Claims

1. Compounds of formula (I) or (II):

$$R_2$$
 R_2
 R_2
 R_2
 R_3
 R_2
 R_3
 R_4
 R_5
 R_5
 R_7
 R_7
 R_1
 R_1
 R_1

5

10

15

25

wherein

X is -O-, -CH₂- or -C(O)-;

Z is -CHR₁₂- or valence bond;

Y is -CH₂-, -C(O)-, CH(OR₁₃)-, -O-, -S-;

provided that in case Z is a valence bond, Y is not C(O);

the dashed line represents an optional double bond in which case Z is $-CR_{12}$ and Y is

-CH₂-, -C(O)- or CH(OR₁₀)- (in formula II) or

-CH- (in formula I);

R₂ and R₃ are independently H, lower alkyl, lower alkoxy, -NO₂, halogen, -CF₃, -OH, benzyloxy or a group of formula (IIIa)

R₁ is H, CN, halogen, -CONH₂, -COOR₁₅, -CH₂NR₁₅R₁₈, NHC(O)R₅, NHCH₂R₅, NHR₂₀, NR₂₁R₂₂, NHC(NH)NHCH₃ or, in case the compound is of formula (II) wherein the optional double bond exists or in case R₂ or R₃ is benzyloxy or a group of formula (IIIa) or in case the pyridine ring of formula (I) or (II) is attached to the oxygen atom in 3-, 4- or 5-position, R₁ can also be -NO₂ or NR₁₆R₁₇;

 R_4 is H, -NO2, CN, halogen, -CONH2, -COOR15, -CH2NR15R18, -NR16R17, -NHC(O)R5 or -NHC(NH)NHCH3;

 R_5 is alkyl substituted with 1-3 substituents selected from the group consisting of halogen, amino and hydroxy, or carboxyalkyl, in which the alkyl portion is optionally substituted with 1-3 substituents selected from the group consisting of halogen, amino and hydroxyl, -CHR $_6$ NR $_7$ R $_8$ or one of the following groups:

5

W is N or CH;

Q is CHR₁₄, NR₉, S or O;

R₆ is H or lower alkyl;

R₇ and R₈ are independently H, acyl, lower alkyl or lower hydroxyalkyl;

R₉ is H, lower alkyl or phenyl;

15 R_{10} and R_{11} are independently H or lower alkyl;

R₁₂ is H or lower alkyl;

R₁₃ is H, alkylsulfonyl or acyl:

 R_{14} is H, -OH, -COOR₁₅;

 R_{15} is H or lower alkyl;

20 R_{16} and R_{17} are independently H, acyl, alkylsulfonyl, -C(S)NHR₁₈ or -C(O)NHR₁₈;

R₁₈ is H or lower alkyl;

R₁₉ is H or -OH;

R₂₀ is a pyridinyl group optionally substituted with a -NO₂ group;

25 R_{21} and R_{22} are lower alkyl;

and pharmaceutically acceptable salts and esters thereof.

2. A compound according to claim 1 wherein R_1 is -NHC(O) R_5 , X is O, Y is CH₂ and Z is CHR₁₂.

30

3. A compound according to claim 2 wherein Z is CH_2 and R_5 is alkyl substituted with 1-3 substituents selected from the group consisting of halogen,

amino and hydroxy, or carboxyalkyl, in which the alkyl portion is optionally substituted with 1-3 substituents selected from the group consisting of halogen, amino and hydroxyl, -CHR $_6$ NR $_7$ R $_8$ or one of the following groups:

4. A compound according to claim 1 wherein R_2 or R_3 is a benzyloxy or a group of formula (IIIa)

10

5

- 5. A compound according to claim 4 wherein R₄ is NO₂.
- 6. A compound according to claim 4 or 5 wherein R₁ is NO₂

15

- 7. A pharmaceutical composition comprising a compound of claim 1 together with a pharmaceutically acceptable carrier.
- 8. A method for inhibiting Na⁺/Ca²⁺ exchange mechanism in a cell, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.
 - 9. A method for treating arrhythmias, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of claim 1.