^{1.}e. for any full subcategory $\mathcal{C}' \subseteq \mathcal{C}$ containing every element of \mathcal{C}^{κ} , if \mathcal{C}' is stable under small κ -filtered colimits, then $\mathcal{C}' = \mathcal{C}$. ([Lur09], p328)

²(Should reconcile with [Lur09], 5.4.3).

³Lurie introduces the term κ -continuous for such functors, but in ordinary category theory this generally means a functor which preserves κ -small limits; a functor preserving κ -filtered colimits is called κ -finitary. I have thus steered clear of this term.

Faithful functor	$F: \mathcal{C} \to \mathcal{D}$ is faithful if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is injective for all $X,Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is faithful if $hF: h\mathcal{C} \to h\mathcal{D}$ is faithful. ([Lur09], Def 1.2.10.1)	Faithful up to homotopy.
κ -Filtered category	For a regular cardinal κ , \mathcal{C} is κ -filtered if, for every κ -small category J and every functor F : $J \to \mathcal{C}$, there exists a cocone on F .	For a regular cardinal κ , \mathcal{C} is κ -filtered if, for every κ -small simplicial set X and every map $f: X \to \mathcal{C}$, there exists a map $\overline{f}: K^{\triangleright} \to \mathcal{C}$ extending f . ([Lur09], Def 5.3.1.7)	A cocone on F is a collection of compatible maps $(\lambda_j : F(j) \to C)$. Define $\overline{F} : J \star [0] \to C$ to be F on J , send the cone point to C , and send the unique morphisms $*_j$ from $j \in J$ to the cone point to the λ_j . Conversely, if you have some \overline{F} extending F , define $\lambda_j := F(*_j)$.
Final object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C' \to C$.	Object $C \in \mathcal{C}$ such that C is final in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C' \to C$.
Full functor	$F: \mathcal{C} \to \mathcal{D}$ is full if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is surjective for all $X,Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is full if $hF: h\mathcal{C} \to h\mathcal{D}$ is full. ([Lur09], Def 1.2.10.1)	Full up to homotopy.
Functor	Functor.	Natural transformation of simplicial sets. ([Lur09], 1.2.7)	-
Groupoid	Category whose morphisms are all invertible.	Kan complex.	Not only can you find (non-unique) 'composites', $C \xrightarrow{\mathrm{id}} C$ but you can also fill in diagrams like $f \downarrow D$ $C \xrightarrow{\mathrm{id}} D$ $\downarrow f$ C
Initial object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C \to C'$.	Object $C \in \mathcal{C}$ such that C is initial in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C \to C'$.
Join	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\bigcup_{i+j=n-1} \mathcal{C}_i \times \mathcal{D}_j. \text{ The } i \text{th boundary map } d_i: \\ (\mathcal{C} \star \mathcal{D})_n \to (\mathcal{C} \star \mathcal{D})_{n-1} \text{ is defined on } \mathcal{C}_n \text{ and } \\ \mathcal{D}_n \text{ using the } i \text{th boundary map on } \mathcal{C} \text{ and } \mathcal{D}. \\ \text{Given } \sigma \in S_j, \tau \in T_k, d_i(\sigma, \tau) \text{ is given by} \\ \begin{cases} (d_i \sigma, \tau) & i \leq j, \ j \neq 0, \\ (\sigma, d_{i-j-1}\tau) & i > j, \ k \neq 0. \end{cases} \\ \text{If } j = 0, \text{ then } d_0(\sigma, \tau) = \tau, \text{ and if } k = 0, \text{ then } d_n(\sigma, \tau) = \sigma. \text{ ([Lur09], Def 1.2.8.1 / [nLa25d])} \end{cases}$	Objects are in both cases disjoint unions of objects from the two categories being joined. Morphisms are also exactly the same in both cases (you get all the morphisms from \mathcal{C} and \mathcal{D} , plus a morphism from $c \to d$ for every pair $(c,d) \in \mathcal{C}_0 \times \mathcal{D}_0$). Whenever you have an n -simplex in \mathcal{C} and an m -simplex in \mathcal{D} , you get an $(m+n+1)$ -simplex in $\mathcal{C} \star \mathcal{D}$, so in particular $\Delta^n \star \Delta^m \cong \Delta^{m+n+1}$.
Left cone	$\mathcal{C}^{\triangleleft} := [0] \star \mathcal{C}.$	$\mathcal{C}^{\lhd} := \Delta^0 \star \mathcal{C}.$ ([Lur09], Not 1.2.8.4)	\mathcal{C} with extra vertex (cone point) added, as well as a map from that cone point to every other vertex in \mathcal{C} (plus obligatory degenerate simplicies).

~			

Left dualisable object	Object $C \in \mathcal{C}$ such that there exists some $C^* \in \mathcal{C}$ and maps $e: C \otimes C^* \to \mathbb{1}$, $c: \mathbb{1} \to C^* \otimes C$ such that the composites $C \to C \otimes C^* \otimes C \to C$ and $C^* \to C^* \otimes C \otimes C^* \to C^*$ are equal to the identity. ⁴	Object $C \in \mathcal{C}$ such that there exists some $C^* \in \mathcal{C}$ and maps $e: C \otimes C^* \to \mathbb{1}$, $c: \mathbb{1} \to C^* \otimes C$ such that the composites $C \to C \otimes C^* \otimes C \to C$ and $C^* \to C^* \otimes C \otimes C^* \to C^*$ are homotopic to the identity.	${\cal C}$ has a left dual up to homotopy.
Left Kan extension (along the inclusion of a full subcategory)	Given a commutative diagram $C^0 \xrightarrow{F_0} \mathcal{D}$, C F is a left Kan extension of F_0 along ι if there is a natural transformation $\eta: F_0 \to F\iota$ such that for any other pair $(G: \mathcal{C} \to \mathcal{D}, \gamma: F_0 \to G\iota)$, there exists a unique natural transformation $\alpha: F \to G$ such that $\gamma = (\alpha * \iota) \circ \eta$. ([Rie16], Def 6.1.1)	Given a commutative diagram $C^0 \xrightarrow{F_0} \mathcal{D}$, C F is a left Kan extension of F_0 along ι if for all $C \in \mathcal{C}$, the induced diagram $C^0_{/C} \xrightarrow{F_C} \mathcal{D}$ exhibits FC as a colimit of $(C^0_{/C})^{\triangleright}$ F_C . ([Lur09], Def 4.3.2.2)	In the 1-categorical case, the colimits of $C_{/C}^0 \rightarrow C^0 \xrightarrow{F_0} \mathcal{D}$ for each $C \in \mathcal{C}$ (if they all exist) define the left Kan extension of F_0 along ι ([Rie16], Thm $6.2.1)^5$. This is the case if and only if F is a pointwise Kan extension ([Rie16], Thm $6.3.7$), so really the higher categorical version generalises pointwise left Kan extensions (along the inclusion of a full subcategory).
Limit	A limit for $F: J \to \mathcal{C}$ is a terminal cone on F .	A limit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is a final object of $\mathcal{C}_{/F}$. ([Lur09], Def 1.2.13.4)	The obvious extension of the definition of the over- category $\mathcal{C}_{/C}$ for $C: \{*\} \to \mathcal{C}$ to $\mathcal{C}_{/F}$ for an arbitrary functor $F: J \to \mathcal{C}$ ends up being exactly $\mathbf{Cone}(F)$.
Locally small category	For every $X, Y \in \mathcal{C}$, $\text{Hom}(X, Y)$ is a set.	For every $X, Y \in \mathcal{C}$, the space $\operatorname{Hom}(X, Y)$ is essentially small. ([Lur09], Prop 5.4.1.7)	-

⁴The opposite convention (i.e. that this defines a *right* dualisable object) is taken in [Eti+15], and by many other authors. I'm attempting to follow Lurie's conventions as far as possible. ⁵I think Lurie is saying exactly the same thing in the ∞-categorical case, just in a slightly confusing way.

Monoidal category	Opfibration of categories $p: \mathcal{C}^{\otimes} \to \Delta^{\text{op}}$ such that, for each $n \geq 0$, the associated functors $\mathcal{C}_{[n]}^{\otimes} \to \mathcal{C}_{\{i,i+1\}}^{\otimes}$ determine an equivalence of categories $\mathcal{C}_{[n]}^{\otimes} \to \mathcal{C}_{\{0,1\}}^{\otimes} \times \times \mathcal{C}_{\{n-1,n\}}^{\otimes} \simeq (\mathcal{C}_{[1]}^{\otimes})^n$.

Cocartesian fibration of simplicial sets $p: \mathcal{C}^{\otimes} \to N(\Delta)^{\mathrm{op}}$ such that, for each $n \geq 0$, the associated functors $\mathcal{C}^{\otimes}_{[n]} \to \mathcal{C}^{\otimes}_{\{i,i+1\}}$ determine an equivalence⁶ of ∞ -categories

$$\mathcal{C}_{[n]}^{\otimes} \to \mathcal{C}_{\{0,1\}}^{\otimes} \times \dots \times \mathcal{C}_{\{n-1,n\}}^{\otimes} \simeq (\mathcal{C}_{[1]}^{\otimes})^n$$
([Lur07], Def 1.1.2)⁷

In the 1-categorical case, you recover the original category by setting $\mathcal{C} := \mathcal{C}_{[1]}^{\otimes}$. The unit is $\mathcal{C}_{[0]}^{\otimes}$, the tensor product \otimes is induced by the outer inclusion $\{0 < 2\} = [1] \subseteq [2]$, the unitors and associators come from the commutative diagrams

in Δ . Conversely, given a monoidal category \mathcal{C} , define \mathcal{C}^{\otimes} to have objects finite sequences $[C_1,...,C_n]$ of objects of \mathcal{C} , and a morphism $[C_1,...,C_n] \to [C'_1,...,C'_m]$ to be a map $[m] \to [n]$ and a collection of morphisms $C_{f(i-1)+1} \otimes \cdots \otimes C_{f(i)} \to C'_i$ for $1 \leq i \leq m$. Then the forgetful functor to Δ^{op} is the required cocartesian fibration. ([Lur07], p5-6)

⁶Weak or categorical?

⁷I consider this a temporary definition, because I can't yet reconcile it with [Lur17], Def 4.1.1.10.

⁸You "tensor along the gap", if that makes any sense.

(Coloured) operad	 A collection of objects \$\mathcal{O}\$. For every finite set \$I\$, every \$I\$-indexed collection of objects \$\{X_i\}_{i \in I}\$ of \$\mathcal{O}\$, and every \$Y \in \mathcal{O}\$, a set \$Hom(\{X_i\}_{i \in I}, Y)\$. For every map of finite sets \$I \to J\$ having fibres \$\{I_j\}_{j \in J}\$, every finite collection of objects \$\{X_i\}_{i \in I}\$, every finite collection of objects \$\{Y_j\}_{j \in J}\$, and every object \$Z \in \mathcal{O}\$, a composition map \$\Pi_j\$ Hom(\$\{X_i\}_{i \in I_j}, Y_j\$) \times \$Hom(\{Y_j\}_j, Z)\$ → \$Hom(\$\{X_i\}_{i}, Z\$)\$, which is associative. Units \$id_X\$ ∈ \$Hom(\$\{X\}, X\$)\$. ([Lur17], Def 2.1.1.1) 	Functor $p: \mathcal{O}^{\otimes} \to N(\mathbf{Fin}_*)$ between ∞ -categories which satisfies the following conditions: • For every inert morphism $f: \langle m \rangle \to \langle n \rangle$ in $N(\mathbf{Fin}_*)$ and every object $C \in \mathcal{O}_{\langle m \rangle}^{\otimes}$, there exists a p -cocartesian morphism $\overline{f}: C \to C'$ in \mathcal{O}^{\otimes} lifting f . • Let $C \in \mathcal{O}_{\langle m \rangle}^{\otimes}$ and $C' \in \mathcal{O}_{\langle n \rangle}^{\otimes}$ be objects, let $f: \langle m \rangle \to \langle n \rangle$ be a morphism in \mathbf{Fin}_* , and let $\mathrm{Hom}_{\mathcal{O}^{\otimes}}^f(C, C')$ be the union of those connected components of $\mathrm{Hom}_{\mathcal{O}^{\otimes}}(C, C')$ which lie over $f \in \mathrm{Hom}_{\mathbf{Fin}_*}(\langle m \rangle, \langle n \rangle)$. Choose p -cocartesian morphisms $C' \to C'_i$ lying over the inert morphisms $\rho^i: \langle n \rangle \to \langle 1 \rangle$ for $1 \leq i \leq n$. Then the induced map $\mathrm{Hom}_{\mathcal{O}^{\otimes}}^f(C, C') \to \prod_{1 \leq i \leq n} \mathrm{Hom}_{\mathcal{O}^{\otimes}}^{\rho^i f}(C, C'_i)$ is a homotopy equivalence. • For every finite collection of objects $C_1,, C_n \in \mathcal{O}_{\langle 1 \rangle}^{\otimes}$, there exists an object $C \in \mathcal{O}_{\langle n \rangle}^{\otimes}$ and a collection of p -cocartesian morphisms $C \to C_i$ covering $\rho^i: \langle n \rangle \to \langle 1 \rangle$.	[todo]
(Coloured) operad map	[todo]	For ∞ -operads $p: \mathcal{O}^{\otimes} \to N(\mathbf{Fin}_*), q: \mathcal{O}'^{\otimes} \to N(\mathbf{Fin}_*), an \infty$ -operad map $\mathcal{O}^{\otimes} \to \mathcal{O}'^{\otimes}$ is a map of simplicial sets $f: \mathcal{O}^{\otimes} \to \mathcal{O}'^{\otimes}$ such that the diagram below commutes, $\mathcal{O}^{\otimes} \xrightarrow{\qquad \qquad } \mathcal{O}'^{\otimes}$ and the functor f carries inert morphisms f in \mathcal{O}^{\otimes} to inert morphisms in \mathcal{O}'^{\otimes} .	[todo]
Opposite category	$\mathcal{C}^{\mathrm{op}}$ has the same objects as \mathcal{C} , and $\mathrm{Hom}_{\mathcal{C}^{\mathrm{op}}}(X,Y)=\mathrm{Hom}_{\mathcal{C}}(Y,X).$	$C_n^{\text{op}} = C([n]^{\text{op}}), \text{ where } \{0 < 1 < \dots < n\}^{\text{op}} = \{0 > 1 > \dots > n\}. ([Lur09], 1.2.1)$	A map $x \to y$ is an edge $\Delta^1 \to \mathcal{C}$ where $0 \mapsto x$ and $1 \mapsto y$. In \mathcal{C}^{op} 0 and 1 swap roles, so we instead get a map $y \to x$.

⁹I.e. p-cocartesian morphisms g with $p(g): \langle m \rangle \to \langle n \rangle$ such that for each $i \in \langle n \rangle^{\circ}$, the inverse image $g^{-1}\{i\}$ has exactly one element ([Lur17] Def 2.1.1.8 and 2.1.2.3).

Overcategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{/C}$ satisfies the fol-	For $f: S \to \mathcal{C}$, S a simplicial set and \mathcal{C} an	If $S = \Delta^0$, writing $C \in \mathcal{C}$ for the object picked
	lowing universal property: for any category \mathcal{D} ,	∞ -category, the ∞ -category $\mathcal{C}_{/f}$ satisfies the	out by f , we have $(\mathcal{C}_{/C})_n = \operatorname{Hom}_C(\Delta^n \star \Delta^0, \mathcal{C}) \cong$
	there is a bijection	following universal property: for any simpli-	$\operatorname{Hom}_{C}(\Delta^{n+1},\mathcal{C})$ (where the subscript indicates that
	II (D 4) II (D [o] 4)	cial set X , there is a bijection	we only consider morphisms sending the $(n + 1)$ st
	$\operatorname{Hom}(\mathcal{D}, \mathcal{C}_{/C}) \simeq \operatorname{Hom}_C(\mathcal{D} \star [0], \mathcal{C}),$		vertex to C). In other words, the objects are maps
		$\operatorname{Hom}(X, \mathcal{C}_{/f}) \simeq \operatorname{Hom}_f(X \star S, \mathcal{C}),$	to C , the morphisms are commuting triangles over
	where the subscript on the right indicates that	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C, and so on; these are exactly the objects and mor-
	we consider only those functors $\mathcal{D} \star [0] \to$	where the subscript on the right indicates that	phisms in the 1-categorical case.
	\mathcal{C} whose restriction to [0] consides with \mathcal{C} .	we consider only those functors $X \star S \to \mathcal{C}$	
	([Lur09], 1.2.9)	whose restriction to S consides with f . Ex-	
		plicitly,	
		$(\mathcal{C}_{/f})_n := \operatorname{Hom}_f(\Delta^n \star S, \mathcal{C}).$	
		, , , , , , , , , , , , , , , , , , , ,	
		([Lur09], Prop 1.2.9.2)	
Presentable category	[todo]	[todo]	[todo]
Presheaf	[todo]	[todo]	[todo]
Representable func-	[todo]	[todo]	[todo]
tor			
Right cone	$\mathcal{C}^{\triangleright} := \mathcal{C} \star [0].$	$\mathcal{C}^{\triangleright} := \mathcal{C} \star \Delta^{0}.$ ([Lur09], Not 1.2.8.4)	\mathcal{C} with extra vertex (cone point) added, as well as a
			map from every other vertex in $\mathcal C$ to that cone point
			(plus obligatory degenerate simplicies).
Right dualisable ob-	Object $C \in \mathcal{C}$ such that there exists some $^*C \in$	Object $C \in \mathcal{C}$ such that there exists some $^*C \in$	C has a right dual up to homotopy.
ject	\mathcal{C} and maps $e: {}^*C \otimes C \to \mathbb{1}, \ c: \mathbb{1} \to C \otimes {}^*C$	\mathcal{C} and maps $e: {}^*C \otimes C \to \mathbb{1}, c: \mathbb{1} \to C \otimes {}^*C$	
	such that the composites $C \to C \otimes^* C \otimes C \to C$	such that the composites $C \to C \otimes^* C \otimes C \to C$	
	and $^*C \to ^*C \otimes C \otimes ^*C \to ^*C$ are equal to the	and $^*C \to ^*C \otimes C \otimes ^*C \to ^*C$ are homotopic	
	identity.	to the identity.	
Small category	$\mathcal C$ has a set's worth of objects, and between	$\mathcal C$ has a set's worth of nondegenerate simpli-	-
	any two objects, a set's worth of morphisms.	cies. ¹⁰ [Lur25, Section 03PP]	

 $^{^{10}}$ In other words, C is a simplicial set. So, by our definition, "∞-category" means the same as "small ∞-category".

¹¹Weak or categorical?

Undercategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{C/}$ satisfies the fol-	For $f: S \to \mathcal{C}$, S a simplicial set and \mathcal{C} an	If $S = \Delta^0$, writing $C \in \mathcal{C}$ for the object picked
Ondercategory	lowing universal property: for any category \mathcal{D} , there is a bijection	∞ -category, the ∞ -category $\mathcal{C}_{f/}$ satisfies the following universal property: for any simpli-	out by f , we have $(\mathcal{C}_{C/})_n = \operatorname{Hom}_C(\Delta^0 \star \Delta^n, \mathcal{C}) \cong \operatorname{Hom}_C(\Delta^{n+1}, \mathcal{C})$ (where the subscript indicates that
	Hom $(\mathcal{D}, \mathcal{C}_{C/}) \simeq \operatorname{Hom}_{C}([0] \star \mathcal{D}, \mathcal{C}),$ where the subscript on the right indicates that we consider only those functors $[0] \star \mathcal{D} \to$ \mathcal{C} whose restriction to $[0]$ consides with C . ([Lur09], 1.2.9)	cial set X , there is a bijection $\operatorname{Hom}(X,\mathcal{C}_{f/}) \simeq \operatorname{Hom}_f(S \star X,\mathcal{C}),$ where the subscript on the right indicates that we consider only those functors $S \star X \to \mathcal{C}$ whose restriction to S consides with f . Explicitly,	we only consider morphisms sending the 0th vertex to C). In other words, the objects are maps from C , the morphisms are commuting triangles under C , and so on; these are exactly the objects and morphisms in the 1-categorical case.
		$(\mathcal{C}_{f/})_n := \operatorname{Hom}_f(S \star \Delta^n, \mathcal{C}).$	
		([Lur09], Prop 1.2.9.2)	

	Equivalences			
Name	Between	Definition		
Strong equivalence	Topological categories \mathcal{C}, \mathcal{D}	$\mathcal{C} \to \mathcal{D}$ is an equivalnce in the sense of enriched		
		category theory. ([Lur09], Def 1.1.3.1)		
(Weak) equivalence	Topological categories \mathcal{C}, \mathcal{D}	The induced functor $h\mathcal{C} \to h\mathcal{D}$ is an equiva-		
		lence of \mathcal{H} -enriched categories. ([Lur09], Def		
		1.1.3.6)		
Categorical equivalence	Simplicial sets X, S	The induced functor $hX \to hS$ is an equiva-		
		lence of \mathcal{H} -enriched categories. ([Lur09], Def		
		1.1.5.14)		
Weak (homotopy) equivalence	Simplicial sets X, S	The induced map $ X \rightarrow S $ is a weak		
		homotopy equivalence of topological spaces.		
		([Lur09], 1.1.4)		
Equivalence	Simplicial categories \mathcal{C}, \mathcal{D}	The induced functor $h\mathcal{C} \to h\mathcal{D}$ is an equiva-		
		lence of \mathcal{H} -enriched categories. ([Lur09], Def		
		1.1.4.4)		

	Fibrations and anodyne mor	phisms
Name	Describes	Definition
Acyclic Kan fibration	$f: X \to S$ map of simplicial sets	see: trivial Kan fibration. ([nLa23])
Anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$p: Y \to T$ a Kan fibration,
		$X \longrightarrow Y$
		$ \begin{array}{ccc} f \downarrow & \downarrow p \\ S & \longrightarrow T \end{array} $
		$S \xrightarrow{\sim} T$
		1 1 11 11 (T 00) F 2001)
Cartesian fibration	$f: X \to S$ map of simplicial sets	there exists a dotted lift. ([Lur09], Ex 2.0.0.1) f is an inner fibration such that for every edge
Cartesian infration	$J: X \to S$ map of simplicial sets	$g: x \to y$ of S and every vertex \tilde{y} of X with
		$f(\tilde{y}) = y$, there exists an f-cartesian edge \tilde{g} :
		$\tilde{x} \to \tilde{y}$ with $f(\tilde{g}) = g$. ([Lur09], Def 2.4.2.1)
Categorical fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$p: Y \to T$ both a cofibration and a categorical
		equivalence,
		$V \longrightarrow V$
		$Y \longrightarrow X$ $\downarrow f$ $T \longrightarrow S$
		$T \longrightarrow S$
		there exists a dotted lift. ([Lur09], p90)
Cocartesian fibration	$f: X \to S$ map of simplicial sets	f is an inner fibration such that for every edge
		$g: x \to y$ of S and every vertex \tilde{x} of X with
		$f(\tilde{x}) = x$, there exists an f-cocartesian edge
Cofibration	$f: X \to S$ map of simplicial sets	$\tilde{g}: \tilde{x} \to \tilde{y} \text{ with } f(\tilde{g}) = g. \text{ ([Lur09], Def 2.4.2.1)}$ $f \text{ is a monomorphism. ([Lur09], A.2.7)}$
Inner anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
inner anoughe	y 111 / S map of simplicial sees	$p: Y \to T$ an inner fibration,
		,
		$X \longrightarrow Y$
		$f \downarrow p$
		$S \xrightarrow{\checkmark} T$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inner fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 < i < n$,
$F: \mathcal{C} \to \mathcal{D} \text{ map of } \infty\text{-categories} \qquad F \text{ is an inner fibration such that for all } \mathcal{C} \in \mathcal{C} \text{ and every isomorphism } u: \mathcal{D} \to \mathcal{F}\mathcal{C} \text{ in } \mathcal{D} \cap \mathcal{C} \cap \mathcal{C} \cap \mathcal{C} \cap \mathcal{D} \cap \mathcal{C} \cap C$			
$F: \mathcal{C} \to \mathcal{D} \text{ map of } \infty\text{-categories} \qquad F \text{ is an inner fibration such that for all } \mathcal{C} \in \mathcal{C} \text{ and every isomorphism } u: \mathcal{D} \to \mathcal{F}\mathcal{C} \text{ in } \mathcal{D} \cap \mathcal{C} \cap \mathcal{C} \cap \mathcal{C} \cap \mathcal{D} \cap \mathcal{C} \cap C$			there exists a dotted lift
	Isofibration	$F:\mathcal{C}\to\mathcal{D}$ map of ∞ -categories	F is an inner fibration such that for all $C \in \mathcal{C}$ and every isomorphism $u:D \to FC$ in \mathcal{D} (i.e. $[u]$ is an isomorphism in $h\mathcal{D}$) there exists an isomorphism $\overline{u}:\overline{D}\to C$ in \mathcal{C} such that
Left anodyne $f: X \to S \text{ map of simplicial sets} \\ f: X \to S map o$	(Kan) fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 \le i \le n$,
Left anodyne $f: X \to S \text{ map of simplicial sets} \qquad \text{For every solid arrow diagram as below, with } \\ p: Y \to T \text{ a left fibration}, \\ X \longrightarrow Y \\ \downarrow \downarrow \\ S \longrightarrow T \\ \text{there exists a dotted lift. ([Lur09], Def 2.0.0.3)} \\ \text{For every solid arrow diagram as below, with } \\ 0 \le i < n, \\ A_i^n \longrightarrow X \\ \downarrow \\ \Delta^n \longrightarrow S \\ \text{there exists a dotted lift. ([Lur09], Def 2.0.0.3)} \\ \text{For every solid arrow diagram as below, with } \\ p: Y \to T \text{ a right fibration}, \\ X \longrightarrow Y \\ \downarrow \\ Y \to T \text{ a right fibration}, \\ X \longrightarrow Y \\ \downarrow \\ Y \to T \text{ a right fibration}, \\ X \longrightarrow Y \\ \downarrow \\ X \longrightarrow T \\ \text{there exists a dotted lift. ([Lur09], Def 2.0.0.3)} \\ \text{Right fibration}$ Right fibration $f: X \to S \text{ map of simplicial sets}$ For every solid arrow diagram as below, with } \\ p: Y \to T \text{ a right fibration}, \\ X \longrightarrow Y \\ \downarrow \\ X \longrightarrow T \\ \text{there exists a dotted lift. ([Lur09], Def 2.0.0.3)} \\ \text{For every solid arrow diagram as below, with } \\ 0 < i \le n, \\ A_i^n \longrightarrow X \\ \downarrow \\ \Delta^n \longrightarrow S \\ \text{here exists a dotted lift.}			$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow S \end{array} $
Left anodyne $f: X \to S \text{ map of simplicial sets} \qquad \text{For every solid arrow diagram as below, with } \\ p: Y \to T \text{ a left fibration}, \\ X \longrightarrow Y \\ \downarrow \downarrow \\ S \longrightarrow T \\ \text{there exists a dotted lift. ([Lur09], Def 2.0.0.3)} \\ \text{For every solid arrow diagram as below, with } \\ 0 \le i < n, \\ A_i^n \longrightarrow X \\ \downarrow \\ \Delta^n \longrightarrow S \\ \text{there exists a dotted lift. ([Lur09], Def 2.0.0.3)} \\ \text{For every solid arrow diagram as below, with } \\ p: Y \to T \text{ a right fibration}, \\ X \longrightarrow Y \\ \downarrow \\ Y \to T \text{ a right fibration}, \\ X \longrightarrow Y \\ \downarrow \\ Y \to T \text{ a right fibration}, \\ X \longrightarrow Y \\ \downarrow \\ X \longrightarrow T \\ \text{there exists a dotted lift. ([Lur09], Def 2.0.0.3)} \\ \text{Right fibration}$ Right fibration $f: X \to S \text{ map of simplicial sets}$ For every solid arrow diagram as below, with } \\ p: Y \to T \text{ a right fibration}, \\ X \longrightarrow Y \\ \downarrow \\ X \longrightarrow T \\ \text{there exists a dotted lift. ([Lur09], Def 2.0.0.3)} \\ \text{For every solid arrow diagram as below, with } \\ 0 < i \le n, \\ A_i^n \longrightarrow X \\ \downarrow \\ \Delta^n \longrightarrow S \\ \text{here exists a dotted lift.}			there exists a dotted lift. ([Lur09], A.2.7)
Left fibration $f: X \to S \text{ map of simplicial sets} \qquad \text{For every solid arrow diagram as below, with } 0 \leq i < n, \\ $	Left anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $p: Y \to T$ a left fibration,
Left fibration $f: X \to S \text{ map of simplicial sets} \qquad \text{For every solid arrow diagram as below, with } 0 \le i < n, \\ & & & & & & \\ & & & & & \\ & & & & & $			$X \longrightarrow Y$ $f \downarrow \qquad \qquad \downarrow p$ $S \longrightarrow T$
Left fibration $f: X \to S \text{ map of simplicial sets} \qquad \text{For every solid arrow diagram as below, with } 0 \le i < n, \\ & & & & & & \\ & & & & & \\ & & & & & $			there exists a dotted lift. ([Lur09], Def 2.0.0.3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Left fibration	$f: X \to S$ map of simplicial sets	$0 \le i < n,$
Right anodyne			$\begin{array}{ccc} & & \downarrow^f \\ \Delta^n & \longrightarrow & S \end{array}$
$p:Y\to T \text{ a right fibration},$ $X \longrightarrow Y \\ f \downarrow \qquad \qquad \downarrow p$ $S \longrightarrow T$ there exists a dotted lift. ([Lur09], Def 2.0.0.3) $f:X\to S \text{ map of simplicial sets}$ For every solid arrow diagram as below, with $0< i \leq n,$ $\Lambda^n_i \longrightarrow X \\ \downarrow f \\ \Delta^n \longrightarrow S$			
$f \mapsto f \mapsto f$ there exists a dotted lift. ([Lur09], Def 2.0.0.3) $f: X \to S \text{ map of simplicial sets} \qquad For every solid arrow diagram as below, with } 0 < i \le n,$ $A_i^n \longrightarrow X \\ \downarrow f \\ \Delta^n \longrightarrow S$	Right anodyne	$f: X \to S$ map of simplicial sets	, ,
Right fibration $f: X \to S \text{ map of simplicial sets} \qquad \text{For every solid arrow diagram as below, with} \\ 0 < i \le n, \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$			$ \begin{array}{ccc} X & \longrightarrow Y \\ \downarrow f & & \downarrow p \\ S & \longrightarrow T \end{array} $
Right fibration $f: X \to S \text{ map of simplicial sets} \qquad \text{For every solid arrow diagram as below, with} \\ 0 < i \le n, \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$			there exists a dotted lift. ([Lur09], Def 2.0.0.3)
	Right fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 < i \le n$,
there exists a dotted lift. ([Lur09], Def 2.0.0.3)			$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow S \end{array} $
			there exists a dotted lift. ([Lur09], Def 2.0.0.3)

Serre fibration	$f: Y \to Z$ map of topological spaces	For every solid arrow diagram as below, $\{0\} \times \Delta^n \xrightarrow{\qquad} Y$
Trivial (Kan) fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below,
		$\begin{array}{ccc} \partial \Delta^n & \longrightarrow & X \\ & & \downarrow^f \\ \Delta^n & \longrightarrow & S \end{array}$
		there exists a dotted lift. ([Lur25, Def 006W]/[Lur09], Def 2.0.0.2)

	Nerves			
Name	Domain object	Definition		
Nerve	Category \mathcal{C}	$(NC)_n = \{n\text{-composable strings of morphisms} \text{ in } C\}.$ ([Lur09], p9)		
Simplicial nerve	Simplicial category $\mathcal C$	$(NC)_n = \operatorname{Hom}_{\mathbf{Cat}_{\Delta}}(\mathfrak{C}[\Delta^n], \mathcal{C}), \text{ where } \mathfrak{C}[\Delta^n] \text{ is }$ the category whose objects are the same as $[n]$, and $\operatorname{Hom}_{\mathfrak{C}[\Delta^n]}(i,j) = \emptyset$ for $i < j$ and $N(P_{ij})$ for $i \geq j$ (where $P_{ij} = \{I \subseteq [n] : (i,j \in I) \land (\forall k \in I, i \leq k \leq j)\}$). ([Lur09], Def 1.1.5.5)		
Topological nerve	Topological category $\mathcal C$	The simplicial nerve of Sing C . ([Lur09], Def 1.1.5.5)		

Homotopy categories	
Domain object	Definition
∞ -Category \mathcal{C}	The objects of hC are the vertices of C , and
	$\operatorname{Hom}_{\mathrm{h}\mathcal{C}}(X,Y)$ is the set of homotopy classes of edges
	$X \to Y \text{ in } \mathcal{C}. \ ([\text{Lur09}], \text{Prop } 1.2.3.9)$
Simplicial category \mathcal{C}	h C . ([Lur09], 1.1.4)
Topological category \mathcal{C}	hC has the same objects as C , and $Hom_{hC}(X,Y) = 1$
	$[Hom_{\mathcal{C}}(X,Y)].$ ([Lur09], 1.1.3)

Objects	
Name	Definition
$\mathbf{Alg}_{\mathcal{C}}(\mathcal{D}) \ (p: \mathcal{C}^{\otimes} \to N(\mathbf{Fin}_*), \ q: \)$	The full subcategory of $\mathbf{Fun}_{N(\mathbf{Fin}_*)}(\mathcal{C}^{\otimes}, \mathcal{D}^{\otimes})^{12}$ spanned by the ∞ -
$\mathcal{D}^{\otimes} \to N(\mathbf{Fin}_*) \infty$ -operads)	operad maps. ([Lur17], Def 2.1.2.7)

This notation is defined nowhere I can see, but must just mean maps $\mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes}$ making the obvious triangle commute (but is this commuting on the nose, or only up to homotopy?).

Assoc (the associative operad)	The coloured operad with a single object \mathfrak{a} , and for every finite set I , $\operatorname{Hom}(\{\mathfrak{a}\}_i,\mathfrak{a})$ is the set of linear orderings on I . Given a map of finite sets $\alpha:I\to J$ together with operations $\phi_j\in \operatorname{Hom}(\{\mathfrak{a}\}_{\alpha(i)=j},\mathfrak{a})$ and $\psi\in\operatorname{Hom}(\{\mathfrak{a}_j,\mathfrak{a}\})$, we identify each ϕ_j with a linear ordering \leq_j on the set $\alpha^{-1}\{j\}$ and ψ with a linear ordering \leq' on the set J . The composition of ψ with $\{\phi_j\}$ corresponds to the linear ordering \leq on the set I which is defined by: $i\leq i'$ if either $\alpha(i)<_j\alpha(i')$ or $\alpha(i)=j=\alpha(i')$ and $i\leq_j i'$. ([Lur17], Def 4.1.1.1)
Assoc $^{\otimes}$ (the associative ∞ -operad)	$N(\mathbf{Assoc}^{\otimes})$. ([Lur17], Def 4.1.1.3)
\mathbf{Assoc}^{\otimes}	The category whose objects are the objects of \mathbf{Fin}_* , and a morphism $m \to n$ is given by a map $\alpha : \langle m \rangle \to \langle n \rangle$ in \mathbf{Fin}_* together with a collection of linear orderings \leq_j on $\alpha^{-1}\{j\}$, for $1 \leq j \leq n$. Composition of morphisms is determined by the composition laws on \mathbf{Fin}_* and on \mathbf{Assoc} . [Lur17], Def 4.1.1.3
\mathbf{Fin}_*	The category whose objects are the sets $\langle n \rangle = \{*, 1, 2,, n\}$, and a morphism $\langle m \rangle \to \langle n \rangle$ is a map $\alpha : \langle m \rangle \to \langle n \rangle$ such that $\alpha(*) = *$.
Kan	The full subcategory of sSet spanned by the collection of small Kan complexes. ([Lur09], Def 1.2.16.1)
KAN	The category of all Kan complexes. ([Lur09], Rem 5.1.6.1)
\mathcal{S} (the ∞ -category of spaces)	The simplicial 13 nerve $N(\mathbf{Kan})$. ([Lur09], Def 1.2.16.1)
Ŝ	The simplicial nerve $N(\mathbf{KAN})$. ([Lur09], Rem 5.1.6.1)

¹³**sSet** is a simplicial category, with $\operatorname{Hom}(X,S)_n = \operatorname{Hom}_{\mathbf{sSet}}(\Delta^n \times X,S)$. The subcategory **Kan** inherits this structure.

References

- [Eti+15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor Categories. 2015.
- [Lur07] Jacob Lurie. Derived Algebraic Geometry II: Noncommutative Algebra. 2007. arXiv: math/0702299 [math.CT]. URL: https://arxiv.org/abs/math/0702299.
- [Lur09] Jacob Lurie. Higher Topos Theory. 2009.
- [Lur17] Jacob Lurie. Higher Algebra. 2017. URL: https://www.math.ias.edu/~lurie/papers/HA.pdf.
- [Lur25] Jacob Lurie. Kerodon. https://kerodon.net. 2025.
- [nLa23] nLab (Urs Schreiber). acyclic Kan fibration. https://ncatlab.org/nlab/show/acyclic+Kan+fibration. Revision 5. 2023.
- [nLa25a] nLab authors. accessible category. https://ncatlab.org/nlab/show/accessible+category. Revision 69. 2025.
- [nLa25b] nLab authors. accessible (infinity,1)-category. https://ncatlab.org/nlab/show/accessible+ %28infinity%2C1%29-category. Revision 25. 2025.
- [nLa25c] nLab authors. Cartesian morphism. https://ncatlab.org/nlab/show/Cartesian+morphism. Revision 52. 2025.
- [nLa25d] nLab authors. join of simplicial sets. https://ncatlab.org/nlab/show/join+of+simplicial+sets. Revision 62. 2025.
- [Rie16] Emily Riehl. Category Theory in Context. 2016. URL: https://emilyriehl.github.io/files/context.pdf.