DU 01 FEVRIER 2018

Durée 2 h 30, sans documents ni téléphones portables, calculatrice autorisée

- Cet examen contient une question de cours et 5 exercices indépendants.
- La page 3 contient un formulaire des lois de probabilités discrètes
- La page 4 contient la table de la loi normale centrée réduite
- Le barème est donné à titre indicatif et la notation prendra en compte la qualité de la rédaction des réponses.

Question de cours (2 points)

Soient A et B deux événements d'un univers de probabilité. Montrer que si A et B sont indépendants alors A et \bar{B} sont indépendants.

On pourra utiliser $A = (A.B) + (A.\overline{B})$ ((Notation : union (+) et intersection (.))

Exercice 1 (4 points)

Jack a une chance sur trois d'être choisi par le PS comme candidat à la mairie de Paris et deux chances sur trois d'être choisi par le PS comme candidat à la mairie de Blois. La probabilité que le PS gagne à Paris est de trois sur sept si Jack est candidat et cinq sur onze avec un candidat autre que Jack. La probabilité que le PS gagne à Blois est de quatre sur neuf si Jack est candidat et cinq sur treize avec un candidat autre que Jack.

- a) Calculer la probabilité pour que Jack soit élu maire
- b) L'élection à la mairie de Paris ayant été remportée par un candidat du PS, calculer la probabilité pour que Jack ait été élu maire de Blois.

Nota : Lorsque les candidats pour Paris et pour Blois ont été choisis, les résultats des élections pour la mairie de Paris et la mairie de Blois sont indépendants."

Exercice 2 (4 points)

La distribution de notes obtenues au concours d'admission à l'ISEP admet approximativement une distribution normale N(32,8 ; 8,5²), i.e. σ =8.5 (les notes varient de 0 à 60). Après le passage de l'écrit, les candidats se divisent en trois classes : ceux qui sont recalés dès l'écrit sans possibilité de passer l'oral (non admissibles), ceux qui sont autorisés à passer l'oral et ceux qui sont directement admis après l'écrit en étant dispensés de passer l'oral (grand admissibles). La classe des « non-admissibles » compte 30 % des candidats et la classe des « grand admissibles » compte 10 % des candidats. Entre quelles limites doit se situer la note d'un candidat pour avoir à passer l'oral ?

Exercice 3 (5 points)

On lance n fois un dé. On dénote $F_n = \frac{X_n}{n}$ où X_n est la variable aléatoire égale au nombre d'apparition du six.

- 1. Quelle est la loi de F_n ? Donner l'expression de son espérance et de sa variance.
- 2. Trouver *n* tel que $P(|F_n \frac{1}{6}| < 0.99) \ge 0.99$.

Exercice 4 (7 points)

Soit (X, Y) un couple de variables aléatoires de densité jointe f :

$$f(x,y) \begin{cases} k(x^2 + y^2) & \text{si } (x,y) \in [-1,1]^2 \\ 0 & \text{sinon} \end{cases}$$

ISEP année A1

- a) Dessiner le domaine de définition du couple (X, Y) et trouver la valeur de k.
- b) Calculer les lois marginales de X et de Y.
- c) Calculer la moyenne et la variance de X et de Y.
- d) Calculer la covariance cov(X, Y) et étudier la dépendance de X et de Y.

Exercice 5 (7 points)

A un péage d'autoroute, le nombre de véhicules allant de Paris à Lyon suit une loi de Poisson de paramètre λ ; le nombre de véhicules en sens inverse suit une loi de Poisson de paramètre μ .

- 1. Si l'on dénote X le nombre de véhicules quittant et Y le nombre de véhicules qui rentrent sur Paris, donner l'expression des lois de X et Y ainsi que leurs espérances.
- 2. On dénote Z = X + Y le nombre de véhicules qui franchissent le péage. Quelle est la loi de Z ainsi que son espérance et variance? On supposera X et Y indépendantes.
- 3. Sachant que n véhicules ont franchi le péage, quelle est la probabilité pour que k d'entre eux quittent Paris ? Autrement dit, calculer P(X=k/Z=n).
- 4. (Bonus) Lors de la question précédente, quelle loi de probabilité connue reconnaiton ? Quels sont ses paramètres ?

ISEP année A1

Rappels lois de probabilités discrètes connues :

Dénomination X	Loi de probabilité	Moyenne $E(X)$	Variance $V(X)$		
Loi binomiale $B(n, p)$ n entier positif; 0	$P[X = k] = C_n^k p^k (1 - p)^{n - k}$ $k = 0, 1, 2, \dots, n$	np	np(1-p)		
Loi multinomiale $n; p_1, \dots, p_k,$ n entier positif; $p_1 + p_2 + \dots + p_k = 1$	$P[X_1 = n_1 ext{ et } X_2 = n_2 ext{ et } X_k = n_k]$ $= \frac{n!}{n_1! n_2! \cdots n_k!} p_1^{n_1} \cdot p_2^{n_2} \cdots p_k^{n_k}$ $n_i ext{ entier positif; } \sum_{i=1}^k n_i = n.$	$E(X_i)=np_i$	$\operatorname{var}\left(X_{i} ight)=np_{i}(1-p_{i})$ $\operatorname{cov}\left(X_{i},X_{j} ight)=-np_{i}p_{j}$ $\operatorname{pour}i eq j$		
Loi de Poisson de paramètre $\lambda(\lambda>0)$	$P[X=k] = e^{-\lambda} rac{\lambda^k}{k!}$ k entier positif ou nul	λ	λ		
Loi binomiale négative de paramètres n et p n entier positif - $0 (n = 1 \longrightarrow \text{loi géométrique})$	$P[X=k] = C_{n+k-1}^{n-1} p^n (1-p)^k$ k entier positif ou nul	$rac{n(1-p)}{p}$	$\frac{n(1-p)}{p^2}$		

ISEP année A1

TABLE DE LA LOI NORMALE CENTREE REDUITE

$$G(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{u^2}{2}} du$$

	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000