Question	Scheme	Marks
7(a)	$x = -\frac{5}{4}$	B1 [1]
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x}\right\} = \frac{2x(4x+5) - 4(x^2 - 1)}{(4x+5)^2}$ $y = 0$	M1A1A1 B1
	$\left\{\frac{dy}{dx}\right\} = \frac{2(-1)(4(-1)+5)-4((-1)^2-1)}{(4(-1)+5)^2} = -2$ $\rightarrow \left\{gradient\ of\ normal\ =\right\} \frac{1}{2}$ $y-0 = \frac{1}{2}(x-(-1))oe$	M1
	$y - 0 = \frac{1}{2}(x - (-1))oe$	M1A1cso [7]
(c)	$\frac{x+1}{2} = \frac{x^2 - 1}{4x + 5}$	M1
	$2x^2 + 9x + 7 = 0 \ \mathbf{OR} (x+1)(4x+5) = 2(x+1)(x-1)$	dM1
	$(2x+7)(x+1) = 0 \Rightarrow x = \cdots \mathbf{0R} (4x+5) = 2(x+1) \Rightarrow x = \cdots$	ddM1
	$x = -\frac{7}{2}, \{x = -1\}$	A1
	$y = \frac{" - \frac{7}{2}" + 1}{2} = \cdots$	M1
	$\left(-\frac{7}{2}, -\frac{5}{4}\right)$	A1 [6]
Total 14 marks		

Part	Mark	Notes		
(a)	B 1	$x = -\frac{5}{4}$ or $x = -1.25$, do not accept $4x+5=0$		
(b)		Attempts to differentiate y.		
		Quotient Rule: Look for		
		$\frac{Px(4x+5)-Q(x^2-1)}{(4x+5)^2}$, where $P>0, Q>0$		
		()		
	M1	If the quotient rule is quoted, it must be correct. Condone invisible bracket for this		
		mark.		
		Product Rule: Look for $Px(4x + 5)^{-1} \pm Q(x^2 - 1)(4x + 5)^{-2}$,		
		where $P > 0, Q > 0$		
		Quotient rule: Correct denominator $(4x + 5)^2$ and one correct term in the numerator,		
	A1	$2x(4x+5)$ or $-4(x^2-1)$.		
		Product rule: One term correct $\frac{(dy_1 - 2x)(x+5) - 4(x^2-1)}{2x}$		
	A 1	Fully correct. $\left\{ \frac{dy}{dx} = \right\} \frac{2x(4x+5)-4(x^2-1)}{(4x+5)^2}$		
	A1	or $\left\{\frac{dy}{dx}\right\} = 2x(4x+5)^{-1} - 4(x^2-1)(4x+5)^{-2}$ oe		
	B1	y = 0 seen or implied		
	M1	Correct method finding gradient of normal to the curve where $x=-1$		
	1,722	Correct method of forming the equation of a straight line using the point		
		(-1,their y value) with a "changed" gradient. ("changed" means a different gradient		
	M1	from their tangent gradient, their normal could be found by an incorrect method)		
		If we're a require for a great he formal and the correction forms of		
		If using $y=mx+c$, a value for c must be found and the equation formed. For the correct line in any form, simplified or unsimplified. (isw) Once correct		
	A1cso	equation is seen, award the mark, ignore later incorrect simplification.		
	Aicso	e.g. $2y = x+1$ or $2y-x-1=0$ or $y=0.5x+0.5$ oe or even $y - 0 = \frac{1}{2}(x - (-1))$		
(c)	M1	<u> </u>		
(c)		For equating the equation of their line with the equation of the curve. For forming an equation with all like terms collected.		
	dM1	OR cross multiplies then factorises e.g. $2(x^2 - 1) = 2(x + 1)(x - 1)$		
		Solves their equation with a correct method and finds at least one real value of x		
		which is not -1, method of solving could be implied by correct answers if calculator		
	ddM1	used.		
l _i		OP concels (u+1) and solves their linear equation		
		7		
	A1	A1 $x = -\frac{7}{2}, \{x = -1\}$		
	М1	For substituting their x value (not -1) to either the equation of their normal or the		
	1411	equation of the given curve to find a value for y		
	A 1	For the correct exact coordinates of $D\left(-\frac{7}{2}, -\frac{5}{4}\right)$ oe		
	AI	` = -/		
	ddM1 A1 M1 A1	which is not -1, method of solving could be implied by correct answers if calculator used. OR cancels $(x+1)$ and solves their linear equation. $x = -\frac{7}{2}$, $\{x = -1\}$ For substituting their x value (not -1) to either the equation of their normal or the		