9.3 AR(1)

April 19, 2020

1 Lecture 9 (Final): Forecasting Using ARIMA Models

Will firstly use bread price data to forecast AR(1) process And will then use air passenger data to forecast ARIMA(0,1,1)x(0,1,1)₁₂

1.1 Quickly recall the fitting and diagnostics of these models, starting with the simple bread prices

Visual inspection, no major trend / predictable seasonality / increase in variance

```
[2]: plot(BP.ts)
```


1.2 ACF

Geometrically decreasing function, with negative ACF values. Suggests a AR process with a AR parameter that's negative.

[3]: acf(BP.ts)

Series BP.ts

1.3 PACF

Nothing significant above the white noise 95% probability limits at \sim 0.18, this indicating that ideal p of AR(p) process is likely to be 1.

Let's fit both AR(1) and AR(2) and compare the AIC statistics, as well as the significance of the additional parameter.

[4]: pacf(BP.ts)

Series BP.ts

1.4 AR(1)

s.e. 0.0678

0.2307

```
sigma^2 estimated as 0.8655: log likelihood = -167.26, aic = 340.52
```

1.4.1 t-statistic of parameter

```
[6]: ar.1.t <- 0.6429 / 0.0678 ar.1.t
```

9.48230088495575

1.4.2 degrees of freedom

```
[7]: ar.1.df <- length(BP.ts) - 3
```

1.5 p-value associated with t-statistic

highly significant at the 1% significance level

```
[8]: # lower.tail = FALSE so that P(T > t) since our observed t is positive
# and due to the symmetry of the t-distribution, we do a two tailed test as

→we're
# interested in equal or more extremeness at either end

2*pt(q = ar.1.t, ar.1.df, lower.tail = FALSE)
```

2.7560859751886e-16

and finally taking a quick look at the diagnostic plots

standardised residuals - the residuals divided by the estimated sigma^2 - the estimated variance of the underlying white noise terms

[9]: tsdiag(BP.ar.1)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

AR(2)

taking a look at AR(2) and checking whether the additional parameter is significant, and whether the AIC statistic is lower than AR(1).

Call:

arima(x = BP.ts, order = c(2, 0, 0))

Coefficients:

ar1 ar2 intercept

```
0.7231 -0.1235
                                 5.6546
     s.e. 0.0888
                      0.0892
                                 0.2051
     sigma^2 estimated as 0.8521: log likelihood = -166.31, aic = 340.62
     \#\#\# t-statistic of additional parameter
[11]: ar.2.t <- -0.1235 / 0.0892
      ar.2.t
     -1.38452914798206
     ### degrees of freedom of AR(2)
[12]: ar.2.df <- length(BP.ts) - 4
     \#\#\# p-value associated with t-statistic for the second parameter of AR(2) model
          not significant at the 10% level
[13]: 2*pt(ar.2.t, ar.2.df, lower.tail = TRUE)
     0.168765584886517
[14]: tsdiag(BP.ar.2)
```

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

1.5.1 so we accept the AR(1) model for modelling bread prices

2 9.3 Forecasting bread prices

2.1 AR(1)

let's quickly get the 95% probability limit t-statistic from a t-distribution with 121 degrees of freedom

1.97976376250537

[16]: h <- 10 years <- 1958:(1958+h-1)

[17]: BP.fore <- predict(BP.ar.1, 10)
BP.fore\$pred</pre>

A Time Series:

- $5. \quad 5.70906653726199 \quad 6. \quad 5.69183871901093 \quad 7. \quad 5.68076232727379 \quad 8. \quad 5.67364091165826$
- $9.\ 5.66906229421924\ 10.\ 5.66611853432868$

[18]: BP.fore\$se

A Time Series:

- $1. \quad 0.930329162677166 \quad 2. \quad 1.10602296508448 \quad 3. \quad 1.17097354119759 \quad 4. \quad 1.19679272999601$
- $5. \quad 1.20730424927878 \quad 6. \quad 1.21162272783268 \quad 7. \quad 1.21340335568425 \quad 8. \quad 1.21413864604819$
- $9.\ 1.21444246094625\ 10.\ 1.21456802587075$
- [19]: L95 <- BP.fore\$pred t*BP.fore\$se
 U95 <- BP.fore\$pred + t*BP.fore\$se</pre>
- [20]: BP.PL95 <- data.frame(years, L95, BP.fore\$pred, U95)
 BP.PL95

A data.frame: 10×4	years	L95	BP.fore.pred	U95
	<int $>$	<ts></ts>	$\langle ts \rangle$	$\langle ts \rangle$
	1958	4.101352	5.943184	7.785016
	1959	3.652697	5.842361	8.032026
	1960	3.459288	5.777539	8.095790
	1961	3.366495	5.735862	8.105229
	1962	3.318889	5.709067	8.099244
	1963	3.293112	5.691839	8.090565
	1964	3.278510	5.680762	8.083014
	1965	3.269933	5.673641	8.077349
	1966	3.264753	5.669062	8.073371
	1967	3.261561	5.666119	8.070676

2.2 Taking another look at the AR(1) summary

Note the intercept is the **estimate of the mean**, $\hat{\mu}$.

$$\hat{\mu} = 5.6608$$

$$\hat{\phi} = 0.6429$$

$$\hat{\sigma}^2 = 0.8655$$

```
[21]: BP.ar.1
      Call:
      arima(x = BP.ts, order = c(1, 0, 0))
      Coefficients:
                ar1
                      intercept
             0.6429
                          5.6608
                          0.2307
           0.0678
      s.e.
      sigma^2 estimated as 0.8655: log likelihood = -167.26, log likelihood = -167.26
      \#\#\# Last value of the time series in year 1757:
[22]: BP.ts[length(BP.ts)]
      6.1
      ### Let's feed these numbers into the forecast equation we've produced in the notes:
           \hat{y}(h) = \mu + \phi^h(y_T - \mu)
[23]: mu.hat <- 5.6608
       phi.hat <- 0.6429
       sigma.2.hat <- 0.8655
       y.t <- BP.ts[length(BP.ts)]</pre>
       y.hat.1 <- mu.hat + phi.hat * (y.t - mu.hat)</pre>
       y.hat.1
      5.94316168
[24]: # check that against the AR(1) R model forecast
       BP.fore$pred[1]
      5.94318407878558
      2.2.1 And V(1) = Var(e_T(h)) = \sigma^2
      Therefore our estimate of V(1) = \hat{\sigma}^2 = 0.8655
      And we'd expect the 95% confidence limit to be ~ t_{0.025} \times \hat{\sigma}
[25]: y.hat.1 + c(-t*sqrt(sigma.2.hat),+t*sqrt(sigma.2.hat))
```

Comparing with R output

1. 4.10134285811832 2. 7.78498050188168

```
[26]: BP.fore$pred[1] + c(-t*BP.fore$se[1],t*BP.fore$se[1])
```

 $1.\,\, 4.10135211531536\,\, 2.\,\, 7.78501604225579$