DB Compression Overview

- fit larger datasets in memory
- less I/O
- better cache uitilization
- some DBs allow query processing directly on compressed data
 - #1 Page-level compression (general-purpose GZIP, Snappy, LZ4)
 - #2 Row-level heavyweight/lightweight compression (e.g., Huffman)
 - #3 Column-level lightweight compression

(NS, RLE, DICT, Delta, FOR \rightarrow next slide)

#4 Specialized log and index compression

[Patrick Damme et al: Ligh Data Compression Algorith Experimental Survey. **EDB**

Lightweight Database Compression Schemes

- null suppresion
 - compress integers with leading zeros

- run-length encoding
 - compress sequences of equal values by "runs"
 - each run consists of
 - * value
 - * start
 - * length

- dictionary encoding
 - compress column with few distinct values
 - create dictionary with all values
 - store pos in dictionary instead of actual value

* compression would be more effective if values were strings instead

- \bullet delta encoding
 - compress sequence with small changes
 - store delta/change to previous value

- frame-of-reference encoding
 - compress values by storing delta to reference value
 - outlier handling

[[Physical Design]]