

Universidade do Minho

Aula 3: Sistemas Baseados em Conhecimento (SBC)

OBJECTIVOS:

 Descrever o que é um Sistema Baseado no Conhecimento, seus componentes, aplicações e modo de desenvolvimento.

CONHECIMENTO

DADOS – Elemento puro, quantificável sobre um determinado evento

Ex: Temperatura ambiente (em graus Celsius). Idade de um paciente (em anos).

INFORMAÇÃO – Dado analisado (interpretado) e contextualizado.

Ex: A melhor temperatura para os seres humanos é aquela que não dista mais do que 1 grau dos 25 graus É-se adolescente entre os 12 e os 19 anos.

CONHECIMENTO – Capacidade de criar um modelo mental que descreva o Objecto e indique as acções a implementar, i.e., as DECISÕES A TOMAR

Ex: Se estiver frio (abaixo dos 15 graus) levar casaco, caso contrário existe a possibilidade de ficar constipado

Se for um paciente adolescente de psiquiatria, é necessário ter cuidados especiais com a administração de anti-depressivos, caso contrário o paciente pode ter tendências suícidas.

NÍVEIS DE CONHECIMENTO

FACTOS

Relações arbitrárias entre objectos, símbolos, eventos, ...

CONCEITOS

Resultam de ideias abstractas, de natureza hierárquica

REGRAS

- Conjuntos de operações e passos que orientam a acção, desenvolvidas a partir de factos e conceitos
- Correspondem à aplicação do conhecimento

METAREGRAS

Responsável pela criação e aplicação de novas regras a situações novas

Corresponde à geração de conhecimento novo

UMA **DECISÃO** É O USO EXPLÍCITO DO CONHECIMENTO

SISTEMAS BASEADOS EM CONHECIMENTO:

Um Exemplo...

Humano: Não [Estou indeciso...]

Computador: Gostas de alguma comida em particular?

Humano: Não [De facto, não sei o que me apetece...]

Computador: Gostas de comida picante?

Humano: Não [Da última vez, aquilo foi complicado...]

Computador: Costumas beber álcool às refeições?

Humano: Sim [Va lá o computador está a acertar...]

Computador: Quando bebes vinho, aprecias vinho tinto

alentejano?

Humano: Sim [É isso mesmo, continua, ajuda-me nisto...]

. . .

Legenda: [Pensamentos...]

SISTEMAS BASEADOS EM CONHECIMENTO: Outros Exemplos...

http://www.aiinc.ca/demos/index.html

http://www.myacquire.com/aiinc/spa/

http://www.myacquire.com/aiinc/stock/

SISTEMAS BASEADOS EM CONHECIMENTO

Universidade do

DEFINIÇÃO: Programas de computador que **utilizam o conhecimento** representado explicitamente para resolver problemas.

Manipulam conhecimento e informação de **forma inteligente**São desenvolvidos para resolverem problemas que requerem grandes porções de conhecimento humano e **especialização** (perícia)

CONHECIMENTO + RACIOCÍNIO = RESOLUÇÃO PROBLEMA

Perspectiva do Conhecimento processável pelo homem A análise e modelação do método de resolução do problema

Perspectiva Simbólica processável pelo computador A actividade de representar este método através de um formalismo computacionalmente eficiente

Capacidade de Raciocínio/Inferência

É a capacidade de definir um **conjunto de passos** para a **resolução** eficiente e rápida de um problema

O próprio mecanismo de inferência é conhecimento

SISTEMAS BASEADOS EM CONHECIMENTO

CAPACIDADES INTRÍNSECAS

- Questionar o utilizador numa linguagem/interface fácil de entender e adquirir informações
- Estabelecer um raciocínio a partir dessas informações e do conhecimento nele contido
- Explicar o raciocínio
- Admitir o erro (como nos humanos) mas a solução apresentada deverá ser equivalente à apresentada por um especialista humano

SISTEMAS BASEADOS EM CONHECIMENTO

PROPRIEDADES

- ■Tudo o que se sabe do problema deverá estar explicitamente representado na Base de Conhecimento do Sistema.
- Saber interpretar e utilizar o conhecimento contido na Base de Conhecimento → Mecanismo/agente de Inferência.
- •Tipicamente estes sistemas destinam-se a resolver problemas complexos;
- •Uso intensivo do conhecimento **específico do domínio** (em vez do geral).

Principais Diferenças entre Sistemas Convencionais e SBC

Sistemas Convencionais	SBC
Estrutura de Dados	Representação de Conhecimento
Dados e Relações entre os Dados	Conceitos, Relações entre Conceitos e Regras
Usam Algoritmos Determinísticos	Procura Heurística
Conhecimento embebido no código do programa	Conhecimento representado explicitamente e separado do programa que o manipula e interpreta
Explicação do raciocínio é difícil	Podem e devem explicar o seu raciocínio

Universidade do Minho

Generalização

SISTEMAS INTELIGENTES

Possuem comportamento inteligente

SISTEMAS BASEADOS EM CONHECIMENTO

Tornam **explícito** o domínio do conhecimento, separando-o do resto do sistema

SISTEMAS PERICIAIS

Aplicam conhecimento especializado na resolução de **problemas difíceis** do mundo real Substituem o **perito humano**

Especialização

JUSTIFICAÇÃO DO DESENVOLVIMENTO DE SBCs

- Vantagem económica altamente remunerativo
- •Falta de especialistas afectam a eficiência na resolução do problema
- Especialistas necessários em vários locais (e.g., médicos de uma especialidade) – problema distribuído
- •Domínio bem delimitado para que o SBC possa resolver bem o problema
- Necessidade de retenção de conhecimento evita dependência excessiva dos humanos (e.g., perda de funcionários)

TIPOS DE APLICAÇÕES

- ■INTERPRETAÇÃO Análise de dados para determinar o seu significado
- ■CLASSIFICAÇÃO Atribuir uma etiqueta a um dado item, definido através de um conjunto de atributos, uma etiqueta, de entre um conjunto de classes prédefinidas.
- ■MONITORIZAÇÃO Observação contínua de um sistema para agir quando uma situação acontece
- •PLANEAMENTO Determinar conjunto de acções para atingir uma determinada meta.
- •PROJECTO Especificações de um objecto de modo a obedecer a um conjunto de requisitos.

Universidade do Minho

Q1: Qual o Tipo das seguintes aplicações? (Think-Pair-Share 1min+1min)

Interpretação/Classificação/Monitorização/

Planeamento/Projecto

- Controlo de tráfego aéreo
- Guiar um robot de um labirinto
- Análise de dados de uma imagem de satélite
- Determinar qual a falha num automóvel a partir de uma avaria
- Observação contínua duma central nuclear
- Conceber a estrutura de uma ponte ferroviária
- Diagnóstico de uma gripe
- Reconhecimento de fala

ESTRUTURA GERAL DE UM SBC

Controlo da **interacção** com o utilizador **Inferência** do conhecimento **Explicação** das conclusões

MÓDULO DE AQUISIÇÃO DE DADOS (MAD)

- Interacção com o utilizador
- Obtenção de informações sobre o problema (perguntas ao utilizador)
- Verificação da validade das respostas

MOTOR/SISTEMA DE INFERÊNCIA (MI)

- Desenvolvimento do raciocínio baseado nas informações obtidas pelo MAD e no conhecimento representado na BC.
- ■Por exemplo, para regras de produção:
 - Encadeamento para a frente (forward chaining)
 - Encadeamento para trás (backward chaining)

MÓDULO DE EXPLICAÇÃO (ME)

- •Justificação das conclusões obtidas:
 - ■Porquê porque é que o MAD fez a pergunta ao utilizador
 - Como caminho de raciocínio para chegar às conclusões apresentadas
 - •Estudo de cenários O que acontece se alguma informação fornecida pelo utilizador for alterada (what if)
 - ■Porque não explicar porque uma determinada conclusão não foi obtida

BASE DE CONHECIMENTO (BC)

- Descrição do CONHECIMENTO necessário para a resolução do problema
- Conjunto de representações de acções e acontecimentos do mundo
- SENTENÇAS expressas numa determinada LINGUAGEM DE REPRESENTAÇÃO DE CONHECIMENTO:

Regras de Produção

Redes Semânticas

Frames (Enquadramentos)

Orientado ao objecto

Lógica

Baseado em Casos (Case Based Learning)

Híbridas

BASE DE CONHECIMENTO (BC)

Exemplo de uma sentença do tipo CAUSA-EFEITO (regra de produção)

SE TEMP-PACIENTE > 37.5 ° C **ENTÃO** PACIENTE-TEM-FEBRE

Exemplo de **META-CONHECIMENTO** – conduz a procura da solução

SE O DOENTE É ALCOÓLICO ENTÃO PROCURAR PRIMEIRO DOENÇAS HEPÁTICAS

PROCURAR A SOLUÇÃO PRIMEIRO EM CAMINHOS ONDE EXISTEM POUCAS POSSIBILIDADES (heurística)

BASE DE CONHECIMENTO (BC)

Atender a problemas de:

CONFLITOS / INCONSISTÊNCIA

Teste de consistência Selecção de soluções em conflito

INCOMPLETUDE / INCERTEZA

Métodos Bayesianos (probabilísticos) Teoria da Evidência Teoria da Certeza Lógica Difusa (*Fuzzy Logic*)

BASE DE DADOS (BD)

Destina-se a conter os dados/informações que caracterizam o problema

(factos)

MEMÓRIA DE TRABALHO (MT)

- Permite armazenar e fornecer a linha de raciocínio
- •Armazena respostas do utilizador (evita perguntas repetidas)
- •Armazenamento de conclusões intermédias (evita repetição de inferências)

INTERFACE

Interacção entre o SBC e o utilizador

Linguagem difere da utilizada para representar o conhecimento:

Linguagem natural (impraticável)

Subconjunto de Linguagem Natural

Linguagens Visuais

Linguagens Diagramáticas

Multimédia

Princípios oriundos das teorias cognitivas e semióticas (**Human-Computer Interaction - HCI**):

Eficiência

Dinamismo

Desenvolvimento em tempo útil

METODOLOGIA/PROCESSO DE DESENVOLVIMENTO DE UM SBC (Iterativo): 4 fases

1 Planeamento

Identificação do
Domínio do
Conhecimento
Selecção da
Equipa de
Desenvolvimento
Selecção da
Ferramenta de
Desenv.

2 Aquisição de Conhecimento

Identificação Conceptualização Formalização

3 Implementação Representar o Conhecimento na Ferramenta Implementar o Interface

Documentar o SBC

4 Testes e Refinamento

Validação e verificação Refinamento do SBC

FERRAMENTAS DE SUPORTE À CONSTRUÇÃO DE UM SBC

- Utilização de linguagens de programação como LISP e PROLOG
- 2. Ferramentas de Apoio diversos esquemas de representação de conhecimento, motores de inferência, interfaçes, etc...
 - ART, Babylon, KEE, Knowledge Craft, Loops, Flex, Elements Environment, ...
- 3. Shells a interface e estratégia de resolução de problemas é prédefinida:
 - Insight, KES, MED2, M.1, Personal Consultant, S.1, Timm
 - EXSYS CORVID, CLIPS, JESS (Clips em Java), JLisa (Clips for Java), ...

Características de Algumas FERRAMENTAS DE APOIO

	ART	Babylon	KEE	Knowledge Craft	Loops	Flex	Elements Environment
Representação do Conhecimento							
Frames	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Orientado ao Objecto	Lim	Sim	Sim	Sim	Sim	Sim	Sim
Demons	Lim	Sim	Sim	Sim	Sim	Sim	Sim
Regras	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Motor de Inferência							
Forward Chaining	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Backward Chaining	Sim	Sim	Sim	Não	Não	Sim	Sim
Contexto (mundos)	Sim	Não	Sim	Lim.	Não	Não	Não
Manutenção de Verdade	Sim	Não	Sim	Não	Não	Não	Não
Ajuda ao Desenvolvimento							
Editor Interno	Sim	Não	Sim	Sim	Sim	Sim	Sim
Help	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Trace e break point	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Medida de Desempenho	Sim	Não	Não	Não	Sim	Sim	Não
Interface Gráfica	Sim	Limitado	Sim	Sim	Sim	Sim	Sim
Referências Cruzadas	Não	Não	Não	Não	Sim	Não	Sim
Controlo de Versões	Não	Não	Não	Não	Sim	Não	Não
Fornecedor	Infer	GMD	Intelli	Carniege	Xerox	LPA	Neuron Data
	ence		corp	Group		Prol	
						og	

Características de Algumas SHELLS

	Insight	KES	MED2	M.1	CLIPS	Personal Conultant	S.1	Timm
Classe do Problema								
Interpretação	Lim	Lim	Lim	Lim	Sim	Lim	Sim	Lim
Diagnóstico	Sim	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Monitorização	Não	Não	Lim	Lim	Sim	Não	Não	Sim
Planeamento	Não	Não	Não	Lim	Sim	Não	Não	Não
Projecto	Não	Não	Não	Lim	Lim.	Não	Lim	Não
Representação BC								
Frames	Não	Não	Não	Não	Sim	Sim	Lim	Não
Demons	Não	Não	Não	Sim	Sim	Sim	Sim	Não
Regras	Sim	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Motor de Inferência								
Forward Chaining	Sim	Não	Sim	Lim	Sim	Lim	Lim	Sim
Backward Chaining	Sim	Sim	Lim	Sim	Não	Sim	Sim	Não
Apoio ao Desenvolvimento								
Editor da BC	Sim	Não	Lim	Sim	Sim	Sim	Sim	Não
Verif. Consistência	Não	Não	Não	Sim	Não	Não	Sim	Sim
Trace	Sim	Sim	Sim	Não	Sim	Sim	Sim	Sim
Explicação	Sim	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Fornecedor	Level-5-r	Soft ware A&E	Inware	Tec kno wle dge	Dom. Públic o	T1	Teckn owled ge	GRC

Universidade do Minho

Q2: Sumário da Aula?

In-Class Teams

- -Fechar/Guardar os anotamentos. Caneta+1 folha papel
- -Juntem-se em grupos de 3 elementos
- -Descubram quem fica em 1o lugar em termos do nome segundo a ordem alfabética → Representante (caneta)
- -Escrevam todos os conceitos que aprenderam hoje (2min)
- -Pensar em quantidade

Para saber mais...

Universidade do Minho

Consultar o Capítulo 2, SI – [Resende,

2003]: Rezende, Solange A., Sistemas Inteligentes Fundamentos e Aplicações – RECOP-IA – Rede Cooperativa de Pesquisa em Inteligência Artificial, Editora Manole Ltda, Brasil, 2003.

Pesquisar informação na Internet sobre

SBCs. Por exemplo: http://en.wikipedia.org/wiki/Expert_system