Лабораторная работа №2 Составление принципиальных гидравлических схем объемного гидропривода

Цель работы: изучить элементы принципиальной схемы гидропривода (ГП), их обозначение и назначение; пробрести навыки построения гидросхем; разработать принципиальную схему ГП на основании задания, собрать схему из комплекта устройств и элементов лаборатории «Гидроавтоматики», проверить ее на работоспособность.

.

- 2.1 Правила выполнения схем
- 2.1.1 Общие требования к выполнению схем

Схема — графический конструкторский документ, на котором представлены составные части изделия и связи между ними в виде условных изображений и графических обозначений. Схема содержит необходимые данные для проектирования, регулировки, контроля, ремонта и эксплуатации изделия, разъясняет основные принципы действия и последовательность процессов при работе.

ГОСТ 2.701—84 «Схемы. Виды и типы. Общие требования к выполнению» устанавливает виды и типы схем изделий всех отраслей промышленности и общие требования к выполнению этих схем.

В зависимости от видов элементов и связей, входящих в состав изделия, схемы подразделяют на следующие виды и типы (таблица 2.1).

Таблица 2.1 – Виды, типы схем и их обозначения

Вид схемы	Обозначение	Тип схемы	Обозначение
Электрическая	Э	Структурная	1
Гидравлическая	Γ	Функциональная	2
Пневматическая	Π	Принципиальная	3
Кинематическая	К	Соединений	4
Оптическая	Л	Подключения	5
Вакуумная	В	Общая	6
Энергетическая	P	Расположения	7
Газовая	X	Объединенная	0
Деление изделия на	E		
составные части	L		
Комбинированная	C		

Схемы выполняют на листах стандартных форматов.

При выборе форматов следует учитывать (ГОСТ 2.701–84):

- объем и сложность проектируемого изделия (установки);

- необходимую степень детализации данных, обусловленную назначением схемы;
 - условия хранения и обращения схем;
 - особенности и возможности техники выполнения;
 - возможность обработки схем средствами вычислительной техники.

Форматы листовых схем выбирают в соответствии с требованиями, установленными в ГОСТ 2.301-68, при этом основные форматы являются предпочтительными. Выбранный формат должен обеспечивать компактное выполнение схемы, не нарушая ее наглядности и удобства пользования ею.

Каждой схеме присваивают код, состоящий из буквы, определяющей вид схемы, и цифры, обозначающей тип схемы (таблица 2.1).

ГОСТ 2.701-84 предусматривает следующие основные требования к выполнению схем:

- схема выполняется без соблюдения масштаба и действительного расположения составных частей изделия (установки);
- допускается располагать условные графически обозначения элементов на схеме в том же порядке, в котором они расположены в изделии, при условии, что это не затруднит чтение схемы;
- графические обозначения элементов и соединяющие их линии располагают на схеме таким образом, чтобы обеспечить наилучшее представление о структуре изделия и взаимодействия его составных частей.

Каждая схема сопровождается перечнем элементов, которые помещают на первом листе схемы или выполняют в виде самостоятельного документа

На схеме допускается приводить различные технические данные, характер которых определяется видом и типом схемы. Эти сведения помещают около графических обозначений (по возможности справа или сверху) или на свободном поле схемы (по возможности над основной надписью). Около графических обозначений элементов и устройств помещают, в частности, номинальные значения их параметров, а на свободном поле — диаграммы, таблицы, текстовые указания. Схемы, выполняемые в электронной форме, рекомендуется выполнять однолистными с обеспечением деления этого листа при печати на необходимые форматы.

При вычерчивании схемы необходимо руководствоваться следующими стандартами:

- ГОСТ 2.704-76 Правила выполнения гидравлических и пневматических схем;
- ГОСТ 2.780-96 Обозначения условные графических, элементы гидравлических и пневматических сетей;
- ГОСТ 2.781-96 Обозначения условные графические. Аппаратура распределительная и регулирующая гидравлическая и пневматическая;
- ГОСТ 2.782-96 Обозначения условные графические. Насосы и двига-

тели гидравлические и пневматические;

- ГОСТ 2.784-96 Обозначения условные графические. Элементы трубопроводов;
- ГОСТ 2.721-74 Обозначения условные графические в схемах. Обозначения общего применения.

2.1.2 Линии схем

Линии связи должны состоять из вертикальных и горизонтальных отрезков с минимальным количеством изломов и взаимных пересечений. В отдельных случаях допускается применять наклонные отрезки линий связи, ограничивая, по возможности их длину.

Расстояние между соседними параллельными линиями связи должно быть *не менее 3 мм*.

Линии связи показывают, как правило, полностью. Можно обрывать линии связи, если они затрудняют чтение чертежа. Обрывы линий связи заканчивают стрелками.

Линии связи, проходящие с одного листа на другой, обрывают за пределами изображения схемы. Рядом с местом обрыва линии указывают обозначение или наименование, присвоенное этой линии, и в круглых скобка номер листа схемы (при выполнении схемы на нескольких листах) или обозначение документа (при выполнении схемы самостоятельными документами), на который переходят линии связи.

Соединения линий связи в местах их пересечения отмечают точкой (рисунок 2.1).

Рисунок 2.1. — Условное графическое обозначение гидролиний: а) рабочая линия (основная или тонкая); б) линия управления; в) линия выделения нескольких элементов в одном устройстве; г) гибкая линия (шланг или РВД); д) соединение линий; е) пересечение линий

Согласно ГОСТ 2.701-84 толщина линий гидравлической связи должна быть в пределах 0,7...1,4 мм в зависимости от форматов схем и размеров графических обозначений. Рекомендуемая толщина линии от 1 мм.

Элементы, составляющие функциональную группу или устройство, можно выделять на схеме штрихпунктирными линиями, указывают при этом наименование. Толщину штрихпунктирной линии принимают равной толщине линии связи.

Схему можно выполнять в пределах условного контура, упрощенно

изображающего конструкцию изделия. В этих случаях условные контуры выполняют сплошными тонкими линиями.

2.1.3 Условные графические и буквенные обозначения элементов

Все элементы на схеме изображаются условными графическими обозначениями, начертание и размеры которых установлены в стандартах ЕСКД (ГОСТ 2.721-74...ГОСТ 2.796-81) некоторые из них приведены в таблице 2.2.

Таблица 2.2 – Условные графические обозначения элементов

Элемент гидросистмемы	Обозначение	
элемент гидросистмемы	Детальное Упрощенное	
Гило и ни		
	евмомашины Г	
Цилиндр одностороннего действия:		
поршневой без указания спосо-	│	
ба возврата штока, пневмати-	│ ┡── ─┤ │ └── ── │	
ческий	1 1 1	
поршневой с возвратом штока		
пружиной, пневматический	▎ ╽ ┃ ₩₩──│┃	
	 	
	' '	
поршневой с выдвижением		
штока пружиной, гидравличе-		
ский		
плунжерный		
77		
Цилиндр двухстороннего действия:		
с односторонним штоком, гид-	 	
равлический	1 1 1	
с двухсторонним штоком,		
пневматический		
Цилиндр двухстороннего действия		
с подводом рабочей среды через		
шток с одно- и двусторонним што-		
ком		
Цилиндр двухстороннего действия с		
постоянным торможением в конце		
хода одно- и двухсторонний		
Насос и мотор нерегулируемые с	*	
нереверсивным потоком (общее обо-	(-) (·)	
значение)	γ γ	
/	' '	

L_	
Насос и мотор нерегулируемые с реверсивным потоком	
Насос и мотор регулируемый с не-	A 2.
реверсивным потоком	
Поворотный гидродвигатель	
Гидро- и пневмоа	ппараты основные
Клапан обратный	
- без пружины;	
- с пружиной;	▼
- с поджимом рабочей средой	
Гидрозамок односторонний	
Гидрозамок двухсторонний	
Клапан редукционный прямого действия	
Клапан предохранительный прямого дей- ствия	
Дроссель регулируемый. Без указания метода регулирования	+
Вентиль. Без указания метода регу- лирования	→ ×
Дроссель с обратным клапаном.	

П		
Делитель потока		
Регулятор расхода двухлинейный с изменяемым расходом на выходе	***************************************	
Аккумулятор пневмогидравличе- ский		
Вспомогательные	гидроустройства	
Фильтры - общее обозначение	→	
- с индикатором загрязненно- сти		
Фильтр заливной, совмещенный с воздушным фильтром (сапуном)		
Аппараты теплообменные - подогреватель		
 охладитель без указания ли- ний подвода и отвода охла- ждающей среды 		
 - охладитель с указанием линий подвода и отвода охлаждаю- щей среды 		
- охладитель и подогреватель		
Приборы контроля параметров		
Манометр	О или	
Манометр электроконтактный	Q €	
Манометр дифференциальный	\bigcirc	

Переключатель манометра	#0
Реле давления	
Термометр	(
Термометр электроконтактный	⊕ <i>E</i>
Расходомер	\hookrightarrow
Расходомер интегрирующий	-\$
Маслоуказатель	

Таблица 2.3 – Условные графические обозначения распределителей

Номер схемы	Схема	Номер	Схема	Номер схемы	Схема
14	a A O B 6	44		74	
24		54		94	
34		64		134	

Таблица 2.4 – Условные графические обозначения типов управления

Tuominga 2.7 5 estebblishe i purph feekhe occisita teliha i info yi pussienna				
Условное обозначение	Описание	Условное обозначение	Описание	
Управление	е мускульной силой	Управление механическим воздействием		
AND	без уточнения типа	Consum	от толкателя	
#E	ручное с кнопкой	8	от ролика	
	ручное рычагом		от ролика с ломаю- щимся рычагом	
	ручное рычагом с фиксацией	W	от пружины	

ESSENTION DE LA CONTRACTOR DE LA CONTRAC	ручное с поворотной кнопкой	Управление давлением	
上	ножное педалью		прямое гидравлическое нагружением
		Щ	прямое пневматиче- ское нагружением
		4	прямое гидравлическое разгружением

Гидравлическому элементу и устройству, изображенному на схеме, должно быть присвоено буквенно-цифровое позиционное обозначение по ГОСТ 2.710-81, по ГОСТ 2.704-76, которые записываются без разделительных знаков и пробелов. Каждое позиционное обозначение состоит из буквенного кода элемента (например, КМ, Н) и порядкового номера элемента, начиная с единицы (арабские цифры) и в пределах группы элементов с одним буквенным кодом, например, Н1, Н2, ..., Н15 и т.д.

Позиционные обозначения выполняются шрифтом №7,5 или №10 (высота букв и цифр в одном обозначении должна быть одинаковой) и наносят на схеме справа от условного графического изображения или над ним. Буквенно-цифровое обозначение записывается в одну строку без пробелов. Для установления единого порядка обозначений в соответствии с требованиями международных стандартов в позиционном обозначении элемента принимаются прописные буквы только латинского алфавита.

Порядковые номера присваиваются согласно последовательности расположения элементов на схеме в целом — *сверху в низ в направлении слева на право*.

Буквенные коды некоторых видов элементов в соответствии с ГОСТ 2.704-76:

—	Устройство (общее обозначение)	A
_	Гидроаккумулятор (пневмоаккумулятор)	АK
	Аппарат теплообменный	AT
	Гидробак	Б
	Вентиль	BH
	Пневмоглушитель	Γ
	Гидродвигатель (пневмодвигатель) поворотный	Д
	Делитель потока	ДП
	Гидродроссель (пневмодроссель)	ДР
	Гидрозамок (пневмозамок)	3M
	Гидроклапан (пневмоклапан)	К
	Гидроклапан (пневмоклапан) выдержки времени	КВ
	Гидроклапан (пневмоклапан) давления	КД
	Гидроклапан (пневмоклапан) обратный	КО
	Гидроклапан (пневмоклапан) предохранительный	КΠ
	Гидроклапан (пневмоклапан) редукционный	КР

	Компрессор	KM
	Гидромотор (пневмомотор)	M
	Манометр	MH
—	Маслораспылитель	MP
—	Масленка	MC
	Маслоуказатель	МУ
—	Hacoc	Н
—	Насос-мотор	HM
	Переключатель манометра	ПМ
	Гидрораспределитель (пневмораспределитель)	P
	Расходомер	PM
	Реле давления	ΡД
	Регулятор потока (расхода)	РΠ
	Ресивер	PC
	Термометр	T
—	Гидроусилитель	УС
	Фильтр	Φ
	Гидроцилиндр (пневмоцилиндр)	Ц

В схемах, насыщенными условными графическими обозначениями, допускается все обозначения пропорционально уменьшать или увеличивать, при этом расстояние (просвет) между двумя соседними линиями условного графического обозначения должно быть *не менее 1,0 мм*. Условные графические обозначения элементов, используемых как составные части обозначений других элементов, можно изображать уменьшенными по сравнению с остальными элементами.

Графически обозначения выполняют линиями той же толщины, что и линии связи. Размеры условных графических обозначений, а также толщина их линий должны быть одинаковыми на всех схемах данного изделия. Если в условных графических обозначениях имеются утолщенные линии, то их выполняют толще линии связи в два раза.

Расстояние между отдельными условными графическими обозначениями должно быть не менее 2,0 мм.

Изображения элементов вычерчиваются на схемах в положении, установленном соответствующим стандартом, либо повернутые на угол кратный 90°, по отношению к этому положению. В отдельных случаях допускается условные графические обозначения поворачивать на угол, кратный 45°, или изображать вертикально повернутыми.

Условные графические обозначения, содержащие буквенные, цифровые, или буквено-цифровые обозначения, можно поворачивать против часовой стрелки только на угол 90° или 45° .

2.1.4 Составление гидравлической схемы

Принципиальная гидравлическая схема служит основой для расчета гидропривода, разработки схем соединений, изучения принципа действия машины.

При составлении принципиальной гидравлической схемы необходимо учитывать многие факторы: назначение гидропривода на машине (для привода рабочего оборудования или выполнения вспомогательных операций, установочных движений); уровень давления в гидросистеме: низкий (10...16 МПа), средний (16...25 МПа), высокий (25...42 МПа); условия функционирования гидропривода; надежность и др.

При составлении гидравлической схемы стремятся выполнить ее простой, с минимальным количеством элементов, необходимых для функционирования гидропривода и обеспечивающих заданную надежность.

В большинстве случаев выбираются гидравлические схемы с разомкнутой циркуляцией рабочей жидкости, когда жидкость от гидродвигателя поступает в гидробак.

Рекомендуется применять разгруженную схему гидропривода, т.е. со сливом рабочей жидкости в гидробак под малым давлением при нейтральном положении запорно-регулирующих элементов (золотников) гидрораспределителей.

Основанием для разработки принципиальной схемы ГП является вариант задания на лабораторную работу. В нем указаны требования к ГП и условия его работы — эти сведения являются *исходными данными*.

Для пуска, остановки и реверсирования гидродвигателя служат распределители.

Для поддержания необходимого уровня давления в гидросистеме установлен предохранительный клапан.

Производительность насоса измеряется расходомером.

Температура рабочей жидкости контролируется термометром.

Объемные гидромашины: насос — насос служит для нагнетания жидкости в гидросистему, цилиндр — гидроцилиндр служит для осуществления возвратно-поступательного движения рабочего органа, мотор — гидромотор приводит рабочий орган во вращательное движение.

Вспомогательные устройства: гидробак служитдля размещения, охлаждения и очистки рабочей жидкости, фильтр предназначен для очистки рабочей жидкости от механических частиц.

Элементы ГП соединены гидролиниями.

2.2 Правила выполнения работ на стендах

Сборка гидравлических схем осуществляется на монтажной сетке

(рисунок 2.2). Сначала необходимо закрепить на сетке гидроаппараты и далее соединить их шлангами.

Рисунок 2.2 — Элементы лабораторной установки: a) монтажная сетка; δ) гидравлический стенд; ϵ 0 комплект гидравлических аппаратов

Присоединять шланги к аппаратам по навесу *не разрешается*. При размещении гидроцилиндров необходимо следить за тем, чтобы не создавалось преграды для движения штоков их поршней. В противном случае вследствие больших усилий аппараты и монтажная сетка могут быть повреждены.

Открытие крана пневмогидроаккумулятора разрешается только после присоединения его к напорной и сливной линиям. В противном случае при наличии остаточного давления, не фиксируемого манометром пневмогидроаккумулятора, из него возможен выброс масла.

Особое внимание следует уделить монтажу датчиков. При этом следует иметь в виду, что зона чувствительности емкостного и индукционного датчиков не превышает 10 мм, а оптического — 25 см. При необходимости высота датчика должна быть подрегулирована установочными гайками.

Не разрешается самостоятельно перенастраивать предохранительный клапан насосной станции. Регулировки параметров элементов гидропривода необходимо выполнять плавно. Включение насосной станции производится после проверки схемы преподавателем.

Категорически запрещается предпринимать попытки остановить движение штока гидроцилиндра или вала гидромотора руками или какими-либо предметами.

Монтаж электрических соединений производится соединительными проводами различных цветов в соответствии с полярностью. После сборки схемы следует убедиться в ее работоспособности до включения насоса, замыкая датчики вручную.

При ошибочном соединении элементов электросхем (коротком замыкании) возможно автоматическое выключение блока питания. В этом случае следует отключить его от сети с помощью сетевого выключателя и

проверить правильность сборки схемы. Повторное включение производить не ранее, чем через 5 минут.

В случае обнаружения посторонних шумов, подтекания масла необходимо сразу выключить насосную станцию и поставить в известность преподавателя.

Все капли масла необходимо сразу удалять ветошью.

После завершения работы схема должна быть разобрана. Все гидроаппараты необходимо протереть ветошью, удалить капли масла из муфт соединительных шлангов и разложить по ящикам стенда. Стенд должен быть сдан преподавателю.

2.3 Порядок проведения работы и задание

- 1) Изучить правила выполнения схем гидравлических принципиальных.
- 2) Изучить правила выполнения работ на лабораторных стендах.
- 3) Используя условные обозначения, составить принципиальную гидравлическую схему на основании задания, заменяя позиции, данные в задании буквенно-цифровым позиционным обозначением.
- 4) Собрать схему на стенде и проверить на работоспособность.
- 5) Начертить схему в соответствии с рекомендациями по оформлению схем.