$$\chi[k]_{N} = \begin{cases} \chi\left(e^{\frac{12\pi k}{N}}\right); & 0 \le k \le N \\ 0 & \text{if otherwise} \end{cases}$$

a)
$$\tilde{X}(e^{j\omega}) = \sum_{n=0}^{3} e^{-j\omega n} = e^{-j\frac{3\omega}{2}} \frac{\sin(2\omega)}{\sin(\omega/2)}$$

$$|X(e)| = \frac{3 \ln (2 u)}{\sin (u/2)}$$

b)
$$W_{k} = \frac{2\pi ck}{4} = \frac{k\pi}{2} \text{ for } k = 0, 1, 2, 3$$
 c) $W_{k} = \frac{2\pi ck}{8} = \frac{k\pi}{4}$
 $\Rightarrow X[k]_{4} = 0 \text{ for } k = 1, 2, 3$

c)
$$\omega_k = \frac{2\pi k}{8} = \frac{k\pi}{4}$$

 $\sin(2\omega_k) = 0$

d)
$$\overline{Y}(e^{j\omega}) = \overline{X}(e^{j(\omega \cdot \pi)})$$

Law = the

Problem 2

a)
$$Q[k_0]_{256} = Q(e^{-j\pi/2})$$

ler
$$W_{ko} = -\frac{\pi}{2}$$
, $\frac{2\pi k_0}{256} = -\frac{\pi}{2}$ $\Rightarrow k_0 = -\frac{\pi}{2} \cdot \frac{256}{2\pi} = \frac{\pi}{2}$

رادہ

a) P(e") sampling every
$$\frac{2\pi}{N}$$
 Then $\frac{2\pi}{N} = \frac{N}{N}$

b)
$$r[n] = q[n] \cdot (u[n] - u[n-N]) = \sum_{n=0}^{\infty} p[n-mN] \cdot (u[n] - u[n-N])$$

for
$$n \in [0, N-1]$$
, $\underset{m=-\infty}{\overset{\sim}{\sum}} p[n-mN] \neq 0$ for $m=0$ where $\underset{m=-\infty}{\overset{\sim}{\sum}} p[n]$ $m\neq 0$, $p[n-mN]$ out of $[0,N-1]$ $[n]=p[n]-(u[n]-u[n-N])=p[n]$

c) sampling every
$$\frac{2\pi}{N-1}$$
, The $N = \frac{2\pi}{(2\pi/N-1)} = \frac{N-1}{n}$

d)
$$v[0] = q[0] = \sum_{m=-\infty}^{\infty} p[0-m(N-1)] = p[0] + p[N-1]$$

$$\Rightarrow m=0: p[0-0] \Rightarrow p[0]$$

$$m=1: p[0-(N-1)] \Rightarrow p[-N+1]$$

$$m=-1: p[0-(-1)(N-1)] = p[N-1]$$

e) Sampling every
$$\frac{2\pi}{N-2}$$
, Thew = $N-2$

$$n=0$$
 $m=0$: $p[0]$
 $m=0$: $p[1]$
 $m=-1$: $p[N-2]$
 $m=-(p[1]+p[N-1])$