A FIRST COURSE IN

ABSTRACT ALGEBRA

A FIRST COURSE

IN

ABSTRACT ALGEBRA

MAT3004 Notebook

Dr. Guang Rao

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notati	ions	ix
1	Week1	. 1
1.1	Monday	1
1.1.1	Introduction to Abstract Algebra	. 1
1.1.2	Group	. 1
2	Week2	11
2.1	Tuesday	11
2.1.1	Review	. 11
2.1.2	Cyclic groups	. 11

Acknowledgments

This book is from the MAT3004 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 2

Week2

2.1. Tuesday

2.1.1. Review

Note that a group has the property of closeness, associatity, identity and its inverse

2.1.2. Cyclic groups

Definition 2.1 [Ablian] Let $(\mathcal{G},*)$ be a group, it is said to be ablian if

$$a*b=b*a$$
, $\forall a,b \in \mathcal{G}$

Definition 2.2 [Order] Let \mathcal{G} be a group with the identity e. The **order** if an element $g \in \mathcal{G}$ is denoted by |g|, i.e., the smallest $n \in \mathbb{N}^+$ such that $g^n = e$. If $|g| = \infty$, then g has **infinite order**.

Definition 2.3 [Periodic Group] A group is said to be

- 1. periodic (torsion) if every element from this group is of finite order.
- $2. \ \ \textbf{torsion-free} \ \ \text{if every non-identity has infinite order}.$

Note that not torsion is not equivalent to torsion-free; not torsion-free is not equivalent

to torsion.

Proposition 2.1 If $|\mathcal{G}| < \infty$, then $|g| < \infty$ for $\forall g \in \mathcal{G}$.

Proof. If $|g| = \infty$, then

$$\{e,g,g^2,\cdots,g^n,\ldots\}\subseteq\mathcal{G},$$

which implies $|\mathcal{G}| = \infty$.

Proposition 2.2 Let \mathcal{G} be a group with identity e. If $g^n = e$ for some $n \in \mathbb{N}^+$, then |g||n.

Proof. Let $m := |g| \le n$. Recall the ideas from discrete mathematics:

Theorem 2.1 — well-ordering principle. Any $S \subseteq \mathbb{N}$ has a least element (Axiom).

Theorem 2.2 — **Division Theorem.** For $\forall m \in \mathbb{Z}$ and $n \in \mathbb{N}^+$, there always $\exists q, r \in \mathbb{Z}$ such that

$$m = nq + r$$
,

where $0 \le r < n$.

Note that the power g^n can be rewritten as:

$$g^n := g^{mq+r} = (g^m)^q \cdot g^r = e.$$

Since $(g^m)^q$ equals to e, we imply $g^r = e, r < m$, i.e., r = 0.

Not that the condition $n \in \mathbb{N}^+$ can be relaxed into $n \in \mathbb{Z}$.

Definition 2.4 [cyclic] A group \mathcal{G} is cyclic if there $\exists g \in \mathcal{G}$ such that for $\forall x \in \mathcal{G}$, there always $\exists n \in \mathbb{Z}$ such that

$$x = g^n$$
.

We rewrite the group as $\mathcal{G}=< g>$, we call g as the **generator** of \mathcal{G} . The notation < g>

means:

$$\langle g \rangle := \{ \cdots, g^{-2}, g^{-1}, e.g, g^2, \cdots \}$$

Proposition 2.3 Given a group \mathcal{G} and $g \in \mathcal{G}$, we have $|\langle g \rangle| = |g|$.

Proof. • If $|g| = \infty$, the result is trivial.

• If |g| = n, we imply $|\langle g \rangle| = |\{e, g, ..., g^{n-1}\}| = n$.

Definition 2.5 Let $a,b \in \mathbb{Z}$ not all zero. The greatest common divisor is defined as:

gcd(a,b) := the greatest integer that divides a and b.

Theorem 2.3 — **Bezout**. Provided with $a,b \in \mathbb{Z}$ not all zero. Then there exists $s,t \in \mathbb{Z}$ such that

$$sa + tb = \gcd(a, b)$$

- Example 2.1 1. (\mathbb{Z}_{+}) is cyclic with generator ± 1
 - 2. $(\mathbb{Z}_n,+)=< k>$, where $\gcd(k,n)=1$. This is because we can always find s>0 and t<0 such that sa+tb=1, i.e.,

$$1 = \underbrace{k + \dots + k}_{s \text{ terms}} \in \mathbb{Z}_n$$

3. $(u_m,\cdot)=<\xi_m^k>$, where $\xi_m=\exp(\frac{2\pi i}{m})$ and $\gcd(k,m)=1$. This is because we can similarly consturct s>0 s.t. $(\xi_m^k)^s=\xi_m$.

Proposition 2.4 Every cyclic group is abelian.

Proof. As $\mathcal{G} = \langle g \rangle$, for $\forall x, y \in \mathcal{G}$, we have

$$x \cdot y = g^m \cdot g^n = g^{m+n} = g^n \cdot g^m = y \cdot x.$$

The converse of proposition(2.4) is not true. For example, $(\mathbb{Q},+)$ is abelian, but it is not cyclic, i.e., if $(\mathbb{Q},+)=<\frac{n}{m}>$, we find $\frac{n}{2m}\notin<\frac{n}{m}>$.

Definition 2.6 Let X be a set. A **permutation** of X is a **bijection** of X. We denote

$$\mathsf{Sym}(X) = \{\mathsf{all} \ \mathsf{permutations} \ \mathsf{of} \ X\}$$

Proposition 2.5 Sym(X) is a group under composition operation.

Proof. 1. For $\forall \alpha, \beta \in \text{Sym}(X)$, we have $\alpha \circ \beta \in \text{Sym}(X)$ as the composition of bijections is also bijection.

- 2. For $\forall \alpha, \beta, \gamma \in \operatorname{Sym}(X)$, we have $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$.
- 3. identity = $id \in Sym(X)$
- 4. For $\forall \sigma \in \text{Sym}(X)$, we choose $\rho \in \text{Sym}(X)$ s.t.

$$\rho: \sigma(x) \mapsto x, \forall x \in X$$

It follows that $\rho \circ \sigma = id$, since

$$\sigma \circ \rho(\sigma(x)) = \sigma(\rho \circ \sigma(x)) = \sigma(x)$$

Let $X = \{1, 2, ..., n\}$, we denote $\mathbb{S}_n = \operatorname{Sym}(X)$. Describe $\sigma \in \mathbb{S}_n$ by:

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Note that $|S_n| = n!$

Example 2.2 Consider $\mathcal{G} := \mathbb{S}_3$, then $\sigma, \beta \in \mathcal{G}$:

$$\sigma := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} := (1,2,3) \qquad \beta := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} := (1,2)$$

Then we compute the composite $\sigma\circ\beta$:

$$\sigma \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

and $\beta \circ \sigma$:

$$\beta \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

and $\sigma \circ \sigma \circ \sigma$:

$$\sigma \circ \sigma \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}^3 = id,$$

which is said to be 3-cycle, which will be talked in future.

R In general, S_n is not **ablian** for $n \ge 3$.

In general, we write the *k*-cycle permutation as:

$$\alpha = (i_1, \ldots, i_k)$$

where $i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_k \mapsto i_1$.

■ Example 2.3 Consider $\sigma = (15)(246) \in S_6$, i.e.,

$$\sigma = 1 \mapsto 5 \mapsto 1;$$
 $2 \mapsto 4 \mapsto 6 \mapsto 2;$ $3 \mapsto 3$

and $\alpha=(13)(45)\in\mathbb{S}_6.$ We study the composition $\sigma\circ\alpha$:

$$\sigma \circ \alpha = [(15)(246)] \circ [(13)(45)] = (135624)$$

and

$$\alpha \circ \sigma = (13)(45)(15)(246) = (146253)$$

Proposition 2.6 Each $\sigma \in \mathbb{S}_n$ is either a cycle or a product of disjoint cycle.

Disjoint cycles commute with one another.

Definition 2.7 2-cycle is called a transposition

Proposition 2.7 $\sigma \in \mathbb{S}_n$ can be written as a product of transpositions.

Proof. Due to proposition(2.6) and

$$(i_1i_2\cdots i_k)=(i_1i_k)\cdots (i_1i_3)(i_1i_2)$$

For $\sigma \in \mathbb{S}_n$, we have

$$\sigma(i_1,\ldots,i_k)\sigma^{-1}=(\sigma(i_1),\ldots,\sigma(i_k))$$