Calcul différentiel

Exercice 1 Calcul.

- 1. Calculer la différentielle d'une application constante, linéaire et quadratique.
- 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ différentiable. Montrer que les fonctions suivantes sont différentiables et déterminer leur différentielle :

$$u(x) = f(x, -x), \quad g(x, y) = f(y, x).$$

- 3. soit $f: \mathbb{R}^n \to \mathbb{R}^m$ et $g: \mathbb{R}^m \to \mathbb{R}^p$ toutes deux C^k . Soit $x \in \mathbb{R}^n$ montrer que si pour tout $i \leq k$, $d_x^i f = 0$ alors $d_x^i g o f = 0$. Que dire si pour tout $i \leq k$, $d_{f(x)}^i g = 0$?
- 4. Soit $A \in M_{n,n}(\mathbb{R})$, $f_A(t) = e^{tA}$. Montrer que $f'_A(t) = Ae^{tA} = e^{tA}A$.
- 5. Montrer que $\forall t \in \forall A \in M_{n,n}(\mathbb{R}) \quad \det(e^{tA}) = e^{t\operatorname{Trace}(A)}$.

Exercice 2 Soit f fonction de $\mathbb{R}^2 \to \mathbb{R}$, soit $a \in \mathbb{R}^2$ on suppose que $\frac{\partial f}{\partial x_1}$ et $\frac{\partial f}{\partial x_2}$ existent en a et que de plus $\frac{\partial f}{\partial x_2}$ existe et est continue sur un voisinage de a. Montrer que f est différentiable en a.

Exercice 3 Formule d'Euler Soit E, F deux espaces de Banach de dimension finie, soit $f: E \to F$, différentiable sur E telle que : $\forall x \in E, \forall t \in \mathbb{R}$ $f(tx) = t^n f(x)$ Montrer que $\mathrm{d} f_x(x) = n f(x)$. Montrer que pour n = 2 et si de plus f est C^2 alors f est quadratique.

Exercice 4 On se place dans $M_n(\mathbb{R})$. Montrer qu'il existe un voisinage \mathcal{U} de Id tel que :

- 1. Pour $A \in \mathcal{U}$, il existe un unique $B \in M_n(\mathbb{R})$ tel que $A = B^2$. On note $B = \sqrt{A}$.
- 2. l'application $\psi : \begin{cases} \mathcal{U} \to M_n(\mathbb{R}) \\ A \mapsto \sqrt{A} \end{cases}$ est C^1 . Est-elle C^{∞} ?

Exercice 5 Soit E l'espace des polynômes de [0,1] dans \mathbb{R} , de degré au plus 47, muni de la norme de la convergence uniforme. Soit $\phi : \mathbb{R} \to \mathbb{R}$ de classe C^1 . Montrer que l'application suivante est différentiable :

$$\Phi: \begin{cases} E \to \mathbb{R} \\ f \mapsto \int_0^1 \phi(f(x)) \mathrm{d}x \end{cases}.$$

L'application Φ est-elle de classe C^1 ?

Que peut on dire si on remplace E par l'espace des fonctions continues sur [0,1] muni de la norme de la convergence uniforme?

Exercice 6 Soit f une fonction définie sur un intervalle ouvert I de \mathbb{R} et prenant ses valeurs dans un evn E. Soit $a \in I$. On suppose que f est dérivable sur I, et que f''(a) existe. Montrer que la fonction g définie sur $I \times I$ par :

$$g(x,y) = \begin{cases} \frac{f(y) - f(x)}{y - x} & \text{si } x \neq y \\ f'(x) & \text{si } x = y \end{cases}$$

est différentiable au point (a, a) et que $dg_{(a,a)}(h, k) = \frac{h+k}{2}f''(a)$.

Exercice 7 Soit $E = C^1([0,1], \mathbb{R}^n)$. Pour $f \in E$ on définit $||f|| = \sup |f| + \sup |f'|$. Montrer que ||.|| est une norme sur E et que (E, ||.||) est complet.

Exercice 8 Soit E un espace de banach de dimension finie, et B_r la boule fermé de centre 0 et de rayon r.

- 1. Soit $f: B_r \to E$, b contractante avec b < 1 et tel que $|f(0)| \le r(1-b)$. Montrer que f admet un unique point fixe. Notons le x_1 .
- 2. soit $g: B_r \to E$ tel que $||g f||_{\infty} \le c$, on suppose que g admet un point fixe x_2 montrer que $|x_2 x_1| \le \frac{c}{1-b}$.

Exercice 9 Soit $K:[a,b]^2 \to \mathbb{R}$ continue, tel que $||K||_{\infty} \leq C$. On fixe une fonction f de $[a,b] \to R$ continue et $r \leq \frac{1}{C(b-a)}$. Montrer qu'il existe une unique fonction g continue tel que $g(x) = f(x) + r \int_a^b K(y,x)g(y) dy$.

Exercice 10 Soit f de $\mathbb{R} \to \mathbb{R}$ dérivable. On suppose que $f' \geq c > 0$ et que f(x+1) = f(x) + n. Montrer qu'il existe une fonction continue $\alpha : \mathbb{R} \to \mathbb{R}$ vérifiant $\alpha(x+1) = \alpha(x) + 1$ et tel que :

$$f(\alpha(x)) = \alpha(nx).$$

indication : Introduire l'inverse de f et chercher à appliquer un thérorème du point fixe.

Exercice 11 Différentielle de l'exponentielle de matrice

- 1. Déterminer la différentiabilité en 0 de l'application exp : $\begin{cases} M_{n,n}(\mathbb{R}) \to M_{n,n}(\mathbb{R}) \\ A \mapsto e^A \end{cases}$
- 2. Soit X(t) un chemin de matrices C^1 et $f(t,s) = e^{sX(t)}$. Calculer la dérivée de $g_t(s) = e^{-sX(t)} \frac{\partial f}{\partial t}(t,s)$. En déduire que $\frac{\partial f}{\partial t}(t,1) = \int_0^1 e^{(1-u)X(t)} X'(t) e^{uX(t)} du$.
- 3. Monter que $d_A(exp)(H) = \int_0^1 e^{(1-u)A} He^{uA} du$.
- 4. Soit \mathcal{S} l'espace vectoriel des matrices symétriques et \mathcal{U} l'ensemble des matrices symétriques définies positives.
- 5. Montrer que \mathcal{U} est un ouvert de S.

- 6. Montrer que pour $A \in \mathcal{U}$, il existe un unique $B \in \mathcal{U}$ tel que $A = B^2$. On note
- 7. Montrer que $\psi: \begin{cases} \mathcal{U} \to \mathcal{U} \\ A \mapsto \sqrt{A} \end{cases}$ est différentiable.

Exercice 12 Fonctionnelles quadratiques Soit E un espace vectoriel normé de di-

Soit $J: \begin{cases} E \to \mathbb{R} \\ x \mapsto \frac{1}{2}B(x,x) - L(x) \end{cases}$, avec B est une forme bilinéaire symétrique continue

- 1. Quelle équation vérifient les points critiques de J?
- 2. Montrer que si E est un espace de Hilbert et que si il existe $\alpha > 0$ tel que $B(u, u) \geq$ $\alpha ||u||^2$, alors la fonctionnelle J admet un unique minimum. Indication : Soit x_n une suite telle que $\lim_{n\to\infty} J(x_n) = \inf_E J$. En utilisant le fait que $\frac{1}{2}B(x_n-x_m,x_n-x_m)=2(J(x_n)+J(x_m))-4J(\frac{x_n+x_m}{2})$, montrer que cette suite est de Cauchy.
- 3. Montrer que si E est de dimension finie et que si $\lim_{\|x\|\to\infty} J(x) = +\infty$, alors J admet un unique minimum.

Moindres carrés

- 4. Soient n points du plan (x_i, y_i) avec des x_i qui ne soient pas tous égaux entre eux. Montrer qu'il existe un unique $(\lambda, \mu) \in \mathbb{R}^2$ tel que $\sum_{i=1}^n (\lambda x_i + \mu y_i)^2$ soit minimal. La droite d'équation $y = \lambda x + \mu$ est appelé droite des moindres carrés.

5. Soient $x_1, x_2, \dots x_m$ tels que n+1 d'entre eux soient 2 à 2 distincts. Montrer que la fonction $f: \begin{cases} \mathbb{R}_n[X] \to \mathbb{R} \\ P \to \sum_{i=1}^m (P(x_i) - y_i)^2 \end{cases}$ admet un unique maximum.

Exercice 13 Extremas liés : cas d'une contrainte linéaire Soit E un espace de Banach de dimension finie.

Soit (f_1,\ldots,f_p) une famille libre de formes linéaires continues et $g:E\to\mathbb{R}$ une function C^1 .

1. On suppose qu'il existe x_0 tel que

$$g(x_0) = \inf_{f_1(x) = f_2(x) = \dots = f_p(x) = 0} g(x).$$

Montrer qu'il existe $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ tels que :

$$Dg(x_0) = \sum_{i=1}^{p} \lambda_i f_i$$

Note : les λ_i sont appelés les multiplicateurs de Lagrange.

2. On suppose qu'il existe x_0 tel que

$$g(x_0) = \inf_{f_1(x) \le 0, f_2(x) \le 0, \dots, f_p(x) \le 0} g(x).$$

Soit $I = \{1 \le i \le q | f_i(x) = 0\}.$

Montrer qu'il existe $\lambda_i, i \in I$ tels que :

$$Dg(x_0) = \sum_{i \in I} \lambda_i f_i$$

Montrer que de plus $\lambda_i \geq 0$.

Note : les λ_i sont appelés les multiplicateurs de Kuhn-Tucker.

Exercice 14 Équations d'Euler-Lagrange Soit $\mathcal{F}: \begin{cases} C_0^1([0,1],||.||_{\infty}) \to \mathbb{R} \\ x \mapsto \int_0^1 l(x(t),x'(t),t) \dot{t} \end{cases}$ avec l de classe C^1 .

- 1. Montrer que f est C^1 et sa différentielle est : $d\mathcal{F}_x(h) = \int_0^1 h(t) \frac{\partial l}{\partial x} l(x(t), x'(t), t) + h'(t) \frac{\partial l}{\partial x'} l(x(t), x'(t), t) dt$
- 2. Soit F continue sur un [a, b] telle que pour h C^1 nulle aux bords, $\int_a^b F(x)h'(x)\mathrm{d}x = 0$. Montrer que F est constante.
- 3. Soit x un point critique de \mathcal{F} . Montrer que $t\mapsto \frac{\partial l}{\partial x'}l(x(t),x'(t),t)$ est de classe C^1 . (On pourra introduire la primitive de $t\mapsto \frac{\partial l}{\partial x}(x(t),x'(t),t))$ Montrer que :

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial l}{\partial x'}(x(t), x'(t), t) + \frac{\partial l}{\partial x}(x(t), x'(t), t) = 0$$

4. On choisit $l(x, x', t) = x'^2 - x$. Étudier les minima de \mathcal{F} .