KY1701 Automatic Piano Reduction (Backend): Chord Identification

1155046896 JIN Xiamu 1155048011 Li Cheuk Yau

Focus in this semester

Rule-based V.S. Machine Learning

- ASHES (rule-based algorithm)
- 2. Hidden Markov Model

ASHES

Algorithmic Search for Harmonic Extraction and Simplification

- Rule-based algorithm proposed by Prof. Lucas Wong
- Search for the possible existence of triads in every time unit, and try merging them

Observation & Strategy

- In homophonic and polyphonic textures of western music, <u>harmony</u> always govened by chords
- 7th-chords are formed by triads
- **triads** are formed by **intervals**
- search for the possible existence of triads in every time units, and
- perform chord merging and selection afterwards

	Triad formed by root, third and fifth	Triad formed by third, fifth and seventh
Major 7 th	Major triad	Minor triad
Minor 7 th	Minor triad	Major triad
Dominant 7 th	Major triad	Diminished triad
Diminished 7 th	Diminished triad	Diminished triad
Half-dimished 7 th	Diminished triad	Minor triad

	Intervals between root & third	Interval between third & fifth
Major triad	Major 3 rd	Minor 3 rd
Minor triad	Minor 3 rd	Major 3 rd
Diminished triad	Minor 3 rd	Minor 3 rd
Augmented triad	Major 3 rd	Major 3 rd
Italian-6 triad	Diminished 3 rd	Major 3 rd

Work Flow

- Preprocessing
 - measure grid
 - pitch counter
- 2. Vertical Match
- 3. Vertical Merge
 - o possible chord matches
- 4. Horizontal Merge
 - o final matches
- 5. Postprocessing
 - o output chord labels to musicXML

Step1:

- 1. Preprocessing
 - functions similar to last semaster
 - voice to parts, slicing notes with the smallest time unit
 - Rests substitution
 - + notes tends to sustain and substitude rests in human ears
 - + Generate a pitch counter for the next step

Step2: Grid illustration (Canon in D, m7)

2. Vertical Match: search for the possible existence of triads in every time units,

D	F#	А	G	F#	D	F#	Е
D	D	C#	C#	В	В	А	А
F#	F#	Е	Е	D	D	C#	C#
D	D	А	А	В	В	F#	F#
triad (D, F#)	triad (D, F#)	AMaj	AMaj C#dim	Bmin	triad (B,D)	F#min	F#min AMaj

Step3: Grid illustration

3. Vertical Merge: perform 7th chord merging for multiple vertical matches

D	F#	А	G	F#	D	F#	Е
D	D	C#	C#	В	В	А	A
F#	F#	Е	Е	D	D	C#	C#
D	D	А	А	В	В	F#	F#
triad (D, F#)	triad (D, F#)	AMaj	A7	Bmin	triad (B,D)	F#min	F#min 7

Step4: Grid illustration

4. Horizontal Merge: maximise the chord selection results by checking for possible merges between beat

D	F#	А	G	F#	D	F#	Е
D	D	C#	C#	В	В	А	А
F#	F#	Е	Е	D	D	C#	C#
D	D	А	А	В	В	F#	F#
DMaj		A7		Bmin		F#min7	

Pros & Cons

- no need to deal with key changes
- overfitting always happensrunning notes of different parts form harmony

excerpt from Canon in D m23

Hidden Markov Model

Machine Learning Approach to Find how Chords Transit

 Machine learning approach suggested by Professor Wong

 Generating the chord transition martix and use it to predict how chords transit

Work Flow

- Collecting Training Data and Testing Scores
- 2. Preprocessing Training Data
- 3. Training Model
 - EM Algorithm
- 4. Preprocessing Testing Data
- 5. Testing
- Viterbi Algorithm
- Postprocessing

Model Design -- Input Format

A chromatic scale is consisted of 12 pitches

 Two adjacent pitches have a difference of one semitone

12-Pitches in an Octave

Model Design -- Input Format

Note	С	C#/Db	D	D#/Eb	Е	F	F#/Gb	G	G#/Ab	А	A#/Bb	В
Dimension	1	2	3	4	5	6	7	8	9	10	11	12

A Table Showing how Pitches and Dimensions are Correlated

- In a certain time unit, if a pitch exists then we assign it 1.
- Otherwise, assign it 0.

$$yt=[1,0,1,0,0,0,0,1,0,0,0,1]$$

Model Design -- Hidden States

 Chords are represented as Hidden States in our model, corresponding to the notes in every single time units.

 Separate chord transition matrix for separate keys.

Graph Illustration in C major

Model Design -- Hidden States

List of Keys Appeared in Training Data:

- Major Keys: C, D, E, Eb, F, G, Ab, Bb
- Minor Keys: C, D, F, G, A

List of Chords Appeared in Training Data:

• I, I+, IIb, II, II7, III, IV, V, V7, V+, V+7, VIb, VI, VIGer, VII, VII7, VIIGer, VIIIta, VIIdim, VIIdim7

Model Design -- Time Unit

Every Single Beats? → Overfit

Measure? → Missing Chord Change

Model Design -- Time Unit

- Current approach: slowest moving part governs chord changes
 - Finding lowest moving part of each measure
 - 1. slowest movement
 - 2. lowest average pitch
 - movement of lowest moving part -> time unit

Model Design - Emission Probability

Main Approach: Degree of Similarity

- Lowest Note Match: +5
- Second Lowest Note Match: +3
- Third Lowest Note Match: +2 (+1 for 7th chord)
- 7th Note Match: +1 (for 7th chord)
- Other Notes Occuring: -1

Model Design - Emission Probability

- $deg(sim) = 10 \rightarrow 10/55$
- $deg(sim) = 9 \rightarrow Sharing the probability of 9/55$
- $deg(sim) = 8 \rightarrow Sharing the probability of 8/55$
- $deg(sim) = 7 \rightarrow Sharing the probability of 7/55$
- $deg(sim) = 6 \rightarrow Sharing the probability of 6/55$
- $deg(sim) = 5 \rightarrow Sharing the probability of 5/55$
- $deg(sim) = 4 \rightarrow Sharing the probability of 4/55$
- $deg(sim) = 3 \rightarrow Sharing the probability of 3/55$
- $deg(sim) = 2 \rightarrow Sharing the probability of 2/55$
- $deg(sim) = 1 \rightarrow Sharing the probability of 1/55$
- $deg(sim) = 0 \rightarrow 0$

Model Design - Emission Probability

 We have a vector of [1,0,0,0,1,0,0,1,0,0,0,1], that is a list of notes including C, E, G and B

 In C major Chord I, it has 9 degree of similarity, thus get assigned the emission probability of (9/55)/9, since there are totally 9 cases sharing deg(sim) = 9.

 In C major Chord I 7th, it has 10 degree of similarity, thus the emission probability would be 10/55.

C Major Chord I

C Major Chord I 7th

Training Data Preparation

- Beethoven Symphony No. 1 1st Movement (111 Chord Events, mainly C Major and G Major)
- Beethoven Symphony No. 5 1st Movement (122 Chord Events, mainly C Minor, Eb Major and Bb Major)
- Mozart Symphony No.25 The Little G minor Symphony 1st Movement (214 Chord Events, G Minor)

Chord Transition Matirx Visulization

G Minor

C Minor

Chord Transition Matirx Visulization

Lack of Data

C Major

Testing

Total excerpts: 3

Total chord events: 487 (ASHES)

Total chord events: 377 (HMM)

Correctness

	ASHES	НММ
Pachelbel, Johann Canon in D	65% (soft: 89%)	38% (soft: 46%) (Lack of D major training data)
Mozart concerto K.314	63% (soft: 90%)	56% (soft: 82%)
Beethoven symphony OP.67	80% (soft: 83%)	83% (soft: 86%)

Overall	69% (soft: 87%)	58% (soft: 76%)

soft: excluding overfitting chords in the calculation of correctness

Conclusion

Possible Improvment

- 1. Better Approach to Define Time Unit
- Short time unit → overfit
- Long time unit → missing harmonic change

- 2. Hard to Find Training Data
- Certain chord transition patterns in certain keys are missing
- Pattern missing in training data -- 100% wrong result during testing

Possible Improvment

- 3. Key Analysis Before Applying HMM
 - Key change could only be indicated by sharp/flat change
 - Without key analysis, we could only do testing on pieces without key change

Q&A