

#### $Hypergeometric\ Motives$

Fernando Rodriguez Villegas

The Abdus Salam International Centre for Theoretical Physics

May 2015

#### *Collaborators*

H. Cohen, Ph. Candelas, S. Baig, F. Beukers, X. de la Ossa, A. Mellit, P. Molin, D. Roberts, M. Vashenko, M. Watkins

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod L_p(p^{-s})^{-1}$$

•

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

ightharpoonup Conductor: N, a positive integer.

▶

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

- ightharpoonup Conductor: N, a positive integer.
- ▶ Euler factors:  $L_p(T) \in \mathbb{Z}[T]$  polynomial generically of degree d.

▶

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

- ightharpoonup Conductor: N, a positive integer.
- ▶ Euler factors:  $L_p(T) \in \mathbb{Z}[T]$  polynomial generically of degree d.
- ightharpoonup Weight w

$$L_p(T) = \prod_{i=1}^d (1 - \xi_i T), \qquad |\xi_i| = p^{w/2}, \qquad p \nmid N.$$

▶

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

- $\triangleright$  Conductor: N, a positive integer.
- ▶ Euler factors:  $L_p(T) \in \mathbb{Z}[T]$  polynomial generically of degree d.
- ightharpoonup Weight w

$$L_p(T) = \prod_{i=1}^d (1 - \xi_i T), \qquad |\xi_i| = p^{w/2}, \qquad p \nmid N.$$

▶  $L_{\infty}(s)$  product of gamma factors

▶

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

- ightharpoonup Conductor: N, a positive integer.
- ▶ Euler factors:  $L_p(T) \in \mathbb{Z}[T]$  polynomial generically of degree d.
- ightharpoonup Weight w

$$L_p(T) = \prod_{i=1}^d (1 - \xi_i T), \qquad |\xi_i| = p^{w/2}, \qquad p \nmid N.$$

- ▶  $L_{\infty}(s)$  product of gamma factors
- ► Expect functional equation

$$\Lambda(w+1-s) = \epsilon \Lambda(s), \qquad \epsilon = \pm 1$$

▶ Inverse Mellin transform

$$L_{\infty}(s) = \int_{0}^{\infty} k_{\infty}(t) t^{s} \frac{dt}{t}$$

▶ Inverse Mellin transform

$$L_{\infty}(s) = \int_{0}^{\infty} k_{\infty}(t)t^{s} \frac{dt}{t}$$

▶

$$\sum_{n\geq 1} \frac{a_n}{n^s} := \prod_p L_p(p^{-s})^{-1}.$$

converges in some half-plane.

▶ Inverse Mellin transform

$$L_{\infty}(s) = \int_{0}^{\infty} k_{\infty}(t)t^{s} \frac{dt}{t}$$

 $\sum_{n\geq 1} \frac{a_n}{n^s} := \prod_p L_p(p^{-s})^{-1}.$ 

converges in some half-plane.

$$\Lambda(s) = \int_0^\infty \phi(t) t^s \frac{dt}{t}, \qquad \phi(t) := \sum_{n > 1} a_n k_\infty \left( \frac{nt}{\sqrt{N}} \right).$$

▶ Inverse Mellin transform

$$L_{\infty}(s) = \int_{0}^{\infty} k_{\infty}(t) t^{s} \frac{dt}{t}$$

 $\sum_{n \ge 1} \frac{a_n}{n^s} := \prod_p L_p(p^{-s})^{-1}.$ 

converges in some half-plane.

$$\Lambda(s) = \int_0^\infty \phi(t) t^s \frac{dt}{t}, \qquad \phi(t) := \sum_{n > 1} a_n k_\infty \left( \frac{nt}{\sqrt{N}} \right).$$

► Functional equation

$$\phi(t^{-1}) = \epsilon t^{w+1} \phi(t)$$

▶  $k_{\infty}$  is of rapid decay  $\Longrightarrow$  can compute  $\phi$  if we know

▶  $k_{\infty}$  is of rapid decay  $\Longrightarrow$  can compute  $\phi$  if we know

$$k_{\infty}, \quad N, \quad \epsilon, \quad a_n, \quad n = 1, 2, \dots, \approx \sqrt{N}$$

▶  $k_{\infty}$  is of rapid decay  $\Longrightarrow$  can compute  $\phi$  if we know

$$k_{\infty}, \quad N, \quad \epsilon, \quad a_n, \quad n = 1, 2, \dots, \approx \sqrt{N}$$

▶ Functional equation for  $\phi \Longrightarrow$  can compute  $\Lambda(s)$  (Riemann).

▶  $k_{\infty}$  is of rapid decay  $\Longrightarrow$  can compute  $\phi$  if we know

$$k_{\infty}, \quad N, \quad \epsilon, \quad a_n, \quad n = 1, 2, \dots, \approx \sqrt{N}$$

- ▶ Functional equation for  $\phi \Longrightarrow$  can compute  $\Lambda(s)$  (Riemann).
- ▶ Typically calculation breaks up into:

$$L_p(T), \quad p \notin S, \qquad L_p(T), \quad p \in S, \qquad L_\infty(s), \quad N, \quad \epsilon$$
 S finite set of primes.

▶ In practice: only know some of the data.

- ▶ In practice: only know some of the data.
- ▶ Test functional equation for  $\phi$ : evaluating both sides at  $t \approx 1$ .

- ▶ In practice: only know some of the data.
- ▶ Test functional equation for  $\phi$ : evaluating both sides at  $t \approx 1$ .
- ▶ Use test to find missing data.

- ▶ In practice: only know some of the data.
- ▶ Test functional equation for  $\phi$ : evaluating both sides at  $t \approx 1$ .
- ▶ Use test to find missing data.
- ▶ Robust test.

- ▶ In practice: only know some of the data.
- ▶ Test functional equation for  $\phi$ : evaluating both sides at  $t \approx 1$ .
- ▶ Use test to find missing data.
- ▶ Robust test.
- ▶ Bootstrap.

- ▶ In practice: only know some of the data.
- ▶ Test functional equation for  $\phi$ : evaluating both sides at  $t \approx 1$ .
- ▶ Use test to find missing data.
- ▶ Robust test.
- ▶ Bootstrap.
- ▶ HGM implementation in MAGMA (M. Watkins)

► Automorphic Forms.

- ► Automorphic Forms.
- ▶ Cohomology of algebraic varieties.

- ► Automorphic Forms.
- ▶ Cohomology of algebraic varieties.
- ▶ Typically appear as piece of a bigger object

- ► Automorphic Forms.
- ▶ Cohomology of algebraic varieties.
- ▶ Typically appear as piece of a bigger object
- ▶ Subspace  $V \subseteq H$

$$L_p(T) = \det(1 - \operatorname{Frob}_p|_V T), \qquad p \nmid N$$

#### Automorphic Forms

▶ Usual modular forms:

$$d = \dim V = 2,$$
  $\dim H \approx cN$ 

### Automorphic Forms

▶ Usual modular forms:

$$d = \dim V = 2,$$
  $\dim H \approx cN$ 

 $\blacktriangleright$  Siegel modular forms Sp<sub>4</sub>: can compute for  $N\approx 500$ 

### $Automorphic\ Forms$

▶ Usual modular forms:

$$d = \dim V = 2,$$
  $\dim H \approx cN$ 

- $\blacktriangleright$  Siegel modular forms  $\mathrm{Sp}_4\colon$  can compute for  $N\approx 500$
- ▶  $SL_4$  happy if can compute  $L_2(T)$ .

▶ Quintic threefold

$$X:F(x_1,\ldots,x_5)=0$$

▶ Quintic threefold

$$X: F(x_1,\ldots,x_5)=0$$

$$H := H^3(X, \mathbb{Q}), \qquad \dim H = 204.$$

▶ Quintic threefold

$$X: F(x_1,\ldots,x_5)=0$$

$$H := H^3(X, \mathbb{Q}), \qquad \dim H = 204.$$

▶ Dwork pencil

$$X_{\psi}: x_1^5 + \dots + x_5^5 - 5\psi x_1 \dots + x_5 = 0$$

Quintic threefold

$$X: F(x_1,\ldots,x_5)=0$$

$$H := H^3(X, \mathbb{Q}), \qquad \dim H = 204.$$

Dwork pencil

$$X_{\psi}: x_1^5 + \dots + x_5^5 - 5\psi x_1 \dots + x_5 = 0$$

•

$$A \subseteq \operatorname{Aut}(X_{\psi}), \qquad x_i \mapsto \zeta_i x_i, \qquad \zeta_1^5 = \dots = \zeta_5^5 = \zeta_1 \dots \zeta_5 = 1$$

Quintic threefold

$$X: F(x_1,\ldots,x_5)=0$$

$$H := H^3(X, \mathbb{Q}), \qquad \dim H = 204.$$

Dwork pencil

$$X_{\psi}: x_1^5 + \dots + x_5^5 - 5\psi x_1 \dots + x_5 = 0$$

$$A \subseteq \operatorname{Aut}(X_{\psi}), \qquad x_i \mapsto \zeta_i x_i, \qquad \zeta_1^5 = \dots = \zeta_5^5 = \zeta_1 \dots \zeta_5 = 1$$

•

$$V := H^A, \qquad \dim V = 4$$

### $Hodge\ numbers$

▶ Refinement of rank d that determines  $L_{\infty}(s)$ .

# $Hodge\ numbers$

▶ Refinement of rank d that determines  $L_{\infty}(s)$ .

$$h^{p,q} \in \mathbb{Z}_{\geq 0}, \qquad p+q=w$$

# Hodge numbers

▶ Refinement of rank d that determines  $L_{\infty}(s)$ .

$$h^{p,q} \in \mathbb{Z}_{\geq 0}, \qquad p+q = w$$

$$h^{p,q} = h^{q,p}, \qquad \qquad \sum_{p,q} h^{p,q} = d$$

# Hodge numbers

▶ Refinement of rank d that determines  $L_{\infty}(s)$ .

$$h^{p,q} \in \mathbb{Z}_{\geq 0}, \qquad p+q=w$$

$$h^{p,q} = h^{q,p}, \qquad \sum_{p,q} h^{p,q} = d$$

▶ Hodge vector (up to Tate twists)

$$\mathbf{h} := (h^{w,0}, h^{w-1,1}, \dots, h^{0,w})$$

# Hodge numbers

▶ Refinement of rank d that determines  $L_{\infty}(s)$ .

•

$$h^{p,q} \in \mathbb{Z}_{\geq 0}, \qquad p+q=w$$

$$h^{p,q} = h^{q,p}, \qquad \qquad \sum_{p,q} h^{p,q} = d$$

▶ Hodge vector (up to Tate twists)

$$\mathbf{h} := (h^{w,0}, h^{w-1,1}, \dots, h^{0,w})$$

•

$$h^{p,p} = h_+^{p,p} + h_-^{p,p}$$

▶  $q_0, q_\infty \in \mathbb{Z}[T]$ , coprime, same degree d, roots are roots of unity.

- ▶  $q_0, q_\infty \in \mathbb{Z}[T]$ , coprime, same degree d, roots are roots of unity.
- ▶ Get associated family of motives  $\mathcal{H}(t)$  with  $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ .

- ▶  $q_0, q_\infty \in \mathbb{Z}[T]$ , coprime, same degree d, roots are roots of unity.
- ▶ Get associated family of motives  $\mathcal{H}(t)$  with  $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ .
- $\triangleright$   $\mathcal{H}(t)$  has rank d and a computable weight w in terms of  $q_0, q_{\infty}$ .

- ▶  $q_0, q_\infty \in \mathbb{Z}[T]$ , coprime, same degree d, roots are roots of unity.
- ▶ Get associated family of motives  $\mathcal{H}(t)$  with  $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ .
- ▶  $\mathcal{H}(t)$  has rank d and a computable weight w in terms of  $q_0, q_\infty$ .
- ▶ Can also compute the Hodge numbers:  $\Longrightarrow L_{\infty}(s)$

- ▶  $q_0, q_\infty \in \mathbb{Z}[T]$ , coprime, same degree d, roots are roots of unity.
- ▶ Get associated family of motives  $\mathcal{H}(t)$  with  $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ .
- $\triangleright$   $\mathcal{H}(t)$  has rank d and a computable weight w in terms of  $q_0, q_{\infty}$ .
- ▶ Can also compute the Hodge numbers:  $\Longrightarrow L_{\infty}(s)$
- ▶ For fixed  $t \in \mathbb{Q}$ : formula for  $L_p(T)$  for  $p \notin S$  (Katz's hypergeometric trace)

ightharpoonup Belyi polynomials c := a + b

$$\mathbb{Q}[x]/(B(a,b;t)), \qquad B(a,b;t) := x^a(1-x)^b - \frac{a^a b^b}{c^c}t$$

ightharpoonup Belyi polynomials c := a + b

$$\mathbb{Q}[x]/(B(a,b;t)), \qquad B(a,b;t) := x^a(1-x)^b - \frac{a^a b^b}{c^c}t$$

$$\frac{q_{\infty}}{q_0} = \frac{T^c - 1}{(T^a - 1)(T^b - 1)}$$

▶ Belyi polynomials c := a + b

$$\mathbb{Q}[x]/(B(a,b;t)), \qquad B(a,b;t) := x^a (1-x)^b - \frac{a^a b^b}{c^c} t$$

$$\frac{q_{\infty}}{q_0} = \frac{T^c - 1}{(T^a - 1)(T^b - 1)}$$

▶ Legendre family of elliptic curves:  $H^1(E_t)$ 

$$E_t: y^2 = x(x-1)(x-t)$$

▶ Belyi polynomials c := a + b

$$\mathbb{Q}[x]/(B(a,b;t)), \qquad B(a,b;t) := x^a (1-x)^b - \frac{a^a b^b}{c^c} t$$

$$\frac{q_{\infty}}{q_0} = \frac{T^c - 1}{(T^a - 1)(T^b - 1)}$$

▶ Legendre family of elliptic curves:  $H^1(E_t)$ 

$$E_t: y^2 = x(x-1)(x-t)$$

•

$$\frac{q_{\infty}}{q_0} = \frac{(T+1)^2}{(T-1)^2}$$

▶ Belyi polynomials c := a + b

$$\mathbb{Q}[x]/(B(a,b;t)), \qquad B(a,b;t) := x^a (1-x)^b - \frac{a^a b^b}{c^c} t$$

$$\frac{q_{\infty}}{q_0} = \frac{T^c - 1}{(T^a - 1)(T^b - 1)}$$

▶ Legendre family of elliptic curves:  $H^1(E_t)$ 

$$E_t: y^2 = x(x-1)(x-t)$$

•

$$\frac{q_{\infty}}{q_0} = \frac{(T+1)^2}{(T-1)^2}$$

▶ Dwork pencil piece: V

$$\frac{q_{\infty}}{q_0} = \frac{T^5 - 1}{(T - 1)^5}$$

### Hodge vectors

ightharpoonup By Griffiths transversality **h** is a symmetric composition of d.

### Hodge vectors

- $\triangleright$  By Griffiths transversality **h** is a symmetric composition of d.
- ▶ Total number:  $2^{\lfloor d/2 \rfloor}$

### Hodge vectors

- $\triangleright$  By Griffiths transversality **h** is a symmetric composition of d.
- ▶ Total number:  $2^{\lfloor d/2 \rfloor}$

▶ Rank d = 24. Number of possible Hodge vectors: 4096.

- ▶ Rank d = 24. Number of possible Hodge vectors: 4096.
- ▶ Total number of family of motives: 464, 247, 183

- ▶ Rank d = 24. Number of possible Hodge vectors: 4096.
- ▶ Total number of family of motives: 464, 247, 183

|          | h                                             | # |
|----------|-----------------------------------------------|---|
|          | [9, 1, 1, 2, 1, 1, 9]                         | 0 |
|          | [7,1,1,1,1,2,1,1,1,1,7]                       | 0 |
|          | [1,6,1,1,1,1,2,1,1,1,1,6,1]                   | 0 |
| <b>•</b> | [4, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 4]       | 0 |
|          | [5, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5]       | 0 |
|          | [6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6]       | 0 |
|          | [4, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 4] | 0 |
|          | [4, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 4] | 0 |

| ${f h}$                           | #       |
|-----------------------------------|---------|
| $\boxed{[6,2,1,1,1,2,1,1,1,2,6]}$ | 2       |
| [8, 1, 1, 1, 2, 1, 1, 1, 8]       | 4       |
| [1, 22, 1]                        | 4       |
| [8, 1, 1, 4, 1, 1, 8]             | 6       |
| [6, 1, 2, 1, 1, 2, 1, 1, 2, 1, 6] | 8       |
| [6, 1, 3, 1, 2, 1, 3, 1, 6]       | 8       |
| [10, 1, 2, 1, 10]                 | 10      |
| :                                 | :       |
| [1, 3, 4, 4, 4, 4, 3, 1]          | 6082776 |
| [2, 5, 5, 5, 5, 2]                | 6850823 |
| [1, 3, 8, 8, 3, 1]                | 6868016 |
| [1, 5, 6, 6, 5, 1]                | 7637828 |
| [1, 2, 4, 5, 5, 4, 2, 1]          | 7982874 |
| [2, 4, 6, 6, 4, 2]                | 9504072 |
| [1, 4, 7, 7, 4, 1]                | 9905208 |

#### *Densities*

### Graph of logarithmic densities, rank $d=24\,$



▶  $\mathcal{H}(t)$ : family over  $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ .

- $ightharpoonup \mathcal{H}(t)$ : family over  $\mathbb{P}^1 \setminus \{0,1,\infty\}$ .
- ▶ Study of  $L_p(T)$  for tame primes p from behaviour at cusps.

- $ightharpoonup \mathcal{H}(t)$ : family over  $\mathbb{P}^1 \setminus \{0,1,\infty\}$ .
- ▶ Study of  $L_p(T)$  for tame primes p from behaviour at cusps.
- ▶ Cusps  $0, \infty$  with full Jordan blocks  $\Longrightarrow$  Hecke characters.

- $ightharpoonup \mathcal{H}(t)$ : family over  $\mathbb{P}^1 \setminus \{0,1,\infty\}$ .
- ▶ Study of  $L_p(T)$  for tame primes p from behaviour at cusps.
- ▶ Cusps  $0, \infty$  with full Jordan blocks  $\Longrightarrow$  Hecke characters.
- ▶ Families  $\mathcal{H}(t)$  share many properties.

- $ightharpoonup \mathcal{H}(t)$ : family over  $\mathbb{P}^1 \setminus \{0,1,\infty\}$ .
- ▶ Study of  $L_p(T)$  for tame primes p from behaviour at cusps.
- ▶ Cusps  $0, \infty$  with full Jordan blocks  $\Longrightarrow$  Hecke characters.
- ▶ Families  $\mathcal{H}(t)$  share many properties.
- ▶ Study simple cases to uncover them.

▶ Hypergeometric series |t| < 1

$$u(t) = {}_{d}F_{d-1} \begin{bmatrix} \alpha_1 & \dots & \alpha_d \\ \beta_1 & \dots & \beta_{d-1} \end{bmatrix} t \end{bmatrix} := \sum_{n \geq 0} \frac{(\alpha_1)_n \cdots (\alpha_d)_n}{(\beta_1)_n \cdots (\beta_{d-1})_n} \frac{t^n}{n!},$$

▶ Hypergeometric series |t| < 1

$$u(t) = {}_{d}F_{d-1} \begin{bmatrix} \alpha_1 & \dots & \alpha_d \\ \beta_1 & \dots & \beta_{d-1} \end{bmatrix} t \end{bmatrix} := \sum_{n \geq 0} \frac{(\alpha_1)_n \cdots (\alpha_d)_n}{(\beta_1)_n \cdots (\beta_{d-1})_n} \frac{t^n}{n!},$$

•

$$(\alpha)_n := \alpha(\alpha+1)\cdots(\alpha+n-1)$$

is the Pochhammer symbol.

▶ Hypergeometric series |t| < 1

$$u(t) = {}_{d}F_{d-1} \begin{bmatrix} \alpha_1 & \dots & \alpha_d \\ \beta_1 & \dots & \beta_{d-1} \end{bmatrix} t \end{bmatrix} := \sum_{n \geq 0} \frac{(\alpha_1)_n \cdots (\alpha_d)_n}{(\beta_1)_n \cdots (\beta_{d-1})_n} \frac{t^n}{n!},$$

$$(\alpha)_n := \alpha(\alpha+1)\cdots(\alpha+n-1)$$

is the Pochhammer symbol.

▶ Satisfies linear differential equation of order d with regular singularities at  $t = 0, 1, \infty$ .

▶ Hypergeometric series |t| < 1

$$u(t) = {}_{d}F_{d-1} \begin{bmatrix} \alpha_1 & \dots & \alpha_d \\ \beta_1 & \dots & \beta_{d-1} \end{bmatrix} t \end{bmatrix} := \sum_{n \geq 0} \frac{(\alpha_1)_n \cdots (\alpha_d)_n}{(\beta_1)_n \cdots (\beta_{d-1})_n} \frac{t^n}{n!},$$

$$(\alpha)_n := \alpha(\alpha+1)\cdots(\alpha+n-1)$$

is the Pochhammer symbol.

- ▶ Satisfies linear differential equation of order d with regular singularities at  $t = 0, 1, \infty$ .
- ▶ Gives rise to a monodromy representation

$$\rho: \pi_1(\mathbb{P}^1 \setminus \{0, 1, \infty\}) \to \mathrm{GL}(V)$$

▶ Hypergeometric series |t| < 1

$$u(t) = {}_{d}F_{d-1} \begin{bmatrix} \alpha_1 & \dots & \alpha_d \\ \beta_1 & \dots & \beta_{d-1} \end{bmatrix} t \end{bmatrix} := \sum_{n>0} \frac{(\alpha_1)_n \cdots (\alpha_d)_n}{(\beta_1)_n \cdots (\beta_{d-1})_n} \frac{t^n}{n!},$$

$$(\alpha)_n := \alpha(\alpha+1)\cdots(\alpha+n-1)$$

is the Pochhammer symbol.

- ▶ Satisfies linear differential equation of order d with regular singularities at  $t = 0, 1, \infty$ .
- ▶ Gives rise to a monodromy representation

$$\rho: \pi_1(\mathbb{P}^1 \setminus \{0, 1, \infty\}) \to \operatorname{GL}(V)$$

▶  $V := \text{space of local solutions of the DE at } z = t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}.$ 

▶ This local system is rigid.

- ▶ This local system is rigid.
- ▶ The local monodromies  $h_0, h_1, h_\infty$  satisfy

$$h_0 h_1 h_\infty = \mathrm{id}_V$$

- ▶ This local system is rigid.
- ▶ The local monodromies  $h_0, h_1, h_\infty$  satisfy

$$h_0 h_1 h_\infty = \mathrm{id}_V$$

 $\blacktriangleright$   $h_1$  is a pseudo-reflection

- ▶ This local system is rigid.
- ▶ The local monodromies  $h_0, h_1, h_\infty$  satisfy

$$h_0 h_1 h_\infty = \mathrm{id}_V$$

- $\blacktriangleright$   $h_1$  is a pseudo-reflection
- ► Characteristic polynomials

$$q_{\infty}(T) := \prod_{j=1}^{d} (T - e^{2\pi i \alpha_j}), \qquad q_0(T) := \prod_{j=1}^{d} (T - e^{2\pi i (1 - \beta_j)})$$

and  $h_{\infty}$ ,  $h_0$  have full Jordan blocks.

## Hypergeometric series (cont'd)

- ▶ This local system is rigid.
- ▶ The local monodromies  $h_0, h_1, h_\infty$  satisfy

$$h_0 h_1 h_\infty = \mathrm{id}_V$$

- $\blacktriangleright$   $h_1$  is a pseudo-reflection
- ► Characteristic polynomials

$$q_{\infty}(T) := \prod_{j=1}^{d} (T - e^{2\pi i \alpha_j}), \qquad q_0(T) := \prod_{j=1}^{d} (T - e^{2\pi i (1 - \beta_j)})$$

and  $h_{\infty}$ ,  $h_0$  have full Jordan blocks.

▶  $\rho$  is irreducible if  $q_{\infty}$  and  $q_0$  are coprime.

## Hypergeometric trace

$$H_p(\alpha, \beta \mid t) := \frac{1}{1-p} \sum_{\alpha} (-p)^{\eta_f(\varrho)} \frac{(\alpha_1)_{\infty, \varrho} \cdots (\alpha_r)_{\infty, \varrho}}{(\beta_1)_{0, \varrho} \cdots (\beta_s)_{0, \varrho}} \omega(t)^{(p-1)\varrho},$$

### $Hypergeometric\ trace$

$$H_p(\alpha, \beta \mid t) := \frac{1}{1-p} \sum_{\rho} (-p)^{\eta_f(\rho)} \frac{(\alpha_1)_{\infty, \rho} \cdots (\alpha_r)_{\infty, \rho}}{(\beta_1)_{0, \rho} \cdots (\beta_s)_{0, \rho}} \omega(t)^{(p-1)\rho},$$

▶ For  $x \in \mathbb{Q}/\mathbb{Z}$  with denominator coprime to p

$$(x)_{\nu,\varrho} := \frac{\Gamma_p(\{x-\varrho\}_\nu)}{\Gamma_p(\{x\}_\nu)}, \qquad \nu = 0, \infty, \quad \varrho \in \frac{1}{p-1}\mathbb{Z}/\mathbb{Z},$$

### $Hypergeometric\ trace$

$$H_p(\alpha, \beta \mid t) := \frac{1}{1-p} \sum_{\rho} (-p)^{\eta_f(\rho)} \frac{(\alpha_1)_{\infty, \rho} \cdots (\alpha_r)_{\infty, \rho}}{(\beta_1)_{0, \rho} \cdots (\beta_s)_{0, \rho}} \omega(t)^{(p-1)\rho},$$

▶ For  $x \in \mathbb{Q}/\mathbb{Z}$  with denominator coprime to p

$$(x)_{\nu,\varrho} := \frac{\Gamma_p(\{x-\varrho\}_\nu)}{\Gamma_p(\{x\}_\nu)}, \qquad \nu = 0, \infty, \quad \varrho \in \frac{1}{p-1}\mathbb{Z}/\mathbb{Z},$$

ightharpoonup: Morita's p-adic gamma function

## $Hypergeometric\ trace$

•

$$H_p(\alpha, \beta \mid t) := \frac{1}{1-p} \sum_{\rho} (-p)^{\eta_f(\rho)} \frac{(\alpha_1)_{\infty, \rho} \cdots (\alpha_r)_{\infty, \rho}}{(\beta_1)_{0, \rho} \cdots (\beta_s)_{0, \rho}} \omega(t)^{(p-1)\rho},$$

▶ For  $x \in \mathbb{Q}/\mathbb{Z}$  with denominator coprime to p

$$(x)_{\nu,\varrho} := \frac{\Gamma_p(\{x-\varrho\}_\nu)}{\Gamma_p(\{x\}_\nu)}, \qquad \nu = 0, \infty, \quad \varrho \in \frac{1}{p-1}\mathbb{Z}/\mathbb{Z},$$

ightharpoonup F p: Morita's p-adic gamma function

$$\{x\}_{\infty} := \{x\}, \qquad \{x\}_0 := 1 - \{-x\},$$

▶ Interlacing roots

$$q_{\infty} = \Phi_{30}, \qquad q_0 = \Phi_1 \Phi_2 \Phi_3 \Phi_5,$$

▶ Interlacing roots

$$q_{\infty} = \Phi_{30}, \qquad q_0 = \Phi_1 \Phi_2 \Phi_3 \Phi_5,$$

▶

$$\begin{array}{lcl} \alpha & = & 1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30 \\ \beta & = & 1, 1/2, 1/3, 2/3, 1/5, 2/5, 3/5, 4/5 \end{array}$$

▶ Interlacing roots

$$q_{\infty} = \Phi_{30}, \qquad q_0 = \Phi_1 \Phi_2 \Phi_3 \Phi_5,$$

$$\begin{array}{lcl} \alpha & = & 1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30 \\ \beta & = & 1, 1/2, 1/3, 2/3, 1/5, 2/5, 3/5, 4/5 \end{array}$$

$$\frac{q_{\infty}}{q_0} = \frac{(T^{30} - 1)(T - 1)}{(T^{15} - 1)(T^{10} - 1)(T^6 - 1)}.$$

► Interlacing roots

$$q_{\infty} = \Phi_{30}, \qquad q_0 = \Phi_1 \Phi_2 \Phi_3 \Phi_5,$$

•

$$\begin{array}{lcl} \alpha & = & 1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30 \\ \beta & = & 1, 1/2, 1/3, 2/3, 1/5, 2/5, 3/5, 4/5 \end{array}$$

$$\frac{q_{\infty}}{q_0} = \frac{(T^{30} - 1)(T - 1)}{(T^{15} - 1)(T^{10} - 1)(T^6 - 1)}.$$

•

$$u(t) := \sum_{n \ge 0} \frac{(30n)! n!}{(15n)! (10n)! (6n)!} \left(\frac{t}{M}\right)^n, \qquad M := \frac{30^{30}}{15^{15} \cdot 10^{10} \cdot 6^6}.$$

▶ Interlacing roots

$$q_{\infty} = \Phi_{30}, \qquad q_0 = \Phi_1 \Phi_2 \Phi_3 \Phi_5,$$

$$\alpha = 1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30$$
  
$$\beta = 1, 1/2, 1/3, 2/3, 1/5, 2/5, 3/5, 4/5$$

$$\frac{q_{\infty}}{q_0} = \frac{(T^{30} - 1)(T - 1)}{(T^{15} - 1)(T^{10} - 1)(T^6 - 1)}.$$

•

$$u(t) := \sum_{n \ge 0} \frac{(30n)! n!}{(15n)! (10n)! (6n)!} \left(\frac{t}{M}\right)^n, \qquad M := \frac{30^{30}}{15^{15} \cdot 10^{10} \cdot 6^6}.$$

•

$$\frac{(30n)!n!}{(15n)!(10n)!(6n)!} = 1,77636318760,53837289804317953893960,\cdots$$

are integral for every n.

▶ Monodromy group is finite.

- ▶ Monodromy group is finite.
- ightharpoonup Series u(t): Taylor expansion of an algebraic function of t.

- ▶ Monodromy group is finite.
- ightharpoonup Series u(t): Taylor expansion of an algebraic function of t.
- ▶ Degree over  $\overline{\mathbb{Q}}(t)$ : 483,840.

- ▶ Monodromy group is finite.
- ightharpoonup Series u(t): Taylor expansion of an algebraic function of t.
- ▶ Degree over  $\overline{\mathbb{Q}}(t)$ : 483, 840.
- ▶  $\mathcal{H}(t)$ : Artin with Gal  $\leq W(E_8)$  (generically =).