Math 240B: Real Analysis, Winter 2020

Homework Assignment 5

Due Wednesday, February 19, 2020

- 1. Let H be a Hilbert space. Prove the following:
 - (1) If M is a closed subspace of H then $(M^{\perp})^{\perp} = M$;
 - (2) If E is a (nonempty) subset of H then $(E^{\perp})^{\perp} = \overline{\operatorname{Span}(E)}$.
- 2. Let H be a Hilbert space, M a closed and convex subset of H, and $x \in H \setminus M$. Prove that there exists a unique $y \in M$ such that $\|x y\| = \inf_{z \in M} \|x z\|$. Moreover, y is the unique element in M such that $\text{Re}\langle x y, z y \rangle \leq 0$ for any $z \in M$.
- 3. Let M be a closed subspace of a Hilbert space H and $x_0 \in H \setminus M$. Prove that

$$\min\{\|x - x_0\| : x \in M\} = \max\{|\langle x_0, y \rangle| : y \in M^{\perp}, \|y\| = 1\}.$$

- 4. Suppose $x_n \to x$ strongly and $y_n \to y$ weakly in a Hilbert space. Prove that $\langle x_n, y_n \rangle \to \langle x, y \rangle$.
- 5. Let H be a Hilbert space. Let $T: H \to H$ be a bounded linear and self-adjoint operator. Prove that $||T|| = \sup\{|\langle Tx, x \rangle| : x \in H, ||x|| = 1\}.$
- 6. Let M be a closed subspace of a Hilbert space H.
 - (1) For any $x \in H$, let $Px \in M$ be the unique element in M such that $x Px \in M^{\perp}$. Prove that $P \in L(H, H)$, $P^* = P$ and $P^2 = P$, Range (P) = M, and Kernel $(P) = M^{\perp}$. (P is called the orthogonal projection onto M.)
 - (2) Suppose $P \in L(H, H)$ satisfies $P^* = P$ and $P^2 = P$. Prove that Range (P) is a closed subspace of H and P is the orthogonal projection onto Range (P).
- 7. Let H be an infinitely-dimensional Hilbert space. Prove the following:
 - (1) Any infinite sequence of orthonormal vectors in H is bounded, converges to 0 weakly, and is not pre-compact;
 - (2) The unit sphere $S = \{x \in H : ||x|| = 1\}$ is weakly dense in the closed unit ball $B = \{x \in H : ||x|| \le 1\}$. (In fact, every $x \in B$ is the weak limit of a sequence of points in S.)
- 8. Let H be an infinitely-dimensional Hilbert space, $\{u_n\}_{n=1}^{\infty}$ an orthonormal basis for H, $\delta_n \in (0, \infty)$ (n = 1, 2, ...), and $S = \{\sum_{n=1}^{\infty} c_n u_n : |c_n| \le \delta_n \ (n = 1, 2, ...)\}$. Prove that S is compact in H if and only if $\sum_{n=1}^{\infty} \delta_n^2 < \infty$.