

(KEMNA0302) Alkalmazott lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Ürfizikai és Ürtechnikai Ösztály, 1121. Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttl.ntp.hu/

2025. március 26.

Mátrix nyoma I

Definíció: (Mátrix nyoma). Egy négyzetes mátrix főátlójában lévő elemek összegét a mátrix nyomának nevezzük. Az **A** mátrix nyomát *trace* **A** vagy *tr* **A** jelöli. Pl.:

$$trace\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 5, trace(\mathbf{E}_n) = n, [\mathbf{a}]_X = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} = 0.$$

 $\stackrel{\triangle}{\text{Allítás:}}$ (A nyom lineáris leképezés). A nyom additív és homogén, azaz tetszőleges $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ mátrixokra és $\lambda \in \mathbb{R}$ skalárra:

$$trace\left(\mathbf{A}+\mathbf{B}\right)=trace\left(\mathbf{A}\right)+trace\left(\mathbf{B}\right),trace\left(\lambda\mathbf{A}\right)=\lambda trace\left(\mathbf{A}\right).$$
 Bizonyítás: Triviális, továbbá $\forall \lambda,\mu\in\mathbb{R}$ konstansok esetén

$$trace(\lambda \mathbf{A} + \phi \mathbf{B}) = \lambda trace(\mathbf{A}) + \mu trace(\mathbf{B}).$$

Mátrix nyoma II

- ► Továbbá $trace(\mathbf{A}^T) = trace(\mathbf{A}).$
- ▶ Allítás: (A nyom tulajdonságai). Legyen $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ és $\mathbf{C} \in \mathbb{R}^{m \times n}$. Ekkor

$$trace(\mathbf{AB}) = trace(\mathbf{BA}),$$

 $trace(\mathbf{C}^T\mathbf{C}) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}^2.$

Bizonyítás: Mivel

$$trace(\mathbf{AB}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij}b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ij}a_{ji} = trace(\mathbf{BA}).$$

A második egyenlőség bizonyítása triviális.

Mátrix nyoma III

- ▶ Bármely két négyzetes mátrixra trace(AB BA) = 0.
- Az **x** vektor hosszának négyzete $\mathbf{x} \cdot \mathbf{x} = \mathbf{x}^T \mathbf{x} = \sum_i x_i^2$. Ennek általánosítása a fenti tétel második pontja.

Diagonizálás I

- ▶ <u>Definíció:</u> (Hasonlóság). Azt mondjuk, hogy az $n \times n$ -es **A** mátrix hasonló a **B** mátrixhoz, ha létezik olyan invertálható **C** mátrix, hogy **B** = **C**⁻¹**AC**. Jelölés: **A** \sim **B**.
- ▶ $\underline{\text{T\'etel:}}$ (Hasonlóságra invariáns tulajdonságok). Ha **A** és **B** hasonló mátrixok, azaz **A** \sim **B**. akkor
 - 1. $\rho(\mathbf{A}) = \rho(\mathbf{B})$,
 - 2. $dim(\mathbb{N}(\mathbf{A})) = dim(\mathbb{N}(\mathbf{B})),$
 - 3. $\det(\mathbf{A}) = \det(\mathbf{B})$,
 - 4. $trace(\mathbf{A}) = trace(\mathbf{B})$.

Bizonyítás:

- 1. $\rho(\mathbf{A}) = \rho(\mathbf{C}^{-1}\mathbf{BC}) \le \rho(\mathbf{B})$ és $\rho(\mathbf{B}) = \rho(\mathbf{C}^{-1}\mathbf{AC}) \le \rho(\mathbf{A})$. Innen $\rho(\mathbf{A}) = \rho(\mathbf{B})$.
- 2. $dim(\mathbb{N}(\mathbf{A})) = n \rho(\mathbf{A}) = n \rho(\mathbf{B}) = dim(\mathbb{N}(\mathbf{B})).$
- 3. $\det(\mathbf{A}) = \det(\mathbf{C}^{-1}\mathbf{B}\mathbf{C}) = \det(\mathbf{C}^{-1})\det(\mathbf{B})\det(\mathbf{C}) = \det(\mathbf{B})$, mivel $\det(\mathbf{C})\det(\mathbf{C}^{-1}) = 1$.

Diagonizálás II

- 4. $trace(\mathbf{A}) = trace(\mathbf{C}^{-1}\mathbf{BC}) = trace(\mathbf{BCC}^{-1}) = trace(\mathbf{B})$, és itt kihasználjuk, hogy két mátrix szorzatának nyoma nem változik, ha a tényezők sorrendjét felcseréljük.
- ▶ <u>Definíció:</u> (Kvadratikus alak). Valós kvadratikus alaknak (vagy kvadratikus formának) nevezzük azt az $\mathbb{R}^n \to \mathbb{R}$; $\mathbf{x} \to \mathbf{x}^T \mathbf{A} \mathbf{x}$ függvényt, ahol \mathbf{A} valós szimmetrikus mátrix. A komplex kvadratius alakon a $\mathbb{C}^n \to \mathbb{C}$; $\mathbf{x} \to \mathbf{x}^T \mathbf{A} \mathbf{x}$ függvényt értjük, ahol \mathbf{A} komplex négyzetes mátrix.
- ► Főtengelytétel, főtengelytramszformáció, kvadratikus alakok és mátrixok definitsége, definitség meghatározása sajátértékekből, pozitív (szemi)definit mátrixok faktorizációi, Cholesky-felbontás, definitség és főminortok kapcsolata, szélsőérték...Szorgalmi feladat: Wettl-jegyzet.

Diagonizálás III

<u>Tétel:</u> (Sajátértékhez kapcsolódó invariánsok). Ha A ~ B, akkor A és B karakterisztikus polinomja azonos, így sajátértékei, azok algebrai, sőt geometriai multiplicitásai is megegyeznek.

Bizonyítás: A bizonyítás során föltesszük, hogy valamely invertálható \mathbf{C} mátrixszal $\mathbf{A} = \mathbf{C}^{-1}\mathbf{B}\mathbf{C}$. Ekkor

$$\mathbf{A} - \lambda \mathbf{E} = \mathbf{C}^{-1}\mathbf{B}\mathbf{C} - \lambda \mathbf{C}^{-1}\mathbf{E}\mathbf{C} = \mathbf{C}^{-1}\left(\mathbf{B}\mathbf{C} - \lambda\mathbf{E}\mathbf{C}\right) = \mathbf{C}^{-1}\left(\mathbf{B} - \lambda\mathbf{E}\right)\mathbf{C},$$

azaz $\mathbf{A} - \lambda \mathbf{E}$ és $\mathbf{B} - \lambda \mathbf{E}$ is hasonlóak. Hasonló mátrixok determinánsa megegyezik, így det $(\mathbf{A} - \lambda \mathbf{E}) = \det (\mathbf{B} - \lambda \mathbf{E})$, azaz megegyeznek \mathbf{A} és \mathbf{B} karakterisztikus polinomjai is. Így megegyeznek sajátértékeik, és azok (algebrai) multiplicitásai. A geometriai multiplicitások egyenlőségéhez elég belátni, hogy $\mathbf{A} - \lambda \mathbf{E}$ és $\mathbf{B} - \lambda \mathbf{E}$ nullterének dimenziója megegyezik, amit korábban igazoltunk.

Diagonizálás IV

- Lineális transzformáció sajátértéke és a sajátaltere: gyakorlaton megnézzük, érdekes.
- **Definíció:** (Diagonalizálhatóság). Az $n \times n$ -es **A** mátrix diagonalizálható, ha hasonló egy diagonális mátrixhoz, azaz ha létezik egy olyan diagonális Λ és egy invertálható **C** mátrix, hogy $\Lambda = \mathbf{C}^{-1}\mathbf{AC}$.
- ► <u>Tétel:</u> (Diagonalizálhatóság szükséges és elégséges feltétele). Az $n \times n$ -es **A** mátrix pontosan akkor diagonalizálható, azaz pontosan akkor létezik olyan **C** mátrix, melyre $\mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ diagonális, ha **A**-nak van n lineárisan független sajátvektora. Ekkor a diagonális mátrix az **A** sajátértékeiből, **C** a sajátvektoraiból áll. Bizonyítás: Ha **A** hasonló egy diagonális mátrixhoz, azaz van olyan **C** mátrix, hogy $\mathbf{\Lambda} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ diagonális, akkor **C**-vel balról szorozva a $\mathbf{C}\mathbf{\Lambda} = \mathbf{A}\mathbf{C}$ egyenlőséget kapjuk. Ha $\mathbf{C} = [\mathbf{x}_1\mathbf{x}_2...\mathbf{x}_n]$ és $\lambda = diag(\lambda_1, \lambda_2, ..., \lambda_n)$, akkor

Diagonizálás V

$$[\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n] \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = \mathbf{A} [\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n].$$

A bal oldali mátrix i-edik oszlopa $\lambda_i \mathbf{x}_i$, a jobb oldali mátrixé $\mathbf{A}\mathbf{x}_i$. Ezek megegyeznek, azaz $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$, tehát \mathbf{x}_i a λ_i sajátértékhez tartozó sajátvektor. Mivel \mathbf{C} invertálható, ezért oszlopvektorai függetlenek, ami bizonyítja az állításunk egyik felét. Tegyük most fel, hogy van \mathbf{A} -nak n független sajátvektora. Képezzünk a sajátértékekből egy $\mathbf{\Lambda}$ diagonális mátrixot, úgy hogy a \mathbf{C} mátrix i-edik oszlopába kerülő \mathbf{x}_i vektorhoz tartozó λ_i sajátérték a $\mathbf{\Lambda}$ mátrix i-edik oszlopába kerüljön. Mivel $\lambda_i \mathbf{x}_i = \mathbf{A}\mathbf{x}_i$, ezért $\mathbf{\Lambda}$ hasonló \mathbf{A} -hoz.

Diagonizálás VI

- ightharpoonup A $ho = C^{-1}AC$ átírható $ho = C
 ho C^{-1}$ alakba, amit az ho mátrix sajátfelbontásának nevezünk.
- ▶ Bal sajátvektorok és a sajátfelbontás diadikus alakja, Diagonalizálható mátrixok polinomjai és a Cayley–Hamilton-tétel, Diagonalizálható mátrix polinomja, Cayley–Hamilton-tétel, Különböző sajátértékek sajátvektorai, Különböző sajátértékek és a diagonalizálhatóság, Algebrai és geometriai multiplicitás kapcsolata, Diagonalizálhatóság és a geometriai multiplicitás, Diagonalizálható mátrixok spektrálfelbontása, Diagonalizálható mátrixok spektrálfelbontása, Alterek direkt összege, A direkt összeg tulajdonságai, Diagonalizálható mátrixok sajátalterei. . . Wettl-jegyzet.

LU-felbontás

- ▶ <u>Definíció:</u> (LU-felbontás). Azt mondjuk, hogy az $m \times n$ -es **A** mátrix egy **A** = **LU** alakú tényezőkre bontása LU-felbontás (LU-faktorizáció vagy LU-dekompozíció), ha **L** alsó egység háromszögmátrix (tehát a főátlóban 1-ek, fölötte 0-k vannak), **U** pedig felső háromszögmátrix.
- Nincs minden mátrixnak LU-felbontása.
- Az LU-felbontás nem egyértelmű.
- Megmutatható viszont, hogy ha A invertálható, és létezik LU-felbontása, akkor az egyértelmű.
- Példa LU-felbontás kiszámítására, Algoritmus egy LU-felbontás előállítására, A LU-felbontás létezése és egyértelműsége, Egyenletrendszer megoldása LU-felbontással, + példa, Mátrix invertálása LU-felbontással, + példa...gyakorlaton.

Vége

Köszönöm a figyelmüket!