Study Nor	ı-responder Res	sponder	Standardised Mean Difference	SMD	95%-CI	Weight (fixed)	Weight (random)
Chaput 2017	17	9	- •	0.22 [-	-0.59; 1.03]	8.4%	8.4%
Frankel 2017	15	24		-0.03 [-	-0.68; 0.61]	13.2%	13.2%
Gopalakrishnan 2017	13	30		-0.24 [-	-0.89; 0.42]	12.9%	12.9%
Matson 2018	26	16		-0.21 [-	-0.83; 0.42]	14.1%	14.1%
Routy NSCLC 2017	46	41		-0.10 [-	-0.52; 0.32]	31.0%	31.0%
Routy RCC 2017	21	45		-0.23 [-	-0.74; 0.29]	20.4%	20.4%
Fixed effect model	138	165		-0.12 [-	-0.36; 0.11]	100.0%	
Random effects model			*	-0.12 <u>[</u> -	-0.36; 0.11]		100.0%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, μ	o = 0.95						