Eletrônica Digital I – EE610 - Projeto Final

Nome:	RA:
Nome:	RA:
Nome:	RA:
A lista final deve s	ser entregue até o dia 30/06/2024
Os arquivos (.txt) dos modelos	dos transistores estão disponíveis no Moodle
	exemplo: para 123456, AB=12, EF=56 e assim por diante. r 10, se EF = 00 usar 100
RA usado nas si	mulações:

I. SIMULAÇÃO SPICE DE UM INVERSOR CMOS.

Com o modelo disponível no moodle e o circuito da figura 1, pede-se:

- a) Com o suporte da simulação de circuitos, escolha os valores de Wn e Wp dos transistores para manter o **inversor casado** e com valor de corrente de saturação ($I_{DS sat}$) de no **mínimo 1,0 mA**.
- b) Com os valores de Wn e Wp apresente a curva de transferência ($v_O \times v_I$);
- c) Calcule matematicamente os valores de V_{OL} , V_{IL} , V_{OH} , V_{IH} , MR_H , MR_L e compare com os valores obtidos graficamente da curva de transferência (derivada).
- d) Apresente a curva da tensão da saída (v_O) em função do tempo. Destaque os valores dos tempos de atraso (tp_{HL} , tp_{LH} , t_R e t_f) e o tempo de atraso total.

Figura 1 – Inversor CMOS

II. SIMULAÇÃO SPICE DE UM LATCH CMOS

Usando os resultados do projeto do inversor do item I, monte um *Latch* conforme as figuras 2 e 3.

- a) Com o elo de realimentação aberto (figura 2) e usando uma fonte DC (*v*_Z) na entrada do *latch*, faça o gráfico de *v*_Z (*dc sweep*) em função de *v*_W e *v*_Z. Apresente no gráfico os valores dos três pontos de operação do *latch* (2 pontos estáveis e um ponto instável)
- b) Feche o elo de realimentação (figura 3), remova a fonte da entrada e faça a simulação das variações das tensões de v_Q e $v_{\bar{O}}$ do latch em função do tempo.
- c) Qual o tempo total (tempo de subida ou tempo de descida) para o *latch* atingir o valor de estabilidade (em θ ou V_{DD})? Use a definição do tempo de atraso tp considerando a excursão do sinal de 10% a 90%.
- d) Explique os mecanismos de "travamento do *latch*" e os tempos envolvidos no processo da realimentação positiva.

Figura 2 – Unidade básica de memória (Latch) CMOS com tensão de entrada

Figura 3 – Unidade básica de memória (Latch) CMOS com elo de realimentação

III. SIMULAÇÃO SPICE DE UM OSCILADOR EM ANEL

Usando os resultados do projeto do inversor do item I, monte um oscilador em anel com 5 estágios conforme a figura 4.

- a) Apresente a curva da tensão de saída em função do tempo para o oscilador. Atenção, não utilize nenhum sinal na entrada do oscilador. Em caso de não convergência, coloque um resistor para o terra no elo de realimentação com o valor teórico de 100 MΩ e/ou habilite "Skip initial transiente solution"
- b) Utilizando a função FFT, apresente a curva do sinal da saída em função da frequência. Qual a frequência máxima (freq. fundamental) de operação do inversor?
- c) Qual o tempo total de atraso?
- d) Qual o tempo total de atraso por inversor?
- e) Os valores estão coerentes com os tempos de atrasos calculados no item I?
- f) Refaça o item **b** alterando o valor da alimentação (V_{DD}) para 2V e para 7V e compare as curvas com o resultado do item b, ou seja, com a alimentação original (3V). Monte uma tabela com os resultados obtidos (V_{DD} x Freq.)
- g) Explique por que a frequência de operação do oscilador apresenta esse comportamento.

Figura 4 – Oscilador em anel

Eletrônica Digital I – EE610

PROJETO FINAL

IV. SIMULAÇÃO SPICE DE UM FLIP FLOP CMOS TIPO SR COM RELÓGIO

Usando os resultados do projeto do *Latch* do item II, monte um *Flip Flop tipo SR com clock* conforme a figura 5.

- a) Considerando *os mesmos parâmetros* dos inversores projetados, encontre o valor mínimo necessário das razões de área dos transistores *SET/RESET* e *Clock* para garantir que o *flip-flop* irá chavear, considerando um valor de V_{OL} = (V_{DD}/2)-(e/10) V. *Dica: Considere meio circuito do Flip-Flop*.
- b) Nestas condições, determine a largura mínima necessária para o pulso de SET.
- c) Apresente o gráfico da variação da tensão e da corrente de saída (VQ ou VQb) em função da tensão de VSET ou VRESET.
- d) Faça uma simulação em função do tempo considerando todos os casos possíveis da tabela verdade de um *Flip-Flop*. Não é necessário apresentar a condição para SET=RESET=1.

Figura 5 – Flip-flop SR CMOS com relógio