Proyecto 2: El Problema de la Mochila

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

September 19, 2025

1 Problema de la Mochila (Knapsack Problem)

El problema de la mochila es un clasico de la optimizacion combinatoria. Se dispone de una mochila con una capacidad maxima W y un conjunto de n objetos. Cada objeto i tiene un peso w_i y un valor v_i . El objetivo es seleccionar los objetos de manera que:

- \bullet La suma total de los pesos no exceda la capacidad W.
- Se maximice el valor total de los objetos elegidos.

1.1 Variantes principales

0/1 Knapsack Cada objeto puede elegirse una sola vez o no elegirse: decision binaria.

Bounded Knapsack Cada objeto puede seleccionarse un numero limitado de veces.

Unbounded Knapsack Se permite una cantidad ilimitada de cada objeto.

1.2 Solucion

0/1 Knapsack Se resuelve comunmente con programacion dinamica. Sea dp[i][w] el valor maximo al considerar los primeros i objetos y capacidad w.

$$dp[i][w] = \begin{cases} dp[i-1][w] & \text{si } w_i > w, \\ \max(dp[i-1][w], v_i + dp[i-1][w - w_i]) & \text{si } w_i \le w. \end{cases}$$

Bounded Knapsack Similar al 0/1 pero puede tener uno o más cantidades por objeto. Es limitado, por lo que no puede ser infinito.

$$dp[i][w] = \max_{0 \le k \le c_i, \ k \ w_i \le w} (dp[i-1][w-kw_i] + kv_i).$$

Unbounded Knapsack Similar al bounded pero permitiendo repeticiones sin limite de cantidades (infinito).

$$dp[w] = \max(dp[w], v_i + dp[w - w_i]).$$

Tipo de problema: 0/1 Knapsack

Capacidad máxima: 17 Número de objetos: 5

Formulación Matemática

Función objetivo:

Maximizar
$$Z = 30x_A + 15x_B + 6x_C + 18x_D + 10x_E$$

Restricción:

$$13x_A + 5x_B + 9x_C + 10x_D + 4x_E \le 17$$

Restricciones de variables:

$$x_i \in \{0,1\} \quad \forall i \in \{A, B, C, D, E\}$$

Datos del Problema

Objeto	Costo	Valor	Cantidad
A	13,00	30,00	1
В	5,00	15,00	1
$^{\mathrm{C}}$	9,00	6,00	1
D	10,00	18,00	1
E	4,00	10,00	1

Tabla de Programación Dinámica

Capacidad/Objetos	Α	В	С	D	E
0	0	0	0	0	0
1					
2	0	0	0	0	0
3	0	0	0	0	0
4					10
5	0	15	15	15	15
6	0	15	15	15	15
7		15	15	15	15
8	0	15	15	15	15
9		15	15	15	25
10	0	15	15	18	25
11		15	15	18	25
12		15	15	18	25
13	30	30	30	30	30
14	30	30	30	30	30
15	30	30	30	33	33
16	30	30	30	33	33
17	30	30	30	33	40

Solución Óptima

Valor máximo obtenido: 40 Objetos seleccionados: E, A Capacidad utilizada: 17