

Europäisches Patentamt

European **Patent Office**

PCT / 1803/02449 Office européen des brevets

0 4 JUN 2003

REG'D 27 JUN 2003

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

02077426.1

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office Le Président de l'Office européen des brevets p.o.

R C van Dijk

Europäisches Patentamt European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.: 02077426.1

Demande no:

Anmeldetag:

Date of filing:

Date de dépôt:

19.06.02

Anmelder/Applicant(s)/Demandeur(s):

Koninklijke Philips Electronics N.V. Groenewoudseweg 1 5621 BA Eindhoven PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Tactile device

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

H02N11/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

02077426.1 EPA/EPO/OEB Form 1014.2 - 01.2000

7001014

Tactile device

5

10

15

20

25

EPO - DG 1

19. 06. 2002

43

The present invention relates to a tactile device provided with a number of fluid elements comprising an electrically conducting fluid, the fluid level in each element being movable, actuator means for moving the fluid level of a number of selected fluid elements by applying an electric force to said fluid elements, wherein each fluid element is provided with a tactile element that is in contact with the fluid for perceivement of the fluid level by a user.

1

In general tactile devices are arranged to transfer information by activating the feeling of touch of the user. Several types of tactile devices are known in practice. For example one type of tactile devices is arranged to provide force-feedback in joysticks, mouses, control pads and the like or to vibrate mobile phones. Another type of tactile devices is for instance applied in brail reading machines to transfer more complex information.

A device of the type as described above is known from GB 2 212 336. The known device comprises a number of fluid chambers filled with liquid crystal. Each of the chambers comprises a pair of sleeves acting as electrodes for applying an electric field to the fluid in order to change the fluid level using the Maxwell-Faraday effect. A piston pin floating on the fluid acts as a feeler indicating the fluid level. The known device forms part of a brail reading machine.

The known device has the disadvantage that it consumes a lot of electrical power. Furthermore the movable mechanical pins appear to be noisy. In practice the known device has shown lack of reliability combined with high costs.

It is an object of the invention to provide a device of the type as described above that solves these problems.

The device according to the invention is therefore characterised in that the fluid elements comprise capillary tubes in which the fluid level is movable as a result of electro capillary pressure.

Application of capillary tubes using electro capillary pressure allows the fluid level to be changed sufficiently with a minimal amount of electrical power. The device according to the invention may comprise as many fluid elements as necessary depending on the application and still be dynamic and easily programmable. Since the size of the fluid

10

15

20

25

30

2 10.06.2002

elements can be kept small, a total of 100 x 100 cells can fit into and can thus address the palm of a hand.

In a first preferred embodiment of the tactile device according to the invention the actuator means are arranged to vibrate the tactile element for a predetermined period of time when the fluid level has changed to a new position. The feeling of touch of the user is thereby activated in a natural way thereby improving the quality of information transfer to the user.

According to a further preferred embodiment the tactile element comprises a diaphragm of flexible material. The diaphragm can be moved rapidly and silently allowing a reliable and fast transfer of information without unwanted noise.

Preferably the diaphragm is provided with at least one contact spot to enhance the tactile feeling of the user.

In another preferred embodiment one or more capillary tubes are provided at the opposite end with a further diaphragm of flexible material. The capillary tubes are now separated so cross talk is effectively avoided.

In yet another preferred embodiment the actuator means are arranged for setting the fluid level of a number of selected capillary tubes at a predetermined prestressed level and the tactile device further comprises detector means that are arranged for detecting a change of fluid level in the selected capillary tubes. In this embodiment the tactile device may advantageously also function as a sensor picking up signals from the user.

In a practical embodiment the detector means are arranged for detecting a change of electric capacitance in the selected capillary tubes. Using this type of detector means the tactile device can advantageously be built in a compact form.

According to a further preferred embodiment one or more capillary tubes comprise a first fluid and a second fluid having different electrical conductivities, the fluids being essentially immiscible. This embodiment allows a voltage-dependent pressure to be applied to the capillary tubes to control the degree of movement of the tactile element. In a further detailed embodiment thereof either the first or the second fluid is electrically conducting and the other fluid, the second fluid respectively the first fluid, is electrically insulating. The range of movement is thereby maximal resulting in an optimal sensitivity of the tactile device.

According to a practical embodiment the actuator means comprise an electrical enver enurse. In a neutrino of classification is the descent of the enverse and the enverse and

BEST AVAILABLE COPY

10

15

20

25

30

Preferably the detector means comprise a voltage source and a current measurement device. Since a voltage source is already present only a current measurement device needs to be added to realise the sensor function provided for by the detector means.

Preferably one or more capillary tubes comprise at least one electrode that is attached to the wall of the capillary tube.

The invention will be further explained by means of the attached drawing, in which:

Figure 1 schematically shows a preferred embodiment of a fluid element as part of the device according to the invention in a first state;

Figure 2 schematically shows the fluid element of figure 1 in a second state;

Figure 3 schematically shows a preferred embodiment device according to the invention.

In all figures equal objects are denoted with equal reference numerals.

Figure 1 and figure 2 schematically show a preferred embodiment of a fluid element 1 as part of the device according to the invention. Fluid element 1 comprises a capillary tube 2 filled with a first electrically conducting fluid 3. On top of the conducting fluid lies an electrically insulating fluid 4. Fluids 3 and 4 are essentially immiscible which is indicated by means of the fluid/fluid meniscus 5. In an alternative embodiment fluid 3 is electrically insulating, while fluid 4 is electrically conducting. Examples of suitable electrically conducting fluids are aqueous solutions. Examples of suitable electrically insulating fluids are a gas or a nonpolar oil.

Actuator means are provided for applying an electric force to the capillary tube 2. As a result thereof an electro capillary pressure is introduced causing a change in the fluid level of the capillary tube. The actuator means comprise an electric power source V and a number of electrodes 6. In the preferred embodiment shown one electrode 6 is integrated in the wall of each capillary tube 2. The electrode 6 comprises a layer of conducting material. An insulating layer as well as a hydrophobic coating may be added thereto.

Each capillary tube 2 is provided with a tactile element 7 that is in contact with the fluid for perceivement of the fluid level by a user. The tactile element comprises a diaphragm 7 of flexible material on top of the fluid essentially closing the capillary tube 2 at one end thereof. In the preferred embodiment the diaphragm 7 comprises a flexible foil. A suitable material is a flexible plastic. The flexible foil is glued or sealed to the walls of the capillary tube. The diaphragm 7 is provided with a contact spot 8 of a more rigid material, for

10

15

20

25

30

instance a more rigid plastic. The contact spot 8 is smaller than the diaphragm 7 and may have any shape, such as a dot or a disc.

When by means of the electric source V and the electrode 6 an electric power is applied to the capillary tube 2 an electro capillary pressure is introduced by means of which the fluid level can be manipulated. A change of fluid level directly results in a change of position of the diaphragm 7. As an illustration thereof two different situations are shown in figures 1 and 2. In figure 1 the capillary tube 2 is shown in a first state, wherein the diaphragm 7 is bended upward. In figure 2 the capillary tube 2 is shown in a second state, wherein the diaphragm 7 is bended downward. The diaphragm 7 functions as a feeler transferring information to a user based on the activation of the feeling of touch.

It is noted that the phenomenon of electro capillary pressure is known per se in the field. In short the capillary pressure on the fluid/fluid meniscus 5 is determined by the difference between two interfacial tensions. On the one hand the tension of the interface between the wall of the capillary tube 2 and the conducting fluid 3 and on the other hand the tension of the interface between the wall of the capillary tube 2 and the insulating fluid 4. The tension influences the position of the fluid/fluid meniscus 5 and therefore also the position of the diaphragm 7. For a more detailed discussion of the phenomenon of electro capillary pressure reference is made to the article "Fluid Control in Multichannel Structures by Electro capillary Pressure", by Prins et al, Science, Volume 291, 12 January 2001, which is incorporated herein by reference.

The actuator means V, 6 are arranged to vibrate the diaphragm 7 for a predetermined period of time. Typically the vibration is applied when the diaphragm 7 has reached another state due to a change in fluid level. The vibration activates the feeling of touch in a more natural way. Many suitable actuator means for this task are available to a person skilled in the art, such as means for oscillating the voltage provided by the power source V during said time period.

Figure 3 schematically shows a device 10 comprising an array of capillary tubes 2 according to the invention. The position of each of the diaphragms 7 depends on the voltage applied to the corresponding capillary tube 2. In the example shown device 10 consists of one row of only eight capillary tubes 2. It will be understood that the number and configuration of the capillary tubes in the device according to the invention may vary.

Preferably the capillary tubes in the device are arranged in a matrix configuration. In practice the number of capillary tubes in the device are arranged in a matrix configuration. In practice

10

15

20

25

30

channels, such as capillary tubes, of inherently small size, the device according to the invention may comprise a large number of fluid elements and still be easy to handle. A threshold like behaviour of the capillary tubes can be achieved by changing the physical characteristics of the capillary tubes. By designing the capillary tubes such that the physical characteristics thereof induce threshold like behaviour extra components, such as transistors or diodes, become redundant. This further reduces the size of the device according to the invention. In the published international patent application WO 02/39462 A2, which is incorporated herein by reference, an example of a device comprising a matrix of capillary tubes having segmented electrodes showing a threshold like behaviour is described.

5

The number of electrical connections can be advantageously reduced by applying the method of matrix addressing that is known per se in the field. If every capillary is connected to an individual wire, the number of required electronic control elements scales with N^2 . A well-know method to reduce the number of control elements to a number of the order N, is by matrix addressing. Matrix addressing means that rows (indexed i, $i \in \{1,...,N\}$, voltage V_i) are activated one-by-one while the programming signals are placed on column wires (indexed j, $j \in \{1,...,N\}$, voltage V_j). In order to apply matrix addressing in a tactile device an electrical matrix structure is needed in every capillary tube, i.e. every capillary tube (i,j) needs to be connected to voltages V_i and V_j . In the cited WO 02/39642 A2 three examples thereof are shown.

In addition to the actuator function described above the device according to the invention can also function as a sensor. Thereto detector means comprising a voltage source and a current measurement device I are connected to each capillary tube 2 for detecting a change of electric capacitance. When the position of the diaphragm 7 is changed actively, for instance by pressure exerted thereon by a user, this will result in a change of electric capacitance in the corresponding capillary tube 2 that will be detected by the detector means. The electrical power source V can serve as the voltage source for instance providing a voltage ripple or a voltage pulse. By measuring the current using device I any change of electric capacitance can be detected. Information can now be transferred to the device simply by exerting pressure on the diaphragm 7 of one or more selected capillary tubes 2. The diaphragms need to be prestressed to a sufficient extent that can elegantly be provided for by the actuator means. Detector means for detecting a change of electric capacitance are described in more detail in the articles: "Contact angles and wetting velocity measured electrically', by H.J.J. Verheijen and M.W.J. Prins, Rev. Sci. Instr. 70(9), 3668-73 (1999), and 'Fluid control in multichannel structures by electro capillary pressure', by M.W.J. Prins,

10

15

20

6

10.06.2002

W.J.J. Welters, and J.W. Weekamp, Science 291(5502), 277-280 (2001). Many suitable alternative detector means, such as means for optical detection of deformation of the diaphragm 7 or the meniscus 5, are also available to a person skilled in the art.

In device 10 each capillary tube 2 is closed at the bottom by means of a second diaphragm 9. Diaphragm 9 may have the same characteristics as diaphragm 7. The capillary tubes 2 are thus separate entities and hydrostatic cross talk is sufficiently prevented. As an alternative the capillary tubes may use a shared reservoir of the first fluid. Although the production costs will probably be lower, cross talk is inevitable making the alternative embodiment useful only for certain less critical applications. In both embodiments a certain under pressure in the fluid is useful, such that the diaphragm 9 has not yet reached its most upward bended position. Various means for creating under pressure are available to a person skilled in the art, such as a hydrophobic coating on the wall of the capillary tubes.

In general the device according to the invention refers to a tactile device using capillary tubes, in which the fluid level is to be manipulated by electro capillary pressure, to transfer information. The tactile device either functions as an actuator or as a sensor or as a combination thereof.

The tactile device can be used for a wide variety of applications some of which will be mentioned here. A first application is as a communication device, especially to provide additional information in a situation wherein the visual system is already overloaded, for instance in airplanes, operating rooms, vehicles etc. A second application is as a virtual reality device, such as a glove that provides full tactile sensation over the palm and fingertips of the user. Other application may be in a telerobotic manipulator or in an electronic book for the visually impaired people.

The invention is of course not limited to the described or shown embodiments,
but generally extends to any embodiment, which falls within the scope of the appended
claims as seen in light of the foregoing description and drawings.

10.06.2002

CLAIMS:

5

25

EPO - DG 1

19.06.2002

43)

1. Tactile device provided with a number of fluid elements comprising an electrically conducting fluid, a fluid level in each element being movable, actuator means for moving the fluid level of a number of selected fluid elements by applying an electric force to said fluid elements, wherein each fluid element is at one end provided with a tactile element that is in contact with the fluid for perceivement of the fluid level by a user, characterized in that, the fluid elements comprise capillary tubes in which the fluid level is movable as a result of electro capillary pressure.

- 2. Tactile device according to claim 1, wherein the actuator means are arranged to vibrate the tactile element for a predetermined period of time.
 - 3. Tactile device according to claim 1 or 2, wherein the tactile element comprises a diaphragm of flexible material.
- 15 4. Tactile device according to claim 3, wherein the diaphragm is provided with at least one contact spot.
- 5. Tactile device according to one or more of the preceding claims, wherein one or more capillary tubes are provided at the opposite end with a further diaphragm of flexible material.
 - 6. Tactile device according to one or more of the preceding claims, wherein the actuator means are arranged for setting the fluid level of a number of selected capillary tubes at a predetermined prestressed level and wherein the device further comprises detector means that are arranged for detecting a change of fluid level in the selected capillary tubes.
 - 7. Tactile device according to claim 6, wherein the detector means are arranged for detecting a change of electric capacitance in the selected capillary tubes.

10.06.2002

- 8. Tactile device according to one or more of the preceding claims, wherein one or more capillary tubes comprise a first fluid and a second fluid having different electrical conductivities, the fluids being essentially immiscible.
- 5 9. Tactile device according to claim 8, wherein either the first fluid or the second fluid is electrically conducting and the other fluid, the second fluid respectively the first fluid, is electrically insulating.
- 10. Tactile device according to one or more of the preceding claims, wherein the actuator means comprise an electrical power source and a number of electrodes.
 - 11. Tactile device according to claim 6 through 10, wherein the detector means comprise a voltage source and a current measurement device.
- 15 12. Tactile device according to claim 10 or 11, wherein one or more capillary tubes comprise at least one electrode that is attached to the wall of the capillary tube.

10.06.2002

ABSTRACT:

EPO - DG 1

19. 06. 2002

43

The invention refers to a tactile device provided with a number of fluid elements (1) comprising an electrically conducting fluid (3, 4). The fluid level in each element is movable by actuator means (V, 6) applying an electric force to said fluid elements. Each fluid element is at one end provided with a tactile element (7) that is in contact with the fluid for perceivement of the fluid level by a user. The fluid elements comprise capillary tubes (2) in which the fluid level is movable as a result of electro capillary pressure.

Figure 1

