Solutions

Exercise 1: Let A be a set of size n. How many relations exist on A?

 $A \times A$ has n^2 elements. Each of them corresponds to a proposition that can be either true or false. So the number of relations on A is 2^{n^2} .

Exercises 2, 3 and 4 concern the following relations:

- (i) $x\mathbf{R}_1y \Leftrightarrow y$ is a multiple of x on \mathbb{N}
- (ii) $x\mathbf{R}_2y \Leftrightarrow x < y \text{ on } S = \{0, 1, 2, 3\}$
- (iii) $x\mathbf{R}_3y \Leftrightarrow xy = y \text{ on } [0,1]$
- (iv) $x\mathbf{R}_4y \Leftrightarrow x-y$ is even on \mathbb{N}
- (v) $x\mathbf{R}_5 y \Leftrightarrow y > x 1$ on \mathbb{R}
- (vi) $(x, y)\mathbf{R}_6(a, b) \Leftrightarrow x^2 + y^2 \le a^2 + b^2 \text{ on } \mathbb{R}^2$
- (vii) $(x,y)\mathbf{R}_7(a,b) \Leftrightarrow x+y=a+b \text{ on } \mathbb{R}^2$
- (viii) $X\mathbf{R}_8Y \Leftrightarrow X \subseteq Y$ on $\mathcal{P}(A)$ for some nonempty set A.

Exercise 2: Show that relations \mathbf{R}_2 , \mathbf{R}_3 , \mathbf{R}_5 , \mathbf{R}_6 and \mathbf{R}_8 are not symmetric and that \mathbf{R}_7 is symmetric.

 \mathbf{R}_2 : Take x = 1 and y = 3. Then x < y, so $x\mathbf{R}_2y$ is true, but $y \nleq x$, so $y\mathbf{R}_2x$ is false.

 \mathbf{R}_3 : Take x=1 and $y=\frac{1}{\pi}$. Then xy=y, so $x\mathbf{R}_3y$ is true, but $yx\neq x$, so $y\mathbf{R}_3x$ is false.

 \mathbf{R}_5 : Take x=1 and $y=\pi$. Then y>x-1, so $x\mathbf{R}_5y$ is true, but $x\not>y-1$, so $y\mathbf{R}_5x$ is false.

R₆: Take (x,y) = (3,4) and (a,b) = (1,5). Then $x^2 + y^2 \le a^2 + b^2$, so (x,y) **R**₆(a,b) is true, but $a^2 + b^2 \nleq x^2 + y^2$, so y**R**₂x is false.

 \mathbf{R}_7 : Let $(x,y) \in \mathbb{R}^2$, $(a,b) \in \mathbb{R}^2$ and suppose that $(x,y)\mathbf{R}_7(a,b)$ is true

$$\Rightarrow x + y = a + b$$

$$\Rightarrow a + b = x + y$$

$$\Rightarrow (a, b)\mathbf{R}_7(x, y) \text{ is true,}$$

which completes the proof.

 \mathbf{R}_8 : Take $X = \emptyset$ and $Y = \{1\}$. Then $X \subseteq Y$, so $X\mathbf{R}_8Y$ is true, but $Y \nsubseteq X$, so $Y\mathbf{R}_8X$ is false.

Exercise 3: For relations \mathbf{R}_1 , \mathbf{R}_4 , \mathbf{R}_5 , \mathbf{R}_6 and \mathbf{R}_8 prove whether or not they are transitive.

 \mathbf{R}_1 is transitive. **Proof:** Let $x, y, z \in \mathbb{N}$ and suppose that $x\mathbf{R}_1y$ is true and that $y\mathbf{R}_1z$ is true. Then y is a multiple of x and z is a multiple of y. But then $y = m \cdot x$ for some natural number m and $z = n \cdot y$ for some natural number n. This means that $z = n \cdot y = n \cdot m \cdot x$ and $n \cdot m$ is a natural number. Therefore z is a multiple of x and $x\mathbf{R}_1z$ is true.

 \mathbf{R}_4 is transitive. **Proof:** Let $x, y, z \in \mathbb{N}$ and suppose that $x\mathbf{R}_4y$ is true and that $y\mathbf{R}_4z$ is true. Then x-y is even and y-z is even. But then x-z=x-y+y-z=(x-y)+(y-z) is the sum of 2 numbers making it an even number itself. Hence $x\mathbf{R}_4z$ is true.

 \mathbf{R}_5 is not transitive. **Proof** (Counterexample): Take $x = \frac{3}{2} \in \mathbb{R}$, $y = \frac{3}{4} \in \mathbb{R}$ and $z = 0 \in \mathbb{R}$. Then y > x - 1 and z > y - 1, so $x\mathbf{R}_3y$ and $y\mathbf{R}_3z$ are both true. However, $z \not> x - 1$, so $x\mathbf{R}_3z$ is false.

 \mathbf{R}_6 is transitive. **Proof:** Let (x,y), (a,b), $(c,d) \in \mathbb{R}^2$ and suppose that (x,y) \mathbf{R}_6 (a,b) is true and that (a,b) \mathbf{R}_6 (c,d) is true. Then $x^2 + y^2 \le a^2 + b^2$ and $a^2 + b^2 \le c^2 + d^2$. But then $x^2 + y^2 \le a^2 + b^2 \le c^2 + d^2$ so (x,y) \mathbf{R}_1 (c,d) is true.

 \mathbf{R}_8 is transitive. **Proof:** Let $X, Y, Z \in \mathcal{P}(A)$ and assume that $X\mathbf{R}_8Y$ and $Y\mathbf{R}_8Z$ are true. Then $X \subseteq Y$ and $Y \subseteq Z$. Now, let $x \in X$. Then $x \in Y$ (since $X \subseteq Y$). But then $x \in Z$ (since $Y \subseteq Z$). Hence $X \subseteq Z$ and $X\mathbf{R}_8Z$ is true.

Exercise 4: For relations \mathbf{R}_2 , \mathbf{R}_5 , \mathbf{R}_6 , \mathbf{R}_7 and \mathbf{R}_8 prove whether or not they are reflexive.

 \mathbf{R}_2 is not reflexive. **Proof** (Counterexample): Take $x = 0 \in S$. Then $x \not< x$, so $x\mathbf{R}_2x$ is false and \mathbf{R}_2 is not reflexive.

 \mathbf{R}_5 is reflexive. **Proof:** Let $x \in \mathbb{R}$. Then x > x - 1, so $x \mathbf{R}_5 x$ is true and \mathbf{R}_5 is reflexive.

 \mathbf{R}_6 is reflexive. **Proof:** Let $(x,y) \in \mathbb{R}^2$. Then $x^2 + y^2 \le x^2 + y^2$, so $(x,y) \mathbf{R}_6(x,y)$ is true.

 \mathbf{R}_7 is reflexive. **Proof:** Let $(x,y) \in \mathbb{R}^2$. Then x+y=x+y, so $(x,y) \mathbf{R}_7(x,y)$ is true and \mathbf{R}_7 is reflexive.

 \mathbf{R}_8 is reflexive. **Proof:** Let $X \in \mathcal{P}(A)$. Then $X \subseteq X$, so $X\mathbf{R}_8X$ is true and \mathbf{R}_8 is reflexive.

Exercise 5: The relation in example 2 is reflexive: 1R1, 2R2 and 3R3 are all true. It is also symmetric: For $x \neq y$ we have $x\mathbf{R}y$ and $y\mathbf{R}x$ either both true or both false. And it is also transitive: We have to check all possibilities of x, y and z such that $x\mathbf{R}y$ and $y\mathbf{R}z$ are both true. It turns out that in all of these cases $x\mathbf{R}z$ is true as well. Check this out for yourself.

Exercise 6: \mathbf{R}_1 is not reflexive, since $1\mathbf{R}_11$ is false; it is symmetric if $1\mathbf{R}_13$ and $3\mathbf{R}_12$ are both false and it is not transitive, since $1\mathbf{R}_12$ and $2\mathbf{R}_11$ are both true and $1\mathbf{R}_11$ is false.

 \mathbf{R}_2 is reflexive if $2\mathbf{R}_22$ is true; \mathbf{R}_2 is not symmetric; For \mathbf{R}_2 to be transitive we need that 1) $1\mathbf{R}_23$ is true, since $1\mathbf{R}_22$ and $2\mathbf{R}_23$ are both true; 2) if $3\mathbf{R}_12$ is true, then, since $2\mathbf{R}_13$ is true as well, also $2\mathbf{R}_12$ must be true.

 \mathbf{R}_3 is reflexive if $3\mathbf{R}_33$ is true; \mathbf{R}_3 is symmetric if $2\mathbf{R}_31$ is false and $3\mathbf{R}_32$ is true. For \mathbf{R}_3 to be transitive we need that 1) $3\mathbf{R}_32$ and $2\mathbf{R}_31$ are not both true, as this would mean that $3\mathbf{R}_31$ would have to be true as well; 2) if $3\mathbf{R}_32$ is true, then, since $2\mathbf{R}_33$ is true as well, also $3\mathbf{R}_33$ must be true.

smallskip \mathbf{R}_4 is not reflexive, since $1\mathbf{R}_41$ and $3\mathbf{R}_43$ are false; it is symmetric if $1\mathbf{R}_43$ and $3\mathbf{R}_42$ are both false; For \mathbf{R}_4 to be transitive we need that $1\mathbf{R}_43$ and $3\mathbf{R}_42$ are not both true, since $1\mathbf{R}_42$ is false.

Exercise 7: For the relation $x\mathbf{R}y \Leftrightarrow x-4y$ is divisible by 3' on \mathbb{Z} we have: \mathbf{R} is reflexive: Let $x \in \mathbb{Z}$. Then x-4x=-3x, which is divisible by 3.

R is symmetric: Let $x, y \in \mathbb{Z}$ and assume that x - 4y is divisible by 3. Then x - 4y = 3k for some integer k. But then 4y - x = -3k, which is divisible by 3. This means that y - 4x = (4y - x) - 3y + 3x is also divisible by 3.

R is transitive: Let $x, y, z \in \mathbb{Z}$ and assume that x - 4y is divisible by 3 and that y - 4z is divisible by 3. Then x - 4z = x - 4y + 4y - 4z = (x - 4y) + 3y + (y - 4z) is also divisible by 3.

Exercise 8: How many of the relations in exercise 1 are reflexive? And symmetric?

Reflexive: Since $x\mathbf{R}x$ must be true for all x we have $n \cdot (n-1)$ 'free' choices. So: $2^{n(n-1)}$. Symmetric: For $x \neq y$ we require that $x\mathbf{R}y$ has the same truth value as $y\mathbf{R}x$. This means that we have 'only' $\frac{1}{2}n(n+1)$ free choices. So: $2^{1/2 \cdot n(n+1)}$.

Exercise 9: What elements of \mathbb{Z} are in the same equivalence class as 0? We will call this equivalence class E_0 . We have:

$$E_0 = \{ m \in S : m\mathbf{R}0 \text{ is true} \}$$

= $\{ m \in S : m - 0 \text{ is divisible by 3} \}$
= $\{ m \in S : m \text{ is divisible by 3} \}$
= $\{ \dots, -6, -3, 0, 3, 6, \dots \}$

Now what elements of \mathbb{Z} are in the same equivalence class as 1? We will call this equivalence class E_1 . We have:

$$E_1 = \{ m \in S : m\mathbf{R}1 \text{ is true} \}$$

$$= \{ m \in S : m - 4 \cdot 1 \text{ is divisible by } 3 \}$$

$$= \{ m \in S : m - 4 \text{ is divisible by } 3 \}$$

$$= \{ \dots, -5, -2, 1, 4, 7, \dots \}$$

Now what elements of S are in the same equivalence class as 2? We will call this equivalence class E_2 . We have:

$$\begin{split} E_2 &= \{ m \in S : m\mathbf{R}2 \text{ is true} \} \\ &= \{ m \in S : m - 4 \cdot 2 \text{ is divisible by } 3 \} \\ &= \{ m \in S : m - 8 \text{ is divisible by } 3 \} \\ &= \{ \dots, -4, -1, 2, 5, 8, \dots \} \end{split}$$

Exercise 10: First we prove that the relations are reflexive, symmetric and transitive.

Relation \mathbf{R}_9 :

 \mathbf{R}_9 is reflexive. **Proof:** Let $x \in \{0, 1, 2, \dots, 20\}$. Then x has the same remainder on division by 5 as x, so $x\mathbf{R}_9x$ is true.

 \mathbf{R}_9 is symmetric. **Proof:** Let $x, y \in \{0, 1, 2, ..., 20\}$ and assume that $x\mathbf{R}_9y$ is true. Then x has the same remainder on division by 5 as y. But then y has the same remainder on division by 5 as x, so $y\mathbf{R}_9x$ is true.

 \mathbf{R}_9 is transitive. **Proof:** Let $x, y \in \{0, 1, 2, \dots, 20\}$ and assume that both $x\mathbf{R}_9y$ and $y\mathbf{R}_9z$ are

true. Then x has the same remainder on division by 5 as y and y has the same remainder on division by 5 as z. But then x has the same remainder on division by 5 as z, so $x\mathbf{R}_9z$ is true.

The construction of the equivalence classes of \mathbf{R}_9

What elements of $S = \{0, 1, 2, ..., 20\}$ are in the same equivalence class as 0? We will call this equivalence class E_0 . We have:

```
E_0 = \{ m \in S : 0\mathbf{R}_9 m \text{ is true} \}
= \{ m \in S : 0 \equiv m \pmod{5} \}
= \{ m \in S : m = 5 \cdot k \text{ for some integer } k \}
= \{ m \in S : m \text{ is divisible by 5} \}
= \{ 0, 5, 10, 15, 20 \}
```

Now what elements of S are in the same equivalence class as 1? We will call this equivalence class E_1 . We have:

$$E_1 = \{ m \in S : 1\mathbf{R}_9 m \text{ is true} \}$$

$$= \{ m \in S : 1 \equiv m \pmod{5} \}$$

$$= \{ m \in S : m = 5 \cdot k + 1 \text{ for some integer } k \}$$

$$= \{ 1, 6, 11, 16 \}$$

Now what elements of S are in the same equivalence class as 2? We will call this equivalence class E_2 . We have:

$$E_2 = \{ m \in S : 2\mathbf{R}_9 m \text{ is true} \}$$

$$= \{ m \in S : 2 \equiv m \pmod{5} \}$$

$$= \{ m \in S : m = 5 \cdot k + 2 \text{ for some integer } k \}$$

$$= \{ 2, 7, 12, 17 \}$$

Continuing this analysis we find two more equivalence classes: $E_3 = \{3, 8, 13, 18\}$ and $E_4 = \{4, 9, 14, 19\}$.

Relation \mathbf{R}_{10} :

 \mathbf{R}_{10} is reflexive. **Proof:** Let $x \in \{1, 2, \dots, 20\}$. Then $x \cdot x$ is a square, so $x\mathbf{R}_{10}x$ is true.

 \mathbf{R}_{10} is symmetric. **Proof:** Let $x, y \in \{1, 2, \dots, 20\}$ and assume that $x\mathbf{R}_{10}y$ is true. Then $x \cdot y$ is a square. But then $y \cdot x = x \cdot y$ is a square as well, so $y\mathbf{R}_{10}x$ is true.

 \mathbf{R}_{10} is transitive. **Proof:** Let $x, y, z \in \{1, 2, ..., 20\}$ and assume that $x\mathbf{R}_{10}y$ is true and that $y\mathbf{R}_{10}z$ is true. Then $x \cdot y$ is a (perfect) square and $y \cdot z$ is a (perfect) square. This means that there exist natural numbers m and n such that $x \cdot y = m^2$ and $y \cdot z = n^2$. But then

$$x \cdot z = \frac{x \cdot y}{y} \cdot \frac{y \cdot z}{y} = \frac{m^2 \cdot n^2}{y^2} = \left(\frac{mn}{y}\right)^2.$$

Remains to prove that $\frac{mn}{y}$ is an integer. The following argument suffices: Notice that $\frac{m^2}{y}$ is an integer (it is equal to x). This means that every prime factor in y is also in m^2 . But all prime

factors in m^2 are also in m, but then only half as many times. This means that every prime factor in y is also in m, and if a prime factor appears in y more than once, say q times, then it appears at least $\frac{q}{2}$ times in m. The exact same argument holds for n, because $\frac{n^2}{y}$ is equal to z, which is an integer. But that means that $m \cdot n$ contains all prime factors of y at least as many times as y, which means that $\frac{mn}{y}$ is an integer.

The construction of the equivalence classes of \mathbf{R}_{10}

What elements of $S = \{1, 2, ..., 20\}$ are in the same equivalence class as 1? We will call this equivalence class E_1 . We have:

$$E_1 = \{ m \in S : 1\mathbf{R}_{10}m \text{ is true} \}$$

= $\{ m \in S : 1 \cdot m \text{ is a square} \}$
= $\{ m \in S : m \text{ is a square} \}$
= $\{ 1, 4, 9, 16 \}$

Now what elements of S are in the same equivalence class as 2? We will call this equivalence class E_2 . We have:

$$E_2 = \{ m \in S : 2\mathbf{R}_{10}m \text{ is true} \}$$

= $\{ m \in S : 2 \cdot m \text{ is a square} \}$
= $\{ 2, 8, 18 \}$

Now what elements of S are in the same equivalence class as 3? We will call this equivalence class E_3 . We have:

$$E_3 = \{ m \in S : 3\mathbf{R}_{10}m \text{ is true} \}$$
$$= \{ m \in S : 3 \cdot m \text{ is a square} \}$$
$$= \{ 3, 12 \}$$

The other equivalence classes are $E_5 = \{5, 20\}$ (you may call this class E_4 if you want to!), $E_6 = \{6\}$, $E_7 = \{7\}$, $E_{10} = \{10\}$, $E_{11} = \{11\}$, $E_{13} = \{13\}$, $E_{14} = \{14\}$, $E_{15} = \{15\}$, $E_{17} = \{17\}$ and $E_{19} = \{19\}$.

Exercise 11: The 'equals'-relation "=" is a typical example of a relation that is both symmetric and antisymmetric.

Exercise 12: For relations \mathbf{R}_2 , \mathbf{R}_5 , \mathbf{R}_7 and \mathbf{R}_8 in example 1 as well as relations \mathbf{R}_9 and \mathbf{R}_{10} in exercise 10, prove whether or not they are antisymmetric.

 \mathbf{R}_2 is antisymmetric. **Proof:** Let $x, y \in \{0, 1, 2, 3\}$ and assume that $x\mathbf{R}_2y$ is true and that $x \neq y$. Then x < y and hence $y \not< x$.

 \mathbf{R}_5 is not antisymmetric. **Proof:** Take x=0 and $y=\frac{1}{2}$. Then y>x-1 and x>y-1, so $x\mathbf{R}_5y$ and $y\mathbf{R}_5x$ are both true. However, $x\neq y$.

 \mathbf{R}_7 is not antisymmetric. **Proof:** Take (x,y)=(0,0) and (a,b)=(1,-1). Then x+y=a+b

and a+b=x+y, so $(x,y)\mathbf{R}_7(a,b)$ and $(a,b)\mathbf{R}_7(x,y)$ are both true. However, $(x,y)\neq (a,b)$. \mathbf{R}_8 is antisymmetric. **Proof:** Let $X,Y\in\mathcal{P}(A)$ and assume that $X\subseteq Y$ and $Y\subseteq X$. Then X=Y.

 \mathbf{R}_9 is not antisymmetric. **Proof:** Take x=0 and y=5. Then x has the same remainder on division by 5 as y and y has the same remainder on division by 5 as x, so $x\mathbf{R}_9y$ and $y\mathbf{R}_9x$ are both true. However, $x \neq y$.

 \mathbf{R}_{10} is not antisymmetric. **Proof:** Take x=2 and y=18. Then $x \cdot y$ is a square and $y \cdot x$ is a square, so $x\mathbf{R}_{10}y$ and $y\mathbf{R}_{10}x$ are both true. However, $x \neq y$.

Exercise 13: The relation in example 2 is not antisymmetric. **Proof:** Take x = 1 and y = 3. Then $x\mathbf{R}y$ and $y\mathbf{R}x$ are both true. However, $x \neq y$.

Exercise 14: Concerning the relations in exercise 6 we have: \mathbf{R}_1 is not antisymmetric, since $1\mathbf{R}_12$ and $2\mathbf{R}_11$ are both true; \mathbf{R}_2 is antisymmetric as long as $3\mathbf{R}_22$ is false; \mathbf{R}_3 is antisymmetric if $3\mathbf{R}_32$ is false and \mathbf{R}_4 is always antisymmetric.

Exercise 15: The relation in exercise 7 is not antisymmetric. **Proof:** Take x = 0 and y = 3. Then x - 4y = -12, which is divisible by 3. Furthermore, y - 4x = 3 is also divisible by 3. Therefore both $x\mathbf{R}y$ and $y\mathbf{R}x$ are true. However, $x \neq y$.

Exercise 16: How many of the relations in exercise 1 are antisymmetric?

Antisymmetry requires that for any tuple (x, y) with $x \neq y$ we have that $x\mathbf{R}y$ and $y\mathbf{R}x$ are not both true. So, for all $x\mathbf{R}x$ we have two possibilities (and there are n of those) and for all couples $x\mathbf{R}y$ and $y\mathbf{R}x$ where $x \neq y$ we have three possibilities in total. Hence, the total number of antisymmetric relations is $2^n \cdot 3^{1/2 \cdot n(n-1)}$.

Exercise 17: In relation-form this function looks as follows:

$$\mathbf{R} = \{(\emptyset, 0), (\{1\}, 1), (\{2\}, 2), (\{3\}, 3), (\{1, 2\}, 4), (\{1, 3\}, 5), (\{2, 3\}, 6), (\{1, 2, 3\}, 10)\}$$
 on $\mathcal{P}(\{1, 2, 3\}) \times \mathbb{R}$

Exercise 18: For every $a \in A$ we need one outgoing arrow. This arrow can point to any of the n elements of B, so n possibilities per element of A. There are m elements in A, so in total we find n^m .

Exercise 20: For the functions f_3 , f_5 , f_6 , f_8 , f_{10} and f_{12} in Example 7, determine whether or not they are injective.

- f_3 : Take x=1 and y=5. Then $f_3(x)=25=f_3(y)$, but $x\neq y$, so f_3 is not injective.
- f_5 : Let $x, y \in \{1, 2, 3, 4, 5\}$ and assume that $f_5(x) = f_5(y)$. Then 3x = 3y, so x = y and f_5 is injective.
- f_6 : Let $x, y \in \{1, 2, 3, 4, 5\}$ and assume that $f_6(x) = f_6(y)$. Then 3x = 3y (notice that $f_6(1) = 3 = 3 \cdot 1$), so x = y and f_6 is injective.

- f_8 : Let $x, y \in \{1, 2, 3, 4, 5\}$ and assume that $f_8(x) = f_8(y)$. Then $x^2 = y^2$, so $x^2 y^2 = 0$. But then (x y)(x + y) = 0, so $x y = 0 \lor x + y = 0$. Since x + y can not be equal to 0, we conclude that x y = 0. Hence x = y and f_8 is injective.
- f_{10} : Take x = -5 and y = 7. Then $f_{10}(x) = 36 = f_{10}(y)$, but $x \neq y$, so f_{10} is not injective.
- f_{12} : Take x=1 and y=3. Then $f_{12}(x)=3=f_{12}(y)$, but $x\neq y$, so f_{12} is not injective.

Exercises 21, 22 & 28:

- g_1 : We prove that $g_1:(0,1]\to[1,\infty)$, where $g_1(x)=\frac{1}{x}$ is injective and surjective, we find its inverse and calculate $g_1^{-1}(g_1)$.
 - g_1 is injective. **Proof:** Let $x \in (0,1]$, $y \in (0,1]$. Then $g_1(x) = g_1(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$. g_1 is surjective. **Proof:** Let $y \in [1,\infty)$ and take $x = \frac{1}{y} \in (0,1]$. Then $g_1(x) = \frac{1}{\frac{1}{y}} = y$. The corresponding preliminary calculation: $y = \frac{1}{x} \Leftrightarrow x = \frac{1}{y}$.
 - We now know that the inverse function of g_1 will be $g_1^{-1}:[1,\infty)\to(0,1]$, where $g_1^{-1}(y)=\frac{1}{y}$. To show that this is correct, let $x\in(0,1]$. Then $g_1^{-1}(g_1(x))=g_1^{-1}(\frac{1}{x})=\frac{1}{\frac{1}{x}}=x$. Notice that for this function g_1^{-1} and g_1 differ only in the domain and the codomain!
- g_2 : We prove that $g_2: [2,4] \to [5,9]$, where $g_2(x) = 2x+1$ is invertible, we find its inverse and calculate $g_2^{-1}(g_2)$.
 - g_2 is injective. **Proof:** Let $x \in [2,4]$ and $y \in [2,4]$. Then $g_2(x) = g_2(y) \Rightarrow 2x + 1 = 2y + 1 \Rightarrow x = y$.
 - g_2 is surjective. **Proof:** Let $y \in [5, 9]$ and take $x = \frac{y-1}{2} \in [2, 4]$. Then $g_2(x) = 2\left(\frac{y-1}{2}\right) + 1 = y$. The corresponding preliminary calculation: $y = 2x + 1 \Leftrightarrow 2x = y 1 \Leftrightarrow x = \frac{y-1}{2}$.
 - The inverse function: $g_2^{-1}:[5,9]\to [2,4]$, where $g_2^{-1}(y)=\frac{y-1}{2}$. **Proof:** Let $x\in [2,4]$. Then $g_2^{-1}(g_2(x))=g_2^{-1}(2x+1)=\frac{2x+1-1}{2}=x$.
- g_3 : We prove that $g_3: [0,3] \to [0,7]$, where $g_3(x) = 2x + 1$ is injective but not surjective. g_3 is injective. **Proof:** Let $x \in [0,3]$ and $y \in [0,3]$. Then $g_3(x) = g_3(y) \Rightarrow 2x + 1 = 2y + 1 \Rightarrow x = y$.
 - g_3 is not surjective. **Proof:** Take y=0 ($\in [0,7]$). Then in order for $g_3(x)$ to be equal to y we need that 2x+1=0, so $x=-\frac{1}{2}\notin [0,3]$. Apparently there is no $x\in [0,3]$ with $g_3(x)=0$, so g_3 is not surjective.
- g_4 : We prove that $g_4:(0,1)\to(1,4)$, where $g_4(x)=\frac{8}{6x+2}$ is invertible, we find its inverse and calculate $g_4^{-1}(g_4)$.
 - g_4 is injective. **Proof:** Let $x \in (0,1), y \in (0,1)$ and suppose that $g_4(x) = g_4(y)$. Then $\frac{8}{6x+2} = \frac{8}{6y+2} \Rightarrow 48y + 16 = 48x + 16 \Rightarrow x = y$.
 - g_4 is surjective. **Proof:** Let $y \in (1,4)$ and take $x = \frac{4-y}{3y} \in (0,1)$. Then $g_4(x) = \frac{8}{6x+2} = \frac{8}{6\cdot \frac{4-y}{3y}+2} = \frac{24y}{24-6y+6y} = y$.

The inverse function: $g_4^{-1}:(1,4)\to (0,1)$, where $g_4^{-1}(y)=\frac{4-y}{3y}$. **Proof:** Let $x\in (0,1)$. Then $g_4^{-1}(g_4(x))=g_4^{-1}(\frac{8}{6x+2})=\frac{4-\frac{8}{6x+2}}{3\cdot\frac{8}{6x+2}}=\frac{24x+8-8}{24}=x$.

• g_5 : We prove that $g_5: [5,7] \to [1,5]$, where $g_5(x) = \frac{x+1}{-2x+16}$ is injective but not surjective. g_5 is injective. **Proof:** Let $x, y \in [5,7]$. Then

$$g_5(x) = g_5(y) \Rightarrow \frac{x+1}{-2x+16} = \frac{y+1}{-2y+16}$$

 $\Rightarrow (-2x+16)(y+1) = (-2y+16)(x+1)$
 $\Rightarrow \dots \Rightarrow x = y.$

 g_5 is not surjective. **Proof:** Take y=5 ($\in [1,5]$). Then in order for $g_5(x)$ to be equal to y we need that $\frac{x+1}{-2x+16}=5 \Rightarrow -10x+80=x+1 \Rightarrow x=\frac{79}{11} \notin [5,7]$. Apparently there is no $x \in [5,7]$ with $g_5(x)=5$, so g_5 is not surjective.

• g_6 : We prove that $g_6: [0,5] \to [-4,\infty)$, where $g(x)=x^2+x-4$ is injective but not surjective.

 g_6 is injective. **Proof:** Let $x \in [0,5]$ and $y \in [0,5]$. Then

$$g(x) = g(y) \Rightarrow x^2 + x - 4 = y^2 + y - 4$$

$$\Rightarrow x^2 - y^2 + x - y = 0$$

$$\Rightarrow (x+y)(x-y) + 1 \cdot (x-y) = 0$$

$$\Rightarrow (x+y+1)(x-y) = 0$$

$$\Rightarrow x - y = 0 \text{ (since } x+y+1 \ge 1)$$

 g_6 is not surjective. **Proof:** Take $y = 100 \in [-4, \infty)$. Then in order for $g_6(x)$ to be equal to y we need that

$$x^{2} + x - 4 = 100 \implies x^{2} + x - 104 = 0$$

$$\Rightarrow x = \frac{-1 + \sqrt{1 + 4 \cdot 104}}{2} \lor x = \frac{-1 - \sqrt{1 + 4 \cdot 104}}{2}.$$

In either case $x \notin [0,5]$. Apparently there is no $x \in [0,5]$ with $g_6(x) = 100$, so g_6 is not surjective.

• g_7 : We prove that $g_7: [0,5] \to [-5,\infty)$, where $g_7(x) = x^2 - x - 4$ is not injective and not surjective.

 g_7 is not injective. **Proof:** Take $x = 0 \in [0, 5]$ and $y = 1 \in [0, 5]$. Then $g_7(x) = -4$ and $g_7(y) = -4$, but $x \neq y$.

 g_7 is not surjective. **Proof:** Take $y=237\in[-5,\infty)$. Then in order for $g_7(x)$ to be equal to y we need that

$$x^{2} - x - 4 = 237 \implies x^{2} - x - 241 = 0$$

 $\Rightarrow x = \frac{1 + \sqrt{1 + 4 \cdot 241}}{2} \lor x = \frac{1 - \sqrt{1 + 4 \cdot 241}}{2}.$

In either case $x \notin [0,5]$. Apparently there is no $x \in [0,5]$ with $g_6(x) = 237$, so g_6 is not surjective.

• g_8 : We prove that $g_8: [1,5] \to [1,3]$, where $g_8(x) = \sqrt{2x-1}$ is invertible, we find its inverse and calculate $g_8^{-1}(g_8)$.

 g_8 is injective. **Proof:** Let $x \in [1,5], y \in [1,5]$. Then

$$g_8(x) = g_8(y) \Rightarrow \sqrt{x-1} = \sqrt{y-1}$$

 $\Rightarrow x-1 = y-1 \text{ (by taking squares)}$
 $\Rightarrow x = y$

 g_8 is surjective. **Proof:** Let $y \in [1,3]$ and take $x = \frac{y^2+1}{2} \in [1,5]$. Then

$$g_8(x) = \sqrt{2x - 1}$$

$$= \sqrt{2 \cdot \frac{y^2 + 1}{2} - 1}$$

$$= \sqrt{y^2}$$

$$= |y|$$

$$= y \text{ since } y \ge 0$$

The inverse function: $g_8^{-1}: [1,3] \to [1,5]$, where $g_8(y) = \frac{y^2+1}{2}$. **Proof:** Let $x \in [1,3]$. Then

$$g_8^{-1}(g_8(x)) = g_8^{-1}(\sqrt{2x-1})$$

$$= \frac{(\sqrt{2x-1})^2 + 1}{2}$$

$$= \frac{|2x-1|+1}{2}$$

$$= \frac{2x-1+1}{2} \text{ because } 2x-1 \ge 0$$

$$= x$$

- g_9 : We prove that $g_9: [-3,1) \to (0,1]$, where $g_9(x) = \frac{1}{x^2+1}$ is neither injective nor surjective.
 - g_9 is not injective. **Proof:** Take $x = -\frac{1}{2}$ and $y = \frac{1}{2}$. Then $g_9(x) = \frac{4}{5}$ and $g_9(y) = \frac{4}{5}$, but $x \neq y$.
 - g_9 is not surjective. **Proof:** Take $y = \frac{1}{20}$ (\in (0,1]). Then in order for $g_9(x)$ to be equal to y we need that $\frac{1}{x^2+1} = \frac{1}{20}$ \Rightarrow $x^2+1=20$ \Rightarrow $x=\sqrt{19}$ \lor $x=-\sqrt{19}$. In either case $x \notin [-3,1)$.
- g_{10} : We prove that $g_{10}:(0,2]\to [\frac{1}{5},1)$, where $g_{10}(x)=\frac{1}{x^2+1}$ is invertible, we find its inverse and calculate $g_{10}^{-1}(g_{10})$.

 g_{10} is injective. **Proof:** Let $x, y \in (0, 2]$. Then

$$g_{10}(x) = g_{10}(y) \Rightarrow \frac{1}{x^2 + 1} = \frac{1}{y^2 + 1}$$

$$\Rightarrow x^2 + 1 = y^2 + 1$$

$$\Rightarrow x^2 - y^2 = 0$$

$$\Rightarrow (x - y)(x + y) = 0$$

$$\Rightarrow x = y \text{ because } x + y \neq 0$$

 g_{10} is surjective. **Proof:** Let $y \in [\frac{1}{5}, 1)$ and take $x = \sqrt{\frac{1}{y} - 1}$. Then

$$g_{10}(x) = \frac{1}{x^2 + 1}$$

$$= \frac{1}{\left(\sqrt{\frac{1}{y} - 1}\right)^2 + 1}$$

$$= \frac{1}{\left|\frac{1}{y} - 1\right| + 1}$$

$$= \frac{1}{\frac{1}{y} - 1 + 1} \quad \text{(since } \frac{1}{y} - 1 \ge 0\text{)}$$

$$= u$$

The inverse function: $g_{10}^{-1}: [\frac{1}{5}, 1) \to (0, 2]$, where $g_{10}^{-1}(y) = \sqrt{\frac{1}{y} - 1}$. **Proof:** Let $x \in (0, 2]$. Then

$$\begin{split} g_{10}^{-1}(g_{10}(x)) &= g_{10}^{-1}(\frac{1}{x^2+1}) \\ &= \sqrt{\frac{1}{x^2+1}} - 1 \\ &= \sqrt{x^2} \\ &= x \quad (\text{since } x > 0) \end{split}$$

- g_{11} : We prove that $g_{11}: [0,5] \to \mathbb{R}$, where $g_{11}(x) = x^4 3x^3 + 1$ is not injective. **Proof:** Take x = 0 and y = 3. Then $g_{11}(x) = 1$ and $g_{11}(y) = 1$, so $g_{11}(x) = g_{11}(y)$, but $x \neq y$.
- g_{12} : We prove that $g_{12}: [3,4] \to \mathbb{R}$, where $g_{12}(x) = x^4 3x^3 + 1$ is injective. **Proof:** Let $x, y \in [3,4]$. Then

$$g_{12}(x) = g_{12}(y) \Rightarrow x^4 - 3x^3 + 1 = y^4 - 3y^3 + 1$$

$$\Rightarrow x^4 - y^4 - 3(x^3 - y^3) = 0$$

$$\Rightarrow (x - y)(x^3 + x^2y + xy^2 + y^3) - 3(x - y)(x^2 + xy + y^2) = 0 \text{ (by (1))}$$

$$\Rightarrow (x - y)(x^3 + x^2y + xy^2 + y^3 - 3x^2 - 3xy - 3y^2) = 0$$

Now, since $x \ge 3$ and $y \ge 3$, we have that $x^3 \ge 3x^2$, $y^3 \ge 3y^2$ and $x^2y \ge 3xy$. This means that $x^3 + x^2y + xy^2 + y^3 - 3x^2 - 3xy - 3y^2 > 0$. We conclude that apparently x - y = 0 and hence x = y.

- g_{13} : We prove that $g_{13}: [0,3] \to \mathbb{R}$, where $g_{13}(x) = \sqrt[3]{4x} x$ is not injective. **Proof:** Take x = 0 and y = 2. Then $g_{13}(x) = 0$ and $g_{13}(y) = \sqrt[3]{8} - 2 = 0$, so $g_{13}(x) = g_{13}(y)$, but $x \neq y$.
- g_{14} : We prove that $g_{14}: [1,2] \to \mathbb{R}$, where $g_{14}(x) = \sqrt[3]{4x} x$ is injective. **Proof:** Let $x, y \in [1,2]$. Then

$$g_{14}(x) = g_{14}(y) \implies \sqrt[3]{4x} - x = \sqrt[3]{4y} - y$$

$$\Rightarrow \sqrt[3]{4x} - \sqrt[3]{4y} - (x - y) = 0$$

$$\Rightarrow \sqrt[3]{4} \cdot (\sqrt[3]{x} - \sqrt[3]{y}) - (x - y) = 0$$

$$\Rightarrow \frac{\sqrt[3]{4}(x - y)}{\sqrt[3]{(x)^2} + \sqrt[3]{xy} + \sqrt[3]{(y)^2}} - (x - y) = 0$$

$$\Rightarrow (x - y)(\frac{\sqrt[3]{4}}{\sqrt[3]{(x)^2} + \sqrt[3]{xy} + \sqrt[3]{(y)^2}} - 1) = 0$$
(by (1))

Now, since $x \ge 1$ and $y \ge 1$, we have that $\sqrt[3]{(x)^2} + \sqrt[3]{xy} + \sqrt[3]{(y)^2} \ge 3\sqrt[3]{1} = 3$, which implies that $\frac{\sqrt[3]{4}}{\sqrt[3]{(x)^2} + \sqrt[3]{xy} + \sqrt[3]{(y)^2}} - 1 \le \frac{\sqrt[3]{4}}{3} - 1 < 0$. We conclude that apparently x - y = 0 and hence x = y.

Exercise 23:

e') Prove that $g_{5a}: [5,7] \to [1,4]$, where $g_{5a}(x) = \frac{x+1}{-2x+16}$, is surjective.

Proof: Let $y \in [1,4]$ and take $x = \frac{16y-1}{2y+1}$ ($\in [5,7]$). Then

$$g_{5a}(x) = \frac{x+1}{-2x+16}$$

$$= \frac{\frac{16y-1}{2y+1}+1}{-2\frac{16y-1}{2y+1}+16}$$

$$= \frac{\frac{16y-1+2y+1}{2y+1}}{\frac{-32y+2+32y+16}{2y+1}}$$

$$= \frac{18y}{18} = y.$$

The corresponding preliminary calculation:

$$\frac{x+1}{-2x+16} = y \Leftrightarrow y(-2x+16) = x+1$$
$$\Leftrightarrow -2yx+16y = x+1$$
$$\Leftrightarrow x(2y+1) = 16y-1$$
$$\Leftrightarrow x = \frac{16y-1}{2y+1}$$

f') Prove that $g_{6a}: [0,5] \to [-4,26]$, where $g_{6a}(x) = x^2 + x - 4$, is surjective. **Proof:** Let $y \in [-4,26]$ and take $x = \sqrt{y + 4\frac{1}{4}} - \frac{1}{2} \in [0,5]$. Then

$$g_{6a}(x) = x^{2} + x - 4$$

$$= \left(\sqrt{y + 4\frac{1}{4}} - \frac{1}{2}\right)^{2} + \sqrt{y + 4\frac{1}{4}} - \frac{1}{2} - 4$$

$$= y + 4\frac{1}{4} - \sqrt{y + 4\frac{1}{4}} + \frac{1}{4} + \sqrt{y + 4\frac{1}{4}} - \frac{1}{2} - 4$$

$$= y.$$

The corresponding preliminary calculations:

$$y = x^2 + x - 4 = (x + \frac{1}{2})^2 - 4\frac{1}{4}$$
 (completing the square)
 $\Leftrightarrow (x + \frac{1}{2})^2 = y + 4\frac{1}{4}$
 $\Leftrightarrow x + \frac{1}{2} = \sqrt{y + 4\frac{1}{4}} \vee -(x + \frac{1}{2}) = \sqrt{y + 4\frac{1}{4}}$

Now, $-(x+\frac{1}{2})=\sqrt{y+4\frac{1}{4}}$ leads to values of x that are not in the domain, so we take $x+\frac{1}{2}=\sqrt{y+4\frac{1}{4}}$, which implies that $x=\sqrt{y+4\frac{1}{4}}-\frac{1}{2}$.

g') Prove that $g_{7a}:[0,5]\to[-4\frac{1}{4},16]$, where $g_{7a}(x)=x^2-x-4$, is surjective.

Proof: Let $y \in [-4\frac{1}{4}, 16]$ and take $x = \sqrt{y + 4\frac{1}{4}} + \frac{1}{2} \in [0, 5]$. Then

$$g_{7a}(x) = x^2 - x - 4$$

$$= \left(\sqrt{y + 4\frac{1}{4}} + \frac{1}{2}\right)^2 - \sqrt{y + 4\frac{1}{4}} - \frac{1}{2} - 4$$

$$= y + 4\frac{1}{4} + \sqrt{y + 4\frac{1}{4}} + \frac{1}{4} - \sqrt{y + 4\frac{1}{4}} - \frac{1}{2} - 4$$

$$= y.$$

The corresponding preliminary calculations:

$$\begin{array}{l} y=x^2-x-4=(x-\frac{1}{2})^2-4\frac{1}{4} \ \ (\text{completing the square})\\ \Leftrightarrow \ (x-\frac{1}{2})^2=y+4\frac{1}{4}\\ \Leftrightarrow \ x-\frac{1}{2}=\sqrt{y+4\frac{1}{4}} \ \ \lor \ \ -(x-\frac{1}{2})=\sqrt{y+4\frac{1}{4}} \end{array}$$

Now, $-(x-\frac{1}{2}) = \sqrt{y+4\frac{1}{4}}$ may lead to values of x that are not in the domain, so we take $x-\frac{1}{2} = \sqrt{y+4\frac{1}{4}}$, which implies that $x = \sqrt{y+4\frac{1}{4}} + \frac{1}{2}$.

Exercise 24: An example of a bijective function $f:(0,1)\to[0,1]$ is

$$f(x) = \begin{cases} 0 & \text{if } x = \frac{1}{2} \\ 2x & \text{if } x \in \left\{ \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \dots \right\} \\ 1 & \text{if } x = \frac{3}{4} \\ 2x - 1 & \text{if } x \in \left\{ \frac{7}{8}, \frac{15}{16}, \frac{31}{32}, \frac{63}{64}, \dots \right\} \\ x & \text{otherwise} \end{cases}$$

Exercise 25: An example of a bijective function $f:[0,1]\to(0,1)$ is

$$f(x) = \begin{cases} \frac{1}{3} & \text{if } x = 0\\ \frac{1}{2}x & \text{if } x \in \left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \frac{1}{24}, \dots\right\}\\ \frac{1}{5} & \text{if } x = 1\\ \frac{1}{2}x & \text{if } x \in \left\{\frac{1}{5}, \frac{1}{10}, \frac{1}{20}, \frac{1}{40}, \dots\right\}\\ x & \text{otherwise} \end{cases}$$

Exercise 26: Assume that $m \le n$. How many of the functions in exercise 18 are injective? We have n possibilities for the first outcome, then n-1 for the second, n-2 for the third etc. In total: $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-m+1) = \frac{n!}{(n-m)!}$.

Exercise 27: Let $f:A\to B$ and $g:B\to C$. In order for $f\circ g$ to be well-defined, we need that $C\subseteq A$.

Exercise 29:

g_{5a} is injective. The proof is the same as for g₅. It is also surjective, as proved in exercise
 10. Therefore it is invertible. Its inverse follows directly from the preliminary calculation of the proof that g_{5a} is surjective. It is g_{5a}⁻¹: [5,7] → [1,4], where

$$g_{5a}^{-1}(y) = \frac{16y-1}{2y+1}.$$

• g_{6a} is injective. The proof is the same as for g_6 . It is also surjective, as proved in exercise 10. Therefore it is invertible. Its inverse follows directly from the preliminary calculation of the proof that g_{6a} is surjective. It is $g_{6a}^{-1}: [-4, 26] \rightarrow [0, 5]$, where

$$g_{6a}^{-1}(y) = \sqrt{y + 4\frac{1}{4}} - \frac{1}{2}.$$

• g_{7a} is not injective. The proof is the same as for g_7 . This means that it is not invertible either.

References

[1] Gerstein, L.J. (1996): Introduction to Mathematical Structures and Proofs