

	Planeten*			
Aufgabennummer: A_154				
Technologieeinsatz:	möglich ⊠	erforderlich		

Die folgenden Daten zu den Planeten unseres Sonnensystems sind gegeben:

	Merkur	Venus	Erde	Mars
große Bahnhalbachse in km	57 909 175	108208930	149 597 890	227 936 640
mittlerer Äquatorradius in km	2 440	6050	6380	3 400
	Jupiter	Saturn	Uranus	Neptun
große Bahnhalbachse	778412020	1 426 725 400	2870972200	4498252900
in km		20.20.00	2010012200	1 100202 000

- a) Für eine Astronomie-Ausstellung sollen die Planeten maßstabgetreu verkleinert als Kugelmodelle aufgestellt werden. Die größte vorhandene Kugel hat einen Radius von 42 cm und ist für den Planeten Jupiter reserviert.
 - Erklären Sie, warum eine Kugel mit einem Radius von ca. 2 cm für den Planeten Mars passt.
- b) Das 3. Kepler'sche Gesetz lautet: "Die Quadrate der Umlaufzeiten zweier Planeten verhalten sich wie die dritten Potenzen der großen Bahnhalbachsen." Daher gilt:

$$a_1^3: a_2^3 = u_1^2: u_2^2$$

a, ... große Bahnhalbachse des Planeten 1

a... große Bahnhalbachse des Planeten 2

u₁ ... Umlaufzeit des Planeten 1

u₂ ... Umlaufzeit des Planeten 2

- Berechnen Sie die Umlaufzeit des Planeten Neptun. (Hinweis: Die Umlaufzeit der Erde beträgt 1 Jahr.)
- c) Die großen Bahnhalbachsen zweier Planeten sollen auf einem Zahlenstrahl veranschaulicht werden. Dabei soll 1 cm auf dem Zahlenstrahl einer tatsächlichen Streckenlänge von 10⁸ km entsprechen.
 - Veranschaulichen Sie auf einem solchen Zahlenstrahl jeweils ausgehend vom Nullpunkt die großen Bahnhalbachsen der Planeten Erde und Saturn.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Planeten

Möglicher Lösungsweg

a) Das Verhältnis der mittleren Äquatorradien von Jupiter und Mars (71 490 : 3 400) entspricht etwa dem Verhältnis der Kugelradien der Modelle (42 : 2).

b) $149597890^3: 4498252900^3 = 1: u_2^2$ $u_2 \approx 165$

Die Umlaufzeit des Planeten Neptun beträgt ca. 165 Jahre.

große Bahnhalbachse in 108 km

Hinweis: Die Skalierung des Zahlenstrahls kann im vorliegenden Ausdruck durch eine unpassende Druckeinstellung gering abweichen.

Lösungsschlüssel

- a) 1 × D: für die richtige Erklärung
- b) 1 x B: für die richtige Berechnung der Umlaufzeit
- c) 1 × A: für das richtige Veranschaulichen beider Planeten auf dem Zahlenstrahl im korrekten Maßstab inklusive richtiger Beschriftung