にあてはまる数または式を解答欄に記入しなさい。ただし、分数は既約分数で答えなさ

(2) 原点でGと接する直線ℓの方程式はリュー ウ であり、ℓとGの共有点で展

(1) 3次関数yはx= ア で極小値 イ をとる。

点以外の点の座標は「エ」である。

(3) Gとェ軸で囲まれた図形の面積は「

63.

- [3] $x = -x^3 + 6x^2 9x$ とそのグラフ G について、以下の記述の
- [1] 以下の記述の にあてはまる数を解答欄に記入しなさい。ただし、分母を有理化して答えなさい。分数は既約分数で答えなさい。
 - (1) 放物線 $y = x^2 6x + 2$ の頂点の座標は T である。
 - (2) サイコロ1個を4回連続して投げるとき、出た目の積が偶数となる確率は
 イー、出た目の和が7未満となる確率は
 ウーである。
 - (3) 247 と 133 の最大公約数は エ で、最小公倍数は オ である
 - a > 0 で $a^{12} = 5$ のとき、 $\frac{a^{2k} a^{-2k}}{a^k a^{-k}}$ の値は カ である。
 - (5) 16 hez3 の値を計算すると キ となる。

- [2] \triangle ABC において、 $AB=\sqrt{5}$, BC=5, $\cos\angle BAC=\frac{\sqrt{5}}{5}$ とする。以下の記述の にあてはまる数を解答欄に記入しなさい。ただし、分母を有理化して答えなさい。
 - (1) 辺ACの長さは ア である。
 - (2) sin ZBAC の値は イ である。
 - (3) (5ABC の面積は <u>う</u>である。
 - (4) 頂点 A を通り辺 BC に平行な直線とへABC の外接円との2つの交点のうち、頂点 A と異なる点を D とするとき、線分 AD の長さは エ であり、四角形 ABCD の面積は オ である。

12

- [4] 座標平面上に 2つの円 C_1 : $(x+1)^2+y^2=4$, C_2 : $(x-2)^2+y^2=9$ がある。以下の記述の にあてはまる数を解答欄に記入しなさい。ただし、分母を有理化して答えなさい。
 - (1) 円 C₁ と円 C₂ の 2 つの交点のうち y 座標が正である交点の座標は ア であ
 - (2) 円 C₁ と円 C₂ の共通接線のうち、傾きが正であるものの傾きは 1 である。 その共通接線と C₁, C₂ との接点をそれぞれ P₂ Q としたとき、P₂ Q 間の距離は フ である。
 - (3) 円 C₁ と円 C₂の2つの交点および点 (1, 4) を通る円の中心の座標は エ 半径は オ である。 (5,0)

The Manager of the Control

· 网络克雷斯 4-40

志望学部(学校)	志葉	学 科(専攻)	志望コース	受	験	誊	号	フリ ガナ	
								氏	
1	()			-	!		25	

〔全國必須問題〕

(1)	ダア	(3	,	-7)	1	15 16	ه ۴	5 432
	H &		19	0 **	1729		カ	$\frac{6\sqrt{5}}{5}\left(\frac{6}{5}\sqrt{5}6^{\frac{1}{2}}\right)$	9	81

小計		

13/22

59%

(3)	(3)		1	-4	ゥゥ			
	ž (6	-54) #	27 4			

[4] (2) C1, C2 をかいてみか!

$$PP' \underbrace{\sharp \, \sharp \, a \, b}! = \underbrace{\frac{1}{a \times (-1)} - 0 + b}! = \underbrace{\frac{1}{a \times (-1)} -$$

$$PP' = 2 + \frac{1}{5} + \frac{1}$$

$$|6a| = 2 \sqrt{a^2 + 1}$$

$$36a^2 = 4(a^2+1)$$

$$\alpha^2 = \frac{1}{8}$$

$$\alpha = \frac{1}{8}$$

$$\alpha = \frac{1}{18} = \frac{1}{4}$$

$$\alpha = \frac{1}{18} = \frac{1}{4}$$

$$(\dagger t, b = 7a = \frac{7\sqrt{2}}{4})$$

三平方の定理を使、7、AP、AQを求める!
$$AP = \sqrt{36-4} - \sqrt{25}$$

$$AP = \sqrt{36-4} = \sqrt{32} = 4\sqrt{2}$$
, $AQ = \sqrt{81-9} = \sqrt{72} = 6\sqrt{2}$

$$A \stackrel{2}{ } P' \qquad A \stackrel{G}{ }$$


```
[4](3) 円の交点を求める」
                         \begin{cases} (x+1)^{2} + y^{2} = 4 & -0 \\ (x-2)^{2} + y^{2} = 9 & -2 \end{cases}
                   0 - 2 + (x + 1)^2 - (x - 2)^2 = -5
                                                                         x^2+2x+1-(x^2-4x+4)=-5
                                                                       careless は人に関する評価や判断をキャン解詞。(i) 作役制物を使って [知らせ
「ご注文の商品はそうなれー・23/3 )下に「か知識したどきには)。
                                                                                                     2 has left = -\frac{3}{1} had left
                                                I left
                                       これをのに代入
                                                                                                         he important document to Adam and hurried to his office. But
                                                              (\frac{2}{3})^2 + y^2 = 4
                                        Your order has ( ) and it should reach you within a week. Delivery will take place between 9 An = \frac{4}{3} = \frac{4}{353} shipping 4 been shipping
                                                                                  y = + 4/2
                                  \stackrel{\textstyle \leftarrow}{\cancel{\times}} Everything was clean. The you. The write to you when \stackrel{\textstyle <}{\cancel{\times}} Everything was clean.
                                   (5) A: That's all for today's session. Please (
                            これると (1,4)を 通る円の方程がを求める!
                                       phone on the table in the conference room
                                  (4) Jim is still looking for his lost cellphone (X was \alpha) elect (A - P) in = 18 / 5
                               ① -② []), (\frac{4\sqrt{2}}{3} - b)^2 + (-\frac{4\sqrt{2}}{3} - b)^2 = 0
                              1. After the (-5.7)c × wa \frac{3}{815} = colast month, but of the (4.\frac{3}{3} - 5a) × (-\frac{3}{4}) + \frac{3}{35} - 16 = 0
                                  \sqrt{20} \times 0 () \sqrt{20} \times 20 = 0 and \sqrt{20} \times 1, \sqrt{20} \times 20 = 0 (-\frac{3}{4}) \sqrt{20} \times 20 \times 10^{-2} (-\frac{3}{4}) \sqrt{20} \times 20^{-2} (-\frac{3}{4}) (-\frac{3}{4}) (-\frac{3}{4}) (-\frac{3}{4}) (-\frac{3}{4}) (-\frac{3}{4}) (
                                                                                                                                            p.9
                                                                                                                                                                                                          -2a + 10 = 0
                 これを②、③に代入して
                                  aをためる!
                                                                                                                                                                            勉強した日 101年2
                                                                                                                                                                             ま、7、中には (5.0)
```