Calculus and Probability Assignment 2

Christoph Schmidl s4226887

Group: not assigned? Where can I find this?

April 26, 2019

Exercise 7

a) Dividing by x^3 makes the limit more obvious:

$$\lim_{x \to -\infty} \frac{x^3 + 2x^2 + 2}{3x^3 + x + 4} = \lim_{x \to -\infty} \frac{1 + \frac{2}{x} + \frac{2}{x^3}}{3 + \frac{1}{x^2} + 4\frac{4}{x^3}} = \frac{1}{3}$$

The numerator approaches 1 and the denominator 3.

$$\lim_{x \to -\infty} \frac{x^3 + 2x^2 + 2}{3x^3 + x + 4} = \frac{1}{3}$$

b) Dividing by x^2 makes the limit more obvious:

$$\lim_{x \to \infty} \frac{2x+1}{x^2+x} = \lim_{x \to \infty} \frac{\frac{2}{x} + \frac{1}{x^2}}{1 + \frac{1}{x}} = 0$$

The numerator approaches 0 and the denominator 1.

$$\lim_{x \to \infty} \frac{2x+1}{x^2+x} = 0$$

Exercise 8

a) Derivative of the function f(x) = 2x + 3 for any point a in \mathbb{R} :

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$f'(a) = \lim_{h \to 0} \frac{2(a+h) + 3 - (2a+3)}{h}$$

$$= \lim_{h \to 0} \frac{2a + 2h + 3 - 2a - 3}{h}$$

$$= \lim_{h \to 0} \frac{2h}{h}$$

$$= 2$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{2h}{h} = 2, f'(a) = 2$$
 for every a in \mathbb{R}

Exercise 9

a) Applying the chain rule:

$$f'(x) = -\frac{1}{(1 + \frac{1}{x})^2} * (-\frac{1}{x^2}) = \frac{1}{x^2(1 + \frac{1}{x})^2}$$

Therefore we already got our slope m in the known formula: y = mx + bThe tangent line at x = a is therefore:

$$y = \frac{1}{a^2(1+\frac{1}{a})^2}x + b$$

Answer 9a

b) ... Answer 9b

Exercise 10

a) We already know that $(e^x)' = e^x$ and $(tan(x))' = \frac{1}{\cos^2(x)}$. By using the chain rule we get:

$$f(x) = exp(tan(x))$$

$$f'(x) = exp(tan(x))\frac{1}{\cos^2(x)} = \frac{exp(tan(x))}{\cos^2(x)}$$

$$f'(x) = exp(\tan(x)) \frac{1}{\cos^2(x)} = \frac{exp(\tan(x))}{\cos^2(x)}$$

b) We already know that $(\ln(x))' = \frac{1}{x}$ and $(\cos(x))' = -\sin(x)$. By using the chain rule we get:

$$f(x) = -\ln(\cos(x))$$

$$f'(x) = -\frac{1}{\cos(x)} * (-\sin(x)) = \frac{\sin(x)}{\cos(x)} = \tan(x)$$

$$f'(x) = -\frac{1}{\cos(x)}*(-\sin(x)) = \frac{\sin(x)}{\cos(x)} = \tan(x)$$

Exercise 11

a)

$$f(x) = (exp(x))^{exp(x)}$$

- Logarithmic differentiation: $\ln((exp(x)^{exp(x)})) = x * exp(x)$. $\frac{f'(x)}{f(x)} = exp(x)(x+1)$. $f'(x) = (exp(x)^{exp(x+1)})(x+1) = exp(x^{(exp(x)+1)})(x+1)$
- Chain rule: $g(x) = x^x$ and h(x) = exp(x). $f(x) = (g \circ h)$. $g'(x) = x^x(log(x+1))$ and h'(x) = exp(x). $f'(x) = g'(h(x))h'(x) = (exp(x))^{exp(x)(x+1)}exp(x) = exp(x^{(exp(x)+1)})(x+1)$

$$f'(x) = (exp(x)^{exp(x+1)})(x+1) = exp(x^{(exp(x)+1)})(x+1)$$

b)

$$f(x) = \sqrt{x-2}$$
, compute $(f^{-1})'(x)$ (for $x > 2$)

- Computing the inverse and differentiate: $f^{-1}(x) = x^2 + 2$. $(f^{-1})'(x) = 2x$ Inverse rule: $f^{-1}(x) = x^2 + 2$. $f'(x) = \frac{1}{2\sqrt{x-2}}$. Therefore: $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\frac{1}{2\sqrt{(x^2+2)-2}}} = \frac{1}{\frac{1}{2x}} = 2x$

$$f^{-1}(x) = x^2 + 2$$
. $(f^{-1})'(x) = 2x$

Exercise 12

a) text

Answer Form Assignment 2

Name	Christoph Schmidl
Student Number	s4226887

Question	Answer
7a (1pt)	$\lim_{x \to -\infty} \frac{x^3 + 2x^2 + 2}{3x^3 + x + 4} = \frac{1}{3}$ $\lim_{x \to \infty} \frac{2x + 1}{x^2 + x} = 0$
7b (1pt)	$\lim_{x \to \infty} \frac{2x+1}{x^2+x} = 0$
8 (1pt)	$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{2h}{h} = 2, \ f'(a) = 2 \text{ for every } a \text{ in } \mathbb{R}$
9a (1pt)	Answer 9a
9b (1pt)	Answer 9b
10a (1pt)	$f'(x) = exp(\tan(x)) \frac{1}{\cos^2(x)} = \frac{exp(\tan(x))}{\cos^2(x)}$
10b (1pt)	$f'(x) = -\frac{1}{\cos(x)} * (-\sin(x)) = \frac{\sin(x)}{\cos(x)} = \tan(x)$
11a (1pt)	$f'(x) = (exp(x)^{exp(x+1)})(x+1) = exp(x^{(exp(x)+1)})(x+1)$
11b (1pt)	$f^{-1}(x) = x^2 + 2$. $(f^{-1})'(x) = 2x$
12 (1pt)	