Current understanding of tokamak plasma eruption control and the consequences for ITER

Joe Allen, JOA509

Talk Outline

- 1. Background understanding of type-I Edge Localised Modes (**ELMs**)
- 2. Problems ELMs cause & ITER's requirements
- 3. Methods for ELM control on ITER
 - i. Resonant magnetic perturbations (RMPs)
 - ii. Pellet injection
 - iii. Vertical kicks
- 4. Alternatives

➤ Generic to tokamaks in H-mode

➤ Generic to tokamaks in H-mode

Edge pedestal gradient is inherently unstable

➤ Generic to tokamaks in H-mode

- Edge pedestal gradient is inherently unstable
- Thought to be caused by Peeling-Ballooning mode instabilities
 - ELM causes crash, cycle repeats

Type-I ELM cycles

H. Wilson Plas. Phys. 48 2006

$$f_{ELM}\Delta W_{ELM} = (0.2 - 0.4)P_{SOL}$$

A. Leonard Journal of Nuclear Materials 266 1999

- \triangleright Several tokamaks have corroborated this scaling for ELM frequency, f_{ELM}
- $\triangleright \Delta W_{ELM}$ is the ELM energy

2. ITER's requirements

- Natural ELMs on ITER could release up to 20 MJ
 - The first wall can tolerate < 1 MJ eruptions

- Target operation: 15 MA
 - ➤ AT LEAST need a sustained >40 times f_{ELM} increase

A. Kirk Phys. Rev. Lett. 108.25 2013

3. Methods for ELM control on ITER

- ➤ Vertical stability coils already included
- ► 27 RMP coils added to design
- Pellet injectors also added

P. Lang Nuclear Fusion 53.4 2013

3. i) RMPs (Resonant Magnetic Perturbations)

Suppress ELMs by keeping below PB stability limit

A Kirk Frontiers Lectures 2016

3. i) RMPs (Resonant Magnetic Perturbations)

Suppress ELMs by keeping below PB stability limit

➤ Small perturbations ≈ 10-4 T

A Kirk Frontiers Lectures 2016

3. i) RMPs (Resonant Magnetic Perturbations)

- Suppress ELMs by keeping below PB stability limit
- ➤ Small perturbations ≈ 10⁻⁴ T
- Perturbations must be toroidally cycled to keep divertor damage uniform

A Kirk Frontiers Lectures 2016

3. ii) Pellet Injection (PI)

- \triangleright Mitigation by increasing $f_{ELM} \rightarrow$ less damage to PFCs
- Mechanism not fully understood
- ➤ Heavily dependent on time since last ELM

Pellet mass from framing camera (au)	>10	86%	57%	100%	100%	100%
	8-10	86%	60%	100%	90%	100%
	6-8	72%	85%	56%	80%	100%
	4-6	65%	75%	67%	88%	100%
P fra	<4	38%	61%	67%	100%	100%
		<5	5-10	10-15	15-20	>20

Time since previous natural ELM (ms)

I. Chapman Plas. Phys. Cont. Fus. 58 1 2016

3. ii) Pellet Injection (PI)

- \triangleright Mitigation by increasing $f_{ELM} \rightarrow$ less damage to PFCs
- Mechanism not fully understood
- ➤ Heavily dependent on time since last ELM

iii) Vertical Kicks (VKs)

- Control by pacing the frequency of ELMs
- ➤ Vertical stability coils
- ➤ Plasma moves ≈ 2% of minor radius

Ε	(an)
mass fro	camera
Pellet	framing

>10	86%	57%	100%	100%	100%
8-10	86%	60%	100%	90%	100%
6-8	72%	85%	56%	80%	100%
4-6	65%	75%	67%	88%	100%
<4	38%	61%	67%	100%	100%
	<5	5-10	10-15	15-20	>20

Time since previous natural ELM (ms)

I. Chapman Plas. Phys. Cont. Fus. 58 1 2016

4. Alternatives

- ➤ QH-mode or I-mode
 - ➤ High fusion performance without ELMs!
 - (but with enhanced transport!)
- >Sounds worth investigating

Thank you for listening!