คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานถ่านหินผลิตไฟฟ้า

รายการอุปกรณ์ชุดทดลอง

รายการอุปกรณ์

- 1. เตาเผาเชื้อเพลิงขยะ
- 2. พัดลมเติมอากาศ
- 3. ปล่องระบายไอเสีย
- 4. หม้อต้มแรงดัน
- 5. ชุดกังหันไอน้ำซึ่งต่ออยู่กับเครื่องกำเนิดไฟฟ้า
- 6. ตู้ควบคุม
- 7. หน้าจอแสดงผล (Display panel)
- 8. สวิทช์ควบคุมการจ่ายโหลด

หลักการและทฤษฎี

ถ่านหินเป็น แหล่งพลังงานที่สำคัญในอดีตจนถึงปัจจุบัน อุตสาหกรรมถ่านหินซึ่งรวมทั้งการสำรวจ การผลิตและการใช้นั้นได้มีการพัฒนากันมาอย่างต่อเนื่อง โดยเฉพาะในประเทศที่เป็นผู้นำทางด้านเศรษฐกิจ อุตสาหกรรม เช่น สหรัฐอเมริกา ญี่ปุ่นและกลุ่มประเทศในยุโรป

ถ่านหิน คือ หินตะกอนชนิดหนึ่งและเป็นแร่เชื้อเพลิงสามารถติดไฟได้ มีสีน้ำตาลอ่อนจนถึงสีดำ มีทั้ง ชนิดผิวมันและผิวด้าน น้ำหนักเบา ถ่านหินประกอบด้วยธาตุที่สำคัญ 4 อย่าง ได้แก่ คาร์บอน ไฮโดรเจน และ ออกซิเจน นอกจากนั้นมีธาตุหรือสารอื่น เช่น กำมะถัน เจือปนเล็กน้อย ถ่านหินที่มีจำนวนคาร์บอนสูงและมี ธาตุอื่น ๆ ต่ำ เมื่อนำมาเผาจะให้ความร้อนมา ถือว่าเป็นถ่านหินคุณภาพดี

ถ่านหินสามารถแยกประเภทตามลำดับชั้นได้เป็น 5 ประเภท คือ

พีต(Peat) เป็นขั้นแรกในกระบวนการเกิดถ่านหิน ประกอบด้วยซากพืชซึ่งบางส่วนได้สลายตัวไปแล้ว สามารถใช้เป็นเชื้อเพลิงได้

ลิกไนต์(Lignite) มีซากพืชหลงเหลืออยู่เล็กน้อย มีความชื้นมาก เป็นถ่านหินที่ใช้เป็นเชื้อเพลิง ซับบิทูมินัส(Subbituminous) มีสีดำ เป็นเชื้อเพลิงที่มีคุณภาพเหมาะสมในการผลิตกระแสไฟฟ้า บิทูมินัส(Bituminous) เป็นถ่านหินเนื้อแน่น แข็ง ประกอบด้วยชั้นถ่านหินสีดำมันวาว ใช้เป็นเชื้อเพลิง เพื่อการถลุงโลหะ

แอนทราไซต์(Anthracite) เป็นถ่านหินที่มีลักษณะดำเป็นเงา มันวาวมาก มีรอยแตกเว้าแบบก้นหอย ติดไฟยาก

ตารางที่ 1 แสดงค่าความร้อน ความขึ้น ปริมาณเถ้า และปริมาณกำมะถันของถ่านหิน

ประเภท ของถ่านหิน	ค่าความร้อน (กิโล แคลอรี /กิโลกรัม)	ความชื้น (เปอร์เซนต์)*	ปริมาณเถ้า (เปอร์เซนต์) *	ปริมาณกำมะถัน (เปอร์เซนต์)
แอนทราไซต์	6,500 - 8,000	5 - 8	5-12	0.1-1.0
บิทูมินัส	5,500 - 6,500	8 - 15	1-12	0.1-1.5
ซับบิทูมินัส	4,500 - 5,500	24 - 30	1-10	0.1-1.5
ลิกในต์	3,000 - 4,000	30 - 38	15-20	2.0-5.0

สำหรับภายในประเทศไทยนั้นถึงแม้จะมีปริมาณสำรองถ่านหินอยู่มากกว่า 2,000 ล้านตัน แต่ส่วน ใหญ่เป็นถ่านหินที่มีชั้นคุณภาพต่ำ ตั้งแต่ลิกไนต์(Lignite) จนถึง ซับบิทูมินัส(Sub-bituminous) อีกทั้ง ภาพลักษณ์ที่ไม่ดีด้านผลกระทบต่อสิ่งแวดล้อมในอดีตทำให้การใช้ถ่าน หินเป็นเชื้อเพลิงมีปริมาณไม่มากหาก เปรียบเทียบกับประเทศอื่นๆ

ประสิทธิภาพของการผลิตไฟฟ้าจากพลังงานถ่านหิน

ในการประเมินประสิทธิภาพของการผลิตไฟฟ้าจากพลังงานถ่านหิน จะประเมินจากสัดส่วน ระหว่างพลังงานที่ได้จากถ่านหิน กับ พลังงานไฟฟ้าที่ผลิตได้

ประสิทธิภาพของการผลิตไฟฟ้า = พลังงานที่ได้จากถ่านหิน/พลังงานไฟฟ้าที่ผลิตได้

โดยที่

พลังงานที่ได้จากถ่านหิน = (ปริมาณถ่านหิน ×ค่าความร้อนของถ่านหิน)/1000

- พลังงานที่ได้จากถ่านหิน คือ พลังงานที่ได้จากการเผาถ่านหิน ในหน่วย เมกะจูล (MJ)
- ปริมาณถ่านหิน คือ ปริมาณถ่านหิน ในหน่วย kg
- ค่าความร้อนของถ่านหิน คือ ค่าพลังงานความร้อนที่ได้จากตารางที่ 1

และ

พลังงานไฟฟ้าที่ผลิตได้ = กำลังไฟฟ้า (กิโลวัตต์) x เวลา (ชั่วโมง)

- พลังงานไฟฟ้าที่ผลิตได้ คือ พลังงานไฟฟ้าที่ผลิตได้จากเครื่องยนต์ ในหน่วย
 กิโลวัตต์-ชั่วโมง
- กำลังไฟฟ้า คือ กำลังไฟฟ้าที่ได้จากเครื่องยนต์ ในหน่วย วัตต์
- เวลา คือ จำนวนชั่วโมงที่ใช้ในการทดลอง (ชั่วโมง)

วัตถุประสงค์

- 1) เพื่อศึกษาการทำงานของชุดผลิตกระแสไฟฟ้าโดยพลังงานถ่านหิน
- 2) เพื่อศึกษาความสัมพันธ์ระหว่างพลังงานที่ได้จากถ่านหิน กับพลังงานไฟฟ้าที่สามารถผลิตได้

วิธีการทดลอง

- 1. เริ่มจากเติมน้ำสะอาดในหม้อต้มแรงดัน (Boiler) โดยเติมน้ำประมาณ 3 ลิตร ปิดฝาให้แน่น
- 2. เตรียมเชื้อเพลิงชีวมวลให้มีขนาดที่เหมาะสม ขนาดความยาวประมาณ 1.5 ซม. และมีปริมาณความชื้นไม่ เกินร้อยละ 20 ไมควรมีสิ่งเจือปนในเชื้อเพลิง เช่น เศษหิน ดิน ทราย และวัสดุอื่น ๆ
- 3. นำเชื้อเพลิงใส่เตาและจุดเตาเผาเพื่อผลิตความร้อนจากชีวมวล โดยความร้อนที่ได้จะนำไปต้มน้ำในหม้อ แรงดัน ทำการปรับระดับความแรงของพัดลมเติมอากาศที่จ่ายให้กับเตาเผา ทำให้ได้ความร้อนในปริมาณที่ แตกต่างกัน
- 4. ไอน้ำที่ได้จากหม้อแรงดันจะนำไปขับชุดกังหันไอน้ำซึ่งต่ออยู่กับเครื่องกำเนิดไฟฟ้า ได้เป็นกระแสไฟฟ้าจ่าย ให้กับโหลด รอให้ค่าต่างๆ คงที่ แล้วจึงเริ่มจับเวลาและบันทึกผลการทดลอง จับเวลา 5 นาทีแล้วจึงบันทึกผล อีกครั้ง
- 5. บันทึกผลค่าน้ำหนักเชื้อเพลิงเริ่มต้นและน้ำหนักเชื้อเพลิงเมื่อผ่านไป 5 นาที ความดันไอน้ำ ค่าแรงดันไฟฟ้า ค่ากระแสไฟฟ้า และค่ากำลังไฟฟ้า
- 6 ปรับระดับความแรงของพัดลมเติมอากาศที่จ่ายให้กับเตาเผา เพื่อให้ได้ค่าความร้อนที่แตกต่างกัน 3 ค่าและ บันทึกผลการทดลอง

ตารางบันทึกผลการทดลอง

ช ส	น้ำหนักเชื้อเพลิง (กิโลกรัม)		แรงดันไฟฟ้า (โวลท์)	กระแสไฟฟ้า (แอมแปร์)	กำลังไฟฟ้า ที่อ่านค่าได้ (วัตต์)
ครั้งที่	เริ่มจับเวลา	หลังผ่านไป 5 นาที			
		0			

ตารางวิเคราะห์ผลการทดลอง

ครั้งที่	ผลต่างน้ำหนัก เชื้อเพลิง (กิโลกรัม)	จับเวลา (วินาที)	อัตราการ สิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที)	ค่าความร้อน เชื้อเพลิง (เมกะจูล/กิโลกรัม)	กำลังของเชื้อเพลิง (วัตต์)	กำลังไฟฟ้า ที่จ่ายโหลด [แรงดัน × กระแส] (วัตต์)	ประสิทธิภาพระบบ ผลิตไฟฟ้า (%)
	v v		v				

หมายเหตุ : อัตราการสิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที) = ผลต่างน้ำหนักเชื้อเพลิง (กิโลกรัม) / ผลต่างเวลา (วินาที) กำลังของเชื้อเพลิง (วัตต์) = อัตราการสิ้นเปลืองเชื้อเพลิง (กิโลกรัม/วินาที) x ค่าความร้อนเชื้อเพลิง (เมกะจูล/กิโลกรัม) ประสิทธิภาพระบบผลิตไฟฟ้า (%) = [กำลังไฟฟ้าที่จ่ายโหลด (วัตต์) / กำลังของเชื้อเพลิง (วัตต์)] x 100

การวิเคราะห์ผลการทดลอง	
สรุปผลการทดลอง	

.....