Université catholique de Louvain LEPL1101 - Algèbre Professeurs M. Verleysen, V. Wertz

Devoir 2

Votre devoir est attendu sur l'activité Moodle : Devoir 2, pour le 04 décembre à 23h59. Veuillez insérer vos réponses dans les cadres prévus à cet effet. Une grande importance sera apportée à la clarté, la précision et la concision de vos réponses.

Préalable. Recopiez à la main la phrase suivante dans le cadre indiqué :

Sur l'honneur, je certifie que le contenu de ce devoir est le fruit de mon travail personnel et a été réalisé sans autre aide extérieure que les supports autorisés.

—— Déclaration –

Question 1. Soit $E = \mathbb{R}^{n \times n}$, l'espace vectoriel des matrices réelles carrées de dimension n.

a. Soit la forme $(-|-): E \times E \to \mathbb{R}: (\mathbf{A}|\mathbf{B}) = \operatorname{tr}(\mathbf{A}^{\mathsf{T}}\mathbf{B})$ où $\operatorname{tr}(\cdot)$ désigne la trace. Prouvez que la forme (-|-) est un produit scalaire sur E.

Rappel : La trace d'une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$ est définie comme la somme des éléments de sa diagonale:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} A_{i,i}.$$

A partir de maintenant, on considère $E=\mathbb{R}^{3\times 3}$, l'espace vectoriel des matrices réelles carrées de taille 3×3 , muni du produit scalaire défini en 1.a. On dit d'une matrice $\mathbf{C}\in\mathbb{R}^{3\times 3}$ qu'elle est *circulante* si pour $a,b,c\in\mathbb{R}$, \mathbf{C} est de la forme

$$\mathbf{C} = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}.$$

Soit V l'ensemble des matrices circulantes réelles de dimension 3×3 .

b. Démontrez que V est un espace vectoriel.						

c. Soit v la base de V définie comme

$$v = \left(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right).$$

Montrez que cette base est orthogonale par rapport au produit scalaire défini en 1.a. Calculez ensuite une base orthonormée $w=(\mathbf{W}_1,\mathbf{W}_2,\mathbf{W}_3)$ de l'espace V à partir de la base v.

d.	A partir de la base w calculée à	la d	ques	stio	n précédente, trouvez $P_V(\mathbf{M})$, la projection
		/a	b	$c \setminus$	· ·
	orthogonale d'une matrice $\mathbf{M} =$	d	e	f	n précédente, trouvez $P_V(\mathbf{M})$, la projection , avec $a,b,c,d,e,f,g,h,i\in\mathbb{R}$, dans l'espace .
	_	\setminus_g	h	i	
	des matrices circulantes de dimer	nsio	n 3	\times 3	s.

Université catholique de Louvain LEPL1101 - Algèbre

Professeurs M. Verleysen, V. Wertz

Question 2. Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

b. La matrice ${\bf A}$ est-elle diagonalisable? Justifiez.					
c Diagonalise	z la matrice A si	i elle est diagor	nalisable		
c. Diagonanse	Z Id Induited 21 Si	ene est diagor			

d.	d. Est-il possible de trouver ur canonique de \mathbb{R}^3 :	ne base orthonormale de \mathbb{R}^3 , par rapport au produit scalaire
	(.	$ \;\cdot):\mathbb{R}^3 imes\mathbb{R}^3 o\mathbb{R}:(oldsymbol{x},oldsymbol{y})=oldsymbol{x}^{ op}oldsymbol{y},$
	constituée de vecteurs proporthogonale telle que ${\bf A}={\bf C}$ propres.	eres de $\bf A$. Si oui, calculez-la. Donnez la matrice $\bf Q} \in \mathbb{R}^{3\times 3}$ $\bf Q} \bf D} \bf Q}^{\top}$ où $\bf D$ est la matrice diagonale constituée des valeurs