Data Analysis: Statistical Modeling and Computation in Applications

<u>Help</u>

sandipan_dey >

<u>Course</u> **Progress**

< Previous</pre>

Discussion <u>Dates</u>

Resources

Next >

4. Configuration model

☐ Bookmark this page

Exercises due Oct 27, 2021 17:29 IST Completed

The Configuration, Price and Small-World models

Start of transcript. Skip to the end.

Prof Uhler: Welcome back to this third video

and this third lecture on the network module,

where we're talking about different kinds of network

models.

We've already discussed Erdos-

0:00 / 0:00

2.0x

X

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

Configuration model

1/1 point (graded)

Unfortunately the Erdos-Renyi model does not produce a power-law degree distribution. Power-law degree distributions are commonly observed in natural networks, so we desire a graphical model that will produce such a distribution.

In fact, we can go one step further and define a graphical model that can produce any desired degree distribution. This is known as the Configuration model.

The configuration model starts with a list of the desired degree distributions $\{k_1,k_2,\ldots,k_n\}$, with each k_i denoting the desired degree of node $m{i}$. We then assign to each node a number of "stubs", $m{s_i}$ that is initially equal to the desired degree for that node: $s_i=k_i$. Each stub can be thought of as "half of an edge" as $\sum_i k_i=2m$ where m is the number of edges for the graph.

Then, two stubs are selected uniformly at random. This means that a node, i, is selected with probability $\frac{s_i}{\sum_l s_l}$, and a node, j, is selected with probability $\frac{s_j}{\sum_l s_l}$. Note that this implies i can be the same as j.

Then, these stubs are connected together, removing them, and forming an edge. This means that an edge, $\{i,j\}$ is inserted into the edge list for the graph. Then, the number of stubs for node i and j are both reduced by one: $s_i \leftarrow s_i - 1$, $s_j \leftarrow s_j - 1$.

This process repeats until $\sum_l s_l = 0$.

We can generate the initial degree list by sampling values of $m{k}$ from our desired degree distribution: for example, a power-law distribution. Suppose we use a power-law distribution, can any list of samples drawn from this distribution be used to construct the Configuration model?

Yes

O No

Solution:

The sum of the node degrees must be even for any graph. When we draw samples from a power-law distribution, we may end up with $\sum_i k_i$ being odd. This cannot be used in the Configuration model, as it does not represent a valid graph.

We can address this using rejection sampling. If we draw a degree list for which the sum is odd, we can simple discard it (rejection) and draw a new degree list. We can repeat this until we draw a degree list for which the sum is even.

Submit

You have used 1 of 1 attempt

Answers are displayed within the problem

Number of stub pairs

2/2 points (graded)

Suppose that node i has degree k_i and node j has degree k_j in a Configuration model with n nodes and total number of edges m.

What is the total number of possible pairings of stubs between these two nodes? (Use k_i for k_i and k_j for k_i .)

Suppose that we have selected a stub from node i, what is the probability of it being connected to any other stub in the model? (Use m for m.)

 $p_{
m pair} =$

1/(2*m-1) **Answer:** 1/(2*m-1)

Solution:

As there are k_i stubs for node i and k_j stubs for node j, and it is possible all stubs for node i to be connected to any stub from node j, we have that the total number of pairs is $k_i k_j$.

Once we have selected a stub, there are 2m-1 other stubs that it could possibly be connected to. So the probability of this stub being connected to any particular other stub in the model is 1/(2m-1). We can also see that there are 2m-1 stub pairs that involve any given stub, and as this given stub must be connected somewhere in the graph, the probability of any particular pair in again 1/(2m-1).

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

Edge count

1/1 point (graded)

Use the correct solution to the previous question to answer this problem.

Let I_l be an indicator variable for stub pair l being selected to form an edge in the graph. We know that $\mathbb{E}\left[I_l
ight]=p_{ ext{pair}}.$

In addition, the number of edges, $h_{i,j}$, between nodes i and j is equal to the sum of these indicator variables for all stub pairs between i and j:

$$h_{i,j} \ = \sum_{l \in \{ ext{stub pairs between } i ext{ and } j\}} I_l$$

What is the expected value of $h_{i,j}$?

$$\mathbb{E}\left[h_{i,j}
ight] =$$

(k_i*k_j)/(2*m-1) **✓ Answer:** k_i*k_j/(2*m-1)

Solution:

We have

$$egin{aligned} \mathbb{E}\left[h_{i,j}
ight] &= \sum_{l \in \{ ext{stub pairs between } i ext{ and } j\}} \mathbb{E}\left[I_l
ight] \ &= \sum_{l \in \{ ext{stub pairs between } i ext{ and } j\}} p_{ ext{pair}} \ &= k_i k_j p_{ ext{pair}} \ &= rac{k_i k_j}{2m-1} \end{aligned}$$

Submit

You have used 2 of 2 attempts

Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Module 3: Network Analysis:Graphical models / 4. Configuration model

Add a Post

۸ ما ما -	t	
Add a comm	ent	//
Add a Resp	nse 1 other res	oons
abc4976628 2 months ago	<u>12</u>	+
	k the second question is really confusing! I think a better description is "Suppose that we have to from node i, what is the probability of it being connected to <i>a particular stub (or another given</i> odel?"	
Thank you. you believe.	comment helped me to get the answer. It is indeed confusing with the sentence phrasing I	••
posted 2 montl	ago by <u>ashokmeruva</u>	
l agree, there is a particular one	ambiguity in the question (I thought of the probability of picking any of the other 2m -1 instead of	••
posted 2 montl	ago by ediazr	
+1 Thank you!		••
posted 2 montl	ago by <u>andsann</u>	
Add a comm	ent	//
owing all resp .dd a resp		
eview		
eview Submit		

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>