WSI cw 2

W tabelach, kolorem niebieskim oznaczyłem pomiary z najniższą średnią wartością.

Optymalizacja funkcji f4

Badanie wpływu parametru μ (liczba osobników w populacji)

Początkowe wartości parametrów:

Liczba uruchomień	mu	sigma	rozmiar elity	budżet
50	20	3	1	10 000

μ	min	śr	std	max
10	402,071	418,082	23,483	494,565
20	403,232	426,725	33,989	558,816
40	406,127	452,672	49,085	617,076

Wnioski: wraz ze wzrostem rozmiaru popoulacji, zmniejsza się liczba operacji gdyż mamy ograniczony budżet, który jest określony wzorem:

$$liczba\,iteracji = rac{bud\dot{z}et}{\mu}$$

Stąd algorytm "zatrzymuje" się na osobnikach o (średnio) gorszych wartościach funkcji celu. Natomiast najlepsze osobniki osiągają zbliżone wartości. Najlepsze rozwiązanie uzyskano dla $\,\mu=10.\,$

Badanie parametru σ (siła mutacji)

Liczba uruchomień	mu	rozmiar elity	budżet
50	10	1	10 000

σ	min	śr	std	max
10	410,766	428,267	27,398	531,545
5	404,737	412,916	13,978	483,454
2	401,403	411,728	17,059	486,083
1	400,204	423,924	31,457	520,346

Liczba uruchomień	mu	rozmiar elity	budżet
50	20	1	10 000

σ	min	śr	std	max
10	408,771	442,164	38,744	589,370
5	406,533	431,913	32,970	514,710
2	402,355	429,763	37,283	554,038
1	403,932	453,564	38,477	579,882

Wnioski: im większa wartość parametru σ tym bardziej rozwiązanie skupia się na eksploracji przestrzeni przeszukiwań. Natomiast im mniejsza wartość tego parametru, tym bardziej rozwiązanie skupia się na eksploatacji. Dla $\mu=10$ najlepsza wartość(średnia) została znaleziona dla $\sigma=2$ choć minimalny wynik został znaleziony dla $\sigma=1$. Natomiast dla $\mu=20$ najlepsza wartość (średnia) została znaleziona dla $\sigma=2$. Wyniki minimalne zależą od punktu startowego dlatego lepszą miarą są wyniki średnie połączone z odchyleniem standardowym

Badanie rozmiaru elity

Początkowe wartości parametrów:

Liczba uruchomień	mu	sigma	budżet
50	10	2	10 000

rozmiar elity	min	śr	std	max
1	400,779	419,358	27,708	507,282

rozmiar elity	min	śr	std	max
2	401,606	418,477	24,423	496,152
5	401,222	418,499	25,109	480,490
7	401,147	416,885	25,429	498,983

Liczba uruchomień	mu	sigma	budżet
50	20	2	10 000

rozmiar elity	min	śr	std	max
1	401,818	425,161	32,623	531,462
4	402,369	425,651	34,913	568,283
10	400,821	422,212	28,059	503,467
15	401,994	418,008	24,905	513,481

Wnioski: dla $\mu=10\ i\ \sigma=2$ wartości średnie i minimalne są bardzo zbliżone, stąd rozmiar elity ma mały wpływ na rozwiązanie przy zadanych wartościach parmetrów. Analogicznie dla $\mu=20\ i\ \sigma=2$. Oznacza to że rozwiązanie ma charakter bardziej eksploracyjny, gdyż zwiększanie rozmiaru elity nie wpływa na zwiększenie nacisku selektywnego.

Optymalizacja funkcji f5

Badanie wpływu parametru μ (liczba osobników w populacji)

Początkowe wartości parametrów:

Liczba uruchomień	mu	sigma	rozmiar elity	budżet
50	20	2	1	10 000

μ	min	śr	std	max
5	545,817	622,533	40,641	722,880
10	541,862	599,249	33,154	689,294
30	534,762	586,127	28,309	648,653
40	550,571	581,346	18,288	635,190

μ	min	śr	std	max
45	532,886	578,609	21,821	625,459
50	537,479	580,910	20,635	632,562
55	528,139	576,781	25,420	623,449
60	532,444	577,473	19,830	617,574
70	541,727	581,295	21,210	623,361

Wnioski: dla wartości $\mu=55$ osiągnięto najniższy średni wynik, wraz ze zwiększaniem parametru μ zwiększamy liczbę osobników, zmniejszając tym samym liczbę iteracji. Wynika stąd, że dla zadanych ograniczeń (budżet) i dla danego problemu (funkcja f5) ważniejsza jest większa większa liczba osobników niż większa liczba iteracji.

Badanie parametru σ (siła mutacji)

Liczba uruchomień	mu	rozmiar elity	budżet
50	45	1	10 000

σ	min	śr	std	max
20	546,282	578,554	14,221	633,535
10	547,317	572,981	16,775	629,625
5	546,059	576,916	19,791	641,119
3	542,061	582,559	24,608	664,676
1	523,114	570,640	23,842	617,882

Liczba uruchomień	mu	rozmiar elity	budżet
50	20	1	10 000

σ	min	śr	std	max
20	540,791	565,441	12,551	590,467
10	538,355	564,929	12,946	609,056
7	533,805	562,833	15,126	601,331

σ	min	śr	std	max
4	526,694	578,212	22,649	621,771
2	534,790	595,219	30,755	655,743

Wnioski:

dla $\mu=45$ średnie wartości dla $\sigma=1$ oraz $\sigma=10$ są bardzo zbliżone z korzyścią dla pierwszej wartości.

dla $\mu=20$ najlespza średnia wartość jest dla $\sigma=7$. Warto zaznaczyć że dla większej liczby iteracji, z większą wartością parametru $5 \le \sigma \le 10$ algorytm jest w stanie znaleźć lepsze rozwiązanie niż dla ($\mu=45$ i $\sigma=1$). Parametry μ i σ są zależne od siebie i wpływają na jakość rozwiązania. Przy algorytmie skupiającym się na eksploatacji i większej liczbie osobników w populacji otrzymujemy niewiele gorsze rozwiązania co dla algorytmu skupiającego się na eksploracji ze zmniejszoną liczbą osobników w populacji.

Badanie rozmiaru elity

Początkowe wartości parametrów:

Liczba uruchomień	mu	sigma	budżet
50	45	3	10 000

rozmiar elity	min	śr	std	max
1	527,850	580,746	25,692	630,851
5	538,853	577,353	21,365	631,949
10	515,702	577,276	23,383	622,033
20	532,886	585,081	25,621	650,162

Liczba uruchomień	mu	sigma	budżet
50	20	7	10 000

rozmiar elity	min	śr	std	max
1	538,955	565,638	12,418	597,568
3	529,111	564,042	14,805	599,894

rozmiar elity	min	śr	std	max
5	535,860	562,064	12,081	589,675
8	540,587	570,961	19,489	641,601
10	532,283	563,880	16,468	602,555
11	529,970	565,942	15,344	609,056

Wykres przedstawia kolumnę z średnimi wartościami rozwiązań w zależności od rozmiaru elity dla $\mu=20$ i $\sigma=7$. Czerwoną linią oznaczono wartość y=562,064

Wnioski: najlepsze wartości uzyskano dla rozmiaru elity równego 10 (22% populacji o rozmiarze $\mu=45$) oraz dla rozmiaru elity równej 5 (25% populacji o rozmiarze $\mu=20$). Dla obu przypadków nie są to jedyne wartości o dobrej średniej bo dla innych rozmiarów elit wartości średnie są bardzo zbliżone (zostały one zaznaczone kolorem zielonym).

Wnioski ogólne:

Dla każdego problemu, należy badać inne wartości parametrów, gdyż są one zależne od siebie i nie ma dla nich uniwersalnych wartości. Należy odnotować że można zauważyć wzrost wartości w otrzymywanych wynikach lecz nie można przesadzić gdyż później następuje pogorszenie wyników.