UNIVERSIDAD NACIONAL DE TRUJILLO Facultad de Ciencias Físicas y Matemáticas Escuela Profesional de Informática

DISEÑO DE ALGORITMOS PARALELOS SOBRE LA ARQUITECTURA FOG COMPUTING PARA REDUCIR LA LATENCIA EN IoT

Nombre de autor(es):

Panana Rosales Andy Martín Valera Flores Cleiver

Nombre del Asesor:

Peralta Luján José Luis

Trujillo - La Libertad

2018

PROYECTO DE INVESTIGACIÓN PARA TRABAJO DE GRADUACIÓN

ESCUELA PROFESIONAL DE INFORMÁTICA

1. GENERALIDADES

El internet de las cosas(IoT) ha tenido gran acogimiento a lo largo de los años, durante los cuales la cantidad de dispositivos con conexión a internet superó a la de las personas alrededor del mundo. Con el avance de la tecnología, grandes cantidades de objetos físicos han sido conectados a la red generando lo que se denomina como "big data", un término que expresa una gran complejidad con la cual el IoT viene lidiando en los últimos años.

Esta situación se ve reflejada según cifras establecidas por grandes compañías relacionadas a este campo(entre ellas Cisco) las cuales pronostican un mayor crecimiento en cuanto a objetos conectados a internet en un futuro no muy lejano.

El Internet de las Cosas es un campo del cual se viene hablando desde hace varios años atrás y se busca lograr establecer las bases para darle el mejor soporte en tecnologías de comunicación, pero también se mencionan soluciones que antes eran muy eficientes y que actualmente están siendo delegadas, como por ejemplo, las redes 4G, las cuales en los últimos años están perdiendo su poder en cuanto a la conectividad de dispositivos IoT, y están viviendo la gran necesidad de evolucionar para abordar los nuevos problemas que aquejan a esta tendencia; además, si hablamos de soluciones que antes eran muy buenas, no podemos dejar de lado a Cloud Computing, que es por excelencia una de las soluciones más usadas en temas de IoT debido a su alto poder de cómputo, pero como no todo es perfecto en este mundo, frente al campo de IoT con un alto nivel de tráfico, Cloud Computing deja entrever una de sus peores falencias, la centralización, la cual la convierte en una solución no muy sofisticada para este campo.

Con esta problemática que aqueja a todo IoT nace Fog Computing, solución que viene a resolver el problema antes mencionado; Fog Computing plantea una arquitectura más distribuida y local, manejando un paradigma donde hay que aprovechar al máximo los dispositivos finales.

Para comenzar a dilucidar esta interrogante hay que ver primero el panorama actual del Internet de las Cosas el cual ha tenido grandes avances en los últimos años gracias a la constante mejora en el desarrollo en RFID, sensores inteligentes, tecnologías de comunicación y protocolos de Internet (Fuqaha et al., 2015; Borgia, 2014). Además, las mejoras en hardware y software de cómputo, en diversos dispositivos como los de sistemas integrados, de red, de visualización, de control, etc., han respaldado enormemente a IoT para crecer de manera lenta pero a la vez constante, logrando superar grandes expectativas y posicionarse como una gran tecnología emergente (Vyas et al., 2017).

Con el cálculo, la conectividad y el almacenamiento de datos cada vez más avanzados y universales, ha habido una explosión de soluciones de aplicación basadas en IoT en dominios diversificados desde la atención médica hasta la seguridad pública, desde la programación de

la línea de ensamblaje hasta la fabricación y otros dominios tecnológicos como el industrial y ciudades inteligentes (Borgia, 2014; Vyas et al., 2017).

IoT es una tecnología que está constantemente evolucionando gracias a la convergencia de otras como: comunicación inalámbrica, MEMS (sistemas microelectromecánicos), red inalámbrica de sensores, comunicación móvil, etc. (Vyas et al., 2017). Y en particular sobre la comunicación inalámbrica comenzamos a ver un nuevo horizonte para IoT, donde dejamos de tener problemas que no podían ser solucionados al emplear como comunicación inalámbrica a las redes 4G e iniciamos a ver con buenos ojos a la nueva y reciente mejora de dicha red, estamos hablamos de las redes 5G, las cuales se espera que aporten a la expansión del Internet de las Cosas, ayudando a impulsar el funcionamiento de las redes celulares, la seguridad de la IoT los desafíos de la red, y llevar el futuro de Internet al límite (Li et al., 2018).

Pero como toda tendencia, siempre se presentan nuevos retos que impiden un correcto desenvolvimiento. Algunos problemas que obstaculizan este paradigma son mencionados en (Borgia, 2014; Ibrahim Abaker et al., 2015; Mahmud et al., 2018), estos incluyen: un incremento masivo de los datos, el aumento en la latencia y la heterogeneidad de los dispositivos.

Cloud computing (Ibrahim Abaker et al., 2015) es considerada actualmente como "la piedra base" para el Internet de las cosas, en la cual muchas aplicaciones científicas han sido desarrolladas; pero esta posee una arquitectura centralizada, por ello en (Mahmud et al., 2018; Patel et al., 2018; Yi et al., 2015) se menciona a fog computing, que sería una arquitectura ideal para IoT. Particularmente (Mahmud et al., 2018) habla de una interoperabilidad entre cloud y fog, y utilizando el simulador iFogSim se demuestran mejoras en cuanto al costo, latencia y el uso de energía, cubriendo las soluciones a ciertos problemas que presenta actualmente IoT y mejorando lo que se tiene actualmente.

Surge también la idea de Mist Computing (Uehara, 2017; Yogi et al., 2017) que permitiría construir sistemas de IoT a gran escala. Mist computing propone ser un centro de datos para cloudlets en Field Area Networks y alojarse entre pequeñas nubes (cloudlets) y la niebla (fog).

Nos encontramos actualmente en un terreno en donde se generan un promedio de 2,5 quintillones de bytes por día, de los cuales un gran porcentaje es gracias a las cosas que están conectadas a internet, donde dichos objetos son usados para capturar datos y producirlos para un futuro procesamiento. La cantidad de ellos que se necesita procesar está llegando a un nivel donde las técnicas actuales que son usadas para lidiar con estos problemas tienen demasiadas complicaciones, por lo cual IoT necesita buscar otros métodos de procesamiento de datos más eficientes y escalables; frente a esta problemática es por lo que se habla de una de las áreas que han surgido en las últimas décadas, la informática paralela y distribuida (Murazzo et al., 2017), donde sus técnicas se pueden aprovechar oportunamente para resolver problemas a gran escala y procesar los datos provenientes del paradigma de IoT (Piccialli et al., 2018).

En vista de lo mencionado anteriormente sale a relucir la siguiente interrogante ¿De qué manera se podría reducir la elevada latencia generada por las constantes peticiones desde los dispositivos IoT al servidor?

Ahora teniendo un conocimiento amplio de la actualidad de IoT y los problemas que tanto lo aquejan, planteamos una solución utilizando Fog Computing como arquitectura distribuida

para poder descentralizar las cargas que presentaba IoT con Cloud Computing e implementando algoritmos paralelos en cada punto donde se procesa la información, esto permitiría reducir la latencia de las peticiones al servidor.

1.1. Título

"Diseño de algoritmos paralelos sobre la arquitectura Fog Computing para reducir la latencia en IoT"

1.2. Autor(es)

Indicar apellidos y nombres de los participantes:

Código(s)	Nombres y Apellidos	Cargo en el proyecto	Email
	Andy Martín Panana Rosales Cleiver Valera Flores	Estudiante invest. Estudiante invest.	apanana@unitru.edu.pe cvalera@unitru.edu.pe

1.3. Tipo de investigación

1.3.1. De acuerdo al fin que se persigue:

Aplicada

1.3.2. De acuerdo al diseño de investigación:

Explicativa

1.4. Área y línea de Investigación

1.4.1. Área de investigación :

Computación paralela y distribuida

1.4.2. Línea de Investigación:

Sistemas distribuidos

1.4.3. Tema de investigación :

Computación paralela y distribuida

1.5. Localidad e Institución donde se desarrollará el proyecto

1.5.1. Localidad (Dirección, Distrito, Provincia, Departamento):

Av. Juan Pablo II, Trujillo, Trujillo, La Libertad

1.5.2. Institución (Universidad/Facultad/Departamento):

Universidad Nacional de Trujillo

1.6. Duración del trabajo de graduación (Plan TG y desarrollo del TG)

Del 20/08/2018 al 07/12/2018 (4 meses)

Referencias

- Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. *Computer Communications*, 54:1–31.
- Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols and applications. *IEEE*, 17(4):2347–2376.
- Ibrahim Abaker, T. H., Ibrar, Y., Nor Badrul, A., Salimah, M., Abdullah, G., and Samee Ullah, K. (2015). The rise of "big data" on cloud computing: Review and open research issues. *Information Systems*, 47:98–115.
- Li, S., Zhao, S., and Xu, L. D. (2018). 5G Internet of Things: A survey. *Industrial Information Integration*.
- Mahmud, R., Luiz Koch, F., and Buyya, R. (2018). Cloud-Fog Interoperability in IoT-enabled Healthcare Solutions. *ACM New York*.
- Murazzo, M. A., Piccoli, M. F., Rodríguez, N. R., Medel, D., Mercado, J., Sánchez, F., and Tello, M. (2017). Paralelismo Híbrido aplicado a soluciones de problemas de datos masivos. *Buenos Aires: XIX Workshop de Investigadores en Ciencias de la Computación*.
- Patel, H. M., Chaudhari, R. R., Prajapati, K. R., and Patel, A. A. (2018). The Interdependent Part of Cloud Computing: Dew Computing. *Intelligent Communication and Computational Technologies*.
- Piccialli, F., Cuomo, S., and Jeon, G. (2018). Parallel Approaches for Data Mining in the Internet of Things Realm. *International Journal of Parallel Programming*.
- Uehara, M. (2017). Mist Computing: Linking Cloudlet to Fogs. *Computational Science/Intelligence and Applied Informatics*, 726:201–213.
- Vyas, D. A., Bhatt, D., and Jha, D. (2017). IoT: Trends, Challenges and Future Scope. *Computer Science & Electronics Journals*, 7:186–197.
- Yi, S., Li, Q., and Li, C. (2015). A Survey of Fog Computing: Concepts, applications and issues. *Williamsburg: College of William and Mary*.
- Yogi, M. K., Chandrasekhar, K., and Kumar, G. V. (2017). Mist Computing: Principles, trends and future direction. *SSRG International Journal of Computer Science and Engineering*, 4(7):19–21.