MOSFET Differential Pair: Qualitative Analysis

-Voz

Case 1: Common-Mode Signal (VG1=VG2=VC1)
Assume M1, M2 matched

Assume M1, M2 marches

$$-i\rho_1 = i\rho_2 = \frac{I}{2}$$

$$-V_S = V_{CM} - V_{GS}$$

$$-V_{O_1} = V_{O_2} = V_{OD} - \frac{I}{2}R_D \Rightarrow V_{O_1} - V_{O_2} = \emptyset$$

$$\Rightarrow \Delta_{CM} = \emptyset$$

* Case 2: Large Differential Signal (e.g. VGZ = \$\phi\$ and |VGI|>> \$\phi\$)

(a)
$$\sqrt{61} > 0$$

- $i \cdot 01 = I$, $i \cdot 02 = 0$
- $\sqrt{61} = \sqrt{60} - IRD$, $\sqrt{60} = \sqrt{60}$
(b) $\sqrt{61} < 0$
- $i \cdot 01 = 0$, $i \cdot 02 = I$

- Vo1 = VOO , VOZ = VDO-IRD

* Case 3: Small Differential signal (eg. 562 = 0)

- small increase in $V_{GI} \Rightarrow small increase$ in i_{DI} ($i_{D_1} = \frac{I}{2} + \Delta I = \frac{I}{2} + i_{A_1}$)

- Since io, + iooz = I = small
decrease in ioz (ioz = \frac{1}{2} - \DI = \frac{1}{2} - idz)

- $\Delta Vid \Rightarrow \Delta I \Rightarrow \Delta V_0$ $V_{01} = V_{DD} - \frac{1}{2}R_D - id_1R_D$ $V_{02} = V_{DD} - \frac{1}{2}R_D + id_2R_D$

Δvo= vo,- voz = - id, Ro - idz Ro

what value of Vid cause the entire I to be steered towards one branch?
This happens when V_{GS_1} reaches a value corresponding to $i_{O_1}=I$ and $V_{GS_2}=V_{t} \Rightarrow V_{s}=-V_{t}$ (since $V_{GS}=\emptyset$)

$$i_{O_1}: I = \frac{1}{2} \left(\mu_{\Lambda} C_{ex} \right) \left(\frac{\omega}{L} \right) \left(v_{GS_1} - V_{L} \right)^2$$

$$\Rightarrow v_{GS_1} = V_{L} + \sqrt{\frac{2I}{\mu_{\Lambda} C_{ex} \omega/L}} = V_{L} + \sqrt{2} v_{OV}$$

(where Nov = overstive we there corresponding to a wrent of 1/2)

Condition for 1711, 172 to remain in saturation

For larger Vid, all the current is steered towards one branch.