SVAR OCH ANVISNINGAR

UPPGIFTER

1.

$$\lim_{x \to 0} \frac{1 - e^{-3x^2}}{1 - e^{-x^2}} =$$

$$= \lim_{x \to 0} \frac{1 - (1 - 3x^2 + \dots)}{1 - (1 - x^2 + \dots)} = \lim_{x \to 0} \frac{3x^2 + \dots}{x^2 + \dots} = \lim_{x \to 0} \frac{3 + \dots}{1 + \dots} = 3.$$

Även en beräkning som stöder sig på en metod uppkallad efter en viss fransk markis godtas.

Ytterligare en metod är att använda $1-a^3=(1-a)(1+a+a^2)$ för att faktorisera täljaren

$$1 - e^{-3x^2} = (1 - e^{-x^2})(1 + e^{-x^2} + e^{-2x^2})$$

och därefter förkorta. Gränsvärdet blir då det enkla $\lim_{x\to 0} (1+e^{-x^2}+e^{-2x^2})=3.$

2. Eftersom funktionen f(x) är kontinuerlig på det slutna intervallet $1 \le x \le e$ så har funktionen ett största värde enligt en sats i Adams Calculus. Det största värdet finns i en punkt x_0 där antingen $f'(x_0) = 0$, dvs i en kritisk punkt, eller där $f'(x_0)$ inte existerar, dvs i en singulär punkt, eller i någon av intervallets ändpunkter. Några singulära punkter finns inte i detta fall.

$$f'(x) = \frac{x \cdot 2 \ln x \cdot \frac{1}{x} - \ln^2 x \cdot 1}{x^2} = \frac{\ln x}{x^2} (2 - \ln x).$$

De kritiska punkterna är alltså $x_0 = 1$, som är intervallets ena ändpunkt, samt $x_0 = e^2$ som dock ligger utanför intervallet. Funktionens största värde antas därför i någon av ändpunkterna. Eftersom f(1) = 0 och $f(e) = \frac{1}{e}$ är alltså $\frac{1}{e}$ det största värdet.

3.

$$\int_0^1 \frac{x \, dx}{\sqrt{1 - x^4}} = \left[x^2 = u, \, 2x \, dx = du \right] = \int_0^1 \frac{1}{2} \frac{du}{\sqrt{1 - u^2}} = \frac{1}{2} \sin^{-1} u \Big|_0^1 = \frac{1}{2} (\frac{\pi}{2} - 0) = \frac{\pi}{4}.$$

4. Definitionsområdet är $x \neq 1$. Eftersom täljaren är $(x+1)^2$ har funktionen det dubbla nollstället x=-1.

Vertikal asymptot är x = 1 där $\lim_{x \to 1+} y = +\infty$ och $\lim_{x \to 1-} y = -\infty$.

Vidare är $\lim_{x\to\pm\infty}(y-(x+3))=0\pm$ och det följer att y=x+3 är en sned asymptot.

$$f'(x) = 1 - \frac{4}{(x-1)^2} = \left(1 + \frac{2}{x-1}\right)\left(1 - \frac{2}{x-1}\right) = \frac{(x+1)(x-3)}{x-1}$$

har nollstället x=-1, som ger en lokal maximipunkt, samt nollstället x=3, som ger en lokal minimipunkt, t
 ex enligt derivatans teckenväxling. Kurvan tangerar x-axeln
ix=-1.

5. Partiell integration

$$\int_{1}^{e} \frac{1}{x} \ln^{2} x \, dx = \ln x \ln^{2} x \Big|_{1}^{e} - \int_{1}^{e} \ln x \cdot 2 \ln x \cdot \frac{1}{x} \, dx = 1 - 2 \int_{1}^{e} \frac{1}{x} \ln^{2} x \, dx.$$

Detta ger att $3\int_1^e \frac{1}{x} \ln^2 x \, dx = 1$, dvs

$$\int_{1}^{e} \frac{1}{x} \ln^{2} x \, dx = \frac{1}{3}.$$

Substitution

$$\int_{1}^{e} \frac{1}{x} \ln^{2} x \, dx = \left[\ln x = u, \, \frac{1}{x} \, dx = du \right] = \int_{0}^{1} u^{2} \, du = \left. \frac{1}{3} u^{3} \right|_{0}^{1} = \frac{1}{3}.$$

6. Den homogena ekvationen y'' - y = 0 har karakteristiska ekvationen $r^2 - 1 = 0$ med rötterna $r_1 = 1$ och $r_2 = -1$ så lösningarna till homogena ekvationen är

$$y_H = C_1 e^x + C_2 e^{-x}$$
.

För att bestämma en partikulärlösning y_P till den inhomogena ekvationen y'' - y = x ansättes $y_P = Ax + B$. Derivering och insättning ger A = -1, B = 0 så den allmänna lösningen till den givna ekvationen ges av

$$y = C_1 e^x + C_2 e^{-x} - x.$$

Man finner slutligen att villkoren y(0) = 0, y'(0) = 0 ger $C_1 = \frac{1}{2}$, $C_2 = -\frac{1}{2}$ så lösningen är

$$y = \frac{1}{2}(e^x - e^{-x}) - x = \sinh x - x.$$

7. Integrerande faktor

En integrerande faktor är e^{x^3} så ekvationen kan efter multiplikation med denna skrivas

$$\frac{d}{dx}(ye^{x^3}) = 3x^2e^{x^3}.$$

Integration ger $ye^{x^3}=C+e^{x^3}$ så den allmänna lösningen är $y=1+Ce^{-x^3}$. Begynnelsevillkoret y(0)=0 ger C=-1 så lösningen är $y=1-e^{-x^3}$.

Separera

Ekvationen kan separeras om vi skriver den som $y' = 3x^2 - 3x^2y$. Detta ger

$$\frac{dy}{1-y} = 3x^2 dx.$$

Integration ger $-\ln(1-y)=C_1+x^3$, dvs $\ln(1-y)=C_2-x^3$. Detta ger $1-y=e^{C_2-x^3}=e^{C_2}e^{-x^3}=C_3e^{-x^3}$. Slutligen får vi $y=1-C_3e^{-x^3}=1+Ce^{-x^3}$. Begynnelsevillkoret y(0)=0 ger C=-1 så lösningen blir $y=1-e^{-x^3}$.

- 8. Serien är geometrisk med kvoten $r=-\frac{1}{x^2}$ och är därför konvergent då $-1<-\frac{1}{x^2}<1,$ dvs då |x|>1 och har summan $\frac{1}{1-(-\frac{1}{x^2})}=\frac{x^2}{1+x^2}.$
- 9. Då konvergensradien är lika med 3 divergerar serien för alla x för vilka |x| > 3 och konvergerar absolut för alla x för vilka |x| < 3. Då x = 3 har vi serien $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}}$ som divergerar (p-serie). För x = -3 har vi den alternerande serien $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{\frac{2}{3}}}$ som är konvergent enligt alternerande serietestet. Serien är dock endast villkorligt konvergent.
- 10. Då

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^2 - 2x + 1}{x^2 + 1} = \lim_{x \to \pm \infty} \frac{1 - \frac{2}{x} + \frac{1}{x^2}}{1 + \frac{1}{x^2}} = 1,$$

f(-1)=2>1 samt då f(x) är kontinuerlig på det öppna intervallet $-\infty < x < \infty$ har funktionen ett absolut maximum enligt en sats i Adams (Adams Gift). Då funktionen saknar singulära punkter finner vi detta största värde i en av de kritiska punkterna x=1, x=-1. Då f(1)=0 och f(-1)=2 är det största värdet lika med 2.

1. Låt tangeringspunkterna vara $P = (a, (a+1)^3)$ respektive $Q = (b, (b-1)^3)$. Definitionen av en linjes lutning och derivatans betydelse som lutning ger då sambanden

$$\frac{(a+1)^3 - (b-1)^3}{a-b} = 3(a+1)^2 = 3(b-1)^2 \qquad (*)$$

$$3(a+1)^2 = 3(b-1)^2$$
, dvs $(a+1)^2 = (b-1)^2$ ger

$$a+1 = \pm (b-1)$$
 (**).

Insättning av fallet a + 1 = b - 1 i vänstra ledet i (*) ger $0 = 3(a + 1)^2 = 3(b - 1)^2$, dvs a = -1, b = 1 vilket ger att x-axeln är gemensam tangent med tangeringspunkterna (-1,0),(1,0).

Det andra fallet i (**), dvs

$$a+1 = -(b-1)$$
 (***)

ger efter insättning i (*)

$$\frac{-(b-1)^3 - (b-1)^3}{a-b} = 3(b-1)^2$$

som efter förkortning med $(b-1)^2$ ger

$$\frac{-2(b-1)}{a-b} = 3 \qquad (****).$$

Men från (***) följer att a=-b, som efter insättning i (****) ger $b=-\frac{1}{2}$. Tangeringspunkternas x-koordinater är alltså i det andra fallet $a=\frac{1}{2}$ respektive $b=-\frac{1}{2}$.

2. a) Eftersom $|\cos \frac{1}{x}| \le 1$ för alla $x \ne 0$ följer att

$$|2x^2(1-\cos\frac{1}{x})| \le 2x^2 \cdot 2 \to 0$$

då $x \to 0$. Av detta följer att $\lim_{x \to 0} f(x) = 0 = f(0)$, dvs f(x) är kontinuerlig i x = 0.

b) Med samma argument som i a) följer att

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x} = 0.$$

c) För värden på $x \neq 0$ kan vi derivera som vanligt och vi finner att

$$f'(x) = 4x(1-\cos\frac{1}{x}) + 2x^2(-1)\cdot(-\sin\frac{1}{x})\cdot(-\frac{1}{x^2}) = 4x(1-\cos\frac{1}{x}) - 2\sin\frac{1}{x}.$$

Då $x \to 0$ kommer första termen att gå mot 0 men $2\sin\frac{1}{x}$ kommer att oscillera mellan -2 och +2 så $\lim_{x\to 0} f'(x)$ existerar inte och därför är inte derivatan kontinuerlig i x=0.

d) Genom att Maclaurinutveckla

$$\cos\frac{1}{x} = 1 - \frac{1}{2!}\frac{1}{x^2} + \dots$$

finner vi att

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} [1 + \dots] = 1,$$

vilket betyder att y=1 är en horisontell asymptot till f(x) då $x\to\pm\infty$.

e) Den välkända formeln för dubbla vinkeln

$$\cos\theta = 1 - 2\sin^2\frac{\theta}{2}$$

ger att vi kan skriva vår funktion som

$$f(x) = 4x^2 \sin^2 \frac{1}{2x}.$$

Vi kan nu använda den elementära olikheten $|\sin \theta| \leq |\theta|$, med likhet om och endast om $\theta = 0$. Denna olikhet återges med bevis i Adams Chapter 2.5, Exercise 62, samt för $\theta > 0$ i Chapter 2.8, EXAMPLE 2. Från denna olikhet följer att vår jämna funktion f(x) uppfyller den i uppgiften angivna olikheten.