Algoritmi e Strutture Dati

Analisi di algoritmi Introduzione

Alberto Montresor

Università di Trento

2022/09/24

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- 📵 Modelli di calcolo
 - Definizioni
 - Esempi di analisi
 - Ordini di complessità
- 2 Notazione asintotica
 - Definizioni
 - Esercizi
- Complessità problemi vs algoritmi
 - Moltiplicare numeri complessi
 - Sommare numeri binari
 - Moltiplicare numeri binari
- 🜗 Tipologia dell'input
 - Selection Sort
 - Insertion Sort
 - Merge Sort

Introduzione

Obiettivo: stimare la complessità in tempo

- Definizioni
- Modelli di calcolo
- Esempi di valutazioni
- Ordini di complessità

Perché?

- Per stimare il tempo impiegato per un dato input
- Per stimare il più grande input gestibile in tempi ragionevoli
- Per confrontare l'efficienza di algoritmi diversi
- Per ottimizzare le parti più importanti

Complessità

Complessità: "Dimensione dell'input" → "Tempo"

- Come definire la dimensione dell'input?
- Come misurare il tempo?

Dimensione dell'input

Criterio di costo logaritmico

- La taglia dell'input è il numero di bit necessari per rappresentarlo
- \bullet Esempio: moltiplicazione di numeri binari lunghi n bit

Criterio di costo uniforme

- La taglia dell'input è il numero di elementi di cui è costituito
- ullet Esempio: ricerca minimo in un vettore di n elementi

In molti casi...

- Possiamo assumere che gli "elementi" siano rappresentati da un numero costante di bit
- Le due misure coincidono a meno di una costante moltiplicativa

Definizione di tempo

Tempo \equiv n. istruzioni elementari

Un'istruzione si considera elementare se può essere eseguita in tempo "costante" dal processore.

Operazioni elementari

- a *= 2?
- Math.cos(d) ?
- min(A, n) ?

Modelli di calcolo

Modello di calcolo

Rappresentazione astratta di un calcolatore

- Astrazione: deve permettere di nascondere i dettagli
- Realismo: deve riflettere la situazione reale
- Potenza matematica: deve permettere di trarre conclusioni "formali" sul costo

P cont.

Modelli di calcolo – Wikipedia

Pages in category "Models of computation"

The following 108 pages are in this category, out of 108 total. This list may not reflect recent changes (learn more).

E cont.

Model of computation Event-driven finite-state machine Probabilistic Turing machine Pushdown automaton Evolution in Variable Environment Extended finite-state machine Q Abstract Job Object F Abstract machine Ouantum capacity Abstract state machines Finite state machine with datapath Quantum circuit Agent-based model Finite state transducer Ouantum computer Algorithm characterizations Finite-state machine R Alternating Turing machine FRACTRAN Applicative computing systems Funnelsort Realization (systems) Register machine Н

Α

В

Modelli di calcolo

Macchina di Turing

Una macchina ideale che manipola i dati contenuti su un nastro di lunghezza infinita, secondo un insieme prefissato di regole.

Ad ogni passo, la Macchina di Turing:

- legge il simbolo sotto la testina
- modifica il proprio stato interno
- scrive un nuovo simbolo nella cella
- muove la testina a destra o a sinistra
- Fondamentale nello studio della calcolabilità
- Livello troppo basso per i nostri scopi

Modelli di calcolo

Random Access Machine (RAM)

- Memoria:
 - Quantità infinita di celle di dimensione finita
 - Accesso in tempo costante (indipendente dalla posizione)
- Processore (singolo)
 - Set di istruzioni elementari simile a quelli reali:
 - somme, sottrazioni, moltiplicazioni, operazioni logiche, etc.
 - istruzioni di controllo (salti, salti condizionati)
- Costo delle istruzioni elementari
 - Uniforme, ininfluente ai fini della valutazione (come vedremo)

Tempo di calcolo min()

- Ogni istruzione richiede un tempo costante per essere eseguita
- La costante è potenzialmente diversa da istruzione a istruzione
- \bullet Ogni istruzione viene eseguita un certo # di volte, dipendente da n

ITEM $min(ITEM[] A, int n)$		
	Costo	# Volte
ITEM $min = A[1]$	c_1	1
for $i = 2$ to n do	c_2	n
if $A[i] < min$ then	c_3	n-1
$\bigsqcup min = A[i]$	c_4	n-1
return min	c_5	1

$$T(n) = c_1 + c_2 n + c_3 (n - 1) + c_4 (n - 1) + c_5$$

= $(c_2 + c_3 + c_4)n + (c_1 + c_5 - c_3 - c_4) = an + b$

Tempo di calcolo binarySearch()

Il vettore viene suddiviso in due parti: Parte SX: $\lfloor (n-1)/2 \rfloor$

Parte DX: $\lfloor n/2 \rfloor$

int binarySearch(ITEM[] A, ITEM v, int i, int j)

```
Costo
                                                                       \# (i > j) \# (i \le j)
if i > i then
                                                           c_1
    return 0
                                                           c_2
else
    int m = |(i+j)/2|
                                                           c_3
    if A[m] = v then
                                                           c_4
        return m
                                                           c_5
    else if A[m] < v then
                                                           C6
        return binarySearch(A, v, m+1, j) c_7 + T(\lfloor n/2 \rfloor)
                                                                                      0/1
    else
        return binarySearch(A, v, i, m-1) c_7 + T(\lfloor (n-1)/2 \rfloor)
                                                                           0
                                                                                      1/0
```

Tempo di calcolo binarySearch()

- Assunzioni (Caso pessimo):
 - Per semplicità, assumiamo n potenza di 2: $n=2^k$
 - L'elemento cercato non è presente
 - \bullet Ad ogni passo, scegliamo sempre la parte DX di dimensione n/2
- Due casi:

$$i > j$$
 $(n = 0)$ $T(n) = c_1 + c_2 = c$ $i \le j$ $(n > 0)$ $T(n) = T(n/2) + c_1 + c_3 + c_4 + c_6 + c_7$ $= T(n/2) + d$

• Relazione di ricorrenza:

$$T(n) = \begin{cases} c & \text{se } n = 0\\ T(n/2) + d & \text{se } n \ge 1 \end{cases}$$

Tempo di calcolo binarySearch()

Soluzione della relazione di ricorrenza tramite espansione

$$T(n) = T(n/2) + d$$

$$= T(n/4) + 2d$$

$$= T(n/8) + 3d$$
...
$$= T(1) + kd$$

$$= T(0) + (k+1)d$$

$$= kd + (c+d)$$

$$= d \log n + e.$$

$$n = 2^k \Rightarrow k = \log n$$

Ordini di complessità

Per ora, abbiamo analizzato precisamente due algoritmi e abbiamo ottenuto due funzioni di complessità:

- Ricerca: $T(n) = d \log n + e$
- Minimo: T(n) = an + b

Ordini di complessità

Per ora, abbiamo analizzato precisamente due algoritmi e abbiamo ottenuto due funzioni di complessità:

• Ricerca: $T(n) = d \log n + e$

logaritmica $O(\log n)$

• Minimo: T(n) = an + b

lineare

Ordini di complessità

Per ora, abbiamo analizzato precisamente due algoritmi e abbiamo ottenuto due funzioni di complessità:

• Ricerca:
$$T(n) = d \log n + e$$
 logaritmica

• Minimo:
$$T(n) = an + b$$
 lineare $O(n)$

Una terza funzione deriva dall'algoritmo naïf per il minimo:

• Minimo:
$$T(n) = fn^2 + gn + h$$
 quadratica

$$O(n^2)$$

 $O(\log n)$

Classi di complessità

f(n)	$n = 10^1$	$n = 10^2$	$n = 10^3$	$n = 10^4$	Tipo
$\log n$	3	6	9	13	logaritmico
\sqrt{n}	3	10	31	100	sublineare
n	10	100	1000	10000	lineare
$n \log n$	30	664	9965	132877	loglineare
n^2	10^{2}	10^{4}	10^{6}	10^{8}	quadratico
n^3	10^{3}	10^{6}	10^{9}	10^{12}	cubico
2^n	1024	10^{30}	10^{300}	10^{3000}	esponenziale

Come sbagliare completamente l'algoritmo di controllo degli update in Windows XP e renderlo esponenziale:

http://m.slashdot.org/story/195683

Algoritmi e Strutture Dati

Analisi di algoritmi Funzioni di costo, notazione asintotica

Alberto Montresor

Università di Trento

2022/09/24

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- Modelli di calcolo
 - Definizioni
 - Esempi di analisi
 - Ordini di complessità
- 2 Notazione asintotica
 - Definizioni
 - Esercizi
 - Complessità problemi vs algoritmi
 - Moltiplicare numeri complessi
 - Sommare numeri binari
 - Moltiplicare numeri binari
- 4 Tipologia dell'input
 - Selection Sort
 - Insertion Sort
 - Merge Sort

Notazioni $O,\,\Omega,\,\Theta$

Definizione – Notazione O

Sia g(n) una funzione di costo; indichiamo con O(g(n)) l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \exists m \ge 0 : f(n) \le cg(n), \forall n \ge m$$

- Come si legge: f(n) è "O grande" (big-O) di g(n)
- Come si scrive: f(n) = O(g(n))
- g(n) è un limite asintotico superiore per f(n)
- f(n) cresce al più come g(n)

Notazioni $O,\,\Omega,\,\Theta$

Definizione – Notazione Ω

Sia g(n) una funzione di costo; indichiamo con $\Omega(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c > 0, \exists m \ge 0 : f(n) \ge cg(n), \forall n \ge m$$

- \bullet Come si legge: f(n) è "Omega grande" di g(n)
- Come si scrive: $f(n) = \Omega(g(n))$
- g(n) è un limite asintotico inferiore per f(n)
- \bullet f(n)cresce almeno quanto g(n)

Notazioni O, Ω, Θ

Definizione – Notazione Θ

Sia g(n) una funzione di costo; indichiamo con $\Theta(g(n))$ l'insieme delle funzioni f(n) tali per cui:

$$\exists c_1 > 0, \exists c_2 > 0, \exists m \ge 0 : c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge m$$

- Come si legge: f(n) è "Theta" di g(n)
- Come si scrive: $f(n) = \Theta(g(n))$
- f(n) cresce esattamente come g(n)
- $f(n) = \Theta(g(n))$ se e solo se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$

Graficamente

$$f(n) = 10n^3 + 2n^2 + 7 \stackrel{?}{=} O(n^3)$$

Dobbiamo provare che $\exists c > 0, \exists m \geq 0: f(n) \leq cn^3, \forall n \geq m$

$$f(n) = 10n^{3} + 2n^{2} + 7$$

$$\leq 10n^{3} + 2n^{3} + 7 \qquad \forall n \geq 1$$

$$\leq 10n^{3} + 2n^{3} + 7n^{3} \qquad \forall n \geq 1$$

$$= 19n^{3}$$

$$\stackrel{?}{<} cn^{3}$$

che è vera per ogni c > 19 e per ogni n > 1, quindi m = 1.

Graficamente

Non è l'unico modo di procedere

$$f(n) = 10n^3 + 2n^2 + 7 \stackrel{?}{=} O(n^3)$$

Dobbiamo provare che $\exists c > 0, \exists m \ge 0 : f(n) \le cn^3, \forall n \ge m$

$$f(n) = 10n^{3} + 2n^{2} + 7$$

$$\leq 10n^{3} + 2n^{3} + 7 \qquad \forall n \geq 1$$

$$\leq 10n^{3} + 2n^{3} + n^{3} \qquad \forall n \geq \sqrt[3]{7}$$

$$= 13n^{3}$$

$$\stackrel{?}{\leq} cn^{3}$$

che è vera per ogni $c \geq 13$ e per ogni $n \geq \sqrt[3]{7}$, quindi usiamo m = 2

Graficamente

$$f(n) = 3n^2 + 7n \stackrel{?}{=} \Theta(n^2)$$

Limite inferiore: $\exists c_1 > 0, \exists m_1 \geq 0 : f(n) \geq c_1 n^2, \forall n \geq m_1$

$$f(n) = 3n^2 + 7n \stackrel{?}{=} \Theta(n^2)$$

Limite inferiore: $\exists c_1 > 0, \exists m_1 \ge 0 : f(n) \ge c_1 n^2, \forall n > m_1$

$$f(n) = 3n^{2} + 7n$$

$$\geq 3n^{2} \qquad \text{Per } n \geq 0$$

$$\stackrel{?}{\geq} c_{1}n^{2}$$

che è vera per ogni $c_1 \leq 3$ e per ogni $n \geq 0$, quindi $m_1 = 0$

$$f(n) = 3n^2 + 7n \stackrel{?}{=} \Theta(n^2)$$

Limite superiore: $\exists c_2 > 0, \exists m_2 \ge 0 : f(n) \le c_2 n^2, \forall n \ge m_2$

$$f(n) = 3n^2 + 7n \stackrel{?}{=} \Theta(n^2)$$

Limite superiore: $\exists c_2 > 0, \exists m_2 \geq 0 : f(n) \leq c_2 n^2, \forall n \geq m_2$

$$f(n) = 3n^{2} + 7n$$

$$\leq 3n^{2} + 7n^{2}$$

$$= 10n^{2}$$

$$\stackrel{?}{\leq} c_{2}n^{2}$$

che è vera per ogni $c_2 > 10$ e per ogni n > 1, quindi $m_2 = 1$

$$f(n) = 3n^2 + 7n \stackrel{?}{=} \Theta(n^2)$$

Notazione Θ :

$$\exists c_1 > 0, \exists c_2 > 0, \exists m \ge 0 : c_1 n^2 \le f(n) \le c_2 n^2, \forall n \ge m$$

Con questi parametri:

$$c_1 = 3$$

 $c_2 = 10$
 $m = \max\{m_1, m_2\} = \max\{0, 1\} = 1$

Graficamente

$$n^2 \stackrel{?}{=} O(n)$$

Dobbiamo dimostrare che $\exists c > 0, \exists m > 0 : n^2 < cn, \forall n > m$

- Otteniamo questo: $n^2 \le cn \Leftrightarrow c \ge n$
- Questo significa che c cresce con il crescere di n, ovvero che non possiamo scegliere una costante c

Graficamente

Vero o falso?

$$n^2 \stackrel{?}{=} O(n^3)$$

Dobbiamo dimostrare che $\exists c > 0, \exists m > 0 : n^2 \leq cn^3, \forall n \geq m$

- Otteniamo questo: $n^2 \le cn^3 \Leftrightarrow c \ge \frac{1}{n}$
- La funzione 1/n è monotona decrescente per n > 0.
- In altre parole, possiamo prendere un qualunque valore m (e.g., m=1), e prendere un costante $c \geq 1/m$, come ad esempio c=1.

Algoritmi e strutture dati

Analisi di algoritmi Complessità algoritmi vs Complessità problemi

Alberto Montresor

Università di Trento

2022/09/24

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- Modelli di calcolo
 - Definizioni
 - Esempi di analisi
 - Ordini di complessità
- 2 Notazione asintotica
 - Definizioni
 - Esercizi
- 3 Complessità problemi vs algoritmi
 - Moltiplicare numeri complessi
 - Sommare numeri binari
 - Moltiplicare numeri binari
- 4 Tipologia dell'input
 - Selection Sort
 - Insertion Sort
 - Merge Sort

Introduzione

Obiettivo: riflettere su complessità di problemi/algoritmi

- In alcuni casi, si può migliorare quanto si ritiene "normale"
- In altri casi, è impossibile fare di meglio
- Qual è il rapporto fra un problema computazionale e l'algoritmo?

Back to basics!

- Somme
- Moltiplicazioni

Moltiplicare numeri complessi

Moltiplicazione numeri complessi

- (a+bi)(c+di) = [ac-bd] + [ad+bc]i
- Input: a, b, c, d
- Output: ac bd, ad + bc

Domande

Considerate un modello di calcolo dove la moltiplicazione costa 1, le addizioni/sottrazioni costano 0.01,

- Quanto costa l'algoritmo dettato dalla definizione?
- Potete fare meglio di così?
- Qual è il ruolo del modello di calcolo?

Moltiplicare numeri complessi

Questioni aperte

- Si può fare ancora meglio?
- Oppure, è possibile dimostrare che non si può fare meglio di così?

Alcune riflessioni

- In questo modello, effettuare 3 moltiplicazioni invece di 4 risparmia il 25% del costo
- Esistono contesti in cui effettuare 3 moltiplicazioni invece di 4 può produrre un risparmio maggiore

Sommare numeri binari

${f Algoritmo\ elementare\ della\ somma-sum()}$

- ullet richiede di esaminare tutti gli n bit
- costo totale cn = O(n)($c \equiv$ costo per sommare tre bit e generare riporto)

Domanda

Esiste un metodo più efficiente?

Limite superiore alla complessità di un problema

Notazione O(f(n)) – Limite superiore

Un problema ha complessità O(f(n)) se esiste almeno un algoritmo che ha complessità O(f(n))

Limite superiore della somma di numeri binari

Il problema della somma di numeri binari ha complessità O(n).

Limite inferiore alla complessità di un problema

Notazione $\Omega(f(n))$ – Limite inferiore

Un problema ha complessità $\Omega(f(n))$ se tutti i possibili algoritmi che lo risolvono hanno complessità $\Omega(f(n))$.

Limite inferiore della somma di numeri binari

Il problema della somma di numeri binari ha complessità $\Omega(n)$.

Domanda

Riuscite a dimostrarlo?

Moltiplicare numeri binari

Algoritmo elementare del prodotto – prod()

- moltiplicazione di ogni bit con ogni altro bit
- costo totale $cn^2 = O(n^2)$

Algoritmi aritmetici

Confronto della complessità computazionale

• Somma : $T_{sum}(n) = O(n)$

• Prodotto : $T_{prod}(n) = O(n^2)$

Si potrebbe concludere che...

- Il problema della moltiplicazione è inerentemente più costoso del problema dell'addizione
- Conferma la nostra esperienza

Algoritmi aritmetici

Confronto fra problemi

Per provare che il problema del prodotto è più costoso del problema della somma, dobbiamo provare che non esiste una soluzione in tempo sub-quadratico per il prodotto

- Abbiamo confrontato gli algoritmi, non i problemi!
- Sappiamo solo che l'algoritmo di somma delle elementari è più efficiente dell'algoritmo del prodotto delle elementari

Un po' di storia

- Nel 1960, Kolmogorov enunciò in una conferenza che la moltiplicazione ha limite inferiore $\Omega(n^2)$
- Una settimana dopo, un suo studente provò il contrario!

Moltiplicare numeri binari

Divide-et-impera

- Divide: dividi il problema in sottoproblemi di dimensioni inferiori
- Impera: risolvi i sottoproblemi in maniera ricorsiva
- Combina: unisci le soluzioni dei sottoproblemi in modo da ottenere la risposta del problema principale

Moltiplicazione divide-et-impera

$$X = a \cdot 2^{n/2} + b$$

$$Y = c \cdot 2^{n/2} + d$$

$$XY = ac \cdot 2^n + (ad + bc) \cdot 2^{n/2} + bd$$

Moltiplicare numeri binari tramite Divide-et-impera

$$T(n) = \begin{cases} c_1 & n = 1\\ 4T(n/2) + c_2 \cdot n & n > 1 \end{cases}$$

Nota: Moltiplicare per $2^t \equiv \text{shift di } t \text{ posizioni, in tempo lineare}$

Analisi della ricorsione

Moltiplicare numeri binari

Confronto della complessità computazionale

- Prodotto : $T_{prod}(n) = O(n^2)$
- Prodotto : $T_{pdi}(n) = O(n^2)$

Domanda: Tutto questo lavoro per nulla?

Non solo la complessità è uguale, ma le costanti moltiplicative sono più alte.

Domanda: E' possibile fare meglio di così?

Notate che la versione ricorsiva chiama se stessa 4 volte.

Moltiplicazione di Karatsuba (1962)

$$A_1 = a \times c$$

$$A_3 = b \times d$$

$$m = (a+b) \times (c+d) = ac + ad + bc + bd$$

$$A_2 = m - A_1 - A_3 = ad + bc$$

boolean [] KARATSUBA(boolean[] X, boolean[] Y, int n)

```
if n == 1 then | \text{return } X[1]
```

return $X[1] \cdot Y[1]$

else

spezza X in $a; b \in Y$ in c; dboolean[] $A_1 = \text{KARATSUBA}(a, c, n/2)$ boolean[] $A_3 = \text{KARATSUBA}(b, d, n/2)$ boolean[] m = KARATSUBA(a + b, c + d, n/2)

boolean $A_2 = m - A_1 - A_3$

return $A_1 \cdot 2^n + A_2 \cdot 2^{n/2} + A_3$

Analisi della ricorsione

Moltiplicare numeri binari

Confronto della complessità computazionale

- Prodotto : $T_{prod}(n) = O(n^2)$ Es. $T_{prod}(10^6) = 10^{12}$
- Prodotto: $T_{kara}(n) = O(n^{1.58...})$ Es. $T_{kara}(10^6) = 3 \cdot 10^9$

Conclusioni

- L'algoritmo "naif" non è sempre il migliore ...
- ... può esistere spazio di miglioramento ...
- ... a meno che non sia possibile dimostrare il contrario!

Non finisce qui ...

- Toom-Cook (1963)
 - Detto anche Toom3, ha complessità $O(n^{\log 5/\log 3}) \approx O(n^{1.465})$
 - Karatsuba \equiv Toom2
 - Moltiplicazione normale \equiv Toom1
- Schönhage–Strassen (1971)
 - Complessità $O(n \cdot \log n \cdot \log \log n)$
 - Basato su Fast Fourier Transforms

Crescita funzioni

Croscita ranzioni							
$\log^* n$	$\log \log n$						
0							
1	0						
2	1						
3	2						
4	4						
5	16						
	log* n 0 1 2 3 4						

- Fürer (2007)
 - Complessità $O(n \cdot \log n \cdot K^{O(\log^* n)})$, per qualche K > 1
- Harvey-van der Hoeven-Lecerf (2014)
 - Complessità $O(n \cdot \log n \cdot 8^{O(\log^* n)})$
- Harvey-van der Hoeven (2019-2021)
 - Complessità $O(n \cdot \log n)$ ([Articolo][Video])
- Limite inferiore: $\Omega(n \log n)$ (congettura)

Algoritmi vs problemi

Complessità in tempo di un algoritmo

La quantità di tempo richiesta per input di dimensione n

- O(f(n)): Per tutti gli input, l'algoritmo costa al più f(n)
- $\Omega(f(n))$: Per tutti gli input, l'algoritmo costa almeno f(n)
- $\Theta(f(n))$: L'algoritmo richiede $\Theta(f(n))$ per tutti gli input

Complessità in tempo di un problema computazionale

La complessità in tempo relative a tutte le possibili soluzioni

- O(f(n)): Complessità del miglior algoritmo che risolve il problema
- $\Omega(f(n))$: Dimostrare che nessun algoritmo può risolvere il problema in tempo inferiore a $\Omega(f(n))$
- \bullet $\Theta(f(n))$: Algoritmo ottimo

Algoritmi e strutture dati

Analisi di algoritmi Algoritmi di ordinamento

Alberto Montresor

Università di Trento

2022/09/24

Sommario

- Modelli di calcolo
 - Definizioni
 - Esempi di analisi
 - Ordini di complessità
- 2 Notazione asintotica
 - Definizioni
 - Esercizi
- 3 Complessità problemi vs algoritmi
 - Moltiplicare numeri complessi
 - Sommare numeri binari
 - Moltiplicare numeri binari
- Tipologia dell'input
 - Selection Sort
 - Insertion Sort
 - Merge Sort

Introduzione

Obiettivo: valutare gli algoritmi in base all'input

- In alcuni casi, gli algoritmi si comportano diversamente a seconda delle caratteristiche dell'input
- Conoscere in anticipo tali caratteristiche permette di scegliere il miglior algoritmo in quella situazione
- Il problema dell'ordinamento è una buona palestra dove mostrare questi concetti

Algoritmi d'ordinamento

- Selection Sort
- Insertion Sort
- Merge Sort

Tipologia di analisi

Analisi del caso pessimo

- La più importante
- Il tempo di esecuzione nel caso peggiore è un limite superiore al tempo di esecuzione per qualsiasi input
- Per alcuni algoritmi, il caso peggiore si verifica molto spesso Es.: ricerca di dati non presenti in un database

Analisi del caso medio

- Difficile in alcuni casi: cosa si intende per "medio"?
- Distribuzione uniforme

Analisi del caso ottimo

• Può avere senso se si hanno informazioni particolari sull'input

Ordinamento

Problema dell'ordinamento

- Input: Una sequenza $A = a_1, a_2, \ldots, a_n$ di n valori
- Output: Una sequenza $B = b_1, b_2, \dots, b_n$ che sia una permutazione di A e tale per cui $b_1 < b_2 < \ldots < b_n$

Approccio "demente":

• Genero tutte le possibili permutazioni fino a quando non ne trovo una già ordinata

Ordinamento

Problema dell'ordinamento

- Input: Una sequenza $A = a_1, a_2, \dots, a_n$ di n valori
- Output: Una sequenza $B = b_1, b_2, \dots, b_n$ che sia una permutazione di A e tale per cui $b_1 \leq b_2 \leq \dots \leq b_n$

Approccio "demente":

• Genero tutte le possibili permutazioni fino a quando non ne trovo una già ordinata

Approccio "naif":

• Cerco il minimo e lo metto in posizione corretta, riducendo il problema agli n-1 restanti valori.

SelectionSort(ITEM[] A, int n)

```
for i = 1 to n - 1 do
   int min = min(A, i, n)
   A[i] \leftrightarrow A[min]
int min(ITEM[] A, int i, int n)
% Posizione del minimo parziale
int min = i
for j = i + 1 to n do
   if A[j] < A[min] then
       % Nuovo minimo parziale
       min = j
return min
```

$\overline{\mathsf{SelectionSort}(\mathsf{ITEM}[\]\ A,\ \mathbf{int}\ n)}$

$$\begin{array}{c|c} \mathbf{for} \ i = 1 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ & \mathbf{int} \ min = \min(A,i,n) \\ & A[i] \leftrightarrow A[min] \end{array}$$

int min(ITEM[] A, int i, int n)

% Posizione del minimo parziale int min = i

for
$$j = i + 1$$
 to n do

if
$$A[j] < A[min]$$
 then

| % Nuovo minimo parziale

| $min = j$

return min

	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5	<i>j</i> = 6	<i>j</i> = 7
<i>i</i> = 1	7	4	2	1	8	3	5
<i>i</i> = 2	1	4	2	7	8	3	5
<i>i</i> = 3	1	2	4	7	8	3	5
i = 4	1	2	3	7	8	4	5
<i>i</i> = 5	1	2	3	4	8	7	5
<i>i</i> = 6	1	2	3	4	5	7	8
<i>i</i> = 7	1	2	3	4	5	7	8

SelectionSort(ITEM[] A, int n)

for
$$i = 1$$
 to $n - 1$ do
int $min = min(A, i, n)$
 $A[i] \leftrightarrow A[min]$

int min(ITEM[] A, int i, int n)

% Posizione del minimo parziale int min = i for j = i + 1 to n do

if A[j] < A[min] then % Nuovo minimo parziale min = j

return min

Complessità nel caso medio, pessimo, ottimo?

SelectionSort(ITEM[] A, int n)

int min(ITEM[] A, int i, int n)

% Posizione del minimo parziale int min = i

for
$$j = i + 1$$
 to n do
if $A[j] < A[min]$ then
 $\%$ Nuovo minimo
parziale
 $min = j$

<u>return min</u>

Complessità nel caso medio, pessimo, ottimo?

$$\sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = n^2 - n/2 = O(n^2)$$

Insertion Sort

- Algoritmo efficiente per ordinare piccoli insiemi di elementi
- Si basa sul principio di ordinamento di una "mano" di carte da gioco (e.g. scala quaranta)

```
 \begin{split} & \underbrace{\mathsf{InsertionSort}(\mathsf{ITEM}[\;]\;A,\;\mathbf{int}\;n)} \\ & \mathbf{for}\;i = 2\;\mathbf{to}\;n\;\mathbf{do} \\ & \mathsf{ITEM}\;temp = A[i] \\ & \mathbf{int}\;j = i \\ & \mathbf{while}\;j > 1\;\mathbf{and}\;A[j-1] > temp\;\mathbf{do} \\ & \left\lfloor A[j] = A[j-1] \\ & j = j-1 \\ & A[j] = temp \end{split}
```

Insertion Sort

temp

$$i = 2, j = 2$$

 $i = 2, j = 1$

i = 3, j = 3

i = 3, j = 2

$$i = 3, j = 1$$

4 5

Insertion Sort

i = 4, j = 1

i = 5, j = 5i = 6, j = 6

i = 4, j = 4	2	4	7	7	8	3	5
i = 4, j = 3	2	4	4	7	8	3	5
i = 4, j = 2	2	2	4	7	8	3	5

temp

I

Insertion Sort

	1	2	3	4	5	6	7
i = 6, j = 5	1	2	4	7	7	8	5
i = 6, j = 4	1	2	4	4	7	8	5
i = 6, j = 3	1	2	3	4	7	8	5
i = 7, j = 7	1	2	3	4	7	8	8
i = 7, j = 6	1	2	3	4	7	7	8
i = 7, j = 5	1	2	3	4	5	7	8

temp

3

3

3

5

5

5

Correttezza e complessità

In questo algoritmo

- Il costo di esecuzione non dipende solo dalla dimensione...
- ma anche dalla distribuzione dei dati in ingresso

Domande

- Dimostrare che l'algoritmo è corretto
- Qual è il costo nel caso il vettore sia già ordinato?
- Qual è il costo nel caso il vettore sia ordinato in ordine inverso?
- Cosa succede "in media"? (informalmente)

Merge Sort

Divide et impera

Merge Sort è basato sulla tecnica divide-et-impera vista in precedenza

- Divide: Spezza virtualmente il vettore di n elementi in due sottovettori di n/2 elementi
- Impera: Chiama Merge Sort ricorsivamente sui due sottovettori
- Combina: Unisci (merge) le due sequenze ordinate

Idea

Si sfrutta il fatto che i due sottovettori sono già ordinati per ordinare più velocemente

Merge

Input:

- A è un vettore di n interi
- start, end, mid sono tali che $1 \leq start \leq mid < end \leq n$
- I sottovettori A[start...mid] e A[mid+1...end] sono già ordinati

Output:

• I due sottovettori sono fusi in un unico sottovettore ordinato $A[start \dots end]$ tramite un vettore di appoggio B

Funzionamento Merge()

Funzionamento Merge()

Merge()

Merge(ITEM A[], int start, int end, int mid)

$$\begin{array}{l} \mathbf{int}\ i,\ j,\ k,\ h\\ i = start\\ j = mid + 1\\ k = start\\ \mathbf{while}\ i \leq mid\ \mathbf{and}\ j \leq end\ \mathbf{do}\\ \quad \mathbf{if}\ A[i] \leq A[j]\ \mathbf{then}\\ \quad B[k] = A[i]\\ \quad i = i + 1\\ \mathbf{else}\\ \quad B[k] = A[j]\\ \quad j = j + 1\\ k = k + 1 \end{array}$$

$$j = end$$

for $h = mid$ downto i do
$$\begin{bmatrix}
A[j] = A[h] \\
j = j - 1
\end{bmatrix}$$
for $j = start$ to $k - 1$ do
$$\begin{bmatrix}
A[j] = B[j]
\end{bmatrix}$$

Costo computazionale

Domanda

Qual è il costo computazionale di Merge()?

Costo computazionale

Domanda

Qual è il costo computazionale di $Merge()? \Rightarrow O(n)$

MergeSort

Programma completo:

- Chiama ricorsivamente se stesso e usa Merge() per unire i risultati
- Caso base: sequenze di lunghezza ≤ 1 sono già ordinate

```
MergeSort(ITEM A[], int start, int end)
if start < end then
   int mid = |(start + end)/2|
```

MergeSort(A, start, mid)MergeSort(A, mid + 1, end)

Merge(A, start, end, mid)

33, 21, 7, 48, 28, 13, 65, 17

7, 21, 33, 48

7, 21, 33, 48 33, 21, 7, 48, 28, 13, 65, 17 7, 21, 33, 48 13, 17, 28, 65

7, 21, 33, 48 33, 21, 7, 48, 28, 13, 65, 17 7, 21, 33, 48 13, 17, 28, 65

7, 21, 33, 48 33, 21, 7, 48, 28, 13, 65, 17 7, 21, 33, 48 13, 17, 28, 65

7, 21, 33, 48 33, 21, 7, 48, 28, 13, 65, 17 7, 13, 17, 21, 28 13, 17, 28, 65

7, 13, 17, 21, 28, 33

7, 21, 33, 48

33, 21, 7, 48, 28, 13, 65, 17

7, 13, 17, 21, 28, 33, 48

7, 21, 33, 48

 33, 21, 7, 48, 28, 13, 65, 17

 7, 13, 17, 21, 28, 33, 48, 65

7, 21, 33, 48

7, 13, 17, 21, 28, 33, 48, 65

Analisi di MergeSort()

Un'assunzione semplificativa:

- \bullet $n=2^k$, ovvero l'altezza dell'albero di suddivisioni è esattamente $k = \log n$:
- Tutti i sottovettori hanno dimensioni che sono potenze esatte di 2

Costo computazionale

$$T(n) = \begin{cases} c & n = 1\\ 2T(n/2) + dn & n > 1 \end{cases}$$

Domanda

Qual è il costo computazionale di MergeSort()?

Costo computazionale di Merge Sort

Costo computazionale di Merge Sort

Domanda

Qual è il costo computazionale di MergeSort()?

Costo computazionale di Merge Sort

Domanda

Qual è il costo computazionale di MergeSort()?

Un po' di storia

- Il censimento americano del 1880 aveva richiesto otto anni per essere completato
- Quello del 1890 richiese sei settimane, grazie alla Hollerith Machine
- Fra il 1896 e il 1924, la Hollerith & Co ha cambiato diversi nomi. L'ultimo?
 International Business Machines
- Le Collating Machines (1936) prendevano due stack di schede perforate ordinate e le ordinavano in un unico stack
- Nel 1945-48, John von Neumann descrisse per la prima volta il MergeSort partendo dall'idea delle Collating Machines.

Hollerith Machine

MergeSort, in pillole

MERGE SÖRT

Ricorsione

Recursion is the root of computation because it trades description for time.

Alan Perlis, Epigrams on Programming

