

Lecture 1

BU.330.775 Machine Learning

Minghong Xu, PhD.

Associate Professor

Today's Agenda

- >>> Course Overview
 - Requirements and evaluation
- >> Introduction to Machine Learning
- >>> Programing Basics
- >>> Hands-on Learning: Python tutorial

Instructor Bio

- >>> Minghong Xu, Ph.D.
- >>> Email: xu.minghong@jhu.edu
 - Best way to connect
- >>> Affiliation: Center for Digital Health and Artificial Intelligence (CDHAI)
- >>> Research and teaching: Artificial Intelligence and Big Data

Offices Hours

>>> Wednesdays 11:30am-1:30pm, and by appointment

https://jhucarey.zoom.us/j/4658557490?pwd=Y2NvL0M0RjdFb3RpUjlVOFBSSkFLZz09

- >>> Link available on Canvas
- >>> Waiting room enabled, admit one by one
- >>> First come first served
 - unless book ahead of time

Teaching Assistant

- >>> Boxi Jiao
- >>> Email: <u>bjiao1@jh.edu</u>
- >> MSIS, Carey 2024

Course Expectation

- >>> We focus on **both** design (theory) and deployment (practice)
 - How does it work, how can you apply

- >>> Why you need to know the technical details of ML models?
- >>> Programming and analytics made easier with Al
 - You will learn why in Generative AI course
- >>> Prepare you for deep learning and generative Al

Class Logistics

>>> Two 10-min-breaks each class

- >> 50/50 split between theory and practice
- >>> Hands-on learning using Python every week except the last week

Recommended Textbooks

- >>> Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
- >>> Introduction to Machine Learning with Python: A Guide for Data Scientists

- >>> Most class examples are curated from these two books
- >>> Check the original code on GitHub

About Python

>>> Top language for AI/ML

- >> No experience before?
- >> No worries!
- >>> Build skills throughout the course
- >>> Generative AI tools make programming and learning programming much easier before, "AI-assisted Programming"
 - We will demo it in class

Classroom Policy

- >> No cellphone
- >> No excessive talking
 - Questions during lecture should be addressed to me
 - Suggest to sit closer to me
- Academic honesty (important!)
- Rectifying your score
 - Discuss with TA or me your concerns on grading asap, within 1 week after scores are posted
 - Request after 1 week may not be entertained

Requirements

Assignment	Weight
Attendance and participation in class discussion	5%
Homework	60%
Final Exam	35%
Total	100%

Class Participation (5%)

>>> Please use your name tent

- >>> Class participation is an important part of learning
- >>> Discussion questions every week
- >>> Expect cold calls
 - First row exempted
 - Last row having the highest chance

Assignments (60%)

13

- >>> 6 weekly assignments
- >>> Each of 10 pt
- >>> Instructions in each week's hands-on learning session
- >>> Due the next week before class
- >>> Subject to TA interviews
- >>> Responsible for your submission

Final Exam (35%)

14

- "Interview" type of questions
 - Descriptive
 - Understanding
- >>> Python questions in format of multiple choices
 - No syntax (write code)
 - Understanding only

Final Exam Format

- >> In week 8, closed-book
- >>> Administered via Respondus LockDown Browser

- Install LockDown Browser from https://download.respondus.com/lockdown/download.php?id=1235
 33816
- >>> Sample test will be posted on Canvas for you to test

Tentative Schedule

Week	Topic	Hands-on Learning	Due
1	Introduction to machine learning and programming basics	Python tutorial	HW 1 release
2	Data preprocessing and exploratory data analysis	Explore and clean a housing dataset for machine learning algorithms	HW 1 due HW 2 release
3	Design of supervised machine learning models and training (I), regularization and evaluation	Deploy supervised models on MNIST dataset	HW 2 due HW 3 release
4	Design of supervised machine learning models and training (II), ensemble and boosting	Deploy supervised models on breast cancer dataset	HW 3 due HW 4 release
5	Design of unsupervised machine learning models (I), dimensionality reduction and feature engineering	Deploy unsupervised models on breast cancer dataset	HW 4 due HW 5 release
6	Design of unsupervised machine learning models (II), clustering and applications	Deploy unsupervised models on MNIST dataset	HW 5 due HW 6 release
7	Reinforcement learning and final review	Reinforcement learning using gymnasium	HW 6 due
8	Final exam		

Final Grades

>>> I may curve up or curve down at the end

>> A/A-: 20%

>>> B+: 60%

>>> B and below: 20%

Extra Credit

CO.BU.FT_MSIS.Student_Resources At

The FT MSIS Student Resources site allows you to access announcements and resources for FT MSIS students.

For Resources, click on the module buttons below and keep scrolling down to view the content

Academic Advisor Information	Events and News	CDHAI Forum	
Registration	Financial Aid	Billing	
Academic Support	Academic Status & Student Info	Graduation Information	
Student Organizations	Career & Life Design	Experiential Learning	
	Technology		

- >>> 1pt for each qualified article
- >> Need guidance?
- You chance to list a research experience on your resume
- >>> Networking opportunity available

Introduction to Machine Learning

Al Paradigm

- >>> Artificial Intelligence: broad field of developing machines that can replicate human behaviors
 - Perceiving, reasoning, learning, problem solving,...
- >>> Machine Learning: methodology of teaching machines to learn patterns in data
- >>> Deep Learning: branch of ML that uses neural network models
- >>> Generative AI: branch of DL that produces new data that is similar to given dataset
 - Text, image, audio, video,...

Al News!

>>> Let's share some recent news about Al

Dala - Information knowledge.

Machine Learning

- >>> AI systems able to acquire their own "knowledge"
 - By extracting patterns from raw data
- >>> Machine learning is the scientific study of algorithms and statistical models to perform a task using inference instead of instructions
- >>> Also known as predictive analytics or statistical learning

>> What is non-ML AI?

Use Cases

>>> Name a few machine learning applications that you know

- spam filtering - Recommendation - Crample of ML Applications

- Fraud defection

Three Main Types

- >>> Supervised learning
 - Identify patterns in data that is already labeled
- >>> Unsupervised learning
 - Uncover and create the labels itself
- >>> Reinforcement learning
 - Learn to make decisions by receiving rewards or penalties for actions
- >>> Sometimes you may have labeled data in unsupervised learning
- >>> Key difference is whether you use the label in the learning process

Machine Learning Tools

- >>> Python tools
 - Jupyter Notebook
 - JupyterLab
- >>> Python libraries
 - Scikit-learn
 - Pandas
 - Matplotlib
 - Seaborn
 - NumPy and SciPy
- >>> We will use cloud solution

Machine Learning Job Roles

>>> Data Scientist

- Applying knowledge of statistics and analytical skills to interpret data
- Data scientists often have degrees in statistics, computer science, or economics
- Some programming skills are required

>>> Machine Learning Engineer

- Emphasis on programming and system design skills
- Often have background as a developer or software architect
- Some knowledge of statistics required

>>> Applied Science Researcher

- Applies machine learning technology to a specific domain
- Requires knowledge of both the domain and machine learning

Programming Basics

What is Programming

- A computer program is a set of instructions
- >>> Computers are only smart because we program them to be
- >>> If the Dad is the machine, is it a machine learning?
- >>> If no, how to convert to ML?

Programming Language

- >>> Similar to a real language
- >>> Only a written language
 - Which gives us leverage
- >>> Syntax: grammar of a programming language
 - A set of rules to follow
 - If you do not follow the syntax: forget a semicolon, misplace a character, etc.
 - You will receive a syntax error

Variables

- >>> Something that can store information
 - Type, name, and a piece of information
- >>> Type
 - Numerical: integer, float, single/double
 - String: in quotation marks
 - Boolean: True/False
- >>> Naming recommendation
 - Do not capitalize the first word
 - But capitalize the first letter of all words after

Manipulate Variables

>>> Define/declare

```
int i = 10;
string studentName;
```

Assign

```
studentName = "Daniel"
num1 = num2 + num3
str1 = str2 + str3
num2 += num3
```

Arithmetic Operators

Name	Symbol	Example	Result
Exponentiation	^	4^2	16
Multiplication	*	16*2	32
Division	/	16/2	8
Addition	+	16+2	18
Subtraction	-	16-2	14

Arrays

- >> A list of something
 - Use students instead of student1, student2, student3, etc...

>>> Indexing: most programming languages start from 0, including Python

Conditional Statements

- >>> If statement, to function differently under different conditions
- >>> Express the logic: if something is true, do instruction A; otherwise, do instruction B
- >>> Can stack multiple if

```
if...
elseif...
elseif...
else...
```

Loops

- >>> Run certain instructions repeatedly
- >>> For loop

while loop

- >> Infinite loop caution!
- >>> Set up the condition so that it will be met at some point

Functions

- A segment of code that can be easily run by calling the function name
- >>> Can be called numerous times, in numerous places
- Arguments
 - Variables we pass into a function in order to be manipulated
 - For example, the addition function takes two arguments

```
addition(int1, int2)
```

- >>> Return values
 - A function can either return variable, or not, to the place where it is called

```
int i = addition(j,k)
```

Pseudocode

- >>> Pseudo: not real
- >>> Plan out the code
- >>> Import thing I will ask you to practice
- Become more important after generative Al
- May be tested in final exam

Lab 1: Python Tutorial

- >>> Practice Python basics and NumPy package
- >>> We will use Google CoLab for Python programming
 - Cloud platform will be preferred for teaching purpose
 - You may need gmail account for the AI function
- >>> You may install Anaconda if you want to set up the environment on your local machine
 - You will be responsible for maintaining your own tool

Next Week

- >>> Data Preprocessing
- >>> Exploratory Data Analysis

>>> Homework 1 due before class

References

>>> AWS Academy Machine Learning Foundations