RNNs für Zeitreihenvorhersagen

Antonio Rosolia

ZHAW

November 27, 2020

Overview

- Zeitreihenvorhersagen
 - Idee
 - Modelle
- 2 Einschub Neuronale Netzwerke
- 3 RNNs
 - Warum RNNs
 - Intuition RNN
- 4 LSTM
 - Intuition LSTM
 - Implementation LSTM
- Vor- und Nachteile
- 6 Ausblick

Zeitreihenvorhersagen

- Informationen aus Zeitreihen extrahieren und nächsten Wert abschätzen
- Typischerweise Periodizität und Trends
- Überall anzutreffen:
 - Business: Web Traffic, Supply Chain, Buchungssysteme, ...
 - Finanzwesen: Econometrics, Exchange, Aktien, ...
 - Wissenschaft: Wettervorhersage, Erdbebenerkennung, ...
 - Engineering: Sensorik, Predictive Maintenance, ...
 - Medizin: Diagnosen, Monitoring, ...

Modelle

Figure: Überblick über Bekannte Modelle

Bild von: https://medium.com/@fenjiro/time-series-for-business-a-general-introduction-50968346e660 [aufgerufen 3O Oktober 2020].

4日 → 4 部 → 4 差 → 4 差 → 第一のQ

Einschub Neuronale Netzwerke - Überblick

Nachfolgende Bilder von: https://towardsdatascience.com/understanding-neural-networks-19020b758230 [aufgerufen 04 November 2020].

Antonio Rosolia (ZHAW) 8/18/5/16/26/10/phanophasasaan November 27, 2020 5/33

Einschub Neuronale Netzwerke - Input Layer

Einschub Neuronale Netzwerke - Forward Propagation

$$Z1 = W1*In1 + W2*In2 + W3*In3 + W4*In4 + W5*In5 + BiasNeuron1$$

Neuron1Activation = Sigmoid(Z1)

Einschub Neuronale Netzwerke - Kostenfunktion

- MSE $MSE = Sum[(Prediction Actual)^2] * (1/numObservations)$
- $J(\theta) = \frac{1}{N} \sum_{i=0}^{N} (y_i \hat{y}_i)^2$; $\theta = (W, b)$
- Minimierung der Kostenfunktion J mittels Gradient Descent und Backpropagation

Einschub Neuronale Netzwerke - Backward Propagation

$$\mathbf{W}^{[l]} \leftarrow \mathbf{W}^{[l]} - \alpha \frac{\partial J}{\partial \mathbf{W}^{[l]}}$$
$$\mathbf{b}^{[l]} \leftarrow \mathbf{b}^{[l]} - \alpha \frac{\partial J}{\partial \mathbf{w}^{[l]}}$$

Warum RNNs

- Artificial Neural Network kann sich nicht erinnern was es lernt
 - jede Iteration startet es neu
- RNNs haben Memory
 - Kontext aus Sequenzen
 - Ideal um patterns und Korrelationen zu finden

Viele Anwendungsbereiche

- Speech Recognition
- Sentiment Classification
- Machine Translation
- Captioning, subtitling

Figure: Captionbot @Microsoft

Viele Anwendungsbereiche

- Chatbots
 - Google Duplex (Blogeintrag zum Friseurtermin)
- Text und Musik Generator
 - DeepJazz
- Vorhersagen für Zeitreihen

• Vorheriger Zustand wird wieder gebraucht, Informationen werden weitergegeben

Nachfolgende Bilder von: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ [aufgerufen 4 Oktober 2020].

$$h_t = g(W_x * x_t + W_h * h_{t-1} + b_h)$$

- W sind die Weight Matrix
 - W_h : wheight x wheight
 - W_x : wheight x Anzahl Features
 - b_h : wheight $\times 1$
- g ist nichtlineare Aktivierungsfunktion (tanh)

• Parameter W_x , W_h und b_h für alle Zellen gleich!

Simple RNN - Problem of Long-Term Dependencies

- Einfache RNNs funktionieren gut für kürzliche Vergangenheit
- Theoretisch möglich auch grösseren Kontext
- Praktisch problematisch bei grösserem Kontext
 - Problem entdeckt von Hochreiter (1991) und Bengio, et. al (1994)
 - Vanishing Gradient und Exploding Gradient
- Um Problem zu umgehen LSTM enworfen von Hochreiter und Schmidhuber (1997)

LSTM

- Sehr populär
- Spezifisch designt f
 ür Long-Term dependency Problem
- Gleiche Verkettung wie bei simplen RNNs
- Komplexere Architektur als simple RNNs

Nachfolgende Bilder von: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ [aufgerufen 4 Oktober 2020].

LSTM Architektur - Forget Mechanism

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM Architektur - Save Mechanism

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

LSTM Architektur - Update Mechanism

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM Architektur - Output Mechanism

$$o_{t} = \sigma (W_{o} [h_{t-1}, x_{t}] + b_{o})$$
$$h_{t} = o_{t} * \tanh (C_{t})$$

Implementation

- Python, R, Java
- Python, Keras mit Tensorflow backend
 - Python 3.7.6
 - Tensorflow 2.3.0
 - Keras 2.4.3

Implementation - num_units

```
import ...
# define model
model = Sequential()
model.add(LSTM(units = 50, input_shape=(3, 1)))
...
```

Implementation - num_units

Nachfolgende Bilder von: https://jasdeep06.github.io/posts/Understanding-LSTM-in-Tensorflow-MNIST/ [aufgerufen 4

26 / 33

Implementation - Loss und Optimizer

- MSE = $\frac{1}{N} \sum_{i=0}^{N} (y_i \hat{y}_i)^2$
- Adam
 - De facto Standard
 - Adaptive Learning Rate
 - Momentun um lokaler Minimas zu entfliehen

Implementation

LSTM Vor- und Nachteile

- Vorteile
 - Kontext
 - Kaum Feature Engineering
 - Anwendbar auf verschiedene Probleme
- Nachteile
 - Tendenziell viele Parameter
 - Lange Trainingszeit
 - Tendiert zun Overfitten
 - Erklärbarkeit
 - kein Konfidenzintervall

Ausblick

- GRU
- Attention
- CNN LSTM (ConvLSTM)
- xAI

Referenzen

T. Yiu

Understanding Neural Networks

https://towards data science.com/understanding-neural-networks-19020b758230 Aufgerufen am 04.11.2020

H. Lohninger

Zeitreihen - Vorhersage

 $\textit{http://www.statistics4u.info/fundstat}_{g} \textit{erm/cc}_{t} \textit{imeser}_{f} \textit{orecast.htmlAufgerufenam} 04.11$

Y. Fenjiro

Time Series for Business: A general introduction

https://medium.com/@fenjiro/time-series-for-business-a-general-introduction-50968346e660 Aufgerufen am 04.11.2020

References

C. Olah (colah)

Understanding LSTM Networks - colah's blog (August 2015)

 $\label{local-decomposition} $$http://colah.github.io/posts/2015-08-Understanding-LSTMs/$$ Aufgerufen am 04.11.2020$

jasdeep06

Understanding LSTM in Tensorflow

 $https://jasdeep06.github.io/posts/Understanding-LSTM-in-Tensorflow-MNIST/\\ Aufgerufen am 04.11.2020$

J. Hennebert, M. Melchior

MSE TSM Deep Learning (HS 2019)

Vorlesung 12: Recurrent Neural Networks

www.github.com/AntonioRosolia/Methodenseminar

Fragen