Национальный Исследовательский Университет «Московский Энергетический Институт»

Кафедра теоретических основ теплотехники Лаборатория тепломассообмена

Лабораторная работа №3 Определение тепловых свойств материалов методом регулярного режима

Студент:
Группа:
Преподаватель:
К работе допущен:
Работу выполнил:
Работу сдал:

Цель работы:

- 1. углубление знаний о процессе нестационарной теплопроводности в твердых телах; изучение влияния начального теплового состояния и условий теплообмена тела с окружающей средой на вид распределения температуры в теле.
- 2. ознакомление с нестационарными методами экспериментального определения теплофизических свойств материалов.
- 3. освоение метода регулярного теплового режима, его экспериментальной реализации при определении коэффициентов температуропроводности, теплопроводности, и удельной теплоемкости материалов (теплоизолятор) и теплоотдачи в условиях нагрева (охлаждения) тела. Анализ полученных результатов и их сравнение с литературными данными.

Описание экспериментальной установки:

- 1 нагреватель
- 2 калориметр №1
- 3 спаи термопар
- 4 калориметр №2
- 5 калориметр №3
- 6 воздушная камера
- 7 мешалка
- 8 корпус термостата с жидкостью
- 9 электродвигатель мешалки и насоса

Основы метода регулярного теплового режима:

Нестационарное температурное поле любого тела определяется воздействием окружающей среды, физическими свойствами тела, геометрической формой и размерами, а также его начальным тепловым состоянием.

Влияние среды и свойств тела можно характеризовать числом Био, $Bi = \frac{\alpha \times R}{\lambda}$, которое определяет отношение внутреннего и внешнего тепловых сопротивлений При анализе начальных условий выделяют две стадии процесса охлаждения (нагревания). В первой, начальной, стадии неупорядоченного (иррегулярного) режима температурное поле в значительной степени определяется особенностями начального распределения температуры. Во второй стадии, которая наступает при числе Фурье $\vec{Fo} = \frac{\dot{a} \times \tau}{R^2}$, начальное распределение уже не влияет на характер изменения температурного поля и распределение температуры во времени для всех точек тела изменяется по экспоненциальному закону. Эта стадия называется регулярным (упорядоченным) тепловым режимом и при постоянных физических свойствах, в условиях α - const, t_{κ} const описывается простым уравнением:

$$\mathbf{t} - \mathbf{t}_{\mathbf{x}} = \boldsymbol{\theta} = \mathbf{A} * \mathbf{U} * \mathbf{e}^{-\mathbf{m} * \boldsymbol{\tau}}$$
(1)

где, α - средний по поверхности коэффициент теплоотдачи, $\frac{\text{BT}}{\text{M}^2*\text{K}}$; $t_{\text{ж}}$ — температура среды; $^{\circ}$ С, t – температура любой точки тела (переменная), $^{\circ}$ С, t – $t_{_{\mathrm{ж}}}$ = heta - разность температур какой либо точки тела и среды, ${}^{\circ}\mathrm{C}$; A – постоянный множитель, определяемый из начальных условий; U – функция, определяющая зависимость θ от координат (x, y, z); m – темп регулярного охлаждения или нагревания тела, 1/сек.; т - время, с. Темп охлаждения m характеризует относительную скорость изменения избыточной температуры тела θ , т.е. $m = -\frac{1}{\theta} \frac{\partial \theta}{\partial \tau}$

Из уравнения [1] вытекают важные для практики следствия.

1. Прологарифмировав его, получаем:

$$\ln|\boldsymbol{\theta}| = -m\tau + G(x, y, z) \quad (2)$$

где G(x,y,z) — функция координат точки, следовательно, $-\frac{\partial \ln |\theta|}{\partial \tau} = m \quad (3)$

$$-\frac{\partial \ln|\theta|}{\partial \tau} = \boldsymbol{m} \quad (3)$$

Таким образом, по истечении определенного времени после начала охлаждения (нагревания) тела наступает регулярный тепловой режим, отличительной особенностью которого является то, что логарифм разности между температурой t в любой точке тела и температурой окружающей среды t_{m} изменяется с течением времени au по линейному закону. При этом скорость изменения избыточной температуры остается одинаковой для всех точек тела.

Связь темпа охлаждения *т* с характеристиками тела и условиями теплообмена на поверхности, при конечном значении коэффициента теплоотдачи (α = const), определяется зависимостью вида (первая теорема Кондратьева): $\boldsymbol{m} = \boldsymbol{\psi} \frac{\alpha F}{c}$

$$m = \psi \frac{\alpha F}{C} \tag{4}$$

где ψ - коэффициент неравномерности температурного поля; F - поверхность тела, M^2 ; C полная теплоемкость тела, Дж/К.

При $\alpha \to \infty$ темп регулярного охлаждения (нагревания) $m_\infty = m\alpha \to \infty$ и температуропроводность материала тела прямо пропорциональны (вторая теорема Кондратьева):

$$a = Km_{\infty}$$
 (5)

 $\pmb{a} = \pmb{K} \pmb{m}_{\infty}$ (5) где коэффициент пропорциональности \pmb{K} , м² – геометрическая величина, зависящая от размеров и формы тела.

Рассмотренные свойства регулярного теплового режима широко используют для экспериментального определения коэффициентатемпературопроводности - а, теплопроводности - λ , удельной теплоемкости материалов - c.

N	Время опыта,сек	Калопи	 метр 1,°С	Калориметр 2, °C		Калориметр 3, °C		Воздушная камера, °С	Волацая уамера °С	Окружающая среда, °С
l IN	25+50*i,i=034	t1	t2	t3	t4			t7	т8	24
	25+50*1,1=034	25.1	22.1	22.7	22.2	t5 22.6	t6 22.7	40.8	44.3	24
1										4
2	75	28.8	22.1	23.1	22.1	23.2	23.2	40.5	44.0	_
3	125	31.2	22.2	23.5	22.1	23.6	23.7	40.3	44.0	4
4	175	33.0	23.1	23.8	22.2	23.9	24.0	40.1	43.9	4
5	225	34.4	24.1	24.2	22.3	24.4	24.7	40.1	44.0	_
6	275	35.3	25.4	24.6	22.6	24.9	25.0	40.0	44.0	4
7	325	36.4	26.9	25.1	22.9	25.4	25.5	40.0	44.0	
8	375	37.1	28.1	25.5	23.2	25.8	26.0	40.1	44.0	
9	425	37.4	28.8	25.7	23.4	26.0	26.2	40.1	44.2	
10	475	37.8	29.4	25.8	23.6	26.3	26.4	40.1	44.3	
11	525	38.1	30.0	26.2	23.8	26.6	26.6	40.2	44.2	
12	575	38.5	30.8	26.2	24.0	26.7	27.0	40.1	44.3	
13	625	38.9	31.4	26.3	24.0	26.9	27.1	40.2	44.0	
14	675	39.0	32.0	26.6	24.3	27.1	27.2	40.1	44.2	
15	725	39.0	33.0	26.8	24.4	27.3	27.3	40.1	44.1	
16	775	39.5	33.2	26.8	24.5	27.5	27.7	40.1	44.0	
17	825	39.6	33.6	27.0	24.7	27.7	27.8	40.1	44.0	
18	875	39.7	33.8	27.2	25.0	27.7	27.9	40.1	44.0	
19	925	40.1	34.7	27.5	25.0	28.1	28.2	40.1	44.2	
20	975	40.3	35.0	27.5	25.3	28.3	28.4	40.2	44.2	
21	1025	40.5	35.5	27.7	25.4	28.3	28.6	40.1	44.2	
22	1075	40.5	35.9	27.9	25.5	28.6	28.8	40.2	44.2	1
23	1125	40.8	36.4	28.0	25.7	28.8	28.9	40.3	44.2	1
24	1175	41.0	36.9	28.3	26.0	28.9	29.0	40.2	44.2	1
25	1225	41.7	37.2	28.4	26.1	29.1	29.3	40.3	44.3	1
26	1275	41.1	37.6	28.5	26.2	29.4	29.5	40.5	44.3	1
27	1325	41.3	38.0	28.6	26.5	29.6	29.7	40.5	44.2	1
28	1375	41.6	38.2	28.8	26.6	29.7	29.8	40.3	44.2	1
29	1425	41.6	38.4	29.0	26.7	29.9	30.0	40.5	44.2	1
30	1475	41.9	38.7	29.1	27.0	30.2	30.1	40.5	44.2	1
31	1525	41.9	39.1	29.4	27.1	30.2	30.3	40.5	44.2	1
32	1575	41.9	39.4	29.4	27.2	30.3	30.6	40.5	44.2	
33	1625	42.3	39.7	29.4	27.5	30.5	30.8	40.6	44.3	†
34	1675	42.3	39.9	29.6	27.6	30.7	30.9	40.6	44.4	1
35	1725	42.4	40.0	29.6	27.6	30.9	31.0	40.6	44.3	†
	1/25	72.7	70.0	25.0	27.0	30.5	31.0	70.0	77.5	_

Обработка результатов измерений лабораторной работы №36

"Определение тепловых свойств материалов методом регулярного режима"

Примечание: Калориметр 1 -водяная камера, калориметры 2 и 3 -воздушная камера

Данные эксперимента:

т-время опыта

t1 - t8 показания термопар в калориметрах и камерах: 1-2-калориметр 1; 3-4 -калориметр 2; 5-6 калориметр 3; 7-воздушная камера; 8 - водяная камера.

```
In[2]:= t1 = Quantity[{25.1, 28.8, 31.2, 33.0, 34.4, 35.3, 36.4, 37.1, 37.4, 37.8, 38.1, 38.5,
         размерная величина
         38.9, 39.0, 39.0, 39.5, 39.6, 39.7, 40.1, 40.3, 40.5, 40.5, 40.8, 41.0, 41.7,
         41.1, 41.3, 41.6, 41.6, 41.9, 41.9, 42.3, 42.3, 42.4}, "DegreesCelsius"];
     t2 = Quantity [{22.1, 22.1, 22.2, 23.1, 24.1, 25.4, 26.9, 28.1, 28.8, 29.4, 30.0, 30.8,
         размерная величина
         31.4, 32.0, 33.0, 33.2, 33.6, 33.8, 34.7, 35.0, 35.5, 35.9, 36.4, 36.9, 37.2,
         37.6, 38.0, 38.2, 38.4, 38.7, 39.1, 39.4, 39.7, 39.9, 40.0}, "DegreesCelsius"];
     t3 = Quantity[{22.7, 23.1, 23.5, 23.8, 24.2, 24.6, 25.1, 25.5, 25.7, 25.8, 26.2, 26.2,
         26.3, 26.6, 26.8, 26.8, 27.0, 27.2, 27.5, 27.5, 27.7, 27.9, 28.0, 28.3, 28.4,
         28.5, 28.6, 28.8, 29.0, 29.1, 29.4, 29.4, 29.4, 29.6, 29.6}, "DegreesCelsius"];
     t4 = Quantity[{22.2, 22.1, 22.1, 22.2, 22.3, 22.6, 22.9, 23.2, 23.4, 23.6, 23.8, 24.0,
         размерная величина
         24.0, 24.3, 24.4, 24.5, 24.7, 25.0, 25.0, 25.3, 25.4, 25.5, 25.7, 26.0, 26.1,
         26.2, 26.5, 26.6, 26.7, 27.0, 27.1, 27.2, 27.5, 27.6, 27.6}, "DegreesCelsius"];
     t5 = Quantity[{22.6, 23.2, 23.6, 23.9, 24.4, 24.9, 25.4, 25.8, 26.0, 26.3, 26.6, 26.7,
         размерная величина
         26.9, 27.1, 27.3, 27.5, 27.7, 27.7, 28.1, 28.3, 28.3, 28.6, 28.8, 28.9, 29.1,
         29.4, 29.6, 29.7, 29.9, 30.2, 30.2, 30.3, 30.5, 30.7, 30.9}, "DegreesCelsius"];
     t6 = Quantity[{22.7, 23.2, 23.7, 24.0, 24.7, 25.0, 25.5, 26.0, 26.2, 26.4, 26.6, 27.0,
         размерная величина
         27.1, 27.2, 27.3, 27.7, 27.8, 27.9, 28.2, 28.4, 28.6, 28.8, 28.9, 29.0, 29.3,
         29.5, 29.7, 29.8, 30.0, 30.1, 30.3, 30.6, 30.8, 30.9, 31.0}, "DegreesCelsius"];
     t7 = Quantity[{40.8, 40.5, 40.3, 40.1, 40.1, 40.0, 40.0, 40.1, 40.1, 40.1, 40.2, 40.1,
         размерная величина
         40.2, 40.1, 40.1, 40.1, 40.1, 40.1, 40.1, 40.2, 40.1, 40.2, 40.3, 40.2, 40.3,
         40.5, 40.5, 40.3, 40.5, 40.5, 40.5, 40.5, 40.6, 40.6, 40.6}, "DegreesCelsius"];
     t8 = Quantity[{44.3, 44.0, 44.0, 43.9, 44.0, 44.0, 44.0, 44.0, 44.2, 44.3, 44.2, 44.3,
         размерная величина
         44.0, 44.2, 44.1, 44.0, 44.0, 44.0, 44.2, 44.2, 44.2, 44.2, 44.2, 44.2, 44.3,
         44.3, 44.2, 44.2, 44.2, 44.2, 44.2, 44.3, 44.4, 44.3}, "DegreesCelsius"];
```

 θ -разность температур какой-либо точки тела и среды. Учитывая что К1-водяная камера, а К2 К3- воздушная, найдем $\ln(\theta_{1-6})$, где $\theta_{1/2}$ для калориметра в водяной камере а остальные для калориметров воздушных камерах

```
_на⋯ _модуль размерной величины
Out[10]=
       {2.9549103, 2.7212954, 2.5494452, 2.3887628, 2.2617631, 2.163323, 2.0281482, 1.9315214,
        1.9169226, 1.8718022, 1.8082888, 1.7578579, 1.6292405, 1.6486586, 1.6292405,
        1.5040774, 1.4816045, 1.458615, 1.410987, 1.3609766, 1.3083328, 1.3083328,
        1.2237754, 1.1631508, 0.95551145, 1.1631508, 1.0647107, 0.95551145, 0.95551145,
        0.83290912, 0.83290912, 0.83290912, 0.69314718, 0.74193734, 0.64185389
```

 $ln[10] = ln\Theta1 = Log[QuantityMagnitude[t8 - t1]]$

```
ln[11] = ln\Theta 2 = Log[QuantityMagnitude[t8 - t2]]
              на... модуль размерной величины
Out[11]=
       {3.1000923, 3.0864866, 3.08191, 3.034953, 2.9907197, 2.9231616, 2.8390785,
        2.7663191, 2.7343675, 2.7013612, 2.653242, 2.6026897, 2.5336968, 2.501436,
        2.4069451, 2.3795461, 2.3418058, 2.3223877, 2.2512918, 2.2192035, 2.163323,
        2.1162555, 2.0541237, 1.9878743, 1.9600948, 1.9021075, 1.8245493, 1.7917595,
        1.7578579, 1.7047481, 1.6292405, 1.5686159, 1.5260563, 1.5040774, 1.458615}
 ln[12]:= ln\Theta3 = Log[QuantityMagnitude[t7 - t3]]
             на... модуль размерной величины
Out[12]=
       {2.8959119, 2.8564702, 2.8213789, 2.7911651, 2.7663191, 2.7343675, 2.7013612,
        2.6810215, 2.6672282, 2.6602595, 2.6390573, 2.6318888, 2.6318888, 2.6026897,
        2.587764, 2.587764, 2.5726122, 2.5572273, 2.5336968, 2.541602, 2.5176965,
        2.5095993, 2.5095993, 2.4765384, 2.4765384, 2.4849066, 2.4765384, 2.442347,
        2.442347, 2.4336134, 2.4069451, 2.4069451, 2.4159138, 2.3978953, 2.3978953}
 ln[13] = ln\theta 4 = Log[QuantityMagnitude[t7 - t4]]
              на… модуль размерной величины
Out[13]=
       {2.9231616, 2.9123507, 2.9014216, 2.8848007, 2.8791985, 2.8564702, 2.8390785,
        2.8273136, 2.8154087, 2.8033604, 2.7972813, 2.7788193, 2.7850112, 2.7600099,
        2.7536607, 2.7472709, 2.7343675, 2.7146947, 2.7146947, 2.7013612, 2.6878475,
        2.6878475, 2.6810215, 2.653242, 2.653242, 2.6602595, 2.6390573, 2.6173958,
        2.6246686, 2.6026897, 2.5952547, 2.587764, 2.5726122, 2.5649494, 2.5649494}
 ln[14]:= ln\Theta5 = log[QuantityMagnitude[t7 - t5]]
             _на··· _модуль размерной величины
Out[14]=
       {2.9014216, 2.8507065, 2.8154087, 2.7850112, 2.7536607, 2.7146947, 2.6810215,
        2.6602595, 2.6461748, 2.6246686, 2.6100698, 2.5952547, 2.587764, 2.5649494,
        2.5494452, 2.5336968, 2.5176965, 2.5176965, 2.4849066, 2.4765384, 2.4680995,
        2.4510051, 2.442347, 2.4248027, 2.4159138, 2.4069451, 2.3887628, 2.360854,
        2.360854, 2.3321439, 2.3321439, 2.3223877, 2.3125354, 2.2925348, 2.2721259}
 ln[15] = ln\theta6 = Log[QuantityMagnitude[t7 - t6]]
             _на… _модуль размерной величины
Out[15]=
       {2.8959119, 2.8507065, 2.8094027, 2.7788193, 2.7343675, 2.7080502, 2.6741486,
        2.6461748, 2.6318888, 2.6173958, 2.6100698, 2.5726122, 2.5726122, 2.5572273,
        2.5494452, 2.5176965, 2.5095993, 2.501436, 2.4765384, 2.4680995, 2.442347,
        2.4336134, 2.4336134, 2.4159138, 2.3978953, 2.3978953, 2.3795461, 2.3513753,
        2.3513753, 2.3418058, 2.3223877, 2.2925348, 2.2823824, 2.2721259, 2.2617631}
```

Изобразим зависимости $ln\theta_{1-6}(au)$

Out[17]=

Изобразим отдельно графики для каждого калориметра для поиска участков линейной зависимости:

```
In[18]:= ListLinePlot[Map[bufferln0, Range[1, 2]],
         линейный гра… Іпреобразовать
             \label{eq:continuous} \textit{GridLines} \rightarrow \{\textit{Range}\, [\,\textbf{0},\, 1750,\, 50]\,,\, \textit{Range}\, [\,\textbf{0},\, \textbf{4},\, \textbf{0.1}]\,\}\,,\, \textit{PlotLabel} \rightarrow \textit{"ln}\theta_{1\text{--}2}\,(\tau)\,\textit{"}\,,\,
           _линии коорди… _диапазон
                                                                     диапазон
                                                                                                      пометка графика
            PlotTheme \rightarrow "Scientific", PlotLegends \rightarrow {"ln\theta1", "ln\theta2"}, ImageSize \rightarrow Large]
           тематический стиль графика
                                                         легенды графика
                                                                                                                  _размер изоб· · · _крупный
```

Out[18]=

Линейный участок :325-1750 s (τ 7- τ 35) для первого калориметра

In[19]:= ListLinePlot[Map[bufferln⊕, Range[3, 4]], _линейный гра… _преобразовать диапазон GridLines → {Range [0, 1750, 50], Range [0, 3, 0.05]}, PlotLabel → " $\ln\theta_{3-4}(\tau)$ ", _линии коорди… _диапазон диапазон _пометка графика PlotTheme \rightarrow "Scientific", PlotLegends \rightarrow {"ln Θ 3", "ln Θ 4"}, ImageSize \rightarrow Large] _размер изоб⋯ _крупный тематический стиль графика _легенды графика

Out[19]=

Линейный участок: 625-1750 s (т13-т35) для второго калориметра

```
In[20]:= ListLinePlot[Map[bufferln0, Range[5, 6]],
      _линейный гра… _преобразовать
                                    диапазон
```

GridLines → {Range [0, 1750, 50], Range [0, 4, 0.05]}, PlotLabel → " $\ln\theta_{5-6}$ (τ)", _линии коорди⋯ _диапазон диапазон _пометка графика

PlotTheme \rightarrow "Scientific", PlotLegends \rightarrow {"ln θ 5", "ln θ 6"}, ImageSize \rightarrow Large]

_легенды графика _размер изоб⋯ _крупный тематический стиль графика

Out[20]=

Линейный участок : 525-1250 s ($\tau 11-\tau 25$) для третьего калориметра

```
Введем данные о калориметрах:
```

Мсиргит-масса медного (эталонного) калориметра (kg)*ccuprum*- удельная теплоемкость меди $\left(\frac{J}{Ka\star K}\right)$

Mob- масса медной оболочки калориметра №2 (kg)

Di- диаметр *i-*го калориметра *(m)*

Zi-высота i-го калориметра(m)

D2inner-внутренний диаметр калориметра №2 *(m) Z2inner*-внутренний диаметр калориметра №2(*m*)

```
In[21]:= Mcuprum = Quantity[0.23, "Kilograms"];
               размерная величина
     ccuprum = Quantity [390, "Joules" ];
     Mob = Quantity[0.073, "Kilograms"];
           размерная величина
     D1 = Quantity[0.04, "Meters"];
          размерная величина
     Z1 = Quantity[0.06, "Meters"];
          размерная величина
     D2 = Quantity[0.0294, "Meters"];
         размерная величина
     Z2 = Quantity[0.054, "Meters"];
          _размерная величина
     D2inner = Quantity[0.0286, "Meters"];
               размерная величина
     Z2inner = Quantity[0.0532, "Meters"];
               размерная величина
     D3 = Quantity[0.0294, "Meters"];
         размерная величина
     Z3 = Quantity[0.054, "Meters"];
          размерная величина
```

Найдем темп нагрева калориметров

m1-относится к первому калориметру, m11- по значениям с первой термопары, m12 по значениям со второй термопары и т.д.

```
ln\theta1[7] - ln\theta1[35]
 In[32]:= m11 =
                QuantityMagnitude [\tau[35]] - \tau[7]]
Out[32]=
        0.00099021026
                         ln\theta2[7] - ln\theta2[35]
 In[33]:= m12 =
                QuantityMagnitude[τ[35] - τ[7]]
Out[33]=
        0.00098604531
```

Найдем коэффициенты формы калориметров 1 и 2

In[38]:= K1 =
$$\left(\frac{5.783}{(D1/2)^2} + \frac{9.87}{Z1^2}\right)^{-1}$$

0.00029025558

Out[38]=

0.000058142352 m²

In[39]:= K2 =
$$\left(\frac{5.783}{(D2inner/2)^2} + \frac{9.87}{Z2inner^2}\right)^{-1}$$

Out[39]=

0.000031478764 m²

Найдем коэффицент температуропроводности исследуемого материала для калориметра №1, используя темп нагрева m_{∞} =m1 и число Фурье(при τ = τ 35)

Out[40]=

$$\textbf{5.7573153} \times \textbf{10}^{-8} \; \text{m}^{2}\!/\,\text{s}$$

In[41]:= Fo = a1 *
$$\frac{\tau [[35]]}{(D1/2)^2}$$

Out[41]=

0.24828422

Определим значения коэффициента неравномерности температурного распределения *ψ2* для калориметра № 2 Для этого найдем M и воспользуемся таблицей зависимости $\psi(M)$:

Полная теплоемкость калориметра №2 равна сумме теплоемкостей исследуемого материала и оболочки калориметра с учетом коэффициента неравномерности температурного поля, т.е $C_2 = C_{2,u} + \psi_2 C_{2,o6}$, при этом площади внешний поверхностей калориметров № 2 и № 3 и коэффициенты теплоотдачи с наружных поверхностей равны. Найдем теплоемкость исследуемого материала:

$$In[46]:= C2i = \left(ccuprum * Mcuprum * \frac{m31}{m21} - ccuprum * Mob\right) * \psi2$$

$$Out[46]=$$

$$82.310305 \text{ J/K}$$

Найдем теплоемкость оболочки калориметра:

```
In[47]:= C2ob = ccuprum * Mob * ψ2
Out[47]=
        25.955877 J/K
```

Найдем полную теплоемкость калориметра № 2: (можно так же просто сложить теплоемкость исследуемого материала и оболочки калориметра Nº2)

$$In[48]:=$$
 C2 = ccuprum * Mcuprum * $\frac{m31}{m21}$ * ψ 2
Out[48]=
108.26618 J/K

Рассчитаем коэффициент теплопроводности

$$\lambda = a * c_{2,\mathsf{N}} * \rho_{2,\mathsf{N}} = | C_{2,\mathsf{N}} = c_{2,\mathsf{N}} * M_{2,\mathsf{N}} | = a * \frac{c_{2,\mathit{U}}}{v_{2,\mathit{U}}}$$
,где a -коэффициент

температуропроводности исследуемого материала, определенный в эксперименте с калориметром $N^{\circ}1$ (a=a1) (m^2/s);

 $ho_{2,\mathsf{u}}$ - плотность исследуемого материала (kg/m^3); $V_{2,\mathsf{u}}$ -объем исследуемого материала, определяемый по внутренним размерам калориметра № 2 (m³)

Сначала найдем объем исследуемого материала:

In[49]:=
$$V2i = \pi * \left(\frac{D2inner}{2}\right)^2 * Z2inner$$
Out[49]=

0.000034176972 m³

Теперь найдем коэффициент теплопроводности λ (с учетом оболочки):

Теперь найдем коэффициент теплопроводности λ (без учета оболочки):

In[59]:=
$$V2 = \pi * \left(\frac{D2}{2}\right)^2 * Z2$$
;

AwithBoundryLayerNotIncluded = UnitConvert $\left[a1 * \frac{C2}{2}, \frac{"Watts"}{"Meters" * "Kelvins"}\right]$

Out[59]:=

0.17003351 W/ (mK)

Проверим выполнение условия о стремлении числа Био к бесконечности $(Bi\to\infty)$ для калориметра № 1. Для этого решим для точки r=0 уравнение (1)относительно μ_1

Уравнение (1):
$$\theta = \frac{t_{\mathsf{x}} - t_{r=0}}{t_{\mathsf{x}} - t_0} = \frac{2 J_1(\mu_1)}{\mu_1 \star \left(J_0^2(\mu_1) + J_1^{-2}(\mu_1)\right)} \star e^{-\mu_1^2 \star Fo}$$
, где J_0 , J_1 — функции

Бесселя первого рода нулевого и первого порядка соотвественно. t_{w} -температура водяной камеры в τ_0 , $t_{r=0}$ -температура t_2 в τ_0 , t_0 -температура t_1 в τ_0

In[61]:=
$$\Theta = \frac{44.3 - 25.1}{44.3 - 22.1}$$
Out[61]=

0.86486486

Решим уравнение (1) численно относительно μ_1 :

In[85]:= FindRoot
$$\theta = \frac{2 * BesselJ[1, \mu 1]}{\mu 1 * (BesselJ[0, \mu 1])^2 + (BesselJ[1, \mu 1])^2} * Exp[-\mu 1^2 * Fo], {\mu 1, 3}]; \mu 1$$
 [показательная функция

Out[85]=

3.24246

Имеем μ 1 = 3.24246. При μ 1 >2.405 $Bi \rightarrow \infty$. Условие выполнено.

Определим температуру отнесения для a и λ по формуле (2) Формула (2) : $t_{\text{отн}} = \frac{t_{k,2} + t_{\text{ж}}}{2}$, где $t_{\text{ж}}$ -температура среды в термостате (°C); $t_{k,2}$ -температура калориметра № 2 в начале эксперимента (°C)

$$In[87]$$
:= tRelative = UnitConvert $\left[\frac{t8[1] + t2[1]}{n}\right]$, "DegreesCelsius" $\left[\frac{t8[1] + t2[1]}{n}\right]$ Out[87]= 33.2 °C

Построим распределение температуры по сечению калориметра № 1 на стадии регулярного режима. Выбираем $\tau[7], \tau[15], \tau[25]$ как три момента времени при наступлении регулярного режима.

```
In[100]:=
           t1\tau = \{t8[7], t1[7], t2[7], t1[7], t2[7]\};
           t2\tau = \{t8[15], t1[15], t2[15], t1[15], t8[15]\};
           \mathsf{t3}\tau = \{\mathsf{t8}[\![25]\!],\,\mathsf{t1}[\![25]\!],\,\mathsf{t2}[\![25]\!],\,\mathsf{t1}[\![25]\!],\,\mathsf{t8}[\![25]\!]\};
           r = \{-0.02, -0.02 * 0.707, 0, 0.02 * 0.707, 0.02\};
```

```
In[134]:=
                             ListLinePlot[{Table[{r[i], t1}_{[i]}}, {i, 1, Length[t1}_{[i]}], {i,
                             линейный графи… таблица значений
                                      Table [\{r[i], t2\tau[i]\}, \{i, 1, Length[t2\tau]\}],
                                    таблица значений
                                      Table[{r[i], t3r[i]}, {i, 1, Length[t3r]}]}, InterpolationOrder \rightarrow Automatic,
                                    таблица значений
                                                                                                                                                         длина
                                                                                                                                                                                                                            порядок интерполяции
                                 PlotLabel → "Распределение температуры по сечению калориметра №1",
                                пометка графика
                                 PlotTheme \rightarrow "Scientific", PlotLegends \rightarrow {"t(\tau = \tau 7)", "t(\tau = \tau 15)", "t(\tau = \tau 25)"},
                                тематический стиль графика
                                                                                                                                        легенды графика
                                 ImageSize \rightarrow Large, GridLines \rightarrow \{Range[-0.02, 0.02, 0.0005], Range[25, 45, 0.5]\},\\
                                размер изоб… круп… инии коорди… диапазон
                                 Frame \rightarrow True, FrameLabel \rightarrow {"r(m)", "t\tau(°C)"}]
                                рамка ист... гометка для обрамления
Out[134]=
                                                                                                                               Распределение температуры по сечению калориметра №1
```


Определим погрешности измерения тепловых свойств материала(λ и a)

```
In[162]:=
        ∆∆t = Quantity[0.1, "DegreesCelsius"];
              размерная величина
        Δt1 = Quantity[QuantityMagnitude[t8[7]] - t1[7]]], "DegreesCelsius"]
             размерна ... модуль размерной величины
Out[162]=
        7.6 °C
In[163]:=
        Δt2 = Quantity[QuantityMagnitude[t8[35]] - t1[35]]], "DegreesCelsius"]
             размерна ... модуль размерной величины
Out[163]=
        1.9 °C
```

$$\ln[140]:=$$

$$\Delta \Theta \mathbf{1} = \frac{\Delta \Delta \mathbf{t}}{1 + 16}$$

Out[140]=

0.013157895

In[141]:=

$$\Delta\Theta 2 = \frac{\Delta\Delta t}{\Delta t 2}$$

Out[141]=

0.052631579

In[142]:

$$\Delta \theta = \Delta \theta \mathbf{1} + \Delta \theta \mathbf{2}$$

Out[142]=

0.065789474

In[144]:=

$$\Delta\Delta\tau = 1;$$

 Δ m1 =

$$\sqrt{\left(\frac{\Delta\theta}{\text{QuantityMagnitude}\left[\tau[35]\right]-\tau[7]\right]}^2+\left(\frac{\text{Exp}[\ln\theta1[7]]-\text{Exp}[\ln\theta1[35]]}{\left(\text{QuantityMagnitude}\left[\tau[35]\right]-\tau[7]\right]\right)^2}\star\Delta\Delta\tau\right)^2}$$

Out[144]=

0.000047082382

Определим погрешность вычисления коэффициента температуропроводности:

In[145]:=

$$\delta a = \frac{\Delta m1}{m11}$$

Out[145]=

0.047547863

Табличное значение коэффициента теплопроводности

In[148]:=

$$λ$$
Standard = Quantity $\left[0.18, \frac{"Watts"}{meters" * "Kelvins"}\right]$

Out[148]=

 $\textbf{0.18}\,\text{W}/\,\left(\text{mK}\right)$

Разница если не учитывать оболочку:

In[156]:=

 $\Delta \lambda \textbf{with} \textbf{BoundryLayerNotIncluded} = \textbf{Abs} \left[\lambda \textbf{Standard} - \lambda \textbf{with} \textbf{BoundryLayerNotIncluded} \right]$

абсолютное значение

Out[156]=

0.0099664853 W/(mK)

Найдем погрешность коэффициента теплопроводности в случае если оболочка не учитывается:

In[157]:= ΔλwithBoundryLayerNotIncluded $\delta \lambda$ withBoundryLayerNotIncluded = **λwithBoundryLayerNotIncluded** Out[157]= 0.058614828

Найдем погрешность коэффициента теплопроводности в случае если оболочка учитывается:

In[158]:= ΔλwithBoundryLayerIncluded = Abs[\lambdaStandard - \lambda withBoundryLayerIncluded] абсолютное значение Out[158]= $0.041343369 \, \text{W/} \, (\text{mK})$ In[159]:= **ΔλwithBoundryLayerIncluded** $\delta \lambda$ WithBoundryLayerIncluded = **λwithBoundryLayerIncluded** Out[159]= 0.29817087

Вывод:

- 1)Углублены знания о процессе нестационарной теплопроводности в твердых телах. Изучено влияние начального теплового состояния и условий теплообмена тела с окружающей средой на вид распределения температуры в теле.
- 2) Произведено ознакомление с нестационарными методами экспериментального определения теплофизических свойств материалов. 3)Освоен метод регулярного теплового режима, его экспериментальная реализация при определении коэффициентов теплопроводности и температуропроводности в условиях нагревания/охлаждения тела. 4)Произведен анализ полученных результатов и их сравнение со справочными данными.