

İnterpretable -yorumlanabilir

Appropriate -uygun

remains constant -sabit kalır

What is an error of the model?

MAE (Mean Absolute Error):

Hataların mutlak değeridir.Anlaşılması en kolay olandır.

MSE (Mean Square Error):

- Karesi alınmış hataların ortalamasıdır. MAE'den daha popülerdir. Bunu sebebi odak noktasının daha büyük hatalar olmasıdır
- Hata oranlarını katlayarak gösterir ve daha anlaşılır sonuçlar verir.

RMSE (Root Mean Square Error):

• This is one of the most popular of the evaluation metrics because Root Mean Squared Error is interpretable in the same units as the response vector or Y units, making it easy to relate its information

Multiple Linear Regression

Predicting continuous values with multiple linear regression

Using MSE to expose the errors in the model

ENGINESIZE		CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS	
0	2.0	4	8.5	196	
1	2.4	4	9.6	221	
2	1.5	4	5.9	136	
3	3.5	6	11.1	255	
4	3.5	6	10.6	244	
5	3.5	6	10.0	230	
6	3.5	.6	10.1	232	
7	3.7	6	11.1	255	
8	3.7	6	11.6	267	

Estimating multiple linear regression parameters

Estimating multiple linear regression parameters

- How to estimate θ ?
 - Ordinary Least Squares
 - · Linear algebra operations
 - Takes a long time for large datasets (10K+ rows)
 - · An optimization algorithm
 - Gradient Descent
 - · Proper approach if you have a very large dataset

Making predictions with multiple linear regression

					$\hat{y} = \theta^T X$
	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS	$\theta^T = [125, 6.2, 14,]$
0	2.0	4	8.5	196	b' = [125, 6.2, 14 ,]
1	2.4	4	9.6	221	$\hat{y} = 125 + 6.2x_1 + 14x_2 +$
2	1.5	4	5.9	136	
3	3.5	6	11.1	255	Co2Em = 125 + 6.2EngSize + 14 Cylinders +
4	3.5	6	10.6	244	
5	3.5	6	10.0	230	$Co2Em = 125 + 6.2 \times 2.4 + 14 \times 4 +$
6	3.5	6	10.1	232	
7	3.7	6	11.1	255	Co2Em = 214.1
8	3.7	6	11.6	267	
9	2.4	4	9.2	?	

Regression algorithms

- Ordinal regression
- Poisson regression
- Fast forest quantile regression
- Linear, Polynomial, Lasso, Stepwise, Ridge regression
- Bayesian linear regression
- · Neural network regression
- Decision forest regression
- Boosted decision tree regression
- KNN (K-nearest neighbors)