Brian MacKie-Mason bmackiemason@anl.gov

http://www.brianmackiemason.com

EDUCATION

Doctor of Philosophy Electrical Engineering <u>University of New Mexico</u> , <u>Advisor</u> : Professor <u>Zhen Peng</u> Novel Algorithms for Ultra Scale Electromagnetic Problems in the Supercomputing Era	2018
	1
Master of Science Nuclear Engineering	
University of Wisconsin-Madison	
Bachelor of Science in Engineering Nuclear Engineering	2011
University of Michigan	

PUBLICATIONS

- 1. **B. MacKie-Mason** and Z. Peng, "Rapid Antenna Prototyping on Large Platforms via Data-Sparse Schur Complement," (working).
- 2. **B. MacKie-Mason**, Y. Shao, A. Greenwood, and Z. Peng, "Supercomputing-Enabled First-Principles Analysis of Radio Wave Propagation in Urban Environments," *IEEE Transactions on Antennas and Propagation*, **66**, pp. 6606–6612 (2018). doi:10.1109/TAP.2018.2874674.
- 3. Z. Peng, R. Hiptmair, Y. Shao, **B. MacKie-Mason**, "Domain Decomposition Preconditioning for Surface Integral Equations in Solving Challenging Electromagnetic Scattering Problems," *IEEE Transactions on Antennas and Propagation*, **64**, pp. 210–223 (2016). doi:10.1109/TAP.2015.2500908.
- B. MacKie-Mason, A. Greenwood, and Z. Peng, "Adaptive and Parallel Surface Integral Equation Solvers for Very Large-Scale Electromagnetic Modeling and Simulation (invited paper)," Progress in Electromagnetics Research, 154, pp. 143–162 (2015). doi:10.2528/PIER15113001.

CONFERENCE & OTHER PRESENTATIONS

- 1. S. Wang, **B. Mackie-Mason**, and Z. Peng, "Platform-Aware In-Situ Antenna and Metamaterial Analysis and Design," *International Review of Progress in Applied Computational Electromagnetics (ACES)*, Miami, Florida, USA, April 14–18, 2019. (Best Student Paper Award)
- 2. **B. MacKie-Mason** and XGC Team, "Performance Portability of XGC code at DOE supercomputing facilities", *DOE Performance, Portability and Productivity Annual Meeting*, Apr. 2–4, 2019. https://bit.ly/2UHXMda
- 3. **B. MacKie-Mason**, P. Velesko, R. Hager, C.-S. Chang, and T.J. Williams, "Performance Optimization of the XGC code on KNL architecture", *Annual Meeting of the APS Division of Plasma Physics*, Nov. 5–9, 2018. https://goo.gl/wirgSu
- 4. **B. MacKie-Mason**, P. Velesko, R. Hager, C.-S. Chang, and T.J. Williams, "Application Study of Gyrokinetic PIC codes on Intel KNL architecture", *IXPUG Annual Fall Conference*, Hillsboro, OR, U.S.A. September 25–28, 2018. https://goo.gl/iLGnTv
- 5. **B. MacKie-Mason**, "What do I do?", *Argonne Computing Coffee & Code*, Argonne, IL, U.S.A., September 12, 2018. https://goo.gl/AtWQSD
- B. MacKie-Mason and Z. Peng, "Towards Real-time In-Situ Antenna Analysis and Design on Platforms of 1000 Wavelengths", *IEEE International Symposium on Antennas and Prop*agation & USNC/URSI National Radio Science Meeting, San Diego, CA, July 9–14, 2017. doi:10.1109/APUSNCURSINRSM.2017.8072714

- B. MacKie-Mason and Z. Peng, "Towards a Real-Time Solution of Extreme-Scale Electromagnetic Problems", *National Radio Science Meeting*, Boulder, CO, U.S.A., January 4–7, 2017. https://goo.gl/bK4wms
- 8. **B. MacKie-Mason**, Z. Peng, and C. Kung, "Extreme Fidelity Computational Electromagnetic Analysis in the Supercomputer Era", *The International Conference for High Performance Computing, Networking, Storage and Analysis*, Salt Lake City, Utah, U.S.A., November 13–18, 2016. https://goo.gl/jeQSKR
- 9. **B. MacKie-Mason** and Z. Peng, "High-fidelity, High-performance Integral Equation Solver for Time-Harmonic Maxwell's Equations", *IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting*, Fajardo, Puerto Rico, U.S.A., June 26–July 1, 2016. https://goo.gl/fgmgvk
- 10. **B. MacKie-Mason** and Z. Peng, "Adaptive and parallel surface integral equation solvers for very large-scale electromagnetic modeling and simulation," *Electrical and Computer Engineering Student Paper Competition*, Albuquerque, NM, April 2016. https://goo.gl/aK2KUn
- 11. Z. Peng and **B. MacKie-Mason**, "High-Performance Surface Integral Equation Solvers Towards Extreme-Scale Electromagnetic Modeling and Simulation," *IEEE International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES)*, Honolulu, HI, 22–26, March 2016. doi:10.1109/ROPACES.2016.7465365
- 12. **B. MacKie-Mason** and Z. Peng, "Adaptive, Scalable Domain Decomposition Methods for Surface Integral Equations," *IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting*, Vancouver, B.C., July 19–25, 2015. doi:10.1109/APS.2015.7305220
- 13. Z. Peng and **B. MacKie-Mason**, "Integral equation discontinuous Galerkin methods for time harmonic electromagnetic wave problems," *International Review of Progress in Applied Computational Electromagnetics (ACES)*, Williamsburg, VA, March 22–26, 2015. https://goo.gl/dkiiyX

TECHNICAL SKILLS

- Algorithm Development, Parallel Computing, Electromagnetic Analysis, MPI, OpenMP, Domain Decomposition Methods, Surface Integral Equation Methods, College Instruction, Scientific Computing, Particle-in-Cell
- Languages: C++, MATLAB, Bash shell, Python, C, Fortran
- Software Packages: <u>Intel VTUNE Amplifier</u>, <u>Intel Advisor</u>, <u>ViSiT</u>, <u>CUBIT</u>, MCNP/X Solid-Works (CAD) KDevelop, Improved Concurrent Electromagnetic Particle-in-Cell (ICEPIC)
- HPC Platforms: <u>Theta</u> (ALCF), <u>Cori-KNL</u> (NERSC), <u>JLSE</u> (ALCF), Bebop (ANL), Mira (ALCF), Ulam (UNM), Summit (OLCF), Titan (OLCF), Excalibur (ARL), Topaz (ERDC)
- μ Architectures: Intel KNL, Intel's next generation

PROFESSIONAL EXPERIENCE

Postdoctoral Appointee

March 2018 - Present

Leadership Computing Facility, Argonne National Laboratory

- Optimize code for Intel KNL architecture. 30% speed-up acheived on target kernel.
- Expert in electron push routine for codebase. 70% of computational time.
- Investigate portability and suitability of code for Aurora.
- Present research findings at inter/national conferences and meetings.

Brian MacKie-Mason 2

Department of Electrical and Computer Engineering, University

of New Mexico

Prof. Zhen Peng

- Researched and developed a geometry-aware domain decomposition (GA-IE-DDM) method for the integral solution to extreme-scale, multi-scale electromagnetics problems.
- Developed tools to integrate many different solvers and post-processing techniques to aid in the solution of different types of antenna problems.
- Parallelized GA-IE-DDM in distributed memory environment for a scalable solution method to the Electric Field Integral Equation.
- Developed a model order reduction technique for solving electromagnetic radiation problems when many antennas are mounted on very large PEC platforms.

Research Assistant Summers 2011-13

Air Force Research Lab, Kirtland AFB

Computational Electromagnetics

Drs. Wilkin Tang, Nathaniel Lockwood & Andrew Greenwood

- Studied the effects of laser-induced field emission (2013), designed diagnostics to improve the study of field emission (2012), and designed validation and verification test suite for ICEPIC (2011).
- Security clearance active through 2022.

PROFESSIONAL SERVICE

Margaret Butler Review Committee

March 2019

Reviewer for International Journal of Antennas and Propagation

2018

AWARDS & HONORS

- UNM Leadership and Involvement Award, 2018.
- GPSA President's Award for Innovative Leadership, 2017.
- ECE Outstanding Graduate Student, 2017.
- Who's Who Among American Colleges & Universities, 2017.
- ECE Graduate Student Association <u>Student Paper Competition</u> Journal Paper Section, 3rd prize, 2016.
- Eagle Scout, February 2007

DEPARTMENTAL SERVICE

UNM GPSA Fall 2015 - Present

- Graduate & Professional Student Association (GPSA) Alternate Representative to <u>Student Fee</u> Review Board (July 2017 Present)
- Department of ECE Delegate (August 2015 May 2016, August 2016 May 2017)
- GPSA Finance Committee Member (August 2016 May 2017)
- GPSA Representative to Information Technology UseCommittee (August 2015 May 2016)
- GPSA Legislative Steering Committee Member-at-large (February 2016 May 2016)

ECE Graduate Student Association (GSA)

Fall 2015 - Spring 2017

• ECE GSA Vice-President (June 2016 - May 2017)

Brian MacKie-Mason 3