## Künstliche Intelligenz WS 20/21 4. ÜBUNGSBLATT

Abgabe bis: 18. Januar 2021



Aufgabe 4.3 (1,5 Punkte)

Laden Sie sich das Jupyter-Notebook zu diesem Übungsblatt herunter und fügen Sie Ihre Featureberechnungen (siehe Aufgaben der 8. Woche) an der entsprechenden Stelle ein. Vervollständigen Sie die Methoden normalize\_data() und classify(train\_data, test\_data, cls\_name) so, wie im Notebook beschrieben.

Aufgabe 4.4 (1 Punkt)

Ein binärer Klassifizierer  $K_1$  liefert auf den Validierungsdaten die nachfolgende Confusion Matrix.

|           |          | Ground Truth |          |
|-----------|----------|--------------|----------|
|           |          | Klasse A     | Klasse B |
| Predicted | Klasse A | 100          | 8        |
|           | Klasse B | 2            | 5        |

Beantworten Sie die folgenden Fragen:

- (a) Wie viele Daten gehören zur Klasse A und wie viele zur Klasse B?
- (b) Berechnen Sie Precision, Recall, Accuracy und den  $F_1$ -Score
- (c) Ist eine dieser Messungen ausreichend um die Qualität des Klassifizierers zu beschreiben? Wenn ja, welche Messung beschreibt die Qualität des Klassifizierers am besten. Falls nicht was ist das Problem?
- (d) Angenommen wir haben einen zweiten Klassifizierer  $K_2$  der über eine Gleichverteilung zufällig entscheidet ob ein Sample zur Klasse A oder B gehört. Welche Accuracy hat  $K_2$ ?
- (e) Welcher Klassifizierer ist für die korrekte Klassifizierung von Samples aus der Klasse B besser,  $K_1$  oder  $K_2$ ?
- (f) Was würden Sie empfehlen, um  $K_1$  zu verbessern?

Falls Ihnen nicht alle Messungen bekannt sein sollten, dann sehen Sie hier nach<sup>3</sup>.

<sup>3</sup>https://en.wikipedia.org/wiki/Confusion\_matrix

Aufgabe 4.5 (1,5 Punkte)

Erklären Sie die folgenden Klassifizierer in Ihren eigenen Worten (je ca 5-10 Sätze) mit Abbildungen und ggf. Berechnungsformeln:

- (a) k-Nearest Neighbor
- (b) Decision Tree
- (c) Support Vector Machine (SVM)
- (d) Multilayer Perceptron (MLP)