

Fundamentals of Accelerated Data Science

NVIDIA

Workshop Overview

An introduction to data science with a focus on speed and efficiency

Learning objectives:

- Understand the fundamental concepts of data science and parallel computing
- Explore practical examples of accelerated data science pipelines
- Examine the methods used to achieve acceleration in data science and discuss their broader implications

This workshop will not cover statistical analysis, neural networks, and distributed computing

	Workshop Outline
Task 1	Data science overview Data manipulation
Task 2	Graph analytics
Task 3	Machine Learning
Coding Assessment	Biodefense

Section 3 Agenda

- Machine Learning Fundamentals
- End-To-End Machine Learning
- Accelerating Machine Learning
- Hands-On Lab

Machine Learning

Data, algorithm, and compute

- Data science has a broader focus that encompasses various techniques for extracting insights and meaning from data, including statistical analysis and data visualization. In contrast, machine learning primarily focuses on building algorithms that enable computers to learn from data and make predictions.
- Pillars of machine learning:

Traditional Programming: Rules-Based

Explicitly define rules and logic to follow

Model Training

Models learn patterns from data to make predictions or decisions without explicit programming

Supervised vs. Unsupervised

Trained on labeled data to make predictions or classifications on new, unseen data

input rules output Training input learning output model output

Supervised

- Regression: predicting a continuous value
- Classification: predicting a discrete label

Supervised vs. Unsupervised

Identifying unknown patterns and structures in data without predefined categories

rules output Training input learning output model

Supervised

- Regression: predicting a continuous value
- Classification: predicting a discrete label

Unsupervised

- Clustering: grouping data points together
- **Dimensionality reduction** while retaining information

Multiple machine learning tasks can be applicable to the same dataset

- Features
- Target

	Feature 1	Feature 2	Class
0	0.559	2.389	0
1	1.312	-0.717	1
2	-1.56	-1.925	0
3	-2.281	-0.137	0
4	1.561	-0.428	1
5	-0.808	1.197	0
6	-0.271	-2.256	1
7	0.481	0.549	1
8	-1.208	-1.269	0
9			

Classification assigns data to known categories

	Feature 1	Class
0	0.559	0
1	1.312	1

Classification assigns data to known categories

	Feature 1	Feature 1 Feature 2	
0	0.559	2.389	0
1	1.312	-0.717	1
2	-1.56	-1.925	0
3	-2.281	-0.137	0
4	1.561	-0.428	1
5	-0.808	1.197	0
6	-0.271	-2.256	1
7	0.481	0.549	1
8	-1.208	-1.269	0
9			

Clustering discovers inherent groups in data without prior labeling

	Feature 1	Feature 2	
0	0.559	2.389	
1	1.312	-0.717	
2	-1.56	-1.925	
3	-2.281	-0.137	
4	1.561	-0.428	
5	-0.808	1.197	
6	-0.271	-2.256	
7	0.481	0.549	
8	-1.208	-1.269	
9			

Inference

Process incoming data and producing results based on patterns learned during training

Process incoming data and producing results based on patterns learned during training

Lifelong Learning

Allows models to update and improve their performance as new data becomes available

Common Use Cases

	Supervised	Unsupervised
Online Services	 Spam / Not Spam Predict Probability Customer Will Click on Ad 	 Group Articles into Categories Similar Search Results
Financial Services	Credit Card Fraud	Anomaly Detection
Telecom	Predict Customer Churn	
 Probability of Readmission Predict Days of Hospital Stay 		Patient Similarity
Real Estate	Predict House Price	
Retail	 Prejudice Price Forecast Sales Sentiment Analysis 	 Similar Customers Product Similarity Customer Group Products Which Are Purchased Together

Benefits:

- Problem solving: excels at complex problems where patterns are not easily discernible
- Adaptability: models can adapt to new data, new tasks, and improve over time with retraining

Systematic process of developing, training, evaluating, and deploying machine learning models

Systematic process of developing, training, evaluating, and deploying machine learning models

- Data preparation clean, transform, and prepare the data
- Feature engineering is often considered one of the most crucial and impactful steps in the machine learning process to improve a model's predictive power and ability to generalize to new data
 - Transforms raw data into a format that better represents the underlying problem, making it easier for algorithms to learn patterns and make predictions
 - Feature engineering is an iterative process that allows for continuous refinement and improvement of model inputs

Use cuDF to create features for downstream ML tasks:

- cuML
- XGBoost
- cuDNN

Systematic process of developing, training, evaluating, and deploying machine learning models

- Model selection choosing the appropriate algorithm and configuration(s)
- Model training fitting the model to the dataset

Faster runtime shortens development time and improves productivity

Task	Goal	Algorithm / Model		
Classification	Assign input data to predefined categories or labels	Logistic Regression, Decision Trees, Random Forest, SVM, KNN, Naïve Bayes, Neural Networks		
Regression	Predict continuous numerical values based on input features	Linear Regression, Ridge & Lasso Regression, Decision Trees, Random Forest, SVR, Neural Networks, XGBoost		
Clustering	Group similar data points together without predefined labels	k-Means, Hierarchical Clustering, DBSCAN, Gaussian Mixture Models (GMM), Mean Shift		
Decomposition & Dimensionality Reduction	Reduce the number of input features while preserving important information	PCA, SVD, t-SNE, UMAP, Autoencoders		

Classification

Categorize input data into predefined classes

	K-Nearest Neighbors	Logistic Regression	Decision Tree
Approach	KNN makes predictions based on the similarity of new data points to known examples in the training set. The algorithm calculates the distance between the new point and all points in the training set. It identifies the K nearest neighbors and uses majority voting among the K neighbors	Logistic regression is a statistical method used for binary classification. It predicts the probability of an instance belonging to a particular class, using the logistic function (sigmoid) to map predictions to probabilities between 0 and 1	Creates a tree-like model of decisions based on features in the data. From the root node, it splits the data into subsets based on the most significant attributes. The splitting criteria is determined by maximizing information gain or minimizing impurity
Pros	 Makes no assumption about data distribution "Lazy" learning algorithm Adapts quickly to new data 	 istribution azy" learning algorithm Generally efficient Less prone to overfitting 	
Cons	 Prone to overfitting Sensitive to outliers Requires feature scaling High computational cost for large datasets, especially during prediction High memory requirement (needs to store the entire training dataset) Sensitive to outliers Assumes linear relationship between features and log-odds of outcome Suitable for binary outcome Assumes no correlation between features Requires irrelevant features to be excluded Can overfit on high-dimensional datasets 		 Prone to overfitting Computationally expensive for large datasets

Decision Tree

Decision trees are prone to overfitting

Recursively splitting the data based on features to create a treelike structure

 Select the best feature to split the data to increase the purity of the resulting subsets with respect to the target variable

Challenges:

Prone to overfitting

Solution:

- Pruning
- Ensemble

Ensemble

Using multiple decision trees

(Random Forest) Bagging is an ensemble technique used to reduce the variance of predictions by considering results from multiple decision tree models that were trained on different sub-samples of the same data set

(Gradient Boosting Decision Tree) Boosting is another type of ensemble learning that combines weak learners to achieve improved model performance. Weak learners are simple models that predict relatively poorly. The concept of boosting is to sequentially train models, each time trying to fit better than before using residual errors

Ensemble

Using multiple decision trees

(Random Forest) Bagging is an ensemble technique used to reduce the variance of predictions by considering results from multiple decision tree models that were trained on different sub-samples of the same data set

(Gradient Boosting Decision Tree) Boosting is another type of ensemble learning that combines weak learners to achieve improved model performance. Weak learners are simple models that predict relatively poorly. The concept of boosting is to sequentially train models, each time trying to fit better than before using residual errors

Clustering

Group unlabeled examples based on their similarity to each other

Use cases:

- Market segmentationAnomaly detection
- Data Imputation

	K-Means	DBSCAN		
Approach	Partitions data by iteratively moving cluster centers and reassigning data points based on which center is closest to the point	Uses spatial density to cluster— finds cluster points within at most epsilon distance of another point in the cluster		
Pros	 Fast, simple, and easy to understand Scalable to large datasets 	 Can identify clusters of any arbitrary shapes Automatically determines the number of clusters Robust to outliers 		
Cons	 Assumes spherical clusters Requires specifying the number of clusters in advance Sensitive to outliers 	 Less efficient for very large datasets Requires specifying minimum points and maximum neighborhood distance 		

Systematic process of developing, training, evaluating, and deploying machine learning models

- Model evaluation assessing the quality and performance of a trained machine learning model using various metrics
 - Balance accuracy and inference speed
 - Maximize throughput given an application's accuracy requirement and latency budget

Evaluation metrics:

- Accuracy
 - Underfit vs overfit
 - Cross validation is a resampling method to protect against overfitting
- Latency and throughput
 - Evaluate how well the inference performance scales with increasing data volumes or concurrent requests
 - o Ensure that optimizations for speed don't significantly degrade the model's accuracy or performance on its intended task

Systematic process of developing, training, evaluating, and deploying machine learning models

Model tuning

- Feature selection finds the optimal subset of features
- Hyperparameter tuning using techniques such as grid search

Use cuML to accelerate machine learning model training

• Low data processing cycle time translates to higher productivity, more experimentation, and improved model performance

RAPIDS Transforms Data Science

An optimized hardware-to-software stack for the entire data science pipeline

XGBoost + RAPIDS

Optimized gradient boosting machine learning algorithm

• Extreme Gradient Boosting, is a scalable, distributed gradient-boosted decision tree machine learning algorithm

- Gold standard in single model performance for classification and regression
 - Delivers excellent accuracy and efficiency
 - Handles large datasets effectively through multi-threading
 - Handles imbalanced datasets and outliers
 - Uses regularization to prevent overfitting and improve model generalization
- RAPIDS was built from the start to integrate with this amazing algorithm, including seamless GPU-acceleration such as loading data from cuDF DataFrames and cuPy arrays this significantly speeds up model training and improves accuracy for better predictions

Systematic process of developing, training, evaluating, and deploying machine learning models

Systematic process of developing, training, evaluating, and deploying machine learning models

Triton Inference Server

Open-source inference serving software that is designed for deploying AI models at scale

Key Features:

- Multi-framework support (TensorFlow, PyTorch, ONNX, etc.)
- Concurrent model execution
- Dynamic batching for improved performance
- Model versioning and ensembling

Benefits for Data Scientists:

- Simplifies model deployment in production environments
- Enables efficient scaling of machine learning models
- Provides a consistent interface across different ML frameworks

Optimizing Performance:

- Performance analyzer
- Model analyzer

Example of Model Analyzer Report

Online Result Summary

Model: resnet50_libtorch

GPU(s): 1 x NVIDIA TITAN RTX

Total Available GPU Memory: 23.7 GB

Constraint targets: None

In 46 measurements across 12 configurations, resnet50_libtorch_config_7 provides the best throughput: 1273 infer/sec.

This is a 473% gain over the default configuration (222 infer/sec), under the given constraints on GPU(s) 1 x NVIDIA TITAN RTX.

• resnet50_libtorch_config_7: 6 GPU instances with a max batch size of 32 on platform pytorch_libtorch

Curves corresponding to the 3 best model configuration(s) out of a total of 12 are shown in the plots.

The following table summarizes each configuration at the measurement that optimizes the desired metrics under the given constraints.

Model Config Name	Max Batch Size	Dynamic Batching	Total Instance Count	p99 Latency (ms)	Throughput (infer/sec)	Max GPU Memory Usage (MB)	Average GPU Utilization (%)
resnet50_libtorch_config_7	32	Enabled	6:GPU	353.539	1273.38	5598	94.3
resnet50_libtorch_config_4	16	Enabled	5:GPU	125.635	1242.25	5011	90.2
resnet50_libtorch_config_9	32	Enabled	7:GPU	409.616	1227.02	6334	95.3
resnet50_libtorch_config_default	128	Disabled	1:GPU	10.938	221.846	1773	41.0

Systematic process of developing, training, evaluating, and deploying machine learning models

- Efficient data processing on large datasets leads to better results
 - Facilitates higher data quality and quantity that directly impact model performance
 - Increases productivity
 - Enables more experimentation for model tuning
 - Fosters innovation and progress
 - Reduces time to insight and total cost of ownership
- Seamlessly integrate with existing workflows through plugins
- Optimal model deployment that balances performance and resource allocation

Proven Faster for Data Science

Realize efficiency and scalability with multi-GPU for massive datasets

Time in seconds — Shorter is better

culO / cuDF (Load and Data Preparation) Data Conversion XGBoost

Data Flywheel

Improve performance through the cyclical nature of data-driven growth and innovation

