Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 029 938 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

23.08.2000 Bulletin 2000/34

(51) Int. Cl.⁷: **C22C 38/14**, C21D 8/02

(21) Application number: 00102280.5

(22) Date of filing: 17.02.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 18.02.1999 JP 3964799

16.04.1999 JP 10980599

(71) Applicant:

Nippon Steel Corporation Tokyo 100-8071 (JP) (72) Inventors:

Mizoguchi, Toshiaki
 Tokai-City, Aichi 478-8686 (JP)

Ueshima, Yoshiyuki
 Tokai-City, Aichi 478-8686 (JP)

 Kondo, Katsumi Tokai-City, Aichi 478-8686 (JP)

(74) Representative:

VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) Rolled steel having few inclusion defects

(57) The present invention provides rolled steel having few inclusion defects suitable for steel sheets used for automobiles, steel sheets used for deeply drawn cans and steel pipes, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of one of the crystallized phase, the principal component of which is titanium oxide, and the crystallized phase, the principal component of which is alumina, and further composed of at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclusions exist in steel.

Description

15

20

[0001] The present invention relates to rolled steel having few inclusion defects suitable for producing steel sheets for automobile use, steel sheets for making deeply drawn cans, and steel pipes.

[0002] In general, pieces of rolled steel such as steel sheets and steel pipes are made of aluminum killed steel obtained when molten steel made by a converter, which has not been deoxidized yet, is deoxidized by aluminum. After the killed steel has been rolled, surface defects and internal defects such as sliver flaws (linear flaws) caused in the process of cold rolling, cracks and pin holes caused in the case of deep drawing and defects detected in weld zones of steel pipes by the ultrasonic test are caused by inclusions in some cases. It is known that those inclusion defects are caused by the inclusion of oxides, such as alumina, created in the process of deoxidation conducted in molten steel in refining.

[0003] In order to remove the oxide inclusions, the following methods have been conventionally adopted.

- (1) A deoxidizing agent such as aluminum is thrown into molten steel in the process of tapping from a converter so that the period of time, in which the oxide inclusions are raised to the surface of molten steel by coagulation and coalescence, can be extended as much as possible.
- (2) Rise and separation of oxide inclusions are facilitated when molten steel is forcibly agitated by the treatment of CAS (Composition Adjustment by Sealed Argon Gas Bubbling) or RH which is one of the secondary refining methods.
- (3) Alumina is changed into $CaO-Al_2O_3$ by adding Ca into molten steel so that it can be easily crushed in the process of rolling, and the alumina becomes harmless.

[0004] However, the following problems may be encountered in the above methods (1) and (2). Effects of the above methods (1) and (2), by which oxide inclusions can be raised to the surface of molten steel so that the inclusions can be separated from molten steel, are limited. Therefore, it is impossible to perfectly prevent the occurrence of sliver flaws, cracks, pin holes and UST defects. Further, the following problems may be encountered in the above method (3) in which oxide inclusions are reformed by Ca. Material of Ca is expensive, and the yield is very low. Accordingly, the cost of alloy is raised. Further, particles of CaO-Al₂O₃, which are created when Ca is added into molten steel, are enlarged, and the thus created particles of CaO-Al₂O₃ can not be raised to the surface of molten steel, that is, the thus created particles of CaO-Al₂O₃ remain in molten steel. In this case, defects are caused by the particles of CaO-Al₂O₃.

SUMMARY OF THE INVENTION

[0005] The present invention has been accomplished to solve the above conventional problems. It is an object of the present invention to provide rolled steel having few inclusion defects in which particles of oxide inclusions are kept fine and capable of being dispersed in rolled steel.

[0006] In order to solve the above problems, the present invention provides rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium-oxide, and a crystallized phase, the principal component of which is alumina, and the crystallized phases of oxide inclusions exist in steel.

[0007] In the same manner, in order to solve the above problems, the present invention provides rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium-oxide, and a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclusions exist in steel.

[0008] It is preferable that the crystallized phases of oxide inclusions are dispersed in rows in the direction of rolling near the center of a piece of rolled steel. It is preferable that Micro-Vickers hardness of the oxide inclusions at the room temperature is in a range from 600 to 1300 Hv. Further, it is preferable that the maximum diameter of the particles of oxide inclusions obtained by slime extraction is not more than 300 μ m. Furthermore, it is preferable that the number of the particles of oxide inclusions obtained by slime extraction, the diameter of which is not less than 38 μ m, is not more than 50 pieces/kg.

[0009] A preferred embodiment of the present invention is explained as follows.

[0010] In the present invention, rolled steel includes steel sheets, steel pipes, shape steel, bar steel and wire rods.

The basic composition of the rolled steel is C: 0.0002 to 0.7 mass %, S: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, P: 0.001 to 0.05 mass %, P: 0.001 to 0.05 mass %, P: 0.001 to P: 0.0

[0011] In the present invention, rolled steel includes steel sheets, steel pipes, shape steel, bar steel and wire rods. The basic composition of the rolled steel is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, and the selective composition of the rolled steel is Ca: not more than 50 ppm and Mg: not more than 50 ppm, wherein at least one of Ca and Mg is contained.

[0012] Carbon is an essential element to stably enhance the mechanical strength of steel. Therefore, the content of carbon is adjusted in a range from 0.0002 to 0.7% according to the desired mechanical strength of material. In order to ensure the mechanical strength or hardness, it is necessary that rolled steel contains carbon at not less than 0.0002%, however, when the content of carbon is higher than 0.7%, the workability is lowered. Therefore, the content of carbon is kept so that it cannot exceed 0.7%.

[0013] The reasons why the contents of other components are kept in the above ranges are described as follows.

[0014] The reason why the content of Si is kept in a range from 0.001 to 0.5% is described below. When the content of Si is in a range lower than 0.001%, it becomes necessary to conduct pretreatment of material, and the cost of refining is increased, that is, it is not economical to keep the content of Si in a range lower than 0.001%. When the content of Si is higher than 0.5%, defects are caused in the process of plating, and the surface property and the corrosion resistance are impaired.

[0015] The reason why the content of Mn is kept in a range from 0.005 to 2.0% is described below. When the content of Mn is lower than 0.005%, the refining time is extended, which is not economical. When the content of Mn exceeds 2.0%, the workability at steel is greatly impaired.

[0016] The reason why the content of P is kept in a range from 0.001 to 0.05% is described below. In order to keep the content of P lower than 0.001%, it takes time to treat molten pig iron and the cost is raised, which is not economical. When the content of P exceeds 0.05%, the workability of steel is greatly impaired.

[0017] The reason why the content of S is kept in a range from 0.0005 to 0.15% is described below. In order to keep the content of S lower than 0.0005%, it takes time to treat molten pig iron and the cost is raised, which is not economical. When the content of S exceeds 0.15%, the workability and the corrosion resistance of steel are greatly impaired.

[0018] The reason why the content of Ti is kept in a range from 0.001 to 0.25% is described below. When the content of Ti is lower than 0.001%, it becomes difficult to cast molten steel. When the content of Ti is higher than 0.25%, only titanium oxide, which tends to become clusters, is created, and the diameters of inclusion particles are enlarged. As a result, sliver flaws are caused in the same manner as that of alumina.

[0019] The reason why the content of dissolved AI (sol AI) is kept in a range from 0.001 to 0.1% is described below. When the content of dissolved AI is lower than 0.001%, it impossible to conduct a sufficient deoxidation treatment. When the content of dissolved AI exceeds 0.1%, only alumina is created, and surface defects and internal defects are caused.

[0020] Both Ca and Mg form "crystallized phases", the principal component of which is oxide, in the oxide inclusions.

(1) Therefore, they contribute to make the crystallized phase itself fine.

40

45

(2) Also, they contribute to crushing the inclusion so as to make the inclusion fine along an interface of the fine crystallized phase in the process of rolling. The reason why at least one of Ca, the content of which is kept lower than 50 ppm, and Mg, the content of which is kept lower than 50 ppm, is contained is described as follows. Since the vapor pressure of Ca and that of Mg are high and the yield of Ca and that of Mg are low, the cost is raised when the contents of Ca and Mg are increased to a value higher than 50 ppm. The reason why the lower limits of Ca and Mg are not stated plainly is described as follows. Even when the concentration of Ca and that of Mg are lower than the lower limit of analysis in the composition analysis of steel, it is possible to make the inclusions contain at least one of CaO and MgO sufficiently.

[0021] The present invention provides rolled steel, the basic composition of which is described above, and the oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of a crystallized phase, the principal component of which is Ti oxide, and a crystallized phase, the principal component of which is alumina, and the crystallized phases of oxide inclusions are dispersed in steel.

[0022] The present invention provides rolled steel, the basic composition and the selective composition of which are described above, and the oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of a crystallized phase, the principal component of which is Ti oxide, and a crystallized phase, the principal component of which is alumina, and also composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclu-

sions are dispersed in steel. In this case, the crystallized phase is a crystal phase in a solid state, that is, the crystallized phase does not include a glass phase in a solid state. That is, when there is provided a crystallized phase composed of at least two phases of the crystallized phase, the principal component of which is Ti oxide, and the crystallized phase, the principal component of which is alumina, or alternatively when there is provided a crystallized phase composed of at least three phases of the crystallized phase, the principal component of which is Ti oxide, the crystallized phase, the principal component of which is alumina, and at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO, the crystallized phase itself is made to be fine, and further the crystallized phase is easily crushed to more fine particles. As a result, the occurrence of flaws such as sliver flaws can be prevented, and rolled steel having few inclusion defects can be obtained.

[0023] It is preferable that the crystallized phases of oxide inclusions are dispersed in rows in the direction of rolling near the center with respect to the thickness of a piece of rolled steel. Since the oxide inclusions seldom exist on the surface of the piece of rolled steel, it is possible to obtain rolled steel having few inclusion defects.

[0024] When consideration is given to the deformability of steel in the process of rolling conducted after the completion of hot rolling, it is preferable that Micro-Vickers hardness of oxide inclusions at the room temperature is in a range from 600 to 1300 Hv. The reason why the hardness is kept in the above range is described as follows. When the hardness is lower than 600 Hv, the inclusions are excessively elongated. When the hardness is higher than 1300 Hv, the inclusions are seldom elongated, and it becomes difficult to crush and disperse the inclusions by rolling.

[0025] When the maximum diameter of the particles of oxide inclusions obtained by slime extraction is not larger than 300 μ m and further the number of the particles of oxide inclusions, the diameters of which are not less than 38 μ m, is kept to be not more than 50 pieces/kg, there is little possibility that the particles of oxide inclusions on the surface of rolled steel are drawn out in rows, and it is possible to obtain rolled steel having few inclusion defects.

as follows. Oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of a crystallized phase, the principal component of which is Ti oxide, and a crystallized phase, the principal component of which is alumina. When the crystallized phases concerned are dispersed in rolled steel, oxide inclusions are made to be oxides composed of the two phases of the crystallized phase, the principal component of which is Ti oxide, and the crystallized phase, the principal component of which is alumina, and the crystallized phases of the oxides are made to be fine. Next, the oxide inclusions are further crushed and dispersed by rolling in rows on an interface of the crystallized phase, the particles of which are made to be fine. In this way, when the inclusion is made to be inclusion of the crystallized phase, the principal component of which is fine particles of Ti oxide, and/or the crystallized phase, the principal component of which is alumina, the product defects, which are caused by oxide inclusions, such as sliver flaws in the process of cold rolling, cracks, pin holes and defects detected in the process of UST, can be greatly reduced.

Further, the present invention provides rolled steel, the characteristics of which are described as follows. Oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of a crystallized phase, the principal component of which is Ti oxide, and a crystallized phase, the principal component of which is alumina. Further, oxide inclusions created in the processes of deoxidation and coagulation are mainly composed of at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO. When the crystallized phases concerned are dispersed in rolled steel, oxide inclusions are made to be oxides composed of at least three phases of the crystallized phase, the principal component of which is Ti oxide, the crystallized phase, the principal component of which is alumina, and at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO. Next, the oxide inclusions are further crushed and dispersed by rolling in rows on the interface of the crystallized phase, the particles of which are made to be fine. In this way, when the inclusions are made to be inclusions of the crystallized phase, the principal component of which is fine particles of Ti oxide, and/or the crystallized phase, the principal component of which is alumina, and also when the inclusions are made to be inclusions of at least one of the crystallized phase, the principal component of which is CaO, and the crystallized phase, the principal component of which is MgO, the product defects, which are caused by oxide inclusions, such as sliver flaws in the process of cold rolling, cracks, pin holes and defects detected in the process of UST, can be greatly reduced.

Example 1

25

[0028] Pieces of rolled steel were produced by a vertical bend-type continuous casting machine under the condition that the slab size was 245 mm thickness \times 1200 to 1600 mm width, the casting speed was 1.4 to 1.7 m/min, and the temperature of molten steel in the tundish was 1560°C. After that, the slabs were hot-rolled, and then the pieces of hot-rolled steel were subjected to acid pickling, cold rolling, annealing and secondary cold rolling when necessary. In this way, products shown on Table 1 were produced.

[0029] Deoxidizing alloy used in the production process and the principal components contained in the crystallized phase of oxide inclusions are shown in Table 2. The hardness of oxide inclusions, the existing formation and the ratio

of occurrence of defects are shown in Table 3. It can be seen from these tables that the present invention can greatly reduce the defects of products caused by oxide inclusions so that the productivity can be enhanced.

[0030] The components of the crystallized phase of inclusions shown in Table 2 were identified in such a manner that the inclusions extracted from a piece of rolled steel of full thickness by means of slime electrolytic extraction (the minimum mesh was 38 µm) was subjected to component identification by SEM (Scanning Electron Microscope) having EDX (Energy Dispersive X-ray Spectrometer). Further, concerning the additional component detected in the above component identification, the content was found by the integral intensity of the peak of the characteristic X-rays.

[0031] The existing formation of inclusion, which is shown in Table 2, on the section in the rolling direction was determined by the profile of the product as follows.

[0032] In the case of a sheet, the full thickness of a section parallel to the rolling direction was observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50) which was taken at a position where the inclusion exists.

[0033] In the case of a wire, the full thickness of a section parallel to the drawing direction (the rolling direction) was observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50) which was taken at a position where the inclusion exists.

[0034] In the cases of a pipe and rod, local positions, which were located below the front or the rear surface by 0.1 mm, 1/8t, 1/4t, 3/8t, 1/2t, 5/8t, 3/4t and 7/8t wherein t is thickness, were observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50 for each local position) which was taken at a position where the inclusion exists.

[0035] In this connection, meanings of *1 to *9 shown in Tables 2 and 3 are described as follows.

- *1: Level of dissolved oxygen, A: Not less than 400 ppm, B: Not less than 200 and lower than 400 ppm, C: Not less than 100 and lower than 200 ppm, and D: Lower than 100 ppm
- *2: Principal component in the crystallized phase is controlled by a quantity of alloy added in the process of deoxidation.
- $^{*}3$: MnO and SiO $_2$ are contained by not more than 10 weight % as additional components in the crystallized phase.
- *4: TiO_x is contained by not more than 5 weight % as an additional component in the crystallized phase.
- *5: Al₂O₃ is contained by not more than 5 weight % as an additional component in the crystallized phase.
- *6: An average is calculated at the room temperature for 10 particles of inclusion when a load of 25 g is given to each of three positions with respect to one type of inclusion.
- *7, *8: The maximum diameter of the inclusion particles and the number of the inclusion particles are controlled by dissolved oxygen before deoxidation.

The method of measuring the maximum diameter of the inclusion particles is described below. Inclusions, which were extracted by means of slime electrolytic extraction (the minimum mesh was $38~\mu m$) from a piece of rolled steel of full thickness of the weight of $1\pm0.1~kg$, were photographed by a stereoscopic microscope, the magnification of which was 40, and the averages of the major and the minor axis of the inclusion particles on the photograph were found with respect to all the inclusion particles, and the maximum value of the thus found averages was determined to be the maximum diameter of the inclusion particles. The number of the inclusion particles was found as follows. The number of all the inclusion particles, which was extracted by means of slime electrolytic extraction (the minimum mesh was $38~\mu m$) and observed by an optical microscope (the magnification was 100) was converted into the number per the unit of 1 kg.

*9: The ratio of occurrence of defects is determined by the following formulas.

In the case of a sheet, the ratio of occurrence of sliver flaws on the surface of the sheet is (total length of sliver flaws/length of a coil)

In the case of a pipe, the ratio of occurrence of UST defects in the electroseamed zone is (number of pipes in which the defects occurred/number of inspected pipes)

In the case of a rod and wire, the ratio of occurrence of surface flaws is (number of coils in which defects occur/total number of inspected coils)

55

25

30

35

40

45

Table 1

		No. Prof	ile						ever, the r	est are
		૦૬					le impur			
		proc		C	Si	Mn	P	S	Ti	901. A
Inventive	_	Al Shee		0005	0.039	0.58	0.018	0.006	0.060	0.050
Inventive		A2 Shee		0025	0.005		0.028	0.012	0.002	0.002
Inventive	_	A3 Shee		0045	0.012	0.15	0.042	0.018	0.018	0.008
Inventive	-	A4 Shee		0070	0.021	0.35	0.007	0.023	0.034	0.019
Inventive	examble	A5 Shee		0023	0.014	0.38	0.020	0.014	0.020	0.007
Inventive	example	A6 Shee		0047	0.020	0.56	0.034	0.020	0.038	0.017
Inventive	example	A7 Shee		0066	0.036	0.85	0.044	0.025	0.082	0.065
Inventive	example	A8 Shee		0007	0.007	0.12	0.005	0.005	0.003	0.001
Inventive	example	A9 Shee	t 0.	02	0.086	0.68	0.016	0.004	0.060	0.030
Inventive	example	A10 Shee	t 0.	04	0.007	0.96	0.025	0.011	0.001	0.002
Inventive	example	All Shee	t O.	07	0.033	0.16	0.040	0.029	0.017	0.010
Inventive	example	Al2 Shee	e 0.	10	0.059	0.42	0,005	0.025	0.035	0.021
Inventive	example	Al3 Shee	t 0.	03	0.005	0.14	0.018	0.016	0.022	0.008
Inventive	example	Al4 Shee	0.	05	0.042	0.45	0.035	0.019	0.036	0.018
Inventive	example	A15 Shee	٤ ٤ 0.	13	0.063	0.73	0.046	0.023	0.093	0.073
Inventive	example	Al6 Shee	e 0.	01	0.093	0.93	0.006	0.006	0.002	0.003
Inventive	example	A17 Shee	t 0.	0070	0.014	0.17	0.035	0.015	0.015	0.035
Inventive	example	Al8 Shee	t 0.	03	0.042	0.41	0.044	0.007	0.050	0.003
Inventive	example	A19 Pipe	0.	023	0.40	1.24	0.008	0.0005	0.230	0.09
Inventive	example	A20 Pipe	0.	13	0.021	1.78	0.011	0.05	0.003	0.002
Inventive	example	A21 Pipe	0.	25	0.15	0.14	0.015	0.0095	0.080	0.035
Inventive	example	A22 Pipe	0.	34	0.28	0.69	0.004	0.014	0.157	0.068
Inventive	example	A23 Pipe	0.	11	0.17	0.71	0.005	0.008	0.093	0.038
Inventive	example	A24 Pipe	0.	27	0.27	1.31	0.012	0.07	0.165	0.053
Inventive	example	A25 Pipe	0.	31	0.015	1.92	0.017	0.01	0.242	0.085
Inventive	example	A26 Pipe	0.	015	0.16	0.09	0.003	0.022	0.006	0.006
Inventive	example	A27 Rod	0.	54	0.40	1.24	0.008	0.025	0.210	0.08
Inventive	example	A28 Rod	0.	58	0.021	1.78	0.011	0.063	0.005	0.004
Inventive	example	A29 Rod	0.	62	0.15	0.14	0.015	0.101	0.065	0.032
Inventive		A30 Rod	0.	65	0.28	0.69	0.004	0.14	0.140	0.075
Inventive		A31 Rod	0.	59	0.17	0.71	0.005	0.053	0.080	0.035
Inventive	_	A32 Rod	0.	61	0.27	1.31	0.012	0.10	0.155	0.051
Inventive	•	A33 Wire	0.	67	0.015	1.92	0.017	0.135	0.23	0.088
Inventive	-	A34 Wire	0.	52	0.15	0.09	0.003	0.018	0.008	0.003
Comparativ		31 Shee	t 0.	0005	0.012	0.15	0.028	0.023	0.015	0.035
_	e example		t 0.	04	0.059	0.42	0.040	0.013	0.050	0.002
•	e example			25	0.17	0.71	0.004	0.07	Ca:30 ppm	0.060
-	e example			65	0.27	1.31	0.005	0.135	0.000	0.003
-	e example			27	0.015	0.75	0.015	0.082	0.002	0.110
•	e example			67	0.16	1.42	0.002	0.147	0.260	0.003

Table 2

Port, Al Defore adding deoxiditing Crystallized phase *2 Port, Al B		Xo.	Deoxidizing	Level of dissolved oxygen	Principal component in	Existing inclusion formation on the section in the
cample N1 Perf., N1 B FIG., ALG. Dispersion occus has enter the senter beneat thickness exemple cample N2 Perf., N1 B FIG., ALG. Dispersion occus name the center of mass, complex cample N2 Perf., N1 B FIG., ALG. Dispersion over the entire about thickness example cample N3 Perf., N1 B TIG., ALG. Dispersion over the entire sheet thickness example cample N4 Perf., N1 B TIG., ALG. Dispersion over the entire sheet thickness example cample N6 Perf., N1 C TIG., ALG. Dispersion in cose near the entire sheet thickness example cample N7 Perf., N1 C TIG., ALG. Dispersion in cose near the entire sheet thickness example A11 Perf., A1 C TIG., ALG. Dispersion in cose near the entire sheet thickness example cample N7 Perf., A1 C TIG., ALG. Dispersion in cose near the entire sheet thickness example cample N7 Perf., A1 Dispersion over the entire sheet thickness example <th< th=""><th></th><th></th><th>alloy</th><th>before adding denxidizing</th><th>crystallized phase *2</th><th>rolling direction</th></th<>			alloy	before adding denxidizing	crystallized phase *2	rolling direction
categories 12 FFFLAL 9 TOO, ALGO Disperation to row mark the center of these counts. categories AI PFFLAL 9 TOO, ALGO Disperation rows the entire the center of these counts. categories AI PFFLAL 9 TOO, ALGO Disperation rows the entire phact bickness seasons. categories AI PFFLAL 0 TOO, ALGO Disperation rows the entire phact bickness seasons. categories AI PFFLAL 0 TOO, ALGO Disperation rows the entire phact bickness seasons. categories AI PFFLAL 0 TOO, ALGO Disperation rows the entire phact bickness seasons. categories AI PFFLAL 0 TOO, ALGO Disperation rows the entire phact bickness seasons. categories AI PFFLAL A TOO, ALGO Disperation rows the entire phact bickness seasons. categories AI PFFLAL A TOO, ALGO Disperation rows the entire of enter of phact seasons. categories AI PFFLAL A TOO, ALGO Disperation rows the enter of center of the	ſ	¥	Feft, Al		TiO, Al,Os	Dispersion over the entire sheet thickness
coaceaple A1 PETL, A1 B TLD, A1C, A1C, D Dispersion in core nast the sentire sheet thickness cancers. coaceaple A5 PETL, A1 B TLD, A1C, A1C, D Dispersion over the entire sheet thickness cancers. coaceaple A5 PETL, A1 B TLD, A1C, D Dispersion over the entire sheet thickness cancers. coaceaple A7 PETLAL B TLD, A1C, D Dispersion over the entire sheet thickness cancers. coaceaple A7 PETLAL B TLD, A1C, D Dispersion over the entire sheet thickness cancers. coaceaple A1 PETLAL C TLD, A1C, D Dispersion over the entire sheet thickness cancers. coaceaple A1 PETLAL C TLD, A1C, D Dispersion in rows cancer of chaes cancers. coaceaple A1 PETLAL A TLD, A1C, D Dispersion in rows cancer the center of chaes cancers. coaceaple A1 PETLAL A TLD, A1C, D Dispersion over the entire of all cancers of all cancers. coaceaple A1 PETLAL A1 Dispersion over the entire of all cancer o		2	FeTiAl	В	T10r, A1,0,	center of sheet
All Parkli, All Pa		٨3	FeTi, Al	E.	T10, A1,0,	
A		14	FeT1A1	8	Tio, Alto,	Dispersion over the entire sheet thickness
A		45	Feti, Al	£	Tion, Also,	ی
example and section of the s		9.0	Petial	89		Disparsion over the entire sheet thickness
cample A1 FEFT, A1 B \$10, A.50 Disperation over the entire sheet thickness cample cample A2 FET, A1 C \$10, A.50 Disperation over the entire sheet thickness cample cample A2 FET, A1 C \$10, A.50 Disperation on roses came the contex of sheet came can came the contex of sheet came came cample A12 FET, A1 C \$10, A.50 Disperation on roses came the contex of sheet came came cample A12 FET, A1 C \$10, A.50 Disperation on rose came came the contex of sheet came cample A13 FET, A1 A \$10, A.50 Disperation on rose the entire sheet thickness cample A13 FET, A1 A \$10, A.50 Disperation over the entire sheet thickness cample A14 FET, A1 A \$10, A.50 \$10, A.50 \$10, A.50 \$10, A.50 A15 FET, A1 A \$10, A.50		A.7	FeTIAL	В		Dispersion over the entire sheet thickness
cample A10 FFFL, A1 C FIG, AJG, A1 Disperation over max the entire ablet thickness example cample A10 FFFL, A1 C FIG, AJG, AJG, B19 Disperation over the entire ablet thickness example A11 FFFL, A1 C TIG, AJG, AJG, B19 Disperation over the entire ablet thickness example A12 FFFL, A1 C TIG, AJG, AJG, B19 Disperation over the entire ablet thickness example A13 FFFL, A1 C TIG, AJG, AJG, B19 Disperation over the entire ablet thickness example A14 FFFL, A1 A TIG, AJG, AJG, B19 Disperation over the entire ablet thickness example A13 FFFL, A1 A TIG, AJG, AJG, B19 Disperation over the entire of ablet thickness example A14 FFFL, A1 A TIG, AJG, B19 Disperation over the entire of ablet thickness example A15 FFFL, A1 A TIG, AJG, B19 Disperation in cone max the center of pipe to accept the entire ablet thickness example A21 FFFL, A1 D TIG, AJG, B19 Disperation in cone max the center of pipe thickness example A22 FFFL, A1		۸9	FeTi, Al	В		Disparsion over the entire sheet thickness
Angle Perty, All C TiO, Al-O Dispersion in rose mear the center of sheat cample All Perty, All C TiO, Al-O Dispersion in rose mear the center of sheat Angle Perty, All C TiO, Al-O Dispersion over the entire shear thickness Angle Perty, All C TiO, Al-O Dispersion over the entire shear thickness Angle Perty, All C TiO, Al-O Dispersion over the entire shear thickness Angle Perty, All C TiO, Al-O Dispersion over the entire shear thickness Angle Perty, All A TiO, Al-O Dispersion over the entire shear thickness Angle Perty, All A TiO, Al-O Dispersion over the entire plus thickness Angle Perty, All A TiO, Al-O Dispersion over the entire plus thickness Angle Perty, All B TiO, Al-O Dispersion over the entire plus thickness Angle Perty, All D TiO, Al-O Dispersion over the entire plus thickness Angle Perty, All D TiO, Al-O Dispersion over the entire plus thickness Angle Perty, All D TiO, Al-O <th< th=""><th></th><th>٧3</th><th>Ferial</th><th>၁</th><th>Tio, Al,O,</th><th></th></th<>		٧3	Ferial	၁	Tio, Al,O,	
All Perill C TiO, Al-O Dispersion over the entar a share the cheek can be content of sheet can be can be content of sheet can be content of sheet can be can be content of sheet can be c		A10	FeTi, Al	၁	rio, A1,0,	
M.12 Fort. A.1 C 110, A.14 Dispersion over the entire abset thickness example A.12 Fort. A.1 C 110, A.14 Dispersion over the entire abset thickness example A.15 Fort. A.1 F		X11	Ferial	ນ	Tio, Alo,	
Ali		A12	FeTi, Al	O.		Dispersion over the entire sheet thickness
cample of Mid Perilal C TiO, Al-O Dispersion over the entire sheet thickness cample and the control of sheet thickness cample Al-O Dispersion over the entire sheet thickness cample Al-O Dispersion over the entire sheet thickness cample Al-O Dispersion over the entire sheet thickness cample Al-O TiO, Al-O Dispersion over the entire sheet thickness cample Al-O TiO, Al-O Dispersion over the entire sheet thickness cample Al-O TiO, Al-O Dispersion over the entire pipe thickness cample and precion over the entire pipe thickness cample Al-O TIO, Al-O Dispersion over the entire pipe thickness cample Al-O TIO, Al-O Dispersion in rose near the center of pipe thickness cample Al-O TIO, Al-O Dispersion in rose near the center of pipe thickness cample Al-O TIO, Al-O Dispersion in rose near the center of pipe thickness cample Al-O TIO, Al-O Dispersion over the entire pipe thickness cample Al-O TIO, Al-O Dispersion over the entire pipe thickness cample Al-O TIO, Al-O Dispersion over the entire pipe thickness cample cample Al-O TIO, Al-O Dispersion over the entire pipe thickness cample cample Al-O TIO, Al-O Dispersion over the entire pipe thickness cample cample Al-O TIO, Al-O Dispersion over the entire pipe thickness cample cample al-O TIO, Al-O Dispersion over the entire pipe thickness cample cample al-O TIO, Al-O Dispersion over the entire pipe thickness cample cample al-O TIO, Al-O </th <th></th> <th>A13</th> <th>FeTial</th> <th>ນ</th> <th></th> <th>4</th>		A13	FeTial	ນ		4
ALE Peril, Al			Petial	ວ	TIO, ALO	Dispersion over the entire sheet thickness
Ai6 Ferrial Ai6 Ferrial C 710, Al-O Dispersion on the near the center of sheet Axample Ai7 Ferrial A 710, Al-O Dispersion over the senter ed sheet blickness Axample Ai3 Ferrial A 710, Al-O TiO, Al-O Dispersion over the senter of sheet Axample Ai3 Ferrial D 710, Al-O Dispersion over the senter of sheet Dispersion over the senter of sheet Axample Ai2 Ferrial D 0 TiO, Al-O Dispersion over the senter of sheet Dispersion over the senter of sheet Axample Ai2 Ferrial D 0 TiO, Al-O Dispersion over the senter of pipe the content of pip		ALS	PeTi, Al	Ĵ	TIO, ALO,	Dispersion over the entire sheet thickness
A		A16	FeTIAL	ນ	TiO, ALO	4
A18 Fortial A TiO, AlO 13 partial Alo Dispersion in rose near the center of place to accept the strict of accept the accept the strict of accept the accept the accept the accept to accept the accept the accept to accept the accept the accept to accept to accept the accept the accept to accept the accept the accept the accept to accept the accept the accept to accept		A17	FeTi, Al	Y	Tio, Alo,	
Alight Perill C TiO, AlO,*3 Dispersion over the entire pipe thickness stands example Azi Perill Perill Dispersion in rous near the center of pipe to axample axample axample axample axample axis Perill Dispersion in rous near the center of pipe to pipe to axample axample axis Perill Dispersion in rous near the center of pipe to pipe to axample axample axis Perill Dispersion over the entire pipe thickness pipe thickness pipe thickness axample axis Perill Dispersion in rous near the center of pipe to axample axample axis Perill Dispersion in rous near the center of pipe to axample axample axample axis Perill Dispersion in rous near the center of pipe thickness axample		A18	FeTIAL	A	Tion, Also,	ᆈ
A20 Poeti, Al D TiO, AlO, *3 Dispersion in rose near the center of pipe to axample axample A2 Perila. D TiO, AlO, *3 Dispersion in rose near the center of pipe to bibe to be the change of pipe to axample A2 Perila. D TiO, AlO, *3 Dispersion in rose near the center of pipe to bibe to be the chase axample A2 Perila. D TiO, AlO, *3 Dispersion in rose near the center of pipe to bibe to be the chase axample A2 Perila. D TiO, AlO, *3 Dispersion over the entire pipe bibe the chase axample A2 Perila. D TiO, AlO, *3 Dispersion over the entire pipe bibe the chase axample A2 Perila. D TiO, AlO, *3 Dispersion in rose near the center of pipe to bibe the chase axample A2 Perila. D TiO, AlO, *3 Dispersion over the entire pipe bibe the chase axample A2 Perila. D TiO, AlO, *3 Dispersion over the entire of pipe to condition to condi		A19	FeTIAL	Э	A1701	Dispersion over the entire pipe thickness
example axaple care and content of partial and content of pipe to a care and content of conte		A20	FeTi, Al	D	11,0,	
axample axample axample axample axample A22 Perill A22 Perill Dispersion over the entire pipe thickness axample axample A25 Peril, A1 Dispersion over the entire pipe thickness branches example A25 Peril, A1 D TiO ₁ , A1O ₂ *3 Dispersion in rows near the ontire pipe thickness branches example A25 Peril, A1 D TiO ₂ , A1O ₂ *3 Dispersion in rows near the onter of pipe thickness branch example A26 Peril, A1 D TiO ₂ , A1O ₂ *3 Dispersion in rows near the center of pipe thickness example A26 Peril, A1 D TiO ₂ , A1O ₂ *3 Dispersion in rows near the center of pipe to thickness example A27 Peril, A1 D TiO ₂ , A1O ₂ *3 Dispersion in rows near the center of rod dismeter oxample A28 Peril, A1 D TiO ₂ , A1O ₂ *3 Dispersion over the entire rod dismeter oxample A31 Peril, A1 D TiO ₂ , A1O ₂ *3 Dispersion over the entire rod dismeter oxample A32 Peril, A1 D TiO ₂ , A1O ₂ *3 Dispersion over the entire rod dismeter oxample A33 Peril, A1 D TiO ₂ , A1O ₂ *3 Dispersion over the entire rod dismeter oxample A34 Peril, A1 D TiO ₂ , A1O ₂ *4 Dispersion over the entire rod dismeter oxample </th <th></th> <th>A21</th> <th>Fetial</th> <th>Q</th> <th></th> <th></th>		A21	Fetial	Q		
example A23 Peri, A1 D TiO, A1O, 43 Dispersion in cose near the center of pipe to taxaple example A24 Feri, A1 D TiO, A1O, 43 Dispersion over the entire pipe thickness example A25 Fari, A1 D TiO, A1O, 43 Dispersion over the entire pipe thickness example A26 Fari, A1 D TiO, A1O, 43 Dispersion in ross near the center of pipe to the center of to the center of to the center of pipe to the center of to the center o		A22	Fetial	Q	Tio, Allo	Dispersion over the entire pipe thickness
example example comparison of the compariso		23	Fotti, Al	0	Tio, Alo,	
example A25 Feri, A1 D TiO, A1O, A3 Dispersion over the entire pipe thickness example example A26 Feri, A1 D TiO, A1O, A3 Dispersion over the entire of pipe to dispersion over the center of pipe to dispersion over the center of cod dispersion dispersion over the center of cod dispersion dispersion dispersion dispersion over the center of cod dispersion disp		A24	retial	ď	ALO,	Dispersion over the entire pipe thickness
example axample		X 25	FeTi, Al	q	PIO'	Dispersion over the entire pips thickness
example axample		A26	PREIAL	Q	Tion, Also,	
example A28 Retial D TiQ, Al,O, *3 Dispersion in rows near the center of rod dispersion for rows near the center of rod dispersion over the entire rod dismeter example A39 Ferial D TiQ, Al,O, *3 Dispersion in rows near the center of rod dismeter example A31 Ferial D TiQ, Al,O, *3 Dispersion over the entire rod dismeter example A31 Ferial D TiQ, Al,O, *3 Dispersion in rows near the center of rod dismeter example A31 Ferial D TiQ, Al,O, *3 Dispersion over the entire rod dismeter example A32 Ferial D TiQ, Al,O, *3 Dispersion over the entire rod dismeter example A32 Ferial D TiQ, Al,O, *4 Dispersion over the entire sheet biaseter of wire dismeter axample A1,O, *4 Dispersion over the entire sheet biaseter of sheet of rod dismeter of sheet of rod dismeter of sheet of rod dismeter of rod dismete		727	Feri, Al	Q	Also,	Dispersion over the entire rod disseter
example A29 Peri, A1 D TiQ, A1G, A1G, A1G, Dispersion in rows near the center of rod dismeter example A30 PeriA1 D TiQ, A1G, A1G, A1G, A1G, A1G, A1G, A1G, A1G		M28	Fortal	Q	AL ₂ O ₃	
A30 Perion Perion TiO _L Al ₂ O Dispersion over the entire rod diameter A31 Peri, A1 D TiO _L Al ₂ O Dispersion over the entire of diameter A31 Perion D TiO _L Al ₂ O Dispersion over the entire vice diameter A32 Perion D TiO _L Al ₂ O Dispersion over the entire vice diameter A31 Perion D TiO _L Al ₂ O Dispersion over the entire vice diameter B1 A1 B Al ₂ O ₂ + Al ₂ O Dispersion over the entire aleat thickness B2 T1 C TiO _L + D Dispersion in rows near the center of sheet B3 A1, Casi D CaO, Al ₂ O Eloquition in the rolling direction over the entire pipe thickness B4 Perion D NGO, SiO ₂ Eloquition in the rolling direction near the canter pipe thickness B5 Perion D Al ₂ O ₂ + G Dispersion over the entire pipe thickness B6 Perion D Al ₂ O ₂ + G Dispersion over the entire pipe thickness of rod diameter		329	Fort, Al	q	Tio, Alo	Dispersion in rows near the center of rod dismeter
A31 Peril, A1 Dispersion in rows near the center of rod dispersion in rows near the center of rod dispersion A32 Perilal Dispersion over the entire rod dispersion over the entire side of rid side dispersion over the entire side of rid side dispersion over the entire side of rid side dispersion over the entire entire of sheet of rid side dispersion over the entire entire side dispersion over the entire side of rid side dispersion over the entire side dispersion over the entire place thickness of rod dispersion in the rolling direction over the entire place thickness of rod dispersion over the entire place thickness of rod dispersion over the entire place of rod dispersion over the entire place of rod dispersion over the canter of rod dispersion or the canter of rod dispersion over the canter of rod dispersion or the ca		A30	Petial	Q	TiO, Alio,	Disparaton over the entire rod diameter
A32 Fefial D TiO, Alo, *3 Dispersion over the entire rod dismeter A33 Fefial D TiO, Alo, *3 Dispersion over the entire wire dismeter A3 Fefial D TiO, Alo, Alo, alo Dispersion over the entire wire dismeter A1 B Alo, Alo, alo Dispersion over the entire sheet thickness B2 Ti CaO, Alo, b Elongation in the ralling direction over the entire place of sheet B3 Al, CaSi D No, SiO, al, O Pipe thickness B4 Febri, Al D Al, O, *4 Dispersion in the ralling direction over the entire place thickness B5 Feri, Al D Al, O, *4 Dispersion in the rolling direction near the canter the canter of rod dispersion over the entire pipe thickness B6 Feri, Al D Al, O, *4 Dispersion over the entire pipe thickness B6 Ferial D Al, O, *5 Dispersion over the entire pipe thickness			FeTi, Al	a	Tio, Al,O,	
A33 Fefial Dispersion over the entire wire diameter A34 Perial 0 TiO ₂ , Al ₂ O ₃ Dispersion in rows near the center of wire department B1 Al B Al ₂ O ₃ A ₄ Dispersion in rows near the center of aheat B2 Ti Co TiO ₂ A ₅ Elogeration in rows near the center of aheat B3 Al, Casi D Al ₂ O ₃ Elogeration in the rolling direction over the pape thickness B4 February D Al ₂ O ₃ Elogeration in the rolling direction near the of rod dispersion in the rolling direction near the of rod dispersion over the entire pipe thickness B5 Feri, Al D Al ₂ O ₃ A ₄ Dispersion in the rolling direction near the canter of rod dispersion in the rolling direction near the canter the canter of rod dispersion in the rolling direction near the canter of rod dispersion in the rolling direction near the canter of rod dispersion in rows near the canter of rod dispersion near the canter of rod dispersion in rows near the canter of rod dispersion ne	Inventive example		Petial	a	11,0,14	Dispersion over the entire rod diameter
Ald Ferial TiO, Al,O, Al,O, Dispersion in rows near the center of vire of all all all all all all all all all al	Inventive example	5	FeTIAL	Q	Al ₂ O ₃	Disparaton over the entire wire diameter
H1 Al Al B Al-O, 44 Dispersion over the entire sheet thickness and true and the canter of sheet B2 Ti	Inventive example	134	FeTIAL	5	TiOr, Alio,	2
R2 T1 C T1O, 15 Dispersion in rows near the center of sheet B3 A1, Ca8i D Ca0, A1,0, Riongation in the rolling direction over the pape thickness B4 FeSi, FeWr D Moo, SiO; SiOgs thickness B5 FeYI, A1 D A1,0, #4 Dispersion over the entire pipe thickness B6 FeXIA. D FIO, *5 Dispersion over the entire pipe thickness B6 FeXIA. D FIO, *5 Dispersion over the entire pipe thickness	Comparative example	H	74	æ	11.05 *4	Disparation over the entire shaet thickness
A1, CaSi D CaO, Al ₂ O, page thickness Blongstion in the ralling direction over the page thickness B4 FeSi, FeMt D HnO, SiO, Cod dismeter of road dismeter D Al ₂ O, *4 Dispersion over the entire pipe thickness B5 FeXi, Al D Al ₂ O, *4 Dispersion over the entire pipe thickness B6 FeXIA. D TIO, *5 Dispersion in rows near the center of rod dis	Comparative example	82	11	ט	TIO, +5	u
B4 FeSi, Fakh D MnO, SiO ₂ Elongation in the rolling direction near the Si FeYi, Al D Algo, *4 Dispersion over the entire pipe thickness B6 FeYiAl D TiO, *5 Dispersion in rows near the center of rod dispersion in rod disp	Comparative example	B3	•	Q	CaO, Also,	over the
B4 FeSi, Febra D MnO, SiO, Of rod diameter B5 FeYi, A1 D Algo, *4 Dispersion over the entire pipe thickness B6 FeYiA1 D TIO, *5 Dispersion in rows near the center of rod dis						the rolling direction near the
HS Feri, Al D Also, 44 Dispersion over the entire pipe thickness HS PeriAl D TiO, 45 Dispersion in rows near the canter of rod di	Comparative example	10	+	Q	Mno, sio	in the state of th
B6 Parial D Tio, *5 Dispersion in rows near the center of rod di	Comparative example	85	۱.	Q	A1,00, #4	entire p
	Comparative example	96		ρ	T10, *5	near the center of rod di

Table 3

	No.	Micro- Vickers hardness *6. Hv	Maximum diameter of inclusion particle	Number of inclusion particles +8, piece/kg	Ratio of occur- rence of defects
		o, av	+7, µm	o, piece, ng	*9, %
Inventive example	A1	612	179	35.0	0.5
Inventive example	A2	1174	185	32.3	0.4
Inventive example	A3	1236	163	27.4	0.3
Inventive example	A4	1001	158	22.5	0.5
Inventive example	λ5	1288	178	26.3	0.4
Inventive example	A6	870	166	24.4	0.3
Inventive example	A7	1062	257	43.2	0.5
Inventive example	A8	723	138	18.5	0.4
Inventive example	A9	692	187	9.7	0.6
Inventive example	A10	612	203	9.9	0.2
Inventive example	A11	946	154	9.5	0.2
Inventive example	A12	1220	165	8.7	0.7
Inventive example	A13	1206	189	8.8	0.2
Inventive example	A14	1001	287	19.5	0.5
Inventive example	A15	1288	264	18.3	0.6
Inventive example	A16	870	122	4.3	0.3
Inventive example	A17	1102	374	246	1.2
Inventive example	A18	1058	326	123	1,4
Inventive example	A19	974	230	26.5	0.0
Inventive example	A20	665	212	22.2	0.0
Inventive example	A21	642	206	35.4	0.0
Inventive example	A22	782	198	32.1	0.0
Inventive example	A23	743	187	30.2	0.0
Inventive example	A24	612	177	27.3	0.0
Inventive example	A25	738	199	33.3	0.0
Inventive example	A26	647	209	34.6	0.0
Inventive example	A27	615	257	33.8	1.2
Inventive example	A28	820	273	27.9	0.8
Inventive example	A29	782	267	27.3	0.5
Inventive example	A30	631	196	25.2	1.1
Inventive example	A31	664	188	22.4	0.7
Inventive example	A32	897	206	19.6	1.1
Inventive example	A33	872	234	20.1	0.9
Inventive example	A34	673	165	17.5	0.6
Comparative example	81	1933	460	250	2.8
Comparative example	B2	1402	324	175	3.2
Comparative example	B3	359	230	43	8.3
Comparative example	B4	443	297	47	16.3
Comparative example	B 5	1505	387	44	6.2
Comparative example	B6	1476	366	42	8.9

Example 2

[0036] Pieces of rolled steel were produced by a vertical bend-type continuous casting machine under the condition that the slab size was 245 mm thickness \times 1200 to 1600 mm width, the casting speed was 1.4 to 1.7 m/min, and the temperature of molten steel in the tundish was 1560°C. After that, the slabs were hot-rolled, and then the pieces of hot-rolled steel were subjected to acid pickling, cold rolling, annealing and secondary cold rolling when necessary. In this way, products shown in Tables 4, 7 and 10 were produced.

[0037] Deoxidizing alloy used in the production process and the principal components contained in the crystallized phase of oxide inclusions are shown in Tables 5, 8, 11 and 12. The hardness of oxide inclusions, the existing formation

and the ratio of occurrence of defects are shown in Tables 6, 9 and 13. It can be seen from these tables that the present invention can greatly reduce the defects of products caused by oxide inclusions so that the productivity can be enhanced.

[0038] The components of the crystallized phases of inclusions shown in Tables 5, 8 and 12 were identified in such a manner that the inclusions extracted from pieces of rolled steel of full thickness, the weight of which was 1 ± 0.1 kg, by means of slime electrolytic extraction (the minimum mesh was $38 \mu m$) were identified by SEM having EDX. Further, concerning the detected additional component, the content was found from the integral intensity of the peak of the characteristic X-rays.

[0039] The existing inclusion formations shown in Tables 5, 8 and 12 on the section of the rolling direction were determined by the profiles of products as follows.

[0040] In the case of a sheet, the full thickness of a section parallel to the rolling direction was observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50) which was taken at a position where the inclusion exists.

[0041] In the case of a wire, the full thickness of a section parallel to the drawing direction (the rolling direction) was observed by an optical microscope, and the existing inclusion formation was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50) which was taken at a position where the inclusion exists.

[0042] In the cases of a pipe and rod, local positions, which were located below the front or the rear surface by 0.1 mm, 1/8t, 1/4t, 3/8t, 1/2t, 5/8t, 3/4t and 7/8t wherein t is thickness, were observed by an optical microscope, and the existing formation of inclusion was determined by an optical microscopic photograph (the magnification was 400 and the total number of field of view was 50 for each local position) which was taken at a position where the inclusion exists.

[0043] In this connection, the meaning of *1 to *11 shown in Tables 4 to 13 are described as follows.

- *1: Tr: Not more than the lower limit capable of being analyzed, -: Ca or Mg is not added.
- *2: Level of dissolved oxygen

25

30

35

40

45

50

55

A: Not less than 400 ppm, B: Not less than 200 ppm and lower than 400 ppm, C: Not less than 100 ppm and lower than 200 ppm, D: Lower than 100 ppm

- *3: Principal component in the crystallized phase is controlled by a quantity of alloy added in the process of deoxi-
 - *4: Not more than 10 weight % of MnO and SiO2 are contained as additional components in the crystallized phase.
 - *5: Not more than 5 weight % of TiO_x is contained as an additional component in the crystallized phase.
 - *6: Not more than 5 weight % of Al_2O_3 is contained as an additional component in the crystallized phase.
 - *7: Not more than 5 weight % of Al_2O_3 is contained as an additional component in the crystallized phase, and not more than 10 weight % of MnO and SiO_2 are also contained as additional components in the crystallized phase.
 - *8: An average is calculated at the room temperature for 10 particles of inclusion when a load of 25 g is given to each of three positions with respect to one type of inclusion.
 - *9, *10: The maximum diameter of the inclusion particles and the number of the inclusion particles are controlled by dissolved oxygen before deoxidation.

The method of measuring the maximum diameter of the inclusion particles is described below. Inclusions, which were extracted by means of slime electrolytic extraction (the minimum mesh was $38~\mu m$) from a piece of rolled steel of full thickness of the weight of $1\pm0.1~kg$, were photographed by a stereoscopic microscope, the magnification of which was 40, and the averages of the major and the minor axis of the inclusion particles on the photograph were found with respect to all the inclusion particles, and the maximum value of the thus found averages was determined to be the maximum diameter of the inclusion particles. The number of the inclusion particles was found as follows. The number of all the inclusion particles, which was extracted by means of the slime electrolytic extraction (the minimum mesh was $38~\mu m$) and observed by an optical microscope (the magnification was 100) was converted into the number per the unit of 1 kg.

*11: The ratio of occurrence of defects is determined by the following formulas.

In the case of a sheet, the ratio of occurrence of sliver flaws on the surface of the sheet is (total length of sliver flaws/length of a coil)

In the case of a pipe, the ratio of occurrence of UST defects in the electroseamed zone is (number of pipes in which the defects occurred/number of inspected pipes)

In the case of a rod and wire, the ratio of occurrence of surface flaws is (number of coils in which defects occur/total number of inspected coils)

Table 4

	No. Profile	Basi	c compo	sition	of ste	el (mass	t, how	ever, Ca	ĭ.s
	of					the rest	are ir	on and	
	product		itable				·		,
		<u> </u>	Si	Mn	P	S	Ti	sol. Al	Ca+
Inventive example	Al Sheet	0.0005	0.035	0.55	0.017	0.006	0.057	0.048	30
Inventive example	A2 Sheet	0.0024	0.005	0.76	0.027	0.011	0.002	0.002	47
Inventive example	A3 Sheet	0.0043	0.011	0.14	0.040	0.017	0.017	0.008	Tz
Inventive example	A4 Sheet	0.0067	0.019	0.33	0.007	0.022	0.032	0.018	13
Inventive example	A5 Sheet	0.0022	0.013	0.36	0.019	0.013	0.019	0.007	42
Inventive example	A6 Sheet	0.0045	0.018	0.53	0.032	0.019	0.036	0.016	Tz
Inventive example	A7 Sheet	0.0063	0.032	0.81	0.042	0.024	0.078	0.062	17
Inventive example	AB Sheet	0.0007	0.006	0.11	0.005	0.005	0.003	0.001	31
Inventive example	A9 Sheet	0.02	0.077	0.65	0.015	0.004	0.057	0.029	5
Inventive example	Alo Sheet	0.04	0.006	0.91	0.024	0.010	0.001	0.002	1.2
Inventive example	All Sheet	0.07	0.030	0.15	0.038	0.028	0.016	0.010	27
Inventive example	Al2 Sheet	0.10	0.053	0.40	0.005	0.024	0.033	0.020	
Inventive example	Al3 Sheet	0.03	0.005	0.13	0.017	0.015	0.021	0.008	1.
Inventive example	Al4 Sheet	0.05	0.038	0.43	0.033	0.018	0.034	0,017	29
Inventive example	Al5 Sheet	0.12	0.057	0.69	0.044	0.022	0.088	0.069	4.
Inventive example	Al6 Sheet	0.0095	0.084	0.88	0.006	0.006	0.002	0.003	
Inventive example	A17 Sheet	0.0067	0.013	0.16	0.033	0.014	0.014	0.033	2:
Inventive example	Al8 Sheet	0.029	0.038	0.39	0.042	0.007	0.048	0.003	4.
Inventive example	Al9 Pipe	0.022	0.36	1.18	0.008	0.0005	0.219	0.086	T
Inventive example	A20 Pipe	0.12	0.019	1.69	0.010	0.04B	0.003	0.002	1
Inventive example	A21 Pipe	0.24	0.135	0.13	0.014	0.009	0.076	0.033	4
Inventive example	A22 Pipe	0.32	0.252	0.66	0.004	0.013	0.149	0.065	
Inventive example	A23 Pipe	0.10	0.153	0.67	0.005	0.008	0.088	0.036	
Inventive example	A24 Pipe	0.26	0.243	1.24	0.003	0.067	0.157	0.050	48
Inventive example	A25 Pipe	0.29	0.014	1.82	0.016	0.010	0.230	0.081	1
		0.014	0.144	0.09	0.003	0.021			1
Inventive example							0.006	0.006	
Inventive example		0.51	0.36	1.18	0,008	0.024	0.200	0.076	2:
Inventive example	A28 Rod	0.55	0.019	1.69	0.010	0.060	0.005	0.004	T:
Inventive example	A29 Rod	0.59	0.135	0.13	0.014	0.096	0.062	0.030	2:
Inventive example	A30 Rod	0.62	0.252	0.66	0.004	0.133	0.133	0.071	3
Inventive example	A31 Rod	0.56	0.153	0.67	0.005	0.050	0.076	0.033	4
Inventive example	A32 Rod	0.58	0.243	1.24	0.011	0.095	0.147	0.048	19
Inventive example	A33 Wire	0.64	0.014	1.82	0.016	0.128	0.219	0.084	3:
Inventive example	A34 Wire	0.49	0.144	0.09	0.003	0.017	0.008	0.003	4
Comparative example		0.0005	0.011	0.14	0.027	0.022	0.014	0.033	
Comparative example		0.04	0.053	0.40	0.038	0.012	0.048	0.002	-
Comparative example	B3 Sheet	0.03	0.019	0.16	0.011	0.008	0.014	0.002	-
Comparative example	B4 Sheet	0.0022	0.013	0.36	0.019	0.013	0.019	0.007	1-
Comparative example	B5 Sheet	0.001	0.005	0.20	0.010	0.011	0.012	0.011	1:
Comparative example	E6 Pipe	0.24	0.153	0.67	0.004	0.067	0.000	0.057	30
Comparative example	B7 Rod	0.62	0.243	1.24	0.005	0.128	0.000	0.003	-
Comparative example	BB Pipe	0.26	0.014	0.71	0.014	0,078	0.002	0.120	
Comparative example	B9 Rod	0.64	0.144	1.35	0.002	0.140	0.267	0.003	4

				- 1	
	<u>ė</u>	Deckidizing alloy	Level of dissolved oxygen before adding deoxidizing alloy #2	Principal component in crystallized phase *3	Existing inclusion formation on the section in the rolling direction
Inventive example	Z	FaTi, Al, Casi	ca	Tion, Al.o., Cao	Dispersion over the entire sheet thickness
Inventive example	2	Perial, Casi	8	Tios, Algos, Cao	Dispersion in rows near the center of sheet thickness
Inventive example	¥ 3	FeTi, Al, CaSi	8		Dispersion in rows near the center of sheet thickness
Inventive example	٧	Fefial, Paca	63	TiOz, Algos, CaO	Dispersion over the entire sheet thickness
Inventive example	35	Fati, Al, FeCa	B		Diapersion in rows near the center of sheet thickness
Inventive example	y e	FoTIAL, Casi	a	Tio, Algo, Cao	Dispersion over the entire sheet thickness
Inventive example	1×1	Ferial, Casi	er		Disparsion over the entire sheet thickness
Inventive example	84	Feth, Al, Casi	en en		Dispersion in rows near the center of sheet thickness
	8				
	3	Pofi, Al, Ca	υ		Dispersion in rows near the center of sheet thickness
	117	PeTIAL, Casi	U	Tion, Algo, Cao	Dispersion in ross near the center of sheet thickness
	A12	Feri, Al. Casi		A1,0,1	over the entire sheet thickness
	A13	_		11,0,1	
	7			ó	
	215	Ferial. Faca		ó	Dispersion over the entire sheet thickness
	3	Fatikl Casi	2	9	Dispersion in rows near the center of sheet thickness
	1	Feri, Al. Casi		V.O.	
	A18			410	Dispersion in rows near the center of sheet thickness
	813	POTIAL CASI		0.17	
	2	PeTi. Al. Ca		N. O.	Disparaton in rows near the center of pipe thickness
	A21		G	ALO. CaO	
	¥22	Perial, Ca		0,1	
	62	Ferl, Al. Casi		4	Dispersion over the entire pipe thickness
	2	Ferial, Casi	a	A1.01.	Dispersion over the entire pipe thickness
	228	Fart, Al. Cast	q		Dispersion over the entire pipe thickness
	3	ריו	a	Aljo, Cao	Dispersion in rows near the center of pipe thickness
	127	Ferl. Al. FeCa	O	A1,0,1	
	28	15		Algo, Cao	Dispersion in rows near the center of rod dissetor
	229	Foth, Al, Ca		1	Dispersion over the entire rod disseter
	ş	FeTLA1, Cast	Ω		Dispersion over the entire rod dismeter
Inventive example	133	Port, Al, CaSi	Ω	}	Dispersion over the entire rod dismeter
Inventive example	33	Perial, Casi			Dispersion over the entire rod disester
Inventive example	A33	Ferial, Seca			Disparsion over the entire wire diameter
Inventive example	35	Ferial, Cash			Dispersion in rows near the center of wire dismeter
Comparative example	B1	1	B	A1 to, *5	Dispersion over the entire sheet thickness
Comparative example	B 2	71	ပ	TiO, 16	Dispersion in rows near the center of sheet thickness
Comparative example	B 3	Feti, Al	၁	Tion, Also,	Dispersion in rows near the center of sheet thickness
Comparative example	Bd	FeTiA1	٧	Tio, Alo,	Dispersion in rows near the center of sheet thickness
Comparative example	B5	Ti, Casi	et	Tion, cao	Blongation in the rolling direction near the center
Comparative example	98	Al, Faca	۵	Alaos, cao	Elongation in the rolling direction over the entire pipe thinkness
Comparative example	B.7	Pesi, Felin	a	MAD, SÁO,	Elongation in the rolling direction near the center of rod dismeter
	9	10-0		30 Can Can	Riongation in the rolling direction over the entire
Comparative example	à	i	ì	Arrol, cao - 5	pipe thickness
Comparative example	6 <u>B</u>	Perial, Ca	a	TiO2, CaO *6	Blongstion in the rolling direction near the center of rod dissets:

Table 6

	No.	Micro-	Maximum	Number of	Ratio of
		Vickers	diameter of	inclusion	occur-
		hardness	inclusion	particles	rence of
		*8, Hv	particle	*10, piece/kg	defects
		ļ	*9, um		
Inventive example	A1	581	163	35.4	0.4
Inventive example	A2	1115	168	32.5	0.3
Inventive example	A3	1174	150	27.7	0.2
Inventive example	A4	950	146	22.7	0.4
Inventive example	A5	1223	162	26.6	0.3
Inventive example	A6	826	153	24.6	0.2
Inventive example	A7	1009	226	43.6	0.4
Inventive example	8A	687	130	18.7	0.3
Inventive example	A9	658	170	9.8	0.4
Inventive example	ALO	643	182	10.0	0.1
Inventive example	A11	899	143	9.6	0.1
Inventive example	A12	1159	152	8.8	0.4
Inventive example	A13	1146	171	8.9	0.1
Inventive example	A14	950	250	19.7	0.4
Inventive example	A15	1223	231	18.5	0.4
Inventive example	A 16	826	118	4.3	0.2
Inventive example	A17	1047	345	98.5	1.0
Inventive example	A18	1005	332	79.0	1.2
Inventive example	A19	925	204	26.8	0
Inventive example	A20	632	190	22.4	0
Inventive example	A21	610	185	35.8	0
Inventive example	A22	743	178	32.4	0
Inventive example	A23	705	170	30.5	0
Inventive example	A24	643	162	27.6	O
Inventive example	A25	701	179	33.6	0
Inventive example	A26	615	187	34.9	0
Inventive example	A27	645	226	34.1	1.0
Inventive example	A28	779	238	28.2	0.5
Inventive example	A29	743	234	27.6	0.3
Inventive example	A30	600	177	25.5	0.9
Inventive example	A31	634	170	22.6	0.5
Inventive example	A32	852	185	19.8	0.9
Inventive example	A33	829	207	20.3	0.7
Inventive example	A34	640	152	17.7	0.4
Comparative example	B1	2010	465	262.5	2.9
Comparative example	B2	1452	314	183.8	3.4
Comparative example	B3	773	252	45.1	0.5
Comparative example	B4	1054	318	146.0	1.3
Comparative example	85	491	275	44.1	4.6
Comparative example	B6	377	322	35.2	8.7
Comparative example	B7	465	234	19.4	17.1
		382	237	46.2	6.5
Comparative example	B8	357			

Table 7

5		No.	Profile							vever, Mg	is
5			of product	_	table			the rest	are 1	ron and	i
			produce	C	Si	Mn	p	5	Ti	sol. Al	Mg*1
	Inventive example	A35	Sheet	0.0006	0.037	0.58	0.012	0.005	0.058	0.052	29
	Inventive example	A36	Sheet	0.0027	0.006	0.77	0.023	0.012	0.002	0.001	45
	Inventive example	A37	Sheet	0.0048	0.012	0.12	0.038	0.019	0.018	0.005	2
10	Inventive example	A38	Sheet	0.0068	0.021	0.33	0.005	0.025	0.035	0.021	15
, -	Inventive example	A39	Sheet	0.0023	0.015	0.35	0.022	0.011	0.021	0.006	43
	Inventive example	A40	Sheet	0.0049	0.020	0.52	0.031	0.021	0.038	0.013	Tr
	Inventive example	A41	Sheet	0.0069	0.033	0.88	0.042	0.025	0.078	0.065	19
	Inventive example	A42	Sheet	0.0003	0.007	0.10	0.005	0.003	0.003	0.003	32
	Inventive example	A43	Sheet	0.03	0.078	0.62	0.014	0.004	0.059	0.031	4
15	Inventive example	A44	Sheet	0.05	0.004	0.92	0.022	0.012	0.001	D.002	15
	Inventive example	A45	Sheet	0.08	0.040	0.15	0.032	0.031	0.018	0.015	28
	Inventive example	A46	Sheet	0.11	0.054	0.48	0.006	0.026	0.035	0.023	fr
	Inventive example	247	Sheet	0.04	0.003	0.11	0.018	0.017	0.020	0.007	10
	Inventive example	A48	Sheet	0.05	0.042	0.42	0.035	0.016	0.037	0.017	32
	Inventive example	249	Sheet	0.13	0.059	0.66	0.045	0.025	0.082	0.072	44
20	Inventive example	A50	Sheet	0.008	0.086	0.85	0.004	0.005	0.002	0.002	9
	Inventive example	A51	Sheet	0.006	0.016	0.15	0.030	0.013	0.016	0.030	22
	Inventive example	A52	Sheet	0.030	0.041	0.32	0.048	0.005	0.049	0.003	46
	Inventive example	A53	Pipe	0.020	0.42	1.21	0.005	0,0006	0.222	0.087	2
	Inventive example	A54	Pipe	0.11	0.022	1.57	0.009	0.052	0.002	0.002	18
	Inventive example	A55	Pipe	0.28	0.141	0.11	0.012	0.008	0.079	0.036	43
25	Inventive example	A56	Pipe	0.35	0.268	0.68	0.003	0.011	0.150	0.065	Tr
	Inventive example	A57	Pipe	0.11	0.158	0.69	0.008	0.007	0.082	0.038	5
	Inventive example	A58	Pipe	0.26	0.255	1.26	0.015	0.071	0.162	0.052	49
	Inventive example	A59	Pipe	0.31	0.015	1.91	0.019	0.001	0.245	0.082	3
	Inventive example	A60	Pipe	0.016	0.146	0.08	0.003	0.025	0.004	0.004	20
	Inventive example	A61	Rod	0.53	0.380	1.21	0.009	0.029	0.210	0.080	22
30	Inventive example	A62	Rod	0,56	0.021	1.72	0.012	0.062	0.003	0.003	3
	Inventive example	A63	Rod	0.60	0.141	0.11	0.016	0.102	0.072	0.032	25
	Inventive example	A64	Rod	0.65	0.255	0.6B	0.003	0.143	0.145	0.071	32
	Inventive example	A65	Rod	0.58	0.152	0.62	0.005	0.049	0.068	0.031	46
	Inventive example	A65	Rod	0.59	0.256	1.22	0.013	0.099	0.141	0.049	15
	Inventive example	A67	Wire	0.67	0.016	1.80	0.018	0.133	0.231	0.082	30
35	Inventive example	88A	Wire	0.51	0.143	0.07	0.004	0.022	0.006	0.002	44
	Comparative example	B10	Sheet	0.0006	0.013	0.13	0.028	0.023	0.012	0.035	-
	Comparative example	B11	Sheet	0.05	0.055	0.37	0.031	0.011	0.052	0.001	
	Comparative example	-	Sheet	0.02	0.023	0.12	0.009	0.007	0.011	0.003	-
	Comparative example		Sheet	0.003	0.015	0.35	0.021	0.015	0.017	0.009	-
	Comparative example	-	Sheet	0.0009	0.004	0.18	0.012	0.016	0.010	0.013	10
40	Comparative example	_	Pipe	0.26	0.163	0.69	0.003	0.072	0.000	0.063	32
	Comparative example		Rod	0.63	0.258	1.28	0.004	0.132	0.000	0.002	3
	Comparative example		Pipe	0.27	0.015	0.69	0.018	0.081	0.001	0.115	
	Comparative example	ET9	Rod	0.65	0.155	1.48	0.003	0.142	0.285	0.030	46

Table 8

		alloy	oxygen before adding deoxidizing alloy *2	crystallized phase *3	rolling direction
Inventive example	A35	FeTi, Al, FeMgSi		Tio, Alto, Mgo	Dispersion over the entire shaet thickness
Inventive example	A36	Fefial, FeMgSi	Œ.	A1,0,1,	Dispersion in rows near the center of sheet thickness
Inventive example	A37	FeTi, Al, FaMgSi	8	T10x, A1.0., Mg0	in rows near the center of sheet
Inventive example	854	9	13	TIOk, Algo, Mgo	Dispersion over the entire sheet thickness
Inventive example	Ş		B	TIOK, Al20s, Mgo	Dispersion in rows near the center of sheet thickness
			60	1	u
Inventive example		Fetial, FeWgSt	13		Dispersion over the entire sheet thickness
Inventive example	A42	Feti, Al, FeMgSi	В		Dispersion in rows near the center of sheet thickness
Inventive example	A13	FeTiAl, FeMgS1	C		Dispersion over the entire sheat thickness
Inventive example	344	PeTi, Al, FeMgSi	3	A1,0,,	Dispersion in rows near the center of sheet thickness
Inventive example	A45	Petial, Fengsi	כ	A1,03,	in rows near the center of sheet
Inventive example	446	Futi, A	Ü		over the entire sheet thickness
Inventive example	A 4		C	TiOs, Alzo, Mgo	Dispersion in rows near the center of sheet thickness
Inventive example	A48	Ferial,	3	Tiox, Alzo, Mgo	in rows near the center of sheat
Inventive example	449	Felial, FeMgS1	S	Tion, Alzo, Mgo	Dispersion over the entire sheet thickness
Inventive example	150	Falial, FaMgSi	c	T101, A120, Mg0	Dispersion in rows near the center of sheet thickness
Inventive example	151		٧	Tior, Alto, Mgo	1
Inventive example	35.	[¥	TiOs, Alto, Mgo	Dispersion in rows mear the center of sheet thickness
	V 23	FeTiAl, FeMgS1	ບ	TIO, Al,0, Mg0 44	over the entire pipe thickness
		וב	D	TiOx, Alzo, Mgo *4	Dispersion in rows near the center of pipe thickness
Inventive example		Fetial, Pergsi	Q		
	A56	4	Q	A10),	Dispersion over the entire pipe thickness
Inventive example	N57	4	Q		over the entire pipe
	82	3	Д	A1201, Mg0	Dispersion over the entire pipe thickness
	858		D	TiOr, Alph, Mgo *4	Dispersion over the entire pipe thickness
	V 60	Fefial, Fakesi	Q	ALIOI, MOD	Dispersion in rows near the centur of pipe thickness
	¥61	FOTI, A	O	1017	Dispersion over the entire rod diameter
	A62	Fei	0		Dispersion in rows near the center of rod dismeter
	¥63	ובי	٥	A1202,	Dispersion over the entire rod dimmeter
Inventive example	¥64		D	A1202,	OVOL
Inventive example	V65	4	Q	110,	Dispersion over the entire rod dismeter
Inventive example	99V		D	- 1	Dispersion over the antire rod diameter
Inventive example	A67	Į	D		Dispersion over the entire wire diameter
Inventive example	A68	FeTiAl, PaMgSi	Q	TiOk, Also, Mgo	Dispersion in rows near the center of wire diameter
Comparative example	1e 810	A1	В	A1,0, *5	Dispersion over the entire sheet thickness
Comparative example		Ĭ.	၁	Tio, 16	Dispersion in rows near the center of sheet thickness
Comparative example	1e B12	Poti, Al	C	TiO, Al,O,	
Comparative example		Petial	A	Tio, Allo,	in ross near the center of sheet
Comperative example		Ti, FeMg3i	ū	TiO, Mg0	in ross near the center of sheat
Comparative example	1e B15	Al, FeMgSi	D	Alaba, Mgo	Dispersion over the entire sheet thickness
Comparative example	1e B16	Fest, Pohn	۵	Mano, skos	Elongation in the rolling direction near the center of rod diameter
Comparative example 817	16 817	Pari, Al, FeMgSi	a	A1303, MgG #5	Dispersion over the entire sheet thickness
old classes on the same	3				

Table 9

				1	
5	No.	Micro-	Maximum	Number of	Ratio of
		Vickers	diameter of	inclusion	occur-
		hardness	inclusion	particles	rence of
	1	*8, Hv	particle	*10, piece/kg	defects
		610	*9, um		
Inventive example	A35	612 1245	160 167	34.5	0.4
10 Inventive example	A36	1245	145	37.1	0.2
Inventive example	A38	982	137	25.3	0.4
Inventive example Inventive example	A39	1275	153	29.5	0.3
Inventive example	A40	854	145	27.6	0.3
Inventive example	A41	1085	218	44.8	0.4
15 Inventive example	A42	715	130	21.2	0.2
Inventive example	A42	683	170	10.5	0.4
Inventive example	A44	672	175	12.5	0.2
Inventive example	A45	925	145	11.9	0.3
Inventive example	A46	1283	142	10.2	0.4
20 Inventive example	A47	1271	165	10.8	0.4
Inventive example	A48	972	328	21.2	0.3
Inventive example	A49	1254	319	20.5	0.4
Inventive example	A50	849	106	6.2	0.3
Inventive example	A51	1072	305	102.0	1.1
Towartive evernla	A52	1070	292	82.0	0.9
Inventive example	λ53	945	195	29.5	0
Inventive example	A54	655	183	25.6	0
Inventive example	A55	644	172	36.8	0
Inventive example	A56	773	176	37.6	0
Inventive example	A57	783	163	34.4	0
30 Inventive example	A58	644	152	33.2	0
Inventive example	A59	728	170	26.1	O
Inventive example	A60	645	173	34.8	0
Inventive example	A61	676	218	36.5	0.9
Inventive example	A62	748	232	25.5	0.5
35 Inventive example	A63	755	244	30.2	0.6
Inventive example	A64	645	168	28.7	8.0
Inventive example	A65	643	167	30.2	0.9
Inventive example	A66	885	170	21.2	0.8
Inventive example	A67	854	194	22.0	0.7
Inventive example	A68	640	149	20.3	0.4
40 Comparative example	B10	2010	496	256.8	3.1
Comparative example	B11	1453	358	195.2	3.5
Comparative example	B12	795	241	43.2	0.5
Comparative example	B13	1052	326	154.3	1.3
Comparative example	B14	1826	268	41.3	5.2
45 Comparative example	B15	2384	303	32.6	8.9
Comparative example	B16	475	220	20.5	16.7
Comparative example	B17	2243	225	43.5	7.2
Comparative example	B18	1785	235	35.2	9,1

55

Table 10

	No.	Profile							owever, C		ng
	1 1	of		-			and the	Test	ere iron	and	
	1	product		itable							
			С	Si	Mn	P	S	Ti	sol. Al	Ca*1	Mg*
Inventive example	A69	Sheet	0.0004	0.039	0.56	0.010	0.004	0.052	0.048	28	2
Inventive example	A70	Sheet	0.0029	0.008	0.79	0.025	0.014	0.001	0.002	49	16
Inventive example	A71	Sheet	0.0050	0.010	0.14	0.036	0.022	0.017	0.006	2	43
Inventive example	A72	Sheet	0.0066	0.023	0.35	0.003	0.027	0.036	0.025	11	Tz
Inventive example	A73	Sheet	0.0021	0.017	0.38	0.018	0.009	0.025	0.005	43	19
Inventive example	A74	Sheet	0.0052	0.018	0.50	0.035	0.026	0.032	0.016	Tr	32
Inventive example	A75	Sheet	0.0062	0.035	0.90	0.042	0.028	0.078	0.066	19	4
Inventive example	A76	Sheet	0.0003	0.009	0.12	0.004	0.002	0.002	0.004	29	15
Inventive example	A77	Sheet	0.02	0.076	0.63	0.015	0.005	0.062	0.033	3	28
Inventive example	A78	Sheet	0.04	0.004	0.99	0.026	0.015	0.002	0.001	10	TE
Inventive example	A79	Sheet	0.08	0.045	0.21	0.030	0.035	0.019	0.017	25	10
Inventive example	A80	Sheet	0.13	0.052	0.43	0.007	0.026	0.031	0.025	3	32
Inventive example	A81	Sheet	0.05	0.002	0.10	0.019	0.018	0.022	0.008	10	44
Inventive example	A82	Sheet	0.06	0.044	0.38	0.036	0.016	0.038	0.019	25	5
Inventive example	A83	Sheet	0.14	0.057	0.67	0.044	0.022	0.089	0.078	41	22
Inventive example	ABA	Sheet	0.009	0.088	0.85	0.005	0.003	0.002	0.003	6	46
Inventive example	A85	Sheet	0.005	0.012	0.11	0.033	0.011	0.017	0.035	23	2
Inventive example	A86	Sheet	0.028	0.044	0.35	0.052	0.004	0.052	0.004	42	18
Inventive example	A87	Pipe	0.022	0.40	1.18		0.0007	0.232	0.088	1	43
Inventive example	ASS	Pipe	0.14	0.020	1.72		0.055	0.002	0.001	12	Tz
Inventive example	289	Pipe	0.32	0.145	0.09	0.015	0.009	0.077	0.039	44	-
Inventive example	ASO	Pipe	0.42	0.262	0.62	0.005	0.011	0.125	0.067	TE	19
Inventive example	A91	Pipe	0.10	0.165	0.71	0.009	0.008	0.088	0.038	2	
Inventive example	A92	Pipe	0.28	0.243	1.32	0.016	0.074	0.168	0.051	47	20
Inventive example	A93		0.33	0.013	1.90	0.021	0.001	0.240	0.031	3	22
Inventive example	A94	Pipe	0.018	0.139	0.06	0.003	0.022	0.003	0.002	17	3
	_	Pipe				0.008	0.022	0.230	0.075	23	25
Inventive example	A95	Rod	0.57	0.392	1.23						
Inventive example	A96	Rod	0.56	0.023	1.75	0.011	0.063	0.004	0.003	2	32
Inventive example	A97	Rod	0.62	0.147	0.11	0.018	0.123	0.077	0.035	26	46
Inventive example	A98	Rod	0.68	0.258	0.66	0.004	0.147	0.156	0.075	39	
Inventive example	A99	Rod	0.52	0.148	0.58	0.006	0.042	0.066	0.033	. 48	30
Inventive example	A100	Rod	0.62	0.263	1.32		0.100	0.144	0.052	11	10
Inventive example	A101	Wire	0.67	0.012	1.92	0.021	0.138	0.238	0.081	32	
		Wire	0.50	0.155	0.05		0.028	0.005	0.003	42	35
Comparative example		Sheet	0.0004	0.012	0.12	0.022	0.019	0.011	0.028	<u> </u>	-
Comparative example		Sheet	0.04	0.058	0.38	0.034	0.010	0.055	0.001	↓	
Comparative example		Sheet	0.01	0.022	0.11	0.007	0.005	0.013	0.004	-	-
Comparative example		Sheet	0.003	0.013	0.38	0.022	0.012	0.021	0.012	<u> </u>	<u> </u>
Comparative example		Sheet	0.0008	0.003	0.15	0.014	0.018	0.009	0.000	13	3:
Comparative example	824	Pipe	0.23	0.172	0.72	0.002	0.078	0.000	0.069	30	44
Comparative example	B25	Rod	0.66	0.268	1.31	0.005	0.142	0.000	0.003	<u> </u>	
Comparative example	B26	Pipe	0.28	0.012	0.72	0.023	0.078	0.001	0.120	5	45
Comparative example	B27	Rod	0.61	0.165	1.52	0.004	0.138	0.268	0.020	47	2:

Table 11

	1	No.	Deckidizing alloy	Level of dissolved
5	[oxygen before adding
				deoxidizing alloy *2
	Inventive example		FeTi, Al, FeCa, FeMgSi	В
	Inventive example		FeTiAl, Ca, Mg	В
	Inventive example		FeTi, Al, Ca, Mg	3
40	Inventive example	እ72	FeTiAl, CaSi, Mg	В
10	Inventive example	A73	FeTi, Al, Ca, FeMgSi	В
	Inventive example	A74	FeTiAl, Ca, FeMgSi	B
	Inventive example	A75	FeTiAl, CaSi, FeMgSi	B
	Inventive example	A76	FeTi, Al, FeCs, Mg	B
	Inventive example	A77	FeTiAl, CaSi, FeMgSi	С
15	Inventive example	A78	FeTi, Al, FeCa, Mg	С
75	Inventive example	A79	FeTiAl, CaSi, FeMgSi	С
	Inventive example	A80	FeTi, Al, CaSi, FeMgSi	С
	Inventive example	A81	FeTiAl, Ca, Mg	C O
	Inventive example	A82	FeTiAl, FeCa, FeMgSi	С
	Inventive example	A83	FeTiAl, CaSi, FeMgSi	C
20	Inventive example	A84	PeTiAl, CaSi, FeMgSi	C.
	Inventive example		FeTi, Al, FeCa, FeMgSi	A
	Inventive example		FeTiAl, FeCa, FeMgSi	λ
	Inventive example		FeTiAl, CaSi, FeMySi	С
	Inventive example		FeTi, Al, FeCa, Mg	D
	Inventive example		FeTiAl, Ca3i, FeMgSi	D
25	Inventive example		FeTiAl, CaSi, Mg-Coke	D
	Inventive example		FeTi, Al, Casi, FeMqSi	g
	Inventive example		FeTiAl, CaSi, FeMgSi	Ď
	Inventive example		FeTi, Al, FeCa, FeMqSi	D
	Inventive example		FeTiAl, FeCa, FeMqSi	D
30	Inventive example		FeTi, Al, CaSi, FeMgSi	p
30	Inventive example	Ĭ	FeTiAl, Ca. Mg-Coke	D
	Inventive example		FeTi, Al, CaSi, Mg	D
	Inventive example		FeTiAl, CaSi, FeMgSi	D
	Inventive example		FeTi, Al, Casi, FeMgSi	P
	Inventive example		FeTiAl, CaSi, Mg-Coke	D
35	Inventive example		FeTiAl, FeCa, Mg	Ď
	Inventive example		FeTiAl, CaSi, FeMqSi	D
		ALUZ	PeriAt, Casi, Pengsi	
	Comparative	219	N.	В
	example			
	Comparative example	B20	Ti	С
40	Comparative			
	example	B21	FeTi, Al	С
	Comparative	222	FeTiAL	λ
	example			
45	Comparative example	B23	Ti, FeCa, Mg	В
45	Comparative			
	example	B24	Al, CaSi, FeMgSi	Q
	Comparative			
	example	B25	FeSi, FeMn	D
	Comparative			
50	example	B26	FeTi, Al, FeMgSi	D
	Comparative			
	example	B27	FeTiAl, Mg-Coke	Ð
				

Table 1

		Ão.	Prin	Principal component in	nodmon	ent in	Existing inclusion formation on the section in the rolling
	1000	951			5	1 9	Dispersion over the outine shoot thickness
	e rdwaxe	403	X.	2	- 1	252	
Inventive ex	example	A70	710x.	Tiox. Al.203.	Cao, Mgo	S S	Dispersion in rows near the center of sheat thickness
Inventive en	example	A71	Tiox,	Tiox, Al203,	CaO, MgO	MgO	Dispersion in rows near the center of sheet thickness
Inventive example	Kample	A72	TiOk,	A1203.	Cao,	Mgo	Disparsion over the entire sheat thickness
Inventive ex	example	A73	Tiox,	1,203,	CaO,	Mg0	Dispersion in rows near the center of sheet thickness
Inventive ex	example	A74	Tiox,	A1203,	CaO,	Mg0	Dispersion in rows near the center of sheet thickness
Inventive ex	example	A75	Tiox	A1203,	CaO,	MgW	Disparsion over the entire sheet thickness
Inventive ex	example	A76	Tiok,	A1,03,	CaO CaO	MgO	Dispersion in rows near the center of sheet thickness
	example	A77	Tiok,	A1,03,	CaO,	MgO	
	example	A78	Tiok,	A1,03,	Cao,	MgO	Dispersion in rows near the center of sheet thickness
Inventive ex	example	A79	Tio,	A12031	CaO,	Mg0	Dispersion in rows near the center of sheet thickness
	example	A80	Tiok,	A1203,	CaO,	Mgo	Dispersion over the entire sheat thickness
Inventive ex	example	A81	Tio,	A1,03,	CaO,	Ngo	Disparsion in rows near the center of sheat thickness
	example	A82	Tio,	A1,03,	CaO,	Ngo	Dispersion in rows near the center of sheet thickness
Inventive ex	example	A83	Tiok,	A1,03,	Cao,	MgO	Dispersion over the entire sheet thickness
Inventive ex	example	484	110k,	A1,03,	OE U	Mg0	Dispersion in rows near the center of sheet thickness
	example	A85	Tiox,	A1,0,1,		MgO	Dispersion over the entire sheet thickness
	example	486	Tio,		CaO,	MgO	Dispersion in rows near the center of sheet thickness
Inventive es	example	A87	Tiok,		CaO,	Mg0 *4	Dispersion over the entire pipe thickness
Inventive ex	example	A88	Tiox,	AL.O.1.		CaO, Mgo *4	Diapersion in rows near the center of pipe thickness
Inventive ex	example	489	Tio,	A1,05,		MgrO	Dispersion over the entire pipe thickness
Inventive ex	example	A90	Tiox,	A1,03,	Cao, Mgo	MgO	Dispersion over the entire pipe thickness
Inventive ex	example	A91	Tiox,	A1,03,	CaO,	MgO	Dispersion over the entire pipe thickness
Inventive ex	example	A92	Tiok,	A1:01,	CaO,	CaO, MgO *4	Dispersion over the entire pips thickness
Inventive ex	example	A93	TiOx,	A1,0,1	CaO,	Mg0 *4	1988
Inventive es	example	794	Tiox,	A1203,	CaO,	Mg0	Dispersion in rows near the center of pipe thickness
Inventive es	eldmexe	A95	Tiox,	A1203,	CaO,	CaO, Mg0 *4	Dispersion over the entire rod diameter
Inventive ea	example	96¥	Tiok,	A1203,	0.00	Mg0 *4	Dispersion in rows near the center of rod diameter
	ехамріе	A97	Tiok,	Al,03,	CAO, MGO	MgO	Dispersion over the entire rod diameter
Inventive example	aldmex	A98	Tiok,		CaO,	MgO	Dispersion over the entire rod diameter
Inventive exampl	xample	A99	Tiok,	A1,03,	CaO,	MgO	Dispersion over the entire rod dismeter
Inventive exampl	eldmex	A100	Tiok,		CaO, Mg0	Mg0 *4	Dispersion over the entire rod diameter
Inventive example	oldmex	A101	Tiox,	A1,0,1		CaO, Mg0 *4	Dispersion over the entire wire diameter
Inventive example	xample	A102	Tiox,	A1201,	CaO,	Mg0	Dispersion over the entire wire diameter
Comparative exampl	example	B19	11203	5#			Dispersion over the entire sheet thickness
Comparative example	example	B20	Tiox	• 6			Dispersion in rows near the center of sheet thickness
Comparative exampl	example	B21	T10x,	T10x, A1203			Dispersion in rows near the center of sheet thickness
Comparative exampl	example	822	Tio,	A1,03			Dispersion in rows near the center of sheet thickness
Comparative	example	B23	Tiox,	CaO,	Mgo		Dispersion in rows near the center of sheet thickness
Comparative exampl		B24	A1,0,	Al ₂ O ₂ , CaO, MgO	Mgo		
Comparative exampl	example	B25	Mno,	310,			Elongation in the rolling direction near the center of rod diameter
Comparative exampl	example	B26		Alzos, Cao,	Mg0 ±5	5	Dispersion over the entire pipe thickness
Comparative	example	B27		T10, Cao, Mgo #7	MGO	~	Dispersion in rows near the center of rod diameter

Table 13

	No.	Micro-	Maximum	Number of	Ratio of
}		Vickers	diameter of	inclusion	occni-
		hard-	inclusion	particles	rence of
		ness	particle	*10, piece/kg	defects
		*8, Hv	▼9, μm.		*11, %
Inventive example	A69	609	133	31.1	0.2
Inventive example	A70	1235	140	30.5	0.1
Inventive example	A71	1203	122	24.3	0.0
Inventive example	A72	995	115	22.2	0.2
Inventive example	A73	1284	103	26.3	0.1
Inventive example	A74	941	95	24.4	0.1
Inventive example	A75	1056	248	34.6	0.2
Inventive example	A76	753	120	15.8	0.0
Inventive example	A77	698	135	5.3	0.2
Inventive example	A78	635	144	7.8	0.0
Inventive example	A79	1002	126	8.8	0.1
Inventive example	A80	1262	142	7.8	0.3
Inventive example	A81	1291	122	9.5	0.2
Inventive example	A82	945	184	8.1	0.1
Inventive example	A83	1254	192	18.3	0.3
Inventive example	A84	835	95	3.8	0.1
Inventive example	A85	1108	308	104.0	0.8
Inventive example	A86	1005	313	82.5	0.7
Inventive example	A87	963	155	23.7	0
Inventive example	A88	645	160	19.8	0
Inventive example	A89	675	142	30.6	0
Inventive example	A90	758	195	33.6	0
Inventive example	A91	587	152	28.5	0
Inventive example	A92	624	128	30.4	0
Inventive example	A93	758	138	20.2	00
Inventive example	A94	654	136	29.8	0
Inventive example	A95	758	198	30.9	0.5
Inventive example	A96	654	262	19.6	0.3
Inventive example	A97	753	224	26.8	0.4
Inventive example	86Y	621	139	24.5	0.5
Inventive example	A99	683	157	26.3	0.5
Inventive example	A100	958	195	17.2	0.4
Inventive example	A101	868	183	17.9	0.5
Inventive example	A102	632	130	15.5	0.2
Comparative example	B19	2005	486	238.5	3.0
Comparative example	B20	1380	368	200.3	3.3
Comparative example	B21	756	196	36.8	0.5
Comparative example	B22	998	352	163.5	1.2
Comparative example	B23	1527	234	36.5	3.8
Comparative example	B24	2068	275	27.5	8.0
Comparative example	B25	462	210	18.5	16.8
Comparative example	B26	1952	192	38.4	7.1
Comparative example	B27	1468	208	30.7	7.3

^[0044] As can be seen from the above explanations, the present invention provides rolled steel having few inclusion defects in which fine particles of oxide inclusions are dispersed.

^[0045] Therefore, it is possible for the present invention to contribute to the development of industry by providing rolled steel having few inclusion defects in which the conventional problems are completely solved.

Claims

5

15

20

25

30

35

50

- 1. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, and the crystallized phases of oxide inclusions exist in steel.
- 2. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, and the crystallized phases of oxide inclusions exist in steel being dispersed in rows in the rolling direction near the center of rolled steel.
 - 3. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, Micro-Vickers hardness at the room temperature of the oxide inclusions is 600 to 1300 Hv, and the crystallized phases of oxide inclusions exist in steel.
 - 4. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, Micro-Vickers hardness at the room temperature of the oxide inclusions is 600 to 1300 Hv, and the crystallized phases of oxide inclusions exist in steel being dispersed in rows in the rolling direction near the center of rolled steel.
 - 5. Rolled steel having few defects of inclusion, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is alumina, and further composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclusions exist in steel.
- 40 6. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is alumina, and further composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, and the crystallized phases of oxide inclusions exist in steel being dispersed in rows in the rolling direction near the center of steel.
 - 7. Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved AI: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is alumina, and further composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, Micro-Vickers hardness of the oxide inclusions at the room temperature is 600 to 1300 Hv, and the crystallized phases of oxide inclusions exist in steel.

- Rolled steel having few inclusion defects, the basic composition of which is C: 0.0002 to 0.7 mass %, Si: 0.001 to 0.5 mass %, Mn: 0.005 to 2.0 mass %, P: 0.001 to 0.05 mass %, S: 0.0005 to 0.15 mass %, Ti: 0.001 to 0.25 mass % and dissolved Al: 0.001 to 0.1 mass %, the selective composition of which is Ca: not more than 50 ppm and Mg: not more than 50 ppm, at least one of Ca and Mg being contained, wherein created oxide inclusions are mainly composed of a crystallized phase, the principal component of which is titanium oxide, and a crystallized phase, the principal component of which is alumina, and further composed of at least one of a crystallized phase, the principal component of which is CaO, and a crystallized phase, the principal component of which is MgO, Micro-Vickers hardness of the oxide inclusions at the room temperature is 600 to 1300 Hv, and the crystallized phases of oxide inclusions exist in steel being dispersed in rows in the rolling direction near the center of steel.
- Rolled steel according to any one of claims 1 to 8, wherein the maximum diameter of particles of oxide inclusions obtained by slime extraction is not more than 300 µm.
- 10. Rolled steel having few inclusion defects according to claim 9 wherein the number of particles of oxide inclusions obtained by slime extraction, the diameters of which are not less than 38 μm, is not more than 50 pieces/kg.

21

20

25

30

35

40

45

50