Choose the Right Hardware

Proposal Template

Scenario 1: Manufacturing

Client Requirements and Potential Hardware Solution

Look through the scenario and find any relevant client requirements. Then, suggest a potential hardware type and explain how this hardware would satisfy each of the requirements.

Which hardware might be most appropriate for this scenario?
(CPU / IGPU / VPU / FPGA)

FPGA

Requirement Observed (Include at least two.)	How does the chosen hardware meet this requirement?
Example requirement: The client requires a tiny device to be connected to their CPU—and their budget is only about \$100 for each device.	Example explanation: VPU or NCS2 is only about 27.40 mm in size and would fit in the price range.
Image processing to be completed 5x/sec	fast
Flexible, wants to repurpose for chip quality	reprogrammable
Last 5-10 years	can have additional fast operations added

Queue Monitoring Requirements

Maximum number of people in the queue	Unspecified, Thinking worst case
Model precision chosen (FP32, FP16, or Int8)	FP16

Test Results

After you've tested your application on all four hardware types (CPU, IGPU, VPU, and FPGA), copy the matplotlib output showing the comparison into the spaces below. You should have three graphs (for model load time, inference time, and FPS).

FP32

Model Load Time

Inference Time

FPS

Final Hardware Recommendation

Now synthesize your points from above and provide a brief write-up describing why the chosen hardware is the best choice for this scenario. Be sure to discuss the client's requirements, the test results, and how these relate to one another (e.g., perhaps one of the devices performed better than the rest, but does not meet one of the client's requirements).

Write-up: Final Hardware Recommendation

In my experiments FP16 wasn't much faster than FP32, I would expect a 2x speedup. Also the accelerators didn't have the amount of performance improvement I would expect. I think this would improve if executing in parallel or running batches.

My final recommendation remains an FPGA:

- * They have a long life-span
- * meets speed requirements (mostly thanks to the CPU)
- * reprogrammable

Scenario 2: Retail

Client Requirements and Potential Hardware Solution

Look through the scenario and find any relevant client requirements. Then, suggest a potential hardware type and explain how this hardware would satisfy each of the requirements.

Which hardware might be most appropriate for this scenario? (CPU / IGPU / VPU / FPGA)

CPU

Requirement Observed (Include at least two.)	How does the chosen hardware meet this requirement?
Example requirement: The client requires a tiny device to be connected to their CPU—and their budget is only about \$100 for each device.	Example explanation: VPU or NCS2 is only about 27.40 mm in size and would fit in the price range.
Low power (save on electric bill)	Already powered up for cash registers
Cheap – avoid additional hardware, has i7 CPUs already	Already has the hardware
Doesn't need to be fast - Average wait time of 230-400 secs (2-5 per queue), <20 seconds	Doesn't need to run several fps for improvement

Queue Monitoring Requirements

Maximum number of people in the queue	2 on weekdays 5 on weekends
Model precision chosen (FP32, FP16, or Int8)	FP32

Test Results

After you've tested your application on all four hardware types (CPU, IGPU, VPU, and FPGA), copy the matplotlib output showing the comparison into the spaces below. You should have three graphs (for model load time, inference time, and FPS).

Model Load Time

Inference Time

Final Hardware Recommendation

Now synthesize your points from above and provide a brief write-up describing why the chosen hardware is the best choice for this scenario. Be sure to discuss the client's requirements, the test results, and how these relate to one another (e.g., perhaps one of the devices performed better than the rest, but does not meet one of the client's requirements).

Write-up: Final Hardware Recommendation

The model didn't change so my results look about the same.

CPU is my final recommendation:

- * Doesn't need to buy new hardware
- * Doesn't need to be crazy fast, CPU is plenty fast in my tests
- * Low additional power power is already being consumed by CPUs

Scenario 3: Transportation

Client Requirements and Potential Hardware Solution

Look through the scenario and find any relevant client requirements. Then, suggest a potential hardware type and explain how this hardware would satisfy each of the requirements.

Which hardware might be most appropriate for this scenario? (CPU / IGPU / VPU / FPGA)

Requirement Observed (Include at least two.)	How does the chosen hardware meet this requirement?
Example requirement: The client requires a tiny device to be connected to their CPU—and their budget is only about \$100 for each device.	Example explanation: VPU or NCS2 is only about 27.40 mm in size and would fit in the price range.
\$300/machine	NCS2 would fit in the price range
Save on power	VPUs are low power
Can't use current cpus	Pairs well with current setting
Train every 2 minutes	Fast enough to do several frames between trains

Queue Monitoring Requirements

Maximum number of people in the queue	7-15
Model precision chosen (FP32, FP16, or Int8)	FP16

Test Results

After you've tested your application on all four hardware types (CPU, IGPU, VPU, and FPGA), copy the matplotlib output showing the comparison into the spaces below. You should have three graphs (for model load time, inference time, and FPS).

Model Load Time

Inference Time

Final Hardware Recommendation

Now synthesize your points from above and provide a brief write-up describing why the chosen hardware is the best choice for this scenario. Be sure to discuss the client's requirements, the test results, and how these relate to one another (e.g., perhaps one of the devices performed better than the rest, but does not meet one of the client's requirements).

Write-up: Final Hardware Recommendation

Still going with an NCS2, because:

- * it is low power
- * inexpensive (less than \$300)
- * Doesn't use current CPU
- * fast enough for use case

