

Description

The VSM200N02 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =20V,I_D =200A

 $R_{DS(ON)}$ <2.0 m Ω @ V_{GS} =4.5 V

 $R_{DS(ON)}$ <2.4m Ω @ V_{GS} =2.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM200N02-TC	VSM200N02	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	V _G s	±12	V
Drain Current-Continuous	I _D	200	А
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	141	Α
Pulsed Drain Current	I _{DM}	600	А
Maximum Power Dissipation	P _D	170	W
Derating factor		1.13	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	400	mJ
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	℃

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	0.88	°C/W
---	------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics	·		•				
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	0.5	0.7	1.2	V	
Drain-Source On-State Resistance	-	V _{GS} =4.5V, I _D =20A	-	1.4	2.0	m.0	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =15A		1.6	2.4	- mΩ	
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	100	-	-	S	
Dynamic Characteristics (Note4)	·						
Input Capacitance	C _{lss}	101/11/ 01/	-	10000	-	PF	
Output Capacitance	Coss	V_{DS} =10V, V_{GS} =0V, F=1.0MHz	-	1950	-	PF	
Reverse Transfer Capacitance	C _{rss}	F-1.0WIDZ	-	1800	-	PF	
Switching Characteristics (Note 4)	·						
Turn-on Delay Time	t _{d(on)}	V_{DD} =10V, R_L =0.5 Ω	-	16	-	nS	
Turn-on Rise Time	t _r		-	30	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	50	-	nS	
Turn-Off Fall Time	t _f		-	60	-	nS	
Total Gate Charge	Qg	\/ -40\/1 -20A	-	194		nC	
Gate-Source Charge	Q _{gs}	$V_{DS}=10V,I_{D}=20A,$ $V_{GS}=10V$	-	45		nC	
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	50		nC	
Drain-Source Diode Characteristics		•					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V	
Diode Forward Current (Note 2)	Is		-	-	200	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	49	-	nS	
Reverse Recovery Charge	ery Charge Qrr di/dt = 100A/µs ^(Note3)		-	66	-	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : Tj=25 $^{\circ}$ C,V_{DD}=20V,V_G=10V,L=0.5 mH,Rg=25 Ω

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 $V_{GS(th)}$ vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance