} \times \vec{\rho}_P + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P)$$

点P的绝对加速度

₽ 连体矢量

$$\vec{a}_P = \vec{a}_C + \vec{\alpha} \times \vec{\rho}_P + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P)$$

2018年10月18日

• 平面一般运动刚体上给定点P的加速度

$$\vec{a}_P = \vec{a}_C + \vec{\alpha} \times \vec{\rho}_P + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P)$$

根据

刚体的平面一般运动分解为刚体 的平动与刚体定轴转动

对点P的加速度公式进行变换

刚体上给定点的位置、速度与加速度/加速度

• 平面一般运动刚体上给定点 P的加速度

$$\vec{a}_P = \vec{a}_C + \vec{\alpha} \times \vec{\rho}_P + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P)$$

点的平移牵
$$\vec{a}_{tP}^{e} = \vec{a}_{C}$$
 连加速度 方向平行于 \vec{a}_{C}

一般平面运动刚体上给定点P的加速度

$$\vec{a}_P = \vec{a}_C + \vec{\alpha} \times \vec{\rho}_P + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P)$$

点的平移牵
$$\vec{a}_{tP}^{c} = \vec{a}_{C}$$
 连加速度 方向平行于 \vec{a}_{C}

点的转动牵连
$$\vec{a}_{\alpha P}^{e} = \vec{\alpha} \times \vec{\rho}_{P}$$
 $a_{\alpha P}^{e} = \alpha \rho_{P}$ 切向加速度 方向垂直于 $\vec{\rho}_{P}$

刚体上给定点的位置、速度与加速度/加速度

一般平面运动刚体上给定点P的加速度

$$\vec{a}_P = \vec{a}_C + \vec{\alpha} \times \vec{\rho}_P + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P)$$

点的平移牵 $\vec{a}_{tP}^{e} = \vec{a}_{C}$ 连加速度

$$\vec{a}_{\mathrm{t}P}^{\mathrm{e}} = \vec{a}_{\mathrm{C}}$$

方向平行于 \vec{a}_c

点的转动牵连
$$\vec{a}_{\alpha P}^{e} = \vec{\alpha} \times \vec{\rho}_{P}$$
 $a_{\alpha P}^{e} = \alpha \rho_{P}$ 切向加速度 方向垂直于 $\vec{\rho}_{P}$

向心加速度

点的转动牵连
$$\vec{a}_{\omega P}^{e} = \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_{P}) = -\omega^{2} \vec{\rho}_{P}$$

$$a_{\omega P}^{\rm e} = \omega^2 \rho_P$$
 方向沿 $\vec{\rho}_P$ 反向

一般平面运动刚体上给定点P的加速度

$$\vec{a}_P = \vec{a}_C + \vec{\alpha} \times \vec{\rho}_P + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P)$$

点的平移牵 连加速度

$$ec{a}_{{}_{\mathsf{t}P}}^{\mathrm{e}} = ec{a}_{C}$$
方向平行于 $ec{a}_{C}$

点的转动牵连
$$\vec{a}_{\alpha P}^{e} = \vec{\alpha} \times \vec{\rho}_{P}$$
 $a_{\alpha P}^{e} = \alpha \rho_{P}$ 切向加速度 方向垂直于 $\vec{\rho}_{P}$

向心加速度

点的转动牵连
$$\vec{a}_{\omega P}^{\rm e} = \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P) = -\omega^2 \vec{\rho}_P$$
 向心加速度 $a_{\omega P}^{\rm e} = \omega^2 \rho_P$ 方向沿 $\vec{\rho}_P$ 反向

$$\vec{a}_{\omega P}^{\mathrm{e}} \perp \vec{a}_{\alpha P}^{\mathrm{e}}$$

 \vec{x}^{r}

 $\vec{a}_{{\rm t}P}^{\rm e}$

 $\vec{a}_P^{\rm e} \stackrel{\checkmark}{\vec{y}^{\rm r}}$

点的牵连加 速度

$$\vec{a}_P^e = \vec{a}_{tP}^e + \vec{a}_{\alpha P}^e + \vec{a}_{\omega P}^e$$

刚体上给定点的位置、速度与加速度/加速度

一般平面运动刚体上给定点P的加速度

$$\vec{a}_P = \frac{\vec{a}_C + \vec{\alpha} \times \vec{\rho}_P + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_P)}{\vec{a}_{tP}^e} \frac{\vec{a}_{\omega P}^e}{\vec{a}_{\omega P}^e}$$

 $\vec{a}_P = \vec{a}_P^e \leqslant \vec{v}^r$

$$\vec{a}_P^{\mathrm{e}} = \vec{a}_{\mathrm{t}P}^{\mathrm{e}} + \vec{a}_{\mathrm{\alpha}P}^{\mathrm{e}} + \vec{a}_{\mathrm{\omega}P}^{\mathrm{e}}$$

点的加速度

$$\vec{a}_P = \vec{a}_P^{\text{e}}$$

固结在刚体上任意给定点的绝对加速度等于该点因 刚体的一般运动而引起的牵连加速度

• 一般平面运动刚体上给定点P的加速度

$$\vec{a}_{P} = \frac{\vec{a}_{C} + \vec{\alpha} \times \vec{\rho}_{P} + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_{P})}{\vec{a}_{\text{t}P}^{\text{e}} + \vec{a}_{\omega P}^{\text{e}}}$$

$$\vec{a}_P = \vec{a}_{\mathrm{t}P}^{\mathrm{e}} + \vec{a}_{\mathrm{o}P}^{\mathrm{e}} + \vec{a}_{\mathrm{o}P}^{\mathrm{e}}$$

4个矢量间的关系。考虑到后两个转动牵连加速度在方向上必须相互垂直的关系,通过矢量几何可解决7个信息量中2个未知的信息量。

刚体上给定点的位置、速度与加速度/速度/例

[例]

图示一半径为r的刚性圆盘在 平面上作无滑动的滚动

这是一齿轮-齿条运动副的抽象

圆盘的中心C的速度为v,加速度为a

试求圆盘上与平面的接触点P的加速度

[解] 参考基 $O-\vec{e}^{\scriptscriptstyle \Gamma}$ 连体基 $C-\vec{e}^{\scriptscriptstyle b}$

刚体上给定点的位置、速度与加速度/速度/例

[解] 参考基 $O - \vec{e}^{T}$ 连体基 $C - \vec{e}^{D}$ 刚体的速度与加速度关系

无滑动滚动

$$x_C = r\varphi$$
 $\dot{x}_C = r\dot{\varphi}$ $\ddot{x}_C = r\ddot{\varphi}$

$$v_C = r\omega$$
 $a_C = r\alpha$

[解] 参考基 $O - \vec{e}^{\text{r}}$ 连体基 $C - \vec{e}^{\text{b}}$

刚体的速度与加速度关系

无滑动滚动

$$x_C = r\varphi$$
 $\dot{x}_C = r\dot{\varphi}$ $\ddot{x}_C = r\ddot{\varphi}$ $v_C = r\omega$ $a_C = r\alpha$

点的平移牵连加速度 \vec{a}_{tP}^e $a_{tP}^e = a_C = a$

点的转动牵连向心加速度 $\vec{a}_{\omega P}^{e}$ $a_{\omega P}^{e}=\omega^{2}\rho_{P}=\omega^{2}r=v_{C}^{2}/r$

点的转动牵连切向加速度 $\vec{a}_{\alpha P}^{e}$ $a_{\alpha P}^{e} = \alpha \rho_{P} = \alpha r = a$

$$\vec{a}_{\alpha P}^{\rm e} = -\vec{a}_{{\rm t}\,P}^{\rm e}$$

点的牵连加速度

$$\vec{a}_{P}^{e} = \vec{a}_{tP}^{e} + \vec{a}_{\omega P}^{e} + \vec{a}_{\omega P}^{e} = \vec{a}_{\omega P}^{e}$$

wa

wa

刚体上给定点的位置、速度与加速度/速度/例

$\begin{bmatrix} \mathbf{E} \end{bmatrix}$ 参考基 $O - \vec{e}^{\mathrm{r}}$ 连体基 $C - \vec{e}^{\mathrm{b}}$

无滑动滚动 $v_C = r\omega$ $a_C = r\alpha$

$$a_{tP}^{e} = a_{C} = a$$

$$a_{\omega P}^{e} = \omega^{2} r = v_{C}^{2} / r$$

$$a_{\alpha P}^{e} = \alpha r = a$$

点的牵连加速度 $\vec{a}_P^e = \vec{a}_{\omega P}^e$

$$a_P = \omega^2 r = \frac{v_C^2}{r}$$
 方向: 指向C

[例]

刚性杆AB长为I,其一端A着地, 一端B靠墙,可在铅垂面运动

现端点A以速度为va作匀速向右

图示瞬时杆与水平面的夹角 ∠OAB为60度

试求该瞬时 杆AB的转动角加速度 端点B的加速度

刚体上给定点的位置、速度与加速度/加速度/例

[解] 参考基 $O - \vec{e}^{\text{r}}$ 连体基 $A - \vec{e}^{\text{b}}$

以点B为对象

点的平移牵连加速度 $\vec{a}_{tP}^e \ a_{tB}^e = a_A = 0$ 点的转动牵连切向加速 \overline{g} $\overline{d}_{\alpha P}^{\mathrm{e}}$

$$a_{\alpha B}^{\rm e}=lpha
ho_{B}=lpha l$$
 设定正向

点的转动牵连向心加速度 $\vec{a}_{\omega P}^{\mathrm{e}}$

$$a_{\omega B}^{\rm e} = \omega^2 \rho_B = \omega^2 l$$
 方向已知

 $a_{\omega B}^{\rm e}=\omega^2
ho_B=\omega^2 l$ 方向已知 点B的绝对加速度 \vec{a}_B 方向已知

$$\vec{a}_{B} = \vec{a}_{tB}^{e} + \vec{a}_{\alpha B}^{e} + \vec{a}_{\omega B}^{e} = \vec{a}_{\alpha B}^{e} + \vec{a}_{\omega B}^{e}$$

在连体基上的坐标式

$$\vec{x}^{\text{b}}: -a_{B} \sin \varphi = -a_{\alpha B}^{\text{e}} \qquad a_{B} \sin \varphi =$$

$$\vec{x}^{\text{b}}$$
: $-a_{B} \sin \varphi = -a_{\alpha B}^{\text{e}}$ $a_{B} \sin \varphi = \alpha l$
 \vec{y}^{b} : $-a_{B} \cos \varphi = -a_{\omega B}^{\text{e}}$ $a_{B} \cos \varphi = \omega^{2} l$

$$a_B\cos\varphi=\omega^2l$$

$$a_B \sin \varphi = \alpha l$$

速度分析已知

$$\varphi = \frac{\pi}{6}, \quad \omega = \frac{2v}{l\sqrt{3}}$$

端点B的加速度

$$a_B = \frac{\omega^2 l}{\cos \varphi} = \frac{8v^2}{3\sqrt{3}l}$$

杆AB的转动角加速度

$$\alpha = \frac{a_B \sin \varphi}{l} = \frac{4v^2}{3\sqrt{3}l^2}$$

假设α方向相反会怎样?

刚体上给定点的位置、速度与加速度

• 单刚体运动学的矢量瞬时分析方法

$$\vec{v}_P = \vec{v}_{tP}^e + \vec{v}_{\omega P}^e$$

3个矢量的6个信息量间的关系。通过矢量几何可解决2个 未知的信息量。

$$\vec{a}_P = \vec{a}_{tP}^e + \vec{a}_{\alpha P}^e + \vec{a}_{\omega P}^e$$

4个矢量间的关系。考虑到后两个转动牵连加速度在方向 上必须相互垂直的关系,通过矢量几何可解决7个信息量 中2个未知的信息量。

2018年10月18日

理论力学CAI 刚体平面运动学

刚体平面运动学

- 单刚体运动学矢量瞬时分析方法小结
 - 基本原理:

$$\vec{v}_P = \vec{v}_{tP}^e + \vec{v}_{\omega P}^e$$

$$\vec{a}_P = \vec{a}_{tP}^e + \vec{a}_{\alpha P}^e + \vec{a}_{\omega P}^e$$

通过矢量几何可解决2个未知的信息量

- 根据问题的要求合理选取的参考基与连体基
 - 已知刚体连体基的运动求给定点的绝对运动
 - 已知刚体上给定点的绝对运动求刚体连体基的运动
- 仔细的分析牵连运动
 - 矢量关系图
 - 合理选定矢量基,正确写出坐标式

