Ejercicio 1. Consideremos $\ell_{\infty} = \{(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \text{ acotadas } \}$ con la distancia dada por $d_{\infty}(x,y) = \sup_{n \in \mathbb{N}} |x_n - y_n|$. Probar que el conjunto

$$U = \{(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \text{ acotadas pero no convergentes}\}$$

es abierto y denso en ℓ_{∞}

Proof. PARTE A: Abierto

Veamos que U es abierto, tomemos un $x_n \in U$ ahora como este x_n es acotado sabemos que tiene $\liminf x_n = I$ y $\limsup x_n = S$ ahora tomemos $r = \frac{d(S-I)}{4}$. Y vamos a probar que $B_r(x_n) \subseteq U$. Pero antes definamos dos bolas que seran útiles $B_1(S,r)$ y $B_2(I,r)$ los subíndice son solo para indentificarlas

Ahora por como tomamos r la intersección de estas bolas es vacía , mas aún la distancia entre ellas es 2r (FALTA DEMOSTRAR ESTO)

Ahora sea $y_n \in B(x_n, r)$ veamos que pertenece a U para eso veamos que es acotada y no convergente

Acotada: Tenemos que $d(y_n, x_n) \leq r$ para todo $n \in \mathbb{N}$ por lo tanto $\sup_{n \in \mathbb{N}} |y_n - x_n| \leq r$

Entonces $|y_n - x_n| \le r$ para cada $n \in \mathbb{N}$ por lo tanto $x_n - r \le y_n \le x_n + r \quad \forall n \in \mathbb{N}$

Pero además sabemos que x_n es acotada (pertenece a ℓ_{∞})

Entonces existe un M tal que $x_n \leq M_1 \quad \forall n \in \mathbb{N}$ y un $M_0 \leq x_n \quad \forall n \in \mathbb{N}$

Luego $M_0 - r < y_n \le M_1 + r$ por lo tanto es acotada

No convergente: Supongamos que y_n es convergente $y_n \to y$. Ahora puede ser que $y \in B_1$ o $y \in B_2$ o en ninguna de las dos. Supongamos que $y \in B_2$

Por convergencia de y_n sabemos que $\exists n_0$ tal que $y_n \in B_2 \quad \forall n \geq n_0$

Por otro lado como I es límite inferiór sabemos que hay infitos $k \in \mathbb{N}$ tal que $x_k < S + r$ otra forma de decir que hay infinitos x_k tal que $x_k \in B_1$

Pero entonces tenemos infinitos $x_k \in B_1$ e infinitos $y_n \in B_2$ que por lo tanto cumplen $d(x_k, y_n) > 2r$.

Luego existe algún $j \in \mathbb{N}$ tal que $d(x_j, y_j) > 2r$. Si no existiera dicho $j \in \mathbb{N}$ entonces para todo $j \in \mathbb{N}$ sucederia que $d(x_j, y_j) \leq 2r$

Pero entonces $d(x_n, I) \leq d(x_n, y_n) + d(y_n, y) \leq 3r \quad \forall n \geq n_0$ lo que es absurdo, por que solo hay finitos $n < n_0$ y por ende habría finitos $x_n \in B_1$ mientras que sabemos que hay infinitos

Ahora sabiendo que existe algún par x_n, y_n tal que $d(x_n, y_n) > 2r$ sucede entonces $d_{\infty}(x_n, y_n) = \sup |x_n - y_n| > d(x_j, y_j) > 2r$ lo que es absurdo por que $y_n \in B_1(x_n, r) \Rightarrow d_{\infty}(x_n, y_n) < r$

Con un razonamiento análogo vemos que tampoco puede suceder que $y \in B_2$

Ahora supongamos que $y \notin B_2, B_1$ ahora y puede estar justo en el borde de una pero no en el borde de las dos

Como $d(B_1, B_2) = 2r$, $B(y, r) \cap B_1 = \emptyset$ o $B(y, r) \cap B_2 = \emptyset$

Si ninguna de estas intersecciones fuera diferente de vacia tendria un $y_1 \in B(y,r) \cap B_1$ y un $y_2 \in B(y,r) \cap B_2$

Entonces tendria dos elementos $y_1, y_2 \in B(y, r)$ tal que $y_1 \in B_1$ e $y_2 \in B_2$ entonces $d(y_1, y_2) > 2r$ (esto sucede por que las bolas son abiertas entonces 2r es un infimo pero no un mínimo, por lo tanto no hay dos elementos que tengan distancia justo 2r y todos tienen distancia mayor que 2r) por lo tanto diam(B(y, r)) > 2r lo que seria absurdo

Sin pérdida de generalidades supongamos que $B(y,r) \cap B_1(S,r) = \emptyset$ entonces es fácil ver que d(y,S) = l > r si no fuese así enotnces $d(y,S) \le r$ entonces $y \in B_1$ lo que es absurdo

Pero ademas sabemos que tenemos una subsucesión de x_n tal que $x_{n_k} \to S$ y sabemos que $y_n \to y$ por lo tanto $y_{n_k} \to y$

Entonces sabemos por ejercicio de guía que $d(x_{n_k},y_{n_k}) \to d(S,y) = l$

Por lo tanto para todo $\epsilon \exists n_0$ tal que $l - \epsilon < d(x_{n_k}, y_{n_k}) < l + \epsilon \quad \forall n_k \geq n_0$

Y esto se puede hacer con un ϵ tan pequeño como se quiera

Luego como l > r existe $\epsilon > 0$ tal que $l - \epsilon \ge r$ y esto vale para cualquier $\epsilon' < \epsilon$ tambien Entonces $r \le l - \epsilon' < d(x_{n_k}, y_{n_k})$ y como vale para infinitos ϵ' tenemos infinitos x_{n_k} e y_{n_k} que cumplen lo mismo, entonces existe algún $j \in \mathbb{N}$ tal que $d(x_j, y_j) > r$ lo que es absurdo por que recordamos $y_n \in B(x_n, r)$.

Finalmente $y \notin B_1 \cup B_2$ $y \notin (B_1 \cup B_2)^c$ entonces dicho y no existe, por lo tanto y_n no puede converger, por lo tanto $y_n \in U$ entonces $B(x_n, r) \subseteq U$ entonces U es abierto

PARTE B) Densidad