

IoT時代のWeb技術(Web of Things)

"Web of Pages"から"Web of Things"へ

芦村和幸 慶應義塾大学 大学院政策・メディア研究科 特任准教授 W3C Project Specialist 2017年3月18日

- ●WebとW3Cの標準化
- ●Webを取り巻く状況
- ●IoT実現の課題
- ●Web of ThingsとW3Cによる標準化
- ●Thing Descriptionの実際
- ●今後の課題と対策

WebとW3Cの標準化

Webの進化

デバイスやOSに依存しないアプリケーションプラットフォームへ

HTML5とその仲間たち

(Mozilla Japan浅井智也氏資料より)

HTML5はHTML (HyperText Markup Language) の第5版

- WebページはHTML(文構造)とCSS(スタイル)で構成される
- W3Cの国際標準仕様がWebブラウザ上に実装されている

Webアプリ作りに役立つHTML5の機能の例

- プラグイン不要のVideoとAudio
- WebSocket (全二重通信)
- Storage (データ保存)
- Worker (プロセス管理)
- Canvas (静止画像・動画像の表示)
- ▶ 様々なAPI利用による強力な拡張性
- ➤ PC・スマホのみならず、車やIoTにも応用
- ➤ W3Cによる国際標準化議論

W3CによるWeb国際標準化

Lead the Web to its full potential! (Webの潜在能力をフルに引き出そう!)

● 1994年、Tim Berners-Leeにより設立

- Webの相互接続性確保に取り組む国際的会員コンソーシアム
- HTML5をはじめとする各種W3C勧告(Recommendation)策定

4つのホスト機関による共同運営

米国:MIT

ヨーロッパ: ERCIM

日本:慶應義塾大学(W3C/慶應チームは1996年設立 - 20周年)

中国:北京航空航天大学(Beihang)

W3C会員企業

国際的参加:

• 427団体(ブラウザベンダ、Webサービス、家電メーカ、通信等)

日本会員:

- 36団体
- ACCESS, Alfasado, アンテナハウス, APTPOD, AMEI, BPS, キヤノン, DSC, ECN, 富士通, FTL, 日立, 鯖江市, インターネットアカデミー, JRS, jig.jp, KDDI, 慶應義塾大学, レイハウオリ, レピダム, 三菱電機, ミツエーリンクス, NEC, ニューフォリア, NHK, NTT, NTTドコモ, パナソニック, 楽天, リクルートテクノロジーズ, ソフトバンク, ソニー, 民放連, 東芝, UNI, ビブリオスタイル

W3C標準化グループ

W3C Reorganizaiton

ちなみに、「インターネット」と「ウェブ」はどう違うか?

-Webはインターネット上の情報空間

1994年開催の「W3C/MITチーム二十周年式典」より

Webを発明したTim Berners-Lee(左)とインターネットを発明したVint Cerf(右)

Webを取り巻く状況 IoT(モノのインターネット)

1

Internet of Things(IoT)の対象エリアは多岐に渡る

一 様々な産業応用への期待

Smart Homes

Wearables

Healthcare

Power & Environment

Smart Cities

Manufacturing

事例: 製造業: 過去-現在-そして将来

過去-現在: 分裂的な変化 (一次~三次産業革命)

- 家内製手工業 → 大量生産化
- コンピュータ化企業体としてのリソースマネジメントとデータ処理
- グローバル化 製品・材料輸送の低コスト化 労働コスト削減のための海外生産等

将来: 製造業のスマート化(Smart manufacturing) (第四次産業革命; Industrie 4.0)

● IoT/ビッグデータを利用した製造業の革新
Michael Porter: "How Smart Connected Products are Transforming Competition"
(コネクテッドな製品群により、「競争」の意味が変わる)

製造業のスマート化

(Smart Manufacturing)

単一製品の大量生産からニーズに合わせた個別対応へ (携帯電話、家電、車等、既に始まっている!)

- ユーザのニーズに合わせた個別の仕上げ
- 設計からリリースまでの時間短縮
- ニーズの変化に対応する柔軟な製造システム
- サービスのオープンマーケット化

より一層「スマート」なシステムが必要に!

- モデル化とメタデータの必要性
- 製品開発計画の改善
- 製造工程監視と最適化
- コスト削減
- より柔軟なシステム統合化

「革新」の要因

shorter delivery times

volatile markets

24/7 service

shorter product life cycles

more individualized customer wishes

Source: Bosch

IoTに期待がかかる産業 上位5件

IOT PLATFORMS

HOME AUTOMATION

INDUSTRIAL AUTOMATION

ENERGY MANAGEMENT

CONNECTED CITIES

IoTに関する懸案上位3件

INTEROPERABILITY

CONNECTIVITY

Home Automation 向けプラットフォーム

For your home automation solution, what framework/platform are you using or plan to use?

IoT向けプログラミング言語

IoT向けメッセージ交換プロトコル

W3CはIoT関連団体の中で重要度第2位!

How would you rank your organization's perceived importance of the following IoT Consortiums to your IoT strategy? (1=Important, 5=Never heard of them)

	Important	Neutral	Not Important	Don't Know	Never heard of them	Average Rating
AllSeen Alliance	38	69	42	73	116	3.47
Eclipse IoT	166	89	29	49	26	2.11
IEC	38	82	37	80	89	3.31
IEEE	135	111	33	65	14	2.20
IETF	104	81	30	66	54	2.66
Industrial Internet Consortium (IIC)	48	90	42	72	87	3.18
LoRa Alliance	70	74	35	71	89	3.10
OASIS	55	103	46	76	64	2.97
Open Interconnect Consortium (OIC)	42	79	39	86	94	3.33
OMA	41	76	32	77	114	3.43
OneM2M	34	78	36	74	112	3.46
Thread	34	81	41	71	108	3.41
W3C	146	88	38	64	13	2.17

IoT関連のグローバル・リーダー

BOSCH

loT実現の課題

2

各産業ごとの「サイロ化」

個別の IoT 製品は相互接続せず分断化(サイロ化)

ベンダはそれぞれ独立した特定のクラウドサーバに データを保存

「サイロ化」により、データ共有が妨げられる あらゆるデータの共有・統合のために何が必要か?

統合化プラットフォームとしてのWebへの期待:

- プラットフォームに依存しないアプリ開発を可能に
- ▶ メタデータ利用による、サービス発見、相互互換性、 オープン性

With thanks to Major Clange

爆発的な機器増加に伴う相互運用性の問題

Web of Things WebによるIoTの実現

Web of Things (WebによるIoTの実現)

Open Web Platformにより、 アプリ開発は、画一的で高コストな「ソフト開発」から「オープンマーケット化」 へ

Things (モノ)

アプリケーションは、モノにひもづいたソフト的オブジェクト上で動作

- ローカルにある「モノ」
- リモートにある「モノ」

あらゆる「モノ」に対する必要十分な 機能の記述

- データモデル、セマンティックス、メタ データ
- 「モノ」の機能を記述するオントロジー
- 抽象的実体、ネットに接続されていない 物体の扱い

相互コミュニケーションのスタック

- 問題の切り分け

アプリケーション・ レイヤ (WoTの対象)

プラットフォーム・ レイヤ (loTの対象)

_		
Appl	lication	Scripts that define thing behaviour in terms of their properties, actions and events, using APIs for control of sensor and actuator hardware
Thin	gs	Software objects that hold their state Abstract thing to thing messages Semantics and Metadata, Data models and Data
Tran	sfer	Bindings of abstract messages to mechanisms provided by each protocol, including choice of communication pattern, e.g. pull, push, pub-sub, peer to peer, etc.
Tran	sport	REST based protocols, e.g. HTTP, CoAP Pub-Sub protocols, e.g. MQTT, XMPP Others, including non IP transports, e.g. Bluetooth
Netw	vork	Underlying communication technology with support for exchange of simple messages (packets) Many technologies designed for different requirements

メタデータは「プラットフォームのプラットフォーム」に

- プラットフォームが異なれば、使用される標準技術、通信プロトコル、データフォーマットが異なる
- Web of Things (WoT) が、その違いを吸収する抽象レイヤとなる
- アプリケーションロジックは、アプリが動作するプラットフォームから切り 離され、非依存なものとして実現
- サーバはメタデータによりデータ交換を行う

産業水平的・垂直的なメタデータ語彙

各産業グループに応じた垂直的なメタデータ語彙

産業横断的な、W3Cのコアメタデータ

Web技術により垂直・水平統合

- Distributed services
- · Platform of platforms
- · Uniform addressing
- · Data and metadata

integration along the supply chain Things Iow levels of abstraction Iow levels of abstraction Things

Things = Industrie 4.0 Components

Field Level
Industrie 4.0 Assets

Business Level

*value chain – the process or activities by which a company adds value to an article, including design, production, marketing, and the provision of after sales service

Webのセマンティックス・メタデータ・データモデル

- サービスの発見 共通言語としてのWebセマンティックス
- サービスの構成 異なる複数のベンダから提供されるサービスを組み合わせ(Mashup)
- サービスのマネタイゼーション 様々なモデルに対応
- セキュリティ、プライバシー、安心・安全、コンプライアンス、信頼、復旧力
- 多様な要求に対応するスケーラビリティ マイクロコントローラから巨大クラウドサーバまで

Web of Things (WoT) のビジネス的価値

大企業は:

- 納品業者に対して、自社のソフトシステムを統合化し有効活用したい
 - "Supply & Value Chain" を踏まえたソフト環境統合化

中小企業は:

- 必要なソフトの開発コストを抑えたい
 - コストのかかる一品物のソフトを、コストの安いアプリやサービスの組み合わせで 実現

"Open Market of Things"の実現

アプリが供給者と消費者をつなぐ

- スマホのアプリマーケットプレイスと同様に
- 中小企業でも、自分達のニーズに応じて、自らアプリのスクリプトを作成可能

マーケットプレイスに要求される機能

- サービスの発見、レビュー、お勧め、ランク付け/評判
- 都度の要求に応じた柔軟な機能構成
- お金と時間を節約するための自動決済処理

システムライフサイクル全体のサポート

● ソフト開発、テスト、公開、調査、更新、破棄

W3CによるWeb of Things標準化

3

W3C Web of Things Interest Group (WoT-IG)

Web技術で「モノ」を相互接続

- Web標準ベースのアプリケーションレイヤにより、既存のIoTプラットフォームを相互接続
- 様々な産業アライアンスや標準化団体と連携
- セマンティックス(意味論)の相互互換性、セキュリティ

(Siemens社 Matthias Kovatsch氏資料より)

WoTIGの歴史

設立のきっかけ: Berlinワークショップ (2014年6月)

IG設立(2015年1月)

- 議長: Jörg Heuer, Siemens
- タスクフォース:

Thing descriptions

APIs and protocols

Discovery and provisioning

Security, privacy and resilience

Communications and collaboration

プロトタイプ実装の推進

● Plugfestデモ

F2F会合

- 実績:
 - Munich, Sunnyvale, Sapporo, Sophia Antipolis, Montreal, Beijing, Lisbon
- 共同会合:
 - IRTF Thing to Thing Research Group
- 今後のF2F:
 - Santa Clara, US (2017年2月)
 - Ohsaka, Japan (2017年5月)

IGで作成中の標準化文書

- Use Cases & Requirements
- WoT Architecture
- Technology Landscape (関連IoT技術の網羅的調査)
- WoT Current Practices (PlugFestデモ (参加者が個別に開発したデモを相互接続)の知見)
- > IG活動の期間延期(2018年末まで)
- ▶ WG(Working Group)化の計画(2016年12月設立メド)

他団体との協力関係

IoTに関連する他団体と連携

- INDUTRIE 4.0
- Industrial Internet Consortium
- Open Connectivity Foundation
- OPC Foundation
- IETF/IRTF
- oneM2M
- AIOTI

Web of Things IG参加企業

nominet

WoT Servientアーキテクチャ

Servient構成例

— Smart Hub

WoTアーキテクチャによるIoTエコシステム

— WoTは既存の様々なIoTフレームワークを連携させる「コネクタ」

User Agent Terminal e.g., Smartphone, TV and Connected Car

一 PlugFest実証実験

- JSON-LDベースの機器機能記述
- F2F会議ごとにPlugFest (相互接続デモ)による実証実験
 - 2015年10月: 札幌
 - 2016年1月: Nice
 - 2016年4月: Montreal
 - 2016年7月:北京
 - 2016年9月: Lisbon
- ドキュメント化: WoT Current Practices
 - https://w3c.github.io/wot/current-practices/wot-practices.html

Thing Descriptionの実際 — Example1: Data Only

```
"@context": ["http://w3c.github.io/wot/w3c-wot-td-context.jsonId"],
"@type": "Thing",
"name": "MyTemperatureThing",
"uris": ["coap://mytemp.example.com:5683/"],
"mediaTypes": ["application/json"],
"properties": [
  "name": "temperature",
  "valueType": { "type": "number" },
  "writable": false,
  "hrefs": ["temp"]
```


— Example 2 : Semantic Annotations

```
"@context": [
 "http://w3c.github.io/wot/w3c-wot-td-context.jsonld",
 { "sensor": "http://example.org/sensors#" }
"@type": "Thing",
"name": "MyTemperatureThing",
"uris": ["coap://www.mytemp.com:5683/"],
"mediaTypes": ["application/json"],
"properties": [
  "@type": "sensor:Temperature",
  "name": "temperature",
  "sensor:unit": "sensor:Celsius",
  "valueType": { "type": "number" },
  "writable": false,
  "hrefs": ["temp"]
```


— Example3: More Capabilities

```
"@context": [
 "http://w3c.github.io/wot/w3c-wot-td-context.jsonId",
 { "actuator": "http://example.org/actuator#" }
"@type": "Thing",
"name": "MyLEDThing",
"uris": [
 "coap://myled.example.com:5683/",
 "http://mything.example.com:8080/myled/"
"mediaTypes": ["application/json", "application/exi"],
"security": {
 "cat": "token:jwt",
 "alg": "HS256",
 "as": "https://authority-issuing.example.org"
```

```
"@type": "actuator:onOffStatus",
 "name": "status",
 "valueType": { "type": "boolean" },
  "writable": true,
 "hrefs": [ "pwr", "status" ]
"actions": [
 "@type": "actuator:fadeIn",
  "name": "fadeIn".
  "inputData": {
   "valueType": { "type": "integer" },
   "actuator:unit": "actuator:ms"
 "hrefs": ["in", "led/in" ]
```

```
"@type": "actuator:fadeOut",
  "name": "fadeOut",
  "inputData": {
   "valueType ": { "type": "integer" },
   "actuator:unit": "actuator:ms"
  "hrefs": ["out", "led/out"]
"events": [
  "@type": "actuator:alert",
  "name": "criticalCondition".
  "valueType": { "type": "string" },
  "hrefs": [ "ev", "alert" ]
```


今後の課題と対策

.

Thing Descriptionの課題

Thing Descriptionは、プログラミング言語やプロトコルに依存しないメタフレームワーク

- → Task Forceを設立してテーマごとに議論
- 既存の様々なプログラミング言語・プロトコル・Web技術との互換性
 - JSON, C言語, Java等
 - REST, HTTP, CoAP, MQTT等
 - RDF, Schema.org, WebAssembly, EXI等
- Property, Action, Event の使い分けと組み合わせ
- Eventハンドリング
- 状態遷移とモジュール間同期
- 機器ライフサイクル管理とメンテナンス

WoTのセキュリティ・プライバシー・セーフティ

物理的な機器とリンクしたWoTでは、セキュリティ、プライバシー、セーフティがますます重要

- → W3C/慶應チーム20周年式典でのパネルディスカッション
 - (https://www.w3.org/20/Asia/Japan/Overview.ja.html)
- →Security TFによる議論
- Q1: WoTのためのセキュリティ対応アーキテクチャは?
 - 観点:人間の「免疫系」のように、基本機能とは独立した仕組みが必要では?
- Q2: 起こりうる「リスク」はどのようなものか?
 - 観点:コストパフォーマンスも考慮の上で、効果的な対策が必要では?
- Q3: 期待される対策は? そして、技術的な対策後も残ってしまう問題はないか?
 - 観点:技術的観点からの課題と、その他の課題を分けて整理する必要があるのでは?

ご清聴ありがとうございます

W3CとともにWebの未来を作りましょう!

