Question number	Scheme	Marks
9	$u = e^{-t} \qquad v = \sin 2t$ $u' = -e^{-t} \qquad v' = 2\cos 2t$	
	$\frac{dx}{dt} = 2e^{-t}\cos 2t - e^{-t}\sin 2t = 2e^{-t}\cos 2t - x$	M1 A1 A1
	$u = 2e^{-t} \qquad v = \cos 2t$ $u' = -2e^{-t} \qquad v' = -2\sin 2t$	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -4\mathrm{e}^{-t}\sin 2t - 2\mathrm{e}^{-t}\cos 2t - \frac{\mathrm{d}x}{\mathrm{d}t}$	M1 A1
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -4x - \left(\frac{\mathrm{d}x}{\mathrm{d}t} + x\right) - \frac{\mathrm{d}x}{\mathrm{d}t} = -5x - 2\frac{\mathrm{d}x}{\mathrm{d}t}$	dM1 dM1
	$\therefore \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + 5x = 0 *$	A1 cso
		[8]
	Notes Notes	
M1	For an attempt to differentiate using the product rule. Must have 2 terms added together.	
A1	For one correct term	
A1	For two correct terms	
M1	Attempts to differentiate $\frac{\mathrm{d}x}{\mathrm{d}t}$	
A1	For $\frac{d^2x}{dt^2} = -4e^{-t}\sin 2t - 2e^{-t}\cos 2t - \frac{dx}{dt}$ oe	
dM1	Dependent on previous M mark - for substitution of x and $\frac{dx}{dt}$ into $\frac{d^2x}{dt^2}$	
	or for substitution of x , $\frac{dx}{dt}$ and $\frac{d^2x}{dt^2}$ into the given equation	
dM1	Dependant on previous M mark - for simplifying to $\frac{d^2x}{dt^2} = -5x - 2\frac{dx}{dt}$ oe	
UIVII	or All 5 correct terms seen and an attempt to simplify (5 correct terms may be implied by 7 correct terms)	
A1 cso	Obtains the given equation or clear working to show that the equation $= 0$	