Excess Risk Decomposition

Julia Kempe & David S. Rosenberg

NYU CDS

January 29, 2019

Excess Risk Decomposition

Error Decomposition

$$f^* = \underset{f}{\arg\min} \mathbb{E}\ell(f(x), y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\ell(f(x), y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

Error Decomposition

$$f^* = \underset{f}{\arg\min} \mathbb{E}\ell(f(x), y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\ell(f(x), y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

• Approximation Error (of \mathfrak{F}) = $R(f_{\mathfrak{F}}) - R(f^*)$

Error Decomposition

$$f^* = \underset{f}{\arg\min} \mathbb{E}\ell(f(x), y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\ell(f(x), y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- Approximation Error (of \mathfrak{F}) = $R(f_{\mathfrak{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Excess Risk

Definition

The excess risk compares the risk of f to the Bayes optimal f^* :

$$\mathbf{Excess}\ \mathbf{Risk}(f) = R(f) - R(f^*)$$

Excess Risk

Definition

The excess risk compares the risk of f to the Bayes optimal f^* :

Excess
$$Risk(f) = R(f) - R(f^*)$$

• Can excess risk ever be negative?

Excess Risk Decomposition for ERM

• The excess risk of the ERM \hat{f}_n can be decomposed:

Excess Risk
$$(\hat{f}_n) = R(\hat{f}_n) - R(f^*)$$

Excess Risk Decomposition for ERM

• The excess risk of the ERM \hat{f}_n can be decomposed:

Excess
$$\operatorname{Risk}(\hat{f}_n) = R(\hat{f}_n) - R(f^*)$$

$$= \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}.$$

Approximation error $R(f_{\mathcal{F}}) - R(f^*)$ is

ullet a property of the class ${\mathcal F}$

Approximation error $R(f_{\mathcal{F}}) - R(f^*)$ is

- ullet a property of the class ${\mathcal F}$
- \bullet the penalty for restricting to \mathcal{F} (rather than considering all possible functions)

Approximation error $R(f_{\mathcal{F}}) - R(f^*)$ is

- ullet a property of the class ${\mathcal F}$
- \bullet the penalty for restricting to \mathcal{F} (rather than considering all possible functions)

Bigger \mathfrak{F} mean smaller approximation error.

Approximation error $R(f_{\mathcal{F}}) - R(f^*)$ is

- ullet a property of the class ${\mathcal F}$
- ullet the penalty for restricting to ${\mathcal F}$ (rather than considering all possible functions)

Bigger \mathcal{F} mean smaller approximation error.

Concept check: Is approximation error a random or non-random variable?

Estimation error $R(\hat{f}_n) - R(f_{\mathcal{F}})$

• is the performance hit for choosing f using finite training data

Estimation error $R(\hat{f}_n) - R(f_{\mathcal{F}})$

- is the performance hit for choosing f using finite training data
- is the performance hit for minimizing empirical risk rather than true risk

Estimation error $R(\hat{f}_n) - R(f_{\mathcal{F}})$

- is the performance hit for choosing f using finite training data
- is the performance hit for minimizing empirical risk rather than true risk

With smaller \mathcal{F} we expect smaller estimation error.

Estimation error $R(\hat{f}_n) - R(f_{\mathcal{F}})$

- is the performance hit for choosing f using finite training data
- is the performance hit for minimizing empirical risk rather than true risk

With smaller \mathcal{F} we expect smaller estimation error.

Under typical conditions: 'With infinite training data, estimation error goes to zero."

Estimation error $R(\hat{f}_n) - R(f_{\mathcal{F}})$

- is the performance hit for choosing f using finite training data
- is the performance hit for minimizing empirical risk rather than true risk

With smaller \mathcal{F} we expect smaller estimation error.

Under typical conditions: 'With infinite training data, estimation error goes to zero."

Concept check: Is estimation error a random or non-random variable?

ERM Overview

- Given a loss function $\ell: \mathcal{A} \times \mathcal{Y} \to \mathbf{R}$.
- Choose hypothesis space \mathcal{F} .
- Use an optimization method to find ERM $\hat{f}_n \in \mathcal{F}$:

$$\hat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- Data scientist's job:
 - \bullet choose \mathcal{F} to balance between approximation and estimation error.
 - ullet as we get more training data, use a bigger ${\mathcal F}$

• We've been cheating a bit by writing "argmin".

- We've been cheating a bit by writing "argmin".
- In practice, we need a method to find $\hat{f}_n \in \mathcal{F}$.

- We've been cheating a bit by writing "argmin".
- In practice, we need a method to find $\hat{f}_n \in \mathcal{F}$.
- ullet For nice choices of loss functions and classes ${\mathcal F}$, we can get arbitrarily close to a minimizer
 - But takes time is it worth it?

- We've been cheating a bit by writing "argmin".
- In practice, we need a method to find $\hat{f}_n \in \mathcal{F}$.
- \bullet For nice choices of loss functions and classes ${\mathfrak F}$, we can get arbitrarily close to a minimizer
 - But takes time is it worth it?
- For some hypothesis spaces (e.g. neural networks), we don't know how to find $\hat{f}_n \in \mathcal{F}$.

- In practice, we don't find the ERM $\hat{f}_n \in \mathcal{F}$.
- We find $\tilde{f}_n \in \mathcal{F}$ that we hope is good enough.

- In practice, we don't find the ERM $\hat{f}_n \in \mathcal{F}$.
- We find $\tilde{f}_n \in \mathcal{F}$ that we hope is good enough.
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

Optimization Error =
$$R(\tilde{f}_n) - R(\hat{f}_n)$$
.

- In practice, we don't find the ERM $\hat{f}_n \in \mathcal{F}$.
- We find $\tilde{f}_n \in \mathcal{F}$ that we hope is good enough.
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

Optimization Error =
$$R(\tilde{f}_n) - R(\hat{f}_n)$$
.

Can optimization error be negative?

- In practice, we don't find the ERM $\hat{f}_n \in \mathcal{F}$.
- We find $\tilde{f}_n \in \mathcal{F}$ that we hope is good enough.
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

Optimization Error =
$$R(\tilde{f}_n) - R(\hat{f}_n)$$
.

- Can optimization error be negative? Yes!
- But

$$\hat{R}(\tilde{f}_n) - \hat{R}(\hat{f}_n) \geqslant 0.$$

Error Decomposition in Practice

• Excess risk decomposition for function \tilde{f}_n returned by algorithm:

Excess
$$\operatorname{Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= \underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\text{optimization error}} + \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

Error Decomposition in Practice

• Excess risk decomposition for function \tilde{f}_n returned by algorithm:

Excess
$$\operatorname{Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= \underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\text{optimization error}} + \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

• Concept check: It would be nice to have a concrete example where we find an \tilde{f}_n and look at it's error decomposition. Why is this usually impossible?

Error Decomposition in Practice

• Excess risk decomposition for function \tilde{f}_n returned by algorithm:

Excess
$$\operatorname{Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= \underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\text{optimization error}} + \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

- Concept check: It would be nice to have a concrete example where we find an \tilde{f}_n and look at it's error decomposition. Why is this usually impossible?
- But we could constuct an artificial example, where we know $P_{\mathfrak{X}\times \mathfrak{Y}}$ and f^* and $f_{\mathfrak{F}}...$