Comparison of Training and Activation Functions In Single and Multi-layer Neural Network

Aytekin YILDIZHAN

aytekinyildizhan@hacettepe.edu.tr N18147923

CMP684 Neural Networks Project Report

Abstract—This project has two parts. First part compares six BP training functions in single layer feedforward network and compares four activation functions in multi-layer feedforward network. Second part compares six BP training functions in single layer pattern recognition network and compares four activation functions in multi-layer pattern recognition network. In single layer feedforward network, trainlm shows a better performance whereas traingd and traingdm show a worse performance. trainlm is used for multi-layer feedforward network. In multilayer feedforward network, logsig shows a better performance whereas purelin shows a worse performance. In single layer pattern recognition network, trainlm shows better performance while traingd shows a worse performance. trainlm is used for multi-layer pattern recognition network. In multi-layer pattern recognition network, tansig shows a better performance whereas hardlim shows a worse performance.

Keywords—feedforward network; pattern recognition network, back-propagation algorithm, activation function

I. INTRODUCTION

This study consists of two parts. First part is that analyzing single and multi-layer feedforward network and the other part is that analyzing single and multi-layer pattern recognition network. We use two data sets form Neural Network Datasets example in MATLAB. First one is house dataset for feedforward network. Second data set is cancer dataset for pattern recognition network. For these neural networks training, the first 60% of data is used to analyze the six BP training functions, whereas the next 20% is used for the validation step and the remaining 20% for the testing step.

House dataset includes 13 attributes of 506 neighborhoods so the feedforward network has 13 inputs. The output is the median values of owner-occupied homes so this network has 1 output.

There are several type of BP training functions. In this work, six BP training functions are applied which are Levenberg-Marquadt Back-Propagation (trainlm), Scaled Conjugated Gradient Back-Propagation (trainscg), Gradient Descent with Momentum (traingdm), Gradient Descent with Adaptive Learning Rate Back-Propagation (traingda), Gradient Descent with Momentum and Adaptive Learning Rate Back-Propagation (traingdx), and Gradient Descent Back-

Propagation algorithm (traingd). The errors are measured by Mean Squared Error (MSE).

For the single layer feedforward network, four activation functions are applied. These functions are hyperbolic tangent sigmoid transfer function (tansig), log-sigmoid transfer function (logsig), linear transfer function (purelin), and hard-limit transfer function (hardlim). Output neuron is a linear function. BP training function with the least MSE value will be selected in single layer feedforward network and used in multi-layer feedforward neural network.

In multi-layer feedforward network consist of two hidden layers and the activation functions in hidden layers are the same. Activation function with the least MSE value will be determine.

Cancer dataset includes 9 attributes of 699 biopsies so the pattern recognition network has 9 inputs. The output is the cancer type, which are benign or malignant. Therefore this network has 2 outputs.

BP training functions are the same as feedforward network. BP training function with the least MSE value will be selected in single layer pattern recognition network and used in multilayer pattern recognition network.

For the single layer pattern recognition network, four activation functions are applied. These functions are hyperbolic tangent sigmoid transfer function (tansig), log-sigmoid transfer function (logsig), linear transfer function (purelin), and hard-limit transfer function (hardlim). Output neuron is a soft max transfer function (softmax).

In multi-layer feedforward network consist of two hidden layers and the activation functions in hidden layers are the same. Activation function with the least MSE value will be determine.

The rest of this project is organized as follows. Section 2 and section 3 single layer and multi-layer feedforward networks are analyzed, respectively. Section 4 and section 5 single layer and multi-layer pattern recognition networks are analyzed, respectively. Finally, the conclusions and future works are given in Section 6.

II. SINGLE LAYER FEEDFORWARD NETWORK

Firstly of all, during the performance of this project, we choose the number of neurons (R) of the hidden layer. We

consider the cases with $R=2,\,4,\,8,\,16,\,32,\,64$ and 128 neurons. The default values are initialized by MATLAB code 'feedforwardnet'.

Secondly, every individual training trial is terminated after the completion of 5000 epochs, the epoch error increases for 10 consecutive epochs, MSE value is equal to zero or minimum gradient value is reached. We follow a grading policy such that the activation function resulting in the least value is assigned a grade 5 and that associated to the highest value is assigned a grade 0. Tables show that final MSE value and their grade. For each one of the different hidden layer configurations, we obtain the Tables 1–7. Also the least MSE value colored red and the highest MSE value colored blue.

TABLE 1. THE MSE RESULTS OF R = 2 NEURONS

	tansig	logsig	purelin	hardlim
	5	5	4	4
trainlm	20.3813	21.3617	45.1061	94.0354
	4	4	5	3
trainscg	21.1756	21.8581	30.9345	98.5158
	0	1	1	0
traingdm	9.6024+e03	98.8814	517.3559	153.6213
	3	2	2	5
traingda	72.0005	91.8292	82.7432	87.5449
	2	3	3	2
traingdx	92.7261	78.2495	64.3427	100.1529
	1	0	0	1
traingd	183.8205	510.0609	924.7337	137.4428

TABLE 2. THE MSE RESULTS OF R = 4 NEURONS

	tansig	logsig	purelin	hardlim
	5	5	2	5
trainlm	22.0706	27.1154	135.3580	71.1083
	4	4	5	4
trainscg	22.1934	31.1715	40.3383	81.6739
	0	0 1		0
traingdm	561.2484	121.5117	2.3324e+03	701.2672
	3	3 4		3
traingda	22.8789	36.5782	58.2074	84.9443
	2	2	3	2
traingdx	96.4939	47.6162 106.0609		131.6657
	1	1	0	1
traingd	163.2470	100.5294	4.7553e+03	353.3106

TABLE 3. THE MSE RESULTS OF R = 8 NEURONS

	tansig	logsig	purelin	hardlim
	5	5	2	4
trainlm	22.5964	25.2127	197.4523	63.6182
	2	3	5	3
trainscg	47.6721	79.3886	29.9353	63.6224
	0	1	1	0
traingdm	887.4148	443.7812	2.9355e+03	555.0189
	3	2	4	2
traingda	35.2161	96.0565	50.5489	96.3413
	4	4	3	5
traingdx	28.8046	43.2653	80.4189	61.2486
	1	0	0	1
traingd	760.4936	741.1032	8.7055e+03	468.6074

TABLE 4. THE MSE RESULTS OF R = 16 NEURONS

	tansig	logsig	purelin	hardlim
	4	5	3	5
trainlm	38.8315	25.6082	153.5230	57.0224
	3	4	5	3
trainscg	52.3016	39.7159	32.8374	81.5470
	1	0 1		0
traingdm	1.1280e+03	1.3310e+03	1.6114e+03	1.3377e+03
	5	3	4	4
traingda	33.8854	67.4059	54.3428	61.0202
	2	2	2	2
traingdx	101.4170	167.1947	299.4116	335.9887
	0	1	0	1
traingd	1.9324e+03	1.2478e+03	1.0055e+04	657.1056

TABLE 5. THE MSE RESULTS OF R = 32 Neurons

	tansig	logsig	purelin	hardlim
	5	5	2	5
trainlm	29.9849	34.3697	153.5230	52.4716
	4	4	5	4
trainscg	39.5392	39.5392 40.4445 54.7467		55.5369
	1	0 1		1
traingdm	578.7976	1.5472e+03	1.4482e+04	339.6279
	3	3	4	2
traingda	39.8484	58.9965	58.4430	88.0212
traingdx	2	2	3	3
	103.5374	100.0130	129.7442	83.1896

	0	1	0	0
Traingd	770.1286	513.3648	1.7949e+04	1.7335e+03

TABLE 6. THE MSE RESULTS OF R = 64 NEURONS

	tansig	logsig	purelin	hardlim
	5	3	2	3
trainlm	80.0858	85.2589	175.7452	84.8835
	4	5	4	4
trainscg	96.0924	47.7481	48.9041	46.9110
	0	1	1	1
traingdm	1.3424e+03	646.3897	1.1226e+04	2.3383e+04
	3	4	3	2
traingda	128.5532	81.2221	87.0048	481.9711
	2	2	5	5
traingdx	668.7208	431.0286	39.6045	32.8017
	1	0	0	0
traingd	1.316e+03	1.0575e+04	1.4363e+04	6.9085+04

TABLE 7. THE MSE RESULTS OF R = 128 NEURONS

	tansig	logsig	purelin	hardlim
	5	5	4	3
trainlm	257.2756	230.5944	143.0015	480.2362
	4	4	5	5
trainscg	393.9713	452.9744	72.5260	79.1465
	0	0	1	0
traingdm	6.8431e+03	4.0262e+03	3.3459e+04	2.6194e+04
	3	2	2	2
traingda	427.9167	1.6162e+03	1.031e+04	2.2613+03
	2	3	3	4
traingdx	802.3621	653.2820 191.5571		452.7661
	1	1	0	1
traingd	5.6249e+03	2.7264e+03	5.0728e+04	5.9739e+03

After these calculations, Table 8 shows the comparison of total grade of each case is presented.

TABLE 8. OVERALL COMPARISON OF THE RESULTS

								I
R=	2	4	8	16	32	64	128	Average
trainlm	18	17	16	17	17	13	17	16.42
trainscg	16	17	13	15	17	17	18	16.14
traingdm	2	1	2	2	3	3	1	2
traingda	12	13	11	16	12	12	9	12
traingdx	10	9	16	8	10	14	12	11.28
traingd	2	3	2	2	1	1	3	2

As can be seen from Table 8, the highest grade of training function is trainlm whereas the least grade of training function is both traingd and traingdm. As a result, trainlm is selected for multi-layer feedforward network.

III. MULTI-LAYER FEEDFORWARD NETWORK

In this section, multi-layer feedforward network is applied to house dataset and trainlm function is used. There are two hidden layers and activation functions in hidden layers are the same. In Table 9-15, MSE values are graded from least (3) to highest (0). Least MSE value colored red and highest MSE value colored blue.

TABLE 9. THE MSE RESULTS OF R = 2x2 NEURONS

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	2	3	1	0
trainlm	36.8553	30.7514	57.7732	94.6545

TABLE 10. THE MSE RESULTS OF R = 4x4 NEURONS

		tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
		3	2	0	1
t	rainlm	29.6236	30.6606	381.7470	65.907

TABLE 11. THE MSE RESULTS OF R = 8x8 NEURONS

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	3	2	0	1
trainlm	33.7226	44.62	152.2528	136.6329

TABLE 12. THE MSE RESULTS OF R = 16x16 Neurons

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	2	3	0	1
trainlm	57.0822	22.1930	128.8109	73.4676

TABLE 13. THE MSE RESULTS OF R = 32x32 Neurons

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	3	1	0	2
trainlm	59.6204	77.9766	149.7821	68.0214

TABLE 14. THE MSE RESULTS OF $R = 64 \times 64$ NEURONS

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	0	2	1	3
trainlm	282.4904	92.0429	153.5230	77.5472

TABLE 15. THE MSE RESULTS OF R = 128x128 Neurons

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	0	1	3	2
trainlm	3.9791e+03	723.1095	153.4826	297.7083

After these calculations, Table 16 shows the comparison of total grade of each case is presented.

TABLE 16. OVERALL COMPARISON OF THE RESULTS

	tansig	logsig	purelin	hardlim
Average	1.85	2	0.71	1.42

As you can see from Table 16, logsig function is the highest grade whereas purelin is the least grade. Therefore for house dataset, logsig function is the best activation function in the multi-layer feedforward neural network using two hidden layers.

IV. SINGLE LAYER PATTERN RECOGNITION NETWORK

This second experiment criteria is same as the single layer feedforward network. For each one of the different hidden layer configurations, we obtain the Tables 17–23.

TABLE 17. The MSE Results of R = 2 Neurons

	tansig	logsig	purelin	hardlim
	3	4	4	5
trainlm	0.1421	0.1409	0.1389	0.1436
	4	5	5	1
trainscg	0.1410	0.1387	0.1383	0.2759
	1	1	1	0
traingdm	0.1535	0.2736	0.1446	0.2811
	3	2	3	3
traingda	0.1421	0.1441	0.1398	0.2423
	5	3	3	4
traingdx	0.1382	0.1422	0.1398	0.1450
	0	0	0	2
traingd	0.1881	0.2859	0.1470	0.2352

TABLE 18. THE MSE RESULTS OF R = 4 Neurons

	tansig	logsig	purelin	hardlim
	5	5	3	5
trainlm	0.1406	0.1374	0.1405	0.1532
	2	4	2	4
trainscg	0.1449	0.1382	0.1433	0.1879
	1	1	1	2
traingdm	0.1529	0.2007	0.145	0.214
	4	2	5	0
traingda	0.1428	0.1399	0.1391	0.2447
	3	3	4	1
traingdx	0.1434	0.1384	0.1397	0.2244
	0	0	0	3
traingd	0.1531	0.2563	0.1460	0.203

TABLE 19. The MSE Results of R = 8 Neurons

	tansig	logsig	purelin	hardlim
	0	5	3	3
trainlm	0.203	0.1374	0.1389	0.1507
	3	4	2	4
trainscg	0.144	0.1378	0.1405	0.1491
	2	1	0	1
traingdm	0.1493	0.1681	0.1497	0.176
	5	2	4	2
traingda	0.1374	0.1387	0.1388	0.1647
	4	3	5	5
traingdx	0.1421	0.138	0.1386	0.1399
	1	0	1	0
traingd	0.1515	0.1701	0.1461	0.2152

TABLE 20. The MSE Results of R = 16 Neurons

	tansig	logsig	purelin	hardlim
	2	5	0	4
trainlm	0.1432	0.1391	0.1459	0.1442
	3	3	5	5
trainscg	0.1381	0.1395	0.1384	0.1365
	0	0	3	1
traingdm	0.1467	0.4543	0.1431	0.1638
	4	4	1	3
traingda	0.1375	0.1392	0.1438	0.153
	5	3	4	2
traingdx	0.1374	0.1395	0.1404	0.1618
	1	1	3	0
traingd	0.1437	0.1701	0.1431	0.1691

TABLE 21. THE MSE RESULTS OF R = 32 Neurons

	tansig	logsig	purelin	hardlim
	5	2	5	3
trainlm	0.136	0.1415	0.1386	0.1410
	4	3	3	5
trainscg	0.1361	0.1401	0.1419	0.1399
	1	1	1	1
traingdm	0.1434	0.1521	0.1436	0.153
	3	5	4	4
traingda	0.1379	0.138	0.1405	0.1409
	2	4	2	2
traingdx	0.1395	0.1389	0.1422	0.1421

	0	0	1	0
traingd	0.1438	0.1542	0.1436	0.4505

TABLE 22. The MSE Results of R = 64 Neurons

	tansig	logsig	purelin	hardlim
	5	5	4	5
trainlm	0.1341	0.1319	0.1417	0.137
	4	4	5	4
trainscg	0.1359	0.1387	0.1384	0.1396
	1	1	2	0
traingdm	0.1433	0.1645	0.1425	0.15
	2	3	1	3
traingda	0.1408	0.14	0.1426	0.1414
	3	0	0	2
traingdx	0.14	0.2172	0.153	0.1458
	0	2	4	1
traingd	0.1498	0.146	0.1417	0.1479

TABLE 23. The MSE Results of R = 128 Neurons

	tansig	logsig	purelin	hardlim
	5	5	0	5
trainlm	0.1348	0.1354	0.1598	0.1341
	3	4	1	2
trainscg	0.138	0.1427	0.1504	0.1426
	0	3	5	1
traingdm	0.1425	0.1438	0.1421	0.1444
	4	2	2	4
traingda	0.1376	0.1445	0.1444	0.1363
	2	1	4	3
traingdx	0.1421	0.4526	0.1428	0.1365
	2	0	3	0
traingd	0.1421	0.4528	0.1443	0.15

After these calculations, Table 24 shows the comparison of total grade of each case is presented.

TABLE 24. OVERALL COMPARISON OF THE RESULTS

R=	2	4	8	16	32	64	128	Average
trainlm	16	18	11	11	15	19	15	15
trainscg	15	12	13	16	15	17	10	14
traingdm	3	5	4	4	4	4	9	4.14
traingda	11	11	13	12	16	9	12	12
traingdx	15	11	17	14	10	5	10	11.71
traingd	2	3	2	5	1	7	5	3.57

As can be seen from Table 24, the highest grade of training function is trainlm whereas the least grade of training function is traingd. As a result, trainlm is selected for multi-layer pattern recognition network.

V. MULTI-LAYER PATTERN RECOGNITION NETWORK

In this section, multi-layer pattern recognition network is applied to cancer dataset and trainlm function is used. There are two hidden layers and activation functions in hidden layers are the same. In Table 25-31, MSE values are graded from least (3) to highest (0). Least MSE value colored red and highest MSE value colored blue.

TABLE 25. THE MSE RESULTS OF R = 2x2 NEURONS

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	1	3	2	0
trainlm	0.1468	0.1375	0.1407	0.1970

TABLE 26. THE MSE RESULTS OF R = 4x4 Neurons

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	2	1	3	0
trainlm	0.1398	0.1438	0.1393	0.2724

TABLE 27. The MSE Results of R = 8x8 Neurons

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	1	2	3	0
trainlm	0.1447	0.1435	0.1401	0.1519

TABLE 28. The MSE Results of R = 16x16 Neurons

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	3	2	1	0
trainlm	0.1339	0.1423	0.1434	0.1534

TABLE 29. THE MSE RESULTS OF R = 32x32 Neurons

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	3	2	0	1
trainlm	0.1368	0.1413	0.1425	0.1421

TABLE 30. THE MSE RESULTS OF R = 64x64 NEURONS

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	3	2	0	1
trainlm	0.137	0.1371	0.1447	0.138

TABLE 31. THE MSE RESULTS OF $R = 128 \times 128 \text{ Neurons}$

	tansig(x2)	logsig(x2)	purelin(x2)	hardlim(x2)
	3	1	0	2
trainlm	0.1338	0.1393	0.1464	0.1359

After these calculations, Table 32 shows the comparison of total grade of each case is presented.

TABLE 32. OVERALL COMPARISON OF THE RESULTS

	tansig	logsig	purelin	hardlim
Average	2.28	1.85	1.28	0.57

As you can see from Table 32, tansig function is the highest grade whereas hardlim is the least grade. Therefore for cancer dataset, tansig function is the best activation function in the multi-layer pattern recognition neural network using two hidden layers.

VI. CONCLUSION

This project presents a comparison of BP training and neuronal activation functions. In first experiment, we consider four different neuronal activation functions, six BP training functions and having 2, 4, 8, 16, 32, 64, 128 hidden neurons for a single layer feedforward network. trainlm displays a better performance among six BP training functions. By using trainlm, we consider four different neuronal activation functions and two hidden layers with 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128x128 neurons for a multi-layer feedforward network. logsig displays a better performance whereas purelin displays a worse performance among four neural activation functions.

In second experiment, we consider four different neuronal activation functions, six BP training functions and having 2, 4, 8, 16, 32, 64, 128 hidden neurons for a single layer pattern recognition network. trainlm displays a better performance among six BP training functions. By using trainlm, we consider four different neuronal activation functions and two hidden layers with 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128x128 neurons for a multi-layer pattern recognition network. tansig displays a better performance whereas hardlim displays a worse performance among four neural activation functions.

For small sized single layer feedforward networks, trainlm seem to be the best approach while trainscg seems to be the best approach for big sized single feedforward network.

For small sized single layer pattern recognition networks, trainscg seem to be the best approach while trainlm seems to be the best approach for big sized single layer pattern recognition network. traingd is the worst approach for both network configuration since it is too slow and its MSE value is too big.

For 128x128 hidden neurons in multi-layer pattern recognition networks, it lasted six hours. Thus, while the

number of neurons or hidden layers increases, the elapsed time also increases. This approach may not be practical.

Future works may include different dataset, may increase the number of activation functions, the number of different training functions, hidden layers or neurons. Also different network configurations may be applied and compared to each other.