Portfolio Optimization Using Preference Relation Based on Statistical Arbitrage

Lovre Mrčela, Andro Merćep, Stjepan Begušić, and Zvonko Kostanjčar 18/10/2017

University of Zagreb

Faculty of Electrical Engineering and Computing Laboratory for Financial Risk Assessment Zagreb, Croatia

Introduction

Introduction

- portfolio optimization
- enhancement of present methods of statistical arbitrage
- modeling asset interactions using preference flow graph

Concepts and methods

Statistical arbitrage

Outline of statistical arbitrage methods:

- 1. **identifying** pairs of assets whose prices behave *similarly* during the past period,
- 2. **choosing** pairs which demonstrate a *statistically significant deviation* at the present moment,
- 3. **assuming** *short* position in one asset of a pair and *long* position in other asset of pair for each pair,
- 4. **closing** positions once deviation is no longer present.

Statistical arbitrage

Log prices of a pair of assets.

Cons of statistical arbitrage method

- low precision (in the sense of predicting price rise/fall): in most simulations less than 50%
- · doesn't expand well to more pairs
- frequent changes of the portfolio, resulting in significant transaction costs

Algorithm

Preference relation

- binary relation: $a \succ b a$ is more preferred than b
- · incomparability of entities: $a \sim b-a$ is not comparable to b
- · a more *natural* way of comparing entities
- it is irreflexive, asymmetric, transitive, and transitive of incomparability

Preference flow graph

- preference relation does not define ordering of goods, no intensities of preference are specified
- preference flow graph introduces intensities of preference, and models asset interaction
- utility structure for obtaining explicit ordering of assets
- may be intrinsically inconsistent

Preference flow graph

Inconsistent graph.

Consistent graph.

Potential method

- potential method introduces ordering of goods, and gives a consistency measure of the graph
- consistency measure describes confidence in a trading decision

Potential method

Results of applying the potential method on a preference flow graph.

Summary of trading algorithm

- obtain preference flows among the assets using statistical arbitrage method
- 2. construct *preference flow graph*, then apply the *potential method* to impose ordering by *preference*
- take long position in assets with the highest preference, and short position in assets with the lowest preference (if short position is allowed)

Results

Simulation results — subset from S&P 500

Simulation results on a subset of 203 assets from S&P 500 index.

Simulation results — subset from S&P 500

Simulation results on a subset of 203 assets from S&P 500 index. Blue

Method	Buy & Hold	Statistical arbitrage	Preference flow
Annual return	0.07622	0.63033	1.28000
Volatility	0.15069	0.33532	0.78373
Sharpe ratio	0.50582	1.87981	1.63322
Average turnover rate	/	1.473211	0.55112
Net profit with 0.10% transaction costs	5.49572	-2.74051	24.66204

Conclusion

Conclusion

- enhancement of present methods of statistical arbitrage
- algorithm performs better when there is more assets available, allows for portfolio diversification
- · algorithm works well even if short position is not allowed

This work has been supported in part by the Croatian Science Foundation under the project 5349.

