Order of the Group

Order of the Group

Order of a finite group |G|, to be the number of elements in the group G. In $G = \langle Z_{21}^*, \times \rangle$, it can be proved that the order of a group is $\phi(n)$.

Example

What is the order of group $G = \langle Z_{21}^*, \times \rangle$? $|G| = \phi(21) = \phi(3) \times \phi(7) = 2 \times 6 = 12$. There are 12 elements in this group: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20. All are relatively prime with 21.

Order of an Element

Order of an Element

In a group $G = \langle Z_n *, \times \rangle$, order of an element 'a' is the smallest integer 'i' such that $a^i=1 \pmod{n}$.

Example

Find the order of all elements in $G = \langle Z_{10} *, \times \rangle$.

Solution

This group has only $\phi(10) = 4$ elements: 1, 3, 7, 9. We can find the order of each element by trial and error.

```
a. 1^1 \equiv 1 \mod (10) \rightarrow \text{ord}(1) = 1.

b. 3^4 \equiv 1 \mod (10) \rightarrow \text{ord}(3) = 4.

c. 7^4 \equiv 1 \mod (10) \rightarrow \text{ord}(7) = 4.
```

b.
$$3^4 \equiv 1 \mod (10) \to \operatorname{ord}(3) = 4$$
.

c.
$$7^4 \equiv 1 \mod (10) \to \text{ord}(7) = 4$$
.

d.
$$9^2 \equiv 1 \mod (10) \to \text{ord}(9) = 2$$
.

Primitive Roots In the group $G = \langle Z_n^*, \times \rangle$, when the order of an element is the same as $\phi(n)$, that element is called the primitive root of the group.

Example

Table shows that there are no primitive roots in $G = \langle Z_8 *, \times \rangle$ because no element has the order equal to $\phi(8) = 4$. The order of elements are all smaller than 4.

Example

Table shows the result of $a^i \equiv x \pmod{7}$ for the group $G = \langle Z_7^*, \times \rangle$. In this group, $\phi(7) = 6$.

Table 9.5 *Example 9.50*

	i = 1	i=2	i = 3	i = 4	i = 5	i = 6
a = 1	<i>x</i> : 1	<i>x</i> : 1	<i>x</i> : 1	x: 1	<i>x</i> : 1	<i>x</i> : 1
a = 2	x: 2	<i>x</i> : 4	<i>x</i> : 1	<i>x</i> : 2	<i>x</i> : 4	<i>x</i> : 1
a = 3	<i>x</i> : 3	<i>x</i> : 2	<i>x</i> : 6	<i>x</i> : 4	<i>x</i> : 5	<i>x</i> : 1
a = 4	x: 4	<i>x</i> : 2	<i>x</i> : 1	<i>x</i> : 4	<i>x</i> : 2	<i>x</i> : 1
a = 5	<i>x</i> : 5	<i>x</i> : 4	<i>x</i> : 6	<i>x</i> : 2	<i>x</i> : 3	<i>x</i> : 1
a = 6	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1

Primitive root \rightarrow

Primitive root \rightarrow

The group $G = \langle \mathbb{Z}_n^*, \times \rangle$ has primitive roots only if n is 2, 4, p^t , or $2p^t$.

Example

For which value of n, does the group $G = \langle \mathbb{Z}_n *, \times \rangle$ have primitive roots: 17, 20, 38, and 50?

Solution

- a. $G = \langle Z_{17} *, \times \rangle$ has primitive roots, 17 is a prime.
- b. $G = \langle \mathbb{Z}_{20} *, \times \rangle$ has no primitive roots.
- c. $G = \langle Z_{38} *, \times \rangle$ has primitive roots, $38 = 2 \times 19$ prime.
- d. $G = \langle Z_{50} *, \times \rangle$ has primitive roots, $50 = 2 \times 5^2$ and 5 is a prime.

If the group $G = \langle \mathbb{Z}_n^*, \times \rangle$ has any primitive root, the number of primitive roots is $\phi(\phi(n))$.

Primitive Roots mod 13

- a is a primitive root mod p if $\{a^k | 1 \le k \le p-1\} = \{1,2, ...,p-1\}$ \$\int 2, 6,7,11\$ are primitive roots mod 13
- $3^3 \equiv 1 \pmod{13}$, $4^6 \equiv 1 \pmod{13}$, $5^4 \equiv 1 \pmod{13}$,
- $8^4 \equiv 1 \pmod{13}$, $9^3 \equiv 1 \pmod{13}$, $10^6 \equiv 1 \pmod{13}$,
- $12^2 \equiv 1 \pmod{13}$