Trasparenze del corso di

Informatica Teorica

Parte Prima

Insiemi, Relazioni, Funzioni

Concetti matematici di base

- Insiemi
- Relazioni
- Funzioni

Insiemi

- consideriamo insiemi *finiti* e insiemi *infiniti*
- |A| = cardinalità dell'insieme (finito) A
- alcuni insiemi infiniti di numeri:

lo 0 è incluso nei naturali.

N	naturali	Q	razionali relativi
N^+	naturali positivi	Q^+	razionali positivi
		Q-	razionali negativi
\mathbf{Z}	interi relativi		
\mathbf{Z}^{+}	interi positivi	R	reali
$\mathbf{Z}^{\text{-}}$	interi negativi	\mathbb{R}^+	reali positivi
		R-	reali negativi

3

Induzione matematica

per dimostrare proprietà degli elementi di insiemi infiniti data una proposizione P(n) definita sui naturali, se esiste un naturale n_0 tale che:

```
(passo base) P(n_0) è vera

(passo induttivo) P(n) implica P(n+1) \forall n \ge n_0

allora P è vera \forall n \ge n_0
```

esempio: somma dei naturali non superiori a n: $\sum_{i=1}^{n} i = \frac{(n+1) n}{2}$ esercizio: $\lim_{n \to 1} 2^{n} = 2^{n} = 2^{n} = 1$

```
passo base: ((1+1)*1)/2 = 1 =sommatoria passo ind:(n+1) + som(i) = (n+1)+ ((n+1)n)/2 (per il passo base) = (2n+2+n^2+n)/2
```

Sottoinsiemi e insiemi uguali

- dati due insiemi A e B, se $x \in B \Rightarrow x \in A$
 - allora B è sottoinsieme di A, e si scrive $B \subseteq A$
- ogni insieme è sottoinsieme di se stesso
- l'insieme vuoto ∅ è sottoinsieme di ogni insieme
- se A e B sono finiti, allora $B \subseteq A \Rightarrow |B| \le |A|$
- A e B *insiemi uguali* $A=B \Leftrightarrow (x \in A \Leftrightarrow x \in B)$ si può scrivere anche $A=B \Leftrightarrow (A \subseteq B \land B \subseteq A)$
- A è sottoinsieme proprio di B (A⊂B) se (A ⊆ B) ∧ (A ≠ B)

5

Insieme delle parti

l'insieme dei sottoinsiemi di A è detto l'*insieme delle parti* di A e si indica con P(A) o 2^A

se A è finito e |A| = n allora $|P(A)| = 2^n$

l'insieme delle parti include tutti i possibili sottoinsiemi di A

Operazioni tra insiemi

- unione $C = A \cup B$
 - se A e B sono finiti $|C| \le |A| + |B|$
 - commutativa e associativa

- se A e B sono finiti $|C| \le \min\{|A|, |B|\}$
- commutativa e associativa
- l'intersezione è distributiva rispetto all'unione
- partizione di A
 - insieme di n sottoinsiemi di A tali che $A_1 \cup A_2 \cup ... \cup A_n = A$ $i \neq j \Rightarrow A_i \cap A_i = \emptyset$

В

7

Operazioni tra insiemi

• complemento di B rispetto ad A $C = A-B = \{x | x \in A \land x \notin B\}$

- differenza simmetrica o somma disgiunta $A \to B$ $A+B=A\cup B-(A\cap B)$
- prodotto cartesiano $C=A \times B$ $C= \{\langle x,y \rangle | x \in A \land y \in B\}$
 - insieme di tutte le possibili coppie ordinate
 - il prodotto cartesiano è associativo ma non commutativo

$$(AxB)xC = Ax(BxC)$$

Relazioni

- siano A₁, A₂, ..., A_n n insiemi (non necessariamente distinti)
- una *relazione n-aria* è un sottoinsieme di

$$A_1 \times A_2 \times ... \times A_n$$

$$R \subseteq A_1 \times A_2 \times ... \times A_n$$

esistono delle n-uple che con rispettano la condizione e quindi vengono "scartate"

esempio:

- la relazione "minore di" definita sui naturali è l'insieme $R \subseteq N \times N = N^2$, dove $R = \{\langle x, y \rangle | x \langle y \}$

Relazione d'ordine

- $R\subseteq A^2=A \times A$ è una *relazione d'ordine* se valgono le seguenti proprietà:
 - 1. riflessività
 - $\langle x, x \rangle \in \mathbb{R}$

2. antisimmetria

$$\langle x,y \rangle \in R \land \langle y,x \rangle \in R \Rightarrow x=y$$

3. transitività

$$\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,z \rangle \in R$$

riflessività: quando esiste una rel tra x e se stesso

antisimmetria: se esiste una rel tra x e y e tra y e x allora x è uguale a y

transitività: se esiste una rel tra x e y e tra y e z allora esiste anche la relazione tra x e z

un insieme su cui è definita una relazione d'ordine si dice parzialmente ordinato o *poset* ("partially ordered set")

esempio: la relazione "≤" è una relazione d'ordine su N

Relazione d'ordine totale

• una relazione d'ordine $R \subseteq A^2$ è detta *totale* se $\langle x,y \rangle \in A^2 \Rightarrow \langle x,y \rangle \in R \lor \langle y,x \rangle \in R$

esempio:

la relazione " \leq " è una relazione d'ordine totale su N $1 \le 2 \le 3 \le 4 \le 5 \le 6 \le 7 \le 8 \dots$

11

Relazione di equivalenza

- R A è una relazione di equivalenza se valgono le seguenti proprietà: simmetria: se esiste
 - 1. riflessività

 $\langle x, x \rangle \in \mathbb{R}$

2. simmetria $\langle x,y \rangle \in R \Rightarrow \langle y,x \rangle \in R$

3. transitività

$$\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,z \rangle \in R$$

esempio: la relazione "=" è una relazione di equivalenza su R

 $x=y \rightarrow y=x vero$

x=y e y=z -> x=z vero

12

una rel tra x e y allora

esiste anche tra y e x

Relazione di equivalenza

- un insieme A su cui è definita una relazione di equivalenza si può partizionare in sottoinsiemi massimali di equivalenza, detti classi di equivalenza
- l'insieme delle classi di equivalenza di A è detto *insieme quoziente* e si denota A/R
- un elemento di A/R si denota con [a]
- il numero di classi di A/R si chiama *indice* di R

13

Esempio di relazione di equivalenza

- consideriamo la relazione E_k su N $n \equiv_k m \quad \text{n congruo m modulo k}$ se esistono q, q', r (con r < k) tali che $n = qk + r \quad e \quad m = q'k + r$
- E_k è una relazione di equivalenza
- le sue classi sono le classi resto rispetto alla divisione per k

Operazioni su relazioni

unione

$$R_1 \cup R_2 = \{<\!\!x,\!\!y\!\!> \mid <\!\!x,\!\!y\!\!> \in R_1 \lor <\!\!x,\!\!y\!\!> \in R_2\}$$

• complementazione

$$\underline{\mathbf{R}} = \{\langle \mathbf{x}, \mathbf{y} \rangle | \langle \mathbf{x}, \mathbf{y} \rangle \notin \mathbf{R} \}$$

• chiusura transitiva

$$R^{+} = \{\langle x,y \rangle | \\ \exists y_{1}, ..., y_{n} \in A, n \geq 2, y_{1} = x, y_{n} = y \\ tali \ che \\ \langle y_{i}, y_{i+1} \rangle \in R, \ i=1, ..., n-1 \}$$

• chiusura transitiva e riflessiva

$$R^*=R^+\cup\{|x\in A\}$$

chiusura transitiva:contiene (2, 5) se conteneva (2, 3) e (3, 5)

chiusura transitiva e riflessiva: contiene (2, 5) (2, 3) (3, 5) se conteneva (2, 3) e (3, 5)

Funzioni

$$R \subseteq X_1 \times ... \times X_n$$

è una relazione funzionale se

$$\forall < x_1, ..., x_{n-1} > \in X_1 \times ... \times X_{n-1}$$

esiste al più un elemento $x_n \in X_n$ tale che

$$\langle x_1, ..., x_{n-1}, x_n \rangle \in R$$

si chiama *funzione* la legge che associa $\langle x_1, ..., x_{n-1} \rangle$ ad x_n

$$f(x_1, ..., x_{n-1}) = x_n$$

$$f: X_1 \times ... \times X_{n-1} \to X_n$$

 $f: X_1 \times \ldots \times X_{n-1} \to X_n$ la funzione trasforma gli n-1 elementi nell'elemento n

 $X_1 \times \ldots \times X_{n-1}$ è il *tipo* della funzione

17

Funzioni: dominio codominio

$$dom(f) = dominio di f$$

sottoinsieme di
$$X_1 \times ... \times X_{n-1}$$

$$dom(f) = \{ < x_1, ..., x_{n-1} > \in X_1 \times ... \times X_{n-1} \mid$$

$$\exists x_n \in X_n \ f(x_1, ..., x_{n-1}) = x_n$$

cod(f) = codominio di f

sottoinsieme di X_n

$$cod(f) = \{x_n \in X_n \mid$$

$$\exists <\!\! x_1,\,...,\,x_{n\text{-}1}\!\!> \; \in X_1 \times ... \times X_{n\text{-}1}$$

$$f(x_1, ..., x_{n-1}) = x_n$$

Funzioni: fibra controlmmagine

dato un
$$x_n$$

$$f^{-1}(x_n) = controimmagine o fibra di x_n$$
sottoinsieme di $X_1 \times ... \times X_{n-1}$

$$f^{-1}(x_n) = \{\langle x_1, ..., x_{n-1} \rangle \in X_1 \times ... \times X_{n-1} \mid \langle x_1, ..., x_{n-1} \rangle \in dom(f)$$

$$\uparrow f(x_1, ..., x_{n-1}) = x_n\}$$

Funzione totale

• una funzione f è *totale* se dom(f) = $X_1, ..., X_{n-1}$

tutti gli elementi vanno in una parte di Xn

21

Funzione parziale

• una funzione $f \ ensuremath{\grave{e}}\ parziale$ se $dom(f) \subseteq X_1, ..., X_{n-1}$

• tutte le funzioni sono parziali

Funzione suriettiva

• una funzione f è *suriettiva* se $cod(f) = X_n$

da alcuni elementi a tutto Xn

23

Funzione iniettiva

• una funzione f è *iniettiva* se $|f^{-1}(x_n)|=1$

corrisponde un solo elemento di Xn

ad un elemento

Funzione biiettiva

• una funzione f è *biiettiva* (biiezione) se è iniettiva, suriettiva e totale

tutti gli elementi di A corrispondono a tutti gli elementi di B. Quindi anche nel senso inverso (f^-1) sarà totale, iniettiva e suriettiva.

25

Pidgeonhole principle

teorema:

dati due insiemi A e B tali che

$$0 < |B| < |A| < \infty$$

non posso associare un elemento di A ad ogni elemento di b distintamente

non esiste una funzione f: A→B che sia totale e iniettiva

dimostrazione:

basata sulla cardinalità di B e per induzione

01-insiemi-relazioni-funzioni-v.1.5

Dimostrazione (pidgeonhole principle)

- dimostrazione per induzione
 - passo base: |B|=1
 - passo induttivo: |B|>1
- passo base (|B|=1)
 B={b}, |A|>1, es. A={a₁,a₂}
 se f è totale, allora f(a₁)=b e f(a₂)=b
 allora f non è iniettiva perché |f⁻¹(b)|>1

non esiste una funzione iniettiva e totale A->B se la cardinalità di B è minore della cardinalità di A

Dimostrazione (pidgeonhole principle)

passo induttivo: |B|>1
 supponiamo sia vero per |B| = n ed |A| ≥ n+1
 dimostriamo che è vero per |B| = n+1 e |A| ≥ n+2
 ipotizziamo per assurdo che esista una funzione totale iniettiva f e scegliamo un qualunque elemento b di B
 se |f⁻¹(b)|≥2 ⇒ contraddizione ⇒ teorema dimostrato se |f⁻¹(b)|≤1 consideriamo
 A'=A-{f⁻¹(b)} e B'=B-{b}
 |A'| ≥ n+1 > |B'| = n
 applichiamo l'ipotesi induttiva ⇒ contraddizione

la cardinalità ci indica quali funzioni posso applicare su due insiemi procedo mano a mano eliminando dagli insiemi A e B le coppie ax e bx. Non troverò tutte le coppie quindi l'insieme finale A' avrà cardinalità diversa (n+1 > n)

 $f^{-1}(b) =$ controimmagine o fibra

Cardinalità di insiemi infiniti

Questi 2 insiemi possono essere infiniti!!!

- due insiemi sono *equinumerosi* se esiste una biiezione tra essi
- la relazione di equinumerosità è una relazione di equivalenza
- possiamo ora dare una definizione rigorosa di cardinalità di un insieme finito A:

$$|A|=0$$
 se $A=\emptyset$
 $|A|=n$ se A è equinumeroso a $\{0, 1, ..., n-1\}$

è lo stesso procedimento che si esegue quando si contano gli elementi di un insieme

30

biiezione: iniettiva, suriettiva e totale

l'insieme vuoto non ha caratterizzazione (non puo' esserci un insieme vuoto di mele)

Numerabilità

- un insieme è *numerabile* se è equinumeroso a N
- ovvero che esiste una biiezione con N
- un insieme è *contabile* se è finito o numerabile
- un insieme ha cardinalità *aleph zero* (\aleph_0) se è equinumeroso a N, cioè numerabile
- sottoinsiemi di insiemi contabili sono contabili
- insiemi equinumerosi ad insiemi contabili sono contabili

31

Numerabilità degli interi relativi

teorema:

l'insieme Z degli interi relativi è numerabile dimostrazione:

biiezione con N

Z: 0 1 -1 2 -2 3 -3 4 -4 ... N: 0 1 2 3 4 5 6 7 8 ...

ad ogni elemento di Z posso far corrispondere un elemento di N. if (x>0) $\{y = 2x-1\}$ else $\{y = 2x\}$

Numerabilità dei numeri pari

teorema:

l'insieme P dei numeri pari è numerabile dimostrazione:

bijezione con N

P: 0 2 4 6 8 10 12 14 16 ... N: 0 1 2 3 4 5 6 7 8 ... y= x/2

33

Numerabilità

teorema:

l'insieme N^2 delle coppie di naturali è numerabile

dimostrazione:

4 14

tecnica usata da Cantor per mostrare la numerabilità di Q

0 1 2 3 4 0.0 1 3 6 10 1.2 4 7 11 2.5 8 12 data una coppia di naturali ottengo un altro naturale. Questo vale anche per triple, quadruple etc.

alef zero * alef zero = alef zero

osservazione:

per ogni $n \in \mathbb{N}$, se A è numerabile, anche A^n è numerabile

Cardinalità di unioni di insiemi

teorema:

l'unione di una quantità contabile di insiemi contabili è contabile

dimostrazione:

$$S_0$$
 a_{01} a_{02} a_{03} a_{04} a_{05} a_{11} a_{12} a_{13} a_{14} a_{15}

$$S_2$$
 a_{21} a_{22} a_{23} a_{24} a_{25}

$$S_3$$
 a_{31} a_{32} a_{33} a_{34} a_{35}

$$S_4$$
 a_{41} a_{42} a_{43} a_{44} a_{45}

anche qui posso trovare un numero che corrisponde a qualsiasi elemento dell'unione, usando le diagonali

35

Insiemi non numerabili

hanno più elementi dei numerabili

per dimostrare la non numerabilità di un insieme si usa la *tecnica di diagonalizzazione* di Cantor

teorema:

R non è numerabile

I naturali sono contenuti nei reali ma questo non implica che i reali siano numerabili!

dimostrazione:

- 1. dimostriamo che R è equinumeroso a (0,1)
- 2. dimostriamo che (0,1) non è numerabile

Insiemi non numerabili (0,1) e R sono equinumerosi: una biiezione è data, per esempio, dalla funzione $y = \frac{1}{(2^x+1)}$

Insiemi non numerabili

- Supponiamo per assurdo che una enumerazione di (0,1) esista, denotiamo con Φ_i l'iesimo di (0,1) che elemento di (0,1)
- consideriamo r∈(0,1) che ha come i-esima cifra della mantissa (i=1, 2, ...) un valore diverso da 0, da 9, e dal valore della i-esima cifra di Φ_i

r (6) (5) (1) (7)

perchè se fosse nella posizione k sarebbe diverso da se stesso (la sua k-esima cifra)

r, detto *elemento diagonale*, non fa parte della enumerazione, in quanto differisce da ogni elemento della enumerazione in almeno una cifra, e ciò è assurdo

Insiemi non numerabili

teorema:

 Φ_4

P(N) = insieme dei sottoinsiemi (insieme delle parti)

P(N) non è numerabile

dimostrazione:

supponiamo per assurdo che lo sia sia $P_1, P_2, ..., P_i$, ... una sua enumerazione a ciascun P_i associamo la sequenza

b_{i0}, b_{i1}, b_{i2}, ..., dove

$$b_{ij}=0 \text{ se } j \notin P_i$$

 $b_{ij}=1 \text{ se } j \in P_i$

costruisco una sorta di firma per determinare se l'elemento appartiene a Pi

Insiemi non numerabili

costruiamo ora l'insieme P (diagonale) con

sequenza
$$p_0, p_1, ..., p_k,...$$
 dove

$$p_k = 1 - b_{kk}$$

P differisce da ogni P_i, in quanto

usiamo la stessa tecnica per determinare la non numerabilità dei reali (mediante l'elemento r che dovrebbe essere diverso da se stesso)

$$i \in P \Leftrightarrow i \notin P_i$$

osservazione: la non numerabilità di P(N) vale anche per l'insieme delle parti di ogni insieme di cardinalità \aleph_0

41

Funzione caratteristica

si dice funzione caratteristica $f_S(x)$ di $S\subseteq N$ la funzione totale $f_S: N \rightarrow \{0,1\}$

$$f_S(x)=0$$
 se $x \notin S$, $f_S(x)=1$ se $x \in S$

la funzione caratteristica identifica il problema del test di appartenenza ad un insieme a quello del calcolo di una funzione

come le firme 0 o 1 usate nella dimostrazione precedente

teorema:

l'insieme delle funzioni caratteristiche su N non è numerabile

dimostrazione:

ovvia, considerando la biiezione tra P(N) e l'insieme delle funzioni caratteristiche

Cardinalità transfinite – notazione aleph

- se un insieme finito ha cardinalità n, il suo insieme delle parti ha cardinalità 2^n
- analogamente, se un insieme infinito ha cardinalità \aleph_0 denotiamo con 2^{\aleph_0} la cardinalità del suo insieme delle parti
- gli insiemi con cardinalità 2^{\aleph_0} sono detti *continui*

2^alef zero è uguale a alef uno? (ovvero è la cardinalità successiva ad alef zero?) Non si può negare, ma non si può neanche affermare

43

Cardinalità delle funzioni totali intere

- le funzioni totali intere sono un insieme continuo
- $|\{f|f:N\rightarrow N\}| \geq 2^{\aleph_0}$
 - infatti, $\{f | f: N \to N\} \supseteq \{f | f: N \to \{0,1\}\}, e$ $|\{f | f: N \to \{0,1\}\}| = 2^{\aleph_0}$
- $|\{f \mid f: N \rightarrow N\}| \leq 2^{\aleph_0}$
 - infatti {f | f:N→N} \subseteq P(N²)
 - N² è equinumeroso ad N
 - $|P(N^2)| = 2^{\aleph_0}$
- ne segue che $|\{f | f: N \rightarrow N\}| = 2^{\aleph_0}$

una relazione funzionale è un sottoinsieme dell'insieme delle parti del prodotto cartesiano

Cardinalità transfinite

teorema:

 \boldsymbol{R} è equinumeroso a $\boldsymbol{P}(\boldsymbol{N})$ ed è quindi continuo

dimostrazione:

è sufficiente mostrare che la proprietà vale per i reali in (0,1), vista la biiezione tra R e (0,1)

uso della rappresentazione binaria della mantissa e del concetto di funzione caratteristica

i cardinali transfiniti servono a denotare la cardinalità di insiemi infiniti (es: \aleph_0 , 2^{\aleph_0} , $2^{2^{\aleph_0}}$, ...)

Cantor ha dimostrato che esistono infiniti cardinali transfiniti vedremo come considerazioni relative alla cardinalità di insiemi infiniti daranno interessanti spunti sull'idea di calcolabilità