Correction

Interrogation sur le chapitre Intégration
$\mathbf{Question} 1 $
$igcup t\mapsto -\ln(u(t))$ $igcup t\mapsto -rac{1}{u^2(t)}$ aucune $igcup t\mapsto rac{1}{u^2(t)}$ $igcup t\mapsto \ln(-u(t))$
Question 2 Donner l'intégrale qui vaut Arctan(2) — Arctan(1)
${f Question~3}$ Donner le bon argument : $\int_2^0 f(t) \; { m d}t$ est définie car f est
\mathbb{C}^1 sur $[0,2]$ \mathbb{C}^1 définie sur $[0,2]$ \mathbb{C}^1 continue sur $[0,2]$
Question 4 On note $A=\int_2^{-3} \frac{1}{1+t^2} \mathrm{d}t$. Comme pour tout $t\in \mathbb{R}, 0\leqslant \frac{1}{1+t^2}\leqslant 1$, on a
$-5 \leq A \leq 0 \boxed{ A \leq 5 \boxed{ A \geq 0 \boxed{ A \leq 3 \boxed{ A \geq 5 \boxed{ 3 \leq A \leq 2}}}}$
$\mathbf{Question~5} \qquad \text{On note } F(x) = \int_1^x f(t) \; \mathrm{d}t \; \mathrm{avec} \; f \; \mathrm{continue~sur} \; \mathbb{R}. \; \; \mathrm{Quelle~r\acute{e}ponse~est~la~plus~pr\acute{e}cise~?} \qquad \mathrm{Sur} \; \mathbb{R}, \; F \; \mathrm{est~.}$
$oxedge$ dérivable et positive $oxedge$ dérivable $oxedge$ dérivable et croissante $oxedge$ de classe \mathcal{C}^1 définie
Question 6 $\frac{1}{n}\sum_{k=1}^{n}\frac{1}{(1+\frac{k}{n})^2}$ est une somme de Riemann pour la fonction $f(x)=$
$\blacksquare \frac{1}{x^2} \text{ sur } [1,2] \qquad \qquad \boxed{ \qquad } \frac{1}{x} \text{ sur } [0,1] \qquad \qquad \boxed{ \qquad } \frac{1}{1+\frac{x}{n}} \text{ sur } [0,1] \qquad \qquad \boxed{ \qquad } \frac{1}{1+x} \text{ sur } [1,2]$
${f Question} {f 7} x \mapsto \int_0^1 \cos(t) { m d}t { m est} :$
une primitive de $x\mapsto \cos(x)$ une fonction affine mal définie
$\mathbf{Question} 8 \qquad u \mapsto \int_1^u \mathrm{Arctan}(1) \mathrm{d}t \mathrm{est} :$
une fonction affine $\ \ \ \ \ \ \ \ \ \ \ \ \ $
${f Question} {f 9} x \mapsto \int_1^x e^{t^2} { m d} t { m est} :$
une fonction affine une primitive de $x\mapsto e^{x^2}$ mal définie
$\textbf{Question 10} \qquad x \mapsto \int_1^t \sqrt{x} \; \mathrm{d}t \; \text{est} \; :$
une fonction affine une primitive de $x\mapsto \sqrt{x}$ mal définie

Correction

Soit f une fonction continue sur [a, b] avec a < b, alors

Question 12 Pour $(a,b) \in (\mathbb{R}_+^*)^2$, $\int_a^b \ln(t) dt = ...$

$$\left[t \ln(t) - t
ight]_a^b$$

Question 13 Pour $(a,b) \in (\mathbb{R}_+^*)^2$, $\int_a^b \frac{1}{t^5} dt = \dots$

$$\blacksquare \quad \left[-\frac{1}{4t^4} \right]_a^b \qquad \qquad \left[\frac{1}{5t^4} \ln(t^5) \right]_a^b \qquad \qquad \left[-\frac{5}{t^4} \right]_a^b \qquad \qquad \left[\frac{1}{5} \ln(t^5) \right]_a^b$$