

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

Forestry
SD
11
.42
Cop.3

U. S. DEPARTMENT OF AGRICULTURE, FOREST SERVICE—BULLETIN 126.

HENRY S. GRAVES, Forester.

FOREST PRODUCTS LABORATORY SERIES.

EXPERIMENTS IN THE PRESERVATIVE TREATMENT OF RED-OAK AND HARD-MAPLE CROSSTIES.

FRANCIS M. BOND. In Charge Wood Preservation.

WASHINGTON: GOVERNMENT PRINTING OFFICE.

LETTER OF TRANSMITTAL.

U. S. DEPARTMENT OF AGRICULTURE, FOREST SERVICE.

Washington, D. C., October 28, 1912.

SIR: I have the honor to transmit herewith a manuscript entitled "Experiments in the Preservative Treatment of Red-Oak and Hard-Maple Crossties," by Francis M. Bond, in Charge Wood Preservation, Forest Products Laboratory, and to recommend its publication as Bulletin 126 of the Forest Service.

The Chicago, Milwaukee & St. Paul Railway Co. participated in the experiments described, and the experimental treatments were made at the Forest Products Laboratory, Madison, Wis., conducted in cooperation with the University of Wisconsin. Valuable assistance was given during the course of the project by Messrs. F. J. Angier, superintendent of timber preservation, Baltimore & Ohio Railroad Co.; J. B. Card, manager, Chicago Tie & Timber Preserving Co.; H. H. Hart, general manager sales, Spencer-Otis Co.; B. Kuckuck, engineer, representing Heulsberg et Compagnie and C. Lembcke & Co.; E. Laas, formerly engineer of maintenance of way, Chicago, Milwaukee & St. Paul Railway Co.; and F. S. Pooler, tie agent, Chicago, Milwaukee & St. Paul Railway Co.

Respectfully,

HENRY S. GRAVES,

Forester.

Hon. James Wilson, Secretary of Agriculture.

3

CONTENTS.

Purpose and scope of experiments	9			
The ties				
The preservative processes	11			
PART I—TREATMENT OF THE TIES	11			
Plan of treatments	11			
Cylinder equipment	12			
The treatments.	14			
General method of operation	14			
Full-cell creosote.	15			
Rueping	16			
Burnett	16			
Card	10			
Two-movement creosote-zinc chlorid	17			
	•			
Gas-house oil	18			
Determinations made	19			
Volume of ties	19			
Oven-dry weight	19			
Moisture content	20			
Percentage of sapwood	20			
Rate of growth	21			
Absorption of preservatives	22			
Penetration of oils	22			
Distribution of zinc chlorid	22			
Results	22			
Time required for treatment	22			
Comparison of processes	22			
Comparison of species	23			
Variation in absorption	23			
Comparison of processes	23			
Comparison of species	24			
Penetration of oils.	24			
Distribution of zinc chlorid	25			
Relation between weight and absorption	26			
Relation between percentage of sapwood and absorption	36			
	37			
Relation between rate of growth and absorption	38 38			
Loss of weight after treatment.	30 40			
Application of the results to other species of wood				
Conclusions	40			
PART II—THE TEST TRACK	42			
Location and plan	42			
Rail, plates, and fastenings	43			
Laying the track	44			
Records	47			
5				

CONTENTS.

	Pa
PPENDIX	
Accuracy of the determinations	
Tie volumes	
Oven-dry weights	
Absorption	
Weight of ties before placement	
Errors in measurements by float gauges	
Change in volume of preservative with change in temperature	
Change in volume of measuring tank with change in temperature	
Change in position of float with change in its volume	
Change in position of float with change in specific gravity of preserva	
Variation in length of gauge wire with change of temperature	
Position of indicator as affected by resistance in the gauge and differ	-
ences in tension in the gauge wire	
Other errors	
Summary	
Analyses of preservatives	
Creosote	
Sample of creosote taken from storage tank before treatments were	3
begun (Sample A)	
Sample of creosote taken from storage tank after completion of first two creosote processes (Sample B)	t
Sample of creosote taken from measuring tank after completion o	
first two creosote processes (Sample C)	
Zine chlorid.	
Gas-house oil.	
Creosote-zinc-chlorid emulsions.	

ILLUSTRATIONS,

PLATES.	Page.
PLATE I. Magnified cross section of red oak	12
II. Magnified cross section of hard maple	12
stored in the seasoning yard	12
IV. Fig. 1.—Sections of red-oak ties treated by the full-cell creosote process. Fig. 2.—Sections of red-oak ties treated by the Rueping	
process	24
V. Fig. 1.—Sections of hard-maple ties treated by the full-cell creosote process. Fig. 2.—Sections of hard-maple ties treated by the Ruep-	04
ing process	24
2.—Sections of red-oak ties treated by the two-movement creosote-zinc-chlorid process.	24
VII. Fig. 1.—Sections of hard-maple ties treated by the Card process. Fig. 2.—Sections of hard-maple ties treated by the two-movement	
creosote-zinc-chlorid process	24
VIII. Fig. 1.—Sections of red-oak ties treated with gas-house oil. Fig. 2.— Sections of hard-maple ties treated with gas-house oil	24
IX. Fig. 1.—Ties and rails ready to be placed in the track. Fig. 2.— Boring ties and driving screw spikes in the test track	42
TEXT FIGURES.	
Fig. 1. Cylinder equipment for experimental treatments	12 19
3. Rider used on gauge glass to determine level of liquid in tank shown in figure 2.	20
4. Method of determining volume of tie sections	21
5. Method of sawing ties to determine penetration in those of average	22
absorption	22
process	27
7. Relation of weight of wood and moisture content to absorption in red- oak ties treated by Rueping process	28
8. Relation of weight of wood, moisture content, and per cent of sapwood to absorption in red-oak ties treated by Burnett process	29
9. Relation of weight of wood and moisture content to absorption in red-	29
oak ties treated by Card process	30
10. Relation of weight of wood and moisture content to absorption in red-oak ties treated by two-movement creosote-zinc process	31
11. Relation of weight of wood and moisture content to absorption in red-	O1
oak ties treated with gas-house oil	32
 Relation of weight of wood, moisture content, and per cent of sapwood to absorption in hard-maple ties treated by full-cell creosote process. 	33

			Page.
Fig.	13.	Relation of weight of wood, moisture content, and per cent of sapwood	
		to absorption in hard-maple ties treated by Rueping process	34
	14.	Relation of weight of wood, moisture content, and per cent of sapwood	
		to absorption in hard-maple ties treated by Burnett process	35
	15.	Relation of weight of wood, moisture content, and per cent of sapwood	
		to absorption in hard-maple ties treated by Card process	35
	16.	Relation of weight of wood, moisture content, and per cent of sapwood	
		to absorption in hard-maple ties treated by two-movement creosote-	
		zinc-chlorid process	36
	17.	Relation of weight of wood, moisture content, and per cent of sapwood	
		to absorption in hard-maple ties treated with gas-house oil	36
	18.	Position of ties in test track (folder)	42
		Details of rail joint and rail section used in test track	43
		Details of malleable-iron ribbed tie-plate used with cut spikes on	
		some ties in test track	44
	91	Details of flat steel tie-plate used with screw spikes	45
		Details of screw spike	. 46
		Construction of the floats used	78
		Comparison of distillation curves for three samples of creosote	82
	25.	Device used for sampling creosote-zinc-chlorid emulsions in Card	
		process	84
	26.	Specific gravity of 2.5 and 3 per cent solutions of zinc chlorid in pure	
		mater at different temperatures	05

EXPERIMENTS IN THE PRESERVATIVE TREATMENT OF RED-OAK AND HARD-MAPLE CROSSTIES.

PURPOSE AND SCOPE OF EXPERIMENTS.

A great deal has been written upon the durability of railway ties treated by the various preservative processes, but there is little available information concerning ties treated by different processes and laid in one track, where the treatments could be compared. Though for some years the Forest Service has cooperated with railway companies in tests on experimental ties in actual service, these ties were all treated in commercial plants in the regular course of operation, and it was not feasible in the case of any one test to treat ties by each of the types of processes in common use.

Immediately after the establishment of the Forest Products Laboratory at Madison, Wis., however, and through the cooperation of the Chicago, Milwaukee & St. Paul Railway Co.,² a test track was established in which were placed ties of several species treated by a comparatively large number of representative processes. In carrying out this work the Forest Service gathered data concerning the condition and behavior of each individual tie, both before and after treatment, and of each cylinder charge as a whole during the actual treating. This was done not only to secure complete records for use in the durability tests of the ties in the track, but also to furnish information on the operation of the various processes used and, if possible, on some of the fundamental properties of wood which affect its treatment.

Part I of this bulletin describes the treatment of the ties and discusses the data of immediate value obtained during the application of the preservatives. Part II contains a description of the laying of the test track and tabulated records essential for an analysis of the durability data which will be obtained in future inspections.

THE TIES.

The species selected for the experimental ties were red oak and hard maple. On account of the limited capacity of the cylinder in which

¹ See Forest Service Circular 209, Progress Report of Service Tests of Ties, by H. F. Weiss and C. P. Winslow.

² By the terms of cooperation the railroad company furnished and laid the ties and paid the Forest Service an amount sufficient to cover the cost of the preservatives used.

the experimental treatments were made it was necessary to limit the total number of ties treated to the smallest consistent with reliable average results and, consequently, to limit the number of species. Red oak is a ring-porous wood and maple a diffuse-porous wood. In red oak the pores or vessels of the early wood of each annual ring are large and numerous, while in the later growth they are small and more scattered; in hard maple the pores are small and distributed uniformly throughout each year's growth. This difference in structure is well shown by the magnified cross sections in Plates I and II. Red oak is more commonly cut and treated for ties than any other ring-porous wood. Hard maple is not so extensively treated, but represents well a group the various species of which can be satisfactorily treated and utilized for crossties.

The ties used in the experiments were ordinary stock of the Chicago, Milwaukee & St. Paul Railway Co. Of the red-oak ties, 225 were obtained from southern Illinois and 100 from southwestern Wisconsin; the former had seasoned two months and the latter six months prior to their shipment to the laboratory. The origin and time of cutting of the remaining red-oak ties which were treated could not be ascertained. Those placed in the track untreated were cut in the vicinity of the Tennessee River 10 months before being laid. All the hard-maple ties were from northeastern Wisconsin; those subsequently treated were cut from 6 to 18 months before their arrival at the laboratory, and those laid in the track untreated were cut just before shipment. The latter were seasoned in open piles (at the laboratory) from the beginning of April to the middle of August.

No unsound or badly checked ties were used in the experiments. A number of oaks commercially known as red oak were doubtless included, as no attempt was made to separate *Quercus rubra* from other very similar species. All bark was carefully removed from the selected ties, which were then piled for seasoning.

The 8 by 2² form of pile modified by placing nine ties in the two upper courses was used. The method of piling the ties for seasoning is shown in Plate III (fig. 1).

The ties used in the treatments were received during the summer and fall of 1910. The first treatments were made in October, 1910, and the last in May, 1911.

The nominal size of the ties was 6 by 8 inches by 8 feet. Most of them were hewn on two sides, but a number were sawed on three and in some cases on all four faces.

됐그는 []

¹ It was first intended to use beech ties, but the maple ties were more easily procured and the species was considered as good a representative of the diffuse-porous woods.

² Courses of eight ties each with two ties between the courses.

THE PRESERVATIVE PROCESSES.

The preservative processes employed included at least one from each general type of pressure process in common use, in accordance with the following classification:

- (1) Full-cell processes, using comparatively large amounts of creosote.
- (2) So-called empty-cell processes, using small amounts of creosote, presumably well distributed in the treated portions of the wood.
 - (3) Processes using aqueous solutions of antiseptic salts.
- (4) Processes using small amounts of antiseptic oils, together with aqueous solutions of antiseptic salts.
- (5) Processes using large amounts of waterproofing oils which are nonantiseptic or practically so.

As typical of these classes of treatments the following processes¹ were selected:

- (1) Full-cell creosote, using 12 pounds of creosote per cubic foot of wood.
 - (2) Rueping, using 5 pounds of creosote per cubic foot of wood.
- (3) Burnett, using 0.5 pound of dry zinc chlorid per cubic foot of wood.
- (4a) Card, using 0.5 pound of dry zinc chlorid and 4 pounds of creosote per cubic foot of wood.
- (4b) Two-movement creosote-zinc chlorid, using 4 pounds of creosote per cubic foot of wood, followed by an impregnation of 0.5 pound of dry zinc chlorid per cubic foot of wood.
- (5) Semirefined oil with paraffin base ² (gas-house oil), injected into the ties until they refused to absorb more oil at a pressure of 175 pounds per square inch and a temperature of 180° F.

PART I .- TREATMENT OF THE TIES.

PLAN OF TREATMENTS.

One hundred ties of each species were treated by each of the processes named. For the treatment of each lot 10 cylinder runs were required. A charge consisted of 11 ties, of which one was cut up in order to determine the penetration of the preservative, and 10 were retained for the test track.³ Thus, there were treated for the track 600 red-oak and 600 hard-maple ties. In addition, 100 untreated ties of each species were laid.⁴

¹ Established processes are designated by their trade names. Treatments which do not conform to any established process are designated in a way to indicate the general character of the treatment.

² It was originally intended to make similar treatments using a semirefined oil with an asphaltic base, but satisfactory arrangements could not be made for the delivery of the oil.

³ Several charges contained only 10 ties each.

⁴ Certain other ties were also included in the test track. For a full record of the track see pages 41-43.

Before the ties were placed in the treating cylinder their moisture content was calculated. So far as practicable only ties thoroughly seasoned were treated; those considered insufficiently seasoned were held for a longer period.

Plate III (fig. 2) shows the treated ties closely piled in the yard adjoining the laboratory. Each lot was piled separately, thus making 100 ties in each pile.

CYLINDER EQUIPMENT.

The arrangement of the apparatus used for the treatments is shown in figure 1. For the sake of clearness, all of the units except the

Fig. 1.—Cylinder equipment for experimental treatments.

cylinder, A, are shown in side elevation; though, as actually erected, a number of them stand at right angles to the positions shown.

The principal parts of this equipment are:

Treating cylinder, A.

Track scales (in front of cylinder door; not shown in drawing).

Measuring tanks, B and B'.

Gauge board, K (for indicating the levels of floats 28 and 29).

Receiving tanks, D and D'.

Hydraulic pressure pump, H.

Surface condensers, E and E'.

Hot well, F.

Dry vacuum pump, G.

Air compressor, J.

Air receiver, C.

Motor-driven, centrifugal, circulating pump, L (motor not shown in Fig. 1).

MAGNIFIED CROSS SECTION OF RED OAK.

Magnified Cross Section of Hard Maple.

FIG. 1.—UNTREATED TIES SEASONING IN THE YARD.

Fig. 2.—Treated Ties Stored in the Seasoning Yard, Close-Piled, in Lots of 100 Each.

The cylinder, A, is approximately 3 feet 6 inches in diameter and 11 feet in length. It is equipped with a tramcar, tracks, and guardrails; steam coils for heating purposes, capable of a wide range of regulation by use of reducing and throttling valves; a combination indicating vacuum and pressure gauge (21 1), with a platinumprotected diaphragm; an indicating vacuum gauge (18); a straight stem, separable-socket thermometer with a 3½-inch bulb, placed in the back of the cylinder (see fig. 25); and recording pressure and vacuum gauges and thermometer (not shown). Stops on the rails in the cylinder prevent the tramcar or the ties from coming in contact with the thermometer bulb. A horizontal pipe (the end shown in dotted lines near bottom of A to the left), 1 inch in diameter, runs practically the full length of the cylinder and is attached to the pipe h. zontal pipe is the end of the discharge pipe from centrifugal circulating pump, L. It enters the cylinder near the rear end, is open at the end nearest the front, and is perforated throughout its length with a row of small holes opening toward the bottom of the cylinder, but at such an angle that the discharged liquid strikes obliquely. The total area of the holes is equivalent to the area of the cross section of the pipe.

The measuring tanks, B and B', are approximately 3 feet 6 inches in diameter and 12 feet in height. They are equipped with steam heads for heating preservatives and with separable-socket, angle-stem thermometers with 12-inch bulbs (30 and 31). Measuring tank, B', has in addition a \(\frac{3}{4}\)-inch air pipe (shown in dotted lines) running down the center of the tank and branching at the bottom into a cross, each arm of which has a row of small holes opening horizontally on the right-hand side. The end of each arm is closed by a pipe cap. Compressed air passed through these pipes keeps unstable emulsions in the tank well mixed. The holes are so placed that the air begins its passage up through the liquid in spiral currents, so that those portions near the bottom of the tank are thoroughly mixed and carried upward.

The gauge board, K, with the floats (28 and 29), counterweights (26 and 27), pointers (23 and 24), and other parts is used in measuring the height of the liquid in the measuring tanks, B and B'. Its horizontal position makes it easier to read than if it were vertical. The arrangement of the gauges is shown in figure 1. A detailed sketch of the floats and a discussion of the principles of construction of the gauge are given in the appendix.

The receiving tanks, D and D', are each equipped with steam coils and also with vent pipes, I and I'. The hot well, F, is provided with baffle plates, f and f', directly in front of the inlet and outlet pipes, which separate suspended liquid from the air before it reaches the vacuum pump, G.

¹ This gauge is used only for reading pressures. The vacuum side is simply for convenience, since with this addition it is not necessary to turn off the gauge when a vacuum is being drawn.

THE TREATMENTS.

GENERAL METHOD OF OPERATION.

Although the ties were treated by six different processes, there are a number of features common to all of the treatments, and these will be described before taking up the details of each process separately.

With the volume of the ties and capacity of the treating cylinder known, the amount of preservative necessary to fill the free space in the cylinder and to give the desired impregnation was calculated in units of the scale on the measuring-tank gauges, and the injections were regulated on this basis.

The cylinder was filled with preservative in the following way: Assuming measuring tank B (fig. 1) to contain the preservative, valves 7, 10, and 4 were closed, and valves 1, 5, 8, and 20, and cock 19 were opened. As soon as the preservative began to run out through valve 20 this was closed, and the remainder of the air in the cylinder was allowed to escape through cock 19, which was kept open until the preservative began to run out at that point. Cocks 1', 2', and 3' were then opened in turn until the preservative appeared, when they were closed and the cylinder was considered full.

In order to obtain hydraulic pressure in the cylinder after it was filled, valve 8 was closed and valve 7 opened. The preservative was then drawn from pipe a into the pressure pump and was discharged past relief valve 9 and through check valve 22 into the cylinder. Relief valve 9 contains a valve disk held to its seat by a spring whose compression could be varied by means of an adjustable handle. When the upward pressure became sufficiently great the disk lifted, and the liquid which was thus allowed to pass through the valve was carried by pipe b back again to the suction pipe of the pressure pump. By means of this relief valve it was possible to maintain practically constant any pressure required.

To empty the cylinder, valve 7 was closed, valves 10, 20, 13, 14, 11, and 12 were opened, and the preservative was allowed to run into the receiving tanks by gravity. To ascertain when the cylinder was as well drained as was practicable, a valve (not shown in fig. 1) at the bottom of the cylinder near the front end was opened. In order to drain the piping system below valves 1, 2, and 3, valve 8 and cocks 1', 2', and 3' were always opened before the preservative was returned from the receiving tanks to the measuring tank. However, the piping below valve 7 was always kept full when possible, being dripped only upon a change from one set of treatments to another in which different preservatives were used.

¹ All measuring-tank readings were corrected for temperature. The accuracy of the gauge readings is discussed in the appendix.

Before the admission of preservative to the receiving tanks valves 15, 16, and q were kept opened for several minutes in order to make sure that the receiving tanks were entirely empty. Preservative was returned from the receiving to the measuring tanks by closing valves 11, 12, and q, opening valves 15 and 16, and exerting an air pressure on the preservative through valves 3, 6, 13, and 14. The preservative could be returned to either of the measuring tanks.

During the treating period readings were taken at intervals of 15 minutes of the temperatures and float gauges of the measuring tanks; the temperature and pressure (or vacuum) in the cylinder; and the steam pressure in the cylinder heating coils. After these readings had been recorded cock 19 was always opened in order to detect the presence of any air which might have accumulated in the dome. When all of the excess preservative, including the drip, had been returned to the proper measuring tank, final readings of the measuring-tank gauge and thermometer were made.

The following are descriptions of the manner in which the various processes of treatment were conducted. In some cases departures were made in certain details from the procedure described, due to accident or other cause, but it is believed that all such changes were unimportant.

FULL-CELL CREOSOTE.

In the full-cell treatments with creosote the preservative, at a temperature of from 170° to 190° F., was at once run into the cylinder. and when this was completely filled the pressure pump was started. An initial pressure of 50 pounds per square inch was obtained as soon as possible and was held for 15 minutes. The pressure was then increased in steps of 25 pounds per square inch, at intervals of 15 minutes, until an absorption of approximately 12 pounds per cubic foot of wood was indicated by the measuring-tank gauges. however, a pressure of 175 pounds per square inch was reached before the desired absorption was secured, this last pressure was maintained until an absorption of 12 pounds per cubic foot was indicated. The oil was then run from the treating cylinder into the receiving tanks, and a vacuum was maintained for 30 minutes to dry the ties. The gauge showed a vacuum of 26 inches of mercury in about 15 minutes. The cylinder was then drained again into the receiving tanks and the charge removed. The maximum temperature of the oil in the cylinder was approximately 180° F.3

Digitized by Google

¹ While the recording gauges and thermometer were operated during the treatments, they were used only as checks on the simple indicating instruments.

² However, in no case during the treatments described in this bulletin was the presence of air in the dome observed during the pressure period. The length of the pipe from the cock to its open end was approximately 5 feet, and its diameter three-eighths of an inch.

Some variations from this procedure (principally in pressure) were made in the full-cell crossote treatments in the case of several re-treatments of ties previously treated by the Rueping process with an unsuitable amount of crossote. The total absorption of these ties was, however, the same as in the case of the full-cell crossote-treated ties which received but one treatment.

RUEPING.

In the treatments by the Rueping process an air pressure of 50 pounds per square inch for red oak and 90 pounds per square inch for hard maple was at once applied to the ties. The duration of the air bath was in no case less than 10 minutes, after which, without reducing the pressure, the cylinder was pumped full of creosote at a temperature of from 170° to 190° F., the compressed air being released through vent pipes 19 and 20 (fig. 1). When the cylinder was completely filled with creosote the pressure was increased in steps of 25 pounds per square inch, held for 15 minutes each, until the maximum pressure was reached. In the case of red oak this was 175 pounds per square inch, and in the case of hard maple 140 pounds per square inch. The maximum pressure was then maintained until the measuring-tank gauge, by two readings 15 minutes apart, showed no further absorption of creosote by the ties. After releasing the pressure and dropping the creosote into the receiving tanks a vacuum was drawn and held for 30 minutes, the gauge showing a vacuum of 26 inches of mercury in about 15 minutes. was then again drained and the ties were removed.

With the air and oil pressures used, an average absorption of approximately 5 pounds of creosote per cubic foot of wood was obtained. The maximum temperature in the cylinder during the treatment was approximately 180° F.

BURNETT.

In applying the Burnett process a preliminary vacuum of 26 inches of mercury was drawn and held for 30 minutes, after which, without breaking the vacuum, an aqueous solution of zinc chlorid at a temperature of 130° to 140° F. was run into the cylinder by gravity. This solution was of a concentration of 3 per cent in the case of red-oak ties, and 2.5 per cent in the case of hard maple. When the cylinder had been completely filled with the solution the pressure pump was started, and a pressure of 50 pounds per square inch was obtained at once and maintained for 15 minutes. sure was then increased in steps of 25 pounds per square inch, held for 15 minutes each, until a sufficient amount of the solution had been absorbed to give an average impregnation of approximately 0.5 pound of the dry salt per cubic foot of wood. If this impregnation was not secured before a pressure of 200 pounds per square inch was reached, the pressure was maintained at this figure until the proper absorption was indicated. The solution was then run from the cylinder, and the ties were allowed to drip for at least 15 minutes, after which they were removed. The average temperature of the cylinder during treatment was approximately 160° F.

¹ The proper air and oil pressures required in order to obtain the desired absorption in the two species was determined by preliminary tests.

CARD.

Treatments by the Card process were applied as follows: An emulsion consisting of a 3 per cent aqueous solution of zinc chlorid and creosote in the proportion of 80 per cent of zinc-chlorid solution to 20 per cent of creosote, by volume (at approximately 70° F.), was kept mixed in the measuring tank at a temperature of approximately 190° F. by blowing air through it. The emulsion in the treating cylinder was agitated by means of a centrifugal circulating pump, the capacity and speed of which were such that a volume equal to the quantity of emulsion in the cylinder was passed through it approximately every 15 minutes.

A vacuum of at least 26 inches of mercury was drawn and held for one hour, and the emulsion was admitted into the cylinder without breaking the vacuum. When the cylinder was completely filled the pressure pump was started, and a pressure of 50 pounds per square inch was obtained at once and held for 15 minutes. The pressure was then increased in steps of 25 pounds per square inch, held for 15 minutes each, until an absorption of approximately 0.5 pound of dry zinc chlorid and 4 pounds of creosote (20 pounds of emulsion) per cubic foot of wood had been obtained, or until a maximum pressure of 175 pounds per square inch had been reached, to be held until the desired absorption was secured. After emptying the cylinder a vacuum of at least 26 inches of mercury was drawn and held for 30 minutes, after which the cylinder was again drained and the ties removed. The average maximum temperature of the cylinder during treatment was approximately 180° F.

Samples of the emulsion were taken before, during, and after each treatment, both from the measuring tank and from the treating cylinder at a point 2 feet from its rear end in its axis.¹ Great care was exercised to maintain the proper proportions of zinc-chlorid solution and creosote in the emulsion.

TWO-MOVEMENT CREOSOTE-ZINC CHLORID.

A treatment consisting of separate injections of creosote and zinc chlorid was made as follows: Creosote at a temperature of from 180° to 200° F. was at once run into the cylinder until the uppermost ties in the charge had been submerged approximately 2 inches, as shown by a gauge glass. The inlet valve to the cylinder was then closed and the temperature of the creosote raised to 212° F., the expansion of the oil being taken care of by an overflow pipe leading from the top of the cylinder to the receiving tanks. The ties were kept submerged in creosote at a temperature of approximately 212°

¹ The manner of analyzing these samples is described in the appendix.

² This excess oil was returned to the measuring tank with the creosote in the cylinder at the end of the heating period.

F. for a period of 30 minutes, after which the creosote was drained into the receiving tanks.¹ During the heating period a connection was kept open to the surface condensers, but no appreciable amounts of condensed vapors were obtained. Care was taken to prevent a drop in temperature after the creosote had reached 212° F., which would have caused a contraction and a possible uncovering of the uppermost ties in the charge. On this account the temperature was raised slightly and very gradually during this part of the treatment.

At the end of the hot bath the creosote was drained from the cylinder as completely as practicable, and a 3 per cent aqueous solution of zinc chlorid at a temperature of from 160° to 180° F. was run into it. When the cylinder was completely filled the pump was started, and a pressure of 50 pounds per square inch was obtained at once and held for 15 minutes. The pressure was then increased in steps of 25 pounds, held for 15 minutes each, until an absorption of the solution corresponding to an impregnation of 0.5 pound of dry zinc chlorid per cubic foot of wood was obtained, or until a maximum pressure of 175 pounds per square inch had been reached, to be maintained until the desired absorption was secured. The zinc-chlorid solution was then run into the receiving tanks, and after a 15-minute dripping period under atmospheric pressure the ties were removed from the cylinder. The average maximum temperature of the cylinder during the pressure period was approximately 180° F.

GAS-HOUSE OIL.

In the treatments with gas-house oil a vacuum of 26 inches of mercury was at once drawn and maintained for 15 minutes. The preservative was then run in at a temperature of from 150° to 170° F. When the cylinder was completely filled the pressure pump was started, and a pressure of 50 pounds per square inch was obtained at once. The pressure was then increased by steps of 25 pounds, held for 15 minutes each, until a maximum pressure of 175 pounds per square inch was reached. This was continued until two successive readings of the measuring tank gauge, taken 15 minutes apart, showed no further absorption. The oil was then run into the receiving tanks, and a vacuum of 20 inches of mercury was drawn and maintained for 15 minutes, after which the cylinder was drawn and maintained for 15 minutes, after which the cylinder was drawn and maintained for 15 minutes, after which the cylinder was drawn and maintained for 15 minutes, after which the cylinder during the pressure period was approximately 180° F.

¹ In this process the ties were drained after the hot creosote bath for a longer period than in the other processes used, in order to reduce as much as possible the contamination of the zino-chlorid solution with creosote.

² The final vacuum was omitted in a few of the cylinder charges.

DETERMINATIONS MADE.

VOLUME OF TIES.

The apparatus used in determining the volumes of ties is shown in figure 2. The tie is submerged in water, and the difference in the level of the water during and after submersion is a measure of its volume. The water level is read in the gauge glass shown at the side of the tank. In order to make the reading more accurate a "rider" (fig. 3) was used. By bringing the upper edge of the two

horns of the rider and the lowest part of the meniscus, or surface of the water in the gauge glass, in the same plane, parallax was avoided.

The gauge glass was graduated in 0.01 foot and read to the nearest 0.005 foot; volume of the tank was 1.72 cubic feet for each foot in depth.

OVEN-DRY WEIGHT.

The oven-dry weight of each tie was determined by means of a section approximately 1 inch thick cut from one end. The green or wet volume of each section was determined, and the section was then dried in an oven and weighed. tie was computed.

Fig. 2.—Apparatus used in determining volumes of ties.

From these values the dry weight of the

The volumes of the sections were obtained from the weight of the water they displaced. The apparatus shown in figure 4 consists essentially of a vessel of water placed on the weighing platform of a balance and an arm (separate from balance and vessel) by means of which the wood is submerged. The difference in the weight of the vessel before and after the immersion of the section is the weight of the water displaced.² The weighings were made to the nearest one-half ounce.

¹ These sections were cut before the volumes of the ties were determined.

² This weight is supplied by the weight of the disk plus the pressure required to submerge it.

Before making this determination the sections were soaked in water until they had reached a constant volume. This was done in order that their volumes might be more nearly comparable to the volumes of the ties; most of the latter were only partially seasoned when their volumes were determined, and when treated had a moisture

Fig. 3.—Rider used on gauge glass to determine level of liquid in tank shown in figure 2.

content usually above the point (30 per cent) where any considerable shrinkage takes place.

After their volumes had been determined the sections were airdried in the laboratory for several days, then dried in an oven at 100° C. until they showed no change in weight over a period of 24 hours, when they were considered airdry.

MOISTURE CONTENT.

Having determined the actual weight of the tie and its computed oven-dry weight the amount of moisture it contained was found by subtraction after both factors had

been reduced to pounds per cubic foot, and the moisture content was computed as a percentage of the oven-dry weight of the wood. The moisture content of all ties was found immediately before they were placed in the treating cylinder.

PERCENTAGE OF SAPWOOD.

The area of both the entire cross section and of the heartwood portion of the sections cut for oven-dry weight determinations was measured with a planimeter, and from these measurements the per-

¹ The sections were cut from the ends of the ties and therefore contained less moisture than the average for the entire tie; moreover, they would dry rapidly between the time they were cut and the time when the volumes were determined.

centage of sapwood was calculated.¹ No attempt was made to cut the sections from corresponding ends of the ties; that is, the ends having the same relative position with respect to the butts of the trees from which they were cut. Because of the variation in the percentage of sapwood between the two ends of a given tie the method of measurement used is regarded as an estimation only.

RATE OF GROWTH.

The rate of growth of the ties was obtained in the ordinary manner; that is, by actual count of the number of annual rings in a measured

Fig. 4.—Method of determining volume of tie sections.

radial distance. The radius along which the count was made was in all cases selected as most representative of the section.

¹ The tie sections were placed beneath a thin sheet of glass upon which two cross marks had been made with an ordinary glass cutter. One of these was used as the point of rotation and the other as the origin for the tracing point of the planimeter. Care was taken to prevent the measuring wheel from slipping on the glass, frequent checks being made with this in view. The glass was carefully wiped off before each determination in order to remove the dust, which might cause the measuring wheel to slip. Where there was any difficulty in distinguishing the line between the heartwood and sapwood the section was dipped into water to bring out the line more clearly.

ABSORPTION OF PRESERVATIVES.

Although the tank gauges were read during the treatments, the absorptions recorded in this bulletin are those determined by weighing the ties before and after treatment. The weighings were made on a track scale, the beam of which was graduated in pounds. Weights of individual ties were obtained by balancing the scales as each tie was placed on the tram. In all cases the treated ties were weighed immediately after they were drawn from the cylinder.

PENETRATION OF OILS.

In order to determine the average penetrations of the oils, that tie in each cylinder charge which showed an absorption nearest the average for the whole charge was sawed into sections, as shown in figure 5. The middle and the two end sections of each of these ties were then split and the penetrations of the oils noted.

DISTRIBUTION OF ZINC CHLORID.

With a few exceptions one of the 1-inch sections cut from the tie of average absorption in each cylinder charge of the Burnett, Card, and

DIMENSIONS - APPROXIMATE

Fig. 5.—Method of sawing ties to determine penetration in those of average absorption.

two-movement creosote-zinc-chlorid processes was finely ground, and, after being thoroughly stirred, was analyzed to determine the amount of zinc chlorid present at that point in the ties most important in regard to their durability—near the rail fastenings. The samples were not considered as necessarily representative of the entire tie. The wood was digested by means of nitric and sulphuric acids and potassium chlorate, and the zinc chlorid in the residue remaining after digestion was determined by titration.¹

RESULTS.

TIME REQUIRED FOR TREATMENT.

COMPARISON OF PROCESSES.

Table 1 shows the average time of treatment of red-oak and hard-maple ties by each of the processes used. In most cases the value given is the average of 10 runs; in a few instances one or more of the

¹ The details of this method of analysis and the actual analyses were worked out by Mr. E. Bateman, chemist in forest products.

10 runs made are omitted from the average because of irregularities in the procedure or in the results.¹

The manner of operation in each of the various treatments was in accordance with the advice of some authority on the particular process. Since the same economy of time was not observed in the various steps of each process, it is manifestly unfair to make any comparison of the various processes based on the time of treatment.

COMPARISON OF SPECIES.

For all processes except the full-cell creosote,² the average time required for the treatment of red oak was 4 hours 29 minutes, and of maple 3 hours 46 minutes. Therefore, on an average, 19 per cent more time was required for the oak than for the maple ties. This may have been due largely to the more even distribution of vessels and the more open nature of the wood fibers of maple, as shown in Plates I and II, and also to the fact that the oven-dry weight of the maple was less than that of the red oak.

The difference in the time required for the treatment of the redoak and the hard-maple ties by the two-movement creosote-zinc-chlorid process was considerably less than in the case of any other process. This seems to have been due to the fact that the resistance offered by the hard-maple ties to the injection of zinc-chlorid solution was largely increased by the creosote which had been absorbed by the wood during the boiling period. No such equalization of the time required for treatment of the two species was effected by the injection of the creosote and zinc chlorid in an emulsion by the Card process.

VARIATION IN ABSORPTION.

COMPARISON OF PROCESSES.

The average results of treatments afford little basis for a comparison of the ease with which the desired absorptions are attained by the various processes. Omitting the Rueping (empty-cell) process, the smallest absorption was obtained with gas-house oil and the highest with straight zinc-chlorid solution (Burnett process). The creosote and zinc-chlorid emulsion (Card process) and the two-movement zinc-chlorid and creosote treatments gave practically the same absorptions, and were only slightly below the Burnett treatment. These relations hold for both species, but in the maple the absorptions are uniformly greater than in the oak, omitting the Rueping process as before.

The mean average variation of absorption of ties in the same charge varied with the different processes, but does not show con-

¹ A summary of results of the treatments for each cylinder charge is given in the appendix in Table 13.

² Because of the fact that some of the full-cell creosote-treated ties were re-treated, it would not be fair to include them in this average.

sistent variation for both species. Considering the two species, the variation is greatest for the gas-house oil treatments and least for the Burnett process.

COMPARISON OF SPECIES.

The average variation in absorption of ties in the same charge was greater for hard maple than for red oak, except in the case of the Rueping and the gas-house oil treatments. In the Rueping process the difference in this variation for the two species is small. In the gas-house oil treatments on red oak a large variation was to be expected because of the refractory nature of this lot of ties, which were mostly cut from the heartwood of comparatively old trees, and were of comparative high moisture content.

In the case of red oak, the tie of highest absorption in a given charge varied more from the average than the tie of lowest absorption. In other words, there was less likelihood of having excessively low than excessively high absorptions in a given charge of red-oak ties. A study of Table 1 will show no marked difference of this kind in the maple ties.

PENETRATION OF OILS.

Three representative ties of each species from each process using oils were selected, and photographs were made of a cross section and a split surface of a part of the middle section of each tie. These photographs, taken immediately after the sections were freshly surfaced, are reproduced in Plates IV to VIII.

Plate IV shows the complete penetrations of the vessels of red oak secured in the treatments by the full-cell creosote and the Rueping processes.² The only apparent difference in the fresh surfaces of the two lots of ties was that those treated by the full-cell creosote process were darker in color because of the much larger quantity of creosote present.

Plate V shows the penetrations secured in the treatment of hard-maple ties by the same processes. In both treatments the penetration of preservative was almost entirely in the sapwood. The maple ties treated by the full-cell creosote process seemed to show little better penetrations than those treated by the Rueping process, but many of the latter were cut from large trees and contained more heartwood on the faces. Considering the variability of the ties, there was little difference in the penetrations obtained by the two processes. The heavy absorption about the knot in tie No. 487 (Pl. V) is of interest.

Plates VI and VII illustrate the penetrations of creosote which were secured in red-oak and hard-maple ties treated by the Card

Digitized by Google

¹ This was not true of the Card treatments, but the cause is probably to be found in the variability of the material rather than in any difference in the behavior of the process.

² The presence of creceote in the vessels of red oak will doubtless insure a protection of the adjacent fibers which are not impregnated.

Tie No. 194.

Tie No. 185.

Tie No. 154.

FIG. 1.—SECTIONS OF RED-OAK TIES TREATED BY THE FULL-CELL CREOSOTE PROCESS.

Tie No. 67.

Tie No. 76.

Tie No. 58.

FIG. 2.—SECTIONS OF RED-OAK TIES TREATED BY THE RUEPING PROCESS.

Tie No. 548.

Tie No. 594.

Tie No. 565.

FIG. 1.—Sections of Hard-Maple Ties Treated by the Full-Cell Creosote Process.

Tie No. 434.

Tie No. 487.

Tie No. 467.

FIG. 2.—SECTIONS OF HARD-MAPLE TIES TREATED BY THE RUEPING PROCESS.

Fig. 1.—Sections of Red-Oak Ties Treated by the Card Process.

FIG. 2.—SECTIONS OF RED-OAK TIES TREATED BY THE TWO-MOVEMENT CREOSOTE-ZINC-CHLORID PROCESS.

FIG. 1.—Sections of HARD-MAPLE TIES TREATED BY THE CARD PROCESS.

Fig. 2.—Sections of Hard-Maple Ties Treated by the Two-Movement Creosote-Zinc-Chlorid Process.

Tie No. 648.

Tie No. 689.

Tie No. 616.

FIG. 1.—SECTIONS OF RED-OAK TIES TREATED WITH GAS-HOUSE OIL.

Tie No. 1446.

Tie No. 1456.

Tie No. 1468.

FIG. 2.—SECTIONS OF HARD-MAPLE TIES TREATED WITH GAS-HOUSE OIL.

and the two-movement creosote-zinc-chlorid processes. oak ties there seems to be a somewhat greater penetration of creosote by the Card than by the two-movement process; this difference is more marked in the hard-maple ties. In this case, also, part of the difference shown by the maple ties may be accounted for by the variability in the amount of sapwood. It should be remembered that these processes depend for their efficiency largely upon the zinc chlorid, and that the creosote is used principally to retard the leaching out of the salt. The penetration of the zinc chlorid can not be seen in the illustrations.

In Plate VIII the penetrations secured in treatments with gas-house oil are shown. The penetrations secured in the hard-maple ties were the most complete of any of the treatments of maple with oils. This is accounted for by the low viscosity of the oil in comparison with creosote. While the penetration of the gas-house oil in the red oak seems to have reached to the centers of the ties, it was in streaks. However, as has been said, these ties were more refractory than the other lots of the same species.

The great difference in the uniformity of penetrations in red-oak and hard-maple ties indicated by Plates III to VII should be especcially noted. The greater variability in penetration of the maple accords with the variability in absorption indicated in Table 1.

				Variation	ı from average	absorption.
Treatment.	Species.	Total time of treat- ment.	Average absorption per cubic foot.	Average variation for all ties in charges.	Average variation for ties of highest absorption in each charge.	Average variation for ties of lowest absorption in each charge.
Full-cell creosote Do Rueping Do Burnett Do Card Do Two-movement ZnCl ₂ and creosote Do Semirefined oil, paraffin	Red oak Maple Red oak Maple Red oak Maple Red oak Maple	H. m. 4 28 2 36 4 10 3 27 4 23 2 56 5 21 4 48 4 00 4 05	Pounds. 10.9 12.0 5.3 4.9 116.9 2 20.6 3 15.3 3 16.0	Per cent. 15. 4 18. 6 19. 9 18. 3 13. 8 16. 8 13. 7 20. 6 12. 3 17. 1	Per cent. 38. 4 45. 5 49. 8 34. 8 34. 8 34. 7 25. 0 45. 1 28. 5 29. 2	Per cent. 27.2 36.4 40.8 35.9 27.4 30.7 35.2 27.8 37.6
base	Red oak Maple	4 32 3 36	7.3 12.6	27. 2 23. 3	54.9 46.8	50.3 41.6

TABLE 1.—Summary of results of tie treatments for each process.

DISTRIBUTION OF ZINC CHLORID.

The average amount of zinc chlorid per cubic foot found by analysis of the sections cut 2 feet from the ends of the ties was 13.5 to 15.4 and 25 to 26.6 per cent less for the oak and maple, respectively,

Digitized by GOOGIC

 ¹³ per cent ZnCl₂ solution.
 24 per cent ZnCl₂ solution.
 Emulsion of 80 parts of 3 per cent ZnCl₂ solution and 20 parts of creosote by volume at approximately

⁴³ per cent ZnCla solution plus creosote.

than that computed from the absorptions of the ties. The averages of the determinations made are given in Table 2, and the results for each tie are given in Table 14 of the appendix.

The differences between the zinc-chlorid content computed from the absorptions of the ties by analysis of the sections are very uniform for the three classes of treatment. While the method of sampling used gives little information on the distribution of the preservative, the inference is that the distribution in the three classes of treatments is equally good. The greater difference shown by the maple ties compared with the red oak in the absorptions found by the two methods of determination indicates a less satisfactory longitudinal penetration for maple, a large amount of salt presumably being in the ends of the ties.

Table 2.—Average amount of zinc chlorid in the ties of average absorption.

		Absorption, cubic	dry salt per foot.	Difference between calculated
Treatment.	Species. Calculated from amount of solution absorbed by ties.		Determined by analyses of sections 2 feet from end of ties.	absorptions for ties and absorptions determined in sections.
Burnett Do Card Do Two-movement ZnCl ₈ and creosote	Red oak Maple Red oak Maple. Red oak Maple.	Pounds. 0.52 .49 .39 .39 (3)	Pounds. 0.45 .36 .33 .29 .27 .30	Per cent.1 13.5 26.6 15.4 25.6

1 Based on calculated absorptions for the ties.

2 The measuring-tank gauge readings disagreed so greatly with absorption by weights that the proportion of ZnCl₂ solution could not be calculated.

3 Calculated from the absorption of ZnCl₂ solution shown by measuring-tank readings. The sum of the absorption of creosote and the absorption of ZnCl₂ solution by measuring-tank readings differed from total absorption by weight by 1 per cent when all ties in this treatment are averaged.

RELATION BETWEEN WEIGHT AND ABSORPTION.

In order to ascertain, if possible, the effect of differences in weight of the ties on absorption each charge was investigated in the following manner: The absorption of each tie in a single charge was plotted in the order of its magnitude, beginning with the tie of lowest absorption. Vertically above each absorption the corresponding oven-dry weight of the wood per cubic foot, the moisture per cent, and the total weight per cubic foot of the wood before treatment (called the "treating weight") were plotted. The resultant curves for each cylinder charge were averaged in each process, and these curves, for both oak and hard maple, are shown in figures 6 to 17. In the case of red-oak ties (figs. 6 to 11) it is very evident that the less the treating weight the greater is the absorption. In all except the Rueping and gashouse oil treatments this is very marked, and even in the latter processes there is the same tendency, although to a less degree.

Fig. 6.—Relation of weight of wood, moisture content, and per cent of sapwood to absorption in red-oak ties treated by the full-cell crossote process.

Fig. 7.—Relation of weight of wood and moisture content to absorption in red-oak ties treated by the Rueping process.

Fig. 8.—Relation of weight of wood, moisture content, and per cent of sapwood to absorption in red-oak ties treated by Burnett process.

seen also that in general the less the oven-dry weight of the wood and the moisture per cent before treatment, the greater is the absorption.

Fig. 9.—Relation of weight of wood and moisture content to absorption in red-oak ties treated by Card process.

The exceptions noted are undoubtedly a result of the variability in the material, and are not a result of the process used.

¹ The treating weight equals the oven-dry weight plus the weight of moisture in the wood.

For hard-maple ties (figs. 12 to 17) it is evident that with a rise in the curves for absorption there is a marked downward tendency in the curves for treating weight and oven-dry weight in the full-cell creosote, Card, and gas-house oil treatments, and also in a less degree in the Burnett treatment. The curves for moisture per cent seem to have

Fig. 10.—Relation of weight of wood and moisture content to absorption in red-oak ties treated by twomovement creosote-zinc chlorid process.

no particular significance in the case of hard-maple ties, except in the Card process, in which increase in absorption seems to follow decrease in moisture content. In the case of the Rueping treatment, although absorption increases slightly as oven-dry weight declines, the curves for treating weight and moisture per cent apparently have no particular significance. For the two-movement crossote-zinc-chlorid treat-

ment, the curves for treating weight, moisture per cent, and oven-dry weight actually have an upward tendency with a rise in the absorption curve. In all cases, however, the effect of moisture and oven-dry

Fig. 11.—Relation of weight of wood and moisture content to absorption in red-oak ties treated with gashouse oil.

weight must be considered in conjunction with the amount of sapwood, which is discussed under the next heading. If the sapwood varies much in amount this may obscure the effect of other factors.

Fig. 12.—Relation of weight of wood, moisture content, and per cent of sapwood to absorption in hard-maple ties treated by full-cell crossote process.

66726°-Bull. 126-13-3

Fig. 13.—Relation of weight of wood, moisture content, and per cent of sapwood to absorption in hard-maple ties treated by Rueping process.

The effect of moisture upon absorption here noted is in accord with previous observations of the Forest Service and of those engaged in the wood-preserving industry. It might be thought that variations in the moisture content would have little influence in the case of a wood like red oak because of the comparatively large pores which are characteristic of this species. The results of this experiment, however, do not warrant such an assumption.

14.—Relation of weight of wood, moisture content, and per cent of sapwood to absorption in hard-maple ties reated by Burnett process.

Fig. 15.—Relation of weight of wood, moisture content, and per cent of sapwood to absorption in hard-maple ties treated by Card process.

It has been shown that in the case of hard maple the preservative was absorbed principally by the sapwood. The sapwood, being on the outside of the ties, probably contained very little moisture. It is very probable, also, that the greater part of the variation in the moisture content of the hard-maple ties occurred within the inner portion of the tie, which received practically no treatment.

The effect of oven-dry weight or density of the wood on absorption is probably a matter of space—the less the density of the wood the

more free space for the entrance of the preservative. While the density of the actual wood substances appears to be practically the same in all species ¹ (and therefore the relation between density and the amount of free space constant), the relations between density and absorption found in any one species would not necessarily apply among woods of different species on account of the differences in structural characteristics.

Fig. 16.—Relation of weight of wood, moisture content, and per cent of sapwood to absorption in hard-maple ties treated by two-movement creosote-zinc-chlorid process.

Fig. 17.—Relation of weight of wood, moisture content, and per cent of sapwood to absorption in hard-maple ties treated with gas-house oil.

RELATION BETWEEN PERCENTAGE OF SAPWOOD AND ABSORPTION.

The method of investigating the relation between percentage of sapwood and absorption of preservative was similar to that used in finding the relation between weights and absorptions, and the sapwood curves are shown in the same diagram. Attention is called to the fact that the sapwood curves are not in all cases based on the same

^{1 &}quot;Uber die Porosität des Holzes," by Julius Sachs, and "Uber die Verteilung des Wassers der Luff
* * in den lebenden Baume," by Robert Hartig.

number of ties as the absorption curves, but the omissions are not sufficiently numerous to make any difference in the general relations between the two curves.¹

In the red-oak ties the variation in the amount of sapwood was comparatively small, and no relation is found between percentage of sapwood and absorption. This would be inferred also from the appearance of the treated sections, as the preservative seemingly penetrates the heartwood as readily as the sapwood. Sapwood determinations were made on only two lots of red-oak ties; the curves are shown in figures 6 and 8.

Figures 12 to 17 show considerable variation in percentage of sapwood among the hard-maple ties, and in general the greater this percentage the greater the absorption. This relation is very marked in all of the treatments. The irregularities in the curves showing the percentage of sapwood may be due in some degree to the difficulty in discerning the line of demarcation between the heartwood and sapwood in the ties.

RELATION BETWEEN RATE OF GROWTH AND ABSORPTION.

The two ties in each cylinder charge having apparently the highest and the two having apparently the lowest average number of annual rings per inch, in the heartwood in the case of red oak and in the sapwood in the hard maple, were selected. The average number of rings per inch in each of these ties was then determined from actual count both for the heartwood and the sapwood. The count is shown by individual ties in Table 7.

Since the proportion of sapwood in the red oak was small and the preservative penetrated throughout the ties, the average number of rings per inch in the heartwood is the more important factor. On the other hand, because there was little penetration in the heartwood of the maple ties, the sapwood is the more important part to consider.

Table 3 shows that, with a few exceptions, the red-oak ties with the highest average number of annual rings per inch in the heartwood showed a higher absorption of preservative than those of lowest average number. It is also seen that the red-oak ties with the greater number of annual rings have the smaller dry weight. The finding thus agrees with the previous conclusion that ties of less density showed the greater absorptions.

Sections from all of the ties were not available when the sapwood calculations were made.

TABLE 3.—Relation between number of annual rings per inch and absorption of preservative.

OAK.

Treatment.		number ual rings h in—	Average absorp- tion of preserva-	Average dry weight	Esti- mated amount
	Heart- wood.	Sap- wood.	tive per cublc foot.	per cubic foot.	of sap- wood.
Full-cell creosote	9.0 12.3 8.0 14.6 7.2 13.8 7.6 12.7 7.3	12.9 8.6 12.6 8.6 12.2 7.5 12.5 8.7 11.2 8.6 14.8 8.1	Pounds. 11. 70 10. 96 5. 23 4. 75 16. 64 16. 11 16. 61 14. 21 15. 16 15. 27 7. 02 7. 71	36. 9 35. 9	Per cent. 10.4 12.4 10.8 15.3
MAP	LE.				
Full-cell creosote Rueping Burnett Card Two-movement ZnCl ₂ and creosote Semirefined oil, paraffin base	20. 4 22. 5 21. 8 24. 9 22. 6	28. 5 15. 0 24. 0 16. 3 24. 2 13. 7 28. 9 25. 0 14. 4 25. 2 17. 7	11. 94 11. 50 4. 30 5. 23 18. 93 20. 95 14. 79 17. 24 13. 82 16. 35 11. 82 13. 41	34. 2 34. 3 33. 5 34. 7 34. 5 34. 7 35. 6 35. 4 34. 8 35. 0 36. 2	62.0 52.8 61.5 71.6 61.4 68.7 58.0 69.0 61.7 60.0

¹ This refers to the averages of the two ties in each cylinder charge having the lowest number of annual rings per inch and the two ties having the highest number of annual rings per inch.

NOTE.—Data in all columns refer to the same ties.

In the case of maple the ties with the greater number of rings per inch (excepting those treated by the full-cell creosote process) showed the smaller absorptions, the rings in the sapwood being considered. As in the oak, the ties of slower growth (more rings to the inch) had in general the smaller dry weight per cubic foot, although the difference was very small. However, ties of more rapid growth had the greater amount of sapwood, which accounts for their greater absorption. In the case of both the red oak and maple the effect of number of rings per inch was comparatively small.

LOSS OF WEIGHT AFTER TREATMENT.

Although the treatments extended over a period from November 1 to about May 1, there was little chance for loss of weight by seasoning during the winter months because of the freezing weather. The final weights were taken the latter part of June, and for practical purposes the effective seasoning period of the ties was from about two to three months in all cases. A summary of the weights by

cylinder charges is given in Table 15 of the appendix, and the averages for the ties in each treatment are given in Table 4.1

Table 4.—Seasoning of the ties after treatment (average values for each process).

Treatment.	Treatment. Species.		Date of reweigh- ing.	Average time seasoned.	Average moist- ure.	Average weight of ties directly after treatment.	Average weight of ties before laying in track.	Average loss in weight per cubic foot.	Average absorption per cubic foot.	Average loss in weight after treatment.
-		1910.	1911.	Days.	Per ct.	Lbs.	Lbs.	Lbs.	Lbs.	Per ct.2
Full-cell creosote	Red oak.	Nov. 1 1911.	June 20	200	45.0	181.9	175.1	2.08	10.95	19.0
Do	Maple	Mar. 4 1910.	June 22	105	32.4	183.7	178.6	1.63	12.26	13.4
Rueping	Red oak.		June 20	204	45.7	155.0	147.6	2.85	5.39	52.7
Do	Maple	Mar. 10	June 22	104	31.1	152.8	149.3	1.13	5.03	22.5
Burnett	Redoak.	Jan. 18	June 21	154	44.0	192.3	164.0	10.33	16.81	61.4
Do	Maple	Feb. 6	do	135	35.2	206.1	157.2	15.69	20.22	77.7
Card	Red oak.	Apr. 12	June 26	74.5	40.0	186.5	165.0	7.54	15.26	49.5
Do	Maple	Apr. 22	do	65	31.3	193.8	170.3	7.59	16, 12	47.0
Two-movement ZnCl ₂	Red oak.	Mar. 24	June 23	92	40.9	193.0	168.9	8.35	15.29	54.7
and creosote.										1
- Do	Maple	Apr. 1	June 24	85	31.4	189.0	160.1	9.35	15.75	59.4
Semirefined oil, paraf-	Red oak.		June 23	53	50.7	173.2	166.6	2.40	7.37	32.6
fin base.					1					
Do	Maple	May 3	June 24	52	32.7	186.9	183.5	1.10	12.66	8.7
	_		t	!	j	j	J	1		

¹ Date given is intermediate between dates of first and last treatments.

Table 4 shows that in every treatment using oils alone there was a considerably greater loss in weight for the red-oak than for the hard-maple ties, while the reverse was the case with the treatments in which zinc-chlorid solutions were used either alone or in the two-movement process. The difference in behavior is doubtless largely an effect of differences in the size and arrangement of the elements of the two woods. It is probably not due to a difference in their moisture content, since in every treatment the red oak had a higher moisture content than the hard maple. The following seems to be a logical explanation for the phenomena: In the red oak the liquid, whether an oil or a solution, penetrated to the center of the ties. the hard maple, on the other hand, the penetration, while complete in the sapwood, was erratic, but in no case complete in the heartwood. Hence it is evident that the liquid was nearer the surface of the tie in the maple than in the oak. As the cell walls are more permeable to water than to oils, this fact would have more influence on the evaporation in the case of the ties treated with water solutions than in the case of those treated with oils. In the latter case the relative size of the pores of the two species was probably the controlling Since the vessels were very much smaller in the maple than in the red oak, the latter species would therefore be expected to lose more weight during seasoning after having been treated with an oil.

How great a proportion of the loss of the oils was due to dripping is unknown. The red-oak ties did not appear to be quite so dry after

² Based on the absorption.

¹ The average absorptions shown in Tables 4 and 15 vary slightly from the averages shown in Tables 1 and 13 for the reason that the latter are based on full cylinder charges, while the ties cut up for penetration determinations are omitted from Tables 4 and 15.

treatment as the hard maple. Especially was this the case with the Rueping-treated oak ties, which appeared relatively wet for many hours after treatment. This may explain in some degree their comparatively great loss in weight, which was greater than that of any other red-oak ties treated with an oil only. The fact that the Rueping is an empty-cell treatment, in which the pores of the wood are presumably not fully plugged up with oil, may have permitted greater volatilization from the interior of the red oak. In case of the maple ties, however, there was a greater actual loss in weight in those treated by the full-cell creosote process than in those treated by the Rueping process.

It may be that the vessels in the maple are sufficiently small to be largely plugged up by an oil, thus preventing any great amount of volatilization from the interior of the tie, even when treated by an empty-cell process.

APPLICATION OF THE RESULTS TO OTHER SPECIES OF WOOD.

It would seem that the results of the experiments described in this bulletin might be logically applied to other species of hardwoods having a structure similar to that of red oak and of hard maple. It is essential to bear in mind, however, that the vessels in many species of hardwoods, such as the white oaks and chestnuts, are obstructed by growths of tyloses, which, to a greater or less extent, affect the penetration and absorption of preservatives. Also many species of hardwoods contain gums and other materials which may have a similar effect, especially in the heartwood. In the case of conifers the structure of the wood is so different from that of hardwoods that no attempt should be made to apply to them the results of these experiments.

CONCLUSIONS.

Following is a summary of the conclusions drawn from the experiments discussed in this bulletin:

- (1) Under the same conditions of treatment a given absorption per cubic foot of wood was obtained in a shorter time in hard-maple than in red-oak ties.
- (2) For a given treatment individual ties of hard maple in the same cylinder charge showed a greater variation from the average absorption than did red-oak ties.
- (3) There was less likelihood of excessively low than of excessively high absorption among the individual ties in a given cylinder charge of red oak.
- (4) There was no appreciable difference in the penetration secured in red-oak ties treated by the full-cell creosote process, using 12 pounds

¹ The most noticeable amount of drip occurred after treatments of red-oak ties by the Rueping process. It has been suggested that if the final vacuum had been held for a longer period the dripping of these ties might have been reduced.

per cubic foot of wood, and in those treated by the Rueping process, using 5 pounds of creosote per cubic foot of wood. In the maple ties the difference was very small.

- (5) Both red-oak and hard-maple ties showed a greater penetration of creosote when treated by the Card than by the two-movement creosote-zinc-chlorid process,¹
- (6) The penetration of preservative in hard-maple ties was largely in the sapwood and in the seasoning checks; it was very erratic in the heartwood.
- (7) In the Burnett and Card treatments the average absorption of dry zinc chlorid per cubic foot of wood at a point 2 feet from the ends of 8-foot red-oak ties, determined by chemical analyses, averaged, respectively, from 13.5 to 15.4 per cent less than the average calculated absorption per cubic foot for the entire ties. For the maple ties the difference was 26.6, 25.6, and 25 per cent in the Burnett, Card, and two-movement crossote-zinc-chlorid treatments, respectively.
- (8) The absorption of preservative per cubic foot of wood in redoak ties was in inverse proportion to the moisture content and oven-dry weight.
- (9) The absorption of preservative per cubic foot of wood in redoak ties appeared to bear no relation to the proportion of sapwood in the ties.
- (10) The absorption of preservative per cubic foot of wood in hard-maple ties increased as the proportion of sapwood in the ties increased.
- (11) The absorption of preservative per cubic foot of wood in redoak ties increased as the average number of annual rings per inch increased, but the variation was slight.
- (12) The absorption of preservative per cubic foot of wood in hard-maple ties having nearly equal proportions of sapwood increased as the oven-dry weight per cubic foot decreased. The oven-dry weight per cubic foot of red-oak ties increased as the average number of annual rings per inch decreased.
- (13) The rate of loss in weight after treatment was greater for red-oak than for hard-maple ties treated in a similar manner with creosote only or with the gas-house oil used in these experiments.
- (14) The rate of loss in weight after treatment was greater for hard-maple than for red-oak ties treated in a similar manner with aqueous solutions of zinc chlorid, whether used alone or in combination with creosote in the two-movement process.
- (15) It is believed that the results of these experiments on red-oak and hard-maple ties may, in the absence of any data to the contrary, be logically applied to other hardwoods in proportion to their similarity in structure to red oak and hard maple.

¹ This, of course, does not refer to the Allardyce process, but only to the two-movement process as operated in these experiments.

PART II.—THE TEST TRACK. LOCATION AND PLAN.

In selecting a location for the test track the aim was to secure normal conditions of site and traffic. The location is in the northern division of the Chicago, Milwaukee & St. Paul Railway, just east of Hartford, Wis. The road is single track and carries a fairly heavy traffic in both directions. The track at the point where the ties are laid is gravel ballasted, well drained, straight, and practically level. (Pl. IX.) Nearly all of the ties treated at the Forest Products Laboratory are placed on a fill; a few of the treated ties which were included in the test come in a cut (for about 150 feet at the western end of the track). Plate IX shows the general character of the track and right of way at the site of the test. A list of the ties included is given in Table 5.

TABLE	5.—List	of ties	laid in	the	experimental	track.
-------	---------	---------	---------	-----	--------------	--------

			Treatment.
Tie numbers.	Species.	Frocess.	Preservative.
1 to 100	Red oak		Coal-tar creosote.
1 101 to 200	do		Do.
201 to 300	. <u></u> do	Burnett	Zinc chlorid.
301 to 400	Hard maple	do	Do.
401 to 500	do		
501 to 600		Full-cell	Do.
601 to 700	Red oak	do	Gas-house oil.
701 to 800	do		
801 to 900	do		Creosote and zinc chlorid.
901 to 925	Spruce		Mercuric chlorid.
926 to 947	Chestnut	Burnett	Zinc chlorid.
1001 to 1100		Two-movement	
1101 to 1200	do		Do.
1201 to 1300		do	
1301 to 1400	. <u></u> do	Burnett	Zinc chlorid.
1401 to 1500		Full-cell	
1501 to 1600	do		l
8 2001 to 2154	Red oak	Burnett	Zine chlorid.

¹ Two duplicate numbers.

Screw spikes with flat tie-plates were used on 50 per cent of the ties treated at the Forest Products Laboratory and on the accompanying untreated ties; the remaining 50 per cent, unprotected by tie-plates, were fastened by ordinary cut spikes. As an extension to the original experiment 262 red-oak and 21 chestnut ties treated at a commercial plant by the Burnett process were added. Some of each species of these ties were laid with screw spikes and flat steel tie-plates, and others with ordinary cut spikes and malleable-iron ribbed tie-plates. Also, 25 spruce ties treated by the Kyanizing process were included. Of these, 13 were put in with screw spikes and flat steel tie-plates, and the remainder with ordinary cut spikes,

² One number missing.

³ Eight duplicate numbers.

¹ These ties were treated with 0.5 pound of dry zinc chlorid per cubic foot of wood, injected in a 4 per cent aqueous solution. They were furnished from regular stock of the Chicago, Milwaukee & St. Paul Railway.

The Kyanized ties were contributed by the Berlin Mills Co., Manchester, N. H.

FIG. 1.—TIES AND RAILS READY TO BE PLACED IN THE TRACK.

FIG. 2.—BORING TIES AND DRIVING SCREW SPIKES IN THE TIES IN THE TEST TRACK.

and without tie-plates. The plan of the track is shown as figure 18 in the accompanying sheet (folder). To avoid disturbing the track in the future new rails were laid at the time the ties were placed. New fastenings also were used throughout.

Fig. 19.—Details of rail joint and rail section used in test track.

RAIL, PLATES, AND FASTENINGS.

American Railway Association type A ferrotitanium rail, weighing 90 pounds to the yard, was used. Details of the rail section and rail joint are shown in figure 19.

The flat-steel plates used with the screw spikes had a boss for supporting the head of the spike. The tie-plates are shown in figures 20 and 21, and the screw spike in figure 22.

Fig. 20.—Details of malleable-iron ribbed tie-plate used with cut spikes on some ties in test track.

LAYING THE TRACK.

The track was laid in August, 1911. The old rails and ties were removed, and new rails and the experimental ties, 22 to each 33-foot rail length, were placed in the track. The rails were laid with

joints staggered or broken. The usual methods of track construction were followed in most respects. In driving the screw spikes it was necessary to bring the rails to the proper gauge with the tie-plates in position under them, and the ties were then bored by using the plates as templates.¹ Both the boring and driving were done by means of a power track car especially constructed for screw-spike driving.² (Plate IX.) Spike holes in all the treated ties were filled

Fig. 21.—Details of flat steel tie-plate used with screw spikes.

with creosote in order to avoid any bad effects which might have resulted from not boring the holes previous to treatment.

After the track had been laid a thorough inspection was made in order to record exceptions from the proper numerical order of the ties and to mark all tie-plates and spikes improperly placed. Ties on which the tie-plates or rails did not fit properly were adzed sufficiently to secure a good bearing, and improperly driven spikes were reset. Creosote was poured on all adzed surfaces of treated ties. From the results of this inspection the map shown in figure 18 was prepared.

A record was made also of any special points in connection with individual ties, and these are given in Table 6.

¹ This car was loaned for the occasion by the Spencer-Otis Co., of Chicago, Ill.

¹ The ties could not be bored before treatment, due to the fact that at that time the weight of rail and style of tie-plate had not been determined.

Fig. 22.—Details of screw spike.

TABLE 6.—Remarks on certain of the ties in the test track.

Tie No.	Remarks.	Tie No.	Remarks.
	North end adzed to fit tie plate.	631	Both ends adzed to fit tie plate.
B		632	South end adzed to fit tie plate.
1	Both ends adzed to fit tie plate.	837	Do.
	South end adzed to fit tie plate.	838	Both ends adzed to fit tie plate.
l 4		854	South end adzed to fit rail.
10	Do.	866	
14	North end adzed to fit tie plate.	1251	
51	Both ends adzed to fit tie plate.	1279	Do.
5 2		1281	Both ends adzed to fit tie plate.
54	Do.	1284	Do.
56		1294	
	rail joint.	2108	North end cut spikes.
72 to 182, in-	Covered with planks and ballast for	2109	Do.
clusive.	farm crossing.	2110	Do.
2	North end adzed to fit tie plate.	2111	
88	Do.	2112	Do.
2	Do.	2113	Do.
07 .	Both ends adzed to fit rail.	2114	Do.
23		2118	Both ends cut spikes.
52 	Both ends adzed to fit rail.	2119	Do.
51 	Do.	2120	Do.
52	South end adzed to fit tie plate.	2122	Do.
75 	North end adzed to fit rail joint.	2123	Do.
00	South end adzed to fit tie plate.	2124	South end cut spikes.
08	South end, 3 screw spikes in	2127	Both ends cut spikes.
	plate.	2142	Tie about 4 inches too long.
79	Both ends adzed to fit tie plate.	2144	Tie about 9 inches too short.
17	South end adzed to fit tie plate.	2150	
28	North end adzed to fit tie plate.	2154	
30	Do.		· · · · ·

RECORDS.

The ties were marked for identification by numbered galvanized nails driven into each tie at a point approximately 3 feet from the end. This was done before the ties were treated. At the time of placement each lot was assorted and arranged in serial order, or practically so. The different lots, however, do not in all cases follow each other in such order. (See fig. 18.) A detailed record of the characteristics and treatment of each tie is given in Table 7.

The test track will be inspected at least once each year by representatives of the Chicago, Milwaukee & St. Paul Railway Co. and the Forest Service, and a report will be prepared after each inspection giving the condition of the ties at that time. These inspections will pay special attention to the extent of decay and rail wear of the ties and to the holding power of the spikes. If possible, the tonnage conditions will also be recorded. When replacements are made by the railroad company, the removed ties will be held for an inspection by representatives of the Forest Service.

¹ It was noticed that in "throwing" the rail while the track was being aligned, the cut spikes were in some cases slightly bent, while the screw spikes, so far as could be ascertained, remained firmly in place. The slight bending of the cut spikes, however, was no more marked than would be the case in ordinary rack construction. The point is mentioned simply to indicate the greater stability of the screw-spike fastening used in this track over the ordinary cut spike without the plates.

TABLE 7.—General records on the individual ties.

RUEPING-RED OAK.

	No. of	Oven-	Vol-	Average of ann per inc	number ual rings h in—		Mois-	w	eight of	tie.	Absor
Frack No.	cylin- der charge.	weight per cubic foot.	ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	per cubic foot.
		Pounds.	Cu. ft. 2. 36 2. 38 2. 60 2. 93 2. 55 2. 65 2. 84 2. 75			Per ct.		Pounds.	Pounds.	Pounds.	
*1	26	40.45	2.36	10.0	10.0		40. 4 48. 5	134 136	142 147		3.
2 3	8	37. 19	2.60	10.0 9.5	5.4		49.0 51.5	144	157	148	4. 5. 5. 4. 5. 4.
3	8 8 8	38. 49 37. 19 36. 93 38. 50	2.93	8.6	6.4		51.5	164 151	180	172	5.
4 5	8	40.30	2.55	8.0	0.4		53.8 44.2	154	161 169	157 161	3.
6	8	40.30 40.71 37.19	2.84				44. 2 38. 4	160	172	162	4.
7	8	37. 19	2. 75	7.5	10. 1		40.8	144	155		4.
8 9	8	37.08		• • • • • • • • • • • • • • • • • • • •			51.2	178 158	191 182	182 161	8
10	8	38.80	2.86				46.0	162	172	165	3.
11	8 9	29.69	2. 82 2. 86 3. 62 2. 28 2. 04 2. 47 2. 11 1. 96	17. 1 8. 3	15. 8 9. 0		49. 4 53. 0	160	178	ļ	8. 3. 5. 4. 3. 4. 5. 4.
+9 12	9	34.38	2.28	8.3	9.0		i .	120 110	130 118	115	3.
13	9	35.49	2. 47				49.5	131	142		4.
14	9	35. 15 40. 76 39. 30	2. 11				47. 0 32. 6	109	120	115	5.
15 16	9	40.76	1.96		- · · · · · · · · ·		32. 6 40. 9	106 145	114 158	109 150	4.
17	9	38. 20 36. 89 34. 32 33. 95 36. 73 37. 55	2. 19	7.7	12. 1		42.2	119	128	122	4.
18	9	36.89	2.06	8.4	15.0		37.0	104	112	108	3. 3. 5. 4.
19 20 21 *30	9	34. 32	2.65	8.4	15.0		58. 2 62. 0	144 132	154 144	152 138	3.
21	19	36. 73	2. 21				42.9	116	125	120	4
*30	19	37.55	2. 28				44. 8 46. 2	124	136		5.
22	19 19	36, 29 36, 81 36, 72 37, 12	2. 62 2. 19 2. 06 2. 65 2. 40 2. 21 2. 28 2. 60 1. 99	14.4	19.0 7.3 6.0		46. 2 51. 5	138	153 121	146	5.
24	19	36.72	2.43	9.4	7.3		44.6	111 129	138	115 132	3.
25	19	37.12	2.18	9. 4 9. 0	6.0		43.2	116	129	125	5.
26	. 19 19	37.11	2.18				48.3 50.0	120	130 125	124	4.
28	19	37.45	2.26				44.1	112 122	132	120 127	4.
23 24 25 26 27 28 29 30 31	19	37. 12 37. 13 37. 03 37. 45 38. 25	2. 43 2. 18 2. 18 2. 02 2. 26 2. 13 3. 01	10.5	11.6		44.7	118	131 188	126	6.
30	19	38. 25 36. 45 37. 04 35. 79 37. 19 38. 02 37. 00 36. 06 35. 90	3.01	10.5	11.6		56.8	172	188 193	186 183	5.
*38	21 21	35.79	3. 15 2. 38 2. 87 2. 70 3. 28 2. 81 2. 72 2. 57 3. 03	10.0	11.2		50. 8 55. 2	176 132	142	193	4
*38 32 33 34 35 36 37 38	21 21	37. 19	2.87				51. 0 49. 0	161	171	164	3
33	21	38.02	2.70				49.0	153	164	155	4
34	21 21	36.06	2.81	8.8 10.0	10. 6 10. 0		43.3 50.1	174 152	196 167	190 157	5
36	21	35.90	2.72	10.0	10.0		51. 5 46. 2	148	162	157 154	5
37	21		2.57				46. 2	136	153	145	6
38 39	21 21	36. 60 38. 58	3.03	8.0	10.2		58. 7 51. 7	176 182	185 190	171 180	2
40	21	38.10	2.74	1			43.6	182 150 128	161 150	152	4
41	22	28. 12	2.87	7. 2	10.0		58. 6 36. 7	128		144	7
*47 42	22	35. 99 39. 55 38. 60	2.36	8.8	7. 7 6. 0		30.7	116 116	130 126	121	3
43	22	38.60	2.92	8. 8 8. 4	6.0		32. 5 35. 8	153	168	159	5.
44 45	22	1 26 20	2.33				30. 9 39. 5	111	130	123 162	8
40 48	22	38. 70 38. 90 38. 77 38. 09	2.89	• • • • • • • • • • • • • • • • • • • •	j		39.5	156	166 154	162 146	3.
4 8 47	22	38. 77	3. 43				29.3	136 172 137	198	189	7
48	22	38.09	2.50	10.0	·····		43.8	137	146	141	3.
49 50	22		2.60	10.0	11.6		35. 9 36. 1	133 138	150 152	143 148	5.
51	23	38. 41 38. 22 37. 60	2. 13				.1 32.7	108	116	113	3
*58	21 22 22 22 22 22 22 22 22 22 22 22 23 23	37.60	3.11 2.74 2.87 2.36 2.292 2.33 2.57 3.43 2.57 2.60 2.64 2.31 2.31 2.33 2.37 2.22 2.33	8.3	7.5		39.4	121	134	137	5.
52 53	23	38. 38 37. 36 37. 50 36. 23	2.48	8.3	7.5		42. 8 32. 0	136 104	144 118	137 110	5.5.5.3.5.4.6.6.5.5.4.3.4.6.6.5.5.4.3.4.6.5.5.4.3.4.6.5.5.4.3.3.6.5.3.3.6.3.3.5.6.3.3.5.3.6.3.3.6.3.3.5.3.6.3.3.5.3.5
54	23	37.50	1.96				1 49.6	110	116	110	3.
54 55 56 57	23	36. 23	2.33	<u></u> -	<u>-</u> -		37.5	116 120	126	122	4
50 57	23	35. 85 38. 23 37. 99 36. 74 38. 58	2.33	9. 5 11. 1	8.7 14.1		43.7 33.8	120	130 1 22	114	4.
58	23	37.99	2. 26				33. 8 37. 5	118	132	122	6
59	23	36.74	2. 21	6.0	6.9		49.1	121	128	124	3.
60 61	23	38. 58 38. 45	1.94 3.64	11.3	8. 7		39. 1 50. 0	104 210	114 226	109 215	5. 4. 5.
*67	24	36.48	3. 64 3. 18	11.0		1	58.6	184	202	1 210	5

^{*}Sawed for penetration determinations, and therefore not laid in track.

TABLE 7.—General records on the individual ties—Continued.

RUEPING-RED OAK-Continued.

	No. of	Oven- dry	Vol-	Average of ann per inc	number ual rings h in—		Mois-	w	eight of	tie.	Absorp-
Track No.	cylin- der charge.	weight per cubic foot.	ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
62 63 64 65 66 67 68 67 70 77 77 78 79 80 81 87 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 97 98 99 90 90 90 90 90 90 90 90 90 90 90 90	24 24 24 24 24 24 25 25 25 25 25 25 26 26 26 26 26 27 27 27 27 27 27 27	Pounds. 37. 22 38. 49 37. 31 36. 59 37. 31 36. 59 37. 30 38. 10 38. 40 41. 19 38. 40 40. 67 42. 118 39. 60 40. 67 42. 118 39. 60 36. 12 37. 36 38. 30 38. 75 38. 30 38. 32 38. 38 37. 30 38. 32 38. 58 38. 38 38. 39 38. 55 38. 59 38. 59 38. 59	2.52 2.72	14.6 7.3 8.8 9.0 5.0 9.5 7.7 8.7 8.8 16.2 18.3	6.5		56. 4 60. 4 9. 9 50. 3 50. 6 33. 0 225. 0 38. 6 32. 8 36. 3 42. 4 30. 3 60. 7 41. 6 38. 0 42. 2	Pounds. 186 190 158 220 180 174 160 174 110 118 132 164 148 114 128 134 162 157 170 125 119 161 139 148 138 138 129 129 129 174	Pounds. 214 196 174 242 195 133 197 222 196 164 168 131 135 132 144 181 162 123 139 143 172 166 168 172 168 172 189 180 180 181 161 161 161 161 161 161 162	Pounds. 194 166 229 187 127 188 211 189 155 123 140 177 152 118 131 133 170 146 140 141 172 170 162 177 172 162 177 172 170 183 143 143 144 153 145 130 114 137 126 137 183	Pounds. 8.75 1.80 5.63 6.30 4.77 4.60 6.92 1.55 10.00 7.64 4.83 5.80 5.56 4.23 4.83 5.86 5.56 6.82 5.63 5.60 6.84 6.88 7.96 6.
			FU	LL-CELL	CREOSO	OTE—R	ED OA	K.		•	
101 102 103 104 105 106 107 108 109 109-1 110 111 112 113 114 115	1 16 1 16 1 16 1 16 1 16 1 16 1 16 1 16	37. 68 34. 38. 29 37. 04 38. 04 35. 01 32. 55 30. 28 33. 95 34. 65 35. 79 40. 08 40. 35 40. 35 35. 59	2. 65 2. 98 2. 81 2. 88 2. 91 2. 55 3. 04 2. 92 2. 65 2. 64 2. 43 3. 11 2. 38 2. 55 3. 23 2. 93	10. 0 10. 0 23. 0 19. 9 8. 7	9. 7 19. 9 11. 0	16.0 6.3 7.0 9.1 26.8 7.3 10.6 6.4 12.3 12.8 10.5 10.5 12.2 8.5 20.4 7.2	38. 2 54. 1 41. 2 50. 0 48. 1 59. 6 47. 0 60. 0 42. 3 46. 1 38. 3 35. 2 37. 9 41. 6 51. 7	2 158 2 152 2 160 2 164 2 134 2 158 2 130 2 144 130 2 127 153 129 144	* 174 * 190 * 183 * 191 * 194 * 157 * 197 * 184 * 176 163 * 148 184 162 172 203 197	169 185 180 185 190 152 193 180 160 137	13. 6 10. 8 11. 0 10. 8 10. 3 9. 0 12. 8 18. 5 12. 1 12. 5 8. 6 10. 0 9. 7 11. 0

^{*} Sawed for penetration determinations, and therefore not laid in track.

1 Re-treatment.

2 Weight before first treatment.

3 Weight after final treatment.

66726°-Bull. 126-13-4

TABLE 7.—General records on the individual ties—Continued.

FULL-CELL CREOSOTE-RED OAK-Continued.

	No. of	Oven- dry		Average of ann per inc	ual rings		Mois-	w	eight of	tie.	nds. Pounds. 196 10.0 11.4 198 13.3 191 177 140 11.0 1.1 178 14.6 11.0 11.7 193 13.3 167 14.6 11.7 19.3 13.4 16.5 11.6 11.7 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.0 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 14.6 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	per cubic
		Pounds.	Cu.ft.			Per ct.	Per ct.	Pounds.	Pounds.	Pounds.	Pounds
117	3	38.88	2.91	9.3	5.0	7.3	43.2	162 156	191		10.
118 119	3	39. 85(?) 40. 71	2.79(?) 3.01	7.5	10.0	12.5	40.6(?)	156	188 196	191	
120	3	40. 71 38. 80	2.96			23.3 22.7 12.9	27.4 49.7	156 172	202	195	7.
121	34	36.91	2.30	6.9 8.9 18.2	7. 2 6. 6 16. 6	12.9	47.3	125 2 162	148	140	
*121 122	1 20 1 20	37. 86 38. 28	2.80 2.98	8.9	6.6	11.3 10.9	52.8 43.7	3 162 3 164	* 194 * 193		
123	1 20	31. 25	3.24	18.2	10.0	6.5	54.0	156	3 199	191	13.
124	1 20	36. 21	2.47			12.8	36. 5	1 122	* 158	157	14.
125	1 20	40.00	3. 18				44.7	2 184	3 216	210	
126 127	1 20	43. 05 39. 71	3.47 2.64	8.4	6.2	14.8 13.1	32. 5 37. 4	3 198 3 144	* 234 * 172	165	
128	1 20 1 20 1 20 1 20 1 20	38, 33	2.50	0.1		23.5	48.3	2 142	* 168	100	10.
129	1 20	39.71	2.36	21.4	16.0	23. 5 12. 5	36.6	2 128	* 154		11.
130	1 20	35. 18	2.43	⁻		14.3	35.8	2 116	* 156		
131 *140	1 15 1 15	35. 18 38. 58	2.74 2.58			31.2	51.5 48.7	2 146 2 148	* 185 * 173	178	12.
132	1 15	37. 10	3.00			11.5	42.0	2 158	8 199	193	13.
133	1 15	38. 39	2.36	10.0	7. 7	11.5 10.3	34.7	2 122	³ 140	136	6.
134	1 15	35.37	2.84			12.7	53. 4 40. 6	2 154	* 180 * 202		9.
135 136	1 15 1 15	39.09 40.80	3. 13 2. 72	11. 7 29. 7	6.9	11.1 11.4	31.6	2 172 2 146	3 172	166	
136 137	1 15	40. 80 34. 71	9 21	i e		120	52 7	3 150	* 184	177	12.
138	1 15	32.89	2.38	11.4	13.0	17.6	53.3	3 120	* 142	137	
139 140	1 15	40.00 38.30	2. 43 2. 72		;	7.1	35.8 40.1	2 132 146	* 157 169	157	
141	34 1 17	35. 30 37. 01	2. 12				40.1	2 204	* 236	228	0.
*150	1 17	37. 01 38. 87	2.84			18.5	45.0	* 160	* 194		11.
142	1 17	40.70	3.30				41.2	2 190	* 224	218	
143 144	1 17	37. 10 39. 85	2.50 2.79				41. 2 39. 7	2 131 2 155	* 166 * 188	190	14.
145	1 17 1 17	38. 50	2. 55				55.0	2 155 2 152	* 176	100	
146	1 17	35.65	2.98			11.1	56.3	2166	3 190°	184	8.
147	1 17	38. 50	2.60				42.8	2 143 2 197	* 177		
148 149	1 17 1 17	44. 64 35. 90	3.30 2.86			• • • • • • • • • • • • • • • • • • • •	33.8 32.5	2 136	* 233 * 174	167	13.
150	1 17	37.61	2. 43				45. 5	2 133	³ 156		9.
151	28	36.70	2.86		.	8.3	48.6	156	186	180	10.
*154		35. 91 38. 31	2.82 2.82		• • • • • • • • • • • • • • • • • • • •	11.4	50.0 44.5	152 156	180 178	171	9.
152 153	28	37.03	3.03	14.7	11.8	10.4	49.7	168	202	195	111
154	28	36.86	2.48	11.2	16.0		49. 7 48. 7	136	162	157	10.
155	28	37.40	3.25	11. 4		· · · ; <u>;</u> · <u>-</u> ·	44.8	176 186	214	205	11
156 157	28 28	37. 55 36. 99	3.30 3.32	7.2		18. 7 29. 8	50.0 42.6	186 175	218 206	210 200	9.
158	28	37.90	3.52	9.5	4.8 5.0	13. 4	42.5	190	226	210	10.
159	28							189	226	218	
160 161	28 1 30	36. 80 35. 09	2.82 2.70	17 7	11 0	9. 1 8. 1	44.7 62.5	150 3 154	174 * 180	165 174	8. 9.
*166	1 30	40. 33	2. 10	11.1	11.0	10.8	30.5	1112	8 135	1/4	10.
162	1 30	43.92	2.40			7.1	19.5	3 112 3 126	8 152	147	10.
163	1 30	38.00	3. 43		 .	6.5	57.3	205	8 235	226	8.
164 165	1 30 1 30	36. 03 33. 28	3.04 3.64			8.7 10.9	54.2 57.0	² 169 ² 190	* 496 * 233	187 227	8. 11.
166	1 30	37. 10	2.99	10.6	5. 5	18.2	42.3	2 158	* 184	178	8.
167	1 30	40. 59	2.81			14.0	40.3	160	* 186	178 180	9.
168	1 30	33.20	3.71	10.6 7.6 23.9	11.4	7. 6 6. 3	44.5	2 178	3 232 2 217	225 211	14.
169 170	1 30 1 30	33. 12 37. 68	3.47 2.92	23.9	19. 0	0.3	55.0 49.3	2 178 2 164	* 217 * 191	178	11. 9.
171	31	41.20	2.07			11.8	26.6	108	126	121	9. 8. 11.
*176	31	36.49	2.43			10.0	50.0	133	160		11.
172	31	33.85	2.94 2.82	17.2	19.0	9.3 7.0	59.7 29.4	159 163	193 193	190 188	11. 10.
173 174	31 31	44. 70 42. 05	2.82			16.7	30.7	117	193	133	9.
175	31	42. 05 37. 10 39. 99 39. 40		8.7 - 10.0		6.7	39.0	99	124	123	13.
176	01	30 00	2.76 1.92		100	9.3	41.4	156	182	178	9. 8.

* Sawed for penetration determinations, and therefore not laid in track.

1 Re-treatment.

2 Weight before first treatment.

3 Weight after final treatment.

TABLE 7. --General records on the individual ties -- Continued.

FULL-CELL CREOSOTE-RED OAK-Continued.

Track c	No. of	Oven- dry	Vol-	Average of ann per incl	number ual rings h in—		Mois-	w	eight of t	tie.	Abserp-
Track No.	eylin- der charge.	weight per cubic foot.	ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	per cubic foot.
•		Pounds.	Cu. ft.			Per ct.	Per ct.	Pounds.	Pounds.	Pounds.	Pounds.
178	31	36.30	3. 13	8.0	9.3		37.5	156	211	204	17.6
179		36.74	2.58			9.1	47.6	140	177	161	14.3
180		40.29	2.67		l	17.0	42.5	153	168		5.6
181	32	32.61	3.20	8.4	12.5		53.3	160	204	198	7.5
*185	32	39.06	2.69			8.3	42.8	150	171		10.8
182	32	38.81	2.38			24.2	32.0	122	150	144	11.8
183	32	39.30	2.55				37.7	138	166	160	11.0
184	32	38.56	1.99			15.8	51.1	116	146	134	12.1
185	32	37.28	2.43	9.2	8.0	11.3	46.7	133	159	142	7.8
186 187	. 32	33. 45	2.67	8.0	6.6	15.9	54.5	138	173	167	12.4
187	32	40.08	3. 13 2. 72			17.0	35.6	170	202	198	10.5
188	32	39.05	2.72	8.7		12.5	41.1	150	178	170	10.7
189	32	33.92	2.36	8.7	8.0	8.6	57.5	126	154	147	11.9
190	32	38.20	2. 18			15.1	45. 4	121	144	143	10.6
191	33	34.84	2.98			10.6	41.6	147	188	183	13.1
*194	32 32 32 32 32 32 32 33 33 33 33	36. 52	2.48			19.5	50.2	136	163	····	10.9
192	33	34.85	2.36			8.1	62.9	134	152	149	7.6
193	33	34. 39	3.60		[15. 1	51.2	187	227	220	11.1
194	34	35. 70	2.94				56.4	164	194	191	10.2
195	33	39.08	2.07		·····	12.5	40.9	114	132	129	8.7
196	34 33 33 33	31.90	2. 11	21.3	35.2	12.5	53.1	103	140	137	17.5
197	33	37. 19	2.31			·····	43.3	123	144	145	9.1
198		36.02	2. 45				55.3	137	162	162	9.8
199		36. 23	3.06			17.2	45.2	161	192	187	10.1
200	34	35. 59	2.52			1	46. 1	131	165	163	13.5

BURNETT-RED OAK.

Track cy No. d	No. of	Oven- dry	Vol-	ber of	e num- nnual er inch	G	Mois-	w	eight of t	tie.	Absorper cu	ibic
	cylin- der charge.	weight per cubic foot.	ume of tie.	wood. woo	Sap- wood.	Sap- wood.	in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	Solution (3 per cent).	Dry salt.1
201 204 202 203 204 205 206 207 208 209 210 211 216 212 212	35 35 35 35 35 35 35 35 36 36 36	Lbs. 35. 30 36. 94 41. 01 36. 03 40. 68 40. 00 33. 39 39. 36 38. 57 38. 98	Cu. ft. 2.36 2.18 2.43 2.11 2.91 2.72 3.33 2.86 2.24 2.33	10.2 7.3 10.3 8.4 3.7	8.3 10.4 5.0 10.5	Per ct. 11.7 23.8 14.3 13.1 11.6 15.5 16.7 5.0 12.8 15.4 12.2 8.9 11.5	Per ct. 41.6 45.3 40.5 42.0 42.0 40.6 7 43.9 41.2 48.6 40.9 44.1 44.5 40.8	Lbs. 118 117 140 108 168 153 162 162 122 135 132 132 134 149	Lbs. 156 149 164 140 199 187 219 199 152 160 169 178 220 166 188	Lbs. 133 147 115 164 183 175 130 135 151 141 162	Lbs. 16.1 14.9 9.9 15.2 10.7 12.5 17.1 12.9 17.9 17.6 13.7 14.4	Lbs. 0.48 .44 .30 .32 .38 .51 .39 .54 .3254 .41 .43
214 215 216	36 36 36	36. 81 35. 97 34. 59	2. 14 3. 08 2. 81	8.4	12.5	18. 7 15. 5 27. 0	40.9 45.3 48.1	111 161 144	148 210 194	125 175 164	17.3 15.9 17.8	.52 .48 .53

^{*} Sawed for penetration determinations, and therefore not laid in track.

1 Values calculated from pounds of solution absorbed per cubic foot.

Table 7.—General records on the individual ties-Continued.

BURNETT-RED OAK-Continued.

frack No.	No. of cylin- der charge.	Oven- dry	Vol-	ber of	e num- annual er inch	Bass	Mois-	Weight of tie.			Absorption per cubic foot.	
		weight per cubic foot.	of tie.	Heart-wood.	Sap- wood,	Sup- wood.	in tie when treated,	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	Solu- tion (3 per cent).	Dry salt.
217 218 219 220 221 221 222 223 224 225 226 227 228 231 221 223 231 231 231 231 231 231 231	366 368 388 388 388 388 388 388 389 399 399 39	Lbs. 33.04 36.58 37.54 38.56 37.54 38.56 38.55 37.30 38.22 38.37.31 34.51 38.56 38.56 37.30 38.22 38.37.37 39.38 39.57 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.37 39.38 39.38 3	Cu. ft. 3.45 3.465 3.208 3.248 3.248 3.248 3.251 3.261 3.261 3.261 3.272 3.378 3.383	11.0 10.2 7.1 9.9 5.0 8.0 6.5 9.2 16.0 6.8 7.5 17.0 22.3 8.2 23.2 23.2 23.5 7.7 7.2 15.7 12.5 20.4 8.7	8.0 10.6 6.3 14.5 7.4 9.0 11.5 10.6 12.8 22.5 20.0 12.0 12.0 12.8 10.7 12.8 10.7 12.8 10.7 12.8 10.7 11.5 10.6	Per ct. 12.1 14.3 10.5 9.1 11.9 8.3 11.1 16.3 13.3 5.7 27.2 7.0 10.9 8.2 5.9 8.2 15.4 15.7 26.0 13.0 7.4 15.7 26.0 13.0 13.0 15.5 9.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Per ct. 51.8 6 44.9 41.8 47.5 51.8 47.5 52.4 43.5 50.4 44.4 49.6 53.1 54.5 54.4 46.2 54.0 7 7 46.3 34.5 54.4 46.5 52.4 43.5 56.3 56.5 56.4 56.5 56.5 56.5 56.5 56.5 56.5	Lbs. 179 200 169 128 132 190 150 184 148 165 162 153 178 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 158 150 150 150 150 150 150 150 150 150 150	Lbs. 2445 2511 2222 174 246 208 220 199 232 232 2312 210 196 204 198 219 233 172 214 226 204 230 202 200 176 169 233 202 200 176 169 166 164 174 226 165 169 169 169 169 169 169 169 169 169 169	Lbs. 203 220 187 149 163 197 194 163 197 194 181 187 170 187 194 203 135 186 200 193 206 174 186 166 153 149 122 140 120 155 141 166 127 127 156 127 157 138 174 115 142 205	14. 2 16. 6 16. 6 16. 6 17. 8 17. 8 17. 8 17. 8 17. 8 17. 8 17. 8 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 9 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 8 17. 9 17. 8 17. 9 17. 9 17. 8 17. 9	LOS. 5.6.4.5.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.

^{*} Sawed for penetration determinations, and therefore not laid in track.

TABLE 7.—General records on the individual ties—Continued.

BURNETT-RED OAK-Continued.

Track No.	No. of cylin- der charge.	Oven- dry weight per cubic foot.	Vol- ume of tie.	Average num- ber of annual rings per inch in—			Mois-	Weight of tie.			Absorption per cubic foot.	
				Heart- wood.	Sap- wood.	Sap- wood.	in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	Solu- tion (3 per cent).	Dry salt.
279 280 2813 2823 2823 284 2855 286 287 288 289 290 2911 292 293 294 295 296 297 298 298 299 290 291 292 293 294 295 296 297 298 298 299 299 290 290 290 290 290 290 290 290	43 43 44 44 44 44 44 44 45 45 45 45 45 45 45	Lbs. 34.78 42.42 41.31 34.82 37.19 35.58 36.52 37.52 37.10 39.10 39.06 38.47 39.76 38.11 35.89 37.81 36.02 37.61 36.39 34.83 38.40 34.76 35.55	Cu.ft. 2.94 2.89 3.71 3.18 3.26 2.70 2.58 2.89 2.04 3.06 2.70 2.38 2.91 2.04 3.20 2.47 2.96 2.57	10.6 6.7 5.8 10.2	16.0 8.0 7.0 9.4 17.1	Per ct. 13.0 9.4 4.5 15.2 10.0 10.4 16.7 7.5 11.0 20.6 11.7 9.3 10.2 10.6 18.4 7.9	Pcr ct. 49.6 20.0 34.4 48.2 245.2 34.6 6 39.4 41.1 25.4 41.0 36.5 39.9 47.5 40.0 48.2 245.4 41.4 41.0 48.2 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1	Lbs. 153 147 206 164 168 157 166 145 135 135 154 160 100 173 125 150 159 128 138 170	1.bs. 202 210 270 227 222 238 238 238 239 186 207 146 205 218 192 24 169 205 1198 206 145 218 188 206 145 218 218 218 218 208 208 208 208 208 208 208 208 208 20	Lbs. 178 175 229 191 197 194 166 171 120 176 187 163 176 119 195 1445 174 174 153 193	Lbs. 16. 6 21. 8 17. 3 19. 8 17. 4 24. 7 17. 2 17. 8 18. 3 22. 6 18. 0 17. 0 17. 8 17. 9 17. 8 18. 6 14. 1 19. 5 17. 5 18. 5	Lbs. 0.50 .65 .52 .59 .74 .61 .53 .59 .55 .58 .54 .51 .53 .54 .53 .54 .53 .54 .55 .53 .54 .55 .55 .55 .55 .55 .55 .55 .55 .55

BURNETT-MAPLE.

Track No.	No. of cylin- der charge.	Oven- dry weight per cubic foot.	Vol- ume of tie.	Average num- ber of annual rings per inch in—			Mois-	w	eight of	Absorption per cubic foot.		
				Heart- wood.	Sap- wood.	Sap- wood.	in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	Solution (2½ per cent).	Dry salt.1
301 *305 302 303 304 305 306 307 308 309 310 *319 312 313 314 315	46 46 46 46 46 46 46 46 46 47 47	Lbs. 25.81 35.15 33.53 33.20 35.10 35.20 34.66 29.39 31.62 26.10 39.70 38.99 34.30	Cu. ft. 3.37 3.09 3.23 4.38 3.38 2.65 2.98 3.15 3.33 3.08 3.01	24. 2 30. 6 22. 7 25. 0	26. 6 40. 0 15. 8 26. 0	Per ct. 57. 2 65. 0 27. 7 53. 8 74. 0 92. 0 70. 5 60. 8 56. 2 90. 0 68. 2	Per ct. 60.9 22.6 41.2 34.1 38.4 56.9 47.6 36.5 35.0 34.4 27.3 33.5	Lbs. 140 133 153 195 158 129 162 141 144 142 108 152 164 146	Lbs. 210 179 230 248 224 202 231 210 202 209 187 197 228 193	Lbs. 168 179 206 165 140 184 163 151 169 144 158	Lbs. 20.8 14.9 23.8 12.1 19.5 27.5 23.0 21.2 18.0 20.1 25.6 14.9 20.3 15.6	Lbs. 0.52 .37 .59 .30 .49 .69 .58 .53 .46 .50 .64 .37 .39
313 314 315 316 317 318 319 320	47 47 47 47 47 47 47 47	31. 42 33. 75 38. 00 35. 69 36. 16 30. 80 34. 79 35. 35	2. 96 3. 06 2. 65 2. 86 3. 44 2. 89 2. 70 3. 15	30. 7 23. 5	26.0 9.0	86. 5 75. 0 55. 0 64. 5 43. 3 89. 4 75. 4	29. 0 39. 4 31. 1 43. 1 32. 7 29. 2 29. 9 42. 7	120 144 132 146 165 115 122 159	171 212 192 194 236 166 188 218	140 166 144 154 185 130 146 166	17. 2 22. 2 22. 6 16. 8 20. 6 17. 6 24. 4 18. 7	.43 .55 .56 .42 .51 .44 .61

^{*} Sawed for penetration determinations, and therefore not laid in track.

1 Values calculated from pounds of solution absorbed per cubic foot.

TABLE 7.—General records on the individual ties—Continued.

BURNETT-MAPLE-Continued.

Track No.	No. of cylin- der charge.	Oven- dry	Vol-	Average num- ber of annual rings per inch in—		ge-	Mois-	Weight of tie.			Absorption per cubic foot.	
		weight per cubic foot.	ume of tie.	Heart-wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	Solu- tion (2½ per cent).	Dry salt.
321 323 324 325 326 326 326 326 326 327 328 330 331 334 335 336 336 337 338 3340 341 345 350 351 351 351 351 351 351 351 351 351 351	48 48 48 48 48 48 48 48 48 48 48 48 48 4	34. 40 30. 83 31. 67 31. 11 35. 43 32. 72 34. 90 35. 75 34. 90 36. 10 38. 76 36. 10 38. 76 36. 10 38. 76 36. 10 38. 76 37. 30 31. 50 34. 20 34. 20 34. 20 35. 75 36. 10 37. 30 36. 40 37. 30 38. 76 38. 86 39. 30 31. 50 31. 50 31. 50 31. 50 32. 86 33. 32 34. 86 35. 79 36. 10 36. 90 37. 30 38. 76 38. 86 38. 88 38. 89 38. 89 39. 89 39. 89 39. 89 30. 30 30. 89 30. 89 30. 80 30. 80 30	Cu. ft. 3.15 3.06 3.111 3.26 3.26 3.32 3.32 3.72 3.492 3.86 3.27 3.292 3.492 3.86 3.323 3.75 3.20 3.308 3.313 3.313 3.313	14.1 22.9 26.4 18.3 18.9 15.7 15.0 19.0 20.6 18.8 30.0 18.8 21.7 24.0 33.3 21.7 20.1 10.3 26.5 30.0	12.0 17.5 8.8 21.8 18.3 10.9 25.0 21.3 20.5 31.8 20.3 30.0 8.2 18.1 30.9 21.1 22.0	Per ct. 91.1	Per ct. 21. 8 31. 4 8 29. 6 27. 8 29. 6 27. 8 32. 4 38. 0 1 39. 6 6 35. 0 1 39. 6 6 35. 0 1 39. 6 6 32. 4 4 2. 6 6 31. 0 36. 6 4 22. 6 31. 0 36. 6 4 22. 6 31. 0 36. 6 4 22. 6 31. 0 36. 6 4 22. 6 31. 0 36. 6 4 22. 6 31. 0 36. 6 4 22. 6 31. 0 36. 6 6 32. 4 4 31. 4 31. 4 32. 5 34. 6 6 32. 5 34. 5 34. 6 32. 5 34. 5	## Loss 132 124 125 126 126 126 126 126 127 128 12	206 182 206 182 208 209 214 200 214 170 176 186 198 208 201 189 205 237 230 208 192 214 204 186 204 186 204 186 201 190 190 186 211 189 186 211 189 186 211 189 186 211 189 186 211 189 186 211 189 186 211 189 186 211 211 211 211 211 211 211 211 211 21	Lbs. 154 154 158 158 158 159 140 157 158 157 158 157 158 157 158 158 157 158 158 159 153 154 158 159	Lbs. 13.5 18.9 0 18.6 18.9 0 19.6 18.9 0 19.6 18.9 0 19.6 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9	Lbs. 0.595

^{*} Sawed for penetration determinations, and therefore not laid in track.

TABLE 7.—General records on the individual tles—Continued.

BURNETT-MAPLE-Continued.

Track cylinder charge *381 54 382 54 383 04 384 54 385 54 386 54 389 54 389 54 389 54 389 54 389 54 389 55	Lbs. 34. 45 35. 77 34. 01	ume of tie. Cu. ft. 3. 06 3. 67 2. 36	Heart-wood.	Sap-wood.	Sap-wood. Per ct. 55.0	ture in tie when treated. Per ct. 33.6	Directly before treatment. Lbs. 141	Directly after treatment. Lbs. 190	Before laying in track.	Solution (2½ per cent).	Dry salt.
*381 54 382 54 383 64 384 54 385 54 386 54 387 54 388 54	34. 45 35. 77 34. 01	3.06 3.67	20.0	22.5		33.6	Lbs. 141	Lbs.	Lbs.	Lbs.	Lbs.
390 54 391 55 *992 55 392 55 393 55 394 55 396 55 397 55 399 55	35. 10 31. 70 32. 05 34. 10 35. 48 34. 66 33. 48 30. 75 32. 87 34. 90 31. 27 33. 85	3.54 3.01 3.25 2.72 2.70 3.01 3.71 3.16 3.09 2.55 3.08 3.20		15.0 18.3 21.5 	63. 5 89. 5 50. 0 85. 2 76. 5 80. 5 56. 6 72. 6 58. 4	43. 9 29. 5 37. 0 36. 2 46. 5 29. 6 45. 5 40. 6 36. 7 41. 0 43. 7 41. 0	189 104 170 144 151 134 150 152 178 152 134 114 115 188 98 150	227 151 222 202 222 158 186 212 210 214 234 194 210 198 272 236 172 216	192 113 177 151 174 122 145 160 167 188 157 140 212 169 125 163	16. 0 10. 4 19. 9 14. 7 19. 3 21. 8 16. 6 19. 3 20. 6 18. 5 18. 9 25. 9 19. 5	0.40 -28 -50 -37 -48 -54 -41 -48 -51 -46 -47 -47 -48 -53 -72 -53 -70

RUEPING-MAPLE.

	No. of	Oven-	****	A verage of ann per inc	number ual rings h in—		Mois-	w	eight of	tie.	Absorp-
Track No.	cylin- der charge.	weight per	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Cu. ft. 3. 37 3. 82 3. 73 2. 64			Per ct.	Per ct.	Pounds	Pounds	Pounde	Pounds.
401	65	30.30	3.37		i	66.6	26.4	129	151	148	6.54
*405	65	28.47	3.82	18.1	13.3	62.7	30.6	142	166	1 1	6.30
402	65 65	32.93	3.73				35.1	166	184	185	4.83
403	65	32.20	2.64			77.4	34.1	114	132	127	6.82
404	65	29.10	4.41	20.0	11.1	50.0	30.9	168	190	187	5.00
405	65	29.76	2.79 2.77				27.7	106	129	125	8.25
406	65	30.91	2.77			57.4	26.1	108	132	120	8.66
407	65 65	32.02	3.20 2.79	27.6	30.0	70.0	32.7	136	147	145	3.44
408	65	25.79	2.79	24.0	16.0		30.6	94	109	114	5.38
409	65	30.93	3.20				30.3	129	151	146	6.90
410	65	30.33	2.55				30.6	101	122	120	8.25
411	66	35,40	3.15			65.5	34.5	150	160	144	3.17
*411	66	36. 13	3.20 2.55 3.15 2.86 3.11	22.0	16.9	69.5	30.6	135	147	177	4.20
412	66	35.78	3 11	21.4	19.3	66.6	30.6 32.8	148	160	159	3.86
413	66	34.90	2.45	20.0	22.6	62.0	26. 4	108	116	115	3.26
414	66	35.03	2 67	20.0		70.0	32.6	124	132	130	3.00
415	66	36.50	2. 67 3. 16			51.0	31.8	152	158	157	1.90
416	66	34.25	3.18			70.5	28.5	140	156	150	5.03
417	66	34.42	2 99			70.8	24.4	128	142	140	4.68
418	66	36.75	2.99 2.84	•••••		1	30.3	136	144	142	2.82
419	66	36.77	3.08	27.1	17.8		25.4	142	155	153	4.23
420	66	34.25	3.84			71.6	32.3	174	187	182	3.30
421	67	37.18	3.08			67.4	30.1	149	167	182 163	5.84
*430	67	34.72	3 15			87.7	29.7	142	156		4.44
422	67	36.01	3, 15			82.7	26.9		156	153	3.81
423			3.15 2.48	18.7	20.0	80.0	32.3	144 122	134	129	

^{*} Sawed for penetration determinations, and therefore not laid in track.

Table 7.—General records on the individual ties—Continued.

RUEPING—MAPLE—Continued.

	No. of	Oven- dry	77-1	Average of ann per inc	number ual rings h in—		Mois-	w	eight of t	tie.	Absorp
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood,	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Cu.ft.			Per ct.	Per ct.	Pounds.	Pounds.	Pounds.	Pounds
424 425	67 67	30. 10 35. 30 30. 10	Cu. ft. 3.32 2.79	12.6 28.9	33.6 21.5	47.1 61.6	32.1 32.0	132 130	144 142	141 139	3.6 4.3
426 427 428 429	67 67	30.10 35.87	3.66 3.38	 		42.6 71.6	30.6 31.1	144 159	162 172	155 168	3.83 4.57 3.6 4.62 4.62 4.63 8.52 7.60 4.43 3.40
428	67	33.78	3.04 3.06				29.6	133	146 156	145	4.3
429 430	67 67	37.20 35.54	3.06	12.6	18.0	53. 2 52. 5	24.8 30.4 26.4	142 153	172	151 164	4.5 5.7
431 *434	1 62	34. 53 34. 25	2.52	18.0 39.8 18.0	15.5		26. 4 32. 5	110 117	118 134	117	3.2
432	62	38.34	3.30 2.52 2.58 3.30	18.0	20. 5 25. 0	45.0	31.9	167	182 127	179	4.5
433 434	62	35. 93 35. 15	2.45			55.1	28.3 29.0	113 122	127	125 130	4.6 8.2
435	62	32.13	2.81 2.81 3.13 3.19 2.65				29.0 29.5	117	144 141 154	137	8.5
436 437	62	36. 85 36. 62	3.13	<u> </u>		79.3	26. 5 30. 0	131 149	170	140 165	8.2
438 439	62 62	36. 46 33. 90	3.19	27.4	25.8	75.5	32. 4 32. 6	154 119	170 179 135	165 175 131	7.8
440	62	37.52	3.03 3.16	21.4	20.0	78.1	29.3	147	166 159	164	6.2
441 *450	68	28. 67 30. 70		16.9	21.5	60.4	60. 0 35. 2	145 125	159 138	156	4.4
442	68 68	35.63	2.89 2.62 3.49 2.86 3.06			71.4	22.4	125 126 122	136	134	3.4
443 444	68 68	35.97	3.49			80.7	30.6	164	132 178	129 173	4.0
445 446	68	35. 97 34. 75 36. 78 37. 88 36. 74	2.86	• • • • • • • • • • • • • • • • • • • •			27.7	127 150	137 166	135 163	3.5
447	68	37.88	3.25 2.99	30.0		56.6	27.5	157	175	167	5.5
448 449	68 68		2.99	30.0 26.0	13. 3 33. 2 25. 3	90.7 51.3	23.8 31.7	136 143	151 154	152 150	5.0 3.7
450 451	68	37.90 35.47	3.01 3.90	26.0	25.3	64.7 58.1	28. 9 31. 6	147 182	160 199	157 193	3.52 5.55 5.77 4.32 4.32 6.78 4.36 6.89 5.88
*460	68 68 68 68 68 69	1 34 60	3. 41 2. 57				21.7	144	155 136		3.2
452 453	69 69	37. 20 26. 92 35. 97	2.57 3.86	16.9 24.6	15.1 14.2	81.0 75.4	1 26.7	121 136	136	134 154	5.4
454	69	35.97	3, 42			89.6	30.8 27.6	157	177	174	5.8
455 456	69 69	36. 21 35. 60	2.79 3.21			63. 8 70. 6	27.7 28.6	129 147	162 177 142 168	154 174 174 140 160	5.6
457 458	69 69	35. 87 30. 10	3.11 2.89	22.7	20.8	40. 5 80. 8	30.0 34.5	145 117	157 135	154 130	3.8
459 460	69	33.82	3.03 2.91	27.2	1		32.6	136	149	145 141	3.9
460 461	69	34.70 33.60	2.91 5.89	27.2 19.8	19.7 16.5	64. 6 74. 4	28.7 10.2	130 218	147 248	141 241	5.8
*467	70 70 70 70	31.57 30.32	2.86 2.76			60.9	34.1 26.7	121 106	246 135 123	119	4.70 4.90 6.10
462 463	70	35. 53 30. 84	2.77	18.0 12.8	20.0 28.5	71.6 52.1	34.1	132	141	141	3.2
464 485	70 70 70	30.84 37.02	3 08	12.8	28.5		27.1	164	184 159	179 159	4.5
465 466	70	35.80	3.08 3.33	21.1	26.1	60.0	31.7	145 157	169	166 124	3.6
467 468	70 70	31.02	2. 47 2. 64 3. 08	21.1	26.1	1	31.8	115 108	129 126	124	3. 6. 5. 6. 6. 8. 6. 5. 6. 0. 4. 90
468 469 470	70	31.02 27.90 32.50	3.08			81.1 62.5	28.1 19.9	110 150	130 165	122 127 165	6.5
471	71	32.30	2.84			82.4	35.1	124	141 170	139	6.0
*476 472	71	35.20	3. 85 2. 84 3. 28 2. 77(?) 2. 99	17.8	21.6	82.3	33. 4 37. 2(?)	154 127	170 144	142	6.1
472 473	71	33.44(?) 33.00		15.2	17.1	81.1	35.8	127 134	154	149	6.14 6.70 4.3
474 475	41	34. 20 35. 07	3. 47 3. 23			74.0	37. 4 36. 8	163 155	178 170	173 165	4.6
476 477	70 70 70 71 71 71 71 71 71 71	34.10 31.00	3. 23 3. 25 2. 81			56.4 65.2	36.2 37.7	151 120	163 132	157 132	4. 65 3. 70 4. 27
478	71	35.60	3.50	19.8 14.6	20.7 15.4		34.8	168	182 188	181	4,00
479 480	1 71	29.73	3.37	14.6	15.4	73.5	37.7	133 138	158 154	154 150	4.76
481	71 72	36.04 35.60	3.49				33.5 57.6	168 143	1 182	177	4.00
*487 482	72	39.31	2.55 2.99	24.1 19.0	33.3 11.7	87.3	40.4	165	154 182	177	4. 33 5. 69
483 484	72 72 72 72 72	31.78	3,45			33.3 36.2	37.8 33.0	151	163 172 128	161	3. 48 3. 08 4. 73
485	1 72	33.90 28.70	3.57 2.96	l	J	J	33.0 34.2	161 114	128	170 123	4.7

^{*} Sawed for penetration determinations, and therefore not laid in track.

TABLE 7.—General records on the individual ties—Continued.

RUEPING-MAPLE-Continued.

	No. of	Oven- dry	Vol-	Average of ann per incl	number ual rings h in—		Mois-	w	eight of t	ie.	Absorp-
Track No.	eylin- der charge.	weight per cubic foot.	ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	in tie when treated.	Di- rectly before treat- ment.	Di- rectly a ter treat- ment.	Before laying in track.	per cubic foot.
486 487 488 489 490 491 *494 492 493 494 495 496 497 498 499 500	72 72 72 72 72 73 73 73 73 73 73 73 73	Pounds. 36. 83 34. 04 35. 18 37. 80 35. 35 33. 18 35. 50 37. 31 36. 05 34. 83 37. 40 36. 83 38. 13 36. 36 34. 80	Cu. ft. 3.09 3.64 3.30 3.52 2.67 2.75 2.99 2.99 2.87 2.85 2.87 2.84 3.01	20.0 14.0 24.0 19.5 19.1		Per ct. 58.7 77.8 83.3 26.4 81.8 56.6 44.4 69.7 81.8 77.4 57.6 68.7 66.0	Per ct. 35. 4 32. 5 32. 5 32. 5 29. 3 35. 6 23. 9 23. 5 26. 2 25. 6 37. 0 25. 2 29. 4 26. 8 27. 9 29. 8	Pounds. 154 119 154 172 128 113 128 137 102 135 137 132 133 120 148 132 136	Pounds. 166 129 171 188 144 126 139 143 119 146 151 149 126 162 142	Pounds. 164 128 168 184 141 1124 141 115 146 148 143 127 157 136 144	Pounds. 3.88 3.78 5.15 4.54 6.00 4.72 3.77 2.06 5.82 3.70 4.90 5.64 2.38 4.57 3.52 3.32
			F	ULL-CEI	LL CREO	SOTE-	MAPLE).			
501 *508 502 503 504 506 507 508 509 509 510 511 *514 515 515 517 518 519 520 527 522 523 524 525 528 529 530 531 *514 515 520 533 534 535 534 535 536 537 538 539 539 539 540 541 541 541 541 541 541 541 541	1 64 1 64 1 64 1 64 1 64	35. 27 38. 80 34. 19 36. 43 35. 78 33. 60 36. 27 33. 24 35. 78 31. 70 30. 75 32. 40 30. 75 32. 40 30. 33 33. 39 34. 66 38. 36 38. 36 38. 30 35. 73 36. 11 35. 73 36. 11 36. 12 37. 34 38. 30 38. 30 38	3.13 2.86 3.35 3.54 3.79 3.25 3.30 2.74 3.86 3.08 2.01 2.77 2.89 3.92 3.93 3.93 3.93 3.93 3.93 3.93 3.9	25. 6 16. 9 20. 6 12. 0 23. 3 17. 0 14. 3 18. 2 18. 9 17. 8 22. 3 18. 6 25. 0 30. 4	15. 5 21. 0 15. 0 21. 1 24. 0 18. 4 14. 1 15. 3 16. 8 12. 3 32. 0	12. 4 67. 9 69. 2 78. 7 48. 3 17. 8 60. 5 45. 4 61. 8 42. 2 7. 79. 8 71. 6 60. 0 73. 4 76. 5 65. 6 60. 0 83. 0 84. 0 96. 2 97. 4 98. 7 98.	29. 4 29. 5 30. 2	134 168 200 2119 2136 2117 2132 2110 2150 2155 2153	172 176 180 204 220 222 194 170 184 210 207 194 2119 2107 184 210 207 194 210 207 194 210 207 194 215 217 218 2190 210 157 190 210 157 190 210 205 236 3146 3156 3146 3156 3146 3156 3146 3156 3146 3156 3146 3156 3146 3156 3146 3156 3146 3156 3146 3156 3142	170 175 200 210 215 186 183 201 199 192 188 135 222 183 245 55 179 187 177 177 177 207 177 230 152 230 152 143 151 169 140 191 151	7. 7 9. 4 6. 9 10. 0 15. 6 10. 6 11. 2 9. 7 12. 6 15. 3 14. 1 21. 8 16. 6 9. 3 14. 1 21. 8 15. 4 12. 4 14. 2 22. 2 20. 6 16. 9 11. 9

^{*} Sawed for penetration determinations, and therefore not laid in track.

1 Re-treatment.

2 Weight before first treatment.

3 Weight after final treatment.

Table 7.—General records on the individual ties—Continued.

FÚLL-CELL CREOSOTE-MAPLE-Continued.

	No. of	Oven- dry		Average of ann per inc	number ual rings h in—		Mois-	w	eight of t	tie.	Absor
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Cu.ft.			Per ct.	Per ct.	Pounds.	Pounds.	Pounds.	Pound
*546 542	76 76	33.39	2.84 2.81 3.21 3.35			75.0 85.5	34.0 33.9	127 128	156 178	173	10 17
543	76	34. 03 33. 05	3. 21			86.5	36.7	145 154	179	178	10
544	76	34.76	3.35	20.0 14.2 35.8	18.0 16.6 28.1	56.0	32.1	154	184	180	9
545 546	76	31.96	3.65 2.65	14.2	16.6	63.3 74.7	41.4	165 128	198 154	194 149	9
547	76 76 76	37. 40 37. 51 39. 35	2.84	55.5	20.1	63.6	29.1 35.2	144	165	160	1 7
548	76	39.35	2.84 2.70			63. 6 81. 1	23. 4	144 131	165 156	153	9
548 549 550	76 76	34. 20	2.89				23.6	146 122	173 149	168 146	<u>.</u>
551	74	36.10	2.82	18.7	23.7	66.0 40.0	29.6	132	156	154	8
*560	74	38 40	2.82 3.73	24. 4		70.4	32. 5 27. 3	180	222 154	. 	11
552	74	38. 48 33. 78 33. 43	2.55 3.43	24.4		70. 4 58. 7 60. 7 86. 5	27.3	125	154	151	117
553	74	33.78	4 10	11.4	15.2	90.7	36. 4 25. 4	158 172	182 223	177 219	12
554 555	74	เรอดก	4.10 3.35			41.3	31.9	144	171	164	1 8
556	74	35.43	2.84			36.7	33.3	134	159	156	8
557	74	35. 43 34. 77 36. 43	2.84 3.38 2.84			74.0 65.0	31.1 27.5	154	185	182 165	13
558 559	74	35.14	3.03			60.0	28.6	132 137	185 170 180	176	1 14
560	74	34.30	3.71	22.5	15. 5	350	31. 2 31. 3	167	202	176 185	13
561	77	34.34	2.55			76.4	31.3	115	150	147	13
*565 562	77	35. 92 33. 87	3. 03 3. 71 2. 55 3. 93 3. 57	34.7	22.0	75.0 74.0	30.8	191 158	236 207	203	11
563	77	36. 66 36. 20 35. 50		34.7 16.4 21.3	22. 0 25. 0	74.0 30.2	35. 4 30. 8 33. 0	156	182	178	1 8
564	77	36.20	3. 45 2. 82 3. 60	21.3	18.0	23.8	31. 4 29. 9	164	194	190	١, ١
565 566	77	38.00	3 60			69. 5 42. 0	29.9	130 173	172 225	168	14 14
567	77	34.83 32.54	3.54	21.0	22.5	1	46.0 19.8	180	243	222 237 160	17
567 568 569 570	77	32.54	2.82 3 01			50.0	19.8	110	164	160	19
569 570	77	36.54 35.00	3.54			82.0	27. 2 32. 3	140 164	187 195	184	15
5/1	78	37. 25 38. 70	3,03			48.7	32. 3 34. 6	152	176	195 174	7
*576	78	38.70	2.74				28.3	136	163		٤
572 573	78	29.51 36.92	3.08	15.6	11.8	39.0	32.0	152 150	189 189	186 186	12
574	78	36.72	3, 66	23.8	26.0	79.8	28.0	172	210	207 178	liô
575 576	78	36.94	2 91			41.0	31.4	156	182	178	ع ا
576 577	78	36.55	2.74 3.48 3.08			83.4	23. 8 33. 8	124 162	164 191	161 186	14
578	78	34.80 37.50 35.60	3.08	31.3	18.1	60.8 82.0 57.2	24.7	144	187	185	14 10
578 579 580	78	35, 60	2.86	15.6		57.2	29.6	132	161	185 158	10
580	78	30.76 35.46			18.0	67.6	20. 5	160 138	202 186	198 183	16
581 +589	79	25.28	2.94 2.65 3.33 3.38	25.0	22.7	21.2	32. 5 59. 7	107	147	100	i
582	79	38 18	3.33			l	29.1 27.9	164	209	202	13 13
583	79	37. 91 36. 71	3.38			64.0	27.9	164	209	208	13
584 585 586	79	36.71	3. 21 3. 44	95.5	12.5	76.0	36.6	161 186	206 236	180 233	14 14
586	79	39. 12 30. 73 34. 71 31. 91	1 2 13	25. 5 19. 1	12.5 15.0	25.8 31.0	38. 2 36. 2	131	164	233 157	10
587 588	79	34.71	3. 15 3. 72 3. 13			l	38.1 39.0	151	196	190	14
588 589	79	31.91 32.60	3.72			86.0 71.0	39.0 26.4	165 129	236 182	230	19 16
590	74 74 74 74 74 74 74 74 77 77 77 77 77 7	29.70	3.88	23. 1 17. 0 25. 7	20.4	45.3	33.7	154	216	209	15
591	80	29.70 35.43 36.30	3.88 2.94 3.56	17.0	13.3 22.8	38.8 67.0	33. 7 30. 5	136	174	168	15 12
*594	88	36.30	3.56	25.7	22.8	67.0	32. 4 31. 2	171	215	137	12 13
592 593	80 80 80	32.90 34.07	2.55 2.30 3.16			87.0	22.4	110 96	144 135	125	17
594	80	37.59	3.16	20.0	14.6	62.6	22. 4 28. 1 36. 5 28. 6 30. 8	152	190	125 183 180	12
595 596	80	37, 45	3.23			40.1	36.5	165	191	180	1 8
596 597	80 80 80	34. 20 35. 44	2.50	·····		50. 2 26. 7	28.6	110 134	142 164	137 157	12 10
598	80	33.66	3. 23 2. 50 2. 89 2. 88 3. 20	17.3	19.9	48.8	34.0	130	171	165	14
599	80 80	35.89	3.20			38.6	34.0 33.3	153	186		10
600	80	32.09	3.03	1		62.0	37.8	134	177	172	14

^{*} Sawed for penetration determinations, and therefore not laid in track.

TABLE 7.—General records on the individual ties—Continued.

GAS-HOUSE OIL-RED OAK.

	No. of	Oven- dry		Average of ann per inc	number ual rings h in—		Mois-	w	eight of	ie.	Absorp
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Cu.ft.			Per ct.	Per et.		Pounds.	Pounds.	Pounds
601 *609	122 122	37.72 36.13	2.43 2.77				50.6 62.7	138 163	146 178	141	3.30 5.41
602	122 122	35.64 34.12	2.87 3.04	6. 2 17. 8 16. 3			47.6	151	162	155	3.81
603 604	122 122	34.12 32.21	3.04	6.2 17.8	6.3 16.1 14.2		57. 2 66. 4	163 164	182 174	171 170	6. 28 3. 26
605 606	122	33.85	2.75 3.35	16.3	14.2		56.8 63.3	146	168 208	159 200	8.0
606	122	35, 10	3.35				03.3	192	208	200	4.78
607 608	122 122 122	37. 48 35. 29	2. 40 2. 91 2. 94				42. 4 55. 9	128 160	138 188	132 181	4.25 9.6
609	122	33.66	2.94	10.0	8.5		59.7	158	169	162	3.74
610 611	122 123	35.00 36.21	2.98		· • • • • • • • • • • • • • • • • • • •		58.3 46.6	165 155	178	170	4.36 11.3
*616	123	34.70	2.98 2.92 2.64 2.92 2.35				56.1	143	188 172	184	11.0
612	123 123 123 123 123	35, 49	2.92	20.8 16.4	16. 5 21. 5		46.9	152	192	185	13.7
613 614	123	33. 44 36. 21	2.35	16. 4	21.5		50.3 50.1	118 125	148 141	142	12.8 16.9
615	123	35. 26	2.30 3.04	7.8	10.9		41.0	151	197	182	15.2
616	123 123 123 123	37.71	3.59 2.81 2.43 3.03 3.23 2.38 3.08				38.8	188	231	221 179	12.0
617 618	123	36.39 39.19	2.81			• • • • • • •	51.7 41.8	155 135	180 160	179 155	8.9 10.3
619	123	35. 15	3.03	8.0	10.7		48.4	158	190	183 200	10.6
620	123	36, 31	3.23				48.4	174	204	200	9.3
621 *624	124 124	38. 44 36. 21	2.38 3.08	8.0	11.7		33.5 50.6	122 168	147 202	144	10.5
622	124	37.18	2.70 2.09 2.69		15.0		43.5	144	181	176	11.1 13.7
623	124	39.80	2.09	8.5	15.0		37.1	114	137	132	11.0
624 625	124 124	37.18 36.61	2.09				41.0 48.5	141 136	166 160	163 153	9.3 9.6
626	124 124	37.02	2.50 2.89 2.84 3.04				42.0	152	190 178 200	184 175	13. 2 12. 3
627 628	124 124	34. 45	2.84	13. 6 13. 8	14.2 13.8		46.2	143	178	175	12.3
629	124	35.03 35.71		13.0	14.2		53.1 49.3	163 186	230	195 222	12. 2 12. 6
630	124	35. 71 36. 61	2.81			l	50.5	-155	184	179	10.3
631 *634	124 125 125	40.81 35.10	2.81 2.62 2.57 2.53 2.21	8.7	8.0		30.8 48.5	140 134	165	163	9. 5 7. 8
632	125	35.89	2.53	18.8	29.1		42.2	129	154 163	157	13.4
633	125 125	34.85	2.21					114	143 170	140	13.1
634 635	125 125	35.15			16. 0 8. 1	· · · · · · · ·	62. 5 48. 5	164	170	167 162	2.09 9.7
636	125	35.80 38.68	2.67 2.70 2.84 3.21	19.6 8.6	16.0		57.0	142 164	168 172 176	167	2.96
637	125	1 35 QA	2.84	8.6	8.1		59.4	162	176	172	4.93
638 639	125 125	35.10 35.00 37.89 39.71					55. 4 71. 6	· 175	206 200	198 194	9.6 4.87
640	125 125 125 132	37.89	2.53				56.6	150	160	154	3.94
641	132	39.71	2.53 2.74 3.47 3.26		5.0 12.5		56.6 36.0	148	160 166	158	6.58
*648 642	132 132	39.70 35.95	3.47	5. 3 9. 0	κ n		50. 2 62. 0	207 190	233 208	200	7.50 5.54
643	132 132	36.09	2.48	9.0	12.5		58.6	142	156	150	5.64
644	132	36, 51	2.74				54.0	154	165	157	4.02
645 646	132 132	36. 05 38. 43	2.55 3.08	4.8	3.6	••••	61.0 22.9	148 145	169 163	161 157	8. 2 5. 66
647	132	36, 82	2.48 2.74 2.55 3.08 2.57 2.59 2.94 2.53		3. 6 15. 1		40.5	133	161	157	100
648 649	132 132	37. 51 38. 80	2.59	10.0	15.1	• • • • • •	48.3	144	167	161	8.9
650	132	38.22	2.53				48.1 40.6	169 136	191 157	182 151	8.9 7.5 8:3
651	132 133	38. 22 38. 80	2.81 3.20	8.2			47.6	161	178 206	172	6. 02 6. 56
*658 652	133 133 133	36. 04 36. 40	3.20	8.2	6.6		60.4 56.2	185	206 178	168	6.56 9.3
653	133	38.19	2.69 2.77				51.2	153 160	180	173	7.20
654	133 133	31.03	3.47				65.2	160 178	194	173 189	4.62
655 656	133	34.31 35.13	2.84 3.09					158 179	182 198	173 187	8. 5 6. 14
657	133 133	35. 13 37. 10 33. 30	3.01	13.4	10.0 11.1 4.6		55.8	174	188	180	4.65
658	133 133	33.30	3.01 3.13	13. 4 9. 7 3. 5	11. ĭ		59.5	166	199	180 174 172	5.11
659 660	133 133	36.91	2.84 2.98	3.5	4.6		50.6 44.5	158 168	180 190 154	172 184	7.75
661	134	39.00 36.65	2.38				55.8	136	150	149	7.40 7.50

^{*} Sawed for penetration determinations, and therefore not laid in track.

TABLE 7.—General records on the individual ties—Continued.

GAS-HOUSE OIL-RED OAK-Continued.

	No. of	Oven- dry		Average of ann per inc	number ual rings h in—		Mois-	w	eight of t	de.	Absorp
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Cu.ft.			Per ct.	Per ct.	Pounds.	Pounds.	Pounds.	Pounds
*664	134	35. 29	2.67	16.1			67.7	158	172		5.2
662	134	35.73	2.60	5.7	8.1		61.5	150	166	160	6.1
663	134	33.39	2.62					146	162	153	6.1
664	134	38.81	2.48				52.6	147	152	146	2.0
665	134	41.00	2.55 2.41					140	156	150	6.2 2.9
666 667	134 134	37.6Q 33.00						143 132	150 140	143 133	3.1
668	134	34.91	2.87				52.6	153	180	154	9.4
669	134	38.76	2.57	3.3			45.6	145	158	150	5.0
670	134	37.76	1 2.65			ì	1 52.0	152	160	173	3.0
671	135	33.81	2.98				58.7	160	184	178	8.1
*673	135	37. 21	2.87	4.8	6.4		52.5	163	181		6.3
672	135	44.54	3.49				29.3	201	229	215	8.0
673	135	37.60	1 270			1	1 40 N	151	166	161	5.5
674	135	36.89	2.89			•••••	41.0	150	170	161	6.9
675 676	135	35.50 37.95	2.79 2.40	4.9 16.9	6.2		56.5	155	178	171	8. 3 3. 7
677	135 135	32.58	2.40	16 0	11 6		46.0 65.0	133 137	142 156	136 151	7.4
678	135	36.10	2.43	10.9	11.0		63.0	143	160	153	7.0
670	135	37.30	2.67	18.0 19.5 6.5 5.2	12 2		38.5	138	143	139	1.8
679 680	135	37.40	2.67	20.0			58.0	158	177	166	7.
681	136	35.69	2.96	19.5	11.1		55.4	164	171	165	2.3
*689	136	36. 21	3.04	6.5	8.0		66.3	183	202		6. :
682	. 136	37. 29	2.72	5.2	10.0		48.0	150	170	165	7.3
683	136	38.80	2.74				52.5	162	177	172	5.4
684 685	136 136	35.10 34.70	2.79				99.4	156 122	184 140	177 135	10.0 7.8
080 898	136	38.80					45.5	170	198	193	9.
686 687	136	36. 29	2.74					162	172	169	3.0
688	136	38.71	3.18					168	184	180	5.0
689	136	37.89	2,69				57.0	160	165	157	1.8
690	136	36.61	3, 15	13. 0 9. 7	11.4		53.5	177	191	185	4.4
691	137	37.88	2.92	9.7	8.2		44.0	159	184	176	8.6
* 697	137	39.30	2.38				43.4	134	148		5.1
692	137	37.03	2.67	•••••				145	170	160	9.
693 694	137 137	39.03 38.10	2.45 2.30		• • • • • • • • • • • • • • • • • • • •		44.4	138	147	141	3.6
695	137	38.10	2. 30 2. 62	• • • • • • • •	• • • • • • • • •		39.4 48.0	122 149	145 172	139 161	10.0 8.8
696	137	38.99	2. 02	7. 5 10. 0	7.0		56.5	172	186	181	4.9
697	137	36.79	2.67	7.5	7.0		52.0	149	176	158	10.
698	137	35.08	2.60	10.0	25.0		48.0	135	150	142	5.7
699	137	40.11	2.48			i	48.7	148	154	148	2.4
700	137	35.71	2.55	10.8	12.5		59.5	145	157		4.7

TWO-MOVEMENT ZINC CHLORID AND CREOSOTE - RED OAK.

			1							
81	39.00	2.55				35.0	134	172	150	14.9
81	34. 18	2.43				39.7	116	154		15.4
81	34, 61	2.47					122			14.6
81	37, 20								145	13.2
			10.5	10.0						13.7
										16.9
		3 03		• • • • • • • • • • • • • • • • • • • •						14.5
		2 57	10.0	11 0						16.7
										18.5
			0.0	10.0						10.1
		2.80								23.9
			1.0	8.0						
		2.62							140	18.3
82										16.6
										14.3
			10.5	13.7						17.7
	37.19	2. 13				45.2	115	141	125	12.2
	40.30					25.3	158	212	186	17.3
82	37. 13	2.55	6.3	5.5	l 	42.8	135	172	145	14.5
	36, 20	2.30		11.0	l			152		14.4
	81 81 81 81 81 81 81 81 82 82 82 82 82	81 34. 18 81 37. 20 81 37. 20 81 37. 68 81 36. 99 81 38. 21 81 36. 34 81 36. 05 81 35. 86 82 36. 09 82 34. 71 82 36. 01 82 37. 19 82 40. 30	81 34. 18 2. 43 81 37. 20 2. 43 81 37. 68 2. 48 81 36. 99 3. 38 81 38. 21 3. 03 81 36. 34 2. 57 81 36. 36 2. 91 81 35. 86 2. 98 82 36. 09 2. 62 82 36. 09 2. 62 82 36. 09 2. 62 82 36. 09 3. 38 81 36. 34 2. 57 81 35. 86 2. 98 82 36. 09 2. 62 82 36. 09 3. 38 82 37. 19 2. 13 82 40. 30 3. 13 82 40. 30 3. 13	81 34. 18 2. 43	81 34. 18 2. 43	81	81 34. 18 2. 43 39. 7 81 34. 61 2. 47 42. 6 81 37. 20 2. 43 45. 0 81 37. 68 2. 48 10. 5 10. 0 81 36. 99 3.38 29. 0 81 38. 21 3.03 31. 0 81 36. 34 2. 57 10. 0 11. 0 81 36. 05 2. 91 6. 8 10. 5 31. 4 81 36. 45 2. 96 7. 0 8. 0 18. 5 82 36. 49 2. 62 30. 4 82 34. 71 2. 40 30. 4 82 36. 01 2. 24 43. 9 82 37. 19 2. 12 45. 2 82 40. 30 3. 13 25. 3 82 37. 19 2. 13 45. 2 82 40. 30 3. 13 25. 5 82 37. 13 2. 55 6. 3 5. 5 42. 8	81 34. 18 2. 43 39. 7 116 81 34. 61 2. 47 42. 6 122 81 37. 20 2. 43 45. 0 131 81 37. 68 2. 48 10. 5 10. 0 41. 4 132 81 36. 99 3. 38 29. 0 161 81 38. 21 3. 03 31. 0 152 81 36. 34 2. 57 10. 0 11. 0 33. 8 125 81 36. 05 2. 91 6. 8 10. 5 31. 4 138 81 35. 86 2. 98 7. 0 8. 0 18. 5 128 82 36. 09 2. 62 30. 4 123 82 34. 71 2. 40 38. 0 115 82 36. 01 2. 24 38. 0 116 82 37. 19 2. 12 45. 2 113 82 40. 30 3. 13 25. 5 6. 3 5. 5 42. 8 125	81 34. 18 2. 43 39. 7 116 154 81 34. 61 2. 47 42. 6 122 158 81 37. 20 2. 43 10. 5 46. 0 131 163 81 37. 68 2. 48 10. 5 10. 0 41. 4 132 166 81 38. 99 3. 38 29. 0 161 218 81 38. 21 3.03 31. 0 152 196 81 36. 34 2. 57 10. 0 11. 0 33. 8 125 168 81 36. 34 2. 91 6. 8 10. 5 31. 4 138 192 81 36. 65 2. 98 9 49. 8 160 190 81 36. 45 2. 96 7. 0 8. 0 18. 5 128 199 82 36. 01 2. 62 30. 4 123 171 82 34. 71 2. 40 38. 0 115 155	81 34. 18 2. 43 39. 7 116 154 81 34. 61 2. 47 42. 6 122 158 81 37. 20 2. 43 10. 5 10. 0 41. 4 132 166 161 81 38. 6. 99 3. 38 29. 0 161 218 198 81 38. 21 3.03 31. 0 152 196 176 81 36. 34 2. 57 10. 0 11. 0 33. 8 125 168 154 81 36. 34 2. 57 10. 0 11. 0 33. 8 125 168 154 81 36. 34 2. 67 10. 0 11. 0 33. 8 125 168 154 81 36. 34 2. 67 10. 0 13. 4 138 192 174 81 36. 65 2. 98 49. 8 160 190 173 81 36. 45 2. 96 7. 0 8. 0 18. 5 12

^{*} Sawed for penetration determinations, and therefore not laid in track.

1 Absorption 3 per cent ZnCl₂ solution + creosote.

TABLE 7.—General records on the individual ties—Continued.

TWO-MOVEMENT ZINC CHLORID AND CREOSOTE—RED OAK—Continued.

	No. of	Oven- dry	.,.	Average of ann per inc	number ual rings h in—		Mois-	w	eight of	tie.	Absor
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie. when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Cu. ft. 2.30			Per ct.	Per ct.	Pounds.	Pounds.	Pounds.	Pound
818 819	82 82	37.60 35.26	2.30 3.49				45.6 39.0	126 171	157 238	137 205	13. 19.
820	82 82	36.56	2.69	6.6	10.0		40.4	138 129	176	150	14.
821 *829	83 83 83 83 83 83 83 83 83 83 83 83 83 8	35.61 35.85	2.45 2.96	8.8 6.4	10.0		48.0 39.4	129	159	145	12. 13.
822	83	35.85 37.73	2.41	6.4	4.7		43.0	148 130	188 153	139	9.
823 824	83 83	34.40 37.72	2.81 2.84	• • • • • • • • •			37.5 44.6	133 155	177 183	157 165	15 9
825	83	31.98	3.00				40.0	137	189	176	17.
826 827	83	35. 10 26. 51	3.49 2.58		7.1		39.5	171	226	205	15.
828	83	36. 51 35. 53	2.86				46. 5 38. 7	138 141	167 183	147 162	11. 14.
829 830	83	42.00	2.86 2.87 2.72 2.72 3.62	8.4	9.0		34.4	162	192 179	172 157	10.
831	83 84	37.95	2.72	8.4	9.0		51.0	146 156	179 195	157 170	12. 14.
*836	84	34.30	3.62				56.2	194	195 245 244	l	14.
832 833	84 84	34.80		• • • • • • • • • • • • • • • • • • • •			41.6	175 126	244 153	212 136	19. 12.
834	84 84	38.50	2.19 2.58 3.43 2.77 3.38 2.53	9.3	9.0		43.0	142 190	153 179 219	160	14.
835 836	84 84	39.11 35.88	3.43	9.3			41.6	190 146	219 138	197 166	. 8.
837 838	84	34.94	3.38	6.9	8.0		56.6	185	226	198	15. 12.
838 839	84	36.16	2.53		7.4		43.2	131	226 173 177 173	153	16
840	84 84	38.60 35.80		5. 5 9. 5	11.4		46.0 41.4	142 129	177	153 151	13. 17.
841	85	33.52	2.55 2.06	24.4	11.4 18.2	• • • • • • • • • • • • • • • • • • •	40.4	97	124	109	13.
*843 842	84 85 85 85 85 85 85 85 85 85 85 85 85 85	36.80 40.02	2.81 2.92	• • • • • • • • • •			41.3 37.8	146 161	188 196	177	15. 12.
843	85	38.31	3.03		10.0		42.0	165	l 226	177	20.
844 845	85	34.08 35.80	2.84 2.60 2.55	13.7	10.0		42.6 46.2	138 136	186 170	162 151	16. 13.
SAAR I	85	37 20 1	2.55				37.2	130	166	148	14
847	85	37. 21	2. 55 2. 67			• • • • • • •	36.0	129	178	148	19.
847 848 849	85 85	38.02 37.85	3.40	7.3 7.1	9.8 10.7	• • • • • • • •	30.0 51.4	132 195	169 232	161 209	13. 10.
850	85	36.59	2.21				44.7	117	149	133	14.
851 +856	86 86 86 86	38. 53 38. 34	3.11 2.91	8.7	9. 2		41.7 22.0	170 136	218 191	194	15. 18.
852	86	34.51	3.40				29.5	152	230	197	23.
853 854	86 86	36.09 39.06	2.65	15.3	14.9	· · · · · · · ·	31.0 33.0	125 135	182 178	153	21.
855	86 86	36.62	2.36	10.0	11.0		46.0	126	162	153 142	16. 15.
856	86	36.02	2.77				36.4	136	162 190	164	19.
857 858	86 86	36.96 36.34	2.87 3.13	16.3	9.0		28.2 30.0	136 148	187 210	161 178	17. 19.
859	86	36.65	3.13 2.60	7.1	12.0		36.5	130	174 217	151	16.
860 861	86 87	39. 91 34. 79	3.04 3.35	7.1	12.0		31.7 63.0	160 190	217 230	188 208	18. 11.
*863	87 87	36.48 36.28	3. 47 3. 47	10.2	9. 4		45.2 57.2	184	228		12.
862 863	87 87	36.28 39.35	3.47 2.82	10.2		• • • • • • • • • • • • • • • • • • • •	57.2 40.5	198 156	238 198	209 172	11. 14.
864	87 87	35.62	2.91	17. 6 7. 0	10.0 10.3		49.7	155	192	173	12.
865 866	87 87	38.60 34.00	2.84 2.67	7.0	10.3		52.3 43.2	167	194 172	178	.9.
987	87	40.13	2 10	8.0	8.0		39. 5	130 178	220	154 196	15. 13.
868	87 87	36.78 39.51	2.67				46.7	144	220 178	160	12.
868 869 870	87 87	39.51 34.95	2.67 2.28 2.75				42.0 52.0	128 146	154 184	140 161	11. 13.
871	89	34.88	2. 41 3. 18				42.8	120	161	145	17.
*878 872	89 89	34.89 37.03	3.18 2.58		7.5		44. 4 44. 5	160 138	216 173	161	17. 13.
873	89	35.80	2.58 2.41	5.6	7.5		29.8	112	173 160	147	19.
874 875	89 89	85. 40 36. 71	3. 52 3. 40	••••••	•••••		38. 0 30. 6	172 163	236 224	209 209	18. 17.
876	89	35.97	3.47				39. 5	174	237	212	18.
877 878	89	34.99	3.06 3.73	10.2	8.7		44.8	174 155	205	185 233	16.
8/8 i	89 89	37.30 36.80	3.73	7.9	10.0		43.0 35.0	199 159	256 216	233 193	15. 17.

^{*} Sawed for penetration determinations, and therefore not laid in track.

TABLE 7.—General records on the individual ties—Continued.

TWO-MOVEMENT ZINC CHLORID AND CREOSOTE—RED OAK—Continued.

	No. of	Oven- dry	***		number ual rings h in—		Moia-	w	eight of	tie.	Absorp-
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Ou fi			Per ct.	Per ct.	Pounde	Pounde	Pounde	Pounds.
881	88	36.49	Cu. ft. 2.87	i	· ·	1 67 64.	54.8	162	208	172	16.0
*885	88	34.80	2 01	8.7	10.0		50.0	152	199	1	16.1
882	88	38.50	2.88	""	10.0		50.0 32.5	146	182	175	12.6
883	88	37.11	3.26	l			• 42.0	172	182 226	197	16.6
883 884 885 886 887	88	33.83	3.40	16.7	15.9		58.0	182	228	119	13.5
885	98	36.63	2.75				46.9	148	228 194	168	16.7
888	88 88 88	36.61	3.43				51.0	182 148 190	248	219	16.9
887	88	37.90	3.45				54.5	202 149	239	215	10.7
888	88	35.61	2.98	9.8	13.1		40.5	149	206	178	19.1
889	88	36.66	3.18				41.5	165	218	195	16.7
890 891	88	30.50	3.51	7.5	11.0		43.7	154	229	186	21.4
891	90	36.40	2.79				37.7	140	187	168	16.8
*894	90	36.77	2.77	7.2	9.0		40.5	143	187	1	15. 9
*894 892 893	90	36.77 37.25	3.08	1			45.5	167	210	187	15. 9 14. 0
893	90	34.12	3.01	l	 		48.0	152	196	175	14.6
894	90	33.33	2.82	1			42.7	134	184	164	17.7
895	90	36.15	2.91 2.86 3.26 3.40 2.75 3.43 3.43 3.51 2.79 2.77 3.08 3.01 2.82 3.94	7.6	7.0		39.5	199	267	136	17.3
896	90	34.70	3.21				42.0	158	210	189	16.2
897	90	36.71	3.20 3.47	16.6	10.7		42.0	167	215	195	16. 2 15. 0
898	90	34.57	3.47				41.7	170	229	203	17.0
899	90	37.71	2.70				36.5	139	169	153	11.1
900	90	35.32	2.67	13.1	9.6		43.0	135	175	151	15.0

TWO-MOVEMENT ZINC CHLORID AND CREOSOTE-MAPLE.

1001 91 35.07 2.55 62.7 33.2 119 157	40 14.9
*1003 91 38.56 2.45	11.4
1002 91 36.00 2.36	30 17.8
	60 18.3
1004 91 34.03 2.47 14.2 18.8 71.9 30.9 110 149	25 15.8
1005 91 37.29 3.08 69.4 25.4 144 195 1006 91 34.00 2.79 21.8 27.7 20.2 28.6 122 148	78 16.5
1005 91 37.29 3.08 69.4 25.4 144 195 1006 91 34.00 2.79 21.8 27.7 20.2 28.6 122 148	32 9.3
1007 91 37.64	91
1008 91 33.40 3.55	73 10.4
	53 15.6
1010 91 149 194	65
1010 91 149 194 1011 92 34.77 3.06 70.2 27.0 135 202	65 65 21.8
*1016 92 37.67 3.23 66.6 35.0 164 220	17.3
1012 92 33.83 3.09 58.0 29.1 135 198	60 20.4
1013 92 36.52 2.70	56 20.4
	40
	34 8.8
	65 19.2
	55 26.3
1018 92 34.64 2.50 9.1 16.1 58.5 20.2 104 123	20 7.6
1019 92 36.18 3.21 12.8 16.6 50.0 34.4 156 215	80 18.4
1020 92 33.70 3.35 37.0 37.0 29.1 146 197	59 15.2
	54 17.9
*1021 93 35.53 2.43	16.9
1022 93 30.70 2.99	65 17.7
	71 12.1
1024 93 35.53 3.06 26.0 17.7 80.8 30.5 142 202	78 19.6
1025 93 32.00 2.99	61 20.4
1026 93 32.67 2.77 18.0 17.7 45.7 28.1 116 163	37 17.0
	32 18.0
1028 93 36.80 2.48 26.3 22.0 61.0 31.5 120 154	32 13.7
	45 17.9
	57 20.1
	47 8.7
*1034 94 37.36 3.23	16.4
	45 18.6
1033 94 35.46 2.91	65 22.3
	51 18.0
1035 94 38.50 3.44 23.2 4.5 85.2 25.2 166 232	93 19.2
	73 16.0
1037 94 34.35 2.41 24.0 12.2 30.5 108 138	17 12.4
1038 94 36.20 3.33	92 17.1

^{*} Sawed for penetration determinations, and therefore not laid in track.

Digitized by Google

Table 7.—General records on the individual ties—Continued.

TWO-MOVEMENT ZINC CHLORID AND CREOSOTE—MAPLE—Continued.

	No. of	Oven- dry		Average of ann per inc	number ual rings h in—		Mois-	w	eight of	tie.	Absorp
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Cu. ft.			Per ct.	Per ct.	Pounds.	Pounds.	Pounds.	Pounds
1039 1040	94 94	32.23 30.38	Cu. ft. 2.53 3.45	16.7	32.8	62.6 37.5	24.0 29.8	101 136	146 166	117 143	17.1 8.1
1041	95	1 34.53	3. 15 2. 92	21.5	24. 4	76. 1 50. 0	36.0	148 138	206	176	18.
*1049 1042	95 95	34. 88 31. 59	2.92 3.01	17.8	24. 4 24. 7	50.0	35.5 36.5	138	186 188	165	16. 15.
1043	95	32.94	3 13		15.2	60.0	37.8	142	179	158	11.8
1044	95 95	35.50	3.03 3.23 3.25	28. 1 26. 9	15. 2 18. 8	47.9	32.5	142 152	199 200	169 171	18.8 14.9
1045 1046	l 95	35.60	3.25		10.0	1	33.0	154	210	177	17.5
1047	95	33.38	2.98 2.48			55.0 52.3	34.8 39.0	134 128	182 162	151 134	16.
1048 1049	95 95	37. 12 37. 09	3.09			60.0	27.5	146	202	174	13. 18.
1049 1050	95	34.90	3.38			80.3	35.5	160	224	188	18.9
1051 *1055	96 96	36.55 36.96	2.74 2.75				49.8 31.7	150 134	204 176	179	19. 15.
1052	96	30. 85 30. 20	3.42				26.0	133	170	147	10.
1053 1054	36 96	30.20	2.87			60.0 73.0	32.7 32.0	115 204	152 274	137 234	12. 15.
1055 1056	96 96	34. 96 35. 75	4. 42 3. 72	35.6	16.6	53.5	32.4	176	216	189	1 10.3
1056	96 96	33.50 39.49	3.18 3.59	20.0	12.3	84.0	33.2 27.0	142 180	178 228	154 198	11.
1057 1058	96	30.50	3.47	17.4	42.9	47.8	30.4	138	164	145 173	7.
1059	96 96	40.26	3.09	21.5	15.2	72.0	25.4	156	206	173	16.3
1060 1061	96	34.99 36.15	3. 13 3. 28	21.5	15.2	72.0	28. 0 30. 0	140 154	198 206	168 174	18. 15.
*1067	97	36. 15 39. 10 35. 35	3. 43 3. 75	22.3	21.0		20.0	161	214		15. 13.
1062 1063	97 97	35.35 35.18	3.75 3.32	22.3		64.7	32.7 30.2	176 152	226 208	194 175	13. 16.
1064	97	35.40	4.37	18.1	10.0	1	29.1	200	270	234	16.
1065	97 97	38. 32 36. 68	3.38 3.16	· · · · · · · · · · · · · · · · · · ·		83. 2	31. 3 32. 0	170 153	224 192	191	16.
1066 1067	97	1 23 27	1 2 2 2 7			81.0	34. 2	128	180	171 144	12. 18.
1068	97	29. 13	2.99	7.6	20.0		26. 4	110	132	119	1 7.
1069	97 97	29. 13 30. 30 35. 70	2.99 3.08 3.01	20.9	20. 4	78. 4	30. 7 32. 0	122 142	166 198	138 157	14. 18.
1070 1071	98	35.31	3.84 3.51	29.1	28.7	64.1	35. 5	184	240 228	209	14.
*1072 1072	98 98	34.82	3.51 2.60			72. 6 60. 6	35. 7 44. 4	166 118	228 170	143	17. 20.
1073 1074	98	31. 46 34. 75	2.60 3.51	27.3	14.0	65.0	34. 3	164	232	182	19.
1074 1075	98 98	1 26 27	3. 54 3. 20	17.0	97 4	68. 2 58. 7	35. 0 39: 0	174 148	236 200	191 170	17. 16.
1076	98	33. 26 36. 15 37. 08	3. 60	17. 0 20. 0	27. 4 14. 0	1	33.7	174	234	194	16.
1077 1078	98	37.08	3. 60 3. 35		[· • • • • • • • • • • • • • • • • • • •	68.7	33. 7 37. 0	170	226	186	16. 20.
1078 1079	98 98	34. 23 35. 58	3. 50 3. 78			81. 1 81. 4	33. 6 34. 0	160 180	232 256	190 219	20. 20.
1080	98	35. 58 32. 28 36. 20	3. 42 2. 99				34.0	148	202	167	15.
1081 *1089	99	1 31.65	2.75			60.0	33. 0 31. 0	144 114	187 148	159	14. 12.
1082	99	37. 10 31. 20	3. 25			81.8	34.3	162	209	179	14.
1083	99	31. 20 37. 00	2.92 3.16				31. 8 36. 8	120 160	158 184	136	13. 7.
1084 1085 1086	99	35. 00 35. 76	3.11	17. 0 17. 9	22. 7 25. 0	62. 2	32.4	144	186	171 155	13.
1086	99	35.76	2.50 2.57	17.9	25.0	42.9	29.8	116	150	129	13.
1087 1088	99	27. 53 38. 10	3.37			81.6 72.0	30. 0 32. 5	92 170	132 214	98 186	15. 13.
1088 1089	99	34.94	3. 37 2. 87 2. 77 2. 52	11.4	19.7	41.3	27.5	128	156	138	9.
1090 1091	100	34. 50 33. 05	2.77	12.6	17.3	48. 6 54. 6	27.8 29.7	122 108	150 153	129 117	10. 17.
*1100	100	33. 05 37. 35	3.08	28. 2	26.0	50. 0	29. 7 27. 0	146	198		16.
1092 1093	100 100	35. 27 35. 33	2.86 3.80	19: 5	14. 2	79.7	28. 9 40. 0	130 188	183 258	145 199	18. 18.
1094	100	36. 30 33. 86	3.45		l 	84.1	27. 7 35. 6	160	258 226	174	18.
1095	100	33.86	2. 98 3. 23	15.3	13.3	82.1	35.6	137	196	144	19.
1096 1097	100 100	34. 16 36. 40	0.04			47. 1 52. 0	33. 0 30. 7	147 140	186 182	155 155	12. 14.
1098	100	34. 07 26. 30	2. 94 2. 91 2. 75 2. 96			29.8	19.0	118	158	131	13.
1099 1100	100	26.30 36.30	2.75			63. 6	32. 8 32. 1	96 142	134 200	103 162	13. 19.

^{*} Sawed for penetration determinations, and therefore not laid in track.

TABLE 7.—General records on the individual ties—Continued.

CARD 1-MAPLE.

	No. of	Oven- dry		Average of ann per inc	ual rings		Mois-	w	eight of t	tie.	Absor
Track cylin- No. der charge.	k cylin- weight ume	der per charge. cubic	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
		Pounds.	Cu. ft. 2.67			Per ct.	Per ct.	Pounds.	Pounds.	Pounds.	
1101	112	37. 22	2.67	28.0	25. 1	32. 4	34.8	134	158	142	9.
*1103 1102	112 112	34. 60	2. 41 2. 79		[39.0	27. 1 31. 1	106 136	140 174	151	14. 13.
1103	112	37. 19 33. 18	3.08			55.0	37.0	140	195	165	17.
1104	112	36. 98 37. 30 35. 72	2.82	31.0	26.4	63. 6	30.4	136	176 142	148	14.
1105	112	37. 30	2. 47			33.3	39. 0	128	142 160	128 148	5. 6.
1106 1107	112 112	35. 72 31. 89	2.96 2.40	15. 2	11.7	58.0	32. 4 28. 0	140 98	148	121	20.
1108	112	134. 63	3. 30 3. 23 2. 52			66.6	36.5	156	224	178	20.
1109	113	35. 91 34. 23	3. 23			72.4	31.0	152	210	173	18.
1110	112	34. 23	2. 52	20.8	30.0	30.0	25. 2	108	129	117	8. 19.
1111	113	35. 83 34. 66	2. 77 3. 55	30.0	19.7	54. 4 64. 4	25. 0 33. 4	124 164	177 224	161	16.
*1117 1112	113 113	33.74	3.06	30.0	19. /	60.0	29.8	134	176	159	13.
1113	113	34. 50	2.93			36.5	28.6	130	178	160	16.
1114	113	33. 74 34. 50 38. 06	3.18		<u></u>	52. 1 64. 8	27.2	154	210	180	17.
1115	113	32. 04 35. 00	3. 24 2. 52	19.3		30.0	27.1 29.3	132 114	190 150	175	17. 14.
1116 1117	113	32.10	2.84	16.1	17. 2	30.0	22. 9	112	152	133 129	14.
1118	113	35. 05 27. 78	2.89				28.4	130	192	163	21.
1119	113	27. 78	3. 18	23.6	22.0		22. 2	l 108	174	149	20.
1120 1121	113	36. 75 37. 29	3. 11 2. 67			37.0 77.8	33. 0 27. 6	152 127	188 173 188	174 164	11. 17.
1130	114 114	35.38	3.03	26.1	24.5	25.0	34. 4	144	188	103	14.
1122	114	35. 38 35. 33	3.04		l	25. 0 76. 0	34.0	144	194	176	16.
1123	114	133.84	- <u>-</u> <u>-</u>	17.1	33.1			151	190		17.
1124 1125	114 114	33. 12 38. 32	3. 20 3. 40			51.9	33. 0 30. 4	141 170	198 200	182 187	17. 8.
1126	114	30. 25	3. 03				33. 1	122	172	155	16.
1127	114	36. 60	2, 55	16.8 20.7	21.3 20.0	60. 5	35.0	126	166	149	15.
1128	114	36 87	3. 15	20.7	20.0	67.4	27.4	148	202	174	17.
1129 1130	114 114	37.30 38.58	2.82 3.33	· · · · · · · · · · · · ·		80. 4 62. 5	33. 1 28. 1	140 156	187 199	166 179	16. 12.
1131	115	37. 30 36. 56 36. 35	3.45			02.0	29. 2	162	209	193	13.
1136	115	36. 77 36. 20 36. 25 36. 07	3. 45 3. 26	24.5	25. 7		37. 6	165	210	1	13.
1132	115	36. 20	3.37			43.6	31. 2	160	201	184	12.
1133 1134	115	36. 25	3. 43			43.6	39. 1 36. 1	173 160	207 203	194 184	9. 14.
1135	115 115	37. 23	3. 26 2. 87			62.7	30.1	139	169	160	10.
1136	115	35 47	13.52			45. 7	34.6	168	217	199	13.
1137	115	35. 40(?) 37. 60 35. 50	3.16(?)	28.6	17.1	<u></u>	35.8(?)	152	194	174	13.
1138 1139	115 115	37.60	2.87 3.18	17.1		71. 4 92. 0	31. 6 36. 4	142 154	175 201	162 180	11. 14.
1140	115	36. 08	2.82	25.0	8. 6 17. 7	64.5	35. 6	138	170	155	ii.
1141	116	35.05	2.89			l	35. 2 28. 7	137	177 154	180	13.
1144	116	36. 04 35. 20	2.50	23.8	20.0	85. 6	28.7	116	154	181	15.
1142 1143	116 116	35. 20 37. 08	3. 01 2. 81	23. 8 16. 2 28. 0	20. 0 23. 1 15. 2	62.5	32. 1 24. 8	140 130	206 159	181	21. 10.
1144			l	20.0	10.2	02.0	272.0	222	267	245	
1145	116	37. 20	3. 21 2. 91			74. 5	34.8	161	221	194	18.
1146	116	37. 20 36. 72 31. 60	2.91				34.7	144	192	173	16.
1147 1148			3.06 3.70	•••••	· • • • • • • • • • • • • • • • • • • •	76. 6	23. 1 33. 4	119 175	176 236	154 214	18. 16.
1149	116	37. 40	2.86	23. 2	39.0	58. 2	32.8	142	181	165	13.
1150	116	37. 40 37. 65 38. 09	2.86 2.96			1 59.0	36. 4	152	181	162	9.
1151	117	38. 09	3. 28	26.1	23. 1	70. 3	27. 2	159	216	184	17.
*1157 1152	117	40.00	2. 94 2. 96	• • • • • • • • • • • • • • • • • • • •		60. 0 55. 3	31.8 32.5	155 148	200 185	165	15. 12.
1152	117	34. 34	3.32			59.2	31.5	150	214	184	19.
1154	117	35. 86	2.89	21.0	15. 5 30. 0 34. 5	48.2	35. 1	140	180	153	13.
1155	117	31. 56	2. 91	13.1	30.0	49.0	35. 0	124	181	155	19.
1156 1157	117	37. 58	3. 60 3. 08	30.4	34.5	59. 6 63. 8	36. 0 27. 6	184 147	231 194	214 167	13. 15.
1158	117	34, 25	3.06			64. 4	27. 6 40. 2	147	200	179	17.
1159	117	30. 46	2.65		[55.6	23.9	100	150	127	18.
1160	117	37. 73 34. 34 35. 86 31. 56 37. 58 37. 40 34. 25 30. 46 37. 46 37. 39 36. 90	3.06	<u></u> -	14.6	79.7	32.6	152	206	171	17.
1161	1118	137. 39	3. 26 3. 31	17.7	14.6	90.6	25. 5 33. 4	153 163	218	200	19. 16.

^{*} Sawed for penetration determinations, and therefore not laid in track.

¹ Absorption emulsion of 80 parts of 3 per cent ZnCl₂ solution and 20 parts of creosote by volume at approximately 70° F.

TABLE 7.—General records on the individual ties—Continued.

CARD-MAPLE-Continued.

	No. of	Oven- dry		Average of ann per inc	number ual rings h in—		Mois-	w	eight of 1	tie.	Absorp-
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
1162 1163 1164 1165 1166 1167 1168 1170 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1196 1197	118 118 118 118 118 118 118 118 118 119 119	Pounds. 36. 85 34. 64 31. 85 38. 12 33. 036. 86 37. 75 35. 70 34. 89 36. 70 39. 72 37. 06 34. 45 37. 90 38. 34. 49 36. 61 36. 65 37. 08 36. 89 30. 50 36. 89 30. 55 36. 89 30. 55 36. 89 30. 55 36. 89 30. 55 36. 89 30. 55	Cu. ft. 1 2.99 3.08 3.94 2.96 3.29 2.30 2.96 2.30 2.30 3.30 3.30 3.30 3.30 3.30 3.30	27. 0 15. 0 14. 8 47. 2 24. 2 22. 2 21. 8 33. 4 28. 5 27. 3 20. 3 18. 4	18. 3 31. 1 10. 0 29. 9 26. 3 25. 7 9. 4 7. 0 37. 5 17. 5 23. 0	Per ct. 63. 4 72. 2 59. 6 76. 0 78. 5 60. 84. 9 60. 0 84. 0 84. 0 86. 2 77. 2 86. 3 77. 2 86. 3 76. 8 86. 0 77. 8 66. 2 64. 1 55. 0 65. 0 65. 0 65. 0 65. 0 65. 0 73. 5 55. 2 71. 7	Per ct. 31.6 29.4 39.7 30.2 39.7 26.1 29.6 27.0 33.1 25.7 38.3 21.9 28.7 32.5 37.4 27.5 30.1 27.1 39.3 35.3 23.2 28.0 32.5 37.4 27.2 28.0 32.5 37.4 27.2 38.3 37.4 30.7	Pounds. 146 134 127 146 138 140 138 140 138 140 131 145 167 139 147 151 180 172 140 131 176 144 157 147 151 186 170 184 165 170 198 166 162 97 140 168 168 168 168 168 168 168 168 168 168	Pounds. 189 196 207 187 189 178 182 180 192 233 191 230 180 202 2194 228 216 220 203 230 203 220 207 180 208 212 244 227 218 226 218 162 227 218 162 227 218 162 266 172 189 189 168 169 172 189 189 189 189 189 189 189 189 189 189	Pounds. 176 182 166 163 178 155 163 168 197 208 182 180 173 199 182 173 193 207 176 177 185 182 180 173 193 194 193 195 195 195 195 195 195 195 195 195 195	Pounds. 14.3 20.8 26.0 13.9 23.4 11.6 13.5 20.5 10.1 14.3 17.8 13.0 13.0 12.6 13.7 14.2 11.6 11.7 16.5 18.0 18.9 20.0
				CA	RD1—RE	D OAR	ζ,				
1201 *1204 1202 1203 1204 1205 1206 1207 1208 1209 1211 *1220 1212 1213 1214 1215 1216 1217	101 101 101 101 101 101 101 101 101 101	37. 29 41. 13 36. 45 36. 22 36. 80 36. 39 34. 21 32. 19 38. 41 37. 11 35. 99 36. 89 36. 29 33. 33 35. 22 38. 10 34. 74	2. 45 3. 50 2. 77 2. 86 2. 62 2. 99 2. 86 2. 87 2. 65 2. 74 2. 28 2. 26 2. 89 2. 74 3. 26 3. 26 3. 36 3. 36	7.0 6.5 7.3 17.7 10.0 6.5 8.0	7.7 7.7 9.0 16.2 9.6 7.5 6.5		45.6 47.5 47.9 28.6 41.7 40.5 56.4 38.5 56.4 38.3 37.9 38.6 41.1 49.6 45.1 38.2	140 180	162 240 190 190 176 176 184 192 180 160 142 160 194 186 186 189 189 189 189 189 189 189 189 189 189	151 173 160 172 154 175 160 171 163 149 159 128 145 174 174 186 208	11.8 14.8 14.8 17.1 20.6 16.1 18.0 20.0 8.1 14.3 16.1 12.5 12.8 17.3 16.8 14.7

^{*} Sawed for penetration determinations, and therefore not laid in track.

1 Absorption emulsion of 80 parts of 3 per cent ZnCl₂ solution and 20 parts of creosote by volume at approximately 70°F.

Digitized by Google

TABLE 7.—General records on the individual ties—Continued. CARD-RED OAK-Continued.

1218 1219 1220 1221	No. of cylinder charge.	weight per cubic foot.	Vol- ume of tie.			Sap-	ture				tion								
1219 1220 1221	102 102 102	robic foot.	robic foot. Pounds.	robic foot. Pounds.	cubic foot. Pounds.	foot. Pounds.	Pounds. 38. 98 37. 21	Pounds. 38. 98 37. 21	Pounds. 38. 98 37. 21	Pounds 38.98 37.21		Heart- wood.	Sap- wood.	wood.	in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	per cubic foot,
1219 1220		Pounds.	Cu. ft.			Per ct.	Per ct.	Pounds.		Pounds.									
1220 1221		38.98 37.21	2.24	9.5 7.0 15.2 15.0			39.7 30.1	122 185	151 252	136 126	12. 17.								
		30.65	2.72	9.5	11.0		60.6	134	174	156	14.								
	103	37.31 37.74	2.13	7.0	9.1		35.8 43.1	108 148	142	130	16. 14.								
1222	103 103	34.69	3.32	15.2	11.0		38.9	160	216	195	16.								
1223	103	40.50	2.82				31.3	150	190	165	14.								
1224	103	39.32	2.07	15.0	11.6		37.6 44.6	112 126 140	140 156	122 138	13. 12.								
1225 1226	103 103	36. 92 37. 45	2.58				44.9	140	166	143	10.								
1227	103	34.38	2. 41	7.4	12.3		42. 4 27. 8	118	150	130	10. 13.								
1228	103	44.64 43.55	3.30		. 		27.8 22.7	188	236	207 156	14. 12.								
1229 1230	103 103	37.91	2.77 2.41				29.1	118	160	138	7.								
1231	104	35.34	3, 40 3, 28	9.4	11.2		46.5	176	230	208	7. 15.								
1232	104 104	35.00	3.28	9.4			39. 4 37. 5	118 188 148 118 176 160 124 166 134	236 182 160 230 218 154		17. 12.								
1332 1233	104	36. 52 38. 21	2. 47 3. 06	20.2	0.8		41.9	166	212	143	15								
1234	104	33. 41	3.03		1		02.3	134	212 206	177	23.								
1235	104	36. 21	2.40				40. 4 45. 7	122 134	164	155	17. 16.								
1236 1237	104 104	35.76 37.89	2.57 3.26	6.5	7.8		32.8	164	176 222	193	17.								
1238	104	37.81	2.91		7.8 8.2		27.3	140	194	170	18.								
1239 1240	104 104	34.14 35.86	3.32 3.03	9.0	8.2		44.6 36.3	164 148	228 206	197 180	19. 19.								
1240	105	36.11	9 41	7.5	8.4		40.1	122	152	141	12								
1241 1244	105	35.89	2. 52 2. 79 3. 54		10.0		30.4	118	158		15.								
1242 1243	105 105	33.59 37.94	2.79	8.2	10.0		36.6 35.5	128 182	169 231	158 213	14.								
1244	105	36.89	1 2 38				38 0	172	227	203	16								
1245	105	35.81	3. 38 3. 21 3. 26	8. 2 8. 2			48.7	171	210	193	12.								
1246	105 105	35. 20 34. 69	3.26	8.2	9.0		43.8 44.7	165	208 164	191 144	13. 16.								
1248	105	41.04	2. 45 3. 20	0.2	1,2.1		27.1	123 167	. 210	188	13.								
1249	105	34.39	2.64				43.3	130	174	155	16.								
1250	105 106	37.40 33.98	2.87 3.60		· · · · · · · · · · · · · · · · · · ·		39.8 47.0	150	196 232 234	176 214	16. 14.								
1246 1247 1248 1249 1250 1251	106	38.62	3.60				28.0	180 178 132	234	1	15.								
	106 106	36.00 36.23	2.64				39.0	132	166	155	12.								
1253	106	36.23	2.92 2.72 3.08		·····		32. 4 43. 1	140 144	194 184	168 168	18. 14.								
1255	106 106	94 10	3.08	10.7	13.3		48.4	156	כיווני ו	182	14								
1256	106	40.31	2.67	6.9	7.2		41.2	152	180	164 204	10. 10.								
1258	106 106	37.61	3.64	10.7 6.9 7.6	8.0		46.6 27.1	192 174	242	216	18								
1253 1254 1255 1256 1257 1258 1259 1260	106	34. 12 40. 31 38. 30 37. 61 36. 42 33. 52 32. 53 34. 91	2.55	10.6	11.0		33.5	124	180 226 242 172	155	18								
1260	106	33. 52	2.92				49. 2 39. 0	146	184	164 208	13 20								
1261 *1263	107 107	34.91	3.28	17.7	12.0		48.5	156 170	228 223 171	l	16								
1262	107	38. 40 32. 04 35. 00	3. 64 2. 55 2. 92 3. 45 3. 28 2. 89 3. 11 2. 70 3. 11 2. 48 2. 13 2. 77 2. 92	7.6 10.6 17.7 10.2 10.0 7.2			35.1	150	171	161 155	16 7 13								
1263	107 107	32.04	3.11	·····			27. 4 52. 4	127 144	168 181	155 164	13								
1262 1263 1264 1265 1266 1267 1268 1269 1270	107	34 11	3.11	:::::::::			35.6	144	199	181	13 17								
1266	107	34. 41 35. 72 35. 60	2.41	10.2	12.7		39.9	116	199 159	149	17 20								
1267	107 107	35.72	2.48	10.0	19 9		30.9 39.8	116 106	167 142	156 128 164	20 16								
1269	107	1 36.47	3.77		<u>12.2</u>		36.6	138	180	164	15								
	107	35. 38 36. 45	2.92	7.2	10.7		34.5	139	188	175	16.								
1271 *1275	108 108	35. 15	2. 55 2. 75	10.0	7.6		29. 1 37. 5	120 133	156 170	145	14								
1272	108	38.10	3.09	8.7	10.0		35.9	160	200	181	12.								
1273 1274	108 108	37.39 38.58	2. 79 3. 49	7.5	6.6		36. 1 35. 2	142 182	172 220	159 201	10								
1275	108	36.71	2.53	<u>'</u> ".			37.8	128	166	147	15								
1276	108	36.09	2.55	ļ			38.0	127	157	142	111.								
1277 1278	108 108	33.60 36.76	2.86 3.15	14.6	7 A		40.5 31.2	135 152	171 200	153 175	12 15								
1279	108	37.59	3.15	13,0			41.1	167	205	187	12								
1280	108							128	165	148									
1281	1 110			terminatio	٠	1	45.5		3 160	148	17.								

TABLE 7.—General records on the individual ties—Continued. CARD-RED OAK-Continued.

				of ann	number			w	eight of	ie.	
Track No.	No. of cylin- der charge.	Oven- dry weight per cubic foot.	Vol- ume of tie.	Heart-wood.	Sap- wood.	Sap- wood.	Moisture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	Absorp tion per cubic foot.
*1285 1282 1283 1284 1285 1286 1287 1289 1290 1291 *1292 1292 1294 1295 1296 1297 1296 1297 1296 1297	1 110 1 110 1 110 1 110 1 110 1 110 1 110 1 110 1 110 1 111 1 111	Pounds. 39. 34 38. 46 33. 59 36. 18 35. 56 39. 79 38. 21 37. 30 38. 80 33. 79 37. 55 41. 94 36. 30 35. 94 32. 50 34. 48 38. 90 34. 39 36. 91	3 26	7. 1 18. 5	7. 4 7. 3 20. 7 12. 7 10. 0 25. 0 8. 3		Per ct. 38.5 33.8 59.6 49.2 61.7 39.6 49.4 38.0 47.6 53.8 39.4 46.7 48.2 46.1 36.2 38.0 25.5 31.3	2 104 2 122 2 165 2 115 2 186 2 106 1 146 1 122 1 124 1 118 1 162 2 204 1 132 1 132	Pounds: 3 158 3 214 3 154 3 159 3 194 3 138 3 230 2 142 3 184 3 139 188 164 178 165 207 250 196 190 202 180	195 121 138 174 125 204 167 120 164 150 138 135 176 219 164 165 175 152	Pounds. 13.9 16.5 15.5 15.5 17.5 11.1 11.5 17.5 18.0 19.8 17.0 19.2 15.3 13.1 22.8 18.0
				GAS-H	OUSE O	IL—MA	PLE.				
1401 *1405 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 *1419 1412 1413 1414 1415 1418 1419 1420 1421 1428 1424 1425 1428 1429 1430 1431 *1431 *1436 1437 1438 1434 1435 1436 1437 1438	126 126 126 126 126 126 126 126 126 126	39. 54 36. 56 38. 60 37. 40 41. 32 35. 42 36. 72 36. 81 35. 05 35. 05 36. 42 38. 70 38. 36 37. 72 38. 36 37. 72 38. 36 37. 72 38. 50 36. 80 37. 72 38. 50 38. 50 38	2.64 2.82 2.70 2.67 2.65 2.65 2.98 2.57 2.77 2.74 2.77 2.84 2.47 2.84 3.01 2.65	20. 0 17. 8 44. 6 14. 6 24. 7 26. 4 12. 2 24. 8 26. 0	22. 9 22. 1 16. 8 16. 2 23. 5 26. 0 21. 2 20. 8 17. 0 11. 7 22. 9	51.3 48.7 43.4 60.8 59.1 59.5 57.5 69.5 64.8 75.6 52.3 44.5 71.7 65.4 50.0 20.8 63.8 44.3	31.2 35.7 33.0 25.9 42.2 32.7 32.6 39.0 29.8 32.7 36.6 31.7 25.6	129 127 140 120 146 144 126 162 124 150 118 164	190 200 189 180 226 220 198 179 219 214 161 132 152 141 174 160 151 163 163 175 163 174 151 163 175 163 174 174 177 152 186 186 187 187 187 188 188 188 188	188 189 179 221 194 175 215 242 157 153 139 170 170 159 149 172 127 127 131 158 158 170 150 159 159 159 149 172 127 127 131 158 158 170 150 159 149 150 158 134 149 155 158 151 158 158	13. 1 16. 0 19. 7 8. 4. 9 17. 6 18. 2 10. 1 19. 6 1. 38 1. 1 19. 6 1. 38 1. 1 10. 6 10. 5 10. 5 10

^{*} Sawed for penetration determinations, and therefore not laid in track.

Re-treatment.

Weight before first treatment.

Weight after final treatment.

TABLE 7.—General records on the individual ties—Continued.

GAS-HOUSE OIL-MAPLE-Continued.

	No. of	Oven- dry		Average of ann per inc	number ual rings h in—		Mois-	w	eight of	tie.	Absorp
Track No.	cylin- der charge.	weight per cubic foot.	Vol- ume of tie.	Heart- wood.	Sap- wood.	Sap- wood.	ture in tie when treated.	Di- rectly before treat- ment.	Di- rectly after treat- ment.	Before laying in track.	tion per cubic foot.
1439	129	Pounds.	Cu. ft. 2. 70 3. 21 3. 28 3. 16 3. 15 3. 15			Per ct. 59.5	Per ct. 38.0	Pounds.	Pounds.	Pounds.	Pounds
1440	129	37.60 34.75	3. 21				61.1	180	234	233	16.8
1441 *1446	130 130	38.01 36.00	3.28			82. 4 37. 7	24.5 34.5	155 153	199 185	197	13.4 10.1
1442	130 130	36.00 35.90 36.70 37.70	3. 15	16.7	17.6	88.6	26.4	143	184	180	13.0
1443 1444	130	36.70	3.15	22.0 16.7	20.7	46.0 62.3	35.0 30.5	156 152	178 186	174 185	7.0
1445	130	30.50	3.08	16.7	18.3	42.0	29.9	122	152	150	1 9.7
1446 1447	140 130	36. 48 37. 11	4.00 2.94			72.3	35.6 32.0	198 144	234 179	232 175	9.0 11.9
1448	130	37. 11 35. 75	2.94 3.49	23.9	24.8		34.0	144 167	192	188	7.2
1449 1450	130 130	34. 14 37. 59 33. 35	3.50 3.04			24.6 82.0	34.0 37.5 27.8	164 146	194 182	194 180	7.2 8.6 11.8
1451	131	33.35	3.28				29.8	142 143	180	176	11.6
*1456 1452	131 131	35.70 36.90	3.28 3.03 3.93 2.98 2.58 2.36 2.53 2.94 2.70 3.16			60.5 69.7	32.2 33.6	143	184 242	237	11.6 13.5 12.2 15.8 12.1 10.6 17.8 13.3 16.7
1453	131	34, 50	2.98	26.8 25.5		69.7 70.6	33. 6 26. 5	130	242 177	178	15.8
1454 1455	131 131	37.30 35.21	2.58	26.8 25.5	19. 9 35. 4	•••••	39. 2 28. 8	134 107	165 132	160 128	10.6
1456	131	35. 26 38. 60	2.53			83.3	31.0	117	162	160	17.8
1457 1458	131 131	38.60	2.94	18.1	21.6	69.0 61.0	28. 7 29. 3 25. 0	146 120	185 165	179 158	13.3
1459	131	34.38 38.89	3.16	43.1		-	25.0	154	200	198	14.5
1460 1461	131 138	39. 25 37. 25	3.32 3.15			67. 4 46. 4	32. 0 36. 5	172 160	216 204	209 200	13. 2 14. 0
* 1468	138	34. 37 35. 85	3.47	28.4		62. 2 66. 7	38.5	165	216		14.7 17.7
1462 1463	138 138 138 138 138	34.92	3. 47 3. 25 3. 79	27.6	27.4	66. 7 59. 2	38. 5 27. 0 36. 0	148 180	206 238	200 233	15.3
1464	138 138 138	36.06	3.32			69.0	29.5	155	195	233 193	19 (
1465 1466	138	39. 57 33. 72	3. 66 3. 76	16.5	19. 4	32. 2 92. 0	29.3 34.7	187 171	218 255	216 247	22.3
1467	138	35.80	2. 58 3. 35	19.7		53.8	34.7 31.0	121	160	156	8.5 22.3 15.1 13.4
1468 1469	138 138	36. 42 37. 00	3.35 2.99	19.7	12.3	47. 1 65. 1	31.8 51.0	161 167	206 200	202 197	13.4 11.0
1470	138 138	37.00 36.74	2.99 3.42			84.2	27.3 34.0	160	222	220	11.0 18.1
1471 *1475	139 139	36.52 37.32	3.49 2.87			64. 0 87. 0	34.0 31.6	171 141	208 180	206	10.6 13.6
1472 1473	139	34. 29 40. 30	2.87 3.42 3.32	20.5	24. 4	82.0	45.8	171	234	233	18. 4 12. 4 12. 6
1473	139 139	36.82	3.32			51.8 54.2	29. 4 28. 5	173 169	214 214	210 209	12.4 12.6
1475	139	36.82 35.18	3.57 2.28		J	82.0	28. 5 33. 4	107	148	146	18.0
1476 1477	139 139	30.86 34.48	3.61 2.75	23.1	28.5	43.9	37. 4 40. 4	153 133	232 170	231 167	21.9 13.5
1478	139	34. 48 35. 10	3.45			66.2	44.6	133 175	212	209	11.7
1479 1480	139 139	37.36 36.85	2.07	17. 2 45. 9	20.0 31.1	75. 6 61. 1	19.0 30.8	92 119	131 143	126 142	9.7
1481	139 140	37.60	2.75 3.45 2.07 2.47 2.62 2.62 2.77 3.11 2.84 3.30			80.0 71.5	30.8 33.0 32.0	131	174 171	170	18. 8 9. 7 16. 4 13. 8 11. 2 12. 2 15. 1
*1484 1482	140 140	39. 06 40. 70	2.62	22.5	14.6	71.5 26.0	32.0 32.0	135 149	171	174	13.8
1483	140 140	38, 94	3.11			56.5	32.0	149 160	198	190	12.2
1484 1485	140	38. 25 35. 88	3.30	25. 7	19. 1 21. 6	79.5 78.2	31.6 28.5	143 152	186 210	182 209	17.6
1486	140	36.58	3.97	25. 7 8. 1 29. 6	21.6 27.6	67.6	31.0	190	245	241	13.9
1487 1488	140 140	38. 57 37. 59	3. 16 3. 43	29.6	27.6	69. 3 52. 6	24. 0 35. 7	151 175	188 225	181 219	11.7 14.5
1489	140	35.23	3. 63 2. 86			50.6	30. 5 29. 6	175 167	209	219 207	11.6
1490 1491	140 141	36. 16 36. 87	2.86 3.89			66. 0 78. 6	36.9	134 196	172 254	165 248	13.3 14.9
* 149 5	141	36.87 37.98	3.62				33. 1	183	236		14.9
1492 1493	141 141	33. 70 37. 70	3.37 3.09	36.2	16.0	87.5 54.7	32. 0 35. 6	150 158	224 196	215 192	21.8 12.3
1494	141	40.30	3.25			68. 7	31.4	172	206	200	10.5
1495 1496	141 141	36.58 34.60	2.82 3.18			68. 7 37. 2 47. 0	37. 6 32. 7	142 146	176 183	174 178	12.1 11.6
1497	141	35.70	1 3.40	28.8	27. 3 23. 8	69.3	32.6	161	217	210	16.5
1498 1409	141 141	36. 10	3.01	1	į.	78.4	30.6	142 146	194 182	188 177	17.4
1500	141	36.80	2.79		١	59.2	32.5	136	174	171	13.7

^{*} Sawed for penetration determinations, and therefore not laid in track.

Digitized by Google

APPENDIX.

ACCURACY OF THE DETERMINATIONS.

In computing the precision of the determinations the volume of the ties was assumed to be 2.68 cubic feet, which represents their normal size, and the weight 125 pounds, the approximate weight at the time of treatment of a tie of the normal size. However, the greater portion of the ties were larger than this. The magnitude of the error in the determinations, expressed in per cent, decreases as the size and weight of the ties increases, and the size and weight assumed in the computations have, therefore, a tendency to make the computed error greater than the true precision of the determinations for any particular tie.

The scales used were all tested, and errors due to their inaccuracy were found to be inappreciable so far as the results of the experiments are concerned. The maximum inaccuracy of the thermometers over the range of temperatures used was 1° F. The pressure gauge on the treating cylinder had a constant inaccuracy of 3 pounds with the higher pressures, and the vacuum gauge had a maximum inaccuracy of 0.3 inch of mercury. The effect of these errors would be inappreciable on the experimental results, and no corrections were made for them.

TIE VOLUMES.

Errors in the determinations of the volumes of the ties might arise from three causes:

- (1) Inaccuracy of the reading of the gauge glass.
- (2) Inaccuracy of the calibration of the tank.
- (3) Absorption of water by the tie during its immersion.

The gauge glass was graduated to 0.01 and read to 0.005 of a foot; the maximum deviation of any one reading is therefore ± 0.0025 tank-foot. Since the volume of the tank was 1.72 cubic feet for every foot in depth, the maximum deviation amounts to ± 0.0043 cubic foot, or ± 0.16 per cent of the assumed volume of the tie. The volume of the tie depends upon two observations; hence the maximum possible deviation of the results equals $\pm 0.16 \times 2$, or ± 0.32 per cent. The maximum deviation is very unlikely to occur, and the error in reading the gauge glass is most likely to be between ± 0.2 and ± 0.3 per cent.

In the calibration of the tank there was a maximum deviation of ± 0.022 cubic foot for each foot of depth, and since the volume of

the tie (2.68 cubic feet) required 1.56 tank-feet, the maximum possible deviation from this source amounted to ± 0.034 cubic foot, or ± 1.3 per cent.

Except in a very few instances the absorption of water by a tie during its immersion was found to be not more than 0.02 foot on the gauge glass for a tie of 2.68 cubic feet volume. It seems probable that most of this absorption occurred before the reading of the gauge (during the immersion of the tie) was made. Therefore, the difference between the reading of the gauge glass after the tie was removed from the tank and that made during its immersion was taken as the measure of the volume of the tie.¹ Even under the supposition that the rate of absorption of water by the tie during the time of its immersion was uniform, the maximum error could not have been

more than $\frac{0.02}{2}$, or 0.01 foot, on the gauge glass. Moreover, it is believed that the interval of time between the reading of the gauge and the removal of the tie from the water was shorter than that between the immersion of the tie and the reading of the gauge. The absorption of an amount of water equal to 0.01 tank-foot between the high and low readings would produce an error in the volume of a tie of +0.0172 cubic foot or +0.63 per cent.

The maximum deviation of the determination of the tie volumes, considering the several sources of error mentioned, therefore = $\pm 0.3 \pm 1.3 = \pm 1.6$ per cent, added to which is the maximum error due to absorption of water by the tie of +0.6 per cent. The maximum deviation is very unlikely to occur, and the error in this determination is most likely to be between ± 1.0 and ± 1.5 per cent, to which must be added the maximum error of +0.6 per cent.

OVEN-DRY WEIGHTS.

Errors in the determination of the oven-dry weights in the ties might arise from two causes:

(1) Inaccuracy of the weighings.

(2) Variation in the specific gravity of the wood throughout the tie. Since the displacement weighings were made to the nearest one-half ounce, the greatest deviation of any one weighing was ± 0.025 ounce. The sections generally displaced 28 ounces, or more, of water. Assuming this weight as a basis for calculation, the maximum percentage deviation due to each weighing was ± 0.89 . The determination depended upon two weighings and, therefore, the maximum deviation of the determination equals $\pm 0.89 \times 2 = \pm 1.8$ per cent. The maximum deviation is very unlikely to occur, and the error in this determination is most likely to be between ± 1.0 and ± 1.5 per cent. The weights of the oven-dry sections were made with

¹ The ties were allowed to drip into the tank for a short time after being removed from the water.

such accuracy that no appreciable error was introduced at that point.

The sections for the dry-weight determinations were cut at random from either end of the tie. It is known that the specific gravity of the wood in a tree varies with the height from the ground, but no tests were made to ascertain what this variation was between the two ends of the ties. Determinations made by the Forest Service on a red-oak tree, in connection with strength tests, indicated a mean variation of 2 per cent in the specific gravity between points 8 feet apart. If the same variation existed in the ties an error of ± 1 per cent was introduced by computations of dry weight from sections cut from one end only.

ABSORPTION.1

The determination of the absorption of the ties by weights involved four weighings—two just before the ties entered the cylinder and two just after the completion of the treatment. The weights were in each case obtained by differences; i. e., the tram was placed upon the scales and the beam of the scales was balanced before and after a tie had been placed upon or removed from the tram. Weighings on the tramcar scales were made to the nearest pound. the greatest deviation each time the scales were balanced was ± 0.5 pound. Assuming a tie of 2.68 cubic feet treated with 12 pounds of preservative per cubic foot of wood, this amounts to an error of ±1.6 per cent. Since the weight of each tie was obtained from a difference of two weighings before and again after treatment, the determination of absorptions required four weighings. The maximum deviation of the determination is, therefore, $\pm 1.6 \times 4 = \pm 6.4$ per cent. The maximum deviation is very unlikely to occur, and the error in this determination is most likely to be between ± 3.0 and ±4.0 per cent. In the case of the ties which absorbed more than the assumed weight of preservative the error is proportionately less, while for an absorption of 5 pounds of preservative per cubic foot of wood the error in the determinations most likely to occur is probably between 7 and 8 per cent. The most likely error in the measurement of the absorption of a cylinder charge as a whole when determined from a difference of weights of the entire charge is probably between ± 0.25 and ± 0.35 per cent, if an absorption of 12 pounds of preservative per cubic foot of wood is assumed.

It has been claimed that the chief inaccuracy in the determination of the absorption of preservative in timber from weights is caused by a loss of moisture—sap, resins, and other substances—during treatment, so that the absorption of an equal weight of creosote is

¹ In cold or damp weather the ties were piled indoors for a few days before treatment in order to eliminate the effect of ice, snow, or water adhering to the surface.

not detected by the weighing.¹ That any very appreciable interchange of this nature took place in the experiments described in this bulletin seems most unlikely, since the ties (excepting possibly the red-oak ties treated with gas-house oil) were well seasoned before treatment. Also the analyses of the creosote made during the progress of the treatments show that there was approximately the same percentage of water in the creosote in the measuring tank after a large number of treatments had been made as there was in the creosote in the storage tank before any of the treatments were begun.²

The error from the dripping and the volatilization of preservative between the time the cylinder door was opened and when all of the weighings had been completed is believed to be negligible. The greater part of the drip was caught in the cylinder and returned to the measuring tank before the cylinder door was opened. Only a slight amount of drip subsequent to this and before the weighings had been completed was noticed.³

WEIGHT OF TIES BEFORE PLACEMENT.

Since the scales used in weighing the ties before laying in the track had a precision of 0.5 pound, and only one weighing was necessary, the probable error was evidently inappreciable, as compared with the determinations of weights of the ties directly after treatment. It is, therefore, not necessary to consider it. The same number of significant figures have been retained in each case, however, because of the fact that the weights of the ties before laying in the track are of interest only in connection with the weights taken at the time of treatment.

ERRORS IN MEASUREMENTS BY FLOAT GAUGES.4

Although the absorptions recorded in this bulletin are obtained from the weights of the ties before and after treatment, it is believed that a discussion of the inaccuracies inherent in float-gauge measure-

Necessarily, the only difference in the weight of the timber from an interchange of equal volumes would be due to the difference in the specific gravities of the substances leaving the wood and the preservative in question at the treating temperature. And this difference is usually small. Likewise, where measuring-tank gauges are relied upon, the greatest difference that could be detected in the readings due to such an interchange would be due to the difference in the specific gravities of the two liquids, which in this case would cause the float to change its position with respect to the surface of the liquid. Also, where temperature corrections of the measuring-tank readings have to be made, a difference in the coefficients of expansion of the two liquids might produce some change in the calculated results. However, in either case the effect on the results would not be noticeable unless the volumes of liquids exchanged were comparatively large. A discussion of the accuracy of float gauges is given elsewhere in the appendix.

² See pp. 39-40.

³ The most noticeable amount of drip occurred after treatments of red-oak ties by the Rueping process. It has been suggested that if the final vacuum had been held for a longer period the dripping of these ties might have been reduced.

[•] The gauge board used in the experiments discussed in this bulletin is shown in figure 1. It is believed that the only material difference between the horizontal gauge here shown and the vertical type in common use is the larger number of pulleys and the longer connecting wire in the horizontal type.

ments will be of value to those interested in the wood-preserving industry. The cause of many of the errors is the different temperature at which various readings of the gauge are made, which affects the volume and density of the preservative fluid, the capacity of the measuring tank, the size of the float, and the length of the gauge wire. Another source of error lies in the inertia of the gauge and the friction of the pulleys. Besides these errors, whose magnitude can be calculated with more or less accuracy, there are other errors, the magnitude of which is not readily determined.

The various errors are illustrated by examples in which the following values are assumed:

Temperature of the preservative at the initial gauge reading in degrees $F = 203^{\circ} = t$

Temperature of the preservative at the final gauge reading in degrees $F = 165^{\circ} = t_1$

Specific gravity of the preservative (assumed to be creosote) at temperature t=1.028=8t

Specific gravity of the preservative at temperature $t_1=1.044=S_1$

Depth of preservative in feet at the initial gauge reading (at temperature t) = $10.45' = L_t$

Depth of preservative in feet at the final gauge reading (at temperature t_1)= $9.56'=L_1$

CHANGE IN VOLUME OF PRESERVATIVE WITH CHANGE IN TEMPERA-TURE.

Assuming that at the time of reading the gauge the temperature of the preservative is the same throughout the tank, the following equation is used for correcting the volume of the preservative for temperature change:

 $V_t = V_i \frac{S_i}{S_t} = V_i \left(\frac{1.044}{1.028} \right) = V_i$ 1.016

in which V_t = the volume at temperature t, and V_1 the volume at temperature t_1 . The assumed final reading is 9.56 feet, which becomes 9.71 feet when the correction is applied. The error due to expansion of the oil is in this case 0.15 tank-foot, which is equal to 20 per cent of the corrected absorption.

CHANGE IN VOLUME OF MEASURING TANK WITH CHANGE IN TEMPERA-TURE.

If u represents the area of a cross section of the measuring tank at temperature t, and k the coefficient of expansion, ² then

$$u [1-(t-t_1) 2k]$$

¹For wrought iron or mild steel this amounts to 0.0000673 per degree F. per unit length; Mechanical Engineers' Pocketbook, by Wm. Kent, 7th edition, p. 385.

¹ The change in gravity of creosote with change in temperature is found by the equation $S_i = S_1 + (l-l_1) f$, in which f is a constant with the value 0.00043. For gas oils f = 0.00036 (Sir Boverton Redwood, Petroleum and Its Products, 2d ed., p. 208). A table of the specific gravities of sinc-chlorid solutions is given on p. 85.

will represent the area at temperature t₁.¹ The heights of a given volume of liquid are in inverse proportion to the corresponding areas of the cross section of the measuring tank. Hence, if L₂ represents the height L₄ corrected for change in temperature of the tank,

$$\frac{u}{u \left[1 - (t - t_1) \ 2k\right]} = \frac{L_1}{L_2}$$

 \mathbf{or}

$$L_2 = L_1 [1 - (t - t_1) 2k]$$

The change in height of a given volume of the preservative due to a change in volume in the $\tanh = L_2 - L_1 = L_1 [1 - (t - t_1) 2k] - L_1 = -L_1 (t - t_1) 2k$.

By substituting in this equation the values given in the example, $L_2-L_1=-9.56~(203-165)~2\times0.00000673=-0.00489$ tank-foot.

The change in volume of the measuring tank has, therefore, a tendency to make the indicated absorption too small when the temperature is less at the final than at the initial gauge reading. The error in the example given amounts to 0.66 per cent of the absorption.²

CHANGE IN POSITION OF FLOAT WITH CHANGE IN ITS VOLUME.

A change in position of the float with respect to the surface of the preservative will be effected by a change in the volume of the float with change in its temperature. Since the displacement is assumed to be constant, the problem may be solved similarly to the preceding one.

Although a part of the submerged portion of the float is conical in form, it may be considered as a cylinder of the same diameter and equivalent volume. Calling p_t the submerged height of the float at temperature t, and p_1 the submerged height at temperature t_1 ,

$$p_1 - p_t = p_t (t - t_1) 2k$$

The float was submerged to approximately the top of the cylindrical portion (fig. 23); therefore,

$$p_t = \left(2 + \frac{4}{3}\right) = \frac{10}{3}$$
 inches $= \frac{10}{36}$ feet.

Substituting this value and the other values in the example chosen in the equation,

$$p_1 - p_t = \frac{10}{36} (203 - 165) 2 \times 0.00000673 = 0.000142 \text{ tank-foot.}$$

The submerged depth of the float is 0.000142 foot less at temperature t than at t_1 , on account of its change of size; it accordingly

¹ It is assumed that the coefficient of surface expansion with change in temperature is twice that of lineal expansion.

² The percentage errors are based on the absorption corrected for differences in the temperature of the preservative, which is the approximate true absorption.

floats higher (i. e., the portion of the float above the surface of the liquid is higher at the higher temperature). The error amounts to 0.02 per cent of the absorption.

CHANGE IN POSITION OF FLOAT WITH CHANGE IN SPECIFIC GRAVITY OF PRESERVATIVE.

When the temperature of the preservative changes from t to t_1 , its specific gravity changes from S_t to S_1 . Since the effective weight of the float remains the same in both cases, the volume of the preservative displaced must change in order that an equilibrium of forces may be established. The change in the submerged volume of the float is in inverse proportion to the change in specific gravity of the preservative. Calling u the area of cross section of the cylindrical portion of the float, p_1 the effective depth of submersion of the float at temperature t_1 , and p_2 the value of p_1 corrected for a specific gravity of the preservative corresponding to the temperature t, then,

$$\frac{p_1 u}{p_2 u} = \frac{S_t}{S_1},$$

$$p_2 = p_1 \frac{S_1}{S_t},$$

and

$$p_1 - p_2 = p_1 \left(1 - \frac{S_1}{S_t} \right)$$

Applying the specific example to this equation,

$$p_1 - p_2 = \frac{10}{36} \left(1 - \frac{1.044}{1.028} \right) = -0.00432$$
 tank-foot.

Because of the decreased specific gravity of the preservative the gauge floats higher in the cooler oil, which in the example given tends to make the indicated absorption too small by an amount equal to 0.59 per cent of the actual absorption.

VARIATION IN LENGTH OF GAUGE WIRE WITH CHANGE OF TEM-PERATURE.

The measuring-tank gauges were entirely under cover, in a position not much affected by drafts or changes in temperature of the air. It seems fair, therefore, to assume that the temperature of that portion of the gauge wire which was outside of the tank (i. e., beyond the tank cover) was approximately the same at the beginning and end of any treatment, and, since a very fine wire was used, that the portion of the wire emerging from the tank with a rise of the float reached room temperature before the gauge was read. It also seems probable that at any given time the portion of the wire which was within the tank (i. e., between the float and the tank cover) was at approximately the same temperature as the preservative and vapors

which the tank contained. Under these conditions the change in length of the wire between an initial and a final gauge reading at temperatures t and t_1 , respectively, is represented by the equation:

$$h_2 = l_t(t_1 - t)k + (l_1 - l_t)$$
 $(t_1 - t_2)k$

in which h_2 equals the change in length of the wire due to the change in temperature from t to t_1 , and l_t and l_t represent the length of wire within the measuring tank at the initial and final gauge readings, respectively, and t_2 the room temperature.

Applying to this equation the values given in the example, $h_2 = 1.55$ (165 - 203) 0.00000673 + (2.44 - 1.55)(165 - 70)0.00000673 = -0.00040 + 0.00057 = 0.00017 tank-foot.

When the temperature of the measuring tank fell that portion of the gauge wire within the tank contracted; but since the level of the liquid was lower at the end of the treatment, a portion of the wire was drawn in from the outside, which expanded because of its increased temperature. The total result was a small increase in the length of the wire. This would tend to make the indication of the gauge at the end of the treatment too high and the indicated absorption too low by a corresponding amount. Hence the error, which amounts to 0.02 per cent, is of the negative sign.

POSITION OF INDICATOR AS AFFECTED BY RESISTANCE IN THE GAUGE AND DIFFERENCES IN TENSION IN THE GAUGE WIRE.

In order to make the readings of these measuring-tank gauges as sensitive and as accurate as practicable, they were constructed according to the following principles:

Calling the weight of the float in pounds, W; the resistance of the gauge (which includes the frictional resistance of the pulleys, the resistance of the wire to bending about the pulleys of one gauge, etc.) expressed in pounds, r; the weight of the counterweight in pounds, W; and neglecting the weight of the gauge wire and the effects of differences in surface tension on the float, then,

The upward pull on the float during any period in which the level of the liquid is dropping = w + r,

The upward pull on the float during any period in which the level of the liquid is rising = w - r,

and

The difference between these two upward forces on the float = (w+r) - (w-r) = 2r.

There will, therefore, be two different positions of the float and two corresponding different positions of the float and two corresponding

¹ That part of the float which was between the surface of the preservative and the wire is included in l_1 and l_2 , since its coefficient of expansion is practically the same as that of the wire. $l_2=(12.00-10.45]$ =1.55 (nearly) $l_1=(12.00-9.56)=2.44$ (nearly).

positions of the gauge for any given level of liquid in the measuring tank, depending upon whether this level has been rising or falling just previous to the time of reading, the force, 2r, being a measure of the difference between these positions. Calling d the difference in feet of the height of the float in its two positions for a given level of liquid; A, the area of cross section of the float in square feet; and S, the weight per cubic foot of the liquid at the given temperature at which it is being measured, then,

$$2r = AdS$$

$$d = \frac{2r}{SA}$$

 \mathbf{or}

S is a constant so far as this discussion is concerned, since it depends entirely upon the particular liquid to be measured and its temperature. It is evident, then, that in order to make the magnitude of the possible error, d, in the gauge readings small, the resistance, r, in the pulleys and wires should be made small, and the area of cross section, A, of the float should be made large. With this end in view, the diameter of the float was made as large as practicable (18 inches), and a fine-gauge piano wire was used to connect the float and the counterweight; the pulleys were of turned brass with large pins to reduce friction (silk gimp and also phosphor-bronze wire were used instead of the piano wire in some of the treatments). The counterweights were just sufficiently heavy to keep the wires taut across the gauge board.

The floats are made of heavy galvanized iron. The pipe shown near the top (fig. 23) is to permit the passage of air to or from the interior with the changes of temperature to which the floats are subjected. The pipes may be removed, and sand, shot, or other material may then be introduced into the floats to give them suitable weight. The bends in the air-relief pipe are to prevent the preservative from spattering through into the interior. The bottoms of the floats are made conical so that the center of gravity of any weighing material which may be placed in them will come to a stable position at the bottom. The floats were weighted sufficiently to sink them as far as the tops of the cylindrical portions when placed in water.

In order to ascertain the magnitude of the error due to the resistance of the gauge, water at approximately 70° Fahrenheit was run into the measuring tank, and after a certain amount of it had been slowly drawn off (in order to have the level of the water falling) a gauge reading was taken. More water was then drawn off and carefully poured back into the measuring tank, without, however, agitating the surface of the water in the tank. The tank then contained the same quantity of water as when the first gauge reading was taken. A second reading was then made. The difference between these

Digitized by Google -

two readings was taken as twice the resistance of the gauge.¹ This error was found from a large number of trials to have an average value of one-eighth inch, or 0.0104 tank-foot. While it might seem that the readings could be corrected for this error from a knowledge of whether the general level of the liquid had been rising or falling just previous to the taking of a given reading, it must be borne in mind that during the treatment the surface of the liquid in the measuring tank was more or less agitated, especially while the preservative was being returned to the tank. On account of this agitation it was im-

Fig. 23.—Construction of the floats used.

possible to know in which direction or to what degree the correction should be applied. It must, therefore, be treated as an error whose sign is indeterminate. The error amounts to ± 1.4 per cent of the assumed absorption for each reading of the gauge. Since the determination of absorption depends upon two readings, the precision measure of the determination $=\pm 1.4$ $\sqrt{2}=\pm 2.0$ per cent.

¹ This difference also included the change in length of the gauge wire due to differences in tension of the wire between the indicator and the float, but since that length of wire included only about one-half of the length of the gauge wire and one-half of the pulleys, and the difference in tension on either side of a given pulley was very slight, it is believed that this factor may be safely disregarded.

OTHER ERRORS.

Since the entire gauge was under cover, the effect of wind pressure on the wire was eliminated, and, because of its very slight total weight, the varying weight of wire on either side of the pulley system was obviously inappreciable. Moreover, the weight of the pointer produced a hardly perceptible sag in the gauge wire, and its effect may also be eliminated in so far as it might have produced an appreciable error in the results. Especial care was always taken to see that the gauge wire moved freely, so that there was little chance of that part which was between the float and the first pulley having been inclined to the vertical.

The manner in which the treatments were conducted leaves little chance for the loss or the pocketing of preservative during treatment.

A lack of uniformity in the temperature of the preservative in the measuring tank would affect both the original readings and their corrections, but a study of such variations was not practicable at the time the experiments were made.

The error due to volatilization from the measuring tanks was found to be inappreciable during the treatment of any given charge.

There is some reason to believe that by blowing back the preservative from the receiving to the measuring tanks by compressed air some air may have been entrained, especially since a certain amount of water was present in the preservative and the latter passed from the outlet of the pipe at the top of the measuring tank to the surface of the liquid in the tank as more or less of a spray. The difficulty of eliminating even a slight amount of entrained air from a liquid is well known, and a comparatively small amount of it would probably have affected the gauge readings considerably. Assuming that the amount of entrained air in the preservative remained the same at both the initial and the final gauge readings, the rate of change in volume of the air with change in temperature, being considerably greater than that of the liquids, may have produced considerable error in the gauge readings. On the other hand, a rise in temperature of preservative containing entrained air would possibly have caused the freeing of some portion of the air. It was found that in those treatments in which there seemed to be the most likelihood of air having been entrained in the preservative the disagreement between amount of absorption as determined by gauge readings and by weighings was most marked.

It is possible that there may have been other errors in the measurement of absorption by tank gauges which are not at this time realized.

SUMMARY.

Omitting the error due to change of temperature of the preservative, for which the correction has been applied, errors of the magnitude

given below are found in float-gauge determinations under the conditions given:

Č	Per cent.
Due to change in temperature of the measuring tank	-0.66
Due to change in temperature of the float	+0.02
Due to change in specific gravity of the preservative as affecting the position of	ř.
the float	-0. 59
Due to change in temperature of the gauge wire	-0.02
Total determinate error	-1. 25

We thus have a determinate error of -1.3 per cent for which a correction might be applied, but this is less than the precision measure of the result (due to the resistance of the gauge) which equals ± 2.0 per cent.

In addition to the calculated errors, there may be considerable variation due to lack of uniformity in the temperature of the measuring tank at any given time, the presence of entrained air in the preservative, or other causes as yet undiscovered.

ANALYSES OF PRESERVATIVES.

CREOSOTE.

The creosote used in the treatments described in this bulletin was taken from a single tank-car shipment. One sample was taken from the storage tank before any of the treatments were made; another sample was taken after the completion of the first two processes using creosote, in order to detect any change that might have taken place in the composition of the creosote as its volume was diminished by use. For comparison a sample was taken also from the storage tank. The first sample was analyzed by the Forest Service laboratory method; the two other samples were analyzed by the Forest Service field method.

The results of these analyses are as follows:

SAMPLE OF CREOSOTE TAKEN FROM STORAGE TANK BEFORE TREATMENTS WERE BEGUN (SAMPLE A).

Date of analysis, December 12, 1910. Specific gravity at 60° C. (by picnometer), 1.0483.	
Viscosity (by Engler viscosimeter):	
At 98° C 1	. 13
At 76° C 1	. 23
At 58° C 1	
At 24° C 2	. 03
At 9° C 3	. 24
Flash point, 93° C.	
Burning point, 100° C.	
Character, liquid.	

Table 8.—Distillation record of creosote sample A (Forest Service laboratory method, with Hempel flask).

-	Temper-		Index of		
No.	ature.	Observed.	Water- free. Cumula- tive.		refraction at 60° C.
	° c.	Per cent.	Per cent.	Per cent.	
1	180	12.8	4.8	4.8	
2	205	5.7	6.2	11.0	
3	215	6.2	6.8	17.8	
4	225	12.5	13.6	31.4	
5	235	7.2	7.9	39.3	1.5889
<u>6</u>	245	4.7	5.1	44.4	1.5905
<u>7</u>	255	2.3	2.5	46.9	1.5918
8	265	3.7	4.0	50. 9	1.5931
9	275	2.9	3.2	54.1	1.5960
10	285	3.2	8.5	57.6 62.7	1.6010
11 12	295	4.7	5.1		1.6066
	305 320	4.1 6.3	4.5	67. 2	1.6107
13	320	0.3	6.9	74.1	
Residue		23.6	25.8	99.9	

SAMPLE OF CREOSOTE TAKEN FROM STORAGE TANK AFTER COMPLETION OF FIRST TWO CREOSOTE PROCESSES (SAMPLE B).

Date of analysis, May 9, 1911.

Specific gravity at 60° C. (by hydrometer), 1.044.

Character, liquid.

Table 9.—Distillation record of creosote sample B (Forest Service field method, with common flask).

	Temper-	Distillate.			
No.	ature.	Observed.	Water- free.	Cumula- tive.	
1	° C. 205 235 255 270 295 320	Per cent. 12. 4 23. 0 14. 2 8. 8 11. 0 8. 5	Per cent. 10.2 23.6 14.5 9.0 11.2 8.7	Per cent. 10. 2 33. 8 48. 3 57. 3 68. 5 77. 2	
Residue (by difference)	•••••	22.1	22.8	100.0	

SAMPLE OF CREOSOTE TAKEN FROM MEASURING TANK AFTER COMPLETION OF FIRST TWO CREOSOTE PROCESSES (SAMPLE C).

Date of analysis, May 9, 1911.

Specific gravity at 60° C. (by hydrometer), 1.055.

Character, liquid.

Table 10.—Distillation record of creosote sample C. (Forest Service field method, with common flask).

No.	Temper-	Distillate.			
No.	ature.	Observed.	Water- free.	Cumula- tive.	
1	° C. 205 235 255 270 29 5 320	Per cent. 8.0 15.6 15.2 9.2 8.1 11.0	Per cent. 0.0 17.0 16.5 10.0 8.8 11.9	77.0 33.5 43.5 52.3 64.2	
Residue (by difference)	• • • • • • • • • • • • • • • • • • • •	32.9	35.8	100.0	

In order to compare more readily the distillation of the three samples of creosote the curves have been plotted in figure 24. Bearing in mind that samples B and C were distilled in a common flask and that sample A was distilled in a Hempel flask, these curves indicate that there was little difference between the two samples taken from the storage tank at different times. On the other hand there is a fairly constant variation between the second sample from the storage tank and that from the measuring tank. Since the oil in the measuring tank had not been changed except by addition

Fig. 24.—Comparison of distillation curves for three samples of creosote; A, taken from storage tank before beginning of treatment; B, taken from storage tank during progress of treatment; C, taken from measuring tank at same time B was taken from storage tank.

of amounts equivalent to the oil consumed during treatment, and the oil in the storage tank was much less subject to volatilization than that employed during the treatments, it appears probable that this difference is due to the partial loss of the naphthalenes. This supposition is borne out by a comparison of the specific gravities of the three samples-1.055 in the case of the sample taken from the measuring tank, and 1.048 and 1.044, respectively, in the case of the two samples from the storage tank.

ZINC CHLORID.

The zinc chlorid used in the treatment of the ties was obtained under the following specifications:

The fused zinc chlorid must contain at least 94 per cent of water-soluble chlorid of zinc, and it must be slightly basic; that is, contain no free acids. It should be practi-

cally free from soluble iron, and in no case will it have more than 0.022 per cent of this element. It shall not contain more than one-half of 1 per cent of other inorganic impurities insoluble in hydrochloric acid.

A sufficient analysis was made to ascertain that the preservative used fully complied with the specifications.

GAS-HOUSE OIL.1

A sample of the semirefined oil with paraffin base, commonly known as "gas-house oil," was taken just previous to its use in the treatments. The analysis was made by the regular Forest Service field method for analyzing creosote with the following result:

Date of analysis, May 12, 1911.

Specific gravity at 60° C. (by hydrometer), 0.837.

Flash point, -105° C.

Burning point, -126° C.

Character, dark liquid.

TABLE 11.—Distillation record of "gas-house oil."

	_	Distillate.		
No.	Temper ature.	Observed.	Cumula- tive.	
	°C.	Per cent.	Per cent.	
	190	0.0	I el celle.	
• • • • • • • • • • • • • • • • • • • •	200	6.0	6.0	
	230	2.0	8.0	
	250	1.0	9.	
	265	3.0	12.	
· · · · · · · · · · · · · · · · · · ·	275	4.5	16.	
	290	8.5	25.	
• • • • • • • • • • • • • • • • • • • •	300	8.5	33.	
• • • • • • • • • • • • • • • • • • • •	310	9.0	42.	
• • • • • • • • • • • • • • • • • • • •	320	8.0	50.	
• • • • • • • • • • • • • • • • • • • •	330	8.5	59.	
. •	340	7.8	66.	
• • • • • • • • • • • • • • • • • • • •	350	8.2	75.	
• • • • • • • • • • • • • • • • • • • •	360	6.5	81.	
• • • • • • • • • • • • • • • • • • • •	365	3.8	85.	
sidue (by difference).		14.7	100.	

REMARKS.—All of the fractions were liquid at room temperature, and the residue was a black liquid.

CREOSOTE-ZINC-CHLORID EMULSIONS.

At the beginning of the treatments by the Card process the questions arose as to how best to detect any change in the emulsion used in this process caused by the ties taking up the two constituents in a different proportion from that in which they were present in the emulsion. This question resolved itself into two parts: (1) the proper sampling of the emulsion, and (2) accurate measurement of the volumes of the two constituents in the samples.

Samples of emulsion were first taken from the top, bottom, and side of the treating cylinder by means of pipes which did not extend beyond the inner surface of the shell. These differed so much from

¹ This is a crude petroleum from which the lighter portions have been removed.

each other and from the sample taken from the measuring tank at the same time that it was evident that they were not true samples. A pipe was then placed in the rear end of the cylinder and extended 2 feet into the interior, as shown in figure 25. Samples were taken nearly simultaneously from this pipe and from the measuring tank. Care was taken to let the emulsion flow long enough to be certain that the sampling pipe had been entirely emptied of stagnant fluid

Fig. 25.—Device used for sampling creosote-zinc-chlorid emulsions in Card process.

before the sample from the cylinder was drawn off. A true sample of the emulsion could not be obtained from the cylinder until the centrifugal pump had been in operation for some time.

The method finally adopted for determining the proportions of zinc-chlorid solution and creosote in the samples of emulsion was that of separating the water from the creosote by distillation. Water-saturated xylol was added to the emulsion to assist in the separation.

It was found that the proportion of zincchlorid solution in the emulsion was less than 80 per cent at the end of a treatment of either the red-oak or hard-

maple ties, although the proportion was brought up to 80 per cent at the beginning of each treatment. The proportions in both cases are based on volume at approximately 70° F. The amount of the decrease of the zinc-chlorid solution was not the same in different cylinder charges, but varied considerably.

¹ This method is explained more fully in Forest Service Circular 134, The Estimation of Moisture in Crossoted Wood, by Arthur L. Dean.

 $\textbf{TABLE 12.} \\ \textbf{--Specific gravity of 21/2 and 3 per cent } ZnCl_2 \ solution \ in \ pure \ water \ at \ different \\ temperatures.^1$

	Specific gravity.					
Tempera- ture.	2.5 per cent solution at 60° F.	3 per cent solution at 60° F.				
° F. 60 80 100 120 140 160 180 200	1. 0231 1. 0203 1. 0166 1. 0118 1. 0964 1. 0004 9937 . 9864	1. 0274 1. 0245 1. 0207 1. 0159 1. 0103 1. 0043 . 9072 . 9899				

 1 This table is accurate to 1 in the fourth decimal place up to 140° F. and to 5 in the fourth decimal place beyond that point.

Fig. 26.—Specific gravity of 2.5 and 3 per cent solutions of zinc chlorid in pure water at different temperatures. (Plotted from Table 12.)

Table 13.—Summary of results of tie treatments for each cylinder charge FULL-CELL CREOSOTE-RED OAK.

				Variat	ion from a absorption	verage
Charge number.	Date of treatment.	Total time of treatment.	A verage absorp- tion per cubic foot.	Average varia- tion.	Variation of tie of highest absorption.	Variation of tie of lowest absorption.
3	Nov. 16, 1910 Nov. 18, 1910 Nov. 17, 1910 Nov. 16, 1910 Nov. 26, 1910 Dec. 13, 1910 Dec. 14, 1910 Dec. 15, 1910 Dec. 16, 1910	Hr. min. 5 44 1 6 05 1 5 10 1 2 30 1 7 00 2 20 1 4 10 4 25 5 5 55 4 20 4 05	Pounds. 11.5 21.6 21.7 210.4 21.6 10.0 210.4 10.9 10.6 11.1 10.2	Per cent. 12. 1 21. 7 16. 7 16. 4 13. 2 10. 6 13. 1 21. 8 10. 6 20. 3 13. 4	Per cent. 21. 0 55. 1 58. 0 36. 5 26. 0 18. 0 39. 5 61. 5 16. 5 57. 7 32. 3	Per cent. 15. 30 26. 34. 16. 32. 16. 48. 29. 31.
FU	LL-CELL CR	EOSOTE—I	MAPLE.			
57	Feb. 21, 1911 Feb. 28, 1911 Mar. 1, 1911 Mar. 7, 1911 Mar. 14, 1911do. Mar. 15, 1911do Mar. 16, 1911do.	3 35 1 2 55 2 50 1 1 37 1 47 1 30 3 48 2 26 2 58 2 30	10.7 214.6 14.9 29.9 10.3 9.8 12.7 10.2 14.9 . 12.5	26. 8 16. 2 19. 0 21. 6 19. 4 17. 2 21. 8 19. 3 11. 1 13. 6	46. 7 49. 5 47. 7 34. 4 37. 9 81. 6 50. 5 43. 0 28. 2 36. 0	60. 35. 35. 36. 32. 41. 36. 22. 29.
	RUEPING	-RED OA	K.			
8	Oct. 31, 1910 Nov. 2, 1910 Nov. 22, 1910 Nov. 29, 1910 Nov. 30, 1910 Dec. 6, 1910 Dec. 7, 1910 Dec. 9, 1910 Dec. 12, 1910	4 45 5 10 3 35 2 55 3 40 4 10 4 40 4 45 3 25	4. 95 4. 44 5. 15 4. 59 5. 89 4. 83 5. 53 5. 62 6. 03 6. 39	19. 7 10. 0 14. 0 24. 4 23. 3 27. 1 21. 1 23. 7 21. 4 14. 7	71. 8 17. 0 25. 2 45. 9 38. 5 60. 3 58. 2 78. 0 58. 4 45. 0	29.: 14. 28. 43. 41. 36. 66.: 79. 43. 24.
	RUEPIN	G-MAPLE	•	•		
62. 65. 66. 67. 68. 69. 70. 71.	Mar. 6, 1911 Mar. 8, 1911dodoMar. 9, 1911doMar. 10, 1911doMar. 11, 1911 Mar. 13, 1911do	3 7 20 3 26 4 25 3 35 2 50 3 25 4 55 2 54 3 33 2 00	6. 44 6. 40 3. 68 4. 57 4. 31 5. 08 4. 92 4. 92 4. 42 4. 04	21. 0 20. 0 22. 5 12. 3 12. 7 18. 9 20. 2 14. 2 16. 4 24. 6	32. 6 35. 5 36. 7 27. 8 28. 6 32. 5 38. 6 36. 2 35. 8 44. 0	50.: 46.: 48. 20.: 19. 35.: 34.(24.: 30.: 49.(
	BURNETT	-RED OA	ĸ.			
35. 36. 38. 39. 40. 41. 42. 43. 44.	Jan. 6, 1911 Jan. 7, 1911 Jan. 9, 1911 Jan. 10, 1911 Jan. 18, 1911 Jan. 23, 1911 Jan. 25, 1911do. Jan. 27, 1911 Jan. 30, 1911	4 30 3 15 3 45 4 00 5 00 4 30 7 30 5 00 5 30 4 00	13.5 416.2 416.4 415.7 417.0 416.8 417.3 419.3 419.3	14. 6 10. 5 15. 4 11. 2 13. 1 21. 2 16. 7 19. 9 10. 3 5. 1	26. 6 17. 9 40. 2 15. 3 31. 8 53. 0 70. 8 28. 0	26. 15. 30. 28. 40. 45. 26. 29. 11. 20.

¹ Last re-treatment. ² Total average absorption.

Digitized by Google

³ Not used in averages. Delay due to accidents during treatment.
4 8 per cent ZnCl₄ solution.

TABLE 13.—Summary of results of tie treatments for each cylinder charge—Continued. BURNETT-MAPLÉ.

	BURNET	T-MAPLE	•			
					ion from a absorption	
Charge number.	Date of treatment.	Total time of treatment.	Average absorp- tion per cubic foot.	A verage varia- tion.	Variation of tie of highest absorption.	Variation of tie of lowest absorption.
46	Jan. 31, 1911 Feb. 1, 1911 Feb. 2, 1911 Feb. 4, 1911 Feb. 6, 1911 Feb. 8, 1911 Feb. 9, 1911 Feb. 10, 1911 Feb. 11, 1911	Hr. min. 1 5 00 3 00 2 15 2 40 3 30 2 45 2 05 2 40 3 50 3 40	Pounds. 20.7 219.2 21.8 22.3 217.9 219.6 21.8 216.6 26.0	Per cent. 16.0 13.5 13.5 12.8 16.4 18.6 17.7 16.8 19.6 23.2	Per cent: 32.9 27.0 32.0 24.2 2 30.0 26.7 34.1 29.0 84.8	Per cent. 41. 6 22. 4 30. 8 30. 9 38. 5 33. 7 46. 3 31. 1 53. 2 30. 8
	CARD—	RED OAK.				
101	Apr. 7, 1911 Apr. 11, 1911 do. Apr. 12, 1911 do. Apr. 13, 1911 do. Apr. 14, 1911 Apr. 15, 19114 Apr. 17, 1911	5 20 5 35 5 50 4 25 6 10 4 35 5 03 6 00 4 18 6 13	* 15. 2 * 15. 2 * 14. 5 * 17. 6 * 14. 7 * 16. 0 * 12. 7 5 14. 1 * 18. 4	19. 6 11. 1 13. 4 11. 2 9. 5 15. 9 16. 8 10. 7 15. 1 13. 6	35. 5 15. 8 24. 8 35. 3 13. 6 27. 9 30. 6 19. 6 22. 7 24. 5	46. 7 17. 8 30. 3 31. 2 17. 7 32. 3 54. 6 19. 7 28. 3 28. 8
	CARD-	-MAPLE.				
112 113 114 115 116 117 117 118 119 120	Apr. 18, 1911 Apr. 19, 1911do. Apr. 20, 1911do. Apr. 21, 1911 Apr. 24, 1911 Apr. 25, 1911do. Apr. 26, 1911	5 20 4 45 4 55 3 50 4 40 5 50 4 45 5 05 3 52 5 00	* 13.5 * 16.7 * 15.1 * 13.7 * 15.1 * 16.4 * 17.9 * 17.7 * 16.3 * 17.6	32. 9 14. 6 17. 4 19. 1 20. 5 13. 1 21. 6 23. 2 26. 2 17. 2	54. 1 28. 1 25. 8 96. 4 45. 1 19. 5 45. 2 42. 4 45. 4	58. 1 30. 6 44. 7 27. 7 35. 1 23. 8 29. 6 26. 5 32. 8 42. 6
TWO-MOVEME	NT CREOSO	re-zinc ch	LORID-	-RED OA	K.	
81	Mar. 20, 1911 Mar. 21, 1911do. Mar. 22, 1911do. Mar. 23, 1911do. Mar. 24, 1911do. Mar. 27, 1911	67 00 3 50 3 39 4 22 3 22 4 15 3 35 4 15	7 15. 1 7 15. 7 7 13. 0 7 14. 4 7 14. 8 7 18. 5 7 12. 8 7 16. 1 7 17. 1 7 15. 5	15. 2 12. 6 16. 6 13. 9 14. 8 10. 3 9. 7 12. 7 7. 6 9. 1	50. 4 22. 3 30. 8 34. 7 35. 8 24. 3 23. 5 33. 0 16. 4 14. 2	35. 6 22. 3 26. 9 41. 0 26. 3 17. 8 25. 8 20. 5 28. 4
TWO-MOVEM	ENT CREOSO	TE-ZINC C	HLORID	-MAPLE	2.	
91	Mar. 27, 1911 Mar. 28, 1911do. Mar. 29, 1911 Mar. 31, 1911do. Apr. 1, 1511 Apr. 3, 1911do. Apr. 4, 1911	3 40 4 45 3 40 3 45 5 53 3 02 3 41 4 00 4 50	7 13. 4 7 16. 6 7 17. 4 7 16. 0 7 16. 3 7 13. 9 7 14. 9 7 17. 7 7 12. 5 7 16. 7	24. 8 30. 0 10. 2 20. 3 11. 0 21. 4 15. 1 9. 3 14. 8 14. 3	36. 6 58. 5 15. 5 39. 4 16. 0 41. 7 24. 8 16. 4 24. 9 18. 6	38. 0 54. 2 30. 5 45. 6 27. 6 46. 9 50. 5 17. 5 39. 2 27. 6
¹ Not used in averages.		4 Last	re-treatme	nt.		

Not used in averages.
 22 per cent ZnCl₂ solution.
 Emulsion of 80 parts of 3 per cent ZnCl₂ solution and 20 parts of creosote by volume at approximately 70° F.

⁴ Last re-treatment.
6 Total average absorption.
6 Not used in averages. Delay due to accidents during treatment.
7 3 per cent ZnCls solution+crecoots.

Table 13.—Summary of results of tie treatments for each cylinder charge—Continued.

GAS-HOUSE OIL—RED OAK.

					ion from a absorption	
Charge number.	Date of treatment.	Total time of treatment.	A verage absorp- tion per cubic foot.	Average variation.	Variation of tie of highest absorption.	Variation of tie of lowest absorption.
122	Apr. 27, 1911 do Apr. 28, 1911 May 2, 1911 May 3, 1911 do May 4, 1911	Hr. min. 3 15 6 34 4 10 3 40 4 36 5 00 4 10 5 05 4 00 4 45	Pounds. 5. 15 11. 08 11. 50 7. 40 7. 16 6. 65 5. 17 6. 40 5. 78 6. 75	Per cent. 30.5 15.6 10.8 45.4 21.2 18.6 34.2 22.8 37.2 35.4	Per cent. 86. 4 36. 7 19. 1 81. 5 52. 2 39. 8 81. 9 29. 0 73. 0 49. 5	Per cent. 36.7 37.5 19.1 71.6 43.8 30.5 61.1 70.8 67.8 64.1
	GAS-HOUSE	OIL—MA	LE.		· ·	
128. 127. 128. 129. 130. 131. 131. 138. 139. 140.	Apr. 29, 1911 May 1, 1911 do May 2, 1911 May 5, 1911 May 6, 1911 May 8, 1911	4 27 4 00 3 55 3 05 3 10 4 15 3 00 3 20 3 41 3 10	14. 8 8. 7 10. 1 11. 0 10. 2 13. 8 14. 8 14. 6 13. 7 14. 3	21. 2 50. 2 35. 1 26. 1 17. 7 13. 0 17. 4 22. 9 11. 7 17. 3	33. 1 85. 0 53. 5 52. 7 32. 4 29. 0 50. 7 50. 0 28. 5 53. 2	46. 1 84. 2 61. 6 48. 9 36. 4 23. 2 42. 6 33. 6 18. 2 26. 5

TABLE 14.—Amount of zinc chlorid in the ties of average absorption.

BURNETT TREATMENT-RED OAK.

			, dry salt oic foot.		Difference between
Tie No.	Cylinder charge No.	Calculated from amount of solution absorbed by tie.	Determined by analysis of section 2 feet from end of tie.	Difference between check analyses.	calculated absorption for tre and absorption determined in section.
204	35 38 39 40 41 42 43 44	Pounds. 0.44 49 .49 .51 .50 .53 .61 .59	Pounds. 0.43 34 .37 .55 .42 .41 .58 .60 .34	Pounds. per cu. ft. 0.010 .020 .020 .020 .010 .020 .010 .020 .010 .01	Per cent.1 2.3 30.6 24.5 -7.8 16.0 22.6 49.2 -1.7 35.8

¹ Based on calculated absorptions for the ties.

TABLE 14.—Amount of zinc chlorid in the ties of average absorption—Continued.

BURNETT TREATMENT—MAPLE.

BURNETT	IREAIR	LENT-MA	PLIE.		
		Absorption per cul	, dry salt pic foot.		Difference between
Tie No.	Cylinder charge No.	Calculated from amount of solution absorbed by tie.	Determined by analysis of section 2 feet from end of tie.	Difference between check analyses.	calculated absorption for tie and absorption determined in section.
305. 326. 339. 350. 360. 364. 372. 381. 392.	46 48 49 50 51 52 53 54 55	Pounds. 0.37 .47 .54 .48 .48 .58 .49 .40 .65	Pounds. 0.28 .40 .45 .29 .31 .41 .33 .34	Pounds. per cu. ft. 0.010 .010 .010 .010 .010 .010 .010 .	Per cent. 24, 3 14, 9 16, 8 34, 1 35, 4 29, 3 32, 6 15, 0 40, 0
CARD TR.	EATMEN	T-RED O.	A.K.	,	
1204. 1220. 1223. 1232. 1244. 1253. 1268. 1275.	101 102 103 104 105 106 107	0.37 .40 .37 .44 .40 .39 .41	0.35 .34 .32 .21 .34 .36 .40	0.010 .010 .010 .010 .010 .010 .010	5.4 15.6 12.3 52.6 14.6 7.7 1.2 2.4
CARD T	REATME	NT-MAPL	E.		<u> </u>
1117	113 114 115 116 117 118 119 120 121	0. 42 .36 .35 .38 .38 .40 .39 .36	0.29 .25 .15 .21 .31 .47 .27 .24	0.010 .004 .010 .010 .010 .010 .010 .010	31. 4 30. 8 56. 5 44. 8 19. 0 17. 5 30. 4 32. 4 6. 5
TWO-MOVEMENT CREOSOTE	-ZINC-CH	LORID TR	EATMENT	'_RED OA	K.
801	81 82 83 84 85 86 87 89 88	0000000000	0. 25 .31 .26 .23 .31 .27 .22 .37 .23 .21	0,003 .003 .004 .004 .007 .007 .003 .010	
TWO-MOVEMENT CREOSOT	E-ZINC-C	HLORID T	RBATMEN	T-MAPLE	 G.
1003 1016 1021 1034 1049 1055 1067 1072 1089	91 92 93 94 95 96 97 98 99	335353555	0.18 .31 .36 .31 .33 .45 .31 .26	0.010 .004 .007 .004 .003 .004 .007 .007	

¹ The calculated values are not given, as the absorptions indicated by the gauge readings did not agree with the absorptions indicated by weights for the individual cylinder charges.

Digitized by Google

Table 15.—Data on the average seasoning after treatment of each cylinder charge of ties.

FULL-CELL CREOSOTE—RED OAK.

		•							
			Time	Aver-		weight of es.	Aver- age loss	Aver- age ab-	Aver-
Charge No.	Date of treatment.	Date of reweighing.	sea- soned.	age mois- ture.	Directly after treat- ment.	Before laying in track.	in weight per cubic foot.	sorp- tion per cubic foot.	of weight after treat- ment.1
16 2	Nov. 17, 1910 Oct. 16, 1910 Nov. 26, 1910 Nov. 16, 1910 Nov. 18, 1910 Dec. 13, 1910 Dec. 14, 1910 Dec. 15, 1910 Dec. 16, 1910	June 20, 1911	Days. 215 214 204 214 212 189 188 188 188	Per ct. 49.4 42.6 41.5 43.7 41.0 46.2 48.2 39.3 45.5 49.7	Pounds. 179.4 181.0 184.5 173.5 203.2 196.3 200.6 163.0 167.6 169.6	Pounds. 173.1 177.0 179.5 168.1 195.8 189.2 193.3 157.7 160.3 166.6	Pounds. 2. 26 1. 49 1. 76 1. 97 2. 49 2. 33 2. 35 2. 15 2. 85 1. 13	Pounds. 3 11. 74 10. 70 3 11. 34 2 10. 52 2 11. 76 9. 94 3 10. 28 11. 50 10. 63 11. 08	Per ct. 19.2 13.9 15.5 18.7 21.2 23.4 22.8 18.7 26.8 10.2
		FULL-CI	ELL CF	ЕОВОТ	E-MAP	LE.			
57	Feb. 21, 1911 Feb. 28, 1911 Mar. 1, 1911 Mar. 7, 1911 Mar. 14, 1911do. Mar. 15, 1911do.	June 22, 1911do	121 114 113 107 100 100 99 99 98 98	37. 6 36. 2 31. 1 28. 9 32. 3 30. 2 30. 7 29. 7 34. 6 31. 1	196. 3 195. 4 183. 2 170. 6 167. 2 178. 2 191. 9 182. 5 206. 5 165. 2	190. 5 189. 6 178. 2 165. 7 163. 7 172. 9 188. 4 179. 4 199. 2 158. 2	1. 73 1. 83 1. 60 1. 54 1. 19 1. 65 1. 09 1. 00 2. 19 2. 51	10.69 2 15.15 14.76 3 10.03 10.14 10.25 13.47 10.77 14.60 12.77	16. 2 12. 1 10. 8 15. 3 11. 7 16. 1 9. 3 15. 0 19. 7
		RU	EPING	-RED	OAK.				
8	Oct. 31, 1910 Nov. 2, 1910 Nov. 22, 1910 Nov. 29, 1910 Nov. 30, 1910 Dec. 6, 1910 Dec. 7, 1910 Dec. 8, 1910 Dec. 9, 1910 Dec. 12, 1910	June 20, 1911	232 230 210 203 202 196 195 194 193 190	46. 6 45. 7 47. 2 49. 6 37. 4 39. 3 54. 3 37. 3 44. 6 50. 7	170. 4 131. 0 137. 2 174. 2 154. 0 124. 1 199. 9 145. 4 165. 4 148. 4	160. 9 126. 2 132. 1 165. 1 147. 6 117. 9 189. 6 138. 2 157. 5 140. 5	3. 48 2. 15 2. 22 3. 14 2. 37 2. 82 3. 14 3. 07 2. 84 3. 25	5. 24 4. 37 5. 14 4. 62 5. 88 4. 80 5. 97 5. 63 5. 79 6. 48	66. 4 49. 2 43. 2 68. 0 40. 3 58. 7 52. 6 54. 5 49. 1
		R	UEPIN	G-MAI	PLE.				
65	do Mar. 9.1911	June 22,1911 do	106 106 105 108 105 104 104 103 101	31. 5 29. 9 30. 0 29. 6 31. 8 30. 2 26. 2 36. 5 36. 4 28. 0	144. 7 149. 7 155. 1 151. 6 154. 8 157. 0 154. 2 157. 6 162. 5 141. 0	141. 7 147. 2 150. 8 146. 8 151. 6 152. 5 151. 6 154. 2 159. 3 138. 1	0. 95 .83 1. 37 1. 82 1. 05 1. 42 0. 80 1. 06 1. 01 1. 04	6. 40 3. 63 4. 58 6. 42 4. 30 5. 26 5. 02 4. 88 4. 43 4. 06	14.8 22.9 29.9 28.3 24.4 27.0 13.9 21.7 18.6 25.6
1 B	sased on the abs	orption.	* Re-tr	eatment.		Total ave	rage abso	rption.	

¹ Based on the absorption.

Re-treatment

^{*} Total average absorption.

Table 15.—Data on average seasoning after treatment of each cylinder charge of ties—Contd. BURNETT-RED OAK.

				Aver-	Average tic	weight of	Aver- age loss	Aver- age ab-	Aver- age loss
Charge No.	Date of treatment.	Date of reweighing.	Time sea- soned.	age mois- ture.	Directly after treat- ment.	Before laying in track.	in weight per cubic foot.	sorp- tion per cubic foot.	of weight after treat- ment.
35	Jan. 6, 1911 Jan. 7, 1911 Jan. 9, 1911 Jan. 10, 1911 Jan. 18, 1911 Jan. 23, 1911 Jan. 25, 1911 Jan. 27, 1911 Jan. 30, 1911	June 21, 1911do	Days. 166 165 163 162 154 149 147 147 145 142	Per ct. 43.0 45.5 46.7 44.7 44.9 44.1 42.8 41.8 37.7 43.6	Pounds. 172. 1 197. 6 211. 2 209. 1 189. 4 171. 4 166. 7 201. 2 211. 7 193. 0	Pounds. 147.8 167.7 179.6 185.5 161.5 142.5 143.2 169.8 178.7 163.9	Pounds. 9.57 10.50 10.47 7.62 10.32 11.55 10.02 11.41 11.20 10.60	Pounds. 1 14.04 1 16.51 1 16.45 1 15.72 1 16.96 1 16.85 1 17.43 1 17.60 1 19.01	Per ct. 68. 2 63. 6 63. 7 48. 5 60. 9 68. 6 57. 5 58. 3 58. 9 60. 5
		В	URNE'	AM—TI	PLE.				
46	Feb. 1, 1911 Feb. 2, 1911 Feb. 4, 1911 Feb. 6, 1911 Feb. 7, 1911 Feb. 8, 1911 Feb. 9, 1911 Feb. 10, 1911	June 21, 1911dododododododo	141 140 139 137 135 134 133 132 131 130	41. 9 34. 6 29. 4 35. 1 31. 9 33. 8 33. 5 39. 1 37. 2 39. 0	215. 3 196. 7 195. 6 226. 2 189. 5 199. 6 212. 1 208. 6 192. 0 225. 5	166. 9 154. 7 147. 1 163. 6 148. 6 150. 1 158. 3 164. 5 150. 7 167. 5	14.80 14.12 16.00 18.98 13.28 16.53 17.31 14.08 13.82 17.95	2 21. 16 2 19. 06 2 22. 05 2 21. 97 2 17. 36 2 19. 10 2 21. 63 2 19. 55 2 16. 90 2 23. 40	70. 0 74. 1 72. 6 86. 4 76. 5 86. 6 80. 0 72. 0 81. 8 76. 7
		(CARD—	RED O	AK.				
104	Apr. 11, 1911	June 26, 1911do	80 76 76 75 75 74 74 73 72 70	42. 8 42. 6 35. 5 38. 4 39. 8 40. 8 37. 1 36. 1 47. 8 38. 7	183. 4 186. 2 173. 8 209. 0 194. 1 198. 2 178. 3 183. 0 168. 6 190. 3	163. 2 157. 3 152. 4 177. 9 176. 2 179. 0 164. 1 165. 5 151. 8 162. 5	7. 43 10. 28 8. 20 10. 18 6. 02 6. 37 5. 08 6. 01 6. 82 9. 05	3 15.61 3 15.11 3 13.08 3 18.22 3 14.55 3 14.63 3 15.99 3 12.82 5 14.15 3 18.43	47. 6 68. 0 62. 7 55. 9 41. 4 43. 5 31. 8 46. 9 48. 2 49. 1
		(CARD-	MAPLE	•				
112 113 114 115 116 117 118 119 120	Apr. 18, 1911 Apr. 19, 1911do. Apr. 20, 1911do. Apr. 21, 1911 Apr. 24, 1911 Apr. 25, 1911do. Apr. 26, 1911	June 26, 1911dododododododo.	69 68 68 67 67 66 63 62 62 61	32. 5 27. 4 31. 3 34. 0 31. 9 32. 2 30. 2 31. 8 30. 7 30. 7	171. 1 178. 7 187. 9 194. 6 192. 1 195. 7 192. 8 213. 6 217. 1 194. 0	147. 1 158. 3 170. 2 178. 5 174. 3 169. 9 170. 7 184. 3 189. 6 160. 5	8. 67 6. 86 5. 86 5. 04 5. 84 8. 37 7. 43 8. 65 8. 10 11. 05	* 13. 49 3 16. 66 2 15. 47 8 12. 54 2 15. 50 3 16. 48 3 18. 05 3 17. 86 5 16. 51 5 18. 68	64. 3 41. 2 37. 9 40. 2 37. 7 50. 8 41. 2 48. 4 49. 1 59. 2

 ³ per cent ZnCl₂ solution.
 24 per cent ZnCl₂ solution.
 Emulsion of 80 parts of 3 per cent ZnCl₂ solution and 20 parts of creosote at approximately 70° F.
 Re-treatment.
 Total average absorption.

TABLE 15.—Data on average seasoning after treatment of each cylinder charge of ties—Contd-TWO-MOVEMENT CREOSOTE-ZINC CHLORID—RED OAK.

			Time	Aver-	Average tic	weight of es.	Aver- age loss in	Aver- age ab-	Aver- age los of
Charge No.	Date of treatment.	Date of reweighing.	sea- soned.	age mois- ture.	Directly after treat- ment.	Before laying in track.	weight per cubic foot.	sorp- tion per cubic foot.	word a h
			Days.	Per ct.	Pounds.	Pounds.	Pounds.	Pounds.	Per ct.
31	Mar. 20, 1911	June 23, 1911 do	95	34.8	185.0	167.0	6.40	1 15.78 1 15.55 1 12.87	40.
32	Mar. 21, 1911	do	94	40.1	175. 2	150. 4 162. 5	9.52	1 15.55	61.
33 34	do	do	94 93	41. 4 45. 7	180. 8 192. 7	162.5	8.18	1 12.87 1 14.41	50. 56.
85	do	do		40.8	179.6	157. 5	8 94	1 14.75	55.
ac .	Man 92 1011	1 40	0.0	34.4	194. 8	168.1	8.24 9.37	1 18.35	51.
37	do	do	92	48.6	196.0	175 1	7. 23	1 12. 73	56.
38	Mar. 24, 1911	do	91	48. 6 39. 0	204. 2 217. 8	184. 7 182. 4	7. 23 6. 42	1 12.73 1 17.00	56. 37.
39	do	do	91	46.5	217.8	182.4	11.17	1 16.02	69. 67.
90	Mar. 27,1911	do do do	88	41.9	204. 2	172.1	10.40	1 15. 47	67.
	TWO-	MOVEMENT	CREOS	OTE-ZI	NC CHLO	RID-MA	PLE.		
1	Mar. 27, 1911	June 24, 1911	89	29.6	168.5	148.8	6.96	1 14.83	46.
		do		30. 9	185.8	154. 9	10.42	1 17.56	59.
3	do	do	88	31.3	178.1	153. 2	8.78	1 17.44	50.
4	Mar. 29.1911	do	87	29.4	190.0	154.3	8 65	1 15.88	54.
5	Mar. 31, 1911	do	85	34.7	195. 2 199. 0 200. 2	166.3	9.40 7.90	1 16.32	57.
6	do	do	85	31.7	199.0	172.4	7.90	1 13, 66	57.
97	Apr. 1,1911	do	84	30.9	200.2	169. 7	9.19	1 14.85	61.
	ADF. 3.1911	do	82	36. 1	222.8	185. 1	10.98	1 17. 75	61.
	4.	الملما	- 00	90.5	170 6	140 0		1 10 21	ce
99 100	Apr. 4, 1911	do	82 81	32. 5 31. 3	172. 6 187. 6	148. 0 148. 5	8.34 12.85	1 12.51 1 16.71	66. 76.
9	Mar. 28,1911do Mar. 29,1911 Mar. 31,1911do Apr. 1,1911 Apr. 3,1911do Apr. 4,1911			32. 5 31. 3	172.6	148.5	8.34	1 12.51 1 16.71	66. 76.
		GAS-H	OUSE	32. 5 31. 3	172.6 187.6 ED OAK	148.5	8. 34 12. 85	5. 13	76. 48.
		GAS-H	OUSE	32. 5 31. 3 OIL—R	172.6 187.6 ED OAK	148.5	8. 34 12. 85 2. 51 2. 24	5. 13 11. 56	76. 48. 19.
		GAS-H	OUSE	32. 5 31. 3 OIL—R	172.6 187.6 ED OAK	148.5	8. 34 12. 85 2. 51 2. 24 1. 82	5. 13 11. 56 11. 46	48. 19. 15.
		GAS-H	OUSE	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2	172.6 187.6 ED OAK	148. 5 164. 1 181. 3 172. 3 167. 4	8. 34 12. 85 2. 51 2. 24 1. 82 1. 80	5. 13 11. 56 11. 46	48. 19. 15. 24.
		GAS-H	OUSE	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8	172. 6 187. 6 ED OAK 171. 3 187. 8 177. 3 172. 3 170. 3	148. 5 164. 1 181. 3 172. 3 167. 4	8. 34 12. 85 2. 51 2. 24 1. 82 1. 80 2. 50	5. 13 11. 56 11. 46 7. 42 7. 12	48. 19. 15. 24. 35.
		GAS-H	OUSE	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0	172. 6 187. 6 ED OAK 171. 3 187. 8 177. 3 172. 3 170. 3	164. 1 181. 3 172. 3 167. 4 163. 4 177. 2	2.51 2.24 1.82 1.80 2.63	5. 13 11. 56 11. 46 7. 42 7. 12 6. 66	48. 19. 15. 24. 35. 39.
		GAS-H	OUSE	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6	172. 6 187. 6 ED OAK 171. 3 187. 8 177. 3 170. 3 185. 0 157. 8	164. 1 181. 3 172. 3 167. 4 163. 4 177. 2 151. 1	2.51 2.24 1.82 1.80 2.50 2.61	5. 13 11. 56 11. 46 7. 42 7. 12 6. 66 5. 16	48. 19. 15. 24. 35. 39.
		GAS-H	OUSE	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6 50. 5 52. 3	172. 6 187. 6 ED OAK 171. 3 187. 8 177. 3 170. 3 185. 0 157. 8 170. 5	164. 1 181. 3 172. 3 167. 4 163. 4 177. 2 151. 1 163. 1	2.51 2.24 1.82 1.80 2.63	5. 13 11. 56 11. 46 7. 42 7. 12 6. 66 5. 16 6. 40	48. 19. 15. 24. 35. 39. 50. 41.
		GAS-H	OUSE	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6	172. 6 187. 6 ED OAK 171. 3 187. 8 177. 3 170. 3 185. 0 157. 8	164. 1 181. 3 172. 3 167. 4 163. 4 177. 2 151. 1	2.51 2.24 1.82 1.80 2.50 2.63 2.61 2.68	5. 13 11. 56 11. 46 7. 42 7. 12 6. 66 5. 16	48. 19. 15. 24. 35. 39. 50. 41.
		GAS-H June 23, 1911dododododododo	58 57 57 56 52 51 51 50 50 49	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6 50. 5 52. 3 47. 5	172. 6 187. 6 ED OAK 171. 3 187. 8 177. 3 170. 3 170. 3 185. 0 157. 8 170. 5 170. 5	148. 5 164. 1 181. 3 172. 3 167. 4 163. 4 177. 2 151. 1 163. 1 169. 8	2. 51 2. 24 1. 82 1. 80 2. 63 2. 61 2. 68 1. 91	5. 13 11. 56 11. 46 7. 12 6. 66 5. 16 6. 40 5. 73	48. 19. 15. 24. 35.
222 233 224 225 332 333 34 335 336 337	Apr. 26, 1911 Apr. 27, 1911do Apr. 28, 1911 May 2, 1911 May 3, 1911do May 4, 1911do May 5, 1911	GAS-H June 23, 1911do	58 57 57 56 52 51 51 50 50 49	55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6 50. 5 52. 3 47. 5	172.6 187.6 ED OAK 171.3 187.8 177.3 170.3 185.0 157.8 170.5 175.2 164.8 MAPLE.	164. 1 181. 3 172. 3 167. 4 103. 4 177. 2 151. 1 163. 1 169. 8 156. 2	2.51 2.24 1.82 1.80 2.63 2.61 2.63 1.91 3.31	5. 13 11.56 11.46 11.46 7. 42 7. 12 6. 66 5. 16 6. 40 5. 73 7. 07	76. 48. 19. 15. 24. 35. 39. 50. 41. 33. 46.
222 233 224 225 332 333 34 335 336 337	Apr. 26, 1911 Apr. 27, 1911do Apr. 28, 1911 May 2, 1911 May 3, 1911do May 4, 1911do May 5, 1911	GAS-H June 23, 1911do	58 57 57 56 52 51 51 50 50 49	55. 8 46. 0 44. 5 53. 2 40. 8 56. 0 50. 5 52. 3 47. 5	172.6 187.6 ED OAK 171.3 187.8 177.3 170.3 188.0 157.8 170.5 164.8 MAPLE.	148. 5 164. 1 181. 3 172. 3 167. 4 173. 2 151. 1 163. 1 169. 8 156. 2	2. 51 2. 24 1. 82 1. 80 2. 60 2. 63 2. 61 2. 68 1. 91 3. 31	5. 13 11. 56 11. 46 7. 42 7. 12 6. 66 5. 16 6. 40 5. 73 7. 07	48. 19. 15. 24. 35. 39. 50. 41. 33. 46.
222 233 224 225 332 333 34 335 336 337	Apr. 26, 1911 Apr. 27, 1911do Apr. 28, 1911 May 2, 1911 May 3, 1911do May 4, 1911do May 5, 1911	GAS-H June 23, 1911do	58 57 57 56 52 51 51 50 50 49	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 6 50. 5 52. 3 47. 5	172.6 187.6 ED OAK 171.3 187.8 177.3 170.3 185.0 185.0 164.8 MAPLE.	148. 5 164. 1 181. 3 172. 3 167. 4 163. 4 177. 2 151. 1 169. 8 156. 2	2.51 2.24 1.82 1.80 2.63 2.61 2.63 2.61 2.63 3.31	5. 13 11.56 7. 42 7. 12 6. 66 5. 16 6. 40 5. 73 7. 07	76. 48. 19. 15. 24. 35. 35. 50. 41. 33. 46.
222 233 224 225 332 333 34 335 336 337	Apr. 26, 1911 Apr. 27, 1911do Apr. 28, 1911 May 2, 1911 May 3, 1911do May 4, 1911do May 5, 1911	GAS-H June 23, 1911do	58 57 57 56 52 51 51 50 50 49	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 6 50. 5 52. 3 47. 5 OIL—	172. 6 187. 6 ED OAK 171. 3 187. 8 170. 3 185. 0 157. 8 170. 5 175. 2 164. 8 MAPLE.	148. 5 164. 1 181. 3 172. 3 167. 4 163. 4 177. 2 151. 1 169. 8 156. 2 201. 9 151. 5 156. 4 175. 5	2.51 2.24 1.80 2.50 2.63 2.61 2.68 1.91 3.31	5. 13 11. 56 11. 46 7. 42 7. 12 6. 66 5. 18 6. 40 5. 73 7. 07	48. 19. 15. 24. 35. 39. 50. 41. 33. 46.
222 233 224 225 332 333 34 335 336 337	Apr. 26, 1911 Apr. 27, 1911do Apr. 28, 1911 May 2, 1911 May 3, 1911do May 4, 1911do May 5, 1911	GAS-H June 23, 1911do	58 57 57 56 52 51 51 50 50 49	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6 50. 5 52. 3 47. 5	172.6 187.6 ED OAK 171.3 187.8 177.3 170.3 185.0 157.8 170.5 175.2 164.8 MAPLE. 204.7 153.4 159.7 179.7 188.0	148. 5 164. 1 181. 3 172. 3 167. 4 163. 4 177. 2 151. 1 163. 1 166. 2 201. 9 151. 5 156. 4 175. 5 185. 5	2.51 2.24 1.80 2.50 2.63 2.61 2.68 1.91 3.31	5.13 11.56 11.46 7.42 7.12 6.66 5.16 6.40 5.73 7.07	76. 48. 19. 15. 24. 35. 39. 500. 41. 33. 46.
222 233 224 225 332 333 34 335 336 337	Apr. 26, 1911 Apr. 27, 1911do Apr. 28, 1911 May 2, 1911 May 3, 1911do May 4, 1911do May 5, 1911	GAS-H June 23, 1911do	58 57 57 56 52 51 51 50 50 49	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6 50. 5 52. 3 47. 5	172. 6 187. 6 ED OAK 171. 3 187. 8 177. 3 185. 0 157. 8 170. 5 176. 2 164. 8 MAPLE. 204. 7 153. 4 159. 7 179. 7 188. 0	148. 5 164. 1 181. 3 172. 3 167. 4 177. 2 151. 1 163. 1 169. 8 156. 2 201. 9 151. 5 156. 4 175. 5 188. 5 178. 3	2.51 2.24 1.80 2.50 2.63 2.61 2.68 1.91 3.31	5.13 11.56 11.46 7.42 7.12 6.66 5.16 6.40 5.73 7.07	76. 48. 19. 15. 24. 35. 39. 50. 41. 33. 46. 5. 8. 11. 7. 7.
222 233 224 225 332 333 34 335 336 337	Apr. 26, 1911 Apr. 27, 1911do Apr. 28, 1911 May 2, 1911 May 3, 1911do May 4, 1911do May 5, 1911	GAS-H June 23, 1911do	58 57 57 56 52 51 51 50 50 49	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6 50. 5 52. 3 47. 5 OIL— 30. 5 33. 4 33. 3 36. 2 31. 3 30. 4	172. 6 187. 6 ED OAK 171. 3 187. 8 172. 3 170. 3 185. 0 157. 8 170. 5 175. 2 164. 8 MAPLE. 204. 7 159. 7 179. 7 189. 0 182. 4 210. 4	164. 1 181. 3 172. 3 167. 4 103. 4 177. 2 151. 1 163. 1 169. 8 156. 2	8. 34 12. 85 2. 51 2. 24 1. 82 2. 63 2. 61 2. 68 1. 91 3. 31 0. 86 . 72 1. 20 . 81 1. 76 1. 37	5.13 11.56 11.46 7.42 7.12 6.66 5.16 6.40 5.73 7.07	76. 48. 19. 15. 24. 35. 50. 41. 33. 46. 5. 8. 11. 7.
222 233 224 225 332 333 34 335 336 337	Apr. 26, 1911 Apr. 27, 1911do Apr. 28, 1911 May 2, 1911 May 3, 1911do May 4, 1911do May 5, 1911	GAS-H June 23, 1911dododododododo	58 57 57 56 52 51 51 50 50 49	32. 5 31. 3 OIL—R 55. 8 46. 0 44. 5 53. 2 46. 8 56. 0 53. 6 50. 5 52. 3 47. 5	172. 6 187. 6 ED OAK 171. 3 187. 8 177. 3 185. 0 157. 8 170. 5 176. 2 164. 8 MAPLE. 204. 7 153. 4 159. 7 179. 7 188. 0	148. 5 164. 1 181. 3 172. 3 167. 4 177. 2 151. 1 163. 1 169. 8 156. 2 201. 9 151. 5 156. 4 175. 5 188. 5 178. 3	2.51 2.24 1.80 2.50 2.63 2.61 2.68 1.91 3.31	5. 13 11. 56 11. 46 7. 42 7. 12 6. 66 5. 18 6. 40 5. 73 7. 07	76. 48. 19. 19. 19. 50. 41. 33. 46. 5. 8. 11. 7. 7.

^{1 3} per cent ZnCl₂ solution + creosote.

ADDITIONAL COPIES of this publication may be procured from the SUPERINTENDENT OF DOCUMENTS, GOVERNMENT Printing Office, Washington, D. C., at 20 cents per copy