

Rekursif

The important skill for CP

welly@kata.ai

Welly Tambunan
Head of Engineering and Data - kata.ai

Basic

Perkenalan terhadap rekursif

Prerequisite

- Looping
- Function

B

Motivasi

- Cool Guy
- Problem Solving Paradigm
 - Backtracking, Complete Search and Brute Force
 - o DFS
 - Divide and Conquer
 - Dynamic Programming

Pengenalan

- Rekursi adalah sebuah fungsi menyelesaikan sebuah permasalahan dengan cara memanggil diri sendiri
- Jika masalah sudah cukup kecil, maka fungsi rekursi dapat langsung menghasilkan jawaban
- Jika masalah terlalu besar, maka fungsi akan memanggil diri sendiri dengan cakupan masalah yang lebih kecil.

Pentingnya Rekursi

- Banyak permasalahan yang lebih mudah diselesaikan dan pendek kodenya jika menggunakan pendekatan rekursif.
- Strategi iteratif (for loop) dan rekursif sama-sama melakukan sesuatu yang berulang-ulang.
- Namun, terkadang solusi iteratif untuk suatu masalah sangat sulit untuk dipikirkan dan memerlukan teknik khusus.
- Dengan solusi rekursif, mungkin saja lebih mudah untuk melihat dan merancang alur penyelesaiannya.

Strategi Rekursif

- Terdapat dua hal yang perlu dipikirkan ketika menggunakan strategi rekursif:
 - Base case
 Apa kasus paling sederhana dari permasalahan ini?
 - Recurrence relation
 Bagaimana hubungan rekursif dari persoalan ini dengan persoalan serupa yang lebih kecil?

Factorial

$$n! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1$$

```
factorial(0) = 1
factorial(n) = n * factorial(n-1) [for n>0]
```


CodingBat code practice

Java

Python

Recursion-1

chance

Basic recursion problems. Recursion strategy: first test for one or two base cases that are so simple, the answer can be returned immediately. Otherwise, make a recursive a call for a smaller case (that is, a case which is a step towards the base case). Assume that the recursive call works correctly, and fix up what it returns to make the answer.

√ factorial H	√bunnyEars H	fibonacci
√bunnyEars2	√triangle	sumDigits
√count7	√count8	√ powerN
√ countX	√ countHi	
√ changePi	√noX	√array6
√array11	√array220	√allStar
√ pairStar	√endX	countPairs
√countAbc	√count11	stringClean
√countHi2		√nestParen
√strCount	strCopies	√strDist

Kompleksitas

- Baik secara iteratif maupun rekursif, kompleksitasnya adalah O(N).
- Setiap pemanggilan rekursif membutuhkan alokasi memori, sehingga jika pemanggilannya semakin dalam, semakin banyak tambahan memori yang digunakan.
- Waktu untuk mengalokasikan memori juga menyebabkan solusi rekursif cenderung bekerja lebih lambat dibandingkan solusi iteratif.

Intermediate

Multiple related decision

R

Multiple Related Decisions

	Α	В	С	D	Е	F	G	Н
1	*	*	*	*	*			
2	*			30	*			84
3	*	S	*	*	*			
4	*				*	*	*	*
5	*		*					*
6	*				*			*
7	*	*	*	*	*		Е	*
8					*	*	*	*

Must know!

- Permutasi
- Kombinasi
- Power Set
- Binary Search
- Merge Sort
- Quick Sort

Latihan

Advanced

Complete Search (Brute force and Backtracking) DP (Top Down + Memo)

Fibonacci

```
Fibonacci[0] = 0
Fibonacci[1] = 1
Fibonacci[n] = Fibonacci[n - 2] + Fibonacci[n - 1]
```

a

Knapsack

Given an array C[1..K] of distinct positive integers, count how many combinations of integers in C add up to exactly N.

a

Knapsack

Given an array of ints, is it possible to choose a group of some of the ints, such that the group sums to the given target?

groupSum(0, [2, 4, 8], 10) \rightarrow true groupSum(0, [2, 4, 8], 14) \rightarrow true groupSum(0, [2, 4, 8], 9) \rightarrow false

Fibonacci

3

CodingBat code practice

Java

Python

Recursion-2

chance

Harder recursion problems. Currently, these are all recursive backtracking problems with arrays.

- √groupSum H
- √groupSum5
- √splitOdd10

- √groupSum6
- √split53

- √groupNoAdj
- √ splitArray

