appendix

Unit Conversions

Quantity	SI Units	Traditional Units
Activity	$\begin{array}{c} 1 \; \text{becquerel (Bq)} \\ 3.7 \times 10^{10} \; \text{Bq} \\ 1 \; \text{MBq} \\ 37 \; \text{MBq} \end{array}$	= 2.703 × 10 ⁻¹¹ curies (Ci) = 1 Ci = 27.03 μCi = 1 mCi
Absorbed Dose	$\begin{array}{l} 1 \text{ gray } (Gy) \\ 1 \times 10^{-2} \text{ Gy} \\ 1 \text{ mGy} \end{array}$	= 100 rads = 1 rad = 0.1 rad
Equivalent Dose, Effective Dose	$\begin{array}{l} 1 \text{ sievert (Sv)} \\ 1 \times 10^{-2} \text{ Sv} \\ 1 \text{ mSv} \end{array}$	= 100 rems = 1 rem = 0.1 rem
Exposure	1 C/kg air 2.58×10^{-4} C/kg air	= 3876 roentgen (R) = 1 R
Energy	$\begin{array}{c} \text{1 joule (J)} \\ \text{1.602} \times 10^{-19} \text{ J} \end{array}$	$ = 6.242 \times 10^{18} \ electron \ volts \ (eV) $ $ = 1 \ eV $
Mass*	1 kilogram (kg) $1.66054 \times 10^{-27} \ \mathrm{kg}$	= 6.02214×10^{26} unified atomic mass units (u) = 1 u
Pressure	$\begin{array}{l} 1 \; pascal \; (Pa) \\ 1.333 \times 10^2 \; pascals \; (Pa) \\ 1 \; Pa \\ 1.013 \times 10^5 \; Pa \end{array}$	= 7.501×10^{-3} mm Hg (torr) = 1 mm Hg (torr) = 9.869×10^{-6} atmospheres (atm) = 1 atm
Area	$\begin{array}{c} 1 \; square \; meter \; (m^2) \\ 1 \times 10^{-28} \; m^2 \end{array}$	$= 1 \times 10^{28} \text{ barns}$ $= 1 \text{ barn}$
Temperature*	x kelvin (K) x + 273.15 K	= $x - 273.15$ degrees centigrade (°C) = x °C
Magnetic Flux Density	$\begin{array}{c} 1 \text{ tesla (T)} \\ 1 \times 10^{-4} \text{ T} \end{array}$	= 1 × 10 ⁴ gauss (G) = 1 G

^{*}Note that mass and temperature are the only SI base units in this table. All others are derived from these and/or the five other SI base units.

A useful source of further information on SI units and unit conversions is the National Institute of Standards and Technology website, http://physics.nist.gov/cuu/Units/index.html. Accessed 4 November 2011.