CSCE 421 HW1

Sahil Palnitkar

Problem 1

1)

$$egin{aligned}
abla(f) &= [rac{\partial f(x,y)}{\partial x}, rac{\partial f(x,y)}{\partial y}] \ rac{\partial f(x,y)}{\partial x}(x^2 + ln(x) + xy + y^3) &= 2x + rac{1}{x} + y \ rac{\partial f(x,y)}{\partial y}(x^2 + ln(x) + xy + y^3) &= x + 3y^2 \ &= \left[rac{\left(2x + rac{1}{x} + y
ight)}{(x + 3y^2)}
ight] \end{aligned}$$

Evaluating gradient value at (x,y) = (1, -1), we get

$$=\left[egin{array}{c} (2) \ (4) \end{array}
ight]$$

2)

$$egin{aligned}
abla(f) &= [rac{\partial f(x,y,z)}{\partial x},rac{\partial f(x,y,z)}{\partial y},rac{\partial f(x,y,z)}{\partial z}] \ rac{\partial f(x,y,z)}{\partial x}ig(anhig(x^3y^3ig) + \sin(z)ig) &= 3x^2y^3sech^2ig(x^3y^3ig) \ rac{\partial f(x,y,z)}{\partial y}ig(anhig(x^3y^3ig) + \sin(z)ig) &= 3x^3y^2sech^2ig(x^3y^3ig) \ rac{\partial f(x,y,z)}{\partial y}ig(anhig(x^3y^3ig) + \sin(z)ig) &= cosig(zig) \end{aligned}$$

Evaluating gradient value at $(x,y,z) = (-1, 0, \frac{\pi}{2})$, we get

$$= \begin{bmatrix} (0) \\ (0) \\ (0) \end{bmatrix}$$

Problem 2

1)
$$\begin{pmatrix} 1 \cdot 6 + (-1) \cdot 0 + 6(-3) + 7 \cdot 11 & 1 \cdot 2 + (-1)(-1) + 6 \cdot 0 + 7 \cdot 4 \\ 9 \cdot 6 + 0 \cdot 0 + 8(-3) + 1 \cdot 11 & 9 \cdot 2 + 0 \cdot (-1) + 8 \cdot 0 + 1 \cdot 4 \\ (-8) \cdot 6 + 5 \cdot 0 + 2(-3) + 3 \cdot 11 & (-8) \cdot 2 + 5(-1) + 2 \cdot 0 + 3 \cdot 4 \\ 10 \cdot 6 + 4 \cdot 0 + 0 \cdot (-3) + 1 \cdot 11 & 10 \cdot 2 + 4(-1) + 0 \cdot 0 + 1 \cdot 4 \end{pmatrix} = \begin{pmatrix} 65 & 31 \\ 41 & 22 \\ -21 & -9 \\ 71 & 20 \end{pmatrix}$$

2)
$$\begin{pmatrix} 10 \cdot 7 & 10 \cdot 3 & 10 \cdot 0 & 10 \cdot 1 \\ 4 \cdot 7 & 4 \cdot 3 & 4 \cdot 0 & 4 \cdot 1 \\ (-1) \cdot 7 & (-1) \cdot 3 & (-1) \cdot 0 & (-1) \cdot 1 \\ 8 \cdot 7 & 8 \cdot 3 & 8 \cdot 0 & 8 \cdot 1 \end{pmatrix} = \begin{pmatrix} 70 & 30 & 0 & 10 \\ 28 & 12 & 0 & 4 \\ -7 & -3 & 0 & -1 \\ 56 & 24 & 0 & 8 \end{pmatrix}$$

3)
$$(9(-3) + (-3) \cdot 4 + 1 \cdot (-9) + 6 \cdot 0) = (-48)$$

Problem 3

1) Vector
$$=$$
 $\begin{bmatrix} (5-7) \\ (0-9) \\ (-1-5) \\ (4-2) \end{bmatrix}$ $=$ $\begin{bmatrix} (-2) \\ (-9) \\ (-6) \\ (2) \end{bmatrix}$ So we get $\ell_0=4$ as there are 4 non-zero terms.

2) Vector
$$=$$
 $\begin{bmatrix} (5-7) \\ (0-9) \\ (-1-5) \\ (4-2) \end{bmatrix} = \begin{bmatrix} (-2) \\ (-9) \\ (-6) \\ (2) \end{bmatrix}$ So we get $\ell_1 = |(-2+-9+-6+2)| = (15)$

3)
$$\ell_2 = \sqrt{(5-7)^2 + (0-9)^2 + (-1-5)^2 + (4-2)^2} = \sqrt{(-2)^2 + (-9)^2 + (-6)^2 + (2)^2} = \sqrt{(4-2)^2 + (-1-5$$

Vector
$$=$$
 $\begin{bmatrix} (5-7) \\ (0-9) \\ (-1-5) \\ (4-2) \end{bmatrix}$ $=$ $\begin{bmatrix} (-2) \\ (-9) \\ (-6) \\ (2) \end{bmatrix}$ So we get $\ell_\infty=9$ as this is the absolute value of the max term of

the vector.

Problem 4

- 1) The sample space is $6 \cdot 6 = 36$
- 2) The sum 10 can be achieved by getting either (4,6) or (5,5) or (6,4). This is 3 ways out of 36. So the probability of getting a sum of 10 when 2 dice are rolled is $\frac{3}{36}=\frac{1}{12}$
- 3) The sum 6 can be achieved by getting either (1,5) or (2,4) or (3,3) or (4,2) or (5,1). This is 5 ways out of 36. So the probability of getting a sum 6 when 2 dice are rolled is $\frac{5}{36}$

Problem 5

- 1) The mean of X will be $\frac{(a+b)}{2}$
- 2) The standard deviation of X will be $\sqrt{\frac{\left(b-a\right)^2}{12}}$

Problem 6

1) The accuracy of the detector will be $rac{(FP+FN)}{Total}=rac{(37+55)}{160}=0.575$

2) The sensitivity of the detector is $\frac{TP}{(TP+FN)}=\frac{37}{(37+45)}=0.4512$

The specificity of the detector is $\frac{TN}{(FP+TN)}=\frac{55}{(23+55)}=0.7051$

Balanced accuracy =
$$\frac{(Sensitivity + Specifity)}{2} = \frac{(0.4512 + 0.7051)}{2} = 0.5782$$

- 3) The precision of the detector is $\frac{\mathit{TP}}{(\mathit{TP}+\mathit{FP})} = 0.6167$
- 4) The recall is the same as the sensitivity which is 0.4512
- 5) The F-measure of the detector is $\frac{2 \cdot Precision \cdot Recall}{(Precision + Recall)} = 0.5211$

Problem 7

- 1) ROC value for threshold = 0 will be (1,1)
- 2) ROC value for threshold = 0.25 will be (0.4, 0.8)
- 3) ROC value for threshold = 0.5 will be (0.4, 0.6)
- 4) ROC value for threshold = 0.75 will be (0, 0.2)
- 5) ROC value for threshold = 1 will be (0,0)
- 6) AUROC using left endpoint approximation will be

$$\int_a^b f(x) dx pprox \sum_{i=1}^{n-1} x_{i+1} - x_i \cdot f(x_i)$$

In [3]:

```
import pandas as pd
import numpy as np
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
```

In [4]:

```
dataframe = pd.read csv("Smarket.csv")
```

In [5]:

```
print(dataframe.head())
  Unnamed: 0 Year
                            Lag2
                                   Lag3
                                                 Lag5 Volume Toda
                     Lag1
                                          Lag4
У
0
              2001
                    0.381 -0.192 -2.624 -1.055 5.010
                                                       1.1913
                                                              0.95
9
1
           2
              2001
                    0.959 0.381 -0.192 -2.624 -1.055
                                                       1.2965
                                                              1.03
2
2
           3
              2001
                    1.032 0.959 0.381 -0.192 -2.624
                                                      1.4112 -0.62
3
3
              2001 -0.623 1.032 0.959 0.381 -0.192
                                                      1.2760 0.61
4
4
              2001 0.614 -0.623 1.032 0.959 0.381 1.2057 0.21
3
 Direction
0
        Up
        Up
1
2
      Down
3
        Up
4
        Up
```

In [6]:

```
print(dataframe.shape)
```

(1250, 10)

```
In [7]:
```

```
X = dataframe[['Lag1','Lag2']]
y = dataframe['Direction']
print(X)
print(y)
```

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	Lag1 0.381 0.959 1.032 -0.623 0.614 0.213 1.392 -0.403 0.027 1.303 0.287 -0.498 -0.189 0.680 0.701 -0.562 0.546 -1.747 0.359 -0.151 -0.841 -0.623 -1.334 1.183 -0.865 -0.218 0.812 -1.891	Lag2 -0.192 0.381 0.959 1.032 -0.623 0.614 0.213 1.392 -0.403 0.027 1.303 0.287 -0.498 -0.189 0.680 0.701 -0.562 0.546 -1.747 0.359 -0.151 -0.841 -0.623 -1.334 1.183 -0.865 -0.218 0.812
28 29 1220 1221 1222 1223 1224 1225 1226 1227 1228 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245	-1.736 -1.851 0.179 0.941 0.440 0.527 0.508 0.347 0.209 -0.851 0.002 -0.636 1.216 0.032 -0.636 0.128 -0.501 -0.122 0.281 0.084 0.555 0.419 -0.141 -0.285 -0.584 -0.024 0.252 0.422	-1.891 -1.7360.385 0.179 0.941 0.440 0.527 0.508 0.347 0.209 -0.636 1.216 0.032 -0.636 1.216 0.032 -0.236 0.128 -0.501 -0.122 0.281 0.084 0.555 0.419 -0.141 -0.285 -0.584 -0.024 0.252

1249 -0.298 0.130

[1250 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	rows x Up Up Up Down Up Up Up Down Up Down Down Up Down Up Down Up Down Down Down Down Down Down Down Down	2	columns]
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246	Up Up Up Up Up Up Up Down Up Down Up Down Up Down Up Down Up Up Up Up Down Down Down Down Down Down Down Down		

```
CSCE421 HW1 sahilpalnitkar
1247
          Up
1248
        Down
1249
        Down
Name: Direction, Length: 1250, dtype: object
In [8]:
X train, X test, y train, y test = train test split(X, y, test size=0.33, random
_state=42)
```

In [91:

```
plot y = []
plot x = []
for i in range(1,11):
    plot y.append(i)
    print(str(i) + ":")
    neigh = KNeighborsClassifier(n neighbors=i)
    neigh.fit(X_train,y_train) #Trains model
    score test = neigh.score(X test, y test) #.score uses .predict as an underly
ing function
    plot x.append(score test)
    print("test_" + str(i) + ":")
    print(score test)
```

```
1:
test 1:
0.5108958837772397
2:
test 2:
0.5302663438256658
3:
test 3:
0.46\overline{2}46973365617433
test 4:
0.48\overline{6}68280871670705
5:
test_5:
0.4721549636803874
6:
test 6:
0.4552058111380145
7:
test 7:
0.48426150121065376
8:
test 8:
0.4745762711864407
9:
test 9:
0.46246973365617433
10:
test 10:
0.4891041162227603
```

In [10]:

```
plt.plot(plot_x)
plt.ylabel(plot_y)
plt.show()
```

