Christophe Rodrigues

DataScience & IA

Plan du cours

- IA et Deep Learning, une révolution?
- Rappels et relations entre les algorithmes déjà abordés
- Problèmes de satisfaction de contraintes (CSP)

Turc mécanique

- Automate capable de jouer aux échecs et de gagner contre des joueurs humains
- présenté pour la première fois en 1770.
- Superbe IA
- Superbe Escroquerie

Deep Learning

 Success of Deep Learning techniques attributable to concurrence of big data sets, scalable hardware, and high-level

software

Rappels et relations entre méthodes abordées

- Algorithmes évolutionnaires (ou génétiques)
- Découverte de règles d'association (pattern mining)
- A*
- Problèmes de satisfaction de contraintes

 Problèmes de satisfaction de contraintes CSP par l'exemple: 3 couleurs possibles, aucun voisin ne doit avoir la même

Définitions

- X un ensemble de variables : {X1,...,Xn}
- D un ensemble de domaines : {D1,...,Dn} (un pour chaque variable X)
 - Avec Di = {v1,...,vn} pour Xi
- C un ensemble de contraintes spécifiant des combinaisons de valeurs. Chaque contrainte Ci est une paire: <porté, relation>
 - Avec porté un tuple de variables participant à la contrainte Ci
 - Avec relation définissant les valeurs possibles de ces variables

Définitions

- Une relation peut être définie de deux façons, par extension et par intension:
- Exemple: soit les variables X1 et X2 ayant le même domaine {A,B}, la contrainte imposant qu'elles soient différentes devient alors:
 - Par extension:

Par intension:

Définitions

- Afin de résoudre un CSP, il est nécessaire d'affecter des valeurs aux variables en respectant les contraintes.
- Une affectation qui ne viole aucune contrainte est dite cohérente.
- Une affectation est dite complète si chaque variable est affectée.
- La solution d'un CSP est une affectation cohérente et complète.

Différents types de contraintes

- Contrainte Unaire : contrainte sur une seule variable
 - Exemple : <(SA), SA ≠ vert>
- Contrainte Binaire : contrainte sur deux variables
 - Exemple : SA ≠ NSW
- Contrainte Ternaire :
 - Exemple : entre(X,Y, Z)
- Contrainte Globale (avec un nombre arbitraire de variables):
 - Exemple: tousDifférents(SA, WA, NT, Q, NSW, V)

Retour à l'exemple (3 couleurs possibles)

X=?, D=?

Retour à l'exemple

 $X = \{WA, NT, Q, NSW, V, SA, T\}$

Retour à l'exemple

 $X = \{WA, NT, Q, NSW, V, SA, T\}$

D = {rouge, vert, bleu}

C = {SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V}

Pourquoi formuler un problème sous forme d'un CSP?

- 1) Répresentation naturelle/direct pour beaucoup de problèmes
 - Exemple: le problème des 8 reines déjà abordé
 - Pas besoin de développer une solution ad hoc, il suffit de formaliser les variables et contraintes et de demander au solveur de trouver une solution.
- 2) L'élagage du CSP peut le rendre plus puissant qu'une méthode cherchant dans l'espace d'états car il est possible d'éliminer rapidement de larges fractions de l'espace

Exemple d'élagage par CSP

- Une fois {SA = bleu} fixé au sait qu'aucun des voisins ne peut prendre la couleur bleu.
- Sans prise en compte de cette information il y a: 3⁵ = 243 affectations possibles pour les 5 voisins de SA
- Avec prise en compte de cette information il n'y a plus que 2⁵=32 possibilités!
- SOIT UNE REDUCTION DE 87%
 DE L'ESPACE DE RECHERCHE

Backtracking Search (parcours en profondeur)

```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
  return BACKTRACK(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(csp)
  for each value in Order-Domain-Values(var, assignment, csp) do
      if value is consistent with assignment then
         add \{var = value\} to assignment
         inferences \leftarrow Inference(csp, var, value)
         if inferences \neq failure then
            add inferences to assignment
            result \leftarrow BACKTRACK(assignment, csp)
            if result \neq failure then
              return result
      remove \{var = value\} and inferences from assignment
  return failure
```

Exemple de parcours par Backtrack

Heuristiques possibles

- L'ordre dans lequel les variables sont choisies influence la recherche:
- MRV : Minimum Remaining values : on privilégiera la variable avec le moins de valeurs possibles restantes
- Degré : on privilégiera la variable impliquée dans le plus de contraintes
- Valeurs moins contraintes : on choisira une valeur laissant plus de possibilités pour les variables suivantes

Forward Checking

	WA	NT	Q	NSW	V	SA	T
Initial domains	RGB	R G B	RGB	RGB	RGB	RGB	RGB
After <i>WA=red</i>	®	G B	RGB	RGB	RGB	GВ	RGB
After <i>Q</i> =green	®	В	G	R B	RGB	В	RGB
After <i>V=blue</i>	®	В	G	R	B		RGB

Min-Conficts

```
function MIN-CONFLICTS(csp, max\_steps) returns a solution or failure
  inputs: csp, a constraint satisfaction problem
           max\_steps, the number of steps allowed before giving up
  current \leftarrow an initial complete assignment for csp
  for i = 1 to max\_steps do
      if current is a solution for csp then return current
      var \leftarrow a randomly chosen conflicted variable from csp. VARIABLES
      value \leftarrow the value v for var that minimizes CONFLICTS(var, v, current, csp)
      set var = value in current
  return failure
```

Exemple du nombre d'itérations par méthode

	Backtracking	Forward Checking	Min Conflicts
100-reines	40 000 000	40 000 000	4 000
états USA	1 000 000	2 000	64