Practice 2

Mathematical model of electromechanical device

Name: Zhu Chenhao

HDU ID: 22320630

ITMO ID: 375462

Variant: 2

k	$\begin{bmatrix} U_{nom}, \\ [V] \end{bmatrix}$	n ₀ , [rpm]	I_{nom} , [A]	$ au_{nom}$, $[ext{N} \cdot ext{m}]$	<i>R_a</i> , [Ohm]	T_e , [ms]	J_m , $[\mathrm{kg}\cdot\mathrm{m}^2]$	<i>T_c</i> , [ms]	n_a	$J_a, \\ [\text{kg} \cdot \text{m}^2]$
2	36	4000	6.5	0.57	0.85	3	$2.2 \cdot 10^{-4}$	6	40	0.15

1. calculate all parameters of full EMD model and its simplified version.

【基本参数】

额定电压 U_nom 36.0 V 空载转速 n0 = 4000 rpm 额定电流 I_nom = 6.50 A 额定扭矩 τ nom = 0.57 N·m 电枢电阻 Ra 0.85 Ohm 电时间常数 Te 0.003 s 电机惯量 Jm $= 0.0002 \text{ kg} \cdot \text{m}^2$ 功率转换器时间常数 Tc = 0.006 s 变速箱传动比 na 40 执行器惯量 Ja 0.15 kg·m²

【衍生参数】

 空载角速度 ω0
 = 418.88 rad/s

 反电动势系数 ke
 = 0.0859 V·s/rad

 扭矩常数 km
 = 0.0877 N·m/A

 变速箱惯量 Jgb
 = 0.0000 kg·m²

 总转动惯量 JΣ
 = 0.000358 kg·m²

2.plot the transient processes with $\tau L = 0$ [N· m] and u = 5 [V].

Transient Processes of EMD Model (u = 5V, $\tau_L = 0$)

3.Plot the graphs for different values of TI – from 0 to na*tau_nom. TI = 11.399:

Transient Processes of EMD Model (u = 5V, τ_L = 11.399 Nm)

settling time: 0.25s

steady-state values of angular speed:17.71 rad/s

and armature current: 0.3281 A

TI = 22.799:

Transient Processes of EMD Model (u = 5V, τ_L = 22.799 Nm)

settling time: 0.253s

steady-state values of angular speed :14.53 rad/s

and armature current: 0.6526 A

4. Repeat task 3 for different values of Ja Ja = 0.5*Ja, TL = 11.399:

Transient Processes of EMD Model (0.5*Ja, $\tau_L = 11.399 \text{ Nm}$)

Ja = 0.5*Ja, TL = 22.799:

Transient Processes of EMD Model (0.5*Ja, $\tau_L = 22.799 \text{ Nm}$)

Ja = 1.5*Ja, TL = 11.399:

Transient Processes of EMD Model (1.5*Ja, $\tau_L = 11.399 \text{ Nm}$)

Ja = 1.5*Ja, TL = 22.799:

Transient Processes of EMD Model (1.5*Ja, $\tau_L = 22.799 \text{ Nm}$)

5. Repeat task 3 for different values of na

na = 0.25*na, TL = 0:

Transient Processes of EMD Model (0.25*na, $\tau_L = 0 \text{ Nm}$)

na = 0.25*na, TL = na*tau_nom/2:

Transient Processes of EMD Model (na = 0.25*na, $\tau_L = \text{na*}\tau_n om/2$)

na = 1.75*na, TL = 0:

Transient Processes of EMD Model (1.75*na, $\tau_L = 0 \text{ Nm}$)

na = 1.75*na, TL = na*tau_nom/2:

Transient Processes of EMD Model (1.75*na, $\tau_L = \text{na*}\tau_n om/2$)

6. Obtain transient processes for values of Tc, Te one order lower:

Transient Processes of EMD Model (0.1*Te)

Transient Processes of EMD Model (0.1*Tc)

Transient Processes of EMD Model (0.1*Tc & 0.1*Te)

Comment:

I can see that the time variation of the transient is not very large, but the magnitude does change

7. Simplified EMD model

Comment:

I can see that The angular velocity and angular images of the two models coincide almost perfectly.

状态空间表示

完整模型状态空间表示:

A矩阵:

- -333.3333 -33.7034 0 392.1569 245.1218 0 0 0 0 0.0250 0 0 0 0 0 0 -166.6667
- B 矩阵:

C 矩阵:

- 0.1000
 0
 0
 0

 0
 0.1000
 0
 0

 0
 0
 0.1000
 0

 0
 0
 0
 0.1000
- D 矩阵:

0 0 0

简化模型状态空间表示:

A矩阵:

-24.7843

B 矩阵:

25.9541 -1.7470

C 矩阵:

0.1000

2.4784

D 矩阵:

0 0

Conclusion:

In this experiment, the full and simplified models of the Electromechanical Drive (EMD) system were analyzed under various conditions. The key findings are summarized as follows:

- 1. Parameter Calculation: Both full and simplified EMD models were analyzed, with derived parameters like ke and km computed.
- 2. Transient Processes:

No load (TL=0TL=0) at 5 V input yielded smooth dynamics. Varying TLTL (0 to na·τnom) kept settling time (~0.25 s) stable, while steady-state speed and current scaled with load.

- 3. Inertia (Ja): Halving Ja sped up response; increasing it by 50% slowed it—steady-state values stayed consistent.
- 4. Gear Ratio (nana): Lower nana improved response speed; higher nana increased load effects and slowed dynamics.
- 5. Time Constants (Tc, Te): Reducing them by an order changed response magnitude but not duration, highlighting their damping role.
- 6. Simplified Model: Matched the full model in angular velocity and current, proving useful for reduced-order analysis.

Both models effectively describe EMD behavior, with the simplified version offering a practical trade-off between accuracy and complexity.