Since A is symmetric positive definite, by Proposition 42.2, the function $v \mapsto L(v, \mu)$ has a unique minimum obtained for the solution u_{μ} of the linear system

$$Av = b - C^{\mathsf{T}}\mu;$$

that is,

$$u_{\mu} = A^{-1}(b - C^{\top}\mu).$$

This shows that the Problem (P_{μ}) has a unique solution which depends continuously on μ . Then for any solution λ of the dual problem, $u_{\lambda} = A^{-1}(b - C^{\top}\lambda)$ is an optimal solution of the primal problem.

We compute $G(\mu)$ as follows:

$$\begin{split} G(\mu) &= L(u_{\mu}, \mu) = \frac{1}{2} u_{\mu}^{\intercal} A u_{\mu} - u_{\mu}^{\intercal} (b - C^{\intercal} \mu) - \mu^{\intercal} d \\ &= \frac{1}{2} u_{\mu}^{\intercal} (b - C^{\intercal} \mu) - u_{\mu}^{\intercal} (b - C^{\intercal} \mu) - \mu^{\intercal} d \\ &= -\frac{1}{2} u_{\mu}^{\intercal} (b - C^{\intercal} \mu) - \mu^{\intercal} d \\ &= -\frac{1}{2} (b - C^{\intercal} \mu)^{\intercal} A^{-1} (b - C^{\intercal} \mu) - \mu^{\intercal} d \\ &= -\frac{1}{2} (b - C^{\intercal} \mu)^{\intercal} A^{-1} (b - C^{\intercal} \mu) - \mu^{\intercal} d \\ &= -\frac{1}{2} \mu^{\intercal} C A^{-1} C^{\intercal} \mu + \mu^{\intercal} (C A^{-1} b - d) - \frac{1}{2} b^{\intercal} A^{-1} b. \end{split}$$

Since A is symmetric positive definite, the matrix $CA^{-1}C^{\top}$ is symmetric positive semidefinite. Since A^{-1} is also symmetric positive definite, $\mu^{\top}CA^{-1}C^{\top}\mu=0$ iff $(C^{\top}\mu)^{\top}A^{-1}(C^{\top}\mu)=0$ iff $C^{\top}\mu=0$ implies $\mu=0$, that is, $\operatorname{Ker} C^{\top}=(0)$, which is equivalent to $\operatorname{Im}(C)=\mathbb{R}^m$, namely if C has rank m (in which case, $m\leq n$). Thus $CA^{-1}C^{\top}$ is symmetric positive definite iff C has rank m.

We showed just after Theorem 49.8 that the functional $v \mapsto (1/2)v^{\top}Av$ is elliptic iff A is symmetric positive definite, and Theorem 49.8 shows that an elliptic functional is coercive, which is the hypothesis used in Theorem 49.4. Therefore, by Theorem 49.4, if the inequalities $Cx \leq d$ have a solution, the primal problem has a unique solution. In this case, as a consequence, by Theorem 50.17(2), the function $-G(\mu)$ always has a minimum, which is unique if C has rank m. The fact that $-G(\mu)$ has a minimum is not obvious when C has rank < m, since in this case $CA^{-1}C^{\top}$ is not invertible.

We also verify easily that the gradient of G is given by

$$\nabla G_{\mu} = Cu_{\mu} - d = -CA^{-1}C^{\top}\mu + CA^{-1}b - d.$$

Observe that since $CA^{-1}C^{\top}$ is symmetric positive semidefinite, $-G(\mu)$ is convex.

Therefore, if C has rank m, a solution of Problem (P) is obtained by finding the unique solution λ of the equation

$$-CA^{-1}C^{\top}\mu + CA^{-1}b - d = 0,$$