

DESIGN DE ESTRUTURAS AEROESPACIAIS

Daniel Afonso

Escola Superior Aveiro Norte, Universidade de Aveiro Centro de Tecnologia Mecânica e Automação (TEMA) dan@ua.pt www.ua.pt/pt/p/16609746

SUMÁRIO

Estruturas aeroespaciais: Treliças, Vigas e Pórticos

- Definição e tipos de treliças
- Avaliação de treliças
- Avaliação de vigas e pórticos

Estruturas aeroespaciais: Estruturas de Casca

- Definição de estruturas de casca
- Aplicação de estruturas de casca

Estruturas aeroespaciais

• Combinação de vigas, treliças e cascas

ESTRUTURAS AEROESPACIAIS

Treliças

Estrutura formada por vários elementos ligados entre si

Barras rígidas (strut)

- Cada barra suporta apenas esforços axiais
- A disposição das barras é responsável pela rigidez da estrutura

Ligações articuladas entre as barras: nós (nodes)

- Permitem a rotação livre das barras
- São geralmente articulações simples (2D) ou juntas esféricas (3D)

Por motivos construtivos, as juntas podem ser substituídas por ligações rígidas

- Fabrico de várias barras num único componentes
- Facilidade de ligação mecânica
 - Apesar da ligação rígida a tornar num pórtico, a escala entre comprimentos de barras e ligações mantem o seu comportamento estrutural próximo de uma treliça

ANÁLISE DE TRELIÇAS

Treliças Estaticamente Determinadas

• hipostática

• isoestática

• hiperestática

ANÁLISE ESTRUTURAS ISOSTÁTICAS

Cálculo de forças externas

$$\sum \vec{F} = \vec{0}$$

$$\sum \vec{M_o} = \vec{0}$$

ANÁLISE ESTRUTURAS RETICULADAS ISOSTÁTICAS

Cálculo de forças internas

ANÁLISE ESTRUTURAS RETICULADAS ISOSTÁTICAS

Barras à tração

Barras à compressão

ANÁLISE ESTRUTURAS RETICULADAS ISOSTÁTICAS

Limite de barra à tração depende da tensão de cedência do material

$$\sigma_{cr_tens\~ao} = \frac{F_{cr}}{A} = \sigma_c$$

Limite da barra à compressão depende da tensão critica, evitando

encurvamento

$$\sigma_{cr_compress\~ao} = \frac{F_{cr}}{A} = \begin{cases} \frac{\pi^2 \cdot E}{\left(K \cdot \frac{L}{r}\right)^2} \\ \sigma_c \end{cases}$$

End Condition:	Pinned-Pinned	Fixed-Fixed	Fixed-Pinned	Fixed-Free
Illustration:				P
Theoretical Effective Length Factor, K :	1	0.5	0.699	2
Recommended Effective Length Factor, K:	1	0.9	0.9	2.1

Os apoios devem impedir o movimento como corpo rígido uma vez por grau de liberdade

- Restrição de 3 DoF em 2D
- Restrição de 6 DoF em 3D
- Número de apoios depende do número e disposição de barras

O movimento (rotação) de cada barra deve ser restrito apenas uma vez pelas restantes barras

- A organização espacial de barras promove a rigidez da estrutura
- Barras apenas sujeitos a tração podem ser substituídos por elementos flexíveis
- Barras sujeitas a compressão podem (por vezes) ser substituídas pela diagonal oposta (à tração)

Definição e otimização da geometria

Definição e otimização da geometria

a - c elementos flexíveis

d diagonal rígida

e - h diagonal substituída por chapa

Seleção de materiais e definição do método de construção

APLICABILIDADE DE ESTRUTURAS RETICULADAS

Estruturas de baixo peso

Estruturas reconfiguráveis

ESTRUTURAS AEROESPACIAIS

Vigas e Pórticos

VIGAS E PÓRTICOS

Estrutura formada por vários elementos ligados entre si

Vigas rígidas (beam)

- Cada viga suporta apenas esforço axiais, transversais e momentos fletores e torsores
- A secção das vigas é principal responsável pela rigidez da estrutura
- A disposição das vigas contribui para a rigidez da estrutura

Ligações fixas entre as vigas

- Suportam momento
- Podem ligar diretamente vigas ou utilizar elementos adicionais

VIGAS E PÓRTICOS

ANÁLISE DE VIGAS

Vigas Estaticamente Determinadas

- Determinação de reações nos apoios (forças e momentos)
- Cálculo de esforços transversos e momentos fletores/torsores

ANÁLISE DE PÓRTICOS

Pórticos Estaticamente Determinadas

- Cálculo equivalente, possibilidade de cálculo de cada viga de forma independente
- Ligações entre vigas preservam esforços transversos e momentos

ANÁLISE DE VIGAS E PÓRTICOS

Vigas e Pórticos Estaticamente Indeterminados

- Consulta de formulário para distribuição de esforços esternos
- Cálculo de esforços transversos e momentos fletores/torsores

Richard Abbott, Analysis and Design of Composites and Metallic Flight Vehicle Structures, Abbott Aerospace SEZC Technical Library, 2019

ANÁLISE DE VIGAS E PÓRTICOS

Vigas e Pórticos Estaticamente Indeterminados

BMD

Important Values

Support Reactions

Bending Moments

$$M_A = M_E$$
 $= \frac{PL}{8(\beta e + 2)}$

$$M_B = M_D$$
 ... $= \frac{PL}{4(\beta e + 2)}$

$$M_{c}$$
 $= \frac{PL}{4} \left(\frac{\beta e + 1}{\beta e + 2} \right)$

APLICABILIDADE DE ESTRUTURAS RETICULADAS

Estruturas de elevada rigidez/resistência

Estruturas com espaço disponível no interior

ESTRUTURAS AEROESPACIAIS

Estruturas de casca

ESTRUTURAS DE CASCA

A utilização de metal e compósitos promove o desenho de estruturas tipo casca

- Reforço dos esforço de corte (em substituição de barras e cabos em treliças)
- Reforço do esforço de corte em vigas e pórticos
- Suporte de esforços perpendiculares ao plano

Uma treliça ou pórtico reforçado com uma chapa é considerada uma estrutura de casca

- Considerada estrutura de paredes finas
- Possibilidade de estruturas de casca simples ou reforçadas

ESFORÇO SUPORTADO POR UMA CASCA

ESFORÇO SUPORTADO POR UMA CASCA

Esforços de tração são facilmente suportados por cascas simples

Esforços de compressão e de corte necessitam o reforço da casca

- Reforço com base na geometria da casca
- Reforço com base em elementos adicionais

ESFORÇO SUPORTADO POR UMA CASCA

Reforço com base na geometria da casca

Reforço com base em elementos adicionais

ESTRUTURAS DE CASCA

Estrutura monocoque

 Estrutura de casca simples, apenas com elementos de apoio à forma

Estrutura semi-monocoque

 Estrutura de casca reforçada por vigas

APLICABILIDADE DE ESTRUTURAS DE CASCA

Tanques e depósitos (ar ou líquidos)

Fuselagem e outras estruturas

