葡萄酒的评价

干 麟 陈 辉

(黑龙江科技学院 理学院 黑龙江 哈尔滨 150027)

摘 要:现实生活中,我们常常是通过评酒员的品尝来评判酒的优劣,并没有完善的质量评价体系。本文通过合理的假设构造得到了葡萄酒的评价的理化指标模型。运用 EXCEL 分别对所给数据进行处理,得到总评分、平均值、标准差和方差等。建立双因素方差分析模型,使用 Matlab 双因素方差分析对两组评分结果作显著性分析。

关键词 matlab 软件 eviews 分析 理化指标

近年来,我国葡萄酒业有了长足的进步,葡萄酒产品的种类日益丰富,产品质量也有了很大的提升。对于葡萄酒产品的质量管理,许多从事葡萄栽培和葡萄酿酒工作的专家学者,都提出要求制定《中国葡萄酒质量等级管理办法》,推行产品分级管理制。中国葡萄酒质量等级制度多年前就已经提上日程。本文具体数据来源于2012年全国大学生数学建模竞赛题。

1模型基本假设

- 1.1 忽略温度对评酒员味觉的影响;
- 1.2 假设题中所给数据基本真实有效;
- 1.3 在较近一段时期,葡萄酒质量保持不变。
- 2 模型的符号说明(见表 1)
- 3 模型分析建立及求解
- 3.1 对两组评酒员的评价结果分析

模型一、 第 i 样本 k 评分的平均值 $\bar{x}_{:k} = \sum_{i=1}^{10} x_{ijk}$

第 i 样本 k 评分的标准差。 $=\sqrt{\sum_{j=1}^{10}(x_{jk}-\bar{x}_{jk})^2}$ 模型

双因素方差分析是一种两因素多水平检验实验数据的统计分析方法,在 Matlab 中计算等重复实验的双因素方差分析,函数返回值为一向量 P,当 r=1 时,P有两个元素,第一个为因素 A 各水平均值相等的概率,第二个为因素 B 各水平均值相等概率;当 r>1 时,P中有三个元素为因素 A 与因素 B 交互无显著作用的概率。最后比较显著性,若 p>0.05,即没有显著性差异;若 p<0.05,即有明显差异。

- 3.2 两组评价结果显著性差异求解
- 3.2.1 由模型一利用 Excel 软件对数据做初步处理(见表 2)。
- 3.2.2 利用 Excel 软件同一个坐标系中做出 $i \sim x_i$ 和 $i \sim y_i$ 的散 点图如图 1。

由图 1 可知两组评酒员的评价结果存在差异性,接下来用双因素分析差异性是否显著。

3.2.3 分别对第一、二组评酒员对红白葡萄酒两个样本分析,求出它们的 P值,其中重复试验是每组中 10 名评酒员的评分,在 Matlab 中,双因素方差分析运行结果如下:

p 的三个数值分别为因素 $A(\mathcal{N})$:两组评酒员对评分的影响)、因素 $B(\mathcal{T})$:酒样品对酒评分的影响)和交互因素 A?B的概率。

结论:P<0.05 两组评酒员评价结果存在显著性差异。

3.3 可信度分析

由表 2 两种葡萄酒总评分处理数据知,红葡萄酒第一组评分方差总计(456.8278)大于第二组(325.7444);白葡萄酒第一组评分方差总计(664.2556)大于第二组(389.5222),评价结果方差越小越可信。

结论:第二组评酒员评价结果比第一组更可信。

参考文献

- [1]谭永基等.数学模型[M].上海:复旦大学出版社
- [2]姜启源等.大学数学实验[M].北京:清华大学出版社.
- [3]于秀林,任学松.多元统计分析[M].北京:中国统计出版社.
- [4]盛聚等.概率论与数理统计[M].北京:高等教育出版社.

符号	符号说明				
i	葡萄酒样品编号				
j	评酒员编号				
k	葡萄酒的评价指标				
x _{ijk}	第 j 号评酒员对第 i 个样品第 k 个评价指标的评分				
X,	第 j 号评酒员对第 i 个样品的总评分				
$\overline{X}_{i \cdot k}$	该组所有评酒员对第i个样品第k个评价指标的评分的平均值				
n	样本数 27 或 28				
d,					

表 2 红葡萄酒两组总评分数据

样	13.19	第一组	且紅葡萄酒	第二组红葡萄酒				
品	总和	平均值	标准差	方差	总和	平均值	标准差	方差
1	627	62.7	13. 4758	22. 14444	681	68.1	13. 10208	20.47778
2	803	80.3	9. 165234	10. 23333	740	74	9. 04805	10
3	804	80. 4	10. 42605	15. 15556	746	74.6	9. 171648	10.6666
4	686	68. 6	14. 62961	24. 68889	712	71.2	10.38709	11.84444
5	733	73.3	11. 96794	16. 81111	721	72.1	8. 544759	9.433333
6	722	72.2	10. 9282	13. 86667	663	66.3	9. 481066	10.38889
7	715	71.5	13. 15797	21. 83333	653	65.3	11.87934	17.7
8	723	72.3	12. 37777	18. 03333	660	66	12.07169	18.13333
9	815	81.5	11. 22457	16. 18889	782 -	78.2	9. 884181	11
10	742	74.2	11.00786	14. 84444	688	68.8	10. 16512	12.37778
11	701	70. 1	12. 96173	22. 16667	616	61.6	11. 55915	15.31111
12	539	53. 9	11.06124	14. 85556	683	68.3	9. 732112	11.92222
13	746	74.6	12. 25956	17. 91111	688	68.8	8. 493827	8.4
14	730	73	11. 59847	15. 37778	726	72.6	9. 162052	9.733333
15	587	58. 7	13. 09422	20. 03333	657	65.7	9. 953597	11.32222
16	749	74.9	10. 99992	14. 81111	699	69.9	8. 526282	8.877778
17	793	79.3	12. 90285	21. 85556	745	74.5	7, 445989	6.477778
18	599	60. 08889	10. 93904	14. 53889	654	65.4	11. 57256	17.24444
19	786	78.6	10. 80295	14. 22222	726	72.6	10.80926	14.06667
20	786	79. 22222	8. 083789	9. 022222	758	75.8	10.07468	13.95556
21	771	77.1	14. 42255	26. 12222	722	72.2	9. 533845	10.53333
22	772	77. 2	10. 02739	13. 64444	716	71.6	10. 84256	13.64444
23	856	85. 6	9. 568888	11.4	771	77.1	9. 64012	12.25556
24	780	78	11. 5569	18. 28889	715	71.5	9. 104857	10.27778
25	692	69. 2	12. 43914	18. 75556	682	68.2	9. 699788	11.2
26	738	73.8	9. 655173	10.62222	720	72	9. 636558	10.64444
27	730	73	12. 81027	19. 4	715	71.5	7. 753023	7.855556
总计	19725	1973. 311	313. 5451	456. 8278	19039	1903. 9	267. 2753	325.7444

图 1 两组红葡萄酒样本总评分散点图

[5]王文波.数学建模及其基础知识详解[M],2006.

项目名称: 应用型本科高校工程数学系列课教学改革的研究与实践。项目号: HGJXHC 110909。项目名称: "大工程"教学理念下保险精算课程教学改革的研究与实践。项目号: HGJXHC 110882。

作者简介:王麟(1980-),女,籍贯:黑龙江省双城市,2006年毕业于哈尔滨工业大学,硕士研究生,研究方向:延迟微分方程,讲师。