Geometria Riemanniana. Curs 2023-2024

Llista 1. Varietats Diferenciables

- **1.** Sigui $S_{\lambda} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 z^2 = \lambda\}$ on $\lambda \in \mathbb{R}$. Decidiu per a quins valors de λ el conjunt S_{λ} és una subvarietat de \mathbb{R}^3 .
- 2. Sigui S el subconjunt de \mathbb{R}^4 definit per les equacions

$$x^2 - y^2 + u^2 - v^2 = 1,$$
 $xy + uv = 0.$

Demostreu que S és una subvarietat diferenciable de \mathbb{R}^4 i calculeu-ne la dimensió.

- **3.** Demostreu que $GL(n) = GL(n, \mathbb{R})$, el grup de les matrius $n \times n$ invertibles, és una subvarietat de \mathbb{R}^{n^2} . Quina és la seva dimensió?
- **4.** El grup $\mathrm{SL}(n) = \mathrm{SL}(n,\mathbb{R})$ de les matrius $n \times n$ de determinant 1 és el nucli del morfisme de grups

$$\det \colon \operatorname{GL}(n) \longrightarrow \mathbb{R}$$

$$A \longmapsto |A| = \det A$$

Comproveu que el morfisme det és una submersió en tots els punts de $\det^{-1}(1)$ i deduïu d'aquí que SL(n) és una subvarietat de \mathbb{R}^{n^2} de dimensió $n^2 - 1$.

Indicació: Comproveu que, fixat un punt $A \in \mathrm{SL}(n)$, la diferencial de det en A està donada per

$$D\det(A) \cdot B = \frac{d}{ds}\Big|_{s=0} \det(A + sB) = \frac{d}{ds}\Big|_{s=0} |A| \det(I + sBA^{-1}) = \operatorname{tr}(BA^{-1}).$$

5. Demostreu que el grup ortogonal $O(n) = \{A \in GL(n) \mid A \cdot A^t = I\}$ és una subvarietat de \mathbb{R}^{n^2} de dimensió $\frac{n(n-1)}{2}$.

Indicació: Sigui M_n l'espai de les matrius $n \times n$ i considereu l'aplicació

$$F \colon M_n \longrightarrow \operatorname{Sim}(n)$$

$$A \longmapsto A \cdot A^t$$

on $\operatorname{Sim}(n) = \{C \in M_n \mid C^t = C\}$ és l'espai de les matrius simètriques. Comproveu que $\operatorname{Sim}(n)$ és un espai vectorial de dimensió $\frac{n(n+1)}{2}$ i que la diferencial de F en un punt $A \in \operatorname{O}(n)$ està donada per

$$DF(A) \cdot B = BA^{-1} + (BA^{-1})^t.$$

- 6. Un grup de Lie és un grup G dotat d'una estructura de varietat diferenciable respecte la qual les operacions de grup (multiplicació i inversió) són aplicacions diferenciables. Demostreu que $GL(n, \mathbb{R})$, $SL(n, \mathbb{R})$, O(n), són grups de Lie.
- 7. Comproveu que $\mathcal{A} = \{(\mathbb{R}, x^3)\}$ és un atles diferenciable sobre \mathbb{R} . Demostreu que l'estructura de varietat diferenciable sobre \mathbb{R} que defineix és isomorfa a la canònica.
- 8. Demostreu que tota varietat diferenciable de dimensió n admet un atles $\{(U_{\alpha}, \varphi_{\alpha})\}$ tal que $\varphi_{\alpha}(U_{\alpha}) = \mathbb{R}^{n}$.

- 9. Doneu una demostració de la següent versió feble del teorema de Whitney: tota varietat diferenciable compacta M és difeomorfa a una subvarietat de \mathbb{R}^n per a un n prou gran.
- **10.** Sigui $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ l'esfera unitat de \mathbb{R}^{n+1} .
 - a) Considerem els oberts $U_1 = \mathbb{S}^n \setminus \{(0, ..., 0, 1)\}$ i $U_2 = \mathbb{S}^n \setminus \{(1, ..., 0, 0)\}$ i les projeccions estereogràfiques $\varphi_i \colon U_i \to \mathbb{R}^n$, on i = 1, 2, definides per

$$\varphi_1(x_1,...,x_{n+1}) = \frac{1}{1-x_{n+1}}(x_1,...,x_n), \quad \varphi_2(x_1,...,x_{n+1}) = \frac{1}{1-x_1}(x_2,...,x_{n+1}).$$

Comproveu que les cartes (U_1, φ_1) i (U_2, φ_2) defineixen un atles diferenciable de \mathbb{S}^n . Deduïu que \mathbb{S}^n és una varietat diferenciable de dimensió n amb l'estructura definida per aquest atles.

- b) Demostreu que aquesta estructura diferenciable coincideix amb l'estructura diferenciable de \mathbb{S}^n com subvarietat de \mathbb{R}^{n+1} .
- c) Sigui $\psi \colon (0,\pi) \times (0,2\pi) \to U \subset \mathbb{S}^2$ la parametrització d'un obert de \mathbb{S}^2 donada per

$$\psi(u, v) = (\cos v \sin u, \sin v \sin u, \cos u).$$

Demostreu que ψ és un homeomorfisme i que (U, ψ^{-1}) és una carta local de \mathbb{S}^2 compatible amb l'estructura definida a l'apartat a) (en el cas n=2).

d) Sigui $\phi: (-\pi/2, \pi/2) \times (-\pi/2, \pi/2) \times (0, 2\pi) \to \mathbb{S}^3$ definida per

$$\phi(u, v, w) = (\cos u \cos v \cos w, \cos u \cos v \sin w, \cos u \sin v, \sin u).$$

Demostreu que la imatge de ϕ és un obert V de \mathbb{S}^3 i que ϕ és un homeomorfisme sobre V. Comproveu que (V, ϕ^{-1}) és compatible amb l'atles de l'apartat a) (per n = 3).

11. Es considera a $\mathbb{C}^{n+1} - \{0\}$ la relació d'equivalència definida per

$$z_1 \sim z_2 \quad \Longleftrightarrow \quad z_1 = \lambda \cdot z_2 \quad \text{amb } \lambda \in \mathbb{C}^*.$$

Sigui $\mathbb{C}P^n$ l'espai quocient de $\mathbb{C}^{n+1} - \{0\}$ per aquesta relació d'equivalència. Demostreu que $\mathbb{C}P^n$ admet una estructura de varietat diferenciable exhibint un atles de l'estructura.

12. Si identifiquem $\mathbb{R}^3 \equiv \mathbb{C} \times \mathbb{R}$ aleshores $S^2 = \{(x,t) \in \mathbb{C} \times \mathbb{R} \mid |x|^2 + t^2 = 1\}$. Demostreu que l'aplicació $\tilde{F} \colon \mathbb{C}^2 - \{0\} \to S^2$ donada per

$$\tilde{F}(z,w) = \frac{(2z\bar{w}, |w|^2 - |z|^2)}{|z|^2 + |w|^2}$$

indueix un difeomorfisme $F: \mathbb{C}P^1 \to S^2$. Indicació: l'aplicació inversa de F està donada per $F^{-1}(x,t) = [x:t+1]$.

Doneu una expressió en coordenades de l'aplicació lineal tangent $T_pF: T_p\mathbb{C}P^1 \to T_{F(p)}S^2$ en un punt $p \in \mathbb{C}P^1$ qualsevol.

- 13. Sigui M una varietat diferenciable connexa. Demostreu que per a tot parell de punts $p, q \in M$ existeix una corba diferenciable $\gamma \colon [0,1] \to M$, tal que $\gamma(0) = p$ i $\gamma(1) = q$. Indicació: demostreu primer que existeix una tal corba que és diferenciable a trossos.
- **14.** Sigui $f: M \to N$ una aplicació diferenciable entre varietats. Suposem que $T_p f = 0$ per a tot $p \in M$. Demostreu que si M és connexa llavors f és constant.

15. Considerem les cartes locals (U, ψ_1^{-1}) i (U, ψ_2^{-1}) de l'esfera unitat S^2 de \mathbb{R}^3 on $U = \{(x, y, z) \in S^2 \mid z > 0\}$ i

$$\psi_1(u,v) = (u,v,\sqrt{1-u^2-v^2}), \qquad \psi_2(\phi,\theta) = (\cos\phi,\sin\phi\cos\theta,\sin\phi\sin\theta).$$

Determineu les matrius de canvi entre les bases (locals) de camps vectorials $\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\}$ i $\{\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \theta}\}$.

- **16.** Es consideren les cartes $\varphi, \psi \colon M \to \mathbb{R}^2$ de la varietat $M = \mathbb{R}^2$ donades per $\varphi(x_1, x_2) = (x_1, x_2)$ i $\psi^{-1}(y_1, y_2) = (y_1, y_1 + \sinh y_2)$. Determineu la relació entre les bases de camps vectorials $\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\}$ i $\{\frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}\}$ determinades per les cartes anteriors. (Observeu que $\frac{\partial}{\partial y_1} \neq \frac{\partial}{\partial x_1}$ malgrat que $y_1 = x_1$.)
- 17. Donades dues constants a,b>0, considerem l'aplicacio $F\colon \mathbb{T}^2\to \mathbb{R}^3$ definida per

$$F(e^{i\theta}, e^{i\phi}) = ((a + b\cos\theta)\cos\phi, (a + b\cos\theta)\sin\phi, b\sin\theta).$$

- a) Demostreu que si $a \leq b$ llavors F no és immersió.
- b) Demostreu que si a > b aleshores F és un embedding.
- 18. Demostreu que l'aplicació diferenciable $F \colon S^2 \to \mathbb{R}^4$ definida per

$$F(x, y, z) = (x^2 - y^2, xy, xz, yz)$$

indueix un embedding diferenciable de $\mathbb{R}P^2$ dins \mathbb{R}^4 .

19. Sigui $F \colon \mathbb{R}P^1 \times \mathbb{R}P^1 \to \mathbb{R}P^3$ definida per

$$F([x_0:x_1],[y_0:y_1]) = [x_0y_0:x_0y_1:x_1y_0:x_1y_1]$$

Demostreu que F és un embedding diferenciable.

- **20.** Sigui M el subconjunt de $\mathbb{R}^3 \times \mathbb{R}^3$ format pels parells de vectors (u, v) tals que la dimensió del subespai generat per $\{u, v\}$ és 1.
 - a) Demostreu que M és una subvarietat diferenciable de dimensió 4 de \mathbb{R}^6 i trobeu un atles de M.
 - b) Determineu l'espai tangent a M en un punt (u, v) tal que $u_1 \neq 0$.
 - c) Decidiu si es pot expressar M com el conjunt de les solucions de dues equacions definides en un obert de \mathbb{R}^6 .
 - d) Sigui $F: M \to \mathbb{R}P^2$ definida per $F(u, v) = \mathbb{R}u + \mathbb{R}v$. Demostreu que F és diferenciable i trobeu la matriu de $T_{(u,v)}F$ per a $u = v = e_1$, en bases convenients.