Parametric Quantifiers for Dependent Type Theory

Andreas Nuyts*, Andrea Vezzosi‡, Dominique Devriese*

*KU Leuven, [‡]Chalmers University of Technology

ICFP 2017 Oxford, UK September 6, 2017

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System F ω , Haskell, ...

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally,
 Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a **sound** dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System Fω, Haskell, . . .

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally,
 Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a **sound** dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System Fω, Haskell, . . .

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally,
 Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a **sound** dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System Fω, Haskell, . . .

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally, Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a **sound** dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System Fω, Haskell, . . .

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally,
 Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a **sound** dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System Fω, Haskell, . . .

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally,
 Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a **sound** dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System Fω, Haskell, ...

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally,
 Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a sound dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System Fω, Haskell, ...

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally,
 Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a sound dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity

- Type variable is parametric if only used for type-checking
 - ⇒ free well-behavedness theorems.
- Well-studied in System F, System Fω, Haskell, ...

Parametricity in dependent types

- Some parametricity results carry over,
 Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)
- Some can be made provable internally,
 Bernardy, Coquand and Moulin (2015), Guilhem Moulin's PhD (2016)
- Some are lost.

- We formulate a sound dependent type system ParamDTT.
- We carry over "the" remaining theorems metatheoretically.
- We allow proving additional theorems internally.

Parametricity, intuitively

In System F, F ω , Haskell, ..., **type parameters** are parametric.

- Only used for type-checking,
- Not inspected (e.g. no pattern matching),
- Same algorithm on all types.

Enforced by the type system.

Parametricity, intuitively

In System F, F ω , Haskell, ..., **type parameters** are parametric.

- Only used for type-checking,
- Not inspected (e.g. no pattern matching),
- Same algorithm on all types.

Enforced by the type system.

Example

flatten : $\forall X$.Tree $X \rightarrow \text{List } X$ By parametricity:

irrespective of implementation.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

$$(\rightarrow)$$
 $h \mapsto \lambda X.\lambda r.h \circ r.$

$$(\leftarrow)$$
 $g \mapsto g \land A id.$

(src) refl

(tgt) Prove:
$$g \times r \times = g \wedge id(r \times)$$
.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

$$(\rightarrow)$$
 $h \mapsto \lambda X \cdot \lambda r \cdot h \circ r$.

$$(\leftarrow)$$
 $g \mapsto g \land A id.$

(tgt) Prove:
$$g \times r \times = g \wedge id (r \times)$$
.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

$$(\rightarrow)$$
 $h \mapsto \lambda X \cdot \lambda r \cdot h \circ r$.

$$(\leftarrow)$$
 $g \mapsto g \land A id.$

(src) ref

(tgt) Prove:
$$g \times r \times = g \wedge id (r \times)$$
.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

- (\rightarrow) $h \mapsto \lambda X \cdot \lambda r \cdot h \circ r$.
- (\leftarrow) $g \mapsto g \land A id.$
- (src) refl
- (tgt) Prove: $g \times r \times = g \wedge id(r \times)$.

Theorem

$$(A \to B) \cong \left(\underbrace{\forall X.(X \to A)}_{\textit{For any representation }(X,r) \textit{ of } A}\right)$$

Proof:

$$(\rightarrow)$$
 $h \mapsto \lambda X \cdot \lambda r \cdot h \circ r$.

$$(\leftarrow)$$
 $g \mapsto g \land A id.$

(tgt) Prove:
$$g \times r x = g \wedge id(r x)$$
.

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A \operatorname{id} (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems Idea: **Related things map to related things.**

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A \operatorname{id} (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems.

Idea: Related things map to related things.

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X:*, r: X \rightarrow A, x: X \vdash gX rx: B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A \text{ id } (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: Related things map to related things.

$$X_0:*,$$

$$X_0:*, \qquad r_0:X_0\to A, \qquad x_0:X_0 \qquad \vdash \qquad g\; X_0\; r_0\; x_0:B$$

$$x_0 : X_0$$

$$\vdash$$

$$q X_0 r_0 x_0 : E$$

$$[r]:[X\to A]$$

$$r_1:X_1\to A$$

$$X_1 : X_1$$

$$\vdash$$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A \text{ id } (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: Related things map to related things.

$$X_0:*,$$

$$r_0: X_0 \to A$$

$$x_0 : X_0$$

$$X_0:*, \qquad r_0:X_0\to A, \qquad x_0:X_0 \vdash gX_0 r_0 x_0:B$$

$$[X]$$
: Rel, $[r]$: $[X \rightarrow A]$, $[x]$: $[X]$

$$X_1: *$$

$$r_1:X_1\to A$$

$$X_1 : X_1$$

$$\vdash$$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g X_0 r_0 x_0 = g A \text{ id } (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: Related things map to related things.

$$X_0:*,$$

$$X_0:*, \qquad r_0:X_0\to A,$$

$$x_0 : X_0$$

$$\vdash$$

$$x_0: X_0 \vdash g X_0 r_0 x_0: B$$

$$[X]$$
: Rel, $[r]$: $[X o A]$,

$$X_1: *$$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1 r_1 x_1:B$$

$$x_1 : X_1$$

$$g X_1 r_1 x_1 : B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g \land id (r_0 x_0)$.

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, \hspace{1cm} r_0:X_0 \rightarrow A, \hspace{1cm} x_0:X_0 \hspace{1cm} \vdash \hspace{1cm} g \hspace{1cm} X_0:B$$

$$[X]$$
: Rel, $[r]$: $[X \rightarrow A]$, $[x]$: $[X]$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1r_1x_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, \hspace{1cm} r_0:X_0 \rightarrow A, \hspace{1cm} x_0:X_0 \hspace{1cm} \vdash \hspace{1cm} g \hspace{1cm} X_0 r_0 \hspace{1cm} x_0:B$$

$$[X]$$
: Rel, $[r]$: $[X o A]$, $[x]$: $[X]$ \vdash $[g imes r imes r]$: $[B]$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1 r_1 x_1:B$$

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, r_0: X_0 \to A, x_0: X_0 \vdash g X_0 r_0 x_0: B$$
 $[X]: Rel, [r]: [X \to A], [x]: [X] \vdash =$

$$X_1:*, \qquad r_1:X_1\to A, \qquad x_1:X_1 \vdash gX_1 r_1 x_1:B$$

IDENTITY EXTENSION LEMMA (IEL)

Lemma

If $g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$ then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

 $X_0:*, r_0:X_0\to A,$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$[X]$$
: Rel, $[r]$: $[X \rightarrow A]$, $[x]$: $[X]$ \vdash

A:*, id: $A \rightarrow A$, $r_0 x_0: A \vdash g \land A \text{ id} (r_0 x_0): B$

IDENTITY EXTENSION LEMMA (IEL)

 $x_0: X_0 \vdash g X_0 r_0 x_0: B$

Lemma

If
$$g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$$

then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, \qquad r_0:X_0 \to A, \qquad x_0:X_0 \vdash g X_0 r_0 x_0:B$$

$$/r_0/: \text{Rel}, \qquad [r]: \setminus \sqcup \circ r_0 \setminus, \qquad [x]: /r_0/ \vdash \qquad =$$

$$A:*, \qquad \text{id}:A \to A, \qquad r_0 x_0:A \vdash g A \text{ id} (r_0 x_0):B$$

IDENTITY EXTENSION LEMMA (IEL)

Lemma

If
$$g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$$

then $g \times_0 r_0 x_0 = g A \text{ id } (r_0 x_0).$

Rel. param.: A sound scheme for proving parametricity theorems. Idea: **Related things map to related things.**

$$X_0:*, \qquad r_0:X_0 \to A, \qquad x_0:X_0 \qquad \vdash \qquad g \ X_0 \ r_0 \ x_0:B$$

$$/r_0/: \mathrm{Rel}, \qquad \mathrm{refl}: \backslash \sqcup \circ r_0 \backslash, \qquad \mathrm{refl}: /r_0/ \qquad \vdash \qquad =$$

$$A:*, \qquad \mathrm{id}:A \to A, \qquad r_0 \ x_0:A \qquad \vdash \qquad g \ A \ \mathrm{id} \ (r_0 \ x_0):B$$

IDENTITY EXTENSION LEMMA (IEL)

This is a **metatheoretical** scheme for System F, System F ω , . . .

- Can we do this for dependent types?
- Can we do this internally in dependent types?

∏ is not parametric

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

$$leak: \Pi(X:\mathcal{U}).(X \to A) \to (X \to \mathcal{U})$$

leak
$$X r x = X$$
.

Representation type is returned as data!

In existing work: $\mathcal U$ violates identity extension lemma (IEL).

Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)

∏ is not parametric

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

leak :
$$\Pi(X : \mathcal{U}).(X \to A) \to (X \to \mathcal{U})$$

leak X r x = X.

Representation type is returned as data!

In existing work: \mathcal{U} violates identity extension lemma (IEL).

Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)

Π is not parametric

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

leak :
$$\Pi(X : \mathcal{U}).(X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

leak
$$X r x = X$$
.

Representation type is returned as data!

In existing work: $\ensuremath{\mathcal{U}}$ violates identity extension lemma (IEL).

Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)

∏ is not parametric

System F:

$$\forall X.(X \to A) \to (X \to B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

leak : $\Pi(X : \mathcal{U}).(X \to A) \to (X \to \mathcal{U})$

leak X r x = X.

Representation type is returned as data!

In existing work: $\mathcal U$ violates identity extension lemma (IEL).

Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)

Π is not parametric

System F:

$$\forall X.(X \rightarrow A) \rightarrow (X \rightarrow B).$$

Dependent types:

$$\Pi(X:\mathcal{U}).(X\to A)\to (X\to B).$$

Suppose $B = \mathcal{U}$:

leak :
$$\Pi(X : \mathcal{U}).(X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

leak
$$X r x = X$$
.

Representation type is returned as data!

In existing work: $\mathcal U$ violates identity extension lemma (IEL).

Takeuti (2001), Bernardy, Jansson and Paterson (2012), Krishnaswami and Dreyer (2013), Atkey, Ghani and Johann (2014)

Adding parametric quantifiers

Non-parametric quantifiers

Non-parametric functions

$$f: \Pi(x:A).Bx$$
, $f: A \rightarrow B$

can use argument as data.

$$A: \mathcal{U} \qquad B: A \to \mathcal{U}$$
$$\Pi(x:A).Bx: \mathcal{U}$$

Parametric quantifiers

Parametric functions

$$f: \forall (x:A).B x$$

cannot inspect argument: it is used only for type-checking.*

$$A: \mathcal{U} = B: A \rightarrow \mathcal{U}$$

 $\forall (x:A).Bx: \mathcal{U}$

Non-parametric pairs

$$p: \Sigma(x:A).Bx$$
, $p: A \times B$

Parametric pairs (packs)

$$b:\exists (x:A).Bx$$

*if all elements of A are related.

Adding parametric quantifiers

Non-parametric quantifiers

Non-parametric functions

$$f: \Pi(x:A).Bx$$
, $f: A \rightarrow B$

can use argument as data.

$$\frac{A:\mathcal{U} \qquad B:A\to\mathcal{U}}{\Pi(x:A).Bx:\mathcal{U}}$$

Parametric quantifiers

Parametric functions

$$f: \forall (x:A).B x$$

cannot inspect argument: it is used only for type-checking.*

$$\frac{A:\mathcal{U} \qquad B:A\to\mathcal{U}}{\forall (x:A).Bx:\mathcal{U}}$$

Non-parametric pairs

$$p: \Sigma(x:A).Bx$$
, $p: A \times B$

Parametric pairs (packs)

$$b: \exists (x:A).Bx$$

*if all elements of A are related.

Adding parametric quantifiers

Non-parametric quantifiers

Non-parametric functions

$$f: \Pi(x:A).Bx$$
, $f: A \rightarrow B$

can use argument as data.

$$\frac{A:\mathcal{U} \qquad B:A\to\mathcal{U}}{\Pi(x:A).B\,x:\mathcal{U}}$$

Parametric quantifiers

Parametric functions

$$f: \forall (x:A).B x$$

cannot inspect argument: it is used only for type-checking.*

$$\frac{A:\mathcal{U} \qquad B:A\to\mathcal{U}}{\forall (x:A).B \ x:\mathcal{U}}$$

Non-parametric pairs

$$p: \Sigma(x:A).Bx$$
, $p: A \times B$

Parametric pairs (packs)

$$b: \exists (x:A).Bx$$

*if all elements of A are related.

Adding parametric quantifiers

Non-parametric quantifiers

Non-parametric functions

$$f: \Pi(x:A).Bx$$
, $f: A \rightarrow B$

can use argument as data.

$$\frac{A:\mathcal{U} \qquad B:A\to\mathcal{U}}{\Pi(x:A).B\,x:\mathcal{U}}$$

Parametric quantifiers

Parametric functions

$$f: \forall (x:A).B x$$

cannot inspect argument: it is used only for type-checking.*

$$\frac{A:\mathcal{U} \qquad B:A\to\mathcal{U}}{\forall (x:A).B \ x:\mathcal{U}}$$

Non-parametric pairs

$$p: \Sigma(x:A).Bx$$
, $p: A \times B$

Parametric pairs (packs)

$$p: \exists (x:A).B x$$

*if all elements of A are related.

∀ is watching you

Use \forall if you want representation independence:

$$\forall (X:\mathcal{U}).(X\to A)\to (X\to B).$$

The following is now ill-typed:

$$leak: \forall (X:\mathcal{U}).(X \to A) \to (X \to \mathcal{U})$$

leak
$$X$$
 r $x = X$,

since we cannot use X as data.

∀ is watching you

Use \forall if you want representation independence:

$$\forall (X:\mathcal{U}).(X\to A)\to (X\to B).$$

The following is now ill-typed:

leak :
$$\forall (X : \mathcal{U}).(X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

leak
$$X$$
 r $x = X$,

since we cannot use X as data.

Tools:

- Relational interval "type":
 - 0 1: I (cf. Bernardy, Coquand and Moulin (2015), Cohen,

Lemma

If $g: \forall X.(X \to A) \to (X \to B)$ then $g \times r x =_B g \wedge id(r x)$.

Semantically:
$$0 \frown 1 \Rightarrow p \ 0 = p \ 1$$

 $p \ i = g \ (/r/i) \ (pull \ i) \ (push \ i \ x)$
 $p \ 0 = g \ X \ r \ (id \ x)$
 $p \ 1 = g \ A \ id \ (r \ x)$

Tools:

- Relational interval "type":
 - 0 ← 1 : I (cf. Bernardy, Coquand and Moulin (2015), Cohen, Coquand, Huber, Mörtberg (2016))

Lemma

If $g: \forall X.(X \to A) \to (X \to B)$ then $g \times r x =_B g \wedge id(r x)$.

We define:
$$p : \forall (_: \mathbb{I}).B$$

Semantically: $0 \frown 1 \Rightarrow p \ 0 = p \ 1$
 $p \ i = g \ (/r/i) \ (pull \ i) \ (push \ i \ x)$
 $p \ 0 = g \ X \ r \ (id \ x)$
 $p \ 1 = g \ A \ id \ (r \ x)$

Tools:

- Relational interval "type":

Lemma

If $g: \forall X.(X \to A) \to (X \to B)$ then $g \times r x =_B g \wedge id(r x)$.

We define:
$$p : \forall (_: \mathbb{I}).B$$

Semantically: $0 \frown 1 \Rightarrow p \ 0 = p \ 1$
 $p \ i = g \ (/r/i) \ (pull \ i) \ (push \ i \ x)$
 $p \ 0 = g \ X \ r \ (id \ x)$
 $p \ 1 = g \ A \ id \ (r \ x)$

Tools:

- Relational interval "type":
 - 0 ← 1 : I (cf. Bernardy, Coquand and Moulin (2015), Cohen, Coquand, Huber, Mörtberg (2016))

Lemma

If
$$g: \forall X.(X \to A) \to (X \to B)$$

then $g \times r x =_B g \wedge id(r x)$.

We define:
$$p : \forall (_: \mathbb{I}).B$$

Semantically: $0 \frown 1 \Rightarrow p \ 0 = p \ 1$
 $p \ i = g \ (/r/i) \ (pull \ i) \ (push \ i \ x)$
 $p \ 0 = g \ X \ r \ (id \ x)$
 $p \ 1 = g \ A \ id \ (r \ x)$

Tools:

- Relational interval "type":

Lemma

If
$$g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$$

then $g \times r x =_B g \land id (r x)$.

We define:
$$p : \forall (_: \mathbb{I}).B$$

Semantically: $0 \frown 1 \Rightarrow p \ 0 = p \ 1$
 $p \ i = g \ (/r/i) \ (pull \ i) \ (push \ i \ x)$
 $p \ 0 = g \ X \ r \ (id \ x)$
 $p \ 1 = g \ A \ id \ (r \ x)$

Tools:

- Relational interval "type":

Lemma

If
$$g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$$

then $g \times r x =_B g \land id (r x)$.

We define:
$$p : \forall (_: \mathbb{I}).B$$

Semantically: $0 \frown 1 \Rightarrow p \ 0 = p \ 1$
 $p \ i = g \ (/r/i) \ (pull \ i) \ (push \ i \ x)$
 $p \ 0 = g \ X \ r \ (id \ x)$
 $p \ 1 = g \ A \ id \ (r \ x)$

Tools:

- Relational interval "type":
 - 0 1 : I (cf. Bernardy, Coquand and Moulin (2015), Cohen,
 Coquand, Huber, Mörtberg (2016))

Lemma

If
$$g: \forall X.(X \rightarrow A) \rightarrow (X \rightarrow B)$$

then $g \times r =_B g \land id(r \times r)$.

We define:
$$p : \forall (_: \mathbb{I}).B$$

Semantically: $0 \frown 1 \Rightarrow p \ 0 = p \ 1$
 $p \ i = g \ (/r/i) \ (pull \ i) \ (push \ i \ x)$
 $p \ 0 = g \ X \ r \ (id \ x)$
 $p \ 1 = g \ A \ id \ (r \ x)$

Tools:

- Relational interval "type":

Lemma

If
$$g: \forall X.(X \to A) \to (X \to B)$$

then $g \times r x =_B g \wedge id(r x)$.

We define:
$$p : \forall (_: \mathbb{I}).B$$

Semantically: $0 \frown 1 \Rightarrow p \ 0 = p \ 1$
 $p \ i = g \ (/r/i) \ (pull \ i) \ (push \ i \ x)$
 $p \ 0 = g \ X \ r \ (id \ X)$
 $p \ 1 = g \ A \ id \ (r \ X)$

The framework:

- Type system ParamDTT with Π and Σ, ∀ and ∃,
- Soundness using 'bridge/path cubical sets' (higher-dimensional labelled reflexive graphs),
- We extend Agda with support for ParamDTT,

Results

- Stronger internal parametricity system,
 - but not (yet?) fully iterated,
- We show internally that Church encoding of data (e.g. lists) and codata (e.g. streams) works,
 - up to predicativity issues,
- We support sized types:
 - modular, type-directed approach to termination checking,
 - requires dependent parametric quantification.

The framework:

- Type system ParamDTT with Π and Σ, ∀ and ∃,
- Soundness using 'bridge/path cubical sets' (higher-dimensional labelled reflexive graphs),
- We extend Agda with support for ParamDTT,

Results

- Stronger internal parametricity system,
 - but not (yet?) fully iterated,
- We show internally that Church encoding of data (e.g. lists) and codata (e.g. streams) works,
 - up to predicativity issues,
- We support sized types:
 - modular, type-directed approach to termination checking,
 - requires dependent parametric quantification.

The framework:

- Type system ParamDTT with Π and Σ, ∀ and ∃,
- Soundness using 'bridge/path cubical sets' (higher-dimensional labelled reflexive graphs),
- We extend Agda with support for ParamDTT,

Results

- Stronger internal parametricity system,
 - but not (yet?) fully iterated,
- We show internally that Church encoding of data (e.g. lists) and codata (e.g. streams) works,
 - up to predicativity issues,
- We support sized types:
 - modular, type-directed approach to termination checking,
 - requires dependent parametric quantification.

The framework:

- Type system ParamDTT with Π and Σ, ∀ and ∃,
- Soundness using 'bridge/path cubical sets' (higher-dimensional labelled reflexive graphs),
- We extend Agda with support for ParamDTT,

Results:

- Stronger internal parametricity system,
 - but not (yet?) fully iterated,
- We show internally that Church encoding of data (e.g. lists) and codata (e.g. streams) works,
 - up to predicativity issues,
- We support sized types:
 - modular, type-directed approach to termination checking,
 - requires dependent parametric quantification.

The framework:

- Type system ParamDTT with Π and Σ, ∀ and ∃,
- Soundness using 'bridge/path cubical sets' (higher-dimensional labelled reflexive graphs),
- We extend Agda with support for ParamDTT,

Results:

- Stronger internal parametricity system,
 - but not (yet?) fully iterated,
- We show internally that Church encoding of data (e.g. lists) and codata (e.g. streams) works,
 - up to predicativity issues,
- We support sized types:
 - modular, type-directed approach to termination checking,
 - requires dependent parametric quantification.

The framework:

- Type system ParamDTT with Π and Σ, ∀ and ∃,
- Soundness using 'bridge/path cubical sets' (higher-dimensional labelled reflexive graphs),
- We extend Agda with support for ParamDTT,

Results:

- Stronger internal parametricity system,
 - but not (yet?) fully iterated,
- We show internally that Church encoding of data (e.g. lists) and codata (e.g. streams) works,
 - up to predicativity issues,
- We support sized types:
 - modular, type-directed approach to termination checking,
 - requires dependent parametric quantification.

Thanks!

Related talks:

Normalization by Evaluation for Sized Dependent Types Abel, Vezzosi, Winterhalter – Up next

A Fibrational Framework for Substructural and Modal Logics Licata, Shulman, Riley – 13h @ FSCD

Questions?

Assume level-preserving functor *F*.

$$\begin{aligned} \mathsf{Mu}_{\ell} &= \forall (X:\mathcal{U}_{\ell}).(\mathit{FX} \to X) \to X. \\ \mathsf{mkMu}_{\ell} &: \mathit{FMu}_{\ell} \to \mathsf{Mu}_{\ell}. \end{aligned}$$

$$\mathsf{fold}_\ell \ A \ \mathsf{mk} A = \lambda \, m. (m \ A \ \mathsf{mk} A) : \mathsf{Mu}_\ell \to A$$

$$\downarrow_{\ell} = \lambda \, m.m|_{\mathcal{U}_{\ell}} : \mathsf{Mu}_{\ell+1} \to \mathsf{Mu}_{\ell}$$

Theorem (Initiality of Mu up to ↓)

For any B, mkB and any algebra morphism $f: Mu_{\ell} \rightarrow B$:

Assume level-preserving functor *F*.

$$\begin{aligned} \mathsf{Mu}_{\ell} &= \forall (X: \mathcal{U}_{\ell}). (\mathit{FX} \to X) \to X. \\ \mathsf{mkMu}_{\ell} &: \mathit{FMu}_{\ell} \to \mathsf{Mu}_{\ell}. \end{aligned}$$

$$\mathsf{fold}_\ell \ {}^{\mbox{\sf A}} \ \mathsf{mk} {}^{\mbox{\sf A}} = \lambda \, m. (m \ {}^{\mbox{\sf A}} \ \mathsf{mk} {}^{\mbox{\sf A}}) : \mathsf{Mu}_\ell \to {}^{\mbox{\sf A}}$$

$$\downarrow_{\ell} = \lambda \, m.m|_{\mathcal{U}_{\ell}} : \mathsf{Mu}_{\ell+1} \to \mathsf{Mu}_{\ell}$$

Theorem (Initiality of Mu up to ↓)

For any B, mkB and any algebra morphism $f: Mu_{\ell} \rightarrow B$:

Assume level-preserving functor *F*.

$$\begin{aligned} \mathsf{Mu}_\ell &= \forall (X:\mathcal{U}_\ell).(\mathit{FX} \to X) \to X. \\ \mathsf{mkMu}_\ell &: \mathit{FMu}_\ell \to \mathsf{Mu}_\ell. \end{aligned}$$

$$fold_{\ell} A mkA = \lambda m.(m A mkA) : Mu_{\ell} \rightarrow A$$

$$\downarrow_{\ell} = \lambda \, m.m|_{\mathcal{U}_{\ell}} : \underline{\mathsf{Mu}}_{\ell+1} \to \underline{\mathsf{Mu}}_{\ell}$$

Theorem (Initiality of Mu up to ↓)

For any B, mkB and any algebra morphism $f: Mu_{\ell} \rightarrow B$:

Assume level-preserving functor *F*.

$$\begin{aligned} \mathsf{Mu}_{\ell} &= \forall (X: \mathcal{U}_{\ell}). (\mathit{FX} \to X) \to X. \\ \mathsf{mkMu}_{\ell} &: \mathit{FMu}_{\ell} \to \mathsf{Mu}_{\ell}. \end{aligned}$$

$$fold_{\ell} A mkA = \lambda m.(m A mkA) : Mu_{\ell} \rightarrow A$$

$$\downarrow_{\ell} = \lambda \, m.m|_{\mathcal{U}_{\ell}} : Mu_{\ell+1} \to Mu_{\ell}$$

Theorem (Initiality of Mu up to ↓)

For any B, mkB and any algebra morphism $f: Mu_{\ell} \to B$:

To build a fixpoint List A of (Unit $+ A \times \Box$):

- By well-founded induction on n: Size, build $\widehat{\text{List }}A n \cong \text{Unit} + A \times (\exists m < n. \widehat{\text{List }}A m)$,
 - Special fixpoint operator for Size.
- List $A := \exists n. \widehat{\text{List }} A n.$

Parametricity: side bounds are hidden

Works for finitely branching container functors (even indexed):

F
$$T = \Sigma(c:C).(B \ c o T).$$

Also final co-algebras (e.g. streams)

To build a fixpoint List A of (Unit $+ A \times \Box$):

- By well-founded induction on n: Size, build $\widehat{\text{List }} A n \cong \text{Unit} + A \times (\exists m < n. \widehat{\text{List }} A m)$,
 - Special fixpoint operator for Size.
- List $A := \exists n. \text{List } A n$.

Parametricity: side bounds are hidden

Works for finitely branching container functors (even indexed):

 $F T = \Sigma(c:C).(B c \rightarrow T).$

Also final co-algebras (e.g. streams).

To build a fixpoint List A of (Unit $+ A \times \Box$):

- By well-founded induction on n: Size, build $\widehat{\text{List }} A n \cong \text{Unit} + A \times (\exists m < n. \widehat{\text{List }} A m)$,
 - Special fixpoint operator for Size.
- List $A := \exists n. \widehat{\text{List }} A n$.

Parametricity: side bounds are hidden

Works for finitely branching container functors (even indexed):

 $F I = \Sigma(c:C).(B c \rightarrow I).$

Also final co-algebras (e.g. streams)

To build a fixpoint List A of (Unit $+ A \times \Box$):

- By well-founded induction on n: Size, build $\widehat{\text{List }} A n \cong \text{Unit} + A \times (\exists m < n. \widehat{\text{List }} A m)$,
 - Special fixpoint operator for Size.
- List $A := \exists n. \widehat{\text{List }} A n$.

Parametricity: side bounds are hidden

Works for finitely branching container functors (even indexed): $F \ T = \Sigma(c : C).(B \ c \to T).$ Also final co-algebras (e.g. streams).

To build a fixpoint List A of (Unit $+ A \times \Box$):

- By well-founded induction on n: Size, build $\widehat{\text{List }} A n \cong \text{Unit} + A \times (\exists m < n. \widehat{\text{List }} A m)$,
 - Special fixpoint operator for Size.
- List $A := \exists n. \widehat{\text{List }} A n$.

Parametricity: side bounds are hidden

Works for finitely branching container functors (even indexed):

$$F T = \Sigma(c:C).(B c \rightarrow T).$$

Also final co-algebras (e.g. streams).

To build a fixpoint List A of (Unit $+ A \times \Box$):

- By well-founded induction on n: Size, build $\widehat{\text{List }} A n \cong \text{Unit} + A \times (\exists m < n. \widehat{\text{List }} A m)$,
 - Special fixpoint operator for Size.
- List $A := \exists n. \widehat{\text{List }} A n$.

Parametricity: side bounds are hidden

Works for finitely branching container functors (even indexed):

$$F T = \Sigma(c:C).(B c \rightarrow T).$$

Also final co-algebras (e.g. streams).

Example of a bridge/path cubical set

The context $(i : \Pi \mathbb{I}, j : \forall \mathbb{I})$ as a bridge/path cubical set.

Related work

citation	source	target	journey	model	IEL proof
Reynolds, 1983	Sys F		, ,	set th.	yes
Abadi, Cardelli,	Sys F	Sys ${\mathscr R}$	external		yes
Curien, 1993		-,			,
Plotkin & Abadi,	Sys F	Sys F + logic	external		yes
1993		,			•
Wadler, 2007	Sys F	Sys F + logic	external		yes
Takeuti, 2001	$\mathscr{X} \in \lambda$ -cube	$\mathscr{Y} \in \lambda$ -cube	external		for small
					types
Bernardy, Jansson,	any PTS	other PTS	external		no
Paterson, 2012					
Krishnaswami &	dependent			Q-PER	only some
Dreyer, 2013	types				corollaries
Atkey, Ghani, Jo-	dependent			presh.	for small
hann, 2014	types				types
Bernardy, Co-	dependent	same as	internal	presh.	no
quand, Moulin,	types + param.	source			
2015	operators				
This work	dependent	same as	internal	presh.	yes
	types + param.	source			
	operators, \forall , \exists		4 0 1 4 4		. EI= √0 €

Parametricity, Shape-irrelevance, irrelevance

- 4 functors on bridge/path cubical sets:
 - id Non-parametricity (continuity)
 - # Parametricity
 - Shape-irrelevance
 - Irrelevance

such that
$$\sharp \circ (\bullet \bullet) = \bullet$$
.

Abel et al. have:
$$[Size] = [N]$$
.

We have:
$$[Size] = \bullet \bullet [N]$$
. Hence, $\sharp [Size] = \bullet [N]$.

ParamDTT	Abel	[domain]
$\Pi(i : Size).A i$	$\bullet \bullet (i : Size) \rightarrow A i$	• • [N]
$\forall (i : Size).A i$	\bullet (i : Size) \rightarrow Ai	• [N]