Домашняя работа по дискретной математике №4

Вариант 72

Работу выполнил:

Тимошкин Роман, Р3131

Исходный граф:

													_	
V/V	e1	e2	e3	e4	e5	e6	e7	e8	е9	e10	e11	e12		
e1	0	2		2		4	3	5				5		
e2	2	0		3	1					4				
e3			0	4	4		2			4	1	4		
e4	2	3	4	0			2		1	4	2			
e5		1	4		0				1		3			
e6	4					0		1	3	5		1		
e7	3		2	2			0		2			3		
e8	5					1		0		5				
е9				1	1	3	2		0		3			
e10		4	4	4		5		5		0	1			
e11			1	2	3				3	1	0	3		
e12	5		4			1	3				3	0		
//V		e1		e2		e3		e4		e5		e6	e7	e8
e1		0		2				2				4	3	5
e2		2		0				3		1				
е3						0		4		4			2	
		_		_				_					_	

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	2		2		4	3	5				5
e2	2	0		3	1					4		
e3			0	4	4		2			4	1	4
e4	2	3	4	0			2		1	4	2	
e5		1	4		0				1		3	
e6	4					0		1	3	5		1
e7	3		2	2			0		2			3
e8	5					1		0		5		
e9				1	1	3	2		0		3	
e10		4	4	4		5		5		0	1	
e11			1	2	3				3	1	0	3
e12	5		4			1	3				3	0

Планаризовать граф

Уберём веса (сделаем граф невзвешенным)

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	1		1		1	1	1				1
e2	1	0		1	1					1		
e3			0	1	1		1			1	1	1

e4	1	1	1	0			1		1	1	1	
e5		1	1		0				1		1	
e6	1					0		1	1	1		1
e7	1		1	1			0		1			1
e8	1					1		0		1		
e9				1	1	1	1		0		1	
e10		1	1	1		1		1		0	1	
e11			1	1	1				1	1	0	1
e12	1		1			1	1				1	0

Нахождение гамильтонова цикла

Включаем в S вершину e1. $S = \{e1\}$

Возможная вершина e2. S = {e1, e2}

Возможная вершина e4. S = {e1, e2, e4}

Возможная вершина e3. S = {e1, e2, e4, e3}

Возможная вершина e5. S = {e1, e2, e4, e3, e5}

Возможная вершина e9. S = {e1, e2, e4, e3, e5, e9}

Возможная вершина e6. S = {e1, e2, e4, e3, e5, e9, e6}

Возможная вершина e8. S = {e1, e2, e4, e3, e5, e9, e6, e8}

Возможная вершина e10. S = {e1, e2, e4, e3, e5, e9, e6, e8, e10}

Возможная вершина e11. S = {e1, e2, e4, e3, e5, e9, e6, e8, e10, e11}

Возможная вершина e12. S = {e1, e2, e4, e3, e5, e9, e6, e8, e10, e11, e12}

Возможная вершина e7. S = {e1, e2, e4, e3, e5, e9, e6, e8, e10, e11, e12, e7}

Построение графа пересечений G'

Перенумеруем вершины графа, чтобы ребра гамильтонова цикла были внешними:

TO TOPOLIVATORSHIAM	e1	e2	e4	e3	e5	e9	e6	e8	e10	e11	e12	e7
до перенумерации	ET	62	C4	63	63	63	60	60	610	CII	612	67
после перенумерации	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12

Тогда матрица смежности будет выглядеть следующим образом:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	Х	1				1	1			1	х
e2		0	Х		1				1			
e3			0	Х		1			1	1		1
e4				0	Х				1	1	1	1
e5					0	Х				1		
e6						0	Х			1		1
e7							0	Х	1		1	
e8								0	Х			
e9									0	Х		
e10										0	Х	
e11											0	Х
e12												0

А сам граф так:

Определим p29, для чего в матрице R выделим подматрицу R29. Peбpo (x2x9) пересекается с (x1x3),(x1x7),(x1x8) Определим p25, для чего в матрице R выделим подматрицу R25.

Ребро (х2х5) пересекается с (х1х3)

Определим p312, для чего в матрице R выделим подматрицу R312.

Ребро (х3х12) пересекается с (х1х7),(х1х8),(х1х11),(х2х5),(х2х9)

Определим p310, для чего в матрице R выделим подматрицу R310.

Ребро (x3x10) пересекается с (x1x7),(x1x8),(x2x5),(x2x9)

Определим p39, для чего в матрице R выделим подматрицу R39.

Ребро (x3x9) пересекается с (x1x7),(x1x8),(x2x5)

Определим p36, для чего в матрице R выделим подматрицу R36.

Ребро (х3х6) пересекается с (х2х5)

Определим p412, для чего в матрице R выделим подматрицу R412.

Ребро (х4х12) пересекается с (х1х7),(х1х8),(х1х11),(х2х5),(х2х9),(х3х6),(х3х9),(х3х10)

Определим p411, для чего в матрице R выделим подматрицу R411.

Ребро (x4x11) пересекается с (x1x7),(x1x8),(x2x5),(x2x9),(x3x6),(x3x9),(x3x10)

Определим p410, для чего в матрице R выделим подматрицу R410.

Ребро (х4х10) пересекается с (х1х7),(х1х8),(х2х5),(х2х9),(х3х6),(х3х9)

Определим р49, для чего в матрице R выделим подматрицу R49.

Ребро (x4x9) пересекается с (x1x7),(x1x8),(x2x5),(x3x6)

Определим p510, для чего в матрице R выделим подматрицу R510.

Ребро (x5x10) пересекается с (x1x7),(x1x8),(x2x9),(x3x6),(x3x9),(x4x9)

15 пересечений графа найдено, закончим поиск.

	р1	p2	р1	p1	p2	р3	p1	р3	р3	р3	p4	p4	p4	p4	р5
	3	9	7	8	5	12	11	10	9	6	12	11	10	9	10
p1 3	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0
p2 9	1	1	1	1	0	1	0	1	0	0	1	1	1	0	1
p1 7	0	1	1	0	0	1	0	1	1	0	1	1	1	1	1
p18	0	1	0	1	0	1	0	1	1	0	1	1	1	1	1
p2 5	1	0	0	0	1	1	0	1	1	1	1	1	1	1	0
p3 12	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
p1 11	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
p3 10	0	1	1	1	1	0	0	1	0	0	1	1	0	0	0
p3 9	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
p3 6	0	0	0	0	1	0	0	0	0	1	1	1	1	1	1
p4 12	0	1	1	1	1	0	1	1	1	1	1	0	0	0	0
p4 11	0	1	1	1	1	0	0	1	1	1	0	1	0	0	0
p4 10	0	1	1	1	1	0	0	0	1	1	0	0	1	0	0
p4 9	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1
p5 10	0	1	1	1	0	0	0	0	1	1	0	0	0	1	1

Построение семейства ф

В 1 строке ищем первый нулевой элемент - r1 3. Записываем дизъюнкцию M1 3=r1\r3=110010000000000\r011001011011111=111011011011111

В строке M1 3 находим номера нулевых элементов, составляем список $J'=\{4,7,10\}$.

Записываем дизъюнкцию

M1 3 4=M1 3Vr4=1110110110111111V010101011011111=1111111011011111

В строке М1 3 4 находим номера нулевых элементов, составляем список Ј'={7,10}.

Записываем дизъюнкцию

В строке М1 3 4 7 находим номера нулевых элементов, составляем список J'={10}.

Записываем дизъюнкцию

В строке М1 3 4 7 10 все 1.

Построено ψ1={u1 3,u1 7,u1 8,u1 11,u3 6}

Записываем дизъюнкцию

В строке М1 3 4 10 остались незакрытые 0.

Записываем дизъюнкцию

M1 3 7=M1 3Vr7=1110110110111111V000001100010000=1110111111011111

В строке М1 3 7 находим номера нулевых элементов, составляем список J'={10}. Строка 10 не закроет ноль на 4 позиции.

Записываем дизъюнкцию

В строке М1 3 10 остались незакрытые 0.

Записываем дизъюнкцию

M1 4=r1\r4=1100100000000000\r010101011111=110111011011111

В строке M1 4 находим номера нулевых элементов, составляем список $J'=\{7,10\}$. Строки 7, 10 не закроют ноль на 3 позиции.

Записываем дизъюнкцию

M1 6=r1\r6=110010000000000\r011111100000000=1111111100000000

В строке M1 6 находим номера нулевых элементов, составляем список

 $J'=\{8,9,10,11,12,13,14,15\}.$

Записываем дизъюнкцию

В строке M1 6 8 находим номера нулевых элементов, составляем список $J'=\{9,10,13,14,15\}$.

Записываем дизъюнкцию

В строке M1 6 8 9 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Записываем дизъюнкцию

В строке М1 6 8 9 10 все 1.

Построено ψ2={u1 3,u3 12,u3 10,u3 9,u3 6}

Записываем дизъюнкцию

В строке М1 6 8 9 14 все 1.

Построено ψ 3={u1 3,u3 12,u3 10,u3 9,u4 9}

Записываем дизъюнкцию

В строке М1 6 8 10 остались незакрытые 0.

Записываем дизъюнкцию

В строке M1 6 8 13 находим номера нулевых элементов, составляем список $J'=\{14,15\}$.

Записываем дизъюнкцию

В строке М1 6 8 13 14 все 1.

Построено ψ4={u1 3,u3 12,u3 10,u4 10,u4 9}

Записываем дизъюнкцию

В строке М1 6 8 13 15 все 1.

Построено ψ5={u1 3,u3 12,u3 10,u4 10,u5 10}

Записываем дизъюнкцию

В строке М1 6 8 14 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 6 8 15 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 6 9 находим номера нулевых элементов, составляем список J'={10,14}. Строки 10, 14 не закроют ноль на 8 позиции.

Записываем дизъюнкцию

В строке М1 6 10 остались незакрытые 0.

Записываем дизъюнкцию

В строке M1 6 11 находим номера нулевых элементов, составляем список $J'=\{12,13,14,15\}$.

Записываем дизъюнкцию

В строке М1 6 11 12 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

Записываем дизъюнкцию

В строке M1 6 11 12 13 находим номера нулевых элементов, составляем список $J'=\{14,15\}$.

Записываем дизъюнкцию

M1 6 11 12 13 14=M1 6 11 12

В строке М1 6 11 12 13 14 все 1.

Построено ψ 6={u1 3,u3 12,u4 12,u4 11,u4 10,u4 9}

Записываем дизъюнкцию

M1 6 11 12 13 15=M1 6 11 12

В строке М1 6 11 12 13 15 все 1.

Построено ф7={u1 3,u3 12,u4 12,u4 11,u4 10,u5 10}

Записываем дизъюнкцию

В строке М1 6 11 12 14 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 6 11 12 15 остались незакрытые 0.

Записываем дизъюнкцию

В строке M1 6 11 13 находим номера нулевых элементов, составляем список $J'=\{14,15\}$.

Строки 14, 15 не закроют ноль на 12 позиции.

Записываем дизъюнкцию

В строке М1 6 11 14 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 6 11 15 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 6 12 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

Строки 13, 14, 15 не закроют ноль на 11 позиции.

Записываем дизъюнкцию

В строке М1 6 13 находим номера нулевых элементов, составляем список Ј'={14,15}.

Строки 14, 15 не закроют нули на позициях 8, 11, 12

Записываем дизъюнкцию

В строке М1 6 14 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 6 15 остались незакрытые 0.

Записываем дизъюнкцию

В строке M1 7 находим номера нулевых элементов, составляем список

 $J'=\{8,9,10,12,13,14,15\}.$

Записываем дизъюнкцию

В строке M1 7 8 находим номера нулевых элементов, составляем список $J'=\{9,10,13,14,15\}$.

Записываем дизъюнкцию

В строке M1 7 8 9 находим номера нулевых элементов, составляем список $1'=\{10,14\}$.

Записываем дизъюнкцию

В строке М1 7 8 9 10 все 1.

Построено ψ 8={u1 3,u1 11,u3 10,u3 9,u3 6}

Записываем дизъюнкцию

В строке М1 7 8 9 14 все 1.

Построено ψ9={u1 3,u1 11,u3 10,u3 9,u4 9}

Записываем дизъюнкцию

В строке М1 7 8 10 остались незакрытые 0.

Записываем дизъюнкцию

В строке M1 7 8 13 находим номера нулевых элементов, составляем список $J'=\{14,15\}$.

Записываем дизъюнкцию

В строке М1 7 8 13 14 все 1.

Построено ψ10={u1 3,u1 11,u3 10,u4 10,u4 9}

Записываем дизъюнкцию

В строке М1 7 8 13 15 все 1.

Построено ψ 11={u1 3,u1 11,u3 10,u4 10,u5 10}

Записываем дизъюнкцию

В строке М1 7 8 14 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 7 8 15 остались незакрытые 0.

Записываем дизъюнкцию

В строке M1 7 9 находим номера нулевых элементов, составляем список $J'=\{10,14\}$. Строки 10, 14 не закроют ноль на 8 позиции.

Записываем дизъюнкцию

M1 7 10=M1 7Vr10=110011100010000V000010000111111=110011100111111

В строке М1 7 10 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 7 12 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

Записываем дизъюнкцию

В строке M1 7 12 13 находим номера нулевых элементов, составляем список $J'=\{14,15\}$.

Записываем дизъюнкцию

В строке М1 7 12 13 14 все 1.

Построено ψ12={u1 3,u1 11,u4 11,u4 10,u4 9}

Записываем дизъюнкцию

В строке М1 7 12 13 15 все 1.

Построено ψ 13={u1 3,u1 11,u4 11,u4 10,u5 10}

Записываем дизъюнкцию

В строке М1 7 12 14 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 7 12 15 остались незакрытые 0.

Записываем дизъюнкцию

В строке M1 7 13 находим номера нулевых элементов, составляем список $J'=\{14,15\}$.

Строки 14, 15 не закроют нули на позициях 8, 12

Записываем дизъюнкцию

В строке М1 7 14 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 7 15 остались незакрытые 0.

Записываем дизъюнкцию

M18=r1vr8=1100100000000000v011110010011000=111110010011000

В строке M1 8 находим номера нулевых элементов, составляем список $J'=\{9,10,13,14,15\}$.

Строки 9, 10, 13, 14, 15 не закроют нули на позициях 6, 7

Записываем дизъюнкцию

M1 9=r1vr9=1100100000000000v001110001011101=1111110001011101

В строке М1 9 находим номера нулевых элементов, составляем список Ј'={10,14}. Строки

10, 14 не закроют нули на позициях 6, 7, 8

Записываем дизъюнкцию

M1 10=r1vr10=110010000000000v0000111111=110010000111111

В строке М1 10 остались незакрытые 0.

Записываем дизъюнкцию

M1 11=r1\r11=110010000000000\r011110111110000=111110111110000

В строке M1 11 находим номера нулевых элементов, составляем список $J'=\{12,13,14,15\}$.

Строки 12, 13, 14, 15 не закроют ноль на 6 позиции.

Записываем дизъюнкцию

M1 12=r1vr12=110010000000000v011110011101000=111110011101000

В строке М1 12 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

Строки 13, 14, 15 не закроют нули на позициях 6, 7, 11

Записываем дизъюнкцию

M1 13=r1\r13=110010000000000\r011110001100100=111110001100100

В строке М1 13 находим номера нулевых элементов, составляем список Ј'={14,15}. Строки

14, 15 не закроют нули на позициях 6, 7, 8, 11, 12

Записываем дизъюнкцию

В строке М1 14 остались незакрытые 0.

Записываем дизъюнкцию

M1 15=r1vr15=110010000000000v011100001100011=1111110001100011

В строке М1 15 остались незакрытые 0. В 2 строке ищем первый нулевой элемент - r2 5.

Записываем дизъюнкцию

В строке M2 5 находим номера нулевых элементов, составляем список $J'=\{7\}$.

Записываем дизъюнкцию

В строке М2 5 7 все 1.

Построено ψ14={u2 9,u2 5,u1 11}

Записываем дизъюнкцию

В строке M2 7 находим номера нулевых элементов, составляем список $J'=\{9,10,14\}$.

Записываем дизъюнкцию

В строке М2 7 9 находим номера нулевых элементов, составляем список Ј'={10,14}.

Записываем дизъюнкцию

В строке М2 7 9 10 все 1.

Построено ψ15={u2 9,u1 11,u3 9,u3 6}

Записываем дизъюнкцию

В строке М2 7 9 14 все 1.

Построено ψ 16={u2 9,u1 11,u3 9,u4 9}

Записываем дизъюнкцию

В строке М2 7 10 остались незакрытые 0.

Записываем дизъюнкцию

В строке М2 7 14 остались незакрытые 0.

Записываем дизъюнкцию

M2 9=r2Vr9=1111010100111101V001110001011101=11111110110111101

В строке М2 9 находим номера нулевых элементов, составляем список J'={10,14}. Строки 10, 14 не закроют ноль на 7 позиции.

Записываем дизъюнкцию

M2 10=r2Vr10=111101010011101V000010000111111=1111111010111111

В строке М2 10 остались незакрытые 0.

Записываем дизъюнкцию

M2 14=r2\r14=1111010100111101\r001110000100011=1111111010111111

В строке М2 14 остались незакрытые 0. В 3 строке ищем первый нулевой элемент - r3 4.

Записываем дизъюнкцию

M3 4=r3vr4=0110010110111111v010101011011111=011101011011111

В строке МЗ 4 находим номера нулевых элементов, составляем список Ј'={5,7,10}.

Записываем дизъюнкцию

В строке M3 4 5 находим номера нулевых элементов, составляем список $J'=\{7\}$.

Записываем дизъюнкцию

В строке МЗ 4 5 7 все 1.

Построено ψ17={u1 7,u1 8,u2 5,u1 11}

Записываем дизъюнкцию

В строке МЗ 47 находим номера нулевых элементов, составляем список J'={10}. Строка 10 не закроет ноль на 1 позиции.

Записываем дизъюнкцию

В строке МЗ 4 10 остались незакрытые 0.

Записываем дизъюнкцию

В строке M3 5 находим номера нулевых элементов, составляем список $J'=\{7\}$. Строка 7 не закроет ноль на 4 позиции.

Записываем дизъюнкцию

M3 7=r3vr7=0110010110111111v000001100010000=011001111011111

В строке M3 7 находим номера нулевых элементов, составляем список $J'=\{10\}$. Строка 10 не закроет нули на позициях 1, 4

Записываем дизъюнкцию

В строке M3 10 остались незакрытые 0. В 4 строке ищем первый нулевой элемент - r4 5. Записываем дизъюнкцию

В строке M4 5 находим номера нулевых элементов, составляем список $J'=\{7\}$. Строка 7 не закроет ноль на 3 позиции.

Записываем дизъюнкцию

M4 7=r4vr7=0101010110111111v000001100010000=010101111011111

В строке М4 7 находим номера нулевых элементов, составляем список J'={10}. Строка 10 не закроет нули на позициях 1, 3

Записываем дизъюнкцию

В строке M4 10 остались незакрытые 0. В 5 строке ищем первый нулевой элемент - r5 7.

Записываем дизъюнкцию

В строке М5 7 находим номера нулевых элементов, составляем список Ј'={15}.

Записываем дизъюнкцию

В строке М5 7 15 все 1.

Построено ψ 18={u2 5,u1 11,u5 10}

Записываем дизъюнкцию

Из матрицы R(G') видно, что строки с номерами j > 5 не смогут закрыть ноль в позиции 1.

```
Семейство максимальных внутренне устойчивых множеств фG построено. Это:
\psi1={u1 3,u1 7,u1 8,u1 11,u3 6}
\psi2={u1 3,u3 12,u3 10,u3 9,u3 6}
\psi3={u1 3,u3 12,u3 10,u3 9,u4 9}
\psi4={u1 3,u3 12,u3 10,u4 10,u4 9}
\psi5={u1 3,u3 12,u3 10,u4 10,u5 10}
ψ6={u1 3,u3 12,u4 12,u4 11,u4 10,u4 9}
\psi7={u1 3,u3 12,u4 12,u4 11,u4 10,u5 10}
\psi8={u1 3,u1 11,u3 10,u3 9,u3 6}
\psi9={u1 3,u1 11,u3 10,u3 9,u4 9}
\psi10={u1 3,u1 11,u3 10,u4 10,u4 9}
\psi11={u1 3,u1 11,u3 10,u4 10,u5 10}
\psi12={u1 3,u1 11,u4 11,u4 10,u4 9}
\psi13={u1 3,u1 11,u4 11,u4 10,u5 10}
\psi14={u2 9,u2 5,u1 11}
ψ15={u2 9,u1 11,u3 9,u3 6}
\psi16={u2 9,u1 11,u3 9,u4 9}
\psi17={u1 7,u1 8,u2 5,u1 11}
\psi18={u2 5,u1 11,u5 10}
```

Выделение из G' максимального двудольного подграфа Н'

```
Для каждой пары множеств вычислим значение критерия \alpha \gamma\beta=|\psi\gamma|+|\psi\beta|-|\psi\gamma\cap\psi\beta|:
\alpha 12 = |\psi 1| + |\psi 2| - |\psi 1 \cap \psi 2| = 5 + 5 - 2 = 8
\alpha 13 = |\psi 1| + |\psi 3| - |\psi 1 \cap \psi 3| = 5 + 5 - 1 = 9
\alpha 14 = |\psi 1| + |\psi 4| - |\psi 1 \cap \psi 4| = 5 + 5 - 1 = 9
\alpha 15 = |\psi 1| + |\psi 5| - |\psi 1 \cap \psi 5| = 5 + 5 - 1 = 9
\alpha 16 = |\psi 1| + |\psi 6| - |\psi 1 \cap \psi 6| = 5 + 6 - 1 = 10
\alpha 17 = |\psi 1| + |\psi 7| - |\psi 1 \cap \psi 7| = 5 + 6 - 1 = 10
\alpha 18 = |\psi 1| + |\psi 8| - |\psi 1 \cap \psi 8| = 5 + 5 - 3 = 7
\alpha 19 = |\psi 1| + |\psi 9| - |\psi 1 \cap \psi 9| = 5 + 5 - 2 = 8
\alpha 110 = |\psi 1| + |\psi 10| - |\psi 1 \cap \psi 10| = 5 + 5 - 2 = 8
\alpha 111 = |\psi 1| + |\psi 11| - |\psi 1 \cap \psi 11| = 5 + 5 - 2 = 8
\alpha 112 = |\psi 1| + |\psi 12| - |\psi 1 \cap \psi 12| = 5 + 5 - 2 = 8
\alpha 113 = |\psi 1| + |\psi 13| - |\psi 1 \cap \psi 13| = 5 + 5 - 2 = 8
\alpha 114 = |\psi 1| + |\psi 14| - |\psi 1 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 115 = |\psi 1| + |\psi 15| - |\psi 1 \cap \psi 15| = 5 + 4 - 2 = 7
\alpha 116 = |\psi 1| + |\psi 16| - |\psi 1 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 117 = |\psi 1| + |\psi 17| - |\psi 1 \cap \psi 17| = 5 + 4 - 3 = 6
```

```
\alpha 118 = |\psi 1| + |\psi 18| - |\psi 1 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 23 = |\psi 2| + |\psi 3| - |\psi 2 \cap \psi 3| = 5 + 5 - 4 = 6
\alpha 24 = |\psi 2| + |\psi 4| - |\psi 2 \cap \psi 4| = 5 + 5 - 3 = 7
\alpha 25 = |\psi 2| + |\psi 5| - |\psi 2 \cap \psi 5| = 5 + 5 - 3 = 7
\alpha 26 = |\psi 2| + |\psi 6| - |\psi 2 \cap \psi 6| = 5 + 6 - 2 = 9
\alpha 27 = |\psi 2| + |\psi 7| - |\psi 2 \cap \psi 7| = 5 + 6 - 2 = 9
\alpha 28 = |\psi 2| + |\psi 8| - |\psi 2 \cap \psi 8| = 5 + 5 - 4 = 6
\alpha 29 = |\psi 2| + |\psi 9| - |\psi 2 \cap \psi 9| = 5 + 5 - 3 = 7
\alpha 210 = |\psi 2| + |\psi 10| - |\psi 2 \cap \psi 10| = 5 + 5 - 2 = 8
\alpha 211 = |\psi 2| + |\psi 11| - |\psi 2 \cap \psi 11| = 5 + 5 - 2 = 8
\alpha 212 = |\psi 2| + |\psi 12| - |\psi 2 \cap \psi 12| = 5 + 5 - 1 = 9
\alpha 213 = |\psi 2| + |\psi 13| - |\psi 2 \cap \psi 13| = 5 + 5 - 1 = 9
\alpha 214 = |\psi 2| + |\psi 14| - |\psi 2 \cap \psi 14| = 5 + 3 - 0 = 8
\alpha 215 = |\psi 2| + |\psi 15| - |\psi 2 \cap \psi 15| = 5 + 4 - 2 = 7
\alpha 216 = |\psi 2| + |\psi 16| - |\psi 2 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 217 = |\psi 2| + |\psi 17| - |\psi 2 \cap \psi 17| = 5 + 4 - 0 = 9
\alpha 218 = |\psi 2| + |\psi 18| - |\psi 2 \cap \psi 18| = 5 + 3 - 0 = 8
\alpha 34 = |\psi 3| + |\psi 4| - |\psi 3 \cap \psi 4| = 5 + 5 - 4 = 6
\alpha 35 = |\psi 3| + |\psi 5| - |\psi 3 \cap \psi 5| = 5 + 5 - 3 = 7
\alpha 36 = |\psi 3| + |\psi 6| - |\psi 3 \cap \psi 6| = 5 + 6 - 3 = 8
\alpha 37 = |\psi 3| + |\psi 7| - |\psi 3 \cap \psi 7| = 5 + 6 - 2 = 9
\alpha 38 = |\psi 3| + |\psi 8| - |\psi 3 \cap \psi 8| = 5 + 5 - 3 = 7
\alpha 39 = |\psi 3| + |\psi 9| - |\psi 3 \cap \psi 9| = 5 + 5 - 4 = 6
\alpha 310 = |\psi 3| + |\psi 10| - |\psi 3 \cap \psi 10| = 5 + 5 - 3 = 7
\alpha 311 = |\psi 3| + |\psi 11| - |\psi 3 \cap \psi 11| = 5 + 5 - 2 = 8
\alpha 312 = |\psi 3| + |\psi 12| - |\psi 3 \cap \psi 12| = 5 + 5 - 2 = 8
\alpha 313 = |\psi 3| + |\psi 13| - |\psi 3 \cap \psi 13| = 5 + 5 - 1 = 9
\alpha 314 = |\psi 3| + |\psi 14| - |\psi 3 \cap \psi 14| = 5 + 3 - 0 = 8
\alpha 315 = |\psi 3| + |\psi 15| - |\psi 3 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 316 = |\psi 3| + |\psi 16| - |\psi 3 \cap \psi 16| = 5 + 4 - 2 = 7
\alpha 317 = |\psi 3| + |\psi 17| - |\psi 3 \cap \psi 17| = 5 + 4 - 0 = 9
\alpha 318 = |\psi 3| + |\psi 18| - |\psi 3 \cap \psi 18| = 5 + 3 - 0 = 8
\alpha 45 = |\psi 4| + |\psi 5| - |\psi 4 \cap \psi 5| = 5 + 5 - 4 = 6
\alpha 46 = |\psi 4| + |\psi 6| - |\psi 4 \cap \psi 6| = 5 + 6 - 4 = 7
\alpha 47 = |\psi 4| + |\psi 7| - |\psi 4 \cap \psi 7| = 5 + 6 - 3 = 8
\alpha 48 = |\psi 4| + |\psi 8| - |\psi 4 \cap \psi 8| = 5 + 5 - 2 = 8
\alpha 49 = |\psi 4| + |\psi 9| - |\psi 4 \cap \psi 9| = 5 + 5 - 3 = 7
\alpha 410 = |\psi 4| + |\psi 10| - |\psi 4 \cap \psi 10| = 5 + 5 - 4 = 6
\alpha 411 = |\psi 4| + |\psi 11| - |\psi 4 \cap \psi 11| = 5 + 5 - 3 = 7
\alpha 412 = |\psi 4| + |\psi 12| - |\psi 4 \cap \psi 12| = 5 + 5 - 3 = 7
\alpha 413 = |\psi 4| + |\psi 13| - |\psi 4 \cap \psi 13| = 5 + 5 - 2 = 8
\alpha 414 = |\psi 4| + |\psi 14| - |\psi 4 \cap \psi 14| = 5 + 3 - 0 = 8
\alpha 415 = |\psi 4| + |\psi 15| - |\psi 4 \cap \psi 15| = 5 + 4 - 0 = 9
\alpha 416 = |\psi 4| + |\psi 16| - |\psi 4 \cap \psi 16| = 5 + 4 - 1 = 8
```

```
\alpha 417 = |\psi 4| + |\psi 17| - |\psi 4 \cap \psi 17| = 5 + 4 - 0 = 9
\alpha 418 = |\psi 4| + |\psi 18| - |\psi 4 \cap \psi 18| = 5 + 3 - 0 = 8
\alpha 56 = |\psi 5| + |\psi 6| - |\psi 5 \cap \psi 6| = 5 + 6 - 3 = 8
\alpha 57 = |\psi 5| + |\psi 7| - |\psi 5 \cap \psi 7| = 5 + 6 - 4 = 7
\alpha 58 = |\psi 5| + |\psi 8| - |\psi 5 \cap \psi 8| = 5 + 5 - 2 = 8
\alpha 59 = |\psi 5| + |\psi 9| - |\psi 5 \cap \psi 9| = 5 + 5 - 2 = 8
\alpha 510 = |\psi 5| + |\psi 10| - |\psi 5 \cap \psi 10| = 5 + 5 - 3 = 7
\alpha 511 = |\psi 5| + |\psi 11| - |\psi 5 \cap \psi 11| = 5 + 5 - 4 = 6
\alpha 512 = |\psi 5| + |\psi 12| - |\psi 5 \cap \psi 12| = 5 + 5 - 2 = 8
\alpha 513 = |\psi 5| + |\psi 13| - |\psi 5 \cap \psi 13| = 5 + 5 - 3 = 7
\alpha 514 = |\psi 5| + |\psi 14| - |\psi 5 \cap \psi 14| = 5 + 3 - 0 = 8
\alpha 515 = |\psi 5| + |\psi 15| - |\psi 5 \cap \psi 15| = 5 + 4 - 0 = 9
\alpha 516 = |\psi 5| + |\psi 16| - |\psi 5 \cap \psi 16| = 5 + 4 - 0 = 9
\alpha 517 = |\psi 5| + |\psi 17| - |\psi 5 \cap \psi 17| = 5 + 4 - 0 = 9
\alpha 518 = |\psi 5| + |\psi 18| - |\psi 5 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 67 = |\psi 6| + |\psi 7| - |\psi 6 \cap \psi 7| = 6 + 6 - 5 = 7
\alpha 68 = |\psi 6| + |\psi 8| - |\psi 6 \cap \psi 8| = 6 + 5 - 1 = 10
\alpha 69 = |\psi 6| + |\psi 9| - |\psi 6 \cap \psi 9| = 6 + 5 - 2 = 9
\alpha 610 = |\psi 6| + |\psi 10| - |\psi 6 \cap \psi 10| = 6 + 5 - 3 = 8
\alpha 611 = |\psi 6| + |\psi 11| - |\psi 6 \cap \psi 11| = 6 + 5 - 2 = 9
\alpha 612 = |\psi 6| + |\psi 12| - |\psi 6 \cap \psi 12| = 6 + 5 - 4 = 7
\alpha 613 = |\psi 6| + |\psi 13| - |\psi 6 \cap \psi 13| = 6 + 5 - 3 = 8
\alpha 614 = |\psi 6| + |\psi 14| - |\psi 6 \cap \psi 14| = 6 + 3 - 0 = 9
\alpha 615 = |\psi 6| + |\psi 15| - |\psi 6 \cap \psi 15| = 6 + 4 - 0 = 10
\alpha 616 = |\psi 6| + |\psi 16| - |\psi 6 \cap \psi 16| = 6 + 4 - 1 = 9
\alpha 617 = |\psi 6| + |\psi 17| - |\psi 6 \cap \psi 17| = 6 + 4 - 0 = 10
\alpha 618 = |\psi 6| + |\psi 18| - |\psi 6 \cap \psi 18| = 6 + 3 - 0 = 9
\alpha 78 = |\psi 7| + |\psi 8| - |\psi 7 \cap \psi 8| = 6 + 5 - 1 = 10
\alpha 79 = |\psi 7| + |\psi 9| - |\psi 7 \cap \psi 9| = 6 + 5 - 1 = 10
\alpha 710 = |\psi 7| + |\psi 10| - |\psi 7 \cap \psi 10| = 6 + 5 - 2 = 9
\alpha 711 = |\psi 7| + |\psi 11| - |\psi 7 \cap \psi 11| = 6 + 5 - 3 = 8
\alpha 712 = |\psi 7| + |\psi 12| - |\psi 7 \cap \psi 12| = 6 + 5 - 3 = 8
\alpha 713 = |\psi 7| + |\psi 13| - |\psi 7 \cap \psi 13| = 6 + 5 - 4 = 7
\alpha 714 = |\psi 7| + |\psi 14| - |\psi 7 \cap \psi 14| = 6 + 3 - 0 = 9
\alpha 715 = |\psi 7| + |\psi 15| - |\psi 7 \cap \psi 15| = 6 + 4 - 0 = 10
\alpha 716 = |\psi 7| + |\psi 16| - |\psi 7 \cap \psi 16| = 6 + 4 - 0 = 10
\alpha 717 = |\psi 7| + |\psi 17| - |\psi 7 \cap \psi 17| = 6 + 4 - 0 = 10
\alpha 718 = |\psi 7| + |\psi 18| - |\psi 7 \cap \psi 18| = 6 + 3 - 1 = 8
\alpha 89 = |\psi 8| + |\psi 9| - |\psi 8 \cap \psi 9| = 5 + 5 - 4 = 6
\alpha 810 = |\psi 8| + |\psi 10| - |\psi 8 \cap \psi 10| = 5 + 5 - 3 = 7
\alpha 811 = |\psi 8| + |\psi 11| - |\psi 8 \cap \psi 11| = 5 + 5 - 3 = 7
\alpha 812 = |\psi 8| + |\psi 12| - |\psi 8 \cap \psi 12| = 5 + 5 - 2 = 8
\alpha 813 = |\psi 8| + |\psi 13| - |\psi 8 \cap \psi 13| = 5 + 5 - 2 = 8
\alpha 814 = |\psi 8| + |\psi 14| - |\psi 8 \cap \psi 14| = 5 + 3 - 1 = 7
```

```
\alpha 815 = |\psi 8| + |\psi 15| - |\psi 8 \cap \psi 15| = 5 + 4 - 3 = 6
\alpha 816 = |\psi 8| + |\psi 16| - |\psi 8 \cap \psi 16| = 5 + 4 - 2 = 7
\alpha 817 = |\psi 8| + |\psi 17| - |\psi 8 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 818 = |\psi 8| + |\psi 18| - |\psi 8 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 910 = |\psi 9| + |\psi 10| - |\psi 9 \cap \psi 10| = 5 + 5 - 4 = 6
\alpha 911 = |\psi 9| + |\psi 11| - |\psi 9 \cap \psi 11| = 5 + 5 - 3 = 7
\alpha 912 = |\psi 9| + |\psi 12| - |\psi 9 \cap \psi 12| = 5 + 5 - 3 = 7
\alpha 913 = |\psi 9| + |\psi 13| - |\psi 9 \cap \psi 13| = 5 + 5 - 2 = 8
\alpha 914 = |\psi 9| + |\psi 14| - |\psi 9 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 915 = |\psi 9| + |\psi 15| - |\psi 9 \cap \psi 15| = 5 + 4 - 2 = 7
\alpha 916 = |\psi 9| + |\psi 16| - |\psi 9 \cap \psi 16| = 5 + 4 - 3 = 6
\alpha 917 = |\psi 9| + |\psi 17| - |\psi 9 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 918 = |\psi 9| + |\psi 18| - |\psi 9 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 1011 = |\psi 10| + |\psi 11| - |\psi 10 \cap \psi 11| = 5 + 5 - 4 = 6
\alpha 1012 = |\psi 10| + |\psi 12| - |\psi 10 \cap \psi 12| = 5 + 5 - 4 = 6
\alpha 1013 = |\psi 10| + |\psi 13| - |\psi 10 \cap \psi 13| = 5 + 5 - 3 = 7
\alpha 1014 = |\psi 10| + |\psi 14| - |\psi 10 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 1015 = |\psi 10| + |\psi 15| - |\psi 10 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 1016 = |\psi 10| + |\psi 16| - |\psi 10 \cap \psi 16| = 5 + 4 - 2 = 7
\alpha 1017 = |\psi 10| + |\psi 17| - |\psi 10 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 1018 = |\psi 10| + |\psi 18| - |\psi 10 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 1112 = |\psi 11| + |\psi 12| - |\psi 11 \cap \psi 12| = 5 + 5 - 3 = 7
\alpha 1113 = |\psi 11| + |\psi 13| - |\psi 11 \cap \psi 13| = 5 + 5 - 4 = 6
\alpha 1114 = |\psi 11| + |\psi 14| - |\psi 11 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 1115 = |\psi 11| + |\psi 15| - |\psi 11 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 1116 = |\psi 11| + |\psi 16| - |\psi 11 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 1117 = |\psi 11| + |\psi 17| - |\psi 11 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 1118 = |\psi 11| + |\psi 18| - |\psi 11 \cap \psi 18| = 5 + 3 - 2 = 6
\alpha 1213 = |\psi 12| + |\psi 13| - |\psi 12 \cap \psi 13| = 5 + 5 - 4 = 6
\alpha 1214 = |\psi 12| + |\psi 14| - |\psi 12 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 1215 = |\psi 12| + |\psi 15| - |\psi 12 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 1216 = |\psi 12| + |\psi 16| - |\psi 12 \cap \psi 16| = 5 + 4 - 2 = 7
\alpha 1217 = |\psi 12| + |\psi 17| - |\psi 12 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 1218 = |\psi 12| + |\psi 18| - |\psi 12 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 1314 = |\psi 13| + |\psi 14| - |\psi 13 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 1315 = |\psi 13| + |\psi 15| - |\psi 13 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 1316 = |\psi 13| + |\psi 16| - |\psi 13 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 1317 = |\psi 13| + |\psi 17| - |\psi 13 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 1318 = |\psi 13| + |\psi 18| - |\psi 13 \cap \psi 18| = 5 + 3 - 2 = 6
\alpha 1415 = |\psi 14| + |\psi 15| - |\psi 14 \cap \psi 15| = 3 + 4 - 2 = 5
\alpha 1416 = |\psi 14| + |\psi 16| - |\psi 14 \cap \psi 16| = 3 + 4 - 2 = 5
\alpha 1417 = |\psi 14| + |\psi 17| - |\psi 14 \cap \psi 17| = 3 + 4 - 2 = 5
\alpha 1418 = |\psi 14| + |\psi 18| - |\psi 14 \cap \psi 18| = 3 + 3 - 2 = 4
\alpha 1516 = |\psi 15| + |\psi 16| - |\psi 15 \cap \psi 16| = 4 + 4 - 3 = 5
```

```
\begin{array}{l} \alpha 1517 = |\psi 15| + |\psi 17| - |\psi 15 \cap \psi 17| = 4 + 4 - 1 = 7 \\ \alpha 1518 = |\psi 15| + |\psi 18| - |\psi 15 \cap \psi 18| = 4 + 3 - 1 = 6 \\ \alpha 1617 = |\psi 16| + |\psi 17| - |\psi 16 \cap \psi 17| = 4 + 4 - 1 = 7 \\ \alpha 1618 = |\psi 16| + |\psi 18| - |\psi 16 \cap \psi 18| = 4 + 3 - 1 = 6 \\ \alpha 1718 = |\psi 17| + |\psi 18| - |\psi 17 \cap \psi 18| = 4 + 3 - 2 = 5 \end{array}
```

Результаты вычислений запишем в матрицу A = $|| \alpha_{\gamma} \delta ||$.

	ψ1	ψ2	ψ3	ψ4	ψ5	ψ6	ψ7	ψ8	ψ9	ψ10	ψ11	ψ12	ψ13	ψ14	ψ15	ψ16	ψ17	ψ18
ψ1		8	9	9	9	10	10	7	8	8	8	8	8	7	7	8	6	7
ψ2			6	7	7	9	9	6	7	8	8	9	9	8	7	8	9	8
ψ3				6	7	8	9	7	6	7	8	8	9	8	8	7	9	8
ψ4					6	7	8	8	7	6	7	7	8	8	9	8	9	8
ψ5						8	7	8	8	7	6	8	7	8	9	9	9	7
ψ6							7	10	9	8	9	7	8	9	10	9	10	9
ψ7								10	10	9	8	8	7	9	10	10	10	8
ψ8									6	7	7	8	8	7	6	7	8	7
ψ9										6	7	7	8	7	7	6	8	7
ψ10											6	6	7	7	8	7	8	7
ψ11												7	6	7	8	8	8	6
ψ12													6	7	8	7	8	7
ψ13														7	8	8	8	6
ψ14															5	5	5	4
ψ15																5	7	6
ψ16																	7	6
ψ17																		5

 $max = \alpha 7 15 = 10$

ψ7={u1 3,u3 12,u4 12,u4 11,u4 10,u5 10} ψ15={u2 9,u1 11,u3 9,u3 6}

В суграфе H, содержащем максимальное число непересекающихся рёбер, рёбра, вощедшие в ψ 7, проводим внутри гамильтонова цикла, а в ψ 15 — вне его.

Удаляем из $\Psi G'$ ребра, вошедшие в $\psi 7$, $\psi 15$ и удаляем пустые множества.

```
\begin{array}{l} \psi1=\{u1\ 7,u1\ 8\}\\ \psi2=\{u3\ 10\}\ \psi5=\{u3\ 10\}\ \psi8=\{u3\ 10\}\ \psi11=\{u3\ 10\}\\ \psi3=\{u3\ 10,u4\ 9\}\ \psi4=\{u3\ 10,u4\ 9\}\ \psi9=\{u3\ 10,u4\ 9\}\ \psi10=\{u3\ 10,u4\ 9\}\\ \psi6=\{u4\ 9\}\ \psi12=\{u4\ 9\}\ \psi16=\{u4\ 9\}\\ \psi14=\{u2\ 5\}\ \psi18=\{u2\ 5\}\\ \psi17=\{u1\ 7,u1\ 8,u2\ 5\} \end{array}
```

Удаляем одинаковые множества:

```
ψ1={u1 7,u1 8}

ψ2={u3 10}

ψ3={u3 10,u4 9}

ψ6={u4 9}

ψ14={u2 5}

ψ17={u1 7,u1 8,u2 5}
```

Для каждой пары множеств вычислим значение критерия $\alpha_{\gamma} \beta = |\psi_{\gamma}| + |\psi_{\beta}| - |\psi_{\gamma} \cap \psi_{\beta}|$:

	ψ1	ψ2	ψ3	ψ6	ψ14	ψ17
ψ1	0	3	4	3	3	3
ψ2		0	2	2	2	4
ψ3			0	2	3	5
ψ6				0	2	4
ψ14					0	3
ψ17						0

 $max = \alpha 3 \ 17 = 5$

Возьмем ψ3={u3 10, u4 9} и ψ17={u1 7,u1 8,u2 5}

Ребра, вошедшие в ψ 3, про ведем внутри гамильтонова цикл а, для ψ 17 – вне цикла.

Удаляем из $\Psi G'$ ребра, вошедшие в $\psi 3$, $\psi 17$ и удаляем пустые множества. Множеств не остаётся.

Граф планаризирован.

Толщина графа m = 2.