Lab 7

Exercise:

- 1. Design and simulate the following counters
 - a) 4 bit synchronous up counter
 - b) 3 bit synchronous up/down counter with a control input up/ \overline{down} . If up/ $\overline{down} = 1$, then the circuit should behave as an up counter. If up/ $\overline{down} = 0$, then the circuit should behave as a down counter.

Lab 8

Exercise:

- 1. Write and simulate the Verilog code to swap the contents of two registers using multiplexers.
- 2. Simulate a simple processor that can perform the following functions:

Operation	Function performed
Load Rx, Data	$Rx \leftarrow Data$
Move Rx, Ry	$Rx \leftarrow [Ry]$
Add Rx, Ry	$Rx \leftarrow [Rx] + [Ry]$
Sub Rx, Ry	$Rx \leftarrow [Rx] - [Ry]$