a. (2 pts) Evaluate $-17 \mod 5$.

3

b. (2 pts) What is the prime factorization of 12! (factorial of 12)?

12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2

$$2^{10} \times 3^{5} \times 2^{2} \times 7 \times 11$$
 $2^{10} \times 3^{5} \times 5^{2} \times 7 \times 11$
 $2^{10} \times 3^{5} \times 5^{2} \times 7 \times 11$

c. (3 pts) What is the LCM (least common multiple) of the following integers $2^2 \cdot 3 \cdot 5$ and $2^3 \cdot 7$?

$$2^{3} \times 3 \times 5 \times 7$$

= $8 \times 15 \times 7$ = 120×7 = 860

d. (3 pts) What is the GCD (greatest common divisor) of the following integers $2^3 \cdot 3^2 \cdot 5 \cdot 13$ and $2^2 \cdot 3^3 \cdot 7 \cdot 11$?

$$2^2 \times 3^2 = 4 \times 9 = 36$$

Give the big-O estimate for each of the following functions. Provide a simple function g(x) of the smallest order.

a. (2 pts) $f(x) = x^2 \log(x^3 - 1) + x^{1.5}$.

b. (2 pts) $f(x) = \lfloor (x^2 + 3)/2 \rfloor$.

c. (2 pts) $f(x) = 2^x + x^6$.

d. (4 pts) Show that $f(x) = 3x^2 + 4x$ is $O(x^2)$ by providing constants C and x_0 as evidence.

a. (5 pts) Compute the following:

$$\sum_{i=1}^{n} (2i-1).$$

- b. (2 + 3 pts) Determine if the following functions are bijections from \mathbb{R} to \mathbb{R} .
- i. f(x) = 2x + 1.

ii.
$$f(x) = 2x^2 - 1$$
.

a. (6 pts) Show using set identities that

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}.$$

$$\frac{AU(Bnc)}{An(Bnc)} = \frac{An(Bnc)}{An(Buc)} = \frac{An(Buc)}{An(Buc)} = \frac{Buc)nA}{EuB)nA}$$

b. (4 pts) What is the Cartesian product $A \times B$ for sets $A = \{\text{sunny}, \text{rainy}\}$ and $B = \{\text{nights}, \text{days}\}$.

a. (4 pts) Use a direct proof to show that the sum of two odd integers is even.

Suppose we have 2 odd integers 0, and 02. then $O_1 = 2m + 1$ for some integer m $O_2 = 2n + 1$ for some integer n Thus. $O_1 + O_2 = 2m + 1 + 2n + 1 = 2(m + n) + 2$, which is even.

b. (6 pts) Show using rules of inference that the premise "Everyone who exercises has a sore muscle" and "Jimmy exercises" imply that "Jimmy has a sore muscle." Use E(x) to denote "x exercises" and S(x) to denote that "x has a sore muscle."

E(Jimmy)

n E(Jimmy) → S(Jimmy)

i. S (Jimmy)

Let S(x) denote "x is a student," F(x) denote "x is on the faculty," and A(x,y) denote "x asked y a question." Let x be drawn from the universe of all people in the world (i.e., x need not necessarily be a student or faculty). Translate the following into logical statements.

a. (4 pts) Every student has asked Professor Smith a question.

$$\forall x (S(x) \rightarrow A(x, Smith))$$

b. (6 pts) Some student has not asked any faculty member a question.

(5 pts) Show that $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology.

(5 pts) Show using identities that $\neg(p \lor (\neg p \land q))$ and $(\neg p \land \neg q)$ are logically equivalent.