# Digital Logic Circuits 'Boolean Algebra' ELEC2200 Summer 2009

David J. Broderick brodedj@auburn.edu http://www.auburn.edu/~brodedj Office: Broun 360



# Boolean Algebra

- Developed by George Boole of Bell Labs (1849)
- Originally termed Switching Algebra as it described the math of relay circuits
- Classical Algebra manipulates expressions comprised of real-valued variables and joined by operators such as: Add, Subtract, Multiply, Divide
- Boolean Algebra manipulates expressions comprised of binary-valued variables and joined by operators such as: And, Or, Not
- Other operators can be built from these



# Boolean Attributes (Operators)

- Complement, Invert,
   Not
- Two notations: A' and

| Α | A |
|---|---|
| 0 | 1 |
| 1 | 0 |



- And
- Notated as A-B

| Α | В | A·B |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |





# Boolean Attributes (Operators)

Or

Notated as A+B

| Α | В     | A+B |
|---|-------|-----|
| 0 | 0     | 0   |
| 0 | 0 1 1 |     |
| 1 | 0     | 1   |
| 1 | 1     | 1   |





# Operator Precedence

```
Order:
(1)Parentheses
(2)Not
(3)And
(4)Or
```

(5)Left to Right

When in doubt, use parentheses.



Identity

$$A+0=A$$
  
 $A\cdot 1=A$ 

Complements

$$A+\overline{A}=1$$
 $A\cdot\overline{A}=0$ 

| Α | В   | A+0 |
|---|-----|-----|
| 0 | 0   | 0   |
| 0 | 1 1 |     |
| 1 | 0   | 1   |
| 1 | 1   | 1   |

| Α | В   | A·1 |
|---|-----|-----|
| 0 | 0   | 0   |
| 0 | 1 0 |     |
| 1 | 0   | 0   |
| 1 | 1   | 1   |

| A     | В | A+A |
|-------|---|-----|
| 0     | 0 | 0   |
| 0 1 1 |   | 1   |
| 1     | 0 | 1   |
| 1     | 1 | 1   |

| Α | В | $A \cdot \overline{A}$ |
|---|---|------------------------|
| 0 | 0 | 0                      |
| 0 | 1 | 0                      |
| 1 | 0 | 0                      |
| 1 | 1 | 1                      |



### Commutativity

$$A+B=B+A$$

$$A \cdot B = B \cdot A$$

| Α | В | A+B | B+A |
|---|---|-----|-----|
| 0 | 0 | 0   | 0   |
| 0 | 1 | 1   | 1   |
| 1 | 0 | 1   | 1   |
| 1 | 1 | 1   | 1   |

| A | В | A·B | B·A |
|---|---|-----|-----|
| 0 | 0 | 0   | 0   |
| 0 | 1 | 0   | 0   |
| 1 | 0 | 0   | 0   |
| 1 | 1 | 1   | 1   |



Associativity

$$(A+B)+C=A+(B+C)$$

 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ 

| Α | В | С |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A+B |
|---|---|---|-----|
| 0 | 0 | 0 | 0   |
| 0 | 0 | 1 | 0   |
| 0 | 1 | 0 | 1   |
| 0 | 1 | 1 | 1   |
| 1 | 0 | 0 | 1   |
| 1 | 0 | 1 | 1   |
| 1 | 1 | 0 | 1   |
| 1 | 1 | 1 | 1   |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A+B | (A+B)+C |
|---|---|---|-----|---------|
| 0 | 0 | 0 | 0   | 0       |
| 0 | 0 | 1 | 0   | 1       |
| 0 | 1 | 0 | 1   | 1       |
| 0 | 1 | 1 | 1   | 1       |
| 1 | 0 | 0 | 1   | 1       |
| 1 | 0 | 1 | 1   | 1       |
| 1 | 1 | 0 | 1   | 1       |
| 1 | 1 | 1 | 1   | 1       |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A+B | (A+B)+C | B+C |
|---|---|---|-----|---------|-----|
| 0 | 0 | 0 | 0   | 0       | 0   |
| 0 | 0 | 1 | 0   |         | 1   |
| 0 | 1 | 0 | 1   | 1       | 1   |
| 0 | 1 | 1 | 1   | 1       | 1   |
| 1 | 0 | 0 | 1   | 1       | 0   |
| 1 | 0 | 1 | 1   | 1       | 1   |
| 1 | 1 | 0 | 1   | 1       | 1   |
| 1 | 1 | 1 | 1   | 1       | 1   |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A+B | (A+B)+C | B+C | A+(B+C) |
|---|---|---|-----|---------|-----|---------|
| 0 | 0 | 0 | 0   | 0       | 0   | 0       |
| 0 | 0 | 1 | 0   |         | 1   | 1       |
| 0 | 1 | 0 | 1   | 1       | 1   | 1       |
| 0 | 1 | 1 | 1   | 1       | 1   | 1       |
| 1 | 0 | 0 | 1   | 1       | 0   | 1       |
| 1 | 0 | 1 | 1   | 1       | 1   | 1       |
| 1 | 1 | 0 | 1   | 1       | 1   | 1       |
| 1 | 1 | 1 | 1   | 1       | 1   | 1       |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A+B | (A+B)+C | B+C | A+(B+C) |
|---|---|---|-----|---------|-----|---------|
| 0 | 0 | 0 | 0   | 0       | 0   | 0       |
| 0 | 0 | 1 | 0   | 1       | 1   | 1       |
| 0 | 1 | 0 | 1   | 1       | 1   | 1       |
| 0 | 1 | 1 | 1   | 1       | 1   | 1       |
| 1 | 0 | 0 | 1   | 1       | 0   | 1       |
| 1 | 0 | 1 | 1   | 1       | 1   | 1       |
| 1 | 1 | 0 | 1   | 1       | 1   | 1       |
| 1 | 1 | 1 | 1   | 1       | 1   | 1       |



Associativity

$$(A+B)+C=A+(B+C)$$

 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ 

| Α | В | С |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A·B |
|---|---|---|-----|
| 0 | 0 | 0 | 0   |
| 0 | 0 | 1 | 0   |
| 0 | 1 | 0 | 0   |
| 0 | 1 | 1 | 0   |
| 1 | 0 | 0 | 0   |
| 1 | 0 | 1 | 0   |
| 1 | 1 | 0 | 1   |
| 1 | 1 | 1 | 1   |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A·B | (A·B)·C |
|---|---|---|-----|---------|
| 0 | 0 | 0 | 0   | 0       |
| 0 | 0 | 1 | 0   | 0       |
| 0 | 1 | 0 | 0   | 0       |
| 0 | 1 | 1 | 0   | 0       |
| 1 | 0 | 0 | 0   | 0       |
| 1 | 0 | 1 | 0   | 0       |
| 1 | 1 | 0 | 1   | 0       |
| 1 | 1 | 1 | 1   | 1       |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A· <mark>B</mark> | (A·B)·C | B·C |
|---|---|---|-------------------|---------|-----|
| 0 | 0 | 0 | 0                 | 0       | 0   |
| 0 | 0 | 1 | 0                 | 0       | 0   |
| 0 | 1 | 0 | 0                 | 0       | 0   |
| 0 | 1 | 1 | 0                 | 0       | 1   |
| 1 | 0 | 0 | 0                 | 0       | 0   |
| 1 | 0 | 1 | 0                 | 0       | 0   |
| 1 | 1 | 0 | 1                 | 0       | 0   |
| 1 | 1 | 1 | 1                 | 1       | 1   |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A· <mark>B</mark> | (A·B)·C | B·C | A·(B·C) |
|---|---|---|-------------------|---------|-----|---------|
| 0 | 0 | 0 | 0                 | 0       | 0   | 0       |
| 0 | 0 | 1 | 0                 | 0       | 0   | 0       |
| 0 | 1 | 0 | 0                 | 0       | 0   | 0       |
| 0 | 1 | 1 | 0                 | 0       | 1   | 0       |
| 1 | 0 | 0 | 0                 | 0       | 0   | 0       |
| 1 | 0 | 1 | 0                 | 0       | 0   | 0       |
| 1 | 1 | 0 | 1                 | 0       | 0   | 0       |
| 1 | 1 | 1 | 1                 | 1       | 1   | 1       |



$$(A+B)+C=A+(B+C)$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

| Α | В | С | A·B | (A·B)·C | B·C | A·(B·C) |
|---|---|---|-----|---------|-----|---------|
| 0 | 0 | 0 | 0   | 0       | 0   | 0       |
| 0 | 0 | 1 | 0   | 0       | 0   | 0       |
| 0 | 1 | 0 | 0   | 0       | 0   | 0       |
| 0 | 1 | 1 | 0   | 0       | 1   | 0       |
| 1 | 0 | 0 | 0   | 0       | 0   | 0       |
| 1 | 0 | 1 | 0   | 0       | 0   | 0       |
| 1 | 1 | 0 | 1   | 0       | 0   | 0       |
| 1 | 1 | 1 | 1   | 1       | 1   | 1       |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

|   |   | 1 [ |     |
|---|---|-----|-----|
| Α | В | C   | A+B |
| 0 | 0 | 0   | 0   |
| 0 | 0 | 1   | 0   |
| 0 | 1 | 0   | 1   |
| 0 | 1 | 1   | 1   |
| 1 | 0 | 0   | 1   |
| 1 | 0 | 1   | 1   |
| 1 | 1 | 0   | 1   |
| 1 | 1 | 1   | 1   |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A+B | A+C |
|---|---|---|-----|-----|
| 0 | 0 | 0 | 0   | 0   |
| 0 | 0 | 1 | 0   | 1   |
| 0 | 1 | 0 | 1   | 0   |
| 0 | 1 | 1 | 1   | 1   |
| 1 | 0 | 0 | 1   | 1   |
| 1 | 0 | 1 | 1   | 1   |
| 1 | 1 | 0 | 1   | 1   |
| 1 | 1 | 1 | 1   | 1   |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A+B | A+C | (A+B)·(A+C) |
|---|---|---|-----|-----|-------------|
| 0 | 0 | 0 | 0   | 0   | 0           |
| 0 | 0 | 1 | 0   | 1   | 0           |
| 0 | 1 | 0 | 1   | 0   | 0           |
| 0 | 1 | 1 | 1   | 1   | 1           |
| 1 | 0 | 0 | 1   | 1   | 1           |
| 1 | 0 | 1 | 1   | 1   | 1           |
| 1 | 1 | 0 | 1   | 1   | 1           |
| 1 | 1 | 1 | 1   | 1   | 1           |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A+B | A+C | (A+B)·(A+C) | B·C |
|---|---|---|-----|-----|-------------|-----|
| 0 | 0 | 0 | 0   | 0   | 0           | 0   |
| 0 | 0 | 1 | 0   | 1 _ | 0           | 0   |
| 0 | 1 | 0 | 1   | 0   | 0           | 0   |
| 0 | 1 | 1 | 1   | 1   | 1           | 1   |
| 1 | 0 | 0 | 1   | 1   | 1           | 0   |
| 1 | 0 | 1 | 1   | 1   | 1           | 0   |
| 1 | 1 | 0 | 1   | 1   | 1           | 0   |
| 1 | 1 | 1 | 1   | 1   | 1           | 1   |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A+B | A+C | (A+B)·(A+C) | B·C | A+(B·C) |
|---|---|---|-----|-----|-------------|-----|---------|
| 0 | 0 | 0 | 0   | 0   | 0           | 0   | 0       |
| 0 | 0 | 1 | 0   | 1 4 | 0           | 0   | 0       |
| 0 | 1 | 0 | 1   | 0   | 0           | 0   | 0       |
| 0 | 1 | 1 | 1   | 1   | 1           | 1   | 1       |
| 1 | 0 | 0 | 1   | 1   | 1           | 0   | 1       |
| 1 | 0 | 1 | 1   | 1   | 1           | 0   | 1       |
| 1 | 1 | 0 | 1   | 1   | 1           | 0   | 1       |
| 1 | 1 | 1 | 1   | 1   | 1           | 1   | 1       |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A+B | A+C | (A+B)·(A+C) | B·C | A+(B·C) |
|---|---|---|-----|-----|-------------|-----|---------|
| 0 | 0 | 0 | 0   | 0   | 0           | 0   | 0       |
| 0 | 0 | 1 | 0   | 1   | 0           | 0   | 0       |
| 0 | 1 | 0 | 1   | 0   | 0           | 0   | 0       |
| 0 | 1 | 1 | 1   | 1   | 1           | 1   | 1       |
| 1 | 0 | 0 | 1   | 1   | 1           | 0   | 1       |
| 1 | 0 | 1 | 1   | 1   | 1           | 0   | 1       |
| 1 | 1 | 0 | 1   | 1   | 1           | 0   | 1       |
| 1 | 1 | 1 | 1   | 1   | 1           | 1   | 1       |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A·B |
|---|---|---|-----|
| 0 | 0 | 0 | 0   |
| 0 | 0 | 1 | 0   |
| 0 | 1 | 0 | 0   |
| 0 | 1 | 1 | 0   |
| 1 | 0 | 0 | 0   |
| 1 | 0 | 1 | 0   |
| 1 | 1 | 0 | 1   |
| 1 | 1 | 1 | 1   |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A·B | A·C |
|---|---|---|-----|-----|
| 0 | 0 | 0 | 0   | 0   |
| 0 | 0 | 1 | 0   | 0   |
| 0 | 1 | 0 | 0   | 0   |
| 0 | 1 | 1 | 0   | 0   |
| 1 | 0 | 0 | 0   | 0   |
| 1 | 0 | 1 | 0   | 1   |
| 1 | 1 | 0 | 1   | 0   |
| 1 | 1 | 1 | 1   | 1   |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A·B | A·C | (A·B)+<br>(A·C) |
|---|---|---|-----|-----|-----------------|
| 0 | 0 | 0 | 0   | 0   | 0               |
| 0 | 0 | 1 | 0   | 0   | 0               |
| 0 | 1 | 0 | 0   | 0   | 0               |
| 0 | 1 | 1 | 0   | 0   | 0               |
| 1 | 0 | 0 | 0   | 0   | 0               |
| 1 | 0 | 1 | 0   | 1   | 1               |
| 1 | 1 | 0 | 1   | 0   | 1               |
| 1 | 1 | 1 | 1   | 1   | 1               |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A·B | A·C | (A·B)+ | B+C |
|---|---|---|-----|-----|--------|-----|
|   |   |   |     |     | (A·C)  |     |
| 0 | 0 | 0 | 0   | 0   | 0      | 0   |
| 0 | 0 | 1 | 0   | 0   | 0      | 1   |
| 0 | 1 | 0 | 0   | 0   | 0      | 1   |
| 0 | 1 | 1 | 0   | 0   | 0      | 1   |
| 1 | 0 | 0 | 0   | 0   | 0      | 0   |
| 1 | 0 | 1 | 0   | 1   | 1      | 1   |
| 1 | 1 | 0 | 1   | 0   | 1      | 1   |
| 1 | 1 | 1 | 1   | 1   | 1      | 1   |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| Α | В | С | A·B | A·C | (A·B)+<br>(A·C) | В+С | A·(B+C) |
|---|---|---|-----|-----|-----------------|-----|---------|
| 0 | 0 | 0 | 0   | 0   | 0               | 0   | 0       |
| 0 | 0 | 1 | 0   | 0   | 0               | 1   | 0       |
| 0 | 1 | 0 | 0   | 0   | 0               | 1   | 0       |
| 0 | 1 | 1 | 0   | 0   | 0               | 1   | 0       |
| 1 | 0 | 0 | 0   | 0   | 0               | 0   | 0       |
| 1 | 0 | 1 | 0   | 1   | 1               | 1   | 1       |
| 1 | 1 | 0 | 1   | 0   | 1               | 1   | 1       |
| 1 | 1 | 1 | 1   | 1   | 1               | 1   | 1       |



$$A+(B\cdot C)=(A+B)\cdot (A+C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

| A | В | С | A·B | A·C | (A·B)+<br>(A·C) | B+C | A·(B+C) |
|---|---|---|-----|-----|-----------------|-----|---------|
| 0 | 0 | 0 | 0   | 0   | 0               | 0   | 0       |
| 0 | 0 | 1 | 0   | 0   | 0               | 1   | 0       |
| 0 | 1 | 0 | 0   | 0   | 0               | 1   | 0       |
| 0 | 1 | 1 | 0   | 0   | 0               | 1   | 0       |
| 1 | 0 | 0 | 0   | 0   | 0               | 0   | 0       |
| 1 | 0 | 1 | 0   | 1   | 1               | 1   | 1       |
| 1 | 1 | 0 | 1   | 0   | 1               | 1   | 1       |
| 1 | 1 | 1 | 1   | 1   | 1               | 1   | 1       |



# **Boolean Theorems**

Idempotency

$$A + A = A$$

$$A \cdot A = A$$

Null Elements

$$A+1=1$$

$$A \cdot 0 = 0$$

Involution

$$\overline{A}=(A')'=A$$

| Α | A+A | A·A | A+1 | A·0 | Ā | Ā |
|---|-----|-----|-----|-----|---|---|
| 0 | 0   | 0   | 1   | 0   | 1 | 0 |
| 1 | 1   | 1   | 1   | 0   | 0 | 1 |



# **Boolean Theorems**

Absorption (Covering)

$$A \cdot (A+B)=A$$

$$A+(A\cdot B)=A$$

| Α | В | A+B | A·B | A·(A+B) | A+(A·B) |
|---|---|-----|-----|---------|---------|
| 0 | 0 | 0   | 0   | 0       | 0       |
| 0 | 1 | 1   | 0   | 0       | 0       |
| 1 | 0 | 1   | 0   | 1       | 1       |
| 1 | 1 | 1   | 1   | 1       | 1       |



## **Boolean Theorems**

Absorption (Covering)

$$A \cdot (\overline{A} + B) = A \cdot B$$
  
 $A + (\overline{A} \cdot B) = A + B$ 

| A | В | Ā | A+B | $A \cdot (\overline{A} + B)$ | A· | A·B | $A+(\overline{A}\cdot B)$ | A+B |
|---|---|---|-----|------------------------------|----|-----|---------------------------|-----|
|   |   |   |     |                              | В  |     |                           |     |
| 0 | 0 | 1 | 0   | 0                            | 0  | 0   | 0                         | 0   |
| 0 | 1 | 1 | 1   | 0                            | 0  | 1   | 1                         | 1   |
| 1 | 0 | 0 | 0   | 0                            | 0  | 0   | 1                         | 1   |
| 1 | 1 | 0 | 1   | 1                            | 1  | 0   | 1                         | 1   |



Absorption (Combining)

$$(A+B)\cdot(A+\overline{B})=A$$
  
 $(A\cdot B)+(A\cdot \overline{B})=A$ 

| Α | В | $\overline{B}$ | A+B | A+B | $(A+B)\cdot(A+\overline{B})$ | A·B | $A \cdot \overline{B}$ | $(A \cdot B) + (A \cdot \overline{B})$ |
|---|---|----------------|-----|-----|------------------------------|-----|------------------------|----------------------------------------|
| 0 | 0 | 1              | 0   | 1   | 0                            | 0   | 0                      | 0                                      |
| 0 | 1 | 0              | 1   | 0   | 0                            | 0   | 0                      | 0                                      |
| 1 | 0 | 1              | 1   | 1   | 1                            | 0   | 1                      | 1                                      |
| 1 | 1 | 0              | 1   | 1   | 1                            | 1   | 0                      | 1                                      |



Absorption (Combining)

$$(A \cdot B)+(A \cdot \overline{B} \cdot C)=(A \cdot B)+(A \cdot C)$$
  
 $(A+B)\cdot(A+\overline{B}+C)=(A+B)\cdot(A+C)$ 

| Α | В | С | $\overline{B}$ | A-B | A·B·C | A. | $(A \cdot B) + (A \cdot \overline{B} \cdot C)$ | (A·B)+(A·C) |
|---|---|---|----------------|-----|-------|----|------------------------------------------------|-------------|
|   |   |   |                |     |       | С  |                                                |             |
| 0 | 0 | 0 | 1              | 0   | 0     | 0  | 0                                              | 0           |
| 0 | 0 | 1 | 1              | 0   | 0     | 0  | 0                                              | 0           |
| 0 | 1 | 0 | 0              | 0   | 0     | 0  | 0                                              | 0           |
| 0 | 1 | 1 | 0              | 0   | 0     | 0  | 0                                              | 0           |
| 1 | 0 | 0 | 1              | 0   | 0     | 0  | 0                                              | 0           |
| 1 | 0 | 1 | 1              | 0   | 1     | 1  | 1                                              | 1           |
| 1 | 1 | 0 | 0              | 1   | 0     | 0  | 1                                              | 1           |
| 1 | 1 | 1 | 0              | 1   | 0     | 1  | 1                                              | 1           |



Absorption (Combining)

$$(A \cdot B) + (A \cdot \overline{B} \cdot C) = (A \cdot B) + (A \cdot C)$$

$$(A+B)\cdot(A+\overline{B}+C)=(A+B)\cdot(A+C)$$

| Α | В | С | $\overline{B}$ | A+B | A+B+C | A+C | $(A+B)\cdot(A+\overline{B}+C)$ | (A+B)·(A+C) |
|---|---|---|----------------|-----|-------|-----|--------------------------------|-------------|
| 0 | 0 | 0 | 1              | 0   | 1     | 0   | 0                              | 0           |
| 0 | 0 | 1 | 1              | 0   | 1     | 1   | 0                              | 0           |
| 0 | 1 | 0 | 0              | 1   | 0     | 0   | 0                              | 0           |
| 0 | 1 | 1 | 0              | 1   | 1     | 1   | 1                              | 1           |
| 1 | 0 | 0 | 1              | 1   | 1     | 1   | 1                              | 1           |
| 1 | 0 | 1 | 1              | 1   | 1     | 1   | 1                              | 1           |
| 1 | 1 | 0 | 0              | 1   | 1     | 1   | 1                              | 1           |
| 1 | 1 | 1 | 0              | 1   | 1     | 1   | 1                              | 1           |



DeMorgan's Theorem

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
  
 $\overline{A \cdot B} = \overline{A} + \overline{B}$ 

- Break the bar and change the operator
- Connect the bar and change the operator
- Expands to include more terms(Generalized DeMorgan's):

$$\overline{A+B+C+...}=\overline{A}\cdot\overline{B}\cdot\overline{C}\cdot...$$
  
 $\overline{A\cdot B\cdot C\cdot ...}=\overline{A}+\overline{B}+\overline{C}+...$ 



DeMorgan's Theorem

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

| Α | В | A+B | A·B | A+B | A·B | A | В | $\overline{A} \cdot \overline{B}$ | Ā+B |
|---|---|-----|-----|-----|-----|---|---|-----------------------------------|-----|
| 0 | 0 | 0   | 0   | 1   | 1   | 1 | 7 | 1                                 | 1   |
| 0 | 1 | 1   | 0   | 0   | 1   | 1 | 0 | 0                                 | 1   |
| 1 | 0 | 1   | 0   | 0   | 1   | 0 | 1 | 0                                 | 1   |
| 1 | 1 | 1   | 1   | 0   | 0   | 0 | 0 | 0                                 | 0   |



- Consensus Theorem
- $(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$
- $(A+B)\cdot(\overline{A}+C)\cdot(B+C)=(A+B)\cdot(\overline{A}+C)$

| Α | В | C | $ \overline{A} $ | A٠ | Ā· | B-C | $(A \cdot B) + (\overline{A} \cdot C) +$ | $(A \cdot B) + (\overline{A} \cdot C)$ |
|---|---|---|------------------|----|----|-----|------------------------------------------|----------------------------------------|
|   |   |   |                  | В  | С  |     | (B·C)                                    |                                        |
| 0 | 0 | 0 | 1                | 0  | 0  | 0   | 0                                        | 0                                      |
| 0 | 0 | 1 | 1                | 0  | 1  | 0   | 1                                        | 1                                      |
| 0 | 1 | 0 | 1                | 0  | 0  | 0   | 0                                        | 0                                      |
| 0 | 1 | 1 | 1                | 0  | 1  | 1   | 1                                        | 1                                      |
| 1 | 0 | 0 | 0                | 0  | 0  | 0   | 0                                        | 0                                      |
| 1 | 0 | 1 | 0                | 0  | 0  | 0   | 0                                        | 0                                      |
| 1 | 1 | 0 | 0                | 1  | 0  | 0   | 1                                        | 1                                      |
| 1 | 1 | 1 | 0                | 1  | 1  | 1   | 1                                        | 1                                      |



- Consensus Theorem
- $(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$
- $(A+B)\cdot(\overline{A}+C)\cdot(B+C)=(A+B)\cdot(\overline{A}+C)$

| Α | В | С | Ā | A+B | Ā+C   | B+C | $(A+B)\cdot(\overline{A}+C)\cdot(B+C)$ | $(A+B)\cdot(\overline{A}+C)$ |
|---|---|---|---|-----|-------|-----|----------------------------------------|------------------------------|
| 0 | 0 | 0 | 1 | 0   | 1     | 0   | 0                                      | 0                            |
| 0 | 0 | 1 | 1 | 0   | 1 1 0 |     | 0                                      |                              |
| 0 | 1 | 0 | 1 | 1   | 1     | 1   | 1                                      | 1                            |
| 0 | 1 | 1 | 1 | 1   | 1     | 1   | 1                                      | 1                            |
| 1 | 0 | 0 | 0 | 1   | 0     | 0   | 0                                      | 0                            |
| 1 | 0 | 1 | 0 | 1   | 1     | 1   | 1                                      | 1                            |
| 1 | 1 | 0 | 0 | 1   | 0     | 1   | 0                                      | 0                            |
| 1 | 1 | 1 | 0 | 1   | 1     | 1   | 1                                      | 1                            |



Shannon's Expansion

$$f(A,B,C)=(A\cdot f(1,B,C))+(\overline{A}\cdot f(0,B,C))$$
  
 $f(A,B,C)=(A+f(0,B,C))\cdot(\overline{A}+f(1,B,C))$ 

Example:

$$f(A,B,C)=A\cdot B\cdot C+A\cdot \overline{B}\cdot C+\overline{A}\cdot \overline{B}\cdot C$$

$$f(A,B,C)=A\cdot f(1,B,C)+\overline{A}\cdot f(0,B,C)$$

$$f(1,B,C)=B\cdot C+\overline{B}\cdot C$$

$$f(0,B,C)=\overline{B}\cdot C$$

$$f(A,B,C)=A\cdot (B\cdot C+\overline{B}\cdot C)+\overline{A}\cdot (\overline{B}\cdot C)$$

Important for circuit minimization



## **Duality Principle**

- Any theorem or postulate in Boolean Algebra remains true if
  - 0 and 1 are swapped and
  - AND and OR are swapped

#### Postulates:

| Postulate      | Dual Pairs                      |                                             |  |  |  |  |  |  |
|----------------|---------------------------------|---------------------------------------------|--|--|--|--|--|--|
| Identity       | A+0=A                           | A·1=A                                       |  |  |  |  |  |  |
| Complements    | $A+\overline{A}=1$              | $A \cdot \overline{A} = 0$                  |  |  |  |  |  |  |
| Commutativity  | A+B=B+A                         | A·B=B·A                                     |  |  |  |  |  |  |
| Associativity  | (A+B)+C=A+(B+C)                 | $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ |  |  |  |  |  |  |
| Distributivity | $A+(B\cdot C)=(A+B)\cdot (A+C)$ | $A \cdot (B+C) = (A \cdot B) + (A \cdot C)$ |  |  |  |  |  |  |

# **Duality Principle**

#### Theorems

| Theorem       | Dual                                                                                        | Pairs                                                                   |
|---------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Idempotency   | A+A=A                                                                                       | A·A=A                                                                   |
| Null Elements | A+1=1                                                                                       | A·0=0                                                                   |
| Involution    | $\overline{A}=A$                                                                            | $\overline{A}=A$                                                        |
| Covering      | A+(A·B)=A                                                                                   | A·(A+B)=A                                                               |
| Covering      | $A+(\overline{A}\cdot B)=A+B$                                                               | $A \cdot (\overline{A} + B) = A \cdot B$                                |
| Combining     | $(A \cdot B) + (A \cdot \overline{B}) = A$                                                  | $(A+B)\cdot(A+\overline{B})=A$                                          |
| Combining     | $(A \cdot B) + (A \cdot \overline{B} \cdot C) = (A \cdot B) + (A \cdot C)$                  | $(A+B)\cdot (A+\overline{B}+C)=(A+B)\cdot (A+C)$                        |
| DeMorgan's    | $\overline{A+B}=\overline{A}\cdot\overline{B}$                                              | $\overline{A \cdot B} = \overline{A} + \overline{B}$                    |
| Consensus     | $(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$ | $(A+B)\cdot(\overline{A}+C)\cdot(B+C)=(A+B)\cdot$<br>$(\overline{A}+C)$ |
| Shannon's     | $f(A,B,C)=A\cdot f(1,B,C) + \overline{A}\cdot f(0,B,C)$                                     | $f(A,B,C)=A+f(0,B,C)\cdot\overline{A}+f(1,B,C)$                         |

- We've shown proof that two expressions are equivalent by testing every possible input
- We can also generate every expression given the # of inputs, n
- The simplest (trivial) case, n=0, or no inputs:





• 1 input, n=1



| Α | f0 | f1 | f2 | f3 |
|---|----|----|----|----|
| 0 | 0  | 1  | 0  | 1  |
| 1 | 0  | 0  | 1  | 1  |

| Function | Expression | Description |
|----------|------------|-------------|
| fO       | 0          | Logic 0     |
| f1       | Ā          | Inverter    |
| f2       | А          | Buffer      |
| f3       | 1          | Logic 1     |







• 2 inputs, n=2



| Α | В | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

 Looking closely, we've seen some of these before





| Α | В | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | C | D | E | F |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

- These are the two trivial logic sources
  - $f_0 = 0$
  - f<sub>=</sub>= 1





| Α | В | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

- f<sub>c</sub> and f<sub>A</sub> are buffers for A and B respectively
- f<sub>3</sub> and f<sub>5</sub> are inverters for A and B respectively





| Α | В | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | C | D | Е | F |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

- f<sub>E</sub> is A+B
   f<sub>8</sub> is A·B





| Α | В | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | C | D | Е | F |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

- $f_1$  is  $\overline{A+B}$ , NOR
- $f_7$  is  $\overline{A \cdot B}$ , NAND



# **New Operators**

#### • NOR



| Α | В | A+B |  |  |  |  |
|---|---|-----|--|--|--|--|
| 0 | 0 | 1   |  |  |  |  |
| 0 | 1 | 0   |  |  |  |  |
| 1 | 0 | 0   |  |  |  |  |
| 1 | 1 | 0   |  |  |  |  |

#### NAND



| A | В | A·B |  |  |  |
|---|---|-----|--|--|--|
| 0 | 0 | 1   |  |  |  |
| 0 | 1 | 1   |  |  |  |
| 1 | 0 | 1   |  |  |  |
| 1 | 1 | 0   |  |  |  |





| Α | В | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f | f |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | C | D | E | F |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

- f<sub>6</sub>, Exclusive OR, XOR
- f<sub>9</sub>, Exclusive NOR, XNOR



# **New Operators**

#### • XOR



| Α | В | A(+)B |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |

#### XNOR



| Α | В | A(+)B |
|---|---|-------|
| 0 | 0 | 1     |
| 0 | 1 | 0     |
| 1 | 0 | 0     |
| 1 | 1 | 1     |



# Switching Function, n=2

| Function | Expression             | Description |  |  |  |  |
|----------|------------------------|-------------|--|--|--|--|
| f0       | 0                      | Logic 0     |  |  |  |  |
| f1       | A+B                    | NOR         |  |  |  |  |
| f2       | Ā·B                    |             |  |  |  |  |
| f3       | Ā                      | Inverter A  |  |  |  |  |
| f4       | $A \cdot \overline{B}$ |             |  |  |  |  |
| f5       | B                      | Inverter B  |  |  |  |  |
| f6       | A(+)B                  | XOR         |  |  |  |  |
| f7       | A·B                    | NAND        |  |  |  |  |
| f8       | A·B                    | AND         |  |  |  |  |
| f9       | A(+)B                  | XNOR        |  |  |  |  |
| fA       | В                      | Buffer B    |  |  |  |  |
| fB       | Ā+B                    |             |  |  |  |  |
| fC       | Α                      | Buffer A    |  |  |  |  |
| fD       | A+B                    |             |  |  |  |  |
| fE       | A+B                    | OR          |  |  |  |  |
| fF       | 1                      | Logic 1     |  |  |  |  |

- How many possible functions given # of inputs,
   n?
  - n=0, 2 functions
  - n=1, 4 functions
  - n=2, 16 functions
- In general there are 2<sup>2<sup>n</sup></sup> functions
- So for n=3 there are 256 possible functions

