# K-Nearest Neighbor Classification

## Agenda

- > KNN Classification Algorithm
- Solving Business Problems using KNN Algorithm
- > Hands-on
- Compare Multiple Classification Algorithms

## Sample Business Problem

## greatlearning

- Let's assume a money lending company "XYZ" like UpStart, IndiaLends, etc.
- Money lending XYZ company is interested in making the money lending system comfortable & safe for lenders as well as for borrowers. The company holds a database of customer's details.
- ➤ Using customer's detailed information from the database, it will calculate a credit score(discrete value) for each customer.
- The calculated credit score helps the company and lenders to understand the credibility of a customer clearly.
- ➤ So they can simply take a decision whether they should lend money to a particular customer or not.

## Sample Business Problem

- > The customer's details could be:
  - Educational background details
    - Highest graduated degree
    - Cumulative grade points average (CGPA) or marks percentage
    - The reputation of the college
    - Consistency in his lower degrees
    - Whether to take the education loan or not
    - Cleared education loan dues
  - Employment details
    - > Salary
    - Year of experience
    - Got any onsite opportunities
    - Average job change duration

## siness Problem greatlearning

## Sample Business Problem

- ➤ The company(XYZ) use's these kinds of details to calculate credit score of a customer
- ➤ The process of calculating the credit score from the customer's details is expensive
- ➤ To reduce the cost of predicting credit score, they realized that the customers with similar background details are getting a similar credit score
- > So, they decided to use already available data of customers and predict the credit score using it by comparing it with similar data
- These kinds of problems are handled by the K-nearest neighbor classifier for finding the similar kind of customers

## Introduction

## greatlearning

- ➤ K-nearest neighbor classifier is one of the introductory <u>supervised</u> <u>classifier</u>, which every data science learner should be aware of
- Fix & Hodges proposed K-nearest neighbor classifier algorithm in 1951 for performing pattern classification task
- For simplicity, this classifier is called as KNN Classifier
- K-nearest neighbor classifier mostly represented as KNN, even in many research papers too
- ➤ KNN addresses the pattern recognition problems and also the best choices for addressing some of the <u>classification related</u> tasks
- The simple version of the K-nearest neighbor classifier algorithms is to predict the target label by finding the nearest neighbor class
- The closest class will be identified using the distance measures like Euclidean distance

## **K\_Nearest Neighbour Algorithm**

#### To determine the class of a new example E:

- Calculate the distance between E and all examples in the training set
- Select K-nearest examples to E in the training set
- Assign E to the most common class among its K-nearest neighbors



## **Distance Between Neighbors**

#### Each example is represented with a set of numerical attributes



Jay:
Age=35
Income=95K
No. of credit
cards=3



Rina:
Age=41
Income=215K
No. of credit
cards=2

- "Closeness" is defined in terms of the Euclidean distance between two examples
- The Euclidean distance between  $X=(x_1, x_2, x_3,...x_n)$  and  $Y=(y_1,y_2, y_3,...y_n)$  is defined as:

$$D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Distance (Jay,Rina) = 
$$\sqrt{(35-41)^2 + (95,000-215,000)^2 + (3-2)^2}$$



## **K\_Nearest Neighbours: Example**

| Customer | Age | Income | No. credit<br>cards | Response |
|----------|-----|--------|---------------------|----------|
| Jay      | 35  | 35K    | 3                   | No       |
| Rina     | 22  | 50K    | 2                   | Yes      |
| Hema     | 63  | 200K   | 1                   | No       |
| Tommy    | 59  | 170K   | 1                   | No       |
| Neil     | 25  | 40K    | 4                   | Yes      |
| Dravid   | 37  | 50K    | 2                   | ?        |

## **K\_Nearest Neighbours: Example**

| Custome<br>r | Age | Incom<br>e | No. credit<br>cards | Response | Distance from Dravid                         |
|--------------|-----|------------|---------------------|----------|----------------------------------------------|
| Jay          | 35  | 35K        | 3                   | No       | $\sqrt{(35-37)^2+(35-50)^2+(3-2)^2}$ = 15.16 |
| Rina         | 22  | 50K        | 2                   | Yes      | 15                                           |
| Hema         | 63  | 200K       | 1                   | No       | 152.23                                       |
| Tommy        | 59  | 170K       | 1                   | No       | 122                                          |
| Neil         | 25  | 40K        | 4                   | Yes      | 15.74                                        |
| Dravid       | 37  | 50K        | 2                   | ?        | 0                                            |

## **K\_Nearest Neighbours**



Jay:
Age=35
Income=95K
No. of credit cards=3



Rina:
Age=41
Income=215K
No. of credit cards=2

#### Distance (Jay, Rina)= $sqrt[(35-45)^2+(95,000-215,000)^2+(3-2)^2]$

- Distance between neighbors could be <u>dominated</u> by some attributes with relatively large numbers (e.g., income in our example)
- Important to normalize some features (e.g., map numbers to numbers between 0-1)

**Example**: Income

Highest income = 500K

Davis's income is normalized to 95/500, Rina income is normalized to 215/500, etc.)

## **K\_Nearest Neighbours**

| Normalization of Variables |                 |                   |                     |          |
|----------------------------|-----------------|-------------------|---------------------|----------|
| Customer                   | Age             | Income            | No. credit<br>cards | Response |
| Jay                        | 55/63=<br>0.175 | 35/200=<br>0.175  | 3/4=<br>0.75        | No       |
| Rina                       | 22/63=<br>0.34  | 50/200=<br>0.25   | 2/4=<br>0.5         | Yes      |
| Hema                       | 63/63=<br>1     | 200/200=<br>1     | 1/4=<br>0.25        | No       |
| Tommy                      | 59/63=<br>0.93  | 170/200=<br>0.175 | 1/4=<br>0.25        | No       |
| Neil                       | 25/63=<br>0.39  | 40/200=<br>0.2    | 4/4=<br>1           | Yes      |
| Dravid                     | 37/63=<br>0.58  | 50/200=<br>0.25   | 2/4=<br>0.5         | Yes      |

### **K-Nearest Neighbor**

- Distance works naturally with numerical attributes  $d(Rina, Johm) = \sqrt{(35-37)^2 + (35-50)^2 + (3-2)^2} = 15.16$
- What if we have nominal attributes?

**Example**: Married

| Customer | Married | Income | No. credit<br>cards | Response |
|----------|---------|--------|---------------------|----------|
| Jay      | Yes     | 35K    | 3                   | No       |
| Rina     | No      | 50K    | 2                   | Yes      |
| Hema     | No      | 200K   | 1                   | No       |
| Tommy    | Yes     | 170K   | 1                   | No       |
| Neil     | No      | 40K    | 4                   | Yes      |
| Dravid   | Yes     | 50K    | 2                   | Yes      |

#### **Non-Numeric Data**

- Feature values are not always numbers
- > Example
  - Boolean values: Yes or no, presence or absence of an attribute
  - > Categories: Colors, educational attainment, gender
- ➤ How do these values factor into the computation of distance?

#### **Dealing with Non-Neumeric Data**

- Boolean values => convert to 0 or 1
  - > Applies to yes-no/presence-absence attributes
- Non-binary characterizations
  - ➤ Use natural progression when applicable; e.g., educational attainment: GS, HS, College, MS, PHD => 1,2,3,4,5
  - Assign arbitrary numbers but be careful about distances; e.g., color: red, yellow, blue => 1,2,3
- How about unavailable data? (0 value not always the answer)

### **Preprocessing Your Dataset**

- Dataset may need to be preprocessed to ensure more reliable data mining results
- Conversion of non-numeric data to numeric data
- Calibration of numeric data to reduce effects of disparate ranges
  - Particularly when using the Euclidean distance metric

## Distance measures

- How to determine similarity between data points
  - using various distance metrics
- Let x = (x1,...,xn) and y = (y1,...yn) be n-dimensional vectors of data points of objects g1 and g2
  - g1, g2 can be two different genes in microarray data
  - n can be the number of samples

## Distance measure

Euclidean distance

$$d(g_1, g_2) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Manhattan distance

$$d(g_1, g_2) = \sum_{i=1}^{n} |(x_i - y_i)|$$

Minkowski distance

$$d(g_1, g_2) = \sqrt[m]{\sum_{i=1}^{n} (x_i - y_i)^m}$$

## Correlation distance

Correlation distance

$$r_{xy} = \frac{Cov(X,Y)}{\sqrt{(Var(X) \cdot Var(Y))}}$$

- Cov(X,Y) stands for covariance of X and Y
  - degree to which two different variables are related
- Var(X) stands for variance of X
  - measurement of a sample differ from their mean

## Correlation distance

Variance

$$Var(X) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1}}$$

Covariance

$$CoVar(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{n-1}$$

- Positive covariance
  - two variables vary in the same way
- Negative covariance
  - one variable might increase when the other decreases
- Covariance is only suitable for heterogeneous pairs

## Correlation distance

Correlation

$$r_{xy} = \frac{Cov(X,Y)}{\sqrt{(Var(X) \cdot Var(Y))}}$$

- maximum value of 1 if X and Y are perfectly correlated
- minimum value of 0 if X and Y are exactly opposite

$$-d(X,Y) = (1 + r_{xy})/2$$

## Cosine distance

- Cosine distance
  - Used in document comparison

$$-\cos(\theta) = \frac{X^T Y}{\|X\| \|Y\|}$$

## Summary of similarity measures

- Using different measures for clustering can yield different clusters
- Euclidean distance and correlation distance are the most common choices of similarity measures for microarray data
- Euclidean vs Correlation Example
  - g1 = (1,2,3,4,5)
  - g2 = (100,200,300,400,500)
  - g3 = (5,4,3,2,1)
  - Which genes are similar according to the two different measures?

#### **k-NN Variations**

- Value of k
  - Larger k increases confidence in prediction
  - Note that if k is too large, decision may be skewed
- Weighted evaluation of nearest neighbors
  - Plain majority may unfairly skew decision
  - Revise algorithm so that closer neighbors have greater "vote weight"
- Other distance measures

#### **Other Distance Measures**

- City-block distance (Manhattan dist)
  - Add absolute value of differences
- Cosine similarity
  - Measure angle formed by the two samples (with the origin)
- Jaccard distance
  - Determine percentage of exact matches between the samples (not including unavailable data)
- Others

## **Distance-Weighted Nearest Neighbor Algorithm**

- Assign weights to the neighbors based on their 'distance' from the query point
- Weight 'may' be inverse square of the distances
- All training points may influence a particular instance

#### **How to Choose "K"?**



- For k = 1, ..., 5 point x gets classified correctly
  - red class
- For larger k classification of x is wrong
  - blue class

#### How to Choose "K"?

- $\triangleright$  Selecting the value of K in K-nearest neighbor is the most critical problem.
- $\triangleright$  A small value of K means that noise will have a higher influence on the result i.e., the probability of overfitting is very high.
- $\triangleright$  A large value of K makes it computationally expensive and defeats the basic idea behind KNN (that points that are near might have similar classes ).
- ightharpoonup A simple approach to select K is  $K = \sqrt{n}$
- $\triangleright$  It depends on individual cases, at times best process is to run through each possible value of K and test our result

## KNN algorithm Pseudo Code

- $\blacktriangleright$  Let  $(X_i, C_i)$  where  $i=1,2,\cdots,n$  be data points.  $X_i$  denotes feature values &  $C_i$  denotes labels for  $X_i$  for each i
- Assuming the number of classes as  $c, C_i \in \{1,2,3,\cdots,c\}$  for all values of i
- Let x be a point for which label is not known
- ➤ We would like to find the label class using k-nearest neighbor algorithms.

## KNN algorithm Pseudo Code

## greatlearning

- ightharpoonup Calculate  $d(x, x_i)$ ,  $i = 1, 2, \dots, n$ ; where d denotes the <u>Euclidean</u> <u>distance</u> between the points.
- $\blacktriangleright$  Let's consider a setup with n training samples, where  $x_i$  is the training data point.
- $\triangleright$  The training data points are categorized into c classes.
- Using KNN, we want to predict class for the new data point.
- > So, the first step is to calculate the distance(Euclidean) between the new data point and all the training data points.
- ➤ Next step is to arrange all the distances in non-decreasing order.
- Assuming a positive value of k and filtering k least values from the sorted list.
- $\triangleright$  Now, we have k top distances.
- $\triangleright$  Let  $k_i$  denotes no. of points belonging to the  $i^{th}$  class among k points.
- ightharpoonup If  $k_i > k_i$  for all  $i \neq j$  then put x in class i

## KNN algorithm: Example

- Let's consider the image shown here where we have two different target classes white and orange circles.
- ➤ We have total 26 training samples.
- Now we would like to predict the target class for the blue circle
- Considering k value as three, we need to calculate the similarity distance using similarity measures like Euclidean distance.
- ➤ If the similarity score is less which means the classes are close.
- In the image, we have calculated distance and placed the less distance circles to blue circle inside the Big circle.



## Condensed Nearest Neighbor Bata Reduction Rule

- Working on a big dataset can be an expensive task.
- Using the condensed nearest neighbor rule, we can clean our data and can sort the important observations out of it.
- This process can reduce the execution time of the machine learning algorithm. But there is a chance of accuracy reduction.
- > The steps to condense are to divide data points into the following:
  - Outliers: Observations that lie at an abnormal distance from all the data points. Most of these are extreme values. Removing these observations will increase the accuracy of the model.
  - Prototypes: Minimum points in training set required to recognize non-outlier points.
  - Absorbed points: These are points that are correctly identified to be non-outlier points.

## Nearest Neighbor Algorithm

- $\triangleright$  Nearest neighbor is a special case of k-nearest neighbor class.
- $\triangleright$  In this case k value is 1 (k=1).
- In this case, new data point target class will be assigned to the  $1^{st}$  closest neighbor

## Radius Neighbor Algorithm

- > KNN classifier is also considered to be an instance based learning / non-generalizing algorithm.
- It stores records of training data in a multidimensional space.
- For each new sample & particular value of K, it recalculates Euclidean distances and predicts the target class
- So, it does not create a generalized internal model
- Similar to KNN classifier, we can use Radius Neighbor Classifier for classification tasks.
- As in KNN classifier, we specify the value of K, similarly, in Radius neighbour classifier the value of R should be defined.
- The RNC classifier determines the target class based on the number of neighbors within a fixed radius, r, for each training data point.

## Radius Neighbor Algorithm

- Measuring similarity with distance between the points using Euclidian method
- ➤ Other distance measurement methods include Manhattan distance, Minkowski distance, Mahalanobis distance, Bhattacharya distance etc.
- Scikit-learn implements two different nearest neighbors classifiers:
  - K Nearest Neighbor Classifier
  - Radius Neighbor Classifier
- ➤ Radius Neighbor Classifier implements learning based on number of neighbors within a fixed radius 'r' of each training point, where 'r' is a floating point value specified by the user
- ➤ Determining the optimal K is the challenge in K Nearest Neighbor classifiers. In general, larger value of K supresses impact of noise but prone to majority class dominating
- Radius Neighbor Classifier may be a better choice when the sampling is not uniform. However, when there are many attributes and data is sparse, this method becomes ineffective due to curse of dimensionality

## Advantages and Disadvantages greatlearning

#### Advantages

- Makes no assumptions about distributions of classes in feature space
- > Don't need any prior knowledge about the structure of data in the training set
- No retraining is required if the new training pattern is added to the existing training set
- Can work for multi-classes simultaneously
- Easy to implement and understand
- Not impacted by outliers
- KNN executes quickly for small training data sets
- Performance asymptotically approaches the performance of the Bayes Classifier

#### Disadvantages

- Fixing the optimal value of K is a challenge
- Will not be effective when the class distributions overlap
- Does not output any models. Calculates distances for every new point (lazy learner)
- For every test data, the distance should be computed between test data and all the training data. Thus a lot of time may be needed for the testing
- Computationally intensive (O(N^2))



## Sample Code in Python

```
X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n neighbors=3)
neigh.fit(X, y) KNeighborsClassifier(...)
(neigh.predict([[1.1]])) [0]
(neigh.predict_proba([[0.9]])) [[ 0.66666667 0.33333333]]
```

## Summary

- KNN classification algorithm
  - Different distance measures
  - > KNN algorithm
  - Advantages and disadvantages
- Case study 1 (using KNN )
- Hands-on 1
- Case study 2 (comparing KNN with other classification methods)
- ► Hands-on 2

Thanks!