如

考

大学物理(上)期末模拟试卷(A卷)

- 一,单选题(每题3分,共27分)
- 1、半径为 R 的"无限长"均匀带电圆柱体的静电场中各点的电场强度的大小 E 与距轴线的距离 r 的关系曲线为:

[]

- - (A) $F \propto U$.
- (B) $F \propto 1/U$.
- (C) $F \propto 1/U^2$.
- (D) $F \propto U^2$.

[]

3、A、B 为两导体大平板,面积均为 S,平行放置,如图所示. A 板带电荷+ Q_1 ,B 板带电荷+ Q_2 ,如果使 B 板接地,则 AB 间电场强度的大小 E 为

(B)
$$\frac{Q_1 - Q_2}{2\varepsilon_0 S}.$$

(D)
$$\frac{Q_1 + Q_2}{2\varepsilon_0 S}.$$

- 4、 C_1 和 C_2 两空气电容器并联起来接上电源充电. 然后将电源断开,再把一电介质板插入 C_1 中,如图所示,则
 - (A) C₁和 C₂ 极板上电荷都不变.
 - (B) C_1 极板上电荷增大, C_2 极板上电荷不变.
 - (C) C_1 极板上电荷增大, C_2 极板上电荷减少.
- (D) C_1 极板上电荷减少, C_2 极板上电荷增大.

电流由长直导线 1 沿平行 bc 边方向经过 a 点流入由电阻均 匀的导线构成的正三角形线框,由b点流出,经长直导线2沿cb延长线方向返回电源(如图). 已知直导线上的电流为 I, 三角框的每 一边长为l. 若载流导线l、2和三角框中的电流在三角框中心O点 产生的磁感强度分别用 \vec{B}_1 、 \vec{B}_2 和 \vec{B}_3 表示,则 O 点的磁感强度大小

- (A) B=0, 因为 $B_1=B_2=B_3=0$.
- (B) B = 0, 因为 $\bar{B}_1 + \bar{B}_2 = 0$, $B_3 = 0$.
- (C) $B\neq 0$,因为虽然 $\vec{B}_1+\vec{B}_2=0$,但 $B_3\neq 0$.
- (D) $B \neq 0$, 因为虽然 $B_3 = 0$, 但 $\bar{B}_1 + \bar{B}_2 \neq 0$.

Γ

如图所示,矩形区域为均匀稳恒磁 6. 场, 半圆形闭合导线回路在纸面内绕轴 O 作 逆时针方向匀角速转动, O 点是圆心且恰好 落在磁场的边缘上, 半圆形闭合导线完全在 磁场外时开始计时. 图(A)—(D)的_--t函数 图象中哪一条属于半圆形导线回路中产生 的感应电动势?

Γ

7、 如图,一导体棒 ab 在均匀磁场中沿金属导轨 向右作匀速运动,磁场方向垂直导轨所在平面. 若导 轨电阻忽略不计,并设铁芯磁导率为常数,则达到稳 定后在电容器的 M 极板上

- (A) 带有一定量的正电荷.
- (B) 带有一定量的负电荷.
- (C) 带有越来越多的正电荷.
- (D) 带有越来越多的负电荷.

]

有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为 r_1 和 r_2 .管内充满均匀介 质,其磁导率分别为 μ_1 和 μ_2 .设 r_1 : r_2 =1:2, μ_1 : μ_2 =2:1,当将两只螺线管串联在电路中通电 稳定后,其自感系数之比 $L_1:L_2$ 与磁能之比 $W_{m1}:W_{m2}$ 分别为:

- (A) $L_1: L_2=1:1$, $W_{m1}: W_{m2}=1:1$.
- (B) $L_1: L_2=1:2$, $W_{m1}: W_{m2}=1:1$.
- (C) $L_1: L_2=1:2$, $W_{m1}: W_{m2}=1:2$.
- (D) $L_1: L_2=2:1$, $W_{m1}: W_{m2}=2:1$.

]

在圆柱形空间内有一磁感强度为 \vec{B} 的均匀磁场,如图所示, \vec{B} 的大 9、 小以速率 dB/dt 变化. 有一长度为 l_0 的金属棒先后放在磁场的两个不同位置 1(ab)和 2(a'b'),则金属棒在这两个位置时棒内的感应电动势的大小关系 为

- (A) $\xi_2 = \xi_1 \neq 0$. (B) $\xi_2 > \xi_1$.
- (C) $\xi_2 < \xi_1$. (D) $\xi_2 = \xi_1 = 0$.

二 填空题(共 35 分) 1、(本题 4 分)把一个均匀管	带有电荷+ Q 的球形肥皂泡由	半径 r_1 吹胀到 r_2 ,则	半径为 $R(r_1 <$
R <r2)的球面上任一点的场强< th=""><th>大小 E 由变</th><th>题;</th><th>电</th></r2)的球面上任一点的场强<>	大小 E 由变	题;	电
势 U 由	变为	(选无穷远处为□	电势零点).
2、(本题 3 分) 图示为某 画出该电场的电场线.	· 静电场的等势面图,在图中		$ \begin{array}{r} -30V \\ \hline -25V \\ \hline -20V \\ \hline -15V \end{array} $
3、(本题 3 分) 一平行板电	容器,充电后切断电源,然后	与使两极板间充满相对	f 介电常量为 ϵ_r 的
各向同性均匀电介质.此时两	两极板间的电场强度是原来的	句	场
能量是原来的	音.		
4、(本题 3 分) 一均匀极化 化强度为 \bar{P} ,其方向平行于新如图所示.则 A 、 B 两端面上 C 上的束缚电荷面密度分别为	$+$ 柱体轴线,与端面法线成 $ heta$, \perp 和侧面	$\vec{n}_B \stackrel{\mathcal{C}}{=} \underbrace{\vec{P}}$	$A \rightarrow \theta$
$\sigma_{\it B}'=$, $\sigma_C' =$		
5 、(本题 5 分)如图,一个均分 \bar{B} 的方向垂直于图面向里.一场. \bar{v} 在图面内与界面 P 成为	一质量为 m 、电荷为 q 的粒子		\bar{v} $ P $ \times \times $ \bar{B} $ \times \times
从磁场中射出前是做半径为_ 边界围成的平面区域的面积;			
是			
6、(本题 5 分)一个半径为	R 、面电荷密度为 σ 的均匀	节电圆盘,以角速度 ω	绕过圆心且垂直
盘面的轴线 AA' 旋转; 今将	其放入磁感强度为 $ar{B}$ 的均匀 f	外磁场中 \vec{B} 的方向垂直	直于轴线 AA'. 在
距盘心为 r 处取一宽为 dr 的 磁力矩的大小为	圆环,则圆环内相当于有电》 ,圆盘所受合力矩的		

7、(本题 3 分) 一无限长载流直导线,通有电流 I,弯成如图形状. 设 各线段皆在纸面内,则 P 点磁感强度 \bar{B} 的大小为

8、(本题 3 分) 图示为三种不同的磁介质的 $B\sim H$ 关系曲线,其中虚线表示的是 $B=\mu_0H$ 的关系. 说明 a、b、c 各代表哪一类磁介质的 $B\sim H$ 关系曲线:

a 代表	的 <i>B~H</i> 关系曲线.
b 代表	的 <i>B~H</i> 关系曲线.
c代表	的 <i>R~H</i> 关系曲线.

9、(本题 3 分) 如图所示,相对磁导率为 μ 的磁介质与真空交界,界面上没有传导电流,真空一侧是均匀磁场、磁感强度为 \bar{B} ,其方向与界面法线夹角为 θ . 则磁场强度 \bar{H} 沿图中矩形路

10、(本题 3 分) 如图所示,相对磁导率为 μ 的磁介质与真空交界,界面上没有传导电流,真空一侧是均匀磁场、磁感强度为 \bar{B} ,其方向与界面法线夹角为 θ . 坡印廷矢量 \bar{S} 的物理意义是:

:	其定义式为	

三、计算题

1、(本题 10 分) 如图所示,三个"无限长"的同轴导体圆柱面 A、B 和 C,半径分别为 R_a 、 R_b 、 R_c . 圆柱面 B 上带电荷,A 和 C 都接地. 求 B 的内表面上电荷线密度 λ_1 和外表面上电荷线密度 λ_2 之比值 λ_1/λ_2 .

2、(本题 8 分) 两金属球的半径之比为 1:4,带等量的同号电荷. 当两者的距离远大于两球半径时,有一定的电势能. 若将两球接触一下再移回原处,则电势能变为原来的多少倍?

3、(本题 10 分) 一根半径为 R 的长直导线载有电流 I,作一宽为 R、长为 I 的假想平面 S,如图所示。若假想平面 S 可在导线直径与轴 OO' 所确定的平面内离开 OO' 轴移动至远处. 试求当通过 S 面的磁通量最大时 S 平面的位置(设直导线内电流分布是均匀的).

- Q 1 - Q 'S

4、(本题 10 分) 如图所示,在纸面所在的平面内有一载有电流 I 的无限长直导线,其旁另有一边长为 I 的等边三角形线圈 ACD. 该线圈的 AC 边与长直导线距离最近且相互平行. 今使线圈 ACD 在纸面内以匀速 \bar{v} 远离长直导线运动,且 \bar{v} 与长直导线相垂直. 求当线圈 AC 边与长直导线相距 a 时,线圈 ACD 内的动生电动势 ξ .

