

DM-Spring-2020-Q3-Grade

46.15% (6/13)

- Logistic Regression Model is used to describe
 - A Relationship between one categorical dependent variable and one or more (any) explanatory variables
 - B Relationship between one numeric dependent variable and one or more (any) explanatory variables
 - C Relationship between one categorical dependent variable and one explanatory variable
 - D Relationship between one categorical dependent variable and one or more numeric explanatory variables
 - E I do not know
- ✓ 2. Why Linear Regression cannot be used to predict the binary response variable?
 - A Some of the estimates might be outside the [0,1] interval
 - **B** Coefficients of linear regression models do not exist
 - c There will be the multicollinearity
 - D All of the variants
 - E I do not know
- **3.** The most common approach to estimate coefficients of logistic regression is
 - A The Maximum Likelihood
 - **B** Ordinary Least Squares
 - c Generalized Method of Moments
 - D I do not know
- 4. The model of Logistic Regression is
 - A $\ln(\lambda) = e^{(xb)}/(1+e^{(xb)})$
 - **B** $\ln(y) = e^{(xb)}/(1+e^{(xb)})$
 - Pr(y=1)=e^(xb)/(1+e^(xb))
 - **D** I do not know

	В	glm()					
	C	flm()					
	D	logit()					
	E	I do not know					
X	6.	Which one of these is the correct interpretation of the coefficient of Logistic Regression?					
	A	For a 1-unit increase in X, we expect a b1 unit increase in Y.					
	В	For a 1-unit increase in X, we expect b1 percentage increase in Y.					
	C	For a 1-percentage increase in X, we expect b1 percentage increase in Y.					
	D	Increasing X by one unit changes the log odds by b1					
	E	I do not know					
X	7.	Logistic Regression cannot be used to model the response variable which					
	Α	has two categories					
	В	has more than two categories					
	C	is ordinal					
	D	is numeric					
	E	I do not know					
/	8.	Accuracy =					
	A	(TP+TN)/Total Negative (0) Positive (1) Negative (0) TN FP					
	В	TP/(TP+FN) Actual Positive (1) FN TP					
	C	TN/(TN+FP)					

5. We can estimate Logistic Regression in R using the function

A lm()

D I do not know

A (TP+TN)/Total

B TP/(TP+FN)

c TN/(TN+FP)

D I do not know

9. Sensitivity =

		Predicted	
		Negative (0)	Positive (1)
	Negative (0)	TN	FP
Actual	Positive (1)	FN	TP

X 10. Your lecturer decided that you are cheating while you are not. It is