FDM for Cheyette Local Volatility

November 2021

Contents

1	Imp	plementation	1
	1.1	Dynamics	1
	1.2	Discretization	2
	1.3	Time discretization and operator splitting	2
	1.4	Boundary conditions in equation (10a)	3
2	Processes		
	2.1	Stationary Hull-White process	4
		2.1.1 Lattice centering and sizing	
2	Products		6
	3.1	Zero coupon bond (ZCB)	6
	3.2	Bond option	6
	3.3	Single period swaption	6

1 Implementation

1.1 Dynamics

We consider the Cheyette model:

$$dx_t = (y_t - \kappa(t)x(t))dt + \sigma(t, x_t, y_t)dW_t,$$
(1a)

$$dy_t = (\sigma^2(t, x_t, y_t) - 2\kappa(t)y_t)dt.$$
(1b)

Let V(t, x, y) the the time t value of a derivative with terminal payoff $V(x_T, y_T)$:

$$V(t, x, y) = \mathbf{E}\left(e^{-\int_t^T r(s)ds}V(x_T, y_T) \mid x(t) = x, y(t) = y\right).$$
 (2)

Then V(t, x, y) satisfies the PDE:

$$\partial_t V + (L_x + L_y)V = 0, (3a)$$

$$L_x = (y - \kappa(t)x)\partial_x + \frac{1}{2}\sigma^2(t, x, y)\partial_x^2 - (x + f(0, t)),$$
 (3b)

$$L_y = \left(\sigma^2(t, x, y) - 2\kappa(t)y\right)\partial_y. \tag{3c}$$

1.2 Discretization

We will solve the pde on the rectanglar grid $[\underline{M}_1, \overline{M}_1] \times [\underline{M}_2, \overline{M}_2]$. We consider a uniform grid:

$$\Gamma_{h_1,h_2} = \{ (x^{j_1}, y^{j_2}) \colon x^{j_1} = \underline{M}_1 + j_1 h_1, \quad y^{j_2} = \underline{M}_2 + j_2 h_2, j_1 = 0, \dots, m_1 + 1, \quad j_2 = 0, \dots, m_2 + 1 \}.$$

$$(4)$$

We put:

$$V_{j_1,j_2}(t) = V(t, x^{j_1}, y^{j_2}),$$
 (5a)

$$\delta_x V_{j_1, j_2}(t) = \frac{V_{j_1 + 1, j_2}(t) - V_{j_1 - 1, j_2}(t)}{2h_1},\tag{5b}$$

$$\delta_y V_{j_1, j_2}(t) = \frac{V_{j_1, j_2+1}(t) - V_{j_1, j_2-1}(t)}{2h_2}, \tag{5c}$$

$$\delta_{xx}V_{j_1,j_2}(t) = \frac{V_{j_1+1,j_2}(t) - 2V_{j_1,j_2}(t) + V_{j_1-1,j_2}(t)}{h_1^2}.$$
 (5d)

We pass from the differential operators L_x , L_y to finite difference operators

$$\widehat{L}_x(t) = (y - k(t)x)\delta_x + \frac{1}{2}\sigma^2(t, x, y)\delta_x^2 - (x + f(0, t)),$$
 (6a)

$$\widehat{L}_{y}(t) = (\sigma^{2}(t, x, y) - 2\kappa(t)y)\delta_{y}, \tag{6b}$$

acting on functions on the grid Γ_{h_1,h_2} . For a moment we omit the definitions on the boundary points. We get a second order accurate approximation of the operator $L_x + L_y$ on the grid:

$$(L_x + L_y)V(t, x, y) = (\hat{L}_x + \hat{L}_y)V(t, x, y) + O(h_1^2 + h_2^2).$$
 (6c)

1.3 Time discretization and operator splitting

The pricing PDE has no mixed derivatives and can be solved using a splitting method. We use a uniform time grid $\{t_i\}$ with step h_t . On the interval $[t_i, t_{i+1}]$ we replace the time derivative with the first difference and we replace the operators L_x , L_y by their discretizations $\widehat{L}_x(\widehat{t}_i)$, $\widehat{L}_y(\widehat{t}_i)$ evaluated at the middle of the interval $\widehat{t}_i = (t_i + t_{i+1})/2$, as in the Crank-Nicolson method. After regrouping the terms, we get:

$$\left(1 - h_t \frac{1}{2}(\widehat{L}_x + \widehat{L}_y)\right) V_{j_1, j_2}(t_i) = \left(1 + h_t \frac{1}{2}(\widehat{L}_x + \widehat{L}_y)\right) V_{j_1, j_2}(t_{i+1}) + O(h_t(h_1^2 + h_2^2 + h_t^2)).$$
(7)

Note that up to an error of order $O(h_t(h_1^2 + h_2^2 + h_t^2))$:

$$\left(1 \pm h_t \frac{1}{2}(\widehat{L}_x + \widehat{L}_y)\right) \approx \left(1 \pm h_t \frac{1}{2}\widehat{L}_x\right) \left(1 \pm h_t \frac{1}{2}\widehat{L}_y\right).$$
(8a)

This leads to the following equality, up to $O(h_t(h_1^2 + h_2^2 + h_t^2))$ error:

$$\left(1 - h_t \frac{1}{2} \hat{L}_x\right) \left(1 - h_t \frac{1}{2} \hat{L}_y\right) V_{j_1, j_2}(t_i) \approx \left(1 + h_t \frac{1}{2} \hat{L}_x\right) \left(1 + h_t \frac{1}{2} \hat{L}_y\right) V_{j_1, j_2}(t_{i+1}).$$
(9)

Using basic algebra¹, we can split this second order equation into two consecutive first order equations, forgetting about the error terms:

$$\left(1 - h_t \frac{1}{2} \widehat{L}_x\right) U_{j_1, j_2} = \left(1 + h_t \frac{1}{2} \widehat{L}_y\right) V_{j_1, j_2}(t_{i+1}), \tag{10a}$$

$$\left(1 - h_t \frac{1}{2} \widehat{L}_y\right) V_{j_1, j_2}(t_i) = \left(1 + h_t \frac{1}{2} \widehat{L}_x\right) U_{j_1, j_2},$$
(10b)

with intermediate variables U_{j_1,j_2} . We first determine U_{j_1,j_2} from $V_{j_1,j_2}(t_{i+1})$ using the first equation index by j_2 , and then determine V_{j_1,j_2} from the second equation indexed by j_1

This approach reduces the original second order difference system with a general sparse matrix to a sequence of two first order difference equations with tridiagonal matrices with computational cost $O(m_1m_2)$ instead of $O((m_1m_2)^{5/4})$. The resulting method is called after Peaceman and Rachford. Besides, the first equation is perfectly parallelizable in j_2 and the second one if perfectly parallelizable in j_1 reducing the optimal parallel complexity to $O(m_1 + m_2)$.

1.4 Boundary conditions in equation (10a)

To impose boundary conditions in system (10a) we will assume that:

$$U \approx V(\widehat{t}_i), \quad \widehat{t}_i = \frac{t_i + t_{t+1}}{2}.$$
 (11)

A better approximation is possible.

Dirichlet conditions. Dirichlet conditions in the x variable are:

$$V(t, x_0, y) = \underline{V}_1(t, y), \quad V(t, x_{m_1+1}, y) = \overline{V}_1(t, y),$$
 (12)

for given functions $\underline{V}_1(t,y)$, $\overline{V}_1(t,y)$. To impose the lower Dirichlet boundary condition we need to do the following modifications to system (10a):

$$(1-A)(1-B)x = (1+A)(1+B)b$$

for the unknown x where A, B are abstract linear operators. Assuming that 1-A is invertible and multiplying both sides by $(1-A)^{-1}$, we can write:

$$(1-B)x = (1+A)(1-A)^{-1}(1+B)b,$$

Now, setting $u = (1 - A)^{-1}(1 + B)b$, we get two equations:

$$(1-B)x = (1+A)u,$$

¹Consider a formal equation of the form:

- 1. Replace the first row in the system matrix by $(1, 0, \dots, 0)$.
- 2. Replace the first element in the right-hand-side by $\underline{V}(\hat{t}_i, y)$.

In a similar way, to impose the upper Dirichlet boundary condition, the following modifications are made to system (10a):

- 1. Replace the last row in the system matrix by $(0, \dots, 0, 1)$.
- 2. Replace the last element in the right-hand-side by $\overline{V}(\hat{t}_i, y)$.

A possible choice for functions $\underline{V}_1(t,y)$ and $\overline{V}_1(t,y)$ is the inner value of the product, assuming zero volatility.

2 Processes

Stationary Hull-White process

The stationary Hull-White model reads:

$$dx_t = (y_t - \kappa x_t)dt + \sigma dW_t, \quad x_0 = 0, \tag{13a}$$

$$dy_y = (\sigma^2 - 2\kappa y_t)dt, \quad y_0 = 0, \tag{13b}$$

with constant κ , σ . Recall that the time step of the finite difference method takes the form:

$$\widehat{A}_x^- U_{j_1, j_2} = \widehat{A}_y^+ V_{j_1, j_2}(t_{i+1}), \tag{14a}$$

$$\widehat{A}_{y}^{-}V_{j_{1},j_{2}}(t_{i}) = \widehat{A}_{x}^{+}U_{j_{1},j_{2}}, \tag{14b}$$

where $\widehat{A}_x^{\pm} = \operatorname{Id} \pm \frac{1}{2} h_t \widehat{L}_x$, $\widehat{A}_y^{\pm} = \operatorname{Id} \pm \frac{1}{2} h_t \widehat{L}_y$ are the system matrices such that:

$$\widehat{L}_{x,j} = \begin{pmatrix}
* & * & * & * & * & \cdots & * & * \\
l_{x,1,j} & d_{x,1,j} & u_{x,1,j} & 0 & \cdots & 0 & 0 \\
0 & l_{x,2,j} & d_{x,2,j} & u_{x,2,j} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
* & * & * & * & \cdots & * & *
\end{pmatrix},$$

$$\widehat{L}_{y,i} = \begin{pmatrix}
* & * & * & * & \cdots & * & * \\
l_{y,i,1} & d_{y,i,1} & u_{y,i,1} & 0 & \cdots & 0 & 0 \\
0 & l_{y,i,2} & d_{y,i,2} & u_{y,i,2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
* & * & * & * & * & \cdots & * & *
\end{pmatrix}.$$
(15a)

$$\widehat{L}_{y,i} = \begin{pmatrix} * & * & * & * & \cdots & * & * \\ l_{y,i,1} & d_{y,i,1} & u_{y,i,1} & 0 & \cdots & 0 & 0 \\ 0 & l_{y,i,2} & d_{y,i,2} & u_{y,i,2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ * & * & * & * & \cdots & * & * \end{pmatrix}.$$
(15b)

The coefficients are given by the following expressions:

$$l_{x,i,j} = \frac{1}{2} \frac{1}{h^2} (\sigma^2 - h_x(y_j - \kappa x_i)), \tag{16a}$$

$$d_{x,i,j} = -\frac{1}{h_x^2} (\sigma^2 + \frac{1}{2} h_x^2 (x_i + f(0,t))$$
(16b)

$$u_{x,i,j} = \frac{1}{2} \frac{1}{h_x^2} (\sigma^2 + h_x(y_j - \kappa x_i))$$
 (16c)

$$l_{y,i,j} = -\frac{1}{2} \frac{1}{h_y} (\sigma^2 - 2\kappa y_j),$$
 (16d)

$$d_{y,i,j} = -\frac{1}{2}(x_i + f(0,t)), \tag{16e}$$

$$u_{y,i,j} = \frac{1}{2} \frac{1}{h_y} (\sigma^2 - 2\kappa y_j)$$
 (16f)

2.1.1 Lattice centering and sizing

The lattice center and dimensions are determined by the values of $\mathbb{E}[x_T]$, $\operatorname{Var}[x_T]$, y_T :

$$\mathbb{E}[x_T] - N_x \sqrt{\operatorname{Var}[x_T]} \le x \le \mathbb{E}[x_T] + N_x \sqrt{\operatorname{Var}[x_T]},\tag{17a}$$

$$y_T - 0.01N_y \le y \le y_T + 0.01N_y,$$
 (17b)

where N_x (x_grid_stddevs), N_y (y_grid_stddevs) are the parameters specified in the process object contractor.

Note that:

$$y_t = \sigma^2 \int_0^t e^{-2\kappa(t-s)} ds = \frac{\sigma^2}{2\kappa} (1 - e^{-2\kappa t}) \approx \sigma^2 t,$$
 (18a)

$$x_t = \int_0^t y_t e^{-\kappa(t-s)} ds + \sigma \int_0^t e^{-\kappa(t-s)} dW_s$$
 (18b)

$$= \frac{\sigma^2}{2\kappa^2} \left(1 - e^{-\kappa t} \right)^2 + \sigma \int_0^t e^{-\kappa(t-s)} dW_s. \tag{18c}$$

It follows that:

$$\mathbb{E}[x_t] = \frac{\sigma^2}{2\kappa^2} \left(1 - e^{-\kappa t}\right)^2 \approx \frac{\sigma^2 t^2}{2},\tag{19a}$$

$$\operatorname{Var}[x_t] = \sigma^2 \int_0^t e^{-2\kappa(t-s)} ds = \frac{\sigma^2}{2\kappa} \left(1 - e^{-2\kappa t} \right) \approx \sigma^2 t. \tag{19b}$$

3 Products

3.1 Zero coupon bond (ZCB)

In the Cheyette model the price of a zero coupon bond (ZCB) maturing at time T is given by:

$$P(t, x, y; T) = \frac{P(0, T)}{P(0, t)} \exp\left(-G(t, T)x - \frac{1}{2}G^{2}(t, T)y\right), \tag{20a}$$

$$G(t,T) = \int_{t}^{T} e^{-\int_{t}^{u} \kappa(s)ds} du.$$
 (20b)

This price can be computed using the finite difference method with Dirichlet boundary conditions and with the terminal condition $P(T, x, y; T) \equiv 1$. The price can be then compared to the analytical solution.

3.2 Bond option

In the Vasicek model the price of a zero coupon bond call option with the payoff at time S given by

$$C(S; S, K) = (B(S, T) - K)_{\perp}, \quad T > S,$$
 (21)

can be found in analytic form:

$$C(0; S, K) = B(0, T)N(d_{+}) - KB(0, S)N(d_{-}),$$
(22a)

$$d_{+} = \frac{\ln \frac{B(0,T)}{B(0,S)K} + \frac{1}{2}\nu(0,S)}{\sqrt{\nu(0,S)}}, \quad d_{-} = d_{+} - \sqrt{\nu(0,S)}, \tag{22b}$$

$$\nu(0,S) = \frac{\sigma^2}{2\kappa^3} (1 - e^{-\kappa(T-S)})^2 (1 - e^{-2\kappa S}), \tag{22c}$$

where $\nu(0, S)$ is the variance of $\ln B(S, T)$. To derive boundary conditions, note that the present value PV(t) at time t of the payoff B(S, T) - K is given by:

$$PV(t) = B(t,T) - B(t,S)K.$$
(23)

It follows that the zero-volatility value of the call option (i.e. intrinsic value) is given by:

$$C_{\rm in}(t; S, K) = (B(t, T) - B(t, S)K)_{+}.$$
 (24)

We impose this value on the boundaries of the FDM grid.

3.3 Single period swaption