From Fuzzy Markov Categories Towards Imprecise Probability

Nico Wittrock

XV Portuguese Category Seminar,

11 September 2025

Table of contents

Mathematics of Uncertainty

Deconstructing the Fuzzy Powerset Monad

Deconstructing the Finite Distributions Monad

Deconstructing the Fuzzy Powerset Monad

Deconstructing the Finite Distributions Monad

types of uncertainty:

- classical probability distributions over a set X
- quantum probability
- ▶ imprecise probability:
 - upper-lower probabilities
 - Dempster-Shafer belief
- fuzzy sets, i.e. functions $X \rightarrow [0,1]$

categorical framework:

- Markov cats [Fri20], probability sheaves [Sim17]
- quantum Markov cats [Par20; FL24]
- models of previsions [Gou24]
- fuzzy powerset monad [Man76]

Imprecise Probability

Joint Work with

- ► Laura Gonzales Bravo (Madrid)
- ► Paolo Perrone (Oxford)
- ► Tomáš Gonda (Innsbruck)

We use Markov cats [Fri20]:

- unifies and generalizes different notions of probability (discrete, continuous, quantum, possibility, . . .)
- abstract, graphical definitions of conditionals, independence, almost sure equality, Bayesian inversion, . . .
- generalizations of theorems (de Finetti, zero-one-laws, strong law of large numbers)

Markov Categories: Overview

symmetric monoidal cats (SMC)

U

SMC with projections

 \bigcup

SMC with weak products

U

Markov cats

UI

cartesian monoidal cats

Markov Categories: Example

Kleisli cats!

Example (Finite Distribution Monad)

$$\begin{split} \mathsf{D}_{[0,1]} : \mathsf{Set} &\to \mathsf{Set} \\ X &\mapsto \{f : X \to [0,1] \mid \mathsf{supp}(f) < \infty \text{ and } \sum_{x \in X} f(x) = 1\} \end{split}$$

Fuzzy Powerset Functors

Example (Fuzzy Powerset Monad)

$$\mathsf{F}_{[0,1]}:\mathsf{Set} o \mathsf{Set}$$

$$X \mapsto \{\mathsf{functions}\ X \to [0,1]\}$$

Generalizations:

- ► [Man76] replaces [0, 1] by completely distributive lattices
- \blacktriangleright we want to replace [0,1] by quantales

Deconstructing the Fuzzy Powerset Monad

Deconstructing the Finite Distributions Monad

Fuzzy Powerset Functors

Recall:

$$\mathsf{F}_{[0,1]}:\mathsf{Set} o \mathsf{Set}$$

$$X \mapsto \{\mathsf{functions}\ X \to [0,1]\}$$

Notation:

Set^{op} \cong CABA := cat. of complete atomic boolean algebras. SupLat := cat. of suplattices = cat. of join-complete posets

Definition

For $L \in \mathsf{SupLat}$

$$\mathsf{F}_L: \begin{array}{ccc} \mathsf{Set} \stackrel{2^-}{\longrightarrow} \mathsf{CABA^{op}} \subseteq \mathsf{SupLat^{op}} & \stackrel{L^-}{\longrightarrow} \mathsf{Set} \\ X & \longmapsto & 2^X & \longmapsto & \mathsf{SupLat}(2^X, L). \end{array}$$

Towards Fuzzy Powerset Monads

unit

$$\eta_X: \begin{array}{ccc} X & \cong & \mathsf{CABA}(2^X,2) & \subseteq & \mathsf{SupLat}(2^X,2) \stackrel{\iota \circ -}{\longrightarrow} \mathsf{SupLat}(2^X,L) \\ x & \longmapsto & \delta_x & \longmapsto & \iota \circ \delta_x \end{array}$$

multiplication?

Conjecture

For $L \in SupLat$:

```
\{monad\ (F_L, \eta, \mu)\} \stackrel{1:1}{\longleftrightarrow} \{integral\ Quantale\ (L, \otimes : L \times L \to L)\}.
```

Lemma

For $L \in SupLat$:

$$(F_L, \eta, \mu)$$
 commutative $\Leftrightarrow \otimes : L \times L \to L$ commutative \Leftrightarrow Kleisli cat of F_L is Markov Copy-Discard cat.

Deconstructing the Fuzzy Powerset Monad

Deconstructing the Finite Distributions Monad

Intermezzo: Effect Algebras

Definition

An Effect Algebra has

- ▶ a set E
- ightharpoonup constants $0, 1 \in E$
- ▶ involution $\neg : E \rightarrow E$
- ightharpoonup symmetric relation $\mathcal{R} \subseteq E \times E$
- ightharpoonup commutative, associative, partial addition $\oplus:\mathcal{R}\to E$ s.th.

$$a\mathcal{R}1 \Leftrightarrow a = 0$$
 and $a \oplus b = 1 \Leftrightarrow b = \neg a$.

Example (Effect Algebras)

- \triangleright Boolean algebras, e.g. power sets 2^X
- ightharpoonup $[0,1]\subseteq\mathbb{R}$
- ▶ $[0,1] \subseteq \text{unital } C^*\text{-alg.}$

Finite Distribution Functor

Goal: monad for $E \in \mathsf{EffAlg}$

$$\mathsf{D}_E : \mathsf{Set} \to \mathsf{Set}$$
 $X \mapsto \{f : X \to E \mid \mathsf{supp}(f) < \infty \text{ and } \sum_{x \in X} f(x) = 1\}$

Notation:

$$D_E \upharpoonright_{fin}$$
: FinSet o Set restriction of D_E
FinSet^{op} \cong FinCABA := cat. of finite CABAs
EffAlg := cat. of effect algebras

Definition

For $E \in \mathsf{EffAlg}$

$$\mathsf{D}_{E} \upharpoonright_{\mathsf{fin}} : \begin{array}{c} \mathsf{FinSet} \xrightarrow{2^{-}} \mathsf{FinCABA^{op}} \subseteq \mathsf{EffAlg^{op}} \xrightarrow{E^{-}} \mathsf{Set} \\ X \longmapsto 2^{X} \longmapsto \mathsf{EffAlg}(2^{X}, E). \end{array}$$

Relative Monads

... consist of

functors

$$\begin{array}{c}
\mathsf{FinSet} \stackrel{\mathcal{T}}{\longrightarrow} \mathsf{Set} \\
J \downarrow \\
\mathsf{Set}
\end{array}$$

▶ unit (for $X \in FinSet$):

$$\eta_X: JX \to TX$$

▶ 'Kleisli' extension of $f: JX \to TY$ (for $X, Y \in \mathsf{FinSet}$):

$$f^{\sharp}:TX\to TY$$

similar to Kleisli extension [ACU15]. [ACU15] constructs monad

FinSet
$$\xrightarrow{T}$$
 Set \xrightarrow{J} Lan

Towards Finite Distribution Monads

Goal: relative monad on

unit

$$\eta_X: X \cong \mathsf{CABA}(2^X, 2) \subseteq \mathsf{EffAlg}(2^X, 2) \xrightarrow{\iota \circ -} \mathsf{EffAlg}(2^X, L)$$
 $x \longmapsto \delta_x \longmapsto \iota \circ \delta_x$

'Kleisli' extension?

Conjecture

For $E \in EffAlg$:

$$\{ relative \ monad \ (D_E \upharpoonright_{fin}, \eta, \sharp) \} \stackrel{1:1}{\longleftrightarrow} \left\{ \begin{array}{c} m : E \times E \to E \\ associat., \ distributive, \ unital \end{array} \right\}.$$

Towards Finite Distribution Monads II

Assume for $E \in EffAlg$:

$$\left\{ \text{relative monad } \left(\mathsf{D}_E \upharpoonright_{\mathsf{fin}}, \eta, \sharp \right) \right\} \overset{1:1}{\longleftrightarrow} \left\{ \begin{matrix} m : E \times E \to E \\ \mathsf{associat.}, \text{ distributive, unital} \end{matrix} \right\}.$$

Lemma

For $E \in EffAlg$:

Lan commutative
$$\Leftrightarrow$$
 m : $E \times E \rightarrow E$ commutative \Leftrightarrow Kleisli cat of Lan is Markov.

Example

- ▶ $E = [0,1] \subseteq \mathbb{R}$: model classical finite probability
- $ightharpoonup E = \{0,1\}$: possibility (non-empty finite powerset monad)
- $ightharpoonup E = [0,1] \subseteq unital \ C^*$ -alg: quantum probabilistic processes

Deconstructing the Fuzzy Powerset Monad

Deconstructing the Finite Distributions Monad

Summary

fuzzy powerset and finite distributions have similar shape

$$\begin{split} \mathsf{F}_{[0,1]} : \mathsf{Set} & \xrightarrow{2^-} \mathsf{SupLat^{op}} \xrightarrow{[0,1]^-} \mathsf{Set} \\ \mathsf{D}_{[0,1]} \upharpoonright_{\mathsf{fin}} : \mathsf{FinSet} & \xrightarrow{2^-} \mathsf{EffAlg^{op}} \xrightarrow{[0,1]^-} \mathsf{Set}. \end{split}$$

- ightharpoonup generalizations to other truth values than [0,1]:
 - join-complete posets L for fuzzy set monad F_L
 - effect algebras E for relative distribution monad D_E

Future work:

- new notion of quantum Markov cats.
- continuous case (Giry monad)
- useful for imprecise probability?

Obrigado.

Literature I

- [ACU15] Thosten Altenkirch, James Chapman, and Tarmo Uustalu. "Monads need not be endofunctors". In: Logical methods in computer science 11 (2015).
- [CJ19] Kenta Cho and Bart Jacobs. "Disintegration and Bayesian inversion via string diagrams". In:

 Mathematical Structures in Computer Science 29.7
 (2019), pp. 938–971.
- [FL24] Tobias Fritz and Antonio Lorenzin. *Involutive Markov* categories and the quantum de Finetti theorem. 2024.
- [Fri20] Tobias Fritz. "A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics". In: Advances in Mathematics 370 (2020), p. 107239.

Literature II

- [Gou24] Jean Goubault-Larrecq. "Isomorphism Theorems between Models of Mixed Choice (Revised)". In: arXiv preprint arXiv:2411.13500 (2024).
- [Man76] Ernest G Manes. "Algebraic Theories". In: Graduate Texts in Mathematics (1976).
- [Par20] Arthur J Parzygnat. "Inverses, disintegrations, and Bayesian inversion in quantum Markov categories". In: arXiv preprint arXiv:2001.08375 (2020).
- [Sim17] Alex Simpson. "Probability sheaves and the Giry monad". In: 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2017, pp. 1–1.