EE230 RFIC II

Fall 2018

Project Description

Oct. 28, 2018

Sang-Soo Lee
Electrical Engineering Department
San Jose State University

sang-soo.lee@sjsu.edu

Project Description

1.9 GHz Charge Pump PLL

Project Logistics

- 1. A group of 2 students
- 2. Working alone is fine
- 3. Project presentation on Nov. 27, 29, and Dec. 4.
- 4. One Project Report per group
 - Report should include the followings
 - Verilog-A or Verilog-AMS model and simulation results
 - Matlab behavioral simulation showing stability
 - Schematic capture of major blocks
 - Key Simulation results
 - Summary table showing the performance achieved
 - Report should be in IEEE conference paper format
 - Project Report due: 5 PM, Dec 10

Project Description

Reference: Charge Pump PLL*

^{*} A 216μW 281MHz-1.126GHz Self-Calibrated SSCG PLL with 0.6V Supply Voltage in 55nm DDC™ CMOS Process – Unpublished work by Ahn & Lee

Target Spec – Beat the best

TABLE I PERFORMANCE COMPARISON

	Ref[4]	This Work	
Process	0.13μm CMOS	Conventional 55nm CMOS	DDC 55nm CMOS
Supply Voltage	0.5V	0.85V	0.6V
PLL Locking Range [MHz]	360~610	257 ~ 1,218	281~1,126
RMS Jitter	8.01ps @550MHz	12.75ps @800MHz	8.16ps @800MHz
Power Comsumption	1.25mW @550MHz	701μW @800MHz	216μW @ 800MHz
Active Dle Area	0.04mm ²	0.06mm ²	0.06mm ²
FoM [dB]	-221	-219	-228

*
$$\mathbf{FoM} = 10 \cdot log \left(Jitter^2 \cdot Power/1mW \right)$$

Design Constraint

- Architecture: Type-II Integer-N Charge Pump PLL
- ➤ Goal is to achieve FoM < -220 dB with the following constraint
 - Use 45nm technology PDK in gpdk045
 - VDD=1V
 - Device types available for the design
 - → nmos1v, pmos1v, resnsppoly, Ideal cap
 - RefCLK = 30 MHz
 - Bias Current: Use "ideal_bias" current cell in the next slide
 - PVT corners
 - TT, 1V, 27C
 - SS, FF
 - 0.9V, 1.1V
 - -40C, 125C

Bias Current

Lib: ee288lib

Cell: ideal_bias

Choose different value for IBIAS to vary the output current level

```
Iout = VBG / Rpoly = IBIAS (1.2V / 65Kohm)

At Room Temperature with IBIAS = 1

TT = 8.8 uA

SS = 7.8 uA

FF = 11 uA

If IBIAS = 1, TT = 8.8 uA

VBGR

VBGR

VBGR

VBGR

Value = 1.8 value
```

References

- > PLL
 - Rishi Ratan, From Chapter 3, MS Thesis, UIUC, 2014
 - H. Ahn and S. Lee, File name: VLSI2014_PLL_v7
- ➤ Verilog-A
 - VCO_VerilogA_ECE546_UIUC
 - PLL_Jitter_measurement_in_Spectre
- Verilog-AMS
 - Rishi Ratan, Chapter 6, MS Thesis, UIUC, 2014
- > Jitter measurement
 - PLL_Jitter_measurement_in_Spectre
 - https://www.youtube.com/watch?v=VvkHPoSVpVc