			Page No. Date	
	J SSI	GNENT-	5	
Q.1.	Compare the following:- IIR and FIR fetters.			
Ans D=	CHARACTERISTIC No. of necessary much plications	11R least	FIR Most	
	Stability Linear Phase	Depends upon system dengu	Guaranteed	
	Regrifeed hardwire	Least-	quaeauteed	
	Suppostate adaptive fultering Naclability of	Yes Qood	Yes Very Good	
	Impulse Invariance v	nethod and belinear tran	0 '	
	IMPULSE INVARIANCE METHOD BILINEAR TRANSFORMATION It is a technique for designing The bruncas transformation			
	response (IR) fetters from to unpulse invariance the		event mabbing	
	the impulse respons continuous-time s sampled to prod	ystern is time system	the continuous- us frequency out to inferthe.	

		Page No. Date	
	unpulse response of the discrete-time system. The frequency response of the discrete time system will be a sum of shifted copies of the frequency response of the continuous-time system.	frequency, nito the grange of hegrencies up to then you'st frequency in the discrebe time case, as opposed to mapping frequencies unearly with	
		invariance does.	
Ausæ	Describe Window method for FIR fitter clerign. Idvindows Method for FIR fitter Design. The window method for digetal filter design is fast, convenient, and robust but generally suboptional. It is easily understood in terms of the convolution theorem for forwise transforms, making it instructive to study after the forester theorems and windows for spectrum analysis. The window method consists of simply windowing a theoretically ideal felter impulse bestonse high by some suffacio chosen window further with, yielding him (n) = w(n), h(n) noz.		
	$h(\omega(n) = h(n),$ $w_{R}(n) = \begin{cases} 1 \\ 0 \end{cases}$	$h(n)$ $n \in \mathbb{Z}$. for $n = 0, 1, 2, M-1$ otherwise	
	$h(n) = h_d(n) \cdot W_R(n)$	·).	

	Page No. Date				
	118 litter is expanded at leaser frequencies and				
	UR fitter is expanded at lower frequencies and compressed at higher frequencies in companies on to the analog filter.				
	the analog letter.				
(tle)	Butternosth Rolter Approximation:				
	The type of response is called as butterworth				
	The type of response is called as butterworth response when the passband is maximally flat. That means there are no variations (ripped in				
	That means there are no variations (ripper) us				
	the passband.				
	The magnitude response of low pars				
	The magnitude response of low pars butternooth fetter is given by				
	111/03/12				
	$ H(\Omega) ^2 = \frac{1}{1+(\Omega)^{2N}}.$				
	(ac)				
(0.1)	Die and ander Drutternoothe Bith with Cutt all				
y.4.	Design 2nd order Brutterwooth ficter with Cutt off frequency IKHz and sampling frequency of 10t samples/ sec by Bourear Transformation.				
	Second Translandon				
	see in the many				
Aug 4)-	Order of filter - N=2				
1	Cut of beginning fr = 1KHz = 1000Hz				
	Order of filter = N=2 Cut off frequency, fc = 1KHz = 1000Hz Sampling frequency, fs = 10 ⁴				
Palt As	Calculation of the required design specification of digital				
	Jobes:				
	we have equation to connect continuous frequency				
	we have equation to connect continuous frequency (F) into discrete frequency (f). f= f Fs.				
	f = f $f = fc$				
	FS.				

