Sanjam Garg **UC Berkeley**

CS170 - Lecture 5

representation

Evaluation: $O(n \log n)$ if choose $1, \omega, \omega^2, \dots, \omega^{n-1}$.

Recall: Multiplying polynomials, coefficient/value

Interpolation: From points $A(x_0), \dots, A(x_{n-1})$ to coefficients... We will see this today!

Polynomial Evaluation and Matrices

Evaluation: Compute $A(\cdot)$ from a_i 's:

$$\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Interpolation (going back to coefficient matrix). How?

Compute inverse of matrix above. Multiply. $O(n^2)!$

This sounds expensive!!

Also, computing inverse not even easy.

Using roots of unity

FFT: ω is complex nth root of unity and matrix is ...

$$M_{n}(\omega) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{(n-1)} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\ \vdots & & \vdots & & & \\ 1 & \omega^{j} & \omega^{2j} & \cdots & \omega^{j(n-1)} \\ \vdots & & \vdots & & & \\ 1 & \omega^{(n-1)} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}$$

Compute inverse of $M_n(\omega)$?

Geometry and FFT.

Rows are orthogonal.

Multiply by $M_n(\omega)$: project point onto each row (and scaled.) Rigid Rotation (and scaling.)!

Reverse Rotation is inverse operation.

Scaling: for rotation, axis should have length 1, FFT length n.

Algebraically.

Inversion formula: $(M_n(\omega))^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

$$C = M_n(\omega) \times M_n(\omega^{-1})$$
? $I = M_n(\omega) \times M_n(\omega^{-1})$ $I = M_n(\omega) \times M_n(\omega)$

$$c_{ij} = \sum_{k} \omega^{ik} \omega^{-kj} = \sum_{k} \omega^{(ik-kj)} = \sum_{k} \omega^{k(i-j)} = \sum_{k} r^{k}, \quad r = \omega^{(i-j)}$$

Case i = j: $r = \omega^0 = 1$ and $c_{ii} = n$.

Case $i \neq j$:

$$c_{ij} = 1 + r + r^2 + \dots + r^{n-1} = \frac{1-r^n}{1-r}$$

$$r^n = (\omega^{(i-j)})^n = (\omega^n)^{(i-j)} = 1^{(i-j)} \implies c_{ij} = 0.$$

For C – diagonals are n and the off-diagonals are 0.

Divide by *n* get identity!

Inversion formula: $M_n(\omega)^{-1} = \frac{1}{n} M_n(\omega^{-1})$.

Computing inverse.

FFT works with points with basic root of unity: ω or ω^{-1} $1, \omega^{-1}, \omega^{-2}, \dots, \omega^{-(n-1)}$.

 ω^{-1} is a primitive *n*th root of unity! Evaluation: $FFT(a, \omega)$.

Interpolation: $\frac{1}{n}$ FFT(a, ω^{-1}). $\implies O(n \log n)$ time for multiplying degree n polynomials.

Multiplying polynomials?

Evaluation: $O(n \log n)$ if choose $1, \omega, \omega^2, \dots, \omega^{n-1}$.

Interpolation with $FFT(\omega^{-1}) O(n \log n)$

Interpolation: From points $A(x_0), \dots, A(x_{n-1})$ to "function".

FFT: a closer look.

Unfolding FFT.

Butterfly switches!

Order on Left

FFT Network.

Row r node connected to row $r \pm 2^i$ node in level i + 1When is it $r + 2^i$?

- (A) When $|r/2^i|$ is odd.
- (B) When $|r/2^i|$ is even.
- (B). Red edges flip bit!

Definitive Algorithm: FFT

Expanding FFT...

Edges from lower half of FFT have multipliers!

FFT Network.

 $\log N$ - levels. N - rows.

In level i

Row r node is connected to row r node in level i+1. Row r node connected to row $r \pm 2^i$ node in level i+1

Unique Paths.

Route from input i = 101 to output j = 000?

Flip first bit. Red (cross) edge. Keep second bit. Blue (straight) edge. Flip third bit. Red (cross edge).

S						
\sim	ш	m	m	ıa	r۱	/
$\mathbf{\mathcal{C}}$	u			ıu	. ,	۰.

Definitive FFT algorithm and code.

d^{log₂ 3} Polynomial Multiplication - Divide and Conquer.

$$A(x) = \sum_{i=0}^{d} a_i x^i = A_L(x) + x^{d/2} A_H(x), A_L(x) := \sum_{i=0}^{d/2} a_i x^i, A_H(x) = \sum_{i=1}^{d/2} a_{i+d/2} x^i$$

$$B(x) = \sum_{i=0}^{d} b_i x^i = B_L(x) + x^{d/2} B_H(x), B_L(x) := \sum_{i=0}^{d/2} b_i x^i, B_H(x) = \sum_{i=1}^{d/2} b_{i+d/2} x^i$$

The product A(x)B(x) is

$$A_L(x)B_L(x) + x^{d/2}(A_L(x)B_H(x) + A_H(x)B_L(x)) + x^dA_H(x)B_H(x)$$

Compute ...

$$A_L(x)B_L(x), \quad A_H(x)B_H(x), \quad (A_L(x)+A_H(x))(B_L(x)+B_H(x))$$

and recurse

Time is $O(d^{\log_2 3})$

FFT does better. (But this is useful to see)