3. zadatak

Neka je dan eliptički cilindar čiji je radijus na osi x jednak r, a radijus na y osi jednak s centriran na xy ravnini visine h. Neka su $e=(e_1,e_2,e_3)$ i $d=(d_1,d_2,d_3)$. Odredite siječe li zraka $e+\lambda d$ zadani cilindar.

Ukoliko imano kvadričnu jednadžbu cilindra, sjecišta zrake i cilindra možemo odrediti rješavanjem jednadžbe oblika $f(p(\lambda)) = a\lambda^2 + b\lambda + c$., gdje je $p(\lambda)$ jednadžba zrake, a funkcija f kvadrična funkcija cilindra $f(\langle x,y,z\rangle) = Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Jz + K$.

Medutim, to u ovom zadatku nemamo.

Gledamo projekciju zrake na xy ravninu i njeno sjecište s neograničenim cilindrom. Projiciramo zraku na ravninu xy tako da u ravnini odredimo ortonormirane vektore \vec{u} i \vec{v} i projiciramo ju na njih:

$$\vec{p_n} = (\vec{p} \cdot \vec{u}) \cdot \vec{u} + (\vec{p} \cdot \vec{v}) \cdot \vec{v}$$
, gdje je \vec{p} vektor zrake.

Nakon toga, označimo pravac u smjeru projiciranog vektora s općom jednadžbom y=ax+b. Ubacujemo jednadžbu pravca u jednadžbu elipse i dobivamo $\frac{x^2}{r^2}+\frac{(ax+b)^2}{s^2}=1$, pa izlučivanjem dobijemo kvadratnu jednadžbu:

$$(s^2 + a^2r^2)x^2 + (2r^2ab)x + b^2r^2 - r^2s^2 = 0.$$

Zraka siječe cilindar samo u slučaju kada ova jednadžba ima 2 rješenja, jer onda imamo 2 sjecišta.

Prethodni dio odnosio se na sjecište zrake s cilindrom neograničene visine. Kako mi gledamo cilindar konačne visine h, moramo još provjeriti siječe li zraka ravnine koje omeđuju cilindar.

Ravninu možemo definirati kao skup svih točaka x za koje vrijedi $x\cdot\vec{n}=q,$ gdje je q skalar, a \vec{n} vektor normale na ravninu.

Ako zraka prolazi kroz ravninu, izjednačimo točku ravnine a s jednadžbom zrake i imamo: $q = a \cdot \vec{n} = e \cdot \vec{n} + \lambda \cdot d \cdot \vec{n}$, iz čega izrazimo λ . Ako je $\lambda < 0$, onda zraka ne siječe ravninu. Ako je $\lambda > 0$, zraka siječe ravninu.

Ovaj postupak napravimo i za gornju i za donju ravninu koje omeđuju cilindar i dobijemo sjecišta s cilindrom konačne visine h.