

R語言與Revolution R 對照表

Summary of rx Functions

https://msdn.microsoft.com/en-us/library/mt652103.aspx

rx function	Description	Nearest base R function
rxImport	Creates an .XDF file or data frame from a data source such as a text file, data file, ODBC or Teradata connection, or data frame)	
rxXdfToText	Creates a text file from an .XDF file	
rxGetInfo	Retrieves header information from an .XDF file or summary information from a data frame	str() names() colNames()
rxSetInfo	Sets a file description in an .XDF file or a description attribute in a data frame	
rxGetVarInfo	Retrieves variable information from an .XDF file or data frame	names()

dplyrXdf

敘述性統計分析

- 多數資料分析,80% 在於如何加總與平均
 - □銷售份額
 - □客戶數量
 - □業績成長量
- ■用SQL做敘述性統計
 - □select * from tb1 where col1 >= 100 limit 3
- ■R有類似的工具嗎?
 - **□**plyr
 - □reshape2
 - dplyr

如何操作資料

- 關於操作資料,你需要
 - □可以分割資料(Split)
 - □可以轉換資料(Transformation)
 - □可以聚合資料(Aggregation)
 - □可以探索資料(Exploration)
- ■需要如同SQL的語法操作

dplyr

https://github.com/hadley/dplyr

使用 dplyr

- 讓 R 可以像SQL一樣可以使用結構化語句快速聚合、分析資料
- 可以使用Magrittr 套件的管道 (Pipeline) 傳遞資料

%>%
magrittr

Ceci n'est pas un pipe.

Hadley Wickham http://hadley.nz/

為什麼要使用dplyr

- ■提供操作資料的基本語法
 - ☐ filter, select, arrange, mutate, summarise, group_by
- ■提供資料合併功能(JOIN)
 - □Inner join, left join
- ■可以操作資料表(data table) 或資料庫 (Database) 的資料

安裝與使用dplyr

- ■安裝dplyr
 - □install.packages("dplyr")
- ■使用dplyr
 - □ library(dplyr)
- ■觀看說明頁
 - □help(package='dplyr')

聚合房價資料

■讀取資料集

lvr_df <- read.csv('lvr_prices.csv')</pre>

■聚合資料

```
total_means_by_area <- lvr_df %>%
filter(trading_target == '房地(土地+建物)') %>%
group_by(area) %>%
summarise_each(funs(mean),total_price)
```

dplyrXdf

https://github.com/RevolutionAnalytics/dplyrXdf

透過GitHub 安裝

■ 安裝devtools install.packages('devtools')

■ 從GitHub 安裝dplyrXdf

devtools::install_github('RevolutionAnalytics/dplyrXdf')

但是devtools安裝會有點久

自行包裝

■ 找到ZIP 檔連結

- ■執行Shell
 - ■Tools -> Shell

- ■使用wget下載
 - wget https://github.com/RevolutionAnalytics/dplyrXdf/archive/master.zip

解壓縮以後包裝成tar.gz 檔

- ■解壓縮zip 檔
 - □unzip master.zip
- 重新包裝dplyrXdf 成tar.gz 檔
 - □tar -zcvf dplyrXdf.tar.gz dplyrXdf-master
- ■安裝dplyrXdf

Install from:	
Package Archive File	(.tar.gz)
Package archive:	
~/dplyrXdf.tar.gz	Browse
Install to Library:	
/home/largitdata/R/x8	86_64-pc-linux-gnu-library/3.2 [Default]

計算與檢視資料

■讀取資料

```
lvr_data = RxXdfData('lvr.xdf')
```

■ 計算平均總價

```
total_means_by_area <- lvr_data %>%
filter(trading_target == '房地(土地+建物)') %>%
group_by(area) %>%
summarise_each(funs(mean),total_price)
```

■ 檢視資料

```
head(total_means_by_area )
class(total_means_by_area )
```

rxMerge

RxMerge 做資料合併

```
indData <- data.frame(id = 1:12, state = rep(c("CA","OR", "WA"), times = 4))
stateData <- data.frame(state=c("CA","OR", "WA"), stateVal = c(1000, 400,
500))
rxDataStep(inData = indData, outFile = 'data1.xdf', overwrite=TRUE)
rxDataStep(inData = stateData, outFile = 'data2.xdf', overwrite=TRUE)
mergedf<-rxMerge(inData1 = 'data1.xdf', inData2 = 'data2.xdf', outFile =
'merge.xdf',matchVars = "state")
df <- rxDataStep(mergedf)</pre>
```

transformFunc

rxSummary

```
## Compute the summary statistics
(csSummary <- rxSummary(~ creditScore, data = mortData))
## Extract the mean and std. deviation
meanCS <- csSummary$sDataFrame$Mean[1]
sdCS <- csSummary$sDataFrame$StdDev[1]
## Create a function to compute the scaled variable
scaleCS <- function(mylist){</pre>
 mylist[["scaledCreditScore"]] <- (mylist[["creditScore"]] - myCenter) / myScale</pre>
 return(mylist)
```

transformFunc

```
## Run it with rxDataStep
myMortData <- "myMD.xdf"</pre>
rxDataStep(inData = mortData, outFile = myMortData,
      transformFunc = scaleCS,
      transformObjects = list(myCenter = meanCS, myScale = sdCS)
## Check the new variable:
rxGetVarInfo(myMortData)
rxSummary( ~ scaledCreditScore, data = myMortData)
```

THANK YOU