AUA CS108, Statistics, Fall 2020 Lecture 36

Michael Poghosyan

18 nov 2020

Contents

► Confidence Intervals

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

We take $\alpha \in (0,1)$, and call the number $1-\alpha$ the **confidence** level.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

We take $\alpha \in (0,1)$, and call the number $1-\alpha$ the **confidence** level.

Problem: Using the Random Sample, construct an interval containing the Unknown Parameter value with Probability not less than $1-\alpha$.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

We take $\alpha \in (0,1)$, and call the number $1-\alpha$ the **confidence** level.

Problem: Using the Random Sample, construct an interval containing the Unknown Parameter value with Probability not less than $1-\alpha$.

The usual values of the confidence level are 90%, 95%, 99%, so the usual values of α are 0.1, 0.05 and 0.01.

CI

Definition: Assume $0 < \alpha < 1$, and let $L = L(x_1, ..., x_n, \alpha)$, $U = U(x_1, ..., x_n, \alpha)$ be two functions with $L(x_1, ..., x_n, \alpha) \le U(x_1, ..., x_n, \alpha)$ for all $(x_1, ..., x_n, \alpha)$.

Definition: Assume $0 < \alpha < 1$, and let $L = L(x_1, ..., x_n, \alpha)$, $U = U(x_1, ..., x_n, \alpha)$ be two functions with $L(x_1, ..., x_n, \alpha) \le U(x_1, ..., x_n, \alpha)$ for all $(x_1, ..., x_n, \alpha)$. The random interval

$$(L, U) = (L(X_1, ..., X_n, \alpha), U(X_1, ..., X_n, \alpha))$$

is called a **confidence interval** (or confidence interval estimator) for θ of confidence level $1-\alpha$, if for any $\theta \in \Theta$,

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha.$$

CI

In the case we have a realization/observation of $X_1, ..., X_n$, say, $x_1, ..., x_n$, then the interval

$$(L(x_1,...,x_n,\alpha), U(x_1,...,x_n,\alpha))$$

will be an interval estimate for θ for the confidence level $(1-\alpha)$.

CI

In the case we have a realization/observation of $X_1, ..., X_n$, say, $x_1, ..., x_n$, then the interval

$$(L(x_1,...,x_n,\alpha), U(x_1,...,x_n,\alpha))$$

will be an interval estimate for θ for the confidence level $(1-\alpha)$.

Going back to our CI, CI of the confidence level $1-\alpha$ is a Random Interval that contains θ in more than $(1-\alpha)\cdot 100\%$ of cases.

CI, Interpretation

Note: It is important to understand, that in the CI definition

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha$$

 θ is not our r.v., θ is our unknown constant Parameter, so we do not read this as "with high Probability, θ is in (L, U)".

CI, Interpretation

Note: It is important to understand, that in the CI definition

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha$$

 θ is not our r.v., θ is our unknown constant Parameter, so we do not read this as "with high Probability, θ is in (L, U)". Instead, the Interval (L, U) is Random, so we read this as **with high Probability, the interval** (L, U) **will contain** θ .

¹But not different θ -s !!

CI, Interpretation

Note: It is important to understand, that in the CI definition

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha$$

 θ is not our r.v., θ is our unknown constant Parameter, so we do not read this as "with high Probability, θ is in (L, U)". Instead, the Interval (L, U) is Random, so we read this as **with high Probability, the interval** (L, U) **will contain** θ .

So, if we will have/generate different observations, we will have different Intervals¹ (L, U), and we want to have that most of the time that interval contains our unknown Parameter value.

¹But not different θ -s !!

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$.

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$. Then good **Estimator** for λ is

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$. Then good **Estimator** for λ is

$$\hat{\lambda} = \frac{1}{\overline{X}}.$$

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$. Then good **Estimator** for λ is

$$\hat{\lambda} = \frac{1}{\overline{X}}.$$

Now, let us take as CI

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$. Then good **Estimator** for λ is

$$\hat{\lambda} = \frac{1}{\overline{X}}.$$

Now, let us take as CI

$$\left(\frac{1}{\overline{X}} - 0.1, \frac{1}{\overline{X}} + 0.1\right)$$

and do some simulations:

Exponential Model, CI, (1/mean - 0.1, 1/mean + 0.1)


```
Cl. R Simulation. Code
#CI Idea, Exponential Model
lambda <-0.41
conf.level \leftarrow 0.95; a = 1 - conf.level
sample.size <- 50; no.of.intervals <- 100</pre>
epsilon <- 0.1
plot.new()
plot.window(xlim = c(0,no.of.intervals), ylim = c(0.2,0.8))
axis(1); axis(2)
title("Exponential Model, CI, (1/mean - 0.1, 1/mean + 0.1)")
for(i in 1:no.of.intervals){
  x <- rexp(sample.size, rate = lambda)
  lo \leftarrow 1/\text{mean}(x) - \text{epsilon}; \text{up} \leftarrow 1/\text{mean}(x) + \text{epsilon}
  if(lo > lambda || up < lambda){</pre>
    segments(c(i), c(lo), c(i), c(up), col = "red")
  }
  else{
    segments(c(i), c(lo), c(i), c(up))
abline(h = lambda, lwd = 2, col = "blue")
```

Methods to obtain Confidence Intervals

We will consider several methods to construct CIs:

- Chebyshev Inequality Based;
- ► Pivotal Quantity Based

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$.

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$. Assume σ^2 is known, and μ is unknown, and we want to estimate it using the Sample.

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$. Assume σ^2 is known, and μ is unknown, and we want to estimate it using the Sample. The problem is to construct a CI for μ of given Confidence Level $1 - \alpha$.

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$. Assume σ^2 is known, and μ is unknown, and we want to estimate it using the Sample. The problem is to construct a CI for μ of given Confidence Level $1 - \alpha$.

By the Chebyshev inequality method, we can obtain that the interval

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n \cdot \alpha}}, \ \overline{X} + \frac{\sigma}{\sqrt{n \cdot \alpha}}\right)$$

is a CI for μ of Confidence Level $1-\alpha$.

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$. Assume σ^2 is known, and μ is unknown, and we want to estimate it using the Sample. The problem is to construct a CI for μ of given Confidence Level $1 - \alpha$.

By the Chebyshev inequality method, we can obtain that the interval

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n \cdot \alpha}}, \ \overline{X} + \frac{\sigma}{\sqrt{n \cdot \alpha}}\right)$$

is a CI for μ of Confidence Level $1 - \alpha$.

Note: Here

$$\frac{\sigma}{\sqrt{n\cdot\alpha}}$$

is called the **Margin of Error** (for the Interval Estimate of μ , given σ^2).

Some Notes

Two notes about the obtained CI - in fact, these notes will work also for other cases too:

Some Notes

Two notes about the obtained CI - in fact, these notes will work also for other cases too:

The CI length obtained above is

$$\frac{2\sigma}{\sqrt{n\cdot\alpha}}$$
.

Note: If we increase n, the CI gets narrower. This is intuitive: if we collect more data, we can estimate the parameter more precisely, we can enclose it in a smaller length interval.

Some Notes

Two notes about the obtained CI - in fact, these notes will work also for other cases too:

The CI length obtained above is

$$\frac{2\sigma}{\sqrt{n\cdot\alpha}}$$
.

Note: If we increase n, the CI gets narrower. This is intuitive: if we collect more data, we can estimate the parameter more precisely, we can enclose it in a smaller length interval.

Note: If we increase the Confidence Level, i.e., if we decrease α , then the length of CI increases. This is intuitive too: if we want to be more sure where our unknown Parameter is lying, we will get a larger interval.

Example: Now, let us construct a CI of CLevel $1 - \alpha$ for p in the Bernoulli(p) Model.

Example: Now, let us construct a CI of CLevel $1-\alpha$ for p in the Bernoulli(p) Model.We assume we have a Random Sample

 $X_1, X_2, ..., X_n \sim Bernoulli(p).$

Example: Now, let us construct a CI of CLevel $1-\alpha$ for p in the Bernoulli(p) Model.We assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim Bernoulli(p).$$

The CI for p by Chebyshev Inequality will be

$$\left(\overline{X} - \frac{1}{2\sqrt{n \cdot \alpha}}, \ \overline{X} + \frac{1}{2\sqrt{n \cdot \alpha}}\right)$$

is a CI for p of level $1 - \alpha$.

Example: Now, let us construct a CI of CLevel $1 - \alpha$ for p in the Bernoulli(p) Model.We assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim Bernoulli(p).$$

The CI for *p* by Chebyshev Inequality will be

$$\left(\overline{X} - \frac{1}{2\sqrt{n \cdot \alpha}}, \ \overline{X} + \frac{1}{2\sqrt{n \cdot \alpha}}\right)$$

is a CI for p of level $1 - \alpha$.

Note: Here

$$\frac{1}{2\sqrt{n\cdot\alpha}}$$

is called the Margin of Error (for the Interval Estimate of p).

Bernoulli Model, CI by Cheby

Sample Size
$$=$$
 50, $\mathit{CL} = 95\%$

Bernoulli Model, CI by Cheby

Sample Size
$$=$$
 150, $\mathit{CL} = 95\%$

Bernoulli Model, CI by Cheby

Sample Size
$$=$$
 150, $\mathit{CL} = 99\%$

Bernoulli Model, CI by Cheby

Sample Size
$$= 250$$
, $CL = 90\%$

```
Cl. R Simulation. Code
#CI Idea, Bernoulli Model
p < -0.345
conf.level \leftarrow 0.9; a = 1 - conf.level
sample.size <- 250; no.of.intervals <- 150</pre>
ME <- 1/(2*sqrt(sample.size*a)) #Margin of Error
plot.new()
plot.window(xlim = c(0, \text{no.of.intervals}), ylim = c(0, 1))
axis(1); axis(2)
title("Bernoulli Model, CI by Cheby")
for(i in 1:no.of.intervals){
  x <- rbinom(sample.size, size = 1, prob = p)
  lo \leftarrow mean(x) - ME
  up \leftarrow mean(x) + ME
  if(lo > p || up < p){
    segments(c(i), c(lo), c(i), c(up), col = "red")
  }
  else{
    segments(c(i), c(lo), c(i), c(up))
```

abline(h = p, lwd = 2, col = "blue")