

Bretagne-Pays de la Loire École Mines-Télécom

AI CHALLENGE

Venceslas KOUASSI

Lucas BONMARIN

PLAN

PROBLEM

STRATEGY

OUR ALGORITHM

RESULTS

OTHER IDEAS

 Design an AI algorithmic approach that wins PyRat games against a greedy algorithm (always targeting the closest piece of cheese)

Parameters:

- No walls
- □ No mud
- ☐ Size 21x15
- □ 40 pieces of cheese
- Non symmetric maze
- □ 1000 tests in less than an hour

STRATEGY

- 1. Reinforcement learning: we just change the number of epochs (6000 -> 8000).
- 2. Combinatorial Game Theory: recursive function that goes through the trees of possible plays & takes as arguments a given situation, and return a best target piece of cheese. (very efficient)

We ran 100 tests for each threshold:

Influence of Threshold on the Results

RESULTS (2/2)

- So we can see that the higher the threshold is, the best score we get.
- However, beyond 13, the time to run the algorithm is too long.
- Thus, we've chosen a threshold of 13.

 Cut the maze into 4 parts (or 16), and select the closest part. Then, apply an effective algorithm (like Combinatorial Game Theory) in each part.

- In the reinforcement learning, add some parameters for the learning, for example :
 - random movements with a probability function
 - change the representation of the space
 - add the opponent's position

CONCLUSION

