UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR DE JAÉN

Departamento de Informática. Área de Ciencias de la Computación e Inteligencia Artificial

Metaheurísticas Relación de problemas 1

- 1. **Problema sobre configuraciones de vehículos.** Un modelo de coche se configura a partir de n componentes distintos. Cada uno de esos componentes puede tomar mi, (i = 1, ..., n) posibles valores (v_{ij}) . La afinidad de los consumidores para cada posible valor v_{ij} es a_{ij} . Se conoce también la importancia, w_i , que los consumidores atribuyen a cada componente. Se desea encontrar una combinación de componentes que alcance la máxima afinidad global con los gustos de los consumidores.
 - a) ¿Qué algoritmo entre los vistos en la asignatura crees que sería el más adecuado para resolver este problema? Dar la lista de algoritmos más adecuados y justifica la respuesta. Explicar las ventajas e inconvenientes de su elección para cada uno de ellos.
 - b) Dar los elementos básicos para resolverlo con un algoritmo seleccionado para ello (representación, evaluación, elementos necesarios).
 - c) ¿Se puede resolver este problema mediante Algoritmos PSO? Justificar la respuesta, en caso afirmativo dar un ejemplo de representación y evolución, y en caso negativo justificarlo.
 - d) Dar una representación para resolver el problema con algoritmos genéticos. Dar dos cromosomas y explicar 2 operadores de cruce para esta representación, aplicándolos sobre los dos cromosomas dados.
- 2. Problema de selección de conjuntos de tamaño m. El problema de la selección de un conjunto de tamaño fijo, de m elementos, a partir de un subconjunto de tamaño mayor n, consiste en seleccionar el subconjunto de elementos que cumplan con el óptimo asociado a una función objetivo que nos permita conocer la sinergia positiva o beneficio entre los elementos seleccionados. Utilizamos la matriz B, tal que B(i,j) nos mide el beneficio de seleccionar los ejemplos i y j conjuntamente.
 - a) ¿Qué algoritmo entre los vistos en la asignatura crees que sería el más adecuado para resolver este problema? Da la lista de algoritmos más

adecuados y justifica la respuesta. Explica las ventajas e inconvenientes de su elección.

- b) Dar los elementos básicos para resolverlo con un algoritmo que selecciones para ello (representación, evaluación, elementos necesarios).
- c) Considera que se utiliza un algoritmo genético. Formula la representación de este problema, su función objetivo, y los operadores genéticos necesarios para utilizar un algoritmo genético sobre este problema. En cada caso, describe su formulación e indica un ejemplo de su funcionamiento.
- 3. **Problema de la máxima diversidad.** El problema de la máxima diversidad (MDP) consiste en seleccionar un conjunto de *m* elementos de una colección más grande de tal forma que los elementos seleccionados tengan las características más variadas entre sí. Un ejemplo de aplicación de este problema aparece en la preservación de la biodiversidad, donde se dispone de un número limitado de recursos para salvar únicamente a un número determinado de especies. En este escenario es más adecuado salvar a aquellas especies que entre ellas muestren el conjunto más variado de características. Por tanto, dada la distancia d_{ij} existente entre cada par de elementos s_i y s_j, el problema consiste en escoger entre un conjunto de *n* elementos, aquellos *m* < *n* elementos que maximicen las distancias entre ellos.

$$\max z = \sum_{i \neq j} d_{ij} x_i x_j$$
 sujeto a
$$\sum_{i=1}^n x_i = m$$

$$x_i \in \{0,1\}, \quad i = 1, \dots, n$$

- a) ¿Qué algoritmo entre los vistos en la asignatura crees que sería el más adecuado para resolver este problema? Da la lista de algoritmos más adecuados y justifica la respuesta. Explica las ventajas e inconvenientes de su elección.
- b) Dar los elementos básicos para resolverlo con un algoritmo que selecciones para ello (representación, evaluación, elementos necesarios).
- c) Considera que se utiliza un algoritmo genético. Formula la representación de este problema, su función objetivo, y los operadores genéticos necesarios para utilizar un algoritmo genético sobre este problema. En cada caso, describe su formulación e indica un ejemplo de su funcionamiento.
- 4. **Mínima planificación de multiprocesadores.** Se dispone de un conjunto de n procesos y un ordenador con m procesadores (de características no necesariamente iguales). Se conoce el tiempo que requiere el procesador j-ésimo para realizar el proceso i-ésimo, t_{ij} . Se desea encontrar un reparto de procesos entre los m procesadores tal que el tiempo de finalización sea lo más corto posible.
 - a) ¿Qué metaheurística utilizarías para su resolución? Justifica la respuesta. Explica las ventajas e inconvenientes de su elección.
 - b) Presenta los elementos básicos para aplicar dicha técnica sobre este problema, adaptándolos al problema (representación, operaciones a realizar, evaluación, ...)

- 5. **Problema de separación de una muestra en 2 subconjuntos.** Se dispone una balanza con dos platillos y de n objetos, cada uno de los cuales tiene un peso positivo. El objetivo es encontrar un reparto de los objetos entre los dos platillos de la balanza de forma que la diferencia entre los pesos de los objetos situados en cada platillo sea mínima.
 - a) ¿Qué algoritmo entre los vistos en la asignatura crees que sería el más adecuado para resolver este problema? Da la lista de algoritmos más adecuados y justifica la respuesta. Explica las ventajas e inconvenientes de su elección.
 - b) Dar los elementos básicos para resolverlo con un algoritmo que selecciones para ello (representación, evaluación, elementos necesarios).
 - c) Considera que se utiliza un algoritmo genético. Formula la representación de este problema, su función objetivo, y los operadores genéticos necesarios para utilizar un algoritmo genético sobre este problema. En cada caso, describe su formulación e indica un ejemplo de su funcionamiento.
- 6. **Problema de matrices**. Sea A una matriz cuadrada de dimensión *n* (*n* x *n*) cuyos elementos son números reales. Se desea encontrar una función

$$f:\{1, 2, ..., n\} \rightarrow \{-1, 1\}$$

tal que se maximice la expresión:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} f(i) f(j)$$

- a) ¿Qué algoritmo entre los vistos en la asignatura crees que sería el más adecuado para resolver este problema? Da la lista de algoritmos más adecuados y justifica la respuesta. Explica las ventajas e inconvenientes de su elección.
- b) Dar los elementos básicos para resolverlo con un algoritmo que selecciones para ello (representación, evaluación, elementos necesarios).
- c) ¿Se puede resolver este problema mediante Algoritmos PSO? Justificar la respuesta, en caso afirmativo dar un ejemplo de representación y evolución, y en caso negativo justificarlo.
- d) Dar una representación para resolver el problema con algoritmos genéticos. Dar dos cromosomas y explicar 2 operadores de cruce para esta representación, aplicándolos sobre los dos cromosomas dados.
- 7. **Problema de la mochila.** Se dispone una mochila y un conjunto de *n* objetos, cada uno de los cuales tiene un peso positivo y un beneficio. El objetivo el conjunto de objetos con peso menor a la capacidad de la mochila y mayor beneficio.
 - a) ¿Qué algoritmo entre los vistos en la asignatura crees que sería el más adecuado para resolver este problema? Da la lista de algoritmos más adecuados y justifica la respuesta. Explica las ventajas e inconvenientes de su elección.
 - b) Dar los elementos básicos para resolverlo con un algoritmo que selecciones para ello (representación, evaluación, elementos necesarios).
 - c) Considera que se utiliza un algoritmo genético. Formula la representación de este problema, su función objetivo, y los operadores genéticos necesarios para utilizar un algoritmo genético sobre este problema. En cada caso, describe su formulación e indica un ejemplo de su funcionamiento.

8. Considérese el siguiente problema (**optimización de funciones**): Se desea encontrar el valor óptimo para la siguiente función

$$f(x_1, \dots, x_n) = \frac{1}{d} \sum_{i=1}^d -x_i \sin\left(\sqrt{|x_i|}\right)$$

donde los valores para cada xi están en el intervalo [-500,500].

- a) ¿Qué algoritmo entre los vistos en la asignatura crees que sería el más adecuado para resolver este problema? Da la lista de algoritmos más adecuados y justifica la respuesta. Explica las ventajas e inconvenientes de su elección.
- b) Dar los elementos básicos para resolverlo con un algoritmo que selecciones para ello (representación, evaluación, elementos necesarios).
- c) Considera que se utiliza un algoritmo genético. Formula la representación de este problema, su función objetivo, y los operadores genéticos necesarios para utilizar un algoritmo genético sobre este problema. En cada caso, describe su formulación e indica un ejemplo de su funcionamiento.