

FCC TEST REPORT

REPORT NO.: RF990419D13

MODEL NO.: 720002010

FCC ID: YLI720002010

RECEIVED: July 6, 2010

TESTED: July 9 ~ 15, 2010

ISSUED: July 16, 2010

APPLICANT: H.S. CRAFT MANUFACTURING CO.

ADDRESS: 10F, NO. 35, GUANG FU N. ROAD, TAIPEI, TAIWAN

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch

LAB LOCATION: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang,

Taipei Hsien 244, Taiwan

This test report consists of 25 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1.	CERTIFICATION	3
2. 2.1	SUMMARY OF TEST RESULTS MEASUREMENT UNCERTAINTY	4
3. 3.1 3.2 3.2.1 3.2.2 3.3 3.4	GENERAL INFORMATION	5 6 7 9
4. 4.1 4.2 4.2.1	TEST TYPES AND RESULTSCONDUCTED EMISSION MEASUREMENTRADIATED EMISSION MEASUREMENTLIMITS OF RADIATED EMISSION MEASUREMENT	.10
4.2.2 4.2.3 4.2.4 4.2.5	TEST INSTRUMENTS TEST PROCEDURES DEVIATION FROM TEST STANDARD TEST SETUP	13 13 14
4.2.6 4.2.7 4.3 4.3.1	EUT OPERATING CONDITIONS	15 18
4.3.2 4.3.3 4.3.4	TEST INSTRUMENTS TEST PROCEDURE DEVIATION FROM TEST STANDARD	18 18 19
4.3.5 4.3.6 4.4 4.4.1	TEST SETUP TEST RESULTS DEACTIVATION TIME LIMITS OF DEACTIVATION TIME MEASUREMENT	20 21 21
4.4.2 4.4.3 4.4.4 4.4.5	TEST INSTRUMENTS TEST PROCEDURES DEVIATION FROM TEST STANDARD TEST SETUP	21 21
4.4.6 5.	TESE RESULTS PHOTOGRAPHS OF THE TEST CONFIGURATION	.22
6.7.	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING	
	CHANGES TO THE EUT BY THE LAB	25

1. CERTIFICATION

PRODUCT: Color Effects Remote Control

BRAND NAME: GE

> MODEL NO.: 720002010

APPLICANT: H.S. CRAFT MANUFACTURING CO.

TESTED: July 9 ~ 15, 2010

TEST SAMPLE: **ENGINEERING SAMPLE**

STANDARDS: FCC Part 15, Subpart C (Section 15.231)

ANSI C63.4-2003

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

TECHNICAL

, DATE: July 16, 2010 **ACCEPTANCE**

Responsible for RF (Jamison Chan / Supervisor)

, **DATE**: July 16, 2010 **APPROVED BY:**

(Ken Liu / Assistant Manager)

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C (Section 15.231)					
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK		
15.207	Conducted Emission Test	N/A	Power supply is 3Vdc from batteries		
15.209 15.231(b)	Radiated Emission Test	PASS	Minimum passing margin is –6.3dB at 2169.60MHz		
15.231(c)	Emission Bandwidth Measurement	PASS	Meet the requirement of limit		
15.231(a)	De-activation	PASS	Meet the requirement of limit		

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Uncertainty
Dadiated emissions	30MHz ~ 1GHz	3.67 dB
Radiated emissions	Above 1GHz	2.89 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Color Effects Remote Control
MODEL NO.	720002010
FCC ID	YLI720002010
POWER SUPPLY	3Vdc from batteries
MODULATION TYPE	FSK
OPERATING FREQUENCY	433.92MHz
NUMBER OF CHANNEL	1
ANTENNA TYPE	Printed antenna
ANTENNA CONNECTOR	N/A
DATA CABLE	N/A
I/O PORTS	N/A
ASSOCIATED DEVICES	N/A

NOTE:

- 1. The EUT is a transceiver.
- 2. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

1 channel was provided to this EUT.

Channel	Frequency
1	433.92MHz

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT configure		Ар	plicable	to	Description	
mode	PLC	RE<1G	RE ³ 1G	EB	DT	Boompaon
-	Note	\checkmark	\checkmark	√	√	-

Where **PLC:** Power Line Conducted Emission

RE<1G: Radiated Emission below 1GHz

RE³1G: Radiated Emission above 1GHz

EB: 20dB Bandwidth Measurement

DT: Deactivation Time Measurement

Note: No need to concern of Conducted Emission due to the EUT is powered by batteries.

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ Axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	AXIS
CHANNEL	CHANNEL	TYPE	
1	1	FSK	Z

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulation, XYZ Axis and antenna ports (if EUT with antenna diversity architecture)

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	AXIS
CHANNEL	CHANNEL	TYPE	
1	1	FSK	Z

EMISSION BANDWIDTH MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION
CHANNEL	CHANNEL	TYPE
1	1	FSK

DEACTIVATION TIME MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION
CHANNEL	CHANNEL	TYPE
1	1	FSK

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE<1G	27deg. C, 68% RH, 1008hPa	3Vdc	Jamison Chan
RE ³ 1G	24deg. C, 75% RH, 1009hPa	3Vdc	Nick Chen
EB	28deg. C, 78% RH, 1009hPa	3Vdc	Nick Chen
DT	28deg. C, 78% RH, 1009hPa	3Vdc	Nick Chen

Report No.: RF990419D13 8 Report Format Version 3.0.1

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.231) ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an indepe	endent unit together withou	out any necessary
accessory or support unit.		

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

N/A

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to 15.231 the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Fundamental	Field Strength	of Fundamental	Field Strengt	h of Spurious
Frequency (MHz)	uV/meter	dBuV/meter	uV/meter	dBuV/meter
40.66 ~ 40.70	2250	67.04	225	48.04
70 ~ 130	1250	61.94	125	41.94
130 ~ 174	1250 ~ 3750	61.94 ~ 71.48	125 ~ 375	41.94 ~ 51.48
174 ~ 260	3750	71.48	75	37.50
260 ~ 470	3750 ~ 12500	71.48 ~ 81.94	375 ~ 1250	51.48 ~ 61.94
Above 470	12500	81.94	1250	61.94

NOTE:

- Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F)-6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F)- 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.
- 2. The above field strength limits are specified at a distance of 3meters. The tighter limits apply at the band edges.

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	May 06, 2010	May 05, 2011
HP Preamplifier	8449B	3008A01924	Jul. 14, 2010	Jul. 13, 2011
HP Preamplifier	8449B	3008A01292	Jul. 14, 2010	Jul. 13, 2011
ROHDE & SCHWARZ TEST RECEIVER	ESU26	100005	Jun. 10, 2010	Jun. 09, 2011
Schwarzbeck Antenna	VULB 9168	137	Apr. 29, 2010	Apr. 28, 2011
Schwarzbeck Antenna	VHBA 9123	480	Apr. 29, 2010	Apr. 28, 2011
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated_V 7.6.15.9.2	NA	NA	NA
SUHNER RF cable	SF104-26.5	CABLE-CH6-17m -01	Aug. 20, 2009	Aug. 19, 2010
ROHDE & SCHWARZ Spectrum Analyzer	FSP 40	100036	Apr. 06, 2010	Apr. 05, 2011
EMCO Horn Antenna	3115	6714	Oct. 26, 2009	Oct. 25, 2010
EMCO Horn Antenna	3115	9312-4192	Apr. 23, 2010	Apr. 22, 2011

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

^{2.} The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

^{3.} The test was performed in Chamber No. 6.

^{4.} The Industry Canada Reference No. IC 7450E-6.

^{5.} The FCC Site Registration No. is 447212.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak method or average method as specified and then reported in data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.

4.2.7 TEST RESULTS

ABOVE 1GHz DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	3Vdc	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	24deg. C, 75% RH 1009hPa	TESTED BY	Nick Chen	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2169.60	61.7 PK	80.8	-19.1	1.00 H	91	30.64	31.05
2	2169.60	54.5 AV	60.8	-6.3	1.00 H	91	23.44	31.05
3	3471.36	56.3 PK	80.8	-24.5	1.00 H	184	20.28	36.01
4	3471.36	49.1 AV	60.8	-11.7	1.00 H	184	13.08	36.01
5	3905.28	60.9 PK	80.8	-19.9	1.00 H	49	22.69	38.23
6	3905.28	53.7 AV	60.8	-7.1	1.00 H	49	15.49	38.23
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	NO. FREQ. (MHz) LEVEL LIMIT MARGIN (dB) ANTENNA ANGLE RAW VALUE FACTO						CORRECTION FACTOR (dB/m)	
1	2169.60	61.3 PK	80.8	-19.5	1.00 V	87	30.21	31.05
2	2169.60	54.1 AV	60.8	-6.7	1.00 V	87	23.01	31.05
3	3471.36	55.9 PK	80.8	-24.9	1.00 V	185	19.85	36.01
4	3471.36	48.7 AV	60.8	-12.1	1.00 V	185	12.65	36.01
5	3905.28	57.7 PK	80.8	-23.1	1.33 V	81	19.43	38.23
6	3905.28	50.5 AV	60.8	-10.3	1.33 V	81	12.23	38.23

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:

$$20\log(\text{Duty cycle}) = 20\log\frac{43.42\text{ms x 1}}{100\text{ ms}} = -7.2\text{dB}$$

Please see page 17 for plotted duty.

BELOW 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER	3Vdc	DETECTOR FUNCTION	Quasi-Peak Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 68% RH 1008hPa	TESTED BY	Jamison Chan	

		ANTENNA I	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	70.42	33.8 QP	60.8	-27.0	1.34 H	31	21.68	12.15
2	93.73	38.3 QP	60.8	-22.5	1.54 H	31	29.56	8.71
3	246.07	28.7 QP	60.8	-32.1	1.28 H	340	15.19	13.48
4	*433.92	53.5 PK	100.8	-47.3	1.15 H	337	34.51	18.98
5	*433.92	46.3 AV	80.8	-34.5	1.15 H	337	27.31	18.98
6	440.38	30.5 QP	60.8	-30.3	1.08 H	13	11.44	19.09
7	867.84	41.5 PK	80.8	-39.3	1.21 H	175	14.04	27.42
8	867.84	34.3 AV	60.8	-26.5	1.21 H	175	6.83	27.42
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	68.86	36.9 QP	60.8	-23.9	1.22 V	316	24.48	12.41
2	200.99	27.6 QP	60.8	-33.2	1.11 V	325	16.62	10.99
3	325.35	32.8 QP	60.8	-28.0	1.55 V	52	16.33	16.44
4	379.76	37.3 QP	60.8	-23.5	1.43 V	139	19.44	17.88
5	393.75	36.8 QP	60.8	-24.0	1.36 V	70	18.60	18.24
6	*433.92	74.6 PK	100.8	-26.2	1.21 V	30	55.62	18.98
7	*433.92	67.4 AV	80.8	-13.4	1.21 V	30	48.42	18.98
8	867.84	57.6 PK	80.8	-23.2	1.23 V	298	30.14	27.42
9	867.84	50.4 AV	60.8	-10.4	1.23 V	298	22.94	27.42

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:

$$20\log(\text{Duty cycle}) = 20\log\frac{43.42\text{ms x 1}}{100\text{ ms}} = -7.2\text{dB}$$

Please see page 17 for plotted duty.

4.3 20dB OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF EMISSION BANDWIDTH MEASUREMENT

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70 MHz and below 900 MHz.

Fundamental Frequency (MHz)	Limit of Emission Bandwidth(kHz)
433.92	1084.80

4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
SPECTRUM ANALYZER	FSP 40	100036	Apr. 27, 2010	Apr. 26, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

- a. The EUT was placed on the turn table.
- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 100kHz and video bandwidth to 300kHz then select Peak function to scan the channel frequency.
- d. The emission bandwidth was measured and recorded.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5TEST SETUP

4.3.6 TEST RESULTS

Frequency (MHz)	20dB Bandwidth (kHz)	Maximum Limit (kHz)	PASS/FAIL
433.92	290	1084.80	PASS

The plot of test result is attached as below.

4.4 DEACTIVATION TIME

4.4.1 LIMITS OF DEACTIVATION TIME MEASUREMENT

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

4.4.2TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
SPECTRUM ANALYZER	FSP 40	100036	Apr. 27, 2010	Apr. 26, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.3TEST PROCEDURES

- a. The EUT was placed on the turning table.
- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 100kHz and video bandwidth to 300kHz. The spectrum analyser was turned to the centre frequency of the transmitter's and the analyser's marker function was used to determine the duration of transmission.
- d. The transmission duration was measured and recorded.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation

4.4.5TEST SETUP

4.4.6TESE RESULTS

Trigger	Frequency (MHz)	Maximum limit (sec)	PASS/FAIL
1	433.92	5	PASS

The plots of test results are attached as below.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION
Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:Hsin Chu EMC/RF Lab:Tel: 886-2-26052180Tel: 886-3-5935343Fax: 886-2-26051924Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.
END