

General remarks

- We are recording
- Please ask questions!
 - I cannot see you when my lecture is up, so:
 - Unmute and say something
 - Or type in the chat (but I may not always see this)

Who am I

- Marleen de Bruijne
- MSc in Physics
- PhD in Medical Image Analysis
- Now Professor Medical Image Analysis at DIKU and at Erasmus MC University Medical Center Rotterdam, The Netherlands
- · Research:
 - Machine learning approaches to medical imaging
 - · Automatic, quantitative analysis
 - · Predicting disease
 - Brain, lung, and cardiovascular imaging

3

UNIVERSITY OF COPENHAGEN

This lecture

- Why Convolutional Neural Networks?
- · What is convolution
- Typical components of CNN what they do and why they work (or not)
- What CNN can and cannot learn
- Some practical considerations

Comparing to "regular" networks as in the previous lecture

- A "regular" (fully connected) network would have weights from every image pixel to every node in the first layer, which is connected to every node in the second layer, which is connected.....
- · Lots of weights! Good or bad?
- Good, because: this is a very flexible model. It can learn anything!
- Bad because: Large memory footprint. Many computations. Probably, higher complexity (more flexible model) than needed. Risk of overtraining.

• CNN is a way of reducing the number of weights

7

. UNIVERSITY OF COPENHAGEN

A fully connected NN learns equally well from these two images

To a fully connected NN, these two images are very different

- Can we use image structure better?
- Model invariant properties?
- A CNN does this (to some extent)

C

. UNIVERSITY OF COPENHAGEN

What is convolution?

$$s(t) = \int x(a)w(t-a)da \tag{9.1}$$

Or: The integral of the multiplication of a function and another function which is reversed and shifted.

What is convolution?

$$s(t) = \int x(a)w(t-a)da \tag{9.1}$$

Or: The integral of the multiplication of a function and another function which is reversed and shifted.

11

12

From wikipedia

What is convolution?

$$s(t) = \int x(a)w(t-a)da \tag{9.1}$$

Or: The integral of the multiplication of a function and another function which is reversed and shifted.

In the discrete, 2D version:

$$S(i,j) = (K*I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n) K(m,n). \tag{9.5} \label{eq:9.5}$$

But in fact, we use **cross-correlation** (no reversing)

$$S(i,j) = (I*K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n) K(m,n). \tag{9.6} \label{eq:9.6}$$

13

. UNIVERSITY OF COPENHAGEN

Correlation operator, in 2D

Input

Kernel

.1.

Some filtering examples

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Blurring

15

UNIVERSITY OF COPENHAGEN

Some filtering examples

-1	-2	-1
0	0	0
1	2	1

Horizontal edge enhancement

Some filtering examples

0	-1	0
-1	4	-1
0	-1	0

"Laplacian" Enhances blobs (and edges)

17

UNIVERSITY OF COPENHAGEN

01/03/2021

Convolutions in image processing, before deep learning

- · Choose a set of convolution filters
 - Smoothing
 - 1st order derivatives in different directions (edges)
 - 2nd order derivatives (ridges)
 - Possibly higher order
 - (nonlinear) combinations of them (eg gradient magnitude)
 - · At multiple scales
- Apply filters to image -> features
 - (often) Assume local image structure is sufficiently informative filters are small
 - · assume the same type of filters are useful everywhere in the image
- · Train classifier (or other learner) on the features

How to use this in a neural network?

Output from convolution (feature map)

Filter (kernel)
Of length 3

Input to convolution

- Sparse connectivity (small filters)
- · Every node in hidden layer influenced by limited number of input nodes
- Each input node influences limited number of nodes in first layer

19

- Sparse connectivity (small filters)
- Each input node influences limited number of nodes in first layer
- Every node in hidden layer influenced by limited number of input nodes

How to use this in a neural network?

- · Weight sharing: same filters/kernels used everywhere in the image
- -> CNN equivariant to translation
- If input is shifted, output remains the same (but shifted the same way)

21

UNIVERSITY OF COPENHAGEN

To a fully connected NN, these two images are very different

- Feature maps after several layers of CNN will look the same, just shifted
- (Except for boundary effects)

Convolutional neural networks

The filter kernel moves over the image → feature map
The step size is called **stride** (usually stride = 1)

Convolutional neural networks

The filter kernel moves over the image → feature map
The step size is called **stride** (usually stride = 1)

Convolutional neural networks

The filter kernel moves over the image → feature map
The step size is called **stride** (usually stride = 1)

Convolutional neural networks

Convolutional neural networks

The filter kernel moves over the image → feature map
The step size is called **stride** (usually stride = 1)

Convolutional neural networks

Convolutional neural networks

The filter kernel moves over the image → feature map
The step size is called **stride** (usually stride = 1)

Convolutional neural networks

The filter kernel moves over the image → feature map
The step size is called **stride** (usually stride = 1)

Convolutional neural networks

The filter kernel moves over the image → feature map
The step size is called **stride** (usually stride = 1)

Convolutional neural networks

- Compare 1 layer of 5x5 and 2 layers of 3x3 convolutions
- What is the receptive field? Which has more parameters? Which has more non-linearities?
- In practice, we typically use more layers of small kernels

• UNIVERSITY OF COPENHAGEN

40

01/03/2021

Strategies to handle boundaries

- "valid" convolution output is smaller by k-1
- "same" convolution use zero padding outside the image so that output is same size as input
 - Border pixels have less influence in the output
- "full" convolution even more zero padding output larger by k-1
- Consider the effect of zero padding!

42

01/03/2021

Pooling Why use pooling? Reduce memory footprint Reduce computations Invariance to small transformations Why not use pooling? Loose location information Loose fine detail

What can networks learn

· Global pooling versus fully connected layers in the end

- Global pooling learns **presence** of specific features (average/max)
- Fully connected layers learn also spatial configuration

53

Do we need to learn the features?

- Common (early) approach:
- Download a **pretrained** model (eg, trained in ImageNet)
- Fine tune:

UNIVERSITY OF COPENHAGEN

- · Update weights using backprop
- In all layers, or a subset
- Why does this work?
- Even random convolution kernels can work quite well (Saxe et al, NIPS 2011)

56

01/03/2021

Has the machine learned to "see" as a human?

NO

But they are becoming very good at predicting our decisions

57

• UNIVERSITY OF COPENHAGEN

01/03/2021

Some practical considerations

- When working with images, consider if preprocessing is needed
 - Does the target data "look" similar to the training data? What are the differences?
 - Remember that CNN are invariant only to translations (to some extent) and are sensitive to changes in intensity/color/orientation/scale
- What receptive field do you need?
- Bias-variance trade off, overfitting and underfitting. SEE NEXT LECTURE.
- Trend towards deeper models, but need to take dataset size into account

• UNIVERSITY OF COPENHAGEN 01/03/2021 59

- With material from
- http://www.deeplearningbook.org/
- Roger Grosse http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/
- Nikolas Lessmann
- Jan van Gemert
- Dive into deep learning https://d2l.ai/
- https://aishack.in/tutorials/image-convolution-examples/