A Scalable Approach to Gradient-Enhanced Stochastic Kriging

Haojun Huo[†], Xiaowei Zhang*, and Zeyu Zheng[‡]

[†] Hong Kong University of Science and Technology, IEDA

^{*} City University of Hong Kong, MS

[‡] UC Berkeley, IEOR

Table of Contents

1. Stochastic Kriging and Big n Problem

2. Markovian Covariance Functions

3. Scalable Gradient Extrapolated Stochastic Kriging

4. Conclusions

Stochastic Kriging and Big *n*

Problem

Metamodeling

- Simulation models are often computationally expensive
- Metamodel: fast approximation of simulation model
 - Run simulation at a small number of design points
 - Predict responses based on the simulation outputs

Stochastic Kriging

- Also called Gaussian process (GP) regression
- Unknown surface is modeled as a Gaussian process

$$\mathsf{Z}(\mathbf{x}) = \beta + \mathsf{M}(\mathbf{x}), \quad \mathbf{x} \in \mathfrak{X} \subseteq \mathbb{R}^d$$

- M(x) is characterized by covariance function k(x, y)
- Leverage spatial correlation for prediction

Partial Literature

- · Quantification of input uncertainty
 - Barton, Nelson, and Xie (2014)
 - Xie, Nelson, and Barton (2014)
- Simulation/black-box/Bayesian optimization
 - Huang et al. (2006)
 - Sun, Hong, and Hu (2014)
 - Scott, Frazier, and Powell (2011)
 - Shahriari et al. (2016)

The Big n Problem

• Response surface is observed at $\{x_1, \ldots, x_n\}$ with noise

$$z(\mathbf{x}_i) = \beta + \mathsf{M}(\mathbf{x}_i) + \varepsilon(\mathbf{x}_i)$$

• Best linear unbiased predictor of $Z(x_0)$

$$\widehat{\mathsf{Z}}(\mathbf{x}_0) = \beta + \mathbf{\Sigma}_{\mathsf{M}}(\mathbf{x}_0, \cdot) [\mathbf{\Sigma}_{\mathsf{M}} + \mathbf{\Sigma}_{\varepsilon}]^{-1} [\overline{\mathbf{z}} - \beta \mathbf{1}_n]$$

Maximum likelihood estimation

$$\max_{\beta,\pmb{\theta}} \big\{ - \log[\det(\pmb{\Sigma}_{\mathsf{M}} + \pmb{\Sigma}_{\varepsilon})] - [\overline{\pmb{z}} - \beta \pmb{1}_n]^{\mathsf{T}} [\pmb{\Sigma}_{\mathsf{M}} + \pmb{\Sigma}_{\varepsilon}] [\overline{\pmb{z}} - \beta \pmb{1}_n] \big\}$$

- Slow: $[\Sigma_{\mathsf{M}} + \Sigma_{\varepsilon}] \in \mathbb{R}^{n \times n}$ and inverting it takes $\mathcal{O}(n^3)$ time
- ullet Numerically unstable: $[oldsymbol{\Sigma}_{\mathsf{M}} + oldsymbol{\Sigma}_{arepsilon}]$ is often nearly singular
 - Especially for the popular Gaussian covariance function
 - Usually run into trouble when n > 100, which can easily happen when $d \ge 3$

Enhancing SK with Gradient Information

- j-th run of the simulation model at x_i produces
 - response estimate $z_i(x_i)$
 - gradient estimate $\mathbf{g}_j(\mathbf{x}_i) = (g_j^1(\mathbf{x}_i), \dots, g_j^d(\mathbf{x}_i))^\mathsf{T}$

$$g_j^r(\mathbf{x}_i) = G^r(\mathbf{x}_i) + \delta_j^r(\mathbf{x}_i), \quad r = 1, \ldots, d,$$

where $G^{r}(x_{i})$ is the true r-th partial derivative

- Predict $Z(x_0)$ using both response estimates and gradient estimates
 - Qu and Fu (2014): gradient extrapolated stochastic kriging (GESK); simple, using gradients indirectly
 - Chen, Ankenman, and Nelson (2013): stochastic kriging with gradient estimators (SKG); sophisticated, using gradients directly

GESK (Qu and Fu, 2014)

Use gradient estimates to create "pseudo" response estimates

$$z_j(\tilde{\mathbf{x}}_i) \approx z_j(\mathbf{x}_i) + \mathbf{g}_j(\mathbf{x}_i)^{\mathsf{T}} \Delta \mathbf{x}_i,$$

where $\tilde{\mathbf{x}}_i = \mathbf{x}_i + \Delta \mathbf{x}_i$

- Δx_i : the direction and step size of the linear extrpolation
- Predict $Z(x_0)$ using the augmented data

$$(\bar{z}(\mathbf{x}_1),\ldots,\bar{z}(\mathbf{x}_n),\ \bar{z}(\tilde{\mathbf{x}}_1),\ldots,\bar{z}(\tilde{\mathbf{x}}_n))$$

- The size of the covariance matrix now becomes $2n \times 2n$
- One could create d pseudo response estimates at each x_i , resulting in inverting a matrix of size $(d+1)n \times (d+1)n$
- Similar problem for SKG

Approximation Schemes

- Well developed in spatial statistics and machine learning
 - Banerjee et al. (2015)
 - Rasmussen and Williams (2006)
- Reduced-rank approximations: emphasize long-range dependences
- Sparse approximations: emphasize short-range dependences

Figure 1: Posterior means and variances. Source: Shahriari et al. (2016)

Approximation-free?

Markovian Covariance Functions

Gaussian Markov Random Field (GMRF)

- ullet M is multivariate normal with sparsity specified on $oldsymbol{\Sigma}_{\mathsf{M}}^{-1}$
- A discrete model, using graph to describe Markovian structure
 - Given all its neighbors, node i is conditionally independent of its non-neighbors
 - E.g., $M(x_2) \perp (M(x_0), M(x_4))$, given $(M(x_1), M(x_3))$
 - $\Sigma_{\rm M}^{-1}(i,j) \neq 0 \iff i \text{ and } j \text{ are neighbors}$

• The sparsity can reduce necessary computation to $\mathcal{O}(n^2)$

Disadvantages

- Has no explicit expression for the covariances
- Cannot predict locations "off the grid"

$$\widehat{\mathsf{Z}}(\mathbf{x}_0) = \beta + \underbrace{\mathbf{\Sigma}_{\mathsf{M}}(\mathbf{x}_0, \cdot)}_{\substack{\mathsf{unknown}}} [\mathbf{\Sigma}_{\mathsf{M}} + \mathbf{\Sigma}_{\varepsilon}]^{-1} [\overline{\mathbf{z}} - \beta \mathbf{1}_n]$$

Markovian Covariance Function: Best of Two Worlds?

- Construct a class of covariance functions for which:
 - 1. Σ_{M} can be inverted analytically
 - 2. Σ_{M}^{-1} is sparse
- Explicit link between covariance function and sparsity

Definition (1-d MCF)

Let p and q be two positive continuous functions that satisfy p(x)q(y)-p(y)q(x)<0 for all x< y. Then, $k(x,y)=p(x)q(y)\mathbb{I}_{\{x\leq y\}}+p(y)q(x)\mathbb{I}_{\{x>y\}}$ is called a 1-d MCF.

- Brownian motion: $k_{\mathrm{BM}}(x,y) = x \mathbb{I}_{\{x \leq y\}} + y \mathbb{I}_{\{x > y\}}$
- Brownian bridge: $k_{\mathrm{BR}}(x,y) = x(1-y)\mathbb{I}_{\{x \leq y\}} + y(1-x)\mathbb{I}_{\{x > y\}}$
- OU process: $k_{\text{OU}}(x, y) = e^x e^{-y} \mathbb{I}_{\{x \le y\}} + e^y e^{-x} \mathbb{I}_{\{x > y\}}$

Markovian Covariance Function

• $\{x_1, \ldots, x_n\}$ are not necessarily equally spaced

Theorem (Ding and Z. 2018)

 K^{-1} is tridiagonal and its nonzero entries are

$$(\mathbf{K}^{-1})_{i,i} = \begin{cases} \frac{p_2}{p_1(p_2q_1 - p_1q_2)}, & \text{if } i = 1, \\ \frac{p_{i+1}q_{i-1} - p_{i-1}q_{i+1}}{(p_iq_{i-1} - p_{i-1}q_i)(p_{i+1}q_i - p_iq_{i+1})}, & \text{if } 2 \le i \le n-1, \\ \frac{q_{n-1}}{q_n(p_nq_{n-1} - p_{n-1}q_n)}, & \text{if } i = n, \end{cases}$$

and

$$(\mathbf{K}^{-1})_{i-1,i} = (\mathbf{K}^{-1})_{i,i-1} = \frac{-1}{p_i q_{i-1} - p_{i-1} q_i}, \quad i = 2, \dots, n.$$

Reduction in Complexity

Woodbury matrix identity

$$[\mathbf{\Sigma}_{\mathsf{M}} + \mathbf{\Sigma}_{\varepsilon}]^{-1} = \underbrace{\mathbf{\Sigma}_{\mathsf{M}}^{-1}}_{\mathrm{known}} + \underbrace{\mathbf{\Sigma}_{\mathsf{M}}^{-1}}_{\mathrm{sparse}} \left[\underbrace{\mathbf{\Sigma}_{\mathsf{M}}^{-1} + \mathbf{\Sigma}_{\varepsilon}^{-1}}_{\mathrm{sparse}} \right]^{-1} \mathbf{\Sigma}_{\mathsf{M}}^{-1}$$

• inversion: $\mathcal{O}(n^2)$

• multiplications: $\mathcal{O}(n^2)$

• addition: $\mathcal{O}(n^2)$

• It takes $\mathcal{O}(n^2)$ time to compute BLUP

$$\widehat{\mathsf{Z}}(\mathbf{x}_0) = \beta + \underbrace{\mathbf{\Sigma}_{\mathsf{M}}(\mathbf{x}_0, \cdot)}_{\mathsf{known}} [\mathbf{\Sigma}_{\mathsf{M}} + \mathbf{\Sigma}_{\varepsilon}]^{-1} [\overline{\mathbf{z}} - \beta \mathbf{1}_n]$$

• If the noise is negligible ($\Sigma_{\varepsilon} \approx 0$), then no numerical inversion is needed and computing BLUP is $\mathcal{O}(n)$!

Improvement in Stability

- 1. Σ_{M} can be made much better conditioned
- 2. Woodbury also improves numerical stability

$$[\boldsymbol{\Sigma}_{\mathsf{M}} + \boldsymbol{\Sigma}_{\varepsilon}]^{-1} = \boldsymbol{\Sigma}_{\mathsf{M}}^{-1} + \boldsymbol{\Sigma}_{\mathsf{M}}^{-1} \Big[\boldsymbol{\Sigma}_{\mathsf{M}}^{-1} + \boldsymbol{\Sigma}_{\varepsilon}^{-1}\Big]^{-1} \boldsymbol{\Sigma}_{\mathsf{M}}^{-1}$$

ullet The diagonal entries of $oldsymbol{\Sigma}_{arepsilon}^{-1}$ are often large

Uncertainty Quantification

Extension for d > 1

- Product form: $k(\mathbf{x}, \mathbf{y}) = \prod_{i=1}^{d} k_i(x^i, y^i)$
- Limitation: $\{x_1, \ldots, x_n\}$ must form a regular lattice
- Then, $K = \bigotimes_{i=1}^d K_i$ and $K^{-1} = \bigotimes_{i=1}^d K_i^{-1}$, preserving sparsity

Two-Dimensional Response Surfaces

Function Name	Expression
Three-Hump Camel	$Z(x,y) = 2x^2 - 1.05x^4 + \frac{x^6}{6} + xy + y^2$
Bohachevsky	$Z(x,y) = x^2 + 2y^2 - 0.3\cos(3\pi x) - 0.4\cos(4\pi y) + 0.7$

Prediction Accuracy

• Standardized RMSE =
$$\frac{\sqrt{\sum_{i=1}^{K} \left[\mathbf{Z}(\mathbf{x}_i) - \hat{\mathbf{Z}}(\mathbf{x}_i) \right]^2}}{\sqrt{\sum_{i=1}^{K} \left[\mathbf{Z}(\mathbf{x}_i) - K^{-1} \sum_{h=1}^{K} \mathbf{Z}(\mathbf{x}_h) \right]^2}}$$

Condition Number of $\Sigma_{\mathsf{M}} + \Sigma_{\varepsilon}$

• $C = \lambda_{\max}(\mathbf{K})/\lambda_{\min}(\mathbf{K})$ measures "closeness to singularity"

Scalability Demonstration

- 4-d Griewank func.: $Z(x) = \sum_{i=1}^4 \left(\frac{x^{(i)}}{20}\right)^2 10 \prod_{i=1}^D \cos\left(\frac{x^{(i)}}{\sqrt{i}}\right) + 10$
- Mean cycle time of a N-station Jackson network with D different types of arrivals (Yang et al. 2011): N = D = 4

$$\mathbb{E}[\mathrm{CT}_1] = \sum_{j=1}^{N} \frac{\delta_{1j}}{\mu_j \left[1 - \rho \left(\frac{\sum_{i=1}^{D} \alpha_i \delta_{ij} / \mu_j}{\max_h \sum_{i=1}^{D} \alpha_i \delta_{ih} / \mu_h} \right) \right]}$$

Computational Efficiency

Scalable Gradient Extrapolated

Stochastic Kriging

Enhancing Scalability of GESK with MCFs

- GESK creates an augmented set of response estimates for SK
- MCFs can be applied if the design points form a regular lattice of size n = n₁ × n₂ × · · · n_d

- Result in $2^d n$ points in the augmented dataset
- $\Sigma_{\rm M}$ has size $2^d n \times 2^d n$ but we can leverage the Kronecker product to reduce its inversion to inverting d much smaller matrices, each having size $2n_r \times 2n_r$

Numerical Illustration

- 4-dimensional Griewank function
- Can manage $n = 10^4$ design points

Conclusions

Remarks on MCFs

- Allow modeling association directly, while retaining sparsity in the precision matrix
- Improve the scalability of SK so that it can be used for simulation models with a high-dimensional design space
 - Reduce computational cost from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$ without approx.
 - Further reduce to $\mathcal{O}(n)$ if observations are noise-free
 - Enhance numerical stability substantially
- Limitation: design points must form a regular lattice, though not necessarily equally spaced

Remarks on Gradient Enhanced SK

- GESK (Qu and Fu, 2014) can easily benefit from MCFs
- But there are two issues
 - Extrapolation error is hard to characterize
 - Each design point needs (2^d 1) pseudo response estimates, a great deal of redundancy in using gradient info
- SKG (Chenn, Ankenman, and Nelson, 2013) does not incur such computational overhead, but requires calculating the gradient surface of the Gaussian process (on-going work)

Markovian covariances without approx.
v.s.
Good approx. for all covariances