Entscheidbare Probleme

• Gegeben CFG $\langle G \rangle$, ist L(G) leer / endlich / $w \in L(G)$ für ein festes $w \in \Sigma^*$.

Unentscheidbare Probleme

Komplemente werden im folgenden weggelassen, da offensichtlich auch unentschiedbar.

- Diagonalsprache $D := \{w \in \{0,1\}^* \mid w = w_i \text{ und } M_i \text{ akzeptiert } w \text{ nicht}\}$
- Halteproblem $H := \{ \langle M \rangle w \mid M \text{ hält auf } w \}.$
- ε -Halteproblem $H_{\varepsilon} := \{ \langle M \rangle \mid M \text{ hält auf } \varepsilon \}.$
- Totales Halteproblem $H_{tot} := \{ \langle M \rangle \mid M \text{ hält auf allen Eingaben} \}.$
- PCP, MPCP und PCP mit 5 oder mehr als 7 Dominos
- Besitzt eine elementare Funktion eine elementare Stammfunktion? (Satz von Richardson)
- Dioph := $\{\langle p \rangle \mid p \text{ Polynom ""uber } \mathbb{Z} \text{ mit Nullstelle in } \mathbb{Z}\}$
- Gegeben $\langle M \rangle$, ist $L(M) = \Sigma^*$ / leer / (un)endlich / regulär / kontext-frei?
- Gegeben CFG $\langle G \rangle$, ist G eindeutig / $L(G) = \Sigma^* / L(G)$ regulär?
- Gegeben CFGs $\langle G_1 \rangle$, $\langle G_2 \rangle$, ist $L(G_1) \subseteq L(G_2) / L(G_1) \cap L(G_2) = \emptyset$?

Rekursiv-aufzählbare Probleme

- *H* (Halteproblem)
- H_{ε} (ε -Halteproblem)
- \overline{D} (Komplement der Diagonalsprache)
- PCP und MPCP
- Dioph

Nicht rekursiv-aufzählbare Probleme

- \bullet \overline{H} (Komplement des Halteproblems)
- $\overline{H_{\varepsilon}}$ (Komplement des $\varepsilon\textsc{-Halteproblems})$
- \bullet D (Diagonalsprache)
- \bullet $~\overline{\rm PCP}$ und $\overline{\rm MPCP}$
- \bullet $\overline{\mathrm{Dioph}}$