1. Diberikan transformasi linear terbatas $T:C_R[0,1]\to \mathbb{R}$ dengan

$$T(f) = \int_0^1 (1-x)f(x) dx.$$

Tunjukkan bahwa $||T|| \le 1$. Jika $g \in C_R[0,1]$ dengan $g(x) = 1, \forall x \in [0,1]$, dapatkan |T(g)| dan ||T||.

- 2. Misalkan X ruang Banach dan $\{T_n\}$ barisan operator yang invertibel di B(X) yang konvergen ke $T \in B(X)$. Jika $\|T_n^{-1}\| < 1$, maka tunjukkan bahwa T invertibel.
- 3. Diberikan $c = \{c_n\} \in \ell^{\infty}$ dan $T_c \in B(\ell^2)$ dengan

$$T_c(\{x_n\}) = \{c_n x_n\}.$$

- (a) Dapatkan operator adjoint T^* .
- (b) Jika $c_n \in \mathbb{R}, \, \forall n \in \mathbb{N}, \, \text{tunjukkan} \,\, T_c \,\, \text{self-adjoint}.$
- (c) Jika $|c_n| = 1$, $\forall n \in \mathbb{N}$, tunjukkan T_c unitary.
- 4. Misalkan ${\mathcal H}$ ruang Hilbert kompleks dan $U\in B({\mathcal H})$ unitary. Tunjukkan transformasi linear

$$f: B(\mathcal{H}) \to B(\mathcal{H})$$
 dengan $f(T) = U^*TU$

adalah isometri.