1

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-196791

(43)Date of publication of application: 01.08.1995

(51)Int.CI.

CO8G 73/00

(21)Application number: 05-353698

(71)Applicant: NITTO CHEM IND CO LTD

(22)Date of filing:

29.12.1993

(72)Inventor: UZAWA MASASHI

SAITO TAKASHI SHIMIZU SHIGERU

TAKAYANAGI YASUYUKI

(54) SOLUBLE ANILINE-BASED ELECTRICALLY-CONDUCTIVE POLYMER AND ITS **PRODUCTION**

(57)Abstract:

PURPOSE: To obtain the subject new polymer useful for various antistatic treatments, showing high electrical conductivity, excellent solubility in water with an arbitrary pH or an organic solvent and improved coating performances.

CONSTITUTION: This soluble aniline-based electricallyconductive polymer comprises an alkoxy groupsubstituted aminobenzenesulfonic acid, its alkali metal salt, ammonium salt and/or substituted ammonium salt as a repeating unit, has ≥ about 1,900 weight-average molecular weight and is in a solid state at a normal temperature. The polymer, for example, is shown by formula I [A is H, an alkali metal or a (substituted) ammonium; R is a 1-12C alkyl; (x) is 0-1; (n) is 3-5,000 polymerization degree]. The polymer is obtained by polymerizing a sulfonic acid of formula II, its alkali metal salt or (substituted) ammonium salt with an oxidizing agent in a solution containing a basic compound.

II

LEGAL STATUS

[Date of request for examination] 02.04.1997

[Date of sending the examiner's decision of 22.06.1999

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3154460 [Date of registration] 02.02.2001

[Number of appeal against examiner's decision 11-12043

of rejection]

[Date of requesting appeal against examiner's 22.07.1999 decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-196791

(43)公開日 平成7年(1995)8月1日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 8 G 73/00

NTB

審査請求 未請求 請求項の数6 FD (全 13 頁)

(21)出願番号

特願平5-353698

(71)出願人 000003953

(22)出願日

平成5年(1993)12月29日

日東化学工業株式会社

東京都千代田区丸の内1丁目5番1号

(72)発明者 鵜沢 正志

神奈川県横浜市鶴見区大黒町10番1号 日

東化学工業株式会社中央研究所内

(72)発明者 ▲斎▼藤 隆司

神奈川県横浜市鶴見区大黒町10番1号 日

東化学工業株式会社中央研究所内

(72)発明者 清水 茂

神奈川県横浜市鶴見区大黒町10番1号 日

東化学工業株式会社中央研究所内

(74)代理人 弁理士 友松 英爾 (外1名)

最終頁に続く

(54) 【発明の名称】 可溶性アニリン系導電性ポリマーとその製造方法

(57)【要約】

(修正有)

【目的】 高い導電性を発現させると共に、いかなる p Hを示す水又は有機溶剤に対してもすぐれた溶解性を示すと共にその塗布性を向上させた可溶性アニリン系導電性ポリマー及びその製造方法の提供。

【構成】 アルコキシ基置換アミノベンゼンスルホン酸、そのアルカリ金属塩、アンモニウム塩および/または置換アンモニウム塩を繰返し単位とするポリマーであって、その重量平均分子量が約1900以上の常温固体状であることを特徴とする可溶性アニリン系導電性ポリマー。

【特許請求の範囲】

【請求項1】 アルコキシ基置換アミノベンゼンスルホ ン酸、そのアルカリ金属塩、アンモニウム塩および/ま たは置換アンモニウム塩を繰返し単位とするポリマーで あって、その重量平均分子量が約1900以上の常温固

(式中、Aは水素、アルカリ金属、アンモニウムおよび 置換アンモニウムよりなる群から独立して選ばれた基で あり、Rは炭素数1~12の直鎖または分岐のアルキル 基、xは0~1の任意の数を示し、nは重合度を示し、 3~5000の数である)で表わされるアルコキシ基置 換アミノベンゼンスルホン酸、そのアルカリ金属塩、ア ンモニウム塩および/または置換アンモニウム塩を繰返 し単位とする重合体であって、その分子量が約1900 以上の常温固体状であることを特徴とする可溶性アニリ ン系導電性ポリマー。

【請求項3】 表面抵抗値が108Ω/□ (膜厚0.1 μmで測定)のオーダー以下である請求項1または2記 載の可溶性アニリン系導電性ポリマー。

【請求項4】 酸性水溶液に可溶性である請求項1、2 または3記載の可溶性アニリン系導電性ポリマー。

【請求項5】 一般式(2)

【化2】

で示されるアルコキシ置換アミノベンゼンスルホン酸、 そのアルカリ金属塩、アンモニウム塩および/または置 換アンモニウム塩を、塩基性化合物を含む溶液中で酸化 剤により重合させることを特徴とする請求項1、2、3 または4記載の可溶性アニリン系導電性ポリマーの製造 方法。

【請求項6】 一般式(3)

【化3】

(式中、Rは炭素数1~12の直鎖または分岐のアルキ ル基を示す)または一般式(4)

【化4】

体状であることを特徴とする可溶性アニリン系導電性ポ リマー。

2

【請求項2】 一般式(1) 【化1】

..... (1)

(式中、Rは炭素数1~12の直鎖または分岐のアルキ ル基を示す)で示されるアルコキシ置換アミノベンゼン スルホン酸、そのアルカリ金属塩、アンモニウム塩およ び/または置換アンモニウム塩を、塩基性化合物を含む 溶液中で酸化剤により重合させることを特徴とする請求 項1、2、3、4または5記載の可溶性アニリン系導電 性ポリマーの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は溶媒に可溶なアニリン系 導電性ポリマー及びその製造方法に関する。該溶液はス プレー、ディップ等の簡便な手法で各種帯電防止用途に 適応可能である。

[0002]

【従来の技術と課題】ドープされたポリアニリン(導電 性ポリマー) は良く知られているが、ほとんど全ての溶 剤に不溶であり、成形、加工に難点がある。また、アニ リンを電解酸化重合する方法 (特開昭60-23583 1号公報、J. Polymer Sci. Polyme r Chem. Ed., 26, 1531 (198 8)〕は電極上にポリアニリンのフィルムを形成するこ とが可能であるが、単離操作が煩雑になること及び大量 合成が困難であるという問題がある。

【0003】また、近年ドープ剤を添加することなく導 電性を発現するアルカリ可溶性のスルホン化ポリアニリ ンとその合成法が提案されている。例えば、スルホン化 ポリアニリンの合成法としては、アニリンとm-アミノ ベンゼンスルホン酸を電気化学的に重合してスルホン化 ポリアニリンを合成する方法(日本化学会誌、198 5, 1124、特開平02-166165号公報)、o 一、m一、pーアミノベンゼンスルホン酸をそれぞれ単 独で電気化学的に重合してスルホン化ポリアニリンを合 成する方法〔日本化学会第64秋季年会 講演予稿集ⅠⅠ 706(1992))、アニリンとo-、m-アミノ

ベンゼンスルホン酸を化学的に重合してスルホン化ポリ アニリンを合成する方法(特開平01-301714号 公報)、化学的あるいは電気化学的に重合して得られた エメラルディンタイプの重合体 (ポリアニリン) を濃硫 酸でスルホン化する方法(特開昭58-21090 2)、無水硫酸/リン酸トリエチル錯体を用いてスルホ ン化する方法(特開昭61-197633号公報)、発 煙硫酸でスルホン化する方法〔 J. Am. Che Soc., (1991) 113, $2665\sim2$ 671, J. Am. Chem. Soc., (19 90) 112, 2800, WO91-06 887), ジフェニルアミンー4ースルホン酸(ナトリウム塩)を 化学的に重合し、N-置換型のスルホン化ポリアニリン 合成する方法〔Polymer, (1993) 34, 1 58~162〕などが知られている。

【0004】アニリンとmーアミノベンゼンスルホン酸を電気化学的に重合してスルホン化ポリアニリンを合成する方法(日本化学会誌、1985、1124、特開平02-166165号公報)は、生成物が電極上に形成されるため、単離操作が煩雑になること及び大量合成が困難であるという問題がある。

【0005】また、日本化学会第64秋季年会講演予稿集II 706(1992)では、アミノベンゼンスルホン酸の電解酸化による可溶性導電性高分子の合成法が説明されているが、この方法も大量合成に適しているとは言い難い。また、ペルオキソ二硫酸アンモニウムを酸化剤としてアミノベンゼンスルホン酸を化学酸化重合を行った場合は生成物は得られなかったと記されている。また、J. Am. Chem. Soc.,(1991)113, 2665~2671によるとo-,m-アミノベンゼンスルホン酸を化学的及び電気化学的に重合を試みたが成功しなかったと記されている。

【0006】更に本発明者らが酸化剤にペルオキソ二硫酸アンモニウムを用いて、プロトン酸を含む水溶液中での重合を試みたところ、同様に生成物を得ることができなかった。また、本発明者らはアルコキシ基置換アミノベンゼンスルホン酸を酸化剤にペルオキソ二硫酸アンモニウムを用いて、水溶液中での重合を試みたところオリゴマーと考えられる重合物が得られたが、導電性は低いものであった。

【0007】特開平01-301714号公報で記載されているアニリンとm-アミノベンゼンスルホン酸をペルオキソ二硫酸アンモニウムで化学的に重合する方法を本発明者らが追試したところ、芳香環5個に約1個のスルホン基が導入されるのみであった。また、特開昭61-197633号公報の方法でスルホン化した場合も同公報7頁に記載されている如く、スルホン化溶媒に対するポリアニリンの溶解性が充分でなく分散状態で反応させているため、芳香環5個に約1個のスルホン基しか導入されない。かくして得られるスルホン基導入割合の50

小さいスルホン化ポリアニリンは、導電性及び溶解性が 充分でないという問題がある。

【0008】また、J. Am. Chem. c., (1991) 113, $2665 \sim 2671$, J. Am. Chem. Soc., (1990) 112, 2800によると、ポリアニリンを発煙硫酸でスルホン 化した場合、芳香環2個に約1個のスルホン基が導入さ れると記されている。しかし、本方法でポリアニリンを 充分にスルホン化しようとした場合、発煙硫酸に対する ポリアニリンの溶解性が充分でないため、発煙硫酸が大 過剰必要とされる。また、発煙硫酸にポリアニリンを添 加する際もポリマーが固化し易いという問題がある。更 に以上の方法で合成された重合物及びそのスルホン化物 は、アンモニア及びアルキルアミン等の塩基を含む水溶 液には溶解するが水単独には溶解しないという問題もあ る。

【0009】また、Polymer (1993)34, 158~162によると、ジフェニルアミンー4ースルホン酸(ナトリウム塩)を重合した場合、ベンゼンスルホン酸基がアニリン骨格に対して1個導入されたN位置換型のスルホン化ポリアニリンが得られ水単独にも溶解するが、重合物の単離に超遠心分離操作が必要であると記されている。本発明者らが追試したところ、高溶解性のため重合溶媒中からの重合物の取得収率は低いものであり、高速遠心分離操作を行わない場合、重合物を単離することはできなかった。また、N位置換型のため、上記に示したJ.Am.Chem.Soc.,(1991)113,2665~2671の方法で合成した重合体に比べ導電性は低いものであった。

【0010】従って、ポリマーにドープ剤を添加することなく導電性を発現させ、溶解性を向上させるためにはより多くのスルホン基を主鎖の芳香環に導入する必要があると予想される。

【0011】また、塗布による成膜等の成形性を考えた場合、特に親水性、疎水性いずれの基材にも塗布可能とするためには、水及び有機溶剤の両方に溶解性のあることが望まれる。ところが、ポリアニリンのスルホン化物は、アルカリ水に対する溶解性はあるが、有機溶剤に対する溶解性が十分とはいえない。

【0012】これら諸々の問題を解決する方法として、本発明者らはアニリン、Nーアルキルアニリン及びフェニレンジアミン類よりなる群から選ばれた少なくとも一種の化合物(A)と、アミノベンゼンスルホン酸(B)とを共重合させ、更にスルホン化剤によりスルホン化することを特徴とするアニリン系共重合体スルホン化物の製造方法を提案(特開平5-178989号)した。しかし、該方法においても濃硫酸中でスルホン化する操作を必要とし、廃酸の処理が大きな問題として残る。

【0013】なお、以上の方法で合成された共重合体は何れも下式(5)の構造を持つと推定される。

【化5】

····· (5)

6

(式中、 R_1 、 R_2 、 R_3 および R_4 は、それぞれ水素、アルコキシ基およびスルホン基よりなる群から選ばれ、R' は水素又は炭素数 $1\sim 4$ のアルキル基よりなる群から選ばれ、スルホン基の割合はスルホン基が芳香環に対して $40\sim 80$ %の含有量であり、xは $0\sim 1$ の任意の数を表わし、nは重合度を示す $2\sim 1500$ の数である。)

【0014】また、更に本発明者らは、アニリン、N-アルキルアニリン及びフェニレンジアミン類よりなる群から選ばれた少なくとも一種の化合物(A)とアミノア

ニソールスルホン酸(B)とを共重合させることにより、廃棄物を大量に発生させるスルホン化操作を省略することを特徴とするアニリン系共重合体の製造方法(特願平5-48540号)を提案した。しかし、該方法において得られる共重合体においても水単独には溶解しないという問題がある。

【0015】なお、以上の方法で合成された共重合体は何れも下式(6)の構造を持つと推定される。

[化6]

..... (6)

(式中、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 、 R_6 、 R_7 又は R_8 は、それぞれ水素、アルコキシ基およびスルホン基よりなる群から選ばれ、スルホン基の割合はスルホン基が芳香環に対して $25\sim50\%$ の含有量であり、同一芳香環にアルコキシ基およびスルホン基を含有しており、R' は水素又は炭素数 $1\sim4$ のアルキル基よりなる群から選ばれ、x は、 $0\sim1$ の任意の数を表し、n は重合度 30 を示す $2\sim1500$ の数である。)

【0016】また、以上示した化学重合における重合溶 媒は水またはプロトン酸を含む水溶液を用いている。特 開平1-163263号公報によると、酸化剤としてペルオキソ二硫酸アンモニウムを用いる場合、特に p K a が3以下のプロトン酸を含むことが好ましく、アニリンの重合における溶剤としてはアニリン、プロトン酸及び酸化剤が溶解し、且つ、酸化剤によって酸化されないものが用いられると記されている。

[0017]

【発明が解決しようとしている課題】本発明の目的は、高い導電性を発現させると共に、いかなる p Hを示す水又は有機溶剤に対してもすぐれた溶解性を示すと共にその塗布性を向上させた可溶性アニリン系導電性ポリマー及びその製造方法を提供する点にある。

[0018]

【課題を解決するための手段】本発明者らは、高い導電性と溶解性を有するポリアニリンとして芳香環に対するスルホン基の導入割合の大きいスルホン化ポリアニリンの製法を鋭意検討した結果、モノマーとしてアルコキシ置換アミノベンゼンスルホン酸を、塩基性化合物を含む溶液中で、酸化剤を用いて重合すると特段に反応性が向上し、従来のスルホン基を有するアニリン類は、それ単独では化学酸化重合できないという定説に反し、重合が可能であることを見い出した。しかも、得られた導電性ポリマーは、高い導電性を示すと共に酸性~アルカリ性の何れのpHの水溶液とくに単独の水にも溶解し、更にアルコールなどの有機溶剤にも優れた溶解性を示した。

【0019】すなわち、本発明の第一は、アルコキシ基置換アミノベンゼンスルホン酸、そのアルカリ金属塩、アンモニウム塩および/または置換アンモニウム塩を繰返し単位とするポリマーであって、その重量平均分子量が約1900以上の常温固体状であることを特徴とする可溶性アニリン系導電性ポリマーに関する。

【0020】前記ポリマーは、一般式(1) 【化7】

7

H
N
OR
OR
OR
SO, A
SO, A
SO, A
SO, A

$$SO, A$$
 SO, A
 SO, A

(式中、Aは水素、アルカリ金属、アンモニウム基および置換アンモニウムよりなる群から独立して選ばれた基であり、Rは炭素数 $1\sim12$ の直鎖または分岐のアルキル基、xは $0\sim1$ の任意の数を示し、nは重合度を示し、 $3\sim5000$ の数である)で表わされるアルコキシ基置換アミノベンゼンスルホン酸、そのアルカリ金属塩、アンモニウム塩および/または置換アンモニウム塩を繰返し単位とする重合体であって、その重量平均分子量が約1900以上の常温固体状であることを特徴とする可溶性アニリン系導電性ポリマーとしても表現することができる。このポリマーは、表面抵抗値が $10^8\Omega$ /

(式中R21~R24は、水素、炭素数1~4のアルキル 基、CH3OH、CH3CH2OH よりなる群から独立 して選ばれた基である。)で示される。たとえば、メチ ルアンモニウム、ジメチルアンモニウム、トリメチルア ンモニウム、エチルアンモニウム、ジエチルアンモニウ ム、トリエチルアンモニウム、メチルエチルアンモニウ ム、ジエチルメチルアンモニウム、ジメチルエチルアン モニウム、プロピルアンモニウム、ジプロピルアンモニ ウム、イソプロピルアンモニウム、ジイソプロピルアン モニウム、ブチルアンモニウム、ジブチルアンモニウ ム、メチルプロピルアンモニウム、エチルプロピルアン モニウム、メチルイソプロピルアンモニウム、エチルイ ソプロピルアンモニウム、メチルブチルアンモニウム、 エチルブチルアンモニウム、テトラメチルアンモニウ ム、テトラメチロールアンモニウム、テトラエチルアン モニウム、テトラnーブチルアンモニウム、テトラse cーブチルアンモニウム、テトラtーブチルアンモニウ ムなどを例示することができる。なかでも、 $R_{21}\sim R_{24}$ のうち1つが水素、他の3つが炭素数1~4のアルキル 基の場合が最も好ましく、ついでR21~R24のうち2つ が水素、他の2つが炭素数1~4のアルキル基の場合が 好ましい。

【0024】環式飽和アンモニウム類としては、ピペリジニウム、ピロリジニウム、モルホリニウム、ピペラジニウム及びこれらの骨格を有する誘導体などが例示される。

【0025】環式不飽和アンモニウム類としては、ピリジニウム、 α -ピコリニウム、 β -ピコリニウム、 γ - 50

□(膜厚0.1 μmで測定)のオーダー以下であり、かつ後述の酸性溶液中で可溶性を示すという優れた特徴を発揮する。

【0021】アルカリ金属塩としては、リチウム、ナトリウム、カリウムなどが例示できる。

【0022】また、置換アンモニウムとしては、脂式アンモニウム類、環式飽和アンモニウム類、環式不飽和アンモニウム類、環式不飽和アンモニウム類などが挙げられる。

【0023】前記脂式アンモニウム類としては、下式(7)

【化8】

..... (7)

ピコリニウム、キノリニウム、イソキノリニウム、ピロ リニウム及びこれらの骨格を有する誘導体などが例示さ ゎス

【0026】前記Rの例としては、メチル、エチル、プロピル、イソプロピル、nーブチル、secーブチル、tertーブチル、ヘキシル、ヘプチル、オクチル、ナノニル、デカニル、ウンデカニルなどの基が例示できる。

【0027】また、前記xは、本方法で合成されたもの は、通常0.2~0.8の範囲のものが得られるが、過 酸化ベンゾイル、ペルオキソ二硫酸アンモニウム及び過 酸化水素などの酸化剤で酸化するとxが小さいものが得 られ、ヒドラジン、フェニルヒドラジン、水素化ホウ素 ナトリウム、水素化ナトリウムなどの還元剤で還元する とxの大きなものが得られる。本発明におけるAは、水 素、アルカリ金属、アンモニウム及び置換アンモニウム よりなる群から独立して選ばれた基であること、即ちこ れらの基が単独ではなく混合した状態でも得ることがで きる。具体的には、水酸化ナトリウム存在下で重合され た場合、単離されたポリマー中のAは、ほとんどがナト リウムの状態になっているが、酸溶液中で処理するとA のほとんどが水素に置換されたポリマーにすることがで きる。しかし、十分に酸置換を行っても、全てが水素で 置換されたものを得ることは難しい。同様に、アンモニ ア存在下重合した場合、Aの大部分はアンモニウムであ り、トリメチルアミン存在下重合した場合、Aの大部分 はトリメチルアンモニウムであり、キノリン存在下重合 した場合、Aの大部分はキノリニウムで得られる。ま

た、塩基性化合物を混合して用いた場合は、Aはこれらの混合した状態で得られる。具体的には、水酸化ナトリウムとアンモニア存在下重合された場合、単離されたポリマー中のAは、ナトリウムとアンモニウムの両方が存在した状態で得られる。また、得られたポリマーを水酸化ナトリウムとアンモニアの両方が存在する溶液で処理した場合も同様にポリマー中のAは、ナトリウムとアンモニウムの両方が存在した状態で得られる。

【0028】なお、本発明において、アルカリ水溶性とは、アニリン系導電性ポリマーを0.1Nアンモニア水 10に1重量%溶解させたとき不溶解物が発生しないことを意味し、酸性水溶性とはアニリン系導電性ポリマーを 0.1 M硫酸水溶液に1重量%溶解させたときに不溶物が発生しないことを意味し、中性水可溶性とはアニリン系導電性ポリマーを単独の水に1重量%溶解させたときに不溶物が発生しないことを意味し、有機溶剤可溶性とは、アニリン系導電性ポリマーを0.1Nアンモニアアルコール溶液に1重量%溶解させたとき不溶解物が発生しないことを意味している。

【0029】本発明の第二は、一般式(2)

(式中、Rは炭素数1~12、好ましくは炭素数1~8、更に好ましくは炭素数1~4の直鎖または分岐のアルキル基を表す)で示されるアルコキシ置換アミノベンゼンスルホン酸、そのアルカリ金属塩、アンモニウム塩および/または置換アンモニウム塩を、塩基性化合物を含む溶液中で酸化剤により重合させることを特徴とする請求項1、2、3または4記載の可溶性アニリン系導電性ポリマーの製造方法に関する。前記一般式(2)の化合物は、スルホン基に対してアミノ基が0位またはm位に結合しているものの方が得られるポリマーの導電性、溶解性などの性能が優れている。

【0030】前記アルコキシ基置換アミノベンゼンスルホン酸類として最も代表的なものは、アミノアニソールスルホン酸類であり、具体的には2-アミノアニソール-3-スルホン酸、2-アミノアニソール-5-スルホン酸、2-ア

(式中、 $R_{11} \sim R_{13}$ は、それぞれ水素、炭素数 $1 \sim 4$ の アルキル基、 CH_2OH および CH_2OH よりなる 群から独立して選ばれた基である。)で示される化合

ミノアニソールー6ースルホン酸, 3ーアミノアニソールー2ースルホン酸, 3ーアミノアニソールー4ースルホン酸, 3ーアミノアニソールー5ースルホン酸, 3ーアミノアニソールー6ースルホン酸, 4ーアミノアニソールー3ースルホン酸などを挙げることができるが、とくに2ーアミノアニソールー3ースルホン酸, 2ーアミノアニソールー4ースルホン酸, 2ーアミノアニソールー6ースルホン酸, 3ーアミノアニソールー2ースルホン酸, 3ーアミノアニソールー2ースルホン酸, 3ーアミノアニソールー5ースルホン酸が好ましく用いられる。

【0031】その他のアルコキシ基置換アミノベンゼン スルホン酸としては、2-アミノ-4-エトキシベンゼ ンスルホン酸, 3-アミノ-4-エトキシベンゼンスル ホン酸、2-アミノー4-ブトキシベンゼンスルホン 酸, 3-アミノ-5-ブトキシベンゼンスルホン酸, 2 -アミノ-4-プロポキシベンゼンスルホン酸, 3-ア ミノー6-プロポキシベンゼンスルホン酸, 2-アミノ 4-イソブトキシベンゼンスルホン酸、3-アミノー 4-イソプトキシベンゼンスルホン酸, 3-アミノ-4 **- t -ブトキシベンゼンスルホン酸,2 - アミノ - 4** t-ブトキシベンゼンスルホン酸, 2-アミノ-4-ヘ プトキシベンゼンスルホン酸,3-アミノ-5-ヘプト キシベンゼンスルホン酸、2-アミノ-4-ヘキソオキ シベンゼンスルホン酸、3-アミノ-5-オクトキシベ ンゼンスルホン酸, 2-アミノ-4-ナノキシベンゼン スルホン酸、3-アミノ-5-デカノキシベンゼンスル ホン酸、2-アミノー4-ウンデカノキシベンゼンスル ホン酸, 3-アミノ-5-ドデカノキシベンゼンスルホ ン酸などを挙げることができる。これらのアルコキシ基 置換アミノベンゼンスルホン酸類はそれぞれ単独で用い ても、また異性体を任意の割合で混合したものを用いて も良い。

【0032】次に、本発明で用いられる塩基性化合物としては、前記アルコキシ基置換アミノベンゼンスルホン酸類と塩を形成する化合物であればどのような化合物でも良いが、脂式アミン類、環式飽和アミン類、環式不飽和アミン類、無機塩基などが好ましく用いられる。

【0033】脂式アミン類としては、下式(8) 【化10】

物、または一般式 (9) 【化 1 1】

11

$$R_{14}$$

|

 $R_{15} - N^{+} - R_{17} \cdot OH^{-}$

|

 R_{15}

(式中、 $R_{14} \sim R_{17}$ はそれぞれ水素、炭素数 $1 \sim 4$ のアルキル基、 CH_2OH および CH_2CH_2OH よりなる群から独立して選ばれた基である。)で示されるハイドロキサイド化合物を挙げることができる。

【0034】環式飽和アミン類としては、ピペリジン、ピロリジン、モルホリン、ピペラジン及びこれらの骨格を有する誘導体及びこれらのアンモニウムヒドロキシド化合物などが好ましく用いられる。

【0035】環式不飽和アミン類としては、ピリジン、 α ーピコリン、 β ーピコリン、 γ ーピコリン、キノリン、イソキノリン、ピロリン及びこれらの骨格を有する誘導体及びこれらのアンモニウムヒドロキシド化合物などが好ましく用いられる。

【0036】無機塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化物の塩およ 20 びアンモニア水などが好ましく用いられる。

【0037】これら塩基性化合物の濃度は0.1mol/l以上、好ましくは0.1~10.0mol/l、更に好ましくは0.2~8.0mol/lの範囲で用いられる。この際、0.1mol/l以下の場合、得られるポリマーの収率が低下し、10.0mol/l以上の場合、導電性が低下する傾向を示す。前記塩基性化合物は、それぞれ任意の割合で混合して用いることもできる。

【0038】重合又は共重合は、これら塩基性化合物を含む溶液中、酸化剤で酸化重合することにより行う。溶媒は、水、メタノール、エタノール、イソプロパノール、アセトニトリル、メチルイソブチルケトン、メチルエチルケトン、ジメチルホルムアミド、ジメチルアセトアミド等が好ましく用いられる。

.....(9)

【0039】また、酸化剤は、標準電極電位が0.6V以上である酸化剤であれば特に限定されないが、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム及びペルオキソ二硫酸カリウムなどのペルオキソ二硫酸類、過酸化水素等が好ましく用いられ、モノマー1モルに対して0.1~5モル、好ましくは0.5~5モル用いられる。またこの際、触媒として鉄、銅などの遷移金属化合物を添加することも有効である。

12

【0040】反応温度は、マイナス $15\sim70$ $\mathbb C$ の温度 範囲で行うのが好ましく、更に好ましくはマイナス $5\sim60$ $\mathbb C$ の範囲が適用される。ここで、マイナス15 $\mathbb C$ 以下、又は70 $\mathbb C$ 以上では、導電性が低下する傾向がある。

【0041】かくして得られたすべての芳香環にスルホン基を含有する可溶性アニリン系導電性ポリマーは重合度が、3~5000、好ましくは5~5000であり、分子量は約1900~3240000、好ましくは3200~324000である。このポリマーは更にスルホン化操作を施すことなく、単なる水、アンモニア及びアルキルアミン等の塩基又は酢酸アンモニウム、シュウ酸アンモニウム等の塩基及び塩基性塩を含む水、塩酸及び硫酸等の酸を含む水又はメチルアルコール、エチルアルコール、イソプロピルアルコール等の溶媒又はそれらの混合物に溶解することができる。

【0042】本発明のポリマーと従来型ポリマー〔式(4)または(5)のもの〕との溶解特性の概略を表1に示す。

【表1】

	本 発 明			従 来 型		
	アルカリ性	中性	酸性	アルカリ性	中性	酸性
SO3H型	,	0	0	0	0	×
SO ₃ M型 *)	0	0	0	0	×	×

○:可溶性

×:不溶性

*) S O₃ M型とは、スルホン酸塩の型の場合を意味する。

[0043]

【実施例】以下実施例を挙げて説明する。なお、1Rスペクトルはパーキンエルマー製model 1600、紫外可視スペクトルは島津製作所製UV-3100の装

置を用いて測定した。分子量分布及び分子量の測定には、N,Nージメチルホルムアミド用のGPCカラムを用いて、GPC測定(ポリスチレン換算)を行った。カラムは、N,Nージメチルホルムアミド用のものを3種類連結して用いた。また、溶離液には10mM/1トリエチルアミンと100mM/1臭化リチウムのN,Nージメチルホルムアミド溶液を用いた。導電性は、導電率の測定には4端子法、表面抵抗の測定には2端子法を用いた。

【0044】実施例1

2-アミノアニソールー4-スルホン酸100mmolを25℃で4モル/リットルのアンモニア水溶液に撹拌溶解し、ペルオキソニ硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後25℃で12時間更に撹拌したのち、反応生成物を濾別洗浄後乾燥し、重合体粉末15gを得た。このものの体積抵抗値は9.0Ωcmであった。上記重合体3重量部を0.2モル/リットルの硫酸水溶液100重量部に室温で撹拌溶解し導電性組成物を調製した。このようにして得られた溶液をガラ

水

- 0. 1モル/リットルの硫酸水溶液
- 0. 1モル/リットルのアンモニア水

であった。

【0045】実施例2

2-アミノアニソール-4-スルホン酸100mmol を4℃で4モル/リットルのトリメチルアミン水溶液に 撹拌溶解し、ペルオキソ二硫酸アンモニウム 100 mm olの水溶液を滴下した。滴下終了後25℃で6時間更 に撹拌したのち、反応生成物を濾別洗浄後乾燥し、重合 体粉末12gを得た。この重合体を1モル/リットルP TSのアセトン溶液中で1時間撹拌し濾別洗浄後、乾燥 しスルホン基がフリーの重合体の粉末10gを得た。こ のものの体積抵抗値は5.5Ωcmであった。上記重合 体1重量部を水100重量部に室温で撹拌溶解し導雷性 組成物を調製した。該組成物のpHは約3.5であった ことより、ポリマー中のスルホン酸基の約80%以上が フリーの状態であると推定される。このようにして得ら れた溶液をガラス基板上にキャスト法により塗布し、1 00℃で乾燥させた。膜厚0.1 μ m表面の平滑な表面 抵抗値 6. $0 \times 10^7 \Omega / \square$ のフィルムが得られた。図 2は、実施例2にて合成した導電性ポリマーの0.1モ ル/リットルの硫酸水溶液中における190nmから9 00 n mの紫外可視スペクトルであり、図3は、実施例 2にて合成した導電性ポリマーの水溶液中における19 0 n m から 9 0 0 n m の紫外可視スペクトルであり、図 4は、実施例2にて合成した導電性ポリマーの0.2モ ル/リットルのアンモニア水溶液中における190nm から900nmの紫外可視スペクトルである。図5は、 実施例2にて合成した導電性ポリマー (スルホン酸基フ リー型)のIRスペクトルを示す。

ス基板上にスピンコート法により塗布し、100℃で乾 燥させた。膜厚0.1μm表面の平滑な表面抵抗値3. 5×10⁶Ω/□のフィルムが得られた。図1は、実施 例1にて合成した導電性ポリマーの分子量測定における チャートである。分子量分布及び分子量の測定には、 N, N-ジメチルホルムアミド用のGPCカラムを用い て、GPC測定(ポリスチレン換算)を行った。カラム は、N, N-ジメチルホルムアミド用のものを3種類連 結して用いた。また、溶離液には0.01モル/リット ルのトリエチルアミンと 0.1モル/リットルの臭化リ チウムのN, N-ジメチルホルムアミド溶液を用いた。 測定の結果、数平均分子量200,000、重量平均分 子量330,000、Z平均分子量383,000、分 散度MW/MN1. 64、MZ/MW1. 16であっ た。水、0.1モル/リットルの硫酸水溶液又は0.1 モル/リットルのアンモニア水10mlにポリマーを少 量ずつ加えて溶解しなくなったところで濾過し、溶解量 を求めたところ、実施例1にて合成した導電性ポリマー の溶解性は、

210mg/ml 205mg/ml

 $190 \,\mathrm{mg/ml}$

IRスペクトルの帰属は次の通りである。

スルホン基:1120、1020cm⁻¹ 付近の吸収 スルホン基のアンモニウム塩:1400cm⁻¹ 付近の吸 収

ポリマーの骨格: 1500cm⁻¹ 付近の吸収 【0046】実施例3

2-Pミノアニソールー4ースルホン酸100mmolを4 $^\circ$ で4モル/リットルのキノリン水溶液に撹拌溶解し、ペルオキソ二硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後25 $^\circ$ で12時間更に撹拌したのち、反応生成物を濾別洗浄後乾燥し、重合体粉末16gを得た。このものの体積抵抗値は11.0 $^\circ$ Cmであった。上記重合体3重量部を水100重量部に室温で撹拌溶解し導電性組成物を調製した。該組成物の $^\circ$ PHは約6.0であったことより、ポリマー中のスルホン酸基の約20 $^\circ$ 以上が塩を形成していると推定される。このようにして得られた溶液を、 $^\circ$ PETフィルム上にスピンコート法により塗布し、 $^\circ$ Cで乾燥させた。膜厚0.1 $^\circ$ m表面の平滑な表面抵抗値6.0×10 $^\circ$ Q/ $^\circ$ Dのフィルムが得られた。

【0047】実施例4

3-アミノー4-エトキシベンゼンスルホン酸100m molを25 $\mathbb C$ で3 モル/リットルの2-メチルピリジン $(\alpha-$ ピコリン)水溶液に撹拌溶解し、ペルオキソニ 硫酸アンモニウム 100mmolox の水溶液を滴下した。滴下終了後 25 $\mathbb C$ で 12 時間更に撹拌したのち、反応生成物を濾別洗浄後乾燥し、重合体粉末 14g を得た。このものの体積抵抗値は8.40cmであった。上記重合

16

体3重量部を水/イソプロピルアルコール(7/3) 100重量部に室温で撹拌溶解し導電性組成物を調製した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、120℃で乾燥させた。膜厚 0.1μ m表面の平滑な表面抵抗値 4.5×10^6 $\Omega/$ \square のフィルムが得られた。

【0048】実施例5

2-アミノアニソールー4-スルホン酸100mmolを10℃で4モル/リットルのトリエタノールアミン水溶液に撹拌溶解し、ペルオキソ二硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後25℃で12時間更に撹拌したのち、反応生成物を濾別洗浄後乾燥し、重合体粉末12gを得た。このものの体積抵抗値は12Ωcmであった。上記重合体3重量部を水溶性ポリエステル樹脂「アラスター300」 {荒川化学工業

(株)製100重量部を水100重量部に室温で撹拌溶解し導電性組成物を調製した。このようにして得られた溶液を深度 35μ mのグラビアコーターにより PET フィルム上に塗布し、70 $\mathbb C$ で乾燥させた。 膜厚 0.5μ m表面の平滑な表面抵抗値 $4.5\times10^6\Omega$ $\mathbb C$ $\mathbb C$

【0049】実施例6

2-アミノアニソールー4ースルホン酸100 mm ol を25 %で4モル/リットルのピペリジン水溶液に撹拌溶解し、ペルオキソ二硫酸アンモニウム100 mm ol の水溶液を滴下した。滴下終了後25 % で12 時間更に撹拌したのち、反応生成物を濾別洗浄後乾燥し、重合体粉末15 gを得た。このものの体積抵抗値は18 0 cm であった。上記重合体2 重量部を0. 2 モル/リットルのアンモニア水100 重量部に室温で撹拌溶解し導電性組成物を調製した。このようにして得られた溶液を、PETフィルム上にスピンコート法により塗布し、80 % で乾燥させた。膜厚0. 1 μ m表面の平滑な表面抵抗値4. 0×10^7 Ω / \Box のフィルムが得られた。

【0050】実施例7

 $3-アミノ-4-エトキシベンゼンスルホン酸100mmolを4℃で3モル/リットルの水酸化ナトリウム水溶液に撹拌溶解し、ペルオキソ二硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後25℃、6時間更に撹拌したのち、反応生成物を濾別洗浄後乾燥し、重合体粉末15gを得た。このものの体積抵抗値は20<math>\Omega$ cmであった。この重合体を1モル/リットルのPTSのアセトン溶液中で1時間撹拌し、濾別洗浄後、乾燥しスルホン酸基がフリーの重合体粉末10gを得た。上記重合体3重量部を水100重量部に室温で撹拌溶解し導電性組成物を調製した。該組成物の粘度は2.75cp(25℃)であった。この粘度はウベローデ粘度計を用いて測定した。該組成物のpHは約3.8であ

ったことより、ポリマー中のスルホン酸基の約80%以上がフリーの状態であることが推定される。このようにして得られた溶液をガラス基板上にスピンコート法により塗布し、80 $^{\circ}$ で乾燥させた。膜厚0.1 $_{\mu}$ m表面の平滑な表面抵抗値8.0 $^{\circ}$ 1 $_{\mu}$ 7 $_{\mu}$ 7 $_{\mu}$ 7 $_{\mu}$ 7 $_{\mu}$ 8 $_{\mu}$ 9 $_{\mu}$ 9 $_{\mu}$ 1 $_{\mu}$ 9 $_{\mu}$ 9 $_{\mu}$ 1 $_{\mu$

【0051】比較例1

2-アミノアニソールー4-スルホン酸100mmo1を4℃で水に撹拌懸濁させ、ペルオキソ二硫酸アンモニウム100mmo1の水溶液を滴下した。滴下終了後25℃、12時間更に撹拌したのち、反応液を減圧留去し濃縮物を単離洗浄後、乾燥し重合体粉末6gを得た。このものの体積抵抗値は $>10^6\Omega$ cmであった。上記重合体3重量部を水100重量部に室温で撹拌溶解し導電性組成物を調製した。このようにして得られた溶液を、PETフィルム上にスピンコート法により塗布し、80℃で乾燥させた。膜厚 0.1μ mの成膜性の低い表面抵抗値 $6.0 \times 10^{12}\Omega$ □以上のフィルムが得られた。【0052】比較例2

2-アミノアニソールー4-スルホン酸100mmolを25℃で1モル/リットルの硫酸水溶液に撹拌懸濁させ、ペルオキソ二硫酸アンモニウム100mmolの1モル/リットルの硫酸水溶液を滴下した。滴下終了後25℃で12時間更に撹拌したのち、反応液を減圧留去し、濃縮物を単離洗浄後乾燥し、重合体粉末3gを得た。このものの体積抵抗値は>10°Ωcmであった。上記重合体3重量部を水100重量部に室温で撹拌溶解し導電性組成物を調製した。このようにして得られた溶液をガラス基板上にスピンコート法により塗布したが、オリゴマーのため膜は形成されなかった。

【0053】比較例3

アニリン系導電性ポリマーとして、スルホン化ポリアニ リンを概知の方法〔J. Am. Chem. Soc., (1991), 113, 2665-2666] に従って 合成した。なお、得られたスルホン基の含有量は芳香環 に対して52%であった。上記スルホン化ポリアニリン 3重量部を0.2モル/リットル硫酸水溶液100重量 部に室温混合し導電性組成物を調製した。このようにし て得られた溶液をガラス基板上にスピンコート法により 塗布したが、0. 2モル/リットルの硫酸水溶液にスル ホン化ポリアニリンは不溶であったため膜は形成されな かった。図7は、比較例3(従来法)により合成した導 電性ポリマーの0.2モル/リットルのアンモニア水溶 液中における190nmから900nmの紫外可視スペ クトルである。比較例3で合成したポリマーは、水溶液 や酸性水溶液には不溶のため、これらの溶液中では測定 はできなかった。比較例3(従来法)にて合成した導電 性ポリマーの溶解性は、

- 0. 1モル/リットルの硫酸水溶液
- 0 m g / m 1
- 0. 1モル/リットルのアンモニア水 50mg/ml

であった。

[0054]

【効果】本発明は、ベンゼン核のすべてにスルホン基とアルコキシ基を持たせることにより、高い導電性とともに、アルカリ性、中性(とくに単なる水)、酸性のすべてのpHをもつ水溶液およびアルコールなどの有機溶剤に対して優れた溶解性を示す新規なポリアニリン系ポリマーを提供することができた。本発明により、従来スル 10 ホン基を有するアニリン類は、単独では化学酸化重合はしないとされていた固定観念を打破することができた。

【図面の簡単な説明】

【図1】図1は、実施例1にて合成した導電性ポリマー の分子量測定におけるチャートである。

【図2】図2は、実施例2にて合成した導電性ポリマーの0.1モル/リットルの硫酸水溶液中における190 nmから900nmの紫外可視スペクトルである。

【図3】図3は、実施例2にて合成した導電性ポリマーの水溶液中における190nmから900nmの紫外可視スペクトルである。

【図4】図4は、実施例2にて合成した導電性ポリマーの0.2モル/リットルのアンモニア水溶液中における190nmから900nmの紫外可視スペクトルである。

- 【図5】図5は、実施例2にて合成した導電性ポリマー (スルホン酸基フリー型)のIRスペクトルを示す。
 - 【図6】図6は、実施例5にて合成した導電性ポリマー (塩型)のIRスペクトルを示す。

【図7】図7は、比較例3(従来法)にて合成した導電性ポリマーの0.2モル/リットルのアンモニア水溶液中における190nmから900nmの紫外可視スペクトルである。

【図1】

[図2]

【図7】

フロントページの続き

(72)発明者 高柳 恭之 神奈川県横浜市鶴見区大黒町10番1号 日 東化学工業株式会社中央研究所内