Three Essays on Non-clairvoyant Dynamic Mechanism Design

Proposer: Shan Gui

Advisor: Daniel Houser

Committee: Cesar Martinelli, Johanna Mollerstrom, Thomas Stratmann

George Mason University

Sept 16, 2022

Outline

Chapter 1 - Testing Non-clairvoyant dynamic mechanism

- ▶ Compare two mechanisms feasible under non-clairvoyant environment.
- ► Focus on buyers behaviors.

Chapter 2 - Can sellers set up the optimal mechanism?

- Let human sellers choose the mechanism for each scenario.
- ► Investigate how sellers make decisions.

Chapter 3 - When is the non-clairvoyant dynamic mechanism the optimal?

▶ Formalize sufficient or necessary conditions of mechanism comparisons.

Chapter 1

Non-Clairvoyant Dynamic Mechanism Design: Experimental Evidence

Main Takeaways

What do we do?

- ▶ Bring Non-Clairvoyant Environment (Mirrokni et al., 2020) into Lab.
- ► Test optimal Non-Clairvoyant dynamic mechanism (NC).
- ► Compare the performance with Repeated Static optimal mechanism (RS).

What do we find?

- ▶ Dynamic NC works well as theory predicts more revenue.
- ▶ Participants overbid less in NC.
- ightharpoonup Risk aversion \rightarrow No full participation \rightarrow Revenue loss in NC.

Optimal Dynamic Mechanism Design

- ▶ How the principal (seller) establish the rules of allocation and price over **multi-period** as the agent (buyer) receives private information over time.
 - ► Long-term principal-agent relationship
 - Repeated selling of perishable goods
- ▶ Dynamic mechanism improves revenues and efficiency (Baron & Besanko, 1984).

Non-Clairvoyance

Clairvoyance: Future demand distribution is known at the beginning.

- ▶ Form of the optimal dynamic mechanism depends on environment.
- ▶ Buyers tend to have biased forecast on future demand (DellaVigna & Malmendier, 2006).

Non-Clairvoyance: Future demand is not accessible at the beginning.

- ▶ No needs to share unbiased belief.
- ► General Form.

 F_2 is unknown in Day 1

 $v_1 \sim F_1$

 $v_2 \sim F_2$?

Requirements of Mechanisms under Non-clairvoyant Environment

Seller sets up:

- ightharpoonup Allocation rule $x \in \{0,1\}$: whether buyer can get the item or not
- ▶ Price rule $p \in \mathcal{R}$: how much to pay if buyer gets the item

Buyer:
$$\max_{\{b_1,b_2\}} u_1 + u_2 = (x_1v_1 - p_1) + (x_2v_2 - p_2)$$

- ▶ Dynamic Incentive Compatibility (DIC)

 For a buyer, it is optimal to bid true value in each period
- Ex-post Individual Rationality (EPIR) $u_1 + u_2 > 0$, for all realization of v_1, v_2

Intra-period Revenue & Inter-period Revenue

- ▶ Intra-period revenue: independent revenue, using information within that period ⇒bounded my Myerson's revenue.
- ► Inter-period revenue: dependent revenue, linking past periods with current period ⇒ bounded by current-period expected value.

Mechanisms under Non-Clairvoyant Environment

 \Rightarrow Optimal clairvoyant revenue Rev^* is unachieveble.

Repeated Static optimal mechanism (Myerson, 1981)

▶ Rules in two days are independent of each other

Maximize intra-period revenue for each period separately.

 $\Rightarrow \frac{Rev^{RS*}}{Rev^*}$ could be arbitrarily small (Papadimitriou et al., 2016)

Non-Clairvoyant optimal dynamic mechanism (Mirrokni et al., 2020)

Rules in Day 2 depends on bid in day 1

Best Revenue Guarantee:
$$\Rightarrow \frac{Rev^{NC*}}{Rev^*} \ge \frac{1}{a}$$

Achieve at least $\frac{1}{2}$ revenue produced by optimal clairvoyant mechanism under all scenarios in **two-period single-buyer** case.

When can Non-Clairvoyant dynamic mechanism do better?

Theoretically, Non-Clairvoyant mechanism can not always outperform.

Optimal Intra-period Revenue Optimal Inter-period Revenue

RS	100%	zero
NC	$\geq 50\%$	$\geq 50\%$

Relative size of optimal intra- and inter-period revenues is the key.

- ightharpoonup Scenario A: Optimal inter period revenue is larger \Rightarrow NC outperforms.
- ightharpoonup Scenario B: Optimal intra period revenue is larger \Rightarrow RS outperforms.

Experimental Design 2 * 2

Two Mechanisms

- ► Non-Clairvoyant Dynamic Mechanism (NC)
- ► Repeated Static Mechanism (RS)

Two Scenarios

$$F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \mathbb{E}_A = 3.$$

$$F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \mathbb{E}_B = 6.$$

Scenario A (S_A) : Non-Clairvoyant Dynamic has more revenue than Repeated Static.

$$F_1 = F_A, \ F_2 = F_B \implies REV^{RS} = 4, \ REV^{NC} = 4.5 \ \uparrow 12.5\%$$

▶ Scenario B (S_B) : NC has less revenue than RS.

$$F_1 = F_B, \ F_2 = F_A \implies REV^{RS} = 4, \ REV^{NC} = 3.5 \ \downarrow 12.5\%$$

Non-Clairvoyant Environment

- **Buyer**: Participant
- ▶ **Robot Seller**: Experimenter, c = 0
- **Two periods**: Buyer can buy one item in each period from seller, t = 1, 2.
- ▶ Non-clairvoyance: The distribution of buyer's value (F_t) is common knowledge only in that period
- ► Incomplete Information :
 - 1. Only buyer knows his value for the item in each period, v_t .
 - 2. Buyer's value is drawn **independently**.

Variables for Environment

▶ Endowment: E = 50

Mechanism - Repeated Static (RS)

Period 1

- \triangleright Seller sets a secret reserve price r_1 based on the distributional knowledge F_1 .
- ▶ Buyer learns his value (v_1) , makes a bid : b_1
- ▶ Buyer can get the item only when $b_1 \ge r_1$ and pay $p_1 = r_1$.

Period 2

 $ightharpoonup F_2 \Rightarrow r_2, v_2 \Rightarrow b_2, \text{ pays } p_2 = r_2 \text{ if } b_2 \geq r_2$

Myerson's Auction

monopoly price:
$$r_1 = r_2 = 2$$

 $r_A = 2 \in \{arg \max_r r \cdot P(v_A > r)\}, \quad r_B = 2 \in \{arg \max_r r \cdot P(v_B > r)\}$

Mechanism - Non-Clairvoyant Dynamic (NC)

How the dynamic mechanism work?

Half chance of free item in Period 1

Half chance of upfront fee in Period 2

Non-Clairvoyant Mechanism in Period 1

- \triangleright Seller sets a fixed secret reserve price r_1 based on the distribution F_1 .
- ▶ Buyer learns his value (v_1) , makes a bid : b_1
- Buyer has 50% chance to get the item for free: $p_1 = 0$; Otherwise, buyer can get the item only when $b_1 \ge r_1$ and pay $p_1 = r_1$.

Non-Clairvoyant Mechanism in Period 2

- ▶ Seller sets an upfront fee $e_2 = \min(b_1, E(v_2))$.
- ▶ Buyer decides pay or leave. If buyer leave (enter = 0), game over.
- ightharpoonup If buyer pays, (enter = 1),
 - ▶ Buyer learns his value, v_2 , and makes a bid: b_2
 - ▶ Buyer has 50% chance to get the refund on the upfront fee (luck = 1).
 - Seller sets two secret reserve prices (r_2) based on the F_2 , luck for each given m_2 , Buyer can get the item only when $b_2 \ge r_2$ and pay $p_2 = r_2$

Hypotheses

Hypothesis 1 - Revenue Comparison

- ▶ In Scenario A (S_A) , Non-Clairvoyant mechanism has more revenue than Repeated Static mechanism;
- ightharpoonup In S_B , NC has less revenue than RS.

Revenue Comparison in Scenario A

$$F_1 = F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\} \mathbb{E}_1 = 3.$$

$$F_2 = F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \mathbb{E} = 6.$$

▶ Non-Clairvoyant Mechanism increases revenue, ↑ 12.5%

Revenue in S_A	Non-clairvoyant Dynami	Repeated Static		
Period 1	Give for Free (F) Myerson's Auction (M)	0 2	Myerson's Auction (M)	2
Period 2	Post Price Auction (P) Myerson's Auction (M)	5 2	Myerson's Auction (M)	2
Total		4.5		4
Intra-period Revenue Inter-period Revenue		2 2.5		4 0

Table 1: Theoretical Revenues in Scenario A.

Revenue Comparison in Scenario B

$$F_1 = F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \ \mathbb{E}_1 = 6.$$

$$F_2 = F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \ \mathbb{E}_2 = 3.$$

▶ Non-Clairvoyant Mechanism decreases revenue, ↓ 12.5%

Revenue in S_B	Non-clairvoyant Dynamic		Repeated Static		
Period 1	Give for Free (F) Myerson's Auction (M)	0 2	Myerson's Auction (M)	2	
Period 2	Post Price Auction (P) Myerson's Auction (M)	3 2	Myerson's Auction (M)	2	
Total		3.5		4	
Intra-period Revenue Inter-period Revenue		2 1.5		4 0	

Table 2: Theoretical Revenues in Scenario B.

Hypotheses

Hypothesis 2 - Individual Rationality

- ▶ Risk attitude matters in the second-period participation decision.
- ► Risk-averse buyers not paying upfront fee hurts the revenue of Non-Clairvoyant mechanism.

Hypotheses

Hypothesis 3 - Incentive Compatibility

- ▶ Randomization in NC leads participants overbid less.
 - ▶ In the first period, 50% chance of free item encourages buyers not to bid aggressively.
 - ▶ In the second period, 50% chance of not getting refund on the upfront fee deters aggressive bids.

Experiments

▶ 256 George Mason Students. September to November 2021.

	Scena	Scenario B		
Treatment	Non-Clairvoyant	Repeated Static	NC	\mathbf{RS}
Age	21.6	22.3	21.9	22.7
Gender (Male=1)	0.48	0.44	0.52	0.47
Risk aversion	4.46	4.90	4.55	4.63
Observation	64	64	64	64

Table 3: Summary Statistic

Results

Result 1.

Experimental observations match with theoretical prediction.

- ightharpoonup In S_A , Non-Clairvoyant mechanism has more revenue than Repeated Static mechanism.
- ▶ In S_B , Non-Clairvoyant mechanism has less revenue than Repeated Static mechanism.

Experimental Revenue Comparison - Period 1

Figure 3: Revenues of Period 1 in each Treatment

Experimental Revenue Comparison - Period 1 & Period 2

Figure 4: Revenues in each Treatment

Results

Result 2.

Risk aversion hurts the revenue of Non-Clairvoyant mechanism.

- ▶ In S_A , 4 buyers quit the second period, and the number goes to 8 in S_B .
- ▶ The more risk-averse the buyer is, the more likely they will refuse to pay the upfront fee and quit the second period.

Revenue Loss Decomposition

Figure 5: Revenues Increase if all Buyers enter in Period 2.

Why not pay the upfront fee

- ▶ "Since I got a profit the first time I didn't want to go again with my luck"
- ▶ "Risk vs Reward..... I got lucky and did not have to pay."
- ▶ "Based on the membership fee."
- "didn't want to take any big risks so I just lowballed my offers and refused to take the membership"
- ▶ "i read the instructions carefully. i think the second period isn't worth losing the points i had to pay membership fee and could only get the item by bidding higher than the price set by the seller..... honestly, i haven't been feeling lucky so i'd rather not take my chances. so i tried not to lose money in the first period and just left it as is."

Risk Aversion Affects Second-period Participation

	Enter in period 2 (=1)					
	Scenario A			Scenario B		
	(1)	(2)	(3)	(1)	(2)	(3)
risk aversion	-0.0279*	-0.0281*	-0.0465**	-0.0909**	-0.0825*	-0.0938*
	(0.0161)	(0.0164)	(0.0199)	(0.0437)	(0.0462)	(0.0503)
$Free_1 (= 0)$	0.044	0.044	0.140*	-0.026	-0.013	0.004
	(0.0620)	(0.0629)	(0.0707)	(0.124)	(0.134)	(0.146)
Upfront fee	-0.028	-0.003	-0.020	-0.243**	-0.203*	-0.232**
	(0.0215)	(0.0304)	(0.0227)	(0.107)	(0.109)	(0.111)
$Value_1$	0.046	,	0.029	0.0142*	` ′	0.008
	(0.0313)		(0.0342)	(0.00799)		(0.00955)
$Bid/Value_1$,	-0.025	,	,	-0.007	,
,		(0.0300)			(0.0185)	
Constant	1.068***	1.139***	0.968***	2.971***	2.756***	2.907***
	(0.272)	(0.271)	(0.304)	(0.651)	(0.678)	(0.728)
Controls	` /	, ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, ,	` /	` \ \

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 4: Regression of Participation Choice on Risk attitude.

Results

Result 3.

- ► Generally overbid.
- ▶ Buyers overbid less under Non-Clairvoyant mechanism when the distribution of their valuation has low variance.

Bid-Value Ratio Comparison

Bid/value	Non-Clairvoyant Dynamic	Repeated Static	(p-value) 1
F_A (Low variance)	$1.264 \ (0.04)$	1.379(0.04)	0.060*
F_B (High variance)	$1.194\ (0.05)$	$1.251 \ (0.04)$	0.392
(p-value)	0.116	0.008***	

Table 5: Bid-Value Ratio Comparison

Conclusions

- ▶ We find the experimental observations are consistent with theoretical predictions: the optimal Non-Clairvoyant dynamic mechanism outperforms the optimal Repeated Static mechanism when it is predicted to do so.
- ▶ Buyers' risk attitudes matter in the success of Non-Clairvoyant mechanism.
- ▶ Randomization in non-clairvoyant mechanism leads buyers to overbid less.

Discussion

How should sellers choose between mechanisms?

- ▶ In "good" scenario where second period distribution has higher expected value, Non-Clairvoyant dynamic mechanism produces more revenue.
- ▶ NC encourages more accurate valuation information.
- ▶ NC works better when buyers are not risk-averse.

Future work

- Experiments on multi-buyer with more than 2 periods.
- ► Can participants (human sellers) set up correct rules ?

Chapter 2

Can Sellers Discover the Optimal Dynamic Mechanism?

Motivation

Background

- ► Theoretically, NC cannot always outperform RS
- ▶ Under the **non-clairvoyant environment**, sellers **cannot** identify which is better without future distributional information

Research Question

▶ Under the **clairvoyant environment**, can sellers discover which is the optimal mechanism through learning by doing?

Hypotheses

Learning by doing

- 1. Sellers retake mechanism chosen in last round if they get more-than-average revenue.
- 2. Over time, sellers can correctly select the optimal mechanism more.

How do sellers choose mechanism?

- 1. More risk averse sellers would choose RS more.
- 2. More ambiguity averse sellers would choose NC more?
- 3. Sellers experiencing unpleasant real-life subscription fee will choose RS more.
- 4. Sellers feel NC more enjoyable will choose NC more.

Experimental Procedure

Settings

- ▶ 10 Rounds + 2 Practice Rounds, feedback on each round, each period
- Fixed role, re-match for each round
- ► Risk task and ambiguity task at last (random ordered)

Plan of Experiments

- 1. Power Analysis based on some behavioral assumptions
- 2. Test Fest, IRB by the end of October
- 3. Experiments by the end of November

Experimental Task in each Round

Period 1

- 1. Seller chooses mechanism, \mathbf{M} (=NC or RS), buyer is informed
- 2. Seller sets reserve price $\mathbf{r}^{\mathbf{M_1}}$ for Period 1, Buyer makes a bid $\mathbf{b_1}(\mathbf{v_1})$.
 - ▶ in RS: buyer pays r^{M_1} if $b_1 > r^{M_1}$
 - ▶ in NC: buyer has 50% chance to get free item

Experimental Task in each Round

Period 2

- 1. Seller sets reserve price r^{M_2} for Period 2 (for NC, u_2, r^{P_2} will be set by computer optimally)
- 2. Buyer chooses to pay the upfront fee u_2 or not Buyer makes a bid $b_2(v_2)$ in RS or in NC if entering in the market

Experimental Design (within-subject)

Two Mechanism

- ► Non-Clairvoyant Dynamic Mechanism (NC)
- ► Repeated Static Mechanism (RS)

Ten Scenarios (3 Groups)

- ▶ 4 Scenarios A: NC > RS
- \blacktriangleright 4 Scenarios B: NC < RS
- ▶ 4 Scenarios C: NC = RS (2 scenarios in practice session)
- ► Fixed shuffled order for all subjects

Scenarios A (NC > RS)

Inter-period revenue is more important

- ▶ \mathbb{E}_2 is greater than Rev^M in the second period
- ightharpoonup "target buyers" (high valuation but low probability) in Period 2

$$REV^{RS} = 4, \ REV^{NC} = 4.5 \ \uparrow 12.5\%$$

$$F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \quad \mathbb{E}_A = 6.$$

- 1. $F_1 = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \quad F_2 = F_A$
- 2. $F_1 = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{4})\}, \quad F_2 = F_A$
- 3. $F_1 = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{8})\}, \quad F_2 = F_A$
- 4. $F_1 = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \quad F_2 = F_A$

Scenarios B (NC < RS)

Intra-period revenue is more important

- ightharpoonup E₂ is not great enough while Rev^M can achieve at least half of \mathbb{E}_2
- e.g., Constant valuation, $v_2 = 0$ in Period 2.

$$REV^{RS} = 4, \ REV^{NC} = 3.5 \ \uparrow 12.5\%$$

$$F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2}), \}, \quad \mathbb{E}_B = 3.$$

1.
$$F_1 = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \quad F_2 = F_B$$

2.
$$F_1 = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{4})\}, \quad F_2 = F_B$$

3.
$$F_1 = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{8})\}, \quad F_2 = F_B$$

4.
$$F_1 = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \quad F_2 = F_B$$

Scenarios C (NC = RS)

Inter- is as important as Intra- revenue

- $ightharpoonup \Leftrightarrow Rev^P = Rev^{M_1} + Rev^{M_2}$
- e.g., Constant valuation, $v_1 = c_1 = 0$ in Period 1, $v_2 = c_2 \ge 0$ in Period 2.

$REV^{RS} = REV^{NC} = 4$

- 1. $F_1 = \{v, p(v)\} = \{(2, 1)\}, \quad F_2 = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{4})\}$
- 2. $F_1 = \{v, p(v)\} = \{(2, 1)\}, \quad F_2 = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{8})\}$
- 3. $F_1 = \{v, p(v)\} = \{(2, 1)\}, \quad F_2 = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}$

$$REV^{RS} = REV^{NC} = 6$$

4. $F_1 = \{v, p(v)\} = \{(4, 1)\}, \quad F_2 = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}$

Chapter 3

When can the Non-Clairvoyant dynamic mechanism generate more revenue than the Repeated Static mechanism?

Motivation

Background

- ► Theoretically, NC cannot always outperform RS.
- ► Characterizing scenarios where NC generates more revenue than RS can help sellers set up mechanism.

Research Question

▶ Under what (generate) condition can NC generate more revenue than RS?

Relative size of Intre- and Intra- Period Revenue

Scenarios A (NC > RS)

- $ightharpoonup E_2$ is greater than Rev^M in the second period
- ightharpoonup "target buyers" (high valuation but low probability) in Period 2

Scenarios B (NC < RS)

- ▶ \mathbb{E}_2 is not great enough while Rev^M can achieve at least half of \mathbb{E}_2
- ▶ e.g., Constant valuation, $v_2 = 0$ in Period 2

Scenarios C (NC = RS)

- $ightharpoonup \iff Rev^P = Rev^{M_1} + Rev^{M_2}$
- e.g., Constant valuation, $v_1 = c_1 = 0$ in Period 1, $v_2 = c_2 \ge 0$ in Period 2.

Specific Structure of Scenarios

Revenue Equivalent Distribution in both period

- ightharpoonup Restricted on $Rev^{M_1} = Rev^{M_2}$
- ▶ Comparision results depends on distribution in Period 2

Bernoulli Distribution in Period 2

 $ightharpoonup NC \leq RS$, as $Rev^{M_2} \geq \frac{1}{2} * \mathbb{E}_2$

Uniform Distribution

ightharpoonup NC < RS

.

Behavioral Assumptions

Behavioral models

- ▶ Buyers bid 80% on true value, bid 20% randomly among other options
- ▶ Buyers have a 15% chance of quit
- ▶ Sellers learn from past outcome, and have more chance of figuring out the intuition in later periods.

Risk attitude

▶ If NC > RS, then NC must violate single-period individual rationality in Period 2.

Thank you!

Reserve price (r_1, r_2) in Scenario A

$$\begin{array}{l} F_1=F_A=\{v,p(v)\}=\{(2,\frac{1}{2}),(4,\frac{1}{2})\},\ \mathbb{E}_1=3.\\ F_2=F_B=\{v,p(v)\}=\{(2,\frac{1}{2}),(4,\frac{1}{4}),(8,\frac{1}{8}),(16,\frac{1}{16}),(32,\frac{1}{16})\},\ \mathbb{E}_2=6. \end{array}$$

Period 1

▶ Myserson's Auction: $r_1 = 2$

Period 2

- ▶ If luck = 1, Myserson's Auction: $r_2 = 2$
- ▶ If luck = 0, Posted Price Auction: r_2 satisfies

$$E_{v_2}[(v_2 - r_2)^+] = min(b_1, E(v_2)) = upfront \ fee.$$

Piece-wise function: $r_2^P = 0$ if $b_1 \ge 6$, $r_2^P = 2$ if $b_1 = 4$, $r_2^P = 8$ if $b_1 = 2$, and $r_2^P = 32$ if $b_1 = 0$.

Reserve price (r_1, r_2) in Scenario B

$$F_1 = F_B = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{4}), (8, \frac{1}{8}), (16, \frac{1}{16}), (32, \frac{1}{16})\}, \ \mathbb{E}_1 = 6.$$

$$F_2 = F_A = \{v, p(v)\} = \{(2, \frac{1}{2}), (4, \frac{1}{2})\}, \ \mathbb{E}_2 = 3.$$

Period 1

▶ Myserson's Auction: $r_1 = 2$

Period 2

- ▶ If luck = 1, Myserson's Auction: $r_2 = 2$
- ▶ If luck = 0, Posted Price Auction: r_2 satisfies

$$E_{v_2}[(v_2 - r_2)^+] = min(b_1, E(v_2)) = upfront \ fee.$$

Piece-wise function: $r_2^P = 0$ if $b_1 \ge 3$, $r_2^P = 1$ if $b_1 = 2$ and $r_2^P = 4$ if $b_1 = 0$.

Experimental Revenue Decomposition in Scenario A

Revenue in S_A	Non-clairvoyant Dynamic			Repeated Static		
	Theory		Experiment	Theory		Experiment
Period 1	Give it for free	0	0	Myerson's	2	1.94(0.04)
	Myerson's auction	2	1.94(0.06)			
Period 2	Post Price Auction	5	4.84(0.47)	Myerson's	2	1.91(0.05)
	Myerson's auction	2	1.94(0.06)			
Total	•	5	4.35 (0.32)		4	3.84 (0.07)

Table 6: Revenue decomposition in S_A

Experimental Revenue Decomposition in Scenario B

Revenue in S_B	Non-clairvoyant Dynamic			Repeated Static		
	Theory		Experiment	Theory		Experiment
Period 1	Give it for free	0	0	Myerson's	2	1.91(0.05)
	Myerson's auction	2	1.93(0.06)			
Period 2	Post Price Auction	3	2.25(0.21)	Myerson's	2	1.97(0.03)
	Myerson's auction	2	1.75(0.12)		_	1.01 (0.00)
Total		3.5	2.91 (0.18)		4	3.88 (0.06)

Table 7: Revenue decomposition in S_B