

ZEAL EDUCATION SOCIETY'S ZEAL COLLEGE OF ENGINEERING AND RESEARCH

NARHE | PUNE -41 | INDIA

Record No.: **ZCOER-ACAD/R/16K** Revision: **00** Date:**01/04/2021**

Unit Test -V

Department: Robotics & Automation Semester: II Academic Year: 2023-2024

Class and Div.: TE A Date:14/04/2024

Course: Robot Programming Maximum Marks: 30

Duration: 1 Hr

General Instructions (If any):

1. Qu.1 or Qu.2, Qu.3 or Qu.4, Qu.5 or Qu.6 and Qu.7 or Qu.8

2. Neat diagrams must be drawn whenever necessary.

3. Figures to the right indicate full marks.

4. Use of calculator is allowed.

5. Assume suitable data whenever necessary.

Question No.	Question	Marks	СО	Bloo ms Level
Q1 A	Explain the following program used in AML for gripper: GRASP: SUBR(GRIPPER_OPENING, <min_ofs,max_ofs>,F); TOGO: NEW REAL; FMONS: NEW APPLY(\$MONITOR,PINCH_FORCE(F)); CLEANUP(\$CLN); MOVE(GRIPPER,GRIPPER_OPENING+MIN_OFS,FMONS); IF QMONITOR(FMONS(1)) EQ O THEN BEGIN IF QMONITOR(FMONS(2)) EQ O THEN RETURN('TOO SMALL'); TOGO = GRIPPER_OPENING+MIN_OFS-QPOSITION(GRIPPER); DMOVE(XYZ#<gripper>,</gripper></min_ofs,max_ofs>	15	CO 4	Apply

		PRESENCE: NEW < LED,1,ON,ON>; NO_PRESENCE: NEW < LED,1,ON,ON>;			
		PINCH_FORCE: SUBR(F); RETURN(< <slp,srp>, 1,O,F>>); END: ANY_FORCE: SUBR(F); RETURN(PINCH_FORCE(F) #SIDE_FORCE(F)#TIP_FORCE(F)); END;</slp,srp>			
		NO_SENSING: NEW <>; APPROACH_MOVE(OBJECT_PLACE, <0,0,0>,3.5,PRESENCE); APPROACH_MOVE(HANDFRAME, <0,0,-1>,3.5,			
		GRASP(1.5,<1,.1>,16.0*OZ); OR			
Q2	A	Explain various sensor instructions used in AML?	07	CO 1	Under standi ng
	В	Explain the following code & output when executed in AML: i. MONITOR (LED, 2,0,0,1.5, 'passed'); MOVE (ARM, fgoal, LED); ii. ATTN: SUBR; MOTPARMS: NEW STOPMOVE; WAITMOVE; BREAK (EOL, 'ATTENTION REQUESTED'); APPLY ('AMOVE', MOTPARMS); END;	08	CO 1	Under standi ng
Q3	A	END, Explain the following program used in AML for palletization:	15	CO 1	Apply

```
PALLET: SUBR(COUNTS, SPACING, PLACE);
                WHERE: NEW NILTRANS;
                  IF ?PLACE THEN
                    (IF AGGSIZE(PLACE) EQ 3 THEN &WHERE(1) ELSE &WHERE) =PLACE
                  RETURN(<<1,1>,
                           COUNTS,
                           SPACING,
                           WHERE,
                           WHERE>);
                  END;
              PALLET_GOAL: SUBR(!P);
                  RETURN(P(5)):
                  END:
              INDEX_PALLET: SUBR(!P);
                  IF P(1,1) LT P(2,1) THEN
                    P(1,1) = P(1,1) + 1
                  ELSE IF P(1,2) LT P(2,2) THEN
                    P(1) = <1, P(1,2)+1>
                  ELSE RETURN('EXHAUSTED');
                 P(5,1) = DOT((P(1)-1)*P(3)#<0>,P(4,2))+P(4,1);
                  RETURN('OK');
                 END:
              RESET_PALLET: SUBR(!P,NEW_INDICES,NEW_LOC);
                  IF ?NEW_LOC THEN
                    IF AGGSIZE(NEW_XF) EQ 3 THEN
                       P(4,1) = NEW_LOC
                    ELSE P(4) = NEW_LOC;
                  IF ?NEW_INDICES THEN
                    IF NEW_INDICES GT P(2) OR NEW_INDICES LE O THEN
                       RETURN('ILLEGAL_BOUNDS');
                    ELSE P(1) = NEW_INDICES
                  P(5,1) = DOT((P(1)-1)*P(3)# < O >, P(4,2)) + P(4,1)
                  RETURN('OK'):
                  END;
                                                   OR
                                                                                        07
                                                                                               CO 1
        A
            Define Dynamic Variable. How dynamic variable is used in AML?
                                                                                                       Apply
Q4
        В
            Explain the following instruction in AML with example:
                                                                                        08
                                                                                               CO 1
                                                                                                       Under
                                                                                                       standi
            i.
                    ACCEL
                    WAITMOVE
                                                                                                       ng
            ii.
                    SETTLE
            iii.
                    QGOAL
            iv.
```

----- ALL THE BEST -----