

DuinoBlocks: Desenho e Implementação de um Ambiente de Programação Visual para Robótica Educacional

Rafael Machado Alves, Mestrando - rafamachadoalves@ufrj.br Orientador: Fábio Ferrentini Sampaio, Ph.D. - ffs@nce.ufrj.br

Projeto financiado pelo CNPq - 550.400/2011-7

Sumário

- Introdução
 - Contexto
 - Robótica Educacional
 - Programação em Robótica
- Proposta
- Revisão da Literatuta
- 4 Requisitos do Sistema
- DuinoBlocks
- 6 Avaliações
- Publicações
- Conclusões e Trabalhos Futuros

PROUCA - Programa Um Computador por Aluno

Política pública do Governo Brasileiro.

Objetivo

 Inclusão digital das crianças da rede pública de ensino mediante a aquisição de computadores portáteis.

Princípios

- Criar novas dimensões de acesso às informações.
- Estabelecer novas relações que possam resultar em tendências pedagógicas inovadoras.

Introdução

Contexto

PROUCA - Programa Um Computador por Aluno

Figura: Laptop Classmate

Projeto UCA na CUCA

Propõe ações inovadoras, reflexivas e práticas, sobre o uso da Robótica Educacional em sala de aula.

Metas

- Curso de Formação;
- Produção de Kit Didático;
- 3 Linguagem de Programação Visual;
- 4 Ambiente de Acesso Remoto;
- Avaliação da Intervenção.

Site

www.nce.ufrj.br/ginape/ucanacuca

Projeto UCA na CUCA

Parceria com a Metasys

• Inserção do IDE Arduino no Sistema Operacional Meego.

Robótica Educacional

Robótica Educacional - RE

O esmiuçar da teoria através da prática:

 Nas aulas com RE o aluno pensa, manuseia, constrói, executa, vê o que dá certo, depura o que está errado e reexecuta.

Segundo [Zilli, 2004], a RE pode desenvolver as competências:

 raciocínio lógico; formulação e teste de hipóteses; habilidades manuais e estéticas; capacidade crítica; aplicação das teorias formuladas a atividades concretas; resolução de problemas por meio de erros e acertos; utilização da criatividade em diferentes situações; investigação e compreensão; trabalho com pesquisa; relações interpessoais e intrapessoais; representação e comunicação. Programação em Robótica

Projeto Arduino

- Expande os limites e potencializa o uso da RE.
 - Transforma o ambiente escolar em uma oficina de inventores.
 - Os estudantes podem trazer seus conhecimentos pessoais e interesses para a sala de aula.

Figura: placa Arduino

Programação em Robótica

Linguagens de Programação Textual e Visual

Problemática

 A programação do software Arduino e de vários outros é textual, o que é um obstáculo para os iniciantes.

"Se a linguagem não é adequadamente adaptada às habilidades de seus usuários, todos os objetivos falharão" [MENDELSON 1990].

Programação em Robótica

Linguagem de Programação Visual - VPL

- I As VPL fornecem uma metáfora que ajuda o usuário a criar uma ação com o mínimo de treinamento.
 - Reduzem a carga cognitiva sobre os usuários que aprendem sua primeira linguagem de programação [PASTERNAK 2009].
- II O algoritmo é elaborado através do mecanismo de arrastar e soltar (*drag and drop*).
 - Encaixa-se os elementos gráficos (blocos), formando empilhamentos ordenados.
- III Os blocos são concebidos para poderem se encaixar apenas de forma que faça sentido sintaticamente.
 - Elimina os erros de sintaxe que ocorrem em uma linguagem textual.

Sumário

- Introdução
 - Contexto
 - Robótica Educacional
 - Programação em Robótica
- Proposta
- Revisão da Literatuta
- Requisitos do Sistema
- DuinoBlocks
- 6 Avaliações
- Publicações
- Conclusões e Trabalhos Futuros

Motivação, Objetivo e Justificativa

Motivação

Aproximar os benefícios da Robótica Educacional aos usuários sem conhecimento técnico em informática.

Objetivo

Promover a Robótica Educacional no contexto UCA com o uso da Programação centrada na plataforma Arduino.

Justificativa

A necessidade de criação de um ambiente educacional direcionado ao contexto específico do UCA.

Sumário

- Introdução
 - Contexto
 - Robótica Educacional
 - Programação em Robótica
- Proposta
- Revisão da Literatuta
- 4 Requisitos do Sistema
- DuinoBlocks
- 6 Avaliações
- Publicações
- Conclusões e Trabalhos Futuros

Referencial Teórico

 Ações que acontecem na interação aprendiz-computador na situação de programação segundo Valente (1998).

 Teóricos cujas contribuições ajudam a explicar as ações do ciclo: Piaget, Vygotsky, Papert e Freire.

Trabalhos Relacionados

 RoboFácil: Especificação e Implementação de Artefatos de Hardware e Software de Baixo Custo para um Kit de Robótica Educacional. [MIRANDA, 2006]

Trabalhos Relacionados

 Aplicação de arquitetura pedagógica em curso de robótica educacional com hardware livre. [PINTO, 2011]

"Desenvolvimento de um ambiente de programação icônico para utilização com o Arduino. Observar as possibilidades de uso das linguagens Programe Fácil e Scratch."

Linguagens de Programação Visual

Sumário

- Introdução
 - Contexto
 - Robótica Educacional
 - Programação em Robótica
- Proposta
- Revisão da Literatuta
- Requisitos do Sistema
- DuinoBlocks
- 6 Avaliações
- Publicações
- Conclusões e Trabalhos Futuros

Facilidade de Uso

• Linguagem de Programação Amigável.

Portabilidade

- Acesso independente de localização (escola ou casa).
- Eliminar a complexidade de uma eventual instalação, configuração ou atualização do sistema.
- Possibilidade de salvar os projetos criados na nuvem.
- Eventual indisponibilidade do acesso a internet nas escolas: Versão offline.
- Compatibilidade com outros ambientes de programação: Geração de código Wiring.

Eficiência e Desempenho

Adequação às Limitações do Classmate.

Teste com Ambiente de Programação Arduino

Materiais e Métodos

- Objetivo: levantar os pontos fortes e fracos da linguagem Wiring do IDE Arduino;
- Participantes: profs. em processo de formação em RE;
- Grupos: duas duplas;
- Registros: screencast, webcam e câmera externa;
- Combinação de Métodos: técnica Think Aloud [SOMEREN et al., 1994]
- Tarefa: algoritmo "Pisca LED";

Resultados da Aplicação do Teste

Erros de sintaxe:

 ausência de ponto-e-vírgula; comandos fora do escopo; espaços entre as palavras; constantes em minúsculo.

Resultados da Aplicação do Teste

Captura de Áudio

 Apesar dos erros de sintaxe, os professores verbalizaram as ações corretamente.

Resultados da Aplicação do Teste

Necessidades dos usuários levantadas:

- Blocos de comando categorizados e dispostos no layout;
- Conter ajuda sobre a utilização dos blocos;
- Disponibilizar os parâmetros de um comando;
- Manter a simplicidade dos recursos de comunicação com o hardware;
- Fornecer um tratamento de erros mais compreensivo.

Sumário

- Introdução
 - Contexto
 - Robótica Educacional
 - Programação em Robótica
- Proposta
- Revisão da Literatuta
- 4 Requisitos do Sistema
- 5 DuinoBlocks
- 6 Avaliações
- Publicações
- Conclusões e Trabalhos Futuros

Tecnologias

Pyjamas

- Plataforma de Desenvolvimento para o Web e Desktop;
- Permite escrever código Python, e tê-lo automaticamente traduzido em javascript.

Ambiente de Desenvolvimento:

• IDE Eclipse e Plugin Pydev.

DuinoBlocks - www.duinoblocks.com.br

Figura: Layout do DuinoBlocks

Sumário

- Introdução
 - Contexto
 - Robótica Educacional
 - Programação em Robótica
- Proposta
- Revisão da Literatuta
- Requisitos do Sistema
- DuinoBlocks
- 6 Avaliações
- Publicações
- Conclusões e Trabalhos Futuros

Oficina de Robótica Educacional de Baixo Custo no NCE/UFRJ

Oficina

- Carga horária de 12 horas divididas em quatro aulas;
- Alunos de Pós-Graduação em Informática na Educação;
- Profs. de diferentes áreas com idades entre 23 e 50 anos;
- Objetivo de avaliar principalmente a usabilidade.

Materiais e Métodos

- Diário de bordo;
- Questionários impressos;
- Questionamentos orais; [COHEN 2005]
- Think aloud. [SOMEREN 1994]

Resultados

- Os profs. sentiram-se mais confortáveis;
- A lógica da linguagem foi bem entendida;
- A localização de comandos ocorreu sem dificuldades;
- O mecanismo de encaixe não é trivial;
- A complexidade dos programas solicitados aos participantes foi relativamente simples.
- Capaciade de partir de um processo de cópia com alterações para o de elaboração mental.

Curso de Formação em RE em Piraí/RJ

1° Pesquisador-Professor

- i Fóruns: Tecnologia na Educação (EAD);
- ii Oficina de robótica educacional (encontros presenciais).

2° Professor-Professor

- i Discussão para criação de atividades didáticas;
- ii Encontro presencial extra.

3° Professor-Aluno

- i Aplicação das atividades didáticas com os alunos;
- ii Encontro presencial: Apresentação de trabalhos.
- Três grupos, um por bancada;
- Em cada bancada: um Classmate e um kit de robótica;
- Aulas: Intro. a RE, Eletrônica Básica e Apresentação do Arduino; Programação Textual Wiring; Visual DuinoBlocks.

Resultados

- Projetos construídos com uma curva de aprendizagem menor (comparação com turmas anteriores);
- Experimentos não oportunos em turmas anteriores foram realizados devido a abstração de complexidade;
- Os profs. foram capazes de utilizar estruturas lógicas de repetição sem a necessidade de explicações prévias;
- Detecção de bugs, adição de feedbacks e alteração dos textos dos comandos.

Sumário

- Introdução
 - Contexto
 - Robótica Educacional
 - Programação em Robótica
- Proposta
- Revisão da Literatuta
- Requisitos do Sistema
- DuinoBlocks
- 6 Avaliações
- Publicações
- 8 Conclusões e Trabalhos Futuros

Congresso Brasileiro de Informática na Educação - CBIE 2012

Jornada de Atualização em Informática na Educação - JAIE

Uso do Hardware Livre Arduino em Ambientes de Ensino-aprendizagem

Rafael Machado Alves¹, Armando Luiz Costa da Silva², Marcos de Castro Pinto³, Fábio Ferrentini Sampaio⁴, Marcos da Fonseca Elia⁵

Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais (NCE) – Universidade Federal do Rio de Janeiro (UFRJ) – Cx Postal 2324 – Rio de Janeiro – RJ

```
'rafamachadoalves@ufrj.br, 'rj.armandoluiz@gmail.com,
'marcastp@gmail.com, 'ffs@nce.ufrj.br, 'melia@nce.ufrj.br
```

Resumo

Este mini-curso destina-se aos professores e outros profissionais que desejam trabalhar com robótica educacional. Os principais tópicos abordados são: apresentação de conceitos teóricos sobre o uso da robótica na educação e demonstração dos principais recursos do hardware e do software livre Arduino para a criação de projetos educacionais

Congresso da Sociedade Brasileira de Computação - CSBC 2013

Seminário Integrado de Software e Hardware - SEMISH

DuinoBlocks: Um Ambiente de Programação Visual para Robótica Educacional

Rafael Machado Alves, Fábio Ferrentini Sampaio, Marcos da Fonseca Elia

Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais (NCE) Universidade Federal do Rio de Janeiro (UFRJ) – Cx Postal 2324 – Rio de Janeiro – RJ

rafamachadoalves@ufrj.br, {ffs,melia}@nce.ufrj.br

Resumo. Este trabalho apresenta o ambiente de programação visual DuinoBlocks desenvolvido para o hardware de robótica Arduino. O DuinoBlocks é capaz de rodar em máquinas com diferentes sistemas operacionais, inclusive nos computadores pessoais do Programa PROUCA do Governo Federal. Os testes realizados com o ambiente têm demonstrado que professores se sentem mais confortáveis em trabalhar com esse ambiente em comparação com a linguagem textual do Arduino (Wiring).

Sumário

- Introdução
 - Contexto
 - Robótica Educacional
 - Programação em Robótica
- Proposta
- Revisão da Literatuta
- Requisitos do Sistema
- DuinoBlocks
- 6 Avaliações
- Publicações
- Conclusões e Trabalhos Futuros

Conclusões

- O ambiente proposto é um apoio à experimentação, no computador, de atividades com RE;
- Sua versão atual já é capaz de rodar na nuvem, bem como na máquina do usuário com qualquer SO;
- Os testes vêm demostrando sua acessibilidade aos usuários;
- Os profs se sentem mais confortáveis em trabalhar com o DuinoBlocks (em comparação com Wiring);
- Potencial de transformar o ambiente escolar em oficina de inventores, melhorando a qualidade do ensino e o acesso participativo do cidadão brasileiro ao conhecimento.

Trabalhos Futuros

Funcionalidades previstas que não foram desenvolvidas:

- Implementar funcionalidades que permitam salvar/abrir programas na nuvem;
- Criar uma comunidade web voltada ao incentivo do compartilhamento de programas;
- Disponibilizar o vocabulário de palavras em site gerenciador de tradução colaborativa;
- Liberar o projeto em repositório de código fonte online.

Trabalhos Futuros

Melhorias previstas a serem implementadas:

- Tornar a forma de encaixe dos blocos intuitiva;
- Desfazer/Refazer mais eficiente;
- Compatibilidade do layout com o navegador Firefox;
- Implementar o módulo de hardware;
- Concluir as imagens do módulo de ajuda.

Referências

- BARANAUSKAS, M.C.C. e SOUZA, C.S. Desafio nº 4: Acesso Participativo e Universal do Cidadão Brasileiro ao Conhecimento. In: Computação Brasil, ano VII. 2006.
- COHEN, L. MANION, L. MORRISON, K. Research Methods in Education. 5th ed. Taylor And Francis e-Library, 2005.
- FREIRE, P. Pedagogia do Oprimido. Rio de Janeiro: Paz e Terra, 1970.
- MENDELSON, P., GREEN, T. R. G. BRNA, P. Programming languages in education: the search for an easy start. In Hoc, J., Green, T., Gilmore, D. Samway, R. (eds) Psychology of Programming, 175-200, London, Academic Press, 1990.
- MIRANDA, L. C. de. RoboFácil: especificação e implementação de artefatos de hardware e software de baixo custo para um kit de robótica educacional. Dissertação de Mestrado. Rio de Janeiro: UFRJ, 2006.

Referências

- PASTERNAK, E. Visual Programming Pedagogies and Integrating Current Visual Programming Language Features. Carnegie Mellon University Robotics Institute. Thesis Master's Degree, 2009.
- PINTO, M. de C. Aplicação de arquitetura pedagógica em curso de robótica educacional com hardware livre. Dissertação de Mestrado. Rio de Janeiro: UFRJ. 2011.
- SAMPAIO E ELIA. Projeto um computador por aluno: pesquisas e perspectivas. 2012. www.nce.ufrj.br/ginape/livro-prouca
- SOMEREN, M. W. van, BARNARD, Y. F., SANDBERG, J. A. C. The Think Aloud Method. A practical guide to modelling cognitive processes. Academic Press. London, 1994.
- ZILLI, S. R. A Robótica Educacional no Ensino Fundamental: Perspectivas e Prática. Dissertação de Mestrado, UFSC, 2004.

DuinoBlocks: Desenho e Implementação de um Ambiente de Programação Visual para Robótica Educacional

Rafael Machado Alves, Mestrando - rafamachadoalves@ufrj.br Orientador: Fábio Ferrentini Sampaio, Ph.D. - ffs@nce.ufrj.br

Projeto financiado pelo CNPq - 550.400/2011-7