Data Science - Lecture 10 Practical Issues of Classification

Dr. Faisal Kamiran

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values
- Data Fragmentation

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values

Data Fragmentation

Decision Boundary

 Border line between two neighboring regions of different classes is known as decision boundary

Decision Boundary

 Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Overfitting and Underfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors
- Underfitting: when model is too simple, both training and test errors are large

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - ◆ Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

- Re-substitution errors: error on training (Σ e(t))
- Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)

- Methods for estimating generalization errors:
 - Pessimistic approach:
 - \bullet For each leaf node: e'(t) = (e(t)+0.5)
 - \bullet Total errors: e'(T) = e(T) + N × 0.5 (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

```
Training error = 10/1000 = 1\%
```

Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

- Methods for estimating generalization errors:
 - ◆ Reduced error pruning (REP):
 - uses validation dataset to estimate generalization error
 - Validation set is part of training data used for preliminary validation of model during the learning process

Decision Tree, T_L

Decision Tree, TR

$$E'(T_1) = (4+7*0.5)/24 = 7.5/24 = 0.3125$$

Decision Tree, T_L

 $E'(T_1) = (4+7*0.5)/24 = 7.5 / 24 = 0.3125$

 $E'(T_R) = (6+4*0.5)/24 = 8/24 = 0.3333$

Decision Tree, TR

Example of Post-Pruning

Training Error (Before splitting) = 10/30Pessimistic error = (10 + 0.5)/30 = 10.5/30

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data

Therefore, one should include model complexity when evaluating a model

Minimum Description Length (MDL)

X	У		Yes No	
X ₁	1		0 B?	
X ₂	0		B_1 B_2	
X_3	0	Λ	C? 1	R
X ₄	1		C_1 C_2	<u>Б</u>
		\mathcal{A}		\prec
X _n	1	()		人,
	•			' \

X	У
X_1	?
X_2	?
X_3	?
X_4	?
X _n	?

- Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.

Minimum Description Length (MDL)

X	У		Yes No	
X ₁	1		0 B?	
X ₂	0		B_1 B_2	
X ₃	0	٨	C?	2
X_4	1	A) _
		\mathcal{A}		$\langle \cdot \rangle$
X _n	1	()		(
ı	ı		/	1

X	У
X_1	
X_2	?
X_3	?
X_4	?
X _n	?

- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
- You can download the software from:
 http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz