Reuse Distance & Cochannel Interference

• For Hexagonal cells, the Reuse Distance is given by

$$D = \sqrt{3NR}$$

where R is cell radius and

N is the reuse pattern (the cluster size or the number of cells per cluster).

• Reuse factor is

$$q = \frac{D}{R} = \sqrt{3N}$$

Cochannel Interference

Worst Case of Cochannel Interference

Signal to Interference Ratio (Cochannel Interference)

Cochannel interference ratio is given by

$$\frac{S}{I} = \frac{Signal}{Interference} = \frac{S}{\sum_{k=1}^{M} I_k}$$

where I is co-channel interference and

M is the maximum number of co-channel interfering cells.

• For M = 6, S/I is given by

$$\frac{S}{I} = \frac{S}{\sum_{k=1}^{6} \left(\frac{D_k}{R}\right)^{-\gamma}}$$

where γ is the propagation path loss slope and $\gamma = 2 \sim 5$.

Signal to Interference Ratio (Cochannel Interference)

• If we assume D_k is same for the six interfering cells, then $D_k = D$

$$\frac{S}{I} = \frac{1}{6\left(\frac{D}{R}\right)^{-\gamma}}$$

$$\frac{S}{I} = \frac{(q)^{\gamma}}{6}$$

$$\frac{S}{I} = \frac{1}{6\left(q\right)^{-\gamma}} \qquad \text{Because, } q = \frac{D}{R}$$

$$q = \left[6\left(\frac{s}{I}\right)\right]^{1/\gamma}$$

Worst Case of Cochannel Interference

$$\frac{S}{I} = \frac{(R)^{-\gamma}}{2(D-R)^{-\gamma} + 2(D)^{-\gamma} + 2(D+R)^{-\gamma}}$$

$$\frac{S}{I} = \frac{1}{2(q-1)^{-\gamma} + 2(q)^{-\gamma} + 2(q+1)^{-\gamma}}$$

Problem due to Cochannel Interference

Take
$$q = 4.6$$
,

$$S/I = 54.3$$
 or 17.3 dB (which is lower than 18 dB)