LÓGICA CUANTIFICIONAL: ENFOQUE AXIOMÁTICO SISTEMA FORMAL CUANTIFICACIONAL $SF_1 = \langle L_1, Ax_1, RT_1 \rangle$

CÁLCULO CUANTIFICACIONAL $L_1 = \langle Alf_1, RF_1 \rangle$	
	ALFABETO Alf_1 .
SIGNOS PRIMITIVOS	
Constantes individuales (A_c)	$a, b, c, d, e, a_i, b_i, c_i, d_i, e_i$ Los subíndices i son números naturales.
Variables individuales (A_v)	$u, v, x, y, z, u_i, v_i, x_i, y_i, z_i$ Los subíndices i son números naturales.
Funciones (A_f)	f, g , h , i , j , k , g _{i} , h _{i} , i _{i} , j _{i} , k _{i} Los subíndices i son números naturales.
Signos de puntuación	Paréntesis izquierdo (, y derecho); la coma,
Conectivos lógicos primarios	¬,V
Predicados (A_{p_1})	$l, m, n, o, p, q, r, s, t, l_i, m_i, n_i, o_i, p_i, q_i, r_i, s_i, t_i$ Los subíndices i son números naturales.
Cuantificador universal	A
SIGNOS COMPLEMENTARIOS	
Conectivos lógicos secundarios:	$\land,\rightarrow,\leftrightarrow$
Cuantificador existencial	Е

REGLAS DE FORMACIÓN DE FÓRMAS DECLARARTIVAS RF ₁
BÁSICAS
Definición de forma declarativa simple
RFC1. Cualquier <u>fórmula atómica</u> es una fbf
Definición de forma declarativa negada
RFP2. Si R es una fbf, entonces ¬R es una fbf.
Definición de forma declarativa disyuntiva
RFP3. Si R y S son fbfs, entonces R v S es una fbf.
Definición de forma declarativa agrupada
RFP4. Si R es una fbf, entonces (R) también es una fbf
Definición de forma declarativa universalmente cuantificada
RFC2. Si R es una fbf y x pertenece a A_v , entonces $\forall x$ R es una fbf.

Una fórmula atómica, átomo, literal, forma declarativa simple, o función proposicional simple^I, se estructura así: $p(t_1, t_2, ..., t_n)$; donde p es un símbolo de predicado, $t_1, t_2, ..., t_n$ son términos, y n es la cantidad de términos.

Cuando al símbolo de predicado no le siguen términos encerrados en paréntesis la fbf se convierte en p. Ello significa que "cualquier elemento del conjunto A_{p_0} también es una fbf en el cálculo

¹ No confundir con el concepto de signo primitivo para función para representar términos.

cuantificacional".

Los *términos* son símbolos que se emplean para hacer referencia a objetos o individuos de cualquier índole (persona, animal o cosa). Según el conocimiento que se tenga para determinar al individuo, se recurre a:

- Un símbolo de constante. Se emplea para simbolizar a un individuo que está completamente determinado. Se recurre, entonces, al uso de cualquier signo perteneciente a A_c .
- Un símbolo de variable. Se usa para hacer referencia a un individuo que no se conoce con certeza. Se apela al uso de cualquier signo de A_n .
- Una secuencia de signos $f(t_1, t_2, ..., t_m)$, donde $t_1, t_2, ..., t_m$ son a su vez términos; f es un símbolo de A_f , y m es el número de términos de la función. Los términos tipo función se emplean cuando se requiere determinar al individuo f() a través de una regla (de una instrucción o de una indicación directa) en la que se involucran otros individuos $t_1, t_2, ..., t_m$.

COMPLEMENTARIAS

Definición de forma declarativa conjuntiva

RFP5. Sean R y S fbfs, entonces la fórmula R \(\Lambda \) S se considera bien formada y se define como:

$$\neg(\neg R \lor \neg S)$$

Definición de forma declarativa condicional

RFP6. Sean R y S fbfs, entonces la fórmula $R \rightarrow S$ se considera bien formada y se define como:

$$\neg R \lor S$$

Definición de forma declarativa bicondicional

RFP7. Sean R y S fbfs, entonces la fórmula R \leftrightarrow S se considera bien formada y se define como:

$$(R \rightarrow S) \land (S \rightarrow R)$$

Definición de forma declarativa existencialmente cuantificada

RFC3. Si R es una fbf, entonces $\exists x$ R es una fbf; que se define como:

$$\neg \forall x \neg F$$

RFC4. Una secuencia de símbolos del alfabeto Alf_1 es una fbf del cálculo L_1 si, y sólo si, puede obtenerse de las anteriores reglas de formación.

Conceptos básicos	
Ámbito o alcance de un cuantificador	Es el conformado por el símbolo de variable que acompaña al cuantificador y la fbf más cercana que le sigue a esa variable.
Ocurrencia de una variable x en una fbf P	Es cada aparición del símbolo x en la fbf P.
Ocurrencia ligada de la variable x en una fbf P	Se dice de la ocurrencia de x que cae en el ámbito de algún cuantificador y coincide con el signo de variable que acompaña al cuantificador. Nota: cuando la ocurrencia de un símbolo de variable cae en el ámbito de más de un cuantificador, se liga al más cercano; éste es el que realmente la cuantifica.
Ocurrencia libre de la variable x en una fbf P	Se dice de la ocurrencia de <i>x</i> que NO cae en el ámbito de algún cuantificador, o si lo hace no coincide con el signo de variable que acompaña al cuantificador.
Una fbf P es <i>libre</i> de la variable x	si la variable x no aparece en P, o si cada ocurrencia de x es ligada en P. Nota: Cuando no se conoce la fbf representada por P y NO se informa si ésta es libre o no de una variable, se asume que ella No es libre de esa variable.
Una fbf P se dice cerrada	si, y sólo si, P es libre de toda variable.
Una fbf P se dice abierta ²	si, y sólo si, P no se encuentra libre de al menos una variable.
Un término t es <i>libre</i> de la variable x en una fbf P. 3	cuando ninguna ocurrencia libre de x cae en el ámbito de un cuantificador $\forall y$ (o $\exists y$), donde y es una variable que ocurre en t . ⁴
Particularización de una fbf P, $P_{x t}$	Es la fbf que se obtiene de la fbf P mediante el reemplazo de las ocurrencias libres de x por un término t ; t debe ser <i>libre</i> de la variable x en P. Obviamente, si P es libre de la variable x , la particularización $P_{x t}$ produce P.
Una <i>Variante</i> de la fbf $\forall x P$ es la fbf $\forall y P_{x y}$ ($\exists y P_{x y}$ es variante de $\exists x P$)	Al decidir el cambio del símbolo de la variable cuantificada "previa" x por la "nueva" y , el reemplazo de las ocurrencias libres de x mediante la particularización en la fbf P debe garantizarse que y sea <i>libre</i> de la variable x en P.

² Algunos autores también la denominan *función proposicional*.

³ Nota: El uso de la letra *t* puede causar confusión pues es una de las disponibles para representar predicados. Su empleo en este nuevo concepto se deberá entender como "cualquiera de las 3 formas de representar los objetos que aparecen en los predicados": símbolo de constante, símbolo de variable o una secuencia de función $\hat{f}(t_1, t_2, ..., t_m)$

⁴ Esto se analiza para evitar que la nueva variable pase a ser ligada o que, de alguna forma, cambie el cuantificador que la cuantifica.

AXIOMAS Ax_1	
AP1. (Adición)	$P \to P \vee Q$
AP2. (Idempotencia)	$P \vee P \to P$
AP3. (Conmutatividad)	$P \vee Q \to Q \vee P$
AP4. (Adición con ∨ a la condicional)	$(P \to Q) \to (R \lor P \to R \lor Q)$
AC	$\forall x (P \to Q) \to (P \to \forall x Q)$ P es una fbf libre de x.

ARGUMENTOS VÁLI	${f DOS}$ (REGLAS DE VALIDÉS, O DE INFERENCIA) ${\it RV}_1$
BÁSICOS (suministrados)	
Todas las RVs básicas y deducibles de la Lógica proposicional RT ₀	
Ejemplificación Universal (E. U.)	$\forall x \ P \vdash P_{x t}$ El término t es libre de la variable x en la fbf P .
	$\exists x \ P \vdash P_{x t}$
	El término t es libre de la variable x en la fbf P.
Ejemplificación Existencial (E.E.)	Tenga en cuenta:
Ejempinicación Existenciai (E.E.)	■ El término <i>t</i> no puede emplearse si aparece como <i>variable</i> con ocurrencia libre o como <i>constante</i> en: a) alguna de las fbfs que representan las premisas o la conclusión, b) en alguna de las fbfs de los pasos previos de la deducción.
	$P \vdash \forall x P$
Generalización Universal (G.U.)	Tenga en cuenta:
	 No haga G.U. sobre ningún término de una fbf P si en ésta aún existen términos producidos en pasos previos mediante E.E.
Generalización Existencial (G.E.)	$P \vdash \exists x P$
DEDUCIBLES	
Teorema TC1a	$\vdash \forall x P \leftrightarrow P$ P es una fbf libre de x.
Teorema TC1b	$\vdash \exists x P \leftrightarrow P$ P es una fbf libre de x.
Teorema TC2a (RFC3)	$\vdash \exists x \ P \leftrightarrow \neg \forall x \ \neg P$

Teorema TC2b	$\vdash \forall x \ P \leftrightarrow \neg \exists x \neg P$
Teorema TC2c	$\vdash \neg \forall x \ P \leftrightarrow \exists x \neg P$
Teorema TC2d	$\vdash \neg \exists x \ P \leftrightarrow \forall x \neg P$
Teorema TC3a (Negación con varios cuantifics.)	$\vdash \neg \forall x \forall y \ P \leftrightarrow \exists x \exists y \neg P$
Teorema TC3b (Negación con varios cuantifics.)	$\vdash \neg \exists x \exists y \ P \leftrightarrow \forall x \forall y \ \neg P$
Teorema TC3c (Negación con varios cuantifics.)	$\vdash \neg \forall x \exists y \ P \leftrightarrow \exists x \forall y \ \neg P$
Teorema TC3d (Negación con varios cuantifics.)	$\vdash \neg \exists x \forall y \ P \leftrightarrow \forall x \exists y \ \neg P$
Teorema TC4a (Conmutación de cuantifics.)	$\vdash \forall x \forall y \ P \leftrightarrow \forall y \forall x \ P$
Teorema TC4b (Conmutación de cuantifics.)	$\vdash \exists x \exists y \ P \leftrightarrow \exists y \exists x \ P$
Teorema TC5	$\exists y \forall x \ P \vdash \forall x \exists y \ P$
Teorema TC6a	$\vdash \forall x \ (P \lor Q) \leftrightarrow P \lor \forall xQ$ La fbf P es libre de la variable x.
Teorema TC6b	$\vdash \exists x \ (P \land Q) \leftrightarrow \exists x P \land Q$ La fbf Q es libre de la variable x.
Teorema TC7a	$\forall x P \lor \forall x Q \vdash \forall x (P \lor Q)$
Teorema TC7b	$\exists x (P \land Q) \vdash \exists x P \land \exists x Q$
Teorema TC8a	$\vdash \forall x (P \land Q) \leftrightarrow \forall x P \land \forall x Q$
Teorema TC8b	$\vdash \exists x (P \lor Q) \leftrightarrow \exists x P \lor \exists x Q$
Teorema TC9	$\vdash \forall x P \lor \forall y Q \leftrightarrow \forall x \forall y (P \lor Q)$ Donde la fbf P es libre de la variable y, y la fbf Q es libre de la variable x.
Teorema TC10	$\forall x (P \to Q), \forall x P \vdash \forall x Q$
Teorema TC10b	$\forall x (P \to Q), \exists x P \vdash \exists x Q$
Teorema TC11	$\forall x (P \to Q) \vdash \forall x P \to \forall x Q$
Teorema TC11b	$\forall x (P \to Q) \vdash \exists x P \to \exists x Q$
Teorema TC12	$\vdash \forall x (P \to Q) \leftrightarrow (\exists x P \to Q)$ Donde la fbf Q es libre de la variable x.
Teorema TC12b	$\vdash \forall x (P \to Q) \leftrightarrow (P \to \forall x Q)$ Donde la fbf P es libre de la variable x.
Teorema TC12c	$\vdash \exists x (P \to Q) \leftrightarrow (P \to \exists x Q)$ Donde la fbf P es libre de la variable x.
Teorema TC12d	$\vdash \exists x (P \to Q) \leftrightarrow (\forall x P \to Q)$ Donde la fbf Q es libre de la variable x.

Teorema TC12e	$\vdash \forall x P \lor \forall x Q \leftrightarrow (\exists x \neg P \rightarrow \forall x Q)$
Teorema TC12f	$\vdash \exists x P \lor \exists x Q \leftrightarrow (\forall x \neg P \rightarrow \exists x Q)$
Teorema TC12g	$\forall x P \lor \forall x Q, \exists x \neg P \vdash \forall x Q$
Teorema TC12h	$\exists x P \lor \exists x Q, \forall x \neg P \vdash \exists x Q$
Teorema TC13	$\vdash \exists x (P \to Q) \leftrightarrow (\forall x P \to \exists x Q)$
Teorema TC13b	$\exists x P \to \exists x Q \vdash \forall x P \to \exists x Q$
Teorema TC13c	$\exists x P \to \exists x Q \vdash \exists x (P \to Q)$
Teorema TC14	$\exists x P \to \forall x Q \vdash \forall x (P \to Q)$
Teorema TC14b	$\forall x P \to \forall x Q \vdash \exists x (P \to Q)$
Teorema TC15	$\exists x P \to \forall x Q \vdash \forall x P \to \forall x Q$
Teorema TC16	$\vdash \forall x \forall y \forall z (P \land Q \rightarrow R) \leftrightarrow \forall x \forall z (\exists y (P \land Q) \rightarrow R)$ Donde la fbf P es libre de la variable z, la fbf Q es libre de la variable x, y la fbf R es libre de la variable y.
Teorema TC17	$\forall x (P \leftrightarrow Q) \vdash \forall x P \leftrightarrow \forall x Q$
Teorema TC17b	$\forall x (P \leftrightarrow Q) \vdash \exists x \neg P \leftrightarrow \exists x \neg Q$