Auto-annotation for Voice-enabled Entertainment Systems

Wenyan Li, Ferhan Ture

Comcast Applied Al Research Lab

Motivation

• Voice-activated intelligent entertainment systems are prevalent in our daily lives

Proposal

- Identify errors and provide reasonable corrections in ASR systems automatically
- Obtain training data for production-level ASR systems in an unsupervised manner

RoadMap

- Motivation
- Proposal
- Prior work
- Auto-annotation Methods:
 - Utterance-based
 - Interaction-based
- Evaluation
- Conclusion

Prior Work

- Fully Supervised
 - Lexical and acoustic features of query reformulation [Tang, et al. 2019;

```
Errattahi, et al. 2018; Errattahi, et al. 2016]
```

- Audio-only interactions [Hong and Findlater. 2018]
- Weakly supervised
 - acoustic audio event detection [Kumar and Raj. 2016, Kumar et al. 2017]
- Production-level
 - human-in-the-loop [Amazon SageMaker]

RoadMap

- Prior work
- Auto-annotation Methods:
 - Utterance-based:
 - transcriptions only
 - Interaction-based:
 - transcriptions + interaction events (app, tune, keypress)
- Evaluation
- Conclusion

Data: utterance sessions

- Each query is issued by the same device.
- Each non-first query occurs within 45 seconds of the last. (Tang et al., 2018)

Utterance-based Detection and Annotation

- Step 1: Identifying erroneous transcriptions
 - Session

- have more than one utterances
- **contain** repeats
- Query

Erroneous

- \square Number of session > T_s
- $Arr Repeat likelihood > T_{rep}$
- $\stackrel{\checkmark}{\square}$ Median of time interval between repeats < T_t

 Step 2: Automatic annotation with query reformulation patterns

sessions

when one utterances

✓ no repeated transcriptions

Y second last query is erroneous

Median of time interval < T₁
</p>

- Extract possible candidates from all sessions
- Select correction by confidence

$$P(q_{i}^{'} | q_{err}) = \frac{count(q_{i}^{'}, q_{err})}{count(q_{err})}$$

('Log House', 'Loud House'), 0.44 ('Log House', 'The Loud House'), 0.125

• • • •

RoadMap

- Prior work
- Auto-annotation Methods:
 - Utterance-based :
 - transcriptions only
 - Interaction-based:
 - transcriptions + interaction events (app, tune, keypress)
- Evaluation
- Conclusion

Interaction-based Detection and Annotation

• Three scenarios where subsequent user interactions lead to a confirmed transcription

Scenario 1: User clicks a button, tunes to a program, then keeps watching > 30 seconds.

Scenario 2: User launches an app and stays for at least 30 seconds

Scenario 3: User tunes to a program and stays for at least 150 seconds.

high-quality training data for an ASR system

Interaction-based Detection and Annotation

- After we confirm the transcription of the last voice query:
 - Look at the previous query from the same user to see if it points to a potential system error

Evaluation

• Utterance-based Detection and Annotation

Data	474 sessions with 925 utterances on 68 detected erroneous queries
Error detection	Precision: 77.49% Recall: 76.11%
Suggest correction	Accuracy: 69.76% WER would have reduced by 0.907

• Interaction-based Detection and Annotation

Data	225 queries with 15 utterance samples for 15 unique queries
Confirmed transcriptions	Accuracy: 99.60% WER of 0.002
Identify suspicious transcriptions	Accuracy: 87.1.%
Suggest correction	Accuracy: 80.0%

Methods	Suspicious transcriptions	Suggested annotation
Utterance-based Annotation	Academy	Pup Academy
	CNET Latino	Cinelatino
	Entouch	In Touch
	Murder in the First	Murder in the Thrist
	Joe Josie Wah	JoJo Siwa
	Antena*	Antenna
Interaction-based Annotation	Play Select	Player Select
	Just Go With It	Just Roll With It
	Find	Friends/Blind Date
	Stephen	Steven Universe
	60 Days N	60 Days In
	The Singer	The Masked Singer/Masked Singer

Conclusion

• We present an automated annotation system that provides an unsupervised approach to identify erroneous transcriptions and to suggest possible fixes for detected errors.

• Our auto-annotated training data reaches an overall word error rate (WER) of 0.002 and we obtained a reduction of 0.907 in WER after applying the auto-suggested fixes.

 Our system can be directly applied to improve annotation efficiency and robustness of ASR systems