

LM393B, LM2903B, LM193, LM293, LM393 and LM2903 Dual Comparators

1 Features

- NEW LM393B and LM2903B
- Improved specifications of B-version
 - Maximum rating: up to 38V ESD rating (HBM): 2kV
 - Low input offset: 0.37mV
 - Low input bias current: 3.5nA
 - Low supply-current: 200µA per comparator
 - Faster response time of 1µsec
 - Extended temperature range for LM393B
 - Available in tiny 2 x 2mm WSON package
- B-version is drop-in replacement for LM293, LM393 and LM2903, A and V versions
- Common-mode input voltage range includes
- Differential input voltage range equal to maximumrated supply voltage: ±38 V
- Low output saturation voltage
- Output compatible with TTL, MOS, and CMOS

2 Applications

- Vacuum robot
- Single phase UPS
- Server PSU
- Cordless power tool
- Wireless infrastructure
- **Applicances**
- **Building automation**
- Factory automation & control
- Motor drives
- Infotainment & cluster

3 Description

The LM393B and LM2903B devices are the next generation versions of the industry-standard LM393 and LM2903 comparator family. These next generation B-version comparators feature lower offset voltage, higher supply voltage capability, lower supply current, lower input bias current, lower propagation delay, and improved 2 kV ESD performance and input ruggedness through dedicated ESD clamps. The LM393B and LM2903B can drop-in replace the LM293, LM393 and LM2903, for both "A" and "V" grades.

All devices consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Quiescent current is independent of the supply voltage.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V, LM2903AV	SOIC (8)	4.90mm x 3.91mm
LM393B, LM2903B, LM293, LM293A, LM393, LM393A, LM2903	VSSOP (8)	3.00mm x 3.00mm
LM293, LM393, LM393A, LM2903	PDIP (8)	9.81mm × 6.35mm
LM393, LM393A, LM2903	SO (8)	6.20mm x 5.30mm
LM393B, LM2903B, LM393, LM393A, LM2903, LM2903V, LM2903AV	TSSOP (8)	3.00mm x 4.40mm
LM393B, LM2903B	SOT-23 (8)	2.90mm x 1.60mm
LM393B, LM2903B	WSON (8)	2.00mm × 2.00mm

For all available packages, see the orderable addendum at the end of the data sheet.

Family Comparison Table

		- ,						
Specification	LM393B	LM2903B	LM393 LM393A	LM2903	LM2903V LM2903AV	LM193	LM293 LM293A	Units
Supply Voltage	2 to 36	2 to 36	2 to 30	2 to 30	2 to 32	2 to 30	2 to 30	V
Total Supply Current (5V to 36V max)	0.6 to 0.8	0.6 to 0.8	1 to 2.5	1 to 2.5	1 to 2.5	1 to 2.5	1 to 2.5	mA
Temperature Range	-40 to 85	-40 to 125	0 to 70	-40 to 125	-40 to 125	-55 to 125	-25 to 85	°C
ESD (HBM)	2000	2000	2000	2000	2000	2000	2000	V
Offset Voltage (Max over temp)	± 4	± 4	± 9 ± 4	± 15	± 15 ± 4	± 9	± 9 ± 4	mV
Input Bias Current (typ / max)	3.5 / 25	3.5 / 25	25 / 250	25 / 250	25 / 250	25 / 100	25 / 250	nA
Response Time (typ)	1	1	1.3	1.3	1.3	1.3	1.3	µsec

22

Table of Contents

1 Features	11
2 Applications 1 6 Detailed Description	17
3 Description 6.1 Overview	17
4 Pin Configuration and Functions3 6.2 Functional Block Diagram	17
5 Specifications4 6.3 Feature Description	17
5.1 Absolute Maximum Ratings4 6.4 Device Functional Modes	17
5.2 Recommended Operating Conditions	18
5.3 Thermal Information: LMx93x and LM2903x 5 7.1 Application Information	18
5.4 ESD Ratings 5 7.2 Typical Application	
5.5 Electrical Characteristics LM393B	21
5.6 Electrical Characteristics LM2903B 8.1 Receiving Notification of Documentation Updates	21
5.7 Switching Characteristics LM393B and LM2903B7 8.2 Support Resources	<mark>21</mark>
5.8 Electrical Characteristics for LM193, LM293, and 8.3 Trademarks	21
LM393 (without A suffix)8 8.4 Electrostatic Discharge Caution	21
5.9 Electrical Characteristics for LM293A and LM393A9 8.5 Glossary	21
5.10 Electrical Characteristics for LM2903, 9 Revision History	
LM2903V, and LM2903AV10 10 Mechanical, Packaging, and Orderable	
5.11 Switching Characteristics: LM193, LM239, Information	22
LM393, LM2903, all 'A' and 'V' versions10	

4 Pin Configuration and Functions

Figure 4-1. D, DGK, JG, P, PS, DDF or PW Package 8-Pin SOIC, VSSOP, PDIP, SO, or TSSOP Top View

Connect thermal pad directly to GND pin.

Figure 4-2. DSG Package 8-Pin WSON With Exposed Pad Top View

PIN SOIC, VSSOP, **DESCRIPTION** I/O NAME PDIP, SO, DDF and DSG **TSSOP** 10UT 1 1 Output Output pin of comparator 1 1IN-2 2 Negative input pin of comparator 1 Input 1IN+ 3 3 Input Positive input pin of comparator 1 GND 4 4 Ground 2IN+ 5 5 Positive input pin of comparator 2 Input 2IN-6 6 Input Negative input pin of comparator 2 2OUT 7 7 Output Output pin of comparator 2 8 8 Positive Supply V_{CC} Thermal PAD Connect directly to GND pin Pad

Table 4-1. Pin Functions

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
\ <u></u>	Supply voltage ⁽²⁾	Non-B Versions	-0.3	36	V
V _{CC}	ouppiy voitage.	B Versions Only	-0.3	38	V
\ <u></u>	Differential input voltage(3)	Non-B Versions	-36	36	V
V _{ID}	Differential input voltage ⁽³⁾	B Versions Only	-38	38	V
\ <u></u>	Input voltage (either input)	Non-B Versions	-0.3	36	V
VI	Input voltage (either input)	B Versions Only		38	V
I _{IK}	Input current ⁽⁵⁾	•		-50	mA
\ <u></u>	Output valtage	Non-B Versions -0.3		36	V
Vo	Output voltage	B Versions Only	-0.3	38	V
	Output ourront	Non-B Versions		20	mA
Io	Output current	B Versions Only		25	MA
I _{SC}	Duration of output short circuit to ground ⁽⁴⁾		Unlii	mited	
TJ	Operating virtual-junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability. Production Processing Does Not Necessarily Include Testing of All Parameters.

- All voltage values, except differential voltages, are with respect to network ground.
- (3) Differential voltages are at IN+ with respect to IN-.
- (4) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
- (5) Input current flows thorough parasitic diode to ground and turns on parasitic transistors that increases I_{CC} and can cause the output to be incorrect. Normal operation resumes when input current is removed.

5.2 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
	non-V devices	2	30	
Supply voltage, $V_S = (V+) - (V-)$	V devices	2	32	V
	"B" version devices	2	36	
Input veltage range V	non-B devices	0	(V+) – 2.0	V
nput voltage range, V _{IVR}	"B" version devices	-0.1	(V+) - 2.0	V
	LM193	-55	125	
	LM2903, LM2903V, LM2903AV, LM2903B	-40	125	
Ambient temperature, T _A	LM393B	-40	85	°C
	LM293, LM293A	-25	85	
	LM393, LM393A	0	70	

5.3 Thermal Information: LMx93x and LM2903x

		LMx93x, LM2903x						
	THERMAL METRIC ⁽¹⁾	D (SOIC)	P (PDIP)	PW (TSSOP)	DGK (VSSOP)	DDF (SOT-23)	DSG (WSON)	UNIT
		8 PINS	8 PINS	8 PINS	8 PINS	8 PINS	8 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	148.5	114.9	200.6	193.7	197.9	96.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	90.2	93.8	89.6	82.9	119.2	119.0	°C/W
R _{0JB}	Junction-to-board thermal resistance	91.8	77.7	131.3	115.5	115.4	63.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	38.5	60.4	22.1	20.8	19.4	12.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	91.1	76.7	129.6	113.9	113.7	63.0	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	-	-	-	37.8	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report.

5.4 ESD Ratings

			VALUE	UNIT
V	□	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	Liectrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	"

⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.5 Electrical Characteristics LM393B

 $V_S = 5V$, $V_{CM} = (V-)$; $T_A = 25$ °C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input offset voltage	V _S = 5 to 36V	-2.5	±0.37	2.5	
V _{IO}	Input onset voltage	$V_S = 5 \text{ to } 36V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-4		4	mV
VIO	Input offset voltage, DGK package	V _S = 5 to 36V	-3.5	±0.37	3.5	IIIV
	only	$V_S = 5 \text{ to } 36V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	-5		5	
I_	Input bias current			-3.5	-25	nA
IB	input bias current	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			– 50	nA
Ios	Input offset current		-10	±0.5	10	nA
ios	input onset current	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	-25		25	nA
.,	Common mode range (1)	V _S = 3 to 36V	(V-)		(V+) – 1.5	V
V _{CM}		$V_S = 3 \text{ to } 36V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	(V-)		(V+) - 2.0	V
A _{VD}	Large signal differential voltage amplification	$V_S = 15V$, $V_O = 1.4V$ to 11.4V; $R_L \ge 15k$ to $(V+)$	50	200		V/mV
	Low level output Voltage {swing	I _{SINK} ≤ 4mA, V _{ID} = -1V		110	400	mV
V _{OL}	from (V–)}	$I_{SINK} \le 4mA, V_{ID} = -1V$ $T_A = -40$ °C to +85°C			550	mV
	Lligh lovel output lookens ourrent	(V+) = V _O = 5V; V _{ID} = 1V		0.1	20	nA
I _{OH-LKG}	High-level output leakage current	(V+) = V _O = 36V; V _{ID} = 1V		0.3	50	nA
I _{OL}	Low level output current	V _{OL} = 1.5V; V _{ID} = -1V; V _S = 5V	6	21		mA
	Quissaant surrent (all semperators)	V _S = 5V, no load		400	600	μA
IQ	Quiescent current (all comparators)	V _S = 36V, no load, T _A = -40°C to +85°C		550	800	μA

⁽¹⁾ The voltage at either input can not be allowed to go negative by more than 0.3V otherwise output can be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by V_{CC} – 2V. However only one input needs to be in the valid common mode range, the other input can go up the maximum V_{CC} level and the comparator provides a proper output state. Either or both inputs can go to maximum V_{CC} level without damage.

5.6 Electrical Characteristics LM2903B

 $V_S = 5V$, $V_{CM} = (V-)$; $T_A = 25$ °C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input offeet voltage	V _S = 5 to 36V	-2.5	±0.37	2.5	
	Input offset voltage	V _S = 5 to 36V, T _A = -40°C to +125°C	-4		4	mV
V _{IO}	Input offset voltage, DGK package	V _S = 5 to 36V	-3.5	±0.37	3.5	IIIV
	only	V _S = 5 to 36V, T _A = -40°C to +125°C	-5		5	
	Imput high account			-3.5	-25	nA
I _B	Input bias current	T _A = -40°C to +125°C			-50	nA
los	I		-10	±0.5	10	nA
	Input offset current	T _A = -40°C to +125°C	-25		25	nA
.,	Common mode range (1)	V _S = 3 to 36V	(V-)		(V+) - 1.5	V
V _{CM}		V _S = 3 to 36V, T _A = -40°C to +125°C	(V-)		(V+) - 2.0	V
A _{VD}	Large signal differential voltage amplification	$V_S = 15V$, $V_O = 1.4V$ to 11.4V; $R_L \ge 15k$ to $(V+)$	50	200		V/mV
		I _{SINK} ≤ 4mA, V _{ID} = -1V		110	400	mV
V _{OL}	Low level output Voltage {swing from (V–)}	$I_{SINK} \le 4mA, V_{ID} = -1V$ $T_A = -40$ °C to +125°C			550	mV
	Libert Level evident level evident	$(V+) = V_O = 5V; V_{ID} = 1V$		0.1	20	nA
I _{OH-LKG}	High-level output leakage current	(V+) = V _O = 36V; V _{ID} = 1V		0.3	50	nA
I _{OL}	Low level output current	V _{OL} = 1.5V; V _{ID} = -1V; V _S = 5V	6	21		mA
	Outposent surrent (all servert)	V _S = 5V, no load		400	600	μA
IQ	Quiescent current (all comparators)	V_S = 36V, no load, T_A = -40°C to +125°C		550	800	μΑ

⁽¹⁾ The voltage at either input can not be allowed to go negative by more than 0.3V otherwise output can be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by V_{CC} – 2V. However only one input needs to be in the valid common mode range, the other input can go up the maximum V_{CC} level and the comparator provides a proper output state. Either or both inputs can go to maximum V_{CC} level without damage.

5.7 Switching Characteristics LM393B and LM2903B

 V_S = 5V, V_O PULLUP = 5V, V_{CM} = $V_S/2$, C_L = 15pF, R_L = 5.1k Ohm, T_A = 25°C (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{response}	Propagation delay time, high-to-low; TTL input signal ⁽¹⁾	TTL input with V _{ref} = 1.4V		300		ns
t _{response}	Propagation delay time, high-to-low; Small scale input signal ⁽¹⁾	Input overdrive = 5mV, Input step = 100mV		1000		ns

(1) High-to-low and low-to-high refers to the transition at the input.

5.8 Electrical Characteristics for LM193, LM293, and LM393 (without A suffix)

at specified free-air temperature, V_{CC} = 5V (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS	T _A ⁽¹⁾	LM1	193			293 393		UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
		V _{CC} = 5V to 3		25°C		2	5		2	5	
V _{IO}	/ _{IO} Input offset voltage	$V_{IC} = V_{ICR} \text{ mir}$ $V_{O} = 1.4 \text{V}$	1,	Full range			9			9	mV
1	Input offset current	V _O = 1.4V		25°C		3	25		5	50	nA
I _{IO}	mput onset current	V ₀ - 1.4V) - 1.4V				100			250	IIA
1	Input bias current	\/. = 1.4\/		25°C		-25	-100		-25	-250	nA
I _{IB}	iliput bias current	V _O = 1.4V		Full range			-300			-400	IIA
V _{ICR} Common-morrange ⁽²⁾	Common-mode input-voltage			25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			V
				Full range	0 to V _{CC} – 2			0 to V _{CC} – 2			v
A _{VD}	Large-signal differential-voltage amplification	V_{CC} = 15V, V_{O} = 1.4V to 1 $R_{L} \ge 15k\Omega$ to 3		25°C	50	200		50	200		V/mV
	High level output ourrent	V _{OH} = 5V	V _{ID} = 1V	25°C		0.1			0.1	50	nA
Іон	High-level output current	V _{OH} = 30V	V _{ID} = 1V	Full range			1			1	μA
,,	Law level autout valtage	1 = 4m A	\/ - 4\/	25°C		150	400		130	400	mV
V _{OL}	Low-level output voltage	$I_{OL} = 4mA,$ $V_{ID} = -1V$	Full range			700			700	mv	
I _{OL}	Low-level output current	V _{OL} = 1.5V,	V _{ID} = -1V	25°C	6			6			mA
1	Cupply ourrent	V _{CC} = 5V 25°C	0.8	1		0.45	1	mA			
Icc	Supply current	R _L = ∞	V _{CC} = 30V	Full range			2.5		0.55	2.5	IIIA

⁽¹⁾ Full range (minimum or maximum) for LM193 is –55°C to 125°C, for LM293 is –25°C to 85°C, and for LM393 is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

⁽²⁾ The voltage at either input can not be allowed to go negative by more than 0.3V otherwise output can be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by V_{CC} – 2V. However only one input needs to be in the valid common mode range, and the other input can go up the maximum V_{CC} level and the comparator provides a proper output state. Either or both inputs can go to maximum V_{CC} level without damage.

5.9 Electrical Characteristics for LM293A and LM393A

at specified free-air temperature, V_{CC} = 5V (unless otherwise noted)

	PARAMETER	PARAMETER TEST CONDITIONS		T _A ⁽¹⁾	LM29 LM39	UNIT		
					MIN	TYP	MAX	
\/	Input offset voltage	V _{CC} = 5V to 30V, V _O = 1.4V		25°C		1	2	mV
V_{IO}	iliput oliset voltage	$V_{IC} = V_{ICR(min)}$		Full range			4	IIIV
1	Input offset current	V _O = 1.4V		25°C		5	50	nA
I _{IO}	input onset current	V _O = 1.4V		Full range			150	IIA
1	Input bias current	V _O = 1.4V		25°C		-25	-250	nA
I _{IB}	input bias current	VO - 1.4V		Full range			-400	IIA
V _{ICR} Con	Common mode input veltage range(2)			25°C	0 to V _{CC} – 1.5			V
	Common-mode input-voltage range ⁽²⁾			Full range	0 to V _{CC} – 2			v
A _{VD}	Large-signal differential-voltage amplification	$V_{CC} = 15V, V_{O} = R_{L} \ge 15k\Omega \text{ to } V_{CC}$		25°C	50	200		V/mV
1	High-level output current	V _{OH} = 5V,	V _{ID} = 1V	25°C		0.1	50	nA
I _{OH}	r light-level output current	V _{OH} = 30V,	V _{ID} = 1V	Full range			1	μA
\/	Low-level output voltage	1 - 4 1	V _{ID} = -1V	25°C		110	400	mV
V_{OL}	OL Low-level output voltage	$I_{OL} = 4mA$,	v _{ID} – – I v	Full range			700	
I _{OL}	Low-level output current	V _{OL} = 1.5V,	$V_{ID} = -1V$,	25°C	6			mA
	Supply ourrent	R _L = ∞	V _{CC} = 5V	25°C		0.60	1	A
I _{CC}	Supply current $R_L = \infty$ $V_{CC} = 30V$		rent R _L = ∞	Full range		0.72	2.5	mA

⁽¹⁾ Full range (minimum or maximum) for LM293A is -25°C to 85°C, and for LM393A is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

⁽²⁾ The voltage at either input can not be allowed to go negative by more than 0.3V otherwise output can be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by V_{CC} – 2V. However only one input needs to be in the valid common mode range, and the other input can go up the maximum V_{CC} level and the comparator provides a proper output state. Either or both inputs can go to maximum V_{CC} level without damage.

5.10 Electrical Characteristics for LM2903, LM2903V, and LM2903AV

at specified free-air temperature, V_{CC} = 5V (unless otherwise noted)

	PARAMETER	TEST CONE	NTIONS	T (1)	LM2903, L	M2903	V	LM290	3AV		UNIT
	PARAMETER	TEST CONL	JITIONS	T _A ⁽¹⁾	MIN	TYP	MAX	MIN	TYP	MAX	UNII
,,		$V_{CC} = 5V \text{ to MAX}^{(2)}$,		25°C		2	7		1	2	.,
V _{IO}	Input offset voltage	$V_O = 1.4V,$ $V_{IC} = V_{ICR(min)},$		Full range			15			4	mV
l.o	Input offset current	V _O = 1.4V		25°C		5	50		5	50	nA
I _{IO}	input onset current	VO = 1.4V		Full range			200			200	
I _{IB}	Input bias current	V _O = 1.4V		25°C		-25	-250		-25	-250	nA
IIB	input bias current	VO - 1.4V		Full range			-500			-500	IIA
.,	Common-mode input-			25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			V
V _{ICR}	voltage range ⁽³⁾			Full range	0 to V _{CC} – 2			0 to V _{CC} – 2			v
A _{VD}	Large-signal differential- voltage amplification	V_{CC} = 15V, V_{O} = 1.4V to $R_{L} \ge 15k\Omega$ to V_{CC}	o 11.4V,	25°C	25	100		25	100		V/mV
I _{OH}	High-level output current	V _{OH} = 5V,	$V_{ID} = 1V$	25°C		0.1	50		0.1	50	nA
ЮН	riigii-level oatpat carrent	$V_{OH} = V_{CC} MAX^{(2)},$	$V_{ID} = 1V$	Full range			1			1	μA
V	Low-level output voltage	I _{OL} = 4mA,	$V_{ID} = -1V$,	25°C		150	400		150	400	mV
V _{OL}	Low-level output voltage	10L - 4111A,	V _{ID} = -1 V,	Full range			700			700	IIIV
I _{OL}	Low-level output current	V _{OL} = 1.5V,	V _{ID} = -1V	25°C	6			6			mA
	Supply current	R ₁ = ∞	V _{CC} = 5V	25°C		0.8	1		0.8	1	mA
Icc	Supply current	N w	V _{CC} = MAX	Full range			2.5			2.5	IIIA

⁽¹⁾ Full range (minimum or maximum) for LM2903 is -40°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

5.11 Switching Characteristics: LM193, LM239, LM393, LM2903, all 'A' and 'V' versions

 V_{CC} = 5V, T_A = 25°C

PARAMETER	TEST COND	ITIONS	TYP	UNIT
Response time	The connected to 57 timodgir 5. TK22,	100mV input step with 5mV overdrive	1.3	us
Response time	$C_L = 15pF^{(1)}(2)$	TTL-level input step	0.3	μ5

⁽¹⁾ C_L includes probe and jig capacitance.

(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4V.

⁽²⁾ V_{CC} MAX = 30V for non-V devices and 32V for V-suffix devices.

⁽³⁾ The voltage at either input can not be allowed to go negative by more than 0.3V otherwise output can be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by V_{CC} – 2V. However only one input needs to be in the valid common mode range, the other input can go up the maximum V_{CC} level and the comparator provides a proper output state. Either or both inputs can go to maximum V_{CC} level without damage.

5.12 Typical Characteristics, LMx93x and LM2903x

Figure 5-31. Response Time for Various Overdrives, High-to-Low Transition

Figure 5-32. Response Time for Various Overdrives, Low-to-High Transition

6 Detailed Description

6.1 Overview

These dual comparators have the ability to operate up to absolute maximum of 36V (38V for the "B" version) on the supply pin. This device has proven ubiquity and versatility across a wide range of applications. This is due to very wide supply voltages range, low Iq and fast response of the devices.

The open-collector outputs allow the user to level shift to the desired logic level indpendent of VCC, while also enabling AND functionality when multiple outputs are connected together.

6.2 Functional Block Diagram

Figure 6-1. Schematic (Each Comparator)

6.3 Feature Description

The comparator consists of a PNP Darlington pair input, allowing the device to operate with very high gain and fast response with minimal input bias current. The input Darlington pair creates a limit on the input common mode voltage capability, allowing the comparator to accurately function from ground to V_{CC} – 2V over temperature. A clamp is added around Q3 to mimic the both inputs above input voltage range behavior of the original classic silicon.

The output consists of an open drain NPN (pull-down or low side) transistor. The output NPN sinks current when the negative input voltage is higher than the positive input voltage and the offset voltage. The V_{OL} is resistive and scales with the output current. Please see the "Output Low Voltage vs. Output Sinking Current" graphs for V_{OL} values with respect to the output current.

6.4 Device Functional Modes

6.4.1 Voltage Comparison

The device operates solely as a voltage comparator, comparing the differential voltage between the positive and negative pins and outputting a logic low or high impedance (logic high with pullup) based on the input differential polarity.

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The device is typically used to compare a single signal to a reference or two signals against each other. Many users take advantage of the open drain output to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes this comaprator an excellent choice for level shifting to a higher or lower voltage.

7.2 Typical Application

Figure 7-1. Single-Ended and Differential Comparator Configurations

7.2.1 Design Requirements

For this design example, use the parameters listed in Table 7-1 as the input parameters.

DESIGN PARAMETER EXAMPLE VALUE 0V to Vsup-2V Input Voltage Range Supply Voltage 4.5V to V_{CC} maximum Logic Supply Voltage 0V to V_{CC} maximum Output Current (RPULLUP) 1µA to 4mA Input Overdrive Voltage 100mV Reference Voltage 2.5V Load Capacitance (C_L) 15pF

Table 7-1. Design Parameters

7.2.2 Detailed Design Procedure

When using the device in a general comparator application, determine the following:

- Input Voltage Range
- Minimum Overdrive Voltage
- **Output and Drive Current**
- Response Time

7.2.2.1 Input Voltage Range

When choosing the input voltage range, the input common mode voltage range (VICR) must be taken in to account. If temperature operation is below 25°C the V_{ICR} can range from 0V to V_{CC}- 2.0V. This limits the input

voltage range to as high as V_{CC} – 2.0V and as low as 0V. Operation outside of this range can yield incorrect comparisons.

The following is a list of input voltage situation and the outcomes:

- 1. When both IN- and IN+ are both within the common-mode range:
 - a. If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current
 - b. If IN- is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not conducting
- 2. When IN- is higher than common-mode and IN+ is within common-mode, the output is low and the output transistor is sinking current
- 3. When IN+ is higher than common-mode and IN- is within common-mode, the output is high impedance and the output transistor is not conducting
- 4. When IN- and IN+ are both higher than common-mode, see Section 2 of Application Design Guidelines for LM339, LM393, TL331 Family Comparators Including the New B-versions.

7.2.2.2 Minimum Overdrive Voltage

Overdrive Voltage is the differential voltage produced between the positive and negative inputs of the comparator over the offset voltage (V_{IO}). To make an accurate comparison the Overdrive Voltage (V_{OD}) must be higher than the input offset voltage (V_{IO}). Overdrive voltage can also determine the response time of the comparator, with the response time decreasing with increasing overdrive. Figure 7-2 and Figure 7-3 show positive and negative response times with respect to overdrive voltage.

7.2.2.3 Output and Drive Current

Output current is determined by the load/pull-up resistance and logic/pullup voltage. The output current produces a output low voltage (V_{OL}) from the comparator. In which V_{OL} is proportional to the output current. See the Output Low vs. Sinking Current graphs in the Typical Characteristics, LMx93x and LM2903x section to determine V_{OL} based on the output current.

The output current can also effect the transient response. See Section 7.2.2.4 for more information.

7.2.2.4 Response Time

Response time is a function of input over drive. See *Application Curves* for typical response times. The rise and falls times can be determined by the load capacitance (C_L) , load/pullup resistance (R_{PULLUP}) and equivalent collector-emitter resistance (R_{CF}) .

- The rise time (τ_R) is approximately τ_R = R_{PULLUP} × C_L
- The fall time (τ_F) is approximately τ_F = R_{CE} × C_L
 - R_{CE} can be determine by taking the slope of *Figure 5-20* in the linear region at the desired temperature, or by dividing the V_{OL} by I_{out}

7.2.3 Application Curves

The following curves are generated with 5V on V_{CC} and V_{Logic} , $R_{PULLUP} = 5.1k\Omega$, and 50pF scope probe.

7.2.4 Power Supply Recommendations

For fast response and comparison applications with noisy or AC inputs, TI recommends to use a bypass capacitor on the supply pin to reject any variation on the supply voltage. This variation can eat into the input common-mode range of the comparator and create an inaccurate comparison.

7.2.5 Layout

7.2.5.1 Layout Guidelines

For accurate comparator applications without hysteresis maintaining a stable power supply with minimized noise and glitches is critical. Best practice is to add a bypass capacitor between the supply voltage and ground. This can be implemented on the positive power supply and negative supply (if available). If a negative supply is not being used, do not put a capacitor between the IC's GND pin and system ground.

Minimize coupling between outputs and inverting inputs to prevent output oscillations. Do not run output and inverting input traces in parallel unless there is a V_{CC} or GND trace between output and inverting input traces to reduce coupling. When series resistance is added to inputs, place resistor close to the device.

7.2.5.2 Layout Example

Figure 7-4. LM2903 Layout Example

8 Device and Documentation Support

8.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision AG (January 2025) to Revision AH (April 2025)	Page
Updated front page Family Comparison Table ESD specs	1
Restored missing "P" package column in <i>Thermal Information</i> table	5
Changes from Revision AF (August 2023) to Revision AG (January 2025)	Page
Removed legacy device graphs	11
Updated internal Schematic	17
Changes from Revision AE (November 2020) to Revision AF (August 2023)	Page
Added reference to Application Note	
	18
Changes from Revision AD (October 2020) to Revision AE (November 2020)	18
Changes from Revision AD (October 2020) to Revision AE (November 2020) Corrected Family Comparison Table Offset Voltage units to mV	Page
Changes from Revision AD (October 2020) to Revision AE (November 2020) Corrected Family Comparison Table Offset Voltage units to mV	Page
Changes from Revision AD (October 2020) to Revision AE (November 2020) Corrected Family Comparison Table Offset Voltage units to mV	Page18

<u>. </u>	Updated "B" device Supply Current vs Supply Voltage Graph for 2V	11
Ch	anges from Revision AC (February 2020) to Revision AD (October 2020)	Page
•	Updated the numbering format for tables, figures and cross-references throughout the docume	nt 1
Ch	anges from Revision AB (December 2019) to Revision AC (February 2020)	Page
•	Changed front page Features, Applications and Description text to highlight B version	1 1
•	Added DDF and DSG pkgs to Thermal Table	5
Ch	anges from Revision AA (September 2019) to Revision AB (December 2019)	Page
	Changed LM393B and LM2903B from Preview to Active status	
Ch	anges from Revision Z (October 2017) to Revision AA (September 2019)	Page
•	Added "B" devices with various text changes throughout data sheet	1 s. These are 1 5
-	Added b device graphs	11

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

www.ti.com 3-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LM193DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	LM193
LM193DRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	LM193
LM2903AVQDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2903AV
LM2903AVQDRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2903AV
LM2903AVQPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(2903AV, L2903AV)
LM2903AVQPWRG4	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(2903AV, L2903AV)
LM2903BIDDFR	Active	Production	SOT-23-THIN (DDF) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2903B
LM2903BIDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	903B
LM2903BIDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2903B
LM2903BIDSGR	Active	Production	WSON (DSG) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	903B
LM2903BIPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2903B
LM2903DGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU SN NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(MAP, MAS, MAU)
LM2903DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LM2903
LM2903DRG3	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	LM2903
LM2903P	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	LM2903P
LM2903PSR	Active	Production	SO (PS) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2903
LM2903PWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	L2903
LM2903PWRG3	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	L2903
LM2903PWRG4	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2903
LM2903QD	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2903Q
LM2903QDRG4	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 125	2903Q
LM2903VQDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2903V
LM2903VQDRG4	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 125	L2903V
LM2903VQPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2903V
LM2903VQPWRG4	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	-40 to 125	L2903V
LM293ADGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU SN NIPDAU	Level-1-260C-UNLIM	-25 to 85	(MDP, MDS, MDU)
LM293ADR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM293A
LM293D	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-25 to 85	LM293

3-May-2025

www.ti.com

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LM293DGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU SN NIPDAU	Level-1-260C-UNLIM	-25 to 85	(MCP, MCS, MCU)
LM293DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM293
LM293DRG3	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-25 to 85	LM293
LM293P	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	-25 to 85	LM293P
LM393ADGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU NIPDAUAG NIPDAU	Level-1-260C-UNLIM	0 to 70	(M8P, M8S, M8U)
LM393ADR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	LM393A
LM393ADRG4	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	LM393A
LM393AP	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU SN	N/A for Pkg Type	0 to 70	LM393AP
LM393APSR	Active	Production	SO (PS) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	L393A
LM393APWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	L393A
LM393APWRG4	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	0 to 70	L393A
LM393BIDDFR	Active	Production	SOT-23-THIN (DDF) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	393B
LM393BIDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	393B
LM393BIDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LM393B
LM393BIDSGR	Active	Production	WSON (DSG) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	393B
LM393BIPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LM393B
LM393D	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	LM393
LM393DGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	(M9P, M9S, M9U)
LM393DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM393
LM393DRG3	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	0 to 70	LM393
LM393DRG4	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	LM393
LM393P	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU SN	N/A for Pkg Type	0 to 70	LM393P
LM393PE3	Active	Production	PDIP (P) 8	50 TUBE	Yes	SN	N/A for Pkg Type	0 to 70	LM393P
LM393PE4	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	LM393P
LM393PS	Active	Production	SO (PS) 8	80 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	L393
LM393PSR	Active	Production	SO (PS) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	L393
LM393PSRG4	Active	Production	SO (PS) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	L393
LM393PWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	L393
LM393PWRG3	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	0 to 70	L393
LM393PWRG4	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	L393

www.ti.com 3-May-2025

- (1) Status: For more details on status, see our product life cycle.
- (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM2903, LM2903B, LM293:

Automotive: LM2903-Q1, LM2903B-Q1

■ Enhanced Product : LM293-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

www.ti.com 24-Apr-2025

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO PI BO Cavity A0

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM193DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM193DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903AVQDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903AVQDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903AVQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903AVQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903AVQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903AVQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903BIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM2903BIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2903BIDGKR	VSSOP	DGK	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903BIDSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
LM2903BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2903DGKR	VSSOP	DGK	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM2903PSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
LM2903PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903VQDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2903VQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903VQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2903VQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM293ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM293ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM293DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM293DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM393ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM393ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393APSR	so	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
LM393APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393BIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM393BIDGKR	VSSOP	DGK	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393BIDSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
LM393BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393DGKR	VSSOP	DGK	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM393DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM393DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM393DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM393PSR	so	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
LM393PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM393PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM193DR	SOIC	D	8	2500	353.0	353.0	32.0
LM193DRG4	SOIC	D	8	2500	353.0	353.0	32.0
LM2903AVQDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2903AVQDRG4	SOIC	D	8	2500	353.0	353.0	32.0
LM2903AVQPWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM2903AVQPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2903AVQPWRG4	TSSOP	PW	8	2000	353.0	353.0	32.0
LM2903AVQPWRG4	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2903BIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
LM2903BIDGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM2903BIDGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM2903BIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2903BIDSGR	WSON	DSG	8	3000	210.0	185.0	35.0
LM2903BIPWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM2903BIPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2903DGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM2903DR	SOIC	D	8	2500	353.0	353.0	32.0
LM2903DR	SOIC	D	8	2500	356.0	356.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2903DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM2903PSR	so	PS	8	2000	356.0	356.0	35.0
LM2903PWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2903PWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2903PWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM2903PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2903PWRG4	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2903PWRG4	TSSOP	PW	8	2000	353.0	353.0	32.0
LM2903VQDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2903VQPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2903VQPWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM2903VQPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM293ADGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM293ADR	SOIC	D	8	2500	353.0	353.0	32.0
LM293ADR	SOIC	D	8	2500	356.0	356.0	35.0
LM293DGKR	VSSOP	DGK	8	2500	356.0	356.0	35.0
LM293DR	SOIC	D	8	2500	356.0	356.0	35.0
LM293DR	SOIC	D	8	2500	356.0	356.0	35.0
LM293DR	SOIC	D	8	2500	353.0	353.0	32.0
LM293DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM393ADGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM393ADR	SOIC	D	8	2500	356.0	356.0	35.0
LM393ADR	SOIC	D	8	2500	356.0	356.0	35.0
LM393ADR	SOIC	D	8	2500	353.0	353.0	32.0
LM393APSR	so	PS	8	2000	356.0	356.0	35.0
LM393APWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM393APWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM393APWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM393BIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
LM393BIDGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM393BIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM393BIDSGR	WSON	DSG	8	3000	210.0	185.0	35.0
LM393BIPWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM393BIPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM393DGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM393DGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM393DR	SOIC	D	8	2500	353.0	353.0	32.0
LM393DR	SOIC	D	8	2500	356.0	356.0	35.0
LM393DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM393PSR	SO	PS	8	2000	356.0	356.0	35.0
LM393PWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM393PWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM393PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM393PWRG4	TSSOP	PW	8	2000	353.0	353.0	32.0
LM393PWRG4	TSSOP	PW	8	2000	356.0	356.0	35.0

www.ti.com 24-Apr-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
LM2903P	Р	PDIP	8	50	506	13.97	11230	4.32
LM2903QD	D	SOIC	8	75	505.46	6.76	3810	4
LM293P	Р	PDIP	8	50	506	13.97	11230	4.32
LM393AP	Р	PDIP	8	50	506	13.97	11230	4.32
LM393AP	Р	PDIP	8	50	506.1	9	600	5.4
LM393P	Р	PDIP	8	50	506	13.97	11230	4.32
LM393P	Р	PDIP	8	50	506.1	9	600	5.4
LM393PE3	Р	PDIP	8	50	506.1	9	600	5.4
LM393PE4	Р	PDIP	8	50	506	13.97	11230	4.32
LM393PS	PS	SOP	8	80	530	10.5	4000	4.1

PLASTIC SMALL OUTLINE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

2 x 2, 0.5 mm pitch

PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC SMALL OUTLINE - NO LEAD

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated