EBIO 5460 Data Science for Biological Research

Dr Brett Melbourne Professor, EBIO

brett.melbourne@colorado.edu

Office hours: Any time by appointment

Office: Ramaley N336 and Zoom

Pronouns: he, him, his

Git & GitHub

- Class Github organization
- Bookmark this:
- https://github.com/EBIO5460Fall2024
- Organization, syllabus, timetable
- Slides, code, homework
- You'll also submit your work here

Slides for today

- github.com/EBIO5460Fall2024
- Go to repositories
- Open class-materials
- 01_1_welcome_to_data_science_5460

Today

- What is data science?
- Introductions
- Syllabus & how we'll do the class

What is data science?

- Workflows and algorithms to learn from data
- Learning goal
 - Confident to use a range of skills and concepts to plan for, acquire, manage, analyze, infer or predict from, and report about datasets of any size in your area of biological research

Data science cultures

f can mean different things in different cultures

Breiman (2001) Denoho (2017)

Data science cultures

Model

Definition: a representation of nature

My philosophy

What analysis should I run on my data?
What package should I run my data through?

How can I best model nature?

Algorithm

- Procedure for solving a problem in terms of actions to execute and order to execute them
- Code

Algorithms in data science

- Model algorithm
- Training algorithm
- Inference (reliability) algorithm

Modeling with data

Algorithm classes

	Model	Training	Inference	
Natural process "science"	HiFi process (e.g. predator -prey, C cycle)	Frequentist: Optimization (e.g. max lik)	Samplingdistribution	Confidence intervals Prediction intervals
Data generative "statistics"	Generic functions (e.g. linear, normal)	Bayesian: Integration (e.g. MCMC)	Posteriorsample Cross-validation -	Credible intervals Posterior prediction intervals CV, AIC, BIC, LOOIC
Algorithmic "machine learning"	Generic algorithms (map inputs to outputs)	Optimization Other	Cross-validation	

Introductions

- Name (and pronouns)
- Masters or PhD (what year)?
- Advisor
- Department
- What fascinates you (your research)?
- Hopes for the course

Algorithms and models

- Understand the broad classes
- Frequentist, Bayesian, likelihood, information theory, predictionist
- Emphasize multi-level linear models
- We'll start by
 - 1) learning how to program algorithms
 - 2) considering simple models from each perspective above

Learning format

- Flipped, often. Short video lectures.
 Sometimes short live lectures.
- Collaborative learning. Work in small groups or share in small groups.
- Piazza: collaboratively discuss the preclass work. Collaborative learning is not only allowed but encouraged in this class! FERPA compliant.

Texts

- All on Google Drive or open source
- I'll provide all materials.
- This one is worth obtaining eventually:
- McElreath, R (2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. 2nd Ed.

Grading

- GitHub portfolio
- 50% continuous Github code commits
- 50% individual assignment

Homework

- Posted to GitHub
 - "preclass4wed"
- Update R & R studio
- Set up GitHub
- Intro to programming