МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Вятский государственный университет» (ФГБОУ ВПО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

> Отчет по лабораторной работе №1 «Вычислительная математика»

Выполнил студент группы ИВТм-11	/Шурупов М.А./
Проверил доцент кафедры ЭВМ	/Исупов К.С./

Задание

- Решить 5 матриц (в качестве правой части единичный вектор) разными методами (таблица: la.mathworks.com/*/iterative-methods-for-linear-systems.html).
- Сравнить по точности и количеству итераций.
- Построить графики невязок.

Ход выполнения

В таблице 1 приведены выбранные матрицы из ресурса: sparse.tamu.edu

Таблица 1 - выбранные матрицы

Название	Размер	Количество ненулевых	
		элементов	
Dubcova2	62025 на 65025	1030225	
finan512	74752 на 74752	596992	
G2_circuit	150102 на 150102	726674	
qa8fm	66127 на 66127	1660579	
$thermomech_dM$	204316 на 204316	1423116	

Все вычисления проводились с точностью 10^{-8} и количеством итераций до 20000. Скрипты методов на языке Mathlab представлены в приложении A.

На рисунках 1-11 приведены истории невязок для матрицы Dubcova2

Рисунок 1 - История невязок методом bicg для матрицы Dubcova2

Рисунок 2 - История невязок методом bicgstab для матрицы Dubcova2

Рисунок 3 - История невязок методом bicgstabl для матрицы Dubcova2

Рисунок 4 - История невязок методом cgs для матрицы Dubcova2

Рисунок 5 - История невязок методом gmres для матрицы Dubcova2

Рисунок 6 - История невязок методом lsqr для матрицы Dubcova2

Рисунок 7 - История невязок методом minres для матрицы Dubcova2

Рисунок 8 - История невязок методом рсд для матрицы Dubcova2

Рисунок 9 - История невязок методом qmr для матрицы Dubcova2

Рисунок 10 - История невязок методом symmlq для матрицы Dubcova2

Рисунок 11 - История невязок методом tfqmr для матрицы Dubcova2

В таблице 2 приведена сводная информация о использовании каждого метода для матрицы Dubcova2.

Таблица 2 - сравнение методов по точности и количеству итераци для матрицы Dubcova2

Название	Без		C		С	
метода	предобуславливателя		предобуславливателем		предобуславливателем	
			неполное		LU-	
			разложение		разложение	
			Холецкого	Холецкого		
	Число	Точность	Число	Точность	Число	Точность
	итераций		итераций		итераций	
bicg	180	10^{-8}	148	10^{-8}	148	10^{-8}
bicgstab	250	10^{-8}	148	10^{-8}	204	10^{-8}
bicgstabl	270	10^{-8}	150	10^{-8}	180	10^{-8}
cgs	152	10^{-8}	148	10^{-8}	104	10^{-8}
gmres	180	10^{-8}	148	10^{-8}	147	10^{-8}
lsqr	2000	10^{-8}	144	10^{-8}	2300	10^{-8}
minres	180	10^{-8}	147	10^{-8}	140	10^{-8}
pcg	180	10^{-8}	147	10^{-8}	147	10^{-8}
qmr	178	10^{-8}	145	10^{-8}	147	10^{-8}
symmlq	180	10^{-5}	149	10^{-6}	148	10^{-6}
tfqmr	290	10^{-8}	150	10^{-8}	216	10^{-8}

Из таблицы 2 видно, что минимальное количество итераций при приемлемой точности получилось у всех методов с предобуславливателем неполное разложение Холецкого (от 145 до 150 итераций). Самое большое количество итераций понадобилось методу lsqr с предобуславливателем LU-разложение (2300 итераций). Матрица не смогла посчитаться методом symmlq с установленной точностью (10^{-6} вместо 10^{-8}).

На рисунках 12—22 приведены истории невязок для матрицы Qa8fm

Рисунок 12 - История невязок методом bicg для матрицы Qa8fm

Рисунок 13 - История невязок методом bicgstab для матрицы Qa8fm

Рисунок 14 - История невязок методом bicgstabl для матрицы Qa8fm

Рисунок 15 - История невязок методом cgs для матрицы Qa8fm

Рисунок 16 - История невязок методом gmres для матрицы Qa8fm

Рисунок 17 - История невязок методом lsqr для матрицы Qa8fm

Рисунок 18 - История невязок методом minres для матрицы Qa8fm

Рисунок 19 - История невязок методом рсg для матрицы Qa8fm

Рисунок 20 - История невязок методом qmr для матрицы Qa8fm

Рисунок 21 - История невязок методом symmlq для матрицы Qa8fm

Рисунок 22 - История невязок методом tfqmr для матрицы Qa8fm

В таблице 3 приведена сводная информация о использования каждого метода для матрицы Qa8fm.

Таблица 3 - сравнение методов по точности и количеству итераций для матрицы Qa8fm

Название	Без		С		С		
метода	предобуславливателя		предобуславливателем		предобуславливателем		
			неполное		LU-		
			разложение		разложение		
			Холецкого				
	Число	Точность	Число	Точность	Число	Точность	
	итераций		итераций		итераций		
bicg	68	10^{-8}	8	10^{-8}	8	10^{-8}	
bicgstab	100	10^{-8}	8	10^{-8}	9	10^{-8}	
bicgstabl	95	10^{-8}	8	10^{-8}	9	10^{-8}	
$_{ m cgs}$	36	10^{-8}	8	10^{-8}	4	10^{-8}	
gmres	65	10^{-8}	8	10^{-8}	10	10^{-5}	
lsqr	500	10^{-8}	8	10^{-8}	9	10^{-8}	
minres	65	10^{-8}	8	10^{-8}	8	10^{-8}	
pcg	67	10^{-8}	8	10^{-8}	8	10^{-8}	
qmr	64	10^{-8}	8	10^{-8}	8	10^{-8}	
symmlq	67	10^{-6}	7	10^{-8}	8	10^{-7}	
tfqmr	75	10^{-8}	7	10^{-8}	8	10^{-8}	

Из таблицы 3 видно, что в среднем всем методам спредобуславливателем понадобилось примерно одинаковое количество итераций (в среднем 8). Методу lsqr без предобуславливателя потребовалось самое большое количество итераций (500 итераций) вреди остальных методов.

На рисунках 23-32 приведены истории невязок для матрицы Thermomech_dM

Рисунок 23 - История невязок методом bicg для матрицы Thermomech_ $\mathrm{d}\mathrm{M}$

Рисунок 24 - История невязок методом bicgstab для матрицы Thermomech_dM

Рисунок 25 - История невязок методом bicgstabl для матрицы Thermomech_dM

Рисунок 26 - История невязок методом cgs для матрицы Thermomech_dM

Рисунок 27 - История невязок методом lsqr для матрицы Thermomech_dM

Рисунок 28 - История невязок методом minres для матрицы Thermomech_dM

Рисунок 29 - История невязок методом рс
д для матрицы Thermomech_dM

Рисунок 30 - История невязок методом qmr для матрицы Thermomech_dM

Рисунок 31 - История невязок методом symmlq для матрицы Thermomech_dM

Рисунок 32 - История невязок методом tfqmr для матрицы Thermomech_dM

В таблице 4 приведена сводная информация о использования каждого метода для матрицы Thermomech $_{
m d}M$.

Таблица 4 - Сравнение методов по точности и количеству итераций для матрицы Thermomech_dM

Название	Без		C		С	
метода	предобуславливателя		предобуславливателем		предобуславливателем	
			неполное		LU-	
			разложение		разложение	
			Холецкого			
	Число	Точность	Число	Точность	Число	Точность
	итераций		итераций		итераций	
bicg	70	10^{-8}	9	10^{-8}	9	10^{-8}
bicgstab	97	10^{-8}	9	10^{-8}	8	10^{-8}
bicgstabl	98	10^{-8}	9	10^{-8}	9	10^8
cgs	37	10^{-8}	8	10^{-8}	6	10^8
gmres	-	-	-	-	-	
lsqr	500	10^{-8}	8	10^{-8}	9	10^{-8}
minres	68	10^{-8}	9	10^{-8}	9	10^{-8}
pcg	70	10^{-8}	9	10^{-8}	9	10^{-8}
qmr	68	10^{-8}	9	10^{-8}	9	10^{-8}
symmlq	68	10^{-6}	8	10^{-8}	8	10^{-7}
tfqmr	73	10^{-8}	8	10^{-8}	8	10^{-8}

Из таблицы 4 видно, что в среднем всем методам с предобуславливателем понадобилось примерно одинаковое количество итераций (в среднем 9). Самое большое количество итераций понадобилось методу lsqr без предобуславливателя (500 итераций). Также не удалось выполнить вычисления методом gmres

(ошибка Error using zeros Requested 204316x20000 (30.4GB) array exceeds maximum array size preference. Creation of arrays greater than this limit may take a long time and cause MATLAB to become unresponsive).

На рисунках 33-44 приведены истории невязок для матрицы finan512

Рисунок 33 - История невязок методом bicg для матрицы finan512

Рисунок 34 - История невязок методом bicgstab для матрицы finan512

Рисунок 35 - История невязок методом bicgstabl для матрицы finan512

Рисунок 36 - История невязок методом cgs для матрицы finan512

Рисунок 37 - История невязок методом gmres для матрицы finan512

Рисунок 38 - История невязок методом lsqr для матрицы finan
512 $\,$

Рисунок 39 - История невязок методом minres для матрицы finan512

Рисунок 40 - История невязок методом pcg для матрицы finan512

Рисунок 41 - История невязок методом qmr для матрицы finan512

Рисунок 42 - История невязок методом symmlq для матрицы finan512

Рисунок 43 - История невязок методом tfqmr для матрицы finan512

В таблице 5 приведена сводная информация о использования каждого метода для матрицы Finan512.

Таблица 5 - Сравнение методов по точности и количеству итераций для матрицы Finan 512

Название	Без		С		С		
метода	предобуславливателя		предобуславливателем		предобуславливателем		
			неполное		LU-		
			разложение		разложение		
			Холецкого				
	Число	Точность	Число	Точность	Число	Точность	
	итераций		итераций		итераций		
bicg	48	10^{-8}	8	10^{-8}	8	10^{-8}	
bicgstab	65	10^{-8}	9	10^{-8}	10	10^{-8}	
bicgstabl	65	10^{-8}	9	10^{-8}	9	10^{-8}	
cgs	28	10^{-8}	9	10^{-8}	5	10^{-8}	
gmres	47	10^{-8}	9	10^{-8}	8	10^{-8}	
lsqr	240	10^{-8}	8	10^{-8}	9	10^{-8}	
minres	48	10^{-8}	8	10^{-8}	8	10^{-8}	
pcg	47	10^{-8}	8	10^{-8}	8	10^{-8}	
qmr	48	10^{-8}	8	10^{-8}	8	10^{-8}	
symmlq	48	10^{-8}	8	10^{-6}	9	10^{-7}	
tfqmr	56	10^{-8}	8	10^{-8}	9	10^{-8}	

Из таблицы 5 видно, что самое минимальное количество итераций при приемлемой точности понадобилось методу cgs с предобуславливателем LU-разложение (5 итераций). Самое большое количество итераций понадобилось методу lsqr без предобуславливателя (240 итераций).

На рисунках 44-53 приведены истории невязок для матрицы ${\rm G2_circuit}$

Рисунок 44 - История невязок методом bicg для матрицы G2_circuit

Рисунок 45 - История невязок методом bicgstab для матрицы $\mathrm{G2}$ _circuit

Рисунок 46 - История невязок методом bicgstabl для матрицы $\mathrm{G2}_-$ circuit

Рисунок 47 - История невязок методом cgs для матрицы $\mathrm{G2}$ _circuit

Рисунок 48 - История невязок методом lsqr для матрицы G2_circuit

Рисунок 49 - История невязок методом minres для матрицы G2_circuit

Рисунок 50 - История невязок методом рс
д для матрицы $\mathrm{G2}_-$ circuit

Рисунок 51 - История невязок методом qmr для матрицы $G2_circuit$

Рисунок 52 - История невязок методом symmlq для матрицы $\mathrm{G2}$ _circuit

Рисунок 53 - История невязок методом tfqmr для матрицы $\mathrm{G2}$ _circuit

В таблице 6 приведена сводная информация о использования каждого метода для матрицы $G2_circuit$.

Таблица 6 - Сравнение методов по точности и количеству итераций для матрицы G2 circuit

Название	Без		C		C	
метода	предобуславливателя		предобуславливателем		предобуславливателем	
			неполное		LU-	
			разложение		разложение	
			Холецкого			
	Число	Точность	Число	Точность	Число	Точность
	итераций		итераций		итераций	
bicg	11000	10^{-8}	200	10^{-8}	200	10^{-8}
bicgstab	35000	10^{-4}	190	10^{-8}	190	10^{-8}
bicgstabl	20000	10^{-8}	180	10^{-8}	190	10^{-8}
$_{ m cgs}$	20000	10^{-17}	178	10^{-8}	190	10^{-8}
gmres	-	-	-	-	-	-
lsqr	20000	10	180	10^{-8}	17000	10^{-8}
minres	10000	10^{-8}	189	10^{-8}	189	10^{-8}
pcg	10500	10^{-8}	191	10^{-8}	191	10^{-8}
qmr	9500	10^{-6}	183	10^{-8}	180	10^{-8}
symmlq	11000	10^{-3}	209	10^{-8}	230	10^{-5}
tfqmr	650	10	540	10^{-8}	780	10^{-6}

Из таблицы 6 видно, что в среднем всем методам с предобуславливателем понадобилось примерно одинаковое количество итерации. Самое большое количество итераций понадобилось методу bicgstabl без предобуславливателя (20000 итераций). Также не удалось выполнить вычисления методом gmres (Ошибка Error using zeros Requested 150102x20000 (22.4GB) array exceeds maximum array size preference. Creation of arrays greater than this limit may take a long time and cause MATLAB to become Unresponsive).

Выводы

В ходе выполнения лабораторной работы были решены системы линейных уравнений, где левой частью были матрицы различной размерности, а правой единичные векторы, различными способами. Решение систем линейных уравнений большой размерности без предобуславливателя выполняется за большее количество итераций по сравнению с предобуславливателем неполного разложения Холецкого или с предобуславливателем LU-разложения. За меньшее количество итераций систему на основе матрицы Dubcova2 решает методом lsqr с предобуславливателем неполное разложение Холецкого (145 итераций). На основе матрицы Finan512 - cgs с предобуславливателем LU-разложение (5 итераций). G2_circuit — bicgstabl с предобуславливателем неполное разложение Холецкого. Qa8fm - среднем всем методам с предобуславливателем понадобилось примерно одинаковое количество итераций (в среднем 8). Thermomech dM - cgs с предобуславливателем LU-разложение (6 итераций).

Приложение А

Скрипты методов

BICG.m

```
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = bicg(A, b, 1e - 8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = bicg(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length (rv2)-1, rv2 / norm (b), '-o')
y line (1e-8, 'r--');
legend (
    'No Preconditioner',
    'Default ICHOL',
    'Default LU',
    'Tolerance',
    'Location',
    'East'
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/bicg.png')
hold off
clear;
BICGSTAB.m
function \ [rv0, rv1, rv2, it, it1, it2] = BICGSTAB(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = bicgstab(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
```

function [rv0, rv1, rv2, it, it1, it2] = BICG(A)

```
[x2, fl2, rr2, it2, rv2] = bicgstab(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel ('Iteration number')
ylabel ('Relative residual')
exportgraphics(gcf,'image/bicgstab.png')
hold off
clear;
BICGSTABL.m
function [rv0, rv1, rv2, it, it1, it2] = BICGSTABL(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = bicgstabl(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = bicgstabl(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length (rv2)-1, rv2 / norm (b), '-o')
yline (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel ('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/bicgstabl.png')
hold off
clear;
CGS.m
function [rv0, rv1, rv2, it, it1, it2] = CGS(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = cgs(A, b, 1e-8, 20000);
```

[L, U] = ilu(A);

```
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = cgs(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length (rv1)-1,rv1/norm(b),'-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/cgs.png')
hold off
clear;
GMRES.m
function [rv0, rv1, rv2, it, it1, it2] = GMRES(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = gmres(A, b, [], 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = gmres(A, b, [], 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length (rv2) - 1, rv2 / norm (b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/gmres.png')
hold off
clear;
```

LSQR.m

```
function [rv0, rv1, rv2, it, it1, it2] = LSQR(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv, lsrv] = lsqr(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2, lsrv2] = lsqr(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length (rv1)-1, rv1/norm (b), '-o')
semilogy (0: length (rv2) - 1, rv2 / norm (b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/lsqr.png')
hold off
clear;
PCG.m
function [] = PCG(B)
b = ones(size(B,1),1);
[x, fl0, rr0, it0, rv0] = pcg(B, b, 1e-8, 20000);
L = ichol(B);
[x1, fl1, rr1, it1, rv1] = bicg(B, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(B);
[x2, f12, rr2, it2, rv2] = pcg(B, b, 1e-8, 20000, L, U);
semilogy (0: length(rv0)-1, rv0/norm(b), '-o')
hold on
semilogy (0: length (rv1)-1, rv1/norm (b), '-o')
semilogy (0: length (rv2)-1, rv2 / norm (b), '-o')
y line(1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East
xlabel('Iteration number')
ylabel ('Relative residual')
```

```
exportgraphics(gcf, 'image/PCG.png')
hold off
clear;
MINRES.m
function [rv0, rv1, rv2, it, it1, it2] = MINRES(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv, lsrv] = minres(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, f12, rr2, it2, rv2, lsrv2] = minres(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line(1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics ( gcf , 'image/MINRES.png')
hold off
clear;
QMR.m
function [rv0, rv1, rv2, it, it1, it2] = QMR(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = qmr(A, b, 1e - 8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = qmr(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
```

```
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/qmr.png')
hold off
clear;
SYMMLQ.m
function [rv0, rv1, rv2, it, it1, it2] = SYMMLQ(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv, lsrv] = symmlq(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2, lsrv2] = symmlq(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/symmlq.png')
hold off
clear;
TFQMR.m
function [rv0, rv1, rv2, it, it1, it2] = TFQMR(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = tfqmr(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = tfqmr(A, b, 1e-8, 20000, L, U);
```

```
semilogy (0: length(rv)-1,rv/norm(b),'-o')
hold on

semilogy (0: length(rv1)-1,rv1/norm(b),'-o')
semilogy (0: length(rv2)-1,rv2/norm(b),'-o')
yline (1e-8,'r--');
legend ('No Preconditioner',' Default ICHOL',' Default LU',' Tolerance',' Location',' East')
xlabel ('Iteration number')
ylabel ('Relative residual')
exportgraphics (gcf,'image/tfqmr.png')
hold off
```

clear;