Then the following holds true:

(2.7) $Ah^{[n]} = (\alpha + in\beta)h^{[n]}$ for all $n \in \mathbb{Z}$.

In case |h| is a quasi-interior point of E_+ , then $S_h^D(A) = D(A)$ and $A + i\beta = S_h^{-1}AS_h$.

<u>Proof.</u> Without loss of generality we may assume that $\alpha=0$. Then the assumption (2.6) implies that T(t)|h|=|h| and $T(t)h=e^{i\beta t}h$ for $t\geq 0$ (see A-III,Cor.6.4). In particular, the principal ideal $E_{|h|}$ is invariant under every operator T(t). By the Kakutani-Krein Theorem (C-I,Sec.4) we can identify $E_{|h|}$ with a space C(K), K compact. Then the restrictions $\tilde{T}(t):=\frac{T(t)}{|E_{|h|}}$ are positive operators on C(K) satisfying $\tilde{T}(t)|\tilde{h}|=|\tilde{h}|$ and $\tilde{T}(t)\tilde{h}=e^{i\beta t}\tilde{h}$. From B-III,Thm.2.4(a) we conclude $\tilde{T}(t)\tilde{h}^{[n]}=e^{i\beta t}\tilde{h}^{[n]}$ for all $t\geq 0$, $n\in \mathbb{Z}$. Translating this back to T(t) and E this means precisely $T(t)h^{[n]}=e^{in\beta h^{[n]}}$ ($n\in \mathbb{Z}$), hence $h^{[n]}\in D(A)$ and $Ah^{[n]}=in\beta h^{[n]}$.

Moreover, by B-III,Thm.2.4(a) we have $e^{i\beta t}\tilde{T}(t) = S_{\tilde{h}}^{-1}\tilde{T}(t)S_{\tilde{h}}$. If |h| is a quasi-interior point this relation extends by continuity from the dense subspace $E_{|h|}$ to the whole space E, i.e., we have $e^{i\beta t}T(t) = S_h^{-1}T(t)S_h$ for all $t \ge 0$.

In the proof above we could not apply assertion (b) of B-III,Thm.2.4 because the semigroup $(\tilde{T}(t))$ on $E_{|h|} \cong C(K)$ need not be strongly continuous with respect to the sup-norm.

As a first application of Thm.2.2 we prove a cyclicity result for the point spectrum of contraction semigroups on a class of Banach lattices which includes the ${\tt L}^{\rm p}$ -spaces.

Corollary 2.3. Suppose E is a Banach lattice such that the norm is strictly monotone on E₊ (i.e., $0 \le f < g \Rightarrow \|f\| < \|g\|$). If (T(t)) is a positive contraction semigroup with s(A) = 0, then $P_{\sigma_b}(A) = P_{\sigma}(A) \cap i\mathbb{R}$ is imaginary additively cyclic.

<u>Proof.</u> Suppose that Ah = i\(\beta\)h (\(\beta\) \in R , h \(\in\)E). Then we have T(t)h = \(\frac{e^{i\beta t}}{e^{i\beta t}}\)h (t \(\geq 0\)) and $|h| = |T(t)h| \leq T(t)|h|$ since T(t) is positive. Moreover, $||h|| \leq ||T(t)|h|| \leq ||h||$ since $||T(t)|| \leq 1$. The assumption on the norm of E implies that T(t)|h| = |h| for all t \(\geq 0\), equivalently A|h| = 0. Now we can apply Thm.2.2 in order to obtain the desired result.