Introduction to Rings and Modules

Lecture 9, Monday May 15 2023 Ari Feiglin

Example 9.0.1:

We define $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$. $\mathbb{Z}[\sqrt{-5}]$ is an integral domain, since \mathbb{C} is a field so it has no zero divisors. We claim that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

For $z \in \mathbb{Z}[\sqrt{-5}]$, we define the norm by $N(z) = |z|^2 = z \cdot \overline{z}$. In this case we have $N(a+b\sqrt{-5}) = a^2 + 5b^2$, and it is multiplicative. This is a norm since $a^2 + 5b^2 \in \mathbb{N}$. Notice that if u is invertible then there exists a v such that uv = 1 and so N(u)N(v) = 1, and since these are natural numbers, this means N(u) = N(v) = 1. And $N(a+b\sqrt{-5}) = a^2 + 5b^2 = 1$ if and only if $a^2 = 1$, since if $b \neq 0$, $5b^2 \geq 5$. So the only invertible elements in $\mathbb{Z}[\sqrt{-5}]$ are ± 1 . Thus two elements are friends if and only if they are equal up to sign.

Notice that

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

so if we can show that these are all irreducible, we have finished since they are not friends.

Suppose xy=2 is a decomposition into irreducible elements, then N(x)N(y)=N(2)=4, and $N(x),N(y)\neq 1$ so N(x)=N(y)=2, but if $x=a+b\sqrt{-5}$ then $N(x)=a^2+5b^2=2$. But this has no solution over the integers. Similar for xy=3, N(x)N(y)=N(3)=9 and so N(x)=3, but there are no integers which satisfy $a^2+5b^2=3$ and therefore 2 and 3 are irreducible.

Similarly $N(1 \pm \sqrt{-5}) = 6$ so if N(x)N(y) = 6 then N(x) = 2 or N(x) = 3, which has no solutions, so $1 \pm \sqrt{-5}$ is irreducible as well.

Definition 9.0.2:

Let R be a commutative ring and $a, b \in R$, then $d \in R$ is called a greatest common divisor (not necessarily unique) if:

- (1) $a, b \in (d)$ (meaning d|a, b)
- (2) If $I \subseteq R$ is a prime ideal such that $a, b \in I$ then $(d) \subseteq I$

Notice that if R is a ring and d and d' are greatest common divisors of a and b, then (d) = (d'). This is because $a, b \in (d')$ so $(d) \subseteq (d')$ since it is a greatest common divisor, and similarly $(d') \subseteq (d)$. So if d is a greatest common divisor of a and b, then d' is a greatest common divisor if and only if (d) = (d'). Thus if d and d' are friends, since (d) = (d'), d' is also a greatest common divisor. In an integral domain, this is an equivalence: d' is a greatest common divisor if and only if d and d' are friends.

Notice that if R is a PID, then (a, b) = (d) and d is a greatest common divisor of a and b (since if $a, b \in I$ then $(a, b) \subseteq I$). This condition is both necessary and sufficient.

Since \mathbb{Z} is a PID, and $a\mathbb{Z} + b\mathbb{Z} = \gcd(a, b)\mathbb{Z}$ (and this is the only non-negative number where this is true), so this satisfies our definition of greatest common divisiors in integers. (In \mathbb{Z} , the greatest common divisors of a and b are $\pm \gcd(a, b)$.)

Example 9.0.3:

Let $R = \mathbb{Z}[\sqrt{-5}]$ and $\alpha = 6$ and $\beta = 2(1 + \sqrt{-5})$. Then α and β have no gcd.

This is because $N(\alpha) = 36$ and $N(\beta) = 24$. If $\alpha, \beta \in (d)$ then $\alpha = d\gamma$ and $\beta = d\delta$ so $36 = N(d)N(\gamma)$ and $24 = N(d)N(\delta)$. So N(d) divides 36 and 24, and therefore divides their gcd, 12. But there are no elements with norm 12, since if b = 1 then $a^2 = 7$ and if b = 0 then $a^2 = 12$..

Since $1 + \sqrt{-5}$ divides both α and β (by our previous example), and so $I = (1 + \sqrt{-5})$ is a prime ideal containing α and β , so $(d) \subseteq I$. Meaning $(1 + \sqrt{-5})|d$, so $N(1 + \sqrt{-5}) = 6|N(d)$, and since N(d) divides 12 and there is no element of norm 12, N(d) = 6.

But $d = (1 + \sqrt{-5})c$ so N(c) = 1, and so c is invertible, and therefore $1 + \sqrt{-5}$ is a gcd of α and β . But $2|\alpha$, $2|\beta$ and so $\alpha, \beta \in (2)$ and so $(d) \subseteq (2)$, so 2|d. Therefore d = 2x and so 6 = N(d) = N(2)N(x) = 4N(x) which is a contradiction. So they have no gcd.

Definition 9.0.4:

An integral domain R is called a gcd domain if every two non-zero elements have a gcd.

Proposition 9.0.5:

Every UFD is a gcd domain.

Proof:

Suppose $\alpha, \beta \in R$ non-zero and non-invertible, then there exist irreducible p_i such that

$$\alpha = p_1^{e_1} \cdots p_n^{e_n}, \qquad \beta = p_1^{f_1} \cdots p_n^{f_n} u$$

where $e_i, f_i \geq 0$, u is invertible, and p_i are all different and not friends (hence the u). We claim that

$$d = p_1^{g_1} \cdots p_n^{g_n}$$

where $g_i = \min\{e_i, f_i\}$, is a gcd of α and β .

This is true since $d|\alpha$ and $d|\beta$ so $\alpha, \beta \in (d)$. Now suppose $\alpha, \beta \in (t)$ then $\alpha = xt$ and $\beta = xs$. Since factorization in a UFD is by definition unique, the factorizations of x, t, and s must contain only p_i s and a unit. Suppose

$$x = p_1^{x_1} \cdots p_n^{x_n} \cdot v$$

Since $xt = \alpha$, and the factorization of t contains only p_i s, we must have that $x_i \leq e_i$ and similarly $x_i \leq f_i$, so $x_i \leq g_i$. Therefore $x \mid d$ and therefore $d \in (x)$ so $(d) \subseteq (d)$ as required.