图 1 1300m×800m矩形场景

场景中的 参考点	坐标 (x, y, z)	不同的天线	最近斜距	天线 A 与天线 B 的最近斜距差 $\Delta r = r_A - r_B$	两天线到目标的斜距差所对应的相位差 $\phi = \frac{4\pi}{\lambda} \Delta r = \frac{4\pi}{\lambda} (r_A - r_B)$	两个不同参考点的 相位差的差
E点 (1,1)	X: 16670.508m Y: -400m Z: 0m	天线 A	19439.8	4.2876 m	951.8626 (弧度,下同)	
		天线 B	19435.5			
F点 (1,401)	X: 16670.508m Y: 400m Z: 0m	天线 A	19439.8	4.2876 m	951.8626	$\phi_{\scriptscriptstyle F} - \phi_{\scriptscriptstyle E} \! = \! 0$
		天线 B	19435.5			$\varphi_F \varphi_E - \sigma$
G 点 (326,1)	X: 17970.508m Y: -400m Z: 0m	天线 A	20565.5	4.3690	969.9327	$\phi_G - \phi_E = 18.0701$
		天线 B	20561.1			≈ 5.7519 <i>π</i>
H 点 (326,401)	X: 17970.508m Y: 400m Z: 0m	天线 A	20565.5	4.3690	969.9327	$\phi_{H} - \phi_{E} = 18.0701$
		天线 B	20561.1			≈ 5.7519 <i>π</i>
P 点 (163.5, 201)	X: 17320.508m Y: 0m Z: 0m	天线 A	20000	4.3300	961.2790	$\phi_P - \phi_E = 9.4163$
		天线 B	19995.7			≈ 2.9973 <i>π</i>

P.S.点 P 在场景中的所有点中无法直接取到,因为 x 轴的坐标设置使得点 P 的坐标刚好位于第 163 个点和第 164 个点之间。因此我将其记为第 163.5 个点,其实这是无法取到的,但是其相应坐标等数值都可以计算,因此表中依然将其列出。

天线 A 的成像结果

天线 A 的成像结果

天线 B 的成像结果

天线 B 的成像结果

没有经过配准时,直接将天线 A 和天线 B 的复共轭相乘,得到相位差为:

没有经过配准,得到的相位差

经过粗配准后,将天线 A 和天线 B 的复共轭相乘,得到相位差为:

(由于基线距是 5m,根据仿真参数计算其对应大概为 2 个距离单元,因此直接沿距离向平 移 2 个距离单元完成粗配准)

经过粗配准后,得到的相位图