Echo uart

Generated by Doxygen 1.8.18

1 Hierarchical Index	1
1.1 Design Unit Hierarchy	1
2 Design Unit Index	3
2.1 Design Unit List	3
3 File Index	5
3.1 File List	5
4 Class Documentation	7
4.1 Behavioral Architecture Reference	7
4.1.1 Member Function Documentation	8
4.1.1.1 PROCESS_0()	8
4.1.2 Member Data Documentation	8
4.1.2.1 Clk	8
4.1.2.2 Reset	8
4.1.2.3 Rx	8
4.1.2.4 RX_Data	8
4.1.2.5 RX_Ready	8
4.1.2.6 Tx	9
4.1.2.7 TX_Data	9
4.1.2.8 TX_Ready	9
4.1.2.9 TX_Start	9
4.1.2.10 uart_rx	9
4.1.2.11 uart_tx	9
4.2 Behavioral Architecture Reference	10
4.2.1 Member Function Documentation	10
4.2.1.1 RX PROCESS()	10
4.2.1.2 TO_OUTPUT()	10
4.2.2 Member Data Documentation	11
4.2.2.1 count	11
4.2.2.2 data_buf	11
4.2.2.3 data_ready	11
4.2.2.4 freq_count	11
4.2.2.5 last_Rx	11
4.2.2.6 MAX_FREQ_COUNT	12
4.2.2.7 receiving	12
4.3 Behavioral Architecture Reference	12
4.3.1 Member Function Documentation	12
4.3.1.1 TX_PROCESS()	12
4.3.2 Member Data Documentation	13
4.3.2.1 count	13
4.3.2.2 freq_count	13

4.3.2.3 MAX_FREQ_COUNT	13
4.4 main Entity Reference	13
4.4.1 Member Data Documentation	14
4.4.1.1 BAUD	14
4.4.1.2 CLK_FREQUENCY	14
4.4.1.3 Clk_input	15
4.4.1.4 DATA_WIDTH	15
4.4.1.5 IEEE	15
4.4.1.6 NUMERIC_STD	15
4.4.1.7 Reset_input	15
4.4.1.8 Rx_input	15
4.4.1.9 STD_LOGIC_1164	16
4.4.1.10 Tx_output	16
4.5 UART_RX Entity Reference	16
4.5.1 Detailed Description	17
4.5.2 Member Data Documentation	17
4.5.2.1 BAUD	17
4.5.2.2 Clk	17
4.5.2.3 CLK_FREQUENCY	17
4.5.2.4 DATA_WIDTH	18
4.5.2.5 IEEE	18
4.5.2.6 NUMERIC_STD	18
4.5.2.7 Reset	18
4.5.2.8 Rx	18
4.5.2.9 RX_Data_Out	18
4.5.2.10 RX_Ready	19
4.5.2.11 STD_LOGIC_1164	19
4.6 uart_tx Entity Reference	19
4.6.1 Detailed Description	20
4.6.2 Member Data Documentation	20
4.6.2.1 BAUD	20
4.6.2.2 Clk	20
4.6.2.3 CLK_FREQUENCY	20
4.6.2.4 DATA_WIDTH	21
4.6.2.5 IEEE	21
4.6.2.6 NUMERIC_STD	21
4.6.2.7 Reset	21
4.6.2.8 STD_LOGIC_1164	21
4.6.2.9 Tx	21
4.6.2.10 TX_Data_In	22
4.6.2.11 TX_Ready	22
4.6.2.12 TX_Start	22

5 File Documentation	23
5.1 elbertv2_pin.ucf File Reference	23
5.1.1 Variable Documentation	23
5.1.1.1 ""Clk_input[0]""	23
5.1.1.2 ""Rx_input[0]""	23
5.1.1.3 ""Tx_output[0]""	23
5.1.1.4 VCCAUX	24
5.2 main.vhd File Reference	24
5.3 uart_rx.vhd File Reference	24
5.4 uart_tx.vhd File Reference	24
Index	25

Chapter 1

Hierarchical Index

1.1 Design Unit Hierarchy

Here is a hierarchical list of all entities:

main							 												 		13
UART_RX																					16
uart tx																					19

2 Hierarchical Index

Chapter 2

Design Unit Index

2.1 Design Unit List

Here is a list of all design unit members with links to the Entities they belong to:

architecture Behavioral																 				7
architecture Behavioral																 				10
architecture Behavioral																 				12
entity main																 				13
entity UART_RX																				
Definition of U	ART	R	Χ													 				16
entity uart_tx																				
Definition of U	ART	Τ.	Χ			 										 				19

Design Unit Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

lbertv2_pin.ucf	23
nain.vhd	24
art_rx.vhd	24
art tx.vhd	24

6 File Index

Chapter 4

Class Documentation

4.1 Behavioral Architecture Reference

Processes

• PROCESS_0(Clk)

Signals

```
    Clk std_logic

• Reset std_logic
• Rx std_logic
      signal for get

    Tx std_logic

      signal for transmitting
• RX_Data std_logic_vector(DATA_WIDTH - 1 downto 0)
      Inputs from uart_rx.

    RX_Ready std_logic

      Inputs from uart_rx.

    TX_Data std_logic_vector( 7 downto 0 )

      Inputs from uart_tx.
TX_Ready std_logic:=' 0 '
      Inputs from uart_tx.

    TX_Start std_logic

      Outputs from uart_tx.
```

Instantiations

```
    uart_rx UART_RX
        declaration uart_rx
    uart_tx uart_tx
        declaration uart_tx
```

4.1.1 Member Function Documentation

4.1.1.1 PROCESS_0()

```
PROCESS_0 ( Clk )
```

4.1.2 Member Data Documentation

4.1.2.1 Clk

```
Clk std_logic [Signal]
```

4.1.2.2 Reset

```
Reset std_logic [Signal]
```

4.1.2.3 Rx

```
Rx std_logic [Signal]
signal for get
```

4.1.2.4 RX_Data

```
RX_Data std_logic_vector(DATA_WIDTH - 1 downto 0 ) [Signal]
Inputs from uart_rx.
```

4.1.2.5 RX_Ready

```
RX_Ready std_logic [Signal] Inputs from uart_rx.
```

4.1.2.6 Tx

```
Tx std_logic [Signal]
Signal for transmitting
```

4.1.2.7 TX_Data

```
TX_Data std_logic_vector( 7 downto 0 ) [Signal]
Inputs from uart_tx.
```

4.1.2.8 TX_Ready

```
TX_Ready std_logic:=' 0 ' [Signal]
Inputs from uart_tx.
```

4.1.2.9 TX_Start

```
TX_Start std_logic [Signal]
```

Outputs from uart_tx.

4.1.2.10 uart_rx

declaration uart_rx

```
uart_rx UART_RX [Instantiation]
```

4.1.2.11 uart_tx

```
uart_tx uart_tx [Instantiation]
```

declaration uart_tx

The documentation for this class was generated from the following file:

• main.vhd

4.2 Behavioral Architecture Reference

Processes

```
    RX_PROCESS( Clk , Reset )
        waiting for data frame
    TO_OUTPUT( Clk )
        receiving data frame
```

Constants

```
    MAX_FREQ_COUNT positive:=CLK_FREQUENCY /BAUD
length of one bit in clock cycles
```

Signals

```
    freq_count naturalrange 0 toMAX_FREQ_COUNT - 1
        used for counting clock cycles
    count naturalrange 0 toDATA_WIDTH + 2
        counting received bits
    last_Rx std_logic
        temporarily keeps last state of Rx input
    receiving std_logic:=' 0'
        determinates if process is in receiving state
    data_buf std_logic_vector( 0 toDATA_WIDTH + 2)
        buffer for incoming uart frame, 'to' is used for reverse trick on output assignment
    data_ready std_logic:=' 0'
        determinates if data is ready to send to the output
```

4.2.1 Member Function Documentation

4.2.1.1 RX_PROCESS()

4.2.1.2 TO_OUTPUT()

```
TO_OUTPUT(

Clk ) [Process]
```

receiving data frame

4.2.2 Member Data Documentation

4.2.2.1 count

```
count naturalrange 0 toDATA_WIDTH + 2 [Signal]
counting received bits
```

4.2.2.2 data_buf

```
data_buf std_logic_vector( 0 toDATA_WIDTH + 2 ) [Signal]
```

buffer for incoming uart frame, 'to' is used for reverse trick on output assignment

4.2.2.3 data_ready

```
data_ready std_logic:=' 0 ' [Signal]
```

determinates if data is ready to send to the output

4.2.2.4 freq_count

```
freq_count naturalrange 0 toMAX_FREQ_COUNT - 1 [Signal]
```

used for counting clock cycles

4.2.2.5 last_Rx

```
last_Rx std_logic [Signal]
```

temporarily keeps last state of Rx input

4.2.2.6 MAX_FREQ_COUNT

```
MAX_FREQ_COUNT positive:=CLK_FREQUENCY /BAUD [Constant]
```

length of one bit in clock cycles

4.2.2.7 receiving

```
receiving std_logic:=' 0 ' [Signal]
```

determinates if process is in receiving state

The documentation for this class was generated from the following file:

uart_rx.vhd

4.3 Behavioral Architecture Reference

Processes

• TX_PROCESS(Clk , Reset)

Constants

• MAX_FREQ_COUNT positive:=CLK_FREQUENCY /BAUD length of one bit in clock cycles

Signals

```
    freq_count naturalrange 0 toMAX_FREQ_COUNT - 1
        used for counting clock cycles
    count naturalrange 0 to 11 := 11
        counting received bits
```

4.3.1 Member Function Documentation

4.3.1.1 TX_PROCESS()

4.3.2 Member Data Documentation

4.3.2.1 count

```
count naturalrange 0 to 11 := 11 [Signal]
counting received bits
```

4.3.2.2 freq_count

```
freq_count naturalrange 0 toMAX_FREQ_COUNT - 1 [Signal]
used for counting clock cycles
```

4.3.2.3 MAX_FREQ_COUNT

```
MAX_FREQ_COUNT positive:=CLK_FREQUENCY /BAUD [Constant] length of one bit in clock cycles
```

The documentation for this class was generated from the following file:

uart_tx.vhd

4.4 main Entity Reference

Inheritance diagram for main:

Entities

• Behavioral architecture

Libraries

• IEEE

use standard library

Use Clauses

```
• STD_LOGIC_1164
```

use logic elements

• NUMERIC_STD

use numeric elements

Generics

```
• CLK_FREQUENCY positive:= 12000000
```

clock frequency

• DATA_WIDTH positive:= 8

UART message length.

• BAUD positive:= 19200

UART baud rate.

Ports

- Clk_input in std_logic_vector(0 downto 0)
- Reset_input in std_logic_vector(0 downto 0)
- Rx_input in std_logic_vector(0 downto 0)

RX pin to get signals.

Tx_output out std_logic_vector(0 downto 0)

Tx pin for transmitting.

4.4.1 Member Data Documentation

4.4.1.1 BAUD

```
BAUD positive:= 19200 [Generic]
```

UART baud rate.

4.4.1.2 CLK_FREQUENCY

```
CLK_FREQUENCY positive:= 12000000 [Generic]
```

clock frequency

4.4.1.3 Clk_input

```
Clk_input in std_logic_vector( 0 downto 0 ) [Port]
```

4.4.1.4 DATA_WIDTH

```
DATA_WIDTH positive:= 8  [Generic]
```

UART message length.

4.4.1.5 IEEE

```
IEEE [Library]
```

use standard library

4.4.1.6 NUMERIC_STD

```
NUMERIC_STD [use clause]
```

use numeric elements

4.4.1.7 Reset_input

```
Reset_input in std_logic_vector( 0 downto 0 ) [Port]
```

4.4.1.8 Rx_input

```
Rx_input in std_logic_vector( 0 downto 0 ) [Port]
```

RX pin to get signals.

4.4.1.9 STD_LOGIC_1164

```
STD_LOGIC_1164 [use clause]
```

use logic elements

4.4.1.10 Tx_output

```
\label{txoutput}  \mbox{ Tx\_output out std\_logic\_vector( 0 downto 0 ) } \mbox{ [Port]}
```

Tx pin for transmitting.

The documentation for this class was generated from the following file:

· main.vhd

4.5 UART_RX Entity Reference

Definition of UART RX.

Inheritance diagram for UART_RX:

Entities

• Behavioral architecture

Libraries

IEEE

use standard library

Use Clauses

• STD_LOGIC_1164

use logic elements

• NUMERIC_STD

use numeric elements

Generics

```
    CLK_FREQUENCY positive:= 12000000
    DATA_WIDTH positive:= 8
        UART message length.

    BAUD positive:= 19200
        UART baud rate.
```

Ports

- Clk in std_logic
- · Reset in std_logic
- Rx in std_logic

Rx pin for receiving.

RX_Data_Out out std_logic_vector(DATA_WIDTH - 1 downto 0)

received data

RX_Ready out std_logic:='0'

determinates if data on output is ready

4.5.1 Detailed Description

Definition of UART RX.

4.5.2 Member Data Documentation

4.5.2.1 BAUD

```
BAUD positive:= 19200 [Generic]

UART baud rate.

4.5.2.2 Clk
```

4.5.2.3 CLK_FREQUENCY

Clk in std_logic [Port]

```
CLK_FREQUENCY positive:= 12000000 [Generic]
```

4.5.2.4 DATA_WIDTH

```
DATA_WIDTH positive:= 8  [Generic]
```

UART message length.

4.5.2.5 IEEE

```
IEEE [Library]
```

use standard library

4.5.2.6 NUMERIC_STD

```
NUMERIC_STD [use clause]
```

use numeric elements

4.5.2.7 Reset

```
Reset in std_logic [Port]
```

4.5.2.8 Rx

```
Rx in std_logic [Port]
```

Rx pin for receiving.

4.5.2.9 RX_Data_Out

```
RX_Data_Out out std_logic_vector(DATA_WIDTH - 1 downto 0 ) [Port]
```

received data

4.5.2.10 RX_Ready

```
RX_Ready out std_logic:=' 0 ' [Port]
```

determinates if data on output is ready

4.5.2.11 STD_LOGIC_1164

```
STD_LOGIC_1164 [use clause]
```

use logic elements

The documentation for this class was generated from the following file:

uart_rx.vhd

4.6 uart_tx Entity Reference

Definition of UART TX.

Inheritance diagram for uart_tx:

Entities

• Behavioral architecture

Libraries

IEEE

use standart library

Use Clauses

• STD_LOGIC_1164

use logic elements

• NUMERIC_STD

use numeric elements

Generics

```
    CLK_FREQUENCY positive:= 12000000
    DATA_WIDTH positive:= 8
        UART message length.

    BAUD positive:= 19200
        UART baud rate.
```

Ports

4.6.1 Detailed Description

Definition of UART TX.

4.6.2 Member Data Documentation

definition when new data can come

```
4.6.2.1 BAUD

BAUD positive:= 19200 [Generic]

UART baud rate.

4.6.2.2 Clk

Clk in std_logic [Port]
```

4.6.2.3 CLK_FREQUENCY

```
CLK_FREQUENCY positive:= 12000000 [Generic]
```

4.6.2.4 DATA_WIDTH

```
DATA_WIDTH positive:= 8  [Generic]
```

UART message length.

4.6.2.5 IEEE

```
IEEE [Library]
```

use standart library

4.6.2.6 NUMERIC_STD

```
NUMERIC_STD [use clause]
```

use numeric elements

4.6.2.7 Reset

```
Reset in std_logic [Port]
```

4.6.2.8 STD_LOGIC_1164

```
STD_LOGIC_1164 [use clause]
```

use logic elements

4.6.2.9 Tx

```
Tx out std_logic:=' 1 ' [Port]
```

Tx pin for transmitting.

4.6.2.10 TX_Data_In

```
TX_Data_In in std_logic_vector(DATA_WIDTH - 1 downto 0 ) [Port]
```

4.6.2.11 TX_Ready

data to transmit

```
TX_Ready in std_logic [Port]
```

definition when new data come

4.6.2.12 TX_Start

```
TX_Start out std_logic:=' 1 ' [Port]
```

definition when new data can come

The documentation for this class was generated from the following file:

• uart_tx.vhd

Chapter 5

File Documentation

5.1 elbertv2_pin.ucf File Reference

Constraints

- VCCAUX "3.3"
- "Clk_input[0]" LOC=P129|IOSTANDARD=LVCMOS33|PERIOD=12MHz
- "Rx_input[0]" LOC=P125|IOSTANDARD=LVCMOS33|SLEW=SLOW|DRIVE= 12
- "Tx_output[0]" LOC=P127|IOSTANDARD=LVCMOS33|SLEW=SLOW|DRIVE= 12

5.1.1 Variable Documentation

5.1.1.1 ""Clk_input[0]""

[Constraints]

5.1.1.2 ""Rx_input[0]""

[Constraints]

5.1.1.3 ""Tx_output[0]""

[Constraints]

24 File Documentation

5.1.1.4 VCCAUX

[Constraints]

5.2 main.vhd File Reference

Entities

- main entity
- Behavioral architecture

5.3 uart_rx.vhd File Reference

Entities

- UART_RX entity

 Definition of UART RX.
- Behavioral architecture

5.4 uart_tx.vhd File Reference

Entities

- uart_tx entity
 - Definition of UART TX.
- Behavioral architecture

Index

"Clk_input[0]"	data_ready
elbertv2_pin.ucf, 23	Behavioral, 11
"Rx_input[0]"	DATA_WIDTH
elbertv2_pin.ucf, 23	main, 15
"Tx_output[0]"	UART_RX, 17
elbertv2_pin.ucf, 23	uart_tx, 20
BAUD	elbertv2_pin.ucf, 23
main, 14	"Clk_input[0]", 23
UART_RX, 17	"Rx_input[0]", 23
uart_tx, 20	"Tx_output[0]", 23
Behavioral, 7, 10, 12	VCCAUX, 23
Clk, 8	frog count
count, 11, 13	freq_count
data_buf, 11	Behavioral, 11, 13
data_ready, 11	IEEE
freq_count, 11, 13	main, 15
last_Rx, 11	UART RX, 18
MAX_FREQ_COUNT, 11, 13	uart tx, 21
PROCESS_0, 8	
receiving, 12	last_Rx
Reset, 8	Behavioral, 11
Rx, 8	
RX_Data, 8 RX_PROCESS, 10	main, 13
RX Ready, 8	BAUD, 14
TO_OUTPUT, 10	CLK_FREQUENCY, 14
Tx, 8	Clk_input, 14
TX_Data, 9	DATA_WIDTH, 15
TX PROCESS, 12	IEEE, 15
TX_Ready, 9	NUMERIC_STD, 15
TX_Start, 9	Reset_input, 15
uart_rx, 9	Rx_input, 15
uart_tx, 9	STD_LOGIC_1164, 15
uai (_0,, 0	Tx_output, 16
Clk	main.vhd, 24 MAX FREQ COUNT
Behavioral, 8	Behavioral, 11, 13
UART_RX, 17	Bellavioral, 11, 13
uart_tx, 20	NUMERIC STD
CLK_FREQUENCY	main, 15
main, 14	UART RX, 18
UART_RX, 17	uart_tx, 21
uart_tx, 20	_ ,
Clk_input	PROCESS_0
main, 14	Behavioral, 8
count	
Behavioral, 11, 13	receiving
	Behavioral, 12
data_buf	Reset
Behavioral, 11	Behavioral, 8

26 INDEX

UART_RX, 18 uart_tx, 21 Reset_input main, 15 Rx Behavioral, 8 UART_RX, 18 RX_Data Behavioral, 8 RX_Data_Out UART_RX, 18 Rx_input main, 15 RX_PROCESS Behavioral, 10 RX_Ready Behavioral, 8	uart_tx, 19 BAUD, 20 Behavioral, 9 Clk, 20 CLK_FREQUENCY, 20 DATA_WIDTH, 20 IEEE, 21 NUMERIC_STD, 21 Reset, 21 STD_LOGIC_1164, 21 Tx, 21 TX_Data_In, 21 TX_Ready, 22 TX_Start, 22 uart_tx.vhd, 24 VCCAUX
UART_RX, 18	elbertv2_pin.ucf, 23
STD_LOGIC_1164 main, 15 UART_RX, 19 uart_tx, 21	
TO_OUTPUT Behavioral, 10 Tx	
Behavioral, 8 uart_tx, 21 TX_Data Behavioral, 9 TX_Data_In uart_tx, 21 Tx_output	
main, 16 TX_PROCESS Behavioral, 12 TX_Ready Behavioral, 9	
uart_tx, 22 TX_Start Behavioral, 9 uart_tx, 22	
UART_RX, 16 BAUD, 17 Clk, 17 Clk, 17 CLK_FREQUENCY, 17 DATA_WIDTH, 17 IEEE, 18 NUMERIC_STD, 18 Reset, 18 Rx, 18 RX_Data_Out, 18 RX_Ready, 18 STD_LOGIC_1164, 19 uart_rx Behavioral, 9 uart_rx.vhd, 24	