0.1. 11.08.2020 - Isomorfismos de Grafos

0.1.1. Definición Isomorfismos

Sean G y H grafos simples. Un **isomorfismo** de G a H es una función biyectiva $f:V(G)\to V(H)$ tal que $uv\in E(G)\iff f(u)$ $f(v)\in E(H)$

0.1.2. Grafos Isomorfos

G es **isomorfo** a H si existe un isomorfismo de G a H. Se nota $G \cong H$.

Figura 1: dos grafos isomorfos

0.1.3. Ivariante

Un **invariante** de un grafo es una propiedad P preservada por isomorfismos. De forma más precisa, P es una invariante si siempre que $G \cong H$:

Si G satisfacea P entonces H satisface P.

Figura 2: ejemplo2 isomorfismo

Observación

Sea P es una propiedad invariante, si G satisface P y H no satisface P entonces $G\cong H$.

0.1.4. Teorema

La relación de isomorfidmo es una relación de equivalencia en el conjunto de grafos simples.

- Reflexiva: $G \cong G$.
- \bullet Simétrica: Si $G\cong H,$ entonces $H\cong G.$
- Transitiva: Si $G \cong H$ y $H \cong J$, entonces $G \cong J$.

0.1.5. Clases de isomorfismos

Ejemplos

Una clase de isomorfismo de un grafo es una clase de equivalencia de grafos bajo la relación de isomofismos.

- lacktriangle Todos los caminos de n vértices son insomorfismos.
- \blacksquare El conjunto de todos los caminos de n vértices forma una clase de isomorfismo.

0.1.6. Grafos sin etiquetas

Un grafo sin etiquetas es una clase de isomorfismo.

0.1.7. P_n

Camino P_n : comino con n vértices.

0.1.8. C_n

Ciclo C_n : Ciclo con n vértices (n-ciclo).

0.1.9. W_n

Rueda W_n : Ciclo C_n con vértice adicional advacente a todos los vertices del ciclo.

0.1.10. K_n

Grafo completo K_n : Grafo simple con n vértices que contiene exactamente una arista entre cada par de vértices. (Vértices adyacentes 2 a 2)

0.1.11. $K_{m,n}$

Grafo bipartito completo $K_{m,n}$: Grafo bipartito simple tal que dos vértices son adyacentes sii están en conjuntos partitos diferentes de tamaño m y n respectivamente. (biclique).

0.1.12. Ejemplo - Grafos de n vértices

- Si |V(G)| = n entonce se puede seleccionar $\binom{n}{2}$ parejas de vértices.
- El par podría formar una arista o no.
- \blacksquare Entonces ha $2^{\binom{n}{2}}$ grafos simples de n vértices. (Subconjuntos del conjunto de pares de vértices).
- \bullet Si n=4, hay 64 grafos simples de 4 vértices.
- Hay 11 clases de isomorfismos.

Figura 3: grafos autocomplementarios

0.1.13. Grafo Autocomplementario

Un grafo G es autocomplementario si es isomorfo a su complemento.

0.1.14. Descomposicón

Una **descomposició** de un grafo G es una lista de subgrafos $H_i \subset G$ tal que cada arista $e \in E(G)$ pertenece exactamente a un subgrafo de la lista.

0.1.15. Ejercicio

Un grafo $K_{i,n-1}$ y K_{n-1} forma una descomposición de K_n .

Demostración

. . .

0.1.16. Teorema

Un grafo G de n vértices es autocomplementario sii K_n tiene una descomposición que ensiste en dos copias de G. (Grafos isomorfos con G).

Figura 4: descomposición de k5

0.1.17. Grafo de Petersen