Algèbre Relationnelle

M. NEMICHE

Faculté Polydisciplinaire de Ouarzazate

Filière: Informatique et Gestion d'Entreprises

FPO : SIL Mohamed Nemiche

Table des matières

1.	Introduction	3
2.	Opérateurs de base ou primitifs	3
	2.1 Projection $oldsymbol{\pi}$	3
	2.2 Sélection σ	4
3.	Opérateurs non essentiels ou dérivés	5
	3.1 INTERSECTION	5
	3.2 UNION	6
	3.3 DIFFERENCE	7
	3.4 PRODUIT CARTESIEN	8
	3.5 JOINTURE ⋈	10
	3.5.1 Equi-iointure	11

1. Introduction

On appelle algèbre relationnelle un ensemble d'opérations simples sur des tables relationnelles, à partir desquelles des opérations plus complexes sont définies par composition. Ils définissent donc un petit langage de manipulation de données.

L'élément fondamental du modèle de base de données relationnelle est la table relationnelle. Une table relationnelle est une représentation en extension d'une relation définie sur un certain domaine.

Cette méthode consiste essentiellement à créer ou à recréer de nouvelles relations à partir de relations existantes. Il existe 2 types d'opérateurs algébriques:

- Opérateurs de base ou primitifs.
- Opérateurs non essentiels ou dérivés.

Ensemble d'opérateurs s'appliquant sur l'ensemble des lignes (ou tuples) d'une (ou plusieurs) table(s). Le résultat d'une opération (ou d'une requête) est une nouvelle table qui est exploitable à son tour par une nouvelle opération

2. Opérateurs de base ou primitifs

Une opération relationnelle agit sur une ou plusieurs tables et a pour résultat une table

- La projection et la sélection sont des opérations qui s'appliquent à une table
- Les opérations ensemblistes (union, intersection, différence) ne peuvent être utilisés qu'avec deux tables ayant les mêmes attributs et fournissent une troisième table ayant les même attributs
- Le produit cartésien et la jointure fournissent une troisième table à partie de deux tables quelconque

2.1 Projection π

 Projeter sur un ensemble de colonnes d'une table T, revient à supprimer de la table celles qui ne sont pas dans l'ensemble

Exemple

Table Ventes

Magasin	Produit	Prix
Monoprix	Pomme	2,20
Monoprix	Cerise	4,80
Franprix	Poire	3,75
Franprix	Abricot	2,95
Champion	Fraise	3,75
Monoprix	Abricot	3,50
Franprix	Pomme	2,20
Champion	Pomme	2,40

$\Pi_{\mathtt{Produit},\ \mathtt{Prix}}$ (Ventes)

Produit	Prix
Pomme	2,20
Cerise	4,80
Poire	3,75
Abricot	2,95
Fraise	3,75
Abricot	3,50
Pomme	2,40

Magasin

Monoprix
Franprix
Champion

 $\Pi_{ exttt{Magasin}}$ (Ventes)

2.2 Sélection σ

- On appelle condition une assertion valant vrai ou faux sur une ligne de table
- La sélection sur la condition condnotée $\sigma_{cond}(T)$ correspond à l'algorithme suivant :

```
pour chaque ligne de T faire
    si cond (ligne) = vrai
        alors garder la ligne
    sinon ne pas la garder
fin pour
```

 La sélection sur une condition consiste donc à garder les lignes de la table vérifiant la condition

Exemple

Ventes

σ_{Magasin = 'Monoprix'} (Ventes)

Magasin	Produit	Prix
Monoprix	Pomme	2,20
Monoprix	Cerise	4,80
Franprix	Poire	3,75
Franprix	Abricot	2,95
Champion	Fraise	3,75
Monoprix	Abricot	3,50
Franprix	Pomme	2,20
Champion	Pomme	2,40

Magasin	Produit	Prix
Monoprix	Pomme	2,20
Monoprix	Cerise	4,80
Monoprix	Abricot	3,50

$\sigma_{\tt Prix > 3}$ (Ventes)

Magasin	Produit	Prix
Monoprix	Cerise	4,80
Franprix	Poire	3,75
Champion	Fraise	3 , 75
Monoprix	Abricot	3,50

3. Opérateurs non essentiels ou dérivés

3.1 INTERSECTION

A∩Bcontient toutes les lignes communes aux deux tables A et B

Intersection :Exemple

Fruit

Produit	Prix
Pomme	2,20
Cerise	4,80
Poire	3 , 75
Abricot	2,95
Fraise	3 , 75

Primeur

Produit	Prix
Cerise	4,80
Abricot	3,50
Fraise	3,75

Produit	Prix
Cerise	4,80
Fraise	3 , 75

Fruit ∩ Primeur

3.2 UNION

AUBest la table contenant toutes les lignes de A et toutes les lignes de B sans doublon

Union : Exemple

Fruit

Produit	Prix
Pomme	2,20
Cerise	4,80
Poire	3,75
Abricot	2,95
Tomate	2,75

Legume

Produit	Prix
Carotte	1,40
Poireau	1,25
Salade	2,05
Tomate	2,75

Fruit $\boldsymbol{\mathsf{U}}$ Legume

Produit	Prix
Pomme	2,20
Cerise	4,80
Poire	3 , 75
Abricot	2,95
Tomate	2,75
Carotte	1,40
Poireau	1,25
Salade	2,05

3.3 DIFFERENCE

A – Best la table contenant toutes les lignes de A qui ne se trouvent pas dans B

DIFFERENCE : Exemple

Fruit

Produit	Prix
Pomme	2,20
Cerise	4,80
Poire	3 , 75
Abricot	2,95
Fraise	3 , 75

Primeur

Produit	Prix
Cerise	4,80
Abricot	3,50
Fraise	3,75

Fruit-Primeur

Produit	Prix
Pomme	2,20
Poire	3 , 75
Abricot	2,95

Primeur-Fruit	

Produit	Prix
Abricot	3,50

3.4 PRODUIT CARTESIEN

Pour chaque ligne de A fabriquer autant de lignes qu'il y a de lignes dans B par concaténation

Pour deux tables T_1 et T_2 , table T_1 X T_2 est le résultat de l'algorithme suivant :

pour chaque ligne de T₁ faire
 pour chaque ligne de T₂ faire
 concaténer la ligne de T₁ avec
 la ligne de T₂
 fin pour
 fin pour
nblignes(T₁X T₂) = nblignes(T₁)*nblignes(T₂)

Exemple:

Supermarché5ème

Magasin	Adresse	Horaire	Offre	Prix
Monoprix	Gobelins	20H	Pomme	2,20
Franprix	Mouffetard	20H45	Abricot	2,95
Champion	Monge	22H	Fraise	3,75

Produit	Prix
Cerise	4,80
Abricot	3,50
Fraise	3,75

Primeur

Supermarché5ème X Primeur

Magasin	Adresse	Horaire	Offre	Prix	Produit	Prix
Monoprix	Gobelins	20H	Pomme	2,20	Cerise	4,80
Monoprix	Gobelins	20H	Pomme	2,20	Abricot	3,50
Monoprix	Gobelins	20H	Pomme	2,20	Fraise	3,75
Franprix	Mouffetard	20H45	Abricot	2,95	Cerise	4,80
Franprix	Mouffetard	20H45	Abricot	2,95	Abricot	3,50
Franprix	Mouffetard	20H45	Abricot	2,95	Fraise	3,75
Champion	Monge	22H	Fraise	3,75	Cerise	4,80
Champion	Monge	22H	Fraise	3,75	Abricot	3,50
Champion	Monge	22H	Fraise	3,75	Fraise	3,75

3.5 JOINTURE ⋈

C'est l'opération permettant de « coller » au bout des lignes de la table A toutes les lignes de la table B vérifiant la condition de jointure

 On appelle jointure de T₁ et T₂ sur la condition cond la sélection sur cond effectuée sur T₁ X T₂:

$$T_1 \underset{cond}{\triangleright} T_2 = \sigma_{cond} (T_1 \times T_2)$$

• Est le résultat de l'algorithme suivant :

```
pour chaque ligne de T_1 faire

pour chaque ligne de T_2 faire

lig = concaténer ligne T_1

et ligne T_2

si cond(lig) = vrai garder lig

fin pour
```

Exemple

Magasin	Adresse	Horaire	Offre	Supermarché5ème. Prix	Primeur. Prix
Franprix	Mouffetard	20H45	Abricot	2,95	3,50
Champion	Monge	22H	Fraise	3,75	3,75

3.5.1 Equi-jointure

- C'est le cas où la condition est du type : $unecolonne(T_1) = unecolonne(T_2)$
- C'est le cas le plus fréquent
- Permet de « parcourir » le schéma entité association

Exemple:

Etudiant

NumEtu	Nom	Groupe
10	Martin	211
11	Videau	221
22	Durand	221
32	Rossi	211

Projet

Groupe	ResProjet
211	Fournier
221	Astier

	NumEtu	Nom	Groupe	ResProjet
	10	Martin	211	Fournier
	11	Videau	221	Astier
	22	Durand	221	Astier
Etudiant > Projet	32	Rossi	211	Fournier

Exercice

Soit la base de données relationnelle, PUF, de schéma:

U (NU, NomU, Ville)

P (NP, NomP, Couleur, Poids)

F (<u>NF</u>, NomF, Statut, Ville)

PUF (NP, NU, NF, Quantité)

NP référence P.NP

NU référence U.NU NF référence F.NF

décrivant le fait que :

U: une usine est décrite par son numéro NU, son nom NomU, la ville Ville dans laquelle elle est située;

P: un produit est décrit par son numéro NP, son nom NomP, sa Couleur, son Poids;

F: un fournisseur est décrit par son numéro NF, son nom NomF, son Statut (fournisseur sous-traitant, fournisseur-client,), la Ville où il est domicilié;

PUF: le produit de numéro NP a été livré à l'usine de numéro NU par le fournisseur de numéro NF dans une Quantité donnée.

Ecrire en Langage algébrique les requêtes suivantes :

- 1) Donner le numéro, le nom et la ville de toutes les usines.
- Donner le numéro, le nom et la ville de toutes les usines de Londres.
- Donner les numéros des fournisseurs qui approvisionnent l'usine n° 1 en produit n° 1.
- 4) Donner le nom et la couleur des produits livrés par le fournisseur n° 1.
- 5) Donner les numéros des fournisseurs qui approvisionnent l'usine n° 1 en un produit rouge.

Références Bibliographiques

M. BOUZEGHOUB, M. JOUVE, P. PUCHERAL : LE MODELE RELATIONNEL. ALGEBRE, LANGAGES, APPLICATIONS. HERMES, 1998

C. CHRISMENT : BASES DE DONNEES RELATIONNELLES: CONCEPTS, MISE EN OEUVRE & EXERCICES, HERMES, 2008

CLOUSE: ALGEBRE RELATIONNELLE, ENI SERVICES, 2008