MATH 569 HOMEWORK 2

Due: February 15^{th} , Wednesday, 11:59pmHow to submit: via Blackboard If you have multiple files, upload a zipped file

Problem 1 Let $\hat{\beta}$ be the Least Square estimate of parameters β in the linear model $Y = X^T \beta + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \sigma^2)$. Let $\theta = \alpha^T \beta$ be a linear combination of the parameters β .

- 1) First show that $\alpha^T \hat{\beta}$ is an unbiased estimate of θ .
- 2) Then show that for any other unbiased linear estimate c^Ty of θ , the variance of $\alpha^T\hat{\beta}$ is no bigger than the variance of c^Ty .

Problem 2 Ex. 3.2 from the textbook. Submit your answers along with the code.

Problem 3 Ex. 3.16 from the textbook.

Problem 4 Consider a univariate model with no intercept, $Y = \beta_1 X + \epsilon$. First find the least square estimate of the coefficient β_1 , then prove that for the training set (X, Y), the vector $(Y - \hat{Y})$ is orthogonal to the vector X.

Extra Credit (10%) Consider the least square estimation of parameters β in the linear model $Y = X^T \beta + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$. Input matrix \boldsymbol{X} is an $N \times (p+1)$ matrix. Show that $\frac{\text{SSE}}{\sigma^2}$ is distributed as a χ^2 random variable with N-p-1 degrees of freedom. SSE is defined as:

$$SSE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$