Analysis [für Informatiker] Hausaufgabenblatt 1

Nikita Emanuel John Fehér, 3793479 Erik Thun, 3794446

13. Oktober 2025 Mittwoch 13:15-14:45; Schneider, Florian d Montag 13:15-14:45; Stecker, Leander a

Aufgabe 1. (4 Punkte)

Wir werden in der Vorlesung die natürlichen Zahlen $\mathbb{N}=\{1,2,3,...\}$ noch genauer kennenlernen. Für dies Aufgabe genügt es aber \mathbb{N} als die Menge aller "Zählzahlen" also Zahlen, mit denen man die Anzahl diskreter Objekte (z.B. Äpfel) angeben kann.

- (a) Geben Sie alle Elemente der Menge $\{n \in \mathbb{N} : 2n+1 < 6\}$ an. 1 Punkt
- (b) Geben Sie alle Teilmengen der Menge $\{1, 2, 3\}$ an. 1 Punkt
- (c) Geben Sie den Schnitt und die Vereinigung der beiden Mengen 2 Punkte $\{1,10,9,5,2\} \text{ und } \{9,3,10,6,8,1,5\}$

an.

(c)
$$\{1,10,9,5,2\}$$
 $\{9,3,10,6,8,1,5\}$ = $\{1,5,9,10\}$
 $\{1,10,9,5,2\}$ $\{9,3,10,6,8,1,5\}$ = $\{1,2,3,5,6,8,9,10\}$

Aufgabe 2. (4 Punkte)

(a) Sei $f:X\to Y$ eine beliebige Abbildung und seien $Y_1,Y_2\subset Y$ beliebig. Zeigen Sie, dass

i)
$$f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2)$$
.

1 Punkt

ii)
$$f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$$
.

2 Punkte

(b) Finden Sie ein Beispiel, sodass $f(X_1 \cap X_2) \neq f(X_1) \cap f(X_2)$. 1 Punkt

(b)
$$f(x) = x^2$$

 $f(x) = 0$
 $x_1 = 1$
 $x_2 = -1$

 $f(\{R, N\}-1\}) = f(\{\}) = \{0\}+\{R\}=\{R, N\}=\{\{1\}\}, \{1\}\}$

(a) i) sei
$$y \in g(x_1 \land x_2) \Rightarrow \exists x \in x_1 \land x_2, \quad M = g(x)$$

 $\Rightarrow x \in x_1 \text{ und } x \in x_2$
 $\Rightarrow y \in g(x_1) \text{ und } y \in g(x_2)$

=> M & g(+1) N g(+2)

口

ii)
$$f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$$
.

2 Punkte

$$\Rightarrow \times \in \mathcal{J}^{-1}(Y_1)$$
 and $\times \in \mathcal{J}^{-1}(Y_2)$

$$\Rightarrow \times \in \mathcal{J}^{-1}(Y_1) \cap \mathcal{J}^{-1}(Y_2)$$

$$\Rightarrow$$
: $x \in g^{-1}(Y_1) \land g^{-1}(Y_2) \Rightarrow x \in g^{-1}(Y_1)$ and $x \in f^{-1}(Y_2)$

Aufgabe 3. (2 Punkte)

Zeigen Sie, dass folgende Äquivalenz gilt:

$$\forall x, y \in \mathbb{R} : xy = 0 \Leftrightarrow (x = 0 \text{ oder } y = 0).$$

Algebraiker formulieren dies als: Keine "Nullteiler" in R bzw. einem Körper.

(2 Punkte) Aufgabe 4.

Zeigen Sie, dass die neutralen Elemente der Addition bzw. Multiplikation, d.h. 0 und 1, eindeutig sind.

Widerspruch: 0 ist nicht einziges neutrales Element

welteres neutrales Element
$$d \in \mathbb{R}$$
 $0+x=x$
 $x \in \mathbb{R}$
 $0+x=x$
 $0+x=x$
 $0+x=x$
 $0+x=x$
 $0+x=x$

$$0 = 4 + 0 = 0 + 4 = 4$$

es gibt nur ein neutrales Element anp R

Widerspruch: 1 ist nicht einziges neutrales Element, x ∈ R