Examen Mundial de Matemática Discreta II Curso 2005-2006

Nombre v apellidos:	Grupo:
- · · · · · · · · · · · · · · · · ·	

- 1. Clasifique los siguientes enunciados en verdadero (V) o falso (F) justificando adecuadamente en cada caso:
 - ____ Todo camino cerrado de longitud impar contiene un ciclo.
 - ____ Si en G existe un emparejamiento perfecto entonces para todo $S \subseteq V(G)$ se cumple que $I(G-S) \leq |S|$.
 - Nota: I(G) representa el número de componentes conexas con cantidad impar de vértices del grafo G.
 - ____ Si G es un grafo de n vértices entonces $\alpha(G) \geq \frac{n}{\Delta(G)+1}$, donde $\alpha(G)$ denota el número de independencia del grafo G.
- 2. Demuestre que si G es un grafo conexo donde todo vértice tiene grado par entonces E(G) puede ser particionado en ciclos disjuntos.
- 3. Sea G un grafo conexo de n vértices. Demuestre que es posible etiquetar sus vértices como x_1, x_2, \ldots, x_n de modo que para todo $i = \overline{1, n}$ el subgrafo inducido por el conjunto de vértices x_1, x_2, \ldots, x_i es conexo.
- 4. Demuestre que la siguiente función es primitiva recursiva:

$$f: \mathbb{N} \to \mathbb{N}$$

$$f(n) = \begin{cases} 1 & \text{Si } n \text{ es la suma de dos cuadrados perfectos.} \\ 0 & \text{En otro caso.} \end{cases}$$

5. Describa el lenguaje sobre el alfabeto {a, b, c} que reconoce la máquina de Turing cuyo diagrama de estados se muestra a continuación:

