La résistance des ponts aux vibrations

Effondrement du pont Tacoma en 1940

Objectif: Etude du comportement statique et dynamique d'un pont pour déterminer le seuil de l'effondrement

TIPE 2017/2018 Milieux : interactions, interfaces, homogénéité, ruptures

Progression du TIPE

Septembre
-Novembre: choix
du sujet et prise de
contact avec des
laboratoires

Décembre-Janvier : Etude du sujet

Février : Programmation avec python

Mars-Avril : Simulations

Plan:

Etude du comportement statique d'un pont

Etude du comportement dynamique d'un pont

Modélisations

Simulations numériques

Résultats

conclusions

1-Etude statique d'un pont :

En une approche statique:

On peut assimiler un pont à un ensembles de poutres encastrées

Calcul des fermes

Modèle simplifié

Soient les Ti : l'action de la poutre i

sur le nœuds N

Si Ti ≥o : poutre en **compression**

Si Ti ≤o : poutre en **traction**

I -Première étape :

Modélisation d'un pont par un logiciel de simulation :

X	Y
0	0
6.66	6.66
13.33	0
20	6.66
26.66	0
33.33	6.66
40	0
19.5	0
20.5	0

Position des nœuds

II- Deuxième Etape:

Effet de la force du séisme sur le pont :

III- Troisième étape : Détermination de l'effort maximal

Quel est le seuil de la rupture?

Si l'effort maximal < Force du séisme Si l'effort maximal > Force du séisme

Rupture Pas de rupture

Effet du vent sur la structure FFS

Le problème : détermination des Ti en fonction de F en guise de déduire s'il y'a rupture ou pas

Les efforts intérieurs peuvent être classés en 5 catégories :

*Traction

*Compression

*Cisaillement

*Flexion

*Torsion

Application du PFS:

$$\sum_{i=1}^N ec{F}_i = ec{ extbf{O}}$$

$$\sum_{i=0}^{N} \vec{M} = \vec{0}$$

Le théorème de la résultante en projection sur (Xo,Yo) le système suivant

$$\begin{cases} \sqrt{2}/2 & T1 + T2 = 0 \\ \sqrt{2}/2 & T1 = 0 \\ -T1 + \sqrt{2}/2 & T4 + T5 = 0 \end{cases} \qquad \begin{cases} \sqrt{2}/2 & 1 & 0 & 0 & 0 & 0 \\ \sqrt{2}/2 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 1 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{cases}$$

$$\begin{pmatrix}
\sqrt{2}/2 & 1 & 0 & 0 & 0 & 0 \\
\sqrt{2}/2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & \sqrt{2}/2 & 0 & 0 & 0 \\
0 & 0 & 1 & \sqrt{2}/2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
T1 \\
T2 \\
T3 \\
T4 \\
T5 \\
T6
\end{pmatrix} = \begin{pmatrix}
0 \\
F \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0$$

Méthode de résolution : Inversion de la Matrice A pour calculer T = A -1 B On propose une résolution numérique Pivot de gauss avec un programme python

Dans notre cas: Matrice choisie 6*6

$$\begin{pmatrix}
\sqrt{2}/2 & 1 & 0 & 0 & 0 & 0 \\
\sqrt{2}/2 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & \sqrt{2}/2 & 0 & 0 \\
0 & 0 & 1 & \sqrt{2}/2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
0 & \sqrt{2} & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 1 & -1 & 1 & -1 & 0 \\
\sqrt{2} & -\sqrt{2} & \sqrt{2} & 0 & \sqrt{2} & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

 $T = A^{-1}B$

$$\begin{pmatrix}
F * \sqrt{2} \\
-F \\
F \\
-F * \sqrt{2}
\end{pmatrix}$$

Pour une force engendrée par le vent

Ordre de grandeur: 105 N

Résultats:

Les résultats numériques mettent en évidences que les Ti ≤ La force maximales supportée : 20*10 ⁵ N

L'impossibilité d'avoir un effondrement causé par les forces aérodynamiques dans le modèle statique

Absurdité

La preuve : l'effondrement du pont Tacoma en 1940 à cause d'un vent d'une vitesse 65km/h

Problème de modélisation

La nécessité d'un modèle plus précis...

2-Etude dynamique d'un pont

Effet d'une force de perturbation sur le système :

On peut assimiler un pont à un milieu élastique : Masse-Ressort

Application du PFD à ce système en considérant

F: La force Extérieure de perturbation

Pour étudier la stabilité du système on simplifie l'étude en choisissant F : force excitatrice sinusoïdale

Etude de stabilité du système

*Si α : facteur d'amortissement ≥0

Oscillateur harmonique amorti

On distingue trois types de système amortie

Pseudo périodique Critique

Apériodique

Code 1 dans le document fourni

*Si α< 0

Le facteur d'amortissement étant négatif

Système divergeant : Instable

Si F est une force de forme non usuelle

Méthode d'Euler explicite

Résolution numérique de l'équation :

$$m\ddot{X} + \alpha\dot{X} + kX = F$$

L'idée : changement de variable

Equation différentielle de premier ordre

Soit

$$V=\dot{X}$$

Considérons cette échelle de temps

Application de la formule de Taylor

$$X(ti+1) = X(ti) + dt \frac{dX}{dt} + O(dt^{2})$$

Obtention du système d'équation suivant :

$$Vi+1 = Vi + (dt/m) (Fi - \alpha Vi - kXi)$$

Voyons le schéma numérique de cette méthode crée à l'aide d'un code python adéquat

$$Xi+1 = Xi + dt Vi$$

Code 2 dans le document fourni

Interprétation:

Instabilité numérique

C'est pour cela on a recourt à des méthodes numériques plus précises comme Range kutta 2 et Range kutta4

3-Phénomène de résonance :

Le phénomène de résonance peut -t-il être la cause de la rupture des pont ?

Exemple pertinent : effondrement du pont Tacoma sous l'effet de résonance

Caractéristiques du pont

Malgré la rigidité de ce pont il s'est effondré en 1940 à cause de l'effet d'un vent de vitesse 65 km/h

Code 3 dans le document fourni

Ceci est du au phénomène de résonance

Visualisation des modes propres avec le RDM 7

Figure	Fréquence
1: mode 1	1097.9 Hrz
2 : mode 2	2318.200 Hrz
3 : mode 3	3619 Hrz
4 : mode 4	6040.200 Hrz

Conclusion:

Comment peut-on éviter la rupture des ponts ?

*On doit s' écarter le maximum des fréquences propres de la structure * l'effort maximal supporté > la perturbation

*On doit placer les ponts dans des zones antisismique

ANNEXE: Visite Chantier

