

Непараметрическое оценивание. Бутстреп

Центр биоэлектрических интерфейсов, 21 ноября 2018 г.

Денис Деркач, Влад Белавин

Оглавление

Непараметрическое оценивание

Доверительная трубка для функции регрессии Многомерный случай

Непараметрический бутстреп

Стандартная постановка задачи Идея бутстрепа

Алгоритм

Параметрический бутстреп

Доверительное оценивание на основе бутстрепа

Нормальный интервал Центральный интервал

Метод складного ножа

Непараметрическое

оценивание

MSE, функция риска

Пусть в точке x_0 построена оценка $\hat{p}_n(x_0)$ плотности. Рассматривая квадратичную функцию потерь, приходим к следующему понятию.

Определение

Mean Square Error:

$$MSE(\hat{p}_n, p; x_0) = \mathbb{E}_p[(\hat{p}_n(x_0) - p(x_0))^2].$$

MISE

Если же построена оценка $\hat{p}_n(x) \, \forall x \in \mathbb{R}$, то

Определение

Mean Integrated Squared Error:

$$MISE(\hat{p}_n, p) = \mathbb{E}_p \left[\int_{\mathbb{R}} (\hat{p}_n(x) - p(x))^2 dx \right].$$

Bias

Определение

Смещение (bias)

$$bias(x_0) = \mathbb{E}_p \hat{p}_n(x_0) - p(x_0)$$

Разложение ошибки

Лемма

$$MSE(\hat{p}_n, p, x_0) = bias^2(x_0) + Var_p \hat{p}_n(x_0)$$

Лемма

$$MISE(\hat{p}_n, p) = \int_{\mathbb{R}} bias^2(x)dx + \int_{\mathbb{R}} Var_p \hat{p}_n(x)dx$$

Пусть необходимо построить доверительные интервалы для p. Для этого будем использовать гистограмму $\hat{p}_n(x)$, определенную ранее.

Определим

$$\overline{p_n}(x)=\mathbb{E}\hat{p}_n(x)=rac{\int_{\Delta_j}p(u)du}{h}$$
 для $x\in\Delta_j$.
По сути, $\overline{p_n}$ - "гистограммное" усреднение плотности p .

Определение

Пара функций $(p_-(x), p_+(x))$ является $1 - \alpha$ доверительной областью (трубкой), если для любого x:

$$\mathbb{P}_p\left(p_-(x) \le \overline{p_n}(x) \le p_+(x)\right) \ge 1 - \alpha$$

Теорема

Пусть M=M(n) - число ячеек в гистограмме \hat{p}_n , причем $M(n)\to\infty$ и $\frac{M(n)\log(n)}{n}\to\infty$ при $n\to\infty$.

Определим

$$p_{-}(x) = (\max{\{\sqrt{\hat{p}_n(x)} - C, 0\}})^2, p_{+}(x) = (\sqrt{\hat{p}_n(x)} + C)^2,$$

где
$$C=rac{1}{2}z_{rac{lpha}{2M}}\sqrt{rac{M}{n(b-a)}}$$

Тогда $(p_-(x),p_+(x))$ является 1-lpha доверительным интервалом.

Из центральной предельной теоремы

$$\frac{\nu_j}{n} = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{x_i \in \Delta_j\} \sim \mathcal{N}\left(\int_{\Delta_j} p(x)dx, \frac{\int_{\Delta_j} p(x)dx(1-\int_{\Delta_j} p(x)dx)}{n}\right)$$

Согласно дельта-методу
$$\sqrt{\frac{\nu_j}{n}} \sim \mathcal{N}\left(\sqrt{\int\limits_{\Delta_j} p(x)dx}, \frac{1}{4n}\right)$$
. Более того, можно показать, что $\sqrt{\frac{\nu_j}{n}}$ приблизительно независимы. Тогда $2\sqrt{n}\left(\sqrt{\frac{\nu_j}{n}}-\sqrt{\int\limits_{\Delta_j} p(x)dx}\right) pprox \xi_j$, где $\xi_0,\dots,\xi_{M-1}\sim \mathcal{N}(0,1)$.

Доверительная трубка

$$A = \{p_{-}(x) \le \overline{p_{n}}(x) \le p_{+}(x) \forall x\} =$$

$$= \{\sqrt{p_{-}(x)} - c \le \sqrt{\overline{p_{n}}(x)} \le \sqrt{p_{+}(x)} + c \forall x\} =$$

$$= \{\max_{x} |\sqrt{\hat{p}(x)} - \sqrt{\overline{p_{n}}(x)}| \le c\}$$

Тогда
$$\mathbb{P}(A^c) = \mathbb{P}\{\max_x | \sqrt{\hat{p}_n(x)} - \sqrt{\overline{p_n}(x)}| > c\} = \mathbb{P}\left\{\max_{j=\overline{0,M-1}} \left| \sqrt{\frac{\nu_j}{nh}} - \sqrt{\frac{\Delta_j}{nh}} \right| > c\right\} \approx \mathbb{P}\left\{\max_{j=\overline{0,M-1}} \frac{|\xi_j|}{2\sqrt{nh}} > \frac{z_{\frac{\alpha}{2n}}}{2}\sqrt{\frac{M}{n(b-a)}}\right\} = \mathbb{P}\{\max_{j=\overline{0,M-1}} |\xi_j| > z_{\frac{\alpha}{2M}}\} \leq \sum_{j=0}^{M-1} \mathbb{P}\{|\xi_j| > z_{\frac{\alpha}{2M}}\} = \sum_{j=0}^{M-1} \frac{\alpha}{M} = \alpha,$$

т.е. для предъявленных $p_-(x), p_+(x)$ выполнено определение доверительной трубки.

Комментарии о доверительных трубках

- Важным условием для предыдущего вывода является наличие большого количества семплов n. В случае малого количества семплов ситуация может отличаться, в зависисости от использованного метода оценки.
- > Разные отрасли используют разные определения ширины доверительной трубки (от 68% до 100%).

Ядерная оценка плотности

Позволяет получить более гладкие по сравнению с гистограммной оценки, быстрее сходящиеся к плотности.

Определение

Ядро - функция K такая, что

$$K(x) \ge 0, \int\limits_{\mathbb{R}} K(x)dx = 1, \int\limits_{\mathbb{R}} xK(x)dx = 0, \sigma_K^2 \equiv \int\limits_{\mathbb{R}} x^2K(x)dx$$

Ядерная оценка плотности

Определение

Ядерная оценка плотности имеет вид:

$$\hat{p}_n(x) = rac{1}{nh} \sum_{i=1}^n K\left(rac{x-x_i}{h}
ight), h -$$
ширина ядра

Виды ядер

Examples

- **◄** $K(x) = \frac{1}{2} \mathbb{I}\{|x| < 1\}$ прямоугольное ядро
- $\blacktriangleleft K(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$ Гауссовское ядро
- $lacktriangledown K(x) = rac{3}{4}(1-x^2)\mathbb{I}\{|x|<1\}$ ядро Епанечникова

Далее мы будем рассматривать только гладкие ядра.

Примеры ядер

Вид ядерной функции K влияет на "качество" оценки не так сильно, как выбор ширины ядра h.

Теорема

$$MISE(\hat{p}_n, p) \approx \frac{1}{4} \sigma_K^4 h^4 \int_{\mathbb{R}} (p''(x))^2 dx + \frac{1}{nh} \int_{\mathbb{R}} (K(x))^2 dx$$

Минимум достигается при $h = h^*$:

$$h^* = \left(\frac{1}{n} \frac{\int\limits_{\mathbb{R}} (K(x))^2 dx}{\left(\int\limits_{\mathbb{R}} x^2 K(x) dx\right)^2 \left(\int\limits_{\mathbb{R}} p''(x))^2 dx\right)}\right)^{\frac{1}{5}}$$

При этом
$$MISE(\hat{p}_n,p) = O\left(n^{-\frac{4}{5}}\right)$$

Воспользуемся bias-variance decomposition:

$$bias(x) = \mathbb{E}_{p}\hat{p}_{n}(x) - p(x) = \int_{\mathbb{R}} \left(\frac{1}{nh} \sum_{i=1}^{n} K(\frac{x-x_{i}}{h})\right) p(x_{1}) \dots p(x_{n}) dx_{1} \dots dx_{n} - \frac{1}{n} \sum_{i=1}^{n} \int_{\mathbb{R}} K(z) p(x) dz \approx \int_{\mathbb{R}} K(z) [-p'(x)zh + p''(x)\frac{(zh)^{2}}{2}] dz = \frac{1}{2} \sigma_{K}^{2} h^{2} p''(x)$$

$$\int_{\mathbb{R}} (bias(x))^{2} dx = \frac{1}{4} \sigma_{K}^{4} h^{4} \int_{\mathbb{R}} [p''(x)]^{2} dx$$

$$\int_{\mathbb{R}} \mathbb{V} ar_p \hat{p}_n(x) dx = \int_{\mathbb{R}} \mathbb{V} ar_p \left[\frac{1}{nh} \sum_{i=1}^n K(\frac{x-x_i}{h}) dx \right] \\
\frac{1}{(nh)^2} \sum_{i=1}^n \int_{\mathbb{R}} \mathbb{V} ar_p K(\frac{x-x_i}{h}) dx \le \frac{1}{(nh)^2} \sum_{i=1}^n \int_{\mathbb{R}} \mathbb{E}_p K(\frac{x-x_i}{h})^2 dx = \\
\frac{1}{(nh)^2} \sum_{i=1}^n \int_{\mathbb{R}} \int_{\mathbb{R}} K(\frac{x-x_i}{h})^2 p(x_i) dx_i dx = \\
\frac{1}{(nh)^2} \sum_{i=1}^n \int_{\mathbb{R}} p(x_i) \int_{\mathbb{R}} K(\frac{x-x_i}{h})^2 dx dx_i = \\
\frac{1}{(nh)^2} \sum_{i=1}^n \int_{\mathbb{R}} p(x_i) dx_i h \int_{\mathbb{R}} K^2(z) dz = \frac{1}{nh} \int_{\mathbb{R}} K^2(z) dz$$

Минимум $MISE(\hat{p}_n,p)$ достигается в некотором h^* .

Подставляя h^* в \hat{p}_n , получаем, что $MISE = O(n^{-\frac{4}{5}})$, т.е. сходимость ядерной оценки лучше, чем у гистограммы. Можно показать, что при достаточно общих условиях нельзя получить скорость лучше, чем $n^{-\frac{4}{5}}$.

Как и в случае с гистограммной, при больших h имеет место oversmoothing, а при маленьких - undersmoothing из-за bias-variance tradeoff.

Доверительный интервал

Определим $\overline{p_n}(x)=\mathbb{E}\hat{p}_n(x)=\int\limits_{\mathbb{R}}\frac{1}{h}K(\frac{x-u}{h})p(u)du$. Допустим, что $supp(p)\subset (a,b)$.

Тогда определим $(1-\alpha)$ доверительную трубку.

$$p_{-}(x) = \hat{p}_{n}(x) - \frac{z_{\alpha}}{\sqrt{n}}s(x),$$

$$p_{+}(x) = \hat{p}_{n}(x) + \frac{z_{\alpha}}{\sqrt{n}}s(x).$$

Где
$$s^2(x)=\frac{1}{n-1}\sum_{i=1}^n[Y_i(x)-\overline{Y_n}(x)]^2, Y_i(x)=\frac{1}{h}K(\frac{x-X_i}{h}),$$
 $z_{\alpha}=\Phi^{-1}\left(\frac{1+(1-\alpha)^{\frac{w}{b-a}}}{2}\right), \Phi-$ функция стандартного нормального распределения. w - эффективная ширина ядра.

Доверительный интервал для усредненной плотности

Ядерная оценка плотности: многомерный случай

Пусть теперь данные многомерные, то есть i-ое наблюдение - вектор размерности d:

$$X_i = [X_i^1, \dots X_i^d]^T.$$

Пусть $h = [h_1, \dots, h_d]^T$ - вектор ширины ядра вдоль каждого измерения.

Тогда:

$$\hat{p}_n(x) = \frac{1}{nh_1 \cdot \dots \cdot h_d} \sum_{i=1}^n \left[\prod_{j=1}^d K\left(\frac{x_j - X_i^j}{h_j}\right) \right],$$

где $x = [x_1, \dots, x_d]^T$ — произвольная точка в \mathbb{R}^d

Ядерная оценка плотности: многомерный случай

Для такой оценки риск

$$\begin{split} MISE(\hat{p}_n,p) \approx \\ \frac{1}{4}\sigma_K^4 \left[\sum_{j=1}^d h_j^4 \int\limits_{\mathbb{R}^d} p_{jj}^2(x) dx + \sum_{j \neq k} h_j^2 h_k^2 \int\limits_{\mathbb{R}^d} p_{jj}(x) p_{kk}^2(x) dx \right] + \\ \frac{\left(\int\limits_{\mathbb{R}^d} K^2(x) dx \right)^d}{n h_1 \cdot \ldots \cdot h_d}, \\ \text{где } p_{jj}(x) = \frac{\partial^2 p(x)}{\partial x_j^2} \end{split}$$

Оптимальная ширина ядра $h_i^* \approx c n^{-\frac{1}{4+d}}$

При этом риск имеет порядок: $MISE(\hat{p}_n, p) = O(n^{-\frac{4}{4+d}})$.

Проклятие размерности

Оптимальный порядок риска $O(n^{-\frac{4}{4+d}})$, т.е. наблюдаем "проклятье размерности" - при росте d скорость сходимости к истинной плотности падает.

Рассмотрим таблицу объёмов выборки, необходимых для того, чтобы средний квадрат ошибки в нуле был меньше 0.1 в зависимости от размерности наблюдений в случае многомерной нормальной плотности и оптимальной ширины ядра:

d	1	2	3	4	5	6	7	8	9
n	4	19	67	223	768	2790	10700	43700	187000

где d — размерность данных, n — необходимый объём выборки.

Пусть имеется n наблюдений: $(X_1, Y_1) \dots (X_n, Y_n)$, сгенерированных из совместной плотности p(x, y).

Наблюдения связаны соотношением:

$$Y_i = r(X_i) + \varepsilon_i, \varepsilon_i - i.i.d, \mathbb{E}\varepsilon_i = 0, \mathbb{V}ar\varepsilon_i = \sigma^2$$

Необходимо оценить функцию регрессии:

$$r(x) = \mathbb{E}(Y|X=x) = \int\limits_{\mathbb{R}} y p(y|x) dy = \int\limits_{\mathbb{R}}^{\int\limits_{\mathbb{R}} y p(x,y) dy} = \int\limits_{\mathbb{R}} y p(x,y) dy} = \int\limits_{\mathbb{R}} y p(x,y) dy}$$
.

Определение

Пусть $\hat{p}_n(x)$ и $\hat{p}_n(x,y)-$ ядерные оценки плотностей по выборкам $\{X_1,\ldots,X_n\}$ и $\{(X_1,Y_1)\ldots,(X_n,Y_n)\}$ соответственно с ядром K. Тогда, если $\hat{p}_n(x)\neq 0$, то

$$\hat{r}_n(x) = \frac{\int\limits_{\mathbb{R}} y \hat{p}_n(x, y) dy}{\hat{p}_n(x)}$$

.

Для оценки r(x) используется оценка Надарая-Ватсона:

Определение

$$\hat{r}_n^{NW} = \sum_{i=1}^n w_i(x) Y_i$$
, где $w_i = \frac{K(\frac{x-X_i}{h})}{\sum\limits_{j=1}^n K(\frac{x-X_j}{h})}$, K заданная ядерная функция

Таким образом, это взвешенная сумма Y_i , где точки близкие к х имеют больший вес.

NB: оценку Надарая-Ватсона можно применять и в случае, когда X_i — фиксированные и детерминированные числа (например, $X_i = \frac{i}{n}$).

Перейдём к риску и выбору ширины ядра.

Теорема

$$\begin{split} MISE(\hat{r}_n^{NW},r) \approx \\ \approx & \frac{h^4}{4} (\int\limits_{\mathbb{R}} x^2 K^2(x) dx)^4 \int (r''(x) + 2r'(x) \frac{p'(x)}{p(x)})^2 dx + \\ \frac{1}{h} \int\limits_{\mathbb{R}} \frac{\sigma^2 \int\limits_{\mathbb{R}} K^2(x) dx}{np(x)} dx \end{split}$$

Оптимальная ширина ядра: $h^* = cn^{-\frac{1}{5}}$

Порядок риска при этой ширине: $MISE(\hat{r}_{n}^{NW},r)=O(n^{-\frac{4}{5}})$

Опять же, h^* нельзя выписать на практике, так как она зависит от неизвестных r(x), p(x).

Поэтому минимизируют по h оценку риска

$$\hat{\mathcal{J}}(h) = \sum_{i=1}^{n} (Y_i - \hat{r}_{(-i)}^{NW}(X_i))^2,$$

где $\hat{r}^{NW}_{(-i)}$ - оценка Надарайя-Ватсона, построенная по выборке, из которой удалено наблюдение (X_i,Y_i)

Теорема

$$\hat{\mathcal{J}}(h) = \sum_{i=1}^{n} \left(Y_i - \hat{r}_n^{NW}(X_i) \right)^2 \frac{1}{\left(1 - \frac{K(0)}{\sum_{j=1}^{n} K\left(\frac{X_i - X_j}{h}\right)} \right)^2}$$

Как и в случае с гистограммной и ядерной оценкой плотности, наблюдается bias-variance tradeoff: при больших h имеет место oversmoothing - оценка слишком сглажена, а при маленьких h имеет место undersmoothing - оценка излишне подстроилась под данные.

Непараметрическое оценивание

Доверительная трубка для функции регрессии

Многомерный случай

Непараметрический бутстреп

Стандартная постановка задачи Идея бутстрепа Алгоритм

Параметрический бутстреп

Доверительное оценивание на основе бутстрепа

Нормальный интервал Центральный интервал

Метод складного ножа

Доверительная трубка для функции регрессии

Построим доверительную область. Сначала оценим σ^2 . Пусть X_i упорядочены по возрастанию. Предполагая, что r(x) - гладкая функция, получаем $r(X_{i+1}) - r(X_i) \approx 0$. Тогда:

$$Y_{i+1} - Y_i = [r(X_{i+1}) + \varepsilon_{i+1}] - [r(X_i) + \varepsilon_i] \approx \varepsilon_{i+1} - \varepsilon_i$$

$$\mathbb{V}ar(Y_{i+1} - Y_i) \approx \mathbb{V}ar(\varepsilon_{i+1} - \varepsilon_i) = \mathbb{V}ar\varepsilon_{i+1} + \mathbb{V}ar\varepsilon_i = 2\sigma^2$$

$$\Rightarrow \hat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (Y_{i+1} - Y_i)^2$$

Будем строить доверительную область для сглаженной версии $\overline{r}_n(x)=\mathbb{E}(\hat{r}_n^{NW}(x))$ настоящей функции регрессии r.

Доверительная трубка для функции регрессии

Приближенный $(1-\alpha)$ доверительный интвервал для $\overline{r}_n(X)$ имеет вид:

$$r_{-}(x) = \hat{r}_n^{NW}(x) - C$$

$$r_{+}(x) = \hat{r}_n^{NW}(x) + C,$$

Где $\hat{\sigma}, w_i$ - определены выше, $C = z_{\alpha} \hat{\sigma} \sqrt{\sum_{i=1}^n w_i^2(x)}$,

 $z_lpha=\Phi^{-1}\left(rac{1+(1-lpha)^{rac{b^w}{b^-a}}}{2}
ight), \Phi$ — функция стандартного нормального распределения, w - эффективная ширина ядра, $X_1,\dots,X_n\in(a;b)$

Доверительная трубка для функции регрессии

Непараметрическое оценивание

Доверительная трубка для функции регрессии

Многомерный случай

Непараметрический бутстреп

Стандартная постановка задачи Идея бутстрепа Алгоритм

Параметрический бутстреп

Доверительное оценивание на основе бутстрепа

Нормальный интервал Центральный интервал

Метод складного ножа

Непараметрическая регрессия: многомерный случай

Если $X=[X_1,\dots,X_n]^T$, то из-за проклятия размерности бесполезно обобщать оценку Надарайя-Ватсона аналогично способу, как мы делаем в ядерной оценке плотности. Вместо этого можно рассмотреть аддитивную модель

▶
$$Y = \sum_{j=1}^d r_j(X^j) + \alpha + \varepsilon$$
 или

$$Y = \sum_{j=1}^{d} r_j(X^j) + \sum_{j < k} r_{jk}(X^j X^k) + \alpha + \varepsilon$$

Непараметрическая регрессия: многомерный случай

Подготовка первой аддитивной модели:

Algorithm (Backfitting)

Инициализация : $\hat{\alpha} = \overline{Y_n}; \hat{r}_1, \dots \hat{r}_d$

Пока не стабилизируется $\hat{r}_1,\ldots,\hat{r}_d$ повторять;

- Для всех $j = 1, \ldots, d$:
 - 1. Вычислить $\widetilde{\varepsilon}_i = Y_i \hat{\alpha} \sum_{k \neq i} \hat{r}_k(X_i^k), i = 1, \dots, n$
 - 2. Получить $\hat{r}_j(X^j)$ функцию регрессии $\widetilde{\varepsilon}_i$ на j-ую компоненту X^j (то есть в качестве наблюдений имеем $\{(X_1^j,\widetilde{\varepsilon}_1),\dots,(X_n^j,\widetilde{\varepsilon}_n)\}$

денис Дерка
$${f 3}$$
 владовлажить $\hat{r}_j := \hat{r}_j - rac{1}{n} \sum_{i=1}^n \hat{r}_j(X_i^j)$

Непараметрический

бутстреп

Стандартная постановка задачи

- > Модель:
 - > Имеем конечную простую выборку $\{X_i\}_{i=1}^n \subset \mathbb{R}$, порожденную распределением вероятности F.
 - > Задана некоторая статистика $T_n = T_n(X_1, \dots, X_n)$.
- > Задача: оценить дисперсию $\mathbb{V}ar_F(T_n)$, которая зависит от неизвестного распределения F.

Пример

Пусть
$$T_n=\overline{X}_n$$
. Тогда $\mathbb{V}ar_F(T_n)=\sigma^2/n$, где $\sigma^2=\int (x-\mu)^2dF(x)$ и $\mu=\int xdF(x)$. Таким образом, дисперсия T_n есть функция F .

Эмирическая оценка функции распределения

Определение

Если есть выборка $X_i \sim F$ iid, то эмпирическая (выборочная) функция распределения: $\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \theta(x-X_i)$

Лемма

Гливенко-Кантелли

 $\lim_{n \to \infty} \sup_x (\widehat{F}_n(x) \to F(x)) = 0$ почти наверняка.

Идея бутстрепа

- Шаг 1. Оценить $\mathbb{V}ar_F(T_n)$ с помощью $\mathbb{V}ar_{\widehat{F}_n}(T_n)$.
- Шаг 2. Приблизить $\mathbb{V}ar_{\widehat{F}_{\mathbf{x}}}(T_n)$ при помощи моделирования.

Пример

- > Для $T_n=\overline{X}_n$, $\mathbb{V}ar_{\widehat{F}_n}(T_n)=\widehat{\sigma}^2/n$, где $\widehat{\sigma}^2=n^{-1}\sum_{i=1}^n(X_i-\overline{X}_n)^2.$
- > В данном случае шага 1 достаточно.
- > Однако зачастую не удаётся выписать явно $\mathbb{V}ar_{\widehat{F}_n}(T_n)$. В таком случае прибегают к шагу 2.

Оценка дисперсии на основе бутстрепа

Предположим, что Y_1, \dots, Y_B — реализации і. і. d.случайных величин с функцией распределения G. Согласно закону больших чисел,

$$\overline{Y}_n = \frac{1}{B} \sum_{j=1}^B Y_j \xrightarrow{P} \int y dG(y) = \mathbb{E}Y, \quad B \to \infty.$$

Таким образом, мы можем использовать \overline{Y}_n при достаточно больших B для приближения $\to Y$. Более того, для любой функции h с конечным мат. ожиданием имеем:

$$\frac{1}{B} \sum_{j=1}^{B} h(Y_j) \xrightarrow{P} \int h(y) dG(y) = \mathbb{E}(h(Y)), \quad B \to \infty.$$

Оценка дисперсии на основе бутстрепа

В частности, это означает, что мы можем моделировать и дисперсию:

$$\frac{1}{B} \sum_{j=1}^{B} (Y_j - \overline{Y}_n)^2 = \frac{1}{B} \sum_{j=1}^{B} (Y_j)^2 - \left(\frac{1}{B} \sum_{j=1}^{B} Y_j\right)^2 \xrightarrow{P}$$

$$\rightarrow P \int y^2 dG(y) - \left(\int y dG(y)\right)^2 = \mathbb{V}ar(Y), \quad B \rightarrow \infty.$$

Это означает, что мы можем использовать выборку для оценки дисперсии. Данная процедура позволяет нам находить $\mathbb{V}ar_{\widehat{F}_n}(T_n)$ — «дисперсию T_n при данных, распределённых по \widehat{F}_n ».

Оценка дисперсии на основе бутстрепа

Теперь ситуация выглядит следующим образом.

> С точки зрения реальности:

$$F \Rightarrow X_1, \dots, X_n \Rightarrow T_n = g(X_1, \dots, X_n)$$

> С точки зрения бутстрепа:

$$\widehat{F}_n \Rightarrow X_1^*, \dots, X_n^* \Rightarrow T_n^* = g(X_1^*, \dots, X_n^*)$$

- > Проблема: как получить X_1^*,\dots,X_n^* из \widehat{F}_n ?
- > Решение: при подсчёте мат. ожидания с помощью \widehat{F}_n мы использовали одинаковую массу $\frac{1}{n}$. Это значит, что получение наблюдения из \widehat{F}_n эквивалентно выбору случайной точки из исходной выборки.

Алгоритм: оценка дисперсии

Приведём алгоритм оценки дисперсии с помощью бутстрепа:

- 1. Выбираем $X_1^*,\dots,X_n^*\sim \widehat{F}_n$
- 2. Вычисляем $T_n^* = g(X_1^*, \dots, X_n^*)$
- 3. Повторяем шаги 1 и 2 пока не получим $T_{n,1}^*, \dots, T_{n,B}^*$
- 4. Положим

$$v_{boot} = \frac{1}{B} \sum_{b=1}^{B} (T_{n,b}^* - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^*)^2$$

В итоге получаем:

$$\mathbb{V}ar_F(T_n) \approx \mathbb{V}ar_{\widehat{F}}(T_n) \approx v_{boot}$$

Количество выборок B

Количество B зависит от необходимой точности (и компьютерного времени). Скорее всего для оценки дисперсии необходимо достаточно будет поставить 50 < B < 200. Более точная оценка:

Лемма

 $\mathbb{V}ar_BT_n=(\mathbb{V}ar_{B o\infty}^2\widehat{T}_n+rac{E(\Delta)+2}{4B})^{rac{1}{2}}$, где Δ зависит от распредения F и пропорциональная коэффициенту эксцесса.

Алгоритм: оценка смещения

Приведём алгоритм оценки смещения с помощью бутстрепа:

- 1. Выбираем $X_1^*,\ldots,X_n^*\sim \widehat{F}_n$
- 2. Вычисляем $T_n^*=g(X_1^*,\ldots,X_n^*)$
- 3. Повторяем шаги 1 и 2 пока не получим $T_{n,1}^*,\dots,T_{n,B}^*$
- 4. Положим оценку бустрепом смещения:

$$b_{boot} = \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* - \widehat{T}$$

Проблемы подхода

Для выборки $X_1, \ldots X_n \sim U[0, heta]$, оценим $\widehat{\theta} = \max\{x_1, \ldots x_n\}$

Figure: Histogram of the nonparametric bootstrap replications θ^* with n=10, B=1000, $\theta=0.8722$. The maximum peak is at $\theta=0.8722$ with a probability of $\mathcal{P}(\theta\in\mathbf{x}^*)=0.6560\approx 1-(1-1/n)^n=0.6513$.

Figure: Theoretical results (extreme values) says that $\mathcal{P}(\hat{\theta}^*) = n \frac{(\hat{\theta}^*)^{n-1}}{\hat{\theta}^n}$.

Проблемы происходят из-за того, что $\widehat{F_n}$ неточно воспроизводит F: нужно сгладить.

Параметрический

бутстреп

Параметрический бутстреп

- > Предположим, что $F(x) \in \{F(x,\theta) : \theta \in \Theta \subset \mathbb{R}^d\}$.
- > Тогда с помощью максимизации правдоподобия найдем параметр θ , а именно:

$$\theta = \operatorname*{arg\,max}_{\theta \in \Theta} \mathcal{L}(\vec{X}, \theta)$$

- Вместо ОМП можно использовать метод моментов.
- Далее действуем по описанной схеме непараметрического бутстрепа.
- (+) Непрерывная выборка, в маленькой выборке, как правило, недооценка разброса.
- (-) Произвольная модель и оценка параметров.
 - Обычно выборки с менее чем 10 элементами считаются ненадежными для непараметрического бутстрепа.

Оценка смещения

- 1. Строим $\widehat{F_n}$ используя свои знания о системе
- 2. Выбираем $X_1^*,\ldots,X_n^*\sim \widehat{F}_n$
- 3. Вычисляем $T_n^* = g(X_1^*, \dots, X_n^*)$
- 4. Повторяем шаги 1 и 2 пока не получим $T_{n,1}^*,\dots,T_{n,B}^*$
- 5. Положим оценку бустрепом смещения:

$$b_{boot} = \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* - \widehat{T}$$

Доверительное

на основе бутстрепа

оценивание

Нормальный интервал

 Если предположить, что данные распределены нормально, то имеет смысл рассмотреть следующий доверительный интервал:

$$(T_n - z_{\alpha/2}\widehat{se}_{boot}, T_n + z_{\alpha/2}\widehat{se}_{boot}),$$

> При этом $z_{\alpha}: F_{N(0,1)}(z_{\alpha}) = 1 - \alpha$, $\widehat{se}_{boot} = \sqrt{v_{boot}}$.

Центральный интервал

- > Пусть $\theta = T(F)$ и $\widehat{\theta}_n = T(\widehat{F}_n)$.
- > Пусть $\widehat{\theta}_{n,1}^*,\dots,\widehat{\theta}_{n,B}^*$ получены итерированием шагов 1 и 2 алгоритма бутстрепа.
- > Пусть θ_{β}^* обозначает β -квантиль для $(\theta_{n,1}^*,\dots,\theta_{n,B}^*).$
- ightarrow Тогда центральный (1-lpha)-доверительный интервал :

$$C_n = (2\widehat{\theta}_n - \widehat{\theta}_{1-\alpha/2}^*, 2\widehat{\theta}_n - \widehat{\theta}_{\alpha/2}^*).$$

Центральный интервал

Теорема

При некоторых несильных условия на T(F),

$$P_F(T(F) \in C_n) \to 1 - \alpha, \quad n \to \infty,$$

 $C_n = (2\widehat{\theta}_n - \widehat{\theta}_{1-\alpha/2}^*, 2\widehat{\theta}_n - \widehat{\theta}_{\alpha/2}^*)$

Общие проблемы параметрического и непараметрического бутстрепа

- > неполные данные;
- > скоррелированные данные;
- > большое количество выбросов.

Метод складного ножа

Мотивация

Непараметрический бутстреп производит семплирование из некоторого F^* построенного по результатам данных. Кроме того, в принципе, непараметрический бутстреп может занимать довольно много времени.

Метод складного ножа (jackknife)

- \rightarrow Пусть $T_n = (X_1, \dots, X_n)$.
- \rightarrow Рассмотрим n подвыборок:

$$X_{(-i)} = \{X_1, \dots X_{i-1}, X_{i+1} \dots X_n\}$$

- > Пусть $\overline{T}_n = n^{-1} \sum_{i=1}^n T_{(-i)}$.
- > Построим следующую оценку $\mathbb{V}ar(T_n)$:

$$v_{jack} = \left(\frac{n-1}{n} \sum_{i=1}^{n} (T_{(-i)} - \overline{T}_n)^2\right)^{\frac{1}{2}}$$

> Аналогично:

$$b_{jack} = (n-1)(\sum_{i=1}^{n} T_{(-i)} - \overline{T}_n)$$

delete-d складной нож

- метод складного ножа может быть улучшен за счёт изымания большего количества примеров из выборки.
- > в этом случае оценки будут выглядеть:

$$v_{delete-d} = \frac{r}{\binom{n}{d}} \sum_{k} (T_{(-k)} - \overline{T}_n)^2$$

где $X_{(-k)}$ - выборка без d элементов, $\overline{T}_n = \frac{\sum T_{(-k)}}{\binom{n}{d}}$, $n = r \cdot d$.

> Для состоятельности медианной оценки при $n \to \infty$, нужно выбирать $\sqrt{n} < d < n$.

Метод складного ножа

- > delete-d складной нож аппроксимация бутстрепа.
- Бутстреп разные результаты, метод складного ножа всегда одинаковые.
- Метод складного ножа проще применять для сложных схем семплирования.