РЕШЕНИЕ ЗАДАЧИ ЭКСПЕРИМЕНТАЛЬНОГО ТУРА Объемные токи

Часть 1

- **1.1** Сопротивление резистора равно $R_0 = 2.0 \pm 0.1$ кОм.
- **1.2** Так как при последовательном соединении проводников сила тока одинакова через каждый из них, то справедливо соотношение

$$\frac{U_R}{R_0} = \frac{U_x}{R_x},$$

из которой следует расчетная формула для измеряемого сопротивления

$$R_{x} = R_0 \frac{U_{x}}{U_{B}}.$$
 (1)

Таким образом, для измерения неизвестного сопротивления необходимо измерить напряжения на измеряемом и известном резисторах.

Если бы напряжение источника было стабилизировано, то достаточно было измерить напряжение на одном из них.

Часть 2

2.1 Результаты измерений напряжений в зависимости от высоты уровня налитой воды представлены в Таблице 1. В ней же приведены результаты расчета сопротивления воды между электродами.

Высота измерена в делениях шкалы мензурки.

Таблица 1. Зависимость сопротивления от высоты уровня воды.

	100/h,			R,	1/R,
h , дел	дел ⁻¹	U_x , B	U_R , B	кОм	кОм ⁻¹
30	3,33	3,82	1,08	7,07	0,14
40	2,50	3,60	1,30	5,54	0,18
50	2,00	3,36	1,54	4,36	0,23
60	1,67	3,17	1,73	3,66	0,27
70	1,43	3,01	1,89	3,19	0,31
80	1,25	2,84	2,06	2,76	0,36
90	1,11	2,69	2,21	2,43	0,41
100	1,00	2,59	2,31	2,24	0,45
110	0,91	2,48	2,42	2,05	0,49
120	0,83	2,38	2,52	1,89	0,53
130	0,77	2,30	2,60	1,77	0,57
140	0,71	2,22	2,68	1,66	0,60
150	0,67	2,16	2,74	1,58	0,63
160	0,63	2,08	2,82	1,48	0,68
170	0,59	2,03	2,87	1,41	0,71
180	0,56	1,96	2,94	1,33	0,75
190	0,53	1,93	2,97	1,30	0,77
200	0,50	1,86	3,04	1,22	0,82
210	0,48	1,80	3,10	1,16	0,86
220	0,45	1,76	3,14	1,12	0,89

График полученной зависимости показан на рисунке ниже.

Простым измерением легко установить, что объему $V_0=200$ мл соответствует высота $h_0=170$ мм . Поэтому высота уровня налитой жидкости рассчитывается по формуле $h=V\frac{h_0}{V_0}$, то есть цена деления $\delta=0.85\frac{\text{мм}}{\text{M}}$.

150

100

2.2 Схематическое распределение токов в этом случае показано на следующем рисунке.

50

0

0

Ток протекает между боковыми поверхностями спиц, поэтому высота уровня жидкости определяет площадь некоторого эффективного поперечного сечения.

2.3 Поэтому разумно предположить, что сопротивление воды между спицами обратно пропорционально высоте уровня жидкости

$$S_{3\phi}$$
.

200

вид сбоку

250

$$R_{x0} = \frac{A}{h} \,. \tag{2}$$

где A - постоянная величина, имеющая смысл сопротивление слоя воды единичной толщины. Тогда измеренной сопротивление должно описываться формулой

$$R_{x} = \frac{A}{h} + B, \tag{3}$$

где B - постоянная величина, имеющая смысл дополнительного сопротивления (контактов, оксидного слоя на поверхности спиц и т.д.).

2.4 Для проверки выполнимости формулы (3) достаточно построить график зависимости сопротивления от величины обратной высоте столба воды 1/h. Т.е. линейная зависимость должна наблюдаться для следующих величин:

$$y = R$$

$$x = \frac{1}{h}.$$
(4)

График этой зависимости показан на рисунке.

Параметры этой линейной зависимости, рассчитанные по методу наименьших квадратов равны

$$a = (210 \pm 3)\kappa O_{M} \cdot \partial e_{\pi} b = (0.17 \pm 0.03)\kappa O_{M}$$
 (5)

Для определения параметров зависимости (3) необходимо в значениях высоты столба перейти от делений шкалы к миллиметрам. Этот переход осуществляется по формулам

Дополнение. Линеаризация вида
$$\frac{1}{R} = \frac{h}{A}$$
, хотя и допустима, но

 $A = a \cdot \delta = (178 \pm 2) \kappa O_M \cdot M_M$ $B = b = (0.17 \pm 0.03) \kappa O_M$

R A
приводит к худшим результатам,
так как не учитывает
дополнительного сопротивления
цепи.

Часть 3

3.1 Для измерения расстояния между спицами проще измерять длину дуги l между спицами по шкале, нанесенной на полоску скотча. Тогда расстояние между спицами можно рассчитать по геометрической формуле

$$L = D\sin\frac{l}{D},\tag{7}$$

где D = 40мм - диаметр мензурки.

Результаты измерений зависимости сопротивления воды от расстояния между спицами приведены в Таблице 2.

Таблица 2.

<i>l</i> , см	L, cm	U_x , B	U_R , B	<i>R</i> , кОм	$\ln L$
1	0,990	1,29	3,62	0,713	-0,010
2	1,918	1,45	3,38	0,858	0,651
3	2,727	1,59	3,34	0,952	1,003
4	3,366	1,62	3,27	0,991	1,214
5	3,796	1,64	3,23	1,015	1,334
6	3,990	1,65	3,2	1,031	1,384

График полученной зависимости показан на рисунке.

3.2 Теоретически можно показать, что сопротивление среды между двумя длинными параллельными электродами в бесконечной среде определяется по формуле

$$R = \frac{\rho}{\pi h} \ln \frac{L}{r_0} \,, \tag{8}$$

где h - длина электродов, r_0 - их радиус.

Можно предположить, что и данном случае сопротивление воды между электродами линейно зависит от логарифма расстояния между ними, то есть

$$R(L) = A \ln L + B . (9)$$

3.3 Для проверки выполнимости формулы (9) необходимо построить график зависимости сопротивления от логарифма расстояния $\ln L$. Т.е. линейная зависимость должна наблюдаться для следующих величин:

$$y = R$$

$$x = \ln L$$
(10)

График этой зависимости показан на рисунке. Рисунок подтверждает сделанное предположение.

Параметры этой линейной зависимости, рассчитанные по методу наименьших квадратов равны

$$a = (0.23 \pm 0.01) \kappa O_M b = (0.71 \pm 0.01) \kappa O_M$$
 (11)

Очевидно, что значения параметра b зависит от единиц измерения расстояния L. В данном случае такие же значения имеют и параметры зависимости (9).

Часть 4

4.1 Результаты измерений зависимости сопротивления воды от высоты поднятия второй спицы приведены в таблице 3. В данном случае для измерения высоты используются шкала мензурки, поэтому в качестве единиц измерения указаны миллилитры.

Таблица 3.

			R,
l, мл	U_x , B	U_R , B	кОм
20	3,85	1,05	7,3
40	3,96	0,94	8,4
60	4,06	0,84	9,7
80	4,14	0,76	10,9
100	4,20	0,70	12,0
120	4,25	0,65	13,1
140	4,31	0,59	14,6
160	4,35	0,55	15,8
180	4,38	0,52	16,8
200	4,40	0,50	17,6
220	4,44	0,46	19,3
240	4,47	0,43	20,8

График этой зависимости показан на рисунке.

- 4.2 Примерное распределение токов в этом случае показано на следующем рисунке.
- **4.3** В этом случае расстояние между спицами играет роль некоторой эффективной длины проводника, поэтому сопротивление воды между спицами в этом случае оказывается примерно линейно зависящим от l, что и подтверждается экспериментальными данными. Дополнительное сопротивление может быть связано с ограничением токов вблизи острия спиц. Функционально данная зависимость описывается формулой

$$R_{r} = al + b. (12)$$

4.4 Согласно приведенным экспериментальным данным линейная зависимость выполняется во всем диапазоне высот l.

Возможны отклонения от линейной зависимости при малых и больших значениях l. Однако, в диапазоне $l \in [50, 150]$ исследуемая зависимость линейна.

Параметры функции (12), рассчитанные по методу наименьших квадратов равны $a' = (0.060 \pm 0.002) \kappa O_M / \partial e_D$.

$$b = (6.0 \pm 0.3) \kappa O_M \tag{11}$$

Если высоты h измерять в миллиметрах, то значение коэффициента a становится равным $a = (0.071 \pm 0.002) \kappa O_M / M_M$. (12)

Часть 5

5.1 Для оценки удельного сопротивления воды предпочтительнее использовать данные из Части 4. Линейность полученной зависимости свидетельствует, что в средней части сосуда линии тока примерно параллельны стенкам сосуда. Также можно предположить, что в этой области ток протекает через все поперечное сечение воды в сосуде. Следовательно, можно воспользоваться формулой для сопротивления, приведенной в условии задачи.

Полученное значение коэффициента наклона графика (12) представляет собой сопротивление одного миллиметра столба воды, что дает возможность оценить ее удельное электрическое сопротивление

$$a = \frac{\Delta R}{\Delta l} = \frac{\rho}{S} \quad \Rightarrow \quad \rho = aS = a\frac{V_0}{h_0}. \tag{7}$$

Подстановка численных значений дает

$$\rho = a \frac{V_0}{h_0} = 0.071 \frac{10^3 \, Om}{10^{-3} \, m} \cdot \frac{200 \cdot 10^{-6} \, m^3}{170 \cdot 10^{-3} \, m} \approx 83 \, Om \cdot m \,. \tag{8}$$

Схема оценивания Экспериментального тура

(курсивом выделены оценки за альтернативные варианты)

Если измерения сопротивления проводились мультиметром в режиме омметра – все баллы за результаты измерения снижаются в два раза!

Пункт	Содержание	Всего за пункт	Баллы
1.1	Сопротивление $R_0 = 2.0 \pm 0.1 \mathrm{kOm}$	0,2	0,2
1.2	Формула (1)	0,3	0,3
2.1	Измерения и график экспериментальных данных (получены разумные значения для сопротивлений в диапазоне 1-10 кОм, в противном случае — данный пункт не оценивается)	2,5	,
	проведены измерения в диапазоне более 180 дел. (max-min); в диапазоне более 150 дел.; в диапазоне более 100 дел.; меньше 100 дел.;		0,75 (0,5) (0,25) (0)
	число экспериментальных точек: 10 и более; 7-9; 5-6; менее 5		0,75 (0,5) (0,25) (0)
	Правильно рассчитаны сопротивления для каждой точки Получена монотонно убывающая зависимость, сопротивление изменяется не менее, чем в 5 раз; сопротивление изменяется менее, чем в 5 раз;		0,25 0,25 (0)
	Построение графика - размер графика не менее четверти листа; - оси подписаны (ед. измерения) и оцифрованы; - правильно нанесены все точки из таблицы; - проведена сглаживающая линия;		0,1 0,1 0,2 0,1
2.2	Рисунки линий тока В плоскости спиц: линии прямые и перпендикулярны спицам (возможны небольшие искажения близи дна и верхней части); В перпендикулярной плоскости выпуклые симметричные линии между электродами, заполняющие большую часть поперечного сечения;	0,5	0,25
2.3	Вид зависимости - есть слагаемое обратно пропорциональной зависимости; (в противном случае весь пункт не оценивается)	0,8	0,6
2.4	- есть постоянная составляющая сопротивления; Линеаризация и параметры зависимостей	1,2	0,2
	Вид зависимости: - зависимость $R(1/h)$;		0,2

	1/->		(0.1)
	- зависимости $R^{-1}(h)$, или в двойном логарифмическом		(0,1)
	масштабе;		(0)
	- иная;		
	Построение графика линеаризованной зависимости		
	- нанесены все точки;		0,2
	- проведена сглаживающая прямая		0,2
	- правильный расчет параметров линеаризованной		· ·
	зависимости		
	$((200\pm30\%)\kappa O_M\cdot \partial e_{\pi}$, или $(180\pm30\%)\kappa O_M\cdot M_M$,		
	-если отклонения от 30% до 75% - оценки уменьшаются в		
	два раза;		
	- при большем отклонении пункт не оценивается)		
	- по МНК;		0,4
	- по графику (или по всем точкам);		(0,2)
	- по двум точкам;		(0,1)
	Пересчет к высоте, измеренной в единицах длины (мм, см)		
	- измерение и расчет цены деления (правильный),		0,1
	- пересчет коэффициента наклона		0,1
	(если все предыдущие расчеты в единицах длины)		(0,1)
3.1	Измерения и график экспериментальных данных	1,5	(0,1)
3.1	(получены разумные значения для сопротивлений в	1,3	
	диапазоне 0,5-2 кОм, в противном случае – данный пункт		
	не оценивается)		
	Измерение расстояния между спицами:		0.2
	- по дуге окружности с пересчетом;		0,2
	- прямое измерение линейкой;		(0,1)
	- проведены измерения в диапазоне от 1 до 4 см		0,3
	- (иное не оценивается);		
	- число точек б или более;		0,3
	- число точек 4-5;		(0,2)
	- менее 4		
	Получена выпуклая возрастающая зависимость		0,2
	Построение графика		
	- размер графика не менее четверти листа;		0,1
	- оси подписаны (ед. измерения) и оцифрованы;		0,1
	- правильно нанесены все точки из таблицы;		0,2
	- проведена сглаживающая линия;		0,1
3.2	Вид зависимости	1	•
-	- есть логарифмическая зависимость;		0,7
	- есть постоянная составляющая;		0,3
	- иная разумная выпуклая возрастающая		٠,٥
	зависимость;		(0,3)
3.3	Линеаризация и параметры	1	(0,0)
J.J	- зависимость $R(\ln L)$;		0,4
			~, .
	- иная разумная линеаризация в соответствии с формулой 3.2		(0,2)
	Построение графика линеаризованной зависимости		
	- нанесены все точки;		0,1
	- проведена сглаживающая прямая;		0,1
	Параметры зависимости:		·, ·

	(коэффициент наклона в диапазоне $a = (0.2 \pm 30\%) \kappa O_M$; -если отклонения от 30% до 75% - оценки уменьшаются в два раза;		
	- при большем отклонении пункт не оценивается) - по МНК; - по графику (или по всем точкам); - по двум точкам;		0,4 (0,2) (0,1)
4.1	Измерения и график экспериментальных данных (получены разумные значения для сопротивлений в диапазоне 5-30 кОм, в противном случае – данный пункт не оценивается)	2,4	
	проведены измерения в диапазоне более 180 дел. (max-min); в диапазоне более 150 дел.; в диапазоне более 100 дел.; меньше 100 дел.;		0,75 (0,5) (0,25) (0)
	число экспериментальных точек: 10 и более; 7-9; 5-6; менее 5		0,75 (0,5) (0,25) (0)
	Правильно рассчитаны сопротивления для каждой точки Получена монотонно возрастающая зависимость, имеется линейный участок; - нет линейного участка		0,2 0,3 (0,1)
	Построение графика		0,1 0,2 0,1
4.2	Рисунок линий тока - линии начинаются с открытого конца спицы; - идут вертикально вверх; - распределяются по длине второй спицы;	0,3	0,1 0,1 0,1 0,1
4.3	Вид зависимости - есть слагаемое, пропорциональное l ; - есть постоянная составляющая; (другие виды зависимости, кроме линейной не оцениваются);	0,4	0,2 0,2
4.4	Интервал линейности - выделен интервал (возможны отклонения вблизи концов интервала измерения)	0,1	0,1
4.5	Параметры зависимости - правильный расчет параметров линеаризованной зависимости: коэффициент наклона $((0,060\pm30\%)\kappa O_M/\partial e_{D_m})\kappa O_m/\partial e_{D_m}$ или $(0,07\pm30\%)\kappa O_m/\partial e_{D_m})\kappa O_m/\partial e_{D_m}$ -если отклонения от 30% до 75% - оценки уменьшаются в два раза;	0.8	
	- при большем отклонении пункт не оценивается) - по МНК; - по графику (или по всем точкам); - по двум точкам; - постоянная составляющая сопротивления:		0,6 (0,4) (0,2)

	- в диапазоне 4 – 10 кОм; - в диапазонах 2-4 кОм, или 10-12 кОм; - иное не оценивается;		0,2 (0,1)
5.1	Расчет удельного сопротивления воды	2	
	- выбрана зависимость части 4;		0,3
	- иное разумное (с правильной формулой для		
	сопротивления);		(0,1)
	Формула (7) для расчета удельного сопротивления по:		
	- наклону графика;		0,4
	- (расчет по 1-2 точкам);		(0,2)
	Проведен расчет удельного сопротивления (80 Ом.м):		
	- значение в диапазоне 60-100 Ом.м;		1,3
	- значения в диапазоне 40-120 Ом.м;		(1,0)
	- значения в диапазоне 20 – 150 Ом.м;		(0,5)
	- иное не оценивается.		

Схема оценивания Экспериментального тура

(курсивом выделены оценки за альтернативные варианты)

Если измерения сопротивления проводились мультиметром в режиме омметра – все баллы за результаты измерения снижаются в два раза!

Пункт	Содержание	Всего за пункт	Баллы
1.1	Сопротивление $R_0 = 2.0 \pm 0.1 \text{кOm}$	0,2	0.2
1.2	Формула (1)	0,3	0,2
1.2		,,,,	0,3
2.1	Измерения и график экспериментальных данных (получены разумные значения для сопротивлений в диапазоне 1-10 кОм, в противном случае – данный пункт не оценивается)	2,5	
	проведены измерения в диапазоне более 180 дел. (max-min); в диапазоне более 150 дел.; в диапазоне более 100 дел.; меньше 100 дел.;		0,75 (0,5) (0,25) (0)
	число экспериментальных точек: 10 и более; 7-9; 5-6;		0,75 (0,5) (0,25)
	менее 5 Правильно рассчитаны сопротивления для каждой точки	<u> </u>	(0) 0,25
	Получена монотонно убывающая зависимость, сопротивление изменяется не менее, чем в 5 раз;	-	0,25
	сопротивление изменяется менее, чем в 5 раз; Построение графика	-	(0)
	- размер графика не менее четверти листа; - оси подписаны (ед. измерения) и оцифрованы; - правильно нанесены все точки из таблицы; - проведена сглаживающая линия;		0,1 0,1 0,2 0,1
2.2	Рисунки линий тока В плоскости спиц: линии прямые и перпендикулярны спицам (возможны небольшие искажения близи дна и верхней части);	0,5	0,25
	В перпендикулярной плоскости выпуклые симметричные линии между электродами, заполняющие большую часть поперечного сечения;		0,25
2.3	Вид зависимости	0,8	
	- есть слагаемое обратно пропорциональной зависимости; (в противном случае весь пункт не оценивается)		0,6
	- есть постоянная составляющая сопротивления;		0,2
2.4	Линеаризация и параметры зависимостей	1,2	
	Вид зависимости: - зависимость $R(1/h)$;		0,2
	- зависимости $R^{-1}(h)$, или в двойном логарифмическом		(0,1)

	масштабе;		(0)
	- иная;		(0)
	Построение графика линеаризованной зависимости	1	
	- нанесены все точки;		0,2
	- проведена сглаживающая прямая		0,2
	- правильный расчет параметров линеаризованной	-	
	зависимости		
	$((200\pm30\%)\kappa O_M \cdot \partial e_A$, или $(180\pm30\%)\kappa O_M \cdot M_M$,		
	-если отклонения от 30% до 75% - оценки уменьшаются в два раза;		
	- при большем отклонении пункт не оценивается)		
	- при облышем отклонении пункт не оценивиется) - по МНК;		0,4
	- по мітк, - по графику (или по всем точкам);		(0,2)
	- по графику (или по всем точкам), - по двум точкам;		(0,1)
	- по овум точкам, Пересчет к высоте, измеренной в единицах длины (мм, см)		(' ' /
	- измерение и расчет цены деления (правильный),		0,1
	- измерение и расчет цены деления (правильныи), - пересчет коэффициента наклона		$0,1 \\ 0,1$
	- пересчет коэффициента наклона (если все предыдущие расчеты в единицах длины)		(0,1)
3.1		1 5	(0,1)
3.1	Измерения и график экспериментальных данных	1,5	
	(получены разумные значения для сопротивлений в диапазоне 0,5-2 кОм, в противном случае – данный пункт		
	не оценивается)		
	Измерение расстояния между спицами:		0.2
	- по дуге окружности с пересчетом;		0,2
	- прямое измерение линейкой;	-	(0,1) 0,3
	- проведены измерения в диапазоне от 1 до 4 см		0,3
	- (иное не оценивается); - число точек 6 или более;	<u> </u>	0,3
	, and the second		
	- число точек 4-5; - менее 4		(0,2)
			0.2
	Получена выпуклая возрастающая зависимость	<u> </u>	0,2
	Построение графика		0.1
	- размер графика не менее четверти листа;		0,1
	- оси подписаны (ед. измерения) и оцифрованы;		0,1
	- правильно нанесены все точки из таблицы;		0,2 0,1
2.2	- проведена сглаживающая линия;	1	0,1
3.2	Вид зависимости	1	0.7
	- есть логарифмическая зависимость;		0,7
	- есть постоянная составляющая;		0,3
	- иная разумная выпуклая возрастающая		(0.2)
2.2	Зависимость;	1	(0,3)
3.3	Линеаризация и параметры	1	0.4
	- зависимость $R(\ln L)$;		0,4
	- иная разумная линеаризация в соответствии с формулой		(0.2)
	3.2		(0,2)
	Построение графика линеаризованной зависимости		
	- нанесены все точки;		0,1
	- проведена сглаживающая прямая;		0,1
	Параметры зависимости:		
	(коэффициент наклона в диапазоне $a = (0.2 \pm 30\%) \kappa O_M$;		
	$u = (0.2 \pm 30/0) \text{ KOM}$		

	-если отклонения от 30% до 75% - оценки уменьшаются в		
	два раза;		
	- при большем отклонении пункт не оценивается)		0,4
	- по МНК;		(0,2)
	- по графику (или по всем точкам);		(0,1)
	- по двум точкам;		
4.1	Измерения и график экспериментальных данных	2,4	
	(получены разумные значения для сопротивлений в		
	диапазоне 5-30 кОм, в противном случае – данный пункт		
	не оценивается)		0.77
	проведены измерения в диапазоне более 180 дел. (max-min);		0,75
	в диапазоне более 150 дел.;		(0,5)
	в диапазоне более100 дел.;		(0,25)
	меньше 100 дел.;		(0)
	число экспериментальных точек: 10 и более;		0,75
	7-9;		(0,5)
	5-6;		(0,25)
	менее 5		(0)
	Правильно рассчитаны сопротивления для каждой точки		0,2
	Получена монотонно возрастающая зависимость, имеется		0,3
	линейный участок;		(0.1)
	- нет линейного участка		(0,1)
	Построение графика		0,1
	- оси подписаны (ед. измерения) и оцифрованы;- правильно нанесены все точки из таблицы;		0,1
	- проведена сглаживающая линия;		0,2
4.2	Рисунок линий тока	0,3	0,1
	- линии начинаются с открытого конца спицы;	,	0,1
	- идут вертикально вверх;		0,1
	- распределяются по длине второй спицы;		0,1
4.3	Вид зависимости	0,4	
	- есть слагаемое, пропорциональное l ;		0,2
	- есть постоянная составляющая;		0,2
	(другие виды зависимости, кроме линейной не		
	оцениваются);		
4.4	Интервал линейности	0,1	
	- выделен интервал (возможны отклонения вблизи концов		0,1
	интервала измерения)		
4.5	Параметры зависимости	0.8	
	- правильный расчет параметров линеаризованной		
	зависимости: коэффициент наклона		
	$((0,060\pm30\%)\kappa O_M/\partial e_{\pi}$. или $(0,07\pm30\%)\kappa O_M/M_M)$		
	-если отклонения от 30% до 75% - оценки уменьшаются в		
	два раза;		
	- при большем отклонении пункт не оценивается)		0.6
	- по МНК;		0,6
	- по графику (или по всем точкам);		(0,4)
	- по двум точкам;		(0,2)
	- постоянная составляющая сопротивления:		0.5
	- в диапазоне 4 – 10 кОм;		0,2
	- в диапазонах 2-4 кOм, или 10-12 кОм;		(0,1)

	- иное не оценивается;		
5.1	Расчет удельного сопротивления воды	2	
	- выбрана зависимость части 4;		0,3
	- иное разумное (с правильной формулой для		
	сопротивления);		(0,1)
	Формула (7) для расчета удельного сопротивления по:		
	- наклону графика;		0,4
	- (расчет по 1-2 точкам);		(0,2)
	Проведен расчет удельного сопротивления (80 Ом.м):		
	- значение в диапазоне 60-100 Ом.м;		1,3
	- значения в диапазоне 40-120 Ом.м;		(1,0)
	- значения в диапазоне 20 – 150 Ом.м;		(0,5)
	- иное не оценивается.		