Homework 3

March 7, 2024

Aaron Vo

Step 1: Read in Titanic.csv and observe a few samples, some features are categorical, and others are numerical. If some features are missing, fill them in using the average of the same feature of other samples. Take a random 80% samples for training and the rest 20% for test.

```
[1]: # Import the packages
     import numpy as np
     import pandas as pd
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.tree import DecisionTreeClassifier, plot_tree
     from sklearn.ensemble import RandomForestClassifier
     import matplotlib.pyplot as plt
     from sklearn.metrics import classification_report, confusion_matrix
[2]: #Read the Titanic CSV
     df = pd.read_csv("Titanic.csv")
     df.head()
[2]:
        Unnamed: 0 pclass
                            survived
                                                                  name
                                                                            sex
                                   1
                                        Allen, Miss. Elisabeth Walton
                                                                         female
     0
                 1
                       1st
                 2
                                   1
                                       Allison, Master. Hudson Trevor
     1
                       1st
                                                                           male
     2
                 3
                                   0
                                         Allison, Miss. Helen Loraine
                       1st
                                                                         female
     3
                 4
                                   0
                                      Allison, Mr. Hudson Joshua Crei
                       1st
                                                                           male
                       1st
                                      Allison, Mrs. Hudson J C (Bessi
                                                                         female
                        parch
                                ticket
                                               fare
                                                       cabin
                                                                  embarked boat
                 sibsp
            age
     0
        29.0000
                      0
                             0
                                 24160
                                        211.337494
                                                          В5
                                                              Southampton
         0.9167
                      1
                             2
                                113781
                                        151.550003
                                                    C22 C26
                                                              Southampton
     1
                                                                             11
     2
         2.0000
                      1
                             2
                                113781
                                        151.550003
                                                     C22 C26
                                                              Southampton
                                                                            NaN
        30.0000
                             2
                                                     C22 C26
                                                              Southampton
     3
                      1
                                113781
                                        151.550003
                                                                            NaN
        25.0000
                      1
                                113781
                                        151.550003 C22 C26
                                                              Southampton
         body
                                      home.dest
     0
          NaN
                                   St Louis, MO
     1
               Montreal, PQ / Chesterville, ON
          NaN
     2
          NaN
               Montreal, PQ / Chesterville, ON
     3
        135.0
               Montreal, PQ / Chesterville, ON
     4
               Montreal, PQ / Chesterville, ON
          NaN
```

```
[3]: def getNaNCount(df):
         nan_count = df.isna().sum()
         print(nan_count)
[4]: age_mean = df['age'].mean()
     df['age'].fillna(age_mean, inplace=True)
     getNaNCount(df)
    Unnamed: 0
                       0
    pclass
                       0
    survived
                       0
                       0
    name
                       0
    sex
                       0
    age
                       0
    sibsp
    parch
                       0
    ticket
                       0
    fare
                       1
                    1014
    cabin
    embarked
                       2
    boat
                     823
    body
                    1188
    home.dest
                     564
    dtype: int64
    Step 2: Fit a decision tree model using independent variables pclass + sex + age + sibsp and
    dependent variable survived. Plot the full tree. Make sure survived is a qualitative variable
    taking 1 (yes) or 0 (no) in your code. You may see a tree similar to this one (the actual structure
    and size of your tree can be different):
[5]: def getValueCounts(df, column):
         print(df[column].value_counts())
[6]: getValueCounts(df, 'sex')
    male
               843
    female
               466
    Name: sex, dtype: int64
[7]: df['sex'] = df['sex'].replace({'female': 0, 'male': 1})
     getValueCounts(df, 'sex')
    1
          843
    0
          466
    Name: sex, dtype: int64
[8]: getValueCounts(df, 'pclass')
    3rd
            709
    1st
            323
```

```
277
     2nd
     Name: pclass, dtype: int64
 [9]: df['pclass'] = df['pclass'].replace({'1st':1, '2nd':2, '3rd': 3})
     getValueCounts(df, 'pclass')
     3
          709
     1
          323
          277
     Name: pclass, dtype: int64
[10]: data = df[['pclass', 'sex', 'age', 'sibsp', 'survived']]
     data.head()
                         age sibsp survived
[10]:
        pclass sex
                  0 29.0000
                                  0
             1
     1
             1
                  1 0.9167
                                  1
                                            1
     2
             1
                  0
                      2.0000
                                  1
                                            0
     3
             1
                  1 30.0000
                                  1
                                            0
     4
             1
                  0 25.0000
                                  1
                                            0
[11]: X_train, X_test, y_train, y_test = train_test_split(data[['pclass', 'sex', _
      data['survived'],
                                                         test_size = 0.2,
                                                         random_state = 5)
[12]: clf = DecisionTreeClassifier()
     clf.fit(X_train, y_train)
[12]: DecisionTreeClassifier()
[13]: # Plot the decision tree
     plt.figure(figsize = (30, 20))
     plot_tree(clf, filled = True, feature_names = X_train.columns, class_names =_
       slist(map(str, clf.classes_)), fontsize = 5)
     plt.show()
```


Step 3: Use the GridSearchCV() function to find the best parameter max_leaf_nodes to prune the tree. Plot the pruned tree which shall be smaller than the tree you obtained in Step 2.

Best Parameters: {'max_leaf_nodes': 10}

Step 4: For the pruned tree, report its accuracy on the test set for the following: percent survivors correctly predicted (on test set)

percent fatalities correctly predicted (on test set)

```
[16]: y_pred = best_classifier.predict(X_test)
printConfusionMatrix(y_test, y_pred)
```

Percent Survivors Correctly Predicted: 82.10% Percent Fatalities Correctly Predicted: 70.00%

[17]: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.82	0.82	0.82	162
1	0.71	0.70	0.70	100
accuracy			0.77	262
macro avg	0.76	0.76	0.76	262
weighted avg	0.77	0.77	0.77	262

Step 5: Use the RandomForestClassifier() function to train a random forest using the value of max_leaf_nodes you found in Step 3. You can set n_estimators as 50. Report the accuracy of random forest on the test set for the following:

```
percent survivors correctly predicted (on test set)
percent fatalities correctly predicted (on test set)
```

Check whether there is improvement as compared to a single tree obtained in Step 4.

```
[18]: rf_clf = RandomForestClassifier(max_leaf_nodes = 10)
    rf_clf.fit(X_train, y_train)
    rd_predict = rf_clf.predict(X_test)
    printConfusionMatrix(y_test, rd_predict)
```

Percent Survivors Correctly Predicted: 80.25% Percent Fatalities Correctly Predicted: 68.00%

[19]: print(classification_report(y_test, rd_predict))

	precision	recall	f1-score	support
0	0.80	0.80	0.80	162
1	0.68	0.68	0.68	100
accuracy			0.76	262
macro avg	0.74	0.74	0.74	262
weighted avg	0.76	0.76	0.76	262

Based on the results from the RandomForestClassifer, we see that there is minimal difference in the accuracy, as we see that the it is only 2% more accurate the DecisionTreeClassifier.

Regarding the percentage on the survivors and fatalities correctly predicted, we see that the RandomForestClassifier was predicted less correctly than the DecisionTreeClassifier