Assignment 1

Part 1: Theoretical

a) Xeven[n]= x[n]+x[-n]/2 Xodd[n]=x[n]-x[-n]/2 X[-n]= {1,3,7,8,6,1} Xeven[n]= {4.5,6,4.5,1,3,7} Xodd[n]= { -3.5,0,3.5,0,0,0}

b) $2*1/2\pi = 0.31$ not rational non-periodic

 $3/4 \pi * 1/2 \pi = 3/8$ rational periodic

Periodic +non-periodic = not periodic so the whole signal is non periodic

c) Time invariance

y1[n]= n.x1[n]^2.cos[
$$\omega$$
0 n]
y1[n-n0]=(n-n0)·x1[n-n0]^2·cos[ω 0(n-n0)]
x2=x1[n-n0]
y2[n]=n.x2[n]^2.cos[ω 0 n]=n.x1[n-n0]^2.cos[ω 0 n]
y2[n] not equal y1[n-n0] so Time variant

linearity

y1[n]=
$$n. x1[n]^2.cos[\omega 0 n]$$

y2[n]= $n. x2[n]^2.cos[\omega 0 n]$
 $\alpha y1[n] + \beta y2[n] = \alpha n.x1[n]^2.cos[\omega 0 n] + \beta n.x2[n]^2.cos[\omega 0 n]$

$$x3[n] = \alpha x1[n] + \beta x2[n]$$

$$Y3[n]=n.x3[n]^2.cos[\omega 0 n]=n. (\alpha x1[n] + \beta x2[n])^2.cos[\omega 0 n]$$

Y3[n] not equal $\alpha y1[n] + \beta y2[n]$ not linear

Causality

Casual n depends only on present and past values of the input doesn't depend on future

Memory

memoryless if the output at time n depends only on x[n] and not on past or future values memoryless

BIBO Stability

Not stable -> a bounded input $|x[n]| < Bi < \infty$, $\forall n$

produces an unbounded output

 $|x[n]2| \le Bi^2$, $|\cos(\omega 0n)| \le 1$

n grows unbounded as $n \rightarrow \infty$ leading to: $|y[n]| = |n \cdot x[n]^2 \cdot \cos(\omega 0n)| < = n$.

Bi^2.1

Question 2

$$y(n) = k = -\infty \infty \sum x(k). \ h(n-k)$$

Length=4+5-1=8

From -1 to 6

y[-1]=x[0].h[-1-0]=1*2=2

Question 3

Length =
$$5+4-1=8$$
 from -3 to 6
 $y[-3] = x1[3]x2[0] + x1[4]x2[1] = 5*2+3*4=10+12=22$
 $y[-2] = x1[2]x2[0] + x1[3]x2[1] + x1[4]x2[2] = 1*2+5*4+3*1=2+20+3$
= 25
 $y[-1] = x1[1]x2[0] + x1[2]x2[1] + x1[3]x2[2] + x1[4]x2[3] =$
 $2*2+1*4+5*1+3*8=4+4+5+24=37$
 $y[0] = x1[0]x2[0] + x1[1]x2[1] + x1[2]x2[2] + x1[3]x2[3] = 2*2+2*4+1*$
 $1+5*8=4+8+1+40=53$
 $y[1] = x1[0]x2[1] + x1[1]x2[2] + x1[2]x2[3] = 2*4+2*1+1*8=8+2+$
= 18

$$y[2]=x1[0]x2[2]+x1[1]x2[3]=2*1+2*8=2+16=18$$

 $y[3]=x1[0]x2[3]=2*8=16$
 $y[n]=\{22,25,37,53,18,18,16\}$

Question 4

a)
$$x(z)=-5+z^{-1}+0+0+z^{-4}+5z^{-5}$$

ROC: z not equal 0

b) $x(z)=0+z^2+5z^1+-5Z^0+z^-1+0$

ROC: z not equal 0 and ∞

c) $x(z)=(1/1-1/8z^{-1})+(1/1-1/9z^{-1})$

x(z)=(z/z-8)+(z/z-9) converge if only |z|>8 and |z|>9 so ROC |z|>9