OPEN LAB: HOSPITAL

Università di Pisa

An hospital needs a DM to extract information from their operational database with information about inpatients treatments.

- 1. Total billed amount for hospitalizations, by diagnosis code and description, by month (year).
- 2. Total number of hospitalizations and billed amount, by ward, by patient gender (age at date of admission, city, region).
- 3. Total billed amount, average length of stay and average waiting time, by diagnosis code and description, by name (specialization) of the physician who has admitted the patient.
- 4. Total billed amount, and average waiting time of admission, by patient age (region), by treatment code (description).

REQUIREMENTS SPECIFICATION

			Hospitalization
Requirements analysis	Dimensions	Measures	Metrics
	<u>-</u>	-	
· · ·			

REQUIREMENTS SPECIFICATION

	Fact granularity
Description	
Preliminary dimensions	
Preliminary measures	

HOSPITALIZATIONS DATA MART CONCEPTUAL SCHEMA

Università di Pisa

DATA BASE

Duration
WaitingTime
Amount

DATA MART

SUMMARY

The analysis-driven design of a data mart.

Business questions

For a data subsets to use,
the metrics to compute,
grouping data by dimensions (attributes),
how the result should be presented.

SELECT X FROM ... WHERE B GROUP BY Y ORDER BY W

Alternative: Types of reports to be produced

Facts granularity, measures and their types, dimensions

Data availability

MORE ABOUT DATA MART CONCEPTUAL MODELLING

Degenerate dimensions

Facts descriptive attributes

Optional dimensions or attributes

Multivalued dimensions

Hierarchies types

Shared hierarchies

RELATIONAL MODEL

Relational OLAP systems are relational DBMS extended with specific features to support business intelligence analysis.

A DW is represented with a special kind of relational schema

A star schema,

A snowflake schema or

A constellation schema.

A STAR SCHEMA EXAMPLE

In a data mart relational schema a dimension table always uses a system-generated primary key, called a Surrogate Key, to support Type 2 technique of slowly changing dimensions.

And the fact table key?

SNOWFLAKE SCHEMA

CONSTELLATION SCHEMA

THE DATE DIMENSION

Hyp: Date at daily grain

In the logical schema, the dimension **Date** has the surrogate key with the integer value

YYYYMMDD

DATE

Attribute Name	Туре	Format/Example
DatePK	int	AAAAWWDD
Month	int	УУУУММ
Quarter	int	ууууQ
Year	int	уууу
WeekNumber	int	1 to 52 or 53
DayInMonth	int	1 to 31
DayOfWeek	string	Monday
MonthName	string	January
HolydayName	string	Easter

HOSPITALIZATIONS DATA MART CONCEPTUAL SCHEMA

DESIGN THE LOGICAL SCHEMA

HOSPITALIZATIONS: INITIAL LOGICAL SCHEMA

AIRLINE COMPANIES: REQUIREMENTS SPECIFICATION

Dimensions

FlightCode, Class,

Company(Name, Type),

Requirements analysis

Number of unoccupied seats

in a given year, by flight code,

Università di Pisa

Measure	Metrics
UnoccupiedSeats	Total UnoccupiedSeats
UnaccupiedSeate	Total

Airline companies

by company name (or type), by class, by departure time (time, day, month, year)	DepartureTime (Time, Day, Month, Year)		
Number of unoccupied seats in a given class and year, by flight code, by company name, by class, by departure (destination) city (country, continent).	FlightCode, Class, Company(Name), DepartureCity (Country, Continent), DestinationCity (Country, Continent)	UnoccupiedSeats	Total UnoccupiedSeats
Number of unoccupied seats and revenue of the Alitalia company, by year, by month, by destination country.	Company(Name), DepartureTime (Month, Year), DepartureCity(Country)	UnoccupiedSeats Revenue	Total UnoccupiedSeats, Revenue

	Fact granularity
Description	A fact is the information on the number of unoccu- pied seats on a flight of a class of a company
Preliminary dimensions	Class, FlightCode, Company, Departure time, Departure city, Destination city
Preliminary measures	UnoccupiedSeats, Revenue

AIRLINE COMPANIES: CONCEPTUAL AND LOGICAL DESIGN

MISSING VALUES

- · How to code facts where the Customer is missing?
- NULL for CustomerFK in fact table?
- Surrogate key 0 models a special customer
 - · «Customer not available», «City not available», «Region not available»
- In the fact table, CustomerFK will be 0 for missing customers

LOGICAL DESIGN: CHANGING DIMENSIONS

Slowly changing dimensions

- TYPE 1 (overwriting the history)
 - Ex: Change the lastname Rossi instead of Rosi due to errors
- TYPE 2 (preserving the history)
 - Ex: Changing the address we do not want to lose the past ones
- · TYPE 3 (preserving one or more versions of history)

Not recommended

Overwrite the value

Add a dimension row

Add new attributes

Fast changing dimensions

· TYPE 4

• Ex: Age

Add a new dimension (called mini or profile)

These aspects are not modelled in the conceptual schema

LOGICAL DESIGN: TYPE 2 SLOWLY CHANGING DIMENSIONS

Università di Pisa

Dimensions with both a surrogate and a natural key

The customer **Jones** moved from zip code of 10019 to 45678.

CustomerPK	SSN	Name	Zip
1	31422	Murray	94025
2	12427	Jones	10019
3	22224	Smith	33120

The Surrogate Key changes: more surrogate keys refer more instances of the same customers

SSN does not change

SQL: How many customer have made an Order greater than ...?

COUNT(*) ?

Or COUNT(DISTINCT SSN)?

LOGICAL DESIGN: TYPE 2 SLOWLY CHANGING DIMENSIONS

· Dimensions with a surrogate key only

(b) First surrogate key in the dimension table

(c) First surrogate key in the fact table

The customer **Jones** moved from zip code of 10019 to 45678.

CustomerPK	InitialCustomerPK	Name	Zip
1	1	Murray	94025
2	2	Jones	10019
3	3	Smith	33120

HOSPITALIZATIONS: FINAL LOGICAL SCHEMA

LOGICAL DESIGN: TYPE 3 SLOWLY CHANGING DIMENSIONS

Università di Pisa

Add new attributes to keep track of customer data change

The customer **Jones** moved from zip code of 10019 to 45678.

CustomerPK	SSN	Name	Zip	Old_Zip	EffDate	OldEffDate
1	31422	Murray	94025		3/1/2001	12/31/9999
2	12427	Jones	45678	10019	1/3/2008	10/10/2002
3	22224	Smith	33120		1/2/2002	12/31/9999

21

LOGICAL DESIGN: TYPE 4 FAST CHANGING DIMENSIONS

SMALL DIMENSIONS: Type 2 technique is still recommended

LARGE DIMENSIONS:

Create a separate dimension with frequently changing attributes

Numerical data must be converted into banded values

Insert in the new dimension all possible discrete attribute combinations at table creation time

LOGICAL DESIGN: RECURSIVE HIERARCHIES AND SQL

Total revenue for Agent 2 and for all his subordinates

Total revenue for Agent 2 and for all his supervisors

EXERCISE: WRITE THE RELATION AGENT

(a) Without a bridge table

AgentPK	Name	SupervisorPK
1	Ag1	NULL
2	Ag2	1
3	Ag3	1
4	Ag4	2
5	Ag5	2
6	Ag6	3
7	Ag7	5

LOGICAL DESIGN: SHARED DIMENSIONS

Different Hierarchies Different tables

Shared Hierarchies One table

SUMMARY

Building a DW (conceptual and logical design, and data loading) is a complex task that requires business skills, technology skills, and program management skills.

The logical design of a conceptual schema is not trivial, especially for treating dimensions that change over time, multivalued dimensions and multivalued dimensional attributes.

Finally, several controls are needed for the review of a project to improve the quality of the conceptual and logical design, as described in the lecture notes.

Next, another complex task is **using** a DW to translate the business requirements into queries that can be satisfied by the DW.

OPEN LAB

- · Case Studies:
 - · HOSPITAL
 - · AIRLINE COMPANIES
 - · AIRLINE FLIGHTS
 - INVENTORY
 - · HOTELS
- Design:
 - · Conceptual model
 - · Logical model
 - SQL queries to answer user requirements