Advanced Machine Learning

Imbalanced Learning: Sampling Methods Part 2

Learning goals

- Know the idea of sampling methods for coping with imbalanced data
- Understand the state-of-art oversampling technique SMOTE

SAMPLING METHODS: OVERVIEW

- Balance training data distribution to perform better on minority classes.
- Independent of classifier → very flexible and general.
- Three groups:
 - Undersampling Removing majority instances.
 - Oversampling —
 Adding/Creating new minority instances.
 - Oversampling is slower than undersampling but usually works better.
 - Hybrid approaches Combining undersampling and oversampling.

OVERSAMPLING: SMOTE

- SMOTE operates by creating new synthetic instances of minority class.
- Interpolate between neighboring minority instances.
- Instances are created in $\mathcal X$ rather than in $\mathcal X \times \mathcal Y$.
- Algorithm: For each minority class instance:
 - Find its *k* nearest minority neighbors.
 - Randomly select j of these neighbors.
 - Randomly generate new instances along the lines connecting the minority example and its *j* selected neighbors.

SMOTE: GENERATING NEW EXAMPLES

• Let $\mathbf{x}^{(i)}$ be the feature of the minority instance and let $\mathbf{x}^{(j)}$ be its nearest neighbor. The line connecting the two instances is

$$(1-\lambda)\mathbf{x}^{(i)} + \lambda\mathbf{x}^{(j)} = \mathbf{x}^{(i)} + \lambda(\mathbf{x}^{(j)} - \mathbf{x}^{(i)})$$

where $\lambda \in [0, 1]$.

• By sampling a $\lambda \in [0, 1]$, say $\tilde{\lambda}$, we create a new instance

$$\tilde{\mathbf{x}}^{(i)} = \mathbf{x}^{(i)} + \tilde{\lambda}(\mathbf{x}^{(j)} - \mathbf{x}^{(i)})$$

Example: Let $\mathbf{x}^{(i)} = (1,2)^{\top}$ and $\mathbf{x}^{(j)} = (3,1)^{\top}$. Assume $\tilde{\lambda} \approx 0.25$.

SMOTE: VISUALIZATION CONTINUED

After 100 iterations of SMOTE for K = 2 we get:

SMOTE: VISUALIZATION CONTINUED

For 100 iterations of SMOTE with ${\it K}=3$ and randomly selecting neighbors:

SMOTE: EXAMPLE

- Iris data set with $\mathcal{Y} = \{ setosa, versicolor, virginica \}$, and 50 instances for each class.
- Make the data set "imbalanced":
 - relabel one class as positive
 - relabel two other classes as negative

The new minority instances slightly increase the difficulty of separating the two classes with a hyperplane.

SMOTE: DIS-/ADVANTAGES

- Generalize decision region for minority class instead of making it quite specific, such as by random oversampling.
- Well-performed among the oversampling techniques and is the basis for many oversampling methods: Borderline-SMOTE, LN-SMOTE, ... (over 90 extensions!)
- Prone to overgeneralizing as it pays no attention to the majority class.

COMPARISON OF SAMPLING TECHNIQUES

- Compare different sampling techniques on the Optdigits dataset for optical recognition of handwritten digits.
- Use random forest with 100 trees, 5-fold cv and employ F₁-Score.
 The pos./neg. class-ratios are 0.11, 0.68, 0.68 and 0.79:

Learner	F1-Score
Base RF	0.9239
Undersample RF	0.9538
Oversample RF	0.9538
SMOTE RF	0.9576

- Sampling techniques outperform base learner.
- SMOTE leads sampling techniques, although by a small margin.

