1. Sea ρ una métrica en un conjunto X. Demostrar que las siguientes funciones también son métricas:

a)
$$\rho_1(x,y) = \frac{\rho(x,y)}{1+\rho(x,y)}$$

b)
$$\rho_3(x,y) = \min(\{1,\rho(x,y)\})$$

Proof. (D_1) Sean $x, y \in \mathbb{R}^n$ P.D. $\rho_1(x, y) \geqslant 0$.

Notemos que, $\rho(x,y) \geqslant 0$

$$\Rightarrow 1 + \rho(x, y) \geqslant 0$$

Si
$$a \geqslant 0$$
 y $b \geqslant 0 \Rightarrow \frac{a}{b} \geqslant 0$

$$\Rightarrow \frac{\rho(x,y)}{1+\rho(x,y)} \geqslant 0 \Rightarrow \rho_1(x,y) \geqslant 0$$

 (D_2) Sean $x, y \in \mathbb{R}^n$ P.D. $\rho_1(x, y) = 0 \Leftrightarrow x = y$

$$\rho_1(x,y) = 0 \Leftrightarrow \frac{\rho(x,y)}{1 + \rho(x,y)} = 0$$

Si
$$b \neq 0 \Rightarrow \frac{a}{b} = 0 \Leftrightarrow a = 0$$

$$\frac{\rho(x,y)}{1+\rho(x,y)} = 0 \Leftrightarrow \rho(x,y) = 0 \Leftrightarrow x = y$$

 (D_3) Sean $x, y \in \mathbb{R}^n$ P.D. $\rho_1(x, y) = \rho_1(y, x)$

$$\rho_1(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)} = \frac{\rho(y,x)}{1 + \rho(y,x)} = \rho_1(y,x)$$

 (D_4) Sean $x, y \in \mathbb{R}^n$ P.D. $\rho_1(x, z) \leqslant \rho_1(x, y) + \rho_1(y, z)$

$$\rho_{1}(x,z) = \frac{\rho(x,z)}{1+\rho(x,z)} = \frac{1+\rho(x,z)-1}{1+\rho(x,z)}$$

$$= \frac{1+\rho(x,z)}{1+\rho(x,z)} - \frac{1}{1+\rho(x,z)} = 1 - \frac{1}{1+\rho(x,z)}$$

$$\leqslant 1 - \frac{1}{1+\rho(x,y)+\rho(y,z)} = \frac{1+\rho(x,y)+\rho(y,z)-1}{1+\rho(x,y)+\rho(y,z)}$$

$$= \frac{\rho(x,y)+\rho(y,z)}{1+\rho(x,y)+\rho(y,z)} = \frac{\rho(x,y)}{1+\rho(x,y)+\rho(y,z)} + \frac{\rho(y,z)}{1+\rho(x,y)+\rho(y,z)}$$

$$\leqslant \frac{\rho(x,y)}{1+\rho(x,y)} + \frac{\rho(y,z)}{1+\rho(y,z)} = \rho_{1}(x,y) + \rho_{1}(y,z)$$

$$\Rightarrow \rho_{1}(x,z) \leqslant \rho_{1}(x,y) + \rho_{1}(y,z)$$

 $\therefore \rho_1(x,y)$ es una métrica en \mathbb{R}^n .

Proof. (D_1) Sean $x, y \in \mathbb{R}^n$ P.D. $\rho_3(x, y) \geq 0$

Si $\rho(x,y) > 1 \Rightarrow \rho_3(x,y) = 1$. Si $\rho(x,y) \leqslant 1 \Rightarrow \rho_3(x,y) = \rho(x,y)$. Tenemos los siguientes casos.

a)
$$\rho(x,y) > 1 \Rightarrow \rho_3(x,y) = 1$$

$$1 > 0 \Rightarrow \rho_3(x, y) \geqslant 0$$

b)
$$\rho(x,y) \leqslant 1 \Rightarrow \rho_3(x,y) = \rho(x,y)$$
) Por definición, $\rho(x,y) \geqslant 0, \Rightarrow \rho_3(x,y) \geqslant 0$

$$(D_2)$$
 Sean $x, y \in \mathbb{R}^n$ P.D. $\rho_3(x, y) = 0 \Leftrightarrow x = y$

$$\rho_3(x,y) = 0 \Leftrightarrow \min(\{1,\rho(x,y)\}) = 0 \Leftrightarrow \rho(x,y) = 0 \Leftrightarrow x = y$$

 (D_3) Sean $x, y \in \mathbb{R}^n$ P.D. $\rho_3(x, y) = \rho_3(y, x)$

$$\rho_3(x,y) = \min(\{1, \rho(x,y)\}) = \min(\{1, \rho(y,x)\}) = \rho_3(y,x)$$

- (D_4) Sean $x, y \in \mathbb{R}^n$ P.D. $\rho_3(x, z) \leq \rho_3(x, y) + \rho_3(y, z)$. Tenemos los siguientes casos.
 - a) Si $\rho(x,y) > 1 \Rightarrow \rho_3(x,y) = 1$ o $\rho(y,z) > 1 \Rightarrow \rho_3(y,z) = 1$ Notemos que, por definición, $\rho_3(x,z) \leqslant 1$

$$\rho_3(x,y) + \rho_3(y,z) \geqslant 1$$

$$\rho_3(x,z) \le 1 \le \rho_3(x,y) + \rho_3(y,z) \Rightarrow \rho_3(x,z) \le \rho_3(x,y) + \rho_3(y,z)$$

b) Si
$$\rho(x,y)$$
) < 1 \Rightarrow $\rho_3(x,y) = \rho(x,y)$) o $\rho(y,z)$ < 1 \Rightarrow $\rho_3(y,z) = \rho(y,z)$

$$\rho_3(x,y) + \rho_3(y,z) = \rho(x,y) + \rho(y,z) \geqslant \rho(x,z) \geqslant \rho_3(x,z) \Rightarrow$$
$$\rho_3(x,z) \leqslant \rho_3(x,y) + \rho_3(y,z)$$

 $\therefore \rho_3(x,y)$ es una métrica en \mathbb{R}^n

2. a) Sea $\rho: X \times X \to \mathbb{R}$ una métrica. Prueba la desigualdad tetrahédrica

$$|\rho(x,y) - \rho(z,w)| \le \rho(x,z) + \rho(y,w)$$

$$\forall x, y, z, w \in X$$

b) Sea $\rho: X \times X \to \mathbb{R}$ una función \ni

i.
$$\forall x \in X \Rightarrow \rho(x, x) = 0$$

ii.
$$\forall x \neq y \in X \Rightarrow \rho(x,y) = \rho(y,x) > 0$$

iii. Satisface la desigualdad tetrahédrica

Pruebe que ρ es una métrica

Proof. Sea $x, y, z, w \in X$ arbitrario. Como ρ es una métrica en X s.t.q.

$$\rho(x,y) \leqslant \rho(x,w) + \rho(w,y) \leqslant (\rho(x,z) + \rho(z,w)) + \rho(y,w)$$

$$\Rightarrow \rho(x,y) - \rho(w,z) \leqslant \rho(x,z) + \rho(y,w)$$

Además

$$\rho(z, w) \leqslant \rho(z, y) + \rho(y, w) \leqslant (\rho(z, x) + \rho(x, y)) + \rho(w, y)$$

$$\Rightarrow \rho(w, z) - \rho(x, y) \leqslant \rho(x, z) + \rho(y, w)$$

Tanto $\rho(x,y) - \rho(z,w)$ como $-(\rho(x,y) - \rho(z,w)) \leqslant \rho(x,z) + \rho(y,w) \Rightarrow$ con la función $|\cdot|$ s.t.q.

$$|\rho(x,y) - \rho(z,w)| \le \rho(x,z) + \rho(y,w)$$

Proof. (D_1) Por definición de ρ s.t.q $\forall x, y \in X \Rightarrow \rho(x, y) \geq 0$

- (D_2) Si x=y, por el inciso i. $\rho(x,x)=0 \Rightarrow$ necesariamente x=y, porque de lo contrario, por ii. $\rho(x,y)>0$
- (D_3) Se sigue de i. y ii.
- (D_4) Sean $x, y, z \in X$ elementos arbitrarios

$$\rho(x,y) = |\rho(x,y)| = |\rho(x,y) + \rho(x,z) - \rho(x,z)|$$

$$\leq |\rho(x,z)| + |\rho(x,y) - \rho(x,z)|$$

Por la desigudaldad tetrahédrica s.t.q.

$$|\rho(x,y) - \rho(x,z)| \le \rho(x,x) + \rho(y,z)$$

$$\Rightarrow \rho(x,y) \le \rho(x,z) + \rho(x,x) + \rho(y,z) = \rho(x,z) + \rho(y,z)$$

 ρ es una métrica en X

3. ¿Qué condiciones debe satisfacer una función continua $f : \mathbb{R} \to \mathbb{R}$ definida sobre \mathbb{R} para que en la recta real se pueda dar una métrica por medio de la igualdad $\rho(x,y) = |f(x) - f(y)|$? Esta función debe de ser injectiva, es decir $f(x) = f(y) \Leftrightarrow x = y$

Proof. (D_1) Sea $x, y \in \mathbb{R} \Rightarrow |f(x) - f(y)| \ge 0$ por propiedades de $|\cdot|$ (D_2) Sea $x, y \in \mathbb{R}$ Como f es inyectiva, s.t.q.

$$\rho(x,y) = 0 \Leftrightarrow |f(x) - f(y)| \Leftrightarrow f(x) = f(y) \Leftrightarrow x = y$$

 (D_3) Sea $x, y \in \mathbb{R}$. Por propiedades de $|\cdot|$ s.t.q.

$$\rho(x,y) = |f(x) - f(y)| = |f(y) - f(x)| = \rho(y,x)$$

 (D_4) Sea $x, y, z \in \mathbb{R}$. Por propiedades de $|\cdot|$ s.t.q.

$$\rho(x,z) = |f(x) - f(z)| \le |f(x) - f(y)| + |f(y) - f(z)| = \rho(x,y) + \rho(y,z)$$

∴ ρ es métrica en \mathbb{R}

4. Suponga que (X, d) es un espacio métrico y fije una función $f : [0, \infty] \to [0, \infty]$ estrictamente creciente $\ni f(0) = 0$. Demuestre que si f es una función subaditiva (es decir, si $\forall x, y \in [0, \infty]$ se teiene la desigualdad $f(x+y) \leq f(x) + f(y) \Rightarrow f \circ d : X \times X \to [0, \infty]$ es una métrica en X.

Proof. (D_1) Sean $x, y \in X$. Como d es una métrica en $X \Rightarrow d(x, y) \ge 0$. Por otra parte, como f es estrictamente creciente $f(t) \ge 0 \ \forall t \in [0, \infty]$. Por lo cual $(f \circ d)(x, y) = f(d(x, y)) \ge 0$

 (D_2) Sean $x, y \in X$. Por hipótesis $f(t) = 0 \Leftrightarrow t = 0 \ \forall t \in [0, \infty]$. Usando esto s.t.q.

$$(f \circ d)(x,y) = 0 \Leftrightarrow f(d(x,y)) = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$$

 (D_3) Sean $x, y \in X$. Como d es métrica en X, note lo siguiente

$$(f \circ d)(x, y) = f(d(x, y)) = f(d(y, x)) = (f \circ d)(y, x)$$

 (D_4) Sean $x, y, x \in X$. Notemos que, como f es estrictamente creciente, y además subaditiva s.t.q

$$(f \circ d)(x,z) = f(d(x,z)) \leqslant f(d(x,y) + d(y,z)) \leqslant f(d(x,y)) + f(d(y,z))$$
$$= (f \circ d)(x,y) + (f \circ d)(y,z) \Rightarrow (f \circ d)(x,z) \leqslant (f \circ d)(x,y) + (f \circ d)(y,z)$$

 $\therefore f \circ d$ es una métrica en X

- 5. Sea X un conjunto no vacío y $d: X \times X \to [0, \infty]$ una función que cumple las siguientes condiciones $\forall x, y, z \in X$
 - (a) $d(x,y) = 0 \Leftrightarrow x = y$
 - (b) d(x, y) = d(y, x)
 - (c) $d(x,z) \ge d(x,y) + d(y,z)$

Pruebe que bajo estas condiciones X tiene únicamente un punto

Proof. Supongamos $x, y \in X \ni x \neq y$

Por la propiedad (a) s.t.q. d(x,x) = 0

Por la desigualdad triangular de la hipótesis s.t.q.

$$d(x, x) \geqslant d(x, y) + d(y, x) = 0 \geqslant 2 \cdot d(y, x) = 0 \geqslant d(x, y)$$

Como $d: X \times X \to [0, \infty] \Rightarrow d(x, y) = 0$. Pero por (a) $d(x, y) = 0 \Leftrightarrow x = y \Rightarrow \Leftarrow$

Pero esto es una contradicción, ya que supusimos a $x \neq y$: X tiene únicamente un punto

6. En el conjunto \mathbb{Z}^+ de los enteros positivos tomemos:

$$\rho(n,m) = \begin{cases} 0 & \text{si } m = n \\ 1 + \frac{1}{n+m} & \text{si } m \neq n \end{cases}$$

Demuestre que ρ es una métrica.

Proof. (D_1) Sea $n, m \in \mathbb{Z}^+$ Si $m = n \Rightarrow \rho(n, m) \geqslant 0$. Si $m \neq n \Rightarrow \rho(n, m) \geqslant 0$, ya que

$$\rho(n,m) = 1 + \frac{1}{n+m} \geqslant 0$$

- (D_2) Se sigue de la definición de $\rho(n,m)$
- (D_3) Sea $n, m \in \mathbb{Z}^+$

$$\rho(n,m) = \begin{cases} 0 & \text{si } m = n \\ 1 + \frac{1}{n+m} & \text{si } m \neq n \end{cases} = \begin{cases} 0 & \text{si } n = m \\ 1 + \frac{1}{m+n} & \text{si } n \neq m \end{cases} = \rho(m,n)$$

 (D_4) Sea $n, m, c \in \mathbb{Z}^+$. Veamos que $\rho(n, c) \leq \rho(n, m) + \rho(m, c)$. Supongamos que $n \neq c$, ya que ese caso es trivial.

$$\rho(n,c) = 1 + \frac{1}{n+c} \le 2 + \frac{1}{n+m} + \frac{1}{m+c}$$

Esto porque $n, m, c \in \mathbb{Z}^+$

$$= \left(1 + \frac{1}{n+m}\right) + \left(1 + \frac{1}{m+c}\right) = \rho(n,m) + \rho(m,c)$$

 $\therefore \rho$ es una métrica en \mathbb{Z}^+

7. Sea $M_{n\times n}$ el espacio de matrices reales de tamaño $n\times n$. Demuestre que este conjunto es un espacio métrico con la función

$$\rho(A, B) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij} - b_{ij}| \right)$$

Donde $A = a_{ij} y B = b_{ij}$

Proof. (D_1) Sea $A, B \in M_{n \times n}$. Por propiedades de $|\cdot|$ s.t.q.

$$\sum_{i=1}^{n} |a_{ij} - b_{ij}| \ge 0 \Rightarrow \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij} - b_{ij}| \right) \ge 0 \Rightarrow \rho(A, B) \ge 0$$

 (D_2) Sea $A, B \in M_{n \times n}$

$$\rho(A,B) = 0 \Leftrightarrow \sum_{i=1}^{n} \left(\sum_{i=1}^{n} |a_{ij} - b_{ij}| \right) = 0 \Leftrightarrow \sum_{i=1}^{n} |a_{ij} - b_{ij}| 0 \Leftrightarrow |a_{ij} - b_{ij}| = 0 \Leftrightarrow a_{ij} = b_{ij}$$

 (D_3) Sea $A, B \in M_{n \times n}$

$$\rho(A,B) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij} - b_{ij}| \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |b_{ij} - a_{ij}| \right) = \rho(B,A)$$

 (D_4) Sea $A, B, C \in M_{n \times n}$

$$\rho(A,B) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij} - b_{ij}| \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij} - c_{ij}| + c_{ij} - b_{ij}| \right)$$

$$\leq \sum_{j=1}^{n} \left(\sum_{i=1}^{n} (|a_{ij} - c_{ij}| + |c_{ij} - b_{ij}|) \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij} - c_{ij}| + \sum_{i=1}^{n} |c_{ij} - b_{ij}| \right)$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij} - c_{ij}| \right) + \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |c_{ij} - b_{ij}| \right) = \rho(A, C) + \rho(C, B)$$

 $\therefore \rho(A,B)$ es una métrica en $M_{n\times n}$

8. Demuestra que $||x||_{\infty} = \max\{|x_i| \mid i = 1, ..., n\}$ y $||x||_1 = \sum_{i=1}^n |x_i|$ donde $x = (x_1, ..., x_n) \in \mathbb{R}^n$ son normas en \mathbb{R}^n

Proof. $(N_1) \ \forall (x_1, ..., x_n) \in \mathbb{R}^n$ arbitrario s.t.q. $|x_i| \geqslant 0 \ \forall i = 1, ..., n$

$$\Rightarrow \max\{|x_i| \mid i = 1, ..., n\} = ||x||_{\infty} \ge 0$$

$$||x||_{\infty} = 0 = \max\{|x_i| \mid i = 1, ..., n\} \Leftrightarrow |x_i| = 0 \,\forall i = 1, ..., n \Leftrightarrow x_i = (0, ..., 0)$$

 (N_3) Sea $(x_1,...,x_n) \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$ arbitrarios

$$\Rightarrow \|\lambda x\|_{\infty} = \max\{|\lambda x_i| \mid i = 1, ..., n\} = \max\{|\lambda||\lambda x_i| \mid i = 1, ..., n\}$$

Lema. Probaremos que, en general, $\forall \varepsilon > 0$ y $y_1,...,y_n \in \mathbb{R}^n$ s.t.q. $\max\{\varepsilon \cdot y_i \mid i=1,...,n\} = \varepsilon \cdot \max\{y_i \mid i=1,...,n\}$

Proof. Supongamos que $\varepsilon \cdot y_j = \max\{\varepsilon \cdot y_i \mid i = 1, ..., n\}$ para algún índice $j \in \{1, ..., n\} \Rightarrow \forall i = 1, ..., n \text{ s.t.q.}$

$$y_i \leqslant \varepsilon \cdot y_i \leqslant \varepsilon \cdot y_j$$

Como $\varepsilon > 0 \Rightarrow y_i \leqslant y_j \, \forall \, i = 1, ..., n$, es decir que

$$y_i = \max\{y_i \mid i = 1, ..., n\}$$

Así que, como $y_i \leqslant y_j \leqslant \varepsilon \cdot y_i \leqslant \varepsilon \cdot y_j$, s.t.q.

$$\varepsilon \cdot \max\{y_i \mid i = 1, ..., n\} \leqslant \max\{\varepsilon \cdot y_i \mid i = 1, ..., n\}$$

Por otra parte, como $y_j = \max\{y_i \mid i = 1, ..., n\} \Rightarrow \forall i = 1, ..., n \text{ s.t.q.}$

$$\varepsilon \cdot y_i \leqslant \varepsilon \cdot y_i$$

Como $\varepsilon > 0 \Rightarrow$

$$\max\{\varepsilon \cdot y_i \mid i = 1, ..., n\} \leqslant \varepsilon \cdot y_j$$
$$\max\{\varepsilon \cdot y_i \mid i = 1, ..., n\} \leqslant \varepsilon \cdot \max\{y_i \mid i = 1, ..., n\}$$
$$\Rightarrow \max\{\varepsilon \cdot y_i \mid i = 1, ..., n\} = \varepsilon \cdot \max\{y_i \mid i = 1, ..., n\}$$

Para $\lambda \in \mathbb{R}$ tenemos los siguientes casos

i. $\lambda = 0$ En este caso $\lambda \cdot x = \vec{0}$ y por (N_2) s.t.q.

$$\|\lambda x\|_{\infty} = 0 = 0 \cdot \|x\|_{\infty}$$

ii. $\lambda \neq 0 \Rightarrow |\lambda| > 0$ Por el **Lema** anterior s.t.q.

 $\max\{|\lambda||\lambda x_i|\mid i=1,...,n\}=|\lambda|\max\{|\lambda x_i|\mid i=1,...,n\}=|\lambda|\|x\|_{\infty}$ (N₄) Sean $x=(x_1,...,x_n)$ y $y=(y_1,...,y_n)\in\mathbb{R}^n$ arbitrarios. Por definición de $\|\cdot\|_{\infty}$ s.t.q.

$$||x + y||_{\infty} = \max\{|x_i + y_i| \mid i = 1, ..., n\}$$

Supongamos que $|x_j+y_j|=\max\{|x_i+y_i|\mid i=1,...,n\}$ Como $|x_j+y_j|\leqslant |x_j|+|y_j|$

$$\max\{|x_i + y_i| \mid i = 1, ..., n\} \leqslant |x_j| + |y_j|$$

$$|x_i| \le \max\{|x_i| \mid i = 1, ..., n\}$$
 y $|y_i| \le \max\{|y_i| \mid i = 1, ..., n\}$

Por lo cual, por transitividad de ≤

$$\max\{|x_i + y_i| \mid i = 1, ..., n\} \leqslant \max\{|x_i| \mid i = 1, ..., n\} + \max\{|y_i| \mid i = 1, ..., n\}$$
$$\Rightarrow ||x + y||_{\infty} \leqslant ||x||_{\infty} + ||y||_{\infty}$$

 $\therefore \|x\|_{\infty} = \max\{|x_i| \mid i=1,...,n\}$ es una norma en \mathbb{R}^n

Proof. $(N_1) \ \forall (x_1,...,x_n) \in \mathbb{R}^n$ arbitrario s.t.q. $|x_i| \geqslant 0 \ \forall i=1,...,n$

$$||x||_1 = \sum_{i=1}^n |x_i| \geqslant 0$$

$$||x||_{1} = 0 \Leftrightarrow \sum_{i=1}^{n} |x_{i}| = 0 \Leftrightarrow x_{i} = 0 \,\forall \, i = 1, ...n$$

 (N_3) Sea $x = (x_1, ..., x_n) \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$

$$\|\lambda x\|_1 = \sum_{i=1}^n |\lambda x_i| = \sum_{i=1}^n |\lambda| |x_i| = |\lambda| \sum_{i=1}^n |x_i| = |\lambda| \|x\|_1$$

 (N_4) Sea $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n (|x_i| + |y_i|) = \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = ||x||_1 + ||y||_1$$

 $\therefore \|x\|_1$ es una norma en \mathbb{R}^n

9. Sea $\sum_{n=1}^{\infty} a_n$ an una serie convergente de números reales positivos. En el conjunto E de todas las sucesiones de números reales $x = (x_n)_{n \in \mathbb{N}}$ definimos

$$d(x,y) = \sum_{n=1}^{\infty} a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|}$$

- (a) Demostrar que d es una métrica en E
- (b) ¿Se puede introducir una norma en el espacio E de tal modo que se cumpla la igualdad d(x,y) = ||x-y||?
- (c) Dar un ejemplo de una sucesión $(x_n^1, x_n^2, ...)x_n^i \in \mathbb{R}$ que converja en el espacio E, que pertenezca al espacio ℓ_2 pero que no converja en el espacio ℓ_2 .

Proof. Primero veamos que $d: E \times E \to \mathbb{R}$ está bien definida, es decr, que $\forall x = (x_n)_{n \in \mathbb{N}}$, $y = (y_n)_{n \in \mathbb{N}} \in E$ la serie

$$\sum_{n=1}^{\infty} a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|}$$

converge en \mathbb{R}

 \Rightarrow supongamos que $x,y\in E$ arbitrarios. Notemos que

$$0 \leqslant \frac{1 + |x_n - y_n|}{|x_n - y_n|} \leqslant 1 \qquad \forall n \in \mathbb{N}$$

Así que

$$0 \leqslant a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|} \leqslant a_n \qquad \forall n \in \mathbb{N}$$

$$0 \leqslant \sum_{n=1}^{\infty} a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|} \leqslant \sum_{n=1}^{\infty} a_n \qquad \forall n \in \mathbb{N}$$

 \Rightarrow por criterios de convergencia $\sum_{n=1}^{\infty} a_n \frac{1+|x_n-y_n|}{|x_n-y_n|}$ converge a un número en $\mathbb R$

 (D_1) En la demostración de que d está bien definida se hace evidente

 (D_2) Supongamos que $x=(x_n)_{n\in\mathbb{N}}, y=(y_n)_{n\in\mathbb{N}}\in E$

$$d(x,y) = \sum_{n=1}^{\infty} a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|} = 0 \Leftrightarrow \forall n \in \mathbb{N} \Rightarrow a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|} = 0$$

$$\Leftrightarrow |x_n - y_n| = 0 \Leftrightarrow x_n = y_n \ \forall \ n \in \mathbb{N} \Rightarrow d(x, y) = 0 \Leftrightarrow x = y$$

 (D_3) Sean $x = (x_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}} \in E$

$$d(x,y) = \sum_{n=1}^{\infty} a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|} = \sum_{n=1}^{\infty} a_n \frac{1 + |y_n - x_n|}{|y_n - x_n|} = d(y,x)$$

(D₄) Sean $x = (x_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}}, z = (z_n)_{n \in \mathbb{N}} \in E$ En el ejercicio **1.** se demostro que $\forall n \in \mathbb{N}$ s.t.q

$$\frac{1+|x_n-y_n|}{|x_n-y_n|} \leqslant \frac{1+|x_n-z_n|}{|x_n-z_n|} + \frac{1+|z_n-y_n|}{|z_n-y_n|}$$

Así que

$$d(x,y) = \sum_{n=1}^{\infty} a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|} \leqslant \sum_{n=1}^{\infty} a_n \left(\frac{1 + |x_n - z_n|}{|x_n - z_n|} + \frac{1 + |z_n - y_n|}{|z_n - y_n|} \right)$$

$$= \sum_{n=1}^{\infty} \left(a_n \frac{1 + |x_n - z_n|}{|x_n - z_n|} + a_n \frac{1 + |z_n - y_n|}{|z_n - y_n|} \right)$$

$$= \sum_{n=1}^{\infty} a_n \frac{1 + |x_n - z_n|}{|x_n - z_n|} + \sum_{n=1}^{\infty} a_n \frac{1 + |z_n - y_n|}{|z_n - y_n|} = d(x, z) + d(z, y)$$

 $\therefore d$ es una métrica en E

Proof. Para que d(x,y) = ||x-y|| sea compatible se debe de cumplir $d(\lambda x, \lambda y) = |\lambda| d(x,y)$

$$d(\lambda x, \lambda y) = \sum_{n=1}^{\infty} a_n \frac{1 + |\lambda x_n - \lambda y_n|}{|\lambda x_n - \lambda y_n|} = \sum_{n=1}^{\infty} a_n \frac{1 + |\lambda \cdot (x_n - y_n)|}{|\lambda \cdot (x_n - y_n)|}$$
$$\sum_{n=1}^{\infty} a_n \frac{1 + |\lambda||x_n - y_n|}{|\lambda||x_n - y_n|} \neq |\lambda| \sum_{n=1}^{\infty} a_n \frac{1 + |x_n - y_n|}{|x_n - y_n|}$$

- 10. Sea $(E, \|\cdot\|)$ un espacio normado cuya norma procede de un producto interior.
 - (a) Demuestra que la igualdad ||x + y|| = ||x|| + ||y|| implica que los vectores x y y son linealmente dependientes.
 - (b) Comprueba la identidad del paralelogramo
 - (c) Infiera que la norma infinito y norma uno no provienen de un producto interior

Proof. Recordemos la desigualdad C-S. Sea (V, \langle , \rangle) un espacio con producto interior, $\implies \forall x, y \in V \text{ s.t.q.}$

$$|\langle x, y \rangle| \leqslant \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}$$

Para probar el inciso a) es sufciente probar el siguiente lema

Lema. En las condiciones de C-S

$$|\langle x,y\rangle| = \sqrt{\langle x,x\rangle} \cdot \sqrt{\langle y,y\rangle} \Leftrightarrow x,y$$
es linealmente dependiente

Proof. \Rightarrow Supongamos que $|\langle x,y\rangle| = \sqrt{\langle x,x\rangle} \cdot \sqrt{\langle y,y\rangle}$

Supongamos que $x \neq 0 \neq y$, ya que cuando son x = 0 o y = 0 trivialmente se cumple que son linealmente dependiente.

$$\Rightarrow \langle x, y \rangle^2 = \langle x, x \rangle \cdot \langle y, y \rangle$$

Por ello, s.t.q.

$$\begin{split} \langle x,x\rangle &= \frac{\langle x,y\rangle^2}{\langle y,y\rangle} \Rightarrow \langle x,x\rangle - \frac{\langle x,y\rangle^2}{\langle y,y\rangle} = 0 \Rightarrow \langle x,x\rangle - \frac{\langle x,y\rangle}{\langle y,y\rangle} \cdot \langle x,y\rangle \\ &= \langle x,x\rangle - 2 \cdot \frac{\langle x,y\rangle}{\langle y,y\rangle} \cdot \langle x,y\rangle + \frac{\langle x,y\rangle}{\langle y,y\rangle} \cdot \langle x,y\rangle \\ &= \langle x,x\rangle - 2 \cdot \frac{\langle x,y\rangle}{\langle y,y\rangle} \cdot \langle x,y\rangle + \frac{\langle x,y\rangle^2}{\langle y,y\rangle} \frac{\langle y,y\rangle}{\langle y,y\rangle} = \langle x,x\rangle - 2 \cdot \frac{\langle x,y\rangle}{\langle y,y\rangle} \cdot \langle x,y\rangle + \frac{\langle x,y\rangle^2}{\langle y,y\rangle^2} \langle y,y\rangle \end{split}$$

Definimos a $\lambda_0 = \frac{\langle x, y \rangle}{\langle y, y \rangle} \in \mathbb{R} \Rightarrow$

$$0 = \langle x, x \rangle - 2\lambda_0 \langle x, y \rangle + \lambda_0^2 \langle y, y \rangle$$
$$= \langle x - \lambda_0 y, x - \lambda_0 y \rangle = 0 \Leftrightarrow x - \lambda_0 y = 0 \Rightarrow x = \lambda_0 y \Leftrightarrow \text{ son l.d.}$$

 \Leftarrow Supongamos que son l.d. $\Rightarrow \exists \alpha, \beta \in \mathbb{R} \ni \text{no sn ambos cero y } \alpha x + \beta y = 0$. Supongamos que $\alpha \neq 0 \Rightarrow x = \frac{-\beta y}{\alpha}$

Luego

$$|\langle x, y \rangle| = \left| \langle \frac{-\beta y}{\alpha}, y \rangle \right| = \left| \frac{-\beta}{\alpha} \langle y, y \rangle \right| = \left| \frac{-\beta}{\alpha} \right| |\langle y, y \rangle|$$

Por otra parte

$$\sqrt{\langle x, x \rangle} = \sqrt{\langle \frac{-\beta y}{\alpha}, \frac{-\beta y}{\alpha} \rangle} = \sqrt{\left(\frac{-\beta}{\alpha}\right)^2 \langle y, y \rangle} = \left| \frac{-\beta}{\alpha} \right| \sqrt{\langle y, y \rangle}$$

$$\Rightarrow \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle} = \left| \frac{-\beta}{\alpha} \right| (\sqrt{\langle y, y \rangle})^2 = \left| \frac{-\beta}{\alpha} \right| |\langle y, y \rangle|$$

$$\Rightarrow |\langle x, y \rangle| = \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}$$

Supongamos que ||x+y|| = ||x|| + ||y||. Como $||\cdot||$ viene de un producto interior \Rightarrow

$$\sqrt{\langle x+y, x+y \rangle} = \sqrt{\langle x, x \rangle} + \sqrt{\langle y, y \rangle}$$

Luego

$$\Rightarrow \langle x + y, x + y \rangle = \langle x, x \rangle + 2\sqrt{\langle x, x \rangle \cdot \langle y, y \rangle} + \langle y, y \rangle$$

Vamos a expandir el producto interior del lado izquierdo de la ecaución

$$\langle x + y, x + y \rangle = \langle x, x + y \rangle + \langle y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$\Rightarrow \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle = \langle x, x \rangle + 2\sqrt{\langle x, x \rangle \cdot \langle y, y \rangle} + \langle y, y \rangle$$

$$\Rightarrow 2\langle x, y \rangle = 2\sqrt{\langle x, x \rangle \cdot \langle y, y \rangle} \Rightarrow \langle x, y \rangle = \sqrt{\langle x, x \rangle \cdot \langle y, y \rangle} = \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$

Pero notemos que $\sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle} = ||x|| ||y||$, que por $(N_1) \geqslant 0 \Rightarrow \langle x, y \rangle = |\langle x, y \rangle|$ $\therefore x, y$ son linealmente dependientes por el Lema anterior.

Proof. Sea $x, y \in E$. Por definición de $E \Rightarrow$

$$||x+y||^2 + ||x-y||^2 = \sqrt{\langle x+y, x+y \rangle}^2 + \sqrt{\langle x-y, x-y \rangle}^2$$

$$= \langle x+y, x+y \rangle + \langle x-y, x-y \rangle = \langle x, x+y \rangle + \langle y, x+y \rangle + \langle x, x-y \rangle - \langle y, x-y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle + \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$

$$= 2\langle x, x \rangle + 2\langle y, y \rangle = 2||x||^2 + 2||y||^2$$

∴ se cumple la identidad del paralelogramo

Proof. (a) Notemos que la norma infinito no satisface la identidad del paralelogramo. Sea $x=(1,0,...,0),y=(0,-1,0,...,0)\in\mathbb{R}^n$

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

$$\max\{|x_i + y_i| \mid i = 1, ..., n\}^2 + \max\{|x_i - y_i|\}^2 = 2 \cdot \max\{|x_i|\}^2 + 2 \cdot \max\{|y_i|\}^2$$

$$1^2 + 1^2 = 2 \neq 2 \cdot 1^2 + 2 \cdot 1^2 = 4$$

(b) Notemos que la norma uno no satisface la identidad del paralelogramo. Sea x=(1,0,...,0), $y=(0,1,0,...,0) \in \mathbb{R}^n$

$$\sum_{i=1}^{n} |x_i + y_i|^2 + \sum_{i=1}^{n} |x_i - y_i|^2 = 2\sum_{i=1}^{n} |x_i|^2 + 2\sum_{i=1}^{n} |y_i|^2$$
$$2^2 + 2^2 = 8 \neq 2 \cdot 1^2 + 2 \cdot 1^2 = 4$$

11. Consideremos el polinomio $Q(x,y) = ax^2 + 2bxy + cy^2$ donde $a,b,c \in \mathbb{R},\ a>0$ y $ac-b^2>0$. Demuestra que la fórmula $\|(x,y)\| = \sqrt{Q(x,y)}$ define en \mathbb{R}^2 una norma asociada a un producto interior.

12. Sea (X, d) un espacio métrico y $A \subseteq X$. La distancia de A a $x \in X$ se define como $d'(A, x) = \inf\{d(y, x) \mid y \in A\}$. Demostrar que $|d'(A, x) - d'(A, y)| \le d(x, y)$

Proof. Sea $x, y \in X \Rightarrow \forall z \in A \text{ s.t.q.}$

$$d'(A, x) \leqslant d(x, z) \leqslant d(x, y) + d(y, z)$$
$$d'(A, y) \leqslant d(y, z) \leqslant d(y, x) + d(x, z)$$

Podemos tomar el ínfimo en z, ya que la desigualdad se cumple para todas las métricas

$$d'(A,x) \leqslant d(x,y) + d'(A,y) \Rightarrow d'(A,x) - d'(A,y) \leqslant d(x,y)$$
$$d'(A,y) \leqslant d(y,x) + d'(A,x) \Rightarrow d'(A,y) - d'(A,x) \leqslant d(y,x)$$

Esto implica $|d'(A,x) - d'(A,y)| \le d(x,y)$

- 13. Sea (X,d) un espacio métrico y $\emptyset \neq Y \subseteq X$, se define al diámetro de Y como diam $(Y) = \sup\{d(y,w) \mid y,w \in Y\}$. Suponga que $(V,\|\cdot\|)$ es un espacio vectorial normado, que $d(x,y) = \|x-y\|$ y que $A,B\subseteq V$ son no vacíos. ¿Se cumplen las siguientes afirmaciones? argumente o dé un contraejemplo.
 - (a) Si $A \cap B \neq \emptyset \Rightarrow \operatorname{diam}(A \cup B) \leqslant \operatorname{diam}(A) + \operatorname{diam}(B)$
 - (b) $\operatorname{diam}(A \setminus B) = \operatorname{diam}(A) \operatorname{diam}(B)$
 - (c) Si $A \cap B = \emptyset \Rightarrow \operatorname{diam}(A \cup B) = \operatorname{diam}(A) + \operatorname{diam}(B)$
 - (d) Dado $u \in V$ definimos $A + u = \{a + u \mid a \in A\} \Rightarrow \operatorname{diam}(A + u) = \operatorname{diam}(A)$
 - (e) Si $\lambda \in \mathbb{R}$ definimos $\lambda A = \{\lambda a \mid a \in A\} \Rightarrow \operatorname{diam}(\lambda A) = |\lambda| \operatorname{diam}(A)$
 - (f) Si $A \subseteq B \Rightarrow \operatorname{diam}(A) \leqslant \operatorname{diam}(B)$

Proof. (a) $\forall x, y \in A \cup B$ se tienen los siguientes casos

- i. Si $x, y \in A \Rightarrow d(x, y) \leqslant \operatorname{diam}(A) \leqslant \operatorname{diam}(A) + \operatorname{diam}(B)$
- ii. Si $x, y \in B \Rightarrow d(x, y) \leqslant \text{diam}(B) \leqslant \text{diam}(B) + \text{diam}(A)$
- iii. SPG supongamos que $x \in A$ y que $y \in B \Rightarrow \exists z \in A \cap B$

$$\Rightarrow d(x,y) \leqslant d(x,z) + d(z,y) \leqslant \operatorname{diam}(A) + \operatorname{diam}(B)$$

- (b) Creo que no
- (c) Creo que no
- (d) Creo que no

(e) Esto es cierto ya que en la definición de distancia se puede ver que proviene de una norma, y esto sucede si y solo si saca escalares en valor absoluto.

14. Demuestra la Desigualdad de Hölder para series

Proof. Sean
$$p, q \in [1, \infty]$$
 $\ni \frac{1}{p} + \frac{1}{q} = 1$

Sea
$$(x_m)_{m=1}^{\infty} \in \ell_p(\mathbb{R})$$
 y $(y_m)_{m=1}^{\infty} \in \ell_q(\mathbb{R})$

Aplicando la desigualdad de Hölder en \mathbb{R}^n tenemos que $\forall n \in \mathbb{N}$

$$\sum_{i=1}^{n} |x_i y_i| \leqslant \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}} \leqslant \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{\frac{1}{q}} = M$$

Notemos que M es un número real, porque pertenece a $\ell_p(\mathbb{R})$, por lo tanto converge

$$\Rightarrow \forall n \in \mathbb{N} \Rightarrow \sum_{i=1}^{n} |x_i y_i| \leqslant M \Rightarrow \sum_{n=1}^{\infty} |x_n y_n| \text{ converge}$$

Si se tiene una sucesión de sumas parciales acotadas y mayores iguales a cero, y se encuentra una cota superior, entonces la serie converge

$$\Rightarrow \sum_{n=1}^{\infty} |x_n y_n| \leqslant \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} |y_n|^q\right)^{\frac{1}{q}}$$

Pero esta es la desigualdad de Hölder para series