Lectures

Ilia Kamyshev

January 8, 2021

Contents

1	Rosenblatt's perceptron	1
	1.1 Introduction	1

1 Rosenblatt's perceptron

1.1 Introduction

Recall: for an input $x \in \mathbb{R}^n$, the parametrized function describing the mapping computed by a perceptron is:

$$F(\omega, x) = F((\omega_1, \omega_2, \dots, \omega_n, \theta), (x_1, x_2, \dots, x_n, -1)) = sgn(\sum_{i=1}^n \omega_i x_i - \theta)$$

Or in the vector form:

$$F(\boldsymbol{\omega}, \boldsymbol{x}) = sgn(\boldsymbol{\omega^T x})$$

This perceptron can only classify patterns which are linearly seprable.

Theorem 1. Suppose $C_1 \bigcup C_2 = C$ are linearly separable classes over the training set $z \in Z^T$ with the assumption $z_t = \{x_t, y_t \in C_1\}$, and perceptron's response r_t with mistake $e_t = r_t - y_t < 0$ can be corrected by applying the learning rule to its current state $\omega \in \Omega^T$:

$$\omega_t = \omega_{t-1} + e_t x_t$$

Then perceptron's error correction algorithm converges in k number of steps with following assumptions: training input is bounded by Euclidean norm $\|\mathbf{x}_t\| \leq R$ and $e_t \boldsymbol{\omega}_*^T \mathbf{x}_t \geq \gamma$ for t = 1..T, where $\gamma > 0$. Initial state $\boldsymbol{\omega}_0 = 0$. Note, that γ uses to be sure that some example is classified correctly.

Proof: Multiplying both sides of learning rule equation by some optimal ω_*^T we will have:

$$\omega_{\star}^T \omega_k = \omega_{\star}^T \omega_{k-1} + e_k \omega_{\star}^T x_k \ge \omega_{\star}^T \omega_{k-1} + \gamma$$

Now we can expand equation above for k steps and keep in mind $\omega_0=0$ we will get:

$$\omega_*^T \omega_k \ge \omega_*^T (\omega_{k-2} + e_{k-1} x_{k-1}) + \gamma \ge \omega_*^T (\omega_{k-3} + e_{k-2} x_{k-2}) + 2\gamma \ge \dots$$
$$\dots \ge \omega_*^T (\omega_0 + e_1 x_1) + (k-1)\gamma \ge k\gamma$$

Let's do one important step which results will be substituted to the final inequality. Suppose we have following Euclidean norm $\|\omega_k\|$ and, as it's known, for squared L2 norm the equality holds:

$$\|\boldsymbol{\omega}_{k}\|^{2} = \|\boldsymbol{\omega}_{k-1} + e_{k}\boldsymbol{x}_{k}\|^{2} = \|\boldsymbol{\omega}_{k-1}\|^{2} + e_{k}^{2}\|\boldsymbol{x}_{k}\|^{2} + 2e_{k}\boldsymbol{\omega}_{k-1}^{T}\boldsymbol{x}_{k}$$

Since $e_k = r_k - y_k = -2$ $(r_k = -1 \text{ while the target } y_k = 1)$:

$$\|\boldsymbol{\omega_{k-1}}\|^2 + 2\|\boldsymbol{x_k}\|^2 - 4\boldsymbol{\omega_{k-1}^T} \boldsymbol{x_k}$$

There is no doubt that:

$$\|\boldsymbol{\omega}_{k-1}\|^2 + 2\|\boldsymbol{x}_k\|^2 - 4\boldsymbol{\omega}_{k-1}^T \boldsymbol{x}_k \le \|\boldsymbol{\omega}_{k-1}\|^2 + 2\|\boldsymbol{x}_k\|^2$$

Continuing for k steps we will have:

$$\|\boldsymbol{\omega_{k-1}}\|^2 + 2\|\boldsymbol{x_k}\|^2 - 4\boldsymbol{\omega_{k-1}^T} \boldsymbol{x_k} \le 2\sum_{j=1}^k \|\boldsymbol{x_j}\|^2$$

Since $\|\boldsymbol{x_t}\| \leq R$:

$$\|\boldsymbol{\omega_{k-1}}\|^2 + 2\|\boldsymbol{x_k}\|^2 - 4\boldsymbol{\omega_{k-1}^T} \boldsymbol{x_k} \le 2kR^2$$

From Cauchy-Schwarz inequality:

$$\left| \boldsymbol{\omega}_{*}^{T} \boldsymbol{\omega}_{k} \right| \leq \left\| \boldsymbol{\omega}_{*}^{T} \right\| \cdot \left\| \boldsymbol{\omega}_{k} \right\|$$

$$k \gamma \leq \left\| \boldsymbol{\omega}_{*}^{T} \right\| \cdot \left\| \boldsymbol{\omega}_{k} \right\|$$

$$\frac{k \gamma}{\left\| \boldsymbol{\omega}_{*}^{T} \right\|} \leq \left\| \boldsymbol{\omega}_{k} \right\|$$

Substitying results obtained earlier:

$$\frac{k^{2}\gamma^{2}}{\|\omega_{*}^{T}\|^{2}} \leq \|\omega_{k}\|^{2} = \|\omega_{k-1}\|^{2} + 2\|x_{k}\|^{2} - 4\omega_{k-1}^{T}x_{k} \leq 2kR^{2}$$

Finally:

$$\begin{split} \frac{k^2 \gamma^2}{\left\|\boldsymbol{\omega}_*^T\right\|^2} &\leq 2kR^2\\ \frac{k\gamma^2}{\left\|\boldsymbol{\omega}_*^T\right\|^2} &\leq 2R^2\\ k &\leq \frac{2R^2}{\gamma^2} \left\|\boldsymbol{\omega}_*^T\right\|^2 \blacksquare \end{split}$$