Projet Axessim : Calcul de matrice d'impédance pour la simulation numérique des lignes de transmission multi-conducteur

Proposé par C. Giraudon, P. Helluy et T. Strub, avec J. Aghili, G. Dollé, N. Pham, A. Samake, A. Assmar

Semaine d'étude Maths-Entreprises

Strasbourg, le 27 juin 2014

Plan de la présentation l

- Introduction
- 2 Problème
- Cas des cables et des blindages
- Cas test
- 5 Conclusions et perspectives

2 / 23

- Introduction

Problème physique

Intro.

Calculer les tensions $U(z,\omega)=(u_1\cdots u_N)^T$ et les courants $I(z,\omega)=(I_1\cdots I_N)$ complexes dans un faisceau de conducteurs w_i $i=1\cdots N$. Les cables sont entourés d'un blindage w_0 . La forme du faisceau est fixée dans le plan (x, y) et invariante suivant z.

Exemple de section de cab

Ligne de transmission

Équation des lignes de transmissions $(j^2 = -1)$

$$\frac{\partial U}{\partial z} = ZI, \quad Z = R + j\omega L,$$
$$\frac{\partial I}{\partial z} = YU, \quad Y = G + j\omega C.$$

Cas test

Matrices : Impédance Z, Résistance R, Inductance L, Admittance Y, Conductance G, Capacité $C=L^-1$.

Propriétes des matrices :

- Symétrique
- Définie positive

Problème

Flux magnétique $\varphi(x,y)$.

Champ magnétique : ddrive d'un potentiel vecteur

$$B = \nabla \times (0, 0, \varphi)^T$$
.

et

$$\nabla \times B = (0,0,j_z)^T$$

avec

- $j_z(x, y)$: densité de courant suivant z
- $I_i = \int_{w} (x, y) dx dy$: courant

On a

$$-\nabla \varphi = \begin{cases} j_z \\ 0 & \text{sur } \Omega = w_0 \setminus \cup_i w_i, \end{cases} \tag{1}$$

Plan

- 2 Problème

Sous forme de matrice

On peut écrire

$$\varphi = \sum_{k} \phi_{k} \tilde{\varphi}_{k} \tag{2}$$

(3)

8 / 23

avec $ilde{arphi}$ est solution de problème suivante

$$\begin{cases} -\Delta ilde{arphi} = 0 \quad ext{sur } \Omega \ ilde{arphi} = \delta_{ii} \end{cases}$$

donc on a

$$\sum_{i} \phi_{j} \left(\int_{W_{i}} -\Delta \tilde{\varphi}_{j} \right) = I_{i} \tag{4}$$

ou bien

$$\sum_{i} \phi_{j} \left(\int_{\partial w_{i}} -\nabla \tilde{\varphi}_{j} \right) \cdot \mathbf{n} = I_{i} \tag{5}$$

en d'éduit

$$\sum M_{ii}\phi_i = I_i \quad \forall i \tag{6}$$

Projet Axessim ()

Calcul la matrice M

On a

$$M_{ij} = \int_{\partial w_i} \frac{\partial \varphi_i}{\partial n} \tag{7}$$

Properties de la matrice M

- Symétrique
- Définie positive
- Inversible

Ou bien

$$M\phi = I$$
 ou bien $\phi = LI$ où $L = M^{-}1$ (8)

Calcul la matrice M

Problème quand on a calculer directement l'intégrale : La matrice M n'est plus symétrique => solution : formulation faiblement

$$\int_{\Omega} -\Delta \varphi \psi = \int_{W} \nabla \varphi \psi - \int_{\partial W} \nabla \varphi \cdot n \psi = \int_{\partial W} \nabla \varphi \cdot n \tag{9}$$

avec $\psi \in H(w)$ satifait

$$\psi(z) = \begin{cases} 0 & \text{si } z \in w \\ 1 & \text{si } z \in \partial w \end{cases}$$
 (10)

Plan

- Introduction
- 2 Problèm
- 3 Cas des cables et des blindages
- Cas tes
- Conclusions et perspectives

Cas des cables et des blindages

- Blindage de rérérence w_0 et N1conducteurs $w_1 \cdots w_N 1$
- Chaque conducteur w; a NN; sous conducteurs dedans
- Chaque conducteur w; matrice d'inductance L_{int}^{i}
- Lext: matrice d'inductance des conducteurs extérieurs

Cas test

On obtient

$$\begin{bmatrix} \phi_{\text{ext}} \\ \tilde{\phi}_{\text{int}}^{1} \\ \vdots \\ \tilde{\phi}_{\text{int}}^{N_{\text{int}}} \end{bmatrix} = \begin{bmatrix} L_{\text{ext}} \\ L_{\text{int}}^{1} \\ \vdots \\ L_{\text{int}}^{N_{\text{int}}} \end{bmatrix} \begin{bmatrix} \tilde{I}_{\text{ext}} \\ I_{\text{int}}^{1} \\ \vdots \\ I_{\text{int}}^{N_{\text{int}}} \end{bmatrix}$$

en d'éduite

$$\begin{bmatrix} \phi_{\text{ext}} \\ \tilde{\phi}_{\text{int}} \end{bmatrix} = \begin{bmatrix} L_{\text{ext}} \\ L_{\text{int}} \end{bmatrix} \begin{bmatrix} \tilde{I}_{\text{ext}} \\ I_{\text{int}} \end{bmatrix}$$

 $(\tilde{\phi}_{int})$ potentiel intérieux calculé avec une référence sur les blindages)

Cas des cables et des blindages

Changement de variables

$$\phi_{int} = \tilde{\phi}_{int} + \delta^{T} \phi_{ext}, \tag{11}$$

avec δ : matrice de taille $N_{ext} imes N_{int}$ et

$$\delta(i,j) = \begin{cases} 1 & \text{ si le conducteur } j + N_{ext} \text{ est dans le conducteur } i, \\ 0 & \text{ sinon.} \end{cases}$$

De plus,

$$\phi_{\text{ext}} = L\tilde{l}_{\text{ext}} = L(l_{\text{ext}} - \delta l_{\text{int}})$$
 (13)

La matrice d'inductance globale

$$\left[\begin{array}{c} \phi_{\text{ext}} \\ \phi_{\text{int}} \end{array}\right] = L \left[\begin{array}{c} I_{\text{ext}} \\ I_{\text{int}} \end{array}\right]$$

avec

$$L = P_I^T \begin{bmatrix} L_{ext} & 0 \\ 0 & L_{int} \end{bmatrix} P_I, \qquad \begin{bmatrix} 1 & -\delta \\ 0 & 1 \end{bmatrix}$$

(12)

Plan

- Introductio
- 2 Problèm
- Cas des cables et des blindages
- 4 Cas test
- Conclusions et perspectives

Observation : Le modèle simple à deux niveaux avec peu de cables ne reproduit pas le problème.

Conclusions et perspectives

Nécessite d'étudier un problème un peu plus complexe :

Figure: Second blindage à deux niveaux

Plan d'attaque

Procédure d'assemblage :

- Calculer les matrices M du plus bas niveau vers le haut
 - Définir la géométrie (FF++)
 - M_{ij} nécessite d'introduire une certaine fonction ψ_j localisée autour de ∂w_i (pour obtenir une parfaite symétrie)
- Procédures d'inversions de matrices denses $(M \to L)$
- Assembler δ sur le niveau le plus haut puis la matrice globale (Non achevé)

TEST

Observations

En pratique, difficultés rencontrées :

- Comprendre la théorie
- S'assurer que M est bien symétrique :
 - FreeFem++ : Automatisation des conditions aux bords multiples
 - ψ_j doit être parfaitement localisée : défauts de symétrie constatés dans le cas de simples projections.
- Adapter le maillage.

Observations

- A tous les niveaux, M, L ont les propriétés attendues
 - Définies positive, $\kappa \simeq 15$
 - Symétriques

	Niv.1	Niv. 2	Niv.3
M_{ext}	_	-	-
L_{ext}	-	-	-

Table: Temps de calculs

Plan

- Introduction
- 2 Problèm
- Cas des cables et des blindages
- 4 Cas tes
- 5 Conclusions et perspectives

23 /

Bilan :

- AAA
- BBB
- CCC

Bilan:

- AAA
- BBB
- CCC

Perspectives:

- Cas général
- Problème global -> local
- Autres
- Modèles plus complexes