

A Curious Model Is All You Need

Motivation

- Reinforcement Learning agents need to learn the consequences of their actions.
- Current RL approaches are highly sample inefficient. A model of the world is required, to efficiently use each sample.
- Each environment requires hand-engineered extrinsic reward, which is not scalable.
- Curiosity is a type of **intrinsic reward** function which uses prediction error as reward signal.
- A model based curious agent can learn to solve a task, without the need of extrinsic rewards.

Approach

- We propose a generative LSTM, which serves two tasks:
 - \circ Predict **Q-value** for each action, Q_{t+1} .
- Predict the future state representation, z' t+1.
 A random CNN, provides a stable future state
- representation, z_{t+1}.
 The error in prediction, E (z_{t+1}, z'_{t+1}), is the intrinsic reward, rⁱ_t, to agent, which we show is aligned to extrinsic reward by the environment.
- Further, the agent is trained to minimize the sum of two losses:
 - Bellman Loss, encountered from deviation from expected Q-value.
 - Self-Supervision Loss, as an auxiliary forward-prediction loss for extra learning signal.
- Deep Q Learning, with experience replay buffer and target network is used to minimize the bellman error.

Experiments and Results

• We use two ALE environments, Breakout and CarRacing.

Ablation over Components

- Curious Model
- with random features
- w\t LSTM

Ablation over Auxiliary task

- Self Supervision
- w\t Self Supervision

Метнор	AVG. SCORE
DQN A3C (CONTINUOUS) A3C (DISCRETE) INTRINSIC CURIOSITY MODULE (ICM) WORLD MODEL	343 ± 18 591 ± 45 652 ± 10 813 ± 42 906 ± 21
CURIOUS MODEL	712 ± 11

Table 1: CarRacing-v0 scores achieved using various methods.

Related Work

- Deep Recurrent Q-Learning (Hausknecht et al., 2015)
- Curiosity-driven Exploration (Pathak et al., 2017)
- World Model (Ha et. al., 2018)
- Large-Scale Study of Curiosity (Burda et al., 2018)
- Random Network Distillation (Burda et al., 2018)
- Diversity is All You Need (Eysenbach al., 2018)

Conclusion

- Purely curiosity-driven learning, i.e. without any extrinsic rewards, is sufficient for certain environments.
- A **stable but random** feature-space performs competitive to a learned feature-space.
- Model based reinforcement learning, along with model free is a good tradeoff, to maximize sample efficiency.