

## Multiplexadores e Demultiplexadores

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Créditos dos slides para o Prof. Dr. Daniel D. Abdala

#### Na Aula Passada ...

- Implementação de circuitos codificadores;
- Codificador binário-BCD8421
- Código Johnson;
- Código Excesso de 3;
- Código Gray;
- Código ASCII;
- Display de 7 segmentos;
- Saídas de alta impedância (buffers).

#### Nesta Aula

- Multiplexadores;
- Multiplexadores via buffers 3-state;
- Demultiplexadores;
- Demultiplexadores via buffers 3-state.

## Multiplexadores

- Circuitos combinacionais;
- Permitem a seleção de uma entre várias possíveis entradas;



#### MUX 4-1



| l1 | 12 | 13 | 14 | <b>C1</b> | C2 | S  |
|----|----|----|----|-----------|----|----|
|    |    |    |    | 0         | 0  | I1 |
|    |    |    |    | 0         | 1  | 12 |
|    |    |    |    | 1         | 0  | 13 |
|    |    |    |    | 1         | 1  | 14 |



Prof. Dr. rer. nat . Daniel Duarte Abdala

#### MUX 4-1



### Multiplexadores

 É possível construir multiplexadores para mais que quatro canais a partir de MUX 4-1

| I1 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | <b>C1</b> | C2 | <b>C3</b> | S  |
|----|----|----|----|----|----|----|----|-----------|----|-----------|----|
|    |    |    |    |    |    |    |    | 0         | 0  | 0         | I1 |
|    |    |    |    |    |    |    |    | 0         | 0  | 1         | 12 |
|    |    |    |    |    |    |    |    | 0         | 1  | 0         | 13 |
|    |    |    |    |    |    |    |    | 0         | 1  | 1         | 14 |
|    |    |    |    |    |    |    |    | 1         | 0  | 0         | 15 |
|    |    |    |    |    |    |    |    | 1         | 0  | 1         | 16 |
|    |    |    |    |    |    |    |    | 1         | 1  | 0         | 17 |
|    |    |    |    |    |    |    |    | 1         | 1  | 1         | 18 |

#### MUX 8-1



#### MUX 8-1



## MUX 4x1 (8 bits)



### MUX via Buffers 3-State



## Aplicações

- Roteamento de Dados;
- Conversão Paralelo-Série;
- Sequenciamento de Operações;
- Geração de funções Lógicas.

## Possíveis Aplicações (Processadores)



Prof. Dr. rer. nat . Daniel Duarte Abdala

# Possíveis Aplicações (gerador de funções)



| Α | В | С | S |  |
|---|---|---|---|--|
| 0 | 0 | 0 | 1 |  |
| 0 | 0 | 1 | 0 |  |
| 0 | 1 | 0 | 0 |  |
| 0 | 1 | 1 | 1 |  |
| 1 | 0 | 0 | 0 |  |
| 1 | 0 | 1 | 1 |  |
| 1 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 0 |  |

# Possíveis Aplicações (conversor paralelo-serial)



## Possíveis Aplicações (seletor de resultados - ULA)



## Demultiplexadores

- Circuitos combinacionais;
- Permitem o roteamento de um único canal de informação para diferentes canais;



#### **DEMUX 4-1**



| <b>C1</b> | C2 | S1 | <b>S2</b> | <b>S3</b> | <b>S4</b> |
|-----------|----|----|-----------|-----------|-----------|
| <br>0     | 0  | I  |           |           |           |
| <br>0     | 1  |    | I         |           |           |
| <br>1     | 0  |    |           | I         |           |
| <br>1     | 1  |    |           |           | ı         |



Prof. Dr. rer. nat . Daniel Duarte Abdala

## Demultiplexadores

• É possível construir demultiplexadores para mais que quatro canais a partir de DEMUX 1-4

| <b>C1</b> | C2 | С3 | <b>S1</b> | <b>S2</b> | <b>S3</b> | <b>S4</b> | <b>S5</b> | <b>S6</b> | <b>S7</b> | <b>S8</b> |
|-----------|----|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <br>0     | 0  | 0  | ı         |           |           |           |           |           |           |           |
| <br>0     | 0  | 1  |           | ı         |           |           |           |           |           |           |
| <br>0     | 1  | 0  |           |           | I         |           |           |           |           |           |
| <br>0     | 1  | 1  |           |           |           | ı         |           |           |           |           |
| <br>1     | 0  | 0  |           |           |           |           | ı         |           |           |           |
| <br>1     | 0  | 1  |           |           |           |           |           | I         |           |           |
| <br>1     | 1  | 0  |           |           |           |           |           |           | ı         |           |
| <br>1     | 1  | 1  |           |           |           |           |           |           |           | I         |

#### **DEMUX 1-8**



Prof. Dr. rer. nat . Daniel Duarte Abdala

#### **DEMUX 1-8**



### **DEMUX via Buffers 3-State**



## Bibliografia Comentada



TOCCI, R. J., WIDMER, N. S., MOSS, G. L. Sistemas Digitais – Princípios e Aplicações. 11ª Ed. Pearson Prentice Hall, São Paulo, S.P., 2011, Brasil.



- CAPUANO, F. G., IDOETA, I. V. Elementos de Eletrônica Digital. 40º Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.