Analysis Phase	Research Question	Model ID	Statistical Method
Laboratory Developm	nent		
Discovery	Can immune genes predict infection costs?	DISC-1	Linear regression (PC1, PC2 → weig loss)
Optimization	Can machine learning improve prediction?	DISC-2	Random forest (19 genes → weight loss)
Validation	Is the model reliable?	DISC-3	Train-test cross-validation
Cross-Population Tra	nslation		
Gene Validation	Which genes show consistent responses across populations?	TRANS-1	Linear regression per gene (lab vs field)
Field Translation			
Detection	Does the model work in wild populations?	FIELD-1	Predicted vs. observed infection status
Discrimination	Can it distinguish parasite species?	FIELD-2	Predicted loss by species identity
Scaling	Does it correlate with infection severity?	FIELD-3	Predicted loss vs. parasite load
Biological Validation			
Physiological relevance	Does it capture real health impacts?	PROOF-1	Predicted loss vs. body condition
Specificity	Is the response Eimeria- specific?	PROOF-2	Predicted loss vs. parasite communi

Framework demonstrates progression from basic linear prediction ($R^2 = 0.106$) through machine learning optir relevance. Cross-population translation validates 3/19 genes as conserved biomarkers.

Analysis Phase Research Question Model ID Statistical Method

Framework demonstrates progression from basic linear prediction ($R^2 = 0.106$) through machine learning optir relevance. Cross-population translation validates 3/19 genes as conserved biomarkers.

¹ Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001

² Train-test validation: 70% training (n=96), 30% testing (n=40)

³ Cross-validated genes: CXCL9 (both species), TICAM1 (E. falciformis), PRF1 (E. falciformis)

⁴ E.f: Eimeria falciformis; E.r: E. ferrisi

⁵ Parasite community model tested: Eimeria (significant), Aspiculuris, Syphacia, Trichuris, Mastophorus (all non-