# **Sampling Distribution and Bootstrap**

**Stat 120** 

January 18 2023

#### **Statistical Inference**

Statistical inference is the process of drawing conclusions about the entire population based on information in a sample.



Statistical Inference

## **Motivating Example 1**



Regression line of Bood alcohol content (BAC) Vs. number of beers

Can you drink 5 beers and stay under the 0.08 limit?

# **Motivating Example 2**



Striking rates by race

Do the observed differences in strike rates between black and white eligible jurors indicate a potential bias, or are the differences just due to chance?

#### **Statistic and Parameter**

- A **parameter** is a number that describes some aspect of a population.
- A **statistic** is a number that is computed from data in a sample.

|               | Parameter                                                                                      | Statistic                                            |
|---------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Mean          | $\left[ \left[ \begin{array}{cc} \mu \end{array} \right]$                                      | $egin{bmatrix} ar{x} & \ \end{pmatrix}$              |
| Proportion    | $egin{bmatrix} p & & \end{pmatrix}$                                                            | $\left[ egin{array}{ccc} \hat{p} \end{array}  ight]$ |
| Std. Dev.     | $\left[\hspace{-0.5cm}\left[\hspace{-0.5cm}\sigma\hspace{-0.5cm}\right]\hspace{-0.5cm}\right]$ | $egin{pmatrix} oldsymbol{s} & & \end{pmatrix}$       |
| (Correlation) | $\left[ \left[  ight.  ight.  ight.  ight.  ight.  ight]$                                      | $egin{pmatrix} r & & \end{pmatrix}$                  |
| Slope         | $egin{bmatrix} eta & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                     | $\left[ \begin{array}{cc} b \end{array} \right]$     |

#### **Parameter Vs. Statistic**

State whether the quantity described is a **parameter** or a **statistic**, and give the correct notation.

- a. Average household income for all houses in the US, using data from the US census
- b. The proportion of all residents in a county who voted in the last presidential election.
- c. The difference in proportion who have ever smoked cigarettes, between a sample of 500 people who are 60 years old and a sample of 200 people who are 25 years old.

### **A Gallup Poll**

A random sample of 1527 US adults was contacted in June, 2015

ullet p = proportion of US adults who would vote for a qualified Muslim presidential candidate

VOTE FOR A MUSLIM FOR PRESIDENT

NO, WOULDN'T

YES, WOULD

38%

60%

SOURCE: GALLUP POLL; JUNE 2-7, 2015

The sample proportion can be used as a "point estimate" of p i.e.,

$$\hat{p} = 0.60$$

Poll result

#### **Point Estimate (PE)**

- Point estimate is a single value constructed from the sample data
- Sample statistic can serve as a point estimate for an unknown parameter



10:00



Go to our class moodle, go to the in class activity file, skim through your turn 1 and try to answer the questions

## **Sampling Distribution**

A sampling distribution is the distribution of sample statistics computed for different samples of the same size from the same population.

- Sample statistics varies from sample to sample
- Sampling distribution gives us an idea of the variation



#### **Center and Shape**

Center: If samples are randomly selected, the sampling distribution will be centered around the population parameter.

Shape: For most of the statistics we consider, if the sample size is large enough the sampling distribution will be symmetric and bell-shaped.

#### Standard Error

Uncertainty in point estimates measured by the standard error (SE)

- The standard error of a statistic is the standard deviation of the sampling distribution
- The standard error measures how much the statistic varies from sample to sample

# **Recall: Gettysburg Address**

The standard error for the average word size in a random sample of 10 words is closest to

- a. 0.5
- b. 0.7
- c. 1.0
- d 1 5



# **Gettysburg Address: What are each dots?**



# **Sample Size Matters!**



Which sampling distribution corresponds to a larger sample size?

- A
- B

## **Sample Size Matters!**



- As the sample size increases, the variability (SE) of the sample statistics tends to decrease.
- Smaller SE means the sample statistics tend to be closer to the true population parameter value!

#### **Other Factors**

- Q. What else affects the standard error of a statistic?
- A. The variability of the population!
  - Quantitative variable: the larger the population standard deviation, the larger the standard error of a statistic (like a mean)
  - Categorical variable: the closer the population proportion is to 0.5, the larger the standard error of the sample proportion

### Sample Size vs. Simulation size

Do not confuse sample size and simulation size !!

Sample size (n) = how many individuals are in the sample used to compute our stat?

Simulation size (N) = how many random samples did we take from the population to simulate the sampling distribution of our stat?

- ullet The SE of your stat gets smaller as n get bigger.
- Once you've simulated a couple 100 samples, the shape/center/spread of the sampling distribution should remain about the same as you increase the simulation size.

#### **Further Examples: Statistics Grad Schools**

What does each dot represent?

- a. Enrollment at one statistics grad program
- b. One sample mean
- c. 1000 different enrollments



### **Population Mean**

The sampling distribution is shown for enrollment in statistics grad schools. The population parameter is closest to:

- a. 45
- b. 60
- c. 50
- d. 55



#### **Standard Error**

The sampling distribution is shown for enrollment in statistics grad schools. The **standard error** is closest to:

- a. 5
- b. 10
- c. 20
- d. 15



#### Random Vs. Non-random

Samples of **size** 5 are taken from a large population with **population mean** 8, and the sampling distributions for the sample means are shown. Dataset A (top) and Dataset B (bottom) were collected using different sampling methods. Which dataset (A or B) used **random sampling**?



Random Vs. non-random data distribution

### **Bootstrap**

• Bootstrap: Sample with replacement from the original sample, using the same sample size.



Original sample (left) to bootstrap sample (right)

## **Bootstrap**



Original sample (left) to population (right)

Creating a bootstrap sample is the same as using the data simulate a "population" that contains an infinite number of copies of the data.

## **Bootstrap Sampling in R**

- resample a set of observations with replacement
- same data points can appear multiple times

|                 | Data                                                | Statistic                                                |
|-----------------|-----------------------------------------------------|----------------------------------------------------------|
| Original sample | $igg(x_1,x_2,\dots,x_nigg)$                         | $\left[ egin{array}{ccc} ar{x}_n \end{array}  ight]$     |
| Resample        | $\left[ \left. x_1^*, x_2^*, \ldots, x_n^*   ight]$ | $\left[egin{array}{cccccccccccccccccccccccccccccccccccc$ |

```
# R-code
boot <- sample(x, size, replace = TRUE)</pre>
```

#### **Bootstrap Steps**

- 1. Generate a bootstrap sample.
- 2. Compute the statistic of interest for your bootstrap sample.
- 3. Repeat steps (1) -(2) many times. Plot the distribution of all your bootstrap statistics

#### This is the bootstrap distribution!

## **Bootstrap Distribution**

```
Suppose X = \{20, 24, 19, 23, 22, 16\}
         X_1^* = \{16, 19, 16, 23, 22, 24\}
         X_2^* = \{22, 19, 22, 19, 23, 19\}
         X_3^* = \{20, 22, 24, 16, 24, 16\}
        X_N^* = \{19, 24, 19, 19, 19, 22\}
  = total number of
resamples/simulations/samples
```





10:00



Please go through the remainder of the class activity file and try to answer the questions