CS260 -parallel algorithms
Yihan Sun

Parallel data structures

Last Lecture: SSSP

- Find a set of vertices as the frontier, update all their neighbors
- Dijkstra: 1 vertex in the frontier
 - Frontier: the one with the smallest tentative distance
 - *n* rounds to finish
- Bellman-ford: n vertices in the frontier
 - Frontier: all vertices
 - *n* rounds to finish

Last Lecture: SSSP

- Δ -stepping: a bucket of vertices in the frontier
 - Fontier: all vertices with tentative distances in range $i\Delta$ to $(i + 1)\Delta$
 - Run multiple rounds of Bellman-ford until no tentative distances are updated
 - No useful bounds about #rounds
- Radius-stepping: a bucket of vertices in the frontier
 - Shortcut each vertex to its ρ nearest neighbors, call the ρ -th nearest distance to v the radius of v, or r(v)
 - Frontier: all unsettled vertices within range d_i
 - $d_i = \min_{unsettled, v \in V} \delta(v) + r(v)$ after round i 1
 - A vertex v can update its neighbors' distances as far as $\delta(v) + r(v)$
 - Run two rounds of Bellman-ford until no tentative distances are updated
 - $O\left(\frac{n}{p}\log\rho L\right)$ rounds to finish, $L=\max/\min$ edge weight

Useful tools

- Almost all algorithms mentioned in the lectures about parallel algorithms are implemented in libraries:
 - Ligra/Ligra+ [Shun and Blelloch'13]
 - Frontier-based graph algorithms
 - https://github.com/jshun/ligra
 - Julienne [Dhulipala et al.'17]
 - Bucket-based graph algorithms
 - https://github.com/jshun/ligra/tree/master/apps/bucketing
 - GBBS [Dhulipala et al.'18]
 - Parallel graph algorithm library
 - https://github.com/ldhulipala/gbbs
 - ASPEN [Dhulipala et al.'18]
 - Dynamic graph processing library
 - https://github.com/ldhulipala/aspen

Last lecture: parallel trees

- Join-based tree algorithms
- $T = Join(T_L, e, T_R)$: T_L and T_R are two trees of a certain balancing scheme, e is an entry/node (the pivot).
- $T_L < e < T_R$
- It returns a valid tree T, which is $T_L \cup \{e\} \cup T_R$
- Cost: roughly the difference in height

(Rebalance if necessary)

Parallel trees

- Join-based insertion(T, k)
 - Recursively insert the key into the corresponding subtree
 - Join back using the root
- Join-based split(T, k)
 - Find which subtree does the key locate
 - Split that subtree
 - Join back
- Join2 (T_L, T_R)
 - Split the last element k in T_L
 - Join $T_L k$ and T_R using k

Range query (1D)

- Report all entries in key range $[k_L, k_R]$.
- Get a tree of them: $O(\log n)$ work and depth
- Flatten them in an array: $O(k + \log n)$ work, $O(\log n)$ depth

Equivalent to using two split algorithms

Join-based parallel algorithms

Parallel Algorithms

- Parallel algorithms on trees using divide—and—conquer scheme
 - Recursively deal with two subtrees in parallel (or split the tree into two pieces and handle them in parallel)
 - Combine results of recursive calls and the root (e.g., using join or join2)
 - Usually gives polylogarithmic bounds on depth

```
func(T, ...) {
   if (T is empty)
      return base_case;
   M = do_something(T.root);
   in parallel:
      L=func(T.left, ...);
      R=func(T.right, ...);
   return combine_results(L, R, M, ...)
}
```

Get the maximum value

 In each node we store a key and a value. The nodes are sorted by the keys.

```
get_max(Tree T) {
  if (T is empty) return -∞;
  in parallel:
    L=get_max(T.left);
    R=get_max(T.right);
  return max(max(L, T.root.value), R);
```

O(n) work and $O(\log n)$ depth Similar algorithm work on any map-reduce function

Map and reduce

- Maps each entry on the tree to a certain value using function map, then reduce all the mapped values using reduce (with identity identity).
 - Reduce is associative
- Assume map and reduce both have constant cost.

```
map_reduce(Tree T, function map, function reduce,
value_type identity) {
    if (T is empty) return identity;
    M=map(t.root);
    in parallel:
        L=map_reduce(T.left, map, reduce, identity);
        R=map_reduce(T.right, map, reduce, identity);
    return reduce(reduce(L, M), R);
```

```
e.g., for all values a_i in the tree, return \sum a_i^2

\Rightarrow \text{map}(x) = x^2

\Rightarrow \text{reduce}(x, y) = x + y;
```

Filter

- Select all entries in the tree that satisfy function f
- Return a tree of all these entries

```
filter(Tree T, function f) {
   if (T is empty) return an empty tree;
   in parallel:
       L=filter(T.left, f);
      R=filter(T.right, f);
   if (f(T.root)) return join(L, T.root, R);
   else return join2(L, R); }
```

O(n) work and $O(\log^2 n)$ depth

Construction

```
T=build(Array A, int size) {
  A'=parallel_sort(A, size);
  return build_sorted(A', s);
T=build_sorted(Arrary A, int start, int end) {
  if (start == end) return an empty tree;
  if (start == end-1) return singleton(A[start]);
  mid = (start+end)/2;
  in parallel:
   L = build_sorted(A, start, mid);
    R = build\_sorted(A, mid+1, end);
  return join(L, A[mid], R);
```

O(n) work and $O(\log n)$ depth

 $O(n \log n)$ work and $O(\log n)$ depth, bounded by the sorting algorithm

Output to array

- Output the entries in a tree T to an array in its in-order
- Assume each tree node stores its subtree size (an empty tree has size 0)

```
to_array(Tree T, array A, int offset) {
    if (T is empty) return;
    A[offset+T.left.size] = get_entry(T.root);
    in parallel:
        to_array(T.left, A, offset);
        to_array(T.right, A, offset+T.left.size()+1);
```


O(n) work and $O(\log n)$ depth

Parallel algorithms for ordered sets

Ordered Sets

Ordered sets: sets with total ordering

A set of citizens in Zootopia (unordered)

A set of integers (ordered)

Useful interface:

- Find, previous, next, size, first, last, k-th, ...
- Filter, reduce, construction, ...
- Union, intersection, difference, symmetric difference, ...

Merging Two Sets of Size n and m (n≥m)

• Solution 1: flatten trees into arrays, merge with moving pointers:

• Solution 2: insert the entries in the smaller tree into the larger tree

What is the minimum cost?

The Lower Bound of Merging Two Ordered Sets

• Choose n slots for the elements in the first set among all m+n available slots in the final result.

• Lower bound:
$$\log_2\binom{m+n}{m} = \Theta\left(m\log\left(\frac{n}{m}+1\right)\right)$$

The Lower Bound of Merging Two Ordered Sets

The lower bound

$$O\left(m\log\left(\frac{n}{m}+1\right)\right)$$

- When m = n, it is O(n)
- When $n \gg m$, it is about $O(m \log n)$ (e.g., when m = 1, it is $O(\log n)$)
- Can we give an algorithm achieving this bound?

```
\begin{array}{l} \textbf{union}(\pmb{T_1},\pmb{T_2}) \\ \textbf{if } T_1 = \emptyset \textbf{ then return } T_2 \\ \textbf{if } T_2 = \emptyset \textbf{ then return } T_1 \\ (L_2,k_2,R_2) = extract(T_2) \\ (L_1,b,R_1) = \text{split}(T_1,k_2) \\ \textbf{In parallel:} \\ T_L = \text{Union}(L_1,L_2) \\ T_R = \text{Union}(R_1,R_2) \\ \textbf{return } \text{Join}(T_L,k_2,T_R) \end{array}
```



```
union(T_1, T_2)

if T_1 = \emptyset then return T_2

if T_2 = \emptyset then return T_1

(L_2, k_2, R_2) = extract(T_2)

(L_1, b, R_1) = \operatorname{split}(T_1, k_2)

In parallel:

T_L = \operatorname{Union}(L_1, L_2)

T_R = \operatorname{Union}(R_1, R_2)

return \operatorname{Join}(T_L, k_2, T_R)
```


union (T_1, T_2)

```
if T_1 = \emptyset then return T_2
if T_2 = \emptyset then return T_1
(L_2, k_2, R_2) = extract(T_2)
(L_1, b, R_1) = split(T_1, k_2)
In parallel:
```

$$T_L = \text{Union}(L_1, L_2)$$

 $T_R = \text{Union}(R_1, R_2)$
return $\text{Join}(T_L, k_2, T_R)$

5


```
union(T_1, T_2)
    if T_1 = \emptyset then return T_2
    if T_2 = \emptyset then return T_1
    (L_2, k_2, R_2) = extract(T_2)
    (L_1, b, R_1) = \text{split}(T_1, k_2)
    In parallel:
    T_L = \text{Union}(L_1, L_2)
     T_R = Union(R_1, R_2)
    return Join(T_L, k_2, T_R)
                                       5
```


Similarly we can implement intersection and difference.

Theorem 1. For AVL trees, red-black trees, weight-balance trees and treaps, the above algorithm of merging two balanced BSTs of sizes m and n ($m \le n$) have $O\left(m\log\left(\frac{n}{m}+1\right)\right)$ work and $O(\log m\log n)$ depth (in expectation for treaps).

The bound also holds for intersection and difference

Cost analysis of union Using AVL as an example

```
union(T_1, T_2)
   if T_1 = \emptyset then return T_2
   if T_2 = \emptyset then return T_1
   (L_2, k_2, R_2) = extract(T_2)
  (L_1, b, R_1) = \operatorname{split}(T_1, k_2)
   In parallel:
V T_L = Union(L_1, L_2)
     T_R = Union(R_1, R_2)
   return Join(T_L, k_2, T_R)
```

Lemma 1. The Join work can be asymptotically bounded by its corresponding Split.

```
Split cost: the height of T_1
Join cost: difference of height between T_L and T_R
           T_L = T_2. left \cup a subset of T_1
          T_R = T_2 right \cup a subset of T_1
```

Can prove by induction

The depth is $O(\log m \log n)$

 h_2 steps to reach the base case, $O(h_1)$ cost for each split

The Split Work

union (T_1, T_2)

if $T_1 = \emptyset$ then return T_2 if $T_2 = \emptyset$ then return T_1 $(L_2, k_2, R_2) = extract(T_2)$ $(L_1, b, R_1) = split(T_1, k_2)$

In parallel:

 $T_L = \text{Union}(L_1, L_2)$ $T_R = \text{Union}(R_1, R_2)$ return $\text{Join}(T_L, k_2, T_R)$

The Split Work

Concavity:

$$\log \sum_{i=1}^{k} a_i \le k \log \frac{\sum a_i}{k}$$

 $c \log_2 m$ terms (If T_2 is perfectly balanced)

How can we enumerate the splitters?

- Height $O(\log n)$
- For the i-th layer, there are at most 2^{i-1} nodes
- For $c \log n$ layers, are there $2^{c \log n} = n^c$ nodes?

31

How can we enumerate the splitters?

- · Idea: group all nodes bottom up
- Example: AVL tree: group all nodes with height 2i-1 and 2i into level -i: no more than $\frac{N}{2^{i-1}}$ of them

AVL tree, N = 23

How can we enumerate the splitters?

- · Idea: group all nodes bottom up
- Example: AVL tree: group all nodes with height 2i-1 and 2i into level -i: no more than $\frac{N}{2^{i-1}}$ of them

Proof sketch Let n_i be the number of nodes with height i

- Every node with height 3 has at least 2 leaf descendants, so $n_3 \leq \frac{n_1}{2}$
 - AVL invariant
- Remove all leaf nodes, it is still an AVL tree, so $n_4 \leq \frac{n_2}{2}$

Lemma 3. In an AVL tree of size N, there are at most $\frac{N}{2^{i-1}}$ nodes in level -i.

The Split Work

Theorem 1. For AVL trees, red-black trees, weight-balance trees and treaps, the above algorithm of merging two balanced BSTs of sizes m and n ($m \le n$) have $O\left(m\log\left(\frac{n}{m}+1\right)\right)$ work and $O(\log m\log n)$ depth (in expectation for treaps).

The bound also holds for intersection and difference

Persistent parallel trees for MVCC

What Are Persistence and MVCC?

- Persistence [DSST'86]: for data structures
 - Preserves the previous version of itself
 - Always yields a new version when being updated
- Multi-version Concurrency Control (MVCC): for databases
 - Let write transactions create new versions
 - Let ongoing queries work on old versions

Why Persistence and MVCC?

- To guarantee concurrent updates and queries to work correctly and efficiently
 - Queries work on a consistent version
 - Writers/readers do not block each other

Why Persistence and MVCC?

An example of a document search engine.

A Document Database

Document 4:

The University of California, Riverside is a public research university in Riverside, California.

For end-user experience:

- Queries shouldn't be delayed by updates
- Queries must be done on a consistent version of database

Generally useful for any database systems with concurrent updates and queries.

Hybrid Transactional and Analytical Processing (HTAP) Database System

Persistence Using Join

- Path-copying: copy the affected path on trees
- Copying occur only in Join!

Persistence Using Join

- Path-copying: copy the affected path on trees
- Copying occur only in Join!

Persistence Using Join

- Path-copying: copy the affected path on trees
- Copying occur only in Join!
- Always copy the middle node
- All the other parts in the algorithm remain unchanged
- · No extra cost in time asymptotically, small overhead in space

• Safe for concurrency – multi-version concurrency control (MVCC) T_1

Persistence for MVCC

- Each operate on a snapshot safe for concurrency
- Multiple updates can be visible atomically lock-free

$$P_1$$
: $T_1 = T$.insert(4)
commit(T_1)

$$P_2: T_2 = T. delete(9)$$

$$P_3: T_3 = T.insert(6)$$

Transactions using Multi-version Concurrency Control (MVCC)

- Lock-free atomic updates ☺
 - A series of operations
 - A bulk of operations (e.g., union)
- Easy roll-back ©
- Do not affect other concurrent operations ©
- Any operation works on as if a singleversioned tree with no extra (asymptotical) cost ©

Worst-case

 $O(\log n)$ for a lookup $O(\log n)$ for an insertion

Transactions using Multi-version Concurrency Control (MVCC)

- Lock-free atomic updates ©
 - A series of operations
 - A bulk of operations (e.g., union)
- Easy roll−back ☺
- Do not affect other concurrent operations ©
- Any operation works on as if a single-versioned tree with no extra (asymptotical) cost ©
- Concurrent writes?
 - Concurrent transactions work on snapshots
 - They don't come into effect on the same tree?
- Useless old nodes? 🕾
 - Out-of-date nodes should be collected in time

Batching

 Collect all concurrent writes can commit using a single writer once a while

Batching

 Collect all concurrent writes can commit using a single writer once a while

Garbage Collection

- Reference Counter Garbage Collector
 - Each tree node records the number of other tree nodes/pointers refers to it
 - Node 8 and 1 in the example have reference counter 2

Reference count:

Node	1	3	5	8	9	5'	3'	4
Count	2	1	1	2	1	1	1	1

Garbage Collection

- Each tree node records the number of other tree nodes/pointers refers to it
- Node 8 and 1 in the example have reference counter 2
- Collect a node if and only if its reference count is 1


```
collect(node* t) {
   if (!t) return;
   if (t->ref_cnt == 1) {
      node* lc = t->lc, *rc = t->rc;
      free(t);
      in parallel:
        collect(lc);
      collect(rc);
   } else dec(t->ref_cnt);
}
```

Node	1	3	5	8	9	5'	3'	4
Count	1	1	1	1	1	1	1	1

Version chains

- An alternative way is to use version chains
 - Stores all versions in one (tree) skeleton
 - Readers need to check the visibility of versions
 - Less space used, but readers can be slow

