Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Направление программная инженерия Образовательная программа системное и прикладное программное обеспечение

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1 курса «Теория функций комплексной переменной»

Шубин Егор Вячеславович Ларионов Владислав Васильевич Мухамедьяров Артур Альбертович

Поток: Р3209

Преподаватель:

Краснов Александр Юрьевич

Содержание

Лабораторная работа № 1.	•
1. Текст задания:	Ç
2. Задание 1	
1. Свойство 1	4
2. Свойство 2	٦
3. Задание 2	
4. Задание 3	7
5. Задание 4. Дерево Пифагора.	

Лабораторная работа № 1

1. Текст задания:

- 1. Доказательство свойств для множества Мандельброта.
- 2. Код программ для построения множеств Мандельброта и Жюлиа.
- 3. Набор изображений, построенных при разном числе итераций и приближении.
- 4. Текст-описания структуры и построения ранее неразобранного фрактала. Его визуализации.

2. Задание 1

2. 1. Свойство 1

Если $c \in M$ (где M — множество Мандельброта), то $\overline{c} \in M$, то есть множество симметрично относительно вещественной оси.

Доказательство:

Рассмотрим итерационный процесс для множества Мандельброта:

$$z_0 = 0$$
, $z_{n+1} = z_n^2 + c$.

Точка c принадлежит множеству M, если последовательность $\{z_n\}$ ограничена.

Рассмотрим сопряжённое число \bar{c} . Для \bar{c} итерация будет:

$$w_0 = 0$$
, $w_{n+1} = w_n^2 + \overline{c}$.

Нужно показать, что если $\{z_n\}$ ограничена, то $\{w_n\}$ также ограничена. Применяя операцию комплексного сопряжения к итерации для c:

$$z_{n+1} = z_n^2 + c,$$

получаем:

$$\overline{z_{n+1}} = \overline{z_n^2 + c} = \overline{z_n^2} + \overline{c} = (\overline{z_n})^2 + \overline{c},$$

так как $\overline{z^2} = \overline{z}^2$, т.к. для любого комплексного числа

$$z^{2} = (x + yi)^{2} = x^{2} - y^{2} + 2xyi, \quad \overline{z^{2}} = x^{2} - y^{2} - 2xyi,$$

 $(\overline{z})^{2} = (x - yi)^{2} = x^{2} - y^{2} - 2xyi,$

Таким образом:

$$\overline{z_0} = 0, \quad \overline{z_{n+1}} = (\overline{z_n})^2 + \overline{c}.$$

Это совпадает с итерацией для w_n . Значит, $w_n = \overline{z_n}$. Поскольку $\{z_n\}$ ограничена, то $|w_n| = |\overline{z_n}| = |z_n|$, и последовательность $\{w_n\}$ также ограничена. Следовательно, $\overline{c} \in M$.

Таким образом, множество Мандельброта симметрично относительно вещественной оси.

Ч.Т.Д.

2. 2. Свойство 2

Если |c| > 2, то последовательность $z_{n+1} = z_n^2 + c$ с $z_0 = 0$ неограничена, и, следовательно, c не принадлежит множеству Мандельброта.

Доказательство:

Рассмотрим итерацию:

$$z_0 = 0$$
, $z_{n+1} = z_n^2 + c$.

Предположим, что |c| > 2. Покажем, что последовательность $\{z_n\}$ неограничена.

Рассмотрим модуль итерации:

$$|z_{n+1}| = |z_n^2 + c|.$$

По неравенству треугольника:

$$|z_n^2 + c| \ge |z_n|^2 - |c|$$
.

Предположим, что на некотором шаге $|z_n| > |c|$. Тогда:

$$|z_{n+1}| \ge |z_n|^2 - |c|.$$

Так как |c| > 2, выберем $|z_n| > |c|$. Тогда $|z_n|^2 - |c| > |z_n|$, потому что:

$$|z_n|^2 - |c| > |z_n|^2 - |z_n| = |z_n|(|z_n| - 1),$$

и если $|z_n| > 1$, то $|z_n|(|z_n| - 1) > |z_n|$, при $|z_n| > |c| > 2$.

Теперь покажем, что последовательность $|z_n|$ становится больше |c|. Начнём с $z_0=0$:

$$|z_1| = |z_0^2 + c| = |c| > 2.$$

Для z_2 :

$$|z_2| = |z_1^2 + c| \ge |z_1|^2 - |c| = |c|^2 - |c|.$$

Так как |c|>2, рассмотрим функцию $f(x)=x^2-x$. Для x>2:

$$f(x) = x(x-1) > x,$$

так как x-1>1. Таким образом, $|z_2|\geq |c|^2-|c|>|c|$, поскольку $|c|^2-|c|=|c|(|c|-1)>|c|$.

Теперь предположим, что $|z_n| > |c|$. Тогда:

$$|z_{n+1}| \ge |z_n|^2 - |c| > |z_n|^2 - |z_n| = |z_n|(|z_n| - 1).$$

Так как $|z_n|>|c|>2$, то $|z_n|-1>1$, и $|z_{n+1}|>|z_n|$. Следовательно, последовательность $|z_n|$ строго возрастает, причём $|z_n|>|c|>2$.

Более того, $|z_{n+1}| \ge |z_n|^2 - |c|$. Так как $|z_n| > 2$, то $|z_n|^2 > 4$, и $|z_n|^2 - |c|$ растёт. Это означает, что $|z_n|$ растёт экспоненциально. Следовательно, $|z_n| \to \infty$, и последовательность неограничена.

Таким образом, если |c| > 2, то $c \notin M$.

3. Задание 2

Код выполненного задания

Рис. 1.1: Визуализация на 25 итераций

Рис. 1.2: Визуализация на 50 итераций

Рис. 1.3: Визуализация на 100 итераций

Рис. 1.4: Визуализация на 200 итераций

4. Задание 3

Код выполненного задания

Рис. 1.5: Визуализация при c=-0.5251993+0.5251993i

Рис. 1.6: Визуализация при -0.7 + 0.27015i

Рис. 1.7: Визуализация при c = -0.8 + 0.156i

Рис. 1.8: Визуализация при c = 0.285 + 0.01i

5. Задание 4. Дерево Пифагора.

Код выполненного задания

Дерево Пифагора — это фрактал, основанный на фигуре, известной как «Пифагоровы штаны», которая представляет собой дерево, построенное итеративно с использованием геометрических преобразований. Начинается с квадрата, к которому добавляются два меньших квадрата, образующих прямоугольный треугольник (по теореме Пифагора). На каждом следующем шаге к новым квадратам добавляются свои пары квадратов, уменьшенных по масштабу с определенным коэффициентом. Мы использовали коэффициент 0.3.

Мы получили следующие фракталы для разного кол-ва итераций:

Рис. 1.9: Визуализация на 5 итераций

Рис. 1.10: Визуализация на 7 итераций

Рис. 1.11: Визуализация на 9 итераций

Рис. 1.12: Визуализация на 11 итераций