Experiment #3– Function Generator

Sana Sari Navaei 810199435 Maryam Jafarabadi 810199549

1.Digital to Analog conversion using PWM

1. module DAC(input [7:0] in, input clk, rst, output reg out); wire [7:0] reg_out, counter_out; wire counter_co; reg load; Counter cnt(1'b0,1'b1,1'b0,clk,rst,counter_out,counter_co); Register inReg(in,load,1'b0,clk,rst,reg_out); always @(reg_out, counter_out, counter_co) begin load = 1'b0; if (counter_co) load = 1'b1; if (counter_out > reg_out) out = 1'b0; else out = 1'b1; end endmodule

Fig. 1 Verilog code for DAC module

Fig. 2 when input is 222

When input is 222, T_{on} = 222 * clock duration and T_{off} = (256 – 222) * clock duration which are shown by the waveform.

Fig. 3 when input is 50

When input is 50, T_{on} = 50 * clock duration and T_{off} = (256 – 50) * clock duration which are shown by the waveform.

Fig. 4 when input is 150

When input is 150, $T_{on} = 150 *$ clock duration and $T_{off} = (256 - 150) *$ clock duration which are shown by the waveform.

2. Waveform Generator

Fig. 5 Waveform generator

Fig. 6 waveform generator verilog

Fig. 7 waveform generator output

Fig. 8 waveform generator output

2. Flow Status Successful - Wed May 18 20:29:40 2022 Quartus Prime Version 20.1.0 Build 711 06/05/2020 SJ Lite Edition Revision Name waveformgenerator Top-level Entity Name waveformgenerator Family Cyclone IV E Device EP4CE6E22A7 Timing Models Final 110 / 6,272 (2 %) Total logic elements Total registers 16 Total pins 22 / 92 (24 %) Total virtual pins Total memory bits 2,048 / 276,480 (< 1 %) Embedded Multiplier 9-bit elements 0 / 30 (0 %) 0/2(0%)

Fig. 9 synthesis summary

Fig. 10 Square and Reciprocal waveform

Fig. 11 Triangle waveform

Fig. 12 Sine waveform

3.Frequency Selector

Fig. 13 Frequency Selector

Fig. 14 parallel load = 151

Fig. 15 parallel load = 151

Fig. 16 parallel load = 100

Fig. 17 parallel load = 123

Fig. 18 phase_cntrl = 1

Fig. 19 phase_cntrl = 10

Fig. 20 phase_cntrl = 25

By increasing the number of phase cntrl some data from our Rom will be skipped and we loose more data (for instance if phase cntrl = 100 the result of our adder will be increase by 100 each time and as we see the output of our adder is being used for the address we want to access in the Rom so 100 data's in our Rom will be skipped)

As result our frequency becomes higher and the periodicity becomes lower (T=1/f).

4. Amplitude Selector

Fig. 21 amplitude selector

`timescale lns/lns module amplitude_selector(input[1:0]division, input[7:0]in, output[7:0]out); assign out = in >>> division; endmodule

Fig. 22 amplitude selector verilog

Fig. 23 Square with shift

Fig. 24 Reciprocal with shift

Fig. 25 Triangle with shift

Fig. 26 Sine with shift

Fig. 27 when input is 120

Fig. 28 when input is 80

Fig. 29 when input is 200

5.The total design

Fig. 30 Total design

Fig. 31 waveform of square and reciprocal

Fig. 32 waveform of triangle and sine

Fig. 33 Square waveform without shift

Fig. 34 Square waveform with one shift

Fig. 37 Reciprocal waveform without shift

Fig. 35 Square waveform with two shifts

Fig. 38 Reciprocal waveform with one shift

Fig. 36 Square waveform with three shifts

Fig. 39 Reciprocal waveform with two shifts

Fig. 40 Reciprocal waveform with three shifts

Fig. 43 Triangle waveform with two shifts

Fig. 41 Triangle waveform without shift

Fig. 44 Triangle waveform with three shifts

Fig. 42 Triangle waveform with one shift

Fig. 45 Sine waveform without shift

Fig. 46 Sine waveform with one shift

Fig. 47 Sine waveform with two shifts

Fig. 48 Sine waveform with three shifts