COMP 4332 / RMBI 4310 Big Data Mining and Management Advanced Data Mining for Risk Management and Business Intelligence (2025 Spring)

Tutorial 5: Network Representation and Random Walk Based Network Embeddings

TA: Qing ZONG (qzong@connect.ust.hk)

Network Representations

Goal: efficient task-independent feature learning for machine learning in networks.

Network Representations

Intuition: find embedding of nodes to d-dimensions so that "similar" nodes in the graph have embeddings that are close together.

Network Representations

• Input Examples (user.csv)

user_id	friends
ZNZ7dxIsbHCbcbqTKQIUpg	['iDlkZO2ilLS8Jwfdy7DP9A']
MmeVq6bWhogNpVPuEemrBA	['NwaJgVXNKZsQMVsgs6SOnA', '40m0541Z_KexYkdvvqHJIQ']
7aillfpcQZG7ea10R5i4RQ	['Q4Qfu-3vYtL1LRm2X1b0Gg', 'PeLGa5vUR8_mcsn-fn42Jg']

- Output
 - d-dimensions vector

Applications

- Link Prediction
- Node Classification
- Recommendation
- Visualization

Work in the History

- ISOMap [Tenenbaum et al., Science'00]
- LLE [Roweis and Saul, Science'00]
- Laplacian EigenMap [Belkin et al., NIPS'01]
- (t)-SNE [Maaten and Hinton, JMLR'08]
- Deepwalk [Perozzi et al., KDD'14]
- LINE [Tang et al., WWW'15]
- Node2vec [Grover and Leskovec, KDD'16]

General Idea

- 1. Estimate the probability of visiting node v on a random walk starting from node u using some random walk strategy R.
- 2. Optimize embeddings to encode these random walk statistics.

 $\mathbf{Z}_{u}\mathbf{Z}_{v} \approx P\{u, v \text{ co_occur on a random walk}\}$

Convert graph into list of nodes

Train embedding with Word2Vec

Why using Random Walks

• **Expressivity**: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information.

• **Efficiency**: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks.

First-order Random Walk

A random walker moves to next node based on the last node.

 $\pi_{c_i|c_{i-1},c_{i-2}} = \pi_{c_i|c_{i-1}} = \begin{cases} 1, & \text{if } (c_{i-1},c_i) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$

Second-order Random Walk

A random walker moves to next node based on the last two nodes.

Pipeline

- Data loader
- Random walk generator
- Embedding algorithm
- Scorer

Implementation of the Whole Pipeline

See the jupyter-notebook.

Link Prediction

 Predict the relation between nodes with their cosine similarity and calculate the AUC-ROC score.

AUC-ROC Score

- ROC and AUC are terms commonly used in the context of machine learning and statistics, particularly for evaluating the performance of classification models.
- ROC stands for Receiver Operating Characteristic. It's a graphical plot that illustrates the trade-off between the true positive rate (TPR) and the false positive rate (FPR) at various threshold settings. In simpler terms, it shows how well a model can distinguish between two classes
 - True Positive Rate (TPR) = TP / (TP + FN), TP is true positives and FN is false negatives.
 - False Positive Rate (FPR) = FP / (FP + TN), FP is false positives and TN is true negatives.
- The ROC curve is created by plotting TPR (y-axis) against FPR (x-axis) at different thresholds.

AUC-ROC Score

 Area Under Curve (AUC) – ROC (Receiver Operating Characteristic Curve)

Under each recall level, we prefer a higher precision

AUC-ROC Score

- AUC stands for Area Under the Curve. Specifically, it refers to the area under the ROC curve. AUC provides a single scalar value summarizing the overall performance of a model across all possible thresholds.
 - AUC ranges from 0 to 1, A higher AUC indicates a better-performing model:
 - 1.0: Perfect model (perfectly separates classes).
 - 0.5: Model with no discriminative power (random guessing).
 - < 0.5: Model performing worse than random guessing (rare, indicates a flipped prediction).

Implementation of the Link Prediction Task

See the Jupyter Notebook.

Thank You