PARALLEL GRAPH COLORING ALGORITHMS

Margomenos Spyridon Denzler Alain Moesch Philippe

Graph coloring

Given G = (V,E) → for all (u,v) in E :
 color (u) != color (v)

Goal is to use as few colors as possible

 Problem is NP-Complete → Faster algorithms approximate the optimal solution

Boman's graph coloring algorithm

- Iterative distributed-memory graph coloring algorithm
- Vertices are split among p processors

Tentative coloring phase :

- Each processors color its vertices, should be valid according to the previous global color allocation
- ! neighbors on different processors might be assigned the same color → invalid allocation
- communication regarding boundary vertices required (batched in supersteps)

Conflict resolution phase :

- For each conflict, one of the two vertices gets marked as to be recolored in the next tentative coloring phase
- Eventually there will be no more conflicts
- No communication to be made in this phase

Tunable Parameters

Superstep size

Tradeoff between large superstep inducing less communication overhead but more conflicts and smaller superstep with more frequent communication

Communication style

Communication can either be synchronous or asynchronous (obvious latency advantage, but more conflicts with asynchronous)

Color assignment algorithms

First Fit

Each processors chooses the smallest admissible color in [1,N], where N Is the largest color used. If no color admissible choose N+1

Modified Staggered First Fit

Matrix Storage Approach

Slightly modified CSR format with no values array

	0	1	2	3	4
0	1		1		1
1		1		1	
2		1	1		
3	1		1	.1	
4		1		1	

0.	1	2	3	4	5						
0	3	5	7	10	12						
0	1	2	3	4	5	6	7	8	9	10	11
0 -	2	4	1	3	1	2	0	2	3	1	3
	0	0 3	0 3 5 0 1 2	0 3 5 7 0 1 2 3	0 3 5 7 10 0 1 2 3 4	0 3 5 7 10 12 0 1 2 3 4 5	0 3 5 7 10 12 0 1 2 3 4 5 6	0 3 5 7 10 12	0 3 5 7 10 12	0 3 5 7 10 12 0 1 2 3 4 5 6 7 8 9	0 3 5 7 10 12

Implementation Details

• C/C++ & MPI

Focus on regular and predictable array accesses

Compact data structures

 Addition of modified staggered first fit ("conflict-avoiding color fitting")

Previous work

The original paper (2005) proposed the following:

- First-fit coloring assignment

- 100 superstep size

- assumes graphs are well-partitioned

Result

16 nodes PC-cluster with dual 900 MHz Intel Itanium 2 CPUs & 4 GB memory

Test Graphs

- RMAT random graphs
- 3 size levels: 1M/10M/30M vertices
- 3 density levels: 1:3/7/15 Vertices:Edges
- 10 graphs for each level-density combination

- Assumption: graph is distributed and knows about topology
- 90 graphs vs 7 configurations vs superstep sizes – unfortunately did not finish in time

Test Graphs

Instead: real world graphs run on Euler

- Californian Road Network: 1.9M/2.8M
- Google Web Graph: 900K/8.6M
- Livejournal Social Network: 4M/69M
- Orkut Social Network: 3M/234M

Strong Scaling CA-Roadnet (1.9M/2.8M), Superstep 500

Strong Scaling Google (900K/8.6M), Superstep 500

Strong Scaling LiveJournal (4M/69M), Superstep 500

Strong Scaling Orkut (3M/234M), Superstep 500

Conclusion

Our implementation is really fast

Better scaling on denser/larger graphs

Blocking scales better than nonblocking

Tradeoff complexity – speed – number of colors in color assignment