Exercice 2

1. Soit $G_1 = (V_1, E_1)$ un graphe, $\mathrm{TSP\text{-}magique}(G = (V, E))$ une procédure calculant une solution optimale au problème du voyageur de commerce. On cherche à utiliser $\mathrm{TSP\text{-}magique}$ pour un cycle hamiltonien.

On peut mettre toutes les arêtes connus du cycle hamiltonien sur un poids de 1 et les arêtes non connus (deux points proche (u,v)) sur des poids lourds comme $+\infty$.

Nous pouvons ensuite appliquer TSP-magique.

2. G_1 admet une solution au cycle hamiltonien si et seulement si par le graphe G_1 et la fonction de distance d ainsi contrainte, la procédure TSP-magique retourne un cycle dont le poids est n.

3. On peut trouver comme complexité en temps exponentiel

Exercice 3

Soit TSP-magique s'exécute en temps exponentiel $\mathcal{O}(n^22^n)$ et soit la librairie SuperGraphs donne une procédure TSP-approx qui calcule une approximation au problème du TSP en temps polynomial.

- 1. TSP-approx retourne une solution de cout z=0 si et seulement si le graphe G_1 contient un cycle hamiltonien.
 - " \Rightarrow " si z=0 ou z=n, alors le cycle construit par TSP-approx n'utilise que des arêtes de G_1 et dans G_1 admet un cycle hamiltonien
 - " \Leftarrow " si G_1 admet un cycle hamiltonien alors le graphe G admet une solution

optimal à TSP de coût z = 0 on a

$$z^* = egin{cases} 0 \ n \end{cases}$$

Et donc, quelque soit c, on a

$$c imes z^* = egin{cases} n < egin{cases} +\infty \ 1 \end{cases}$$

Ainsi, on peut utiliser TSP-approx pour résoudre le cycle hamiltonien. $\frac{3}{2}=1.5$

$$orall x,y,z$$
 $d(x,y) \leq d(x,y) + d(y,z)$

2. A première vu nous venons de résoudre le cycle hamiltonien, soit un problème NP. Cela crée une illusion

Exercice 4

1. Soit $\mathcal T$ un arbre couvrant minimum de G=(V,E). On duplique les arêtes de $\mathcal T$ afin d'obtenir un graphe eulérien

Soit $\mathcal C$ un cycle qui est une solution optimale à TSP pour le graphe G=(V,E), notons z^* la distance totale de $\mathcal C$.

Montrons que si $\mathcal T$ est un arbre couvrant de poids minimum, alors $\operatorname{poids}(\mathcal T) \le z^* (= \operatorname{poids}(\mathcal C))$:

 ${\mathcal C}$ contient tous les sommets et ${\mathcal C}$ est un cycle.

Retirons à \mathcal{C} une arête quelconque, on obtient \mathcal{C}' qui est un arbre couvrant. Or, $\operatorname{poids}(\mathcal{C}) \geq \operatorname{poids}(\mathcal{T})$

(i) Graphe eulérien

Un graphe est eulérien s'il possède un chemin ou un cycle eulérien

- Chemin eulérien : chemin parcourant chaque arêtes une fois.
- Cycle eulérien : cycle parcourant toutes les arêtes une fois et reviens au point de départ

2. Soit \mathcal{T} un arbre couvrant de poids min, on double chaque arêtes de \mathcal{T} . Alors \mathcal{T} contient un cycle eulérien car chaque sommet a maintenant un degré pour

 $v_4, v_1, v_2, v_3, v_2, v_1, v_4, v_6, v_7, v_8, v_7, v_{12}, v_7, v_{13}, v_{14}, v_7, v_6, v_4, v_5, v_6, v_{15}, \dots$ Bien sûr, $\operatorname{poids}(\mathcal{C}_E) = \operatorname{poids}(\mathcal{T}) \times 2$

A partir de C_E , on peut construire un cycle hamiltonien dont le poids est au plus $2 \times z^*$. Pour cela, on ne consulte que la première occurrence de chaque sommet dans C_E

A cause de l'inégalité triangulaire, le poids de ce nouveau cycle est moindre que $\operatorname{poids}(\mathcal{C}_E)$, or $\operatorname{poids}(\mathcal{C}_E) = 2 \times \operatorname{poids}(\mathcal{T}) \leq 2 \times z^*$ 3. ?

4. ?

5.