Survival extrapolation - Supplementary Appendix

NCPE

October 2024

Importance sampling: model diagnostics, parameter distributions, and survival estimates

We can now examine importance sampling diagnostics, comparisons of likelihood and posterior parameter distributions, and survival time distributions, using the function expert_surv_viz_gg.

Table 1: Parameter estimates obtained via MLE: Exponential

Table 2: Covariance matrix obtained via MLE: Exponential

	rate
rate	0.0169491

Table 3: Parameter estimates obtained via Importance Sampling: Exponential

Table 4: Covariance matrix obtained via Importance Sampling: Exponential

Table 5: Parameter estimates obtained via MLE: Weibull

	X
shape	0.2028128
scale	4.2127617

Figure 1: Importance sampling diagnostics: coefficient of variation (COV) and effective sample size (ESS) as functions of the tempering parameter alpha, Exponential distribution. The vertical line shows the optimal value of alpha identified by the algorithm.

Parameters - Exponential

Figure 2: Survival curve parameter distributions and covariance estimates obtained using trial data only (MLE) and combining trial data with external information (IS), Exponential distribution

Figure 3: Survival curves (median and 95% confidence intervals) obtained using trial data only (MLE) and combining trial data with external information (IS), Exponential distribution

Table 6: Covariance matrix obtained via MLE: Weibull

	shape	scale
shape	0.0147844	-0.0228526
scale	-0.0228526	0.0466213

Table 7: Parameter estimates obtained via Importance Sampling: Weibull

	X
shape	0.2199019
scale	4.1750757

Table 8: Covariance matrix obtained via Importance Sampling: Weibull

	shape	scale
shape	0.0094518	-0.0118402
scale	-0.0118402	0.0235769

Diagnostics - Weibull

Figure 4: Importance sampling diagnostics: coefficient of variation (COV) and effective sample size (ESS) as functions of the tempering parameter alpha, Weibull distribution. The vertical line shows the optimal value of alpha identified by the algorithm.

Figure 5: Survival curve parameter distributions and covariance estimates obtained using trial data only (MLE) and combining trial data with external information (IS), Weibull distribution

Figure 6: Survival curves (median and 95% confidence intervals) obtained using trial data only (MLE) and combining trial data with external information (IS), Weibull distribution

Table 9: Parameter estimates obtained via MLE: Gompertz

	X
shape	0.0389625
rate	-4.8682858

Table 10: Covariance matrix obtained via MLE: Gompertz

	shape	rate
shape	0.0006747	-0.0056125
rate	-0.0056125	0.0636359

Table 11: Parameter estimates obtained via Importance Sampling: Gompertz

	X
shape	0.0197027
rate	-4.7220927

Table 12: Covariance matrix obtained via Importance Sampling: Gompertz

	shape	rate
shape	0.0000970	-0.0013281
rate	-0.0013281	0.0316264

Table 13: Parameter estimates obtained via MLE: Log-normal

Х
4.5379239 0.5475716

Table 14: Covariance matrix obtained via MLE: Log-normal

	meanlog	sdlog
meanlog sdlog	$0.0696811 \\ 0.0247171$	$0.0247171 \\ 0.0114622$

Table 15: Parameter estimates obtained via Importance Sampling: Log-normal

	3
meanlog	4.2299230
sdlog	0.4404943

Figure 7: Importance sampling diagnostics: coefficient of variation (COV) and effective sample size (ESS) as functions of the tempering parameter alpha, Log-normal distribution. The vertical line shows the optimal value of alpha identified by the algorithm.

Figure 8: Survival curve parameter distributions and covariance estimates obtained using trial data only (MLE) and combining trial data with external information (IS), Log-normal distribution

Figure 9: Survival curves (median and 95% confidence intervals) obtained using trial data only (MLE) and combining trial data with external information (IS), Log-normal distribution

Table 16: Covariance matrix obtained via Importance Sampling: Log-normal

	meanlog	sdlog
meanlog sdlog	$\begin{array}{c} 0.0545435 \\ 0.0201378 \end{array}$	0.0201378 0.0100655

Diagnostics - Log-normal

Figure 10: Importance sampling diagnostics: coefficient of variation (COV) and effective sample size (ESS) as functions of the tempering parameter alpha, Log-logistic distribution. The vertical line shows the optimal value of alpha identified by the algorithm.

Table 17: Parameter estimates obtained via MLE: Log-logistic

	Х
shape	0.2450539
scale	4.0866467

Table 18: Covariance matrix obtained via MLE: Log-logistic

	shape	scale
shape	0.0144928	-0.0213001
scale	-0.0213001	0.0434079

Figure 11: Survival curve parameter distributions and covariance estimates obtained using trial data only (MLE) and combining trial data with external information (IS), Log-logistic distribution

Figure 12: Survival curves (median and 95% confidence intervals) obtained using trial data only (MLE) and combining trial data with external information (IS), Log-logistic distribution

Table 19: Parameter estimates obtained via Importance Sampling: Log-logistic

	Х
shape scale	0.3103417 3.9558382

Table 20: Covariance matrix obtained via Importance Sampling: Log-logistic

	shape	scale
shape	0.0111243	-0.0139385
scale	-0.0139385	0.0276608

Figure 13: Importance sampling diagnostics: coefficient of variation (COV) and effective sample size (ESS) as functions of the tempering parameter alpha, Gompertz distribution. The vertical line shows the optimal value of alpha identified by the algorithm.

Table 21: Parameter estimates obtained via MLE: Gen. Gamma

	Х
mu	4.1703317
sigma	-0.3599072
Q	1.2031485

Figure 14: Survival curve parameter distributions and covariance estimates obtained using trial data only (MLE) and combining trial data with external information (IS), Gompertz distribution

Figure 15: Survival curves (median and 95% confidence intervals) obtained using trial data only (MLE) and combining trial data with external information (IS), Gompertz distribution

Table 22: Covariance matrix obtained via MLE: Gen. Gamma

	mu	sigma	Q
mu	0.1026807	0.2899736	-0.3589428
sigma Q	0.2899736 -0.3589428	1.2303463 -1.6290913	-1.6290913 2.1837103

Table 23: Parameter estimates obtained via Importance Sampling: Gen. Gamma

	X
mu	4.1857610
sigma	-0.3818327
Q	1.2508022

Table 24: Covariance matrix obtained via Importance Sampling: Gen. Gamma

	mu	sigma	Q
mu	0.0219135	0.0031467	0.0125013
sigma	0.0031467	0.2238160	-0.3291366
Q	0.0125013	-0.3291366	0.5057176

Parameter variability

The table below shows 'Generalised variance,' i.e., determinants of variance-covariance matrices, of the parameter estimates obtained using trial data only (MLE) and combining trial data with external information (IS). Formally, the generalised variance gives the area of the 95% highest density ellipse and can be interpreted as a 1-parameter measure of parameter uncertainty, see e.g., https://stats.stackexchange.com/questions/12762/measure-of-spread-of-a-multivariate-normal-distribution .

Table 25: Generalised variance of model parameter distributions. Comparison between parameter estimates obtained using trial data only (MLE) and combining trial data with external information (IS).

Distribution	Distance	MLE. Variance	IS.Variance	Ratio
exponential	0.0957855	0.0169491	0.0138444	0.8168193
weibull	0.0413796	0.0001670	0.0000827	0.4948566
gompertz	0.1474564	0.0000114	0.0000013	0.1140791
lognormal	0.3260830	0.0001878	0.0001435	0.7641277
llogis	0.1461963	0.0001754	0.0001134	0.6466355
gengamma	0.0546778	0.0003562	0.0000405	0.1138456

Comparison with expertsury output

Plots of survival curves over time

Comparisons of survival curves (median and 95% confidence/credible intervals) obtained from the importance sampling method described in the paper, with those obtained from the fully Bayesian approach of Cooney & Whilte

Figure 16: Importance sampling diagnostics: coefficient of variation (COV) and effective sample size (ESS) as functions of the tempering parameter alpha, Gen. Gamma distribution. The vertical line shows the optimal value of alpha identified by the algorithm.

Parameters - Gen. Gamma

Figure 17: Survival curve parameter distributions and covariance estimates obtained using trial data only (MLE) and combining trial data with external information (IS), Gen. Gamma distribution

Figure 18: Survival curves (median and 95% confidence intervals) obtained using trial data only (MLE) and combining trial data with external information (IS), Gen. Gamma distribution

implemented in the expertsury package.

Figure 19: Survival curves (median and 95% confidence intervals) obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Exponential distribution

Comparisons of parameter distributions

Comparisons of survival curve parameter distributions obtained from the importance sampling method described in the paper, with those obtained from the fully Bayesian approach of Cooney & Whilte implemented in the expertsurv package.

Comparisons of AUC distributions

Area under the curve measures mean survival extrapolated over a lifetime (in these examples survival is capped at 100 years since some curves plateau).

Table 26: Comparison of probabilistic total area under the curve (mean lifetime OS) estimates, obtained from combining trial data with external information using the importance sampling (IS) method described in the paper, and with the fully Bayesian method of Cooney & White implemented in the expertsurv package. Values shown are probabilistic mean and 95% confidence/credible intervals.

Distribution	expertsurv	IS	Mean.Diff	Var.Ratio
Exponential	88.48 (70.48, 109.73)	87.74 (69.78, 109.28)	-0.74	1.06
Gen. Gamma	$62.23 \ (42.85, \ 103.18)$	$71.11 \ (38.84, \ 216.27)$	8.88	8.73

Distribution	expertsurv	IS	Mean.Diff	Var.Ratio
Gompertz	55.85 (39.56, 92.84)	53.89 (39.24, 85.24)	-1.96	0.44
Log-logistic	123.17 (77.65, 189.59)	119.06 (71.11, 181.96)	-4.11	1.01
Log-normal	202.54 (126.08, 311.84)	183.80 (97.93, 295.22)	-18.74	1.07
Weibull	$62.43 \ (45.73, 90.16)$	61.93 (44.18, 85.17)	-0.50	0.90

Comparisons of 5-year OS

Given that the external information concerns OS at 5 years, we compare estimates of 5-year OS obtained from the two methods.

Table 27: Comparison of 5-year OS estimates, obtained from combining trial data with external information using the importance sampling (IS) method described in the paper, with the fully Bayesian method of Cooney & White implemented in the expert-surv package.

Distribution	Output	mean	median	sd	lwr.95	upr.95
Exponential	IS	50.16%	50.28%	4.03%	42.32%	57.75%
Exponential	expertsurv	50.47%	50.56%	3.87%	42.68%	57.88%
Gen. Gamma	IS	38.94%	40.11%	9.74%	16.65%	55.04%
Gen. Gamma	expertsurv	40.08%	40.03%	7.12%	25.45%	53.88%
Gompertz	IS	35.63%	35.98%	8.87%	17.68%	51.87%
Gompertz	expertsurv	35.89%	36.01%	8.71%	18.84%	52.77%
Log-logistic	IS	44.89%	45.25%	5.98%	32.21%	55.46%
Log-logistic	expertsurv	45.88%	45.95%	5.37%	35.19%	56.30%
Log-normal	IS	52.94%	53.44%	5.72%	40.77%	62.69%
Log-normal	expertsurv	55.11%	55.20%	4.50%	46.42%	63.67%
Weibull	IS	40.05%	40.56%	6.65%	25.86%	51.30%
Weibull	expertsurv	40.32%	40.41%	6.53%	27.64%	52.69%

Figure 20: Survival curves (median and 95% confidence intervals) obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Weibull distribution

Figure 21: Survival curves (median and 95% confidence intervals) obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Log-normal distribution

Figure 22: Survival curves (median and 95% confidence intervals) obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Log-logistic distribution

Figure 23: Survival curves (median and 95% confidence intervals) obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Gompertz distribution

Figure 24: Survival curves (median and 95% confidence intervals) obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Gen. Gamma distribution

Parameters - Exponential

Figure 25: Survival curve parameter distributions and covariance estimates obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Exponential distribution

Figure 26: Survival curve parameter distributions and covariance estimates obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Weibull distribution

Parameters - Gompertz shape rate 40 -Corr: -0.747*** 30 shape expertsurv: -0.744*** 20 -10 -IS: -0.751*** -4.0 -4.5 -5.0 **-**-4.5 -5.0 0.000 0.025 0.050 -4.0 -0.025

Figure 27: Survival curve parameter distributions and covariance estimates obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Log-normal distribution

Figure 28: Survival curve parameter distributions and covariance estimates obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Log-logistic distribution

Figure 29: Survival curve parameter distributions and covariance estimates obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Gompertz distribution

Figure 30: Survival curve parameter distributions and covariance estimates obtained by combining trial data with external information using the importance sampling (IS) and expertsurv methods, Gen. Gamma distribution

Figure 31: Density plots comparing probabilistic total area under the curve (mean OS) distributions obtained from combining trial data with external information using the importance sampling (IS) method described in the paper, with those obtained from the fully Bayesian method of Cooney & White implemented in the expertsurv package.

Figure 32: Density plots comparing 5-year OS estimates, obtained from combining trial data with external information using the importance sampling (IS) method described in the paper, with those obtained from the fully Bayesian method of Cooney & White implemented in the expertsurv package.