Robust and Fast 3D Shape Matching via Adaptive Algebraic Fitting

Shaodi YOU

Ikeuchi Lab. M2

2011-10-14

Outline

- Introduction
- Our method
 - Key-point detection
 - Critical net based shape descriptor
- Experimental results
- Applications
- Conclusion and future works

Sparse 3D shape matching

3d shapes

Key points detection and description

Key points matching

Motivation

• 3D recognition [Mian IJCV 2010]

Model retrieving

Motivation

• Surface registration [Novatnack ECCV 2008]

Motivation

- Digital archiving [Ikeuchi Lab]
 - Digital Bayon Temple project

Motivation

Dense matching [Zeng CVPR 2010]

Motion tracking [Tung CVPR 2011]

Recent trend

 In recent years, there is demand on sparse matching of deformed objects.

 Computational efficiency is also demanded for real time processing

Outline

- Introduction
- Our method
 - Key-point detection
 - Critical net based shape descriptor
- Experimental results
- Applications
- Conclusion and future works

Our contribution

- Apply algebraic surface fitting to sparse 3D shape matching
- The proposed detector is robust on deformation
- Fast

Key-point detection:

Methodology

- Step 1: algebraic surface fitting
- Step 2: point deviation measurement
- Step 3: key point selection

Algebraic surface fitting

3-D implicit polynomial (IP)

$$f_n(\mathbf{x}) = \sum_{0 \le i, j, k, i+j+k \le n} a_{ijk} x^i y^j z^k = 0$$

3-D shape induced by the polynomial

$$\tilde{\Gamma}_0 = \{ x = (x, y, z) | f(x) = 0 \}$$

Origin object

4-degree

6-degree

10-degree

Algebraic distance of point deviation

Origin object

10-degree fitting f(x) = 0

Color map of f(x) on original object

Key-point selection

 Select local minimums (blue) and local maximums (red) according to the color map.

Key-point detection:

Mathematical support

Theorem (local algebraic distance):

- Given 3D shape Γ_0 consists of point set $\{x\}$ and its n-degree polynomial from 3L-addaptive-ASF $\tilde{f}(\cdot)$ along with the induced smooth approximation $\tilde{\Gamma_0}$. For each point x, its polynomial value $\tilde{f}(x)$ is a locally signed algebraic distance of how far it is deviated from $\tilde{\Gamma_0}$.

Lemma 1 (monotonicity):

– By 3L ASF, a locally monotonic space is generated around the 3D surface $\widetilde{\Gamma_0}$.

Lemma 2 (inclusion):

- The points on 3D surface Γ_0 are guaranteed to be located inside the locally monotonic space Ω with a very high probability
- Please refer to paper for details.

Outline

- Introduction
- Our method
 - Key-point detection
 - Critical net based shape descriptor
- Experimental results
- Applications
- Conclusion and future works

Critical net based shape descriptor

3D critical net

 Standalone key points would be more useful if a structure is given.

Key point detection

Key point description

Generate 3D critical net

Dual Spin Image

Critical net based shape descriptor

Dual spin image

- Spin Image
- [A. E. Johnson PAMI (1999)]

Critical net based shape descriptor

Matching

Spin Image

Dual Spin Image

Outline

- Introduction
- Our method
 - Key-point detection
 - Critical net based shape descriptor
- Experimental results
- Applications
- Conclusion and future works

Repeatability of the detector

origin shape

KP1

deformed shape

KP2

$$repeatability = \frac{repeatable \ points}{\min(points \ in \ \{KP1\}, \{KP2\})}$$

Experimental results

Repeatability of the detector

Repeatability

Invariance to rotation and scaling

Affine deformation

Non-linear deformation

Gaussian noise

Matching accuracy

Matching accuracy

Dual Spin image

Wrong matches

Computational efficiency

- Test on Core 2 Notebook 2.1G, 3G memory
- Matlab 2009b, no parallelization

Model Name	Points	Time (s)
FaceYO	14000	3.16
eros	26000	4.78
Bayon Face	30000	4.62
Bunny	40000	5.46
Brain	73000	7.37

Outline

- Introduction
- Our method
 - Key-point detection
 - Critical net based shape descriptor
- Experimental results
- Application
- Conclusion and future works

Digital Bayon Archiving Project [Ikeuchi Lab]

Flying laser range sensor

Flying laser range sensor

Ground truth FLRS data

Flying laser range sensor

Ground truth

Outline

- Introduction
- Our method
 - Key-point detection
 - Critical net based shape descriptor
- Experimental results
- Applications
- Conclusion and future works

Conclusion

- Key point description
- Provided an original local feature based 3D free form surface matching method.
- The algebraic surface fitting based detector is robust and fast
- Provide algorithms to compute 3D critical net and the scale invariant dual spin image
- Application on FLRS is provided

Future works

- Applying the method on motion data correspondence
- Applying the method on SLAM (simultaneous localization and mapping)

Thank you for your attention!