SIGNAL PROCESSING IN PRACTICE - ASSIGNMENT 12 - ARRAY PROCESSING

Rajesh Berepalli - 21343

Department of Electrical Communication Engineering, IISc, Bangalore

ABSTRACT

This report is on estimating Direction of Arrival(DOA) of multiple signals(in our case 2 sources) using classical beamforming, MVDRbeamforming, MUSIC approaches and estimating original signal back by using matched filter and zero forcing receiver beamformers. In the report we analyzes spatial response foe fixed w case by varying Delta(Spacing between antenna array elements) and M (number of array elements) and we also analyze behaviour of singular values of covariance matrix of data(noisy case) by varying M,Delta,Separation,N,SNR as parameters.

RESULTS PROBLEM-1

Fig. 1. Prob1 output

Prob 1) Observations:

- With a larger number of antennas, resolution improves i.e. more height of main lobe with narrower width but sidelobes occur.
- By keeping M= constant and increasing Delta will increase number of sidelobes in spatial response and af-

ter certain Delta ,if we increase Delta ,we get multiple mainlobes,which is called spatial aliasing.

PROBLEM-2

Fig. 2. "Singular values of X using svd(X) and sep=5deg"

Fig. 3. "Singular values of X using svd(X) and sep=60deg"

Fig. 5. "Singular values of X using eig values of Rx for sep=60deg"

(b) closely separated case(SNR = 20dB, sep = 5 deg):signals from close directions results in a small signal singular value, and noise singular values depends on SNR.on overall gap between signal and noise singular values decreases.

(c)High noise case(SNR = 0dB, sep = 0 deg or 60 deg): increased noise level increases noise singular values, thus reduces gap between signal and noise singular values.

Fig. 4. "Singular values of X using eig values of Rx for sep=5deg"

Prob 2) Observations:

- Singular values of X for d = 2 sources i.e 2 signal singular values, M = 7 antennas i.e M-d = 7-2 = 5 Noise singular values, N = 100 samples.
 - Observe any of the figures in Fig.2 to Fig.5,we can infer that
 - (a) Well separated case(SNR =20dB, sep = 60 deg): large gap between signal and noise singular values,

• The singular values using svd(X) and sqrt(eig(Rx)) are same, but we generated data again in calculating singular values from Rx, as data X = AS+N depends on Noise(N), therefore data changes and hence singular values changes in the above plots from using Rx case comapred to using svd(X) case.

PROBLEM-3 PROBLEM-4

Fig. 6. $\theta = [0,5]$ i.e separation=5 deg

Fig. 8. $\theta = [0,5]$ i.e separation=5 deg

Fig. 7. $\theta = [0,60]$ i.e separation=60 deg

Fig. 9. $\theta = [0,60]$ i.e separation=60 deg

Prob 3) Observations:

• From Fig.6 and Fig.7, we can observe that zero-forcing receiver performs better than matched filter for separation =5 deg and for separation = 60 deg ,both are performing well,so that we can clearly observe 4 clusters and all source symbols are correctly estimated by using some detector like minimum distance detector.

Prob 4) Observations:

• From Fig.8 and Fig.9 ,we can observe that direction of arrival(DOA) of the two sources is clearly observed as peaks of MVDR,MUSIC curves or maximas of Classical beamformer curve at $\theta = 0$ deg and $\theta = 60$ deg ,for well sepated case($\theta = [0,60]$ i.e separation=60 deg).

• But for smaller separation case i.e $\theta = [0,5]$ i.e separation=5 deg,we can still find clear peaks in MUSIC curve at $\theta = 0$ deg and $\theta = 5$ deg but MVDR and Classical beamformers fail to detect the direction of arrival(DOA) of the two sources.