

Introduction

- ► Apache Spark is a unified computing engine and a set of libraries for parallel data processing.
- ▶ Distributed, Highly scalable, In-memory data analytics system.
- ▶ Why In-memory system is needed?

Spark's Concepts

Spark Application –

High Level Architecture

Spark's Concepts

- Spark's Language API
 - ▶ Scala, Java, Python, SQL, R.

Spark's Concepts

- Spark Session the driver process
- Data Frames
 - ▶ Most common structured API
- RDD (Resilient Distributed Datasets)
- Partitions
- Transformations
 - Narrow transformation
 - Wide transformation
- Lazy Evaluation
- Actions

Anatomy of a Spark Job

Anatomy of a Spark Job

- Execution details
 - Pipelining
 - ► Shuffle persistence

Spark on Yarn

Cluster Deployment Mode

Spark on Yarn

ClientDeploymentMode

Configurations

- Dynamic Executor Allocation
 - ▶ Benefit
 - ▶ Limitation

Hive on Spark

	Memory	CPU
Hive on Spark	Minimum: 16 GB Recommended: 32 GB for larger data sizes Individual executor heaps should be no larger than 16 GB so machines with more RAM can use multiple executors.	Minimum: 4 cores Recommended: 8 cores for larger data sizes

Thank you