Text Seite 1 von 2

- AN: PAT 1998-481983
- TI: Charge equalising circuit for series-connected elements has voltage divider in parallel to series-connected cells or elements
- PN: DE19708842-A1
- PD: 10.09.1998
- AB: The circuit equalises charges of series-connected electric or electrochemical cells etc., with a voltage divider coupled in parallel to the series-connected cells such that the number of the divider resistors is the same as that of the cells. A switch is incorporated behind each resistor for the cells. The voltage divider is activated by another switch. Pref. The divider resistors are relays whose contacts connect each the following cell. Alternatively, the divider is formed by ohmic resistors. Self-blocking. FETs, energised by the divider voltage are incorporated in the leads to the cells.; USE For capacitors, batteries and electrochemical cells. ADVANTAGE Uniform charge distribution of charge elements, e.g. equalising mfg. Tolerances etc.
- PA: (KAHL/) KAHLEN H;
- IN: BARRA G P; KAHLEN H; MUELLER S;
- FA: DE19708842-A1 10.09.1998;
- CO: DE
- IC: H01G-009/004; H02J-007/00; H02J-015/00;
- MC: X16-G;
- DC: X16;
- FN: 1998481983.qif
- PR: DE1008842 05.03.1997;
- FP: 10.09.1998
- UP: 12.10.1998

® BUNDESREPUBLIK DEUTSCHLAND

® Offenleaunasschrift _m DE 197 08 842 A 1

Int. Cl.⁶: H 02 J 7/00 H 02 J 15/00 H 01 G 9/004

(2) Aktenzeichen:

197 08 842 2 2 Anmeldetag: Offenlegungstag:

5. 3.97 10. 9.98

(f) Anmelder:

Kahlen, Hans, Prof. Dr.-Ing., 67661 Kaiserslautern.

① Erfinder:

Kahlen, Hans, Prof, Dr.-Ing., 67661 Kaiserslautern, DE; Müller, Steffen, Dipl.-Ing., 66903 Altenkirchen, DE: Barra, Gian Paolo, Cafasse, IT

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlegen entnommen

(S) Einrichtung für den Ladeausgleich elektrisch in Reihe geschalteter Elemente

Die Erfindung betrifft eine Schaltungsanordnung für den Ladeausgleich in Reihe geschalteter Zellen, die elektrische Ladungen speichern. Solche elektrischen Zellen wie Kondensatoren, Doppelschichtkondensatoren oder elektrochemische Zellen haben Fertigungs-, Betriebs- und Alterungstoleranzen, so daß bei einem Ladestrom iede Zelle zwar die gleiche Ladung erhält, die Spannung jedoch unterschiedlich ist. Damit im Betrieb jedoch jede Zelle die höchste Spannung erreicht, ist ein Ladeaus-

gleich erforderlich. Dazu wird ein Spannungsteiler den in Reihe geschalteten Zellen parallelgeschaltet, der aus steuerbaren elektronischen oder elektromagnetischen Elementen besteht. Dabei können diese Elemente selbst den Spannungsteiler bilden, oder ein ohmscher Spannungsteiler ist Teil der Selbststeuerung.

Beschreibung

Gegenstand der Erfindung ist eine Schaltungsanordnung, die einen Ladeausgleich in Reihe geschalteter elektrischer Elemente derart gestatet, daß jedes Element, wie Batteriezelle oder Kondensatorzelle, auf den gleichen Spannungswert gebracht wird.

In Reihe geschaltete Elemente, die elektrische Ladungen speichern, wie Kondensatoren, Superkondensatoren oder elektrochemische Zellen, haben Fertigungstoleranzen, Be- 10 triebstoleranzen und Alterungstoleranzen. Damit variiert die Größe der speichernden Einheit. Bei in Reihe geschalteten Kondensatoren z. B. nimmt zwar jeder Kondensator Ci die gleiche Ladung auf (O = I · t), infolge der ieweiligen Toleranz stellt sich an jedem Kondensator Ci eine andere Span- 15 nung Ui ein (Ui = Q/Ci), Bei Reihenschaltungen von vielen Elementen niedriger Betriebsspannung ist es wichtig, daß an iedem Element ein höchstzulässiger Spannungswert nicht überschritten wird, aber im Betrieb sich je Element ein gleicher Spannungswert einstellt. Auf diese Weise kann ohne 20 besondere Spannungsreserve die höchstmögliche Energie gespeichert werden (Wc = 1/2 C · U2). Bei teilentladenden Zellen kann die Spannung dann unterschiedlich sein. Ein derartiger Ladungsausgleich ist insbesondere bei in Reihe geschalteten Superkondensatoren notwendig.

Es sind bereits Spannungsteilerschaltungen mit ohmschen Widerstünden bekannt, die den einzelnen Zellen parallel geschaltet sind und damit einen Ladungsausgleich erzwingen. Mit dem Spannungsteiler wird jedoch jeder elektrischen oder elektrochemischen Zelle ein Widerstand parallel geschaltet, der die Zelle entladet.

Žiel der Efindung ist es, eine gleichmäßige Spannungsaufteilung im geladenen Zustand von in Reihe geschalteten Kondensatoren oder Batteriezellen zu erzwingen und die Einrichtung mit einem Sleuerbefehl zu aktivieren oder zu 35 deaktivieren. Dazu wird erfindungsgemäß der Spannungsteiler mittels steuerbarer Elemente aufgebaut. Dabei können diese Elemente selbst den Spannungsteiler bilden oder ein ohnscher Spannungsteiler ist ein Teil der Selbststeuerung. Der Ausgleichsstrom für die Zellen kann durch zusätzliche 40 Widerstände begrenzt werden.

Ausführungsbeispiele werden durch die folgenden Figuren beschrieben. Es zeigen:

Fig. 1 einen Spannungsteiler, der mit Hilfe von Relaisspulen aufgebaut ist und der über Relaiskontakte und Widerstände mit den Zellen verbunden ist und bei dem ein Schalter 2a den Ladungsausgleich aktiviert,

Fig. 2 eine zweite Anordnung mit einem Spannungsteiler wie in Fig. 1 und zwei Schaltern 2a und 2b, die den La-

dungsausgleich aktivieren, Fig. 3 einen ohmschen Spannungsteiler, der über Feldef-

fekttransistoren mit den Zellen verbunden ist. In den Figuren werden gleiche Teile mit gleichen Ziffern beschrieben. In Fig. 1 werden die in Reihe geschalteten Zellen 1a bis 1n vom Strom +I geladen oder mit einem Strom -I 55 entladen. Der Ladeausgleich wird über den Schalter 2a gesteuert. Dieser legt die in Reihe geschalteten Relaisspulen 3a bis 3n an die Gesamtspannung der Zellen. Die Ansteuerung erfolgt erst, wenn die Zellen nahezu auf die höchste Spannung aufgeladen sind und die Relaisschaltspannung er- 60 reicht ist. Jede Relaisspule 3a bis 3n schaltet einen Kontakt 4a bis 4n. Dabei schaltet Spule 3a den Kontakt 4a, Spule 3b den Kontakt 4b usw. Die Spulen sind jeweils mit Freilaufdioden 5a bis 5n beschaltet. Die Widerstände 6a bis 6m in den Zweigen können den Zellenstrom begrenzen, Nach Öff- 65 nen des Schalters 2a wird Relais 3a nicht mehr angesteuert. Der Kontakt 4a öffnet und schaltet Relais 3b ab. Im weiteren Verlauf schalten alle Relais ab. Eine Verzögerung von jeweils einigen ms je Relais summiert sich bei 100 Zellen zu einigen 100 ms.

In Fig. 2 sind zwei Schalter 2a und 2b zur Aktivierung des Spannungsteilers vorgesehen. Falls der Zeitunterschied von einigen 100 ms durch damit verbundene Teilentladungen der zulezt geschalteten Zeilen stört, kann ein Ausgleich dadurch geschaffen werden, daß Schalter 2b zuerst geöffnet

wird. In diesem Falle schaltet zuerst das Relais Sn aus. In Fig. 3 legt der Schalter 2 azum Ladeausgleich einen Spannungsteiler bestehend aus gleichen Widerständen 7a bis 7n den Zellen Ia bis In parallel. N. Kanal-Feldeffekttransistoren (selbstsperrend) 8a bis 8m verbinden jeweils Spannungsteiler und Zellen, wobei die Source-Elektrode am Spannungsteiler gege. Der Gate-Anschluß des Feldeffekttransistors 8a ist zwischen Schalter 2a und Spannungsteiler-widerstand 73 angeschlossen, der Gate-Anschluß für den Feldeffekttransistors 8b ist am Widerstand 7b angeschlossen, usw. Wenn der Schalter 2a geöffnet wird, verliert der Feldeffekttransistor seine Ansteuerung uns schaltet ab. Anschlüßend verliert der richtser Feldeffekttransistor 8b seine Anschlüßend verliert der richtser Feldeffekttransistor 8b seine Anschlüßende verliert der richtser Feldeffekttransistor 8b seine Anschlüßende verliert der richtser Feldeffekttransistor 8b seine Anschlüßende verliert geschlich werder gestellt geschlich geschlich werder gestellt geschlich gesc

Da an den Feldeffekttransistoren nur eine geringe Spannung liegt, können diese auch im dritten Quadranten, d. h. 6 mit negativer Drain-Source-Spannung und mit negativem Drainstrom betrieben werden.

Patentansprüche

- 1. Schaltungsanordnung für den Ladeausgleich in Reihe geschalteter elektrischer oder elektrochemischer Zellen dadurch gekennzeichnet, daß ein Spannungsteiler der in Reihe geschalteten Zellen derart parallel geschaltet ist, daß die Anzahl der Spannungsteilerwiderstände gleich der Anzahl der Zellen ist und nach jedem Widerstand ein Schaltelement zu den Zellen geht und daß der Spannungsteiler durch einen Schalter aktiviern wird.
- Schaltungsanordnung nach Anspruch 1 dadurch gekennzeichnet, daß die Spannungsteilerwiderstände Relaisspulen sind, und daß die Relaiskontakte jeweils die nachfolgende Zelle zuschalten.
 - 3. Schaltungsanordnung nach Anspruch 1 dadurch gekennzeichnet, daß der Spannungsteiler aus ohnsichen Widerständen besteht und daß in den Verbindungen zu den Zellen selbstsperrende Feldeffekttransistoren geschaltet sind, die von der Spannung des Spannungsteilers angesteuert werden.

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

Figur 1

Figur 2

Figur 3

Docket # 2003 p. 2.591

Applic: # [0 | 587, 92]

Applicant: 20 & of a /.

Lerner Greenberg Sterner LLP
Post Office Box 2480

Hollywood, Ft. 3302:2480

Tel: (954) 925-1100 Fax: (954) 925-1101

802 037/204