# 第4章 溶液中的化学平衡

# 第一节 电离平衡与酸碱

# 一 基本概念与质子平衡式书写

# 0.基本概念

# ① 酸碱质子理论

酸 能够给出质子( $\mathrm{H}^+$ )的物质 酸  $\mathrm{HA} \to \mathrm{H}^+ +$  共轭碱  $\mathrm{A}^-$ 

碱 能够接受质子(H<sup>+</sup>)的物质

碱 B<sup>-</sup> + H<sup>+</sup> → 共轭酸 HB

两性物质 既能给出质子,又能接受质子的物质

- · 酸碱反应的实质是质子转移  $HA + B^- \rightarrow A^- + HB^-$  强酸强碱  $\rightarrow$  弱酸弱碱
- · 酸越强, 其共轭碱越弱; 碱越强, 其共轭酸越弱

### ② 水的解离

· 水解离生成水合氢离子和氢氧根

$$\mathbf{H}_2\mathbf{O} + \mathbf{H}_2\mathbf{O} \rightleftharpoons \mathbf{H}_3\mathbf{O}^+ + \mathbf{O}\mathbf{H}^- \qquad K_{\mathbf{w}}^{\odot} = c(\mathbf{H}_3\mathbf{O}^+) \cdot c(\mathbf{O}\mathbf{H}^-)$$

**水离子积**  $K_{**}^{\circ}$  纯水解离反应的平衡常数, 25℃下为  $10^{-14}$ 

· 结论: 25°C的水溶液中必有  $c(H_2O^+)c(OH^-) = 10^{-14}$ 

#### ③ 弱电解质的解离

· 弱电解质在水中的解离可以视为**与水发生酸碱反应**, 其平衡常数大小代表酸碱性强弱

$$HA + H_2O \rightarrow H_3O^+ + A^- \quad K_a^{\odot}$$
  
 $H_2O + B^- \rightarrow OH^- + HB \quad K_b^{\odot}$ 

解离常数 弱酸解离成对应离子和  $H^+$ 的平衡常数  $K_{\circ}^{\circ}$ 

弱碱解离成对应离子和  $OH^-$ 的平衡常数  $K_{\mathfrak{b}}^{\circ}$ 

· 共轭酸碱对  $K_a^{\circ}K_b^{\circ}=K_b^{\circ}$  · 多元弱酸弱碱在水中逐步解离(一个反应解离出一个  $H^+$ )

# 1. 质子平衡式书写

质子平衡式 描述酸碱反应中质子迁移守恒的式子

- ① 写出假设不发生任何质子迁移时、溶液内含有的会得失质子的离子和溶剂、作为参照物
- ② 写出从参照物出发得失质子生成产物的反应式
- ③ 用这些产物的浓度表示出得失质子的浓度

若参照物获得/失去n个质子生成 A,则这部分获得/失去的质子量为 $n \cdot c(A)$ 

④ 得到"得质子浓度 = 失质子浓度"的等式,即质子平衡式

- 例 1 写出 Na<sub>2</sub>HPO<sub>4</sub>在水中解离的质子平衡式
- 解 假设只有盐全部电离,不发生任何质子迁移,则体系中有  $\mathrm{Na^+}$  、 $\mathrm{HPO_4^{2-}}$  和  $\mathrm{H_2O}$  其中  $\mathrm{HPO_4^{2-}}$  和  $\mathrm{H_2O}$  会发生质子迁移,可能的情况如下:

$$\begin{split} & HPO_{4}^{2-} + H_{2}O \rightarrow H_{2}PO_{4}^{-} + OH^{-} \\ & HPO_{4}^{2-} + 2H_{2}O \rightarrow H_{3}PO_{4} + 2OH^{-} \\ & HPO_{4}^{2-} + H_{2}O \rightarrow H_{3}O^{+} + PO_{4}^{3-} \\ & H_{2}O + H_{2}O \rightarrow H_{3}O^{+} + OH^{-} \end{split}$$

以上就是质子的所有传递情况, 现在来分析

- 获得了质子的物质有H<sub>2</sub>PO<sub>4</sub><sup>-</sup>、H<sub>3</sub>PO<sub>4</sub>、H<sub>3</sub>O<sup>+</sup>
   其中H<sub>2</sub>PO<sub>4</sub><sup>-</sup>、H<sub>3</sub>O<sup>+</sup>获得1个质子,H<sub>3</sub>PO<sub>4</sub>获得2个,因此获得的H<sup>+</sup>浓度应该为c(H<sub>3</sub>O<sup>+</sup>)+c(H<sub>2</sub>PO<sub>4</sub><sup>-</sup>)+2c(H<sub>3</sub>PO<sub>4</sub>)
- ・给出了质子的物质有 $OH^-$ 和 $PO_4^{3-}$ ,均获得1个质子,因此给出的 $H^+$ 浓度应该为 $c(OH^-)+c(PO_4^{3-})$
- ・ 因此质子平衡式为 $c(H_3O^+)+c(H_2PO_4^-)+2c(H_3PO_4^-)=c(OH^-)+c(PO_4^{3-})$

## 二溶液酸碱度、解离度计算

#### 1.解离度

#### 解离度

α= 已解离分子数 原有分子数

- · 与解离常数以及弱电解质浓度有关,浓度越稀,解离度越大
- 2. 溶液酸度计算
  - · 计算一元弱酸/弱碱及其盐的混合物(即同离子效应)的 pH

同离子效应 弱电解质溶液中加入与弱电解质含有相同离子的强电解质,使弱电解质解离度降低

$$pH = -\lg c(H^+)$$

方法:

- ① 写出弱酸或弱碱的电离方程式,列三段式,设电离出的  $H^+$ 为 x
- ② 由于电离度往往很低, $x\to 0$ ,因此所有的"常数  $\pm x$ "都可以略去 x
- ③ 列出平衡常数表达式,求解出 x,进而计算 pH
- **例 2** 在 0.10 mol·L<sup>-1</sup> NH₃·H₂O 溶液中加入固体 NH₄Cl, 使其浓度为 0.10 mol·L<sup>-1</sup>, 计算溶液 pH 及 NH₃·H₂O 的解离度
- 解 设 $c(OH^-) = x \text{ mol} \cdot L^{-1}$ ,列三段式

$$NH_3 \cdot H_2O \implies NH_4^+ + OH^-$$

起始浓度/mol·L<sup>-1</sup> 0.10 0.10 0

电离量 $/\text{mol} \cdot \text{L}^{-1}$  -x x x

平衡浓度/ $mol \cdot L^{-1}$  0.10 - x 0.10 + x x

则 
$$K_{\rm b}^{\odot} = \frac{x(0.10+x)}{0.10-x} = 1.8 \times 10^{-5}$$

- $c_0/K_b^{\odot} = 0.100/(1.8 \times 10^{-5}) > 500$
- ∴  $0.10 x \approx 0.10$  且  $0.10 + x \approx 0.10$

$$\therefore \frac{x(0.10+x)}{0.10-x} \approx x = 1.8 \times 10^{-5} \quad \text{EV} \quad c(OH) = 1.8 \times 10^{-5} \text{ mol} \cdot L^{-1}$$

$$\therefore$$
 pH =  $14 + \lg c(OH^{-}) = 14 - 4.74 = 9.26$ 

$$\alpha(\text{NH}_3 \cdot \text{H}_2\text{O}) = \frac{1.8 \times 10^{-5}}{0.10} \times 100\% = 1.8 \times 10^{-2}\%$$

# 第二节 沉淀溶解平衡

# 一 溶度积与溶解度

#### 1. 溶度积

· 难溶电解质 A,B, 实际上会有部分溶解, 当溶液达到饱和时, 并形成动态平衡:

$$A_n B_m(s) \rightleftharpoons n A^{m+}(aq) + m B^{n-}(aq)$$

该反应的平衡常数称为溶度积常数

#### 溶度积常数

$$K_{sn}^{\ominus} = [\mathbf{A}^{m+}]^n [\mathbf{B}^{n-}]^m$$

#### 2. 溶度积与溶解度的换算

溶解度 s 宏观上溶解于溶液中的难溶电解质的量

- · 用溶解度s(单位: mol/L)表示出溶液中相关离子的浓度
- · 列出溶度积表达式, 求解

# 3. 溶度积规则

离子积 $Q_i$  任一时刻的 $[A^{m+}]^n[B^{n-}]^m$ 

#### 溶度积规则

· 沉淀溶解平衡同样有"同离子效应"和"盐效应"

- **例 1** 已知 25°C下  $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$  的  $\Delta_{r}G_{m}^{\circ} = -55.71 \text{kJ} \cdot \text{mol}^{-1}$ , 求:
  - (1) AgCl 的溶度积; (2) AgCl 在水中的溶解度; (3) AgCl 在 0.01mol/L NaCl 溶液中的溶解度;
- (1) 由  $RT \ln K_{sp}^{\odot} = -(-\Delta_r G_m^{\odot})$  , 计算得  $K_{sp}^{\odot} = 1.7 \times 10^{-10}$ 解
  - (2) 设溶解度为s,则有

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

平衡浓度

因此  $s^2 = K_{sp}^{\odot} = 1.7 \times 10^{-10}$ , 解得溶解度  $s = 1.34 \times 10^{-5} \, \text{mol} \cdot \text{L}^{-1}$ 

(3) 同样设溶解度为s, 此时

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

平衡浓度

$$s + 0.01$$

由于  $0.01/K_{sp}^{\odot} > 500$ ,因此 s + 0.01 近似为 0.01

因此  $0.01s = K_{sp}^{\circ} = 1.7 \times 10^{-10}$ , 解得溶解度  $s = 1.7 \times 10^{-9} \, \text{mol} \cdot L^{-1}$ 

# 第三节 配位解离平衡

稳定/解离平衡常数

**稳定常数**  $K_t^{\circ}$  配离子形成反应 "形成体 + 配体 → 配离子" 的平衡常数

解离常数  $K_a^{\circ}$  配离子解离反应"配离子 → 形成体 + 配体"的平衡常数

两者间关系为 $K_f^{\odot} \cdot K_d^{\odot} = 1$ 

- 例 4 在 0.10 mol·L<sup>-1</sup>的[Ag(NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup>配离子溶液中加入 KBr 溶液使 KBr 浓度为 0.10 mol·L<sup>-1</sup>,问是否 有 AgBr 沉淀生成? 已知  $K_f^{\circ}$ [Ag(NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup> = 1.12×10<sup>7</sup>,  $K_{sp}^{\circ}$ (AgBr) = 5.0×10<sup>-13</sup>。
- 设解离生成 $c(Ag^+)x \text{ mol} \cdot L^{-1}$ , 则 解

$$Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$$

平衡浓度 x 2x 0.1-x

$$0.1 - x$$

因此  $K_f^{\circ}[Ag(NH_3)_2]^+ = \frac{x \cdot 2x}{0.1 - x} = 1.12 \times 10^7$ ,由 $K_f^{\circ}$ 极大,因此0.1 - x近似为0.1

解得  $x = 1.3 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$ 

因此沉淀反应的离子积 $Q_i = 1.3 \times 10^{-3} \times 0.10 = 1.3 \times 10^{-4} > K_{sp}^{\odot}(AgBr)$ 

: 有沉淀产生

# 第四节 氧化还原平衡

# 一 氧化还原反应与原电池的相关概念

### 1. 氧化还原反应

氧化数 元素某一原子的表观电荷数,就是中学所说的"化合价"

氧化还原反应 元素反应前后氧化数发生变化的反应,必定伴随电子的得失

**氧化剂** 反应前后氧化数**降低**(发生还原反应,获得电子,形成**还原产物**)的物质

还原剂 反应前后氧化数升高(发生氧化反应,失去电子,形成氧化产物)的物质

氧化还原电对 氧化剂及其还原产物/还原剂及其氧化产物,用如下符号表示:

[氧化型] / [还原型]

- · 特点: ① 反应的能量可以通过原电池将化学能转化成电能
  - ② 可以拆分成氧化剂、还原剂各自的氧化、还原半反应
  - → 任意一个氧化半反应与还原半反应组合成为氧化还原反应

#### 2. 原电池

原电池 如图所示装置,由正、负极组成



- · 还原剂在**负极**上发生**氧化反应**,给出电子,电子经由导线到达正极
- · 氧化剂在正极上发生还原反应, 获得电子

正负极位于不同的溶液, 通过导电的盐桥连接使其形成回路, 从而电子源源不断流动



电极反应 两个电极上发生的氧化/还原半反应,属于每个氧化还原电对[氧化型]/[还原型]:

「氧化型] + 
$$ne^- \rightarrow$$
 「还原型]

正负极的电极反应相减消去电子后,得到电池反应

注意: 若其它没有发生氧化还原的物质参与反应, 也要写进去

# 3. 电池表示、电池反应以及电极反应之间的转换

- · 找出两组氧化/还原电对, 确定核心元素的氧化数
- · 写电极反应 写出  $[氧化型] + ne^- \rightarrow [还原型]$  的形式
  - → 根据电子守恒 (等于总的氧化数变化数) 调整电子数量
  - → 根据原子守恒补充已知的相关物质并配平
- · 写电池反应 将两个电极反应相减,消去电子即可
- · **写电池符号** 注意将不同相用竖线分开,注意惰性电极、并标出浓度、分压
- **例 1** 已知原电池(-) Pt(s)|H<sub>2</sub>(g, 100kPa)|HCl(0.1mol/L)|AgCl(s)|Ag(s) (+), 写出电极反应和电池反应
- 解 负极的相关物质为  $H_2$ (氧化数 0)和 HCl(H 氧化数+1),发生氧化反应 正极的相关物质为 AgCl(Ag 氧化数+1),Ag(氧化数 0),发生还原反应 因此电极反应

(-) 
$$2HCl + 2e^{-} \rightarrow H_2 + 2Cl^{-}$$
  
(+)  $AgCl + e^{-} \rightarrow Ag + Cl^{-}$ 

2(+)-(-), 就得到了电池反应

$$2AgCl + H_2 \rightarrow 2Ag + 2HCl$$

#### 二 电极电势相关计算

0. 电动势、电极电势与反应吉布斯自由能变之间的关系

电动势 1C 电子从原电池的负极经外电路移动到正极所做的电功,与反应的 G 变有关标准电动势 温度 T ,所有溶质浓度  $c^{\circ}$  ,气体分压  $p^{\circ}$  时,电池的电动势

**电极电势** 电极具有的相对电势值,与对应电极反应的 G 变有关

**标准电极电势** 温度 T ,所有溶质浓度  $c^{\circ}$  ,气体分压  $p^{\circ}$  时,电极的电势

#### 标准电极电势测定

规定标准氢电极的标准电极电势为 0

"标准氢电极作负极,待测电极作正极"的电池标准电动势作为待测电极的标准电极电势

### ① 电动势与 △G 的关系

#### 电动势与电池反应 G 变的关系

$$\Delta_{\rm r}G_{\rm m}=-nFE \qquad \Delta_{\rm r}G_{\rm m}^{\odot}=-nFE^{\odot}$$

n: 发生 1mol 反应所转移的电子摩尔数 F: 法拉第常数, 96500C/mol

# ② 电极电势与 $\Delta G$ 的关系

# 电极电势与电极反应 G 变的关系

$$\Delta_{\rm r} G_{\rm m} = -nFE_{(\pm)} \quad \ \Delta_{\rm r} G_{\rm m}^{\odot} = -nFE_{(\pm)}^{\odot}$$

n: 发生 1mol 反应所转移的电子摩尔数 F: 法拉第常数, 96500C/mol

# ③ 电极电势与电动势的关系

#### 电极电势与电动势的关系

$$E = E_{\scriptscriptstyle (+)} - E_{\scriptscriptstyle (-)} \quad \ E^{\scriptscriptstyle \bigcirc} = E_{\scriptscriptstyle (+)}^{\scriptscriptstyle \bigcirc} - E_{\scriptscriptstyle (-)}^{\scriptscriptstyle \bigcirc}$$

· 电动势E > 0,反应正向进行;反之则反向进行

## 注意事项

- · 因为电动势和电极电势实质上是描述1库仑电子所获的能量, 因此是强度性质, 不能直接加和
- ④ 电动势与标准电动势的关系/电极电势与标准电极电势的关系

## 能斯特方程

$$E = E^{\odot} - \frac{RT}{nF} \ln Q$$

· 对应反应的浓度商(气体记分压, 液固不计数)

若是电动势,则是电池反应的浓度商;若是电极电势,则是电极反应的浓度商

#### 1. 标准电极电势计算

# 情景: 所求电极反应由其它反应叠加得到, 其他反应的电极电势或平衡常数已知

- ① 列出每个参数及其对应的反应
- ② 根据 $\Delta_r G_m^{\circ} = -nFE^{\circ}$ 和 $\Delta_r G_m^{\circ} = -RT \ln K^{\circ}$ 等,将所有的参数转换成 $\Delta_r G_m^{\circ}$
- ③ 根据盖斯定律得到所求电极反应的  $\Delta_{\cdot}G_{\cdot\cdot}^{\circ}$
- ④ 最后根据  $\Delta_{\rm r}G_{\rm m}^{\circ}=-nFE^{\circ}$  将  $\Delta_{\rm r}G_{\rm m}^{\circ}$  转换为  $E^{\circ}$  !切忌直接由盖斯定律叠加电极电势,必错!

- **例 2** 已知 298.15 K 时  $E^{\odot}(\text{Co}^{3+}/\text{Co}^{2+}) = 1.81\text{V}$  ,  $E^{\odot}(\text{Co}^{2+}/\text{Co}) = -0.28\text{V}$  。计算 298.15K 时  $E^{\odot}(\text{Co}^{3+}/\text{Co})$
- $\mathbf{p}$  列出所有相关的电极反应,并表示出所有  $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\circ}$

① 
$$\text{Co}^{3+} + \text{e}^{-} \rightarrow \text{Co}^{2+} \quad E^{\odot}(\text{Co}^{3+}/\text{Co}^{2+}) = 1.81\text{V} \qquad \Delta_{r}G_{m}^{\odot}(1) = -1 \cdot F \cdot E_{1}^{\odot}$$

② 
$$\text{Co}^{2+} + 2\text{e}^{-} \rightarrow \text{Co} \quad E^{\odot}(\text{Co}^{2+}/\text{Co}) = -0.28\text{V} \quad \Delta_{r}G_{m}^{\odot}(2) = -2 \cdot F \cdot E_{2}^{\odot}$$

③ 
$$\text{Co}^{3+} + 3\text{e}^{-} \rightarrow \text{Co}$$
  $E^{\odot}(\text{Co}^{3+}/\text{Co})$   $\Delta_{\text{r}}G_{\text{m}}^{\odot}(3) = -3 \cdot F \cdot E_{3}^{\odot}$ 

因此由③ = ① + ②: 
$$\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\ominus}(3) = \Delta_{\mathbf{r}}G_{\mathbf{m}}^{\ominus}(1) + \Delta_{\mathbf{r}}G_{\mathbf{m}}^{\ominus}(2)$$

因此有 $-1 \cdot F \cdot E_1^{\circ} - 2 \cdot F \cdot E_2^{\circ} = -3 \cdot F \cdot E_3^{\circ}$ ,整理得到:

$$E_3^{\circ} = \frac{E_1^{\circ} + 2E_2^{\circ}}{3} = 0.41 \text{V}$$

显然,如果只看③=①+②然后认为 $E_3^{\circ} = E_1^{\circ} + E_2^{\circ}$ ,那就寄了

**例 3** 已知 298.15 K 时  $E^{\circ}$ (Cu<sup>+</sup>/Cu) = 0.52V ,  $K_{sp}^{\circ}$ (CuCl) = 1.2×10<sup>-6</sup> , 计算 298.15K 时  $E^{\circ}$ (CuCl/Cu)

### 解 以上参数对应的反应如下:

① 
$$Cu^+ + e^- \rightarrow Cu$$
  $E^{\odot}(Cu^+/Cu) = 0.52V$   $\Delta_r G_m^{\odot} = -FE^{\odot}(Cu^+/Cu)$ 

③ CuCl + e<sup>-</sup> → Cu + Cl<sup>-</sup> 
$$E^{\circ}$$
(CuCl/Cu)  $\Delta_{\rm r}G_{\rm m}^{\circ} = -FE^{\circ}$ (CuCl/Cu)

$$\pm (3) = (1) + (2): -FE^{\circ}(CuCl/Cu) = -RT \ln K_{sp}^{\circ}(CuCl) - FE^{\circ}(Cu^{+}/Cu)$$

$$\therefore E^{\odot}(\text{CuCl/Cu}) = \frac{RT}{F} \ln K_{\text{sp}}^{\odot}(\text{CuCl}) + E^{\odot}(\text{Cu}^{+}/\text{Cu}) = 0.17\text{V}$$

**例 4** 已知  $E^{\odot}(\text{Co}^{3+}/\text{Co}^{2+}) = 1.92\text{V}$  ,  $K_{\text{f}}^{\odot}([\text{Co}(\text{NH}_3)_6]^{3+}) = 1.58 \times 10^{35}$  ,  $K_{\text{f}}^{\odot}([\text{Co}(\text{NH}_3)_6]^{2+}) = 1.29 \times 10^5$  , 计算  $E^{\odot}(\text{Co}(\text{NH}_3)_6]^{3+}/\text{Co}(\text{NH}_3)_6]^{2+}$ 

### 解 以上参数对应的反应如下:

① 
$$Co^{3+} + e^{-} \rightarrow Co^{2+}$$
  $E^{\odot}(Co^{3+}/Co^{2+}) = 1.92V$   $\Delta_{r}G_{m}^{\odot} = -FE^{\odot}(Co^{3+}/Co^{2+})$ 

② 
$$\text{Co}^{3+} + 6\text{NH}_3 \iff [\text{Co}(\text{NH}_3)_6]^{3+} \qquad K_f^{\odot}([\text{Co}(\text{NH}_3)_6]^{3+}) = 1.58 \times 10^{35}$$

$$\Delta_{\mathrm{r}}G_{\mathrm{m}}^{\odot} = -RT \ln K_{\mathrm{f}}^{\odot}([\mathrm{Co(NH}_{\mathrm{3}})_{\mathrm{6}}]^{\mathrm{3+}})$$

$$\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\odot} = -RT \ln K_{\mathbf{f}}^{\odot}([\operatorname{Co}(\mathrm{NH}_{3})_{6}]^{2+})$$

$$\Delta_{\rm r} G_{\rm m}^{\odot} = -FE^{\odot}({\rm Co(NH_3)_6}]^{3+} / {\rm Co(NH_3)_6}]^{2+})$$

$$\pm 4 = 1 - 2 + 3$$
:

 $-FE^{\odot}(\text{Co(NH}_3)_6]^{3+} / \text{Co(NH}_3)_6]^{2+}) = -FE^{\odot}(\text{Co}^{3+}/\text{Co}^{2+}) + RT \ln K_{\text{f}}^{\odot}([\text{Co(NH}_3)_6]^{3+}) - RT \ln K_{\text{f}}^{\odot}([\text{Co(NH}_3)_6]^{2+})$  从而解得

$$: E^{\odot}(\text{Co(NH}_3)_6]^{3+} / \text{Co(NH}_3)_6]^{2+}) = E^{\odot}(\text{Co}^{3+}/\text{Co}^{2+}) - \frac{RT}{F} \ln \frac{K_f^{\odot}([\text{Co(NH}_3)_6]^{3+})}{K_f^{\odot}([\text{Co(NH}_3)_6]^{2+})} = 0.14\text{V}$$

### 2. 标准电动势计算

- ·一般通过两个电极电势相减得到,或通过反应的 $\Delta_{\cdot}G_{\cdot}^{\circ}$ 得到
- **例 5** 根据 298.15K 时  $E^{\odot}(AgCl/Ag) = 0.22V$  以及例 2 所得,计算反应  $Co^{3+} + 3Cl^{-} + 3Ag \rightarrow 3AgCl + Co$  的标准电动势。
- 解 该反应分解为两个电极反应:

(-) AgCl + 
$$e^- \rightarrow Ag + Cl^- E^{\odot}(AgCl/Ag) = 0.22V$$

(+) 
$$\text{Co}^{3+} + 3\text{e}^{-} \rightarrow \text{Co}$$
  $E^{\odot}(\text{Co}^{3+}/\text{Co}) = 0.41\text{V}$ 

因此电池标准电动势为

$$E^{\odot} = E^{\odot}_{(+)} - E^{\odot}_{(-)} = 0.41 - 0.22 = 0.19V$$

同样,千万不要看到电池反应= (+) -3 (-) 就以为 $E^{\circ} = E_{(+)}^{\circ} - 3E_{(-)}^{\circ}$ 

# 3. 电极电势与电动势计算

- · 一般先得到标准电动势/标准电极电势后, 由能斯特方程代入已知条件得到
- **例 6** 保持标准氢电极中  $H_2$  的压强不变,将标准浓度的 HCl 换成 0.1 mol/L 的 HAc。已知 HAc 的  $K_{\circ}^{\circ}=1.8\times10^{-5}$ ,求此时氢电极的电极电势。
- 解 由能斯特方程, 电极反应  $2H^{\dagger} + 2e^{-} \rightarrow H_{2}$

$$E(H^{+}/H_{2}) = E^{\odot}(H^{+}/H_{2}) - \frac{0.0592V}{2} \lg \frac{p(H_{2})/p^{\odot}}{c^{2}(H^{+})}$$

由已知条件,  $E^{\odot}(\mathrm{H}^+/\mathrm{H}_2)=0, p(\mathrm{H}_2)=p^{\odot}$ , 还需要确定  $\mathrm{H}^+$ 的浓度 由  $\mathrm{HAc}$  电离平衡:

$$HAc \rightleftharpoons H^{+} + Ac^{-}$$

平衡浓度 
$$0.1-x \approx 0.1$$
  $x$   $x$ 

则 
$$\frac{x^2}{0.1} = K_a^{\circ} = 1.8 \times 10^{-5}$$
,解得  $c^2(H^+) = 1.8 \times 10^{-6}$ 

因此 
$$E(H^+/H_2) = 0 - \frac{0.0592V}{2} lg \frac{1}{1.8 \times 10^{-6}} = -0.17V$$