Análisis Numérico (752)

Cátedra: Javier Ignacio Garcia Fronti

Curso: Julio Fabris

Primer Cuatrimestre 2019

Práctica N°1 R como calculadora

- 1) Genere 3 vectores aleatorios de 10 componentes x, y, z. Use la función RUNIF(n) (Apele al HELP de la función).
- 2) Genere 3 vectores aleatorios x, y, z de 10 componentes, pero con distribución U(-100,100) usando RUNIF(n). Vea luego RUNIF(n, mín, máx)
- 3) Realice las siguientes operaciones con los vectores obtenidos en el caso anterior:

$$u = x + y + z$$

 $k = \langle x, y \rangle = \sum_{i=1}^{10} x_i \ y_i$ (Producto escalar, tendrá que transponer uno de los vectores)

 $v = \frac{x}{\|x\|}$ (Vector unitario en la dirección de X, use NORM(vea help) y AS.MATRIX)

 $w = \frac{|x|}{\sum_{i=1}^{10} x_i}$ (Vector de probabilidad a partir de X, use ABS y SUM)

- 4) Calcule $x_m = \frac{1}{n} \sum_{i=1}^n x_i$ (Verifique con MEAN)
- 5) Calcule el vector dx de desviaciones de x en el cual cada componente $dx = x_i x_m$. Puede generar un vector de unos y multiplicarlo por x_m y luego restarlo de x. Utilice el cálculo del ejercicio anterior para x_m y intente incluirlo en una sola línea. (Explore la función MATRIX para vectores y matrices). Verifique que la suma de los componentes de dx es nula.
- 6) Calcule la varianza de los elementos de x como $Var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i x_m)^2$. Trabaje con vectores y para la sumatoria use SUM. Recuerde que para obtener un vector cuyas componentes sean el cuadrado de las componentes originales debe plantear $u = v \wedge 2$. Verifique con COV.
- 7) Calcule la covarianza de las componentes de los vectores x e y con la fórmula:

$$Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_m)(y_i - y_m)$$

Trabaje con los vectores dx y dy y use SUM. Verifique con COV.

- 8) Calcula Var(x+y) y verifique que Var(x+y) = Var(x) + Var(y) + 2 Cov (x,y). Utilice las soluciones a los ejercicios anteriores para la verificación. Trabaje con vectores como lo viene haciendo.
- 9) Genere 3 matrices con componentes aleatorios enteros U (-100,100). Utilice redondeo. Dimensiones: A: 5x3 B: 4x5 C: 5x5
- 10) Calcule: a) C A b) B C A c) A^t C
- 11) a) Verifique que $[CA]^t = A^tC^t$ (Reste $[CA]^t A^tC^t$ y verifique que el resultado la matriz nula) b) Ídem para $[BCA]^t = A^tC^tB^t$
- 12) a) Verifique que A A^t es simétrica (Debe ser A $A^t = [A A^t]^t$ b) Ídem para A^t A
- 13) Calcule los autovalores y los autovectores de C, A A^t y A^t A (Explore la función EIGEN con help)
- 14) Calcule la matriz inversa de C y verifique que $C^{-1}C = 1$
- 15) Genere una matriz identidad de 5 x 5, una matriz de 6 x 6 con todos sus componentes iguales a 1, una matriz nula de 4 x 4, y una matriz diagonal con sus elementos no nulos iguales a las componentes de un vector x dado. (Explore MATRIX Y DIAG)