Arrhenius Acid

$$HCl(aq) \longrightarrow H^{+}(aq) + Cl^{-}(aq)$$

Arrhenius Base

$$NaOH(aq) \longrightarrow Na^{+}(aq) + OH^{-}(aq)$$

3/22/2019 Ht = proton ~ doesn't really exist in HeO

hydrogen-ion

"H+" = H30+

C H+ atached to H20, H-Ö-H Bronsted - Löwry. 1923 Acid: H' (proton) donors. acceptors. H+ er: H(1(ag) + H20(e) -> H30(ag) + (1(ag) ACID BASE (Htdonor) (Htacreptor) er: NH3 (ag) + H2O(e) => NH4 (ag) + OH (ag) BASE ACID ACID BASE (Htacceptor) (Htdonor) conj. acid-base pair conjugate acid-box pair NH3/NH4+ = conj. acid-base pair (Imore H+ = acid I fewer Ht = base H20/0H- = " acid base

A cid Strength, + Acid ionization/dissociation constant, Ka
3.7
ch 4: strong electrolyte: 100 % ionization/dissociation
ch 4: strong electrolyti: 100% ionization/dissociation weak " : <100% " -
ex: Strong acid, HA(aq)
ex: Strong acid, HA (aq) (strong electrolyte)
HA(ag) + H2O(1) - 100% H30 (ag) + A (ag)
6 strong acids H Cecasi Hydrochloric acid H+
Memorize: HBrag " bromie " MONOPROTIC
HI(ag) 11 iodic 11 ACIDS
HNO3(ag) Nitric acid
HCloy(ag) Perchloric acid
H_SO+(ag) Sulfuric acid DIPROTIC ACII
2 Ht/molecule
ex: acetic acid acidic H's
H(2H3O2 (as) CH3(O2H)
monopohi H/:0:
monoprohi H-C-C-O-H carboxylic acid group
droub

TABLE 16.3 Strong Acids	
Hydrochloric acid (HCI)	Nitric acid (HNO ₃)
Hydrobromic acid (HBr)	Perchloric acid (HClO ₄)
Hydriodic acid (HI)	Sulfuric acid (H ₂ SO ₄) (diprotic)

^{© 2017} Pearson Education, Inc.

A Strong Acid

When HCl dissolves in water, it ionizes completely.

	Wealc acids
	HHHH weak electrolytus
	<100% jonization. H+
	H+ y
	ex: HF(ag) + H2O(e) = H3O(ag) + F(ag)
	Hydrofluoric acid conj. acid-bau pair
	HF: weat acid F (conj. ban)
	- doesn't break down easily must be strong!
	For HF (ag) hydrofluoric acid } monoprohic
	H(2H, O2(gc) acetic
	H3 PO4 (ag) phosphonic "} triprohic
- A F	Ka H+ s
	$HA(aq) + H_2O(Q) \rightleftharpoons H_3O^{\dagger}(aq) + A(aq)$
	$K_a = [H_30^+][A^-]$ $H_2012 \sim eff conc=1$ EHA
	[HA]

A Weak Acid

When HF dissolves in water, only a fraction of the molecules ionize.

Acid	Formula	Structural Formula	Ionization Reaction	Ka	pK _e
Chlorous acid	HCIO ₂	H - O - CI = O	$HCIO_2(aq) + H_2O(I) \rightleftharpoons$ $H_3O^+(aq) + CIO_2^-(aq)$	1.1×10^{-2}	1.96
Nitrous acid	HNO ₂	H-0-N=0	$HNO_2(aq) + H_2O(I) \rightleftharpoons$ $H_3O^+(aq) + NO_2^-(aq)$	4.6×10^{-4}	3.34
Hydrofluoric acid	HF	H—F	$HF(aq) + H_2O(I) \rightleftharpoons$ $H_3O^+(aq) + F^-(aq)$	6.8×10^{-4}	3.1
Formic acid	HCHO ₂	H-0-C-H	$HCHO_2(aq) + H_2O(I) \rightleftharpoons$ $H_3O^+(aq) + CHO_2^-(aq)$	1.8 × 10 ⁻⁴	3.7
Benzoic acid	HC ₇ H ₅ O ₂	$\begin{array}{c} O & C = C \\ H - O - C - C & CH \\ C - C & CH \end{array}$	$HC_7H_5O_2(aq) + H_2O(I) \Longrightarrow H_3O^+(aq) + C_7H_5O_2^-(aq)$	6.5×10^{-5}	4.1
Acetic acid	HC ₂ H ₃ O ₂	0 H0-CCH3	$HC_2H_3O_2(aq) + H_2O(I) \rightleftharpoons$ $H_3O^+(aq) + C_2H_3O_2^-(aq)$	1.8 × 10 ⁻⁵	4.7
Hypochlorous acid	HCIO	H-0-CI	$HCIO(aq) + H2O(I) \rightleftharpoons$ H3O+(aq) + CIO-(aq)	2.9×10^{-8}	7.5
Hydrocyanic acid	HCN	H—C≡N	$HCN(aq) + H_2O(I) \Longrightarrow$ $H_3O^+(aq) + CN^-(aq)$	4.9×10^{-10}	9.3
Phenol	HC ₆ H ₅ O	H-O-C $C-C$ CH	$HC_6H_5O(aq) + H_2O(I) \Longrightarrow H_3O^+(aq) + C_6H_5O^-(aq)$	1.3×10^{-10}	9.8

^{© 2017} Pearson Education, Inc.