# SI 671/721: Interactive Data Mining

Lecture 11 Fall 2021

Instructor: Prof. Paramveer Dhillon

dhillonp@umich.edu

**University of Michigan** 



#### Announcements

- Anmol will hold a Zoom discussion section today evening at the usual time 530PM to go over some of the Homework questions. Zoom link: <a href="https://umich.zoom.us/j/99837588785">https://umich.zoom.us/j/99837588785</a> [No other discussion sections today] Link also posted via announcement on Slack and Canvas.
- Final class next week. No lab, but I will hold a Q/A session. More details soon.
- Quiz 2 (24 hour limit) to be released at the end of next class.
- Looking forward to your posters at the exposition! [The final reports are due on Monday 12/13. Final grades are due by UMSI soon thereafter!] We have posted several examples of final reports on Canvas already.
- Please complete the course evals if you haven't already. If we get
   >=90% response rate then everyone will get an extra 1% in their final grade.

# Learning from Interactions (Experimentation)

# Interactive Mining on the Web

 What do web advertising and recommender systems have in common?





• Users interact with each ad/product so we gather more data about the ad/product and also "learn" more about the user.

# Let's focus on Web Advertising

Google's goal: Maximize revenue

The old way: Pay by impression (CPM)

Best strategy: Go with the highest bidder (but it ignores the effectiveness of an ad!)

# Let's focus on Web Advertising

The new way: Pay per click! (CPC)

Best strategy: Go with expected revenue

What's the expected revenue of ad a for query q?

 $E[revenue_{a,q}] = P(click_a | q) * amount_{a,q}$ Prob. user will click on ad a given

Bid amount for

Prob. user will click on ad a given that she issues query q (Unknown! Need to gather information)

Bid amount for ad a on query q (Known)

#### But there are other applications also...

#### Clinical trials:

 Investigate effects of different treatments while minimizing adverse effects on patients.

#### Adaptive routing:

 Minimize delay in the network by investigating different routes

#### Asset pricing:

Figure out product prices while trying to make most money

# Bandits for Interactive Learning

#### The solution: Bandits



#### Approach: Multiarmed Bandits



#### k-Armed Bandit



- Each arm a
  - Wins (reward=1) with fixed (unknown) prob.  $\mu_a$
  - Loses (reward=0) with fixed (unknown) prob.  $1-\mu_a$
- All draws are independent given  $\mu_1 \dots \mu_k$
- How to pull arms to maximize total reward?

#### k-Armed Bandit



- How does this map to our setting?
- Each query is a bandit
- Each ad is an arm
- We want to estimate the arm's probability of winning  $\mu_a$  (i.e., ad's CTR  $\mu_a$ )
- Every time we pull an arm we do an 'experiment'

#### Stochastic k-Armed Bandit

#### The setting:

- Set of k choices (arms)
- Each choice a is associated with unknown probability distribution  $P_a$  supported in [0,1]
- We play the game for T rounds
- In each round **t**:
  - √(1) We pick some arm a
  - $\checkmark$  (2) We obtain random sample  $X_t$  from  $P_a$ 
    - Note reward is independent of previous draws

Our goal is to maximize  $\sum X_t$ 

But we don't know  $\mu_a!$  But every time we pull some arm a we get to learn a bit about  $\mu_a$ 

# Online Optimization

Online optimization with limited feedback

| Choices              | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>X</b> <sub>6</sub> | ••• |
|----------------------|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----|
| a <sub>1</sub>       |                |                |                       |                | 1                     | 1                     |     |
| $a_2$                | 0              |                | 1                     | 0              |                       |                       |     |
| •••                  |                |                |                       |                |                       |                       |     |
| $\boldsymbol{a}_{k}$ |                | 0              |                       |                |                       |                       |     |
|                      |                |                |                       |                |                       |                       |     |

Time

- Like in online algorithms:
  - Have to make a choice each time
  - But we only receive information about the chosen action

# Solving the Bandit Problem

- Policy: a strategy/rule that in each iteration tells me which arm to pull
  - Hopefully policy depends on the history of rewards
- How to quantify performance of the algorithm? Regret!

# Performance Metric: Regret

- Let  $\mu_a$  be the mean of  $P_a$
- Payoff/reward of **best arm**:  $\mu^* = \max_a \mu_a$
- Let  $i_1, i_2...i_T$  be the sequence of arms pulled
- Instantaneous **regret** at time t:  $r_t = \mu^* \mu_{a_t}$
- Total regret:

$$R_T = \sum_{t=1}^{T} r_t$$

- Typical goal: Want a policy (arm allocation strategy) that guarantees:  $\frac{R_T}{T} \to 0$  as  $T \to \infty$ 
  - Note: Ensuring  $R_T/T \rightarrow 0$  is stronger than maximizing payoffs (minimizing regret), as it means that in the limit we discover the true best hand.

# Allocation Strategies

• If we knew the payoffs, which arm would we pull? Pick  $\underset{x}{\operatorname{argmax}}\mu_a$ 

• What if we only care about estimating payoffs  $\mu_a$ ?

Pick each of k arms equally often:  $\frac{T}{k}$ 

Estimate: 
$$\hat{\mu}_a = \frac{k}{T} \sum_{j=1}^{T/k} X_{a,j}$$

Regret: 
$$R_T = \frac{T}{k} \sum_{a=1}^k (\mu^* - \hat{\mu}_a)$$

 $X_{a,j}$ ... payoff received when pulling arm a for j-th time

# Bandit Algorithm: First try

Regret is defined in terms of average reward

 So, if we can estimate avg. reward we can minimize regret

• Consider algorithm: Greedy

Take the action with the highest avg. reward

# Bandit Algorithm: First try

- Consider algorithm: *Greedy*Take the action with the highest avg. reward
  - Example: Consider 2 actions
    - ✓ A1 reward 1 with prob. 0.3
    - ✓ A2 has reward 1 with prob. 0.7
  - Play A1, get reward 1
  - Play A2, get reward 0
  - Now avg. reward of A1 will never drop to 0, and we will never play action A2

# Exploration vs. Exploitation

- The example illustrates a classic problem in decision making:
  - We need to trade off between exploration (gathering data about arm payoffs) and exploitation (making decisions based on data already gathered)
- The Greedy algo does not explore sufficiently
  - Exploration: Pull an arm we never pulled before
  - **Exploitation:** Pull an arm a for which we currently have the highest estimate of  $\mu_a$

# Optimism

- The problem with our **Greedy** algorithm is that it is **too certain** in the estimate of  $\mu_a$ 
  - When we have seen a single reward of 0 we shouldn't conclude the average reward is 0
- Greedy can converge to a suboptimal solution!

# Epsilon-Greedy Algorithm

#### Algorithm: Epsilon-Greedy

- For t=1:T
  - Set  $\varepsilon_t = O\left(\frac{1}{t}\right)$  (that is,  $\varepsilon_t$  decays over time t as 1/t)
  - With prob.  $\varepsilon_t$ : Explore by picking an arm chosen uniformly at random
  - With prob.  $1 \varepsilon_t$ : Exploit by picking an arm with highest empirical mean payoff
- Theorem [Auer et al. '02]

For suitable choice of 
$$\varepsilon_t$$
 it holds that  $R_T = O(k \log T) \Rightarrow \frac{R_T}{T} = O\left(\frac{k \log T}{T}\right) \to 0$   $k \dots \text{number of arms}$ 

# Issues with Epsilon-Greedy

- What are some issues with Epsilon-Greedy?
  - Not elegant": Algorithm explicitly distinguishes between exploration and exploitation
  - More importantly: Exploration makes suboptimal choices (since it picks any arm equally likely)
- Idea: When exploring/exploiting we need to compare arms

#### Comparing Arms

- Suppose we have done experiments:
  - Arm 1: 1 0 0 1 1 0 0 1 0 1
  - Arm 2: 1
  - Arm 3: 1 1 0 1 1 1 0 1 1 1
- Mean arm values:
  - Arm 1: 5/10, Arm 2: 1, Arm 3: 8/10

- Which arm would you pick next?
- Idea: Don't just look at the mean (that is, expected payoff) but also the confidence!

# Confidence Intervals (1)

- A confidence interval is a range of values within which we are sure the mean lies with a certain probability
  - We could believe  $\mu_a$  is within [0.2,0.5] with probability 0.95
  - If we would have tried an action less often, our estimated reward is less accurate so the confidence interval is bigger
  - Interval shrinks as we get more information (try the action more often)

# Confidence Intervals (2)

Assuming we know the confidence intervals

 Then, instead of trying the action with the highest mean we can try the action with the highest upper bound on its confidence interval

- This is called an optimistic policy
  - We believe an action is as good as possible given the available evidence

#### Confidence Based Selection



#### Calculating Confidence Bounds

#### Suppose we fix arm a:

- Let  $Y_{a,1}...Y_{a,m}$  be the payoffs of arm  $\sigma$  in the first m trials
  - So,  $Y_{a,1}...Y_{a,m}$  are i.i.d. random vars. taking values in [0,1]

Mean payoff of arm  $a: \mu_a = E[Y_{a,\cdot}]$ 

Our estimate: 
$$\mu_{a,m}^{\wedge} = \frac{1}{m} \sum_{\ell=1}^{m} Y_{a,\ell}$$

- Want to find b such that with high probability  $\left|\mu_a \mu_{a,m}^{\wedge}\right| \leq b$ 
  - Want b to be as small as possible (so our estimate is close)

Goal: Want to bound P(
$$\mu_a - \mu_{a,m}^{\wedge} \leq b$$
)

# Hoeffding's Inequality (1)

**Hoeffding's inequality** provides an upper bound on the probability that the average deviates from its expected value by more than a certain amount:

- Let  $X_1...X_m$  be i.i.d. random vars. taking values in [0,1]
- Let  $\mu = E[X]$  and  $\hat{\mu_m} = \frac{1}{m} \sum_{\ell=1}^m X_\ell$
- Then:  $P(|\mu \mu_m^{\hat{}}| \ge b) \le 2 \exp(-2b^2m) = \delta$  ( $\delta$  is the confidence level)
- To find out the confidence interval b (for a given confidence level  $\delta$ ) we solve:

$$2e^{-2b^2m} \le \delta \quad \text{then } -2b^2m \le \ln(\delta/2)$$

So: 
$$b \ge 1$$

$$\frac{\ln\left(\frac{2}{\delta}\right)}{2 m}$$

# Hoeffding's Inequality (2)

• 
$$\mathbf{P}\left(\left|\mu-\hat{\mu_m}\right| \geq b\right) \leq 2 \exp\left(-2b^2m\right)$$

where b is our upper bound, m number of times we played the action

• Let's set 
$$b = b(a, T) = \sqrt{2log(T)/m_a}$$

• Then: 
$$P(\left|\mu-\hat{\mu_m}\right| \geq b) \leq 2T^{-4}$$
 which converges

#### to zero very quickly:

#### Note:

- If we don't play action  $a_t$  its upper bound b increases
- (This means we never permanently rule out an action no matter how poorly it performs)
- ullet Prob. our upper bound is wrong decreases with time T

# Upper Confidence Bound (UCB1) Algorithm

# UCB1 Algorithm

- UCB1 (Upper confidence sampling) algorithm
  - Set:  $\hat{\mu}_1 = ... = \hat{\mu}_k = 0$  and  $m_1 = ... = m_k = 0$ 
    - $\mu_a$  is our estimate of payoff of arm a
    - $m_a$  is the number of pulls of arm a so far
  - For t = 1:T

For each arm *a* calculate: 
$$UCB(a) = \hat{\mu}_a + \alpha \sqrt{\frac{2 \ln t}{m_a}}$$

Pick arm  $j = arg max_a UCB(a)$ 

Pull arm j and observe  $y_t$ 

Set: 
$$m_j \leftarrow m_j + 1$$
 and  $\hat{\mu}_j \leftarrow \frac{1}{m_j} (y_t + (m_j - 1) \hat{\mu}_j)$ 

Upper confidence interval (Hoeffding's inequality)

lpha...is a free parameter trading off exploration vs. exploitation

#### UCB1: Discussion

$$UCB(a) = \hat{\mu}_a + \alpha \sqrt{\frac{2 \ln t}{m_a}}$$

$$b \ge \sqrt{\frac{\ln\left(\frac{2}{\delta}\right)}{2 m}}$$

- Confidence interval **grows** with the total number of actions to we have taken
- But **shrinks** with the number of times  $m_a$  we have tried arm a
- This ensures each arm is tried infinitely often but still balances exploration and exploitation
- .  $\alpha$  plays the role of  $\delta$ :  $\alpha = f\left(\frac{2}{\delta}\right)$

$$\mathbf{P}\Big(\left|\mu-\hat{\mu_m}\right|\geq b\Big)=\delta$$

#### "Optimism in face of uncertainty":

The algorithm believes that it can obtain extra rewards by reaching the unexplored parts of the state space

# Summary so far

- k-armed bandit problem as a formalization of the exploration-exploitation tradeoff
- Simple algorithms are able to achieve no regret (in the limit)
  - Epsilon-greedy
  - UCB (Upper Confidence Sampling)

#### Use-case: Pinterest

- Problem: For new pins/ads we do not have enough signal on how good they are
  - How likely are people to interact with them?

#### • Idea:

- Try to maximize the rewards from several unknown slot machines by deciding which machines and the order to play
- Each pin is regarded as an arm, user engagement are considered as rewards
- Making tradeoff between exploration and exploitation, avoid keep showing the best known pins and trap the system into local optima

#### Use-case: Pinterest

- Solution: Bandit algorithm in round t
  - (1) Algorithm observes user a set A of pins/ads
  - (2) Based on payoffs from previous trials, algorithm chooses arm
    - $a \in A$  and receives payoff  $r_{t,a}$
    - Note only feedback for the chosen a is observed
  - (3) Algorithm improves arm selection strategy with each observation  $(a, r_{t,a})$
- If the score for a pin is low, filter it out

# Use-Case: A/B testing

- A/B testing is a controlled experiment with two variants, A and B
- Part of the traffic sees variant A, part variant B



Click rate: 52 % 72 %

# Use Case: A/B testing

- Imagine you have two versions of the website and you'd like to test which one is better
  - Version A has engagement rate of 5%
  - Version B has engagement rate of 4%
- You want to establish with 95% confidence that version A is better
  - You'd need 22,330 observations (11,165 in each arm) to establish that
    - Use t-test to establish the sample size
- Can bandits do better?

#### Example: Bandits vs. A/B testing

- How long does it take to discover A > B?
  - A/B test: We need 22,330 observations. Assuming 100 observations/day, we need 223 days
- The goal is to find the best action (A vs. B)
- The randomization distribution (traffic to A vs. B) can be updated as the experiment progresses

#### • Idea:

- Twice per day, examine how each of the variations/arms has performed
- Adjust the fraction of traffic that each arm will receive going forward
- An arm that appears to be doing well gets more traffic, and an arm that is clearly underperforming gets less

# Example

A/B test: We need 22,330 observations. Assuming 100 observations/day, we need 223 days

- On 1<sup>st</sup> day about 50 sessions are assigned to each arm
- Suppose A got really lucky on the first day, and it appears to have a 70% chance of being superior
- Then we assign it 70% of the traffic on the second day, and the variant B gets 30%
- At the end of the 2nd day we accumulate all the traffic we've seen so far (over both days), and recompute the probability that each arm is best

#### Simulation



The experiment finished in 66 days, so it saved us 157 days of testing (66 vs 223)

#### Generalization to multiple arms

#### Easy to generalize to multiple arms:



#### Thank You

# Questions?