Análisis caso ABB

Jordi López Sintas 3 de septiembre de 2014

Lectura de datos

energy_loss

maintenance

warranty

La base de datos completa con los datos de las valoraciones, elecciones de las empresas así como datos descriptivos de la empresa se encuentra en el fichero "abb-r.txt". Para leerlo utilizamos la función read.table con los parámetros adecuados como vemos en el código que se muestra. También cargamos los paquetes ggplot y dplyr. El primero si queremos visualizar los datos (es opcional, pues podemos utilizar las funciones gráficas del paquete base) y el segundo para realizar tablas de datos.

```
require(ggplot2)
## Loading required package: ggplot2
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following object is masked from 'package:stats':
##
       filter
##
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
#leer el fichero de datos abb-R.txt, el cual contiene los datos de la elección de las empresas eléctric
abb<-read.table("abb-r.txt", header=T)
#También podemos utilizar la opción file.chose() como argumento de la función read.table. #Este argumen
#abb<-read.table(file.choose(), header=T)</pre>
#la función head() nos permite visualizar las primer seis líneas de un objeto de datos.
#He traspuesto el resupado con la función t() con el objeto de facilitar la lectura. Así las líneas rep
t(head(abb))
##
                                                4
                                                         5
                                                                6
                          2
                                3
                                                "1"
                                                                "2"
                   "1"
                          "1"
                                "1"
                                                         "2"
## id
                         "GE"
## Alternatives
                   "ABB"
                                "Westinghouse" "Edison"
                                                         "ABB"
                                                               "GE"
                   "0"
                          "1"
                                "0"
                                                         "0"
## choice
                                                "0"
                                                                "0"
                   "6"
                          "6"
                                "6"
                                                "5"
                                                          "3"
                                                                "3"
## price
```

"5"

"6"

"7"

"4"

"5"

"4"

"4"

"5"

"4"

"5"

"7"

"5"

"6"

"6"

"7"

"6"

"7"

"6"

```
"7"
                  "6"
                        11911
                              "3"
                                             "8"
                                                      "4"
## spare_parts
                                             "2"
                                                      "5"
                                                            "3"
                  "5"
## ease_install
                              "7"
                        "7"
                                                            "5"
## problem_solving "7"
                                             "6"
                                                      "6"
                  "5"
                        "5"
                              "6"
                                             "5"
                                                      "4"
                                                            "5"
## quality
                  "1"
                        "0"
                              "0"
                                             "0"
                                                      "1"
                                                            "0"
## DA
## DB
                  "0"
                        "1"
                              "0"
                                             "0"
                                                      "0"
                                                            "1"
## DC
                  "0"
                        "0"
                              "1"
                                             "0"
                                                      "0"
                                                            "0"
                                                            "0"
## DD
                  "0"
                        "0"
                                             "1"
                                                      "0"
                              "0"
## volume
                  "761" "761"
                              "761"
                                             "761"
                                                      "627"
                                                           "627"
## district
                  "1"
                        "1"
                              "1"
                                             "1"
                                                            "1"
#la funcion names() muestra los nombres de las variables
names (abb)
   [1] "id"
                         "Alternatives"
                                           "choice"
##
                         "energy loss"
   [4] "price"
                                           "maintenance"
  [7] "warranty"
                         "spare_parts"
                                           "ease_install"
                                           "DA"
## [10] "problem_solving" "quality"
                                           "DD"
## [13] "DB"
                         "DC"
## [16] "volume"
                         "district"
#La función str() nos proporciona una descripción de la base de datos
str(abb)
## 'data.frame':
                   352 obs. of 17 variables:
## $ id
                    : int 1 1 1 1 2 2 2 2 3 3 ...
## $ Alternatives : Factor w/ 4 levels "ABB", "Edison",...: 1 3 4 2 1 3 4 2 1 3 ...
## $ choice
                   : num 0 1 0 0 0 0 0 1 1 0 ...
## $ price
                    : num 6665334465...
## $ energy_loss
                           6 6 5 5 4 4 5 5 6 6 ...
                    : num
                    : num 7676555677...
## $ maintenance
## $ warranty
                    : num 6757445577...
                    : num 6938475465 ...
## $ spare_parts
   $ ease_install
                    : num 5 9 4 2 5 3 7 5 7 6 ...
## $ problem_solving: num 7 7 7 6 6 5 6 5 7 8 ...
## $ quality
                    : num 5565454666...
## $ DA
                    : num 1 0 0 0 1 0 0 0 1 0 ...
## $ DB
                    : num 0 1 0 0 0 1 0 0 0 1 ...
                    : num 0 0 1 0 0 0 1 0 0 0 ...
## $ DC
## $ DD
                    : int 0001000100...
                    : int 761 761 761 761 627 627 627 627 643 643 ...
## $ volume
                    : int 111111122...
   $ district
#cambiar la clase de las variables según sea apropiado.
#las variables choice y district deberían se factores.
abb$district <- as.factor(abb$district)</pre>
abb$choice <- as.factor(abb$choice)</pre>
```

Exploración de los datos

Con el pauete dplyr podemos rápidamente realizar informes con la base de datos.

```
#Ahora con la ayuda de la función select() del paquete dplyr
#y del operador tubería (pipeline) %>% calculamos el valor medio del precio y volumen
A= select(abb, choice, volume, district, price) %>%
  group_by(district, choice) %>%
  summarize(AvgPrice = mean(price), AvgVolumen = mean(volume), N = length(price))
## Source: local data frame [6 x 5]
## Groups: district
##
     district choice AvgPrice AvgVolumen N
##
## 1
                  0 4.247312
                               753.5161 93
           1
           1
## 2
                  1 5.290323
                              753.5161 31
## 3
           2
                  0 4.302083 1676.2188 96
```

You can also embed plots, for example:

1 5.343750 1676.2188 32

0 4.280000 1030.4400 75

1 4.960000 1030.4400 25

2

3

3

4

5

6

geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?

geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?

Análisis

Ahora cargamos el paquete survival para poder utilizar la función clogit para estimar los parámetros del modelo de elección discreta.

```
## Loading required package: splines
## Call:
## coxph(formula = Surv(rep(1, 352L), choice) ~ price + energy_loss +
       maintenance + warranty + spare_parts + ease_install + problem_solving +
       quality + DA + DB + DC + strata(id), data = abb, method = "exact")
##
##
##
    n= 352, number of events= 88
##
                      coef exp(coef) se(coef)
##
                                                   z Pr(>|z|)
## price
                    2.1806
                              8.8515
                                       0.5866 3.717 0.000201 ***
## energy_loss
                    2.6556
                             14.2337
                                       0.6737
                                               3.942 8.09e-05 ***
## maintenance
                              1.8107
                                       0.4370 1.358 0.174313
                    0.5937
## warranty
                    1.1407
                              3.1290
                                       0.3310 3.446 0.000568 ***
## spare_parts
                   -0.1326
                              0.8758
                                       0.2176 -0.610 0.542158
## ease_install
                    0.5200
                              1.6821
                                       0.1729 3.008 0.002629 **
                                       0.5497 3.697 0.000218 ***
## problem_solving 2.0322
                              7.6307
## quality
                    2.6394
                             14.0050
                                       0.6877 3.838 0.000124 ***
## DA
                   -0.1238
                              0.8836
                                       0.6785 -0.182 0.855241
## DB
                   -0.6712
                              0.5111
                                       0.7194 -0.933 0.350814
                                       0.7150 -0.961 0.336499
## DC
                   -0.6872
                              0.5030
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                   exp(coef) exp(-coef) lower .95 upper .95
## price
                      8.8515
                                0.11298
                                           2.8036
                                                     27.945
                     14.2337
                                0.07026
                                           3.8006
                                                     53.306
## energy_loss
## maintenance
                                0.55228
                                                      4.264
                      1.8107
                                           0.7688
## warranty
                      3.1290
                                0.31959
                                           1.6355
                                                      5.986
## spare_parts
                      0.8758
                                1.14182
                                           0.5718
                                                      1.342
## ease_install
                      1.6821
                                0.59451
                                           1.1986
                                                      2.360
## problem_solving
                      7.6307
                                0.13105
                                           2.5982
                                                     22.410
## quality
                     14.0050
                                0.07140
                                           3.6381
                                                     53.913
## DA
                      0.8836
                                1.13178
                                           0.2337
                                                      3.341
## DB
                      0.5111
                                1.95662
                                           0.1248
                                                      2.093
## DC
                      0.5030
                                1.98821
                                           0.1238
                                                      2.043
##
## Rsquare= 0.411
                    (max possible= 0.5)
## Likelihood ratio test= 186.4 on 11 df,
                        = 23.67 on 11 df,
## Wald test
                                             p=0.01419
## Score (logrank) test = 103.3 on 11 df,
                                             0=q
```

Ahora calculamos la predicción de la utilidad de cada elección según el modelo estimado

```
u <- predict(abb.clogit)</pre>
head(u)
```

```
##
                       2
                                  3
               3.7277069
                          0.2033874 -5.9769871 -3.7209496 -5.0990503
```

3 50.54779 516.23324 248.18063 164.16144 2069.30050 153.61078

##

1

2

Después obtenemos $\exp(u)$ y lo asignamos al objeto eu, y sumamos $\exp(u)$ para cada individuo

```
eu \leftarrow exp(u)
sumaeu <- by(eu, abb$id, sum)</pre>
head(sumaeu)
## abb$id
```

Ahora calculamos la probabilidad de elección de cada marca. Para ello definimos una función que llamaremos prob()

```
prob<-function(suma, eutil, indiv){</pre>
#suma, eutil, inviv son los argumentos de la función
#Crea un vector con tantos elementos como el producto entre
#lis individuos y las marcas
p<-1:indiv*4
#Para cada individuo
for (i in 1:indiv) {
#para cada marca
for (j in 1:4) {
```

```
#construye un indice
n<-n+1
#calcula la probabilidad de que el individuo i compre la #marca j
p[n]<-eutil[n]/suma[i]
}
}
#Devuelve el vector de probabilidades
return(p)
}</pre>
```

Y después la utilizamos con los datos calculados previamente

```
pchoice <- prob(sumaeu, eu, 88)
head(pchoice)

## [1] 1.530445e-01 8.226600e-01 2.424532e-02 5.017938e-05 4.689928e-05
## [6] 1.182128e-05

abb$pchoice <- pchoice
t(head(abb))</pre>
```

```
##
                                                     3
                                     2
                    1
                    "1"
                                     "1"
                                                     "1"
## id
                    "ABB"
                                     "GE"
                                                     "Westinghouse"
## Alternatives
                    "1"
## choice
                                     "2"
                                                     "1"
                    "6"
                                     "6"
                                                     "6"
## price
                    "6"
                                     "6"
                                                     "5"
## energy_loss
                    "7"
                                     "6"
                                                     "7"
## maintenance
                                     "7"
                                                     "5"
                    "6"
## warranty
                    "6"
                                     "9"
                                                     "3"
## spare_parts
                    "5"
                                     "9"
                                                     "4"
## ease_install
## problem_solving "7"
                                     "7"
                                                     "7"
                    "5"
                                     "5"
                                                     "6"
## quality
                    "1"
                                     "0"
                                                     "0"
## DA
## DB
                    "0"
                                     "1"
                                                     "0"
                    "0"
                                     "0"
## DC
                                                     "1"
                    "0"
                                     "0"
                                                     "0"
## DD
                    "761"
                                     "761"
                                                     "761"
## volume
                    "1"
                                     "1"
                                                     "1"
## district
                    "1.530445e-01" "8.226600e-01" "2.424532e-02"
## pchoice
##
                                     5
                                                     6
                    "1"
                                     "2"
                                                     "2"
## id
                    "Edison"
                                     "ABB"
                                                     "GE"
## Alternatives
                                    "1"
## choice
                    "1"
                                                     "1"
                    "5"
                                                     "3"
                                     "3"
## price
                    "5"
                                     "4"
                                                     "4"
## energy_loss
                    "6"
                                     "5"
                                                     "5"
## maintenance
                                                     "4"
                    "7"
                                     "4"
## warranty
                    "8"
                                     "4"
                                                     "7"
## spare_parts
                    "2"
                                     "5"
                                                     "3"
## ease_install
                                     "6"
                                                     "5"
## problem_solving "6"
## quality
                    "5"
                                     "4"
                                                     "5"
```

```
"0"
                                     "1"
                                                     "0"
## DA
                    "0"
                                     "0"
## DB
                                                     "1"
                    "0"
                                     "0"
                                                     "0"
## DC
                    "1"
                                     "0"
                                                     "0"
## DD
## volume
                    "761"
                                     "627"
                                                     "627"
                    "1"
                                     "1"
                                                     "1"
## district
                    "5.017938e-05" "4.689928e-05" "1.182128e-05"
## pchoice
```

Ahora creamos una función para clasificar a los clientes en función de su probabilidad de compra

```
msegment<-function(p, indiv){</pre>
# p es el vector de probabilidades
# in es el número de individuos
s<-1:indiv*4
j<-0
for (i in 1:indiv) {
#para cada individuo
j=j+4
#Leales
if (p[j-3]>0.8) \{s[j-3]<-"L"; s[j-2]<-"L"; s[j-1]<-"L"; s[j]<-"L"\}
#Competitivos
#Apropiables
if (p[j-3] <= 0.5 \& p[j-3] > 0.15) \{s[j-3] <- "A"; s[j-2] <- "A"; s[j-1] <- "A"; s[j] <- "A" \}
#Perdidos
if (p[j-3] \le 0.15) \{s[j-3] \le P"; s[j-2] \le P"; s[j-1] \le P"; s[j] \le P"\}
}
#Devuelve el resultado de la función
return(s)
}
```

Ahora utilizamos la nueva función para clasificar la base de datos

seg <- msegment(pchoice, 88)</pre>

```
abb$seg <- seg
abb.select.ord <- select(abb, volume, pchoice, seg) %>%
 arrange(-volume)
options(digits=5)
head(abb.select.ord)
##
   volume
              pchoice seg
## 1 14798 4.9893e-04
## 2 14798 6.2597e-08
                         Ρ
## 3 14798 8.0119e-07
## 4 14798 9.9950e-01
                        Ρ
## 5 12514 7.8668e-03
                         Ρ
## 6 12514 3.1951e-04
###con las funciones básicas
#o<-order(abb$VOLUME, decreasing=TRUE)</pre>
#abbor<-cbind(abb$VOLUME[o], abb$pchoice[o], abb$seg[o])
#abbor
```

primero seleccionamos las variables que queremos ordenar, después