1 Définition

- Formule d'Euler : $e^{ix}=\cos x+i\sin x$ Formule d'Euler : $\cos x=\frac{e^{ix}+e^{-ix}}{2}$ et $\sin x=\frac{e^{ix}-e^{-ix}}{2i}$
- Suite géométrique : $\sum_{k=0}^{n} u_k = u_0 + \dots + u_n = u_0 (1 + q + \dots + q^n) = u_0 \frac{1 q^{n+1}}{1 q} \ \ (q \neq 1)$
- trigo : $\sin^2(\theta) = \frac{1-\cos 2\theta}{2}$, $\cos^2(\theta) = \frac{1+\cos 2\theta}{2}$
- Peigne de Dirac de pas T $W_T(t) = \sum_{k=-\infty}^{k=+\infty} \delta(t-kT)$
- Energie d'un signal à temps continue : $E_x=\int_{\mathbb{R}}x(t)x^*(t)dt=\int_{\mathbb{R}}\left|x(t)\right|^2dt$ si $x(t)\in\mathbb{R}$
- Si divergence : Puissance moyenne temps continue : $P_x = \lim_{\theta \to \infty} \frac{1}{2\theta} x(t) x^*(t) dt$. Temps discret : $\lim_{K o \infty} rac{1}{2K+1} \sum_{k=-K}^K x[k] x^*[k]$ — Intercorrélation temps continue : taux de ressemblance entre deux signaux décalés l'un par rap-
- port à l'autre
 - A energie finie : $\gamma_{xy}(\tau) = \int_{\mathbb{R}} x(t)y^*(t-\tau)dt$
 - A puissance finie : $\gamma_{xy}(\tau) = \lim_{\theta \to \infty} \frac{1}{2\theta} \int_{\mathbb{R}} x(t) y^*(t-\tau) dt$

Discret reprendre le même schéma que au dessus

- Autocorrélation temps continue : taux de ressemblance avec une version décalée de lui-même. Même formule que l'intercorrélation mais avec y(t) = x(t)
- Réponse impulsionnelle h(t) : on input $\delta[k]$ dans notre SLI
- Réponse indicielle : on input u[k] dans notre SLI on obtient $y_u(t) = \int_{-\infty}^t h(u) du$ fonction de répartition, et donc h densité
- Réponse en fréquence : $H(f) = TF\{h(t)\} = Y/X$
- Gain de $H = 2 \log_{10} |H(f)|$, Phase : $\psi(f) = \arg H(f)$
- $\operatorname{Si} \operatorname{SLI} : y[k] = x[k] \star h[k]$
- Convolution : $x(t)\star h(t)=\int_{\mathbb{R}}h(\tau)x(t-\tau)d\tau$
- $X(f) = TF\{x(t)\} = \int_{\mathbb{R}} x(t)e^{-j2\pi ft}dt$
- $-x(t) = TF^{-1}\{X(f)\} = \int_{\mathbb{R}} X(f)e^{+j2\pi ft}df$

- $\begin{array}{l} -X(\nu)=TF\{x[k]\}=\sum_{k=-\infty}^{+\infty}x[k]e^{-j2\pi\nu k} \text{ p\'eriodique de p\'eriode 1}\\ -x[k]=TF^{-1}\{X(\nu)\}=\int_0^1X(\nu)e^{+j2\pi\nu k}d\nu\\ -\text{ Egalit\'e de Plancherel}:\int_{\mathbb{R}}x_1(t)x_2^*(t)dt=\int_{\mathbb{R}}X_1(f)X_2^*(f)df \text{ On peut int\'egr\'e dans les deux dominant }f(t)=\sum_{k=0}^{\infty}x_1(t)x_2^*(t)dt=\int_{\mathbb{R}}x_1(t)x_2^*(t)dt \end{array}$ maines: $\int sinc^2 \rightarrow \int rect$
- Egalité de Parseval : $\int_{\mathbb{R}} |x(t)|^2 dt = \int_{\mathbb{R}} |X(f)|^2 df$
- Densité spectrale d'énergie (DSE) = Energie d'un signal calculé dans le domaine fréquentiel (voir thm de Wiener) : $\Gamma_x(f) = |X(f)|^2$
- Densité spectrale de puissance (DSP) = same = $\Gamma_c(f) = \lim_{\theta \to \infty} \frac{1}{2\theta} |X_{\theta}(f)|^2$ avec X_{θ} DSE de x(t)limité à $[-\theta; \theta]$

2 Démonstration

$$- f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$$

$$\begin{split} \forall t \neq t_0 : \delta(t-t_0) &= 0 \text{ donc} \\ \Leftrightarrow f(t)\delta(t-t_0) &= 0 \\ &= f(t_0)\delta(t-t_0) \\ \forall t = t_0 : f(t) &= f(t_0) \implies f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0) \end{split}$$

- $\gamma_{xy}(au) = \gamma_{yx}(- au)$ faire un changement de variable t' = t au
- $x(t) \star \delta(t-\tau) = x(t-\tau)$ définition into diamond formula
- TF discrète de période 1 : montrer que $X(\nu) = X(\nu + 1)$
- Propriété des TF :
 - Retard : $TF\{x(t-\tau)\}=e^{-j2\pi f\tau}X(f)$ changement de variable $t'=t-\tau$
 - Inversion temporel : $TF\{x(-t)\} = X(-t)$ changement de variable t' = -t attention changement du sens des bornes
 - Conjugaison : $TF\{x^*(t)\} = X^*(f) = \int x^*(t)e^{-j2\pi ft} = (\int x(t)e^{j\pi ft})^* = (X(-f))^*$
 - -x réel + pair $\implies TF\{x\}$ réel paire : $x(-t) = x(t) \implies X(-t) = X(t)$ et $x(t) = x^*(t) \implies$ X * (f) = X(f)

- $\begin{array}{l} \ \ {\rm D\'{e}rivation}: TF\{x^{(n)}(t)\} = (j2\pi f)^n X(f) \ {\rm et} \ TF\{(-j2\pi t)^n x(t)\} = X^{(n)}(f) \\ \ \ {\rm Changement} \ {\rm d\'{e}chelle}: TF\{x(\alpha t)\} = \frac{1}{|\alpha|} X(\frac{f}{\alpha}): {\rm compression} \ {\rm de} \ {\rm l\'{e}chelle} \ {\rm dutemps} \implies \\ {\rm dilatation} \ {\rm de} \ {\rm l\'{e}chelle} \ {\rm des} \ {\rm f\'{e}equence}: {\rm changement} \ {\rm de} \ {\rm variable} \ {\rm ATTENTION} \ {\rm signe} \ {\rm de} \ \alpha \ {\rm faire} \\ \end{array}$ deux cas $t' = \frac{t}{a}$
- Modulation : $T^{\alpha}F\{x(t)e^{j2\pi f_0t}\}=X(f-f_0)$: évident
- Convolution : $TF\{x(t) \star y(t)\} = X(f)Y(f)$: definition into Fubini into changement de var into
- Produit : Attention temps discret donne

 : prouver par tf inverse
- Théorème de Wiener-Kintchine : $\Gamma_x(f) = TF\{\gamma_x(\tau)\}$: $\gamma_x(\tau) = x(\tau) \star x^*(\tau)$ puis prop TF pour cqfd

Système Linéaire, homogène et invariant

- Linéaire = Additivité + homogène
- Additivité :
 - Soit $x_1(t) \to h(t)$ et $x_2(t) \to h(t) \to \text{somme des deux sorties} = y_1(t)$
 - Soit $x_1(t) + x_2(t) \rightarrow h(t) \rightarrow y_2(t)$
 - Additif si $y_1(t) = y_2(t)$
- Homogène
 - Soit $x(t) * K \rightarrow h(t) \rightarrow y_1(t)$
 - Soit $x(t) \rightarrow h(t) \rightarrow *K \rightarrow y_2(t)$
 - Homogène si $y_1(t) = y_2(t)$
- Invariance dans le temps
 - Soit $x(t) \rightarrow (t-T) \rightarrow h(t) \rightarrow y_1(t)$
 - Soit $x(t) \rightarrow h(t) \rightarrow t T \rightarrow y_2(t)$
 - Invariant si $y_1(t) = y_2(t)$

4 Analyse en régime harmonique

La réponse en fréquence d'un SLI peut être obtenue par une analyse en régime harmonique (régime sinusoïdale permanent) pour diverses valeurs de f_0 balayant l'axe des fréquences :

$$x(t) = A_e sin(2\pi f_0 t) \rightarrow SLI \rightarrow y(t) = A_s(f_0) \sin(2\pi f_0 t + \psi(f_0)).$$
$$|H(f_0)| = \frac{A_s(f_0)}{A_e}.$$
$$\psi(f_0) = argH(f_0).$$

5 Convolution à la main

$$y(t) = x(t) \star h(t) = \int_{\mathbb{R}} x(t-u)h(u)du$$

- 1. inversion du temps de $x(u) \rightarrow x(-u)$
- 2. Décalage en un t donné : $x(-u) \rightarrow x(t-u)$
- 3. Multiplication terme à terme avec $h(u): x(t-u) \to h(u)x(t-u)$
- 4. Intégration du produit sur ℝ

6 TF

Pour les TF complexe: 4 méthode:

- Brut force le calcul
- Penser à la formule de la dérivé
- La fonction est le résultat d'une convolution

x(t)	X(f)
$\delta(t)$	1
$\delta(t-t_0)$	$e^{-j2\pi f t_0}$
1	$\delta(t)$
$e^{-j2\pi f_0 t}$	$\delta(f-f_0)$
$\cos(2\pi f_0 t)$	$\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0)$
$\sin(2\pi f_0 t)$	$\frac{1}{2j}\delta(f-f_0) + \frac{1}{2j}\delta(f+f_0)$
$Rect_T(t)$	$Tsinc(\pi fT)$
$W_T(t)$	$\frac{1}{T}\sum \delta(f-\frac{n}{T})$

x[k]	$X(\nu)$
$\delta[k]$	1
$\delta[k-k_0]$	$e^{-j2\pi\nu k_0}$
1	$\delta(t)$
$e^{-j2\pi\nu_0 k}$	$\delta(u - u_0)$
$\cos[2\pi\nu_0 t]$	$\frac{1}{2}\delta(\nu-\nu_0)+\frac{1}{2}\delta(\nu+\nu_0)$
$\sin[2\pi\nu_0 t]$	$\frac{1}{2j}\delta(\nu-\nu_0)+\frac{1}{2j}\delta(\nu+\nu_0)$
$x[k] = \begin{cases} 1 & \forall k = 0, 1, \dots, N-1 \\ 0 & \text{sinon} \end{cases}$	$\int e^{-j\pi\nu(N-1)\frac{\sin(\pi\nu N)}{\sin(\pi\nu)}} \text{Si } \nu \neq 0$
$\int_{0}^{\infty} u^{n} du = \int_{0}^{\infty} 0$ sinon	N si $\nu = 0$
$W_N[k]$	$\frac{1}{N} \sum \delta(\nu - \frac{n}{N})$

7 Échantillonnage

 $x(t)
ightarrow x[k] = x(kT_e+), T_e$ période d'échantillonnage.

$$x_e(t) = \sum_{k=-\infty}^{+\infty} x(kT_e)\delta(t - kT_e)$$

$$= \sum_{k=-\infty}^{+\infty} x[k]\delta(t - kT_e)$$

$$= x(t) \sum_k \delta(t - kT_e)$$

$$X_e(f) = \sum_k x[k]e^{-j2\pi f kT_e}$$

$$= X(\nu)|_{\nu = fT_e = \frac{f}{f_e}}$$

$$= X(f) \star TF\{\sum_k \delta(t - kT_e)\}$$

$$= \frac{1}{T_e} \sum_k X(f - k\frac{1}{T_e})$$

$$X(\nu) = f_e \sum_k X(f - \frac{k}{T_e})|_{f = \frac{\nu}{T_e} = \nu f_e}$$

+ Filtre antialisaing pré-échantillonage : $f_c=f_e/2$ pour éviter le recouvrement spectrale + ${
m dessin}$

8 Blocage d'ordre zéro

On veut : $x[k] \to y(t)$. Inverse de l'échantillonnage : on cale des rectangles $p(t) = rect_{T_e}(t-\frac{T_e}{2})$ faire dessin

$$y(t) = \sum x[k]p(t - kT_e)$$

$$= \sum x[k](\delta(t - kT_e) \star p(t))$$

$$= p(t) \star x_e(t)$$

$$Y(f) = P(f)X_e(f)$$

$$= T_e \frac{\sin(\pi f T_e)}{\pi f T_e} e^{-j2\pi f T_e/2} * X_e(f)$$

Le sinus cardinale s'annule en $f=f_e$ et vaut $1/f_e$ en zéro. Il est proche de 1 autour de zéros. Par sa valeur en zéro, il annule l'effet du $*f_e$ qu'on a après échantillonnage sur l'ordonnée

+ filtre post bloqueur en again $f_c=f_e/2$ pour retirer les ondelettes provoqué par le sinc autour de f_e .

9 Réduction de cadence

= échantillonnage version numérique = même démo que échantillonnage continue avec $T_e=N$: $x[k]\to x^{\downarrow}[n]=x[k]=x[nN]$

$$x_{e}[k] = \sum_{n} x[nN]\delta(k - nN)$$

$$= \sum_{n} x^{\downarrow}[n]\delta(k - nN)$$

$$= x[k] \sum_{n} \delta(k - nN)$$

$$X_{e}(\nu) = TF\{\sum_{n} x^{\downarrow}[n]\delta(k - nN)\}$$

$$= \sum_{n} x^{\downarrow}e^{-j2\pi\nu nN}$$

$$= X(\nu')|_{\nu'=\nu N}$$

$$X_{e}(\nu) = X(\nu) \circledast \frac{1}{N} \sum_{n=-\infty}^{+\infty} \delta(\mu - \frac{n}{N})$$

$$= \frac{1}{N}X(\nu) \star \sum_{n=0}^{N-1} \delta(\nu - \frac{n}{N})$$

$$= \frac{1}{N}\sum_{n=0}^{N-1} X(\nu - \frac{n}{N})$$

$$X^{\downarrow}(\nu') = \frac{1}{N}\sum_{n=0}^{N-1} X(\nu - \frac{n}{N})|_{\nu=\nu'/N}$$

Cette fois-ci on écarte l'axe des abscises $\nu'=\nu N$. Shannon $\frac{1}{N}>2\nu_{max}$ donc on filtre antialiasing $f_c=\frac{1}{2N}$ avant

10 Élévation de cadence

Insérer M-1 zéros entre chaque point. = bloqueur d'ordre zéros version numérique

$$x[k] \to x^\uparrow[m] = \begin{cases} x[k] & \text{si } m = kM \\ 0 & \text{sinon} \end{cases}$$

$$\begin{split} X^{\uparrow}(\nu'') &= TF\{x^{\uparrow}[m]\} = \sum_{m} x^{\uparrow}[m]e^{-j2\pi\mu''m} \\ &= \sum_{k} x[k]e^{-j2\pi\nu''kM} \\ &= X(\nu)|_{\nu=M\nu''} \end{split}$$

On réduit l'axe des abscises par $\nu''=\nu/M$. Filtre post traitement de $f_c=\frac{1}{2M}$ et de hauteur M pour ré-équilibré le $*\frac{1}{N}$ qu'on fait avec une réduction de cadence