CIS 833 – Information Retrieval and Text Mining Lecture 23

Text Classification

November 19, 2015

Credits for slides: Allan, Arms, Manning, Lund, Noble, Page.

Planning

■ PageRank implementation: due Dec 1st

■ Exam review: Dec 1st

■ Final exam: Dec 3rd

■ Project presentation: Dec. 17th (9:40 AM – 11:30 AM)

■ Project report: Dec. 18th

Textbook Material

- Next Text Classification
 - Chapter 13: Text Classification and Naïve Bayes
 - Chapter 14: Vector Space Classification
 - Chapter 15: Support Vector Machines

Learning Algorithms for Classification Tasks

- Relevance Feedback (Rocchio)
- k-Nearest Neighbors (simple, powerful)
- Naive Bayes (simple, common method)
- Support-vector machines (new, more powerful)
- ... plus many other methods

Generative and Discriminative Models: An analogy

 The task is to determine the language that someone is speaking

Generative and Discriminative Models: An analogy

- The task is to determine the language that someone is speaking
- Generative approach:
 - is to learn each language and determine as to which language the speech belongs to
- Discriminative approach:
 - is to determine the linguistic differences without learning any language – a much easier task!

Taxonomy of ML Models

- Generative Methods
 - Model class-conditional pdfs and prior probabilities
 - "Generative" since sampling can generate synthetic data points
 - Popular models
 - Gaussians, Naïve Bayes, Mixtures of multinomials
 - Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM)
 - Sigmoidal belief networks, Bayesian networks, Markov random fields
- Discriminative Methods
 - Directly estimate posterior probabilities
 - No attempt to model underlying probability distributions
 - Focus computational resources on given task better performance
 - Popular models
 - Logistic regression, SVMs (Kernel methods)
 - Traditional neural networks, Nearest neighbor
 - Conditional Random Fields (CRF)

document? Find the document that most likely generated

the query! Rank document d based on $P(M_d \mid Q)$

Generative Probabilistic Models

- Assume a simple (usually unrealistic) probabilistic method by which the data was generated.
- For categorization, each category has a different parameterized generative model that characterizes that category.
- Training: Use the data for each category to estimate the parameters of the generative model for that category.
- Testing: Use Bayesian analysis to determine the category model that most likely generated a specific test instance.

Bayes Theorem

- Bayes theorem plays a critical role in probabilistic learning and classification.
- Uses prior probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

Bayes Classifiers for Categorical Data

Task: Classify a new instance x based on a tuple of attribute values $x = \langle x_1, x_2, ..., x_n \rangle$ into one of the classes $c_i \in C$

$$c_{MAP} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j} \mid x_{1}, x_{2}, ..., x_{n})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, ..., x_{n} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, ..., x_{n})}$$

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_n \mid c_j) P(c_j)$$

Example	Color	Shape	Class	—	attributes
1	red	circle	positive		
2	red	circle	positive		values
3	red	square	negative		values
4	blue	circle	negative		

Joint Distribution

The joint probability distribution for a set of random variables, $X_1,...,X_n$ gives the probability of every combination of values: $P(X_1,...,X_n)$ positive negative

podiare		
	circle	square
red	0.20	0.02
blue	0.02	0.01

	circle	square
red	0.05	0.30
blue	0.20	0.20

Example	Color	Shape	Class
1	red	circle	positive
2	red	circle	positive
3	red	square	negative
4	blue	circle	negative

Joint Distribution

■ The joint probability distribution for a set of random variables, $X_1,...,X_n$ gives the probability of every combination of values: $P(X_1,...,X_n)$ positive negative

	circle	square
red	0.20	0.02
blue	0.02	0.01

	circle	square
red	0.05	0.30
blue	0.20	0.20

• The probability of all possible conjunctions can be calculated by summing the appropriate subset of values from the joint distribution.

$$P(red \land circle) = ?$$

 $P(red) = ?$

Joint Distribution

The joint probability distribution for a set of random variables, $X_1,...,X_n$ gives the probability of every combination of values: $P(X_1,...,X_n)$ positive negative

positive		
	circle	square
red	0.20	0.02
blue	0.02	0.01

	circle	square
red	0.05	0.30
blue	0.20	0.20

 The probability of all possible conjunctions can be calculated by summing the appropriate subset of values from the joint distribution.

$$P(red \land circle) = 0.20 + 0.05 = 0.25$$

 $P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57$

Joint Distribution

The joint probability distribution for a set of random variables, $X_1,...,X_n$ gives the probability of every combination of values: $P(X_1,...,X_n)$ positive negative

<u> </u>			
	circle	square	
red	0.20	0.02	
blue	0.02	0.01	

	circle	square
red	0.05	0.30
blue	0.20	0.20

 The probability of all possible conjunctions can be calculated by summing the appropriate subset of values from the joint distribution.

$$P(red \land circle) = 0.20 + 0.05 = 0.25$$

$$P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57$$

• Therefore, all conditional probabilities can also be calculated.

Joint Distribution

The joint probability distribution for a set of random variables, $X_1,...,X_n$ gives the probability of every combination of values: $P(X_1,...,X_n)$ positive negative

positive		
	circle	square
red	0.20	0.02
blue	0.02	0.01

	circle	square
red	0.05	0.30
blue	0.20	0.20

 The probability of all possible conjunctions can be calculated by summing the appropriate subset of values from the joint distribution.

$$P(red \land circle) = 0.20 + 0.05 = 0.25$$

$$P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57$$

• Therefore, all conditional probabilities can also be calculated.

 $P(positive \mid red \land circle) = ?$

Joint Distribution

■ The joint probability distribution for a set of random variables, $X_1,...,X_n$ gives the probability of every combination of values: $P(X_1,...,X_n)$ positive negative

	circle	square
red	0.20	0.02
blue	0.02	0.01

	circle	square
red	0.05	0.30
blue	0.20	0.20

• The probability of all possible conjunctions can be calculated by summing the appropriate subset of values from the joint distribution.

$$P(red \land circle) = 0.20 + 0.05 = 0.25$$

 $P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57$

• Therefore, all conditional probabilities can also be calculated.

$$P(positive \mid red \land circle) = \frac{P(positive \land red \land circle)}{P(red \land circle)} = \frac{0.20}{0.25} = 0.80$$

Bayes Classifiers

$$c_{\mathit{MAP}} = \operatorname*{argmax}_{c_j \in C} P(x_1, x_2, \dots, x_n \mid c_j) P(c_j)$$

- $P(c_i)$
 - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, ..., x_n | c_i)$
 - O(|X|ⁿ|C|) parameters
 - Could only be estimated if a very, very large number of training examples was available.
 - Need to make some sort of independence assumptions about the features to make learning tractable.

The Naïve Bayes Classifier

Conditional Independence Assumption: attributes are independent of each other given the class:

$$P(X_1,...,X_5 \mid C) = P(X_1 \mid C) \bullet P(X_2 \mid C) \bullet \cdots \bullet P(X_5 \mid C)$$

- Multi-valued variables: multivariate model
- Binary variables: multivariate Bernoulli model

Learning the Model

- Maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(x_i | c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

Problem with Max Likelihood

$$P(X_1, ..., X_5 \mid C) = P(X_1 \mid C) \bullet P(X_2 \mid C) \bullet \cdots \bullet P(X_5 \mid C)$$

What if we have seen no training cases where patient had no flu and muscle aches?

$$\hat{P}(X_5 = t \mid C = nf) = \frac{N(X_5 = t, C = nf)}{N(C = nf)} = 0$$

Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\ell = \operatorname{arg\,max}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Smoothing to Avoid Overfitting

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k}$$
of values of X_i

Somewhat more subtle version

overall fraction in data where $X_i = x_{i,k}$

$$\hat{P}(x_{i,k} \mid c_j) = \frac{N(X_i = x_{i,k}, C = c_j) + mp_{i,k}}{N(C = c_j) + m}$$

extent of "smoothing"

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} \mid c_{j})$$

Probability Estimation Example

Ex	Size	Color	Shape	Class
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative

Probability	positive	negative
P(<i>Y</i>)		
P(small Y)		
P(medium Y)		
P(large Y)		
P(red <i>Y</i>)		
P(blue Y)		
P(green Y)		
P(square Y)		
P(triangle Y)		
P(circle Y)		

Probability Estimation Example

Ex	Size	Color	Shape	Class
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative

Probability	positive	negative
P(<i>Y</i>)	0.5	0.5
$P(\text{small} \mid Y)$	0.5	0.5
P(medium Y)	0.0	0.0
P(large Y)	0.5	0.5
P(red <i>Y</i>)	1.0	0.5
P(blue Y)	0.0	0.5
P(green Y)	0.0	0.0
P(square Y)	0.0	0.0
P(triangle <i>Y</i>)	0.0	0.5
P(circle Y)	1.0	0.5

Naïve Bayes Example

Probability	positive	negative
P(<i>Y</i>)	0.5	0.5
P(small Y)	0.4	0.4
P(medium Y)	0.1	0.2
P(large Y)	0.5	0.4
P(red <i>Y</i>)	0.9	0.3
P(blue <i>Y</i>)	0.05	0.3
P(green Y)	0.05	0.4
P(square Y)	0.05	0.4
P(triangle Y)	0.05	0.3
P(circle Y)	0.9	0.3

Test Instance: <medium ,red, circle>

$$c_{\mathit{MAP}} = \operatorname{arg\,max}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Naïve Bayes Example

Probability	positive	negative
P(<i>Y</i>)	0.5	0.5
P(medium Y)	0.1	0.2
P(red <i>Y</i>)	0.9	0.3
P(circle Y)	0.9	0.3

Test Instance: <medium ,red, circle>

P(positive | X) = ?

P(negative $\mid X$) =?

$$c_{MAP} = \operatorname{arg\,max}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Naïve Bayes Example

Probability	positive	negative
P(<i>Y</i>)	0.5	0.5
P(medium Y)	0.1	0.2
P(red <i>Y</i>)	0.9	0.3
P(circle Y)	0.9	0.3

$$c_{MAP} = \operatorname{arg\,max}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Test Instance: <medium ,red, circle>

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X) 0.5 * 0.1 * 0.9 * 0.9 = 0.0405 / P(X) = 0.0405 / 0.0495 = 0.8181

 $P(positive \mid X) + P(negative \mid X) = 0.0405 / P(X) + 0.009 / P(X) = 1$

P(X) = (0.0405 + 0.009) = 0.0495

Question

How can we see the multivariate Naïve Bayes model as a generative model?

Naïve Bayes Generative Model

Naïve Bayes for Text Classification

Two models:

- Multivariate Bernoulli Model
- Multinomial Model

Model 1: Multivariate Bernoulli

- One feature X_w for each word in dictionary
- X_w = true (1) in document d if w appears in d
- Naive Bayes assumption:
 - Given the document's topic, appearance of one word in the document tells us nothing about chances that another word appears
- Parameter estimation

$$\hat{P}(X_w = 1 \mid c_i) = ?$$

Model 1: Multivariate Bernoulli

- One feature X_w for each word in dictionary
- X_w = true (1) in document d if w appears in d
- Naive Bayes assumption:
 - Given the document's topic, appearance of one word in the document tells us nothing about chances that another word appears
- Parameter estimation

$$\hat{P}(X_w = 1 \mid c_j) = \text{ fraction of documents of topic } c_j \text{ in which word } w \text{ appears}$$

Naïve Bayes Generative Model

Model 2: Multinomial

Naïve Bayes via a class conditional language model

 Effectively, the probability of each class is done as a class-specific unigram language model

Multinomial Distribution

"The binomial distribution is the probability distribution of the number of "successes" in n independent Bernoulli trials, with the same probability of "success" on each trial. In a multinomial distribution, each trial results in exactly one of some fixed finite number k of possible outcomes, with probabilities p_1 , ..., pk (so that $pi \ge 0$ for i = 1, ..., k and there sum is 1), and there are n independent trials. Then let the random variables Xi indicate the number of times outcome number i was observed over the n trials. X = (X1, ..., Xn) follows a multinomial distribution with parameters n and p, where $p = (p_1, ..., pk)$." (Wikipedia)

$$f(x_1, \dots, x_k; n, p_1, \dots, p_k) = \Pr(X_1 = x_1 \text{ and } \dots \text{ and } X_k = x_k)$$

$$= \begin{cases} \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}, & \text{ when } \sum_{i=1}^k x_i = n \\ 0 & \text{ otherwise,} \end{cases}$$

Multinomial Naïve Bayes

- Class conditional unigram language
 - Attributes are text positions, values are words.
 - One feature X, for each word position in document
 - feature's values are all words in dictionary
 - Value of X_i is the word in position i
 - Naïve Bayes assumption:
 - Given the document's topic, word in one position in the document tells us nothing about words in other positions

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i} P(x_{i} \mid c_{j})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) P(x_{1} = \text{"our"} \mid c_{j}) \cdots P(x_{n} = \text{"text"} \mid c_{j})$$

Too many possibilities!

Multinomial Naive Bayes Classifiers

- Second assumption:
 - Classification is independent of the positions of the words (word appearance does not depend on position)

$$P(X_i = w \mid c) = P(X_i = w \mid c)$$

for all positions i,j, word w, and class c

- Use same parameters for each position
- Result is bag of words model (over tokens)
- Just have one multinomial feature predicting all words

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_i P(w_i \mid c_j)$$

Multinomial Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary $V = \{W_1, W_2, ... W_m\}$ based on the probabilities $P(W_i \mid c_i)$.
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words (p = 1/|V|) and m = |V|

Naïve Bayes Classification

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_i P(x_i \mid c_j)$$

Parameter Estimation

Multivariate Bernoulli model:

Multinomial model:

$$\hat{P}(X_i = w \,|\, c_j) = \frac{\text{fraction of times in which}}{\text{word } w \text{ appears}}$$
 across all documents of topic c_j

- Can create a mega-document for topic j by concatenating all documents in this topic
- Use frequency of w in mega-document

A Variant of the Multinomial Model

■ Represent each document d as an M-dimensional vector of counts $tf_{t1,d},...,tf_{tM,d}$, where $tf_{ti,d}$ is the term frequency of t_i in d.

$$P(d|c) = P(\langle \mathsf{tf}_{t_1,d}, \dots, \mathsf{tf}_{t_M,d} \rangle | c) = \prod_{1 \leq i \leq M} P(X = t_i | c)^{\mathsf{tf}_{t_i,d}}$$

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

$$f(x_1,\ldots,x_k;n,p_1,\ldots,p_k)=\Pr(X_1=x_1 \text{ and }\ldots \text{ and } X_k=x_k)$$

$$= \begin{cases} \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}, & \text{when } \sum_{i=1}^k x_i = n \\ 0 & \text{otherwise,} \end{cases}$$

Classification

- Multinomial vs Multivariate Bernoulli?
- Multinomial model is almost always more effective in text applications!

WebKB Experiment (1998)

- Classify webpages from CS departments into:
 - student, faculty, course, project, etc.
- Train on ~5,000 hand-labeled web pages
 - Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU)

Results:

	Student	Faculty	Person	Project	Course	Departmt
Extracted	180	66	246	99	28	1
Correct	130	28	194	72	25	1
Accuracy:	72%	42%	79%	73%	89%	100%

NB Model Comparison: WebKB

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 1,000,000 unique words ... and more
- May make using a particular classifier feasible
 - Some classifiers can't deal with 100,000 features
- Reduces training time
 - Training time for some methods is quadratic or worse in the number of features
- Can improve generalization (performance)
 - Eliminates noise features
 - Avoids overfitting

Feature selection for NB

- In general feature selection is necessary for multivariate Bernoulli NB.
- Otherwise you suffer from noise, multi-counting
- "Feature selection" really means something different for multinomial NB. It means dictionary truncation
 - The multinomial NB model only has 1 feature
- This "feature selection" normally isn't needed for multinomial NB, but may help a fraction with quantities that are badly estimated

Naïve Bayes - Spam Assassin

- Naïve Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 - A mutant with more mutant offspring...
 - Naive Bayes-like classifier with weird parameter estimation
 - Widely used in spam filters
 - Classic Naive Bayes superior when appropriately used
 - According to David D. Lewis
 - But also many other things: black hole lists, etc.
- Many email topic filters also use NB classifiers

Naïve Bayes on Spam Email

http://www.cs.utexas.edu/users/jp/research/email.paper.pdf

Violation of NB Assumptions

- Conditional independence
- "Positional independence"

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes (the class with maximum posterior probability) are usually fairly accurate.
- However, due to the inadequacy of the conditional independence assumption, the actual posteriorprobability numerical estimates are not.
 - Output probabilities are commonly very close to 0 or 1.
- Correct estimation ⇒ accurate prediction, but correct probability estimation is NOT necessary for accurate prediction (just need right ordering of probabilities)

Naive Bayes is Not So Naive

 Naïve Bayes: First and Second place in KDD-CUP 97 competition, among 16 (then) state of the art algorithms

Goal: Financial services industry direct mail response prediction model: Predict if the recipient of mail will actually respond to the advertisement -750,000 records.

Robust to Irrelevant Features

Irrelevant Features cancel each other without affecting results Instead Decision Trees can heavily suffer from this.

- Very good in domains with many <u>equally important</u> features
 - $\label{eq:decision} \textbf{Decision Trees suffer from } \textit{fragmentation} \text{ in such cases} \textbf{especially if little data}$
- A good dependable baseline for text classification (but not the best)!
- Optimal if the Independence Assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- Very Fast: Learning with one pass of counting over the data; testing linear in the number of attributes, and document collection size
- Low Storage requirements