Studiengang: Intelligent Systems Design (ISD)

Lehrveranstaltung:

Mathematik I

Matrizen und Determinanten. LGS: 1. und 2.Teil Fortsetzung

Wiederholung

- Lineare Abbildung
- Matrizenoperationen

Lernziele

ISD Mathematik I

- Ich kann nachweisen, dass das Kommutativgesetz bei der Matrizenmultiplikation fehlt.
- Ich weiss, dass die "Null-Faktor-Regel" nicht gilt.
- Ich kann den Rang einer Matrix ermitteln.
- Ich kann beurteilen ob eine Matrix regulär ist.
- Ich weiss was man unter einer Determinante verstehen und kann diese berechnen:
 - nach der Regel von Sarrus
 - nach dem Laplace'schen Entwicklungssatz
- Ich kann das Gaußverfahren durchführen: (eindeutig Lösbares / Unlösbares / mehrdeutig Lösbares LGS)

Fortsetzung

Matrizen. Fortsetzung

Fehlendes Kommutativgesetz

Im Gegensatz zur kommutativen Multiplikation von reellen Zahlen ist bei der Multiplikation von Matrizen die Reihenfolge der Faktoren wichtig: Das *Kommutativgesetz* gilt also *nicht*!

Matrizen. Fortsetzung

Fehlendes Kommutativgesetz. Praktisches Beispiel

Zeigen Sie, dass $AB \neq BA$, wenn

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Matrizen. Fortsetzung

Praktisches Beispiel. Lösung

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Matrizen. Fortsetzung

Praktisches Beispiel. Lösung. Fortsetzung

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Matrizen. Fortsetzung

Warnung vor Fehler

Beim Rechnen mit Matrizen sei abschließend vor einem weiteren Fehler gewarnt: Aus der reellen Analysis kennt man die Aussage:

"Ein Produkt ist genau dann Null, wenn mindestens einer der beiden Faktoren Null ist".

Diese Aussage gilt für Matrizenprodukte nicht.

Matrizen. Fortsetzung

Warnung vor Fehler. Praktisches Beispiel

Berechnen Sie das Matrizenprodukt AB, wenn

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

Matrizen. Fortsetzung

Praktisches Beispiel. Lösung

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

Praktisches Beispiel. Lösung. Fortsetzung

$$AB = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) = 0$$

(Nullmatrix). D.h. aus AB = 0 folgt im Allg. eben nicht A = 0 oder B = 0.

Matrizen. Fortsetzung

Rang einer Matrix

In der Lösungstheorie linearer Gleichungssysteme ist ein weiterer Begriff im Zusammenhang mit Matrizen wichtig:

Matrizen. Fortsetzung

Rang einer Matrix. Definition

Die Maximalzahl linear unabhängiger Spalten einer Matrix A heißt Spaltenrang von A, die Maximalzahl linear unabhängiger Zeilen heißt Zeilenrang von A.

Da immer "Zeilenrang = Spaltenrang" gilt, spricht man vom Rang der Matrix schlechthin:

Rang von A := Rg(A).

ISD

Mathematik I

HOCHSCHULE HAMM-UPPSTADT

Matrizen. Fortsetzung

Rang einer Matrix. Praktisches Beispiel

Ermitteln Sie den Rang der Matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

Rang einer Matrix. Praktisches Beispiel. Lösung

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

Die Matrix hat die Spalten

$$\vec{a}_1^T = (1, 1, 1), \ \vec{a}_2^T = (2, 2, 2), \ \vec{a}_3^T = (3, 3, 3).$$

Offensichtlich besteht die Menge $\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$ lediglich aus einem linear unabhängigen Vektor, also ist Rg(A) = 1.

ISD

Mathematik I

HOCHSCHULE

Matrizen. Fortsetzung

Rang einer Matrix. Praktisches Beispiel

Ermitteln Sie den Rang der Matrix

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrizen. Fortsetzung

Rang einer Matrix. Praktisches Beispiel. Lösung

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Alle Spalten der Matrix sind linear unabhängig. Der Rang ist also

$$Rg(B) = 3.$$

ISD

Mathematik I

HOCHSCHULE HAMM-UPPSTADT

Matrizen. Fortsetzung

Nichtsinguläre bzw. reguläre Matrix. Definition

Speziell für quadratische Matrizen ist eine weitere Definition wichtig:

Eine quadratische (*n*, *n*)-Matrix *A* heißt nichtsingulär oder regulär, falls

$$Rg(A) = n$$

gilt.

Ist Rg(A) < n, wird sie singulär genannt.

Matrizen. Fortsetzung

Nichtsinguläre bzw. reguläre Matrix. Bemerkung

Bei einer nichtsingulären Matrix sind also alle n Spalten (und damit auch Zeilen) linear unabhängig.

Matrizen. Fortsetzung

Die Determinante

Eine quadratische (1,1)-Matrix A besteht nur aus einem einzigen Element a_{11} . Dieses ist gleichzeitig auch der Wert der Determinante von A.

Beispiel		
-		

Definition

Ist
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 eine (2, 2) – Matrix, dann heißt

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

zweireihige Determinante von A.

Berechnungsregel

Statt die vielen Indices in obiger Formel auswendig zu lernen, empfiehlt sich das Merken der Berechnungsregel in folgender Symbolik:

Determinante

Praktisches Beispiel

Berechnen Sie die Determinante der Matrix

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

Praktisches Beispiel. Lösung

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

$$\det(A) = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = -2.$$

Regel von Sarrus

Auch die Berechnung von dreireihigen Determinanten für (3, 3)-Matrizen lässt sich ähnlich einfach mit der so genannten *Regel von Sarrus* durchführen:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} & +a_{12}a_{23}a_{31} + & a_{13}a_{21}a_{32} \\ -a_{31}a_{22}a_{13} & -a_{32}a_{23}a_{11} - & a_{33}a_{21}a_{12}. \end{vmatrix}$$

Regel von Sarrus

Diese Formel lässt sich schematisiert sehr leicht merken und anwenden:

Praktisches Beispiel

Berechnen Sie die 3-reihige Determinante:

$$\det(A) = \begin{vmatrix} 2 & 9 & 5 \\ 2 & -3 & 4 \\ 1 & 2 & 2 \end{vmatrix}.$$

Praktisches Beispiel. Lösung

Nach obiger Vorschrift erhalten wir das folgende Rechenschema:

Damit ergibt sich:

$$\det(A) = 2 \cdot (-3) \cdot 2 + 9 \cdot 4 \cdot 1 + 5 \cdot 2 \cdot 2 - 1 \cdot (-3) \cdot 5 - 2 \cdot 4 \cdot 2 - 2 \cdot 2 \cdot 9 = 7.$$

Determinante und Rang

Man beachte, dass für n-reihige Determinanten mit n > 3 eine entsprechende Regel *nicht* mehr gilt. Diese lassen sich aber mit dem so genannten *Laplace'schen Entwicklungssatz* berechnen.

Laplace'scher Entwicklungssatz. Praktisches Beispiel

Berechnen Sie die Determinante nach dem Laplace'schen Entwicklungssatz

Praktisches Beispiel. Lösung

Determinante

Determinante und Rang. Satz

Für eine (n, n)-Matrix A gilt folgende Äquivalenz:

$$\det(A) \neq 0 \Longleftrightarrow \operatorname{Rg}(A) = n$$

Lineare Gleichungssysteme

Das Gauß'sche Eliminationsverfahren

Wir betrachten ein (m, n)-System von m linearen Gleichungen mit n Unbekannten (m < n stets!):

Lineare Gleichungssysteme

Das Gauß'sche Eliminationsverfahren

Mit der Koeffizientenmatrix $A=(a_{ik})$ $(i=1,\ldots,m,k=1,\ldots,n)$ und den Vektoren $\vec{x}^T=(x_1,\ldots x_n),$ $\vec{b}^T=(b_1,\ldots,b_m)$ lautet das System in Matrixschreibweise $A\vec{x}=\vec{b}.$

Lineare Gleichungssysteme

Definition

Ein lineares Gleichungssystem

$$A\vec{x} = \vec{b}$$

heißt homogen, wenn $\vec{b} = \vec{0}$.

$$\vec{b} = \vec{0}$$
.

Andernfalls nennt man es inhomogen.

so heißt $A\vec{x} = \vec{0}$ zugehörige homogene System.

Lineare Gleichungssysteme

Lösungsmenge. Erweiterte Koeffizientenmatrix

Die Lösungsmenge

$$L(A, \vec{b}) := {\vec{x} \in \mathbb{R}^n | A\vec{x} = \vec{b}}$$

des Systems $A\vec{x} = \vec{b}$ lässt sich nun mit dem Gauß'schen Eliminationsverfahren ermitteln, das die so genannte erweiterte Koeffizientenmatrix benutzt:

Lineare Gleichungssysteme

Lösungsmenge. Erweiterte Koeffizientenmatrix

$$(A|\vec{b}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

Lineare Gleichungssysteme

Lösungsmenge. Erweiterte Koeffizientenmatrix

Das Verfahren arbeitet mit *elementaren Zeilenum- formungen* an der erweiterten Koeffizientenmatrix, welche die Lösungsmenge des Systems offenbar nicht ändern:

- Vertauschung zweier Zeilen,
- Addition des λ-fachen einer Zeile zu einer anderen Zeile,
- Multiplikation einer Zeile mit einer Zahl $\lambda \neq 0$.

Lineare Gleichungssysteme

HOCHSCHULE

Zeilenstufenform

Die Zeilenumformungen werden nun benutzt, um die Koeffizientenmatrix in folgende so genannte *Zeilen-stufenform* (\bar{A}, \bar{b}) (siehe Abb.) zu bringen:

$$(\bar{A}, \vec{b}) = \begin{pmatrix} & & & & & & \frac{\bar{b}_1}{b_2} \\ & & & & & \vdots \\ & & & & \frac{\bar{b}_r}{b_{r+1}} \\ & & & \vdots \\ & & & \bar{b}_m \end{pmatrix} r$$

Lineare Gleichungssysteme Zeilenstufenform

In dieser Form müssen alle Einträge, die mit "*" gekennzeichnet sind, ungleich Null sein. Man nennt diese *Pivotelemente*, die Zeile entsprechend *Pivot*zeile.

Lineare Gleichungssysteme Zeilenstufenform

Unterhalb der skizzierten "Stufenlinie" dürfen in \bar{A} nur Nullen stehen. Der durch die Umformungen ebenfalls geänderte Vektor $\bar{\vec{b}}$ kann beliebige Komponenten haben.

Lineare Gleichungssysteme

Eliminationsfaktor

HOCHSCHULE

Lineare Gleichungssysteme

Eliminationsfaktor

Sind

$$(0,\ldots,0,p,\ldots)$$

die Pivotzeile und

$$(0, \ldots, 0, a, \ldots)$$

eine Zeile, in der das Element a zu Null werden muss, dann ergibt sich der *Eliminationsfaktor* λ durch die Forderung

$$a + \lambda p \stackrel{!}{=} 0$$
, also zu $\lambda = -\frac{a}{p}$.

Lineare Gleichungssysteme Eliminationsfaktor

Ist die Zeilenstufenform erreicht, so können nun im Falle der Lösbarkeit des Systems durch "Rückwärts-auflösen" die entsprechenden Variablenwerte ermittelt werden.

ISD

Mathematik I

Lineare Gleichungssysteme Praktisches Beispiel

Das Verfahren sei an folgendem linearen Gleichungssystem verdeutlicht:

$$3x_1 - 3x_2 + 6x_3 = 9$$

 $2x_1 + 3x_3 = 6$
 $x_1 + x_2 + 2x_3 = 4$

Lineare Gleichungssysteme

Praktisches Beispiel. Lösung

Die erweiterte Koeffizientenmatrix dieses Systems schreiben wir als Tableau, d.h. ohne die runden Klammern, auf:

Im 1. Schritt ist das Pivotelement die "eingekreiste" 3 in der 1. Spalte. Darunter müssen nun zwei Nullen erzeugt werden.

Lineare Gleichungssysteme

Praktisches Beispiel. Lösung. Fortsetzung

Da die Pivotzeile die Form (3, -3, 6, 9) hat und die darunterliegende Zeile (2, 0, 3, 6) lautet, bestimmt sich der erste Eliminationsfaktor aus $2 + \lambda \cdot 3 = 0$ zu $\lambda = -\frac{2}{3}$, der zweite analog zu $\lambda = -\frac{1}{3}$.

Lineare Gleichungssysteme Praktisches Beispiel. Lösung. Fortsetzung

Bezeichnen wir mit z_i die Zeile (i) des Tableaus, so sind die elementaren Umformungen $z_{2'}=z_2-\frac{2}{3}z_1$ und $z_{3'}=z_3-\frac{1}{3}z_1$ (jeweils elementweise!) durchzuführen. Dies ergibt ein neues Tableau, bei dem im 2. Schritt nun in der zweiten Spalte unterhalb des neuen Pivotelements 2 Nullen erzeugt werden müssen. Hierzu wird mit der Eliminationszeile (2') die Umformung $z_{3''}=z_{3'}-z_{2'}$ ausgeführt.

HOCHSCHULE HAMM-LIPPSTADT

Lineare Gleichungssysteme

Praktisches Beispiel. Lösung. Fortsetzung

Lineare Gleichungssysteme

Praktisches Beispiel. Lösung. Fortsetzung

Jetzt liegt ein *gestaffeltes System* vor. Die Lösung kann bei solchen Systemen immer durch "Rückwärtsauflösen" aus den Gleichungen ermittelt werden: $x_3 = 1$,

$$x_2 = \frac{1}{2}(0+x_3) = \frac{1}{2}, \quad x_1 = \frac{1}{3}(9+3x_2-6x_3) = \frac{3}{2}.$$

Lernziele

- Fehlendes Kommutativgesetz
- Weitere Fehlerwarnung
- Rang einer Matrix
- Nichtsinguläre bzw. reguläre Matrix
- Die Determinante. Berechnung:
 - Sarrus Regel
 - Laplace'scher Entwicklungssatz
- Das Gauß'sche Eliminationsverfahren

Wiederholung

- Laplace'scher Entwicklungssatz
- Rang einer Matrix
- Gauß'sches Verfahren:
 - Eindeutig lösbares LGS

zu den Lernzielen

Lineare Gleichungssysteme Praktisches Beispiel.

Wenden Sie das Gauß'sche Verfahren auf folgendes System an:

$$3x_1 - 3x_2 + 6x_3 = 9$$

 $2x_1 + 3x_3 = 6$
 $x_1 + x_2 + x_3 = 4$

Lineare Gleichungssysteme

HOCHSCHULE HAMM-LIPPSTADT

Lineare Gleichungssysteme

Praktisches Beispiel. Lösung. Fortsetzung

Der letzten Zeile (3") des Endtableaus entspricht nun die Gleichung

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1.$$

Dies ist offensichtlich ein Widerspruch. Somit hat das System keine Lösung.

Wiederholung

- ILGS und HLGS
- Unlösbares LGS
- Mehrdeutig lösbares LGS

zu den Lernzielen

Lineare Gleichungssysteme

Unlösbares System. Wiederholung

Die *Unlösbarkeit* eines inhomogenen Gleichungssystems erkennt man also daran, dass es in der Zeilenstufenform mindestens ein

$$b_i \neq 0$$
 mit $(r+1) \leq i \leq m$

gibt, bei dem die restliche (linke) Zeile aus lauter Nullen besteht.

Lineare Gleichungssysteme Unlösbares System. Wiederholung

Jetzt fehlt uns nur noch der Fall unendlich vieler Lösungen mit frei wählbaren Unbekannten, die man dann freie Parameter nennt.

HOCHSCHULE HAMM-UPPSTADT

Lineare Gleichungssysteme

Freie Parameter. Praktisches Beispiel

Lineare Gleichungssysteme

Freie Parameter. Praktisches Beispiel. Fortsetzung

Letzte Zeile (3"): $0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 0$, offensichtlich stets erfüllt. Damit reduziert sich das System auf zwei Gleichungen für drei Unbekannte. Wir setzen $x_3 = t$ mit $t \in \mathbb{R}$ beliebig.

Lineare Gleichungssysteme

Freie Parameter. Praktisches Beispiel. Fortsetzung

Wieder ergeben sich die restlichen Unbekannten durch "Rückwärtsauflösen"

$$zu x_2 = \frac{1}{2}(1+x_3) = \frac{1}{2}(1+t), x_1 = \frac{1}{3}(9+3x_2-6x_3) = \frac{1}{2}(7-3t).$$

Mit $\vec{u}=(\frac{7}{2},\frac{1}{2},0)^T$ und $\vec{v}^T=(-\frac{3}{2},\frac{1}{2},1)$ lässt sich die Lösungsmenge

auch in Parameterform zu $\vec{x} = \vec{u} + t \cdot \vec{v}$ angeben.

Lineare Gleichungssysteme

Freie Parameter. Wiederholung

Ist r die Anzahl der nicht aus lauter Nullen bestehenden Zeilen, so sind n-r Unbekannte frei wählbar. Diese fungieren dann als Parameter und die Lösungsmenge kann in *Parameterform* angegeben werden.

Lineare Gleichungssysteme

Freie Parameter. Wiederholung. Fortsetzung

Nicht immer sind die Parameter beliebig wählbar: Man kann aber stets die Variablen nehmen, bei denen in den zugehörigen Spalten ein *horizontaler* Verlauf der "Stufen" beginnt bzw. fortgesetzt wird.

Lineare Gleichungssysteme

Rangbestimmung. Wiederholung

Die Anwendung des Gauß'schen Eliminationsverfahrens auf die Matrix A liefert eine Matrix \bar{A} in "Zeilenstufenform". Offensichtlich sind die ersten r Zeilen von \bar{A} linear unabhängig.

Lineare Gleichungssysteme

Rangbestimmung. Wiederholung

Die dabei benutzten elementaren Zeilenumformungen ändern aber nicht die lineare Ab- bzw. Unabhängigkeit der Ausgangszeilen (aus A).

Man kann den Rang der Matrix A also direkt am Endtableau des Gauß-Verfahrens ablesen:

Lineare Gleichungssysteme

Rangbestimmung. Wiederholung

Ist *r* die Anzahl der von Null verschiedenen Zeilen von A im Endtableau des Gauß-Verfahrens, dann gilt:

$$Rg(A) = r$$

Lineare Gleichungssysteme

HOCHSCHULE HAMM-LIPPSTADT

Lösungstheorie mittels Rangbegriff

Betrachtet man nun die erweiterte Koeffizientenmatrix $(\bar{A} \mid \bar{b})$, so unterscheidet sich deren Rang von $\operatorname{Rg}(\bar{A})$ genau dann, wenn r < m und mindestens ein $\bar{b}_i \neq 0$ mit $r+1 \leq i \leq m$ existiert, das System also unlösbar ist. Da aber $\operatorname{Rg}(A) = \operatorname{Rg}(\bar{A})$ und $\operatorname{Rg}\left((A \mid \bar{b})\right) = \operatorname{Rg}\left((\bar{A} \mid \bar{b})\right)$ gilt, können wir festhalten:

HOCHSCHULE

Lineare Gleichungssysteme

Lösungstheorie mittels Rangbegriff

Ein lineares (m, n)-Gleichungssystem $A\vec{x} = \vec{b}$ ist genau dann lösbar, wenn der Rang r = Rg(A) der Koeffizientenmatrix A mit dem Rang der erweiterten Koeffizientenmatrix $(A|\vec{b})$ übereinstimmt, d.h. wenn

gilt

$$Rg(A) = Rg((A|\vec{b}))$$
.

Die Lösung enthält dann *n* – *r* freie Parameter.

HOCHSCHULE HAMM-UPPSTADT

Lineare Gleichungssysteme

Lösungsstruktur inhomogenes/zugehöriges homogenes System

Ein homogenes Gleichungssystem $A\vec{x} = \vec{0}$ besitzt wegen $A\vec{0} = \vec{0}$ stets die so genannte *triviale* Lösung $\vec{x} = \vec{0}$, ist also immer lösbar. Dieser Sachverhalt folgt übrigens auch aus der obigen Lösbarkeitsbedingung, es gilt nämlich

$$Rg(A) = Rg((A|\vec{0}))$$

in jedem Fall.

HOCHSCHULE

Lineare Gleichungssysteme

Lösungsstruktur inhomogenes/zugehöriges homogenes System

Das zu einem inhomogenen (m,n)-System $A\vec{x} = \vec{b}$ mit Rg(A) = r gehörende homogene System $A\vec{x} = \vec{0}$ ist also stets lösbar: die Lösungsmenge $L(A,\vec{0}) \neq \emptyset$ enthält n-r freie Parameter.

Lineare Gleichungssysteme

Lösungsstruktur inhomogenes/zugehöriges homogenes System

Wir nehmen nun an, dass $A\vec{x}=\vec{b}$ lösbar ist. Ist dann \vec{x}_{IH} eine beliebige spezielle Lösung des inhomogenen Systems und $\vec{x}_H \in L(A,\vec{0})$, so gilt:

$$A(\vec{x}_{IH} + \vec{x}_{H}) = A\vec{x}_{IH} + A\vec{x}_{H} = \vec{b} + \vec{0} = \vec{b}.$$

HOCHSCHULE

Lineare Gleichungssysteme

Lösungsstruktur inhomogenes/zugehöriges homogenes System

Es ist also $\vec{x}_{IH} + \vec{x}_{H}$ eine Lösung des inhomogen Systems. Die Menge

$$\{\vec{x}_{IH} + \vec{x}_H \mid \vec{x}_H \in L(A, \vec{0})\}\$$

hat aber ebenfalls n-r freie Parameter, stellt also die gesamte Lösungsmenge des inhomogenen Systems dar.

HOCHSCHULE

Lineare Gleichungssysteme

Lösungsstruktur inhomogenes/zugehöriges homogenes System

Wir halten fest:

Die allgemeine Lösung eines lösbaren inhomogenen

Gleichungssystems $A\vec{x} = \vec{b}$ erhält man durch Addition einer beliebigen speziellen Lösung \vec{x}_{IH} des inhomogen

Systems und der allgemeinen Lösung des zugehörigen homogenen Systems $A\vec{x} = \vec{0}$:

$$L(A, \vec{b}) = \vec{x}_{IH} + L(A, \vec{0})$$

Lineare Gleichungssysteme

Lösungsstruktur inhomogenes/zugehöriges homogenes System. Praktisches Beispiel

Zum inhomogenen Gleichungssystem des vorangegangenen Beispiels gehört die spezielle Lösung:

$$\vec{x} = (2, 1, 1)^T$$
 (für $t = 1$).

Das zugehörige homogene System lässt sich mittels Gauß-Verfahren und analogen Zeilenumformungen lösen:

Lineare Gleichungssysteme

HOCHSCHULE HAMM-LIPPSTADT

Praktisches Beispiel. Lösung

Lineare Gleichungssysteme

Praktisches Beispiel. Lösung

"Rückwärtsauflösen" liefert

$$L(A, \vec{0}) = \{t \cdot (-\frac{3}{2}, \frac{1}{2}, 1)^T \mid t \in \mathbb{R}\},\$$

falls man $x_3 = t$ setzt.

Die triviale Lösung $\vec{0}$ ist für t = 0 dabei.

HOCHSCHU

Lineare Gleichungssysteme

Praktisches Beispiel. Lösung

$$L(A, \vec{0}) = \{t \cdot (-\frac{3}{2}, \frac{1}{2}, 1)^T \mid t \in \mathbb{R}\},\$$

 $x_3 = t$

Die allgemeine Lösung des inhomogenen Systems erhält man zu

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} -3/2 \\ 1/2 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

Lineare Gleichungssysteme

HOCHSCHULE HAMM-LIPPSTADT

Praktisches Beispiel. Lösung

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} -3/2 \\ 1/2 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

Wählt man hier t = -1, so erhält man die spezielle Lösung

$$\vec{u} = (\frac{7}{2}, \frac{1}{2}, 0)^T$$
.

Die Lösungsmenge kann also auch in der Form

$$\vec{x} = \vec{u} + t \cdot \vec{v}$$

geschrieben werden.

Lernziele

- Das Gauß'sche Eliminationsverfahren
 - Unlösbares LGS
 - Mehrdeutig lösbares LGS
- Lösbarkeit eines homogenen LGS.