Listas

Definición matemática

- [] es una lista
- x:xs es una lista, donde x es un elemento cualquiera y xs una lista.

Para facilitar la notación, se puede usar la siguiente representación:

$$x_1:(x_2:(x_3:(\ldots x_n:[\])))=[x_1,x_2,x_3,\ \ldots,x_n]$$

TDA - Listas

Una secuencia finita y "ordenada" de elementos.

Se usa la palabra "ordenada" en el contexto de que a cada elemento le corresponde una posición en la lista.

Las operaciones que debe soportar son:

- Agregar elementos
- Buscar elementos
- Eliminar elementos
- Obtener el primer elemento
- Indicar si está vacía
- Dado un elemento, saber cuál es el siguiente en la lista

Ejemplo de Aplicación

Tenemos una lista de n estudiantes, cada uno con una calificación entera entre 0 y 10. Queremos ordenar a los alumnos por calificación.

Podemos crear un algoritmo que use arreglos y listas para la solución:

- 1. Recibimos la lista de estudiantes.
- Creamos un arreglo con 11 entradas, donde cada arr[i] es una lista y va a contener a los estudiantes con calificación i.
- 3. Recorremos la lista de estudiantes, y según su calificación, lo guardamos en la entrada correspondiente del arreglo.
- 4. Recorremos el arreglo en orden y concatenamos las listas.

Ejemplo de Aplicación

Generalicemos este algoritmo.

- Recibimos n elementos. Cada elemento x_i posee una propiedad entera x_i.v donde a ≤ x_i.v ≤ b, siendo a y b enteros.
- 2. Creamos un arreglo con (b-a) + 1 entradas, donde cada arr[j] es una lista.
- Recorremos la lista de elementos, y en arr[x_i.v a] agregamos a x_i
- 4. Recorremos el arreglo en orden y concatenamos las listas.

Este algoritmo es una variación de Counting-sort y Bin-sort

Calcular la complejidad en tiempo y espacio de este algoritmo se deja como ejercicio al lector

Pregunta

¿Se puede implementar una Lista utilizando arreglos?

Listas ligadas

Una implementación de listas que requiere de nodos para guardar los elementos de esta. Necesita de lo siguiente:

- Una referencia al primer nodo
- Cada nodo guarda un único elemento de la lista
- Cada nodo guarda una referencia al siguiente nodo

Listas doblemente ligadas

Otra implementación con nodos que necesita de lo siguiente:

- Una referencia al primer nodo
- Cada nodo guarda un único elemento de la lista
- Cada nodo guarda una referencia al siguiente nodo y al anterior

Ligadas VS Doblemente ligadas

Ligadas:

•

Doblemente ligadas:

Ligadas VS Doblemente ligadas

Ligadas:

- Ocupan menos espacio.
- La navegación solo es en un sentido.

Doblemente ligadas:

- Agregar al inicio, al final y eliminar del inicio técnicamente son un poco menos eficientes.
- Eliminar del final es más eficiente que en una lista ligada.

