Course Code	Course Name	Credit
CSC402	Analysis of Algorithms	3

Pr	Prerequisite: Data structure concepts, Discrete structures		
Co	Course Objectives:		
1	To provide mathematical approaches for Analysis of Algorithms		
2	To understand and solve problems using various algorithmic approaches		
3	To analyze algorithms using various methods		
Co	Course Outcomes: At the end of the course learner will be able to		
1	Analyze the running time and space complexity of algorithms.		
2	Describe, apply and analyze the complexity of divide and conquer strategy.		
3	Describe, apply and analyze the complexity of greedy strategy.		
4	Describe, apply and analyze the complexity of dynamic programming strategy.		
5	Explain and apply backtracking, branch and bound.		
6	Explain and apply string matching techniques.		

Module		Detailed Contents	Hours
1		Introduction	8
	1.1	Performance analysis, space, and time complexity Growth of function,	
		Big-Oh, Omega Theta notation Mathematical background for algorithm	
		analysis.	
		Complexity class: Definition of P, NP, NP-Hard, NP-Complete	
		Analysis of selection sort, insertion sort.	
	1.2	Recurrences: The substitution method, Recursion tree method, Master	
		method	
2		Divide and Conquer Approach	6
	2.1	General method, Merge sort, Quick sort, Finding minimum and	
		maximum algorithms and their Analysis, Analysis of Binary search.	
3		Greedy Method Approach	6
	3.1	General Method, Single source shortest path: Dijkstra Algorithm	
		Fractional Knapsack problem, Job sequencing with deadlines,	
		Minimum cost spanning trees: Kruskal and Prim's algorithms	
4		Dynamic Programming Approach	9
	4.1	General Method, Multistage graphs, Single source shortest path:	
		Bellman Ford Algorithm	
		All pair shortest path: Floyd Warshall Algorithm, Assembly-line	
		scheduling Problem0/1 knapsack Problem, Travelling Salesperson	
		problem, Longest common subsequence	
5		Backtracking and Branch and bound	6
	5.1	General Method, Backtracking: N-queen problem, Sum of subsets,	
		Graph coloring	
	5.2	Branch and Bound: Travelling Salesperson Problem, 15 Puzzle problem	
6	4	String Matching Algorithms	4
	6.1	The Naïve string-matching algorithm, The Rabin Karp algorithm, The	
		Knuth-Morris-Pratt algorithm	

Textbooks:			
1	T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", 2 nd		
	Edition, PHI Publication 2005.		
2	Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms"		
	University Press.		

References:

- Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-Hill Edition.
- 2 S. K. Basu, "Design Methods and Analysis of Algorithm", PHI

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of total six questions.
- 2 All question carries equal marks
- 3 Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four question need to be solved.
- In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Use	Useful Links		
1	https://nptel.ac.in/courses/106/106/106106131/		
2	https://swayam.gov.in/nd1 noc19 cs47/preview		
3	https://www.coursera.org/specializations/algorithms		
4	https://www.mooc-list.com/tags/algorithms		

Course Name	Lab Name	Credit
CSL401	Analysis of Algorithms Lab	1

Pr	Prerequisite: Basic knowledge of programming and data structure		
La	Lab Objectives:		
1	To introduce the methods of designing and analyzing algorithms		
2	Design and implement efficient algorithms for a specified application		
3	Strengthen the ability to identify and apply the suitable algorithm for the given real-world		
	problem.		
4	Analyze worst-case running time of algorithms and understand fundamental algorithmic		
	problems.		
La	Lab Outcomes: At the end of the course, the students will be able to		
1	Implement the algorithms using different approaches.		
2	Analyze the complexities of various algorithms.		
3	Compare the complexity of the algorithms for specific problem.		

Descrip	Description			
Impleme	Implementation can be in any language.			
	Suggested Practical List:			
Sr No		Suggested Experiment List		
1		Introduction		
	1.1	Selection sort, Insertion sort		
2		Divide and Conquer Approach		
	2.1	Finding Minimum and Maximum, Merge sort, Quick sort, Binary search		
3		Greedy Method Approach		
	3.1	Single source shortest path- Dijkstra		
		Fractional Knapsack problem		
		Job sequencing with deadlines		
		Minimum cost spanning trees-Kruskal and Prim's algorithm		
4		Dynamic Programming Approach		
	4.1	Single source shortest path- Bellman Ford		
		All pair shortest path- Floyd Warshall		
		0/1 knapsack		
		Travelling salesperson problem		
		Longest common subsequence		
5		Backtracking and Branch and bound		
	5.1	N-queen problem		
		Sum of subsets		
		Graph coloring		
6		String Matching Algorithms		
	6.1	The Naïve string-matching Algorithms		
		The Rabin Karp algorithm		
		The Knuth-Morris-Pratt algorithm		

Term Work: 1 Term work should consist of 10 experiments. 2 Journal must include at least 2 assignments on content of theory and practical of "Analysis of Algorithms" 3 The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work. 4 Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks, Assignments: 05-marks)

Oral & Practical exam

Based on the entire syllabus of CSC402: Analysis of Algorithms