

SMPS MOSFET

IRF7456

HEXFET® Power MOSFET

Applications

• High Frequency DC-DC Converters with Synchronous Rectification

V _{DSS}	R _{DS(on)} max	I _D
20V	0.0065Ω	16A

Benefits

- Ultra-Low R_{DS(on)} at 4.5V V_{GS}
- Low Charge and Low Gate Impedance to Reduce Switching Losses
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	20	V	
V_{GS}	Gate-to-Source Voltage	± 12	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	16		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	13	Α	
I _{DM}	Pulsed Drain Current①	130	1	
P _D @T _A = 25°C	Maximum Power Dissipation [®]	2.5	W	
P _D @T _A = 70°C	Maximum Power Dissipation [®]	1.6	W	
	Linear Derating Factor	0.02	W/°C	
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient⊕	50	°C/W

Typical SMPS Topologies

• Telecom 48V Input Converters with Logic-Level Driven Synchronous Rectifiers

Notes ① through ④ are on page 8 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	•	_		-		
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.024		V/°C	Reference to 25°C, I _D = 1mA
			0.0047	0.0065	Ω	V _{GS} = 10V, I _D = 16A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.0057	0.0075	. 22	$V_{GS} = 4.5V, I_D = 13A$ ③
			0.011	0.020		V _{GS} = 2.8V, I _D = 3.5A ③
V _{GS(th)}	Gate Threshold Voltage	0.6		2.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
	Drain to Source Lookage Current			20	μA	V _{DS} = 16V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			100	μΛ	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			200	nA	V _{GS} = 12V
I _{GSS}				-200	l IIA	$V_{GS} = -12V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	44			S	V _{DS} = 10V, I _D = 16A
Qg	Total Gate Charge		41	62		I _D = 16A
Q _{gs}	Gate-to-Source Charge		9.7	15	nC	$V_{DS} = 16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		18	27	Ī	$V_{GS} = 5.0V, 3$
t _{d(on)}	Turn-On Delay Time		20			V _{DD} = 10V
t _r	Rise Time		25		ns	$I_{D} = 1.0A$
t _{d(off)}	Turn-Off Delay Time		50		110	$R_G = 6.0\Omega$
t _f	Fall Time		52			V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		3640			V _{GS} = 0V
Coss	Output Capacitance		1570			$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		330		pF	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		250	mJ
I _{AR}	Avalanche Current①		16	А
E _{AR}	Repetitive Avalanche Energy①		0.25	mJ

Diode Characteristics

	Parameter		Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			2.5		MOSFET symbol	
	(Body Diode)			2.5	A	showing the	
I _{SM}	Pulsed Source Current			400		integral reverse	
	(Body Diode) ①			130	130	p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 2.5A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		48	72	ns	$T_J = 25^{\circ}C, I_F = 2.5A$	
Q _{rr}	Reverse RecoveryCharge		74	110	nC	di/dt = 100A/µs ③	

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRF7456

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Case

600

 $R_{DS(on)}$, Drain-to -Source On Resistance (Ω) 0.015 . 0.009 . 0.009 . 0.009I_D = 16A 0 8 12 16 V_{GS}, Gate -to -Source Voltage (V)

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

 I_{D}

www.irf.com

7.2A

TOP

Fig 13a&b. Basic Gate Charge Test Circuit and Waveform

 E_{AS} , Single Pulse Avalanche Energy (mJ) 10A 500 воттом 16A 400 300 200 100 0 L 25 50 75 100 150 Starting T_J , Junction Temperature (°C)

Fig 14a&b. Unclamped Inductive Test circuit and Waveforms

6

Fig 14c. Maximum Avalanche Energy Vs. Drain Current

SO-8 Package Details

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- ⑤ DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.006).
- (6) DIMENSIONS IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE..

	INC	HES	MILLIMETERS					
DIM	MIN	MAX	MIN	MAX				
Α	A .0532 .0688		1.35	1.75				
A1	.0040	.0098	0.10	0.25				
В	B .014 .018		0.36	0.46				
С	C .0075 .0098		0.19	0.25				
D	D .189 .196		4.80	4.98				
Е	.150	.157	3.81	3.99				
е	.050 E	BASIC	1.27 E	BASIC				
e1	.025 E	BASIC	0.635 BASIC					
Н	.2284	.2440	5.80	6.20				
K	K .011 .019		0.28	0.48				
L	L 0.16 .050		0.41	1.27				
θ 0° 8°		0° 8°						

RECOMMENDED FOOTPRINT

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101

IRF7456 International IOR Rectifier

SO-8 Tape and Reel

NOTES

- CONTROLLING DIMENSION : MILLIMETER. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- OUTLINE CONFORMS TO EIA-481 & EIA-541.

1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 2.0mH $R_G = 25\Omega$, $I_{AS} = 16A$.
- ③ Pulse width \leq 300µs; duty cycle \leq 2%.
- 4 When mounted on 1 inch square copper board, t<10 sec

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTER: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936

Data and specifications subject to change without notice. 4/00