

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РАСЧЕТ ЭФФЕКТИВНЫХ ПАРАМЕТРОВ МАГНИТНЫХ ДЕТАЛЕЙ

ΓΟCT 28899—91 (M9K 205—66)

Издание официальное

РАСЧЕТ ЭФФЕКТИВНЫХ ПАРАМЕТРОВ МАГНИТНЫХ ДЕТАЛЕЙ

Calculation of the effective parameters of magnetic piece parts

ΓΟCT 28899—91 (ΜЭΚ 205—66)

OKII 63 0000

Дата введения 01.01.92*

1. ОБЛАСТЬ ПРИМЕНЕНИЯ И ЦЕЛЬ

Настоящий стандарт устанавливает единые правила расчета эффективных параметров замкнутых цепей из ферромагнитных материалов, позволяющих увеличить магнитную проницаемость этих цепей.

Некоторые замечания по использованию эффективных параметров приведены в приложении 1.

2. ОСНОВНЫЕ ПРАВИЛА

2.1. Все результаты следует выражать в миллиметрах с точностью до трех значащих цифр, но, чтобы получить значения l_e , A_e и V_e с указанной точностью, величины C_1 и C_2 следует вычислять с точностью до пяти значащих цифр.

Для новых типов сердечников допускается применять следующее правило округления:

до трех значащих цифр, когда первая значащая цифра равна 1, 2 или 3:

до двух значащих цифр — во всех других случаях.

Примечания:

1. Цель установления указанной точности — обеспечить идентичность параметров, рассчитанных различными средствами, и не предполагает, что параметры должны вычисляться с этой точностью.

2. К новым сердечникам относятся квадратные и крестообразные сердечники.

Издание официальное

ВΠ

С Издательство стандартов, 1991

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта СССР

^{*} Порядок введения — в соответствии с приложением 3.

- 2.2. При любом переводе из метрической системы в дюймовую необходимо исходить из того, что 1 дюйм $=25,4\,$ мм, и округление следует выполнять с требуемой точностью.
 - 2.3. Значение $\frac{\pi}{8}$ берется равным 0,3927.
- 2.4. Расчеты применимы только к элементам замкнутой магнитной цепи.
- 2.5. Все размеры, используемые для расчетов, должны иметь средние значения между допусками, приведенными на чертежах сердечников конкретного типа.
- 2.6. Всеми неровностями контура, например небольшими сколами, царапинами, выемками и т. п., можно пренебречь за некоторым исключением, см. резделы ниже.
- 2.7. Когда рассчитывается острый угол изделия за среднюю длину пути потока для этого угла следует брать средний круговой путь, соединяющий центры площадей двух смежных однородных сечений, а площадь поперечного сечения, связанная с этой длиной, берется как средняя площадь двух смежных однородных сечений.

3. ФОРМУЛЫ ДЛЯ РАЗЛИЧНЫХ ТИПОВ СЕРДЕЧНИКОВ

3.1. Кольцевой сердечник (см. черт. 1)

Черт. 1

$$\begin{split} C_1 &= \frac{2\pi}{h_e l_n \frac{r_2}{r_1}} \ ; \\ C_2 &= \frac{2\pi \left(\frac{1}{r_1} - \frac{1}{r_2}\right)}{h_e^2 \ln^3 \frac{r_2}{r_1}} \ . \end{split}$$

1) Высота кольцевых сердечников в миллиметрах с прямоугольным поперечным сечением и острыми кромками

 $h_e = h$.

2) Высота кольцевых сердечников в миллиметрах с прямоугольным поперечным сечением, скругленными кромками и радиусомискругления r_3

$$h_e = h(1 - K_1); K_1 = \frac{0.8584r_3^2}{h(r_2 - r_1)}.$$

3) Высота кольцевых сердечников в миллиметрах с трапециедальным поперечным сечением и острыми кромками

$$h_e = h(1 - K_2); K_2 = \frac{h(tg\alpha + tg\beta)}{2(r_2 - r_1)}.$$

4) Высота кольцевых сердечников в миллиметрах с трапециедальным поперечным сечением, скругленными кромками и радиусом скругления r_3

$$h_e = h(1 - K_1 - K_2).$$

Примечание. Если обмотка распределена равномерно по кольцевому сердечнику, то можно предположить, что линии магнитного потока в любой точке внутри кольцевого сердечника будут параллельны его поверхности. Рассеяния магнитного потока не происходит. Это оправдывает употребление теоретические более правильного вывода эффективных параметров, при котором не используется допущение, приведенное в приложении о том, что поток распределяется равномерно по всему поперечному сечению сердечника.

3.2. Замкнутые П-образные сердечники прямоугольного сечения (см. черт. 2).

Длина пути потока, соответствующая площади A_2 в миллиметрах

$$l_2 = l_2' + l_2''$$

Средняя длина пути потоков на угловых участках в миллиметрах

$$l_4 = l'_4 + l'_4 = \frac{\pi}{4} (p+h),$$

 $l_5 = l'_5 + l'_5 = \frac{\pi}{4} (s+h).$

Средние значения площадей в квадратных миллиметрах, соответствующих l_4 и l_5

$$A_{4} = \frac{A_{1} + A_{2}}{2} ;$$

$$A_{5} = \frac{A_{2} + A_{3}}{2} ;$$

$$C_{1} = \sum_{1}^{5} \frac{l_{i}}{A_{i}} ; C_{2} = \sum_{1}^{5} \frac{l_{i}}{A_{i}^{2}} .$$

3.3. Замкнутые П-образные сердечники с круглым сечением (см. черт. 3)

При расчете A_2 можно пренебречь теми неровностями, которые введены для облегчения изготовления.

Длина пути потока l_2 , соответствующая площади A_2

$$l_2 = l_2' + l_2''$$

Средняя длина пути потока на угловых участках в миллиметрах

$$l_4 = l'_4 + l''_4 = \frac{\pi}{4} (p+h);$$

$$l_5 = l'_5 + l''_5 = \frac{\pi}{4} (s+h).$$

Средние значения площадей поперечного сечения в квадратных миллиметрах, соответствующих l_4 и l_5

$$A_{4} = \frac{A_{1} + A_{2}}{2} ; A_{5} = \frac{A_{2} + A_{3}}{2} ;$$

$$C_{1} = \sum_{i=1}^{5} \frac{l_{i}}{A_{i}} ; C_{2} = \sum_{i=1}^{5} \frac{l_{i}}{2A_{i}^{2}} .$$

3.4. Замкнутые Ш-образные сердечники с прямоугольным сечением (см. черт. 4).

Площадь поперечного сечения центральной части сердечника A_3 .

Средняя длина магнитного потока в миллиметрах на угловых участках:

$$l_4 = \frac{\pi}{8} (p+h); l_5 = \frac{\pi}{8} (s+h).$$

Средние значения площадей поперечного сечения в квадратных миллиметрах, соответствующих l_4 и l_5 :

$$A_{4} = \frac{A_{1} + A_{2}}{2} \; ; \; A_{5} = \frac{A_{2} + A_{3}}{2} \; ;$$

$$C_{1} = \sum_{i=1}^{5} \frac{l_{i}}{A_{i}} \; ; \; C_{2} = \sum_{i=1}^{5} \frac{l_{i}}{2A_{1}^{2}} \; .$$

3.5. Замкнутые Ш-образные сердечники с круглым сечением (черт. 5)

Черт. 5

Площадь поперечного сечения половины центральной части сер-

$$A_3 = A_3' + A_3''$$

. Условие равенства:

.

$$A_3' = A_3'$$
; $s_1 = 0.5959s$.

Средняя длина пути потока в угловых участках в миллиметрах

$$l_4 = \frac{\pi}{8} (p+h); \ l_5 = \frac{\pi}{8} (2s_1+h).$$

Средние значения площадей поперечного сечения в квадратных миллиметрах, соответствующих l_4 и l_5

$$A_4 = \frac{A_1 + A_2}{2} ; A_5 = \frac{A_2 + A_3}{2} ;$$

$$C_1 = \sum_{1}^{5} \frac{l_i}{A_i} ; C_2 = \sum_{1}^{5} \frac{l_i}{A_i^2} .$$

3.6. Броневой сердечник (см. черт. 6)

Черт. 6

Площадь поперечного сечения наружного кольца

$$A_1 = A_1' + A_1''$$

Условие равенства: $A_1' = A_1'$

$$s_2 = -r_3 + \sqrt{\frac{r_3^2 + r_4^2}{2}}$$
.

Площадь поперечного сечения центральной части сердечника $A_3 = A_3' + A_3''$.

Условие равенства: $A_3' = A_3'$.

$$s_1 = r_2 - \sqrt{\frac{r_1^2 + r_2^2}{2}}$$

Площадь кольца в квадратных миллиметрах

$$A_1 = \pi(r_4 - r_3)(r_4 + r_3).$$

Для обоих донышек

$$\frac{l_2}{A_2} = \frac{1}{\pi h} \log_e \frac{r_3}{r_2} = \frac{0.7330}{h} \log_{10} \frac{r_3}{r_2} ;$$

$$\frac{l_2}{A_2^2} = \frac{1}{2\pi^2 h^2} \cdot \frac{r_3 - r_2}{r_3 r_2} .$$

Площадь поперечного сечения центральной части сердечника в квадратных миллиметрах

$$A_3 = \pi(r_2 - r_1)(r_2 + r_1).$$

Средняя длина путей магнитных потоков на угловых участках в миллиметрах

$$l_4 = l'_4 + l''_4 = \frac{\pi}{4} (2s_2 + h);$$

$$l_5 = l'_5 + l''_5 = \frac{\pi}{4} (2s_1 + h).$$

Площади поперечных сечений в квадратных миллиметрах, соответствующие l_4 и l_5

$$A_{4} = \frac{\pi}{2} (r_{4}^{2} - r_{3}^{2} + 2r_{3}h);$$

$$A_{5} = \frac{\pi}{2} (r_{2}^{2} - r_{1}^{2} + 2r_{2}h);$$

$$C_{1} = \sum_{i}^{5} \frac{l_{i}}{A_{i}}; C_{2} = \sum_{i}^{5} \frac{l_{i}}{A_{i}^{2}}.$$

Примечание. Данный метод расчета пренебрегает влиянием пазов, это влияние может быть учтено с помощью следующих поправок:

вычитанием $ng(r_4-r_3)$ из A_1 ;

умножением
$$\frac{l_2}{A_2}$$
 на $\frac{1}{1-\frac{ng}{2\pi r_3}}$;

умножением
$$\frac{l_2}{A_2^2}$$
 на $\frac{1}{\left(1-\frac{ng}{2\pi r_2}\right)^2}$;

умножением
$$A_4$$
 на $1-\frac{ng}{\pi(r_3+r_4)}$,

где n — число пазов;

g — ширина паза.

3.7. Крестообразный сердечник (Х-сердечник) (см. черт. 7)

Площадь центрального диска в квадратных миллиметрах $A_3 = A_2' + A_3''$.

Условие равенства: $A_{3}' = A_{3}''$

$$s = r_2 - \sqrt{\frac{r_1^2 + r_2^2}{2}}$$

Общая площадь ножки в квадратных миллиметрах для сердечников с закругленными ножками:

$$A_1=4\left(r_4^2-rac{\pi}{4}\cdot r_4^2-rac{1}{4}\alpha^2-rac{c\cdot r_4^2}{\sqrt{4r_4^2-C^2}}+rac{a\pi}{180}\cdot r_4^2\right),$$

где $\alpha = \arcsin \frac{c}{2r_A}$;

для сердечников с прямыми ножками:

$$A_1 = 4\{br_4 \cdot \sqrt{2} - \pi r_4^2 \cdot \frac{\beta}{180} - \frac{b}{4} \sqrt{(4r_4^2 - b^2) - \frac{1}{4}(a^2 + b^2)}\},$$
 где $\beta = \arcsin \frac{b}{2r_4}$.

Постоянные сердечника, связанные с l_2 : для сердечников с закругленными ножками:

$$\frac{l_3}{A_2} = \frac{66}{h(45-\alpha)} \log_{10} \frac{2r_4}{r_3+r_4}$$

$$\frac{l_2}{A_2^2} = \frac{1}{\left(\pi h \frac{45-\alpha}{45}\right)^2} \left[\frac{2}{r_3+r_4} - \frac{1}{r_4}\right].$$

для сердечников с прямыми ножками:

$$l_2 = l'_2 + l''_2 = 2(r_4 - r_3),$$

 $A_2 = 4b \cdot h.$

Площадь центрального диска в квадратных миллиметрах

$$A_3 = \pi(r_2^2 - r_1^2).$$

Средняя длина пути магнитного потока на угловых участках в миллиметрах

$$l_4 = l_4' + l_4'' = \frac{\pi}{4} \left[h + \frac{4}{5} \left\{ (r_4 \sqrt{2} - 1) - \frac{1}{2} a \right\} \right],$$

$$l_6 = l_5' + l_5'' = \frac{\pi}{2} \left[\frac{h}{2} + r_2 - \sqrt{\frac{r_1^2 - r_2^2}{2}} \right].$$

Сумма площадей, соответствующих l_4 , в квадратных миллиметрах

для сердечников с закругленными ножками:

$$A_4=4\left(\frac{A_1}{8}+\pi\cdot h\cdot r_4\frac{45-\alpha}{180}\right),$$

где $\alpha = \arcsin \frac{c}{2r_4}$;

для сердечников с прямыми ножками:

$$A_4=4\left(\frac{A_1}{8}+\pi\cdot h\cdot r_4\frac{\beta}{180}\right),$$

тде $\beta = \arcsin \frac{b}{2r_A}$.

Сумма площадей, соответствующих l_5 , в квадратных миллиметрах

$$A_{5} = \frac{\pi}{2} (r_{2}^{2} - r_{1}^{2}) + \pi h r_{2}.$$

Длина пути магнитного потока в кольце вокруг центрального диска в миллиметрах

$$l_6 = l_6' + l_6'' = 2(r_3 - r_2).$$

Постоянные сердечника, связанные с l_6 :

$$\frac{l_6}{A_6} = \frac{0,733}{h} \log_{10} \frac{r_2}{r_2} ,$$

$$\frac{l_6}{A_6^2} = \frac{1}{2\pi^2 h^2} \left(\frac{1}{r_2} - \frac{1}{r_3} \right) ,$$

$$C_1 = \sum_{1}^{6} \frac{l_i}{A_i} ,$$

$$C_2 = \sum_{1}^{6} \frac{l_t}{A_t^2} .$$

3.8. Квадратный сердечник (Кв-сердечник) (см. черт. 8) Общая площадь основания ножки в квадратных миллиметрах

$$A_1 = \frac{1}{2} a^2 \{1 + tg(\beta - 45)\} - \pi \cdot r_3^2 \cdot \frac{\beta}{90} - \frac{1}{2} p^2.$$

Составляющие постоянных сердечника, в которые входит l_2 :

$$rac{l_2}{A_2}=rac{\lnrac{r_3}{r_2} imes f}{C imes\pi imes h}$$
 , где $l_2=l_2'+l_2''; \quad f=rac{l_{\min}+l_{\max}}{2 imes l_{\min}}$; $C=rac{A_7}{A_2}$;

$$\frac{l_2}{A_2^2} = \frac{\left(\frac{1}{r_2} - \frac{1}{r_3}\right) \times f}{2(C \times \pi \times h)^2} .$$

Примечание. Площади поверхностей A_7 и A_8 могут быть определены или расчетами, или измерениями (например с июпользованием планиметра на чертеже сердечника с десятикратным увеличением).

Площадь центрального диска в квадратных миллиметрах

$$A_3 = \pi(r_2^2 - r_1^2).$$

Средние значения длин путей магнитного потока на угловых участках l_4 , l_5 и соответствующие им средние значения площадей:

$$\begin{split} l_4 &= l_4' + l_4'' = \frac{\pi}{4} \left(h + \frac{1}{2} a - r_3 \right); \\ A_4 &= \frac{1}{2} \left(A_1 + 2\pi r_3 \cdot h \times \frac{\beta}{90} \right); \\ l_5 &= l_5' + l_5'' = \frac{\pi}{4} \left(2r_2 + h - \sqrt{2r_1^2 + 2r_2^2} \right); \\ A_5 &= \frac{\pi}{2} \left(r_2^2 - r_1^2 \right) + \pi \cdot r_2 \cdot h \cdot \frac{a}{90}; \\ C_1 &= \sum_{1}^{5} \frac{l_i}{A_i}; \quad C_2 &= \sum_{1}^{5} \frac{l_i}{A_i^2}. \end{split}$$

Примечание. При таком расчете не учитывается влияние гнезд под пружины и штифты. Они могут юказывать некоторое влияние на результаты расчета, особенно при расчете малогабаритных сердечников.

НЕКОТОРЫЕ ЗАМЕЧАНИЯ ПО ИСПОЛЬЗОВАНИЮ ЭФФЕКТИВНЫХ ПАРАМЕТРОВ

При определении магнитных свойств сердечников на основе магнитных свойств материала можно пользоваться эффективными параметрами. При таком методе расчета в качестве сердечника берется идеальный кольцевой сердечник, причем такой, чтобы катушка на таком кольцевом сердечнике имела электрические характеристики, аналогичные электрическим характеристикам катушки с тем же числом витков на реальном сердечнике.

Магнитные свойства и размерные параметры такого идеального кольцевого сердечника называются эффективными параметрами и обозначаются индексом е,

добавляемым к обозначениям, установленным для всех этих свойств.

Эффективные параметры:

 H_e — эффективная напряженность магнитного поля;

Ве — эффективная магнитная индукция;

μ_e — эффективная магнитная проницаемость;

le— эффективный путь магнитной линии;

A e — эффективная площадь поперечного сечения;

 V_e — эффективный объем сердечника.

Эффективные параметры можно рассчитать на основании размеров сердечника и свойств материала, допустив при этом:

что значение магнитного потока одинаково для всех сечений сердечника (не

происходит рассеяния потока);

что магнитный поток распределяется однородно по всему поперечному сечению.

При использовании эффективных параметров для расчета потерь на гистерезис действительна формула Релея

$$\frac{B}{\mu_0} = (\mu_i + Y\widehat{H})H \pm \frac{Y}{2}(\widehat{H}^2 - H^2).$$

Общие уравнения для магнитных схем, действительные для сердечников произвольной конфигурации, принимают простой вид, если используются эффективные параметры:

$$\oint Hdl = Ni$$
 становится $H_e l_e = Ni$;
$$\Phi = \int\limits_A BdA$$
 становится $\Phi = B_e A_e$;
$$P_h = \int\limits_V dV \oint HdB$$
 становится $P_h = \int\limits_V dV \oint HdB$.

Исходя из того, что

$$L=N \frac{\stackrel{\wedge}{\Phi}}{\widehat{I}} \times \frac{\operatorname{tg}\delta_{h}}{\mu_{e}} = \eta_{B} \widehat{B}_{e}$$

можно получить следующие формулы для расчета эффективных параметров. По практическим причинам размерные параметры обычно выражаются в миллиметрах, поэтому в электромагнитных уравнениях появляется соответствующая степень числа 10:

$$\begin{split} C_1 &= \Sigma \; \frac{l^*}{A} \;\; , C_2 = \Sigma \; \frac{l}{A^2} \;\; , \\ l_e &= \; \frac{C_1^2}{C_2} \;\; , \quad A_e = \frac{C_1}{C_2} \;\; , \quad V_e = l_e A_e = \; \frac{C_1^3}{C_2^2} \;\; , \\ \widehat{H}_e &= \; \frac{N_i}{l_e} \;\; \cdot 10^3 \; , \quad \widehat{B}_e = \; \frac{u_{aV} \cdot 10^6}{4fA_e N} \;\; , \quad \mu_e = \; \frac{C_1}{\sum \frac{1}{\mu_r A}} \;\; , \\ \widehat{B}_e &= \; \frac{\widehat{u} \cdot 10^{6**}}{\omega A_e N} \;\; . \end{split}$$

Для сердечников и их деталей с помощью поперечного сечения, непрерывно изменяющейся вдоль пути магнитной линии, вместо сложения этих уравнений применяется интегрирование.

С помощью эффективных параметров индуктивность и потери на гистерезис

можно выразить следующим образом:

** Только для синусоидального напряжения.

$$L = \frac{\mu_0 \cdot \mu_e \cdot N^2 \cdot A_e}{l_e} \cdot 10^{-3} , P_h = \frac{\tau_{i\beta} \cdot \widehat{\mu}^3}{2\omega^2} \sqrt{\frac{\mu_0 \cdot \mu_e^3}{L^3 \cdot V_e} \cdot 10^9}.$$

Данные уравнения справедливы для сердечника с малым воздушным зазором. Этот зазор учитывается при вычислении μ_ℓ .

^{*} Иногда используется фактор магнитной проводимости $C=\frac{\mu_0}{c_1}\cdot 10^{-3}$ в генри (в основном для расчета эффективной магнитной проницаемости на основе фактора индуктивности).

ПЕРЕЧЕНЬ ОБОЗНАЧЕНИЙ

```
A — площадь поперечного сечения в данной части сердечника, мм^2;
  A_e — эффективная площадь поперечного сечения, мм^2;
   В — мгновенное значение магнитной индукции, Тл;
  B_e — мгновенное значение эффективной магнитной индукции, Тл;
  B_{e} — пиковое значение эффективной индукции, T_{\pi};
  C_1 — постоянная сердечника, мм^{-1};
  C_2 — постоянная сердечника, мм^{-3};
tg\delta_h— тангенс угла потерь за счет потерь на гистерезис;
   f — частота, Гц;

 Н — мгновенное значение напряженности поля, А/м;

   Н — пиковое значение напряженности поля, А/м;
  H_e — мгновенное значение эффективной напряженности поля, A_{\rm in};
  H_e — пиковое значение эффективной напряженности поля, A/M;
  \eta_B — постоянная гистерезиса матернала, Тл^{-1};
   i — мпновенное значение тока, A;
   I— пиковое значение тока, A;
   1 — длина части сердечника с постоянной площадью поперечного сечения, мм;
  le — эффективный путь магнитной линии сердечника, мм;
   L — собственная индуктивность, \Gammaн;
  μ0 — абсолютная магнитная проницаемость вакуума (магнитная постоянная),
       4\pi \times 10^{-7} \, \Gamma_{\rm H/M};
  \mu_d — относительная динамическая магнитная проницаемость — по
       23618;
 и.е — эффективная магнитная проницаемость — по ГОСТ 23618;
  µ i — относительная начальная магнитная проницаемость — по ГОСТ 23618;
  \mu_r — относительная магнитная проницаемость, общее обозначение; N — число витков;
   У — гистерезисный коэффициент, м/А;
   \omega — круговая частота 2\pi f рад/с;
  P_h — потери на гистерезис, Вт;
 U_{dV}— среднее значение напряжения за полупериод, В;
   и — пиковое эначение напряжения, В;
   V — объем, мм<sup>3</sup>:
  V_{\rho} — эффективный объем, мм<sup>3</sup>;
   Ф — мгновенное значение магнитного потока, Вб;
   Ф — пиковое значение магнитного потока, Вб.
```

ПРИЛОЖЕНИЕ 3 Обязательное

1. Для вновь разрабатываемых изделий, ТЗ на разработку которых утверждены после 01.01.92, срок введения стандарта устанавливается с 01.01.92.

2. Для серийно выпускаемых изделий срок введения стандарта устанавли-

2. Для серийно выпускаемых изделий срок введения стандарта устанавливается согласно планам-графикам по мере оснащения предприятий специальным технологическим оборудованием, средствами испытаний и измерений.

информационные данные

- 1. ПОДГОТОВЛЕН И ВНЕСЕН Министерством электронной промышленности СССР.
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 28.01.91 № 61

Настоящий стандарт подготовлен методом прямого применения международного стандарта МЭК 205—66 «Расчет эффективных параметров магнитных деталей» и полностью ему соответствует

3, ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Раздел, подраздел, пункт, в котором приведена ссылка	Обозначение соответствую- щего международного стандарта	Обозначение отечественного нормативно-технического документа, на который дана ссылка
Приложение	_	ГОСТ 23618—79

4. Замечания по внедрению ГОСТ

Техническое содержание

Стандарт МЭК 205 «Расчет эффективных параметров магнитных деталей» принимается для использования в соответствии с областью распространения, указанной в разд. 1 со следующим уточнением.

Стандартом следует руководствоваться без изменений для расчета эффективных параметров изделий из ферритов и магнитоди-электриков, ТЗ на разработку которых утверждены после 01.01.92

Редактор В. С. Бабкина Технический редактор Л. Я. Митрофанова Корректор Т. А. Васильева

Сдано в наб, 13,03,91 Подп. в печ. 17,04,91 1,25 усл. п. л. 1,25 усл. кр.-отт. 0,90 уч.-изд. л. Тираж 5000 Цена 35 к.