Область допустимых решений задачи представлена ниже на рисунке. Как будут записаны ограничения (1) и (2)?

Билет 6, вопрос 1

На фабрике эксплуатируются два типа ткацких станков, которые могут выпускать три вида тканей. Известны следующие данные о производственном процессе: P_{ij} - производительности станков по каждому виду ткани, м/ч; C_{ij} - себестоимость производства тканей, руб./м; фонды рабочего времени станков A_i ч; планируемый объем выпуска тканей B_j м.

Требуется распределить выпуск ткани по станкам с целью минимизации

$$\sum_{i=1}^{2} \sum_{j=1}^{3} C_{ij} * x_{ij} \to min \qquad \sum_{i=1}^{2} \sum_{j=1}^{3} C_{i$$

Билет 6, вопрос 2

Дана промежуточная симплекс-таблица задачи линейного программирования (решается на min), в которой x_1 , x_2 -основные переменные, Z –целевая функция

Базис	В	X ₁	X ₂	X ₃	X ₄	x ₅	x ₆
X ₃	14/3	0	2/3	1	0	⁻⁵ / ₃	0
X ₄	4/3	0	1/3	0	1	-1/3	0
X ₁	4	1	0	0	0	1	0
X ₆	2/3	0	-1/3	0	0	1/3	1
Z	28/3	0	-1/3	0	0	5/3	0

Что дальше?

Дана начальная симплекс-таблица прямой (исходной на min) задачи линейного программирования, в которой х-основные переменные, s-дополнительные, Q –целевая функция

БП	X ₁	X ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	Решение
s_1	1	1	1	0	0	4
<i>s</i> ₂	2	-1	0	1	0	0
<i>s</i> ₃	-5	-4	0	0	1	-20
Q	2	1	0	0	0	0

Запишите постановку двойственной ЗЛП

Дана задача о коммивояжере линейного программирования в терминах полезности

-	3	5
4	-	2
5	3	-

Решить задачу методом потенциалов

Сетевое планирование

Табличным способом рассчитайте параметр сетевого графика $t_{\rm ph}(2,3)$

	1	2	3	4	5
1		4	5		
2			2	7	
3				10	3
4					4
5					

Решается транспортная задача перевозки однородных грузов от поставщиков к потребителям (размерность задачи два на два) с учетом двух критериев: К1 — финансовые затраты (т.руб.); К2 — временные затраты (час.). Возможности поставщиков - а1 и а2, потребности потребителей — b1 и b2, коэффициенты затрат на одну единицу груза для соответствующих критериев приведены в таблицах.

Критерий К1– финансовые затраты (т.руб.);

Критерий К2 – временные затраты (час.).

	b1=3	b2=7
a1=5	1	2
a2=5	4	3

	b1=3	b2=7
a1=5	5	4
a2=5	2	3

В каких пределах будет изменяться оценка компромиссных решений по критерию К1.

вопрос 7

Оценка игроков спортивной команды (альтернатив) производится на основании пяти критериев:

К1 - морально-волевая подготовка; К2 — вес игрока; К3 — бег 100м.

Тренер отдает предпочтение игрокам с высокими оценками по всем критериям (для бега — оценки имеют обратное направление шкалы). По функции выбора с учетом числа доминирующих критериев определите лучшего (лучших) спортсменов.

Игроки	Мор- волевая (в баллах)	Вес (в кг)	Бег 100м (в сек.)
X1	10	100	15
X2	5	110	14
Х3	8	90	13

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям: k_1 — стоимость постройки; k_2 — время в пути до центра города; k_3 — количество людей, подвергающихся шумовым воздействиям. Значимость критериев представлена соответственно величинами: 6; 3; 1. Оценки альтернатив по критериям приведены в таблице. Определите индекс согласия доминирования альтернативы y над z по методу «Электра»

Таблица исходных данных

Площадки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
\boldsymbol{x}	170	40	20
y	170	50	10
Z	190	45	10

Задана матрица Y исходов в терминах полезности .По критерию Сэвиджа (риска) определите лучшую альтернативу

Альтернатив ы Х	Ситуации Е			
DI X	e_1	e_2	e_3	e_4
x_1	6	4	3	2
x_2	3	3	4	5
x_3	3	4	4	2