

Física Computacional

Escuela de Física

M.R.Fulla¹

¹Escuela de Física, Universidad Nacional de Colombia Sede Medellín

marlonfulla@yahoo.com- Oficina:21-408

https://sites.google.com/view/fiscomunalmed/

August 23, 2023

Diseño de Algoritmos

Diseño de Programas

Prueba

Diagrama de Flujo y Seudocódigo

Prompt user to enter temperature in degrees Fahrenheit Read temperature in degrees Fahrenheit (temp_f) temp_k in kelvins + (5.9.) * (temp_f - 32) + 273.15 Write temperature in kelvins

Seudocódigo

Operadores, constantes y variables lógicas Datos lógicos:

.TRUE. .FALSE. LOGICAL :: var1,var2,...

Operadores Relacionales

Оре	ration	Meaning	
New style	Older style		
==	.EQ.	Equal to	
/=	.NE.	Not equal to	
>	.GT.	Greater than	
>=	.GE.	Greater than or equal to	
<	.LT.	Less than	
<=	.LE.	Less than or equal to	

 $Operadores \\ Combinacionales$

Operator	Function	Definition	
7, .AND. 7 ₂	Logical AND	Result is TRUE if both l_1 and l_2 are TRUE	
7, .OR. 7 ₂	Logical OR	ogical OR Result is TRUE if either or both of l_1 at l_2 are TRUE	
l_1 .EQV. l_2	Logical equivalence	Result is TRUE if l_1 is the same as l_2 (either both TRUE or both FALSE)	
l_1 .NEQV. l_2	Logical nonequivalence	Result is TRUE if one of l_1 and l_2 is TRUE and the other one is FALSE	
.NOT. 7,	Logical NOT	Result is TRUE if l_1 is FALSE, and FALSE if l_1 is TRUE	

Tablas de Verdad

Truth tables for binary combinational logic operators

7,	12	7, .AND.72	1, .OR. 1 ₂	1, .EQV. 12	7, .NEQV. 7 ₂
.FALSE.	.FALSE.	.FALSE.	.FALSE.	.TRUE.	.FALSE.
.FALSE.	.TRUE.	.FALSE.	.TRUE.	.FALSE.	.TRUE.
.TRUE.	.FALSE.	.FALSE.	.TRUE.	.FALSE.	.TRUE.
.TRUE.	.TRUE.	.TRUE.	.TRUE.	.TRUE.	.FALSE.

Truth table for .NOT. operator

7,	.NOT.7 ₁
.FALSE.	.TRUE.
.TRUE.	.FALSE.

Jerarquía de los operadores Lógicos

- 1. todos los operadores relacionales (==, /=, >, >=, <, <=) se evalúan de izquierda a derecha
- 2. Todos los operadores .NOT. se evalúan primero
- 3. Todos los operadores .AND. se evalúan de izquierda a derecha
- 4. Todos los operadores .OR. se evalúan de izquierda a derecha
- 5. Todos los operadores .NEQV. se evalúan de izquierda a derecha

Diseño de Programas

- Datos
- Operadores
- Estructuras de Control
 - Estructuras Selectivas
 - Estructuras de Repetición
- Subprogramas
 - Funciones
 - Subrutinas o Procedimientos
- Otro tipo de Datos

Estructura de Selección IF


```
IF (logical_expr) THEN
Statement 1
Statement 2

END IF

Statement 1
Statement 1
Statement 1
Statement 1
Statement 2

...

Statement 1
Statement 2
...
```

Estructura de Selección IF-ELSEIF-ELSE

Sangría

Estructura de Selección Anidadas


```
outer: IF (x > 0.) THEN
                               [name:] IF (logical_expr_1) THEN
                                  Statement 1
   inner: IF (y < 0.) THEN
                                  Statement 2
                                                                  Block 1
   END IF inner
                                ELSE IF (logical_expr_2) THEN [name]
                                  Statement 1
END IF outer
                                  Statement 2
                                                                  Block 2
                                ELSE [name]
                                  Statement 1
                                  Statement 2
                                                                  Block 3
                                END IF Γnamel
```

Sugerencia: Colocar etiquetas a las estructuras!

Estructura de Selección SELECT-CASE

Case case_value
Selector low_value:
.high_value
Options low_value:high_value

Execute block if case_value == case_expr Execute block if low_value <= case_expr Execute block if case_expr <= high_value Execute block if low_value <= case_expr <= high_value

Actividad

Escribir un programa permita evaluar la siguiente expresión.

$$f(x) = \begin{cases} e^{-x/2} & si \ x <= 0 \\ x^{3/2} & si \ 0 < x <= 3.1 \\ ln(x^2) - sin(x) & si \ 3.1 < x <= 10.3 \\ cosh(\frac{1}{x}) & en \ otro \ caso \end{cases}$$

¿Es posible solucionar el problema empleando la estructura de selección SELECT-CASE? ¿Por qué?