## MATH230: Tutorial Nine

## Introduction to Turing Machines

Key ideas and learning outcomes

- Know what is required to specify a Turing machine
- Give high-level (English) descriptions of Turing machines
- Comment your code
- Write example Turing machines
- Learn some "admin" tasks to help with other Turing machines

Make sure the Python code works for you before you leave this tutorial.

Relevant lectures: Turing Machine lecture slides. Relevant reading: The Annotated Turing, *Petzold*.

Hand in exercises: 1, 6, 8

Due following Friday @ 5pm submit .txt files online.

## **Discussion Questions**

1. Turing describes a tape with E-squares (for working; "liable to erasure") and F-squares for holding the content of the calculation. Turing assumes F-squares are never blank and contain either a 0 or 1.

Assume the input is a binary string with a blank E-square between each bit.



Write a Turing machine which has the input binary string next to the home (0) square without the blank E-squares between the bits.

2. Write this Turing machine into a .txt file that can be tested with the script. Make sure you know how this script works by the end of the tutorial.

## **Tutorial Exercises**

1. Print "Kia Ora, Ao!" on a blank tape.

Input: a blank tape.

Output: the characters on individual cells followed by blank cells.

2. Mark the end of a finite binary string.

Input: Assume tape has a non-empty binary block at the start.

Output: Input string with a symbol to mark the first blank cell after it.

Test input: @,1,1,1,0,1,1,b,b,b Test output: @,1,1,1,0,1,1,x,b,b

3. Remove any blank cells at the start of the tape.

Input: Assume tape has some finite binary block of cells.

Output: Input tape without the blank cells at the start.

Test input: @,b,b,b,b,b,b,b,b,b,b,b,b Test output:@,1,0,1,0,b,b,b,b

4. Flip all bits i.e. 1s to 0s and 0s to 1s.

Input: Assume tape has a non-empty finite binary block at the start.

Output: Binary string with all input bits flipped.

Test input: @,1,1,1,1,1,0,1 Test output: @,0,0,0,0,0,1,0

5. Blank out the tape.

Input: Assume tape has a non-empty binary block at the start.

Output: Blank tape.

Test input: @,1,1,1,0,1,1,b,b,b Test output: @,b,b,b,b,b,b,b,b,b,b

6. Reverse a binary string.

Input: Assume tape has a non-empty binary block at the start.

Output: Input string reversed.

Test input: @,1,1,1,0,1,1,0,1 Test output: @,1,0,1,1,0,1,1,1

7. Separate characters with blank cells.

Input: Assume tape has a non-empty binary block at the start.

Ouput: Input string with all bits spaced by a blank cell.

Test input: @,1,1,1,0, Test output: @,1,b,1,b,1,b,0,b,

8. Copy a binary string.

Input: Assume tape has a non-empty binary block at the start.

Ouput: Two copies of the input string together.

Test input: @,1,1,1,0,b,b, Test output: @,1,1,1,0,1,1,1,0,b,b,b,