

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (II) 1601330

A 1

46

(51) 5 E 21 B 29/10

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГНЦИ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 4446602/23-03
(22) 25.04.88
(46) 23.10.90, Бол. № 39
(71) Всесоюзный научно-исследовательский институт буровой техники
(72) А.А. Цыбин, В.В. Торопыгин, А.Н. Гладких, С.П. Тарасов и А.В. Праневский
(53) 622.245.4 (088.8)
(56) Авторское свидетельство СССР № 1035192, кл. Е 21 В 33/10, 1981.
Авторское свидетельство СССР № 1141184, кл. Е 21 В 29/10, 1983.
(54) СПОСОБ УСТАНОВКИ ПЛАСТЫРЯ В ИНТЕРВАЛЕ НЕГЕРМЕТИЧНОСТИ ОБСАДНОЙ КОЛОННЫ
(57) Изобретение относится к нефтедобывающей промышленности и предназначено для ремонта обсадных колонн и изо-

ляции обводнившихся продуктивных пластов в зоне перфорации. Цель - обеспечение экономии материала пластира. На трубах спускают гидравлические лакеры с уплотнительными элементами и установленный на них пластирь. Затем верхний торец нижнего уплотнительного элемента гидравлического пакера размещают напротив нижней границы интервала негерметичности. Длину пластиря вычисляют по математической формуле. Производят запаковку уплотнительных элементов пакера в концевых участках пластиря и расширение пластиря по всей длине путем создания избыточного давления в уплотнительных элементах пакеров и в межпакерной зоне. Такое расположение пластиря обеспечивает сохранность его и обсадной колонны в интервале, ослабленном отверстиями. 4 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к способам ремонта обсадных колонн, а также изоляции обводнившихся продуктивных пластов в зоне перфорации.

Целью изобретения является обеспечение экономии материала пластира.

На фиг. 1 изображен пакер сдвоенный гидравлический (ПРС) с установленным на нем пластирем в транспортном положении; на фиг. 2 - то же, при запаковке его уплотнительных элементов на пластире; на фиг. 3 - то же, при прижатии концевых участков пластира к обсадной колонне; на фиг. 4 - то же, при завершении прижатия концето

вых участков и деформировании среднего участка пластиря до касания с внутренней поверхностью обсадной колонны.

Способ установки пластиря в интервале негерметичности обсадной колонны реализуется следующим образом.

На гидравлический пакер, включающий верхний 1 и нижний 2 уплотнительные элементы, между которыми размещен дифференциальный клапан 3, устанавливается металлический пластирь 4, который фиксируется на пакере упорами 5 и 6. Расстояние между уплотнительными элементами 1 и 2 устанавливается в зависимости от длины пластиря, определенного по зависимости, и обеспече-

SU III 1601330

A 1

или долиго закрытия уплотнительных элементов 1 и 2 концевыми участками пластиря.

Длина пластиря выбирается в соответствии со следующей зависимостью

$$L = l_{1,0} + 2(l_{4,3} + \frac{P \cdot 1(1-2\mu)}{E \cdot (C^2 - 1)}),$$

где L - длина пластиря, м;

$l_{1,0}$ - длина интервала негерметичности обсадной колонны, м;

$l_{4,3}$ - длина уплотнительного элемента гидравлического пакера, м;

P - давление в гидравлических пакерах при прижатии концевых участков пластиря, МПа;

1 - расстояние от устья скважины до верхней границы интервала негерметичности обсадной колонны, м;

E - модуль упругости материала труб, на которых производится спуск пластиря, МПа;

C - отношение наружного диаметра к внутреннему труб, на которых производится спуск пластиря;

μ - коэффициент Пуассона материала труб, на которых производится спуск пластиря.

Пакер с пластирем 4 спускается на насосно-компрессорных трубах (не показаны) в обсадную колонну 7 к интервалу $l_{1,0}$ негерметичности, ослабленному отверстиями 8. Нижний уплотнительный элемент 2 устанавливают так, чтобы его верхний торец был напротив нижней границы интервала $l_{1,0}$. При этом расстояние между нижним торцом верхнего уплотнительного элемента 1 и верхней границы интервала $l_{1,0}$ составит величину a , равную $2 \frac{P \cdot 1(1-2\mu)}{E \cdot (C^2 - 1)}$ и учитывающую

удлинение насосно-компрессорных труб при установке пластиря. Создают в пакете избыточное давление порядка 2-3 МПа

и запакеровывают уплотнительные элементы 1 и 2 в концевых участках пластиря 4 (фиг. 2). Повышают давление в пакете и расширяют его сначала уплотнительными элементами 1 и 2 соответствующие концевые участки пластиря (фиг. 3). После чего открывается дифференциальный клапан 3, предварительно настроенный на заданное давление, и рабочей жидкостью расширяют среднюю часть пластиря. Давление в пакере повышают до расчетного P_1 , обеспечивающего прижатие концевых участков пла-

стиря давлением P_k , при этом средняя часть пластиря в интервале $l_{1,0}$ деформируется расчетным давлением $P_2 \ll P_1$ до касания с внутренней поверхностью обсадной колонны для исключения нагрузок на интервал $l_{1,0}$ (фиг. 4). В процессе установки пластир 4 вместе с пакетом перемещается относительно интервала $l_{1,0}$ обсадной колонны на величину $a/2$, но благодаря выбору длины пластиря и соответствующей его ориентации перед установкой относительно нижней границы интервала $l_{1,0}$, концевые участки пластиря, прижатые к обсадной колонне, будут находиться вне интервала $l_{1,0}$ на равном расстоянии $a/2$ от соответствующих его границ. Такое расположение пластиря обеспечит сохранность его и обсадной колонны в интервале, ослабленном отверстиями.

Ф о р м у л а изобр е т е н и я

Способ установки пластиря в интервале негерметичности обсадной колонны, включающий спуск на трубах гидравлических пакеров с уплотнительными элементами и установленного на них пластиря, запакеровку уплотнительных элементов пакера в концевых участках пластиря и расширение пластиря по всей длине путем создания избыточного давления в уплотнительных элементах пакеров и в межпакерной зоне, отличаящийся тем, что, с целью обеспечения экономии материала пластиря, после спуска пластиря верхний торец нижнего уплотнительного элемента гидравлического пакера размещают напротив нижней границы интервала негерметичности, а длину пластиря выбирают в соответствии со следующей зависимостью

$$L = l_{1,0} + 2(l_{4,3} + \frac{P \cdot 1(1-2\mu)}{E \cdot (C^2 - 1)}),$$

где L - длина пластиря, м;

$l_{1,0}$ - длина интервала негерметичности обсадной колонны, м;

$l_{4,3}$ - длина уплотнительного элемента гидравлического пакера, м;

P - давление в гидравлических пакерах при прижатии концевых участков пластиря, МПа;

1 - расстояние от устья скважины до верхней границы интервала негерметичности обсадной колонны, м;

E - модуль упругости материала

5

1601330

труб, на которых производится спуск пластиря, МПа;
 С - отношение наружного диаметра к внутреннему труб, на которых

6

производится спуск пластиря; μ - коэффициент Пуассона материала труб, на которых производится спуск пластиря.

5

Фиг.1

Фиг.2

Фиг.3

Редактор В.Бугрецкова

Составитель И.Левкоева
Техред Л.Сердюкова

Заказ 3257

Тираж 469

Фиг.4

Корректор И.Муска

Подпись

ВНИИПТИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Руцкая наб., д. 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101

BEST AVAILABLE COPY