1. Prove that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Solution: Let $P = A \cup (B \cup C)$ and $Q = (A \cup B) \cap (A \cup C)$.

Consider an element a $\in P$ and $b \in Q.$

As $P = A \cup (B \cap C)$ and $a \in P$, it implies that

$$a \in A \text{ or } a \in (B \cap C)$$

 $\Rightarrow a \in A \text{ or } \{a \in B \text{ and } a \in C\}$
 $\Rightarrow \{a \in A \text{ or } a \in B\} \text{ and } \{a \in A \text{ or } a \in C\}$
 $\Rightarrow a \in (A \cup B) \text{ and } a \in (A \cup C)$
 $\Rightarrow a \in (A \cup B) \cap (A \cup C)$

It is proved that P is a subset of Q.

As
$$Q = (A \cup B) \cap (A \cup C)$$
 and $B \in Q$, it implies that

$$b \in (A \cup B) \text{ and } b \in (A \cup C)$$

$$\implies \{b \in A \text{ or } b \in B\} \text{ and } \{b \in A \text{ or } b \in C\}$$

$$\implies b \in A \text{ or } \{b \in B \text{ and } b \in C\}$$

$$\implies b \in A \text{ or } b \in (B \cap C)$$

It is proved that Q is a subset of P.

As P is a subset of Q and Q is a subset of P, it implies that $P \equiv Q$.

Thus
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 is proved.

2. Prove the following identity:

$$r(s+t)=r s+r t$$

Solution: Let
$$x \in r(s + t)$$
,

$$\Rightarrow x \in r \text{ and } x \in (s+t)$$

$$\Rightarrow x \in r \text{ and } (x \in s \text{ or } x \in t)$$

$$\Rightarrow (x \in r \text{ and } x \in s) or (x \in r \text{ and } x \in t)$$

$$\Rightarrow x \in (rs + rt)$$

That is $r(s+t) \subseteq (isasubsetof)(rs+rt)$.

Let
$$x \in (rs + rt)$$

$$\implies (x \in rs \text{ or } x \in rt)$$

$$\implies (x \in r \text{ and } x \in s) \text{ or } (x \in r \text{ and } x \in t)$$

$$\implies x \in r \text{ and } (x \in s \text{ or } x \in t)$$

$$\implies x \in r(s + t)$$
That is $(rs + rt) \subseteq r(s + t)$.
So, $r(s + t) = rs + rt(\text{ proved })$.