INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 3.1-3.3] 3D GEOMETRY – TRIANGLES

Compiled by Christos Nikolaidis

O. Practice questions

3D GEOMETRY

1.	[Maximum mark: 7] [without GDC]	
	Let A(2,-3,5) and B(-1,1,5). Find	
	(a) the distance between A and B.	[2]
	(b) the distance between O and B.	[1]
	(c) the coordinates of the midpoint M of the line segment [AB].	[2]
	(d) the coordinates of point C given that B is the midpoint of [AC].	[2]
	(a) $d = \sqrt{(-1-2)^2 + (1+3)^2 + (5-5)^2} = \sqrt{35} = 5$	
	(b) d=1(-1)21(1)21(3=1)3=10=13-3.13	
	$(c) M - (2-1)^{-3+1} = 5+5 = (1)$	
(4	$(C_1, 1, 5) = (2+x - 3+x + 5+2)$	
Cv	2 2	
	1-2+X 1-3+X 5=(+2	
	X=-4 / Y=5 / ユーラグ	
	1 /	
	(-(-4 6 6)	
	C-C-7/5/5)	

2. [Maximum mark: 16]

[without GDC]

Complete the table

Solid	Volume	Surface area	
cuboid 4 5	5x3×4=60	5(4)+5(4)+ 3(4)+3(4)+ 5(3)+5(3) = 94	
cylinder 5 4 (diameter)	Tr (2) ² (5) = 20Tr	5A=2111h/+21112 = 211(2(5)+211(2)] = 2011+841 = 2811	
cone - 123-44 = 5 4 6 (diameter)	13T(3)(4) = 12TT	SA=TT-PL+TTP = 17(3)(5) +TT(3)? = 15-TT-4 - 9-TT = 2-4-TT	
sphere radius = 3	북π(ŋ³=36TT	5A= 4TT /2 = C/TT (35) = 36TT	

for each shape

[1+3]

3. [Maximum mark: 7] [without GDC]

For a right pyramid of square base of side 8 and vertical height 3 find

- (a) the volume [2]
- (b) the surface area 54 = 64 + 100 [5]

NM = 1 BE = 4

 $(\alpha) V = \frac{1}{3}(8)(8)(3) = 192$

(b) 5A=8+ 5(4.8X5)=64+80=144

TRIANGLES

4. [Maximum mark: 14] **[without GDC]**Consider the following right-angled triangle, where $\hat{A} = 90^{\circ}$

(a) Complete the tables

$\sin \hat{B}$	45
$\cos \hat{B}$	3/5
$ an\hat{B}$	7/3

$\sin \hat{C}$	3/5
$\cos \hat{C}$	4/5
$\tan \hat{C}$	3/4

(b) Confirm that the **sine rule** holds. (It is known that $\sin \hat{A} = 1$)

$$\frac{a}{\sin \hat{A}} = \frac{5}{1} = 5$$

$$\frac{b}{\sin \hat{B}} = \frac{4}{7} \cdot \frac{5}{4} = 5$$

$$\frac{c}{\sin \hat{C}} = \frac{3}{1} \cdot \frac{5}{3} = 5$$

(c) Confirm that all three versions of the **cosine rule** hold. (the first version is given below; it is known that $\cos \hat{A} = 0$)

LHS	RHS		
5 ²	$3^2 + 4^2 - 2(3)(4)\cos \hat{A} = 9 + 16 - 0 = 25$		
3 ²	52+42-265(4)(4)=15+16-37=9		
4 ²	5+3-265030(2)=34-18=16		

(d) Find the area of the triangle, by using all the three versions of the formula

$$Area = \frac{1}{2}ab\sin\hat{C}$$
 (the first version is given below)

$$Area = \frac{1}{2} \times 3 \times 4 \times \sin \hat{A} = 6$$

$$Area = \frac{1}{2} (5)(4)(\frac{3}{5}) = 6$$

$$Area = \frac{1}{2} (5)(3)(\frac{11}{5}) = 6$$

[2]

[6]

[2]

[4]

5. [Maximum mark: 4] [with / without GDC] Use the cosine rule to find the size of the side a.

- 6. [Maximum mark: 5] [with GDC]
 - (a) Use the **cosine rule** to find the cosine of the angle A. [4]
 - (b) Hence find the size of the angle A. [1]

7. [Maximum mark: 4] [with / without GDC]

Use the **sine rule** to find the size of the side a.

- 8. [Maximum mark: 6] [with GDC]
 - (a) Use **the sine rule** to find the sine of the angle A. [4]
 - (b) Hence find the **two possible** values of the angle A. [2]

9. [Maximum mark: 10] [with GDC]

Point A is at the center of the following diagram.

Bill and Chris and Dianna are located at point A and start moving,

Bill to the **NE** at point **B**

Chris to the South at point C

Dianna to the West at point D

- (a) Write down the size of angle BAC. [1]
- (b) Write down the bearing of the course of each person. [3]
- (c) Find the bearing of the course from B to A. [2]
- (d) Given that AB = 2 km and AC is 3km, Find the distance between B and C. [3]

10. [Maximum mark: 14] [with GDC]

Consider the following cuboid of dimensions 5×3×4, as shown.

- (a) Find the length AC.
 (b) Find the length AD.
 (c) Find the angle of elevation from A to E.
 (d) Find the angle of elevation from A to D.
 (e) Find the angle of depression from E to A.
- (a) $\sqrt{5^2+3^2} \cong 5.83 = AC$ (b) $AD = \sqrt{(5.83..)^2+4^2} \cong 7.07$ (c) $\tan EAB = 4$ $EAB \cong 38.7 = 4 \cong 34.49$ (d) $\tan DAC = 5.83... = 34.49$ (e) $\tan E = \frac{4}{5} \cong 38.7$

11*. [Maximum mark: 30] [with GDC]

> In each of the following triangles one of the angles has size 40°, two of the sides have lengths 5 and 7 respectively.

For the following triangle

[7]

- (i) Find the area of the triangle

(iii) Find the size of \hat{B} and hence the size of \hat{C} .	(11)	FING BC
	(iii)	Find the size of \hat{B} and hence the size of \hat{C} .

(b) For the following triangle

find the size of \hat{B} and **hence** the size of \hat{A} . [5]

(c) For each of the following triangles (ambiguous case)

[6]

find the size of \hat{C} and **hence** the size of \hat{A} .

Ĉ=64.1° ≥ 180-64.1=116° A=180-40-64.1 or 180-40-116=24.1° A=>5.9° or =24.1°

- (i) Use the cosine rule to directly find the side BC.
- (ii) Hence find the area of the triangle.

(e) For the following triangles (ambiguous case)

[5]

[7]

- (i) Use the cosine rule to directly find the side BC of each triangle.
- (ii) **Hence** find the area of each triangle.

Area Lorsn't change!?

A. Exam style questions (SHORT)

12. [Maximum mark: 6] [with GDC]

The following diagram shows triangle ABC.

diagram not to scale

AB = 7 cm, BC = 9 cm and $\triangle ABC$ = 120°.

- (a) Find AC. [3]
- (b) Find BÂC. [3]

13. [Maximum mark: 4] [with GDC]

A triangle has sides of length 4, 5, 7 units. Find, to the nearest tenth of a degree, the size of the largest angle.

14. [Maximum mark: 4] **[with GDC]**

The following diagram shows a triangle with sides 5 cm, 7 cm, 8 cm.

	(a)	Find the size of the smallest angle, in degrees;	[2]
	(b)	Find the area of the triangle.	[2]
15.	[N.4.e.s	dimension and a Cl. South CDCI	
	111///21		
15.		cimum mark: 6] [with GDC]	
13.	In th	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate	[41
13.	In th (a)	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate the size of $P\hat{Q}R$;	[4]
13.	In th	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate	[4] [2]
13.	In th (a)	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate the size of $P\hat{Q}R$;	
13.	In th (a)	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate the size of $P\hat{Q}R$;	
13.	In th (a)	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate the size of $P\hat{Q}R$; the area of triangle PQR.	
13.	In th (a)	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate the size of $P\hat{Q}R$; the area of triangle PQR.	
13.	In th (a)	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate the size of $P\hat{Q}R$; the area of triangle PQR.	
13.	In th (a)	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate the size of PQR; the area of triangle PQR.	
13.	In th (a)	e triangle PQR, PR = 5 cm, QR = 4 cm and PQ = 6 cm. Calculate the size of PQR; the area of triangle PQR.	

16.	[Maximum	mark: 6	[with	GDC]
10.	IMAXIIIIUIII	main. U	l [AAICII	ODO

The following diagram shows a triangle ABC, where BC = 5 cm, $\,\hat{\mathrm{B}}\,$ = 60°, $\,\hat{\mathrm{C}}\,$ = 40°.

(b)	Find the area of the triangle.	[3]

17. [Maximum mark: 6] **[with GDC]**

The diagram below shows triangle PQR. The length of [PQ] is 7 cm, the length of [PR] is 10 cm, and $P\hat{Q}R$ is 75°.

- (a) Find PRQ [3]
- (b) Find the area of triangle PQR. [3]

[Maximum mark: 6] [with GDC] 18.

In triangle ABC, AC = 5, BC = 7, \hat{A} = 48°, as shown in the diagram.

Find \hat{B} , giving your answer correct to the nearest degree.

19*. [Maximum mark: 4] [with GDC]

The diagrams below show two triangles both satisfying the conditions

 $AB = 20 \text{ cm}, AC = 17 \text{ cm}, ABC = 50^{\circ}.$

Diagrams not to scale

[2]

Calculate

(b)

- (a) the size of AĈB in Triangle 2. [2]
- the area of **Triangle 1**.

20. [Maximum mark: 4] [with GDC]

Town A is 48 km from town B and 32 km from town C as shown in the diagram.

Given that town B is 56 km from town C, find the size of angle CÂB to the nearest degree.

21*. [Maximum mark: 6] [with GDC]

Two boats A and B start moving from the same point P. Boat A moves in a straight line at 20 km h^{-1} and boat B moves in a straight line at 32 km h^{-1} . The angle between their paths is 70°. Find the distance between the boats after 2.5 hours.

22. [Maximum mark: 6] [with GDC]

The following diagram shows the triangle ABC.

diagram not to scale

The angle at C is obtuse, AC = 5 cm, BC = 13.6 cm and the area is 20 cm^2 .

	(a)	Find AĈB.	[3]
	(b)	Find AB.	[3]
	FB 4	1 01 5 14 0001	
23.	_	kimum mark: 6] [with GDC]	
23.	In a	triangle ABC, AB = 4 cm, AC = 3 cm and the area of the triangle is 4.5 cm^2 .	
23.	In a		
23.	In a	triangle ABC, AB = 4 cm, AC = 3 cm and the area of the triangle is 4.5 cm^2 .	
23.	In a	triangle ABC, AB = 4 cm, AC = 3 cm and the area of the triangle is 4.5 cm^2 .	
23.	In a	triangle ABC, AB = 4 cm, AC = 3 cm and the area of the triangle is 4.5 cm^2 . the two possible values of the angle BAC .	
23.	In a	triangle ABC, AB = 4 cm, AC = 3 cm and the area of the triangle is $4.5 \ \text{cm}^2$. the two possible values of the angle $\ BAC$.	
23.	In a	triangle ABC, AB = 4 cm, AC = 3 cm and the area of the triangle is 4.5 cm^2 . the two possible values of the angle \widehat{BAC} .	
23.	In a	triangle ABC, AB = 4 cm, AC = 3 cm and the area of the triangle is 4.5 cm^2 . the two possible values of the angle \widehat{BAC} .	

24. [Maximum mark: 6] <i>[without GDC]</i> In triangle PQR, PQ is 10 cm, QR is 8 cm and angle PQR is acute triangle is 20 cm ² . Find the size of angle PQR.	<u>-ES</u>
	e. The area of the
25. [Maximum mark: 7] [with GDC] There is a vertical tower TA of height 36 m at the base A of a hi up the hill from A to a point U. This information is represented by the hill below the hill from A to a point U. This information is represented by the hill below the hill below the hill from A to a point U. This information is represented by the hill below the hill	
The path makes a 4° angle with the horizontal. The point U on the path is 25 m away from the base of the tower. The top of the tower is fixed to U by a wire of length x m.	r.
(a) Complete the diagram, showing clearly all the information (b) Find x .	above. [3]

26. [Maximum mark: 8] [with GDC]

The diagram below shows a triangle ABD with AB = 13 cm and AD = 6.5 cm. Let C be a point on the line BD such that BC = AC = 7 cm.

diagram not to scale

a)	Find the size of angle ACB.	[3]
b)	Find the size of angle CAD.	[5]

27. [Maximum mark: 6] [with GDC]

The following diagram shows $\triangle ABC$, where BC=105 m, $A\hat{C}B=40^{\circ}$, $A\hat{B}C=60^{\circ}$

Find the area of the triangle.

28. [Maximum mark: 6] [with GDC]

In the	triano	gle A	ABC,	Â	= 30	°, BO	C = 3	3 and	d AB	= 5.	Find	the	two	pos	sible	val	ues	of	Â.
			•••••					•••••										• • • • •	

29. [Maximum mark: 6] [with GDC]

In the **obtuse-angled** triangle ABC, $AC = 10.9 \, cm$, $BC = 8.71 \, cm$ and $B\hat{A}C = 50^{\circ}$.

Find the area of triangle ABC.

 	 		 	 	 	 	 	 	 •••••	• • • • • •	 	
 	 	••••	 ••••	 	 	 	 	 	 ••••		 	

30. [Maximum mark: 6] **[with GDC]**

Triangle ABC has $\hat{C} = 42^{\circ}$, BC = 1.74 cm, and area 1.19 cm².

- (a) Find AC. [3]
- (b) Find AB. [3]

.....

31^.	[Maximum mark: 6]	[with GDC]		
	In the triangle ABC,	$\hat{A}=30^{\circ}$, $a=5$ and	c=7 . Find the difference in area between	
	the two possible trian	ngles for ABC.		
32*.	[Maximum mark: 7]	[with GDC]		
	In a triangle ABC , A	$\hat{B}C = 30^{\circ}, AB = 6cm$, $AC=3\sqrt{2}$ cm . Find the possible areas of th	e
	In a triangle <i>ABC</i> , <i>A</i> triangle.	$\hat{B}C = 30^{\circ}, AB = 6cm$, $AC=3\sqrt{2}$ cm . Find the possible areas of th	ie
		$\hat{B}C$ =30°, AB =6cm	, $AC=3\sqrt{2}~cm$. Find the possible areas of th	ie
		$\hat{B}C$ =30°, AB =6cm	, $AC=3\sqrt{2}~cm$. Find the possible areas of th	ie
		<i>BC</i> =30°, AB=6cm	, $AC=3\sqrt{2}~cm$. Find the possible areas of th	
		<i>BC</i> =30°, AB=6cm	, $AC=3\sqrt{2}~cm$. Find the possible areas of th	
		<i>BC</i> =30°, AB=6cm	, $AC=3\sqrt{2}~cm$. Find the possible areas of th	
	triangle.		, $AC=3\sqrt{2}~cm$. Find the possible areas of th	
	triangle.			

33*.	[Maximum mark: 6] [with GDC]
	In a triangle ABC , $A\hat{B}C=30^{\circ}$, $AB=6cm$, $AC=3\sqrt{2}$ cm. Find the possible lengths of
	[BC].
	METHOD A: Use Sine rule.
	METHOD B: Use Cosine rule.

34 [^] .	In a triangle ABC, $\hat{A} = 35^{\circ}$, BC = 4 cm and AC = 6.5 cm. Find the possible values of
	\hat{B} and the corresponding values of $AB.$
35*.	[Maximum mark: 6] [with GDC]
35*.	Triangle ABC has $AB=8cm$, $BC=6cm$, $B\hat{A}C=20^\circ$. Find the smallest possible area
35*.	
35*.	Triangle ABC has $AB=8cm$, $BC=6cm$, $B\hat{A}C=20^\circ$. Find the smallest possible area
35*.	Triangle ABC has $AB=8cm$, $BC=6cm$, $B\hat{A}C=20^\circ$. Find the smallest possible area
35*.	Triangle ABC has $AB=8cm$, $BC=6cm$, $B\hat{A}C=20^\circ$. Find the smallest possible area
35*.	Triangle ABC has AB = $8cm$, BC = $6cm$, BAC = 20° . Find the smallest possible area of ΔABC .
35*.	Triangle ABC has $AB=8cm$, $BC=6cm$, $B\hat{A}C=20^{\circ}$. Find the smallest possible area of ΔABC .
35*.	Triangle ABC has $AB=8cm$, $BC=6cm$, $B\hat{A}C=20^{\circ}$. Find the smallest possible area of ΔABC .
35*.	Triangle ABC has $AB=8cm$, $BC=6cm$, $BAC=20^\circ$. Find the smallest possible area of ΔABC .
35*.	Triangle ABC has $AB=8cm$, $BC=6cm$, $BAC=20^\circ$. Find the smallest possible area of ΔABC .
35*.	Triangle ABC has AB = 8cm, BC = 6cm, BÂC = 20°. Find the smallest possible area of ΔABC .
35*.	Triangle ABC has AB = 8cm, BC = 6cm, BÂC = 20°. Find the smallest possible area of ΔABC .

36*.	[Maximum mark: 6] [with GDC]
	In triangle ABC , $A\hat{B}C=31^{\circ}$, $AC=3cm$, $BC=5cm$. Calculate the possible lengths of
	[AB].
37*.	[Maximum mark: 7] [with GDC]
	Consider triangle ABC with $\hat{BAC} = 37.8^{\circ}$, $AB = 8.75$ and $BC = 6$. Find AC.

38*. [Maximum mark: 4] *[with GDC]*The diagram shows a vertical pole PQ, which is supported by two wires fixed to the horizontal ground at A and B.

BQ = 40 m
$\hat{PBQ} = 36^{\circ}$
$\hat{BAQ} = 70^{\circ}$
$\hat{ABQ} = 30^{\circ}$

[2]

Find

(b)

the distance between A and B.

	(a)	the height of the pole, PQ;	[2
--	-----	-----------------------------	----

39*. [Maximum mark: 7] **[with GDC]**

(a)

(b)

A ship leaves port A on a bearing of 030°. It sails a distance of 25 km to point B. At B, the ship changes direction to a bearing of 100°. It sails a distance of 40 km to reach point C. This information is shown in the diagram below.

diagram not to scale

A second ship leaves port A and sails directly to C.

Find the distance the second ship will travel.	[4]
Find the bearing of the course taken by the second ship.	[3]

40*. [Maximum mark: 6] [without GDC]

In triangle ABC, BC = a, AC = b, AB = c and [BD] is perpendicular to [AC].

- (a) Show that $BD = c \sin A$. [1]
- (b) Show that $CD = b c \cos A$. [2]
- (c) Hence, by using Pythagoras' Theorem in the triangle BCD, prove the cosine rule for the triangle ABC. [3]

.....

41.** [Maximum mark: 7] *[without GDC]*

In triangle ABC, BC = a, AC = b, AB = c and $\triangle ABC = 60^{\circ}$.

Use the cosine rule to show that $c = \frac{1}{2}a \pm \sqrt{b^2 - \frac{3}{4}a^2}$.

42.** [Maximum mark: 7] *[with GDC]*

The following three dimensional diagram shows the four points A,B,C and D. A,B,C are in the same horizontal plane and AD is vertical. The angle ABC is 45° , and BC = 50m. The angle of elevation from point B to point D is 30° , while the angle of elevation from point C to point D is 20° .

Using the cosine rule in the triangle ABC, or otherwise, find AD.

43**. [Maximum mark: 7] [with GDC]

The above 3-dimensional diagram shows the points P and Q which are respectively west and south-west of the base R of a vertical flagpole RS on horizontal ground. The angles of elevation of the top S of the flagpole from P and Q are respectively 35° and 40° , and $PQ = 20\,\mathrm{m}$.

Determine the height of the flagpole.

B. Past paper questions (LONG)

44. [Maximum mark: x] *[with GDC]*Consider the following diagram

$$AB = 7$$

$$AC = 5$$

$$\hat{A} = 60^{\circ}$$

$$\hat{D} = 80^{\circ}$$

$$D\hat{B}C = 30^{\circ}$$

Find

- (a) Find the length of the side BD.
- (b) Find the area of the quadrilateral ABDC.
- (c) Find the perimeter of the quadrilateral ABDC.

It is given that the bearing from B to D is 70°. Find

Find	(i)	the bearing	from B to A.	(ii)	Find the bearing	ng from A to B	

45. [Maximum mark: 21] [with GDC]

The following diagram shows a pentagon ABCDE, with AB = 9.2 cm, BC = 3.2 cm,

BD = 7.1 cm, $A\hat{E}D = 110^{\circ}$, $A\hat{D}E = 52^{\circ}$ and $A\hat{B}D = 60^{\circ}$.

(a)	Find AD.	[4]
(b)	Find DE.	[4]
(c)	The area of triangle BCD is $5.68~\mathrm{cm^2}$. Find $D\hat{\mathrm{B}}\mathrm{C}$.	[4]
(d)	Find AC.	[4]
(e)	Find the area of quadrilateral ABCD.	[5]

46. [Maximum mark: 16] [with GDC]

The diagram below shows a quadrilateral ABCD. AB = 4, AD = 8, CD = 12,

 $B \hat{C} D = 25^{\circ}, B \hat{A} D = \theta.$

(a) Use the cosine rule to show that BD = $4\sqrt{5-4\cos\theta}$. [2]

Let $\theta = 40^{\circ}$.

- (b) (i) Find the value of sin CBD.
 - (ii) Find the two possible values for the size of \hat{CBD} .
 - (iii) Given that CBD is an acute angle, find the perimeter of ABCD. [12]

[2]

(c) Find the area of triangle ABD.

.....

.....

47. [Maximum mark: 14] *[with GDC]*

The diagram below shows a quadrilateral ABCD with obtuse angles $\,A\hat{B}C\,$ and $\,A\hat{D}C\,$.

 $AB = 5 \text{ cm}, BC = 4 \text{ cm}, CD = 4 \text{ cm}, AD = 4 \text{ cm}, BAC = 30^{\circ}, ABC = x^{\circ}, ADC = y^{\circ}.$

- (a) Use the cosine rule to show that $AC = \sqrt{41-40\cos x}$. [1]
- (b) Use the sine rule in triangle ABC to find another expression for AC. [2]
- (c) (i) Hence, find x, giving your answer to two decimal places.
 - (ii) Find AC. [6]
- (d) (i) Find y.

(ii)	Hence, or otherwise, find the area of triangle ACD.	[5]

.....

48. [Maximum mark: 10] [with GDC]

The diagram shows a triangle ABC in which $AC = 7 \frac{\sqrt{2}}{2}$, BC = 6, $A\hat{B}C = 45^{\circ}$.

(a) Use the fact that $\sin 45^\circ = \frac{\sqrt{2}}{2}$ to show that $\sin BAC = \frac{6}{7}$. [2]

The point D is on (AB), between A and B, such that $\sin B\hat{D}C = \frac{6}{7}$.

- (b) (i) Write down the value of $\hat{BDC} + \hat{BAC}$.
 - (ii) Calculate the angle BCD.
 - (iii) Find the length of [BD]. [6]
- (c) Show that $\frac{\text{Area of } \triangle BDC}{\text{Area of } \triangle BAC} = \frac{BD}{BA}$. [2]

49. [Maximum mark: 18] [with GDC]

A farmer owns a triangular field ABC. One side of the triangle, [AC], is 104 m, a second side, [AB], is 65 m and the angle between these two sides is 60°.

- (a) Use the cosine rule to calculate the length of the third side of the field. [3]
- (b) Given that $\sin 60^\circ = \frac{\sqrt{3}}{2}$, find the area of the field in the form $p\sqrt{3}$ where $p \in \mathbb{Z}$. [3]

Let D be a point on [BC] such that [AD] bisects the 60° angle. The farmer divides the field into two parts A_1 and A_2 by constructing a straight fence [AD] of length x metres, as shown on the diagram below.

- (c) (i) Show that the area of A_l is given by $\frac{65x}{4}$.
 - (ii) Find a similar expression for the area of A_2 .
 - (iii) **Hence**, find the value of x in the form $q\sqrt{3}$, where $q \in Z$. [7]
- (d) (i) Explain why $\sin A\hat{D}C = \sin A\hat{D}B$.
 - (ii) Use the result of part (i) and the sine rule to show that $\frac{BD}{DC} = \frac{5}{8}$. [5]

[MAA 3.1-3.3] 3D GEOMETRY - TRIANGLES

50. [Maximum mark: 14] *[with GDC]*

An office tower is in the shape of a cuboid with a square base. The roof of the tower is in the shape of a square based right pyramid.

The diagram shows the tower and its roof with dimensions indicated. The diagram is **not** drawn to scale.

- (a) Calculate, correct to three significant figures,
 - (i) the size of the angle between OF and FG;

[3] [2]

- (ii) the shortest distance from O to FG;
- iii) the total surface area of the four triangular sections of the roof;
- [3]
- (iv) the size of the angle between the slant height of the roof and the plane EFGH;
- [2]

[2]

[2]

(v) the height of the tower from the base to O.

A parrot's nest is perched at a point, P, on the edge, BF, of the tower. A person at the point A, outside the building, measures the angle of elevation to point P to be 79°.

(b) Find, correct to three significant figures, the height of the nest from the base of the tower.

....

.....

[MAA 3.1-3.3] 3D GEOMETRY - TRIANGLES

51*. [Maximum mark: 16] *[with GDC]*

In the diagram below, the points O(0, 0) and A(8, 6) are fixed. The angle \hat{OPA} varies as the point P(x,10) moves along the horizontal line y = 10.

Diagram to scale

- (a) (i) Show that AP = $\sqrt{x^2 16x + 80}$.
 - (ii) Write down a similar expression for OP in terms of x. [2]
 - (b) Hence, show that $\cos \hat{OPA} = \frac{x^2 8x + 40}{\sqrt{\{(x^2 16x + 80)(x^2 + 100)\}}}$, [3]
- (c) Find, in degrees, the angle \hat{OPA} when x = 8. [2]
- (d) Find the positive value of x such that $\hat{OPA} = 60^{\circ}$. [4]

Let the function f be defined by

$$f(x) = \cos O\hat{P}A = \frac{x^2 - 8x + 40}{\sqrt{\{(x^2 - 16x + 80)(x^2 + 100)\}}}, \ 0 \le x \le 15.$$

- (e) Consider the equation f(x) = 1.
 - (i) Explain, in terms of the position of the points O, A, and P, why this equation has a solution.

(11)	Find the exact solution to the equation.

[5]

[MAA 3.1-3.3] 3D GEOMETRY - TRIANGLES

52*. [Maximum mark: 16] *[with GDC]*

The points P, Q, R are three markers on level ground, joined by straight paths PQ, QR, PR as shown in the diagram. QR = 9 km, $P\hat{Q}R = 35^{\circ}$, $P\hat{R}Q = 25^{\circ}$.

- (a) Find the length PR. [3]
- (b) Tom sets out to walk from Q to P at a steady speed of 8 km h⁻¹. At the same time, Alan sets out to jog from R to P at a steady speed of a km h⁻¹. They reach P at the same time. Calculate the value of a.

[7]

[6]

(c) The point S is on [PQ], such that RS = 2QS, as shown in the diagram.

Find the length QS.