Chapter 1 Supplement: Game Theory

Game Theory

- Competition is an important factor in decision-making
 - Strategies undertaken by competition can dramatically affect the outcome of a decision
- Game theory is one way of considering the impact of others strategies on our own strategies and outcomes
 - Game: "a decision situation with two or more decision makers in competition to win"
 - Game theory: "the study of how optimal strategies are formulated in conflict"

Game Theory

- Dates back to 1944
 - Theory of Games and Economic Behavior, Von Neumann & Morgenstern
- Widely used, many applications
 - War strategies
 - Collective bargaining
 - Business

Game Theory

- Classifications
 - Number of competitive decision makers (players)
 - √ » two-person game
 - » n-player game
 - Outcome in terms of each player's gains and losses
 - zero-sum game: sum of gains and losses = 0
 - » non-zero-sum game: sum of gains and losses ≠ 0
 - Number of strategies employed
- Examples:
 - A union negotiating a new contract with management
 - Two armies conducting a war game
 - A retail firm and a competitor

Game Theory Assumptions

Two-Person

Zero Sum

Gains and losses for both players sum to zero

Example

Players X's Gains = \$3.00

Player Y's Losses = \$3.00

Sum for both players = \$0.00

A Two-Person, Zero-Sum Game

There are two lighting fixture stores, X and Y, who have had relatively stable market shares. Two new marketing strategies being considered by store X may change this peaceful coexistence. The payoff table below shows the potential affects on market share if both stores begin to advertise.

Store X	Store Y Strategies		
Strategies	1 (radio) 2 (newspaper)		
1 (radio)	2 7		

(player trying to maximize the game outcome is on left, player trying to minimize the game outcome is on top)

Two-Person, Zero-Sum Game

Store X	Store Y Strategies			
Strategies	1 (radio) 2	(newspaper)		
1 (radio)	2	7		
2 (newspaper)	6	-4		

- Assumptions: payoff table is known to all players
- Definitions:
 - Strategy: a plan of action to be followed by a player
 - Value of the game: the offensive player's gain and the defensive player's loss (in a zero-sum game)
 - » if Store X selects strategy 2 & Store Y selects strategy 1, the outcome is a 6% gain in market share for Store X and a 6% loss for Store Y
 - » Purpose of the Game: to select the strategy resulting in the best possible outcome regardless of what the opponent does (i.e., the optimal strategy)

- Each player adopts a single strategy as an optimal strategy
 - Strategies each player follows will always be the same irrespective of the other player's strategy
- Can be solved according to the minimax decision criterion
 - Each player seeks to minimize the maximum possible loss or maximize the minimum possible gain
 - » offensive player selects the strategy with the largest of the minimum payoffs (maximin)
 - » defensive player selects the strategy with the smallest of the maximum payoffs (minimax)

- Maximin strategy for Store X, the <u>offensive</u> player
 - Optimal strategy is strategy 1

- Minimax strategy for StoreY, the <u>defensive</u> player
 - Optimal strategy is strategy 1

minir

Store X	Store Y Strategies			
Strategies	1 (radio)	2 (newspaper)		
1 (radio)	3	5		
2 (newspaper)	1	-2		
Maximum Payoff	3	5		
		umn mums		
max: minimum of				

- Optimal strategy for each player resulted in the same payoff value of 3
 - Distinguishes game as a pure strategy game
 - Outcome of 3 results from a pure (or dominant) strategy; it is referred to as a saddle point or equilibrium point
 - » a value that is simultaneously the minimum of a row and the maximum of a column
 - 3 is the value of the game (the average or expected game outcome)
- Minimax criterion results in the optimal strategy for each player only if both players use it

A professional athlete and his agent are negotiating the athlete's contract with his team's general manager. The various outcomes of the game are organized into the payoff table below.

Athlete/ Agent	General Manager Strategies				
Strategies	A	В	С		
1	\$50,000	\$35,000	\$30,000		
2	60,000	40,000	20,000		

- Maximin strategy for Athlete/agent
 - Optimal strategy is strategy 1

Athlete/ Agent	General Manager Strategies				
Strategies	A	В	С		
1	\$50,000	\$35,000	\$30,000		
2	60,000	40,000	20,000		

- Minimax strategy for General Manager
 - Optimal strategy is strategy C

Athlete/ Agent	General Manager Strategies				
Strategies	Α	В	С		
1	\$50,000	\$35,000	\$30,000		
2	60,000	40,000	20,000		

- If both players are logical and rational, it can be assumed a minimax criterion will be employed
- Existence of a saddle point is indicative of a pure strategy game
- A mixed strategy game results if:
 - Minimax criterion are not employed, or
 - Each player selects an optimal strategy and they do not result in a saddle point when the minimax criterion is used
 - » each player will play each strategy for a certain percentage of the time

Mixed Strategy Solution

minimum of the maximum Y_1 Y_2 values X_1 X_2 X_2 X_1 X_2 X_3 X_4 X_4 X_5 X_6 X_8

maximum of the minimum values

- No saddle point exists
 - Therefore not a pure strategy game
- This condition will not result in any dominant strategy for either player; instead a closed loop exists
 - Player X maximizes his gain by choosing strategy X₁;
 Player Y selects strategy Y₁ to minimize player X's gain
 - As soon as Player Y notices that Player X was using strategy X₁, he switches to strategy Y₂
 - Player X then switches to strategy X₂

 For 2 X 2 games, an algebraic approach based on the diagram below can be used to determine the percentage of the time that each strategy will be played

	Y ₁	Y ₂	
X 1	4	2	Q
X 2	1	10	1 - Q
	P	1 - P	

Q and 1 - Q = the fraction of time X plays strategies X_1 and X_2 , respectively

P and 1 - P = the fraction of time Y plays strategies Y_1 and Y_2 , respectively

- Each player's overall objective is to determine the fraction of time that each strategy should be played in order to maximize winnings
 - A strategy that results in maximum winnings no matter what the other player's strategy happens to be
 - Best mixed strategy is found by equating a player's expected winnings for one of the opponents strategies with the expected winnings for the opponent's other strategy
 - » the expected gain and loss method
 - » a plan of strategies such that the expected gain of the maximizing player or the expected loss of the minimizing player will be the same regardless of the opponent's strategy

- Steps for determining the optimum mixed strategy for a
 2 X 2 game algebraically
 - (1) Compute the expected gain for player X
 - Arbitrarily assume that player Y selects strategy Y₁
 - » given this condition, there is a probability q that player X selects strategy X₁ and a probability 1 q that player X selects strategy X₂
 - = 4q + 1(1 q) = 1 + 3q
 - Arbitrarily assume that player Y selects strategy Y₂
 - » given this condition, there is a probability q that player X selects strategy X₁ and a probability 1 q that player X selects strategy X₂
 - \Rightarrow expected gain = 2q + 10(1 q) = 10 8q

- (2) Player X is indifferent to player Y's strategy
 - Equate the expected gain from each of the strategies

$$1 + 3q = 10 - 8q$$
 $11q = 9; q = 9/11$

q =the percentage of time that strategy X_1 is used

Player X's plan is to use strategy X_1 9/11 of the time and strategy X_2 2/11 of the time

- (3) Compute the expected loss for player Y
 - Arbitrarily assume that player X selects strategy X₁
 - » given this condition, there is a probability p that player Y selects strategy Y₁ and a probability 1 p that player Y selects strategy Y₂
 - > expected loss = 4p + 2(1 p) = 2 + 2p
 - Arbitrarily assume that player X selects strategy
 X₂
 - » given this condition, there is a probability p that player Y selects strategy Y₁ and a probability 1 p that player Y selects strategy Y₂
 - > expected loss = 1p + 10(1 p) = 10 9p

- (4) Player Y is indifferent to player X's strategy
 - Equate the expected gain from each of the strategies

$$2 + 2p = 10 - 9p$$
 $11p = 8; p = 8/11$

p =the percentage of time that strategy Y_1 is used

Player Y's plan is to use strategy Y₁ 8/11 of the time and strategy Y₂ 3/11 of the time

Value of a Mixed Strategy Game

	Y ₁	Y ₂	
X 1	4	2	9/11
X ₂	1	10	2/11
	8/11	3/11	

 Once optimum strategies are determined, the value of the game can be calculated by multiplying each game outcome times the fraction of time that each strategy is employed

Game Outcome		Q			P		
4	X	9/	11	X	8/11	=	2.38
2	X	9/	11	X	3/11	=	0.45
1	X	2/	11	X	8/11	=	0.13
10	X	2/	11	X	3/11	=	0.50
Value of the Game				3.46			

 Value of the game is the average or expected game outcome after a large number of plays

Value of a Mixed Strategy Game (A Shortcut)

 Since optimal strategies are computed by equating the expected gains of both strategies for each player, the value of the game can be computed by multiplying game outcomes times their probabilities of occurrence for any row or column

	Y ₁	Y ₂	
X ₁	4	2 -	9/11
X ₂	1	10 —	→2/11
	8/11	3/11	700

Value of the Game

- Row 1: 4(8/11) + 2(3/11) = 38/11
- Row 2: 1(8/11) + 10(3/11) = 38/11
- Column 1: 4(9/11) + 1(2/11) = 38/11
- Column 2: 2(9/11) + 10(2/11) = 38/11

Dominance

- The principle of dominance can be used to reduce the size of games by eliminating strategies that would never be used
 - A strategy is dominated, and can therefore be eliminated, if all of its payoffs are worse or no better than the corresponding payoffs for another strategy
 - » playing an alternative strategy always yields an equal gain or better

Dominance

	Y ₁	Y ₂
X ₁	4	3
X ₂	2	20
X ₃	1	1

 X₃ will never be played because player X can always do better by playing X₁ or X₂

	Y ₁	Y ₂	Y ₃	Y ₄
X ₁	-5	4	6	-3
X ₂	-2	6	2	-20

Dominance

	Y ₁	Y ₂
X ₁	4	3
X ₂	2	20
X ₃	***************************************	1

 X₃ will never be played because player X can always do better by playing X₁ or X₂

	Y ₁	Y ₂	Y ₃	Y ₄
X ₁	-5	A	6	-3
X ₂	-2	6	2	-20

Y₂ and Y₃ will never be played because player Y can always do better by playing Y₁ or Y₄

Solution Strategy

Solve for Saddle Point

- Apply the maximin decision criterion for offensive player
- Apply the minimax decision criterion for defensive player

Solve for Mixed Strategy Probabilities and Value of Game

 If no saddle point exists, use expected gain and loss method to solve for mixed strategy probabilities and value of the game

Coloroid Camera Co. (company 1) plans to introduce a new instant camera and hopes to capture a large increase in its market share. Camco Camera Co. (company 2) hopes to minimize Coloroid's market share increase. The two companies dominate the camera market; any gain by Coloroid comes at Camco's expense. The payoff table, which includes the strategies and outcomes for each company, is shown below.

Company 1	Company 2 Strategies			
Strategies	A	В	С	
1	9	7	2	
2	11	8	4	
3	4	1	7	

Company 1	Company 2 Strategies			
Strategies	A	В	C	
1	9	7	2	
2	11	8	4	
3	4	1	7	

- (1) Check for a pure strategy
 - maximin = 4 using strategy 2
 - minimax = 7 using strategy C

no pure strategy exists

Company 1	Com	pany 2 Strat	tegies	row
Strategies	Α	В	C	minimum
1	9	7	2	2
2	11	8	4	4
3	4	1	7	1
column				
maximum	11	8	7	No Pure Strategy

Company 1	Company 2 Strategies			
Strategies	A	В	С	
1	9	7	2	
2	11	8	4	
3	4	1	7	

• (2) Is game 2 X 2?

No

- (3) Check for dominance
 - 2 dominates 1; B dominates A

Company 1	Company 2 Strategies			
Strategies	A	В	C	
1	9	7	2	
2	11	8	4	
3	4	1	7	

Company 1	Company 2	2 Strategies
Strategies	В	C
2	8	4
3	1	7

 (4) Solve for Mixed Strategy Probabilities and Value of Game using expected gain and loss method

Compute the expected gain for company 1

- Arbitrarily assume that company 2 selects strategy B
- Given this condition, there is a probability q that company
 1 selects strategy 2 and a probability 1 q that company
 1 selects strategy
- Arbitrarily assume that company 2 selects strategy C
- Given this condition, there is a probability q that company
 1 selects strategy 2 and a probability 1 q that company
 1 selects strategy
 - > expected gain = 4q + 7(1 q) = 7 3q

- Company 1 is indifferent to company 2's strategy
 - » equate the expected gain from each of the strategies

$$1 + 7q = 7 - 3q$$
 $10q = 6$; $q = .6$
 $q =$ the percentage of time that strategy 2 is used

Company 1's plan is to use strategy 2 60% of the time and strategy 3 40% of the time

Company 1	Company 2	Strategies	
Strategies	В	C	
2	8	4	0.6
3	1	7	0.4

- Expected gain (market share increase) can be computed using the payoff of either strategy B or C since the gain is equal for both

Repeat for company 2

- Arbitrarily assume that company 1 selects strategy
 2
- Given this condition, there is a probability p that company 2 selects strategy B and a probability 1 p that company 2 selects strategy C
 - > expected gain = 8p + 4(1 p) = 4 + 4p
- Arbitrarily assume that company 1 selects strategy
 3
- Given this condition, there is a probability p that company 1 selects strategy B and a probability 1 p that company 1 selects strategy C
 - > expected gain = 1p + 7(1 p) = 7 6p

Expected Gain and Loss Method

- Company 2 is indifferent to company 1's strategy
- » equate the expected gain from each of the strategies

$$4 + 4p = 7 - 6p$$
 $10p = 3$; $p = .3$
 $p =$ the percentage of time that strategy B is used

Company 2's plan is to use strategy B 30% of the time and strategy C 70% of the time

Mixed Strategy Solution

Company 1	Company	2 Strategies	
Strategies	В	C	
2	8	4	0.6
3	1	7	0.4
	0.3	0.7	

- Expected loss (market share decrease) can be computed using the payoff of either strategy 1 or 2 since the gain is equal for both

Mixed Strategy Summary

Company 1

Strategy 2: 60% of the time

Strategy 3: 40% of the time

Company 2

Strategy B: 30% of the time

Strategy C: 70% of the

time

- The expected gain for company 1 is 5.2% of the market share and the expected loss for company 2 is 5.2 % of the market share
 - Mixed strategies for each company have resulted in an equilibrium point such that a 5.2% expected gain for company 1 results in a simultaneous 5.2% loss for company 2
 - How does this compare with the maximin/minimax strategies?

Solution Strategy

Computer Solutions: QM for Windows

Computer Solutions: Excel

	■ Microsoft Excel - DEC THY.XLS							
_ F	ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat	t <u>T</u> ools <u>D</u> ata <u>Y</u>	Yindow <u>H</u> elp	DEC_INT.ALS	PR.	w 😝 🤝 🤏 🛚		
				<u></u>				
Bool	kman Old Style 👤 16 👤 🖪 🖊	Ŭ ≣ ≣ ≣	\$ % , .00 .00					
	C16 ±	_	_	'	_			
	Α	В	C	D	E	F	G	
1	Two P	layer - Mi	ked Strate	gy Game				
			Second	Player's				
2			Strat	egies				
3			$\mathbf{Y_1}$	\mathbf{Y}_2				
4	First Player's	X_1	4	2	q			
5	Strategies	X_2	1	10	1 - q			
6			p	1 - p				
8		Che	ck for do	minance:				
9	Is strategy X ₁ do	minated?	NO	Is strateg	y Yı domi:	nated?	NO	
10	Is strategy X ₂ do	minated?	NO	Is strateg	y Y2 domi:	nated?	NO	
12	q =	0.81818	=(D5-C5))/(C4-C5-D	4+D5)			
	*	0.18182	-(20-00)	,, (O 1 OO D	1.20,			
13	1 - q =	0.16164						
15	<i>p</i> =	0.72727	=(D5-D4)	/(C4-D4+0	C5-D5)			
16	1 - p =	0.27273						
18	game value =	3.4545	=\$B\$9*C	" 25+\$B\$10*	C6			
	8		7-42					