Тема 3. Дискретное преобразование Фурье

С. Б. Гашков, И. С. Сергеев

Пусть K — коммутативное кольцо с единицей.

Определение: элемент $\zeta \in \mathbf{K}$ является npumumuвным корнем степени $N \in \mathbb{N}$, если $\zeta^N = 1$, и никакой из элементов $\zeta^{N/p} - 1$, где p — простой делитель N, не является делителем нуля в \mathbf{K} . (Напомним, что элемент a называется делителем нуля, если существует ненулевой элемент b, такой, что ab = 0.)

Определение: $\partial uc\kappa pemным$ преобразованием Φyp ье $(\Pi \Phi)$ поря $\partial \kappa a N$ называется $(\mathbf{K}^N \to \mathbf{K}^N)$ -преобразование

$$\Pi \Phi_{N,\zeta}(\gamma_0, \dots, \gamma_{N-1}) = (\gamma_0^*, \dots, \gamma_{N-1}^*), \qquad \gamma_j^* = \sum_{i=0}^{N-1} \gamma_i \zeta^{ij}.$$
 (*)

где ζ — примитивный корень степени N.

1 Основное свойство ДПФ

Фундаментальное свойство ДПФ формулируется следующим образом:

Пемма 1. Пусть элементы γ_j^* определяются из (*). Тогда

$$\Pi \Phi_{N,\zeta^{-1}}(\gamma_0^*, \dots, \gamma_{N-1}^*) = (N\gamma_0, \dots, N\gamma_{N-1}),$$

zde $nod\ N$ в правой части формулы понимается сумма N единиц кольца.

Перед тем, как перейти к доказательству леммы, установим несколько вспомогательных фактов.

Заметим, что если элемент $a \in \mathbf{K}$ не является делителем нуля, и a=cd, то множители c и d также не являются делителями нуля. Действительно, если, скажем, ce=0 и $e\neq 0$, то ae=(ce)d=0, откуда следует, что a- делитель нуля.

Лемма 2. Если ζ — примитивный корень степени N, то при любом $l=1,\ldots,N-1$

$$\sum_{i=0}^{N-1} \zeta^{il} = 0.$$

Доказательство. Рассмотрим разложение

$$0 = \zeta^{lN} - 1 = (\zeta^l - 1) \sum_{i=0}^{N-1} \zeta^{il}.$$

Из определения примитивного корня следует, что N — это минимальный натуральный показатель степени n, при котором $\zeta^n=1$, поэтому $\zeta^l-1\neq 0$. Следовательно, либо ζ^l-1 является делителем нуля, либо $\sum_{i=0}^{N-1} \zeta^{il}=0$. Покажем, что первое невозможно.

Пусть $m=\mathrm{HOД}(l,N)$. По свойству наибольшего общего делителя, существуют целые q,s, такие, что m=ql+sN, при этом можно считать, что q — положительно. В таком случае $\zeta^m-1=\zeta^{ql}-1$ делится на ζ^l-1 . С другой стороны, поскольку m< N, найдется простое p, такое, что $m\mid (N/p)$. Тогда $(\zeta^m-1)\mid (\zeta^{N/p}-1)$. Окончательно, имеем $(\zeta^l-1)\mid (\zeta^{N/p}-1)$. Поскольку элемент $\zeta^{N/p}-1$ не является делителем нуля, то и ζ^l-1 не может быть делителем нуля. Следовательно, $\sum_{i=0}^{N-1}\zeta^{il}=0$. Лемма доказана.

Доказательство леммы 1. В векторе ДП $\Phi_{N,\zeta^{-1}}(\gamma_0^*,\ldots,\gamma_{N-1}^*)$ рассмотрим произвольную j-ю компоненту:

$$\sum_{i=0}^{N-1} \gamma_i^* \zeta^{-ij} = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \gamma_k \zeta^{ki} \zeta^{-ij} = \sum_{k=0}^{N-1} \sum_{i=0}^{N-1} \gamma_k \zeta^{i(k-j)} = \sum_{k=0}^{N-1} \gamma_k \sum_{i=0}^{N-1} (\zeta^{k-j})^i.$$

Внутренняя сумма, как следует из леммы 2, равна нулю во всех случаях, за исключением случая k-j=0, в котором эта сумма равна N. Поэтому, продолжая выкладку, получаем $N\gamma_j$, что и требовалось. Лемма 1 доказана.

Как следствие, получаем, что если элемент $N=1+\ldots+1\in \mathbf{K}$ обратим, то определено обратное к ДПФ преобразование

ДП
$$\Phi_{N,\zeta}^{-1} = N^{-1}$$
ДП $\Phi_{N,\zeta^{-1}}$.

2 Полиномиальная интерпретация ДПФ

Рассмотрим многочлен $\Gamma(x) = \gamma_0 + \ldots + \gamma_{N-1} x^{N-1}$. Тогда, по определению,

$$\Pi \Pi \Phi_{N,\zeta}(\gamma_0,\ldots,\gamma_{N-1}) = \left(\Gamma(\zeta^0),\ldots,\Gamma(\zeta^{N-1})\right).$$

Смысл обратного преобразования ДП $\Phi_{N,\zeta}^{-1}$ заключается в восстановлении коэффициентов единственного многочлена степени, меньшей N, имеющего заданный набор значений в точках $\zeta^0, \ldots, \zeta^{N-1}$.

Формально, связь между ДПФ и интерполяцией описывается следующей леммой:

Лемма 3. Преобразование ДП $\Phi_{N,\zeta}$ задает изоморфизм: $\mathbf{K}[x]/(x^N-1) \to \mathbf{K}^N$.

Доказательство. Проверим, что ДПФ сохраняет операции сложения и умножения: в кольце $\mathbf{K}[x]/(x^N-1)$ эти операции выполняются как с обычными многочленами, только с последующим приведением по модулю x^N-1 , в кольце \mathbf{K}^N операции выполняются покомпонентно.

Действительно, значение суммы многочленов $\Gamma_1(x) + \Gamma_2(x)$ в некоторой точке совпадает с суммой значений каждого из многочленов в данной точке. Представляя произведение многочленов в форме $Q(x)(x^N-1) + R(x)$, где R(x) — остаток от деления на x^N-1 , убеждаемся, что произведение переходит в произведение в силу:

$$\Gamma_1(\zeta^j)\Gamma_2(\zeta^j) = Q(\zeta^j)(\zeta^{jN} - 1) + R(\zeta^j) = R(\zeta^j) = (\Gamma_1\Gamma_2 \bmod (x^N - 1))(\zeta^j).$$

Лемма доказана.

3 Вычисление ДПФ

Независимое вычисление компонент вектора ДПФ по формулам (*) может быть выполнено за $O(N^2)$ операций в кольце. Для составного числа N можно предложить более эффективный способ.

Прежде заметим, что если ζ — примитивный корень степени PQ, то ζ^P и ζ^Q — примитивные корни степени Q и P соответственно (это легко проверить непосредственно из определения).

Справедлива

Лемма 4 (Кули, Тьюки). ДПФ порядка PQ реализуется при помощи P ДПФ порядка Q, Q ДПФ порядка P и PQ операций умножения на степени ζ — примитивного корня степени PQ.

 ${\mathcal A}$ оказательство. Для $p=0,\ldots,P-1$ и $q=0,\ldots,Q-1$ запишем

$$\gamma_{pQ+q}^* = \sum_{I=0}^{PQ-1} \gamma_I \zeta^{I(pQ+q)} = \sum_{i=0}^{Q-1} \sum_{j=0}^{P-1} \gamma_{iP+j} \zeta^{(iP+j)(pQ+q)} = \sum_{i=0}^{Q-1} \sum_{j=0}^{P-1} \gamma_{iP+j} \zeta^{iqP+jpQ+jq} = \sum_{j=0}^{P-1} (\zeta^Q)^{jp} \cdot \zeta^{jq} \cdot \gamma_{(j),q}^*,$$

где

$$\gamma_{(j),q}^* = \sum_{i=0}^{Q-1} \gamma_{iP+j} (\zeta^P)^{iq}.$$

Полученная формула позволяет произвести вычисления в следующем порядке:

a) Для $j=0,\ldots,P-1$ вычисляются вектора

$$\left(\gamma_{(j),0}^*, \gamma_{(j),1}^*, \dots, \gamma_{(j),Q-1}^*\right) = \coprod \Pi \Phi_{Q,\zeta^P}(\gamma_j, \gamma_{P+j}, \dots, \gamma_{(Q-1)P+j}).$$

- б) Вычисляются произведения $\omega_{(q),j}=\zeta^{jq}\cdot\gamma_{(j),q}^*,\ j=0,\dots,P-1,$ $q=0,\dots,Q-1.$
 - в) Заметим, что

$$\gamma_{pQ+q}^* = \sum_{j=0}^{P-1} \omega_{(q),j}(\zeta^Q)^{jp}.$$

Это позволяет окончательно найти компоненты вектора ДПФ по формулам

$$(\gamma_a^*, \gamma_{O+a}^*, \dots, \gamma_{(P-1)O+a}^*) = \coprod \Pi \Phi_{P,CQ}(\omega_{(q),0}, \omega_{(q),1}, \dots, \omega_{(q),P-1}),$$

где
$$q = 0, \dots, Q - 1$$
.

Утверждение леммы немедленно следует из вида действий, выполненных на шагах a-e.

Обозначим сложность ДПФ порядка N через F(N). По индукции несложно проверяется

Следствие 1.

$$F(N_1 \cdot \ldots \cdot N_r) \leq N_1 \cdot \ldots \cdot N_r \left(\frac{F(N_1)}{N_1} + \ldots + \frac{F(N_r)}{N_r} + (r-1) \right).$$

В указанной оценке сложности слагаемое $(r-1)N_1 \cdot \ldots \cdot N_r$ отвечает операциям умножения на степени примитивного корня.

В случае, когда N — гладкое число, т.е. раскладывается в произведение относительно небольших сомножителей, метод леммы 4 также называется алгоритмом быстрого преобразования Фурье (БПФ). В наиболее важном случае $N=2^k$ получаем

$$F(2^k) \le N\left(\frac{k}{2}F(2) + k - 1\right).$$

Очевидно, $F(2) \le 3$ в силу соотношений

$$\gamma_0^* = \gamma_0 + \gamma_1, \qquad \gamma_1^* = \gamma_0 + \zeta \gamma_1.$$

Учитывая, что фактически $\zeta = -1$, при наличии операции вычитания указанные формулы переписываются как

$$\gamma_0^* = \gamma_0 + \gamma_1, \qquad \gamma_1^* = \gamma_0 - \gamma_1,$$

откуда вытекает F(2) = 2.

Окончательно получаем, что ДПФ порядка 2^k может быть вычислено за $2,5k2^k$ (или $2k2^k$ с использованием вычитаний) операций, из которых $k2^k$ — сложения (или вычитания), остальные — умножения на степени примитивного корня.

4 Умножение многочленов над кольцом К

Алгоритм БПФ подходящего порядка позволяет быстро выполнять умножение многочленов из $\mathbf{K}[x]$.

Теорема 1. Пусть для любого $k \in \mathbb{N}$ существует ζ_k — примитивный корень степени 2^k в кольце \mathbf{K} , и элемент 2 обратим в \mathbf{K} . Тогда сложность M(n) умножения многочленов степени n-1 над \mathbf{K} не превосходит $O(n \log n)$.

Доказательство. Обозначим перемножаемые многочлены через $A(x) = \sum_{i=0}^{n-1} a_i x^i$ и $B(x) = \sum_{i=0}^{n-1} b_i x^i$. Выберем такое k, что $2n-1 \le 2^k < 4n-1$. Согласно условиям теоремы, в кольце ${\bf K}$ определено ДПФ порядка 2^k и обратное к нему.

Быстрый способ умножения, основанный на БП Φ , состоит в следующем: вычисляются вектора

$$(a_0^*,\ldots,a_{2^k-1}^*)= \coprod \Pi \Phi_{2^k,\zeta_k}(a_0,\ldots,a_{n-1},0,\ldots,0),$$

$$(b_0^*, \dots, b_{2^k-1}^*) = \coprod \Pi \Phi_{2^k, \zeta_k}(b_0, \dots, b_{n-1}, 0, \dots, 0).$$

Затем коэффициенты многочлена $C(x) = \sum c_i x^i = A(x)B(x)$ в силу $C(x) = C(x) \bmod (x^{2^k}-1)$ могут быть найдены как

$$(c_0,\ldots,c_{2^k-1})=2^{-k}\prod \Phi_{2^k,\zeta_b^{-1}}(a_0^*b_0^*,\ldots,a_{2^k-1}^*b_{2^k-1}^*).$$

Таким образом, для умножения используется три ДПФ порядка 2^k , 2^k умножений на 2^{-k} и еще 2^k нетривиальных умножений, откуда получаем

$$M(n) \le 3F(2^k) + 2^{k+1} = O(n \log n).$$

Дополнительные вопросы

- 1. Показать, что любая степень ζ^m примитивного корня ζ степени N является примитивным корнем степени $N/\text{HO} \square (m,N)$.
- 2. Уточнить оценку леммы Кули—Тьюки и, используя операцию вычитания, показать, что $F(2^k) \le 1,5k2^k$.
- 3. Пусть числа P и Q взаимно просты. Показать, что $F(PQ) \leq PF(Q) + QF(P)$.