

Q3 and Q4 are matched and their currents must be half of the current in Q5.

$$\frac{I_{SD5}}{I_{SD4}} \approx \frac{W_5/L_5}{W_4/L_9} \Rightarrow I_{SD5} = 10 I_{SD9} = 10 I_{DS8} \Rightarrow I_{DS3} = 5 I_{DS8}$$

$$\frac{I_{DS3}}{I_{D58}} = \frac{W_3/L_3}{W_8/L_8} = 5 \Rightarrow \frac{W_3}{L_3} = \frac{W_4}{L_4} = 50$$

*Q8 and Qq are operating in saturation:

$$I_{DS}8 = \frac{1}{2} \text{pn } Cox \frac{W8}{L8} \left(\text{UGS}8 - \text{UH} \right)^2 \left[1 + \lambda \text{UH} \right]$$

$$I_{SD}q = \frac{1}{2} \text{pp } Cox \frac{Wq}{Lq} \left(\text{UsG } q - \text{UH} \right)^2 \left[1 + \lambda \text{ UH} \right]$$

$$I_{SD}q = I_{DS}8$$

$$VAA = V_{SG}q + Rb. I_{DS}8 + V_{GS}8$$

$$\Rightarrow$$
 50/m×25×(V569-0.3)² = 125/m×10×(UGS8-0.3)²

$$\Rightarrow$$
 $\sqrt{569}-0.3 = \pm (\sqrt{658}-0.3)$

$$\Rightarrow \begin{cases} \sqrt{s69} = \sqrt{658} \\ \sqrt{s69} = -\sqrt{658} + 0.6 \text{ (not acceptable)} \end{cases}$$

$$\Rightarrow$$
 1.5 = 2.4 GS8 + 62.5 × 10 × (4658-0.3) × 1.003

$$\Rightarrow$$
 .627($V_{658} - 0.6V_{658} + 0.09$)+ 2 $V_{658} - 1.5 = 0$

$$\Rightarrow$$
 $\sqrt{658} + 2.59 \sqrt{659} - 2.3 = \emptyset \Rightarrow \sqrt{658} = 0.7 \sqrt{9}$

Vdd	1.5 _V		
C_{c}	1 _P F		
CL	100fF		
Cgs	0.2 <u>~</u> fF		
Cgd	Ø.1 <u>₩</u> fF		
Cdb	0.05 <u>w</u> fF		
Csb	0.1 × fF		
Rb	1K.v.		
λ	0.01 5		
MnCox	125 p 1/2		
Mp Co×	50 m ty2		
Vth	0.3 v		
W ₁ /L ₁	300		
W2/L2	300		
W5/L5	250		
W6/L6	300		
W7/L7	125		
W8/L8	1Ø		
Wq/Lq	25		

Ibias
$$\approx I_{SDQ} \cdot \frac{Ws}{Wq} = 100 \text{px} \cdot \frac{250}{25} = 1 \text{mA}$$

* D7 and Q9 are also current mirrors.

$$I_{SD7} = I_{SD9} \frac{\sqrt{7}}{\sqrt{9}} = 100 \mu \times \frac{125}{25} = 0.5 \text{ mA}$$

$$\begin{cases} rds = \frac{1}{\lambda I_{DS}} \\ gm = \mu n Cox \frac{w}{L} (v_{GS} - v_{H}) = \frac{2I_{DS}}{v_{GS} - v_{H}} = \sqrt{2I_{DS} \mu Cox \frac{w}{L}} \\ v_{eff} = \frac{2I_{DS}}{gm} \end{cases}$$

	Q_1, Q_2	Q3,Q4	Q ₅	Qe	Q ₇
I_{DS}	0.5mA	0.5mA	1mA	0.5 _{mA}	0.5m4
g m	3.87m	2.5 mA/s	5m4/5	6.12 m As	2.5 mt/s
rds	200 kn	200kr	100kn	200kr	200ks
Veff	0-258 _V	0.4 _v	0.40	0.163 v	0.4 _v

