

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 1 Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Defina

$$K = \{x \in E : ||x|| = 1\}.$$

Demuestre que E es de Banach si y solamente si K es completo.

Demostración. (\Rightarrow) Supongamos que E es de Banach, considere $(x_n)_{n\in\mathbb{N}}$ una sucesión de cauchy en $K\subset E$, como E es completo $x_n\to x$, faltaría ver que $\|x\|=1$. Por la convergencia tenemos que dado $\varepsilon>0$ existe $N\in\mathbb{Z}^+$ tal que si $n\geq N$, entonces

$$\|\mathbf{x}_{n} - \mathbf{x}\| < \varepsilon$$
.

Ahora recordemos que cada x_n es de norma 1 ya que es una sucesión de Cauchy en K, luego por la desigualdad triangular tenemos que

$$||x|| \le ||x - x_n|| + ||x_n|| < \varepsilon + 1,$$

y ademas

$$1 = \|x_n\| < \|x_n - x\| + \|x\| < \varepsilon + \|x\|.$$

Si juntamos las dos desigualdades tenemos que

$$1-\varepsilon < ||x|| < 1+\varepsilon$$
.

Asi tomando $\varepsilon \to 0$ tenemos que ||x|| = 1, mostrando así que K es completo.

 (\Leftarrow) Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en E. Luego la sucesión $(\|x_n\|)_{n\in\mathbb{N}}$ es de Cauchy en \mathbb{R} y por tanto como este es completo $\|x_n\|\to a$. Ahora en nuestro primer caso si a=0, por la definición de convergencia, dado $\epsilon>0$, existe $N\in\mathbb{Z}^+$ tal que si $n\geq N$ tenemos que $\|\|x_n\|-0\|<\epsilon$, pero esta expresión es igual a $\|x_n\|<\epsilon$, así concluimos que $x_n\to 0$ y hemos acabado en este caso.

Si $\alpha \neq 0$, sin perdida de generalidad podemos asumir que $x_n \neq 0$ para todo $n \in \mathbb{N}$, ya que en caso contrario serian una cantidad finita de ceros que no afectarían a la convergencia o serian infinitos, pero como la sucesión es de Cauchy eso implicaría que converge a 0 ya que existiría una subsucesión convergente a 0, y ese caso fue el anterior. Así definimos $y_n = \frac{x_n}{\|x_n\|}$, luego como las sucesiones de Cauchy en \mathbb{R} son acotadas, existen constantes tales que $0 < M_1 \leq \|x_n\| \leq M_2$

a partir de un $n \ge N$ tenemos que

$$\begin{split} \|y_n - y_m\| &= \left\| \frac{x_n}{\|x_n\|} - \frac{x_m}{\|x_m\|} \right\| \\ &= \left\| \frac{x_n\|x_m\| - x_m\|x_n\|}{\|x_n\|\|x_m\|} \right\| \\ &\leq \frac{1}{M_1^2} \|x_n\|x_m\| - x_m\|x_n\| \| \\ &= \frac{1}{M_1^2} \|x_n\|x_m\| - x_m\|x_m\| + x_m\|x_m\| - x_m\|x_n\| \| \\ &= \frac{1}{M_1^2} \|(x_n - x_m)\|x_m\| + x_m(\|x_m\| - \|x_n\|) \| \\ &\leq \frac{1}{M_1^2} (\|(x_n - x_m)\|x_m\| + \|x_m(\|x_m\| - \|x_n\|) \|) \\ &\leq \frac{M_2}{M_1^2} (\|x_n - x_m\| + \|\|x_m\| - \|x_n\|\|) \end{split}$$

Luego como (x_n) y $(\|x_n\|)$ son de Cauchy para n y m suficientemente grandes $\|x_n - x_m\| < \epsilon$ y $\|\|x_m\| - \|x_n\|\| < \epsilon$. Así hemos concluido que (y_n) es de Cauchy, pero claramente $y_n \in K$, como este es completo por hipótesis tenemos que $y_n \to y$. Podemos notar que $x_n = \|x_n\|y_n$, así tenemos que

$$||x_n - ay|| = ||||x_n||y_n - ay_n + ay_n - ay||$$

$$= ||y_n(||x_n|| - a) + a(y_n - y)||$$

$$\leq ||||x_n|| - a|| + ||a|||(y_n - y)||.$$

Como $||x_n|| \to \alpha$ y $y_n \to y$, por la desigualdad concluimos que $x_n \to \alpha y$, mostrando así que (x_n) converge en E y por tanto es Banach.

Ejercicio 2 Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios vectoriales normados. Considere $T: E \to F$ una transformación lineal. Muestre que las siguientes afirmaciones son equivalentes:

- (i) T es continua.
- (ii) T es continua en cero.
- (iii) T es acotada. Es decir, existe M > 0 tal que para todo $x \in E$,

$$\|Tx\|_{F} < M\|x\|_{F}$$
.

(iv) Si $\overline{B(0,1)} = \{x \in E : \|x\|_E \le 1\}$, entonces la imagen directa T(B(0,1)) es un conjunto acotado de F.

Demostración.

Ejercicio 3

Demuestre que si $T \in \mathcal{L}(E, F)$, entonces:

(i) $\|Tx\|_F \le \|T\| \|x\|_E$, para todo $x \in E$.

(ii)
$$\|T\| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E}.$$

(iii)
$$\|T\| = \sup_{\|x\|_E=1} \|Tx\|_F$$
.

(iv)
$$||T|| = \inf\{M > 0 : ||Tx||_F \le M ||x||_E, \, \forall x \in E\}.$$

Demostración.

(i) Sea $\mathcal{L}(E, F)$ un espacio vectorial con la norma

$$\|T\| = \sup_{\substack{x \in E \\ \|x\| \le 1}} \frac{\|Tx\|_F}{\|x\|_E}.$$

Por definición de supremo, se tiene que $||Tx|| \le ||T||$ para todo $x \in E$ con $||x|| \le 1$.

Si x=0, la desigualdad se cumple trivialmente. Tomemos ahora $x\in E$ con $x\neq 0$, y definamos

$$y = \frac{x}{\|x\|}.$$

Entonces, usando la linealidad de T, se tiene:

$$\|Ty\| = \left\|T\left(\frac{x}{\|x\|}\right)\right\| = \frac{1}{\|x\|}\|Tx\|.$$

Por la definición del supremo, como ||y|| = 1, se cumple que $||Ty|| \le ||T||$, y por lo tanto:

$$\frac{1}{\|x\|}\|Tx\|\leq \|T\|.$$

Multiplicando ambos lados por $\|x\|$, obtenemos:

$$||Tx|| \le ||T|| ||x||.$$

Así, se concluye que para todo $x \in E$, se cumple $||Tx|| \le ||T|| ||x||$, como queríamos.

(ii-iv) Definamos:

$$\begin{split} &\alpha = \sup_{\|x\|_E = 1} \|Tx\|_F, \\ &\beta = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E}, \\ &\gamma = \inf\{M > 0: \|Tx\|_F \leq M\|x\|_E, \, \forall x \in E\}. \end{split}$$

3

Veamos que $\|Tx\| \le \alpha$ para todo $x \in E$ con $\|x\| = 1$. Tomemos $y \in E$ con $y \ne 0$ tal que $x = \frac{y}{\|y\|}$, entonces:

$$\|\mathsf{Tx}\| = \left\|\mathsf{T}\left(\frac{\mathsf{y}}{\|\mathsf{y}\|}\right)\right\| = \frac{\|\mathsf{Ty}\|}{\|\mathsf{y}\|} \le \alpha.$$

Como esto vale para todo $y \in E$ con $y \neq 0$, se concluye que $\beta \leq \alpha$.

Por otro lado, para todo $x \in E$ con $x \neq 0$, se cumple:

$$\frac{\|Tx\|}{\|x\|} \le \beta.$$

Entonces, usando la linealidad de T,

$$\left\| T\left(\frac{x}{\|x\|}\right) \right\| \leq \beta.$$

Si definimos $y = \frac{x}{\|x\|}$, entonces $\|y\| = 1$, y se obtiene que $\|Ty\| \le \beta$ para todo $y \in E$ con $\|y\| = 1$. Por lo tanto, $\alpha \le \beta$.

En consecuencia, $\alpha = \beta$.

Ahora, si M > 0 es cualquier número en el conjunto que define a γ , entonces se cumple que $\|Tx\| \le M\|x\|$ para todo $x \in E$. Esto implica que

$$\frac{\|Tx\|}{\|x\|} \le M,$$

y por lo tanto, $\beta \leq M$ para todo M en dicho conjunto. En consecuencia, $\beta \leq \gamma$.

Por otro lado, ya sabemos que $\frac{\|Tx\|}{\|x\|} \le \beta$ para todo $x \in E$, $x \ne 0$, lo cual equivale a $\|Tx\| \le \beta \|x\|$. Es decir, β también cumple la propiedad que del conjunto que define γ , así que $\gamma \le \beta$. Concluimos entonces que:

$$\alpha = \beta = \gamma$$
.

Finalmente, notemos que $\|T\| \ge \alpha$, ya que:

$${x \in E : ||x|| = 1} \subseteq {x \in E : ||x|| \le 1}.$$

Por otro lado, si M pertenece al conjunto que define a γ , entonces para todo $x \in E$ con $\|x\| \le 1$, se tiene $\|Tx\| \le M$, y como M es una cota superior de $\|Tx\|$ sobre la bola unitaria, se concluye que $\|T\| \le M$. Por ser esto válido para todo M del conjunto que define a γ , se tiene que $\|T\| \le \gamma$.

Por lo tanto,

$$\|T\| = \alpha = \beta = \gamma.$$

Ejercicio 4.

Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios vectoriales normados. Suponga que F es un espacio de Banach.

Muestre que $\mathcal{L}(E, F)$ es un espacio de Banach con la norma usual de $\mathcal{L}(E, F)$. En particular, concluya que $E^* = \mathcal{L}(E, \mathbb{R})$ y $E^{**} = \mathcal{L}(E^*, \mathbb{R})$ son espacios de Banach.

Demostración.

Sea $(E, \|\cdot\|_E)$ un espacio normado y sea $(F, \|\cdot\|_F)$ un espacio de Banach. Consideremos el conjunto $\mathcal{L}(E, F)$ de todas las aplicaciones lineales y continuas de E en F, provisto de la norma definida por

$$||T|| := \sup_{\|x\|_{E} \le 1} ||T(x)||_{F}.$$

Queremos demostrar que $\mathcal{L}(E,F)$, con esta norma, es un espacio de Banach.

Sea $(T_n)_{n\in\mathbb{N}}\subseteq\mathcal{L}(E,F)$ una sucesión de Cauchy. Por definición, para todo $\epsilon>0$, existe $N\in\mathbb{N}$ tal que para todo $n,m\geq N$,

$$\|T_n - T_m\| < \varepsilon$$
.

Es decir, para todo $x \in E$ con $||x||_E \le 1$, se tiene

$$\|\mathsf{T}_{\mathsf{n}}(\mathsf{x}) - \mathsf{T}_{\mathsf{m}}(\mathsf{x})\|_{\mathsf{F}} < \varepsilon$$
.

Ahora, sea $x \in E$ arbitrario (no necesariamente de norma menor o igual que uno). Para todo $n, m \ge N$, se cumple

$$||T_n(x) - T_m(x)||_F = ||(T_n - T_m)(x)||_F \le ||T_n - T_m|| \cdot ||x||_E.$$

Dado $\varepsilon > 0$, si $x \neq 0$, se puede tomar $\delta := \varepsilon/\|x\|_E$, y por ser (T_n) de Cauchy, existe $N \in \mathbb{N}$ tal que para todo $n, m \geq N$,

$$\|T_n - T_m\| < \delta = \frac{\varepsilon}{\|x\|_E},$$

lo que implica

$$\|T_n(x) - T_m(x)\|_F < \varepsilon$$
.

En el caso x=0, se tiene trivialmente que $T_n(0)=0$ para todo n, por lo que la sucesión es constante y, en particular, de Cauchy. Así, se concluye que para todo $x\in E$, la sucesión $(T_n(x))_{n\in\mathbb{N}}\subseteq F$ es de Cauchy.

Como F es un espacio de Banach, existe un elemento $T(x) \in F$ tal que

$$T_n(x) \to T(x) \in F$$
.

Esto define una aplicación $T : E \rightarrow F$ mediante

$$T(x) := \lim_{n \to \infty} T_n(x)$$
.

Veamos que T es lineal. Sean $x,y\in E$ y $\lambda\in \mathbb{K}$ (donde $\mathbb{K}=\mathbb{R}$ o \mathbb{C}). Como cada T_n es lineal, se tiene

$$T_n(\lambda x + y) = \lambda T_n(x) + T_n(y),$$

y como los límites existen en F, se concluye que

$$\mathsf{T}(\lambda x + y) = \lim_{n \to \infty} \mathsf{T}_n(\lambda x + y) = \lim_{n \to \infty} (\lambda \mathsf{T}_n(x) + \mathsf{T}_n(y)) = \lambda \mathsf{T}(x) + \mathsf{T}(y),$$

es decir, T es lineal.

Mostremos ahora que T es acotada. Como (T_n) es Cauchy en $\mathcal{L}(E,F)$, existe una constante M>0 tal que $\|T_n\|\leq M$ para todo $n\in\mathbb{N}$. Entonces, para todo $x\in E$,

$$||T_n(x)||_F \le ||T_n|| \cdot ||x||_E \le M||x||_E$$

y pasando al límite cuando $n \to \infty$,

$$\|T(x)\|_{F} \leq M\|x\|_{E}$$
.

Esto demuestra que $T \in \mathcal{L}(E, F)$, es decir, T es lineal y continua.

Finalmente, veamos que $T_n \to T$ en $\mathcal{L}(E,F)$. Dado $\epsilon > 0$, existe $N \in \mathbb{N}$ tal que para todo $n,m \geq N$,

$$\|T_n - T_m\| < \varepsilon$$
.

Fijado $n \ge N$, y tomando el límite cuando $m \to \infty$, se obtiene

$$\|T_n-T\|=\sup_{\|x\|_E\leq 1}\|T_n(x)-T(x)\|_F\leq \epsilon.$$

Por tanto, $\|T_n - T\| \to 0$, lo que implica que $T_n \to T$ en $\mathcal{L}(E,F)$.

Concluimos que $\mathcal{L}(E, F)$, con la norma $\|\cdot\|$, es un espacio de Banach.

Ejercicio 5 Sean E y F espacios vectoriales normados. Suponga que E es de dimensión finita (no se asume que F sea de dimensión finita).

- (i) Muestre que todas las normas asignadas a E son equivalentes.
- (ii) Muestre que toda transformación lineal $T: E \to F$ es continua.
- (iii) Dé un ejemplo donde se verifique que (ii) puede ser falsa si E es de dimensión infinita.

Ejercicio 6

Considere $E = c_0$, donde

$$c_0=\left\{u=\{u_n\}_{n\geq 1}: \text{tales que } u_n\in\mathbb{R}, \ \lim_{n\to\infty}u_n=0\right\}.$$

Es decir, c_0 es el conjunto de las secuencias reales que tienden a cero. Dotamos a este espacio con la norma $\|u\|_{\ell^\infty}=\sup_{n\in\mathbb{Z}^+}|u_n|$. Considere el funcional $f:E\to\mathbb{R}$ dado por

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

(i) Muestre que $f \in E^*$ y calcule $||f||_{E^*}$.

Solución. Observemos primero que evidentemente esta bien definido el funcional ya que como las sucesiones convergentes son acotadas, el supremo existe y como

$$\left|\frac{1}{2^n}u_n\right|\leq \|u\|_{\ell^\infty}\frac{1}{2^n},$$

Por el criterio de comparacion converge absolutamente, ya que el lado derecho es una geometrica. Luego dadas $u, v \in E$ y $\lambda \in \mathbb{R}$, tenemos claramente que $u + \lambda v \in E$, donde

 $u+\lambda\nu=\{u_n+\lambda\nu_n\}_{n\geq 1}.$ Asi por la convergencia absoluta tenemos que f es lineal, ya que

$$\begin{split} f(u+\lambda \nu) &= \sum_{n=1}^{\infty} \frac{1}{2^n} (u_n + \lambda \nu_n) \\ &= \sum_{n=1}^{\infty} \left(\frac{1}{2^n} u_n + \frac{1}{2^n} \lambda \nu_n \right) \\ &= \sum_{n=1}^{\infty} \frac{1}{2^n} u_n + \lambda \sum_{n=1}^{\infty} \frac{1}{2^n} \nu_n \\ &= f(u) + \lambda f(\nu). \end{split}$$

Mostremos ahora que esta acotada. Observe que para una suma parcial se tiene que

$$\begin{split} \left| \sum_{n=1}^{m} \frac{1}{2^{n}} u_{n} \right| &\leq \sum_{n=1}^{m} \frac{1}{2^{n}} |u_{n}| \\ &\leq \sup_{n \in \mathbb{Z}^{+}} |u_{n}| \sum_{n=1}^{m} \frac{1}{2^{n}} \\ &= \|u\|_{\ell^{\infty}} \sum_{n=1}^{m} \frac{1}{2^{n}}. \end{split}$$

Note que si hacemos $m \to \infty$ al lado derecho tenemos una serie geometrica que converge a 1, asi tenemos que

$$|f(u)| \leq ||u||_{\ell^{\infty}}$$
.

Mostrando asi que f es acotada.

Faltaria simplemente calcular $\|f\|_{E^*}$. Por la cota hallada previamente si tomamos el supremo a ambos lados tenemos que

$$\|f(u)\|_{E^*} \sup_{\|u\|_{\ell^\infty} \le 1} |f(u)| \le \sup_{\|u\|_{\ell^\infty} \le 1} \|u\|_{\ell^\infty} \le 1.$$

Ahora considere la sucesion $u^N,$ donde $N\in\mathbb{Z}^+$ y esta definida de la siguiente manera

$$u_n = \begin{cases} 1 & \text{Si } n \leq N, \\ 0 & \text{Si } n > N. \end{cases}$$

Claramente $\|u^N\|_{\ell^\infty}=1$, luego por la desigualdad mostrada en el ejercicio 3 numeral (i) tenemos

$$\begin{split} \sum_{i=1}^N \frac{1}{2^n} &= |f(u^N)| \\ &\leq \|f\|_{E^*} \|u^N\|_{\ell^\infty} \\ &= \leq \|f\|_{E^*}. \end{split}$$

Asi como el lado derecho no depende de N, si tomamos $N \to \infty$ tenemos que

$$1 \leq ||f||_{E^*}$$
.

Asi concluimos que $||f||_{E^*} = 1$.

 $Q^{"}Q$

(ii) ¿Es posible encontrar $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?

Solución. Como vimos en el numeral anterior que $\|f\|_{E^*}=1$, queremos ver si existe una sucesion $u\in E$ de norma 1 tal que f(u)=1. Supongamos que existe tal sucesion y veamos como esto nos lleva a una contradiccion. Por hipotesis

$$u_n \leq |u_n| \leq ||u||_{\ell^{\infty}} = 1,$$

luego $u_n - 1 \le 0$ para todo $n \in \mathbb{Z}^+$. Asi podemos notar que

$$\begin{split} \left| \sum_{n=1}^{m} \frac{1}{2^{n}} (u_{n} - 1) \right| &\leq \sum_{n=1}^{m} \frac{1}{2^{n}} |u_{n} - 1| \\ &= \sum_{n=1}^{m} \frac{1}{2^{n}} (1 - u_{n}) \\ &= \sum_{n=1}^{m} \frac{1}{2^{n}} - \sum_{n=1}^{m} \frac{1}{2^{n}} u_{n}, \end{split}$$

Luego si m $\rightarrow \infty$ tenemos que

$$\left|\sum_{n=1}^{\infty} \frac{1}{2^n} (u_n - 1)\right| \leq 1 - f(u) = 0.$$

Por lo tanto

$$\sum_{n=1}^{\infty} \frac{1}{2^n} (u_n - 1) = 0.$$

Ahora note que si existe algun $u_n < 1$ la suma de arriba seria negativa, no igual a 0. Por lo que $u_n = 1$ para todo $n \in \mathbb{Z}^+$, pero esto implicaria que $u \notin E$, ya que esa sucesion no converge a 0. Luego no puede existir una sucesion u que cumpla lo mencionado.

 $\Omega^{\hat{}}\Omega$