

EUROVENT/CECOMAF

EUROVENT 2/4 - 1996

SHEET METAL AIR DUCTS

STANDARD FOR FITTINGS

EUROVENT 2/4 - 1996

SHEET METAL AIR DUCTS

STANDARD FOR FITTINGS

EUROVENT 2/4

Second edition 1996

Published by EUROVENT/CECOMAF

15 rue Montorgueil

F-75001 PARIS

Tel 33 1 40 26 00 85 Fax 33 1 40 26 01 26

FOREWORD

The present document gives recommendations on dimensions of fittings with circular and rectangular cross sections. The previous edition published in 1983 based on various national, manufacturers or contractor standards was used as a basic document for the preparation of the European Standards in the CEN/TC 156.

The relevant European Standards:

- pr EN 1505 : Sheet metal air ducts and fittings with rectangular cross section
- pr EN 1506 : Sheet metal air ducts and fittings with circular cross section

are expected to be published in 1997.

This second edition of the EUROVENT 2/4 is in full accordance with these European Standards.

In addition to the standardised dimensions, the fundamental factors affecting the choice of dimension steps and a number of diagrams intended to facilitate to use of standardised duct dimensions in practical design work are presented.

Dimensions of ducts are given in the EUROVENT 2/3.

CONTENTS

1. SCOPE	2
2. DEFINITIONS	2
3. FITTINGS FOR CIRCULAR DUCTS	3
3.1 JOINTS	
3.2 - FEMALE AND MALE CONNECTORS	5
3.3 - BENDS	5
3.3.1 - Pressed bends	6
3.3.2 - Segmented bends	6
3.4 - BRANCHES AND T-PIECES	7
3.4.1 - Circular branch	7
3.5 - TRANSFORMATION PIECES	
3.5.1 - Tapered transformation pieces with two male ends	
3.5.2 - Abrupt transformation piece between fitting and duct	
3.6- CLOSURES	13
4. FITTINGS FOR RECTANGULAR DUCTS	14
4.1 - CONNECTIONS	14
4.2 - BENDS	15
4.3 - TRANSFORMATION BRANCH	16
4.4 - TRANSFORMATION PIECES	17
4.4.1 - Transformation : duct - duct	17
4.4.2 - Transformation : Duct - circular duct	17
4.5 - CIRCULAR BRANCH	18
E TOLEDANCES AND DEVIATIONS	20

1. SCOPE

This document sets out recommendations for nominal sizes, length and radii for air duct fittings of circular and rectangular cross section.

The standardisation of dimensions will result in more uniformity in aerodynamic properties and in the methods of calculation for pressure drop and sound generation.

The duct fittings considered in this document are intended to be used in air distribution systems in connection with ducts of the nominal sizes and tolerances as describes in EUROVENT 2/3.

2. DEFINITIONS

a, b, c, d	Nominal dimensions for duct fittings of rectangular cross section						
d	Nominal diameter of a duct						
$d_{1_1}\; d_{2_1}\; d_{3_1}\; d_{4}$	Nominal diameter for duct fittings of circular cross section						
l, l ₁ , l ₂ , l ₃	Dimensions with which the fitting contributes to the length of the air						
	distribution system						
I_p	Overlap length						
Γ _m	Radius of curvature						
r	Throat radius						
S	Conical height						
οc	Angle in degrees						
	For a transformation piece ∞ denotes the biggest angle between two						
	opposite sides.						

Linear dimensions are given in mm.

3. FITTINGS FOR CIRCULAR DUCTS

3.1 JOINTS

Overlap length.

Table 1

Nominal diameter	63 - 315	(315) - 800	(800) - 1250
lp	≥ 25	≥ 50	≥ 100

Examples of alternative designs of connections :

Ends of fittings:

Fig. 1 a: Plain end

Fig. 1 b: With swage -

Fig. 1 c: With flange

Ends of ducts

Fig. 2 a: Plain end

(p = 0

Fig. 2 b: With integral flange, factory assembled

tp = 0

Fig. 2 c: With loose flange (for site assembly)

3.2 - FEMALE AND MALE CONNECTORS

Fig. 3 b: Male connector For use between ducts

Fig. 3 c: Male connector with seal

3.3 - BENDS

$$L = r_m \cdot tg \frac{\alpha}{2}$$

d ₁	100	> 100
rm	100	r _m = d ₁ .

Table 2 Relation between $r_{\scriptscriptstyle m}$ and $d_{\scriptscriptstyle 1}$

3.3.1 - Pressed bends

$$d_1 = 63 - 400$$

Fig. 4a 900 Bend

4Ь 450 Bend

$$\iota = r_{m}$$

$$t = 0.41 r_{m}$$

$$L = 0.27 r_{\rm m}$$

3.3.2 - Segmented bends

$$d_1 = 250 - 1250$$

Fig. 5a 900 Bend Coude Bogen $L = r_{m}$

Minimum 3 segments

5b 450 Bend Coude Bogen

 $i = 0.41 r_m$

5c 300 Bend Coude Bogen $L \approx 0.27 r_m$

Minimum 2 segments

Minimum 2 segments

Note:

Bends with 15° and 60° angle are also available.

Note:

Des coudes avec angles de 150 et 600 sont également disponibles.

Bemerkung: Bögen mit 150 und 600 sind ebenfalls üblich.

3.4 - BRANCHES AND T-PIECES

The radiused part of a branch or of a T-piece (see fig. 6a) can alternatively be designed as a conical part (see fig. 6b).

Fig. 6a Pressed formed branch $r \ge 10 \text{ mm}$ $l_3 > 0,5 \text{ d} + r$

6b Conical branch s > 0,15 d₃ l₃ < 0,15 d + s

3.4.1 - Circular branch

Fig. 7

Circular branch to a circular duct

$$r \ge 10 \text{ mm}$$

 $l_3 > 0,5 \text{ d} + r$

3,4,1.1 - T-pieces with concentric press formed branch

Fig. 8

$$l_1 > 0,5 d_3 + r +$$
 $l_3 > 0,5 d_1 + r$
 $r \ge 10 mm$

3.4.1.2 - T-pieces with conical branch (concentric or tangential)

Concentric branch

Tangential branch

$$l_3 > 0.5 d_1 + s$$

s > 0,15 d3

Table 3 - Dimensions for branches and T-pieces (in mm)

Recommended sizes are indicated with X, additional sizes with Y.

d ₃	63	80	100	125	150	160	200	250	300	315	355	400	450	500	560	630	710	800	900	1000	1120	1250
80	Х	Х						-						_								
100	Х	X	X																			
125		Х	X	Х																		
150		Y	Y	Υ	Y																	
160		X	Х	X		X																
200	П	X	Х	Х		X	X															
250		Х	X	Х		Х	Х	X							\Box							
300			Y	Y	Y	Y	Y	Y	Υ													
315			Х	Х		X	X	X		Х												
355				Y		Υ	Y	Υ		Y	Y											
											T-pie	ces wi	th con	ical br	anches	5						
400						Х	X	Х		Х	Υ	X		J							l	
450							Y	Y		Υ	Υ	Υ	Υ		Π.							
500							X	Х		X	Y	Х	Y	Х								
560			1					Y		Y	Y	Υ	Y	Y	Υ							
630							X	Х		Y	X	Υ	X	Y	Х							
										Г-ріесе	s with	presse	d bran			,				,		,
710										Y	Y	Υ	Y	Y	Y.	Y	Y	<u></u>				
800	L		<u> </u>	L						X	Y	X	Y	X	Y	X	Υ	X				<u> </u>
900				<u> </u>			<u>L</u> .			<u> </u>	<u> </u>	Υ	Υ	Y	Y	Y	Y	Y	Υ			<u> </u>
1000			<u></u>							$ldsymbol{ldsymbol{ldsymbol{ldsymbol{eta}}}$		X	Y	X	Y	X	Y	X	Υ	X		
1120			<u> </u>						<u> </u>		<u> </u>			Y	Y	Y	Y	Y	Y	Υ	Y	
1250			<u></u>		<u> </u>				L			L		X	Y	X	Υ	X	Υ	Х	Υ	X

3.4.1.3 Examples of special pieces

3.5 - TRANSFORMATION PIECES

3.5.1 - Tapered transformation pieces with two male ends

Fig. 11a

Fig. 11b

a) concentric

$$1 = \frac{d_1 - d_2}{2} \cdot \cot \frac{\alpha}{2}$$

$$1 = (d_1 - d_2) \cdot \cot \alpha$$

For pressed transformation pieces $q_{max} = 90^{\circ}$.

Transformation pieces with female ends and combination of male and female ends are also available.

3.5.2 - Abrupt transformation piece between fitting and duct

Fig. 12a

Female - male concentric

12b

Female - male eccentric

$$l = l_p + r$$

 $r \ge 10 \text{ mm}$

3.5.2.1 - Examples of installations

1 Duct

2 Male connector

3 Transformation piece 4 Branch

Table 4 - Dimensions for transformation pieces

Recommended sizes are indicated with X, additional sizes with Y.

d ₃	63	80	100	125	150	160	200	250	300	315	355	400	450	500	560	630	710	800	900	1000
80	X	<u> </u>	 							Г		\vdash								
100	X	X	1																	
125	X	X	X																	
150		Y	Y	Y																
160		X	X	Х											<u> </u>		i			
200		 	X	X		X														
250				X		X	X		1											
300	_		 	 	Y	Y	Υ	Υ							1					
315						X	X	Х									1			
355		\top		_		T	Y	Υ		Y					\Box					
	1	' F	resse	d trar	sforr	natio	n piec	es			1									
400	\vdash	П		1	Ī	Ī		Х		X	Υ									
450		\top								Υ	Υ	Υ								
500			T				1	1	T		Y	X	Y							
560												Y	Y	Υ						
630			1			T							Υ	X	Υ					
710	1	T				1								Y	Υ	Υ				
800															Y	Х	Υ	Ī		
900		1	T	1							1					Υ	Υ	Υ		
1000							Ī				1]			Y	X	Υ	
1120				T	1			1	l				1	1	Π			Υ	Υ	Υ
1250	İ	1	1	1	1	1	T		T_			1		T					Υ	X

3.6- CLOSURES

The nominal diameter of the closures are given in EUROVENT 2/3, table 1.

Examples of closures are shown in figure 9.

a) Plug end (for ducts and female ends) b) Cap end (for male ends)

Figure 14: Examples of closures

4. FITTINGS FOR RECTANGULAR DUCTS

Fig. 15 Denominations for the nominal size of fittings

4.1 - CONNECTIONS

Fig. 16 Examples of alternative designs of connections

a) Rolled steel angle flanged joints with welded corners

c) Reinforced flange cleat with C - cleat

e) Slide on flange

g) Standing flange with double rubber gasket and C-cleat

b) Rolled steel flat flanged joint with welded corners

d) Slide on flange

f) Integral standing flanged with C-cleat

h) Standing flange with single rubber gasket and C-cleat

4.2 - BENDS

Figure 17

4.3 - TRANSFORMATION BRANCH

Figure 18a

Figure 18b

Transformation mounted on the side wall of a duct

Table 5 - Dimensions r and f dependant on branch duct width b

Branch duct	r	f
width a (mm)	mm	mm
a < 200	≥ 100	≥ 100
200 < a < 300	≥ 100	≥ 100
300 < a < 400	≥ 150	≥ 125
400 < a < 600	≥ 150	≥ 150
a > 600	≥ 150	≥ 200

4.4 - TRANSFORMATION PIECES

4.4.1 - Transformation : duct - duct

a) concentric

Figure 19 Transformation between ducts with rectangular cross section

4.4.2 - Transformation : Duct - circular duct

a) concentric

b) eccentric

Figure 20 Transformation between one duct with rectangular, and one with circular cross section

4.5 - CIRCULAR BRANCH

10 mm $\leq r \leq 25$ mm

Figure 21 - Branch with circular cross section as a transformation piece to a duct with rectangular cross section

Comments and notes to clause 4

General

It is recommended that splitters are positioned in accordance with the examples given in table. Designers should take account of individual system requirements regarding acoustics, velocity and pressure when selecting duct fittings.

NOTE 1. The bend shown in figure 17a is only recommended for use on low pressure/velocity systems and smaller dimensions of ducts.

NOTE 2. For bends shown in figures 17b and 17c with radius r less than 100 mm, splitters are recommended in accordance with table 6 and figure 21. If alternatively r is increased to 0.5a splitters may be omitted.

NOTE 3. For bends shown in figures 17d, 17e and 17f, with angles \leq 45° splitters are not required but for angles > 45° splitters are recommended.

NOTE 4. For transformation pieces as shown on figures 19 and 20 which are large or are used on high velocity systems the slope angle ∞ should be reduced.

Table 6 : positioning of splitters

		Distance between splitters, mm (approxim									
Duct width a mm	Number of splitters	a ₁	a ₂	a ₃							
> 400 ≤ 800	1	a/3									
> 800 ≤ 1600	2	a/4	a/2								
> 1600 ≤ 2000	3	a/8	a/3	a/2							

Figure 22 : positioning of splitters

5. TOLERANCES AND DEVIATIONS

The tolerance of angles is 2°.

The deviation of a, b, c, d, e, f, is 0

- 4 mm

The deviation I, I_p r, r_m and s is given in table 3.

Table 7 - Deviation of I, I_p , r, r_m and s

I, I _p , r, r _m , and s	Deviation
(mm)	(mm)
≤ 15	0
	- 2
> 15	0
≤ 100	- 5
> 100	0
	- 10

Tolerances for straight ducts see EUROVENT 2/3.

6. BIBLIOGRAPHY

(1)	EUROVENT 2/3	Sheet metal air ducts - standard for dimensions
(2)	SIS 82 72 07	Ventilating sheet metal ducts
(3)	HVCA DW/142 + Addendum A	Specification for sheet metal duct work Low, medium and high velocity/pressure air systems
(4)	DIN 24 147	Lufttechnische Anlagen, Formstücke. Obersicht, allgemeine Grundlagen
(5)	DIN 24 191	Kanalbauteile für lufttechnische Anlagen. Kanalformstücke, gefalzt, geschweiβt.
(6)	ISO 7807:1983	Air distribution - Straight circular sheet metal ducts with a lock type spiral seam and straight rectangular sheet metal ducts - Dimensions.
(7)	pr EN 150	Rectangular sheet metal air ducts and duct fittings, standard for dimensions
(8)	pr EN 150	Circular sheet metal air ducts and fuct fittings, standard for dimensions

LIST OF THE MEMBER ASSOCIATIONS

BELGIUM	ITALY
FABRIMETAL.	ANIMA - CO.AER
21 rue des Drapiers - B-1050 BRUXELLES	Via Battistotti Sassi, 11 - I-20133 MILANO
Tel 32/2/5102518 - Fax 32/2/5102562	Tel 39/2/73971 - Fax 39/2/7397316
GERMANY	NORWAY
FG ALT im VDMA	NVEF
Postfach 710864 - D-6000 FRANKFURT/MAIN 71	P.O.Box 850 Sentrum - N-0104 OSLO
Tel 49/69/66031227 - Fax 49/69/66031218	Tel 47/2/413445 - Fax 47/2/2202875
SPAIN	SWEDEN
AFEC	ктв
Francisco Silvela, 69-1°C - E-28028 MADRID	P.O. Box 55 10 - S-11485 STOCKHOLM
Tel 34/1/4027383 - Fax 34/1/4027638	Tel 46/8/20800 - Fax 46/8/6603378
FRANCE	SWEDEN
UNICLIMA (Syndicat du Matériel Frigorifique,	SWEDVENT
Syndicat de l'Aéraulique)	Box 17537 - S-11891 STOCKHOLM
Cedex 72 - F-92038 PARIS LA DEFENSE	Tel 46/8/6160400 - Fax 46/8/6681180
Tel 33/1/47176292 - Fax 33/1/47176427	
UNITED KINGDOM	FINLAND
FETA (HEVAC and BRA)	FREA
Sterling House - 6 Furlong Road - Bourne End	PL 37
GB-BUCKS SL 8 5DG	FIN-00801 HELSINKI
Tel 44/1628/531186 - Fax 44/1628/810423	Tel 358/9/759 11 66 - Fax 358/9/755 72 46
NETHERLANDS	FINLAND
VLA	AFMAHE
Postbus 190 - NL-2700 AD ZOETERMEER	Etalaranta 10 - FIN-00130 HELSINKI
Tel 31/79/531258 - Fax 31/79/531365	Tel 358/9/19231 - Fax 358/9/624462
NETHERLANDS	TURKEY
NKI	ISKID
Postbus 190 - NL-2700 AD ZOETERMEER	ARCELIK S.A.
Tel 31/79/3531258 - Fax 31/79/3531365	Klima Isletmesi - 81719 TUZLA ISTANBUL
	Tel 90/216 3954515 - Fax 90/216 4232359