Keener, Theoretical Statistics Chapter 2: Exponential Families

Junhyeok Kil

July 1, 2025

2. Exponential Families

The big picture:

In statistics, we often don't know the exact distribution of the data.

2. Exponential Families

The big picture:

In statistics, we often don't know the exact distribution of the data.

⇒ Assume the distribution belongs to a known family of distributions.

Many common distributions are members of exponential families. They have a regular, unified structure that makes proving theorems and developing methods much easier.

2.1 Densities and Parameters

Density (Canonical form):

$$p_{\eta}(x) = \exp\left[\sum_{i=1}^{s} \eta_{i} T_{i}(x) - A(\eta)\right] h(x), \quad x \in \mathbb{R}^{n}$$

This is the general representation for a distribution in an exponential family.

$$p_{\eta}(x) = \exp \left| \sum_{i=1}^{s} \eta_{i} T_{i}(x) - A(\eta) \right| h(x)$$

$$p_{\eta}(x) = \exp \left[\sum_{i=1}^{s} \eta_{i} T_{i}(x) - A(\eta) \right] h(x)$$

 η : The natural/canonical parameters.

$$p_{\eta}(x) = \exp \left[\sum_{i=1}^{s} \eta_{i} T_{i}(x) - A(\eta) \right] h(x)$$

 η : The natural/canonical parameters.

T(x): The **sufficient statistics**. These are functions of the data x.

$$p_{\eta}(x) = \exp\left[\sum_{i=1}^{s} \eta_{i} T_{i}(x) - A(\eta)\right] h(x)$$

 η : The natural/canonical parameters.

T(x): The **sufficient statistics**. These are functions of the data x.

h(x): The **base measure**. It relates to the underlying support of the distribution.

$$p_{\eta}(x) = \exp \left[\sum_{i=1}^{s} \eta_{i} T_{i}(x) - A(\eta) \right] h(x)$$

- η : The natural/canonical parameters.
- T(x): The **sufficient statistics**. These are functions of the data x.
- h(x): The **base measure**. It relates to the underlying support of the distribution.
- $A(\eta)$: The **log-partition function** or **cumulant-generating function**. It acts as the normalizing constant.

Log-Partition Function & Natural Parameter Space

The log-partition function, $A(\eta)$, is defined by the integral that normalizes the probability distribution:

$$A(\eta) = \log \int \exp \left[\sum_{i=1}^{s} \eta_{i} T_{i}(x) \right] h(x) d\mu(x)$$

The set of parameters η for which this integral is finite $(A(\eta) < \infty)$ is called the **natural parameter space**, denoted by Ξ .

Example: The Exponential Distribution

The exponential distribution is a member of the exponential family.

The PDF of an exponential distribution is:

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

For $x \ge 0$, we can rewrite the density. Reparameterize by setting

$$\eta = -\lambda$$
 (so $\lambda = -\eta$).

Example: The Exponential Distribution

Substituting $\lambda = -\eta$ into the density for $x \ge 0$:

$$f(x) = (-\eta)e^{\eta x}$$

$$= \exp(\log(-\eta))\exp(\eta x)$$

$$= \exp(\eta x + \log(-\eta))$$

To match the canonical form $p_{\eta}(x) = \exp \left[\eta T(x) - A(\eta) \right] h(x)$, we can write:

$$f(x) = \exp\left[\eta x - (-\log(-\eta))\right] \cdot 1$$

By comparison, we identify the components:

- ▶ Sufficient Statistic: T(x) = x
- ▶ Log-Partition Function: $A(\eta) = -\log(-\eta) = \log\left(-\frac{1}{\eta}\right)$
- ▶ Base Measure: h(x) = 1 (for $x \ge 0$)

Example: Verifying $A(\eta)$ and the Parameter Space

We can also find $A(\eta)$ directly from its definition, assuming Lebesgue measure with $h=1_{(0,\infty)},\,T_1(x)=x$:

$$A(\eta) = \log \int_0^\infty \exp(\eta \cdot T(x)) h(x) \, dx = \log \int_0^\infty \exp(\eta x) \cdot 1 \, dx$$

The integral is:

$$\int_0^\infty e^{\eta x} dx = \left[\frac{1}{\eta} e^{\eta x}\right]_0^\infty$$

This integral converges to $\log(-\frac{1}{\eta})$ only if $\eta < 0$. If $\eta \ge 0$, the integral is infinite. Therefore, $A(\eta) = \log\left(-\frac{1}{\eta}\right)$ for $\eta < 0$.

The exponential distribution is in the exponential family, with natural parameter space $\Xi = (-\infty, 0)$.

General Parameterizations

To allow for other, more common parameterizations for an exponential family, we can introduce a new parameter θ .

Let η be a function from some space Ω into the natural parameter space Ξ . The density can be written in terms of $\theta \in \Omega$:

$$p_{\theta}(x) = \exp\left[\sum_{i=1}^{s} \eta_{i}(\theta) T_{i}(x) - B(\theta)\right] h(x)$$

- ▶ Here, θ is the usual/common parameter.
- \blacktriangleright $\eta(\theta)$ is a function that maps θ to the canonical parameters η .
- ▶ The new log-partition function is $B(\theta) = A(\eta(\theta))$.

Families of this form $\{p_{\theta} : \theta \in \Omega\}$ are called **s-parameter exponential families**.

Example: Normal Distribution

Write the PDF for the Normal distribution $N(\mu, \sigma^2)$ in the exponential family form. The common parameter is $\theta = (\mu, \sigma^2)$.

The PDF is:

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-\log\sigma) \exp\left(-\frac{x^2 - 2\mu x + \mu^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\log\sigma - \frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right)$$

Example: Normal Distribution

Continuing by regrouping the terms from the previous slide:

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp \left(\underbrace{\left(\frac{\mu}{\sigma^2}\right)}_{\eta_1(\theta)} \underbrace{x}_{T_1(x)} + \underbrace{\left(-\frac{1}{2\sigma^2}\right)}_{\eta_2(\theta)} \underbrace{x^2}_{T_2(x)} - \underbrace{\left(\frac{\mu^2}{2\sigma^2} + \log \sigma\right)}_{B(\theta)} \right)$$

This matches the general form

$$p_{\theta}(x) = h(x) \exp \left[\sum \eta_i(\theta) T_i(x) - B(\theta) \right].$$

The components are:

$$h(x) = \frac{1}{\sqrt{2\pi}}$$

$$T(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix}$$

$$\eta(\theta) = \begin{pmatrix} \mu/\sigma^2 \\ -1/(2\sigma^2) \end{pmatrix}$$

$$B(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma$$

$$B(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma$$

Example: i.i.d. Normal Sample

For a random sample $\mathbf{x} = (x_1, \dots, x_n)$, the joint density is the product of the individual marginal densities, since the observations are independent.

$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i)$$

Using our result for a single observation:

$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi}} \exp\left(\frac{\mu}{\sigma^2} x_i - \frac{1}{2\sigma^2} x_i^2 - \left(\frac{\mu^2}{2\sigma^2} + \log \sigma\right)\right) \right]$$

Since $\prod \exp(a_i) = \exp(\sum a_i)$, we can combine the terms:

$$p_{\theta}(\mathbf{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(\sum_{i=1}^n \left[\frac{\mu}{\sigma^2} x_i - \frac{1}{2\sigma^2} x_i^2 - \left(\frac{\mu^2}{2\sigma^2} + \log \sigma\right)\right]\right)$$

$$= (2\pi)^{-\frac{n}{2}} \exp\left(\frac{\mu}{\sigma^2} \sum_{i=1}^n x_i - \frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 - n \left(\frac{\mu^2}{2\sigma^2} + \log \sigma\right)\right)$$

i.i.d. Sample: Identification & General Rule

The final joint density is:

$$p_{\theta}(\mathbf{x}) = \underbrace{(2\pi)^{-\frac{n}{2}}}_{h(\mathbf{x})} \exp \left(\underbrace{\left(\frac{\mu}{\sigma^2}\right)}_{\eta_1(\theta)} \underbrace{\sum_{T_1(\mathbf{x})}}_{T_1(\mathbf{x})} - \underbrace{\left(\frac{1}{2\sigma^2}\right)}_{-\eta_2(\theta)} \underbrace{\sum_{T_2(\mathbf{x})}}_{T_2(\mathbf{x})} - \underbrace{n\left(\frac{\mu^2}{2\sigma^2} + \log \sigma\right)}_{B(\theta)}\right)$$

The new components for the i.i.d sample are:

- ► Sufficient Statistics: $T(\mathbf{x}) = \begin{pmatrix} \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i^2 \end{pmatrix}$
- ▶ Log-Partition Function: $B(\theta) = n\left(\frac{\mu^2}{2\sigma^2} + \log \sigma\right)$
- ▶ Base Measure: $h(\mathbf{x}) = (2\pi)^{-n/2}$

General Rule: If you have an i.i.d. sample x_1, \ldots, x_n from any exponential family, the joint density is also an exponential family. The new sufficient statistics are the sums of the original ones, and the new $B(\theta)$ is n times the original.

2.2 Differential Identities

Goal: We can find the moments of the sufficient statistics by differentiating the log-partition function $A(\eta)$.

Theorem

Let Ξ_f be the set of values for $\eta \in \mathbb{R}^s$ where

$$\int |f(x)| \exp \left[\sum_{i=1}^{s} \eta_{i} T_{i}(x)\right] h(x) d\mu(x) < \infty$$

Then the function

$$g(\eta) = \int f(x) \exp \left[\sum_{i=1}^{s} \eta_i T_i(x)\right] h(x) d\mu(x)$$

is continuous and has continuous partial derivatives of all orders for $\eta \in \Xi_f^o$ (the interior of Ξ_f). Furthermore, these derivatives can be computed by differentiation under the integral sign.

Deriving the First Moment

Let f(x) = 1. Then,:

$$g(\eta) = \int \exp\left[\sum_{i=1}^{s} \eta_i T_i(x)\right] h(x) d\mu(x)$$

By the definition of $A(\eta)$, this is simply $g(\eta) = e^{A(\eta)}$. Now, we differentiate both sides w.r.t. a single parameter η_i .

Left-Hand Side (LHS): Using the chain rule,

Deriving the First Moment

Let f(x) = 1. Then,:

$$g(\eta) = \int \exp\left[\sum_{i=1}^{s} \eta_i T_i(x)\right] h(x) d\mu(x)$$

By the definition of $A(\eta)$, this is simply $g(\eta) = e^{A(\eta)}$. Now, we differentiate both sides w.r.t. a single parameter η_i .

Left-Hand Side (LHS): Using the chain rule,

$$rac{\partial}{\partial \eta_j} e^{A(\eta)} = e^{A(\eta)} rac{\partial A(\eta)}{\partial \eta_j}$$

Right-Hand Side (RHS): Differentiating under the integral sign,

Deriving the First Moment

Let f(x) = 1. Then,:

$$g(\eta) = \int \exp\left[\sum_{i=1}^{s} \eta_i T_i(x)\right] h(x) d\mu(x)$$

By the definition of $A(\eta)$, this is simply $g(\eta) = e^{A(\eta)}$. Now, we differentiate both sides w.r.t. a single parameter η_i .

Left-Hand Side (LHS): Using the chain rule,

$$\frac{\partial}{\partial \eta_j} e^{A(\eta)} = e^{A(\eta)} \frac{\partial A(\eta)}{\partial \eta_j}$$

Right-Hand Side (RHS): Differentiating under the integral sign,

$$\frac{\partial}{\partial \eta_j} RHS = \int \frac{\partial}{\partial \eta_j} \exp\left[\sum \eta_i T_i(x)\right] h(x) d\mu(x)$$
$$= \int T_j(x) \exp\left[\sum \eta_i T_i(x)\right] h(x) d\mu(x)$$

$$e^{A(\eta)} \frac{\partial A(\eta)}{\partial \eta_i} = \int T_j(x) \exp\left[\sum \eta_i T_i(x)\right] h(x) d\mu(x)$$

$$e^{A(\eta)} \frac{\partial A(\eta)}{\partial \eta_i} = \int T_j(x) \exp\left[\sum \eta_i T_i(x)\right] h(x) d\mu(x)$$

Dividing both sides by $e^{A(\eta)}$ is equivalent to inserting $e^{-A(\eta)}$:

$$\frac{\partial A(\eta)}{\partial \eta_j} = \int T_j(x) \exp\left[\sum \eta_i T_i(x) - A(\eta)\right] h(x) d\mu(x)$$
$$= \int T_j(x) \cdot p_{\eta}(x) d\mu(x)$$

$$e^{A(\eta)} \frac{\partial A(\eta)}{\partial \eta_j} = \int T_j(x) \exp\left[\sum \eta_i T_i(x)\right] h(x) d\mu(x)$$

Dividing both sides by $e^{A(\eta)}$ is equivalent to inserting $e^{-A(\eta)}$:

$$\frac{\partial A(\eta)}{\partial \eta_j} = \int T_j(x) \exp\left[\sum \eta_i T_i(x) - A(\eta)\right] h(x) d\mu(x)$$
$$= \int T_j(x) \cdot p_{\eta}(x) d\mu(x)$$

By the definition of expectation, the RHS is $\mathbb{E}_{\eta}[T_j(x)]$.

The first partial derivative of the log-partition function $A(\eta)$ with respect to η_j is the expected value of the corresponding sufficient statistic $T_j(x)$.

$$\frac{\partial A(\eta)}{\partial n_i} = \mathbb{E}_{\eta}[T_j(x)]$$

2.3 Dominated Convergence

We now know that we can differentiate under the integral sign. The formal justification for this is the **Dominated Convergence Theorem**.

Consider the case with a single parameter (s=1) and examine the derivative at $\eta=0$. The definition of a derivative is a limit. For a function $G(\eta)$, the derivative at $\eta=0$ is:

$$G'(0) = \lim_{h \to 0} \frac{G(h) - G(0)}{h}$$

2.3 Dominated Convergence

We now know that we can differentiate under the integral sign. The formal justification for this is the **Dominated Convergence Theorem**.

Consider the case with a single parameter (s=1) and examine the derivative at $\eta=0$. The definition of a derivative is a limit. For a function $G(\eta)$, the derivative at $\eta=0$ is:

$$G'(0) = \lim_{h \to 0} \frac{G(h) - G(0)}{h}$$

In our case, we used $G(\eta) = e^{A(\eta)} = \int e^{\eta T(x)} h(x) d\mu(x)$.

Substituting this in:

$$G'(0) = \lim_{h \to 0} \frac{\int e^{hT(x)} h(x) \, d\mu(x) - \int e^{0 \cdot T(x)} h(x) \, d\mu(x)}{h}$$

$$G'(0) = \lim_{h \to 0} \int \left| \frac{e^{hT(x)} - 1}{h} \right| h(x) d\mu(x)$$

Define the function inside the integral: $f_h(x) = \left\lceil \frac{e^{hT(x)} - 1}{h} \right\rceil h(x)$.

$$G'(0) = \lim_{h \to 0} \int \left| \frac{e^{hT(x)} - 1}{h} \right| h(x) d\mu(x)$$

Define the function inside the integral: $f_h(x) = \left\lceil \frac{e^{hT(x)} - 1}{h} \right\rceil h(x)$.

First, we find the pointwise limit of this function as $h \to 0$. Using

$$\lim_{y\to 0} \frac{e^{ay}-1}{y} = a$$
, we get:

$$\lim_{h\to 0} f_h(x) = T(x)h(x)$$

$$G'(0) = \lim_{h \to 0} \int \left| \frac{e^{hT(x)} - 1}{h} \right| h(x) d\mu(x)$$

Define the function inside the integral: $f_h(x) = \left\lceil \frac{e^{hT(x)} - 1}{h} \right\rceil h(x)$.

First, we find the pointwise limit of this function as $h \to 0$. Using

 $\lim_{y\to 0} \frac{e^{ay}-1}{y} = a$, we get:

$$\lim_{h\to 0} f_h(x) = T(x)h(x)$$

The problem of finding G'(0) is now about whether we can swap the limit and the integral:

$$\lim_{h\to 0} \int f_h(x) d\mu(x) \stackrel{?}{=} \int \left(\lim_{h\to 0} f_h(x)\right) d\mu(x)$$

The Dominated Convergence Theorem

The theorem that formally permits swapping the limit and integral is the Dominated Convergence Theorem.

Theorem (Dominated Convergence)

Let $\{f_n\}$ be a sequence of functions. If:

- 1. Pointwise convergence: $\lim_{n\to\infty} f_n(x) = f(x)$ for almost every x.
- 2. Domination: There exists an integrable function g (i.e., $\int |g(x)| d\mu(x) < \infty$) such that $|f_n(x)| \le g(x)$ for all n.

Then, the limit and integral can be swapped:

$$\lim_{n\to\infty} \int f_n(x) \, d\mu(x) = \int \lim_{n\to\infty} f(x) \, d\mu(x) = \int f d\mu$$

Consider the function: $f_n(x) = \mathbf{1}_{[n,n+1]}(x)$.

Consider the function: $f_n(x) = \mathbf{1}_{[n,n+1]}(x)$.

Pointwise Limit: For any fixed x, $\lim_{n\to\infty} f_n(x) = 0$.

Consider the function: $f_n(x) = \mathbf{1}_{[n,n+1]}(x)$.

- **Pointwise Limit:** For any fixed x, $\lim_{n\to\infty} f_n(x) = 0$.
- ▶ Integral of the Limit: $\int (\lim_{n\to\infty} f_n(x)) dx = \int 0 dx = 0$.

Consider the function: $f_n(x) = \mathbf{1}_{[n,n+1]}(x)$.

- **Pointwise Limit:** For any fixed x, $\lim_{n\to\infty} f_n(x) = 0$.
- ▶ Integral of the Limit: $\int (\lim_{n\to\infty} f_n(x)) dx = \int 0 dx = 0$.
- ▶ Limit of the Integrals: The area under the curve is always 1. So, $\lim_{n\to\infty} \int f_n(x) dx = \lim_{n\to\infty} 1 = 1$.

Consider the function: $f_n(x) = \mathbf{1}_{[n,n+1]}(x)$.

- **Pointwise Limit:** For any fixed x, $\lim_{n\to\infty} f_n(x) = 0$.
- ▶ Integral of the Limit: $\int (\lim_{n\to\infty} f_n(x)) dx = \int 0 dx = 0$.
- ▶ Limit of the Integrals: The area under the curve is always 1. So, $\lim_{n\to\infty} \int f_n(x) dx = \lim_{n\to\infty} 1 = 1$.

Since $0 \neq 1$, the swap fails.

Consider the function: $f_n(x) = \mathbf{1}_{[n,n+1]}(x)$.

- **Pointwise Limit:** For any fixed x, $\lim_{n\to\infty} f_n(x) = 0$.
- ▶ Integral of the Limit: $\int (\lim_{n\to\infty} f_n(x)) dx = \int 0 dx = 0$.
- ▶ Limit of the Integrals: The area under the curve is always 1. So, $\lim_{n\to\infty} \int f_n(x) dx = \lim_{n\to\infty} 1 = 1$.

Since $0 \neq 1$, the swap fails.

Reason

The domination condition failed. Any function g(x) that dominates the sequence would have to be at least 1 on $[0, \infty)$, making its integral infinite.

Domination in Exponential Families

On the other hand, the sequence of functions from our derivative calculation *does* satisfy the domination condition.

Recall our function: $f_h(x) = \left[\frac{e^{hT(x)}-1}{h}\right]h(x)$. We need to find an integrable function g(x) that dominates $|f_h(x)|$ for all h in a neighborhood of 0.

Domination in Exponential Families

On the other hand, the sequence of functions from our derivative calculation *does* satisfy the domination condition.

Recall our function: $f_h(x) = \left[\frac{e^{hT(x)}-1}{h}\right]h(x)$. We need to find an integrable function g(x) that dominates $|f_h(x)|$ for all h in a neighborhood of 0.

We use the key inequality $|e^t - 1| \le |t|e^{|t|}$, which holds for all $t \in \mathbb{R}$. Letting t = hT(x), we can find an upper bound for $|f_h(x)|$:

$$|f_h(x)| = \left| \frac{e^{hT(x)} - 1}{h} \right| |h(x)|$$

$$\leq \frac{|hT(x)|e^{|hT(x)|}}{|h|} |h(x)|$$

$$= |T(x)|e^{|h||T(x)|} |h(x)|$$

$$|f_h(x)| \le |T(x)|e^{|h||T(x)|}|h(x)|$$

The goal is to find a single function g(x), which does not depend on h, that is greater than $|f_h(x)|$ for all h in a neighborhood of 0 (e.g., for $|h| \le \epsilon$ for some small $\epsilon > 0$).

For a small, fixed $\epsilon > 0$, we can define the following dominating function:

$$g(x) := \frac{1}{\epsilon} \left(e^{2\epsilon T(x)} + e^{-2\epsilon T(x)} \right) h(x)$$

This function g(x) works as an upper bound for $|f_h(x)|$.

$$|f_h(x)| \le |T(x)|e^{|h||T(x)|}|h(x)|$$

The goal is to find a single function g(x), which does not depend on h, that is greater than $|f_h(x)|$ for all h in a neighborhood of 0 (e.g., for $|h| \le \epsilon$ for some small $\epsilon > 0$).

For a small, fixed $\epsilon > 0$, we can define the following dominating function:

$$g(x) := \frac{1}{\epsilon} \left(e^{2\epsilon T(x)} + e^{-2\epsilon T(x)} \right) h(x)$$

This function g(x) works as an upper bound for $|f_h(x)|$. Crucially,

g(x) has a finite integral, provided $\pm 2\epsilon$ are in the natural parameter space:

$$\int g(x) d\mu(x) = \frac{1}{\epsilon} \left[\int e^{2\epsilon T(x)} h(x) d\mu(x) + \int e^{-2\epsilon T(x)} h(x) d\mu(x) \right]$$

$$= \frac{1}{\epsilon} \left(e^{A(2\epsilon)} + e^{A(-2\epsilon)} \right) < \infty$$

$$\int g(x) d\mu(x) = \frac{1}{\epsilon} \left[\int e^{2\epsilon T(x)} h(x) d\mu(x) + \int e^{-2\epsilon T(x)} h(x) d\mu(x) \right]$$
$$= \frac{1}{\epsilon} \left(e^{A(2\epsilon)} + e^{A(-2\epsilon)} \right) < \infty$$

$$\int g(x) d\mu(x) = \frac{1}{\epsilon} \left[\int e^{2\epsilon T(x)} h(x) d\mu(x) + \int e^{-2\epsilon T(x)} h(x) d\mu(x) \right]$$
$$= \frac{1}{\epsilon} \left(e^{A(2\epsilon)} + e^{A(-2\epsilon)} \right) < \infty$$

Conclusion

Since we have found an integrable function g(x) that dominates $|f_h(x)|$, the Dominated Convergence Theorem applies.

$$\lim_{h\to 0} \int f_h(x) d\mu(x) = \int \lim_{h\to 0} f(x) d\mu(x)$$