Cours 8

William McCausland

2019-10-19

Un peu de Chapitre 12

- \blacktriangleright μ , ν , λ des mesures boréliennes sur \mathbb{R} , λ Lebesgue.
- μ est absolument continue s'il existe f mesurable telle que $\mu(A) = \int_A f(x)\lambda(dx)$, A mesurable.
- ▶ μ est absolument continue par rapport à ν s'il existe f, ν -mesurable, telle que $\mu(A) = \int_A f(x)\nu(dx)$, $A \in \mathcal{B}$.
- μ est discret si $\sum_{x \in \mathbb{R}} \mu(\{x\}) = \mu(\mathbb{R})$.
- $\mu \ll \nu$ signifie $\nu(A) = 0 \Rightarrow \mu(A) = 0$.
- ► Théorème Radon-Nikodym : $\mu \ll \nu \Leftrightarrow$ il existe f, ν -mesurable, telle que $\mu(A) = \int_A f(x)\nu(dx)$, A mesurable.
- $f = \frac{d\mu}{d\nu}$ est la dérivée Radon-Nikodym de μ par rapport à ν .
- $\blacktriangleright \ \mu(A) = \int_A \left(\frac{d\mu}{d\nu}\right) d\nu.$

Probabilités conditionnelles de Λ

ightharpoonup Par rapport à la sous-tribu \mathcal{G}_1 :

$$P(\Lambda|\mathcal{G}_1) = \begin{cases} p_{13}/P(A_1) & \omega \in A_1\\ (p_{21} + p_{22})/P(A_2) & \omega \in A_2\\ p_{32}/P(A_3) & \omega \in A_3 \end{cases}$$

Par rapport à la variable aléatoire X

$$P(\Lambda|X) = P(\Lambda|\sigma(X)) = \begin{cases} \frac{p_{13} + p_{21} + p_{22}}{P(A_1 \cup A_2)} & \omega \in A_1 \cup A_2 = \{X = 1\} \\ p_{32}/P(A_3) & \omega \in A_3 = \{X = 2\} \end{cases}$$

▶ Par rapport à la sous-tribu minimale $\{\emptyset, \Omega\}$:

$$P(\Lambda | {\emptyset, \Omega}) = P(\Lambda) = p_{13} + p_{21} + p_{22} + p_{32}$$
, tous $\omega \in \Omega$

 \triangleright Par rapport à la sous-tribu maximal \mathcal{F} :

$$P(\Lambda|\mathcal{F}) = 1_{\Lambda}(\omega).$$

Vérification de $P(\Lambda|\mathcal{G}_1)$

ightharpoonup À vérifier : $E[P(\Lambda | \mathcal{G}_1)1_A] = P(\Lambda \cap A), A \in \mathcal{G}_1$.

$$E[P(\Lambda|\mathcal{G}_1)1_{A_1}] = E\left[\frac{p_{13}}{P(A_1)}1_{A_1}\right] = \frac{p_{13}}{P(A_1)}E[1_{A_1}] = p_{13} = P(\Lambda \cap A_1)$$

$$E[P(\Lambda|\mathcal{G}_1)1_{A_2}] = E\left[\frac{p_{21} + p_{23}}{P(A_2)}1_{A_2}\right] = \frac{p_{21} + p_{22}}{P(A_2)}E[1_{A_2}] = p_{21} + p_{22} = \frac{p_{22} + p_{23}}{P(A_2)}E[1_{A_2}] = p_{21} + p_{22} = \frac{p_{22} + p_{23}}{P(A_2)}E[1_{A_2}] = \frac{p_{22} + p_{23}}{P(A_2)}E[1_{A_2}] = \frac{p_{23} + p_{23}}{P(A_2)}E[1_{A$$

$$E[P(\Lambda|\mathcal{G}_1)1_{A_3}] = E\left[\frac{p_{32}}{P(A_3)}1_{A_3}\right] = \frac{p_{32}}{P(A_3)}E[1_{A_3}] = p_{32} = P(\Lambda \cap A_3)$$

Le reste par linéarité de l'espérance, additivité de probabilité

Construction de $P(\Lambda|\mathcal{G}_1) = \frac{d\nu}{dP_0}$

▶ La mesure ν : $\nu(A) \equiv P(\Lambda \cap A)$, $A \in \mathcal{G}_1$

$$u(A_1) = P(\Lambda \cap A_1) = p_{13}$$
 $u(A_2) = P(\Lambda \cap A_2) = p_{21} + p_{22}$
 $u(A_3) = P(\Lambda \cap A_2) = p_{32}$

▶ La mesure P_0 : $P_0(A) \equiv P(A)$, $A \in \mathcal{G}_1$.

$$P_0(A_1) = p_{11} + p_{12} + p_{13}$$

 $P_0(A_2) = p_{21} + p_{22} + p_{23}$
 $P_0(A_3) = p_{31} + p_{32} + p_{33}$

- Notez que $P_0(A) = 0 \Rightarrow \nu(A) = 0$, $A \in \mathcal{G}_1$: c-à-d $\nu \ll P_0$.
- $P(\Lambda|\mathcal{G}_1)(\omega) \equiv \nu(A)/P_0(A), \ \omega \in A \in \mathcal{G}_1.$

Espérances conditionelles de Y

ightharpoonup Par rapport à la sous-tribu \mathcal{G}_1 :

$$E[Y|\mathcal{G}_1] = \begin{cases} (4(p_{11} + p_{13}) + 5p_{12})/P(A_1) & \omega \in A_1 \\ (4(p_{21} + p_{23}) + 5p_{22})/P(A_2) & \omega \in A_2 \\ (4(p_{31} + p_{33}) + 5p_{32})/P(A_3) & \omega \in A_3 \end{cases}$$

▶ Par rapport à la variable aléatoire X

$$E[Y|X] = \begin{cases} \frac{4(p_{11} + p_{13} + p_{21} + p_{23}) + 5(p_{12} + p_{22})}{P(A_1 \cup A_2)} & \omega \in A_1 \cup A_2 = \{X = 1\} \\ (4(p_{31} + p_{33}) + 5p_{32})/P(A_3) & \omega \in A_3 = \{X = 2\} \end{cases}$$

▶ Par rapport à la sous-tribu minimale $\{\emptyset, \Omega\}$:

$$E[Y|\{\emptyset,\Omega\}] = E[Y]$$

ightharpoonup Par rapport à la sous-tribu maximal ${\cal F}$:

$$E[Y|\mathcal{F}] = Y(\omega)$$

Vérification de $E[Y|\mathcal{G}_1]$

- ightharpoonup À vérifier : $E[E[Y|\mathcal{G}_1]1_A]] = E[Y1_A], A \in \mathcal{G}_1$:
- Pour $A = A_1$:

$$E[E[Y|\mathcal{G}_1]1_{A_1}] = \frac{4(p_{11} + p_{13}) + 5p_{12}}{P(A_1)}E[1_{A_1}] = 4(p_{11} + p_{13}) + 5p_{12}$$

$$E[Y1_{A_1}] = 4(p_{11} + p_{13}) + 5p_{12}$$

- ▶ $A = A_2$, $A = A_3$ semblables
- Le reste par linéarité de l'espérance

Construction de $E[Y|\mathcal{G}_1]$:

- ▶ En général, $E[Y|\mathcal{G}_1](\omega) = E[Y^+|\mathcal{G}_1](\omega) E[Y^-|\mathcal{G}_1](\omega)$, constant sur chaque $A \in \mathcal{G}_1$.
- ▶ Mêmes cas ∞ , $-\infty$, fini, indéfini, événement par événement
- ▶ Ici, $Y = Y^+$, alors $E[Y|\mathcal{G}_1] = E[Y^+|\mathcal{G}_1] = \frac{d\rho^+}{dP_0}$,
- $\rho^{+}(A) \equiv E[Y^{+}1_{A}], P_{0}(A) \equiv P(A), A \in \mathcal{G}_{1}$
- ▶ Pour $A = A_1$,
 - $\rho^+(A_1) = E[Y^+1_{A_1}] = 4(p_{11} + p_{13}) + 5p_{12}$
 - $P_0(A_1) = P(A_1) = p_{11} + p_{12} + p_{13}$
- Les cas $A = A_2$, $A = A_3$ sont semblables.
- ▶ Pour chaque $\omega \in A \in \mathcal{G}_1$, $E[Y^+|\mathcal{G}_1](\omega) = \rho^+(A)/P_0(A)$.
- ▶ Pour $\omega \in A_1$,
 - $E[Y^+|\mathcal{G}_1](\omega) = \frac{4(p_{11}+p_{13})+5p_{12}}{p_{11}+p_{12}+p_{13}}$

Exercice 13.2.3

- \mathcal{G}_1 et \mathcal{G}_2 sont deux sous-tribus de \mathcal{F} .
- (a) Si Z est \mathcal{G}_1 -mesurable et $\mathcal{G}_1\subseteq\mathcal{G}_2$, Z est \mathcal{G}_2 mesurable :
 - ▶ Pour tous $z \in \mathbb{R}$, $\{Z \le z\} \in \mathcal{G}_1$ alors $\{Z \le z\} \in \mathcal{G}_2$.
- (b) Si Z est \mathcal{G}_1 -mesurable et \mathcal{G}_2 -mesurable, Z est $(\mathcal{G}_1 \cap \mathcal{G}_2)$ -mesurable :
 - Pour tous $z \in \mathbb{R}$, $\{Z \le z\} \in \mathcal{G}_1$ et $\{Z \le z\} \in \mathcal{G}_2$, alors $\{Z \le z\} \in \mathcal{G}_1 \cap \mathcal{G}_2$.

Proposition 13.2.6

- ▶ Définition de $E[X|\mathcal{G}]$: $E[E[X|\mathcal{G}]1_G] = E[X1_G]$, tous $G \in \mathcal{G}$.
- ▶ variables aléatoires X, Y, X est \mathcal{G} -mesurable, $E[Y] < \infty$, $E[XY] < \infty$.
- ▶ Proposition : $E[XY|\mathcal{G}] = XE[Y|\mathcal{G}]$
- ► Preuve :
 - ▶ Soit G_0 , $G \in \mathcal{G}$, $X = 1_{G_0}$. Alors

$$\begin{aligned} E[XE[Y|\mathcal{G}]1_G] &= E[E[Y|\mathcal{G}]1_{G\cap G_0}] = E[Y1_{G\cap G_0}] = E[XY1_G]. \\ E[E[XY|\mathcal{G}]1_G] &= E[XY1_G]. \end{aligned}$$

- ▶ $XE[X|\mathcal{G}] = E[XY|\mathcal{G}]$ avec probabilité 1.
- Même chose pour les X simple (linéarité), positives (convergence dominée), général.

Proposition 13.2.7 (espérances itérées)

- ▶ Définition de $E[X|\mathcal{G}]$: $E[E[X|\mathcal{G}]1_G] = E[X1_G]$, tous $G \in \mathcal{G}$.
- ▶ Proposition : $G_1 \subseteq G_2 \subseteq F$, $E[E[Y|G_2]|G_1] = E[Y|G_1]$.
- ▶ Preuve : fixe $G \in \mathcal{G}_1 \subseteq \mathcal{G}_2$,

$$E[E[Y|\mathcal{G}_2]|\mathcal{G}_1] 1_G] = E[E[Y|\mathcal{G}_2]1_G] = E[Y1_G]$$
$$E[E[Y|\mathcal{G}_1]1_G] = E[Y1_G]$$

alors

$$E[E[Y|\mathcal{G}_2]|\mathcal{G}_1] = E[Y|\mathcal{G}_1]$$
 avec probabilité 1.

Cas spécial, espérance conditionnelle comme projection

$$E[E[Y|\mathcal{G}]|\mathcal{G}] = E[Y|\mathcal{G}]$$