Distribusi Z dan Kegunaannya

1. Pendahuluan

Distribusi normal diperkenalkan pada abad ke-19, diawali oleh kemajuan yang sangat pesat dalam pengukuran. Para pakar matematika pada waktu itu dihadapkan pada suatu masalah bahwa apabila pengukuran dilakukan berulang-ulang, maka akan diperoleh hasil yang berbeda-beda. Dari semua hasil pengukuran yang diperoleh akan timbul masalah nilai manakah yang dianggap paling tepat. Kesepakatan yang dilakukan oleh para pakar matematika ketika itu adalah yang dianggap paling tepat yaitu nilai rata-rata dari pengukuran tersebut dan semua penyimpangannya dianggap sebagai suatu kesalahan.

Yang pertama kali memperkenalkan distribusi normal adalah Abraham de Moivre (Perancis, 1667-1754). Tulisan tentang distribusi normal tersebut dimuat dalam sebuah artikel pada tahun 1733 sebagai pendekatan dari distribusi binomial untuk n besar. De Moivre telah menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori statistik inferensial. Menurut de Moivre, suatu variabel random X dengan rata-rata (μ) dan variansi (σ^2) mempunyai fungsi densitas:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2},$$

dengan rata-rata (μ) dan variansi (σ^2) diketahui, maka seluruh kurva normal dapat diketahui.

Kemudian karya tersebut dikembangkan lebih lanjut oleh Pierre Simon de Laplace (Perancis, 1749-1827). Laplace telah menggunakan distribusi normal untuk analisis sesatan (*error*) suatu percobaan/eksperimen.

Pada tahun 1805 Andrian-Marie Legendre (Perancis, 1752-1833) memperkenalkan metode kuadrat terkecil. Metode ini kemudian dipakai oleh Johann Carls Friedrich Gauss (Jerman, 1777-1855) dengan mengasumsikan sesatannya mempunyai distribusi normal. Nama lain distribusi normal adalah distribusi Gauss yaitu distribusi probabilitas yang paling banyak digunakan dalam berbagai analisis statistika.

Gauss telah mengamati hasil dari percobaan yang dilakukan secara berulang-ulang, dan dia telah menemukan hasil yang paling sering, yaitu nilai rata-rata. Penyimpangan baik ke kanan atau ke kiri yang jauh dari rata-rata terjadi semakin sedikit, sehingga jika disusun akan terbentuk distribusi yang simetris.

Distribusi normal sangat sesuai dengan distribusi empiris sehingga dapat dikatakan bahwa semua kejadian yang alami akan membentuk distribusi normal. Dengan menggunakan alasan ini maka distribusi ini dikenal sebagai distribusi normal dan grafiknya dikenal sebagai kurva normal atau kurva Gauss. Distribusi normal merupakan suatu alat statistik yang sangat penting untuk menaksir dan meramalkan peristiwa-peristiwa yang lebih luas. Distribusi normal banyak digunakan dalam berbagai bidang statistika, misalnya distribusi sampling rata-rata akan mendekati normal, meski distribusi populasi yang diambil tidak berdistribusi normal. Distribusi normal juga banyak digunakan dalam berbagai distribusi dalam statistika, dan kebanyakan pengujian hipotesis mengasumsikan normalitas suatu data.

Suatu distribusi data dikatakan berdistribusi normal jika data berdistribusi simetris, yaitu apabila nilai rata-rata, mediandan modusnya sama. Karakteristik dari distribusi normal antara lain:

- grafiknya akan selalu di atas sumbu datar x,
- bentuknya simetris terhadap $x = \mu$,
- mempunyai satu modus,
- grafiknya mendekati (berasimptot) sumbu datar x,
- luas daerah grafik selalu sama dengan satu satuan unitpersegi.

Bentuk kurva yang tidak memiliki kriteria di atas dikenal dengan distribusi tidak simetris (distribusi menceng kekiriatau kekanan). Karakteristik dari distribusi normal dapat dilihat dalam gambar di bawah ini.

Gambar 1: Karakteristik kurva normal

Sifatdari distribusi normal antara lain:

- rata-ratanya (mean) = μ dan deviasi standarnya = σ ,
- maksimumnya terjadi di $x = \mu$,

- bentuknya simetris terhadap $x = \mu$,
- titik beloknya tepat di $x = \mu \pm \sigma$,
- jika kurvanya mendekati nol secara asimtotik, maka x semakin jauh dari $x = \mu$,
- luas totalnya sama dengan 1.

Bentuk distribusi normal ditentukan oleh μ dan σ . Ilustrasi secara lengkap dapat dilihat dalam gambar di bawah ini.

Gambar 2: Ilustrasi distribusi normal

Suatu distribusi normal tidak hanya memiliki satu kurva, tetapi merupakan kumpulan dari kurva yang mempunyai ciri-ciri yang sama sehingga harus ditentukan satu pegangan sebagai distribusi normal yang standar.

Sebuah kurva normal memegang peranan yang penting dalam menghitung peluang (probabilitas). Hal ini disebabkan daerah yang ada di dalam kurva tersebut menunjukkan besarnya peluang. Dalam ilmu statistik, luas daerah tersebut telah disusun dalam sebuah tabel distribusi normal standar.

 $P(x_1 < x < x_2)$ adalah probabilitas variabel random x yang mempunyai nilai antara x_1 dan x_2 . Nilai tersebut adalah luas dari di bawah kurva normal antara $x = x_1$ dan $x = x_2$.

Gambar 3: Luas kurva normal

Perhitungan integral normal ini sangatlah sulit sehingga dibuat tabel nilai rapat probabilitasnya. Tabel untuk semua nilai μ dan σ sangatlah sulit untuk dibuat semua sehingga dibuatlah tabel normal standar (baku). Distribusi normal standar adalah distribusi normal dengan rata-rata (μ) = 0 dan deviasi standar (σ) = 1. Fungsi densitas dari distribusi normal standar adalah:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Proses standarisasi dapat dilakukan dengan transformasi rumus (kurva normal standar):

$$z = \frac{x-\mu}{\sigma}$$

x = nilai variabel random,

 μ = rata-rata distribusi,

 σ = deviasi standar,

z = nilai standar, yaitu besarnya penyimpangan suatu nilai terhadap rata-rata,

Standarisasi penting dilakukan mengingat variabel random mempunyai satuan yang berbeda-beda. Transformasi di atas juga mempertahankan luas di bawah kurvanya.

Gambar 4: Transformasi ke dalam distribusi normal standar

Transformasi yang dapat dilakukan adalah dengan:

$$z_1 = \frac{x_1 - \mu}{\sigma}$$
 dan $z_2 = \frac{x_2 - \mu}{\sigma}$

Perhatikan beberapa hal di bawah ini agar luas di bawah kurva normal dengan mudah dapat dicari.

- hitung luas z hingga dua desimal (misalkan z = 2.15),
- gambarlah kurvanya,
- letakkan nilai z pada sumbu datar, kemudian tarik garis vertikal hingga memotong kurva.
- luas daerah yang tercantum dalam daftar adalah daerah antara garis vertikal yang ditarik dari titik nilai z dengan garis tegak di titik nol,
- dalam tabel distribusi normal standar, nilai z pada kolom paling kiri hanya memuat satu desimal (judul baris) dan desimal kedua dicari pada baris paling atas (judul kolom),
- dari z kolom yang paling kiri, maju ke kanan dan dari z pada baris paling atas turun ke bawah, maka diperoleh bilangan yang merupakan daerah yang dicari,
- karena luas seluruh kurva adalah satu satuan luas persegi dan kurva simetris di titik nol, maka luas dari garis tegak pada titik nol ke kiri maupun ke kanan adalah 0.5 satuan luas.

Untuk lebih jelasnya dapat dilihat dalam contoh di bawah ini.

- 1. Hitunglah nilai probabilitas dari:
 - a. $P(0 \le Z \le 1.75)$
 - b. $P(1.56 \le Z \le 2.70)$
 - c. $P(-1.34 \le Z \le 1.62)$
 - d. $P(-2.71 \le Z \le -1.07)$

Pertanyaan di atas dapat diselesaikan dengan menggunakan tabel normal standar pada lampiran 1 dan lampiran 2.

a.
$$P(0 \le Z \le 1.75)$$

 $P(0 \le Z \le 1.75) = 0.4599$

b. $P(1.56 \le Z \le 2.70)$

 $P(1.56 \le Z \le 2.70) = 0.4965 - 0.4406 = 0.0559$

c. $P(-1.34 \le Z \le 1.62)$

 $P(-1.34 \le Z \le 1.62) = P(-1.34 \le Z \le 0) + P(0 \le Z \le 1.62) = 0.4099 + 0.4474$ = 0.8573

d. $P(-2.71 \le Z \le -1.07)$

 $P(-2.71 \le Z \le -1.07) = P(-2.71 \le Z \le 0) - P(-1.07 \le Z \le 0) = 0.4966 -0.3577 = 0.1389$

- 2. Tentukanlah nilai z apabila diketahui nilai probabilitasnya sebagai berikut:
 - a. $P(Z \le z) = 0.6255$
 - b. $P(Z \le z) = 0.4483$
 - c. $P(-z \le Z \le z) = 0.8164$
 - d. $P(Z \ge z) = 0.2327$
 - e. $P(Z \ge z) = 0.7734$

Pertanyaan di atas dapat diselesaikan dengan menggunakan tabel normal standar pada lampiran 1 dan lampiran 2.

a.
$$P(Z \le z) = 0.6255$$

 $P(Z \le z) = P(Z \le 0) + P(0 \le Z \le z) = 0.6255$
 $= 0.5 + P(0 \le Z \le z) = 0.6255$
 $\rightarrow P(0 \le Z \le z) = 0.1255 \rightarrow z = 0.32$

b.
$$P(Z \le z) = 0.4483$$

 $P(Z \le z) = P(Z \le 0) - P(0 \le Z \le z) = 0.4483$
 $= 0.5 - P(0 \le Z \le z) = 0.4483$
 $= P(0 \le Z \le z) = 0.0517 \rightarrow z = -0.13$

c.
$$P(-z \le Z \le z) = 0.8164$$

 $P(-z \le Z \le z) = P(-z \le Z \le 0) + P(0 \le Z \le z) = 0.8164$
 $= P(0 \le Z \le z) = 0.4082 \rightarrow z = 1.33$

d.
$$P(Z \ge z) = 0.2327$$

 $P(Z \ge z) = P(Z \ge 0) - P(0 \le Z \le z) = 0.2327$
 $= 0.5 - P(0 \le Z \le z) = 0.2327$
 $= P(0 \le Z \le z) = 0.2673 \rightarrow z = 0.73$

e.
$$P(Z \ge z) = 0.7734$$

 $P(Z \ge z) = P(-z \le Z \le 0) + P(Z \ge 0) = 0.7734$
 $= P(-z \le Z \le 0) + 0.5 = 0.7734 = 0.2734 \rightarrow z = -0.75$

- 3. Dari penelitian terhadap 100 laki-laki yang berumur antara 45-65 tahun, diketahui rata-rata kadar kolesterolnya (μ) = 220 mg% dengan deviasi standar (σ) = 40 mg%. Hitunglah probabilitas jika diambil seorang laki-laki mempunyai kadar kolesterol:
 - a. lebih dari 260 mg%,
 - b. kurang dari 190 mg%,
 - c. antara 180 hingga 280 mg%.

Pertanyaan di atas dapat diselesaikan dengan menggunakan tabel normal standar pada lampiran 1 dan lampiran 2.

a. lebih dari 260 mg%

Ditransformasi menjadi:

$$z = \frac{260 - 220}{40} = 2.00$$

$$P(Z \le 2.00) = 0.0228$$

b. kurang dari 190 mg%,

Ditransformasi menjadi:

$$z = \frac{190 - 220}{40} = -0.75$$

$$P(Z \le -0.75) = 0.2734$$

c. antara 180 hingga 280 mg%.

Ditransformasi menjadi:

$$z = \frac{180 - 220}{40} = -1.00$$
 dan $z = \frac{280 - 220}{40} = 1.50$

$$P(-1.00 \le z \le 1.50) = 0.9332 - 0.1587 = 0.7745$$

Mean dan variansi dari distribusi normal dapat dicari dengan menggunakan metode maksimum likelihood (MLE).

Fungsi kepadatan probabilitas dari pengamatan x dari suatu distribusi normal dengan mean μ dan variansi σ^2 yang tidak diketahui adalah:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Fungsi likelihood untuk n pengamatan $x_1, x_2, ..., x_n$ adalah:

$$l(x_1, x_2, ..., x_n; \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \prod_{i=1}^n e^{-\frac{1}{2}\left(\frac{x_1 - \mu}{\sigma}\right)^2}$$

Logaritma dari fungsi likelihood:

$$L(x_1, x_2, \dots, x_n; \mu, \sigma) = n \log \frac{1}{\sigma \sqrt{2\pi}} - \frac{1}{2} \sum_{i=1}^{n} \left(\frac{x - \mu}{\sigma}\right)^2.$$

Derivatif dari $L(x_1, x_2, ..., x_n; \mu, \sigma)$ terhadap μ adalah

$$\frac{\partial L(x_1, x_2, \dots, x_n; \mu, \sigma)}{\partial \mu} = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu \right) = 0$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i .$$

Derivatif dari $L(x_1, x_2, ..., x_n; \mu, \sigma)$ terhadap σ adalah:

$$\frac{\partial L(x_1, x_2, \dots, x_n; \mu, \sigma)}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left[n \log \frac{1}{\sigma \sqrt{2\pi}} - n \log \sigma - \frac{1}{2} \sum_{i=1}^{n} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

$$= -\frac{n}{\sigma} - \sum \frac{(x_i - \mu)^2}{2\sigma^3} (-2) = \frac{1}{\sigma} \left[-n + \sum_{i=1}^n \frac{(x_i - \mu)^2}{\sigma^2} \right] = 0$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 \text{ atau } \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \widehat{\mu})^2.$$

Beberapa kegunakan dari distribusi normal standar (Z) antara lain:

- estimasi interval bagi rata-rata,
- estimasi interval bagi proporsi,
- estimasi interval bagi selisih rata-rata,
- estimasi interval bagi selisih proporsi,
- uji hipotesis bagi rata-rata,
- uji hipotesis bagi proporsi,
- uji hipotesis bagi selisih rata-rata,
- uji hipotesis bagi selisih proporsi.

Kegunaan di atas akan diuraikan secara lebih rinci pada bab selanjutnya.

Latihan

- 1. Hitunglah nilai probabilitas dari:
 - a. $P(Z \le 1.38)$
 - b. P(Z > 1.65)
 - c. P(1.15 < Z < 2.24)
 - d. $P(-1.25 \le Z \le 2.46)$
- 2. Hitunglah nilai *X* jika diketahui:
 - a. P(Z < X) = 0.9599
 - b. P(Z < X) = 0.2877
 - c. P(Z > X) = 0.0228
 - d. P(Z > X) = 0.6915
- 3. Jika X adalah rata-rata berat badan para pemilih tetap (DPT) di suatu daerah berdistribusi normal dengan rata-rata 55 kg dan deviasi standar 20 kg, maka hitunglah:
 - a. $P(52 \le X \le 60)$
 - b. $P(X \ge 51)$
 - c. $P(59 \le X)$
 - d. $P(X \le 50)$
- 4. Asapadalah partikel padat yang halus sebagai hasil dari pembakaran yang tidak sempurna dari parikel organik seperti batubara, kayu, ataupun tembakau yang terutama dari karbon dan bahan yang dapat terbakar lainnya. Jika diketahui rata-rata ukuran asapnya (A) adalah 0.75 μm dan deviasi standarnya 0.10 μm, maka hitunglah:
 - a. P(A > 0.90)
 - b. P(A < 0.55)
 - c. $P(0.50 \le A \le 0.85)$
- 5. Jika pada soal di atas ukuran asapnya berdistribusi normal standar, maka tentukan nilai dari *A*:
 - a. P(Z > A) = 0.0062
 - b. P(-A < Z < 0.00) = 0.4394
 - c. P(1.00 < Z < A) = 0.1359

2. Estimasi Interval Konfidensi bagi Rata-Rata

Andaikan $x_1, x_2, ..., x_n$ adalah sampel yang diambil dari populasi berdistribusi normal dengan rata-rata μ dan variansi σ^2 , maka ada dua kemungkinan perhitungan, iaitu mengestimasi parameter μ dan σ atau memeriksa apakah μ sama dengan satu nilai tertentu atau lebih besar atau lebih kecil dari nilai yang tertentu. Estimasi parameter ada dua jenis, yaitu estimasi titik dan estimasi interval.

Estimasi titik mencoba mendekati suatu nilai dari parameter menggunakan satu nilai saja. Estimasi seperti ini dapat diibaratkan sebagai memanah satu titik tertentu dari suatu jarak tertentu. Sudahlah pasti bahwa panah tersebut sangat jarang sekali tepat mengenai sasaran yang begitu kecil. Kebanyakan dari panah yang ditembakkan akan tersebar sekitar titik tersebut, ada yang tak sampai atau terlalu jauh, ada yang terlalu ke kiri atau ke kanan, terlalu ke atas atau terlalu ke bawah. Hanya sedikit yang tepat mengenai sasaran. Oleh karena probabilitas benarnya hampir sama dengan nol.

Pada umumnya selama tidak dilakukan observasi yang menyeluruh dari seluruh populasi, maka kita tidak akan tahu dengan tepat nilai-nilai parameter distribusi teoritisnya. Masalah yang muncul kemudian ialah menentukan fungsi nilai sampel mana yang digunakan untuk mengestimasi kuantitas populasi yang tidak diketahui tersebut. Kuantitas sampel yang digunakan bagi tujuan tersebut dianggap sebagai estimator. Dengan demikian fungsi nilai sampel yang digunakan untuk mengestimasi parameter tertentu dinamakan estimasi parameter yang bersangkutan.

Interval konfidensi adalah suatu kisaran nilai yang dianggap mengandung nilai parameter populasi yang sebenarnya. Nilai tersebut terdiri dari batas bawah (BB) dan batas atas (BA). Kedua batas selang dihitung dari suatu sampel random yang diambil dari populasi tersebut. Oleh karena itu sebelum sampel diambil, BB dan BA merupakan besaran random.

Untuk setiap pilihan yang wajar dari *BB* dan *BA*, selalu ada kemungkinan positif bahwa interval konfidensinya akan gagal mencakup nilai parameter yang sebenarnya. Sebelum eksperimen atau penyelidikan dilakukan, terlebih dahulu ditetapkan apa yang dinamakan koefisien konfidensi (*confidence coefficient*). koefisien ini menetapkan suatu probabilitas bahwa interval konfidensinya akan mengandung nilai parameter yang sebenarnya. Oleh karena itu probabililitas tersebut sedekat mungkin dengan 1. Nilai yang biasanya dipilih biasanya 0.90; 0.95; 0.99.

Misalkan dipilih koefisien konfidensi 0.95, maka interval konfidensi yang dihasilkannya akan dinamakan interval konfidensi 95% bagi parameter tersebut. Nilai dari *BB* dan *BA* dikatakan menentukan interval konfidensi 95% bagi suatu parameter jika:

- 1. $Pr(BB \le \text{nilai parameter yang sebenarnya} \le BA) \ge 0.95$,
- 2. nilai-nilai *BB* dan *BA* dapat dihitung apabila sampel telah diambil dari populasi dan digunakan untuk menghitung kedua batas tersebut.

Interval konfidensi 95% mengandung arti bahwa apabila eksperimen pengambilan sampel random dengan ukuran tertentu yang sama dari suatu populasi dan perhitungan kedua nilai *BB* dan *BA* diulang berkali-kali, maka 95% dari interval konfidensi yang dihasilkan akan mengandung nilai parameter yang sebenarnya. Akibatnya, kesimpulan bahwa interval konfidensi yang diperoleh mengandung nilai parameter yang sesungguhnya akan benar kecuali kita tidak beruntung dan mendapatkan salah satu dari 5% sampel yang buruk. Interval konfidensi yang cukup baik adalah interval konfidensi yang mempunyai lebar selang yang sempit dan prosentase interval yang memuat parameter adalah cukup besar (mendekati satu).

Estimasi titik akan menghasilkan suatu nilai tunggal sebagai estimasi parameter yang terbaik. Oleh karena itu derajat ketelitian dari estimasi ini tidak dapat diketahui atau tidak dapat dihitung.

Contoh

Di bawah ini adalah data tentang jumlah orang yang terserang penyakit TBC di 22 Provinsi di Indonesia tahun 2011.

Provinsi	2011	Provinsi	2011
Aceh	4377	Jawa Barat	62563
Sumatera Utara	18553	Jawa Tengah	39238
Sumatera Barat	6691	DI Yogyakarta	2411
Riau	4732	Jawa Timur	41467
Jambi	3425	Banten	14898
Sumatera Selatan	8067	Bali	3183
Bengkulu	1769	Nusa Tenggara Barat	5321
Lampung	7720	Nusa Tenggara Timur	5876
Kepulauan Bangka Belitung	1405	Kalimantan Barat	5681
Kepulauan Riau	1907	Kalimantan Tengah	2379
DKI Jakarta	25647	Kalimantan Selatan	4905

Sumber: Olahan data BPS

Estimasi tentang rata-rata jumlah orang yang terserang penyakit TBC di 22 Provinsi di Indonesia adalah:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{272215}{22}$$

$$= 12373.41 \approx 12374 \text{ orang}$$

 \bar{x} merupakan estimasi titik dari μ . Estimasi ini tidak dapat diketahui seberapa besar derajat kepercayaannya.

Estimasi interval adalah estimasi yang memberikan nilai-nilai statistik dalam suatu interval atau selang dan bukan nilai tunggal sebagai estimasi parameter. Estimasi ini memungkinkan untuk mengukur derajat kepercayaan terhadap ketelitian estimasi.

Rumus umum untuk membuat interval konfidensi dengan $n \ge 30$ adalah:

st -
$$Z_{\alpha/2}$$
 $\hat{\sigma}_{st}$ < parameter < st + $Z_{\alpha/2}$ $\hat{\sigma}_{st}$

Keterangan:

st = statistik sampel

 $\hat{\sigma}_{st}$ = deviasi standar statistik sampel

 $Z_{\alpha/2}$ = koefisien yang sesuai dengan interval konfidensi yang dipergunakan dalam estimasi interval dan nilainya diberikan dalam luas kurva normal standar

 α = kesalahan estimasi

Contoh $\alpha = 5\%$

Koefisien standar $Z_{\alpha/2}$ akan berubah sesuai dengan perubahan derajat kepercayaan yang diinginkan.

Ukuran sampel dalam estimasi interval konfidensi dikelompokkan ke dalam dua kategori, yaitu sampel besar dan sampel kecil. Sampel dikatakan berukuran besar jika jumlah sampel yang diambil minimal 30 buah ($n \ge 30$). Sedangkan sampel dikatakan berukuran kecil jika jumlah sampel yang diambil kurang dari 30 buah (n < 30). Distribusi yang biasanya digunakan dalam sampel berukuran besar adalah distribusi normal standar (Z), sedangkan sampel berukuran kecil menggunakan distribusi t.

Estimasi interval konfidensi yang sering dilakukan adalah interval konfidensi yang berhubungan dengan rata-rata atau *mean* populasi. Estimasi interval ini sering digunakan dalam bidang industri. Sebagai contoh, bagian produksi ingin menguji rata-rata produksi apakah telah sesuai dengan interval target produksi yang telah ditetapkan sebelumnya. Bagian kepegawaian ingin menguji apakah rata-rata jam kerja pegawai telah sesuai dengan standar. Bagian keuangan ingin menguji apakah target rata-rata keuntungan telah diperoleh dan rata-rata pengeluaran telah sesuai dengan apa yang telah direncanakan.

Rumus yang digunakan untuk mengestimasi interval konfidensi bagi rata-rata adalah:

$$\bar{x} - Z_{\alpha/2} \hat{\sigma}_{\bar{x}} < \mu < \bar{x} + Z_{\alpha/2} \hat{\sigma}_{\bar{x}} \text{ dengan } \hat{\sigma}_{\bar{x}} = \frac{\hat{\sigma}}{\sqrt{n}}$$

Syarat rumus di atas dapat digunakan adalah populasinya berdistribusi normal.

Contoh

1. Di bawah ini adalah data tentang rata-rata konsumsi protein per kapita per hari (gram) menurut Provinsi di Indonesia tahun 2012.

Provinsi	2012	Provinsi	2012	Provinsi	2012
Aceh	53.39	Jawa Barat	52.52	Kalimantan Timur	54.24
Sumatera Utara	54.15	Jawa Tengah	51.22	Sulawesi Utara	55.11
Sumatera Barat	54.66	DI Yogyakarta	53.13	Sulawesi Tengah	50.20
Riau	52.77	Jawa Timur	51.81	Sulawesi Selatan	57.83
Jambi	52.06	Banten	56.24	Sulawesi Tenggara	55.94
Sumatera Selatan	52.84	Bali	60.12	Gorontalo	50.45
Bengkulu	52.90	Nusa Tenggara Barat	58.57	Sulawesi Barat	53.32
Lampung	50.95	Nusa Tenggara Timur	50.01	Maluku	49.92
Kep. Bangka Belitung	55.24	Kalimantan Barat	51.73	Maluku Utara	43.68
Kepulauan Riau	55.95	Kalimantan Tengah	55.77	Papua Barat	48.13
DKI Jakarta	59.53	Kalimantan Selatan	57.76	Papua	40.54

Buatlah interval konfidensi 95% untuk mengestimasi rata-rata konsumsi protein per kapita per hari (gram) menurut Provinsi di Indonesia tahun 2012.

Dengan bantuan kalkulator dan tabel diketahui:

$$n = 33$$
, $\sigma = 4.07$, $\alpha = 0.05$, maka $Z_{0.025} = 1.96$
 $\bar{x} = 53.11$, $\sigma_{\bar{x}} = \frac{4.07}{\sqrt{33}} = 0.71$

Estimasi interval konfidensi bagi rata-rata konsumsi protein per kapita per hari (gram) menurut Provinsi di Indonesia tahun 2012:

$$\Pr\left(\bar{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} < \mu < \bar{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}\right) = 1 - \alpha$$

$$\bar{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 53.11 - (1.96)(0.71) = 51.72$$

$$\bar{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 53.11 + (1.96)(0.71) = 54.50$$

Dengan demikian rata-rata konsumsi protein per kapita per hari (gram) menurut Provinsi di Indonesia tahun 2012 akan berkisar 51.72 gram sampai 54.50 gram.

2. Di bawah ini adalah data tentang rata-rata konsumsi kalori per kapita per hari (kkal) menurut Provinsi di Indonesia tahun 2012.

Provinsi	2012	Provinsi	2012	Provinsi	2012
Aceh	1869.93	Jawa Barat	1815.57	Kalimantan Timur	1761.92
Sumatera Utara	1892.36	Jawa Tengah	1805.86	Sulawesi Utara	1917.49
Sumatera Barat	2023.38	DI Yogyakarta	1838.27	Sulawesi Tengah	1864.43
Riau	1862.37	Jawa Timur	1805.56	Sulawesi Selatan	1957.13
Jambi	1894.87	Banten	1897.67	Sulawesi Tenggara	1891.36
Sumatera Selatan	1925.99	Bali	2018.83	Gorontalo	1845.55
Bengkulu	1892.07	Nusa Tenggara Barat	2029.18	Sulawesi Barat	1905.39
Lampung	1880.60	Nusa Tenggara Timur	1813.49	Maluku	1796.05
Kep. Bangka Belitung	1828.31	Kalimantan Barat	1841.38	Maluku Utara	1678.41
Kepulauan Riau	1832.21	Kalimantan Tengah	1918.08	Papua Barat	1696.60
DKI Jakarta	1870.81	Kalimantan Selatan	1980.01	Papua	1722.31

Buatlah interval konfidensi 99% dan 95% untuk mengestimasi rata-rata konsumsi kalori per kapita per hari (kkal) menurut Provinsi di Indonesia tahun 2012.

a. Interval konfidensi 99% (tingkat kesalahan 1%)

Dengan bantuan kalkulator dan tabel diketahui:

$$n = 33$$
, $\sigma = 84.39$, $\alpha = 0.01$, maka $Z_{0.005} = 2.58$
 $\bar{x} = 1865.86$, $\sigma_{\bar{x}} = \frac{84.39}{\sqrt{33}} = 14.69$

Estimasi interval konfidensi bagi rata-rata konsumsi kalori per kapita per hari (kkal) menurut Provinsi di Indonesia tahun 2012:

$$\Pr\left(\bar{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} < \mu < \bar{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}\right) = 1 - \alpha$$

$$\bar{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 1865.86 - (2.58)(14.69) = 1827.96$$

$$\bar{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 1865.86 + (2.58)(14.69) = 1903.76$$

Dengan demikian pada tingkat keyakinan (konfidensi) 99%, maka rata-rata konsumsi kalori per kapita per hari (kkal) menurut Provinsi di Indonesia tahun 2012 akan berkisar 1827.96 kkal sampai 1903.76 kkal.

b. Interval konfidensi 95% (tingkat kesalahan 5%)

Dengan bantuan kalkulator dan tabel diketahui:

$$n = 33$$
, $\sigma = 84.39$, $\alpha = 0.05$, maka $Z_{0.025} = 1.96$

$$\bar{x} = 1865.86$$
, $\sigma_{\bar{x}} = \frac{84.39}{\sqrt{33}} = 14.69$

Estimasi interval konfidensi bagi rata-rata konsumsi kalori per kapita per hari (kkal) menurut Provinsi di Indonesia tahun 2012:

$$\Pr\left(\bar{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} < \mu < \bar{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}\right) = 1 - \alpha$$

$$\bar{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 1865.86 - (1.96)(14.69) = 1837.07$$

$$\bar{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 1865.86 + (1.96)(14.69) = 1894.65$$

Dengan demikian pada tingkat keyakinan (konfidensi) 99%, maka rata-rata konsumsi kalori per kapita per hari (kkal) menurut Provinsi di Indonesia tahun 2012 akan berkisar 1837.07 kkal sampai 1894.65 kkal.

3. Di bawah ini adalah data tentang banyaknya desa yang terkena pencemaran udara menurut Provinsi di Indonesia tahun 2012.

Provinsi	2012	Provinsi	2012
Aceh	713	Nusa Tenggara Barat	713
Sumatera Utara	2076	Nusa Tenggara Timur	2076
Sumatera Barat	674	Kalimantan Barat	674
Riau	1537	Kalimantan Tengah	1537
Jambi	379	Kalimantan Selatan	379
Sumatera Selatan	218	Kalimantan Timur	218
Bengkulu	98	Kalimantan Utara	98
Lampung	248	Sulawesi Utara	248
Kep. Bangka Belitung	33	Sulawesi Tengah	33
Kepulauan Riau	51	Sulawesi Selatan	51
DKI Jakarta	17	Sulawesi Tenggara	17
Jawa Barat	833	Gorontalo	833
Jawa Tengah	1123	Sulawesi Barat	1123
DI Yogyakarta	415	Maluku	415
Jawa Timur	1589	Maluku Utara	1589
Banten	239	Papua Barat	239
Bali	55	Papua	55

Carilah estimasi interval konfidensi bagi rata-rata banyaknya desa yang terkena pencemaran udara menurut Provinsi di Indonesia tahun 2012 pada tingkat konfidensi:

a. Interval konfidensi 95% (tingkat kesalahan 5%)

Dengan bantuan kalkulator dan tabel diketahui:

$$n = 34$$
, $\sigma = 511.39$, $\alpha = 0.05$, maka $Z_{0.025} = 1.96$
 $\bar{x} = 352.88$, $\sigma_{\bar{x}} = \frac{511.39}{\sqrt{34}} = 87.70$

Estimasi interval konfidensi bagi rata-rata banyaknya desa yang terkena pencemaran udara menurut Provinsi di Indonesia tahun 2012:

$$\Pr\left(\overline{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}\right) = 1 - \alpha$$

$$\overline{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 532.88 - (1.96)(87.70) = 360.99$$

$$\overline{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 532.88 + (1.96)(87.70) = 704.77$$

Dengan demikian pada tingkat keyakinan (konfidensi) 95%, maka rata-rata banyaknya desa yang terkena pencemaran udara menurut Provinsi di Indonesia tahun 2012 akan berkisar 360.99 (361) desa sampai 704.77 (705) desa.

b. Interval konfidensi 99% (tingkat kesalahan 1%)

Dengan bantuan kalkulator dan tabel diketahui:

$$n = 34$$
, $\sigma = 511.39$, $\alpha = 0.05$, maka $Z_{0.005} = 2.58$
 $\bar{x} = 352.88$, $\sigma_{\bar{x}} = \frac{511.39}{\sqrt{34}} = 87.70$

Estimasi interval konfidensi bagi rata-rata banyaknya desa yang terkena pencemaran udara menurut Provinsi di Indonesia tahun 2012:

$$\Pr\left(\bar{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} < \mu < \bar{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}\right) = 1 - \alpha$$

$$\bar{x} - Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 532.88 - (2.58)(87.70) = 306.61$$

$$\bar{x} + Z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} = 532.88 + (2.58)(87.70) = 759.15$$

Dengan demikian pada tingkat keyakinan (konfidensi) 95%, maka rata-rata banyaknya desa yang terkena pencemaran udara menurut Provinsi di Indonesia tahun 2012 akan berkisar 306.61 (307) desa sampai 759.15 (760) desa.

Soal latihan

1. Di bawah ini adalah data tentang jumlah tindak pidana menurut Kepolisian Daerah di Indonesia tahun 2011.

Kepolisian Daerah	2011	Kepolisian Daerah	2011	Kepolisian Daerah	2011
Aceh	9114	Jawa Barat	29296	Kalimantan Timur	9439
Sumatera Utara	37610	Jawa Tengah	3205	Sulawesi Utara	11286
Sumatera Barat	11695	DI Yogyakarta	15205	Gorontalo	2602
Riau	8323	Jawa Timur	6326	Sulawesi Tengah	7001
Kepulauan Riau	3643	Banten	28392	Sulawesi Selatan	22509
Jambi	4450	Bali	5490	Sulawesi Tenggara	6254
Sumatera Selatan	19353	Nusa Tenggara Barat	9585	Maluku	1510
Kep. Bangka Belitung	2732	Nusa Tenggara Timur	5298	Maluku Utara	887
Bengkulu	3498	Kalimantan Barat	10296	Papua	7049
Lampung	6052	Kalimantan Tengah	5682		
Metro Jaya	53324	Kalimantan Selatan	499	_	

Carilah estimasi interval konfidensi bagi rata-rata jumlah tindak pidana menurut Kepolisian Daerah di Indonesia tahun 2011 pada tingkat konfidensi:

- a. 90.00%
- b. 99.40%

2. Di bawah ini adalah data tentang Angka Harapan Hidup Kabupaten/Kota di Provinsi Jawa Timur pada 2011.

Kabupaten/Kota	2011	Kabupaten/Kota	2011	Kabupaten/Kota	2011
Pacitan	71.48	Pasuruan	64.31	Sampang	63.49
Ponorogo	70.24	Sidoarjo	70.79	Pamekasan	64.39
Trenggalek	71.87	Mojokerto	70.42	Sumenep	64.89
Tulungagung	71.72	Jombang	70.18	Kota Kediri	70.64
Blitar	71.09	Nganjuk	69.11	Kota Blitar	72.51
Kediri	69.90	Madiun	69.07	Kota Malang	70.68
Malang	69.23	Magetan	71.41	Kota Probolinggo	70.52
Lumajang	67.46	Ngawi	70.24	Kota Pasuruan	66.41
Jember	63.03	Bojonegoro	67.28	Kota Mojokerto	71.78
Banyuwangi	67.98	Tuban	68.00	Kota Madiun	71.22
Bondowoso	63.54	Lamongan	68.37	Kota Surabaya	71.27
Situbondo	63.36	Gresik	71.22	Kota Batu	69.72
Probolinggo	61.42	Bangkalan	63.48		

Carilah estimasi interval bagi rata-rata Angka Harapan Hidup Kabupaten/Kota di Provinsi Jawa Timur pada 2011 pada tingkat konfidensi 99.40% dan 96.64%.

3. Di bawah ini adalah data tentang Indeks Pembangunan Manusia Kabupaten/Kota di Provinsi Jawa Timur pada 2011.

Kabupaten/Kota	2011	Kabupaten/Kota	2011	Kabupaten/Kota	2011
Pacitan	72.48	Pasuruan	68.24	Sampang	60.78
Ponorogo	71.15	Sidoarjo	76.90	Pamekasan	65.48
Trenggalek	73.66	Mojokerto	73.89	Sumenep	66.01
Tulungagung	73.76	Jombang	73.14	Kota Kediri	76.79
Blitar	74.06	Nganjuk	71.48	Kota Blitar	77.89
Kediri	72.28	Madiun	70.50	Kota Malang	77.76
Malang	71.17	Magetan	73.17	Kota Probolinggo	74.85
Lumajang	68.55	Ngawi	69.73	Kota Pasuruan	73.89
Jember	65.53	Bojonegoro	67.32	Kota Mojokerto	77.50
Banyuwangi	69.58	Tuban	68.71	Kota Madiun	77.07
Bondowoso	63.81	Lamongan	70.52	Kota Surabaya	77.85
Situbondo	64.67	Gresik	75.17	Kota Batu	74.93
Probolinggo	63.84	Bangkalan	65.01		

Carilah estimasi interval bagi rata-rata Indeks Pembangunan Manusia Kabupaten/ Kota di Provinsi Jawa Timur pada 2011 pada tingkat konfidensi 95% dan 99%.

4. Di bawah ini adalah data tentang jumlah Pegawai Negeri Sipil menurut Provinsi di Indonesia tahun 2011.

Provinsi	2011	Provinsi	2011	Provinsi	2011
Aceh	166234	Jawa Barat	458751	Kalimantan Timur	103525
Sumatera Utara	252803	Jawa Tengah	480629	Sulawesi Utara	80723
Sumatera Barat	142111	DI Yogyakarta	88916	Sulawesi Tengah	87678
Riau	105531	Jawa Timur	519082	Sulawesi Selatan	206105
Jambi	83568	Banten	98207	Sulawesi Tenggara	82539
Sumatera Selatan	142104	Bali	99467	Gorontalo	35147
Bengkulu	65079	Nusa Tenggara Barat	94954	Sulawesi Barat	31979
Lampung	130622	Nusa Tenggara Timur	127712	Maluku	70307
Kep. Bangka Belitung	31712	Kalimantan Barat	94787	Maluku Utara	43814
Kepulauan Riau	34944	Kalimantan Tengah	78919	Papua Barat	37151
DKI Jakarta	306586	Kalimantan Selatan	97633	Papua	91499

Buatlah interval konfidensi 99% dan 95% untuk mengestimasi rata-rata jumlah Pegawai Negeri Sipil menurut Provinsi di Indonesia tahun 2011.

5. Di bawah ini adalah data tentang jumlah Kecamatan menurut Provinsi di Indonesia tahun 2011.

Provinsi	2011	Provinsi	2011	Provinsi	2011
Aceh	287	Jawa Barat	626	Kalimantan Timur	146
Sumatera Utara	421	Jawa Tengah	573	Sulawesi Utara	159
Sumatera Barat	176	DI Yogyakarta	78	Sulawesi Tengah	161
Riau	157	Jawa Timur	662	Sulawesi Selatan	304
Jambi	131	Banten	154	Sulawesi Tenggara	204
Sumatera Selatan	223	Bali	57	Gorontalo	70
Bengkulu	124	Nusa Tenggara Barat	116	Sulawesi Barat	69
Lampung	214	Nusa Tenggara Timur	293	Maluku	86
Kep. Bangka Belitung	46	Kalimantan Barat	176	Maluku Utara	112
Kepulauan Riau	59	Kalimantan Tengah	130	Papua Barat	175
DKI Jakarta	44	Kalimantan Selatan	151	Papua	389

Buatlah interval konfidensi 99% dan 95% untuk mengestimasi rata-rata jumlah Kecamatan menurut Provinsi di Indonesia tahun 2011.

6. Di bawah ini adalah data tentang jumlah penduduk miskin (dalam ribuan jiwa) menurut Provinsi di Indonesia.

Provinsi	(ribu jiwa)	Provinsi	(ribu jiwa)	Provinsi	(ribu jiwa)
Aceh	837.42	Jawa Barat	4238.96	Kalimantan Timur	252.68
Sumatera Utara	1360.60	Jawa Tengah	649.19	Sulawesi Utara	197.56
Sumatera Barat	354.74	DI Yogyakarta	4561.83	Sulawesi Tengah	195.10
Riau	498.28	Jawa Timur	532.59	Sulawesi Selatan	387.06
Jambi	124.17	Banten	4748.42	Sulawesi Tenggara	806.35
Sumatera Selatan	281.75	Bali	195.95	Gorontalo	154.69
Bengkulu	1085.80	Nusa Tenggara Barat	816.62	Sulawesi Barat	314.09
Lampung	67.23	Nusa Tenggara Timur	991.88	Maluku	307.02
Kep. Bangka Belitung	316.50	Kalimantan Barat	381.92	Maluku Utara	84.79
Kepulauan Riau	1143.93	Kalimantan Tengah	148.83	Papua Barat	864.11
DKI Jakarta	412.79	Kalimantan Selatan	189.50	Papua	225.46

Buatlah interval konfidensi 98.38% dan 96.25% untuk mengestimasi rata-rata penduduk miskin (dalam ribuan jiwa) menurut Provinsi di Indonesia.

7. Di bawah ini adalah data tentang Garis Kemiskinan/GK (dalam Rp/kapita/bulan) menurut Provinsi di Indonesia.

Provinsi	GK	Provinsi	GK	Provinsi	GK
Aceh	377049	Jawa Barat	291474	Kalimantan Timur	444248
Sumatera Utara	330663	Jawa Tengah	315819	Sulawesi Utara	266528
Sumatera Barat	365827	DI Yogyakarta	281570	Sulawesi Tengah	247611
Riau	379223	Jawa Timur	321056	Sulawesi Selatan	328063
Jambi	425967	Banten	289945	Sulawesi Tenggara	229222
Sumatera Selatan	329181	Bali	301747	Gorontalo	246524
Bengkulu	307488	Nusa Tenggara Barat	297907	Sulawesi Barat	243036
Lampung	469814	Nusa Tenggara Timur	268536	Maluku	361022
Kep. Bangka Belitung	356554	Kalimantan Barat	298212	Maluku Utara	316160
Kepulauan Riau	318822	Kalimantan Tengah	330869	Papua Barat	358204
DKI Jakarta	459560	Kalimantan Selatan	323594	Papua	428608

Buatlah interval konfidensi 99% dan 95% untuk mengestimasi rata-rata Garis Kemiskinan/GK (dalam Rp/kapita/bulan) menurut Provinsi di Indonesia.

8. Di bawah ini adalah data tentang Tingkat Pengangguran/TP (dalam persen) dari beberapa Negara tahun 2011.

Negara	TP	Negara	TP	Negara	TP
Amerika Serikat	8.9	Hongkong	3.4	Mesir	12.0
Arab Saudi	5.8	Indonesia	6.6	Norwegia	3.3
Australia	5.1	Inggris	8.0	Pakistan	5.6
Belanda	4.4	Italia	8.4	Perancis	9.6
Belgia	7.2	Jepang	4.6	Singapura	1.9
Brazil	6.0	Jerman	5.9	Sri Lanka	4.0
Cina	4.1	Kanada	7.5	Swedia	7.8
Denmark	7.6	Kazakhstan	5.4	Thailand	0.7
Federasi Rusia	6.6	Korea Selatan	3.4	Venezuela	8.5
Filipina	7.0	Malaysia	3.1		
Finlandia	7.8	Meksiko	5.2		

Buatlah interval konfidensi 98.40% dan 93.56% untuk mengestimasi rata-rata Tingkat Pengangguran/TP (dalam persen) dari beberapa Negara tahun 2011.

Semua data di atas bersumber dari data yang dikeluarkan oleh Badan Pusat Statistik (BPS).

3. Estimasi Interval Konfidensi bagi Proporsi

Rumus yang digunakan untuk mengestimasi interval konfidensi bagi proporsi jika $n \ge 30$ adalah:

$$\hat{p} - Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Syarat rumus di atas dapat digunakan adalah populasinya berdistribusi normal.

Contoh

1. Di bawah ini adalah data tentang persentase Penduduk Laki-laki (persen) menurut Provinsi di Indonesia tahun 2011.

Provinsi	2011	Provinsi	2011	Provinsi	2011
Aceh	50.09	Jawa Barat	50.96	Kalimantan Timur	52.26
Sumatera Utara	50.69	Jawa Tengah	49.80	Sulawesi Utara	51.08
Sumatera Barat	50.64	DI Yogyakarta	48.64	Sulawesi Tengah	51.31
Riau	51.22	Jawa Timur	49.46	Sulawesi Selatan	48.84
Jambi	51.23	Banten	51.01	Sulawesi Tenggara	50.03
Sumatera Selatan	51.25	Bali	50.42	Gorontalo	50.32
Bengkulu	51.28	Nusa Tenggara Barat	47.82	Sulawesi Barat	50.35
Lampung	51.68	Nusa Tenggara Timur	49.43	Maluku	50.20
Kep. Bangka Belitung	51.75	Kalimantan Barat	51.34	Maluku Utara	51.80
Kepulauan Riau	50.01	Kalimantan Tengah	51.64	Papua Barat	51.73
DKI Jakarta	50.05	Kalimantan Selatan	50.20	Papua	52.85

Carilah interval konfidensi bagi proporsi penduduk laki-laki Indonesia tahun 2011.Tingkat ketelitian atau keyakinan yang digunakan adalah:

a. 95%

b. 99%

Langkah yang pertama adalah menghitung rata-rata persentase penduduk laki-laki Indonesia tahun 2011 dengan cara jumlah persentase di atas dibagi banyaknya provinsi, diperoleh 50.37 persen = 0.5037

a. Tingkat keyakinan 95%

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.5037 \pm 1.96 \sqrt{\frac{(0.5037)(0.4963)}{33}} = 0.5037 \pm 0.1706$$

Interval konfidensi bagi proporsi penduduk laki-laki Indonesia tahun 2011 adalah: 0.3331

b. Tingkat keyakinan 99%

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.5037 \pm 2.58 \sqrt{\frac{(0.5037)(0.4963)}{33}} = 0.5037 \pm 0.2246$$

Interval konfidensi bagi proporsi penduduk laki-laki Indonesia tahun 2011 adalah: 0.2791

2. Di bawah ini adalah data tentang persentase penduduk miskin (dalam persen) menurut Provinsi di Indonesia.

Provinsi	Miskin (%)	Provinsi	Miskin (%)	Provinsi	Miskin (%)
Aceh	16.98	Jawa Barat	9.18	Kalimantan Timur	6.31
Sumatera Utara	9.85	Jawa Tengah	5.51	Sulawesi Utara	8.26
Sumatera Barat	6.89	DI Yogyakarta	13.58	Sulawesi Tengah	17.41
Riau	7.99	Jawa Timur	14.55	Sulawesi Selatan	13.61
Jambi	6.40	Banten	12.28	Sulawesi Tenggara	9.54
Sumatera Selatan	8.39	Bali	4.76	Gorontalo	12.05
Bengkulu	13.62	Nusa Tenggara Barat	17.05	Sulawesi Barat	12.77
Lampung	4.97	Nusa Tenggara Timur	19.60	Maluku	18.44
Kep. Bangka Belitung	17.09	Kalimantan Barat	8.07	Maluku Utara	7.41
Kepulauan Riau	14.21	Kalimantan Tengah	6.07	Papua Barat	27.80
DKI Jakarta	4.09	Kalimantan Selatan	4.81	Papua	26.26

Hitung estimasi interval konfidensi bagi proporsi penduduk miskin (dalam persen) menurut Provinsi di Indonesia. Tingkat ketelitian atau keyakinan yang digunakan adalah 99% dan 95%.

Langkah yang pertama adalah menghitung rata-rata persentase penduduk miskin Indonesia dengan cara jumlah persentase penduduk miskin di atas dibagi banyaknya provinsi, diperoleh 10.96 persen = 0.1096.

a. Tingkat keyakinan 99%

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.1096 \pm 2.58 \sqrt{\frac{(0.1096)(0.8904)}{33}} = 0.1096 \pm 0.1403$$

Interval konfidensi bagi proporsi penduduk miskin Indonesia adalah:

$$-0.0307 \approx 0$$

b. Tingkat keyakinan 95%

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.1096 \pm 1.96 \sqrt{\frac{(0.1096)(0.8904)}{33}} = 0.1096 \pm 0.1066$$

Interval konfidensi bagi proporsi penduduk miskin Indonesia adalah:

$$0.0030$$

3. Di bawah ini adalah data tentang persentase rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011.

Provinsi	Persen	Provinsi	Persen	Provinsi	Persen
Aceh	50.10	Jawa Barat	52.50	Kalimantan Timur	66.56
Sumatera Utara	56.47	Jawa Tengah	59.42	Sulawesi Utara	67.23
Sumatera Barat	44.67	DI Yogyakarta	82.15	Sulawesi Tengah	48.39
Riau	53.29	Jawa Timur	54.21	Sulawesi Selatan	62.02
Jambi	50.65	Banten	64.15	Sulawesi Tenggara	51.43
Sumatera Selatan	47.36	Bali	83.26	Gorontalo	46.68
Bengkulu	39.22	Nusa Tenggara Barat	47.34	Sulawesi Barat	43.40
Lampung	44.33	Nusa Tenggara Timur	23.82	Maluku	50.75
Kep. Bangka Belitung	67.64	Kalimantan Barat	43.81	Maluku Utara	52.53
Kepulauan Riau	73.01	Kalimantan Tengah	33.72	Papua Barat	39.23
DKI Jakarta	87.83	Kalimantan Selatan	48.38	Papua	24.31

Hitung estimasi interval konfidensi bagi proporsi rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011. Tingkat ketelitian atau keyakinan yang digunakan adalah:

a. 99%

b. 95%

Langkah yang pertama adalah menghitung rata-rata persentase rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011dengan cara jumlah persentase persentase rumah tangga dengan sanitasi layak dibagi banyaknya provinsi, diperoleh 55.60 persen = 0.5560.

a. Tingkat keyakinan 99%

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.5560 \pm 2.58 \sqrt{\frac{(0.5560)(0.4440)}{33}} = 0.5560 \pm 0.2231$$

Interval konfidensi bagi proporsi rumah tangga dengan sanitasi layak di Indonesia tahun 2011 adalah:

$$0.3329$$

b. Tingkat keyakinan 95%

$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.5560 \pm 1.96 \sqrt{\frac{(0.5560)(0.4440)}{33}} = 0.5560 \pm 0.1695$$

Interval konfidensi bagi proporsi rumah tangga dengan sanitasi layak di Indonesia tahun 2011 adalah:

$$0.3865$$

Soal latihan

1. Di bawah ini adalah data tentang Tingkat Pengangguran/TP (dalam persen) dari beberapa Negara tahun 2011.

Negara	TP	Negara	TP	Negara	TP
Amerika Serikat	8.9	Hongkong	3.4	Mesir	12.0
Arab Saudi	5.8	Indonesia	6.6	Norwegia	3.3
Australia	5.1	Inggris	8.0	Pakistan	5.6
Belanda	4.4	Italia	8.4	Perancis	9.6
Belgia	7.2	Jepang	4.6	Singapura	1.9
Brazil	6.0	Jerman	5.9	Sri Lanka	4.0
Cina	4.1	Kanada	7.5	Swedia	7.8
Denmark	7.6	Kazakhstan	5.4	Thailand	0.7
Federasi Rusia	6.6	Korea Selatan	3.4	Venezuela	8.5
Filipina	7.0	Malaysia	3.1		
Finlandia	7.8	Meksiko	5.2		

Hitung estimasi interval konfidensi bagi proporsi Tingkat Pengangguran dari beberapa Negara tahun 2011. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99%
- b. 95%
- 2. Seperempat dari 250 pelanggan sebuah rumah makan yang diwawancarai menyatakan tidak menyukai masakan yang manis.

Hitung estimasi interval konfidensi bagi proporsi pelanggan rumah makan tersebut yang tidak menyukai masakan manis. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 98.38%
- b. 96.25%
- 3. Sebuah sampel random yang terdiri dari 150 komputer telah dipilih dari seluruh produksi yang ada. Setelah diteliti secara seksama, ternyata 15 dari 150 komputer dinyatakan rusak atau tidak memenuhi standar kualitas.

Hitung estimasi interval konfidensi bagi proporsi komputer yang rusak. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 98.40%
- b. 93.56%

4. Sebuah sampel random yang terdiri dari 300 unit sepeda telah dipilih dari seluruh produksi. Setelah diteliti secara seksama, ternyata 60 dari 300 unit sepeda dinyatakan rusak atau tidak memenuhi standar kualitas.

Hitung estimasi interval konfidensi bagi proporsi sepeda yang rusak. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 91.64%
- b. 79.60%
- 5. Sampel random yang terdiri dari 500 mainan anak-anak telah dipilih dari seluruh produksi. Setelah diteliti secara seksama, ternyata 150 dari 500 mainan anak-anak tersebut berwarna biru.

Hitung estimasi interval konfidensi bagi proporsi mainan anak-anak yang berwarna biru. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99.40%
- b. 96.64%
- 6. Sebuah sampel yang terdiri dari 100 kue yang dipilih secara random, setelah diteliti ternyata ada 15 bungkus yang sudah kadaluarsa.

Hitung estimasi interval konfidensi bagi proporsi kue yang sudah kadaluarsa. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 95%
- b. 99%
- 7. Sebuah sampel random yang terdiri dari 200 kertas sampul telah dipilih dari dalam gudang. Setelah diteliti secara seksama, ternyata 30 dari 200 kertas sampul tersebut rusak.

Hitung estimasi interval konfidensi bagi proporsi kertas sampul yang rusak. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 95.0%
- b. 99.4%

8. Di bawah ini adalah data tentang persentase rumah tangga yang sampahnya tidak dipilah-pilah (dalam persen) menurut Provinsi di Indonesia.

Provinsi	Persen	Provinsi	Persen	Provinsi	Persen
Aceh	81.21	Jawa Barat	69.48	Kalimantan Timur	70.97
Sumatera Utara	80.39	Jawa Tengah	72.59	Sulawesi Utara	65.05
Sumatera Barat	82.53	DI Yogyakarta	68.74	Sulawesi Tengah	70.05
Riau	79.13	Jawa Timur	80.07	Sulawesi Selatan	71.42
Jambi	83.90	Banten	81.58	Sulawesi Tenggara	73.22
Sumatera Selatan	76.82	Bali	68.83	Gorontalo	77.75
Bengkulu	81.10	Nusa Tenggara Barat	82.17	Sulawesi Barat	79.48
Lampung	83.71	Nusa Tenggara Timur	70.37	Maluku	84.41
Kep. Bangka Belitung	76.68	Kalimantan Barat	84.20	Maluku Utara	83.41
Kepulauan Riau	79.99	Kalimantan Tengah	76.16	Papua Barat	72.02
DKI Jakarta	85.77	Kalimantan Selatan	79.89	Papua	83.02

Hitung estimasi interval konfidensi bagi proporsi rumah tangga yang sampahnya tidak dipilah-pilah menurut Provinsi di Indonesia. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 98.38%
- b. 93.56%
- 9. Di bawah ini adalah data tentang persentase rumah tangga yang tidak memiliki kendaraan bermotor (dalam persen) menurut Provinsi di Indonesia.

Provinsi	Persen	Provinsi	Persen	Provinsi	Persen
Aceh	23.35	Jawa Barat	37.02	Kalimantan Timur	9.44
Sumatera Utara	29.24	Jawa Tengah	28.83	Sulawesi Utara	44.55
Sumatera Barat	25.88	DI Yogyakarta	19.21	Sulawesi Tengah	29.85
Riau	13.08	Jawa Timur	24.28	Sulawesi Selatan	32.49
Jambi	14.11	Banten	25.19	Sulawesi Tenggara	35.21
Sumatera Selatan	23.64	Bali	11.10	Gorontalo	44.04
Bengkulu	17.86	Nusa Tenggara Barat	51.97	Sulawesi Barat	37.44
Lampung	20.63	Nusa Tenggara Timur	66.08	Maluku	61.78
Kep. Bangka Belitung	8.11	Kalimantan Barat	21.63	Maluku Utara	52.88
Kepulauan Riau	10.66	Kalimantan Tengah	22.39	Papua Barat	43.24
DKI Jakarta	18.82	Kalimantan Selatan	15.43	Papua	74.97

Hitung estimasi interval konfidensi bagi proporsi rumah tangga yang tidak memiliki kendaraan bermotor menurut Provinsi di Indonesia. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99.40%
- b. 96.64%
- 10. Di bawah ini adalah data tentang persentase rumah tangga yang memiliki tempat pembuangan air besar sendiri (dalam persen) menurut Provinsi di Indonesia 2011.

Provinsi	Persen	Provinsi	Persen	Provinsi	Persen
Aceh	60.34	Jawa Barat	67.60	Kalimantan Timur	80.96
Sumatera Utara	74.88	Jawa Tengah	64.51	Sulawesi Utara	63.42
Sumatera Barat	54.65	DI Yogyakarta	69.82	Sulawesi Tengah	50.89
Riau	83.81	Jawa Timur	61.63	Sulawesi Selatan	62.29
Jambi	68.12	Banten	62.92	Sulawesi Tenggara	58.63
Sumatera Selatan	64.59	Bali	65.50	Gorontalo	33.06
Bengkulu	66.57	Nusa Tenggara Barat	41.85	Sulawesi Barat	44.85
Lampung	76.98	Nusa Tenggara Timur	62.35	Maluku	49.53
Kep. Bangka Belitung	71.75	Kalimantan Barat	64.68	Maluku Utara	49.88
Kepulauan Riau	82.04	Kalimantan Tengah	53.60	Papua Barat	54.83
DKI Jakarta	76.30	Kalimantan Selatan	63.80	Papua	46.54

Hitung estimasi interval konfidensi bagi proporsi rumah tangga yang memiliki tempat pembuangan air besar sendiri menurut Provinsi di Indonesia 2011. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99%
- b. 95%

4. Estimasi Interval Konfidensi bagi Selisih Dua Rata-Rata

Interval konfidensi dapat digunakan untuk mengestimasi beda rata-rata dari dua kelompok sampel yang berbeda. Estimasi interval konfidensi bagi selisih dua rata-rata sangat berguna di dalam industri.

Contoh

- 1. Sebuah industri mie goreng instant telah memproduksi dua rasa. Bagian riset pemasaran industri tersebut ingin melakukan riset pasar tentang interval konfidensi bagi selisih rata-rata penjualan kedua produk dalam waktu tertentu.
- 2. Sebuah industri yang bergerak dalam bidang garmen mempunyai pekerja dengan sistem pekerja siang dan pekerja malam. Bagian produksi industri tersebut ingin mengetahui interval konfidensi bagi selisih rata-rata produksi antara pekerja siang dengan pekerja malam.
- 3. Sebuah perusahaan pompa air telah mengeluarkan pompa air jenis yang baru. Perusahaan ingin menghitung interval konfidensi bagi selisih rata-rata daya tahan antara pompa air jenis yang baru dengan jenis yang lama.

Rumus yang digunakan untuk mengestimasi interval konfidensi bagi selisih dua rata-rata adalah:

$$(\overline{x}_1 - \overline{x}_2) \pm Z_{\alpha/2} \cdot \hat{\sigma}_{\overline{x}_1 - \overline{x}_2} = (\overline{x}_1 - \overline{x}_2) \pm Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}}$$

Syarat rumus di atas dapat digunakan adalah populasinya berdistribusi normal.

Contoh

1. Di bawah ini adalah data tentang rata-rata konsumsi protein per kapita per hari (gram) menurut Provinsi di Indonesia tahun 2011 dan 2012.

Provinsi	2011	2012	Provinsi	2011	2012
Aceh	55.58	53.39	Nusa Tenggara Barat	55.58	53.39
Sumatera Utara	57.58	54.15	Nusa Tenggara Timur	57.58	54.15
Sumatera Barat	56.89	54.66	Kalimantan Barat	56.89	54.66
Riau	57.71	52.77	Kalimantan Tengah	57.71	52.77
Jambi	54.56	52.06	Kalimantan Selatan	54.56	52.06
Sumatera Selatan	55.86	52.84	Kalimantan Timur	55.86	52.84
Bengkulu	55.93	52.90	Sulawesi Utara	55.93	52.90
Lampung	52.82	50.95	Sulawesi Tengah	52.82	50.95
Kep. Bangka Belitung	54.90	55.24	Sulawesi Selatan	54.90	55.24
Kepulauan Riau	57.06	55.95	Sulawesi Tenggara	57.06	55.95
DKI Jakarta	61.35	59.53	Gorontalo	61.35	59.53
Jawa Barat	58.17	52.52	Sulawesi Barat	58.17	52.52
Jawa Tengah	53.42	51.22	Maluku	53.42	51.22
DI Yogyakarta	53.81	53.13	Maluku Utara	53.81	53.13
Jawa Timur	54.17	51.81	Papua Barat	54.17	51.81
Banten	59.20	56.24	Papua	59.20	56.24
Bali	61.65	60.12			

Buatlah interval konfidensi 95% untuk mengestimasi selisih rata-rata konsumsi protein per kapita per hari (gram) menurut Provinsi di Indonesia antara tahun 2011 dengan tahun 2012.

Dengan bantuan kalkulator dan tabel diketahui:

$$n_{2011} = 33$$
, $\bar{x}_{2011} = 55.75$, $\sigma_{2011} = 4.058$
 $n_{2012} = 33$, $\bar{x}_{2012} = 53.11$, $\sigma_{2012} = 4.074$
 $\alpha = 5\%$ maka $Z = 1.96$

Interval konfidensi 95% untuk mengestimasi selisih rata-rata konsumsi protein per kapita per hari (gram) antara tahun 2011 dengan tahun 2012 adalah:

$$(\bar{x}_1 - \bar{x}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (55.75 - 53.11) - 1.96 \sqrt{\frac{4.058^2}{33} + \frac{4.074^2}{33}}$$

$$= 2.640 - 1.962 = 0.678$$

$$(\bar{x}_1 - \bar{x}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (55.75 - 53.11) + 1.96 \sqrt{\frac{4.058^2}{33} + \frac{4.074^2}{33}}$$

$$= 2640 + 1962 = 4602$$

2. Sebuah sampel yang terdiri dari 150 buah payung merk *A* menunjukkan rata-rata daya tahan lamanya selama 140 hari dengan deviasi standar 12 hari.

Sebuah sampel yang terdiri dari 200 buah payung merk *B* menunjukkan rata-rata daya tahan lamanya selama 120 hari dengan deviasi standar 8 hari.

Hitung estimasi interval konfidensi bagi selisih rata-rata daya tahannya dari kedua merk payung tersebut. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 95%
- b. 99%
- a. Tingkat keyakinan 95%

$$(\bar{x}_1 - \bar{x}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (140 - 120) - 1.96 \sqrt{\frac{12^2}{150} + \frac{8^2}{200}}$$

$$= 20 - 2.217 = 17.783$$

$$(\bar{x}_1 - \bar{x}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (140 - 120) + 1.96 \sqrt{\frac{12^2}{150} + \frac{8^2}{200}}$$

$$=20+2.217=22.217$$

Interval konfidensi bagi selisih rata-rata daya tahannya dari kedua merk payung:

$$17.783 < (\mu_1 - \mu_2) < 22.217$$

b. Tingkat keyakinan 99%

$$(\bar{x}_1 - \bar{x}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (140 - 120) - 2.58 \sqrt{\frac{12^2}{150} + \frac{8^2}{200}}$$

$$=20-2.919=17.081$$

$$(\bar{x}_1 - \bar{x}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (140 - 120) + 2.58 \sqrt{\frac{12^2}{150} + \frac{8^2}{200}}$$

= 20 + 2.919 = 22.919

Interval konfidensi bagi selisih rata-rata daya tahannya dari kedua merk payung: $17.081 < (\mu_1 - \mu_2) < 22.919$

3. Laptop yang diproduksi oleh pabrik *A* mempunyai rata-rata umur 65 bulan dengan deviasi standar 9 bulan, sedangkan yang diproduksi oleh pabrik *B* mempunyai rata-rata umur 60 bulan dengan deviasi standar 8 bulan.

Sampel random diambil dari pabrik *A* sebanyak 36 laptop dan dari pabrik *B* sebanyak 49 laptop.

Hitung estimasi interval konfidensi bagi selisih rata-rata umur laptop yang diproduksi oleh pabrik A dan B. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 95%
- b. 99%
- a. Tingkat keyakinan 95%

$$(\bar{x}_1 - \bar{x}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (65 - 60) - 1.96 \sqrt{\frac{9^2}{36} + \frac{8^2}{49}}$$

$$=5.0-3.7=1.3$$

$$(\bar{x}_1 - \bar{x}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (65 - 60) + 1.96 \sqrt{\frac{9^2}{36} + \frac{8^2}{49}}$$

$$=5.0+3.7=8.7$$

Interval konfidensi bagi selisih rata-rata umur laptop yang diproduksi oleh pabrik *A* dan *B* adalah:

$$1.3 < (\mu_1 - \mu_2) < 8.7$$

b. Tingkat keyakinan 99%

$$(\bar{x}_1 - \bar{x}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (65 - 60) - 2.58 \sqrt{\frac{9^2}{36} + \frac{8^2}{49}}$$

$$=5.0 - 4.9 = 0.1$$

$$(\bar{x}_1 - \bar{x}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (65 - 60) + 2.58 \sqrt{\frac{9^2}{36} + \frac{8^2}{49}}$$

$$=5.0+4.9=9.9$$

Interval konfidensi bagi selisih rata-rata umur laptop yang diproduksi oleh pabrik *A* dan *B* adalah:

$$0.1 < (\mu_1 - \mu_2) < 9.9$$

3. Seorang importir telah mengimpor beberapa pasang sepatu dengan merk yang berbeda, yaitu merk *X* dan *Y*. Importir tersebut ingin mengetahui ada atau tidaknya perbedaan secara nyata antara rata-rata usia kedua merk sepatu tersebut.

Secara random dipilih masing-masing 50 pasang sepatu dan setelah diadakan pengukuran secara seksama, ternyata umur rata-rata sepatu merk X adalah 124.8 minggu dengan deviasi standar 6.0 minggu, sedangkan umur rata-rata sepatu merk Y adalah 120.8 minggu dengan deviasi standar 7.4 minggu.

Hitung estimasi interval konfidensi bagi selisih rata-rata umur sepatu merk X dan Y. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99%
- b. 95%

a. Tingkat keyakinan 99%

$$(\bar{x}_1 - \bar{x}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (124.8 - 120.8) - 2.58 \sqrt{\frac{6.0^2}{50} + \frac{7.4^2}{50}}$$

$$= 4.00 - 3.48 = 0.52$$

$$(\bar{x}_1 - \bar{x}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (124.8 - 120.8) + 2.58 \sqrt{\frac{6.0^2}{50} + \frac{7.4^2}{50}}$$

$$=4.00+3.48=7.48$$

Interval konfidensi bagi selisih selisih rata-rata umur sepatu merk X dan Y:

$$5.24 < (\mu_1 - \mu_2) < 7.48$$

b. Tingkat keyakinan 95%

$$(\bar{x}_1 - \bar{x}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (124.8 - 120.8) - 1.96 \sqrt{\frac{6.0^2}{50} + \frac{7.4^2}{50}}$$

$$= 4.00 - 2.64 = 1.36$$

$$(\bar{x}_1 - \bar{x}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}} = (124.8 - 120.8) + 1.96 \sqrt{\frac{6.0^2}{50} + \frac{7.4^2}{50}}$$

$$=4.00+2.64=6.64$$

Interval konfidensi bagi selisih selisih rata-rata umur sepatu merk *X* dan *Y*:

$$1.36 < (\mu_1 - \mu_2) < 6.64$$

Soal latihan

1. Di bawah ini adalah data tentang jumlah tindak pidana menurut Kepolisian Daerah di Indonesia tahun 2011 dan 2012.

Kepolisian Daerah	2011	2012	Kepolisian Daerah	2011	2012
Aceh	9114	9200	Bali	5490	5183
Sumatera Utara	37610	33250	Nusa Tenggara Barat	9585	10504
Sumatera Barat	11695	13468	Nusa Tenggara Timur	5298	6389
Riau	8323	12533	Kalimantan Barat	10296	10315
Kepulauan Riau	3643	3626	Kalimantan Tengah	5682	3219
Jambi	4450	6099	Kalimantan Selatan	499	3372
Sumatera Selatan	19353	21498	Kalimantan Timur	9439	9639
Kep. Bangka Belitung	2732	5197	Sulawesi Utara	11286	6815
Bengkulu	3498	3943	Gorontalo	2602	2458
Lampung	6052	4383	Sulawesi Tengah	7001	8134
Metro Jaya	53324	52642	Sulawesi Selatan	22509	18169
Jawa Barat	29296	27247	Sulawesi Tenggara	6254	7166
Jawa Tengah	3205	3804	Maluku	1510	1726
DI Yogyakarta	15205	11079	Maluku Utara	887	926
Jawa Timur	6326	8987	Papua	7049	7414
Banten	28392	22774			

Carilah estimasi interval konfidensi bagi selisih rata-rata jumlah tindak pidana menurut Kepolisian Daerah tahun 2011 dan 2012 pada tingkat konfidensi:

a. 90.00% dan b. 99.40%

2. Di bawah ini adalah data tentang Angka Harapan Hidup (AHH) Kabupaten/Kota di Provinsi Jawa Timur pada 2011 dan 2012.

Kab./Kota	2011	2012	Kab./Kota	2011	2012	Kab./Kota	2011	2012
Pacitan	71.48	71.69	Pasuruan	64.31	64.61	Sampang	63.49	63.98
Ponorogo	70.24	70.40	Sidoarjo	70.79	71.03	Pamekasan	64.39	64.79
Trenggalek	71.87	72.13	Mojokerto	70.42	70.64	Sumenep	64.89	65.07
Tulungagung	71.72	71.95	Jombang	70.18	70.28	Kota Kediri	70.64	70.86
Blitar	71.09	71.30	Nganjuk	69.11	69.33	Kota Blitar	72.51	72.80
Kediri	69.90	70.15	Madiun	69.07	69.25	Kota Malang	70.68	71.02
Malang	69.23	69.50	Magetan	71.41	71.66	Kota Probolinggo	70.52	70.86
Lumajang	67.46	67.75	Ngawi	70.24	70.57	Kota Pasuruan	66.41	66.46
Jember	63.03	63.21	Bojonegoro	67.28	67.42	Kota Mojokerto	71.78	72.00
Banyuwangi	67.98	68.38	Tuban	68.00	68.21	Kota Madiun	71.22	71.42
Bondowoso	63.54	63.85	Lamongan	68.37	68.55	Kota Surabaya	71.27	71.53
Situbondo	63.36	63.52	Gresik	71.22	71.47	Kota Batu	69.72	70.00
Probolinggo	61.42	61.70	Bangkalan	63.48	63.65			

Carilah estimasi interval bagi selisih rata-rata AHH Kabupaten/Kota di Provinsi Jawa Timur pada 2011 dan 2012 pada tingkat konfidensi 99.40% dan 96.64%.

3. Di bawah ini adalah data tentang Indeks Pembangunan Manusia (IPM) Kabupaten/Kota di Provinsi Jawa Timur pada 2011 dan 2012.

Kab./Kota	2011	2012	Kab./Kota	2011	2012	Kab./Kota	2011	2012
Pacitan	72.48	72.88	Pasuruan	68.24	69.17	Sampang	60.78	61.67
Ponorogo	71.15	71.91	Sidoarjo	76.90	77.36	Pamekasan	65.48	66.51
Trenggalek	73.66	74.09	Mojokerto	73.89	74.42	Sumenep	66.01	66.41
Tulungagung	73.76	74.45	Jombang	73.14	73.86	Kota Kediri	76.79	77.20
Blitar	74.06	74.43	Nganjuk	71.48	71.96	Kota Blitar	77.89	78.31
Kediri	72.28	72.72	Madiun	70.50	70.88	Kota Malang	77.76	78.43
Malang	71.17	71.94	Magetan	73.17	73.85	Kota Probolinggo	74.85	75.44
Lumajang	68.55	69.00	Ngawi	69.73	70.20	Kota Pasuruan	73.89	74.33
Jember	65.53	65.99	Bojonegoro	67.32	67.74	Kota Mojokerto	77.50	78.01
Banyuwangi	69.58	70.53	Tuban	68.71	69.18	Kota Madiun	77.07	77.50
Bondowoso	63.81	64.98	Lamongan	70.52	71.05	Kota Surabaya	77.85	78.33
Situbondo	64.67	65.06	Gresik	75.17	75.97	Kota Batu	74.93	75.42
Probolinggo	63.84	64.35	Bangkalan	65.01	65.69			

Carilah estimasi interval bagi selisih rata-rata IPM Kabupaten/ Kota di Provinsi Jawa Timur pada 2011 dan 2012 pada tingkat konfidensi 95% dan 99%.

4. Di bawah ini adalah data tentang jumlah Pegawai Negeri Sipil menurut Provinsi di Indonesia tahun 2011 dan 2012.

Provinsi	2011	2012	Provinsi	2011	2012
Aceh	166234	164245	Nusa Tenggara Barat	94954	92912
Sumatera Utara	252803	247824	Nusa Tenggara Timur	127712	124726
Sumatera Barat	142111	139163	Kalimantan Barat	94787	92573
Riau	105531	103902	Kalimantan Tengah	78919	77680
Jambi	83568	81823	Kalimantan Selatan	97633	95809
Sumatera Selatan	142104	139252	Kalimantan Timur	103525	102007
Bengkulu	65079	63728	Sulawesi Utara	80723	78955
Lampung	130622	126613	Sulawesi Tengah	87678	85763
Kep. Bangka Belitung	31712	31419	Sulawesi Selatan	206105	201464
Kepulauan Riau	34944	35039	Sulawesi Tenggara	82539	80495
DKI Jakarta	306586	291132	Gorontalo	35147	34675
Jawa Barat	458751	449122	Sulawesi Barat	31979	32157
Jawa Tengah	480629	464108	Maluku	70307	68954
DI Yogyakarta	88916	86099	Maluku Utara	43814	43422
Jawa Timur	519082	504292	Papua Barat	37151	39032
Banten	98207	96165	Papua	91499	96650
Bali	99467	96782			

Buatlah interval konfidensi 99% dan 95% untuk mengestimasi selisih rata-rata jumlah Pegawai Negeri Sipil menurut Provinsi di Indonesia tahun 2011 dan 2012.

5. Di bawah ini adalah data tentang jumlah Kecamatan menurut Provinsi di Indonesia tahun 2011 dan 2012.

Provinsi	2011	2012	Provinsi	2011	2012
Aceh	287	289	Nusa Tenggara Barat	116	116
Sumatera Utara	421	422	Nusa Tenggara Timur	293	306
Sumatera Barat	176	176	Kalimantan Barat	176	176
Riau	157	163	Kalimantan Tengah	130	136
Jambi	131	138	Kalimantan Selatan	151	152
Sumatera Selatan	223	230	Kalimantan Timur	146	150
Bengkulu	124	127	Sulawesi Utara	159	164
Lampung	214	225	Sulawesi Tengah	161	170
Kep. Bangka Belitung	46	47	Sulawesi Selatan	304	306
Kepulauan Riau	59	63	Sulawesi Tenggara	204	209
DKI Jakarta	44	44	Gorontalo	70	77
Jawa Barat	626	626	Sulawesi Barat	69	69
Jawa Tengah	573	573	Maluku	86	95
DI Yogyakarta	78	78	Maluku Utara	112	112
Jawa Timur	662	664	Papua Barat	175	175
Banten	154	155	Papua	389	389
Bali	57	57			

Buatlah interval konfidensi 99% dan 95% untuk mengestimasi selisih rata-rata jumlah Kecamatan menurut Provinsi di Indonesia tahun 2011 dan 2012.

6. Di bawah ini adalah data tentang Tingkat Pengangguran/TP (dalam persen) dari beberapa Negara tahun 2011 dan 2012.

Negara	2011	2012	Negara	2011	2012	Negara	2011	2012
Amerika Serikat	8.9	8.1	Hongkong	3.4	3.3	Mesir	12.0	12.7
Arab Saudi	5.8	5.6	Indonesia	6.6	6.1	Norwegia	3.3	3.2
Australia	5.1	5.2	Inggris	8.0	7.9	Pakistan	5.6	7.7
Belanda	4.4	5.3	Italia	8.4	10.7	Perancis	9.6	10.2
Belgia	7.2	7.5	Jepang	4.6	4.4	Singapura	1.9	1.8
Brazil	6.0	5.5	Jerman	5.9	5.5	Sri Lanka	4.0	4.2
Cina	4.1	4.1	Kanada	7.5	7.2	Swedia	7.8	8.0
Denmark	7.6	7.5	Kazakhstan	5.4	5.3	Thailand	0.7	0.7
Federasi Rusia	6.6	5.6	Korea Selatan	3.4	3.2	Venezuela	8.5	7.8
Filipina	7.0	7.0	Malaysia	3.1	3.0		·	
Finlandia	7.8	7.7	Meksiko	5.2	4.7			

Buatlah interval konfidensi 98.40% dan 93.56% untuk mengestimasi selisih rata-rata Tingkat Pengangguran/TP (dalam persen) dari beberapa Negara tahun 2011 dan 2012.

7. Secara random dipilih 50 botol air mineral merk *A* dan 65 botol air mineral merk *B*. Setelah dilakukan penelitian tentang masa berlakunya, ternyata umur rata-rata air mineral merk *A* adalah 10 bulan dengan deviasi standar 2 bulan, sedangkan umur rata-rata air mineral merk *B* adalah 9.4 bulan dengan deviasi standar 1.5 bulan.

Hitung estimasi interval konfidensi bagi selisih rata-rata air mineral merk A dan B. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 90%
- b. 95%
- 8. Secara random dipilih 76 perhiasan emas dari kotak *X* dan 58 perhiasan emas dari kotak *Y*. Setelah dilakukan penimbangan, ternyata berat rata-rata emas dari kotak *X* adalah 20 gram dengan deviasi standar 1.4 gram, sedangkan berat rata-rata emas dari kotak *Y* adalah 20.5 gram dengan deviasi standar 1.6 gram.

Hitung estimasi interval konfidensi bagi selisih rata-rata berat emas dari kotak *X* dan *Y*. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 98.38%
- b. 96.64%
- 9. Sebuah pabrik motor ingin memutuskan apakah akan menggunakan ban merk *A* atau merk *B* bagi mobil produksi terbarunya.

Untuk membantu mencapai keputusan tersebut, sebuah percobaan dilakukan dengan menggunakan 78 ban untuk masing-masing merk tersebut. Ban-ban tersebut dipasang dan digunakan sampai aus sehingga harus diganti.

Hasilnya adalah sebagai berikut:

merk $A: \bar{x} = 379$ km dengan deviasi standar = 51 km merk $B: \bar{x} = 398$ km dengan deviasi standar = 59 km

Hitung estimasi interval konfidensi bagi selisih rata-rata jarak tempuh antara ban merk *A* dan *B*. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99.40%
- b. 96.25%

5. Estimasi Interval Konfidensi bagi Selisih Dua Proporsi

Aplikasi dari interval konfidensi adalah untuk mengestimasi interval konfidensi bagi beda proporsi dari dua kelompok sampel yang berbeda. Estimasi dari interval konfidensi ini juga sering digunakan di dalam industri.

Contoh

- 1. Sebuah perusahaan biskuit telah menghasilkan dua jenis biskuit dengan rasa baru yang berbeda, yaitu rasa stroberi dan vanila. Perusahaan ingin menghitung interval konfidensi bagi selisih proporsi kandungan kalori dalam biskuit rasa stroberi dan vanila.
- 2. Sebuah industri makanan tradisional telah memproduksi makanan kreasi baru. Makanan tersebut dipasarkan di pasar modern dan pasar tradisional. Industri tersebut ingin melakukan kajian untuk menghitung interval konfidensi bagi selisih proporsi tingkat penjualan makanan kreasi baru di pasar modern dan pasar tradisional.
- 3. Sebuah perusahaan mempunyai dua kantor cabang, yaitu satu di *A* dan satu lagi di *B*. Kepala bagian produksi ingin menghitung interval konfidensi bagi selisih proporsi tingkat kecacatan produk yang dihasilkan oleh perusahaan cabang kota *A* dan kota *B*.

Rumus yang digunakan untuk mengestimasi interval konfidensi bagi selisih dua proporsi adalah:

$$(\hat{p}_1 - \hat{p}_2) \pm Z_{\alpha/2} \cdot \hat{\sigma}_{p_1 - p_2} = (\hat{p}_1 - \hat{p}_2) \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Syarat rumus di atas dapat digunakan adalah populasinya berdistribusi normal.

Contoh

1. Di bawah ini adalah data tentang persentase Penduduk Laki-laki (persen) menurut Provinsi di Indonesia tahun 2011 dan 2012.

Provinsi	2011	2012	Provinsi	2011	2012
Aceh	50.09	50.04	Nusa Tenggara Barat	47.82	48.53
Sumatera Utara	50.69	49.94	Nusa Tenggara Timur	49.43	49.67
Sumatera Barat	50.64	49.60	Kalimantan Barat	51.34	51.11
Riau	51.22	51.51	Kalimantan Tengah	51.64	52.16
Jambi	51.23	51.12	Kalimantan Selatan	50.20	50.63
Sumatera Selatan	51.25	50.90	Kalimantan Timur	52.26	52.64
Bengkulu	51.28	51.12	Sulawesi Utara	51.08	51.09
Lampung	51.68	51.48	Sulawesi Tengah	51.31	51.26
Kep. Bangka Belitung	51.75	51.91	Sulawesi Selatan	48.84	48.85
Kepulauan Riau	50.01	51.35	Sulawesi Tenggara	50.03	50.26
DKI Jakarta	50.05	50.69	Gorontalo	50.32	50.18
Jawa Barat	50.96	50.88	Sulawesi Barat	50.35	50.20
Jawa Tengah	49.80	49.69	Maluku	50.20	50.56
DI Yogyakarta	48.64	49.43	Maluku Utara	51.80	51.16
Jawa Timur	49.46	49.36	Papua Barat	51.73	52.91
Banten	51.01	51.16	Papua	52.85	53.16
Bali	50.42	50.40			

Carilah interval konfidensi bagi selisih proporsi penduduk laki-laki Indonesia tahun 2011 dan 2012. Tingkat ketelitian atau keyakinan yang digunakan adalah:

a. 95%

b. 99%

Langkah yang pertama adalah menghitung rata-rata persentase penduduk laki-laki Indonesia tahun 2011 dan 2012 dengan cara jumlah persentase di atas dibagi banyaknya provinsi, diperoleh:

Tahun 2011:
$$p_{2011} = 0.5037$$
 dan $n_{2011} = 33$
Tahun 2012: $p_{2012} = 0.5035$ dan $n_{2012} = 33$

a. Tingkat keyakinan 95%

$$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.5037 - 0.5035) - 1.96\sqrt{\frac{(0.5037)(0.4963)}{33} + \frac{(0.5035)(0.4965)}{33}}$$

$$= 0.0002 - 0.2413 = -0.2411$$

$$(\hat{p}_1 - \hat{p}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.5037 - 0.5035) + 1.96 \sqrt{\frac{(0.5037)(0.4963)}{33} + \frac{(0.5035)(0.4965)}{33}}$$

$$= 0.0002 + 0.2413 = 0.2415$$

Interval konfidensi bagi selisih proporsi penduduk laki-laki Indonesia tahun 2011 dan 2012 adalah:

$$-0.2411$$

b. Tingkat keyakinan 99%

$$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.5037 - 0.5035) - 2.58 \sqrt{\frac{(0.5037)(0.4963)}{33} + \frac{(0.5035)(0.4965)}{33}}$$

$$= 0.0002 - 0.3176 = -0.3174$$

$$(\hat{p}_1 - \hat{p}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.5037 - 0.5035) + 2.58 \sqrt{\frac{(0.5037)(0.4963)}{33} + \frac{(0.5035)(0.4965)}{33}}$$

$$= 0.0002 + 0.3176 = 0.3178$$

Interval konfidensi bagi selisih proporsi penduduk laki-laki Indonesia tahun 2011 dan 2012 adalah:

$$-0.3174$$

2. Di bawah ini adalah data tentang persentase rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011 dan 2012.

ъ	2011	2012	ъ	2011	2012
Provinsi	2011	2012	Provinsi	2011	2012
Aceh	50.10	52.53	Nusa Tenggara Barat	47.34	47.95
Sumatera Utara	56.47	59.70	Nusa Tenggara Timur	23.82	30.31
Sumatera Barat	44.67	44.36	Kalimantan Barat	43.81	50.00
Riau	53.29	58.38	Kalimantan Tengah	33.72	38.31
Jambi	50.65	50.13	Kalimantan Selatan	48.38	49.72
Sumatera Selatan	47.36	53.59	Kalimantan Timur	66.56	72.15
Bengkulu	39.22	35.93	Sulawesi Utara	67.23	69.19
Lampung	44.33	43.72	Sulawesi Tengah	48.39	54.12
Kep. Bangka Belitung	67.64	75.40	Sulawesi Selatan	62.02	63.33
Kepulauan Riau	73.01	69.20	Sulawesi Tenggara	51.43	55.17
DKI Jakarta	87.83	80.45	Gorontalo	46.68	44.68
Jawa Barat	52.50	55.41	Sulawesi Barat	43.40	45.04
Jawa Tengah	59.42	60.02	Maluku	50.75	53.17
DI Yogyakarta	82.15	84.01	Maluku Utara	52.53	55.52
Jawa Timur	54.21	56.92	Papua Barat	39.23	55.57
Banten	64.15	61.35	Papua	24.31	26.97
Bali	83.26	82.71			

Hitung estimasi interval konfidensi bagi selisih proporsi rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011 dan 2012. Tingkat ketelitian atau keyakinan yang digunakan adalah:

a. 95%

b. 99%

Langkah yang pertama adalah menghitung rata-rata persentase rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011dan 2012 dengan cara jumlah persentase persentase rumah tangga dengan sanitasi layak dibagi banyaknya provinsi, diperoleh:

Tahun 2011: $p_{2011} = 0.5560$ dan $n_{2011} = 33$ Tahun 2012: $p_{2012} = 0.5735$ dan $n_{2012} = 33$ a. Tingkat keyakinan 95%

$$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= |0.5560 - 0.5735| - 1.96 \sqrt{\frac{(0.5560)(0.4440)}{33} + \frac{(0.5735)(0.4265)}{33}}$$

$$= 0.0175 - 0.1220 = -0.1045$$

$$(\hat{p}_1 - \hat{p}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= |0.5560 - 0.5735| + 1.96 \sqrt{\frac{(0.5560)(0.4440)}{33} + \frac{(0.5735)(0.4265)}{33}}$$

$$= 0.0175 + 0.1220 = 0.1395$$

Interval konfidensi bagi selisih proporsi rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011 dan 2012 adalah:

$$-0.1045$$

b. Tingkat keyakinan 99%

$$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= |0.5560 - 0.5735| - 2.58 \sqrt{\frac{(0.5560)(0.4440)}{33} + \frac{(0.5735)(0.4265)}{33}}$$

$$= 0.0175 - 0.3149 = -0.2974$$

$$(\hat{p}_1 - \hat{p}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= |0.5560 - 0.5735| + 2.58 \sqrt{\frac{(0.5560)(0.4440)}{33} + \frac{(0.5735)(0.4265)}{33}}$$

$$= 0.0175 + 0.3149 = 0.3324$$

Interval konfidensi bagi selisih proporsi rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011 dan 2012 adalah:

$$-0.2974$$

3. Suatu penelitian dilakukan untuk menduga proporsi penduduk laki-laki dan perempuan yang menyetujui dibangunnya sebuah pasar swalayan.

Dari hasil penelitian ternyata diperoleh 65 diantara 100 penduduk laki-laki menyetujui pembangunan tersebut, sedangkan diantara 120 penduduk desa hanya 54 penduduk yang menyetujui pembangunan tersebut.

Hitung estimasi interval konfidensi bagi selisih proporsi penduduk laki-laki dan perempuan yang menyetujui dibangunnya sebuah pasar swalayan. Tingkat ketelitian atau keyakinan yang digunakan adalah:

b. 90%

a. Tingkat keyakinan 95%

$$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.65 - 0.45) - 1.96 \sqrt{\frac{(0.65)(0.35)}{100} + \frac{(0.45)(0.55)}{120}}$$

$$= 0.200 - 0.129 = 0.071$$

$$(\hat{p}_1 - \hat{p}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.65 - 0.45) + 1.96 \sqrt{\frac{(0.65)(0.35)}{100} + \frac{(0.45)(0.55)}{120}}$$

$$= 0.200 + 0.129 = 0.329$$

Interval konfidensi bagi selisih proporsi penduduk laki-laki dan perempuan yang menyetujui dibangunnya sebuah pasar swalayan adalah:

$$0.071 < (p_1 - p_2) < 0.329$$

b. Tingkat keyakinan 90%

$$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.65 - 0.45) - 1.65 \sqrt{\frac{(0.65)(0.35)}{100} + \frac{(0.45)(0.55)}{120}}$$

$$= 0.200 - 0.109 = 0.091$$

$$(\hat{p}_1 - \hat{p}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.65 - 0.45) + 1.65 \sqrt{\frac{(0.65)(0.35)}{100} + \frac{(0.45)(0.55)}{120}}$$

$$= 0.200 + 0.109 = 0.309$$

Interval konfidensi bagi selisih proporsi penduduk laki-laki dan perempuan yang menyetujui dibangunnya sebuah pasar swalayan adalah:

$$0.091 < (p_1 - p_2) < 0.309$$

4. Diambil sampel secara random sebanyak 120 butir telur bebek dan 200 butir telur ayam. Dari 120 butir telur bebek, ternyata diketahui ada 36 yang cacat. Sedangkan dari 200 butir telur ayam ada sebanyak 38 yang cacat.

Hitung estimasi interval konfidensi bagi selisih proporsi telur yang cacat antara telur bebek dan telur ayam. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99%
- b. 95%
- a. Tingkat keyakinan 99%

$$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.30 - 0.19) - 2.58 \sqrt{\frac{(0.30)(0.70)}{120} + \frac{(0.19)(0.81)}{200}}$$

$$(\hat{p}_1 - \hat{p}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.30 - 0.19) + 2.58 \sqrt{\frac{(0.30)(0.70)}{120} + \frac{(0.19)(0.81)}{200}}$$

$$=0.11+0.13=-0.24$$

=0.11-0.13=-0.02

Interval konfidensi bagi selisih proporsi telur yang cacat antara telur bebek dan telur ayam adalah:

$$-0.02 < (p_1 - p_2) < 0.24$$

b. Tingkat keyakinan 95%

$$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.30 - 0.19) - 1.96 \sqrt{\frac{(0.30)(0.70)}{120} + \frac{(0.19)(0.81)}{200}}$$

$$= 0.110 - 0.098 = 0.012$$

$$(\hat{p}_1 - \hat{p}_2) + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$= (0.30 - 0.19) + 1.96 \sqrt{\frac{(0.30)(0.70)}{120} + \frac{(0.19)(0.81)}{200}}$$

$$= 0.110 + 0.098 = 0.208$$

Interval konfidensi bagi selisih proporsi telur yang cacat antara telur bebek dan telur ayam adalah:

$$0.012 < (p_1 - p_2) < 0.208$$

Soal latihan

1. Diambil sampel secara random sebanyak 120 buah keramik warna putih dan 160 buah keramik warna biru. Dari 120 buah keramik warna putih, ternyata ada 24 yang cacat. Sedangkan dari 160 buah keramik warna biru, ada 20 yang cacat.

Hitung estimasi interval konfidensi bagi selisih proporsi keramik yang cacat antara keramik warna putih dan biru. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 98.40%
- b. 91.64%

2. Di bawah ini adalah data tentang Tingkat Pengangguran/TP (dalam persen) dari beberapa Negara tahun 2011 dan 2012.

Negara	2011	2012	Negara	2011	2012	Negara	2011	2012
Amerika Serikat	8.9	8.1	Hongkong	3.4	3.3	Mesir	12.0	12.7
Arab Saudi	5.8	5.6	Indonesia	6.6	6.1	Norwegia	3.3	3.2
Australia	5.1	5.2	Inggris	8.0	7.9	Pakistan	5.6	7.7
Belanda	4.4	5.3	Italia	8.4	10.7	Perancis	9.6	10.2
Belgia	7.2	7.5	Jepang	4.6	4.4	Singapura	1.9	1.8
Brazil	6.0	5.5	Jerman	5.9	5.5	Sri Lanka	4.0	4.2
Cina	4.1	4.1	Kanada	7.5	7.2	Swedia	7.8	8.0
Denmark	7.6	7.5	Kazakhstan	5.4	5.3	Thailand	0.7	0.7
Federasi Rusia	6.6	5.6	Korea Selatan	3.4	3.2	Venezuela	8.5	7.8
Filipina	7.0	7.0	Malaysia	3.1	3.0			
Finlandia	7.8	7.7	Meksiko	5.2	4.7			

Hitung estimasi interval konfidensi bagi selisih proporsi Tingkat Pengangguran dari beberapa Negara tahun 2011 dan 2012. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99%
- b. 95%
- 3. Sebuah pabrik minuman ringan memproduksi 2 rasa minuman yang berbeda, yaitu rasa strawberry dan anggur. Dari hasil wawancara ternyata 70 orang diantara 200 orang suka rasa strawberry dan 24 diantara 160 orang suka rasa anggur.

Hitung estimasi interval konfidensi bagi selisih proporsi orang yang minum minuman ringan rasa strawberry dan anggur. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99%
- b. 95%
- 4. Di bawah ini adalah data tentang persentase rumah tangga yang memiliki tempat pembuangan air besar sendiri (dalam persen) menurut Provinsi di Indonesia 2011 dan 2012.

Provinsi	2011	2012	Provinsi	2011	2012
Aceh	60.34	61.44	Nusa Tenggara Barat	41.85	38.80
Sumatera Utara	74.88	76.81	Nusa Tenggara Timur	62.35	60.06
Sumatera Barat	54.65	56.15	Kalimantan Barat	64.68	67.38
Riau	83.81	83.69	Kalimantan Tengah	53.60	56.74
Jambi	68.12	73.00	Kalimantan Selatan	63.80	64.36
Sumatera Selatan	64.59	68.69	Kalimantan Timur	80.96	85.14
Bengkulu	66.57	75.68	Sulawesi Utara	63.42	65.79
Lampung	76.98	85.79	Sulawesi Tengah	50.89	62.95
Kep. Bangka Belitung	71.75	76.78	Sulawesi Selatan	62.29	59.12
Kepulauan Riau	82.04	69.78	Sulawesi Tenggara	58.63	46.92
DKI Jakarta	76.30	76.61	Gorontalo	33.06	54.78
Jawa Barat	67.60	67.42	Sulawesi Barat	44.85	30.93
Jawa Tengah	64.51	73.47	Maluku	49.53	52.26
DI Yogyakarta	69.82	64.22	Maluku Utara	49.88	51.59
Jawa Timur	61.63	61.48	Papua Barat	54.83	47.04
Banten	62.92	66.29	Papua	46.54	58.21
Bali	65.50	65.41			

Hitung estimasi interval konfidensi bagi selisih proporsi rumah tangga yang memiliki tempat pembuangan air besar sendiri menurut Provinsi di Indonesia 2011 dan 2012. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 99%
- b. 95%
- 5. Diambil sampel secara random sebanyak 220 gulung pita warna pink dan 180 gulung pita warna merah. Dari 200 gulung pita warna pink ternyata ada 30 gulung yang cacat, sedangkan pita warna merah, dari 180 gulung ada 18 gulung yang cacat.

Hitung estimasi interval konfidensi bagi selisih proporsi pita yang cacat warna pink dan merah. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 93.56%
- b. 79.60%

6. Sebuah industri sabun mandi tertarik pada proporsi laki-laki dan perempuan dalam suatu populasi yang menggunakan pasta gigi hasil diproduksinya.

Dalam suatu sampel 200 laki-laki, ternyata terdapat 40 orang yang memakai sabun mandi tersebut, sedangkan dari 200 perempuan, terdapat 16 yang memakai sabun mandi tersebut.

Hitung estimasi interval konfidensi bagi selisih proporsi laki-laki dan perempuan yang menggunakan sabun mandi. Tingkat ketelitian atau keyakinan yang digunakan adalah:

- a. 98.38%
- b. 96.25%

6. Uji Hipotesis bagi Rata-Rata

Uji hipotesis yang sering dilakukan adalah uji hipotesis yang berhubungan dengan ratarata atau *mean* populasi. Uji hipotesis ini sering digunakan dalam bidang industri. Sebagai contoh, bagian produksi ingin menguji rata-rata produksi apakah telah sesuai dengan target produksi. Bagian kepegawaian ingin menguji apakah rata-rata jam kerja pegawai telah sesuai dengan standar. Bagian keuangan ingin menguji apakah target ratarata keuntungan telah diperoleh dan rata-rata pengeluaran telah sesuai dengan apa yang telah direncanakan.

Rumus statistik uji yang digunakan untuk menguji rata-rata populasi apabila ukuran sampel besar adalah statistik uji Z (normal standar). Syarat dari statistik uji tersebut dapat digunakan adalah populasinya berdistribusi normal.

Diketahui statistik uji Z

$$Z_{\text{hitung}} = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

Daerah kritis pengujian rata-rata

a. Uji hipotesis dua sisi

$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}} > Z_{\alpha/2} = Z_{\text{tabel}} \operatorname{atau} \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} < -Z_{\alpha/2} = Z_{\text{tabel}}$$

b. Uji hipotesis sisi kiri

$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}} < -Z_{\alpha} = Z_{\text{tabel}}$$

c. Uji hipotesis sisi kanan

$$\frac{\bar{x} - \mu}{G/\sqrt{n}} > Z_{\alpha} = Z_{\text{tabel}}$$

Contoh

1. Perusahaan makanan ringan menyatakan bahwa rata-rata masa berlaku makanan ringan adalah 6.0 bulan dengan deviasi standar 1.6 bulan.

Untuk menguji hipotesis tersebut, maka bagian produksi mengambil sampel secara random (acak) sebanyak 64 bungkus makanan ringan dan setelah diuji ternyata ratarata masa berlakunya 5.6 bulan.

Ujilah dengan $\alpha = 5\%$ dan 1%, apakah pernyataan dari perusahaan tersebut benar ataukah sebenarnya rata-rata masa berlakunya lebih kecil bari 6.0 bulan?

a. Jika tingkat kesalahannya 5%

- H_0 : $\mu = 6.0$ bulan

 H_1 : μ < 6.0 bulan

- $\alpha = 0.05$
- $Z = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$
- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian 1 sisi kiri adalah:

$$Z_{\text{hitung}} < -1.65 = Z_{\text{tabel}}$$

Cara mencari nilai Z_{tabel}

1. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti di bawah ini.

maka 0.5 - $(\alpha) = 0.5$ - 0.05 = 0.4500. Nilai ini memotong horizontal di nilai 1.6 dan vertikal di antara 0.04 dan 0.05, sehingga nilai Z-nya adalah 1.64 atau 1.65

61

2. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti ini.

maka $1.0 - (\alpha) = 1.0 - 0.05 = 0.9500$. Nilai ini memotong horizontal di nilai 1.6 dan vertikal di antara 0.04 dan 0.05, sehingga nilai *Z*-nya adalah 1.64 atau 1.65

- Daerah penerimaan dan penolakan

- Nilai dari
$$Z_{\text{hitung}} = \frac{5.6 - 6.0}{1.6 / \sqrt{64}} = -2.00$$

- $Z_{\text{hitung}} = -2.00 < -1.65 = Z_{\text{tabel}}$, maka H₀ ditolak
- Dari kasus di atas dapat disimpulkan bahwa beda rata-rata masa berlaku makanan ringan dari sampel (5.6 bulan) dengan rata-rata masa berlaku makanan ringan dari populasi (6.0 bulan) adalah nyata atau terlalu besar untuk dapat dikatakan disebabkan oleh faktor kebetulan $(H_0 \text{ ditolak})$.
- Dengan kata lain rata-rata masa berlaku dari seluruh makanan ringan yang dihasilkan kurang dari 6.0 bulan.

b. Jika tingkat kesalahannya 1 %

-
$$H_0$$
: $\mu = 6.0$ bulan

$$H_1$$
: μ < 6.0 bulan

$$- \alpha = 0.01$$

-
$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$
, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian 1 sisi kiri adalah:

$$Z_{\text{hitung}} < -2.33 = Z_{\text{tabel}}$$

Cara mencari nilai Z_{tabel}

1. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti ini.

maka 0.5 - (α) = 0.5 - 0.01 = 0.4900. Nilai ini memotong horizontal di nilai 2.3 dan vertikal di 0.03 (tidak tepat benar, karena nilainya 0.4901), sehingga nilai Z-nya adalah 2.33

2. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti ini.

maka $1.0 - (\alpha) = 1.0 - 0.01 = 0.9900$. Nilai ini memotong horizontal di nilai 2.3 dan vertikal di 0.03 (tidak tepat benar, karena nilainya 0.9901), sehingga nilai *Z*-nya adalah 2.33

- Daerah penerimaan dan penolakan

- Nilai dari $Z_{\text{hitung}} = \frac{5.6 6.0}{1.6 / \sqrt{64}} = -2.00$
- $Z_{\text{hitung}} = -2.00 > -2.33 = Z_{\text{tabel}}$, maka H₀ diterima.
- Dari kasus di atas dapat disimpulkan bahwa beda rata-rata masa berlaku makanan ringan dari sampel (5.6 bulan) dengan rata-rata masa berlaku makanan ringan dari populasi (6.0 bulan) adalah tidak nyata atau H₀ diterima.
- Dengan kata lain rata-rata rata-rata masa berlaku makanan ringan yang dihasilkan sama dengan 6.0 bulan.
- 2. Sebuah perusahaan pengiriman barang menyatakan bahwa rata-rata per hari volume barang yang dikirim adalah 10 m³ dengan deviasi standar 2.7 m³.

Untuk menguji hipotesis tersebut, maka diambil sampel secara random (acak) sebanyak 81 hari pengiriman dan setelah dihitung ternyata rata-rata per hari volume barang yang dikirim adalah 10.6 m³.

Ujilah dengan $\alpha = 5\%$ dan 1%, apakah pernyataan dari perusahaan pengiriman barang tersebut benar ataukah sebenarnya rata-rata per hari volume barang yang dikirim lebih besar?

a. Jika tingkat kesalahannya 5%

-
$$H_0$$
: $\mu = 10.0 \text{ m}^3$

$$H_1: \mu > 10.0 \text{ m}^3$$

$$- \alpha = 0.05$$

-
$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$
, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$

- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian 1 sisi ke kanan adalah:

$$Z_{\text{hitung}} > 1.65 = Z_{\text{tabel}}$$

Cara mencari nilai Z_{tabel}

1. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti ini.

maka 0.5 - $(\alpha)=0.5$ - 0.05=0.4500. Nilai ini memotong horizontal di nilai 1.6 dan vertikal di antara 0.04 dan 0.05, sehingga nilai *Z*-nya adalah 1.64 atau 1.65

2. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti ini.

maka $1.0 - (\alpha) = 1.0 - 0.05 = 0.9500$. Nilai ini memotong horizontal di nilai 1.6 dan vertikal di antara 0.04 dan 0.05, sehingga nilai *Z*-nya adalah 1.64 atau 1.65

- Daerah penerimaan dan penolakan

- Nilai dari $Z_{hitung} = \frac{10.6-10.0}{2.7/\sqrt{81}} = 2.00$
- $Z_{\text{hitung}} = 2.00 > 1.65 = Z_{\text{tabel}}$, maka H₀ ditolak.
- Dari kasus di atas dapat disimpulkan bahwa beda rata-rata per hari volume barang yang dikirim dari sampel (10.8 m³) dengan rata-rata per hari volume barang yang dikirim dari populasi (10.0 m³) adalah nyata atau terlalu besar untuk dapat dikatakan disebabkan oleh faktor kebetulan (H₀ ditolak).
- Dengan kata lain rata-rata per hari volume barang yang dikirim dari seluruh hari pengiriman lebih dari 10.0 m³.

b. Jika tingkat kesalahannya 1%

- H_0 : $\mu = 10.0 \text{ m}^3$

 $H_1: \mu > 10.0 \text{ m}^3$

 $- \alpha = 0.01$

- $Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian sisi kanan adalah:

$$Z_{\text{hitung}} > 2.33 = Z_{\text{tabel}}$$

Cara mencari nilai Z_{tabel}

1. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti di bawah ini.

maka 0.5 - $(\alpha) = 0.5$ - 0.01 = 0.4900. Nilai ini memotong horizontal di nilai 2.3 dan vertikal di 0.03 (tidak tepat benar, karena nilainya 0.4901), sehingga nilai Z-nya adalah 2.33

2. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti di bawah ini.

maka $1.0 - (\alpha) = 1.0 - 0.01 = 0.9900$. Nilai ini memotong horizontal di nilai 2.3 dan vertikal di 0.03 (tidak tepat benar, karena nilainya 0.9901), sehingga nilai *Z*-nya adalah 2.33

- Daerah penerimaan dan penolakan

- Nilai dari
$$Z_{\text{hitung}} = \frac{10.6 - 10.0}{2.7 / \sqrt{81}} = 2.00$$

- $Z_{\text{hitung}} = 2.00 < 2.33 = Z_{\text{tabel}}$, maka H₀ diterima.
- Dari kasus di atas dapat disimpulkan bahwa beda rata-rata per hari volume barang yang dikirim dari sampel (10.8 m^3) dengan rata-rata per hari volume barang yang dikirim dari populasi (10.0 m^3) adalah tidak nyata atau H_0 diterima.
- Dengan kata lain rata-rata per hari volume barang yang dikirim dari seluruh hari pengiriman sama dengan 10.0 m³.
- 3. Rata-rata daya tahan dari sebuah sampel yang terdiri dari 100 bungkus makanan ringan adalah 157 hari dengan deviasi standar 12 hari.

Apabila μ adalah rata-rata daya tahan dari seluruh makanan ringan yang dihasilkan, maka ujilah hipotesis bahwa $\mu = 160$ hari terhadap hipotesis alternatif $\mu \neq 160$ hari. Tingkat kesalahan yang digunakan:

a. 0.05

b. 0.01

a. Jika tingkat kesalahannya 5%

- H_0 : $\mu = 160$ hari

 $H_1: \mu \neq 160 \text{ hari}$

$$- \alpha = 0.05$$

-
$$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$

- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}} > 1.96 = Z_{\text{tabel}}$$
 atau $Z_{\text{hitung}} < -1.96 = Z_{\text{tabel}}$

Cara mencari nilai Z_{tabel}

1. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti di bawah ini.

maka 0.5 - $(\alpha/2) = 0.5$ - 0.025 = 0.4750. Nilai ini memotong horizontal di nilai 1.9 dan vertikal di 0.06, sehingga nilai *Z*-nya adalah 1.96

2. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti di bawah ini.

maka $1.0 - (\alpha/2) = 1.0 - 0.025 = 0.9750$. Nilai ini memotong horizontal di nilai 1.9 dan vertikal di 0.06, sehingga nilai *Z*-nya adalah 1.96

- Daerah penerimaan dan penolakan

- Nilai dari $Z_{\text{hitung}} = \frac{157 160}{12 / \sqrt{100}} = -2.50$
- $Z_{\text{hitung}} = -2.50 < -1.96 = Z_{\text{tabel}}$, maka H₀ ditolak
- Dari kasus di atas dapat disimpulkan bahwa beda rata-rata daya tahan dari sampel (157 hari) dengan rata-rata daya tahan dari populasi (160 hari) adalah nyata atau terlalu besar untuk dapat dikatakan disebabkan oleh faktor kebetulan (H₀ ditolak).
- Dengan kata lain rata-rata daya tahan dari seluruh makanan ringan yang dihasilkan tidak sama dengan 160 hari.
- b. Jika tingkat kesalahannya 1%
 - H_0 : $\mu = 160$ hari

 $H_1: \mu \neq 160 \text{ hari}$

- $\alpha = 0.01$
- $Z = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$
- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian 2 sisi adalah:

$$Z_{\text{hitung}}$$
> 2.58 = Z_{tabel} atau Z_{hitung} < - 2.58 = Z_{tabel}

Cara mencari nilai Z_{tabel}

1. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti di bawah ini.

maka $0.5 - (\alpha/2) = 0.5 - 0.005 = 0.4950$. Nilai ini memotong horizontal di nilai 2.5 dan vertikal di 0.07 dan 0.08, sehingga nilai *Z*-nya adalah 2.57 atau 2.58

2. Lihat tabel normal standar, apabila gambar di atas tabel berbentuk seperti di bawah ini.

maka 1.0 - $(\alpha/2)=1.0$ - 0.005=0.9950. Nilai ini memotong horizontal di nilai 2.5 dan vertikal di 0.07 dan 0.08, sehingga nilai Z-nya adalah 2.57 atau 2.58

Untuk kedua-dua bentuk tabel normal standar, akan menghasilkan nilai Z tabel yang sama. Kita harus berhati-hati dalam menentukan nilai Z tabel. Sebelum mencari Z tabel terlebih dahulu kita cek bentuk tabel normal standar yang digunakan.

- Daerah penerimaan dan penolakan

- Nilai dari
$$Z_{\text{hitung}} = \frac{157-160}{12/\sqrt{100}} = -2.50$$

- $Z_{\text{hitung}} = -2.50 > -2.58 = Z_{\text{tabel}}$, maka H₀ diterima
- Dari kasus di atas dapat disimpulkan bahwa beda rata-rata daya tahan dari sampel (157 hari) dengan rata-rata daya tahan dari populasi (160 hari) adalah tidak nyata atau H₀ diterima.
- Dengan kata lain rata-rata daya tahan dari seluruh makanan ringan yang dihasilkan sama dengan 160 hari.

Soal latihan

1. Di bawah ini adalah data tentang rata-rata konsumsi protein per kapita per hari (gram) menurut Provinsi di Indonesia tahun 2012.

Provinsi	2012	Provinsi	2012	Provinsi	2012
Aceh	53.39	Jawa Barat	52.52	Kalimantan Timur	54.24
Sumatera Utara	54.15	Jawa Tengah	51.22	Sulawesi Utara	55.11
Sumatera Barat	54.66	DI Yogyakarta	53.13	Sulawesi Tengah	50.20
Riau	52.77	Jawa Timur	51.81	Sulawesi Selatan	57.83
Jambi	52.06	Banten	56.24	Sulawesi Tenggara	55.94
Sumatera Selatan	52.84	Bali	60.12	Gorontalo	50.45
Bengkulu	52.90	Nusa Tenggara Barat	58.57	Sulawesi Barat	53.32
Lampung	50.95	Nusa Tenggara Timur	50.01	Maluku	49.92
Kep. Bangka Belitung	55.24	Kalimantan Barat	51.73	Maluku Utara	43.68
Kepulauan Riau	55.95	Kalimantan Tengah	55.77	Papua Barat	48.13
DKI Jakarta	59.53	Kalimantan Selatan	57.76	Papua	40.54

Jika diketahui rata-rata konsumsi protein per kapita per hari (gram) di Indonesia tahun 2012 sebesar 53.11 gram dan deviasi standar 1.6 gram, ujilah apakah rata-rata konsumsi protein per kapita per hari (gram) di Indonesia tahun 2012 sama atau tidak sama dengan 54.71 gram?

Gunakan $\alpha = 5\%$ dan 1%.

2. Di bawah ini adalah data tentang rata-rata konsumsi kalori per kapita per hari (kkal) menurut Provinsi di Indonesia tahun 2012.

Provinsi	2012	Provinsi	2012	Provinsi	2012
Aceh	1869.93	Jawa Barat	1815.57	Kalimantan Timur	1761.92
Sumatera Utara	1892.36	Jawa Tengah	1805.86	Sulawesi Utara	1917.49
Sumatera Barat	2023.38	DI Yogyakarta	1838.27	Sulawesi Tengah	1864.43
Riau	1862.37	Jawa Timur	1805.56	Sulawesi Selatan	1957.13
Jambi	1894.87	Banten	1897.67	Sulawesi Tenggara	1891.36
Sumatera Selatan	1925.99	Bali	2018.83	Gorontalo	1845.55
Bengkulu	1892.07	Nusa Tenggara Barat	2029.18	Sulawesi Barat	1905.39
Lampung	1880.60	Nusa Tenggara Timur	1813.49	Maluku	1796.05
Kep. Bangka Belitung	1828.31	Kalimantan Barat	1841.38	Maluku Utara	1678.41
Kepulauan Riau	1832.21	Kalimantan Tengah	1918.08	Papua Barat	1696.60
DKI Jakarta	1870.81	Kalimantan Selatan	1980.01	Papua	1722.31

Jika diketahui rata-rata konsumsi kalori per kapita per hari (kkal) di Indonesia tahun 2012 sebesar 1865.86 kkal dan deviasi standar 84.39 kkal, ujilah apakah rata-rata konsumsi kalori per kapita per hari (kkal) di Indonesia tahun 2012 lebih dari atau sama dengan 1835 kkal?

Gunakan $\alpha = 2.5\%$ dan 0.5%.

3. Menurut produsen sandar, rata-rata kekuatan sandal hasil produksinya adalah 9.72 bulan dengan deviasi standar 1.40 bulan.

Dari sebuah sampel yang terdiri dari 36 pasang sandal, diketahui bahwa rata-rata kekuatannya 9.23 bulan.

Apakah dapat ditarik suatu kesimpulan bahwa sandal tersebut telah menurun kualitasnya? Gunakan $\alpha = 1\%$ dan 5%.

4. Berat rata-rata meja yang diproduksi oleh tukang mebel adalah 7.45 kg dengan deviasi standar 0.8 kg.

Dari pengambilan sampel sebanyak 200 buah meja, diketahui berat rata-ratanya 7.55 kg. Ujilah apakah berat meja yang dihasilkan dianggap sama dengan 7.55 kg ataukah kurang dari 7.55 kg? Gunakan $\alpha = 5\%$.

5. Rata-rata daya tahan sarung tangan yang diproduksi oleh sebuah pabrik sarung tangan adalah 180 N dengan deviasi standar 10 N. Dengan memakai teknologi modern dalam proses produksi, maka daya tahan kain yang diproduksi dapat ditingkatkan.

Untuk menguji teknologi ini, sebuah sampel random yang terdiri dari 50 pasang sarung tangan diuji coba daya tahannya dan ternyata diperoleh rata-rata daya tahannya 183 N.

Apakah daya tahan sarung tangan yang diproduksi lebih baik daripada yang diproduksi oleh teknologi sebelumnya?

Gunakan $\alpha = 0.6\%$ dan 3.36%.

6. Batas toleransi rata-rata kerusakan produksi adalah 25 buah dengan deviasi standar 4.5 buah. Dalam 81 hari terakhir produksi, diketahui rata-rata kerusakannya adalah 24. Dapatkah kita menarik suatu kesimpulan bahwa rata-rata dari semua produksi kurang dari 25?

Gunakan $\alpha = 1.62\%$ dan 3.75%.

7. Sebuah perusahaan makanan mengembangkan makanan kreasi yang baru. Rata-rata kekuatan (masa kadaluarsa) makanan kreasi baru tersebut 8 bulan dengan deviasi standar 0.5 bulan.

Ujilah hipotesis bahwa $\mu = 8$ bulan lawan alternatifnya $\mu \neq 8$ bulan, bila suatu sampel random 49 makanan kreasi baru dites kekuatannya dan diperoleh rata-rata 7.9 bulan!

Gunakan $\alpha = 8.36\%$ dan 20.4%.

8. Sebuah perusahaan yang memproduksi laptop, umur hasil produksinya menghampiri distribusi normal dengan rata-rata 80 bulan dan deviasi standar 4 bulan.

Ujilah hipotesis bahwa μ = 80 bulan lawan alternatifnya μ ≠ 80 bulan, apabila sampel random 36 laptop mempunyai umur rata-rata 78.7 bulan. Gunakan α = 1.60% dan 6.44%.

9. Industri otomotif telah mengeluarkan sebuah sepeda motor dan motor tersebut dapat menempuh jarak rata-rata dari 2000 km/tahun dengan deviasi standar 390 km/tahun. Untuk menguji pendapat ini suatu sampel random 100 pemilik sepeda motor dan diminta mencatat kilometer yang telah ditempuhnya.

Apakah anda sependapat dengan pernyataan bahwa industri otomotif tersebut telah berhasil meningkatkan kualitasnya apabila dari sampel random di atas, rata-rata tempuhnya 2080 km/tahun.

Gunakan $\alpha = 1\%$ dan 5%.

7. Uji Hipotesis bagi Proporsi

- Apabila kita memilih sampel dari populasi yang tidak terbatas dan mempunyai distribusi binomial, maka kita dapat menggunakan hasilnya untuk menentukan diterima atau ditolaknya hipotesis $p=p_0$
- Statistik uji yang digunakan adalah:

$$Z_{\text{hitung}} = \frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$$

- Daerah kritis pengujian proporsi
 - a. Uji hipotesis dua sisi

$$\frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} > Z_{\alpha/2} = Z_{\text{tabel}} \text{ atau}$$

$$\frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} < -Z_{\alpha/2} = Z_{\text{tabel}}$$

b. Uji hipotesis sisi kiri

$$\frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} < -Z_{\alpha} = Z_{\text{tabel}}$$

c. Uji hipotesis sisi kanan

$$\frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} > Z_{\alpha} = Z_{\text{tabel}}$$

Contoh

1. Sebuah sampel yang terdiri dari 160 bungkus roti yang dipilih secara random, setelah diteliti ternyata ada 5 bungkus yang sudah kadaluarsa.

Apakah hasil sampel di atas merupakan suatu bukti bahwa proporsi roti yang kadaluarsa kurang dari 8 %? Gunakan $\alpha = 5\%$ dan 1%.

a. Jika tingkat kesalahannya 5%

-
$$H_0: p = 0.08$$

$$H_1: p < 0.08$$

$$- \alpha = 0.05$$

- $Z = \frac{p p_0}{\sqrt{\frac{p_0 (1 p_0)}{n}}}$, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$.
 - Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian 1 sisi kiri adalah:

$$Z_{\text{hitung}} < -1.65 = Z_{\text{tabel}}$$

- Nilai dari
$$Z_{\text{hitung}} = \frac{\left(\frac{5}{160}\right) - 0.08}{\sqrt{\frac{(0.08)(1 - 0.08)}{160}}} = -2.27$$

- $Z_{\text{hitung}} = -2.27 < -1.65 = Z_{\text{tabel}}$, maka H_0 ditolak
- Dengan demikian dapat disimpulkan bahwa proporsi roti yang kadaluarsa kurang dari 8%.
- b. Jika tingkat kesalahannya 1%

-
$$H_0: p = 0.08$$

$$H_1: p < 0.08$$

$$- \alpha = 0.01$$

- $Z = \frac{p p_0}{\sqrt{\frac{p_0 (1 p_0)}{n}}}$, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$.
- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian 1 sisi kiri adalah:

$$Z_{\text{hitung}} < -2.33 = Z_{\text{tabel}}$$

- Nilai dari
$$Z_{\text{hitung}} = \frac{\left(\frac{5}{160}\right) - 0.08}{\sqrt{\frac{(0.08)(1 - 0.08)}{160}}} = -2.27$$

- $Z_{\text{hitung}} = -2.27 > -2.33 = Z_{\text{tabel}}$, maka H₀ diterima.
- Dengan demikian dapat disimpulkan bahwa proporsi roti yang kadaluarsa sama dengan 8%.
- 2. Sebuah sampel yang terdiri dari 250 bungkus mie instan yang dipilih secara random, setelah diteliti ternyata ada 27 bungkus yang rasa ayam spesial.

Apakah hasil sampel di atas merupakan suatu bukti bahwa proporsi mie instan rasa ayam spesial lebih dari 7%? Gunakan $\alpha = 5\%$ dan 1%.

a. Jika tingkat kesalahannya 5 %

-
$$H_0: p = 0.07$$

$$H_1: p > 0.07$$

$$- \alpha = 0.05$$

-
$$Z = \frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$$
, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$.

- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian sisi kanan adalah:

$$Z_{\text{hitung}} > 1.65 = Z_{\text{tabel}}$$

- Daerah penerimaan dan penolakan

- Nilai dari
$$Z_{\text{hitung}} = \frac{\left(\frac{25}{250}\right) - 0.07}{\sqrt{\frac{(0.07)(1 - 0.07)}{250}}} = 1.86$$

- $Z_{\text{hitung}} = 1.86 > 1.65 = Z_{\text{tabel}}$, maka H₀ ditolak.
- Dengan demikian dapat disimpulkan bahwa mie instan rasa ayam spesial lebih dari 7 %.

b. Jika tingkat kesalahannya 1%

-
$$H_0: p = 0.07$$

$$H_1: p > 0.07$$

$$- \alpha = 0.01$$

-
$$Z = \frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$$
, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$.

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian sisi kanan adalah:

$$Z_{\text{hitung}} > 2.33 = Z_{\text{tabel}}$$

- Daerah penerimaan dan penolakan

- Nilai dari
$$Z_{\text{hitung}} = \frac{\left(\frac{25}{250}\right) - 0.07}{\sqrt{\frac{(0.07)(1 - 0.07)}{250}}} = 1.86$$

- $Z_{\text{hitung}} = 1.86 < 2.33 = Z_{\text{tabel}}$, maka H_0 diterima
- Dengan demikian dapat disimpulkan bahwa mie instan rasa ayam spesial sama dengan 7%.
- 3. Sebuah perusahaan yang memproduksi air minum kemasan galon menyatakan bahwa 75 % warga perumahan telah mengkonsumsi air minum kemasan tersebut.

Apakah pernyataan tersebut benar apabila diantara 120 warga yang dipilih secara random terdapat 78 warga yang mengkonsumsi air minum kemasan tersebut. Tingkat kesalahan yang digunakan:

a. Jika tingkat kesalahannya 1%

-
$$H_0: p = 0.75$$

$$H_1: p \neq 0.75$$

$$- \alpha = 0.01$$

-
$$Z = \frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$$
, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$.

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}}$$
> 2.58 = Z_{tabel} atau Z_{hitung} < - 2.58 = Z_{tabel}

- Daerah penerimaan dan penolakan

$$- Z_{\text{hitung}} = \frac{\left(\frac{78}{120}\right) - 0.75}{\sqrt{\frac{(0.75)(1 - 0.75)}{120}}} = -2.53$$

- $Z_{\text{hitung}} = -2.53 > -2.58 = Z_{\text{tabel}}$, maka H₀ diterima.
- Dengan demikian dapat disimpulkan bahwa warga perumahan yang mengkonsumsi air minum kemasan jumlahnya sama dengan 75 % dari jumlah warga.
- b. Jika tingkat kesalahannya 5%

- $H_0: p = 0.75$

 $H_1: p \neq 0.75$

$$- \alpha = 0.05$$

-
$$Z = \frac{p - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$$
, statistik uji ini berdistribusi normal dengan $\mu = 0$ dan $\sigma^2 = 1$.

- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}} > 1.96 = Z_{\text{tabel}}$$
 atau $Z_{\text{hitung}} < -1.96 = Z_{\text{tabel}}$

- Daerah penerimaan dan penolakan

$$- Z_{\text{hitung}} = \frac{\left(\frac{78}{120}\right) - 0.75}{\sqrt{\frac{(0.75)(1 - 0.75)}{120}}} = -2.53$$

- $Z_{\text{hitung}} = -2.53 < -1.96 = Z_{\text{tabel}}$, maka H₀ ditolak.
- Dengan demikian dapat disimpulkan bahwa warga perumahan yang mengkonsumsi air minum kemasan jumlahnya tidak sama dengan 75 % dari jumlah warga.

Soal latihan

1. Di bawah ini adalah data tentang persentase Penduduk Laki-laki (persen) menurut Provinsi di Indonesia tahun 2011.

Provinsi	2011	Provinsi	2011	Provinsi	2011
Aceh	50.09	Jawa Barat	50.96	Kalimantan Timur	52.26
Sumatera Utara	50.69	Jawa Tengah	49.80	Sulawesi Utara	51.08
Sumatera Barat	50.64	DI Yogyakarta	48.64	Sulawesi Tengah	51.31
Riau	51.22	Jawa Timur	49.46	Sulawesi Selatan	48.84
Jambi	51.23	Banten	51.01	Sulawesi Tenggara	50.03
Sumatera Selatan	51.25	Bali	50.42	Gorontalo	50.32
Bengkulu	51.28	Nusa Tenggara Barat	47.82	Sulawesi Barat	50.35
Lampung	51.68	Nusa Tenggara Timur	49.43	Maluku	50.20
Kep. Bangka Belitung	51.75	Kalimantan Barat	51.34	Maluku Utara	51.80
Kepulauan Riau	50.01	Kalimantan Tengah	51.64	Papua Barat	51.73
DKI Jakarta	50.05	Kalimantan Selatan	50.20	Papua	52.85

Rata-rata persentase penduduk laki-laki Indonesia tahun 2011 adalah 50.37 persen = 0.5037. Lakukan uji hipotesis apakah proporsi penduduk laki-laki di atas sama dengan 65 persen atau kurang dari 65%.

Gunakan $\alpha = 6.30\%$ dan 1.62%.

2. Di bawah ini adalah data tentang persentase penduduk miskin (dalam persen) menurut Provinsi di Indonesia.

Provinsi	Miskin (%)	Provinsi	Miskin (%)	Provinsi	Miskin (%)
Aceh	16.98	Jawa Barat	9.18	Kalimantan Timur	6.31
Sumatera Utara	9.85	Jawa Tengah	5.51	Sulawesi Utara	8.26
Sumatera Barat	6.89	DI Yogyakarta	13.58	Sulawesi Tengah	17.41
Riau	7.99	Jawa Timur	14.55	Sulawesi Selatan	13.61
Jambi	6.40	Banten	12.28	Sulawesi Tenggara	9.54
Sumatera Selatan	8.39	Bali	4.76	Gorontalo	12.05
Bengkulu	13.62	Nusa Tenggara Barat	17.05	Sulawesi Barat	12.77
Lampung	4.97	Nusa Tenggara Timur	19.60	Maluku	18.44
Kep. Bangka Belitung	17.09	Kalimantan Barat	8.07	Maluku Utara	7.41
Kepulauan Riau	14.21	Kalimantan Tengah	6.07	Papua Barat	27.80
DKI Jakarta	4.09	Kalimantan Selatan	4.81	Papua	26.26

Rata-rata persentase penduduk miskin Indonesia adalah 10.96 persen = 0.1096. Lakukan uji hipotesis apakah proporsi ini dianggap sama dengan 4 persen atau lebih dari 4 persen?

Gunakan $\alpha = 6.88\%$ dan 2.72%.

3. Di bawah ini adalah data tentang persentase rumah tangga dengan sanitasi layak (dalam persen) menurut Provinsi di Indonesia tahun 2011.

Provinsi	Persen	Provinsi	Persen	Provinsi	Persen
Aceh	50.10	Jawa Barat	52.50	Kalimantan Timur	66.56
Sumatera Utara	56.47	Jawa Tengah	59.42	Sulawesi Utara	67.23
Sumatera Barat	44.67	DI Yogyakarta	82.15	Sulawesi Tengah	48.39
Riau	53.29	Jawa Timur	54.21	Sulawesi Selatan	62.02
Jambi	50.65	Banten	64.15	Sulawesi Tenggara	51.43
Sumatera Selatan	47.36	Bali	83.26	Gorontalo	46.68
Bengkulu	39.22	Nusa Tenggara Barat	47.34	Sulawesi Barat	43.40
Lampung	44.33	Nusa Tenggara Timur	23.82	Maluku	50.75
Kep. Bangka Belitung	67.64	Kalimantan Barat	43.81	Maluku Utara	52.53
Kepulauan Riau	73.01	Kalimantan Tengah	33.72	Papua Barat	39.23
DKI Jakarta	87.83	Kalimantan Selatan	48.38	Papua	24.31

Rata-rata persentase rumah tangga dengan sanitasi layak (dalam persen) di Indonesia tahun 2011 sebesar 55.60 persen = 0.5560. Lakukan uji hipotesis apakah proporsi rumah tangga dengan sanitasi layak (dalam persen) di Indonesia tahun 2011 sama dengan 73 persen atau tidak sama dengan 73 persen?

Gunakan $\alpha = 5\%$ dan 1%.

4. Sebuah sampel random yang terdiri dari 200 jam dinding telah dipilih dari seluruh produksi. Setelah diteliti secara seksama, ternyata 6 dari 200 jam dinding dinyatakan rusak atau tidak memenuhi standar kualitas.

Apakah hasil sampel di atas merupakan suatu bukti yang cukup guna menarik kesimpulan bahwa persentase jam dinding yang rusak adalah lebih dari 2%?

Gunakan $\alpha = 6.30\%$ dan 1.62%.

5. Di bawah ini adalah data tentang persentase rumah tangga yang tidak memiliki kendaraan bermotor (dalam persen) menurut Provinsi di Indonesia.

Provinsi	Persen	Provinsi	Persen	Provinsi	Persen
Aceh	23.35	Jawa Barat	37.02	Kalimantan Timur	9.44
Sumatera Utara	29.24	Jawa Tengah	28.83	Sulawesi Utara	44.55
Sumatera Barat	25.88	DI Yogyakarta	19.21	Sulawesi Tengah	29.85
Riau	13.08	Jawa Timur	24.28	Sulawesi Selatan	32.49
Jambi	14.11	Banten	25.19	Sulawesi Tenggara	35.21
Sumatera Selatan	23.64	Bali	11.10	Gorontalo	44.04
Bengkulu	17.86	Nusa Tenggara Barat	51.97	Sulawesi Barat	37.44
Lampung	20.63	Nusa Tenggara Timur	66.08	Maluku	61.78
Kep. Bangka Belitung	8.11	Kalimantan Barat	21.63	Maluku Utara	52.88
Kepulauan Riau	10.66	Kalimantan Tengah	22.39	Papua Barat	43.24
DKI Jakarta	18.82	Kalimantan Selatan	15.43	Papua	74.97

Rata-rata persentase rumah tangga yang tidak memiliki kendaraan bermotor (dalam persen) di Indonesia sebesar 8.19 persen = 0.0819. Lakukan uji hipotesis apakah rumah tangga yang tidak memiliki kendaraan bermotor (dalam persen) di Indonesia sama dengan 25 % atau tidak sama dengan 25 %? Gunakan α = 0.6% dan 3.36%.

6. Di bawah ini adalah data tentang persentase rumah tangga yang memiliki tempat pembuangan air besar sendiri (dalam persen) menurut Provinsi di Indonesia 2011.

Provinsi	Persen	Provinsi	Persen	Provinsi	Persen
Aceh	60.34	Jawa Barat	67.60	Kalimantan Timur	80.96
Sumatera Utara	74.88	Jawa Tengah	64.51	Sulawesi Utara	63.42
Sumatera Barat	54.65	DI Yogyakarta	69.82	Sulawesi Tengah	50.89
Riau	83.81	Jawa Timur	61.63	Sulawesi Selatan	62.29
Jambi	68.12	Banten	62.92	Sulawesi Tenggara	58.63
Sumatera Selatan	64.59	Bali	65.50	Gorontalo	33.06
Bengkulu	66.57	Nusa Tenggara Barat	41.85	Sulawesi Barat	44.85
Lampung	76.98	Nusa Tenggara Timur	62.35	Maluku	49.53
Kep. Bangka Belitung	71.75	Kalimantan Barat	64.68	Maluku Utara	49.88
Kepulauan Riau	82.04	Kalimantan Tengah	53.60	Papua Barat	54.83
DKI Jakarta	76.30	Kalimantan Selatan	63.80	Papua	46.54

Rata-rata persentase rumah tangga yang memiliki tempat pembuangan air besar sendiri di Indonesia sebesar 65.20 persen = 0.6520. Lakukan uji hipotesis apakah rumah tangga yang memiliki tempat pembuangan air besar sendiri di Indonesia sama dengan 45 % atau lebih dari 45 %? Gunakan α = 1% dan 5%.

7. Sebuah sampel yang terdiri dari 500 batu bata yang dipilih secara random, setelah diteliti ternyata ada 25 batu bata yang sudah rusak.

Apakah hasil sampel di atas merupakan suatu bukti bahwa proporsi batu bata yang rusak kurang dari 8% ? Gunakan $\alpha = 5\%$ dan 1%.

8. Sebuah sampel random yang terdiri dari 200 mesin pompa air telah diambil dari gudang dan setelah diteliti secara seksama, ternyata 6 dari 200 mesin pompa air tersebut rusak.

Apakah hasil sampel di atas merupakan suatu bukti yang cukup guna menarik kesimpulan bahwa persentase mesin pompa air yang rusak adalah kurang dari 6%?

Gunakan $\alpha = 3.36\%$ dan 1.62%.

9. Sebuah sampel random yang terdiri dari 150 buku telah dipilih dari seluruh produksi. Setelah diteliti secara seksama, ternyata 9 dari 150 buku tersebut rusak atau tidak memenuhi standar kualitas.

Apakah hasil sampel di atas merupakan suatu bukti yang cukup guna menarik kesimpulan bahwa persentase buku yang rusak tidak sama dengan 3%?

Gunakan $\alpha = 6.88\%$ dan 2.72%.

10. Sampel random yang terdiri dari 300 tablet obat telah dipilih dari seluruh produksi. Setelah diteliti secara seksama, ternyata 18 dari 300 tablet obat tersebut telah kadaluarsa.

Apakah hasil sampel di atas merupakan suatu bukti yang cukup guna menarik kesimpulan bahwa persentase tablet obat yang kadaluarsa lebih dari 4%?

Gunakan $\alpha = 3.36\%$ dan 1.62%.

Distribusi Z dan Kegunaannya

8. Uji Hipotesis bagi Selisih Dua Rata-Rata

Uji hipotesis dapat juga digunakan untuk menguji beda rata-rata dari dua kelompok sampel yang berbeda. Uji hipotesis ini sangat berguna di dalam industri.

Contoh

- 1. Sebuah industri yang memproduksi susu formula mempunyai pekerja laki-laki dan pekerja perempuan. Bagian sumber daya manusia industri tersebut ingin mengetahui apakah produktifitas pekerja laki-laki sama dengan produktifitas pekerja perempuan.
- 2. Sebuah industri obat telah memproduksi obat dengan dua rasa yang baru, yaitu strawberri. Bagian riset pemasaran industri tersebut ingin melakukan riset pasar apakah kedua produk yang dihasilkan semuanya dapat merebut hati konsumen.
- 3. Sebuah perusahaan yang memproduksi ban mobil telah mengeluarkan ban mobil jenis yang baru. Perusahaan ingin menguji apakah ban mobil yang baru lebih tahan lama jika dibandingkan dengan ban mobil yang lama.

Rumus statistik uji yang digunakan untuk menguji selisih dua rata-rata adalah statistik uji Z (normal standar). Syarat dari statistik uji tersebut dapat digunakan adalah populasinya berdistribusi normal.

Diketahui statistik uji Z

$$Z_{\text{hitung}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Daerah kritis pengujian selisih dua rata-rata

a. Uji hipotesis dua sisi

- $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

$$\frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} > Z_{\alpha/2} = Z_{\text{tabel}} \text{ atau}$$

$$\frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} < -Z_{\alpha/2} = Z_{\text{tabel}}$$

b. Uji hipotesis sisi kiri

-
$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 < \mu_2$

$$\frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} < -Z_{\alpha} = Z_{\text{tabel}}$$

c. Uji hipotesis sisi kanan

-
$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 > \mu_2$

$$\frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} > Z_{\alpha} = Z_{\text{tabel}}$$

Contoh

1. Secara random telah diambil roti rasa keju dan rasa coklat masing-masing 50 bungkus dan setelah diadakan tes waktu tahannya, ternyata waktu tahan roti rasa keju adalah 125 jam dengan deviasi standar 8 jam, sedangkan waktu tahan roti rasa coklat adalah 121 jam dengan deviasi standar 9 jam.

Lakukan uji hipotesis apakah rata-rata waktu tahan kedua rasa roti tersebut sama atau berbeda? Gunakan $\alpha = 5\%$ dan 1%.

a. Jika tingkat kesalahannya 5%

-
$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

$$- \alpha = 0.05$$

- Statistik uji yang digunakan adalah:

$$Z_{\text{hitung}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}} > 1.96 = Z_{\text{tabel}}$$
 atau $Z_{\text{hitung}} < -1.96 = Z_{\text{tabel}}$

$$- Z_{\text{hitung}} = \frac{(125 - 121)}{\sqrt{\frac{(8)^2 + (9)^2}{50}}} = 2.35$$

- $Z_{\text{hitung}} = 2.35 > 1.96 = Z_{\text{tabel}}$, maka H₀ ditolak.
- Dengan demikian dapat disimpulkan bahwa rata-rata waktu tahan roti rasa keju tidak sama dengan rata-rata waktu tahan roti rasa coklat.
- b. Jika tingkat kesalahannya 1%

-
$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

$$- \alpha = 0.01$$

- Statistik uji yang digunakan adalah:

$$Z_{\text{hitung}} = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}}$$
> 2.58 = Z_{tabel} atau Z_{hitung} < - 2.58 = Z_{tabel}

$$- Z_{\text{hitung}} = \frac{(125 - 121)}{\sqrt{\frac{(8)^2 + (9)^2}{50}}} = 2.35$$

- $Z_{\text{hitung}} = 2.35 < 2.58 = Z_{\text{tabel}}$, maka H₀ diterima.
- Dengan demikian dapat disimpulkan bahwa rata-rata waktu tahan roti rasa keju sama dengan rata-rata waktu tahan roti rasa coklat.
- 2. Di bawah ini adalah data tentang rata-rata konsumsi protein per kapita per hari (gram) menurut Provinsi di Indonesia tahun 2011 dan 2012.

Provinsi	2011	2012	Provinsi	2011	2012
Aceh	55.58	53.39	Nusa Tenggara Barat	55.58	53.39
Sumatera Utara	57.58	54.15	Nusa Tenggara Timur	57.58	54.15
Sumatera Barat	56.89	54.66	Kalimantan Barat	56.89	54.66
Riau	57.71	52.77	Kalimantan Tengah	57.71	52.77
Jambi	54.56	52.06	Kalimantan Selatan	54.56	52.06
Sumatera Selatan	55.86	52.84	Kalimantan Timur	55.86	52.84
Bengkulu	55.93	52.90	Sulawesi Utara	55.93	52.90
Lampung	52.82	50.95	Sulawesi Tengah	52.82	50.95
Kep. Bangka Belitung	54.90	55.24	Sulawesi Selatan	54.90	55.24
Kepulauan Riau	57.06	55.95	Sulawesi Tenggara	57.06	55.95
DKI Jakarta	61.35	59.53	Gorontalo	61.35	59.53
Jawa Barat	58.17	52.52	Sulawesi Barat	58.17	52.52
Jawa Tengah	53.42	51.22	Maluku	53.42	51.22
DI Yogyakarta	53.81	53.13	Maluku Utara	53.81	53.13
Jawa Timur	54.17	51.81	Papua Barat	54.17	51.81
Banten	59.20	56.24	Papua	59.20	56.24
Bali	61.65	60.12			

Lakukan uji hipotesis apakah rata-rata konsumsi protein per kapita per hari (gram) di Indonesia antara tahun 2011 sama dengan 2012 atau tidak sama. Gunakan $\alpha = 5\%$ dan 1%.

Dengan bantuan kalkulator diketahui:

$$n_{2011} = 33$$
, $\bar{x}_{2011} = 55.75$, $\sigma_{2011} = 4.058$

$$n_{2012} = 33$$
, $\bar{x}_{2012} = 53.50$, $\sigma_{2012} = 4.074$

a. Jika tingkat kesalahannya 5%

-
$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

$$- \alpha = 0.05$$

- Statistik uji yang digunakan adalah:

$$Z_{\text{hitung}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan $(\alpha) = 0.05$ dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}} > 1.96 = Z_{\text{tabel}}$$
 atau $Z_{\text{hitung}} < -1.96 = Z_{\text{tabel}}$

$$- Z_{\text{hitung}} = \frac{\left(55.75 - 53.50\right)}{\sqrt{\frac{\left(4.058\right)^2 + \left(4.074\right)^2}{33}}} = 2.25$$

- $Z_{\text{hitung}} = 2.25 > 1.96 = Z_{\text{tabel}}$, maka H₀ ditolak.
- Dengan demikian dapat disimpulkan bahwa rata-rata konsumsi protein per kapita per hari (gram) di Indonesia antara tahun 2011 tidak sama dengan 2012.

b. Jika tingkat kesalahannya 1%

-
$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

$$- \alpha = 0.01$$

- Statistik uji yang digunakan adalah:

$$Z_{\text{hitung}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}}$$
> 2.58 = Z_{tabel} atau Z_{hitung} < - 2.58 = Z_{tabel}

$$- Z_{\text{hitung}} = \frac{\left(55.75 - 53.50\right)}{\sqrt{\frac{\left(4.058\right)^2 + \left(4.074\right)^2}{33}}} = 2.25$$

- $Z_{\text{hitung}} = 2.25 < 2.58 = Z_{\text{tabel}}$, maka H₀ diterima.
- Dengan demikian dapat disimpulkan bahwa rata-rata konsumsi protein per kapita per hari (gram) di Indonesia antara tahun 2011 sama dengan 2012.
- 3. Secara random diambil 58 telur ayam dan 74 telur bebek. Setelah dilakukan penelitian tentang daya tahan lamanya, ternyata umur rata-rata telur ayam adalah 11 hari dengan deviasi standar 2.5 hari, sedangkan umur rata-rata telur bebek adalah 10 hari dengan deviasi standar 4 hari.

Apakah dapat disimpulkan bahwa usia rata-rata telur ayam lebih tahan lama daripada telur bebek? Gunakan $\alpha = 5\%$ dan 1%

a. Jika tingkat kesalahannya 5%

-
$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 > \mu_2$$

$$- \alpha = 0.05$$

- Statistik uji yang digunakan adalah:

$$Z_{\text{hitung}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian sisi kanan adalah:

$$Z_{\text{hitung}} > 1.65 = Z_{\text{tabel}}$$

- Daerah penerimaan dan penolakan

$$- Z_{\text{hitung}} = \frac{(11-10)}{\sqrt{\frac{(2.5)^2}{58} + \frac{(4)^2}{74}}} = 1.76$$

- $Z_{\text{hitung}} = 1.76 > 1.65 = Z_{\text{tabel}}$, maka H₀ ditolak
- Dengan demikian dapat disimpulkan bahwa usia rata-rata telur ayam lebih lama apabila dibandingkan dengan usia rata-rata telur bebek.

b. Jika tingkat kesalahannya 1%

- $H_0: \mu_1 = \mu_2$

 $H_1: \mu_1 > \mu_2$

 $- \alpha = 0.01$

- Statistik uji yang digunakan adalah:

$$Z_{\text{hitung}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian sisi kanan adalah:

$$Z_{\text{hitung}} > 2.33 = Z_{\text{tabel}}$$

- Daerah penerimaan dan penolakan

$$- Z_{\text{hitung}} = \frac{(11-10)}{\sqrt{\frac{(2.5)^2}{58} + \frac{(4)^2}{74}}} = 1.76$$

- $Z_{\text{hitung}} = 1.76 < 2.33 = Z_{\text{tabel}}$, maka H₀ diterima
- Dengan demikian dapat disimpulkan bahwa usia rata-rata telur ayam sama dengan usia rata-rata telur bebek.

Soal latihan

1. Secara random dipilih 44 sepeda motor merk *A* dan 52 sepeda motor merk *B*. Berat rata-rata sepeda motor merk *A* adalah 100 kg dengan deviasi standar 1.8 kg, sedangkan berat rata-rata sepeda motor merk *B* adalah 99.2 kg dengan deviasi standar 2.0 kg.

Apakah dapat disimpulkan bahwa berat rata-rata sepeda motor merk A dan B sama? Gunakan $\alpha = 3.36\%$ dan 1.62%.

2. Secara random dipilih 68 botol minuman ringan rasa apel dan 74 botol minuman ringan rasa anggur. Setelah dilakukan penimbangan, ternyata isi rata-rata minuman ringan rasa apel adalah 508 mililiter dengan deviasi standar 24 mililiter, sedangkan isi rata-rata minuman ringan rasa anggur adalah 516 mililiter dengan deviasi standar 22 mililiter.

Apakah dapat disimpulkan bahwa isi rata-rata minuman ringan rasa apel lebih sedikit apabila dibandingkan dengan minuman ringan rasa anggur?

Gunakan $\alpha = 6.88\%$ dan 2.72%.

3. Secara random dipilih 78 meja dari gudang A dan 60 meja dari gudang B. Setelah dilakukan penimbangan, ternyata berat rata-rata meja dari gudang A adalah 20.0 kg dengan deviasi standar 1.4 kg, sedangkan berat rata-rata meja dari gudang B adalah 20.5 kg dengan deviasi standar 1.6 kg.

Apakah dapat disimpulkan bahwa berat rata-rata meja dari gudang A lebih ringan daripada meja dari gudang B? Gunakan $\alpha = 5\%$ dan 1%.

4. Sebuah pabrik sepeda ingin memutuskan apakah akan menggunakan ban merk *A* atau merk *B* bagi sepeda produksi terbarunya.

Untuk membantu mencapai keputusan tersebut, sebuah percobaan dilakukan dengan menggunakan 78 ban merk A dan 80 merk B. Ban-ban tersebut dipasang dan digunakan sampai aus sehingga harus diganti.

Hasilnya adalah sebagai berikut:

```
merk A: \bar{x} = 379 km dengan deviasi standar = 51 km merk B: \bar{x} = 398 km dengan deviasi standar = 59 km
```

Ujilah hipotesis pada tingkat kesalahan 5% dan 1% bahwa tidak ada perbedaan antara kedua merk ban tersebut?

5. Sebuah perusahaan ingin menguji masa kadaluarsa obat hasil produksinya. Untuk tujuan tersebut diambillah sampel obat sakit flu dan obat sakit kepala masing-masing 50 tablet sebagai sampel dan diuji dalam kondisi yang sama. Hasil uji memperlihatkan bahwa obat sakit flu mempunyai rata-rata masa kadaluarsa hingga 867 hari dengan deviasi standar 63 hari, sedangkan obat sakit kepala mempunyai rata-rata masa kadaluarsa hingga 777 hari dengan deviasi standar 56 hari. Kita ingin menguji apakah rata-rata masa kadaluarsa kedua obat sama atau berbeda.

Gunakan $\alpha = 1\%$ dan 5%.

6. Di bawah ini adalah data tentang Angka Harapan Hidup (AHH) Kabupaten/Kota di Provinsi Jawa Timur pada 2011 dan 2012.

Kab./Kota	2011	2012	Kab./Kota	2011	2012	Kab./Kota	2011	2012
Pacitan	71.48	71.69	Pasuruan	64.31	64.61	Sampang	63.49	63.98
Ponorogo	70.24	70.40	Sidoarjo	70.79	71.03	Pamekasan	64.39	64.79
Trenggalek	71.87	72.13	Mojokerto	70.42	70.64	Sumenep	64.89	65.07
Tulungagung	71.72	71.95	Jombang	70.18	70.28	Kota Kediri	70.64	70.86
Blitar	71.09	71.30	Nganjuk	69.11	69.33	Kota Blitar	72.51	72.80
Kediri	69.90	70.15	Madiun	69.07	69.25	Kota Malang	70.68	71.02
Malang	69.23	69.50	Magetan	71.41	71.66	Kota Probolinggo	70.52	70.86
Lumajang	67.46	67.75	Ngawi	70.24	70.57	Kota Pasuruan	66.41	66.46
Jember	63.03	63.21	Bojonegoro	67.28	67.42	Kota Mojokerto	71.78	72.00
Banyuwangi	67.98	68.38	Tuban	68.00	68.21	Kota Madiun	71.22	71.42
Bondowoso	63.54	63.85	Lamongan	68.37	68.55	Kota Surabaya	71.27	71.53
Situbondo	63.36	63.52	Gresik	71.22	71.47	Kota Batu	69.72	70.00
Probolinggo	61.42	61.70	Bangkalan	63.48	63.65			

Dengan bantuan kalkulator diketahui:

$$n_{2011} = 38$$
, $\bar{x}_{2011} = 69.86$, $\sigma_{2011} = 1.25$

$$n_{2012} = 38$$
, $\bar{x}_{2012} = 70.09$, $\sigma_{2012} = 1.20$

Lakukan uji hipotesis apakah rata-rata AHH Kabupaten/Kota di Provinsi Jawa Timur pada 2011 sama dengan tahun 2012 pada tingkat konfidensi 99.40% dan 96.64%.

9. Uji Hipotesis bagi Selisih Dua Proporsi

Aplikasi dari uji hipotesis yang lain adalah untuk menguji beda proporsi dari dua kelompok sampel yang berbeda. Uji hipotesis ini juga sering digunakan di dalam industri.

Contoh

- 1. Sebuah perusahaan yang bergerak dalam bidang obat-obatan mempunyai 2 kantor cabang, di kota *A* dan kota *B*. Kemudian perusahaan tersebut ingin melakukan uji hipotesis apakah proporsi tidak masuk kantor antara pegawai di kantor cabang *A* lebih besar daripada di kantor cabang *B*.
- 2. Sebuah perusahaan pasta gigi telah memproduksi pasta gigi jenis yang baru. Pasta gigi tersebut dapat digunakan untuk anak-anak dan dewasa. Industri tersebut ingin melakukan riset pasar apakah proporsi anak-anak sama dengan proporsi dewasa dalam menggunakan pasta gigi jenis baru tersebut.
- 3. Sebuah perusahaan kue telah menghasilkan dua jenis kue dengan rasa baru yang berbeda, yaitu rasa karamel dan coklat. Perusahaan ingin menguji apakah proporsi kandungan karbohidrat dalam kue rasa karamel lebih kecil daripada kue rasa coklat.

Rumus statistik uji yang digunakan untuk menguji selisih dua proporsi adalah statistik uji normal standar. Syarat dari statistik uji tersebut dapat digunakan adalah populasinya berdistribusi normal.

Diketahui statistik uji Z

$$Z_{\text{hitung}} = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

Daerah kritis pengujian selisih dua proporsi

a. Uji hipotesis dua sisi

-
$$H_0: p_1 = p_2$$

 $H_1: p_1 \neq p_2$

$$\frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} > Z_{\alpha/2} = Z_{\text{tabel}} \text{ atau}$$

$$\frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} < -Z_{\alpha/2} = Z_{\text{tabel}}$$

b. Uji hipotesis sisi kiri

-
$$H_0: p_1 = p_2$$

 $H_1: p_1 < p_2$

$$\frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} < -Z_\alpha = Z_{tabel}$$

c. Uji hipotesis sisi kanan

-
$$H_0: p_1 = p_2$$

 $H_1: p_1 > p_2$

$$\frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} > Z_{\alpha/2} = Z_{\text{tabel}}$$

Contoh

 Suatu penelitian dilakukan untuk menduga proporsi laki-laki dan perempuan yang menggunakan shampo rambut terbaru yang diproduksi sebuah perusahaan shampo.
 Dari hasil penelitian ternyata diperoleh 60 diantara 100 laki-laki menggunakan shampo tersebut, sedangkan diantara 120 perempuan hanya 54 yang menggunakan shampo tersebut. Apakah ada perbedaan yang nyata antara proporsi laki-laki dan perempuan yang menggunakan shampo rambut terbaru yang diproduksi sebuah perusahaan shampo? Gunakan $\alpha = 4\%$ dan 1%.

- a. Jika tingkat kesalahannya 4%
 - $H_0: p_1 = p_2$
 - $H_1: p_1 \neq p_2$
 - $\alpha = 0.04$
 - Statistik uji yang digunakan:

$$Z_{\text{hitung}} = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.04 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}}$$
> 2.05 = Z_{tabel} atau Z_{hitung} < - 2.05 = Z_{tabel}

$$- Z_{\text{hitung}} = \frac{0.60 - 0.45}{\sqrt{\frac{(0.60)(0.40)}{100} + \frac{(0.45)(0.55)}{120}}} = 2.50$$

$$(0.60 \text{ dari } \frac{60}{100} \text{ dan } 0.45 \text{ dari } \frac{54}{120})$$

- $Z_{\text{hitung}} = 2.50 > 2.05 = Z_{\text{tabel}}$, maka H₀ ditolak.
- Dengan demikian dapat disimpulkan bahwa ada perbedaan yang nyata antara proporsi proporsi laki-laki dan perempuan yang menggunakan shampo rambut terbaru yang diproduksi sebuah perusahaan shampo.
- b. Jika tingkat kesalahannya 1 %

-
$$H_0: p_1 = p_2$$

$$H_1: p_1 \neq p_2$$

$$- \alpha = 0.01$$

- Statistik uji yang digunakan:

$$Z_{\text{hitung}} = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}}$$
> 2.58 = Z_{tabel} atau Z_{hitung} < - 2.58 = Z_{tabel}

$$- Z_{\text{hitung}} = \frac{0.60 - 0.45}{\sqrt{\frac{(0.60)(0.40)}{100} + \frac{(0.45)(0.55)}{120}}} = 2.50$$

$$(0.60 \text{ dari } \frac{60}{100} \text{ dan } 0.45 \text{ dari } \frac{54}{120})$$

- $Z_{\text{hitung}} = 2.50 < 2.58 = Z_{\text{tabel}}$, maka H₀ diterima.
- Dengan demikian dapat disimpulkan bahwa tidak ada perbedaan yang nyata antara proporsi proporsi laki-laki dan perempuan yang menggunakan shampo rambut terbaru yang diproduksi sebuah perusahaan shampo.
- 2. Diambil sampel secara random sebanyak 120 butir beras merah dan 250 butir beras putih. Dari 120 butir beras merah, ternyata diketahui ada 18 butir yang tidah utuh (patah). Sedangkan dari beras putih, dari 250 butir ada 20 butir yang tidah utuh (patah).

Berdasarkan data di atas, dapatkah kita simpulkan bahwa persentase butir yang tidah utuh (patah) beras merah lebih besar dibanding beras putih?

Gunakan tingkat keyakinan 1% dan 5%.

a. Jika tingkat kesalahannya 1%

-
$$H_0: p_1 = p_2$$

 $H_1: p_1 > p_2$

- $\alpha = 0.01$
- Statistik uji yang digunakan:

$$Z_{\text{hitung}} = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian sisi kanan adalah:

$$Z_{\text{hitung}} > 2.33 = Z_{\text{tabel}}$$

- Daerah penerimaan dan penolakan

$$- Z_{\text{hitung}} = \frac{0.15 - 0.08}{\sqrt{\frac{(0.15)(0.85)}{120} + \frac{(0.08)(0.92)}{250}}} = 1.90$$

$$(0.15 \text{ dari } \frac{18}{120} \text{ dan } 0.08 \text{ dari } \frac{20}{250})$$

- $Z_{\text{hitung}} = 1.90 < 2.33 = Z_{\text{tabel}}$, maka H₀ diterima.
- Dengan demikian dapat disimpulkan bahwa tidak ada perbedaan yang nyata antara persentase butir yang tidah utuh (patah) beras merah dengan beras putih.
- b. Jika tingkat kesalahannya 5%

-
$$H_0: p_1 = p_2$$

$$H_1: p_1 > p_2$$

$$- \alpha = 0.05$$

- Statistik uji yang digunakan:

$$Z_{\text{hitung}} = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian sisi kanan adalah:

$$Z_{\text{hitung}} > 1.65 = Z_{\text{tabel}}$$

- Daerah penerimaan dan penolakan

$$- Z_{\text{hitung}} = \frac{0.15 - 0.08}{\sqrt{\frac{(0.15)(0.85)}{120} + \frac{(0.08)(0.92)}{250}}} = 1.90$$

$$(0.15 \text{ dari } \frac{18}{120} \text{ dan } 0.08 \text{ dari } \frac{20}{250})$$

- $Z_{\text{hitung}} = 1.90 > 1.65 = Z_{\text{tabel}}$, maka H₀ ditolak.
- Dengan demikian dapat disimpulkan bahwa persentase butir yang tidah utuh (patah) beras merah lebih besar daripada persentase butir yang tidah utuh (patah) beras beras putih.
- 3. Suatu penelitian dilakukan untuk menduga proporsi penduduk laki-laki dan perempuan yang menyetujui dibangunnya sebuah pasar swalayan.

Dari hasil penelitian ternyata diperoleh 87 diantara 150 penduduk laki-laki menyetujui pembangunan tersebut, sedangkan diantara 120 penduduk desa hanya 54 penduduk yang menyetujui pembangunan tersebut.

Berdasarkan data di atas, dapatkah kita simpulkan bahwa persentase penduduk lakilaki yang menyetujui pembangunan pasar swalayan tidak sama dengan persentase penduduk perempuan yang menyetujui pembangunan pasar swalayan?

Gunakan tingkat keyakinan 1% dan 5%.

a. Jika tingkat kesalahannya 1 %

-
$$H_0: p_1 = p_2$$

$$H_1: p_1 \neq p_2$$

$$- \alpha = 0.01$$

- Statistik uji yang digunakan:

$$Z_{\text{hitung}} = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.01 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}}$$
> 2.58 = Z_{tabel} atau Z_{hitung} < - 2.58 = Z_{tabel}

- Daerah penerimaan dan penolakan

$$- Z_{\text{hitung}} = \frac{0.58 - 0.45}{\sqrt{\frac{(0.58)(0.42)}{150} + \frac{(0.45)(0.55)}{120}}} = 2.14$$

$$(0.58 \text{ dari } \frac{87}{150} \text{ dan } 0.45 \text{ dari } \frac{54}{120})$$

- $Z_{\text{hitung}} = 2.14 < 2.58 = Z_{\text{tabel}}$, maka H₀ diterima.

- Dengan demikian dapat disimpulkan bahwa tidak ada perbedaan yang nyata antara proporsi proporsi laki-laki dan perempuan yang menyetujui pembangunan pasar swalayan.
- b. Jika tingkat kesalahannya 5 %

-
$$H_0: p_1 = p_2$$

$$H_1: p_1 \neq p_2$$

$$- \alpha = 0.01$$

- Statistik uji yang digunakan:

$$Z_{\text{hitung}} = \frac{p_1 - p_2}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

- Daerah kritis dengan tingkat kesalahan (α) = 0.05 dalam pengujian dua sisi adalah:

$$Z_{\text{hitung}} > 1.96 = Z_{\text{tabel}}$$
 atau $Z_{\text{hitung}} < -1.96 = Z_{\text{tabel}}$

$$- Z_{\text{hitung}} = \frac{0.58 - 0.45}{\sqrt{\frac{(0.58)(0.42)}{150} + \frac{(0.45)(0.55)}{120}}} = 2.14$$

$$(0.58 \text{ dari } \frac{87}{150} \text{ dan } 0.45 \text{ dari } \frac{54}{120})$$

- $Z_{\text{hitung}} = 2.14 > 1.96 = Z_{\text{tabel}}$, maka H₀ ditolak.
- Dengan demikian dapat disimpulkan bahwa ada perbedaan yang nyata antara proporsi proporsi laki-laki dan perempuan yang menyetujui pembangunan pasar swalayan.

Soal latihan

1. Di bawah ini adalah data tentang persentase rumah tangga yang memiliki tempat pembuangan air besar sendiri (dalam persen) menurut Provinsi di Indonesia 2011 dan 2012.

Provinsi	2011	2012	Provinsi	2011	2012
Aceh	60.34	61.44	Nusa Tenggara Barat	41.85	38.80
Sumatera Utara	74.88	76.81	Nusa Tenggara Timur	62.35	60.06
Sumatera Barat	54.65	56.15	Kalimantan Barat	64.68	67.38
Riau	83.81	83.69	Kalimantan Tengah	53.60	56.74
Jambi	68.12	73.00	Kalimantan Selatan	63.80	64.36
Sumatera Selatan	64.59	68.69	Kalimantan Timur	80.96	85.14
Bengkulu	66.57	75.68	Sulawesi Utara	63.42	65.79
Lampung	76.98	85.79	Sulawesi Tengah	50.89	62.95
Kep. Bangka Belitung	71.75	76.78	Sulawesi Selatan	62.29	59.12
Kepulauan Riau	82.04	69.78	Sulawesi Tenggara	58.63	46.92
DKI Jakarta	76.30	76.61	Gorontalo	33.06	54.78
Jawa Barat	67.60	67.42	Sulawesi Barat	44.85	30.93
Jawa Tengah	64.51	73.47	Maluku	49.53	52.26
DI Yogyakarta	69.82	64.22	Maluku Utara	49.88	51.59
Jawa Timur	61.63	61.48	Papua Barat	54.83	47.04
Banten	62.92	66.29	Papua	46.54	58.21
Bali	65.50	65.41			

Dengan bantuan kalkulator diketahui:

$$n_{2011} = 33$$
, $p_{2011} = 65.20\%$

$$n_{2012} = 33$$
, $p_{2012} = 66.53\%$

Apakah ada perbedaan yang nyata antara proporsi rumah tangga yang memiliki tempat pembuangan air besar sendiri (dalam persen) di Indonesia antara tahun 2011 dengan tahun 2012?

2. Diambil sampel secara random sebanyak 110 tablet obat sakit kepala dan 150 tablet obat sakit flu. Dari 110 tablet obat sakit kepala, ternyata ada 11 yang sudah kadaluarsa. Sedangkan dari 150 tablet obat sakit flu, ada 12 yang sudah kadaluarsa.

Berdasarkan data di atas, dapatkah kita simpulkan bahwa persentase kadaluarsa obat sakit kepala sama besar dengan obat sakit flu?

Gunakan tingkat kesalahan 1% dan 5%.

3. Sebuah pabrik ban sepeda motor memproduksi 2 ban yang berbeda (jenis *A* dan *B*). Dari hasil pengamatan ternyata 42 sepeda motor diantara 150 sepeda motor menggunakan ban jenis *A* dan 38 diantara 200 sepeda motor menggunakan ban jenis *B*.

Dapatkah kita menyimpulkan pada tingkat kesalahan 6% dan 1% bahwa ban jenis *A* terjual lebih banyak daripada ban jenis *B*?

4. Sebuah penelitian dilakukan dengan tujuan ingin mengetahui pemakaian produk baru pada dua kota yang berbeda, yaitu kota *A* dan kota *B*.

Diantara 260 penduduk kota *A*, ternyata terdapat 65 penduduk yang memakai produk baru, sedangkan dari 360 penduduk kota *B*, 63 diantaranya memakai produk baru.

Berdasarkan data di atas, dapatkah kita simpulkan bahwa penduduk kota *A* lebih banyak memakai produk baru apabila dibandingkan dengan penduduk kota *B*? Gunakan tingkat kesalahan 5%.

5. Sebuah industri sabun mandi tertarik pada proporsi laki-laki dan perempuan dalam suatu populasi yang menggunakan sabun mandi hasil diproduksinya.

Dalam suatu sampel 100 laki-laki, ternyata terdapat 32 orang yang memakai sabun mandi tersebut, sedangkan dari 100 perempuan, terdapat 25 yang memakai sabun mandi tersebut.

Dapatkah disimpulkan pada tingkat kesalahan 1% dan 5% bahwa proporsi laki-laki yang memakai sabun mandi tersebut lebih besar daripada proporsi perempuan yang memakai sabun mandi tersebut?

6. Diambil sampel secara random sebanyak 200 buah jagung dan 120 buah singkong. Dari 200 buah jagung ternyata ada 12 yang jelek/cacat, sedangkan buah singkong, dari 120 buah 12 yang jelek/cacat.

Berdasarkan data di atas, dapatkah kita simpulkan bahwa persentase kecacatan jagung lebih kecil dibanding singkong?

Gunakan tingkat kesalahan 10.2% dan 5%.

Daftar Pustaka

- Ayyub, Bilal M. 1997. Probability, statistics, and reliability for engineers. CRC Press.
- Bain, L. J. & Engelhardt, M. 1992. *Introduction to probability and mathematical statistics*. Boston: PSW-Kent Publishing Company.
- Beyer, W. H. 1987. *CRC standard mathematical tables, 28th ed.* Boca Raton, FL: CRC Press.
- Bove, R. 2005. *The standard normal distribution*. http://courses.wcupa.edu/rbove/eco252/ normtab1.doc Diakses 2 September 2013.
- Bury, K. 1999. *Statistical distributions in engineering*. Cambridge: Cambridge University Press.
- Casella, G. and Berger, R. L. 2002. *Statistical inference* (2nd ed.). California: Duxbury Thomson Learning.
- Evans, M., Hastings, N. & Peacock, B. 1993. *Statistical distributions*. New York: John Wiley & Sons.
- Fauzy, A. 2010. Statistik industri. Jakarta: Erlangga.
- Fauzy, A. 2011. Statistik nonparametrik. Jogjakarta: Ardana Media.
- Feller, W. 1971. *An Introduction to probability theory and its applications*, Vol. 2, 3rd ed. New York: Wiley.
- Hatta. 2010. *Archive for the 'Distribusi normal' category*. https://hatta2stat.wordpress.com/category/distribusi-normal-2/Diakses 11 September 2013.
- Hines, W. W. dan Douglas C. M. 1989. *Probabilita dan statistik dalam ilmu rekayasa dan manajemen*. (Terjemahan). Cetakan 1. Jakarta: UI Press.
- Ireson, W. G. 1996. *Handbook of reliability engineering and management* (2nd ed.). New York: McGraw Hill.

Kenney, J. F. and Keeping, E. S. 1951. *Mathematics of statistics, Pt. 2*, 2nd ed. Princeton, NJ: Van Nostrand.

- Mann, P. S. 2004. Introductory Statistics. New York: John Wiley and Sons.
- Papoulis, A. 1984. *Probability, random variables, and stochastic processes,* 2nd ed. New York: McGraw-Hill.
- Patel, J. K. and Read, C. B. 1982. *Handbook of the normal distribution*. New York: Dekker.
- Spiegel, M. R. 1992. *Theory and problems of probability and statistics*. New York: McGraw-Hill.
- Wikipedia. 2012. *Distirbusi normal*. http://id.wikipedia.org/wiki/Distribusi_normal Diakses 10 September 2013.

Lampiran: Distribusi Normal Standar (A)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0 0.1 0.2 0.3 0.4	0.0398 0.0793 0.1179	0.0438 0.0832 0.1217	0.0478 0.0871 0.1255	0.0517 0.0910 0.1293	0.0160 0.0557 0.0948 0.1331 0.1700	0.0596 0.0987 0.1368	0.0636 0.1026 0.1406	0.0675 0.1064 0.1443	0.0714 0.1103 0.1480	0.0753 0.1141 0.1517
0.5 0.6 0.7 0.8 0.9	0.2257 0.2580 0.2881	0.2291 0.2611 0.2910	0.2324 0.2642 0.2939	0.2357 0.2673 0.2967	0.2054 0.2389 0.2704 0.2995 0.3264	0.2422 0.2734 0.3023	0.2454 0.2764 0.3051	0.2486 0.2794 0.3078	0.2517 0.2823 0.3106	0.2549 0.2852 0.3133
1.0 1.1 1.2 1.3	0.3643 0.3849 0.4032	0.3665 0.3869 0.4049	0.3686 0.3888 0.4066	0.3708 0.3907 0.4082	0.3508 0.3729 0.3925 0.4099 0.4251	0.3749 0.3944 0.4115	0.3770 0.3962 0.4131	0.3790 0.3980 0.4147	0.3810 0.3997 0.4162	0.3830 0.4015 0.4177
1.5 1.6 1.7 1.8 1.9	0.4452 0.4554 0.4641	0.4463 0.4564 0.4649	0.4474 0.4573 0.4656	0.4484 0.4582 0.4664	0.4382 0.4495 0.4591 0.4671 0.4738	0.4505 0.4599 0.4678	0.4515 0.4608 0.4686	0.4525 0.4616 0.4693	0.4535 0.4625 0.4699	0.4545 0.4633 0.4706
2.0 2.1 2.2 2.3 2.4	0.4821 0.4861 0.4893	0.4826 0.4864 0.4896	0.4830 0.4868 0.4898	0.4834 0.4871 0.4901	0.4793 0.4838 0.4875 0.4904 0.4927	0.4842 0.4878 0.4906	0.4846 0.4881 0.4909	0.4850 0.4884 0.4911	0.4854 0.4887 0.4913	0.4857 0.4890 0.4916

```
0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.5
        0.4953 \ 0.4955 \ 0.4956 \ 0.4957 \ 0.4959 \ 0.4960 \ 0.4961 \ 0.4962 \ 0.4963 \ 0.4964 
2.6
2.7
       0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
       0.4974\ 0.4975\ 0.4976\ 0.4977\ 0.4977\ 0.4978\ 0.4979\ 0.4979\ 0.4980\ 0.4981
2.8
2.9
       0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0
       0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
       0.4990\ 0.4991\ 0.4991\ 0.4991\ 0.4992\ 0.4992\ 0.4992\ 0.4992\ 0.4993\ 0.4993
3.1
3.2
       0.4993\ 0.4993\ 0.4994\ 0.4994\ 0.4994\ 0.4994\ 0.4994\ 0.4995\ 0.4995\ 0.4995
       0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.3
       0.4997\ 0.4997\ 0.4997\ 0.4997\ 0.4997\ 0.4997\ 0.4997\ 0.4997\ 0.4997\ 0.4997
3.4
3.5
       0.4938 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6
       0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7
       0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
       0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.8
3.9
       0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
```

Lampiran: Distribusi Normal Standar (B)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0 0.1 0.2 0.3 0.4	0.5398 0.5793 0.6179	0.5438 0.5832 0.6217	0.5478 0.5871 0.6255	0.5517 0.5910 0.6293	0.5557 0.5948 0.6331	0.5596 0.5987 0.6368	0.5636 0.6026 0.6406	0.5675 0.6064 0.6443	0.5319 0.5714 0.6103 0.6480 0.6844	0.5753 0.6141 0.6517
0.5 0.6 0.7 0.8 0.9	0.7257 0.7580 0.7881	0.7291 0.7611 0.7910	0.7324 0.7642 0.7939	0.7357 0.7673 0.7967	0.7389 0.7704 0.7995	0.7422 0.7734 0.8023	0.7454 0.7764 0.8051	0.7486 0.7794 0.8078	0.7190 0.7517 0.7823 0.8106 0.8365	0.7549 0.7852 0.8133
1.0 1.1 1.2 1.3	0.8643 0.8849 0.9032	0.8665 0.8869 0.9049	0.8686 0.8888 0.9066	0.8708 0.8907 0.9082	0.8729 0.8925 0.9099	0.8749 0.8944 0.9115	0.8770 0.8962 0.9131	0.8790 0.8980 0.9147	0.8599 0.8810 0.8997 0.9162 0.9306	0.8830 0.9015 0.9177
1.5 1.6 1.7 1.8 1.9	0.9452 0.9554 0.9641	0.9463 0.9564 0.9649	0.9474 0.9573 0.9656	0.9484 0.9582 0.9664	0.9495 0.9591 0.9671	0.9505 0.9599 0.9678	0.9515 0.9608 0.9686	0.9525 0.9616 0.9693	0.9429 0.9535 0.9625 0.9699 0.9761	0.9545 0.9633 0.9706
2.0 2.1 2.2 2.3 2.4	0.9821 0.9861 0.9893	0.9826 0.9864 0.9896	0.9830 0.9868 0.9898	0.9834 0.9871 0.9901	0.9838 0.9875 0.9904	0.9842 0.9878 0.9906	0.9846 0.9881 0.9909	0.9850 0.9884 0.9911	0.9812 0.9854 0.9887 0.9913 0.9934	0.9857 0.9890 0.9916
2.5 2.6 2.7 2.8 2.9	0.9953 0.9965 0.9974	0.9955 0.9966 0.9975	0.9956 0.9967 0.9976	0.9957 0.9968 0.9977	0.9959 0.9969 0.9977	0.9960 0.9970 0.9978	0.9961 0.9971 0.9979	0.9962 0.9972 0.9979	0.9951 0.9963 0.9973 0.9980 0.9986	0.9964 0.9974 0.9981

```
3.0
     0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1
     0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9993 0.9993
      0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.2
3.3
      0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4
      0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5
      0.9938\ 0.9998\ 0.9998\ 0.9998\ 0.9998\ 0.9998\ 0.9998\ 0.9998\ 0.9998
3.6
      0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
      0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7
      0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8
      0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
```

Indeks

Abraham	1		
α	17	\mathbf{G}	
Asimptot	2	Gauss	1
_		**	
В		H	
Batas		Hipotesis	50
atas	15	alternatif	58
bawah	15	dua sisi	58
		nol	58
D		satu sisi	58
Daerah			
kritis	58; 60	I	
penolakan	60	Interval	13; 15
penerimaan	60		
Derajat		K	
kepercayaan	17	Kepercayaan	17
ketelitian	16	Kesalahan	17
Densitas	4	Koefisien	18
Derivatif	13	Konfidensi	17
Distribusi		Kurva	4
normal	1; 18		
probabilitas	1	${f L}$	
t	18	Legendre	1
E		M	
Error	1	Mean	18
Estimasi	1	MLE	12
interval	15	Modus	2
titik	15	Wiodus	2
UUK	13	P	
F		Parameter	15
			4
Faktor	60.64	Peluang	15
Kebetulan	60; 64	Propulasi	
Fungsi	10	Proporsi	29; 47
kepadatan	12		

	···· J ··			
R		T		
Rata-rata	1; 15; 37	Tabel	24	
		Tingkat		
S		kesalahan	21	
Selisih	37	keyakinan	21	
Statistik uji	58	Transformasi	4	
		\mathbf{V}		
		Variansi	1	