

## SRM Institute of Science and Technology Department of Mathematics 18MAB302T-Discrete Mathematics Unit – II: Combinatorics, Number Theory

## **Tutorial Sheet - 3**

| S.No     | Questions                                                                                                                            | Answers                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Part - A |                                                                                                                                      |                                             |
| 1        | Let a, $b \in \mathbb{Z}$ and $gcd(a, b) = 1$ , then show that $gcd(a + b, a - b)$ is either 1 or 2.                                 |                                             |
| 2        | Let a, b $\in$ Z and $gcd(a, b) = 1$ , then show that $gcd(a^n, b^n) = 1$ for all $n \in \mathbb{N}$ .                               |                                             |
| 3        | If $gcd(a, d) = 1$ and $c a$ , prove that $gcd(b, c) = 1$                                                                            |                                             |
| 4        | The lcm and gcd of two integers $a$ and $b$ are denoted by $[a, b]$ and $(a, b)$ respectively. Prove that $(a, b) = (a + b, [a, b])$ |                                             |
| 5        |                                                                                                                                      |                                             |
| Part - B |                                                                                                                                      |                                             |
| 6        | Use the Euclidean algorithm to find (i) gcd(2464, 7469) and (ii) gcd(6060, 9888)                                                     | (i) 77 (ii) 12                              |
| 7        | Find the integers $x$ and $y$ such that (i) $154x + 260y = 3$ and (ii) $196x + 260y = 14$                                            | No integral values of <i>x</i> and <i>y</i> |
| 8        | Find the integers m and n such that $423m + 198n = 9$                                                                                | m = -7, n = 15                              |
| 9        | Find the gcd and lcm of the following pair of integers and also verify their correctness: (432, 95256)                               | 216; 190512                                 |
| 10       | Find the integers $m$ and $n$ such that $100996m + 20048n = 28$                                                                      | m = -53, n = 267                            |