ElMag - Formelsammlung

2	Idiotenseite	3
1	Elektrostatische Analyse 1.1 Grundgesetze	2
	25. September 2016	
	S. Reinli Inhaltsverzeichnis	

1 Elektrostatische Analyse

Die **Elektrostatische Analyse** ist ein Hauptbestandteil des Designs von Hoch- und Mittelspannungsgeräten. Wird unter anderem für die Berechnung der Ersatzkapazität von elektrischen Komponenten und Leitungen verwendet.

1.1 Grundgesetze

Gausssches Gesetz:

Der Fluss des Vektors $\vec{D} = \varepsilon \cdot \vec{E}$ durch eine geschlossene orientierte Fläche (A) ist gleich der gesamten elektrischen Ladung Q, die von der Fläche (A) umgeben ist:

$$\iint\limits_{(A)} \vec{D} \cdot \vec{dA} = Q \quad oder \quad \iint\limits_{(A)} \vec{E} \cdot \vec{dA} = \frac{Q}{\varepsilon}$$

 \vec{D} - elektrische Flussdichte

 \vec{E} - elektrisches Feld

 ε - elektrische Permittivität

Wirbelfreiheit des elektrostatischen Feldes:

Das Kurvenintegral des elektrostatischen Feldes \vec{E} über jede geschlossene orientierte Kurve (C) ist gleich null:

$$\oint\limits_{(C)} \vec{E} \cdot \vec{dl} = 0$$

$$\oint\limits_{(C)} \vec{E} \cdot \vec{dl} = \oint\limits_{\substack{P_1 \\ (C_1)}}^{P_2} \vec{E} \cdot \vec{dl} - \oint\limits_{\substack{P_1 \\ (C_2)}}^{P_2} \vec{E} \cdot \vec{dl} = 0$$

Das elektrische Skalarpotential eines Punktes gegenüber dem Bezugspunkt (P_B):

$$\varphi_{P_1} = \oint\limits_{P_1}^{P_N} \vec{E} \cdot \vec{dl} \quad und \quad \varphi_{P_2} = \oint\limits_{P_2}^{P_N} \vec{E} \cdot \vec{dl}$$

$$U_{P_1P_2} = \varphi_{P_1} - \varphi_{P_2} = \oint_{P_1}^{P_2} \vec{E} \cdot d\vec{l}$$

2 Idiotenseite

2.1 SI-Vorsätze

Symbol	Name	Wert	Binär	Symbol	Name	Wert
da	Deka	10 ¹		d	Dezi	10^{-1}
h	Hekto	10 ²		С	Centi	10-2
k	Kilo	10 ³	$2^{10} = 1024$	m	Mili	10^{-3}
M	Mega	106	2 ²⁰	y, μ	Mikro	10^{-6}
G	Giga	109	2 ³⁰	n	Nano	10-9
Т	Tera	10^{12}	2 ⁴⁰	р	Piko	10^{-12}
P	Peta	10^{15}	2 ⁵⁰	f	Femto	10^{-15}

2.2 Dreiecksformeln

Cosinussatz

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

Sinussatz

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r = \frac{u}{\pi}$$

Pythagoras beim Sinus

$$\sin^2(b) + \cos^2(b) = 1$$
 $\tan(b) = \frac{\sin(b)}{\cos(b)}$

$$\sin \beta = \frac{b}{a} = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
 $\cos \beta = \frac{c}{a} = \frac{\text{Ankathete}}{\text{Hypotenuse}}$

$$\tan \beta = \frac{c}{b} = \frac{\text{Gegenkathete}}{\frac{\text{Ankathete}}{\text{Ankathete}}}$$
$$\cot \beta = \frac{c}{b} = \frac{\frac{c}{\text{Ankathete}}}{\frac{\text{Gegenkathete}}{\text{Gegenkathete}}}$$

2.3 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan	deg
0	0	0	1	0	90
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	120
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	135
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	150

deg	rad	sin	cos
90	$\frac{\pi}{2}$	1	0
120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
135	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
150	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$

deg	rad	sin	cos
180	π	0	-1
210	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
225	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
240	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$

deg	rad	sin	cos
270	$\frac{3\pi}{2}$	-1	0
300	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
315	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
330	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

2.4 Periodizität

$$cos(a + k \cdot 2\pi) = cos(a)$$
 $sin(a + k \cdot 2\pi) = sin(a)$ $(k \in \mathbb{Z})$

2.5 Quadrantenbeziehungen

$$\sin(-a) = -\sin(a)$$

$$\sin(\pi - a) = \sin(a)$$

$$\sin(\pi + a) = -\sin(a)$$

$$\sin(\frac{\pi}{2} - a) = \sin(\frac{\pi}{2} + a) = \cos(a)$$

$$\cos(\pi - a) = \cos(a)$$

$$\cos(\pi + a) = -\cos(a)$$

$$\cos(\pi + a) = -\cos(a)$$

$$\cos(\frac{\pi}{2} - a) = -\cos(\frac{\pi}{2} + a) = \sin(a)$$

Ableitungen

S. Reinli

2.7 Additionstheoreme

$$\sin(a \pm b) = \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b)$$

$$\cos(a \pm b) = \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b)$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)}$$

2.9 Geradengleichung Interpolieren

$$y(x) = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

2.8 Doppel- und Halbwinkel

$$\sin(2a) = 2\sin(a)\cos(a)
\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)
\cos^2(\frac{a}{2}) = \frac{1 + \cos(a)}{2} \qquad \sin^2(\frac{a}{2}) = \frac{1 - \cos(a)}{2}$$

2.10 Grad <-> Rad

$$\alpha_{rad} = \alpha_{grad} \cdot \frac{\pi}{180}$$

$$\alpha_{grad} = \alpha_{rad} \cdot \frac{180}{\pi}$$

2.11 Grundelemente

Ohmscher Widerstand R

u und *i* können sprunghaft ändern

Kapazitität C

u kann nicht sprunghaft ändern

$$u(t) = \frac{1}{C} \int_{0}^{t} i(\tau)d\tau + u(0)$$

$$i(t) = C \frac{du(t)}{dt}$$

$$Z_{C} = \frac{1}{j\omega C} = -\frac{j}{\omega C}$$

$$X_{C} = -\frac{1}{\omega C} \quad B_{C} = \omega C$$

$$Q_{C} = -U^{2} \cdot \omega C = -\frac{I^{2}}{\omega C}$$

$$W_{C} = \frac{1}{2}CU_{C}^{2}$$

Induktivität L

i kann nicht sprunghaft ändern

$$u(t) = L \frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{0}^{t} u(\tau) d\tau + i(0)$$

$$\underline{Z_L} = j\omega L$$

$$X_L = \omega L \quad B_L = -\frac{1}{\omega L}$$

$$Q_L = I^2 \cdot \omega L = \frac{U^2}{\omega L}$$

$$W_L = \frac{1}{2} L I_L^2$$

2.12 Begriffe der Impedanz und Admittanz

Scheinwiderstand		$Z = \frac{U_{eff}}{I_{eff}}$	$= \sqrt{R^2 + X^2}$	Ohm
Komplexer Widerstand	Impedanz	$\underline{Z} = R + jX = Z \cdot e^{j\varphi}$	$= \frac{\underline{U}}{\underline{I}} = \frac{\underline{U} \cdot \underline{U}^*}{\underline{S}^*} = \frac{\underline{U}^2}{\underline{S}^*} = \frac{\underline{S}}{\underline{I}^2}$	Ohm
Komplexer Leitwert	Admittanz	$\underline{Y} = G + jB = \frac{1}{\underline{Z}} = \frac{1}{\overline{Z}}e^{-j\varphi}$	$=\frac{\underline{I}}{\underline{U}}$	Siemens
Wirkwiderstand	Resistanz	$R = \operatorname{Re}(\underline{Z})$	$=Z\cdot cos(\varphi)$	Ohm
Wirkleitwert	Konduktanz	$G = \text{Re}(\underline{Y})$	$\neq \frac{1}{R}$	Siemens
Blindwiderstand	Reaktanz	$X = \operatorname{Im}(\underline{Z})$	$=Z\cdot sin(\varphi)$	Ohm
Blindleitwert	Suszeptanz	$B = \operatorname{Im}(\underline{Y})$	$\neq \frac{1}{X}$	Siemens
Phasenverschiebung		$\varphi = \varphi_u - \varphi_i = \arctan\left(\frac{\operatorname{Im}(\underline{Z})}{\operatorname{Re}(\underline{Z})}\right)$		Radiant