Reinforcement learning project: Hindsight Goal Ranking for Pickand-Place tasks

Master's Degree in Artificial Intelligence and Robotics

Table of Contents

Introduction

- ► Introduction
- The algorithm
- FetchReach
- ▶ FetchPickAndPlace
- Conclusions

- Learning effective policies in sparse reward environments is challenging. This
 project aims to address the challenges posed by sparse rewards in fixedbase manipulator tasks.
- Simulations were conducted in a Gym environment using the gymnasiumrobotics toolkit.
- Note: Issues with the default position of the fixed-base manipulator were encountered. For details and troubleshooting, refer to the GitHub repository: [https://github.com/Emilianogith/RL_project-Hindsight-Goal-Ranking-for-Pick-and-Place-tasks/tree/main
- RL algorithm: DDPG (Deep Deterministic Policy Gradient).
- HGR (Hindsight Goal Ranking) strategy have been used to efficiently sample experiences and goals guaranteeeing efficient performance.

 To simplify the problem, we initially trained the agent in a basic environment: gym FetchReach, focusing only on reaching a target position.

 Once the learning strategy was successfully validated in the FetchReach environment, we applied it to the more complex task of gym Fetch PickAndPlace.

Table of Contents Control

- Introduction
- ► The algorithm
- FetchReach
- ▶ FetchPickAndPlace
- Conclusions

- DDPG is a deterministic policy gradient method: specifically adapted for continuous action spaces.
- Actor-Critic method.

It optimizes the functions:

Critic:
$$L(\phi) = \mathbb{E}_{s \sim \rho^{\beta}, a \sim \beta, r \sim E, s \sim \rho^{\beta}} \left[r + \gamma Q_{\phi^{-}}(s', \mu_{\theta^{-}}(s')) - Q_{\phi}(s, a) \right]^{2}$$

$$\mathsf{Actor}: \quad \nabla_{\theta} J_{\beta}(\mu_{\theta}) = \mathbb{E}_{s \sim \rho^{\beta}} \left[\left. \nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q_{\phi}(s, a) \right|_{a = \mu_{\theta}(s)} \right]$$

• Off-policy: the target policy $\mu_{\theta}(s)$ is learned from trajectories generated by an arbitrary stochastic behaviour policy $\pi(s)$.

- Target networks, updated using a soft update mechanism, are employed to enhance training stability.
- Gaussian noise with zero mean and a small standard deviation ($\sigma = 0.2$) is added to address exploration challenges associated with the deterministic policy approach.

HGRThe algorithm

• In scenarios like these, Critic and actor are goal-conditioned: $\mu_{\theta}(s|g), Q_{\phi}(s, a|g)$

UVFAs are used:

- Hindsight Experience Replay consists in relabeling the goal of the existing experiences in the replay buffer to overcome the sample inefficiency problem in the sparse reward environment.
- Samples are sampled according to the <u>future startegy</u>: the hindsight goal is selected randomly from states at future time steps with respected the chosen experience.

- In HER: the hindsight goal of a sampled episode is selected by uniformly sampling a future visited state.
- In HGR: episodes and experieces in the replay buffer are prioritized maximizing what the agent can learn from the whole replay buffer.
 - TD error is used for prioritizing the experiences:

$$\delta = r + \gamma Q_{\phi^-}(s', \mu_{\theta^-}(s')) - Q_{\phi}(s, a)$$

• Given a sample episode, the probability of sampling experience j and future goal i with i = j + 1, ..., H:

$$j, i \sim P'(j, i) = \frac{\left|\delta_{ji}\right|^{\alpha'}}{\sum_{j=1}^{H-1} \sum_{i=j+1}^{H} \left|\delta_{ji}\right|^{\alpha'}}$$

• Also the episodes are prioritized accordingly to the average TD error($\delta^{(n)}$) of all experiences within the episodes:

$$n \sim P(n) = \frac{\left|\delta^{(n)}\right|^{\alpha}}{\sum_{n} \left|\delta^{(n)}\right|^{\alpha}}$$

Table of Contents

Trajectories

- Introduction
- Control Method
- ► FetchReach
- FetchPickAndPlace
- Conclusions

• State space:

0	1	2	3	4	5	6	7	8	9
Ee_x	Ee_y	Ee_z	Grip_r	Grip_l	V_x	V_y	V_z	Grip_vl	Grip_vr

Action space:

0	Displacement of the end effector in the x direction dx
1	Displacement of the end effector in the y direction dy
2	Displacement of the end effector in the z direction dz
3	-

 The task in Gym FetchReach is for the agent to move the robot's end-effector to a specified target position in space.

Implementation details

FetchReach

The reward is sparse and it is defined as:

$$r = \begin{cases} 0 & if |ee - goal| < \tau \\ -1 & otherwise \end{cases}$$

 Gaussian noise alone is insufficient to ensure effective exploration. To address this, we enhanced exploration by incorporating the epsilon-greedy strategy.

$$a = \begin{cases} random & if \ \epsilon \\ \beta(s) & if \ 1 - \epsilon \end{cases}$$

Evaluation

FetchReach

Evaluation

FetchReach

Table of Contents

Trajectories

- Introduction
- Control Method
- FetchReach
- ► FetchPickAndPlace
- Conclusions

• State space:

0	1	2	3	4	5	6	7	8	9
Ee_x	Ee_y	Ee_z	Block_x	Block_ y	Block_	X_b- x_g	Y_b- У_g	Z_b- z_g	Grip_r
10	11	12	13	14	15	16	17	18	19
Grip_I	Block θx	Block θy	Block θz	Vx_b- vx_g	Vy_b- vy_g	Vz_b- vz_g	Block ω_x	Block $\omega_{-}y$	Block ω_z
20	21	22	23	24					
Ee_Vx	Ee_Vy	Ee_Vz	Grip_Vr	Grip_VI					

Action space:

0	Displacement of the end effector in the x direction dx
1	Displacement of the end effector in the y direction dy
2	Displacement of the end effector in the z direction dz
3	Positional displacement per timestep of each finger of the gripper

In Gym FetchPickAndPlace, the agent must not only reach a target position but also manipulate an object to a desired location.

Implementation details

FetchPickAndPlace

 Here the task is more articulated, we need to redefine the reward function for hindsight goal as:

$$r = \begin{cases} 0 & \text{if } |block-goal| < \tau \text{ and } block \neq goal \\ -1 & otherwise \end{cases}$$

 Gaussian noise alone is insufficient to ensure effective exploration. To address this, we enhanced exploration by incorporating the epsilon-greedy strategy.

$$a = \begin{cases} random & if \ \epsilon \\ \beta(s) & if \ 1 - \epsilon \end{cases}$$

Evaluation FetchPickAndPlace

Trained only for 3300 epochs

Table of Contents

Conclusions

- Introduction
- Control Method
- FetchReach
- FetchPickAndPlace
- ► Conclusions

- **DDPG** demonstrated strong suitability for learning in continuous action spaces and solving multi-goal tasks.
- HGR showed effective sampling efficiency, as shown by higher win rates, correctly addressing the problem of sparse reward.

In Gym FetchReach:

In Gym FetchPickAndPlace not very effective....

Opportunities for growth:

- Try different exploration strategies
- Train for more epochs
- Leverage deeper networks
- Reshape the reward

• Future works:

- Expand the approach to different tasks, including more complex and dynamic scenarios.
- Validate the method on a physical manipulator to address Sim-to-Real transfer challenges.

Thanks for your attention!