$\begin{array}{c} \text{Real Analysis} -- \text{MIT MATH} \\ 18.100 \text{A} \end{array}$

Author

Suroj Plalunga

Contents

1	Lec	cture 9: Limsup, Liminf and the Bolzano-Weierstrass Theorem	3
	1.1	Review: Binomial Theorem, Squeeze Theorem	3
	1.2	Limsup/Liminf	ŀ
	1.3	Theorem: (Bolzano-Weierstrass)	7
		1.3.1 Theorem: (Bolzano-Weierstrass) Every bounded sequence has convergence Subse-	
		quence	7

Chapter 1

Lecture 9: Limsup, Liminf and the Bolzano-Weierstrass Theorem

1.1 Review: Binomial Theorem, Squeeze Theorem

Review

Theorem 1.1.

$$\lim_{n \to \infty} x_n = x \iff \lim_{n \to \infty} |x_n - x| = 0$$

Theorem 1.2. (Squeeze theorem). If $\forall n \in \mathbb{N}$ such that $\forall n \geq m \ a_n \leq x_n \leq b_n$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L \implies \lim_{n \to \infty} x_n = L$$

Theorem 1.3. $\lim_{n\to\infty} c^n = 0$ if |c| < 1

Binomial Expansion

Theorem 1.4. $\forall n \in \mathbb{N}, x, y \in \mathbb{R}$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Theorem

- 1. If p > 0 then $\lim_{n \to \infty} \frac{1}{n^p} = 0$
- 2. If p > 0 then $\lim_{n \to \infty} p^{1/n} = 1$
- $3. \lim_{n \to \infty} n^{1/n} = 1$

Pf.

1. Let a>0 choose $M\in\mathbb{N}$ such that $M>(\frac{1}{\varepsilon})^p$ then, if $n\geq M$

$$\left| \frac{1}{n^p} - 0 \right| = \frac{1}{n^p} \le \frac{1}{M^p} < \varepsilon$$

2. For p = 1 clear!

$$p-1$$
: if $p>1 |p^{1/n}-1|$

if
$$x \ge -1$$
 then $(1+x)^n \ge a + nx$

then,

$$p = (1 + (p^{1/n} - 1))^n \ge 1 + n(p^{1/n} - 1)$$

$$\iff \frac{p - 1}{n} \ge p^{1/n} - 1 \ge 0; \quad (p \ge 1)$$

By S.T(1.2

$$\lim_{n \to \infty} \frac{p-1}{n} = 0$$

and

$$\lim_{n \to \infty} 0 = 0$$

$$\implies \lim_{n \to \infty} p^{1/n} - 1 = 0$$

$$\implies \lim_{n \to \infty} |p^{1/n} - 1| = 0, (p \ge 1)$$

By Theorem 1.1

$$\lim_{n \to \infty} p^{1/n} = 1$$

For p < 1, then

$$\lim_{n \to \infty} p^{1/n} = \lim_{n \to \infty} \frac{1}{\left(\frac{1}{n}\right)^{1/n}}$$

By Previous case, $\frac{1}{p} > 1$ and limit respect fraction.So,

$$\lim_{n \to \infty} \frac{1}{\left(\frac{1}{p}\right)^{1/n}} = 1$$

Thus, For any p > 0

$$\lim_{n \to \infty} p^{1/n} = 1$$

3. Let $x_n = n^{1/n} - 1 > 0$

W.T.S $\lim_{n\to\infty} x_n = 0$ Then

$$n = (1 + x_n)^n; \quad (1 + \underbrace{n^{1/n} - 1}_{x_n})^n = n$$

By Binomial expansion 1.4

$$n = (1 + x_n)^n = \sum_{k=0}^n \binom{n}{k} x_n^k \ge \binom{n}{2} x_n^2 = \frac{n!}{2!(n-2)!} x_n^2 = \frac{n(n-1)}{2} x_n^2$$

Thus, $\forall n > 1$

$$0 \le x_n \le \sqrt{\frac{2}{n-1}}$$

By S.T 1.2

$$\lim_{n \to \infty} x_n = 0$$

$$\lim_{n \to \infty} n^{1/n} - 1 = 0$$

By Theorem 1.1

$$\lim_{n \to \infty} n^{1/n} = 1$$

1.2 Limsup/Liminf

QUESTION

- **Q.** Does every bounded Sequence have a convergent subsequence?
- A. Yes, Bolzano-Weierstrass Theorem.

Definition: Limsup/Limlinf

Definition 1.1. Let $\{x_n\}$ be the bounded Sequence. We define, if they exist,

- 1. $\limsup x_n := \lim_{n \to \infty} (\sup \{x_k : k \ge n\})$
- 2. $\liminf x_n := \lim_{n \to \infty} (\inf\{x_k : k \ge n\})$

Theorem

Theorem 1.5. Let $\{x_n\}$ be bounded sequence and Let

$$a_n = \sup\{x_k : k \ge n\}$$

$$b_n = \inf\{x_k : k \ge n\}$$

Then,

1. $\{a_n\}$ is monotone decreasing bounded. $\{b_n\}$ is monotone increasing bounded. Thus

$$\lim_{n\to\infty} a_n$$
 and $\lim_{n\to\infty} b_n$ exists.

2. $\liminf x_n \leq \limsup x_n$

_ o ____

Theorem

Theorem 1.6. If $A, B \subseteq \mathbb{R}, A, b \neq \phi$, A and B are bounded and $A \subset B \implies \inf B \leq \inf A \leq \sup A \leq \sup B$.

Pf. Since sup B is an upper bound for B and $A \subset B \implies \sup B$ is also an upper bound for A,

$$\implies \sup A \le \sup B$$

Similarly, inf B is a lower bound for B and $A \subset B \implies \inf B$ is also a lower bound for A also,

$$\implies \inf B \le \inf A$$

And it trivial that $\inf A \leq \sup A$

Pf.

1. Since

$$\{x_k : k \ge n+1\} \subset \{x_n : k \ge n\}$$

By theorem 1.6

$$\implies a_{n+1} = \sup\{x_k : k \ge n+1\} \le a_n = \sup\{x_k : k \ge n\}$$

$$\forall n \in \mathbb{N}, \quad a_{n+1} \le a_n$$

Thus, $a_n = \sup\{x_k : k \ge n\}$ is monotone decreasing sequence.

Similarly,

$$\inf\{x_k : k \ge n+1\} \ge \inf\{x_k : k \ge n\}$$
$$b_{n+1} \ge b_n$$

Thus, $b_n = \inf\{x_k : k \ge n\}$ is monotone increasing sequence. We have let $\{x_n\}$ is bounded so

$$\exists B > 0 : \forall n \in \mathbb{N}$$

$$-B \le x_n \le B$$

$$\Longrightarrow -B \le \inf\{x_k : k \ge n\} \le \sup\{x_k : k \ge n\} \le B$$

$$\Longrightarrow -B \le b_n \le a_n \le B$$

$$\Longrightarrow |b_n| \le B \text{ and } |a_n| \le B$$

Since the sequence is bounded and monotone sequence, thus limit should exists.

2. By above,

$$\forall n, b_n \le a_n$$

$$\lim_{n \to \infty} b_n \le \lim_{n \to \infty} a_n$$

Thus,

 $\lim\inf x_n \le \lim\sup x_n$

Example

Example 1.1.1. $x_n = (-1)^n$.

$$\{x_k : k \ge n\} = \{(-1)^k : k \ge n\} = \{-1, 1\}$$
$$\sup\{(-1)^k : k \ge n\} = 1$$
$$\limsup (-1)^n = \lim_{n \to \infty} \sup\{(-1)^k : n \ge k\} = \lim_{n \to \infty} 1 = 1$$

Similarly, $\liminf (-1)^n = -1$

Example

Example 1.1.2.
$$x_n = \frac{1}{n}$$

$$\left\{\frac{1}{k}: k \ge n\right\} = \left\{\frac{1}{n}, \frac{1}{n+1}, \frac{1}{n+2}, \dots\right\}$$

$$\sup\left\{\frac{1}{k}: k \ge n\right\} = \frac{1}{n}$$

$$\inf\left\{\frac{1}{k}: k \ge n\right\} = 0$$

$$\limsup\left\{\frac{1}{k}: k \ge n\right\} = \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\limsup\frac{1}{n} = \lim_{n \to \infty} \sup\left\{\frac{1}{k}: k \ge n\right\} = \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\liminf\frac{1}{n} = \lim_{n \to \infty} \inf\left\{\frac{1}{k}: k \ge n\right\} = \lim_{n \to \infty} 0 = 0$$

Remark

$$\{x_n\}$$
 sequence convergence \iff $\liminf x_n = \limsup x_n = \lim_{n \to \infty}$

Theorem

Theorem 1.7. Let $\{x_n\}$ be bounded sequence then \exists sub-sequence $\{x_{n_k}\}$ and $\{x_{m_k}\}$ such that

$$\lim_{k \to \infty} x_{n_k} = \limsup x_n$$

$$\lim_{k \to \infty} x_{m_k} = \liminf x_n$$

С

1.3 Theorem: (Bolzano-Weierstrass)

1.3.1 Theorem: (Bolzano-Weierstrass) Every bounded sequence has convergence Subsequence

Pf.-

Let $a_n = \sup\{x_k, k \geq n\}$ By the least upper bound property of Reals , $\exists n_1 \geq 1$ such that

$$a_1 - 1 < x_{n_1} \le a_1$$

 a_1 is sup of set so , the above is true.

Since $a_{n_1+1} = \sup\{x_k, k \ge n_1 + 1\}$

 $\exists n_1 > n_1 \text{ such that }$

$$\underbrace{a_{n_1+1} - \frac{1}{2}}_{\text{on upper bound}} < x_{n_2} \le a_{n_1+1}$$

Since $a_{n_2+1} = \sup\{x_k : k \ge n_2 + 1\}$ $\exists n_3 > n_2 \text{ s.t.}$

$$a_{n_2+1} - \frac{1}{3} < x_{n_3} \le a_{n_2+1}$$

Continuing in this manner, we obtain a sequence of natural numbers $n_1 < n_2 < n_3 < \cdots$ S.t $\forall k \in \mathbb{N}$

$$a_{n_k+1} - \frac{1}{k} \le x_{n_k} \le a_{n_k+1} \tag{1.1}$$

with $n_0 = 0$ So, Since $n_1 < n_2 < \cdots$

$$\implies n_1 + 1 < n_2 + 1 < n_3 + 1 < \cdots$$

 $\implies \{a_{n_{k-1}+1}\}$

is a subsequence of $\{a_n\}$

Here k-1 is mentions which is just to get sequence with being $k \in \mathbb{N} = 1, 2, 3, \ldots$ so we get subscript of a are \mathbb{N}

We know that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \sup\{x_k : k \ge n\} = \limsup x_n$ and every subsequence of convergences sequence and that sequence converges to same thing. Thus, Using squeezed theorem 1.2 in equation 1.1

$$\lim_{k \to \infty} a_{n_{k-1}+1} = \lim_{n \to \infty} a_n = \limsup X_n$$

By S.T 1.2 on 1.1

$$\lim_{n \to \infty} x_{n_k} = \limsup x_n$$

Theorem

Theorem 1.8. Let $\{x_n\}$ be bdd sequence. Then $\{x_n\}$ converges \iff $\limsup x_n = \liminf x_n$. If $\{x_n\}$ converges, then, $\lim_{n\to\infty} x_n = \limsup x_n = \liminf x_n$

Pf. \iff Suppose $L = \limsup x_n = \liminf x_n$. Then $\forall n \in \mathbb{N}$

$$\inf\{x_k : k \ge n\} \le x_n \le \sup\{x_k : k \ge n\}$$

By S.T 1.2 This is true

$$\limsup x_n = \liminf x_n$$

So this must be true

$$\limsup x_n = \liminf x_n = \lim_{n \to \infty} x_n$$

 (\Longrightarrow) Let $L=\lim_{n\to\infty}x_n$. By previous theorem that say every convergences sequence has convergence sub sequence so \exists subsequence $\{x_{n_k}\}$ such that $\lim_{n\to\infty}x_{n_k}=\limsup x_n$

But $\{x_{n_k}\}$ is subsequence of convergent sequence $\{x_n\}$ thus it also converges to L. Thus,

$$\lim_{n \to \infty} x_{n_k} = \limsup x_n = L$$

Similarly, there exists subsequence $\{x_{m_k}\}$ such that $\lim_{n\to\infty} x_{m_k} = \liminf x_n$

But $\{x_{m_k}\}$ is subsequence of convergent sequence $\{x_n\}$ thus it also converges to L. Thus,

$$\lim_{n \to \infty} x_{n_k} = \liminf x_n = L$$

Thus,

$$\lim_{n \to \infty} x_{n_k} = \limsup x_n = \liminf x_n$$