

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson

Institute of Computing - UNICAMP

Machine Learning Overview

Linear Regression Example

Goals:

- Introduce key concepts of machine learning by discussing how to train a simple linear regression model to solve a simple task.
- Overview of what ML models look like, their parameters, cost functions, and model fit.

Problem: House price prediction

70.000 USD

160.000 USD

Problem: House price prediction

• Estimate the price of a house based on their size.

??? USD

Problem: House price prediction

Problem: House price prediction

• Estimate the price of a house based on their size.

<u>Supervised learning</u>: training dataset items (houses) are labeled (houses' prices)

Regression problem: Predict real-valued output (house price)

Model-based learning: Model trained based on the training data

Linear model

Linear model

$$\underline{Price} = \theta_0 + \theta_1 \cdot \underline{Size}$$

Linear model

$$\underline{Price} = \theta_0 + \theta_1 \cdot \underline{Size}$$

Model parameters

Linear model

$$\underline{Price} = \theta_0 + \theta_1 \cdot \underline{Size}$$

$$\underline{\text{Model arameters}}$$

 θ_0 is sometimes explained as a bias and represented by the letter b!

Some authors use the term **model weights** instead of model parameters. In this case, they might use w_0, w_1, \dots to represent the model weights (parameters).

Linear model

$$\underline{Price} = \theta_0 + \theta_1 \cdot \underline{Size}$$

Model parameters

Linear model

Linear model

Linear model terminology

• θ : Set of model parameters. $\theta = \{\theta_0, \theta_1, ..., \theta_n\}$

Linear model terminology

- θ : Set of model parameters. $\theta = \{\theta_0, \theta_1, ..., \theta_n\}$
- x: Set of input variables. $x = \{x_1, x_2, ..., x_n\}$

Only one in our previous example $x_I = \text{Size}$

Linear model terminology

- θ : Set of model parameters. $\theta = \{\theta_0, \theta_1, ..., \theta_n\}$
- x: Set of input variables. $x = \{x_1, x_2, ..., x_n\}$
- \hat{y} : model output (predicted value)

In our previous example $\hat{y} = \text{Price}$

Linear model terminology

- θ : Set of model parameters. $\theta = \{\theta_0, \theta_1, ..., \theta_n\}$
- x: Set of input variables. $x = \{x_1, x_2, ..., x_n\}$
- \hat{y} : model output (predicted value)
- $\bullet \quad \hat{y} = \theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n \dots$
- $\bullet \quad \hat{y} = \theta_0 + \theta_1 \cdot x_1 \quad \underline{\hspace{1cm}}$

Multivariate linear model

Univariate linear model

Linear model terminology

- θ : Set of model parameters. $\theta = \{\theta_0, \theta_1, ..., \theta_n\}$
- x: Set of input variables. $x = \{x_1, x_2, ..., x_n\}$
- \hat{y} : model output (predicted value)
- $\bullet \quad \hat{y} = \theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n$
- $\bullet \quad \hat{y} = \theta_0 + \theta_1 \cdot x_1$
- $\bullet \quad h_{\theta}(x) = \theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n$

Also known has hypothesis!

Model training - intuition

Cost function

Cost function: function that measures how bad the model is

Ex: Mean squared error

Cost function: fu

Ex: Mean squa

Idea: Compute the distance between $\hat{y}^{(i)}$ and $y^{(i)}$, *i.e.*, $h_{\theta}(x^{(i)}) - y^{(i)}$

res how bad the

Cost function: fu

Ex: Mean squa

Idea: Compute the distance between $\hat{y}^{(i)}$ and $y^{(i)}$, *i.e.*, $h_{\theta}(x^{(i)}) - y^{(i)}$

res how bad the

Cost function: function that measures how bad the model is

Ex: Mean squared error

Cost function: function that measures how bad the model is

Ex: Mean squared error

Cost function: function that measures how bad the model is

Ex: Mean squared error

Cost function: function that measures how bad the model is

Ex: Mean squared error

Let:

- $X = \{x^1, x^2, ..., x^m\}$: be features of the training examples
- $Y = \{y^1, y^2, ..., y^m\}$: be the training examples labels
- $\theta = \{\theta_0, \theta_1\}$: be the model parameters

MSE(X,h_{\theta}) =
$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Effect of θ_1 on MSE(X, h_{θ})

$$\theta_1 = 0.0$$

Effect of θ_1 on MSE(X, h_{θ})

$$\theta_1 = 0.2$$

Effect of θ_1 on $MSE(X, h_\theta)$

$$\theta_1 = 0.5$$

Effect of θ_1 on MSE(X, h_{θ})

$$\theta_1 = 0.7$$

Effect of θ_1 on MSE(X, h_{θ})

Model training - formalization

<u>Training the model</u>: choose values for $\theta = \{\theta_0, \theta_1\}$ so that the cost function is minimized!

Ex: Train the model using the MSE as cost function

minimize
$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$MSE(X, h_{\theta})$$

Training the model: choose values for $\theta = \{\theta_0, \theta_1\}$ so

that the cost function

Ex:Train the model u

There are several methods to solve this problem. **Gradient Descent** is one of them.

minimize
$$\frac{1}{\theta_0, \theta_1} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$MSE(X, h_{\theta})$$

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson

Institute of Computing - UNICAMP