Solving linear system

Francesco Sanfilippo

Istituto Nazionale di Fisica Nucleare - Sezione Roma Tre

27 - 31 March 2017

Introduction of the problem

- **1** Direct solution of linear system Ax = b
- Quadratic functional minimization

Iterative solver

- Advantages
- 2 Comparison of efficiency

Checking the solution

- Limits, stability and efficiency of various algorithms
- 2 Convergence criterions

Accelerating the convergence

- Mixed precision algorithms
- Choosing a starting guess
- Preconditioning the problem

Solving similar problems at the same time

- **1** Shifted problems $A + \sigma Id$
- ② Deflating the problem

Review of Parallelisation

- Distributed memory
- Shared memory
- Vectors

Gather/scatter approaches

 \rightarrow 1+2 different examples of gathering of non-local data

More specifically on parallelisation

- Communication/computation overlap
- Multithreading
- Vectorization

An example of a physical application

 $\to \mathsf{Lattice}\;\mathsf{QCD}$

Implicit and explicit residue

Implicit residue

- The value of the residue can be implicitly computed looking $|r_k|$
- This vector is automatically computed implicitly with: $r_{k+1} = r_k \alpha_k p_k$

Explicit residue

- One can also compute $r_k^{expl} = \mathbf{A}x_k b$ at the cost of an additional application
- This way is possible to compute F as well

Numerical rounding

- As an effect of error accumulation, $\left|r_k^{expl} r_k^{impl}\right|$ will grow with k
- This manifests the increase breaking of automatic conjugacy of generated p_k
- After a certain number of iterations the whole mechanism of minimization of F breaks

You cannot decrease |r| arbitrarily!

Implicit and explicit residue in Conjugate gradient, $|r|_{targ} = 10^{-28}$, n = 140

Implicit and explicit residue in Conjugate gradient, $\left|r
ight|_{targ}=10^{-28}$, N=140

Improving the result beyond machine precision

Split the system $\mathbf{A}x = b \rightarrow \mathbf{A}(x_0 + x_1 + \dots x_{n-1}) = b$

• First set $b_0 = b$ and obtain an approximated solution x_0 such that

$$\mathbf{A}x_0 = b_0 \quad (+r_0)$$

with a target relative residual $\left|r_{0}\right|/\left|b_{0}\right|=\hat{r}_{targ}$ reachable by the conjugate gradient

• Then solve for $b_1 = -r_0$:

$$\mathbf{A}x_1 = b_1 \quad (+r_1)$$

where the relative residual $|r_1| / |b_1| = |r_0| / |b_0|$ is reachable by the conjugate gradient

- Iterate until $|r_{n-1}|/|b| = \hat{r}_{targ}$
- The solution is given by $x = x_0 + x_1 + \cdots + x_{n-1}$

Problem

- ullet When the residue $|r|\ll |b|$ (high precision reached) r comes from a big cancellation
- If $|r|/|b|\sim\epsilon$ (machine precision $\sim 10^{-16}$), r_0^{expl} is badly computed and differs from true r_0
- x_1 obtained from $\mathbf{A}x_1 = b_1$ will not to improve x_0 :

$$A(x_0 + x_1) = b + r_0 - r_0^{expl} \neq b$$

Mixed precision

Higher precision

- Modern libraries offer support for emulated higher precision algebra
- ullet e.g. gnu complier $__{
 m float}128$ type implements quadruple precision (128 bit), $\epsilon\sim 10^{-32}$

Efficiency

- Emulation has a cost (order of magnitudes slower than hardware implementation)
- Running the whole solver in quadruple precision is costly and inefficient

Solution

• Problem comes from the fact that $r_0^{expl} \neq r_0$, so that

$$\mathbf{A}(x_0 + x_1) = b + r_0 - r_0^{expl} \neq b$$

- ullet Only need to compute r_0^{expl} accurately, so that $\left|r_0-r_0^{expl}
 ight|\ll |r_0|$
- Quadruple precision is used only once in a while:
 - to compute $b = -r_i$
 - to sum together $x = x_0 + x_1 + ... x_{n-1}$
- Ordinary precision is used through all the rest (inner solver)

Mixed precision

Mixed precision

Acceleration via lower precision

The same game can be played the other way around:

- Use single (or even lower) precision in the inner solver
- Accumulate the external solution in higher precision

Advantages

- Some architectures (most notably, GPU) lacks hardware support to double precision, or have much faster single precision
- Data needed to compute $\mathbf{A}x$ occupy less memory, so
 - more data coherence (optimize cache access)
 - faster loading from memory
- When data is split across different computing nodes, less communication is needed

Disadvantages

- Need to store more information (lower and higher precision)
- At each restart Krylov space must be regenerated, can introduce unneeded overhead

Initial guess

- So far we assumed to start from an initial guess $x_0 = 0$ and iterate
- How can we incorporate a preliminary knowledge of an approximate solution x_{appr} , ?

Splitting the problem again

Decompose the total solution

$$\mathbf{A}\left(x - x_{appr} + x_{appr}\right) = b$$

so that the problem can be rewritten as:

$$\mathbf{A}\Delta x = c$$

with:

$$c = b - r_{appr}, \quad r_{appr} = \mathbf{A} x_{appr}, \quad \Delta x = x - x_{appr}$$

Recombine the problem

- After solving for Δx we sum $x = x_{appr} + \Delta x$
- Equivalent to set from the beginning $x_0 = x_{appr}$

Which guess

For example we could have solved a similar system, such as:

$$\mathbf{A}x = b'$$
 or $\mathbf{A}'x = b$

Non symmetric definite positive matrices

Condition for convergence

- Minimization of the functional is guaranteed by the fact that $F(x) = \frac{1}{2}x^T Ax bx$ represents a paraboloid in a N-dimensional space, and $x = A^{-1}b$ locate the minimum
- Eigenvalues of **A** must be real and positive (**A** is symmetric and definite positive)
- What to do if A does not satisfy the conditions?

Conjugate Gradient Normal Equation (CGNE)

- For whatever \boldsymbol{A} (even rectangular) the matrix $\boldsymbol{B} = \boldsymbol{A^t}\boldsymbol{A}$ is symmetric and definite positive, in facts eigenvalues of \boldsymbol{B} are the square modulo of those of \boldsymbol{A}
- Equation obtained multiplying both sides of $\mathbf{A}x = b$ by \mathbf{A}^t has the same solution x:

$$\mathbf{A}^{t}\mathbf{A}\mathbf{x}=\mathbf{A}^{t}\mathbf{b}$$

• Get x by solving **B** for the vector $c = \mathbf{A}^t b$, as: $\mathbf{B} x = c$

Disadvantages

- Matrix $\mathbf{B} = \mathbf{A}^t \mathbf{A}$ condition number is the square of that of \mathbf{A}
- Applying B cost: twice of applying A to x

Variation: biconjugate (stabilized) gradient algorithm

Problem

- When **A** is not symmetric & positive definite **A** is <u>not</u> a quadratic form
- $\bullet \ (\text{when the space is complex}, \ \text{symmetric} {\rightarrow} \ \text{hermitian})$
- Minimization breaks down

Biconjugate stabilized

- Instead of minimizing F we can find other functional forms
- Biconjugate stabilized algorithm minimizes also non-symmetric definite positive matrix
- Pro:
 - Works for generic matrix
 - Convergence typically requires less iterations
- Con:
 - Two applications of **A** per iteration needed
 - Is more turbulent (residue can jump)
 - Convergence is not guaranteed in all the cases

Other options

- Minimum residual method (MINRES), Generalized minimal residual method (GMRES) works to minimize $|r_k|$ at each iteration
- Symmetric LQ method (SYMMLQ)

Convergence can be faster, but typically is never guaranteed for generic problem

Preconditioning the problem

Preconditioner

Introduce an operator **P** such that:

- $\kappa\left(\mathbf{AP^{-1}}\right) < \kappa\left(\mathbf{A}\right)$ the product $\mathbf{AP^{-1}}$ has a lower condition number of \mathbf{A}
- computing $AP^{-1}x$ is not much more expensive than computing Ax

Preconditioned equation

$$AP^{-1}Px = b$$

- Defining y = Px solve: $AP^{-1}y = b$
- Then solve: Px = y and obtain x

Definite-positivity

- If P^{-1} does not commute with A, AP^{-1} is not symmetric (even if A is)
- Solve the problem for $C = P^{-1}AP^{-1}$ and $d = P^{-1}b$:

$$Cy = d$$

Alternative precontioned equation: just multiply the matrix from the left

$$P^{-1}Ax = P^{-1}b = c$$

Which preconditioner?

Desiderata

- System for AP^{-1} (or $P^{-1}A$) must be simpler to be solved than A
- P should therefore approximate A in some sense
- Computing $P^{-1}v$ must be cheap

Generic possibilities

- Jacobi preconditioner P = diag (A)
 good if the system is dominated by its diagonal
- Incomplete *LU* factorization: we force matrix *U* to be zero where *A* was good for sparse matrices

More specific possibilities for sparse matrices

- Consider a simplified version of the matrix retaining its "physical" features
- Domain decomposition: consider separately sub-blocks of **A** (of size possibly related to a physical property of the system)

Focus on a particular problem - Laplace equation in D dimensions

In the continuum

Setting $\sigma = const$, $\Delta = \sum_{\mu} \nabla_{\mu}^2$:

$$(\sigma - \Delta) f(x) = b(x)$$

Discretization

$$\begin{cases} f(x) & \to & f_i \\ b(x) & \to & b_i \\ \left(\nabla^2_{\mu} f\right)(x) & \to & \frac{1}{2} \left(f_{i+\hat{\mu}} + f_{i-\hat{\mu}} - 2f_i\right) \end{cases}$$

Discrete problem

$$\mathbf{M}_{ij}f_j=b_i$$

Reduced to a linear system for matrix M:

$$oldsymbol{M}_{ij} = \left(\sigma + D\right)oldsymbol{\delta}_{ij} - rac{1}{2}\sum\left(oldsymbol{\delta}_{i,j+\hat{\mu}} + oldsymbol{\delta}_{i,j-\hat{\mu}}
ight)$$

Laplace equation in D dimensions: exact solution

In x space

$$\mathbf{M}_{ij}f_j = b_i, \qquad \mathbf{M}_{ij} = (\sigma + D)\,\delta_{ij} - \frac{1}{2}\sum_{\mu}\left(\delta_{i,j+\hat{\mu}} + \delta_{i,j-\hat{\mu}}\right)$$

Passing to Fourier space

$$\begin{cases} f_j = \frac{1}{V} \sum_k e^{ijk} f(k) \\ \mathbf{M}_{jl} = \frac{1}{V} \sum_k e^{i(j-l)k} \quad \left(\sigma + D - \sum_{\mu} \cos k_{\mu}\right) \end{cases}$$

Exact solution

$$f_{j} = \sum_{k} e^{-ijk} \mathbf{M}^{-1}(k) b(k) = \sum_{k} \frac{e^{-ijk} b(k)}{\sigma + D - \sum_{\mu} \cos k_{\mu}}$$

Good to check approximate solution!

Properties of the discrete Laplace operator

Eigenvalues, eigenvectors

- $M_{ij} = (\sigma + D) \delta_{ij} \frac{1}{2} \sum_{\mu} (\delta_{i,j+\hat{\mu}} + \delta_{i,j-\hat{\mu}})$ is symmetric
- Due to translation invariance, plane waves are eigenvectors
- Eigenvalues labelled by corresponding momenta:

$$\lambda\left(k\right) = \sigma + D - \sum_{\mu} \cos k_{\mu}$$

• If $\sigma = 0$ the system has a zero eigenvalue

Matricially

For
$$N = 6$$
, $D = 1$ $(d = \sigma + D$, $s = -1/2)$

$$\begin{pmatrix}
d & s & 0 & 0 & 0 & s \\
s & d & s & 0 & 0 & 0 \\
0 & s & d & s & 0 & 0 \\
0 & 0 & s & d & s & 0 \\
0 & 0 & 0 & s & d & s \\
s & 0 & 0 & 0 & s & d
\end{pmatrix}$$

Decomposing the problem - Even Odd precondition

Splitting parity coupling (red-black)

$$\mathbf{M} = \mathbf{M}^{ee} + \mathbf{M}^{oe} + \mathbf{M}^{eo} + \mathbf{M}^{oo}$$

where e.g. M^{eo} is different from 0 only between even and odd sites:

$$oldsymbol{M}_{i,j}^{eo} = oldsymbol{M}_{i,j} \delta_{p(i),e} \delta_{p(j),o}, \quad p(i) = \left(\sum_{i} x_i\right) mod 2, \quad e = 0, \ o = 1$$

and similarly

$$v = v^e + v^o$$

Rewriting the system

In this way the system is rewritten as $\begin{cases} \mathbf{M}^{ee}x^e + \mathbf{M}^{eo}x^o &= b^e \\ \mathbf{M}^{oe}x^e + \mathbf{M}^{oo}x^o &= b^o \end{cases}$

Decoupling even solution

- Some algebra shows: $\begin{cases} \left(\mathbf{M}^{ee} \mathbf{M}^{eo} \frac{1}{M^{oe}} \mathbf{M}^{oe} \right) x^e = b^e \mathbf{M}^{eo} \frac{1}{M^{oo}} b^o \\ x^o = \frac{1}{M^{oo}} \left(b^o \mathbf{M}^{oe} x^e \right) \end{cases}$
 - The equation for x^e decouples from that of x_0

Advantages of solving x^e

$$\left(\mathbf{M}^{\mathsf{ee}} - \mathbf{M}^{\mathsf{eo}} rac{1}{\mathbf{M}^{\mathsf{oo}}} \mathbf{M}^{\mathsf{oe}}
ight) x^{\mathsf{e}} = b^{\mathsf{e}} - \mathbf{M}^{\mathsf{eo}} rac{1}{\mathbf{M}^{\mathsf{oo}}} b^{\mathsf{o}}$$

Cost

Application of $M^{eo} \frac{1}{M^{oo}} M^{oe}$ and M^{ee} has the same cost of M but:

- $\boldsymbol{M}_{i,j}^{oo} = \delta_{i,j}d$ so $\frac{1}{\boldsymbol{M}_{i,j}^{oo}} = \frac{1}{d}\boldsymbol{M}_{i,j}$
- half of the data is necessary (less communications, more data coherence)
- the condition number has decreased

Further preconditioning

ullet Additional optimization can be achieved factorizing $oldsymbol{M}^{ee}$

$$\left(1 - \frac{1}{\textit{\textit{M}}^{ee}} \textit{\textit{M}}^{eo} \frac{1}{\textit{\textit{M}}^{oo}} \textit{\textit{M}}^{oe}\right) x^e = \frac{1}{\textit{\textit{M}}^{ee}} \left(b^e - \textit{\textit{M}}^{eo} \frac{1}{\textit{\textit{M}}^{oo}} b^o\right)$$

Solver

The system is still symmetric, so conjugate gradient solver usable

Visualization

Reordering

Putting first all even sites and then odd,

$$m{M} = \left(egin{array}{cc} m{M}^{
m ee} & m{M}^{
m oe} \ m{M}^{
m eo} & m{M}^{
m oo} \end{array}
ight) \,, \quad v = \left(egin{array}{c} v_{
m e} \ v_{
m o} \end{array}
ight)$$

Good for performance

Not necessary to perform this reordering, but improve performance

$$\begin{pmatrix} d & s & 0 & 0 & 0 & s \\ s & d & s & 0 & 0 & 0 \\ 0 & s & d & s & 0 & 0 \\ 0 & 0 & s & d & s & 0 \\ 0 & 0 & 0 & s & d & s \\ s & 0 & 0 & 0 & s & d \end{pmatrix} \rightarrow \begin{pmatrix} d & 0 & 0 & 0 & s & s \\ 0 & d & 0 & s & 0 & s \\ 0 & 0 & d & s & s & 0 \\ 0 & s & s & d & 0 & 0 \\ s & 0 & s & 0 & d & 0 \\ s & s & 0 & 0 & 0 & d \end{pmatrix}$$

Access to a more compact piece of memory

Domain decomposition

- ullet What we saw is just an example of a Schur decomposition on the 2 imes 2 blocked matrix
- Other decompositions can come to your mind
- In our case for example

$$\begin{pmatrix} d & s & 0 | & 0 & 0 & s \\ s & d & s | & 0 & 0 & 0 \\ 0 & \underline{s} & \underline{d} | & \underline{s} & \underline{0} & \underline{0} \\ 0 & 0 & s | & d & s & 0 \\ 0 & 0 & 0 | & s & d & s \\ s & 0 & 0 | & 0 & s & d \end{pmatrix} = \begin{pmatrix} D_{11} & \Omega_{12} \\ \Omega_{21} & D_{22} \end{pmatrix}$$

In this case

$$\left(\boldsymbol{D}_{11} - \boldsymbol{\Omega}_{12} \frac{1}{\boldsymbol{D}_{22}} \boldsymbol{\Omega}_{21} \right) x^1 = b^1 - \boldsymbol{\Omega}_{12} \frac{1}{\boldsymbol{D}_{22}} b^2$$

- Computing $t = \frac{1}{D_{22}}v$ requires actually to solve the $D_{22}t = v$ (micro-system) but
 - the system is much smaller
 - in a parallel program, no communication between different domains needed
- Can be seen as "gluing together" the solution obtained on subdomain, and correcting it

Pro if sub-blocks size correctly chosen, few macro iteration needed

Con have to know the scale at which the micro-solution approximate well the total one

Solving multiple similar systems

Naive solution

Use the solution of a problem as first guess for the next one

Shifted solver

If the problem is of the kind

$$(\mathbf{A} + \sigma) x = b$$

multi-shifted solver exists, e.g. M-CG, that can solve all the system for $\sigma_1, \sigma_2, \ldots$ simultaneously with very little overhead

Deflation

If we are interested in multiple source $b_1, b_2...$ use algorithm (EigCG...) that

- while solving $\mathbf{A}x = b$ finds the lowest eigenvector oft the system
- for each sources b_1, b_2, \ldots one eigenvector is found
- and can be removed by the spectra
- accelerating following solution