Lecture 18: Wireless Networks

Jianjun Chen (Jianjun.Chen@xjtlu.edu.cn)

Wireless Communications

- A Brief History
 - In 1857, James Maxwell showed mathematically that electromagnetic waves could propagate through free space.
 - In 1888, **Heinrich Hertz** demonstrated the existence of electromagnetic waves.
 - "I do not think that the wireless waves I have discovered will have any practical application" ----- Hertz
 - In 1909, **Guglielmo Marconi** and **Karl Braun** were awarded the Nobel Prize for Physics for their contribution to wireless telegraphy.
 - 1982 Start of GSM in Europe (1G analog)

Radio Wave

- A type of electromagnetic radiation with wave lengths
- Radio waves have frequencies from 300 GHz to as low as 3 kHz
- Human hearing range
 - 20Hz ~ 20kHz
- Can we hear radio wave?
 - No

Radio Wave: Some properties

- Radio speed = wave length * frequency = 3*10^8
- Converted to/from electric power by using antenna
 - Antenna length is usually a multiple of a quarter-wavelength, $\lambda/4$
- Higher frequency
 - Shorter wave length
 - Shorter antenna
 - Deteriorate more significantly over long distances
- Lower frequency
 - Longer wave length
 - Longer antenna

Radio Wave: Behaviours

Use of Radio Wave Frequency

Radio Wave Modulation

- Transmit information via radio wave
 - Convert the information into electronic signal
 - Add the electronic signal into radio signal
- This process is called modulation varying one or more properties of a radio wave

Wireless NW: Classification

- According to different network sizes
 - WWAN Wireless Wide Area Networks
 - 2G/3G/4G/5G cellular networks
 - WLAN Wireless Local Area Networks
 - WiFi (wireless fidelity), LiFi (Light fidelity)

Covered in the next lecture in detail

- WPAN Wireless Personal Area Networks
 - Bluetooth

•

Wireless in 5-layer Model

- 5-Layer Network (not OSI 7 layer)
 - Application
 - Transport
 - Network
 - Data link
 - Physical layer: Wireless/Wired

 Wireless network is in the context of the physical layer.

Terms of Wireless Networking

- Different medium access schemes
- Circuit-level solutions
 - Frequency division multiple access (FDMA)
 - Time division multiple access (TDMA)
 - Space division multiple access (SDMA)
 - Code division multiple access (CDMA)
- Package level solutions
 - Carrier Sense Multiple Access (CSMA) Data Link Layer

Physical Layer

Physical Layer (Wireless)

Circuit-level solutions: FDMA, TDMA, SDMA, CDMA

Wireless Medium: Interference

- Two transmitter may interfere with each other at the receiver
 - Constructive interference
 - Destructive interference
 - Receiver will "hear" the sum of the two signals (which usually means garbage)

FDMA

- Each network user has its own frequency band, separated by guard bands
 - Guard bands lead to a waste of capacity.
 - Receivers tune to the right frequency.
 - Number of frequencies is limited.
 - The maximum flow rate per channel is fixed and small
- Supports both analogue data and digital data transmission.

TDMA

- All network users transmit data on same frequency, but at different times.
 - Needs time synchronisation
 - Users can be given different amounts of bandwidth
- Supports digital data only.

SDMA

- Two pairs of users can use the same frequency without interfering each other when they are located far away
 - A strong signal will mask a small area
 - Directional (smart) antenna are used commonly used in SDMA to control the radio broadcast space

- Use the same frequency and transmit at the same time, but with different coding methods
- Mathematical background
 - The **Dot Product** (or Inner Product) of two vectors $a = [a_1, a_2, ..., a_n]$ and $b = [b_1, b_2, ..., b_n]$ is defined as:

$$a \cdot b = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

- Two vectors must have the same dimension
- Two vectors are orthogonal if their dot product is zero

- More on mathematical background:
 - The Kronecker product: If A is an m × n matrix and B is a p × q matrix, then the Kronecker product:

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

• E.g. A = (1, -1, 1, 1), B = (1, -1), $A \otimes B = ((1, -1), (-1, 1), (1, -1), (1, -1)) = (1, -1, -1, 1, 1, -1, 1, -1)$

Example 2: Let
$$A = \begin{pmatrix} 0 & -2 \\ 3 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 1 & 5 & 0 \\ -4 & -2 & 6 & 3 \\ -3 & 2 & -1 & 4 \end{pmatrix}$. Then,

$$A \otimes B = \begin{pmatrix} 0 & -2 \\ 3 & -1 \end{pmatrix} \otimes \begin{pmatrix} 2 & 1 & 5 & 0 \\ -4 & -2 & 6 & 3 \\ -3 & 2 & -1 & 4 \end{pmatrix} = \begin{pmatrix} 0 \cdot \begin{pmatrix} 2 & 1 & 5 & 0 \\ -4 & -2 & 6 & 3 \\ -3 & 2 & -1 & 4 \end{pmatrix} -2 \cdot \begin{pmatrix} 2 & 1 & 5 & 0 \\ -4 & -2 & 6 & 3 \\ -3 & 2 & -1 & 4 \end{pmatrix} -2 \cdot \begin{pmatrix} 2 & 1 & 5 & 0 \\ -4 & -2 & 6 & 3 \\ -4 & -2 & 6 & 3 \\ -3 & 2 & -1 & 4 \end{pmatrix}$$

https://digitalcommons.unf.edu/cgi/viewcontent.cgi?article=1025&context=etd

 CDMA Coding makes use of the dot product and Kronecker product

- Given two senders that wants to communicate with the same base station.
- The base station will first generate two orthogonal spreading codes for these two senders.
 - Vectors are orthogonal if the inner product of the vectors is zero.
 - [1, 1] and [1, -1]
- After receiving the spreading codes, the communication may start.

- Assume that
 - A want to send bits {1, 0, 1, 1}, spreading code [1, 1].
 - B want to send bits {0, 0, 1, 1}, spreading code [1, -1].
- Firstly, convert them to signal:
 - $\{1, 0, 1, 1\} \rightarrow \{1, -1, 1, 1\}$
 - {0, 0, 1, 1} -> {-1, -1, 1, 1}

- Then encode every bit with the spreading code
 - signal A \otimes code A = {[1, 1], [-1, -1], [1, 1], [1, 1]}
 - signal B \otimes code B = {[-1, 1], [-1, 1], [1, -1], [1, -1]}
- If these two signals are transmitted at the same time, overlapping happens

```
\{[1, 1], [-1, -1], [1, 1], [1, 1]\} + \{[-1, 1], [-1, 1], [1, -1], [1, -1]\}
= (0, 2, -2, 0, 2, 0, 2, 0)
```

- Given the signal string {0, 2, -2, 0, 2, 0, 2, 0}
- To get the original signal of A:

Spreading code

```
[[0, 2], [-2, 0], [2, 0], [2, 0]] \cdot [1, 1]
= [[0, -2] \cdot [1, 1], [-2, 0] \cdot [1, 1], [2, 0] \cdot [1, 1], [2, 0] \cdot [1, 1]]
= \{2, -2, 2, 2\}
```

- Any signal value above 1 will be recognized as 1, so the result would be (1, -1, 1, 1)
- Can you do the same to get the signal of B?
 - Spreading code of B is [1, -1]

```
Decoding* Decoded A = string \cdot code A 
= (0, -2, -2, 0, 2, 0, 2, 0) \cdot (1, -1) 
= ((0 + 2), (-2 + 0), (2 + 0), (2 + 0)) 
= (2, -2, 2, 2) Decoded B = string \cdot code B 
= (0, -2, -2, 0, 2, 0, 2, 0) \cdot (1, 1) 
= ((0 - 2), (-2 + 0), (2 + 0)) 
= (-2, -2, 2, 2)
```

- All recovered!
- This means the original data of the two senders can be recovered from one single signal string
- Remember: data can be recovered as long as the spreading codes are orthogonal

- Spreading codes
 - Spreading means increasing the signal bandwidth
 - Spreading codes are orthogonal, based on the orthogonal variable spreading factor (OVSF) technique
 - Limited orthogonal codes must be reused in every cell (base station)
 - Additional long (scrambling) codes needed for inter-cell interference

Hedy Lamarr, Austrian-American actress, pioneer in filming, inventor of spreading technology

Orthogonal variable spreading factor (OVSF) tree

Transmitter & Receiver

 $b_k(t)$ R bps x RJ bps $b_k(t)$

The Basic CDMA Transmitter (User k)

bk(t): bits for user kCk: spreading codeJ: "spreading factor"sk(t): transmitted signal for user ky(t): received signal for all users

The Basic CDMA Receiver (K Users)

Extended Reading

https://www.tutorialspoint.com/cdma/index.htm

Data Link Layer (Wireless)

Package level solutions: CSMA

Carrier Sense Multiple Access

Principle

- Listen to medium and wait until it is free (no one else is talking)
- If the medium is not free, wait for a random back off time then start talking
- Two categories
 - CSMA with collision detection (CSMA/CD)
 - CSMA with collision avoidance (CSMA/CA)

CSMA/CD

- Procedure
 - Listen to medium and wait until it is free
 - Then start talking, but listen to see if someone else starts talking too
 - If a collision occurs, stop and then start talking after a random back off time

 This scheme is used for hub-based Ethernet

Collision Detection

- Advantages
 - More efficient than basic CSMA

- Disadvantages
 - Requires ability to detect collisions
 - What if in wireless channels? Hidden nodes
 - Transmit signal is usually much stronger than received signal, hence, it is difficult to "listen" while transmitting

CSMA/CA

- Procedure
 - Listen to medium and wait until it is free
 - When the medium is free, send a "request to send" (RTS)
 - Wait for a "clear to send" (CTS) from the receiver
 - Transmit actual data packet after receiving the CTS
 - Receive an acknowledgement (ACK) from the receiver

This scheme is used for WLAN

Collision Avoidance

Advantages

- Small control frames lessen the cost of collisions (when data is large)
- RTS + CTS provide "virtual" carrier sense which protects against hidden terminal collisions (where A can't hear B)

Potential Problem?

- Mobility of the hidden node
- Exposed node some (but not all) stations can hear transmissions from stations not in the local area

Possible solutions

- Busy Tone Multiple Access (BTMA)
- Token passing