Fragestellung: Kostenanalyse von Algorithmen

Aufgabe: Bewertung von Algorithmen bzgl. ihrer Effizienz d.h. Kosten/Aufwand an Ressourcen wie:

- Laufzeit (primäres Interesse)
- Speicher
- Kommunikation

nicht: Entwicklungs-/Wartungsaufwand (\rightarrow Software Engineering)

Gesucht ist eine Systematik zur Aufwandsbewertung für datenabhängige Algorithmen.

Absolute Kosten

Bestimmung der absoluten Kosten durch Messung der Laufzeit für bestimmte Testdaten in bestimmten Ausführungsumgebungen (Sprache, System).

```
long start = System.nanoTime();
// zu messender Code, z.B. Methodenaufruf
long ende = System.nanoTime();
long dauerMS = (ende - start) / 1000000; // Millisekunden
```

- ⇒ Konkrete Aussage zu konkretem Fall ("Benchmark")
- Achtung: Zeitmessung unterliegt Schwankungen (Systemeinflüsse)
- ⇒ Mehrfachmessung und statistische Auswertung erforderlich Sinnvolles Vorgehen bei Entwicklung (nur) für bestimmte Szenarien, problematisch ist die Übertragung auf andere Fälle (Daten, Umgebungen, . . .).

Relative Kosten

Relative Kosten machen allgemeine Aussagen

- in Abhängigkeit von kennzeichnenden Problemgrößen (z.B. Anzahl der Elemente)
- durch Bereichsangaben (bester vs. schlechtester Fall)
- durch Abstraktion von spezifischen Einflüssen (z.B. Umgebung).

Daraus sind keine konkreten Aussagen ableitbar, nur relative (Vergleiche).

Lineare Suche: Algorithmus & Implementierung

Aufgabe: Suche nach Element in Sequenz

Verfahren: Naiv durch lineare Suche

- durchlaufe Sequenz (hier: Array) der Reihe nach,
- bis Wert gefunden (Rückgabe Position) oder Ende (Rückgabe -1)

```
public static int sucheLinear(int[] a, int x) {
  for (int i = 0; i < a.length; ++i) {
    if (a[i] == x) {
      return i;
    }
  }
  return -1;
}</pre>
```

Frage: Wie "gut" (hier: effizient) ist die Lösung?

Lineare Suche: Analyse

relative Kosten durch Zählen der Operationen im Code:

 \Rightarrow insgesamt (etwa) 5 Op. pro Iteration und 4 Op. einmalig

Hinweis: Weitere "versteckte" Operationen; aus Quellcode nur ungefähre Angabe ablesbar (ggf. nicht deterministisch)

Automatisierte Analyse

Zahl der Operationen op(C) in Code C nach festem Schema:

• in Folge von Anweisungen A_1, \ldots, A_k :

$$op(A_1 \dots A_k) = \sum_{i=1}^k op(A_i)$$

• in Fallunterscheidung:

$$op(if (B) A_t else A_f) = op(B) + \begin{cases} max(op(A_t), op(A_f)) \\ min(op(A_t), op(A_f)) \end{cases}$$

• in Schleife mit *n* Iterationen:

$$op(while (B) A) = n \cdot (op(B) + op(A)) + op(B)$$

Best, Worst, Average Case

Durch Fallunterscheidungen und Schleifen unterschiedliche Resultate möglich:

- best case: Minimal mögliche Zahl von Operationen
- worst case: Maximal mögliche Zahl von Operationen
- average/expected case: Durchschnittliche/erwartete Zahl von Operationen

Meist nur worst case betrachtet, da er Mindestgarantie für die Güte des Algorithmus liefert.

average case oft schwer zu ermitteln

Lineare Suche: Best, Worst, Average Case

Kosten der linearen Suche: 5 Op. pro Iteration und einmalig

- bei Fund: 4 Op.
- bei Nichtfund: 4 Op.

Anzahl der Iterationen entspricht

- bei Fund: Position des (ersten) "Treffers" im Feld
- bei Nichtfund: Anzahl der Elemente

Bei Fund:

- best case: Erstes El. ist Treffer \Rightarrow 1 lt. \Rightarrow 5 · 1 + 3 = 8 Op.
- worst case: Letztes El. ist Treffer \Rightarrow n It. \Rightarrow 5 · n + 3 Op.
- avg. case: Mittel der Fälle $\Rightarrow (n+1)/2$ It. $\Rightarrow (5 \cdot n + 11)/2$ Op.

Bei Nichtfund stets n Iterationen $\Rightarrow 5 \cdot n + 5$ Op.

Kritische Operationen

Die bisherige Annahme alle Operationen sind gleich teuer ist

- falsch: z.B. Speicherzugriffe sehr(!) viel teurer
- unpraktisch: Einzeloperationen umständlich zu zählen (und im Einzelnen meist irrelevant)

Vereinfachende Annahme: Nur folgende Operationen sind "interessant":

- Speicherzugriffe (z.B. Lesen/Schreiben von Elementen)
- Operationen auf Problemdaten (z.B. Vergleiche von Elementen)

Binäre Suche: Algorithmus

Binäre Suche: erfordert sortierte(!) Sequenz; dann:

- Suchintervall zu Beginn gesamte Sequenz
- Bestimme Mitte und vergleiche Suchwert mit dortigem Wert
 - wenn kleiner gleich: reduziere Intervall auf linke Hälfte
 - wenn größer: reduziere Intervall auf rechte Hälfte
- wenn Suchintervall von Länge 1: Position gefunden

Binäre Suche: Implementierung

```
public static int suchePosBinaer(int[] a, int x, int li, int re) {
  while (li < re) {      // min eine Position</pre>
    int m = (li + re) / 2; // Mitte: li <= m < re</pre>
    if (x <= a[m]) {  // Wert liegt links</pre>
      re = m;
    else {
           // Wert liegt rechts
      li = m + 1;
  return li;
                        // Wert liegt hier
                         // oder laege hier
public static int sucheBinaer(int[] a, int x) {
  int p = suchePosBinaer(a, x, 0, a.length);
  return p < a.length && x == a[p] ? p : -1; // gefunden?</pre>
```

Binäre Suche: Implementierung rekursiv

Binäre Suche lässt sich elegant rekursiv implementieren:

Binäre Suche: Analyse

- Länge des Intervalls wird in jedem Schritt halbiert (auf-/abgerundet \rightarrow konstant, ignorierbar)
- ullet pro Schritt ist der Aufwand konstant (in $\mathcal{O}(1)$; Definition folgt)
- nach max. k Schritten: Länge ist $1 (li == re) \rightarrow fertig$

Frage: was ist k? oder: wie oft n halbieren, bis 1?

oder: wie oft 1 verdoppeln, bis *n*?

Antwort: Logarithmus von n (zur Basis 2)

Algorithmisches Muster: Teile-und-Herrsche bzw. divide-and-conquer (auch in vielen anderen Zusammenhängen angewendet)

Komplexität eines Algorithmus

Situation: Relative Kosten nicht unbedingt absolut interpretierbar:

z.B. kann Algorithmus mit relativen Kosten $5 \cdot n + 4$ (für kleines n) geringere abs. Kosten haben als Alg. mit relativen Kosten $3 \cdot n + 2$

Alternative Fragestellung: Entwicklung der (relativen&absoluten) Kosten bei Vergrößerung ("Skalierung") des Problems

Beispiel: Wenn Problemgröße vervierfacht wird, wird Laufzeit

- gleich bleiben?
- verdoppelt?
- vervierfacht?
- versechzehnfacht?
- ...?

Komplexität vs. Laufzeit

Die folgenden Tabelle gibt einen Eindruck der Laufzeit in Abhängigkeit von der Problemgröße (Spalten) und der Laufzeitfunktion (Zeilen):

	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	sek	sek	sek	sek	sek	sek
n ²	0,0001	0,0004	0,0009	0,0016	0,0025	0,0036
	sek	sek	sek	sek	sek	sek
n ³	0,001	0,008	0,027	0,064	0,125	0,216
	sek	sek	sek	sek	sek	sek
n ⁵	0,1	3,2	24,3	1,7	5,2	13,0
	sek	sek	sek	min	min	min
2 ⁿ	0,001	1	17,9	12,7	35,7	366
	sek	sek	min	Tage	Jahre	Jahrhund.
3 ⁿ	0,059	58	6,5	3855	2×10^{8}	$1,3 \times 10^{13}$
	sek	min	Jahre	Jahrhund.	Jahrhund.	Jahrhund.

Annahme der Tabelle: CPU schafft ein Megaflop /Sekunde

Komplexität vs. schnellere Rechner

Die folgenden Tabelle untersucht den Effekt schnellerer Rechner (Spalten) auf die in einer Stunde lösbaren Probleminstanzen in Abhängigkeit von der Laufzeitfunktion (Zeilen):

Laufzeit- funktion	derzeitiger Computer	100 mal schneller Computer	1000 mal schneller Computer
n	N ₁	100 <i>N</i> ₁	1000 <i>N</i> ₁
n ²	N ₂	10 <i>N</i> ₂	31,6 <i>N</i> ₂
n ³	<i>N</i> ₃	4,64 <i>N</i> ₃	10 <i>N</i> ₃
n ⁵	N ₄	2,5N ₄	3,98 <i>N</i> ₄
2 ⁿ	<i>N</i> ₅	<i>N</i> ₅ + 6,64	$N_5 + 9,97$
3 ⁿ	N ₆	<i>N</i> ₆ + 4,19	$N_6 + 6,29$

Cave: Gewaltiger Unterschied zwischen polynomiellen und exponentiellen Laufzeitfunktionen!

Komplexitätsklassen

Zusammenfassung von (Kosten-)Funktionen zu Mengen von Funktionen "gleichen Wachstumsverhaltens" ("gleicher Krümmung")

Benennung der Komplexitätsklassen mit Landau-Symbolen:

- \circ $\mathcal{O}(f)$: Menge aller Funktionen, die höchstens wie f wachsen
- $\Omega(f)$: Menge aller Funktionen, die mindestens wie f wachsen

Groß-O

Definition 2.1

$$\mathcal{O}(f) := \{ g \mid \exists c > 0, d \in \mathbb{R} : g(n) \leq c \cdot f(n) + d \}$$

anschaulich: $\mathcal{O}(f)$ enthält alle Funktionen g, die sich von (von positivem Vielfachen) der oberer Schranke f nach oben begrenzen lassen

(positives Vielfaches, weil $c \leq 0$ sinnlos wäre)

Groß-Omega

Definition 2.2

$$\Omega(f) := \{ g \mid \exists c > 0, d \in \mathbb{R} : c \cdot f(n) + d \leq g(n) \}$$

anschaulich: $\Omega(f)$ enthält alle Funktionen, die sich von (positivem Vielfachen von) unterer Schranke f nach unten begrenzen lassen (positives Vielfaches, weil $c \leq 0$ sinnlos wäre)

Groß-Theta

Definition 2.3

$$\Theta(f) := \Omega(f) \cap \mathcal{O}(f)$$

anschaulich: $\Theta(f)$ enthält alle Funktionen, die sich von positiven Vielfachen einer(!) Funktion f nach unten und oben begrenzen lassen.

Wichtige Komplexitätsklassen

meist wird obere Schranke der Kosten gesucht; untere selten relevant Bezeichnungen:

```
\mathcal{O}(0)
                      "kostenlos"
\mathcal{O}(1)
                      konstant
\mathcal{O}(\log n)
               logarithmisch
\mathcal{O}(n)
                linear
\mathcal{O}(n \cdot \log n)
                      ,, n \cdot \log n
\mathcal{O}(n^2)
                      quadratisch
\mathcal{O}(n^3)
                      kubisch
\mathcal{O}(n^k)
                      polynomiell
\mathcal{O}(a^n)
                      exponentiell (\rightarrow \text{ in Praxis unbrauchbar})
```

Logarithmus: Rechenregeln

Herleitungen:

- 2 $a^{\log_a x^y} = x^y = (a^{\log_a x})^y = a^{y \cdot \log_a x}$
- folgt aus 3. für b = y

Komplexitätsklassen: Rechenregeln

Summe vereint Komplexitätsklassen:

$$\mathcal{O}(f+g)=\mathcal{O}(f)$$
 falls $g\in\mathcal{O}(f)$

Produkt überträgt sich auf Komplexitätsklassen:

$$\widetilde{f} \in \mathcal{O}(f) \wedge \widetilde{g} \in \mathcal{O}(g) \ \Rightarrow \ (\widetilde{f} \cdot \widetilde{g}) \in \mathcal{O}(f \cdot g)$$

Komplexitätsklassen: Konsequenzen I

konstante Faktoren vernachlässigbar:

$$\mathcal{O}(c \cdot f) = \mathcal{O}(f)$$

 $(\mathsf{da}\ c\in\mathcal{O}(1))$

"kleinere" Terme in Polynom vernachlässigbar:

$$\mathcal{O}(a_k \cdot n^k + \cdots + a_0 \cdot n^0) = \mathcal{O}(n^k)$$

(da Summe und alle anderen Komplexitätsklassen in $\mathcal{O}(n^k)$ enthalten)

Komplexitätsklassen: Konsequenzen II

konstanter Faktor c/Summand d in Argument zu Potenz/Exponent/Logarithmus vernachlässigbar:

$$\mathcal{O}((c \cdot n + d)^k) = \mathcal{O}(n^k)$$
 $\mathcal{O}(a^{c \cdot n + d}) = \mathcal{O}(a^n)$
 $\mathcal{O}(\log_a(c \cdot n + d)) = \mathcal{O}(\log_a n)$

Wahl der Basis von Exp./Log. vernachlässigbar:

$$\mathcal{O}(a^n) = \mathcal{O}(b^n)$$
 und $\mathcal{O}(\log n) := \mathcal{O}(\log_a n) = \mathcal{O}(\log_b n)$

(da $\log_a n = \log_a b \cdot \log_b n$ und $\log_a b$ eine Konstante)

Komplexitätsklassen: Hierarchie

$$orall 0 < x < y, \ 1 < z, \ 1 < a:$$

$$\mathcal{O}(0) \subset \mathcal{O}(1) \subset \mathcal{O}(\log n) \subset \mathcal{O}(n^x) \subset \mathcal{O}(n^y) \subset \mathcal{O}(a^n)$$

$$\overbrace{\mathcal{O}(n) \subset \mathcal{O}(n \cdot \log n) \subset \mathcal{O}(n^z)}$$

wegen:

- $n^x \cdot n^{y-x} = n^y$ und $n^{y-x} > 1 \ (\Leftarrow y > x)$
- Wachstum von Exp./Log. vs. Potenzen

Komplexitätsklasse: Bestimmung per Regeln

Beispiel 2.1

Funktion: $g(n) = 3 \cdot n \cdot \log_2(n+1) - 2 \cdot n + 6$

Anwendung von Streichregeln:

$$g(n) \in \mathcal{O}(3 \cdot n \cdot \log_2(n+1) - 2 \cdot n + 6)$$
 (Einsetzen)
 $= \mathcal{O}(3 \cdot n \cdot \log_2 n - 2 \cdot n)$ (konst. Summanden streichen)
 $= \mathcal{O}(n \cdot \log_2 n - n)$ (konst. Faktoren streichen)
 $= \mathcal{O}(n \cdot \log n - n)$ (Basis streichen)
 $= \mathcal{O}(n \cdot \log n)$ (schwächere Terme streichen)

Komplexitätsklasse: Bestimmung per Defintion

Beispiel 2.2

Funktion:
$$g(n) = 3 \cdot n \cdot \log_2(n+1) - 2 \cdot n + 6$$

Anwendung der Definition (Vermutung: $g(n) \in \mathcal{O}(n \cdot \log n)$): suche $c > 0, d \in \mathbb{R}$: $g(n) \le c \cdot (n \cdot \log_2 n) + d$ (für n > 0)

$$g(n) = 3 \cdot n \cdot \log_2(n+1) - 2 \cdot n + 6$$

$$< 3 \cdot n \cdot \log_2(n+1) + 6$$

$$\le 3 \cdot n \cdot \log_2(2n) + 6$$

$$= 3 \cdot n \cdot (\log_2 n + 1) + 6$$

$$= 3 \cdot n \cdot \log_2 n + 3 \cdot n + 6$$

$$\le 3 \cdot n \cdot \log_2 n + 3 \cdot n \cdot \log_2 n + 3 + 6$$

$$= 6 \cdot n \cdot \log_2 n + 9$$

Komplexität der Suchverfahren

lineare Suche hat Komplexität $\mathcal{O}(n)$

 \rightarrow kein Verfahren geringerer Komplexität für unsortierte Sequenzen, da ggf. jedes der n Elemente zu betrachten ist

binäre Suche hat Komplexität $\mathcal{O}(\log n)$