Devoir Maison nº 18

Exercice 1 - Des développements en série entière

Dans la suite de l'exercice, si $(a_n)_{n\geq n_0}$ est une suite (qui peut dépendre de x), on notera

$$\sum_{k=n_0}^{+\infty} a_k = \lim_{n \to +\infty} \sum_{k=n_0}^{n} a_k$$

à condition, bien sûr, que cette limite existe. On a vu en classe que pour tout $x \in \mathbb{R}$,

$$e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$$
 $\cos(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k}}{(2k)!}$ $\sin(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$

ainsi que le classique $\zeta(2) = \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$

Première partie - La fonction $f: x \mapsto \ln(1+x)$.

- 1. Donner la dérivée n-ième de f pour tout $n \ge 1$.
- 2. Montrer que pour tout $x \in [0;1]$, $\ln(1+x) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}x^k}{k}$.
- 3. On souhaite montrer que ce résultat est toujours vrai pour $x \in]-1;0]$. On se donne donc dans cette question $x \in]-1;0]$.
 - (a) Expliquer rapidement pourquoi l'inégalité de Taylor-Lagrange ne permet pas de conclure.
 - (b) Donner le maximum de la fonction $|\varphi|$ sur l'intervalle [x;0], où φ est la fonction définie par $\varphi(t) = \frac{x-t}{1+t}$.
 - (c) À l'aide de la formule de Taylor reste intégral, montrer qu'il existe $K \in \mathbb{R}$ que l'on exprimera en fonction de x (on vérifiera que K est bien positif) tel que

$$\forall n \ge 1, \qquad \left| \ln(1+x) - \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} \right| \le K|x|^n$$

(d) Conclure.

Deuxième partie - La fonction tan.

- 1. On se donne dans cette partie un réel $x \in [0; \pi/2[$. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $\tan^{(n)}(x) \ge 0$. On pourra utiliser un certain exercice du chapitre 14.
- 2. Donner la monotonie de la suite de terme général $S_n = \sum_{k=0}^n \frac{\tan^{(k)}(0)}{k!} x^k$ et en déduire qu'elle converge (on pourra utiliser la formule de Taylor reste intégral et donner le signe du reste). Le but de cette partie est de montrer qu'elle converge vers $\tan(x)$.
- 3. Soit $n \in \mathbb{N}$. On note $R_n(x)$ le reste intégral de la question précédente. Montrer que la fonction $\varphi : u \mapsto R_n(u)/u^{n+1}$ est croissante sur $]0; \pi/2[$ (on calculera $\varphi(u) \varphi(v)$, on pourra faire des changements de variable pour que les deux intégrales aient les mêmes bornes 0 et 1 et on se rappellera que $\tan^{(n+2)}$ est positive).
- 4. Soit $y \in]x; \pi/2[$. Montrer que $0 \le R_n(y) \le \tan(y)$ et en déduire que $R_n(x) \xrightarrow[n \to +\infty]{} 0$ c'est-à-dire que

$$\tan(x) = \sum_{k=0}^{+\infty} \frac{\tan^{(k)}(0)}{k!} x^k$$

Page 1/2 2023/2024

MP2I Lycée Faidherbe

Exercice 2 - Méthode de Newton (DS nº 6, 2021/22) :

On se donne dans tout l'exercice une fonction f de classe \mathscr{C}^2 sur un intervalle [a;b] avec a < b telle que f(a) < 0 < f(b) et telle que f' ne s'annule pas sur [a;b].

1. Montrer que f' est de signe constant. En déduire que f s'annule une unique fois sur [a;b] en un réel que l'on notera x_0 . On définit dans la suite la fonction φ sur [a;b] par

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

- 2. Montrer que x_0 est un point fixe de φ . Justifier rapidement que φ est dérivable en x_0 et donner la valeur de $\varphi'(x_0)$.
- 3. Justifier l'existence d'un réel $\eta > 0$ tel que, pour tout $x \in [x_0 \eta; x_0 + \eta], |\varphi'(x)| \leq \frac{1}{2}$.
- 4. On garde dans la suite la valeur de η trouvée à la question précédente, et on pose $J = [x_0 \eta; x_0 + \eta]$. À l'aide de l'inégalité des accroissements finis, montrer que J est stable par φ .

On définit dans la suite de l'exercice la suite (u_n) par

$$\begin{cases} u_0 \in J \\ \forall n \in \mathbb{N} \qquad u_{n+1} = \varphi(u_n) \end{cases}$$

Il découle de la question précédente, par une récurrence immédiate (et donc on l'admettra), que $u_n \in J$ pour tout $n \in \mathbb{N}$.

- 5. Montrer que pour tout $n \in \mathbb{N}, |u_n x_0| \leq \frac{1}{2^n} \times |u_0 x_0|$ et en déduire la limite de la suite (u_n) .
- 6. Soit $n \in \mathbb{N}$.
 - (a) Donner l'équation de la tangente au graphe de f au point d'abscisse u_n .
 - (b) En déduire que cette tangente coupe l'axe des abscisses en u_{n+1} . llustrer graphiquement.
- 7. (a) Justifier l'existence de $m = \min_{c \in [a;b]} |f'(c)|$ et de $M = \max_{c \in [a;b]} |f''(c)|$, et justier que m > 0.
 - (b) Soit $n \in \mathbb{N}$. En appliquant l'inégalité de Taylor-Lagrange à la fonction φ sur $[u_n; x_0]$, montrer que

$$|u_{n+1} - x_0| \le \frac{M}{2m} \times |u_n - x_0|^2$$

- (c) On pose $\lambda = M/2m$. En déduire une majoration de $|u_n x_0|$ en fonction de λ , n et de $|u_0 x_0|^{1}$.
- (d) Soit $\alpha \in]0;1[$. Montrer que $\alpha^{2^n} \times 2^n \xrightarrow[n \to +\infty]{} 0$ (attention, ce n'est pas une croissance comparée du cours, il faut le montrer à la main!).
- (e) En déduire que si u_0 est suffisamment proche de x_0 en un sens que l'on précisera, alors la majoration de la question 7.(c) est bien meilleure que celle de la question 5.
- 8. **Application :** On veut une valeur approchée de $x_0 = \sqrt{2}$. On cherche donc une fonction f qui s'annule en $\sqrt{2}$: prendre $f(x) = x \sqrt{2}$ n'apporterait rien, on ne saurait pas calculer les images de f car on cherche précisément une valeur approchée de $\sqrt{2}$. On contourne la difficulté en posant $f(x) = x^2 2$ dont les images sont simples à calculer. On reprend les notations de ce problème (u_n, φ, \dots) .
 - (a) Donner la fonction φ correspondante.
 - (b) Soit $n \ge 1$. Montrer que

$$\frac{u_n - \sqrt{2}}{u_n + \sqrt{2}} = \left(\frac{u_{n-1} - \sqrt{2}}{u_{n-1} + \sqrt{2}}\right)^2$$

En déduire une expression de $\frac{u_n-\sqrt{2}}{u_n+\sqrt{2}}$ en fonction de $u_0,\sqrt{2}$ et n.

(c) En déduire finalement un équivalent de $u_n - \sqrt{2}$.

Page 2/2 2023/2024

 $^{1.\} Les\ {\it ``par r\'ecurrence imm\'ediate"}\ seront\ accept\'es,\ mais\ si\ votre\ formule\ est\ fausse,\ il\ ne\ faudra\ pas\ venir\ pleurer!$