		*		
¥				
(4)				

Reg. No	
---------	--

B.Tech. DEGREE EXAMINATION, JUNE 2023

Fifth Semester

18CSE335T - PRINCIPLES OF CRYPTOGRAPHY

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

	(For the candidates admitted duri	ng the academic year 2018-2019 to 2021-2	:022)			
Note:						
b	Part - A should be answered in OMR sheet wall invigilator at the end of 40 minutes. Part - B and Part - C should be answered in		uld be ha	anded o	ver 1	
			Max.	Max. Marks: 10		
	Part - A (20 × 1 Marl Answer All Q		Mar	rks BL	CC	
.	Cryptography when its classical it is actu	ally ?	·*,]	1	1	
1.	(A) Art of coding (C) Art of challenging	(B) Art of riddles (D) Art of writing or solving codes				
2.	Cryptanalysis is?		1	2	1	
	(A) Attacker's technique to find the plain text	(B) Encryption with valid Key				
	(C) Decryption with valid Key	(D) Cryptology				
3.	In secret key encryption, the two canonics (A) the distinct parties are separated in space & same party can communicate over time	al applications are (B) distinct parties are not separated & same party can communicate	1	2	1	
	(C) the distinct parties are separated in space and different parties can communicate over time	(D) the same parties are not separated space and different parties can communicate over time	in			
4.	Caesar Cipher is		prog	2	1	
	(A) Transposition cipher (C) Substitution cipher	(B) Random cipher (D) One time pad				
5.	polynomial function	emptotically than any inver-	se l	2	2	
	(A) Smaller	(B) larger				
	(C) equal	(D) not equal				
6.	A scheme is secure if for every formally specified type, the probability the is also formally specified) is negligible.	A carrying out an attack of son hat A succeeds in the attack (where succe		2	2	
	(A) Probaiistic adversary	(B) probabilistic polynomial-time adversary				
	(C) exponential adversary	(D) asymptotic adversary				
7.	an eavesdropper if and only if it is	in the presence of an eavesdroppe		- 2	2	
	(A) computationally secure	(B) exponentially secure				
	(C) semantically secure	(D) not secure				
8.	Technique for preventing replay attacks is	s to use	i	1	2	

10JF5-18CSE335T

(A) frequency(C) authentication

(B) error messages

(D) Time stamps

9.	The primary requirement is to avoid collisions, or two inputs that map to the same			Tribut	3
	(A) Message Digest (C) Decryption	(B) encryption (D) code			
10.	The is a common function to a full-fledged hash function, (A) Caeser cipher (C) Hashing algorithm	approach for extending a compression (B) Merkle-Damgard transform. (D) avalanche	1	1	3
	A commitment scheme has(A) Cryptography (C) hiding and binding	(B) Encryption (D) Hashing	1	1	3
12.	An important property in any block cipher "affect" every bit of the output. We refer to (A) Avalanche effect (C) Hashing	is that a small change in the input must this as the	Ammed	Production	3
13.	Find the number of positive integers ≤ 3000 (A) 1629 (C) 1657	and divisible by 3, 5, or 7 (B) 1665 (D) 1628	1	2	4
14.	Express 10110 _{two} in base ten (A) 20 (C) 22	(B) 21 (D) 23	1	2	4
15.	Study the following number pattern and add $1 \cdot 9 + 2 = 11$ $12 \cdot 9 + 3 = 111$ $123 \cdot 9 + 4 = 1111$ $1234 \cdot 9 + 5 = 11111$ $12345 \cdot 9 + 6 = 111111$ $123456 \cdot 9 + 7 = 1111111$ (A) $1234567 \cdot 9 + 8 = 11111111$ (C) $12345678 \cdot 9 + 9 = 11111111$ $12345678 \cdot 9 + 9 = 11111111$	(B) $1234567 \cdot 9 + 8 = 111111111111111111111111111111111$	1	2	4
16.	Apply the Euclidean algorithm to find (4076) (A) 3 (C) 5	5, 1024) (B) 4 (D) 6	proved	2	4
17.	The is an example of an (A) Rabin Trapdoor (C) RSA Algorithm	encryption scheme that is homomorphic. (B) Paillier encryption scheme (D) Digital Certificate	annel	***	5
18.	Rabin trapdoor permutation, which scheme. (A) public-key encryption (C) Hashing	can be used to construct a (B) Private key encryption (D) Digital Signature	peres	1	5
19.	, is simply a signature binding (A) Digital signature (C) Digital certificate	g an entity to some public key (B) Hashing (D) Paillier encryption scheme	1	1	5
20.	Diffie Hellman algorithm is(A) Key exchange algorithm (C) Private Key encryption	(B) Public key encryption (D) Classical encryption	1	1	5

	Part - B (5 × 4 Marks = 20 Marks) Answer any 5 Questions	Mark	s BL	CO
21.	Give the formal definitions for the process of 1) Generation of Keys 2) Encryption and 3) Decryption with respect to symmetric key algorithms.	4	2	1
22.	What is One time pad? Define the construction of One-time pad.	4	2	1
23.	Explain Block Cipher modes of operations.	4	2	2
24.	How Feistel networks build block ciphers?	4	2	3
25.	What is Division Algorithm? How it can be proved?	4	2	4
26.	Explain Chinese remainder theorem.	4	3	4
27.	Give the formal definition of Digital Signature.	4	1	5
	Part - C (5 × 12 Marks = 60 Marks) Answer All Questions	Marks	BL	CO
28.	a. Explain the Classical Cryptography algorithms with suitable examples. (OR)	12	2	1
	b. Explain the threat model in the context of encryption in the order of increasing power of the attacker.			
29.	a. Explain - A pseudorandom generator provides a natural way to construct a secure, fixed-length encryption scheme with a key shorter than the message. (OR)	12	2	2
	b. Explain Information-Theoretic MACs and its Limitations.			
30.	a. The birthday problem is the following: if q people are in a room, what is the probability that two of them have the same birthday? How this helps to find collisions in hash functions.	12	2	3
	b. How to construct a pseudorandom function from any (length-doubling) pseudorandom generator.			
31	a. "The GCD of the positive integers a and b is a linear combination of a and b" - Prove this theorem.	12	2	4
	b. List the various divisibility tests with appropriate examples.			
32,	a. Construct the Key Encapsulation mechanism in public key cryptography. (OR)	12	2	5
	b. Describe RSA Signatures including plain RSA and RSA-FDH.			
	* * * * *			

Page 2 of 3

10JF5-18CSE335T