## 2015 FALL CSE 603 MIDTERM EXAM

Saturday, September 25, 2015

**Problem 1** (15pt). Consider time measurements reported in the table below for a certain parallel algorithm executed on some parallel computer (time unit is irrelevant). n indicates the size of the problem solved, and p indicates the number of processors used. Please, write a brief analysis of the algorithm (is it scalable, if yes in what sense, if not why, etc.)

| $p \backslash n$ | 100 | 200 | 400                      | 800 | 1600 |
|------------------|-----|-----|--------------------------|-----|------|
| 2                | 9   | 20  | 42                       | 87  | 180  |
| 4                | 4   | 10  | 21                       | 43  | 80   |
| 8                | 3   | 5   | 11                       | 20  | 40   |
| 16               | 2   | 3   | 5                        | 11  | 20   |
| 32               | 2   | 2   | 42<br>21<br>11<br>5<br>3 | 6   | 10   |

The algorithm is weakly scalable (for fixed n/p ratio time stays roughly constant). Given sufficiently large n the algorithm exhibits strong scalability (time decreases roughly  $2\times$  as the number of processors p doubles).

**Problem 2** (25pt). The best sequential algorithm for solving a problem runs in  $\Theta(n^2)$ . A parallel algorithm designed for solving the same problem runs in:

$$T_p = \Theta\left(\frac{n^2}{p} + \frac{n}{\sqrt{p}}\log p\right) \text{ for } p \le n^2.$$

Find the maximum number of processors as a function of n that can be used, such that the algorithm runs with the maximum possible efficiency. Suppose now that you have x = n instances to solve, each of size n. Is it better to use p = n or  $p = n^2$  processors – why?

 $T_1 = n^2$ , hence  $E_p = \Theta(\frac{n^2}{p \cdot \left(\frac{n^2}{p} + \frac{n}{\sqrt{p}} \log p\right)} = \frac{n^2}{n^2 + n\sqrt{p} \log p}$ . To achieve  $E_p = 1$  the term  $n\sqrt{p} \log p$  must be of order  $O(n^2)$ , hence  $\sqrt{p} \log p = O(n)$ :

$$\sqrt{p}\log p = O(n)$$

$$2\sqrt{p}\log\sqrt{p} = O(n)$$

$$\sqrt{p} = O\left(\frac{n}{\log n}\right)$$

$$p = O\left(\frac{n^2}{\log^2 n}\right)$$

In case p = n we can run all jobs at the same time, hence the total time:

$$R_n = T_n = O\left(n + \sqrt{n}\log n\right).$$

In case  $p = n^2$  we run x jobs sequentially, each using all available processors:

$$R_{n^2} = n \cdot T_{n^2} = O\left(n \log n\right).$$

Since  $R_n < R_{n^2}$  for sufficiently large n, it is better to use p = n processors.

**Problem 3** (25pt). Consider the directed acyclic graph given below – it describes dependencies between tasks in some parallel algorithm. What is the maximal parallelism this algorithm can achieve?



We can directly apply work and span reasoning: first we observe that  $n=2^d$ , then span (length of the critical path) is  $T_{\infty}=\log n+2$ , and we can simplify to  $T_{\infty}=\log n$ .  $T_1=1+(n+\frac{n}{2}+\frac{n}{4}+\ldots+1)=1+(2n-1)=2n$ . Hence,  $S_{\infty}=\frac{2n}{\log n+2}=O\left(\frac{n}{\log n}\right)$ .

**Problem 4** (35pt). You are given a sequence of n integers  $[x_0, x_1, \ldots, x_{n-1}]$  and  $p \le n$  processors where p|n (i.e. n divides p). Processor  $p_i$  is assigned  $[x_i, \frac{n}{p}, \ldots, x_{(i+1)}, \frac{n}{p-1}]$ . Propose an efficient parallel algorithm to generate sequence  $[s_0, s_1, \ldots, s_{n-1}]$  where  $s_i = x_0 - x_1 - \ldots - x_i$ . You can assume that two basic parallel primitives are given to you:

- $z \leftarrow \text{broadcast}(rank, z)$  in which processor  $p_{rank}$  communicates value z to all other processors.
- $s_{rank} \leftarrow \text{scan}(rank, x_{rank}, \otimes)$  in which p processors execute parallel prefix on p values  $x_i$  with operator  $\otimes$  (processor  $p_{rank}$  stores  $x_{rank}$  and  $s_{srank}$ ).

You can assume that all common sequential algorithms are given to you. For example, you can use function  $[y_0, y_1, \ldots, y_n] \leftarrow \operatorname{prefix}([x_0, x_1, \ldots, x_n], \otimes)$  to sequentially compute  $[y_0 = x_0, y_1 = x_0 \otimes x_1, \ldots]$ . Please, try to explain your algorithm using succinct pseudo-code, and avoid lengthy verbal explanations.

Each processor is assigned  $\frac{n}{p}$  consecutive elements of x, for example  $p_0$  is assigned  $[x_0, x_1, \ldots, x_{\frac{n}{p}-1}]$ . Because - is not associative, we cannot compute  $s_i$  directly using prefix. However, we observe that  $s_i = x_0 - (x_1 - x_2 - \ldots x_i) = 2x_0 - (x_0 + x_1 + \ldots + x_i)$ . Now, we are given a prefix operation that works for case where p = n, hence we have to adopt it slightly to case where  $p \ll n$ .

- 1. Compute prefix sequentially with + on each processor, store it in y, e.g.  $p_0$  will have  $[y_0=x_0,y_1=x_0+x_1,\ldots,y_{\frac{n}{n}-1}]$
- 2. Compute parallel prefix over  $[y_{\frac{n}{p}-1}, y_{\frac{2n}{p}-1}, \dots, y_{n-1}]$  (which is distributed over p processors) and store it in y' ( $y'_0$  stored on processor 0,  $y'_i$  on processor i):  $y'_i \leftarrow \text{scan}(i, y_{\frac{(i+1\cdot n)}{p}-1}, +)$
- 3. Update y with y' locally on each processor: on processor i we have  $d = y'_i y_{\frac{(i+1\cdot n)}{p}-1}$  and we add d to every element of y
- 4. Broadcast  $x_0$  from  $p_0$  to all processors:  $x_0 \leftarrow \text{broadcast}(0, x_0)$
- 5. Compute locally on each processor  $s_i \leftarrow 2x_0 y_i$