Caracterización de Distribuciones Bivariadas Seleccionadas

Definición de funciones de densidad de probabilidad

```
(*Definir los valores de los parámetros a,
b,c,d*){aVal, bVal, cVal, dVal} = {3, 6, 3, 6};
(*Definir los valores de los parámetros a,b,c,
d*){aVal2, bVal2, cVal2, dVal2} = {0.8, 6, 3, 0.2};
```

Combinación 1 (Beta para X_1 y Beta 4P para $X_2 \mid X_1$)

rodeado··· falso etiqueta de representación

Combinación 1

función de color

Combinación 6 (Kumaraswamy para X_1 y Beta 4P para $X_2 \mid X_1$)

$$\begin{aligned} &\text{in}(-) = & \text{g}[X_-, \, Y_-, \, a_-, \, b_-, \, c_-, \, d_-] := \frac{a \, b}{Beta[c, \, d]} \, \frac{x^{a-1} \, \big((x+y)^a - x^a \big)^{b-1}}{(x+y)^{a \, b-d+1} \, \big(x+y+1 \big)^{c+d}}; \\ &\text{gx}[X_-] := \\ & \text{N[NIntegrate}[g[X, \, y, \, a = aVal, \, b = bVal, \, c = cVal, \, d = dVal], \, \{y, \, 0, \, \text{Infinity}\}], \, 3]; \\ & \begin{bmatrix} \cdot & \text{integra numéricamente} \\ \end{bmatrix} & \begin{bmatrix} \text{ontity} \\ \text{ontity} \\ \end{bmatrix}, \, \{y, \, 0, \, 1\}, \, \{y, \, 0, \, 3\}, \, \text{PlotRange} \rightarrow \{0, \, 2\}, \, \text{AxesLabel} \rightarrow \{y_1, \, y_2, \, \text{Densidad}\}, \, \{y, \, 0, \, 3\}, \, \text{PlotRange} \rightarrow \{0, \, 2\}, \, \text{AxesLabel} \rightarrow \{y_1, \, y_2, \, \text{Densidad}\}, \, \{y, \, 0, \, 3\}, \, \text{PlotRange} \rightarrow \{0, \, 2\}, \, \text{AxesLabel} \rightarrow$$

Combinación 6

función de color

Combinación 8 (Kumaraswamy para X_1 y Triangular para $X_2 \mid X_1$)

rodeado··· falso etiqueta de representación

Combinación 8

Combinación 11 (Triangular para X_1 y Beta 4P para $X_2 \mid X_1$)

$$\begin{aligned} & \text{Which}[0 \leq x < a(x+y), \frac{x}{x+y}, x == \frac{y}{1-a}, a, a(x+y) < x \leq x+y, \frac{ya}{(1-a)(x+y)}]; \\ & \text{Which}[0 \leq x < a(x+y), \frac{x}{x+y}, x == \frac{y}{1-a}, a, a(x+y) < x \leq x+y, \frac{ya}{(1-a)(x+y)}]; \\ & \text{jx}[x_{-}] := \text{N[NIntegrate[j[x, y, a = aVal2, c = cVal2, d = dVal2], \{y, 0, Infinity\}], 3];} \\ & \text{lintegra numéricamente} \\ & \text{jy}[y_{-}] := \text{N[NIntegrate[j[x, y, a = aVal2, c = cVal2, d = dVal2], \{x, 0, Infinity\}], 3];} \\ & \text{lintegra numéricamente} \\ & \text{Jx}[t_{-}] := \\ & \text{N[NIntegrate[j[x, y, a = aVal2, c = cVal2, d = dVal2], \{y, 0, Infinity\}, \{x, 0, t\}], 3];} \\ & \text{lintegra numéricamente} \\ & \text{Jy}[t_{-}] := \\ & \text{N[NIntegrate[j[x, y, a = aVal2, c = cVal2, d = dVal2], \{x, 0, Infinity\}, \{y, 0, t\}], 3];} \\ & \text{lintegra numéricamente} \\ & \text{Plot3dj} = \text{Plot3D[j[x, y, aVal2, cVal2, dVal2], \{x, 0, 1\},} \\ & \text{lrango de representación} \\ & \text{letiqueta de ejes} \end{aligned}$$

ColorFunction → "Rainbow", Boxed → False, PlotLabel → "Combinación 11" Lrodeado··· lfalso letiqueta de representación función de color

Combinación 11

Densidad _{1.0} 0.0

In[•]:= **Jy[4]** $Out[\bullet] = 0.956113$

Combinación 14 (Triangular para X_1 y Gamma Truncada para $X_2 \mid X_1$)

$$\ln[a] := k[x_{-}, y_{-}, a_{-}, c_{-}, d_{-}] := \frac{2}{a d^{c}} \frac{x^{c} y^{c}}{(x+y)^{2c+1} (x+y+1)^{c+1} \left[cuál \right]} Which[0 \le x < a (x+y), a < a (x+y), a < a (x+y), a < a (x+y), a < a (x+y) < a (x+y), a < a (x+y), a < a (x+y), a < a (x+y) < a ($$

$$\frac{x}{x+y}, x(1-a) == y, a, a(x+y) < x \le x+y, \frac{ya}{(1-a)(x+y)} \Big] \frac{Exp\left[-\frac{xy}{d(x+y)^2(x+y+1)}\right]}{Gamma\left[c, \theta, \frac{xy}{d(x+y)^2}\right]};$$

Kx[t_] :=

N[NIntegrate[k[x, y, a = aVal2, c = cVal2, d = dVal2],
$$\{y, 0, Infinity\}$$
, $\{x, 0, t\}$], 3];
 $[\cdot]$ integra numéricamente

Ky[t_] :=

N[NIntegrate[k[x, y, a = aVal2, c = cVal2, d = dVal2],
$$\{x, 0, Infinity\}, \{y, 0, t\}], 3];$$
| integra numéricamente | infinito

$$\{y, 0, 3\}$$
, PlotRange $\rightarrow \{0, 2\}$, AxesLabel $\rightarrow \{y_1, y_2, Densidad\}$, rango de representación etiqueta de ejes

Combinación 14

Combinación 19 (Gamma Truncada para X_1 y Gamma Truncada para

$$ln[\cdot]:= l[x_{,} y_{,} a_{,} b_{,} c_{,} d_{,}] :=$$

$$\frac{1}{b^{a} d^{c} (Gamma[a, 0, 1/b])} \frac{x^{a+c-1} y^{c}}{(x+y)^{a+2} c} \frac{Exp\left[-\frac{xy}{d(x+y)^{2}(x+y+1)} - \frac{x}{b(x+y)}\right]}{Gamma\left[c, 0, \frac{xy}{d(x+y)^{2}}\right]};$$

Lx[t_] := N[NIntegrate[

integra numéricamente

Ly[t_] := N[NIntegrate[

L. Lintegra numéricamente

Plot3dl = Plot3D[l[x, y, aVal, bVal, cVal, dVal],
$$\{x, 0, 1\}$$
, representación gráfica 3D

$$\{y, 0, 3\}$$
, PlotRange $\rightarrow \{0, 2\}$, AxesLabel $\rightarrow \{y_1, y_2, Densidad\}$,

rango de representación letiqueta de ejes

Combinación 19

Combinación 25 (Normal Truncada para X_1 y Normal Truncada para $X_2 \mid X_1$)

ColorFunction → "Rainbow", Boxed → False, PlotLabel → "Combinación 25"

función de color

rodeado··· falso etiqueta de representación

Combinación 25

Superficies

In[*]:= GraphicsGrid[{{Plot3df, Plot3dg}, {Plot3dh, Plot3dj}, {Plot3dk, Plot3dl}, {Plot3de,}}] rejilla de gráficos

Curvas de Nivel

տ(+):= (*Generación de las curvas de nivel para las diferentes funciones*) contourPlotF = ContourPlot[f[x, y, aVal, bVal, cVal, dVal],

```
\{x, 0, 10\}, \{y, 0, 10\}, Contours \rightarrow 20, ContourShading \rightarrow None,
                             contornos sombreado de contornos ninguno
    PlotRange → All, FrameLabel → {"y1", "y2"}, PlotLabel → "Combinación 1"|;
    rango de repr··· todo etiqueta de marco
                                                       etiqueta de representación
contourPlotG = ContourPlot|g[x, y, aVal, bVal, cVal, dVal],
                  representación de contornos
    \{x, 0, 10\}, \{y, 0, 10\}, Contours \rightarrow 20, ContourShading \rightarrow None,
                            contornos sombreado de contornos ninguno
    PlotRange → All, FrameLabel → {"y1", "y2"}, PlotLabel → "Combinación 6"];
    rango de repr··· todo etiqueta de marco
                                                        etiqueta de representación
contourPlotH = ContourPlot h[x, y, aVal, bVal2, dVal2], \{x, 0, 10\},
                  representación de contornos
    \{y, 0, 10\}, Contours \rightarrow 20, ContourShading \rightarrow None, PlotRange \rightarrow All,
                contornos sombreado de contornos ning··· rango de repr··· todo
    FrameLabel → {"y1", "y2"}, PlotLabel → "Combinación 8"|;
    etiqueta de marco
                                   etiqueta de representación
contourPlotJ = ContourPlot|j[x, y, aVal2, cVal2, dVal2], {x, 0, 10},
                  representación de contornos
    \{y, 0, 10\}, Contours \rightarrow 20, ContourShading \rightarrow None, PlotRange \rightarrow All,
                                 sombreado de contornos ning··· rango de repr··· todo
    FrameLabel → {"y1", "y2"}, PlotLabel → "Combinación 11"];
    etiqueta de marco
                                 etiqueta de representación
contourPlotK = ContourPlot|k[x, y, aVal2, cVal2, dVal2], \{x, 0, 10\},
                 representación de contornos
    \{y, 0, 10\}, Contours \rightarrow 20, ContourShading \rightarrow None, PlotRange \rightarrow All,
                                 sombreado de contornos ning··· rango de repr··· todo
    FrameLabel → {"y1", "y2"}, PlotLabel → "Combinación 14"];
                                   etiqueta de representación
    etiqueta de marco
contourPlotL = ContourPlot | l[x, y, aVal, bVal, cVal, dVal], \{x, 0, 10\},
                 representación de contornos
    \{y, 0, 10\}, Contours \rightarrow 20, ContourShading \rightarrow None, PlotRange \rightarrow All,
                contornos sombreado de contornos ning··· rango de repr··· todo
    FrameLabel → {"y1", "y2"}, PlotLabel → "Combinación 19"];
    etiqueta de marco
                                   etiqueta de representación
contourPlotD = ContourPlot[e[x, y, aVal, bVal, cVal, dVal], \{x, 0, 10\},
                 representación de contornos
    \{y, 0, 10\}, Contours \rightarrow 20, ContourShading \rightarrow None, PlotRange \rightarrow All,
                contornos sombreado de contornos ning··· rango de repr··· todo
    FrameLabel → {"y1", "y2"}, PlotLabel → "Combinación 25"|;
                                   etiqueta de representación
    etiqueta de marco
```

(*Mostrar las gráficas juntas*)

GraphicsGrid[{{contourPlotF, contourPlotG}, {contourPlotH, contourPlotJ}, rejilla de gráficos

{contourPlotK, contourPlotL}, {contourPlotD, SpanFromLeft}}]

extiende desde la izquierda

Función de Densidad Marginal

```
In[*]:= LaunchKernels[7];
     lanza kernels
     DistributeDefinitions[fx, fy, gx, gy, hx, hy, jx, jy, kx, ky, lx, ly, ex, ey];
     distribuye definiciones
     generatePlotfx :=
        Module (pointsx, label), pointsx = ParallelTable[(x, fx[x]), (x, 0.1, 6, 0.1)];
       módulo
                                                tabla en paralelo
         label = "Combinación 1";
         ListPlot[pointsx, Joined → True,
         representación de lista unido
          PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue];
          rango de representación
                                          etiqueta de representación estilo de repre··· azul
     generatePlotfy :=
        Module[{pointsy, label}, pointsy = ParallelTable[{y, fy[y]}, {y, 0.1, 6, 0.1}];
       módulo
                                                tabla en paralelo
         label = "Combinación 1";
         ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
         representación de lista unido
                                         verd··· rango de representación
          PlotLabel → label, PlotStyle → Directive[Red, Dashed]]|;
          etiqueta de representación estilo de repre··· directiva
     generatePlotgx :=
       Module[{pointsx, label}, pointsx = ParallelTable[{x, gx[x]}, {x, 0.1, 6, 0.1}];
       módulo
                                                tabla en paralelo
         label = "Combinación 6";
         ListPlot[pointsx, Joined → True,
         representación de lista unido
                                         verdadero
          PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue]|;
                                          etiqueta de representación estilo de repre··· azul
          rango de representación
     generatePlotgy :=
        Module[{pointsy, label}, pointsy = ParallelTable[{y, gy[y]}, {y, 0.1, 6, 0.1}];
       módulo
                                                tabla en paralelo
         label = "Combinación 6";
         ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
         representación de lista unido
                                         verd··· rango de representación
          PlotLabel → label, PlotStyle → Directive[Red, Dashed]];
          Letiqueta de representación Lestilo de repre... Ldirectiva
     generatePlothx :=
        Module|{pointsx, label}, pointsx = ParallelTable[{x, hx[x]}, {x, 0.1, 6, 0.1}];
       módulo
                                                tabla en paralelo
```

```
label = "Combinación 8";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                    verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue]|;
                                     etiqueta de representación estilo de repre··· azul
    rango de representación
generatePlothy :=
  Module (pointsy, label), pointsy = ParallelTable[{y, hy[y]}, {y, 0.1, 6, 0.1}];
                                           tabla en paralelo
   label = "Combinación 8";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                   verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]];
     etiqueta de representación estilo de repre··· directiva
generatePlotjx :=
  Module|{pointsx, label}, pointsx = ParallelTable[{x, jx[x]}, {x, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
   label = "Combinación 11";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                   verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue]|;
    rango de representación
                                     etiqueta de representación estilo de repre... azul
generatePlotjy :=
  Module[{pointsy, label}, pointsy = ParallelTable[{y, jy[y]}, {y, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
   label = "Combinación 11";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]]|;
    etiqueta de representación estilo de repre··· directiva
generatePlotkx :=
  Module|{pointsx, label}, pointsx = ParallelTable[{x, kx[x]}, {x, 0.1, 6, 0.1}];
                                           tabla en paralelo
   label = "Combinación 14";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                  verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue];
     rango de representación
                                     etiqueta de representación estilo de repre··· azul
generatePlotky :=
  Module|{pointsy, label}, pointsy = ParallelTable[{y, ky[y]}, {y, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 14";
```

```
ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]]|;
    etiqueta de representación estilo de repre··· directiva
                                                      rojo rayado
generatePlotlx :=
  Module|{pointsx, label}, pointsx = ParallelTable[{x, lx[x]}, {x, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
   label = "Combinación 19";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                   verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue];
     rango de representación
                                     etiqueta de representación estilo de repre··· azul
generatePlotly :=
  Module (pointsy, label), pointsy = ParallelTable (y, ly[y]), (y, 0.1, 6, 0.1);;
                                           tabla en paralelo
   label = "Combinación 19";
   ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista
                        unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]]|;
    etiqueta de representación estilo de repre··· directiva
generatePlotex :=
  Module|{pointsx, label}, pointsx = ParallelTable[{x, ex[x]}, {x, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 25";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                  verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue];
                                     etiqueta de representación estilo de repre... azul
    rango de representación
generatePlotey :=
  Module (pointsy, label), pointsy = ParallelTable[(y, ey[y]), (y, 0.1, 6, 0.1)];
                                           tabla en paralelo
    label = "Combinación 25";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                   verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]];
     etiqueta de representación estilo de repre··· directiva rojo rayado
```

```
\textit{In[*]} := \mathsf{plots} = \left\{ \mathsf{Show} \big[ \mathsf{generatePlotfx}, \; \mathsf{generatePlotfy} \big], \; \mathsf{Show} \big[ \mathsf{generatePlotgx}, \; \mathsf{generatePlotgy} \big], \\ | \mathsf{muestra} \right\}
          Show[generatePlothx, generatePlothy], Show[generatePlotjx, generatePlotjy],
          Show[generatePlotkx, generatePlotky], Show[generatePlotlx, generatePlotly],
                                                    muestra
          Show[generatePlotex, generatePlotey], SpanFromLeft};
                                                    extiende desde la izquierda
          muestra
       ImageSize → Large
       tamaño de ima··· grande
       (* Añadir la leyenda *)
      CloseKernels[];
      cierra kernels
(kernel 43)
      NIntegrate::ncvb:
        NIntegrate failed to converge to prescribed accuracy after 9 recursive
          bisections in y near \{y\} = \{0.127773\}. NIntegrate obtained 2.455246142585962
          and 2.9939792368638543'*^-6 for the integral and error estimates.
(kernel 43)
      NIntegrate::ncvb:
        NIntegrate failed to converge to prescribed accuracy after 9 recursive
          bisections in x near \{x\} = \{0.127773\}. NIntegrate obtained 2.368502436986138`
```

and 3.282993534451745`*^-6 for the integral and error estimates.

Distribución de Probabilidad Acumulada

In[•]:= LaunchKernels[7];

lanza kernels

DistributeDefinitions[Fx, Fy, Gx, Gy, Hx, Hy, Jx, Jy, Kx, Ky, Lx, Ly, Ex, Ey]; I distribuve definiciones

```
generatePlotFx :=
  Module|{pointsx, label}, pointsx = ParallelTable[{t, Fx[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 1";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                   verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue]|;
     rango de representación
                                     etiqueta de representación estilo de repre··· azul
generatePlotFy :=
  Module|{pointsy, label}, pointsy = ParallelTable[{t, Fy[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 1";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]]|;
    etiqueta de representación estilo de repre··· directiva
generatePlotGx :=
  Module|{pointsx, label}, pointsx = ParallelTable[{t, Gx[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 6";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                   verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue]|;
                                     etiqueta de representación estilo de repre··· azul
generatePlotGy :=
  Module|{pointsy, label}, pointsy = ParallelTable[{t, Gy[t]}, {t, 0.1, 6, 0.1}];
                                           tabla en paralelo
    label = "Combinación 6";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]];
     etiqueta de representación estilo de repre··· directiva
                                                      rojo rayado
generatePlotHx :=
  Module (pointsx, label), pointsx = ParallelTable[{t, Hx[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 8";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                   verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue];
                                     etiqueta de representación estilo de repre··· azul
     rango de representación
```

```
generatePlotHy :=
  Module|{pointsy, label}, pointsy = ParallelTable[{t, Hy[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 8";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]]|;
     etiqueta de representación estilo de repre··· directiva
                                                    rojo ravado
generatePlotJx :=
  Module (pointsx, label), pointsx = ParallelTable[{t, Jx[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
   label = "Combinación 11";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                    verdadero
     PlotRange \rightarrow \{\{0, 6\}, \{0, 1\}\},  PlotLabel \rightarrow label, PlotStyle \rightarrow Blue];
     rango de representación
                                     etiqueta de representación estilo de repre··· azul
generatePlotJy :=
  Module[{pointsy, label}, pointsy = ParallelTable[{t, Jy[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 11";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]];
     etiqueta de representación estilo de repre··· directiva
generatePlotKx :=
  Module|{pointsx, label}, pointsx = ParallelTable[{t, Kx[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 14";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                    verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue]|;
    rango de representación
                                     etiqueta de representación estilo de repre··· azul
generatePlotKy :=
  Module[{pointsy, label}, pointsy = ParallelTable[{t, Ky[t]}, {t, 0.1, 6, 0.1}];
                                           tabla en paralelo
   label = "Combinación 14";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                   verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]]|;
     etiqueta de representación estilo de repre··· directiva rojo rayado
```

```
generatePlotLx :=
  Module (pointsx, label), pointsx = ParallelTable ((t, Lx[t]), (t, 0.1, 6, 0.1)];
                                           tabla en paralelo
   label = "Combinación 19";
    ListPlot[pointsx, Joined → True,
   representación de lista unido
                                  verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue]|;
    rango de representación
                                     etiqueta de representación estilo de repre··· azul
generatePlotLy :=
  Module|{pointsy, label}, pointsy = ParallelTable[{t, Ly[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
   label = "Combinación 19";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]]|;
     etiqueta de representación estilo de repre... directiva
generatePlotEx :=
  Module|{pointsx, label}, pointsx = ParallelTable[{t, Ex[t]}, {t, 0.1, 6, 0.1}];
                                           tabla en paralelo
   label = "Combinación 25";
    ListPlot[pointsx, Joined → True,
   representación de lista unido verdadero
     PlotRange \rightarrow {{0, 6}, {0, 1}}, PlotLabel \rightarrow label, PlotStyle \rightarrow Blue];
     rango de representación
                                     etiqueta de representación estilo de repre··· azul
generatePlotEy :=
  Module|{pointsy, label}, pointsy = ParallelTable[{t, Ey[t]}, {t, 0.1, 6, 0.1}];
  módulo
                                           tabla en paralelo
    label = "Combinación 25";
    ListPlot[pointsy, Joined \rightarrow True, PlotRange \rightarrow {{0, 6}, {0, 1}},
   representación de lista unido
                                    verd··· rango de representación
     PlotLabel → label, PlotStyle → Directive[Red, Dashed]];
     etiqueta de representación estilo de repre··· directiva rojo rayado
```

```
\textit{ln[*]} = \begin{cases} \text{Show} \big[ \text{generatePlotFx}, \text{ generatePlotFy} \big], \\ \text{Show} \big[ \text{generatePlotGx}, \text{ generatePlotGy} \big], \\ \text{Imuestra} \end{cases}
        Show[generatePlotHx, generatePlotHy], Show[generatePlotJx, generatePlotJy], <a href="mailto:limitsta">lmuestra</a>
        Show generatePlotKx, generatePlotKy, Show generatePlotLx, generatePlotLy,
                                                    muestra
        Show[generatePlotEx, generatePlotEy], SpanFromLeft};
| muestra | Lextiende desde la izquierda
        muestra
     ImageSize → Large
     tamaño de ima··· grande
     (* Añadir la leyenda *)
    CloseKernels[];
    cierra kernels
```


Momentos

<code>/n[⊕]:= (*Valor esperado aproximado numericamente*)</code>

```
{y, 0, Infinity}, {x, 0, Infinity}|;
Efy = NIntegrate y f[x, y, a = aVal, b = bVal, c = cVal, d = dVal],
                   integra numéricamente
           {x, 0, Infinity}, {y, 0, Infinity}|;
integra numéricamente
           {y, 0, Infinity}, {x, 0, Infinity}];
Egy = NIntegrate y g[x, y, a = aVal, b = bVal, c = cVal, d = dVal],
                  integra numéricamente
           {x, 0, Infinity}, {y, 0, Infinity}];
|infinito | infinito
Ehx = NIntegrate x h[x, y, a = aVal, b = bVal2, d = dVal2]
                  integra numéricamente
           \{y, 0, Infinity\}, \{x, 0, Infinity\}, AccuracyGoal \rightarrow 4, PrecisionGoal \rightarrow 4\}
                                                                                      infinito
                                                                                                                        objetivo de exactitud objetivo de precisión
Ehy = NIntegrate y h[x, y, a = aVal, b = bVal2, d = dVal2]
                   integra numéricamente
           \{x, 0, Infinity\}, \{y, 0, Infinity\}, AccuracyGoal \rightarrow 4, PrecisionGoal \rightarrow 4\};
                                                                                      infinito
                                                                                                                        objetivo de exactitud objetivo de precisión
Ejx =
       NIntegrate[x j[x, y, a = aVal2, c = cVal2, d = dVal2], \{y, 0, Infinity\}, \{x, 0, Infinity\}];
       integra numéricamente
Ejy =
       NIntegrate y = x, y, a = aVal2, c = cVal2, d = dVal2, {x, 0, Infinity}, {y, 0, Infinity};
       integra numéricamente
Ekx =
        NIntegrate x \in x \in x, y, z = aVal2, z = cVal2, z = dVal2, 
       integra numéricamente
                                                                                                                                                                                                  infinito
Eky =
        NIntegrate y = x = aVal2, c = cVal2, d = dVal2, x = 0, Infinity, y = 0, Infinity, y = 0, Infinity, y = 0, y = 0,
       integra numéricamente
                                                                                                                                                                                                  infinito
                                                                                                                                                                                                                                                        infinito
integra numéricamente
           \{y, 0, Infinity\}, \{x, 0, Infinity\}, AccuracyGoal \rightarrow 4, PrecisionGoal \rightarrow 4|;
                                                                                      infinito
                                                                                                                         objetivo de exactitud
                                                                                                                                                                              objetivo de precisión
Ely = NIntegrate y = [x, y, a = aVal, b = bVal, c = cVal, d = dVal],
                  integra numéricamente
```

 $\{x, 0, Infinity\}, \{y, 0, Infinity\}, AccuracyGoal \rightarrow 4, PrecisionGoal \rightarrow 4\}$ infinito objetivo de exactitud objetivo de precisión

Eex = NIntegrate $x \in [x, y, a = aVal, b = bVal, c = cVal, d = dVal]$ integra numéricamente

 $\{y, 0, Infinity\}, \{x, 0, Infinity\}, AccuracyGoal \rightarrow 1, PrecisionGoal \rightarrow 0.1|;$ infinito objetivo de exactitud objetivo de precisión

Eey = NIntegrate $y \in [x, y, a = aVal, b = bVal, c = cVal, d = dVal]$ integra numéricamente

 $\{x, 0, Infinity\}, \{y, 0, Infinity\}, AccuracyGoal \rightarrow 1, PrecisionGoal \rightarrow 0.1|;$

ln[*]:= (*Transformationes inversas de (Y₁, Y₂) a (X₁, X₂)*)

g1[x_, y_] :=
$$\frac{x}{x + y}$$
;

$$g2[x_{-}, y_{-}] := \frac{x y}{(x + y)^{2} (x + y + 1)};$$

(*Resultdos Numéricos obtenidos para los valores esperados*) resultadosTabla = TableForm

forma de tabla

{{"1", Efx, Efy, g1[Efx, Efy], g2[Efx, Efy]}, {"6", Egx, Egy, g1[Egx, Egy], g2[Egx, Egy]}, {"8", Ehx, Ehy, g1[Ehx, Ehy], g2[Ehx, Ehy]}, {"11", Ejx, Ejy, g1[Ejx, Ejy], g2[Ejx, Ejy]}, {"14", Ekx, Eky, g1[Ekx, Eky], g2[Ekx, Eky]}, {"19", Elx, Ely, g1[Elx, Ely], g2[Elx, Ely]}, {"25", Eex, Eey, g1[Eex, Eey], g2[Eex, Eey]}}, TableHeadings → cabeceras de tabla

 $\left\{ \text{None, } \left\{ \text{"Combinación", "E[Y_1]", "E[Y_2]", "h_1^{-1}(Y_1, Y_2)", "h_2^{-1}(Y_1, Y_2)"} \right\} \right]$ número e número e

Out[]//TableForm=

Combinación	$E[Y_1]$	E[Y ₂]	$h_1^{-1}(Y_1, Y_2)$	$h_2^{-1}(Y_1, Y_2)$
1	1.	2.	0.333333	0.0555556
6	1.423	1.577	0.474335	0.0623353
8	0.534093	0.575118	0.481507	0.118366
11	0.06	0.04	0.6	0.218182
14	0.381234	0.260235	0.594314	0.146884
19	0.373937	0.129468	0.742815	0.127072
25	3.10711	2.65022	0.539679	0.0367638

<code>৷n[₀]:= (*Valor esperado de X₁ distribuida Beta*)</code>

beta

EBx1[a_, b_] :=
$$\frac{a}{a+b}$$
;

(*Valor esperado de $X_2 \mid X_1$ distribuida Beta.4p*)

EB4Px2x1[c_, d_, u_] :=
$$\frac{c u}{c + d}$$
;

(*Valor esperado de X₁ distribuida Kumaraswamy*)

(*Valor esperado de X₂ X₁ distribuida Kumaraswamy Truncada*)

$$EKTx2x1[c_{-}, d_{-}, u_{-}] := \frac{c \, d \, NIntegrate \left[x^{c} \left(1 - x^{c}\right)^{d-1}, \left\{x, 0, u\right\}\right]}{1 - \left(1 - \left(u\right)^{c}\right)^{d}};$$

(*Valor esperado de X₁ distribuida Triangular*)

$$ETx1[a_] := \frac{a+1}{3};$$

(*Valor esperado de $X_2 \mid X_1$ distribuida Triangular*)

ETx2x1[d_, u_] :=
$$\frac{d+u}{3}$$
;

(*Valor esperado de X₁ distribuida GT*)

EGTx1[a_, b_] := NIntegrate[
$$x^a Exp[-\frac{x}{-}]$$
, {x, 0, 1}] / NIntegrate[$w^{a-1} Exp[-w/b]$, {w, 0, 1}];
Lintegra numéricam Lexponencial

(*Valor esperado de $X_2 \mid X_1$ distribuida GT*)

$$\begin{aligned} & \text{NIntegrate} \Big[\mathbf{x}^{\mathsf{c}} \, \mathsf{Exp} \Big[-\frac{\mathbf{x}}{\mathsf{d}} \Big], \, \{ \mathbf{x} \,, \, \mathbf{0} \,, \, \mathbf{u} \} \Big] / & \text{NIntegrate} \Big[\mathbf{w}^{\mathsf{c-1}} \, \mathsf{Exp} \Big[-\mathbf{w} \, / \, \mathbf{d} \Big], \, \{ \mathbf{w} \,, \, \mathbf{0} \,, \, \mathbf{u} \} \Big]; \\ & \text{integra numéric} \cdots \, \left[\mathsf{exponed}_{\mathsf{cial}} \right] \end{aligned}$$

(*Valor esperado de X₁ distribuida NT*)

ENTx1[a_, b_] :=

$$\begin{aligned} & \text{NIntegrate} \Big[x \ \text{Exp} \Big[-\frac{1}{\text{cm}} \Big(x \ -a \Big)^2 \Big], \ \{ x \ , \ 0 \ , \ 1 \} \Big] / \bigg(\bigg(& \text{CDF} \Big[\text{NormalDistribution[0, 1]}, \ \frac{1-a}{\text{Sqrt[b]}} \Big] - \\ & \text{Lintegra numéri} \cdot \cdot \cdot \\ & \text{Lexpone2cbal} \cdot \cdot \cdot \\ & \text{Lexpone2cbal} \cdot \cdot \cdot \cdot \\ & \text{Complete of the properties of the prope$$

(*Valor esperado de $X_2 \mid X_1$ distribuida NT*)

ENTx2x1[c_, d_, u_] :=

NIntegrate
$$\left[x \, \text{Exp}\left[-\frac{1}{u} \left(x - c\right)^{2}\right], \left\{x, 0, u\right\}\right] / \left(\left[\frac{\text{CDF}\left[\text{NormalDistribution}\left[0, 1\right], \frac{u - c}{\text{Sqrt}\left[d\right]}\right] - \frac{u - c}{u}\right] - \frac{u - c}{u}\right] - \frac{u - c}{u}$$

```
In[⊕]:= (*Comparación entre resultados numéricos obtenidos
    y los valores perados marginales y condicionales*)
   resultadosTabla =
    N[TableForm[{{"1", Efx, Efy, g1[Efx, Efy], g2[Efx, Efy], EBx1[aVal, bVal], | forma de tabla
         EB4Px2x1 cVal, dVal, EBx1[aVal, bVal](1 - EBx1[aVal, bVal])),
       {"6", Egx, Egy, g1[Egx, Egy], g2[Egx, Egy], EKx1[aVal, bVal],}
         {"8", Ehx, Ehy, g1[Ehx, Ehy], g2[Ehx, Ehy], EKx1[aVal, bVal2],
         ETx2x1 dVal2, EKx1[aVal, bVal2](1 - EKx1[aVal, bVal2]),
       {"11", Ejx, Ejy, g1[Ejx, Ejy], g2[Ejx, Ejy], ETx1[aVal2],
         EB4Px2x1[cVal2, dVal2, ETx1[aVal2](1 - ETx1[aVal2])]
        {"14", Ekx, Eky, g1[Ekx, Eky], g2[Ekx, Eky],}
         ETx1[aVal2], EGTx2x1[cVal2, dVal2, ETx1[aVal2] (1 - ETx1[aVal2])],
        {"19", Elx, Ely, g1[Elx, Ely], g2[Elx, Ely], EGTx1[aVal, bVal],}
         {"25", Eex, Eey, g1[Eex, Eey], g2[Eex, Eey], ENTx1[aVal, bVal],
         ENTx2x1[cVal, dVal, ENTx1[aVal, bVal](1 - ENTx1[aVal, bVal])]}},
      cabeceras de tabla
                                          número e número e
          "h_2^{-1}(E[Y_1], E[Y_2])", "E[X_1]", "E[X_2|X_1=E[X_1]]"\}\} |, 5|
```

núm·· número e número e númer··· número e

Out[]//TableForm=

Combinación	$E[Y_1]$	E[Y ₂]	$h_1^{-1}(E[Y_1], E[Y_2])$	$h_2^{-1}(E[Y_1], E[Y_2])$	$E[X_1]$	E[X
1	1.	2.	0.333333	0.0555556	0.33333	0.0
6	1.423	1.577	0.474335	0.0623353	0.47433	0.6
8	0.534093	0.575118	0.481507	0.118366	0.47433	0.1
11	0.06	0.04	0.6	0.218182	0.6	0.2
14	0.381234	0.260235	0.594314	0.146884	0.6	0.1
19	0.373937	0.129468	0.742815	0.127072	0.743663	0.1
25	3.10711	2.65022	0.539679	0.0367638	0.534431	0.1

```
In[•]:= (*Covarianza aproximada numericamente*)
      Cf = NIntegrate x y f[x, y, a = aVal, b = bVal, c = cVal, d = dVal],
           integra numéricamente
          \{y, 0, Infinity\}, \{x, 0, Infinity\}, AccuracyGoal \rightarrow 4, PrecisionGoal \rightarrow 4\};
                                      infinito
                                                  objetivo de exactitud objetivo de precisión
     Cg = NIntegrate | x y g[x, y, a = aVal, b = bVal, c = cVal, d = dVal],
           integra numéricamente
          {y, 0, Infinity}, {x, 0, Infinity}];
     Ch = NIntegrate x y h[x, y, a = aVal, b = bVal2, d = dVal2],
           integra numéricamente
          \{y, 0, Infinity\}, \{x, 0, Infinity\}, AccuracyGoal \rightarrow 1, PrecisionGoal \rightarrow 4|;
                                      infinito
                                                   objetivo de exactitud objetivo de precisión
     Cj = NIntegrate | x y j[x, y, a = aVal2, c = cVal2, d = dVal2],
           integra numéricamente
          {y, 0, Infinity}, {x, 0, Infinity}];
|infinito | infinito
     Ck = NIntegrate | x y k[x, y, a = aVal2, c = cVal2, d = dVal2],
           integra numéricamente
          {y, 0, Infinity}, {x, 0, Infinity}];
|infinito | infinito
     Cl = NIntegrate x y l[x, y, a = aVal, b = bVal, c = cVal, d = dVal],
           integra numéricamente
          Ce = NIntegrate x y e[x, y, a = aVal, b = bVal, c = cVal, d = dVal],
           integra numéricamente
          \{x, 0, Infinity\}, \{y, 0, Infinity\}, AccuracyGoal \rightarrow 1, PrecisionGoal \rightarrow 0.1;
                                                  objetivo de exactitud objetivo de precisión
In[+]:= NIntegrate x y e[x, y, a = aVal, b = bVal, c = cVal, d = dVal],
     integra numéricamente
       \{x, 0, Infinity\}, \{y, 0, Infinity\}, AccuracyGoal \rightarrow 1, PrecisionGoal \rightarrow 0.1
                                   infinito objetivo de exactitud objetivo de precisión
Out[\bullet]= 1.22186 × 10<sup>64</sup>
```

```
In[*]:= (*Covarianza*)
     resultadosTabla =
       \mathbb{N}[\mathsf{TableForm}[\{\{"1", \mathsf{Efx}, \mathsf{Efy}, \mathsf{g1}[\mathsf{Efx}, \mathsf{Efy}], \mathsf{g2}[\mathsf{Efx}, \mathsf{Efy}], \mathsf{EBx1}[\mathsf{aVal}, \mathsf{bVal}],]
            EB4Px2x1[cVal, dVal, EBx1[aVal, bVal](1 - EBx1[aVal, bVal])], Cf, Cf - Efx Efy},
           {"6", Egx, Egy, g1[Egx, Egy], g2[Egx, Egy], EKx1[aVal, bVal],}
            EB4Px2x1 cVal, dVal, EKx1[aVal, bVal](1 - EKx1[aVal, bVal]), Cg, Cg - Egx Egy},
           \{"8", Ehx, Ehy, g1[Ehx, Ehy], g2[Ehx, Ehy], EKx1[aVal, bVal2],
             ETx2x1 dVal2, EKx1[aVal, bVal2] (1 - EKx1[aVal, bVal2]), Ch, Ch - Ehx Ehy,
           {"11", Ejx, Ejy, g1[Ejx, Ejy], g2[Ejx, Ejy], ETx1[aVal2],}
            EB4Px2x1[cVal2, dVal2, ETx1[aVal2](1 - ETx1[aVal2])], Cj, Cj - Ejx Ejy},
           {"14", Ekx, Eky, g1[Ekx, Eky], g2[Ekx, Eky], ETx1[aVal2],
            EGTx2x1[cVal2, dVal2, ETx1[aVal2](1 - ETx1[aVal2])], Ck, Ck - Ekx Eky},
           \{"19", Elx, Ely, g1[Elx, Ely], g2[Elx, Ely], EGTx1[aVal, bVal],
            EGTx2x1[cVal, dVal, EGTx1[aVal, bVal](1 - EGTx1[aVal, bVal])], Cl, Cl - Elx Ely},
           {"25", Eex, Eey, g1[Eex, Eey], g2[Eex, Eey], ENTx1[aVal, bVal],
            ENTx2x1[cVal, dVal, ENTx1[aVal, bVal](1 - ENTx1[aVal, bVal])], Ce, Ce - Eex Eey}},
         TableHeadings \rightarrow {None, {"Combinación", "E[Y<sub>1</sub>]", "E[Y<sub>2</sub>]", "h<sub>1</sub>-1(E[Y<sub>1</sub>], E[Y<sub>2</sub>])",
         cabeceras de tabla
                                                            número e número e
                                                                                 _núm·· _número e
                               ninguno
              h_2^{-1}(E[Y_1], E[Y_2])^n, E[X_1]^n, E[X_2|X_1=E[X_1]]^n, E[Y_1Y_2]^n, Cov(Y_1, Y_2)^n, [X_1, X_2]^n
```

Out[•]//TableForm=

ibier offir-						
Combinación	$E[Y_1]$	$E[Y_2]$	$h_1^{-1}(E[Y_1], E[Y_2])$	$h_2^{-1}(E[Y_1], E[Y_2])$	$E[X_1]$	E[X
1	1.	2.	0.333333	0.0555556	0.33333	0.0
6	1.423	1.577	0.474335	0.0623353	0.47433	0.6
8	0.534093	0.575118	0.481507	0.118366	0.47433	0.1
11	0.06	0.04	0.6	0.218182	0.6	0.2
14	0.381234	0.260235	0.594314	0.146884	0.6	0.1
19	0.373937	0.129468	0.742815	0.127072	0.743663	0.1
25	3.10711	2.65022	0.539679	0.0367638	0.534431	0.1

_núm·· _número e _número e _número e _número e