ARM Exceptions, Interrupts, Vector table

Exception

Exception - halt the normal sequential execution of instructions

Exception handlers

- handling errors
- handling interrupts
- other events generated by external system
- improves system performance

Exception

Exception

- Data abort
- Fast interrupt request
- Interrupt request
- Prefetch abort
- Software interrupt
- Reset
- Undefined instruction

Exception Handling

An exception is any condition that needs to halt the normal sequential execution of instructions

Examples

- ARM core is reset
- Failed instruction fetch or memory access failure
- encountering undefined instruction
- Software interrupt instruction execution
- external interrupt is raised

Exception handling is the method of processing these exceptions.

Exception Handling

- Most exceptions have associated an software exception handler
- Software exception handler a software routine that executes when an exception occurs
- A data abort exception will have a data abort handler.
- The handler first determines the cause of the exception and then services the exception.

ARM processor exceptions and modes

- Each exception causes the core to enter a specific mode.
- Any ARM processor modes can be entered manually by changing the cpsr
- When an exception causes a mode change, the core automatically,
 - saves the cpsr to the spsr of the exception mode
 - saves the pc to the Ir of the exception mode
 - sets the cpsr to the exception mode
 - sets pc to the address of the exception handler

ARM processor exceptions and modes

ARM processor exceptions and associated modes.

Exception	Mode	Main purpose
Fast Interrupt Request	FIQ	fast interrupt request handling
Interrupt Request	IRQ	interrupt request handling
SWI and Reset	SVC	protected mode for operating systems
Prefetch Abort and Data Abort	abort	virtual memory and/or memory protection handling
Undefined Instruction	undefined	software emulation of hardware coprocessors

Exceptions and associated modes.

Vector Table

Vector Table - a table of addresses that the ARM core branches to when an exception is raised.

- B<address> This branch instruction provides a branch relative from the pc.
- LDR pc, [pc, offset] This load register instruction loads the handler address from memory to the pc.
- The address is an absolute 32 bit address stored close to the vector table.
- Loading this absolute literal value results in a slight delay in branching to a specific handler due to the extra memory access.
- Branch to any address in memory.

Vector Table

- LDR pc, [pc, hash-0xff0] loads a specific interrupt service routine address from address 0xfffff030 to PC
- This specific instruction is only used when a vector interrupt controller is present.
- MOV pc, hash immediate copies an immediate value into the pc

Vector Table

Vector table and processor modes.

Exception	Mode	Vector table offset
Reset	SVC	+0x00
Undefined Instruction	UND	+0x04
Software Interrupt (SWI)	SVC	+0x08
Prefetch Abort	ABT	+0x0c
Data Abort	ABT	+0x10
Not assigned	_	+0x14
IRQ	IRQ	+0x18
FIQ	FIQ	+0x1c

Exception priorities

- Simultaneously occurring exceptions priority mechanism
- Highest priority exception reset
- data abort
- lowest priority software interrupt, undefined instruction exception
- Interrupts can be disabled by setting I and F bits in the cpsr

Exception priorities

Reset Handler -

- initializes the system, including setting up memory and caches
- External interrupt sources should be initialized before enabling IRQ and FIQ interrupts
- Set up stack pointers for all processor modes
- during the first few instructions it is assumed that no exceptions or interrupts will occur
- code should be designed to avoid SWI, undefined instructions, memory access that may abort

Data abort exception

- Data abort exceptions occur when the memory controller or MMU indicates that an invalid address is accessed
- When the current code attempts to read or write to memory without the correct access permissions
- An FIQ exception can be raised within a data abort handler since FIQ exceptions are not disabled
- When an FIQ is completely serviced, control is returned back to data abort

Data abort exception

FIQ - occurs when an external peripheral sets the FIQ pin

FIQ - highest priority

Exception priority levels.

Exceptions	Priority	I bit	F bit
Reset	1	1	1
Data Abort	2	1	_
Fast Interrupt Request	3	1	1
Interrupt Request	4	1	_
Prefetch Abort	5	1	_
Software Interrupt	6	1	_
Undefined Instruction	6	1	_

Data abort exception

- core disables both IRQ and FIQ once it enters into FIQ handler
- no external source can interrupt the processor unless the IRQ and FIQ exceptions are reenabled by software

IRQ exception

- IRQ exception occurs when an external peripheral sets the pin
- Second-highest priority exception
- IRQ handler will be entered if neither an FIQ exception nor a data abort exception occurs
- On entry to IRQ handler, IRQ exceptions are disabled until the current interrupt source has been cleared

Prefetch abort

- A prefetch abort exception occurs when an attempt to fetch an instruction results in a memory fault.
- This exception is raised when the instruction is in the execute stage of the pipeline and if none of the higher exceptions have been raised
- On entry to the handler, IRQ exceptions will be disabled, FIQ will remain unchanged

SWI exception

- SWI exception occurs when the SWI instruction is executed and none of the other higher-priority exceptions have been flagged
- On entry to the handler, cpsr will be set to supervisor mode
- if the system uses nested swi calls, link reg r14 and spsr must be stored away before branching to the nested SWI

Undefined exception

- An undefined instruction exception occurs when an instruction not in the ARM or Thumb instruction set reaches the execute stage of the pipeline and none other exceptions are flagged.
- The ARM processor asks the coprocessors if they can handle this as a coprocessor instruction.
- If none of the coprocessors claims the instruction, an undefined instruction exception is raised
- SWI and Undefined instruction same priority
- they cannot occur at the same time

Link Register Offsets

- When an exception occurs, the link register is set to a specific address based on the current pc.
- A list of useful addresses for the different exceptions

Exception	Address	Use
Reset	_	lr is not defined on a Reset
Data Abort	lr - 8	points to the instruction that caused the Data Abort exception
FIQ	lr-4	return address from the FIQ handler
IRQ	lr-4	return address from the IRQ handler
Prefetch Abort	lr-4	points to the instruction that caused the Prefetch Abort exception
SWI	lr	points to the next instruction after the SWI instruction
Undefined Instruction	lr	points to the next instruction after the undefined instruction

Interrupts

Two Types -

- An exception raised by an external peripheral-IRQ, FIQ
- SWI instruction

Both suspend the normal flow of program execution

Assigning Interrupts

- A system designer decides which hardware peripheral can produce which interrupt request.
- An interrupt controller connects multiple external interrupts to one of the two ARM interrupt requests.
- Interrupt controller can be programmed to allow an external interrupt source to cause either an IRQ or FIQ exception.
- Software interrupts are normally reserved to call privileged os routines.
- SWI instruction used to change a program running in user mode to a privileged mode
- Interrupt requests are assigned for general purpose interrupts (timer interrupt)
- FIQ are reserved for a single interrupt source that requires a fast response time