Multilayer Perceptron Multilayer Dense Feedforward Neural Networks

Vitor Greati¹

¹Federal University of Rio Grande do Norte

Table of Contents

Introduction

Neurons

Multilayer Architecture

Introduction

TODO.

Neurons

Basic elements

The neuron's basic task is to take an input, perform some computation and output a value.

Main elements

- ▶ An input vector $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle \in \mathbb{R}^n$.
- ▶ A vector of weights $\mathbf{w} = \langle w_1, w_2, \dots, w_n \rangle \in \mathbb{R}^n$.
- ▶ A constant $b \in \mathbb{R}$, called *bias*.
- A computation between inputs and weights, like

$$z = \mathbf{x} \cdot \mathbf{w} = \sum_{i} x_{i} w_{i}.$$

▶ An activation function f to produce an output f(z + b).

Neurons

Graphical representation

A common graphical representation highlights those elements:

Neurons

Graphical representation

The same representation, but using only vectors:

Fully connected feedforward architecture

An architecture with k layers, $L_0, L_1, \ldots, L_{k-1}$, is graphically represented as:

Fully connected feedforward architecture

Observations

- $ightharpoonup L_0$ is the **input layer**.
 - ► Neurons in this layer are **input neurons**.
 - An input neuron j takes the j-th component of the input vector.
 - Input neurons do not perform any computation or activation: just output the input value.
 - ▶ The output of L_0 is **x**, the input vector.
- ▶ L_{k-1} is the **output layer** and its output is the network output.
- ▶ This architecture is **fully connected** because each neuron in layer *L_i* is connected to every neuron in layer *L_{i+1}*.
- ► This architecture is **feedforward** because there is no back arrows forming cycles; otherwise, it would be *recurrent*.

Fully connected feedforward architecture

How can we perform calculations and learning in this architecture? Mathematics, of course.

Representing connections between layers

Consider layer L_l , $l=1,\ldots,C-1$, and neuron k of L_l . Since the architecture is fully connected, k is connected to all neurons j in L_{l-1} . Denote by w_{kj}^l the weight of the connection between neuron j of L_{l-1} and neuron k of L_l :

Fully connected feedforward architecture

Representing connections between layers

In this way, we can represent all weights between two layers using only one matrix $\mathbf{W}^I = (w^I_{kj})$:

$$\mathbf{W}^{l} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \dots & w_{1|L_{l-1}|}^{l} \\ w_{21}^{l} & w_{22}^{l} & \dots & w_{2|L_{l-1}|}^{l} \\ \vdots & \vdots & \ddots & \vdots \\ w_{|L_{l}|1}^{l} & w_{|L_{l}|2}^{l} & \dots & w_{|L_{l}||L_{l-1}|}^{l} \end{bmatrix}.$$

Notice that:

- ▶ **W**^I has dimensions $|L_I| \times |L_{I-1}|$.
- ▶ The weight vector of connections to neuron k in L_l is the k-th row of \mathbf{W}^l , denoted by \mathbf{w}_k^l .
- ▶ All connections in the network are represented! They are all in matrices $\mathbf{W}^1, \mathbf{W}^2, \dots, \mathbf{W}^{C-1}$.

Fully connected feedforward architecture

Representing the biases

Remember that each neuron has its own bias. So, let b_k^I denote the bias of neuron k in layer L_I . Then, the biases in layer I are represented as just a vector

$$\mathbf{b}^I = \langle b_1^I, b_2^I, \dots, b_{|L_I|}^I \rangle.$$

In this way, all biases are represented by vectors $\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^{C-1}$.

Fully connected feedforward architecture

Representing layer outputs

Denote by a_k^l the output of neuron k in layer L_l , and by \mathbf{a}^l the output vector for layer L_l . How to compute such output? Look:

Fully connected feedforward architecture

Representing layer outputs

Denote by z_k^l the computation performed by the neuron, i.e.

$$z_k^l = \sum_{j}^{|L_{l-1}|} w_{kj}^l a_j^{l-1} = \mathbf{w_k^l} \mathbf{a^{l-1}}.$$

Then, the neuron output is

$$a_k^l = f(z_k^l + b_k^l).$$

And the layer output is

$$\mathbf{a}^{\prime} = \mathbf{f}(\mathbf{W}^{\prime} \cdot \mathbf{a}^{\prime - 1} + \mathbf{b}^{\prime}).$$

Fully connected feedforward architecture

Didn't get it? Look:

$$\begin{split} \mathbf{f} \left(\mathbf{W}^{l} \cdot \mathbf{a^{l-1}} + \mathbf{b^{l}} \right) &= \mathbf{f} \left(\begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \dots & w_{1}^{l} |_{L_{l-1}|} \\ w_{21}^{l} & w_{22}^{l} & \dots & w_{2}^{l} |_{L_{l-1}|} \\ \vdots & \vdots & \ddots & \vdots \\ w_{|L_{l}|1} & w_{|L_{l}|2}^{l} & \dots & w_{|L_{l}||L_{l-1}|}^{l} \end{bmatrix} \cdot \begin{bmatrix} a_{1}^{l-1} \\ a_{2}^{l-1} \\ \vdots \\ \vdots \\ a_{l-1}^{l-1} \end{bmatrix} + \begin{bmatrix} b_{1}^{l} \\ b_{2}^{l} \\ \vdots \\ b_{|L_{l}|}^{l} \end{bmatrix} \right) \\ &= \mathbf{f} \left(\begin{bmatrix} \sum_{j}^{|L_{l-1}|} w_{1j} a_{j}^{l-1} + b_{1}^{l} \\ \sum_{j}^{|L_{l-1}|} w_{2j} a_{j}^{l-1} + b_{2}^{l} \\ \vdots \\ \sum_{j}^{|L_{l-1}|} w_{|L_{l}|} a_{l}^{l-1} + b_{|L_{l}|}^{l} \end{bmatrix} \right) \\ &= \mathbf{f} \left(\begin{bmatrix} \mathbf{w}_{1}^{l} \mathbf{a}^{l-1} + b_{1}^{l} \\ \mathbf{w}_{2}^{l} \mathbf{a}^{l-1} + b_{2}^{l} \\ \vdots \\ \mathbf{w}_{|\mathbf{L}_{l}|} \mathbf{a}^{l-1} + b_{|L_{l}|}^{l} \end{bmatrix} \right) \\ &= \left[\mathbf{f} (\mathbf{z}_{1}^{l}) & \mathbf{f} (\mathbf{z}_{2}^{l}) & \dots & \mathbf{f} (\mathbf{z}_{|L_{l}|}^{l}) \end{bmatrix}^{T} \\ &= \left[a_{1}^{l} & a_{2}^{l} & \dots & a_{|L_{l}|}^{l} \end{bmatrix}^{T} \\ &= \begin{bmatrix} a_{1}^{l} & a_{2}^{l} & \dots & a_{|L_{l}|}^{l} \end{bmatrix}^{T} \\ &= \begin{bmatrix} a_{1}^{l} & a_{2}^{l} & \dots & a_{|L_{l}|}^{l} \end{bmatrix}^{T} \end{aligned}$$