Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

interacción y cooperación

interacción y cooperación coordinación distribuida

Contenido

- Los procesos distribuidos necesitan a menudo coordinar sus actividades
 - sistemas síncronos y asíncronos
 - tolerancia a fallos
 - exclusión mutua de los procesos distribuidos
 - ejemplo: reservas de billetes de avión
- exclusión mutua, no se pueden utilizar:
 - ni variables compartidas
 - ni facilidades dadas por un único núcleo central
 - → Solución basada en el paso de mensajes

interacción y cooperación coordinación distribuida

Contenido

- Algunos servidores implementan sus propios cerrojos para sincronizar los accesos a los recursos que gestionan
- Otros servidores no incluyen sincronización (p.e. Sun NFS):
 - necesitan servicio de exclusión mutua (p.ej. daemon locka)
 - para este caso se requiere un mecanismo de exclusión mutua distribuida:
 - dar a un único proceso el derecho de acceder temporalmente a los recursos compartidos
- En otros casos se necesita elegir a un único proceso de un conjunto para que desarrolle un papel privilegiado durante un largo tiempo (Redes ethernet o inalámbricas)
 - necesario un algoritmo de elección

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Requisitos en la exclusión mutua

- EM1: Seguridad → en todo momento, como máximo hay un solo proceso ejecutando la región crítica
- EM2: Vitalidad → a todo proceso que lo solicita se le concede la entrada/salida en la región crítica en algún momento:
 - evita el abrazo mortal (deadlock) e inanición (starvation)
- EM3: Ordenación → la entrada en la región crítica debe concederse según la relación sucedió - antes

interacción y cooperación coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Algoritmo basado en servidor central

- El servidor central concede permisos en forma de testigo que concede acceso a la sección crítica (SC)
 - al salir de la SC, el proceso devuelve el testigo al servidor
- Suponiendo que no hay caídas y no se pierden mensajes:
 - se cumplen E1 y E2
 - E3 está asegurada en el orden de llegada de los mensajes al servidor
- Rendimiento del algoritmo
 - 2 mensajes para la entrada en la sección crítica
 - 1 mensaje para salir de la sección crítica

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Problemas:

todas las solicitudes se envían al servidor >
 cuello de botella

 caída o fallo del servidor → elección de nuevo servidor → E3 no asegurada

caída o fallo del proceso en la SC

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Algoritmo basado en Anillo

- La exclusión se logra por la obtención de un testigo
- Anillo lógico → se crea dando a cada proceso la dirección de su vecino
 - El testigo está siempre circulando por el anillo
 - Cuando un proceso recibe el testigo:
 - si no quiere entrar en la SC → lo envía a su vecino
 - si quiere entrar en la SC → lo retiene
 - Al salir de la SC: lo envía a su vecino
- Se verifican E1 y E2, pero no se asegura E3
- Obtención del recurso necesita entre 1 y (n-1) mensajes

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Algoritmo basado en Anillo

Anillo de procesos que transfieren un testigo de exclusión mutua

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Problemas:

- se carga la red aun cuando ningún proceso quiera entrar en la SC
- si un proceso cae necesita reconfiguración
 - si además tenía el testigo: elección para regenerar el testigo
- asegurarse de que el proceso ha caído → varios testigos
- desconexión o ruptura de la red

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Algoritmos basados en relojes lógicos

- Premisas:
 - cada proceso conoce la dirección de los demás
 - cada proceso posee un reloj lógico

@Algoritmos:

- Ricart y Agrawala
- Lamport

coordinación distribuida

Contenido

- Basados en relojes lógicos: RICART y AGRAWALA
 - Idea básica: cuando un proceso quiere entrar en la sección crítica (SC) → les pregunta a los demás si puede entrar
 - Cuando todos los demás le contesten → entra
- El acceso se obtiene a través de un testigo
 - cada proceso guarda el estado en relación a la SC: liberada, buscada o tomada
- Cola de solicitudes en cada proceso
- Mensaje → Tupla <Ti, Pi, SCi>

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

• Algoritmo de RICART y AGRAWALA

 En la inicialización estado := LIBERADA;

Para entrar en la sección crítica

```
estado := BUSCADA;

Multitransmite petición a todos los procesos;

T := \text{marca temporal de la petición};
Se aplaza el procesamiento de peticiones

Espera hasta que \text{ (número de respuestas recibidas = } (N-1));

estado := TOMADA;
```

Al recibir una petición <T_i, p_i> en el proceso p_j (i ≠ j)
 si (estado = TOMADA o (estado = BUSCADA y (T, p_j) < (T_i, p_i)))
 entonces
 pone en la cola la petición por parte de p_i sin responder;
 sino
 responde inmediatamente a p_i;
 fin si

• Para salir de la sección crítica

```
estado := LIBERADA;
responde a cualquiera de las peticiones en la cola;
```

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Basados en relojes lógicos: RICART y AGRAWALA

Algoritmo de multidifusión y relojes lógicos: Ricart y Agrawala

coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

- Número de mensajes necesarios para obtener el recurso:
 - sin soporte *multicast*: 2(n-1)
 - con soporte multicast: n
 - el algoritmo fue refinado hasta n mensajes sin soporte multicast (Raynal, 1988)

Problemas:

- Algoritmo más costoso que el del servidor central
- Pese a ser algoritmos distribuidos, el fallo de cualquier proceso bloquea el sistema
- Los procesos implicados reciben y procesan cada solicitud:
 - igual o peor congestión que el servidor central

interacción y cooperación coordinación distribuida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

- Discusión de los algoritmos estudiados
 - Ninguno puede tratar el problema de la caída de un computador o proceso
 - El algoritmo de servidor central es el que tiene menor número de mensajes, pero supone un cuello de botella

Conclusión:

 es preferible que el servidor que gestiona el recurso implemente también la exclusión mutua

interacción y cooperación algoritmos de elección

Contenido

- Procedimiento para elegir a un proceso dentro de un grupo
 - ejemplo: elegir a un proceso que sustituya a uno especial (coordinador, maestro, ...) cuando éste cae
- Principal exigencia: elección única incluso si varios procesos lanzan el algoritmo de elección de forma concurrente
- E1 → Seguridad
- E2 → Vivacidad
- Dos algoritmos:
 - algoritmo basado en anillo: Chang y Roberts
 - algoritmo del matón (bully): Silberschatz

algoritmos de elección: anillo

Contenido

- Inicialmente todos los procesos son no-candidatos: cualquiera puede empezar una elección:
 - se marca como candidato
 - envía mensaje de elección con su identificador
- © Cuando un proceso recibe un mensaje de elección:
 - si identificador del mensaje es <u>mayor</u> que el suyo → envía mensaje a sus vecinos
 - si es menor:
 - si es no-candidato → sustituye el identificador y envía mensaje al vecino y se marca como candidato
 - si es el suyo
 - se marca como no-candidato
 - envía mensaje de elegido a su vecino añadiendo su identidad
- Cuando un proceso recibe un mensaje de elegido:
 - se marca como no-candidato
 - lo envía a su vecino

algoritmos de elección: anillo

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación Algoritmo basado en anillo: ejemplo

Anillo de procesos que transfieren un testigo de exclusión mutua

algoritmos de elección: anillo

Contenido

- Anillo lógico: cada proceso sólo sabe comunicarse con su vecino
- Se elige al proceso con identificador más alto
- Se supone procesos estables durante la elección
- Tanenbaum (1992):
 - variante donde los procesos pueden caer
- Número de mensajes para elegir coordinador:
 - peor caso: lanza elección sólo el siguiente al futuro coordinador → (3n-1) mensajes
 - mejor caso: lanza elección el futuro coordinador → 2n mensajes
- No detecta fallos

algoritmos de elección: bully

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Requisitos:

- todos los miembros del grupo deben conocer las identidades y direcciones de los demás miembros
- se supone comunicación fiable
- El algoritmo selecciona al miembro superviviente con mayor identificador
- Los procesos pueden caer durante la elección
- Hay 3 tipos de mensajes:
 - mensaje de elección: para anunciar una elección
 - mensaje de respuesta a un mensaje de elección
 - mensaje de coordinador: anuncia identidad de nuevo coordinador
- Número de mensajes para elegir coordinador:
 - caso mejor: se da cuenta el segundo más alto \rightarrow (n-2) mensajes
 - caso peor: se da cuenta el más bajo $\rightarrow O(n^2)$ mensajes

algoritmos de elección: bully

Contenido

- Un proceso inicia una elección al darse cuenta de que el coordinador ha caído:
 - envía mensaje de elección a los procesos con identificador mayor que el suyo
 - espera algún mensaje de respuesta:
 - si vence temporizador →el proceso se erige como coordinador y envía mensaje de coordinador a todos los procesos con identificadores más bajos
 - si recibe alguna respuesta → espera mensaje de coordinador.
 - · si vence temporizador, lanza una nueva elección
- Si un proceso recibe un mensaje de coordinador:
 - guarda el identificador y trata a ese proceso como nuevo coordinador
- Si un proceso recibe un mensaje de elección:
 - contesta con un mensaje de respuesta y lanza una elección, (si no ha lanzado ya antes una)
- Cuando un proceso se reinicia:
 - lanza una elección a menos que sea el de identificador más alto (en cuyo caso se erigiría como nuevo coordinador)

distribuldos distribuldos

interacción y cooperación

algoritmos de elección: bully

Contenido

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

sistemas de archivo distribuido

introducción

funciones del FS

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Un sistema de ficheros distribuido (DFS):

- Tiene las mismas funciones que el sistema de ficheros de un SO convencional, pero más complejo
- Los usuarios y los dispositivos de almacenamiento se encuentran dispersos por la red
- Adicionalmente, un SFD debe permitir:
 - compartir información remotamente
 - movilidad de los usuarios
 - disponibilidad

distribuidos distr

introducción

componentes de un SFD

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Un SFD se puede estructurar en cuatro componentes:

- servicio de almacenamiento
- servicio de ficheros
- servicio de nombres o de directorio
- módulo cliente (biblioteca de funciones o API)

introducción

objetivos de diseño

Contenido

- Transparencia
 - de acceso
 - de ubicación
 - de movilidad
 - de prestaciones, aunque la carga varíe
 - de escala
- Movilidad de los usuarios
- Rendimiento
- Alta disponibilidad y tolerancia a fallos
- Concurrencia
- Fiabilidad e integridad de la información
- Seguridad
- Weight in the entire of the

servicio de ficheros

modelos de acceso a ficheros remotos

Contenido

- © Existen dos modelos básicos:
 - modelo de servicio remoto
 - las operaciones se realizan en los servidores
 - problemas de eficiencia
 - Modelo de caché de datos
 - los ficheros se acceden de forma local
 - aumento del rendimiento
 - problemas de consistencia
- Se pueden combinar ambos modelos
 - ejemplo: NFS, Dropbox, OneDrive, ...

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación Según los tipos de servidores

Implementación de los DFS:

- Caché: copia asociada a cliente, a nivel de bloque
- Replicación de ficheros: copia asociada a servidor, a nivel fichero completo

técnicas de implementación tipos de servidores

Contenido

- Servidores sin estado (stateless): no almacenan información entre solicitudes de un mismo cliente
 - tolerancia a fallos
 - no requieren llamadas para abrir y cerrar ficheros
 - no se desperdicia memoria en tablas
 - no existe límite para el número de ficheros en uso (ficheros abiertos)
 - no se producen problemas si cae un cliente
- Servidores con estado (stateful): almacenan información entre solicitudes de un mismo cliente
 - mensajes de solicitud de servicio más cortos
 - mejor rendimiento
 - es posible realizar operaciones de lectura anticipada
 - permiten el bloqueo de ficheros

técnicas de caché

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación Retener en memoria principal aquellos datos que han sido usados más recientemente

Localización de la caché

- Hay cuatro lugares posibles en los que almacenar la información
 - 1. el disco del servidor
 - 2. la memoria del servidor
 - 3. el disco del cliente (el cliente puede no tener disco)
 - 4. la memoria del cliente

técnicas de caché

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Localización de la caché en el disco del servidor

No se aconseja la caché en disco, demasiado costoso

Localización de la caché en la memoria del servidor

- Ventajas
 - transparente para los clientes
 - los sistemas operativos tradicionales suelen utilizar este esquema (NFS)
- Inconvenientes
 - coste de las transferencias por la red

Localización de la caché en el disco del cliente

- Ventajas
 - fiabilidad
 - gran tamaño de la caché
- Inconveniente
 - hay que acceder a disco

Localización de la caché en la memoria del cliente

- Ventajas
 - se eliminan los costes de transmisión por la red y de acceso a disco
 - máximo rendimiento en caso de acierto
- Inconvenientes
 - problema de inconsistencia de la información en la caché

tratamiento de la caché

Contenido

- Cuando se utiliza caché en los clientes se pueden producir inconsistencias
- Aspectos a considerar:
 - Cuándo propagar las modificaciones hechas en la caché al fichero en el servidor
 - Cómo verificar la validez de los datos en las cachés
- ② Dos esquemas básicos para cuándo propagar las modificaciones:
 - Escritura inmediata (Write-through)
 - Posponer las escrituras (Delayed –Write o Writeback)

técnicas de implementación tratamiento de la caché: validación

Contenido

- La política de propagación de modificaciones
 - especifica cuándo se actualiza la copia principal de un fichero cuando una de las copias en caché es modificada
 - pero no establece cuándo actualizar las cachés
- El contenido de una caché se vuelve inválido cuando otro cliente modifica la copia principal
 - es necesario comprobar si la caché de un cliente es consistente con la copia principal
 - en caso contrario es necesario invalidar la caché y actualizar los datos
- Os estrategias básicas
 - iniciadas por los clientes
 - iniciadas por los servidores

técnicas de implementación replicación de ficheros

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación Un fichero replicado es aquél del que existen varias copias, cada una de las cuales está en un servidor diferente

- La replicación de ficheros aporta las siguientes ventajas
 - aumenta la disponibilidad
 - aumenta la fiabilidad
 - mejora el tiempo de respuesta
 - reduce el tráfico en la red
 - mejora el rendimiento (throughput)
 - beneficia la escalabilidad
 - permite trabajar en modo de operación desconectada
- Cuestiones a considerar
 - conseguir que la replicación sea transparente a los usuarios
 - cómo actualizar las copias en el caso de modificaciones en una réplica

replicación de ficheros

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Transparencia de replicación:

- Aspectos a considerar
 - denominación de las réplicas
 - control de la replicación
- Denominación de las réplicas
 - ¿cómo distinguir a una réplica de otra si ambas tienen el mismo identificador?
 - un servidor de nombres debería hacer corresponder al identificador la réplica más conveniente
- Control de la replicación
 - explícita
 - implícita
 - replicación perezosa
 - comunicación a grupos

replicación de ficheros

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

Protocolos de actualización de réplicas

- Replicación de sólo lectura
 - se aplica a ficheros inmutables
- Protocolo Escribir en todos-Leer de cualquiera
 - las escrituras son costosas
 - problemas si un servidor cae
- Protocolo basado en la disponibilidad de copias
 - problemas de inconsistencias en caso de partición de la red
- Protocolo de copia primaria
 - se lee de cualquiera, se escribe en una
 - problemas si cae el servidor primario
- Protocolo basado en quorum
 - los clientes requieren un quorum de Nr servidores para leer y Nw para escribir
 - Nr + Nw > N (N = número de réplicas)

distribuidos

casos de ejemplo

oneDrive

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación

OneDrive for Business Synchronization

How does OneDrive for Business synchronize files?

The business of synchronization

OneDrive for business is constantly checking for new and changed files to synchronize. When a change is detected, such as a new file on a client machine, client synchronization determines the technology to use to sync. Web services are used to bridge the gap between the client computer and Office 365.

Web Services used in synchronization

- . Cellstorage.svc used for file synchronization.
- Sites.asmx returns site collection information.
- . Webs.asmx used to work with sites and webs.
- . Lists.asmx used to work with lists and list data.
- . Version.asmx used to work with file versions.

OneDrive for Business Sync

distribuidos

casos de ejemplo

IPFS

Contenido

