CS202: COMPUTER ORGANIZATION

Lecture 7

Floating Point Arithmetic

Recap

- Operations on integers
 - Addition and subtraction
 - Multiplication and division

Outline

- Floating point representation
- Floating point addition
- Floating point multiplication
- MIPS floating point instructions
- Subword parallellism

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
 - 1.xxxxxxx is called significand, mantissa, coefficient
 - yyyy is called exponent
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)
- NaN (not a number): invalid operation: 0/0, subtracting infinity from infinity

IEEE Floating-Point Format

$$\pm 1.xxxxxxx_2 \times 2^y$$

single: 8 bits

single: 23 bits

double: 11 bits

double: 52 bits

S Exponent (=y+Bias)

Fraction (xxxx)

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalized significant: 1.xxxx
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - 1.0 ≤ |significant| < 2.0
- Exponent: excess representation: actual exponent (y) + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Floating-Point Example

- Represent –0.75
 - $-0.75 = -(0.5+0.25) = -0.11_2 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - \bullet S = 1
 - Fraction = $1000...00_{2}$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 011111111111_0$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

- \bullet S = 1
- Fraction = $01000...00_{2}$
- Exponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129-127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Single-Precision Range

- Exponents 00000000 and 11111111 are reserved
- Smallest value
 - Exponent: $0000001 \Rightarrow$ actual exponent = 1 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \ (\approx \pm 1.2 \times 10^{-38})$
- Largest value
 - exponent: $111111110 \Rightarrow$ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \ (\approx \pm 3.4 \times 10^{+38})$
- Range: $(-2.0 \times 2^{127}, -1.0 \times 2^{-126}], [1.0 \times 2^{-126}, 2.0 \times 2^{127})$

overflow

underflow

overflow

Double-Precision Range

- Exponents 0000...00 and 1111...11 are reserved
- Smallest value
 - Exponent: $0000000001 \Rightarrow \text{actual exponent} = 1 1023 = -1022$
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022}$ (* $\pm 2.2 \times 10^{-308}$)
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023}$ (* $\pm 1.8 \times 10^{+308}$)
- Range: $(-2.0 \times 2^{1023}, -1.0 \times 2^{-1022}], [1.0 \times 2^{-1022}, 2.0 \times 2^{1023})$

overflow

underflow

overflow

Overflow and Underflow

■ Range of float: $(-2.0 \times 2^{127}, -1.0 \times 2^{-126}], [1.0 \times 2^{-126}, 2.0 \times 2^{127})$

- Overflow: when the exponent is too large to be represented
- Underflow: when is negative exponent is too large to be represented (when is exponent is too small to be represented)
- Examples:
 - For float number, 8-bit exponent, range: -126~127
 - 1*2¹²⁸, -1.1*2¹²⁹

- For double number, 11-bit exponent, range: -1022~1023
- 1*2¹⁰²⁴, -1.1*2¹⁰²⁶

Overflow and Underflow

■ Range of float: $(-2.0 \times 2^{127}, -1.0 \times 2^{-126}], [1.0 \times 2^{-126}, 2.0 \times 2^{127})$

- Overflow: when the exponent is too large to be represented
- Underflow: when is negative exponent is too large to be represented (when is exponent is too small to be represented)
- Examples:
 - For float number, 8-bit exponent, range: -126~127
 - ◆ 1*2¹²⁸, -1.1*2¹²⁹ Overflow; 1*2⁻¹²⁷, -1.1*2⁻¹²⁸ underflow
 - For double number, 11-bit exponent, range: -1022~1023
 - ◆ 1*2¹⁰²⁴, -1.1*2¹⁰²⁶ Overflow; 1*2⁻¹⁰²³, -1.1*2⁻¹⁰²⁵ underflow

Reserved Numbers for IEEE 754

 $\pm 0, \pm \infty, \text{ NaN}$ denormalized: 0.xxxx * 2^(-127)

Single precision		Double precision		Object represented	
Exponent	Fraction	Exponent	Fraction		
0	0	0	0	0	
0	Nonzero	0	Nonzero	± denormalized number	
1-254	Anything	1-2046	Anything	± floating-point number	
255	0	2047	0	± infinity	
255	Nonzero	2047	Nonzero	NaN (Not a Number)	

 $\pm \infty$: divided by 0

■ NaN: 0/0, subtracting infinity from infinity

Floating-Point Precision

single: 8 bits single: 23 bits

double: 11 bits double: 52 bits

S Exponent (=y+Bias) Fraction (xxxx)

Relative precision

all fraction bits are significant

$$\Delta A/|A| = 2^{-23} \times 2^{y}/|1.xxx \times 2^{y}|$$

$$\leq 2^{-23} \times 2^{y}/|1 \times 2^{y}|$$

$$= 2^{-23}$$

- ◆ Single: approx 2⁻²³
 - Equivalent to 23 \times log₁₀2 \approx 23 \times 0.3 \approx 6 decimal digits of precision
- ◆ Double: approx 2⁻⁵²
 - Equivalent to 52 \times log₁₀2 \approx 52 \times 0.3 \approx 16 decimal digits of precision

Floating-Point Addition

- Consider a 4-digit decimal example
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + (-0.4375))$
- 1. Align binary points
 - Shift right the number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, without over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

FP Multiplication

- $1.000_{\text{two}} \times 2^{-1} \times -1.110_{\text{two}} \times 2^{-2}$
 - Compute exponent (careful!)

$$(-1)+(-2)=-3$$
, 124

Multiply significands (set the binary point correctly)

$$1.000 \times 1.110 = 1.110000$$

- Normalize
- Round (potentially re-normalize)
- Assign sign -1.11 \times 2⁻³

FP Arithmetic Hardware

- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ←→ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - 1st bit: Guard bit (5), 2nd bit: Round bit (6), 3rd bit: Sticky bit
 - 2.56+234, 237 vs. 236 (assume that we have three significant digits)

$$2.3400_{\text{ten}}$$
 2.34_{ten} $+ 0.0256_{\text{ten}}$ $+ 0.02_{\text{ten}}$ $+ 0.02_{\text{ten}}$ $+ 0.02_{\text{ten}}$

- ◆ IEEE 754 guarantee one-half (0.5) ulp (units in the last place)
- Choice of rounding modes (for X.50)
 - Round up, round down, truncate, round to the nearest even
 - To the nearest even: (oct: $\underline{0}.50 \rightarrow 0$, $\underline{1}.50 \rightarrow 2$, bin: $\underline{0}.10 \rightarrow 0$, $\underline{1}.10 \rightarrow 10$)
- Allows programmer to fine-tune numerical behavior of a computation
- Trade-off between hardware complexity, performance, and market requirements

Float Point Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - ◆ 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - ullet Release 2 of MIPs ISA supports 32 imes 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

Float Point Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. xx.s, c. xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

Summary of FP Instructions

Category	Instruction	Example	Meaning	Comments
Arithmetic	FP add single	add.s \$f2,\$f4,\$f6	\$f2 - \$f4 + \$f6	FP add (single precision)
	FP subtract single	sub.s \$f2,\$f4,\$f6	\$f2 - \$f4 - \$f6	FP sub (single precision)
	FP multiply single	mul.s \$f2,\$f4,\$f6	\$f2 = \$f4 x \$f6	FP multiply (single precision)
	FP divide single	div.s \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (single precision)
	FP add double	add.d \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (double precision)
	FP subtract double	sub.d \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (double precision)
	FP multiply double	mul.d \$f2,\$f4,\$f6	\$f2 = \$f4 × \$f6	FP multiply (double precision)
	FP divide double	div.d \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (double precision)
Data transfer	load word copr. 1	1wc1 \$f1,100(\$s2)	\$f1 = Memory[\$s2 + 100]	32-bit data to FP register
	store word copr. 1	swc1 \$f1,100(\$s2)	Memory[\$s2 + 100] = \$f1	32-bit data to memory
Condi- tional branch	branch on FP true	bclt 25	if (cond == 1) go to PC + 4 + 100	PC-relative branch if FP cond.
	branch on FP false	bclf 25	if (cond == 0) go to PC + 4 + 100	PC-relative branch if not cond.
	FP compare single (eq,ne,lt,le,gt,ge)	c.lt.s \$f2.\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than single precision
	FP compare double (eq,ne,lt,le,gt,ge)	c.lt.d \$f2.\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than double precision

FP Example: ° F to ° C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp) #5.0
  lwc1  $f18, const9($gp) #9.0
  div.s $f16, $f16, $f18
  lwc1  $f18, const32($gp) #32.0
  sub.s $f18, $f12, $f18
  mul.s $f0, $f16, $f18
  jr  $ra
```

FP Example: Array Multiplication

- $X = X + Y \times Z$
 - ullet All 32 imes 32 matrices, 64-bit double-precision elements
- C code:

Addresses of X, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32
                     # $t1 = 32 (row size/loop end)
     $s0, 0
                     # i = 0; initialize 1st for loop
   lί
L1: li \$s1, 0 # j = 0; restart 2nd for loop
L2: 1i $s2, 0 # k = 0; restart 3rd for loop
   s11 $t2, $s0, 5 # <math>$t2 = i * 32 (size of row of x)
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 # t2 = byte address of <math>x[i][j]
   1.d f4, O(t2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

...

FP Example: Array Multiplication

...

```
\$11 \$t0, \$s0, 5    # \$t0 = i*32 (size of row of y)
addu $t0, $t0, $s2  # $t0 = i*size(row) + k
sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0  # $t0 = byte address of y[i][k]
1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1 # $k k + 1
bne $s2, $t1, L3 # if (k != 32) go to L3
s.d f4, 0(t2) # x[i][j] = f4
addiu \$s1, \$s1, 1 # \$j = j + 1
bne \$\$1, \$\$1, L2 # if (j != 32) go to L2
addiu $50, $50, 1 # $i = i + 1
bne $s0, $t1, L1 # if (i != 32) go to L1
```

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - \bullet 2 \times 64-bit double precision
 - \bullet 4 \times 32-bit single precision
 - Instructions operate on them simultaneously
 - <u>Single-Instruction Multiple-Data</u>

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
     for (int j = 0; j < n; ++j)
4.
5.
6.
       double cij = C[i+j*n]; /* cij = C[i][j] */
7.
       for(int k = 0; k < n; k++)
      cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
8.
      C[i+j*n] = cij; /* C[i][j] = cij */
9.
10.
11. }
```

x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
               # register %rcx = %rsi
2. mov %rsi,%rcx
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add r9, rcx # register rcx = rcx + register
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
  element of A
7. add $0x1,%rax
                  # register %rax = %rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 <dgemm+0x30> # jump if <math>%eax > %edi
12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element
```

Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
     for ( int j = 0; j < n; j++ ) {
      _{m256d} c0 = _{mm256} load_{pd}(C+i+j*n); /* c0 = C[i][j]
  * /
      for( int k = 0; k < n; k++)
7.
8.
      c0 = _{mm256} add_{pd}(c0, /* c0 += A[i][k]*B[k][j] */
9.
                _{mm256}mul_{pd}(_{mm256}load_{pd}(A+i+k*n),
10.
                _mm256_broadcast_sd(B+k+j*n)));
11.
      _{mm256\_store\_pd(C+i+j*n, c0); /* C[i][j] = c0 */
12.
13. }
```

Optimized x86 assembly code:

```
1. vmovapd (%r11),%ymm0
                            # Load 4 elements of C into %ymm0
2. mov %rbx,%rcx
                          # register %rcx = %rbx
3. xor %eax, %eax
                          # register %eax = 0
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8,%rax
                         # register %rax = %rax + 8
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
7. add %r9,%rcx
                          # register %rcx = %rcx + %r9
8. cmp %r10,%rax
                            # compare %r10 to %rax
9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 < dgemm + 0x50 >
                            # jump if not %r10 != %rax
                            # register % esi = % esi + 1
11. add $0x1, %esi
12. vmovapd %ymm0,(%r11) # Store %ymm0 into 4 C elements
```

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs
- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow