EXPLORING THE PERFORMANCE OF MACHINE LEARNING ALGORITHMS IN SHORT-TERM FORECASTING OF PM2.5

Meenakshi Rao, Lori Pillsbury

Laboratory & Environmental Assessment Division Oregon Department of Environmental Quality

OR DEQ Air Quality Monitoring Network

A lot of data!

historic trends......future predictions?

EXPLORE MACHINE LEARNING!

MACHINE LEARNING?

Machine Learning Computational Statistics

Observations: $x_1, x_2, x_3... x_n$ Outcome/Result: $y_1, y_2, y_3... y_n$

In Machine Learning:

 $Y_i = F(x_i) + \varepsilon_i$

Best fit $F(x_i)$ minimizes ε_i

No assumptions about ϵ_i

Numerical approximation

In linear regression:

 $Y_i = F(x_i) + \varepsilon_i$

Best fit $F(x_i)$ minimizes ε_i

Assume normal distribution of $\boldsymbol{\epsilon}_i$

Closed functional form

MACHINE LEARNING?

- No *a priori* distribution requirements
- Can handle correlated predictors
- Can potentially handle p > n
- Can handle multiple outputs

PREDICT THE NOWCAST

Five monitoring sites

Three ML algorithms

- Random forest
- Generalized boosted models
- Multi-layer perceptron

Five years of hourly PM2.5 data

- 2011 2014 training data
- 2015 validation data

Evaluation

- Three models
- Comparison of predictions to observations
 - Goodness of fit: R²
 - Error: RMSE
- Comparison of predictions to Reff Nowcast

PREDICT THE NOWCAST

Predict NOWCAST: current hour PM2.5

M1

PM2.5 ~ pm25-1 + pm25-2 +pm25-3 + pm25-4 + pm25-5 + pm25-6

M2

PM2.5 ~ pm25-1 + pm25-2 +pm25-3 + pm25-4 + pm25-5 + pm25-6 + hour + weekday + month

M3

PM2.5 ~ pm25-1 + pm25-2 +pm25-3 + pm25-4 + pm25-5 + pm25-6 + hour + weekday + month + temperature + wind speed + wind direction

REGRESSION TREES

100 observations

Y – variable of interest

X1, X2 – predictors

$$0 \le X1 \le 10$$

$$0 \le X2 \le 20$$

REGRESSION TREES

Predict:

air pollution

Predictors:

- hdev: high intensity development
- VMT: vehicle miles traveled

Number of observations:

• 174

An ensemble of REGRESSION TREES

RANDOM FOREST

- Developed by Breiman (2001)
- Combine many "weak learners" into a "strong learner"
- Use bootstrap aggregation or **bagging**
- Each tree uses only a **random** subset of predictors

RANDOM FOREST RESULTS

		REFF	RF1	RF2	RF3
D. H. J	R^2	0.83	0.73	0.73	0.70
Portland	RMSE	3.8	4.8	4.8	5.0
Drinovilla	R^2	0.77	0.76	0.78	0.79
Prineville	RMSE	6.0	5.9	5.7	5.5
Burns	R^2	0.70	0.71	0.74	0.80
	RMSE	6.0	5.8	5.4	4.8
Grants Pass	R^2	0.86	0.88	0.88	0.86
	RMSE	3.3	3.1	3.0	3.1
Lakeview	R^2	0.71	0.71	0.74	0.77
	RMSE	5.3	5.4	5.0	4.7

date	time	obs	reff	rf3
8/22/2015	11:00:00	127.6	42.2	25.0
8/22/2015	12:00:00	186.9	125.6	37.3
8/22/2015	13:00:00	179.7	185.8	44.1
8/22/2015	14:00:00	179.6	179.8	50.9
8/22/2015	15:00:00	165.3	179.6	50.8
8/22/2015	16:00:00	149.2	165.6	49.6
8/22/2015	17:00:00	155.9	149.6	48.7
8/22/2015	18:00:00	160.3	155.7	49.0

Air Quality Slips To 'Unhealthy' Levels Due To Wildfire Smoke by OPB staff OPB Aug. 22, 2015 11:30 a.m. | Updated: Aug. 23, 2015 8:08 a.m. | Portland

"...Portland Fire & Rescue said it received numerous calls from residents reporting smoke in the area. Smoke is expected to increase throughout the day as winds travel approximately 26 miles per hour from east to west. The smoke has blown from the Cougar Creek Fire near Mt. Adams, and the 12 other large fires burning east of the Washington Cascades..."

2011 to 2014 – highest hourly PM2.5 was 94 μ g/m³ 2015 – highest hourly PM2.5 was 187 μ g/m³

Regression Models

Regression Models

Fit 1st tree to data

Next tree to residuals of previous tree

Next tree to residuals of previous two trees

		REFF	GBM1	GBM2	GBM3
Portland	R ²	0.83	0.76	0.76	0.70
Portiana	RMSE	3.8	4.5	4.5	5.1
Prineville	R ²	0.77	0.77	0.78	0.80
Prineville	RMSE	6.0	5.8	5.7	5.4
Durns	R ²	0.70	0.72	0.74	0.79
Burns	RMSE	6.0	5.6	5.4	4.9
Grants Pass	R ²	0.86	0.87	0.87	0.87
	RMSE	3.3	3.1	3.1	3.1
Lakeview	R ²	0.71	0.72	0.73	0.75
	RMSE	5.3	5.1	5.0	4.8

Multi-Layer Perceptron

FEED FORWARD DATA

BACKPROPAGATION ERROR

		REFF	MLP1	MLP2	MLP3
Portland	R^2	0.83	0.81	0.82	0.82
Portiand	RMSE	3.8	4.0	3.9	4.1
Prineville	R^2	0.77	0.77	0.76	0.77
Prineville	RMSE	6.0	5.9	5.9	5.9
Burns	R^2	0.70	0.71	0.73	0.77
Dullis	RMSE	6.0	5.7	5.6	5.1
Grants Pass	R^2	0.86	0.89	0.89	0.89
	RMSE	3.3	3.0	3.0	3.0
Lakeview	R^2	0.71	0.72	0.73	0.74
	RMSE	5.3	5.1	5.1	5.0

		REFF	RF3	GBM3	MLP3
	R^2	0.83	0.70	0.70	0.82
Portland	RMSE	3.8	5.0	5.1	4.1
Prineville	R^2	0.77	0.79	0.80	0.77
Prineville	RMSE	6.0	5.5	5.4	5.9
Burns	R^2	0.70	0.80	0.79	0.77
	RMSE	6.0	4.8	4.9	5.1
Grants Pass	R^2	0.86	0.86	0.87	0.89
	RMSE	3.3	3.1	3.1	3.0
Lakeview	R^2	0.71	0.77	0.75	0.74
	RMSE	5.3	4.7	4.8	5.0

OPERATIONAL DETAILS

Training N: ~ 35,000

Validation N: ~ 8,700

Predictors: 6 - 13

R: randomForest, gbm, keras

	RF	GBM	MLP
Time	~10 min	~6min	< 1min
Parallelization	No	Yes	Probably
Hyper-parameters	mtry, ntrees	n.trees, interaction.depth, n.minobsinnode, shrinkage, bag.fraction, train.fraction, cv.folds	Hidden layers, nodes in layer, activation functions, loss function, learning rate
Tuning & diagnostics	4	1	1
Insight	3	1	1

OUR LEARNING ABOUT

MACHINE LEARNING

- Performed reasonably well
- Tuning and diagnostics techniques and tools still in infancy
- Tools to peer into the ML "blackbox" lacking

And...

- Multiple outputs
- Dynamically updated models
- Wave of the future

THANK YOU FOR JOINING US IN THIS EXPLORATION!

