

The evolution of virtual creatures in a rigid-body engine

Benjamin Ellenberger

ETH zürich

Contents

- 1 Introduction
 - Karl Sims
- - Genetic language
 - Neuronal network
 - Oja's rule
 - Hill's muscle model
 - Fitness evaluation
 - Evolution
- - Velocity as the fitness function
 - First run
 - Second run
- - Optimization & Extension
 - Other settings & fitness functions

Karl Sims

- Computer artist and researcher from MIT Media Lab in the 1990s
- Wrote landmark papers on virtual creatures and artificial evolution

- Panspermia, 1990, Animation depicting a life cycle of an inter-galactic botanical life form.
- Evolved Virtual Creatures, 1994, Demonstration of research results show simulated block creatures performing various evolved behaviors.

Evolved Virtual Creatures

- Simulations were created on the IBM CM-5 (1024 cores, 32 GFlops/s)
- The creatures were evolved to display multiple modes of water and land based movements
- The creatures were also co-evolved in different species to compete for possession of a virtual cube, displaying the red queen effect.

Figure 7: Creatures evolved for walking.

ETH zürich

Contents

- - Karl Sims
- 2 Methods
 - Genetic language
 - Neuronal network
 - Oja's rule
 - Hill's muscle model
 - Fitness evaluation
 - Evolution
- - Velocity as the fitness function
 - First run
 - Second run
- - Optimization & Extension
 - Other settings & fitness functions

Benjamin Ellenberger

Genetic language

Genotype:

- Limb Part of creature body
- Joint Generic joint
- Muscle Muscle of Joint

- Tact Tactile Sensor
- Moto Motorceptor (Force)
- Visor Light sensor

Genetic language

Phenotype:

- Limb Part of creature body
- **Joint** Generic joint
- Muscle Muscle of Joint

- Tact Tactile Sensor
- **Moto** Motorceptor (Force)
- Visor Light sensor

Neuronal network

Each neuron has a transfer function, which is one of:

- min
- max
- sum
- sum-theshold
- product
- abs
- sign-of

- greater-than
- exp
- log
- sin
- COS
- oscillate-wave
- oscillate-saw

Oja's rule

- Finnish computer scientist Erkki Oja
- x is the input
- $\mathbf{y}(x)$ is the output
- $w_i(n+1)$ is the new weight
- For p = 2, we have the root sum of squares (Cartesian normalization rule)
- Stabilized rule of Hebb's learning rule $\Delta w_i = \eta x_i y$

$$w_i(n+1) = \frac{w_i + \eta y(\mathbf{x})x_i}{\left(\sum_{j=1}^m [w_j + \eta y(\mathbf{x})x_j]^p\right)^{1/p}}$$

Benjamin Ellenberger

Hill's muscle model

- Physiologist Archibald Vivian Hill
- Equation of tetanized muscle contraction

$$(v + b)(F + a) = b(F_0 + a)$$

- F is the tension (or load) in the muscle
- v is the velocity of contraction
- \blacksquare F_0 is the maximum isometric tension (or load) generated in the muscle
- a coefficient of shortening heat
- $b = a \cdot v_0/F_0$
- \mathbf{v}_0 is the maximum velocity, when F=0

Execution of creatures

Fitness evaluation

- Fitness evaluation framework
- A creature is simulated for a certain evaluation time during which the fitness function measures the fitness of the creature
- Evaluates multiple fitness functions at the same time and combines them linearly

Evolution

- Selection
 - Only a certain percentage of creatures are selected for new generation
- Cross-over
 - Only certain percentage of creatures are allowed to breed
- Mutation
 - Other creatures are subject to mutation
 - Mutation of gene
 - Mutation of gene attributes
 - Mutation of gene links
- Successful creatures stay in the population and the population is refilled with new bred and mutated ones

ETH zürich

Contents

- 1 Introduction
 - Karl Sims
- 2 Methods
 - Genetic language
 - Neuronal network
 - Oja's rule
 - Hill's muscle model
 - Fitness evaluation
 - Evolution
- 3 Simulations
 - Velocity as the fitness function
 - First run
 - Second run
- 4 Outlook
 - Optimization & Extension
 - Other settings & fitness functions

Velocity as the fitness function

- Sampling of position over time
- Moved distance in a certain time interval
- Continuous average
- Expectations: Some really moving creatures and some finding the exploit that only the main body has to move.

(main body = first limb in phenotype)

First run

- 20 Individuals
- 30 generations
- Check if they can exploit the fitness function
- Result: There was another exploit in the virtual world!

Second run

- 20 Individuals
- 30 generations
- The problem of the previous run is fixed
- Check if they can exploit the fitness function
- Result: They found several exploitation strategies!

ETH zürich

Contents

- - Karl Sims
- - Genetic language
 - Neuronal network
 - Oja's rule
 - Hill's muscle model
 - Fitness evaluation
 - Evolution
- - Velocity as the fitness function
 - First run
 - Second run
- 4 Outlook
 - Optimization & Extension
 - Other settings & fitness functions

Benjamin Ellenberger

Optimization & Extension

- The framework was written in a quick & dirty manner
- Several components need to be reimplemented properly to provide a more scalable environment
- The system does not use any parallelization
- The phenotype could be more natural
- The genotype to phenotype transcription does not include any additional developmental parts (no embryogenesis)
- More sensor types
- More logging for data analysis

Other settings & fitness functions

- Island genetic algorithm
- Competitions of individuals
- Implicit fitness functions (survival of the fittest in a virtual world)
- Information theoretic measures such as the transfer entropy

References

- Sims K. Evolving Virtual Creatures (1994)
- Sims K. Evolving 3D Morphology and Behavior by Competition (1994)
- Krcah P. Evolving Virtual Creatures Revisited (2007)
- Schmidt N. Bootstrapping perception using information theory: case studies in a quadruped running robot running on different grounds (2013)
- Hill, A.V. The heat of shortening and dynamics constants of muscles (1938)
- Stoop R. Theory and Simulation of Neural Networks (2014)