(Tıbbi) Görüntü İşleme Medical Image Processing

Hedef

- Renk ve Renk Uzayları (Renk modelleri)
- Renk Filtreleri

Renk

- İşiğin farklı dalga boylarında göz retinasına ulaşması ile ortaya çıkan bir algılamadır.
- Nesneler tarafından soğurulan veya yansıtılan ışık renk algısını belirler.
- İnsan gözü 380 nm ile 780 nm

Renk

- İnsan gözündeki koni algılayıcılarının yaklaşık olarak %65'i kırmızı, %33'ü yeşil ve %2'si de mavi renge duyarlıdır.
- İnsan gözünde renkler de bu üç ana rengin birleşimi şeklinde alınmaktadır.
- Bu üç renk kullanılarak görünür bölgedeki bütün renkler elde edilebilmektedir.
- Ana renklerin (kırmızı (R), yeşil (G), mavi (B)) birbirlerine eklenmesi ile ara renkler ya da ikincil renkler (turkuaz (C), mor (M), sarı (Y)) elde edilir.

Renk

Ana renkler (RGB)

Ara renkler (CMY)

RGB

 Red, Green, Blue ışığı temel alarak, doğadaki tüm renklerin kodları bu üç temel renge dayalı olarak belirtilir.

 Her renk %100 oranında karıştırıldığında beyaz ve %0 oranında karıştırıldığında siyah elde

edilir.

RGB

CMY(K)

- CMYKey, baskıda dört temel işlem renginin kısaltmasıdır (Cyan, Magenta, Yellow, Key (black).
- İşik tabanlı RGB renk uzayında temel renk sayısı üçtür. Pigment (boya) tabanlı bir renk uzayı olan CMYK'da ise bu rakamın dörde çıkar.
- Bu renkler şunlardır:
 - Cyan: Cam göbeği
 - Magenta: Eflatun
 - Yellow: Sarı
 - Key (black): Siyah

CMY(K)

$$c=1-rac{ ext{red}}{255}, \qquad m=1-rac{ ext{green}}{255}, \qquad y=1-rac{ ext{blue}}{255}, \qquad k=\min\{c,m,y\}$$
 $ext{cyan}=rac{c-k}{1-k}, \qquad ext{magenta}=rac{m-k}{1-k}, \qquad ext{yellow}=rac{y-k}{1-k}, \qquad ext{black}=k$

RGB to CMYK (75,0,130)

HSB

- HSB (Hue, Saturation, Brightness) renk özü, doygunluk ve parlaklık olarak tanımlar.
 - Renk özü, rengin baskın dalga uzunluğunu belirler, örneğin sarı, mavi, yeşil, vb. Açısal bir değerdir 0° - 359°arası olağanlaştırılır.
 - Doygunluk, rengin "canlılığını" belirler. Yüksek doygunluk canlı renklere neden olurken, düşük olasılık rengin gri tonlarına yaklaşmasına neden olur. Yüzde olarak 0-100 veya 0,1 arasında değişir.
 - Parlaklık ise rengin aydınlığını yani içindeki beyaz oranını belirler. Yüzde olarak 0-100 veya 0,1 arasında değişir.

HSB

$$H \in \{0, 360\}, S, V, R, G, B \in \{0, 1\}$$

$$\begin{split} MAX &= \max \left\{ R, G, B \right\}, \quad MIN = \min \left\{ R, G, B \right\} \\ &= \begin{cases} \text{tanimsiz,} & \text{eger } MAX = MIN \\ 60\frac{G-B}{MAX-MIN} + 0, & \text{eger } MAX = R \\ & \text{ve } G \geq B \end{cases} \\ H &= \begin{cases} 60\frac{G-B}{MAX-MIN} + 360, & \text{eger } MAX = R \\ & \text{ve } G < B \end{cases} \\ 60\frac{B-R}{MAX-MIN} + 120, & \text{eger } MAX = G \\ 60\frac{R-G}{MAX-MIN} + 240, & \text{eger } MAX = B \end{cases} \\ S &= \begin{cases} 0, & \text{eger } MAX = 0 \\ 1 - \frac{MIN}{MAX}, & \text{degilse} \end{cases} \\ V &= MAX \end{split}$$

HSB

HSV is perceptual system

R=red

Hue=H

G=green

Saturation=S

B=blue

Value=V

YCbCr-YUV

- Genellikle renkli dijital yayınlar ve video görüntüleri için kullanılır.
- Sistemde Y işareti siyah-beyaz, U
 (Cb:Chrominance blue) ve V
 (Cr:Chrominance red) işaretleri ise mavi ve kırmızı renk bilgilerini temsil ederler.
- Jpeg, mpeg1, mpeg2,mpeg4

```
Y = 0.2215 * R + 0.7154 * G + 0.0721 * B
Cb = -0.1145 * R - 0.3855 * G + 0.5000 * B
Cr = 0.5016 * R - 0.4556 * G - 0.0459 * B
```

YCbCr-YUV

RGB to Y'CrCb

Pixel Filtering By Color

- Color Filtering
- Channel Filtering
- HSL Filtering
- YCbCr Filtering
- Euclidean Color Filtering

Color Filtering

- Görüntü renk kanallarını istenilen aralıkta olanları tutar, olmayanları doldurur.
 - filter.Red = new IntRange(100, 255);
 - filter.Green = new IntRange(0, 75);
 - filter.Blue = new IntRange(0, 75);

Channel Filtering

- Color filtering e benzer. Farkı aralıktaki piksellere dokunmaz ancak aralıkta olmayanın ilgili kanalını doldurur.
 - filter.Red = new IntRange(100, 255);
 - filter.Green = new IntRange(0, 75);
 - filter.Blue = new IntRange(0, 75);

HSL Filtering

- HSL renk modelinde çalışır. Aralığa göre doldurma yapar.
 - o filter.Hue = new IntRange(335, 0);
 - filter.Saturation = new Range(0.6f, 1);
 - filter.Luminance = new Range(0.1f, 1);

YCbCr Filtering

- YCbCr renk modelinde çalışır. Aralığa göre doldurma yapar.
 - o filter.Cb = new Range(-0.2f, 0.0f);
 - filter.Cr = new Range(0.26f, 0.5f);

Euclidean Color Filtering

- 3 boyutlu öklid bağıntısını kullanır. Değerlere göre bir merkez belirler ve yarıçapa göre küre oluşturarak pikselleri tutar.
 - filter.CenterColor = Color.FromArgb(215, 30, 30);
 - filter.Radius = 100;

Euclidean Color Filtering

- 3 boyutlu öklid bağıntısını kullanır. Değerlere göre bir merkez belirler ve yarıçapa göre küre oluşturarak pikselleri tutar.
 - filter.CenterColor = Color.FromArgb(215, 30, 30);
 - filter.Radius = 100;

Kaynakça

- Gonzalez, Rafael C., ve Richard E. Woods. Sayısal Görüntü İşleme: Üçüncü Baskıdan Çeviri. Çeviren Ziya Telatar vd., 2013.
- http://www.aforgenet.com/framework/