Report No.: UL12620150318FCC032-2

RF Test Report

Test in accordance with Federal Communications Commission(FCC) CFR TITLE 47, Parts 2, 22, 24

Product Name: GPS Locator

Model No.: GV55

FCC ID: YQD--GV55

Applicant: Queclink Wireless Solutions Co., Ltd..

Address: Room 501, Building 9, No. 99, Tianzhou Road, Shanghai, China

Date of Receipt: 30-03-2015

Test Date: 19-03-2015~27-03-2015

Issued Date: 30-03-2015

Report No.: UL12620150318FCC032-2

Report Version: V1.0

Notes:

The test results only relate to these samples which have been tested. Partly using this report will not be admitted unless been allowed by Unilab. Unilab is only responsible for the complete report with the reported stamp of Unilab.

Test Report Certification

Issued Date: 30-03-2015

Report No.: UL12620150318FCC032-2

Product Name :	GPS Locato
i ioductivanic.	OI O LOCAL

Podel No: GV55

Applicant: Queclink Wireless Solutions Co.,Ltd.

Address: Room 501, Building 9,No.99 Tianzhou Road,Shanghai,China

Manufacturer: Queclink Wireless Solutions Co.,Ltd.

Address: Room 501, Building 9, No. 99 Tianzhou Road, Shanghai, China

EUT Voltage: MIN: 8.0V, NOR:12V/24V, MAX: 32V

Brand Name: Queclink
FCC ID: YQD--GV55

Applicable Standard: ANSI/TIA-603-D-2010; FCC CFR Title 47 Part 2;

FCC CFR Title 47 Part22 Subpart H; FCC CFR Title 47 Part24 Subpart E;

Test Result: Complied

Performed Location: Unilab (Shanghai) Co., Ltd.

FCC 2.948 register number is 714465

No. 1350, Lianxi Rd. Pudong New District, Shanghai, China

TEL: +86-21-50275125 FAX: +86-21-50277862

Documented By:

(Technical Engineer: Jeffrey Wang)

Reviewed By:

(Senior Engineer: Forest Cao)

Approved By:

(Supervisor: Eva Wang)

TABLE OF CONTENTS

1.	General Information	5
	1.1. EUT Description	5
	1.2. Mode of Operation	5
	1.3. Tested System Details	6
	1.4. Configuration of Tested System	7
	1.5. EUT Exercise Software	7
2.	Technical Test	7
	2.1. Test Environment	7
3.	Peak Output Power	8
	3.1. Test Equipment	8
	3.2. Test Setup	8
	3.3. Limit	g
	3.4. Test Procedure	10
	3.5. Uncertainty	10
	3.6. Test Result	11
4.	Occupied Bandwidth	14
	4.1. Test Equipment	14
	4.2. Test Setup	14
	4.3. Limit	14
	4.4. Test Procedure	14
	4.5. Uncertainty	14
	4.6. Test Result	
5.8	Spurious Emission At Antenna Terminals (+/- 1MHz)	19
	5.1. Test Equipment	19
	5.2. Test Setup	19
	5.3. Limit	19
	5.4. Test Procedure	19
	5.5. Uncertainty	19
	5.6. Test Result	20
6.8	Spurious Emission	22
	6.1. Test Equipment	22
	6.2. Test Setup	22
	6.3. Limit	23
	6.4. Test Procedure	23
	6.5. Uncertainty	24
	6.6. Test Result	25
7.	Frequency Stability Under Temperature & Voltage Variations	
	7.1. Test Equipment	30
	7.2. Test Setup	30
	7.3. Limit	30
	7.4. Test Procedure	31
	7.5. Uncertainty	31
	7.6. Test Result	32
8.	Peak to Average	37
	8.1. Test Equipment	37
	8.2. Test Setup	37
	8.3. Limit	37
	8.4. Test Procedure	37
	8.5. Uncertainty	38
	8.6. Test Result	
9.4	Attachment	39

Unil@b Page 4 of 39

SUMMARY OF TEST RESULT

D				
Report Section	SPECIFICATION	Description	Limit	Result
3	part2.1046	Conducted Output Power	N/A	PASS
3	part 22.913(a)(2)	Effective Radiated Power	<7 Watts	PASS
3	part 24.232(c)	Equivalent Isotropic Radiated Power	<2 Watts	PASS
4	part 2.1049 part 22.917(a) part 24.238(a)	Occupied Bandwidth	N/A	PASS
5	part 2.1051 part 22.917(a) part 24.238(a)	Band Edge Measurement	<43+10lg(P[Watts])	PASS
6	part 2.1051 part 22.917(a) part 24.238(a)	Conducted Spurious Emission	<43+10lg(P[Watts])	PASS
6	part 2.1053 part 22.917(a) part 24.238(a)	Field Strength of Supurious Radiation	<43+10lg(P[Watts])	PASS
7	part 2.1055 part 22.355 part 24.235	Frequency Stability for Temperature & Voltage	<2.5 ppm	PASS
8	part 24.232(d)	Peak-to-Average	<13dB	PASS

1.General Information

1.1. EUT Description

Product Name:	GPS Locator
Model Name:	GV55
Hardware Version:	V1.01
Software Version:	A01V06
RF Exposure Environment:	Uncontrolled
GSM/ GPRS	
Support Band:	GSM850/PCS1900
GPRS Class:	12
Tx Frequency Range:	GSM 850: 824.2MHz to 848.8MHz PCS 1900: 1850.2MHz to 1909.8MHz
Rx Frequency Range:	GSM 850: 869.2MHz to 893.8MHz PCS 1900: 1930.2MHz to 1989.8MHz
Type of modulation:	GSM/GPRS for GMSK
Antenna Type:	Internal
Antenna Peak Gain:	GSM 850: 0dBi PCS 1900: 0.5dBi
Component	
Internal Battery	250mAh 3.7V
External power supply	DC 8-32V, Normal Voltage:12/24V

1.2. Mode of Operation

Unilab has verified the construction and function in typical operation. EUT is inlink mode with base station emulator at maximum power level. All the test modes were carried out with the EUT in normal operation, which was shown in this test report is the worst test mode and defined as:

Test Mode							
Band	Radiated TCs	Conducted TCs					
GSM 850	GSM Link GPRS 8 Link	GSM Link GPRS 8 Link					
GSM1900	GSM Link GPRS 8 Link	GSM Link GPRS 8 Link					

Note:

- 1. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 2. The maximum power levels are GSM and GPRS multi-slot class 8 for GMSK link when power supply was 24V, only these modes were used for all tests.
- 3. For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst (Z axis) result on this report.

The conducted power table is as follows:

External power supply:12V

Conducted Power (Unit: dBm)							
Band		GSM 850		GSM 1900			
Channel	128	128 189 251		512	661	810	
Frequency	824.2	836.4	848.8	1850.2	1880	1909.8	
GSM (GMSK, 1 Tx slot) CS1	32.15	32.56	32.26	29.16	29.38	28.90	
GPRS (GMSK, 1 Tx slot) CS1	32.14	32.55	32.25	29.12	29.38	28.86	
GPRS (GMSK, 2 Tx slot) CS1	31.34	31.79	31.44	28.30	28.49	28.05	
GPRS (GMSK, 3 Tx slot) CS1	29.46	30.00	29.59	26.45	26.68	26.21	
GPRS (GMSK, 4 Tx slot) CS1	28.47	29.05	28.61	25.32	25.57	25.06	

External power supply:24V

External power suppry.24v							
Conducted Power (Unit: dBm)							
Band		GSM 850		GSM 1900			
Channel	128	128 189 251		512	661	810	
Frequency	824.2	836.4	848.8	1850.2	1880	1909.8	
GSM (GMSK, 1 Tx slot) CS1	32.15	32.57	32.26	29.18	29.39	28.91	
GPRS (GMSK, 1 Tx slot) CS1	32.15	32.56	32.25	29.15	29.36	28.88	
GPRS (GMSK, 2 Tx slot) CS1	31.35	31.85	31.46	28.28	28.64	28.11	
GPRS (GMSK, 3 Tx slot) CS1	29.46	30.00	29.59	26.43	26.71	26.25	
GPRS (GMSK, 4 Tx slot) CS1	28.47	29.06	28.61	25.28	25.59	25.11	

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	oduct	Manufacturer	Model	Serial No.	Power Cord
1	Agilent8960	Agilent	E5515C	GB46581718	N/A

1.4. Configuration of Tested System

Connection Diagram

1.5. EUT Exercise Software

1	Setup the EUT and simulators as shown on above.
2	Turn on the power of all equipment.
3	EUT Communicate with E5515C, then select channel to test.

2.Technical Test

2.1. Test Environment

Items	Required (IEC 68-1)	Actual
Temperature (℃)	15-35	26
Humidity (%RH)	25-75	56
Barometric pressure (mbar)	860-1060	950-1000

Page 8 of 39

3. Peak Output Power

3.1. Test Equipment

Instrument	Manufacturer	Model	Serial No.	Cali. Due Date
Spectrum Analyzer	Agilent	N9038A	MY51210142	11.11.2015
Radio Communication Tester	Agilent	E5515C	GB46581718	11.11.2015
Signal Generator	Agilent	N5183A	MY50140938	02.01.2016
Preamplifier	CEM	EM30180	3008A0245	27.02.2016
DC Power Supply	Agilent	6612C	MY43002989	02.03.2016
Bilog Antenna	Schwarzbeck	VULB9160	9160-3316	18.07.2015
VHF-UHF-Biconical Antenna	Schwarzbeck	VUBA9117	9117-263	18.07.2015
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-942	18.07.2015
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-943	18.07.2015

The measure equipment had been calibrated once a year.

3.2. Test Setup

Conducted Power Measurement:

Radiated Spurious Measurement: below 1GHz

Radiated Spurious Measurement: above 1GHz

3.3. Limit

For FCC Part 22.913(a)(2):

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

For FCC Part 24.232(c):

The EIRP of mobile transmitters and auxiliary test transmitters must not exceed 2 Watts.

3.4. Test Procedure

Conducted Power Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b.Connect a low loss RF cable from the antenna port to a spectrum analyzer and E5515C by a Directional Couple.
- c. EUT Communicate with E5515C, then selects a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- g. Test site anechoic chamber refer to ANSI C63.4: 2009.

3.5. Uncertainty

The measurement uncertainty is defined as for Conducted Power Measurement \pm 1.1 dB, for Radiated Power Measurement \pm 3.1 dB

3.6. Test Result

The following table shows the conducted power measured:

Table 1

GSM850							
Modes	Channel	Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)			
	128(Low)	824.2	32.15	1.64			
GSM850 (GSM)	189(Mid)	836.4	32.57	1.81			
	251(High)	848.8	32.26	1.68			
	128(Low)	824.2	32.15	1.64			
GSM850 (GPRS 1 Tx slot)	189(Mid)	836.4	32.56	1.80			
	251(High)	848.8	32.25	1.68			

Table 2

GSM1900									
Modes	Channel	Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)					
	512(Low)	1850.2	29.18	0.83					
GSM1900 (GSM)	661(Mid)	1880.0	29.39	0.87					
	810(High)	1909.8	28.91	0.78					
	512(Low)	1850.2	29.15	0.82					
GSM1900 (GPRS 1 Tx slot)	661(Mid)	1880.0	29.36	0.86					
	810(High)	1909.8	28.88	0.77					

The following table shows the Radiated power measured:

GSM850 (GSM Link)

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBd)	ERP (dBm)	ERP (W)				
Lo	ow Chann	el 128 (824	1.20MHz)							
824.2	Н	37.43	3.83	-2.99	30.61	1.15				
824.2	V	37.99	3.83	-2.99	31.17	1.31				
Mic	ddle Chan	nel 189 (83	36.40MHz)						
836.4	Н	37.76	3.96	-3.04	30.76	1.19				
836.4	V	38.64	3.96	-3.04	31.64	1.46				
Hi	High Channel 251 (848.80MHz)									
848.8	Н	37.32	3.97	-3.10	30.25	1.06				
848.8	V	38.50	3.97	-3.10	31.43	1.39				

GSM850 (GPRS 8 Link)

NIVIOSO (GFINS O LITIK)						
Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBd)	ERP (dBm)	ERP (W)
Lo	ow Chann	el 128 (824	I.20MHz)			
824.2	Н	36.96	3.83	-2.99	30.14	1.03
824.2	V	37.96	3.83	-2.99	31.14	1.30
Mic	ddle Chan	nel 189 (83	36.40MHz)		
836.4	Н	37.35	3.96	-3.04	30.35	1.08
836.4	V	38.30	3.96	-3.04	31.30	1.35
Hi	gh Chanr	nel 251 (848	3.80MHz)			
848.8	Н	37.07	3.97	-3.10	30.00	1.00
848.8	V	39.04	3.97	-3.10	31.97	1.57

GSM1900 (GSM Link)

SIN 1900 (GSIN LITIK)										
Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBi)	EIRP (dBm)	EIRP (W)				
Low Cl	nannel 5	12(1850.20	OMHz)							
1850.2	Н	23.63	6.26	10.40	27.77	0.60				
1850.2	٧	24.25	6.26	10.40	28.39	0.69				
Middle C	Channel	661 (1880.	00MHz)							
1880.0	Η	23.89	6.19	10.43	28.13	0.65				
1880.0	٧	24.67	6.19	10.43	28.81	0.76				
High Ch	High Channel 810 (1909.80MHz)									
1909.8	Η	23.03	6.15	10.44	27.32	0.54				
1909.8	V	23.96	6.15	10.44	28.20	0.66				

GSM1900 (GPRS 8 Link)

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBi)	EIRP (dBm)	EIRP (W)				
Low C	hannel 5	12(1850.20	OMHz)							
1850.2	Н	23.02	6.26	10.40	27.16	0.52				
1850.2	V	23.71	6.26	10.40	27.85	0.61				
Middle 0	Channel	661 (1880.	00MHz)							
1880.0	Н	23.16	6.19	10.43	27.40	0.55				
1880.0	V	24.62	6.19	10.43	28.76	0.75				
High C	High Channel 810 (1909.80MHz)									
1909.8	Н	22.89	6.15	10.44	27.18	0.52				
1909.8	V	24.51	6.15	10.44	28.80	0.76				

4. Occupied Bandwidth

4.1. Test Equipment

Occupied Bandwidth

Instrument	Manufacturer	Model	Serial No	Cal. Due Date
Radio Communication Tester	Agilent	E5515C	GB46581718	11.11.2015
Spectrum Analyzer	Agilent	N9038A	MY51210142	11.11.2015
DC Power Supply	Agilent	6612C	MY43002989	02.03.2016

The measure equipment had been calibrated once a year.

4.2. Test Setup

4.3. Limit

N/A

4.4. Test Procedure

Using Occupied Bandwidth measurement function of spectrum analyzer, and setting as follows: For GSM850/1900 test --- RBW = 3 kHz and VBW = 10 kHz
For WCDMA Band V/II test --- RBW = 100 kHz and VBW = 300 kHz

4.5. Uncertainty

The measurement uncertainty is defined as \pm 10 Hz

Report No.: UL12620150318FCC032-2

4.6. Test Result

GSM850 (GSM Link)

Channel No.	Frequency (MHz)	-26dB Occupied Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
128	824.20	303.0	244.5
189	836.40	310.7	247.5
251	848.80	308.8	246.4

Report No.: UL12620150318FCC032-2

Report No.: UL12620150318FCC032-2

GSM 1900 (GSM Link)

20111 1000 (3	• =		
Channel No.	Frequency (MHz)	-26dB Occupied Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
512	1850.20	324.4	246.9
661	1880.00	308.8	247.6
810	1909.80	314.2	246.3

5.Spurious Emission At Antenna Terminals (+/- 1MHz)

5.1. Test Equipment

Instrument	Manufacturer	Model	Serial No	Cal. Date
Radio Communication Tester	Agilent	E5515C	GB46581718	11.11.2015
Spectrum Analyzer	Agilent	N9038A	MY51210142	11.11.2015
DC Power Supply	Agilent	6612C	MY43002989	02.03.2016

The measure equipment had been calibrated once a year.

5.2. Test Setup

5.3. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

5.4. Test Procedure

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

5.5. Uncertainty

The measurement uncertainty is defined as \pm 1.2 dB.

Report No.: UL12620150318FCC032-2

5.6. Test Result

GSM850 (GSM Link), Channel 251

FUNCTION VALUE

-18.675 dBm

1.849 978 GHz

FUNCTION

FUNCTION WIDTH

GSM 1900 (GSM Link), Channel 810 1.910 018 GHz -20.143 dBm 10 dB/div Log Ref 28.00 dBm المايان الإسماد والمايان المايان الماي Center 1.9100000 GHz Span 1.000 MHz **#VBW 3.0 kHz** #Res BW 3.0 kHz Sweep 134.0 ms (1001 pts) FUNCTION FUNCTION VALUE MKR MODE TRC SCL FUNCTION WIDTH -20.143 dBm N 1 f 1.910 018 GHz

6.Spurious Emission

6.1. Test Equipment

Instrument	Manufacturer	Model	Serial No.	Cali. Due Date	
Spectrum Analyzer	Agilent	N9038A	MY51210142	11.11.2015	
Radio Communication Tester	Agilent	E5515C	GB46581718	11.11.2015	
Signal Generator	Agilent	N5183A	MY50140938	02.01.2016	
Preamplifier	CEM	EM30180	3008A0245	27.02.2016	
Loop Antenna	Schwarzbeck	FMZB1519	1519-020	25.03.2016	
Bilog Antenna	Schwarzbeck	VULB9160	9160-3316	18.07.2015	
VHF-UHF-Biconical Antenna	Schwarzbeck	VUBA9117	9117-263	18.07.2015	
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-942	18.07.2015	
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-943	18.07.2015	

The measure equipment had been calibrated once a year.

6.2. Test Setup

Conducted Spurious Emission Measurement:

Radiated Spurious Measurement: below 30MHz

Radiated Spurious Measurement: 30MHz to 1GHz

Radiated Spurious Measurement: above 1GHz

6.3. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

6.4. Test Procedure

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and E5515C by a Directional Couple.
- c. EUT Communicate with E5515C, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set at 1 MHz, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

Report No.: UL12620150318FCC032-2

Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- d. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- e. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- f. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
 - m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI/TIA-603-C-2004.

6.5. Uncertainty

The measurement uncertainty is defined as 3.2 dB for Radiated Power Measurement.

6.6. Test Result

Conducted Spurious Measurement:

Note: The signal at point 1 is carrier

GSM 1900 (GSM Link), Channel 661

Note: The signal at point 1 is carrier

Radiated Spurious Measurement:

GSM850 (GSM Link), 9KHz to 30MHz

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line, and that was not reported per 2.1057 (c).

GSM850 (GSM Link), 30MHz to 1GHz

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)
Middle Channel 189	(836.401	ЛHz)					
563	Н	-44.86	3.12	-2.57	-50.55	-13.00	-37.55
563	V	-42.48	3.12	-2.57	-48.17	-13.00	-35.17

GSM850 (GSM Link), Above 1GHz

1000 (00111 =11111/), 7 to							
Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)
Middle Channel 189	(836.401	ЛHz)					
1672.8	Н	-43.23	6.13	-2.59	-52.95	-13.00	-39.95
1672.8	٧	-43.88	6.13	-2.59	-52.60	-13.00	-39.60
2509.2	Н	-53.38	7.32	-2.86	-63.56	-13.00	-50.56
2509.2	٧	-51.59	7.32	-2.86	-61.77	-13.00	-48.77

GSM1900 (GSM Link), 9KHz to 30MHz

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line, and that was not reported per 2.1057 (c).

GSM 1900 (GSM Link), 30MHz to 1GHz

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)
Middle Channel 661 (1880.00N	lHz)					
572	Н	-44.44	3.16	-2.63	-50.23	-13.00	-37.23
572	V	-42.87	3.16	-2.63	-48.66	-13.00	-35.66

GSM 1900 (GSM Link), Above 1GHz

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)
Middle Channel 661 (Middle Channel 661 (1880.00MHz)						
3760	Н	-47.39	8.85	-3.28	-60.52	-13.00	-47.52
3760	V	-46.11	8.85	-3.28	-58.24	-13.00	-45.24

7. Frequency Stability Under Temperature & Voltage Variations

7.1. Test Equipment

Instrument	Manufacturer	Model	Serial No.	Cali. Due Date
Spectrum Analyzer	Agilent	N9038A	MY51210142	11.11.2015
Radio Communication Tester	Agilent	E5515C	GB46581718	11.11.2015
DC Power Supply	Agilent	6612C	MY43002989	02.03.2016
Temperature Chamber	WEISS	DU/20/40	58226017340050	02.01.2016

The measure equipment had been calibrated once a year.

7.2. Test Setup

7.3. Limit

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Г	·	
	Limit	< \pm 2.5 ppm

Report No.: UL12620150318FCC032-2

7.4. Test Procedure

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.Reduce the input voltage to specify extreme voltage variation ($\pm 15\%$) and endpoint, record the maximum frequency change.

7.5. Uncertainty

The measurement uncertainty is defined as \pm 10 Hz.

7.6. Test Result

GSM850 (GSM Link) Under 3.7V DC

Frequency Stability under Temperature

Temperature Interval (°C)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	836.40	-33.12	±2091
-20	836.40	-44.70	±2091
-10	836.40	-25.39	±2091
0	836.40	-21.35	±2091
10	836.40	-16.46	±2091
20	836.40	-30.27	±2091
30	836.40	-31.25	±2091
40	836.40	-26.59	±2091
50	836.40	-25.64	±2091

Under 12V DC

Frequency Stability under Temperature

Temperature Interval (°ℂ)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	836.40	-38.22	±2091
-20	836.40	-28.00	±2091
-10	836.40	-25.44	±2091
0	836.40	-20.32	±2091
10	836.40	-36.47	±2091
20	836.40	-20.31	±2091
30	836.40	-21.50	±2091
40	836.40	-20.61	±2091
50	836.40	-27.88	±2091

Report No.: UL12620150318FCC032-2

Under 24V DC

Frequency Stability under Temperature

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	836.40	-18.02	±2091
-20	836.40	-27.00	±2091
-10	836.40	-15.44	±2091
0	836.40	-20.00	±2091
10	836.40	-44.10	±2091
20	836.40	-30.31	±2091
30	836.40	-27.10	±2091
40	836.40	-22.66	±2091
50	836.40	-17.88	±2091

GSM850 (GPRS 8 Link) Under 3.7V DC

Frequency Stability under Temperature

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	836.40	-13.12	±2091
-20	836.40	-17.56	±2091
-10	836.40	-22.39	±2091
0	836.40	-21.39	±2091
10	836.40	-18.46	±2091
20	836.40	-31.27	±2091
30	836.40	-21.25	±2091
40	836.40	-37.58	±2091
50	836.40	-35.64	±2091

Under 12V DC

Frequency Stability under Temperature

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	836.40	-28.22	±2091
-20	836.40	-22.00	±2091
-10	836.40	-25.48	±2091
0	836.40	-30.12	±2091
10	836.40	-16.47	±2091
20	836.40	-10.31	±2091
30	836.40	-21.53	±2091
40	836.40	-21.61	±2091
50	836.40	-26.88	±2091

Report No.: UL12620150318FCC032-2

Under 24V DC

Frequency Stability under Temperature

		•	
Temperature Interval (°ℂ)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	836.40	-18.20	±2091
-20	836.40	-28.01	±2091
-10	836.40	-25.44	±2091
0	836.40	-40.32	±2091
10	836.40	-36.47	±2091
20	836.40	-20.31	±2091
30	836.40	-21.50	±2091
40	836.40	-20.61	±2091
50	836.40	-17.88	±2091

GSM 1900 (GSM Link):

Under3.7V DC

Frequency Stability under Temperature

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	1880.00	-27.72	±4700
-20	1880.00	-38.21	±4700
-10	1880.00	-36.57	±4700
0	1880.00	-40.36	±4700
10	1880.00	-34.79	±4700
20	1880.00	-50.80	±4700
30	1880.00	-41.56	±4700
40	1880.00	-43.59	±4700
50	1880.00	-25.69	±4700

Under12V DC

Frequency Stability under Temperature

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	1880.00	-38.21	±4700
-20	1880.00	-29.55	±4700
-10	1880.00	-41.57	±4700
0	1880.00	-39.36	±4700
10	1880.00	-34.00	±4700
20	1880.00	-40.83	±4700
30	1880.00	-31.56	±4700
40	1880.00	-33.58	±4700
50	1880.00	-35.62	±4700

Report No.: UL12620150318FCC032-2

Under24V DC

Frequency Stability under Temperature

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	1880.00	-38.21	±4700
-20	1880.00	-28.33	±4700
-10	1880.00	-40.57	±4700
0	1880.00	-29.30	±4700
10	1880.00	-24.60	±4700
20	1880.00	-45.63	±4700
30	1880.00	-40.56	±4700
40	1880.00	-27.58	±4700
50	1880.00	-45.62	±4700

GSM 1900 (GPRS 8Link):

Under3.7V DC

Frequency Stability under Temperature

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	1880.00	-22.30	±4700
-20	1880.00	-38.21	±4700
-10	1880.00	-36.57	±4700
0	1880.00	-39.36	±4700
10	1880.00	-24.79	±4700
20	1880.00	-40.81	±4700
30	1880.00	-31.56	±4700
40	1880.00	-33.59	±4700
50	1880.00	-25.62	±4700

Under12V DC

Frequency Stability under Voltage

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	1880.00	-23.11	±4700
-20	1880.00	-18.00	±4700
-10	1880.00	-46.51	±4700
0	1880.00	-29.44	±4700
10	1880.00	-45.79	±4700
20	1880.00	-30.71	±4700
30	1880.00	-42.76	±4700
40	1880.00	-37.59	±4700
50	1880.00	-35.62	±4700

Under24V DC

Frequency Stability under Voltage

Temperature Interval (℃)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	1880.00	-23.14	±4700
-20	1880.00	-43.21	±4700
-10	1880.00	-36.43	±4700
0	1880.00	-29.66	±4700
10	1880.00	-29.69	±4700
20	1880.00	-30.40	±4700
30	1880.00	-41.56	±4700
40	1880.00	-43.59	±4700
50	1880.00	-45.62	±4700

8. Peak to Average

8.1. Test Equipment

Instrument	Manufacturer	Model	Serial No.	Cali. Due Date
Spectrum Analyzer	Agilent	N9038A	MY51210142	11.11.2015
Radio Communication Tester	Agilent	E5515C	GB46581718	11.11.2015
Signal Generator	Agilent	N5183A	MY50140938	02.01.2016
Preamplifier	CEM	EM30180	3008A0245	27.02.2016
DC Power Supply	Agilent	6612C	MY43002989	02.03.2016

The measure equipment had been calibrated once a year.

8.2. Test Setup

8.3. Limit

In addition, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

8.4. Test Procedure

A peak to average ratio measurement is performed at the conducted port of the EUT. For WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function(CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given a bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth. The traces are generated with the spectrum analyzer set to zero span mode.

Report No.: UL12620150318FCC032-2

Unilab Page 38 of 39

Procedure:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and E5515C by a Directional Couple.
- c. EUT Communicate with E5515C, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set at 1 MHz.

8.5. Uncertainty

The measurement uncertainty is defined as \pm 1.2 dB.

8.6. Test Result

Band	Channel No.	Limit (dB)	Result (dB)
PCS 1900	661	<13	0.053
GPRS 1900	661	<13	0.049

Unil@b Page 39 of 39

Report No.: UL12620150318FCC032-2

9.Attachment

PHOTOGRAPHS OF TEST SETUP

Please refer to the file named "YQD-GV55_ Part22&24 Test Setup Photos".

PHOTOGRAPHS OF EUT

Please refer to the two files named "YQD-GV55_EUT External Photos" and "YQD-GV55_EUT Internal Photos".

----End of the report----