

Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Querétaro

## Momento de Retroalimentación

# Reto Privacidad y Seguridad de los Datos

#### Autor:

A01368818 Joel Sánchez Olvera

#### TC3007C

Inteligencia artificial avanzada para la ciencia de datos II

Fecha de Entrega:

02 - Noviembre - 2024

## Documento de Privacidad y Seguridad en el Análisis de Imágenes de Ganado para Detectar objetos y el estado del ganado

#### Introducción

Este documento tiene como finalidad establecer las prácticas y normativas necesarias para garantizar la privacidad y seguridad de los datos utilizados en el proyecto de detección de objetos y clasificación del estado de ganado (vacas) a partir de imágenes mediante el uso de aprendizaje profundo.

### **Contexto del Proyecto**

El proyecto se enfoca en la clasificación y detección de objetos en imágenes para evaluar el estado del ganado (vacas) en un entorno definido. La mayoría de las imágenes capturan únicamente a las vacas y su entorno inmediato, es decir las camas donde se encuentran, sin la presencia de personas ni elementos identificables. Sin embargo, en casos excepcionales, podrían aparecer personas en el fondo o en segundo plano de algunas imágenes. Este documento detalla las medidas de anonimización y control de acceso, así como los aspectos legales aplicables al proyecto mencionado.

## Consideraciones de Seguridad y Privacidad

#### Anonimización de Datos

Para garantizar la privacidad en las imágenes, se recomiendan las siguientes técnicas en caso de que en futuras iteraciones se capture información que incluya personas u otros elementos identificables:

| Técnica                | Descripción                                                                    | Aplicabilidad                                                  |
|------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|
| Hashing de<br>Imágenes | Aplicación de hashing para<br>encriptar imágenes durante<br>el almacenamiento. | Recomendado para<br>mejorar la seguridad en<br>almacenamiento. |
| Tokenización           | Asignación de tokens a<br>metadatos sensibles,                                 | No aplicable<br>directamente a imágenes,                       |

|                     | reduciendo riesgos de<br>exposición.                                                                | pero útil en descripciones<br>o etiquetas.                              |
|---------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Difuminado          | Desenfoque de partes<br>específicas de la imagen<br>(rostros u otros elementos)<br>para anonimizar. | Aplicable si se identifican<br>personas en el fondo de<br>las imágenes. |
| Adición de<br>Ruido | Se agregan variaciones leves<br>para impedir la identificación<br>exacta de objetos o personas.     | Útil para suavizar detalles<br>en el fondo.                             |

Estas técnicas se pueden implementar si en futuras iteraciones se amplía la captura de imágenes y se corre el riesgo de incluir elementos que comprometan la privacidad de las personas.

#### **Control de Acceso**

El acceso a los datos debe estar estrictamente limitado a personal autorizado y asegurarse mediante la implementación de controles, como autenticación de múltiples factores (MFA), restricciones de permisos según el rol y auditorías periódicas. Estos mecanismos contribuyen a minimizar el riesgo de acceso no autorizado, asegurando que solo aquellos involucrados en el proyecto puedan manipular y analizar las imágenes.

#### Almacenamiento Seguro y Manejo de Datos

Para garantizar la seguridad de los datos almacenados, podemos hacer uso de sistemas de almacenamiento que cumplan con estándares de cifrado, como el **AES-256**. Además, es necesario establecer políticas de retención de datos, eliminando cualquier información que no sea esencial para el proyecto una vez que haya sido procesada.

## Normativas Mexicanas e Internacionales de Privacidad y Seguridad de los Datos

#### Normativa en México

Las normativas en México sobre la protección de datos personales están controladas por la Ley Federal de Protección de Datos Personales en Posesión de los Particulares (LFPDPPP).

Esta ley establece la obligación de proteger los datos personales de individuos identificables, y aunque en el proyecto las imágenes contienen principalmente ganado y su entorno, es esencial considerar el cumplimiento de esta normativa en caso de que en futuras iteraciones se capturen elementos o personas identificables que puedan contener o dar a asumir datos personales.

La ley impone sanciones por incumplimiento y exige que se apliquen principios de seguridad, confidencialidad y control de acceso.

#### **Normativa Internacional**

Existen normas internacionales relevantes para el manejo seguro de datos en proyectos como este:

- **ISO/IEC 27001:2022**: Establece un marco para la gestión de la seguridad de la información. Cumplir con este estándar ayuda a asegurar que los sistemas de información y los datos almacenados cumplan con prácticas de seguridad de nivel internacional, incluyendo controles para proteger la integridad y disponibilidad de los datos.
- GDPR (Reglamento General de Protección de Datos de la UE):
  Aunque se aplica principalmente a los datos de ciudadanos
  europeos, esta regulación es una referencia importante debido a sus
  estrictas políticas sobre la protección de datos y privacidad. Establece
  obligaciones claras en relación con el consentimiento informado, el
  derecho a la eliminación y la seguridad en el almacenamiento y
  tratamiento de datos personales.

Estas normativas ofrecen una base para garantizar que las prácticas de manejo de datos en el proyecto se alineen con las mejores prácticas de privacidad y seguridad globales.

### Responsabilidades y Buenas Prácticas

#### **Evaluación y Revisión Continua**

Es esencial realizar evaluaciones periódicas para garantizar que las prácticas de seguridad y privacidad cumplan con las normativas. Estas revisiones también pueden identificar áreas de mejora para fortalecer la protección de los datos y la privacidad en futuras iteraciones del proyecto.

# Proceso de Verificación de Datos Anonimizados (definido por el equipo)

- 1. **Revisión Previa a la Carga:** Las imágenes serán revisadas antes de su carga para identificar cualquier elemento que pueda comprometer la privacidad de las personas.
- 2. **Difuminado Selectivo:** En caso de detectar rostros, se aplicará un difuminado a dichas áreas antes de almacenarlas en la base de datos del proyecto.
- 3. **Control de Acceso:** Los datos serán accesibles únicamente para el equipo autorizado, cumpliendo con los estándares de seguridad establecidos en la normativa mexicana e internacional (ver sección 4).

# Procedimientos de Control de Acceso y Seguimiento de Proceso (definido por el equipo)

Para garantizar que el acceso a los datos esté restringido y en cumplimiento con la normativa, se implementarán los siguientes controles:

- 1. **Roles y Permisos:** El acceso a los datos de imágenes estará limitado a los miembros del equipo de desarrollo y análisis, quienes deberán seguir procesos específicos de autenticación.
- 2. **Registro de Acceso:** Se mantendrán registros detallados de quién accede a los datos y en qué momento, permitiendo un seguimiento claro y transparente de la manipulación de los datos.
- 3. Autorizaciones y Validación de Manejo de Datos: Antes de utilizar las imágenes, se requerirá una aprobación de cumplimiento de normas, validando que las prácticas de anonimización y seguridad estén correctamente aplicadas.

#### **Conclusiones**

Podemos concluir que establecemos las pautas de privacidad y seguridad necesarias para manejar los datos del proyecto de análisis del estado del ganado, así como lo que fue definido por el equipo para la anonimización de los datos y el control de acceso y seguimiento de los procesos.

La implementación de técnicas de anonimización y la adherencia a normas de seguridad, como el ISO/IEC 27001:2022 y la LFPDPPP, aseguran que el manejo de datos cumple con estándares de seguridad y privacidad, protegiendo la confidencialidad de cualquier información sensible.

# Bitácora de Seguridad de los Datos

# Bitácora de Seguridad de Datos

|                                                     | Ditacort                                                                                                                                                        | a uc sc            | Barra                           | ad de Da                           |                                                                                  |                          |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|------------------------------------|----------------------------------------------------------------------------------|--------------------------|
| Actividad                                           | Descripción                                                                                                                                                     | Fecha de<br>inicio | Fecha<br>de<br>último<br>cambio | Responsable<br>de último<br>cambio | Personas<br>con<br>acceso                                                        | Links de<br>acceso       |
| Google Drive                                        | Carpeta de Google Drive<br>donde el equipo almacena<br>la información necesaria al<br>proyecto                                                                  | 09/10/2024         | 25/11/2024                      | Adrián Galván<br>Díaz              | Equipo No<br>Name,<br>Profesores                                                 | ■ Reto IA                |
| Github                                              | Repositorio de Github<br>donde el equipo almacena<br>el código fuente,<br>documentación necesaria y<br>resultados del proyecto                                  | 05/10/2024         | 24/11/2024                      | Arturo Cristian<br>Diaz            | Equipo No<br>Name,<br>Profesores,<br>Socio<br>Formador                           | Repositorio              |
| Obtención del<br>dataset original                   | El socio formador y el profesorado nos dieron acceso a la carpeta de One Drive donde podemos encontrar los datasets para las camas de arena y la fila de ordeño | 17/09/2024         | 17/09/2024                      | Ivo Ayala                          | Equipo No<br>Name,<br>Personal de<br>CAETEC,<br>Profesores,<br>Socio<br>Formador | <u>Pictures</u>          |
| Dataset para<br>Modelo<br>Bounding Box              | Sets de imágenes que se<br>utilizaron para entrenar,<br>validar y evaluar los<br>modelos de detección de<br>objetos utilizando Tensor<br>Flow 2 y Pytorch       | 7/10/2024          | 23/10/2024                      | Arturo Cristian<br>Diaz            | Equipo No<br>Name,<br>Profesores,<br>Socio<br>Formador                           | <b>■</b> Bounding        |
| Dataset para<br>Modelo<br>Clasificador              | Set de imágenes que se<br>utilizó para entrenar, validar<br>y evaluar los modelos de<br>detección de objetos<br>utilizando Tensor Flow 2 y<br>Pytorch           | 7/10/2024          | 23/10/2024                      | Arturo Cristian<br>Diaz            | Equipo No<br>Name,<br>Profesores,<br>Socio<br>Formador                           | ■ Classifier             |
| Dataset para<br>Análisis de<br>Patrones de<br>Arena | Se utilizó el dataset de<br>camas vacías para<br>identificar patrones en la<br>arena.                                                                           | 22/10/2024         | 24/10/2024                      | Juan Pablo<br>Cabrera              | Equipo No<br>Name,<br>Profesores,<br>Socio<br>Formador                           | ■ Sand Clas              |
| Documentación<br>de modelos                         | Documentos donde se<br>presenta la descripción de<br>los modelos, su<br>justificación, sus<br>parámetros seleccionados<br>y sus resultados                      | 10/10/2024         | 20/11/2024                      | Carlos Eduardo<br>Velasco          | Equipo No<br>Name,<br>Personal de<br>CAETEC,<br>Profesores,<br>Socio<br>Formador | Documentación<br>Modelos |
| Resultados de<br>los modelos                        | Archivos donde se puede<br>acceder a los resultados de<br>cada modelo entrenado<br>para la solución final                                                       | 24/10/2024         | 13/11/2024                      | Juan Pablo<br>Cabrera              | Equipo No<br>Name,<br>Personal de<br>CAETEC,<br>Profesores,<br>Socio<br>Formador | Results                  |

| Codigo fuente<br>de los modelos                                | Ultima versión de los<br>códigos fuentes para<br>entrenar, validar y evaluar<br>los modelos para la<br>solución final | 6/10/2024  | 19/11/2024 | Arturo Cristian<br>Diaz | Equipo No<br>Name,<br>Personal de<br>CAETEC,<br>Profesores,<br>Socio<br>Formador | Bounding Box: Bounding Box Classifier: Classifier Integracion de modelos: Main |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Acceso a la<br>base de datos<br>en la Rasperry<br>Pi           | Definición de las personas<br>con acceso a la base de<br>datos generada en la<br>Raspberry Pi                         | 15/11/2024 | 20/11/2024 | Arturo Cristian<br>Diaz | Equipo No<br>Name, Socio<br>Formador,<br>Personal de<br>CAETEC                   | NA                                                                             |
| Acceso al script<br>de la solución<br>desde la<br>Raspberry Pi | Definición de las personas<br>con acceso al script final de<br>la solución generado en la<br>Raspberry Pi             | 15/11/2024 | 20/11/2024 | Arturo Cristian<br>Diaz | Equipo No<br>Name, Socio<br>Formador                                             | NA                                                                             |

# Bitácora de Logs

| Logs de Seguridad de Datos  |                                                 |                   |                            |  |
|-----------------------------|-------------------------------------------------|-------------------|----------------------------|--|
| Google<br>Drive /<br>Github | Descripción                                     | Fecha y Hora      | Persona que<br>tuvo acceso |  |
| Google Drive                | Creación de carpeta                             | 10:11 a.m. 9 oct  | Carlos Velasco             |  |
| Google Drive                | Business Understanding                          | 11:44 a.m. 9 oct  | Carlos Velasco             |  |
| Google Drive                | Reporte de Descripción de los Datos             | 6:14 p.m. 9 oct   | Joel Sanchez               |  |
| Google Drive                | Reporte de Exploración de los Datos             | 6:15 p.m. 9 oct   | Joel Sanchez               |  |
| Google Drive                | Reportes de Data<br>Understanding               | 9:27 a.m. 14 oct  | Adrian Galvan              |  |
| Google Drive                | Reportes de Data<br>Understanding               | 9:59 a.m. 16 oct  | Juan Pablo Cabrera         |  |
| Google Drive                | Creación carpeta Modelo<br>Bounding Box         | 9:08 p.m. 20 oct  | Arturo Diaz                |  |
| Google Drive                | Tutorial Tensorflow<br>Bounding Box             | 2:14 p.m. 21 oct  | Carlos Velasco             |  |
| Google Drive                | Data Preparation                                | 9:49 a.m. 30 oct  | Carlos Velasco             |  |
| Google Drive                | Reporte inicial Análisis<br>de Reporte de Arena | 10:44 a.m. 30 oct | Juan Pablo Cabrera         |  |
| Google Drive                | Modificación de Business<br>Understanding       | 11:37 p.m. 30 oct | Arturo Diaz                |  |
| Google Drive                | Reporte Inicial Classifier                      | 9:45 a.m. 5 nov   | Joel Sanchez               |  |

|              | Reporte Inicial Bounding          |                   |                |
|--------------|-----------------------------------|-------------------|----------------|
| Google Drive | Box                               | 6:34 p.m. 10 nov  | Carlos Velasco |
| Google Drive | Editar Reporte Classifier         | 12:43 p.m. 13 nov | Joel Sanchez   |
|              | Reporte de Bounding               |                   |                |
| Google Drive | Box TF                            | 9:24 p.m. 19 nov  | Carlos Velasco |
| Google Drive | Creacion<br>Carpeta<br>Evaluación | 9:45 a.m. 20 nov  | Adrian Galvan  |

| Google Drive | Modificación de Business<br>Understanding                  | 9:49 a.m. 20 nov  | Adrian Galvan      |
|--------------|------------------------------------------------------------|-------------------|--------------------|
| Google Drive | Segunda Versión<br>de Clasificador                         | 11:09 a.m. 20 nov | Joel Sanchez       |
| Google Drive | Reestructuración de documentos                             | 12:39 p.m. 20 nov | Carlos Velasco     |
| Google Drive | Guía de iteraciones                                        | 2:22 p.m. 20 nov  | Joel Sanchez       |
| Google Drive | Reestructuración de documentos de modeling                 | 9:23 p.m. 20 nov  | Carlos Velasco     |
| Google Drive | Subir resultados de Sand<br>Classifier                     | 9:54 p.m. 20 nov  | Juan Pablo Cabrera |
| Google Drive | Segunda Versión de Sand<br>Classifier                      | 6:37 p.m. 21 nov  | Juan Pablo Cabrera |
| Google Drive | Modificación de documentos de Modeling                     | 11:09 a.m. 22 nov | Carlos Velasco     |
| Google Drive | Diagrama de Flujo de solución final                        | 11:54 a.m. 22 nov | Carlos Velasco     |
| Google Drive | Modificación guía de iteraciones                           | 2:54 p.m. 22 nov  | Juan Pablo Cabrera |
| Google Drive | Subir resultados de DB                                     | 7:01 p.m. 22 nov  | Arturo Diaz        |
| Google Drive | Etapa de Entrega                                           | 2:44 p.m. 24 nov  | Carlos Velasco     |
| Github       | Entendimiento de<br>Negocio y creacion de<br>repo          | 5 oct             | Joel Sanchez       |
| Github       | Agregar README                                             | 9 oct             | Arturo Diaz        |
| Github       | Primer Modelo Bounding<br>Box                              | 20 oct            | Arturo Diaz        |
| Github       | Actualizar Bounding Box                                    | 24 oct            | Arturo Diaz        |
| Github       | Calcular<br>coordenadas,<br>centroide y cortar<br>imagenes | 1 nov             | Carlos Velasco     |
| Github       | Clasificador de posiciones                                 | 8 nov             | Joel Sanchez       |
| Github       | Agregar pesos de modelos                                   | 13 nov            | Arturo Diaz        |

| Github | Implementar Base de<br>Datos      | 13 nov | Arturo Diaz        |
|--------|-----------------------------------|--------|--------------------|
| Github | Subir clasificadores de arena     | 15 nov | Juan Pablo Cabrera |
| Github | Subir documentos de CRISPDM       | 20 nov | Carlos Velasco     |
| Github | Subir Etapa de<br>Evaluación      | 22 nov | Adrian Galvan      |
| Github | Actualizar documentos de modeling | 25 nov | Carlos Velasco     |

Logs completos: Github: <u>Logs</u>