2. Fonction Inverse Terminale STMG

qkzk

Fonction inverse

Définition et représentation graphique

Définition La fonction inverse est définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x}$.

Valeurs

\overline{x}	-2	-1	-0.5	0	0.5	1	2
$\frac{1}{x}$	-0.5	-1	2	X	2	1	0.5

Figure 1: L'hyperbole de la fonction inverse

Représentation graphique Le graphe de la fonction inverse est une hyperbole de centre O, symétrique par rapport à l'origine.

Dérivée et variations

Dérivée La fonction dérivée de la fonction inverse : $\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$

Démonstration Avec $f(x) = \frac{1}{x}$.

Calculons le taux d'accroissement entre a et a + h:

$$\frac{f(a+h) - f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a}{a(a+h)} - \frac{a+h}{a(a+h)}}{h} = \frac{\frac{-h}{a(a+h)}}{h} = \frac{-h}{ah(a+h)} = \frac{-1}{a(a+h)}$$

Lorsqu'on fait tendre h vers 0, l'expression précédente tend vers $-\frac{1}{a^2}$

Variations La fonction inverse est décroissante sur $]-\infty;0[$ et est décroissante sur $]0;+\infty[$.

Limites: comportement à l'infini

 $\mathbf{E}\mathbf{n} + \infty$

Lorsque x devient grand, $\frac{1}{x}$ devient proche de 0.

Pensez le ainsi : vous avez 1 gateau à diviser en x invités.

Avec 3 invités, ça va, chacun mange un tiers, avec 1000 invités, chacun mange $\frac{1}{1000} = 0.001$ gateau...

\overline{x}	1	10	100	1000	10000
$\frac{1}{x}$	1	0.1	0.01	0.001	0.0001

Figure 2: Asymptote en plus l'infini

Graphiquement : plus x devient grand, plus la courbe s'approche de l'axe des abscisses.

$\mathbf{En}\ -\infty$

Lorsque x devient grand "chez les négatifs", $\frac{1}{x}$ devient proche de 0 (mais toujours négatif).

Figure 3: Asymptote en moins l'infini

Graphiquement : plus x devient négatif, plus la courbe s'approche de l'axe des abscisses.

L'axe des abscisses est une asymptote à la courbe de la fonction inverse en $+\infty$ et $-\infty$.

Étude d'une fonction

Soit $f(x) = 3 - 4x - \frac{1}{x}$ définie sur $\mathbb{R} \setminus \{0\}$.

- 1. Calculer la dérivée de f
- 2. Factoriser la dérivée et étudier son signe
- 3. Construire le tableau de variations
- 4. Représenter f dans un repère.

Formules de dérivation

Formule	Dérivée
$\frac{\text{Somme}}{\text{Produit par une constante } k}$	(f+g)' = f' + g' $(kf)' = kf'$

Fonction f	Dérivée f'
a, constant	0
x	1
x^2	2x
x^3	$3x^2$
$\frac{x^{3}}{}$	3x2

1. On applique la formule et :

$$f'(x) = 0 - 4 - \frac{-1}{x^2}$$

 $2. \ \,$ On factorise la dérivée après l'avoir réduite au même dénominateur :

$$f'(x) = -4 + \frac{1}{x^2} = \frac{-4x^2 + 1}{x^2} = \frac{1 - 4x^2}{x^2} = \frac{(1 - 2x)(1 + 2x)}{x^2}$$

On résout f(x) = 0, on a (1 - 2x)(1 + 2x) = 0 et $x^2 \neq 0$ donc $x = \frac{1}{2}$ ou $x = -\frac{1}{2}$.

Au numérateur, la fonction du second degré est de coefficient a=-4. Elle est du signe de -4 à l'extérieur des racine $\frac{1}{2}$ et $\frac{1}{2}$.

Au dénominateur, tout est positif.

Donc:

- sur $]-\infty; -\frac{1}{2}[, f'(x) < 0]$
- sur $]-\frac{1}{2};0[, f'(x)>0]$
- sur $]0; \frac{1}{2}[, f'(x) > 0]$
- sur $]\frac{1}{2}$; $+\infty[$, f'(x) < 0
- 3. Variations de f
 - sur] $-\infty$; $-\frac{1}{2}$ [, f est décroissante,
 - sur] $-\frac{1}{2}$; 0[, f est croissante,
 - sur $]0; \frac{1}{2}[, f \text{ est croissante},$
 - sur $]\frac{1}{2};+\infty[, f$ est décroissante.
- 4. Figure

Figure 4: Représentation graphique