

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 86900 N
                                                                M_{\star}
                                                                           = 3370000 Nmm
T_y \\ M_t
          = 47700 N
                                                                           = 240 \text{ N/mm}^2
                                                                           = 200000 \text{ N/mm}^2
          = 172000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 95700 N	M,	= 126000 Nmm	σ_a	$= 240 \text{ N/mm}^2$	G	= 73000 N/mm ²
T_v	= 50300 N	M_x	= 3600000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	\mathbf{r}_{u}	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 104000 N
                                                              M_{\star}
                                                                        = 4080000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 37700 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 141000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 75900 N
                                                                M_{\star}
                                                                           = 4230000 Nmm
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 40800 N
                                                                           = 200000 \text{ N/mm}^2
          = 153000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 110000 N
                                                              M_{\star}
                                                                         = -7580000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 84400 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 212000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 121000 N	M _t	= 155000 Nmm		$= 240 \text{ N/mm}^2$	G	= 73000 N/mm ²
T_v	= 90700 N	M_x	= -8270000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_i =	σ_{ls}	=	r_u	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_{v})_{d}$	=	σ_{tresca}	=	ľ	
		,					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 132000 N
                                                               M_{\star}
                                                                         = -9190000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 67800 N
                                                                         = 200000 \text{ N/mm}^2
          = 174000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 97200 N
                                                               M_{\star}
                                                                         = -9800000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 74400 N
                                                                         = 200000 \text{ N/mm}^2
          = 190000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 93900 N
                                                                M_{\star}
                                                                           = 3620000 Nmm
T_y \\ M_t
          = 47000 N
                                                                          = 240 \text{ N/mm}^2
                                                                          = 200000 \text{ N/mm}^2
          = 206000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 101000 N
                                                              M_{\star}
                                                                        = 3720000 Nmm
                                                                        = 240 \text{ N/mm}^2
          = 48700 N
                                                                        = 200000 \text{ N/mm}^2
          = 149000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 112000 N	M,	= 169000 Nmm		$= 240 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 37400 N	M_x	= 4280000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A,	=	$\tau(M_t)_d$	_I =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 81500 N
                                                              M_{\star}
                                                                         = 4410000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 39200 N
M,₊
                                                                         = 200000 \text{ N/mm}^2
          = 183000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 120000 N
                                                                      M_{\star}
                                                                                 = 6790000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 88700 N
                                                                                 = 200000 \text{ N/mm}^2
           = 265000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 131000 N
                                                                      M_{\star}
                                                                                  = -7220000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 93400 N
                                                                                 = 200000 \text{ N/mm}^2
           = 194000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 143000 N
                                                                      M_{\star}
                                                                                 = 8170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 240 \text{ N/mm}^2
           = 69900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 217000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 103000 N
                                                                      M_{\star}
                                                                                 = 8400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 240 \text{ N/mm}^2
           = 76400 N
                                                                                 = 200000 \text{ N/mm}^2
           = 234000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 103000 N
                                                                M_{\star}
                                                                          = 2810000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 46200 N
                                                                          = 200000 \text{ N/mm}^2
          = 256000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 112000 N
                                                              M_{\star}
                                                                        = 2930000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 48400 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 187000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 123000 N
                                                                      M_{\star}
                                                                                 = 3400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 240 \text{ N/mm}^2
           = 36900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 209000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 90200 N
                                                               M_{\star}
                                                                         = 3470000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 39200 N
M,₊
                                                                         = 200000 \text{ N/mm}^2
          = 229000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 159000 N
                                                              M_{\star}
                                                                        = -14600000 Nmm
                                                                        = 240 \text{ N/mm}^2
          = 123000 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 369000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                            \sigma_{\text{IId}}
                                                                                                                            \sigma_{tresca} =
                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 176000 N	M _t	= 272000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 133000 N	M_x	= -16100000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	\mathbf{r}_{u}	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=	•	

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

20.05.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 192000 N
                                                              M_{\star}
                                                                        = -17500000 Nmm
                                                                        = 240 \text{ N/mm}^2
          = 99000 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 303000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 141000 N
                                                              M_{\star}
                                                                        = -19200000 Nmm
                                                                        = 240 \text{ N/mm}^2
          = 109000 N
                                                                        = 200000 \text{ N/mm}^2
          = 333000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 86900 N
                                                               M_{\star}
                                                                         = 3370000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 47700 N
M,₊
                                                                         = 200000 \text{ N/mm}^2
          = 172000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 95700 N	М,	= 126000 Nmm	σ_a	$= 240 \text{ N/mm}^2$	G	= 73000 N/mm ²
T_v	= 50300 N	M_x	= 3600000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		τ_{s}	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$		σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 104000 N
                                                              M_{\star}
                                                                        = 4080000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 37700 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 141000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 75900 N
                                                                      M_{\star}
                                                                                  = 4230000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 40800 N
                                                                                  = 200000 \text{ N/mm}^2
           = 153000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 110000 N
                                                              M_{\star}
                                                                         = -7580000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 84400 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 212000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 121000 N	M,	= 155000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 90700 N	M_x	= -8270000 Nmm	Ē	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 132000 N
                                                               M_{\star}
                                                                         = -9190000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 67800 N
                                                                         = 200000 \text{ N/mm}^2
          = 174000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 97200 N
                                                                  M_{\star}
                                                                            = -9800000 Nmm
T<sub>y</sub>
M₊
                                                                            = 240 \text{ N/mm}^2
          = 74400 N
                                                                            = 200000 \text{ N/mm}^2
          = 190000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 93900 N
                                                                      M_{\star}
                                                                                  = 3620000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 47000 N
                                                                                 = 240 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 206000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 101000 N
                                                              M_{\star}
                                                                        = 3720000 Nmm
                                                                        = 240 \text{ N/mm}^2
          = 48700 N
                                                                        = 200000 \text{ N/mm}^2
          = 149000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 112000 N	M _t	= 169000 Nmm	σ_{a}	= 240 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 37400 N	M_x	= 4280000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)$	_d =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_{s}$; =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_{c}$	_j =	σ_{tresca}	, =	•	
$\overset{*}{C_{w}^{t}}$	=	$\tau(T_{yc})$ $\tau(T_{yb})$ $\tau(T_y)$		$\begin{matrix} \sigma_{\text{IIs}} \\ \sigma_{\text{Id}} \\ \sigma_{\text{IId}} \end{matrix}$	= = =	r _v r _o J _p	= = =

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 81500 N
                                                              M_{\star}
                                                                         = 4410000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 39200 N
M,₊
                                                                         = 200000 \text{ N/mm}^2
          = 183000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 120000 N
                                                                      M_{\star}
                                                                                 = 6790000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 88700 N
                                                                                 = 200000 \text{ N/mm}^2
           = 265000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 131000 N
                                                                M_{\star}
                                                                          = -7220000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 93400 N
                                                                          = 200000 \text{ N/mm}^2
          = 194000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 143000 N
                                                                      M_{\star}
                                                                                 = 8170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 69900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 217000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 103000 N
                                                                M_{\star}
                                                                          = 8400000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 76400 N
                                                                          = 200000 \text{ N/mm}^2
          = 234000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 103000 N
                                                                M_{\star}
                                                                          = 2810000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 46200 N
                                                                          = 200000 \text{ N/mm}^2
          = 256000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 112000 N
                                                              M_{\star}
                                                                        = 2930000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 48400 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 187000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 123000 N
                                                                      M_{\star}
                                                                                  = 3400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 36900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 209000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 90200 N
                                                                      M_{\star}
                                                                                  = 3470000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 39200 N
                                                                                  = 200000 \text{ N/mm}^2
           = 229000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 159000 N
                                                              M_{\star}
                                                                        = -14600000 Nmm
                                                                        = 240 \text{ N/mm}^2
          = 123000 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 369000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                            \sigma_{\text{IId}}
                                                                                                                            \sigma_{tresca} =
                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 176000 N	M _t	= 272000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_v	= 133000 N	M_x	= -16100000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 192000 N
                                                              M_{\star}
                                                                        = -17500000 Nmm
                                                                        = 240 \text{ N/mm}^2
          = 99000 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 303000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 141000 N
                                                              M_{\star}
                                                                        = -19200000 Nmm
                                                                        = 240 \text{ N/mm}^2
          = 109000 N
M,₊
                                                                        = 200000 \text{ N/mm}^2
          = 333000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                            \sigma_{\text{IId}}
                                                                                                                            \sigma_{tresca} =
                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 86900 N
                                                               M_{\star}
                                                                         = 3370000 Nmm
                                                                         = 240 \text{ N/mm}^2
          = 47700 N
M,₊
                                                                         = 200000 \text{ N/mm}^2
          = 172000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 95700 N	M,	= 126000 Nmm	σ_a	$= 240 \text{ N/mm}^2$	G	= 73000 N/mm ²
T_v	= 50300 N	M_x	= 3600000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	\mathbf{r}_{u}	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 104000 N
                                                                M_{\star}
                                                                           = 4080000 Nmm
                                                                           = 240 \text{ N/mm}^2
          = 37700 N
M,₊
                                                                           = 200000 \text{ N/mm}^2
          = 141000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 75900 N
                                                                    M_{\star}
                                                                              = 4230000 Nmm
T<sub>y</sub>
M₁
                                                                               = 240 \text{ N/mm}^2
           = 40800 N
                                                                              = 200000 \text{ N/mm}^2
          = 153000 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                        \sigma_{\text{IId}}
                                                                    \tau(T_{yc}) =
                                                                                                                                        \sigma_{tresca} =
                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                                                        \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 110000 N
                                                                M_{\star}
                                                                           = -7580000 Nmm
                                                                           = 240 \text{ N/mm}^2
          = 84400 N
M,₊
                                                                           = 200000 \text{ N/mm}^2
          = 212000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 121000 N	M,	= 155000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 90700 N	M_x	= -8270000 Nmm	Ē	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 132000 N
                                                                 M_{\star}
                                                                           = -9190000 Nmm
                                                                           = 240 \text{ N/mm}^2
          = 67800 N
                                                                           = 200000 \text{ N/mm}^2
          = 174000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 97200 N
                                                                 M_{\star}
                                                                            = -9800000 Nmm
                                                                            = 240 \text{ N/mm}^2
          = 74400 N
                                                                           = 200000 \text{ N/mm}^2
          = 190000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 93900 N
                                                                  M_{\star}
                                                                             = 3620000 Nmm
T_y \\ M_t
          = 47000 N
                                                                             = 240 \text{ N/mm}^2
                                                                             = 200000 \text{ N/mm}^2
          = 206000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 101000 N
                                                                M_{\star}
                                                                          = 3720000 Nmm
                                                                          = 240 \text{ N/mm}^2
          = 48700 N
M,₊
                                                                          = 200000 \text{ N/mm}^2
          = 149000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 112000 N	M _t	= 169000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 37400 N	M_x	= 4280000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_{\xi}$	_s =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{\alpha}$	_i =	$\sigma_{ ext{tresca}}$, =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 81500 N
                                                                M_{\star}
                                                                           = 4410000 Nmm
                                                                           = 240 \text{ N/mm}^2
          = 39200 N
M,₊
                                                                           = 200000 \text{ N/mm}^2
          = 183000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 120000 N
                                                                        M_{\star}
                                                                                   = 6790000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 88700 N
                                                                                   = 200000 \text{ N/mm}^2
           = 265000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 131000 N
                                                                  M_{\star}
                                                                             = -7220000 Nmm
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 93400 N
                                                                            = 200000 \text{ N/mm}^2
          = 194000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 143000 N
                                                                        M_{\star}
                                                                                   = 8170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 69900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 217000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 103000 N
                                                                        M_{\star}
                                                                                   = 8400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 76400 N
                                                                                   = 200000 \text{ N/mm}^2
           = 234000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 103000 N
                                                                  M_{\star}
                                                                            = 2810000 Nmm
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 46200 N
                                                                            = 200000 \text{ N/mm}^2
          = 256000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 112000 N
                                                                M_{\star}
                                                                           = 2930000 Nmm
                                                                           = 240 \text{ N/mm}^2
          = 48400 N
M,₊
                                                                           = 200000 \text{ N/mm}^2
          = 187000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 123000 N
                                                                        M_{\star}
                                                                                    = 3400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 36900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 209000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 90200 N
                                                                  M_{\star}
                                                                             = 3470000 Nmm
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 39200 N
                                                                             = 200000 \text{ N/mm}^2
          = 229000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 159000 N
                                                                M_{\star}
                                                                          = -14600000 Nmm
                                                                          = 240 \text{ N/mm}^2
          = 123000 N
M,₊
                                                                          = 200000 \text{ N/mm}^2
          = 369000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 176000 N	M _t	= 272000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_v	= 133000 N	$\dot{M_x}$	= -16100000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	