Tema 1. Teorema de Taylor

[versión 0.9, compilado el 21/7/2016]

Contenidos

1	Poli	inomios de Taylor	2	
	1.1	Aproximaciones Polinómicas usando Taylor	2	
	1.2	Resto de Lagrange y Análisis de error	6	
		1.2.1 El Resto de Lagrange	6	
		1.2.2 Decimales de una aproximación	9	
	1.3	Cambios de variable	16	
	1.4	Derivadas e Integrales	20	
	1.5	Polinomios de uso Frecuente	27	
		1.5.1 Ejemplos y ejercicios	28	
2	Desarrollos Limitados 3			
	2.1	La o pequeña de Landau	37	
	2.2	Desarrollos limitados	40	
		2.2.1 Resto de Young	40	
		2.2.2 Desarrollos limitados de uso Frecuente	42	
		2.2.3 Ejemplos y ejercicios	43	
	2.3	Cálculo de límites	53	
\mathbf{R}_{0}	efere	ncias	59	

1 Polinomios de Taylor

1.1 Aproximaciones Polinómicas usando Taylor

Nota 1.1 (Notación). Se denota $C^n(\mathcal{D})$ como el conjunto de funciones continuas, derivables n veces en \mathcal{D} y con k-ésima derivada continua para $k = 1, 2, \ldots n$.

En tal caso si f es una función $\mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$, tal que existen y son continuas en \mathcal{D} las funciones $f, f^{(1)}, f^{(2)}, \ldots, f^{(n)}$, se escribe

$$f \in C^n(\mathcal{D})$$

Definición 1.1 (Polinomio de Taylor). Sea $f \in C^n(\mathcal{D})$ y sea $a \in \mathcal{D} \subseteq \mathbb{R}$, entonces el **Polinomio de Taylor** asociado a f, de orden n y centrado en $a \in \mathcal{D}$ es el polinomio de grado n correspondiente a

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

O sea que

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$$

siendo

$$f^{(0)}(a) = f(a) \quad \wedge \quad f^{(k)}(a) = \frac{d^k f(a)}{dx^k}$$

Nota 1.2 (Polinomio de Maclaurin). El polinomio de Taylor de orden n asociado a $f \in C^n(\mathcal{D})$ es llamado Polinomio de Maclaurin si el centro es 0, o sea que

$$T_n(x) = f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f^{(3)}(0)}{3!} x^3 + \dots + \frac{f^{(n)}(0)}{n!} x^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$$

Nota 1.3 (Aproximación Polinomial). Sea f una función $\mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$, y sea P(x) un polinomio de la forma

$$P(x) = a_0 + a_1 (x - a) + a_2 (x - a)^2 + \dots + a_n (x - a)^n$$

decimos que P es una aproximación polinomial de f en x = a si

$$x \approx a \implies P(x) \approx f(x)$$

es decir que

$$\lim_{x \to a} \frac{f(x)}{P(x)} = 1$$

Nota 1.4. Si $P(x) = a_0 + a_1 (x - a) + a_2 (x - a)^2 + \dots + a_n (x - a)^n$, entonces

$$P^{(k)}(a) = k! \, a_k$$

en efecto

$$P(a) = a_0 + a_1 (a - a) + a_2 (a - a)^2 + \dots + a_n (a - a)^n$$

= $a_0 + a_1 \cdot 0 + a_2 \cdot 0 + \dots + a_n \cdot 0$
= $a_0 + 0 + 0 + \dots + 0$
= a_0

de igual manera

$$P'(a) = \left[a_1 + 2a_2 (x - a) + 3 (x - a)^2 + \dots + na_n (x - a)^{n-1} \right] \Big|_{x=a} = a_1 + 0 = a_1$$

$$P''(a) = \left[2a_2 + 3 \cdot 2a_3 (x - a) + 4 \cdot 3 (x - a)^2 + \dots + n(n-1)a_n (x - a)^{n-2} \right] \Big|_{x=a} = 2a_2$$

$$\vdots$$

$$P^{(k)}(a) = \left[k! \, a_k + (k+1)! \, a_{k+1} (x - a) + \frac{(k+2)!}{2} \, a_{k+2} (x - a)^2 + \dots + \frac{n!}{(n-k)!} \, a_n (x - a)^{n-k} \right] \Big|_{x=a}$$

$$= k! \, a_k$$

Notas 1.5. Sea $f \in C^n(\mathcal{D})$ y sea T_n su polinomio de Taylor de orden n con centro $x = a \in \mathcal{D}$.

1. $T_n(x)$ es una aproximación polinomial de f, o sea

$$x \approx a \implies T_n(x) \approx f(x)$$

2. Si $P(x) = T_n(x)$ entonces

$$P(a) = f(a) \implies P \land f \quad \text{tienen el mismo valor en } x = a$$

$$P'(a) = f'(a) \implies P \land f \quad \text{tienen el mismo crecimiento en } x = a$$

$$P''(a) = f''(a) \implies P \land f \quad \text{tienen la misma concavidad en } x = a$$

$$P^{(3)}(a) = f^{(3)}(a) \implies \begin{cases} \text{rapidez con la que cambia la concavidad} \\ \text{de } f \neq P \text{ es la misma en } x = a \end{cases}$$

$$\vdots$$

$$P^{(n)}(a) = f^{(n)}(a) \implies P \land f \quad \text{tienen gráficas "parecidas" en } x = a$$

3. Si la diferencia entre x y a es pequeña, el valor f(x) es cercano al valor P(x), y si $x \in \mathbb{Q}$ entonces $T_n(x)$ es una aproximación racional de f(x).

Definición 1.2 (Resto y error). Si $a \in \mathcal{D} \subseteq \mathbb{R}$ y $T_n(x)$ es el polinomio de Taylor centrado a y orden n de $f \in C^n(\mathcal{D})$, el resto de la aproximación polinomial $T_n(x)$ corresponde al valor

$$R_n(x) = f(x) - T_n(x)$$

luego el **error de la aproximación** es

$$\varepsilon = |R_n(x)| = |f(x) - T_n(x)|$$

el cual mide la "exactitud" de la aproximación polinomial $f(x) \approx T_n(x)$. (Mientras "más pequeño sea ε , "más buena" es la aproximación)

Ejemplo 1.1. Sea $f(x) = \sqrt{x}$.

- (a) Calcule el polinomio de Taylor centrado en x = 4 de orden 3 asociado a f.
- (b) Aproxime racionalmente el valor $\sqrt{3}$, usando T_3 como aproximación polinomial.
- (c) Usando la calculadora, compare la aproximación con el valor real de $\sqrt{3}$ y calcule el error cometido de manera aproximada.

Solución:

(a)

$$f(4) = \sqrt{x} \Big|_{x=4} = 2$$

$$f'(4) = \frac{1}{2x^{1/2}} \Big|_{x=4} = \frac{1}{4}$$

$$f''(4) = \frac{-1}{4x^{3/2}} \Big|_{x=4} = \frac{-1}{4 \cdot 2^3} = \frac{-1}{32}$$

$$f^{(3)}(4) = \frac{3}{8x^{5/2}} \Big|_{x=4} = \frac{3}{8 \cdot 32} = \frac{3}{256}$$

entonces

$$T_3(x) = f(4) + f'(4)(x - 4) + \frac{f''(4)}{2}(x - 4)^2 + \frac{f^{(3)}(4)}{3!}(x - 4)^3$$

$$= 2 + \frac{1}{4} \cdot (x - 4) + \frac{1}{2} \cdot \frac{-1}{32} \cdot (x - 4)^2 + \frac{1}{6} \cdot \frac{3}{256}(x - 4)^3$$

$$= 2 + \frac{x - 4}{4} - \frac{(x - 4)^2}{64} + \frac{(x - 4)^3}{512}$$

$$\therefore \qquad T_3(x) = 2 + \frac{x - 4}{4} - \frac{(x - 4)^2}{64} + \frac{(x - 4)^3}{512}$$

(b)

$$\begin{split} \sqrt{3} &= \sqrt{x} \Big|_{x=3} \\ &\approx T_3(3) \\ &\approx \left[2 + \frac{x-4}{4} - \frac{(x-4)^2}{64} + \frac{(x-4)^3}{512} \right]_{x=3} \\ &= 2 - \frac{1}{4} - \frac{1}{64} - \frac{1}{512} \\ &= \frac{1024 - 128 - 8 - 1}{512} \\ &= \frac{887}{512} \end{split}$$

Tenemos entonces la aproximación racional

$$\sqrt{3} \approx \frac{887}{512}$$

(c) Usando la calculadora obtenemos

$$\sqrt{3} \approx 1.732\,050\,808 \quad \wedge \quad \frac{887}{512} = 1.732\,421\,875$$

luego el error de aproximación es

$$\varepsilon \approx 0.000\,371\,067\,431\,1$$

Note que los primeros tres dígitos decimales coinciden.

Ejemplo 1.2 (Ejercicio). Sea $f(x) = \ln(x)$.

- (a) Calcule el polinomio de Taylor centrado en x = 1 de orden 5 asociado a f.
- (b) Aproxime racionalmente el valor ln(4/3), usando T_5 como aproximación polinomial.
- (c) Usando la calculadora, compare la aproximación con el valor real de $\ln(4/3)$ y calcule el error cometido de manera aproximada.

Respuestas:

(a)
$$T_5(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5}$$

- (b) $\ln(4/3) \approx T_5(4/3) = \frac{1399}{4860} = 0.287860...$
- (c) Con ayuda de una calculadora tenemos que $\ln(4/3) = 0.287682...$, entonces el error es

$$\varepsilon = |\ln(4/3) - T_5(4/3)| = 0.000178...$$

Ejemplo 1.3. Halle el polinomio de Maclaurin de orden 4 de la función $f(x) = \cos(x)$.

Solución:

$$f(0) = \cos(x) \Big|_{x=0} = 1$$

$$f'(0) = -\sin(x)|_{x=0} = 0$$

$$f''(0) = -\cos(x)|_{x=0} = -1$$

$$f^{(3)}(0) = \sin(x)|_{x=0} = 0$$

$$f^{(4)}(0) = \cos(x)|_{x=0} = 1$$

luego tenemos el polinomio de Maclaurin

$$T_4(x) = f(a) + f'(a) x + \frac{f''(a)}{2} x^2 + \frac{f^{(3)}(0)}{3!} x^3 + \frac{f^{(4)}(0)}{4!} x^4$$
$$= 1 + 0 \cdot x - \frac{1}{2} x^2 + \frac{0}{6} x^3 + \frac{1}{4!} x^4$$
$$= 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

Ejemplo 1.4 (Ejercicio). Halle el polinomio de Maclaurin de orden 5 de la función f(x) = sen(x).

Resp.
$$/ T_5(x) = x - \frac{x^3}{6} + \frac{x^5}{120}$$

1.2 Resto de Lagrange y Análisis de error

1.2.1 El Resto de Lagrange

Nota 1.6. Dados $x_1, x_2 \in \mathbb{R}$, denotemos el conjunto $V(x_1, x_2)$ como el intervalo acotado por x_1 y x_2 , es decir

$$V(x_1, x_2) = \begin{cases} [x_1, x_2] &, & \text{si } x_1 \le x_2 \\ [x_2, x_1] &, & \text{si } x_1 > x_2 \end{cases}$$

Ejemplo 1.5.

$$V(5,5.3) = [5,5.3] \land V(1.2,0.68) = [0.68,1.2]$$

Teorema 1.1 (Teorema de Taylor).

Si $a \in \mathcal{D} \subseteq \mathbb{R}$, $T_n(x)$ el polinomio de Taylor de orden n centrado a asociado a $f \in C^{n+1}(\mathcal{D})$, y si

$$R_n(x) = f(x) - T_n(x)$$

es el resto asociado (Ver **Definición 1.1**), entonces existe $\theta \in V(a,x)$ tal que

$$R_n(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x-a)^{n+1}$$

La fórmula anterior es llamada El Resto a Lagrange.

La ecuación

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{n!} (x - a)^{k} + R_{n}(x)$$

es llamada **Fórmula de Taylor**, mientras que la **Fórmula de Taylor con resto de Lagrange** corresponde a

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{n!} (x - a)^k + \frac{f^{(n+1)}(\theta)}{(n+1)!} (x - a)^{n+1}, \ \theta \in V(a, x)$$

Definición 1.3 (Fórmula de Maclaurin).

Un polinomio de Taylor centrado en cero es llamado polinomio de Maclaurin.

Además la ecuación

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{n!} x^{k} + R_{n}(x)$$

es llamada **Fórmula de Maclaurin**, mientras que la **Fórmula de Maclaurin con resto de Lagrange** corresponde a

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{n!} x^{k} + \frac{f^{(n+1)}(\theta)}{(n+1)!} x^{n+1}, \ \theta \in V(0, x)$$

Teorema 1.2. Si $a \in \mathcal{D}$ y $T_n(x)$ es el polinomio de Taylor centrado en a y de orden n de $f \in C^{n+1}(\mathcal{D})$ entonces

$$\lim_{x \to a} \frac{R_n(x)}{(x-a)^n} = \lim_{x \to a} \frac{f(x) - T_n(x)}{(x-a)^n} = 0$$

Teorema 1.3 (Error de aproximación).

Usando la notación del **Teorema 1.1**, tenemos que el error de la aproximación $f(x) \approx T_n(x)$ corresponde a

$$\varepsilon = |f(x) - T(x)| = |R_n(x)| = |f^{(n+1)}(\theta)| \cdot \frac{|x - a|^{n+1}}{(n+1)!}$$

donde $\theta \in V(a,x)$.

Ejemplo 1.6. Calcule la fórmula de Taylor de orden 3 y centro x=4 de la función $f(x)=\sqrt{x}$. Acote el error cometido al aproximar el valor de $\sqrt{3}$ con el polinomio T_3 .

Solución: En el Ejemplo 1.1 se calculó

$$T_3(x) = 2 + \frac{x-4}{4} - \frac{(x-4)^2}{64} + \frac{(x-4)^3}{512}$$

 $\sqrt{3} \approx T_3(3) = \frac{887}{512}$

Note que

$$f^{(4)}(x) = \left[f^{(3)}(x)\right]' = \left[\frac{3}{8 x^{5/2}}\right]' = \frac{-15}{16 x^{7/2}}$$

entonces existe $\theta \in V(4, x)$ tal que

$$R_3 = \frac{f^{(4)}(\theta)}{4!} (x-4)^4 = \frac{1}{4!} \cdot \frac{-15}{16 \,\theta^{7/2}} (x-4)^4 = \frac{-5}{128 \,\sqrt{\theta^7}} (x-4)^4$$

La fórmula de Taylor con resto de Lagrange es

$$\sqrt{x} = 2 + \frac{x-4}{4} - \frac{(x-4)^2}{64} + \frac{(x-4)^3}{512} - \frac{5(x-4)^4}{128\sqrt{\theta^7}}, \quad \theta \in V(4,x)$$

El error cuando x=3 corresponde a

$$\varepsilon = \left| \frac{-5}{128\sqrt{\theta^7}} (x - 4)^4 \right|_{x=3} = \frac{5 \cdot |(-1)^4|}{128\sqrt{\theta^7}} = \frac{5}{128\sqrt{\theta^7}}, \quad \theta \in [3, 4]$$

note que

$$3 \le \theta \le 4 \iff \frac{1}{3} \ge \frac{1}{\theta} \ge \frac{1}{4}$$
$$\iff \frac{1}{3} \ge \frac{1}{\theta} \ge \frac{1}{4}$$
$$\iff \frac{1}{\sqrt{3^7}} \ge \frac{1}{\sqrt{\theta^7}} \ge \frac{1}{\sqrt{4^7}}$$

entonces

$$\frac{1}{\sqrt{\theta^7}} \le \frac{1}{\sqrt{3^7}} = \frac{1}{27\sqrt{3}} < \frac{1}{27}, \text{ pues } \sqrt{3} > 1 \iff \frac{1}{\sqrt{3}} < 1$$

finalmente

$$\varepsilon = \frac{5}{128\sqrt{\theta^7}} < \frac{5}{128} \cdot \frac{1}{27} = \frac{5}{3456} \approx 0.0014467592$$
 es una cota del error

Ejemplo 1.7 (Ejercicio). Calcule la fórmula de Taylor de orden 4 y centro x=25 de la función $f(x)=\sqrt{x}$.

Aproxime $\sqrt{29}$ usando la fórmula de Taylor encontrada y acote el error cometido.

Respuesta:

$$f(x) = 5 + \frac{x - 25}{10} - \frac{(x - 25)^2}{1000} + \frac{(x - 25)^3}{50000} - \frac{(x - 25)^4}{2000000} + \frac{7(x - 25)^5}{256\theta^{9/2}} , \ \theta \in V(25, 29)$$

Entonces

$$\sqrt{29} = \frac{84\,143}{15\,625} + \frac{28}{\theta^{9/2}} \approx 5.385\,152$$

Luego el error de la aproximación

$$\varepsilon = \frac{28}{\theta^{9/2}} \le \frac{28}{5^9} = 0.000\,014\dots$$

Ejemplo 1.8 (Ejercicio). Use el polinomio de Taylor de orden 3 y centro 60° asociado a la función $f(x) = \cos(x)$, para aproximar $\cos(50^\circ)$ como expresión racional en términos de π y de $\sqrt{3}$. Acote el error de dicha aproximación.

Respuesta: Tenemos que existe $\theta \in V\left(\frac{\pi}{3}, \frac{5\pi}{18}\right)$ tal que

$$\cos(x) = \frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{3} \right) - \frac{1}{4} \left(x - \frac{\pi}{3} \right)^2 + \frac{\sqrt{3}}{12} \left(x - \frac{\pi}{3} \right)^3 + \frac{\cos(\theta)}{24} \left(x - \frac{\pi}{3} \right)^4$$

Por lo que (y tomando en cuenta que $50^{\circ} = 5\pi/18$)

$$\cos(50^\circ) \approx \frac{1}{2} + \frac{\pi\sqrt{3}}{36} - \frac{\pi^2}{1296} - \frac{\pi^3\sqrt{3}}{69984}$$

con error de aproximación

$$\varepsilon = \left| \frac{\pi^4 \cos(\theta)}{2^7 \cdot 3^9} \right| = \left| \frac{\pi^4 \cos(\theta)}{2519424} \right| \quad , \ \theta \in V\left(\frac{\pi}{3}, \frac{5\pi}{18}\right)$$

Como $|\cos(\theta)| \le 1$,

$$\varepsilon \le \frac{\pi^4}{2^7 \cdot 3^9} = \frac{\pi^4}{2519424} \approx 0.000039$$

1.2.2 Decimales de una aproximación

Definición 1.4 (error). (Ver Definición 1.1)

Si $z \in \mathbb{R}$ y $z_0 \in \mathbb{R}$ es una aproximación numérica de z, llamaremos **error absoluto** o simplemente "error" de la aproximación al valor numérico

$$\varepsilon = |z - z_0|$$

el cual mide la "exactitud" de la aproximación numérica.

Si podemos acotar el error como $\varepsilon < \varepsilon_0$, se puede escribir que

" $z \approx z_0$ con un error menor que ε_0 "

Que se lee: " z es aproximadamente z_0 con un error menor que ε_0 ".

Nota 1.7 (Interpretación del error). Si $z \approx z_0$ con un error $\varepsilon < \varepsilon_0$, entonces

$$|z - z_0| < \varepsilon_0 \iff -\varepsilon_0 < z - z_0 < \varepsilon_0 \iff \boxed{z_0 - \varepsilon_0 < z < z_0 + \varepsilon_0}$$

Lo que nos garantiza que el valor exacto de z pertenece a un intervalo abierto tal que

$$z \in]z_0 - \varepsilon_0, z_0 + \varepsilon_0[$$

Nota 1.8 (Potencias de 10). Para todo $n \in \mathbb{N}$ y todo $\alpha \in [0, 9]$ tenemos que

Nota 1.9. Si una aproximación z_0 del valor numérico z tiene una exactitud de al menos ℓ dígitos decimales entonces el error

$$\varepsilon = |z - z_0| < \frac{1}{10^{\ell}} = 0. \underbrace{00 \cdots 0}_{\ell - 1 \text{ ceros}} 1$$

Pues el error tiene la forma

$$\varepsilon = 0.\underbrace{00\cdots 0}_{\ell \text{ ceros}} \alpha_1 \alpha_2 \cdots < 0.\underbrace{00\cdots 0}_{\ell-1 \text{ ceros}} 1 = \frac{1}{10^{\ell}}$$

Nota 1.10. Si $z \approx z_0$ con un error $\varepsilon < 10^{-\ell}$, entonces

$$z_0 - 10^{-\ell} < z < z_0 + 10^{-\ell}$$

En tal caso es posible (pero **NO** se nos garantiza) que el valor exacto de z tenga los primeros ℓ dígitos decimales de z_0 . (Ver **Nota 1.9**)

Lo que podemos garantizar es que los primeros dígitos decimales coincidentes entre los extremos del intervalo " $z_0 \pm 10^{-\ell}$ " van a coincidir con los correspondientes primeros dígitos decimales de z.

Nota 1.11. Si queremos aproximar $z \approx z_0$ con una exactitud de al menos ℓ decimales, podemos establecer que $\varepsilon < 10^{-\ell}$ es una buena primera estimación, pues $\varepsilon < 10^{-\ell}$ es una condición necesaria para que una aproximación tenga ℓ dígitos decimales, pero debido a los posibles redondeos efectuados en el momento de calcular la resta " $z - z_0$ ", NO es una condición suficiente. (Ver notas 1.9 y 1.10)

Se recomienda buscar que el error sea $\varepsilon < 10^{-(\ell+1)}$, como primera estimación al buscar una aproximación con ℓ dígitos decimales, posteriormente se analiza el intervalo

$$z_0 = 10^{-(\ell+1)}, z_0 + 10^{-(\ell+1)}$$

y se comparan los primeros dígitos decimales de los extremos.

Si en los extremos del intervalo no coinciden los primeros ℓ dígitos decimales, se procede a mejorar la aproximación: $\varepsilon < 10^{-(\ell+2)} \quad \lor \quad \varepsilon < 10^{-(\ell+3)} \quad \lor \quad \ldots$

Diremos que la condición $\varepsilon < 10^{-(\ell+1)}$ es una condición necesaria pero no suficiente para garantizar ℓ dígitos decimales en una aproximación , en el **Ejemplo 1.9** se ilustra este hecho.

Ejemplo 1.9. El valor exacto del número irracional "pi" es $\pi = 3.141592653589793...$

(a) La aproximación $\pi \approx 3.1415$ tiene 4 dígitos decimales exactos y el error es

$$\varepsilon = |\pi - 3.1415| = 0.000092653 \dots < 0.0001 = 10^{-4}$$

Note también que si $\pi_0 = 3.1415$

$$\pi \in \left[\pi_0 - 10^{-4}, \, \pi_0 + 10^{-4} \right] = \left[3.1414, \, 3.1416 \right]$$

Dentro de este intervalo hay infinitos números como por ejemplo: 3.14142, 3.141482, ...

En los extremos de este intervalo coinciden los primeros 3 dígitos decimales, lo que garantiza tres decimales en la aproximación pero no 4.

(b) La aproximación $\pi \approx 3.1414$ tiene 3 dígitos decimales exactos y el error es

$$\varepsilon = |\pi - 3.1414| = 0.00019265 \dots < 0.001 = 10^{-3}$$

Note también que si $\pi_0 = 3.1414$

$$\pi \in \left[\pi_0 - 10^{-3}, \, \pi_0 + 10^{-3} \right] = \left[3.1404, \, 3.1424 \right]$$

Dentro de este intervalo hay infinitos números como por ejemplo: 3.1405, 3.1409815, ...

En los extremos de este intervalo coinciden los primeros 2 dígitos decimales, lo que garantiza dos decimales en la aproximación.

(c) La aproximación $\pi \approx 3.1416$ tiene 3 dígitos decimales exactos, pero el error

$$\varepsilon = |\pi - 3.1416| = 0.0000073464 \dots < 0.000001 = 10^{-6}$$

hace pensar que son 6 dígitos exactos, cuando en realidad son 3.

Note también que si $\pi_0 = 3.1416$

$$\pi \in \left[\pi_0 - 10^{-6}, \pi_0 + 10^{-6} \right] = \left[3.141599, 3.141601 \right]$$

Dentro de este intervalo hay infinitos números como por ejemplo: 3.1416, 3.141600278, ...

En los extremos de este intervalo coinciden los primeros 3 dígitos decimales, lo que garantiza tres decimales en la aproximación.

Ejemplo 1.10. ¿Cuantos dígitos decimales se pueden garantizar en la aproximación $\sqrt{3} \approx \frac{887}{512}$ de los ejemplos 1.1 y 1.6?

Solución: En el Ejemplo 1.6 obtuvimos que el error

$$\varepsilon < \frac{5}{3456} \approx 0.0014467592 < 10^{-2}$$

Es posible que los dos primeros decimales sean exactos, para mayor precisión tomemos en cuenta que

$$\varepsilon < \frac{5}{3456} \approx 0.0014467592 < 0.0015$$

entonces

$$\sqrt{3} \in \left[\frac{887}{512} - 0.0015, \, \frac{887}{512} + 0.0015 \, \right[\, \subset \, \left] \, 1.730\,920, \, 1.733\,922 \, \left[\, \right.$$

Por lo tanto podemos garantizar dos dígitos decimales exactos, pues en los extremos del intervalo coincide en los dos primeros dígitos decimales.

Para el intervalo anterior tome en cuenta que

$$\begin{cases} \frac{887}{512} - 0.0015 = 1.730\,921 \dots > 1.730\,920 & \text{es extremo inferior} \\ \frac{887}{512} + 0.0015 = 1.733\,921 \dots < 1.730\,922 & \text{es extremo superior} \end{cases}$$

En el ejemplo 1.1 obtuvimos una cota más precisa, pues nos ayudamos con la calculadora.

Parte de la precisión se perdió al usar que $1/\sqrt{3} < 1$.

Con la ayuda de la calculadora podemos notar que

$$\varepsilon \le \frac{5}{128\sqrt{\theta^7}} \le \frac{5}{128 \cdot 27\sqrt{3}} \approx 0.000835287 < 0.00084 < 10^{-3}$$

Lo cual nos lleva a concluir que $\sqrt{3} \in \]$ 1.731 580, 1.733 262 [, lo que otra vez garantiza dos dígitos exactos, pero es posible que sean tres.

El valor exácto de $\sqrt{3}$ es 1.732 050... mientras que

$$\frac{887}{512} = 1.732421\dots$$

Significa en en realidad son tres los dígitos decimales que coinciden, aunque no se puede garantizar por ahora. \Box

Ejemplo 1.11 (Ejercicio). ¿Cuantos dígitos decimales se pueden garantizar en la aproximación

$$\sqrt{29} \approx T_5(29) = \frac{84143}{15625}$$
, $R_5(29) = \frac{28}{\theta^{9/2}}$ para $\theta \in [25, 29]$

del Ejercicio 1.7?

Resp. / Usando como cota del error al valor 0.0000144 obtenemos que

$$\sqrt{29} \in]5.385137, 5.385167[$$

lo que garantiza cuatro decimales en la aproximación.

Ejemplo 1.12 (Ejercicio). Use el polinomio de orden 3 y centro 27 de la función $f(x) = \sqrt[3]{x}$ para aproximar el número $\sqrt[3]{25}$.

Halle una cota del error cometido en la aproximación.

¿Cuantos decimales exactos se pueden garantizar en dicha aproximación?

Presente el intervalo de aproximación correspondiente.

Respuesta: La fórmula de Taylor correspondiente es

$$\sqrt[3]{x} = 2 + \frac{x - 27}{27} - \frac{5(x - 27)^3}{2187} + \frac{5(x - 27)^3}{531441} - \frac{10(x - 27)^4}{243 \cdot \theta^{11/3}} \quad , \ \theta \in V(27, x)$$

Obtendremos la aproximación $\sqrt[3]{25} = 2.924\,021\,669\dots$ con error

$$\varepsilon = \frac{10 \cdot 2^4}{243 \cdot |\theta|^{11/3}} \quad , \ \theta \in [25, 27]$$

Luego

$$\varepsilon \le \frac{160}{43\,046\,721} = 0.000\,000\,371\,689\dots < 10^{-6}$$

Es posible que hallan seis decimales exactos, pero se tiene que

$$\sqrt[3]{25} \in [2.924017, 2.924026]$$

Por los que podemos garantizar 4 decimales de exactitud.

 ${f Nota}$: En realidad sí son 6 los decimales exactos, pero no los podemos garantizar con la cota encontrada.

Ejemplo 1.13. Halle el polinomio de Maclaurin de la función $f(x) = e^x$, de grado tal que la aproximación

$$e \approx T_n(1)$$

tenga una exactitud de al menos 3 términos decimales. Calcule la aproximación racional.

Solución:

Para resolver este problema necesitamos una fórmula para el error $\varepsilon = |R_n|$ alrededor de 0, cuando x = 1.

Como $[e^x]' = e^x$, para todo $k \in \mathbb{N}$

$$f^{(k)}(x) = e^x$$

Luego el resto de Lagrange es

$$R_n = \frac{f^{(n+1)}(\theta)}{(n+1)!} x^{n+1}, \quad \theta \in V(0,x) = \frac{e^{\theta}}{(n+1)!} x^{n+1}, \quad \theta \in V(0,x)$$

como x = 1, tenemos entonces el error

$$\varepsilon = \left| \frac{e^{\theta}}{(n+1)!} 1^{n+1} \right|, \quad \theta \in [0,1]$$
$$= \frac{e^{\theta}}{(n+1)!}, \quad \theta \in [0,1]$$

note que

$$0 \le \theta \le 1 \iff e^0 \le e^\theta \le e^1 = e < 3$$

entonces

$$\varepsilon = \frac{e^{\theta}}{(n+1)!} < \frac{3}{(n+1)!}$$

Para garantizar 3 decimales en la aproximación de e es necesario que

$$\frac{3}{(n+1)!} < \frac{1}{10^4} \iff 3 \cdot 10^4 < (n+1)!$$
$$\iff (n+1)! > 30\,000$$

consideramos la siguiente tabla de valores

n+1	(n+1)!		
5	120		
6	720		
7	5 040		
8	40 320		

como $40\,320 > 30\,000$, entonces n+1=8 es suficiente

$$\therefore \quad \varepsilon < \frac{1}{10^4} \text{ cuando } n = 7$$

Ahora, como para todo k, $f^{(k)}(x) = e^x \implies f^{(k)}(0) = e^0 = 1$

$$e^{x} \approx f(0) + f'(0) x + \frac{f''(0)}{2} x^{2} + \dots + \frac{f^{(7)}(x)}{6!} x^{6}$$
$$= 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \frac{x^{7}}{7!}$$

Luego

$$e \approx 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!}$$

$$= 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \frac{1}{5040}$$

$$= \frac{1440 + 360 + 120 + 30 + 6 + 1}{720}$$

$$= \frac{685}{252}$$

$$= 2.718253968...$$

Finalmente, note que

$$e \in \] 2.718253 - 10^{-4}, \ 2.718254 + 10^{-4} \[= \] 2.718153, \ 2.718354 \[= \]$$

Podemos garantizar que los primeros tres dígitos decimales de la aproximación

$$e \approx \frac{685}{257}$$

son exactos, pues los primeros tres términos de los extremos del intervalo generado por la aproximación son los mismos. \Box

Nota 1.12. Con la ayuda de la calculadora obtenemos que

$$e \approx 2.718281828$$

y la aproximación anterior

$$\frac{685}{257} = 2.718253968...$$

lo que significa que con esta aproximación, en realidad hay cuatro dígitos decimales exáctos.

Ejemplo 1.14 (Ejercicio). ¿De que orden debe ser el polinomio de Taylor centrado en 1 y asociado a $f(x) = \ln(x)$, para que el error de la aproximación de $\ln(4/3)$ sea menor que 10^{-5} ?

Respuesta: Notando que el resto de Lagrange asociado al polinomio de Taylor de orden m es

$$R_m(x) = (-1)^m \cdot \frac{(x-1)^{m+1}}{(m+1)\theta^{m+1}} , \ \theta \in V(1,x)$$

Para eso hay que buscar el patrón a partir de las primeras derivadas de f(x).

Hay que concluir que para que $\varepsilon = |R_m(4/3)| < 10^{-5}$, es suficiente tomar m = 8.

Se llega a esta conclusión depués de analizar una tabla de valores a la vez que se usa que $\frac{1}{\theta} < 1$ y que la condición solicitada equivale a buscar m tal que $(m+1) \cdot 3^{m+1} > 100\,000$.

Ejemplo 1.15 (Ejercicio). Halle el polinomio de Taylor centrado en 36 y asociado a $f(x) = \sqrt{x}$, de manera tal que la aproximación de $\sqrt{39}$ garantice al menos 5 dígitos decimales.

Respuesta: Para $\theta \in V(36, x)$ se tiene el resto de Lagrange:

$$R_m(x) = (-1)^m \cdot \frac{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2m-1)}{2^{m+1} \sqrt{\theta^{4m+1}}} \cdot \frac{(x-36)^{m+1}}{(m+1)!} ,$$

Para eso hay que buscar el patrón a partir de las primeras derivadas de f(x).

Si buscamos que $\varepsilon = |R_m(39)| < 10^{-5}$, es suficiente tomar orden m = 4.

Se llega a esta conclusión depués de analizar una tabla de valores a la vez que se usa que

$$\frac{1}{\sqrt{\theta^{2m+1}}} < \frac{1}{6^{2m+1}}$$
, pues $\theta \in [36, 39]$

y que la condición solicitada equivale a buscar m tal que

$$[3 \cdot 5 \cdot 7 \cdot \dots \cdot (2m-1)] \cdot 3^{m+1} < \frac{2^{m+1} \cdot 6^{2m+1} \cdot (m+1)!}{10^5}$$

El polinomio de Taylor de orden 4 es

$$T_4(x) = 6 + \frac{x - 36}{2^2 \cdot 3} - \frac{(x - 36)^2}{2^6 \cdot 3^3} + \frac{(x - 36)^3}{2^9 \cdot 3^5} - \frac{5(x - 36)^4}{2^{14} \cdot 3^7}$$
$$= 6 + \frac{x - 36}{12} - \frac{(x - 36)^2}{1728} + \frac{(x - 36)^3}{124416} - \frac{5(x - 36)^4}{35831808}$$

Al analizar el intervalo de la aproximación $\sqrt{39} \approx T_4(39)$ notamos que

$$\sqrt{39} \in \left] 6.244996718, 6.244998038 \right[$$

Se concluye que T_4 nos garantiza una aproximación con 5 dígitos decimales exáctos.

Ejemplo 1.16 (Ejercicio). ¿De que orden debe ser el polinomio de Taylor centrado en 81 y asociado a $f(x) = \sqrt[4]{x}$, para que la aproximación $\sqrt[4]{85} \approx T_m(x)$ tenga un error menor que 10^{-9} ?

Respuesta: Para $\theta \in V(81,x)$ se tiene el resto de Lagrange:

$$R_m(x) = (-1)^m \cdot \frac{3 \cdot 7 \cdot 11 \cdot \dots \cdot (4m-1)}{4^{m+1} \sqrt[4]{\theta^{4m+3}}} \cdot \frac{(x-81)^{m+1}}{(m+1)!} ,$$

Para eso hay que buscar el patrón a partir de las primeras derivadas de f(x). Hay que concluir que para que $\varepsilon = |R_m(85)| < 10^{-9}$, es suficiente tomar orden m = 5. Se llega a esta conclusión depués de analizar una tabla de valores a la vez que se usa que

$$\frac{1}{\sqrt[4]{\theta^{4m+3}}} < \frac{1}{3^{4m+3}}$$
, pues $\theta \in [81, 85]$

y que la condición solicitada equivale a buscar m tal que

$$3 \cdot 7 \cdot 11 \cdot \dots \cdot (4m-1) < \frac{3^{4m+3} \cdot (m+1)!}{10^9}$$

1.3 Cambios de variable

Nota 1.13. Si $f(x) \in C^{(n+1)}(\mathcal{D})$ tiene fórmula de Taylor de orden n y centro x=0

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + R_n(x)$$
 , $0, x \in \mathcal{D}$

entonces la fórmula de Taylor de la función $h(x) = f[\alpha(x-a)^s]$ corresponde a

$$h(x) = a_0 + a_1 \left[\alpha(x-a)^s \right] + a_2 \left[\alpha(x-a)^s \right]^2 + \dots + a_n \left[\alpha(x-a)^s \right]^n + R_n \left[\alpha(x-a)^s \right]^n$$

o sea que

$$h(x) = a_0 + a_1 \alpha (x - a)^s + a_2 \alpha^2 (x - a)^{2s} + \dots + a_n \alpha^n (x - a)^{ns} + R_n [\alpha (x - a)^s]$$

siendo

$$R_n[\alpha(x-a)^s] = \frac{f^{(n+1)}(\theta) \alpha^{n+1} (x-a)^{s(n+1)}}{(n+1)!}, \quad \theta \in V[0, \alpha(x-a)^s]$$

y es una fórmula de Taylor para la función h(x) de centro x = a y de orden

$$m \in [sn, s(n+1) - 1]$$

De hecho el resto de la fórmula de Taylor para h es

$$R_{sn} = R_{sn+1} = R_{sn+2} = \dots = R_{s(n+1)-1} = R_n [\alpha(x-a)^s]$$

el cual es distinto al resto de Lagrange.

Nota 1.14. Fórmula de Taylor de la función exponencial:

$$Como \left[e^x \right]^{(k)} = e^x$$

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta} x^{n+1}}{(n+1)!}$$
, $\theta \in V(0,x)$

Igualmente

$$e^{-x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \frac{(-1)^{n+1} e^{-\theta} x^{n+1}}{(n+1)!} , \ \theta \in V(0, x)$$

Ejemplo 1.17. Calcule una fórmula de Taylor de orden 12 centrada en x=0 de la función

$$f(x) = e^{5x^3}$$

Solución:

Como

$$e^{w} = 1 + w + \frac{w^{2}}{2} + \frac{w^{3}}{3!} + \dots + \frac{w^{n}}{n!} + \frac{e^{\theta} w^{n+1}}{(n+1)!}, \quad \theta \in V(0, w)$$

entonces

$$e^{5x^3} = 1 + 5x^3 + \frac{\left[5x^3\right]^2}{2} + \frac{\left[5x^3\right]^3}{3!} + \dots + \frac{\left[5x^3\right]^n}{n!} + \frac{e^{\theta}\left[5x^3\right]^{n+1}}{(n+1)!}, \quad \theta \in V(0, 5x^3)$$

el orden de la fórmula anterior es 3n y $3n = 12 \implies n = 4$

concluimos que

$$e^{5x^3} = 1 + 5x^3 + \frac{\left[5x^3\right]^2}{2} + \frac{\left[5x^3\right]^3}{3!} + \frac{\left[5x^3\right]^4}{4!} + \frac{e^{\theta}\left[5x^3\right]^5}{5!}, \quad \theta \in V(0, 5x^3)$$

$$\therefore e^{5x^3} = 1 + 5x^3 + \frac{5^2 x^6}{2} + \frac{5^3 x^9}{3!} + \frac{5^4 x^{12}}{4!} + \frac{e^{\theta} \cdot 5^5 x^{15}}{5!}, \quad \theta \in V(0, 5x^3)$$

que de hecho es una fórmula de Taylor de orden 14.

El resto de la fórmula de Taylor anterior es

$$R_{12} = R_{13} = R_{14} = \frac{e^{\theta} \cdot 5^5 x^{15}}{5!}, \quad \theta \in V(0, 5x^3)$$

Ejemplo 1.18. Calcule una fórmula de Taylor de orden 4 centrada en x=3 de la función

$$f(x) = e^{-2x}$$

Solución:

Como el centro solicitado es x = 3 sea w = x - 3, entonces

$$x = w + 3 \implies f(x) = e^{-2(w+3)} = e^{-6} e^{-2w}$$

Como

$$e^{u} = 1 + u + \frac{u^{2}}{2} + \frac{u^{3}}{3!} + \frac{u^{4}}{4!} + \frac{e^{\theta} u^{5}}{5!}, \quad \theta \in V(0, u)$$

entonces

$$\begin{split} e^{-2w} &= 1 - 2w + \frac{(-2w)^2}{2} + \frac{(-2w)^3}{3!} + \frac{(-2w)^4}{4!} + \frac{e^{\theta} (-2w)^5}{5!}, \quad \theta \in V(0, -2w) \\ &= 1 - 2w + \frac{4w^2}{2} - \frac{8w^3}{6} + \frac{16w^4}{24} - \frac{e^{\theta} 32w^5}{120}, \quad \theta \in V(0, -2w) \\ &= 1 - 2w + 2w^2 - \frac{4w^3}{3} + \frac{2w^4}{3} - \frac{4e^{\theta} w^5}{15}, \quad \theta \in V(0, -2w) \end{split}$$

Finalmente obtenemos la fórmula de Taylor solicitada:

$$\begin{split} f(x) &= e^{-6} \, e^{-2w} \\ &= e^{-6} \, \left[1 - 2w + 2 \, w^2 - \frac{4 \, w^3}{3} + \frac{2 \, w^4}{3} - \frac{4 \, e^\theta \, w^5}{15} \right]_{w=x-3}, \quad \theta \in V(0, -2w) \\ &= \frac{1}{e^6} - \frac{2 \, (x-3)}{e^6} + \frac{2 \, (x-3)^2}{e^6} - \frac{4 \, (x-3)^3}{3 \, e^6} + \frac{2 \, (x-3)^4}{3 \, e^6} - \frac{4 \, e^\theta \, (x-3)^5}{15 \, e^6} \end{split}$$

donde $\theta \in V(0, -2(x-3))$

Nota 1.15. Para todo $m \in \mathbb{N}$ existe $k \in \mathbb{N}$ tal que m = 2k o m = 2k + 1, luego

$$\left[\sec(x)\right]^{(m)} = \begin{cases} (-1)^k \sec(x) & , \text{ si } m = 2k\\ (-1)^k \cos(x) & , \text{ si } m = 2k+1 \end{cases} \land \left[\cos(x)\right]^{(m)} = \begin{cases} (-1)^k \cos(x) & , \text{ si } m = 2k\\ (-1)^{k+1} \sec(x) & , \text{ si } m = 2k+1 \end{cases}$$

Nota 1.16. Para todo $m \in \mathbb{N}$ existe $k \in \mathbb{N}$ tal que m = 2k o m = 2k + 1, luego

$$\left[\sec(x)\right]_{x=0}^{(m)} = \begin{cases} 0 & \text{, si } m = 2k \\ (-1)^k & \text{, si } m = 2k+1 \end{cases} \land \left[\cos(x)\right]_{x=0}^{(m)} = \begin{cases} (-1)^k & \text{, si } m = 2k \\ 0 & \text{, si } m = 2k+1 \end{cases}$$

Nota 1.17. Fórmulas de Taylor para funciones trigonométricas

$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + R_{2n+1}$$

donde

$$R_{2n+1} = R_{2n+2} = \frac{(-1)^{n+1}\cos(\theta)}{(2n+3)!} x^{2n+3}$$

También

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + R_{2n}$$

donde

$$R_{2n} = R_{2n+1} = \frac{(-1)^{n+1}\cos(\theta)}{(2n+2)!} x^{2n+2}$$

Ejemplo 1.19. Considere la función f(x) = sen(x).

- (a) Halle la fórmula de Taylor con resto de Lagrange centrado en $x = 30^{\circ}$ de orden 3 de la función f(x).
- (b) Usando la fórmula de Taylor obtenida en la parte (a), usando las aproximaciones

$$\sqrt{3} \approx 1.732 \quad \land \quad \pi = 3.142$$

aproxime sen(25°). Acote el error cometido en tal aproximación.

Solución:

Note que $30^{\circ} = \pi/6$

(a) Sea $w = x - \pi/6 \iff x = w + \pi/6$, entonces

$$sen(x) = sen(w + \pi/6)$$

$$= sen(w) \cdot cos(\pi/6) + cos(w) \cdot sen(\pi/6)$$

$$= \frac{\sqrt{3}}{2} sen(w) + \frac{1}{2} cos(w)$$

entonces

$$sen(x) \approx \frac{\sqrt{3}}{2} \left[w - \frac{w^3}{6} \right] + \frac{1}{2} \left[1 - \frac{w^2}{2} \right]$$
$$= \frac{1}{2} + \frac{\sqrt{3}}{2} w - \frac{1}{4} w^2 - \frac{\sqrt{3}}{12} w^3$$

luego el polinomio de Taylor de f(x) de orden 3 y de centro $x = \pi/6$ es

$$T_3(x) = \frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) - \frac{1}{4} \left(x - \frac{\pi}{6} \right)^2 - \frac{\sqrt{3}}{12} \left(x - \frac{\pi}{6} \right)^3$$

Note que

$$[\operatorname{sen}(x)]^{(4)} = (-1)^2 \operatorname{sen}(x) = \operatorname{sen}(x)$$

entonces existe $\theta \in V(\pi/6, x)$

$$R_3 = \frac{f^{(4)}(\theta)}{4!} \left(x - \frac{\pi}{6}\right)^4 = \frac{\operatorname{sen}(\theta)}{24} \left(x - \frac{\pi}{6}\right)^4$$

La fórmula de Taylor con resto de Lagrange corresponde

$$\mathrm{sen}(x) = \frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) - \frac{1}{4} \left(x - \frac{\pi}{6} \right)^2 - \frac{\sqrt{3}}{12} \left(x - \frac{\pi}{6} \right)^3 + \frac{\mathrm{sen}(\theta)}{24} \left(x - \frac{\pi}{6} \right)^4$$

donde $\theta \in V(\pi/6, x)$

(b) Note que

$$25^{\circ} = \frac{25\pi}{180} = \frac{5\pi}{36}$$

$$\begin{split} & \sec(25^\circ) = \sec(x) \Big|_{x=5\pi/36} \\ &= \frac{1}{2} + \frac{\sqrt{3}}{2} \left(\frac{5\pi}{36} - \frac{\pi}{6} \right) - \frac{1}{4} \left(\frac{5\pi}{36} - \frac{\pi}{6} \right)^2 - \frac{\sqrt{3}}{12} \left(\frac{5\pi}{36} - \frac{\pi}{6} \right)^3 + \frac{\sec(\theta)}{24} \left(\frac{5\pi}{36} - \frac{\pi}{6} \right)^4 \\ &= \frac{1}{2} + \frac{\sqrt{3}}{2} \left(\frac{-\pi}{36} \right) - \frac{1}{4} \left(\frac{-\pi}{36} \right)^2 - \frac{\sqrt{3}}{12} \left(\frac{-\pi}{36} \right)^3 + \frac{\sec(\theta)}{24} \left(\frac{-\pi}{36} \right)^4 \\ &= \frac{1}{2} - \frac{\sqrt{3}\pi}{72} - \frac{\pi^2}{4 \cdot 36^2} + \frac{\sqrt{3} \cdot \pi^3}{12 \cdot 36^3} + \frac{\pi^4 \sec(\theta)}{24 \cdot 36^4} \\ &\approx 0.42261709 \end{split}$$

el error

$$\varepsilon = \left| \frac{\operatorname{sen}(\theta)}{24} \left(\frac{-\pi}{36} \right)^4 \right| = \frac{|\operatorname{sen}(\theta)| \cdot \pi^4}{24 \cdot 36^4} \le \frac{\pi^4}{24 \cdot 36^4} < \frac{4^4}{24 \cdot 36^4} \approx 0.000\,006\,35 < \frac{1}{10^5}$$

Nota 1.18. Con ayuda de la calculadora obtenemos que

$$sen(25^{\circ}) \approx 0.4226182617$$

Nota 1.19. Fórmulas de Taylor para funciones hiperbólicas Como para todo $k \in \mathbb{N}$

$$\left[\operatorname{senh}(x)\right]^{(m)} = \begin{cases} \operatorname{senh}(x) &, \text{ si } m = 2k \\ \cosh(x) &, \text{ si } m = 2k+1 \end{cases} \land \left[\operatorname{cosh}(x)\right]^{(m)} = \begin{cases} \cosh(x) &, \text{ si } m = 2k \\ \operatorname{senh}(x) &, \text{ si } m = 2k+1 \end{cases}$$

entonces

$$\operatorname{senh}(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + R_{2n+1}$$

donde

$$R_{2n+1} = R_{2n+2} = \frac{\cosh(\theta)}{(2n+3)!} x^{2n+3}$$

También

$$\cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + R_{2n}$$

donde

$$R_{2n} = R_{2n+1} = \frac{\cosh(\theta)}{(2n+2)!} x^{2n+2}$$

1.4 Derivadas e Integrales

Teorema 1.4. Si $f(x) \in C^{(n)}(\mathcal{D})$ tiene fórmula de Taylor de orden n y centro x = a

$$f(x) = a_0 + a_1 (x - a) + a_2 (x - a)^2 + \dots + a_n (x - a)^n + R_n(x)$$

 $para \ a, x \in \mathcal{D} \subseteq \mathbb{R}, \ entonces$

(a) Como para todo $k \in \mathbb{N}$

$$\left[(x-a)^k \right]' = k (x-a)^{k-1}$$

entonces la fórmula de Taylor de la función f'(x) corresponde a

$$f'(x) = a_1 + 2a_2(x - a) + 3a_3(x - a)^2 + \dots + na_n(x - a)^{n-1} + R'_n(x)$$

o sea, una fórmula de Taylor centrada en x = a de orden n - 1 y resto $R'_n(x)$. Además si $f(x) \in C^{(n+1)}(\mathcal{D})$ tiene resto de Lagrange

$$R_n = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x-a)^{n+1} , \ \theta \in V(a,x)$$

entonces si $f(x) \in C^{(n+2)}(\mathcal{D})$ por regla del producto

$$R'_n(x) = f^{(n+1)}(\theta) \cdot \frac{(x-a)^n}{n!} + \left[f^{(n+1)}(\theta) \right]' \cdot \frac{(x-a)^{n+1}}{(n+1)!} \quad , \ \theta \in V(a,x)$$

Pero también existe $\phi \in V(a,x)$ tal que

$$R'_n(x) = \left[f'(x) \right]^{(n)} \Big|_{x=\phi} \cdot \frac{(x-a)^n}{n!} \implies R'_n(x) = f^{(n+1)}(\phi) \cdot \frac{(x-1)^n}{n!}$$

que corresponde al resto de Lagrange de la función f'(x).

(b) Como para todo $k \in \mathbb{N}$

$$\int_{a}^{x} (u-a)^{k} du = \frac{(x-a)^{k+1}}{k+1}$$

entonces la fórmula de Taylor de la función

$$I(x) = \int_{a}^{x} f(u) \, du$$

corresponde a

$$I(x) = a_0 (x - a) + a_1 \frac{(x - a)^2}{2} + a_2 \frac{(x - a)^3}{3} + \dots + a_n \frac{(x - a)^{n+1}}{n+1} + \int_a^x R_n(u) du$$

o sea, una fórmula de Taylor centrada en x = a de orden n + 1 y resto $\int_a^x R_n(u) du$.

Además si $f(x) \in C^{(n+1)}(\mathcal{D})$ tiene resto de Lagrange

$$R_n = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x-a)^{n+1} , \ \theta \in V(a,x)$$

existe $\phi \in V(0,x)$ tal que

$$\int_{a}^{x} R_{n}(u) du = \int_{a}^{x} \frac{f^{(n+1)}(\theta)}{(n+1)!} (u-a)^{n+1} du$$

$$= f^{(n+1)}(\phi) \cdot \int_{a}^{x} \frac{(u-a)^{n+1}}{(n+1)!} du , \quad (Ver Nota 1.20)$$

$$\therefore \int_{a}^{x} R_{n}(u) du = f^{(n+1)}(\phi) \cdot \frac{(x-a)^{n+2}}{(n+2)!}$$

que coincide con el resto de Lagrange de la función I(x).

Ejemplo 1.20.

(a) Calcule la fórmula de Taylor con resto de Lagrange centrada en x=0 y orden 4 de la función

$$f(x) = (1+x)^{-1}$$

(b) Integre la fórmula obtenida en la parte (a) para obtener una fórmula de Taylor de la función

$$g(x) = \ln(1+x)$$

(c) Derive la fórmula obtenida en la parte (a) para obtener una fórmula de Taylor de la función

$$g(x) = \frac{1}{(1+x)^2}$$

Solución:

(a)
$$f(0) = (1+x)^{-1}\Big|_{x=0} = 1 \qquad f^{(3)}(0) = -6(1+x)^{-4}\Big|_{x=0} = -6$$

$$f'(0) = -(1+x)^{-2}\Big|_{x=0} = -1 \qquad f^{(4)}(0) = 24(1+x)^{-5}\Big|_{x=0} = -24$$

$$f''(0) = 2(1+x)^{-3}\Big|_{x=0} = 2 \qquad f^{(5)}(x) = -120(1+x)^{-6}$$

entonces, para algún $\theta \in V(0,x)$

$$f(x) = f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f^{(3)}(0)}{3!} x^3 + \frac{f^{(4)}(0)}{4!} x^4 + \frac{f^{(5)}(\theta)}{5!} x^5$$

$$= 1 - x + \frac{2}{2} x^2 + \frac{-6}{3!} x^3 + \frac{24}{4!} x^4 + \frac{-120(1+\theta)^{-6}}{5!} x^5$$

$$= 1 - x + x^2 - x^3 + x^4 - (1+\theta)^{-6} x^5$$

Así obtenemos la fórmula de Taylor con resto de Lagrange

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \frac{x^5}{(1+\theta)^6}, \ \theta \in V(0,x)$$

(b) Como

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + x^4 - (1+\theta)^{-6} x^5, \quad \theta \in V(0,x)$$

es una fórmula con resto de Lagrange, entonces

$$\ln(1+x) = \int_0^x (1+u)^{-1} du$$

$$= \int_0^x \left[1 - u + u^2 - u^3 + u^4 - (1+\theta)^{-6} u^5 \right] du, \quad \theta \in V(0,u)$$

$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \int_0^x \frac{u^5}{(1+\theta)^6} du, \quad \theta \in V(0,u)$$

$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6(1+\phi)^6}, \quad \phi \in V(0,x)$$

(c) Como

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - (1+\theta)^{-6} x^5, \quad \theta \in V(0,x)$$

es una fórmula con resto de Lagrange, entonces

$$\frac{-1}{(1+x)^2} = \left[1 - x + x^2 - x^3 + x^4 - (1+\theta)^{-6} x^5\right]', \quad \theta \in V(0,x)$$

$$= 0 - 1 + 2x - 3x^2 + 4x^3 - \left[(1+\theta)^{-6} x^5\right]', \quad \theta \in V(0,x)$$

$$= -1 + 2x - 3x^2 + 4x^3 - (1+\phi)^{-6} 5x^4\right]', \quad \phi \in V(0,x)$$

$$\therefore \quad \frac{1}{(1+x)^2} = 1 - 2x + 3x^2 - 4x^3 + \frac{5x^4}{(1+\phi)^6}, \quad \phi \in V(0,x)$$

Nota 1.20. Si $f(x) \in C^{(n+1)}(\mathcal{D})$ tiene fórmula de Taylor de orden n y centro x = a

$$f(x) = T_n(x) + R_n(x)$$

donde para $a, x \in \mathcal{D} \subseteq \mathbb{R}$ tenemos el polinomio de Taylor

$$T_n(x) = a_0 + a_1 (x - a) + a_2 (x - a)^2 + \dots + a_n (x - a)^n$$
, $a_k = \frac{f^{(k)}(a)}{k!}$

y el resto de Lagrange

$$R_n(x) = f^{(n+1)}(\theta) \cdot \frac{(x-a)^{n+1}}{(n+1)!}, \quad \theta \in V(a,x)$$

Entonces para todo α , $\beta \in \mathcal{D}$ tal que $\alpha \leq a \leq \beta$ se cumple que

$$\int_{\alpha}^{\beta} f(u) du = \int_{\alpha}^{\beta} T_n(u) du + \int_{\alpha}^{\beta} R_n(u) du$$

luego existen $\xi_1, \ \xi_2 \in [\alpha, \beta]$ tales que

$$\int_{\alpha}^{\beta} R_{n}(u) du = \int_{\alpha}^{\beta} f^{(n+1)}(\theta) \cdot \frac{(u-a)^{n+1}}{(n+1)!} du , \quad \theta \in V(a,u) \subseteq \left[\alpha,\beta\right]
= f^{(n+1)} \left[\theta(\xi_{1})\right] \cdot \int_{\alpha}^{a} \frac{(u-a)^{n+1}}{(n+1)!} du + f^{(n+1)} \left[\theta(\xi_{2})\right] \cdot \int_{a}^{\beta} \frac{(u-a)^{n+1}}{(n+1)!} du$$

Así existen $\phi_1 \in [\alpha, a]$ y $\phi_2 \in [a, \beta]$ tales que

$$\int_{\alpha}^{\beta} R_n(u) \, du = f^{(n+1)}(\phi_1) \cdot \int_{\alpha}^{a} \frac{(u-a)^{n+1}}{(n+1)!} \, du + f^{(n+1)}(\phi_2) \cdot \int_{a}^{\beta} \frac{(u-a)^{n+1}}{(n+1)!} \, du$$

Además existe $\phi \in [\alpha, \beta]$ tal que

$$\left| \int_{\alpha}^{\beta} R_n(u) \, du \right| \leq \left| \left| \frac{(x-a)^{n+2}}{(n+2)!} \right|_{x=\alpha}^{x=\beta} \right| \cdot \left| f^{(n+1)}(\phi) \right|$$

Nota 1.21. Si $f(x) \in C^{(n+1)}(\mathcal{D})$ tiene fórmula de Maclaurin de orden n

$$f(x) = T_n(x) + R_n(x)$$

donde para $0, x \in \mathcal{D} \subseteq \mathbb{R}$ tenemos el polinomio de Maclaurin

$$T_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
, $a_k = \frac{f^{(k)}(0)}{k!}$

y el resto de Lagrange

$$R_n(x) = f^{(n+1)}(\theta) \cdot \frac{x^{n+1}}{(n+1)!}, \quad \theta \in V(0,x)$$

Entonces para todo $\alpha, \beta \in \mathbb{R}$ tales que $\alpha \leq 0 \leq \beta$ y tales que

$$\mathcal{V} = V(\alpha^s, \beta^s) \cup V(0, \beta^s) \cup V(0, \alpha^s)$$

se cumple que

$$\int_{\alpha}^{\beta} f(u^s) du = \int_{\alpha}^{\beta} T_n(u^s) du + \int_{\alpha}^{\beta} R_n(u^s) du$$

luego existe $\phi \in \mathcal{V}$ tal que

$$\left| \int_{\alpha}^{\beta} R_n(u) du \right| \leq \left| \frac{u^{sn+s+1}}{(n+1)! \cdot (sn+s+1)} \right|_{u=\alpha}^{u=\beta} \cdot \left| f^{(n+1)}(\phi) \right|$$

Nota 1.22. Si $f(x) \in C^{(n+1)}(\mathcal{D})$ tiene fórmula de Taylor de orden n y centro x=0

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + R_n(x) , 0, x \in \mathcal{D}$$

entonces si $\alpha(x-a)^s \in \mathcal{D}$, tenemos la fórmula de Taylor

$$f[\alpha(x-a)^{s}] = a_0 + a_1\alpha(x-a)^{s} + a_2\alpha^{2}(x-a)^{2s} + \dots + a_n\alpha^{n}(x-a)^{ns} + R_n[\alpha(x-a)^{s}]$$

siendo

$$R_n[\alpha(x-a)^s] = \frac{f^{(n+1)}(\theta)\alpha^{n+1}(x-a)^{s(n+1)}}{(n+1)!}, \quad \theta \in V[0, \alpha(x-a)^s]$$

Además existe $\phi \in [0, \alpha(x-a)^s]$ tal que

$$\int_{a}^{x} f[\alpha(u-a)^{s}] du = \int_{a}^{x} T_{n}[\alpha(u-a)^{s}] du + f^{(n+1)}(\phi) \cdot \int_{a}^{x} \frac{\alpha^{n+1} (x-a)^{s(n+1)}}{(n+1)!} du$$

Que es una fórmula de Taylor con resto para la función $\int_a^x f\left[\alpha(u-a)^s\right]du$.

Ejemplo 1.21. Use la fórmula de Taylor con resto de Lagrange de orden 5 y de centro x=0 de la función $f(x) = \cos(x)$ para aproximar la integral

$$I = \int_0^1 \cos(u^2) \, du$$

Acote el error cometido en la aproximación de la integral.

Solución: Note que

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{\cos(\theta) x^6}{6!} , \quad \theta \in V(0, x)$$

entonces

$$\cos(u^2) = 1 - \frac{u^4}{2} + \frac{u^8}{4!} - \frac{\cos(\theta) u^{12}}{6!}, \quad \theta \in V(0, u^2)$$

$$\begin{split} I &= \int_0^1 \cos(u^2) \, du = \int_0^1 \left[1 - \frac{u^4}{2} + \frac{u^8}{4!} - \frac{\cos(\theta) \, u^{12}}{6!} \right] \, du \;, \quad \theta \in V(0, u^2) \\ &= \left[u - \frac{u^5}{10} + \frac{u^9}{24 \cdot 9} - \frac{\cos(\phi) \, u^{13}}{6! \cdot 13} \right] \Big|_0^1 \quad, \quad \phi \in [0, 1^2] = [0, 1] \\ &= 1 - \frac{1}{10} + \frac{1}{216} - \frac{\cos(\phi)}{9360} \;, \quad \phi \in [0, 1] \end{split}$$

Entonces

$$I \approx 1 - \frac{1}{10} + \frac{1}{216} = \frac{977}{1080} \approx 0.90463$$

con error

$$\varepsilon = \left| \frac{\cos(\phi)}{9360} \right| \le \frac{1}{9360} \approx 0.0001068$$

Nota 1.23. Con ayuda del software wxMaxima podemos obtener una aproximación más precisa de la integral del ejemplo anterior

(%i1) quad_qags(cos(x^2), x, 0, 1);
(%o1) [0.90452423790027, 1.0042236352484049*10⁻¹⁴, 0, 21, 0]

Lo que significa que

$$\int_0^1 \cos(x^2) \, dx \approx 0.904\,524\,237\,900\,27$$

con un error acotado por $1.005 \cdot 10^{-14}$

Ejemplo 1.22 (Ejercicio).

(a) Calcule una fórmula de Taylor con resto centrada en x = 0 y de orden 8 de la función

$$f(x) = \frac{1}{1+x^2}$$

(b) Integre la fórmula obtenida en la parte (a) para obtener una fórmula de Taylor de la función

$$q(x) = \arctan(x)$$

(c) Use la fórmula encontrada para aproximar arctan(0.25) y escriba el intervalo de la aproximación.

Respuestas:

(a)
$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 - \frac{x^{10}}{(1+\theta)^6}$$
, $\theta \in V(0, x^2) = [0, x^2]$

(b)
$$\arctan(x) = \int_0^x \frac{du}{1+u^2} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11 \cdot (1+\phi)^6}, \quad \phi \in [0, x^2]$$

(c) Obtenemos la aproximación $I \approx 0.244\,978\,683$ con error

$$\varepsilon = \frac{1}{2^{22} \cdot 11 \cdot |1 + \phi|^6} \le \frac{1}{2^{22} \cdot 11} < 0.000\,000\,022$$

además $\arctan(0.25) \in \left] 0.244\,978\,662, \, 0.244\,978\,706 \right[$.

Ejemplo 1.23 (Ejercicio).

(a) Calcule la fórmula de Taylor con resto de Lagrange, centrada en x = 0 y de orden 3 de la función

$$f(u) = \frac{1}{\sqrt{1+u}}$$

(b) Calcule una fórmula de Taylor con resto centrada en x = 0 y de orden 3 de la función

$$g(z) = \frac{1}{\sqrt{1 - z^2}}$$

(c) Tomando en cuenta que

$$\arcsin(x) = \int_0^x \frac{dz}{\sqrt{1-z^2}}$$

halle una fórmula de Taylor de la función $h(x) = \arcsin(x)$.

(d) Use la fórmula encontrada para aproximar arcsen(0.32) y escriba el intervalo de la aproximación.

Respuestas:

(a)
$$f(u) = \frac{1}{\sqrt{1+u}} = 1 - \frac{u}{2} + \frac{3u^2}{8} - \frac{5u^3}{16} + \frac{35u^4}{128(1+\theta)^{9/2}}, \quad \theta \in V(0,u)$$

(b) Si sustituimos $u = -z^2$ en f(u) obtendremos

$$g(z)\frac{1}{\sqrt{1-z^2}} = 1 + \frac{z^2}{2} + \frac{3z^4}{8} + \frac{5z^6}{16} + \frac{35z^8}{128(1+\theta)^{9/2}}, \quad \theta \in [-z^2, 0]$$

(c) Integrando g(z) obtenemos que

$$\operatorname{arcsen}(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \frac{35x^9}{1152 \cdot (1+\phi)^{9/2}}, \quad \phi \in [-z^2, 0]$$

(d) $\arcsin(0.32) \approx 0.325728330$, además

$$\arcsin(0.32) \in]0.325726592, 0.325730069[$$

Ejemplo 1.24 (Ejercicio). Halle una fórmula de Maclaurin con resto y de orden 5 asociada a la función

$$f(x) = \arccos(2x)$$

Use la fórmula encontrada para aproximar $\arccos(0.52)$ y escriba el intervalo de la aproximación.

Respuesta:

$$\arccos(2x) = \frac{\pi}{2} - \int_0^{2x} \frac{dz}{\sqrt{1-z^2}} = \frac{\pi}{2} - 2x - \frac{4x^3}{3} - \frac{12x^5}{5} - \frac{40x^7}{7 \cdot (1+\phi)^{7/2}}, \quad \phi \in [-z^2, 0]$$

Luego, notando que $2x = 0.52 \implies x = 0.26$ tenemos que $\arccos(0.52) \approx 1.024510$ y

$$\arccos(0.52) \in]1.023923, 1.025097[$$

Ejemplo 1.25 (Ejercicio). Use una fórmula de Taylor con resto, de orden 8 y de centro x = 0 de la función $f(x) = e^{x^3}$ para aproximar la integral

$$I = \int_0^{0.6} e^{x^3} \, dx$$

Acote el error cometido en la aproximación de la integral y escriba el intervalo de la aproximación.

Respuesta: Tomando la fórmula

$$e^{x^3} = 1 + x^3 + \frac{x^6}{2} + \frac{e^{\theta} x^9}{6}$$
 , $\theta \in V(0, x^3)$

obtenemos la aproximación $I \approx 0.634399543$ con error

$$\varepsilon = \frac{e^{\theta} \cdot (0.6)^{10}}{60} \le \frac{e^{(0.6)^3} \cdot (0.6)^{10}}{60} < 0.000125$$

además $I \in \ \left] 0.634\,274,\, 0.634\,525 \right[\ .$

Nota 1.24. Con ayuda del software wxMaxima podemos obtener una aproximación más precisa de la integral del ejemplo anterior

Lo que significa que

$$\int_0^{0.6} e^{x^3} dx \approx 0.634\,504\,657\,445\,8$$

con un error acotado por $7.045 \cdot 10^{-15}$.

1.5 Polinomios de uso Frecuente

A continuación una lista de Fórmulas de Taylor de uso frecuente

1. Exponenciales

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \frac{e^{\theta} x^{n+1}}{(n+1)!}$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2} - \frac{x^{3}}{3!} + \dots + \frac{(-1)^{n} x^{n}}{n!} + \frac{(-1)^{n+1} e^{-\theta} x^{n+1}}{(n+1)!}$$

$$, \quad \theta \in V(0, x)$$

2. Trigonométricas

$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \frac{(-1)^{n+1} \cos(\theta)}{(2n+3)!} x^{2n+3} , \quad \theta \in V(0,x)$$

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \frac{(-1)^{n+1} \cos(\theta)}{(2n+2)!} x^{2n+2} , \quad \theta \in V(0,x)$$

3. Hiperbólicas

$$\operatorname{senh}(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \frac{\cosh(\theta)}{(2n+3)!} x^{2n+3} \qquad , \quad \theta \in V(0,x)$$

$$\cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \frac{\cosh(\theta)}{(2n+2)!} x^{2n+2} \qquad , \quad \theta \in V(0,x)$$

4. Geométricas

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \frac{x^{n+1}}{(1-\theta)^{n+2}} , \quad \theta \in V(0,x)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \frac{(-1)^{n+1} x^{n+1}}{(1+\theta)^{n+2}} , \quad \theta \in V(0,x)$$

5. Logaritmos

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n-1}x^n}{n} + \frac{(-1)^n x^{n+1}}{(n+1)(1+\theta)^{n+1}} \qquad , \quad \theta \in V(0,x)$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n} - \frac{x^{n+1}}{(n+1)(1-\theta)^{n+1}} \qquad , \quad \theta \in V(0,x)$$

6. Tangentes inversas

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)(1-\theta)^{n+2}} , \quad \theta \in V(0, x^2)$$
$$\operatorname{arctanh}(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \frac{x^{2n+3}}{(2n+3)(1+\theta)^{n+2}} , \quad \theta \in V(0, x^2)$$

7. Binomial

$$(1+x)^{\alpha} = 1 + \alpha x + \alpha(\alpha - 1) \frac{x^{2}}{2}$$

$$+ \alpha(\alpha - 1) (\alpha - 2) \frac{x^{3}}{3!}$$

$$\vdots$$

$$+ \alpha(\alpha - 1)(\alpha - 2) \dots (\alpha - n + 1) \frac{x^{n}}{n!}$$

$$+ \alpha(\alpha - 1)(\alpha - 2) \dots (\alpha - n + 1)(\alpha - n) \frac{x^{n+1}}{(n+1)! (1+\theta)^{n+1-\alpha}} , \quad \theta \in V(0, x)$$

Nota 1.25. Se denota el binomial

$$\binom{\alpha}{n} = \alpha(\alpha - 1)(\alpha - 2)\dots(\alpha - n + 1)\frac{1}{n!}$$

entonces

$$(1+x)^{\alpha} = \sum_{k=0}^{n} {\alpha \choose k} x^{k} + {\alpha \choose n+1} (1+\theta)^{\alpha-n-1} x^{n+1}, \quad \theta \in V(0,x)$$

1.5.1 Ejemplos y ejercicios

Ejemplo 1.26. Las siguientes son fórmula de Mclaurin de orden 4 con resto de Lagrange de uso frecuente:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \frac{x^5}{(1+\theta)^6} , \ \theta \in V(0,x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5(1+\theta)^5} , \ \theta \in V(0,x)$$

$$\operatorname{senh}(x) = x + \frac{x^3}{3!} + \frac{\cosh(\theta) x^5}{5!} , \ \theta \in V(0,x)$$

$$= x + \frac{x^3}{6} + \frac{\cosh(\theta) x^5}{120} , \ \theta \in V(0,x)$$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{\cos(\theta) x^6}{6!} , \ \theta \in V(0,x)$$

$$= 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{\cos(\theta) x^6}{720} , \ \theta \in V(0,x)$$

aunque también $\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{\sin(\theta) x^5}{120}$, $\theta \in V(0, x)$.

Tome en cuenta que θ es diferente en cada una de las ecuaciones anteriores.

Ejemplo 1.27. Como aplicación de la fórmula binomial:

$$\sqrt[3]{1+x} = 1 + \frac{1}{3}x + \frac{1}{3}\left(\frac{1}{3} - 1\right)\frac{x^2}{2}
+ \frac{1}{3}\left(\frac{1}{3} - 1\right)\left(\frac{1}{3} - 2\right)\frac{x^3}{3!}
+ \frac{1}{3}\left(\frac{1}{3} - 1\right)\left(\frac{1}{3} - 2\right)\left(\frac{1}{3} - 3\right)\frac{x^4}{4!}
+ \frac{1}{3}\left(\frac{1}{3} - 1\right)\left(\frac{1}{3} - 2\right)\left(\frac{1}{3} - 3\right)\left(\frac{1}{3} - 4\right)\frac{x^5}{5!(1+\theta)^{5-1/3}}, \quad \theta \in V(0, x)$$

luego resulta que

$$\sqrt[3]{1+x} = 1 + \frac{x}{3} - \frac{x^2}{9} + \frac{5x^3}{81} - \frac{10x^4}{243} + \frac{22x^5}{729\sqrt[3]{(1+\theta)^{14}}}, \quad \theta \in V(0,x)$$

También

$$\sqrt[3]{1-x} = 1 - \frac{x}{3} - \frac{x^2}{9} - \frac{5x^3}{81} - \frac{10x^4}{243} - \frac{22x^5}{729\sqrt[3]{(1-\phi)^{14}}} \;, \quad \phi \in V(0,x)$$

Ejemplo 1.28. En el caso de la funciones arctan(x) y arctanh(x), tenemos fórmulas de Mclaurin de uso frecuente con restos que provienen del resto de Lagrange.

Las siguientes fórmulas de Taylor son de orden 7 y 8 a la vez:

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9(1+\theta)^5} , \ \theta \in V(0, x^2)$$
$$\operatorname{arctanh}(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \frac{x^9}{9(1-\phi)^5} , \ \phi \in V(0, x^2)$$

Tome en cuenta que $9 = 2 \cdot 5 - 1$ o que (9 + 1)/2 = 5.

De la misma manera, considerando que (13 + 1)/2 = 7 tenemos que $\arctan(x)$ tiene polinomio de Maclaurin de orden 12:

$$T_{12}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11}$$

con resto $R_{12} = \frac{x^{13}}{13(1+\zeta)^7}$, $\zeta \in V(0, x^2)$.

Ejemplo 1.29 (Ejercicio). Escriba una fórmula de Maclaurin con resto de f(x) en el orden indicado:

(a)
$$f(x) = e^{-x} de orden 5$$
.

(e)
$$f(x) = \ln(1-x)$$
 de orden 5.

(b)
$$f(x) = \operatorname{sen}(x)$$
 de orden 8.

$$(f)$$
 $f(x) = \operatorname{arctanh}(x)$ de orden 5

(c)
$$f(x) = \cosh(x)$$
 de orden 6.

(g)
$$f(x) = \sqrt{(1+x)^7}$$
 de orden 4.

(d)
$$f(x) = \frac{1}{1-x} de \ orden \ 3.$$

(h)
$$f(x) = \frac{1}{\sqrt[5]{1-x}} de \ orden 3.$$

Respuestas:

(a)
$$e^{-x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} - \frac{x^5}{120} + \frac{x^6}{720 e^{\theta}}$$
, $\theta \in V(0, x)$

(b)
$$\operatorname{sen}(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{\cos(\theta) x^9}{362880}$$
, $\theta \in V(0, x)$

(c)
$$\cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \frac{\cosh(\theta) x^8}{40320}$$
, $\theta \in V(0, x)$

También se puede tomar:

$$\cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \frac{\operatorname{senh}(\phi) x^7}{5040} , \ \phi \in V(0, x)$$

(d)
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \frac{x^4}{(1-\theta)^5}$$
, $\theta \in V(0,x)$

(e)
$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6(1-\theta)^6}$$
, $\theta \in V(0,x)$

(f)
$$\operatorname{arctanh}(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7(1-\theta)^4}$$
, $\theta \in [-x^2, 0]$

(g)
$$\sqrt{(1+x)^7} = 1 + \frac{7x}{2} + \frac{35x^2}{8} + \frac{35x^3}{16} + \frac{35x^4}{128} - \frac{7x^5}{256\sqrt{(1+\theta)^3}}$$
, $\theta \in V(0,x)$

(h)
$$\frac{1}{\sqrt[5]{1-x}} = 1 + \frac{x}{5} + \frac{3x^2}{25} + \frac{11x^3}{125} + \frac{44x^4}{625\sqrt[5]{(1-\theta)^{21}}}$$
, $\theta \in V(0,x)$

Ejemplo 1.30. Calcule una fórmula de Taylor de orden 5 y de centro x=2 de la función

$$f(x) = \frac{x-2}{5-x}$$

Solución:

Sea w = x - 2, entonces x = w + 2 y

$$f(x) = \frac{w}{5 - (w+2)} = \frac{w}{3 - w} = \frac{w}{3} \frac{1}{1 - w/3}$$

Como

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + \dots + u^n + \frac{u^{n+1}}{(1-\theta)^{n+2}}, \quad \theta \in V(0,u)$$

entonces

$$f(x) = \frac{w}{3} \frac{1}{1 - w/3}$$

$$= \frac{w}{3} \left[1 + \frac{w}{3} + \left(\frac{w}{3}\right)^2 + \left(\frac{w}{3}\right)^3 + \left(\frac{w}{3}\right)^4 + \frac{1}{(1 - \theta)^6} \left(\frac{w}{3}\right)^5 \right], \quad \theta \in V(0, w/3)$$

$$= \frac{w}{3} + \frac{w^2}{3^2} + \frac{w^3}{3^3} + \frac{w^4}{3^4} + \frac{w^5}{3^5} + \frac{1}{(1 - \theta)^6} \frac{w^6}{3^6}, \quad \theta \in V(0, w/3)$$

Se concluye que

$$f(x) = \frac{x-2}{3} + \frac{(x-2)^2}{3^2} + \frac{(x-2)^3}{3^3} + \frac{(x-2)^4}{3^4} + \frac{(x-2)^5}{3^5} + \frac{1}{(1-\theta)^6} \cdot \frac{(x-2)^6}{3^6}$$

donde
$$\theta \in V \left[0, \frac{x-2}{3}\right]$$

Ejemplo 1.31 (Ejercicio). Considere la función $f(x) = \cos(3x)$.

- (a) Halle una fórmula de Maclaurin con resto, de orden 6 asociada a la función f(x).
- (b) Halle la fórmula de Taylor con resto de Lagrange centrada en $x=15^{\circ}$ y de orden 4 asociada a la función f(x).

Respuestas:

(a)
$$\cos(3x) = 1 - \frac{9x^2}{2} + \frac{27x^4}{8} - \frac{81x^6}{80} + \frac{729\cos(\theta)x^8}{4480}$$
, $\theta \in V(0, 3x)$

También se pueden tomar como el resto de la fórmula las expresiones:

$$R_6(x) = \frac{729 \cos(3\phi) x^8}{4480} = \frac{243 \sin(3\zeta) x^7}{560} = \frac{243 \sin(\xi) x^7}{560}$$

donde ϕ , $\zeta \in V(0, x)$ y $\xi \in V(0, 3x)$.

$$\cos(3x) = \frac{\sqrt{2}}{2} - \frac{3\sqrt{2}}{2} \left(x - \frac{\pi}{12}\right) - \frac{9\sqrt{2}}{4} \left(x - \frac{\pi}{12}\right)^2 + \frac{9\sqrt{2}}{4} \left(x - \frac{\pi}{12}\right)^3 + \frac{27\sqrt{2}}{16} \left(x - \frac{\pi}{12}\right)^4 - \frac{81 \sin(3\theta)}{40} \left(x - \frac{\pi}{12}\right)^5$$

donde
$$\theta \in V\left(\frac{\pi}{12}, x\right)$$

Ejemplo 1.32. Use el polinomio de orden 12 y centro 0 de la función $f(x) = \arctan(x^2)$ para aproximar el valor numérico de la integral

$$I = \int_0^{1/2} \arctan(x^2) \, dx$$

Halle una cota del error cometido en la aproximación. ¿Cuantos decimales exactos se pueden garantizar en dicha aproximación?

Presente el intervalo de aproximación correspondiente.

Solución: Tomando en cuenta que $2 \cdot 6 = 12$, empezamos con la fórmula de Taylor:

$$\arctan(u) = u - \frac{u^3}{3} + \frac{u^5}{5} - \frac{u^7}{7(1+\theta)^4}, \ \theta \in V(0, u^2)$$

entonces

$$\arctan(x^2) = x^2 - \frac{x^6}{3} + \frac{x^{10}}{5} - \frac{x^{14}}{7(1+\theta)^4}, \ \theta \in V(0, x^4)$$

luego

$$\begin{split} I &= \int_0^{1/2} \arctan(x^2) \, dx \\ &= \int_0^{1/2} \left[\, x^2 - \frac{x^6}{3} + \frac{x^{10}}{5} - \frac{x^{14}}{7 \, (1+\theta)^4} \, \right] \, dx \, \, , \, \, \theta \in V(0,x^4) \\ &= \left[\, \frac{x^3}{3} - \frac{x^7}{21} + \frac{x^{11}}{55} - \frac{x^{15}}{105 \, (1+\phi)^4} \, \right]_0^{1/2} \, \, , \, \, \phi \in V \left[\, 0, (1/2)^4 \, \right] \\ &= \frac{32 \, 567}{788 \, 480} + \frac{1}{3 \, 440 \, 640} \cdot \frac{1}{(1+\phi)^4} \, , \, \, \phi \in \left[\, 0, \, \frac{1}{16} \, \right] \end{split}$$

Tenemos entonces la aproximación

$$I \approx \frac{32\,567}{788\,480} = 0.041\,303\,520\dots$$

con error

$$\epsilon = \frac{1}{3\,440\,640} \cdot \frac{1}{|1+\phi|^4}$$

Como $\phi \in \left[0, \frac{1}{16}\right]$, entonces

$$0 \le \phi \le \frac{1}{16} \iff 1 \le 1 + \varphi \le \frac{17}{16}$$
$$\iff 1 \ge \frac{1}{1 + \varphi} \ge \frac{16}{17}$$

al final

$$\epsilon = \frac{1}{3440640} \cdot \frac{1}{|1+\phi|^4} \le \frac{1}{3440640} = 0.000000290 \dots < 10^{-6}$$

Es posible que hallan seis decimales exactos.

Tenemos que

$$\frac{32\,567}{788\,480} - \frac{1}{3\,440\,640} = 0.041\,303\,230\dots$$
$$\frac{32\,567}{788\,480} + \frac{1}{3\,440\,640} = 0.041\,303\,811\dots$$

Por lo que

$$I \in \ \]\ 0.041\ 303\ 230,\ 0.041\ 303\ 812\ [$$

garantizándonos los seis primeros decimales de la aproximación.

Nota 1.26. El valor numérico de la integral del **Ejercicio 1.32** de la página 31 se puede calcular de manera exácta, pero el cálculo de la integral de $\arctan(x^2)$ es muy tedioso.

Considerando la integral indefinida

$$\int \arctan(x^2) dx = x \arctan(x^2) + \frac{\sqrt{2}}{4} \cdot \ln\left(\frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1}\right)$$
$$-\frac{\sqrt{2}}{2} \cdot \arctan\left(\sqrt{2}x + 1\right) - \frac{\sqrt{2}}{2} \cdot \arctan\left(\sqrt{2}x - 1\right)$$

se tiene el valor numérico

$$\int_0^{1/2} \arctan(x^2) \, dx = \frac{1}{2} \arctan\left(\frac{1}{4}\right) + \frac{\sqrt{2}}{4} \cdot \ln\left(\frac{5\sqrt{2} + 4}{5\sqrt{2} - 4}\right)$$
$$-\frac{\sqrt{2}}{2} \cdot \arctan\left(\frac{\sqrt{2}}{2} + 1\right) - \frac{\sqrt{2}}{2} \cdot \arctan\left(\frac{\sqrt{2}}{2} - 1\right)$$

Que es aproximadamente 0.041 303 240 757 625.

Nota 1.27. (Ver fórmula Binomial, $1.5 \rightarrow 7$ en página 28)

(a) Para todo k > 0, se cumple que

$$(k+x)^{\alpha} = k^{\alpha} \cdot \left(1 + \frac{x}{k}\right)^{\alpha}$$

luego se puede obtener una fórmula de Taylor usando el desarrollo de $(1+u)^{\alpha}$ mediante la sustitución u=x/k.

(b) Si buscamos aproximar el valor numérico de $\sqrt[n]{N}$, se recomienda hacer

$$\sqrt[n]{a^n+(N-a^n)}=a\cdot\sqrt[n]{1+\frac{N-a^n}{a^n}}$$

siendo el número a^n cercano de N, luego usamos el desarrollo de la función $\sqrt[n]{1+u}=(1+u)^{1/n}$ mediante la sustitución

$$u = \frac{N - a^n}{a^n} \approx 0$$

Ejemplo 1.33. Si queremos aproximar $\sqrt{53}$ es conveniente desarrollar:

$$\sqrt{53} = \sqrt{49 + 4}$$

$$= 7\sqrt{1 + \frac{4}{49}}$$

$$= 7 \cdot \left[1 + \frac{x}{2} + \frac{1}{2} \cdot \left(-\frac{1}{2} \right) \cdot \frac{x^2}{2} + \frac{1}{2} \cdot \left(-\frac{1}{2} \right) \cdot \left(-\frac{3}{2} \right) \cdot \frac{x^3}{3!} + \frac{1}{2} \cdot \left(-\frac{1}{2} \right) \cdot \left(-\frac{3}{2} \right) \cdot \left(-\frac{5}{2} \right) \cdot \frac{x^4}{4! \cdot (1 + \theta)^{7/2}} \right]_{x = 4/49}$$

donde $\theta \in [0,4/49]$. (Ver fórmula Binomial, $1.5 \to 7$ en página 28) De esta manera tenemos la aproximación:

$$\sqrt{53} \approx 7 + \frac{2}{7} - \frac{2}{7^3} + \frac{4}{7^5} \approx 7.280\,121$$

con un error

$$\varepsilon = \frac{10}{7^7 \cdot |1 + \theta|^{7/2}} \quad , \ \theta \in \left[0, \frac{4}{49}\right]$$

De lo cual se sigue que $\varepsilon \leq \frac{10}{7^7} < 0.000\,013,$ lo que garantiza:

$$\sqrt{53} \in \ \] 7.280 \, 108, \, 7.280 \, 134 \, [$$

Ejemplo 1.34 (Ejercicio). Halle una fórmula de Maclaurin de orden 6 de la función $f(x) = \frac{x^2}{(3+x)^5}$.

Respuesta: Usando la fórmula binomial ($1.5 \rightarrow 7$ en página 28) para $\left(1 + \frac{x}{3}\right)^{-5}$ obtendremos

$$\frac{x^2}{(3+x)^5} = \frac{x^2}{3^5} - \frac{5\,x^3}{3^6} + \frac{5\,x^4}{3^6} - \frac{35\,x^5}{3^8} + \frac{70\,x^6}{3^9} - \frac{14\,x^7}{3^8\,(1+\theta)^{10}} \quad , \; \theta \in V\left(\,0,\,\frac{x}{3}\,\right)$$

Ejemplo 1.35 (Ejercicio). Considera la función $f(x) = \sqrt[3]{x}$.

- (a) Escriba una fórmula de Taylor con resto, de orden 4 y centrada en 125 de la función f(x).
- (b) Use la fórmula de Taylor f(x) obtenida para aproximar el valor numérico de $\sqrt[3]{151}$. Acote el error cometido y escriba el intervalo de dicha aproximación.

Respuestas:

(a) Tomando en cuenta que $\sqrt[3]{x} = 5\sqrt{1 + \frac{x - 125}{125}}$

Obtendremos que (Ver Fórmula Binomial $1.5 \rightarrow 7$ en página 28)

$$\sqrt[3]{x} = 5 + \frac{x - 125}{3 \cdot 5^2} - \frac{(x - 125)^2}{3^2 \cdot 5^5} + \frac{(x - 125)^3}{3^4 \cdot 5^7} - \frac{2(x - 125)^4}{3^5 \cdot 5^{10}} + \frac{22(x - 125)^5}{3^6 \cdot 5^{14} \cdot (1 + \theta)^{14/3}}$$

donde
$$\theta \in V\left(0, \frac{x-125}{125}\right)$$
.

(b)
$$\sqrt[3]{151} \approx 5 + \frac{26}{3 \cdot 5^2} - \frac{26^2}{3^2 \cdot 5^5} + \frac{26^3}{3^4 \cdot 5^7} - \frac{2 \cdot 26^4}{3^5 \cdot 5^{10}} \approx 5.325\,023\,414\,465\,844$$

donde para $\theta \in \left[0, \frac{26}{5^5}\right]$ el error es

$$R_4 = \frac{22 \cdot 26^5}{3^6 \cdot 5^{14} \cdot |1 + \theta|^{14/3}} \le \frac{22 \cdot 26^5}{3^6 \cdot 5^{14}} < 0.000059$$

con esta aproximación garantizamos que

$$\sqrt[3]{151} \in]5.324964, 5.325083[$$

Ejemplo 1.36 (Ejercicio). Considera la función $f(x) = \frac{1}{\sqrt[3]{8+x^5}}$.

- (a) Escriba una fórmula Maclaurin con resto y de orden 12 de la función f(x).
- (b) Use la fórmula de Taylor f(x) obtenida para aproximar el valor numérico de

$$I = \int_0^{0.42} \frac{x}{\sqrt[3]{8 + x^5}} \, dx$$

Acote el error cometido y escriba el intervalo de dicha aproximación.

Respuestas:

(a)
$$\frac{x}{\sqrt[3]{8+x^5}} = \frac{x}{2} - \frac{x^6}{3 \cdot 2^4} + \frac{x^{11}}{3^2 \cdot 2^6} - \frac{7x^{16}}{3^4 \cdot 2^9 \cdot (1+\theta)^{10/3}}$$
, $\theta \in V\left(0, \frac{x^5}{8}\right)$

(b)
$$\int_0^{0.42} \frac{1}{\sqrt[3]{8+x^5}} dx = \left[\frac{x^2}{4} - \frac{x^7}{7 \cdot 3 \cdot 2^4} + \frac{x^{12}}{3^3 \cdot 2^8} - + \frac{7x^{17}}{17 \cdot 3^4 \cdot 2^9 \cdot (1+\phi)^{10/3}} \right] \Big|_{x=0}^{x=0.42}$$

donde $\phi \in V\left[0, \frac{(0.42)^5}{8}\right]$, de lo que se sigue la aproximación

$$\int_0^{0.42} \frac{1}{\sqrt[3]{8+x^5}} \, dx \approx 0.044\,093\,143\,069\,328$$

con un error $\varepsilon < 3.91 \cdot 10^{-12}$, por lo que

$$0.044\,093\,143\,065 < \int_0^{0.42} \frac{1}{\sqrt[3]{8+x^5}} \, dx < 0.044\,093\,143\,074$$

Nota 1.28. Con ayuda del software wxMaxima podemos obtener una aproximación más precisa de la integral del ejemplo anterior

$$\begin{bmatrix} \text{(\%i3)} & \text{x/(8+x^5)^{(1/3)};} \\ & \text{quad_qags(\%,x,0.42);} \\ \\ \text{(\%o3)} & \frac{x}{(8+x^5)^{1/3}} \\ \\ \text{(\%o4)} & [0.044\,093\,143\,065\,423,\,4.895\,322\,265\,932\,413\,5*10^{-16},\,21,\,0 \,] \\ \end{bmatrix}$$

Lo que significa que

$$\int_0^{0.42} \frac{1}{\sqrt[3]{8+x^5}} dx \approx 0.044\,093\,143\,065\,423$$

con un error acotado por $4.9 \cdot 10^{-16}$.

Nota 1.29. (Ver fórmula Logarítmo, $1.5 \rightarrow 5$ en página 27)

(a) Si buscamos aproximar el valor numérico de ln(N), se recomienda hacer

$$\ln(N) = \ln\left[1 + (N-1)\right] \quad \lor \quad \ln(N) = -\ln\left(\frac{1}{N}\right) = -\ln\left[1 + \left(\frac{1}{N} - 1\right)\right]$$

luego usamos el desarrollo de la función ln(1+u) usando

$$u = N - 1 \quad \lor \quad u = \frac{1}{N} - 1$$

tomando en cuenta que la aproximación "es buena" cuando $u \approx 0$.

(b) Si los valores numéricos "N-1" y " $\frac{1}{N}-1$ " no son cercanos a cero, la aproximación obtenida del punto anterior "no es buena".

En tal caso se recomienda buscar $k \in \mathbb{N}$ tal que e^k sea cercano al valor numérico N, luego hacer:

$$\ln(N) = \ln\left[e^k + \left(N - e^k\right)\right]$$

$$= \ln\left[e^k \cdot \left(1 + \frac{N - e^k}{e^k}\right)\right]$$

$$= \ln\left(e^k\right) + \ln\left(1 + \frac{N - e^k}{e^k}\right)$$

$$= k + \ln\left(1 + \frac{N - e^k}{e^k}\right)$$

luego usamos el desarrollo de la función $\ln(1+u)$ usando $u=\frac{N-e^k}{e^k}\approx 0$.

De ser necesario tomar en cuenta que

$$e \approx 2.718\,281\,828\,459\,045$$

o también que: 2.7 < e < 2.8

Ejemplo 1.37 (Ejercicio). Aproxime ln(1.25), usando un polinomio de Maclaurin de orden 5. Acote el error y escriba el intervalo de dicha aproximación.

Respuesta: Tomando en cuenta que " $\ln(1.25) = \ln(1+0.25)$ ", se tiene que

$$\ln(1.25) \approx \left[x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \right]_{x=0.25} = \frac{857}{3840} \approx 0.223177083$$

con error

$$\varepsilon = \frac{1}{24\,576\cdot|1+\theta|^6} < 0.000\,041 \quad , \text{ tomando en cuenta que } \theta \in \left[\,0,\,0.25\,\right]$$

Al final

$$\ln(1.25) \in \]0.223\,136,\,0.223\,218[$$

Ejemplo 1.38 (Ejercicio). Aproxime ln(17), usando un polinomio de Maclaurin de orden 3, Acote el error y escriba el intervalo de dicha aproximación.

Respuesta: Notando que $e \approx 2.7$, $e^2 \approx 7.4$ y $e^3 \approx 20$ y tomando en cuenta que

$$\ln(17) = 3 + \ln\left(1 - \frac{e^3 - 17}{e^3}\right)$$

se tiene que

$$\ln(17) \approx \left[3 - x - \frac{x^2}{2} - \frac{x^3}{3} \right]_{x = \frac{e^3 - 17}{e^3}} \approx 2.833372207$$

con error

$$\varepsilon = \frac{\left(e^3 - 17\right)^4}{4\,e^{12} \cdot |1 - \theta|^4} < 0.000\,272 \quad , \text{ tomando en cuenta que } \theta \in \left[\,0,\,\frac{e^3 - 17}{e^3}\,\right]$$

Al final

$$\ln(17) \in \]2.833100, 2.833644[$$

2 Desarrollos Limitados

2.1 La o pequeña de Landau

Definición 2.1 (\mathcal{O} de Landau). Sean f y g funciones definidas $I \subseteq \mathbb{R}$ y sea $a \in \mathbb{R}$. Se dice que f(x) es "despreciable" frente a g(x) cuando $x \to a$ si y solo si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

Se denota

$$f(x) = \mathcal{O}[g(x)], \text{ cuando } x \to a$$

Lo cual se lee

"f(x) es **o pequeña de Landau** de g(x) cuando x tiende a a"

Si no se indica lo contrario a = 0, es decir

$$f(x) = \mathcal{O}[g(x)] \iff \lim_{x \to 0} \frac{f(x)}{g(x)} = 0$$

Ejemplo 2.1. Verifique que

$$(x-1)^3 = \mathcal{O}\left(\sqrt{x-1}\right)$$
 cuando $x \to 1^+$

Solución:

Tenemos que

$$\lim_{x \to 0^+} \frac{(x-1)^3}{\sqrt{x-1}} = \lim_{x \to 1^+} (x-1)^{5/2} = 0$$

entonces

$$(x-1)^3 = \mathcal{O}\left(\sqrt{x-1}\right)$$
 cuando $x \to 1^+$

Nota 2.1. Decir que $f(x) = \mathcal{O}[g(x)]$, cuando $x \to a$ significa también que la gráfica de f "es más parecida" a la gráfica "y = 0" que g en un intervalo pequeño alrededor de a.

A continuación las gráficas del ejemplo anterior

Teorema 2.1 (Propiedades de la o pequeña de Landau).

1.
$$f(x) = O(1) \iff \lim_{x \to 0} f(x) = 0$$

2.
$$\mathcal{O}[f(x)] = f(x) \cdot \mathcal{O}(1)$$

3.
$$\mathcal{O}[f(x)] \cdot \mathcal{O}[g(x)] = \mathcal{O}[f(x) \cdot g(x)]$$

 $\mathcal{O}(x^n) \cdot \mathcal{O}(x^m) = \mathcal{O}(x^{n+m})$
 $x^n \cdot \mathcal{O}(x^m) = \mathcal{O}(x^{n+m})$

4.
$$\left[\mathcal{O}\left[f(x)\right]\right]^m = \mathcal{O}\left[\left[f(x)\right]^m\right]$$

 $\left[\mathcal{O}(x^n)\right]^m = \mathcal{O}(x^{nm})$

5.
$$\mathcal{O}[f(x)] + \mathcal{O}[g(x)] = \mathcal{O}[f(x) + g(x)]$$

6.
$$\forall \alpha \neq 0, \ \alpha \cdot \mathcal{O}(x^n) = \mathcal{O}(x^n)$$

 $\forall \alpha \neq 0, \ \alpha \cdot x^{n+1} = \mathcal{O}(x^n)$
 $\forall \alpha \neq 0, \ \alpha \cdot x^{n+\epsilon} = \mathcal{O}(x^n), \ donde \ \epsilon > 0$

7.
$$n \le m \implies \mathcal{O}(x^n) + \mathcal{O}(x^m) = \mathcal{O}(x^n)$$

 $n \le m \implies \mathcal{O}(\alpha_1 x^n + \alpha_2 x^m) = \mathcal{O}(x^n)$

8.
$$Si \ n \leq m$$

$$\alpha_n x^n + \alpha_{n+1} x^{n+1} + \alpha_{n+2} x^{n+2} + \dots + \alpha_m x^m + \mathcal{O}(x^n) = \alpha_n x^n + \mathcal{O}(x^n)$$

$$\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_m x^m + \mathcal{O}(x^n) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n + \mathcal{O}(x^n)$$

9.
$$Si \ q \ge 0$$

$$\mathcal{O}(x^n) \cdot \left[\alpha_m \ x^m + \alpha_{m+1} \ x^{m+1} + \dots + \alpha_{m+q} \ x^{m+q} \right] = \mathcal{O}(x^{n+m})$$

Ejemplo 2.2. Pruebe que

$$\mathcal{O}\big[f(x)\big]\cdot\mathcal{O}\big[g(x)\big]=\mathcal{O}\big[f(x)\cdot g(x)\big]$$

Solución:

$$\begin{split} u(x) &= \mathcal{O}\big[f(x)\big] \ \land \ w(x) = \mathcal{O}\big[g(x)\big] \implies \lim_{x \to 0} \frac{u(x)}{f(x)} = 0 \ \land \ \lim_{x \to 0} \frac{w(x)}{g(x)} = 0 \\ &\implies \lim_{x \to 0} \frac{u(x) \cdot w(x)}{f(x) \cdot g(x)} = 0 \\ &\implies u(x) \cdot w(x) = \mathcal{O}\big[f(x) \cdot g(x)\big] \\ & \therefore \quad \mathcal{O}\big[f(x)\big] \cdot \mathcal{O}\big[g(x)\big] = u(x) \cdot w(x) = \mathcal{O}\big[f(x) \cdot g(x)\big] \end{split}$$

Ejemplo 2.3.

$$\mathcal{O}(x) - \mathcal{O}(x) = \mathcal{O}(x)$$

Ejemplo 2.4.

$$\frac{12x^4 - 3x^5 + \mathcal{O}(x^5)}{2x^2} = 6x^2 - \frac{3x^3}{2} + \mathcal{O}(x^3)$$

Ejemplo 2.5.

$$3 - 2\mathcal{O}(x^3) + 4x - x^2 + 3x^5 + 6\mathcal{O}(x^3) + 7x^2 + 2x^3 - x^5 + \mathcal{O}(x^5) = 3 + 4x + 6x^2 + 2x^3 + \mathcal{O}(x^3)$$

Ejemplo 2.6.

$$\begin{aligned} \left[x^2 - 3x^3 + \mathcal{O}(x^3)\right] \cdot \left[2x^3 - x^4 + 2x^5 + \mathcal{O}(x^7)\right] \\ &= x^2 \cdot \left[2x^3 - x^4 + 2x^5 + \mathcal{O}(x^7)\right] - 3x^3 \cdot \left[2x^3 - x^4 + 2x^5 + \mathcal{O}(x^7)\right] + \mathcal{O}(x^3) \cdot \left[2x^3 - x^4 + 2x^5 + \mathcal{O}(x^7)\right] \\ &= 2x^5 - x^6 + 2x^7 + \mathcal{O}(x^9) - 6x^6 + 3x^7 - 6x^8 + \mathcal{O}(x^{10}) + \mathcal{O}(x^6) \\ &= 2x^5 - 7x^6 + \mathcal{O}(x^6) \end{aligned}$$

2.2 Desarrollos limitados

2.2.1 Resto de Young

Definición 2.2 (Desarrollo Limitado). Se dice que una función f definida en $\mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$ admite un **desarrollo limitado** de orden n alrededor de $a \in \mathcal{D}$ si y solo si existen $a_0, a_1, \ldots a_n$ tales que

$$f(x) = a_0 + a_1 (x - a) + a_2 (x - a)^2 + a_3 (x - a)^3 + \dots + a_n (x - a)^n + \mathcal{O}[(x - a)^n]$$

cuando $x \to a$.

Nota 2.2. El desarrollo limitado es único cuando existe.

Teorema 2.2 (Fórmula de Taylor con resto de Young). Sea $f \in C(\mathcal{D})$ definida en $\mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$ y sea $a \in \mathcal{D}$, entonces cuando $x \to a$

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \mathcal{O}[(x - a)^n]$$

La ecuación anterior es llamada **Fórmula de Taylor con resto de Young**, y también corresponde al desarrollo limitado de orden n y centro x = a de la función f(x).

Es decir, en la definición 2.2

$$a_k = \frac{f^{(k)}(a)}{k!}$$

Nota 2.3. Si una función f(x) con desarrollo limitado centrado en a y de orden n, es posible que no tenga fórmula de Taylor de centro a y orden n.

Por ejemplo, si para algún $k \leq n$, $f^{(k)}(x)$ es discontinua en a, entonces f(x) no tiene desarrollo de Taylor.

Ejemplo 2.7. Tenemos la fórmula de Taylor con resto de Lagrange centrada en 0:

$$sen(x) = x - \frac{x^3}{6} + \frac{sen(\theta)}{24} x^4$$
, $\theta \in V(0, x)$

Por otro lado la función $g(x) = \frac{\text{sen}(x)}{x}$ es discontinua en 0 por lo que no tiene fórmula de Taylor, pero sí tiene desarrollo limitado de orden 2:

$$\frac{\text{sen}(x)}{x} = 1 - \frac{x^2}{6} + \mathcal{O}(x^2)$$

pues el límite

$$\lim_{x \to 0} \frac{\frac{\sin(x)}{x} - 1 + \frac{x^2}{6}}{x^2} = \lim_{x \to 0} \left[\frac{6 \sin(x) - 6x + x^3}{6x^3} \right] , \text{ es forma } \frac{0}{0}$$

$$\stackrel{L'H}{=} \lim_{x \to 0} \left[\frac{6 \cos(x) - 6 + 3x^2}{18x^2} \right] , \text{ es forma } \frac{0}{0}$$

$$\stackrel{L'H}{=} \lim_{x \to 0} \left[\frac{-6 \sin(x) + 6x}{36x} \right]$$

$$= \frac{1}{6} \cdot \lim_{x \to 0} \left[-\frac{\sin(x)}{x} + 1 \right]$$

$$= \frac{1}{6} \cdot [-1 + 1] = 0$$

Teorema 2.3. Si una función f definida en $\mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$ admite el desarrollo limitado

$$f(x) = a_k (x - a)^k + a_{k+1} (x - a)^{k+1} + \dots + a_n (x - a)^n + \mathcal{O}[(x - a)^n]$$

cuando $x \to a$ y siendo $a_k \neq 0$, entonces para todo $\ell \leq k$:

$$\frac{f(x)}{(x-a)^{\ell}} = a_k (x-a)^{k-\ell} + a_{k+1} (x-a)^{k-\ell+1} + \dots + a_n (x-a)^{n-\ell} + \mathcal{O}[(x-a)^{n-\ell}]$$

Teorema 2.4. Si f(x) tiene desarrollo limitado de orden n y centro x = 0

$$f(x) = a_0 + a_1 (x - a) + a_2 (x - a)^2 + \dots + a_n (x - a)^n + \mathcal{O}[(x - a)^n]$$

entonces

(a) El desarrollo limitado de la derivada corresponde a

$$f'(x) = a_1 + 2a_2(x - a) + 3a_3(x - a)^2 + \dots + na_n(x - a)^{n-1} + \mathcal{O}[(x - a)^{n-1}]$$

(b) El desarrollo limitado de la integral corresponde a

$$\int_{a}^{x} f(u) du = a_0 (x - a) + a_1 \frac{(x - a)^2}{2} + a_2 \frac{(x - a)^3}{3} + \dots + a_n \frac{(x - a)^{n+1}}{n+1} + \mathcal{O}[(x - a)^{n+1}]$$

2.2.2 Desarrollos limitados de uso Frecuente

A continuación una lista de Desarrollos Limitados de uso frecuente

1. Exponenciales

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \mathcal{O}(x^{n})$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2} - \frac{x^{3}}{3!} + \dots + \frac{(-1)^{n} x^{n}}{n!} + \mathcal{O}(x^{n})$$

2. Trigonométricas

$$\operatorname{sen}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \mathcal{O}(x^{2n+2})$$
$$\operatorname{cos}(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \mathcal{O}(x^{2n+1})$$

3. Hiperbólicas

$$\operatorname{senh}(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \mathcal{O}(x^{2n+2})$$
$$\operatorname{cosh}(x) = 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \mathcal{O}(x^{2n+1})$$

4. Geométricas

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \mathcal{O}(x^n)$$
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \mathcal{O}(x^n)$$

5. Logaritmos

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n-1} x^n}{n} + \mathcal{O}(x^n)$$
$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n} + \mathcal{O}(x^n)$$

6. Tangentes inversas

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \mathcal{O}(x^{2n+2})$$
$$\operatorname{arctanh}(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \mathcal{O}(x^{2n+2})$$

7. Binomial

$$(1+x)^{\alpha} = 1 + \alpha x + \alpha(\alpha - 1) \frac{x^2}{2}$$

$$+ \alpha(\alpha - 1) (\alpha - 2) \frac{x^3}{3!}$$

$$\vdots$$

$$+ \alpha(\alpha - 1)(\alpha - 2) \dots (\alpha - n + 1) \frac{x^n}{n!}$$

$$+ \phi(x^n)$$

2.2.3 Ejemplos y ejercicios

Ejemplo 2.8. (Ver Ejemplo 1.26)

Las siguientes son desarrollos limitados de orden 4 de uso frecuente:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \mathcal{O}(x^4)$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \mathcal{O}(x^4)$$

$$\operatorname{senh}(x) = x + \frac{x^3}{3!} + \mathcal{O}(x^4) = x + \frac{x^3}{6} + \mathcal{O}(x^4)$$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \mathcal{O}(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^4)$$

aunque también

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5)$$

que es un desarrollo de orden 5.

Ejemplo 2.9. (Ver Ejemplo 1.27)

Como aplicación de la fórmula binomial:

$$\sqrt[7]{1-x} = 1 - \frac{x}{7} - \frac{3x^2}{49} - \frac{13x^3}{343} - \frac{65x^4}{2401} + \mathcal{O}(x^4)$$

También

$$\sqrt[7]{1+x} = 1 + \frac{x}{7} - \frac{3x^2}{49} + \frac{13x^3}{343} - \frac{65x^4}{2401} + \mathcal{O}(x^4)$$

Ejemplo 2.10. (Ver **Ejemplo 1.28**)

Los siguientes son desarrollos limitados de orden 8:

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \mathcal{O}(x^8)$$
$$\operatorname{arctanh}(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \mathcal{O}(x^8)$$

También tenemos el siguiente desarrollo limitado de orden 11:

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11} + \mathcal{O}(x^{11})$$

Ejemplo 2.11 (Ejercicio). Escriba el desarrollo de Maclaurin de orden 5 de la función $f(x) = \frac{1}{(1+x)^3}$

Resp.
$$/ f(x) = 1 - 3x + 6x^2 - 10x^3 + 15x^4 - 21x^5 + O(x^5)$$

Ejemplo 2.12 (Ejercicio). Escriba el desarrollo de Maclaurin de orden 5 de la función $f(x) = \frac{x^2}{\sqrt[4]{(1+x)^3}}$.

Resp.
$$f(x) = x^2 - \frac{3x^3}{4} + \frac{21x^4}{32} - \frac{77x^5}{128} + \mathcal{O}(x^5)$$

Teorema 2.5. Dado $n \in \mathbb{N}$, si tenemos desarrollos limitados

$$g(x) = P(x) + \mathcal{O}(x^n) \quad \land \quad h(x) = Q(x) + \mathcal{O}(x^n)$$

siendo P(x) y Q(x) polinomios de grado $\leq n$, entonces se cumple que

$$g(x) \cdot h(x) = P(x) \cdot Q(x) + \mathcal{O}(x^n)$$

También tenemos que para todo $m \in \mathbb{N}$

$$[P(x) + \mathcal{O}(x^n)]^m = [P(x)]^m + \mathcal{O}(x^n)$$

Ejemplo 2.13. Calcule el desarrollo limitado de orden 3 de la función $f(x) = e^x \cdot \text{sen}(x)$.

Solución: Tenemos que

$$f(x) = \left[1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \mathcal{O}(x^3)\right] \cdot \left[x - \frac{x^3}{6} + \mathcal{O}(x^3)\right]$$
$$= \left[x + x^2 + \frac{x^3}{2} + \frac{x^4}{6}\right] - \left[\frac{x^3}{6} + \frac{x^4}{6} + \frac{x^5}{12} + \frac{x^6}{36}\right] + \mathcal{O}(x^3)$$
$$= x + x^2 + \frac{x^3}{3} + \mathcal{O}(x^3)$$

Ejemplo 2.14 (Ejercicio). Calcule el desarrollo limitado de orden 5 de la función $f(x) = \cos(x) \cdot \ln(1-x)$.

Resp.
$$f(x) = -x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{3x^5}{40} + \mathcal{O}(x^5)$$

Nota 2.4. Para todo $a, b, c, d \in \mathbb{R}$ se cumple la igualdad

$$(a+b+c+d)^2 = a^2 + b^2 + c^2 + d^2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd$$

Ejemplo 2.15 (Ejercicio). Calcule el desarrollo limitado de orden 8 de la función $f(x) = \arctan^2(x)$.

Resp.
$$f(x) = x^2 - \frac{2x^4}{3} + \frac{23x^6}{45} - \frac{44x^8}{105} + \mathcal{O}(x^8)$$

Ejemplo 2.16 (Ejercicio). Calcule el desarrollo limitado de orden 6 de la función $f(x) = \cos^3(x)$.

Resp.
$$f(x) = 1 - \frac{3x^2}{2} + \frac{7x^4}{8} - \frac{61x^6}{240} + \mathcal{O}(x^6)$$

Teorema 2.6. Si f(x) tiene desarrollo limitado de orden n y centro x = 0

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \mathcal{O}(x^n)$$

entonces

$$f[\alpha (x-a)^s] = a_0 + \alpha a_1 (x-a)^s + \alpha^2 a_2 (x-a)^{2s} + \dots + \alpha^n a_n (x-a)^{ns} + \mathcal{O}[(x-a)^{ns}]$$

es un desarrollo limitado de orden " $n \cdot s$ " y de centro "x = a" de la función

$$g(x) = f[\alpha (x - a)^s]$$

Ejemplo 2.17. Halle el desarrollo limitado de orden 10 de la función $f(x) = \cos(3x^2)$.

Solución:

Como

$$\cos(u) = 1 - \frac{u^2}{2} + \frac{u^4}{4!} + \mathcal{O}(u^5) \quad \land \quad \mathcal{O}[(3x^2)^5] = \mathcal{O}(x^{10})$$

entonces

$$\cos(3x^{2}) = \left[1 - \frac{u^{2}}{2} + \frac{u^{4}}{4!} + \mathcal{O}(u^{5})\right]_{u=3x^{2}}$$

$$= 1 - \frac{1}{2} \left[3x^{2}\right]^{2} + \frac{1}{24} \left[3x^{2}\right]^{4} + \mathcal{O}(x^{10})$$

$$= 1 - \frac{9}{2} x^{4} + \frac{81}{24} x^{8} + \mathcal{O}(x^{10}) = 1 - \frac{9}{2} x^{4} + \frac{27}{8} x^{8} + \mathcal{O}(x^{10})$$

Nota 2.5. Si f(x) tiene desarrollo limitado de orden n y centro x = 0

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \mathcal{O}(x^n)$$

y si existe el límite

$$\lim_{x \to a} g(x) = 0$$

entonces

$$f[g(x)] = a_0 + a_1 g(x) + a_2 [g(x)]^2 + \dots + a_n [g(x)]^n + \mathcal{O}[[g(x)]^n]$$

cuando $x \to a$.

Si queremos el desarrollo limitado de orden n y centro x = a de la función

$$h(x) = f[g(x)]$$

entonces sustituir g(x) por su desarrollo limitado de orden n y centro x = a.

Ejemplo 2.18. Considere la función

$$f(x) = \frac{1}{3 - 2x^2}$$

- (a) Halle el desarrollo limitado de orden 8 y centro x = 0 de f(x).
- (b) Halle el desarrollo limitado de orden 5 y centro x = 1 de f(x).

Solución:

(a) Note que

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + u^4 + \mathcal{O}(u^4) \quad \land \quad \mathcal{O}[(2x^2/3)^4] = \mathcal{O}(x^8)$$

luego

$$\begin{split} f(x) &= \frac{1}{3 - 2x^2} = \frac{1}{3} \frac{1}{1 - 2x^2/3} \\ &= \frac{1}{3} \cdot \left[1 + u + u^2 + u^3 + u^4 + \mathcal{O}(u^4) \right]_{u = 2x^2/3} \\ &= \frac{1}{3} \cdot \left[1 + \frac{2x^2}{3} + \frac{4x^4}{9} + \frac{8x^6}{27} + \frac{16x^8}{81} + \mathcal{O}(x^8) \right] \\ &= \frac{1}{3} + \frac{2x^2}{9} + \frac{4x^4}{27} + \frac{8x^6}{81} + \frac{16x^8}{243} + \mathcal{O}(x^8) \end{split}$$

La fórmula de Maclaurin de orden 8 es

$$\frac{1}{3 - 2x^2} = \frac{1}{3} + \frac{2x^2}{9} + \frac{4x^4}{27} + \frac{8x^6}{81} + \frac{16x^8}{243} + \mathcal{O}(x^8)$$

(b) Sea $w = x - 1 \implies x = 1 + w$

$$f(x) = \frac{1}{3 - 2x^2} = \frac{1}{3 - 2(1 + w)^2} = \frac{1}{3 - 2(1 + 2w + w^2)}$$
$$= \frac{1}{1 - 4w - 2w^2}$$

Sea $u = 4w + 2w^2 = 2(2w + w^2) \to 0$, entonces

$$f(x) = \frac{1}{1-u}$$

$$= 1 + u + u^2 + u^3 + u^4 + u^5 + \mathcal{O}(u^5)$$

$$= 1 + 4w + 2w^2 + 4(2w + w^2)^2 + 8(2w + w^2)^3$$

$$+ 16(2w + w^2)^4 + 32(2w + w^2)^5 + \mathcal{O}[32(2w + w^2)^5]$$

$$= 1 + 4w + 2w^2 + 4(4w^2 + 4w^3 + w^4) + 8(8w^3 + 12w^4 + 6w^5 + w^6)$$

$$+ 16[16w^4 + 4 \cdot 8w^5 + \mathcal{O}(w^5)] + 32[32w^5 + \mathcal{O}(w^5)] + \mathcal{O}(w^5)$$

$$= 1 + 4w + (2 + 16)w^2 + (16 + 64)w^3 + (4 + 96 + 256)w^4$$

$$+ (48 + 512 + 1024)w^5 + \mathcal{O}(w^5)$$

$$= 1 + 4w + 18w^2 + 80w^3 + 356w^4 + 1584w^5 + \mathcal{O}(w^5)$$

Se concluye que

$$\frac{1}{3-2x} = 1 + 4(x-1) + 18(x-1)^2 + 80(x-1)^3 + 356(x-1)^4 + 1584(x-1)^5 + \mathcal{O}[(x-1)^5]$$

es la fórmula de Taylor de orden 5 centrada en 1.

Nota 2.6. El software wxMaxima nos proporciona el comando taylor(f(x), x, a, n) para cálculo del polinomio de Taylor de orden n y de centro a de f(x)

[(%i4) taylor(1/(3-2*x^2) , x , 1 , 5); (%o5)
$$/T/$$
 1 + 4 $(x-1)$ + 18 $(x-1)^2$ + 80 $(x-1)^3$ + 356 $(x-1)^4$ + 1584 $(x-1)^5$ + ...

Ejemplo 2.19 (Ejercicio). Considere la función $f(x) = \frac{x}{2+3x}$.

- (a) Halle una fórmula de Maclaurin con resto, de orden 4 asociada a la función f(x).
- (b) Halle el desarrollo limitado, centrado en x = -3 y de orden 4 asociada a la función f(x).

Respuestas:

(a)
$$\frac{x}{2+3x} = \frac{x}{2} - \frac{3x^2}{4} + \frac{9x^3}{8} - \frac{27x^4}{16} - \frac{81x^5}{32(1+\theta)^5}$$
, $\theta \in V\left(0, \frac{3x}{2}\right)$

(b)
$$\frac{x}{2+3x} = \frac{3}{7} + \frac{2(x+3)}{49} + \frac{6(x+3)^2}{343} + \frac{18(x+3)^3}{2401} + \frac{54(x+3)^4}{16807} - \mathcal{O}[(x+3)^4]$$

Ejemplo 2.20 (Ejercicio). Considere la función $f(x) = \frac{1}{4 - x^2}$.

- (a) Halle una fórmula de Maclaurin con resto, de orden 4 asociada a la función f(x).
- (b) Halle el desarrollo limitado, centrado en x = -3 y de orden 4 asociada a la función f(x).

Respuestas:

(a)
$$\frac{1}{4-x^2} = \frac{1}{4} + \frac{x^2}{16} + \frac{x^4}{64} + \frac{x^6}{256(1-\theta)^4}$$
, $\theta \in V\left(0, \frac{x^2}{4}\right)$

(b) Al hacer w = x - 3 obtenemos

$$f(x) = \frac{1}{20} \cdot \frac{1}{1 + w/5} - \frac{1}{4} \cdot \frac{1}{1 + w}$$

luego

$$\frac{1}{4-x^2} = -\frac{1}{5} + \frac{6(x-3)}{25} - \frac{31(x-3)^2}{125} + \frac{156(x-3)^3}{625} - \frac{781(x-3)^4}{3125} - \mathcal{O}[(x-3)^4]$$

Ejemplo 2.21. Halle el desarrollo limitado de orden 5 de la función $f(x) = \ln \left[\cos(x)\right]$. (Ver **Ejercicio 2.39** en página 52)

Solución: Recordemos que

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + \frac{u^5}{5} + \mathcal{O}(u^5)$$

luego note que

$$\ln\left[\cos(x)\right] = \ln\left[1 + \cos(x) - 1\right]$$

sea $u = \left[\cos(x) - 1\right] \to 0$ cuando $x \to 0$, entonces

$$f(x) = \ln(1+u)$$

$$= \left[u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + \frac{u^5}{5} + \mathcal{O}(u^5)\right]_{u = \cos(x) - 1}$$

$$= \cos(x) - 1 - \frac{\left[\cos(x) - 1\right]^2}{2} + \frac{\left[\cos(x) - 1\right]^3}{3}$$

$$- \frac{\left[\cos(x) - 1\right]^4}{4} + \frac{\left[\cos(x) - 1\right]^5}{5} + \mathcal{O}\left[\left[\cos(x) - 1\right]^5\right]$$

tenemos que

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5) \iff \cos(x) - 1 = -\frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5)$$

$$\left[\cos(x) - 1\right]^2 = \left[-\frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5) \right]^2$$
$$= \frac{x^4}{4} - \frac{x^6}{24} + \frac{x^8}{24^2} + \mathcal{O}(x^7) = \frac{x^4}{4} + \mathcal{O}(x^5)$$

$$\left[\cos(x) - 1\right]^3 = \left[-\frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5) \right]^3$$
$$= -\frac{x^6}{8} + \mathcal{O}(x^6) = \mathcal{O}(x^5)$$

$$\left[\cos(x) - 1\right]^4 = \left[-\frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5) \right]^4$$
$$= \frac{x^8}{16} + \mathcal{O}(x^8) = \mathcal{O}(x^5)$$

$$\left[\cos(x) - 1\right]^5 = \left[-\frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5) \right]^5$$
$$= -\frac{x^{10}}{32} + \mathcal{O}(x^{10}) = \mathcal{O}(x^5)$$

$$f(x) = -\frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5) - \frac{1}{2} \left[\frac{x^4}{4} + \mathcal{O}(x^5) \right] + \mathcal{O}(x^5)$$
$$= -\frac{x^2}{2} - \frac{x^4}{12} + \mathcal{O}(x^5)$$

Ejemplo 2.22 (Ejercicio). Halle el desarrollo limitado de orden 5 de la función $f(x) = sen(e^x - 1)$.

Resp.
$$f(x) = x + \frac{x^2}{2} - \frac{5x^4}{24} - \frac{23x^5}{120} + \mathcal{O}(x^5)$$

Ejemplo 2.23 (Ejercicio). Calcule el desarrollo limitado de orden 12 centrado en 0 de la función:

$$f(x) = \operatorname{sen}\left[\cos(2x^2) - 1\right]$$

Resp.
$$f(x) = -2x^4 + \frac{2x^8}{3} + \frac{56x^{12}}{45} + \mathcal{O}(x^{12})$$

Ejemplo 2.24. Halle el desarrollo limitado de orden 5 de la función $f(x) = \tan(x)$

Solución:

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$
$$= \frac{x - \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^5)}{1 - \frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5)}$$

recordemos que

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + u^4 + u^5 + \mathcal{O}(u^5)$$

entonces

$$\frac{1}{1 - \frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}(x^5)} = \frac{1}{1 - \left[\frac{x^2}{2} - \frac{x^4}{24} + \mathcal{O}(x^5)\right]}$$

$$= 1 + \left[\frac{x^2}{2} - \frac{x^4}{24} + \mathcal{O}(x^5)\right] + \left[\frac{x^2}{2} - \frac{x^4}{24} + \mathcal{O}(x^5)\right]^2$$

$$+ \left[\frac{x^2}{2} - \frac{x^4}{24} + \mathcal{O}(x^5)\right]^3$$

$$+ \left[\frac{x^2}{2} - \frac{x^4}{24} + \mathcal{O}(x^5)\right]^4$$

$$+ \left[\frac{x^2}{2} - \frac{x^4}{24} + \mathcal{O}(x^5)\right]^5 + \mathcal{O}(x^{10})$$

$$= 1 + \frac{x^2}{2} - \frac{x^4}{24} + \mathcal{O}(x^5) + \frac{x^4}{4}$$

$$= 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \mathcal{O}(x^5)$$

Note que

$$\frac{1}{\cos(x)} = \sec(x) = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \mathcal{O}(x^5)$$

Luego

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$= \left[x - \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^5)\right] \cdot \left[1 + \frac{x^2}{2} + \frac{5x^4}{24} + \mathcal{O}(x^5)\right]$$

$$= x \cdot \left[1 + \frac{x^2}{2} + \frac{5x^4}{24} + \mathcal{O}(x^5)\right] - \frac{x^3}{6} \cdot \left[1 + \frac{x^2}{2} + \frac{5x^4}{24} + \mathcal{O}(x^5)\right]$$

$$+ \frac{x^5}{120} \cdot \left[1 + \frac{x^2}{2} + \frac{5x^4}{24} + \mathcal{O}(x^5)\right]$$

$$+ \mathcal{O}(x^5) \cdot \left[1 + \frac{x^2}{2} + \frac{5x^4}{24} + \mathcal{O}(x^5)\right]$$

$$= x + \frac{x^3}{2} + \frac{5x^5}{24} - \frac{x^3}{6} - \frac{x^5}{12} + \frac{x^5}{120} + \mathcal{O}(x^5)$$

$$= x + \frac{x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^5)$$

Ejemplo 2.25 (Ejercicio). Halle el desarrollo limitado de orden 6 de la función $f(x) = x \cot(x)$.

Resp.
$$f(x) = 1 - \frac{x^2}{3} - \frac{x^4}{45} - \frac{2x^6}{945} + \mathcal{O}(x^6)$$

Ejemplo 2.26 (Ejercicio). Halle el desarrollo limitado de orden 4 de la función $f(x) = \ln(1+x) \cdot \sec(x)$.

Resp.
$$f(x) = x - \frac{x^2}{2} + \frac{5x^3}{6} - \frac{x^4}{2} + \mathcal{O}(x^4)$$

Ejemplo 2.27 (Ejercicio). Halle el desarrollo limitado de orden 7 de la función $f(x) = \frac{\cos^2(x)}{1 + \ln(1 + x^3)}$.

Resp.
$$f(x) = 1 - x^2 - x^3 + \frac{x^4}{3} + x^5 + \frac{131 x^6}{90} - \frac{x^7}{3} + \mathcal{O}(x^7)$$

Ejemplo 2.28. Halle el desarrollo limitado de orden 5 de la función $f(x) = \cos(x)$ centrado en $x = \pi/4$.

Solución: Sea $w = x - \pi/4 \implies x = \pi/4 + w$, luego

$$\cos(x) = \cos(\pi/4 + w)$$

$$= \cos(\pi/4) \cos(w) - \sin(\pi/4) \sin(w)$$

$$= \frac{1}{\sqrt{2}} \left[1 - \frac{w^2}{2} + \frac{w^4}{24} + \mathcal{O}(w^5) \right] + \frac{1}{\sqrt{2}} \left[w - \frac{w^3}{6} + \frac{w^5}{120} + \mathcal{O}(w^5) \right]$$

$$= \frac{1}{\sqrt{2}} \left[1 + w - \frac{w^2}{2} - \frac{w^3}{6} + \frac{w^4}{24} + \frac{w^5}{120} + \mathcal{O}(w^5) \right]$$

$$= \frac{1}{\sqrt{2}} + \frac{x - \pi/4}{\sqrt{2}} - \frac{(x - \pi/4)^2}{2\sqrt{2}} - \frac{(x - \pi/4)^3}{6\sqrt{2}} + \frac{(x - \pi/4)^4}{24\sqrt{2}} + \frac{(x - \pi/4)^5}{120\sqrt{2}} + \mathcal{O}[(x - \pi/4)^5]$$

Ejemplo 2.29. Calcule el desarrollo limitado de orden 3 centrado en 2 de la función:

$$f(x) = \frac{1}{1 + \ln(x - 1)}$$

Solución: Sea $w = x - 3 \iff x = 2 + w$, entonces

$$\ln(x-1) = \ln(1+w) = w - \frac{w^2}{2} + \frac{w^3}{3} + \mathcal{O}(w^3)$$

también

$$\frac{1}{1 + \ln(x - 1)} = \frac{1}{1 + u} = 1 - u + u^2 - u^3 + \mathcal{O}(u^3)$$

donde

$$\begin{cases} u = w - \frac{w^2}{2} + \frac{w^3}{3} + \mathcal{O}(w^3) \to 0 &, \text{ si } x \to 0 \\ u^2 = \left[w - \frac{w^2}{2} + \frac{w^3}{3} + \mathcal{O}(w^3) \right]^2 = w^2 - w^3 + \mathcal{O}(w^3) \\ u^3 = u \cdot u^2 = \left[w - \frac{w^2}{2} + \frac{w^3}{3} + \mathcal{O}(w^3) \right] \cdot \left[w^2 - w^3 + \mathcal{O}(w^3) \right] = w^3 + \mathcal{O}(w^3) \end{cases}$$

se concluye que

$$\frac{1}{1+\ln(x-1)} = 1 - \left[w - \frac{w^2}{2} + \frac{w^3}{3} + \mathcal{O}(w^3)\right] + \left[w^2 - w^3 + \mathcal{O}(w^3)\right] - \left[w^3 + \mathcal{O}(w^3)\right]$$
$$= 1 - w + \frac{3w^2}{2} - \frac{7w^3}{3} + \mathcal{O}(w^3)$$

Se concluye que

$$\frac{1}{1 + \ln(x - 1)} = 1 - (x - 2) + \frac{3(x - 2)^2}{2} - \frac{7(x - 2)^3}{3} + \mathcal{O}[(x - 2)^3]$$

Ejemplo 2.30 (Ejercicio). Halle el desarrollo limitado de orden 6 y centro $\pi/6$ de la función f(x) = sen(2x).

Respuesta:

$$f(x) = \frac{\sqrt{3}}{2} + \left(x - \frac{\pi}{6}\right) - \sqrt{3}\left(x - \frac{\pi}{6}\right)^2 - \frac{2}{3}\left(x - \frac{\pi}{6}\right)^3 + \frac{\sqrt{3}}{3}\left(x - \frac{\pi}{6}\right)^4 + \frac{2}{15}\left(x - \frac{\pi}{6}\right)^5 - \frac{2\sqrt{3}}{45}\left(x - \frac{\pi}{6}\right)^6 + \mathcal{O}\left[\left(x - \frac{\pi}{6}\right)^6\right]$$

Ejemplo 2.31 (Ejercicio). Calcule el desarrollo limitado de orden 3 y centro 2 de la función $f(x) = \cos\left(\frac{x\pi}{3}\right)$.

Respuesta:
$$f(x) = -\frac{1}{2} - \frac{\pi\sqrt{3}(x-2)}{6} + \frac{\pi^2(x-2)^2}{36} + \frac{\pi^3\sqrt{3}(x-2)^3}{324} + \mathcal{O}[(x-2)^3]$$

Nota 2.7. Para todo a > 0 se cumple la igualdad

$$\ln(a+u) = \ln(a) + \ln\left(1 + \frac{u}{a}\right)$$

Ejemplo 2.32 (Ejercicio). Determine el desarrollo limitado de orden 4 y centro 6 de la función $f(x) = \ln(1+x)$.

Respuesta:

$$f(x) = \ln(7) + \frac{x-6}{7} - \frac{(x-6)^2}{98} + \frac{(x-6)^3}{1029} - \frac{(x-6)^4}{9604} + \mathcal{O}[(x-6)^4]$$

Ejemplo 2.33 (Ejercicio). Halle el desarrollo limitado de orden 5 y centro 3 de la función $f(x) = \ln(x)$.

Respuesta:

$$f(x) = \ln(3) + \frac{x-3}{3} - \frac{(x-3)^2}{2 \cdot 3^2} + \frac{(x-3)^3}{3^4} - \frac{(x-3)^4}{4 \cdot 3^4} + \frac{(x-3)^5}{5 \cdot 3^5} + \mathcal{O}[(x-3)^5]$$

Ejemplo 2.34 (Ejercicio). Calcule el desarrollo limitado de orden 4 y centro -2 de la función $f(x) = e^{3x}$.

Respuesta:

$$f(x) = \frac{1}{e^6} + \frac{3(x+2)}{e^6} + \frac{9(x+2)^2}{2e^6} + \frac{9(x+2)^3}{2e^6} + \frac{27(x+2)^4}{8e^6} + \mathcal{O}\left[(x+2)^4\right]$$

Ejemplo 2.35 (Ejercicio). Considerando la función $f(x) = 5^x$.

- (a) Halle el desarrollo limitado de orden 3 y centro 0 de la función f(x).
- (b) Halle el desarrollo limitado de orden 3 y centro 2 de la función f(x).

Respuesta:

(a)
$$f(x) = 1 + \ln(5) x + \frac{\ln^2(5)}{2} x^2 + \frac{\ln^3(5)}{6} x^3 + \mathcal{O}(x^3)$$

(b)
$$f(x) = 25 + 25 \ln(5) (x - 2) + \frac{25 \ln^2(5)}{2} (x - 2)^2 + \frac{25 \ln^3(5)}{6} (x - 2)^3 + \mathcal{O}[(x - 2)^3]$$

Ejemplo 2.36 (Ejercicio). Determine el desarrollo limitado de orden 3 y centro 7 de la función $f(x) = \sqrt[5]{x-4}$.

(Ver Nota 1.27)

Respuesta:

$$f(x) = \sqrt[5]{3} + \frac{\sqrt[5]{3}}{15} (x - 7) + \frac{2\sqrt[5]{3}}{225} (x - 7)^2 + \frac{2\sqrt[5]{3}}{1125} (x - 7)^3 + \mathcal{O}[(x - 7)^3]$$

Nota 2.8. Para todo $z \in \mathbb{R}$ es cumple que

$$\sin^{2}(z) = \frac{1}{2} - \frac{1}{2} \cdot \cos(2z) \quad \land \quad \cos^{2}(z) = \frac{1}{2} + \frac{1}{2} \cdot \cos(2z)$$

Ejemplo 2.37 (Ejercicio). Considere la función $f(x) = \cos^2(3x)$.

- (a) Calcule el desarrollo de Maclaurin de orden 6 asociado a f(x).
- (b) Calcule el desarrollo limitado de orden 6 y centro $\pi/12$ asociado a la función f(x).
- (c) Calcule el desarrollo limitado de orden 4 y centro $\pi/18$ asociado a la función f(x).

Respuestas:

(a)
$$f(x) = 1 - 9x^2 + 27x^4 - \frac{162x^6}{5} + \mathcal{O}(x^6)$$

(b)
$$f(x) = \frac{1}{2} - 3\left(x - \frac{\pi}{12}\right) + 18\left(x - \frac{\pi}{12}\right)^3 - \frac{162}{5}\left(x - \frac{\pi}{12}\right)^5 + \mathcal{O}\left[\left(x - \frac{\pi}{12}\right)^6\right]$$

(c)
$$f(x) = \frac{3}{4} - \frac{3\sqrt{3}}{2} \left(x - \frac{\pi}{18} \right) - \frac{9}{2} \left(x - \frac{\pi}{18} \right)^2 + 9\sqrt{3} \left(x - \frac{\pi}{18} \right)^3 + \frac{27}{2} \left(x - \frac{\pi}{18} \right)^4 + \mathcal{O}\left[\left(x - \frac{\pi}{18} \right)^4 \right]$$

Ejemplo 2.38 (Ejercicio). Halle el desarrollo de Maclaurin de orden 7 de la función $f(x) = [\cos(x)]^{\sin(x)}$.

Resp.
$$f(x) = 1 - \frac{x^3}{2} + \frac{x^6}{8} - \frac{x^7}{80} + \mathcal{O}(x^7)$$

Ejemplo 2.39 (Ejercicio). Calcule el desarrollo de Maclaurin de orden 8 asociado a $f(x) = \ln \left[\cos(x)\right]$. (Ver **Ejemplo 2.21** en página 47)

Resp.
$$f(x) = -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} - \frac{17x^8}{2520} + \mathcal{O}(x^8)$$

2.3 Cálculo de límites

Nota 2.9. Considere un límite de la forma

$$L = \lim_{x \to a} \frac{f(x)}{g(x)}$$

tal que f(x), $g(x) \to 0$ cuando $x \to a$.

Si f(x) y g(x) admiten desarrollos limitados centrados en a, de orden n con coeficientes generales a_k y b_k respectivamente, entonces

$$L = \lim_{x \to a} \frac{a_0 + a_1 (x - a) + \dots + a_n (x - a)^n + \mathcal{O}[(x - a)^n]}{b_0 + b_1 (x - a) + \dots + b_n (x - a)^n + \mathcal{O}[(x - a)^n]}$$

Note que

$$\mathcal{O}[(x-a)^n] \xrightarrow[x\to a]{} 0$$

Si $a_0 \neq 0 \lor b_0 \neq 0$, entonces $L = a_0/b_0$.

Ejemplo 2.40.

$$\lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} = \lim_{x \to 0} \frac{1}{x} \left[x - \frac{x^3}{6} + \mathcal{O}(x^4) \right] = \lim_{x \to 0} \left[1 - \frac{x^2}{5} + \mathcal{O}(x^3) \right] = 1 - 0 + 0 = 1$$

Ejemplo 2.41.

$$\lim_{x \to 0} (1+2x)^{3/x} = \lim_{x \to 0} \exp\left[\frac{3}{x}\ln(1+2x)\right]$$
$$= \lim_{x \to 0} \exp\left[\frac{3}{x}\left(2x + \mathcal{O}(x)\right)\right]$$
$$= \lim_{x \to 0} \exp\left[6 + \mathcal{O}(1)\right]$$
$$= \exp(6+0) = e^6$$

Nota 2.10. Podemos verificar el resultado anterior usando el software wxMaxima:

Nota 2.11. El orden de los desarrollos limitados se escoge de manera tal que el límite no se reduzca a una forma indeterminada, en caso contrario es necesario usar desarrollos limitados de un orden mayor.

Nota 2.12. Si $\alpha, \beta \neq 0$, cuando $x \to 0$

(a)
$$\frac{\alpha + \mathcal{O}(1)}{\beta + \mathcal{O}(1)} \to \frac{\alpha}{\beta}$$
 (c) $\frac{\alpha + \mathcal{O}(1)}{\mathcal{O}(1)} \to \infty$ (d) $\frac{\mathcal{O}(1)}{\beta + \mathcal{O}(1)} \to 0$ (d) $\frac{\mathcal{O}(1)}{\mathcal{O}(1)} \to \frac{0}{0}$ es forma indeterminada.

Ejemplo 2.42. Usando desarrollos limitados, calcule

$$L = \lim_{x \to 0} \frac{\sqrt[3]{8 - x} - \sqrt{4 + 3x}}{\sqrt[7]{1 - 2x^2} - \sqrt[5]{1 + 4x}}$$

Solución: L = 0/0 es una forma indeterminada.

Recordemos que

$$(1+x)^{\alpha} = 1 + \alpha x + \mathcal{O}(x)$$

entonces

$$L = \lim_{x \to 0} \frac{\sqrt[3]{8} \left(1 - \frac{x}{8}\right)^{1/3} - \sqrt{4} \left(1 + \frac{3x}{4}\right)^{1/2}}{\left(1 - 2x^2\right)^{1/7} - \left(1 + 4x\right)^{1/5}}$$

$$= 2 \lim_{x \to 0} \frac{1 - \frac{1}{3} \cdot \frac{x}{8} + \mathcal{O}(x) - \left[1 + \frac{1}{2} \cdot \frac{3x}{4} + \mathcal{O}(x)\right]}{1 - \frac{1}{7} \cdot 2x^2 + \mathcal{O}(x^2) - \left[1 + \frac{1}{5} \cdot 4x + \mathcal{O}(x)\right]}$$

$$= 2 \lim_{x \to 0} \frac{\left(-\frac{1}{24} - \frac{3}{8}\right) x + \mathcal{O}(x)}{-\frac{4}{5} \cdot x + \mathcal{O}(x)}$$

$$= 2 \lim_{x \to 0} \frac{\frac{-5x}{12} + \mathcal{O}(x)}{\frac{4x}{5} + \mathcal{O}(x)}$$

$$= \lim_{x \to 0} \frac{25 + \mathcal{O}(1)}{24 + \mathcal{O}(1)}$$

$$= \frac{25}{24}$$

Ejemplo 2.43. Usando desarrollos limitados, calcule

$$L = \lim_{x \to 0} \frac{e^{\arctan(x)} - 1 - x}{\ln(1 - 3x^2)}$$

Solución: L = 0/0 es una forma indeterminada.

Tenemos que

$$\arctan(x) = x + \mathcal{O}(x^2) \to 0$$

luego

$$\begin{split} e^{\arctan(x)} &= 1 + \left[\arctan(x)\right] + \frac{1}{2}\left[\arctan(x)\right]^2 + \mathcal{O}\left[\left[\arctan(x)\right]^2\right] \\ &= 1 + \left[x + \mathcal{O}(x^2)\right] + \frac{1}{2}\left[x + \mathcal{O}(x^2)\right]^2 + \mathcal{O}\left[\left[x + \mathcal{O}(x^2)\right]^2\right] \\ &= 1 + x + \frac{x^2}{2} + \mathcal{O}(x^2) \end{split}$$

también

$$\ln(1 - 3x^2) = [u + \mathcal{O}(u)]_{u = -3x^2} = -3x^2 + \mathcal{O}(x^2)$$

$$\therefore L = \lim_{x \to 0} \frac{e^{\arctan(x)} - 1 - x}{\ln(1 - 3x^2)}$$

$$= \lim_{x \to 0} \frac{1 + x + \frac{x^2}{2} + \mathcal{O}(x^2) - 1 - x}{-3x^2 + \mathcal{O}(x^2)}$$

$$= \lim_{x \to 0} \frac{\frac{x^2}{2} + \mathcal{O}(x^2)}{-3x^2 + \mathcal{O}(x^2)}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2} + \mathcal{O}(1)}{-3 + \mathcal{O}(1)}$$

$$= -\frac{1}{6}$$

Ejemplo 2.44 (Ejercicio). Usando desarrollos limitados, calcule

$$L = \lim_{x \to 0} \frac{\ln(1+5x^2) - x \operatorname{sen}(x)}{\cos(6x) - 1}$$

Resp. $/ L = -\frac{2}{9}$

Nota 2.13 (Cambio de Variable).

(a) $x \to a \iff w = x - a \to 0$, entonces

$$\boxed{\lim_{x \to a} f(x) = \lim_{w \to 0} f(a+w)}$$

(b) $x \to \infty \iff w = 1/x \to 0$, entonces

$$\lim_{x \to \infty} f(x) = \lim_{w \to 0} f(1/w)$$

Ejemplo 2.45. Usando desarrollos limitados calcule

$$L = \lim_{x \to 1} \frac{\operatorname{sen}^2(\pi x)}{x - 1 - \ln(x)}$$

Solución:

Sea
$$w = x - 1 \iff x = 1 + w$$

$$\lim_{x \to 1} \frac{\sin^2(\pi x)}{x - 1 - \ln(x)} = \lim_{w \to 0} \frac{\sin^2(\pi + \pi w)}{w - \ln(1 + w)}$$

$$= \lim_{w \to 0} \frac{\left[\sin(\pi)\cos(\pi w) + \cos(\pi)\sin(\pi w)\right]^2}{w - \ln(1 + w)}$$

$$= \lim_{w \to 0} \frac{\left[0 - \sin(\pi w)\right]^2}{w - \ln(1 + w)}$$

$$= \lim_{w \to 0} \frac{\sin^2(\pi w)}{w - \ln(1 + w)}$$

$$= \lim_{w \to 0} \frac{\left[\pi w + \mathcal{O}(w^2)\right]^2}{w - \left[w - w^2/2 + \mathcal{O}(w^2)\right]}$$

$$= \lim_{w \to 0} \frac{\pi^2 w^2 + \mathcal{O}(w^2)}{w^2/2 + \mathcal{O}(w^2)}$$

$$= \lim_{w \to 0} \frac{\pi^2 + \mathcal{O}(1)}{1/2 + \mathcal{O}(1)}$$

$$= 2\pi^2$$

Nota 2.14. Podemos verificar el resultado anterior usando el software wxMaxima:

[(%i6) limit(
$$\sin(\%pi*x)^2/(x-1-\log(x)), x, 1$$
); (%o7) $2\pi^2$

Ejemplo 2.46. Use desarrollos limitados para calcular el siguiente límite

$$L = \lim_{x \to +\infty} \frac{\sqrt{x} \cdot \ln(1+x) - \sqrt{x} \cdot \ln(x)}{\sqrt{1+4x} - 2\sqrt{x}}$$

Solución:

Sea w = 1/x, entonces

$$\begin{split} L &= \lim_{w \to 0^+} \frac{\sqrt{1/w} \cdot \ln(1+1/w) - \sqrt{1/w} \cdot \ln(1/w)}{\sqrt{1+4/w} - 2\sqrt{1/w}} \\ &= \lim_{w \to 0^+} \frac{\ln(1+1/w) + \ln(w)}{\sqrt{w} \cdot \left[\sqrt{1+4/w} - 2\sqrt{1/w}\right]} \\ &= \lim_{w \to 0^+} \frac{\ln\left[(1+1/w) \cdot w\right]}{\sqrt{w+4} - 2\sqrt{1}} \\ &= \lim_{w \to 0^+} \frac{\ln(1+w)}{2\sqrt{1+w/4} - 2} \\ &= \lim_{w \to 0^+} \frac{w + \mathcal{O}(w)}{2\left[1+1/2 \cdot w/4 + \mathcal{O}(w)\right] - 2} \\ &= \lim_{w \to 0^+} \frac{w + \mathcal{O}(w)}{w/4 + \mathcal{O}(w)} \\ &= 4 \end{split}$$

Ejemplo 2.47. Use desarrollos limitados para calcular el siguiente límite

$$L = \lim_{x \to 3} \frac{x - 1 - 2\sqrt{x - 2}}{\ln(x - 2) - x + 3}$$

Solución: Haciendo $w = x - 3 \iff x = 3 + w$:

$$\begin{split} L &= \lim_{x \to 3} \frac{x - 1 - 2\sqrt{x - 2}}{\ln(x - 2) - x + 3} \\ &= \lim_{w \to 0} \frac{2 + w - 2\sqrt{1 + w}}{\ln(1 + w) - w} \\ &= \lim_{w \to 0} \frac{2 + w - 2\left[1 + \frac{1}{2}w + \frac{1}{2}\left(\frac{1}{2} - 1\right) \ w^2/2 + \mathcal{O}(w^2)\right]}{w - w^2/2 + \mathcal{O}(w^2) - w} \\ &= \lim_{w \to 0} \frac{w^2/4 + \mathcal{O}(w^2)}{-w^2/2 + \mathcal{O}(w^2)} \\ &= \lim_{w \to 0} \frac{1/4 + \mathcal{O}(1)}{-1/2 + \mathcal{O}(1)} \\ &= \frac{3/4 + 0}{-1/2 + 0} \\ &= -\frac{1}{2} \end{split}$$

Ejemplo 2.48. Use desarrollos limitados para calcular el siguiente límite

$$L = \lim_{x \to +\infty} \left[\ln \left(1 + \frac{1}{x} \right) + \frac{x - 1}{x} \right]^{x^2}$$

Solución: Haciendo $w = 1/x \iff x = 1/w$:

$$L = \lim_{x \to +\infty} \left[\ln \left(1 + \frac{1}{x} \right) + \frac{x - 1}{x} \right]^{x^2}$$

$$= \lim_{w \to 0} \left(\ln(1 + w) + 1 - w \right)^{1/w^2}$$

$$= \lim_{w \to 0} \left(w - \frac{w^2}{2} + \mathcal{O}(w^2) + 1 - w \right)^{1/w^2}$$

$$= \lim_{w \to 0} \left(1 - \frac{w^2}{2} + \mathcal{O}(w^2) \right)^{1/w^2}$$

$$= \exp \left[\lim_{w \to 0} \frac{1}{w^2} \cdot \ln \left(1 - \frac{w^2}{2} + \mathcal{O}(w^2) \right) \right]$$

$$= \exp \left[\lim_{w \to 0} \frac{1}{w^2} \cdot \left(-\frac{w^2}{2} + \mathcal{O}(w^2) \right) \right]$$

$$= \exp \left[\lim_{w \to 0} \left(-\frac{1}{2} + \mathcal{O}(1) \right) \right]$$

$$= \exp \left[-\frac{1}{2} \right]$$

$$= e^{-1/2}$$

Ejemplo 2.49 (Ejercicio). Usando desarrollos limitados, calcule

$$L = \lim_{x \to 2} \left[\ln(x-1) - x + 3 \right]^{(x-2)^{-2}}$$

Resp.
$$/$$
 $L = \frac{1}{\sqrt{e}}$

Referencias

- [1] Pisa Volio E., *Introducción al Análisis real en una variable*, Editorial de la Universidad de Costa Rica, Costa Rica, 2003
- [2] Poltronieri J., Cálculo 2, Serie: Cabécar, Costa Rica, 1998
- [3] Duarte A. & Cambronero S., Complementos de Cálculo, 2011
- [4] Spivak M., Cálculo Infinitesimal, Editorial Reverté, 1988
- [5] Demidovich B., Problemas y Ejercicios de Análisis Matemático, Editorial Mir, Moscú, URSS, 1973
- [6] Piskunov N., Cálculo diferencial e integral. tomo II, Editorial Mir, Moscú, 1978
- [7] Doneddu A., Análisis y Geometría Diferencial, Editorial Aguilar, Espaã, 1979
- [8] Larson R., Hostetler, Cálculo y Geometría Analítica, Editorial McGraw-Hill, México, 1989
- [9] Edwards C.H & Penney D. E., Cálculo con Geometría Analítica, Prentice Hall Hispanoamericana, México, 1996
- [10] Spiegel M. R., Manual de fórmulas y tablas matemáticas, Editorial McGraw-Hill, México, 1970