# Building a Movie Recommendation System to Decrease User Churn and Improve Engagement

Sarah Berkin

Data Science Capstone Project, Sept 2024 Cohort



### The Problem

### Over 110 hours per year scrolling through streaming platforms



52% of users say a streaming service's browsing experience significantly influences their decision to subscribe

56% cancel subscriptions after completing a single show

## **Data Information for this Analysis**

#### **Data Source**

The dataset originates from the GroupLens research group at the Dept of Computer Sci. & Eng. at the University of Minnesota

#### Sample Population

1,000,209 anonymous movie ratings

6,040 MovieLens users who joined in 2000

3,900 movies

#### **Variables**

Target variable: User rating on scale of 0.5-5

Ind. variables include
User features (gender,
age group, occupation)
& Movie features
(genres, release year)

## **Data Cleaning**

#### Mixed text in Title field

Extracted release year from movie title using regular expressions & created separate year feature

# Genres field contained multiple genres in single string

Applied one-hot encoding to expand genres into individual binary columns

# User demographics (gender, occupation) was categorical

Applied one-hot encoding & created a bucketed age group feature

## **Data Cleaning**

# Boxplots detected rating count outliers (super-users & blockbuster movies)

Trimmed most extreme outliers based on IQR method & boxplot analysis





## **Exploratory Data Analysis**

### Visualizing Ratings Distribution

If there's an extreme on either side (ex. ~90% above or below 3.5), then the dataset may be imbalanced. Results showed 57% of ratings were 3.5 or higher.



## **Exploratory Data Analysis**

## Visualizing Correlations between the Variables

Heatmap identified weak relationships between age, movie release, year, & ratings.



## **Exploratory Data Analysis**

Does it appear that low ratings are a proxy for scrolling frustration?

Checked how many low (1-2) scores existed. Behavior patterns suggested moderate scroll frustration in raw data.

16.37% Low Scores

## Feature Engineering & Pre-Processing

### **One-Hot Encoding**

Prepared User features for ML models by converting into binary

### **Data Splitting**

Train Test Split method

80% Train / 20% Test

#### Feature Standardization

Applied StandardScaler to standardize numeric & dummy variables

## Modeling

I used the Surprise, Scikit-learn, and Matplotlib libraries for training and visualizing my recommendation system

| Model                         | Description                                        |
|-------------------------------|----------------------------------------------------|
| SVD (Collaborative Filtering) | Matrix factorization using userId and movieId      |
| KNN Regressor                 | Content + demographic feature-based distance model |
| Random Forest Regressor       | Ensemble model using full feature set              |

Train-test split: 80/20

## Modeling

Behavior simulation showed that without recommendations, users frequently rated multiple movies poorly before finding one they liked

With the SVD model, the top 10 recommendations included 10/10 highly-rated movies, showing significant improvement in browsing experience.

| Model                         | RMSE (Lower = Better) |
|-------------------------------|-----------------------|
| SVD (Collaborative Filtering) | 0.8869 (Best)         |
| KNN Regressor                 | 1.0165                |
| Random Forest Regressor       | 0.9813                |



## **Recommended Business Use Cases**

Improved content discovery

Reduced subscription churn by personalizing homepage feed to keep users engaged

Personalized watchlists & Push notifications

Get in front of scrolling problem by serving up high-confidence recommendations

Targeted upsell based on User preferences

Upselling premium content aligned with user taste

## **Future Work**

Quantify scroll time reduction

Scroll behavior tracking to more precisely measure impact on reducing user browsing

Explore hybrid models

Get in front of "cold start" problem for new users by integrating content-based recommendations

Incorporate Implicit Feedback Add features like watch time partial watches, and browsing behavior

Expand user feature set

Integrate additional user demographic data like location or watch history patterns

Conduct A/B Testing

Evaluate real-world engagement improvements & quantify the model's effect on churn

## The Team

Project by:



Sarah Berkin

Data Science Trainee

Special thanks to:



Jaleed Khan, PhD

Data Science Mentor
Sr. Researcher
Honorary Research Fellow
Lecturer