Sampling & Quantization

Dr. Tushar Sandhan

Introduction

Introduction

Input

Sampling

Quantization

- Sampling
 - o determines spatial resolution
 - space digitization

- Sampling
 - o determines spatial resolution
 - space digitization

- Image frequency
 - o what are freq contents inside an image?
 - o is the uniform sampling optimal?
 - o is oversampling useful?
 - strive for efficient sampling
 - sampling density
 - · data storage, data transmission

- Sampling
 - o determines spatial resolution
 - space digitization

- Image frequency
 - o what are freq contents inside an image?
 - o is the uniform sampling optimal?
 - o is oversampling useful?
 - strive for efficient sampling
 - sampling density
 - · data storage, data transmission

- Sampling
 - o determines spatial resolution
 - space digitization

- Image frequency
 - o what are freq contents inside an image?
 - o is the uniform sampling optimal?
 - o is oversampling useful?
 - strive for efficient sampling
 - sampling density
 - · data storage, data transmission

- Sampling
 - o determines spatial resolution
 - space digitization

- Image frequency
 - o what are freq contents inside an image?
 - o is the uniform sampling optimal?
 - o is oversampling useful?
 - strive for efficient sampling
 - sampling density
 - · data storage, data transmission

Grid

- o continuous image is digitized at sampling points
- o sampling points ordered in the plane
- o their geometric relation grid
- o smallest grid point corresponds to pixel (2D)
- o voxel (3D)

- Grid
 - o continuous image is digitized at sampling points
 - o sampling points ordered in the plane
 - o their geometric relation grid
 - o smallest grid point corresponds to pixel (2D)
 - o voxel (3D)

Grid

- o continuous image is digitized at sampling points
- o sampling points ordered in the plane
- o their geometric relation grid
- o smallest grid point corresponds to pixel (2D)
- o voxel (3D)

Neighbourhood

	(x,y-1)			(x-1y)
(x-1,y)	p	(x+1,y)	<i>N</i> ₄ (<i>p</i>) =	$ \begin{cases} (x-1,y) \\ (x+1,y) \\ (x,y-1) \\ (x,y+1) \end{cases} $
	(x,y+1)			(x,y+1)

(0,0)	1 1		x
	(x-1,y-1)	(x,y-1)	(x+1,y-1)
y	(x-1,y)	(<i>x</i> , <i>y</i>)	(x+1,y)
	(x-1,y+1)	(x,y+1)	(x+1,y+1)

Grid

- o continuous image is digitized at sampling points
- o sampling points ordered in the plane
- o their geometric relation grid
- o smallest grid point corresponds to pixel (2D)
- o voxel (3D)

Neighbourhood

(x-1,y-1)		(x+1,y-1)	_
	p		$N_D(p)$
(x-1,y+1)		(x+1,y+1)	_

0,0)	1 1		x
	(x-1,y-1)	(x,y-1)	(x+1,y-1)
y	(x-1,y)	(x,y)	(x+1,y)
	(x-1,y+1)	(x,y+1)	(x+1,y+1)

Grid

- o continuous image is digitized at sampling points
- o sampling points ordered in the plane
- o their geometric relation grid
- smallest grid point corresponds to pixel (2D)
- o voxel (3D)

Neighbourhood

(x-1,y-1)		(x+1,y-1)	_
	p		$N_D(p)$
(x-1,y+1)		(x+1,y+1)	

(x-1,y-1)	(x,y-1)	(x+1,y-1)	_
(x-1,y)	p	(x+I,y)	$N_8(p)$
(x-1,y+1)	(x,y+1)	(x+I,y+I)	_

(0,0)	1 1		→ ^x
	(x-1,y-1)	(x,y-1)	(x+1,y-1)
y	(x-1,y)	(<i>x</i> , <i>y</i>)	(x+1,y)
-	(x-1,y+1)	(x,y+1)	(x+1,y+1)
-			

- Neighbourhood
 - hexagonal grid
 - neighbour interaction

- Neighbourhood
 - hexagonal grid
 - o neighbour interaction

- Neighbour interactions
 - o distance, energy, edges, features
 - o sq. grid neighbourhood paradox
 - N_4 : broken ring encloses
 - N_8 : complete ring without enclosure

- Neighbourhood
 - hexagonal grid
 - o neighbour interaction

- Neighbour interactions
 - o distance, energy, edges, features
 - o sq. grid neighbourhood paradox
 - N_4 : broken ring encloses
 - N_8 : complete ring without enclosure

- Neighbourhood
 - hexagonal grid
 - neighbour interaction

- Neighbour interactions
 - o distance, energy, edges, features
 - o sq. grid neighbourhood paradox
 - N_4 : broken ring encloses
 - N_8 : complete ring without enclosure

- Coordinate system
 - hexagonal grid
 - SHCS: symmetrical hexagonal coordinate system in (C)

- Coordinate system
 - hexagonal grid
 - SHCS: symmetrical hexagonal coordinate system in (C)

- Coordinate system
 - hexagonal grid
 - SHCS: symmetrical hexagonal coordinate system in (C)

- Coordinate system
 - hexagonal grid
 - SHCS: symmetrical hexagonal coordinate system in (C)

$$\forall (x, y, z) : x + y + z = 0$$

 (x_1, y_1, z_1) and (x_2, y_2, z_2) are the co-ordinates of the two hexagons.

$$\begin{split} &D_{Eucl.}[(x_1,y_1,x_1),(x_2,y_2,x_2)]\\ &=\sqrt{\frac{1}{2}[(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2]} \end{split}$$

$$D_{Grid}[(x_1, y_1, x_1), (x_2, y_2, x_2)] = max(|x_1 - x_2|, |y_1 - y_2|, |z_1 - z_2|)$$

- Coordinate system
 - hexagonal grid
 - SHCS: symmetrical hexagonal coordinate system in (C)

$$\forall (x, y, z) : x + y + z = 0$$

 (x_1, y_1, z_1) and (x_2, y_2, z_2) are the co-ordinates of the two hexagons.

$$\begin{split} &D_{Eucl.}[(x_1,y_1,x_1),(x_2,y_2,x_2)]\\ &=\sqrt{\frac{1}{2}[(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2]} \end{split}$$

$$D_{Grid}[(x_1, y_1, x_1), (x_2, y_2, x_2)] = max(|x_1 - x_2|, |y_1 - y_2|, |z_1 - z_2|)$$

- Hierarchical grids
 - neighbours at finer scale become focal cell or centroids for coarser scale
 - o smooth out or simplify some grids
 - dynamic grid resolution
 - \circ θ , r can be used to find out current resolution scale

- Hierarchical grids
 - neighbours at finer scale become focal cell or centroids for coarser scale
 - o smooth out or simplify some grids
 - dynamic grid resolution
 - \circ θ , r can be used to find out current resolution scale

- Hierarchical grids
 - neighbours at finer scale become focal cell or centroids for coarser scale
 - o smooth out or simplify some grids
 - dynamic grid resolution
 - \circ θ , r can be used to find out current resolution scale

- Hierarchical grids
 - neighbours at finer scale become focal cell or centroids for coarser scale
 - o smooth out or simplify some grids
 - dynamic grid resolution
 - $\circ \theta$, r can be used to find out current resolution scale

- Hierarchical grids
 - neighbours at finer scale become focal cell or centroids for coarser scale
 - o smooth out or simplify some grids
 - dynamic grid resolution
 - $\circ \theta$, r can be used to find out current resolution scale

- Hierarchical grids
 - neighbours at finer scale become focal cell or centroids for coarser scale
 - o smooth out or simplify some grids
 - dynamic grid resolution
 - $\circ \theta$, r can be used to find out current resolution scale

Alternating CW, CCW 19.1° rotations of 7 children 1/7th the area

- Checkerboard effect
 - due to uniform non-optimal square grid sampling

- Checkerboard effect
 - due to uniform non-optimal square grid sampling

128x128

64x64

32x32

Aliasing

continuous bandlimited function

$$\delta(x, y) = \begin{cases} 1 & \text{if } x = y = 0 \\ 0 & \text{otherwise} \end{cases}$$

Aliasing

continuous bandlimited function

$$\delta(x, y) = \begin{cases} 1 & \text{if } x = y = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(x, y) \, \delta(x - x_0, y - y_0) = f(x_0, y_0)$$

Aliasing

continuous bandlimited function

$$comb(x, y, \Delta x, \Delta y) = \sum_{m} \sum_{n} \delta(x - m\Delta x, y - n\Delta y)$$

$$\delta(x, y) = \begin{cases} 1 & \text{if } x = y = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(x, y) \, \delta(x - x_0, y - y_0) = f(x_0, y_0)$$

Aliasing

$$comb(x, y, \Delta x, \Delta y) = \sum_{m} \sum_{n} \delta(x - m\Delta x, y - n\Delta y)$$

continuous bandlimited function

$$\delta(x, y) = \begin{cases} 1 & \text{if } x = y = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(x, y) \, \delta(x - x_0, y - y_0) = f(x_0, y_0)$$

Aliasing

$$f_s(x, y) = f(x, y) comb(x, y, \Delta x, \Delta y)$$

$$comb(x, y, \Delta x, \Delta y) = \sum_{m} \sum_{n} \delta(x - m\Delta x, y - n\Delta y)$$

continuous bandlimited function

$$\delta(x, y) = \begin{cases} 1 & \text{if } x = y = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(x, y) \, \delta(x - x_0, y - y_0) = f(x_0, y_0)$$

Aliasing

$$f_s(x, y) = f(x, y) comb(x, y, \Delta x, \Delta y)$$

$$comb(x, y, \Delta x, \Delta y) = \sum_{m} \sum_{n} \delta(x - m\Delta x, y - n\Delta y)$$

$$F_s(\omega_x, \omega_y) = F(\omega_x, \omega_y) * \omega_{x_s} \omega_{y_s} \sum_{p} \sum_{q} \delta(\omega_x - p\omega_{x_s}, \omega_y - q\omega_{y_s})$$
$$= \omega_{x_s} \omega_{y_s} \sum_{p} \sum_{q} F(\omega_x - p\omega_{x_s}, \omega_y - q\omega_{y_s})$$

where $\omega_{xs} = \frac{2\pi}{\Delta x}$, and $\omega_{ys} = \frac{2\pi}{\Delta y}$

continuous bandlimited function

$$\delta(x, y) = \begin{cases} 1 & \text{if } x = y = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} f(x, y) \, \delta(x - x_0, y - y_0) = f(x_0, y_0)$$

Aliasing

$$f_s(x, y) = f(x, y) comb(x, y, \Delta x, \Delta y)$$

$$F_s(\omega_x, \omega_y) = \omega_{x_s} \omega_{y_s} \sum_p \sum_q F(\omega_x - p\omega_{x_s}, \omega_y - q\omega_{y_s})$$

 $F_s(\omega_x,\omega_y)$

- Sampling theorem
 - o f(t,z) can be recovered fully with zero error from its samples
 - o iff grid is 'sufficiently' dense
 - just change of variables to simplify notations

continuous bandlimited function

$$s_{\Delta T \Delta Z}(t,z) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(t - m\Delta T, z - n\Delta Z)$$

$$F(\mu, \nu) = 0$$
 for $|\mu| \ge \mu_{\text{max}}$ and $|\nu| \ge \nu_{\text{max}}$

... band limits

continuous bandlimited function

Sampling theorem

o f(t,z) can be recovered fully with zero error from its samples

o No info is lost in the image if it is obtained via sampling at rates greater than twice the max freq content of f(t,z) in both μ, v directions.

$$s_{\Delta T\Delta Z}(t,z) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(t - m\Delta T, z - n\Delta Z)$$

$$F(\mu, \nu) = 0$$
 for $|\mu| \ge \mu_{\text{max}}$ and $|\nu| \ge \nu_{\text{max}}$... band limits

$$rac{1}{\Delta T} > 2\mu_{
m max} \qquad rac{1}{\Delta Z} > 2
u_{
m max}$$

- Erroneous effects
 - o square grid sampling

- Erroneous effects
 - o square grid sampling

- Erroneous effects
 - o square grid sampling

- Erroneous effects
 - o square grid sampling

input

8x8 sq grid

8x8 mean

- Quantizer
 - o SISO scalar quantizer
 - o mappings $[x_{i-1}, x_i) \rightarrow y_i$
 - o what are the unknowns?

$$x \in [t_k, t_{k+1}) \Rightarrow Q(x) = r_k$$

- Uniform quantizers
 - o all ranges divided equally with $\Delta = [t_k, t_{k+1})$ intervals
 - deadzone

Midtread quantizer

Midrise quantizer

- Non-uniform quantizers
 - \circ ranges divided via predefined function which gives Δ intervals

Logarithmic quantizer

Logarithmic quantizer for image filter weights

- Non-uniform quantizers
 - o can we design optimal quantizer?
 - o optimal in the sense to minimize error (which error?)
 - o input: $x_i \approx t_i$: thresholds
 - o output: $y_i \approx r_i$:reconstructions
 - o signal distribution is known: p(x)

Original and quantized signal

Quantization error

Non-uniform quantizers

- o can we design optimal quantizer?
- o optimal in the sense to minimize error (which error?)
- o input: $x_i \approx t_i$: thresholds
- o output: $y_i \approx r_i$:reconstructions
- o signal distribution is known: p(x)

MSE

$$D = \int_a^b (x - Q(x))^2 p(x) dx$$

Original and quantized signal

Quantization error

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

$$\frac{\partial D}{\partial r_k} = \frac{\partial}{\partial r_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx$$
$$= -2 \int_{t_k}^{t_{k+1}} (x - r_k) p(x) dx, \ k = 1, \dots, L$$

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

$$\frac{\partial D}{\partial t_k} = \frac{\partial}{\partial t_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx$$

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

$$\frac{\partial D}{\partial t_k} = \frac{\partial}{\partial t_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx$$

$$A(t) = \int_{c}^{t} f(x)dx$$
$$A'(t) = f(t)$$

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

$$\frac{\partial D}{\partial t_k} = \frac{\partial}{\partial t_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx$$

$$= -(t_k - r_k)^2 p(t_k) + (t_k - r_{k-1})^2 p(t_k), \ k = 2, \dots, L$$

$$A(t) = \int_{c}^{t} f(x)dx$$
$$A'(t) = f(t)$$

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

$$\frac{\partial D}{\partial t_k} = \frac{\partial}{\partial t_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx$$

 $= -(t_k - r_k)^2 p(t_k) + (t_k - r_{k-1})^2 p(t_k), k = 2, \dots, L$

Leibniz integral rule:

$$A(t) = \int_{c}^{t} f(x)dx$$
$$A'(t) = f(t)$$

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

$$\frac{\partial D}{\partial t_k} = \frac{\partial}{\partial t_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx$$

$$= -(t_k - r_k)^2 p(t_k) + (t_k - r_{k-1})^2 p(t_k), \ k = 2, \dots, L$$

$$A(t) = \int_{c}^{t} f(x)dx$$
$$A'(t) = f(t)$$

$$\text{Leibniz integral rule:} \quad \frac{d}{dx} \left(\int_{a(x)}^{b(x)} f(x,t) \, dt \right) \\ = f \big(x, b(x) \big) \cdot \frac{d}{dx} b(x) - f \big(x, a(x) \big) \cdot \frac{d}{dx} a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t) \, dt$$

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

$$\frac{\partial D}{\partial r_k} = \frac{\partial}{\partial r_k} \sum_{j=1}^L \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx$$
$$= -2 \int_{t_k}^{t_{k+1}} (x - r_k) p(x) dx, \ k = 1, \dots, L$$

$$\frac{\partial D}{\partial t_k} = \frac{\partial}{\partial t_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx$$

$$= -(t_k - r_k)^2 p(t_k) + (t_k - r_{k-1})^2 p(t_k), \ k = 2, \dots, L$$

$$A(t) = \int_{c}^{t} f(x)dx$$
$$A'(t) = f(t)$$

minimize
$$t_k, r_k$$
 $D = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (x - r_k)^2 p(x) dx$
subject to $t_1 = a, t_{L+1} = b, t_k < t_{k+1}, t_k \le r_k \le t_{k+1}, k = 1, \dots, L.$

$$\frac{\partial D}{\partial r_k} = \frac{\partial}{\partial r_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx
= -2 \int_{t_k}^{t_{k+1}} (x - r_k) p(x) dx, \quad k = 1, \dots, L$$

$$\frac{\partial D}{\partial t_k} = \frac{\partial}{\partial t_k} \sum_{j=1}^{L} \int_{t_j}^{t_{j+1}} (x - r_j)^2 p(x) dx
= -(t_k - r_k)^2 p(t_k) + (t_k - r_{k-1})^2 p(t_k), \quad k = 2, \dots, L$$

Assuming p(x) > 0 for each $x \in [a, b]$:

$$r_k = \frac{\int_{t_k}^{t_{k+1}} x p(x) dx}{\int_{t_k}^{t_{k+1}} p(x) dx}, \ k = 1, \dots, L$$

$$t_k = \frac{r_{k-1} + r_k}{2}, \ k = 2, \dots, L$$

$$A(t) = \int_{c}^{t} f(x)dx$$
$$A'(t) = f(t)$$

- Lloyd-Max Quantizer
 - o optimal MSE quantizer

$$r_{k} = \bar{x}_{k} = \frac{\int_{t_{k}}^{t_{k+1}} x p(x) dx}{\int_{t_{k}}^{t_{k+1}} p(x) dx}, \quad k = 1, \dots, L \qquad \dots (1)$$

$$t_{k} = \frac{r_{k-1} + r_{k}}{2} = \frac{\bar{x}_{k-1} + \bar{x}_{k}}{2}, \quad k = 2, \dots, L \qquad \dots (2)$$

- Lloyd-Max Quantizer
 - o optimal MSE quantizer

$$r_{k} = \bar{x}_{k} = \frac{\int_{t_{k}}^{t_{k+1}} x p(x) dx}{\int_{t_{k}}^{t_{k+1}} p(x) dx}, \quad k = 1, \dots, L \qquad \dots (1)$$

$$t_{k} = \frac{r_{k-1} + r_{k}}{2} = \frac{\bar{x}_{k-1} + \bar{x}_{k}}{2}, \quad k = 2, \dots, L \qquad \dots (2)$$

Pseudo-code

: pick initial values for t (uniform grid)

: find r values using (1)

: find new t values using (2)

: repeat till both t, r converge

$$E[Q(x)] = \sum_{k} r_{k} p_{k}$$

$$= E[x]$$

$$E[x - Q(x)] = 0$$

$$r_k = \frac{\int_{t_k}^{t_{k+1}} x p(x) dx}{\int_{t_k}^{t_{k+1}} p(x) dx}$$

$$p_k = \int_{t_k}^{t_{k+1}} p(x) dx$$

o
$$E[(x - Q(x))Q(x)] = \sum_{k} \int_{t_k}^{t_{k+1}} (x - r_k)r_k p(x)dx$$

$$r_k = \frac{\int_{t_k}^{t_{k+1}} x p(x) dx}{\int_{t_k}^{t_{k+1}} p(x) dx}$$

$$p_k = \int_{t_k}^{t_{k+1}} p(x) dx$$

o
$$E[(x - Q(x))Q(x)] = \sum_{k} \int_{t_k}^{t_{k+1}} (x - r_k)r_k p(x)dx$$

$$= 0$$

$$r_k = \frac{\int_{t_k}^{t_{k+1}} x p(x) dx}{\int_{t_k}^{t_{k+1}} p(x) dx}$$

$$p_k = \int_{t_k}^{t_{k+1}} p(x) dx$$

$$= \sum_{k} \int_{t_{k}}^{t_{k+1}} (x - r_{k}) r_{k} p(x) dx$$

$$= 0$$

$$r_k = \frac{\int_{t_k}^{t_{k+1}} x p(x) dx}{\int_{t_k}^{t_{k+1}} p(x) dx}$$

$$p_k = \int_{t_k}^{t_{k+1}} p(x) dx$$

Lloyd-Max example

8 bpp

Lloyd-Max example

8 bpp

6 bpp

Lloyd-Max example

6 bpp

4 bpp

Conclusion

- Sampling
- Quantization

32x32

Conclusion

- Sampling
- Quantization

Sampling

- Squares
- Hexagonal
- Aliasing

Quantization

- Uniform
- Non-uniform
- Optimal

32x32

