Лабораторная работа №5

Изучение потерь энергии при транспортировании жидкостей по трубопроводу

Цель работы: экспериментальное определение потерь энергии на транспортирование жидкостей по сложному трубопроводу

5.1 Общие сведения

Транспортирование текучих сред (жидкостей и газов) по трубопроводам осуществляется с помощью нагнетательных устройств (насосов, вентиляторов и т.п.). Для того, чтобы перемещать текучую среду, нагнетательное устройство должно затрачивать некоторую энергию. Оказывается, эта энергия зависит не только от физических свойств текучей среды, но и от характеристик трубопроводной системы. Эксплуатационные расходы энергии на транспортирование можно существенно сократить за счёт выбора оптимальной геометрии трубопроводной системы, что может быть реализовано только после изучения основных закономерностей течения жидкостей и газов по трубопроводам.

Поток жидкости либо газа можно характеризовать объёмным расходом Q (M^3 /с) и средней по сечению трубы скоростью V (M/с). Расход является одной из основных характеристик потоков жидкости либо газа. Расходом называется количество жидкости или газа, которое перемещается через поперечное сечение трубопровода в единицу времени. Расход и скорость связаны между собой соотношением

$$Q = V \cdot S$$
,

где S – площадь поперечного сечения трубы, M^2 .

При движении реальных жидкостей и газов часть механической энергии движения необратимо превращается в тепловую. Эта часть энергии называется потерей энергии ΔE . Потери энергии обусловлены существованием сил вязкого трения в жидкостях и газах, т.е. вязкости. С потерями энергии связаны потери давления

$$\Delta p_{\text{пот}} = \rho \cdot \Delta E$$
, Πa

и потери напора

$$\Delta h_{\text{not}} = \frac{\Delta p_{\text{not}}}{\rho \cdot g} = \frac{\Delta E}{g}, M$$

где р – плотность жидкости либо газа;

g – ускорение свободного падения.

Существование сил вязкости приводит к затратам энергии на перемещение текучих сред. Часть мощности, затрачиваемая нагнетательным устройством на транспортирование по трубопроводу текучих сред с расходом Q, определяется выражением

$$N = \Delta p_{\text{not}} \cdot Q$$
, BT

Гидравлические потери давления (напора) обычно делят на два вида. Первый вид представляет собой потери давления на трение Δp_{Tp} при стабилизированном движении жидкости в длинных трубах. Эти потери равномерно распределяются по всей длине трубы. Потери второго вида (Δp_{M}) сосредоточены на сравнительно коротких участках трубопроводов и вызываются местными изменениями конфигурации канала. Эти сопротивления называются местными. Примерами местных сопротивлений могут служить участки резкого расширения и сужения трубопровода, места слияния и разделения потоков, различного рода трубопроводная аппаратура (вентили, клапаны, задвижки, дроссели и т.п.). Характерной особенностью движения жидкости через местные сопротивления является образование вихрей в потоке, что вызывает значительные потери энергии (давления, напора).

Таким образом, полные потери давления и напора определяются выражениями

$$\begin{split} \Delta p_{\text{\tiny HOT}} &= \Delta p_{\text{\tiny TP}} + \Delta p_{\text{\tiny M}} \,, \\ \Delta h_{\text{\tiny HOT}} &= \Delta h_{\text{\tiny TD}} + \Delta h_{\text{\tiny M}} \,. \end{split}$$

Потери напора по длине для случая установившегося движения жидкости по трубопроводу круглого сечения определяются по формуле Дарси-Вейсбаха

$$\Delta h_{\rm rp} = \lambda \cdot \frac{l}{d} \cdot \frac{v^2}{2 \cdot g}, M$$

где λ — коэффициент гидравлического трения (коэффициент потерь напора по длине);

l — длина рассматриваемого участка трубы, м;

d – диаметр трубопровода, м;

 υ – средняя скорость движения жидкости, м/с.

Из формулы видно, что величина потерь напора по длине возрастает с увеличением скорости потока, длины трубы и уменьшается с увеличением диаметра трубопровода.

Местные потери определяются по формуле

$$\Delta h_{\text{m.c}} = \zeta \cdot \frac{v^2}{2 \cdot g}, \text{ M},$$

где ζ – коэффициент местного сопротивления.

Коэффициент гидравлического трения λ зависит от режима течения жидкости и шероховатости трубы. Эта зависимость называется законом сопротивления.

Коэффициент местного сопротивления ζ также зависит от режима течения и от вида и конструктивного исполнения местного сопротивления.

Сравнительный анализ различных гидравлических сопротивлений показывает, что потери энергии значительно возрастают при резком изменении диаметра трубы, при резких поворотах и т.п. Значения коэффициентов сопротивления, как правило, определяются опытным путём и в обобщённом виде содержатся в справочниках в виде эмпирических формул, таблиц, графиков. В приложении к работе приведены некоторые данные по гидравлическим сопротивлениям.

Основные методы снижения потерь энергии при транспортировании жидкостей и газов по сложным трубопроводам: использование труб с гладкой внутренней поверхностью; обеспечение плавных поворотов потока; устройство более плавного изменения поперечного сечения потока жидкости; устройство плавных входов и выходов из труб; разогрев при перекачивании высоковязких жидкостей; введение полимерных добавок в поток жидкости.

5.2 Описание опытной установки

Опытная установка (рис. 5.1) состоит из резервуара 12, заполненного водой, центробежного насоса 13 с электродвигателем, расходомерного устройства (счетчика жидкости) 11, всасывающего 3 и напорного трубопроводов 4.

Рисунок 5.1 - Схема опытной установки

Напорная труба 4 после вентиля 8 переходит в трубопровод переменного сечения 5, на характерных участках которого установлены пьезометры 1, сливной трубопровод с вентилем 6. Вакуумметр 9 и манометр 10 служат для измерения давления соответственно на входе и на выходе из насоса. Расходомер 11 служит для измерения количества жидкости, проходящего через поперечное сечение трубопровода.

Вентиль 6 перекрывает подачу жидкости на сливе трубопровода 5 переменного сечения. Вентиль 7 предназначен для регулирования расхода жидкости. Вентиль 8 перекрывает подачу жидкости в трубопровод переменного сечения.

В данной работе для измерения давления служат вакуумметр 9, манометр 10 и пьезометры 1. Пьезометры 1 сообщаются верхним концом с атмо-

сферой, а нижним концом – с трубопроводом переменного сечения 5. Пьезометры служат для определения избыточного давления в трубопроводе переменного сечения 5, вакуумметр – во всасывающем трубопроводе 3, манометр – в напорном трубопроводе 4.

5.3 Порядок проведения работы

- Измерить расстояние по горизонтали l_0 между точкой подклю-1) чения манометра 10 и центром сечения 1 на трубопроводе 5.
 - Полностью открыть вентили 6 и 8, вентиль 7 закрыть. 2)
- Включить в работу насос 13, подающий воду из водосборного 3) бака 12 в систему.
- Установить уровень жидкости вентилем 8 в пьезометре, соот-4) ветствующем сечению 1 на максимальном уровне (примерно 1м).
- Произвести измерения давления в трубопроводах 4 и 5 по манометру 10 и пьезометрам в сечениях 1...19.
- При помощи расходомерного устройства 11 определить расход для каждого опыта.

5.4 Обработка опытных данных

1) Вычислить расход жидкости по формуле

$$Q = \frac{V}{t} = \underline{\qquad}, \text{ cm}^3/\text{c}$$

где V- объем жидкости прошедший через расходомерное устройство (1 $\pi = 1000 \text{ cm}^3$);

t — время за которое жидкость прошла через расходомерное устройство.

Определить среднее значение расхода

$$Q_{\rm cp} = \frac{Q_1 + Q_2 + Q_3}{3} =$$
_______, cm³/c.

2) Вычислить для каждого поперечного сечения площадь

$$S = \frac{\pi \cdot d^2}{4} = \underline{\qquad} cm^2,$$

d – внутренний диаметр сечения. где

3) Вычислить для каждого сечения значения средних скоростей

$$\upsilon = \frac{Q_{\rm cp}}{S} = \underline{\qquad} c_{\rm M/c}.$$

4) Вычислить потери напора по формуле
$$\Delta h_{\text{пот}} = h_{i+1} - h_i = \underline{\hspace{2cm}} \text{ см.}$$

5) Вычислить коэффициент гидравлического трения

$$\lambda = \frac{2 \cdot g \cdot \Delta h_{\text{mot}} \cdot d}{l \cdot v^2} = \underline{\hspace{1cm}}.$$

где g – ускорение свободного падения, g=981см/ c^2 ;

- l длина трубопровода между сечениями, где определяется потери на трение, см.
- 6) Вычислить для каждого местного сопротивления значения коэффициента местных потерь по опыту

$$\zeta_{\text{off}} = \frac{2 \cdot g \cdot \Delta h_{\text{fiot}}}{v^2} = \underline{\qquad}.$$

Определить коэффициенты местных сопротивлений расчетным путем

$$\zeta_{\text{B.p.pacy.}} = \left(1 - \frac{S_1}{S_2}\right)^2 = \underline{\qquad}, \ \zeta_{\text{B.c.pacy.}} = 0.5 \cdot \left(1 - \frac{S_2}{S_1}\right)^2 = \underline{\qquad},$$

При плавном повороте на 90° для приблизительных расчетов можно принимать коэффициент сопротивления $\zeta_{\text{к.расч.}} = 0,\!15$.

7) Определить мощность, затрачиваемую на преодоление каждого из гидравлических сопротивлений по формуле (расчет производить в системе SI)

$$N = \Delta h_{\text{mot}} \cdot Q \cdot \rho \cdot g =$$
______BT.

Провести сравнительный анализ потерь энергии на каждом из участков сложного трубопровода. Обратить внимание на влияние скорости течения на потери энергии.

Таблица 5.1 - Результаты измерений расхода жидкости

<u>№</u> оп.	№ п.п.	Объем жидкости	Объем жидкости	Время за кото-	Расход жидко-
		прошедший через	прошедший через	рое жидкость	сти прошедший
		расходомерное	расходомерное	прошла через	через расходо-
		устройство	устройство	расходомерное	мерное устрой-
				устройство	ство
_	_	Л	cm ³	c	cm ³ /c
	1				
	2				
1	3				
	Сред	цний расход жидкос			
	1				
	2				
2	3				
	Сред	цний расход жидкос			
	1				
3	2				
	3				
	Сред	цний расход жидкос			

Таблица 5.2 - Результаты измерений и расчётов

№ п.п.	Диаметр трубо- провода d	Расстоя- ние между сечен. <i>l</i>	Площадь по- перечного се- чения трубо- провода S	Потери напора $\Delta h_{\scriptscriptstyle{\PiOT}}$	Средняя скорость О	Коэф. гидравличе- ского трения λ	Коэф. месного сопротив- ления ζ	Мощность <i>N</i>
	СМ	СМ	cm ²	СМ	см/с	_	_	Вт
Пьезометр № 1		_		_				
Пьезометр № 2								
Пьезометр № 3								
Пьезометр № 4								
Пьезометр № 5								
Пьезометр № 6								
Пьезометр № 7								
Пьезометр № 8								
Пьезометр № 9								
Пьезометр № 10								
Пьезометр № 11								
Пьезометр № 12								
Пьезометр № 13								
Пьезометр № 14								
Пьезометр № 15								
Пьезометр № 16								
Пьезометр № 17								
Пьезометр № 18								
Пьезометр № 19								