Vecteurs gaussiens

Exercice 1 : Indépendance de la moyenne et de la variance empiriques pour un vecteur gaussien. Soit V un vecteur aléatoire à valeurs dans \mathbb{R}^3 dont les composantes sont notées X_1, X_2 et X_3 . On suppose que X_1, X_2 et X_3 sont des variables aléatoires indépendantes de loi normale $\mathcal{N}(0, 1)$.

- 1) Quelle est la loi du vecteur $V = (X_1, X_2, X_3)^T$? Quelle est la densité de V?
- 2) Soit P la matrice de changement de base orthonormée telle que :

$$P^{T} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \end{pmatrix}$$

On note X le vecteur colonne de composantes $(X_i)_{i=1,2,3}$ et Y le vecteur colonne $Y = P^T X$ de composantes $(Y_i)_{i=1,2,3}$.

- Quelle est la loi du triplet (Y_1, Y_2, Y_3) ?
- Déterminer les lois de Y_1, Y_2 et Y_3 .
- 3) On note $\overline{X}=\frac{1}{3}\sum_{i=1}^3 X_i$ et $S^2=\frac{1}{2}\sum_{i=1}^3 \left(X_i-\overline{X}\right)^2$.
 - Vérifier que $\sum_{i=1}^3 X_i^2 = \sum_{i=1}^3 Y_i^2$ et $Y_2^2 + Y_3^2 = \sum_{i=1}^3 X_i^2 3\overline{X}^2$.
 - Exprimer \overline{X} et en fonction des variables aléatoires Y_i .
 - En déduire que \overline{X} et S^2 sont des variables aléatoires indépendantes.
- 4) Donner la loi de \overline{X} et de $2S^2$.

Exercice 2 : changement de variables et indépendance pour vecteurs gaussiens

Soient X, Y et Z trois variables aléatoires réelles indépendantes de loi $\mathcal{N}(0,1)$.

- 1) Déterminer la loi de U = X + Y + Z.
- 2) Montrer que X Y est une variable aléatoire indépendante de U.

Exercice 3 : comment générer un vecteur gaussien de vecteur moyenne m et de matrice de covariance Σ donnés ?

Soient X et Y deux variables aléatoires indépendantes de loi normale de moyenne $\mu=0$ et de variance $\sigma^2=1$. Soit m un vecteur de \mathbb{R}^2 et Σ une matrice symétrique définie positive de $\mathcal{M}_2(\mathbb{R})$. Déterminer une matrice M et un vecteur n tels que n0 et n1 soit un vecteur Gaussien de n2 de moyenne n2 et de matrice de covariance n3. Ce résultat permet de générer des vecteurs gaussiens à partir de variables aléatoires normales centrées réduites.

Réponses

Exercice 1

1) Puisque les variables aléatoires sont indépendantes, la densité de $(X_1, X_2, X_3)^T$ est

$$p(x_1, x_2, x_3) = \prod_{i=1}^{3} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_i^2}{2}\right).$$

On en déduit que (X_1, X_2, X_3) est un vecteur Gaussien de moyenne (0, 0, 0) et de matrice de covariance I_3 (matrice identité d'ordre 3).

2) La matrice P est orthogonale car ses colonnes sont orthogonales et de norme 1. Elle est donc inversible et par suite de rang maximal 3. On sait alors que $Y = P^T X$ est un vecteur Gaussien avec

$$m_Y = E[Y] = E[P^T X] = P^T E[X] = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Sigma_Y = E[(Y - m_Y)^T (Y - m_Y)]$$

$$= E[YY^T] = E[P^T X X^T P] = P^T I_3 P = I_3$$

Donc $Y \sim \mathcal{N}_3(0, I_3)$. Chacune des composantes de Y suit donc une loi normale de moyenne nulle et de variance unité (voir cours sur les lois marginales). Donc $Y_i \sim \mathcal{N}(0, 1)$.

3)

• On a

$$\sum_{i=1}^{3} Y_i^2 = Y^T Y$$

$$= X^T P P^T X = X^T X = \sum_{i=1}^{3} X_i^2$$

En multipliant P^T par X, on obtient $Y_1=\frac{1}{\sqrt{3}}\left(X_1+X_2+X_3\right)=\sqrt{3}\ \overline{X}$. Donc

$$Y_2^2 + Y_3^2 = \sum_{i=1}^3 Y_i^2 - Y_1^2$$
$$= \sum_{i=1}^3 X_i^2 - 3\overline{X}^2$$

• On a

$$\overline{X} = \frac{1}{\sqrt{3}}Y_1$$

$$2S^2 = \sum_{i=1}^3 (X_i - \overline{X})^2 = \sum_{i=1}^3 Y_i^2 - 2\frac{Y_1}{\sqrt{3}}\sqrt{3}Y_1 + Y_1^2$$

$$= Y_2^2 + Y_3^2$$

Puique Y_1, Y_2 et Y_3 sont indépendantes, on en déduit que $\overline{X} = \frac{1}{\sqrt{3}}Y_1$ et $S^2 = \frac{1}{2}\left(Y_2^2 + Y_3^2\right)$ sont également des variables aléatoires indépendantes.

4)

$$\overline{X} = \frac{1}{\sqrt{3}}Y_1 \sim \mathcal{N}\left(0,\frac{1}{3}\right)$$
 $2S^2=Y_2^2+Y_3^2 \sim \chi_2^2$ (loi du chi2 à 2 degrés de liberté)

Exercice 2

1) U est obtenu par transformation affine de $\mathbf{V} = (X, Y, Z)^T$ puisque

$$U = [1 \ 1 \ 1] V.$$

Comme la matrice $A = [1 \ 1 \ 1]$ est de rang p = 1, d'après le cours, U suit une loi normale de moyenne E[AV] = AE[V] = 0 et de variance

$$\sigma_U^2 = \mathbf{A} \Sigma_V \mathbf{A}^T$$

où $\Sigma_V = I_3$ est la matrice de covariance du vecteur $oldsymbol{V}$, soit

$$\sigma_U^2 = \mathbf{A}\mathbf{A}^T = 3.$$

2) On pose W = X - Y. Le vecteur $(U, W)^T$ est obtenu par transformation affine de V puisque

$$\left(\begin{array}{c} U \\ W \end{array}\right) = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 0 \end{array}\right) \left(\begin{array}{c} X \\ Y \\ Z \end{array}\right).$$

Puisque la matrice

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 0 \end{array}\right)$$

est de rang 2, le vecteur $(U, W)^T$ est un vecteur gaussien. La matrice de covariance de $(U, W)^T$ est

$$oldsymbol{A}\Sigma_{oldsymbol{V}}oldsymbol{A}^T=\left(egin{array}{ccc}1&1&1&1\1&-1&0\end{array}
ight)I_3\left(egin{array}{ccc}1&1&1\1&-1\1&0\end{array}
ight)=\left(egin{array}{ccc}3&0\0&2\end{array}
ight)$$

Puisque $(U,W)^T$ est un vecteur gaussien de covariance nulle, on en déduit d'après le cours que U et W sont des variables indépendantes.

Exercice 3

On sait que si $\begin{pmatrix} X \\ Y \end{pmatrix}$ est un vecteur de moyenne $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ et de matrice de covariance I_2 (matrice identité d'ordre 2 et que M est de rang maximal (ici de rang 2), alors $v = M \begin{pmatrix} X \\ Y \end{pmatrix} + n$ est aussi un vecteur Gaussien de \mathbb{R}^2 de moyenne $M \begin{pmatrix} 0 \\ 0 \end{pmatrix} + n$ et de matrice de covariance MI_3M^T . On en déduit

$$egin{array}{lll} oldsymbol{n} & = & oldsymbol{m} \ oldsymbol{M}oldsymbol{M}^T & = & oldsymbol{\Sigma} \end{array}$$

Le vecteur n est donc égal à m.

La matrice M doit être de rang maximal et vérifier $MM^T = \Sigma$. Il n'y a pas unicité de la matrice M vérifiant cette égalité. Un exemple classique de construction de M consiste à utiliser le fait que puisque Σ est symétrique définie positive, elle est diagonalisable avec une matrice de passage unitaire P et des valeurs propres positives, d'où

$$MM^T = \Sigma = PDP^T$$

avec $D = \text{diag } (\sigma_1^2, ..., \sigma_n^2)$. On peut alors construire la matrice M de la manière suivante

$$M = P [\operatorname{diag}(\sigma_1, ..., \sigma_n)].$$