## Homework 5

MATH 416: ABSTRACT LINEAR ALGEBRA

Yana Wenxiao Name:

7,3 DATE:

(Exercises are taken from Linear Algebra, Fourth Edition by Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence)

Here are Theorems you may want to use.

**Theorem 2.11** Let V, W, and Z be finite-dimensional vector spaces with ordered bases  $\alpha, \beta$ , and  $\gamma$ , respectively. Let  $T:V\to W$  and  $U:W\to Z$  be linear transformations. Then

$$[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta} [T]^{\beta}_{\alpha}.$$

**Theorem 2.14** Let V and W be finite-dimensional vector spaces having ordered bases  $\beta$  and  $\gamma$ , respectively, and let  $T: V \to W$  be linear. Then, for each  $u \in V$ , we have

$$[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}.$$

1. Exercise §2.3 #1 Label the following statements as true or false. In each part, V, W, and Z are vector spaces with ordered (finite) bases  $\alpha, \beta$ , and  $\gamma$ , respectively;  $T: V \to W$  and  $U: W \to Z$  denote linear transformations; and A and B denote matrices (Answer is back, give a short explanation!).

(a) 
$$[UT]^{\gamma}_{\alpha} = [T]^{\beta}_{\alpha}[U]^{\gamma}_{\beta}$$

- (b)  $[T(v)]_{\beta} = [T]_{\alpha}^{\beta}[v]_{\alpha}$  for all  $v \in V$ .
- (c)  $[U(w)]_{\alpha}^{\delta} = [U]_{\alpha}^{\delta}[w]_{\alpha}$  for all  $w \in W$ .

(d) 
$$[I_V]_{\alpha} = I$$
.

(f)  $A^2 = I$  implies that A = I or A = -I  $= \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  of the curve tensor of the curve tensor. The curve tensor of the search of the curve tensor of the curve tensor. The curve tensor of the search of the

(i) 
$$L_{A+B} = L_A + L_B$$
.

(j) If A is square and  $A_{ij} = \delta_{ij}$  for all i and j, then A = I.

(g) if A is an mxn matrix with entries from field F and if 2, B are the standard ordered basis vectors for  $F^n$ ,  $F^m$ , then we know  $A = [LA]_{\mathcal{L}}^{\mathcal{B}}$ . Consider the example. Let  $V = W = \mathbb{R}^2$ ,  $Q = \{(1,0), (0,1)\}$ ,  $\beta = \{(0,1),(1,0)\}\ \text{and}\ A = I_2, \text{ Picch of } \{0\}_{I_2}\}_{\mathcal{L}}^{\beta} = [0,1] \pm [0,1] = I_2$ 

2. a. §2.3 #2 (a) Let

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & -3 \\ 4 & 1 & 2 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & 1 & 4 \\ -1 & -2 & 0 \end{pmatrix}, \quad \text{and} \quad D = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}.$$

Compute A(2B+3C), (AB)D, and A(BD).

**b.** §2.3 #2 (b) Let

$$A = \begin{pmatrix} 2 & 5 \\ -3 & 1 \\ 4 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & -2 & 0 \\ 1 & -1 & 4 \\ 5 & 5 & 3 \end{pmatrix}, \quad \text{and} \quad C = \begin{pmatrix} 4 & 0 & 3 \end{pmatrix}.$$

Compute  $A^t, A^tB, BC^t, CB$ , and CA.

(a) 
$$A(2B+3C) = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 5 & 3 & 6 \\ 5 & -4 & 4 \end{bmatrix}$$
  
 $= \begin{bmatrix} 20 & -9 & 18 \\ 5 & (0 & 8) \end{bmatrix}$   
 $(AB) D = \begin{bmatrix} 13 & 3 & 3 \\ -2 & -1 & -8 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 29 \\ -26 \end{bmatrix} = A(BD)$   
(b)  $A^{\dagger} = \begin{bmatrix} 2 & -3 & 4 \\ -2 & -1 & -8 \end{bmatrix} A^{\dagger} B = \begin{bmatrix} 23 & 19 & 0 \\ -16 & -16 \end{bmatrix}$ 

(b) 
$$A^{t} = \begin{bmatrix} 2 & -3 & 4 \\ 5 & 1 & 2 \end{bmatrix}$$
,  $A^{t} B = \begin{bmatrix} 23 & 19 & 0 \\ 26 & -1 & 10 \end{bmatrix}$ 

$$BC^{t} = \begin{bmatrix} 3 & -2 & 0 \\ 1 & -1 & 4 \\ 5 & 5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 16 \\ 29 \end{bmatrix}$$

$$CB = [4 \ 0 \ 3] \begin{bmatrix} 3 \ -2 \ 0 \\ 1 \ -1 \ 4 \end{bmatrix} = [\nu] \ 1 \ 9]$$

$$S_{\text{Page 2 of 10}} = [\nu] \ 1 \ 9$$

Continued from the previous question. Use the following blank page to write your solutions.

$$CA = \begin{bmatrix} 4 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 20 & 26 \end{bmatrix}$$

**3.** §2.3 #3 Let g(x) = 3 + x. Let  $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$  and  $U: P_2(\mathbb{R}) \to \mathbb{R}^3$  be the linear transformations respectively defined by

$$T(f(x)) = f'(x)g(x) + 2f(x)$$
 and  $U(a + bx + cx^2) = (a + b, c, a - b)$ .

$$\mathcal{B} = \left\{ \begin{array}{l} \text{Let } \beta \text{ and } \gamma \text{ be the standard ordered bases of } P_2(\mathbb{R}) \text{ and } \mathbb{R}^3, \text{ respectively.} \\ \text{a. } \S 2.3 \ \# 3 \ \text{(a) Compute } [U]_\beta^\gamma, [T]_\beta, \ [UT]_\beta^\gamma \text{ directly. Then use Theorem 2.11 to verify your result.} \end{array} \right.$$

**b.** §2.3 #3 (b) Let  $h(x) = 3 - 2x + x^2$ . Compute  $[h(x)]_{\beta}$  and  $[U(h(x))]_{\gamma}$ . Then use  $[U]_{\beta}^{\gamma}$  from **a** and

Theorem 2.14 to verify your result.

a. 
$$[U]_{\beta}^{\delta} = [[U(1)]_{\beta}[U(X)]_{\delta}[U(X^{2})]_{\delta}] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[T]_{\beta}^{\theta} = \begin{bmatrix} 2 & 3+3x & 4x^{2}+6x \end{bmatrix}_{\beta} = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 3 & 6 \\ 0 & 0 & 4 \end{bmatrix}$$

$$[UT]_{\beta}^{\delta} = [[U(T(1))]_{\delta} [U(T(x^{2}))]_{\delta} [U(T(x^{2}))]_{\delta}]$$

$$= \begin{bmatrix} [U(2)]_{\delta} [U(3+3x)]_{\delta} [U(4x^{2}+6x)]_{\delta}]$$

$$= \begin{bmatrix} 2 & 6 & 6 \\ 0 & 0 & 4 \\ 2 & 0 & -6 \end{bmatrix}$$

$$[UT]_{\beta}^{\delta} = [U]_{\beta}^{\delta} [T]_{\beta}^{\delta}$$

b.  $[h(x)]_{\beta} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$ 

$$[U(h(x))]_{\gamma} = [1, 1, 5]_{\gamma} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$[U(h(x))]_{\gamma} = [U]_{\beta}^{\delta} [h(x)]_{\beta}$$

4.  $\S 2.3 \# 4$  For each of the following parts, let T be the linear transformation defined in the corresponding part of Exercise 5 of Section 2.2 (See HW#4 sheet). Use Theorem 2.14 to compute the following vectors.

**a.** §2.3 #4 (a) 
$$[T(A)]_{\alpha}$$
, where  $A = \begin{pmatrix} 1 & 4 \\ -1 & 6 \end{pmatrix}$ .

**b.** §2.3 #4 (b)  $[T(f(x))]_{\alpha}$ , where  $f(x) = 4 - 6x + 3x^2$ .

$$\begin{array}{l}
Q. [A]_{\alpha} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix} \begin{bmatrix} T \end{bmatrix}_{\alpha}^{\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\
[T(A)]_{\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \\ 6 \end{bmatrix} \\
[T(f(x))]_{\beta} = \begin{bmatrix} 4 \\ -6 \\ 3 \end{bmatrix} \begin{bmatrix} T \end{bmatrix}_{\beta}^{\alpha} = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \\
[T(f(x))]_{\alpha} = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ -6 \\ 3 \end{bmatrix} = \begin{bmatrix} -6 \\ 2 \\ 0 \\ 6 \end{bmatrix}$$

- **5.** §2.3 #12 Let V, W, and Z be vector spaces, and let  $T: V \to W$  and  $U: W \to Z$  be linear.
- a.  $\S 2.3 \# 12$  (a) Prove that if UT is one-to-one, then T is one-to-one. Must U also be one-to-one?
- **b.** §2.3 #12 (b) Prove that if UT is onto, then U is onto. Must T also be onto?

Prove that if U and T are one-to-one and onto, then UT is also.

a. UT is 1 to 1 => N(UT) = { o}

assume T is not I to 1. i.e.  $\exists x \neq \overline{D} T(x) = \overline{D}$ 

 $(UT)(x) = U(T(x)) = U(\bar{0}) = \bar{0}$  which contradices

to N(VT)={0}

S. T is 1 to 1.

and U doesn't need to be I to 1.

b.  $\frac{N_0}{11T}$  is onto => R(UT) = Z

 $\forall z \in Z \exists v \in V (UT)(v) = z = U(T(v))$ 

So  $\exists W = T(v) \in W \cup (w) = Z$  thus  $\bigcup$  is onto

and T doesn't need to be 1 to 1

 $C, |t_{\sigma}|: \mathcal{N}(U) = \{\bar{\sigma}\}, \mathcal{N}(T) = \{\bar{\sigma}\}$   $(U\bar{T}(x)) = \{\bar{\sigma}\} = \mathcal{T}(x) = \bar{\sigma}$ 

Onto: YweW = veV T(v)=(5) =>x = 5 (v)=w

Since  $\forall z \in Z \exists w \in W_{Page} U_{of}(w) = U(T(v)) = (UT)(v) = Z$ 

G YZEZ BVEV (UT)(V) =Z

6. §2.3 #18 Using only the definition of matrix multiplication, prove that multiplication of matrices is associative.

$$A = [a_1 - a_n] \quad B = [b_1 - b_m] \quad C = [c_1 - c_k].$$

$$(A B)C = (A b_1 + - A b_m) [c_1 - c_k].$$

$$= [A b_1 - - A b_m] [c_1 - - c_k].$$

$$= [D(1 - - D c_k].$$

$$A(BC) = A[BC, --- BCK].$$
  
= [ABC, --- ABCK].

$$AB = [Ab, ---- Abm] = D.$$



**8.** §2.4 #2 For each of the following linear transformations T, determine whether T is invertible and justify your answer.

**a.** §2.4 #2 (d) 
$$T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$$
 defined by  $T(p(x)) = p'(x)$ 

b. §2.4 #2 (e) 
$$T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$$
 defined by  $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c + d)x^2$ 

(d)  $\dim P_1(\mathbb{R}) = 4 + 3 = \dim P_1(\mathbb{R})$  So No

(e)  $\dim M_{1\times 1}(\mathbb{R}) = 4 + 3 = \dim P_1(\mathbb{R})$  So No

- 9. §2.4 #3 Which of the following pairs of vector spaces are isomorphic? Justify your answers.
  - (a)  $\mathbb{F}^3$  and  $P_3(\mathbb{F})$
  - (b)  $\mathbb{F}^4$  and  $P_3(\mathbb{F})$
  - (c)  $M_{2\times 2}(\mathbb{R})$  and  $P_3(\mathbb{R})$
  - (d)  $V = \{A \in M_{2 \times 2}(\mathbb{R}) : \operatorname{tr}(A) = 0\}$  and  $\mathbb{R}^4$
- (a). No dim F3=3 + 4=dim P2(F)
- (b) Yes dinF4=4=dim Ps(F)
- (C) Yes dim Mixi(R) = 4 = din Ps (R)
- $(d) No V = \{ab\}$

$$dim V = 3 + 4 = dim R^4$$

## Problems not from the textbook exercises.

- **10.** Let A, B be  $n \times n$  matrices.
- **a.** Prove that if A and B are invertible, then so is AB and  $(AB)^{-1} = B^{-1}A^{-1}$ .
- **b.** Prove that if AB is invertible then so are A and B.
- **c.** Prove that if A is invertible then so is  $A^t$  and  $(A^t)^{-1} = (A^{-1})^t$ .

$$= 2000 \text{ exists} \quad A^{-1}, 13^{-1} \quad \text{such that } AA^{-1} = 1313^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} = 13^{-1} =$$

So 
$$AB \cdot B^{-1}A^{-1} = I = B^{-1}A^{-1} \cdot AB$$

$$= (A13)^{1}(A13) = ((A13)^{-1}A)13 = 1$$

$$(B(AB)^{-1})A = K$$

$$A(B(AB)^{-1})A = AK$$

$$A =$$

$$A^{-1} = 13(A13)^{-1}$$
 $13^{-1} = (A13)^{-1}A$ 

 $t(A-1)^{t} = (A-1)^{t}A^{t}$ 

| So At is invertible                   | AAT |
|---------------------------------------|-----|
| So At is invertible and (At)-1=(A-1)t |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |
|                                       |     |