

ADAPTAÇÃO DE UM PROJETO DE ROBÔ HUMANOIDE IMPRESSO EM 3D EM UMA PRÓTESE SENSORIAL DE MEMBRO SUPERIOR

G.P.O. Celani, M.B. Silvério, R.L.A. Pinheiro, F.A. Freitas, F.V. Carvalho, R.S. Alves, F.E.C. Costa, E.R.C. Dester

Centro de Desenvolvimento e Transferência de Tecnologia Assistiva, Instituto Nacional de Telecomunicações Santa Rita do Sapucaí, MG, Brasil

INTRODUÇÃO

CONEXTO

- Primeiras próteses em 200 d.C.;
- Ivan Owen.

Ivan Owen - http://enablingthefuture.org/tag/ted-talks/

PROBLEMAS

- Durabilidade;
- Inacessibilidade financeira;
- Função sensitiva.

http://www.3ders.org/articles/20140125-ivan-owen-life-enhancing-prosthetics-3d-printed-and-open-sourced.html

OBJETIVO

- Projeto open source INMOOV;
- Adaptação para uma prótese sensorial.

INMOOV - http://inmoov.fr/mid-stomach/

MATERIAIS E MÉTODOS

PROTÓTIPO

- Material: 884g de ABS;
- Tempo de impressão: 67h;
- Massa: 902g;
- 6 Servo motores;
- Fios de nylon.

Próprio autor

SOFTWARE

- Linguagem: Java;
- Status e intensidade de cada sensor.

Próprio autor

- Ortogonal ao chão;
- Sacola de massa desprezível;
- Adição gradual e acumulativa de corpos de 50g;
- Comprimento fios;
- Quintuplicata;
- Chebyshev;
- *T-student* (p≤0,05).

Próprio autor

SENSORIAMENTO

- Piezoeletrico MEAS®;
- Resistivo InterlinkEletronics®;
- Adição gradual de massas de 50g;
- Leitura analógica;
- Materiais isolantes e condutores.

RESULTADOS

Teste	Massa trinc. mínimo (Kg)	Tempo trinc. mínimo (h)	Carga máxima (Kg)	Tempo total (h)
1	3,55	2:35:10	3,95	2:59:10
2	3,25	2:15:17	3,50	2:30:17
3	3,65	2:40:25	3,90	2:55:25
4	3,90	2:55:02	4,10	3:07:02
5	3,60	2:36:35	3,85	2:51:35

Teste	Massa trinc. mínimo (Kg)	Tempo trinc. mínimo (h)	Carga máxima (Kg)	Tempo total (h)
1	3,55	2:35:10	3,95	2:59:10
2	3,25	2:15:17	3,50	2:30:17
3	3,65	2:40:25	3,90	2:55:25
4	3,90	2:55:02	4,10	3:07:02
5	3,60	2:36:35	3,85	2:51:35

- Carga média suportada: 3,86Kg ± 0,22Kg;
- Tempo médio: 2h52min42s ± 13min46s;

• Confiabilidade: 89,48% (*Chebyshev*)

SENSORIAMENTO

Comportamento logarítmico;

Próprio autor

· Sensor escolhido: resistivo.

DISCUSSÃO

DISCUSSÃO

- Parâmetros de impressão:
 - Densidade: 30% para 80%;
 - Espessura: 0,84mm a 1,68mm;
- Distribuição desigual de carga;
- Baixa resistência;
- Precisão dos dedos;
- Precisão dos sensores.

Próprio autor

CONCLUSÃO

CONCLUSÃO

- Melhorias necessárias:
 - Massa total;
 - Baixa resistência;
- Software;
- Novos testes:
 - Resistência mecânica;
 - Massa;
 - Funcionalidade.

Próprio autor

TRABALHOS FUTUROS

Próprio autor

- Feedback sensitivo utilizando estimulação eletrotátil;
- Sistema de controle eletromiográfico;
- Confecção de um novo protótipo aprimorado.

AGRADECIMENTOS

nate

Instituto Nacional de Telecomunicações

PERGUNTAS?

Próprio autor