Energy, Power, and Voltage Estimates (Nicla vs. Nicla+Zynq)

This report summarizes simple, first–order estimates across four light scenarios using a $1\,\mathrm{W}_\mathrm{STC}$ panel, a BQ25504 PMIC, and a $1\text{--}3\,\mathrm{F}/5.5\,\mathrm{V}$ supercapacitor, with separate tables for the Nicla-only and Nicla+Zynq cases.

Assumptions

- Panel scaling: $P_{\rm in} \approx P_{\rm STC} \cdot G/1000$ with $G_{\rm STC} = 1000 \, {\rm W/m^2}$ for first-order estimates.
- Indoors: use $120 \, \mathrm{lx} \approx 1 \, \mathrm{W/m^2}$ to convert lux to irradiance.
- PMIC (BQ25504): MPPT near 0.8 $V_{\rm OC}$, ultra-low $I_{\rm q}$ (sub- μA), programmable $V_{\rm BAT-OV/UV/OK}$, and cold-start support for weak sources.
- Supercap energy: $E = \frac{1}{2}C(V_{\text{max}}^2 V_{\text{min}}^2)$; for 1 F from 5.0 \rightarrow 2.0 V, $\Delta E \approx 10.5$ J; for 3 F, $\Delta E \approx 31.5$ J.
- Nicla loads at 3.7 V: standby $\approx 1.7 \,\text{mW}$ (0.46 mA), KWS BLE-off $\approx 3.0 \,\text{mW}$ (0.80 mA), BLE adv+1 Hz sensors $\approx 8.9 \,\text{mW}$ (2.4 mA).
- Zynq board power: budget ~ 1.5 W baseline PS and up to several watts with active PL/DDR for conservative planning.
- Nicla input: power via VIN/ESLOV (3.5–5.5 V), ADC = 1.8 V, and disable RGB LED to avoid the 5 V boost domain in harvested runs.

Scenario Summary (1 W_{STC} Panel)

Table 1: Light scenarios and harvested power (after PMIC).

Scenario	Irradiance / Lux	$P_{\rm in}$ (for $1{ m W}_{ m STC}$)	P_{use} after PMIC
Bright Sun	$\sim 1000 {\rm W/m^2} (\sim 120 {\rm klx})$	$\sim 1000\mathrm{mW}$	$\sim 500 - 800 \text{mW}$
Moderate	$\sim 200 - 500 \mathrm{W/m^2}$	$\sim 200-500\mathrm{mW}$	$\sim 100 - 400 \mathrm{mW}$
Weak Outdoor	$\sim 50 - 100 { m W/m^2}$	$\sim 50-100\mathrm{mW}$	$\sim 25-80\mathrm{mW}$
Indoor	$240-600 \text{lx} \approx 2-5 \text{W/m}^2$	$\sim 2-5\mathrm{mW}$	$\sim 1 - 4 \mathrm{mW}$

Recommended Voltage Setpoints (Supercap)

- Example thresholds: $V_{\rm BAT-OV} \approx 5.0 \, \rm V$ (cap rated 5.5 V), $V_{\rm BAT-UV} \approx 2.0 \, \rm V$, and BAT_OK hysteresis (e.g., high $\sim 4.2 \, \rm V$, low $\sim 2.3 \, \rm V$) to down-shift before UV.
- Nicla input range: regulate harvester output so VIN/ESLOV remains 3.5–5.5 V during operation to avoid brownouts under intermittent power.

Table 2: Nicla feasibility per scenario with example operating guidance.

Scenario	$P_{\rm use}$	Nicla Loads	Guidance
Bright Sun	$500-800\mathrm{mW}$	All modes	Continuous KWS; short BLE
		bursts; charge while running	
Moderate	$100-400\mathrm{mW}$	KWS, BLE	Continuous KWS; duty-cycle BLE;
		bursts keep LED off	
Weak Outdoor	$25-80\mathrm{mW}$	Mostly KWS	Prefer NDP-only KWS; rare BLE;
		degrade near BAT_OK low	
Indoor	$1-4\mathrm{mW}$	Duty-cycled	Short KWS/telemetry windows;
		long recharge pauses	

Table 3: Charge time to refill supercap $(5.0\rightarrow2.0\,\mathrm{V})$ by scenario.

Scenario	$t_{ m 1F}$	$t_{ m 3F}$
Bright Sun (500–800 mW)	21 – $13\mathrm{s}$	$63–39\mathrm{s}$
Moderate (100–400 mW)	$10526\mathrm{s}$	$31579\mathrm{s}$
$Weak (25-80 \mathrm{mW})$	$420 - 131 \mathrm{s}$	$21-6.6 \mathrm{min}$
Indoor (1–4 mW)	$2.9 – 0.73 \mathrm{h}$	$8.7 – 2.2\mathrm{h}$

Case A: Nicla-Only (No FPGA)

Supercap charge time (5.0 \rightarrow 2.0 V window): $t = \Delta E/P$ with $\Delta E \approx 10.5$ J per 1 F and ≈ 31.5 J per 3 F.

Nicla runtime from supercap alone $(5.0 \rightarrow 2.0 \text{ V})$:

Table 4: Approximate run time without harvest (per ΔE).

Load @ 3.7 V	$1 \mathrm{F} \left(\Delta E \approx 10.5 \mathrm{J}\right)$	$3 \mathrm{F} \left(\Delta E \approx 31.5 \mathrm{J}\right)$
Standby $\sim 1.7 \mathrm{mW}$	$\sim 1.7\mathrm{h}$	$\sim 5.0\mathrm{h}$
$\mathrm{KWS} \sim 3.0\mathrm{mW}$	$\sim 58 \mathrm{min}$	$\sim 2.9\mathrm{h}$
BLE adv $\sim 8.9 \mathrm{mW}$	$\sim 20\mathrm{min}$	$\sim 59\mathrm{min}$

Case B: Nicla + Zynq FPGA

Table 5: Harvest vs. Zynq board power feasibility ($1 \, \mathrm{W}_{\mathrm{STC}}$ panel).

Scenario	P_{use}	Zynq Budget	Feasibility
Bright Sun	$500-800{ m mW}$	$\sim 1.5\mathrm{W}$ baseline	Only short bursts from supercap; not continuous
Moderate	$100400\mathrm{mW}$	$\sim 1.5\mathrm{W}$	Brief, infrequent bursts; recharge dominates
Weak	$2580\mathrm{mW}$	$\sim 1.5\mathrm{W}$	Not viable; Nicla-only operation
Indoor	$14\mathrm{mW}$	$\sim 1.5\mathrm{W}$	Not viable; storage maintenance only

FPGA burst runtime from supercap alone (5.0 \rightarrow 2.0 V), using \sim 1.5 W as a conservative board load:

Table 6: Approximate Zynq burst time without harvest.

Load	$1 \mathrm{F} \left(\Delta E \approx 10.5 \mathrm{J}\right)$	$3 \mathrm{F} \left(\Delta E \approx 31.5 \mathrm{J}\right)$
$Zynq \sim 1.5 W$	$\sim 7\mathrm{s}$	$\sim 21\mathrm{s}$

Symbols and Notation

Table 7: Summary of key symbols and their meanings.

Symbol	Description
$P_{ m STC}$	Panel power rating under Standard Test Conditions (STC),
	defined at $G_{STC} = 1000 \mathrm{W/m^2}$ and 25 °C.
G	Actual irradiance in W/m ² ; scaled against $G_{\rm STC}$ to estimate
	real output.
P_{in}	Estimated instantaneous solar input power from the panel:
	$P_{\rm in} = P_{\rm STC} \cdot G/1000.$
P_{use}	Usable power after conversion efficiency of the PMIC
	(BQ25504); typically $0.5-0.8 \times P_{\text{in}}$.
$\mid E \mid$	Energy stored in the supercapacitor between V_{max} and V_{min} ,
	given by $E = \frac{1}{2}C(V_{\text{max}}^2 - V_{\text{min}}^2)$.
ΔE	Available discharge energy from the supercapacitor within
	the $5.0\rightarrow2.0\mathrm{V}$ window (e.g., $10.5\mathrm{J}$ for $1\mathrm{F}$).
$\mid t \mid$	Time duration estimated by $t = \Delta E/P$, where P is the load
	power consumption.
$V_{ m BAT_OV}$	Battery (supercap) over-voltage threshold — charging stops
	above this voltage.
$V_{ m BAT_UV}$	Battery under-voltage threshold — system shut-down below
	this voltage.
$V_{ m BAT_OKhigh}$	Rising threshold of the battery-OK comparator; system
	resumes operation when storage exceeds this voltage.
$V_{ m BAT_OKlow}$	Falling threshold of the battery-OK comparator; system
	reduces or halts workload when voltage drops below this
T.7	level.
$V_{ m OC}$	Open-circuit voltage of the solar panel; the BQ25504
	operates at about $0.8 V_{\rm OC}$ for maximum power point
T	tracking.
$I_{ m q}$	Quiescent current of the PMIC — self-consumption current
	(sub- μ A range).
C	Capacitance of the energy-storage element (1–3 F in this
	work).