Problèmes inverses et dynamique des population

Examen. Durée: 3 heures.

12 janvier 2018 14h-17h.

Avertissement

Le sujet se compose de pages et de parties indépendantes. Les questions particulièrement difficiles ou non directement abordées en cours seront indiquées par un signe \diamond . Il n'est pas nécessaire de tout faire pour obtenir la note maximale. Les réponses doivent être détaillées et les calculs intermédiaires doivent être écrits. Le polycopié est autorisé.

Problèmes inverses autour de la dépolymérisation et de la fragmentation

Partie 2 : Modèle de dépolymérisation-polymérisation

Dans cette seconde partie on considère l'équation de polymérisation-dépolymerisation suivante, avec a>0 et b>0 constants :

$$\begin{cases} \frac{\partial}{\partial t}u(t,x) + \frac{\partial}{\partial x}\left((ac(t) - b)u(t,x)\right) = 0, & x > 0, \quad t \geqslant 0, \\ \frac{dc}{dt}(t) = (b - ac(t)) \int_{0}^{\infty} u(t,x)dx, \\ u(0,x) = u^{in}(x) \geqslant 0, \qquad c(0) = 0, \qquad \int_{0}^{X} xu^{in}(x)dx = \rho_{0}. \end{cases}$$

$$(1)$$

On suppose $u^{in} \in L^1$ à support dans (0,X). On admet ou question à donner qu'il existe une unique solution $u \in \mathcal{C}(0,T,L^1((1+x)dx))$.

On note
$$\mu_0(t) = \int_0^\infty u(t,x)dx$$
 et $\mu_1(t) = \int_0^\infty xu(t,x)dx$.

A partir de mesures de μ_0 et/ou de μ_1 , on souhaite estimer la condition initiale $u^{in}(x)$. On suppose que $\rho_0 < \frac{b}{a}$.

1 Etudes sur le problème 2. pour tâcher d'en sortir des questions d'examen...

1.1 Tikhonov statique

On peut poser une question plus ou moins ouverte sur la façon d'implémenter la version statique de Tikhonov. On pourrait poser $\mathcal{Y} = L^2(0,X)$, $\mathcal{Z} = L^2(0,T) \times L^2(0,T)$, $\Psi : u^{in} \to (\mu_0, \mu_1)$. L'observation est $z_{\varepsilon} := (\mu_0^{\varepsilon}, \mu_1^{\varepsilon})$.

L'opérateur Ψ est non-linéaire, injectif pour T suffisamment grand (cf. étude ci-dessus). La méthode de Tikhonov classique peut s'écrire aussi pour un problème non linéaire, comme suit :

$$J_{\alpha}(u^{in}) := \frac{1}{2} \left(\|\mu_0[u^{in}] - \mu_0^{\varepsilon}\|_{L^2(0,T)}^2 + \|\mu_1[u^{in}] - \mu_1^{\varepsilon}\|_{L^2(0,T)}^2 + \alpha^2 \|u^{in}\|_{L^2(0,T)}^2 \right)$$

On peut appliquer une méthode de descente de gradient, cf. p.74 du cours. Il faut alors calculer la dérivée de Fréchet Ψ' de Ψ . Ce calcul, que j'ai commencé, ne semble pas très évident : en utilisant la méthode des caractéristiques comme ci-dessus, j'arrive (dans les notations précédentes) à exprimer la dérivée de Fréchet de μ_0 et μ_1 en fonction de celle de F; mais alors j'obtiens une formule implicite sur la dérivée de Fréchet de F...

1.2 Assimilation de données

On commence par réécrire le problème dans le formalisme 4D-Var. Peut-être la formulation du prob elle-même peut faire l'objet d'une question, plus ou moins ouverte ou guidée? On note cette fois $\mathcal{Y}=L^2(0,X),\,y=u$ solution du problème en temps continu (cf. équation (5.32) par exemple dans le cours)

$$\begin{cases} \dot{y}_{|\zeta}(t) = A(t)y_{|\zeta}(t), & t \in \mathbb{R}_+ \\ y_{|\zeta}(0) = y_{\diamond} + \zeta, \end{cases}$$
 (2)

avec $u^{in} = y_{\diamond} + \zeta$, $y(t) = u(t, \cdot)$, et ce qu'on cherche à estimer étant $\check{u}^{in} = y_{\diamond} + \check{\zeta}$. On note l'espace d'observation $\mathcal{Z} = \mathbb{R}^2_+$ et l'opérateur d'observation $C: \mathcal{Y} \to \mathcal{Z}$ est indépendant du temps et est défini par

$$C: \quad u \to (\mu_0(u), \mu_1(u)) = (\int_0^\infty u(x) dx, \int_0^\infty x u(x) dx).$$

L'opérateur d'observation est linéaire continu (par Cauchy-Schwarz) peut faire l'objet d'une question facile.

On mesure

$$z^{\varepsilon}(t) = C(\check{y}(t)) + \xi^{\varepsilon}(t)$$

question à Philippe: j'ai cherché dans le cours quelle notation donner au bruit de mesure, je n'en ai pas trouvé, du coup ici je le note simplement ξ^{ε} , supposé petit.

1.2.1 Définition de l'opérateur de la dynamique

On a deux façons possibles de définir l'opérateur A:

1. On considère que A est un opérateur non linéaire (quadratique) indépendant du temps : alors on a

$$A_{NL}(u) := \frac{d}{dx} [(b - a(\rho_0 - \int_0^\infty xu(x)dx))u].$$

2. On intègre dans A la mesure μ_1 , dans un premier temps sans la considérer bruitée, dans un second temps en considérant un bruit de modèle : dans ce cadre on définit

$$A_L(t)(u) := \frac{d}{dx}[(b - a(\rho_0 - \mu_1(t)))u].$$

 $A_L(t)$ est alors un opérateur linéaire, mais dépendant du temps.

Concernant le domaine de A, on peut le définir comme si A était linéaire par

$$D(A) = H^1(0, X)$$

ce qui est vrai aussi bien pour A_{NL} que pour A_{L} .

1.2.2 Bruit de mesure

Si l'on souhaite définir A par $A_L(t)$, il faudrait prendre en compte le fait que l'on ne mesure pas exactement $\mu_1(t) = \int_0^\infty x \check{y}(t)(x) dx$, mais qu'il y a un bruit de mesure.

Pour le prendre en compte, il faudrait alors ajouter un bruit de modèle (partie 5.1.5. du cours) : on aurait

$$\begin{cases}
\dot{y}_{|\zeta}(t) = A(t)y_{|\zeta}(t) + B(t)\nu(t), & t \in \mathbb{R}_+ \\
y_{|\zeta}(0) = y_{\diamond} + \zeta,
\end{cases}$$
(3)

avec $A_L(t)$ défini en prenant $\mu_1(t) := \int\limits_0^\infty x \check{y}(t)(x) dx$, avec $\check{y}(t) = y_{|\check{\zeta}}$ défini comme solution du problème exact (i.e. avec A_{NL}) avec comme condition initiale $u^{\check{i}n} = y_{\diamond} + \check{\zeta}$.

Alors on définit $B \in \mathcal{C}(\mathbb{R}_+; \mathcal{L}(\mathcal{Q}, \mathcal{Y}))$ par $\mathcal{Q} = \mathcal{Y}, \nu = y$, et en définissant ξ^{ε} le bruit de mesure, on a

$$B(t)\nu := \xi^{\varepsilon}(t)\frac{d}{dx}[a\nu]$$

La difficulté est qu'en fait B(t) est linéaire mais n'est pas continu par rapport à la norme de \mathcal{Y} ... je ne suis pas sûre du tout que ces calculs mènent quelque part... du moins dans le cadre de l'exam!

1.2.3 Condition d'observabilité

On cherche à obtenir une condition du type : il existe τ tel que $\forall t \ge \tau$ il existe $\alpha > 0$ tel que

$$\int_{0}^{t} |\mu_{0}(u)(s)|^{2} + |\mu_{1}(u)(s)|^{2} ds \ge \alpha ||u||_{\mathcal{Y}}^{2}$$

Vus les calculs qui précèdent je remarque que dans le cours il n'y a rien sur la condition d'observabilité pour le système simple purement dépolymérisant. On pourrait donc faire une question là-dessus?, il y aura un prob, cf. l'article avec Aurora, lié au caractère mal posé du problème.

1.2.4 Estimateur 4D-Var

Il s'agit de minimiser (cf. par ex (5.54) dans le cours)

$$J(\zeta,t) := \frac{\alpha}{2} \|\zeta\|_{\mathcal{Y}}^2 + \frac{\beta}{2} \int_0^t \left(|\mu_0^{\varepsilon}(s) - \mu_0[u_{|\zeta}](s)|^2 + |\mu_1^{\varepsilon}(s) - \mu_1[u_{|\zeta}](s)|^2 \right),$$

ce qui est comme attendu la méthode de Tikhonov vue ci-dessus avec $\beta = 1$.

1.2.5 Estimateur de Kalman pour l'opérateur $A_L(t)$

On se place dans le cadre où l'on ignore le bruit de mesure sur μ_1 , ce qui permet de définir $A_L(t)$ comme si $\mu_1(t)$ était une fonction - quelconque, mais décroissante et inférieure à ρ_0 - bornée. Pour définir le filtre de Kalman on peut suivre la partie 5.2.3 du cours dans le cas d'espèce, ce qui conduit à tout d'abord calculer C^* (donné directement dans le cours par la formule juste avant (5.63) p. 109) et $A_L(t)^*$ (idem, donné par la première formule de la p.109, sauf que b dépend maintenant du temps) puis à écrire l'équation de Riccati correspondante. On peut aussi utiliser (5.60) et (5.61) à adapter dans le cas d'espèce... Tout ceci est en fait une légère adaptation de la partie 5.2.4 à partir du bas de la p.107 avec simplement un b(t) au lieu de b. N'est-ce pas trop proche du cours?