Fake News Detection

Prajusha Reddy, Boston University

GOAL

The goal of this project is to be able to classify whether a given article is fake or real news, and also to determine which type of Natural Language Processing (NLP) model performs the best for this classification task. By analyzing the text, the models in this project should be able to determine the credibility of the information. I chose this as my project because I believe that it is more important now than ever before to be able to distinguish between fake and real news; in today's digital age, misinformation spreads rapidly through the use of the internet and different social media platforms (I have seen this happen first-hand through conversations with family, friends, peers, etc.), which is why it is essential to develop tools to identify accurate information for people to make fully informed and smart decisions.

METHODS

Models:

- 1. Naïve Bayes Model (Baseline)
- 2. Deep Learning Modèls
 - a. Long Short-Term Memory (LSTM) Model
 - b. Bidirectional Encoder Representations from Transformers (BERT) for Sequence Classification Model

RESULTS

(base) prajusha Epoch 1/20 - Tr Epoch 3/20 - Tr Epoch 4/20 - Tr Epoch 5/20 - Tr Epoch 6/20 - Tr Epoch 7/20 - Tr Epoch 8/20 - Tr Epoch 9/20 - Tr Epoch 10/20 - Tr Epoch 11/20 - Tr Accuracy: 0.963 Classification	Tain Loss: 0 Train Loss: 0 Train Loss: 0	.6803 V .6622 V .4161 V .3654 V .2781 V .2667 V .2164 V .2247 V .1713 V 0.1755	al Loss: al Loss: al Loss: al Loss: al Loss: al Loss: Val Loss:	0.6653 0.6114 0.3676 0.3070 0.2212 0.2337 0.2835 0.1805 0.1462 0.2040	% python	train_lstm.py
	recision		f1–score	support		
0	0.95	0.97	0.96	3753		
1	0.97	0.96	0.97	4364		
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	8117 8117 8117		

LSTM Model Evaluation Metrics

Test Set Clas	ssification precision	Report: recall	f1-score	support
0 1	0.9890 0.9832	0.9803 0.9906	0.9846 0.9869	3753 4364
accuracy macro avg weighted avg	0.9861 0.9859	0.9854 0.9858	0.9858 0.9857 0.9858	8117 8117 8117

BERT Model Evaluation Metrics

Accuracy: 0.93 Classification		recall	f1-score	support
0 1	0.96 0.92	0.90 0.97	0.93 0.94	3753 4364
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	8117 8117 8117

Naïve Bayes Model Evaluation Metrics

EXPERIMENTS

Naïve Bayes Model

Accuracy: 93.9%

LSTM Model

Accuracy: 96.35%

BERTForSequenceClassification Model

Accuracy: 98.58%

As expected, the Naïve Bayes has the lowest accuracy and overall evaluation metrics compared to the LSTM and BERT models, despite having decent performance.

CONCLUSIONS

Through my experiments, I learned that while a simple model like Naïve Bayes can achieve decent results with minimal computation, deep learning models, such as the LSTM and BERT models, significantly outperform it in regards to text classification, such as fake news classification. The BERT model especially, being a Transformer model, yields very good results. Additionally, I also observed that the BERT model achieved very high accuracy with very few training epochs, and it may have even better results with just one epoch, which showcases its dominance in text classification tasks.