Feature Engineering - 2

Feature Optimization

- Normalization
- Interaction between Features
- Binning
- Adaptive Binning
- Thresholding
- Scaling
- Log Transformation

Histograms

VS.

Time-Series Data

- Cleaning or preprocessing the data
- Correct representation
- Level/Magnitude
- Repetitions
- Shape of the curve

Zero Crossing on clean data

Median Filtering, size = 2

Median Filtering, size = 4

Median Filtering, size = 6

Median Filtering, size = 8

It might not always be clean

Mean is not zero

After de-meaning

After median filtering

Level/Magnitude

- Max
- Min
- Mean
- Median
- Quantiles

Repetitions

- Zero Crossing
- Frequency Analysis
- Auto-Correlation

Correct Representation

(e.g., Axes)

- Let us look at some sensor examples
- Domain-dependent
- Magnitude
- Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Shape of the Curve

Duration, Number of Peaks, Max, nth Quantile, Skewness, Drinking/Walking

2 Strategies:

- Make a decision for each window
- Concatenate information from each window into a feature vector

```
Duration, Number of Peaks, Max, nth Quantile, Skewness, <a href="Drinking/Walking">Drinking/Walking</a> for w1 Duration, Number of Peaks, Max, nth Quantile, Skewness, <a href="Drinking/Walking">Drinking/Walking</a> for w2 Duration, Number of Peaks, Max, nth Quantile, Skewness, <a href="Drinking/Walking">Drinking/Walking</a> for w3 Duration, Number of Peaks, Max, nth Quantile, Skewness, <a href="Drinking/Walking">Drinking/Walking</a> for w4
```


Duration, Number of Peaks, Max, nth Quantile, Skewness, Drinking/Walking

2 Strategies:

- Make a decision for each window
- Concatenate information from each window into a feature vector

(Duration , Number of Peaks, Max, nth Quantile, Skewness) for w1, single feature (Duration , Number of Peaks, Max, nth Quantile, Skewness) for w2, sector and so on for rest of the windows, yector Drinking/Walking

Do we keep running all the data through the whole ML pipeline?

Segmentation

Segmentation

Segmentation

