Topología

I Propiedades de conjuntos y funciones @propiedades, imagen, imagen inversa	
la Definición de unión disjunta @definición, unión disjunta, inclusión	
la1 Propiedad universal de la unión disjunta @propiedad universal, unión disjunta, unión ajena	
1b Definición de relación de equivalencia @definición, relación binaria, relación de equivalencia	
lb1 Partición por clases de equivalencia @partición, clase de equivalencia	
1b2 Relación generada por una partición @relación de equivalencia, generación, partición	
2 Definición de espacio topológico @definición, espacio topológico	1
2a Definición de continuidad @definición, continuidad	1
2a1 Caracterización de continuidad @caracterización, continuidad	1
2a2 Definición de homeomorfismo @definición, homeomorfismo	1
2a2a Proyección estereográfica @homeomorfismo explícito, proyección estereográfica	1
2a2b Restricción continua e inyectiva @contraejemplo, restricción, homeomorfismo	1
2a3 Lema del pegado @cerrados, continuidad, lema del pegado	1
2b Definición de función abierta y cerrada @definición, abierta, cerrada	1
2b1 Criterio para homeomorfismos @criterio, abierta, cerrada	1

2c1 Más fina para continuidad de las inclusiones @comparación, suma topológica	20
2c2 Propiedades de las inclusiones @propiedades, inclusiones, suma topológica	21
2c3 Caracterización de abiertos y cerrados @caracterización, abiertos, suma topológica	23
2c4 Propiedades de abiertos y cerrados @propiedades, abiertos, suma topológica	24
2d Definición de topología de identificación @generación, definición	26
2d1 Más fina para continuidad @comparación	27
2d2 Caracterización de identificaciones @caracterización, identificación	28
2d3 Propiedades de las identificaciones @propiedades, composición, identificación	30
2d4 Criterio para identificaciones @criterio, sección	31
2d4a Propiedades de una sección @propiedades, sección	32
2d5 Criterio para identificaciones @criterio, abierta, identificación	33
2d6 Producto de identificaciones @producto, abierta, identificación	34
2d7 Identificación es casi homeomorfismo @homeomorfismo, identificación	35
2d8 Restricción de identificaciones @restricción, identificación, criterio	36

19

37

39

2c Definición de suma topológica @definición, suma topológica, unión disjunta

2d9 Propiedad universal de las identificaciones @propiedad universal, identificación

2d10 Definición de espacio cociente @cociente, topología

2d10b Espacios cocientes T1 @espacio cociente, T1	41
2d11 Homeomorfismo inducido por una identificación	42
2d12 Caracterización de identificaciones @caracterización, compatibilidad, identificación	43
2d12a Homeomorfismo inducido por funciones compatibles @compatibilidad, homeomorfismo	45
2d12b Funciones que preservan relación @preserva relación, continuidad	46
2d13 Criterio para identificaciones @compacto, Hausdorff, identificación	47

40

2d10a Propiedades de saturación @definición, saturación, identificación

Propiedades de conjuntos y funciones

1

Teorema 1. Sean $f: X \longrightarrow Y$ una función, $A, A_1, A_2, \{A_\alpha\}_{\alpha \in I}$ subconjuntos de X y $B, B_1, B_2, \{B_\beta\}_{\beta \in J}$ subconjuntos de Y, se tiene que

propiedades, imagen, imagen inversa

(I)
$$f(X-A) \subset Y - f(A)$$
 si f es inyectiva,

(ix)
$$f(\bigcap_{\alpha\in I}A_{\alpha})\subset\bigcap_{\alpha\in I}f(A_{\alpha}),$$

(VIII) $f(\bigcup_{\alpha \in I} A_{\alpha}) = \bigcup_{\alpha \in I} f(A_{\alpha}),$

(II)
$$Y - f(A) \subset f(X - A)$$
 si f es suprayectiva,

(x)
$$\bigcap_{\alpha \in I} f(A_{\alpha}) \subset f(\bigcap_{\alpha \in I} A_{\alpha})$$
 si f es inyectiva,

(III)
$$f^{-1}(Y - B) = X - f^{-1}(B)$$
,

(xi)
$$f^{-1}\left(\bigcup_{\beta\in J}B_{\alpha}\right)=\bigcup_{\alpha\in J}f^{-1}(B_{\beta}),$$

(iv)
$$f(f^{-1}(B)) \subset B$$
,

(XII)
$$f^{-1}\left(\bigcap_{\beta\in J}B_{\beta}\right)=\bigcap_{\alpha\in J}f^{-1}(B_{\beta}),$$

(v)
$$B \subset f(f^{-1}(B))$$
 si f es suprayectiva,

(XIII)
$$A_1 \subset A_2$$
 implies $f(A_1) \subset f(A_2)$,

(vi)
$$A \subset f^{-1}(f(A)),$$

(XIV)
$$B_1 \subset B_2 \text{ implica } f^{-1}(B_1) \subset f^{-1}(B_2).$$

(VII)
$$f^{-1}(f(A)) \subset A$$
 si f es inyectiva,

Demostración. Pendiente.

Definición de unión disjunta

Definición 1. Dada una famillia de conjuntos $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$, se define su **unión ajena** como el conjunto

$$\coprod_{\lambda \in \Lambda} X_{\lambda} = \bigcup_{\lambda \in \Lambda} X_{\lambda} \times \{\lambda\}.$$

Dada $\mu \in \Lambda$, la **inclusión** $i_{\mu}: X_{\mu} \longrightarrow \coprod_{\lambda \in \Lambda} X_{\lambda}$ es la función definida como $i_{\mu}(x) = (x, \mu), \ \forall \ x \in X_{\mu}$.

1a

definición, unión disjunta, inclusión

Propiedad universal de la unión disjunta

Teorema 2. Dada una familia $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ de conjuntos, la unión ajena $\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ junto con las inclusiones $i_{\mu}:X_{\mu}\longrightarrow\coprod_{{\lambda}\in\Lambda}X_{\lambda}, \mu\in\Lambda$, está caracterizada por la siguiente propiedad universal

(1) Dada una familia de funciones $f_{\lambda}: X_{\lambda} \longrightarrow Y, \lambda \in \Lambda$, existe una única función $f: \coprod_{\lambda \in \Lambda} X_{\lambda} \longrightarrow Y$ tal que $f \circ i_{\lambda} = f_{\lambda}, \forall \lambda$.

1a1

propiedad universal, unión disjunta, unión ajena

Demostración. Pendiente.

Definición de relación de equivalencia

DEFINICIÓN 2. Una **relación binaria** R en un conjunto X es cualquier subconjunto $R \subset X \times X$. Si $(x, y) \in R$, se escribirá x R y.

DEFINICIÓN 3. Una relación binaria R en un conjunto X se dice **relación de equivalencia** si

(I)
$$\forall x \in X, x R x$$
,

(II)
$$x R y \implies y R x$$
,

(III)
$$x R y \wedge y R z \implies x R z$$
.

Si x R y se dice que x y y son **equivalentes**. Las relaciones de equivalencia se usan generalmente para considerar a todos los elementos de un conjunto con alguna propiedad como una sola entidad.

definición, relación binaria, relación de equivalencia

partición, clase

de equivalencia

1b1

Partición por clases de equivalencia

DEFINICIÓN 4. Si R es una relación de equivalencia en X y $x \in X$, el conjunto $Rx = \{y \in X \mid y R x\}$ se llama la **clase de equivalencia** de x. También se le suele denotar [x] si no hay riesgo de confusión. A la familia $\{Rx \mid x \in X\}$ se le llamará **conjunto cociente** de X por R y se denotará X/R.

TEOREMA 3. Si R es una clase de equivalencia en un conjunto X, entonces:

- (i) $\bigcup \{Rx \mid x \in X\} = X$,
- (II) x R y si y s'olo si Rx = Ry,
- (III) dos clases de equivalencia son iguales o son disjuntas.

Demostración. (I) Como $Rx \subset X$, $\forall x \in X$, entonces $\bigcup \{Rx \mid x \in X\} \subset X$. Recíprocamente, si $x \in X$, entonces x Rx, luego $x \in Rx \subset \bigcup \{Rx \mid x \in X\}$. Esto prueba la afirmación.

- (II) Supóngase que x R y. Si $z \in Rx$, entones z R x, luego z R y y por tanto $z \in Ry$, luego $Rx \subset Ry$. Similarmente se tiene que $Rx \subset Ry$ y por tanto Rx = Ry. Recíprocamente, si Rx = Ry, dado que x R x, entonces $x \in Rx = Ry$, por tanto, x R y.
- (III) Sean Rx y Ry dos clases de equivalencia. Si $Rx \cap Ry = \emptyset$ no hay nada que probar. Suponga existe $z \in Rx \cap Ry$. Entonces z Rx y z Ry en consecuencia x Ry por transitividad, así que Rx = Ry por (II).

COROLARIO 1. Si R es una relación de equivalencia en un conjunto X, entonces la familia $\{Rx \mid x \in X\}$ es una partición del conjunto X

TEOREMA 4. Si $\{A_{\alpha}\}_{{\alpha}\in I}$ es una partición de un conjunto X, entonces la relación $R=\bigcup\{A_{\alpha}\times A_{\alpha}\mid \alpha\in I\}$, es una relación de equivalencia. Además, $x\,R\,y$ si y sólo si $x,y\in A_{\alpha}$, para algún $\alpha\in I$. Más aún, $X/R=\{A_{\alpha}\mid \alpha\in I\}$.

Demostración. Pendiente.

relación de equivalencia, generación, partición Definición 5. Sea X un conjunto. Una **topología** sobre X es una familia \mathcal{T} de subconjuntos de X con las siguientes propiedades:

definición, espacio topológico

- (I) $\emptyset, X \in \mathcal{T}$.
- (II) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$ entonces $\bigcup_{i\in I} U_i \in \mathcal{T}$.
- (III) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$ y I es finito, entonces $\bigcap_{i\in I} U_i \in \mathcal{T}$.

A la pareja (X, \mathcal{T}) se le llama **espacio topológico**.

Definición de continuidad

2a

DEFINICIÓN 6. Dados espacios topológicos X y Y, una función $f: X \longrightarrow Y$ se dice **continua** en X, si U abierto en Y implica que $f^{-1}(U)$ es abierto en X.

definición, continuidad Teorema 5. Sean X y Y espacios topológicos y sea $f: X \longrightarrow Y$ una función. Son equivalentes

caracterización, continuidad

- (I) f es continua,
- (II) U abierto en Y implica $f^{-1}(B)$ abierto en X,
- (III) $f^{-1}(B^{\circ}) \subset f^{-1}(B)^{\circ}, \forall B \subset Y$,
- (iv) $f(\overline{A}) \subset \overline{f(A)}$, $\forall A \subset X$,
- (v) F cerrado en Y implica $f^{-1}(F)$ cerrado en X.

Demostración. Pendiente.

Definición de homeomorfismo

es definición, ho-

2a2

meomorfismo

DEFINICIÓN 7. Un **homeomorfismo** es una función $f: X \longrightarrow Y$ continua y biyectiva, cuya inversa también es continua. En este caso, se dice que los espacios X y Y son **homeomorfos**.

TEOREMA 6. La función

$$p: S^{n} - \{N\} \longrightarrow \mathbb{R}^{n}$$

$$(x_{1}, \dots, x_{n+1}) \longmapsto \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right),$$

donde N = (0, ..., 0, 1), es un homeomorfismo con las topologías usuales y su inversa está dada por

$$p^{-1}: \mathbb{R}^n \longrightarrow S^n - \{N\}$$

$$y = (y_1, \dots, y_n) \longmapsto \left(\frac{2y_1}{|y|^2 + 1}, \dots, \frac{2y_n}{|y|^2 + 1}, \frac{|y|^2 - 1}{|y|^2 + 1}\right).$$

A este homeomorfismo se le llama proyección estereográfica.

Demostración. Es rutinario verificar que $p \circ p^{-1} = \mathrm{id}_{\mathbb{R}^n}$ y que $p^{-1} \circ p = \mathrm{id}_{S^n - \{N\}}$. Además, p es continua por ser sus componentes funciones racionales en las variables x_1, \ldots, x_{n+1} tales que su denominador no se anula. De forma similar, p^{-1} es continua por ser sus funciones componentes productos de las variables y_1, \ldots, y_n , con la función $1/(|y|^2 + 1)$, la cuál es continua pues el denominador no se anula y la función norma |y| es continua. □

homeomorfismo explícito, proyección estereográfica

Restricción continua e inyectiva

Observación. En general, si $f: X \longrightarrow Y$ es continua e inyectiva, su restricción $g: X \longrightarrow f(X)$, dada por g(x) = f(x), $\forall x \in X$, no es necesariamente un homeomorfismo, aún cuando se tiene que g es biyectiva y continua. Considere los espacios $X = \{0, 1\}$ con la topología $\mathcal{T}_X = \{\emptyset, \{0\}, X\}$ y $Y = \{a, b, c\}$ con la topología $\mathcal{T}_Y = \{\emptyset, \{b\}, Y\}$. La función f definida como f(0) = c, f(1) = a, es inyectiva y continua. Sin embargo, su restricción g, dada como g(0) = a, g(1) = c, es biyectiva y continua, pero su inversa g(0) = a dada por g(0) = a no es abierto en g(0) = a no es abierto en

2a2b

contraejemplo, restricción, homeomorfismo

Lema del pegado

TEOREMA 7. Sea $X = F_1 \cup \cdots \cup F_k$, con F_i cerrado en X, para todo $i \in \{1, \ldots, k\}$. Si $f_i : F_i \longrightarrow Y$ son funciones continuas, para todo $i \in \{1, \ldots, k\}$ y tales que

$$f_i|_{F_i\cap F_j}=f_j|_{F_i\cap F_j},$$

para todos $i, j \in \{1, ..., k\}$, entonces la función $f: X \longrightarrow Y$ definida como $f|_{F_i} = f_i$ es continua.

Demostración. Dicha función está bien definida, pues si $x_1, x_2 \in X$ son tales que $x_1 = x_2$, entonces $x_1 \in F_i$ y $x_2 \in F_j$ para algunos $i, j \in \{1, ..., k\}$ y $x_1 \in F_i \cap F_j$, $x_2 \in F_i \cap F_j$. Luego $f(x_1) = f_i(x_1)$ y $f(x_2) = f_j(x_2)$, por tanto, $f(x_1) = f_i|_{F_i \cap F_j}(x_1) = f_i|_{F_i \cap F_j}(x_2) = f_j|_{F_i \cap F_j}(x_2) = f_j(x_2)$.

Sea C un cerrado en Y. Se tiene que $f^{-1}(X) = f_1^{-1}(C) \cup \cdots \cup f_k^{-1}(C)$. En efecto, si $x \in f^{-1}(C)$, entonces $f(x) \in C$, con $x \in X$. Luego, dado que $X = \bigcup_{n=1}^k F_n$, existe $i \in \{1, \ldots, k\}$ tal que $x \in F_i$ y por tanto $f(x) = f_i(x) \in C$. En consecuencia, $x \in f_i^{-1}(C)$ para algún $i \in \{1, \ldots, k\}$, es decir, $x \in \bigcup_{n=1}^k f_n^{-1}(C)$. Recíprocamente, si $x \in \bigcup_{n=1}^k f_n^{-1}(C)$, entonces existe $i \in \{1, \ldots, k\}$ tal que $x \in f_i^{-1}(C)$, por tanto, $f_i(x) \in C$. Necesariamente $x \in F_i$ por elección de x, así que $f_i(x) = f(x) \in C$, o bien, $x \in f^{-1}(C)$. Esto prueba la afirmación.

Finalmente, como f_i es continua, para cada $i \in \{1, ..., k\}$, entonces $f_i^{-1}(C)$ es cerrado en F_i , para cada $i \in \{1, ..., k\}$, pero cada F_i es cerrado en F_i , así que de hecho $f_i^{-1}(C)$ es cerrado en F_i , para cada F_i es cerrado en F_i es cerra

cerrados, continuidad, lema del pegado

Definición de función abierta y cerrada

2b

Definición 8. Una función $f: X \longrightarrow Y$ se dice **abierta** si U abierto en X implica que f(U) es abierto en Y.

definición, abierta, cerrada

Definición 9. Similarmente, una función $f: X \longrightarrow Y$ se dice **cerrada** si F cerrado en X implica que f(F) es cerrado en Y.

Criterio para homeomorfismos

TEOREMA 8. Si una función $f: X \longrightarrow Y$ es biyectiva, continua y abierta o cerrada, entonces f es un homeomorfismo.

Demostración. Como f es biyectiva, existe su inversa $g: Y \longrightarrow X$ tal que $g \circ f = \mathrm{id}_X$. Sea U un abierto en X y notemos que $f^{-1}(q^{-1}(U)) = (q \circ f)^{-1}(U) = \mathrm{id}_{Y}^{-1}(U) = U$ y aplicando f a ambos lados obtenemos $q^{-1}(U) = f(U)$ por suprayectividad de f. Como f(U) es abierto por ser f una funcion abierta, entonces $g^{-1}(U)$ es abierto. Dado que U fue un abierto arbitrario, entones q es continua y en consecuencia f es un homeomorfismo. Si f es cerrada la demostración es similar.

TEOREMA 9. Si f es un homeomorfismo, entonces f es abierta y cerrada.

Demostración. Sea q la inversa de f. Si U es abierto en X, entonces $q^{-1}(U)$ es abierto en X por ser q continua, pero, de manera similar al teorema anterior, se tiene que $q^{-1}(U) = f(U)$, luego f(U) es abierto y se sigue que f es una función abierta. Similarmente se prueba que f es cerrada.

criterio, abierta. cerrada

Definición de suma topológica

DEFINICIÓN 10. Dada una familia de espacios topológicos $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$, se puede generar un nuevo espacio topológico a partir de su unión ajena $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ definida en 1a. Considerénse las inclusiones $i_{\mu}:X_{\mu}\longrightarrow X, \mu\in\Lambda$ y sea \mathcal{T}_{μ} la topología coinducida en X por X_{μ} a través de i_{μ} . Se tiene que $\mathcal{S}=\bigcap_{{\lambda}\in\Lambda}\mathcal{T}_{\lambda}$ también es una topología sobre X. Esta topología se llamará **topología de la suma** en X. Al espacio X con esta topología se le llamará **suma topológica** de los espacios X_{λ} .

2c

definición, suma topológica, unión disjunta

Proposición 1. Sea $\{X_{\lambda}\}_{{\lambda} \in \Lambda}$ una familia de espacios topológicos y sea S la topología de la suma en $X = [I]_{{\lambda} \in \Lambda} X_{\lambda}$. Se tiene que

comparación, suma topológica

- (1) S hace continuas a todas las inclusiones $i_{\lambda}: X_{\mu} \longrightarrow X$,
- (II) S es la topología más fina con esta propiedad.

Demostración. (I) Sea $\mu \in \Lambda$ arbitrario pero fijo. Si U es abierto en X, entonces $U \in \mathcal{S} = \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$, donde \mathcal{T}_{λ} es la topología coinducida en X por X_{λ} a través de i_{λ} . En particular, $U \in \mathcal{T}_{\mu}$, luego, por definición, $i_{\mu}^{-1}(U)$ es abierto en X_{μ} . Por tanto, i_{μ} es continua y como μ fue arbitrario se tiene el resultado.

(II) Supóngase que \mathcal{T} es una topología que hace continuas a todas las inclusiones. Si $U \in \mathcal{T}$, entonces $i_1^{-1}(U)$ es abierto en X_{λ} , para cada $\lambda \in \Lambda$, luego $U \in \mathcal{T}_{\lambda}$ para cada λ , por definición de \mathcal{T}_{λ} . En consecuencia, $U \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda} = \mathcal{S}$. Como U fue arbitrario, entonces $\mathcal{T} \subset \mathcal{S}$ y se sigue que \mathcal{S} es la topología más fina que hace continua a todas las inclusiones.

Propiedades de las inclusiones

2c2

Proposición 2. Sea $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia de espacios topológicos y sea $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ su suma topológica. Si ${\mu}\in\Lambda$, se tiene que

propiedades, inclusiones, suma topológica

- (i) $Si A \subset X_{\mu}$, entonces $i_{\mu}^{-1}(A \times \{\mu\}) = A$,
- (II) $Si A \subset X_{\mu}$, entonces $i_{\lambda}^{-1}(A \times \{\mu\}) = \emptyset$, $\forall \lambda \in \Lambda, \lambda \neq \mu$,
- (III) $Si A \subset X_{\mu}$, entonces $i_{\mu}(A) = A \times \{\mu\}$,
- (IV) Si $B \subset X$, entonces $i_{\mu}^{-1}(B) \times \{\mu\} = B \cap X_{\mu} \times \{\mu\}, \forall \mu \in \Lambda$,

Demostración. (I) Si $\mu \in \Lambda$ y $A \subset X_{\mu}$, entonces

$$x \in i_{\mu}^{-1}(A \times \{\mu\}) \iff i_{\mu}(x) \in A \times \{\mu\}$$

 $\iff (x, \mu) \in A \times \{\mu\}$
 $\iff x \in A.$

Esto prueba la afirmación.

(II) Si $\lambda \neq \mu$, $A \subset X_{\mu}$ y existiera $x \in i_{\lambda}^{-1}(A \times \{\mu\})$, entonces $(x, \lambda) \in A \times \{\mu\}$ y por tanto $\lambda = \mu$, contradiciendo la hipótesis.

(III) Por (I), se tiene que $i_{\mu}^{-1}(A \times \{\mu\}) = A$ y tomando la imagen bajo i_{μ} en ambos lados, al ser las inclusiones suprayectivas, se tiene que $A \times \{\mu\} = i_{\mu}(A)$.

(IV) Sea $\mu \in \Lambda$ y $B \subset X$, entonces

$$(x,\lambda) \in i_{\mu}^{-1}(B) \times \{\mu\} \iff x \in i_{\mu}^{-1}(B) \land \lambda \in \{\mu\} \land x \in X_{\mu}$$

$$\iff i_{\mu}(x) \in B \land \lambda = \mu \land x \in X_{\mu}$$

$$\iff (x,\mu) \in B \land \lambda = \mu \land (x,\lambda) \in X_{\mu} \times \{\lambda\}$$

$$\iff (x,\lambda) \in B \land \lambda = \mu \land (x,\lambda) \in X_{\mu} \times \{\mu\}$$

$$\iff (x,\lambda) \in B \cap X_{\mu} \times \{\mu\}.$$

Como μ fue arbitrario, se tiene el resultado.

caracterización, abiertos, suma topológica

TEOREMA 10. Sea $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia de espacios topológicos y sea $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ su suma topológica. Entonces

- (I) U es abierto en X si y solo si $U \cap X_{\lambda} \times \{\lambda\}$ es abierto en $X_{\lambda} \times \{\lambda\}$, $\forall \lambda \in \Lambda$,
- (II) F es cerrado en X si y solo si $F \cap X_{\lambda} \times \{\lambda\}$ es cerrado en $X_{\lambda} \times \{\lambda\}$, $\forall \lambda \in \Lambda$.

Demostración. (I) Si $U \subset X$ es abierto, por definición $U \cap X_{\lambda} \times \{\lambda\}$ es abierto en $X_{\lambda} \times \{\lambda\}$, para cada $\lambda \in \Lambda$. Supóngase que se cumple la condición. Nótese que para cada $\lambda \in \Lambda$, la inclusión $i_{\lambda} : X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es continua, además, $U \cap X_{\lambda} \times \{\lambda\} = i_{\lambda}^{-1}(U) \times \{\lambda\}$ y en consecuencia $i_{\lambda}^{-1}(U \cap X_{\lambda} \times \{\lambda\}) = i_{\lambda}^{-1}(i_{\lambda}^{-1}(U) \times \{\lambda\}) = i_{\lambda}^{-1}(U)$ es abierto en X_{λ} . Luego $U \in \mathcal{T}_{\lambda}$ para cada $\lambda \in \Lambda$ y por tanto $U \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda} = \mathcal{S}$, es decir, U es abierto en X.

(II) Se tiene que

$$F \subset X$$
 es cerrado en $X \iff X - F$ es abierto en X
$$\iff (X - F) \cap X_{\lambda} \times \{\lambda\} = X_{\lambda} \times \{\lambda\} - F \text{ es abierto en } X_{\lambda} \times \{\lambda\}, \ \forall \ \lambda \in \Lambda$$

$$\iff F \text{ es cerrado en } X_{\lambda} \times \{\lambda\}, \ \forall \ \lambda \in \Lambda,$$

por el punto anterior.

COROLARIO 2. Sea $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia de espacios topológicos y sea $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ su suma topológica. Entonces

- (I) U es abierto en X si y sólo si $i_{\lambda}^{-1}(U)$ es abierto en X_{λ} , $\forall \lambda \in \Lambda$,
- (II) F es cerrado en X si y sólo si $i_{\lambda}^{-1}(F)$ es cerrado en X_{λ} , $\forall \lambda \in \Lambda$.

Teorema 11. Si $\{X_{\lambda}\}_{\lambda}$ es una familia de espacios topológicos $yX = \coprod_{\lambda \in \Lambda} X_{\lambda}$ es su suma topológica, entonces

- (i) $Si \mu \in \Lambda$, entonces U es abierto en X_{μ} si y solo si $U \times \{\mu\}$ es abierto en $X_{\mu} \times \{\mu\}$.
- (II) Cada subespacio $X_{\lambda} \times {\lambda}$ de X es abierto y cerrado en X,
- (III) $Si \mu \in \Lambda y : \subset X_{\mu}$, entonces U es abierto en X_{μ} si y solo si $U \times \{\mu\}$ es abierto en X,
- (IV) $i_{\lambda}: X_{\lambda} \longrightarrow X$ es una función abierta, $\forall \lambda \in \Lambda$.
- (v) $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es una función abierta, $\forall \lambda \in \Lambda$.
- (VI) $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es un homeomorfismo.

Demostración. (I) Si $\mu \in \Lambda$ y U es abierto en X_{μ} , entonces $U \subset X_{\mu}$ y por (I) se tiene que $i_{\mu}^{-1}(U \times \{\mu\}) = U$. Luego $U \times \{\mu\}$ debe ser abierto en la topología coinducida en X por X_{μ} a través de i_{μ} , es decir, $U \times \{\mu\} \in \mathcal{T}_{\mu}$. Más aún, si $\lambda \neq \mu$, por (II) se tiene que $i_{\lambda}^{-1}(U \times \{\mu\}) = \emptyset$, el cual también es abierto en X_{λ} . En consecuencia, $U \times \{\mu\} \in \mathcal{T}_{\lambda}$, para cada $\lambda \in \Lambda$. Luego $U \times \{\mu\} \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda} = \mathcal{S}$, es decir, $U \times \{\mu\}$ es abierto en X.

Supóngase ahora que $U \times \{\mu\}$ es abierto en $X_{\mu} \times \{\mu\}$. Como la inclusión $i_{\mu} : X_{\mu} \longrightarrow X$ es continua y $i_{\mu}(X_{\mu}) = X_{\mu} \times \{\mu\}$, entonces $i_{\mu} : X_{\mu} \longrightarrow X_{\mu} \times \{\mu\}$ también es continua. Como $U \subset X_{\mu}$, entonces $i_{\mu}^{-1}(U \times \{\mu\}) = U$ por (1) y se sigue que U es abierto en X_{μ} .

propiedades, abiertos, suma topológica (II) Corolario de 2d3. (III) Se sigue de (I) y (II). (IV) Se sigue de 2d2 (III) y del punto anterior. (V). Se sigue del punto anterior. (VI) Es fácil ver que $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es biyectiva. Es además continua y abierta, luego un homeomorfismo.

DEFINICIÓN 11. Dados un espacio topológico X, un conjunto Y y una función $f: X \longrightarrow Y$, se puede dotar a Y con una topología, a saber, $\{U \subset Y \mid f^{-1}(U) \text{ es abierto en } X\}$. A esta topología se le llamará **topología de identificación** o **topología coinducida** en Y por X a través de f.

generación, definición

DEFINICIÓN 12. Si X y Y son espacios topológicos y $f:X\longrightarrow Y$ es una función, se dice que f es una **identificación** si la topología de Y es la topología coinducida por f.

Más fina para continuidad

Proposición 3. Sea X un espacio topológico $y f: X \longrightarrow Y$ una función. La topología de identificación en Y coinducida por f hace continua a f. Más aún, de entre todas las topologías que hacen continua a f, esta es la más fina.

comparación

Demostración. Sea \mathcal{T}_f la topología de identificación en Y. Si $U \in \mathcal{T}$, entonces $f^{-1}(U)$ es abierto en X, por definición. Como U fue arbitrario, entonces f debe ser continua, por definición de continuidad.

Sea \mathcal{T} una topología que hace continua a f. Si $U \in \mathcal{T}$, entonces $U \subset Y$ y $f^{-1}(U)$ es abierto en X por definición de continuidad, pero esto implica que $U \in \mathcal{T}_f$ por definición de \mathcal{T}_f . Como U fue arbitrario, entonces $\mathcal{T} \subset \mathcal{T}_f$, y a su vez como \mathcal{T} fue una topología arbitraria que hace continua a f, entonces \mathcal{T}_f debe ser la más fina entre ellas. \square

caracterización, identificación

Teorema 12. Si $f: X \longrightarrow Y$ es una función, son equivalentes

- (I) f es identificación.
- (II) U es abierto en Y si y sólo si $f^{-1}(U)$ es abierto en X.
- (III) F es cerrado en Y si y sólo si $f^{-1}(F)$ es cerrado en X.

Demostración. (I) \Longrightarrow (II). Si f es identificación entonces f es, en particular, continua, y por tanto U abierto en Y implica $f^{-1}(U)$ abierto en X. Supogase ahora que $f^{-1}(U)$ es abierto en X con $U \subset Y$. Entonces U es abierto en X por definición de topología de identificación. Como U fue arbitrario se tiene el resultado.

 $(II) \implies (III)$. Se tiene que

$$F$$
 es cerrado en $Y \iff X - F$ es abierto en Y
$$\iff f^{-1}(X - F) = Y - f^{-1}(F) \text{ es abierto en } X, \text{ por hipótesis}$$

$$\iff f^{-1}(F) \text{ es cerrado en } X.$$

- $(III) \implies (II)$. Es similar al punto anterior.
- (II) \Longrightarrow (I). Sea \mathcal{T} la topología de Y. Si se verifica (II), entonces la \mathcal{T} hace continua a f. Más aún, si hay otra topología \mathcal{T}' que hace continua a f, entonces $U \in \mathcal{T}$ implica que $f^{-1}(U)$ es abierto en X, y por tanto $U \in \mathcal{T}$ por

identificación. Luego, $\mathcal T$ es la topología de identificación coinducida por f, es decir, f es una identificación. \Box

hipótesis. Luego $\mathcal{T}' \subset \mathcal{T}$ y como \mathcal{T}' fue arbitraria, entonces \mathcal{T} es de hecho más fina en Y que cualquier otra que haga continua a f. Es fácil verificar que sólo existe una topología sobre Y con esta propiedad y es la topología de

Proposición 4. Sean $f: X \longrightarrow Y$ $y g: Y \longrightarrow Z$ funciones. Se verifican las siguientes afirmaciones

- (I) $id_X : X \longrightarrow X$ es identificación.
- (II) Si f y g son identificaciones, entonces $g \circ f$ es identificación.
- (III) Si f y $g \circ f$ son identificaciones, necesariamente g es identificación.

Demostración. (I) Se sigue de que U es abierto en X si y sólo si $\mathrm{id}_X(U) = U$ es abierto en X.

(II) Como f y g son identificaciones, entonces, por 2d2,

$$U$$
 es abierto en $Z \iff g^{-1}(U)$ es abierto en Y $\iff f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ es abierto en X .

Luego $g \circ f$ es identificación.

(III) Se tiene que

$$U$$
 es abierto en $Z \iff (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ es abierto en $X \iff g^{-1}(U)$ es abierto en Y ,

luego g es identificación.

TEOREMA 13. Sea $p: X \longrightarrow Y$ continua. Si existe una función continua $s: Y \longrightarrow X$ tal que $p \circ s = \mathrm{id}_Y$, entonces p es una identificación.

criterio, sección

Demostración. Si $U \subset Y$ es tal que $p^{-1}(U)$ es abierto en X, entonces $s^{-1}(p^{-1}(U)) = (p \circ s)^{-1}(U) = \mathrm{id}_Y(U) = U$ es abierto, por ser s continua. Como p es también continua por hipótesis, se tiene que U es abierto en Y si Y sólo si $P^{-1}(U)$ es abierto en Y, luego P es identificación.

DEFINICIÓN 13. A $s: Y \longrightarrow X$ en el teorema anterior se le llama **sección** de p.

propiedades, sección

- TEOREMA 14. Si $s: Y \longrightarrow X$ es una sección de $p: X \longrightarrow Y$, entonces
 - (I) s es inyectiva,
- (II) s es un encaje, es decir, $Y \cong s(Y)$.

Demostración. (I) Si $y_1, y_2 \in Y$ son tales que $s(y_1) = s(y_2)$, entonces $p(s(y_1)) = p(s(y_2))$, pero $p \circ s = \mathrm{id}_Y$, en consecuencia $y_1 = y_2$. Luego s es inyectiva.

(II) Sea $r: Y \longrightarrow s(Y)$ la restricción de s al contradominio s(Y). Claro que r es biyectiva, pues es suprayectiva por construcción e inyectiva por ser s inyectiva. Más aún, r es continua, pues s es continua y $s(Y) \subset X$. Sea U un abierto en Y. Como p es continua, entonces $p^{-1}(U)$ debe ser abierto en X, además

$$r^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U)) \cap s^{-1}(s(Y))$$

$$= (p \circ s)^{-1}(U) \cap Y, \text{ por inyectividad de } s$$

$$= id_Y^{-1}(U) \cap Y$$

$$= U \cap Y = U.$$

Tomando la imagen bajo r a ambos lados, se tiene que $p^{-1}(U) \cap s(Y) = r(U)$, por ser r suprayectiva. Se sigue que r(U) es un abierto en s(Y). Como U fue un abierto arbitrario de Y, entonces r es una función abierta. Luego, como r es biyectiva, continua y abierta, entonces r es un homeomorfismo por 2b1 y por tanto s es un encaje.

Criterio para identificaciones

Proposición 5. Si $f: X \longrightarrow Y$ es continua, suprayectiva y abierta o cerrada, entonces f es identificación.

Demostración. Si $U \subset Y$ es tal que $f^{-1}(U)$ es abierto en X, entonces $U = f(f^{-1}(U))$ debe ser abierto en Y por ser f suprayectiva y abierta. Como f también es continua, entonces f debe ser identificación por 2d2. Si f es cerrada, la demostración es similar usando nuevamente 2d2.

2d5

criterio, abierta, identificación

Producto de identificaciones

Proposición 6. Si $f_1: X_1 \longrightarrow Y_1$ y $f_2: X_2 \longrightarrow Y_2$ son continuas, suprayectivas y abiertas, entonces $f: X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ definida como $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$ es identificación.

Demostración. Se tiene que f es continua (munkres 1975, p. 112, pendiente de agregar topología producto aquí con etiqueta generación) y también suprayectiva. Más aún, f es abierta. Se sigue de 2d5 que f es identificación. \Box

2d6

producto, abierta, identificación Proposición 7. Sea $f: X \longrightarrow Y$ una función biyectiva. Entonces f es identificación si y sólo si f es homeomorfismo.

homeomorfismo, identificación

Demostración. Supongamos que f es identificación. Si U es abierto en X, entonces $f^{-1}(f(U)) = U$ es abierto en X, luego f(U) debe de ser abierto en Y por ser f identificación. Luego f es una función abierta Y como es continua Y biyectiva, por 2b1 Y debe ser homeomorfismo. Recíprocamente, si Y es homeomorfismo, entonces Y es abierta nuevamente por 2b1 Y como Y es continua Y suprayectiva, entonces Y es identificación por 2d5.

Restricción de identificaciones

TEOREMA 15. Si $f: X \longrightarrow Y$ es identificación, B es abierto o cerrado en Y y $A = f^{-1}(B)$, entonces $f|_A: A \longrightarrow B$ es identificación.

Demostración. Como f es continua, entonces $f|_A:A\longrightarrow Y$ es continua. Más aún, como $B\subset Y$ y $f(A)=f(f^{-1}(B))\subset Y$ B, entonces $f|_A:A\longrightarrow B$ es continua. Sea $U\subset B$ tal que $f|_A^{-1}(U)$ es abierto en A. Como B es abierto en Y, entonces $f^{-1}(B) = A$ es abierto en X, por ser f continua y por tanto $f |_{A}^{-1}(U)$ es abierto en X. Pero

$$f|_A^{-1}(U) = f^{-1}(U) \cap A = f^{-1}(U) \cap f^{-1}(B) = f^{-1}(U \cap B) = f^{-1}(U),$$

por ser $U \subset B$, así que $f^{-1}(U)$ es abierto en X. Como f es identificación, esto implica que U es abierto en Y y por tanto U es también abierto en B, pues $U = U \cap B$. Como U fue arbitrario, entonces $f|_A$ es identificación. Si B es cerrado la demostración es similar. restricción. identificación, criterio

Propiedad universal de las identificaciones

TEOREMA 16. Sea $f: X \longrightarrow Y$ una función. Entonces f es identificación si y sólo si se cumplen las siguientes condiciones:

- (I) f es continua.
- (II) Una función $g: Y \longrightarrow Z$ es continua si y sólo si $g \circ f$ es continua.

Demostración. Supóngase primero que f es identificación. Entonces f es continua y se tiene (1). Sea $g:Y\longrightarrow Z$ una función. Si g es continua, entonces $g \circ f$ es continua por ser composición de funciones continuas. Si $g \circ f$ es continua y U es un abierto en Z, se tiene que $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ es abierto en X y por tanto $g^{-1}(U)$ es abierto en Y por ser f identificación. Como U fue arbitrario, entonces q es continua y hemos probado (II).

Suponga ahora que se verifican las condiciones y sean \mathcal{T} la topología en Y y \mathcal{T}_f la topología coinducida por f en Y. Definase $f': X \longrightarrow (Y, \mathcal{T}_f)$ como $f'(x) = f(x), \forall x \in X$. Se tiene que f' es continua, pues si U es abierto en (Y, \mathcal{T}_f) , propiedad universal, identificación entonces $f'^{-1}(U) = f^{-1}(U)$, el cual es abierto en X, pues \mathcal{T}_f hace continua a f. Más aún, se tiene que $f' = \mathrm{id}_Y \circ f$, donde $\mathrm{id}_Y : (Y, \mathcal{T}) \longrightarrow (Y, \mathcal{T}_f)$, luego la condición (II) implica que id $_Y$ es continua, así que $\mathcal{T}_f \subset \mathcal{T}$. Además, por la condición (I), la topología \mathcal{T} hace continua a f y en consecuencia $\mathcal{T} \subset \mathcal{T}_f$. Se sigue que $\mathcal{T} = \mathcal{T}_f$, es decir, f es una identificación.

DEFINICIÓN 14. Si X es un espacio topológico y \sim es una relación de equivalencia en X, se le llamará **espacio cociente** a X/\sim con la topología de identificación coinducida por la proyección canónica $p:X\longrightarrow X/\sim$. Se dirá que X/\sim tiene la **topología cociente**.

cociente, topología

Definición 15. A la proyección canónica $p:X\longrightarrow X/\sim$ vista como identificación se le llamará **aplicación** cociente.

Observación. Si $x \in X$, entonces $p^{-1}(\{[x]\}) = [x]$.

DEFINICIÓN 16. Si $p: X \longrightarrow X/\sim$ es una aplicación cociente y $A \subset X$, se define la **saturación** de A como el conjunto $p^{-1}(p(A))$, que contiene a todos los puntos de A y a todos los puntos en X equivalentes a algún punto de A. Se dice que A es **saturado** si $A = p^{-1}(p(A))$.

definición, saturación, identificación

Proposición 8. Sea $A \subset X$ un conjunto saturado respecto a una relaión de equivalencia $\sim y$ sea p la respectiva aplicación cociente. Se tiene que

- (I) Si $A \subset X$ es abierto o cerrado, entonces $p|_A : A \longrightarrow p(A)$ es una identificación.
- (II) Si p es abierta o cerrada, entonces $p|_A:A\longrightarrow p(A)$ es una identificación.

Demostración. (I) Como A es saturado, entonces $A=p^{-1}(p(A))$ y dado que p es identificación y A es abierto, p(A) debe ser abierto en X/\sim . Y nuevamente, como $A=p^{-1}(p(A))$, entonces $p|_A:A\longrightarrow p(A)$ es una identificación por 2d8.

(II) Sea U un abierto en A. Entonces $U = V \cap A$, para algún abierto V de X. Se tiene que $p(V \cap A) = p(V) \cap p(A)$. En efecto, en general se sabe que $p(V \cap A) \subset p(V) \cap p(A)$. Si $y \in p(V) \cap p(A)$, entonces existen $v \in V$ y $a \in A$ tales que p(v) = y = p(a), luego $p(a) \in p(A)$ y por tanto $p(v) \in p(A)$, luego $v \in p^{-1}(p(A)) = A$, por ser A saturado. En consecuencia, $v \in V \cap A$ y por tanto $y = p(v) \in p(V \cap A)$. Esto prueba la afirmación. Luego, $p|_A(U) = p|_A(V \cap A) = p(V \cap A) = p(V) \cap p(A)$, donde p(V) es abierto por ser p una función abierta, así que $p|_A(U)$ es abierto en p(A). Se sigue que $p|_A$ es también una función abierta y además es continua y suprayectiva. En consecuencia, $p|_A$ es una identificación.

Espacios cocientes T1

2d10b

TEOREMA 17. Si $p: X \longrightarrow X/\sim$ es una aplicación cociente y cada elemento de X/\sim es cerrado en X, entonces X/\sim es un espacio T_1 .

espacio cociente, T1

Demostración. Sea $[x] \in X/\sim$. Por hipótesis $[x] \subset X$ es cerrado en X, pero $[x] = p^{-1}(\{[x]\})$ y como p es identificación, entonces $\{[x]\}$ debe ser cerrado en X/\sim . Se sigue que X/\sim es un espacio T_1 .

Homeomorfismo inducido por una identificación

Proposición 9. Sea $f: X \longrightarrow Y$ una identificación y suprayectiva. Si se define en X la relación de equivalencia $x_1 \sim x_2$ si y sólo si $f(x_1) = f(x_2)$, entonces X/\sim es homeomorfo a Y.

Demostración. La relación definida es una relación de equivalencia, para cualquier función f. Definase $\widetilde{f}: X/\sim \to Y$ como $\widetilde{f}([x])=f(x)$. Se tiene que f está bien definida, pues si $[x_1]=[x_2]$ entonces $x_1\sim x_2$, luego $f(x_1)=f(x_2)$ por definición de \sim , es decir, $\widetilde{f}([x_1])=\widetilde{f}([x_2])$. Nótese que $\widetilde{f}\circ p=f$, donde $p:X\to X/\sim$ es la aplicación cociente. Se tiene que

- (I) \widetilde{f} es suprayectiva, pues dado $y \in Y$, existe $x \in X$ tal que y = f(x) por suprayectividad de x, luego $[x] \in X/\sim$ es tal que $\widetilde{f}([x]) = f(x) = y$,
- (II) \widetilde{f} es inyectiva, pues si $[x_1]$, $[x_2] \in X/\sim$ son tales que $\widetilde{f}([x_1]) = \widetilde{f}([x_2])$, entonces $f(x_1) = f(x_2)$, luego $x_1 \sim x_2$ y por tanto $[x_1] = [x_2]$.

Existe pues la función inversa \widetilde{f}^{-1} . Como $f = \widetilde{f} \circ p$ es continua y p es identificación, la propiedad universal de las identificaciones implica que \widetilde{f} es continua. Además, dado que $p = \widetilde{f}^{-1} \circ f$ es continua y f es identificación, entonces \widetilde{f}^{-1} también debe ser continua. Luego \widetilde{f} es un homeomorfismo.

identificación

Caracterización de identificaciones

Definición 17. Dada una función $f: X \longrightarrow Y$, se dice que $g: X \longrightarrow Z$ es compatible con f si $f(x_1) = f(x_2)$ implica que $g(x_1) = g(x_2)$, para cada $x, x' \in X$.

Teorema 18. Sea $f: X \longrightarrow Y$ continua y suprayectiva. Entonces f es identificación si y sólo si para cada función continua $g: X \longrightarrow Z$ compatible con f, existe una única función continua $\overline{g}: Y \longrightarrow Z$ tal que $\overline{g} \circ f = g$.

Se dice que \overline{g} es el resultado de pasar g al cociente.

Definase $\overline{g}: Y \longrightarrow Z$ como $\overline{g}(y) = g(x)$, donde $x \in X$ es tal que y = f(x). Se tiene que \overline{g} está bien definida, pues si $y_1, y_2 \in Y$ son tales que $y_1 = y_2$, entonces existen $x_1, x_2 \in X$ tales que $y_1 = f(x_1)$ y $y_2 = f(x_2)$, luego $f(x_1) = f(x_2)$ y por tanto $g(x_1) = g(x_2)$ por la compatibilidad de g con $g(x_1) = g(x_2)$. Nótese que $g(x_1) = g(x_2)$ está bien definida, pues si $g(x_1) = g(x_2)$ por la compatibilidad de g con $g(x_1) = g(x_2)$. Nótese que $g(x_1) = g(x_2)$ está bien definida, pues si $g(x_1) = g(x_2)$ está bien definida está bien de

Si $\overline{g}': Y \longrightarrow Z$ es una función tal que $\overline{g}' \circ f = g$. Si $y_1 = y_2$, entonces existen $x_1, x_2 \in X$ tales que $y_1 = f(x_1)$ y $y_2 = f(x_2)$, luego $f(x_1) = f(x_2)$ y por tanto $g(x_1) = g(x_2)$, luego $\overline{g}'(y_1) = \overline{g}'(f(x_1)) = g(x_2) = \overline{g}(f(x_2)) = \overline{g}(y_2)$.

En consecuencia, $\overline{g}' = \overline{g}$ y por lo tanto g es la única función bajo las hipótesis con esta propiedad. Además, por hipótesis g es continua y f es identificación, luego la propiedad universal de las identificaciones implica que \overline{g} debe ser continua. Más aún, si g es identificación, como f es identificación, 2d3 implica que \overline{g} también es identificación.

Supóngase ahora que se verifica la condición. Defínase en X la relación de equivalencia $x_1 \sim x_2$ si y sólo si $f(x_1) \sim f(x_2)$ y sea $p: X \longrightarrow X/\sim$ la aplicación cociente. Si $f(x_1) = f(x_2)$ entonces $x_1 \sim x_2$ y por tanto $p(x_1) = p(x_2)$, en consecuencia p es compatible con f y como también p es continua, por hipótesis debe existir una función continua $\overline{p}: Y \longrightarrow X/\sim$ tal que $p = \overline{p} \circ f$. Por otro lado, nótese que si $p(x_1) = p(x_2)$, entonces $x_1 \sim x_2$ y por tanto $f(x_1) = f(x_2)$, es decir, f es compatible con p. Como p es identificación, entonces la primera parte de la demostración implica que existe una función continua $\overline{f}: X/\sim \longrightarrow Y$ tal que $f = \overline{f} \circ p$.

Se tiene entonces que $p = \overline{p} \circ \overline{f} \circ p$ y $f = \overline{f} \circ \overline{p} \circ f$. Afirmamos que $\overline{f} \circ \overline{p} = \operatorname{id}_Y$. En efecto, si $y \in Y$, entonces existe $x \in X$ tal que y = f(x), luego $y = f(x) = \overline{f}(\overline{p}(f(x))) = \overline{f}(\overline{p}(y))$. Como y es arbitrario esto prueba la afirmación. Similarmente se prueba que $\overline{p} \circ \overline{f} = \operatorname{id}_{X/\sim}$. Se tiene pues que \overline{f} es un homeomorfismo y por tanto identificación, y dado que p también es identificación y $f = \overline{f} \circ p$, entonces f es identificación.

Homeomorfismo inducido por funciones compatibles

COROLARIO 3. Si $f: X \longrightarrow Y$, $g: X \longrightarrow Z$ son identificaciones, suprayectivas y compatibles entre sí, es decir, $f(x_1) = f(x_2)$ si y solo si $g(x_1) = g(x_2)$, $\forall x_1, x_2 \in X$, entonces Y y Z son homeomorfos.

 $\begin{array}{l} \textit{Demostraci\'on.} \ \ \text{Por 2d12, como } f \ \text{es identificaci\'on, } g \ \text{es continua } y \ g \ \text{es compatible con } f, \text{ entonces existe una funci\'on } \\ \text{continua } \overline{g}: Y \longrightarrow Z \ \text{tal que } \overline{g} \circ f = g. \ \text{Similarmente, como } g \ \text{es identificaci\'on, } f \ \text{es continua } y \ f \ \text{es compatible con } \\ g, \ \text{entonces existe una funci\'on continua } \overline{f}: Z \longrightarrow Y \ \text{tal que } \overline{f} \circ g = f. \ \text{Luego } \overline{g} \circ \overline{f} \circ g = g \ \text{y } \overline{f} \circ \overline{g} \circ f = f \ \text{y como } f \\ y \ g \ \text{son suprayectivas, entonces } \overline{g} \circ \overline{f} = \text{id}_Z \ \text{y } \overline{f} \circ \overline{g} = \text{id}_Y. \ \text{Luego } \overline{f} \ y \ \overline{g} \ \text{son homeomorfismos.} \end{array}$

2d12a

compatibilidad, homeomorfismo Definición 18. Si R y S son relaciones en dos conjuntos X y Y, respectivamente, se dice que f **preserva relaciones** si x R x' implica que f(x) S f(x'), \forall $x \in X$.

preserva relación, continuidad

COROLARIO 4. Sean R y S relaciones en dos espacios X y Y, respectivamente y sean p_X , p_Y las respectivas aplicaciones cociente. Si $f: X \longrightarrow Y$ es continua y preserva relaciones, entonces existe una única función continua $f_*: X/R \longrightarrow Y/S$ tal que $f_* \circ p_X = p_Y \circ f$. Es decir, tal que el siguiente diagrama conmuta

Demostración. Se sigue de 2d12 tomando $g = p_Y \circ f$.

Teorema 19. Si X es un espacio compacto, Y es un espacio de Hausdorff y $f: X \longrightarrow Y$ es continua y suprayectiva, entonces f es identificación.

compacto, Hausdorff, identificación

Demostración. Si $F \subset X$ es cerrado, entonces F es compacto, luego f(F) es compacto en Y por ser f continua. En consecuencia, f(F) es cerrado en Y por ser Y un espacio de Hausdorff. Luego f es una función cerrada y al ser continua y suprayectiva, 2d5 implica que f es identificación.