Tests for Mixed Paired and Two-Sample Designs

## Mixed Paired and Two-Sample Designs

#### Coyotes.

- ► It was desired to compare two methods (QIAGEN DNeasy Kit, traditional chloroform isoamyl alcohol method) for extracting DNA from coyote blood samples.
- ▶ The response variable (Y) was mean concentration of DNA.
- A total of 30 coyotes were available for the study.
- Ideally, both methods would be used on each coyote
  - Reduced variability, as differences between treatments would be on the same subject
  - Fewer subject (coyotes) required

## Mixed Paired and Two-Sample Designs-Coyotes

Due to constraints, however, both methods were used on only 6 coyotes (randomly selected). The kit was randomly assigned to be used for 8 of the remaining coyotes and the traditional method for the remaining 16 coyotes.



E: 4 1. . .

## Mixed Paired and Two-Sample Designs-Laser Eye Surgery

Clinical trial to compare two methods of laser eye surgery.

- ▶ Patients with both eyes eligible have one eye randomly assigned to each treatment (dependent samples)
- ▶ Patients with only one eye eligible will each have one eye randomly assigned to one treatment (independent samples)

## Analysis of Paired Data: Paired t-test

#### Under the assumptions

- ► The treatment response differences for the 6 coyotes receiving both treatments are independent
- ► The response differences for the population of all coyotes are normally distributed

#### The statistic

$$t_{paired} = rac{ar{d}}{s/\sqrt{n}} \backsim t(n-1)$$

#### where

- ightharpoonup n = 6 is the number of paired data points
- $\bar{d} = \bar{x} \bar{y}$  is the mean of the paired differences
- s is the standard deviation of the paired differences
- ▶ t(n-1) is the Student's t-distribution with n-1 degrees of freedom

## Analysis of Unpaired Data: Pooled t-test

Under the assumptions

- ▶ The responses for the 24 "unpaired" coyotes are independent
- ► The populations of treatment responses are both normally distributed
- ► The populations of treated and untreated responses have the same variance

The statistic

$$t_{unpaired} = rac{(ar{X} - ar{Y}) - (\mu_1 - \mu_2)}{\sqrt{rac{s_p^2}{n_1} + rac{s_p^2}{n_2}}} \backsim t(n_1 + n_2 - 2)$$

where

- $ightharpoonup n_1 = 8, n_2 = 16$  are the sizes of the unpaired samples
- ullet  $ar{X} ar{Y}$  is the treatment mean difference for the unpaired data
- $ightharpoonup s_1, s_2$  are the standard deviations of the unpaired samples
- $s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}$  is the pooled variance
- $t(n_1 + n_2 2)$  is the **Student's** *t***-distribution** with

# Can the separate paired and unpaired tests be combined in order to use all of the resulting data for a single test?

Consider the statistic

$$t_{combined} = \lambda t_{paired} + (1 - \lambda) t_{unpaired}$$

Note that  $t_{combined}=t_{paired}$  when  $\lambda=1$  and  $t_{combined}=t_{unpaired}$  when  $\lambda=1$ .

- Much of the previous research has been focused on trying to approximate the distribution of  $t_{combined}$ .
- ▶ (More on this in the next presentation.)

### Alternative: Randomization/Permutation test

Idea: Compute *p*-value based on the results of all hypothetical experiments

- Assume there is no treatment effect
- "Rerandomize (permute)" the observed data and compute the resulting test statistic
- ► Repeat for all possible rerandomizations
- Compare the test statistic of the actual randomization to the set all possible results
  - ▶ If the result looks "unusual", it is likely because the initial assumption is wrong, and there is a treatment effect

## Analysis of Paired Data: Randomization/Permutation test

- ► Compute the test statistic, *t*<sub>paired</sub>, for all possible randomizations
- ► Example of a rerandomization (paired responses must stay paired)

#### Observed data:

| Coyote | 1                     | 2                     | 3                     | 4                     | 5                     | 6                       |                 |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------|
| Kit    | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | <i>X</i> <sub>4</sub> | <i>X</i> <sub>5</sub> | <i>X</i> <sub>6</sub> : | $\bar{X}_{obs}$ |
| Trad   | $Y_1$                 | $Y_2$                 | $Y_3$                 | $Y_4$                 | $Y_5$                 | <i>Y</i> <sub>6</sub> : | $\bar{Y}_{obs}$ |

#### One possible rerandomization:

| Coyote | e 1                   | 2                     | 3                     | 4                     | 5                     | 6                       |                   |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------|
| Kit    | <i>Y</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>Y</i> <sub>3</sub> | <i>X</i> <sub>4</sub> | <i>X</i> <sub>5</sub> | <i>X</i> <sub>6</sub> : | $\bar{X}_{new_1}$ |
| Trad   | $X_1$                 | $Y_2$                 | $X_3$                 | $Y_4$                 | $Y_5$                 | <i>Y</i> <sub>6</sub> : | $Y_{new_1}$       |

## Analysis of unpaired Data: Randomization/Permutation test

- Compute the test statistic, t<sub>unpaired</sub>, for all possible randomizations
- ► Example of a rerandomization

#### Observed data:

#### One possible rerandomization:

| Kit  | $Y_1$ | $X_2$                 | <i>Y</i> <sub>2</sub> | <br><i>X</i> <sub>7</sub> | <i>X</i> <sub>8</sub> :  | $\bar{X}_{new_1}$ |
|------|-------|-----------------------|-----------------------|---------------------------|--------------------------|-------------------|
| Trad | $X_1$ | <i>Y</i> <sub>3</sub> | <i>X</i> <sub>3</sub> | <br>$Y_{15}$              | <i>Y</i> <sub>16</sub> : | $ar{Y}_{new_1}$   |

## Advantages of Randomization/Permutation tests

- ► Valid under any distribution of responses
- ► Yield exact *p*-values

## Randomization/Permutation test for combined statistic

- Rerandomize paired and unpaired responses separately
- Compute  $t_{combined} = \lambda t_{paired} + (1 \lambda) t_{unpaired}$
- Repeat for all possible rerandomizations
- Compute p-value using randomization distribution

## Randomization/Permutation test using ranks

- ▶ Tests based on t<sub>combined</sub> not resistant to "heavy-tailed" distributions or if outliers are present
- Rank-based methods are resistant to outliers

Rank-based analogues to  $t_{paired}$  and  $t_{unpaired}$  tests:

- ▶ Wilcoxon signed-ranks test  $(W_{paired})$
- ▶ Wilcoxon rank-sum/Mann-Whitney test  $(W_{unpaired})$

Randomization/Permutation tests can also be used on ranks

## Randomization/Permutation test for combined statistic

#### Consider

$$W_{combined} = \lambda W_{paired} + (1 - \lambda) W_{unpaired}$$

The randomization/permutation test can be carried out exactly as before

#### Previous Research

#### Methods based on normal distributions:

- ▶ Bhoj (1978). Showed t<sub>combined</sub> can be approximated by a Student's t-distribution. However, the degrees of freedom must be odd, which limited its usefulness.
- Bhoj (1989). Used transformations of t<sub>paired</sub> and t<sub>unpaired</sub> to achieve an improved approximate normal distribution for t<sub>combined</sub>
- None of the statistics was shown to be superior under all conditions
- It was not clear how they are affected by nonnormality or outliers

#### Previous Research

#### Nonparametric approaches:

- Dubnicka, et. al. (2002). Proposed combined test based on Wilcoxon statistics.
- ▶ Magel & Fu (2014). Proposed slight modification of Dubnicka statistic that performed better in some cases.
- Einsporn & Habtzghi (2013). Investigated permutation version of Bhoj (1978) test.
- Johnson (2018). Proposed permutation versions of Dubnicka and Magel & Fu tests; performed extensive simulation study to compare various tests.
- Wang (2020(REU)). Investigated confidence intervals based on combined statistics.

#### References

- ▶ Bhoj, D.S. (1978). Testing equality of means of correlated variates with missing data on both responses. *Biometrika*, 65:225-228.
- ▶ Bhoj, D.S. (1989). On comparing correlated means in the presence of incomplete data. *Biometrical Journal*, 31:279–288.
- Dubnicka, S.R., Blair, R.C., Hettmansperger, T.P. (2002). Rank-based procedures for mixed paired and two-sample designs. *Journal of Modern Applied Statistical Methods*, 1:32-41.
- Einsporn, R.L., Habtzghi, D. (2013). Combining paired and two-sample data using a permutation test. *Journal of Data Science*, 11:767-779.
- ▶ Johnson, E. N. (2018). Permutation Tests for Mixed Paired and Two-Sample Designs.[Unpublished masters' thesis]. University of North Carolina, Greensboro.

#### References

- Magel, R.C., Fu, R. (2014). Proposed nonparametric test for the mixed two-sample design. *Journal of Statistical Theory* and Practice, 8:221-237.
- Wang, R. (under review). Comparing Confidence Intervals for Mixed Paired-Unpaired Data.