Motivation

To search for an entry in a table:

Linear search
(if the data is not sorted)

Time complexity O(N)

	name	score
0	Parker	323
1	Davis	434
2	Harris	314
3	Corea	323
4	Hancock	416
5	Brecker	378
6	empty	
:	:	
•	•	
N - 1	Mark	541

Motivation

To search for an entry in a table:

Linear search (if the data is not sorted)	Time complexity $O(N)$	0 1 2	name Brecker Corea Davis	378 323 434
Binary search (if the data is sorted)	$O(\log N)$	3 4 5	Hancock Harris Mark	416 314 541
Sorting	$O(N \log N)$	6	Parker :	323

N-1

empty

Can we improve the situation to O(1)?

CPT108 Data Structures and Algorithms

Lecture 18

Hashtables

Direct Addressing

 A map is a data structure that supports the use of a key (as "address") that help locate an entry in operations such as searchings.

Direct Addressing

Problems (cont.)

- If the universe U is large or infinite, storing T of size |U| may be impractical
- Waste too much space if the universe is too large compared with the actual number of elements to be stored.
 - E.g., suppose the student IDs are 8-digit integers
 - So the universe is 10⁸.
 - But we only have about 8000 students

Hashing:

Hash table:

 Also known as hash map, an abstract data type (ADT) that implements associative array (of some fixed size).

Collision Handling

- Supports finds, insertions, and deletions of any named item.
- Allows operations to be executed in constant average time (O(1))
- A slot (or bucket) number is calculated by a hash function, h, that
 - takes a variable-size input k, and
 - return a fixed-size string (or int in [0, ..., m-1]), h(k), which is called the hash value of k, and m is the capacity of the table.
- Usually, $m \ll N$

Hash table

Hash table:

 It provides a fast way to maintain a set of keys or map keys to values, even when the keys are *objects*, like strings, while "relationship" between elements are of less, or not, important.

Collision Handling

- However...
 - Operations that requires any ordering information among elements are <u>not</u> supported
 - findMin and findMax
 - Successor and predecessor
 - Report data within a given range
 - List out data in order
 - ...

Hash table

Applications

- Compilers use hash table (symbol table) to keep track of declared variables
- On-line spell checkers. After pre-hashing the entire dictionary, one can check each word in constant time and print out the misspelled word in order of their appearance in the document.
- ..

Hash function

Hashtables in practice:

- Data is converted into a hash code through the use of a hash function
- 2 The hash code is then reduced to a valid index
- Oata is then stored in a slot (or bucket) corresponding to that index

Hash function (cont.)

- To recap, with hashing, we store an element with a key k into T[h(k)], where h: U → T is a hash function.
- Collisions appears when two keys are hashed to the same slot
- Can we ensure that any two distinct keys get different cells?
 - No! This is unavoidable as we assume m << N, where m is
 the size of the hash table and N is the number of keys

Hash function (cont.)

- What makes a good hash function?
 - A good hash function should satisfies the assumption of independent uniform hashing
 - Each key is equally likely to hash to any of the m slots, independently of where any other keys have hashed to
 - Unfortunately, there is, in general, no way to check this condition since we rarely know the probability distribution from which the keys are drawn, or whether they are drawn independently.
 - Qualitative information about the distribution of keys may be useful in the design process.
 - I.e., when two closely related symbols, such as pt and pts, often appear in the same dataset, a good hash function would minimize the chance that such variants hash to the same slot.

Hash function (cont.)

- Task 1: How to design a good hash function that
 - is fast to compute,
 - spread the keys evenly in the table, and
 - can *minimize* the number of collisions?
- Task 2: How to *resolve* the collisions when they occur?

Design hash function: Integer keys

- The Division method: $h(k) = k \mod m$
 - Simple and reasonable strategy
 - Requires only a single division operation, which is quite fast
 - E.g., when k = 100 and m = 12, h(k) = 4
 - However, certain values of m should be avoided
 - E.g., if m = 2^p, then h(k) is just the p lowest bits of k;
 i.e., the hash function does not depend on all the bits
 - Similarly problem will appear if the keys are a decimal numbers and setting m to be a power of 10.
 - In general, it is good to set *m* to be a *prime number* that is not too close to exact powers of 2.

Design hash function: Integer keys (cont.)

- The Mid-square method
 - Squaring the key value first,
 - takes out the middle r bits of the results, giving a value in the range 0 to $2^{r} - 1$.
- This works well because most or all bits of the key contribute to the result

Example of mid-square method using a 6-digit key and with the middle 6 digits as output.

Design hash function: String-type keys

- Most hash function assume that the keys are natural numbers
- If keys are not natural numbers, a way must be found to interpret them as natural numbers
- Note:
 - Letters and digits fall in range 0101 and 0172 octal
 - i.e., all useful information is in lowest 6 bits
- ** Must be careful to cover range from 0 through the capacity of the hash table, m

Design hash function: String-type keys (cont.)

Method 1 Adding up the ASCII (or unicode) values of the characters in the string

- E.g., if $m = \text{ 'test' (ASCII=}\{116, 101, 115, 116\}$) and hash function = *modulo* 11, then hash value = $(116 + 101 + 115 + 116) \mod 11$ $= 448 \mod 11$ = 8
- However, different permutations of the same set of characters, e.g., "eat", "ate", and "tea", would have the same hash value.

Design hash function: String-type keys (cont.)

Method 2 Adding up the ASCII (or unicode) values of the characters in the string

Computes:

$$\sum_{i=0}^{L-1} k[L-i-1] \cdot 37^i$$

where L is the size of k, k[i] is the i^{th} character of the key k.

Or another way to look at the formula is:

$$h=\Pi_{i=0}^{L-1}h_i\mod m$$
 where $h_i=\left\{egin{array}{ll} k[L-1] & ext{if }i=0\ 37\cdot h_{i-1}+k[L-i-1] & ext{otherwise} \end{array}
ight.$

- This method is better in a sense that it involves all characters in the key and be expected to distribute well
- However, it will take a bit longer to compute if the keys are very long

- Collision appears when two (or more) keys are hashed into the same slot
- A suitable hash function can be choose to avoid or minimize the number of collision

- Separate chaining (or simply, chaining)
 - Each array slot is a linked list (or search list)

Collision Handling: Separate chaining

Collision Handling

0000000000000

Separate chaining: Exercise

Consider a hashtable that uses the separate chaining technique with the following hash function f(x) = (5x + 4)%11. (The hashtable is of size 11.)

If we insert the value 3, 9, 2, 1, 14, 6 and 25 into the table, in that order, show where these values would end up in the 10 table?

- Separate chaining (cont.)
 - If the hash function works well, the number of keys in each linked list will be a small constant.
 - Each operation (search, insertion, and deletion) can be done in constant time
 - Advantages
 - Never get "full"
 - Deletion is easy
 - Disadvantages
 - Elements are stored outside of the hash table itself
 - Memory allocation in linked list manipulation may slow down the program.

Open addressing

- Instead of following pointers, compute the sequence of slots to be examined
- Relocate the key k to be inserted if it collides with an existing key
- That is:
 - When a new element is to be inserted into the table, it is placed in its "first-choice" location if possible
 - If that location is already occupied, the new element is placed in its "second-choice" location
 - This process continues until an empty slot is found in which to place the new element

Collision Handling

• The hash function is in a form:

$$h_i(k) = (\underbrace{h(k)}_{probe} + \underbrace{f(i)}_{offset}) \mod m,$$
 with $f(0) = 0$

• f : collision resolution strategy or relocation scheme

- Open addressing
 - Two issues arise
 - What is the relocation scheme?
 - How to search for k later?
 - Commonly used approaches include: linear probing, quadratic probing, and double hashing

- Linear probing
 - Put f(i) = i
 - I.e., $h_i(k) = (h(k) + i) \mod N$, for i = 1, 2, 3, ...
 - Slot are probed sequentially (with wrap-around), i.e., increment the hash value by a constant 1 until a free slot is found

If
$$h(k_3) = h(k_4) = h(k_5) = 6$$

- Simple to implement
- Cell are probed sequentially (with wrap-around)
- If we cannot find an empty entry to put k, it means the table is full and we should report an error.
- But may leads to *primary* clustering

Linear probing: Exercise

Consider a hashtable that uses the *linear* probing technique with the following hash function f(x) = (5x + 4)%11. (The hashtable is of size 11.)

If we insert the value 3, 9, 2, 1, 14, 6 and 25 into the table, in that order, show where these values would end up in the table?

index	value
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Primary clustering
 - A cluster is a block of contiguously occupied table entries.
 - On the average, when we insert a new key k, we may hit the middle of a cluster.
 - Therefore, the time to insert k would be proportional to half the size of a cluster.
 - I.e., the larger the cluster, the longer time it needs to find an empty slot, and the slower the performance

In Linear probing (cont.)

- Once h(k) falls into a cluster, this cluster will definitely grow in size by one, which may worsen the performance of insertion in the future.
- If two clusters are only separated by one slot, then inserting
 one key into a cluster can merge the two clusters together.
 Thus, the cluster size can increase drastically by a single
 insertion, meaning that the performance of insertion can
 deteriorate drastically after a single insertion.
- Large cluster are easy targets for collision.

- Quadratic probing
 - Put $f(i) = c_1 * i + c_2 * i^2$, where $c_2 \neq 0$
 - I.e., $h_i(k) = (h(k) + c_1 * i + c_2 * i^2) \mod N$, for i = 1, 2, 3, ...
 - E.g., if $h_i(k) = (h(k) + 2i + i^2) \mod m$, then the probe sequence will be h(k), h(k) + 3, h(k) + 8, h(k) + 15, etc.
 - If the table size is prime, then a new key can always be inserted if the table is at least half empty (Weiss, 2013, Thm. 5.1)
 - Incurs less clustering than linear probing. However, it may leads to secondary clustering
 - keys that hash to the same home position will probe the same alternative slots
 - Simulation results suggest that it generally causes less than an extra half probe per search
 - To avoid secondary clustering, the probe sequence need to be a function of the original key value, not the home position, which leads us to the next approach

Quadratic probing: Exercise

Consider a hashtable that uses the *quadratic probing* technique with the following hash function f(x) = (5x + 4)%11. (The hashtable is of size 11.)

If we insert the value 3, 9, 2, 1, 14, 6 and 25 into the table, in that order, show where these values would end up in the table?

index	value
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Double hashing

- To alleviate the problem of clustering, the sequence of probes for a key should be independent of its primary position
- Put $f(i) = i * \frac{h2(k)}{k}$, where h2(k) is a hash function different from the original one and $h2(k) \neq 0$
- I.e., $h_i(k) = (h(k) + i * h2(k)) \mod N$, for i = 1, 2, 3, ...
- Interval depends on k, which minimize repeated collision and the effects of clustering
- For any key k, h2(k) must be relatively prime to the table size m; otherwise, we will only be able to examine a fraction of the table entries.
 - E.g., if h(k) = 0 and h2(k) = m/2, then we can only examine the entries T[0] and T[m/2], and nothing else!
- One solution is to make m prime, and choose R to be a prime smaller than m, and set:

Some notes

- Elements are stored in the hash table itself
- Each table entry contains either an element of the dynamic set or NII
- However, unlike Separate Chaining
 - the hash table can "fill up"
 - Actual deletion cannot be performed in open addressing hash tables
 - Otherwise this will isolate entries further down the probe sequence
 - Solution: Add an extra bit to each table entry, and mark a deleted slot by storing a special value "DELETED" (tombstone)

Hashtable Performance

Suppose we have:

- A fixed number of slots. M
- An increasing number of elements. N
- Average list is around N/M elements

If the elements are spread out evenly,

lists are of length
$$Q = \frac{N}{M}$$

• E.g., for
$$M = 5$$
, $N = 19$, $Q = \frac{19}{5} = 3.8 \approx \Theta(N)$

 \Rightarrow results in *linear time* operations when N is large!

Collision Handling

Hashtable Performance (cont.)

Suppose we have:

- A <u>increasing</u> number of slots, M
- An increasing number of elements, N
- As long as $M = \Theta(N)$, then O(N/M) = O(1)

Assuming elements are evenly distributed (as above), lists will be approximately N/M elements long, resulting in $\Theta(N/M)$ runtimes

We want to ensure that N/M = O(1)

 However, by doubling M every time, the size of the hashtable may gets too big

Hashtable Performance (cont.)

To recap, even distribution of item is critical for good hashtable performance

Collision Handling

The hashtables below have *load factor* of N/M = 1

- Which hashtable performs better?
- Why?

Hashtable: Resize

- Resize when load factor exceeds some constant
 - Allocate a larger hash table
 - Rehash the table
 - Delete the smaller table

Hashtable Performance (cont.)

• In elements are spread out nicely, you get $\Theta(1)$ average runtime

	contains(x)	add(x)
Binary search trees (BSTs)	Θ(N)	⊖(lg N)
Hashtable (with <i>no</i> resizing)	⊖(N)	Θ(N)
Hashtable (with resizing ¹)	Θ(1)	⊖(1)

¹Assuming elements are evenly spread

Time Complexity

- O(1) in most operations
- Why it appears most search mechanisms have performance at O(N) or O(log N)?
- Why hash table can give us best performance?
- Where does the magic come from?

Reading

- Chapter 11, Cormen (2022)
- Ch. 5, Weiss (2013)