See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231486279

ChemMater 2010 22 2720-2729 supporting information

DATASET · OCTOBER 2012

READS

18

8 AUTHORS, INCLUDING:

Andreas Seifert

Technische Universität Chemnitz

67 PUBLICATIONS 934 CITATIONS

SEE PROFILE

Huihua Lang

531 PUBLICATIONS **4,670** CITATIONS

SEE PROFILE

Katharina Ladewig (neé Porazik)

University of Melbourne

34 PUBLICATIONS **513** CITATIONS

SEE PROFILE

Novel Periphery-Functionalized Solvatochromic Nitrostilbenes as Precursors for Class II Hybrid Materials

Katja Schreiter,[†] Katja Hofmann, [†] Andreas Seifert, [†] Alexander Oehlke, [†] Katharina Ladewig, [†]
Tobias Rüffer, [‡] Heinrich Lang, [‡] and Stefan Spange [†]*

- † Department of Polymer Chemistry, Institute of Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany *E-mail address:* stefan.spange@chemie.tu-chemnitz.de
- Department of Inorganic Chemistry, Institute of Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany

 To whom correspondence pertaining to X-ray structure analyses should be addressed.

Solvent Parameter Sets:

Table S1. KAMLET–TAFT ^[S1,2] parameter set.

solvent	KAMLET-TAFT parameter		
SOIVEIL	α	β	π^*
cyclohexane	0.00	0.00	0.00
<i>n</i> -hexane	0.00	0.00	-0.04
triethylamine	0.00	0.71	0.14
tetrachloromethane	0.00	0.10	0.28
<i>p</i> -xylene	0.00	0.12	0.43
toluene	0.00	0.11	0.54
benzene	0.00	0.10	0.59
diethyl ether	0.00	0.47	0.27
1,4-dioxane	0.00	0.37	0.55
anisole	0.00	0.32	0.73
tetrahydrofurane	0.00	0.55	0.58
ethyl acetate	0.00	0.45	0.55
chloroform	0.20	0.10	0.53
1,1,2,2-tetrachloroethane	0.00	0.00	0.95
pyridine	0.00	0.64	0.87
dichloromethane	0.13	0.10	0.82
hexamethylphosphoramide	0.00	1.05	0.87
tetramethylurea	0.00	0.80	0.83
1,2-dichloroethane	0.00	0.10	0.81
benzonitrile	0.00	0.37	0.90
acetone	0.08	0.43	0.71
N,N-dimethylacetamide	0.00	0.76	0.88
<i>N</i> , <i>N</i> -dimethylformamide	0.00	0.69	0.88
dimethyl sulfoxide	0.00	0.76	1.00
acetonitrile	0.19	0.40	0.75
nitromethane	0.22	0.06	0.85
1-decanol	0.70	0.82	0.45
1-butanol	0.84	0.84	0.47
2-propanol	0.76	0.84	0.48
1-propanol	0.84	0.90	0.52
ethanol	0.86	0.75	0.54
methanol	0.98	0.66	0.60
ethane-1,2-diol	0.90	0.52	0.92
2,2,2-trifluoroethanol	1.51	0.00	0.73
1,1,1,3,3,3-hexafluoro-2-propanol	1.96	0.00	0.65

Single crystal X-ray structure analysis:

Crystal data was collected on a Oxford Gemini Diffractometer at low temperature (100 K) using Cu- K_{α} -radiation (λ = 1.54 Å). The structure was solved by direct methods using SHELXS-97^{S4}. The structure was refined by full-matrix least squares procedures on F², using SHELXL-97^{S5}. All non hydrogen atoms were refined anisotropically. All hydrogen atoms were added on calculated positions, except of OH and NH which were found in difference fourier synthesis.

empirical formula	$C_{17}H_{17}N_3O_4$
formula weight	327.34
color	red
wavelength (Å)	1.54184
temperature (K)	150
crystal system	orthorhombic
space group	Pbca
a [Å]	14.0954(2)
<i>b</i> [Å]	13.6059(2)
c [Å]	16.2976(2)
α[°]	90
β[°]	90
γ[°]	90
volume (ų)	3125.56(7)
Z	8
calcd density (g*cm ⁻³)	1.391
absorption coeffizient (mm ⁻¹)	0.838
F(000)	1376
crystal size (mm³)	0.35 x 0.29 x 0.16
Θ range for data collection(°)	5.27-61.99
index ranges	-16\leqh\leq15, -15\leqk\leq10, -18\leql\leq14
reflections collected	9226
independent reflections	2445
$R_{\rm int}$	0.0202
data/restraints/parameter	2445/0/222
refinement method	full-matrix least-squares on F ²
goodness-of-fit on F ²	1.052
final R indicates $[I>2\sigma(I)]$	R1 = 0.0355, wR2 = 0.1025
R indicates all data	R1 = 0.0426, wR2 = 0.1056
largest diff. peak and hole (e* Å ³)	0.303, -0.201

Table S3. Bond lengths [A] and angles [deg] for 1-M

C(1)-C(6) C(1)-C(2) C(1)-N(1) C(2)-C(3) C(2)-H(2) C(3)-C(4) C(3)-H(3) C(4)-C(5) C(4)-C(7) C(5)-C(6) C(5)-H(5) C(6)-H(6) C(7)-C(8) C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(14) C(9)-C(10) C(10)-C(11) C(10)-H(10) C(11)-C(12) C(11)-H(11) C(12)-N(2) C(12)-C(13) C(13)-C(14) C(13)-N(3) C(14)-H(14) C(15)-N(2) C(15)-C(16) C(15)-H(15A) C(15)-H(15A) C(16)-H(16B) C(17)-H(17A) C(17)-H(17B) C(17)-H(17C) N(1)-O(2) N(1)-O(1) N(2)-H(2N)	1.381(2) 1.376(2) 1.4628(19) 1.376(2) 0.9300 1.395(2) 0.9300 1.400(2) 1.459(2) 1.376(2) 0.9300 0.9300 1.330(2) 0.9300 1.457(2) 0.9300 1.380(2) 1.413(2) 1.357(2) 0.9300 1.416(2) 0.9300 1.4416(2) 0.9300 1.3427(19) 1.424(2) 1.394(2) 1.394(2) 1.4366(19) 0.9300 1.4522(18) 1.513(2) 0.9700 0.9700 0.9700 0.9700 0.9700 0.961(2)
N(3)-O(4)	1.2290(15)
N(3)-O(3)	1.2411(15)
C(2)-C(1)-C(6) C(2)-C(1)-N(1) C(6)-C(1)-N(1) C(1)-C(2)-C(3) C(1)-C(2)-H(2) C(3)-C(2)-H(2) C(2)-C(3)-C(4) C(2)-C(3)-H(3) C(4)-C(3)-H(3) C(3)-C(4)-C(5) C(3)-C(4)-C(7) C(5)-C(4)-C(7) C(6)-C(5)-C(4)	121.82(13) 119.04(14) 119.14(13) 118.59(14) 120.7 120.7 121.69(14) 119.2 117.83(13) 118.82(13) 123.33(13) 121.11(14)
C(4)-C(5)-H(5)	119.4

```
C(6)-C(5)-H(5)
                        119.4
                        118.93(14)
C(5)-C(6)-C(1)
C(1)-C(6)-H(6)
                        120.5
C(5)-C(6)-H(6)
                        120.5
C(8)-C(7)-C(4)
                        126.66(14)
C(8)-C(7)-H(7)
                        116.7
C(4)-C(7)-H(7)
                        116.7
C(7)-C(8)-C(9)
                        126.55(13)
C(7)-C(8)-H(8)
                        116.7
C(9)-C(8)-H(8)
                        116.7
C(14)-C(9)-C(10)
                        116.69(13)
C(14)-C(9)-C(8)
                        120.24(13)
C(10)-C(9)-C(8)
                        123.06(13)
                        122.62(13)
C(11)-C(10)-C(9)
C(11)-C(10)-H(10)
                        118.7
C(9)-C(10)-H(10)
                        118.7
C(10)-C(11)-C(12)
                        121.98(13)
C(10)-C(11)-H(11)
                        119.0
C(12)-C(11)-H(11)
                        119.0
N(2)-C(12)-C(11)
                        120.28(13)
                        124.45(13)
N(2)-C(12)-C(13)
C(11)-C(12)-C(13)
                        115.28(12)
C(14)-C(13)-C(12)
                        121.87(13)
C(14)-C(13)-N(3)
                        116.88(12)
C(12)-C(13)-N(3)
                        121.25(12)
C(9)-C(14)-C(13)
                        121.56(13)
C(9)-C(14)-H(14)
                        119.2
C(13)-C(14)-H(14)
                        119.2
N(2)-C(15)-C(16)
                        108.94(12)
                        109.9
N(2)-C(15)-H(15A)
C(16)-C(15)-H(15A)
                        109.9
N(2)-C(15)-H(15B)
                        109.9
                        109.9
C(16)-C(15)-H(15B)
H(15A)-C(15)-H(15B)
                        108.3
C(15)-C(16)-C(17)
                        112.60(13)
C(15)-C(16)-H(16A)
                        109.1
C(17)-C(16)-H(16A)
                        109.1
C(15)-C(16)-H(16B)
                        109.1
C(17)-C(16)-H(16B)
                        109.1
H(16A)-C(16)-H(16B)
                        107.8
                        109.5
C(16)-C(17)-H(17A)
C(16)-C(17)-H(17B)
                        109.5
H(17A)-C(17)-H(17B)
                        109.5
                        109.5
C(16)-C(17)-H(17C)
H(17A)-C(17)-H(17C)
                        109.5
H(17B)-C(17)-H(17C)
                        109.5
O(2)-N(1)-O(1)
                        123.16(14)
O(2)-N(1)-C(1)
                        118.98(13)
O(1)-N(1)-C(1)
                        117.85(14)
C(12)-N(2)-C(15)
                        125.01(13)
                        118.80(12)
C(12)-N(2)-H(2N)
C(15)-N(2)-H(2N)
                        116.10(12)
O(4)-N(3)-O(3)
                        121.33(12)
O(4)-N(3)-C(13)
                        119.14(12)
O(3)-N(3)-C(13)
                        119.52(12)
```

Table S3. torsion angles [deg] for 1-M

C(6)-C(1)-C(2)-C(3)	-1.2(2)
N(1)-C(1)-C(2)-C(3)	178.68(14)
C(1)-C(2)-C(3)-C(4)	2.0(2)
C(2)-C(3)-C(4)-C(5)	-1.3(2)
C(2)-C(3)-C(4)-C(7)	177.13(15)
C(3)-C(4)-C(5)-C(6)	-0.2(2)
C(7)-C(4)-C(5)-C(6)	-178.59(14)
C(4)-C(5)-C(6)-C(1)	1.0(2)
C(2)-C(1)-C(6)-C(5)	-0.3(2)
N(1)-C(1)-C(6)-C(5)	179.83(14)
C(3)-C(4)-C(7)-C(8)	-175.08(16)
C(5)-C(4)-C(7)-C(8)	3.3(3)
C(4)-C(7)-C(8)-C(9)	177.26(14)
C(7)-C(8)-C(9)-C(14)	171.82(15)
C(7)-C(8)-C(9)-C(10)	-9.7(2)
C(14)-C(9)-C(10)-C(11)	-0.5(2)
C(8)-C(9)-C(10)-C(11)	-179.05(14)
C(9)-C(10)-C(11)-C(12)	1.1(2)
C(10)-C(11)-C(12)-N(2)	178.83(14)
C(10)-C(11)-C(12)-C(13)	-1.2(2)
N(2)- $C(12)$ - $C(13)$ - $C(14)$	-179.27(14)
C(11)- $C(12)$ - $C(13)$ - $C(14)$	0.7(2)
N(2)-C(12)-C(13)-N(3)	1.3(2)
C(11)-C(12)-C(13)-N(3)	-178.73(13)
C(10)-C(9)-C(14)-C(13)	0.1(2)
C(8)-C(9)-C(14)-C(13)	178.64(14)
C(12)- $C(13)$ - $C(14)$ - $C(9)$	-0.2(2)
N(3)-C(13)-C(14)-C(9)	179.26(13)
N2(3)-C(15)-C(16)-C(17)	-179.95(14)
C(2)- $C(1)$ - $N(1)$ - $O(2)$	-170.48(15)
C(6)-C(1)-N(1)-O(2)	-9.4(2)
C(2)- $C(1)$ - $N(1)$ - $O(1)$	10.2(2)
C(6)-C(1)-N(1)-O(1)	-169.98(16)
C(11)-C(12)-N(2)-C(15)	2.7(2)
C(13)-C(12)-N(2)-C(15)	-177.30(14)
C(16)-C(15)-N(2)-C(12)	-177.12(14)
C(14)-C(13)-N(3)-O(4)	-5.5(2) 173 02(14)
C(12)-C(13)-N(3)-O(4)	173.93(14)
C(14)-C(13)-N(3)-O(3)	174.82(13)
C(12)-C(13)-N(3)-O(3)	-5.7(2)

Table S4: Crystallographic data and collect	tion parameters for 3
empirical formula	$C_{17}H_{17}N_3O_6$
formula weight	359.34
color	red
wavelength (Å)	1.54184
temperature (K)	100 (0)
crystal system	monclinic
space group	P2(1)/n
a [Å]	6.6544 (3)
<i>b</i> [Å]	14.0082 (5)
c [Å]	17.2852 (7)
α [°]	95.732 (8)
$oldsymbol{eta}$ [°]	90
γ[°]	98.891 (4)
volume (Å ³)	90
Z	4
calcd density (g*cm ⁻³)	1.499
absorption coeffizient (mm ⁻¹)	0.976
F(000)	752
crystal size (mm³)	0.4 x 0.08 x 0.08
Θ range for data collection(°)	4.08–61.99
index ranges	-7≤h≤6, -14≤k≤16, -15≤l≤19
reflections collected	4972
independent reflections	2454
$R_{ m int}$	0.0441
data/restraints/parameter	2454/0/248
refinement method	full-matrix least-squares on F ²
goodness-of-fit on F ²	1.001
final R indicates $[I>2\sigma(I)]$	R1 = 0.0821, wR2 = 0.2173
R indicates all data	R1 = 0.1008, wR2 = 0.2268
largest diff. peak and hole (e* Å ³)	0.463, -0.471

Table S5. Bond lengths [A] and angles [deg] for 3

C(1)-C(6) C(1)-C(2) C(1)-N(1) C(2)-C(3) C(2)-H(2) C(3)-C(4) C(3)-H(3) C(4)-C(5) C(4)-C(7) C(5)-C(6) C(5)-H(5) C(6)-H(6) C(7)-C(8) C(7)-H(7) C(8)-C(9) C(8)-H(8) C(9)-C(14) C(9)-C(10) C(10)-C(11) C(10)-H(10) C(11)-C(12) C(11)-H(11) C(12)-N(2) C(12)-C(13) C(13)-C(14)	1.379(5) 1.380(5) 1.458(5) 1.386(5) 0.9300 1.398(5) 0.9300 1.400(5) 1.467(5) 1.401(5) 0.9300 1.324(5) 0.9300 1.324(5) 0.9300 1.379(5) 1.424(5) 1.364(5) 0.9300 1.418(5) 0.9300 1.349(5) 1.427(5) 1.392(5)
C(13)-C(14) C(13)-N(3)	1.430(5)
C(14)-H(14)	0.9300
C(15)-O(3)	1.426(4)
C(15)-C(17)	1.513(5)
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(16)-O(4)	1.417(5)
C(16)-C(17)	1.517(5)
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
C(17)-N(2)	1.464(5)
C(17)-H(17)	0.9800
N(1)-O(1)	1.226(4)
N(1)-O(2)	1.232(4)
N(2)-H(2N)	0.85(5)
N(3)-O(6)	1.237(4)
N(3)-O(5)	1.251(4)
O(3)-H(3O)	0.94(4)
O(4)-H(4O)	0.80(4)
C(6)-C(1)-C(2)	121.4(3)
C(6)-C(1)-N(1)	119.1(3)
C(2)-C(1)-N(1)	119.5(3)
C(1)-C(2)-C(3)	119.5(3)
C(1)-C(2)-H(2)	120.2
C(3)-C(2)-H(2)	120.2
C(2)-C(3)-C(4)	121.1(4)
C(2)-C(3)-H(3)	119.5
C(4)-C(3)-H(3)	119.5
C(3)-C(4)-C(5)	118.1(4)
C(3)-C(4)-C(7)	118.6(3)

C(5)-C(4)-C(7)	123.3(3)
C(4)-C(5)-C(6)	121.1(3)
C(4)-C(5)-H(5)	119.5
C(4) C(5) H(5) C(6)-C(5)-H(5)	119.5
C(1)-C(6)-C(5)	118.8(3)
C(1)- $C(6)$ - $H(6)$	120.6
C(5)-C(6)-H(6)	120.6
C(8)-C(7)-C(4)	124.6(3)
C(8)-C(7)-H(7)	117.7
C(4)-C(7)-H(7)	117.7
C(7)-C(8)-C(9)	127.7(3)
C(7)-C(8)-H(8)	116.2
C(9)-C(8)-H(8)	116.2
C(14)-C(9)-C(10)	116.8(3)
C(14)-C(9)-C(8)	118.8(3)
C(10)-C(9)-C(8)	124.3(3)
C(11)-C(10)-C(9)	122.0(3)
C(11)-C(10)-H(10)	119.0
C(9)-C(10)-H(10)	119.0
C(10)-C(11)-C(12)	122.2(3)
C(10)-C(11)-H(11)	118.9
C(12)-C(11)-H(11)	118.9
N(2)-C(12)-C(11)	121.0(3)
N(2)- $C(12)$ - $C(13)$	123.9(3)
C(11)-C(12)-C(13)	115.2(3)
C(14)-C(13)-C(12)	122.1(3)
C(14)-C(13)-N(3)	116.0(3)
C(12)-C(13)-N(3)	121.9(3)
C(9)-C(14)-C(13)	121.7(3)
C(9)-C(14)-H(14)	119.2
C(13)-C(14)-H(14)	119.2
O(3)-C(14)-H(14) O(3)-C(15)-C(17)	
	111.3(3)
O(3)-C(15)-H(15A)	109.4
C(17)-C(15)-H(15A)	109.4
O(3)-C(15)-H(15B)	109.4
C(17)-C(15)-H(15B)	109.4
H(15A)-C(15)-H(15B)	108.0
O(4)-C(16)-C(17)	112.0(3)
O(4)-C(16)-H(16A)	109.2
C(17)-C(16)-H(16A)	109.2
O(4)-C(16)-H(16B)	109.2
C(17)-C(16)-H(16B)	109.2
H(16A)-C(16)-H(16B)	107.9
N(2)-C(17)-C(15)	110.0(3)
N(2)-C(17)-C(16)	108.1(3)
C(15)-C(17)-C(16)	113.1(3)
N(2)-C(17)-H(17)	108.5
C(15)-C(17)-H(17)	108.5
C(16)-C(17)-H(17)	108.5
O(1)-N(1)-O(2)	124.0(4)
O(1)-N(1)-C(1)	118.2(4)
O(2)-N(1)-C(1)	117.8(3)
C(12)-N(2)-C(17)	125.8(3)
C(12)-N(2)-H(2N)	126(3)
C(17)-N(2)-H(2N)	108(3)
O(6)-N(3)-O(5)	121.5(3)
O(6)-N(3)-C(13)	119.0(3)
O(5)-N(3)-C(13)	119.6(3)
C(15)-O(3)-H(3O)	112(2)
C(16)-O(4)-H(4O)	107(3)
-(/ -(-)(-)	- \- /

 Table S5. torsion angles [deg] for 3

-		
C(6)-C(1)-C(2)-C(3)	0.8(5)	
N(1)-C(1)-C(2)-C(3)	179.3(3)	
C(1)-C(2)-C(3)-C(4)	0.4(5)	
C(2)-C(3)-C(4)-C(5)	-0.7(5)	
C(2)-C(3)-C(4)-C(7)	178.1(3)	
C(3)-C(4)-C(5)-C(6)	-0.1(5)	
C(7)-C(4)-C(5)-C(6)	-178.9(3)	
C(2)-C(1)-C(6)-C(5)	-1.6(5)	
N(1)-C(1)-C(6)-C(5)	179.9(3)	
C(4)-C(5)-C(6)-C(1)	1.3(5)	
C(3)-C(4)-C(7)-C(8)	-170.5(3)	
C(5)-C(4)-C(7)-C(8)	8.2(6)	
C(4)-C(7)-C(8)-C(9)	176.9(3)	
C(7)-C(8)-C(9)-C(14)	178.6(3)	
C(7)-C(8)-C(9)-C(10)	-1.8(6)	
C(14)-C(9)-C(10)-C(11)	0.3(5)	
C(8)-C(9)-C(10)-C(11)	-179.4(3)	
C(9)-C(10)-C(11)-C(12)	0.6(5)	
C(10)- $C(11)$ - $C(12)$ - $N(2)$	178.2(3)	
C(10)-C(11)-C(12)-C(13)	-1.8(5)	
N(2)-C(12)-C(13)-C(14)	-177.8(3)	
C(11)-C(12)-C(13)-C(14)	2.3(5)	
N(2)-C(12)-C(13)-N(3)	4.2(5)	
C(11)-C(12)-C(13)-N(3)	-175.8(3)	
C(10)-C(9)-C(14)-C(13)	0.2(5)	
C(8)-C(9)-C(14)-C(13)	179.8(3)	
C(12)-C(13)-C(14)-C(9)	-1.5(5)	
N(3)-C(13)-C(14)-C(9)	176.7(3)	
O(3)-C(15)-C(17)-N(2)	-175.9(3)	
O(3)-C(15)-C(17)-C(16)	63.1(4)	
O(4)-C(16)-C(17)-N(2)	-52.8(4)	
O(4)-C(16)-C(17)-C(15)	69.2(4)	
C(6)-C(1)-N(1)-O(1)	-170.3(3)	
C(2)-C(1)-N(1)-O(1)	11.2(5)	
C(6)-C(1)-N(1)-O(2)	10.3(5)	
C(2)-C(1)-N(1)-O(2)	-168.2(3)	
C(11)-C(12)-N(2)-C(17)	3.4(5)	
C(13)-C(12)-N(2)-C(17)	-176.5(3)	
C(15)-C(17)-N(2)-C(12)	80.8(4)	
C(16)-C(17)-N(2)-C(12)	-155.3(3)	
C(14)-C(13)-N(3)-O(6)	-0.5(5)	
C(12)-C(13)-N(3)-O(6)	177.7(3)	
C(14)-C(13)-N(3)-O(5)	179.8(3)	
C(12)-C(13)-N(3)-O(5)	-2.1(5)	

Figure S1. Selected part of the 3D-network of **3** caused by π - π -interactions between the nitrogroups and the aromatic ring superimposed 2D-layer.

References:

- (S1) Marcus, Y. Chem. Soc. Rev. 1994, 22, 409.
- (S2) Marcus, Y. J. Solution Chem. 1991, 20, 929–941.
- (S3) Sheldrick, G. M: Acta Cryst.; Sect. A 1990, 46, 467.
- (S4) Sheldrick, G. M. SEHLXL-97, *Programm for Crystal Structure Refinement* **1997**, University of Göttingen.