Unsupervised Curricula for Visual Meta-Reinforcement Learning

Allan Jabri, Kyle Hsu, Ben Eysenbach, Abhishek Gupta, Sergey Levine, Chelsea Finn

NeurlPS 2019

From Specialist to Generalist

Train tasks

Source: Meta-World meta-world.github.io

Multi-task Reinforcement Learning

Contextual Policies

$$\pi(a|o,z)$$

Task description is given

e.g. a goal

Meta-learning for RL

$$\pi(a|o,\mathcal{D}_{\mathcal{T}})$$

Task inferred from data collected by policy

Meta-Reinforcement-Learning

Recurrent policy learns to infer task by collecting the right data

Visual Meta-Reinforcement-Learning

Search for and associate stimulus and reward.

The Task Distribution

$$\arg \max_{\theta} \sum_{i=1}^{n} \mathbb{E}_{\pi_{\theta}(\mathcal{D}_{\mathcal{M}_{i}})}[R(\tau)]$$
where $\mathcal{M}_{i} \sim p(\mathcal{M})$

Meta-training tasks give rise to task inference and execution strategies

Can we learn useful meta-RL strategies with tasks formed without supervision?

"Meta-Pre-training"

"Meta-Pre-training"

Unsupervised Pre-training

Transfer to Test Tasks

Task Acquisition

Tasks

Meta-learning

Unsupervised discovery of tasks

Learn to learn to solve tasks

Task Acquisition

Tasks

Meta-learning

Unsupervised discovery of tasks

Learn to learn to solve tasks

Should co-adapt

Criteria for Task Distribution

Diversity

Structure

Criteria for Task Distribution

Diversity
$$H(oldsymbol{ au})$$
 $-H(oldsymbol{ au}|\mathbf{z})$ Structure $=I(oldsymbol{ au};\mathbf{z})$

Formulation

$$\max_{ heta,\phi}I(oldsymbol{ au};\mathbf{z})$$

Policy $\pi_{ heta}$

au Post-update trajectories

Task scaffold q_{arphi}

Z Task latent variable

2. Meta-Train Update policy π_{θ}

2. Meta-Train Update policy $\pi_{ heta}$

E-step

M-step

Experimental Setting

Visual Navigation in VizDoom

Object Pushing with Sawyer in MuJoCo

What kind of tasks are discovered?

Direction encoded as color

What kind of tasks are discovered?

Direction encoded as color

What kind of tasks are discovered?

Step 1

Step 5

Transfer to Test Tasks – VizDoom

Transfer to Test Tasks – VizDoom

Faster Supervised Meta-RL

Thank You

Kyle Hsu

Ben Eysenbach

Abhishek Gupta

Sergey Levine Chelsea Finn

Poster #35, East Exhibition Hall B + C

https://sites.google.com/view/carml