

Основные виды машинного обучения

Классическое Обучение

- Процедура train test split (разделение на обучающую и тестовую выборки) это метод валидации модели, который позволяет оценить, как модель будет работать на новых, ранее невиданных данных. Суть заключается в том, что исходный набор данных делится на две (или три) части:
- Обучающая выборка (training set) данные, на которых модель обучается, то есть подбирает внутренние параметры, выявляя зависимости между признаками и целевой переменной.
- **Тестовая выборка (testing set)** данные, которые не использовались при обучении и служат для проверки точности и обобщающей способности модели.
- Иногда дополнительно выделяется валидационная выборка (validation set) промежуточный набор данных, который применяется для настройки гиперпараметров и оптимизации модели во время обучения.

- В машинном обучении данные всегда делятся на:
- X (features) входные признаки, то, на чём модель учится предсказывать;
- y (labels / targets) целевая переменная, то, что нужно предсказать
- Далее происходит разделение данных на две части:
- Train set (X_train, y_train) обучающая выборка, на которой модель учится выявлять закономерности.
- Test set (X_test, y_test) тестовая выборка, которую модель не видит во время обучения и которая используется для оценки качества.

Процесс включает:

- a. Random sampling случайный выбор данных, чтобы избежать смещения (bias);
- b. Split ratio обычно 70-80 % для обучения, 20-30 % для теста.

- После применения train_test_split мы получаем пары (X_train, y_train) и (X_test, y_test).
- X_train содержит признаки (входные значения) для тренировочных примеров.
- y_train содержит соответствующие метки для этих же примеров то есть, истинные выходные значения, которые модель должна «научиться» предсказывать.

```
далее. ( ООВЯСПИТЬ ОШИОКУ )
[10]
О
сек.
     import pandas as pd
         from sklearn.model_selection import train_test_split
         # Создаём DataFrame
         data = pd.DataFrame({
             "Часы_подготовки": [10, 5, 8, 2, 9],
             "Средний_балл": [85, 70, 80, 60, 88], "Пропуски": [1, 3, 2, 5, 0],
             "Итоговая_оценка": [90, 65, 82, 55, 93]
         })
         # X — признаки (то, по чему мы предсказываем)
         X = data[["Часы_подготовки", "Средний_балл", "Пропуски"]]
         # у - целевая переменная (что предсказываем)
         y = data["Итоговая_оценка"]
[11]
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
сек.
[12]
         print("X_train:")
         print(X_train)
сек.
         print("\n")
         print("y_train:")
         print(y_train)
      Часы_подготовки Средний_балл Пропуски
                          8
                                        85
                         10
                                                   1
                                        60
                                                   5
         y_train:
              82
              90
              55
         Name: Итоговая_оценка, dtype: int64
```

Original Data

train_test_split()

y_train

X_test

X ₁	X ₂	Хр

y_test

Настройка гиперпараметров

Гиперпараметры — это параметры алгоритма обучения, которые задаются *до начала обучения* и не обновляются непосредственно во время оптимизации модели (в отличие от весов/коэффициентов модели).

Примеры гиперпараметров:

- Скорость обучения (learning rate) в нейронных сетях;
- Максимальная глубина дерева решений;
- Количество скрытых слоёв или нейронов в слое;
- Параметры регуляризации (например, коэффициент λ в L1 / L2).

Токенизация (Tokenization)

• Что делает:

Разбивает текст на отдельные слова (токены).

"Машинное обучение и интеллект"

→ ["машинное", "обучение", "и", "интеллект"]

Зачем:

Чтобы модель могла работать с каждым словом отдельно, а не с цельной строкой текста.

Инструменты:

- nltk.word_tokenize()
- spacy
- re.split() (регулярные выражения)
- TfidfVectorizer делает токенизацию сам по умолчанию.

Приведение к нижнему регистру (Lowercasing)

Что делает:

Все слова переводятся в строчные буквы.

• Пример:

["Машинное", "Обучение"] → ["машинное", "обучение"]

• Зачем:

Чтобы избежать дублирования признаков ("Машинное" и "машинное" — это одно и то же слово).

Удаление стоп-слов (Stopword removal)

Что делает:

Убирает частые, но неинформативные слова, которые не несут смысловой нагрузки.

Примеры:

- В русском: "и", "в", "на", "это", "для"
- В английском: "the", "is", "and", "in"

Инструменты:

- nltk.corpus.stopwords
- spacy.lang.ru.stop_words
- TfidfVectorizer(stop_words=...)

Лемматизация (Lemmatization)

Что делает:

Приводит слово к **нормальной форме** (лемме) — базовому слову из словаря.

• Пример:

```
"анализ", "анализа", "анализом" → "анализ"
```

Зачем:

Чтобы все формы одного слова считались одним признаком.

Инструменты:

- pymorphy2 популярный морфоанализатор для русского и казахского.
- spacy если нужна лемматизация для нескольких языков.
- stanza многоязычная альтернатива от Stanford NLP.

[&]quot;машинного" → "машинный"

Преобразование текстов в векторы

• Векторизация текста — это процесс преобразования текста в числовой формат, который могут понимать и обрабатывать алгоритмы машинного обучения. Текстовые данные по своей природе являются категориальными и неструктурированными, из-за этого обучать модели ИИ прямо на тексте - нельзя, их надо векторизовать.

Лексиконный подход

Лексиконный подход (на основе словаря тонально окрашенных слов, например, SentiWords) — это метод анализа тональности текста без обучения модели. Он использует заранее составленный словарь, где каждому слову приписан вес тональности (положительный, отрицательный или нейтральный).

🔧 Принцип работы:

1. Текст → токенизация

Разбиваем предложение на отдельные слова.

Пример: "Этот фильм просто потрясающий" → ["этот", "фильм", "просто", "потрясающий"]

2.

Сопоставление со словарём

Для каждого слова ищем значение в словаре:

- "потрясающий" → +0.9
- "просто" → 0.0
- "фильм" → 0.0

3.

Агрегация полярности

Суммируем или усредняем найденные значения:

$$ext{Score} = rac{\sum i ext{tone}(wi)}{N}$$

где tone(wi) — значение тональности слова, N — общее число слов.

- 4. Интерпретация результата
 - Если $Score > 0.1 \rightarrow$ положительный текст
 - Если Score < -0.1 → отрицательный текст
 - Иначе → нейтральный

```
[5]
0
        sentiment_dict = {
            "отличный": 1.0,
сек.
            "ужасный": -1.0,
            "плохой": -0.8,
            "хороший": 0.8,
            "потрясающий": 1.0,
            "скучный": -0.6
        text = "Фильм был отличный, но немного скучный"
        words = text.lower().split()
        scores = [sentiment_dict.get(w, 0) for w in words]
        sentiment_score = sum(scores) / len(words)
        if sentiment_score > 0.1:
            sentiment = "позитивный"
        elif sentiment_score < -0.1:
            sentiment = "негативный"
        else:
            sentiment = "нейтральный"
        print(f"Тональность: {sentiment} (оценка {sentiment_score:.2f})")
       Тональность: нейтральный (оценка -0.10)
```

Bag of words

• Bag-of-Words (мешок слов) — это базовый метод преобразования текстов в векторы для машинного обучения.

🗱 Суть метода

Каждый текст (предложение, документ) представляется как вектор частот слов, где:

- Каждое уникальное слово из корпуса становится признаком (feature).
- Вектор отражает, **сколько раз** каждое слово встречается в документе.
- То есть мы игнорируем порядок слов, оставляя только факты их появления — отсюда название "мешок слов".

Document D1	The child makes the dog happy the: 2, dog: 1, makes: 1, child: 1, happy: 1
Document D2	The dog makes the child happy the: 2, child: 1, makes: 1, dog: 1, happy: 1

		child	dog	happy	makes	the	BoW Vector representations
D1	1	1	1	1	1	2	[1,1,1,1,2]
D	2	1	1	1	1	2	[1,1,1,1,2]

	about	bird	heard	is	the	word	you
About the bird, the bird, bird bird bird	1	5	0	0	2	0	0
You heard about the bird	1	1	1	0	1	0	1
The bird is the word	0	1	0	1	2	1	0

TF-IDF (Term Frequency-Inverse Document Frequency)

• TF-IDF — это способ **оценить важность слова** (*термина*) в документе относительно всего корпуса текстов. Он помогает понять, какие слова действительно **характерны** для документа, а не просто часто встречаются везде (например, "и", "the", "это").

TF-IDF (Term Frequency-Inverse Document Frequency)

TF-IDF (Term Frequency–Inverse Document Frequency) — одного из самых популярных методов для оценки важности слов в документе относительно корпуса.

$$ext{TF-IDF}(t,d) = ext{TF}(t,d) imes \log rac{N}{DF(t)}$$

где:

- **t** термин (слово);
- **d** документ;
- N общее число документов в корпусе;
- **DF(t)** число документов, в которых встречается термин t;
- **TF(t, d)** частота термина *t* в документе *d*.

Интерпретация

• **TF (Term Frequency)** — показывает, насколько часто слово встречается в документе. Например:

$$TF(t,d) = \frac{$$
число вхождений t в d общее число слов в d

• IDF (Inverse Document Frequency) — показывает, насколько уникально слово для корпуса:

$$IDF(t) = \log rac{N}{DF(t)}$$

Если слово встречается во всех документах, то DF(t)=N, и IDF(t)=0. → Слово **не информативно** (например, "и", "the", "это").

- Если слово встречается только в одном документе, то DF(t)=1, и IDF(t) велико.
 - → Слово редкое и важное.

Пример. Пусть корпус состоит из 3 документов:

Документ	Текст
d ₁	«машинное обучение и искусственный интеллект»
d_2	«машинное обучение для анализа данных»
d ₃	«интеллектуальные системы и анализ данных»

Для слова «машинное»

- N = 3
- Встречается в d_1 и $d_2 \rightarrow DF$ (машинное) = 2
- В d_1 : 4 слова $\rightarrow TF = 1/4 = 0.25$
- \bullet $IDF = \log(3/2) = 0.405$ (натуральный логарифм)

TF-IDF =
$$0.25 \times 0.405 = 0.101$$

Для слова «интеллект»

- Встречается в d_1 и $d_3 \rightarrow DF = 2$
- B d₁: TF = 1/4 = 0.25
- IDF = 0.405
- TF-IDF = 0.101

Для слова «данных»

- Встречается в d_2 и $d_3 \rightarrow DF = 2$
- B d₂: TF = 1/5 = 0.2
- IDF = 0.405
- TF-IDF = 0.081

Интерпретация

- •Чем выше TF-IDF, тем важнее слово для данного документа.
- •Высокий TF, но низкий IDF → слово частое, но общее ("и", "для").
- •**Низкий ТF**, но высокий IDF → слово редкое, но информативное.

Word	TF		IDF	TF*IDF		
vvolu	A B		IDI	Α	В	
The	1/7	1/7	log(2/2) = 0	0	0	
Car	1/7	0	log(2/1) = 0.3	0.043	0	
Truck	0	1/7	log(2/1) = 0.3	0	0.043	
Is	1/7	1/7	log(2/2) = 0	0	0	
Driven	1/7	1/7	log(2/2) = 0	0	0	
On	1/7	1/7	log(2/2) = 0	0	0	
The	1/7	1/7	log(2/2) = 0	0	0	
Road	1/7	0	log(2/1) = 0.3	0.043	0	
Highway	0	1/7	log(2/1) = 0.3	0	0.043	

Index —	→ 0	1	2	3	4	5	6	7	8
	and	document	first	is	one	second	the	third	this
"This is the first document."	0	0.46979139	0.58028582	0.38408524	0	0	0.38408524	0	0.38408524
"This document is the second document."	0	0.6876236	0	0.28108867	0	0.53864762	0.28108867	0	0.28108867
"And this is the third one."	0.51184851	0	0	0.26710379	0.51184851	0	0.26710379	0.51184851	0.26710379


```
[4]
    # Импортируем класс TF-IDF векторизатора из sklearn
       from sklearn.feature extraction.text import TfidfVectorizer
сек.
       # 🔳 Набор документов (корпус)
       docs =
           "машинное обучение и интеллект",
           "машинное обучение для анализа данных",
           "интеллект и анализ данных"
       # 🔷 Создаём объект векторизатора TF-IDF
       # Он преобразует тексты в числовые векторы, где каждый элемент — вес TF-IDF слова
       vectorizer = TfidfVectorizer()
       # 🔷 Обучаем векторизатор на текстах и одновременно преобразуем тексты в матрицу признаков
       # fit transform() = fit() + transform()
       # Результат — разреженная матрица размера (число документов × число уникальных слов)
       X = vectorizer.fit_transform(docs)
       # • Получаем список всех уникальных слов (фич) корпуса
       print(vectorizer.get_feature_names_out())
       # • Преобразуем разреженную матрицу X в обычный массив для наглядности
       # Каждая строка — документ, каждый столбец — слово из словаря
       # Значения — TF-IDF вес слова в документе
       print(X.toarray())
       ['анализ' 'анализа' 'данных' 'для' 'интеллект' 'машинное' 'обучение']
       [[0.
                                                    0.57735027 0.57735027
                              0.
                                         0.
                   0.
         0.57735027]
        [0.
                    0.51741994 0.3935112 0.51741994 0. 0.3935112
         0.3935112 ]
        [0.68091856 0. 0.51785612 0. 0.51785612 0.
                   11
         0.
```

```
[6]
О
сек.
```

```
import pandas as pd

df = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names_out())
print(df.round(3))
```

П									
	_		анализ	анализа	данных	для	интеллект	машинное	обучение
		0	0.000	0.000	0.000	0.000	0.577	0.577	0.577
		1	0.000	0.517	0.394	0.517	0.000	0.394	0.394
		2	0.681	0.000	0.518	0.000	0.518	0.000	0.000

Каждая строка — документ, каждый столбец — слово.

То есть:

строка О → первый документ: "машинное обучение и интеллект"

строка 1 → второй документ: "машинное обучение для анализа данных"

строка 2 → третий документ: "интеллект и анализ данных"

Классификаторы для анализа тональности

- В задаче тональности у нас типичная многоклассовая классификация (3 класса)
 - → можно применять стандартные алгоритмы из scikit-learn.
- 1. Логистическая регрессия (Logistic Regression)

from sklearn.linear_model import LogisticRegression model = LogisticRegression(max_iter=1000)

Описание: линейный классификатор, который оценивает вероятность классов через логистическую функцию.

Плюсы:

- Простая и интерпретируемая модель.
- Отлично работает с TF-IDF и BOW признаками.
- Быстро обучается, даёт высокое качество на текстах.

Минусы:

- Не захватывает нелинейные зависимости.
- Требует нормированных (взвешенных) признаков.

• 2. Наивный Байес (Naive Bayes Classifier)

from sklearn.naive_bayes import MultinomialNB model = MultinomialNB()

Описание: вероятностная модель, основанная на предположении независимости признаков.

Плюсы:

- Очень быстрая.
- Хорошо работает на частотных признаках (TF-IDF, CountVectorizer).
- Часто используется как baseline в NLP.

Минусы:

- Игнорирует взаимодействие между словами.
- Может давать чрезмерно уверенные прогнозы.
- И Отличный выбор для текстов малого объёма и учебных примеров.

Naive Bayes Classifier

shutterstock.com · 2397899617

SVM (Support Vector Machine)

from sklearn.svm import LinearSVC

model = LinearSVC()

Описание: линейный метод, который ищет оптимальную разделяющую гиперплоскость.

Плюсы:

- Отлично работает на разреженных данных (TF-IDF).
- Часто даёт **лучшие результаты**, чем логистическая регрессия.

Минусы:

- Не выдаёт вероятности (только классы).
- Обучение медленнее, чем у LR или NB.

Margin (gap between decision boundary and hyperplanes)

Разделяем виды алкоголя

Метод Опорных Векторов

Random Forest

from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier()

Плюсы:

- Учитывает нелинейности.
- Можно использовать с TF-IDF или числовыми признаками (например, длина текста, лексиконный балл).

Минусы:

- Много памяти, неэффективно на больших текстовых матрицах.
- TF-IDF матрицы очень разреженные → деревья неэффективны.
- № Редко используется для "чистого текста", но полезен в гибридных моделях.

Давать ли кредит?

Дерево Решений

Gradient Boosting

Gradient Boosting — тоже ансамбль деревьев, **но они обучаются последовательно**, и **каждое новое дерево исправляет ошибки предыдущих**.

Как работает:

- 1. Первое дерево строится на исходных данных.
- 2. Следующее дерево обучается на ошибках предыдущего.
- 3. Вес каждого дерева зависит от того, насколько оно улучшает результат.
- 4. Итоговый прогноз сумма (или взвешенная сумма) всех деревьев.

Преимущества:

- •Очень высокая точность;
- •Может моделировать сложные, нелинейные зависимости;
- •Даёт оценку важности признаков;
- •Используется во всех **соревнованиях Kaggle** и продакшн-системах.

Медостатки:

- •Требует тонкой настройки гиперпараметров (learning rate, depth, n_estimators);
- •Медленнее обучается, чем Random Forest;
- •Более подвержен переобучению без регуляризации.

XGBoost / LightGBM / CatBoost

Характеристика	XGBoost	LightGBM	CatBoost
Разработчик	Университет Вашингтона	Microsoft	Yandex
Скорость	$\Rightarrow \Rightarrow \Rightarrow$	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$	☆ ☆
Точность	$\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$
Работа с категориальными	Нет	Частично	✓ Отлично
GPU-поддержка	✓	✓	✓
Простота настройки	Средняя	Средняя	Легче
Устойчивость к переобучению	Средняя	Средняя	Высокая
Рекомендуется для	Табличных, числовых данных	Больших корпусов	Смешанных, категориальных

Нейронные сети ➤ MLP (многослойный перцептрон)

• Многослойный перцептрон (MLP) — это классическая нейронная сеть прямого распространения (feed-forward neural network). Она состоит из входного слоя, одного или нескольких скрытых слоёв и выходного слоя.

Структура MLP

- **1.Входной слой** принимает числовые признаки (например, TF-IDF-вектор текста).
- **2.Скрытые слои** нейроны, которые обучаются выявлять сложные связи между признаками.
- **3.Выходной слой** выдаёт вероятности классов (негатив, нейтраль, позитив).

Многослойный Перцептрон (MLP)

Почему MLP работает

- Каждая нейронная связь **взвешена (weights)** → сеть учится выделять важные признаки.
- Нелинейные функции (ReLU, sigmoid, tanh) позволяют моделировать **сложные зависимости**, которые линейные модели (Logistic Regression) не могут уловить.
- Хорошо подходит для **плотных векторов** (например, после SVD, Word2Vec, BERT).

Преимущества МLР

Улавливает **нелинейные зависимости** между признаками. Гибко настраивается (количество слоёв, нейронов, функций). Может работать **с плотными эмбеддингами (Word2Vec, BERT)**. Универсальный — подходит для любых типов данных.

Недостатки

• Требует больше данных, чем логистическая регрессия. Медленнее обучается, особенно на разреженных TF-IDF. Чувствителен к гиперпараметрам (глубина, скорость обучения).

Модель	Тип	Скорость	Качество	Особенности
Logistic Regression	Линейная	☆ ☆ ☆ ☆	☆☆☆☆	Отлично для TF- IDF
Naive Bayes	Вероятностная	$^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$	$^{\diamond}$ $^{\diamond}$ $^{\diamond}$	Простой baseline
SVM (LinearSVC)	Линейная	☆ ☆ ☆	☆☆☆☆☆	Хорошо работает на текстах
Random Forest	Деревья	☆ ☆	☆ ☆	Плохо на разреженных данных
XGBoost / LightGBM	Бустинг	☆ ☆	☆☆☆☆	Хорошо с гибридными фичами
MLP (нейросеть)	Нелинейная	☆	☆☆☆☆	Для продвинутых задач
BERT/LLM	Трансформер	♦	☆☆☆☆☆	Требует GPU и большого корпуса