

MATRIX SCALAR PRODUCT

Why

We have seen that the matrices are a vector space. Are they an inner product space?

Definition

The matrix scalar product of $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{n \times k}$ is the following product

$$\sum_{i=1}^{n} \sum_{j=1}^{k} a_{ij} b_{ij}.$$

Using the matrix trace, we can denote this as $\operatorname{tr} A^{\top} B$. Some authors call this the *Euclidean matrix scalar product*, matrix inner product or Frobenius inner product.

Proposition 1. The matrix scalar product is an inner product.¹

For example, symmetry of the product is a consequence of the fact that a square matrix and its tranpose have identical traces. Commutativity of the trace yields $\operatorname{tr} A^\top B = \operatorname{tr} B A^\top$, where the LHS is the scalar product of B^\top and A^\top . In other words, transposition "preserves" the matrix scalar product.

With this inner product, $\mathbf{R}^{n\times k}$ is a Euclidean vector space (see Inner Products) of dimension nk. For the case of k=1, we recover a model² for the usual space \mathbf{R}^n .

Notation

We commonly denote the matrix inner product by $\langle A, B \rangle$.

Induced norm

The matrix inner product induces a norm in the usual way. This norm is sometimes called the *Frobenius norm* and is often denoted for a matrix

¹Future editions will provide an account.

²Future editions will define this term.

 $A \in \mathbf{R}^{m \times n}$ by $||A||_F$.

