TOSHIBA TA75072P/S/F

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA75072P, TA75072S, TA75072F

DUAL OPERTIONAL AMPLIFIER

The TA75072P, TA75072S and TA75072F are J-FET input low-noise operational amplifiers with low input bias and offset current, fast slew rate and wide bandwidth.

The TA75072P is pin compatible with the TA75458P and 1458. The TA75072S is single-in-line package.

It is possible to exchange the position of 9 pin for 1 pin because of pin connection being symmetric.

The TA75072F is mini-flat package.

The TA75072P series are excellent choice for active filters, integrators, buffers and sample-and-hold circuits.

FEATURES

Low Input Bias Current : 200pA MAX. Low Input Offset Current : 50pA MAX. **High Slew Rate** $13V/\mu s$

18nV / √Hz Low Noise

Wide Bandwidth 3MHz

Wide Supply Voltage Range : $\pm 4 \sim \pm 18V$

Internal Frequency Compensation

Output Short Circuit Protection

Weight

DIP8-P-300-2.54A : 0.5g (Typ.) SIP9-P-2.54A : 0.9g (Typ.) SOP8-P-225-1.27 : 0.1g (Typ.)

The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice. TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor

PIN CONNECTION (TOP VIEW)

TA75072P, TA75072F

TA75072S

EQUIVALENT CIRCUIT

MAXIMUM RATINGS (Ta = 25°C)

. ,								
CHARACTE	RISTIC	SYMBOL	RATING	UNIT				
Supply Voltage		Vcc	+ 18	V				
		VEE	EE – 18					
Differential Input	Voltage	DVIN	± 30	V				
Input Voltage		V _{IN}	± 15	V				
Power Dissipation	TA75072P		500	mW				
	TA75072S	P_{D}	500					
	TA75072F		240					
Operating Temper	ature	T _{opr}	- 40∼85	°C				
Storage Temperati	ıre	T _{stg}	- 55∼125	°C				

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15V$, $V_{EE} = -15V$, Ta = 25°C)

TELETIMENE CITATION (VCC = 13V, VEE = 13V, 14 = 23 C)									
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT		
Input Offset Voltage	V _{IO}	_	$R_g \le 10k\Omega$	_	3	10	mV		
TC Of Input Offset Voltage	TCV _{IO}	_	_	_	10		μ V / °C		
Input Offset Current	lo	_	_	_	5	50	pА		
Input Bias Current	Ц	_	_	_	30	200	pА		
Common Mode Input Voltage	CMV _{IN}	_	_	± 11	± 12	_	V		
Maximum Output	Vом	$-$ R _L = 10k Ω		24	_	_			
Voltage	Vomr	_	$R_L = 2k\Omega$	20	24	_	V _{p-p}		
Voltage Gain (Open Loop)	GV	_	$V_{OUT} = \pm 10V, R_L = 2k\Omega$	25	200	_	V/mV		
Unity Gain Cross Frequency	fT	_	Open Loop, $R_L = 10k\Omega$	_	3	_	MHz		
Input Resistance	R _{IN}	_	_	_	10 ¹²	_	Ω		
Common Mode Input Signal Rejection Ratio	CMRR	_	$R_g \le 10k\Omega$	70	76		dB		
Supply Voltage Rejection Ratio	SVRR	_	$R_g \le 10k\Omega$	70	76	_	dB		
Supply Current	ICC, IEE	_	Non load	_	2.8	5.0	mA		
Cross Talk			_	_	- 120	_	dB		

OPERATING CHARACTERISTICS ($V_{CC} = 15V$, $V_{EE} = -15V$, Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Slew Rate	SR	_	$V_{IN} = 10V_{p-1}$ $C_L = 100pF$	$_{p}$, $R_{L} = 2k\Omega$		13		V/μs
Equivalent Input Noise	\/ ₂		D 1000	f = 1kHz	_	18	_	nV/\sqrt{Hz}
Voltage	V _{NI}	_	$R_S = 100\Omega$	f = 10Hz~10kHz	_	4	_	μ V $_{rms}$
Equivalent Input Noise Current	^I NI	_	$R_S = 100\Omega$, $f = 1kHz$		_	0.01	_	pA /√Hz
Total Harmonic Distortion	THD	_	$V_{OUT} = 10V_{rms}, R_S \le 1k\Omega$ $R_L \ge 2k\Omega, f = 1kHz$			0.01	_	%

CHARACTERISTICS

OUTLINE DRAWING DIP8-P-300-2.54A Unit: mm 6.4±0.2 7.62 10.1 MAX 9.6±0.2 0.85±0.1 3.95±0. 0.30MIN 3.5±0. 3.5±0.3 0.5±0.1 0.25 M 0.99TYP 2.54 1.2±0.1

Weight: 0.5g (Typ.)

OUTLINE DRAWING SIP9-P-2.54A

Unit: mm

Weight: 0.9g (Typ.)

OUTLINE DRAWING SOP8-P-225-1.27 Unit : mm 0.595TYP 1.27 5.5MAX 5.0±0.2 7.0+1.0 1.27 0.525±0.2

Weight: 0.1g (Typ.)