DMA Přednáška – Speciální relace

Definice.

Nechť R je relace na nějaké množině A. Řekneme, že R je **částečné uspořádání**, jestliže je reflexivní, antisymetrická a tranzitivní.

V tom případě značíme relaci \preceq a řekneme, že dvojice (A, \preceq) je **částečně uspořádaná množina**.

Fakt.

Jestliže je (A, \preceq) částečně uspořádaná množina, pak je i (A, \preceq^{-1}) částečně uspořádaná množina.

Definice.

Nechť (A, \preceq) je částečné uspořádání. Definujeme relaci \prec na A předpisem $a \prec b$ právě tehdy, když $a \preceq b$ a $a \neq b$.

Algoritmus pro vytváření Hasseova diagramu částečného uspořádání (A, \preceq) pro konečnou množinu A.

- 1. Najít prvky $a \in A$, které v ostrém srovnání nikdy nejsou napravo, tedy v pozici $x \prec a$ (nevedou do nich šipky). Dát do spodní řady. Odebrat tyto prvky z A, odebrat všechna srovnání s těmito body.
- 2. Ve zbylé množině hledat prvky, které v ostrém srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do druhé řady zdola, odebrat je z množiny prvků.

Spojit horní řadu s dolní tam, kde je relace, odebrat tyto dvojice ze seznamu srovnání.

3. Ve zbylé množině hledat prvky, které ve srovnání \prec nikdy nejsou napravo (nevedou do nich šipky). Vytvořit z nich novou řadu nahoře, odebrat z množiny prvků.

Spojit horní řadu s nižšími tam, kde je relace, přičemž postupujeme shora dolů (nejprve spojujeme horní řadu s tou pod ní, pak horní s tou o jedno níže, atd. až po horní s dolní). Existující dvojice vyškrtáváme ze seznamu, ale do grafu je kreslíme jen tehdy, pokud ještě tuto cestu nelze absolvovat pomocí již nakreslených spojnit, a to vždy směrem zdola nahoru.

4. Opakovat krok 3., dokud jsou v množině body.

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina a \prec odpovídající odvozená relace. Nechť M je neprázdná podmnožina A.

Řekneme, že prvek $m \in A$ je **nejmenší prvek** množiny M, jestliže $m \in M$ a pro všechna $x \in M$ platí $m \leq x$.

Řekneme, že prvek $m \in A$ je **největší prvek** množiny M, jestliže $m \in M$ a pro všechna $x \in M$ platí $x \leq m$.

Řekneme, že prvek $m \in A$ je **minimální prvek** množiny M, jestliže $m \in M$ a neexistuje $x \in M$: $x \prec m$. Značíme to $m = \min(M)$.

Řekneme, že prvek $m \in A$ je **maximální prvek** množiny M, jestliže $m \in M$ a neexistuje $x \in M$: $m \prec x$. Značíme to $m = \max(M)$.

Věta.

Nechť je (A, \preceq) částečně uspořádaná množina, uvažujme neprázdnou podmnožinu $M \subseteq A$. Pak platí následující:

- (i) Jestliže existuje nejmenší prvek M, pak je jediný.
 - Jestliže existuje největší prvek M, pak je jediný.
- (ii) Jestliže je m nejmenší prvek M, pak $m = \min(M)$ a jiné minimum už není. Jestliže je m největší prvek M, pak $m = \max(M)$ a jiné maximum už není.

Věta.

Nechť (A, \preceq) je částečně uspořádaná množina. Jestliže je M konečná neprázdná podmnožina A, pak existuje $\min(M)$ a $\max(M)$.

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina. Řekneme, že $a, b \in A$ jsou **porovnatelné**, jestliže $a \preceq b$ nebo $b \preceq a$.

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina. Řekneme, že \preceq je **lineární uspořádání**, jestliže jsou každé dva prvky z A porovnatelné.

Věta.

Nechť (A, \preceq) je lineárně uspořádaná množina. Jestliže je M její neprázdná konečná podmnožina, pak má nejmenší a největší prvek.

Věta.

Nechť (A, \preceq) je konečná částečně uspořádaná množina. Je to lineární uspořádaní právě tehdy, jestliže lze prvky A napsat jako $A = \{a_1, \ldots, a_n\}$ tak, aby $a_1 \prec a_2 \prec \cdots \prec a_n$.

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina. Relace \preceq_L na A se nazývá **lineární rozšíření** relace \preceq , jestliže je (A, \preceq_L) lineárně uspořádaná množina a $\preceq \subseteq \preceq_L$, tedy pro všechna $a, b \in A$ splňující $a \preceq b$ platí i $a \preceq_L b$.

Věta.

Pro každou konečnou částečně uspořádanou množinu (A, \preceq) existuje lineární rozšíření \preceq_L na A.

```
\begin{split} & \text{procedure } topological \ sort((A, \preceq)) \\ & k := 0; \\ & \text{while } A \neq \emptyset \text{ do} \\ & k := k+1 \\ & a_k := \min(A) \\ & A := A - \{a_k\}; \\ & \text{output: } (a_1 \prec_L a_2 \prec_L \cdots \prec_L a_k); \end{split}
```

Definice.

Nechť (A, \preceq) je částečně uspořádaná množina. Řekneme, že (A, \preceq) je **dobře uspořádaná množina**, jestliže každá neprázdná podmnožina množiny A má nejmenší prvek.

Fakt.

Každé dobré uspořádání je také lineární.

Axiom (princip dobrého uspořádání)

 (\mathbb{N},\leq) je dobře uspořádaná množina.

Definice.

Uvažujme částečně uspořádané množiny $(A_1, \leq_1), \ldots, (A_n, \leq_n)$. Definujeme **lexikografické uspořádání** na $A = A_1 \times \cdots \times A_n$ následovně: Pro $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in A$ platí $a \leq_L b$ právě tehdy, jestliže $a_i = b_i$ pro všechna $i = 1, \ldots, n$ (tedy a = b), nebo existuje index k takový, že $a_i = b_i$ pro všechna i splňující $1 \leq i < k$ a $a_k \prec_k b_k$.

Věta.

Uvažujme dobře uspořádané množiny $(A_1, \preceq_1), \ldots, (A_n, \preceq_n)$. Pak je $A = A_1 \times \cdots \times A_n$ spolu s lexikografickým uspořádaním \preceq_L dobře uspořádaná množina.

Definice.

Relace na množině se nazývá ekvivalence, jestliže je reflexivní, symetrická a tranzitivní.

Definice.

Nechť R je relace ekvivalence na nějaké množině A. Pro $a \in A$ definujeme **třídu ekvivalence** prvku a vzhledem k R jako

$$[a]_R = \{b \in A : aRb\}.$$

Věta.

Nechť R je relace ekvivalence na nějaké množině A, nechť $a \in A$.

- (i) Pro každé $b, c \in [a]_R$ platí bRc.
- (ii) Pro každé $b \in [a]_R$ a $c \in A$ platí, že jestliže bRc, pak $c \in [a]_R$.
- (iii) Pro každé $b \in [a]_R$: $[a]_R = [b]_R$.
- (iv) Pro každé $a, b \in A$ platí: aRb právě tehdy, když $[a]_R = [b]_R$.
- (v) Pro všechna $a, b \in A$ platí, že buď $[a]_R = [b]_R$, nebo $[a]_R \cap [b]_R = \emptyset$.

Definice.

Uvažujme množinu A. Jejím **rozkladem** rozumíme libovolný soubor $\{A_i\}_{i\in I}$ neprázdných podmnožin A takových, že $A=\bigcup_{i\in I}A_i$ a pro všechna $i\neq j\in I$ jsou A_i,A_j disjunktní.

Věta.

Nechť A je množina.

- (i) Jestliže je R ekvivalence na A, pak $\{[a]_R\}_{a\in A}$ je rozklad množiny A.
- (ii) Jestliže je $\{A_i\}_{i\in I}$ nějaký rozklad množiny A, pak existuje relace ekvivalence R na A taková, že $\{A_i\}_{i\in I}$ jsou přesně třídy ekvivalence R.

Věta.

Pro každé $n \in \mathbb{N}$ je relace "být kongruentní modulo n" ekvivalence na \mathbb{Z} .

Definice.

Prostor \mathbb{Z}_n definujeme jako množinu všech tříd ekvivalence v \mathbb{Z} vzhledem k relaci být kongruentní modulo n, tedy $\mathbb{Z}_n = \{[a]_n : a \in \mathbb{Z}\}.$

Pro $[a]_n, [b]_n \in \mathbb{Z}_n$ definujeme

$$[a]_n \oplus [b]_n = [a+b]_n,$$

$$[a]_n \odot [b]_n = [a \cdot b]_n.$$

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $a,b,u,v \in \mathbb{Z}$ takové, že $[a]_n = [u]_n$ a $[b]_n = [v]_n$. Pak $[a+b]_n = [u+v]_n$ a $[a\cdot b]_n = [u\cdot v]_n$.

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $[a]_n \in \mathbb{Z}_n$.

- (i) Vždy existuje prvek opačný $-[a]_n = [n-a]_n$.
- (ii) $[a]_n$ je invertibilní vůči \odot právě tehdy, když jsou a a n nesoudělné.