5. Asymptotické paměťové a časové složitosti

Algoritmus

Musí být elementární = skládá se z konečného počtu jednoduchých a snadno srozumitelných příkazů.

Musí být determinovaný = v každém kroku se musí dát určit, jestli skončil nebo bude pokračovat.

Měl by dokázat pokrýt všechny vstupy a správně se provést.Algoritmy mají různou složitost.Musí být konečný, vždy musí skončit s konečným počtem

2 nejčastější: seřadit prvky a vyhledat prvky, u nich chceme tu nejrychlejší optimalizaci

Asymptotická

Zabývá se výkoností programu, který může pracovat s neomezeným množstvím

V praxi je důležité umět mezi sebou porovnat více algoritmů, které řeší stejný problém, abychom mohli rozhodnout, kdy který použít. asymptotická složitost -> asymptoticky se blíží k této hodnotě. 2 typy porovnání:

- časová složitost doba výpočtu podle daného algoritmu potřebná pro zpracování daného objemu dat
 - paměťová složitost velikost paměti využívané při výpočtu

Časová složitost

Podle názvu souvisí s dobou, po kterou daný algoritmus běží. Doba závisí na velikosti vstupu (třídění 10ti čísel bude jistě rychlejší, než třídění milionu čísel). Nemůže se obecně prohlásit přesný čas, protože závisí na rychlosti počítače, kde program běží a také na programovacím jazyce. Odhady popisují růst složitosti vzhledem ke zvětšujícím se vstupům, ale neurčují konkrétní funkci.

V Jednoduchých algoritmech určit složitost přesně, ve složitějších je to až moc složité.

Jeden algoritmus (program, postup, metoda...) je rychlejší než druhý. Každému algoritmu lze jednoznačně přiřadit neklesající funkci zvanou asymptotická (časová) složitost, která charakterizuje počet operací algoritmu v závislosti na rostoucím rozsahu vstupních dat.

Čím pomaleji tato funkce roste, tím je algoritmus rychlejší.

0

Symbol velké O se nazývá "velké O notace" nebo "Omikron notace"
Určuje nejhorší možný případ složitosti (Horní mez) (složitost daného
algoritmu je asymptoticky menší nebo rovna výrazu v závorce) f(n) □ cg(n)
Udává tedy, jakou "třídu časové složitosti" algoritmus nikdy nepřekročí.
Nejvíc používaná, protože chceme hlavně horní odhady, kdežto dolní odhady
bývá obvykle těžší zjistit.

Funkce f nepřesáhne v limitě hodnoty funkce g až na konstantu – g představuje horní mez, kam až f může dosáhnout – odhad složitosti v nejhorším případě)

Ω

Určuje nejlepší možný případ složitosti (Dolní mez) (složitost daného algoritmu je asymptoticky větší výrazu v závorce) f(n) > cg(n). Funkce f nedosáhne v limitě hodnoty funkce g až na konstantu – g představuje dolní mez, kam už f nemůže dosáhnout – odhad složitosti v nejlepším případě

Velká Théta

Jedná se o odhad složitosti v průměrném případě ve vymezených hranicích (nejlepší a nejhorší případ složitosti, takže meze O a Ω).

Používáme pro vyjádření faktu, že 2 funkce, jsou asymptoticky stejné až na multiplikativní konstantu

Asymptotická těsná mez – funkce f a g jsou až na konstantu stejné – odhad složitosti v průměrném případě

Rozdělení Složitostí

Doba výpočtu pro různé časové složitosti s předpokladem, že 1 operace trvá 1 μs (10⁻⁶ sec)

složitost	Počet operací						
	10	20	40	60	500	1000	
log ₂ n	3,3 μs	4,3 μs	5 μs	5,8 μs	9 μs	10 μs	
n	10 μs	20 μs	40 μs	60 μs	0,5 ms	1 ms	
n log₂n	33 μs	86 μs	0,2 ms	0,35 ms	4,5 ms	10 ms	
n ²	0,1 ms	0,4 ms	1,6 ms	3,6 ms	0,25 s	1 s	
n³	1 ms	8 ms	64 ms	0,2 s	125 s	17 min	
n ⁴	10 ms	160 ms	2,56 s	13 s	17 hod	11,6 dnů	
2 ⁿ	1 ms	1 s	12,7 dnů	36000 let	10 ¹³⁷ let	10 ²⁸⁷ let	
n!	3,6 s	77000 let	10 ³⁴ let	10 ⁶⁸ let	10 ¹¹¹⁰ let	10 ²⁵⁵⁴ let	

Konstatní O(1)

- označuje, že čas potřebný k provedení daného úkonu vůbec nesouvisí s počtem prvků n, se kterými pracujeme.

Neznamená, že bude běžet právě 1. Jedna jen značí, že jde o konstantu kód, který se ukončí stejně rychle a nezáleží mu na velikosti dat. Příklad

Získání prvku z Listu pomocí indexu (od báze 0. Index se odpočítá 3, takže vezme 4.prvek a ostatní vůbec neprojde) prostě jeden krok.

LinkedList přidání (neobsahuje žádnou kapacitu, pouze adresy) takže na rozdíl od pole, má konstantní složitost při přidání dat AddLast a AddFirst. Metody: GetEnumerator, GetHashCode jsou konstatní

Logaritmická O(log2 n)

Velmi omezeně se vyskytující

Hlavně ji najdeme u setříděných posloupností, kde najít prvek v takové posloupnosti trvá O(n)

Třeba přidání, odstranění nebo získání prvku v SortedSet a SortedDictionary (stromové struktury).

Protože se řídí pravidlem na jedné straně Nody je menší hodnoty, na druhé větší. To platí pro všechny Nody, takže se neprojdou všechny prvky kolekce. Příklad jako cyklus s násobením.

Lineární O(n)

Nachází se tam, kde je procházení datové struktury prvek po prvku Oproti Logaritmické, kde nějaké větve procházet nemusíme, zde musíme projít čas/paměť běží úměrně k tomu, jaké množství dat je využito.

Foreach, for (int = 0, i<něco, i++), získání hodnoty z LinkedListu pomocí ElementAt(index) (musí se projít přes věechny prvky na cestě k tomu našemu) Skoro u všech kolekcí v metodě Constains nebo IndexOf

Také iterátor foreach je lineární

Kvazilineární O(n log2(n))

Kombinace lineární a logaritmické chceme setřídit pole tak, že si z něj uděláme binární strom. Projdeme celé pole v O(n) a každý prvek přidáme do BST v čase O(log n). Dohromady nám to dá vzorec, že n-krát provedeme operaci, která je v logaritmickém čase.Quick Sort, Merge Sort

Kvadratická O(n^2)

"Hloupější třídicí algoritmy" – Bubble sort, Insertion sort, 2 for cykly v sobě při procházení třeba dvourozměrného pole

Polynomiální O(n^3), O(n^4).....

Procházení trojrozměrného pole

Exponenciální O(2^n)

Velmipomalé.Třeba Fibonacciho sekvence s rekurzí (ale není to úplně přesný výsledek).Nebo Hanojské věže s rekurzí.

Faktoriálová O(n!)

Skoro nepoužitelný.BruteForce algoritmy

Srovnání výkonu u časové složitosti

Frekvence CPU	O(n)	O(n log n)	O(n ²)	O(n!)
3 GHz (bez zrychlení)	15 prvků	6 prvků	4 prvky	4 prvky
30 GHz	150 prvků	30	12 prvků	5 prvků
300 GHz	1500 prvků	200 prvků	40 prvků	6 prvků
3 000 GHz	15000 prvků	1400 prvků	120 prvků	8 prvků

Stabilita

Počítání složitosti

Paměťová složitost

Příklady