Exercise 1. In this exercise, we will review the use of polar coordinates.

1. Consider the following figure:

Using the information provided in the figure, describe the shaded region in terms of polar coordinates.

2. Consider the following integral:

Exercise 2. Consider the vector field $\mathbf{F}(x,y,z) = (z,0,-x)$ and the curves \mathcal{C}_1 and \mathcal{C}_2 parametrized as follows: $\begin{cases} r_1(t) = (1-2t,1,1-2t), & 0 \leqslant t \leqslant 1, \\ r_2(s) = (s^3,1,s^3), & -1 \leqslant s \leqslant 1. \end{cases}$

$$\begin{cases} r_1(t) = (1 - 2t, 1, 1 - 2t), & 0 \le t \le 1 \\ r_2(s) = (s^3, 1, s^3), & -1 \le s \le 1. \end{cases}$$

Perform the following tasks:

- 1. Compute the Jacobian matrix of \mathbf{F} , denoted $J\mathbf{F}$, and demonstrate that \mathbf{F} is **not** conservative.
- 2. Evaluate the line integrals

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\vec{x} \quad \text{and} \quad \int_{\mathcal{C}_2} \mathbf{F} \cdot d\vec{x}.$$

3. Use the substitution $t = (s^3 + 1)/2$ in the parametrization $r_1(t)$, and explain why the results of the integrals are identical, despite the fact that F is not conservative.