Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

РАКУЛЬТЕТ «Информатика и системы управления»			

Отчёт по лабораторной работе № 3 по курсу «Анализ алгоритмов»

Тема	Поиск по словарю
Студе	ент Гаврилюк В. А.
Групі	па_ИУ7-51Б
Оцені	ка (баллы)
	одаватель Волкова Л. Л.

СОДЕРЖАНИЕ

Bl	ВЕД	ЕНИЕ	3
1	Ана	алитический раздел	4
	1.1	Линейный поиск	4
	1.2	Бинарный поиск	4
2	Кон	нструкторский раздел	5
	2.1	Требования к входным и выходным параметрам	5
	2.2	Линейный поиск	5
	2.3	Бинарный поиск	5
3	Tex	нологический раздел	8
	3.1	Средства реализации	8
	3.2	Реализация алгоритмов	
	3.3	Тестирование	Ĉ
4	Исс	следовательский раздел	11
	4.1	Оценка алгоритмов	11
	4.2	Вывод	14
3	АКЛ	ЮЧЕНИЕ	15
Cl	тис	СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	16

ВВЕДЕНИЕ

Цель лабораторной работы — сравнение алгоритмов нахождения заданного значения методами линейного и бинарного поиска. Для достижения поставленной цели необходимо выполнить следующие задачи:

- построить схемы для алгоритмов нахождения заданного значения методами линейного и бинарного поиска;
- создать программное обеспечение (ПО), реализующее перечисленные выше алгоритмы;
- провести анализ алгоритмов по количеству необходимых сравнений для нахождения каждого элемента массива.
- описать и обосновать полученные результаты в отчёте.

1 Аналитический раздел

В данном разделе будут рассмотрены алгоритмы линейного и бинарного поиска.

1.1 Линейный поиск

Алгоритм, основанный на линейном поиске, или поиске полным перебором, проходит по всему массиву, пытаясь отыскать целевой элемент [1]. Из этого следует, что если искомое значение находится в начале массива, то оно будет найдено быстрее, нежели если оно было бы расположено в конце. Линейный поиск работает как с отсортированными, так и с неотсортированными данными.

1.2 Бинарный поиск

Алгоритм бинарного (двоичного) поиска позволяет осуществлять быстрый поиск в массиве S отсортированных ключей. Чтобы найти ключ q, мы сравниваем значение q со средним ключом массива S[n/2]. Если значение ключа q меньше, чем значение ключа S[n/2], значит, данный ключ должен находиться в верхней половине массива S; в противном случае он должен находиться в его нижней половине. Повторяется данный процесс на половине, гипотетически содержащей элемент q, пока значение ключа S[n/2] не станет равным q или область поиска не станет пустой [2].

2 Конструкторский раздел

В данном разделе будут приведены требования к входным, выходным параметрам и представлены схемы для алгоритмов линейного и бинарного поиска.

2.1 Требования к входным и выходным параметрам

Требования к входным и выходным параметрам:

- в качестве входных параметров алгоритм принимает массив и искомое значение;
- пустой массив является корректным входным значением;
- для бинарного поиска массив должен быть отсортирован;
- выходными параметрами являются два числа индекс искомого значения и количество сравнений, потребовавшихся для нахождения данного значения;
- если искомое значение не найдено, в качестве индекса возвращается -1.

2.2 Линейный поиск

На рисунке 2.1 представлена схема алгоритма линейного поиска.

2.3 Бинарный поиск

На рисунке 2.2 представлена схема алгоритма бинарного поиска.

Рисунок 2.1 – Схема алгоритма линейного поиска

Рисунок 2.2 – Схема алгоритма бинарного поиска

3 Технологический раздел

В данном разделе будет представлена реализация алгоритмов линейного и бинарного поиска. Также будут указаны средства реализации и результаты тестирования.

3.1 Средства реализации

Для реализации был выбран язык программирования Python [3]. Выбор обусловлен наличием библиотеки matplotlib [4]. Для построения гистограмм использовалась функция bar [5].

3.2 Реализация алгоритмов

В листингах 3.1-3.2 представлены реализации алгоритмов линейного и бинарного поиска.

Листинг 3.1 – Реализация алгоритма линейного поиска

```
def linearSearch(arr: list[int], elem: int) -> tuple[int, int]:
   idx, comparisons = -1, 0

for i in range(len(arr)):
      comparisons += 1
      if arr[i] == elem:
        idx = i
        break

return idx, comparisons
```

Листинг 3.2 – Реализация алгоритма бинарного поиска

```
def binarySearch(arr: list[int], elem: int) -> tuple[int, int]:
   idx, comparisons = -1, 0
   left, right = 0, len(arr) - 1

while left <= right:
        comparisons += 1
        mid = (left + right) // 2
        if arr[mid] == elem:
            idx = mid
            break
        elif arr[mid] < elem:
            left = mid + 1
        else:
            right = mid - 1

return idx, comparisons</pre>
```

3.3 Тестирование

В таблице 3.2 представлены тесты для алгоритмов линейного и бинарного поиска. Тестирование проводилось по методологии чёрного ящика. В качестве входных данных использовались массивы из таблицы 3.1. Все тесты пройдены успешно.

Таблица 3.1 – Входные массивы для тестирования алгоритмов

Название массива	Массив
sorted_array	[-1, -2, 3, 4, 5, 6, 7, 8, 9, 10]
array	[1, -10, 3, 4, 8, -6, 2, 7, 9, 8, -5]
empty_array	

Таблица 3.2 – Тесты для алгоритмов линейного и бинарного поиска

№	Алгоритм	Описание	Название массива	Результат
1	Линейный поиск	Поиск значения 7 в отсор-	sorted_array	(6, 7)
		тированном массиве.	sorted_array	
2	Линейный поиск	Поиск значения 7 в неот-	array	(7, 8)
		сортированном массиве.	array	
3	Линейный поиск	Поиск значения 11 в неот-		
		сортированном массиве,	array	(-1, 11)
		когда значение отсутству-		
		ет.		
4	Линейный поиск	Поиск значения 11 в пу-	empty_array	(-1, 0)
4		стом массиве.		
5	Бинарный поиск	Поиск значения 7 в отсор-	sorted array	(6, 4)
		тированном массиве.	sorted_array	
	Бинарный поиск	Поиск значения 11 в отсор-		
6		тированном массиве, когда	sorted_array	(-1, 4)
		значение отсутствует.		
7	Бинарный поиск	Поиск значения 11 в пу-	empty_array	(-1, 0)
7		стом массиве.		

4 Исследовательский раздел

4.1 Оценка алгоритмов

В данном разделе будет проведено сравнение алгоритмов линейного и бинарного поиска по количеству сравнений, потребовавшихся для получения ответа. Длина массива равна n=1020.

Для алгоритма поиска полным перебором существует n+1 возможных исходов: n случаев расположения ключа в массиве и случай, когда ключ не найден. В худшем случае ключ может либо находиться в самом конце массива, либо отсутствовать вовсе, при этом количество сравнений в худшем случае будет равно n. В лучшем случае ключ будет находиться в начале массива и для его нахождения потребуется только одно сравнение. На рисунке 4.1 представлена гистограмма, отображающая количество сравнений для каждого элемента в массиве при линейном поиске. Крайний правый и крайний левый столбцы гистограммы соответствуют худшим случаям.

Рисунок 4.1 – Количество сравнений для каждого элемента в массиве при линейном поиске

На рисунке 4.2 представлена гистограмма, отображающая количество сравнений для каждого элемента в массиве при бинарном поиске. Для алгоритма бинарного поиска количество сравнений в худшем случае не превышает $log_2(n)$.

Рисунок 4.2 – Количество сравнений для каждого элемента в массиве при бинарном поиске

На рисунке 4.3 представлена гистограмма, на которой элементы отсортированы по количеству сравнений при бинарном поиске. В таком случае количество сравнений под индексом i ($i = \overline{0, n-1}$) соответствует максимальному количеству сравнений для массива длины i+1.

Рисунок 4.3 – Максимальное количество сравнений при бинарном поиске в зависимости от длины массива

На рисунке 4.4 представлены приближенные версии гистограмм, отображающих количество сравнений для каждого элемента при линейном и бинарном поиске на отсортированном массиве.

Рисунок 4.4 – Количество сравнений при линейном и бинарном поиске на отсортированном массиве

В таблице 4.1 продемонстрировано количество сравнений при линейном и бинарном поиске при индексах $i=\overline{0,10}$. Для индексов, меньших $log_2(1020)\approx 9.994$, количество сравнений при линейном поиске меньше или равно количеству сравнений при бинарном поиске.

Таблица 4.1 — Количество сравнений при линейном и бинарном поиске при индексах $i=\overline{0,10}$

Индекс	Линейный поиск	Бинарный поиск
0	1	9
1	2	10
2	3	8
3	4	10
4	5	9
5	6	10
6	7	7
7	8	10
8	9	9
9	10	10
10	11	8

4.2 Вывод

При поиске заданного ключа в массиве полным перебором количество сравнений растёт линейно с увеличением индекса ключа. В случае, если массив отсортирован и для нахождения элемента используется бинарный поиск, то количество сравнений не будет превышать $log_2(n)$, где n — размер массива. Хотя скорость роста функции $log_2(n)$ меньше (при увеличении n), чем у функции n, для отсортированного массива количество сравнений при линейном поиске может быть меньше или равно количеству сравнений при бинарном поиске, если индекс искомого ключа меньше $log_2(n)$. В исходном массиве, длиной n = 1020, для элементов, расположенных по индексам $i = \overline{0,9}$, количество сравнений при линейном поиске будет меньше или равно количеству сравнений при бинарном поиске.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы были проанализированы алгоритмы линейного и бинарного поиска посредством сопоставления количества сравнений для поиска заданного элемента в массиве, длина которого составляла n=1020. Экспериментально было подтверждено, что линейный поиск требует n сравнений в худшем случае, тогда как бинарный поиск не превышает $log_2(n)$, но для использования бинарного поиска данные должны быть отсортированы.

Исследование также показало, что алгоритм линейного поиска может иметь меньшее количество сравнений, чем в бинарном поиске при индексах, меньших $log_2(n)$.

В ходе лабораторной работы были выполнены все поставленные задачи, а именно:

- построены схемы для алгоритмов нахождения заданного значения методами линейного и бинарного поиска;
- создано программное обеспечение (ПО), реализующее перечисленные выше алгоритмы;
- проведён анализ алгоритмов по количеству необходимых сравнений для нахождения каждого элемента массива.
- полученные результаты описаны и обоснованы.

Цель лабораторной работы достигнута.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *Стивенс Р.* Алгоритмы. Теория и практическое применение. 2-е издание. Москва: Эксмо, 2024.
- 2. *Скиена С.* Алгоритмы. Руководство по разработке. Санкт-Петербург : БХВ, 2022.
- 3. Welcome to Python [Электронный ресурс]. Режим доступа: https://www.python.org/ (дата обращения: 07.11.2024).
- 4. Matplotlib 3.9.2 documentation [Электронный ресурс]. Режим доступа: https://matplotlib.org/stable/#matplotlib-release-documentation (дата обращения: 07.11.2024).
- 5. matplotlib.pyplot.bar [Электронный ресурс]. Режим доступа: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html# (дата обращения: 07.11.2024).