§ 6. Обратна матрица

казваме, че една квадратна матрица A е *неособена*, ако $\det A \neq 0$. гивен случай ще я наричаме *особена*. От теоремата за умножение ерминанти следва, че произведението на неособени матрици също е ена матрица.

пределение. Една квадратна матрица A ще наричаме обратима, ществува квадратна матрица A' от същия ред, такава че AA'=E. Матрицата A' ще наричаме обратна на матрицата A.

о A е обратима матрица, то тя притежава единствена обратна мат-Действително, ако A'' е такава матрица, че AA'' = A''A = E, то

$$A'AA'' = A'(AA'') = A'E = A',$$

 $A'AA'' = (A'A)A'' = EA'' = A''$

чи A'=A''. Тази единствена матрица ще бележим с A^{-1} . по A е обратима матрица и A^{-1} е обратиата ѝ, от теоремата за умине на детерминанти имаме $\det A. \det(A^{-1}) = \det E = 1$ и значи

 $(\det A)^{-1}$. То отбележим, че произведение на обратими матрици също е обратима при това $(AB)^{-1}=B^{-1}A^{-1}$.

ворема 1. Една квадратна матрица е обратима тогава и само токогато е неособена.

1 о к а з а т е л с т в о. Ако A е обратима матрица, от равенството 1, $\det(A^{-1})=1$ следва $\det A\neq 0$, т.е. A е неособена.

1ека сега A е неособена и $A=(a_{ij})_{n\times n}$. Да означим с X матрицата

$$X = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix},$$

его A_{ij} е адюнгираното количество на елемента a_{ij} $(i,j=1,2,\ldots,n)$. подчертаем, че адюнгираните количества на елементите от i-ия ред A стоят в i-ия стълб на X. Нека $AX = (c_{ij})_{n \times n}$. От правилото за южение на матрици следва, че c_{ij} е развитието на $\det A$ по i-ия ред понгираните количества на елементите от j-ия ред. Знаем тогава, че δ_{ij} $\det A$ (твърдение 3 от \S 3). Това озивчава, че $AX = \det A.E$. Нека

$$Y = \frac{1}{\det A} X$$
. Имаме

$$AY = A\left(\frac{1}{\det A}X\right) = \frac{1}{\det A}AX = \frac{1}{\det A}(\det A.E) = E.$$

Аналогично се проверява, че YA = E. Така Y е обратната матрица на матрицата A.

Накрая ще отбележим, че с помощта на обратна матрица могат да се решават матрични уравнения. Нека $A=(a_{ij})_{n\times n},\ X=(x_{ij})_{n\times m},\ B=(b_{ij})_{n\times m}$. Да разгледаме матричното уравнение AX=B. Ако A е обратима матрица, като умножим това уравнение отляво с A^{-1} , получаваме уравнението $X=A^{-1}B$, косто е еквивалентно на горното. Аналогично можем да решаваме уравнения от вида YA=B. В този случай $Y=BA^{-1}$.

Да разгледаме частния случай, когато m=1. Нека

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Тогава уравнението AX=B е матричен запис на системата

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{vmatrix}$$

Равенството $X = A^{-1}B$ представлява съкратен запис на формулите на Крамер.