次梯度

1 次梯度与次微分

定义 1. g 是凸函数 f 在 $x \in \text{dom } f$ 处的次梯度, 如果满足

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}) \quad \forall \ \mathbf{y} \in \text{dom } f$$

定义 2. f(x) 的次微分 $\partial f(x)$ 是所有次梯度的集合,即

$$\partial f(\mathbf{x}) = \{\mathbf{g} | \mathbf{g}^T(\mathbf{y} - \mathbf{x}) \le f(\mathbf{y}) - f(\mathbf{x}), \forall \mathbf{y} \in \text{dom} f\}$$

性质 1. $\partial f(\mathbf{x})$ 是一个闭凸集, 并且可以是空集

注 1. 根据定义,次微分是一些半空间的交,因此是一个凸集,当交集为空时,该集合为空

性质 2. 如果 $\mathbf{x} \in \text{int dom } f$, 则 $\partial f(\mathbf{x})$ 非空有界

证明. 当 $\mathbf{x} \in \text{int dom } f$ 时, $(\mathbf{x}, f(\mathbf{x}))$ 是凸集 epi f 的边界,因此在 $(\mathbf{x}, f(\mathbf{x}))$ 存在一个支撑超平面,

$$\begin{bmatrix} \mathbf{a} \\ b \end{bmatrix}^T \left(\begin{bmatrix} \mathbf{y} \\ t \end{bmatrix} - \begin{bmatrix} \mathbf{x} \\ f(\mathbf{x}) \end{bmatrix} \right) \le 0, \quad \forall \ (\mathbf{y}, t) \in \text{epi } f$$

即

$$\mathbf{a}^T \mathbf{y} + bt \le \mathbf{a}^T \mathbf{x} + bf(\mathbf{x}) \quad \forall \ (\mathbf{y}, t) \in \text{epi } f$$

若 b > 0, 当 $t \to \infty$ 时不等式不成立

若 b=0,不等式变为 $\mathbf{a}^T\mathbf{y} \leq \mathbf{a}^T\mathbf{x}$,令 $\mathbf{y}=\mathbf{x}+\epsilon\mathbf{a}$,其中 $\epsilon>0$ 且充分小,此时不等式将不成立

因此 b < 0,对不等式做一个变形得到

$$-\frac{\mathbf{a}^T}{b}(\mathbf{y} - \mathbf{x}) \le f(\mathbf{y}) - f(\mathbf{x})$$

由次梯度的定义可以得到, $-\frac{\mathbf{a}^T}{b} \in \partial f(\mathbf{x})$,因此当 $\mathbf{x} \in \text{int dom } f$ 时,集合 $\partial f(\mathbf{x})$ 非空。下证 $\partial f(\mathbf{x})$ 有界

当 $\mathbf{x} \in \text{int dom } f$ 时,取 r > 0 且充分小,定义如下包含 2n 个点的集合

$$B = \{\mathbf{x} \pm r\mathbf{e}_k | k = 1, ..., n\} \subset \text{dom } f$$

并定义 $M = \max_{\mathbf{y} \in B} f(\mathbf{y}) < \infty$, 对任意 $\mathbf{g} \in \partial f(\mathbf{x})$, 总存在 $\mathbf{y} \in B$ 满足

$$r\|\mathbf{g}\|_{\infty} = \mathbf{g}^T(\mathbf{y} - \mathbf{x})$$

若 $\|\mathbf{g}\|_{\infty} = |g_k|$, 则取 $\mathbf{y} = \mathbf{x} + r \operatorname{sign}(g_k) \mathbf{e}_k$ 。因为 \mathbf{g} 是次梯度,则满足

$$f(\mathbf{x}) + r \|\mathbf{g}\|_{\infty} = f(\mathbf{x}) + \mathbf{g}^{T}(\mathbf{y} - \mathbf{x}) \le f(\mathbf{y}) \le M$$

可以得到

$$\|\mathbf{g}\|_{\infty} \leq \frac{M{-}f(\mathbf{x})}{r} \quad \forall \ \mathbf{g} \in \partial f(\mathbf{x})$$

因此 $\partial f(\mathbf{x})$ 是有界的

1.1 可次微分计算例子

例 1. 绝对值函数 f(x) = |x|

因为 f(x) 只有在 x=0 处不可导,因此只需单独考虑这点的次微分,当 x>0 时,f(x)=x,导数即为次微分,此时 $\partial f(x)=1$,同理可得当 x<1 时, $\partial f(x)=-1$ 。当 x=0 时利用定义求次微分

$$f(y) \ge f(x) + g(y - x)$$

即

$$|y| \ge gy$$

当 y=0 时,不等式恒成立,当 y>0 时, $g\leq 1$,当 y<0 时, $g\geq -1$,因此当 x=0 是, $\partial f(x)\in [-1,1]$ 。综上

$$\partial f(x) = \begin{cases} 1 & x > 0 \\ [-1, 1] & x = 0 \\ -1 & x < -1 \end{cases}$$

例 2. 欧几里得范数 $f(\mathbf{x}) = ||\mathbf{x}||_2$

1.2 不可次微分例子

例 3. $f: \mathbb{R} \to \mathbb{R}$, dom $f = \mathbb{R}_+$, 其定义如下

$$f(x) = \begin{cases} 1x = 0\\ 0x = 1 \end{cases}$$

在 x=0 处不可次微分

例 4. $f: \mathbb{R} \to \mathbb{R}$, dom $f = \mathbb{R}_+$, 其定义如下

$$f(x) = -\sqrt{x}$$

在 x=0 处不可次微分

由定义 $g \in \partial f(x)$

$$f(y) \ge f(x) + g(y - x) \quad \forall \ y \in \text{dom } f$$

代入 x=0, 即

$$f(y) \geq gy \quad \Longleftrightarrow \quad g \leq -\sqrt{\frac{1}{y}} \quad \forall \ y \in \mathrm{dom} \ f$$

得到 $g < -\infty$, 因此在 x = 0 处不可次微分

1.3 次微分的单调性

凸函数的次微分是单调运算,即

$$(\mathbf{u} - \mathbf{v})^T (\mathbf{x} - \mathbf{y}) \ge 0 \forall \mathbf{x}, \mathbf{y}, \mathbf{u} \in \partial f(\mathbf{x}), \mathbf{v} \in \partial f(\mathbf{y})$$

证明. 由次微分的定义可得

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{u}^T(\mathbf{y} - \mathbf{x})$$
 (1)

$$f(\mathbf{x}) \ge f(\mathbf{y}) + \mathbf{v}^T(\mathbf{x} - \mathbf{y})$$
 (2)

(1)+(2) 即得

$$(\mathbf{u} - \mathbf{v})^T (\mathbf{x} - \mathbf{y})$$

1.4 次梯度和水平集

1.5 次梯度计算运算规则

1.5.1 可导函数

如果函数 f 是可导的,则

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$$

3

1.5.2 非负线性组合

如果 $f(\mathbf{x}) = \alpha_1 f_1(x) + \alpha_2 f_2(x), \alpha_1, \alpha_2 \ge 0$,则

$$\partial f(\mathbf{x}) = \alpha_1 \partial f_1(\mathbf{x}) + \alpha_2 \partial f_2(\mathbf{x})$$

注 2. 等式右边为集合的加法

1.5.3 对变量的仿射变换

如果 $f(\mathbf{x}) = h(A\mathbf{x} + \mathbf{b})$,则

$$\partial f(\mathbf{x}) = A^T \partial h(A\mathbf{x} + \mathbf{b})$$

1.5.4 逐点最大

$$f(\mathbf{x}) = \max\{f_1(\mathbf{x}), ..., f_m(\mathbf{x})\}\$$

定义 $I(\mathbf{x}) = \{i | f_i(\mathbf{x}) = f(x)\}$

弱梯度计算规则: 选取任意 $k \in I(\mathbf{x})$, 计算 f_k 在点 \mathbf{x} 的其中一个梯度 强梯度计算规则: $\partial f(\mathbf{x}) = \operatorname{conv}\{\bigcup_{i \in I(\mathbf{x})} \partial f_i(\mathbf{x})\}$ 。即 active 函数在 \mathbf{x} 点的次 微分的并集的凸包,如果 f_i 是可导的,则 $\partial f(\mathbf{x}) = \operatorname{conv}\{\nabla f_i(\mathbf{x})|i \in I(\mathbf{x})\}$

例 5. $f(\mathbf{x}) = \max_{i=1,\dots,m} (\mathbf{a}_i^T \mathbf{x} + b_i)$, 则在 \mathbf{x} 点的次微分为

$$\partial f(\mathbf{x}) = \operatorname{conv}\{\mathbf{a}_i | i \in I(\mathbf{x})\}\$$

是一个多面体, 其中 $I(\mathbf{x}) = \{i | \mathbf{a}_i^T \mathbf{x} + b_i = f(\mathbf{x})\}$

1.5.5 最小化

已知函数 $f(\mathbf{x}) = \inf_{\mathbf{y}} h(\mathbf{x}, \mathbf{y})$,并且 h 关于 (\mathbf{x}, \mathbf{y}) 联合凸。在 $\hat{\mathbf{x}}$ 处的次梯度的计算方式为

- 1. 假设最小值存在, 计算 $h(\hat{\mathbf{x}}, \mathbf{y})$ 的最小值 $\hat{\mathbf{y}}$
- 2. 计算次梯度 $(\mathbf{g}, \mathbf{0}) \in \partial h(\hat{\mathbf{x}}, \hat{\mathbf{y}})$

则 g 即为 f(x) 的一个次梯度

证明. 因为 $(\mathbf{g}, \mathbf{0}) \in \partial h(\hat{\mathbf{x}}, \hat{\mathbf{y}})$,则由次梯度的定义可得,对 $\forall \mathbf{x}, \mathbf{y}$ 成立

$$h(\mathbf{x}, \mathbf{y}) \ge h(\hat{\mathbf{x}}, \hat{\mathbf{y}}) + \mathbf{g}^T(\mathbf{x} - \hat{\mathbf{x}}) + \mathbf{0}^T(\mathbf{y} - \hat{\mathbf{y}})$$

又因为 $h(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \inf_{\mathbf{y}} h(\hat{\mathbf{x}}, \mathbf{y}) = f(\hat{\mathbf{x}})$, 上述不等式变为

$$h(\mathbf{x}, \mathbf{y}) \ge f(\hat{\mathbf{x}}) + \mathbf{g}^T(\mathbf{x} - \hat{\mathbf{x}})$$

对 ∀ x,y 成立, 因此

$$f(\mathbf{x}) = \inf_{\mathbf{y}} h(\mathbf{x}, \mathbf{y}) \ge f(\hat{\mathbf{x}}) + \mathbf{g}^{T}(\mathbf{x} - \hat{\mathbf{x}})$$

即 g 是 $f(\mathbf{x})$ 的次梯度

例 6. 计算 $f(\mathbf{x}) = \inf_{\mathbf{y} \in C} \|\mathbf{x} - \mathbf{y}\|_2$, 其中 C 是闭凸集

 $h(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2$, 当 $\hat{\mathbf{x}} \in C$ 时, $\hat{\mathbf{y}} = \arg\min_{\mathbf{y}} \|\hat{\mathbf{x}} - \mathbf{y}\| = \hat{\mathbf{x}}$, 此时 $h(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \|\hat{\mathbf{x}} - \hat{\mathbf{x}}\|_2 = 0$,根据次梯度的定义

$$h(\mathbf{x}, \mathbf{y}) \ge h(\hat{\mathbf{x}}, \hat{\mathbf{y}}) + \mathbf{g}^T(\mathbf{x} - \hat{\mathbf{x}}) + \mathbf{0}^T(\mathbf{y} - \hat{\mathbf{y}}) \quad \forall \ \mathbf{x}, \mathbf{y}$$

即

$$\|\mathbf{x} - \mathbf{y}\|_2 \ge \mathbf{g}^T (\mathbf{x} - \hat{\mathbf{x}}) \quad \forall \ \mathbf{x}, \mathbf{y}$$

取 $\mathbf{g} = 0$, 此时 $\|\mathbf{x} - \mathbf{y}\|_2 \ge 0$ 对所有 \mathbf{x}, \mathbf{y} 恒成立

1.5.6 组合

已知函数 $f(\mathbf{x}) = h(f_1(\mathbf{x}), ..., f_k(\mathbf{x}))$,其中 h 是单调不减凸函数, f_i 也为凸函数。在 $\hat{\mathbf{x}}$ 处的次梯度的计算方式为

- 1. 计算 $\mathbf{z} \in \partial h(f_1(\hat{\mathbf{x}}), ..., f_k(\hat{\mathbf{x}}))$ 和 $g_i \in \partial f_i(\hat{\mathbf{x}})$
- 2. 计算次梯度 $\mathbf{g} = z_1 g_1 + ... + z_k g_k \in \partial f(\hat{\mathbf{x}})$

证明. 因为 $g_i \in \partial f_i(\hat{\mathbf{x}})$, 则

$$f_i(\mathbf{x}) \ge f_i(\hat{\mathbf{x}}) + \mathbf{g}_i^T(\mathbf{x} - \hat{\mathbf{x}})$$

又因为 f 单调不减,因此

$$f(\mathbf{x}) = h(f_1(\mathbf{x}), ..., f_k(\mathbf{x}))$$

$$\geq h(f_1(\mathbf{x}) + \mathbf{g}_1^T(\mathbf{x} - \hat{\mathbf{x}}), ..., f_k(\mathbf{x}) + \mathbf{g}_k^T(\mathbf{x} - \hat{\mathbf{x}}))$$

因为 $\mathbf{z} \in \partial h(f_1(\hat{\mathbf{x}}), ..., f_k(\hat{\mathbf{x}}))$,可以得到

$$\begin{split} h(f_1(\mathbf{x}) + \mathbf{g}_1^T(\mathbf{x} - \hat{\mathbf{x}}), ..., f_k(\mathbf{x}) + \mathbf{g}_k^T(\mathbf{x} - \hat{\mathbf{x}})) &\geq h(f_1(\hat{\mathbf{x}}), ..., f_k(\hat{\mathbf{x}})) + \mathbf{z}^T \begin{bmatrix} \mathbf{g}_1^T(\mathbf{x} - \hat{\mathbf{x}}) \\ \vdots \\ \mathbf{g}_k^T(\mathbf{x} - \hat{\mathbf{x}}) \end{bmatrix} \\ &= h(f_1(\hat{\mathbf{x}}), ..., f_k(\hat{\mathbf{x}})) + (z_1 \mathbf{g}_1 + ... + z_k \mathbf{g}_k)^T(\mathbf{x} - \hat{\mathbf{x}}) \\ &= f(\mathbf{x}) + \mathbf{g}^T(\mathbf{x} - \hat{\mathbf{x}}) \end{split}$$

因此
$$\mathbf{g} = z_1 g_1 + \dots + z_k g_k \in \partial f(\hat{\mathbf{x}})$$

1.5.7 最优值函数

凸优化问题

$$\min f_0(\mathbf{x})$$

$$s.t f_i(\mathbf{x}) \le u_i, i = 1, ..., m$$

$$A\mathbf{x} = \mathbf{b} + \mathbf{v}$$

最优值记为 $f(\mathbf{u}, \mathbf{v})$

假设 $f(\hat{\mathbf{u}},\hat{\mathbf{v}})$ 是有限的,并且强对偶成立,原问题的对偶问题为

$$\max \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i} \lambda_i (f_i(\mathbf{x}) - u_i) + \nu^T (A\mathbf{x} - \mathbf{b} - \mathbf{v}) \right)$$

$$s.t. \ \lambda \succeq 0$$

如果 $\hat{\lambda}, \hat{\nu}$ 是最优对偶变量,则 $(-\hat{\lambda}, -\hat{\nu}) \in \partial f(\hat{\mathbf{u}}, \hat{\mathbf{v}})$

证明. 由弱对偶定理可以得到

$$f(\mathbf{u}, \mathbf{v}) \ge \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_i \hat{\lambda}_i (f_i(\mathbf{x}) - u_i) + \hat{\nu}^T (A\mathbf{x} - \mathbf{b} - \mathbf{v}) \right)$$

$$\ge \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_i \hat{\lambda}_i (f_i(\mathbf{x}) - \hat{u}_i) + \nu^T (A\mathbf{x} - \mathbf{b} - \hat{\mathbf{v}}) \right) - \hat{\lambda}^T (\mathbf{u} - \hat{\mathbf{u}}) - \hat{\nu}^T (\mathbf{v} - \hat{\mathbf{v}})$$

$$= f(\hat{\mathbf{u}}, \hat{\mathbf{v}}) - \hat{\lambda}^T (\mathbf{u} - \hat{\mathbf{u}}) - \hat{\nu}^T (\mathbf{v} - \hat{\mathbf{v}})$$

由次梯度的定义可以得到 $(-\hat{\lambda}, -\hat{\nu}) \in \partial f(\hat{\mathbf{u}}, \hat{\mathbf{v}})$

1.5.8 方差

己知函数

$$f(\mathbf{x}) = \mathbf{E} \ h(\mathbf{x}, \mathbf{u})$$

其中 \mathbf{u} 是随机变量,且对任意 \mathbf{u} , h 关于 \mathbf{x} 是凸的,在 $\hat{\mathbf{x}}$ 处的次梯度的计算方式为

1. 选择一个函数 $g(\mathbf{u}) \in \partial_{\mathbf{x}} h(\hat{\mathbf{x}}, \mathbf{u})$

$$2.\mathbf{g} = \mathbf{E}_u g(\mathbf{u}) \in \partial f(\hat{\mathbf{x}})$$

证明. 因为 $g(\mathbf{u}) \in \partial_{\mathbf{x}} h(\hat{\mathbf{x}}, \hat{\mathbf{u}})$, 则

$$h(\mathbf{x}, \mathbf{u}) \ge h(\hat{\mathbf{x}}, \mathbf{u}) + g(\mathbf{u})^T (\mathbf{x} - \hat{\mathbf{x}})$$

因此

$$f(\mathbf{x}) = \mathbf{E} \ h(\mathbf{x}, \mathbf{u}) \ge \mathbf{E} \ \left(h(\hat{\mathbf{x}}, \mathbf{u}) + g^T(u)(\mathbf{x} - \hat{\mathbf{x}}) \right)$$

由期望的性质得

$$E \left(h(\hat{\mathbf{x}}, \mathbf{u}) + g^T(u)(\mathbf{x} - \hat{\mathbf{x}})\right) = f(\hat{\mathbf{x}}) + \mathbf{g}^T(\mathbf{x} - \hat{\mathbf{x}})$$

其中 $\mathbf{g} = \mathbf{E}_{\mathbf{u}} g(\mathbf{u})$, 由梯度的定义可得 $\mathbf{g} \in \partial f(\hat{\mathbf{x}})$

2 对偶和最优性条件

2.1 无约束优化问题

定理 1. x^* 最小化 f(x) 当且仅当

$$\mathbf{0}\in\partial f(\mathbf{x}^*)$$

证明. x* 为最小值,则可以得到

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \mathbf{0}^T (\mathbf{y} - \mathbf{x}^*)$$
$$= f(\mathbf{x}^*) + \mathbf{0}^T (\mathbf{y} - \mathbf{x}^*) \quad \forall \mathbf{y} \in \text{dom} f$$

由次梯度的定义可以得到

$$\mathbf{0} \in \partial f(\mathbf{x}^*)$$

例 7.

2.2 约束优化问题

约束优化问题的最优解利用 KKT 条件进行刻画,有如下约束优化问题

$$\min f_0(\mathbf{x})$$

$$s.t. f_i(\mathbf{x}) \le 0 \quad i = 1, ..., m$$

其中 dom $f_i = \mathbb{R}^n$,即 f_i 处处可次微分。如果强对偶条件成立,则 \mathbf{x}^*, λ^* 分别是原问题和对偶问题的最优解当且仅当

1.x* 是可行解

 $2.\lambda^*\succeq 0$

 $3.\lambda_i f_i(\mathbf{x}^*) = 0, i = 1, ..., m$

 $4.\mathbf{x}^*$ 是 $L(\mathbf{x}, \lambda) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x})$ 的最小值点,即

$$\mathbf{0} \in \partial f_0(\mathbf{x}) + \sum_{i=1}^m {\lambda_i}^* \partial f_i(\mathbf{x}^*)$$

3 方向导数

3.1 一般函数的方向导数

定义 3. 对于一般的函数 f, f(x) 在 y 方向上的导数为

$$\begin{split} \boldsymbol{f}'(\mathbf{x}; \mathbf{y}) &= \lim_{\alpha \searrow 0} \frac{f(\mathbf{x} + \alpha \mathbf{y}) - f(\mathbf{x})}{\alpha} \\ &= \lim_{t \to \infty} \left(t f(\mathbf{x} + \frac{1}{t} \mathbf{y}) - t f(\mathbf{x}) \right) \end{split}$$

性质 3. $f'(\mathbf{x}; \mathbf{y})$ 关于 \mathbf{y} 是齐次的,即

$$f^{'}(\mathbf{x}; \lambda \mathbf{y}) = \lambda f^{'}(\mathbf{x}; \mathbf{y}) \quad \forall \ \lambda \ge 0$$

3.2 凸函数的方向导数

对于凸函数的方向导数,将一般函数方向导数定义中的 lim 替换成 inf,即

$$f'(\mathbf{x}; \mathbf{y}) = \inf_{\alpha \searrow 0} \frac{f(\mathbf{x} + \alpha \mathbf{y}) - f(\mathbf{x})}{\alpha}$$
$$= \inf_{t \to \infty} \left(tf(\mathbf{x} + \frac{1}{t}\mathbf{y}) - tf(\mathbf{x}) \right)$$

证明. 容易得到, $h(\mathbf{y}) = f(\mathbf{x} + \mathbf{y}) - f(\mathbf{x})$ 是关于 y 的凸函数,且 h(0) = 0。 下证 $th(\mathbf{y}/t)$ 关于 t 单调不增,对任意的 t > s > 0 总有

$$th(\mathbf{y}/t) - sh(\mathbf{y}/s) = t[f(\mathbf{x} + \mathbf{y}/t) - f(\mathbf{x})] - s[f(\mathbf{x} + \mathbf{y}/s) - f(\mathbf{x})]$$
$$= t\left[f(\mathbf{x} + \mathbf{y}/t) - \left(\frac{t-s}{t}f(x) + \frac{s}{t}f(\mathbf{x} + \mathbf{y}/s)\right)\right]$$

因为 $0 < \frac{t-s}{t} < 1, 0 < \frac{s}{t} < 1$,且 $\frac{t-s}{t}$ **x** + $\frac{s}{t}$ **x** + $\mathbf{y}/s = \mathbf{x} + \mathbf{y}/t$,由凸函数的定义可得

$$\frac{t-s}{t}f(x) + \frac{s}{t}f(\mathbf{x} + \mathbf{y}/s) \ge f(\mathbf{x} + \mathbf{y}/t)$$

因此

$$\left[f(\mathbf{x} + \mathbf{y}/t) - \left(\frac{t-s}{t} f(x) + \frac{s}{t} f(\mathbf{x} + \mathbf{y}/s) \right) \right] \le 0$$

即 $th(\mathbf{y}/t)$ 关于 t 单调不增,因此可以得到

$$\begin{split} \boldsymbol{f}'(\mathbf{x}; \mathbf{y}) &= \lim_{t \to \infty} th(\mathbf{y}/t) = \inf_{t > 0} th(\mathbf{y}/t) \\ &= \inf_{t \to \infty} \left(tf(\mathbf{x} + \frac{1}{t}\mathbf{y}) - tf(\mathbf{x}) \right) \end{split}$$

性质 4. $f'(\mathbf{x}; \mathbf{y})$ 关于 \mathbf{y} 是凸的

性质 5. 由方向导数的定义, 可以得到

$$f(\mathbf{x} + \alpha \mathbf{y}) \ge f(\mathbf{x}) + \alpha f'(\mathbf{x}; \mathbf{y}) \quad \forall \ \alpha \ge 0$$

即 $f'(\mathbf{x}; \mathbf{y})$ 定义了 f 在 \mathbf{y} 方向上的下界

3.3 方向导数与次梯度

对于凸函数 $f, \mathbf{x} \in \text{int dom} f$,方向导数与次微分具有如下关系

$$f^{'}(\mathbf{x}; \mathbf{y}) = \sup_{\mathbf{g} \in \partial f(\mathbf{x})} \mathbf{g}^{T} \mathbf{y}$$

即 f'(x; y) 是 $\partial f(\mathbf{x})$ 的支撑函数 对于可导函数,则 $f'(\mathbf{x}; \mathbf{y}) = \nabla f(\mathbf{x})^T \mathbf{y}$ 证明. 如果 $\mathbf{g} \in \partial f(\mathbf{x})$,则由方向的定义可以得到

$$f^{'}(\mathbf{x}; \mathbf{y}) \geq \inf_{\alpha > 0} \frac{f(\mathbf{x}) + \alpha \mathbf{g}^{T} \mathbf{y} - f(\mathbf{x})}{\alpha} = \mathbf{g}^{T} \mathbf{y}$$

下证存在 $\hat{\mathbf{g}} \in \partial f(\mathbf{x})$ 满足 $f'(\mathbf{x}; \mathbf{y}) = \hat{\mathbf{g}}^T \mathbf{y}$

设 $\hat{\mathbf{g}}$ 是 $f'(\mathbf{x};\mathbf{y})$ 在 \mathbf{y} 方向的一个次梯度,则由次梯度的定义和方向导数的性质可得

$$\lambda f'(\mathbf{x}; \mathbf{v}) = f'(\mathbf{x}; \lambda \mathbf{v}) \ge f'(\mathbf{x}; \mathbf{y}) + \hat{\mathbf{g}}^T(\lambda \mathbf{v} - \mathbf{y}), \quad \forall \mathbf{v}, \lambda \ge 0$$

$$f^{'}(\mathbf{x}; \mathbf{v}) \geq \hat{\mathbf{g}}^T \mathbf{v}$$

有前面 $f'(\mathbf{x}; \mathbf{y})$ 定义了 f 在 \mathbf{y} 方向上的下界,可以得到

$$f(\mathbf{x} + \mathbf{v}) \ge f(\mathbf{x}) + f'(\mathbf{x}; \mathbf{v}) \ge f(\mathbf{x}) + \hat{\mathbf{g}}^T \mathbf{v} \quad \forall \ \mathbf{v}$$

则由次梯度的定义可以得到

$$\hat{\mathbf{g}} \in \partial f(\mathbf{x})$$

令 $\lambda = 0$ 可以得到

$$f'(\mathbf{x}; \mathbf{y}) \leq \hat{\mathbf{g}}^T \mathbf{y}$$

3.4 下降方向和次梯度

定义 4. 如果 $f'(\mathbf{x}; \mathbf{y}) < 0$, 则 \mathbf{y} 是 f 在 \mathbf{x} 处的下降方向

注 3. 如果 $f(\mathbf{x}) \neq 0$,则可微函数 f 的负梯度是下降方向,但负的次梯度并不总是下降方向。比如 $f(\mathbf{x}_1,\mathbf{x}_2) = |\mathbf{x}_1| + 2|\mathbf{x}_2|$, $\mathbf{g} = (1,2) \in \partial f(1,0)$,但是 $\mathbf{y} = -\mathbf{g} = (-1,-2)$ 不是 f 在 (1,0) 的下降方向