Introduction

```
import pandas as pd
# I will probably use this one at some point..
import xgboost as xgb
webinar attenders =
→ pd.read_csv(webinar_attenderslink)
for i in range(webinar_attenders.size):
    print("Welcome to this DeSci webinar
    → {webinar_attenders.iloc[0, i]}!")
```

Structure

- What is CrunchDAO?
- ► What is DeSci?
- ► Why DeSci in CrunchDAO?
- ► How to kickstart your project in 10 steps!

CrunchDAO

CrunchDAO is a Decentralized Autonomous Organization of scientists making use of collective intelligence to solve complex problems, powered by a solid tokeconomics:

The role of the DAO

Crowdsourced Investment is changing the financial industry (Prado and Fabozzi 2019): in CrunchDAO, we want to do more!

Our DeSci infrastructure will enable all of us to contribute as researchers, and not only as data scientists, to the DAO.

The role of the DAO

"For it is unworthy of distinguished men to waste their time with slavish calculations."

Gottfried Wilhelm Leibniz, 1672

Decentralized Science

"Decentralized Science (DeSci): creating infrastructure and advocating for distributed coordination to support scientific progress, creating systems for scientists to recapture the value they create." (Buterin, Hitzig, and Weyl 2019)

- Infrastructure to tackle the tragedy of the anticommons (i.e., to incentivise avoiding reinventing the wheel);
- Update of the traditional unit of knowledge: beyond PDFs;
- Tackling the reproducibility crisis: incentive system for replication and validation;
- Overcoming the limitations of traditional peer-revie, using web3 technologies (Tenorio-Fornés et al. 2018).

DeSci in CrunchDAO

CrunchDAO is interested in crowdsourcing research, not only alpha.

- The tokeconomics will be expanded to include scientific contributions.
- We are proposing a research framework in order to foster quality, speed, and transparency.
- This framework will be a tool for the DAO in all the fields of science.

Step 1: Clone the desci repository and install the Python package;

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;
- Step 3: Use your new codes to produce results and plots;

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;
- Step 3: Use your new codes to produce results and plots;
- Step 4: Document your methodology in the paper, include and discuss your results;

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;
- Step 3: Use your new codes to produce results and plots;
- Step 4: Document your methodology in the paper, include and discuss your results;
- Step 5: Add your details to the List of contributors;

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;
- Step 3: Use your new codes to produce results and plots;
- Step 4: Document your methodology in the paper, include and discuss your results;
- Step 5: Add your details to the List of contributors;
- Step 6: Push with git;

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;
- Step 3: Use your new codes to produce results and plots;
- Step 4: Document your methodology in the paper, include and discuss your results;
- Step 5: Add your details to the List of contributors;
- Step 6: Push with git;
- Step 7: Open a Pull Request;

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;
- Step 3: Use your new codes to produce results and plots;
- Step 4: Document your methodology in the paper, include and discuss your results;
- Step 5: Add your details to the List of contributors;
- Step 6: Push with git;
- Step 7: Open a Pull Request;
- Step 8: Merge and generate the new version of the paper;

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;
- Step 3: Use your new codes to produce results and plots;
- Step 4: Document your methodology in the paper, include and discuss your results;
- Step 5: Add your details to the List of contributors;
- Step 6: Push with git;
- Step 7: Open a Pull Request;
- Step 8: Merge and generate the new version of the paper;
- Step 9: Put it to IPFS

- Step 1: Clone the desci repository and install the Python package;
- Step 2: Add your code/data to the package;
- Step 3: Use your new codes to produce results and plots;
- Step 4: Document your methodology in the paper, include and discuss your results;
- Step 5: Add your details to the List of contributors;
- Step 6: Push with git;
- Step 7: Open a Pull Request;
- Step 8: Merge and generate the new version of the paper;
- Step 9: Put it to IPFS
- Step 10: Share it with the DAO!

References

Buterin, Vitalik, Zoë Hitzig, and E. Glen Weyl. 2019. "A Flexible Design for Funding Public Goods." *Management Science* 65 (11): 5171–87. https://doi.org/10.1287/mnsc.2019.3337.

Prado, Marcos López de, and Frank J. Fabozzi. 2019. "Crowdsourced Investment Research Through Tournaments." In *The Journal of Financial Data Science*.

Tenorio-Fornés, Antonio, Viktor Jacynycz García, David Llop, Antonio Sánchez-Ruiz, and Samer Hassan. 2018. "Towards a Decentralized Process for Scientific Publication and Peer Review Using Blockchain and Ipfs." In. https://doi.org/10.24251/HICSS.2019.560.