<u>CH5440 – Multivariate data analysis for process Modelling</u> <u>Assignment -4</u>

Question 1

clc;
clear all;

loading the data

load("ncadata.mat");

Question-1 Fart(a): To find the structure of mixing matrix Given: 3 pure species: 7 mixtures From the figure. Adruct = Co Cr Ni figure. $\bigcirc f \times \times \circ$ x -> some Non zero number. Here m=3, n=7. To show Aduct is NCA - compliant. * All columns of A has alleast 2 i.e (m-1) zeros! AC, -> matrix obtained by removing column , & corresponding rows where nonzero elements are present. = $\begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}$ column rank = 2(full rank). Acz = [x x] - cobunon rank = 2 (full rank) $Acs = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \longrightarrow column rank = 2 (full rank).$

Hence, 2nd NCA criteria also satisfied. For 1st criteria, we see "Astruct" full column rank F. Hence. It is an NCA compliant.

Finding 'M' matrix. (rotational Matrix).

mixing matrix is obtained from PCA. Say Apra. 7x3. we should find M3x3. such that.

 $A_{pca} \times M. = A_{utruct}$ $M = \begin{cases} 1 & m_{12} & m_{13} \\ m_{21} & 1 & m_{23} \\ m_{12} & m_{23} & m_{24} \end{cases}$

Let Apca = $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} & a_{17} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} & a_{37} \end{bmatrix}^{T}.$ first col.

first col. of Advant.

 $A_{Pca} \times M(:,1) = Astruct(:,1)$

equating. 3rd element of 7th element to zero., we have.

 $a_{13}(1) + a_{23}(m_{21}) + a_{33}(m_{31}) = 0$

 $a_{17}(1) + a_{27}(m_{21}) + a_{37}(m_{31}) = 0$

 $\begin{bmatrix} a_{23} & a_{33} \\ a_{27} & a_{37} \end{bmatrix} \begin{bmatrix} m_{21} \\ m_{31} \end{bmatrix} = \begin{bmatrix} a_{13} \\ a_{17} \end{bmatrix}$ $A \qquad M \qquad B$ $M = (A^T A)^T A^T B$

limitarly other elements of M can be estimated. The above method is coded 4 put in the report.

prob 1b ----- Applying PCA followed by Rotation to the mixing matrix

```
z = measabs;
[u s v] = svds(z);
m =3;% assuming the total number of species = 3
scores = u(:,1:m)'*Z;
Z_est = u(:,1:m)*scores;% denoised data
P = scores;
A = u(:,1:m);
% finding M (Rotational matrix)
M = [];
Astruct = [1,1,0;1,0,1;0,1,1;1,0,1;1,1,0;1,0,1;0,1,1];
for i = 1:nspecies
    Z = [];
   %finding the index of zero elements in each column of Astruct
   ind = find(Astruct(:,i) == 0);
       for j = 1:(length(ind))
           Z = [Z ; A(ind(j),:)];
       end
           Y = -Z(:,i);
           Z(:,i) = [];
           M = [M, pinv(Z)*Y];
% reshaping the rotation matrix obtained into 3x3 matrix by putting 1's in the diagonal
d = diag([1 \ 1 \ 1]);
M1 = M(:);
r1 = d(:);
ind1 = find(r1 == 0);
for k = 1: length(ind1)
    r1(ind1(k),1) = M1(k,1);
end
M = reshape(r1 , [3,3]); %final non_singular rotation matrix
disp("Rotation matrix = ")
disp(M);
disp("The mixing matrix obtained with PCA-Rotation is :")
disp(A*M);
disp("Estimated pure component spectra = inv(M)*P")
disp("Correlation between estimated and true pure component spectra =")
disp(corr((inv(M)*P)',pureabs'))
The rotation Matrix is:
    1.0000
               0.6053
                          0.6866
    1.1593
               1.0000
                        -3.7021
                          1.0000
   21.1416 -0.6689
The MIXING MATRIX obtained with PCA-Rotation is:
   -0.3747
             -0.1135
                               0
   -0.8598
              0.0003 - 0.0979
                        -0.4221
   <del>-0.0000</del> -0.1123
   -0.2286
             0.0002 -0.4259
   -0.5040 -0.3369
                       0.0000
   -0.2621
              -0.0012 -0.0850
   -0.0000 -0.1134 -0.2490
```

```
Estimated pure component spectra = inv(M)*P

Correlation between estimated and true pure component spectra =

-0.9425  0.3661  0.4940

0.4291  -0.9968  -0.4074

0.4343  -0.3815  -0.9967
```

prob 1c ---- Applying NCA to estimate pure-species spectra

```
zind = find(~Astruct);
Astruct = abs(rand(size(Astruct)));
Astruct(zind) = 0;
[A_nca,P_nca,iter,ss] = gnca_fast(Z,Astruct);
disp("The MIXING MATRIX obtained with NCA is: A_nca = ")
disp(A_nca)
disp("correlation between estimated and true pure component spectra using nca is:")
disp(corr(P_nca',pureabs'))
```

The MIXING MATRIX obtained with NCA is : A_nca =

0.2751	0.2039	0
0.5723	0	0.2018
0	0.2020	0.9149
0.1273	0	0.9179
0.4043	0.6065	0
0.1772	0	0.1865
0	0.2046	0.5397

Correlation between estimated and true pure component spectra using nca is

```
    0.9425
    -0.3584
    -0.4697

    -0.4429
    0.9959
    0.4102

    -0.4247
    0.3791
    0.9964
```

Question 2

```
clc;
clear all ;
```

To estimate the connectivity strengths (A_nca) as well as the temporal expression levels(P_nca) of the 33 TFs.

```
load("yeastdata.mat");% 441 genes and sampled at 56 time instants (size 441x56)

Z = microarraydata;
% applying NCA
zind = find(~Astruct);
Astruct_mod = rand(size(Astruct)); % initial guess for connective strengths
Astruct_mod(zind) = 0;
[A_nca,P_nca,iter,ss] = gnca_fast(Z,Astruct_mod);

% for normalizing each column of A_nca
scale = [];
```

```
m = size(Astruct,2);
for i = 1:m
    scale = [scale,norm(A_nca(:,i))];
end
% normalized A_nca
A = A_nca ./ scale ;
P = P_nca .* scale';
var_P = var(P');
TFS = [];
for i = 1:11
    [val, ind] = max(var_P);
   TFS = [TFs,tfa(ind)];
    var_P(ind) = 0;
end
disp('The actual TFs implicated in cell cycle regulation are: ')
disp('Ace2, Fkh1, Fkh2, Mbp1, Mcm1, Ndd1, Skn7, Stb1, Swi4, Swi5, Swi6');
disp('The eleven TFs identified using the data are :');
disp(TFs);
The actual TFs implicated in cell cycle regulation are:
Ace2, Fkh1, Fkh2, Mbp1, Mcm1, Ndd1, Skn7, Stb1, Swi4, Swi5, Swi6
```

'STB1'

'SKN7'

'MBP1'

'RME1' Conclusion -

'FKH2'

The eleven TFs identified using the data are :

'SWI6'

'PHD1'

'SWI5'

'YAP1'

'Seven' Transcription factors are identified correctly as can be seen from the highlighted text.

'SWI4'

'CIN5'

Question 3

```
clc;
clear all;
% loading the data
load('Inorfull.mat');
A = CONC;
P = [PureCo; PureCr; PureNi];
Z = DATA;

% modifying Z
ind = find(Z<0); % indices of negative elements
Z(ind) = 0; % clipping the negative elements to zero</pre>
```

<u>Prob - (a) --- Applying NMF to the data using the first sample from the five replicates for each of the 26 mixtures</u>

```
% data
Z1 = Z(1:5:130,:);
[u,s,v] = svds(Z1);
% using the absolute values of loadings (v) and scores
% as mentioned in the question.
A_init = abs(Z1*v(:,1:3));
P_init = abs(v(:,1:3))';
```

```
[A1,P1] = nmf(Z1,A_init,P_init,1e-10,100,10000);
cor_coef = corr(P1',P');
disp("The correlation coefficients are ")
disp(cor_coef)
Init gradient norm 30.646214
Iter = 1405 Final proj-grad norm 0.000000
The correlation coefficients are
              0.5887
```

CONCLUSION:

-0.5728

-0.1036

0.8324

0.5370 -0.5106 -0.0296

0.2879

From the correlation coefficients obtained, we can say that the pure components spectra are not extracted very well.

Part - (b)-- Applying NMF to the data using the average of five replicates of each of 26 mixtures

```
z_{avg} = [];
for i=1:5:130
    temp = [mean(DATA(i:i+4,:))];
    %disp(temp)
    z_avg=[z_avg;temp];
end
z_{avg}(z_{avg} < 0) = 0;
[u,s,v] = svds(z_avg);
% using the absolute values of loadings (v) and scores
% as mentioned in the question.
A_{init} = abs(z_{avg}*v(:,1:3));
P_{init} = abs(v(:,1:3))';
[A_avg, P_avg] = nmf(Z_avg, A_init_avg, P_init_avg, 1e-10, 100, 10000);
cor_coef = corr(P_avg',P');
disp("The correlation coefficients are ")
disp(cor_coef)
% we are able to resolve the ambiguity
```

```
Init gradient norm 28.724732
```

Iter = 5189 Final proj-grad norm 0.000000

The correlation coefficients are

```
-0.4725
          0.5406
                   0.8947
0.8728 -0.4381 -0.2481
-0.4456
          0.9603
                   0.4132
```

CONCLUSION:

The pure component spectra is extracted well when the data matrix is such that average of the five replicates are taken and on taking close tolerance (10e-10) (permutation ambiguity still exists).

Question 4

```
clc;
clear all;
```

loading the data

```
load("ncadata.mat");
```

Applying the Fast-NCA algorithm

```
Z = measabs;
P = pureabs;
Astruct = [1,1,0;1,0,1;0,1,1;1,0,1;1,1,0;1,0,1;0,1,1];
disp("Structural matrix, Astruct = ")
disp(Astruct);
p = 3;
[A,P] = fastNCA(Z, Astruct, p );
disp('The Mixing Matrix estimated from FastNCA is: ');
disp(A);
corr_coef = corr(P' , pureabs');
disp('The Correlation between the estimated and true pure component spectra for all three species using FastNCA is = ')
disp(corr_coef);
```

Structural matrix, Astruct =

```
1
     1
            0
1
      0
            1
0
     1
            1
1
     0
           1
1
     1
            0
1
     0
            1
0
     1
            1
```

The Mixing Matrix estimated from FastNCA is:

```
-0.3345
         0.2913
                       0
-0.7676
                  0.1479
              0
         0.2883
                0.6375
     0
-0.2041
              0
                  0.6432
-0.4499
         0.8645
                       0
-0.2340
                  0.1283
              0
     0
         0.2910
                  0.3762
```

The Correlation between the estimated and true pure component spectra for all three species using FastNCA is =

```
      -0.9425
      0.3661
      0.4940

      -0.4291
      0.9968
      0.4074

      -0.4343
      0.3815
      0.9967
```

Fast-NCA Function (from moodle):

```
function [A, P] = fastNCA(Z, Astruct, p)
% This function returns A and P (low rank matrix decomposition of Z(datamatrix)) given the data
%matrix(Z), structural matrix(Astruct)-NCA compliant matrix and rank(p).
% step-1
 [u, s, v] = svd(z,0);
W = u(:,1:3); % eigenvectors corresponding to the first three eigenvalues
Amix = [];
a1 = [];
ns = size(Astruct,1);
for i = 1:p
   % Step -2
    [Wc, Wr] = rearrange(W , Astruct , i); % calling rearrnge function
    [u1, s1, v1] = svd(wr, 0);
                                      % Step-4
    S = v1(:,end);
    T = Wc*S;
                                        % Step-5
    [u2, s2, v2] = svd(T);
                                        % Step-6
    a1 = u2(:,1);
    a1 = [a1; zeros(ns-length(a1),1)];
    Amix = [Amix, a1];
end
A = reconstitute(Amix , Astruct);
                                      % Step-7
P = pinv(A)*Z;
                                        % Step-8
end
```

FUNCTIONS –(given by prof.)

"Rearrange" Function:

```
function [Zc Zr] = rearrange(Z, Astruct, k)
% This function extracts the rows of matrix Z according to the non-zero
% and zero elements of k'th column of Astruct. Zc contains the rows of Z
% corresponding to the non-zero elements of column k of Astruct and Zr
% contains remaining rows of Z
nzind = find(Astruct(:,k));
zind = find(~Astruct(:,k));
Zc = Z(nzind,:);
Zr = Z(zind,:);
```

"Reconstitute" Function:

```
function [A] = reconstitute(Amix, Astruct)
% This functions rearranges elements of Amix such that it matches the
% structure of Astruct. Each column of Amix contains the non-zero elements
% followed by zero elements. The number of non-zero elements of each
% column of Amix should correspond to the number of non-zeros in
% corresponding column of Astruct
[nsamples, nvar] = size(Amix);
```

```
A = [];
for k = 1:nvar
    nzest = length(find(Amix(:,k)));
    nzind = find(Astruct(:,k));
    nztrue = length(nzind);
    if ( nzest ~= nztrue )
        disp('Number of non zeros in Amix and Astruct do not match for column ',k)
        return
    else
      temp = zeros(nsamples,1);
      count = 0;
      for i = 1:nztrue
          count = count + 1;
          temp(nzind(i)) = Amix(count,k);
      end
      A = [A temp];
    end
end
```