Substance	State	$\Delta H_f^\circ \ (rac{\mathrm{kJ}}{\mathrm{mol}})$	$S^{\circ} \left(\frac{J}{\text{mol} \cdot K} \right)$	Substance	State	$\Delta H_f^{\circ} \ (rac{\mathrm{kJ}}{\mathrm{mol}})$	$S^{\circ} \left(\frac{J}{\text{mol} \cdot K} \right)$
Ag	S	0	42.6	 Cl_2	g	0	223.0
Ag^+	aq	105.79	72.7	Cl^-	aq	-167.080	56.5
AgCl	\mathbf{S}	-127.01	96.2	ClO_4^-	aq	-128.10	182.0
${ m AgBr}$	\mathbf{S}	-100.4	107.1	Cr	\mathbf{S}	0	23.8
$AgNO_3$	\mathbf{S}	-124.4	140.9	$\mathrm{Cr_2O_3}$	g	-1139.7	81.2
Al	\mathbf{S}	0	28.3	Cu	\mathbf{S}	0	33.2
Al^{+3}	aq	-538.4	-321.7	Cu^+	aq	+71.7	40.6
$AlCl_3$	\mathbf{S}	-704	110.7	Cu^{+2}	aq	+64.8	-99.6
Al_2O_3	\mathbf{S}	-1675.7	50.9	CuO	\mathbf{S}	-157.3	42.6
Ba	\mathbf{S}	0	62.8	Cu_2O	\mathbf{S}	-168.6	93.1
$BaCl_2$	\mathbf{S}	-858.6	123.7	CuS	\mathbf{S}	-53.1	66.5
$BaCO_3$	\mathbf{S}	-1216.3	112.1	Cu_2S	\mathbf{S}	-79.5	120.9
$Ba(NO_3)_2$	\mathbf{S}	-992	214	$CuSO_4$	\mathbf{S}	-771.4	107.6
BaO	\mathbf{S}	-553.5	70.4	F^-	aq	-335.35	-13.8
$Ba(OH)_2$	\mathbf{S}	-998.2	112	F_2	g	0	202.7
BaSO_4	\mathbf{S}	-1473.2	132.2	Fe	\mathbf{S}	0	27.3
Br_2	ℓ	0	152.2	$Fe(OH)_3$	\mathbf{S}	-823.0	106.7
\mathbf{C}	\mathbf{S}	0	5.7	Fe_2O_3	\mathbf{S}	-824.2	87.4
CCl_4	ℓ	-135.4	216.4	Fe_3O_4	\mathbf{S}	-1118.4	146.4
CHCl_3	ℓ	-134.5	201.7	H_2	g	0	130.6
CH_4	g	-74.8	186.2	H^{+}	aq	0	0.0^{*}
C_2H_2	g	+226.7	200.8	HBr	g	-36.29	198.6
C_2H_4	g	+52.3	219.5	HCO_3^-	aq	-689.93	91.2
C_2H_6	g	-84.7	229.5	HCl	g	-92.31	186.8
C_3H_8	g	-103.8	269.9	$_{ m HF}$	g	-273.30	173.7
$\mathrm{CH_{3}OH}$	ℓ	-238.7	126.8	HI	g	26.50	206.5
C_2H_5OH	ℓ	-277.7	160.7	HNO_3	ℓ	-174.1	155.6
CO	g	-110.53	197.6	$\mathrm{HPO_4}^{-2}$	aq	-1299.0	-33.5
CO_2	g	-393.51	213.6	$\mathrm{HSO_4}^-$	aq	-886.9	131.8
$\mathrm{CO_3}^{-2}$	aq	-675.23	-56.9	H_2O	ℓ	-285.830	69.9
Ca	\mathbf{S}	0	41.4	H_2O	g	-241.826	188.7
Ca^{+2}	aq	-543.0	-53.1	$\mathrm{H_2PO_4}^-$	aq	-1302.6	90.4
$CaCl_2$	\mathbf{S}	-795.8	104.6	H_2S	g	-20.6	205.7
$CaCO_3$	\mathbf{S}	-1206.9	92.9	Hg	ℓ	0	76.0
CaO	\mathbf{S}	-634.92	39.8	Hg^{+2}	aq	170.21	-32.2
$Ca(OH)_2$	\mathbf{S}	-986.1	83.4	HgO	$_{\rm cr,red}$	-90.79	70.3
$CaSO_4$	\mathbf{S}	-1434.1	106.7				
Cd	\mathbf{S}	0	51.8				
Cd^{+2}	aq	-75.92	-73.2				
CdCl_2	\mathbf{s}^{-}	-391.5	115.3				
CdO	\mathbf{S}	-258.35	54.8				

^{*}The standard entropy of the $H^+(aq)$ ion is defined to be 0.

Substance	State	$\Delta H_f^\circ \over (rac{\mathrm{kJ}}{\mathrm{mol}})$	$S^{\circ} \left(rac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}} \right)$
<u> </u>	2.0	$\frac{(mol)}{-56.78}$	$\frac{\text{mol} \cdot \text{K}^{j}}{111.3}$
	aq	-50.78 0	111.3 116.1
$egin{array}{c} ext{I}_2 \ ext{K} \end{array}$	S	0	64.2
K^{+}	S	-252.14	102.5
KBr	aq	-232.14 -393.8	95.9
KCl	s s	-395.3 -436.7	82.6
KClO ₃	s S	-490.7 -397.7	143.1
KClO ₄	s S	-337.7 -432.8	151.0
KNO_3		-492.6 -494.6	133.0
Mg	S	-4 <i>9</i> 4.0	32.7
Mg^{+2}	s aq	-467.0	-138.1
MgCl_2	aq S	-641.3	89.6
$MgCO_3$	S	-1095.8	65.7
MgO	S	-601.60	26.9
$Mg(OH)_2$	S	-924.5	63.2
$MgSO_4$	S	-1284.9	91.6
Mn Mn	s	0	32.0
Mn^{+2}	aq	-220.8	-73.6
MnO	s S	-385.2	59.7
MnO_2	s	-520.0	53.0
N_2	g	0	191.5
NH_3	g	-45.94	192.3
NH_4^+	aq	-133.26	113.4
NO_2^{4-}	aq	-104.6	123.0
NO_3^{2-}	aq	-206.85	146.4
N_2H_4	ℓ	+50.6	121.2
NH_4Cl	\mathbf{s}	-314.4	94.6
NH_4NO_3	\mathbf{s}	-365.6	151.1
NO	g	+90.2	210.7
NO_2	g	+33.2	240.0
N_2O_4	g	+9.2	304.2
Na	\mathbf{S}	0	51.2
Na^{+}	aq	-240.34	59.0
NaCl	\mathbf{S}	-411.2	72.1
NaF	\mathbf{S}	-573.6	51.5
NaOH	\mathbf{S}	425.6	64.5

Substance	State	$\Delta H_f^\circ \over (rac{\mathrm{kJ}}{\mathrm{mol}})$	$\frac{S^{\circ}}{\frac{J}{\text{mol K}}}$
Ni	S	0	29.9
NiO	\mathbf{S}	-239.7	38.0
OH^-	aq	-230.015	-10.8
O_2	g	0	205.0
P_4	\mathbf{S}	0	164.4
PCl_3	g	-287.0	311.7
PCl_5	g	-374.9	364.5
PO_4^{-3}	aq	-1277.4	-222
Pb	\mathbf{S}	0	64.8
Pb^{+2}	aq	0.92	10.5
$PbBr_2$	\mathbf{S}	-278.7	161.5
$PbCl_2$	\mathbf{S}	-359.4	136.0
PbO	\mathbf{S}	-219.0	66.5
PbO_2	\mathbf{S}	-277.4	68.6
S	\mathbf{S}	0	31.8
SO_2	g	-296.81	248.1
SO_3	g	-395.7	256.7
SO_4^{-2}	aq	-909.34	20.1
S_2^-	aq	+33.1	-14.6
Si	\mathbf{S}	0	18.8
SiO_2	\mathbf{S}	-910.7	41.8
Sn	\mathbf{S}	0	51.6
Sn^{+2}	aq	-8.9	-17.4
SnO_2	\mathbf{S}	-577.63	52.3
Zn	\mathbf{S}	0	41.6
Zn^{+2}	aq	-153.39	-112.1
ZnI_2	\mathbf{S}	-208.0	161.1
ZnO	\mathbf{S}	-350.46	43.6
ZnS	S	-206.0	57.7