MACSI One Day Graduate Course: Numerical Solution to Differential Equations using Matlab

Part 3: Errors and Rates of Convergence

Niall Madden and Meghan Stephens Department of Mathematics

3rd of April 2007.

Recall the differential equation:

Define the operator

$$L(u) := -u''(x) + r(x)u(x).$$

Then the general form of a BVP is: find a function u defined on the interval [0,1]

$$L(u) = f(x)$$
 for $0 < x < 1$, and $u(0) = \alpha$, $u(1) = \beta$.

Lets assume that r(x) > 0 for all $x \in [0, 1]$.

Lemma (Maximum Principle)

Suppose u is a function such that $Lu \ge 0$ on (0,1) and $u(0) \ge 0$, $u(1) \le 0$. Then $u \ge 0$ for all $x \in [0,1]$.

Proof:

This lemma is as useful as it is simple. For example,

Example

Let ϱ be such $r(x) \ge \varrho > 0$. Define $C = \max_{a \le x \le b} |f(x)|/\varrho$. Then $u(x) \le C$.

Example

There is at most one solution to out differential equation.

Exercise

Suppose that we had the more general differential operator:

$$L_q(u) := -u''(x) + q(x)u'(x) + r(x).$$

Would this L_q also satisfy a maximum principle?

Example

There is at most one solution to out differential equation.

Exercise

Suppose that we had the more general differential operator:

$$L_q(u) := -u''(x) + q(x)u'(x) + r(x).$$

Would this L_q also satisfy a maximum principle?

A *mesh function* is a set of real numbers $\{V_i\}_0^N$, where V_i is taken to mean the value of the function at $x = x_i$.

One may write V(x), but with the understanding that V is defined only at the mesh points.

Let δ^2 be the difference operator:

$$\delta^2 V_i := \frac{1}{h^2} (V_{i-1} - 2V_i + V_{i+1})$$

In analogy to the (continuous) differential operator, we define the **difference operator** L^h :

$$L^h(V)_i := -\delta^2 V_i + r(x_i)V_i$$
 for $i = 1, ..., N-1$.

Now our finite difference equation can be cast as: Find the mesh function $\{U_i\}_{i=0}^N$ that satisfies

$$L^h U_i = f(x_i)$$
 for $i = 1, ..., N-1$, and $U_0 = U_N = 0$.

The problem now is to estimate the error.

A norm

First we need a norm.

The "max" norm $\|\cdot\|_{\infty}$ is defined as

$$||u||_{\infty} := \max_{0 \le x \le 1} |u(x)|$$
 for any function that is continuous on [0, 1]

$$||V||_{\infty,\{x_i\}_0^N}:=\max_{0\leq i\leq N}|V_i|$$
 for any mesh function on $\{x_i\}_{i=0}^N$.

Usually, when it is clear what interval/mesh we are using, we simply write the norm as $\|\cdot\|_{\infty}$, or even just $\|\cdot\|$.

Another Maximum Principle

Lemma (Discrete Maximum Principle)

Suppose that $\{V_i\}_{i=0}^N$ is a mesh function such that

$$L^h V_i \ge 0 \text{ on } x_1, \dots x_{N-1},$$

and

$$V_0 \ge 0, V_N \ge 0.$$

Then $V_i \ge 0$ for i = 0, ... N.

Exercise

Proving this lemma is a nice exercise. Use an argument similar to the one which previous Max Prin.

Another Maximum Principle

An simple consequence of this lemma is

Let $\{V_i\}_{i=0}^N$ be any mesh function with $V_0 = V_N = 0$. Then

$$|V_i| \leq \varrho^{-1} ||L^h V_i||_{\infty}$$

We can now use the above results to show that

Theorem

Suppose that u(x) is the solution to the problem:

$$Lu(x) = f(x),$$
 $u(0) = u(1) = 0$

and $||u^{(iv)}(x)||_{\infty} \leq M$. Let U be the mesh function that solves

$$L^h U_i = f(x_i)$$
 for $i = 1, 2, ..., N - 1,$ $U_0 = U_N = 1.$

Then

$$||u-U|| := \max_{k} |u(x_k) - U_k| \le \frac{h^2}{12} \frac{M}{\varrho}$$

It is usual to restate this results as little less formally:

There are constants C and γ that do not depend on N such that

$$||u - U|| \le CN^{-\gamma}$$
.

That is:

- The rate of convergence is of the method is γ . So in our case, $\gamma = 2$ and we say the method is second order.
- The constant of convergence is C. It depends in the data of the differential equations: r(x), f(x), the boundary conditions, and on the derivatives of u(x).

It is usual to restate this results as little less formally:

There are constants C and γ that do not depend on N such that

$$||u - U|| \leq CN^{-\gamma}$$
.

That is:

- The rate of convergence is of the method is γ . So in our case, $\gamma = 2$ and we say the method is second order.
- The constant of convergence is C. It depends in the data of the differential equations: r(x), f(x), the boundary conditions, and on the derivatives of u(x).

It is usual to restate this results as little less formally:

There are constants C and γ that do not depend on N such that

$$||u-U|| \leq CN^{-\gamma}$$
.

That is:

- The rate of convergence is of the method is γ . So in our case, $\gamma = 2$ and we say the method is second order.
- The constant of convergence is C. It depends in the data of the differential equations: r(x), f(x), the boundary conditions, and on the derivatives of u(x).