Resumen Tema 4 Seguridad en redes

Autor: @BlackTyson

${\bf \acute{I}ndice}$

1.	Introducción	2			
	1.1. Aspectos de seguridad (CACNrID)	2			
	1.2. Ataques de seguridad	2			
	1.3. Mecanismos de seguridad	2			
2.	Cifrado	3			
	2.1. Características	3			
	2.2. Cifrado simétrico	3			
	2.3. Cifrado asimétrico	5			
3.	Autenticación con clave secreta	6			
4.	Intercambio de Diffie-Hellman	7			
	4.1. Definición	7			
	4.2. Procedimiento	7			
	4.3. Vulnerabilidad Man-in-the-Middle (MitM)	7			
5 .	Funciones Hash (HMAC)	8			
	5.1. Características Función HASH	8			
	5.2. MD-5 y SHA-1: Resumen de funciones hash	8			
6.	Firma digital	10			
	6.1. Objetivos	10			
	6.2. Firma digital con clave asimétrica. Doble cifrado	11			
7.	Certificados digitales				
8.	Protocolos seguros	12			
	8.1 Seguridad	12			

1. Introducción

Una red es segura cuando se garantizan **todos los aspectos**. No hay protocolos 100% seguros. La seguridad se debe **situar en todas las capas**.

1.1. Aspectos de seguridad (CACNrID)

- Confidencialidad/privacidad: El contenido es comprensible sólo para las entidades autorizadas.
- Autenticación: Las entidades son quien dicen ser.
- Control de accesos: Los servicios son accesibles solo para entidades autorizadas.
- No repudio: El sistema impide la renuncia de autoría de una acción.
- Integridad: el sistema detecta todas las alteraciones de la información.
- Disponibilidad: El sistema mantiene las prestaciones con independencia de la demanda.

1.2. Ataques de seguridad

Acción intencionada o no que vulnera cualquier aspecto de seguridad. Tipos

- Sniffin = vulnera la confidencialidad (husmeas)
- **Spoofin**(phishing) = **suplanta identidad** de entidades
- Man_in_the_middle = interceptación
- Distributed Denial_of_Service (DDOS) = denegación de servicio distribuido.
- Malware= troyanos, gusanos, spyware, ransomware, backdoors, rootkits, keylog-gers...

1.3. Mecanismos de seguridad

- Prevención:
 - Autenticación
 - Control de acceso
 - Separación
 - Seguridad en las comunicaciones
- Detección:
 - IDS (intruder dectection system)
- Recuperación
 - Copias de seguridad
 - Mecanismos de análisis forense.

2. Cifrado

2.1. Características

- Basado en **criptografía**
- Garantiza la confidencialidad
- Texto llano se transforma en texto cifrado
- Se basa la existencia un algoritmo de cifrado/descifrado conocido como $E_K()$ y $D_{K'}()$.

2.2. Cifrado simétrico

- Existe una sola clave para cifrar y descifrar (k=k')
- DES: equema de sustitución monoalfabético (debilidad).
- Doble DES
 - 1. Se cifra el bloque de datos con la primera clave (K_1)
 - 2. Se cifra el resultado del paso anterior con una segunda clave (K_2)

No mejora la seguridad frente a ataques de man-in-the-middle.

■ 3DES

- 1. Cifra el bloque con la primera clave K_1 .
- 2. Descifra el resultado con la segunda clave K_2
- 3. Cifra nuevamente el resultado con la primera clave K_1 . También se puede emplear una tercera clave para mejorar la seguridad.

Es mucho más seguro pero también mucho más lento.

- IDEA (International Data Encryption Algorithm)
 - 1. Divide los datos en bloques de 64 bits
 - 2. Se aplican subclaves derivadas de la clave principal
 - 3. Sustituyen y permutan constantemente

Ventajas:

- Excelente seguridad
- Menos recursos

Desventajas:

- Sigue siendo un poco lento
- Se utiliza en sistemas antiguos

- **AES** (Advance Encryption Standard)
 - 1. Se dividen los datos en bloques de 128 bits.
 - 2. Cada bloque pasa por 10, 12 o 14 rondas de transformación
 - 3. Las rondas incluyen operaciones como sustitución de bytes, mezcla de columnas...

Ventajas:

- Muy seguro
- Rápido y eficiente
- Estándar más utilizando en la actualidad.

Desventajas: No tiene

Tabla explicativa

Algoritmo	Claves	Seguridad	Problemas
DES	56 bits	Baja (vulnerable a fuerza bruta)	Clave corta para estándares modernos
Doble DES	112 bits	Mejor que DES, pero no ideal	Ataque del encuentro en el medio
3DES	112/168 bits	Alta (aún usado en sistemas antiguos)	Lento y menos eficiente que AES
IDEA	128 bits	Alta (resistente a ataques diferenciales y lineales)	Más lento que AES y usado en sistemas antiguos
AES	128/192/256 bits	Muy alta (estándar moderno, resistente a análisis diferencial)	Implementación incorrecta puede ser vulnerable a ata- ques de canal lateral

2.3. Cifrado asimétrico

Características

- Existe dos claves por usuario (A): una pública K_{PUB_A} y otra privada K_{PRI_A} .
- La pública es conocida y la privada imposible de conocer.
- Claves diferentes para cifrar y descrifar
 - Cifrar: $C = E_{K_{PUB_R}}(P)$
 - Descifrar: $D_{K_{PRI_{R}}}(C) = D_{K_{PRI_{R}}}(D_{K_{PUB_{R}}}(P)) = P$

RSA

1. Generación de claves:

- a) Elige dos números primos grandes (p y q)
- b) Se calcula $n = p \cdot q$. Este valor n será parte de ambas claves y representa el rango de valores cifrados.
- c) Se calcula $z = (p-1) \cdot (q-1)$. Z es conocido como la función de euler de n y se utiliza para generar el exponente de cifrado y descifrado.
- d) Se calcula **e** como MCD(e, z) = 1. Se puede verificar con el algoritmo de euclides.
- e) Se calcula d como (ed)%z=1 por medio del algoritmo extendido de euclides.
- f) Se general las claves:
 - La clave **pública** es (e,n)
 - La clave **privada** es (d,n)

2. Proceso de cifrado

- a) Se transforma el mensaje p en un número menor que n
- b) Se cifra como $C = P^e \% n$ Se usa la clave pública (e,n)

3. Proceso de descifrado

a) Se recupera el mensaje original en el receptor mediante $P=C^d\,\%n$

Ventajas:

- Permite cifrado y autenticación con un único algoritmo
- Se puede compartir la clave pública abiertamente.

Desventajas:

- Más lento que AES
- Requiere generar números primos grandes, lo que puede ser computacionalmente costoso.

3. Autenticación con clave secreta

Autenticar consiste en verificar la identidad de entidades involucradas. Se **recomienda usar nounces** (información de un solo uso)

Esquema reto-respuesta

- Actores:
 - Cliente (C): Entidad que desea autenticarse
 - Servidor (S): Entidad que valida autenticación
 - Ambos comparten clave secreta previamente establecida (K)
- Procedimiento:
 - 1. El **servidor envía un reto** (nonce):
 - El servidor genera un valor aleatorio (nonce)
 - El valor se envía al cliente para que lo resuelva.
 - 2. El cliente responde al reto:
 - El cliente utiliza la clave secreta para generar la respuesta
 - Aplica función criptográfica para combinar el reto y la clave secreta
 Respuesta= f(Reto,K)
 - La funcion f puede ser un algoritmo de cifrado un función hash
 - 3. El servidor verifica la respuesta
 - El servidor aplica la misma función al reto para calcular la respuesta
 - Compara la respuesta del cliente con su respuesta.
 - Si ambas coinciden, el cliente se autentifica con éxito.

4. Intercambio de Diffie-Hellman

4.1. Definición

Permite a dos partes **establecer una clave secreta** compartida a través de un **canal inseguro**, sin tener que enviar la clave directamene.

4.2. Procedimiento

- 1. Ambas partes acuerdan públicamente dos valores.
 - g: Una base (número primo pequeño conocido)
 - n: número primo grande

Valores enviados por canal público

- 2. Generación de claves privadas. Cada parte genera un número privado secreto.
 - A elige x (clave privada)
 - B elige y (clave privada)
- 3. Cálculo de claves públicas. Usango g y n, cada parte calcula su clave pública y lo comparte con la otra:
 - A calcula $g^x \% n$ y lo envía a B
 - lacksquare B calcula $q^y \$ n$ y lo envía a A
- 4. Cálculo de clave compartida
 - Usando clave pública y privada, se calcula:
 - A: $(q^y \% n)^x \% n$
 - B: $(q^x \% n)^y \% n$
 - Usando exponenciación modular, ambas partes obtienen el mismo valor:

$$K_{AB} = q^{xy} \% n$$

4.3. Vulnerabilidad Man-in-the-Middle (MitM)

El intercambio de claves Diffie-Hellman es vulnerable a un ataque de tipo **hombre** en el medio (MitM) si no se implementa autenticación. En este ataque:

- Un atacante intercepta las claves públicas enviadas entre las partes A y B.
- El atacante genera sus **propias claves privadas** (z) y **públicas** $(g^z \mod n)$.
- A y el atacante establecen una clave secreta K_{AZ} , mientras que B y el atacante establecen K_{BZ} .
- lacktriangle El atacante puede descifrar, modificar y reenviar los mensajes sin que A y B lo detecten.

Medidas contra el ataque MitM

Para prevenir este ataque, se pueden tomar las siguientes medidas:

- Autenticación de las partes: Usar certificados digitales o firmas digitales para verificar que las claves públicas provienen de la parte correcta.
- Integración con cifrado asimétrico: Combinar Diffie-Hellman con RSA u otros métodos que permitan autenticar el intercambio de claves.
- Protocolos seguros: Utilizar protocolos como TLS/SSL, que incluyen autenticación mutua y cifrado.

5. Funciones Hash (HMAC)

5.1. Características Función HASH

- Funciones unidireccionales de cálculo sencillo
- Texto de entrada (M) de longitud variable
- Dado M se genera el **resumen H(M)**, de longitud física
- Es imposible obtener M a partir de H(M)
- Son invulnerables a ataques de colisión
- Se utiliza HMAC para garantizar integridad y autenticación.

5.2. MD-5 y SHA-1: Resumen de funciones hash

1. MD-5 (Message Digest 5)

Características principales:

- Longitud del resumen: 128 bits.
- Procesa los datos en bloques de 512 bits.
- Especificado en el RFC 1321.

Proceso:

- 1. **Relleno:** El mensaje se rellena con un bit "1" seguido de ceros hasta alcanzar una longitud congruente a 448 mód 512. Se añade un campo de 64 bits que contiene la longitud original del mensaje.
- 2. División en bloques: El mensaje rellenado se divide en bloques de 512 bits.
- 3. **Procesamiento secuencial:** Cada bloque se procesa utilizando un algoritmo iterativo con funciones f_F , f_G , f_H y f_I que combinan XOR, suma modular y rotaciones.
- 4. Salida: El estado final (128 bits) se concatena en un único valor hash.

Problemas:

 Vulnerable a ataques de colisión, por lo que no es adecuado para aplicaciones críticas como firmas digitales.

2. SHA-1 (Secure Hash Algorithm 1)

Características principales:

- Longitud del resumen: 160 bits.
- Procesa los datos en bloques de 512 bits.
- Publicado en 1993 por **NIST**.

Proceso:

- 1. **Relleno:** Igual que en MD-5: el mensaje se rellena con un bit "1" seguido de ceros hasta alcanzar 448 mód 512. Se añade un campo de 64 bits con la longitud original del mensaje.
- 2. División en bloques: El mensaje rellenado se divide en bloques de 512 bits.
- 3. Procesamiento secuencial: Cada bloque pasa por un algoritmo iterativo con 4 funciones principales (f_1, f_2, f_3, f_4) , operando en 20 pasos cada una (total: 80 pasos). Se utilizan operaciones como rotaciones, XOR y suma modular.
- 4. Salida: El estado final de 160 bits se concatena como el valor hash resultante.

Problemas:

Más seguro que MD-5, pero también vulnerable a ataques de colisión.

3. Diferencias entre MD-5 y SHA-1

Característica	MD-5	SHA-1
Longitud del resu- men	128 bits	160 bits
Procesamiento	4 funciones (64 pasos)	4 funciones (80 pasos)
Seguridad	Vulnerable a colisiones	Más seguro que MD-5, pero vulnerable
Estandarización	RFC 1321	NIST 1993
Aplicaciones	Histórico, no recomendado	Histórico, no recomendado

Cuadro 1: Comparación entre MD-5 y SHA-1

6. Firma digital

6.1. Objetivos

- Receptor pueda autenticar al emisor
- Garantizar no repudio
- El emisor tenga garantías de no falsificación por el destinatario

Firma digital con clave secreta y Big Brother (BB)

Hipótesis: En este esquema, existe una autoridad de confianza denominada Big Brother (BB) que:

- Comparte una clave secreta K_A con A.
- Comparte una clave secreta K_B con B.
- Posee una clave secreta interna K_{BB} , que solo conoce BB.

Proceso:

1. A genera un mensaje firmado utilizando su clave compartida K_A y envía:

$$A, K_A(B, R_A, t, P)$$

Aquí:

- B: Identidad del receptor.
- R_A : Un valor aleatorio generado por A.
- t: Marca temporal para evitar ataques de repetición.
- P: El mensaje que se desea autenticar.
- 2. BB, al recibir el mensaje, verifica la validez del mismo usando K_A . Luego, genera un nuevo mensaje para B utilizando K_B y añade su propia firma interna $K_{BB}(A, t, P)$:

$$K_B(A, R_A, t, P, K_{BB}(A, t, P))$$

- 3. B, al recibir el mensaje de BB, verifica:
 - La autenticidad del mensaje mediante K_B .
 - La firma de BB para confirmar que el mensaje es válido.

Ventajas:

- BB actúa como una autoridad de confianza, facilitando la autenticación entre A y B.
- Las claves secretas K_A y K_B aseguran la confidencialidad en la comunicación.

Este esquema permite que A y B intercambien mensajes autenticados a través de BB, sin necesidad de compartir claves directamente.

6.2. Firma digital con clave asimétrica. Doble cifrado

- Procedimiento
 - 1. Se usa cifrado para proporcionar privacidad con $K_{PUB_{B}}$
 - 2. Se cifra de manera previa, para autenticación del firmante, con K_{PRI_A}
 - 3. La acción de firmar es el envío de $K_{PUB_B}(K_{PRI_A}(T))$
 - 4. El receptor recupera el texto mediante $K_{PUB_A}(K_{PRI_B}(K_{PUB_B}(K_{PRI_A}(T)))) = T$
- Este sistema garantiza
 - Autenticidad del mensaje. Solo puede provenir de A
 - Integridad del mensaje: Si el mensaje es alterado, el receptor no podrá verificarlo correctamente.
 - Confidencialidad dle mensaje: Al cifrar posteriormente el mensaje, se asegura que B puede descifrar el contenido
 - No repudio, garantizado por la firma de A. El receptor puede emostrar que A firmó el mensaje. Para poder hacer esto se necesita garantizar mediante certificado digital la asociación de A con su clave pública.

7. Certificados digitales

- Identifica fehacientemente una identidad con su clave pública
- Es necesario la intervención de una **Autoridad de Certificación(AC)**. Procedimiento
 - 1. El usuario **A obtiene sus claves** pública y privada.
 - 2. Envía una solicitud **firmada**, cifrada con clave privada a la AC, indicando su **identidad y su clave pública.**
 - 3. **AC** comprueba la firma y emite el certificado. Contiene la identidad de AC, la identidad de A, la clave pública, validez del certificado.
 - 4. Este proceso está firmado digitalmente por AC, para evitar falsedad

8. Protocolos seguros

8.1. Seguridad

Perimetral

Por medio de **firewalls** y sistemas de detección de intrusiones (**IDS**) y respuesta (**IRS**)

Protocolos

- Capa de **aplicación** (ejemplos):
 - Pretty Good Privacy(PGP): e-mail seguro
 - Secure Shell (SSH): acceso remoto seguro
- Capa de transporte
 - Transport Layer Security(TSL)
 - HTTPS
 - o IMAPS
 - o VPN
 - o SSL-POP
 - TLS = Handshake+Protocolo
 - Garantiza confidencialidad, autenticación e integridad
- Capa de **red**: IPSec(VPN)
- Capas inferiores

TRANSPORT LAYER SECURITY

- SSL Record protocol: encapsula los protocolos y ofrece un canal seguro.
- SSL Handshake Protocol:
 - Negocia el algoritmo de cifrado.
 - Negocia la función hash
 - Autentifica al servidor
 - El cliente genera claves de sesión aleatorias o con Diffie-Hellman
- SSL Assert protocol: informa sobre errores en la sesión
- Change Cipher Espec Protocol: notifica cambios de estado.

IPSec

Objetivo: Garantizar autenticación, integridad y (a poder ser) privacidad a nivel ip

• Procedimiento 1:

- Establecimiento de Asociación de seguridad mediante el protocolo IKE
- Establece una clave secreta (Diffie-Hellman)
- Incluye autenticación mutua con certificados.
- Es simplex (un único sentido)
- Se identifica con IP origen + SPI
- Vulnera el carácter no orientado a conexión de IP

■ Procedimiento 2:

- Garantiza autenticación e integriad
- Usa el protocolo de Çabeceras de autenticación"
- Usa **HMAC** con la Ks obtenida en IKE
- Procedimiento 3 (opcional):
 - Garantiza autenticación e integridad + privacidad
 - Protocolo . En capsulado de seguridad de la carga"

• 2 modos de operación:

- Túnel: asociación entre dos router intermediarios
- Transporte: extremo a extremo entre host origen y destino.