```
In [1]:
         from scipy.io import arff
         import pandas as pd
         import math
         import matplotlib.pyplot as plt
         import operator
         col=["c_type", "lifestyle", "vacation", "credit", "salary", "property_value", "cl
In [2]:
In [3]:
         train_data=pd.read_csv("trainProdSelection.arff", delimiter="\t")
         test data=pd.read csv("testProdSelection.arff",delimiter="\t")
         train data.columns=col
In [4]:
In [5]:
         train_data.head()
         train_data.shape
Out[5]: (185, 7)
         test data.columns=col
In [6]:
         test data.head()
Out[6]:
                           lifestyle vacation credit
                                                          property_value
              c_type
                                                    salary
                                                                         class
          0
              student
                     spend>>saving
                                        29
                                                  16.1900
                                                                  2.4839
                                                                           C1
                                               10
              student
                     spend<<saving
                                        28
                                               60
                                                  15.4600
                                                                  1.1885
                                                                           C1
             engineer
                                        15
                                                  21.2600
                                                                  1.4379
                                                                           C1
          2
                      spend>saving
          3
             librarian
                      spend<saving
                                         2
                                                  19.7207
                                                                  0.6913
                                                                           C1
                                         7
                                                                  1.4728
                                                                           C1
             librarian
                      spend>saving
                                                  12.7098
         train_data.describe()
In [7]:
Out[7]:
                   vacation
                                credit
                                           salary property_value
```

count	185.000000	185.000000	185.000000	185.000000
mean	27.691892	62.783784	20.702852	4.146650
std	18.572630	69.120537	4.244655	3.775707
min	1.000000	3.000000	8.507600	0.008000
25%	9.000000	15.000000	18.594400	1.644700
50%	26.000000	45.000000	20.390000	2.897200

22.790000

31.750000

4.838800

17.873700

72.000000

64.000000 347.000000

48.000000

75%

max

In [8]: test_data.head()

Out[8]:

	c_type	lifestyle	vacation	credit	salary	property_value	class
0	student	spend>>saving	29	10	16.1900	2.4839	C1
1	student	spend< <saving< th=""><th>28</th><th>60</th><th>15.4600</th><th>1.1885</th><th>C1</th></saving<>	28	60	15.4600	1.1885	C1
2	engineer	spend>saving	15	41	21.2600	1.4379	C1
3	librarian	spend <saving< th=""><th>2</th><th>9</th><th>19.7207</th><th>0.6913</th><th>C1</th></saving<>	2	9	19.7207	0.6913	C1
4	librarian	spend>saving	7	9	12.7098	1.4728	C1

Out[9]:

	vacation	credit	salary	property_value
0	11	21	15.32	2.0232
1	7	64	16.55	3.1202
2	3	47	15.71	3.4022
3	15	10	16.96	2.2825
4	6	80	15.50	3.7338

In [10]: dtest_numeric=test_data[['vacation','credit','salary','property_value']]
 dtest_numeric.head()

Out[10]:

	vacation	credit	salary	property_value
0	29	10	16.1900	2.4839
1	28	60	15.4600	1.1885
2	15	41	21.2600	1.4379
3	2	9	19.7207	0.6913
4	7	9	12.7098	1.4728

In [11]: dtrain_norm = (dtrain_numeric-dtrain_numeric.min())/(dtrain_numeric.max()-dtrain_
dtrain_norm.head()

Out[11]:

	vacation	creait	salary	property_value
0	0.158730	0.052326	0.293102	0.112797
1	0.095238	0.177326	0.346023	0.174200
2	0.031746	0.127907	0.309882	0.189984
3	0.222222	0.020349	0.363663	0.127311
4	0.079365	0.223837	0.300847	0.208545

In [12]: dtest_norm = (dtest_numeric-dtrain_numeric.min())/(dtrain_numeric.max()-dtrain_numeric.max())
dtest_norm.head()

Out[12]:

	vacation	n credit salary		property_value	
0	0.444444	0.020349	0.330534	0.138584	
1	0.428571	0.165698	0.299126	0.066076	
2	0.222222	0.110465	0.548670	0.080036	
3	0.015873	0.017442	0.482442	0.038246	
4	0.095238	0.017442	0.180799	0.081990	

In [13]: train_data.head()

Out[13]:

	c_type	lifestyle	vacation	credit	salary	property_value	class
0	student	spend>saving	11	21	15.32	2.0232	C1
1	student	spend>saving	7	64	16.55	3.1202	C1
2	student	spend>saving	3	47	15.71	3.4022	C1
3	student	spend>saving	15	10	16.96	2.2825	C1
4	student	spend>saving	6	80	15.50	3.7338	C1

Out[14]:

	c_type	lifestyle	class	vacation	credit	salary	property_value
0	student	spend>saving	C1	0.158730	0.052326	0.293102	0.112797
1	student	spend>saving	C1	0.095238	0.177326	0.346023	0.174200
2	student	spend>saving	C1	0.031746	0.127907	0.309882	0.189984
3	student	spend>saving	C1	0.22222	0.020349	0.363663	0.127311
4	student	spend>saving	C1	0.079365	0.223837	0.300847	0.208545

Out[15]:

	c_type	lifestyle	class	vacation	credit	salary	property_value	cclass
(student	spend>saving	C1	0.158730	0.052326	0.293102	0.112797	C1
1	student	spend>saving	C1	0.095238	0.177326	0.346023	0.174200	C1
2	student	spend>saving	C1	0.031746	0.127907	0.309882	0.189984	C1
3	student	spend>saving	C1	0.222222	0.020349	0.363663	0.127311	C1
4	student	spend>saving	C1	0.079365	0.223837	0.300847	0.208545	C1

```
In [16]: dtrain=dtrain.drop('class',axis=1)
    dtrain.head()
```

Out[16]:

	c_type	lifestyle	vacation	credit	salary	property_value	cclass
0	student	spend>saving	0.158730	0.052326	0.293102	0.112797	C1
1	student	spend>saving	0.095238	0.177326	0.346023	0.174200	C1
2	student	spend>saving	0.031746	0.127907	0.309882	0.189984	C1
3	student	spend>saving	0.222222	0.020349	0.363663	0.127311	C1
4	student	spend>saving	0.079365	0.223837	0.300847	0.208545	C1

```
In [17]: # dtest=pd.concat([test_data,tectype,telife],axis=1)
    # dtest=dtest.drop(['lifestyle','c_type'],axis=1)
    # dtest['cclass']=dtest['class']
    # dtest.head()
    test_data=test_data.drop(['vacation','credit','salary','property_value'],axis=1)
    dtest=pd.concat([test_data,dtest_norm],axis=1)
```

Out[18]:

	c_type	lifestyle	vacation	credit	salary	property_value	cclass
0	student	spend>>saving	0.44444	0.020349	0.330534	0.138584	C1
1	student	spend< <saving< th=""><th>0.428571</th><th>0.165698</th><th>0.299126</th><th>0.066076</th><th>C1</th></saving<>	0.428571	0.165698	0.299126	0.066076	C1
2	engineer	spend>saving	0.222222	0.110465	0.548670	0.080036	C1
3	librarian	spend <saving< th=""><th>0.015873</th><th>0.017442</th><th>0.482442</th><th>0.038246</th><th>C1</th></saving<>	0.015873	0.017442	0.482442	0.038246	C1
4	librarian	spend>saving	0.095238	0.017442	0.180799	0.081990	C1

FROM SCRATCH

```
In [19]: k list=[]
         acc list=[]
         for k in range(1,26,2):
             k list.append(k)
             predict=[]
             def euc_distance(testrow,trainrow,length):
                  distance=0
                  for i in range(1,3):
                      if(testrow[i]==trainrow[i]):
                          distance+=1
                   for i in range(2):
         #
                        if(testrow[i]==trainrow[i]):
         #
                            distance+=1
                 for i in range(3,length-1):
                      distance+=pow((testrow[i]-trainrow[i]),2)
                  return math.sqrt(distance)
             def getNeighbours(traindata,testRow,k):
                  distance with train=[]
                  length=len(testRow)
                  for x in range(len(traindata)):
                      dist=euc distance(testRow,traindata[x],length)
                      distance_with_train.append((traindata[x],dist))
                  distance with train.sort(key=operator.itemgetter(1))
                  neighbors = []
                 for x in range(k):
                      neighbors.append(distance with train[x][0])
                  return neighbors
             def getResponse(neighbors):
                  votes = {}
                  for x in range(len(neighbors)):
                      response = neighbors[x][-1]
                      if response in votes:
                          votes[response] += 1
                      else:
                          votes[response] = 1
                  sortedVotes = sorted(votes.items(), key=operator.itemgetter(1), reverse=T
                  return sortedVotes[0][0]
             def getAccuracy(dtest, predict):
                  correct = 0
                  for x in range(len(dtest)):
                      if dtest[x][-1] == predict[x]:
                          correct += 1
                  return (correct/float(len(dtest))) * 100.0
             for i in range(len(dtest)):
                  neighbour=getNeighbours(dtrain.values,dtest.values[i],k)
             #
                    print(neighbour)
                  result = getResponse(neighbour)
                  predict.append(result)
                    print('> predicted=' + repr(result) + ', actual=' + repr(xtest.values[i
             accuracy = getAccuracy(dtest.values, predict)
             acc list.append(accuracy)
             print('Accuracy: ' + repr(accuracy) + '%', 'with k=',k)
```

Accuracy: 20.0% with k= 1 Accuracy: 10.0% with k= 3 Accuracy: 10.0% with k= 5

```
Accuracy: 15.0% with k= 7
Accuracy: 10.0% with k= 9
Accuracy: 10.0% with k= 11
Accuracy: 10.0% with k= 13
Accuracy: 10.0% with k= 15
Accuracy: 10.0% with k= 17
Accuracy: 10.0% with k= 19
Accuracy: 10.0% with k= 21
Accuracy: 10.0% with k= 23
Accuracy: 10.0% with k= 23
```

Using KNN Classifier

```
In [20]:
          from sklearn.model_selection import train_test_split
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import accuracy score
In [21]:
          x_train= dtrain.loc[:,'c_type':'property_value']
          y train= dtrain.loc[:,['cclass']]
In [22]:
          x train.head()
Out[22]:
                         lifestyle vacation
                                             credit
                                                     salary property_value
              c_type
           0 student spend>saving
                                0.158730 0.052326
                                                  0.293102
                                                                 0.112797
           1 student spend>saving 0.095238
                                         0.177326
                                                   0.346023
                                                                 0.174200
           2 student spend>saving 0.031746 0.127907
                                                   0.309882
                                                                 0.189984
           3 student spend>saving 0.222222 0.020349
                                                   0.363663
                                                                 0.127311
           4 student spend>saving 0.079365 0.223837 0.300847
                                                                 0.208545
In [23]:
          from sklearn.preprocessing import LabelEncoder
          lb make = LabelEncoder()
          x_train["type"] = lb_make.fit_transform(x_train["c_type"])
          x train["type"].value counts()
Out[23]: 1
               49
               39
          3
          4
               37
          0
               37
          2
               23
```

Name: type, dtype: int64

```
In [24]: x_train["style"] = lb_make.fit_transform(x_train["lifestyle"])
x_train["style"].value_counts()
```

Out[24]: 3 86

1 41

2 38

0 20

Name: style, dtype: int64

```
In [25]: x_train.head()
```

Out[25]:

	c_type	lifestyle	vacation	credit	salary	property_value	type	style
0	student	spend>saving	0.158730	0.052326	0.293102	0.112797	4	3
1	student	spend>saving	0.095238	0.177326	0.346023	0.174200	4	3
2	student	spend>saving	0.031746	0.127907	0.309882	0.189984	4	3
3	student	spend>saving	0.222222	0.020349	0.363663	0.127311	4	3
4	student	spend>saving	0.079365	0.223837	0.300847	0.208545	4	3

In [26]: x_train=x_train[["type","style","vacation","credit","salary","property_value"]]
x_train.head()

Out[26]:

	type	style	vacation	credit	salary	property_value
0	4	3	0.158730	0.052326	0.293102	0.112797
1	4	3	0.095238	0.177326	0.346023	0.174200
2	4	3	0.031746	0.127907	0.309882	0.189984
3	4	3	0.222222	0.020349	0.363663	0.127311
4	4	3	0.079365	0.223837	0.300847	0.208545

```
In [27]: x_train["type"] = x_train['type'].astype(float)
x_train.head()
```

Out[27]:

	type	style	vacation	credit	salary	property_value
0	4.0	3	0.158730	0.052326	0.293102	0.112797
1	4.0	3	0.095238	0.177326	0.346023	0.174200
2	4.0	3	0.031746	0.127907	0.309882	0.189984
3	4.0	3	0.222222	0.020349	0.363663	0.127311
4	4.0	3	0.079365	0.223837	0.300847	0.208545

```
In [28]: | x_train["style"] = x_train['style'].astype(float)
          x train.head()
Out[28]:
             type
                  style vacation
                                    credit
                                             salary
                                                   property_value
           0
               4.0
                        0.158730 0.052326 0.293102
                    3.0
                                                         0.112797
           1
               4.0
                    3.0 0.095238 0.177326 0.346023
                                                         0.174200
           2
               4.0
                    3.0 0.031746 0.127907 0.309882
                                                         0.189984
           3
                    3.0 0.222222 0.020349 0.363663
               4.0
                                                         0.127311
               4.0
                    3.0 0.079365 0.223837 0.300847
                                                         0.208545
          y_train.head()
In [29]:
Out[29]:
             cclass
           0
                C1
           1
                C1
           2
                C1
           3
                C1
                C1
In [30]:
          x_test=dtest.loc[:,'c_type':'property_value']
          y_test=dtest.loc[:,['cclass']]
In [31]:
          x_test["type"] = lb_make.fit_transform(x_test["c_type"])
          x_test["type"].value_counts()
Out[31]: 4
               6
               5
          2
               3
          1
               3
               3
          Name: type, dtype: int64
In [32]: x test["style"] = lb make.fit transform(x test["lifestyle"])
          x_test["style"].value_counts()
Out[32]: 3
               8
               7
          2
          1
               4
          Name: style, dtype: int64
```

In [33]: x_test=x_test[["type","style","vacation","credit","salary","property_value"]]
x_test.head()

Out[33]:

_		type	style	vacation	credit	salary	property_value
-	0	4	2	0.444444	0.020349	0.330534	0.138584
	1	4	0	0.428571	0.165698	0.299126	0.066076
	2	1	3	0.222222	0.110465	0.548670	0.080036
	3	2	1	0.015873	0.017442	0.482442	0.038246
	4	2	3	0.095238	0.017442	0.180799	0.081990

```
In [34]: x_test["type"] = x_test['type'].astype(float)
    x_test.head()
```

Out[34]:

	type	style	vacation	credit	salary	property_value
0	4.0	2	0.444444	0.020349	0.330534	0.138584
1	4.0	0	0.428571	0.165698	0.299126	0.066076
2	1.0	3	0.22222	0.110465	0.548670	0.080036
3	2.0	1	0.015873	0.017442	0.482442	0.038246
4	2.0	3	0.095238	0.017442	0.180799	0.081990

```
In [35]: x_test["style"] = x_test['style'].astype(float)
x_test.head()
```

Out[35]:

	type	style	vacation	credit	salary	property_value
0	4.0	2.0	0.444444	0.020349	0.330534	0.138584
1	4.0	0.0	0.428571	0.165698	0.299126	0.066076
2	1.0	3.0	0.222222	0.110465	0.548670	0.080036
3	2.0	1.0	0.015873	0.017442	0.482442	0.038246
4	2.0	3.0	0.095238	0.017442	0.180799	0.081990

```
In [36]: for K in range(20):
          K value = K+1
          neigh = KNeighborsClassifier(n neighbors = K value, weights='uniform', algorithm
          neigh.fit(x train, y train)
          y pred = neigh.predict(x test)
          print("Accuracy is ", accuracy_score(y_test,y_pred)*100,"% for K-Value:",K_value
         Accuracy is 15.0 % for K-Value: 1
         Accuracy is 25.0 % for K-Value: 2
         Accuracy is 25.0 % for K-Value: 3
         Accuracy is 25.0 % for K-Value: 4
         Accuracy is 25.0 % for K-Value: 5
         Accuracy is 25.0 % for K-Value: 6
         Accuracy is 25.0 % for K-Value: 7
         Accuracy is 25.0 % for K-Value: 8
         Accuracy is 25.0 % for K-Value: 9
         Accuracy is 25.0 % for K-Value: 10
         Accuracy is 15.0 % for K-Value: 11
         Accuracy is 15.0 % for K-Value: 12
         Accuracy is 15.0 % for K-Value: 13
         Accuracy is 15.0 % for K-Value: 14
         Accuracy is 15.0 % for K-Value: 15
         Accuracy is 10.0 % for K-Value: 16
         Accuracy is 10.0 % for K-Value: 17
         Accuracy is 15.0 % for K-Value: 18
         Accuracy is 10.0 % for K-Value: 19
         Accuracy is 15.0 % for K-Value: 20
         G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
         column-vector y was passed when a 1d array was expected. Please change the shap
         e of y to (n samples, ), for example using ravel().
           after removing the cwd from sys.path.
         G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A
         column-vector y was passed when a 1d array was expected. Please change the shap
         e of y to (n_samples, ), for example using ravel().
           after removing the cwd from sys.path.
         G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A
         column-vector y was passed when a 1d array was expected. Please change the shap
         e of y to (n_samples, ), for example using ravel().
           after removing the cwd from sys.path.
         G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
         column-vector y was passed when a 1d array was expected. Please change the shap
         e of y to (n samples, ), for example using ravel().
           after removing the cwd from sys.path.
         G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
         column-vector y was passed when a 1d array was expected. Please change the shap
         e of y to (n_samples, ), for example using ravel().
           after removing the cwd from sys.path.
         G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
         column-vector y was passed when a 1d array was expected. Please change the shap
         e of y to (n samples, ), for example using ravel().
           after removing the cwd from sys.path.
         G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A
         column-vector y was passed when a 1d array was expected. Please change the shap
```

 $local host: 8888/notebooks/Desktop/Supervised_Learning/product-selection/KNN.ipynb$

e of y to (n samples,), for example using ravel().

G:\Anaconda\lib\site-packages\ipykernel launcher.py:4: DataConversionWarning: A

after removing the cwd from sys.path.

column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.

G:\Anaconda\lib\site-packages\ipykernel_launcher.py:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shap e of y to (n_samples,), for example using ravel().

after removing the cwd from sys.path.