

INFORME ENSAYO DE COMPRESOR RECÍPROCO

ICM557 Laboratorio de Maquinas

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: 2665

Fecha: 9 diciembre de 2020

1. INTRODUCCIÓN

A través de una experiencia de laboratorio se dará a conocer el comportamiento de un compresor recíproco desde sus generalidades. Conocer sus curvas de consumo, sus características principales, etc.

Todo esto se hará basado en lo aprendido en clases y apoyado de algunos libros detallados en el presente informe.

2. ÍNDICE

Introducción	2
Índice	3
Objetivos	4
Procedimientos / Parámetros	4
Resultados	5
Preguntas	6
Conclusiones	15

3. OBJETIVOS

- Comprender el funcionamiento de un compresor recíproco.
- Entender la importancia de los parámetros de operación que están presentes en el funcionamiento del sistema.
- Obtener las principales gráficas del práctico.

4. PROCEDIMIENTO / PARÁMETROS

Una vez puesto en marcha el sistema de deben corroborar y medir ciertos parámetros. Se regula la presión de descarga a 7 [kp/cm2] y se deja unos segundos hasta alcanzar la estabilización.

Las mediciones que se deben hacer son:

Magnitud	Unidad de medida					
Velocidad del compresor	rpm					
Presión de descarga	Kp/cm2					
Temperatura de aspiración y descarga de cilindros	°C					
Temperatura del estanque a baja presión	°C					
Temperatura de entrada y salida del agua de refrigeración	°C					
Presión del estanque a baja presión	cm _{ca}					
Potencia eléctrica	kW					
Tensión eléctrica	V					
Corriente eléctrica	А					

Se deben repetir las lecturas para las presiones:

6 [kp/cm2], 5 [kp/cm2], 4[kp/cm2], 3[kp/cm2], 2[kp/cm2] y 1[kp/cm2].

4. RESULTADOS

Se tiene la siguiente tabla de valores medidos:

	Compresor							Estanque de Agua de refrigeración				Motor Eléctrico							
	Presión	Velocid		Tempe	eratura		baja p	baja presión tebp ΔP		Temperatura		Tensión	Corrientes			Potencia			
	Pd	n	tecbp	tsebp	tecap	tecap	tebp			tsa	10 l	٧	I1	12	13	W1	W2	Patm.	
	[kp/cm2]	[rpm]	[°C]	[°C]	[°C]	[°C]	[°C]	[mmca]	[°C]	[°C]	[s]	[V]	[A]	[A]	[A]	[kW]	[kW]	[mmHg]	
1	7,0	499,3	23	48	27	89	39	514	18	26,5	78	375	17,2	15,9	16	6,53	3,28	760,1	
2	6,0	498,7	23	49	27	87	40	544	18,5	26,5	75	375	16,5	15,3	15,4	6,53	3,06	760,1	
3	4,9	500,8	23	49	27	77	41	532	18,5	26,5	77	376	15,2	13,9	13,8	5,73	2,7	760,1	
4	3,9	503,0	23	50	27	67	40	552	18,5	26,5	76	376	14,1	13,2	13,1	5,33	2,6	760,1	
5	2,8	503,4	24	56	27	56	39	562	18,5	26,5	76	376	13,2	12,6	12,1	5	2,4	760,1	
6	1,8	505,2	24	56	27	42	37	576	18,5	26,5	74	376	11,9	11,4	11	4,69	2,12	760,1	
7	1,0	507,0	23	54	27	31	39	584	18,5	26,5	77	376	10,4	9,9	9,5	4,1	1,64	760,1	

Tabla 1: Valores medidos

Se tiene también el cálculo de la siguiente tabla, tras usar las fórmulas proporcionadas en clases. Fueron todas sacadas en Excel.

_									-	1100								
	Valores de acuerdo a datos del compresor																	
	Pd	Cl	DI	٧	η	η	η	P	P	А	А	Ni	Ni	Ni	1	N	V	Q
1					VR	VC	VCI	MI CBP	MI CAP	DI CBP	DI CAP	CBP	CAP			elec	agua	
Ħ	[kp/cm^2]	[m^3]	[m^3/min]	[m^3/h]	[%]	[%]	[%]	[kp/cm^2]	[kp/cm^2]	[m^2]	[m^2]	[kW]	[kW]	[kW]	[A]	[kW]	[l/min]	[kcal/min]
1	7,0	0,0030	1,4733	73,4986	83,1448	81,3053	86,7335	1,3106	2,8106	0,0005	0,0006	0,0722	0,1659	0,2381	16,3667	9,8100	7,6923	65,3846
2	6,0	0,0030	1,4715	75,4922	85,5028	84,0000	80,9257	1,2391	2,5818	0,0005	0,0005	0,0644	0,1399	0,2043	15,7333	9,5900	8,0000	64,0000
3	4,9	0,0030	1,4777	74,5360	84,0658	86,0021	88,9980	1,2510	2,2576	0,0005	0,0004	0,0659	0,1074	0,1733	14,3000	8,4300	7,7922	62,3377
4	3,9	0,0030	1,4842	76,0453	85,3929	88,5168	87,5936	1,1927	1,8732	0,0005	0,0004	0,0602	0,0743	0,1345	13,4667	7,9300	7,8947	63,1579
5	2,8	0,0030	1,4854	77,1133	86,5235	91,1797	87,9589	1,2356	1,3455	0,0005	0,0003	0,0647	0,0383	0,1030	12,6333	7,4000	7,8947	63,1579
6	1,8	0,0030	1,4907	78,3192	87,5634	93,8422	91,8173	1,1985	0,7141	0,0005	0,0001	0,0611	0,0108	0,0719	11,4333	6,8100	8,1081	64,8649
7	1,0	0,0030	1,4960	78,3436	87,2797	96,1943	87,3091	1,1124	0,2561	0,0004	0,0001	0,0528	0,0014	0,0542	9,9333	5,7400	7,7922	62,3377

Tabla 2: Valores calculados.

Gráfica de rendimientos en función de la presión de descarga:

Gráfico 3: Gráfico rendimiento v/s presión de descarga

5. PREGUNTAS

¿La forma de la curva es correcta?

En la generalidad se observa que a medida que la presión de descarga va aumentando los rendimientos van disminuyendo. Cualquier alteración puntual dentro de esta tendencia se admite y se le atribuye a errores instrumentales.

^{*}Se señala que en línea azul se encuentra la capacidad.

¿Los valores del rendimiento volumétrico real están en el rango que el corresponde?

Según lo aprendido y estudiado, el rendimiento debiese bordear los valores de entre el 60% - 80%, y en la tabla de datos calculados de obtiene un valor que está por sobre el 80%, siendo este valor no esperado. Se habría esperado un valor mucho menor.

¿Cómo explica las diferencias entre el rendimiento volumétrico real y los otros rendimientos?

Siempre notaremos que el rendimiento real es menor, al compararlo con otros parámetros. Se debe a que el gas aspirado también es menor.

Se da a conocer también la gráfica de temperatura de aspiración y descarga de cada cilindro en función de la presión de descarga.

90 80 70 1,0 2,0 3,0 4,0 5,0 6,0 7,0 Presion de descarga[kp/cm^2] Temperatura de entradaCBP Temperatura de salidaCBP Temperatura de salidaCAP Temperatura de salidaCAP

Temperatura de aspiracion y descarga vs presion de descarga

Gráfico 4: Gráfico de temperaturas v/s presión de descarga

¿La posición relativa de las curvas es la correcta? Explique.

Es normal y esperado que la temperatura de entrada a cilindro sea casi la atmosférica, creciendo en valor al acercarse a la salida.

Al entrar al cilindro de alta presión se provoca una disminución de temperatura, volviendo a la ambiente. Luego cuando se producen presiones más altas, la temperatura crece de igual forma, siendo casi 90°C su valor máximo.

Eran rangos de esperar.

¿Los valores están en el rango que el corresponde?

Están todos dentro del rango aproximado, sin embargo, cualquier diferencia o error se admite dado las condiciones instrumentales o errores humanos que pudiesesn existir dentro de las mediciones.

Se detalla también la gráfica de aspiración y descarga de cada cilindro, y presión intermedia teórica en función de la presión de descarga:

Gráfico 5: Gráfico presiones v/s presión de descarga

¿La posición relativa de las curvas es la correcta? Explique

Es correcta. La presión de descarga del CAP aumenta a medida que la presión disminuye. La presión intermedia teórica coincide casi con la curva CBP. La presión de descarga CBP es casi coincidente con la del CAP.

¿Los valores están dentro del rango que le corresponde?

Los valores si están dentro del rango que les corresponde, tal como se señala en la pregunta anterior.

Se adjunta también el gráfico de potencia indicada de cada cilindro y total, la potencia y corriente eléctrica en función de la presión de descarga.

Potencias indicadas vs Presion de descarga y = 0,0006x2 + 0,0253 + 0,0251 R² = 0,9985 0,15 y = 0,0007x2 + 0,0254x + 0,0251 R² = 0,9952 y = 8E-05x² + 0,0029x + 0,0332 R² = 0,71 Presion de descarga[lap/cm²2] Presion de descarga[lap/cm²2]

Gráfico 6: Gráfico de potencias v/s presión de descarga

Y luego:

Gráfico 7: Gráfico de potencia eléctrica v/s presión de descarga

¿La posición relativa de las curvas es la correcta? Explique

La curva CBP va en descenso, debido a las presiones bajas. La curva CAP trabaja, por otra parte, a presiones más altas. La potencia total, tiene un comportamiento similar a la de CAP. La potencia eléctrica, a su vez, aumenta similar a la potencial total, comportándose similar a la corriente eléctrica.

¿Los valores están en el rango que le corresponde?

Están por debajo del rango esperado.

Se da a conocer también la gráfica de temperaturas de entrada y salida del agua de refrigeración en función de la presión de descarga:

Gráfico 8: Gráfico temperatura v/s presión de descarga

Cauda y calor de refrigeración vs presion de descarga

Gráfico 9: Gráfico calor y caudal de refrigeración v/s presión de descarga

¿La posición relativa de las curvas es la correcta? Explique

La posición de las curvas si es correcta. Las temperaturas de salida con mayores que las de entrada. El calor y el caudal se comportan con alineamientos similares.

¿Los valores están en el rango que le corresponde?

Los valores si están en el rango que les corresponde.

Se añade también el gráfico de relación de compresión de cada cilindro en función de la presión de descarga.

Relación de compresion vs presión de descarga

Gráfico 10: Gráfico de relaciones de compresión v/s presión de descarga

¿La posición relativa de las curvas es la correcta? Explique

La curva CBP es constante, y por otra parte la curva CAP aumenta a medida que la presión de descarga disminuye. Es comportamiento correcto.

¿Los valores están en el rango que les corresponde?

La relación señada para este tipo de perfiles debe estar en un rango de 2:1, y en este caso se acerca a 3. Está dentro de los márgenes esperados, a pesar de la diferencia.

6. CONSLUSIONES

Se logró entender el comportamiento de un compresor recíproco con cilindro de alta y baja presión. Se observa que su comportamiento fue esperado, dado que las curvas se asemejan al comportamiento catalogado y especificado para este tipo de sistemas.

^{*}Todo cálculo, fórmula y tabla fue sacada de los apuntes de clases de laboratorio.