SECURITY+ Notes

- Chapter 1 Mastering Security Basics
 - o Use Case describes a goal that an organization wants to achieve
 - Important to identify and clarify requirements
 - Elements of Use Case Systems:
 - Actors, Preconditions, Postconditions, Triggers, Normal Flow, Alternate Flow
 - Common Use Cases related to supporting confidentiality, integrity, availability, authentication, obfuscation, and non-repudiation.
 - Ensure Confidentiality prevent unauthorized disclosure of data
 - Encryption best way to protect PII in storage and transit
 - Access Controls
 - Identification, Authorization, and Authentication combined
 - Usernames, passwords, permissions respectively
 - Steganography and Obfuscation
 - Hide data within data
 - Security through obscurity is a commonly rejected concept
 - o Provide Integrity
 - Provide assurance that data has not changed (modification, tampering, corruption)
 - Hashing
 - Does not tell what or how content was modified, only that it was
 - Message authentication codes (MAC) used to compare hashes developed at two separate times for same value
 - Digital Signatures, Certificates, and Non-Repudiation
 - Commonly used with email
 - Prevents impersonation
 - Audit logs another method record what, where, who, when
 - Digital Signatures require use of Certs and Public Key Infrastructure (PKI)
 - o To create, manage, distribute certs
 - Increase Availability
 - Data/Services when needed
 - Redundancy and fault-tolerance, duplication of critical systems
 - Remove Single Points of Failure (SPOF)
 - Common Strategies:
 - Disk Redundancy RAID 1, 5, 10
 - Server Redundancy Failover Clusters, VMs
 - Load Balancing multiple servers per service
 - Site Redundancy offsites (hot, warm, cold)
 - Backups
 - Alternative Power UPS, Generators
 - Cooling Systems HVAC
 - Patching
 - Patch Management Programs
 - Resources Versus Security Constraints
 - Balancing Act
 - Minimize cost w/o sacrificing security
 - Introducing Basic Risk Concepts
 - Reduction of risk by identifying threats and exploits/vulnerabilities and prevent security incidents
 - Such as intentional attacks, infections, accidental data loss, etc.
 - Threats can be internal, external, natural, intentional, accidental

- Reduce risk through mitigation
 - Countermeasures, safeguards as controls
- Understanding Control Types
 - Technical, Administrative, Physical = Implementation Types
 - Preventative, Detective, Corrective, Deterrence, Compensation = Actual Security Control Goals
 - Majority of Security Controls fall under Three Implementation Types
- Technical Controls
 - Reduce Vulns
 - Encryption, IDS/IPS, Firewalls, Least Privilege, Motion Detectors, Fire Suppression
- Administrative Controls
 - Mandated by Organization policies and guidelines
 - Assessments to provide ongoing review of an organizations risk management capabilities
 - Risk assessments CBAs, probability, impact
 - Vulnerability Assessment discover current vulns and weaknesses
 - o Highlights need additional implementation of controls
 - Penetration Testing
 - o Test/exploit defenses and vulns
 - Operational and management controls
 - Awareness training, configuration and change management, contingency planning, media protection, physical and environmental controls
- Physical Controls
 - Lighting, fences, signs, security guards, environmental controls
- Control Goals
 - Classifying security controls based on how they are implemented and their relationship to security incidents
 - Preventative, detective, corrective, deterrent, compensating
 - Preventative
 - Hardening system becoming more secure than default config
 - Defense in depth
 - Disable ports and services, secure protocols, strong passwords, disable default accounts, account disabling policy
 - Security awareness and training, change management process
 - Security guards
 - Detective Controls
 - Detect when exploits occur
 - Log Monitoring
 - Trend analysis via IDS
 - Security Audit
 - Video Surveillance CCTV
 - Motion detection
 - DIFFERENCE BETWEEN DETECTION AND PREVENTION
 - Corrective Controls
 - Reverse impact of an incident
 - IPS
 - Backups and system recovery
 - Deterrent Controls
 - Cable locks, guards, hardware locks

- Overlaps with preventative
- Compensating Controls
 - Time-based one-time use passwords
 - Temporary holdovers while primary controls are being applied
- Combining Types and Goals
 - Overlap between different categories, not mutually exclusive
- Implementing Virtualization
 - Hypervisor
 - Host + host elasticity and scalability
 - Guest
 - Typically provides best ROI when organizations have underutilized servers
 - Comparing Hypervisors
 - Type 1 run directly on system hardware; bare-metal; no OS
 - Type 2 run as software within host OS
 - Application Cell or Container Virtualization
 - Services/apps run within isolated application cells
 - Host OS + kernel run a service or app within each container which cannot interfere with one another
 - o Uses fewer resources and can be more efficient than standard Type 2
 - o Commonly used by ISPs
 - Must share same OS type
- Secure Network Architecture
 - Provide segregation, segmentation, and isolation of individual systems
 - Disable VM NIC
 - Snapshots
 - Provide backups for reversion in case changes are not successful
 - VDI/VDE and Non-Persistence
 - Virtualized Desktop Infrastructure/Environment
 - o Desktop runs as VM on a server
 - o Allows PCs to have limited hardware resources
 - o Persistence allows customizable virtual desktops that can save data
 - Non-Persistence saves a uniform desktop to all users that is reset upon logoff
 - VMs as Files
 - Virtual servers can be moved around for space considerations
 - VMs are also easily restored vs a physical server
 - Multiple virtual systems can be run on a single server (even with different hosts)
 - Single management interface
 - Risks associated with virtualization
 - VM Escape
 - Attack that allows host sys to be accessed from within VM
 - Code allows interaction with hypervisor
 - Gives attacker elevated privilege
 - Mitigated with patches
 - VM Sprawl
 - Poorly managed VMs
 - Unauthorized added resource load
 - Blind gaps in security if machines go unattended, forgotten, unpatched
 - Loss of confidentiality
 - o Much easier to steal

- Running Kali Linux on VM
 - HyperV, VMWare Workstation Player, OracleVM
- Using Command Line Tools
 - Windows Command Line
 - Linux Terminal
 - Understanding Switches and Getting Help
 - Windows forward slash or dash (-?; /?)
 - Linux dash (-?)
 - Understanding Case
 - Windows not case sensitive
 - Linux is case sensitive
 - Ping
 - ICMP echo request packets
 - o Continuous on Linux until Ctrl + C or ping -c
 - o 4 packets with Windows unless ping -t
 - Using Ping to check Name Resolution
 - Ping hostname of a remote system and verify that name resolution is working
 - As DoS attacks use ICMP, Firewalls often block ICMP traffic
 - Using Ping to Check Security Posture
 - Using ping from several sources to test if firewalls and IPS systems will block sudden ICMP flows
 - Verify that routers, firewalls, and IPS block ICMP traffic when configured to do so
 - Ipconfig, ifconfig, and ip
 - Ipconfig shows TCP/IP configuration info for a system
 - o NICs, MAC, subnet, Default Gateway, IP, DNS, etc.
 - Linux uses if config for non-Debian distros (use ip)
 - o Can configure NICs w/Linux
 - o Promiscuous/non-promiscuous mode
 - Netstat
 - System TCP/IP protocol statistics, active connection view
 - States of connections
 - o Established data transfer phase, active/open
 - Listen waiting for connection req
 - Close-wait waiting for connection termination req
 - Time-wait waiting for remote system receipt of TCP based acknowledgement
 - Syn-Sent TCP SYN sent, awaiting SYN-ACK
 - SYN-Received SYN-ACK sent, awaiting ACK, excessive amount may indicate SYN attack
 - Tracert and Traceroute (Linux)
 - o Lists routers between two systems via hops
 - IP address, host name, RTTs
 - o Identify faulty routers or modified paths (security)
 - Valuable when troubleshooting issues through a WAN
 - ID unauthorized routers or modified internet paths
 - ARP
 - o Address Resolution Protocol
 - Arp command allows user to view and manipulate the ARP cache
 - ID MACs of machines on local networks

- Exploring Authentication Concepts
 - Authentication proves an identity via credential
 - Identification plus authentication is critical for access controls
 - o Comparing Identification and AAA (Authentication, authorization, accounting)
 - Work with identification for comprehensive access management
 - Authorization allows for access to a given set of resources
 - Accounting tracks user activity and records it
 - Create audit trails via logs
 - Strong authentication is the core
 - o Comparing authentication factors
 - Something you know (PIN, password) passphrases best
 - Training users about password behaviors
 - Password expiration
 - 45-90 days
 - Password recovery
 - Verify ID, change to temp
 - ID-proofing system
 - Prevent re-use of old passwords
 - Group Policy
 - Sys admins configure settings for multiple users/computers in a domain via Group Policy Objects (GPO)
 - Active Directory Domain Services
 - Using a Password Policy
 - Written document with stated goals and specifics concerning passwords
 - Implemented technically with a technical password policy in a GPO
 - o Enforce history, max/min age, min length, complexity
 - Store with reversible encryption
 - Implementing account lockout policies
 - Preventing excessive password guessing
 - Account lockout threshold and duration
 - Changing default passwords
 - Passwords, names
 - Dummy false admin accounts
 - Something you have
 - Something physically held
 - Smart cards
 - o Provides confidentiality, integrity, authentication, and non-repudiation
 - Requirements
 - Embedded certificates
 - PKI
 - Used in conjunction with another form such as a PIN
 - CACs and PIVs
 - Common Access Card
 - Used by DoD
 - Picture and additional info
 - Personal Identity Verification
 - Federal agencies
 - CIA + non-repudiation
 - o Both support 2FA
 - Tokens and Key FOBs
 - o Hardware, logical, software tokens

- Random numbers and synced with server
 - OUT rolling password
- Used for authentication
 - RSA SecureID
- HOTP and TOTP
 - o Hash-Based Message Authentication Code (HMAC)
 - HMAC-based One-time password (HOTP)
 - Open standard for creating one-time passwords
 - Uses a secret key and an incrementing counter which produces a hash
 - Result then converted into an HOTP value of 6-8 digits
 - Password remains usable forever until its first use
 - Still has potential security risks
 - o Time-based One-Time Password
 - Similar to HOTP
 - Uses timestamp rather than a counter (30 sec average)
 - Both are open source, allowing for inexpensive use of hardware tokens based on these systems
- Something You Are
 - Geolocation via IP
 - Can be fooled via VPN IP address changers
 - MAC address
- o Something You Do
 - Actions taken, like gestures
 - How you write, how you type
 - Keystroke dynamics
 - Behavioral dynamics, biometrics
- o Dual-Factor and Multifactor Authentication
 - 2 vs 2+
- Summarizing Identification Methods
 - o Usernames, photo ID, biometrics
- Troubleshooting Authentication Issues
 - Weak passwords, forgotten passwords
 - o Biometric errors
- Comparing Authentication Services
 - o Ensure that authentication credentials are not sent across a network
 - KERBEROS
 - Network authentication mechanism used within Windows Active Directory domains and Unix realms
 - Mutual authentication to prevent man-in-the-middle attacks and tickets to prevent relay attacks
 - Requires
 - Method of issuing tickets used for authentication (Key Distribution Center [KDC]) for ticket-granting tickets (TGTs)
 - User credentials are packaged within a ticket
 - Provides authentication for users when they access resources (logical tokens)
 - Time synchronization within 5 minutes of all systems involved
 - o Prevents replays
 - A database of subjects of users
 - o KDC tickets have a 10 hour timestamp

- o NTLM
 - New technology LAN manager
 - Protocols that provide authentication, integrity, and confidentiality with Windows
 - Use message digest algorithm to challenge and check user credentials
 - NTLM s/ MD4 cracked and unsafe
 - NTLM v2 challenge response with HMAC-MD5 hash of username computer/domain name – password – time – etc
 - NTLM2 Session improves NTLMv2 by adding mutual authentication
 - Negotiate security package is automatically setup KERBEROS or NTLMv2/NTLM2 Session
- LDAP and LDAPS
 - Lightweight Directory Access Protocol specifies formats and methods to query directories (databases with central access point)
 - X.500 extension
 - Active Directory is based on LDAP
 - LDAP Secure uses encryption to protect LDAP transmissions with TLS
- o Single Sign-on
 - Credentials provided only once, as SSO creates a secure token for that singular logon session
 - Requires strong authentication
- SSO and Transitive Trust
 - Indirect trust relationship can help reduce network and administration
 - LDAPS use transitive trust for SSO
- o SSO and SAML
 - Security Assertion Markup Language is an XML based data format used for SSO on browsers
 - Federated identity management system between two organizational sites
 - Commonly used on web-based portals
 - SAML defines three roles
 - Principle user
 - Identity Provider creates, maintains, manages ID for principle
 - Service Provider provides services to principles
- SAML and Authorization
 - Primary purpose of SSO is for identification and authentication of users
 - SSO does not provide authorization, but does include the ability to transfer authorization data between their systems
- SSO and a Federation
 - Same SSO systems can connect with authentication mechanisms from other environments (operating systems, networks)
 - Federated Identity Management System
 - o Provides central authentication in a non-homogenous environment
 - A federation requires a FIDM system that all members of the federation use
 - Shibboleth open source with open SAML libraries
- OAuth and OpenID Connect
 - Open standard for authorization many companies use to provide secure access to protected resources
 - OpenID Connect works with OAuth2.0 to verify ID of end users without managing credentials
- Managing Accounts
 - o Creation, management, disablement, and termination of accounts

- When active access controls are used to control what a user can do, when, and where
- Least Privilege
 - Individuals and processes are granted only the rights and permissions needed to perform relevant tasks
 - Reduce risk, applies to all users and admins
 - Many services and applications run under user account context deriving privileges from said account
 - Focus on both rights and privileges
- Need to Know
 - Users granted access only to data and information needed to know for their job
 - Focus on data and information
- Account Types
 - End User Accounts regular users
 - Privileged Accounts additional rights and privileges beyond what regular users have
 - Guest Accounts limited access without a new account being created
 - Service Accounts accounts assigned appropriate privileges relevant to the task and us used by a service or application, not an end user
- o Require Administrators to use Two Accounts
 - One for regular use, another with elevated privileges for admin work
- Standard Naming Convention
 - Ensure user account names and email addresses are created similarly
 - Be sure to understand and adhere
- o Prohibiting Shared and Generic Accounts
 - If multiple users share an account, you cannot implement basic authorization controls
 - Lose IAAA
- Disablement Policies
 - Specifies how to manage accounts in different situations
 - Disable default accounts, accounts of users no longer with organizations
 - Disablement is preferred in the short-term over deletion
- Recovering Accounts
 - Enable a disabled account
 - Recover a deleted account
- o Time of Day Restrictions
 - Set time that an account is accessible
- Location based policies
 - Geolocation tech via IP
 - Block unacceptable addresses
 - Black and White lists
 - Within a network, restrict access via MAC
- Expiring Accounts and Recertifications
 - Accounts can be set to expire automatically, requiring recertification
 - Common for temporary accounts
- Account Maintenance
 - Scripts to automate
 - Usage, inactivity, ability, status, etc.
- o Credential Management
 - Credential manage systems help users to store collections of info used as certification securely
 - Simplify management, limit unauthorized access
 - Credential Manager (windows)
- Company Access Control Models

- o Role-Based Access Control (Role-BAC)
 - Uses roles to manage rights and permissions, such as in a specific department or a specific job function
- Using R-BAC on Jobs and Functions
 - Create roles that reflect departments, jobs, or functions
 - Assign roles to members and levy access to server
 - Project managers
 - Admins, execs, project managers, team members
- Documenting Roles Within a Matrix
 - It is common to document R-BAC permissions with a matrix listing all of the job titles and the privileges for each
 - Can also be hierarchy, job, task, or function based
- Establishing Access with Group-Based Privileges
 - Roles are often implemented as groups
 - Can be reflective of organizational structure
 - Rights and privileges are assigned to groups and users are added to groups
 - Simplifies user administration
 - Microsoft built-in security groups like Administrators
- Rule-Based Access Control
 - Rules in firewalls and routers, even within applications
 - Rules used within access control lists which define what traffic devices allow into network
 - Static rules
 - o Dynamic rules (IPS)
- Discretionary Access Control
 - Every object has an owner, and the owner establishes access for the object
 - New Tech File System (NTFS) in Windows
 - Allows users and admins to restrict access to files and folders with permissions
- SIDs and DACLs
 - Users identified with security identifiers (SIDs)
 - Every object has a discretionary access control list (DACL) that IDs who can access it in a system
 - List of Access Control Entries, each ACE is comprised of a SID and Permissions granted to that SID
 - The Owner Establishes Access
 - File creators are also the owners, with explicit control
 - o Modify permissions via user and group accounts
 - More flexible than MAC model
 - Beware of Trojans
 - DAC is susceptible to Trojans as file downloads will have the users privileges
 - Mandatory Access Control
 - Uses sensitivity and security labels to determine access
 - Labels assigned to both subjects and objects
 - Matching labels = access granted
 - Popular in military
 - Used in conjunction with need to know
 - Security-enhanced Linux (SELinux)
 - Labels and Lattice
 - Levels of security are defined in a lattice
 - o A complex relationship between different ordered sets of labels
 - These labels define boundaries

- Establishing Access
 - Admin responsibility but only someone at a higher authority
 - o ID specific access
 - Upgrade/downgrade
 - Multiple approval levels involved in decision making process
- Attribute-Based Access Control (ABAC)
 - Evaluate and grants access based on value of attributes (characteristics of a user)
 - Many software-defined networks (SDNs) used ABAC
 - ABAC system policies control traffic, not the router itself
 - Four Elements
 - Subjects
 - Objects
 - Action
 - Environment
 - ABAC is flexible, capable of enforcing DAC or MAC

Chapter 3 – Exploring Network Technologies and Tools

- Reviewing Basic Networking Concepts
- Basic Networking Protocols
 - Provide Rules needed for computers to communicate with each other on a network
 - TCP/IP, HTTP, SMTP
 - o TCP/IP is a suite of protocols with well-known ports
 - Ports are critical knowledge when implementing ACLs in routers and stateless firewalls, and disabling unnecessary ports and services
 - o TCP
 - Three-way handshake protocol, connection-oriented UDP
- Connectionless sessions, ICMP and audio/video streaming
- o IP
- IDs hosts in TCP/IP network with IPv4 and IPv6 addresses
- o ARP
 - Resolves IPv4 to MAC, requested once packet reaches destination subnet
- o NDP
 - IPv6 functions like IPv4 ARP.
 - Also performs IPv6 autoconfiguration and IPv6 device discovery
- Implementing Protocols for Use Cases
 - ID a need based on an organization goal and enable best protocol to meet that need
 - Voice/Video Use Case
 - UDP, Real-Time Transport Protocol (RTP), (VoIP)
 - Secure Real-Time Transport Protocol (SRTP) provides encryption and message authentication and integrity
 - Confidentiality while ensuring integrity
 - Prevent replay attacks
 - Unicast and multicast use
 - File Trans Use Case
 - Transmitting data over a network
 - Ensuring confidentiality
 - Ensuring admins can connect to servers
 - Using secure connections
 - FTP upload and download large files to and from an FTP server
 - Cleartext, Port 21 TCP (Control)
 - o Port 20 TCP (Data)

- Passive FTP, Port 21 TCP (Control)
 - o Random TCP port for data
 - Often blocked by firewall
- Trivial FTP
 - UDP Port 69
 - Smaller amounts of data
 - Commonly disabled
- SSH
 - Encrypts traffic and other protocols
 - Secure copy (SCP) based on SSH for encrypted file copy
 - Encrypt TCP wrapper (for ACL uses) at TCP port 22
- SSL
 - No longer recommended
- TLS
 - Replaces SSL for HHTPS, SMTP, LDAP via STARTTLS command
- IPsec
 - Encrypts IP traffic
 - Native IPv6 support
 - Encapsulates IP packets via VPN tunneling
 - Uses Authentication Header (AH) protocol ID #51 and Encapsulating Security Payload (ESP) with PID #50
 - IKE over UDP port 500 for VPN security association
- SFTP
 - Secure implementation of FTP via SSH TCP port 22
- FTPS
 - Extension of FTP via TLS
 - TCP ports 989 and 990 or FTP ports 20 and 21
- o Email and Web Use Cases
 - Send/receive email, secure email
 - Manage email folders
 - Internal access to external web or external web access to internal organizational resources
 - Common support for STARTTLS
 - SMTP TCP port 25, clients \leftarrow SMTP servers
 - POP3 and Secure POP TCP port 110, servers \rightarrow clients
 - IMAP4 and Secure IMAP TCP port 143, storage of emails on an email server
 - Organize and manage emails in folders on a server
 - HTTP
 - Inter/intranet traffic
 - TCP port 80
 - HTML language
 - HTTPS
 - SSL/TLS TCP port 443
- o Directory Services Use Case
 - Streamline management and implement security
 - Secure network access
 - Active Directory Domain Services
 - KERBEROS
 - UDP port 88
 - LDAP

- TCP port 389
- LDAPS TCP port 636
- Group Policy GPOs exist within domain
- o Remote Access Use Cases
 - Remote admin/user access
 - Often SSH
 - Netcat + SSH (Linux)
 - Remote Desktop Protocol (RDP)
 - TCP port 3389 (More common) or UDP port 3389
 - Can be blocked via host-based network firewall
 - VPN alternative
- o Time Synchronization Use Case
 - Network Time Protocol
 - KERBEROS use
 - Single NTP server, domain controller sync to NTP server, computers syn within each domain
 - SNTP can be used, but less accurate
- Network Address Allocation Use Case
 - DHCP
 - IPv4
 - 32-bit, dotted decimal
 - Internet IPs public addresses
 - Internal Ips private addresses
 - RFC 1918
 - IPv6
 - 128-bit, hexadecimal, colons (fc00)
 - Unique local addresses instead of private Ips
- o Domain Name Resolution Use Case
 - DNS
 - Servers host data in zones
 - \circ A host record = host name + IPv4 address
 - Most commonly used
 - Queried with Forward Lookup Address
 - AAAA hostname + IPv6 address
 - o PTR
 - Pointer Record
 - Opposite of A
 - DNS client queries DNS with IP address, not name
 - Optional, does not always work
 - MX Mail eXchange
 - Used for email
 - Linked to A/AAAA
 - CNAME canonical names allow a single system to have multiple names associated with a single IP address
 - SOA State Of Authority
 - DNS zone info
 - TLS settings
 - Most DNS servers run BIND on Unix/Linux servers
 - o Zone transfers use TCP port 53 whereas Name Resolution uses UDP 53
- DNSSEC
 - Risk of DNS poisoning, modifying DNS cache with false IP addresses

- Prevented with DNS Security Extensions (Digital signature address to each record that provides data integrity)
- Nslookup and Dig
 - Nslookup is used to troubleshoot DNS related problems
 - Verify DNS resolution or FQDNs
 - Dig command line replaced nslookup on Linux
 - Domain information groper
 - Query DNS servers, verifying records and responses
 - Uses @ to specify target server
- Subscription Servers Use Case
 - Commonly use HTTPS with database servers with TLS connections
- Understanding and Identifying Ports
 - Logical numbers used by TCP/IP to ID services and applications to handle data received by a system
 - TCP 0-65,535
 - UDP 0-65,535
 - Admins open ports on firewalls/routers to allow associated protocols into/out of a network
 - Also disable unnecessary ports and services (basic security)
 - IANA
 - Well-known ports 0-1023
 - Registered ports 1024-49,151
 - Companies
 - Dynamic and Private Ports 49,152-65,535
 - Used by any application to temporarily map an application to a port (ephemeral ports)
 - Most attacks are levied against well-known ports
 - Use port scanners
 - Common: 20, 21, 22, 23, 25, 80, 443
- o Combining the IP address and the Port
 - Packets include destination IP address and destination port
 - Ensures correct application/service on correct host receives and handles packet
- o IP Address Used to Locate Hosts
 - TCP/IP uses IP addresses to get packets from computer to web server and response back to client
- Server Ports
 - Port 22 = SSH
 - Port 25 = SMTP
 - Port 80 = HTTP
 - Port 443 = HTTPS
 - Popular web servers include Apache and Internet Information Systems (IIS)
- Client Ports
 - TCP/IP works with client OS to maintain a table of client-side ports
 - Starts at 49,512-65,535
 - An unused port will be recorded by client to be used to handle return traffic from a page request
- o Putting It All Together
 - When entering a URL for a webpage via browser
 - Host creates a packet with source and destination IP addresses and ports
 - o DNs server is queried for IP address of URL
 - For example, HTTP destination port is 80

- Host ID's unused port in dynamic and private ports range and map port to browser
 - TCP/IP uses destination IP to get to webpage server
 - Server creates return packets, swaps destination and source IPs and sends packets to newly designated port
- o The Importance of Ports in Security
 - Control protocol traffic via routers/routing component of firewalls
 - Open and close ports
- Understanding Basic Network Devices
 - Common use case for a switch is to connect hosts together within a network
 - Common use case for a router is to connect multiple networks together
 - IPv4 uses either unicast or multicast
 - Switches
 - Can learn which computers correspond to each of its physical ports
 - Creating internal switched connections
 - Security Benefit of a Switch
 - Unicast traffic cannot be read by a port analyzer if it is not one of the specified ports
 - Traditional hubs shared all traffic, making it readable by a third party
 - Port Security
 - Limits the computers that can connect to physical ports on a switch
 - Address (MAC) filtering is another method
 - Physical Security of a Switch
 - Console/monitoring ports see all traffic, therefore a switch must be physically protected from attackers attempting to jack in
 - Loop Prevention
 - Spanning Tree Protocol (STP) or newer Rapid STP (RSTP)
 - Flood Attacks and Flood Guards
 - Overload a switch with different MAC addresses associated with each physical port
 - Large amount of traffic with spoofed MAC addresses to same port
 - o Runs out of memory causing a fail-open state
 - Switch become a hub
 - Flood Guard prevents these attacks
 - o Limiting MAC storage memory
 - Exceeding limit sends an alert with a Flood Guard sending an SMTP trap/alert
 - Restricts/disables port
 - Max number of MACs support by a port
 - Routers
 - Connects multiple network segments together into a single network and routers traffic between segments
 - Routers do not pass broadcasts, reducing segment traffic
 - Broadcast domains (Subnetting)
 - Routers and ACLs
 - Provide rule-based management for the router and control inbound/outbound traffic
 - Basic packet filtering via IP addresses, ports, protocols, encrypted/cleartext
 - Implicit Deny

- All traffic that isn't explicitly allowed is implicitly denied
 - ACLs and Firewalls
- Anti-spoofing
 - Modify access list to allow/block IP addresses
 - o Blocking private IPs arriving over the internet
- Bridge
 - Connects multiple networks together and can be used in place of a router (sometimes)
 - Directs traffic based on destination MAC address
 - Segments within a subnet
 - Learns MAC addresses with traffic analysis
- o Aggregation Switch
 - Connects multiple switches together in a network
 - Reduces number of ports used in a router
- o Firewalls
 - Filters incoming/outgoing traffic, blocks downloads
 - Simple packet to advanced content filtering
 - Implicit deny rule
- o Host-based Firewalls
 - Single-host monitoring (server or workstation)
 - Monitors NIC traffic, preventing intrusions
 - Linux xtables allow rule configuration (functional ACL)
 - Used in conjunction with network firewall for defense in depth
- o Application-Based Versus Network-Based Firewalls
 - App-based → software (Like host-based)
 - Network-based → dedicated hardware and software
 - 2+ NICs with all traffic passing through
 - Firewall controls traffic
 - Stateless Firewall Rules
 - ACLs rules used to ID allowed/blocked traffic
 - o Format
 - o Permission Permit/Allow or Deny
 - o Protocol TCP or UDP, or IP (both), ICMP
 - Source Source IP, any/all
 - o Destination Destination IP, any/all
 - o Port port number, symbol. Value
 - Stateful Versus Stateless
 - Stateful inspects traffic and makes decisions based on context/state of traffic
 - Tracks sessions and inspects session states
 - Any traffic not part of a session is blocked
 - Common issue can be misconfigured ACLs
 - Web Application Firewall
 - Specifically designated to protect a web application, commonly hosted on a web server
 - Placed between server and client
 - Used in addition to network-based firewalls
- o Implementing a Secure Network
 - Zones, topologies, segmentation, and isolation and various network devices
 - Zones and Topologies
 - Divide network into zones
 - Intranet
 - Extranet

- Boundary protection includes multiple methods to protect the network perimeter
- DMZ
 - Buffer zone
 - Area between firewalls hosting internet facing servers
 - Separating internal network from internet
 - Each firewall uses rules to filter out traffic
- Understanding NAT and PAT
 - NAT translates IPs
 - \circ Public \rightarrow private
 - o Private → public
 - Enabled on internet facing firewalls
 - Commonly used as port address translation
 - Router that connects to internet runs NAT
 - o Public IP addresses don't need to be purchased
 - o NAT hides internal computer from the internet
 - Not compatible with IPsec
 - o IPsec can create VPN tunnels and encrypt traffic with L2TP
 - NAT can be either static or dynamic
 - o Static uses a single public IP address in a one-to-one mapping
 - Maps a private IP address with a single public address
 - o Dynamic uses multiple public IP addresses in a one-to-many mapping
 - o Public IP address is decided based on load
- Network Separation
 - Segregation, segmentation, and isolation
 - Physical Isolation and Airgaps
 - Ensures a network isn't connected to any other network
 - Airgaps red-network (classified)
 - Black network (unclassified)
 - Must be kept absolutely separate
 - Logical Separation and Segmentation
 - Routers and firewalls provide a basic level of separation and segmentation
 - o Routers segment via ACLs
 - o Admins use subnetting
 - Firewalls use packet/content filtering
 - VLANs segment traffic between logical groups of users/computers via logical separation
 - Comparing a Layer 2 versus Layer 3 Switch
 - L2 traditional switch
 - o Using MAC address, forwards all broadcast traffic
 - L3 routers
 - Using destination IP address
 - Block broadcasts
 - o L3 switches mimic routers, allow for VLAN creation
 - Uses destination IP address, avoiding ARP-based
 - Isolating Traffic with a VLAN
 - Uses a switch to group several different computers into a virtual network
 - o Traffic isolated by need
 - Separation based on logical needs (roles) as opposed to physical location
 - Easily reconfigured as needed
- Media Gateway

- Device that converts data from the format used on one network to the format used on another network
- Proxy Servers
 - Forward requests for services from clients
 - They can improve performance by caching content and some proxy servers can restrict users access to inappropriate websites by filtering content
 - Located on edge of network
 - Configured by admins for specific protocols
- Caching Content for Performance
 - Less items that have to be retrieved
 - Reduces bandwidth
- Transparent Proxy Versus Nontransparent Proxy
 - Transparent accepts and forwards requests with modification
 - Non-transparent can modify/filter requests
 - Restricts what users can access with URL filters
 - Third-party URL lists can be used as database for go and no-go sites
 - Logs that record site surfing
- o Reverse Proxy
 - Accepts requests from internet for a server
 - Allows server to be located behind second firewall
 - Acts as a load balancer when used with a web farm
- Application Proxy
 - Accepts requests, forwards, return responds
 - Exchange of data between web services via APIs
- Unified Threat Management
 - Better security with simplified management
 - UTM security appliances combine the features of multiple security solutions into a single appliance
 - Capabilities include
 - URL filtering
 - DDoS mitigators
 - Malware inspection
 - Content inspection
 - Alerts, output, etc.
 - Common issue → misconfiguration of content filters
 - Commonly placed at network border (but can vary depending on intended use)
- Mail Gateways
 - Examines all incoming/outgoing email and attempts to reduce risks
 - Between server and internet
 - Can be with UTM
 - Data Loss Prevention (DLP) capability
 - Scan for confidential/sensitive information
 - Blocks it (keyword search)
 - Supports encryption

Chapter 4 – Securing Your Network

- Exploring Advanced Security Devices
- Understanding IDS's and IPS's
 - IDS monitor networks and send alerts when suspicious events are detected on system or network
 - IPS react to attacks in progress and prevent them from reaching systems and networks
 - o Both capture and analyze traffic with the same monitoring and detection methods

- HIDS
 - Host-based IDS
 - Workstation/server, individual host protection
 - Traffic passes through NICs
 - Can also monitor applications and detect malware traditional AV may miss
- NIDS
 - Network-based IDS
 - Sensors installed on routers and firewalls and report to central monitoring server hosting NIDs console
 - Workstation anomalies cannot be detected unless anomaly affects network traffic
 - Cannot decrypt network traffic
- Sensor and Collector placement
 - Before/after firewall
 - See what exists before and after firewall filter
- Detection Methods
 - Signature based
 - Heuristic/behavioral based (anomaly based)
 - Signature-Based
 - Definition based
 - Database of known vulnerabilities or attack patterns
 - Require constant database updates
 - Heuristic/Behavioral-Based
 - First ID normal operational behavior of a network
 - Performance baseline
 - Compare network behavior against baseline
 - Heuristics takes this a step further
 - Effective at discovering zero-day exploits
 - Baseline should be recreated after every system update
 - Data Sources and Trends
 - IDS uses various raw data sources
 - Firewalls, system app logs provide insight on trends
 - o Real-time monitoring
 - o Reporting based on rules
 - Configured within IDS and allow reporting of various events
 - Alerts/alarms sent to admins
 - o False positives vs false negatives
 - Adjust threshold for happy medium
 - o IPS vs IDS
- Inline vs passive
- In-band vs out-band
- IPS can detect, react, prevent
 - Inline all traffic passes through IPS
- NIPS placed before DMZ, allowing total inspection, additional NIPS can be installed further in for further filtering against advanced persistent threats (APTs)
- SSL/TLS Accelerators
 - Devices focused on handling TLS traffic
 - HTTPS certificate + asymmetric encryption
 - Offloading secure connection process to accelerator hardware and offloads resource strain from system CPU and RAM
 - Best placed close as possible to related devices
- SSL Decyptors

- Attackers use encryption to prevent inspection methods from detecting malware coming into a network
- Decryptors establish separate TLS session and HTTPS session with malicious site and reads newly decrypted traffic
 - Used in conjunction with NIPS

• SDN

- o Software defined network uses virtualization to route traffic rather than switches/routers
- o Separates data plans and control plans
 - Logic used to forward/block traffic and logic used to identify path to take
- o Allows movement away from proprietary hardware (as hardware uses ACLs)
- o Routers use Open Shortest Path First (OSPF) and Border Gateway Protocol (BGP)
 - SDN uses these protocols without need to create data plan policies to route traffic
 - Plain language

Honeypots

- o Purposefully vulnerable servers meant to divert attacker's attention away from hard targets
- o Used to gather intelligence on the attackers and observe for potential vulnerabilities or new methods

Honeynets

- o Group of honeypots within a separate network, accessible from primary network
 - Usually, multiple virtual servers within a single physical server
 - Mimic live network

• IEEE 802.1x Security

- o Port-based authentication protocol that requires users/devices to authenticate when they connect to a specific WAP or physical port (both wired and wireless networks)
 - Blocks access if client cannot authenticate
 - Can be used usernames/pwords or certs and prevents rogue devices
- o Can be combined with VLAN
 - Implemented as Remote Authentication
 - Dial-in user (RADIUS) or Diameter
 - Assists with VPN client authentication

Securing Wireless Networks

- o Reviewing Wireless Basics
 - Wireless Access Point (WAP)
 - Connects wireless clients to wired network (often with routing capability)
 - All wireless routers are APs
 - Not all APs are wireless routers
 - Switch and Router Components
 - AP's include physical ports for wired access and wireless transceiver
 - Often include NAT, DHCP, etc.
- o Fat versus Thin Access Points
 - Fat AP's standalone, intelligent, autonomous
 - AP's has everything needed to connect wireless clients to wireless network (router, DHCP, security, ACLs, etc.)
 - Must be configured separate from one another
 - Thin AP's controller-based not standalone wireless controllers configure and manage Thin AP's
 - Allowing for central consolidation
- o Band Selection and Channel Width
 - Two primary bands (2.4 + 5.0 GHz)
 - IEEE 802.11 group of wireless networks
 - 11b \rightarrow 2.4 GHs \rightarrow 22 MHz
 - $11g \rightarrow 2.4 \text{ GHz} \rightarrow 20 \text{ MHz}$

- $11n \rightarrow 2.4 + 5 \text{ GHz} \rightarrow 20 + 40 \text{ MHz}$
- $11a \rightarrow 5 \text{ GHz} \rightarrow 20, 40, 80, 160 \text{ MHz}$
- Increased width → more throughput, shorter distance, and greater chance of interference
- Access Point SSID
 - Service Set ID wireless network name
 - Change default name to enhance security
- o Disable SSID Broadcasting or Not?
 - AP's broadcast SSID in cleartext
 - Possible to disable but provides no real clear benefit as attackers can discover SSID w/probe request/response
- o Enable MAC Filtering
 - Form of network access control that can be used to restrict access to wireless networks
 - Implicit Deny
 - MACs can be spoofed
- Antenna Types and Placement
 - Omnidirectional
 - Directional
 - Reception is maximized when your AP antenna orientation matches orientation by wireless devices
 - Site surveys assist with planning and repeats maintain environmental picture
- Antenna Power and Signal Strength
 - Lower power → smaller area → restrictive access
- Network Architecture Zones
 - Wireless, guest, ad hoc technologies
- Wireless Cryptographic Protocols
 - WPA
 - Interim replacement for WEP (Vuln)
 - WPA is weak to password cracking
 - WPA2
 - Permanent replacement for WPA
 - Use counter mode with Cipher Blockchaining Message Authentication Code Protocol (CCMP)
 - TKIP versus CCMP
 - Temporal Key Integrity Protocol
 - o Used in WPA
 - Deprecated
 - Replaced by AES
 - CCMP
 - o WPA2
 - PSK, Enterprise, and Open Modes
 - Pre-shared key mode wireless access anonymously with PSK/passphrase
 - No authentication, passphrase w/o username provides authorization without authentication
 - Enterprise mode forces users to authenticate with unique credentials before granting access to the wireless network
 - o 802.11x server RADIUS
 - Cert-based authentication
 - o Enter in RADIUS server IP, Port, and server password
- o Authentication Protocols
 - Built-on EAP (which uses Pairwise Masterkey [PMK])
 - EAP FAST Cisco, cert-support

- Protected EAP (PEAP) encapsulates EAP convo with TLS tunnel
- EAP-Tunneled TLS (EAP-TTLS) extension of PEAP to use PAP
- EAP-TLS one of the most secure and widely implemented req certs on server and clients
- RADIUS Federation federation with 802.1x and RADIUS servers
- o Captive Portals
 - Forces clients using web browsers to complete a specific process before allowing network access
 - Free internet access
 - Paid internet access
 - Alternative to IEEE 802.1x
- Understanding Wireless Attacks
 - Most can be avoided using WPA2 with CCMP
 - Disassociation Attacks
 - Removes client from wireless network
 - Disassociation frame is sent to AP with spoofed MAC of victim. AP terminates connection,
 - Victim forced to re-do authentication process
 - WPS and WPS Attacks
 - Susceptible to brute force attacks via PIN attempts
 - REAVER tool
 - Recommend disabling WPS
 - o Rogue AP
 - AP placed within a network without official authorization
 - Counterfeit AP's, placed within poorly secured wire-closets
 - Data exfiltration or unauthorized access
 - Evil Twin
 - Rogue AP with same SSID as a legit AP
 - Laptops with wireless access cards
 - Admins use wireless scanners to detect noise and rogue AP's
 - Jamming Attacks
 - DoS by flooding frequency with noise, degrading performance
 - Switch channels or increase AP power
 - IV Attacks
 - Wireless initialization vector attack tries to discover pre-shared key from IV
 - The IV is a number combined with pre-shared key to encrypt data
 - Attacks are successful when IVs are re-used (WEP used 24 number IV)
 - Packet injection increases probability of IV re-use
 - NFC Attacks
 - NFC readers are used to capture data from another NFC device
 - Eavesdropping with antenna-boosted signal
 - Bluetooth Attacks
 - Bluejacking
 - Unsolicited messages sent to nearby BT devices
 - Bluesnarfing
 - Unauthorized access and theft of info from a BT device
 - o HCI tool, obexftl
 - Bluebugging
 - Installation of a backdoor via bluesnarfing
 - Rare due to manual acceptance of connection
 - Wireless Replay Attacks
 - Capture and modification of data between two entities to impersonate one of the parties by replaying said data

- WPA2 using CCMP + AES is not vuln
- WPA + TKIP is vulnerable
- o RFID Attacks
 - RFID sniffing/eavesdropping must know frequency and protocols used by RFID system
 - Replay configure bogus mimic tags
 - DoS jamming/interference of RFID frequency
- Misconfigured Access Points
 - AP's not using WPA2 with AES and CCMP
 - WPS being enabled
- Using VPNs for Remote Access
 - Access over a public network
 - Tunneling protocols to encapsulate and encrypt traffic
 - VPNs and VPN Concentrators
 - Direct Access VPN, Routing and Remote Access
 - Two NICs needed
 - Larger organizations use concentrator dedicated device for VPNs
 - Includes all services for creating VPNs (strong encryption and authentication techniques)
 - Placed in DMZ
 - VPN traffic to concentrator
 - o Remote Access VPN
 - Login to VPN client → use RADIUS server for authentication → LDAP server
 - o IPsec as a Tunneling Protocol
 - Tunnel and transport modes
 - Tunnel encrypts entire IP packet, used with VPNs (hides internal IP)
 - IPsec provides security via authentication and encryption
 - Authentication Header (AH) encapsulating (ESP) Security Payload protocol #51 and #50, respectively
 - Packet filters use protocol numbers to ID AH/ESP traffic
 - IPsec uses IKE port 500 with security associations (SAS) for the VPN
 - o TLS as a Tunneling Protocol
 - Secure Socket Tunneling Protocol (SSTP) encrypts VPN traffic using TLS over port 443
 - Useful for traffic going through a NAT and IPsec is not feasible
 - OpenVPN and OpenConnect
 - Split Tunnel versus Full Tunnel
 - Split Tunnel Admin determines what traffic should use encrypted tunnel
 - Full Tunnel all traffic goes through encrypted tunnel and is slower and often used with UTM
 - Site-to-site VPNs
 - Two VPN servers that act as gateways for two networks separated geographically
 - Transparent connection process for end users
 - o Always-On VPN
 - Both site-to-site and remote access
- Network Access Control
 - Provide continuous security monitoring by inspecting computers and preventing them from accessing the network
 - Measure of control for computer admins don't have total control over
 - Ensure clients meet pre-determined characteristics
 - Host Health checks
 - Set predefined conditions for healthy hosts
 - Update AV, OS, firewalls

- Use authentication agents to inspect NAC clients
 - Apps/services that check said conditions
- Failed clients are directed to a remediation network for quarantine
- Can also be used for internal client inspection
- o Permanent vs Dissolvable
 - Permanent agents are installed on and stay on a client
 - NAC uses this agent for remote login
 - Dissolvable agents remove themselves after NAC health inspection is done
 - Common on mobiles with BYOD policies
- Identity and Access Services
 - Remote Access Authentication Mechanisms
 - o PAP → CHAP
 - PSP used with PPP cleartext password transmission rarely used
 - CHAP PPP with shared secret hashed with nonce
 - o MS-CHAP → MS-CHAPv2
 - Both Microsoft versions of CHAP mutual authentication
 - o RADIUS
 - Centralized authentication service with 802.1x server using WPA2 enterprise
 - Access LDAP server that holds accounts
 - Uses UDP, alternative uses TCP
 - Only encrypts password
 - Alternate encrypt entire process
 - Diameter
 - Extension of RADIUS
 - Can be used with EAP
 - Uses TCP, not UDP
 - o TACACS+
 - Cisco alt to RADIUS
 - Encrypts entire authentication process and multiple challenge-response between client and server
 - Can interact with Kerberos
 - Cisco VPN concentrator can interact with Microsoft Active Directory
 - AAA Protocols
 - Provide authentication, authorization, and accounting
 - RADIUS, TACACS+, and Diameter

Chapter 5 – Securing Hosts and Data

- Implementing Secure Systems
 - Secure systems design concepts help ensure that computing systems are deployed and maintained in a secure state
 - Server, workstation, laptop, network device, mobile device
 - o Secure systems before deployment and keep secure after
 - Hardening an OS/app by changing from default settings
 - o Core principle associated with secure systems design is least functionality
 - Systems deployed only with applications, services, and protocols they need to meet their purpose
 - Accounts, software also
- Operating Systems
 - o Different OS's, different versions of OS's
 - Open versus closed source
 - Desktops, laptops, servers, kiosks, networks, appliances
 - Non-persistent operating systems

- Bootable media
 - Allow an OS to run but disappears once computer is powered down
- Secure Operating Systems Configurations
 - Create master image with a secure configuration, deploy image to multiple systems
 - Trusted OS meets set of predetermined requirements with heavy emphasis on authorization and authentication
 - Trusted OS's ensure only authorized personnel can access data based on permissions
 - Prevent modification/movement of data
 - Security requirements are often 3rd party Common Criteria for Information Technology Security Evaluation
 - Mandatory Access Control
 - Using Master Images
 - Streamline secure deployments
 - Start with blank source
 - Install/config OS, apps, security settings
 - Test
 - Capture image
 - Symantec Ghost
 - Stored on external media
 - Deploy
 - Master Images undergo extensive configuration, testing, baseline setting
 - Secure starting point
 - Mandated security configurations
 - Reduced costs
 - o Maintenance, reliability
 - o Total cost of ownership
 - Virtualization
 - Backups
 - o Resiliency and Automation Strategies
 - Automation, scraping, scripting, templates
 - Group policy
 - Microsoft security templates
 - Secure Baseline and Integrity Measurements
 - Starting point
 - Initial configuration
 - Measurements for baseline deviation
 - Automated tools
 - Vuln scanners, groups
 - Remediation NAC
 - o Patch Management
 - Ensure up-to-date, reducing known vulns
 - ID, download, test, deploy, verify
 - Systems management tools for deployment (SCCM, ConfigMgr)
 - Combined with NAC for automated quarantine
 - Change Management Policy
 - Defines the process for any type of system modifications or upgrades
 - Prevent unintended outages
 - Provide accounting/documentation structure
 - Submit for change approval, logs, for review to return to prefailure state
 - Unauthorized Software and Compliance Violations

- Susceptibility to fines, penalties, infections, etc.
- o Application Blacklisting and Whitelisting
 - Software restriction policies
 - Microsoft Group Policy
 - Mobile Device Management applications
- Secure Staging and Deployment
 - o Sandboxing with VMs
 - Isolated testing areas with high flexibility via virtualization
 - Sandboxing with "Chroot"
 - Linux-based command
 - Changes root dir for an app, isolating it
 - Default is root "/"
 - o To create a test environment, copy relevant files to a dir for testing
 - Use chroot to create isolated sandbox chroot jail
 - o Any command inputs can only access files within specific dir
 - o Files within application can only access other files within test dir path
 - Secure Staging Environment
 - Multiple environments with different systems per stage
 - Development version control and change management
 - Test test modules for flaws/bugs
 - Staging simulated production environment
 - Complete but independent copy
 - Production final product
- Peripherals
 - o Wireless keyboards, mice can be intercepted
 - o Displays limit over the shoulder view
 - Privacy screens
 - External Storage Devices
 - Prevent or limit use, control use to prevent misuse, abuse, loss
 - Cameras
 - Wi-Fi MicroSDs interception of transmissions
 - Strong wireless security needed
 - o Printers/Multifunction Devices
 - Extra features
 - Embedded systems
 - Storage
- Hardware and Firmware Security
 - Consider supply chain, reputable source
 - EMI and EMP
 - Electrostatic discharge, lightning, military weapons
 - Full-Disk Encryption and Self-Encrypting Devices
 - VeraCrypt, hardware and software
 - UEFI and BIOS
 - Trusted Platform Module
 - Hardware chip on motherboard, stores crypto keys
 - Keep hard drives sealed while system completes a system verification and authentication process
 - Secure boot and attestation
 - Key files are signatured and stored upon configuration
 - Secure boot check files against signs to ensure integrity
 - Remote attestation checks boot files via separate system

- TPM uses RSA-burned in key for asymmetric encryption
 - Hardware root of trust
 - Microsoft Bitlocker
 - o Platform verification with authentication process
- o Hardware Security Module
 - Add to a system to manage, generate, and securely store crypto keys
 - Can be external devices connected via TCP/IP or expansion cards, or port-connected
- Additional Vulnerabilities
 - End-of-life systems, lack of vendor support
- Summarizing Cloud Concepts
 - Software as a service, cloud computing
 - OneDrive, google drive, cloud, EC2
 - On-premises or hosted (cloud) services
 - o Software as a Service (SaaS)
 - Network
 - Web browser
 - o Platform as a Service
 - Preconfigured computing platform to be used as needed
 - On demand, easy to use
 - Managed hardware
 - Users manage software
 - o Infrastructure as a Service
 - Outsource equipment requirements, customer rents access
 - Self-managed
 - Customers configure server past default
 - Security Responsibilities with Cloud Models
 - CSP vs Customer
 - SaaS CSP (75%)
 - PaaS CSP (50%)
 - IaaS CSP (25%)
 - Security as a Service
 - Subset of SaaS
 - AV
 - Outsources admin tasks associated with implementing service
 - Allows specialized focus
 - Cloud access security broker (CASB)
 - Tool, device, service deployed between organization network and CSP
 - Cloud Deployment Models
 - Public, private
 - Community, hybrids
- Deploying Mobile Devices Securely
 - NIST SP800-124
 - Deployment Models
 - Any connected device is a risk
 - Must monitor and manager
 - o Especially beyond BYOD
 - Corporate owned
 - Corporate owned, personally enable
 - BYOD
 - Virtual Desktop Infrastructure

- Connection Methods
 - Cellular, SATCOM, NFC, IR, WiFi, Bluetooth, ANTC(+), USB
- Mobile Device Management
 - Expansion of SCCM to mobile
 - App Management
 - Full Device Encryption
 - Storage Segmentation
 - Content Management
 - Containerization
 - Passwords + PINs
 - Biometrics
 - Screen Locks
 - Remote Wipe
 - Geolocation
 - Geofencing, Geotagging
 - Context-Aware Authentication
 - Push Notification Services
- Mobile Device Enforcement and Monitoring
 - Compliance, block access
 - NAC
- Unauthorized Software
 - Third party app store
 - Jailbreaking, rooting
 - Custom firmware
 - Sideloading
 - MMS + SMS are plaintext
 - iMessage (encrypted)
 - MMS messages can allow remote code execution
 - Payment info, PII, etc. stored
- Hardware Control
 - Camera, mic in phone
 - MDM disabling with geofencing
 - Prevent USB on the go cables
- Unauthorized Connections
 - Limit simultaneous connections (phones connection internally, externally)
 - Tethering, hotspots
 - Bypasses content filters
 - Wi-Fi Direct (ad hoc)
 - Uses single hop radio
 - Carrier unlocking
- Exploring Embedded Systems
 - Dedicated function device that uses a computer system to perform said function
- Security Implications and Vulnerabilities
 - Must keep embedded systems up to date
 - Default configs
 - Comparing embedded systems
 - Smart TVs, IoTs
 - Wearable tech, implantable
 - Home automation
 - System on a chip, ICS, SCADA (NIPS, NACS, VLANS)
 - HVAC

- Real-time OS
 - Reacts to input within a specific time (assembly line)
- Medical, automotive, UAVs
- Protecting Data
 - Security contracts an organization can use to protect data based on the requirements set within a data security policy
 - Encryption and strong access controls
- Protecting Confidentiality with Encryption
 - Data both at rest and transit
 - Database Security
 - Encrypt database elements
 - File System Security
 - Linux
 - GNU Privacy Guard (command line tool)
 - Windows → Encrypting File System
 - Individual file encryption
 - o Permission Issues and Access Violations
 - Principle of least privilege to prevent access violations
 - Linux Permissions
 - Owner, group, others
 - Permissions Total = 5, 6, 7
 - o Read 4
 - o Write 2
 - \circ Execute -1
 - Chmod command to change file permissions
 - Windows permissions
 - Read, write, read and execute, modify (delete or r w ex)
- Data Loss Prevention
 - o Removeable Media
 - Prohibit use, technical policies block use
 - DLP solution selective block copy/print specific content
 - Also log events, alert admins
 - Data Exfiltration
 - UTM devices incoming
 - DLP devices outgoing
 - Scan for PII and other sensitive data, even encrypted or zipped
 - Block leakage
 - o Cloud-based DLP
 - PII, PHI alerts, blockage, logs, etc.
 - Quarantine

Chapter Six – Comparing Threats, Vulnerabilities, and Common Attacks

- Understanding Threat Actors
 - Gathering open-source intelligence
 - Script-kiddies, hacktivists, insiders, organized crime
 - State/nation-sponsored can launch advanced persistent threats (APTs) against networks
 - GRIZZLY STEPPE
 - DoS/DDoS
 - Overload NIC traffic
 - o Resource exhaustion
- Determining Malware Types
 - Viruses

- Attaches to host for replication and execution
- Worms
 - Self-replicating virus, residing in memory without host or application interaction
 - Consumes bandwidth
- Logic Bombs
 - Code that executes as event response
- Backdoors
 - Effective network access policies must be used to mitigate backdoor creation
- Trojans
 - Attacks often compromise websites
 - Install embedded trojans
 - Trick users to visit compromised site
 - Website attempts trojan download
 - Rogueware, scareware, fake AV
- o Remote Access Trojans (RATs)
 - Delivered via drive-by downloads
 - Keyloggers, credential stealers
- o Ransomware
 - Drive-bys, embedded downloads
 - Crypto-malware, doxing
- Keyloggers
 - Software or hardware-based
- o Spyware
 - Monitor user activity
 - Privacy-invasive, data-harvesting
 - Impersonation, ID theft
- o Adware
 - Consumer info-gathering, targeted Ads
 - Web and behavioral analytics
- o Bots and Botnets
 - Software robots, zombies
 - Bot herders with command and control (C2) servers
 - o Mirai
 - IoTs
 - Spam, DDoS, additional malware downloads commands
- Rootkits
 - Modify internal OS, hidden from common AV
 - Modify Registry, system-level access
 - Root/kernel, intercept calls to OS via hooking
 - Hooking may be detectable by AV examining RAM contents
- Recognizing Common Attacks
 - o Social Engineering
 - low-tech social tactics to gain info
 - flattery, impersonation, pressure
 - ask direct or roundabout but relevant questions
 - Impersonation
 - ID verification methods
 - Shoulder Surfing
 - Counter with positioning or filters
 - Hoaxes
 - Tailgating and Mantraps

- Counter tailgating with mantraps
- Dumpster Diving
 - Shred/burn sensitive material
 - o Anything with PII/PHI
- Watering Hole Attacks
 - Discover what websites a group of people visit and attempt to compromise that site with malware
- Attacks via Email and Phone
 - o Spam
 - Unwanted/unsolicited email
 - Phishing
 - Emails from "Friends"
 - Impersonation
 - Phishing to Install Malware
 - Pique curiosity
 - Phishing to Validate Email Addresses
 - Use beacons to validate email addresses for image viewing
 - Disabled by default
 - Phishing to Get Money
 - Spear Phishing
 - Targeted form
 - Counter with digital signatures for impersonation
 - Whaling
 - High-level targets of spear Phishing
 - Vishing
 - Use of phone, VoIP via spoofed caller ID
- One Click Lets Them In
 - APTs need a single click
 - Attacker space \rightarrow neutral space \rightarrow victim space
 - Open source intelligence
 - Phishing creation
 - Phishing deployment
 - User activates phishing attempt
 - o Malware download
 - Attacker accesses targeted systems
 - Network vulns
 - o Malware Spread
 - o Internal data collection
 - o Internal data packaging
 - Internal data exfiltration
 - o Privilege escalation
- Blocking Malware and Other Attacks
 - Protecting Systems from Malware
 - Implement layered defense-in-depth
 - Spam filter on mail gateways
 - Anti-malware software on mail gateways
 - All systems
 - Boundaries and firewalls
 - UTM
 - o Antivirus and Anti-malware Software
 - Regular scans, manual + automatic

- Recognize and react to alerts
- Signature-based
 - Signature files compared with database
 - Make sure database is constantly updated
 - Compare hash for integrity
- Heuristic-based detection
 - Use sandboxes and VMs to test unknown code
 - Compare with baseline behavior
 - Good for polymorphic detection
- Checking file integrity
 - Hashes for baseline
 - Detects rootkits
 - Command line Microsoft file checksum integrity verifier (fciv.exe)
 - Any detected modified exes are likely malware
- Data execution prevention
 - Prevents code from executing in memory regions marked as non-executable
 - Hardware and software enforcement
 - \circ AMD NX
 - \circ Intel XD
 - $\circ \quad Windows SysProp Performance \ Settings \\$
- Advanced Malware Tools
 - Analyze network with threat intelligence and analytics
 - o Continuous analysis
 - o Analysist view logs and alerts
- Spam Filters
 - UTMs
 - Spam and junk filters
 - o Rely on email ID white/blacklist
- Educating Users
 - Awareness and training
 - Understand risks and methods
 - Recognize and respond
 - o New viruses
 - Patch and update
 - Evaluate, test, implement
 - o Phishing attacks
 - Prevented with education
 - o Zero-day exploits
 - Cover gaps AV cannot account for
 - Safe computing practices
 - o Careful with links
 - Attachments
 - Downloads
 - Limit public info
 - Backup data, up to date patches, and AV
- Why Social Engineering Works
 - o Psychology
 - Authority
 - Impersonation, phishing, vishing, whaling
 - Intimidation

- Trust
- Consensus
- Scarcity
- Urgency
- Familiarity + shoulder surfing/tailgating

Chapter 7 – Protecting Against Advanced Attacks

- Comparing Common Attacks
 - o Dos vs DDoS
 - one vs many
 - DDoS sustained high traffic attacks on NICs, RAM, CPUs
 - o Privilege Escalation
 - various privilege escalation techniques
 - Spoofing
 - MAC address spoofing software
 - Flood Guards can prevent MAC spoofing
 - IP address spoofing
 - SYN Flood Attack
 - common against servers on the internet
 - easy to launch, hard to stop by disrupting TCP handshake process
 - threshold for connections or memory max is reached
 - Linux IP tables allows for SYN packets
 - Man in the Middle Attacks
 - active interception/eavesdropping with victims unaware of MitM
 - Kerberos prevents this with mutual authentication
 - can also be launched via ARP poisoning
 - ARP Poisoning
 - misleads computers, switches about actual MAC address of a system
 - ARP resolves IP addresses to MAC addresses with ARP requests and replys
 - ARP is very trusting, believing any ARP reply
 - spoofed ARPs can be created, poisoning a systems ARP cache
 - ARP MitM Attacks
 - a poisoned ARP cache will redirect traffic to a malicious site/user
 - used with IP forwarding to send the traffic to the router so victim remains unaware
 - ARP DOS Attacks
 - attacker sends ARP reply with bogus default gateway MAC address
 - if computers cache bogus DG MAC Address, no traffic will leave network
 - DNS Attacks
 - some applications use reverse lookup as a rudimentary spoofing detector
 - useful when available but optional on DNS servers not always available
 - DNS Poisoning Attacks
 - modify/corrupt DNS results
 - prevented with DNSSEC
 - Pharming Attacks
 - corrupt DNS server/client, redirecting user
 - o client computers have their hosts file modified so user traffic is directed to a malicious site
 - DDoS DNS Attacks
 - Mirai software used to attack DNS server performance companies
 - o Amplification Attacks
 - form of DDoS that significantly increases the amount of traffic sent to/requested from a victim

- commands tell computers/servers to reply with as much data as possible to victims IP
 - o overloads system
- NTP server with manlist cmd, for example, floods specified IP with data about 600 systems
- Password Attacks
 - Bruteforce Attacks
 - online/offline
 - account lockout countermeasure
 - o limit login wait time or attempts per second
 - o store complex passwords with encryption or hashed
 - Dictionary Attacks
 - use complex pwrds
 - Password Hashes
 - hash attacks use free tools to reverse a given hash, if the hash algorithm is known
 - hash password still requires encryption before being sent along network
 - crackstation, hydra, hashcat
 - Pass the Hash Attack
 - discover hash and used for authentication
 - o common with Microsoft LAN manager and NT LAN manager
 - doesn't encrypt hash traffic
 - o use NTLMv2 or Kerberos instead
 - NTLMv2 uses nonce and challenge/response
 - configure clients to only send NTLMv2 responses and configure authenticating servers to refuse any use of LM or NTLM
 - o done via Group Policy
 - Birthday Attacks
 - birthday paradox
 - o use a password that can produce same hash as another password
 - hash collision
 - countered by increasing number of bits used in the hash
 - Rainbow Table Attacks
 - discover password from hash
 - rainbow tables are huge databases of pre-computated hashes
 - o application compares hashes until a match is found
 - countered with salting passwords
 - o salt random data set, such as two additional characters to a password before the hash
- Replay Attacks
 - attack replays already sent data, impersonating a client
 - thwarted with timestamps and sequence numbers
- Known Plaintext Attacks
 - samples of both plaintext and ciphertext to discover encryption/decryption methods
 - chosen plaintext is a sample, but no access to all plaintext
 - like an end statement that is always repeated
 - known and chosen will be successful with sufficient time and resources
 - cipher only is successful with weak encryption keys
- Hijacking and Related Attacks
 - type squatting and URL hijacking
 - buying domain close to another in name
 - host malicious sites, earn ad revenue, resell domain

- clickjacking
 - countered with breaking or disabling frames so attackers cannot display a webpage within a frame on another site
- session hijacking
 - session IDs in cookies used for impersonating a victim
- Domain Hijacking
 - changes registration of a domain name without permission
 - common with social engineering
- o Main-in-the-Browser
 - proxy Trojan horse that can capture browser session data (keylogging)
 - ex. Zeus
- Driver Manipulation
 - driver shimming allows older drivers to be compatible with newer operating systems
 - refactoring is a total rework
 - programmers can write shims or refactors to fool OS into using a manipulated driver
- Zero-Day Attacks
- Memory Buffer Vulnerabilities
 - use secure memory management techniques within code to counter
 - Memory Leak
 - bug in app that causes app to use more and more memory the longer it runs
 - o potentially crashing OS
 - typically caused by apps that reverse but never release memory intended for short term use
 - Integer Overflow
 - use/create a number too big for an application to handle
 - o results in inaccuracies
 - double check buffer size
 - Buffer Overflow and Buffer Overflow Attacks
 - app receives more/different input than it expects, exposing normally protected system memory
 - o expanding application memory access beyond pre-allocated buffers
 - giving attacker opportunity to write malicious code in this new area of memory
 - o can be used for DoS
 - o typically used for code insertion that victim system will execute
 - error handing and input validation can counter most instances
 - o maintain patches
 - Pointer Deference
 - passing references to a data array (common in C, C++, Pascal, Java)
 - Deference is the process of using the pointer to access the data array
 - o failed deferences can crash an application or corrupt data
 - o caused by pointing to nonexistent points
 - DLL Injection
 - Dynamic Link Libraries
 - DLL Injection injects a DLL into system memory and runs it
- Summarizing Secure Coding Concepts
 - o Compiled versus Runtime Code
 - Compiled optimized into an exe
 - Runtime evaluated, interpreted, and executed when code is run
 - Hybrid
 - o Proper Input Validation

- check data for validity before using it
 - o sanitize/reject input
- improper validation allows for buffer overflow, SQL Injection, XSS, Command Injection
- Verify proper characters, boundary/range checks, block HTML code, character-use limits
- Client-side and Server-Side Input Validation
 - browser versus server
- Other Input Validation Techniques
 - sanitize HTML, escaping/encoding HTML
 - OWASP ESAPI can be used
- Avoiding Race Conditions
 - two or more modules/applications attempt to access a resource at the same time
 - methods available to avoid
 - internal concurrency controls
- Proper Error Handling
 - catch and gracefully handle errors and prevent crashes
 - errors presented to users should be vague
 - detail information should be logged internally
- o Cryptographic Techniques
 - encrypt sensitive data at rest/transit
 - certificate use
 - code signing and hashing of code
- Code Reuse and SDK
 - avoid dead code via copy/paste or logic errors, third party libraries
 - SDKs are single party libraries
- o Code Obfuscation
 - make code unreadable
 - tenable solution, not widely accepted
- Code Quality and Testing
 - static code analyzers
 - dynamic analysis
 - stress testing
 - sandboxing
 - model verification
- Development Life cycle Models
 - Waterfall top to bottom in stages
 - Agile cross-functional teams
- o Secure DevOps
 - communication between developers and operations personnel
 - security considered throughout the process
 - security automation
 - continuous integration
 - baselining
 - immutable systems
 - infrastructure as lode
- Version Control and Change Management
 - ensure development control, overlapping oversight
 - track software updates with versioning
 - rollbacks
- Provisioning and Deprovisioning

- user accounts, applications, etc
- Identifying Application Attacks
 - web servers → buffer overflow, SQL Injection, cmd injection
 - o Web Servers
 - apache
 - Internet Information Services
 - Database Concepts
 - SQL, tables, fields, columns/rows
 - Normalization
 - organizing a database to reduce redundancy, increase performance
 - First Normal Form
 - each row unique and Id'd with primary key
 - related data is contained on a separate table
 - no columns have repeating groups
 - Second Normal Form
 - o composite primary key required (two + columns)
 - INF
 - Non-primary key attributes are completely dependent on composite primary key
 - Third Normal Form
 - o eliminate redundancy
 - INF + 2NF
 - all columns not primary key are only dependent on primary key
 - o SQL Queries
 - injection attack vulnerabilities as SQL queries format results of a database into a web page
 - SQL Injection Attacks
 - entering of additional data into web page form to generate different SQL statements
 - o vulnerable without error-handling routines
 - begins with improperly formatted SQL statements to system to generate errors
 - o limiting error response details is essential
 - Protecting Against SQL Injection Attacks
 - input validation
 - stored procedures (SQL mini programs that exe as a whole)
 - o user input stored as a parameter
 - perform validation, prevents SQL injection
 - Injection Attacks
 - command injection, OS commands
 - directory traversal via input box
 - Cross-Site Scripting
 - XSS
 - embedded HTML/JS
 - counter with input validation
 - security encoding
 - o Cross-Site Request Forgery CSRF
 - attacker tricks user into performing an action on a webpage
 - via HTML link
 - if a website supports any action via an HTML link
 - o post-login stored in cookies can be a gateway by accessing login info
 - developers must be aware of CSRF

- o dual authentication
- o expire cookies
- XSRF tokens
- Understanding Frameworks and Guidelines
 - o best practices and instructions
 - regulatory HIPPA
 - non-regulatory COBIT
 - national versus international NIST vs ISO, IEC
 - industry-specific PCI DSS
 - o benchmarks, configuration standards, guidelines
 - OS-based, role-based

Chapter 8 – Using Risk Management Tools

- Understanding Risk Management
 - risk/vulnerability/threat matrix
 - result/impact
 - risk management balanced with utility of protected system
 - Threat and Threat Assessments
 - Compromise Cia Triad
 - malicious humans
 - accidental human action
 - environmental
 - Assessment
 - threat and risk prediction, potential resource balance
 - ID prevention measures
 - environmental, manmade, internal, external
 - Vulnerabilities
 - lack of updates, default configs, lack of present/good AV/M, lack of firewalls, lack of or bad organizational policy
 - Risk Management
 - ID Monitor Limit Risks
 - Reduce to organizationally acceptable level
 - Risk Response Techniques
 - avoid don't use/offer services/products
 - transfer transfer risk via insurance or third party services
 - mitigate reduce vulns or impact potential
 - accept cost-benefit analysis of risk vs impact vs outcome
 - Risk Assessment
 - qualify vs quantify
 - o ID assets and values
 - o ID threats via vulns to each asset
 - o ID recommendations
 - snapshot assessment
 - Quantitative Risk Assessment
 - asserts monetary value to risks, impacts, assets
 - o revenue, replacement cost
 - Single Loss Expectancy (SLE) = ALE/ARO
 - Annual Rate of Occurrence (ARO) = ALE/SLE
 - Annual Loss Expectancy (ALE) = SLE(ARO)
 - cost vs savings of a given action

- Qualitative Risk Assessment
 - judgement to build and assign categorized risks on likelihood and impact
 - use surveys, focus groups
 - low, medium, high
- Documenting the Assessment
 - Review risks, assessments, recommendations
 - influence implementation/acceptance of decision
 - Risk Registers
 - Projects IN Controlled Environments (PRINCE2)
 - Personalized data tables with categories, specified risks, likelihoods, impacts, scoring, control/mitigation, contingencies, action assignment and deadline
 - Supply Chain Assessment
 - all processes required to create and distribute a finished product from raw materials
 - evaluate such elements
 - o ID single points of failure, redundancies
- Comparing Scanning and Testing Tools
 - Checking for Vulnerabilities
 - vulnerability assessments and network vulnerability scans to assess security posture
 - include info from policies, logs, interviews, and system tests
 - o scans and pentests to ID assets and capability → assign value/priority →
 ID vulns and prioritize → recommend controls and mitigations
 - Password Crackers
 - offline and online, used in pentests to test for encryption/hash strength or plaintext possession
 - Network Scanners
 - nmap, netcast, nessus
 - ping, ARP ping, Syn Stealth
 - port scan, service scan, OS detection
 - Network Mapping
 - focus on connectivity zenmap
 - Wireless Scanners and Crackers
 - site surveys, passive and active
 - SSIDs, MACs, Signal Strength, Channels + widths, security
 - o Rogue System Detection
 - known vs unknown SSIDs
 - received signal strength indicator
 - Banner Grabbing
 - gain information about remote systems, ID OS and applications with HTML banner
 - o Netcat
 - Vulnerability Scanning
 - ID vulns, misconfigs, passively test security controls
 - o Identifying Vulnerabilities and Misconfigurations
 - using database, dictionary
 - CVE, SCAP (NVD)
 - open ports, weak passwords, default accounts and passwords, sensitive data, security and configurations error
 - Passive Testing of Security Controls
 - ID not exploit

- o ID Lack of Security Controls
 - lack of patches or AV
- False Positives
 - Credentialed versus non-Credentialed
 - attacks typically run non-credentialed scans
 - security admins run with privileged credentials for deeper scans
 - attackers will gain credentialed access
 - Configuration Compliance Scanner
 - verify system configs, validation and usually automated via scripting
- Obtaining Authorization
 - o written consent, rules of engagement to ID boundaries
- Penetration Testing
 - active assessment of deployed security controls to determine threat impact
 - also test penetration response → weakness in policy and business continuity
 - Passive Recon → Active Recon → Initial Exploit → Escalate Privilege → Pivot → Persistence
 - Passive OSI
 - Active net scanners
 - Initial ID vulnerable applications
 - Escalation
 - Pivot network spread
 - Persistence backdoors, ssh
 - o White, Gray, Black Box testing
- Intrusive Versus Non-Intrusive Testing
 - scans can be either, pentesting being intrusive and vuln scanning being non-intrusive
- Passive versus Active Tools
 - o cannot directly versus directly affect system operations
- Exploitation Frameworks
 - tools for vuln checking and executing exploits
 - Metasploit framework
 - browser exploitation framework
 - web application attack and audit framework
- Using Security Tools
 - Sniffing with a Protocol Analyzer
 - IP headers and packets with sniffers connected via rogue switch
 - wireshark
 - manipulate flags within headers for attackers
 - verify header manipulation attacks
 - quantify traffic
 - must set NIC to promiscuous mode to interpret all packets received
 - Command Line Tools
 - TCPdump
 - Nmap
 - Netcat
 - banner grabbing, transferring files, port scanner
 - Monitoring Logs for Event Anomalies
 - ID what happened, when
 - Event anomalies
 - logging limited by space
 - o Operating Systems Event Logs

- basic logs, Windows Event Viewer, Security Log
- Auditing
 - Application Log
 - System Log
- Firewall and Router Access Logs
 - troubleshoot connectivity, ID'ing potential intrusions/attacks
- Linux Logs
 - system log viewer
 - cat /var/log/auth.log
 - o messages, boot.log, auth.log, failog, kern.log, httpd/
 - other logs
 - AV, apps, Performance
- SIEM
- Security Information and Event Management Systems
- Centralize → collecting, analyzing, managing data
 - combine real-time SEM and long-term storage of SIM
- NOC
- Capabilities
 - Aggregation
 - Correlation Engine
 - Automated Alerting
 - Automated Triggers
 - Time Synch
 - Event Duplication
 - Logs/WORM
- Located within private network
- Continuous Monitoring
 - emerging threats, new vulns
 - monitor security controls, maintain security posture
 - threat assessments
 - vuln assessments
 - risk assessments
 - scans, pentests, audits, reviews
- Usage of Auditing and Reviews
 - o logging information on what users do
 - login attempts
 - o usage auditing review
 - audit trial
- Permission Auditing and Review
 - rights and permissions assigned to users and help ensure least privilege
 - detect privilege creep/permission bloat
 - account management practices

Chapter 9 – Implementing Controls to Protect Assets

- Implementing Defense in Depth
 - layered security
 - control diversity
 - combo of technical, administrative, physical controls
 - IDS, proxy servers, firewalls, assessment and testing
 - vendor diversity
 - security controls from various vendors

- o two firewall DMZ using two vendors
- user training
- Comparing Physical Security Controls
 - perimeter, buildings
 - secure work areas, server and network rooms
 - hardware airgap
 - use signs
 - mixed door types
 - limit entry
 - cipher locks
 - o don't ID users
 - o shoulder surfing
 - proximity cards, smart cards, tokens
 - o combine with PIN
 - Biometrics
 - Tailgating
 - authorized users doing this equates to a socially engineerable environment
 - counter with guards, education, traffic flow measures
 - Preventing Tailgating with Mantraps
 - turnstiles, airlocks
 - Increase Physical Security with Guards
 - Monitor Areas with Cameras
 - CCTV
 - public areas, employee awareness, no audio
 - o Fencing, Lighting, Alarms
 - gates, automated lights, fire alarms, unauthorized access
 - infrared, motion
 - Securing Access with Barricades
 - zigzag for vehicles
 - bollards
 - Hardware Locks
 - Secure Mobile Computers with Cable Locks
 - Secure Servers with Locking Cabinets
 - Secure Small Devices with Safe
 - Asset Management
 - process of tracking valuable assets throughout their life cycles
 - reduce architecture and design weaknesses
 - o purchases going through an approval process
 - system sprawl and undocumented assets
 - underutilized assets due to more possessed than needed
 - inventory control
 - RFIDs
 - Implementing Environmental Controls
 - HVAC avoid drastic temperature changes
 - Hot and cold Aisles
 - alternate so hot air wont be intake for next row of racks
 - fire alarms integrated so 02 wont be fed to fire if detected
 - dampeners
 - Fire suppressors
 - individual or fixed systems
 - remove heat, 02, fuel, disrupt chain reaction

- alternate power during failures
- environmental monitoring
 - temp, humidity, logging
- Shielding
 - limit EMI and RFI
 - prevent attacker from capturing network traffic
 - protective cabling
 - UTP (Cat5e and Cat6)
 - o shielded TP (STP) and Unshielded TP (UTP)
 - fiber cables do not create interceptible induction fields
 - protected distribution of cabling
 - planning where and how cables are routed \rightarrow physical security
 - Faraday Cages
 - o prevent signal transmission
- Adding Redundancy and Fault Tolerance
 - increase reliability in the face of failure through redundancy
 - provides fault tolerance by eliminating single point of failure
 - multiple Levels
 - Disk vs RAID
 - Server via failover clusters
 - power via generators/UPSs
 - site via hot, cold, warm sites
 - Disk Redundancies
 - RAID 0 striping, no redundancy
 - RAID 1 mirroring, removes SPoF
 - RAID 10 combine striping and mirroring
 - requires a minimum of four drives and increases in increments of two
 - Server Redundancy and High Availability
 - remain operational without downtime 99.999% achievable via redundancy and fault tolerance
 - expensive
 - distributive allocation is also used
 - Failover Clusters for high availability
 - two+ servers clustered that take over load of failed nodes
 - Load Balancers for High Availability
 - instead of passive/active nodes, all nodes share load
 - optimized/distributable data loads, localized in DMZ
 - o software or hardware
 - provides scalability, round robin structure
 - detect when a server fails
 - Clustering versus Load Balancing
 - weigh pros and cons
 - Power Redundancies
 - UPS, Generators
- Protecting Data with Backups
 - important to maintain the existence of a useable backup
 - Comparing Backup Types
 - full backup time + money
 - different backup full backup + further changes (reduces backup time)

- incremental backup full + incremental changes (requires two backups, OG + differential)
- Snapshots VMs and checkpoints
- Testing Backups
 - perform test restore
 - ensure practice and status of backup integrity
 - protect in storage, transfer, and ensure destruction when no longer needed
 - create backup policy
 - consider
 - o off-site backups
 - o distance
 - location selection
 - o legal implications
 - o data sovereignty
 - relevant to where data is stored and the laws of that locale
- Comparing Business Continuity Elements
 - predict and plan for potential outages
 - Business Continuity Plain
 - Business Impact Analysis Concepts
 - critical part of BCP
 - ID critical assets, mission essentials
 - o quick restore
 - must be completed in advance
 - o what are critical systems/functions
 - o what dependencies do they have
 - o what is max downtime
 - o what scenarios are most likely to impact
 - o what is potential loss of said scenarios
 - Impact
 - life, property, safety, financial loss, reputation
 - Privacy Impact and Threshold Assessments
 - NIST SP 800-122
 - o ID PIIs
 - conduct privacy impact assessment
 - Recovery Time Objective
 - max time to restore system post outage
 - o varies by asset
 - Recovery Point Objective
 - point of time were data loss is acceptable
 - Comparing MTBF and MTTR
 - Mean Time Between Failures
 - o provides insight to system reliability
 - Mean Time To Recover
 - o specifically mentioned in maintenance contracts
 - o Continuity of Operations Planning
 - restoring mission essential functions at a recovery site
 - Recovery Sites
 - hot
 - o 2-4 hours
 - o **\$\$\$**
 - warm

- 0 \$\$
- cold
 - 0 \$
 - o longest options
- mobile and mirrored options are also available
- Order of Operation
 - least critical first
- Disaster Recovery
 - address systems hosting critical systems and components
 - can have multiple DRPs in a BCP
 - o hierarchy of critical systems
 - Activate the DRP
 - implement contingencies
 - o recover critical systems
 - test recovered systems
 - After-Action Report
- Testing Plans with Exercises
 - NIST SP 800-34
 - Table Tops
 - functional exercises
 - test backups, server restoration, server redundancy, alternate sites

Chapter 10 – Understanding Cryptography and PKI

- Introducing Cryptography Concepts
 - o core concepts integrity and confidentiality
 - integrity hashes
 - confidentiality encryption (symmetric, asymmetric [PKI])
 - stream and block ciphers
 - steganography
 - digital signatures
 - o authentication
 - o non-repudiation
 - o integrity
- Providing Integrity with Hashing
 - hash/checksum of fixed length
 - create two for comparison
 - MD5 128bit hash 32 hex characters vulnerable
 - SHA0-3
 - 1 − 160bit
 - 2 256, 512, 224, 384
 - 3 224, 256, 384, 512
 - HIDs compare hashes against a database
 - o HMAC
- Hash-based Message Authentication Code with shared secret key to add randomness
- integrity and authenticity
- IPSec and TLS use HMAC-MD5/SHA1
- o RIPEMD Race integrity Primitives Evaluation Message Digest
 - 160, 128, 256, 320 bits
- Hashing Files

- typically automated, can be manual
- Hashing Passwords
 - compared automatically between database and user input
- Key Stretching
 - salt passwords
 - bcrypt and password-based key derivation function 2 (PBKDF2)
 - bcrypt blowfish block cipher
 - unix/linux shadow file
 - 60 character string
 - PBKDF2 64 bits and HMAC
 - WPA2, IoS, Cisco = 128, 256, 512
 - replaced by Argon2
- Hashing Messages
 - comparison for integrity checks
- Using HMAC
 - helps prevent hash modification as attacker does not know secret key
- Providing Confidentiality with Encryption
 - also prevents unauthorized disclosure
 - protects data at rest, transit, and use
 - algorithm + key
 - Encryption Terms
 - random + pseudo random numbers
 - initialization vector IV starting value
 - nonce number used once
 - XOR logical operation used in encryption with Boolean return
 - Confusion cipher and plaintext are extremely different
 - Diffusion small plaintext changes result in large changes in the ciphertext
 - Secret Algorithm (a now discouraged practice)
 - Weak/Deprecated Algorithms like SSL
 - High Resiliency encryption key remains secure even if part of key is discovered
 - Block versus Stream Ciphers
 - block 64/128 bit
 - o better with known data sizes
 - stream 1 bit at a time
 - o better with unknown data sizes
 - Cipher Modes
 - Electronic Codebook (ECB) plaintext blocks encrypted with same key
 - Cipher Block Chaining (CBC) symmetric block ciphers
 - uses IV, combining subsequent blocks with XOR
 - o pipeline delays
 - Galois/Counter Mode block ciphers
 - counter + Galois authentication for data
 - widely used
 - Symmetric Encryption
 - substitutional, ROT13
 - obfuscation
 - AES 128, 256; RADIUS
 - constant key change to heighten security
 - block cipher NIST fast, efficient, strong
 - o keys 128, 192, 256
 - DES -64 bit blocks, 56 bit key

- 3DES 3 passes of DES with multiple keys 64 bit blocks
 - o keys 56, 112, 168
 - less common than AES
- RC4 symmetric stream cipher 40-2048 bits
 - used with SSL, TLS, HTTPS
 - potentially broken
 - AES with TLS recommended
- Blowfish and Twofish
 - Blowfish symmetric block cipher 64 bit blocks keys 32-448 faster than AES-256
 - Twofish 128 blocks keys 128, 192, 256
- o Asymmetric Encryption
 - public and private keys
 - resource intensive
 - o used for key exchange
 - o digital signature, encryption
- Certificates
 - include public key and info about owner of certificate
 - issued and managed by Cas
 - o serial #, validity dates, usage
 - o issuer, subject, public key
- o RSA
 - very commonly used
 - uses prime numbers, product of two large primes
 - 2048 bits secure to 2030
 - 3027 bits secure beyond 2030
- Static versus Ephemeral Keys
 - Static semi-permanent RSA Certificate Lifetime
 - Ephemeral recreated per session some versions of Diffier-Hellman perfect forward secrecy
 - a cryptosystem generates random public keys per session without deterministic algorithm
 - o avoid reusing keys
- Elliptic Curve Cryptography
 - less resource intensive
 - low power devices
 - o deprecated since 2015
- o Diffie-Hellman
 - key exchange algorithm
 - static or ephemeral
 - ECDH, DHE, ECDHE
 - two parties negotiate strongest group supportable by both parties
 - 25 groups
- Steganography
 - manipulating bits
 - hide data in file whitespace
- Using Cryptographic Protocols
 - email digital signatures
 - sender private = E
 - sender public = D
 - email Encryption

- recipient public E, private D
- Website Encryption
 - web site public E, private D
 - o symmetric key E for session
- Protecting Email
 - Signing Email with Digital Signatures
 - DSA Digital Signature Algorithm
 - o message \rightarrow hash \rightarrow encrypted with senders private key
 - authentication, non-repudiation, integrity
 - Encrypting Email
 - Asymmetric
 - o public sender E
 - o private recipient D
 - Asymmetric and Symmetric
 - Asymmetric share session key
 - S/MIME
 - o email apps commonly use, rest and in transit
 - RSA asymm
 - \circ AES symm
 - o require PKI
 - PGP/GPG
 - o both asym and sym
 - o RSA
- HTTP Transport Encryption
 - SSL versus TLS
 - TLS replaced SSL
 - both certificate based authentication
 - both asym and sym
 - Encrypting HTTPS Traffic with TLS
 - both sym (session data) and asym (share key for session)
 - Cipher Suites
 - combination algorithms that add security layers to TLS/SSL
 - o provide encryption, authentication, and integrity
 - over 200 ID'd with hex string
 - denote protocol, key exchange method, authentication, encryption, and integrity
 - Implementation Versus Algorithm Selection
 - Crypto Module hard/soft/firmware that implements crypto functions
 - Crypto Service Provider software library of cryptographic standards and algorithms
 - used by developers
 - o admins implement cyber suites
 - Downgrade Attacks on Weak Implementations
 - forces a system to downgrade its security by configuring server as incompatible with TLS, forcing victim server to use vulnerable SSL
 - o allows for POODLE attack
 - prevented by victim server disabling SSL option
- Exploring PKI Components
 - request, create, manage, store, distribute, and revoke digital certificates
 - asymmetric needs Cas

- o Certificate Authority (CA)
 - issue, manage, validate, revoke certificates
- Certificate Chaining and Trust Models
 - root certificate first create by CA and placed in a store
 - if root in store, all subsequent certificates from root can be trusted
 - Trusted Root Certification Authority Store
 - Hierarchical Trust Model
 - CA → Root Cert → Intermediate Certs → Child Certs → Devices/End Users
 - varies on organization size
 - Web of Trust/Decentralized Trust Model
 - PGP/GPG
 - self-signed with third-party voucher
- o Registration and CSRs
 - create pub/priv key pair
 - create Certificate Signing Request (CSR) using PKCS #10
 - CA validates and issues cert
 - sometimes request object ID'ers (OIDs) within CSR for certain items
- Revoking Certifications
 - valid to/from dates
 - key pair compromise
 - CA compromise
 - CSR revocation
 - Cert Revocation List (CRLs)
- Certificate Issues
 - expired, not trusted, improper cert/key management
 - online certificate states protocol in real time
- o Public Key Pinning
 - prevents attacks from impersonating a website using fraudulent certificates via extra header response
 - contains valid public key hashes and max-age field
- Key Escrow
 - place copy of private key in safe environment
 - recovery third-party
- Recovery Agent
 - recover private keys recover/restore crypto keys
 - BitLocker
 - recovery agent field
- Comparing Certificate Types
 - machine/computer ID within domain
 - user, self-signed
 - email
 - code signing
 - wildcard
 - SAN (Subject Alternative Name) different domains owned by same organization
 - Extended Validation
 - prevent phishing and impersonation attacks
- Certificate Formats
 - X.509v3
 - X.509v2 revocation
 - CER-binary
 - DER-ASCII

- stored binary or base64 ASCII
- canonical encoding rules (CER) or distinguished encoding rules (DER) → ITU-T X.690 (ASN.1 variant)
 - PEM privacy enhanced email
 - P7B PKCSv7 DER-based ASCII
 - P12 PKCSv12 CER-based
 - PFX P12 precursor used to import/export certs

Chapter 11 – Implementing Policies to Mitigate Risks

- Exploring Security Policies
 - form of administrative control
 - ensure security is considered and implemented throughout company system life cycles
 - brief high-level statements
 - create plans and procedures
 - SOPs
 - Personal Management Policies
 - behavior, expectations, consequences, acceptable use, vacation, separation of duties, job rotation, clean desk policies
 - Acceptable Use Policy
 - as well as use monitoring, expectation of privacy via policy statement
 - read and sign
 - Mandatory Vacations
 - increases likelihood of discovering illegal activities by employees
 - Separation of Duties
 - prevents any single person or entity from being able to complete all of the functions of a critical or sensitive process
 - development vs deployment
 - user rights and permission review
 - Job Rotation
 - helps prevent and/or expose dangerous shortcuts or fraudulent activity
 - Clean Desk Policy
 - ensure protection of sensitive data against theft or exposure
 - Background Checks
 - credit, social media, etc
 - NDA
 - protect proprietary information
 - Exit Interview
 - gain info from employee
 - ensure accounts are disabled
 - collect equipment
 - Onboarding
 - granting access to resources
 - o least privilege
 - offboarding
 - Policy Violations and Adverse Actions
 - warning, verbal/written
 - termination
 - avoid overly specific in policy document
 - Other General Security Policies

- o social media and email use
- Social Media Network and Applications
 - o inadvertent information disclosure
 - PII
- Banner Ads and Malvertisements
 - o flash applets with malicious code
 - o redirects and drive by downloads
- Social Networking and P2P
 - o consumes bandwidth
 - o data leakage and mining
 - o inappropriate data hostings
- Agreement Types
 - Interconnection Security Agreement NIST SP800-47
 - o specifies technical and security requirements for planning, establishing, maintaining, disconnecting a secure connection between two entities
 - Service Level Agreement
 - o company and vendor
 - o performance expectations
 - Memorandum of Understanding/Agreement
 - o intention of two or more entities to work toward a common goal
 - less technical/formal than an SLA
 - Business Partners Agreement (BPA)
 - o details relationship between partners, obligations
 - o ID shares of profits and losses, continuity, etc.
- Protecting Data
 - o Information Classification
 - ID, classify, label to understand value
 - public
 - confidential
 - proprietary
 - private
 - Data Sensitivity Labeling and Handling
 - so users know what is being handled and processed
 - Data Destruction and Media Sanitation
 - purging, file shredding, wiping, erasing/overwriting, burning, paper shredding, pulping, degaussing, pulverizing
 - Data Retention Policies
 - how long and where data is stored for
 - o beholden by law
 - PII and PHI
 - need two or more pieces for it to be PII
 - minimize use, collection, retention of PII
 - Protecting PII and PHI
 - laws and policies on handling, retaining, redistributing PII with relevant regulation
 - report data losses
 - data classification and labeling, training
 - Legal Compliance Issues
 - HIPAA
 - GLBA

- SOX
- GDPR
- Data Roles and Responsibilities
 - owner classification, labels, security controls
 - steward/custodian backups, labels, storage
 - privacy officer compliance
- Responding to Incidents
 - adverse events that can negatively affect CIA of data/systems of an organization or has the potential to
 - NIST SP 800-61 rev. 2
- o Incident Response Plan
 - define incident types
 - cyber response teams CIRT
 - roles and responsibilities
 - escalation
 - reporting requirements
 - exercises
- Incident Response Process
 - Incident Response Policy
 - IP Plan
 - Training and Tooling
 - preparation
 - Preparation → Identification → Containment → Eradication → Recovery → Lessons Learned
- Implementing Basic Forensic Procedures
 - collect and analyze evidence
 - o prevent modification, control evidence
 - evaluate
 - FTK- by Access Data
 - Order of Volatility
 - order of evidence collection
 - o RAM, cache memory, paging file, local disk drives, remote systems, archived media
 - Data Acquisition and Preservation of Evidence
 - capture system image contents of drive
 - o forensics are exact copies without modification
 - Linux "dd" command
 - o avoid modifying original evidence
 - Take hashes
 - o proof of retained integrity
 - Network traffic and logs
 - o matching MACs via NICs
 - o protocol analyzers
 - o logs
 - Capture Video
 - o CCTV
 - Record Time Offset
 - o offset between GMT and actual timezone
 - times on a tape recording
 - timestamps
 - Screenshots

- Witness Interviews
- Chain of Custody
 - collecting and protecting evidence to record possession and change of hands
 - secure storage
- Legal Hold
 - o court order to maintain different types of data as evidence
 - preservation
 - data retention policy
- Recovery of Data
 - o recovery, unformatting, undeleting
- Active Logging for Intelligence Gathering
 - o gather data on attackers
 - o vary logging intensity by need/context
- Track Man-Hours and Expense
 - o budgeting, quantitative risk assessments, cost evaluations
- Providing Training
 - o Role-based Awareness Training
 - data owner classification/labeling/security controls
 - system admin overall security
 - system owner overall responsibility
 - users understand common threat, training/education
 - privileged user training on proper handling
 - executive user risks, overall awareness
 - incident response team specialized training
 - o Direct Senior Management Support
 - Continuing Education
 - regular intervals stay up to date
 - Training and Compliance Issues
 - best practices
 - standards (PCI DSS)
 - Troubleshooting Personnel Issues
 - insider threat, personal email, policy violations, social engineering, social media
 - data loss prevention techniques, audits, reviews, management response and enforcement
 - education, awareness, training