

Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Параллельные методы решения задач.

Практическое задание 1. Параллельная реализация операций с сеточными данными на неструктурированной смешанной сетке с использованием OpenMP.

Афанасьев Виталий Игоревич 510 группа

Описание задания и программной реализации

Описание задания: Реализация алгоритма построения двумерного графа и представления его в формате CSR. Реализация многопоточной версии солвера для СЛАУ с разреженной матрицей.

Описание программной реализации:

```
Функции графа:
void gen_graph (
int K, int *offset_elements, int *elements, int Nx, int Ny, int K1, int K2 ) - генерирует
граф из параметров Nx, Ny, K1, K2 (K - размер массива offset_elements, offset_elements,
elements - представление графа, Nx - количество элементов по горизонтали, Ny - количество
элементов по вертикали, К1 - количество неразделенных элементов, К2 - количество
поделенных элементов)
void graph2csr (
int K, int offset_elements[], int elements[], int count_edges, int count_nodes, int IA[],
 int JA[] ) - трансформация графа в CSR формат (К - размер массива offset_elements,
offset_elements, elements - представление графа, count_edges - количество ребер,
count nodes – количество узлов, IA, JA – портрет разреженной матрицы)
Функции солвера:
double dot(int N, double x[], double y[]) - скалярное произведение (N - passep bektopob x и y)
void axpby(int N, double a, double x[], double b, double y[]); - линейная комбинация двух
векторов – ахрbу (x = ax + by), x, y - вектора, а, bскалярные значения (N - passep векторов x и
y)
void VVbe(int N, double x[], double y[], double z[]) - поэлементное умножение векторов
z[i] = x[i]*y[i] (N - pasmep векторов x, y и z)
void SpMV(int N, int IA[], int JA[], double A[], double b[], double c[]) - матрично-
векторное произведение с разреженной матрицей (N – размер массива IA, IA, JA – портрет матрицы,
A – массив ненулевых коэффициентов матрицы (размера IA[N]), b – вектор, на который умножается
матрица, с – результат умножения)
Компиляция:
"make task1" или "gcc -03 -Wall ..."
Запуск:
    task1 [--help]
    task2 --Nx <Nx> --Ny <Ny> --K1 <K1> --K2 <K2> -n <n> --maxiter <N> --tol <tol> [--
file <filename>]
  options:
    [--help]
                 Show this screen.
                 Count of elements in horizontal
    --Nx
                 Count of elements in vertical
    --Nv
    --K1
                 Count of squares
    --K2
                 Count of cut squares
    -n
                 Count of threads
    --maxiter
                Maximum of count steps in solver
```

Relative tolerance for termination.

--tol

Исследование производительности

Характеристики вычислительной системы:

тип процессора: Intel Core i7-9750H

количество ядер: 6

количество потоков: 12

TPP:

Base:

■ 2.6 GHz

20,8 GFLOPS / core

249,6 GFLOPS / computer

Turbo:

o 4.5GHz

o 36 GFLOPS / core

 \circ 432 GFLOPS / computer

BW: 41.8 GB/s

TBP: 1.74 GFLOP = 0.7% TPP

Параметры компиляции: -О3

Результаты измерений производительности:

Последовательная реализация:

N	dot	axpby	SpMV	VVbe	solver
10000	1,97	6,01	2,00	1,72	2,60
100000	2,00	5,26	1,88	1,48	2,44
1000000	1,50	3,17	1,50	0,86	1,78
10000000	1,46	2,94	1,43	0,66	1,67

Параллельная реализация, ускорение:

N = 10000

Т	dot	axpby	SpMV	VVbe	solver
1	1,94	5,86	1,96	1,68	2,55
2	0,96	1,72	1,94	0,54	1,47
3	0,90	1,52	2,08	0,48	1,41
4	0,84	1,37	2,09	0,43	1,32
5	0,79	1,27	2,03	0,40	1,24
6	0,71	1,15	1,97	0,37	1,15
7	0,68	1,08	1,83	0,34	1,08
8	0,64	1,00	1,74	0,32	1,01
9	0,59	0,93	1,69	0,30	0,95
10	0,55	0,86	1,63	0,28	0,89
11	0,52	0,80	1,55	0,26	0,83
12	0,49	0,75	1,47	0,24	0,79

N = 100000

Т	dot	axpby	SpMV	VVbe	solver
1	1,99	5,18	1,87	1,47	2,42
2	2,62	5,49	3,11	1,58	3,40
3	3,16	6,28	4,35	1,83	4,32
4	3,51	6,68	5,16	1,96	4,87
5	3,71	6,74	5,63	2,00	5,13
6	3,77	6,60	5,89	1,96	5,20
7	3,34	5,74	5,48	1,73	4,66
8	3,37	5,62	5,62	1,74	4,69
9	3,39	5,53	5,91	1,69	4,74
10	3,39	5,40	5,92	1,65	4,70
11	3,28	5,28	5,93	1,63	4,63
12	3,21	5,06	5,77	1,57	4,48

N = 1000000

Т	dot	axpby	SpMV	VVbe	solver
1	1,49	3,15	1,45	0,85	1,75
2	2,59	4,33	2,56	1,07	2,82
3	3,41	4,50	3,25	1,09	3,34
4	3,70	4,41	3,40	1,07	3,43
5	3,83	4,47	3,39	1,07	3,45
6	3,91	4,52	3,44	1,06	3,49
7	4,10	4,53	3,45	1,06	3,52
8	4,09	4,53	3,46	1,04	3,52
9	4,02	4,42	3,43	1,01	3,46
10	4,02	4,38	3,40	1,01	3,43
11	3,99	4,35	3,33	0,99	3,39
12	3,99	4,40	3,33	0,99	3,40

N = 10000000

T	dot	axpby	SpMV	VVbe	solver
1	1,45	2,92	1,43	0,65	1,66
2	2,57	3,86	2,48	0,87	2,64
3	3,27	3,95	2,99	0,89	3,01
4	3,44	3,97	3,18	0,92	3,13
5	3,51	3,95	3,23	0,91	3,16
6	3,62	3,96	3,26	0,91	3,18
7	3,74	3,98	3,26	0,90	3,20
8	3,84	3,96	3,24	0,90	3,20
9	3,90	3,95	3,25	0,87	3,19
10	3,87	3,90	3,19	0,86	3,14
11	3,84	3,87	3,13	0,85	3,10
12	3,69	3,83	3,08	0,82	3,04

Анализ полученных результатов

Максимальная достигаемая производительность для последовательной реализации (N = 10000000):

dot: 1.46 GFLOPS, 84% TBP

axpby: 2.99 GFLOPS, 169% TBP

SpMV: 1.42 GFLOPS, 82% TBP

VVbe: 0.66 GFLOPS, 38% TBP

Solver: 1.66 GFLOPS, 96% TBP

Максимальная достигаемая производительность для параллельной реализации (N = 10000000; T=12):

dot: 3.69 GFLOPS, 212% TBP

axpby: 3.83 GFLOPS, 220% TBP

SpMV: 3.08 GFLOPS, 177% TBP

VVbe: 0.82 GFLOPS, 47% TBP

Solver: 3.04 GFLOPS, 174% TBP