An Introduction to Impact Charts

Darren Vengroff, Ph.D. vengroff@datapinions.com

Agenda

- I. Background
- II. What is the problem?
- III. Impact chart methodology
- IV. Validation with synthetic data
- V. How to generate an impact chart in three lines of code
- VI. An application with real data

Background

Related Work: Prediction and Explanation

- Machine learning (ML) tends to focus on prediction
 - What video will a person watch?
 - Will a person pay back a loan?
 - What word comes next?
- Statistical social sciences tend to focus on explanation
 - Does going to college lead to higher income?
 - Are Black people discriminated against in access to credit?
 - Causal models are gold standard; regression methods widely used
- Interpretable machine learning
 - Are ML systems biased?
 - o Can we explain why an ML system made certain predictions?

Impact Charts: Use a Collection of ML Techniques to Answer Social Science Questions

- Impact charts center explanation, not prediction.
- How does one feature variable impact a target variable independent of other features.
- Additional properties of impact charts:
 - Non-parametric: shapes are not known in advance
 - Allow many notions of error (e.g. MSE, MRE, ...)
 - Minimal assumptions, e.g. homoscedasticity not required.
 - Work well on aggregate data
 - Maintain more privacy at the individual level
 - Eliminate the need to impute individual features

The Problem

How is y Related to x_i ?

n observations

 $m ext{ features } x_0 \dots x_{m-1}$ y

Exploratory Data Analysis: Scatter Plot

Why is the Scatter Plot Unsatisfying?

- There is no visually apparent pattern.
- But maybe y is impacted by x_3 .
 - \circ y might also be influenced by many other x_i .
 - We might not have observed all the relevant x_i .
 - There might be a lot of noise.
 - Some combination of the above.

Add Regression: Linear and Quadratic

$$y = ax_3 + b$$

$$y = ax_3^2 + bx_3 + c$$

Still no real visual clues.

What if We Could See Impact Like This?

Methodology

How Do We Construct Impact Charts?

- Build an ensemble of k machine learning models
 - Bagging approach
 - Each model is on a sample of the original data
- Use Shapley values to compute the impact of each observation of each feature on the corresponding target
 - Impacts of features of an observation, by construction, sum to the difference between the training set mean and the model prediction for the observation
- Plot both the distribution and the mean impact vs. the observed value

Value Given *n* observations of *m* features

$$X = (x_0, \dots x_{m-1})$$
 and a target y.

Value

Given n observations of m features $X = (x_0, \dots x_{m-1})$ and a target y.

• Take a random sample of the observations with e.g. p = 80%.

Value

Given n observations of m features $X = (x_0, \dots x_{m-1})$ and a target y.

• Take a random sample of the observations with e.g. p = 80%.

• Fit a model on the random sample to predict *y* from *X*.

Value

Given n observations of m features $X = (x_0, \dots x_{m-1})$ and a target y.

• Take a random sample of the observations with e.g. p = 80%.

• Fit a model on the random sample to predict *y* from *X*.

• Compute the impact $I(x_i^{(j)})$ of the j'th observation of the i'th feature (Shapley value)

Value peat the sampling, fitting, and impact calculation for k independent samples.

- Plot the distribution of k impacts vertically.
- Plot the mean impact.

Constructing an Impact Chart for Feature

 \boldsymbol{x}_i

- Repeat prior multi-sample step for all n observations
- Plot impact distribution vertically vs. corresponding value of feature x_i
- Final chart shows how values of x_i impact y including a distribution
- Repeat to chart impact of other m 1 features.

Observed value of feature x_i

Validation on Synthetic Data

Synthetic Data: Impact is Known by Design

$$y = \sum_{i=0}^4 t_i + N(0,10)$$

y is sum of five terms, each of which is a function of one x_i , plus Gaussian noise.

-

$$t_0=x_0;$$

linear in
$$x_0$$
.

$$t_1=100\cdot\left(1-2\Big(rac{x_1}{100}\Big)^2
ight);$$

quadratic in
$$x_1$$
.

$$t_2 = 100 \cdot \sin\left(2\pi rac{x_2}{100}
ight);$$

sinusoidal in
$$x_2$$
.

$$t_3 = 200 \cdot \exp\left[7\left(rac{x_3}{100} - 1
ight)
ight];$$

exponential in
$$x_3$$
.

$$t_4=0.$$

unaffected by
$$x_4$$
.

(Linear)

(Quadra

Impact Chart and Actual Impact of x_2 (Sinusoid Impact of x_2 on y

 x_4

(None)

Impact Chart Code

Find the impactchart code in the usual places

GitHub

https://github.com/impactchart/impactchart

PyPi

pip install impactchart

Generate Impact Charts in 3-5 Lines of Python

From impactchart.model import XGBoostImpactModel

```
X, y = my_data()

# Construct and fit the impact chart model:
impact_model = XGBoostImpactModel()
impact_model.fit(X, y)

# Plot the charts. The return value is a dictionary
# with one chart per column of X.
impact_charts = impact_model.impact_charts(X)
```

A Real World Example

Example: Eviction Impact Charts

- The impact of income, race, and ethnicity on eviction rates in DeKalb County, GA, USA:
 - \circ n = 1,340 census tract-level observations over 10 years (2009-2018)
 - Features are median income, percent of population identifying as [white | Black | Asian | Hispanic or Latino, ...]. (U.S. Census American Community Survey data from 2009-2018.)
 - Target is eviction rate in eviction filings per 100 renters per year
 (Princeton University Eviction Lab data)
 - $\sim k = 50$ models on 80% samples using XGBoost with optimized hyperparameters

Example: Impact of Income on Eviction

Median Household Income for Renters - 2018 Dollars

- Hypothesis: low income leads to higher eviction.
- Impact chart results: reality is more complex.
- Census tracts where median renters are among the working poor have eviction rates up to 3 points higher than otherwise similar tracts.
- Census tracts where median renter's income is the absolute lowest have eviction rates up to 6 points lower than otherwise similar tracts.

Example: Impact of Blackness on Eviction

Black Alone as Percentage of Renters

- Census tracts that have low Black population (<20%) have eviction rates 10-15 points lower than relative to otherwise similar tracts.
- Census tracts that have high Black population (>90%) have eviction rates 10-15 points higher.
- Overall range of 30 points difference vs. < 10 points for income.
- Recall: impacts are independent and additive.
- Compare to scatter plots/regression. See paper.

Paper with More Details And Examples

Darren Erik Vengroff. 2024. Impact Charts: A Tool for Identifying Systematic Bias in Social Systems and Data. In *FAccT '24, June 2024*.

https://facctconference.org/static/papers24/facct24-80.pdf

Future Work

- Causal models and impact chart resolution
- Interactive impact charts
- Additional application areas

Thank You

https://github.com/impactchart/impactchart

