A modalidade quântica do conhecimento Jogos e decisão

Rui Vilela Mendes UTL e GFM

- 1. Uma noção operacional de "conhecimento"
- 2. Formalização do processo de observação. A algebra da medida
- 3. Codificações. O espaço de Hilbert como codificação da incompatibilidade
- 4. Algumas consequências da modalidade quântica. Sobreposição e entrelaçamento
- 5. Observáveis não-compatíveis na Natureza
- 6. Jogos. Equilíbro de Nash e jogos quânticos
- 7. Um enquadramento computacional para problemas de decisão

1. Uma noção operacional de conhecimento

- "Conhecimento" = { Capacidade de prever o resultado duma acção }
- ◆ { Capacidade de prever o resultado duma acção } ← { Regras + consequências }
- ◆ A natureza dinâmica (temporal) do conhecimento humano!
- {Aquisição de conhecimento} = {1. Perguntas
 - 2. Registo das respostas
 - 3. Compressão da informação}

As formigas e a compressão da informação

(Reznikova e Ryabko)

No.	SEQUENCE OF	MEAN TIME	SAMPLE STANDARD	NUMBER
	TURNS TO SYRUP	SEC.	DEVIATION	OF TESTS
1	LLL	72	8	18
2	RRR	75	5	15
3	LLLLLL	84	6	9
4	RRRRR	78	8	10
5	LLLLL	90	9	8
6	RRRRRR	88	9	5
7	LRLRLR	130	11	4
3	RLRLRL	135	9	8
9	LLR	69	4	12
10	LRLL	100	11	10
11	RLLLR	120	9	6
12	RRLRL	150	16	8
13	RLRRRL	180	20	6
14	RRLRRR	220	15	7
15	LRLLRL	200	18	5_

1. Uma noção operacional de conhecimento

- "Conhecimento" = { Capacidade de prever o resultado duma acção }
- ◆ { Capacidade de prever o resultado duma acção } ← { Regras + consequências }
- ◆ A natureza dinâmica (temporal) do conhecimento humano!
- {Aquisição de conhecimento} = {1. Perguntas
 - 2. Registo das respostas
 - 3. Compressão da informação}
- As perguntas podem ser reduzidas a perguntas binárias ("SIM", "NÃO")

- 2. Formalização do processo de observação. A algebra da medida (J. Schwinger)
- ◆ Instrumentos ⇔ Observáveis (a)
- ◆ Medição ⇔ Filtragem dum conjunto
- ◆ Símbolo de medida : a ⇔ M(a)

A matemática como metáfora

 Considerando a Matemática como uma Metáfora, a própria interpretação do conhecimento matemático é um acto altamente criativo.

Num certo sentido a Matemática é uma novela acerca da Natureza e da Humanidade. E não se pode dizer precisamente o que é que a Matemática nos ensina, do mesmo modo que não se pode dizer exactamente o que a leitura de "Guerra e Paz" nos ensina.

O conhecimento é incorporado ele próprio no acto de repensar esse ensinamento.

(Y. I. Manin)

A matemática como metáfora

Considerando a Matemática como uma Metáfora, a própria interpretação do conhecimento matemático é um acto altamente criativo.
 Num certo sentido a Matemática é uma novela acerca da Natureza e da Humanidade. E não se pode dizer precisamente o que é que a Matemática nos ensina, do mesmo modo que não se pode dizer exactamente o que a leitura de "Guerra e Paz" nos ensina.
 O conhecimento é incorporado ele próprio no acto de repensar esse ensinamento.
 (Y. I. Manin)

 Usemos pois a matemática, construindo uma algebra para os símbolos de medida

Algebra dos simbolos de medida (uma observável)

$$M(a) + M(a') = M(a') + M(a)$$
 $\sum_{i} M(a^{i}) = 1$
 0
 $M(a).M(a') = \delta (a,a') M(a)$
 $1.1 = 1$
 $0.0 = 0$
 $1.0 = 0.1 = 0$
 $1.M(a) = M(a).1 = M(a)$
 $0.M(a) = M(a).0 = 0$
 $M(a) + 0 = M(a)$

filtros em paralelo comutam

1 = passa tudo

filtro que rejeita tudo
dois filtros sucessivos

Observáveis compatíveis A={a₁,a₂,a₃, ...}

$$M(a_i) M(a_k) M(a_i) = M(a_k) M(a_i)$$

(filtragem em relação a qualquer observável não altera a pureza do conjunto selecionado por qualquer outra)

$$M(a_i)M(a_k)=M(a_k)M(a_i)$$
 comutatividade

Conjunto completo de observáveis compatíveis A

A medição duma qualquer observável que não seja função das observáveis em A produz um conjunto no qual as observáveis de A já não têm valores definidos.

(a)= conjunto de valores dum conjunto completo

Duas modalidades:

1) Modalidade clássica

Todas as observáveis são compatíveis Todos os simbolos de medida comutam

$$M(a) M(a') = \delta(a, a') M(a)$$

2) Modalidade quântica

Algumas observáveis não são compatíveis

O que fazer com M(a) M(b) = ? Inventa-se um novo simbolo ----- M(a,b).

Significa uma selecção em relação a (a) e depois uma transformação das propriedades do conjunto selecionado para as propriedades de (b)

É uma extensão da algebra pré-existente, uma vez que

$$M(a,a) = M(a)$$

Quais as propriedades de M(a,b) ?

As propriedades de M{a,b}?

No caso de variáveis compatíveis
 M(a,b) M(c,d) = δ(b,c) M(a,d)

 $\delta(b,c)$ é um número : 0 ou 1

Sugere:

Para observáveis incompatíveis

 $M(a,b) M(c,d) = \langle b|c \rangle M(a,d)$

 <b|c> também um elemento dum corpo de números
 Existirá incompatibilidade sempre que

 t 0 , 1

Propriedades de <b | c > (função de transformação)

Função de transformação

$$M(a,b) = 1.M(a,b).1$$

$$= \sum_{c,d} M(c)M(a,b)M(d)$$

$$= \sum_{c,d} < c|a> < b|d> M(c,d)$$

Completude

$$M(a).M(c) = \langle a|c \rangle M(a,c) = \sum_{b} M(a).M(b).M(c)$$

= $\sum_{b} \langle a|b \rangle \langle b|c \rangle M(a,c)$

$$< a | c > = \sum_b < a | b > < b | c >$$

 $\delta(a, a') = \sum_b < a | b > < b | a' >$

Probabilidades

- ◆ Porque M(a) M(b) = <a | b> M(a,b) , <a | b> deverá estar relacionado com a probabilidade de que estados preparados com propriedades (b) possam ser encontrados com propriedades (a)
- Contudo n\u00e3o pode ser uma probabilidade porque a algebra dos simbolos \u00e9 invariante para

$$M(a,b) \rightarrow \lambda(a) M(a,b) \lambda^{-1}(b)$$

 $\langle a | b \rangle \rightarrow \lambda^{-1}(a) \langle a | b \rangle \lambda(b)$

◆ A escolha invariante mais simples é :
 p(a,b) = <a | b><b | a>

Para p(a,b) ser real
 <a|b> = <b|a>*
 Corpo complexo

Probabilidades

- ◆ Porque M(a) M(b) = <a | b> M(a,b) , <a | b> deverá estar relacionado com a probabilidade de que estados preparados com propriedades (b) possam ser encontrados com propriedades (a)
- Contudo não pode ser uma probabilidade porque a algebra dos simbolos é invariante para

$$M(a,b) \rightarrow \lambda(a) M(a,b) \lambda^{-1}(b)$$

 $\langle a \mid b \rangle \rightarrow \lambda^{-1}(a) \langle a \mid b \rangle \lambda(b)$

- A escolha invariante mais simples é :
 p(a,b) = <a | b><b | a>
- Para p(a,b) ser real
 \(a \) b > = \(b \) a > *
 Corpo complexo
- ◆ Esta escolha é a teoria quântica ou a "modalidade quântica do conhecimento". É a escolha mais simples compatível com a hipótese de que nem todas as observáveis são compatíveis.
- ♦ É esta incompatibilidade que está na base do modelo quântico, não o indeterminismo ou qualquer outra propriedade obscura. Todos os chamados paradoxos da teoria quântica são o resultado de fazer perguntas sobre aspectos incompatíveis. Como dizem Feshbach e Weisskopf : "Sempre que se faz uma pergunta tôla obtém-se uma resposta tôla".

3. Codificações

No caso clássico :

A algebra dos simbolos de medida pode ser codificada por uma algebra Booleana de conjuntos com as operações de união e intersecção.

■ No caso quântico:

- # Codificação por espaço de Hilbert (o mais popular)
- # Espaço de fase clássico com uma algebra deformada (parêntesis de Moyal)
- # Codificação tomográfica

A cada estado (definido por um conjunto completo de observáveis) corresponde um vector |a> num espaço vectorial V

$$V = \{\{\{a > \}, +, (F, +, .)\}\}$$

Propriedades

Espaço dual $V^* = \operatorname{Espaço}$ das aplicações lineares $V \to F$

$$V = \{ \{ \langle a | \}, +, (F, +, .) \}$$

$$V \to F : \langle a | b \rangle \in F, \langle a | \in V^*, | b \rangle \in V$$

(No espaço de Hilbert há uma identificação canónica de V e V^* através de

$$|a|b> = (a, b)$$

sendo (a,b) o producto escalar

Em geral pode-se estabelecer um a correspondência antilinear $\lambda \, | \, a > \, \to \, \lambda^{\,*} < a \, |$, mas não necessariamente o inverso, porque pode haver elementos em $V^{\,*}$ sem correspondênte em V.

Algebra da medida nesta codificação

$$M(a,b) = |a\rangle \langle b|$$

Os M(a,b) são operadores em V. Em particular

$$A = \sum_{a} a |a > \langle a|$$

é um operador que ao actuar em |a>

$$A \mid a > = a \mid a >$$

Deste modo as observáveis podem ser identificadas com operadores deste tipo e os valores da observável são os valores próprios do operador.

Todas as relações da algebra da medida são agora verificadas trivialmente

$$|a> < b||c> < d| = < b|c> |a> < d|$$

Probabilidade

$$p(a,b) = \langle b | a \rangle \langle a | b \rangle = |\langle a | b \rangle|^{2}$$

etc.

Evolução temporal

Transformações que preservam as probabilidades têm de ser representadas por operadores unitários ou antiunitários

$$< Ub|Ua> = < b|a>$$

ou

$$= ^*|$$

Para sistemas com invariância para translação no tempo, a evolução temporal tem de ser representada por um operador unitário

$$|\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle$$

Ao gerador das translações no tempo chama-se Hamiltoniana. Assim

$$i\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$$

temos a equação de Schrödinger.

Resumindo :

Nesta codificação

Os estados são (representados por) Vectores num espaço vectorial

Observações (representadas por) Projeções

Observáveis (representadas por) Operadores com espectro real

Transformações que preservam a probabilidade (representadas por) Operadores unitários

Evolução temporal (representada pela) acção dum operador unitário particular

4. Algumas consequências da modalidade quântica.

(consequências não-óbvias duma hipótese simples – a existência de observáveis incompatíveis)

Sobreposição

Entrelaçamento

Sobreposição

- Se Φ∈H e Ψ∈H representam estados então Φ+Ψ∈H também é um estado porque o espaço de Hilbert é linear
- Esta é uma propriedade familiar para as ondas clássicas. Significa que propriedades do tipo ondulatório são gerais para sistemas quânticos
- Ao fazer uma medida sobre o estado Φ+Ψ, (se Φ e Ψ representarem propriedades exclusivas) obtém-se ou Φ ou Ψ com probabilidade 1/2
- Se o resultado for Φ o estado depois da medida é Φ
 (a medida é uma projeção num subespaço)

Propriedades ondulatórias da matéria

Number of electrons arriving at each detector (in a fixed time)

Entrelaçamento

- Espaços compostos = Produtos tensoriais de espaços de Hilbert, H⊗H
- Estados factorizados

$$a \otimes b = |a b\rangle \in H \otimes H$$

Estados entrelaçados

$$|a_1 b_1 > + |a_2 b_2 >$$

Significa que se se fizer uma medida sobre o primeiro sistema e o resultado for a₁ então o segundo sistema fica automáticamente no estado b₁
Não-localidade da teoria quântica

5 .Observáveis não-compatíveis na Natureza

Na Física

```
Posição (x) e Momento (p_x)
Posição (x) e Momento Angular (L_z)
Tempo (t) e Energia (E)
```

Noutros domínios (?)

Preço (no sentido de valor monetário) and Posse

O preço só é realmente bem definido no momento da transação, isto é quando a posse muda. No resto do tempo é apenas uma grandeza virtual.

Tempo e Producto Nacional

Um certo intervalo de tempo é necessário para se ter uma ideia aproximada do Producto Nacional. É a mesma situação que se verifica com o **Tempo** e a **Energia** na Física.

(Notar que a incompatibilidade é um conceito operacional, significando observação simultânea. Pode-se sempre **falar** de energia num certo instante de tempo, mas observálos (**medi-los**) simultâneamente é uma questão completamente diferente)

Resumindo:

- Na modalidade clássica :
 Estados (situações) codificados como conjuntos com
 algebra booleana
- Na modalidade quântica :
 Estados (situações) codificados como vectores num
 espaço de Hilbert
- E sempre que houver variáveis incompatíveis é a modalidade quântica que deve ser aplicada, seja qual for o domínio

6. Jogos

- Teoria dos jogos:
 Estudo de problemas de escolha dentro dum quadro de valores (função de utilidade)
- Matemática, Economia, Biologia, Ciências Sociais, Comunicação

Jogos

- Jogos Estáticos e Jogos Dinâmicos
- Estratégias puras e Estratégias mixtas
- Informação Completa ou Incompleta
- ► Estratégia s_K dominada por s_P se $P(s_1,s_2,...,s_p,...,s_n)>P(s_1,s_2,...,s_k,...,s_n)$ para todos os $s_1,s_2,...,s_n$
- Eliminação iterativa das estratégias dominadas

Jogos – Equilíbrio de Nash

♦ (s₁,s₂,...,s_k,...,s_n) é um equilíbrio de Nash se

$$P(s_1, s_2, ..., s_k, ..., s_n) > P(s_1, s_2, ..., s_k', ..., s_n)$$

para todos os sk'

- Nenhum jogador pode melhorar a sua recompensa alterando a sua estratégia, supondo fixas as estratégias dos outros jogadores
- Todo o jogo de N jogadores, com estratégias finitas, tem pelo menos um equilíbrio de Nash, em estratégias puras ou mixtas
- Na Economia, Equilíbrio de Nash ⇔ Decisão racional (Homo Oeconomicus)

Equilíbrio de Nash. Alguns exemplos

Cidade ou aldeia ?Amigo ou inimigo ?

Equilíbrio de Nash. Alguns exemplos

O dilema do prisioneiro

Equilíbrio de Nash. Alguns exemplos

A batalha dos sexos

(Maria, João) Ópera Televisão Ópera (5,2) 1,1 Televisão 1,1 (2,5)

O jogo do ultimato

Aceitação
$$\rightarrow$$
 (a,c)

a \uparrow
Proposta \rightarrow Resposta \Rightarrow Recompensa c

Recusa \rightarrow (0,0)

O jogo do ultimato

a+c=2b , a>>c, (Exemplo: a=99, c=1, b=50)

	R0	R1
P0	(a,c)	0,0
P1	b,b	0,0

Equilíbrio de Nash e jogos experimentais

Estudantes universitários

Figure 2 - Cumulative Ultimatum Proposals

Equilíbrio de Nash e jogos experimentais

Pequenas sociedades

Table 1. Ethnographic Summary of Societies

Group	Language Family	Environment	Economic Base	Residence	Complexity	Researcher	PC	МІ
Machiguenga	Arawakan	Tropical Forest	Horticulture	Bilocal semi nomadic	Family	Henrich, Smith	1	4
Quichua	Quichua	Tropical Forest	Horticulture	Sedentary/ Semi-nomadic Family		Patton	1	2
Achuar	Jivaroan	Tropical Forest	Horticulture	Sedentary/ Semi-nomadic	Family plus extended ties	Patton	5	2
Hadza	Khoisan/Isolate	Savanna-Woodlands	Foraging	Nomadic Band		Marlowe	4	1
Ach	Tupi-Guarani	Semi-tropical Woodlands	Horticulture/ Foraging	Sedentary- Nomadic	Band	Hill, Gurven	6	4
Tsimane	Macro-Panoan Isolate	Tropical Forest	Horticulture	Semi-nomadic Family		Gurven	1	3
Au	Torricelli/ Wapei	Mountainous Tropical Forest	Foraging/ Horticulture	Sedentary	Village	Tracer	3	5
Gnau	Torricelli/ Wapei	Mountainous Tropical Forest	Foraging/ Horticulture	Sedentary	Village	Tracer	3	5
Mapuche	Isolate	Temperate Plains	Small scale farming	Sedentary	Family plus extended ties	Henrich	2	6
Torguuds	Mongolian	High latitude desert Seasonally- flooded grassland	Pastoralism	Transhumance	Clan	Gil-White	2	8
Kazakhs	Turkie	High-latitude Desert Seasonally-flooded grassland	Pastoralism	Transhumance	Clan	Gil-White	2	8
Sangu	Bantu	Savanna-Woodlands Seasonally-flooded grassland	Agro-Pastoralists	Sedentary or Nomadic	Clan- Chiefdom	McElreath	5	8
Orma	Cushitic	Savanna-Woodlands	Pastoralism	Sedentary or Nomadic	Multi-Clan Chiefdom	Ensminger	2	9
Lamalera	Malayo-Polynesian	Island Tropical coast	Foraging-Trade	Sedentary	Village	Alvard	7	7
Shona	Niger-Congo	Savanna-Woodlands	farming	Sedentary	Village	Barr	5	8

Table 2: Ultimatum Game Experiments

Group	Sample Size	Stake	Mean	Mode (% sample) ¹	Rejections	Low rejections 2	
Lamalera ³	19	10	0.57	0.50 (63%)	4/20 (sham) ⁴	3/8 (sham)	
Ach	5 1	1	0.48	0.40 (22%)	0/51	0/2	
Shona (Resettled)	86	1	0.45	0.50 (69%)	6/86	4/7	
Shona (all)	117	1	0.44	0.50 (65%)	9/118	6/13	
Orma	56	1	0.44	0.50 (54%)	2/56	0/0	
Au	30	1.4	0.43	0.3 (33%)	8/30	1/1	
Achuar	14	1	0.43	0.50 (36%)	2/15 ⁵	1/3	
Sangu (herders)	20	1	0.42	0.50 (40%)	1/20	1/1	
Sangu (farmers)	20	1	0.41	0.50 (35%)	5/20	1/1	
Sangu	40	1	.4 1	0.50 (38%)	6/40	2/2	
Shona (Unresettled)	31	1	0.41	0.50 (55%)	3/31	2/6	
Hadza (big camp)	26	3	0.40	0.50 (35%)	5/26	4/5	
Gnau	25	1.4	0.38	0.4 (32%)	1 0/25	3/6	
Tsimane	7 0	1.2	0.37	0.5/0.3 (44%)	0/70	0/5	
Kazakh	10	8	0.36	0.38 (50%)	0/10	0/1	
Torguud	10	8	0.35	0.25 (30%)	1/10	0/0	
Mapuche	31	1	0.34	0.50/0.33 (42%)	2/ 31	2/12	
Hadza (all camps)	55	3	0.33	0.20/0.50 (47%)	13 /55	9 /2 1	
Hadza (small camp)	29	3	0.27	0.20 (38%)	8/29	5/16	
Quichua	15	1	0.25	0.25 (47%)	0/14 ⁶	0/3	
Machiguenga	2 1	2.3	0.26	0.15/0.25 (72%)	1	1/10	

Equilíbrio de Nash e jogos experimentais

- A hipótese "Homo Oeconomicus" é rejeitada em todos os casos
- O comportamento do jogador está fortemente relacionado com as normas sociais existentes nas suas sociedades e com a estrutura de mercado
- A decisões humanas envolvem uma mistura de interesse egoísta e um fundo de normas sociais (interiorizadas)
- Sai o "Homo Oeconomicus"
- Entra o "Homo Reciprocans" (Samuel Bowles, Herbert Gintis)
- Reciprocidade forte

Jogos quânticos

- Num jogo clássico o espaço das estratégias é um espaço discreto ou um simplex (estratégias mixtas)
- Num jogo quântico o espaço das estratégias é um espaço linear (espaço de Hilbert)
- Dado um estado inicial, as decisões dos jogadores são operações (unitárias) nesse espaço

Jogos quânticos. Um exemplo

A batalha dos sexos (Clássico)

João

O(0) T(1)

Maria O(0) (α, β) (γ, γ)

Estratégias mixtas:

Maria $O \rightarrow p$, $T \rightarrow (1-p)$

João O $\rightarrow q$, T $\rightarrow (1-q)$

T(1) (γ, γ) (β, α)

 $\alpha > \beta > \gamma$

3 equilíbrios de Nash (clássicos):

$$p = 1, q = 1 \qquad (\alpha, \beta)$$

$$p = 0, q = 0 \qquad (\beta, \alpha)$$

$$p = \frac{\alpha - \gamma}{\alpha + \beta - 2\gamma}, q = \frac{\beta - \gamma}{\alpha + \beta - 2\gamma} \qquad (P', P')$$

$$\alpha > \beta > P' = \frac{\alpha\beta - \gamma^2}{\alpha + \beta - 2\gamma} > \gamma$$

Jogos quânticos. Um exemplo

 $\begin{array}{c|c} \textbf{João} \\ \textbf{O}(0) & \textbf{T}(1) \end{array}$

A batalha dos sexos (Quântico)

Estado inicial:

Qualquer combinação linear de

Estratégias

Maria
$$O(0)$$
 (α, β) (γ, γ) $T(1)$ (γ, γ) (β, α)

$$lpha>eta>\gamma$$
 $A,B\in\left\{I=\left(egin{array}{cc}1&0\0&1\end{array}
ight) ext{ ou }\sigma_x=\left(egin{array}{cc}0&1\1&0\end{array}
ight)
ight\}$

Estado inicial factorizado = Jogo clássico

Estado inicial entrelaçado:

$$(|00\rangle + |11\rangle)$$

$$p_I = 1, q_I = 1$$
 $\begin{pmatrix} \frac{\alpha+\beta}{2}, \frac{\alpha+\beta}{2} \end{pmatrix}$ $p_I = 0, q_I = 0$ $\begin{pmatrix} \frac{\alpha+\beta}{2}, \frac{\alpha+\beta}{2} \end{pmatrix}$ $p_I = \frac{1}{2}, q_I = \frac{1}{2}$ $\begin{pmatrix} \frac{\alpha+\beta+2\gamma}{4}, \frac{\alpha+\beta+2\gamma}{4} \end{pmatrix}$

Melhor solução quando os dois jogadores usam a mesma estratégia # Porque $\frac{\alpha+\beta}{2}>\beta$, é melhor que o melhor caso clássico

Entrelaçamento como um contrato

7. Computação determinista, não-determinista e quântica. (Enquadramento computacional para problems de decisão)

Máquina de Turing M com k fitas de trabalho com alfabeto Γ e uma fita de entrada com alfabeto Σ .

Em cada momento a configuração c da máquina é o conteúdo das k fitas de trabalho, os k+1 ponteiros e o estado corrente. Seja $\mathcal{C}(x)$ de cardinalidade N o conjunto de todas as possíveis configurações para a entrada x.

CASO CLÁSSICO

Função de transição : (matriz $N \times N$)

$$\delta: Q \times \Sigma \times \Gamma^k \times Q \times \Gamma^k \times \{L, R\}^{k+1} \to \{0, 1\}$$

Q =conjunto de estados

Se for possível ir de c_i para c_j num só passo

$$T(c_i, c_j) = 1$$
. Senão $T(c_i, c_j) = 0$.

Computação determinista:

Só um elemento em cada linha é diferente de zero.

 $(T^k(c_i,c_j)$ é o número de trajectos de comprimento k que levam de c_i a c_j)

CASOS NÃO-CLÁSSICOS

Computação probabilista:

 δ pode tomar valores não-binários e mais de um elemento em cada linha pode ser diferente de zero

$$\delta: Q \times \Sigma \times \Gamma^k \times Q \times \Gamma^k \times \{L,R\}^{k+1} \to [0,1]$$
 com a condição

$$\sum_{q_2,b_1\cdots b_k,p_0,p_1\cdots p_k} \delta(q_1,s,a_1\cdots a_k,q_2,b_1\cdots b_k,p_0,p_1\cdots p_k) = 1$$

para todos os valores $q_1, s, a_1 \cdots a_k$ do estado inicial e dos simbolos lidos nas fitas de entrada e de trabalho.

Neste caso os valores da matriz de transição estão entre 0 e 1 sendo a soma ao longo das linhas igual a um. Chamamse matrizes estocásticas. Preservam a norma \mathcal{L}^1 (\mathcal{L}^1 (v) = \mathcal{L}^1 (v) para qualquer v-vector v).

Computação quântica:

 δ pode tomar valores arbitrários (positivos ou negativos) ou mesmo valores complexos

As probabilidades de aceitação (depois de k passos computacionais) serão $\left|T^k\left(c_i,c_j\right)\right|^2$ com a condição

$$\sum_{\substack{q_2,b_1\cdots b_k,p_0,p_1\cdots p_k\\ \text{Ou seja,}}} |\delta\left(q_1,s,a_1\cdots a_k,q_2,b_1\cdots b_k,p_0,p_1\cdots p_k\right)|^2 = 1$$

$$\mathcal{L}^{2}\left(v\right) = \mathcal{L}^{2}\left(Tv\right) = \sum_{i=1}^{N} |v_{i}|^{2}$$

isto é, a matriz de transição é unitária.

Em todos os casos as probabilidades de transição entre estados iniciais e finais são positivas e normalizadas.

A diferença entre os diversos modelos computacionais é o metodo pelo qual o resultado é obtido

Computação quântica

- Resolução de problemas em tempo polinomial
 - Procura em bases de dados em tempo \sqrt{N}
 - Factorização em tempo polinomial (violação de RSA)

Criptografia quântica

Construção de chaves baseadas nas leis e limitações da modalidade quântica, em vez da complexidade computacional de certas operações

Estabelecimento dum a chave (O ne time pad)

$$|\uparrow\rangle = 1$$

$$|\leftrightarrow\rangle = 0$$

$$|\nearrow\rangle = 1$$

$$|\nearrow\rangle = 1$$

$$|\nearrow\rangle = 1$$

$$|\nwarrow\rangle = 0$$

$$|\uparrow\rangle = \frac{1}{\sqrt{2}}(|\nearrow\rangle + |\nwarrow\rangle)$$

$$|\leftrightarrow\rangle = \frac{1}{\sqrt{2}}(|\nearrow\rangle - |\nwarrow\rangle)$$

$$|\nearrow\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle + |\leftrightarrow\rangle)$$

$$|\nearrow\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle - |\leftrightarrow\rangle)$$

A nalisando $|\uparrow\rangle$ com o polarizador B ($|\nearrow\rangle$ $|+|\searrow\rangle$ $|\uparrow\rangle$ obtem -se 0 ou 1 com probabilidade $\frac{1}{2}$

A resposta coincide (com probabilidade um) com o código do emissor só se os dois polarizadores forem concordantes.

Criptografia quântica

A **Maria** envia de cada vez um fotão num dos quatro estados ao acaso.

O **João** usa os polarizadores A ou B também ao acaso. Depois de grande número de ensaios o João revela publicamente a sua sequência de polarizadores AABABABAA...

A **Maria** revela os casos em que houve coincidência nos polarizadores. Os casos não-coincidentes são deitados fora. Os resultados dos casos coincidentes são uma chave aleatória comum.

Interferência externa é detectada pela falta de coincidência numa parte da chave que é revelada publicamente. No caso das mensagens estarem a ser interceptadas o erro médio é 1/4.

Referências

- Julian Schwinger; "Quantum mechanics: Symbolism of Atomic Measurements", Springer 2000
- J. M. Jauch; "Foundations of Quantum Mechanics" Addison-Wesley 1968.
- RVM; "Deformations, stable theories and fundamental constants" Journal of Physics A 27(1994) 1
- RVM; "Network dependence of strong reciprocity"
 Advances in Complex Systems 7 (2004) 1-12
- D. A. Meyer; "Quantum Strategies", Phys. Rev. Lett. 82 (1999) 1052.
- J. Eisert, M. Wilkens and M. Lewenstein; "Quantum Games and Quantum Strategies", Phys. Rev. Lett. 83 (1999) 3077.
- ◆ RVM; "Quantum ultimatum game", Quantum Inf. Process. (2005)
- G. Alber et al.; "Quantum information", Springer, Berlin 2001.
- ◆ E. Bernstein and U. Vazirani; "Quantum complexity theory", Siam Journal of Computing 26 (1997) 1411-1473.

