I. AMENDMENTS TO THE CLAIMS

Claim 1. (Currently Amended) Nitrooxyderivatives or salts thereof of formula (I)

$$R-NR_{1c}-(K)_{k0}-(B)_{b0}-(C)_{c0}-NO_2$$
 (I)

wherein

c0 is 1;

b0 is 0;

k0 is 0;

R_{1c} is H;

K is (CO) or the bivalent radical (1C1-C) having the following formula:

$$\begin{array}{c|c}
O & R'_t & R_t \\
O & O
\end{array}$$

$$\begin{array}{c|c}
O & R'_t & R_t \\
O & O
\end{array}$$

wherein the carbonyl group is bound to T_1 ; R_t and R_t , same or different, are H, C_1 - C_{10} -alkyl, phenyl or benzyl, -COOR_y, in which R_y = H, C_1 - C_{10} -alkyl, phenyl, benzyl;

 $B = -T_B-X_2-T_{B1}$ - wherein

 $T_B = (CO)$ or X, in which X = O, S, NH;

 $T_{BI} = (CO)$ or (X), wherein X is as defined above;

when c0 = 0, then $T_{BI} = -0$ -;

 X_2 is a bivalent bridging group, such as the corresponding precursor of B, having the formula $Z-T_B-X_2-T_{BI}-Z'$ in which Z and Z' are independently H or OH, is selected from the following compounds:

- Aminoacids: L-carnosine (CI), penicillamine (CV), N-acetylpenicillamine (CVI), cysteine (CVII), N-acetylcysteine (CVIII):

$$(CVI)$$

$$(CVI)$$

$$(CH_3 O \\ HS \rightarrow OH \\ NH_2 OH \\ NHCOCH_3 OH \\ NHCO$$

- Hydroxyacids: gallic acid (DI), ferulic acid (DII), gentisic acid (DIII), caffeic acid (DV), hydro caffeic acid (DVI), p-coumaric acid (DVII), vanillic acid (DVIII), syringic acid (DXI):

$$(DII) \qquad (DI) \qquad (DII)$$

$$(DII) \qquad (DII) \qquad (DII)$$

$$(DVII) \qquad (DVIII) \qquad (DVIII)$$

$$(DVIII) \qquad (DVIII) \qquad (DXI)$$

- aromatic Aromatic polyalcohols: hydroquinone (EVIII), methoxyhydroquinone (EXI), hydroxyhydroquinone (EXII), conyferyl alcohol (EXXXII), 4-hydroxyphenetyl alcohol (EXXXIII), p-coumaric alcohol (EXXXIV):

C = bivalent radical of formula $-T_c-Y$ wherein

 $T_c = (CO)$; and

Y is an alkylenoxy group -R'O- in which R' is straight or branched C_1 - C_{20} alkyl, a cycloalkylene with from 5 to 7 carbon atoms, or

wherein n3 is an integer from 0 to 5 and n3' is an integer from 1 to 3;

R is a radical of an analgesic drug of formula (II):

$$R_{2}-\underset{R_{1}}{\overset{R_{0}}{\bigvee}}-(CH_{2})_{m}-$$

$$(II)$$

wherein:

W is a carbon atom;

m is 1;

 $R_0 = -(CH_2)_n$ -COOR_y, wherein $R_y = H$, C_1 - C_{10} -alkyl, phenyl, or benzyl; n is an integer of from 0 to 2;

 $R_1 = H$;

R₂ is selected from the following groups:

- phenyl, optionally substituted with a halogen atom or with a group selected from OCH₃, -CF₃, nitro;
- mono or dihydroxy-substituted benzyl;
- amidino group: H₂N(C=NH)-;
- a radical of formula (IIA), wherein optionally an ethylenic unsaturation may be present between the carbon atoms in position 1 and 2, or 3 and 4 or 4 and 5:

$$Q - {}^{5}(CH)_{p3} - {}^{4}(CH)_{p2} - {}^{3}(C)_{p1} - {}^{2}CH - {}^{1}CH - {}^{1}CH$$

(IIA)

- 6 -

wherein:

p, p₁, p₂ are integers, same or different, and are 0 or 1;

p₃ in an integer of from 0 to 10;

 R_4 is hydrogen, straight or branched $C_1\text{-}C_6\text{-}alkyl$, free valence;

R_5 is:

- hydrogen,
- straight or branched C₁-C₆-alkyl,
- C₃-C₆-cycloalkyl, or
- OR_A , wherein R_A is:
 - straight or branched C₁-C₆-alkyl, optionally substituted with one or more halogen atoms, or
 - phenyl optionally substituted with a halogen atom or with one of the following groups: -OCH₃, -CF₃, nitro;

 R_6 , R_{6A} , R_7 , R_8 , the same or different, are H, methyl or free valence, with the proviso that when an ethylenic unsaturation is present between C_1 and C_2 in radical of formula (IIA), R_4 and R_5 are free valences able to form the double bond between C_1 and C_2 ; if the unsaturation is between C_3 and C_4 , R_6 and R_7 are free valence able to form the double bond between C_3 and C_4 ; is the unsaturation is between C_4 and C_5 , C_7 and C_8 are free valence able to form the double bond between C_4 and C_5 ;

Q is H, OH, OR_B, R_B being benzyl, straight or branched C_1 - C_6 -alkyl, optionally substituted with one or more halogen atoms, preferably F, phenyl optionally substituted with a halogen atom or with one of the following groups: -OCH₃, -CF₃, nitro; or

Q is:

- straight or branched C₁-C6-alkyl,
- C₃-C₆-cycloalkyl,
- guanidino (H₂NC(=NH)NH-), or
- thioguanidino (H₂NC(=S)NH-),

in formula (II) R_2 with R_1 and with W = C form together a C_4 - C_{10} saturated or unsaturated ring.

Claim 2. (Canceled)

Claim 3. (Previously Presented) Compounds according to claim 1, wherein in formula (I): Y is:

an alkylenoxy group -R'O- in which R' is straight or branched C2-C6 alkyl; or

-
$$(CH_2)_{n3}$$
-O-

wherein n3 is an integer from 0 to 3 and n3' is an integer from 1 to 3;

R is the radical of an analgesic drug of formula (II):

wherein:

W is a carbon atom;

m is 1;

 $R_0 = -(CH_2)_n$ -COOH, wherein n is an integer of from 0 to 2;

 $R_1 = H$;

R₂ is selected from the following groups:

- 3,4-dihydroxybenzyl; or
- a radical of formula (IIA) as defined in claim 1, wherein:

p and p_l are 0 or 1;

p₂ and p₃ are 0;

R₄ and R₅ are hydrogen, straight or branched C₁-C₆-alkyl or free valence;

R₆ and R_{6A} are H;

with the proviso that when an ethylenic unsaturation is present between C_1 and C_2 in radical of formula (IIA), R_4 and R_5 are free valences able to form the double bond between C_1 and C_2 ;

Q is H, CH₃ or

- guanidino (H2NC(=NH)NH-), or
- thioguanidino (H₂NC(=S)NH-);

in formula (II) R₂ with R₁ and with W form together a C₆ saturated ring.

Claim 4. (Previously Presented) Compounds according to claim 1, wherein when in formula (II) W = C, m = 1 and $R_0 = -(CH_2)_n$ -COOR_y, wherein n = 1 and $R_y = H$; R_2 and R_1 with W as defined above form the cyclohexane ring; the drug precursor of R having the formula R-NH₂ is known as gabapentin;

when in formula (II) W = C, m = 1 and R_0 if defined as for gabapentin with n = 1; R_1 = H; R_2 is the radical of formula (IIA) in which p = p_1 = p_2 = p_3 = 0, R_4 = H, R_5 = Q = CH₃; the drug precursor of R having the formula R -NH₂ is known as pregabalin;

when in formula (II) W = C and has (S) configuration, m = 1 and R_0 if defined as for gabapentin with n = 1; $R_1 = H$; R_2 is the radical of formula (IIA) in which $p = p_1 = p_2 = p_3 = 0$, $R_4 = H$, $R_5 = Q = CH_3$; the drug precursor of R having the formula R-NH₂ is known as (S)3-isobutilGABA.

Claim 5. (Canceled)

Claim 6. (Previously Presented) Compounds according to claim 1 selected from: 1-[4-(nitrooxymethyl)benzoylaminomethyl]-cyclohexaneacetic acid (XVA),

1-[3-(nitrooxymethyl)benzoylaminomethyl]-cyclohexaneacetic acid (XVIA),

$$\bigcap_{\text{ONO}_2}^{\text{O}}\bigcap_{\text{OH}}^{\text{O}}$$

1-[2-(nitrooxymethyl)benzoylaminomethyl]-cyclohexaneacetic acid (XVIIA),

1-(4-nitrooxybutanoylaminomethyl)-cyclohexaneacetic acid (XVIIIA),

$$O_2NO$$
 N
 OH
 OH
 OH

3-(S)-[4- (nitrooxymethyl)benzoylaminomethyl]-5-methyl-hexanoic acid (XXVA),

(XXVA)

 $3-(S)-[3-(nitrooxymethyl)benzoylaminomethyl]-5-methyl-hexanoic\ acid\ (XXVIA),$

(XXVIA)

3(S)-[2-(nitrooxymethyl)benzoylaminomethyl]-5-methyl-hexanoic acid (XXVIIA),

(XXVIIA)

3(S)-[4-(nitrooxybutanoyl)aminomethyl]-5-methyl-hexanoic acid (XXVIIIA),

$$O_2NO$$
 N
 Me
 Me
 Me

(XXVIIIA)

Claim 7. (Currently Amended) Compounds A composition comprising: a compound according to claim 1, in combination with; and a NO-donor compounds compound comprising a radical molecule and at least a group that is an -ONO₂ group or an -ONO group.

Claim 8. (Currently Amended) Compounds The composition according to claim 7, wherein the NO-donors contain in the radical molecule comprises a radical radicals of the following drugs a drug selected from the group consisting of: aspirin, salicylic acid, ibuprofen, paracetamol, naproxen, diclofenac and flurbiprofen.

Claim 9. (Previously Presented) Pharmaceutical compositions comprising compounds according to claim 1 as active ingredients.

Claim 10. (Canceled)

Claim 11. (Previously Presented) A method of treatment of chronic pain comprising administering an effective amount of the compounds according to claim 1.

Claim 12. (Previously Presented) The method according to claim 11, wherein the chronic pain is neurophatic pain.