Fyzikální praktikum 1. **pracovní úkol # 1**

FJFI ČVUT V Praze

Mechanické pokusy na vzduchové dráze

Michal Červeňák
dátum merania: 05.12. 2016
skupina: 4
Klasifikace:

1 Pracovní úkol

- 1. DU: Zopakujte si, jak sčítáme, odečítáme a násobíme veličiny s chybou.
- 2. Elastické srážky na vzduchové dráze. Při měření použijete 2 vozíčky o různých hmotnostech. Zvažte je na digitálních vahách. Jeden z nich ponechte před srážkou v klidu, druhému udělte nenulovou počáteční rychlost pomocí startovacího zařízení. Pro každou ze 3 startovacích rychlostí proveďte minimálně 10 měření. Poté obraťte konfiguraci vozíčků a měření opakujte. Celkově tedy máte alespoň 60 měření. Počet měření je nutné dodržet, bez potřebné statistiky nebudete schopni zpracovat výsledky měření.
- 3. Z naměřených dat rychlostí prvního vozíčku zjistěte, s jakou přesností jste schopni měřit rychlost v. Tuto chybu určete zvlášť pro každou startovací rychlost a obě hmotnosti vozíčků. Do grafu naneste závislost relativní a absolutní chyby rychlosti v závislosti na velikosti startovací rychlosti. Rozmyslete si, jaký je rozdíl mezi systematickou a statistickou chybou a která z nich je pro vaše měření zásadní, t.j. která vám výsledky více ovlivňuje. Pokuste se odhadnou systematickou chybu měření co je jejím hlavním zdrojem? Odhadněte brzdný koeficient vozíčku na dráze.
- 4. S použitím získané přesnosti měření rychlosti zjistěte s jakou přesností můžete měřit hybnost p a energii E (přesnost měření hmotnosti berte dle použitého přístroje). Určete, jak se vámi změřené celkové hybnosti resp. energie před a po srážce musí lišit, abyste je v rámci chyby měření mohli prohlásit za shodné. Pečlivě si rozmyslete, kolikrát se vám do finálního výsledku chyba rychlosti, potažmo hybnosti a energie promítne.
- 5. Z rychlosti vozíčků před srážkou a po srážce zjistěte změnu hybnosti Δp a změnu energie ΔE pro každou ze startovacích rychlostí a obě konfigurace vozíčků. Diskutujte, zda výsledek odpovídá očekávanému, tedy zda je změna hybnosti a energie v rámci předpokládaného chybového intervalu (s přesností 1σ , 2σ nebo 3σ). Rozhodněte, zda můžete zákony zachování považovat za ověřené.

- 6. Do grafu vyneste závislost celkové hybnosti po srážce p_0 na celkové hybnosti před srážkou p a závislost celkové energie po srážce E0 na celkové energii před srážkou E. V obou závislostech zobrazte i errorbary (viz poznámky na konci návodu) s předpokládanou chybou měření. Do grafu zaneste přímku ideálního případu, kdy $\Delta p = 0$, $\Delta E = 0$ a diskutujte, zda jste graficky dokázali či nedokázali zákony zachování. Pokud budete získaná data fitovat, nespoléhejte se pouze na Gnuplot, že vám výsledky sám správně nafituje, ale zjitěte a v protokolu uveďte jakou metodu fitu jste použili.
- 7. Pomocí tlakového senzoru změřte průběh síly při odrazu vozíku. Vypočtěte změnu hybnosti pomocí integrálu průběhu síly a srovnejte ji se změnou hybnosti změřené pohybovým senzorem. 1 Opakujte měření pro každou startovací rychlost alespoň 10x. Vyneste do grafu změnu hybnosti naměřenou silovým senzorem Δ pint v závislosti na změně hybnosti určené pohybovým senzorem Δ prychl, opět i s errorbary. Body proložte přímkou $\Delta p_{int} = a\Delta p_{rychl} + b$ a diskutujte rozdíl směrnice a posunu přímky oproti ideálnímu případu $a=1,\ b=0$.

2 Pomôcky

Vzduchová dráha s příslušenstvím, digitální váhy, 2x pohybový senzor PASCO, silový senzor PASCO, PC (DataStudio)

3 Teória

Odvodenie vzťahov nájdete na [1].

Hybnosť telesa pre RPP je

$$p = mv, (1)$$

kde m je hmotnosť vozíku a v je jeho rýchlosť.

Celkovú hybnosť sústavy určíme podľa vzťahu

$$\mathbf{p} = \sum_{i} \mathbf{p_i} \,, \tag{2}$$

kde \mathbf{p}_i je hybnosť telesa i.

Energiu telesa v našom prípade určíme ako

$$E = \frac{1}{2}mv^2, (3)$$

kde m je hmotnosť vozíku a v je jeho rýchlosť.

Celkovú energiu sústavy získame ako

$$E = \sum_{i} E_{i} \,, \tag{4}$$

kde E_1 je energia i-teho telesa.

3.0.1 Spracovanie chýb merania

Označme $\langle t \rangle$ aritmetický priemer nameraných hodnôt t_i , a Δt hodnotu $\langle t \rangle - t$, pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{5}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n(n-1)}},$$
(6)

pričom n je počet meraní.

4 Postup merania

- 1. Obidva vozíčky boli odvážené na digitálnych váhach, jeden samostatne druhý spolu s použitými závažiami
- 2. Oba boli položené na vzduchoví dráhu odrazovými plochami proti sebe
- 3. Jeden z vozíkov sa nastavil o odpaľovaciemu zariadeniu a bol pomocou neho uvedený do pohybu
- 4. Pomocou DataStudio boli zaznamenávané polohy obch vozíčkov pred a po páraze
- 5. pomocou programu DataStudio boli fitnuté rýchlosti vozíčkov pred a vzájomnom náraze
- 6. postup bol opakovaný pre každú kombináciu oddaľovaný vozíček poloha odpaľovacieho zariadenia $10\times$.
- 7. Následne bol jeden z pohybových senzorov nahradený senzorom sily
- pre každú pozíciu odpaľovacieho zariadenia bolo nameraných 5 odpalov a odrazov od senzoru.
- 9. pri každom odpale sa zaznamenávala poloha s sila. z ktorých s následne určila rýchlosť a impulz.

5 Výsledky merania

Označením $i\to j$ označujeme pokus, kde vozíček č. i naráža do stojaceho vozíku č j. Do tabuliek Tab. 1, Tab. 2, Tab. 3, Tab. 4, Tab. 5 a Tab. 6 sú vynesené namerané dáta rýchlosti pred v^B a po v^A náraze pre vozíčky č.1 s hmotnosťou $m_1=247,98\,\mathrm{g}$ a č.2 $m=208,54\,\mathrm{g}$.

Z nich boli dopočítané podľa 1 a 2 hybnosti pred p^B a po p^A náraze a ich závislosť bola vynesená od grafu Obr. 1. Ďalej bola vypočítaná podľa 3 a 4 celková energia sústavy pred E^B a po E^A náraze a ich závislosť bola vynesená od grafu Obr. 2.

Obr. 1: Závislosť hybnosti pred p^B a hybnosti po zrážke p^A pre jednotlivé kombinácie hmotností a štartovacích impulzov

Scriptom v v prílohe bol vypočítaný impulz sily a vynesený do tabuľky Tab. 7 a následne do grafu Obr. 3.

Z tabuliek Tab. 1, Tab. 2, Tab. 3, Tab. 4, Tab. 5 a Tab. 6 boli za pomoci vzťahov 5 a 6. boli vypočítané hodnoty Δv_1^B a $\langle v_1^B \rangle$ pre jednotlivé kombinácie a vynesené do tabuľky 8 a následne do grafu 4.

6 Diskusia & Záver

Meraním sme zistili a vypočítali chyby resp. presnosť s akou sa dá určovať rýchlosť vozíčku. Tieto hodnoty sú v tabuľke 8.

V našom meraní sú zdrojmi systematických chýb predovšetkým prehnutie dráhy, trenie vozíkov o dráhu. Prehnutie dráhy spôsobuje len veľmi malé zrýchlenie v porovnaní s rýchlosťami ktoré vozíky dosahujú. Toto prehnutie sa v strednej časti dráhy kompenzovalo trením a tak pohyb sa stával RPP.

Odhad brzdného koeficientu dráha je dlhá $l=\sim 2\,\mathrm{m}$ vozíček ju po odraze od tlakového senzoru skoro nedôjde a sem tam sa zastavil už na dráhe. Teda

$$a = \frac{v^2}{2l} \,,$$

po dosadení dostávame $a = \sim 0.004 \,\mathrm{ms}^{-2}$.

Z obrázkov Obr. 1 a 2, že skoro via ako 60% nameraných hodnôt padlo v σ_0 do predpokladanej závislosti a teda môžeme aj ZZE aj ZZH považovať za **nevyvrátený**. Základný ma najväčším problémom tohoto merania je senzor. Na toto meranie je hlboko nevhodný kvôli svojej veľmi malej snímacej frekvencií pri náraze zaznamenal cca 7 hodnôt. Na presné meranie by sme potrebovali väčšiu

Obr. 2: Závislosť energie pred E^B a energie po zrážke E^A pre jednotlivé kombinácie hmotností a štartovacích impulzov

Obr. 3: Závislosť impulzu sily Iod zmeny hybnosti pvyvolané a lineárny fit $(1.43\pm0.07)\,x-(0.039\pm0.015)$

Obr. 4: Závislosť rýchlosti v na absolútnej (abs. ch.) Δv a relatívnej (rel. chyb.) σ_v chybe, kde "V" je najväčšia "S" je stredná a "M" je najmenšia pozícia odpaľovacieho zariadenia, č. vyjadruje číslo vozíka.

jemnosť dát. Teda impulz sily vychádza menší ako rozdiel hybnosti získavaných z rýchlostí.

$\frac{v_1^B}{[\mathrm{m/s}]}$	$\frac{v_1^A}{[\mathrm{m/s}]}$	$\frac{v_2^B}{[\mathrm{m/s}]}$	$\frac{v_2^A}{[\mathrm{m/s}]}$	$\frac{p^B}{[\text{mN}\cdot\text{s}]}$	$\frac{p^A}{[\text{mN}\cdot\text{s}]}$	$\frac{\Delta p}{[\text{mN} \cdot \text{s}]}$	$\frac{E^B}{[\mathrm{mJ}]}$	$\frac{E^A}{[\mathrm{mJ}]}$	$\frac{\Delta E}{[\mathrm{mJ}]}$
0,69	0,08	0,00	0,67	169,87	160,25	9,61	58,18	47,66	10,52
0,56	0,03	0,00	0,57	138,62	127,98	10,64	38,74	34,49	4,25
0,60	0,07	0,00	0,59	148,29	139,98	8,31	44,34	37,20	7,14
0,64	0,06	0,00	0,66	159,70	151,61	8,09	51,42	45,69	5,73
0,64	0,05	0,00	0,64	157,96	145,74	12,23	50,31	43,26	7,05
0,58	0,03	0,00	0,56	143,83	125,14	18,68	41,71	33,17	8,54
0,62	0,06	0,00	0,64	153,25	148,64	4,62	$47,\!35$	42,81	4,54
0,52	0,06	0,00	0,56	128,45	130,56	-2,11	$33,\!27$	32,98	0,29
0,52	0,05	0,00	0,58	128,45	134,15	-5,70	$33,\!27$	35,21	-1,94
0,65	0,06	0,00	0,63	160,44	146,35	14,09	51,90	42,08	9,83
0,64	0,06	0,00	0,66	157,96	153,36	4,60	50,31	46,29	4,02

Tab. 1: Namerané hodnoty rýchlosti pred zrážkou v_1^B a v_2^B a po zrážke v_1^A a v_2^A a z nich vypočítané hodnoty celkovej hybnosti pred p^B a po zrážke p^A , rozdiel hybnosti Δp a celkové energie pred E^B a po E^A zrážke a ich rozdiel ΔE pre "najväčšiu" pozíciu štartovacieho zariadenia a naráža ťažší vozík do ľahšieho

v_1^B	v_1^A	v_2^B	v_2^A	p^B	p^A	Δp	E^B	E^A	ΔE
[m/s]	[m/s]	[m/s]	[m/s]	[mN·s]	[mN·s]	$[mN \cdot s]$	[mJ]	[mJ]	[mJ]
0,31	0,02	0,00	0,32	$76,\!38$	71,52	$4,\!86$	11,76	10,41	1,35
0,46	0,04	0,00	0,46	$113,\!57$	106,19	7,39	26,01	22,63	3,38
0,52	0,05	0,00	0,52	128,45	119,79	8,66	33,27	28,16	5,11
0,50	0,04	0,00	0,51	122,75	115,09	$7,\!66$	30,38	26,88	3,50
0,46	0,04	0,00	0,47	114,81	107,74	7,07	$26,\!58$	23,31	3,27
0,48	0,05	0,00	0,49	118,53	113,61	4,93	28,33	25,21	3,12
0,36	0,02	0,00	0,38	90,02	83,76	$6,\!26$	16,34	14,73	1,61
0,49	0,04	0,00	0,50	120,77	113,64	$7,\!12$	29,41	25,77	3,64
0,48	0,05	0,00	0,50	119,53	116,89	$2,\!64$	28,81	26,11	2,70
0,46	0,03	0,00	0,47	114,32	105,91	8,40	$26,\!35$	23,07	3,28
0,50	0,05	0,00	0,52	124,24	119,57	$4,\!66$	31,12	27,95	3,17

Tab. 2: Namerané hodnoty rýchlosti pred zrážkou v_1^B a v_2^B a po zrážke v_1^A a v_2^A a z nich vypočítané hodnoty celkovej hybnosti pred p^B a po zrážke p^A , rozdiel hybnosti Δp a celkové energie pred E^B a po E^A zrážke a ich rozdiel ΔE pre "strednú" pozíciu štartovacieho zariadenia a naráža ťažší vozík do ľahšieho

$\frac{v_1^B}{[\mathrm{m/s}]}$	$\frac{v_1^A}{[\mathrm{m/s}]}$	$\frac{v_2^B}{[\mathrm{m/s}]}$	$\frac{v_2^A}{[\mathrm{m/s}]}$	$\frac{p^B}{[\text{mN} \cdot \text{s}]}$	$\frac{p^A}{[\text{mN}\cdot\text{s}]}$	$\frac{\Delta p}{[\text{mN} \cdot \text{s}]}$	$\frac{E^B}{[\mathrm{mJ}]}$	$\frac{E^A}{[\mathrm{mJ}]}$	$\frac{\Delta E}{[\mathrm{mJ}]}$
0,29	0,02	0,00	0,25	72,41	57,51	14,90	10,57	6,67	3,90
0,25	0,03	0,00	$0,\!25$	62,24	59,81	$2,\!43$	7,81	6,82	0,99
0,30	0,03	0,00	$0,\!25$	74,89	$59,\!25$	$15,\!64$	11,31	6,39	4,92
0,28	0,02	0,00	0,30	70,43	69,16	$1,\!26$	10,00	9,64	0,36
0,27	0,03	0,00	0,28	66,71	63,77	2,94	8,97	7,97	1,00
0,30	0,04	0,00	0,31	74,64	73,75	$0,\!89$	11,23	10,19	1,05
0,28	0,03	0,00	0,29	68,19	67,08	$1,\!11$	9,38	8,64	0,74
0,26	0,02	0,00	$0,\!25$	$65,\!47$	57,31	8,15	8,64	6,43	2,21
0,28	0,03	0,00	0,26	68,69	61,05	$7,\!64$	9,51	7,09	2,42
0,25	0,03	0,00	0,26	61,00	60,50	$0,\!50$	7,50	6,94	0,57
0,26	0,02	0,00	$0,\!27$	64,23	$62,\!24$	1,98	8,32	7,72	0,59

Tab. 3: Namerané hodnoty rýchlosti pred zrážkou v_1^B a v_2^B a po zrážke v_1^A a v_2^A a z nich vypočítané hodnoty celkovej hybnosti pred p^B a po zrážke p^A , rozdiel hybnosti Δp a celkové energie pred E^B a po E^A zrážke a ich rozdiel ΔE pre "najmenšiu" pozíciu štartovacieho zariadenia a naráža ťažší vozík do ľahšieho

$\frac{v_2^B}{[\mathrm{m/s}]}$	$\frac{v_2^A}{[\mathrm{m/s}]}$	$\frac{v_1^B}{[\mathrm{m/s}]}$	$\frac{v_1^A}{[\mathrm{m/s}]}$	$\frac{p^B}{[\text{mN} \cdot \text{s}]}$	$\frac{p^A}{[\text{mN}\cdot\text{s}]}$	$\frac{\Delta p}{[\text{mN} \cdot \text{s}]}$	$\frac{E^B}{[\mathrm{mJ}]}$	$\frac{E^A}{[\mathrm{mJ}]}$	$\frac{\Delta E}{[\mathrm{mJ}]}$
0,743	0,0552	0	0,653	154,95	150,42	4,53	57,56	53,19	4,37
0,710	0,0396	0	0,602	148,06	141,03	7,04	52,56	45,10	7,46
0,771	0,0439	0	0,670	160,78	156,99	3,79	61,98	55,86	6,12
0,753	0,0162	0	0,635	157,03	154,09	2,94	59,12	50,02	9,10
0,743	0,0760	0	0,674	154,95	151,29	3,66	57,56	56,93	0,63
0,785	0,0555	0	0,664	163,70	153,08	10,62	64,25	54,99	$9,\!27$
0,755	0,0293	0	0,553	$157,\!45$	131,02	26,42	59,44	38,01	21,43
0,782	0,0421	0	0,666	163,08	156,38	6,70	63,76	55,18	8,58
0,776	0,0430	0	0,713	161,83	167,84	-6,02	62,79	63,23	-0,44
0,778	0,051	0	0,673	162,24	156,26	5,99	63,11	56,43	6,68

Tab. 4: Namerané hodnoty rýchlosti pred zrážkou v_1^B a v_2^B a po zrážke v_1^A a v_2^A a z nich vypočítané hodnoty celkovej hybnosti pred p^B a po zrážke p^A , rozdiel hybnosti Δp a celkové energie pred E^B a po E^A zrážke a ich rozdiel ΔE pre "najväčšiu" pozíciu štartovacieho zariadenia a naráža ľahší vozík do ťažšieho

$\frac{v_2^B}{[\mathrm{m/s}]}$	$\frac{v_2^A}{[\mathrm{m/s}]}$	$\frac{v_1^B}{[\mathrm{m/s}]}$	$\frac{v_1^A}{[\mathrm{m/s}]}$	$\frac{p^B}{[\text{mN} \cdot \text{s}]}$	$\frac{p^A}{[\text{mN}\cdot\text{s}]}$	$\frac{\Delta p}{[\text{mN} \cdot \text{s}]}$	$\frac{E^B}{[\mathrm{mJ}]}$	$\frac{E^A}{[\mathrm{mJ}]}$	$\frac{\Delta E}{[\mathrm{mJ}]}$
0,555	0,0425	0	0,538	115,74	124,55	-8,81	32,12	36,08	-3,96
0,567	0,0378	0	0,486	118,24	112,64	5,61	33,52	29,43	4,09
0,556	0,0415	0	0,467	115,95	107,15	8,80	32,23	27,22	5,01
0,559	0,0410	0	0,473	$116,\!57$	108,74	7,83	$32,\!58$	27,92	4,67
0,552	0,0409	0	0,442	115,11	101,08	14,04	31,77	24,40	7,37
0,543	0,0505	0	0,447	113,24	100,32	12,92	30,74	25,04	5,70
0,571	0,0343	0	0,482	119,08	112,37	6,70	34,00	28,93	5,07
0,544	0,0332	0	0,478	113,45	111,61	1,83	30,86	28,44	2,41
0,535	0,0202	0	0,459	111,57	109,61	1,96	29,84	26,16	3,68
0,550	0,0356	0	0,461	114,70	106,89	7,80	31,54	26,48	5,06

Tab. 5: Namerané hodnoty rýchlosti pred zrážkou v_1^B a v_2^B a po zrážke v_1^A a v_2^A a z nich vypočítané hodnoty celkovej hybnosti pred p^B a po zrážke p^A , rozdiel hybnosti Δp a celkové energie pred E^B a po E^A zrážke a ich rozdiel ΔE pre "strednú" pozíciu štartovacieho zariadenia a naráža ľahší vozík do ťažšieho

v_2^B	v_2^A	v_1^B	v_1^A	p^B	p^A	Δp	E^B	E^A	ΔE
[m/s]	[m/s]	[m/s]	[m/s]	$[mN \cdot s]$	$[mN \cdot s]$	$[mN \cdot s]$	[mJ]	[mJ]	[mJ]
0,316	0,0335	0	0,272	65,90	74,44	-8,54	10,41	$9,\!29$	1,12
0,337	0,0061	0	0,292	70,28	73,68	-3,40	11,84	10,58	1,27
0,328	0,0251	0	0,272	68,40	72,68	-4,28	11,22	9,24	1,98
0,270	0,0351	0	0,144	56,31	43,03	13,28	7,60	2,70	4,90
0,334	0,0254	0	0,299	69,65	79,44	-9,79	11,63	11,15	0,48
0,335	0,0399	0	0,293	69,86	80,98	-11,12	11,70	10,81	0,89
0,333	0,0378	0	0,272	69,44	75,33	-5,89	11,56	$9,\!32$	2,24
0,338	0,0381	0	0,294	70,49	80,85	-10,36	11,91	10,87	1,04
0,325	0,0433	0	0,299	67,78	83,18	-15,40	11,01	11,28	-0,27
0,312	0,0118	0	0,273	65,06	70,16	-5,09	10,15	9,26	0,89

Tab. 6: Namerané hodnoty rýchlosti pred zrážkou v_1^B a v_2^B a po zrážke v_1^A a v_2^A a z nich vypočítané hodnoty celkovej hybnosti pred p^B a po zrážke p^A , rozdiel hybnosti Δp a celkové energie pred E^B a po E^A zrážke a ich rozdiel ΔE pre "najmenšiu" pozíciu štartovacieho zariadenia a naráža lahší vozík do ťažšieho

trm	v^B	v^A	I	p^B	p^A
typ	[m/s]	[m/s]	$\overline{[N \cdot s]}$	$[mN \cdot s]$	$[mN \cdot s]$
n	0,790	0,321	0,2175	0,16	0,067
n	0,781	0,305	0,2145	0,16	0,063
n	0,776	0,276	$0,\!2205$	0,16	0,057
n	0,762	$0,\!275$	0,2089	$0,\!15$	0,057
n	0,795	0,292	0,2222	0,16	0,061
s	0,557	0,217	0,1562	0,11	0,045
s	0,595	0,219	0,1673	0,12	0,045
s	0,577	0,209	0,1617	0,12	0,043
s	0,491	0,193	0,1372	0,10	0,040
s	0,580	0,224	0,1638	0,12	0,046
m	0,300	0,141	0,0872	0,06	0,029
m	0,313	0,142	0,0896	0,06	0,029
m	0,285	0,123	0,0804	0,05	0,025
m	0,351	0,151	0,0957	0,07	0,031
m	0,262	0,125	0,0760	0,05	0,026

Tab. 7: Namerané hodnoty rýchlosti pred nárazom v^B a po náraze v^A a z nich vypočítané hodnoty celkovej hybnosti pred p^B a po zrážke p^A , vypočítaný impulz sily I.

Tabuľka	$\frac{v_1^B}{[\mathrm{m/s}]}$
Tab. 1	$0,60 \pm 0,05$
Tab. 1	$0,46 \pm 0,06$
Tab. 1	$0,27 \pm 0,02$
Tab. 1	0.76 ± 0.02
Tab. 1	0.55 ± 0.01
Tab. 1	0.32 ± 0.02

Tab. 8: Namerané hodnoty rýchlosti pred nárazom v^B a po náraze v^A a z nich vypočítané hodnoty celkovej hybnosti pred p^B a po zrážke p^A , vypočítaný impulz sily I.

7 Prílohy

```
<?php
files = scandir(_-DIR_-);
echo '';
foreach ($files as $file) {
    if(is_dir($file)) continue;
    if (\$ file \stackrel{\cdot}{=} "..") continue;
    if ($file == '.') continue;
    $info = pathinfo($file);
    if($info['extension'] != 'txt') continue;
    $content = str_replace(',',','.', file_get_contents('./'. $file));
    slines = explode("\n", scontent);
    unset($lines[0],$lines[1]);
    soldTime = 0;
    sum = 0;
    foreach ($lines as $line) {
        if($line == "") continue;
        list (newTime, v) = explode("\t", line);
        if(\$v > 0.5)
            sum += (snewTime - soldTime) * sv;
        $oldTime = $newTime;
    echo "$file\t$sum\n";
```

Reference

[1] Mechanické pokusy na vzduchové dráze [cit. 19.12.2016]Dostupné po prihlásení z Kurz: Fyzikální praktikum I:https://praktikum.fjfi.cvut.cz/pluginfile.php/102/mod_resource/content/9/Vzduchova_draha-2015-Oct-01.pdf