Lógica de primer orden en Haskell

Eduardo Paluzo

Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Sevilla, 16 de junio de 2016 (Versión de 18 de mayo de 2017)

Esta obra está bajo una licencia Reconocimiento-NoComercial-CompartirIgual 2.5 Spain de Creative Commons.

Se permite:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor.

No comercial. No puede utilizar esta obra para fines comerciales.

Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Esto es un resumen del texto legal (la licencia completa). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2.5/es/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

In	itrodu	cción	7
Ι	Sen	aántica computacional y teoría de tipos	9
1	Prog	ramación funcional con Haskell	11
	1.1	Introducción a Haskell	11
		1.1.1 Comprensión de listas	13
		1.1.2 Funciones map y filter	13
		1.1.3 n-uplas	14
		1.1.4 Conjunción, disyunción y cuantificación	15
		1.1.5 Plegados especiales foldr y foldl	16
		1.1.6 Teoría de tipos	18
		1.1.7 Generador de tipos en Haskell: Descripción de funciones	19
	1.2	Librería Data.Map	21
2	Sinta	xis y semántica de la lógica de primer orden	25
	2.1	Representación de modelos	25
	2.2	Lógica de primer orden en Haskell	28
	2.3	Evaluación de fórmulas	31
	2.4	Términos funcionales	33
		2.4.1 Generadores	39
		2.4.2 Otros conceptos de la lógica de primer orden	42
3	Ded	icción natural	45
	3.1	Sustitución	45
	3.2	Sustitucion mediante diccionarios	50
	3.3	Reglas de deducción natural	50
		3.3.1 Reglas de la conjunción	52
		3.3.2 Reglas de eliminación del condicional	53
		3.3.3 Reglas de la disyunción	54

		3.3.4 Reglas de la negación	4
		3.3.5 Reglas del bicondicional	5
		3.3.6 Regla derivada de Modus Tollens(MT) 5	5
		3.3.7 Reglas de la doble negación	6
		3.3.8 Regla de Reducción al absurdo 5	6
		3.3.9 Ley del tercio excluido	7
		3.3.10 Reglas del cuantificador universal	7
		3.3.11 Reglas del cuantificador existencial	7
		3.3.12 Ejemplos	8
4	Pruel	oa de teoremas en lógica de predicados 5	9
	4.1	<u>Unificación</u>	9
	4.2	Skolem	0
		4.2.1 Formas normales	0
		4.2.2 Forma rectificada	5
		4.2.3 Forma normal prenexa 6	6
		4.2.4 Forma normal prenexa conjuntiva 6	8
		4.2.5 Forma de Skolem	8
	4.3	Forma clausal	1
	4.4	Tableros semánticos	3
5	Mod	elos de Herbrand 8	5
	5.1	Universo de Herbrand	5
	5.2	Base de Herbrand	9
	5.3	Interpretaciones de Herbrand	2
	5.4	Modelos de Herbrand	3
	5.5	Consistencia mediante modelos de Herbrand	4
	5.6	Extensiones de Herbrand	5
6	Mod	elos de Herbrand alternativo 9	7
	6.1	Universo de Herbrand	7
	6.2	Base de Herbrand	3
	6.3	Interpretacion de Herbrand	5
	6.4	Modelos de Herbrand	
7	Reso	lución en lógica de primer orden 10	9
	7.1	Ampliación de la forma clausal	
	7.2	Resolución sin términos que unificar	

Índice g	eneral	5
7.3	Resolvente binaria	114
8 Corr	espondencia de Curry-Howard	115
II Sis	stemas utilizados	119
9 Apéi	ndice: GitHub	121
9.1	Crear una cuenta	121
9.2	Crear un repositorio	121
9.3	Conexión	121
9.4	Pull y push	122
9.5	Ramificaciones ("branches")	123
Bibliog	rafía	124
Indice d	e definiciones	125
Lista de	tareas pendientes	128

Introducción

El objetivo del trabajo es la implementación de los algoritmos de la lógica de primer orden en Haskell. Consta de dos partes:

- La primera parte consiste en la implementación en Haskell de la teoría impartida en la asignatura Lógica matemática y fundamentos ¹ ([2]). Para ello, se lleva a cabo la adaptación de los programas del libro de J. van Eijck Computational semantics and type theory ² ([4]) y su correspondiente teoría.
- En la segunda parte se comentan aquellos sistemas empleados en la elaboración del trabajo.

¹https://www.cs.us.es/~jalonso/cursos/lmf-15

²http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.1441&rep=rep1&type=pdf

Parte I Semántica computacional y teoría de tipos

Capítulo 1

Programación funcional con Haskell

En este capítulo se hace una breve introducción a la programación funcional en Haskell suficiente para entender su aplicación en los siguientes capítulos. Para una introducción más amplia se pueden consultar los apuntes de la asignatura de Informática de 1º del Grado en Matemáticas ([1]). También se puede emplear como lectura complementaria, y se ha empleado para algunas definiciones del trabajo ([5])

El contenido de este capítulo se encuentra en el módulo PFH

```
module PFH where import Data.List
```

1.1. Introducción a Haskell

En esta sección se introducirán funciones básicas para la programación en Haskell. Como método didáctico, se empleará la definición de funciones ejemplos, así como la redefinición de funciones que Haskell ya tiene predefinidas, con el objetivo de que el lector aprenda "a montar en bici, montando".

A continuación se muestra la definición (cuadrado x) es el cuadrado de x. Por ejemplo,

```
ghci> cuadrado 3
9
ghci> cuadrado 4
16
```

La definición es

```
cuadrado :: Int -> Int
cuadrado x = x * x
```

Definimos otra función en Haskell. (raizCuadrada x) es la raiz cuadrada entera de x. Por ejemplo,

```
ghci> raizCuadrada 9
3
ghci> raizCuadrada 8
2
```

La definición es

```
raizCuadrada :: Int -> Int
raizCuadrada x = last [y | y <- [1..x], y*y <= x]</pre>
```

Posteriormente, definimos funciones que determinen si un elemento x cumple una cierta propiedad. Este es el caso de la propiedad 'ser divisible por n', donde n será un número cualquiera.

```
ghci> 15 'divisiblePor' 5
True
```

La definición es

```
divisiblePor :: Int -> Int -> Bool
divisiblePor x n = x 'rem' n == 0
```

Hasta ahora hemos trabajado con los tipos de datos Int y Bool; es decir, números enteros y booleanos, respectivamente. Pero también se puede trabajar con otros tipos de datos como son las cadenas de caracteres que son tipo [Char] o String.Definimos la función (contieneLaLetra xs 1) que identifica si una palabra contiene una cierta letra 1 dada. Por ejemplo,

```
ghci> "descartes" 'contieneLaLetra' 'e'
True
ghci> "topologia" 'contieneLaLetra' 'm'
False
```

Y su definición es

```
contieneLaLetra :: String -> Char -> Bool
contieneLaLetra [] _ = False
contieneLaLetra (x:xs) 1 = x == 1 || contieneLaLetra xs 1
```

1.1.1. Comprensión de listas

Las listas son una representación de un conjunto ordenado de elementos. Dichos elementos pueden ser de cualquier tipo, ya sean Int, Bool, Char, ... Siempre y cuando todos los elementos de dicha lista compartan tipo. En Haskell las listas se representan

```
ghci> [1,2,3,4]
[1,2,3,4]
ghci> [1..4]
[1,2,3,4]
```

Una lista por comprensión es parecida a su expresión como conjunto:

```
\{x|x\in A, P(x)\}
```

Se puede leer de manera intuitiva como: "tomar aquellos x del conjunto A tales que cumplen una cierta propiedad P". En Haskell se representa

```
[x|x \leftarrow \text{lista, condiciones que debe cumplir}]
```

Algunos ejemplos son:

```
ghci> [n | n <- [0 .. 10], even n]
[0,2,4,6,8,10]
ghci> [x | x <- ["descartes", "pitagoras", "gauss"], x 'contieneLaLetra' 'e']
["descartes"]</pre>
```

Nota 1.1.1. En los distintos ejemplos hemos visto que se pueden componer funciones ya definidas.

Otro ejemplo, de una mayor dificultad, es la construcción de variaciones con repeticiones de una lista. Se define (variaciones R n xs)

```
variacionesR :: Int -> [a] -> [[a]]
variacionesR _ [] = [[]]
variacionesR 0 _ = [[]]
variacionesR k xs =
        [z:ys | z <- xs, ys <- variacionesR (k-1) xs]</pre>
```

Nota 1.1.2. La función variaciones R será util en capítulos posteriores.

1.1.2. Funciones map y filter

Introducimos un par de funciones de mucha relevancia en el uso de listas en Haskell. Son funciones que se denominan de orden superior.

La función (map f xs) aplica una función f a cada uno de los elementos de la lista xs. Por ejemplo,

```
ghci> map ('divisiblePor' 4) [8,12,3,9,16]
[True,True,False,False,True]
ghci> map ('div' 4) [8,12,3,9,16]
[2,3,0,2,4]
ghci> map ('div' 4) [x | x <- [8,12,3,9,16], x 'divisiblePor' 4]
[2,3,4]</pre>
```

Dicha función está predefinida en el paquete Data. List, nosotros daremos una definición denotándola con el nombre (aplicafun f xs), y su definición es

La función (filter p xs) es la lista de los elementos de xs que cumplen la propiedad p. Por ejemplo,

```
ghci> filter (<5) [1,5,7,2,3] [1,2,3]
```

La función filter al igual que la función map está definida en el paquete Data.List, pero nosotros la denotaremos como (aquellosQuecumplen p xs). Y su definición es

En esta última definición hemos introducido las ecuaciones por guardas, representadas por |. Otro ejemplo más simple del uso de guardas es el siguiente

$$g(x) = \begin{cases} 5, & \text{si } x \neq 0 \\ 0, & \text{en caso contrario} \end{cases}$$

Que en Haskell sería

```
g :: Int -> Int
g x | x /= 0 = 5
| otherwise = 0
```

1.1.3. n-uplas

Una n-upla es un elemento del tipo (a_1, \ldots, a_n) y existen una serie de funciones para el empleo de los pares (a_1, a_2) . Dichas funciones están predefinidas bajo los nombres fst y snd, y las redefinimos como (primerElemento) y (segundoElemento) respectivamente.

```
primerElemento :: (a,b) -> a
primerElemento (x,_) = x

segundoElemento :: (a,b) -> b
segundoElemento (_,y) = y
```

1.1.4. Conjunción, disyunción y cuantificación

En Haskell, la conjunción está definida mediante el operador &&, y se puede generalizar a listas mediante la función predefinida (and xs) que nosotros redefinimos denotándola (conjuncion xs). Su definición es

```
conjuncion :: [Bool] -> Bool
conjuncion [] = True
conjuncion (x:xs) = x && conjuncion xs
```

Dicha función es aplicada a una lista de booleanos y ejecuta una conjunción generalizada.

La disyunción en Haskell se representa mediante el operador ||, y se generaliza a listas mediante una función predefinida (or xs) que nosotros redefinimos con el nombre (disyunción xs). Su definición es

```
disyuncion :: [Bool] -> Bool
disyuncion [] = False
disyuncion (x:xs) = x || disyuncion xs
```

Posteriormente, basándonos en estas generalizaciones de operadores lógicos se definen los siguientes cuantificadores, que están predefinidos como (any p xs) y (all p xs) en Haskell, y que nosotros redefinimos bajo los nombres (algun p xs) y (todos p xs). Se definen

```
algun, todos :: (a -> Bool) -> [a] -> Bool
algun p = disyuncion . aplicafun p
todos p = conjuncion . aplicafun p
```

Nota 1.1.3. Hemos empleando composición de funciones para la definición de (algun) y (todos). Se representa mediante .,y se omite el argumento de entrada común a todas las funciones.

En matemáticas, estas funciones representan los cuantificadores lógicos \exists y \forall , y determinan si alguno de los elementos de una lista cumple una cierta propiedad, y si

todos los elementos cumplen una determinada propiedad respectivamente. Por ejemplo.

```
\forall x \in \{0,...,10\} se cumple que x < 7. Es Falso
```

En Haskell se aplicaría la función (todos p xs) de la siguiente forma

```
ghci> todos (<7) [0..10]
False</pre>
```

Finalmente, definimos las funciones (pertenece x xs) y (noPertenece x xs)

```
pertenece, noPertenece :: Eq a => a -> [a] -> Bool
pertenece = algun . (==)
noPertenece = todos . (/=)
```

Estas funciones determinan si un elemento x pertenece a una lista xs o no.

1.1.5. Plegados especiales foldr y foldl

No nos hemos centrado en una explicación de la recursión pero la hemos empleado de forma intuitiva. En el caso de la recursión sobre listas, hay que distinguir un caso base; es decir, asegurarnos de que tiene fin. Un ejemplo de recursión es la función (factorial x), que definimos

```
factorial :: Int -> Int
factorial 0 = 1
factorial x = x*(x-1)
```

Añadimos una función recursiva sobre listas, como puede ser (sumaLaLista xs)

```
sumaLaLista :: Num a => [a] -> a
sumaLaLista [] = 0
sumaLaLista (x:xs) = x + sumaLaLista xs
```

Tras este preámbulo sobre recursión, introducimos la función (foldr f z xs) que no es más que una recursión sobre listas o plegado por la derecha, la definimos bajo el nombre (plegadoPorlaDerecha f z xs)

```
plegadoPorlaDerecha :: (a -> b -> b) -> b -> [a] -> b
plegadoPorlaDerecha f z [] = z
plegadoPorlaDerecha f z (x:xs) = f x (plegadoPorlaDerecha f z xs)
```

Un ejemplo de aplicación es el producto de los elementos o la suma de los elementos de una lista

```
ghci> plegadoPorlaDerecha (*) 1 [1,2,3]
6
ghci> plegadoPorlaDerecha (+) 0 [1,2,3]
6
```

Un esquema informal del funcionamiento de plegadoPorlaDerecha es

```
plegadoPorlaDerecha(\otimes) z [x_1, x_2, ..., x_n] := x_1 \otimes (x_2 \otimes (\cdots (x_n \otimes z) \cdots))
```

Nota 1.1.4. \otimes representa una operación cualquiera.

Por lo tanto, podemos dar otras definiciones para las funciones (conjuncion xs) y (disyuncion xs)

```
conjuncion1, disyuncion1 :: [Bool] -> Bool
conjuncion1 = plegadoPorlaDerecha (&&) True
disyuncion1 = plegadoPorlaDerecha (||) False
```

Hemos definido plegadoPorlaDerecha, ahora el lector ya intuirá que (foldl f z xs) no es más que una función que pliega por la izquiera. Definimos (plegadoPorlaIzquiera f z xs)

```
plegadoPorlaIzquierda :: (a -> b -> a) -> a -> [b] -> a
plegadoPorlaIzquierda f z [] = z
plegadoPorlaIzquierda f z (x:xs) = plegadoPorlaIzquierda f (f z x) xs
```

De manera análoga a foldr mostramos un esquema informal para facilitar la comprensión

```
\texttt{plegadoPorlaIzquierda} \ (\otimes) \ z \ [x_1, x_2, \ldots, x_n] := (\cdots ((z \otimes x_1) \otimes x_2) \otimes \cdots) \otimes x_n
```

Definamos una función ejemplo como es la inversa de una lista. Está predefinida bajo el nombre (reverse xs) y nosotros la redefinimos como (listaInversa xs)

```
listaInversa :: [a] -> [a]
listaInversa = plegadoPorlaIzquierda (\xs x -> x:xs) []
```

Por ejemplo

```
ghci> listaInversa [1,2,3,4,5]
[5,4,3,2,1]
```

Podríamos comprobar por ejemplo si la frase 'Yo dono rosas, oro no doy' es un palíndromo

```
ghci> listaInversa "yodonorosasoronodoy"
"yodonorosasoronodoy"
ghci> listaInversa "yodonorosasoronodoy" == "yodonorosasoronodoy"
True
```

1.1.6. Teoría de tipos

Notación λ

Cuando hablamos de notación lambda simplemente nos referimos a expresiones del tipo $\x -\x + 2$. La notación viene del λ *Calculus* y se escribiría λx . x + 2. Los diseñadores de Haskell tomaron el símbolo $\$ debido a su parecido con λ y por ser fácil y rápido de teclear. Una función ejemplo es (divideEntre2 xs)

```
divideEntre2 :: Fractional b => [b] -> [b]
divideEntre2 xs = map (\x -> x/2) xs
```

Para una información más amplia recomiendo consultar ([3])

Representación de un dominio de entidades

Definición 1.1.1. Un **dominio de entidades** es un conjunto de individuos cuyas propiedades son objeto de estudio para una clasificación

Construimos un ejemplo de un dominio de entidades compuesto por las letras del abecedario, declarando el tipo de dato Entidades contenido en el módulo Dominio

Se añade deriving (Eq, Bounded, Enum) para establecer relaciones de igualdad entre las entidades (Eq), una acotación (Bounded) y enumeración de los elementos (Enum).

Para mostrarlas por pantalla, definimos las entidades en la clase (Show) de la siguiente forma

```
instance Show Entidades where
    show A = "A"; show B = "B"; show C = "C";
    show D = "D"; show E = "E"; show F = "F";
    show G = "G"; show H = "H"; show I = "I";
    show J = "J"; show K = "K"; show L = "L";
    show M = "M"; show N = "N"; show O = "O";
    show P = "P"; show Q = "Q"; show R = "R";
    show S = "S"; show T = "T"; show U = "U";
    show V = "V"; show W = "W"; show X = "X";
    show Y = "Y"; show Z = "Z"; show Inespecifico = "*"
```

Colocamos todas las entidades en una lista

```
entidades :: [Entidades]
entidades = [minBound..maxBound]
```

De manera que si lo ejecutamos

```
ghci> entidades
[A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,*]
```

1.1.7. Generador de tipos en Haskell: Descripción de funciones

En esta sección se introducirán y describirán funciones útiles en la generación de ejemplos en tipos de datos abstractos. Estos generadores se emplean en la comprobación de propiedades con QuickCheck.

```
module Generadores where
import PFH
import Test.QuickCheck
import Control.Monad
```

Teoría básica de generadores

Cuando se pretende realizar pruebas aleatorias mediante QuickCheck, es necesario generar casos aleatorios. Dado un tipo de dato, se puede hacer miembro de la llamada clase Arbitrary.

```
class Arbitrary a where
  arbitrary :: Gen a
```

Nota 1.1.5. Gen a es un generador del tipo de dato a.

Cuando tenemos un generador de un determinado tipo de dato podemos hacerlo funcionar mediante

```
generate :: Gen a -> IO a
```

Veamos algunos ejemplos fáciles de tipos de datos que ya pertenecen a la clase Arbitrary:

```
-- >>> generate arbitrary :: IO Int
-- 28
-- >>> generate arbitrary :: IO Char
-- '\228'
-- >>> generate arbitrary :: IO [Int]
-- [5,-9,-27,15,-10,-23,20,-23,5,6,-29,-6,25,-3,-1,4,20,15,7,15]
```

Para construir generadores que dependan del tamaño, como por ejemplo los árboles que dependen de la profundidad, empleamos sized:

```
sized :: (Int -> Gen a) -> Gen a
```

Veamos un ejemplo de generadores que dependen del tamaño en los árboles binarios. En el caso de que no tuvieramos en cuenta el tamaño, el generador podría no acabar al generar un árbol infinito.

Primero definimos el tipo de dato abstracto del árbol binario:

```
data Arbol a = Hoja | Nodo Int (Arbol a) (Arbol a)
deriving (Show, Eq)
```

Posteriormente añadimos el tipo (Arbol a) a la clase Arbitrary:

```
instance Arbitrary a => Arbitrary (Arbol a) where
arbitrary = sized arbol
```

Finalmente se construye el generador de árboles:

A continuación, introduzcamos una serie de funciones

```
choose Escoge de manera pseudoaleatoria un elemento de un intervalo (a,b).

oneof Escoge de manera pseudoaleatoria un elemento de una lista.

listOf Elabora una lista de elementos pseudoaleatorios de un tipo determinado.

liftM Convierte una función en una mónada.

liftM2 Convierte una función en una mónada escaneando los argumentos de izquierda a derecha.
```

```
ghci> let g = choose (0,20)
ghci> generate g :: IO Int
14
ghci> let h = listOf g
ghci> generate h :: IO [Int]
[2,6,9,2,3,12,18,13,19,2,14,0,10,13,10,4,13,1,8]
ghci> let i = oneof [h,h]
ghci> generate i :: IO [Int]
[18,15,7,6,12,5,9,1,2,12,8,5,12,0,12,14,6,1,3]
```

En una futura sección se implementarán generadores de los distintos tipos de datos que se establecen para las fórmulas de la lógica, y así poder hacer comprobaciones con QuickCheck de todo aquello que implementemos.

1.2. Librería Data. Map

Introducimos la librería Data. Map cuya función es el trabajo con diccionarios, permitiendo tanto la construcción de estos diccionarios, como su modificación y acceso a la información.

```
module Map where
import Data.List
import Data.Map (Map)
import qualified Data.Map as M
import Text.PrettyPrint
import Text.PrettyPrint.GenericPretty
```

Debido a que mucha de sus funciones tienen nombres coincidentes con algunas ya definidas en Prelude, es necesario importarla renombrándola de la siguiente manera: import qualified Data. Map as M. Eso implica que cuando llamemos a una función de esta librería, tendremos que hacerlo poniendo M. (función).

Los diccionarios son del tipo M k y la forma de construirlos es mediante la función (M.fromList) seguida de una lista de pares.

```
-- | Ejemplos:
-- >>> :type M.fromList
-- M.fromList :: Ord k => [(k, a)] -> Map k a
--
-- >>> M.fromList [(1, "Pablo"), (10, "Elisabeth"), (7, "Cristina"), (0, "Luis")]
-- fromList [(0, "Luis"), (1, "Pablo"), (7, "Cristina"), (10, "Elisabeth")]
```

Una vez creado un diccionario, podemos acceder a la información registrada en él y modificarla.

El operador (M.!) sirve para acceder a elementos del diccionario.

```
-- | Ejemplos:
-- >>> let l = M.fromList [(1,"Pablo"),(10,"Elisabeth"),(7,"Cristina"),(0,"Luis")]
-- >>> l M.! 1
-- "Pablo"
-- >>> l M.! 10
-- "Elisabeth"
```

La función (M.size) devuelve el tamaño del diccionario; es decir, su número de elementos.

```
-- | Ejemplos

-- >>> let l = M.fromList [(1,"Pablo"),(10,"Elisabeth"),(7,"Cristina"),(0,"Luis")]

-- >>> M.size l

-- 4
```

La función (M. insert) registra un elemento en el diccionario.

```
-- | Ejemplos

-- >>> let l = M.fromList [(1,"Pablo"),(10,"Elisabeth"),(7,"Cristina"),(0,"Luis")]

-- >>> M.insert 8 "Jesus" l

-- fromList [(0,"Luis"),(1,"Pablo"),(7,"Cristina"),(8,"Jesus"),(10,"Elisabeth")]
```

El operador (M.

) realiza la diferencia entre dos diccionarios.

```
-- | Ejemplos
-- >>> let l = M.fromList [(1,"Pablo"),(10,"Elisabeth"),(7,"Cristina"),(0,"Luis")]
-- >>> let l' = M.fromList [(1,"Pablo"),(7,"Cristina"),(0,"Luis")]
-- >>> l M.\\ l
-- fromList []
-- >>> l M.\\ l'
-- fromList [(10,"Elisabeth")]
```

Para determinar si un elemento pertenece a un diccionario se emplea (M. member)

```
-- | Ejemplos

-- >>> let l = M.fromList [(1,"Pablo"),(10,"Elisabeth"),(7,"Cristina"),(0,"Luis")]

-- >>> M.member 10 l

-- True

-- >>> M.member 3 l

-- False
```

Para localizar la definición de un elemento en un diccionario usamos la función (M.lookup)

```
-- | Ejemplos
-- >>> let l = M.fromList [(1,"Pablo"),(10,"Elisabeth"),(7,"Cristina"),(0,"Luis")]
-- >>> M.lookup 10 l
-- Just "Elisabeth"
```

La función (M. adjust) actualiza una entrada de un diccionario aplicando una función determinada.

```
-- | Ejemplos
-- >>> let 1 = M.fromList [(1, "Pablo"), (10, "Elizabeth"), (7, "Cristina"), (0, "Luis")]
-- >>> M.adjust (++ " the Queen") 10 1
-- fromList [(0, "Luis"), (1, "Pablo"), (7, "Cristina"), (10, "Elizabeth the Queen")]
```

.

Capítulo 2

Sintaxis y semántica de la lógica de primer orden

El lenguaje de la lógica de primer orden está compuesto por

- 1. Variables proposicionales p, q, r, \dots
- 2. Conectivas lógicas:

_	Negación
V	Disyunción
\wedge	Conjunción
\rightarrow	Condicional
\leftrightarrow	Bicondicional

- 3. Símbolos auxiliares "(", ")"
- 4. Cuantificadores: \forall (Universal) y \exists (Existencial)
- 5. Símbolo de igualdad: =
- 6. Constantes: $a, b, ..., a_1, a_2, ...$
- 7. Símbolos de relación: P, Q, R, \dots
- 8. Símbolos de función: f, g, h . . .

2.1. Representación de modelos

El contenido de esta sección se encuentra en el módulo Modelo.

```
module Modelo where import Dominio import PFH
```

La lógica de primer orden permite dar una representación al conocimiento. Nosotros trabajaremos con modelos a través de un dominio de entidades; en concreto, aquellas del módulo Dominio. Cada entidad de dicho módulo representa un sujeto. Cada sujeto tendrá distintas propiedades.

En secciones posteriores se definirá un modelo lógico. Aquí empleamos el término modelo como una modelización o representación de la realidad.

Damos un ejemplo de predicados lógicos para la clasificación botánica, la cual no es completa, pero nos da una idea de la manera de una representación lógica.

Primero definimos los elementos que pretendemos clasificar, y que cumplirán los predicados. Con este fin, definimos una función para cada elemento del dominio de entidades.

```
adelfas, aloeVera, boletus, cedro, chlorella, girasol, guisante, helecho,
 hepatica, jaramago, jazmin, lenteja, loto, magnolia, maiz, margarita,
 musgo, olivo, pino, pita, posidonia, rosa, sargazo, scenedesmus,
 tomate, trigo
  :: Entidades
adelfas = U
aloeVera = L
egin{array}{lll} \mbox{boletus} &=& \mbox{W} \ \mbox{cedro} &=& \mbox{A} \end{array}
chlorella = Z
girasol = Y
guisante = S
helecho = E
hepatica
           = V
jaramago = X
jazmin = Q
          = R
lenteja
loto
          = T
magnolia = 0
maiz = F
margarita = K
        = D
musgo
olivo
          = C
     = M
pino
pita
posidonia = H
          = P
rosa
sargazo = I
scenedesmus = B
```

```
tomate = N
trigo = G
```

Una vez que ya tenemos todos los elementos a clasificar definidos, se procede a la interpretación de los predicados. Es decir, una clasificación de aquellos elementos que cumplen un cierto predicado.

Definición 2.1.1. Un **predicado** es una oración narrativa que puede ser verdadera o falsa.

```
acuatica, algasVerdes, angiosperma, asterida, briofita, cromista,
  crucifera, dicotiledonea, gimnosperma, hongo, leguminosa,
  monoaperturada, monocotiledonea, rosida, terrestre,
  triaperturada, unicelular
  :: Entidades -> Bool
acuatica
                  = ('pertenece' [B,H,I,T,Z])
algasVerdes = ('pertenece' [B,Z])
angiosperma = ('pertenece' [C,F,G,H,K,L,M,N,O,P,Q,R,S,T,U,X,Y])
asterida = ('pertenece' [C,K,N,Q,U,Y])
briofita = ('pertenece' [D,V])
                 = ('pertenece' [D,V])
briofita
cromista = ('pertenece' [I])
crucifera = ('pertenece' [X])
dicotiledonea = ('pertenece' [C,K,N,O,P,Q,R,S,T,U,X,Y])
gimnosperma = ('pertenece' [A,J])
hongo = ('pertenece' [W])
hongo = ('pertenece' [W])
leguminosa = ('pertenece' [R,S])
                  = ('pertenece' [W])
hongo
monoaperturada = ('pertenece' [F,G,H,L,M,O])
monocotiledonea = ('pertenece' [F,G,H,L,M])
                   = ('pertenece' [P])
rosida
terrestre
  ('pertenece' [A,C,D,E,F,G,J,K,L,M,N,O,P,Q,R,S,U,V,W,X,Y])
triaperturada = ('pertenece' [C,K,N,P,Q,R,S,T,U,X,Y])
                   = ('pertenece' [B,Z])
unicelular
```

Por ejemplo, podríamos comprobar si el scenedesmus es gimnosperma

```
ghci> gimnosperma scenedesmus
False
```

Esto nos puede facilitar establecer una jerarquía en la clasificación, por ejemplo (espermatofitas); es decir, plantas con semillas.

```
espermatofitas :: Entidades -> Bool
espermatofitas x = angiosperma x || gimnosperma x
```

2.2. Lógica de primer orden en Haskell

El contenido de esta sección se encuentra en el módulo LPH. Se pretende asentar las bases de la lógica de primer orden y su implementación en Haskell, con el objetivo de construir los cimientos para las posteriores implementaciones de algoritmos en los siguientes capítulos.

```
{-# LANGUAGE DeriveGeneric #-}

module LPH where

import Dominio
import Modelo
import Data.List
import Test.QuickCheck
import Text.PrettyPrint
import Text.PrettyPrint.GenericPretty
```

Los elementos básicos de las fórmulas en la lógica de primer orden, así como en la lógica proposicional son las variables. Por ello, definimos un tipo de dato para las variables.

Una variable estará compuesta por un nombre y un índice, es decir, nombraremos las variables como $x1, a1, \ldots$

El tipo de dato para el nombre lo definimos como una lista de caracteres

```
type Nombre = String
```

El tipo de dato para los índices lo definimos como lista de enteros.

```
type Indice = [Int]
```

Quedando el tipo de dato compuesto Variable como

```
data Variable = Variable Nombre Indice deriving (Eq,Ord,Generic)
```

Para una visualización agradable en pantalla se define su representación en la clase Show.

```
instance Show Variable where
  show (Variable nombre []) = nombre
  show (Variable nombre [i]) = nombre ++ show i
  show (Variable nombre is) = nombre ++ showInts is
  where showInts [] = ""
```

```
showInts [i] = show i
    showInts (i:is') = show i ++ "_" ++ showInts is'

instance Out Variable where
    doc = text . show
    docPrec _ = doc
```

Mostramos algunos ejemplos de definición de variables

```
x, y, z :: Variable
x = Variable "x" []
y = Variable "y" []
z = Variable "z" []
u = Variable "u" []
```

Y definimos también variables empleando índices

```
a1, a2, a3 :: Variable
a1 = Variable "a" [1]
a2 = Variable "a" [2]
a3 = Variable "a" [3]
```

De manera que su visualización será

```
ghci> x
x
ghci> y
y
ghci> a1
a1
ghci> a2
a2
```

Definición 2.2.1. Se dice que F es una **fórmula** si satisface la siguiente definición inductiva

- 1. Las variables proposicionales son fórmulas atómicas.
- 2. Si F y G son fórmulas, entonces $\neg F$, $(F \land G)$, $(F \lor G)$, $(F \to G)$ y $(F \leftrightarrow G)$ son fórmulas.

Se define un tipo de dato para las fórmulas lógicas de primer orden.

Y se define una visualización en la clase Show

```
instance Show Formula where
    show (Atomo r [])
                                = r
    show (Atomo r vs)
                              = r ++ show vs
    show (Igual t1 t2)
                              = show t1 ++ "\equiv" ++ show t2
    show (Negacion formula) = '¬' : show formula
show (Implica f1 f2) = "(" ++ show f1 ++ "\Longrightarrow" ++ show f2 ++ ")"
    show (Equivalente f1 f2) = "(" ++ show f1 ++ "\iff" ++ show f2 ++ ")
    show (Conjuncion [])
                                = "true"
    show (Conjuncion (f:fs)) = "(" ++ show f ++ "\wedge" ++ show fs ++ ")"
    show (Disyuncion [])
                                = "false"
    show (Disyuncion (f:fs)) = "(" ++ show f ++ "\bigvee" ++ show fs ++ ")"
                                = "\forall" ++ show v ++ (' ': show f)
    show (ParaTodo v f)
                                = "∃" ++ show v ++ (', ': show f)
    show (Existe v f)
```

Como ejemplo podemos representar las propiedades reflexiva y simétrica.

```
-- | Ejemplos
-- >>> reflexiva
-- \forall x R[x,x]
-- >>> simetrica
-- \forall x \forall y (R[x,y] \implies R[y,x])
reflexiva, simetrica :: Formula
reflexiva = ParaTodo x (Atomo "R" [x,x])
simetrica = ParaTodo x (ParaTodo y (Atomo "R" [x,y] 'Implica'
Atomo "R" [y,x]))
```

Definición 2.2.2. Una **estructura del lenguaje** L es un par $\mathcal{I} = (\mathcal{U}, I)$ tal que

- 1. \mathcal{U} es un conjunto no vacío, denominado universo.
- 2. I es una función con dominio el conjunto de símbolos propios de L. L : Símbolos \to Símbolos tal que

- si c es una constante de L, entonces $I(c) \in \mathcal{U}$
- si f es un símbolo de función n–aria de L, entonces $I(f): \mathcal{U}^n \to \mathcal{U}$
- si P es un símbolo de relación 0–aria de L, entonces $I(P) \in \{1, \}$
- si R es un símbolo de relación n–aria de L, entonces $I(R) \subseteq \mathcal{U}^n$

Para el manejo de estructuras del lenguaje, vamos a definir tipos de datos para cada uno de sus elementos.

Definimos el tipo de dato relativo al universo como una lista de elementos.

```
type Universo a = [a]
```

Definición 2.2.3. Una **asignación** es una función que hace corresponder a cada variable un elemento del universo.

Se define un tipo de dato para las asignaciones

```
type Asignacion a = Variable -> a
```

Necesitamos definir una asignación para los ejemplos. Tomamos una asignación constante muy sencilla.

```
asignacion :: a -> Entidades
asignacion v = A
```

2.3. Evaluación de fórmulas

En esta sección se pretende interpretar fórmulas. Una interpretación toma valores para las variables proposicionales, y se evalúan en una fórmula, determinando si la fórmula es verdadera o falsa, bajo esa interpretación.

Definición 2.3.1. Una **interpretación proposicional** es una aplicación $I: VP \rightarrow Bool$, donde VP representa el conjunto de las variables proposicionales.

A continuación, presentamos una tabla de valores de las distintas conectivas lógicas según las interpretaciones de P y Q. P y Q tienen dos posibles interpretaciones: Falso o verdadero. Falso lo representamos mediante el 0, y verdadero mediante el 1.

P	Q	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

El valor de (sustituye s x d) es la asignación obtenida a partir de la asignación s pero con x interpretado como d,

sustituye (s(t),x,d,v) =
$$\begin{cases} d, & \text{si } x = v \\ s(v), & \text{en caso contrario} \end{cases}$$

Definición 2.3.2. Una interpretación de una estructura del lenguaje es un par (\mathcal{I}, A) formado por una estructura del lenguaje y una asignación A.

Definimos un tipo de dato para las interpretaciones de los símbolos de relación.

```
type InterpretacionR a = String -> [a] -> Bool
```

Definimos la función (valor u i s form) que calcula el valor de una fórmula en un universo u, con una interpretación i, respecto de la asignación s.

Empleando las entidades y los predicados definidos en los módulos Dominio y Modelo, establecemos un ejemplo del valor de una interpretación en una fórmula.

Primero definimos la fórmula a interpretar, formula1, y dos posibles interpretaciones interpretacion1 e interpretacion2.

```
formula1 :: Formula
formula1 = ParaTodo x (Disyuncion [Atomo "P" [x],Atomo "Q" [x]])

interpretacion1 :: String -> [Entidades] -> Bool
interpretacion1 "P" [x] = angiosperma x
interpretacion1 "Q" [x] = gimnosperma x
interpretacion1 _ _ = False

interpretacion2 :: String -> [Entidades] -> Bool
interpretacion2 "P" [x] = acuatica x
interpretacion2 "Q" [x] = terrestre x
interpretacion2 _ _ = False
```

Tomando como universo todas las entidades, menos la que denotamos Inespecífico, se tienen las siguientes evaluaciones

```
-- | Evaluaciones

-- >>> valor (take 26 entidades) interpretacion1 asignacion formula1

-- False

-- >>> valor (take 26 entidades) interpretacion2 asignacion formula1

-- True
```

Por ahora siempre hemos establecido propiedades, pero podríamos haber definido relaciones binarias, ternarias, ..., n–arias.

2.4. Términos funcionales

En la sección anterior todos los términos han sido variables. Ahora consideraremos cualquier término.

Definición 2.4.1. Son **términos** en un lenguaje de primer orden:

- 1. Variables
- 2. Constantes
- 3. $f(t_1,...,t_n)$ si t_i son términos $\forall i = 1,...,n$

Definimos un tipo de dato para los términos que serán la base para la definición de aquellas fórmulas de la lógica de primer orden que no están compuestas sólo por variables.

```
data Termino = Var Variable | Ter Nombre [Termino]
deriving (Eq,Ord,Generic)
```

Algunos ejemplos de variables como términos

```
tx, ty, tz :: Termino
tx = Var x
ty = Var y
tz = Var z
tu = Var u
```

Como hemos introducido, también tratamos con constantes, por ejemplo:

```
a, b, c, cero :: Termino

a = Ter "a" []

b = Ter "b" []

c = Ter "c" []

cero = Ter "cero" []
```

Para mostrarlo por pantalla de manera comprensiva, definimos su representación.

```
-- | Ejemplo
-- >>> Ter "f" [tx,ty]
-- f[x,y]

instance Show Termino where
show (Var v) = show v
show (Ter c []) = c
show (Ter f ts) = f ++ show ts

instance Out Termino where
doc = text . show
docPrec _ = doc
```

La propiedad (es Variable t) se verifica si el término t es una variable.

```
-- | Ejemplos
-- >>> esVariable tx
-- True
-- >>> esVariable (Ter "f" [tx,ty])
-- False
esVariable :: Termino -> Bool
esVariable (Var _) = True
esVariable _ = False
```

Ahora, creamos el tipo de dato Form de manera análoga a como lo hicimos en la sección anterior, pero en este caso considerando cualquier término.

Algunos ejemplos de fórmulas son

Y procedemos análogamente a la sección enterior, definiendo la representación de fórmulas por pantalla.

```
instance Show Form where
    show (Atom r []) = r
    show (Atom r ts) = r ++ show ts
    show (Ig t1 t2) = show t1 ++ "\equiv" ++ show t2 show (Neg f) = '\neg': show f
    show (Impl f1 f2) = "(" ++ show f1 ++ "\Longrightarrow" ++ show f2 ++ ")"
    show (Equiv f1 f2) = "(" ++ show f1 ++ "\iff" ++ show f2 ++ ")"
    show (Conj []) = "verdadero"
    show (Conj [f]) = show f
    show (Conj (f:fs)) = "(" ++ show f ++ "\wedge" ++ show (Conj fs) ++ ")"
    show (Disy []) = "falso"
    show (Disy [f]) = show f
    show (Disy (f:fs)) = "(" ++ show f ++ "\bigvee" ++ show (Disy fs) ++ ")"
    show (PTodo v f) = "\forall" ++ show v ++ (' ': show f)
                      = "∃" ++ show v ++ (' ': show f)
    show (Ex v f)
instance Out Form where
          = text . show
  docPrec _ = doc
```

Quedando las fórmulas ejemplo antes definidas de la siguiente manera

```
-- | Ejemplos

-- >>> formula2

-- \forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

-- >>> formula3

-- (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))
```

Previamente hemos definido InterpretacionR, ahora para la interpretación de los símbolos funcionales se define un nuevo tipo de dato, InterpretacionF.

```
type InterpretacionF a = String -> [a] -> a
```

Para interpretar las fórmulas, se necesita primero una interpretación del valor en los términos.

Definición 2.4.2. Dada una estructura $\mathcal{I} = (U, I)$ de L y una asignación A en \mathcal{I} , se define la **función de evaluación de términos** $\mathcal{I}_A : Term(L) \to U$ por

$$\mathcal{I}_A(t) = \begin{cases} I(c), \text{ si } t \text{ es una constante } c \\ A(x), \text{ si } t \text{ es una variable } x \\ I(f)(\mathcal{I}_A(t_1), \dots, \mathcal{I}_A(t_n)), \text{ si } t \text{ es } f(t_1, \dots t_n) \end{cases}$$

Nota 2.4.1. \mathcal{I}_A se lee "el valor de t en \mathcal{I} respecto de A".

El valor de (valorT i a t) es el valor del término t en la interpretación i respecto de la asignación a.

```
valorT :: InterpretacionF a -> Asignacion a -> Termino -> a
valorT i a (Var v) = a v
valorT i a (Ter f ts) = i f (map (valorT i a) ts)
```

Para evaluar ejemplos de evaluación de términos usaremos la siguiente interpretación de los símbolos de función

```
interpretacionF1 :: String -> [Int] -> Int
interpretacionF1 "cero" [] = 0
interpretacionF1 "s" [i] = succ i
interpretacionF1 "mas" [i,j] = i + j
interpretacionF1 "por" [i,j] = i * j
interpretacionF1 _ _ = 0
```

y la siguiente asignación

```
asignacion1 :: Variable -> Int
asignacion1 _ = 0
```

Con ello, se tiene

```
-- | Evaluaciones
-- >>> let t1 = Ter "cero" []
-- >>> valorT interpretacionF1 asignacion1 t1
-- >>> let t2 = Ter "s" [t1]
-- >>> t2
-- s[cero]
-- >>> valorT interpretacionF1 asignacion1 t2
-- >>> let t3 = Ter "mas" [t2,t2]
-- >>> t3
-- mas[s[cero],s[cero]]
-- >>> valorT interpretacionF1 asignacion1 t3
-- >>> let t4 = Ter "por" [t3,t3]
-- >>> t4
-- por[mas[s[cero],s[cero]],mas[s[cero],s[cero]]]
-- >>> valorT interpretacionF1 asignacion1 t4
-- 4
```

Definimos el tipo de dato Interpretación como un par formado por las interpretaciones de los símbolos de relación y la de los símbolos funcionales.

```
type Interpretacion a = (InterpretacionR a, InterpretacionF a)
```

Definición 2.4.3. Dada una estructura $\mathcal{I} = (U, I)$ de L y una asignación A sobre \mathcal{I} , se define la **función evaluación de fórmulas** $\mathcal{I}_A : Form(L) \to Bool$ por

```
• Si F es t_1=t_2, \mathcal{I}_A(F)=H_=(\mathcal{I}_A(t_1),\mathcal{I}_A(t_2))
```

- Si F es $P(t_1,...,t_n)$, $\mathcal{I}_A(F) = H_{I(P)}(\mathcal{I}_A(t_1),...,\mathcal{I}_A(t_n))$
- Si F es $\neg G$, $\mathcal{I}_A(F) = H_{\neg}(\mathcal{I}_A(G))$
- Si F es G * H, $\mathcal{I}_A(F) = H_*(\mathcal{I}_A(G), \mathcal{I}_A(H))$
- Si F es $\forall xG$,

$$\mathcal{I}_A(F) = \left\{ egin{array}{l} 1, \ {
m si \ para \ todo} \ u \in U \ {
m se \ tiene} \ \mathcal{I}_{A[x/u]} = 1 \ 0, \ {
m en \ caso \ contario.} \end{array} \right.$$

• Si F es $\exists xG$,

$$\mathcal{I}_A(F) = \left\{ egin{array}{l} 1, \ {
m si} \ {
m existe} \ {
m algún} \ u \in U \ {
m tal} \ {
m que} \ \mathcal{I}_{A[x/u]} = 1 \ 0, \ {
m en} \ {
m caso} \ {
m contario}. \end{array}
ight.$$

Definimos una función que determine el valor de una fórmula. Dicha función la denotamos por (valorF u (iR,iF) a f), en la que u denota el universo, iR es la interpretación de los símbolos de relación, iF es la interpretación de los símbolos de función, a la asignación y f la fórmula.

```
valorF :: Eq a => Universo a -> Interpretacion a -> Asignacion a
                             -> Form -> Bool
valorF u (iR,iF) a (Atom r ts) =
 iR r (map (valorT iF a) ts)
valorF u (_,iF) a (Ig t1 t2) =
 valorT iF a t1 == valorT iF a t2
valorF u i a (Neg g) =
 not (valorF u i a g)
valorF u i a (Impl f1 f2) =
 valorF u i a f1 <= valorF u i a f2</pre>
valorF u i a (Equiv f1 f2) =
 valorF u i a f1 == valorF u i a f2
valorF u i a (Conj fs) =
 all (valorF u i a) fs
valorF u i a (Disy fs) =
 any (valorF u i a) fs
valorF u i a (PTodo v g) =
 and [valorF u i (sustituye a v d) g | d <- u]
valorF u i a (Ex v g) =
  or [valorF u i (sustituye a v d) g | d <- u]
```

Para construir un ejemplo tenemos que interpretar los elementos de una fórmula. Definimos las fórmulas 4 y 5, aunque emplearemos en el ejemplo sólo la formula4.

```
-- | Ejemplos

-- >>> formula4

-- \exists x \ R[cero,x]

-- >>> formula5

-- (\forall x \ P[x] \Longrightarrow \forall y \ Q[x,y])

formula4, formula5 :: Form

formula4 = Ex x (Atom "R" [cero,tx])

formula5 = Impl (PTodo x (Atom "P" [tx])) (PTodo y (Atom "Q" [tx,ty]))
```

En este caso tomamos como universo U los números naturales. Interpretamos R como la desigualdad <. Es decir, vamos a comprobar si es cierto que existe un número natural mayor que el 0. Por tanto, la interpretación de los símbolos de relación es

```
interpretacionR1 :: String -> [Int] -> Bool
interpretacionR1 "R" [x,y] = x < y
interpretacionR1 _ _ = False</pre>
```

En este caso se tiene las siguientes evaluaciones

```
-- | Evaluaciones
-- >>> valorF [0..] (interpretacionR1,interpretacionF1) asignacion1 formula4
-- True
```

Nota 2.4.2. Haskell es perezoso, así que podemos utilizar un universo infinito. Haskell no hace cálculos innecesarios; es decir, para cuando encuentra un elemento que cumple la propiedad.

Dada una fórmula F de L se tienen las siguientes definiciones:

Definición 2.4.4. ■ Un **modelo** de una fórmula F es una interpretación para la que F es verdadera.

- Una fórmula *F* es **válida** si toda interpretación es modelo de la fórmula.
- Una fórmula *F* es **satisfacible** si existe alguna interpretación para la que sea verdadera.
- Una fórmula es insatisfacible si no tiene ningún modelo.

2.4.1. Generadores

```
Pendiente de revisión.
```

Para poder emplear el sistema de comprobación QuickCheck, necesitamos poder generar elementos aleatorios de los tipos de datos creados hasta ahora.

```
module GeneradoresForm where
import PFH
import LPH
import Test.QuickCheck
import Control.Monad
```

Nuestro primer objetivo será la generación de variables. Recordemos cómo estaban definidas las variables:

```
data Variable = Variable Nombre Indice
  deriving (Eq,Ord,Generic)
```

Comprobamos que una variable está compuesta de un nombre y un índice. Así que comenzamos generando el nombre y, con este fin, generamos letras al azar del abecedario, y cada una compondrá un nombre para una variable.

```
abecedario :: Nombre
abecedario = ['a'..'z']

genLetra :: Gen Char
genLetra = elements abecedario
```

Podemos emplear como dijimos en la sección introductoria a los generadores de tipos la función generate para generar algunas letras al azar.

```
ghci> generate genLetra :: IO Char
'r'
ghci> generate genLetra :: IO Char
'p'
```

Con esto podemos definir el generador de nombres genNombre.

```
genNombre :: Gen Nombre
genNombre = liftM (take 1) (listOf1 genLetra)
```

Una definición alternativa a la anterior es genNombre2 como sigue

```
genNombre2 :: Gen Nombre
genNombre2 = do
   c <- elements ['a'...'z']
   return [c]</pre>
```

Finalmente, generemos algunos ejemplos de nombres para variables.

```
ghci> generate genNombre :: IO Nombre
"i"
ghci> generate genNombre :: IO Nombre
"y"
ghci> generate genNombre2 :: IO Nombre
"y"
```

Una vez que tenemos los nombres de nuestras variables, podemos generar índices. En nuestro caso limitaremos los índices al rango del 0 al 100, pues no necesitamos una cantidad mayor de variables.

Definimos un generador de enteros genNumero en el rango requerido.

```
genNumero :: Gen Int
genNumero = choose (0,100)
```

Y construimos el generador de índices genIndice.

```
genIndice :: Gen Indice
genIndice = liftM (take 1) (listOf1 genNumero)
```

Comprobemos que podemos tomar índices al azar.

```
ghci> generate genIndice :: IO Indice
[52]
ghci> generate genIndice :: IO Indice
[70]
ghci> generate genIndice :: IO Indice
[89]
```

Una vez que hemos establecido generadores de los tipos abstractos que componen las variables, podemos combinarlos en un generador de variables generaVariable.

```
generaVariable :: Gen Variable
generaVariable = liftM2 Variable (genNombre) (genIndice)
```

Introducimos nuestro generador en la clase Arbitrary.

```
instance Arbitrary (Variable) where
    arbitrary = generaVariable
```

Ya podemos generar variables pseudoaleatorias, comprobemos lo que obtenemos.

```
ghci> generate generaVariable :: IO Variable
a94
ghci> generate generaVariable :: IO Variable
x85
ghci> generate generaVariable :: IO Variable
j56
ghci> generate generaVariable :: IO Variable
x54
ghci> generate generaVariable :: IO Variable
a82
```

```
Faltan términos y fórmulas
```

Generador de Términos

```
instance Arbitrary (Termino) where
    arbitrary = sized termino
    where
     termino 0 = liftM Var generaVariable
     termino n = liftM2 Ter genNombre (listOf generaTermino)
     where
        generaTermino = termino (n-1)
```

Generador de Fórmulas

2.4.2. Otros conceptos de la lógica de primer orden

Las funciones varEnTerm y varEnTerms devuelven las variables que aparecen en un término o en una lista de ellos.

```
-- Ejemplos
-- >>> let t1 = Ter "f" [tx,a]
-- >>> varEnTerm t1
-- [x]
-- >>> let t2 = Ter "g" [tx,a,ty]
-- >>> varEnTerm t2
-- [x,y]
-- >>> varEnTerms [t1,t2]
-- [x,y]
varEnTerm :: Termino -> [Variable]
varEnTerm (Var v) = [v]
varEnTerm (Ter _ ts) = varEnTerms ts

varEnTerms :: [Termino] -> [Variable]
varEnTerms = nub . concatMap varEnTerm
```

Nota 2.4.3. La función nub xs elimina elementos repetidos en una lista xs. Se encuentra en el paquete Data. List.

Nota 2.4.4. Se emplea un tipo de recursión cruzada entre funciones. Las funciones se llaman la una a la otra.

La función varEnForm devuelve una lista de las variables que aparecen en una fórmula.

```
-- | Ejemplos
-- >>> formula2
-- \forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))
-- >>> varEnForm formula2
--[x,y,z]
-- >>> formula3
-- (R[x,y] \Longrightarrow \exists z (R[x,z] \land R[z,y]))
-- >>> varEnForm formula3
--[x,y,z]
-- >>> formula4
-- ∃x R[cero,x]
-- >>> varEnForm formula4
-- [x]
varEnForm :: Form -> [Variable]
varEnForm (Atom _ ts) = varEnTerms ts
varEnForm (Ig t1 t2) = nub (varEnTerm t1 ++ varEnTerm t2)
varEnForm (Neg f) = varEnForm f
varEnForm (Impl f1 f2) = varEnForm f1 'union' varEnForm f2
varEnForm (Equiv f1 f2) = varEnForm f1 'union' varEnForm f2
varEnForm (Conj fs) = nub (concatMap varEnForm fs)
varEnForm (Disy fs) = nub (concatMap varEnForm fs)
varEnForm (PTodo x f) = varEnForm f
varEnForm (Ex x f)
                             = varEnForm f
```

Definición 2.4.5. Una variable es **libre** en una fórmula si no tiene ninguna aparición ligada a un cuantificador existencial o universal. $(\forall x, \exists x)$

La función (variablesLibres f devuelve las variables libres de la fórmula f.

```
-- | Ejemplos
-- >>> formula2
-- \forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))
-- >>> variablesLibres formula2
-- F1
-- >>> formula3
-- (R[x,y] \Longrightarrow \exists z (R[x,z] \land R[z,y]))
-- >>> variablesLibres formula3
--[x,y]
-- >>> formula4
-- ∃x R[cero,x]
-- >>> variablesLibres formula4
-- []
variablesLibres :: Form -> [Variable]
variablesLibres (Atom _ ts) =
  varEnTerms ts
variablesLibres (Ig t1 t2) =
```

```
varEnTerm t1 'union' varEnTerm t2
variablesLibres (Neg f) =
  variablesLibres f
variablesLibres (Impl f1 f2) =
  variablesLibres f1 'union' variablesLibres f2
variablesLibres (Equiv f1 f2) =
  variablesLibres f1 'union' variablesLibres f2
variablesLibres (Conj fs) =
  nub (concatMap variablesLibres fs)
variablesLibres (Disy fs) =
  nub (concatMap variablesLibres fs)
variablesLibres (PTodo x f) =
  delete x (variablesLibres f)
variablesLibres (Ex x f) =
  delete x (variablesLibres f)
```

Definición 2.4.6. Una variable x está **ligada** en una fórmula cuando tiene una aparición de la forma $\forall x$ o $\exists x$.

Definición 2.4.7. Una **fórmula abierta** es una fórmula con variables libres.

La función (formulaAbierta f) determina si una fórmula dada es abierta.

```
-- Ejemplos
-- >>> formula3
-- (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))
-- >>> formulaAbierta formula3
-- True
-- >>> formula2
-- \forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))
-- >>> formulaAbierta formula2
-- False
formulaAbierta :: Form -> Bool
formulaAbierta = not . null . variablesLibres
```

.

Capítulo 3

Deducción natural

En este capítulo se pretende implementar la deducción natural de la lógica de primer orden en Haskell. El contenido de este capítulo se encuentra en el módulo DNH.

```
module DNH where
import LPH
import Data.List
import Text.PrettyPrint
import Text.PrettyPrint.GenericPretty
```

3.1. Sustitución

Definición 3.1.1. Una **sustitución** es una aplicación $S: Variable \rightarrow Termino$.

Nota 3.1.1. $[x_1/t_1, x_2/t_2, ..., x_n/t_n]$ representa la sustitución

$$S(x) = \begin{cases} t_i, & \text{si } x \text{ es } x_i \\ x, & \text{si } x \notin \{x_1, \dots, x_n\} \end{cases}$$

En la lógica de primer orden, a la hora de emplear el método de tableros, es necesario sustituir las variables ligadas por términos. Por lo tanto, requerimos de la definición de un nuevo tipo de dato para las sustituciones.

```
type Sust = [(Variable, Termino)]
```

Sería interesante comparar la representación de sustituciones mediante diccionarios con la librería Data.Map

Este nuevo tipo de dato es una asociación de la variable con el término mediante pares. Denotamos el elemento identidad de la sustitución como identidad

```
identidad :: Sust
identidad = []
```

Para que la sustitución sea correcta, debe ser lo que denominaremos como apropiada. Para ello eliminamos aquellas sustituciones que dejan la variable igual.

```
hacerApropiada :: Sust -> Sust
hacerApropiada xs = [x | x <- xs, Var (fst x) /= snd x]
```

Por ejemplo,

```
-- | Ejemplos
-- >>> hacerApropiada [(x,tx)]
-- []
-- >>> hacerApropiada [(x,tx),(x,ty)]
-- [(x,y)]
```

Como la sustitución es una aplicación, podemos distinguir dominio y recorrido.

```
dominio :: Sust -> [Variable]
dominio = nub . map fst

recorrido :: Sust -> [Termino]
recorrido = nub . map snd
```

Por ejemplo,

```
-- | Ejemplos
-- >>> dominio [(x,tx)]
-- [x]
-- >>> dominio [(x,tx),(z,ty)]
-- [x,z]
-- >>> recorrido [(x,tx)]
-- [x]
-- >>> recorrido [(x,tx)]
-- [x]
-- >>> recorrido [(x,tx),(z,ty)]
```

Posteriormente, se define una función que aplica la sustitución a una variable concreta. La denotamos (sustituyeVar sust var).

3.1. Sustitución 47

Definición 3.1.2. $t[x_1/t_1,...,x_n/t_n]$ es el término obtenido sustituyendo en t las apariciones de x_i por t_i .

Definición 3.1.3. La extensión de la sustitución a términos es la aplicación $S: Term(L) \rightarrow Term(L)$ definida por

$$S(t) = \begin{cases} c, & \text{si } t \text{ es una constante } c \\ S(x), & \text{si } t \text{ es una variable } x \\ f(S(t_1), \dots, S(t_n)), & \text{si } t \text{ es } f(t_1, \dots, t_n) \end{cases}$$

Ahora, aplicando recursión entre funciones, podemos hacer sustituciones basándonos en los términos mediante las funciones (susTerm xs t) y (susTerms sust ts).

```
susTerm :: Sust -> Termino -> Termino
susTerm s (Var y) = sustituyeVar s y
susTerm s (Ter f ts) = Ter f (susTerms s ts)

susTerms :: Sust -> [Termino] -> [Termino]
susTerms = map . susTerm
```

Por ejemplo,

```
-- | Ejemplos

-- >>> susTerm [(x,ty)] tx

-- y

-- >>> susTerms [(x,ty),(y,tx)] [tx,ty]

-- [y,x]
```

Definición 3.1.4. $F[x_1/t_1,...,x_n/t_n]$ es la fórmula obtenida sustituyendo en F las apariciones libres de x_i por t_i .

Definición 3.1.5. La extensión de S a fórmulas es la aplicación $S: Form(L) \to Form(L)$ definida por

$$S(F) = \begin{cases} P(S(t_1), \dots, S(t_n)), & \text{si } F \text{ es la fórmula atómica } P(t_1, \dots, t_n) \\ S(t_1) = S(t_2), & \text{si } F \text{ es la fórmula } t_1 = t_2 \\ \neg (S(G)), & \text{si } F \text{ es } \neg G \\ S(G) * S(H), & \text{si } F \text{ es } G * H \\ (Qx)(S_x(G)), & \text{si } F \text{ es } (Qx)G \end{cases}$$

donde S_x es la sustitución definida por

$$S_x(y) = \begin{cases} x, & \text{si } y \text{ es } x \\ S(y), & \text{si } y \text{ es distinta de } x \end{cases}$$

Definimos (sustitucionForm s f), donde s representa la sustitución y f la fórmula.

```
sustitucionForm :: Sust -> Form -> Form
sustitucionForm s (Atom r ts) =
  Atom r (susTerms s ts)
sustitucionForm s (Ig t1 t2) =
  Ig (susTerm s t1) (susTerm s t2)
sustitucionForm s (Neg f) =
 Neg (sustitucionForm s f)
sustitucionForm s (Impl f1 f2) =
  Impl (sustitucionForm s f1) (sustitucionForm s f2)
sustitucionForm s (Equiv f1 f2) =
  Equiv (sustitucionForm s f1) (sustitucionForm s f2)
sustitucionForm s (Conj fs) =
 Conj (sustitucionForms s fs)
sustitucionForm s (Disy fs) =
 Disy (sustitucionForms s fs)
sustitucionForm s (PTodo v f) =
  PTodo v (sustitucionForm s' f)
  where s' = [x \mid x < -s, fst x /= v]
sustitucionForm s (Ex v f) =
 Ex v (sustitucionForm s' f)
  where s' = [x \mid x < -s, fst x /= v]
```

Por ejemplo,

```
-- | Ejemplos

-- >>> formula3

-- (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

-- >>> sustitucionForm [(x,ty)] formula3

-- (R[y,y] \Longrightarrow \exists z \ (R[y,z] \land R[z,y]))
```

Se puede generalizar a una lista de fórmulas mediante la funcion (sustitucionForms s fs). La hemos necesitado en la definición de la función anterior, pues las conjunciones y disyunciones trabajan con listas de fórmulas.

```
sustitucionForms :: Sust -> [Form] -> [Form]
sustitucionForms s = map (sustitucionForm s)
```

Nos podemos preguntar si la sustitución conmuta con la composición. Para ello definimos la función (composicion s1 s2)

```
composicion :: Sust -> Sust
composicion s1 s2 =
  hacerApropiada [(y,susTerm s1 y') | (y,y') <- s2 ] ++
  [x | x <- s1, fst x 'notElem' dominio s2]</pre>
```

3.1. Sustitución 49

Por ejemplo,

```
-- | Ejemplos

-- >>> composicion [(x,tx)] [(y,ty)]

-- [(x,x)]

-- >>> composicion [(x,tx)] [(x,ty)]

-- [(x,y)]
```

```
composicionConmutativa :: Sust -> Sust -> Bool
composicionConmutativa s1 s2 =
  composicion s1 s2 == composicion s2 s1
```

Y comprobando con QuickCheck que no lo es

```
ghci> quickCheck composicionConmutativa
*** Failed! Falsifiable (after 3 tests and 1 shrink):
[(i3,n)]
[(c19,i)]
```

Un contraejemplo más claro es

```
composition [(x,tx)] [(y,ty)] == [(x,x)] composition [(y,ty)] [(x,tx)] == [(y,y)]
```

Nota 3.1.2. Las comprobaciones con QuickCheck emplean código del módulo Generadores.

Definición 3.1.6. Una sustitución se denomina **libre para una fórmula** cuando todas las apariciones de variables introducidas por la sustitución en esa fórmula resultan libres.

Un ejemplo de una sustitución que no es libre

```
-- | Ejemplo
-- >>> let f1 = Ex x (Atom "R" [tx,ty])
-- >>> f1
-- ∃x R[x,y]
-- >>> variablesLibres f1
-- [y]
-- >>> sustitucionForm [(y,tx)] f1
-- ∃x R[x,x]
-- >>> variablesLibres (sustitucionForm [(y,tx)] f1)
-- []
```

Un ejemplo de una sustitución libre

```
-- | Ejemplo

-- >>> formula5

-- (\forall x \ P[x] \Longrightarrow \forall y \ Q[x,y])

-- >>> variablesLibres formula5

-- [x]

-- >>> sustitucionForm [(x,tz)] formula5

-- (\forall x \ P[x] \Longrightarrow \forall y \ Q[z,y])

-- >>> variablesLibres (sustitucionForm [(x,tz)] formula5)

-- [z]
```

3.2. Sustitucion mediante diccionarios

En esta sección definiremos las sustituciones ,de una manera alternativa, mediante la librería Data. Map.

```
module SustDiccionario where
import LPH
import Data.List
import Data.Map (Map)
import qualified Data.Map as M
import Text.PrettyPrint
import Text.PrettyPrint.GenericPretty
```

Debido a que muchas funciones de esta librería coinciden con funciones definidas en prelude, ésta se suele importar qualified.

```
No compatible con nuestra definición de término, hay que adaptarlo
```

3.3. Reglas de deducción natural

La deducción natural está compuesta de una serie de reglas a través de las cuales, partiendo de una fórmula o un conjunto de ellas, conseguimos deducir otra u otras fórmulas.

Se definen los átomos p,q y r para comodidad en los ejemplos.

```
p = Atom "p" []
q = Atom "q" []
r = Atom "r" []
```

A continuación se introducen los tipos de datos necesarios para la definición de las reglas de la deducción natural:

```
data Reglas = Suponer Form
            -- Reglas de la conjunción:
            | IntroConj Form Form
            | ElimConjI Form
            | ElimConjD Form
            -- Reglas de la negación:
            | ElimDobleNeg Form
            | IntroDobleNeg Form
            | ElimNeg Form
            | IntroNeg Form
            | ElimFalso Form
            -- Reglas del condicional:
            | ElimImpl Form Form
            | IntroImpl Form Form
            -- Modus Tollens:
            | MT Form Form
            -- Reglas de la disyunción:
            | IntroDisyI Form Form
            | IntroDisyD Form Form
            | ElimDisy Form Form
            -- Reglas de la bicondicional:
            | IntroEquiv Form
            | ElimEquivI Form
            | ElimEquivD Form
            -- Reducción al absurdo:
            | RedAbsurdo Form
            -- Regla del tercio excluido:
            | TercioExcl Form
            -- Reglas del cuantificador existencial y universal:
            | ElimUniv Form Sust
            | IntroUniv Sust Form
              deriving Show
```

Cuando elaboramos una deducción a partir de una serie de premisas trabajaremos con una lista de "cosas conocidas" y otra de "cosas supuestas". Para ello definimos el tipo de dato Deducción de la siguiente forma:

```
data Deduccion = D [Form] [Form] [Reglas]
deriving Show
```

Finalmente, se define como un átomo el elemento contradicción, pues nos será necesario en la definición de algunas reglas.

```
contradiccion :: Form
contradiccion = Atom "\_" []
```

Implementamos en Haskell un par de funciones auxiliares (quita xs ys) que elimina todos los elementos xs de la lista ys, y (elemMap xs ys) que determina si una lista está contenida en la otra.

```
quita :: [Form] -> [Form] -> [Form]
quita [] ys = ys
quita (x:xs) ys = quita xs (delete x ys)

elemMap :: [Form] -> [Form] -> Bool
elemMap xs ys = all ('elem' ys) xs
```

Por ejemplo,

```
-- | Ejemplos
-- >>> quita [p,q] [p,q,contradiccion]
-- [__]
-- >>> elemMap [p,q] [p,q,contradiccion]
-- True
-- >>> elemMap [contradiccion,q] [p,contradiccion]
-- False
```

En las posteriores subsecciones se va a definir la función (verifica d), donde d será un elemento del tipo de dato Deduccion, y que pretende determinar si un proceso elaborado por deducción natural es correcto.

```
verifica :: Deduccion -> Bool
```

Los primeros casos en la función verifica serán el básico, es decir, en el que determinaremos que el proceso deductivo es correcto, y la regla antes definida en el tipo de dato Reglas como Suponer, cuya función va a ser incluir una fórmula en la lista de las suposiciones. Lo implementamos en la función verifica.

```
verifica (D pr [] []) = True
verifica (D pr sp []) = error "Quedan supuestos"
verifica (D pr sp ((Suponer f):rs)) = verifica (D pr (f:sp) rs)
```

3.3.1. Reglas de la conjunción

• Regla de la introducción de la conjunción:

$$\frac{F}{F \wedge G}$$

Cuya implementación en la función verifica es:

Regla de la eliminación de la conjunción:

$$\frac{F_1 \wedge \cdots \wedge F_n}{F_1} \text{ y } \frac{F_1 \wedge \cdots \wedge F_n}{F_n}.$$

Que se implementan de la siguiente forma:

Nota 3.3.1. La función error permite mostrar un mensaje por pantalla, en el que podemos aclarar la razón del error.

3.3.2. Reglas de eliminación del condicional

• Regla de la eliminación del condicional:

$$\frac{F \quad F \to G}{G}$$

Regla de introducción del condicional:

$$\begin{bmatrix}
F \\
\vdots \\
G
\end{bmatrix}$$

$$F \to G$$

```
verifica (D ((Impl f g):pr) (delete f sp) rs)
| otherwise = error "No se puede aplicar IntroImpl"
```

3.3.3. Reglas de la disyunción

Reglas de la introducción de la disyunción:

$$\frac{F}{F \vee G} \vee \frac{G}{F \vee G}$$

```
verifica (D pr sp ((IntroDisyI f g):rs))
  | elem f (pr++sp) =
        verifica (D ((Disy [f,g]):pr) (delete f sp) rs)
  | otherwise = error "No se puede aplicar IntroDisyI"

verifica (D pr sp ((IntroDisyD f g):rs))
  | elem g (pr++sp) =
        verifica (D ((Disy [f,g]):pr) (delete g sp) rs)
  | otherwise = error "No se puede aplicar IntroDisyD"
```

• Regla de la eliminación de la disyunción:

$$F \lor G \qquad \begin{bmatrix} F \\ \vdots \\ H \end{bmatrix} \qquad \begin{bmatrix} G \\ \vdots \\ H \end{bmatrix}$$

3.3.4. Reglas de la negación

Regla de eliminación de lo falso:

 $\frac{\perp}{F}$

```
verifica (D (f:(delete contradiccion pr)) sp rs)
| otherwise = error "No se puede aplicar ElimFalso"
```

Regla de eliminación de la negación

$$\frac{F - F}{|}$$

3.3.5. Reglas del bicondicional

Regla de introducción del bicondicional:

$$\frac{F \to G \quad G \to F}{F \leftrightarrow G}$$

Reglas de la eliminación del bicondicional:

$$\frac{F \leftrightarrow G}{F \to G} \text{ y } \frac{F \leftrightarrow G}{G \to F}$$

3.3.6. Regla derivada de Modus Tollens(MT)

Regla derivada de modus Tollens:

$$\frac{F \to G \quad \neg G}{\neg F}$$

3.3.7. Reglas de la doble negación

Regla de eliminación de la doble negación:

$$\frac{\neg \neg F}{F}$$

Regla de la introducción de la doble negación:

$$\frac{F}{\neg \neg F}$$

3.3.8. Regla de Reducción al absurdo

• Regla de reducción al absurdo:

$$\begin{bmatrix}
\neg F \\
\vdots \\
\bot
\end{bmatrix}$$

3.3.9. Ley del tercio excluido

Ley del tercio excluido:

$$F \lor \neg F$$

verifica (D pr sp ((TercioExcl f):rs)) =
verifica (D ((Disy [f,Neg f]):pr) sp rs)

3.3.10. Reglas del cuantificador universal

• Regla de eliminación del cuantificador universal:

$$\frac{\forall xF}{F[x/t]}$$
 donde $[x/t]$ es libre para F

• Regla de la introducción del cuantificador universal:

$$\frac{\begin{bmatrix} x_0 \\ \vdots \\ F[x/x_0] \end{bmatrix}}{\forall xF}$$

donde x_0 es una variable nueva, que no aparece fuera de la caja.

3.3.11. Reglas del cuantificador existencial

Regla de introducción del cuantificador existencial:

$$\frac{F[x/t]}{\exists xF}$$
 donde $[x/t]$ es libre para F

3.3.12. Ejemplos

- Ejemplo: $\neg q \rightarrow \neg p \vdash p \rightarrow \neg \neg q$
 - 1. $\neg q \rightarrow \neg p$
 - 2. *p*
 - 3. $\neg \neg p$
 - 4. $\neg \neg q$
 - 5. $p \rightarrow \neg \neg q$

```
-- | Ejemplos
-- >>> let rs = [Suponer p,IntroDobleNeg p, MT (Impl (Neg q) (Neg p)) (Neg (Neg
-- >>> rs
-- [Suponer p,IntroDobleNeg p,MT (¬q⇒¬p) ¬¬p,IntroImpl p ¬¬q]
-- >>> verifica (D [Impl (Neg q) (Neg p)] [] rs)
-- True
```

Revisar ejemplo, da error en la última regla

Capítulo 4

Prueba de teoremas en lógica de predicados

Este capítulo pretende aplicar métodos de tableros para la demostración de teoremas en lógica de predicados. El contenido de este capítulo se encuentra en el módulo PTLP.

```
{-# LANGUAGE DeriveGeneric #-}
module PTLP where
import LPH
import DNH
import Data.List
import Test.QuickCheck -- Para ejemplos
import Generadores -- Para ejemplos
import Text.PrettyPrint
import Text.PrettyPrint.GenericPretty
```

4.1. Unificación

Definición 4.1.1. Un **unificador** de dos términos t_1 y t_2 es una sustitución S tal que $S(t_1) = S(t_2)$.

El valor de (unificadoresListas ts rs) es un unificador de las listas de términos ts y rs; es decir, una sustitución s tal que si ts = [t1,...,tn] y rs = [r1,...,rn] entonces s(t1) = s(r1),...,s(tn) = s(rn).

```
unificadoresListas :: [Termino] -> [Termino] -> [Sust]
unificadoresListas [] [] = [identidad]
unificadoresListas [] _ = []
unificadoresListas _ [] = []
unificadoresListas (t:ts) (r:rs) =
  [composicion u1 u2
  | u1 <- unificadoresTerminos t r
  , u2 <- unificadoresListas (susTerms u1 ts) (susTerms u1 rs)]</pre>
```

Por ejemplo,

```
unificadoresListas [tx] [ty] == [[(x,y)]]
unificadoresListas [tx] [tx] == [[]]
```

4.2. Skolem

4.2.1. Formas normales

Definición 4.2.1. Una fórmula está en **forma normal conjuntiva** si es una conjunción de disyunciones de literales.

$$(p_1 \vee \cdots \vee p_n) \wedge \cdots \wedge (q_1 \vee \cdots \vee q_m)$$

Nota 4.2.1. La forma normal conjuntiva es propia de la lógica proposicional. Por ello las fórmulas aquí definidas sólo se aplicaran a fórmulas sin cuantificadores.

Definimos la función (enFormaNC f) para determinar si una fórmula está en su forma normal conjuntiva.

```
enFormaNC :: Form -> Bool
enFormaNC (Atom _ _) = True
enFormaNC (Conj fs) = and [(literal f) || (esConj f) | f <- fs]
    where
        esConj (Disy fs) = all (literal) fs
        esConj _ = False
enFormaNC _ = False</pre>
```

Por ejemplo

4.2. Skolem 61

```
-- | Ejemplos
-- >>> enFormaNC (Conj [p, Disy [q,r]])
-- True
-- >>> enFormaNC (Conj [Impl p r, Disy [q, Neg r]])
-- False
-- >>> enFormaNC (Conj [p, Disy [q, Neg r]])
-- True
```

Aplicando a una fórmula F el siguiente algoritmo se obtiene una forma normal conjuntiva de F.

1. Eliminar los bicondicionales usando la equivalencia

$$A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$$

2. Eliminar los condicionales usando la equivalencia

$$A \rightarrow B \equiv \neg A \lor B$$

3. Interiorizar las negaciones usando las equivalencias

$$\neg (A \land B) \equiv \neg A \lor \neg B$$
$$\neg (A \lor B) \equiv \neg A \land \neg B$$
$$\neg \neg A \equiv A$$

4. Interiorizar las disyunciones usando las equivalencias

$$A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$$

$$(A \wedge B) \vee C \equiv (A \vee C) \wedge (B \vee C)$$

Implementamos estos pasos en Haskell

Definimos la función (elimImpEquiv f), para obtener fórmulas equivalentes sin equivalencias ni implicaciones.

```
elimImpEquiv :: Form -> Form
elimImpEquiv (Atom f xs) =
  Atom f xs
elimImpEquiv (Ig t1 t2) =
  Ig t1 t2
```

```
elimImpEquiv (Equiv f1 f2) =
   Conj [elimImpEquiv (Impl f1 f2),
        elimImpEquiv (Impl f2 f1)]
elimImpEquiv (Impl f1 f2) =
   Disy [Neg (elimImpEquiv f1), (elimImpEquiv f2)]
elimImpEquiv (Neg f) =
   Neg (elimImpEquiv f)
elimImpEquiv (Disy fs) =
   Disy (map elimImpEquiv fs)
elimImpEquiv (Conj fs) =
   Conj (map elimImpEquiv fs)
elimImpEquiv (Ex x f) =
        Ex x (elimImpEquiv f)
elimImpEquiv (PTodo x f) =
        PTodo x (elimImpEquiv f)
```

Nota 4.2.2. Se aplica a fórmulas con cuantificadores pues la función será empleada en la sección de la forma de skolem.

Por ejemplo,

```
-- | Ejemplo

-- >>> elimImpEquiv (Neg (Conj [p, Impl q r]))

-- \neg(p \land (\neg q \lor r))
```

Interiorizamos las negaciones mediante la función (interiorizaNeg f).

Definimos (interiorizaDisy f) para interiorizar las disyunciones

4.2. Skolem 63

Nota 4.2.3. Explicación de las funciones auxiliares

- La función aux aplica la función combina las listas de las conjunciones.
- La función aux1 toma las listas de las conjunciones, construye una lista de un literal o unifica disyunciones.
- La función combina xs ys elabora listas de dos elementos de las listas xs e ys.
- La función aux2 itera para interiorizar todas las disyunciones.

Debido a la representación que hemos elegido, pueden darse conjunciones de conjunciones, lo cual no nos interesa. Por ello, definimos unificacionConjuncion que extrae la conjunción al exterior.

Por ejemplo,

```
-- | Ejemplos

-- >>> let f1 = Conj [p, Conj [r,q]]

-- >>> f1

-- (p\(r\lambda q))

-- >>> unificaConjuncion f1

-- (p\(r\lambda q))

-- >>> unificaConjuncion f1 == (Conj [p, Conj [r,q]])
```

```
-- False
-- >>> unificaConjuncion f1 == (Conj [p,r,q])
-- True
```

Nota 4.2.4. La representación "visual" por pantalla de una conjunción de conjunciones y su unificación puede ser la misma, como en el ejemplo anterior.

Así, hemos construido el algoritmo para el cálculo de formas normales conjuntivas. Definimos la función (formaNormalConjuntiva f)

```
formaNormalConjuntiva :: Form -> Form
formaNormalConjuntiva =
    unificaConjuncion . interiorizaDisy . interiorizaNeg . elimImpEquiv
```

Por ejemplo

```
-- | Ejemplos
-- >>> let f1 = Neg (Conj [p, Impl q r])
-- >>> f1
-- ¬(p\land(q\Longrightarrowr))
-- >>> formaNormalConjuntiva f1
-- ((\neg p \lor q) \land (\neg p \lor \neg r))
-- >>> enFormaNC (formaNormalConjuntiva f1)
-- True
-- >>>  let f2 = Neg (Conj [Disy [p,q],r])
-- >>> f2
\neg ((p \lor q) \land r)
-- >>> formaNormalConjuntiva f2
-- ((\neg p \lor \neg r) \land (\neg q \lor \neg r))
-- >>> enFormaNC (formaNormalConjuntiva f2)
-- True
-- >>> let f3 = (Impl (Conj [p,q]) (Disy [Conj [Disy [r,q], Neg p], Neg r]))
-- >>> f3
-- ((p \land q) \Longrightarrow (((r \lor q) \land \neg p) \lor \neg r))
-- >>> formaNormalConjuntiva f3
-- ((\neg p \lor r) \land ((\neg p \lor q) \land ((\neg p \lor \neg p) \land ((\neg p \lor \neg r) \land ((\neg q \lor r) \land ((\neg q \lor q) \land ((\neg q \lor \neg p) \land (\neg q \lor \neg r)))))
-- >>> enFormaNC (formaNormalConjuntiva f3)
-- True
```

Definición 4.2.2. Una fórmula está en **forma normal disyuntiva** si es una disyunción de conjunciones de literales.

$$(p_1 \wedge \cdots \wedge p_n) \vee \cdots \vee (q_1 \wedge \cdots \wedge q_m)$$

4.2. Skolem 65

4.2.2. Forma rectificada

Definición 4.2.3. Una fórmula *F* está en forma **rectificada** si ninguna variable aparece, de manera simultánea, libre y ligada ,y cada cuantificador se refiere a una variable diferente.

Para proceder a su implementación definimos una función auxiliar previa que denotamos (sustAux n v f) que efectúa una sustitución de la variable v por x_n .

```
sustAux :: Int -> Variable -> Form -> Form
sustAux n v (PTodo var f)
    | var == v =
       PTodo (Variable "x" [n])
      (sustAux n v (sustitucionForm [(v, Var (Variable "x" [n]))] f))
    | otherwise = sustAux (n+1) var (PTodo var f)
sustAux n v (Ex var f)
    | var == v =
       Ex (Variable "x" [n])
      (sustAux n v (sustitucionForm [(v, Var (Variable "x" [n]))] f))
    | otherwise = sustAux (n+1) var (Ex var f)
sustAux n v (Impl f1 f2) =
    Impl (sustAux n v f1) (sustAux (n+k) v f2)
   where
     k = length (varEnForm f1)
sustAux n v (Conj fs) = Conj (map (sustAux n v) fs)
sustAux n v (Disy fs) = Disy (map (sustAux n v) fs)
sustAux n v (Neg f) = Neg (sustAux n v f)
sustAux n v f = sustitucionForm [(v, Var (Variable "x" [n]))] f
```

Añadimos ejemplos

```
-- | Ejemplo

-- >>> let f1 = PTodo x (Impl (Atom "P" [tx]) (Atom "Q" [tx,ty]))

-- >>> f1

-- \forallx (P[x]\LongrightarrowQ[x,y])

-- >>> sustAux 0 x f1

-- \forallx0 (P[x0]\LongrightarrowQ[x0,y])
```

Definimos (formRec n f) que calcula la forma rectificada de la fórmula f empezando a renombrar las variables desde el índice n.

```
formRec :: Int -> Form -> Form
formRec n (PTodo v form) = sustAux n v (PTodo v (formRec (n+1) form))
formRec n (Ex v form) = sustAux n v (Ex v (formRec (n+1) form))
formRec n (Impl f1 f2) = Impl (formRec n f1) (formRec (n+k) f2)
```

Por ejemplo

```
-- | Ejemplos

-- >>> formula2

-- \forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

-- >>> formRec 0 formula2

-- \forall x 0 \ \forall x 1 \ (R[x 0, x 1] \Longrightarrow \exists x 4 \ (R[x 0, x 4] \land R[x 4, x 1]))

-- >>> formula3

-- (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

-- >>> formRec 0 formula3

-- (R[x,y] \Longrightarrow \exists x 0 \ (R[x,x 0] \land R[x 0,y]))
```

4.2.3. Forma normal prenexa

Definición 4.2.4. Una fórmula F está en forma **normal prenexa** si es de la forma $Q_1x_1...Q_nx_nG$ donde $Q_i \in \{\forall, \exists\}$ y G no tiene cuantificadores.

Para la definición de la forma normal prenexa requerimos de dos funciones previas. Una que elimine los cuantificadores, (eliminaCuant f), y otra que los recolecta en una lista, (recolectaCuant f).

La definición de eliminaCuant f es

```
eliminaCuant :: Form -> Form
eliminaCuant (Ex x f) = eliminaCuant f
eliminaCuant (PTodo x f) = eliminaCuant f
eliminaCuant (Conj fs) = Conj (map eliminaCuant fs)
eliminaCuant (Disy fs) = Disy (map eliminaCuant fs)
eliminaCuant (Neg f) = Neg (eliminaCuant f)
eliminaCuant (Impl f1 f2) = Impl (eliminaCuant f1) (eliminaCuant f2)
eliminaCuant (Equiv f1 f2) = Equiv (eliminaCuant f1) (eliminaCuant f2)
eliminaCuant p@(Atom _ _) = p
```

4.2. Skolem 67

Algunos ejemplos

```
-- | Ejemplos

-- >>> eliminaCuant formula2

-- (R[x,y] \Longrightarrow (R[x,z] \land R[z,y]))

-- >>> eliminaCuant formula3

-- (R[x,y] \Longrightarrow (R[x,z] \land R[z,y]))
```

La implementación de (recolectaCuant f) es

```
recolectaCuant :: Form -> [Form]
recolectaCuant (Ex x f) = (Ex x p): recolectaCuant f
recolectaCuant (PTodo x f) = (PTodo x p): recolectaCuant f
recolectaCuant (Conj fs) = concat (map recolectaCuant fs)
recolectaCuant (Disy fs) = concat (map recolectaCuant fs)
recolectaCuant (Neg f) = recolectaCuant f
recolectaCuant (Impl f1 f2) = recolectaCuant f1 ++ recolectaCuant f2
recolectaCuant (Equiv f1 f2) = recolectaCuant f1 ++ recolectaCuant f2
```

Por ejemplo,

```
-- | Ejemplos

-- >>> recolectaCuant formula2

-- [∀x p,∀y p,∃z p]

-- >>> recolectaCuant formula3

-- [∃z p]
```

Definimos la función formaNormalPrenexa f que calcula la forma normal prenexa de la fórmula f

```
formaNormalPrenexa :: Form -> Form
formaNormalPrenexa f = aplica cs (eliminaCuant (formRec 0 f))
    where
    aplica [] f = f
    aplica ((PTodo x _):fs) f = aplica fs (PTodo x f)
    aplica ((Ex x _):fs) f = aplica fs (Ex x f)
    cs = reverse (recolectaCuant (formRec 0 f))
```

Por ejemplo,

```
-- | Ejemplos

-- >>> formaNormalPrenexa formula2

-- \forall x0 \ \forall x1 \ \exists x4 \ (R[x0,x1] \Longrightarrow (R[x0,x4] \land R[x4,x1]))

-- >>> formaNormalPrenexa formula3

-- \exists x0 \ (R[x,y] \Longrightarrow (R[x,x0] \land R[x0,y]))
```

4.2.4. Forma normal prenexa conjuntiva

Definición 4.2.5. Una fórmula F está en **forma normal prenexa conjuntiva** si está en forma normal prenexa con G en forma normal conjuntiva.

La implementamos en Haskell mediante la función (formaNPConjuntiva f)

```
formaNPConjuntiva :: Form -> Form
formaNPConjuntiva f = aux (formaNormalPrenexa f)
    where
        aux (PTodo v f) = PTodo v (aux f)
        aux (Ex v f) = Ex v (aux f)
        aux f = formaNormalConjuntiva f
```

Por ejemplo,

```
-- | Ejemplos

-- >>> formula2

-- \forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

-- >>> formaNPConjuntiva formula2

-- \forall x 0 \ \forall x 1 \ \exists x 4 \ ((\neg R[x 0,x 1] \lor R[x 0,x 4]) \land (\neg R[x 0,x 1] \lor R[x 4,x 1]))

-- >>> formula3

-- (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

-- >>> formaNPConjuntiva formula3

-- \exists x 0 \ ((\neg R[x,y] \lor R[x,x 0]) \land (\neg R[x,y] \lor R[x 0,y]))
```

4.2.5. Forma de Skolem

Definición 4.2.6. La fórmula F está en **forma de Skolem** si es de la forma $\forall x_1 \dots \forall x_n G$, donde $n \ge 0$ y G no tiene cuantificadores.

Para transformar una fórmula en forma de Skolem emplearemos sustituciones y unificaciones. Además, necesitamos eliminar las equivalencias e implicaciones. Para ello definimos la equivalencia y equisatisfacibilidad entre fórmulas.

Definición 4.2.7. Las fórmulas F y G son **equivalentes** si para toda interpretación valen lo mismo.

Definición 4.2.8. Las fórmulas F y G son **equisatisfacibles** si se cumple que ambas son satisfacibles o ninguna lo es.

Finalmente, definamos una cadena de funciones, para finalizar con (skolem f) que transforma f a su forma de Skolem.

Se define la función (skol k vs) que convierte una lista de variables a un término de Skolem. Al calcular la forma de skolem de una fórmula, las variables cuantificadas

4.2. Skolem 69

son sustituidas por lo que denotamos **término de skolem** para obtener una fórmula libre. Los términos de skolem estan compuestos por las siglas "sk" y un entero que lo identifique.

Nota 4.2.5. El término de skolem está expresado con la misma estructura que los términos funcionales.

```
skol :: Int -> [Variable] -> Termino
skol k vs = Ter ("sk" ++ show k) [Var x | x <- vs]
```

Por ejemplo,

```
|skol 1 [x] == sk1[x]
```

Definimos la función (skf f vs pol k), donde

- 1. f es la fórmula que queremos convertir.
- 2. vs es la lista de los cuantificadores (son necesarios en la recursión).
- 3. pol es la polaridad, es de tipo Bool.
- 4. k es de tipo Int y sirve como identificador de la forma de Skolem.

Definición 4.2.9. La **Polaridad** cuantifica las apariciones de las variables cuantificadas de la siguiente forma:

- Una cantidad de apariciones impar de x en la subfórmula F de $\exists xF$ indica que x tiene una polaridad negativa en la fórmula.
- Una cantidad de apariciones par de x en la subfórmula F de $\forall xF$ indica que x tiene una polaridad positiva en la fórmula.

donde la skolemización de una lista está definida por

La skolemización de una fórmula sin equivalencias ni implicaciones se define por

```
sk :: Form -> Form
sk f = fst (skf f [] True 0)
```

La función (skolem f) devuelve la forma de Skolem de la fórmula f.

```
skolem :: Form -> Form
skolem = aux. sk . elimImpEquiv
where
    aux (Neg (Neg f)) = f
    aux (Neg (Ex v f)) = (PTodo v f)
    aux (Disy fs) = Disy (map aux fs)
    aux f = f
```

Por ejemplo,

```
-- | Ejemplos

-- >>> skolem formula2

-- \forall x \ \forall y \ (\neg R[x,y] \ \lor (R[x,sk0[x,y]] \ \land R[sk0[x,y],y]))

-- >>> skolem formula3

-- (\neg R[x,y] \ \lor (R[x,sk0] \ \land R[sk0,y]))

-- >>> skolem formula4

-- R[cero,sk0]

-- >>> skolem formula5
```

4.3. Forma clausal 71

4.3. Forma clausal

Definición 4.3.1. Un literal es un átomo o la negación de un átomo.

Definición 4.3.2. Una **cláusula** es un conjunto finito de literales.

Definición 4.3.3. Una **forma clausal** de una fórmula F es un conjunto de cláusulas equivalente a F.

```
Proposición 4.3.1. Si (p_1 \lor \cdots \lor p_n) \land \cdots \land (q_1 \lor \cdots \lor q_m) es una forma normal conjuntiva de la fórmula F. Entonces, es una forma clausal de F es \{(p_1 \lor \cdots \lor p_n), \ldots, (q_1 \lor \cdots \lor q_m)\}
```

Por ejemplo una forma clausal de $\neg(p \land (q \rightarrow r))$ es $\{\{\neg p, q\}, \{\neg p, \neg r\}\}$

Se definen los tipos de dato Clausula y Clausulas, para representar una cláusula o un conjunto de ellas respectivamente.

```
data Clausula = C [Form]
data Clausulas = Cs [Clausula]
```

Definimos su representación

```
instance Show Clausula where
    show (C []) = "[]"
    show (C fs) = "{" ++ init (tail (show fs)) ++ "}"
instance Show Clausulas where
    show (Cs []) = "[]"
    show (Cs cs) = "{" ++ init (tail (show cs)) ++ "}"
```

Por ejemplo de

```
-- | Fórmula

-- >>> Neg (Conj [p,Impl q r])

-- ¬(p∧(q⇒r))
```

su forma clausal es

```
-- | Forma clausal
-- >>> Cs [C [Neg p,q], C [Neg p, Neg r]]
-- {{¬p,q},{¬p,¬r}}
```

El algoritmo del cálculo de la forma clausal de una fórmula F es:

- 1. Sea $F_1 = \exists y_1 \dots \exists y_n F$, donde y_i con $i = 1, \dots, n$ son las variables libres de F.
- 2. Sea F_2 una forma normal prenexa conjuntiva rectificada de F_1 .
- 3. Sea $F_3 = \text{Skolem } (F_2)$, que tiene la forma

$$\forall x_1 \dots \forall x_v [(L_1 \vee \dots \vee L_n) \wedge \dots \wedge (M_1 \vee \dots \vee M_m)]$$

Entonces, una forma clausal es

$$S = \{\{L_1, \ldots, L_n\}, \ldots, \{M_1, \ldots, M_m\}\}$$

Dada una fórmula que está en la forma del paso 3 del algoritmo, es decir

$$f = \forall x_1 \dots \forall x_p [(L_1 \vee \dots \vee L_n) \wedge \dots \wedge (M_1 \vee \dots \vee M_m)]$$

, podemos convertirla a su forma causal por medio de la función (form3AC f)

```
form3CAC :: Form -> Clausulas
form3CAC (Disy fs) = Cs [C fs]
form3CAC p@(Atom _ _) = Cs [C [p]]
form3CAC (PTodo x f) = form3CAC f
form3CAC (Conj fs) = Cs (map disyAClau fs)
    where
    disyAClau p@(Atom _ _) = C [p]
    disyAClau (Disy fs) = C fs
```

Por ejemplo

```
-- | Ejemplo

-- >>> Conj [p, Disy [q,r]]

-- (p∧(q∨r))

-- >>> form3CAC (Conj [p, Disy [q,r]])

-- {{p},{q,r}}
```

Definimos (formaClausal f) que transforma f a su forma clausal.

```
formaClausal :: Form -> Clausulas
formaClausal = form3CAC . skolem .formaNPConjuntiva
```

Por ejemplo

```
-- | Ejemplos
-- >>> formaClausal (Neg (Conj [p, Impl q r]))
-- {{¬p,q},{¬p,¬r}}
-- >>> formaClausal (Disy [PTodo x (Atom "P" [tx]),Ex y (Atom "Q" [ty])])
-- {{P[x0],Q[sk0[x0]]}}
-- >>> let f = Neg (PTodo x (Ex y (Neg (Equiv (Atom "P" [ty,tx]) (Neg (Atom
-- "P" [ty,ty])))))
-- >>> let f = Neg (PTodo x (Ex y (Neg (Equiv (Atom "P" [ty,tx]) (Neg (Atom "P" [ty,tx]) (Neg (Atom "P" [ty,tx]))))
-- >>> formaClausal f
-- {{¬P[sk0[x0],x0],¬P[sk0[x0],sk0[x0]]},{P[sk0[x0],sk0[x0]],P[sk0[x0],x0]}}
```

4.4. Tableros semánticos

Definición 4.4.1. Un conjunto de fórmulas es **consistente** si tiene algún modelo. En caso contrario, se denomina **inconsistente**.

```
Distinguir el caso de fórmulas con variables libres.
```

La idea de obtener fórmulas equivalentes nos hace introducir los tipos de fórmulas alfa, beta, gamma y delta. No son más que equivalencias ordenadas por orden teórico en el que se pueden acometer para una simplicación eficiente de una fórmula, a otra cuyas únicas conectivas lógicas sean disyunciones y conjunciones.

■ Fórmulas alfa

$\neg (F_1 \to F_2)$	$F_1 \wedge F_2$
$\neg(F_1 \lor F_2)$	$F_1 \wedge \neg F_2$
$F_1 \leftrightarrow F_2$	$(F_1 \to F_2) \land (F_2 \to F_1)$

Las definimos en Haskell

```
alfa :: Form -> Bool
alfa (Conj _) = True
alfa (Neg (Disy _)) = True
alfa _ = False
```

■ Fórmulas beta

$F_1 \rightarrow F_2$	$\neg F_1 \lor F_2$
$\neg (F_1 \wedge F_2)$	$\neg F_1 \lor \neg F_2$
$\neg (F_1 \leftrightarrow F_2)$	$\neg (F_1 \to F_2) \lor (\neg F_2 \to F_1)$

Las definimos en Haskell

■ Fórmulas gamma

$\forall xF$	F[x/t]
$\neg \exists x F$	$\neg F[x/t]$

Notar que t es un término básico.

Las definimos en Haskell

```
gamma :: Form -> Bool
gamma (PTodo _ _) = True
gamma (Neg (Ex _ _)) = True
gamma _ = False
```

■ Fórmulas delta

Notar que *a* es una constante nueva.

Las definimos en Haskell

Nota 4.4.1. Cada elemento de la izquierda de las tablas es equivalente a la entrada de la derecha de la tabla que esté en su misma altura. Es decir, considerando las tablas como matrices $a_{i,1} \equiv a_{i,2} \forall i$.

Mediante estas equivalencias se procede a lo que se denomina método de los tableros semánticos. Uno de los objetivos del método de los tableros es determinar si una fórmula es consistente, así como la búsqueda de modelos.

Definición 4.4.2. Un **literal** es un átomo o la negación de un átomo.

Lo definimos en haskell

El método de tableros de un conjunto de fórmulas *S* sigue el siguiente algoritmo:

- El árbol cuyo único nodo tiene como etiqueta *S* es un tablero de *S*.
- Sea \mathcal{T} un tablero de S y S_1 la etiqueta de una hoja de \mathcal{T} .
 - 1. Si S_1 contiene una fórmula y su negación, entonces el árbol obtenido añadiendo como hijo de S_1 el nodo etiquetado con $\{\bot\}$ es un tablero de S.
 - 2. Si S_1 contiene una doble negación $\neg \neg F$, entonces el árbol obtenido añadiendo como hijo de S_1 el nodo etiquetado con $(S_1 \setminus \{\neg \neg F\}) \cup \{F\}$ es un tablero de S.
 - 3. Si S_1 contiene una fórmula alfa F de componentes F_1 y F_2 , entonces el árbol obtenido añadiendo como hijo de S_1 el nodo etiquetado con $(S_1 \setminus \{F\}) \cup \{F_1, F_2\}$ es un tablero de S.
 - 4. Si S_1 contiene una fórmula beta de F de componentes F_1 y F_2 , entonces el árbol obtenido añadiendo como hijos de S_1 los nodos etiquetados con $(S_1 \setminus \{F\}) \cup \{F_1\}$ y $(S_1 \setminus \{F\}) \cup \{F_2\}$ es un tablero de S.

Definición 4.4.3. Se dice que una hoja es **cerrada** si contiene una fórmula y su negación. Se representa \bot

Definición 4.4.4. Se dice que una hoja es **abierta** si es un conjunto de literales y no contiene un literal y su negación.

Definición 4.4.5. Un **tablero completo** es un tablero tal que todas sus hojas son abiertas o cerradas.

Ejemplo de tablero completo

Representamos la fórmula de este tablero en Haskell.

```
tab1 = Neg (Impl (Disy [p,q]) (Conj [p,q]))

-- | Representación
-- >>> tab1
-- \neg((p \lor q) \Longrightarrow (p \land q))
```

Definición 4.4.6. Un tablero es **cerrado** si todas sus hojas son cerradas.

Un ejemplo de tablero cerrado es

La fórmula del tablero se representa en Haskell

```
tab2 = Conj [Impl p q, Impl q r, Neg (Impl p r)]
-- | Representación
-- >>> tab2
-- ((p \Longrightarrow q) \land ((q \Longrightarrow r) \land \neg (p \Longrightarrow r)))
```

Teorema 4.4.1. Si una fórmula F es consistente, entonces cualquier tablero de F tendrá ramas abiertas.

Nuestro objetivo es definir en Haskell un método para el cálculo de tableros semánticos. El contenido relativo a tableros semánticos se encuentra en el módulo Tableros.

```
module Tableros where
import DNH
import PTLP
import LPH
import Debug.Trace
```

Hemos importado la librería Debug. Trace porque emplearemos la función trace. Esta función tiene como argumentos una cadena de caracteres, una función, y un valor sobre el que se aplica la función. Por ejemplo

```
ghci> trace ("aplicando even a x = " ++ show 3) (even 3) aplicando even a x = 3
False
```

A lo largo de esta sección trabajaremos con fórmulas en su forma de Skolem.

El método de tableros se suele representar en forma de árbol, por ello definiremos el tipo de dato Nodo.

```
data Nodo = Nd Indice [Termino] [Termino] [Form]
deriving Show
```

Donde la primera lista de términos representa los literales positivos, la segunda lista de términos representa los negativos, y la lista de fórmulas son aquellas ligadas a los términos de las listas anteriores.

Definimos los tableros como una lista de nodos.

```
type Tablero = [Nodo]
```

Necesitamos poder reconocer las dobles negaciones, para ello definimos la función dobleNeg f.

```
dobleNeg (Neg f)) = True
dobleNeg _ = False
```

Una función auxiliar de conversión de literales a términos es listeralATer t.

```
literalATer :: Form -> Termino
literalATer (Atom n ts) = Ter n ts
literalATer (Neg (Atom n ts)) = Ter n ts
```

Definimos la función (componentes f) que determina los componentes de una fórmula f.

```
componentes :: Form -> [Form]
componentes (Conj fs) = fs
componentes (Disy fs) = fs
componentes (Neg (Conj fs)) = [Neg f | f <- fs]
componentes (Neg (Disy fs)) = [Neg f | f <- fs]
componentes (Neg (Neg f)) = [f]
componentes (PTodo x f) = [f]
componentes (Neg (Ex x f)) = [Neg f]</pre>
```

Por ejemplo,

```
-- | Ejemplos

-- >>> componentes (skolem (tab1))

-- [\neg\neg(p \lor q), \neg(p \land q)]

-- >>> componentes (skolem (tab2))

-- [(\neg p \lor q), (\neg q \lor r), \neg(\neg p \lor r)]
```

Definimos la función (varLigada f) que devuelve la variable ligada de la fórmula f

```
varLigada :: Form -> Variable
varLigada (PTodo x f) = x
varLigada (Neg (Ex x f)) = x
```

Definimos la función (descomponer f) que determina los cuantificadores universales de f.

Por ejemplo,

```
-- | Ejemplos

-- >>> formula2

-- \forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

-- >>> descomponer formula2

-- ([x,y],(R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y])))

-- >>> formula3

-- (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

-- >>> descomponer formula3

-- ([],(R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y])))

-- >>> formula4

-- \exists x \ R[cero,x]

-- >>> descomponer formula4

-- ([],\exists x \ R[cero,x])
```

Definimos (ramificación nodo) que ramifica un nodo aplicando las equivalencias adecuadas.

```
ramificacion :: Nodo -> Tablero
ramificacion (Nd i pos neg []) = [Nd i pos neg []]
ramificacion (Nd i pos neg (f:fs))
  | atomo f = if literalATer f 'elem' neg
                 then []
                 else [Nd i ( literalATer f : pos) neg fs]
  | negAtomo f = if literalATer f 'elem' pos
                 then []
                 else [Nd i pos (literalATer f : neg) fs]
  | dobleNeg f = [Nd i pos neg (componentes f ++ fs)]
  | alfa f = [Nd i pos neg (componentes f ++ fs)]
  | beta f = [Nd (i++[n]) pos neg (f':fs)
                 | (f',n) \leftarrow zip (componentes f) [0..]]
  | gamma f = [Nd i pos neg (f':(fs++[f]))]
  where
    (xs,g) = descomponer f
         = [(Variable nombre j, Var (Variable nombre i))
             | (Variable nombre j) <- xs]
           = sustitucionForm b g
```

Debido a que puede darse la infinitud de un árbol por las fórmulas gamma, definimos otra función (ramificacionP k nodo) que ramifica un nodo teniendo en cuenta la profundidad.

```
then (k,[])
               else (k,[Nd i (literalATer f : pos) neg fs])
| negAtomo f = if literalATer f 'elem' neg
               then (k,[])
               else (k,[Nd i pos (literalATer f : neg) fs])
| dobleNeg f = (k,[Nd i pos neg (componentes f ++ fs)])
| alfa f = (k,[Nd i pos neg (componentes f ++ fs)])
         f = (k,[Nd (i++[n]) pos neg (f':fs))
beta
                  | (f',n) \leftarrow zip (componentes f) [0..] ])
          f = (k-1, [Nd i pos neg (f':(fs++[f]))])
gamma
where
  (xs,g) = descomponer f
        = [(Variable nombre j, Var (Variable nombre i))
           | (Variable nombre j) <- xs]
 f'
        = sustitucionForm b g
```

Definición 4.4.7. Un nodo está completamente **expandido** si no se puede seguir ramificando

Se define en Haskell

```
nodoExpandido :: Nodo -> Bool
nodoExpandido (Nd i pos neg []) = True
nodoExpandido _ = False
```

Definimos la función (expandeTablero n tab) que desarrolla un tablero a una profundidad n.

Para una visualización más gráfica, definimos (expandeTableroG) empleando la función (trace).

Definimos la función (esNodoCerrado) para comprobar si hay hoja cerrada.

Definimos las funciones auxiliares (sustNodo nd) y (sustTab tb) que aplican sustituciones a nodos y tableros.

```
sustNodo :: Sust -> Nodo -> Nodo
sustNodo b (Nd i pos neg f) =
  Nd i (susTerms b pos) (susTerms b neg) (sustitucionForms b f)
susTab :: Sust -> Tablero -> Tablero
susTab = map . sustNodo
```

Se define esCerrado para determinar si un tablero es cerrado.

```
esCerrado :: Tablero -> [Sust]
esCerrado [] = [identidad]
esCerrado [nodo] = esNodoCerrado nodo
esCerrado (nodo:nodos) =
  concat [esCerrado (susTab s nodos) | s <- esNodoCerrado nodo ]</pre>
```

Dada una fórmula es necesario crear un tablero inicial para posteriormente desarrollarlo. Lo hacemos mediante la función (tableroInicial f).

```
tableroInicial :: Form -> Tablero
tableroInicial f = [Nd [] [] [f]]
```

Por ejemplo,

```
-- | Ejemplos

-- >>> tab1

-- \neg((p \lor q) \Longrightarrow (p \land q))

-- >>> tableroInicial tab1

-- [Nd [] [] [\neg((p \lor q) \Longrightarrow (p \land q))]]
```

La función (refuta k f) intenta refutar la fórmula f con un tablero de profundidad k.

```
refuta :: Int -> Form -> Bool
refuta k f = esCerrado tab /= []
  where tab = expandeTablero k (tableroInicial f)
```

Nota 4.4.2. Se puede emplear tambien expandeTableroG, por ello se deja comentado para su posible uso.

Definición 4.4.8. Una fórmula F es un **teorema** mediante tableros semánticos si tiene una prueba mediante tableros; es decir, si $\neg F$ tiene un tablero completo cerrado

Finalmente, podemos determinar si una fórmula es un teorema y si es satisfacible mediante las funciones (esTeorema n f) y (satisfacible n f).

```
esTeorema, satisfacible :: Int -> Form -> Bool
esTeorema n = refuta n . skolem . Neg
satisfacible n = not . refuta n . skolem
```

Por ejemplo tomando tautologia1 y la ya usada anteriormente formula2

```
tautologia1 :: Form
tautologia1 = Disy [Atom "P" [tx], Neg (Atom "P" [tx])]
```

se tiene

```
-- | Ejemplos
-- >>> tautologia1
-- (P[x] \bigvee \neg P[x])
-- >>> esTeorema 1 tautologia1
-- True
-- >>> formula2
-- \ \forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))
-- >>> esTeorema 20 formula2
-- False
-- >>> tab1
\neg ((p \lor q) \Longrightarrow (p \land q))
-- >>> esTeorema 20 tab1
-- False
-- >>> satisfacible 1 tab1
-- True
-- >>> tab2
-- ((p \Longrightarrow q) \land ((q \Longrightarrow r) \land \neg (p \Longrightarrow r)))
-- >>> esTeorema 20 tab2
-- False
-- >>> satisfacible 20 tab2
-- False
```

Teorema 4.4.2. El cálculo de tableros semánticos es adecuado y completo.

Definición 4.4.9. Una fórmula F es **deducible** a partir del conjunto de fórmulas S si exite un tablero completo cerrado de la conjunción de S y $\neg F$. Se representa por $S \vdash_{Tab} F$.

Explicar más el método de tableros con polaridad.

Comparar la implementación con la de Ben Ari que se encuentra en https://github.com/motib/mlcs/blob/master/fol/tabl.pro

Capítulo 5

Modelos de Herbrand

En este capítulo se pretende formalizar los modelos de Herbrand. Herbrand propuso un método constructivo para generar interpretaciones de fórmulas o conjuntos de fórmulas.

El contenido de este capítulo se encuentra en el módulo Herbrand.

```
module Herbrand where
import Data.List
import Text.PrettyPrint.GenericPretty (pp)
import PFH
import LPH
import PTLP
```

5.1. Universo de Herbrand

Definición 5.1.1. El **universo de Herbrand** de L es el conjunto de términos básicos de F. Se reprenta por $\mathcal{UH}(L)$.

Proposición 5.1.1. $\mathcal{UH}(L) = \bigcup_{i \geq 0} H_i(L)$, donde $H_i(L)$ es el nivel i del $\mathcal{UH}(L)$ definido por

$$H_0(L) = \begin{cases} C, & \text{si } C \neq \emptyset \\ a, & \text{en caso contrario (a nueva constante)} \end{cases}$$

$$H_{i+1}(L) = H_i(L) \cup \{ f(t_1, \dots, t_n) : f \in \mathcal{F}_n \text{ y } t_i \in H_i(L) \}$$

A continuación caracterizamos las constantes. Definimos la función (esConstante t) que se verifica si el término t es una constante.

```
-- | Ejemplos
-- >>> esConstante a
-- True
```

```
-- >>> esConstante tx
-- False
esConstante :: Termino -> Bool
esConstante (Ter _ []) = True
esConstante _ = False
```

El valor de (constantesTerm t) es el conjunto de las constantes del término t.

```
-- | Ejemplos
-- >>> let t = Ter "f" [Ter "a" [], Ter "b" [], Ter "g" [tx, Ter "a" []]]
-- >>> t
-- f[a,b,g[x,a]]
-- >>> constantesTerm t
-- [a,b]
constantesTerm :: Termino -> [Termino]
constantesTerm (Var _) = []
constantesTerm c@(Ter _ []) = [c]
constantesTerm (Ter f ts) = nub (concatMap constantesTerm ts)
```

El valor (constantes Form f) es el conjunto de las constantes de la fórmula f.

```
-- | Ejemplos
-- >>> let f1 = Atom "R" [a,tx]
-- >>> f1
-- R[a,x]
-- >>> constantesForm f1
-- [a]
-- >>> let f2 = Conj [Atom "P" [a, Ter "f" [tx,b]], f1]
-- >>> f2
-- (P[a,f[x,b]] \land R[a,x])
-- >>> constantesForm f2
-- [a,b]
-- >>>  let f3 = PTodo x f2
-- >>> f3
-- \forall x (P[a,f[x,b]] \land R[a,x])
-- >>> constantesForm f3
-- [a,b]
constantesForm :: Form -> [Termino]
constantesForm (Atom _ ts) = nub (concatMap constantesTerm ts)
constantesForm (Neg f)
                            = constantesForm f
constantesForm (Impl f1 f2) = constantesForm f1 'union' constantesForm f2
constantesForm (Equiv f1 f2) = constantesForm f1 'union' constantesForm f2
constantesForm (Conj fs) = nub (concatMap constantesForm fs)
constantesForm (Disy fs) = nub (concatMap constantesForm fs)
constantesForm (PTodo _ f) = constantesForm f
constantesForm (Ex _ f)
                             = constantesForm f
```

La propiedad (esFuncion t) se verifica si t es un término compuesto (es decir, es un témino pero no es una variable ni una constante).

```
-- | Ejemplos
-- >>> esFuncion (Ter "f" [a])
-- True
-- >>> esFuncion (Ter "f" [])
-- False
-- >>> esFuncion tx
-- False
esFuncion :: Termino -> Bool
esFuncion (Ter _ xs) = not (null xs)
esFuncion _ = False
```

(funForm f) para obtener todos los símbolos funcionales que aparezcan en la fórmula f.

```
funForm :: Form -> [Termino]
funForm (Atom _ ts) = nub [ t | t <- ts, esFuncion t]
funForm (Neg f) = funForm f
funForm (Impl f1 f2) = funForm f1 'union' funForm f2
funForm (Equiv f1 f2) = funForm f1 'union' funForm f2
funForm (Conj fs) = nub (concatMap funForm fs)
funForm (Disy fs) = nub (concatMap funForm fs)
funForm (PTodo x f) = funForm f
funForm (Ex x f) = funForm f</pre>
```

Por ejemplo

```
ghci> funForm (Conj [Atom "P" [a, Ter "f" [tx,b]], Atom "R" [Ter "g" [tx,ty],c]])
[f[x,b],g[x,y]]
```

Definición 5.1.2. La **aridad** de un operador $f(x_1,...,x_n)$ es el número número de argumentos a los que se aplica.

Definimos (aridadF t) para calcular la aridad del término t.

```
aridadF :: Termino -> Int
aridadF (Ter _ ts) = length ts
```

También necesitamos definir dos funciones auxiliares que apliquen los símbolos funcionales a las constantes del universo de Herbrand. Las funciones son (aplicaFunAConst f c), que aplica el símbolo funcional f a la constante c y (aplicaFun fs cs) que es una generalización a listas de la anterior.

Así podemos obtener el universo de Herbrand de una fórmula f definiendo (univHerbrand n f)

Por ejemplo

```
ghci> formula2
\forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))
ghci> univHerbrand 0 formula2
[a]
ghci > Conj [Disy [Atom "P" [a], Atom "P" [b]],
              Disy [Neg (Atom "P" [b]), Atom "P" [c]],
              Impl (Atom "P" [a]) (Atom "P" [c])]
((P[a] \lor P[b]) \land ((\neg P[b] \lor P[c]) \land (P[a] \Longrightarrow P[c])))
ghci> univHerbrand 0 (Conj [Disy [Atom "P" [a], Atom "P" [b]],
                                  Disy [Neg (Atom "P" [b]), Atom "P" [c]],
                                  Impl (Atom "P" [a]) (Atom "P" [c])])
[a,b,c]
ghci> Conj [PTodo x (PTodo y (Impl (Atom "Q" [b,tx])
                         (Disy [Atom "P" [a], Atom "R" [ty]]))),
                          Impl (Atom "P" [b]) (Neg (Ex z (Ex u (Atom "Q" [tz,tu]))))]
(\forall x \ \forall y \ (Q[b,x] \Longrightarrow (P[a] \backslash R[y])) \land (P[b] \Longrightarrow \neg \exists z \ \exists u \ Q[z,u]))
ghci> univHerbrand 0 (Conj [PTodo x (PTodo y (Impl (Atom "Q" [b,tx])
                          (Disy [Atom "P" [a], Atom "R" [ty]]))),
                           Impl (Atom "P" [b]) (Neg (Ex z (Ex u (Atom "Q" [tz,tu]))))])
[a,b]
```

Proposición 5.1.2. UH es finito si y sólo si no tiene símbolos de función.

Definimos fórmulas con términos funcionales para el ejemplo

```
formula6, formula7 :: Form
formula6 = PTodo x (Atom "P" [Ter "f" [tx]])
formula7 = PTodo x (Atom "P" [Ter "f" [a,b]])
```

quedando como ejemplo

```
ghci> formula6
\forall x P[f[x]]
ghci> univHerbrand 5 formula6
[a,f[a],f[f[a]],f[f[f[a]]],f[f[f[f[a]]]],f[f[f[f[f[a]]]]]]
ghci> univHerbrand 0 formula7
[a,b]
ghci> univHerbrand 1 formula7
[a,b,f[a,a],f[a,b],f[b,a],f[b,b]]
ghci> univHerbrand 2 formula7
[a,b,f[a,a],f[a,b],f[a,f[a,a]],f[a,f[a,b]],f[a,f[b,a]],
f[a,f[b,b]],f[b,a],f[b,b],f[b,f[a,a]],f[b,f[a,b]],f[b,f[b,a]],
f[b,f[b,b]],f[f[a,a],a],f[f[a,a],b],f[f[a,a],f[a,a]],f[f[a,a],
f[a,b]],f[f[a,a],f[b,a]],f[f[a,a],f[b,b]],f[f[a,b],a],f[f[a,b],b],
f[f[a,b],f[a,a]],f[f[a,b],f[a,b]],f[f[a,b],f[b,a]],f[f[a,b],
f[b,b]],f[f[b,a],a],f[f[b,a],b],f[f[b,a],f[a,a]],f[f[b,a],f[a,b]],
f[f[b,a],f[b,a]],f[f[b,a],f[b,b]],f[f[b,b],a],f[f[b,b],b],f[f[b,b],
f[a,a]],f[f[b,b],f[a,b]],f[f[b,b],f[b,a]],f[f[b,b],f[b,b]]]
```

Hay que tener en cuenta que se dispara la cantidad de elementos del universo de Herbrand ante términos funcionales con aridad grande.

```
length (univHerbrand 0 formula7) == 2
length (univHerbrand 1 formula7) == 6
length (univHerbrand 2 formula7) == 38
length (univHerbrand 3 formula7) == 1446
```

5.2. Base de Herbrand

Definición 5.2.1. Una **fórmula básica** es una fórmula sin variables ni cuantificadores.

Definición 5.2.2. La base de Herbrand $\mathcal{BH}(L)$ de un lenguaje L es el conjunto de átomos básicos de L.

Con el objetivo de definir una función que obtenga la base de Herbrand; necesitamos poder calcular el conjunto de símbolos de predicado de una fórmula.

Definimos (aridadP f) que determina la aridad del predicado de la fórmula atómica f.

```
aridadP :: Form -> Int
aridadP (Atom _ xs) = length xs
```

Por ejemplo para R(x, y, a) la aridad es 3

```
ghci> aridadP (Atom "R" [tx,ty,a])
3
```

Definimos (esPredicado f) que determina si f es un predicado.

```
esPredicado :: Form -> Bool
esPredicado (Atom _ []) = False
esPredicado (Atom _ _) = True
esPredicado _ = False
```

Calculamos el conjunto de los predicados de una fórmula f definiendo la función (predicadosForm f).

```
predicadosForm :: Form -> [Form]
predicadosForm p@(Atom _ _) = [p | esPredicado p]
predicadosForm (Neg f) = predicadosForm f
predicadosForm (Impl f1 f2) =
    predicadosForm f1 'union' predicadosForm f2
predicadosForm (Equiv f1 f2) =
    predicadosForm f1 'union' predicadosForm f2
predicadosForm (Conj fs) = nub (concatMap predicadosForm fs)
predicadosForm (Disy fs) = nub (concatMap predicadosForm fs)
predicadosForm (PTodo x f) = predicadosForm f
predicadosForm (Ex x f) = predicadosForm f
```

Esta función repite el mismo predicado si tiene distintos argumentos, como por ejemplo

```
ghci> formula2

\forall x \ \forall y \ (R[x,y] \Longrightarrow \exists z \ (R[x,z] \land R[z,y]))

ghci> predicadosForm formula2

[R[x,y],R[x,z],R[z,y]]
```

Por lo tanto, definimos (predForm f) que obtiene los símbolos de predicado sin repeticiones.

```
predForm :: Form -> [Form]
predForm = noRep . predicadosForm
    where
    noRep [] = []
    noRep (Atom st t : ps) =
        if null [Atom str ts | (Atom str ts) <- ps, str== st]
        then Atom st t : noRep ps else noRep ps</pre>
```

Así obtenemos

```
ghci> predForm formula2
[R[z,y]]
```

Podemos tambien obtener una lista de los símbolos de predicado definiendo (simbolos Pred f)

```
simbolosPred :: Form -> [Nombre]
simbolosPred f = [str | (Atom str _) <- ps]
where ps = predForm f</pre>
```

Definir directamente simbolosPred sin usar predForm y eliminar predForm y predicadosForm. Respuesta a comentario: La razón de no haber definido simbolosPred sin predForm y predicadosForm es por la necesidad de mantener la aridad del predicado para la definición de base de Herbrand.

Finalmente, necesitamos aplicar los símbolos de predicado al universo de Herbrand correspondiente.

Definimos las funciones (aplicaPred p ts) y su generalización (apPred ps ts) para aplicar los simbolos de predicado.

Algunos ejemplos son

```
ghci> aplicaPred (Atom "P" [tx]) [ty]
P[y]
ghci> aplicaPred (Atom "R" [tx,ty]) [tz,ty]
R[z,y]
ghci> apPred [Atom "P" [tx]] [tx,ty,tz]
[P[z],P[y],P[x]]
ghci> apPred [Atom "P" [tx], Atom "R" [tx,ty]] [tx,ty,tz]
[P[z],P[y],P[x],R[y,z],R[z,y],R[x,z],R[z,x],R[x,y],R[y,x]]
```

Definimos la función (baseHerbrand n f)

```
baseHerbrand :: (Eq a, Num a) => a -> Form -> [Form]
baseHerbrand n f = nub (apPred (predForm f) (univHerbrand n f))
```

Algunos ejemplos

Podemos hacer un análisis de la fórmula 6, calculando sus constantes, símbolos funcionales y símbolos de predicado. Así como el universo de Herbrand y la base de Herbrand.

```
ghci> formula6
\forall x P[f[x]]
ghci> constantesForm formula6
ghci> funForm formula6
[f[x]]
ghci> simbolosPred formula6
["P"]
ghci> univHerbrand 0 formula6
ghci> univHerbrand 1 formula6
[a,f[a]]
ghci> univHerbrand 2 formula6
[a,f[a],f[f[a]]]
ghci> baseHerbrand 0 formula6
ghci> baseHerbrand 1 formula6
[P[a],P[f[a]]]
ghci> baseHerbrand 2 formula6
[P[a],P[f[a]],P[f[f[a]]]]
```

Teorema 5.2.1. $\mathcal{BH}(L)$ es finita si y sólo si L no tiene símbolos de función.

5.3. Interpretaciones de Herbrand

Definición 5.3.1. Una interpretación de Herbrand es una interpretación $\mathcal{I}=(\mathcal{U},I)$ tal que

- \mathcal{U} es el universo de Herbrand de F.
- I(c) = c, para constante c de F.
- I(f) = f, para cada símbolo funcional de F.

5.4. Modelos de Herbrand

Definición 5.4.1. Un **modelo de Herbrand** de una fórmula *F* es una interpretación de Herbrand de *F* que es modelo de *F*.

Un **modelo de Herbrand** de un conjunto de fórmulas S es una interpretación de Herbrand de S que es modelo de S.

Proposición 5.4.1. Una interpretación de Herbrand queda determinada por un subconjunto de la base de Herbrand.

Definimos (valHerbrand f n) que determina si existe algún subconjunto de la base de Herbrand que sea modelo de la fórmula f. Para definirla necesitamos una función previa (valorHerbrand f f n) que realiza una recursión sobre la fórmula f, comprobando que exista algún elemento de la base de Herbrand que sea modelo de la fórmula. Finalmente, valHerbrand será una evaluación de valorHerbrand.

```
valorHerbrand :: Form -> Form -> Int -> Bool
valorHerbrand p@(Atom str ts) f n =
 p 'elem' baseHerbrand n f
valorHerbrand (Neg g) f n =
 not (valorHerbrand g f n)
valorHerbrand (Impl f1 f2) f n =
 valorHerbrand f1 f n <= valorHerbrand f2 f n
valorHerbrand (Equiv f1 f2) f n =
 valorHerbrand f1 f n == valorHerbrand f2 f n
valorHerbrand (Conj fs) f n =
 all (==True) [valorHerbrand g f n | g <- fs]
valorHerbrand (Disy fs) f n =
 True 'elem' [valorHerbrand g f n | g <- fs]
valorHerbrand (PTodo v g) f n =
 valorHerbrand g f n
valorHerbrand (Ex v g) f n =
 valorHerbrand g f n
```

Nota 5.4.1. Se puede cambiar la n de la base de Herbrand a la que se calcula la existencia de modelo. Eso es interesante para fórmulas con símbolos funcionales.

```
valHerbrand :: Form -> Int -> Bool
valHerbrand g = valorHerbrand f f
where f = skolem g
```

Añadimos un par de fórmulas para los ejemplos

```
formula8 = Impl (Atom "P" [tx]) (Atom "Q" [tx])
formula9 = Conj [Atom "P" [tx], Neg (Atom "P" [tx])]
```

```
ghci> valHerbrand formula8 0
True
ghci> valHerbrand formula9 0
False
ghci> valHerbrand formula6 0
False
ghci> valHerbrand formula6 1
True
ghci> valHerbrand formula2 0
True
```

La fórmula 9 es una contradicción, es decir, no tiene ningún modelo. Podemos comprobarlo mediante tableros

```
ghci> satisfacible 1 formula9
False
```

5.5. Consistencia mediante modelos de Herbrand

Proposición 5.5.1. Sea *S* un conjunto de fórmulas básicas. Son equivalentes:

- 1. *S* es consistente.
- 2. *S* tiene un modelo de Herbrand.

Proposición 5.5.2. Existen conjuntos de fórmulas consistentes sin modelos de Herbrand.

Un ejemplo de fórmula consistente sin modelo de Herbrand

```
formula10 :: Form
formula10 = Conj [Ex x (Atom "P" [tx]), Neg (Atom "P" [a])]
```

Como podemos ver aplicando valHerbrand

```
ghci> formula10
(∃x P[x] \ ¬P[a])
ghci> valHerbrand formula10 0
False
ghci> valHerbrand formula10 1
False
ghci> valHerbrand formula10 2
False
ghci> valHerbrand formula10 3
False
```

Pero es satisfacible

```
ghci> satisfacible 0 formula10
True
```

5.6. Extensiones de Herbrand

Definición 5.6.1. Sea $C = \{L_1, L_n\}$ una cláusula de L y σ una sustitución de L. Entonces, $C\sigma = \{L_1\sigma, \ldots, L_n\sigma\}$ es una **instancia** de C.

Definición 5.6.2. $C\sigma$ es una **instancia básica** de C si todos los literales de $C\sigma$ son básicos.

Por ejemplo, si tenemos $C = \{P(x, a), \neg P(x, f(y))\}$, una instancia básica sería

$$C[x/a, y/f(a)] = \{P(a, a), \neg P(x, f(f(a)))\}$$

Que en haskell lo habríamos representado por

```
ghci> Conj [Atom "P" [tx,a],Neg (Atom "P" [tx,Ter "f" [ty]])]  (P[x,a] \land \neg P[x,f[y]])  ghci> sustitucionForm [(x,a),(y,Ter "f" [a])]  (Conj [Atom "P" [tx,a], Neg (Atom "P" [tx,Ter "f" [ty]])])  (P[a,a] \land \neg P[a,f[f[a]]])
```

Definición 5.6.3. La **extensión de Herbrand** de un conjunto de cláusulas *Cs* es el conjunto de fórmulas

$$EH(Cs) = \{C\sigma : C \in Cs \text{ y }, \forall x \in C, \sigma(x) \in UH(Cs)\}$$

Proposición 5.6.1. $EH(L) = \bigcup_{i>0} EH_i(L)$, donde $EH_i(L)$ es el nivel i de la EH(L)

$$EH_i(Cs) = \{C\sigma : C \in Cs \text{ y }, \forall x \in C, \sigma(x) \in UH_i(Cs)\}$$

Posteriormente, vamos a aportar una definición alternativa.

Capítulo 6

Modelos de Herbrand alternativo

En este capítulo se da una definición alternativa del universo de Herbrand que simplifica su representación. El contenido de este capítulo se encuentra en el módulo HerbrandAlt

Se ha definido la alternativa en un capítulo aparte para luego decidir si mantenemos ambos capítulos complementándose o nos quedamos solo con este.

```
{-# LANGUAGE DeriveGeneric #-}
module Herbrand where
import Data.List
import Text.PrettyPrint.GenericPretty
import PFH
import LPH
import PTLP
```

6.1. Universo de Herbrand

Definición 6.1.1. Una **signatura** es una terna formada por las constantes, símbolos funcionales y símbolos de relación. Teniendo en cuenta la aridad tanto de los símbolos funcionales como los de relación.

Se define un tipo de dato para la signatura, cuya estrucura es

```
( constantes, (funciones, aridad) , (relaciones, aridad) )
```

```
type Signatura = ([Nombre],[(Nombre,Int)],[(Nombre,Int)])
```

Dada una signatura, se procede a definir la función (unionSignatura s1 s2) que une las signaturas s1 y s2.

```
-- | Ejemplos

-- >>> let s1 = (["a"],[("f",1)],[])

-- >>> let s2 = (["b","c"],[("f",1),("g",2)],[("R",2)])

-- >>> unionSignatura s1 s2

-- (["a","b","c"],[("f",1),("g",2)],[("R",2)])
```

Su definición es

```
unionSignatura :: Signatura -> Signatura -> Signatura
unionSignatura (cs1,fs1,rs1) (cs2,fs2,rs2) =
    ( cs1 'union' cs2
    , fs1 'union' fs2
    , rs1 'union' rs2 )
```

Generalizamos la función anterior a la unión de una lista de signaturas mediante la función (unionSignaturas ss).

```
-- | Ejemplos

-- >>> let s1 = (["a"],[("f",1)],[])

-- >>> let s2 = (["b","c"],[("f",1),("g",2)],[("R",2)])

-- >>> let s3 = (["a","c"],[],[("P",1)])

-- >>> unionSignaturas [s1,s2,s3]

-- (["a","b","c"],[("f",1),("g",2)],[("R",2),("P",1)])
```

Su definición es

```
unionSignaturas :: [Signatura] -> Signatura
unionSignaturas = foldr unionSignatura ([], [], [])
```

Se define la función (signaturaTerm t) que determina la signatura del término t.

```
-- | Ejemplos
-- >>> signaturaTerm tx
-- ([],[],[])
-- >>> signaturaTerm a
-- (["a"],[],[])
-- >>> let t1 = Ter "f" [a,tx,Ter "g" [b,a]]
-- >>> t1
-- f[a,x,g[b,a]]
-- >>> signaturaTerm t1
-- (["a","b"],[("f",3),("g",2)],[])
```

Su definición es

```
signaturaTerm :: Termino -> Signatura
signaturaTerm (Var _) = ([], [], [])
signaturaTerm (Ter c []) = ([c], [], [])
signaturaTerm (Ter f ts) = (cs,[(f,n)] 'union' fs, rs)
    where
        (cs,fs,rs) = unionSignaturas (map signaturaTerm ts)
        n = length ts
```

Una vez que podemos calcular la signatura de términos de una fórmula, se define la signatura de una fórmula f mediante la función (signaturaForm f).

```
-- | Ejemplos
-- >>> let f1 = Atom "R" [a,tx,Ter "g" [b,a]]
-- >>> f1
-- R[a,x,g[b,a]]
-- >>> signaturaForm f1
-- (["a", "b"], [("g", 2)], [("R", 3)])
-- >>> signaturaForm (Neg f1)
-- (["a", "b"], [("g",2)], [("R",3)])
-- >>> let f2 = Atom "P" [b]
-- >>> let f3 = Impl f1 f2
-- >>> f3
-- (R[a,x,g[b,a]] \Longrightarrow P[b])
-- >>> signaturaForm f3
-- (["a", "b"], [("g",2)], [("R",3), ("P",1)])
-- >>> let f4 = Conj [f1,f2,f3]
-- >>> f4
-- (R[a,x,g[b,a]] \land (P[b] \land (R[a,x,g[b,a]] \Longrightarrow P[b])))
-- >>> signaturaForm f4
-- (["a", "b"], [("g",2)], [("R",3), ("P",1)])
-- >>>  let f5 = PTodo x f4
-- >>> f5
-- \forall x (R[a,x,g[b,a]] \land (P[b] \land (R[a,x,g[b,a]] \Longrightarrow P[b])))
-- >>> signaturaForm f5
-- (["a", "b"], [("g",2)], [("R",3), ("P",1)])
```

Su definición es

```
signaturaForm f1 'unionSignatura' signaturaForm f2
signaturaForm (Equiv f1 f2) =
    signaturaForm f1 'unionSignatura' signaturaForm f2
signaturaForm (Conj fs) =
    unionSignaturas (map signaturaForm fs)
signaturaForm (Disy fs) =
    unionSignaturas (map signaturaForm fs)
signaturaForm (PTodo _ f) =
    signaturaForm f
signaturaForm (Ex _ f) =
    signaturaForm f
```

Generalizamos la función anterior a una lista de fórmulas con la función (signaturaForms fs).

```
-- | Ejemplos
-- >>> let f1 = Atom "R" [Ter "f" [tx]]
-- >>> let f2 = Impl f1 (Atom "Q" [a,Ter "f" [b]])
-- >>> let f3 = Atom "S" [Ter "g" [a,b]]
-- >>> signaturaForms [f1,f2,f3]
-- (["a","b"],[("f",2),("g",2)],[("R",1),("Q",2),("S",1)])
```

Su definición es

```
signaturaForms :: [Form] -> Signatura
signaturaForms fs =
  unionSignaturas (map signaturaForm fs)
```

El cálculo de la signatura de fórmulas y listas de ellas nos permite definir posteriormente el cálculo del universo de Herbrand.

Definición 6.1.2. El **universo de Herbrand** de L es el conjunto de términos básicos de F. Se reprenta por $\mathcal{UH}(L)$.

Proposición 6.1.1. $\mathcal{UH}(L) = \bigcup_{i \geq 0} H_i(L)$, donde $H_i(L)$ es el nivel i del $\mathcal{UH}(L)$ definido por

$$H_0(L) = \begin{cases} C, & \text{si } C \neq \emptyset \\ a, & \text{en caso contrario (a nueva constante)} \end{cases}$$

$$H_{i+1}(L) = H_i(L) \cup \{ f(t_1, \dots, t_n) : f \in \mathcal{F}_n \ \forall \ t_i \in H_i(L) \}$$

Definimos la función (universoHerbrand n s) que es el universo de Herbrand de la signatura s a nivel n.

```
-- | Ejemplos
-- >>> let s1 = (["a","b","c"],[],[])
```

```
-- >>> universoHerbrand 0 s1
-- [a,b,c]
-- >>> universoHerbrand 1 s1
-- [a,b,c]
-- >>> let s2 = ([],[("f",1)],[])
-- >>> universoHerbrand 0 s2
-- [a]
-- >>> universoHerbrand 1 s2
-- [a,f[a]]
-- >>> universoHerbrand 2 s2
-- [a,f[a],f[f[a]]]
-- >>> let s3 = (["a","b"],[("f",1),("g",1)],[])
-- >>> universoHerbrand 0 s3
-- [a,b]
-- >>> universoHerbrand 1 s3
-- [a,b,f[a],f[b],g[a],g[b]]
-- >>> pp $ universoHerbrand 2 s3
-- [a,b,f[a],f[b],g[a],g[b],f[f[a]],f[f[b]],f[g[a]],
-- f[g[b]],g[f[a]],g[f[b]],g[g[a]],g[g[b]]]
-- >>> universoHerbrand 3 (["a"],[("f",1)],[("R",1)])
-- [a,f[a],f[f[a]],f[f[f[a]]]]
-- >>> pp $ universoHerbrand 3 (["a","b"],[("f",1),("g",1)],[])
-- [a,b,f[a],f[b],g[a],g[b],f[f[a]],f[f[b]],f[g[a]],
-- f[g[b]],g[f[a]],g[f[b]],g[g[a]],g[g[b]],f[f[f[a]]],
-- f[f[f[b]]],f[f[g[a]]],f[f[g[b]]],f[g[f[a]]],
-- f[g[f[b]]],f[g[g[a]]],f[g[g[b]]],g[f[f[a]]],
-- g[f[f[b]]],g[f[g[a]]],g[f[g[b]]],g[g[f[a]]],
-- g[g[f[b]]],g[g[g[a]]],g[g[g[b]]]]
-- >>> let s4 = (["a", "b"], [("f", 2)], [])
-- >>> universoHerbrand 0 s4
-- [a,b]
-- >>> universoHerbrand 1 s4
-- [a,b,f[a,a],f[a,b],f[b,a],f[b,b]]
-- >>> pp $ universoHerbrand 2 s4
-- [a,b,f[a,a],f[a,b],f[b,a],f[b,b],f[a,f[a,a]],
-- f[a,f[a,b]],f[a,f[b,a]],f[a,f[b,b]],f[b,f[a,a]],
-- f[b,f[a,b]],f[b,f[b,a]],f[b,f[b,b]],f[f[a,a],a],
-- f[f[a,a],b],f[f[a,a],f[a,a]],f[f[a,a],f[a,b]],
-- f[f[a,a],f[b,a]],f[f[a,a],f[b,b]],f[f[a,b],a],
-- f[f[a,b],b],f[f[a,b],f[a,a]],f[f[a,b],f[a,b]],
-- f[f[a,b],f[b,a]],f[f[a,b],f[b,b]],f[f[b,a],a],
-- f[f[b,a],b],f[f[b,a],f[a,a]],f[f[b,a],f[a,b]],
-- f[f[b,a],f[b,a]],f[f[b,a],f[b,b]],f[f[b,b],a],
-- f[f[b,b],b],f[f[b,b],f[a,a]],f[f[b,b],f[a,b]],
-- f[f[b,b],f[b,a]],f[f[b,b],f[b,b]]]
```

Se define el universo de Herbrand de una fórmula f a nivel n mediante la función (universoHerbrandForm n f).

```
-- | Ejemplos
-- >>> let f1 = Atom "R" [a,b,c]
-- >>> universoHerbrandForm 1 f1
-- [a,b,c]
-- >>> let f2 = Atom "R" [Ter "f" [tx]]
-- >>> universoHerbrandForm 2 f2
-- [a,f[a],f[f[a]]]
-- >>> let f3 = Impl f2 (Atom "Q" [a,Ter "g" [b]])
-- >>> f3
-- (R[f[x]] \Longrightarrow Q[a,g[b]])
-- >>> pp $ universoHerbrandForm 2 f3
-- [a,b,f[a],f[b],g[a],g[b],f[f[a]],f[f[b]],f[g[a]],
-- f[g[b]],g[f[a]],g[f[b]],g[g[a]],g[g[b]]]
-- >>> let f4 = Atom "R" [Ter "f" [a,b]]
-- >>> signaturaForm f4
-- (["a","b"],[("f",2)],[("R",1)])
-- >>> pp $ universoHerbrandForm 2 f4
-- [a,b,f[a,a],f[a,b],f[b,a],f[b,b],f[a,f[a,a]],
-- f[a,f[a,b]],f[a,f[b,a]],f[a,f[b,b]],f[b,f[a,a]],
-- f[b,f[a,b]],f[b,f[b,a]],f[b,f[b,b]],f[f[a,a],a],
-- f[f[a,a],b],f[f[a,a],f[a,a]],f[f[a,a],f[a,b]],
-- f[f[a,a],f[b,a]],f[f[a,a],f[b,b]],f[f[a,b],a],
-- f[f[a,b],b],f[f[a,b],f[a,a]],f[f[a,b],f[a,b]],
-- f[f[a,b],f[b,a]],f[f[a,b],f[b,b]],f[f[b,a],a],
-- f[f[b,a],b],f[f[b,a],f[a,a]],f[f[b,a],f[a,b]],
-- f[f[b,a],f[b,a]],f[f[b,a],f[b,b]],f[f[b,b],a],
-- f[f[b,b],b],f[f[b,b],f[a,a]],f[f[b,b],f[a,b]],
-- f[f[b,b],f[b,a]],f[f[b,b],f[b,b]]]
```

A continuación, su definición es

```
universoHerbrandForm :: Int -> Form -> [Termino]
universoHerbrandForm n f =
  universoHerbrand n (signaturaForm f)
```

Se generaliza la definición anterior a una lista de fórmulas mediante la función (universoHerbrandForms n fs)

```
-- | Ejemplos
-- >>> let f1 = Atom "R" [Ter "f" [tx]]
-- >>> let f2 = Impl f1 (Atom "Q" [a,Ter "f" [b]])
-- >>> let f3 = Atom "S" [Ter "g" [a,b]]
-- >>> universoHerbrandForms 1 [f1,f2,f3]
-- [a,f[a],b,f[b],g[a,a],g[a,b],g[b,a],g[b,b]]
```

Siendo su definición

```
universoHerbrandForms :: Int -> [Form] -> [Termino]
universoHerbrandForms n fs =
  nub (concatMap (universoHerbrandForm n) fs)
```

Proposición 6.1.2. UH es finito si y sólo si no tiene símbolos de función.

6.2. Base de Herbrand

Definición 6.2.1. Una **fórmula básica** es una fórmula sin variables ni cuantificadores.

Definición 6.2.2. La base de Herbrand $\mathcal{BH}(L)$ de un lenguaje L es el conjunto de átomos básicos de L.

Definimos un tipo de dato para las bases de Herbrand

```
type BaseH = [Form]
```

Implementamos la base de herbrand a nivel n de la signatura s mediante la función (baseHerbrand n s)

```
-- | Ejemplos
-- >>> let s1 = (["a","b","c"],[],[("P",1)])
-- >>> baseHerbrand 0 s1
-- [P[a],P[b],P[c]]
-- >>> let s2 = (["a","b","c"],[],[("P",1),("Q",1),("R",1)])
-- >>> let s2 = (["a","b","c"],[("f",1)],[("P",1),("Q",1),("R",1)])
-- >>> baseHerbrand 0 s2
-- [P[a],P[b],P[c],Q[a],Q[b],Q[c],R[a],R[b],R[c]]
-- >>> pp $ baseHerbrand 1 s2
-- [P[a],P[b],P[c],P[f[a]],P[f[b]],P[f[c]],Q[a],Q[b],
-- Q[c],Q[f[a]],Q[f[b]],Q[f[c]],R[a],R[b],R[c],R[f[a]],
-- R[f[b]],R[f[c]]]
```

Se implementa en Haskell a continuación

Se define la base de Herbrand de una fórmula f a nivel n mediante (baseHerbrandForm n f).

```
-- | Ejemplos

-- >>> let f1 = Atom "P" [Ter "f" [tx]]

-- >>> f1

-- P[f[x]]

-- >>> baseHerbrandForm 2 f1

-- [P[a],P[f[a]],P[f[f[a]]]]
```

Su definición es

```
baseHerbrandForm :: Int -> Form -> BaseH
baseHerbrandForm n f =
  baseHerbrand n (signaturaForm f)
```

Generalizamos la función anterior a una lista de fórmulas definiendo (baseHerbrandForms n fs)

```
-- | Ejemplos

-- >>> let f1 = Atom "P" [Ter "f" [tx]]

-- >>> let f2 = Atom "Q" [Ter "g" [b]]

-- >>> baseHerbrandForms 1 [f1,f2]

-- [P[b],P[f[b]],P[g[b]],Q[b],Q[f[b]],Q[g[b]]]
```

Su definición es

```
baseHerbrandForms :: Int -> [Form] -> BaseH
baseHerbrandForms n fs =
  baseHerbrandForm n (Conj fs)
```

6.3. Interpretacion de Herbrand

Definición 6.3.1. Una interpretación de Herbrand es una interpretación $\mathcal{I}=(\mathcal{U},I)$ tal que

- \mathcal{U} es el universo de Herbrand de F.
- I(c) = c, para constante c de F.
- I(f) = f, para cada símbolo funcional de F.

Definimos un tipo de dato para los elementos que componen la interpretación de Herbrand.

```
type UniversoH = Universo Termino

type InterpretacionHR = InterpretacionR Termino

type InterpretacionHF = InterpretacionF Termino

type InterpretacionH = (InterpretacionHR, InterpretacionHF)
```

```
type AtomosH = [Form]
```

Definir fórmulas atómicas básicas

Se define la interpretación de Herbrand de un conjunto de átomos de Herbrand a través de (interpretacionH fs)

```
-- | Ejemplos
-- >>> let f1 = Atom "P" [a]
-- >>> let f2 = Atom "P" [Ter "f" [a,b]]
-- >>> let fs = [f1,f2]
-- >>> let (iR,iF) = interpretacionH fs
-- >>> iF "f" [a,c]
-- f[a,c]
-- >>> iR "P" [a]
-- True
-- >>> iR "P" [b]
-- False
-- >>> iR "P" [Ter "f" [a,b]]
-- True
-- >>> iR "P" [Ter "f" [a,a]]
-- False
```

```
interpretacionH :: AtomosH -> InterpretacionH
interpretacionH fs = (iR,iF)
  where iF f ts = Ter f ts
      iR r ts = Atom r ts 'elem' fs
```

Proposición 6.3.1. Una interpretación de Herbrand queda determinada por un subconjunto de la base de Herbrand.

Evaluamos una fórmula a través de una interpertación de Herbrand. Para ello definimos la función (valor u i f); donde u representa el universo, i la interpretación, y f la fórmula.

```
valorH :: UniversoH -> InterpretacionH -> Form -> Bool
valorH u i f =
  valorF u i s f
  where s _ = a
```

6.4. Modelos de Herbrand

Definición 6.4.1. Un **modelo de Herbrand** de una fórmula *F* es una interpretación de Herbrand de *F* que es modelo de *F*.

Un **modelo de Herbrand** de un conjunto de fórmulas S es una interpretación de Herbrand de S que es modelo de S.

Implementamos los subconjuntos del n-ésimo nivel de la base de Herbrand de la fórmula f que son modelos de f con la función (modelosHForm n f).

```
-- | Ejemplos
-- >>> let f1 = Disy [Atom "P" [a], Atom "P" [b]]
-- >>> f1
-- (P[a]\VP[b])
-- >>> modelosHForm 0 f1
-- [[P[a]],[P[b]],[P[a],P[b]]]
-- >>> let f2 = Impl (Atom "P" [a]) (Atom "P" [b])
-- >>> f2
-- (P[a] \Rightarrow P[b])
-- >>> modelosHForm 0 f2
-- [[],[P[b]],[P[a],P[b]]]
-- >>> let f3 = Conj [Atom "P" [a], Atom "P" [b]]
-- >>> f3
-- (P[a]\Article P[b])
-- >>> modelosHForm 0 f3
```

```
-- [[P[a],P[b]]]
-- >>> let f4 = PTodo x (Impl (Atom "P" [tx]) (Atom "Q" [Ter "f" [tx]]))
-- >>> f4
-- \forall x (P[x] \implies Q[f[x]])
-- >>> modelosHForm 0 f4
-- [[],[Q[a]]]
-- >>> modelosHForm 1 f4
-- [[],[Q[a]],[Q[f[a]]],[P[a],Q[f[a]]],[Q[a],Q[f[a]]],[P[a],Q[f[a]]]
-- >>> length (modelosHForm 2 f4)
-- 18
```

Lo definimos en Haskell

```
modelosHForm :: Int -> Form -> [AtomosH]
modelosHForm n f =
  [fs | fs <- subsequences bH
      , valorH uH (interpretacionH fs) f]
  where uH = universoHerbrandForm n f
      bH = baseHerbrandForm n f</pre>
```

Generalizamos la definición anterior a una lista de fórmulas mediante la función (modelosH n fs).

```
-- | Ejemplos
-- >>> let f1 = PTodo x (Impl (Atom "P" [tx]) (Atom "Q" [Ter "f" [tx]]))
-- >>> f1
-- \forall x (P[x] \implies Q[f[x]])
-- >>> let f2 = Ex x (Atom "P" [tx])
-- >>> f2
-- \forall x P[x]
-- >>> modelosH 0 [f1,f2]
-- []
-- >>> modelosH 1 [f1,f2]
-- [[P[a],Q[f[a]]],[P[a],Q[a],Q[f[a]]]
```

Su definición es

```
modelosH :: Int -> [Form] -> [AtomosH]
modelosH n fs =
  [gs | gs <- subsequences bH
     , and [valorH uH (interpretacionH gs) f | f <- fs]]
where uH = universoHerbrandForms n fs
     bH = baseHerbrandForms n fs</pre>
```

Capítulo 7

Resolución en lógica de primer orden

En este capítulo se introducirá la resolución en la lógica de primer orden y se implementará en Haskell. El contenido de este capítulo se encuentra en el módulo RES

```
module RES where
import Data.List
import LPH
import DNH
import PTLP
```

7.1. Ampliación de la forma clausal

La resolución requiere del uso de las formas clausales definidas anteriormente. Definamos algunas cuestiones:

Primero implementemos un tipo de dato adecuado para las interpretaciones de cláusulas, InterpretacionC.

```
type InterpretacionC = [(Form, Int)]
```

Definición 7.1.1. El **valor** de una cláusula *C* en una interpretación *I* es

```
I(C) = \begin{cases} 1, & \text{si existe un } L \in C \text{ tal que } I(L) = 1, \\ 0, & \text{en caso contrario} \end{cases}
```

Implementamos el valor de una cláusula C mediante la función (valorC c is)

```
valorC :: Clausula -> InterpretacionC -> Int
valorC (C fs) is =
   if ([1 | (f,1) <- is, elem f fs] ++
       [1 | (f,0) <- is, elem (Neg f) fs]) /= []
   then 1 else 0</pre>
```

Definición 7.1.2. El **valor** de un conjunto de cláusulas *S* en una interpretación *I* es

$$I(S) = \begin{cases} 1, & \text{si para toda } C \in S, I(C) = 1, \\ 0, & \text{en caso contrario} \end{cases}$$

Implementamos el valor de un conjunto de cláusulas mediante la función (valorCs s is)

```
valorCs :: Clausulas -> InterpretacionC -> Int
valorCs (Cs cs) is =
   if (all (==1) [valorC c is | c <- cs]) then 1 else 0</pre>
```

Nota 7.1.1. Cualquier interpretación de la cláusula vacía es 0.

Definición 7.1.3. Una cláusula C y una fórmula F son **equivalentes** si I(C) = I(F) para cualquier interpretación I.

Veamos algunos ejemplos que nos ilustren lo definido hasta ahora:

```
-- | Ejemplos

-- >>> let c = Cs [C [Neg p,p],C [Neg p,Neg r]]

-- >>> c

-- {{¬p,p},{¬p,¬r}}

-- >>> valorCs c [(p,1),(r,0)]

-- 1

-- >>> valorCs c [(p,1),(r,1)]

-- 0
```

Definición 7.1.4. Una interpretación I es **modelo** de un conjunto de cláusulas S si I(S) = 1.

Caracterizamos el concepto de modelo de un conjunto de cláusulas mediante la función (is 'esModeloDe' cs)

```
esModeloDe :: InterpretacionC -> Clausulas -> Bool
esModeloDe is cs = valorCs cs is == 1
```

```
-- | Ejemplos

-- >>> let c = Cs [C [Neg p,p],C [Neg p,Neg r]]

-- >>> let is = [(p,1),(r,0)]

-- >>> is 'esModeloDe' c

-- True
```

Definición 7.1.5. Un conjunto de cláusulas es **consistente** si tiene modelos e **inconsistente**, en caso contrario.

Definamos una serie de funciones necesarias para determinar si un conjunto de cláusulas es consistente.

Primero definimos las funciones (atomosC c) y (atomosCs cs) que obtienen una lista de los átomos que aparecen en la cláusula o conjuntos de cláusulas c y cs, respectivamente.

```
atomosC :: Clausula -> [Form]
atomosC (C fs) = nub ([f | f <- fs, esAtomo f] ++ [f | (Neg f) <- fs])
    where
        esAtomo (Atom _ _) = True
        esAtomo _ = False

atomosCs :: Clausulas -> [Form]
atomosCs (Cs cs) = nub (concat [atomosC c | c <- cs])</pre>
```

A continuación, mediante la implementación de (interPosibles cs) obtenemos una lista de todas las posibles interpretaciones que podemos obtener de los átomos de cs.

```
interPosibles :: Clausulas -> [InterpretacionC]
interPosibles = sequence . aux2 . aux1 . atomosCs
    where
        aux1 fs = [(a,b) | a <- fs, b <- [0,1]]
        aux2 [] = []
        aux2 fs = [take 2 fs] ++ (aux2 (drop 2 fs))</pre>
```

Finalmente, comprobamos con la función (esConsistente cs) que alguna de las interpretaciones posibles es modelo del conjunto de cláusulas.

```
esConsistente :: Clausulas -> Bool
esConsistente cs = or [i 'esModeloDe' cs | i <- is]
    where
    is = interPosibles cs</pre>
```

Ahora, como acostumbramos, veamos algunos ejemplos de las funciones definidas.

```
-- | Ejemplos

-- >>> let c = Cs [C [Neg p,p],C [Neg p,Neg r]]

-- >>> atomosCs c

-- [p,r]

-- >>> interPosibles c

-- [[(p,0),(r,0)],[(p,0),(r,1)],[(p,1),(r,0)],[(p,1),(r,1)]]
```

```
-- >>> esConsistente c
-- True
-- >>> let c' = Cs [C [p],C [Neg p,q],C [Neg q]]
-- >>> c'
-- {{p},{¬p,q},{¬q}}
-- >>> esConsistente c'
-- False
```

Definición 7.1.6. $S \models C$ si para todo modelo I de S, I(C) = 1.

Para su implementación en Haskell definimos la lista de las interpretaciones que son modelo de un conjunto de cláusulas mediante la función (modelosDe cs)

```
modelosDe :: Clausulas -> [InterpretacionC]
modelosDe cs = [i | i <- is, i 'esModeloDe' cs]
    where
    is = interPosibles cs</pre>
```

Caracterizamos cuando una cláusula es consecuencia de un conjunto de cláusulas mediante la función (c 'esConsecuenciaDe' cs)

```
esConsecuenciaDe :: Clausula -> Clausulas -> Bool
esConsecuenciaDe c cs = and [i 'esModeloDe' (Cs [c]) |i <- modelosDe cs]
```

Proposición 7.1.1. Sean S_1, \ldots, S_n formas clausales de las fórmulas F_1, \ldots, F_n :

- $\{F_1, ..., F_n\}$ es consistente si y sólo si $S_1 \cup ... S_n$ es consistente.
- Si S es una forma clausal de $\neg G$, entonces son equivalentes:
 - 1. $\{F_1, \ldots, F_n\} \models G$.
 - 2. $\{F_1, \ldots, F_n, \neg G\}$ es inconsistente.
 - 3. $S_1 \cup \cdots \cup S_n \cup S$ es inconsistente.

7.2. Resolución sin términos que unificar

Definición 7.2.1. Sean C_1 una cláusula, L un literal de C_1 y C_2 una cláusula que contiene el complementario de L. La **resolvente de** C_1 y C_2 **respecto de** L es

$$Res_L(C_1, C_2) = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})$$

Implementamos la función (res c1 c2 1) que calcula la resolvente de c1 y c2 respecto del literal 1.

Nota 7.2.1. Consideraremos que 1 siempre será un átomo.

```
-- | Ejemplos

-- >>> res (C [p,q]) (C [Neg q,r]) q

-- {p,r}

-- >>> res (C [p]) (C [Neg p]) p

-- []
```

Definición 7.2.2. Sean C_1 y C_2 cláusulas, se define $Res(C_1, C_2)$ como el conjunto de las resolventes entre C_1 y C_2 .

Se define la función (ress c1 c2) que calcula el conjunto de las resolventes de las cláusulas c1 y c2.

Algunos ejemplos

```
-- | Ejemplos

-- >>> ress (C [p,q,Neg r]) (C [Neg q,r])

-- [[q,¬q],[r,¬r]]

-- >>> ress (C [p]) (C [Neg q,r])

-- []
```

7.3. Resolvente binaria

Toda la sección sobre resolución está en proceso, tanto de estructuración como de programación

En esta sección implementaremos la resolución binaria entre dos cláusulas. Con este objetivo definimos inicialmente la función (listaTerms f) que calcula los términos de una fórmula dada.

Nota 7.3.1. La fórmula de entrada siempre será un literal, pues se aplicará a formas clausales.

```
listaTerms :: Form -> [Termino]
listaTerms (Atom _ ts) = ts
listaTerms (Neg (Atom _ ts)) = ts
```

Ahora calculamos la resolución entre dos cláusulas mediante la función (resolucion c1 c2 f1 f2), donde c1 y c2 son cláusulas y, f1 y f2 serán fórmulas de c1 y c2, respectivamente, tales que se podrá efectuar resolución entre ellas mediante la unificación adecuada.

```
-- | Ejemplos

-- >>> let c1 = C [Neg (Atom "P" [tx, Ter "f" [tx,ty]])]

-- >>> let c2 = C [Atom "P" [a,tz],Neg (Atom "Q" [tz,tu])]

-- >>> resolucion c1 c2 (Neg (Atom "P" [tx, Ter "f" [tx,ty]])) (Atom "P" [a,tz])

-- {¬Q[f[a,y],u]}
```

Definimos un operador infijo que puede resultar útil al hacer resolución en un conjunto de cláusulas. (!!!) devuelve la cláusula n-ésima de un conjunto de cláusulas.

```
(!!!) :: Clausulas -> Int -> Clausula
(Cs cs) !!! n = cs !! n
```

Capítulo 8

Correspondencia de Curry-Howard

A lo largo de este trabajo hemos implementado la lógica de primer orden en Haskell, así como distintos métodos y áspectos de la misma. Hemos traducido la lógica a un sistema de programación funcional, al lambda-cálculo. Mediante esta implementación que hemos desarrollado, sin tener una conciencia plena de ello, hemos establecido una relación entre dos campos, la lógica y un determinado lenguaje de programación. ¿Las matemáticas y la programación son lo mismo? ¿Hasta donde alcanza su similitud? ¿Todo lo que yo cree en matemáticas, proposiciones, teoremas, demostraciones... es implementable y tiene su hermano en el campo de la programación? La correspondencia de Curry Howard nos arrojará un poco de luz al respecto.

La correspondencia de Curry Howard, también llamada isomorfismo de Curry-Howard fue publicada en 1980 en honor a Curry. El lema principal que reivindica: las proposiciones son tipos. Es decir, se describe una correspondencia que asocia a cada proposición en la lógica un tipo en un lenguaje de programación, así como el recíproco.

Una vez que se define dicha correspondencia nos toca profundizar. Cuando enunciamos una proposición se requiere su demostración. ¿Cuál es el hermano de las demostraciones que habita en la programación? Esta pregunta nos lleva al segundo lema: las demostraciones son programas. Es decir, dada una prueba de una proposición existe un programa del tipo correspondiente.

En 1934, Curry observó que toda función del tipo (A \rightarrow B) puede ser leida como la proposición ($A \supset B$) y, que leyendo el tipo de cualquier función siempre existe una proposición demostrable asociada. Howard, notando que existe una correspondencia similar entre deducción natural y el lambda-cálculo, probó la extensión de la correspondencia al resto de conectivas lógicas.

- La **conjunción** $(A \wedge B)$ corresponde al producto cartesiano. En Haskell dicho tipo corresponde al par (a,b).
- La disyunción $(A \lor B)$ corresponde a la suma disjunta de A y B. En Haskell tenemos su tipo de dato abstracto hermano equivalente que es Either a b.
- La **implicación** $(A \Rightarrow B)$ corresponde a las funciones de tipo $A \rightarrow B$. Su hermano en Haskell es evidente, se trata de los tipos de función que van de un tipo de dato A a otro B.
- Los cuantificadores existencial (\exists) y universal (\forall) corresponden a los llamados tipos dependientes.

De hecho, la correspondencia va más allá. Las reglas de demostración en la deducción natural y las reglas de tipos tienen sus similitudes. La primera se basa en reglas de introducción y reglas de eliminación. Las reglas de introducción se ven representadas en la programación en las maneras de definir o construir valores de un determinado tipo, así como las reglas de eliminación son representadas por las formas de usar o deconstruir valores de un determinado tipo.

Un nivel más profundo de identificación entre la programación y la lógica que el isomorfismo de Curry establece es que **las simplificaciones de demostraciones son evaluaciones de programas**. Por lo tanto, a pesar de no establecer una biyección entre ambos ámbitos, se establece un isomorfismo que preserva la estructura entre programas y pruebas, simplificación y evaluación.

Para terminar veamos algunos ejemplos entre la lógica y la programación en Haskell. Para ello, creemos un módulo que contenga nuestro ejemplos.

```
module CHC where import Data.Either
```

Nuestra primera correspondencia serán las leyes de deMorgan:

$$\neg (A \land B) = (\neg A) \lor (\neg B)$$

que en Haskell será:

```
type Not x = (forall a. x -> a)
leydeMorgan1 :: (Not a, Not b) -> Not (Either a b)
leydeMorgan1 (noA, _) (Left a) = noA a
leydeMorgan1 (_, noB) (Right b) = noB b

leydeMorgan2 :: Either (Not a) (Not b) -> Not (a,b)
leydeMorgan2 (Left noA) (a, _) = noA a
leydeMorgan2 (Right noB) (_, b) = noB b
```

En proceso. Falta completar ejemplos

Parte II Sistemas utilizados

Capítulo 9

Apéndice: GitHub

En este apéndice se pretende introducir al lector en el empleo de GitHub, sistema remoto de versiones.

9.1. Crear una cuenta

El primer paso es crear una cuenta en la página web de GitHub, para ello sign up y se rellena el formulario.

9.2. Crear un repositorio

Mediante New repository se crea un repositorio nuevo. Un repositorio es una carpeta de trabajo. En ella se guardarán todas las versiones y modificaciones de nuestros archivos.

Necesitamos darle un nombre adecuado y seleccionar

- 1. En Add .gitignore se selecciona Haskell.
- 2. En add a license se selecciona GNU General Public License v3.0.

Finalmente Create repository

9.3. Conexión

Nuestro interés está en poder trabajar de manera local y poder tanto actualizar Git-Hub como nuestra carpeta local. Los pasos a seguir son

1. Generar una clave SSH mediante el comando

```
ssh-keygen -t rsa -b 4096 -C "tuCorreo"
```

Indicando una contraseña. Si queremos podemos dar una localización de guardado de la clave pública.

2. Añadir la clave a ssh-agent, mediante

```
eval "$(ssh-agent -s)"
ssh-add ~/.ssh/id_rsa
```

3. Añadir la clave a nuestra cuenta. Para ello: Setting \to SSH and GPG keys \to New SSH key. En esta última sección se copia el contenido de

```
~/.ssh/id_rsa.pub
```

por defecto. Podríamos haber puesto otra localización en el primer paso.

4. Se puede comprobar la conexión mediante el comando

```
ssh -T git@github.com
```

5. Se introducen tu nombre y correo

```
git config --global user.name "Nombre"
git config --global user.email "<tuCorreo>"
```

9.4. Pull y push

Una vez hecho los pasos anteriores, ya estamos conectados con GitHub y podemos actualizar nuestros ficheros. Nos resta aprender a actualizarlos.

1. Clonar el repositorio a una carpeta local:

Para ello se ejecuta en una terminal

```
git clone <enlace que obtienes en el repositorio>
```

El enlace que sale en el repositorio pinchando en (clone or download) y, eligiendo (use SSH).

2. Actualizar tus ficheros con la versión de GitHub:

En emacs se ejecuta (Esc-x)+(magit-status). Para ver una lista de los cambios que están (unpulled), se ejecuta en magit remote update. Se emplea pull, y se actualiza. (Pull: origin/master)

3. Actualizar GitHub con tus archivos locales:

En emacs se ejecuta (Esc-x)+(magit-status). Sale la lista de los cambios (UnStages). Con la (s) se guarda, la (c)+(c) hace (commit). Le ponemos un título y, finalmente (Tab+P)+(P) para hacer (push) y subirlos a GitHub.

9.5. Ramificaciones ("branches")

Uno de los puntos fuertes de Git es el uso de ramas. Para ello, creamos una nueva rama de trabajo. En (magit-status), se pulsa b, y luego (c) (create a new branch and checkout). Checkout cambia de rama a la nueva, a la que habrá que dar un nombre.

Se trabaja con normalidad y se guardan las modificaciones con magit-status. Una vez acabado el trabajo, se hace (merge) con la rama principal y la nueva.

Se cambia de rama (branch...) y se hace (pull) como acostumbramos.

Finalmente, eliminamos la rama mediante (magit-status) \rightarrow (b) \rightarrow (k) \rightarrow (Nombre de la nueva rama)

Bibliografía

- [1] J. Alonso. Temas de programación funcional. Technical report, Univ. de Sevilla, 2015.
- [2] J. Alonso. Temas de Lógica matemática y fundamentos. Technical report, Univ. de Sevilla, 2015.
- [3] A. S. Mena. Beginning in Haskell. Technical report, Utrecht University, 2014.
- [4] J. van Eijck. Computational semantics and type theory. Technical report, CWI (Centre for Mathematics and Computer Science), Amsterdam, 2003.
- [5] Y. A. P. Yu. L. Yershov. Lógica matemática. Technical report, URSS, 1990.

Índice alfabético

alfa, <mark>73</mark>	eliminaCuant, 66
algun, 15	enFormaNC, 60
apPred, <mark>91</mark>	esCerrado, <mark>81</mark>
aplicaFunAConst, 87	esConsecuenciaDe, 112
aplicaFun, <mark>87</mark>	esConsistente, 111
aplicaPred, <mark>91</mark>	esConstante,85
aplicafun, <mark>14</mark>	esFuncion, 87
aquellosQuecumplen, 14	esModeloDe, <mark>110</mark>
aridadF, <mark>87</mark>	esNodoCerrado, <mark>81</mark>
atomosCs, 111	esPredicado, 90
atomosC, 111	esTeorema,82
baseHerbrandForms, 104	esVariable, <mark>34</mark>
baseHerbrandForm, 104	expandeTableroG, 80
baseHerbrand, 91, 103	expandeTablero, 80
beta, <mark>74</mark>	factorial, <mark>16</mark>
componentes, 78	form3CAC, 72
composicion, 48	formRec, 65
conjuncion, 15	formaNPConjuntiva,68
constantesForm, 86	formaNormalPrenexa,67
constantesTerm, 86	formulaAbierta, <mark>44</mark>
contieneLaLetra, <mark>12</mark>	funForm, 87
contradiccion, 51	gamma,74
cuadrado, <mark>11</mark>	hacerApropiada,46
delta, <mark>74</mark>	identidad, 45
descomponer, 78	interPosibles, 111
disyuncion, 15	interiorizaNeg, <mark>62</mark>
divideEntre2, 18	interpretacionH, 105
divisiblePor, 12	listaInversa, <mark>17</mark>
dobleNeg, 77	listaTerms, <mark>114</mark>
dominio, 46	literalATer,78
elemMap, <mark>52</mark>	literal,75
elimImpEquiv, 61	modelosDe, 112

Índice alfabético 127

modelosHForm, 106	sustituye, <mark>32</mark>	
noPertenece, 16	tableroInicial, <mark>81</mark>	
nodoExpandido, 80	todos, 15	
pertenece, 16	unificaConjuncion,63	
plegadoPorlaDerecha, <mark>16</mark>	unionSignaturas,98	
plegadoPorlaIzquierda, 17	unionSignatura, 97	
predicadosForm, 90	univHerbrand,88	
primerElemento, 14	${\tt universoHerbrandForms, \textcolor{red}{\bf 103}}$	
quita, 52	universoHerbrandForm, 102	
raizCuadrada, 12	universoHerbrand, 100	
ramificacionP,79	valHerbrand, <mark>93</mark>	
ramificacion, 79	valorCs, 110	
recolectaCuant, 67	valorC, 109	
recorrido, 46	valorF, 38	
reflexiva, 30	valorHerbrand, 93	
refuta, 82	valorH, 106	
resolucion, 114	valorT, <mark>36</mark>	
ress, 113	valor, 32	
res, 112	varEnForm, 42	
satisfacible, 82	varEnTerms, 42	
segundoElemento, 14	varEnTerm, 42	
signaturaForms, 100	varLigada, 78	
signaturaForm, 99	variacionesR, 13	
signaturaTerm, 98		
simbolosPred, 91		
simetrica, 30		
skfs, 70		
skf, <mark>69</mark>		
skolem, 70		
skol, 69		
sk, 70		
sumaLaLista, 16		
susTab, 81		
susTerms, 47		
susTerm, 47		
sustAux, 65		
sustNodo, 81		
sustitucionForm, 48		
sustituyeVar, 46		

128 Índice alfabético

Lista de tareas pendientes

Pendiente de revisión	39
Faltan términos y fórmulas	41
Sería interesante comparar la representación de sustituciones mediante dic-	
cionarios con la librería Data.Map	45
No compatible con nuestra definición de término, hay que adaptarlo	50
Revisar ejemplo, da error en la última regla	58
Distinguir el caso de fórmulas con variables libres	73
Explicar más el método de tableros con polaridad.	83
Comparar la implementación con la de Ben Ari que se encuentra en https:	
//github.com/motib/mlcs/blob/master/fol/tabl.pro	83
Definir directamente simbolosPred sin usar predForm y eliminar predForm	
y predicadosForm. Respuesta a comentario: La razón de no haber defini-	
do simbolosPred sin predForm y predicadosForm es por la necesidad de	
mantener la aridad del predicado para la definición de base de Herbrand	91
Se ha definido la alternativa en un capítulo aparte para luego decidir si man-	
tenemos ambos capítulos complementándose o nos quedamos solo con este.	97
Definir fórmulas atómicas básicas	105
Toda la sección sobre resolución está en proceso, tanto de estructuración como	
de programación	114
En proceso. Falta completar ejemplos	117