NAME – Aruna Vattikota

SPECIFICATION - COMPUTER SCIENCE AND ENGINEERING

COLLEGE - KASIREDDY NARAYAN REDDY COLLEGE OF ENGINEERING AND RESEARCH

YEAR OF STUDY - 4 TH YEAR

MAJOR PROJECT 1

Choose any dataset of ur choice and apply suitable REGRESSION/CLASSIFIER #Dataset - '/content/Asia_cup_1984_to_2018.csv'

#1. Take a dataset and create dataframe

import pandas as pd

df = pd.read_csv("/content/Asia_cup_1984_to_2018.csv")

df

	Match id	Team_1	Team_2	Format	Ground	Year	Toss	Selection
0	1	Pakistan	Sri Lanka	ODI	Sharjah	1984	Sri Lanka	Bowling
1	2	India	Sri Lanka	ODI	Sharjah	1984	India	Bowling
2	3	India	Pakistan	ODI	Sharjah	1984	India	Batting
3	4	Sri Lanka	Pakistan	ODI	Colombo(PSS)	1986	Sri Lanka	Bowling
4	5	Bangladesh	Pakistan	ODI	Moratuwa	1986	Pakistan	Bowling
109	110	India	Pakistan	ODI	Dubai(DSC)	2018	Pakistan	Batting
110	111	Afghanistan	Bangladesh	ODI	Abu Dhabi	2018	Bangladesh	Batting
111	112	Afghanistan	India	ODI	Dubai(DSC)	2018	Afghanistan	Batting
112	113	Bangladesh	Pakistan	ODI	Abu Dhabi	2018	Bangladesh	Batting
113	114	Bangladesh	India	ODI	Dubai(DSC)	2018	India	Bowling

114 rows × 28 columns

#To display the information present in the table
df.info()

```
<class 'pandas.core.trame.DataFrame'>
RangeIndex: 114 entries, 0 to 113
Data columns (total 28 columns):
# Column
                       Non-Null Count Dtype
                        -----
                      114 non-null int64
114 non-null object
0 Match id
   Team_1
1
                       114 non-null object
2
   Team_2
                      114 non-null object
3 Format
4 Ground
                       114 non-null object
   Year
5
                       114 non-null int64
                       114 non-null
6
   Toss
                                      object
                       114 non-null
114 non-null
7
    Selection
                                      object
8 fi_score
                                      float64
                       114 non-null
9 fi_wickets
                                      float64
10 fi_4s
                       114 non-null float64
```

https://colab.research.google.com/drive/1dBBOL_TAkkbb0stNCtlLuAlgX307yeM6#scrollTo=Lu7MLi1k2avG&printMode=true

```
9/19/22, 8:02 PM
                                           MAJOR PROJECT -1.ipynb - Colaboratory
                                 114 non-null float64
         11 fi_6s
         12 fi_extra
         13 fi_run_rate
         14 fi_avg_str_rate
         15 fi max score
         16 fi_max_indv_wickets 114 non-null float64
         17 Player Of The Match 113 non-null object
                                   114 non-null
         18 Result
                                                     object
         19 si_score
                                     114 non-null
                                                      float64
                                   114 non-null
         20 si_wickets
                                                     float64
         21 si 4s
                                    114 non-null
                                                    float64
         22 si 6s
                                    114 non-null
                                                     float64
                                    114 non-null float64
         23 si_extras
                                   114 non-null
         24 si_run_rate
                                                     float64
                                   114 non-null
114 non-null
          25 si_avg_str_rate
                                                      float64
         26 si_max_indv_wickets
                                                     float64
         27 si_max_indv_wickets.1 114 non-null
                                                      float64
        dtypes: float64(18), int64(2), object(8)
        memory usage: 25.1+ KB
```

df.shape #114 rows and 28 columns

(114, 28)

df.size #total no of elements

3192

#To check the number to null values present

df.isnull()

	Match id	Team_1	Team_2	Format	Ground	Year	Toss	Selection	fi_score	fi_wick
0	False	False	False	False	False	False	False	False	False	F
1	False	False	False	False	False	False	False	False	False	F
2	False	False	False	False	False	False	False	False	False	F
3	False	False	False	False	False	False	False	False	False	F
4	False	False	False	False	False	False	False	False	False	F
109	False	False	False	False	False	False	False	False	False	F
110	False	False	False	False	False	False	False	False	False	F
111	False	False	False	False	False	False	False	False	False	F
112	False	False	False	False	False	False	False	False	False	F
113	False	False	False	False	False	False	False	False	False	F

114 rows × 28 columns

To display 1st 5 rows indexes
df.head()

	Match id	Team_1	Team_2	Format	Ground	Year	Toss	Selection	fi_sco
0	1	Pakistan	Sri Lanka	ODI	Sharjah	1984	Sri Lanka	Bowling	187
1	2	India	Sri Lanka	ODI	Sharjah	1984	India	Bowling	9;
2	3	India	Pakistan	ODI	Sharjah	1984	India	Batting	188
3	4	Sri Lanka	Pakistan	ODI	Colombo(PSS)	1986	Sri Lanka	Bowling	116
4	5	Bangladesh	Pakistan	ODI	Moratuwa	1986	Pakistan	Bowling	94

5 rows × 28 columns

#To display last 5 row indexes
df.tail()

	Match id	Team_1	Team_2	Format	Ground	Year	Toss	Selection	f
109	110	India	Pakistan	ODI	Dubai(DSC)	2018	Pakistan	Batting	
110	111	Afghanistan	Bangladesh	ODI	Abu Dhabi	2018	Bangladesh	Batting	
111	112	Afghanistan	India	ODI	Dubai(DSC)	2018	Afghanistan	Batting	
112	113	Bangladesh	Pakistan	ODI	Abu Dhabi	2018	Bangladesh	Batting	
113	114	Bangladesh	India	ODI	Dubai(DSC)	2018	India	Bowling	

5 rows × 28 columns

#2.preprocessing - Filtering of Data(to remove Format columns)

df_numeric = df_numeric.drop(['Match id'],axis =1)#axis = 1 -column,axis = 0 -row
df_numeric

	Year	fi_score	fi_wickets	fi_4s	fi_6s	fi_extra	fi_run_rate	fi_avg_str_rate
0	1984	187.0	9.0	9.0	3.0	21.0	4.06	52.04
1	1984	97.0	0.0	9.0	0.0	14.0	4.47	60.48
2	1984	188.0	4.0	13.0	3.0	17.0	4.08	60.2
3	1986	116.0	10.0	10.0	0.0	14.0	3.42	37.87
4	1986	94.0	10.0	0.0	0.0	9.0	2.64	24.60
				•••				
109	2018	238.0	1.0	24.0	6.0	1.0	6.02	91.3
110	2018	246.0	7.0	20.0	3.0	8.0	4.92	76.19
111	2018	252.0	8.0	17.0	11.0	7.0	5.04	54.19
112	2018	239.0	10.0	17.0	1.0	9.0	4.89	73.23
113	2018	222.0	10.0	17.0	4.0	7.0	4.57	49.98

114 rows × 19 columns

#We want to consider only the numeric data

#so we will create a new dataframe with only numeric data

df_numeric = df.select_dtypes(include = ['float64','int64'])

df_numeric

	Match id	Year	fi_score	fi_wickets	fi_4s	fi_6s	fi_extra	fi_run_rate	fi_avg_!
0	1	1984	187.0	9.0	9.0	3.0	21.0	4.06	
1	2	1984	97.0	0.0	9.0	0.0	14.0	4.47	
2	3	1984	188.0	4.0	13.0	3.0	17.0	4.08	
3	4	1986	116.0	10.0	10.0	0.0	14.0	3.42	
4	5	1986	94.0	10.0	0.0	0.0	9.0	2.64	
					•••	***		•••	
109	110	2018	238.0	1.0	24.0	6.0	1.0	6.02	
110	111	2018	246.0	7.0	20.0	3.0	8.0	4.92	
111	112	2018	252.0	8.0	17.0	11.0	7.0	5.04	
112	113	2018	239.0	10.0	17.0	1.0	9.0	4.89	
113	114	2018	222.0	10.0	17.0	4.0	7.0	4.57	

114 rows × 20 columns

#To display the table information which contains only numeric data df_numeric.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 114 entries, 0 to 113
Data columns (total 20 columns):

	6-1	N 11 22 6	
#	Column	Non-Null Count	, ,
0	Match id	114 non-null	int64
1	Year	114 non-null	int64
2	fi_score	114 non-null	float64
3	fi_wickets	114 non-null	float64
4	fi_4s	114 non-null	float64
5	fi_6s	114 non-null	float64
6	fi_extra	114 non-null	float64
7	fi_run_rate	114 non-null	float64
8	fi_avg_str_rate	114 non-null	float64
9	fi_max_score	114 non-null	float64
10	fi_max_indv_wickets	114 non-null	float64
11	si_score	114 non-null	float64
12	si_wickets	114 non-null	float64
13	si_4s	114 non-null	float64
14	si_6s	114 non-null	float64
15	si_extras	114 non-null	float64
16	si_run_rate	114 non-null	float64
17		114 non-null	float64
18	si_max_indv_wickets		
19	si_max_indv_wickets.1		float64
dtyp	es: float64(18), int64(2)	
memo	ry usage: 17.9 KB		

#VISUALIZATION

import seaborn as sns

sns.distplot(df['Match id'])# # distribution plot

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7fe1c9426590>

#4.divide the data into i/p and o/p

#output - Smog_level

#input - All the columns except the Smog_level column

x = df_numeric.iloc[:,0:6].values

```
array([[1.000e+00, 1.984e+03, 1.870e+02, 9.000e+00, 9.000e+00, 3.000e+00],
         [2.000e+00, 1.984e+03, 9.700e+01, 0.000e+00, 9.000e+00, 0.000e+00],
         [3.000e+00, 1.984e+03, 1.880e+02, 4.000e+00, 1.300e+01, 3.000e+00],
         [4.000e+00, 1.986e+03, 1.160e+02, 1.000e+01, 1.000e+01, 0.000e+00],
         [5.000e+00, 1.986e+03, 9.400e+01, 1.000e+01, 0.000e+00, 0.000e+00],
         [6.000e+00, 1.986e+03, 1.320e+02, 3.000e+00, 0.000e+00, 0.000e+00],
         [7.000e+00, 1.986e+03, 1.950e+02, 5.000e+00, 1.500e+01, 1.000e+00],
         [8.000e+00, 1.988e+03, 1.940e+02, 7.000e+00, 5.000e+00, 0.000e+00],
         [9.000e+00, 1.988e+03, 9.900e+01, 8.000e+00, 5.000e+00, 0.000e+00],
         [1.000e+01, 1.988e+03, 2.540e+02, 1.000e+01, 1.400e+01, 4.000e+00],
         [1.100e+01, 1.988e+03, 1.110e+02, 6.000e+00, 0.000e+00, 0.000e+00],
         [1.200e+01, 1.988e+03, 1.430e+02, 6.000e+00, 8.000e+00, 0.000e+00],
         [1.300e+01, 1.988e+03, 1.180e+02, 8.000e+00, 0.000e+00, 0.000e+00],
         [1.400e+01, 1.988e+03, 1.800e+02, 4.000e+00, 1.000e+01, 3.000e+00],
         [1.500e+01, 1.990e+03, 1.710e+02, 1.000e+00, 1.200e+01, 3.000e+00],
         [1.600e+01, 1.990e+03, 1.780e+02, 1.000e+01, 9.000e+00, 0.000e+00],
         [1.700e+01, 1.990e+03, 1.780e+02, 9.000e+00, 0.000e+00, 0.000e+00],
         [1.800e+01, 1.991e+03, 2.050e+02, 3.000e+00, 7.000e+00, 1.000e+00],
         [1.900e+01, 1.995e+03, 1.630e+02, 1.000e+01, 1.200e+01, 1.000e+00],
         [2.000e+01, 1.995e+03, 1.260e+02, 1.000e+01, 8.000e+00, 0.000e+00],
         [2.100e+01, 1.995e+03, 1.690e+02, 1.000e+01, 1.100e+01, 2.000e+00],
         [2.200e+01, 1.995e+03, 1.510e+02, 8.000e+00, 7.000e+00, 0.000e+00],
         [2.300e+01, 1.995e+03, 2.060e+02, 2.000e+00, 2.400e+01, 1.000e+00],
         [2.400e+01, 1.995e+03, 1.780e+02, 9.000e+00, 5.000e+00, 3.000e+00],
         [2.500e+01, 1.995e+03, 2.330e+02, 2.000e+00, 1.500e+01, 2.000e+00],
         [2.600e+01, 1.997e+03, 2.390e+02, 1.000e+01, 9.000e+00, 1.000e+00],
         [2.700e+01, 1.997e+03, 2.100e+02, 1.000e+01, 1.500e+01, 1.000e+00],
         [2.800e+01, 1.997e+03, 2.310e+02, 4.000e+00, 2.300e+01, 0.000e+00],
         [2.900e+01, 1.997e+03, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
         [3.000e+01, 1.997e+03, 2.960e+02, 4.000e+00, 3.100e+01, 4.000e+00],
         [3.100e+01, 1.997e+03, 1.300e+02, 8.000e+00, 1.000e+01, 0.000e+00],
         [3.200e+01, 1.997e+03, 2.400e+02, 2.000e+00, 1.900e+01, 6.000e+00],
         [3.300e+01, 2.000e+03, 1.750e+02, 6.000e+00, 8.000e+00, 1.000e+00],
         [3.400e+01, 2.000e+03, 2.490e+02, 6.000e+00, 1.700e+01, 4.000e+00],
         [3.500e+01, 2.000e+03, 2.050e+02, 1.000e+01, 1.800e+01, 2.000e+00],
         [3.600e+01, 2.000e+03, 8.700e+01, 1.000e+01, 7.000e+00, 0.000e+00],
         [3.700e+01, 2.000e+03, 2.510e+02, 1.000e+01, 1.900e+01, 4.000e+00],
          [3.800e+01, 2.000e+03, 1.930e+02, 3.000e+00, 1.400e+01, 3.000e+00],
         [3.900e+01, 2.000e+03, 2.770e+02, 4.000e+00, 1.600e+01, 6.000e+00],
         [4.000e+01, 2.004e+03, 2.210e+02, 9.000e+00, 1.500e+01, 0.000e+00],
         [4 100n101 2 004n102 2 600n102 6 000n100 1 700n101 1 000n100]
y = df numeric.iloc[:,6]
٧
0 21.0
1 14.0
2 17.0
3 14.0
49.0
......
109 1.0
110 8.0
```

```
111 7.0
112 9.0
113 7.0
Name: fi_extra, Length: 114, dtype: float64
#5.TRAIN AND TEST VARIABLES
#sklearn.model_seletion - package , train_test_split - library
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state = 0)
#whatever data splitting/data allocation happens to the x_train,x_test,y_train,y_test vari
#By default the training variables get 75% and testing variables get 25%
print(x.shape) #114 rows and 28 columns
print(x_train.shape) #114 rows and columns (75%)
print(y_test.shape) # 114 rows and 28 cos(25%)
(114, 6)
(85, 6)
(29,)
print(y.shape) #114 rows and 28 cos
print(y_train.shape) #114 rows and 28 cols (75%)
print(y_test.shape) # 114 rows and 28 cols (25%)
(114,)
(85,)
(29,)
#6.SCALING or NORMALISATION -DONE ONLY FOR INPUTS
from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler
scaler = MinMaxScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
#7.RUN a CLASSIFIER/REGRESSOR/CLUSTER
from sklearn.linear_model import LinearRegression
```

```
model = LinearRegression()
#8.MODEL FITTING
model.fit(x_train,y_train)
LinearRegression()
#9.PREDICT THE OUTPUT
y_pred = model.predict(x_test)# By taking the input testing data, we predict the output
y_pred # PREDICTED VALUES
array([19.20388763, 11.74969049, 7.97064147, 16.22057976, 14.96798661, 13.86047521,
4.04739576, 11.35167488, 5.95182177, 11.66279533, 15.61103646, 9.74944617, 13.46438146, \\
10.69219968, 2.40998563, 2.08202763, 17.18781815, 12.18514381, 15.81112326, 11.79051201,
18.31871304, 4.35290049, 17.39604029, 12.82253352, 15.5967685, 11.23292956, 11.81577119,
4.11380785, 5.55326804])
y test # ACTUAL VALUES
33 17.0
10 15.0
90 10.0
7 7.0
24 9.0
73 14.0
113 7.0
22 17.0
94 4.0
2 17.0
48 38.0
89 6.0
51 32.0
71 18.0
105 4.0
93 14.0
59 3.0
66 21.0
16 20.0
```

```
13 12.0
```

68 24.0

106 7.0

26 18.0

50 37.0

82 11.0

8 13.0

30 19.0

102 4.0

91 5.0

Name: fi_extra, dtype: float64

print(x_train[10]) # these are scaled/normalised values

 $[0.67857143\ 0.82352941\ 1.\ 0.4\ 0.97142857\ 0.363636363]$

#INDIVIDUAL PREDICTION

model.predict([x_train[10]])

array([12.96713636]

MAJOR PROJECT-2

► Create any of the Image Processing Projects using Numpy and OpenCV.(Projects done in the class are not accepted) (One can use the haarcasacde models if necessary)

```
CODE:
import cv2
import numpy as np
from tkinter.filedialog import *
photo = askopenfilename()
img = cv2.imread(photo)
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
grey = cv2.medianBlur(grey, 5)
edges = cv2.adaptiveThreshold(grey, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY,
9,9)
#cartoonize
color = cv2.bilateralFilter(img, 9, 250, 250)
cartoon = cv2.bitwise_and(color, color, mask = edges)
cv2.imshow("Image", img)
cv2.imshow("Cartoon", cartoon)
#save
cv2.imwrite("cartoon.jpg", cartoon)
cv2.waitKey(0)
cv2.destroyAllWindows()
OUTPUT:
```


Github Link: https://github.com/Aruna-vattikota/Rinex-Ml.git