实验报告

姓名: 林觉凯

学号: 2253744

一、实验名称

三维模型扫描与数据处理

二、实验目的

- 1. 了解三维模型数据的表示形式和存储格式;
- 2. 掌握手持式三维曲面扫描系统 Creaform Go Scan 3D 硬件和软件的使用方式;
- 3. 掌握常用几何编辑软件(比如 GeoMagic Studio)的操作方式,能够对原始三维扫描数据进行简单编辑。

三、实验设备

- 1. 硬件: Creaform Go Scan 3D 三维扫描仪;
- 2. 软件: Creaform Go Scan 3D 配套扫描软件;
- 3. 软件: Blender 4.3 3D 建模和渲染软件(相较于 Autodesk 3ds Max 2025 三维计算机图形软件, Blender 4.3 我认为更加轻量, 用起来更加方便)。

四、实验内容

1. 三维扫描仪数据采集流程

两两组队,一位同学手拿 Creaform Go Scan 3D 三维扫描仪进行面部扫描,另一位同学坐在椅子上闭上眼睛等待扫描结束。

首先启动我们需要启动 Creaform Go Scan 3D 配套扫描软件,点击"新对话",然后点击"扫描",即可开始扫描过程,如下图所示。

在扫描的过程中,手持三维扫描仪,大致距离面部 30 厘米左右,然后缓慢移动,来回走一趟直至面部三维模型扫描完成。我们在扫描的时候要注意保持扫描仪和面部之间的距离,如果前面的红灯亮起,说明距离太近了;如果后面的红灯亮起,说明距离太远了,在正常的情况下,应当是只有中间绿灯亮起。如果追踪失败,可以稍微改变位置或者重新点击"新对话"重新扫描一遍。

扫描结束后,点击保存图片,将扫描出来的图片保存为.obj 格式,进行三维模型的生成和保存,命名为 2253744(我的学号).obj 准备进行下一步工作。

2. 三维模型的后处理

在三维模型的后处理方面,我使用的 3D 建模和渲染软件为 Blender 4.3。因为 Blender 4.3 相较于 Autodesk 3ds Max 2025, 体积更加小、轻量级, Autodesk 3ds Max 2025 的安装包和依赖库通常较大,且安装过程较为复杂,时间花费较长。因此我这里选用操作和安装更加方便的 Blender 4.3。

首先到 Blender 的官网下载 Blender 软件并且安装,打开。

打开软件后,在左上角点击文件->导入->选择 Wavefront(.obj)型的文件,选择我们的 2253744origin.obj 导入我的 3D 点云文件。

可以看到,3D模型的大致轮廓已经比较清楚和完善,脸的显示完整,但是在某些地方(比如下巴、鼻子旁边、眼睛和鼻子的部分有些空洞,如下面红色线圈出来的地方)。接下来我们需要利用3D建模软件进行修缮。

在左上角选择"编辑模式",我们可以看见 3D 模型变为网格点状。

接下来我们以修复下巴这个为例,介绍修复 3D 模型的大致过程。

在上方的选择栏里选择"选择"栏,或者按下键盘上的 C 快捷键,即可对需要填充的部分进行刷选,我们对某个空洞的地方使用刷选,大致地刷选出周围一圈的点,如下图所示:

接下来,在上方的选择栏内选择"网络",然后选择"凸壳",这样就可以将选定的点云或模型数据简化为一个最小的包围形状。如下图所示:

上述的方法"凸壳"较为适合像下巴、鼻子这样比较有凹凸型的模型修复中,对于鼻孔、嘴巴和眼睛这样凹凸状不太明显的地方,我们可以直接在刷选后进行

面的填充,在上方选择栏点击"面",选择"填充",如下图所示:

接下来我们使用类似的步骤对其他空洞出如鼻子、眼睛和嘴巴的缺失部分进行如上的相同操作,得到 3D 的初步修复模型。

我们发现,目前得到 3D 的初步修复模型在修复的部分比较不太自然,比如不光滑、衔接出不平整等等。接下来我们需要在左上角使用"雕刻模式",在这里面我们可以使用光滑的方式,对于不平整的地方单机鼠标,便可以实现一定效果的光滑效果,使得最后构建出来的 3D 模型更加自然。

最后得到的 3D 模型图效果如下:

相较于一开始的 3D 模型图, 修复后的 3D 模型在眼睛、鼻子、下巴和嘴部等地方更加完整, 比较自然地完成了 3D 模型的完善工作。

最后在左上角,点击文件->导出->选择类型 Wavefront(.obj)文件,并且将其命名为 2253744final.obj,保存在相应的文件夹中。

至此,三维扫描与数据处理实验完美结束,我在一定程度上掌握了使用 Creaform Go Scan 3D 扫描面部并使用相关软件处理三维模型的技巧,这次实验 课程加深了我对三维建模的理解,提升了我的实践技能。