Задача 19

Щом L е регулярен \Rightarrow съществува минимален детерминиран автомат $M=(S,s_0,\delta,F)$. Нека $n=|S|\Rightarrow$ и нека x,y,z са такива че $xyz\in L$ и |y|=n.

Нека p(i) $(0 \le i \le n)$ е префикса на y.

Нека
$$\delta_p(i) = \delta(s_0, x \cdot p(i)).$$

Понеже броят на стойностите на $\delta_p(i)$ са по-малко от стойностите на i (състоянията са n, а стойностите на i - n+1) \Rightarrow нека j и k са такива че j < k и $\delta_p(j) = \delta_p(k)$.

Нека

- u = p(i) (подниза от y до позиция j вкл.)
- v е такава че $p(j) = p(i) \cdot v$ (подниза от y от позиция j+1 до позиция k вкл.)
- ullet w е такава че $p(k)=p(j)\cdot w$ (подниза от y от позиция k+1 вкл.)

⇒ се получава следното:

- 1. $\delta(s_0, xu) = \delta_p(j)$ (така сме го дефинирали)
- 2. $\delta(\delta_p(j),v)=\delta_p(k)=\delta_p(j)$ (така сме го дефинирали)
- 3. $\delta(\delta_p(j),v^i)=\delta_p(j)\;(i\in N)$ (индукция от горното + 0 свойство на $\delta()$)

 \Rightarrow

$$\delta(s_0, xyz) = \delta(s_0, xuvwz) = \delta(s_0, xuv^iwz)$$

 \Rightarrow

$$\delta(s_0, xyz) \in F \Rightarrow \delta(s_0, xuv^iwz) \in F \ (i \in N)$$

 \Rightarrow

 $xuv^iwz\in L$