

So far

- Neurons are good at algorithms of this form:
 - Vectors (with some random noise)
 - Functions on vectors
 - Differential equations on vectors
 - Smooth functions are preferred

$$\mathcal{X}$$

$$y = f(x)$$

$$\frac{dx}{dt} = f(x, u)$$

Symbols as Vectors

- Basic idea: each symbol is a vector
 - Pattern of numbers
 - Each vector is a different pattern of neural activity
 - BLUE, RED, CIRCLE, SQUARE, etc.
- Binding problem
 - How do we represent "red circle and blue square"?
 - Does just adding them together work?
 - What else could we do?

Vector Symbolic Architectures (Semantic Pointers)

- (Overview: Gayler, 2003)
- Use more than just addition to combine

RED ★ CIRCLE + BLUE ★ TRIANGLE

- The result is just a new vector pattern that can be stored
- Many possible choices for operation
 - We use Plate's suggestion of circular convolution
 - Neurons are good at computing it

Pattern Completion


```
S1 = ONE * P1

S2 = ONE * P1 + ONE * P2

S3 = ONE * P1 + ONE * P2 + ONE * P3

S4 = FOUR * P1

S5 = FOUR * P1 + FOUR * P2

S6 = FOUR * P1 + FOUR * P2 + FOUR * P3

S7 = FIVE * P1

S8 = FIVE * P1 + FIVE * P2

what is S9?
```

```
T1 = S2 * S1'

T2 = S3 * S2'

T3 = S5 * S4'

T4 = S6 * S5'

T5 = S8 * S7'

T = (T1 + T2 + T3 + T4 + T5)/5

S9 = S8 * T

S9 = FIVE * P1 + FIVE * P2 + FIVE * P3
```


- Julia Werthiem (Frieburg)
 - Spatial reasoning:
 - A is left of B
 - B is left of C
 - Is A left of C?
 - Preferred mental model theory
 - Build an internal representation of the two premises
 - Check if the last item is true in the mental model

Vectors:

A B C D leftof rightof below above taller shorter subject relation object

Premise:

 $A \otimes subject + leftof \otimes relation + B \otimes object$ (also just a vector!)

Extract part of premise

 $relation = premise \otimes relation^{-1}$

- optional: "round" the result to the nearest known vector
- But that requires more neurons (scales linearly)

The mental model

Multidimensional integrator

$$model = 0.3 \mathbf{A} \bigotimes \mathbf{X} + 0.7 \mathbf{B} \bigotimes \mathbf{X}$$

- Handles as many objects and relations as desired!
- (accuracy will gradually decrease....)

Status (reported output)

VALID INVALID

Cognitive control

- If premise matches model
 - Set status to VALID
- Otherwise
 - Adjust the model to make it more valid

Compute utility of actions

 $Q_{left,invalid} = relation \cdot \mathbf{leftof} + model \cdot (subject \bigotimes X) - model \cdot (object \bigotimes X)$

 $Q_{left,valid} = relation \cdot \mathbf{leftof} + model \cdot (object \bigotimes X) - model \cdot (subject \bigotimes X)$

Determine which action has highest utility

 (Gurney, Prescott, Redgrave, 2011) converted into spiking neurons

Implement effect of actions

$$\frac{dmodel}{dt} = (subject \bigotimes X - object \bigotimes X) * A_{left,invalid} + \dots$$

$$status = \mathbf{INVALID} * A_{left,invalid} + \mathbf{VALID} * A_{left,valid} + \dots$$

		Correctness	
Task	Tested for	Expe-	Similation [CI 95%]
		riments	
Bucher et	Correct order	98.64%	93.34% [0.84, 0.98]
al., Exp.	Relocation	87.78%	94.00% [0.73, 0.99]
1	LO		
	Relocation	12.22%	5.56% [0.00, 0.27]
	last object		
Nejasmic	Continuous	92%	78.33% [0.66, 0.88]
et al.,	Semicontin-	79%	6.67% [0.02, 0.16]
Exp. 1, 4	uous		
	Quasidis-	81%	80.00% [0.67, 0.89]
	continuous		
	Discontin-	59%	76.67% [0.64, 0.87]
	uous	(exp.	
		1)/67%	
		(exp. 4)	
Cognitive	2 premises		100% [0.95, 1]
load	3 premises		80.00% [0.68, 0.89]
	4 premises		40.00% [0.28, 0.53]
	5 premises		15.00% [0.07, 0.27]
	6 premises		1.67% [0.00, 0.09]

