NUTRITIONAL CLUSTERING OF THE FOOD ITEMS

What We Did: We worked with a dataset that includes nutritional information for various foods. This data helps us understand the healthiness of different food items based on things like calories, carbs, and vitamins.

Cleaning the Data: We removed unnecessary columns that didn't help in clustering (like food names) and fixed any missing data by filling in averages for each nutrient.

Normalizing the Data: We adjusted the data so that all the features (like calories and fat) are on the same scale. This is important because some numbers can be much larger than others, which could skew the results.

Finding Clusters: We used a method called the Elbow Method to figure out how many groups (or clusters) of foods there should be. We found that 5 clusters was a good number based on how the data was organized.

Clustering Foods: We applied K-Means clustering to group the food items into these clusters. Each food item was assigned to a cluster based on its nutritional features.

Visualizing the Results: We created plots to show how the food items grouped together. One plot compared two features (calcium and calories), and another looked at multiple features at once.

What We Learned: The clusters give us a clearer picture of how foods relate to one another based on nutrition. For instance, some clusters might contain high-calorie foods, while others might include healthier options.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

data = pd.read_csv('/content/foodstruct_nutritional_facts.csv')
data.head()
```


	Food Name	Category Name	Calcium	Calories	Carbs	Cholesterol	Copper	Fats	Fiber	Folate	•••	Vitamin D	Vitamin E	Vitamin K	Omega- 3 - ALA	Eico
0	Acerola	Fruits	0.012	32.0	7.7	0.0	0.00009	0.30	1.1	0.000014		NaN	NaN	NaN	NaN	
1	Apple	Fruits	0.006	52.0	14.0	0.0	0.00003	0.17	2.4	0.000003		0.0	0.00018	0.000002	NaN	
2	Apricot	Fruits	0.013	48.0	11.0	0.0	0.00008	0.39	2.0	0.000009		0.0	0.00089	0.000003	NaN	
3	Dried fruit	Fruits	0.055	241.0	63.0	0.0	0.00034	0.51	7.3	0.000010		0.0	0.00430	0.000003	NaN	
4	Avocado	Fruits	0.012	160.0	8.5	0.0	0.00019	15.00	6.7	0.000081		0.0	0.00210	0.000021	0.11	

data.info()

5 rows × 59 columns

→	3	Calories	1174 non-null	float64
<u> </u>	4	Carbs	1174 non-null	float64
	5	Cholesterol	1119 non-null	float64
	6	Copper	1094 non-null	float64
	7	Fats	1174 non-null	float64
	8	Fiber	1076 non-null	float64
	9	Folate	1071 non-null	float64
	10	Iron	1153 non-null	float64
	11	Magnesium	1113 non-null	float64

20	Protein	11/4 NON-NU11	ттоать4
21	Saturated Fat	1093 non-null	float64
22	Selenium	1020 non-null	float64
23	Sodium	1153 non-null	float64
24	Trans Fat	634 non-null	float64
25	Vitamin A (IU)	1118 non-null	float64
26	Vitamin A RAE	1056 non-null	float64
27	Vitamin B1	1115 non-null	float64
28	Vitamin B12	1083 non-null	float64
29	Vitamin B2	1116 non-null	float64
30	Vitamin B3	1115 non-null	float64
31	Vitamin B5	975 non-null	float64
32	Vitamin B6	1091 non-null	float64
33	Vitamin C	1124 non-null	float64
34	Zinc	1108 non-null	float64
35	Choline	732 non-null	float64
36	Fructose	302 non-null	float64
37	Histidine	709 non-null	float64
38	Isoleucine	713 non-null	float64
39	Leucine	713 non-null	float64
40	Lysine	721 non-null	float64
41	Manganese	1012 non-null	float64
42	Methionine	718 non-null	float64
43	Phenylalanine	710 non-null	float64
44	Starch	199 non-null	float64
45	Sugar	874 non-null	float64
46	Threonine	712 non-null	float64
47	Tryptophan	710 non-null	float64
48	Valine	713 non-null	float64
49	Vitamin D	829 non-null	float64
50	Vitamin E	816 non-null	float64
51	Vitamin K	791 non-null	float64
52	Omega-3 - ALA	176 non-null	float64
53	Omega-6 - Eicosadienoic acid	265 non-null	float64
54	Omega-6 - Gamma-linoleic acid	170 non-null	float64
55	Omega-3 - Eicosatrienoic acid	114 non-null	float64
56	Omega-6 - Dihomo-gamma-linoleic acid	119 non-null	float64
57	Omega-6 - Linoleic acid	141 non-null	float64
58	Omega-6 - Arachidonic acid	1 non-null	float64
dtyp	es: float64(57), object(2)		

dtypes: float64(57), obj memorv usage: 541.3+ KB

data.describe()

	Calcium	Calories	Carbs	Cholesterol	Copper	Fats	Fiber	Folate	Iron	Magnesium	• • •
count	1149.000000	1174.000000	1174.000000	1119.000000	1094.000000	1174.000000	1076.000000	1071.000000	1153.000000	1113.000000	
mean	0.099660	224.412266	25.049940	0.030845	0.000217	10.541371	3.123885	0.000053	0.002870	0.041921	
std	0.264301	185.838852	27.222293	0.085214	0.000565	18.179044	6.383304	0.000135	0.007132	0.068221	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.012000	72.000000	3.600000	0.000000	0.000050	0.380000	0.000000	0.000005	0.000380	0.011000	
50%	0.031000	179.000000	13.000000	0.000000	0.000100	3.000000	1.300000	0.000017	0.001000	0.021000	•••
75%	0.089000	341.750000	44.750000	0.033500	0.000200	14.000000	3.200000	0.000053	0.002500	0.041000	
max	5.876000	902.000000	100.000000	1.085000	0.014000	100.000000	70.000000	0.002340	0.124000	0.770000	

8 rows × 57 columns

data.isnull().sum()

Food Name	0
Category Name	0
Calcium	25
Calories	0
Carbs	0
Cholesterol	55
Copper	80
Fats	0
Fiber	98
Folate	103
Iron	21
Magnesium	61
Monounsaturated Fat	110
Net carbs	1
Omega-3 - DHA	272
Omega-3 - DPA	279
Omega-3 - EPA	271
Phosphorus	48
Polyunsaturated fat	110
Potassium	45
Protein	0
Saturated Fat	81
Selenium	154
Sodium	21
Trans Fat	540
Vitamin A (IU)	56
Vitamin A RAE	118
Vitamin B1	59
Vitamin B12	91
Vitamin B2	58
Vitamin B3	59
Vitamin B5	199
Vitamin B6	83
Vitamin C	50
Zinc	66
Choline	442
Fructose	872
Histidine	465
Isoleucine	461
Leucine	461
Lysine	453
Manganese	162
Methionine	456
Phenylalanine	464
Starch	975
Sugar	300

e e we	
Threonine	462
Tryptophan	464
Valine	461
Vitamin D	345
Vitamin E	358
Vitamin K	383
Omega-3 - ALA	998
Omega-6 - Eicosadienoic acid	909
Omega-6 - Gamma-linoleic acid	1004
Omega-3 - Eicosatrienoic acid	1060
Omega-6 - Dihomo-gamma-linoleic acid	1055
Omega-6 - Linoleic acid	1033
Omega-6 - Arachidonic acid	1173

dtma: int6.4

data.shape

→ (1174, 59)

data.duplicated().sum()

→ 0

x = data.drop(columns=['Food Name','Category Name'])

X

	Calcium	Calories	Carbs	Cholesterol	Copper	Fats	Fiber	Folate	Iron	Magnesium	•••	Vitamin D	Vitamin E	Vitamin K	Om
0	0.012	32.0	7.7	0.000	0.00009	0.30	1.1	0.000014	0.00020	0.018		NaN	NaN	NaN	
1	0.006	52.0	14.0	0.000	0.00003	0.17	2.4	0.000003	0.00012	0.005		0.000000e+00	0.00018	2.200000e- 06	
2	0.013	48.0	11.0	0.000	0.00008	0.39	2.0	0.000009	0.00039	0.010		0.000000e+00	0.00089	3.300000e- 06	
3	0.055	241.0	63.0	0.000	0.00034	0.51	7.3	0.000010	0.00270	0.032		0.000000e+00	0.00430	3.100000e- 06	
4	0.012	160.0	8.5	0.000	0.00019	15.00	6.7	0.000081	0.00055	0.029		0.000000e+00	0.00210	2.100000e- 05	
1169	0.012	293.0	27.0	0.059	0.00005	14.00	0.7	0.000008	0.00110	0.022		1.000000e-07	0.00130	2.700000e- 05	
1170	0.055	331.0	82.0	0.000	0.00190	0.10	3.9	0.000000	0.00180	0.002		0.000000e+00	0.00051	3.800000e- 06	
1171	0.733	379.0	73.0	0.000	0.00033	4.40	7.5	0.000043	0.04800	0.100		0.000000e+00	0.00370	1.500000e- 06	
1172	0.020	426.0	74.0	0.008	0.00015	9.70	2.5	0.000087	0.00060	0.014		0.000000e+00	0.00240	9.000000e- 07	
1173	0.007	47.0	11.0	0.000	0.00002	0.10	0.3	0.000000	0.00035	0.003		0.000000e+00	0.00002	2.000000e- 07	

1174 rows × 57 columns

	Calcium	Calories	Carbs	Cholesterol	Copper	Fats	Fiber	Folate	Iron	Magnesium	•••	Vitamin D	Vitamin E	Vitamin K	С
0	0.012	32.0	7.7	0.000	0.00009	0.30	1.1	0.000014	0.00020	0.018		7.752714e-07	0.001692	2.857535e- 05	0.
1	0.006	52.0	14.0	0.000	0.00003	0.17	2.4	0.000003	0.00012	0.005		0.000000e+00	0.000180	2.200000e- 06	0.
2	0.013	48.0	11.0	0.000	0.00008	0.39	2.0	0.000009	0.00039	0.010		0.000000e+00	0.000890	3.300000e- 06	0.
3	0.055	241.0	63.0	0.000	0.00034	0.51	7.3	0.000010	0.00270	0.032		0.000000e+00	0.004300	3.100000e- 06	0.
4	0.012	160.0	8.5	0.000	0.00019	15.00	6.7	0.000081	0.00055	0.029		0.000000e+00	0.002100	2.100000e- 05	0.
1169	0.012	293.0	27.0	0.059	0.00005	14.00	0.7	0.000008	0.00110	0.022		1.000000e-07	0.001300	2.700000e- 05	0.
1170	0.055	331.0	82.0	0.000	0.00190	0.10	3.9	0.000000	0.00180	0.002		0.000000e+00	0.000510	3.800000e- 06	0.
1171	0.733	379.0	73.0	0.000	0.00033	4.40	7.5	0.000043	0.04800	0.100		0.000000e+00	0.003700	1.500000e- 06	0.
1172	0.020	426.0	74.0	0.008	0.00015	9.70	2.5	0.000087	0.00060	0.014		0.000000e+00	0.002400	9.000000e- 07	0.
1173	0.007	47.0	11.0	0.000	0.00002	0.10	0.3	0.000000	0.00035	0.003		0.000000e+00	0.000020	2.000000e- 07	0.

1174 rows × 57 columns

 ${\it from \ sklearn.preprocessing \ import \ StandardScaler}$

scaler = StandardScaler()
x_scaled = scaler.fit_transform(x)

from sklearn.cluster import KMeans

inertia = []
k_values = range(1, 11) # Test for 1 to 10 clusters
for k in k_values:
 kmeans = KMeans(n_clusters=k, random_state=42)
 kmeans.fit(x_scaled)
 inertia.append(kmeans.inertia_)

plt.plot(k_values, inertia, marker='o')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.title('Elbow Method')
plt.grid(True)
plt.show()


```
optimal_k = 5  # Change based on Elbow Method results
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
data['Cluster'] = kmeans.fit_predict(x_scaled)
```

print(data[['Food Name', 'Cluster']].head())

```
Food Name Cluster

0 Acerola 1

1 Apple 1

2 Apricot 1

3 Dried fruit 1

4 Avocado 1
```

Start coding or generate with AI.

```
plt.figure(figsize=(12, 8))
plt.scatter(x_scaled[:, 0], x_scaled[:, 1], c=data['Cluster'], cmap='viridis', marker='o')
plt.title('K-Means Clustering of Food Items')
plt.xlabel('First Nutritional Feature (Calcium)')
plt.ylabel('Second Nutritional Feature (Calories)')
plt.colorbar(label='Cluster')
plt.show()
```


Start coding or generate with AI.

The analysis helped us group food items based on their nutritional profiles, making it easier to understand which foods are similar.

First Nutritional Feature (Calcium)

Understanding the Groups: The clusters can help people choose healthier foods by showing which items share similar nutritional characteristics. For example, you might see a group of low-calorie, high-fiber foods, which are generally healthier.

Who Can Benefit: Nutritionists and health-conscious consumers can use these insights to make better food choices. Food companies can also use this information to create products that appeal to specific health trends.

Next Steps: In the future, we could explore other clustering methods, include more features, or even use this data to predict how healthy a food item is based on its cluster. We might also dive deeper into what each cluster means for overall health.

In simple terms, this project showed us how to organize and make sense of food nutrition data, helping people understand their food choices better.

```
sns.pairplot(data, hue='Cluster', vars=x.columns[:4], palette='viridis')
plt.suptitle('Pairplot of Nutritional Features by Cluster', y=1.02)
plt.show()
```


sns.pairplot(data, hue='Cluster', vars=x.columns[:4], palette='viridis')
plt.suptitle('Pairplot of Nutritional Features by Cluster', y=1.02)
plt.show()

Pairplot of Nutritional Features by Cluster

