Yung Chi Li Advised by Maksym Radziwiłł

October 29, 2024

Abstract

Notation

Below are the notational preferences of the author.

- 1. The set of natural numbers \mathbb{N} does not contain 0.
- 2. p always denotes a prime, and by extension p_j, p_n etc.

Preliminaries

Number Theory Results

Theorem 0.1 (Möbius Inversion). The Möbius function μ is defined for $n \in \mathbb{N}$,

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1\\ (-1)^k, & \text{if } n = p_1 p_2 ... p_k \text{ for distinct } p\text{'s}\\ 0, & \text{otherwise} \end{cases}$$

1 Introduction to the Riemann Zeta Function

Definition 1.1 (Zeta Function). Let $s \in \mathbb{C}$ with $\Re(s) > 1$. Then

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
 (1)

The zeta function converges absolutely on $\Re(s) > 1$ by comparing to the integral $\int x^{-\Re(s)} dx$.

Proposition 1.2. $On \Re(s) > 1$,

$$\zeta(s) = \prod_{p \in \mathbb{N}} \left(1 - \frac{1}{p^s} \right)^{-1}. \tag{2}$$

Remark: This expresion also converges absolutely for $\Re(s) > 1$. Since

$$\left(1 - \frac{1}{p^s}\right)^{-1} = \frac{p^s}{p^s - 1} = 1 + \frac{1}{p^s - 1}$$

and $\sum (p^s-1)^{-1}$ converges absolutely by comparison to the zeta function Dirichlet series.

Sketch of proof. Write $s = \sigma + it$. For each p,

$$\left(1 - \frac{1}{p^s}\right)^{-1} = \left(\frac{1}{p^s} + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} + \dots\right)$$

converges absolutely for $\Re(s) > 1$ and uniformly across all p. We thus take for m > N

$$\prod_{p \le N} \left(1 - \frac{1}{p^s} \right)^{-1} = \prod_{p \le N} \left(\sum_{k=1}^m \frac{1}{p^{ks}} + O(2^{-m\sigma}) \right)
\stackrel{(*)}{=} \sum_{n=1}^N \frac{1}{n^s} + O_1(\sum_{n=N+1}^\infty \frac{1}{n^\sigma}) + O(2^{-m\sigma})
= \zeta(s) + O_1(\sum_{n=N+1}^\infty \frac{1}{n^\sigma}) + O(2^{-m\sigma})$$

Where we apply to Fundemental Theorem of Arithmetic in (*) to show that each term n^{-s} has coefficient 1 determined by the unique prime factorization. As $m \to \infty$, $2^{-m\sigma} \to 0$. Then we take $N \to \infty$, the tail of the infinite sum converges to zero too.

Proposition 1.2 shows an inherent connection of the zeta function with primes. To further see this connection, we need to extend the zeta function.

Theorem 1.3. ζ extends to a meromorphic function on $\mathbb C$ with a simple pole at s=1. By abuse of notation, we identify the extension of the zeta function with ζ too. Moreover, $\xi(s) := \pi^{-s/2}\Gamma(s/2)\zeta(s)$ satisfies

$$\xi(s) = \xi(1-s). \tag{3}$$

Proof. Using

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx,$$

we make the substitution $x = \pi n^2 y$ to get

$$\Gamma(s) = \int_0^\infty e^{-\pi n^2 y} (\pi n^2 y)^{s-1} \pi n^2 dy$$

$$\implies \frac{\Gamma(s)}{\pi^s n^{2s}} = \int_0^\infty e^{-\pi n^2 y} y^{s-1} dy$$

So that by the Monotone Convergence Theorem,

$$\begin{split} \pi^{-s/2}\Gamma(s/2)\zeta(s) &= \sum_{n=1}^{\infty} \frac{\Gamma(s/2)}{\pi^{s/2}n^s} \\ &= \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-\pi n^2 x} x^{s/2-1} dx \\ &= \int_{0}^{\infty} \sum_{n=1}^{\infty} \left(e^{-\pi n^2 x}\right) x^{s/2-1} dx. \end{split}$$

We now let

$$\omega(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}, \quad \theta(x) = \sum_{n=-\infty}^{\infty} e^{-\pi n^2 x} = 2\omega(x) + 1,$$

and apply Poisson Summation to

$$\theta(x) = \sum_{n = -\infty}^{\infty} e^{-\pi n^2 x}$$

$$= \sum_{k = -\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\pi y^2 x} e^{-2\pi i k y} dy$$

$$= \sum_{k = -\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\pi y^2 x} e^{-2\pi i k y} dy$$

$$= \sum_{k=-\infty}^{\infty} \frac{1}{\sqrt{x}} \int_{-\infty}^{\infty} e^{-\pi u^2} e^{-2\pi i k u / \sqrt{x}} du$$

$$= \sum_{k=-\infty}^{\infty} \frac{1}{\sqrt{x}} e^{-\pi k^2 / x}$$

$$= \frac{1}{\sqrt{x}} \theta \left(\frac{1}{x}\right)$$

using the substitution $y\sqrt{x} = u$. Replacing with ω ,

$$\sqrt{x}(2\omega(x)+1) = 2\omega\left(\frac{1}{x}\right) + 1 \implies \omega\left(\frac{1}{x}\right) = \sqrt{x}\omega(x) + \frac{\sqrt{x}}{2} - \frac{1}{2}.$$

We thus write, using y = 1/x,

$$\begin{split} \xi(s) &= \int_0^1 \omega(x) x^{s/2-1} dx + \int_1^\infty \omega(x) x^{s/2-1} dx \\ &= \int_1^\infty \omega(1/y) y^{-s/2-1} dy + \int_1^\infty \omega(x) x^{s/2-1} dx \\ &= \int_1^\infty \left(\sqrt{y} \omega(y) + \frac{\sqrt{y}}{2} - \frac{1}{2} \right) y^{-s/2-1} dy + \int_1^\infty \omega(x) x^{s/2-1} dx \\ &= \int_1^\infty \left(\frac{\sqrt{y}}{2} - \frac{1}{2} \right) y^{-s/2-1} dy + \int_1^\infty \omega(x) \left(x^{s/2-1} + x^{-s/2-1/2} \right) dx \\ &= \frac{1}{1-s} + \frac{1}{s} + \int_1^\infty \omega(x) \left(x^{s/2-1} + x^{-s/2-1/2} \right) dx \\ &= \frac{1}{s(1-s)} + \int_1^\infty \omega(x) \left(x^{s/2-1} + x^{-s/2-1/2} \right) dx. \end{split}$$

 ω decays exponentially in x, so the integral converges and the last expression is well defined on \mathbb{C} except when s=1 or s=0. Finally, notice that the last expression is symmetric when s is replaced with (1-s), so proves equation 3.

Corollary 1.4. On $\Re(s) > 1$ or $\Re(s) < 0$, $\zeta(s) \neq 0$, except $\forall n \in \mathbb{N}, \zeta(-2n) = 0$.

Proof. Using the product representation of ζ where it converges, none of $(1-p^{-s})^-1=0$, so $\zeta(s)\neq 0$ on $\Re(s)>1$. Γ has no zeros and has a simple pole at -n for all $n\in\mathbb{N}$, so by equation 3 we get the zeros for $\Re(s)>0$ are exactly at the negative even integers.

Corollary 1.5. *If*
$$\zeta(s) = 0$$
, $\zeta(\overline{s}) = \zeta(1 - s) = \zeta(1 - \overline{s}) = 0$.

Proof. This follows from equation 3, and $\zeta(\overline{s}) = \overline{\zeta(s)}$ holds where the Dirichlet series converges, thus holds everywhere.

Definition 1.6 (Critical Strip and Critical Line). We denote the region $0 \le \Re(s) \le 1$ as the **critical** strip. We denote the line $\Re(s) = 1/2$ as the **critical line**.

We now introduce some hypotheses regarding the zeta function, these statements have not been proved, but are supported by a great amount of heuristic evidence.

Definition 1.7 (Riemann Hypothesis). The **Riemann Hypothesis** (RH) asserts that on the critical strip,

$$\zeta(s) = 0 \implies \Re(s) = \frac{1}{2}.$$

Definition 1.8 (Lindelöf Hypothesis). Let $\epsilon > 0$. The **Lindelöf Hypothesis** asserts that on the critical line,

$$\zeta\left(\frac{1}{2} + it\right) = O(t^{\epsilon}).$$