1. EXERCICE COURS N⁰1:

On considère la suite $(u_n)_{n\geq 1}$ de nombres réels définie pour tout $n\geq 1$ par :

$$u_n = \frac{1}{\sqrt{n}} E[\sqrt{n}]$$

Montrer qu'elle est convergente et préciser sa limite.

2. EXERCICE COURS N^02 :

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in[0,1]$ et $u_{n+1}=u_n-u_n^2$ pour tout $n\geq0$.

- (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- (b) Montrer que $u_n \in [0,1]$ pour tout $n \in \mathbb{N}$.
- (c) Montrer que la suite (u_n) est convergente. Quelle est sa limite?

3. EXERCICE COURS N⁰3:

On définit la suite (u_n) par la relation de récurrence :

$$u_0 = 4$$

Pour tout $n \ge 0$, $u_{n+1} = \frac{1}{2}u_n + 5$.

Cette suite converge-t-elle? Si oui quelle est sa limite? Que se passe-t-il si $u_o = \pi$?

4. EXERCICE COURS N⁰4:

Soit une suite $(u_n)_{n\in\mathbb{N}}$ qui vérifie

$$u_0 + u_1 + \ldots + u_{n-1} = n(an+b)$$
 avec $a, b \in \mathbb{C}$ et $n \ge 1$

Justifier que (u_n) est bien définie, puis montrer que u_n est une suite arithmétique et déterminer sa raison.

5. EXERCICE COURS N⁰5:

On définit deux suites u et v par :

$$\forall n \geqslant 1$$
 $u_n = \sum_{k=n}^{2n} \frac{1}{k}$ et $v_n = \sum_{k=1}^{n} \frac{1}{n+k}$

Montrer que ces deux suites convergent vers une même limite. (on ne demande pas la valeur de cette limite.)

6. EXERCICE COURS N⁰6:

Étudier les suites (définition, convergence?, limite?...) définies par :

(a)
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$

(b)
$$v_n = 3\ln(2n^2 + n) - 2\ln(3n^3 + n)$$

(c)
$$w_n = \frac{\ln(1+\sqrt{n})}{\ln(1+n^2)}$$

(d)
$$z_n = \left(1 + \frac{a}{n}\right)^{bn} \text{ avec } a, b \in \mathbb{R}.$$

7. EXERCICE COURS N⁰7:

On définit la suite u_n par récurrence $u_0 \in]0,1]$ et

$$\forall n \ge 0 \quad u_{n+1} = \frac{u_n}{2} + \frac{u_n^2}{4}$$

- (a) Montrer que $u_n > 0$ pour tout $n \in \mathbb{N}$.
- **(b)** Montrer que $u_n \leq 1$ pour tout $n \in \mathbb{N}$.
- (c) Étudier la monotonie de la suite.
- (d) Montrer qu'elle est convergente et calculer sa limite.

8. EXERCICE COURS N⁰8:

Soit la suite (u_n) définie par $u_0 = 2$ et pour tout $n \ge 0$, $u_{n+1} = \frac{2u_n + 3}{u_n + 4}$.

- (a) Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} = 2 \frac{5}{u_n + 4}$.
- (b) Montrer par récurrence que pour tout entier $n \in \mathbb{N}$, $1 \leq u_n \leq 2$.
- (c) Étudier le sens de variation de (u_n) .
- (d) Montrer que la suite (u_n) est convergente.
- (e) On note l la limite de (u_n) . Déterminer une équation dont l est solution et en déduire la valeur de l.

9. EXERCICE COURS Nº9 : Avec des racines carrées

Soit $n \in \mathbb{N}^*$. Vérifier que $(2 + \sqrt{3})^n + (2 - \sqrt{3})^n$ est un entier pair. En déduire que la partie entière de $(2 + \sqrt{3})^n$ est un entier impair.

