Soluzioni - Tutorato di Automi e Linguaggi Formali

Homework 1: DFA, NFA ed ϵ -NFA, conversioni ed operazioni su linguaggi

Gabriel Rovesti

Corso di Laurea in Informatica - Università degli Studi di Padova

Tutorato 1 - 10-03-2025

1 Progettazione di DFA

Esercizio 1. Progettare un DFA sull'alfabeto $\Sigma = \{0, 1\}$ che riconosca il linguaggio

$$L_1 = \{ w \in \{0, 1\}^* \mid w \text{ termina con } 10 \}.$$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

Soluzione. Per riconoscere le stringhe che terminano con 10, abbiamo bisogno di tracciare gli ultimi due simboli letti. Possiamo usare 3 stati:

- q_0 : lo stato iniziale, non abbiamo ancora letto nulla o l'ultimo simbolo non è rilevante
- q_1 : abbiamo appena letto un 1
- q₂: abbiamo letto 10 (stato finale)

Figure 1: DFA per il linguaggio $L_1 = \{w \in \{0,1\}^* \mid w \text{ termina con } 10\}$

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_0 & q_1 \\ q_1 & q_2 & q_1 \\ *q_2 & q_0 & q_1 \\ \end{array}$$

Esercizio 2. Progettare un DFA sull'alfabeto $\Sigma = \{0, 1\}$ che riconosca il linguaggio

 $L_2 = \{w \in \{0,1\}^* \mid w \text{ contiene un numero pari di 1 e un numero dispari di 0}\}.$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

Soluzione. Dobbiamo tenere traccia contemporaneamente sia della parità del numero di 1 che di 0. Questo porta a 4 stati:

- q_0 : numero pari di 1 e numero pari di 0 (stato iniziale)
- q_1 : numero pari di 1 e numero dispari di 0 (stato finale)
- q_2 : numero dispari di 1 e numero pari di 0
- q_3 : numero dispari di 1 e numero dispari di 0

Figure 2: DFA per il linguaggio $L_2 = \{w \in \{0,1\}^* w$ contiene un numero pari di 1 e un numero dispari di 0}

Tabella di transizione:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_1 & q_2 \\ *q_1 & q_0 & q_3 \\ q_2 & q_3 & q_0 \\ q_3 & q_2 & q_1 \\ \hline \end{array}$$

Esercizio 3. Progettare un DFA sull'alfabeto $\Sigma = \{0, 1\}$ che riconosca il linguaggio

 $L_3 = \{w \in \{0,1\}^* \mid \text{ogni occorrenza di } 0 \text{ è immediatamente seguita da almeno due } 1\}.$

a) Disegnare il diagramma degli stati.

b) Fornire la tabella di transizione completa.

Soluzione. Per questo linguaggio, dobbiamo tenere traccia di quanti 1 consecutivi abbiamo letto dopo un 0. Possiamo utilizzare 4 stati:

- q_0 : stato iniziale e accettante, non abbiamo letto 0 oppure ogni 0 letto è stato seguito da almeno due 1
- q_1 : abbiamo letto un 0 e dobbiamo leggere almeno due 1
- q_2 : abbiamo letto un 0 seguito da un solo 1, quindi dobbiamo leggere almeno un altro 1
- q_3 : stato pozzo, la stringa non può più essere accettata (abbiamo violato la condizione)

Figure 3: DFA per il linguaggio $L_3 = \{w \in \{0,1\}^* \mid \text{ogni occorrenza di } 0 \text{ è immediatamente seguita da almeno due } 1\}$

Tabella di transizione:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow *q_0 & q_1 & q_0 \\ q_1 & q_3 & q_2 \\ q_2 & q_3 & q_0 \\ q_3 & q_3 & q_3 \end{array}$$

2 Progettazione di NFA

Esercizio 4. Progettare un NFA sull'alfabeto $\Sigma = \{a, b\}$ che riconosca il linguaggio

$$L_4 = \{w \in \{a, b\}^* \mid w \text{ contiene la sottostringa } aba\}.$$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

Soluzione. Per riconoscere le stringhe che contengono la sottostringa *aba*, possiamo utilizzare un NFA con 4 stati che traccia il progresso nella lettura di questa sottostringa:

- q_0 : lo stato iniziale
- q_1 : abbiamo letto una 'a'
- q_2 : abbiamo letto 'ab'
- q_3 : abbiamo letto 'aba' (stato finale)

Figure 4: NFA per il linguaggio $L_4 = \{w \in \{a,b\}^* \mid w \text{ contiene la sottostringa } aba\}$

Tabella di transizione:

$$\begin{array}{c|ccccc} & a & b \\ \hline \to q_0 & \{q_0, q_1\} & \{q_0\} \\ q_1 & \emptyset & \{q_2\} \\ q_2 & \{q_3\} & \emptyset \\ *q_3 & \{q_3\} & \{q_3\} \end{array}$$

Esercizio 5. Progettare un NFA sull'alfabeto $\Sigma = \{0, 1\}$ che riconosca il linguaggio

$$L_5 = \{w \in \{0,1\}^* \mid w \text{ inizia con 1 oppure termina con 0}\}.$$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

Soluzione. Questo è un caso ideale per sfruttare il non determinismo. Possiamo costruire un NFA con due "componenti" separate: una che riconosce le stringhe che iniziano con 1 e un'altra che riconosce le stringhe che terminano con 0.

	0	1
$\rightarrow q_0$	$\{q_2\}$	$\{q_1,q_2\}$
$*q_1$	$\{q_1\}$	$\{q_1\}$
q_2	$\{q_2,q_3\}$	$\{q_2\}$
$*q_3$	$ \{q_2, q_3\} $	$\{q_2\}$

Figure 5: NFA per il linguaggio $L_5 = \{w \in \{0,1\}^* \mid w \text{ inizia con 1 oppure termina con 0}\}$

3 Conversione da NFA a DFA

Esercizio 6. Si consideri il seguente NFA N sull'alfabeto $\Sigma = \{a, b\}$:

$$\begin{array}{c|cccc}
 & a & b \\
 & \to q_0 & \{q_0, q_1\} & \{q_0\} \\
 & q_1 & \emptyset & \{q_2\} \\
 & *q_2 & \{q_2\} & \{q_1\}
\end{array}$$

- a) Applicare la costruzione per sottoinsiemi per ottenere il DFA equivalente D.
- b) Disegnare il diagramma degli stati del DFA ottenuto.
- c) Determinare il linguaggio riconosciuto dall'automa.

Soluzione. Applichiamo la costruzione per sottoinsiemi:

- Stato iniziale del DFA: $\{q_0\}$
- Per $\{q_0\}$:

$$- \delta_D(\{q_0\}, a) = \delta_N(q_0, a) = \{q_0, q_1\}$$
$$- \delta_D(\{q_0\}, b) = \delta_N(q_0, b) = \{q_0\}$$

• Per $\{q_0, q_1\}$:

$$- \delta_D(\{q_0, q_1\}, a) = \delta_N(q_0, a) \cup \delta_N(q_1, a) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$$
$$- \delta_D(\{q_0, q_1\}, b) = \delta_N(q_0, b) \cup \delta_N(q_1, b) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$$

• Per $\{q_0, q_2\}$:

$$- \delta_D(\{q_0, q_2\}, a) = \delta_N(q_0, a) \cup \delta_N(q_2, a) = \{q_0, q_1\} \cup \{q_2\} = \{q_0, q_1, q_2\}$$

$$- \delta_D(\{q_0, q_2\}, b) = \delta_N(q_0, b) \cup \delta_N(q_2, b) = \{q_0\} \cup \{q_1\} = \{q_0, q_1\}$$

• Per $\{q_0, q_1, q_2\}$:

$$-\delta_D(\{q_0,q_1,q_2\},a) = \delta_N(q_0,a) \cup \delta_N(q_1,a) \cup \delta_N(q_2,a) = \{q_0,q_1\} \cup \emptyset \cup \{q_2\} = \{q_0,q_1,q_2\}$$

$$-\delta_D(\{q_0, q_1, q_2\}, b) = \delta_N(q_0, b) \cup \delta_N(q_1, b) \cup \delta_N(q_2, b) = \{q_0\} \cup \{q_2\} \cup \{q_1\} = \{q_0, q_1, q_2\}$$

Il DFA risultante ha i seguenti stati:

- $\{q_0\}$ stato iniziale
- $\{q_0, q_1\}$
- $\{q_0,q_1,q_2\}$ stato accettante (contiene q_2)

Figure 6: DFA equivalente ottenuto mediante costruzione per sottoinsiemi

Tabella di transizione del DFA:

Il linguaggio riconosciuto dall'automa è l'insieme delle stringhe che contengono la sottostringa 'ab'. Infatti, analizzando l'NFA originale, vediamo che:

- Lo stato q_0 ha un self-loop su se stesso con 'a' e 'b'
- Da q_0 possiamo passare a q_1 leggendo 'a'
- Da q_1 possiamo passare a q_2 (finale) leggendo 'b'
- Una volta in q_2 , rimaniamo in uno stato accettante

Quindi, $L(N) = \{w \in \{a, b\}^* \mid w \text{ contiene la sottostringa } ab\}.$

4 ε-NFA e ε-chiusure

Esercizio 7. Dato il seguente ϵ -NFA sull'alfabeto $\Sigma = \{a, b\}$:

	a	b	ϵ
$\rightarrow q_0$	Ø	Ø	$\{q_1,q_3\}$
q_1	$\{q_2\}$	Ø	Ø
q_2	Ø	$\{q_4\}$	$\{q_3\}$
q_3	$\{q_5\}$	Ø	Ø
q_4	Ø	$\{q_5\}$	Ø
$*q_5$	Ø	Ø	Ø

- a) Calcolare l' ϵ -chiusura di ciascuno stato: ECLOSE (q_0) , ECLOSE (q_1) , ECLOSE (q_2) , ECLOSE (q_3) , ECLOSE (q_4) , ECLOSE (q_5) .
- b) Convertire l' ϵ -NFA in un NFA equivalente senza ϵ -transizioni, fornendo la tabella di transizione completa.

Soluzione.

- a) Calcoliamo le ϵ -chiusure:
 - ECLOSE $(q_0) = \{q_0, q_1, q_3\}$ (da q_0 possiamo raggiungere q_1 e q_3 tramite ϵ -transizioni)
 - $ECLOSE(q_1) = \{q_1\}$ (non ci sono ϵ -transizioni da q_1)
 - ECLOSE $(q_2) = \{q_2, q_3\}$ (da q_2 possiamo raggiungere q_3 tramite ϵ -transizione)
 - ECLOSE $(q_3) = \{q_3\}$ (non ci sono ϵ -transizioni da q_3)
 - ECLOSE(q_4) = {q_4} (non ci sono ϵ -transizioni da q_4)
 - ECLOSE $(q_5) = \{q_5\}$ (non ci sono ϵ -transizioni da q_5)
- b) Per convertire l' ϵ -NFA in un NFA senza ϵ -transizioni, utilizziamo la seguente regola: $\delta'(q, a) = \bigcup_{p \in \text{ECLOSE}(q)} \text{ECLOSE}(\delta(p, a))$, dove δ' è la funzione di transizione del nuovo NFA e δ è quella dell' ϵ -NFA originale.

Tabella di transizione del nuovo NFA:

Figure 7: NFA senza ϵ -transizioni equivalente all' ϵ -NFA originale

	a	b
$\rightarrow q_0$	$\{q_2, q_3, q_5\}$	Ø
q_1	$\{q_2,q_3\}$	Ø
q_2	$\{q_5\}$	$\{q_4\}$
q_3	$\{q_5\}$	Ø
q_4	Ø	$\{q_5\}$
$*q_5$	Ø	Ø

5 Operazioni su Linguaggi e Automi

Esercizio 8. Siano $L_1 = \{w \in \{0,1\}^* \mid w \text{ inizia con } 0\} \text{ e } L_2 = \{w \in \{0,1\}^* \mid w \text{ termina con } 1\}.$

- a) Progettare un DFA che riconosca L_1 .
- b) Progettare un DFA che riconosca L_2 .
- c) Utilizzando le operazioni sui linguaggi regolari, costruire un NFA che riconosca il linguaggio $L_1 \cup L_2$.
- d) Convertire il NFA ottenuto in un DFA equivalente mediante la costruzione per sottoinsiemi.

Soluzione.

a) DFA per $L_1 = \{ w \in \{0,1\}^* \mid w \text{ inizia con } 0 \}$: Tabella di transizione:

Figure 8: DFA per il linguaggio $L_1 = \{w \in \{0,1\}^* \mid w \text{ inizia con } 0\}$

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_1 & q_2 \\ *q_1 & q_1 & q_1 \\ q_2 & q_2 & q_2 \end{array}$$

b) DFA per $L_2 = \{w \in \{0,1\}^* \mid w \text{ termina con } 1\}$:

Figure 9: DFA per il linguaggio $L_2 = \{w \in \{0,1\}^* \mid w \text{ termina con } 1\}$

Tabella di transizione:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow r_0 & r_1 & r_2 \\ \hline r_1 & r_1 & r_2 \\ *r_2 & r_1 & r_2 \\ \end{array}$$

c) NFA per $L_1 \cup L_2$:

Per costruire un NFA che riconosca l'unione di due linguaggi regolari, creiamo un nuovo stato iniziale che ha ϵ -transizioni verso gli stati iniziali dei due automi originali.

Tabella di transizione del NFA:

	0	1	ϵ
$\rightarrow s_0$	Ø	Ø	$\{q_0, r_0\}$
q_0	$\{q_1\}$	$\{q_2\}$	Ø
$*q_1$	$\{q_1\}$	$\{q_1\}$	Ø
q_2	$\{q_2\}$	$\{q_2\}$	Ø
r_0	$\{r_1\}$	$\{r_2\}$	Ø
r_1	$\{r_1\}$	$\{r_2\}$	Ø
$*r_2$	$\{r_1\}$	$\{r_2\}$	Ø

Figure 10: NFA per il linguaggio $L_1 \cup L_2$

- d) Conversione del NFA ottenuto in un DFA mediante la costruzione per sottoinsiemi: Prima calcoliamo le ϵ -chiusure:
 - ECLOSE $(s_0) = \{s_0, q_0, r_0\}$
 - ECLOSE $(q_0) = \{q_0\}$
 - ECLOSE $(q_1) = \{q_1\}$
 - $ECLOSE(q_2) = \{q_2\}$
 - ECLOSE $(r_0) = \{r_0\}$
 - ECLOSE $(r_1) = \{r_1\}$
 - $ECLOSE(r_2) = \{r_2\}$

Figure 11: DFA ottenuto dal NFA per $L_1 \cup L_2$ mediante la costruzione per sottoinsiemi Tabella di transizione del DFA:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow \{s_0, q_0, r_0\} & \{q_1, r_1\} & \{q_2, r_2\} \\ *\{q_1, r_1\} & \{q_1, r_1\} & \{q_1, r_2\} \\ *\{q_1, r_2\} & \{q_1, r_1\} & \{q_1, r_2\} \\ *\{q_2, r_2\} & \{q_2, r_1\} & \{q_2, r_2\} \\ \{q_2, r_1\} & \{q_2, r_1\} & \{q_2, r_2\} \end{array}$$

Esercizio 9. Siano $L_1 = \{w \in \{a,b\}^* \mid \text{ogni } a \text{ è seguita da almeno una } b\} \text{ e } L_2 = \{w \in \{a,b\}^* \mid w \text{ contiene la sottostringa } ab\}.$

- a) Progettare un DFA per L_1 e un NFA per L_2 .
- b) Costruire un NFA che riconosca $L_1 \cap L_2$.
- c) Qual è l'interpretazione di questo linguaggio in linguaggio naturale?

Soluzione.

- a) DFA per L₁ = {w ∈ {a,b}* | ogni a è seguita da almeno una b}:
 Il linguaggio L₁ contiene stringhe in cui ogni 'a' è seguita da almeno una 'b'. Possiamo usare 2 stati:
 - q_0 : stato iniziale e accettante, tutte le 'a' viste finora sono state seguite da almeno una 'b' (anche se non abbiamo visto nessuna 'a')
 - q_1 : abbiamo visto una 'a' che non è ancora stata seguita da una 'b'

Figure 12: DFA per il linguaggio $L_1 = \{w \in \{a,b\}^* \mid \text{ogni } a \text{ è seguita da almeno una } b\}$

Tabella di transizione:

$$\begin{array}{c|cccc}
 & a & b \\
 & \rightarrow *q_0 & q_1 & q_0 \\
 & q_1 & q_1 & q_0
\end{array}$$

NFA per $L_2 = \{w \in \{a, b\}^* \mid w \text{ contiene la sottostringa } ab\}$:

$$\begin{array}{c|ccccc} & a & b \\ \hline \to r_0 & \{r_0, r_1\} & \{r_0\} \\ \hline r_1 & \emptyset & \{r_2\} \\ *r_2 & \{r_2\} & \{r_2\} \end{array}$$

Figure 13: NFA per il linguaggio $L_2 = \{w \in \{a,b\}^* \mid w \text{ contiene la sottostringa } ab\}$

Figure 14: NFA per il linguaggio $L_1 \cap L_2$

b) NFA per $L_1 \cap L_2$:

Per costruire un NFA che riconosca l'intersezione di due linguaggi regolari, possiamo utilizzare il prodotto cartesiano degli stati dei due automi originali.

Tabella di transizione:

$$\begin{array}{c|cccc} & & & & & & & & & & \\ \hline \rightarrow (q_0, r_0) & \{(q_1, r_0), (q_1, r_1)\} & \{(q_0, r_0)\} \\ (q_1, r_0) & \{(q_1, r_0), (q_1, r_1)\} & \{(q_0, r_0)\} \\ (q_1, r_1) & & \emptyset & \{(q_0, r_2)\} \\ *(q_0, r_2) & \{(q_1, r_2)\} & \{(q_0, r_2)\} \\ (q_1, r_2) & \{(q_1, r_2)\} & \{(q_0, r_2)\} \end{array}$$

c) Interpretazione del linguaggio $L_1 \cap L_2$ in linguaggio naturale:

Il linguaggio $L_1 \cap L_2$ rappresenta l'insieme di tutte le stringhe che soddisfano entrambe le seguenti condizioni:

- Ogni 'a' è seguita da almeno una 'b'
- La stringa contiene la sottostringa 'ab'

In linguaggio naturale, possiamo descriverlo come: "L'insieme delle stringhe che contengono almeno una volta la sottostringa 'ab' e dove ogni 'a' nella stringa è seguita (non necessariamente immediatamente) da almeno una 'b'."

Una caratterizzazione alternativa potrebbe essere: "L'insieme delle stringhe che contengono almeno una 'a' seguita da almeno una 'b' e dove ogni 'a' è eventualmente seguita da una 'b'."

Esercizio 10. Sia $L = \{w \in \{0,1\}^* \mid w \text{ contiene un numero pari di } 0\}.$

- a) Progettare un DFA A che riconosca L.
- b) Costruire un DFA che riconosca il complemento di L, ovvero $\overline{L} = \{w \in \{0,1\}^* \mid w \text{ contiene un numero dispari di } 0\}.$
- c) Costruire un NFA che riconosca $L^* = \{w_1 w_2 \dots w_k \mid k \geq 0 \text{ e } w_i \in L \text{ per ogni } i\}.$

Soluzione.

a) DFA per $L = \{w \in \{0,1\}^* \mid w \text{ contiene un numero pari di } 0\}$:

Figure 15: DFA per il linguaggio $L = \{w \in \{0,1\}^* \mid w \text{ contiene un numero pari di } 0\}$

Tabella di transizione:

b) DFA per $\overline{L} = \{w \in \{0,1\}^* \mid w \text{ contiene un numero dispari di } 0\}$:

Per ottenere un DFA che riconosca il complemento di un linguaggio, basta invertire gli stati finali e non finali nel DFA originale.

Figure 16: DFA per il linguaggio $\overline{L} = \{w \in \{0,1\}^* \mid w \text{ contiene un numero dispari di } 0\}$

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_1 & q_0 \\ *q_1 & q_0 & q_1 \end{array}$$

Figure 17: NFA per il linguaggio L^*

c) NFA per $L^* = \{w_1 w_2 \dots w_k \mid k \geq 0 \text{ e } w_i \in L \text{ per ogni } i\}$:

Per costruire un NFA che riconosca L^* , possiamo partire dal DFA che riconosce L e aggiungere un nuovo stato iniziale che è anche finale, con ϵ -transizioni opportune.

Tabella di transizione:

Notiamo che $L^* = \Sigma^*$ in questo caso particolare, poiché L contiene la stringa vuota (il numero di 0 nella stringa vuota è 0, che è pari) e quindi L^* contiene tutte le stringhe sull'alfabeto $\{0,1\}$.