Definitions and Theorems Connor Baker, March 2017

Definition 1 (Statement). Any sentence which can be evaluated as either true or false.

Definition 2 (Compound Statement). A statement made up of one or more component statements connected by logical connectors.

Definition 3 (Equivalence of Logical Operators). Two sets of logical operators are said to be equivalent if they produce the same output.

Definition 4 (Tautology). A statement that's always true.

Definition 5 (Contradiction). A statement that's always false.

Definition 6 (A Set). Any collection of objects.

Definition 7 (Set Builder Notation). {expression: rule}

Definition 8 (Universal Set). The given or implied set that contains all other sets in the problem. This set fixes Russel's Paradox.

Definition 9 (Tautology). A statement that's always true.

Definition 10 (Natural Numbers). The set $\mathbb{N}: \{1, 2, 3, \dots\}$.

Definition 11 (Integers). The set \mathbb{Z} : $\{\ldots, -1, 0, 2, \ldots\}$.

Definition 12 (Rational Numbers). The set $\mathbb{Q}: \{\frac{a}{b}: a \in \mathbb{Z} \text{ and } b \in \mathbb{N}\}.$

Definition 13 (Real Numbers). The set \mathbb{R} : $\{a_n a_{n-1} \dots a_1 a_0 a_{-1} a_{-2} \dots : n \in \mathbb{N} \cup \{0\} \text{ and } a_i \in \{0, \dots, 9\}\}$.

Definition 14 (Complex Numbers). The set $\mathbb{C}: \{a+bi: i^2=-1 \text{ and } a,b\in\mathbb{R}\}.$

Definition 15 (Subset). Given two sets A and B, $A \subseteq B \iff \forall a \in A \implies a \in B$.

Definition 16 (Open Sentence (AKA Predicate)). A statement that contains a variable. The truth value depends on the variable.

Definition 17 (Truth Set). The set of values that make the statement true.

Definition 18 (Quantifiers and Negations). Logical Quantifiers and Negators:

- 1. Universal Quantifier: \forall Must be true for all x in the universal set such that P(x) is true: $(\forall x)(P(x))$.
- 2. Existential Quantifier: \exists True if for at least one x in the universal set such that P(x) is true: $(\exists x)(P(x))$.
- 3. Unique Quantifier: $\exists !$ True if there exists only one x in the universal set such that P(x) is true: $(\exists !x)(P(x))$.
- 4. Negation of the Universal Quantifier: $\sim (\forall x)(P(x))$ is $(\exists x)(\sim P(x))$.
- 5. Negation of the Existential Quantifier: $\sim (\exists x)(P(x))$ is $(\forall x)(\sim P(x))$.

Definition 19 (Direct Proof). $P \implies Q$.

Definition 20 (Contrapositive Proof). $(\sim Q) \implies (\sim P)$.

Definition 21 (Proof by Contradiction). We start with $P \implies Q$. Assume that $\sim P \wedge Q$ is true. Then $\sim P \implies A_1 \implies A_2 \implies \cdots \implies R$. And, if $Q \implies B_1 \implies B_2 \implies \cdots \implies \sim R$. Then, $\sim R \wedge R$ must be true, which is a contradiction, so the original assumption is false, and $P \implies Q$.

Definition 22 (Axioms of the Natural Numbers). The following are axioms for the set of the Natural Numbers, N:

- 1. Successor property
 - (a) One is a natural number
 - (b) One is not the successor of any number
 - (c) Every natural number has a unique successor
- 2. Closure under addition and multiplication
- 3. Associativity
- 4. Commutativity
- 5. Distribution of multiplication over addition
- 6. Cancellation
 - (a) Real numbers have this property unless the number being cancelled is a zero
 - (b) Matrix multiplication does not have this property

Definition 23 (Divisible). Let $a, b \in \mathbb{N}$. Then a|b if $\exists k \in \mathbb{N} : ak = b$.

Definition 24 (Prime). A number p, where $p \in \mathbb{N}$, is prime if p > 1 and its only divisors are one and itself.

Definition 25 (Factor). A number q, where $q \in \mathbb{N}$, is a factor of r if q|r.

Definition 26 (Prime Factor Decomposition). Let p_1, p_2, \ldots, p_k be all primes less than q. Then, the prime factor decomposition of q is $p_1^{n_1} p_2^{n_2}, \ldots, p_k^{n_k}$ where $n_i \in (\mathbb{N} \cup \{0\})$.

Theorem 27 (Fundamental Theorem of Arithmetic). All natural numbers have a unique prime factorization up to commutativity.

Definition 28 (Union over \mathcal{A}). Let \mathcal{A} be a family of sets. The union over \mathcal{A} is defined as:

$$\bigcup_{A\in\mathcal{A}}=\{x:(\exists A\in\mathcal{A})(x\in A)$$

which is equivalent to:

$$\bigcup_{A \in \mathcal{A}} = \{x : (\exists A)((A \in \mathcal{A}) \land (x \in A))\}$$

Definition 29 (Intersection over \mathcal{A}). Let \mathcal{A} be a family of sets. The intersection over \mathcal{A} is defined as:

$$\bigcap_{A \in \mathcal{A}} = \{x : (\forall A \in \mathcal{A})(x \in A)\}$$

which is equivalent to:

$$\bigcap_{A \in \mathcal{A}} = \{x : (\forall A)((A \in \mathcal{A}) \implies (x \in A))\}$$

Theorem 30 (Relative Cardinality of Intersection and Union). For every set $B \in \mathcal{A}$:

$$B\subseteq\bigcup_{A\in\mathcal{A}}A,$$

$$\bigcap_{A \in A} A \subseteq B.$$

The intersection is no bigger than the smallest set, and the union is no smaller than the biggest set. Assume that $A \neq \emptyset$. Then:

$$\bigcap_{A \in \mathcal{A}} A \subseteq \bigcup_{A \in \mathcal{A}} A.$$

If $A \neq \emptyset$, the union isn't a problem but the intersection would be the set of all sets, and as such is undefined.

Definition 31 (Indexed Family of Sets). Let Δ be a nonempty set. Then, $\forall \alpha \in \Delta$, there is a corresponding set A_{α} . The family of sets $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$.

Definition 32 (Union and Intersection over an Indexed Family of Sets \mathcal{A}). Let \mathcal{A} be a family of sets with indicies $\alpha \in \Delta$. Then, the union over A_{α} is defined as:

$$\bigcap_{\alpha \in \Delta} A_{\alpha} = \{x : (\exists \alpha \in \Delta)(x \in A_{\alpha})\}$$

and the intersection is defined as:

$$\bigcup_{\alpha \in \Delta} A_{\alpha} = \{x : (\forall \alpha \in \Delta)(x \in A_{\alpha})\}$$

Theorem 33 (Relative Cardinality of Intersection and Union over Indexed Family of Sets). For every set $\beta \in \Delta$:

$$A_{\beta} \subseteq \bigcup_{\alpha \in \Delta} A_{\alpha},$$

$$\bigcap_{\alpha \in \Delta} A_{\alpha} \subseteq A_{\beta}.$$

$$\overline{\bigcup_{\alpha \in \Delta} A_{\alpha}} = \bigcap_{\alpha \in \Delta} \overline{A_{\alpha}}$$

$$\overline{\bigcap_{\alpha \in \Delta} A_{\alpha}} = \bigcup_{\alpha \in \Delta} \overline{A_{\alpha}}$$

Definition 34 (Pairwise Disjoint). Let $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$. Then \mathcal{A} is pairwise disjoint if $\forall \alpha, \beta \in \Delta$ with $A_{\alpha} \neq A_{\beta}, A_{\alpha} \cap A_{\beta} = \emptyset$.

Theorem 35 (Order Properties of the Natural Numbers). Let $x, y, z \in \mathbb{N}$. Then, $\forall x, y, z$:

- 1. $x < y \iff \exists w \in \mathbb{N} : x + w = y$
- $2. \ x \le y \iff x = yorx < y$
- 3. if x < y and y < z, then x < z (transitivity)
- 4. if $x \leq y$ and $y \leq x$, then x = y
- 5. if x < y, then x + z < y + z and xz < yz

Theorem 36 (Principle of Mathematical Induction (PMI)). If S is any subset of the natural numbers, with the properties that:

- 1. $1 \in S$
- 2. if $k \in S$, then $(k+1) \in S$

then $S = \mathbb{N}$.

The general process of mathematical induction is as follows:

- 1. Define $S = \{n \in \mathbb{N} : \text{some statement is true}\}$
 - (a) Prove that the basis case holds: that means that $1 \in S$
 - (b) Assume $k \in S$. Then, based on this assumption, prove it to be the case that $(k+1) \in S$.
 - (c) Conclude that by the Principle of Mathematical Induction, $S = \mathbb{N}$.

Definition 37 (Inductive Set). A set $S \subseteq \mathbb{N}$ is inductive if whenever $n \in S$, then $(n+1) \in S$.

Definition 38 (Factorial). If $n \in \mathbb{N}$, then n! = n(n-1)!.

Definition 39 (Zero Factorial). 0! = 1.

Definition 40 (General Principle of Mathematical Induction). $S \subseteq \mathbb{N}$ where $k \in S$ and if $j \in S$, then $(j+1) \in S$, and it is true for all $\{k, k+1, \ldots\}$, then S is inductive.

Theorem 41 (Principle of Strong Mathematical Induction (PSMI)). If $S \subseteq \mathbb{N}$ with the property that $\forall m \in \mathbb{N}$, if $\{1, 2, ..., m-1\} \subseteq S$, then $m \subseteq S$, then $S = \mathbb{N}$.

PSMI is different from PMI because with PMI we assume that we can start at a value and carrying forward from that value something holds. With PSMI, we assume that it holds over an interval.

Theorem 42 (Well Ordering Principle (WOP)). Every nonempty subset of \mathbb{N} has a least element.

Theorem 43 (The Division Algorithm). Let $a, b \in \mathbb{N}$, with $b \leq a$. Then we will prove that $\exists q \in \mathbb{N}$ and $r \in \mathbb{N} \cup \{0\} : a = bq + r$ where $0 \leq r < b$.

Consider all multiples of b > a. Let $S = \{s \in \mathbb{N} : sb > a\}$. By (WOP), S has a least element q+1, so $q \notin S$. Therefore, $qb \leq a$.

Let r = q - qb. Since $qb \le a$, $a - qb \ge 0$, so it must be the case that $r \ge 0$.

If $r \ge b$, then $r = q - qb \ge b \implies a - qb - b \ge 0 \implies q - b(q+1) \ge 0$. So, $a \ge b(q+1)$. But, for $(q+1) \in S$, it must be that b(q+1) > a. Then, $(q+1) \in S$. This is a contradiction. Therefore, r < b.

Furthermore, q and r are unique.

Assume $\exists q_1, r_1$ with $a = bq_1 + r_1$ where $0 \le r_1 < b$. Then a = bq + r, $a = bq_1 + r_1$. This implies that $0 = b(q - q_1) + (r - r_1), b \ne 0$. If it is the case that $q - q_1 \ne 0$, then $|q - q_1| \in \mathbb{N}$. Then $r_1 > r$ and $|r_1 - r| = mb$ for some $m \in \mathbb{N}, m = |q - q_1|$. Thus, $r_1 \ge mb \implies r_1 \ge b$, which is a contradition such that $q - q_1$ would be zero and $r_1 - r = 0$.

Definition 44 (Greatest Common Divisor (GCD)). For $a, b \in \mathbb{N}$, the GCD of a and b can be written as the linear combination of a and b – that is, if:

$$d = GCD(a, b), \exists x, y \in \mathbb{Z} : xa + yb = d$$

Definition 45 (Ordered Pair). A set whose order matters. $(x, y) = \{x, \{x, y\}\}$. The reason the ordered pair translates to this is because x is the first coordinate, since it is an element at every level of the set.

Definition 46 (n-tuples). A set of n-tuples $(x_1, x_2, ..., x_n)$ can be re-written as a set like so: $\{x_1, \{x_1, x_2\}, \{x_1, \{x_1, x_2\}, \{x_1, \{x_2, x_3\}\}, ..., \{x_1, \{x_1, x_2\}, ..., \{x_1, x_2, ..., x_n\}\}\}$.

Definition 47 (Cartesian Product). let A, B be sets. Then, the Cartesian product $A \times B$ is the set:

$$A \times B = \{(a, b) : (a \in A) \land (b \in B)\}$$

In general, $A \times B \neq B \times A$. While it might be tempting, note that (again, in general) $A \times B \times C \neq (A \times B) \times C \neq A \times (B \times C)$.

Theorem 48 (Properties of the Cartesian Product). Let A, B, C, D be sets. Then:

- 1. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 2. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 3. $A \times \emptyset = \emptyset$
- 4. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$
- 5. $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$
- 6. $(A \times B) \cap (B \times A) = (A \cap B) \times (A \cap B)$

Definition 49 (Relation). A relation R from a set A to a set B is any subset of $A \times B$. If $a \in A$, and $b \in B$, then:

1.
$$aRb \iff (a,b) \in R$$

2.
$$a \not Rb \iff (a,b) \notin R$$

Definition 50 (Domain). The domain of a relation R from a set A to a set B ($R: A \to B$) is $dom(R) = \{x \in A: \exists y \in B: xRy\}$.

Definition 51 (Domain). The range of a relation $R: A \to B$) is rang $(R) = \{y \in B: \exists x \in A: xRy\}$.

Definition 52 (Identity Relation). Let A be any set. Then:

$$I_A = \{(x, x) : x \in A\}$$

Definition 53 (Inverse Relation). Let $R: A \to B$. Then $R^{-1} = \{(y, x) : xRy\}$.

Theorem 54 (Range and Domain of Inverse Relation). Let $R: A \to B$. Then:

- 1. $dom(R) = rang(R^{-1})$
- 2. $dom(R^{-1}) = rang(R)$

Definition 55 (Composition of Relations). Let $R: A \to B$, and $S: B \to BC$. Then:

- 1. $S \circ R : A \to C$
- 2. $S \circ R = \{(x, z) : \exists y \in B : (xRy) \land (ySz)\}$

Theorem 56 (Properties of Relations). Assuming that all compositions are well defined:

- 1. $(R^{-1})^{-1} = R$
- 2. $T \circ (S \circ R) = (T \circ S) \circ R$ (associativity)
- 3. $I_B \circ R = R \circ I_A = R$ (identity relation)
- 4. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Definition 57 (Unary Operator). Requires only a single argument.

Definition 58 (Binary Operator). Requires two arguments.

Definition 59 (Reflexive Relation). A relation R on A is reflexive if, $\forall x \in A, xRx$.

Definition 60 (Symmetric Relation). A relation R on A is symmetric if $xRy \implies xRx$.

Definition 61 (Transitive Relation). A relation R on A is transitive if $((xRy) \land (yRz)) \implies xRz$.

Definition 62 (Equivalence Relation). A relation R on A is an equivalence relation if R is reflexive, symmetric, and transitive.

Definition 63 (Equivalence Class). Given R, a equivalence relation on A, for any $x \in A$, the equivalence class of x, denoted [x], is the set $\{y \in A : xRy\}$.

Definition 64 (Cardinality of a Relation). If the cardinality of a set |A| = n, then the cardinality of $|A \times A| = n^2$, by the multiplication principle.

If $\mathcal{P}(n)$ is the powerset on $A \times A$, then $|\mathcal{P}(n)| = 2^{n^2}$.

Definition 65 (Partition). Let A be a set. Then a partition of AS is a collection of sets \mathcal{X} , which is a subset of $\mathcal{P}(A)$ with the following conditions.

- 1. $\emptyset \notin \mathcal{X}$
- 2. $\forall \mathcal{C}, \mathcal{D} \in \mathcal{X}, \mathcal{C} \cap \mathcal{D} = \emptyset$, when $\mathcal{C} \neq \mathcal{D}$ (piece-wise disjoint)
- 3. $\cap_{\mathcal{C} \in \mathcal{X}} \mathcal{C} = A$

For every equivalence class of a set, they form a partition. Conversely, equivalence classes and partitions generate the other.

Theorem 66 (Properties of Equivalence Relation). Suppose that R is an equivalence relation on A, $A \neq \emptyset$ (which means that $R \neq \emptyset$, since everything at least relates to itself). Then:

- 1. $\forall x \in A, x \in [x]$ (this implies $[x] \neq \emptyset$)
- 2. $[x] \subseteq A, \forall x \in A \text{ (the range}(R) \subseteq A, \text{ so } [x] \subseteq A)$
- 3. $xRy \iff [x] = [y]$
- $4. \ \cup_{x \in A} [x] = A$
- 5. $x \Re y \iff [x] \cap [y] = \emptyset$
- 6. The set of all equivalence relations (A quotient R) $A/R = \{[x] : x \in A\}$

Theorem 67 (Partitions on Non-empty Sets). Let P be a partition of a non-empty set A. Then, \exists an equivalence relation R on A where A/R = P.

Definition 68 (Comparability). R has the property of comparability if $\forall x, y \in A$, either xRy or yRx. One example of a relation with comparability is the less than or greater than relation. An example of a relation that does not have comparability is the divides relation (two does not divide three, 3 does not divide two, but two and three are both in in the set A).

Definition 69 (Bounded Set). A set $A \subseteq \mathbb{R}$ of real numbers is bounded from above if there exists a real number $M \in \mathbb{R}$, called an upper bound of A, such that $x \leq M, \forall x \in A$. Similarly, A is bounded from below if there exists $m \in \mathbb{R}$, called a lower bound of A, such that $x \geq m, \forall x \in A$. A set is bounded if it is bounded both from above and below.

Definition 70 (Supremum). The supremum of a set is its least upper bound. Suppose that $A \subseteq \mathbb{R}$ is a set of real numbers. If $M \in \mathbb{R}$ is an upper bound of A such that $M \leq M$ for every upper bound M of A, then M is called the supremum of A, denoted $M = \sup(A)$.

Definition 71 (Infemum). The infemum of a set is its greatest upper bound. Suppose that $A \subseteq \mathbb{R}$ is a set of real numbers. If $m \in \mathbb{R}$ is a lower bound of A such that $m \geq m$ for every lower bound m of A, then m is called the infemum of A, denoted $m = \inf(A)$.

Theorem 72 (Uniqueness of Least Upper Bound and Greatest Lower Bound). If R is a partial order on A, and B is a subset of A, then if there is a least upper bound, or greatest lower bound for B in A, then it is unique.

Definition 73 (Lienar Order). A partial order R on A is a linear order (or total order) if $\forall a, b \in A$, either aRb or bRa. The Hesse Diagram of a linear order relationship looks like a line. One such example of a linear order relationship is less than or equal to.

Definition 74 (Well Ordering). A linear ordering R on A is well ordered if every nonempty subset B of A has a least element in B. Being a well ordered set is super non-trivial. Let $A = [0, 1], A \subseteq \mathbb{R}$:

- 1. $B = (0,1) \subseteq A$
- 2. $\inf(B) = 0 \notin B$

so B is not well ordered.