Exercise 0.1.

Definition 0.2 — Saturation.

Let A be a ring and S be a multiplicative closed subset. The complement in A of the union of prime ideals that do not meet S is denoted by \overline{S} and is called the saturation of S. It is the smallest and unique multiplicatively closed subset that contains S.

Exercise 0.3 (3.8). • i) \Rightarrow ii): Let $\phi: S^{-1}A \longrightarrow T^{-1}A$ be the ring homomorphism that maps $a/s \in S^{-1}A$ to a/s as an element of $T^{-1}A$. We show that if ϕ is bijective, then for each $t \in T$, t/1 is a unit in $S^{-1}A$.

- ii) \Rightarrow iii): For each $t \in T$, t/1 is a unit in $S^{-1}A$. We show that for each $t \in T$ there exists $x \in A$ such that $xt \in S$.
 - 1. Let $t \in T$, then t/1 is a unit in $S^{-1}A$, so there exists a $a/s \in S^{-1}A$ such that $t/1 \cdot a/s = 1$.
 - 2. We have

$$1 = \frac{t}{1} \cdot \frac{a}{s} = \frac{ta}{s} \tag{1}$$

$$\iff 1 \cdot s = \frac{ta}{s}s \tag{2}$$

$$\iff s = ta.$$
 (3)

- 3. If we set x := a, then there exists a $x \in A$ such that $xt \in S$.
- iii) \Rightarrow iv): For each $t \in T$ there exists $x \in A$ such that $xt \in S$. We show that T is contained in the saturation of S.
 - 1. Let $t \in T$, $x \in A$ such that $xt \in S$, and \mathfrak{p} be a prime ideal that contains t.
 - 2. Then $xt \in \mathfrak{p}$, so $\mathfrak{p} \cap S \neq \emptyset$, or in other words, prime ideals that contain t do not meet S.
 - 3. Hence, t is also not contained in the union of prime ideals that do not meet S.
 - 4. But it is contained in the complement of the union of prime ideals that do not meet S.
 - 5. So t is in the saturation of S.
- iv) \Rightarrow v): Let T be contained in the saturation of S. We show that every prime ideal that meets T also meets S.
 - 1. Let \mathfrak{p} be a prime ideal such that $\mathfrak{p} \cap T \neq \emptyset$.
 - 2. Then there is a $x \in \mathfrak{p}$ with $x \in T$.
 - 3. x is also in \overline{S} because T is contained in the saturation of S.
 - 4. This means that x is not in the union of prime ideals that do not meet S.
 - 5. So if $x \in \mathfrak{p}$, then \mathfrak{p} must meet S.
- v) \Rightarrow i): Every prime ideal that meets T also meets S. Let $\phi: S^{-1}A \longrightarrow T^{-1}A$ be the ring homomorphism which maps $a/s \in S^{-1}A$ to a/s as an element of $T^{-1}A$. We show ϕ is bijective.

1.