

TOWARDS EXPLAINING EXPRESSIVE QUALITIES IN PIANO RECORDINGS: Transfer of Explanatory Features via Acoustic Domain Adaptation

Shreyan Chowdhury, Gerhard Widmer

Prologue

"The search for audio features that capture the expressive perceptual qualities of performed music"

The Story So Far

Con Espressione Game

On the Characterization of Expressive Performance in Classical Music: First Results of the Con Espressione Game (ISMIR 2020)

[C. Cancino-Chacón, S. Peter, S. Chowdhury, A. Aljanaki, G. Widmer]

Mid-level features

Towards Explainable Music Emotion Recognition: The Route via Mid-level Features (ISMIR 2019)

[S. Chowdhury, A. Vall, V. Haunschmid, G. Widmer]

The Con Espressione Game

The Con Espressione Dataset

The Con Espressione Dataset

The Con Espressione Dataset

Can the embedding dimensions obtained from free-text descriptions of expressive piano performances be modeled using audio features?

Mid-level Features¹

Low-level features, such as pitch

Building blocks of musical signals

Melodiousness
Articulation
Rhythm complexity
Rhythm stability
Dissonance
Tonal stability
Minorness

High-level features, such as emotion

Subjective, abstract descriptions

Perceptual and subjective, but make intuitive musical sense

Learning and Transferring Mid-level Features

Mid-level Dataset

- 5000 snippets
- 15-second clips
- Crowdsourced annotation

Transferring to our Domain of Interest (Piano)

Setup

- Test-set: manually created from piano recordings in the Mid-level Dataset
- RF-ResNet architecture
- Learn Mid-level Features with Domain Adaptation
 - Unsupervised Domain Adaptation (UDA) by Backpropagation³
- Teacher-Student Refinement
 - Multiple DA teachers
 - Student learns from Mid-level combined with pseudo-labeled piano dataset

Results on the Test-set

Results – Transferring to Con Espressione Recordings

	Dim 1	Dim 2	Dim 3	Dim 4
VGG-ish	0.35	0.10	0.22	0.32
RF-ResNet	0.36	0.07	0.28	0.33
RF-ResNet DA	0.40	0.09	0.29	0.32
RF-ResNet DA+TS	0.35	0.15	0.29	0.34

Coefficient of determination (R2-score)

RF-ResNet		RF-ResNet DA+TS		
Feature	r	Feature	r	
articulation	0.47	melodiousness	-0.39	
rhythmic complexity	0.41	articulation	0.46	
		rhythmic complexity	0.41	
		dissonance	0.40	

Pearson's correlation (r) for mid-level features with description embedding dimension 1. Features with p < 0.05 and |r| > 0.20 are selected.

This dimension has positive loadings for words like "hectic", "irregular", and negative loadings for words like "sad", "gentle", "tender".

Looking forward to see you at the poster session AUD-20!

