EARL GATES

Optoelectric Devices

Objectives

- After completing this chapter, you will be able to:
 - Identify the three categories of semiconductor devices that react to light
 - Classify the major frequency ranges of light
 - Identify major light-sensitive devices and describe their operation and applications

Objectives (cont'd.)

- Identify major light-emitting devices and describe their operation and applications
- Draw and label the schematic symbols associated with optoelectric devices
- Identify packages used for optoelectric devices

Basic Principles of Light

- Light
 - Electromagnetic radiation visible to human eye
 - Frequency range
 - 300 to 300,000,000 gigahertz
 - Visible region
 - 400,000 to 750,000 gigahertz

Light-Sensitive Devices

Figure 26-1. Photo cell.

Figure 26-3. Construction of a solar cell.

Figure 26-5. PN junction photodiode.

Figure 26-6. PIN junction photodiode.

Figure 26-7. Photodiode package.

Light-Sensitive Devices (cont'd.)

Figure 26-9. Voltage divider using a photodiode.

- The PIN photodiode has a lower internal capacitance because of the intrinsic layer, resulting in faster response to changes in light intensity.
- More linear change in reverse current with light intensity is produced.
- ➤ The disadvantage is a low output compared to other photosensitive devices.

Equivalent circuit for a phototransistor

- Phototransistor is constructed like other transistors with two PN junctions and resembles a standard NPN transistor.
- ➤ It is used like a photodiode and packaged like a photodiode, except that it has three leads (emitter, base, and collector)
- Transistor conduction depends on the conduction of the photodiode.

Figure 26-12. Darkness-on DC switch.

Light-Emitting Devices

Figure 26-13. LED construction.

Light-Emitting Devices (cont'd.)

Figure 26-14. Common LED packages.

Light-Emitting Devices (cont'd.)

Figure 26-19. Commercial optical coupler.

Summary

- Semiconductor devices that interact with light
- Light-detection devices
 - Light-conversion devices
 - Light-emitting devices
- Light is electromagnetic radiation that is visible to the human eye

Summary (cont'd.)

- Light-sensitive devices include photo cells, solar cells, photodiodes, and phototransistors
- Light-emitting devices include the LED (light-emitting diode)
- An optical coupler combines a lightsensitive device with a light-emitting device

EARL GATES

Power Supplies

Objectives

- After completing this chapter, you will be able to:
 - Explain the purpose of a power supply
 - Draw a block diagram of the circuits and parts of a power supply
 - Describe the three different rectifier configurations
 - Explain the function of a filter

Objectives (cont'd.)

- Describe the two basic types of voltage regulators and how they operate
- Explain the function of a voltage multiplier
- Identify over-voltage and over-current protection devices

Transformers

- Transformers
 - Used in power supplies for isolation
 - Used to step up or step down the voltage
- Primary power ratings
 - 110 to 120 volts
 - -220 to 240 volts

Rectifier Circuits

Figure 27-1. Basic half-wave rectifier.

- The half-wave rectifier operates during only one-half of the input cycle.
- The output is a series of positive or negative pulses, depending on how the diode is connected in the circuit

Rectifier Circuits (cont'd.)

Figure 27-4. The diode determines the direction of current flow.

- There is a serious disadvantage with the halfwave rectifier because current flows during only half of each cycle.
- ➤ To overcome this disadvantage, a full-wave rectifier can be used.

Rectifier Circuits (cont'd.)

There is a disadvantage with the full-wave rectifier because the output voltage is half that of a half-wave rectifier for the same transformer. This disadvantage can be overcome by the use of

a bridge rectifier circuit.
cycles. This means that the ripple frequency is twice the input frequency.

Rectifier Circuits (cont'd.)

Bridge rectifier during positive alternation.

D₁
D₂
R₁
D₃

Figure 27-8. Bridge rectifier circuit.

A bridge rectifier is a type of full-wave rectifier because it operates on both half-cycles of the input sine wave. The advantage of the bridge rectifier is that the circuit does not require a centertapped secondary. This circuit does not require a transformer to operate.

FIGURE 27-9

CENGAGE Learning Copyright © 2012 Delmar, Cengage Learning

Figure 27-11. Half-wave rectifier with capacitor filter.

Filter Circuits (cont'd.)

Figure 27-12. Output of a half-wave rectifier without and with a filter capacitor.

Filter Circuits (cont'd.)

Figure 27-13. Effects of different filter capacitors on output of half-wave rectifier.

EARL GATES

FIGURE 27–14

Effects of different filter capacitors on output of full-wave or bridge rectifier.

UNFILTERED OUTPUT

OUTPUT WITH SMALL FILTER CAPACITOR

OUTPUT WITH LARGE FILTER CAPACITOR

Voltage Regulators

Figure 27-17. Basic zener diode regulator circuit.

- There are two basic types of voltage regulators: shunt regulators and series regulators
- shunt regulator is connected in parallel with the load.
- Series regulator is connected in series with the load

Voltage Regulators (cont'd.)

Figure 27-18. Shunt regulator using a transistor.

Voltage Regulators (cont'd.)

Figure 27-19. Series regulator using a variable resistor.

Voltage Regulators (cont'd.)

Figure 27-22. A series regulator.

Voltage Multipliers

- Voltage multipliers
 - Provide higher DC voltage than the input without the aid of a transformer
- Voltage doubler
- Voltage tripler

Circuit Protection Devices

Figure 27-37. Crowbar overprotection circuit.

Circuit Protection Devices (cont'd.)

Figure 27-38. Fuses used for protection of electronic circuits.

Circuit Protection Devices (cont'd.)

Figure 27-39. Circuit breakers used for protection of electronic circuits.

Summary

- The primary purpose of a power supply is to convert AC to DC
- The basic rectifier circuits are half-wave, full-wave, and bridge
- To convert pulsating DC voltage to a smooth DC voltage, a filter must follow the rectifier in the circuit

Summary (cont'd.)

- The two basic types of regulator are the shunt regulator and the series regulator
- Voltage multipliers are circuits capable of providing higher DC voltages than the input without the aid of a transformer
- A crowbar is a circuit designed for overvoltage protection
- A fuse protects a circuit from a current

EARL GATES

Amplifier Basics

Objectives

- After completing this chapter, you will be able to:
 - Describe the purpose of an amplifier
 - Identify the three basic configurations of transistor amplifier circuits
 - Identify the classes of amplifiers

Objectives (cont'd.)

- Describe the operation of direct coupled amplifiers, audio amplifiers, video amplifiers, RF amplifiers, IF amplifiers, and operational amplifiers
- Draw and label schematic diagrams for the different types of amplifier circuits

Amplifier Configurations

Three circuit configurations are:

Common-base circuit,
Common-emitter circuit,
Common-collector circuit.

Figure 28-1. Common-base amplifier circuit.

Base is the element common to both the input and output circuits

Amplifier Configurations (cont'd.)

Figure 28-2. Common-emitter amplifier circuit.

Amplifier Configurations (cont'd.)

Figure 28-3. Common-collector amplifier circuit.

EARL GATES

Amplifier circuit characteristics.

CIRCUIT TYPE	INPUT RESISTANCE	OUTPUT RESISTANCE	VOLTAGE GAIN	CURRENT GAIN	POWER GAIN
COMMON BASE	Low	High	High	Less than 1	Medium
COMMON EMITTER	Medium	Medium	Medium	Medium	High
COMMON COLLECTOR	High	Low	Less than 1	Medium	Medium

Amplifier circuit input-output phase relationships.

AMPLIFIER TYPE	INPUT WAVEFORM	OUTPUT WAVEFORM
COMMON BASE		
COMMON EMITTER	4	
COMMON COLLECTOR	<u> </u>	<u> </u>

EARL GATES

FIGURE 28-6

Common-emitter amplifier with single voltage source.

FIGURE 28-8

Common-emitter amplifier with collector feedback.

FIGURE 28-7

Schematic representation of common-emitter amplifier with single voltage source.

FIGURE 28-9

Common-emitter amplifier with emitter feedback.

Amplifier Biasing

Figure 28-12. Class A amplifier output.

 An amplifier that is biased so that the current flows throughout the entire cycle is operating as a class A amplifier

Amplifier Biasing (cont'd.)

Figure 28-13. Class AB amplifier output.

 An amplifier that is biased so that the output current flows for less than a full cycle but more than a half cycle is operating as a class AB amplifier

Amplifier Biasing (cont'd.)

Figure 28-14. Class B amplifier output.

 An amplifier that is biased so that the output current flows for only half of the input cycle is operating as a class B amplifier.

Amplifier Biasing (cont'd.)

Figure 28-15. Class C amplifier output.

 An amplifier that is biased so that the output current flows for less than half of the AC input cycle is operating as a class C amplifier.

Amplifier Coupling

To prevent one amplifier's bias voltage from affecting the operation of the second amplifier, a coupling technique must used. The coupling method used must not disrupt the operation of either circuit.

Figure 28-17. RC coupling.

Amplifier Coupling (cont'd.)

Figure 28-20. Direct coupling.

- Direct-coupled amplifiers provide a uniform current or voltage gain over a wide range of frequencies.
 This type of amplifier can amplify frequencies from zero (DC) hertz to many thousands of hertz.
- A drawback of directcoupled amplifiers is that they are not stable

Summary

- Amplifiers are electronic circuits used to increase the amplitude of an electronic signal
- The transistor is used primarily as an amplifying device
- Three transistor amplifier configurations
 - Common base, common collector, and common emitter

Summary (cont'd.)

- Coupling methods used to connect one transistor to another
 - Resistance-capacitance coupling, impedance coupling, transformer coupling, and direct coupling
- Direct-coupled amplifiers are used for high gain at low frequencies or amplification of a DC signal

EARL GATES

Amplifier Applications

Objectives

- After completing this chapter, you will be able to:
 - Describe the operation of:
 - —direct coupled amplifiers
 - -audio amplifiers
 - —video amplifiers

Objectives (cont'd.)

- —RF amplifiers
- —IF amplifiers
- —operational amplifiers
- Identify schematic diagrams for the different types of amplifier circuits

Direct-Coupled Amplifiers

- Common-emitter amplifier is the one most frequently used.
- DC amplifier can provide both voltage and current gain.

Figure 29-1. Simple DC amplifier.

Direct-Coupled Amplifiers (cont'd.)

Figure 29-2. Two-stage DC amplifier.

- The input signal is amplified by the first stage.
- The amplified signal is then applied to the base of the transistor in the second stage.

- Both an NPN and a PNP transistor are used.
- The difference is that the second-stage transistor is a PNP transistor.

Darlington arrangement

- Transistor Q₁ is used to control the conduction of transistor Q₂.
- The input signal applied to the base of transistor Q₁ controls the base of transistor Q₂.

The darlington arrangement may be a single package with three leads: emitter (E), base (B), and collector (C). It is used as a simple DC amplifier but offers a very high voltage gain.

Direct-Coupled Amplifiers (cont'd.)

 Both high gain and temperature stability are required, another type of amplifier is necessary. This type is called a differential amplifier

Figure 29-5. Differential amplifier.

Audio Amplifiers

Figure 29-6. Voltage amplifier.

- Audio amplifiers amplify AC signals in the frequency range of approximately 20 to 20,000 hertz.
- Audio amplifiers are divided into two categories: voltage amplifiers and power amplifiers.
- Power amplifier is used to drive the load and can typically a load vary from 4 to 16 ohms.

Audio Amplifiers (cont'd.)

Figure 29-7. Push-pull power amplifier.

Audio Amplifiers (cont'd.)

Figure 29-8. Phase splitter.

The phase splitter is operated as a class A amplifier to provide minimum distortion

EARL GATES

FIGURE 29-9

Complementary push-pull power amplifier.

FIGURE 29-10

Quasi-complementary power amplifier.

Video Amplifiers

Video amplifiers are wideband amplifiers used to amplify video (picture) information. The frequency range for video amplifier few hertz to 5 or 6 megahertz.

Video Amplifiers (cont'd.)

Figure 29-15. Video amplifier in a television receiver.

- RF (radio-frequency) amplifiers usually are the first stage in an AM, FM, or TV receivers and are similar to other amplifiers.
- Frequency spectrum over which they operate, ranging from 10,000 to 30,000 megahertz

RF and IF Amplifiers

Figure 29-16. RF amplifier in an AM radio.

RF and IF Amplifiers (cont'd.)

Figure 29-17. RF amplifier in a television VHF tuner.

RF and IF Amplifiers (cont'd.)

Figure 29-18. IF amplifier in an AM radio.

IF frequency is 455,000 hertz

RF and IF Amplifiers (cont'd.)

Figure 29-19. IF amplifier in a television receiver.

Comparison of radio and television frequencies

TYPE	RECEIVED RF	COMMON IF	BANDWIDTH
AM Radio	535-1605 kHz	455 kHz	10 kHz
FM Radio	88-108 MHz	10.7 MHz	150 kHz
Television			
Channels 2-6	54-88 MHz		
Channels 7-13	174-216 MHz	41-47 MHz	6 MHz
Channels 14-83	470-890 MHz		

Operational Amplifiers

Figure 29-22. Block diagram of an op-amp.

Operational Amplifiers (cont'd.)

Figure 29-23. Schematic diagram of an op-amp. (Courtesy of National Semiconductor Corporation.)

Operational Amplifiers (cont'd.)

Figure 29-24. Op-amp connected as an inverting amplifier.

Operational Amplifiers (cont'd.)

Figure 29-25. Op-amp connected as a noninverting amplifier.

Summary

- Direct-coupled amplifiers are used primarily as voltage amplifiers
- Audio amplifiers amplify AC signals in the audio range of 20 to 20,000 hertz
- Two types of audio amplifiers
 - Voltage amplifiers and power amplifiers
- RF amplifiers operate from 10,000 to 30,000 megahertz

Summary (cont'd.)

- Two types of RF amplifiers
 - Tuned and untuned
- Op-amps may provide output gains of 20,000 to 1,000,000 times the input
- Two basic closed-loop modes
 - Inverting configuration and noninverting configuration

EARL GATES

Oscillators

Objectives

- After completing this chapter, you will be able to:
 - Describe an oscillator and its purpose
 - Identify the main requirements of an oscillator
 - Explain how a tank circuit operates and describe its relationship to an oscillator
 - Draw a block diagram of an oscillator

Objectives (cont'd.)

- Identify LC, crystal, and RC sinusoidal oscillator circuits
- Identify nonsinusoidal relaxation oscillator circuits
- Draw examples of sinusoidal and nonsinusoidal oscillators

Fundamentals of Oscillators

- Oscillator
 - A circuit that generates a repetitive AC signal
 - Output may be sinusoidal, rectangular, or sawtooth waveforms
- Main requirement
 - Output must not vary in frequency or amplitude

Fundamentals of Oscillators (cont'd.)

- Tank circuit
 - Formed when an inductor and capacitor are connected in parallel
 - Oscillates when excited by external DC source
 - Oscillation dampened by resistance of circuit
 - Oscillation maintained by positive feedback

Fundamentals of Oscillators (cont'd.)

Figure 30-1. Block diagram of an oscillator.

Sinusoidal Oscillators

- Sinusoidal oscillators
 - Produce a sine-wave output
- Three basic types
 - LC oscillators
 - Crystal oscillators
 - RC oscillators

Figure 30-2. Series-fed Hartley oscillator.

Figure 30-3. Shunt-fed Hartley oscillator.

Figure 30-4. Colpitts oscillator.

Figure 30-5. Clapp oscillator.

Figure 30-7. Crystal shunt-fed Hartley oscillator.

Figure 30-8. Colpitts crystal oscillator.

Figure 30-11. Phase-shift oscillator.

Figure 30-12. Wien-bridge oscillator.

Nonsinusoidal Oscillators

- Nonsinusoidal oscillators
 - Do not produce a sine-wave output
 - Outputs include square, sawtooth,
 rectangular, or triangular waveforms, or a combination of two waveforms
 - Form of relaxation oscillator

Figure 30-14. Blocking oscillator.

Figure 30-15. Sawtooth waveform generated by a blocking oscillator.

Figure 30-16. Free-running multivibrator.

Summary

- An oscillator is a nonrotating device for producing alternating current
- Main requirement of an oscillator
 - That output be uniform and not vary in frequency or amplitude
- A tank circuit oscillates when an external voltage source is applied

Summary (cont'd.)

- The three basic types of sinusoidal oscillators
- LC oscillators, crystal oscillators, and RC oscillators
- Nonsinusoidal oscillators do not produce a sine-wave output
- A relaxation oscillator is the basis of all nonsinusoidal oscillators

EARL GATES

Homework

- 1. What is the function of the rectifier in a power supply?
- 2. Draw schematic diagrams of the three basic configurations of transistor amplifier circuits

