Mathematics for Machine Learning

— Density Estimation with Gaussian Mixture Models

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

- 🚺 Introduction & Gaussian Mixture Model (GMM)
- Parameter Learning via Maximum Likelihood
 - Updating the Means
 - Updating the Covariances
 - Updating the Mixture Weights
- Sepectation Maximization (EM) Algorithm
- 4 Latent-Variable Perspective

Outline

- Introduction & Gaussian Mixture Model (GMM)
- Parameter Learning via Maximum Likelihood
 - Updating the Means
 - Updating the Covariances
 - Updating the Mixture Weights
- 3 Expectation Maximization (EM) Algorithm
- 4 Latent-Variable Perspective

Introduction

Focus

- **Goal:** Density Estimation.
- Covering two important concepts:
 - Expectation maximization (EM)
 - Latent variable perspective.

Motivation

- A straightforward way to represent data: Let them present themselves directly.
- **Issue:** The data might be *dirty* or too huge to show all of them.

themselves directly.

A straightforward way to represent data: Let them present

• Issue: The data might be *dirty* or too huge to show all of them.

We want to represent the data compactly using a density from a parametric family, such as Gaussian or Beta distribution.

Mean & variance.

A Gaussian approximation of the density might be poor.

A Solution

- Consider mixture models:
 - A convex combination of K simple base distributions.
 - A distribution p(x):

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k p_k(\mathbf{x}),$$

$$0 \le \pi_k \le 1, \sum_{k=1}^{K} \pi_k = 1.$$

- π_k : mixture weights.
- More expressive than a base distribution.

A Solution

- Consider mixture models:
 - A convex combination of K simple base distributions.
 - A distribution p(x):

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k p_k(\mathbf{x}),$$

$$0 \le \pi_k \le 1, \sum_{k=1}^{K} \pi_k = 1.$$

- π_k : mixture weights.
- More expressive than a base distribution.
- Gaussian mixture modesl (GMMs): the base distributions are Gaussians.

Gaussian Mixture Model

Gaussian Mixture Model

A Gaussian mixture model is a density model where we combine a finite number of K Gaussian distributions $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ such that

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 $0 \le \pi_k \le 1, \sum_{k=1}^{K} \pi_k = 1,$

where
$$\boldsymbol{\theta} := \{ \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k \mid k = 1, \dots, K \}$$
.

GMMs

$$p(x \mid \theta) = 0.5\mathcal{N}(x \mid -2, 0.5) + 0.2\mathcal{N}(x \mid 1, 2) + 0.3\mathcal{N}(x \mid 4, 1).$$

Outline

- Introduction & Gaussian Mixture Model (GMM)
- Parameter Learning via Maximum Likelihood
 - Updating the Means
 - Updating the Covariances
 - Updating the Mixture Weights
- 3 Expectation Maximization (EM) Algorithm
- 4 Latent-Variable Perspective

The Setting

- A dataset $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$, where each x_i is drawn i.i.d. from an unknown distribution $p(\mathbf{x})$.
- Unknown distribution p(x)
- Parameters: $\theta := \{ \mu_k, \Sigma_k, \pi_k \mid k = 1, \dots, K \}.$

Example of an Initial Setting

- $\mathcal{X} = \{-3, -2.5, -1, 0, 2, 4, 5\}.$
- K = 3.
- $p_1(x) = \mathcal{N}(x \mid -4, 1), \ p_2(x) = \mathcal{N}(x \mid 0, 0.2), \ p_3(x) = \mathcal{N}(x \mid 8, 3).$
- $\pi_1 = \pi_2 = \pi_3 = 1/3$.

The Likelihood

By the i.i.d. assumption, we have the factorized likelihood

$$p(\mathcal{X} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}_i \mid \boldsymbol{\theta}), \quad p(\mathbf{x}_i \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

Then the log-likelihood is

$$\mathcal{L} := \log p(\mathcal{X} \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}_i \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

The Likelihood

By the i.i.d. assumption, we have the factorized likelihood

$$p(\mathcal{X} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}_i \mid \boldsymbol{\theta}), \quad p(\mathbf{x}_i \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

Then the log-likelihood is

$$\mathcal{L} := \log p(\mathcal{X} \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}_i \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

• Goal: Find parameters θ_{ML}^* .

• We cannot obtain a closed-form solution here (except for K=1, i.e., single Gaussian).

- We cannot obtain a closed-form solution here (except for K=1, i.e., single Gaussian).
- ullet We exploit an iterative scheme to find $oldsymbol{ heta}_{ML}^*$:

- We cannot obtain a closed-form solution here (except for K=1, i.e., single Gaussian).
- ullet We exploit an iterative scheme to find $heta_{MI}^*$: the EM algorithm.

- ullet We cannot obtain a closed-form solution here (except for K=1, i.e., single Gaussian).
- ullet We exploit an iterative scheme to find $heta_{ML}^*$: the EM algorithm.
- The key idea: Update one model parameter at a time while keeping the others fixed.

Necessary conditions for a local optimum of \mathcal{L} :

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_{k}} = \mathbf{0}^{\top} \iff \sum_{i=1}^{N} \frac{\partial \log p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\mu}_{k}} = \mathbf{0}^{\top}$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\Sigma}_{k}} = \mathbf{0}^{\top} \iff \sum_{i=1}^{N} \frac{\partial \log p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\Sigma}_{k}} = \mathbf{0}^{\top}$$

$$\frac{\partial \mathcal{L}}{\partial \pi_{k}} = \mathbf{0}^{\top} \iff \sum_{i=1}^{N} \frac{\partial \log p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \pi_{k}} = 0.$$

Applying the chain rule:

$$\frac{\partial \log p(\mathbf{x}_i \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{1}{p(\mathbf{x}_i \mid \boldsymbol{\theta})} \frac{\partial p(\mathbf{x}_i \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

and

$$\frac{1}{p(\mathbf{x}_i \mid \boldsymbol{\theta})} = \frac{1}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Responsibilities: Facilitating our discussions

Responsibility of the kth mixture conponent for nth data point

$$r_{ik} := \frac{\pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Note that

$$p(\mathbf{x}_i \mid \pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

which is proportional to the likelihood.

Responsibilities: Facilitating our discussions

Responsibility of the kth mixture conponent for nth data point

$$r_{ik} := rac{\pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Note that

$$p(\mathbf{x}_i \mid \pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

which is proportional to the likelihood.

High responsibility

The data point is plausible sample from that mixture component.

$$\mathbf{r}_i := [r_{i1}, \dots, r_{iK}]^{\top} \in \mathbb{R}^K$$
 is a normalized probability vector.

$$\mathbf{r}_i := [r_{i1}, \dots, r_{iK}]^{\top} \in \mathbb{R}^K$$
 is a normalized probability vector.

• A soft assignment of \mathbf{x}_n to the K mixture component.

$$\mathbf{r}_i := [r_{i1}, \dots, r_{iK}]^\top \in \mathbb{R}^K$$
 is a normalized probability vector.

- A soft assignment of \mathbf{x}_n to the K mixture component.
 - Similar idea: softmax functions.

Example (responsibilities of the previous example)

$$\left[\begin{array}{cccc} 1.0 & 0.0 & 0.0 \\ 1.0 & 0.0 & 0.0 \\ 0.057 & 0.943 & 0.0 \\ 0.001 & 0.999 & 0.0 \\ 0.0 & 0.066 & 0.934 \\ 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 \end{array}\right] \in \mathbb{R}^{N \times K}.$$

• Try to compute it by yourselves.

Update of the GMM Means

Theorem [Update of the Means]

The update of the mean parameters μ_k , $k=1,\ldots,K$, of the GMM is given by

$$\mu_k^{\text{new}} = \frac{\sum_{i=1}^N r_{ik} \mathbf{x}_i}{\sum_{i=1}^N r_{ik}}.$$

Updating the Means

$$\frac{\partial p(\mathbf{x}_i \mid \boldsymbol{\theta})}{\partial \boldsymbol{\mu}_k} = \sum_{j=1}^K \pi_j \frac{\partial \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\partial \boldsymbol{\mu}_k} = \pi_k \frac{\partial \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\partial \boldsymbol{\mu}_k}$$
$$= \pi_k (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_{k}} = \sum_{i=1}^{N} \frac{\partial \log p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\mu}_{k}} = \sum_{i=1}^{N} \frac{1}{p(\mathbf{x}_{i} \mid \boldsymbol{\theta})} \frac{\partial p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\mu}_{k}}$$

$$= \sum_{i=1}^{N} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}$$

$$= \sum_{i=1}^{N} r_{ik} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}.$$

Solving
$$\frac{\partial \mathcal{L}(\boldsymbol{\mu}_k^{new})}{\partial \boldsymbol{\mu}_k} = \sum_{i=1}^N r_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k^{new})^{\top} \boldsymbol{\Sigma}_k^{-1} = \mathbf{0}^{\top}$$
:
$$\sum_{i=1}^N r_{ik} \mathbf{x}_i = \sum_{i=1}^N r_{ik} \boldsymbol{\mu}^{new}$$
$$\iff \boldsymbol{\mu}_k^{new} = \frac{\sum_{i=1}^N r_{ik} \mathbf{x}_i}{\sum_{i=1}^N r_{ik}} = \frac{1}{N_k} \sum_{i=1}^N r_{ik} \mathbf{x}_i,$$

where $N_k := \sum_{i=1}^N r_{ik}$.

Updating the Means

- $\mu_1: -4 \to -2.7$.
- $\mu_2 : 0 \to -0.4$.
- $\mu_3 : 8 \to 3.7$.

- ullet r_{ik} is a function of $\pi_j, oldsymbol{\mu}_j, oldsymbol{\Sigma}_j$ for all $j=1,\ldots,K$.
- Hence the updates depend on all parameters of the GMM.

Update of the GMM Covariances

Theorem [Update of the Covariances]

The update of the covariance parameters Σ_k , $k=1,\ldots,K$, of the GMM is given by

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{i=1}^N r_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top},$$

where

$$r_{ik} := \frac{\pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

and
$$N_k := \sum_{i=1}^N r_{ik}$$
.

Parameter Learning via Maximum Likelihood

Updating the Covariances

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_{k}} = \sum_{i=1}^{N} \frac{\partial \log p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \mathbf{\Sigma}_{k}} = \sum_{i=1}^{N} \frac{1}{p(\mathbf{x}_{i} \mid \boldsymbol{\theta})} \frac{\partial p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \mathbf{\Sigma}_{k}}$$

Parameter Learning via Maximum Likelihood

Updating the Covariances

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_{k}} = \sum_{i=1}^{N} \frac{\partial \log p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \mathbf{\Sigma}_{k}} = \sum_{i=1}^{N} \frac{1}{p(\mathbf{x}_{i} \mid \boldsymbol{\theta})} \frac{\partial p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \mathbf{\Sigma}_{k}}$$

$$\frac{\partial p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\Sigma}_{k}} = \frac{\partial}{\partial \boldsymbol{\Sigma}_{k}} \left(\pi_{k} (2\pi)^{-\frac{D}{2}} \det(\boldsymbol{\Sigma}_{k})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) \right) \right)
= \pi_{k} (2\pi)^{-\frac{D}{2}} \left[\frac{\partial}{\partial \boldsymbol{\Sigma}_{k}} \det(\boldsymbol{\Sigma}_{k})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) \right)
+ \det(\boldsymbol{\Sigma}_{k})^{-\frac{1}{2}} \frac{\partial}{\partial \boldsymbol{\Sigma}_{k}} \exp\left(-\frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) \right) \right]$$

Note that

$$\begin{split} & \frac{\partial}{\partial \boldsymbol{\Sigma}_k} \det(\boldsymbol{\Sigma}_k)^{-\frac{1}{2}} = -\frac{1}{2} \det(\boldsymbol{\Sigma}_k)^{-\frac{1}{2}} \boldsymbol{\Sigma}_k^{-1}, \\ & \frac{\partial}{\partial \boldsymbol{\Sigma}_k} (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) = -\boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} \end{split}$$

Updating the Covariances

$$\frac{\partial p(\mathbf{x}_i \mid \boldsymbol{\theta})}{\partial \boldsymbol{\Sigma}_k} = \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \cdot \left[-\frac{1}{2} (\boldsymbol{\Sigma}_k^{-1} - \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1}) \right]$$

Thus,

$$\frac{\partial \mathcal{L}}{\partial \Sigma_{k}} = \sum_{i=1}^{N} \frac{\partial \log p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \Sigma_{k}} = \sum_{i=1}^{N} \frac{1}{p(\mathbf{x}_{i} \mid \boldsymbol{\theta})} \frac{\partial p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \Sigma_{k}}$$

$$= \sum_{i=1}^{N} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}$$

$$\cdot \left[-\frac{1}{2} (\boldsymbol{\Sigma}_{k}^{-1} - \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}) \right]$$

$$= -\frac{1}{2} \sum_{i=1}^{N} r_{ik} (\boldsymbol{\Sigma}_{k}^{-1} - \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}$$

$$= -\frac{1}{2} \boldsymbol{\Sigma}_{k}^{-1} \sum_{i=1}^{N} r_{ik} + \frac{1}{2} \boldsymbol{\Sigma}_{k}^{-1} \left(\sum_{i=1}^{N} r_{ik} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T} \right) \boldsymbol{\Sigma}_{k}^{-1}.$$

Updating the Covariances

$$\frac{\partial p(\mathbf{x}_i \mid \boldsymbol{\theta})}{\partial \boldsymbol{\Sigma}_k} = \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \cdot \left[-\frac{1}{2} (\boldsymbol{\Sigma}_k^{-1} - \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1}) \right]$$

Thus,

$$\frac{\partial \mathcal{L}}{\partial \Sigma_{k}} = \sum_{i=1}^{N} \frac{\partial \log p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \Sigma_{k}} = \sum_{i=1}^{N} \frac{1}{p(\mathbf{x}_{i} \mid \boldsymbol{\theta})} \frac{\partial p(\mathbf{x}_{i} \mid \boldsymbol{\theta})}{\partial \Sigma_{k}}$$

$$= \sum_{i=1}^{N} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}$$

$$\cdot \left[-\frac{1}{2} (\boldsymbol{\Sigma}_{k}^{-1} - \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}) \right]$$

$$= -\frac{1}{2} \sum_{i=1}^{N} r_{ik} (\boldsymbol{\Sigma}_{k}^{-1} - \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}))^{T} \boldsymbol{\Sigma}_{k}^{-1}$$

$$= -\frac{1}{2} \boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{N}_{k} + \frac{1}{2} \boldsymbol{\Sigma}_{k}^{-1} \left(\sum_{i=1}^{N} r_{ik} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T} \right) \boldsymbol{\Sigma}_{k}^{-1}.$$

Parameter Learning via Maximum Likelihood

Updating the Covariances

Setting
$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\Sigma}_k} = \boldsymbol{0}^{\top}$$
, we have

$$N_k \Sigma_k^{-1} = \Sigma_k^{-1} \left(\sum_{i=1}^N r_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^\top \right) \Sigma_k^{-1}$$

Setting $\frac{\partial \mathcal{L}}{\partial \boldsymbol{\Sigma}_k} = \boldsymbol{0}^{\top}$, we have

$$N_k \Sigma_k^{-1} = \Sigma_k^{-1} \left(\sum_{i=1}^N r_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \right) \Sigma_k^{-1}$$

Then,

$$N_k \mathbf{I} = \mathbf{\Sigma}_k^{-1} \left(\sum_{i=1}^N r_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \right)$$

Setting $\frac{\partial \mathcal{L}}{\partial \boldsymbol{\Sigma}_k} = \boldsymbol{0}^{\top}$, we have

$$N_k \Sigma_k^{-1} = \Sigma_k^{-1} \left(\sum_{i=1}^N r_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \right) \Sigma_k^{-1}$$

Then,

$$N_k \mathbf{I} = \mathbf{\Sigma}_k^{-1} \left(\sum_{i=1}^N r_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \right)$$

Hence,

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{i=1}^N r_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top}.$$

(a) GMM density and individual components prior to updating the variances.

(b) GMM density and individual components after updating the variances.

- $\sigma_1^2: 1 \to 0.14$.
- $\sigma_2^2: 0.2 \to 0.44$.
- $\sigma_3^2: 3 \to 1.53$.

Update of the GMM Mixture Weights

Theorem [Update of the Mixture Weights]

The update of the mixture weights of the GMM is given by

$$\pi_k^{new} = \frac{N_k}{N}, \quad k = 1, \dots, K.$$

- N: the number of data points.
- $N_k := \sum_{i=1}^{N} r_{ik}$.

Parameter Learning via Maximum Likelihood

Updating the Mixture Weights

- We account for the constraint $\sum_k \pi_k = 1$.
 - Using Lagrange multipliers.

- We account for the constraint $\sum_{k} \pi_{k} = 1$.
 - Using Lagrange multipliers.
- The Lagrangian:

$$\begin{split} & \mathcal{L} = \mathcal{L} + \lambda \left(\sum_{k=1}^K \pi_k - 1 \right) \\ & = \sum_{i=1}^N \log \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \lambda \left(\sum_{k=1}^K \pi_k - 1 \right). \end{split}$$

Obtain the partial derivative of $\mathfrak L$ w.r.t. π_k :

$$\frac{\partial \mathfrak{L}}{\partial \pi_{k}} = \sum_{i=1}^{N} \frac{\mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})} + \lambda$$

$$= \frac{1}{\pi_{k}} \sum_{i=1}^{N} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})} + \lambda$$

$$= \frac{N_{k}}{\pi_{k}} + \lambda,$$

and the partial derivative w.r.t. λ is

$$\frac{\partial \mathfrak{L}}{\partial \lambda} = \sum_{k=1}^{K} \pi_k - 1.$$

Parameter Learning via Maximum Likelihood

Updating the Mixture Weights

Now we have

$$\frac{\partial \mathfrak{L}}{\partial \pi_k} = \frac{N_k}{\pi_k} + \lambda$$
$$\frac{\partial \mathfrak{L}}{\partial \lambda} = \sum_{k=1}^K \pi_k - 1$$

$$\frac{\partial \mathfrak{L}}{\partial \pi_k} = \frac{N_k}{\pi_k} + \lambda$$
$$\frac{\partial \mathfrak{L}}{\partial \lambda} = \sum_{k=1}^K \pi_k - 1$$

Setting both to $\mathbf{0}^{\top}$ we have

$$\pi_k = -\frac{N_k}{\lambda}$$

$$1 = \sum_{k=1}^K \pi_k = -\sum_{k=1}^K \frac{N_k}{\lambda} = -\frac{N}{\lambda}$$

So
$$\lambda = -N \Longrightarrow \pi_k^{new} = \frac{N_k}{N}$$
.

$$\frac{\partial \mathfrak{L}}{\partial \pi_k} = \frac{N_k}{\pi_k} + \lambda$$
$$\frac{\partial \mathfrak{L}}{\partial \lambda} = \sum_{k=1}^K \pi_k - 1$$

Setting both to $\mathbf{0}^{\top}$ we have

$$\pi_k = -\frac{N_k}{\lambda}$$

$$1 = \sum_{k=1}^K \pi_k = -\frac{N_k}{\lambda}$$

So
$$\lambda = -N \Longrightarrow \pi_k^{new} = \frac{N_k}{N}$$
.

$$\frac{\partial \mathfrak{L}}{\partial \pi_k} = \frac{N_k}{\pi_k} + \lambda$$
$$\frac{\partial \mathfrak{L}}{\partial \lambda} = \sum_{k=1}^K \pi_k - 1$$

Setting both to $\mathbf{0}^{\top}$ we have

$$\pi_k = -\frac{N_k}{\lambda}$$

$$1 = \sum_{k=1}^K \pi_k = -\sum_{k=1}^K \frac{N_k}{\lambda} = -\frac{N}{\lambda}$$

So $\lambda = -N$

$$\frac{\partial \mathfrak{L}}{\partial \pi_k} = \frac{N_k}{\pi_k} + \lambda$$
$$\frac{\partial \mathfrak{L}}{\partial \lambda} = \sum_{k=1}^K \pi_k - 1$$

Setting both to $\mathbf{0}^{\top}$ we have

$$\pi_k = -\frac{N_k}{\lambda}$$

$$1 = \sum_{k=1}^K \pi_k = -\sum_{k=1}^K \frac{N_k}{\lambda} = -\frac{N}{\lambda}$$

So
$$\lambda = -N \Longrightarrow \pi_k^{new} = \frac{N_k}{N}$$
.

Parameter Learning via Maximum Likelihood

Updating the Mixture Weights

- $\pi_1: \frac{1}{3} \to 0.29$.
- $\pi_2: \frac{1}{3} \to 0.29$.
- $\pi_3: \frac{1}{3} \to 0.42$.

Outline

- Introduction & Gaussian Mixture Model (GMM)
- Parameter Learning via Maximum Likelihood
 - Updating the Means
 - Updating the Covariances
 - Updating the Mixture Weights
- Sepectation Maximization (EM) Algorithm
- 4 Latent-Variable Perspective

Motivation

- The previous approach do not give a closed-form solution for the updates of the parameters.
 - : the complex dependency on the parameters.

Motivation

- The previous approach do not give a closed-form solution for the updates of the parameters.
 - : the complex dependency on the parameters.
- The likelihood approach suggests a simple iterative scheme for finding a solution to the parameters estimation problem.

Expectation Maximization

Dempster et al. (1977)

Choose initial parameter values (i.e., μ_k , Σ_k , π_k) and alternate between the following two steps until convergence:

- E-step: Evaluate the responsibilities r_{ik}
 - It can be viewed as the posterior prob. of data point *i* belonging to mixture component *k*.
- M-step: Use the updated responsibilities to re-estimate the parameters.

Expectation Maximization

Dempster et al. (1977)

Choose initial parameter values (i.e., μ_k , Σ_k , π_k) and alternate between the following two steps until convergence:

- E-step: Evaluate the responsibilities r_{ik}
 - It can be viewed as the posterior prob. of data point i belonging to mixture component k.
- M-step: Use the updated responsibilities to re-estimate the parameters.
- Intuitive idea: the log-likelihood is increased after each step.

EM algorithm for Estimating parameters of a GMM

- **1** Initialize μ_k, Σ_k, π_k .
- **E-step**: Evaluate r_{ik} for every data point \mathbf{x}_i using the current parameters:

 $r_{ik} = rac{\pi_k \mathcal{N}\left(\mathbf{x}_i \mid oldsymbol{\mu}_k, oldsymbol{\Sigma}_k
ight)}{\sum_j \pi_j \mathcal{N}\left(\mathbf{x}_i \mid oldsymbol{\mu}_j, oldsymbol{\Sigma}_j
ight)}$

M-step: Re-estimate parameters μ_k, Σ_k, π_k using the current responsibilities r_{ik} from the E-step:

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^N r_{ik} \mathbf{x}_i,$$

$$\Sigma_k = \frac{1}{N_k} \sum_{i=1}^N r_{ik} (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^\top,$$

$$\pi_k = \frac{N_k}{N}.$$

 10^{4} Negative log-likelihood 9×10^{3} 4×10^3 20 60 Ó 40 EM iteration

(b) Negative log-likelihood.

Outline

- Introduction & Gaussian Mixture Model (GMM)
- Parameter Learning via Maximum Likelihood
 - Updating the Means
 - Updating the Covariances
 - Updating the Mixture Weights
- 3 Expectation Maximization (EM) Algorithm
- 4 Latent-Variable Perspective

Latent-Variable Perspective

- View the GMM from the perspective of a discrete latent variable model.
- The latent variable **z** can attain only a finite set of values.

• Consider a GMM as a probabilistic model of generating data.

- Consider a GMM as a probabilistic model of generating data.
- Assume that a mixture model with K components and that a data point x can be generated by exactly one mixture component.

- Consider a GMM as a probabilistic model of generating data.
- Assume that a mixture model with K components and that a data point x can be generated by exactly one mixture component.
- Consider a binary $z_k \in \{0,1\}$ (whether the kth component is responsible for the data point or not).

- Consider a GMM as a probabilistic model of generating data.
- Assume that a mixture model with K components and that a data point x can be generated by exactly one mixture component.
- Consider a binary $z_k \in \{0,1\}$ (whether the kth component is responsible for the data point or not).

$$p(\mathbf{x} \mid z_k = 1) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

- Consider a GMM as a probabilistic model of generating data.
- Assume that a mixture model with K components and that a data point x can be generated by exactly one mixture component.
- Consider a binary $z_k \in \{0,1\}$ (whether the kth component is responsible for the data point or not).

$$p(\mathbf{x} \mid z_k = 1) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

- Define $\mathbf{z} := [z_1, \dots, z_K]^\top \in \mathbb{R}^K$ as a vector consisting of exactly one 1 and K-1 many 0s.
 - One-hot encoding.
 - $\mathbf{z} = [z_1, z_2, z_3]^{\top} = [0, 1, 0]^{\top} \Rightarrow$ the 2nd mixture component is selected.

Prior on the latent variable

• When the variables z_k are unknown, we can place a prior distribution on \mathbf{z} in practice:

$$p(\mathbf{z}) = \boldsymbol{\pi} = [\pi_1, \dots, \pi_K]^{\top}, \ \sum_{k=1}^K \pi_k = 1,$$

where the *k*th entry $\pi_k = p(z_k = 1)$ describes the prob. that the *k*th mixture component generated data point **x**.

Sampling from a GMM

Ancestral sampling.

A Simple Sampling Procedure

- Sample $z^{(i)} \sim p(\mathbf{z})$.
- **2** Sample $\mathbf{x}^{(i)} \sim p(\mathbf{x} \mid z^{(i)} = 1)$.

Sampling from a GMM

The joint distribution

$$p(\mathbf{x}, z_k = 1) = p(\mathbf{x} \mid z_k = 1)p(z_k = 1) = \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

for k = 1, ..., K. So, we have

$$p(\mathbf{x}, \mathbf{z}) = \left[egin{array}{c} p(\mathbf{x}, z_1 = 1) \ p(\mathbf{x}, z_2 = 1) \ dots \ p(\mathbf{x}, z_K = 1) \end{array}
ight] = \left[egin{array}{c} \pi_1 \mathcal{N}(\mathbf{x} \mid oldsymbol{\mu}_1, oldsymbol{\Sigma}_1) \ \pi_2 \mathcal{N}(\mathbf{x} \mid oldsymbol{\mu}_2, oldsymbol{\Sigma}_2) \ dots \ \pi_K \mathcal{N}(\mathbf{x} \mid oldsymbol{\mu}_K, oldsymbol{\Sigma}_K), \end{array}
ight]$$

which fully specifies the probabilistic model.

Likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model

Previously, we omitted the parameters θ of the probabilistic model.

• How to obtain the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model?

Likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model

Previously, we omitted the parameters θ of the probabilistic model.

- How to obtain the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model?
 - Marginalizing out the latent variables.

Likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model

Previously, we omitted the parameters θ of the probabilistic model.

- How to obtain the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model?
 - Marginalizing out the latent variables.
- Summing out all latent variables from p(x, z):

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{\mathbf{z}} p(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{z}) p(\mathbf{z} \mid \boldsymbol{\theta})$$

$$\theta := \{ \mu_k, \Sigma_k, \pi_k : k = 1, 2, \dots, K \}.$$

Likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model

Previously, we omitted the parameters θ of the probabilistic model.

- How to obtain the likelihood $p(\mathbf{x} \mid \boldsymbol{\theta})$ in a latent-variable model?
 - Marginalizing out the latent variables.
- Summing out all latent variables from $p(\mathbf{x}, \mathbf{z})$:

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{\mathbf{z}} p(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{z}) p(\mathbf{z} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} p(\mathbf{x} \mid \boldsymbol{\theta}, z_k = 1) p(z_k = 1 \mid \boldsymbol{\theta}),$$

$$\boldsymbol{\theta} := \{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \boldsymbol{\pi}_k : k = 1, 2, \dots, K\}.$$

There is only one single nonzero entry in each z, so there are only K possible configurations of z!

So, the desired marginal distribution is

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} p(\mathbf{x} \mid \boldsymbol{\theta}, z_k = 1) p(z_k = 1 \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

So, the desired marginal distribution is

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} p(\mathbf{x} \mid \boldsymbol{\theta}, z_k = 1) p(z_k = 1 \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

For the given dataset \mathcal{X} , we have the likelihood

$$p(\mathcal{X} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}_i \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

So, the desired marginal distribution is

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} p(\mathbf{x} \mid \boldsymbol{\theta}, z_k = 1) p(z_k = 1 \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

For the given dataset \mathcal{X} , we have the likelihood

$$p(\mathcal{X} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}_i \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

which is exactly the GMM likelihood we have derived before!

• Let us look at the posterior distribution on the latent z.

- Let us look at the posterior distribution on the latent z.
- By Bayes' theorem,

- Let us look at the posterior distribution on the latent z.
- By Bayes' theorem,

$$p(z_k = 1 \mid \mathbf{x}, \boldsymbol{\theta}) = \frac{p(z_k = 1)p(\mathbf{x} \mid \boldsymbol{\theta}, z_k = 1)}{p(\mathbf{x} \mid \boldsymbol{\theta})},$$

where the marginal $p(\mathbf{x} \mid \boldsymbol{\theta})$ we have already derived.

Hence,

$$p(z_k = 1 \mid \mathbf{x}, \boldsymbol{\theta}) = \frac{\pi_k \mathcal{N}(\mathbf{x} \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)},$$

- Let us look at the posterior distribution on the latent z.
- By Bayes' theorem,

$$p(z_k = 1 \mid \mathbf{x}, \boldsymbol{\theta}) = \frac{p(z_k = 1)p(\mathbf{x} \mid \boldsymbol{\theta}, z_k = 1)}{p(\mathbf{x} \mid \boldsymbol{\theta})},$$

where the marginal $p(\mathbf{x} \mid \boldsymbol{\theta})$ we have already derived.

Hence,

$$p(z_k = 1 \mid \mathbf{x}, \boldsymbol{\theta}) = \frac{\pi_k \mathcal{N}(\mathbf{x} \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)},$$

 \star The responsibility of the kth mixture component for x!

- Consider a dataset of N data points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.
- Assume that every data point x_i possesses its own latent variable

$$\mathbf{z}_i = [z_{i1}, \ldots, z_{iK}]^{\top} \in \mathbb{R}^K.$$

- Consider a dataset of N data points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.
- Assume that every data point x_i possesses its own latent variable

$$\mathbf{z}_i = [z_{i1}, \ldots, z_{iK}]^{\top} \in \mathbb{R}^K.$$

• Assume that we share the same prior π across all latent variables \mathbf{z}_i .

- Consider a dataset of N data points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.
- Assume that every data point x_i possesses its own latent variable

$$\mathbf{z}_i = [z_{i1}, \ldots, z_{iK}]^{\top} \in \mathbb{R}^K.$$

- ullet Assume that we share the same prior π across all latent variables \mathbf{z}_i .
- The conditional distribution

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N\mid\mathbf{z}_1,\ldots,\mathbf{z}_N)=$$

- Consider a dataset of N data points $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.
- Assume that every data point x_i possesses its own latent variable

$$\mathbf{z}_i = [z_{i1}, \ldots, z_{iK}]^{\top} \in \mathbb{R}^K.$$

- Assume that we share the same prior π across all latent variables \mathbf{z}_i .
- The conditional distribution

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N\mid\mathbf{z}_1,\ldots,\mathbf{z}_N)=\prod_{i=1}^N p(\mathbf{x}_i\mid\mathbf{z}_i).$$

Consider the posterior distribution $p(z_{ik} = 1 \mid \mathbf{x}_i)$ by applying Bayes' theorem:

$$p(z_{ik} = 1 \mid \mathbf{x}_i) = \frac{p(\mathbf{x}_i \mid z_{ik} = 1)p(z_{ik} = 1)}{\sum_{j=1}^{K} p(\mathbf{x}_i \mid z_{ij} = 1)p(z_{ij} = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Consider the posterior distribution $p(z_{ik} = 1 \mid \mathbf{x}_i)$ by applying Bayes' theorem:

$$p(z_{ik} = 1 \mid \mathbf{x}_i) = \frac{p(\mathbf{x}_i \mid z_{ik} = 1)p(z_{ik} = 1)}{\sum_{j=1}^{K} p(\mathbf{x}_i \mid z_{ij} = 1)p(z_{ij} = 1)}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

$$= r_{ik}.$$

Consider the posterior distribution $p(z_{ik} = 1 \mid \mathbf{x}_i)$ by applying Bayes' theorem:

$$p(z_{ik} = 1 \mid \mathbf{x}_i) = \frac{p(\mathbf{x}_i \mid z_{ik} = 1)p(z_{ik} = 1)}{\sum_{j=1}^{K} p(\mathbf{x}_i \mid z_{ij} = 1)p(z_{ij} = 1)}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

$$= r_{ik}.$$

• Now, we see that the responsibilities have a mathematically justified interpretation as posterior probabilities.

Discussions