

TOGA: Temporally Grounded Open-Ended Video QA with Weak Supervision

Ayush Gupta^{1,2}, Anirban Roy¹, Rama Chellappa², Nathaniel D. Bastian³, Alvaro Velasquez⁴, Susmit Jha¹

²Johns Hopkins University ³United States Military Academy ⁴University of Colorado Boulder

Introduction

Limitation of existing works:

- > Less trustworthy: Missing evidence for answers
- > Difficult to collect data: Need temporal annotations
- > Less practical for deployment: Choose answer from predefined options

We focus on the problem of weakly supervised, grounded video question answering (VQA).

We propose a vision language model (VLM) for this task, to generate open-ended answers.

Architecture

- > A CLIP vision encoder to encode vision features
- > A multi-scale vision language connector (MS-VLC) to extract global-local features
- > An LLM decoder to generate the answer and the grounding

Approach: Multi-stage training and consistency constraint

Three stages:

- 1. Vision-text alignment
- 2. Instruction tuning for grounding/referring: Learning initial timestamp representations
- 3. Consistency tuning: Refining timestamps

<Cropped video>: What is happening? Model: A dog runs away from the water. **Q:** What happens in [65, 79]?

A: A dog runs away from the water.

¹SRI

Q: Locate the scene where a dog runs away from the water.

A: [65, 79].

How to train without temporal annotations?

- > Stage 1: Model can generate captions
- > Pseudo labels for stage 2: Randomly crop sections of videos, caption them
- > Filtering noisy labels for stage 3: Using consistency between model responses and GT

O: What stumbles as it tries to walk?

Q: What do two young boys dressed up as firemen inspect?

NExT-GQA dataset

Results

	Open-ended evaluation	mIoU	mIoP	IoU@0.5	IoP@0.5	Acc@GQA
IGV [24] (MM '22)	×	14	21.4	9.6	18.9	10.2
Temp[CLIP](NG+) [34, 49] (CVPR '24)	×	12.1	25.7	8.9	25.5	16
FrozenBiLM (NG+) [49, 52] (CVPR '24)	×	9.6	24.2	6.1	23.7	17.5
SeViLA [54] (NeurIPS '23)	×	21.7	29.5	13.8	22.9	16.6
LLoVi [56] (arXiv '24)	×	20	37.3	15.3	36.9	24.3
Grounded-VideoLLM [41] (arXiv '24)	×	21.1	34.5	18	34.4	26.7
VideoStreaming [33] (NeurIPS '24)	×	19.3	32.2	13.3	31	17.8
TOGA (Ours)	✓	24.4	40.5	21.1	40.6	24.6

ReXTime dataset

	Model	mIoU	R@1 (IoU=0.3)	R@1 (IoU=0.5)	
Non Generative	UniVTG	28.17	41.34	26.88	
Non Generative	CG-DETR	23.87	31.31	16.67	
	VTimeLLM	20.14	28.84	17.41	
LLM based	TimeChat	11.65	14.42	7.61	
LLIVI Daseu	LITA	21.49	29.49	16.29	
	Ours	25.53	29.91	19.79	

Ablations and Analysis

Effect of MS-VLC

	Query Type					
Model type	All	short	medium	long		
Sparse only	20.0	16.2	28.9	47.5		
Dense Only	22.1	18.3	32.2	32.1		
Multi-Scale (MS-VLC)	24.4	20.5	34.7	49.3		

Consistency

Acknowledgements

This work was supported in part by the U.S. Air Force and DARPA

United States Department of Defense or the United States

Question types: before, after clauses v/s why, how questions

	Question type					
Connector type	Causal		Temporal			All
	Why	How	Present	Past	Future	
Sparse only	21.7	21.1	18	17.9	12.8	19.55
Dense only	21.8	22.2	18.8	18	13.6	20.12
MS-VLC	26.1	27.4	23.4	18	18.1	24.6
· ·						•

Contact Information

Ayush Gupta, final year PhD student

Looking for internship and full-time opportunities!

agupt120@jh.edu

Q: How did the dog react to the coming waves? GT Answer: Run away

Model Response: Run Away [60, 72]

Q: What happens in [60, 72]?

Model Response: The dog runs away.