Medindo e Modelando o Desempenho de Aplicações em um Ambiente Virtual

Caio Igor Carolina Lima Heleny Bessa Luana Lins

CONSIDERAÇÕES INICIAIS

O1 O2 O3
VIRTUALIZAÇÃO PARAVIRTUALIZAÇÃO OVERHEAD

O4SLOWDOWNGARGALOS

O1VIRTUALIZAÇÃO

Particionar Ambientes Indireção

O2PARAVIRTUALIZAÇÃO

Hadware SO Modificações Hipervisor

O3 OVERHEAD

Processo Armazenamento Sobrecarga Recurso

U4 SLOWDOWN/SPEEDUP

Deliberar Simular

O5GARGALOS

Desempenho Processo Componente

SUMÁRIO

01	INTRODUÇÃO		
02	TRABALHOS RELACIONADOS	05	EXPERIMENTAÇÃO
03	O AMBIENTE VIRTUAL XEN	06	ESTUDO DE CASO E VALIDAÇÃO DO MODELO
04	ARCABOUÇO PARA PREVISÃO DO DESEMPENHO	07	CONCLUSÕES E TRABALHOS FUTUROS

INTRODUÇÃO

VIRTUALIZAÇÃO

redução de custos

redução de complexidade ambiente flexível

- 1. Gerenciamento
- 2. Aquisição
- **3.** Energia

TRABALHOS RELACIONADOS

Desafio anterior: aumentar nível de compartilhamento de mainframes

- Y. Bard. Performance Analysis of Virtual Memory Time-Sharing Systems. Proc. of IBM Systems Journal. 1975.
- Y. Bard. An analytic Model of the VM/370
 System. Proc. of IBM Journal of Research and Development. 1978.
- Y. Bard. The VM/370 Performance Predictor.
 Proc. of ACM Computer Surveys. 1978.

Desafios atuais: segurança, consumo de energia, alto custo administrativo...

TRABALHOS RELACIONADOS

Alocação dinâmica: análise de aplicações já implantadas em ambientes <u>virtuais</u>

- P. Garbacki and V. Naik. Efficient Resource Virtualization and Sharing Strategies for Heterogeneous Grid Environments. 2007.
- G. Rodosek, M. Gohner, M. Golling, and M. Kretzschmar. Towards an Accounting System for Multi-Provider Grid Environments. 2007.

Artigo atual: análise de aplicações implantadas em ambiente <u>real</u>

TRABALHOS RELACIONADOS

- D. Menascé. Virtualization: Concepts,
 Applications, and Performance. 2006.
- D. A. Menascé, L. W. Dowdy, and V. A. F.
 Almeida. Performance by Design: Computer
 Capacity Planning By Example. 2004.
- F. Benevenuto, C. Teixeira, M. Caldas, V. Almeida, J. Almeida, J. R. Santos, and G. Janakiraman. Performance Models for Applications on Xen. 2006.

Artigo atual: tem equações detalhadas, parâmetros importantes da configuração e captura características reais das camadas de virtualização

O AMBIENTE VIRTUAL XEN Monitor de máquinas virtuais (VMM)

- Permite que múltiplas instâncias operacionais executem concorrentemente em uma única máquina física

Obs: concorrência é dado ao sistema operacional que é capaz de usar o processador para executar tarefas ao mesmo tempo que outras operações.

Foi um dos primeiros a utilizar o conceito de paravirtualização

ARQUITETURA DO VMM

- Cada aplicação executando em um S.O acessa dispositivos de hardware através do IDD
- As outras VMs executam dispositivos que se comunicam com o IDD para acessar os verdadeiros dispositivos de hardware
- Uma VM acessa o hardware indiretamente através de um dispositivo virtual no domínio vif conectado ao IDD
- Para evitar cópia de dados, referências às páginas são transferidas através do IDD ao invés dos verdadeiros dados de E/S

- IDD: Vm especial com acessos ao hardware
- NIC: Interface de Rede
- Vif. Dispositivo virtual

ARCABOUÇO PARA PREVISÃO DE DESEMPENHO

MODELOS DE DESEMPENHO

ESTRATÉGIA: Consiste em definir um fator para representar o *overhead* introduzido pela camada de virtualização na execução de uma aplicação em uma VM

PREMISSA: Cada VM executa uma aplicação de classe diferente, onde uma classe de aplicações representa um tipo de aplicação para o qual o <u>overhead</u> de virtualização foi calculado

calculado em uma plataforma de hardware base, para o qual se sabe o *speedup* em relação à outras máquinas

MODELOS DE DESEMPENHO

MODELANDO O
DESEMPENHO EM
VMs

MODELANDO O DESEMPENHO DE OPERAÇÕES DE E/S

LIMITES ASSINTÓTICOS

MODELANDO O DESEMPENHO EM VMs

$$vm_i$$
, sendo $i = \{0...n\}$

- i = 0 é o IDD
- Todas as VMs compartilham a mesma plataforma de hardware
- Cada VM executa uma aplicação de classe diferente (i)

recurso
$$k$$
, sendo $k = \{1...m\}$

CÁLCULO DO OVERHEAD DE VM,

SLOWDOWN:

$$S_k^i = \frac{B_k^{im_i}}{B_k^i}$$

DEMANDA DE SERVIÇO:

$$D_k^{vm_i} = D_k^i \cdot \frac{S_k^i}{P_k^i}$$

S_k^i	Slowdown da classe i no recurso k
$B_k^{vm_i}$	Tempo ocupado do recurso k para executar vm;
B_k^i	Tempo ocupado do recurso k para a classe i no ambiente real
$D_k^{vm_i}$	Demanda do recurso k pela vm
D_k^i	Demanda do recurso k para a classe i no ambiente real
P_k^i	Speedup da classe i no recurso k

CÁLCULO DO OVERHEAD DE VM.

UTILIZAÇÃO:
$$U_k^{vm_i} = \frac{\lambda^i \cdot D_k^{vm_i}}{cap_i}$$

TEMPO DE RESIDÊNCIA **MÉDIO:**

$$R_k^{vm_i} = \frac{D_k^{vm_i}}{1 - U_k^{vm_i}}$$

$U_k^{vm_i}$	Utilização do recurso k pela vm _i do ponto de vista da vm _i
λ^i	Taxa de chegada de requisições na vm _i
$D_k^{vm_i}$	Demanda do recurso k pela vm
cap_i	Porção do total de recursos que vm _i pode utilizar
$R_k^{vm_i}$	Tempo de residência médio do recurso k pela vm _i

CÁLCULO DO OVERHEAD DE VM,

TEMPO DE RESPOSTA EM VM.

$$\sum_{k=1}^{m} R_k^{vm_i} = \frac{D_k^{vm_i}}{1 - U_k^{vm_i}}$$

$$R_{CPU,i}^{vm_0} = \frac{D_{CPU,i}^{vm_0}}{1 - U_{CPU}^{vm_0}}$$

MODELANDO O DESEMPENHO DE OPERAÇÕES DE E/S

- O IDD (vm_o) é o componente do Xen responsável por executar operações de entrada e saída (E/S) para outras VMs
- Abordagem para prever utilização de CPU do IDD
 - Determinar o custo de processar um pacote (cpⁱ) no ambiente virtual para a classe i de aplicações
 - 2. Analisar a carga gerada pela aplicação alvo no ambiente real medindo o número médio de pacotes por requisição (pr^{i}) para a classe i

PREVISÃO DA UTILIZAÇÃO DE CPU DO IDD

DEMANDA DE CPU:

$$D_{CPU,i}^{vm_0} = \frac{cp^i \cdot pr^i}{P_{CPU}^i}$$

$$\begin{array}{ll} \textbf{UTILIZAÇÃO} \\ \textbf{DE CPU:} \end{array} \quad U^{vm_0}_{CPU} = \frac{\sum_{i=1}^{N} (D^{vm_0}_{CPU,i} \cdot \lambda^i)}{cap_0} \end{array}$$

TEMPO DE

TEMPO DE RESIDÊNCIA
$$R^{vm_0}_{CPU,i} = \frac{D^{vm_0}_{CPU,i}}{1 - U^{vm_0}_{CPU}}$$
 MÉDIO:

$D^{vm_0}_{CPU,i}$	Demanda de CPU no IDD devido a atividade de E/S na <i>vm</i> ,
cp^i	Tempo de CPU para o IDD processar um pacote da classe <i>i</i>
pr^i	Número de pacotes por requisição da classe <i>i</i>
P_{CPU}^i	Speedup da classe i na CPU
$U_{CPU}^{vm_0}$	Utilização de CPU no IDD
λ^i	Taxa de chegada de requisições na <i>vm</i> ,
cap_0	Porção do total de recursos que o IDD pode utilizar
$R^{vm_0}_{CPU,i}$	Tempo de Residência no IDD para a classe de aplicações <i>i</i>

LIMITES ASSINTÓTICOS

Qual o valor máximo de taxa de chegada de requisições que um determinado serviço consegue suportar ao ser migrado para um ambiente virtual?

Depende:

- Das demandas de todos os recursos
- Do parâmetro do escalonador cap,
- Da taxa de chegada de requisições em cada VM

LIMITES ASSINTÓTICOS

VM É GARGALO:
$$\lambda^i = \frac{U_k^{vm_i} \cdot cap_i}{D_k^{vm_i}}$$

$$\lambda^i \leq cap_i/D_k^{vm_i}$$

IDD É GARGALO:

$$U_{CPU,i}^* = \sum_{j=1}^{N} (D_{CPU,j}^{vm_0} \cdot \lambda^j) \quad \forall j \neq i$$

soma das utilizações de CPU no IDD devido a todas as VMs exceto a vmi.

$$\lambda_{max}^{i} \le \min(\frac{cap_{i}}{max_{k=1}^{K}D_{k}^{vm_{i}}}, \frac{cap_{0} - U_{CPU,i}^{*}}{D_{CPU,i}^{vm_{0}}})$$

EXPERIMENTAÇÃO

Para todos os experimentos, foram utilizados

Servidor Xen

- Intel Xen 64-bit versão 3.0.4
- Duas CPUs 3.2 GHz com 2GB de RAM
- Disco com 7200 RPM e 8MB de cache L2
- Duas placas de rede
 Ethernet Gigabit Broadcom
 Realtek

VMs

- VMs com XenoLinux derivado de uma distro Debian, kernel 2.6.16
- Máquina do cliente com a mesma distribuição Linux

Servidor Linux

- Configurado com 1024 MB de RAM
- Cada VM é configurada com
 512 MB de RAM
- IDD tal qual a VM

AVALIAÇÃO DE DESEMPENHO

 Para avaliar o desempenho de aplicações em ambientes virtuais, é necessário coletar medidas de desempenho no ambiente virtual.

 Como parte do arcabouço de monitoramento do trabalho, os autores desenvolveram uma aplicação chamada
 XenCPU para medir o tempo de CPU ocupado no Xen.

AVALIAÇÃO DE DESEMPENHO

Métricas que foram avaliadas:

número de instruções executadas e misses (falhas) nas caches do processador e na TLB1

XEN

Utilização do Xenoprof

ferramenta que, periodicamente, coleta eventos de hardware do sistema

LINUX

Utilização do Oprofile

OVERHEAD DO XENOPROF E OPROFILE

- Foi definido um período de amostragem no qual o Xenoprof e o Oprofile não causasse um grande overhead ao sistema, para realizar uma comparação justa.
- Para o Linux, plotaram valores obtidos executando o Oprofile em relação ao sistema sem executar o Oprofile.
- Para a VM, plotaram valores executando o Xenoprof em relação à VM executando o mesmo benchmark sem executar o Xenoprof.

Imagem: compara o tempo de CPU para executar uma compilação de kernel em uma máquina com Linux e o tempo de CPU na mesma máquina em uma VM do Xen

SLOWDOWN PARA CLASSES DE APLICAÇÕES

Para prover suporte experimental à abordagem de criar um slowdown para representar o custo da virtualização para diferentes tipos de aplicações, eles avaliaram o slowdown de um servidor Web que utiliza apenas conteúdo estático.

SLOWDOWN PARA CLASSES DE APLICAÇÕES

CLIENTE

Httperf

Permite várias requisições http

SERVIDOR WEB

Apache versão 2.0.55

 Software de código aberto e distribuição gratuita

A VM hospeda o servidor apache em uma única CPU e o IDD executa em outra CPU separadamente. As duas cargas de trabalho utilizadas pelos clientes e o conteúdo do servidor foram geradas pelo SPECWeb99.

ANÁLISE DE SLOWDOWN E CUSTO POR PACOTE

resultados experimentais que guiaram a elaboração dos modelos

- Slowdown da CPU da VM para as duas cargas de trabalho como uma função da taxa de requisições
- Os valores para as duas cargas de trabalho são bem próximos
- Não dependem da taxa de chegada de requisições
- O slowdown médio para ambas as cargas é aproximadamente 0.92

OVERHEAD NO IDD

(b) cp^i para as duas cargas de trabalho analisadas

- Os autores proveram uma avaliação experimental para entenderem os principais fatores que envolvem a modelagem do overhead de E/S no Xen.
- A configuração utilizada neste experimento é a mesma utilizada na análise do slowdown
- O gráfico mostra o custo de CPU no IDD por pacote da vm_i (cp^i) como uma função da taxa de requisições para as cargas utilizadas.
- O cpi é constante, mesmo para grandes taxas de chegadas de requisições.

OVERHEAD NO IDD

(c) cp^i para diferentes tamanhos de pacotes

- Esse gráfico mostra o cpi como uma função do tamanho do pacote.
- Podemos ver que o cpi para pacotes de chegada e de saída aumenta com o tamanho do pacote.
- Analisando o número de interrupções por pacote, entenderam que existe menos de uma interrupção por pacote quando pacotes são pequenos, diminuindo o cpi
- O componente principal que varia o número de interrupções por pacote é a taxa entre chegadas de pacotes.

PREMISSA

Sendo assim, uma premissa de modelos é que a carga de trabalho utilizada para medir o número de pacotes por requisição da classe $i\,(pr^i)$ e calcular $D^{vm_0}_{CPU,i}$ utilizando a equação 5, tenha as mesmas características da carga de trabalho da aplicação alvo.

Ex: distribuição do tamanho, tempo entre chegadas, etc

Equação 5:
$$D^{vm_0}_{CPU,i} = \frac{cp^i \cdot pr^i}{P^i_{CPU}}$$
 demanda de cpu do idd

INTERFERÊNCIA ENTRE VMs

- Motivo
- Situações
- Overhead
- Capturar

Aumento do Tempo de CPU

CPU_Time = Inst_Count * CPI * Clock_Cycle_Time

- AI Aumento de Instruções
- DI Dilatação de Instrução
- I Interferência

PASSO 1

Criação da base de dados

PASSO 2

Medição das aplicações alvo no ambiente virtual

PASSO 3

Escolha da plataforma de hardware

PASSO 4

Escolha da classe de aplicações que melhor representa a aplicação alvo

PASSO 5

Definição de cap^i , para i, $1..N_{CPU}$

PASSO 6

Cálculo de $D_k^{vm_i}$, $U_k^{vm_i}$ e $R_k^{vm_i}$ para cada i e k

ESTUDO DE CASO E VALIDAÇÃO DO MODELO

ESTUDO DE CASO E VALIDAÇÃO DO MODELO

1: Criação da base de dados com:

ESTUDO DE CASO E VALIDAÇÃO DO MODELO

CONCLUSÕES E TRABALHOS FUTUROS

Conclusões

 O overhead de virtualização aumenta quando VMs compartilham a mesma CPU

Trabalhos Futuros

- Validar os modelos sugeridos
- Desenvolver modelos para aplicações de classe fechada
- Avaliar o arcabouço para diferentes ambientes virtuais
- Desenvolver uma ferramenta que utilize nosso modelo

REFERÊNCIA

BENEVENUTO, F. et al. Medindo e Modelando o Desempenho de Aplicações em um Ambiente Virtual. [s.l: s.n.]. Disponível em:

https://homepages.dcc.ufmg.br/~fabricio/download/sbrc08.pdf.