Tatiana Acero-Cuellar

Contact Information

email: <u>taceroc@udel.edu</u>
webpage: <u>https://taceroc.github.io</u>

Current Position

Ph.D. candidate at the University of Delaware (Unidel Distinguished Graduate Scholars Fellow)
Department of Physics and Astronomy, Sharp Laboratory, 104 The Green, Newark, DE 19716

Education

Ph.D. Physics, Department of Physics and Astronomy, University of Delaware, Newark, DE | GPA: 3.9/4.0

August 2022 - present

August 2015 - April 2021

B.Sc., Physics Universidad Nacional de Colombia, Bogotá, D.C | GPA: 4.5/5.0

Research Experience

Research Fellow, Department of Physics and Astronomy

University of Delaware, Newark, DE

Advisor: Federica B. Bianco.

Research Fellow, Department of Geography and Spatial Sciences

University of Delaware, Newark, DE Advisor: Kyle Davis & Federica B. Bianco May 2024 - present

July 2020 - present

Work Experience

Junior BI Analyst, Minister of Mines and Energy

Ministerio Minas y Energía, Colombia, Bogotá

Supervisor: Julian Paéz.

March - August 2021

Ph.D. Research

- 1. Implementing Machine Learning techniques that improve the efficiency of astronomical events classification using images from telescopes. I developed a CNN that classified an image as containing a true astrophysical object or not. Implemented using TensorFlow/Keras on Python.
- 2. Leveraging model interpretability by developing and training different types of models. One that

maximizes similarity between similar objects on the latent space, by using contrastive learning (CL/BYOL). Also models whose inner layers allow some level of interpretation, e.g. attention maps, autoencoders, normalizing flows. The interpretation and exploration of the latent space is done by applying different techniques: dimensionality reduction (UMAP, T-SNE), mutual information content calculation, the latter may help to link latent space features with physical/human understandable features. Implementation done with PyTorch.

- 3. Developing a pipeline to simulate realistic images that contain scattered light from astronomical events. Implementation done with **Python**, **pandas**, **numpy**, **astropy**, **multiprocessing**.
- 4. Developing a Machine Learning workflow to find and segment fish ponds in Nigeria using RGB Google Satellite Images. Implementation using **Computer Vision** pre-trained model **YOLOv7**, and **geopandas**, **shapely**, **folium**, **QGIS**, **gdal**, **rasterio**.

Personal Profile and Strengths

I have extended experience in coding and solid knowledge of the Python language, including Numpy, Keras, Seaborn, Sklearn, Scikit-learn, Pandas, Tensorflow, Pytorch. I have specific expertise in Computer Vision using both traditional and machine learning methods and libraries including OpenCV and SciPy. I have implemented supervised and unsupervised machine learning models for applications in Astrophysics. All the projects that I have developed were stored and versioned using Github.

I have a strong background in analytical thinking, and problem solving acquired through my studies in Physics. I have research experience as well as experience working in small and large teams; I am eager and enthusiastic to learn new skills and gain new experiences; I am self-motivated and driven to research and develop solutions to new problems. I am responsible, disciplined, and determined, always giving 100% for everything.

I have a deep interest in using my abilities, and the ones that I will acquire through my path as a Ph.D. student in helping to create solutions to real-world problems. I have the background knowledge necessary to apply machine learning techniques to different fields and make interpretations out of them.

Scholarships and Fellowships

- Unidel Distinguished Grad Scholar Fellowship from the Graduate College, University of Delaware; 2022-2027 (competitive, 5-year funding)
- Deep Learning for Science School; Berkeley; California, USA; June 2025 (competitive)
- LSST Data Science Fellowship Program 2022-2024 (competitive, full scholarship)
- La Serena School for Data Science 2023; NOIRLab; La Serena; Chile; August 2023 (competitive, full scholarship)
- International HPC Summer School 2023; Atlanta, Georgia, USA; July 2023 (competitive, full scholarship)
- Bayesian Deep Learning for Cosmology and Time Domain Astrophysics; Paris, France; June 2022
- LSST Corporation and the Enabling Science Grant program partially supported TAC through Grant No. 2021-040 (Artificial Intelligence Solutions to Transient Discovery in Rubin LSST)
- University of Delaware's Summer Research Program; July 2020 December 2021 (competitive)

Training: Schools and Workshops

- Deep Learning for Science School; Berkeley; California, USA; June 2025
- LSST Data Science Fellowship Program 2022-2024
- La Serena School for Data Science 2023; NOIRLab; La Serena; Chile; August 2023
- International HPC Summer School 2023; Atlanta, Georgia, USA; July 2023
- Bayesian Deep Learning for Cosmology and Time Domain Astrophysics; Paris, France; June 2022

Services

- 2025-2026, President Hispanic/Latin Graduate Student Association @ UD
- 2024-2026, Membership Committee Informatics and Statistics Science Collaboration @ LSST-Rubin
- 2023-2024, Treasurer Physics and Astronomy Graduate Student Society @ UD

Posters and talks

- American Geophysics Union (AGU) Fall Meeting 2024; Washington DC, USA; December 2024; eLightning Presentation Title: Automatic Delineation of Fish Ponds across Nigeria with Machine Learning Image Segmentation Models.
- Rubin Community Workshop 2024 LSST; SLAC, Menlo Park, CA, USA; July 2024; Poster Title: A comparative study of different Deep Learning image-based models for Real-Bogus classification.
- 2023 Annual Meeting of the APS Mid-Atlantic Section; Newark, DE, USA; November 2023; Talk title: Forward modeling of dust and transients a method for the generation of synthetic Light Echoes.
- LSST@Europe5: Towards LSST Science, together!; Poreč, Croatia; September 2023; Poster title: Forward modeling of dust and transients a method for the generation of synthetic Light Echoes.
- Data Science Symposium; Newark, DE USA; September 2023; Poster title: *Detangling the Mysteries of a CNN Used to Separate Astrophysical Transients from Artifacts.*
- International HPC Summer School; Atlanta, Georgia, USA; July 2023; Poster title: *The potential for Convolutional Neural Networks for transient detection without template subtraction.*
- Bayesian Deep Learning for Cosmology and Time Domain Astrophysics; Paris, France; June 2022; Poster title: There's no difference: Convolutional Neural Networks for transient detection without template subtraction.
- Data Science Symposium; Newark, DE USA; November 2021; Poster title: *There's no difference: CNN for transient detection without template subtraction*.

Publications

 Acero-Cuellar T., Bianco F., Dobler G., Sako M., Qu H., 2023 AJ 166 115, https://doi.org/10.3847/1538-3881/ace9d8

Languages

Spanish: First Language

English: Fluent

Links

www.linkedin.com/in/tatiana-acero-cuellar-69416914b

https://github.com/taceroc

https://scholar.google.com/citations?hl=en&user=nSY3tQQAAAAJ