- -
 - (a) $X(u,\theta) = (u\cos\theta, u\sin\theta, u), \quad (u,\theta) \in [1,2] \times [0,2\pi]$ $\mathbf{F}(x,y,z) = (x,y,-z),$ $\mathbf{n} \cdot \mathbf{k} < 0$
 - (b) $X(u,\theta) = (u\cos\theta, u\sin\theta, \theta), \quad (u,\theta) \in [0,1] \times [0,4\pi]$ $\mathbf{F}(x,y,z) = y\,\mathbf{i} - x\,\mathbf{j} + (x^2 + y^2)\mathbf{k},$ $\mathbf{n} \cdot \mathbf{k} > 0$
- - (a) $\mathbf{F}(x,y,z)=(y,x,z^2)$ 이고 S는 평면 x+y+z=1 중에서 원기둥면 $x^2+y^2=1$ 로 둘러싸인 유계 곡면이며, $\mathbf{n}\cdot\mathbf{k}>0$.
 - (b) $\mathbf{F}(x,y,z)=y\,\mathbf{i}+z\,\mathbf{j}+x^2\mathbf{k}$ 이고 S는 구면 $x^2+y^2+z^2=4$ 중에서 xy 평면의 위쪽에 있는 부분이며, $\mathbf{n}\cdot\mathbf{k}\geq 0$.
 - (c) $\mathbf{F}(x,y,z)=(z,x,y)$ 이고 S는 원기둥면 $x^2+y^2=1$ 중에서 두 평면 z=-x와 z=4+x 사이에 놓인 부분이며, \mathbf{n} 의 방향은 원기둥면 $x^2+y^2=1$ 이 감싸는 영역을 벗어나는 방향.

$$\mathbf{F}(x, y, z) = (2x, 2y, 2z - 1)$$

이고 ∂D 의 단위법선벡터장 \mathbf{n} 이 D를 벗어나는 방향으로 주어졌을 때, 면적분의 정의를 이용하여 $\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, dS$ 의 값을 구하시오.

(주의: 풀이에 발산정리를 사용하지 마십시오.)