Titolo	Modello/Approccio	Tecnica di Apprendimento	Punti di Forza	Punti Deboli	Etichettatura Dataset	Prestazioni	
Reverse Distillation from One-Class Embedding	Teacher-student model con Reverse Distillation	Reverse Distillation, One- Class Bottleneck Embedding (OCBE)		Non specificato	No	Supera metodi esistenti su MVTec	
Revisiting Reverse Distillation for Anomaly Detection	RD++ con pseudo- anomalies e multi- task learning	Reverse Distillation, multi- task learning	Velocità inferenza e accuratezza superiore, no external memory bank	Limitazioni in immagini mediche	No	Stato dell'arte su MVTec	
for image Anomaly Detection and Localization	SimpleNet con pre- trained feature extractor e feature adapter	Unsupervised learning	Elevata accuratezza e velocità, applicabilità pratica	Non specificato	No	Benchmark su MVTec AD	
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows	CFLOW-AD con Conditional Normalizing Flows	Unsupervised learning	Prestazioni superiori in real- time, localizzazione accurata	Non specificato	No	Supera altri metodi in termini di tempo e accuratezza	
PyramidFlow: High-Resolution Defect Contrastive Localization using Pyramid Normalizing Flow	PyramidFlow con normalizing flows e pyramid-like structure	Unsupervised learning	Alta risoluzione di localizzazione, non richiede modelli pre- allenati	Non specificato	No	Stato dell'arte su MVTec AD	
Towards Total Recall in Industrial Anomaly Detection	PatchCore con memory bank of nominal patch- features	Unsupervised learning	Elevata AUROC, inferenza veloce, efficienza del campionamento	Dipendenza da modelli pre-allenati	No	Stato dell'arte su MVTec AD	
PNI: Industrial Anomaly Detection using Position and Neighborhood Information	PNI con conditional probability estimation e MLP	Unsupervised learning	Riduzione FNR e FPR, considera posizione e vicinato	Complessità computazionale	No	Superiorità su MVTec AD	
DRAEM – A Discriminatively Trained Reconstruction Embedding for Surface Anomaly Detection	DRAEM con sub- network reconstructive e discriminative	Synthetic anomaly generation, self- supervised learning	Diverse categorie di anomalie, alta AUROC	Limitazioni in generazione di anomalie	No	NUOVE benchmark su MVTec AD	
Omni-frequency Channel- selection Representations for Unsupervised Anomaly Detection	OCR-GAN con Frequency Decoupling e Channel Selection	Unsupervised learning	Gestione del dominio frequenza, miglioramento rispetto baseline	Complessità implementazione	No	Stato dell'arte su MVTec AD	
RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection	RealNet con SDAS, AFS, e RRS	Self-supervised learning	Prestazioni state- of-the-art, sintesi anomalia realistica	Non specificato	No	Superiorità su MVTec AD, MPDD, BTAD, VisA	
Registration based Few-Shot Anomaly Detection	RegAD	Feature Registration	Adatta velocemente a nuove categorie; Uso efficace di immagini normali limitate	Dipendenza dalla qualità di poche immagini normali	No	AUC 3%-8% più alto su MVTec e MPDD	MVTec AD, MPDD

Titolo	Modello/Approccio	Tecnica di Apprendimento	Punti di Forza	Punti Deboli	Etichettatura Dataset	Prestazioni	
AnomalyGPT: Detecting Industrial Anomalies Using Large Vision- Language Models	AnomalyGPT	LVLM Fine- Tuning	Elimina impostazione manuale soglia; Supporta dialoghi; Few-shot learning	Complessità nella sintesi di dati realistici	No	86.1% accuratezza, 94.1% AUC a livello immagine, 95.3% AUC a livello pixel su MVTec-AD	MVTec AD, VisA
Catching Both Gray and Black Swans: Open- set Supervised Anomaly Detection	DRA	Disentangled Representation Learning	Generalizza ad anomalie viste e non viste; Prestazioni superiori	Limitazione dimensione dati	Limitata	Supera SotA in diversi contesti	Vari dataset real-world
Unsupervised Continual Anomaly Detection with Contrastively- learned Prompt	UCAD	Contrastive Learning and Continuous Prompting	Migliora rilevazione e segmentazione; Affronta forgetting catastrofico	Complessità del prompting continuo	No	Supera metodi precedenti su MVTec AD e VisA	MVTec AD, VisA
A Unified Model for Multi-class Anomaly Detection Hierarchical	UniAD	CNN, MLP, Transformer architectures	Gestisce multiple classi in modo unificato; Flessibile e generalizzabile	Complessità aggiunta dal modulo di prompting	No	Migliorata rilevazione e segmentazione	Non specificato
Vector Quantized Transformer for Multi-class Unsupervised Anomaly Detection	HVQ-Trans	Vector Quantization in Transformers	Affronta problema shortcut identico; Rappresentazione ricca	•	No	Stato dell'arte su MVTec AD, CIFAR-10	MVTec AD, CIFAR-10, VisA
Inter-Realization Channels: Unsupervised Anomaly Detection Beyond One- Class Classification	InReaCh	Inter-Realization Feature Association	Migliorata rilevazione e interpretabilità; Robusto a variazioni	Richiesta di grandi dataset per prestazioni ottimali	No	Alte prestazioni in scenari multi- classe complessi	Non specificato
Deep One- Class Classification via Interpolated Gaussian Descriptor	IGD	Adversarial Interpolated Training	Robusto contro overfitting; Accuratezza di rilevazione anomalie superiore	Complessità nell'addestramento avversario	No	Supera state- of-the-art in accuratezza	MNIST, Fashion MNIST, CIFAR10, MVTec AD, dataset medici
SoftPatch: Unsupervised Anomaly Detection with Noisy Data	SoftPatch	Denoising at Patch Level	Robustezza al rumore; Migliorata rilevazione e localizzazione	Complessità aggiunta nel processo di denoising	No	Miglioramenti significativi rispetto a metodi come PatchCore	MVTec AD, BTAD
Explicit Boundary Guided Semi- Push-Pull Contrastive Learning for Supervised Anomaly Detection	BGAD	Semi-Push-Pull Contrastive Learning	Migliorata discriminabilità del modello; Mitiga bias	Complessità potenziale nell'apprendimento	Limitata	Prestazioni superiori nella rilevazione di anomalie supervisionata	Non specificato
Multimodal Industrial Anomaly Detection via Hybrid Fusion	МЗДМ	Fusione Ibrida	Riduce interferenze tra modalità; Migliora interazione	Non specificati	No	Supera su MVTec-3D AD	MVTec-3D AD
Real3D-AD: A Dataset of Point Cloud Anomaly Detection	Reg3D-AD	Banca di memoria delle caratteristiche	Dataset 3D più grande e preciso	Sfide nella gestione di dati ad alta risoluzione	No	Supera metodi esistenti su Real3D-AD	Real3D- AD

Titolo	Modello/Approccio	Tecnica di Apprendimento	Punti di Forza	Punti Deboli	Etichettatura Dataset	Prestazioni	
Bootstrap Fine- Grained Vision- Language Alignment for Unified Zero- Shot Anomaly Localization	AnoCLIP	Allineamento Vision-Language	Localizzazione precisa di anomalie in zero- shot	Sfide nell'estrazione efficace dei token locali	No	Superiorità su MVTecAD e VisA	MVTecAD, VisA
Segment Any Anomaly without Training via Hybrid Prompt Regularization	SAA+	Regolarizzazione di Prompt Ibridi	Segmentazione di anomalie in zero- shot; Adattabile	Sfide nella progettazione di prompt	No	Stato dell'arte su VisA, MVTec-AD, MTD, KSDD2	VisA, MVTec- AD, MTD, KSDD2
IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing	IM-IAD Benchmark	Framework di Valutazione	Valutazione unificata su diversi compiti IAD	Possibili limitazioni nella copertura di tutti gli scenari industriali	Varia	Confronto delle prestazioni di 19 algoritmi	MVTec AD, MVTec LOCO- AD, MPDD, BTAD, MTD, VisA, DAGM
UniFormaly: Towards Task- Agnostic Unified Framework for Visual Anomaly Detection	UniFormaly	Framework Agnostico al Compito con ViTs	Approccio unificato per vari compiti di rilevamento di anomalie	Sfide nell'adattare modelli pre-allenati per anomalie specifiche	No	AUROC del 99.32% su MVTecAD; 97.6% su ImageNet-30	MVTecAD, CIFAR-10, CIFAR- 100, Species- 60
A Unified Model for Multi-class Anomaly Detection	UniAD	Architetture CNN, MLP, Transformer	Gestisce multiple classi in modo unificato	Complessità aggiunta dal modulo di prompting	No	Migliorata rilevazione e segmentazione	Non specificato