DPT MATLAB Structure

Gene Stoltz

March 3, 2013

Data Structure

Explanation

The structure is as follow:

- Each entry(i) in the matrix is a struct and represents a pulse.
- All pulses with height 0 is position elements. A position element represents a pixel in the image (x, y) with relation to its index in the matrix, Matrix(i). The relation for an image of size $img_{width} \times img_{height}$ is $x = i\%img_{width}$ and $y = floor(i/img_{width})$.
- This index(i) includes a border row of 0's at the top of the image and a border column of 0's on the right hand of the image. Thus modifying the size of your image to $(img_{width} + 1) \times (img_{height} + 1)$.
- The first $(img_{width} + 1) * (img_{height} + 1)$ elements in the matrix is all position elements.
- Size the number of elements that the pulse contain.
- Height :)
- Connected_Pulse the closest larger pulse which contains "this" pulse. Specified on the index of the matrix, Matrix(i).
- Construction_Pulses The pulses who's union forms "this" pulse. Specified on the index of the matrix, Matrix(i).

Example 1

We want to determine what pulses is at position (10, 10) in an image of size 100×100 .

- 1. Remember the added border nodes, thus a 101×101 images is used. And our new co-ordinates is (10, 11).
- 2. In the matrix we start index $i_{old} = 101 * 11 + 10 = 1121$.
- 3. A pulse at position (10, 10) is then the pulse at index i_{new} such that $i_{new} = Matrix(i_{old}).Connected_Pulse$. To find all the pulses this process is repeated until $Matrix(i_{old}).Connected_Pulse = 0$.

Example 2

We have a look in our Matrix and see a pulse of size 50 at $i_{old} = 10400$. We want to know where in our 100×100 image is the pulse located.

- 1. Remember the added border nodes, thus a 101×101 images is used.
- 2. We will now follow a path until we find a position element. Each element has a matrix of Construction_Pulses which will be used to create the path. The first step, go to a new entry $i_{new} = Matrix(i_{old}).Construction_Pulses(k)$ where k is an element in the matrix of Construction_Pulses. Continue to go to a new entry until a position element is encountered.
- 3. Find all possible paths and record all position elements at the end of these paths.
- 4. All position elements can then be transformed into the (x, y) co-ordinate system of the image by using $x = i\%img_{width}$ and $y = floor(i/img_{width})$.