NN-EUCLID: deep-learning hyperelasticity without stress data

Prakash Thakolkaran^a, Akshay Joshi^a, Yiwen Zheng^a, Moritz Flaschel^b, Laura De Lorenzis^b, Siddhant Kumar^{a,*}

^aDepartment of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands

Corrections to the original article

The original article (Thakolkaran et al., 2022) published by the authors contain the following typographical mistake.

Equation 28 in the original article:

$$W(\mathbf{F}) = \frac{\mu}{\eta} (\lambda_1^{\eta} + \lambda_2^{\eta} + \lambda_3^{\eta} - 3)$$

should be corrected to:

$$OG_i(\tilde{I}_1, J) = \frac{\mu}{\eta} \left(\tilde{\lambda}_1^{\eta} + \tilde{\lambda}_2^{\eta} + \tilde{\lambda}_3^{\eta} - 3 \right) + 1.5(J - 1)^2$$
 with $\tilde{\lambda}_k = J^{-1/3} \lambda_k, \ k = 1, 2, 3,$

References

Thakolkaran, P., Joshi, A., Zheng, Y., Flaschel, M., De Lorenzis, L., Kumar, S., 2022. NN-EUCLID: Deep-learning hyperelasticity without stress data. Journal of the Mechanics and Physics of Solids 169, 105076. URL: http://dx.doi.org/10.1016/j.jmps.2022.105076, doi:10.1016/j.jmps.2022.105076.

^bDepartment of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland

^{*}Email: Sid.Kumar@tudelft.nl