ДЕРЕВА

МІНІМАЛЬНІ ОСТОВНІ ДЕРЕВА ЗВАЖЕНИХ ГРАФІВ

1. Дерева

<u>Означення.</u> Деревом називається зв'язний неорієнтований граф без циклів. Дерево не містить петель і кратних ребер.

Цьому означенню еквівалентні, як легко показати, наступні твердження:

- а) дерево ϵ зв'язний граф, що містить n вершин і n-1 ребер;
- б) дерево є граф, будь-які дві вершини якого можна з'єднати простим ланцюгом.
- в) дерево ϵ граф без циклів, додаючи до якого нове ребро можна дістати один простий цикл.

Приклад 7. Графи, зображені на малюнках є деревами.

<u>Означення.</u> Лісом називається незв'язний неорієнтований граф без циклів, в якому кожна компонента зв'язності є деревом.

<u>Приклад 8.</u> Малюнок з прикладу 7 можна розглядати як ліс з трьох дерев.

<u>Означення.</u> Остовним деревом (spanning tree) для графа G = (V, E) називається остовний підграф (тобто підграф, який містить всі вершини графа G), який ϵ деревом.

<u>Приклад 8.</u> Для графа на малюнку а) графи б) і в) ϵ остовними деревами:

Будь-яка частина дерева або ліса також ϵ деревом або лісом. Будь-який ланцюг у такому графі простий (інакше він містив би цикл).

Нехай граф G має n вершин і m ребер Оскільки всяке дерево з n вершинами за означенням має n-1 ребер, то будь-яке остовне дерево графа G виходить з цього графа в результаті видалення m-(n-1)=m-n+1 ребер.

<u>Означення.</u> Число g = m - n + 1 називається **цикломатічним числом** графа.

Якщо в дереві G виділено якусь вершину V_0 , то цю вершину називають *коренем* дерева G, а саме дерево називають *деревом з коренем*. У дереві з коренем можна природним чином орієнтувати ребра. Вершину V ребра (V, V'') можна з'єднати єдиним ланцюгом з коренем V_0 . Якщо цей ланцюг не містить ребра (V, V''), то вводиться орієнтація від V' к V'', в противному випадку — від V'' до V'. Орієнтоване в такий спосіб дерево з коренем називається орієнтованим деревом. У ньому всі ребра мають напрямок від кореня:

У кожну вершину орієнтованого дерева (за винятком ν_0) входить тільки одне ребро, тобто, ця вершина є кінцем одного і тільки одного ребра. У корінь не входить жодне ребро, усі інцидентні кореню ребра зв'язують його зі своїми другими кінцями, виходить, ν_0 є їхнім початком.

Будь-яке дерево можна орієнтувати, вибравши як корінь будь-яку його вершину.

2. Мінімальні остовні дерева зважених графів

<u>Означення.</u> Граф G = (V, E) називається **зваженим**, якщо кожному ребру (v_i, v_j) зіставлене деяке число $c(v_i, v_j)$, яке називається його **довжиною** (або **вагою**, або **вартістю**).

<u>Означення.</u> Матрицею довжин ребер або матрицею вагів графа G = (V, E) називається матриця $C(G) = \left\{c_{ij}, i, j = \overline{1, n}\right\}$, де

$$c_{ij} = \begin{cases} c(v_i, v_j), \text{ якщо існує ребро 3 вершини } v_i \text{ у вершину } v_j; \\ \infty, \text{ в протилежному випадку.} \end{cases}$$

Матриця довжин ребер неорієнтованого графа є симетричною.

Нехай G — зв'язний зважений граф. Задача побудови *мінімального* остовного дерева (minimal spanning tree) полягає в тому, щоб в множині остовних дерев знайти дерево, в якого сума довжин ребер мінімальна.

Необхідність побудови мінімального остовного дерева графа виникає, наприклад, у типових випадках, коли

а) Потрібно з'єднати n міст комунікаційними лініями (залізничними лініями, автомобільними дорогами, лініями електропередач, мережею

трубопроводів і т. д.) так, щоб сумарна довжина ліній або їх вартість була б мінімальною.

б) Потрібно побудувати схему електричної мережі, в якої клеми повинні бути сполучені за допомогою проводів найменшої загальної довжини.

Для побудови мінімального остовного дерева, яке має своїм коренем одну з вершин будь-якого зваженого графа, можуть бути використані методи Краскала (Joseph Bernard Kruskal (1928 – 2010) – американський математик), Пріма (Robert Clay Prim (1921) – американський математик) або Борувки (Otakar Borůvka (1899–1995) – чеський математик). Ці алгоритми відповідають т.з. «жадібній» стратегії: на кожному кроці вибирається локально найкращий варіант.

Розглянемо більш детальніше алгоритм Краскала (1956). Алгоритм Краскала спочатку поміщає кожну вершину в своє дерево, а потім поступово об'єднує ці дерева, об'єднуючи на кожному кроці два деяких дерева деяким ребром. Перед початком виконання алгоритму, усі ребра сортуються за довжиною (в порядку неспадності). Потім починається процес об'єднання: перебираються всі ребра від першого до останнього (у порядку сортування), і якщо в поточного ребра його кінці належать різним піддеревам, то ці піддерева об'єднуються, а ребро додається до відповіді. Після закінчення перебору всіх ребер всі вершини будуть належати одному піддереву, і відповідь знайдено. Підграф даного графа, який містить всі його вершини і знайдену множину ребер, є його минимальним остовним деревом.

Алгоритм Краскала

Крок 0. Установка початкових значень.

Вводимо матрицю довжин ребер C(G) графа G.

Крок 1. Вибираємо в графі G ребро мінімальної довжини (якщо таких ребер декілька, беремо будь-яке з них). Будуємо граф G_1 , що складається з даного ребра і інцидентних йому вершин. Оскільки $i \neq n$, то переходимо до кроку 2.

Крок і для будь-якого i>1. Побудувати граф G_i , додаючи до графа G_{i-1} нове ребро мінімальної довжини, вибране серед всіх ребер графа G, кожне з яких інцидентне якій-небудь вершині графа G_{i-1} і одночасно інцидентне якій-небудь вершині графа G, що не міститься в G_{i-1} . Разом з цим ребром включаємо в G_i й інцидентну йому вершину, що не міститься в G_{i-1} . Якщо i=n, де $n=\left|E\right|$ — число ребер графа, то граф G_i — шукане мінімальне остовне дерево (задача розв'язана), якщо $i\neq n$ — перейти до кроку i+1.

<u>Зауваження.</u> Виконання алгоритму Краскала можна завершити відразу ж, як тільки в дерево буде додано (n-1)-е ребро (оскільки в дереві з n вершинами має бути точно n-1 ребро).

Можна довести, що якщо в початковому графі число вершин дорівнює n , то підграф G_{n-1} буде шуканим остовним деревом.

Розглянемо роботу алгоритму Краскала на прикладі.

Приклад 9. Знайти мінімальне остовне дерево для графа, зображеного на малюнку.

Розв'язання.

Крок 0. Вводимо матрицю довжин ребер C(G) графа G.

$$C(G) = \begin{pmatrix} \infty & 1 & \infty & 1 & 5 \\ 1 & \infty & 2 & 1 & 3 \\ \infty & 2 & \infty & 4 & \infty \\ 1 & 1 & 4 & \infty & 3 \\ 5 & 3 & \infty & 3 & \infty \end{pmatrix}$$

Крок 1. Вибираємо в графі G ребро мінімальної довжини. Ребер мінімальної довжини 1 три: (v_1,v_2) , (v_1,v_4) , (v_2,v_4) . Беремо (v_1,v_2) . Будуємо граф G_1 , що складається з даного ребра і інцидентних йому вершин. Покладаємо $1=i\neq n=5$. Оскільки $i\neq n=5$, то переходимо до кроку 2.

$$v_2 \bigcirc V_1 \bigcirc V_1$$

Крок 2. Будуємо граф G_2 , додаючи до графа G_1 нове ребро мінімальної довжини, вибране серед всіх ребер графа G, кожне з яких інцидентне одній з вершин v_1, v_2 графа G_1 і одночасно інцидентне якій-небудь вершині графа G, що не міститься в G_1 , тобто одній з вершин v_3, v_4, v_5 . Таким чином, треба вибрати

ребро мінімальної довжини з ребер $(v_1,v_4), (v_1,v_5), (v_2,v_3), (v_2,v_4), (v_2,v_5)$. Ребер мінімальної довжини 1 два: $(v_1,v_4), (v_2,v_4)$. Беремо (v_1,v_4) . Разом з цим ребром включаємо в G_2 й інцидентну йому вершину v_4 , що не міститься в G_1 . Покладаємо i=2. Оскільки $2=i\neq n=5$, то переходимо до кроку 3.

Крок 3. Будуємо граф G_3 , додаючи до графа G_2 нове ребро мінімальної довжини, вибране серед всіх ребер графа G, кожне з яких інцидентне одній з вершин v_1, v_2, v_4 графа G_2 і одночасно інцидентне якій-небудь вершині графа G, що не міститься в G_2 , тобто одній з вершин v_3, v_5 . Таким чином, треба вибрати ребро мінімальної довжини з ребер (v_1, v_5) , (v_2, v_3) ,

 (v_2, v_5) , (v_4, v_5) . Ребро мінімальної довжини 2 одне: (v_2, v_3) . Разом з цим ребром включаємо в G_3 й інцидентну йому вершину v_3 , що не міститься в G_2 . Покладаємо i=3. Оскільки $3=i\neq n=5$, то переходимо до кроку 4.

Крок 4. Будуємо граф G_4 , додаючи до графа G_3 нове ребро мінімальної довжини, вибране серед всіх ребер графа G, кожне з яких інцидентне одній з вершин v_1, v_2, v_3, v_4 графа G_3 і одночасно інцидентне вершині графа G, що не міститься в G_3 , тобто вершині v_5 . Таким чином, треба вибрати ребро мінімальної довжини з ребер (v_1, v_5) , (v_2, v_5) , (v_4, v_5) . Ребер мінімальної довжини 3 два: (v_2, v_5) , (v_4, v_5) . Беремо (v_2, v_5) .

Разом з цим ребром включаємо в G_4 й інцидентну йому вершину v_5 , що не міститься в G_3 . Покладаємо i=4. Оскільки 4=i=n-1, то граф G_4 — шукане мінімальне остовне дерево.