Station:	N	_Scratch Paper: _		ΨΨ	DIVISION OF DIVERSITY, EQUITY & INCLUSION ACCESSIBLE EDUCATIONAL SERVICES Indianapolis
----------	---	-------------------	--	----	---

AES Testing Record

Student: Ethan Aldrich Winne	ett -(Ethan)	*	Must Stop At:	1156
Test Date: March 26, 2025 Student Status:	Test Time: 12:00 pm	Location: AES Testi	ng Lab (UL 3135H -Lib 3rd fl)	fm
Course Title: ANALYTIC GEO	OMETRY & CALCULUS I	Code: MATH-I 165 3	80129	•
Instructor: Keshav Dahiya				
Test Type: Exam Test F	Format: Paper Name/I	Number: Test 2		
Accommodations: Distraction	n-Reduced Environment; Ex	xtended Time on Quizze	s and Exams (150%)	
Instructor's Directions: Close	ed book/notes. No calculato	r. No scratch paper.	*	
Time Allotted: 113min Breaks Taken:	Start Time: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ime:		
Proctors: Time, Aha	Ma			
Proctor Notes:			,	
Delivery Preference: Scan/er	nail test, then keep in AES C	Office UC100	2	
Delivery Log (Please cont	tact AES for delivery records)			
Emailed By:	Date:	Time:		
Delivered By:	Date:	Time:	Location:	
Received By:	Date:	Time:		
Attempted By:	Date:	Time:	Location:	
Explanation:			4	
Attempted By:	Date:	Time:	Location:	
Explanation:		2 × 1		

Indiana University, Indianapolis

Spring 2025 Math-I 165

Test 2

March 26, 2025

Instructor: Keshav Dahiya

Ethan I innett

Instructions:

- No cell phones, calculators, watches, technology, hats stow all in your bags.
- Write your name on this cover page.
- This test is closed book and closed notes.
- All work must be clearly shown for partial credit.
- If you wish for something not to be graded, please strike it out neatly.
- Box, circle, or otherwise clearly indicate your final answer.
- When you finish, return your test to the proctor, and leave the classroom.
- There are a total of 12 problems including 2 bonus problems.
 - Problems 1-10 are each worth 10 points.
 - The bonus problems are each worth 5 points.
- You can score a maximum of 110 points out of 100.
- There are a total of **7 pages** including the cover page.

Problem 1. Let $f(x) = \sin x + \cos x$ be defined on the interval $[0, 2\pi]$. Find the critical numbers of f in the given interval. Use the closed interval method to find the absolute maximum and minimum values of f on the given interval.

Fix = $\cos x - \sin x$ $e^{-\frac{1}{2}} = e^{-\frac{1}{2}} =$

Problem 2. Let f be an everywhere continuous and everywhere differentiable function. Suppose f(0) = 0 and $f'(x) \le 5$ for all values of x. Find the largest possible value of f(3). [10 pts]

 $\frac{f(b)-f(a)}{b-a} \leq 5$ put b=37a=0 4

Problem 6. Find all the points of local maxima and minima of the function $f(x) = \frac{x^2}{x^2 - 1}$. [10 pts] $\begin{cases}
\frac{x^2}{x^2 - 1} & \frac{x^2$

Problem 9. Let $f(x) = \frac{x^2}{x^2 - 1}$. Find the domain of f. Find the x-intercepts and y-intercept of y = f(x). Use this information along with information obtained in problems 6, 7, 8 to sketch the curve y = f(x).

Domain=?

It concoves up forever but to concover up but from (0,00) the route of it constit concover up derreases

(2)

Problem 10. You have to choose to buy a rectangular farm having fixed area of 10,000 square feet. Find the dimensions that you should choose so that the cost of fencing this farm is as minimum as possible.

[10 pts]

A=10,000 100,100=100 A'=(X)(Y)+(X)(Y)/ A'=1+Xy/100+100=100

Page 7

Bonus Problem 1. The cost function of a firm is $C(x) = 1000 + 40x - x^2$. If the demand function is given by p(x) = 100 - 4x, find the production level that maximizes the profit. [5 pts]

-1740x+1000 - - 1/x HO

Bonus Problem 2. For what values of the constants a and b is (1,3) a point of inflection of the curve [5 pts]

 $y = ax^3 + bx^2 ?$