Naïve Bayes Classifier

Mohan M J

Bayes' Theorem

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Bayes' Theorem

Mach1: 30 wrenches / hr

Mach2: 20 wrenches / hr

Out of all produced parts:

We can SEE that 1% are defective

Out of all defective parts:

We can SEE that 50% came from mach1

And 50% came from mach2

Question:

What is the probability that a part produced by mach2 is defective =? -> P(Mach1) = 30/50 = 0.6

-> P(Mach2) = 20/50 = 0.4

-> P(Defect) = 1%

-> P(Mach1 | Defect) = 50%

-> P(Mach2 | Defect) = 50%

-> P(Defect | Mach2) = ?

Naïve Bayes Classifier

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

$$P(Walks|X) = \frac{P(X|Walks) * P(Walks)}{P(X)}$$

$$P(Drives|X) = \frac{P(X|Drives) * P(Drives)}{P(X)}$$

$$P(Walks|X) v. s. P(Drives|X)$$

PYTHON CODE

Fitting Naive Bayes to the Training set
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)

