Review

Computer Networking: A Top Down Approach, 4th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.

Chapter 1: Introduction

- 1.2 Network edge
 - □ App's using TCP and why? Such as HTTP , FTP , Telnet, SMTP
 - ☐ App's using UDP and why? streaming media, DNS, Skype
 - ☐ Physical Media: features
- 1.4 Performance: delay, loss and throughput in packet-switched networks
 - ☐ Four sources of packet delay and which one is variable?
 - □ Four sources of packet delay domain the delay in different link type (LAN, Wireless, WAN)
 - ☐ How to calculate the throughput of a path
- 1.5 Protocol layers, service models
 - □ Layers and functions of ISO/OSI reference model
 - □ Data encapsulation process of TCP/IP

Chapter 2: Application layer

2.1 Principles of network applications

- □ Application layer protocol and Underlying transport protocol (such as SMTP, POP3, Telnet, HTTP, FTP)
- □ Application architectures (C/S, p2p, Hybrid) & network architectures (TCP/IP, ISO/OSI)
- □ Transport service requirements of common apps -ppt 13

2.2 Web and HTTP

- Process of requesting objects by HTTP
- □HTTP mechanism: cache get the update pages-conditional Getppt 41
- □Web cache example-ppt 39

Chapter 2: Application layer

2.4 Electronic Mail

- □SMTP: sending email to the receiver's server
- □POP3 and IMAP: receive email from receiver's server

2.5 DNS

- ☐ Functions of DNS: hostname to IP address translation
- ■What they are in the DNS database?
- □What are the DNS servers that are queried (in order) to find an specified IP address by the iterative acess process
- □load distribution of DNS: replicated Web servers: set of IP addresses for one canonical name

2.6 P2P file sharing

Characteristics

Chapter 3: Transport Layer

3.1 Transport-layer services

- □ Differences on providing data transmission services
 - network layer: between end-to-end hosts
 - transport layer: between application processes
- □ What are the reliable, in-order delivery of TCP
 - Reliable data transfer, congestion control, flow control, connection management

3.2 Multiplexing and demultiplexing

- Meanings of multiplexing and demultiplexing
- DDP socket identified by two-tuple (dest IP address, dest port number)
- TCP socket identified by 4-tuple (source IP address, source port number, dest IP address, dest port number)

Chapter 3: Transport Layer

3.4 Principles of reliable data transfer

- principles of reliable data transfer for GBN
- principles of reliable data transfer for SR
- □ Comparison of the sending and receiving window size for the alternating bit, SR, and GBN protocol.

3.5 Connection-oriented transport: TCP

- TCP segment format and Services provided by TCP
- ☐ All mechanisms of TCP reliable data transfer
- ☐ Solved problems of end-to-end communication: reliable transfer, flow control, congestion control, error detection
- Connection management: Three-way handshaking

Chapter 3: Transport Layer

3.6 TCP congestion control

- ☐Goal of congestion control is different from that of the flow control
- □TCP Slow Start -see figure 3-53
 - When CongWin is below Threshold, sender in slow-start phase, window grows exponentially.
 - When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly.
 - When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold (version of Reno of TCP protocol).
 - When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.

Chapter 4: Network Layer

4. 1 Services of Network-Layer

Two key functions: forwarding and routing.

4. 2 Virtual circuit and datagram networks

- □ provide network layer connection and connection-less service respectively.
- □Longest prefix matching

4.4 IP: Internet Protocol

- ☐ The number of interfaces and IP addresses of host and router
- □ Datagram format: all of fields. length of fixed header(20 Bytes), overhead of a IP datagram encapsulate other PDU
- ☐ IP Fragmentation: MTU--see example of book

Chapter 4: Network Layer

- 4.4 IP: Internet Protocol (conti-)
 - □IPv4 addressing—
 - Subnets and mask, format of CIDR
 - Subnet classification and route aggregation
 - □ICMP: error reporting and echo request/reply (ping), traceroute

4.5 Routing algorithms

- □Global or decentralized information needed in different route algorithm
- □Link state--Dijkstra's algorithm
- □ Two reasons of hierarchical routing for Internet: Scale and administrative autonomy

Chapter 4: Network Layer

4.5 Routing algorithms (Conti)

Ineither source host nor the intermediate routers know the complete path to destination host that will be reached by IP datagram.

4.6 Routing in the Internet

- What routing algorithms are intra-As or inter-AS
 - RIP, OSPF, BGP and what routing algorithm they are based on
 - Different from RIP, BGP announce the sequence of ASs (AS path) on the routes to destinations
- □What is the main dominant issue for routing among Ases
 - Reachability information and Policy

Chapter 5: The Data Link Layer

5.1 data transmission services

- □ data link layer: between adjacent nodes over a link
- □ Link Layer Services: framing, link access, flow control, error detection and correction

5.2 Error detection and correction

□ CRC: how to generate frame and how to detect the error with CRC

5.3 Multiple access protocols

- Two types of "links": point-to-point & broadcast
- □ Collision of broadcast channel when two or more nodes send data at the same time
- □ Data link layer is divided into two sub-layers: LLC and MAC
- Multiple access protocol-three broad classes
 - Channel Partitioning: TDMA . FDMA
 - Random Access: ALOHA, CSMA, CSMA\CD,
 - "Taking turns": Tokening Ring

Chapter 5: The Data Link Layer

5.4 Link-Layer Addressing

- □ MAC address: assigned at manufacturing time
- **DARP**
 - ARP: IP address -> MAC address
 - encapsulated in a link-layer broadcast frame
 - process of ARP query and ARP addressing routing to another LAN, and how is the router working in the process-ppt31, ppt32

5.5 Ethernet

□ Algorithm of exponential backoff in the Ethernet CSMA/CD

5.6 Link-layer switches

- □Switch-link-layer device:
 - Feathers of Switch
 - Creation of Switch table : process of self-learning