資料探勘:

概念與方法

一第五章一

第五章: 探勘頻繁樣式, 關聯與相互關係

- 基本概念與本章架構
- 有效率並具度量頻繁項目探勘方法
- 探勘不同類型關聯規則
- 從關聯探勘到相互關係分析
- ■限制式關聯探勘

基本概念: 頻繁樣式與關聯規則

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- 項目集 X = {x₁, ..., x_k}
- 尋找所有具有最小支持度與信賴度規則X→Y
 - **支持度, s,** 一個交易包含 X ∪ Y的機率
 - 信賴度, c, 一個交易同時包含 X 與 Y的條件機率

當 sup_{min} = 50%, conf_{min} = 50% 頻繁樣式: {A:3, B:3, D:4, E:3, AD:3} 關聯規則:

 $A \rightarrow D$ (60%, 100%) $D \rightarrow A$ (60%, 75%)

緊密與最大樣式

- 一個長樣式會包含龐大數目的子樣式, 例., $\{a_1, ..., a_{100}\}$ 包含 $(100^1) + (100^2) + ... + (100^0) = 2^{100} 1 = 1.27*10^{30}$ 子樣式!
- 解答: 探勘緊密與最大樣式
- 如果沒有任何一個項目集X的真母項目集 (proper superitemset) Y與項目集X有相同的支持個數,我們稱項目集X為 緊密 (proposed by Pasquier, et al. @ ICDT'99)
- 當項目集為頻繁項目集,而且沒有任何一個項目集的真母項目集為頻繁項目集,我們稱項目集為最大頻繁項目集 (proposed by Bayardo @ SIGMOD'98)
- 緊密樣式為頻繁樣式的無損化壓縮
 - 降低樣式與規則數目

第五章: 探勘頻繁樣式, 關聯與相互關係

- 基本概念與路線圖
- ■有效率並具度量頻繁項目探勘方法◆
- 探勘不同類型關聯規則
- 從關聯探勘到相互關係分析
- ■限制式關聯探勘

具量度頻繁項目集的探勘方法

- 頻繁樣式向下堆論性質
 - 一個頻繁項目集中非空集合的子項目集也是頻繁項目集
 - 如果 {beer, diaper, nuts} 為頻繁, {beer, diaper}也 是頻繁
 - 也就是說,每個交易包含 {beer, diaper, nuts} 也包含 {beer, diaper}
- 具量度性探勘方法: 三個主要方法
 - Apriori (Agrawal & Srikant@VLDB'94)
 - 頻繁樣式成長 (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - 垂直資料格式 (Charm—Zaki & Hsiao @SDM'02)

Apriori: 一個產生並測試後選項目的方法

- Apriori 修剪原則:任何一個不頻繁(k-1)-項目集,它不會是任 一個頻繁k-項目集的子集合 (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- 方法:
 - 一開始尋找頻繁1-項目集
 - 利用頻繁k-項目集產生長度 (k+1) 後選項目集
 - 將候選項目集與資料庫進行比較
 - 一直執行到沒有頻繁或候選項目集為止

The Apriori 範例

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup	
_	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
	{C, E}	2	

 C2
 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 C_2 $2^{\text{nd}} \text{ scan}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 Itemset {B, C, E}

 3^{rd} scan L_3

Itemset	sup
{B, C, E}	2

The Apriori 運算法則

```
運算法則:Apriori。根據候選產生並使用逐層的方式尋找頻繁項目集。
輸入:
   ■ D 一個交易資料庫;
   ■ min sup 為最小支持度。
輸出:L為D中頻繁項目集
方法:

 L<sub>1</sub> = 尋找 1-頻繁項目集

(2) for (k = 2; L_{k-1} \neq \phi; k++){
(3) C_{\nu} = \operatorname{apriorigen}(L_{\nu-1});
(4) for 每個交易 t ∈ D { // 檢視 D 為 了計算個數
          C_t = subset (C_k, t); // 找出t的子集合並且它為候選集
(5)
(6)
          每個候選c \in C,
(7)
            c.count++;
(8)
(9)
   L_k = \{c \in C_k \mid c.count \ ik \geq min\_sup\}
(10) }
(11) 傳回L = U_k L_k;
```

The Apriori 運算法則(Cont.)

```
程序 apriori_gen (L_{k-1}: 頻繁 (k-1)-項目集)
     for 每個項目集I_1 \in L_{k-1}
(1)
(2) for 每個項目集 I, ∈ L<sub>k-1</sub>
         \mathbf{if}(l_1[1] = l_2[1]) \wedge (l_1[2] = l_2[2]) \wedge \cdots \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1])
(3)
                                then {
             c = l_1 \bowtie l_2; // 結合步驟,產生候選
(4)
              if has_infrequent_subset (c, L_{k-1}) then
(5)
                delete c; // 刪除步驟:刪除沒有結果的候選
(6)
             else 將 c 加入C<sub>i</sub>;
(7)
(8)
(9)
     傳回 C_{\iota}
程序 procedure has_infrequent_subset (c:k-候選項目集:L_{k-1}:(k-1)-頻繁項目集) //
                使用先前知識
     for c 的每個(k-1)子集合 s
(1)
(2) if s \notin L_{k-1}then
(3)
            傳回 TRUE
     傳回 TALSE
(4)
```

不需產生候選項目集來尋找頻繁項目集

- 使用區域頻繁樣式, 從短樣式來產生長樣式
 - "abc" 為頻繁樣式
 - 找出所有包含 "abc"交易: DB|abc
 - "d" 為 DB|abc 區域頻繁樣式→ abcd 為頻繁樣式

從交易資料庫建立 FP-樹

表 5.2 利用條件基	礎樣式探勘 FP 樹
-------------	------------

項目	條件基礎樣式	條件 <i>FP</i> 樹	產生頻繁樣式
15	{{I2, I1:1}, {I2, I1, I3:1}}	(I2:2, I1:2)	{I2, I5:2}{I1, I5:2}
13	(12, 11.1), (12, 11, 13.1))	(12.2, 11.2)	{I2, I1, I5:2}
14	{{I2, I1:1}, {I2:1}}	(I2:2)	{I2, I4:2}
13	{{I2, I1:2}, {I2:2}, {I1:2}}	⟨I2:4, I1:2⟩, ⟨I1:2⟩	{I2, I3:4}, {I1,I3:4},
13	\ \(\frac{12}{12}, \text{11.2}\), \(\frac{12.2}{12}\), \(\frac{11.2}{11}\)	(12.4, 11.2/, (11.2/	{I2, I1, I3:2}
I1	{{I2:4}}	⟨I2:4⟩	{I2, I1:4}
I1	{{I2:4}}	⟨I2:4⟩	{I2, I1:4}

最小支持度=2

- 1. 尋找頻繁1-項目集(單一項目樣式)
- 2. 對頻繁樣式依照支持個 數遞減排序, f-list
- 3. 建立 FP-樹

使用垂直資料格式尋找頻繁項目集

- 如果資料格式記錄項目所在交易({項目:交易編號}),則 此種資料格式被稱為垂直資料格式
- 透過對每一對的頻繁單獨項目的交易編號進行交集得之
 - t(X) = t(Y): X 與 Y 都同時出現
 - t(X) ⊂ t(Y): 有交易 X 同時有交易 Y
- 使用差集合(Diffset)加速探勘
 - ■僅記錄不同交易編號
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = $\{T_2\}$
- Eclat/MaxEclat (Zaki et al. @KDD'97), VIPER(P. Shenoy et al.@SIGMOD'00), CHARM (Zaki & Hsiao@SDM'02)

第五章: 探勘頻繁樣式, 關聯與相互關係

- 基本概念與路線圖
- 有效率並具度量頻繁項目探勘方法
- 探勘不同類型關聯規則

- 從關聯探勘到相互關係分析
- 限制式關聯探勘
- 幺悤ㄠ吉

探勘多層次關聯規則

- 項目經常構成階層
- 彈性支持設定
 - 在較低層的項目會具較低支持
- 共享多維度探勘 (Agrawal & Srikant@VLB'95, Han & Fu@VLDB'95)

多層次關聯: 過濾多餘

多層次關聯規則探勘的副作用,就是在層與層之間產生許 多關聯規則,這些是因為概念架構祖先關係所造成。

Example

- 購買(X, "筆記型電腦")⇒購買(X, "HP印表機")
 [support = 8%, confidence = 70%]
- 購買(X, "IBM筆記型電腦")⇒購買(X, "HP印表機")[support = 2%, confidence = 72%]
- 第一個規則為第二規則祖先
- 當一個規則的支持度相當接近規則本身祖先規則的期望值時,則該規則是多餘的。

探勘多維度關聯

- 單一維度關聯規則:
 - 購買(X, "數位相機")⇒購買(X, "HP印表機")
- 多維度關聯規則: ≥ 2 維度或敘述
 - 維度間關聯規則 (有重複敘述)
 年龄(X, "20...29") △職業(X, "學生") ⇒購買(X, "筆記型電腦")
 - 混合維度關聯規則(重複敘述)
 年齡(X, "20...29") △購買(X, "筆記型電腦") →購買(X, "HP印表機")
- 類別屬性:類別屬性的值有限,而且在值與值之間並無特定大小順序存在
- 數值屬性:數值屬性的值有特定順序—離散化, 群組與梯度方

探勘數值關聯

- 將數值屬性轉變為類別資料方法
- 1. 根據預先定義概念階層進行各訂離散化(資料方塊方法)
- 2. 根據資料分佈進行動態離散化 (數量規則, 例., Agrawal & Srikant@SIGMOD96)
- 3. 群組: 距離式關聯規則 (例., Yang & Miller@SIGMOD97)
 - 單維度群組而後進行關聯

固定分割數值屬性

- 利用事先定義概念架構或是其他分割方法進行分割。
- 將數值屬性轉變為類別 資料。
- 資料方塊非常適合探勘.
- n-維度立方體的節點對 應至相關敘述集.
- 經由資料方塊探勘會比較快。

數值關聯規則

- 由Lent, Swami and Widom ICDE'97 提出
- 動態分割數值屬性的方法
 - 尋找最大信賴度關聯 規則或最短關聯規則
- 2-維數值式關聯規則: A_{quan1} ∧ A_{quan2} ⇒ A_{cat}
- 將滿足類別屬性成對的數值屬性對應至2-維方格, 接下來搜尋這些方格並進行群組產生關聯規則
- 範例

年龄 (X, "30...39") ∧收入 (X, "42 千...48千") ⇒購買 (X, "高解析 度電視")

第五章: 探勘頻繁樣式, 關聯與相互關係

- 基本概念與路線圖
- 有效率並具度量頻繁項目探勘方法
- 探勘不同類型關聯規則
- 從關聯探勘到相互關係分析

- ■限制式關聯探勘
- 終終結

有趣指標: 相互關係 (增益, Lift)

- 購買(X, "電腦遊戲")⇒購買(X, "影帶")[支持度40%,信賴度 66%]是誤導的
 - 因為購買影帶機率為75%,遠高於66%
- 增益 (lift) 是一個相互關係的簡單指標
- 增益值=P({電腦遊戲,影帶}) / (P({電腦遊戲}) x P({影帶}))=0.40/(0.60x0.75)=0.89

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

表5.7 2×2競爭表說明購買遊戲與影帶的交易

	遊戲	遊戲	$\Sigma_{\rm FI}$
影帶	4,000	3,500	7,500
影帶	2,000	500	2,500
$\sum_{t 0}$	6,000	4,000	10,000

lift 與 χ^2 是否為好的相互關係指標?

- "購買 核桃 ⇒ 購買牛奶 [1%, 80%]" 是誤導
 - 如果 85% 的客戶都購買牛奶
- 支持度與信賴度無法有效代表相互關係
- 許多有趣指標? (Tan, Kumar, Sritastava @KDD'02)

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

	牛奶	牛奶	$\Sigma_{ar{ar{ar{ar{ar{ar{ar{ar{ar{ar$
咖啡	mc	$\overline{m}c$	c
叻0啡	$m\overline{c}$	\overline{mc}	\overline{c}
$\Sigma_{\mathbb{N}}$	m	\overline{m}	Σ

$$all_conf = \frac{\sup(X)}{\max_item_\sup(X)}$$

$$\cos ine(A,B) = \frac{P(A \cup B)}{\sqrt{P(A) \times P(B)}}$$

資料集	mc	$\overline{m}c$	$m\overline{c}$	mc	all_conf.	cosine	lift	χ^2
A_1	1,000	100	100	100,000	0.91	0.91	83.64	83,452.6
A_2	1,000	100	100	10,000	0.91	0.91	9.26	9,055.7
A_3	1,000	100	100	1,000	0.91	0.91	1.82	1,472.7
A_4	1,000	100	100	0	0.91	0.91	0.99	9.9
\boldsymbol{B}_1	1,000	1,000	1,000	1,000	0.50	0.50	1.00	0.0
C_1	100	1,000	1,000	100,000	0.09	0.09	8.44	670.0
C_2	1,000	100	10,000	100,000	0.09	0.29	9.18	8,172.8
C_3	1	1	100	10,000	0.01	0.07	50.0	48.5

Data Mining: Concepts and Techniques

第五章: 探勘頻繁樣式, 關聯與相互關係

- 基本概念與路線圖
- 有效率並具度量頻繁項目探勘方法
- 探勘不同類型關聯規則
- 從關聯探勘到相互關係分析
- 限制式關聯探勘 —
- | 終結

限制式關聯探勘

- 知識類型限制:
 - 如關聯或相互關係.
- 資料限制 使用類似 SQL查詢
- 維度/層限制
 - 指定所需資料集的維度或是概念架構的某些層
- 規則限制
 - 小銷售 (price < \$10) 引發 大銷售 (sum > \$200)
- 有趣限制
 - 有效規則: 最小支持度≥ 3%, 最小信賴度≥ 60%

限制推移的反一致性

- 反一致性
 - 任何一個項目集只要它不滿足條件,那 包含它所有的超集合也不會滿足條件
 - sum(S.Price) ≤ v 具反一致性
 - sum(S.Price) ≥ v 不具是反一致性
- 例. C: range(S.profit) ≤ 15 具反一致性
 - 當項目及 *ab 違反* C
 - 所有 *ab* 超集合也違反C

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit	
а	40	
b	0	
С	-20	
d	10	
е	-30	
f	30	
g	20	
h	-10	

限制推移的一致性

TDB (min_sup=2)

- 一致性
 - 任何一個項目集只要它滿足條件,那 包含它所有的超集合也會滿足條件
 - sum(S.Price) ≥ v 具一致性
 - min(S.Price) ≤ v 具一致性
- 例. C: range(S.profit) ≥ 15
 - 項目集 *ab 滿足* C
 - 所有 ab 超集合也會滿足C

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit	
a	40	
b	0	
С	-20	
d	10	
е	-30	
f	30	
g	20	
h	-10	

簡明

■ 簡明:

- 假設 $A_{1,}$ 滿足簡明限制 C的項目集, 則任何滿足C的集合 S一定根據 A_{1} , 也就是說., S包含 A_{1} 的子集合
- 想法: 不需檢視交易資料庫, 項目集 5 是否滿足限制 C 可由項目選擇來決定
- min(S.Price) ≤ v 具簡明
- sum(S.Price) ≥ v 不具簡明
- 最佳化: 如果 C 具簡明, C 為可推移事先計算

轉換嚴格限制

- 藉由適當排序將嚴格限制轉換為至反一致 或一致
- 例 C: avg(S.profit) ≥ 25
 - 將項目值遞減排序
 - <a, f, g, d, b, h, c, e>
 - 如果項目 *afb* 違反 C
 - afbh, afb* 也違反C
 - 變成反一致!

TDB (min_sup=2)

	· <u> </u>
TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit	
а	40	
b	0	
С	-20	
d	10	
е	-30	
f	30	
g	20	
h	-10	

限制式探勘

限制	反一致	一致	簡明
$v \in S$	no	yes	yes
$S \supseteq V$	no	yes	yes
$S \subseteq V$	yes	no	yes
$min(S) \le v$	no	yes	yes
$min(S) \ge v$	yes	no	yes
$max(S) \le v$	yes	no	yes
$max(S) \ge v$	no	yes	yes
$conut(S) \le v$	yes	no	weakly
$conut(S) \ge v$	no	yes	weakly
$sum(S) \le v (\forall a \in S, a \ge 0)$	yes	no	no
$sum(S) \ge v (\forall a \in S, a \ge 0)$	no	yes	no
$range(S) \le v$	yes	no	no
$range(S) \ge v$	no	yes	no
$avg(S) \theta v, \theta \in \{\leq, \geq\}$	convertible	conertible	no
$support(S) \ge \xi$	yes	no	no
$support(S) \le \xi$	no	yes	no
$all_confidence(S) \ge \xi$	yes	no	no
$all_confidence(S) \le \xi$	no	yes	no

第五章: 探勘頻繁樣式, 關聯與相互關係

- 基本概念與路線圖
- 有效率並具度量頻繁項目探勘方法
- 探勘不同類型關聯規則
- 從關聯探勘到相互關係分析
- 限制式關聯探勘
- 總結

頻繁樣式探勘:總結

- 頻繁樣式探勘—資料探勘中一項重要工作
- 具量度性頻繁樣式探勘方法
 - Apriori (產生候選並測試)
 - 映射式 (FPgrowth, CLOSET+, ...)
 - 垂直格式方法 (CHARM, ...)
- 探勘不同規則與樣式
- 限制式探勘