Recitation Class 7

Zexi Li

lzx12138@sjtu.edu.cn

2021.07.20

Outline

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

The Two-Terminal MOS Structure Capacitance–Voltage Characteristics

Non-Ideal Effects

Table of Contents

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

The Two-Terminal MOS Structure Capacitance–Voltage Characteristics Non-Ideal Effects

Metal-Oxide-Semiconductor

Negative Gate Voltage

Negative Gate Voltage

Positive Gate Voltage

Positive Gate Voltage

Depletion Layer Thickness

$$\phi_{fp} = V_t \ln \left(\frac{N_a}{n_i} \right)$$
 $x_d = \left(\frac{2\varepsilon_s \phi_s}{eN_a} \right)^{1/2}$

 ϕ_s : the surface potential, is the difference (in V) between E_{Fi} measured in the bulk semiconductor and E_{Fi} measured at the surface.

Threshold Inversion Point

$$\phi_{\it s}=2\phi_{\it fp}$$

$$x_{dT} = \left(\frac{4\varepsilon_s \phi_{fp}}{eN_a}\right)^{1/2}$$

Accumulation

Depletion

$$C'(\mathsf{depl}) = \frac{C_{ox}C'_{SD}}{C_{ox} + C'_{SD}}$$

$$= \frac{\varepsilon_{ox}}{t_{ox} + \left(\frac{\varepsilon_{ox}}{\varepsilon_{s}}\right)x_{d}}$$

$$C'_{min} = \frac{\varepsilon_{ox}}{t_{ox} + \left(\frac{\varepsilon_{ox}}{\varepsilon_{ox}}\right)x_{d}T}$$

Inversion

$$C'(\mathsf{inv}) = C_{ox} = rac{arepsilon_{ox}}{t_{ox}}$$

Ideal Low-Frequency C-V Curve

Exercise

Objective Calculate C_{ox} , C'_{min} and C'_{FB} for a MOS capacitor. Consider a p-type silicon substrate at T=200K doped to $N_a=10^{16}cm^{-3}$. The oxide is silicon dioxide with a thickness of $t_{ox}=18nm=180\text{Å}$, and the gate is aluminum. (Example 10.6 on textbook)

Answer:

Frequency Effects

Two sources of electrons

- 1. Diffusion of minority carrier electrons.
- 2. Thermal generation of electron-hole pairs within the space charge region.

Work Function Difference

Not required.

Fixed Charge

Adjustment on V_T

$$\begin{split} \left|Q_{SD}'(\mathsf{max})\right| &= e N_a x_{dT} = 2 \sqrt{e \varepsilon_s N_a \phi_{fp}} \\ V_{TN} &= \frac{\left|Q_{SD}'(\mathsf{max})\right|}{C_{ox}} + V_{FB} + 2 \phi_{fp} \\ V_{TP} &= -\frac{\left|Q_{SD}'(\mathsf{max})\right|}{C_{ox}} + V_{FB} - 2 \phi_{fn} \\ V_{FB} &= \phi_{ms} - \frac{Q_{ss}'}{C_{ox}} \cdot \frac{x}{d} \end{split}$$

Surface States

Example

Objective Calculate the threshold voltage of a MOS system using an aluminum gate.

Consider a p-type silicon substrate at T=300K doped to $N_a=10^{15}cm^{-3}$. Let $Q_{ss}'=10^{10}cm^{-2}$, $t_{ox}=12cm=120\text{Å}$, and assume the oxide is silicon dioxide. $\phi_{ms}=-0.88V$. (Example 10.4 on textbook)

Answer:

End