

$$2^{\alpha} = \checkmark$$

$$2^{-\alpha} = \frac{1}{2^{-\alpha}} = \frac{1}{2^{-\alpha}} = 0$$

$$e^1 = \bigcirc$$

$$e^0 = 1$$

$$e^{\alpha} = \propto$$

$$e^{-\alpha}$$
 = \bigcirc

$$\sqrt{(0.2)^{2}} = ze_{80}$$

$$\frac{1}{(0.2)^{2}} = \frac{1}{(\frac{2}{10})^{2}} = (\frac{10}{2})^{2} = (\frac{2}{10})^{2} = (\frac{2}{$$

$$\frac{1}{(0.4)^{\alpha}}=?=\frac{1}{0}=\sim$$

If $\sin \theta = 3/5$ then find $\cos \theta$, $\tan \theta$.

$$\sin\theta = \frac{3}{5} = \frac{P}{H}$$

$$\sin\theta = \frac{3}{5} = \frac{P}{H}$$
 $\theta = \sqrt{H^2 - 18} = \sqrt{25 - 9} = \sqrt{16} = 4$

$$\cos \frac{B}{H} = \frac{9}{5}$$

$$\tan \theta = \frac{P}{R} = \frac{3}{4}$$

If $\sin \theta = 4/3$ then find $\cos \theta$ and $\tan \theta$?

Question

If then find $\sin \theta$ and $\cos \theta$.

$$Cot0 = \frac{B}{P} = \frac{3}{1}$$

7 8ad - 186° 27 m = 366°

®

Convert following radian into degree?

(i)
$$\frac{\pi}{2}$$
 rad = $\frac{189}{2}$ $\frac{-90}{2}$

(ii)
$$\frac{\pi}{4}$$
 rad = $\frac{160}{9}$ = $\frac{75}{9}$

(iii)
$$\frac{\pi}{3}$$
 rad = $\frac{189}{3}$ = 60°

(iv)
$$\frac{5\pi}{6}$$
 rad = $\frac{5}{4}$ $\frac{30}{6}$ = 150°

(v)
$$\frac{2\pi}{3}$$
 rad $=\frac{2}{3}$ x 180^{60} = 120°

(vi)
$$\frac{4\pi}{3}$$
 rad = $\frac{4}{3}$ $\frac{60}{3}$ = 240°

(vii)
$$\frac{3\pi}{5}$$
 rad $=\frac{36}{5}(480) = 108^{\circ}$

(viii)
$$5\pi \text{ rad} = 5 \times 60^\circ = 906$$

(ix)
$$\frac{2\pi}{5}$$
 rad = $\frac{2}{5}(+36) = +2^{\circ}$

(x)
$$\frac{7\pi}{12}$$
 rad

(xi)
$$\frac{5}{2}\pi$$
 rad

(xii)
$$3(\pi \text{ rad}) = 3 \times 100^{\circ} = 540^{\circ}$$

(xiii)
$$\frac{\pi}{6}$$
 rad $-3b$

Question

Convert following into radian

(i)
$$45^\circ = \frac{7}{9}$$

(iv)
$$30^\circ = \frac{\pi}{6}$$
 and

(v)
$$150^{\circ} = 150 \times \frac{71890}{180} = \frac{377}{6}$$

(vii)
$$\pi^{\circ} = \pi \times 1^{\circ} = \pi$$

(ix)
$$135^{\circ} = 36$$

$$(x) 720^\circ = 97$$

(xi)
$$36^{\circ} = \frac{36}{1805} = \frac{1}{5}$$

(xii)
$$36^{\circ} = \frac{36\pi 80}{180} = \frac{\pi}{5}$$

(xii) $450^{\circ} = \frac{36\pi 80}{180} = \frac{5\pi}{2}$

(xiv) 330° =
$$330 \times \frac{\pi}{180}$$

(xv) 57° =
$$57 \frac{\pi}{100} 8^{\circ} \vee$$

When object moves from point A to C on the circle the find total distance moved by object. (R-5m)

Total distance moved by object on the circle of radius 5m in 3 and half rotation

[IIT] [NEET]

When a clock shows 4 O'clock, how much angle do its minute and hour hand make.

If
$$\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} > \frac{11}{5}$$
 then find value of $\tan \theta$

$$\frac{3}{48}$$
 = $+anQ$

Find value of
$$\sin^2(40^\circ) + \cos^2(40^\circ) = 1$$

A vertical pole of height h casts a shadow of length l when the Sun is at an angle θ above the horizon.

Which of the following expresses the shadow length l in terms of h and θ ?

$$l = h \cdot \tan \theta$$

$$l = h \cdot \sin \theta$$

$$l = \frac{h}{\sin \theta}$$

Question

Two towers are separated by a horizontal distance D. From the top of the first tower (height h_1), the angle of depression to the top of the second tower (height h_2) is θ .

Which relation correctly gives the horizontal separation D in terms of h_1 . h_2 , θ ?

$$D = \frac{h_1 + h_2}{\tan \theta}$$

$$D = \frac{h_1 - h_2}{\tan \theta}$$

$$D = \frac{h_2 - h_1}{\tan \theta}$$

$$D = \tan \theta \cdot (h_1 + h_2)$$

A vertical pole of height h = 10 m stands on ground that slopes upwards at a constant angle $\alpha = 30^{\circ}$ with the horizontal. If the sun's angle of elevation above the horizontal is $\theta = 60^{\circ}$, what is the length of the shadow cast by the pole on the sloping ground?

- 1 5 m
- (2) 10 m
- 3 10√3 m
- $\frac{10}{\sqrt{3}-1}$ m

Gindlined Plane

