CS 309: Discrete Math (Notes)

Matthew Kosloski

Contents

Chapter 1: Sets and Logic	3
1.1 Sets	3
Denoting Sets	3
Set Cardinality	4
Empty Set	4
Set Equality	5
Set Inequality	5
Subsets	6
Proper Subsets	7
Power Set	8
Union, Intersection, and Difference	8
Union of a Family of Sets	9
Intersection of a Family of Sets	10
Disjoint Sets	10
Pairwise Disjoint	11
Universal Set	11
Complement Set	11
Venn Diagrams	12
Ordered Pairs	13
Cartesian Product	13
Set Laws	13
1.2 Propositions	15
Conjunction	15
Disjunction	16
Negation	17
Operator Precedence	18
1.3 Conditional Propositions and Logical Equivalence	18

Conditional Proposition	18
True by Default	19
Operator Precedence	20
Rewriting Propositions as Conditional Propositions	21
Converse	22
Biconditional Proposition	23
Logical Equivalence	23
De Morgan's Laws for Logic	24
Contrapositive	25

Chapter 1: Sets and Logic

1.1 Sets

Denoting Sets

A set is simply a collection of objects, or elements.

If a set is finite and not large, we can describe it by simply listing the elements:

$$A = \{1, 2, 3, 4\}$$

The above set A is made up of four elements. The order of the elements in a set does not matter, therefore, a could also be specified like so:

$$A = \{1, 3, 4, 2\}$$

The elements of a set are assumed to be distinct, so any duplicate occurrence of an element can be ignored. Therefore, we could also specify set A like so:

$$A = \{1, 2, 2, 3, 4, 4\}$$

If a set is very large or infinite, we can describe it using a property necessary for membership:

$$B = \{x \mid x \text{ is a positive, even integer}\}$$

The above set B is made up of positive, even integers. The vertical bar "|" is read as "such that" and the text after the bar is the property. Therefore, B can be read as "the set of all x such that x is a positive, even integer." Some sets of numbers occur frequently in mathematics and are given symbols.

Symbol	Set	Example of Members
${f Z}$	Integers	-3, 0, 2, 145
${f Q}$	Rational numbers	-1/3, 0, 24/15
${f R}$	Real numbers	$-3, -1.766, 0, 4/15, \sqrt{2}, 2.666, \ldots, \pi$

Rational numbers are quotients of integers, thus Q for quotient. The set of

real numbers R consists of all points on a straight line extending indefinitely in either direction.

We can denote the positive elements in a set using the superscript plus (e.g., \mathbf{Z}^+ for positive integers) and the negative elements in a set using the superscript minus (e.g., **Q**⁻ for negative rational numbers).

Set Cardinality

If X is a finite set, we let

$$|X| = \text{number of elements in } X$$

We call |X| the **cardinality** of X.

If we let $A = \{1, 2, 3, 4\}$, then the cardinality of A is 4, or |A| = 4. The cardinality of $\{\mathbf{R}, \mathbf{Z}\}$ is 2 since it contains two elements, which just happen to be sets.

Remember: an element in a set can be anything, even a set.

If x is in the set X, we write $x \in X$. If x is NOT in the set X, we write $x \notin X$. For example, both of these are true:

$$3 \in \{1, 2, 3, 4\}$$

 $3 \notin \{x \mid x \text{ is a positive, even integer}\}$

Empty Set

A set with no elements is called an **empty set** and is denoted by \varnothing . In other words, $\emptyset = \{\}.$

Set Equality

Two sets X and Y are **equal** (X = Y) if X and Y have the same elements. To put it differently, for X = Y to be true:

For every
$$x$$
, if $x \in X$, then $x \in Y$
For every x , if $x \in Y$, then $x \in X$

Here are two examples that demonstrate equality among sets:

If

$$A = \{1, 3, 2\}$$
 and $B = \{2, 3, 2, 1\}$,

then, by inspection, A and B have the same elements. Therefore A = B.

Remember: The elements in a set are unique, so duplicates are removed when evaluating a set.

If

$$A = \{x \mid x^2 + x - 6 = 0\} \text{ and } B = \{2, -3\},\$$

then, A = B in this case, too.

Set Inequality

For a set X to NOT be equal to a set Y ($X \neq Y$), X and Y must NOT have the same elements. In other words, there must be at least one element in X that is not in Y or at least one element in Y that is not in X (or both).

Here is an example that demonstrates *inequality* among sets:

If

$$A = \{1, 3, 2\}$$
 and $B = \{4, 2\},$

Then, by inspection, $A \neq B$.

Subsets

Suppose X and Y are sets. If every element of X is an element of Y, we say X is a **subset** of Y and write $X \subseteq Y$. In other words,

If

X and Y are sets and, for every $\mathbf{x},\,x\in X$ and $x\in Y.$

Then, $X \subseteq Y$. Here are some examples demonstrating subsets:

If

$$C = \{1, 3\}$$
 and $A = \{1, 2, 3, 4\},\$

then, every element of C is an element of A. Therefore, $C \subseteq A$.

Let

$$X = \{x \mid x^2 + x - 2 = 0\}$$

We can show that $X \subseteq \mathbf{Z}$:

Remember, **Z** is a set of integers, so

$$\mathbf{Z} = \{x \mid x \text{ is an integer}\}.$$

We can solve for the subset X

$$x^{2} + x - 2 = 0$$
$$(x+2)(x-1) = 0$$

which gives x = -2 and x = 1. So $X = \{-2, 1\}$. Since every element of set X is an element of set \mathbf{Z} , $X \subseteq \mathbf{Z}$.

For a set X to NOT be a subset of a set Y, there must be at least one element of X that is NOT a member of Y.

Let

$$X = \{x \mid 3x^2 - x - 2 = 0\}$$

We can show that X is NOT a subset of \mathbf{Z} :

If $x \in X$, then

$$3x^2 - x - 2 = 0.$$

Solving for x, we obtain x=1 and $x=-\frac{2}{3}$, so $X=\{1,-\frac{2}{3}\}$. Since $-\frac{2}{3} \notin \mathbf{Z}$, X is NOT a subset of \mathbf{Z} .

Given a set $X, X \subseteq X$, since every element of X is an element of itself.

Proper Subsets

If X is a subset of Y and $X \neq Y$, then X is a **proper subset** of Y and we write $X \subset Y$. If $X \subset Y$, then X is ALWAYS smaller than Y.

Let

$$C = \{1, 3\}$$
 and $A = \{1, 2, 3, 4\},\$

Then $C \subset A$ since $C \neq A$.

Understanding subsets versus proper subsets:

- The symbol for a subset (\subseteq) is analogous to \leq . In other words, a subset can be the same size as the parent set.
- The symbol for a proper subset (\subset) is analogous to <. In other words, a proper subset is smaller than the parent set.

Power Set

The set of all subsets (proper or not) of a set X, denoted $\mathcal{P}(X)$, is called the **power set** of X.

If $A = \{a, b, c\}$, then

$$\mathcal{P}(A) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}.$$

All but $\{a, b, c\}$ are proper subsets of A. |A| = 3 and $|\mathcal{P}(A)| = 2^3 = 8$.

In other words, given a set X with n elements, $|\mathcal{P}(X)| = 2^n$.

Given two sets X and Y, there are several operations that can be performed on the sets to produce a new set.

Union, Intersection, and Difference

The **union** of X and Y,

$$X \cup Y = \{x \mid x \in X \text{ or } x \in Y\},\$$

is a set that consists of all elements belonging to X or Y (or both).

The **intersection** of X and Y,

$$X\cap Y=\{x\mid x\in X \text{ and } x\in Y\},$$

is a set that consists of all elements belonging to X and Y.

The **difference** of X and Y,

$$X - Y = \{x \mid x \in X \text{ and } x \notin Y\},\$$

is a set that consists of all elements in X that are not in Y.

If

$$A = \{1, 3, 5\}$$
 and $B = \{4, 5, 6\}$

then,

$$A \cup B = \{1, 3, 4, 5, 6\}$$

$$A \cap B = \{5\}$$

$$A - B = \{1, 3\}$$

$$B - A = \{4, 6\}$$

In general, A - B \neq B - A.

Union of a Family of Sets

Just like how we took the union of two sets above, we can take the union of a family of sets S.

We define the union of a family S of sets to be those elements x belonging to at least one set X in the family S. In other words,

$$\cup \mathcal{S} = \{x \mid x \in X \text{ for some } X \in \mathcal{S}\}.$$

We can calculate the union of S like so:

$$\bigcup \mathcal{S} = \bigcup_{i=1}^{n} X_i$$

where X is some set in S and n is the cardinality of S.

Let

$$A_1 = \{1, 2, 6, 7, 9\}$$

$$A_2 = \{2, 5, 6, 7, 8, 9, 10\}$$

$$A_3 = \{1, 2, 3, 4, 9\}$$

$$S = \{A_1, A_2, A_3\}$$

Then, the union of S is

$$\bigcup \mathcal{S} = \bigcup_{i=1}^{3} A_i = A_1 \cup A_2 \cup A_3 = \{1, 2, 3, \dots, 10\}.$$

Intersection of a Family of Sets

Just like how we took the intersection of two sets above, we can take the intersection of a family of sets S.

We define the intersection of a family S of sets to be those elements x belonging to at least one set X in the family S. In other words,

$$\cap \mathcal{S} = \{ x \mid x \in X \text{ for all } X \in \mathcal{S} \}.$$

We can calculate the intersection of S like so:

$$\bigcap \mathcal{S} = \bigcap_{i=1}^{n} X_i$$

where X is some set in S and n is the cardinality of S.

Let

$$A_1 = \{1, 2, 6, 7, 9\}$$

$$A_2 = \{2, 5, 6, 7, 8, 9, 10\}$$

$$A_3 = \{1, 2, 3, 4, 9\}$$

$$S = \{A_1, A_2, A_3\}$$

Then, the intersection of S is

$$\bigcap S = \bigcap_{i=1}^{3} A_i = A_1 \cap A_2 \cap A_3 = \{2, 9\}.$$

Disjoint Sets

Sets X and Y are **disjoint** if $X \cap Y = \emptyset$. In other words, if X and Y share no elements, they are disjoint.

Pairwise Disjoint

A collection of sets S is said to be **pairwise disjoint** if every pair of sets within the set are disjoint.

Let

$$S = \{A_1, A_2, A_3, \dots, A_n\}.$$

If

For every i and j in S, $A_i \cap A_j = \emptyset$, where $i \neq j$.

then, S is a pairwise disjoint set.

For example, If

$$S = \{\{1, 4, 5\}, \{2, 6\}, \{3\}, \{7, 8\}\}.$$

then, by inspection, $\mathcal S$ is pairwise disjoint because no set within $\mathcal S$ contains common elements.

Universal Set

Every set is a subset of U, which is the universal set. The universal set must be explicitly defined or given from context.

Complement Set

A set $\overline{X} = U - X$ is the **complement** of X. In other words, a *complement* of a set X is the set that contains all elements except those in X.

Let

$$A = \{1, 3, 5\}$$
$$U = \{1, 2, 3, 4, 5\}.$$

Then the complement of A is

$$\overline{A} = U - A = \{2, 4\}$$

Venn Diagrams

Venn Diagrams provide pictorial views of a set. In a Venn Diagram, a rectangle depicts a universal set. Subsets of the universal set are drawn as circles, and the members of a set are within the circle.

In the above diagram,

$$1 = \overline{(A \cup B)}$$

$$2 = A - B$$

$$3 = A \cap B$$

$$4 = B - A$$

Ordered Pairs

As previously stated, a set is an *unordered* collection of elements. However, sometimes we want to consider the order of elements. An **ordered pair** of elements, written (a, b), is considered distinct from (b, a) so long as $a \neq b$.

Cartesian Product

If X and Y are sets, we let $X \times Y$ denote the set of all ordered pairs (x, y), where $x \in X, y \in Y$. We call this set of ordered pairs a **Cartesian product**.

If
$$X = \{1, 2, 3\}$$
 and $Y = \{a, b\}$, then
$$X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$$
$$Y \times X = \{(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)\}$$

Note, in general, $X \times Y \neq Y \times X$. Also note that $|X \times Y| = |X| \cdot |Y| = 6$. It is always true that $|X \times Y| = |X| \cdot |Y|$.

If
$$X = \{1, 2\}$$
 and $Y = \{a, b\}$, and $Z = \{\alpha, \beta\}$, then
$$X \times Y \times Z = \{(1, a, \alpha), (1, a, \beta), (1, b, \alpha), (1, b, \beta), (2, a, \alpha), (2, a, \beta), (2, b, \alpha), (2, b, \beta)\}$$

Set Laws

Let U be a universal set and sets A, B, and C be subsets of U. The following properties hold.

Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Commutative laws:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Distributive laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cup (A \cup C)$$

Identity laws:

$$A \cup \emptyset = A, A \cap U = A$$

Complement laws:

$$A \cup \overline{A} = U, A \cap \overline{A} = \emptyset$$

Idempotent laws:

$$A \cup A = A, A \cap A = A$$

Bound laws:

$$A \cup U = U, A \cap \varnothing = \varnothing$$

Absorption laws:

$$A \cup (A \cap B) = A, A \cap (A \cup B) = A$$

Involution law:

$$\overline{\overline{A}} = A$$

0/1 laws:

$$\overline{\varnothing}=U$$

$$\overline{U}=\varnothing$$

De Morgan's laws for sets

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

$$\overline{(A\cap B)}=\overline{A}\cup\overline{B}$$

1.2 Propositions

A sentence that is either true or false, but not both, is called a **proposition**.

The following are examples of propositions:

- (a) There are 200 bones in the human body.
- (b) Earth is the only planet in the universe that contains life.
- (c) The only positive integers that divide 7 are 1 and 7 itself.

The following are *not* propositions:

- (i) x + 4 = 6.
- (ii) Fetch me a stack of papers, please.
- (i) is not a proposition because the truth value of the equation is predicated on the value of x. (ii) is not a proposition because it is neither true nor false, rather a command.

The variables p, q, and r are conventionally used to represent propositions. To define a variable, such as p, to be a proposition, use the following notation:

$$p: 1+1=3$$

In everyday language, we combine propositions, such as "It is raining" and "It is cold", with connectives, such as and and or, to form a single proposition, such as "It is raining and it is cold."

Conjunction

The **conjunction** of p and q, denoted $p \wedge q$, is the proposition of p and q. If

p: It is raining, q: It is cold,

then, the conjunction of p and q is

 $p \wedge q$: It is raining and it is cold.

The truth values of propositions can be illustrated using **truth tables**. The amount of possible combinations of truth values is 2^n , where n is the amount of propositions.

Here is the truth table of the proposition $p \wedge q$:

p	q	$p \wedge q$
Т	Τ	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

The **disjunction** of p and q, denoted $p \vee q$, is the proposition of p or q. If

p: It is spherical,

q: It is yellow,

then, the disjunction of p and q is

 $p \vee q$: It is spherical or it is yellow.

Here is the truth table of the proposition $p \vee q$, called the *inclusive-or* of p and q:

p	q	$p \vee q$
Т	ТТТ	
Т	F	Т
F	Т	Т
F	F	F

In ordinary language, propositions being combined are normally related; but in logic, these propositions are not required to refer to the same subject matter. For example, this proposition is permitted:

3 < 5 or Paris is the capital of England.

Remember: Logic is concerned with the form of propositions and the relation of propositions to each other and not with the subject matter.

Negation

The **negation** of p, denoted $\neg p$, is the proposition not p. If

p: Paris is the capital of England,

then, negation of p could be written as one of the following:

 $\neg p$: It is not the case that Paris is the capital of England

 $\neg p$: Paris is not the capital of England

The truth table of the proposition $\neg p$ is the following:

p	$\neg p$
T	F
F	Τ

Operator Precedence

In the absence of parentheses, we first evaluate \neg , then \wedge , and then \vee .

For example, consider the following proposition:

$$\neg p \lor q \land r$$

We can evaluate the above proposition using the following truth table:

p	q	r	$\neg p$	$q \wedge r$	$\neg p \lor q \land r$
Т	Т	Т	F	Т	Т
T	Т	F	F	F	F
Т	F	Т	F	F	F
Т	F	F	F	F	F
F	Т	Т	Τ	Т	Т
F	Т	F	Τ	F	Т
F	F	Т	Т	F	Т
F	F	F	Τ	F	Т

From this truth table, it is clear that $\neg p \lor q \land r$ can be true in 5 cases and false in 3 cases.

1.3 Conditional Propositions and Logical Equivalence

Conditional Proposition

Consider the following proposition:

If it is raining outside, then I will bring an umbrella.

The above proposition is called a **conditional proposition**, and it states that on the condition that it is raining outside, then I will bring an umbrella.

If we let

p: It is raining outside,

q: I will bring an umbrella,

we can denote the conditional proposition as

$$p \to q$$
.

The above can be pronounced as "if p then q" or "p implies q." The proposition p is called the **hypothesis** or **sufficient condition**, and the proposition q is called the **conclusion** or **necessary condition**.

How do you determine the truth value of a conditional proposition, such as the one above? Suppose I say,

If I buy a car, then I will let you drive it.

If I end up buying a car and letting you drive it, then the statement is *true*. However, if I do buy the car and do *not* let you drive it, then the statement is *false*. If I do *not* buy a car, the statement is still true (there is no car for you to drive, but there may be one in the future).

The following table illustrates the truth value of $p \to q$:

p	q	$p \rightarrow q$
T	Т	Τ
T	F	F
F	Т	Т
F	F	Т

From this, it is clear that a conditional proposition is only *false* when the hypothesis is *true* and the conclusion is *false*.

True by Default

To justify how a conditional proposition is always true when p is false, consider the following proposition:

For all real numbers x, if x > 0, then $x^2 > 0$

If we let

$$P(x): x > 0,$$

$$Q(x): x^2 > 0$$

Then we can denote the proposition as

if
$$P(x)$$
 then $Q(x)$.

If we let x = -2, then P(-2) is false and Q(-2) is true. If we let x = 0, then P(0) and Q(0) are both false. This is why we must define $p \to q$ to be true no matter what the truth value of p is. This is called **true by default**.

Operator Precedence

In conditional propositions that involve logical operators $\land, \lor, \neg, and \rightarrow$, the conditional operator \rightarrow is evaluated last. Therefore, we now have the following order of precedence:

Operator	Precedence
	1
\wedge	2
V	3
\rightarrow	4

Let p be true, q be false, and r be true. Evaluate

- (a) $p \wedge q \rightarrow r$
- (b) $p \lor q \to \neg r$
- (c) $p \wedge (q \rightarrow r)$
- (d) $p \to (q \to r)$
- (a) We first evaluate $p \wedge q$, which is false, and then we evaluate $p \wedge q \rightarrow r$, which is true.
- (b) We first evaluate $\neg r$, which is false, then we evaluate $p \lor q$, which is true, and finally we evalute the entire proposition $p \lor q \to \neg r$, which is false.
- (c) We first evaluate $(q \to r)$, which is true, and then evaluate $p \land (q \to r)$, which is true.
- (d) We first evaluate $(q \to r)$, which is true, and then we evaluate $p \to (q \to r)$, which is true.

Rewriting Propositions as Conditional Propositions

For each proposition, rewrite it as a conditional proposition in the form $p \to q$:

- (a) Mary will be a good student if she studies hard.
- (b) John takes calculus only if he has sophomore, junior, or senior standing.
- (c) When you sing, my ears hurt.
- (d) A necessary condition for the Cubs to win the World Series is that they sign a right-handed relief pitcher.
- (e) A sufficient condition for Maria to visit France is that she goes to the Eiffel Tower.
 - (a) (e) can be rewritten as
- (a) If Mary studies hard, then she will be a good student.
- (b) "p only if q" is the same as "if p then q", therefore, the proposition can be rewritten as:

If John takes calculus, then he has sophomore, junior, or senior standing.

(c) When is the same as if; thus the proposition is rewritten as

If you sing, then my ears hurt.

(d) A **necessary condition** is a condition that is necessary for an outcome but does not guarantee the outcome, therefore, we can rewrite it as

If the Cubs win the World Series, then they signed a right-handed relief pitcher.

(e) A **sufficient condition** is a condition that, when met, guarantees an outcome; however, if it is *not* met, the outcome is still possible. We can rewrite this proposition as

If Maria goes to the Eiffel tower, then she visits France.

Converse

The **converse** of $p \to q$ is $q \to p$.

Let

p: 1 > 2,

q: 4 < 8.

Since p is false and q is true, $p \to q$ is true. However, its converse, $q \to p$ is false. Thus, a conditional proposition can be true while its converse is false.

For example, if we have the following conditional proposition $p \to q$, we can write its converse symbolically and in words.

If Jerry receives a scholarship, then he will go to college.

Let

p: Jerry receives a scholarship,

q: Jerry goes to college.

The converse is symbolically expressed as $q \to p$, which can be written in words as

If Jerry goes to college, then he receives a scholarship.

Now, if Jerry does *not* receive a scholarship but goes to college anyway, find the truth values of (a) and (b).

- (a) $p \to q$
- (b) $q \to p$
- (a) Since Jerry did *not* receive a scholarship, p is *false*, but he is still going to college, so q is *true*. Therefore, $p \rightarrow q$ is *true*.
- (b) Since Jerry is going to college, q is true. However, he did not receive a scholarship, so p is false. Therefore, $q \to p$ is false.

p	q	$p \leftrightarrow q$
T	T T T	
Т	F	F
F	Т	F
F	F	Т

Biconditional Proposition

A **biconditional proposition**, expressed as $p \leftrightarrow q$ or "p if and only if q", is true when p and q have the same truth values. Thus, the truth value of $p \leftrightarrow q$ is defined by the following truth table:

In a biconditional proposition, p is both necessary and sufficient for q.

Logical Equivalence

Propositions are said to be **logically equivalent** if they have the same truth value, regardless of the truth values of their constituent propositions p_1, \ldots, p_n . If P and Q are made up of the propositions p_1, \ldots, p_n , we say P and Q are logically equivalent and write

$$P \equiv Q$$

provided that, given any truth values of p_1, \ldots, p_n , P and Q are both true or false.

For example, we can show that the negation of $p \to q$ is logically equivalent to $p \land \neg q$. That is,

$$\neg (p \to q) \equiv p \land \neg q.$$

p	q	$p \rightarrow q$	$\neg(p \to q)$	$\neg q$	$p \land \neg q$
Т	Т	Т	F	F	F
Т	F	F	Τ	Τ	Т
F	Т	Т	F	F	F
F	F	Т	F	Т	F

The above demonstrates that $\neg(p \to q)$ is logically equivalent to $p \land \neg q$ regardless of the truth values of p and q.

We can use the logical equivalence of $\neg(p \to q)$ and $p \land \neg q$ to help us write the negation of conditional propositions. For example, to negate

if Jerry receives a scholarship, then he goes to college,

we let

p: Jerry receives a scholarship,

q: Jerry goes to college.

The above proposition can be symbolically written as $p \to q$, and its negation is $\neg(p \to q)$. Since $\neg(p \to q)$ is logically equivalent to $p \land \neg q$, we can negate the proposition by expressing $p \land \neg q$ as words like so:

Jerry receives a scholarship and he does not go to college.

Remember: When evaluating conditional propositions, it is easier to work with the logical operators \land , \lor , and \neg than the conditional operator \rightarrow .

Additionally, $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$. This is demonstrated by the following truth table:

p	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$
Т	Т	Т	Т	Т	T
T	F	F	F	Т	T
F	Т	F	Т	F	F
F	F	Т	Т	Т	T

De Morgan's Laws for Logic

De Morgan has the following two laws for logic:

$$\neg (p \lor q) \equiv \neg p \land \neg q,$$
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

For the first law, we can demonstrate that $\neg(p \lor q)$ is logically equivalent to $\neg p \land \neg q$ using the following truth table:

p	q	$p \vee q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
T	Т	Τ	F	F	F	F
T	F	Т	F	F	Т	F
F	Т	Т	F	Τ	F	F
F	F	F	Т	Т	Т	Т

Additionally, For the second law, we can demonstrate that $\neg(p \land q)$ is logically equivalent to $\neg p \lor \neg q$ using the following truth table:

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
Τ	Τ	Т	F	F	F	F
Т	F	F	Т	F	Т	Т
F	Т	F	Т	Τ	F	Т
F	F	F	Τ	Τ	Т	Т

Contrapositive

The **contrapositive** of the conditional proposition $p \to q$ is the proposition $\neg q \to \neg p$.

For example, consider the following proposition (Assume the network is *not* down and Dale can access the Internet):

If the network is down, then Dale cannot access the Internet

Let

p: The network is down,

q: Dale cannot access the Internet

The given proposition written symbolically is

$$p \to q$$
.

Since the network is *not* down, the hypothesis p is false, therefore, the proposition is true. The contrapositive can be written symbolically as

$$\neg q \to \neg p$$

and in words

If Dale can access the Internet, then the network is not down.

Since the hypothesis $\neg q$ is true and the conclusion $\neg p$ is true, the contrapositive is true.

Thus, a conditional proposition and its contrapositive are logically equivalent, as demonstrated in this truth table:

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	Т	T
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т