OVERVIEW

Deep Learning Pre-Work

This file is meant for personal use by brentjones@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

Agenda

- Introduction
- Use Cases
- Pre-work Overview

The Biological Neuron

The Human Brain

Biological vs Artificial Neurons

Deep Learning

Use Cases

Sephora

SEPHORA

Google DeepMind

Tesla

Google Translate

Pre-work Overview

Neurons and Layers

Machine Learning

$\begin{array}{c} \sum_{i=1}^{n} \left[\frac{x_{i+1}}{n} \right] \left[x_{n} \right] \subset R \\ y_{n} = \sum_{i=1}^{n} \left[\frac{x_{n}}{n} \right] \left[\frac{x$

Hyperparameter Selection

Source: Wikimedia Commons

Source: Wikimedia Commons

What part of the architecture machine learning learns, and what hyperparameters can be controlled

Math

Code

Source: Wikimedia Commons

This file is meant for personal use by brentjones@gmail.com only.

Proprietary content. @ Great learning. All Rights Reserved. Unduring the or distribution prohibited.