Sistemas de equações em diferenças de primeira ordem

(Cap 9 Gandolfo, Cap. 5 Shone)

Ivette Luna

21 de maio de 2019

Sistema de equações em diferença de 2×2

O sistema mais simples na sua forma normal é tal que

$$\begin{cases} x_{t+1} = a_{11}x_t + a_{12}y_t + g_1(t) \\ y_{t+1} = a_{21}x_t + a_{22}y_t + g_2(t) \end{cases}$$

onde os coeficientes a_{ij} são constantes dadas e $g_1(t)$, $g_2(t)$ são funções conhecidas. Matricialmente:

$$\begin{bmatrix}
x_{t+1} \\
y_{t+1}
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \cdot \begin{bmatrix}
x_t \\
y_t
\end{bmatrix} + \begin{bmatrix}
g_1(t) \\
g_2(t)
\end{bmatrix}$$

$$Z_t$$

Assim, o sistema pode ser reescrito como

$$Z_{t+1} = A \cdot Z_t + B$$

em que B = B(t).

Solução do sistema

Por se tratar de equações lineares, a solução será dada por

$$Z_t = Z_t^h + Z_t^p$$

onde
$$Z_t = [x_t, y_t]^T$$
, $Z_t^h = [x_t^h, y_t^h]^T$ e $Z_t^p = [x_t^p, y_t^p]^T$.

Para determinar a solução homogênea, temos dois métodos possíveis:

- 1. Substituição;
- 2. Método direto;
- 3. Matricialmente (método formal).

Substituição

Consiste em transformar o sistema de duas equações de ordem 1 a uma única equação de ordem 2. Seja o sistema homogêneo:

$$x_{t+1} = a_{11}x_t + a_{12}y_t \tag{1}$$

$$y_{t+1} = a_{21}x_t + a_{22}y_t \tag{2}$$

A partir de (1), escrevemos y_t em função de x. Sendo $a_{12} \neq 0$:

$$y_t = \frac{1}{a_{12}} x_{t+1} - \frac{a_{11}}{a_{12}} x_t \tag{3}$$

ou seja,

$$y_{t+1} = \frac{1}{a_{12}} x_{t+2} - \frac{a_{11}}{a_{12}} x_{t+1} \tag{4}$$

Substituição

Substituindo y em função de x, usando as eqs. (3) e (4) em (2):

$$\frac{1}{a_{12}}x_{t+2} - \frac{a_{11} + a_{22}}{a_{12}}x_{t+1} + \frac{a_{11}a_{22} - a_{12}a_{21}}{a_{12}}x_t = 0$$

ou, sendo $a_{12} \neq 0$:

$$x_{t+2} - \underbrace{(a_{11} + a_{22})}_{tr(A)} x_{t+1} + \underbrace{(a_{11}a_{22} - a_{12}a_{21})}_{det(A)} x_t = 0$$

Resolvendo a equação de ordem 2, obtemos x_t^h . A solução homogênea para a variável y será obtida por substituição na eq. (3).

Método direto

Adotamos a forma geral usada até agora para cada solução homogênea. Assim, em função do resultado anterior, admitimos que:

$$x_t = \alpha_1 \lambda^t$$
 $y_t = \alpha_2 \lambda^t$

Substituindo no sistema original:

$$\alpha_1 \lambda^{t+1} = a_{11} \alpha_1 \lambda^t + a_{12} \alpha_2 \lambda^t$$

$$\alpha_2 \lambda^{t+1} = a_{21} \alpha_1 \lambda^t + a_{22} \alpha_2 \lambda^t$$

Fatorizando λ^t , temos que

$$\lambda^{t}[\alpha_{1}(a_{11} - \lambda) + a_{12}\alpha_{2}] = 0$$

$$\lambda^{t}[a_{21}\alpha_{1} + \alpha_{2}(\lambda - a_{22})] = 0$$

Como estamos interessados em uma solução diferente da arbitrária, $\log o \; \lambda \neq 0.$

Assim,

$$\alpha_1(a_{11} - \lambda) + a_{12}\alpha_2 = 0$$

 $a_{21}\alpha_1 + \alpha_2(a_{22} - \lambda) = 0$

Escrevendo este sistema na sua forma matricial:

$$\begin{bmatrix} (a_{11} - \lambda) & a_{12} \\ a_{21} & (a_{22} - \lambda) \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = 0$$

Por ser um S.H., a sua solução trivial $\alpha_1 = \alpha_2 = 0$ não é de interesse. Portanto, o sistema deve ser S.P.I. para isso:

$$\begin{vmatrix} (a_{11} - \lambda) & a_{12} \\ a_{21} & (a_{22} - \lambda) \end{vmatrix} = 0$$

Desenvolvendo o determinante, obtemos novamente o polinômio característico

$$\lambda^{2} - \underbrace{(a_{11} + a_{22})}_{tr(A)} \lambda + \underbrace{(a_{11}a_{22} - a_{12}a_{21})}_{det(A)} = 0$$

Método formal: sistema desacoplado

A partir do sistema linear homogêneo:

$$\begin{cases} x_{t+1} = a_{11}x_t + a_{12}y_t \\ y_{t+1} = a_{21}x_t + a_{22}y_t \end{cases}$$

ightharpoonup Se b=c=0, temos um sistema desacoplado, pois:

$$A = \left[\begin{array}{cc} a_{11} & 0 \\ 0 & a_{22} \end{array} \right]$$

é uma matriz diagonal que permite a resolução de cada equação de forma independente.

Se $b \neq 0$ e $c \neq 0$, precisamos realizar uma mudança de variáveis para desacoplar as equações.

Diagonalização de matrizes

Sejam λ_1 e λ_2 os autovalores de A, $\lambda_1 \neq \lambda_2$. Logo, existe a matriz $P = [v_1, v_2]$ não singular, tal que

$$D = P^{-1}AP = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right]$$

onde v_1 e v_2 são os autovetores de A (e são L.I.). Ou seja, por meio da matriz P, transformamos a matriz A em uma matriz diagonal D.

Exemplo

Seja a matriz

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

Os autovalores são as raízes de

$$p(\lambda) = det(A - \lambda I) = 0$$

$$\lambda_1 = 3$$
 $\lambda_2 = 1$

$$P = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 0.71 & -0.71 \\ 0.71 & 0.71 \end{bmatrix}$$

Assim,

$$P^{-1}AP = \left[\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right]$$

Seja o sistema homogêneo $Z_{t+1} = A \cdot Z_t$. Sejam $P \in P^{-1}$ matrizes de transformação tal que

$$Z_t = P \cdot \bar{Z}_t \tag{5}$$

ou

$$\bar{Z}_t = P^{-1} \cdot Z_t \tag{6}$$

onde $Z_t = [x_t, y_t]^T$ e $\bar{Z}_t = [\bar{x}_t, \bar{y}_t]^T$, ou seja:

- $ightharpoonup Z_t$: variáveis do sistema original;
- ightharpoonup \bar{Z}_t : variáveis transformadas (do sistema desacoplado).

 \rightsquigarrow Objetivo: Obter um sistema desacoplado em função de \bar{Z} .

Da equação (6), temos que:

$$\bar{Z}_{t+1} = P^{-1} \cdot Z_{t+1} \tag{7}$$

Mas, do sistema original,

$$Z_{t+1} = A \cdot Z_t \tag{8}$$

Substituindo (8) em (7), temos que

$$\bar{Z}_{t+1} = P^{-1} \mathbf{A} \cdot \mathbf{Z}_t \tag{9}$$

e substituindo (5) em (9):

$$\bar{Z}_{t+1} = \underbrace{P^{-1} \mathbf{A} \cdot P}_{D} \cdot \bar{\mathbf{Z}}_{t} \tag{10}$$

$$\bar{Z}_{t+1} = \underbrace{P^{-1} \mathbf{A} \cdot P}_{D} \cdot \bar{\mathbf{Z}}_{t} \tag{11}$$

Se $P^{-1}AP = D$ é uma matriz diagonal, então o sistema em (11) será desacoplado.

Seja

$$P = [v_1 \mid v_2]$$
 e $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$

onde $\{v_1, v_2\}$ são L.I., tal que P^{-1} existe e λ_1, λ_2 são escalares.

Se

$$P^{-1}AP = D$$

$$\Rightarrow AP = PD = \begin{bmatrix} v_1 \mid v_2 \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Ou seja

$$AP = [\lambda_1 v_1 \mid \lambda_2 v_2]$$

ou

$$A[v_1 \mid v_2] = [\lambda_1 v_1 \mid \lambda_2 v_2]$$

e igualando cada coluna, temos que:

$$Av_1 = \lambda_1 v_1$$

$$Av_2 = \lambda_2 v_2$$

Ou seja, v_1 e v_2 são os autovetores associados aos autovalores λ_1 e λ_2 de A.

Autovalores e autovetores

Sabemos que um sistema de ordem 2, com matriz de coeficientes *A*, terá **DOIS** autovalores, os quais podem ser

- 1. Reais e diferentes: $\lambda_1 \neq \lambda_2 \in \mathbb{R}$;
- 2. Reais e iguais: $\lambda_1 = \lambda_2 = \lambda \in \mathbb{R}$;
- 3. Complexas (e diferentes, conjugadas): $\lambda_1 \neq \lambda_2 \in \mathbb{C}$.

Dependendo do caso, teremos que adequar o uso do resultado anterior.

Caso 1: autovalores reais e diferentes

O sistema original

$$Z_{t+1} = A \cdot Z_t$$

é transformado ao sistema

$$\bar{Z}_{t+1} = D \cdot \bar{Z}_t$$

ou

$$\begin{bmatrix} \bar{x}_{t+1} \\ \bar{y}_{t+1} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \cdot \begin{bmatrix} \bar{x}_t \\ \bar{y}_t \end{bmatrix}$$

Ou seja

$$\bar{x}_{t+1} = \lambda_1 \bar{x}_t \implies \bar{x}_t = A_1(\lambda_1)^t$$

$$\bar{y}_{t+1} = \lambda_2 \bar{y}_t \implies \bar{y}_t = A_2(\lambda_2)^t$$

Caso 1: autovalores reais e diferentes

Matricialmente,

$$\left[egin{array}{c} ar{y}_t \ ar{y}_t \end{array}
ight] = \left[egin{array}{c} A_1(\lambda_1)^t \ A_2(\lambda_2)^t \end{array}
ight]$$

Como de (5), $Z_t = P \cdot \bar{Z}_t$ e $P = [v_1 | v_2]$:

$$\Rightarrow \left[\begin{array}{c} x_t \\ y_t \end{array}\right] = \left[v_1 \mid v_2\right] \cdot \left[\begin{array}{c} A_1(\lambda_1)^t \\ A_2(\lambda_2)^t \end{array}\right]$$

$$\Rightarrow Z_t = \begin{bmatrix} x_t \\ y_t \end{bmatrix} = A_1 \cdot v_1 \cdot \lambda_1^t + A_2 \cdot v_2 \cdot \lambda_2^t$$

Ou seja, a solução homogênea é dada pela combinação linear entre o produto de autovalores e autovetores da matriz de coeficientes *A*.

Exemplo

Seja o sistema

$$\begin{cases} x_{t+1} = y_t \\ y_{t+1} = 0.125x_t + 0.25y_t \end{cases}$$

Determine a trajetória temporal e analise a dinâmica do sistema.

Solução

A matriz de coeficientes:

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0.125 & 0.25 \end{array} \right]$$

Possui autovalores e autovetores tal que: Assim,

$$\lambda_1 = lambda[1] = 0.50$$

$$\lambda_2 = lambda[2] = -0.25$$

A matriz P:

$$\begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} -0.2425 & -0.447 \\ 0.9701 & 0.8944 \end{bmatrix}$$

Assim,

$$Z_{t} = \begin{bmatrix} x_{t} \\ y_{t} \end{bmatrix} = A_{1} \cdot \begin{bmatrix} -0.2425 \\ 0.9701 \end{bmatrix} \cdot (0.5)^{t} + A_{2} \cdot \begin{bmatrix} -0.447 \\ 0.8944 \end{bmatrix} \cdot (-0.25)^{t}$$

$$x_t = A_1 \cdot (-0.2425) \cdot (0.5)^t + A_2 \cdot (-0.447) \cdot (-0.25)^t$$
$$y_t = A_1 \cdot (0.9701) \cdot (0.5)^t + A_2 \cdot (0.8944) \cdot (-0.25)^t$$

No R ...

Caso 2: autovalores reais e iguais

Se $\lambda_1 = \lambda_2 = \lambda$, temos dois casos possíveis:

- 1. A pesar da multiplicidade dos autovalores, é possível determinar dois autovetores v_1 , v_2 L.I. Assim, a matriz $P = [v_1, v_2]$ existe, é inversível, e portanto a matriz de coeficientes A é diagonalizável tal que $P^{-1}AP = D$.
 - Podemos usar o resultado do caso anterior como base para a construção da solução geral (lembrando de multiplicar por t).
- 2. A multiplicidade dos autovalores impede a existência de dois autovetores L.I. Portanto $P = [v_1, v_2]$, onde v_1 e v_2 são autovetores não existe.
 - Não temos como transformar o sistema original a um sistema desacoplado, mas ainda é possível transforma-lo a um sistema quase desacoplado.

Dada que A não é diagonalizável, pois

- $\lambda_1 = \lambda_2 = \lambda e$
- \triangleright v_1 é o único autovetor L.I. associado a λ ;

Precisamos fazer uso de uma matriz de transformação Λ quase diagonal, dada por

$$\Lambda = \left[\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array} \right]$$

tal que

$$P^{-1}AP = \Lambda$$

onde $P = [c_1 | c_2]$ é inversível.

Se

$$P^{-1}AP = \Lambda$$

então, multiplicando por P à esquerda e ambos os lados da equação, temos que:

$$A \cdot P = P \cdot \Lambda$$

$$A \cdot [c_1 \mid c_2] = [c_1 \mid c_2] \cdot \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$$

Assim, realizando os produtos matriciais, temos que

$$[Ac_1 \mid Ac_2] = [\lambda c_1 \mid c_1 + \lambda c_2]$$

$$[Ac_1 \mid Ac_2] = [\lambda c_1 \mid c_1 + \lambda c_2]$$

Da primeira coluna:

$$Ac_1 = \lambda c_1$$

ou

$$(A - \lambda I)c_1 = 0$$

e portanto c_1 é o autovetor v_1 de A associado a λ .

$$[Ac_1 \mid Ac_2] = [\lambda c_1 \mid c_1 + \lambda c_2]$$

Da segunda coluna:

$$Ac_2 = c_1 + \lambda c_2$$

ou (trocando c_1 por v_1):

$$(A - \lambda I)c_2 = v_1$$

Se multiplicarmos a equação por $(A - \lambda I)$, temos que:

$$(A - \lambda I)^2 c_2 = (A - \lambda I) v_1$$

Ou seja,

$$(A - \lambda I)^2 c_2 = 0$$

Portanto, c_2 é autovetor generalizado de A associado a $\lambda!!$

Autovetor generalizado

▶ Se $\lambda_1 = \lambda_2 = \lambda$, sabemos que, se

$$Av_1 = \lambda v_1$$
 ou $(A - \lambda I)v_1 = 0$

então, v_1 é autovetor de A associado a λ (definição).

Ainda, podemos associar a λ um **autovetor generalizado**, v_2 tal que

$$(A - \lambda I)v_2 = v_1$$

mas

$$(A - \lambda I)^m v_2 = 0$$

para $m > 1 \in \mathbb{Z}$.

Com as matrizes

$$P = [v_1 \mid c_2]$$
 e $\Lambda = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$

com $(A - \lambda I)c_2 = v_1$, temos a transformação do sistema

$$Z_{t+1} = A \cdot Z_t$$

para o sistema quase desacoplado

$$\bar{Z}_{t+1} = \Lambda \cdot \bar{Z}_t$$

via a matriz de transformação *P*:

$$Z_t = P \cdot \bar{Z}_t$$

Assim,

$$\begin{bmatrix} \bar{x}_{t+1} \\ \bar{y}_{t+1} \end{bmatrix} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \cdot \begin{bmatrix} \bar{x}_t \\ \bar{y}_t \end{bmatrix}$$

$$\left[\begin{array}{c} \overline{x}_{t+1} \\ \overline{y}_{t+1} \end{array}\right] = \left[\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}\right] \cdot \left[\begin{array}{c} \overline{x}_t \\ \overline{y}_t \end{array}\right]$$

Da segunda linha:

$$\bar{y}_{t+1} = \lambda \bar{y}_t \implies \bar{y}_t = A_2(\lambda)^t$$

Da primeira linha:

$$\bar{x}_{t+1} = \lambda \bar{x}_t + \bar{y}_t$$

Substituindo \bar{y}_t

$$\bar{x}_{t+1} = \lambda \bar{x}_t + A_2 \lambda^t$$

que é uma equação linear não homogênea que sabemos resolver.

A solução para \bar{x}_t é dada por

$$\bar{x}_t = A_1 \lambda^t + A_2 t \lambda^{t-1}$$

Assim,

$$\left[\begin{array}{c} \bar{x}_t \\ \bar{y}_t \end{array}\right] = \left[\begin{array}{c} A_1 \lambda^t + A_2 t \lambda^{t-1} \\ A_2 \lambda^t \end{array}\right]$$

Para voltar às variáveis originais, basta multiplicar \bar{Z}_t por $P = [v_1 \mid c_2]$, obtendo a forma fechada:

$$Z_{t} = (A_{1}\lambda^{t} + A_{2}t\lambda^{t-1})v_{1} + (A_{2}\lambda^{t})c_{2}$$

Exercícios

Determine as trajetórias temporais e analise a dinâmica dos sistemas a seguir:

1.
$$\begin{cases} x_{t+1} = 4x_t + y_t \\ y_{t+1} = -x_t + 2y_t \end{cases}$$

2.
$$\begin{cases} x_{t+1} = 6x_t - 4y_t + 1 \\ y_{t+1} = x_t + 2y_t + 2 \end{cases}$$

No R ...

Caso 3: Autovalores complexos

Sejam $\lambda_1 \neq \lambda_2$ autovalores complexos e w_1 , w_2 os respectivos autovetores (complexos):

$$\lambda_1, \ \lambda_2 = \alpha \pm i\beta$$

$$w_1, \ w_2 = \overrightarrow{u} \pm i \overrightarrow{v}$$

Sendo os autovalores diferentes, temos o caso 1 e portanto, podemos desacoplar o sistema via a diagonalização da matriz de coeficientes A do sistema, com $P = [w_1, w_2]$. Assim,

$$\begin{bmatrix} \bar{x}_{t+1} \\ \bar{y}_{t+1} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \cdot \begin{bmatrix} \bar{x}_t \\ \bar{y}_t \end{bmatrix} \Rightarrow \begin{array}{c} \bar{x}_t = A_1 \lambda_1^t \\ \bar{y}_t = A_2 \lambda_2^t \end{bmatrix}$$

$$\bar{x}_t = A_1 \lambda_1^t = A_1 (\alpha + i\beta)^t$$
$$\bar{y}_t = A_2 \lambda_2^t = A_2 (\alpha - i\beta)^t$$

Assim, com w_1 , $w_2 = \overrightarrow{u} \pm i \overrightarrow{v}$

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} = A_1(\overrightarrow{u} + i\overrightarrow{v})(\alpha + i\beta)^t + A_2(\overrightarrow{u} - i\overrightarrow{v})(\alpha - i\beta)^t$$

Usando a representação polar, Euler e Moivre:

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} = R^t \left[\overrightarrow{u} (A_1 \cos(\theta t) + A_2 \sin(\theta t)) + \overrightarrow{v} (A_2 \cos(\theta t) - A_1 \sin(\theta t)) \right]$$

- $ightharpoonup R = \sqrt{\alpha^2 + \beta^2}$ é o módulo dos autovalores;
- $ightharpoonup \cos(\theta) = \alpha/R;$
- $\rightarrow \overrightarrow{u}$ é a parte real dos autovetores;
- \overrightarrow{v} é a parte imaginária dos autovalores;
- $ightharpoonup A_1$, A_2 são as constantes arbitrárias definidas pelas condições iniciais.

Solução particular

Dado o sistema $Z_{t+1} = AZ_t + B$. Sendo B uma matriz de coeficientes constantes, o *steady state* será dado pela solução particular, tal que

$$Z_{t+1} = Z_t = Z^* = Z_t^p$$

Assim,

$$Z^* = AZ^* + B \Rightarrow Z^* = (I - A)^{-1}B$$

desde que I-A seja não singular. Caso o sistema seja homogêneo, a existência do *steady state* $Z=\mathbf{0}$ será condicionada tal que

$$\det(I - A) \neq 0$$

Ou seja, A não pode ter autovalores $\lambda = +1$. Nesse caso, a solução particular a *tentar* é tal que

$$Z_t^p = K_0 + K_1 t$$

onde K_0 , K_1 são matrizes coluna.

Forma canônica para sistemas $n \times n$

Se $Z_t = [x_{1t}, x_{2t}, \dots, x_{nt}]^T$, em que $Z_{t+1} = AZ_t$, temos um sistema com matriz de coeficientes A de ordem n.

A partir dos resultados para equações em diferença de ordem 1, a solução para o sistema de *n* variáveis é dado por

$$Z_t = A^t c$$

onde c é uma matriz coluna de constantes arbitrárias e dimensão

 $n \times 1$. Temos dois casos:

- ► A é diagonalizável $\Rightarrow D = P^{-1}AP$, onde D é uma matriz diagonal contendo os autovalores diferentes na diagonal principal. P é a matriz não singular cujas colunas são dadas pelos respectivos autovetores L.I.
- ► A é não diagonalizável pois há autovalores repetidos.

A é diagonalizável

Se $\lambda_i \neq \lambda_i, \forall i \neq j$, sendo $\lambda_i, i = 1, \dots, n$ os autovalores de A, então

$$D = P^{-1}AP$$
 ou $A = PDP^{-1}$

Assim,

$$A^t = PD^tP^{-1}$$

A solução analítica é dada por:

$$Z_t = PD^t \underbrace{P^{-1}c}_{K}$$

Assim,

$$Z_t = PD^tK$$

onde K é o novo vetor de constantes arbitrárias, que é a solução geral já vista para o caso 1 de sistemas de 2×2 .

Exemplo numérico

Seja $Z_{t+1} = AZ_t$, com

$$A = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 1 & 1/2 & 1 \\ 1/2 & 0 & 1/4 \end{bmatrix}$$

A matriz de transformação

$$P = \begin{bmatrix} 0 & 0.2112 & -0.5942 \\ 1.0000 & 0.9634 & -0.2605 \\ 0 & 0.1649 & 0.7610 \end{bmatrix}$$

A matriz diagonal

$$D = \begin{bmatrix} 0.5000 & 0 & 0 \\ 0 & 0.8904 & 0 \\ 0 & 0 & -0.1404 \end{bmatrix}$$

Se $Z_t = P \cdot D^t \cdot K$, logo, para t = 0,

$$Z_0 = PA^0K = PIK = P \cdot K$$
$$\Rightarrow K = P^{-1}Z_0$$

Para $Z_0 = [5, -10, 30]^T$, a matriz de constantes arbitrárias é:

$$K = \begin{bmatrix} -85.00 \\ 83.61 \\ 21.31 \end{bmatrix}$$

Assim,

$$Z_{t} = \begin{bmatrix} x_{1t} \\ x_{2t} \\ x_{3t} \end{bmatrix} = -85(0.5)^{t} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 83.61(0.89)^{t} \begin{bmatrix} 0.21 \\ 0.96 \\ 0.17 \end{bmatrix} + 21.31(-0.14)^{t} \begin{bmatrix} -0.59 \\ 0.26 \\ 0.76 \end{bmatrix}$$

A não é diagonalizável

Quando há autovalores repetidos (raízes múltiplas) precisamos da forma canônica de Jordan. Por exemplo, a matriz

$$J = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & \lambda_2 & 1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & \lambda_3 \end{bmatrix}$$

é composta por três blocos de Jordan.

- Cada bloco é uma matriz quadrada de ordem igual à multiplicidade do autovalor.
- Cada bloco possui o mesmo autovalor na diagonal e todos os outros elementos são nulos exceto aqueles na *superdiagonal* (diagonal acima da diagonal principal).

A não é diagonalizável

Assim, a transformação a ser usada é dada por

$$J = Q^{-1}AQ$$

onde Q é uma matriz não singular (matriz de transformação). A solução do sistema é dada por

$$Z_t = Q \cdot J^t \cdot K$$

Cada bloco pode ser escrito como

$$J_j = \lambda_j I + U_j$$

onde U_j é uma matriz com elementos nulos fora da superdiagonal e uns na mesma.

A não é diagonalizável

Assim, se o bloco λ_j é de multiplicidade 3, logo, por series de potências:

$$J_j^t = (\lambda_j I + U_j)^t = \lambda_j^t I + {t \choose 1} \lambda_j^{t-1} U + {t \choose 2} \lambda_j^{t-2} U^2$$

- O que importa do cálculo das potências dos blocos é que a potência de *J* continua a depender das potências dos autovalores;
- Assim, se $|\lambda_i| < 1$, a medida que $t \to \infty \lambda^t \to 0$;
- Por tanto, em termos de condições de estabilidade, o que importa é o módulo dos autovalores, sejam estes reais ou complexos.

Um caso de digressão

Seja o sistema de duas variáveis cuja matriz de coeficientes é

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1/2 & 3/2 \end{array} \right]$$

Os autovalores de A são $\lambda_1=0.5, \lambda_2=2$ e a matriz de transformação P

$$P = \begin{bmatrix} -0.89 & -0.71 \\ 0.45 & -0.71 \end{bmatrix}$$

Da solução matricial $Z_t = PD^tK$, para $Z_0 = \begin{bmatrix} 2, & 1 \end{bmatrix}^T$, a matriz de constantes arbitrárias é

$$K = P^{-1}Z_0 = [-0.7454, -1.8856]$$

Assim,

$$Z_{t} = \begin{bmatrix} x_{t} \\ y_{t} \end{bmatrix} = -0.75(0.5)^{t} \begin{bmatrix} -0.89 \\ 0.45 \end{bmatrix} + -1.89(2)^{t} \begin{bmatrix} -0.71 \\ -0.71 \end{bmatrix}$$

Um caso de digressão

Mas, para $Z_0 = [-0.89, 0.45]^T$, a matriz de constantes arbitrárias é

$$K = P^{-1}Z_0 = [1, 0]$$

Assim,

$$Z_{t} = \begin{bmatrix} x_{t} \\ y_{t} \end{bmatrix} = 1(0.5)^{t} \begin{bmatrix} -0.89 \\ 0.45 \end{bmatrix} + \mathbf{0}(2)^{t} \begin{bmatrix} -0.71 \\ -0.71 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_{t} \\ y_{t} \end{bmatrix} = (0.5)^{t} \begin{bmatrix} -0.89 \\ 0.45 \end{bmatrix}$$

Trata-se de um sistema estável *condicionado* à condição inicial dada. Alguns cenários podem ser construídos de forma a obter as características dinâmicas desejadas via as condições iniciais.

Simulação: Oligopólio de Cournot

Sejam *n* as firmas em um mercado oligopolístico de produto homogêneo, em que as firmas são maximizadoras de lucro, com curvas de demanda e custos lineares tal que a elasticidade preço da demanda e os custos marginais são constantes.

A curva de demanda:

$$p_t = a - b \sum_{i=1}^n x_{it}$$

onde x_{it} é a produção da i—ésima firma no período t; a, b > 0. A curva linear de custos é tal que

$$C_{it} = d + c_i x_{it}$$

em que $d, c_i > 0$.

Uma configuração básica do modelo de Cournot consiste em assumir que as firmas tem como *crença* que a produção das concorrentes no próximo período será igual à observada no período atual. Assim,

$$p_{t+1}^{i} = a - b(x_{it+1} + \sum_{j \neq i}^{n} x_{jt})$$

Sendo as firmas maximizadoras de lucro

$$\pi_{t+1}^{i} = p_{t+1}^{i} x_{it+1} - C_{it+1}$$

$$= ax_{it+1} - bx_{it+1}^{2} - bx_{it+1} \sum_{j \neq i}^{n} x_{jt} - C_{it+1}$$

O nível de produção que maximiza o lucro em t+1 atende às condições de otimalidade.

$$\pi_{t+1}^{i} = ax_{it+1} - bx_{it+1}^{2} - bx_{it+1} \sum_{j \neq i}^{n} x_{jt} - C_{i}$$

► Condição de primeira ordem: $\partial \pi_{t+1}^i / \partial x_{it+1} = 0$

$$\Rightarrow a - 2bx_{it+1} - b\sum_{j\neq i}^{n} x_{jt} - c_i = 0$$

Assim, para cada firma:

$$x_{it+1} = -\frac{1}{2} \sum_{j \neq i}^{n} x_{jt} + \frac{a - c_i}{2b}$$

Condição de segunda ordem: Para que o ponto crítico seja máximo

$$\partial^2 \pi_{t+1}^i / \partial x_{it+1}^2 < 0$$

o que é atendido pois

$$\frac{\partial^2 \pi_{t+1}^i}{\partial x_{it+1}^2} = -2b < 0$$

Duopólio

Neste caso n = 2 e para i = 1, 2:

$$x_{1t+1} = -\frac{1}{2}x_{2t} + \frac{a - c_1}{2b}$$

$$x_{2t+1} = -\frac{1}{2}x_{1t} + \frac{a - c_2}{2b}$$

Trata-se de um sistema não homogêneo de 2×2 , com matriz A de coeficientes e de termo independente B

$$A = \begin{bmatrix} 0 & -1/2 \\ -1/2 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} (a-c_1)/2b \\ (a-c_2)/2b \end{bmatrix}$$

Os autovalores de *A* são

$$\lambda_1 = +1/2$$
 $\lambda_2 = -1/2$

Portanto, trata-se de um sistema estável, com trajetórias que tendem ao nível de equilíbrio dado por $(I - A)^{-1}B$. E para n > 2?

Na simulação

- 1. Definir o número de firmas *n* e o número de períodos (*iters*);
- 2. Definir os parâmetros do modelo: a, b, d fixos; $c_i \in (0, 1)$;
- 3. Definir as variáveis necessárias x, A, B;
- 4. Definir as condições iniciais de x e a regra de variação.

No R ...

Modelos de Markov

- ▶ Um processo de Markov é um processo estocástico em que a probabilidade do sistema estar no estado i no período t + 1 depende somente do estado em que o sistema esteve no período t; só interessa o passado imediato.
- Os principais elementos de um processo Markoviano são:
 - a) a probabilidade p_t^i de ocorrer o estado i no t-ésimo período de tempo e
 - b) as probabilidades de transição m_{ij} , ou seja, as probabilidades com que o processo estará no estado i no tempo t+1 se estiver no estado j no tempo t.

Modelos de Markov (2)

As probabilidades de transição são agrupadas na matriz de transição ou matriz estocástica de Markov

$$M = \left[egin{array}{cccc} m_{11} & \dots & m_{1k} \ dots & \ddots & dots \ m_{k1} & \dots & m_{kk} \end{array}
ight]$$

onde o primeiro subscrito associa-se ao próximo período e o segundo subscrito indexa o período atual.

- Assim, $m_{ij} \ge 0$ é a probabilidade condicional com que o sistema estará no estado i no próximo período, dado que o período atual está no estado j.
- Logo, a soma dos m_{ij} sobre i -ou seja, a soma dos elementos de cada coluna- deve ser igual à unidade. Considera-se ainda que as probabilidades m_{ij} são fixas e independentes de t.

Questão de 2015

Seja uma economia hipotética em que as firmas de um determinado setor de atividade são classificadas em cinco classes de acordo com o tamanho da firma, sendo a classe/estrato *I* composto pelas firmas pequenas e o estrato *V* aquele constituído pelas grandes empresas. A tabela a seguir mostra a transição das firmas de uma classe para outra, do ano de 2005 para o ano de 2010:

Estrato	I	II	III	IV	V	Total em 2010
I	3	1	0	0	0	4
II	2	5	1	0	0	8
III	0	5	8	4	0	17
IV	0	0	7	16	11	34
V	0	0	5	32	100	137
Total em 2005	5	11	21	52	111	200

Assim, nota-se por exemplo, que das cinco firmas em 2005 no estrato I, três permaneceram nesse estrato e duas evoluíram para o estrato II.

Questão de 2015 (2)

- ► Uma estimativa da probabilidade de uma firma mudar da categoria *i* para a *j*, em um período de cinco anos, pode ser obtida dividindo-se, na tabela acima, o número de firmas em cada uma das classes pelo total da respectiva coluna.
- Por exemplo: se duas das cinco firmas que estavam inicialmente na classe I passaram para a classe II, a probabilidade de uma firma deslocar-se de I para II em cinco anos será de 0,4.
- Ainda, se $X_t = [x_{1t}, \ldots, x_{5t}]^T$ denota o total de firmas por classe no ano t, temos que

$$X_{t+1} = M \cdot X_t$$

nos fornece o total de firmas para o período em t + 1. Ou seja, se X_t denota a estrutura produtiva do setor em 2005 (em termos de tamanho), X_{t+1} nos dará a estrutura produtiva do setor em 2010.

Questão de 2015 (3)

A partir destas informações,

- (a) Proponha uma matriz de transição *M* e analise a dinâmica do sistema;
- (b) Estime a composição das classes para 2015 e para 2020;
- (c) Por simulação, mostre a evolução da estrutura e identifique o momento a partir do qual não há mais variação na estrutura produtiva do setor em termos de tamanho das firmas. Justifique a resposta. Pode ser uma aproximação. Qual é a composição das classes para $t \to \infty$? Como interpretamos esses valores?
- (d) Gere uma matriz de Markov aleatória (que atenda às características da matriz de transição e para cinco classes) e a partir de uma estrutura produtiva inicial que você escolha, analise a estrutura final para $t \to \infty$. Compare a dinâmica deste sistema com o anterior (ítens a-c) e justifique as suas observações a partir da análise de estabilidade. Há características persistentes?