

Discrete Mathematics MH1812

Topic 7.2 - Set Theory II Dr. Guo Jian

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Explain the different types of set identities.
- Apply the three methods to prove set identities.

Set Identities: Set Difference

$$A \cap \overline{B} = A - B$$

Compare $A \cap \overline{B}$ with $A - B = \{x \mid x \in A \land x \notin B\}$

Set Identities: Set Difference

$$\overline{A \cap \overline{B}} = \overline{A} \cup B$$

- Consider $\overline{A-B}=A\cap \overline{\overline{B}}$
- This is De Morgan's Law $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$ with X = A and $Y = \overline{B}$

Set Identities: Laws

Identity	Name	
$A \cup \varnothing = A$ $A \cap U = A$	Identity laws	
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	
$A \cup A = A$ $A \cap A = A$	ldempotent laws	
$\overline{\overline{A}} = A$	Double Complement laws	

Set Identities: Laws

Identity

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Associative laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Distributive laws

$$\overline{\overline{A \cup B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$$
$$\overline{A \cap B} = \overline{\overline{A}} \cup \overline{\overline{B}}$$

De Morgan's laws

Set Identities: Laws

Identity

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

$$A - B = A \cap \overline{B}$$

Name

Absorption laws

Alternate representation for set difference

Proving Set Identities: Three Methods

• Recall: two sets are equal if and only if they contain exactly the same elements, i.e., iff $A \subseteq B$ and $B \subseteq A$.

Three Methods to Prove Set Identities

- Show that each set is a subset of the other
- Apply set identity theorems
- Use membership table

Proving Set Identities: Each Others' Subset

Show that
$$(B-A) \cup (C-A) = (B \cup C) - A$$

For any $x \in LHS$, $x \in (B-A)$ or $x \in (C-A)$ (or both)

When
$$X \in B - A$$

$$\Rightarrow (x \in B) \land (x \notin A)$$

$$\Rightarrow (x \in B \cup C) \land (x \notin A)$$

$$\Rightarrow x \in (B \cup C) - A$$

When
$$X \in C - A$$

$$\Rightarrow (x \in C) \land (x \notin A)$$

$$\Rightarrow (x \in B \cup C) \land (x \notin A)$$

$$\Rightarrow x \in (B \cup C) - A$$

Therefore LHS ⊆ RHS

Proving Set Identities: Each Others' Subset

Show that
$$(B-A) \cup (C-A) = (B \cup C) - A$$

For any $x \in RHS$, $x \in (B \cup C)$ and $x \notin A$

When
$$x \in B$$
 and $x \notin A$ $(x \in B) \land (x \notin A)$ $\Rightarrow x \in B - A$

$$(x \in B) \land (x \notin A)$$

$$\Rightarrow X \in B - A$$

$$\Rightarrow X \in (B-A) \cup (C-A)$$

When
$$x \in C$$
 and $x \notin A$ $(x \in C) \land (x \notin A) \Rightarrow X \in C - A$

$$(x \in C) \land (x \notin A)$$

$$\Rightarrow X \in C - A$$

$$\Rightarrow X \in (B-A) \cup (C-A)$$

Therefore RHS ⊂ LHS

With LHS \subset RHS and RHS \subset LHS, we can conclude that LHS = RHS.

Proving Set Identities: Using Set Identity Theorems

Show that
$$(A - B) - (B - C) = A - B$$

$$(A-B)-(B-C)=(A\cap\overline{B})\cap(B\cap\overline{C}) \quad \text{(By alternate representation for set difference)}$$

$$=(A\cap\overline{B})\cap(\overline{B}\cup C) \quad \text{(By De Morgan's laws)}$$

$$=[(A\cap\overline{B})\cap\overline{B}]\cup[(A\cap\overline{B})\cap C] \quad \text{(By Distributive laws)}$$

$$=[A\cap(\overline{B}\cap\overline{B})]\cup[A\cap(\overline{B}\cap C)] \quad \text{(By Associative laws)}$$

$$=(A\cap\overline{B})\cup[A\cap(\overline{B}\cap C)] \quad \text{(By Idempotent laws)}$$

$$=A\cap[\overline{B}\cup(\overline{B}\cap C)] \quad \text{(By Distributive laws)}$$

$$=A\cap[\overline{B}\cup(\overline{B}\cap C)] \quad \text{(By Distributive laws)}$$

$$=A\cap\overline{B} \quad \text{(By Absorption laws)}$$

$$=A-B \quad \text{(By alternate representation for set difference)}$$

Proving Set Identities: Using Membership Tables

Similar to truth table (in propositional logic):

- Columns for different set expressions
- Rows for all combinations of memberships in constituent sets
- "1" = membership, "0" = non-membership
- Two sets are equal iff they have identical columns

Proving Set Identities: Using Membership Tables

Prove that $(A \cup B) - B = A - B$

Α	В	$A \cup B$	(A ∪ B) – B	A - B
0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	0	0

Let's recap...

- Set identities
- Prove set identities:
 - Each others' subset
 - Set identity theorems
 - Membership table

