General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-147758) REPORT OF 14-DAY BEDREST SIMULATION OF SKYLAB (METHODIST HOSPITAL) N76-25761 331 P HC \$10.00 CSCL 065 UNCLAS G3/52 42120

REPORT OF 14-DAY BEDREST SIMULATION OF SKYLAB

COMPILED BY:

PHILIP C. JOHNSON, M.D.

AND

CHERYL MITCHELL, M.A.

CONTRACTOR:
THE METHODIST HOSPITAL
HOUSTON, TEXAS

NASA CONTRACT No. NAS 9-14578

TECHNICAL MANAGER: HERBERT GREIDER

TABLE OF CONTENTS

	Pa	ge	s
Introduction	1	-	8
Bedrest Study Menu Plan	9	_	34
The Effects of 14-Days Horizontal Bedrest on Susceptibility to Coriolis Motion Sickness, Postural Stability and Neuro-Muscular Reflex Activity J. L. Homick, M. F. Reschke and M. J. Moore	35	· •	77
JSC-Baylor Bed Rest Study I Cardiovascular Evaluations G. W. Hoffler, S. A. Bergman, Jr., R. L. Johnson, A. E. Nicogossian and M. M. Jackson	78	- ::::,.	102
JSC 14-Day Bedrest Study Exercise Stress Testing 1 M. C. Buderer, C. A. Owen, J. A. Rummel, C. F. Sawin and P. Schachter	03	-	113
Skylab Simulation Fourteen-Day Bedrest Hematology and Immunology Study	.14	_	136
Cellular Immune Response of Six Healthy Subjects During Fourteen Days of Bedrest	.37	_	148
Red Cell Mass and Body Volume Changes After 14 Days of Bedrest	49	_	170
Biochemical Results	71	-	225
Baylor Bed Rest Study Phase I Menu and Nutritional Balance Studies	!26		295
Monitoring Inbed Physical Activity	96	-	313
Summary P. C. Johnson and C. Mitchell	13		329

INTRODUCTION

Medical aerospace research has offered scientists a unique challenge. They have had to ascertain whether spaceflight is safe for humans and what the effects of weightlessness are; they have had to predict whether physiological changes would be progressive and could pose safety questions to longer missions or whether the changes represented a new homeostatic equilibrium. Their efforts to address these problems have been severely circumscribed by the inherent nature of the research. The opportunities to study the effects of this unique environment have been few and infrequent, the population small. Because of conflicting demands on the astronaut's time and because of the practical and physiological limitations to the biological specimens which can be obtained, techniques have often been less refined than desired. nately, bedrest has been found to be a useful model for simulating many of the physiological effects of weightlessness. Bedrest projects have enabled researchers to increase their fund of knowledge without the constraints of population size which characterizes spaceflight. In ground-based studies various parameters can be isolated and analyzed.

Since Skylab gave medical investigators one of their first opportunities for extensive and carefully controlled medical research not only pre- and postflight, but inflight, it seemed natural to extend these investigations to ground-based studies.

J.,

As a followup to Skylab, a two-phase bedrest project was planned involving a total of twelve subjects, six bedrested for two weeks and six for four weeks. The first phase is now complete and the second is scheduled for next summer.

Project Design

The project was designed to approximate as closely as possible the medical testing and dietary control of Skylab. During the entire test period, three weeks pre, two weeks bedrest, and two weeks post, the subjects ate measured amounts of the Skylab diet and drank deionized water to recreate the metabolic balance studies of Skylab.

As in Skylab water intake and output were recorded daily but insensible water loss was not measured. All urine and excrement were collected for analysis of contained minerals and hormones, etc. The medical testing program pre- and postbedrest was similar to that of Skylab, including most of the same experiments: lower body negative pressure testing the orthostatic intolerance noted after both spaceflights and bedrest, bicycle ergometry testing the cardiovascular response to graded exercise, postural equilibrium, vestibular studies and electromyograms. Fluid and electrolyte shifts and balance were documented with intake and output records and radionuclide studies. In addition, the subjects were followed and tested

by a psychiatrist who watched for signs of mental stress in the test environment and changes in mental status. None was found during the seven week investigation. Individual methods and protocols are described in the reports of the individual principal investigators.

The subjects were bedrested in two-four bed wards at The Methodist Hospital. For the pre- and postcontrol period, they lived in a special housing facility. Subjects were allowed relative freedom to pursue normal activity during the control period, pre- and postbedrest. During bedrest they could have visitors, watch TV, read books and magazines. This freedom enhanced their motivation and kept them mentally and physically alert, a situation more nearly approximating the busy challenging environment of the astronauts than would an isolation study. In the house environment, they lived with a group of individuals who had the same restrictions on life style as they did. were therefore not tempted by food or beverages of which they could not partake. They were required to be in the housing facility by 11:00 PM every evening. The subjects complied with the rules and no infraction of the study rules were observed or reported to the project personnel.

Subject Selection

The six subjects of the first phase were normal, healthy

paid volunteers whose mean age was 30. Subjects were sought through two student placement offices connected with Houston universities, Rice University and the University of Houston, and through the Texas Employment Commission. All applicants were asked to complete a Methodist Hospital employee application form after which each potential subject had an interview of about an hour's duration with the project coordinator. The interview included an explanation of the project purpose, the nature of the medical experiments and questions concerning the subject's medical history, educational and work background and ambitions. The diet to be used during the program was shown to the applicants, and any food aversions or allergies were noted. The primary criteria used to determine which applicants would be sent for physicals were:

- 1. Age. We wanted a group with a mean age of at least 30. Subjects of this age group are more difficult to find than a younger population. Many adults whom we would consider dependable and conscientious have family, work or personal commitments which prevented their being subjects. Fewer in this age group are free of physical defects.
- 2. Size. Subjects under six feet were sought because that is the height limit for the astronaut corps. The weights of the subjects had to fall within ±10% of the ideal range

published by the Metropolitan Life Insurance Company (Statistical Bulletin 40:1, 1959).

- 3. Food preferences. Because the diet was a very important part of the metabolic studies, it was necessary to seek subjects who could and would eat everything given them. Subjects with known food allergies and/or a known aversion to a major menu item were ruled out.
- 4. Attitude. Because the subjects were not to be isolated, but were to be allowed to attend classes and visit family and friends, mature, conscientious, highly motivated individuals were sought who could be trusted to rigidly adhere to the diet, to collect all excrement and not to smoke or take drugs during the study. Subject motivation was additionally important because in several of the medical experiments attitude and motivation can play a large role in the subject's response, particularly his desire to regain a normal physical state postbedrest. Individuals were naturally sought who would wholeheartedly complete any task they had begun.
- 5. Physical Fitness. All subjects were asked to run a mile and a half on a track at a nearby university. The time taken was measured. A subject was considered to be in adequate physical condition if his time fell in the good to excellent range according to the tables published by Cooper*.

Only eight of the 30 applicants filled the above criteria and were considered as potential candidates. A physician examined each subject and took a medical history. The applicants were examined by a psychiatrist and they filled out a MMPI. No psychiatric aberration was found in the test group. Tuberculin tests were performed. The medical screening tests included a stress EKG using a treadmill, a SMA-12, CBC and urinalysis. Each subject was asked to sign an informed consent form which had been approved by the College's Human Use Committee.

Results of Physicals

The six male subjects selected were described as follows by the medical examination team.

Subject 1 is a 32-year old lawyer. He gave a history of having a ruptured tympanic membrane at age 15, which has healed. He is taking no medication and he denies drug allergy. He does no regular physical activity and is a light smoker, averaging a pack every five days. (He and Subject 3 did not smoke during the study. The remainder of the subjects were non-smokers.)

On physical examination his height is 180 cm, weight 68.6 kg, blood pressure 130/90 and pulse 80. The general physical examination is unremarkable.

Subject 2 is a 27-year old who has just finished his degree in history and political science and works sometimes as an automechanic. He wears corrective lenses for astygmatism. He takes no medication and denies drug allergy. At the age of three months he had surgical correction of a pyloric stenosis and

4 :

at the age of five he had a tonsillectomy. He was wounded in Viet Nam with a grenade fragment injuring his left leg which has left no residual deformity.

He states that he swims and plays handball and tennis.

On physical examination, his height is 182 cm, weight 70.4 kg, blood pressure 140/75 and pulse 88. The general physical examination is unremarkable.

Subject 3 is a 37-year old university professor. He admits to inner ear involvement associated with respiratory infections. He takes no medication. There is a possible allergic reaction to sulfa. He had a tonsillectomy at age 7. He had an automobile accident 6 months ago which caused a "herniated cervical disc." There was some associated paresthesias and muscle atrophy, but he states that this has subsequently cleared.

His time on the mile was excellent and he states that he jogs or plays handball several times a week. He smoked approximately $1\frac{1}{2}$ packs a day until the beginning of the study.

On physical examination, his height is 175 cm, weight 68.6 kg, blood pressure 120/80 and pulse 96. The physical examination is unremarkable. No neurological abnormality is found.

Subject 4 is a 25-year old law student. He had a cartilage removed from his right knee about seven years ago, but has apparently been able to play football and participate in wrestling, etc. since that time. He had a tonsillectomy done twice in the past. His major physical activity is tennis.

On physical examination, height 170 cm, weight 65.3 kg, blood pressure 140/90 and pulse 100. There is some anterior-posterior instability of the right knee joint.

Subject 5 is a 32-year old railroad car mechanic. He admits to seasonal allergies with sneezing in October and November. He denies taking medication and has no drug allergy. He had a tonsillectomy.

In December of 1963 he had a cartilage removed from his left knee. He was subsequently accepted into the Marine Corps and upon jumping over a seven-foot wall, he reinjured the knee.

This subject participates in no sports. He previously lifted weights and his major physical activity is related to his job and carpentry work, which he does as a hobby.

His height is 169 cm, weight 81.3 kg, blood pressure 135/90, pulse 78. There is probable weakness of the right inguinal ring. The left knee reveals a healed surgical incision. The knee join is stable.

Subject 6 is a 30-year old university student who loads mail for the postal service 3-4 hours a day. His history is negative. He is taking no medication and denies allergy. He had a tonsillectomy at age 14. He bicycles some and his job requires strenuous exertion.

On physical examination his height is 175 cm, weight 63.6 kg, blood pressure 130/70 and pulse 76. The general examination is unremarkable.

BEDREST STUDY MENU PLAN

A baseline 6-day cycle of menus to be evaluated by all subjects was planned for the bedrest study utilizing the nutritional constraints specified for Skylab. These general Skylab constraints are listed in Table 1 along with the nutritional levels of the baseline bedrest study menu cycle. Five (5) days prior to the beginning of the study subjects consumed the baseline menus and evaluated each food item. A sample food evaluation record which was used by each subject to score the baseline menu is depicted in Table 2. During the ambulatory control phase of the study, the baseline menu was modified for each subject to accommodate personal preferences, eating habits, and daily energy requirements. One of the subjects was found to be allergic to shellfish and became nauseous upon eating shrimp cocktail and/or lobster newburg. Daily energy requirements were determined for each subject using the method of adjusting caloric allowances for adults recommended by the Food and Nutrition Board of the National Research Council (Recommended Dietary Allowances, 7th Revised Edition, 1968, p. 5). This method is based upon age, body weight, and height, and recommends greater calorie allowances for increasing height and weight of individuals, but within given height-weight categories. Further adjustments for declining energy requirements for increasing age are also included.

Individual menus conformed to the general Skylab nutritional requirements.

The Skylab nutritional requirements, as shown in Table 1, indicate the overall range of specific nutrients. After menu selection, this overall range is reduced for the daily variation in a given menu cycle. For example, Table 1

illustrates that the protein level for the Skylab experiments should be controlled at $90-125 \stackrel{+}{=} 10$ g. The individual menu cycles, as planned, ranged from $93 \stackrel{+}{=} 6$ to $116 \stackrel{+}{=} 8$ g protein. Skylab requirements and levels in individual menu cycles for other controlled nutrients are also listed in Table 1. Nutrient levels for individual bedrest menus are listed for each subject in Tables 3-8.

During the bedrest phase of the study, individual menus were again revised for some subjects due to changes in food preferences; however, nutritional levels of the revised menus were maintained within the individual levels established during the pre-bedrest phase of the study. Six-day menu cycles for each subject are shown in Tables 9-14.

Food utilized for the bedrest study was that manufactured for Skylab and had been analyzed for nutrient elements of interest in the Mineral Balance Experiment, M071. The food items used are listed in Table 15. Lot B food, which was the flight lot for the Skylab Food System, was used primarily; however, a number of items from Lot A, the development and test lot, were also incorporated into the menus due to the lack of available supplies of Lot B foods. Types of food included rehydratables, thermostabilized, natural form and frozen. Food was assembled into meals and transported to the site of food preparation for the study. When menus were revised for an individual, the food necessary to support the changes was transported to the site of the study and substitutions were made in the meal packs. Food was prepared and served at the site of the study according to menus and instructions supplied by NASA. A sample of the daily tally sheet which provided the menu, preparation instructions and space for recording any additional food consumed

or residue not consumed is included in Table 16. Data was collected by Baylor personnel and transmitted to NASA approximately weekly. If special problems were encountered, information was relayed by telephone. Dye markers (Carmine Red and FDC Blue #1) were administered at approximately 6-day intervals as shown in Table 17 to mark the repetition of each menu cycle. The intervals were determined by selecting the first day of the study, the first day of bedrest, and the first day of post-bedrest as marker days from which to calculate the subsequent 6-day periods. Each subject received a multi-vitamin tablet (Upjohn-Sigtabs) daily to simulate the dietary intake of SL-3 and SL-4 and to compensate for anticipated vitamin deterioration in foods.

TABLE 1. PLANNED NUTRITIONAL LEVELS OF BEDREST MENUS

	Skylab	Baseline Bedrest			SUBJE	CTS		
Nutrient	Pequirements	Menus	1	2	3	6	4	5
Calories	2250-4250	2800	2900	2800	3100	2800	2800	2800
Protein g	90-125 [±] 10	101-10.5	108+6	98 [‡] 7	116±8	93 - 6	101-5	103-8
Calcium mg	750-850 ⁺ 16	774 ⁺ 9	796 ⁺ 10	772 * 7	822-10	805 [±] 7	770 * 7	770-5
Phosphorus mg	1500-1700-120	1534 [±] 96	1661-103	1542-107	1722 [±] 122	1590 - 112	1560-100	1575+50
Magnesium mg	300-400 [±] 100	292 - 57	354 - 37	285 [±] 50	290 - 40	327 - 65	290 * 53	300 [±] 40
Potassium mg	>2740	3540 [±] 400	3976 ⁺ 311	3554 ⁺ 414	4284 ⁺ 388	3200 - 330	3530 [±] 545	3230 ⁺ 440
Sodium mg	3000-6000-500	6000 - 500	6100-500	4760 - 500	6150-500	5500 - 500	6000-500	6100-500

OF POOR OUR LIFE

TABLE 2

NASA-JOHNSON SPACE CENTER FOOD EVALUATION RECORD

Bed Rest Study Food Compatibility Test

menu <u>1</u>	en e	MEAL Breakfast
Name	Date _	
Food Rating:		
below. Please rate 2. If there is a reason	d out your feelings regard each item according to the why you particularly like the third column, along wi	following code. For dislike a food,
RATING CODE:		
9 - Like extremely 8 - Like very much 7 - Like moderately	 6 - Like slightly 5 - Neither like nor dislike 4 - Dislike slightly 	3 - Dislike roderately 2 - Dislike very much 1 - Dislike extremely
ITEM Pineapple	RATING	COMMENTS
Scrambled Eggs		The state of the s
Bacon		erannin magaminingan magaminingan kanala sayar (1 - 10) ay sa sa sa sayar sa sayar sa
Rice Krispies Cocoa		
5. Please comment on the	is meal: of food too small?	too large? adequate?
6. Would you like to sw items to which meal?	itch any food items to ano It must be a meal on thi too much or not enough to	ther meal? If so, which s same day.

If you have had too much to cat, please indicate the item or items you would LIKE to delete from your menu.

TABLE 3. LEVELS OF SKYLAB-CONTROLLED NUTRIENTS IN BEDREST STUDY - PHASE I MENUS

Subject 1

Menu Day	Calories	Protein g	Ca mg	Phos mg	Mg mg	K mg	Na mg
1	2915	111.8	789	1764	355	3959	5600
2	2872	114.4	801	1724	391	3830	6357
3	2926	114.0	787	1704	367	4287	6600
4	2881	107.1	800	1559	320	3904	6609
5	2900	101.9	787	1625	317	3670	5600
6	2895	108.5	806	1585	362	3666	5600
lange	2872-2926	101.9-114.0	787-806	1559-1764	317-391	3666-4287	5600-6600
lenu olerance		108.0-6.1	796 ⁺ 10	1661 ⁺ 103	354 ⁺ 37	3976 [±] 311	6100 [±] 500
kylab olerance		110.0-10	796 [±] 16	1660-120	350 [±] 100	>2740	6000 - 500
kylab Range		100-120	780-812	1540-1780	250-450	>2740	5500-6600

1

TABLE 4. LEVELS OF SKYLAB-CONTROLLED NUTRIENTS IN BEDREST STUDY - PHASE I MENUS

Subject 2

Menu							
Day	Calories	Protein g	Ca mg	Phos mg	Mg mg	K mg	Na mg
1	2860	98.4	767	1577	277	3612	4753
2	2860	98.0	774	1510	334	3171	4260
3	2834	96.6	778	1648	302	3967	5260
4	2790	94.4	777	1435	286	3018	4867
5	2786	90.3	765	1438	235	3140	4260
6	2763	104.8	759	1579	287	3596	4250
Range	2763-2860	90.3-104.8	759-778	1435-1648	235-334	3140-3967	4260-5260
Menu Tolerance		97.6 [±] 7.3	772 [±] 7	1542+107	285-50	3554 ⁺ 414	4760 [±] 500
Skylab Tolerance		98-10	772 ⁺ 16	1582 [±] 120	300+100	>2740	4760 ⁺ 500
Skylab Range		88-108	760-792	1422-1662	200-400	>2740	4260-5260

J.

TABLE 5. LEVELS OF SKYLAB-CONTROLLED NUTRIENTS IN BEDREST STUDY-PHASE I MENUS

Subject 6

Menu Day	Calories	Protein g	Ca mg	Phos mg	Mg mg	K mg	Na mg
1	2798	92.6	798	1546	262	2873	5000
2	2774	91.3	812	1476	392	3528	5000
3	2808	90.0	810	1700	361	3537	5931
4	2825	87.2	806	1544	327	3167	5000
5	2830	98.4	805	1678	277	3120	5000
6	2753	94.3	802	1573	280	3147	5000
Range	2753-2830	87.2-98.4	798-812	1476-1700	262-392	2873-3537	5000-6000
Menu Tolerance		92.8 - 5.6	805-7	1590-112	327 ⁺ 65	3205+332	5500 [‡] 50 0
Skylab Tolerance		93±10	805-16	1590 [±] 120	300 - 100	>2740	5500 - 500
Skylab Range		83-103	789-821	1470-1706	200-400	>2740	5000-6000

り り

TABLE 6. LEVELS OF SKYLAB-CONTROLLED NUTRIENTS IN BEDREST STUDY-PHASE I MENUS

Subject 4

Menu Day	Calories	Protein g	Ca mg	Phos mg	Mg mg	K mg	Na mg	
1	2925	100.4	766	1591	281	3245	5500	·
2	2853	102.7	767	1625	339	3325	5500	
3	2715	105.5	777	1658	314	4076	5500	
4	2900	105.2	773	1463	289	3630	6505	
5	2859	97.1	771	1590	323	3824	5500	
6	2775	105.0	763	1579	237	2989	5500	
Range	2715-2925	97.1-105.5	763-777	1463-1658	237-339	2989-4076	5500-6505	
Menu Tolerance		101.3-4.2	770 ⁺ 7	1561 [±] 98	289 ⁺ 52	3533 ⁺ 544	6000 [±] 500	
Skylab Tolerance		101-10	770 [±] 16	1561-120	300 ⁺ 100	>2740	6000-500	
Skylab Range		91-101	754-786	1441-1681	200-400	>2740	5500-6500	

J.

_

,,(

Subject 5

Menu Day	Calories	Protein g	Ca mg	Phos mg	Mg mg	K mg	Na mg
	2835	95.9	772	1558	338	3531	5600
2	2840	110.4	773	1611	326	3223	6378
3	2800	108.3	774	1621	300	3543	5600
4	2834	108.5	774	1602	281	3384	6025
5	2855	101.8	772	1579	310	3671	5600
6	2800	110.2	765	1525	260	2789	5600
Range	2800-2855	95.9-110.4	765-774	1525-1621	260-338	2789-3671	5600-6378
denu Tolerance		103.2-7.3	770 [±] 5	1573-48	299-39	3230 ⁺ 441	5990 ± 39 0
Skylab Folerance		103 ⁺ 10	770 ⁺ 16	1573-120	300 ⁺ 100	>2740	6000 - 500
Skylab Range		93-113	754-786	1453-1693	200-400	>2740	5500-650 0

TABLE 8. LEVELS OF SKYLAB-CONTROLLED NUTRIENTS IN BEDREST STUDY-PHASE I MENUS

Subject 3

Menu Day	Calories	Protein g	Ca mg	Phos mg	Mg mg	K mg	Na mg
1	3226	123.6	825	1843	332	4297	5640
2	3160	114.3	825	1784	413	4014	6295
3	3066	119.4	832	1774	374	4671	6031
4	3143	108.5	819	1600	358	4388	6639
5	3125	116.8	819	1732	346	4047	5640
6	3116	123.9	812	1773	396	3896	5640
ange	3066-3226	108.5-123.9	812-832	1600-1843	332-413	3896-4671	5640-6640
enu olerance		116.2 [±] 7.7	822-10	1722-122	291 [±] 41	4284 [±] 388	6140-500
kylab olerance		116±10	822 [±] 16	1722-120	300 ⁺ 100	>2740	6000 - 500
kylab ange		106-126	806-838	1602-1842	200-400	>2740	5500-6500

75

TABLE 9. BEDREST STUDY - Subject 1

<u>Meal</u>	Menu 1	Menu 2	Menu 3
A	Bacon Squares Scrambled Eggs Rice Krispies Cocoa	Diced Pears Coffee Cake Chocolate Instant Breakfast Coffee	Canadian Bacon and Applesauce Scrambled Eggs Sugar Coated Cornflakes Coffee
B	Turkey Rice Soup Tuna Salad Sandwich Spread Bread Sliced Strawberries Vanilla Ice Cream Orange Drink	Pork Loin with Dressing and Gravy Buttered Asparagus Applesauce Tea with Lemon and Sugar	Chili Buttered Asparagus Soda Crackers Butter Pineapple Chunks Tea with Lemon and Sugar
C	Roast Beef Mashed Sweet Potatoes Buttered Asparagus Peach Ambrosia Coffee	Cubed Turkey with Gravy Mashed Potatoes Soda Crackers Butter Pineapple Chunks Coffee	Pea Soup Beef Hash Stewed Tomatoes Sliced Strawberries Coffee
Snacks	Peanuts Diced Peaches Coffee	Diced Peaches Dried Beef Buttered Roll Peach Ambrosia Strawberry Drink	Dry Roasted Peanuts Tuna Salad Spread Bread Orange Drink Grapefruit Juice

TABLE 9. BEDREST STUDY - Subject 1 (Continued)

Mea1	Menu 4	Menu 5	Menu 6
A	Diced Peaches Sausage Rice Krispies Coffee	Scrambled Eggs Sugar Coated Cornflakes Coffee Cake Grapefruit Drink Coffee	Diced Peaches Sausage Scrambled Eggs Catsup Rice Krispies Coffee
B	Hot Dogs with Tomato Sauce Pork and Potatoes Green Beans with Mushroom Sauce Soda Crackers Butter Orange Drink	Cream of Tomato Soup Spaghetti and Meat Sauce Soda Crackers Diced Pears Tea with Lemon and Sugar	Pea Soup Salmon Salad Soda Crackers Pineapple Chunks Tea with Lemon and Sugar
C	Chicken Chunks with Gravy Mashed Potatoes Stewed Tomatoes Diced Pears Grapefruit Juice	Roast Beef Macaroni and Cheese Asparagus Diced Peaches Cocoa	Lobster Newburg Stewed Tomatoes Peach Ambrosia Tea with Lemon and Sugar
Snacks	Dry Roasted Peanuts Cheese Crackers Coffee	Peanut Butter Bread Coffee	Peanut Butter Bread Diced Pears Coffee

TABLE 10. BEDREST STUDY - Subject 6

<u>Meal</u>	Menu 1	Menu 2	Menu 3
A	Canadian Bacon and Applesauce Scrambled Eggs Rice Krispies Cocoa	Diced Pears Coffee Cake Chocolate Instant Breakfast Apple Drink	Pineapple Chunks Scrambled Eggs Sugar Coated Cornflake Cocoa
B	Turkey Rice Soup Tuna Salad Sandwich Spread White Bread Sliced Strawberries Vanilla Ice Cream Strawberry Drink	Pork Loin with Dressing and Gravy Green Beans with Mushroom Sauce Applesauce Grape Drink	Turkey Rice Soup Peanut Butter White Bread Lemon Pudding Strawberry Drink
C	Roast Beef Macaroni and Cheese Asparagus Peach Ambrosia Grape Drink	Chicken Chunks with Gravy Mashed Potatoes Cream Style Corn Diced Peaches Cocoa	Pea Soup Chicken and Rice Stewed Tomatoes Sliced Strawberries Grapefruit Juice
nacks	Pineapple Chunks Apple Drink Cherry Drink	Dry Roasted Peanuts	Dry Roasted Peanuts Strawberry Drink

TABLE 10. BEDREST STUDY - Subject 6 (Cont'd)

<u>Mea1</u>	Menu 4	Menu 5	Menu 6
A	Applesauce Rice Krispies Coffee Cake Chocolate Instant Breakfast Apple Drink	Scrambled Eggs Cornflakes Coffee Cake Grapefruit Drink Cocoa	Diced Peaches Scrambled Eggs Rice Krispies Cocoa
B	Pork and Potatoes Buttered Roll Diced Peaches Grape Drink	Spaghetti with Meat Sauce Creamed Peas Diced Pears Grape Drink	Pea Soup Salmon Salad White Bread Pineapple Chunks Cherry Drink
c C	Cubed Turkey and Gravy Mashed Potatoes Cream Style Corn Soda Crackers Diced Pears Cherry Drink	Roast Beef Macaroni and Cheese Asparagus Lemon Pudding Strawberry Drink	Lobster Newburg Pork and Potatoes Asparagus Peach Ambrosia Grape Drink
Snacks	Grape Drink Apple Drink	Peanut Butter White Bread	Lemon Pudding

TABLE 11. BEDREST STUDY - Subject 4

Meal	Menu 1	Menu 2	Menu 3
A	Diced Pears Bacon Bits Scrambled Eggs Rice Krispies Cocoa	Diced Pears Coffee Cake Chocolate Instant Breakfast Strawberry Drink	Canadian Bacon and Applesauce Scrambled Eggs Cornflakes Grapefruit Drink
В	Turkey Rice Soup Peanut Butter Bread Sliced Strawberries Vanilla Ice Cream Strawberry Drink	Pork Loin with Dressing and Gravy Asparagus Applesauce Lemon Pudding Grape Drink	Chili Asparagus Biscuit Lemon Pudding Apple Drink
C	Roast Beef German Potato Salad Asparagus Diced Peaches Strawberry Drink	Cubed Turkey with Gravy Mashed Potatoes Cream Style Corn Buttered Roll Peach Ambrosia Cherry Drink	Shrimp Cocktail Beef Hash Stewed Tomatoes Sliced Strawberries
acks	Lemon Pudding		Dry Roasted Peanuts Strawberry Drink Dinner Mints

TABLE 11. BEDREST STUDY - Subject 4 (Cont'd)

Meal	Menu 4	Menu 5	Menu 6
A	Applesauce Sausage Rice Krispies Apple Drink	Diced Peaches Scrambled Eggs Cornflakes Coffee Cake Grapefruit Drink	Diced Peaches Sausage Scrambled Eggs Rice Krispies Strawberry Drink
B	Hot Dogs with Tomato Sauce Pork and Potatoes Green Beans with Mushroom Sauce Strawberry Drink	Spaghetti with Meat Sauce Stewed Tomatoes Diced Pears Grape Drink	Pea Soup Salmon Salad Soda Crackers Diced Pears Cherry Drink
	Chicken and Gravy Mashed Potatoes Stewed Tomatoes Diced Pears Grapefruit Juice	Roast Beef Macaroni and Cheese Asparagus Peach Ambrosia Cocoa	Lobster Newburg Pork and Potatoes Asparagus Peach Ambrosia Grape Drink
Snacks	Cheese Crackers Dry Roasted Peanuts	Dry Roasted Peanuts Applesauce	Lemon Pudding

TABLE 12. BEDREST STUDY - Subject 5

Meal	Menu 1	Menu 2	Menu 3
A	Pineapple Chunks Scrambled Eggs Rice Krispies Cocoa	Diced Pears Coffee Cake Chocolate Instant Breakfast	Canadian Bacon and Applesauce Scrambled Eggs Rice Krispies Grapefruit Drink
B	Turkey Rice Soup Tuna Salad Sandwich Spread Bread Sliced Strawberries Vanilla Ice Cream Strawberry Drink	Pork Loin with Dressing and Gravy Applesauce Asparagus Lemon Pudding Grape Drink	Chili Asparagus Bread Lemon Pudding Apple Drink
	Roast Beef Sweet Potatoes Asparagus Peach Ambrosia Apple Drink	Cubed Turkey with Gravy Mashed Potatoes Pineapple Chunks Strawberry Drink	Shrimp Cocktail Beef Hash Green Beans with Mushroom Sauce Sliced Strawberries Strawberry Drink
Snacks	Dry Rousted Peanuts	Dried Beef Buttered Roll Lemon Drops	Dry Roasted Peanuts Dinner Mints

25

TABLE 12. BEDREST STUDY - Subject 5 (Cont'd)

<u>Meal</u>	Menu 4	Menu 5	Menu 6
A	Sausage Rice Krispies Strawberry Drink	Scrambled Eggs Sugar Coated Cornflakes Coffee Cake Grapefruit Drink	Sausage Scrambled Eggs Rice Krispies Apple Drink
B	Hot Dogs with Tomato Sauce Pork and Potatoes Green Beans with Mushroom Sauce Biscuit Strawberry Drink	Tomato Soup Spaghetti with Meat Sauce Bread Diced Pears Strawberry Drink	Pea Soup Salmon Salad Bread Pineapple Chunks Cherry Drink
c	Chicken and Rice Mashed Potatoes Asparagus Diced Pears Grapefruit Juice	Roast Beef German Potato Salad Asparagus Pineapple Chunks Cocoa	Lobster Newburg Pork and Potatoes Asparagus Peach Ambrosia Grape Drink
Snacks	Dry Roasted Peanuts Cheese Crackers	Dry Roasted Peanuts	Lemon Pudding

TABLE 13. BEDREST STUDY - Subject 2

<u>Meal</u>	Menu 1	Menu 2	Menu 3
A	Diced Pears Bacon Squares Scrambled Eggs Rice Krispies Cocoa	Diced Pears Coffee Cake Chocolate Instant Breakfast Coffee with Sugar	Canadian Bacon and Applesauce Scrambled Eggs Sugar Coated Cornflakes Grapefruit Drink Coffee with Sugar
8 B	Turkey Rice Soup Tuna Salad Sandwich Spread Bread Sliced Strawberries Vanilla Ice Cream Orange Drink	Pork Loin with Dressing and Gravy Applesauce Asparagus Lemon Pudding Grape Drink	Chili Asparagus Lemon Pudding Apple Drink
c 13	Roast Beef Mashed Sweet Potatoes Asparagus Peach Ambrosia Coffee with Sugar	Cubed Turkey with Gravy Mashed Potatoes Pineapple Chunks Coffee with Sugar	Beef Hash Stewed Tomatoes Sliced Strawberries Cocoa
	다 보고 함께 하는 것이 있는데 함께 가는 것이다. 하는 것이 하는 것이 없는데 하는 것이다. 보다 그런 것이다. 하는 것이 하는 것이다.	Duttered Dall	Doonut Button
Snacks	Lemon Pudding Coffee with Sugar	Buttered Roll Lemon Drops Strawberry Drink	Peanut Butter Bread Orange Drink

<u>کړ</u>

TABLE 13. BEDREST STUDY - Subject 2 (Cont'd)

<u>Meal</u>	Menu 4	Menu 5	Menu 6
	Sausage Scrambled Eggs Rice Krispies Coffee with Sugar	Scrambled Eggs Sugar Coated Cornflakes Coffee Cake Grapefruit Drink Coffee with Sugar	Diced Pears Scrambled Eggs Rice Krispies Coffee with Sugar
B	Pork and Potatoes Green Beans with Mushroom Sauce Soda Crackers Grape Drink	Cream of Tomato Soup Spaghetti and Meat Sauce Bread Diced Pears Grape Drink	Pea Soup Salmon Salad Bread Pineapple Chunks Orange Drink
C	Chicken Chunks with Gravy Mashed Potatoes Asparagus Diced Pears Grapefruit Juice	Roast Beef Macaroni and Cheese Asparagus Cocoa	Filet Mignon Green Beans with Mushroom Sauce Stewed Tomatoes Peach Ambrosia Strawberry Drink
Snacks	Cheese Crackers Dry Roasted Peanuts Dinner Mints Diced Peaches Apple Drink Coffee with Sugar	Lemon Drops Coffee with Sugar	Lemon Pudding Coffee with Sugar

<u>Meal</u>	Menu 1	Menu 1 (Revised 5-30-75)	Menu 2	Menu 3
A	Applesauce Scrambled Eggs Rice Krispies Cocoa Coffee	Applesauce Scrambled Eggs Rice Krispies Cocoa Coffee	Diced Pears Coffee Cake Chocolate Instant Breakfast Coffee	Scrambled Eggs Sugar Coated Cornflakes Grapefruit Drink Coffee
B	Turkey Rice Soup Salmon Salad Soda Crackers Sliced Strawberries Vanilla Ice Cream Orange Drink Coffee	Turkey Rice Soup Salmon Salad Soda Crackers Sliced Strawberries Vanilla Ice Cream Orange Drink Coffee	Pork Loin with Dressing and Gravy Buttered Asparagus Applesauce Grape Drink Coffee	Chili Buttered Asparagus Soda Crackers Applesauce Tea with Lemon and Sugar Coffee
S KS	Roast Beef Mashed Sweet Potatoes Buttered Asparagus Peach Ambrosia Coffee	Roast Beef Mashed Potatoes Buttered Asparagus Peach Ambrosia Coffee	Cubed Turkey with Gravy Mashed Potatoes Pineapple Chunks Coffee	Shrimp Cocktail Beef Hash Stewed Tomatoes Sliced Strawberries Coffee
Snacks	Bacon Bits Tuna Salad Sandwich Spread Bread Diced Peaches Tea with Lemon and Sugar Coffee	Bacon Bits Tuna Salad Sandwich Spread Bread Diced Peaches Tea with Lemon and Sugar Coffee	Diced Peaches Dried Beef Buttered Roll Peach Ambrosia Orange Drink Coffee Tea with Lemon and Sugar Lemon Drops	Canadian Bacon and Applesauce Dry Roasted Peanuts Tuna Salad Sandwich Spread Bread Diced Peaches Orange Drink Tea with Lemon and Sugar

TABLE 14. BEDREST STUDY - Subject 3 (Cont'd)

Meal	Menu 4	Menu 4 (Revised 5-30-75)	Menu 5	Menu 6
A	Sausage Rice Krispies Coffee X 2	Sausage Sugar Coated Cornflakes Coffee X 2	Scrambled Eggs Sugar Coated Cornflakes Coffee Cake Grapefruit Drink Coffee	Diced Peaches Sausage Scrambled Eggs Catsup Rice Krispies Coffee
B	Pork and Potatoes Green Beans with Mushroom Sauce Soda Crackers Butter Applesauce Orange Drink Coffee	Salmon Salad Pork and Potatoes Green Beans with Mushroom Sauce Soda Crackers Butter Applesauce Orange Drink Coffee	Cream of Tomato Soup Spaghetti and Meat Sauce Diced Pears Grape Drink Coffee	Pea Soup Salmon Salad Biscuit Pineapple Chunks Tea with Lemon and Sugar Coffee
رت الا	Chicken Chunks with Gravy Mashed Potatoes Stewed Tomatoes Diced Pears Grapefruit Juice Coffee	Chicken Chunks with Gravy Mashed Potatoes Stewed Tomatoes Cream Style Corn Diced Pears Grapefruit Juice Coffee	Roast Beef Macaroni and Cheese Asparagus Pineapple Chunks Cocoa Coffee	Lobster Newburg Pork and Potatoes Asparagus Peach Ambrosia Grape Drink Coffee
Snacks	Cheese Crackers Dry Roasted Peanuts Hot Dogs with Tomato Sauce Diced Peaches Tea with Lemon and Sugar Coffee	Cheese Crackers Dry Roasted Peanuts Diced Peaches Tea with Lemon and Sugar Coffee	Bacon Bits Peanut Butter Bread Tea with Lemon and Sugar Coffee	Peanut Butter Bread Diced Pears Coffee

TABLE 15. SKYLAB FOODS USED FOR BEDREST STUDY-PHASE I

```
Food
No.
           Salt (Reagent Grade)
  2
           Grapefruit Juice (Lot A) (B)
  34
           Tuna Salad Sandwich Spread (Lot B) (T)
           Lemon Pudding (Lot B) (T)
  5
           Dry Roasted Peanuts (Lot B) (N)
  6
           Vanilla Ice Cream (Lot A) (F)
  7
           Sugar Cookies (Lot A) (C)
           Salt-free Butter (N)
 8
11
           Cheddar Cheese Crackers (Lot B) (C)
12
           Dinner Mints (Lot B) (N)
           Sausage Patties (Lot B) (R) Cornflakes (Lot A) (R)
13
14
           Cornflakes (Lot B) (R)
15
16
           Scrambled Eggs (Lot B) (R)
           Bacon (Lot A) (C)
17
           Filet Mignon (Lot A) (F) Frozen Bread (Lot A) (F)
18
19
20
           Catsup (Lot B) (N)
22
           Asparagus (Lot B) (R)
           Lemonade (Lot B) (B)
 23
24
           Buttered Roll (Lot B) (LF)
25
           Salmon Salad (Lot B) (R)
26
           Pork Loin w/Dressing and Gravy (Lot A) (F)
27
           Strawberries (Lot B) (R)
28
           Vanilla Wafers (Lot B) (N)
 30
           Canadian Bacon and Applesauce (Lot A) (R)
 31
           Coffee Cake (Lot A) (F)
           Mashed Potatoes (Lot B) (R)
Peanut Butter (Lot B) (T)
 32
 33
           Chili (Lot B) (T)
 34
 35
           Tomato Soup (Lot A) (R)
 36
           Fruit Jam (Lot A) (T)
           Pea Soup (Lot B) (R)
Pineapple (Lot B) (T)
 37
 38
           Lobster Newburg (Lot B) (F)
 39
40
           Turkey and Gravy (Lot B) (T)
           Lemon Drops (Lot B) (N)
 41
```

B = Beverage F = Frozen
T = Thermostabilized C = Compressed
N = Natural Form R = Rehydratable

TABLE 15. SKYLAB FOODS USED FOR BEDREST STUDY-PHASE I (CONTINUED)

Food No.	
42 44 44 44 44 44 44 44 44 44 44 44 44 4	Grape Drink (Lot B) (B) Applesauce (Lot B) (T) Hot Dogs w/Tomato Sauce (Lot B) (T) Peaches (Lot B) (T) Pears (Lot B) (T) Biscuits (Lot B) (N) German Potato Salad (Lot B) (R) Chocolate Instant Breakfast (Lot B) (B) Shrimp Cocktail (Lot B) (R) Turkey Rice Soup (Lot A) (R) Turkey Rice Soup (Lot B) (R) Rice Krispies (Lot B) (R) Chicken and Rice (Lot B) (R) Chicken and Gravy (Lot A) (R) Cocoa (Lot B) (B) Pork and Potatoes (Lot B) (R) Orange Drink (Lot B) (B) Sweet Potatoes (Lot B) (R) Coffee (Lot A) (B) Beef Hash (Lot B) (R) Stewed Tomatoes (Lot B) (T) Cream Style Corn (Lot A) (R) Tea w/Lemon and Sugar (Lot B) (B) Dried Beef (Lot A) (F) Peach Ambrosia (Lot B) (R) Spaghetti (Lot B) (R) Green Beans (Lot A) (R) Macaroni and Cheese (Lot B) (R) Canned Bread (Lot B) (T) Butter Cookies (Lot A) (N) Apple Drink (Lot B) (B) Grapefruit Drink (Lot B) (B) Strawberry Drink (Lot B) (B) Strawberry Drink (Lot B) (B) Coffee w/Sugar (Lot B) (B)

B = Beverage F = Frozen
T = Thermostabilized C = Compressed
N = Natural Form R = Rehydratable

Table 16

COMPOSITION OF A SIGTAB TABLET

Vitamin A 5,000 Int. Units
Vitamin D 400 Int. Units
Thiamine Mononitrate 10 mg
Riboflavin 10 mg
Ascorbic Acid (as sodium ascorbate)
Niacinamide 100 mg
Pyridoxine Hydrochloride 2 mg
Calcium Pantothenate 20 mg
Folic Acid 0.033 mg
Cobalamin (as cobalamin concentrate) 4 mcg
Vitamin E 15 Int. Units

THE EFFECTS OF 14-DAYS HORIZONTAL BEDREST
ON SUSCEPTIBILITY TO CORIOLIS MOTION SICKNESS,
POSTURAL STABILITY AND NEURO-MUSCULAR REFLEX ACTIVITY

Jerry L. Homick
Millard F. Reschke
and
Maurus J. Moore

INTRODUCTION

Pre-, in- and postflight observations and data obtained during the recently completed Skylab missions revealed a number of interrelated clinical, behavioral and sensory-physiological responses presumably caused by prolonged exposure to the weightless space flight environment. First, upon initial entry into weightlessness, five of the nine crewmen experienced symptoms characteristic of motion sickness. Symptoms ranged from mild (stomach awareness) to severe (vomiting) and in most cases persisted for three to five days. Adaptation to the weightless environment occurred by approximately mission day seven for all of the crewmen and subsequent tests utilizing the Skylab M131 Rotating Litter Chair showed surprisingly that all of the crewmen had become virtually immune to experimentally induced motion sickness. Of particular relevance to the present study were the results of motion sensitivity tests conducted postflight. These tests revealed that relative to their preflight baseline levels, all of the crewmen were less susceptible to motion sickness during the postflight period. Although considerable variability was present among the crewmen, the magnitude and duration of this change was related in a slightly positive fashion to the duration of 0-g exposure. Also, in crewmen who did not take anti-motion sickness medication prior to splash-down, a brief period (8-24 hours) during which symptoms spontaneously occurred with head movements, preceded the measured increase in tolerance to vestibular stress. In all cases, continued postflight

testing indicated that a return to approximate preflight levels of susceptibility to Coriolis motion sickness did eventually occur. A number of hypotheses have been advanced to explain the Skylab motion sickness findings, however, it is generally agreed that available data are inadequate to unequivocally define the mechanism or mechanisms underlying the changes which occurred.

Related to the above findings was the observation that all of the Skylab crewmen experienced a marked postflight deficit in postural stability. Quantitative measurements indicated that the change was most pronounced when the crewman was deprived of visual cues and was required to maintain a stable, upright posture solely on the basis of vestibular and tactile-kinesthetic sensory inputs. In all cases, complete recovery to preflight levels of postural equilibrium performance and locomotor ability occurred within approximately ten days after splashdown. It has been postulated that these changes were most likely the manifestation of alterations in the central nervous system integration of sensory inputs from the visual, vestibular, and tactile-kinesthetic sensory modalities which had occurred during the weightless space flight exposure. Measured alterations in neuro-muscular function, including the long loop myogenic reflex response, may also have contributed to the postflight changes observed in postural equilibrium.

In general, Skylab served to underscore that prolonged exposure to weightlessness can result in significant modifications in neuro-sensory and neuro-muscular function and cause highly undesirable responses such as the motion sickness syndrome. Data obtained from the Skylab neurophysiology

experiments, however, fell far short of providing explanations for the phenomena observed. It is recognized that much additional research using a variety of experimental approaches is needed to develop the information necessary to answer the questions raised by Skylab.

One such approach is the use of supine bedrest which many believe to represent a physiological analog of weightlessness. With this fact in mind the present study was designed to determine if the types of neuro-sensory and neuro-muscular alterations that were observed following the Skylab missions would also occur to some degree following exposure to prolonged supine bedrest.

PROCEDURES

Motion Sickness Susceptibility

This portion of the study utilized procedures and hardware identical to those developed for Skylab Experiment M131, Human Vestibular Function.

Approximately one week prior to the first pre-bedrest test each subject completed a standard motion experience questionnaire. This questionnaire provided needed information concerning the subject's motion sickness history, and was used to calculate the rotating chair velocity for his first test. Immediately prior to the first experimental session each subject was given verbal instructions on how to recognize and report his symptoms. During the test, the blindfolded subject was seated in the rotating chair device and rotated at the predetermined constant velocity. While rotating, the subject executed standardized head movement in the

four cardinal directions. These head movements were performed in sets, each set consisting of five head movements. Each set was separated by a 20 second period of no head movements. During the test, the subject was carefully monitored for signs and symptoms indicative of early motion sickness. The test was terminated when the subject manifested a low grade motion sickness (referred to a Malaise IIa) or after the performance of 150 head movements, which ever occurred first. The entire test procedure was typically completed in 20 minutes or less. Pre-bedrest data were obtained on each subject at F-30, F-15 and F-5. With exceptions noted under results, post-bedrest data were obtained at R+0, R+2 and R+7. This test was always performed following the daily completion of all other biomedical tests included in the bedrest study.

Postural Equilibrium

Postunal equilibrium was tested using a standard laboratory method developed for the Skylab flights.

The test employed a series of narrow metal rails on which the subject was required to maintain an upright posture with his feet tandomly aligned and arms folded across his chest. The rails were .75, 1.25, 1.75, and 2.25 inches wide. In addition, a tape served as the foot-guide alignment when the subject was required to stand on the floor. Each subject was fitted with military-type shoes for this test, to rule out differences in footwear as a variable. Performance on this task was measured under two sets of conditions. In the first, the subject was required to maintain postural equilibrium on the rail (or floor) with his eyes open. In the second condition, he attempted to balance

with his eyes closed. In both cases, performance was scored in terms of time (in seconds) on the rail before losing balance. On a given rail size, three test trials with a maximum required duration of 50 seconds each were allowed. If the time limit was reached in the first two trials, a third was not performed, and a perfect score of 100 seconds was recorded. If the subject failed to obtain a perfect score, the two largest time values for the three trials were summed to obtain the final score. During a test session, a minimum of two rail sizes were used in both the eyes open and eyes closed conditions. The total duration of this test did not exceed 20 minutes.

Electromyography (EMG)

Surface EMG activity was recorded using Beckman skin electrodes placed over the belly of the gastrocnemius muscle. Using an AC-DC preamplifier and amplifier, monosynaptic potential (MSP) and muscle stretch responses (MSR) were recorded from this electrode site. To obtain MSPs the subject was seated with the leg flexed at the knee, foot supported by the toes and the heel at a 90° angle with the floor. While in this position, 16 MSPs were elicited by tapping lightly with a hammer a thin bar placed over the appropriate tendon. The latency of the MSRs was obtained while the subject was seated with his foot restrained in a metal foot rest at a right angle to his leg. To elicit an involuntary MSR, the subject was asked to be prepared to resist any stretching force. Then, at random and unexpected times, manual force (a slap by the experimenter to the sole of the metal foot restraint) was suddenly applied and maintained by the experimenter to dorsiflex the foot. Voluntary response

times (MSR voluntary latency) was measured by requesting the subject to plantar-flex his foot as quickly as possible following a sharp, brief tap to the metal foot restraint. Sixteen involuntary and 16 voluntary MSR latencies were recorded.

The sharp sound (either hammer tap or slap) of the applied stimulus was used to indicate the onset of the stimulus and to trigger an oscilloscope on which the EMG response was displayed. Each separate response was photographed from the oscilloscope and both the stimulus trigger (microphonic pulse generated from the sound) and the response was recorded on a tape recorder for later analysis. The total time to record these data during a test session did not exceed 20 minutes. The combined EMG-postural equilibrium tests were run on each subject at F-30, F-15 and F-5 and again at R+0, R+2 and R+7. When the subjects arrived in the laboratory for the R+0 combined EMG-postural equilibrium tests, they were still supine and had not been upright (either sitting or standing) since the beginning of the 14-day bedrest period.

RESULTS

Motion Sickness Susceptibility

The pre- and post-bedrest results for this test are summarized in Table I. For each subject the chair speed (RPM) and number of head movements (HM) required to reach the Malaise IIa level of motion sickness are shown. The computed Coriolis Sickness Susceptibility Index (CSSI) is also given. Data for subjects 5 and 6 are missing on R+O because at the scheduled time of the test, these subjects complained of symptoms which were very near or at the MIIa level of motion sickness and the test was, therefore, cancelled for that day.

Evaluation of the pre-bedrest data indicates that, with the exception of subject 4, all of the subjects were moderately to highly susceptible to Coriolis motion sickness. Subject 4 proved to be moderately insusceptible and indeed it was necessary to increase the chair speed on successive pre-bedrest tests days in order to achieve a level of vestibular stress that would result in the manifestation of symptoms. For purposes of comparison, it is significant to note that during preflight testing the typical Skylab astronaut rode the rotating chair at 20 RPM, performed 70 head movements and had a CSSI of 24.8.

When tested on R+O, all of the subjects showed slight to moderate increases in susceptibility relative to their pre-bedrest baselines. This change was most prominent in subject 4. As previously indicated, subjects 5 and 6 were excused from R+O testing because of the presence of motion sickness type symptoms that developed gradually during the course of other R+O biomedical test activities. Tests performed on R+2 yielded more variable results. Subjects 1 and 3 became slightly more susceptible than they had been on R+O. Subjects 2 and 5 showed levels of susceptibility approximately equal to their pre-bedrest levels. Subject 4 was still more susceptible than he had been prebedrest, but was improved relative to R+O, and subject 6 was less susceptible than he had been during any of the pre-bedrest tests. On R+7, subject 1 was approximately as susceptible and subjects 3 and 5 were slightly more susceptible than they had been preflight. Subjects 2, 4 and 6 on the other hand were less susceptible on R+7 than they had been pre-bedrest; a very marked increase in tolerance was demonstrated by subject 4.

Postural Equilibrium

Pre- and post-bedrest data obtained on each of the six subjects are presented in figures 1-6. In these figures eyes open and eyes closed postural equilibrium performance on each of the rail sizes used, plus the floor, is plotted as a function of test day.

The pre-bedrest data indicate that as a group, these subjects exhibited postural equilibrium performance equal to or better than the performance typically observed in previous populations, including the Skylab astronauts, tested by this method. Subjects 2 and 5, and to a slightly lesser extent subject 5, showed particularly outstanding rail balancing ability in both the eyes open and eyes closed conditions during the pre-bedrest tests. Also during the pre-bedrest period a majority of the subjects displayed continued improvement on this task indicating that learning was occurring.

When tested on R+O, four out of six subjects (2, 4, 5 and 6) demonstrated a slight overall deficit in both eyes open and eyes closed postural equilibrium performance relative to their pre-bedrest baseline performance. A slight eyes closed deficit was measured in subject 1 and no change was evident in subject 3 in either of the test conditions.

On R+2 subjects 1 and 6 continued to show a very slight deficit on only the eyes closed test condition and subject 4 demonstrated a slight deficit on only the eyes open condition. The remaining subjects had improved to levels of performance equal to or better than their prebedrest levels. The R+7 test revealed that rail balance performance met or exceeded pre-bedrest performance for all six subjects.

Aside from the lack of significant findings with the rail balancing test, all of the subjects did experience some ataxia during the first several hours after getting out of bed. This problem was particularly apparent when they attempted to walk around corners. Also, although it was not evident in their rail performance, several of the subjects reported that during the R+O eyes closed test they were unable to sense small displacements of the head and body or make rapid postural adjustments. No spatial disorientation was reported; slight dizziness or vertigo during the rail test was reported by only two subjects (3 and 6). Recovery was rapid and no difficulties were reported during or following the R+2 test day.

Electromyography

Figure 7 illustrates the three different responses elicited from the subjects. The top 6 traces are representative of the monosynaptic potentials (MSP) which were obtained following a sharp tap to the Achilles tendon. The second set of 6 traces indicate the voluntary plantar-flexiation of the subject's foot in response to a sharp tap on the metal foot restraint. The third and last set of traces show an involuntary response. Note the similar latencies of the monosynaptic response in each condition. Note also the longer and more variable latency of the muscle stretch response (MSR) associated with the voluntary condition when it is compared with that of the involuntary response. These time relationships are representative of the 6 subjects tested.

Figure 8 indicates how the latency measurements were obtained for each condition. The time from stimulus onset to the MSP was taken

as the peripheral conduction time (PCT). Also measured from stimulus onset were the latencies of the MSRs. These MSR latencies are expressed as the functional stretch reflex time (FSR) for the involuntary response, and as the voluntary response time (VRT) for the voluntary response. Central conduction times (CCT) were calculated by measuring the time from the beginning of a MSP to the start of a MSR.

Figure 9-14 present latency measurements for all subjects during the 6 day test. Represented on the abscissa of each figure is test day. The same convention is used here as was employed to present test day in both the motion sickness susceptibility and postural equilibrium tests. Days F-30, F-15 and F-5 were pre-test measurements 30, 15 and 5 days prior to bedrest. Days R+0, R+2 and R+7 indicate post-test measurements. As previously noted on test day R+0, the subjects arrived in the laboratory in a supine position and were brought upright for the first time since the beginning of the 14-day bedrest period for these myographic measurements.

The data indicate that no major observable change is present in any of the latencies for the 6 subjects. The most consistant latency measured was the PCT which changed little within any one subject. The other latencies; VRT, FSR and CCT indicate some individual variation but were not influenced by the bedrest treatment.

Number of observations, means and the standard error of the mean as read from left to right in each row are presented in Table II for each subject and condition. Note that variability is low for the PCTs as well as the involuntary responses. As indicated in Figure 7, variability increases for the voluntary responses.

Amplitude measurements of the EMG were obtained in two ways. First, for the MSP, individual N_1 - P_1 amplitudes were calculated. Second, for the MSR of both the involuntary and voluntary responses, l6 trials for each test condition and each day were rectified, averaged and then integrated over time. Figures 15-20 represent N_1 - P_1 amplitudes in microvolts for all subjects during the 6 day test. Increases in N_1 - P_1 amplitudes are evident for the day on which the subjects ended the 14-day bedrest period for subjects 1, 2, 3, 4 and 5. No change was evident for subject 6. Note that this change in amplitude is for the most part considerably decreased by R+2. Table III presents the number of observations, means and standard error of the mean of N_1 - P_1 amplitudes for each subject in each condition, Note the low variability of this measurement within test day.

Figure 21 illustrates 16 rectified and averaged voluntary responses. Superimposed on the average is the integral of the 200 msec period. To determine the amplitude of the MSR only the integrated activity beginning 80 msec from stimulus onset to 180 msec is considered. This time is indicated by the two arrows. Figure 22 plots this value for each subject's voluntary and involuntary responses for each test day. Very little consistency is evident in these plots nor is the increased amplitude which was present in the N_1 - P_1 activity on R+O indicated in the MSR.

DISCUSSION

*** tion Sickness Susceptibility

The post-bedrest increases in susceptibility to Coriolis motion sickness observed in the present study were relatively small in magnitude

and short in duration. In this regard, these findings are somewhat reminescent of the temporary postflight increase in ssuceptibility to motion sickness observed in the Skylab 2 crewmen. In general, however, the post-bedrest tests did not yield results like those obtained following the Skylab missions. Most notably, the marked postflight decrease in susceptibility seen in the Skylab crewmen was not exhibited by the bedrest subjects.

These findings are not unexpected if one accepts the postulation that alterations in otolith function were primarily responsible for the postflight changes in the Skylab crewmen. In the absence of gravity, the otoliths, or the CNS integration of otolith generated sensory input, could be expected to undergo significant change. Such would not be the case in individuals bed-rested in a 1-g environment.

To conclude at this time, however, that supine bedrest does not result in sensory physiological alterations like those produced by prolonged exposure to weightless space flight would be premature. The reasons are several. First, the Skylab missions ranged from 28 to 84 days in duration, whereas, the exposure to supine bedrest was only 14-days in duration. It is conceivable that 28 days or longer supine bedrest might result in alterations more analogous to those seen following Skylab. Secondly, because of the potential significance of the fluid shifts involved, the effects of weightlessness might be better simulated by head-down tilt bedrest rather than supine bedrest. Such a study has yet to be done. Finally, the Skylab crews had periodic exposure to the rotating chair test, as well as other vestibular stimulation, and therefore, had more opportunity to acquire habituation to stressful cross-coupled

angular acceleration. The bedrest subjects had no such opportunities; this could in part explain their increased susceptibility post-bedrest or at least explain their lack of decreased susceptibility.

Aside from comparisons with the Skylab data, one other factor is worthy of consideration which may in part account for the higher than average motion sickness susceptiblity demonstration by the bedrest subjects. All pre- and post-bedrest motion sickness tests were preceded by the Skylab M171 exercise tolerance test. Although the subjects were given an opportunity to rest and never manifested overt symptoms of fatigue, it is conceivable that the stressful exercise test did lower their threshold to motion sickness. In future studies of this type, an attempt should be made to avoid scheduling any stressful tests prior to motion sickness susceptibility testing.

Finally, in considering the significance of the subjects' post-bedrest responses a distinction must be made between symptoms of motion sickness having their etiology in the vestibular system and symptoms characteristic of motion sickness, but not of vestibular origin. That is, the symptoms experienced by two of the subjects which prevented their being tested on R+O were probably not the result of vestibular hypersensitivity, but instead the result of a generalized autonomic nervous system response to the various physical stresses encountered during the first hours after termination of bedrest.

Postural Equilibrium

The static rail balancing test procedure employed in the present study revealed short-lived and functionally insignificant changes in

post-bedrest postural equilibrium performance. As might be expected from previous test situations, where change were detected they tended to be greater when the subject was deprived of visual cues.

No firm conclusions regarding the comparability of supine bedrest and weightlessness in producing sensory system modification can be drawn from the present study. This is true largely because of the significantly longer duration of the Skylab missions from which data are available. Fourteen days supine bedrest may be insufficient time for the sensory and particularly neuro-muscular system alterations presumed responsible for the Skylab postflight postural disturbances to occur. It must also be recognized, however, that sensory system modification during bedrest would include little if any otolithic contribution regardless of the duration of bedrest. Assuming this to be true, the total patterning of sensory system modification should be different for periods of exposure to bedrest and weightlessness of equal duration. Therefore, even if equal periods of bedrest and weightlessness produced highly similar changes in postural responses the underlying causes could be quite different.

As noted, all of the subjects in this study did exhibit ataxia on R+O even though rail performance was good. This finding suggests that the rail test may have been insensitive to a change that was present. Indeed, in a 14-day bedrest study conducted at the Ames Research Center a battery of 11 body balance tests were used and only two, a rail walk (eyes open) and one-leg rail balance (eyes open), revealed a post-bedrest deficit in balancing performance. These combined finding indicate that

future bedrest tests should utilize dynamic balancing (e.g., walking) tests in addition to static tests of the type used in the present study.

Electromyography

The results of this investigation indicate that some change in the amplitude of the evoked monosynaptic potential was present following 14 days of bedrest. The amplitude change by itself does not, however, reflect completely those changes observed following the Skylab missions.

Long term space flight and exposure to prolonged periods of weightlessness, as experienced during Skylab, tend to generate a hyperreflexia. Both an increase in the Achilles tendon reflex amplitude and an increased gastrocnemis muscle potential as well as a decrease in the reflex reaction time have been reported. These changes when observed together with an increase in postural instability support a concept which suggests that central neural reorganization occurs in response to environmental change. Specifically, a central nervous system "pattern center" concept could be postulated to help understand the mechanism encountered in the adaptation process. For example, following insertion into orbit, the crewmen may experience difficulty in maneuvering and find orientation to be a problem. Shortly, however, movement from one area of the vehicle to another would become somewhat easier. Fine motor control to determine displacement would be established. Adaptation in the neuromuscular system would have occurred.

('nce an adequate memory of the required pattern is established, the "pattern center" would take over muscular control on an involuntary basis. Return to a 1-g environment would result in a recurrence of the

1

learning process. Habituation to a gravity reference would begin almost immediately and a new effective pattern in the "pattern center" would be established. Part of this habituation processes would be reflected in the observed postflight hyperreflex activity.

If, as the Skylab results suggest, an environment dependent memory store (pattern center) of frequently repeated sensory inputs is operative which registers the actual movement and allows for anticipation and compensation of each movement as it occurs is accepted; then it is reasonable not to observe both amplitude and latency changes in neuromuscular activity following bedrest. Specifically, in a 1-g environment, it is not anticipated that new muscle responses need to be generated during bedrest. Instead, it is more likely that those responses which serve us while standing and walking in a 1-g environment will continue to operate during prolonged periods of bedrest.

Bedrest must, however, introduce some neuromuscular changes because of the relative inactivity imposed in this condition. During a short period such as this 14 day test one of the major changes could be observed in the transmitter substances found in the synaptic cytoplasm. For example, it is possible that during bedrest, levels of norepinephrin could drop. When the subjects are raised from a supine position these levels could increase significantly and be reflected in the increased amplitude of the monosynaptic muscle potentials. At this time, a complete urine analysis is not available. Once this has been completed, this hypothesis can be evaluated.

In summary, our findings do not at this time indicate that

ordinary bedrest can adequately simulate prolonged exposure to weightlessness. However, this conclusion is only tenative. Further experimentation would be valuable.

						******		SUBJI	ECTS	····	 							
TEST	1		2		3		4		5			6						
DAY	RPM	НМ	CSSI	RPM	НМ	CSSI	RPM	НМ	CSSI	PRM	НМ	cssi	RPM	НМ	CSSI	RPM	НМ	CSSI
F-30	7.5	60	3.8	10	20	2.1	7.5	35	2.2	7.5	150	>9.8	7.5	20	1.3	5	45	1.4
F-15	7.5	45	2.9	7.5	40	2.6	7.5	55	3.5	12.5	150	>22.5	5	75	2.4	5	55	1.8
F-5	7.5	40	2.6	7.5	35	2.2 .	7.5	50	3.2	20	70	23.1	5	35	1.1	5	70	2.2
R+0	7.5	40	2.6	7.5	25	1.6	7.5	35	2.2	20	30'	9.9	-	-	-	-	-	-
R+2	7.5	35	2.2	7.5	30	1.9	7.5	25	1.6	20	45	14.9	5	. 50	1.6	5	105	3.4
R+7	7.5	55	3.5	7.5	55	3.5	7.5	35	2.2	20	140	45.2	5	25	0.8	7 . 5	55	3.5

TABLE I.

Pre- and post-bedrest motion sickness susceptibility test results. For each subject, the chair speed (RPM) and number of head movements (HM) required to reach the Malaise IIa level of motion sickness are shown. The computed Coriolis Sickness Susceptibility Index (CSSI) is also given.

-	RESPONSE	SUSSECT	v Ei Day											
		SS	F-30	F-15	F-5	R+O	R+2	R+7						
		1	12, 33,0, 0.17	12, 34, 0	12, 34, 0.19	18, 34, 0.11	18, 33, 0,60	18, 33, 0.19						
1 1	A CULL TO	2	12, 37 , 0	12, 36, 0	12, 36, 0	18, 39, 0.16	18, 10, 0.00	18, "38, 0						
	ACHILLES TENDON	3	12, 37,8, 0.19	16, 37, 0	12, 37, 0	10. 10, 0.12	10, 33, 0	16, 37, 0.11						
	REFLEX	4	12, 33:5, 0.19	12, 34, 0	12, 34, 0	18, 36, 0.12	18, 34, 0.11	18, 34, 0						
	•	. 5	12, 32 , 0.19	12, 34, 0	12, 33, 0	18, 34, 0	18, 34, 0,34	18, 31, 0.12						
		6	12, 34.5, 0.15	12, 35, 0.25	12, 34, 0	18, 35, 0	18, 35, 0.11	18, 35, 0						
		1	12, 34 , 0	12, 35, 0	12, 35, 0	12, 35, 0	18, 35, 0.12	18, 34, 0,06						
		٤	10, 42 , 0.36	12, 39, 0.30	14, 38, 0	18. 39, 0.08	18, 40, 0.12	18, 40, 0.20						
		3	12, 39 , 0.62	12, 38, 0.42	12, 36, 0	18, 32, 0.14	18, 36, 0.11	18, 37, 0						
- 1	YOLUNTARY	4	12, 34.3, 0.22	16, 34, 0	12, 34, 0	18, 35, 0	18, 35, 0	18, 35, 0.11						
۵.		5	12, 34.5, 0.38	12, 34, 0	13, 35, 0.21	18, 35, 0	18, 34, 0.11	18, 33, 0.11						
		б	12, 40.3, 2.29	16, 35, 0.13	12, 35, 0	17, 36, 0.59	17, 36, 0.11	16. 35, 0						
		1	12, 32.9, 0.03	16, 34, 0,09	15, 34, O	18, 35, 0	18, 34, 0.11	18, 24, 0						
		5	11. 36 , 0.21	16, 37, 0.13	15, 33, 0.12	18, 39, 0.14	18, 33, 0	18, 38, 0.16						
	*** ********	3	12. 37 , 0.39	12, 36, 0	12, 36, 0	18, 37, 0.12	18, 36, 0	18, 36, 0						
	IN GLUNTARY	4	15, 32.5, 0.13	12, 33, 0	12, 33, 0,15	18, 35, 0	18. 35. 0.15	17, 33, 0,12						
		5	12, 32 , 0	12, 34, 0	12, 34, 0.30	18, 34, 0	18, 39, 0.11	18, 33, 0						
		6	11. 34.7, 0.16	12, 35, 0	12, 35, 0	18, 35, 0	18, 35, 0	18, 35, 0.03						
		1	12, 106 , 3.23	12, 106 , 4,19	12, 104, 3.07	17, 95, 2.70	18, 101, 2.32	18, 97, 1.30						
		2	10, 100 , 5,82	12, 82.8, 4.01	14, 85, 5.70	13, 80, 2.60	18, 86, 4.16	18, 80, 4.24						
	l e e e e e e e e e e e e e e e e e e e	3	12, 102 , 4.75	12, 84 , 3.49	12, 88, 4.13	18, 59, 3.58	18, 84, 3.58	18, 79, 3.35						
	YCLUITARY	-1	12, 92 , 6.50	16, 98 , 4.78	12, 83, 4.20	18, 87, 1.35	18, 69, 2.13	19, 79, 1.63						
		5	12, 100 . 4.92	12, 98 , 3.85	13, 103, 3.75	18, 95, 3.14	13, 80, 2.50	18, 90, 2.22						
		6	12, 74.2, 3.49	16, 87 , 4.46	12, 94, 4.42	17, 67, 2.28	17, 78, 4.79	16, 81, 3.07						
ij		1	12, 92.5, 1.69	16, 98 , 2.21	15, 96, 2.09	18, 92, 1.42	18, 105, 3.15	18, 92, 1.99						
		2	11, 56 , 1.47		15, 59, 1.36	18, 65, 2.09	18, 59, 1.86	18, 80, 2.95						
		3	12, 80.4, 4.27	·	12, 75, 2.13	18, 69, 1,93	13, 72, 1.77	18, 71, 2.55						
	INVOLUNTARY	1	15, 78.5, 3.07		12, 70, 1.63	18, 73, 2.27	18, 70, 2.26	17, 65, 2.15						
		5	12, 89.9, 3.74	12, 74 , 1.51	12, 80, 2.51	13, 76, 1.60	19, 71, 1.45	18, 70, 1.33						
		5	11, 56.5, 1.63	12, 59 , 1.01	12. 66, 2.65	18, 56, 2.50	18, 55, 1.37	18, 54, 1.06						
		1	12, 140 , 3.28	12, 141, 4.19	12, 139, 3.07	17, 130, 2.71	13, 136. 2.34	10, 131, 1.32						
		2	10, 142.5, 5,00		14, 123, 5.70	18, 119, 2.60	18, 125, 4.18	18. 120, 4.13						
		3	12, 141 , 4.79		12, 121, 4.13	18, 127, 3.61	18, 120, 3.55	18, 116, 3.35						
YAY	YSLUNTARY .	4	12, 126 , 6.53	16, 132, 4.78	12, 122, 4.20	18, 122, 1,35	18, 124, 2.13	18, 115, 1.99						
		3	12, 135 , 4.85	12, 132, 3.86		18, 150, 3.14	18, 123, 2.40	18, 124, 2.21						
	•	6	12, 115 , 3.65	16, 122. 4.47	12, 179, 4,42	17, 103, 2.29	17, 114, 4.80	16, 116, 3.07						
		,	12, 125.4, 1.73	16, 132, 2.18	15, 130, 7.09	18, 127, 1.42	18, 139, 3.13	18, 126, 1.99						
		z	11, 92.7, 1.41	16, 102. 2.71	15. 97. 1.31	18, 104, 2,10	18, 97, 1.86	18, 118, 3.05						
		3	12, 116, 3.81	12, 105, 2.67	12, 111, 2.13	18, 106, 4,94	19, 108, 1.77	18, 107, 2,55						
FSR	MUDLUNTARY	4	15, 110, 3.04	12, 107, 3,33	12, 103, 1.66	18. 108. 2.27	13, 105, 2.16	17. 98. 2.17						
"		5	12, 121.9, 3.74	12. 108. 1.51	12, 113, 2.44	18, 109, 1.5\$	18, 105, 1.40	18, 108, 1.39						
			11, 90,9, 1.67	12, 94, 1.04	12, 101, 2.65	18. 91. 2.10	18, 90, 1.37	18, 89, 1.00						
			** · · · · · · · · · · · · · · · · · ·				•							

Table II.

Number of observations, means, and the standard error of the mean read from left to right in each row for each subject in every condition. Test day is presented in the 6 columes. The means presented in this table were used to construct Figure 9-14.

TABLE III.

		ی		,	TEST DAY			
RESPONSE		รเราะ	F-30	F-15	F-5	R+O	R+2	R+7
		1	12, 107, .003	12, 121, ,004	12, 112, .005	18, 239, .008	18, 91, .002	18, 136, .003
	ACHILLES TENDON		12, 29.8, .002	12, 47.7, .004	12, 38, .003	18, 88, .003	18, 56, .003	18, 53, .004
			12, 49, .006	16, 53, .007	12, 43, .004	18, 128, .008	18, 101, .005	18, 96, ,003
	REFLEX	1	12, 119.5, .009	12, 116, .007	12, 86, .009	18, 31, .012	18, 95, .005	18, 183, .011
		5	12, 120, .003	12, 119, .004	12, 116, .009	18, 204, .010	18, 89, .004	18, 99, .003
		6	12, 56, .006	12, 33, .002	12, 50, .003	18, 42, .002	18, 46, .003	18, 72, .004
		1	12, 121, .003	12, 106, .005	12, 99, .003	17, 194, .005	18, 106, .003	18, 120, .003
		2	10, 6.8, .001	12, 29.6, .004	14, 28, .002	18, 69, .004.	18, 39, .003	18, 48, ,003
ų,	VOLUNTARY	3	12, 21.5, .003	12, 29, .004	12, 24, .001	18, 123, .009	18, 45, .003	18, 46, .003
AMPLITUDE		4	12, 93.4, .009	12, 68.6, .006	12, 102, .001	18, 282, .010	18, 89, .005	18, 180, .010
AMPI		5	12, 48, .007	12, 90, 005	13, 45, .005	18, 156, .008	18, 97, .006	18, 99, .005
م		6	12, 14.7, .003	16, 14, .003	12, 30, .003	17, 22, .003	17, 28, .003	16, 32, .003
N L		1	12, 99, .002	16, 102, .004	15, 97, .004	18, 151, .005	18, 96, .003	18, 90, .003
		2	11, 60, .003	16, 69, .002	15, 56, .002	18, 97, .004	18, 85, .004	18, 65, .004
	INVOLUNTARY	3	12, 41, .006	12, 104, .007	12, 49, .002	18, 141, .005	18, 68, .002	18, 71, .002
		4	15, 214, .009	12, 158, .007	12, 206, .009	18, 403, .010	18, 174, .009	18, 226, .015
		5	12, 196, .011	12, 147, .005	12, 102, .010	18, 245, .010	18, 106, .004	13, 119, .003
		6	11, 97, .001	12, 49, .004	12, 56, .003	18, 41, .003	18, 50, .002	18, 74, .004

Number of observations, means and the standard error of the mean read from left to right in each row for each subject in every condition. Test day is presented in the 6 columes. The means presented in this table were used to construct Figure 15-20.

Figure 1. Pre- and post-bedrest postural equilibrium performance for subject 1.

Figure 2. Pre- and post-bedrest postural equilibrium performance for subject 2.

Figure 3. Pre- and post-bedrest postural equilibrium performance for subject 3.

Figure 4. Pre- and post-bedrest postural equilibrium performance for subject 4.

Figure 5. Pre- and post-bedrest postural equilibrium performance for subject 5.

Figure 6. Pre- and post-bedrest postural equilibrium performance for subject 6.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 7. Monosynaptic potentials, voluntary responses and involuntary responses. Total sweep time as indicated is 200 msec with 2V per division equal to 1mv.

Figure 8. Peripheral conduction time (PCT) is measured from the time of stimulus onset to the beginning of the monosynaptic potential (MSP). Also measured from the time of stimulus onset are the voluntary response time (VRT) and functional stretch reflex time (FSR). The response interval noted as central conduction time (CCT) was measured from the start of the MSP to the start of the muscle stretch response (MSR).

Figure 9. Response times obtained for subject 1. Test day is represented on the abscissa for each condition (VRT, CCT, FSR, PCT). Latency measurements in msec are located on the ordinate for the VRT, FSR and PCT conditions. The ordinate for CCT represents time delays of the MSR occurring within the central nervous system. Note that the CCTs were obtained for both voluntary and involuntary conditions. Also note that tendon reflex times along with voluntay and involuntary response times were included in the PCT measurements.

Figure 10. Response time obtained for subject 2. Conventions are those given for Figure 9.

Figure 11.

· Figure 11. Response times obtained for subject 3. Conventions are those given for Figure 9.

Eigure 12. Response times obtained for subject 4. Conventions are those given for Figure 9.

Figure 13.

Figure 13. Response times obtained for subject 5. Conventions are those given for Figure 9.

Figure 14. Response times obtained for subject 6. Conventions are those given for Figure 9.

Figure 15.

Figure 15. N_1 - P_1 amplitudes of the monosynaptic potentials generated in the voluntary, involuntary and Achilles reflex conditions for subject 1. Test day is represented on the abscissa and N_1 - P_1 amplitudes in microvolts on the ordinate.

Figure 16. $N_1 - P_1$ amplitudes as measured for subject 2. Conventions are those given for Figure 15.

Figure 17.

Figure 17. N_1 - P_1 amplitides as measured for subject 3. Conventions are those given for Figure 15.

Figure 18,

Figure 18. N_1 - P_1 amplitudes as measured for subject 4. Conventions are those given for Figure 15.

Figure 19.

Figure 19. $N_1 - P_1$ amplitudes as measured for subject 5. Conventions are those given for Figure 15.

Figure 20

Figure 20. N_1 - P_1 amplitudes as measured for subject 6. Conventions are those given for Figure 15.

Figure 21. Sixteen rectified and averaged voluntary responses. Superimposed on the average is the integral of the entire 200 msec period. Only the integrated activity beginning 80 msec and ending 180 msec from stimulus onset was used to determine amplitude changes in the MSR. This time period is indicated by the two arrows.

Figure 22. Integrated MSR activity for each subject's voluntary and involuntary responses.

JSC - BAYLOR BED REST STUDY I CARDIOVASCULAR EVALUATIONS

G. W. Hoffler, S. A. Bergman, Jr., R. L. Johnson, A. E. Nicogossian and M. M. Jackson

Recognition is given J. T. Baker, J. Donaldson, Joe Morgan, J. C. Petty and Shane Smith for their technical contributions to the conduct of this study.

E. C. Moseley, K. Tamer, D. Carr and W. Hursta performed an admirable task with DSAD personnel in data management and reduction.

Special thanks go to M. Ward and M. Taylor for typing the tables and manuscript.

The Subjects are always appreciated.

JSC - BAYLOR BED REST STUDY | CARDIOVASCULAR EVALUATIONS

INTRODUCTION

The effects of bed rest on the cardiovascular system are well established. Many effects parallel closely those noted in man after a period of weightlessness. In spite of the comprehensive evaluation on man during and after bed rest there are no reported bed rest studies which utilized the exact protocols, equipment, and time schedules as were employed during Skylab. It was therefore considered reasonable to conduct a bed rest study which employed the unique features of the Skylab medical evaluations and to compare the results with those obtained from the Skylab astronauts after prolonged weightlessness.

METHODS

Cardiovascular responses to a two-week bed rest period were studied in six normal males. Test protocols were adapted from the pre- and postflight measurements from Skylab (6) evaluations and included a lower body negative pressure (LBNP) stress test with increments of negative pressure from 0 to 50 mm Hg, over a 15-minute period (Figure 1). Before, during, and after each LBNP test vectorcardiogram, phonocardiogram, pneumogram, percent leg volume change, and blood pressure were obtained. Leg volume and systolic time intervals (STI) were also measured at the time of LBNP testing.

Each subject participated in three tests prior to the bed rest period in order to obtain baseline data and to familiarize the subjects with the test protocol. After completion

of two weeks absolute bed rest and before being ambulated, each subject was tested again. Subjects were also tested on each of the two days immediately following ambulation. LBNP tests were not performed during bed rest; however, leg volume and STI determinations were obtained on several days during this period.

Equipment for the study included the instrumentation from the Skylab One-g trainer where preflight exams had been performed. The environment, however, was not as controlled, and some of the pre- and post- bed rest data was compromised. The major source of environmental interference came from a radio station (RF interference) and from an unknown mechanical source (vibration interference). In addition to loss of time code, the STI data during all LBNP tests were uninterpretable. Three tests were aborted because of electrical power failure to the experiment room. All initial pre- bed rest tests were conducted with environmental temperatures above desired limits.

RESULTS

Tables I - V provide basic data about the individual tests for each subject both for reference and as a measure of experimental design and environmental control. The only notable departures from desired conditions were the somewhat elevated environmental temperatures during the first pre- bed rest tests.

Tables VI and VII give maximal calf girths and total leg volumes, the latter having revealed in space crews decrements of over a litre after flight. The very negligible

changes in leg size during bed rest definitely do not parallel those seen during and after space flight. Figures 2 and 3 present these data more dramatically by including multiple serial measurements made during bed rest. A very modest increment (~ 100 - 200 ml) in leg volume is evident in the immediate post-bed rest period.

Tables VIII, IX and X present a complete overview of heart rates, symbolic and diastolic blood pressures for every test period of all tests on all subjects. Only group mean resting heart rate (Table XII) was not returned within the pre- bed rest 95% fiducial limits by the BR + 2 test. Blood pressure did not significantly change.

Maximal percentage change in calf size during LBNP, shown in Tables XI and XII, seems to imply an augmentation for the group mean immediately after bed rest, but this is not statistically significant compared to pre-bed rest ficudial limits.

SYSTOLIC TIME INTERVALS

Table XIII shows the individual STI (PEP/LVET) and heart rate responses <u>during</u> bed rest. The pre-bed rest and post bed rest data were unacceptable for interpretation because of environmental interference. Heart rate tended to increase during the bed rest period (75 to 80). The fact that resting heart rate was elevated prior to ambulation or exposure to the post bed rest environment would indicate that this finding was the result of bed rest, per se, rather than emotion.

The PEP/LVET measurement of STI varied considerably during the two-week bed rest period when compared with circadian rhythm of this measurement. However, because STIs were always measured near the same time of day, the circadian rhythmicity effect should have been minimized. Initially the group mean PEP/LVET was 0.32, while at the end of bed rest it was 0.37 (p < .05). Therefore, the STI data from Skylab and two weeks of bed rest are directionally similar. The magnitude of change, however, is not as great for bed rest. Furthermore, there was no significant change in PEP/LVET at the end of one week, i.e., PEP/LVET = 0.34 at seven days (p < .10).

VECTORCARDIOGRAM

Predictable effects of LBNP on certain VCG elements were observed. Concurrent with elevated heart rate were decreased PR interval (p < 0.05), QRS duration (NS), and QT interval (p < 0.01). In addition, the P-wave maximal spatial vector magnitude increased dramatically (p < 0.05) while ST maximal vector magnitude decreased (NS) and little consistent alteration occurred in QRS vector dimensions. The J vector magnitude and the QRS-T spatial angle also increased (NS).

On the other hand, the effects of bed rest on the VCG differed in several respects from those observed after space flight. While resting heart rate was significantly elevated in the first post bed rest test, neither PR interval nor QRS duration was significantly further elevated in the resting state. Maximal vector magnitudes of P-wave, QRS, and ST loops under resting supine conditions were either not significantly elevated or decreased after bed rest; all were significantly elevated after space flight. And though the J vector magnitude and the QRS-T spatial angle were not significantly changed by either environmental condition, their alterations were in opposite directions after space flight and bed rest.

DISCUSSION

The cardiovascular responses to weightlessness are fairly well established and have been reported in a recent symposium (6). Basically, there is an absolute reduction in blood volume (plasma volume) in response to what is probably sensed as a volume expansion by receptors in the chest. Fluid moves along a pressure gradient from the legs into the upper body, and central circulation. Part of the fluid is stored in these spaces while the remainder is removed from the body probably as urine and/or insensibly over one to three days of weightlessness (1, 2).

As long as the null gravity environment is imposed, cardiovascular function appears to be intact — in spite of the absolute volume decrement. However, transition to one—g leads to problems related to the relative volume deficiency including orthostatic intolerance (3, 5). And symptoms associated with standing or LBNP last at least as long as it takes the body to restabilize at an adequate blood volume for the gravity field.

Bed rest has been used repeatly as an analog to weightlessness. Although the body at supine rest is within a gravitational field, this force is exerted perpendicular to the long axis. The body is deprived of the usual gravity stimulus since the gravity vector measured in the foot-to-head axis is zero with the subject in a supine position.

The bed rest model has also been used because at least some responses to it are similar to weightlessness exposure. After three weeks of absolute bed rest, blood volume is decreased and there are decrements in exercise and orthostatic tolerances. Although plasma volume is regained within three or four days after ambulation, there

is a definite delay in LBNP and exercise tolerance (5,7).

Results of the present study, during which subjects were exposed to two weeks of absolute bed rest, are consistent with other studies of similar duration. Heart rate was elevated during supine rest and especially in response to LBNP stress compared with baseline values (Table VIII). Two of six subjects developed presyncope during the first LBNP test after bed rest, but before ambulation. This number is comparable to the Skylab experience in which four of nine crewmen suffered an orthostatically induced syncopal episodes after return to earth.

Of interest are the data on weights and leg volumes. There was only a small decrement in leg volume in three of the six subjects compared with 100 percent of Skylab and ASTP crewmen. Inflight leg volume determinations during the ASTP (nine day) mission showed that these crewmen had lost 5 - 10 percent of leg volume by 32 hours after launch. Weight change was negligible in the bed rested subjects, but weight loss was almost always noted in U. S. astronauts upon return from weightless flight. These data suggest that there are significant differences between true weightlessness and the bed rest analog — in spite of definite similarities in orthostatic responses.

Resting, supine PEP/LVET which is independent of heart rate change was significantly increased after bed rest (Table XIII). The mean value was $0.32\pm.02$ prior to bed rest and $0.37\pm.03$ afterward. The Skylab III crewmen PEP/LVET climbed from 0.32 preflight to 0.41 postflight. Therefore, according to this measurement of cardiovascular integrity, the bed rest subjects had a similar, but

not equal change compared with the Skylab crewmen. It is unfortunate that the STI data were uninterpretable during LBNP stress, especially since the stressed heart rate and blood pressure responses were similar to the astronaut data, both from Skylab and Apollo Programs.

Selected elements of the vectorcardiogram showed alterations and responses to LBNP essentially like those previously reported (4). However, under resting, supine conditions VCG responses after bed rest differed distinctly from those after space flight. If headward fluid shifts are contributing to the observed VCG changes, there must be qualitative as well as quantitative differences between the effects of supine bed rest and space flight.

It would appear that certain cardiovascular responses to supine bed rest are similar, but not equal to those noted after exposure to weightlessness. The incidence of presyncope and the overall decrement in orthostatic tolerance are almost the same. However, other responses to bed rest seem almost opposed to those after space flight. Mechanisms may be quite different when one considers the leg volume and weight data from the two groups. At this time, it is clear only that supine bed rest does not reproduce the entire picture observed in cardiovascular physiology after space flight. It is possible that some degree of head-down tilt may provide a better approximation to the cardiovascular effects of space flight.

REFERENCES

- 1. ASTP DTO C.8.0 Inflight Lower Limb Volume Measurements.
- 2. Otto H. Gauer and James P. Henry. Circulatory Basis of Fluid Volume Control, Physiological Reviews 43:423-481, 1963.
- 3. G. W. Hoffler, R. A. Wolthuis and R. L. Johnson. Apollo Space Crew Cardiovascular Evaluations, Aerospace Medicine 45 (8):807-820, 1974.
- 4. G. W. Hoffler, R. L. Johnson, A. E. Nicogossian, S. A. Bergman, Jr., M. M. Jackson. Vectorcardiographic Results from Skylab Medical Experiment M092: Lower Body Negative Pressure. The Proceedings of the Skylab Life Sciences Symposium, Vol. II: 597-621, 27 29 Aug, 1974, NASA Lyndon B. Johnson Space Center, Houston, Texas 77058.
- K. H. Hyatt, L. G. Kamenetsky and W. M. Smith. Extravascular dehydration as an etiologic factor in post-recumbency orthostatism. <u>Aerospace Medicine</u> 40:644-650, 1969.
- R. L. Johnson, G. W. Hoffler, A. E. Nicogossian, S. A. Bergman, Jr., and M. M. Jackson. Lower Body Negative Pressure: Third Manned Skylab Mission. The Proceedings of the Skylab Life Sciences Symposium, Vol. II: 545-595, 27 - 29 Aug, 1974, NASA Lyndon B. Johnson Space Center, Houston, Texas 77058.
- 7. B. Saltin, G. Blomqvist, J. H. Mitchell, R. L. Johnson, Jr., K. Wildenthal and C. B. Chapman. Response to exercise after bed rest and after training, Circulation 38, suppl. 7, pp. 1 78, 1968.

NASA-S-74-3245

THE LOWER BODY NEGATIVE PRESSURE PROTOCOL USED FOR SKYLAB CARDIOVASCULAR EVALUATIONS ASSESSING ORTHOSTATIC TOLERANCE

FIGURE 1

FIGURE 2

FIGURE 3

JSC-BAYLOR BED REST STUDY I

Cardiovascular Evaluations - Date/Time (CDT)

SUBJECT	BR-20	BR-15	BR-8	BR+O	BR+1	BR+2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 April <i>75</i>	5 May 75	12 May 75	3 June 75	4 June 75	5 June 75
	11:19	09:03	08:49	09:36	09:05	08:43
2	30 April 75	5 May 75	12 May 75	3 June 75	4 June 75	5 June 75
	12:20	10:43	09:52	10:22	11:01	09 : 22
3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30 April 75	5 May 75	12 May 75	3 June 75	4 June 75	5 June 75
	10:23	13:56	13:29	13:43	12:27	12:19
4	1 May 75	6 May 75	13 May 75	6 June 75	7 June 75	8 June 75
	10:47	08:59	08:48	09:03	09:02	08:39
5	1 May 75	6 May 75	13 May 75	6 June 75	7 June 75	8 June 75
	11:47	10:00	09:41	10:01	10:25	09:37
6	1 May 75	6 May 75	13 May 75	6 June 75	7 June 75	8 June 75
	09:52	13:04	13:28	13:34	12:05	11:50

TABLE II

Cardiovascular Evaluations

Hours of Sleep/Hours Since Eating

SUBJECT	BR-20	BR-15	BR-8	BR+O	BR+1	BR+2
	8	7	6	8	6	5
	2 1/2	1 1/4	1	2	1	1
2	7	7	7 1/2	8	7 1/2	9
	3 1/2	2	2	2 1/2	3	2
3	6	5 1/2	5	4	5	5
	1 1/4	1 1/2	1	1 1/2	4	2
4	7 1 1/4	6 1/2 1	7	5 1/2 1	7 1/2 1 1/2	6 1
5	7 2	6	7 1/2 1 1/2	8	8 2 1/2	9 1 1/2
6	7	8	10	7	7	13
	1 1/2	2	1 1/2	2	3	3

JSC-BAYLOR BED REST STUDY I

Cardiovascular Evaluations

Weight (kg)/Oral Temperature (°F) [°C]

SUBJECT	BR-20	BR-15	BR-8	BR+O	BR+1	BR+2	
1	68.5	68.3 98.6 [37.00]	68.7 97.2 [36.22]	97.5 [36.39]	69.3 97.6 [36.44]	69.4 97.6 [36.44]	
2	70.9	71.0 98.5 [36.94]	71.0 98.3 [36.83]	71.1 98.6 [37.00]	71.1 98.1 [36.72]	71.0 98.1 [36.72]	
3	69.2	68.7 98.7 [37.06]	69.7 98.0 [36.67]	70.0 98.7 [37.06]	69.3 98.2 [36.78]	69.7 98.6 [37.00]	(C N
4	64.4	64.9 98.6 [37.00]	64.2 97.9 [36.61]	64.7 98.7 [37.06]	64.4 99.0 [37.22]	64.3 97.7 [36.50]	
5	82.1	82.6 98.6 [37.00]	81.6 98.0 [36.67]	82.1 97.3 [36.28]	82.1 98.2 [36.78]	82.1 98.0 [36.67]	
6	63,3	63.8 98.5 [36.94]	64.0 97.7 [36.50]	65.7 98.4 [36.89]	65.5 97.7 [36.50]	65.3 97.6 [36.44]	

TABLE IV

Cardiovascular Evaluations

Room Temperature ^oF (Beginning-End)

SUBJECT	BR-20	BR-15	BR-8	BR+O	BR+1	BR+2
1	76.0- 76.0	70.5- 71.5	67.5- 68.5	66.5- 66.5	63.5- 63.5	65.0- 65.0+
2	77.0- 76.0	72.5- 73.5	72.0- 70.0	67 . 5- 66.5	65.0 - 64.5	66.5- 66.5
3	74.5- 75.5	70.5 - 71.0	72.5-	69.0- 70.0	69.0+~ 69.0	66.5- 67.0
4	75.5-	67.5 68.0	67.5- 68.0	65.0- 65.5	66.0- 66.5	73.5- 73.0
5	76.5- 77.5	68.5- 69.0	69.5- 70.0	66.0- 66.0	70.0- 70.0+	72.5 - 73.0
6	74.5-	69.5 70.5	70.0- 70.0+	70.5- 71.5	70.5- 71.0	71.75 - 72.0

TABLE V

Cardiovascular Evaluations

LBNP Temperature ^OF (Beginning-End)

SUBJECT	BR-20	BR-15	BR-8	BR+O	BR+1	BR+2
1	77.5- 78.5	71.5- 72.5	70.5- 72.0	66.5~ 69.0	67.5- 69.0	68.5- 71.0
2	78.5- 79.0	74.5- 75.4	79.5- 73.5	68.5- 69.5+	70.0- 72.5	71.0- 72.0
3	76.0~ 78.0	73.0- 74.5	74.0-	71.5- 70.0	72.5- 74.5	72.0- 73.5
4	77.5-	69.5- 70.5	69.5- 71.5	68.0- 70.0	67.5- 71.5	75 . 5- 76.0
5	79.0- 80.0+	70.5- 72.0	72.5- 73.5	71.0- 72.0	70.5- 72.0+	75.0- 76.0
6	75.2-	71.5- 73.5	72.0- 73.0+	72.0- 71.5	71.5- 74.0	73.5- 75.0

Cardiovascular Evaluations

Calf Circumference Left/Right (cm.)

SUBJECT	BR-20	BR-15	BR-8	BR+0	BR+1	BR+2	
1	34.29 34.61	34.6î 35.24	34 .93 35 . 88	33.97 33.97	34.29 34.29	34.93 34.93	
2	33 . 02 32 . 70	33.66 33.02	33.66 33.02	32.70 32.07	32.70 32.70	33.34 32.70	. S.
3	35.88 36.83	36.20 36.83	35.88 35.56	34.93 36.51	36.51 37.15	36.20 36.83	
4	33,02 32,70	33 . 34 32 . 70	33.34 33.02	32.39 31.75	32.39 31.43	32.39 32.39	
5	34.93 34.61	34.93 34.93	34.93 34.93	33.97 33.97	34.93 34.61	34.61 33.97	
6	34.29 34.61	34.61 34.93	34.61 34.93	33.34 33.66	34 . 29 34 . 61	34.29 34.93	

TABLE VII

Cardiovascular Evaluations

Leg Volume Left/Right (ml.)

SUBJECT	BR-20	BR-15	BR-8	BR+O	BR+1	BR+2
1	7274	7173	7088	7320	7511	751 7
	7661	7750	7541	7572	7744	7538
2	7516	7507	7291	7452	7316	7501
	7302	7512	7337	6990	7258	7383
3	7287	7382	7233	7394	7511	7508
	7720	7 873	7639	7478	7928	768 5
4	7079	6898	7060	6945	7123	7148
	6969	6917	6719	6611	6650	6828
5	7263	7076	6866	7034	7205	7053
	7343	7373	7104	7126	7451	7204
6	7497	7402	7549	7538	7632	781 9
	7413	7655	7593	7679	7831	7939

90

JSC - BAYLOR BED REST STUDY I CARDIOVASCULAR EVALUATIONS - HEART RATE

Subject	Test Period	BR-20	BR-15	BR - 8	Mean 🛨	SD	BR +0	BR + 1	BR +2
	c	67	66	66	66	0.6	71	73	71
1	-30	66	70	68	68	2.0	75	76	77
	-40	76	73	73	74	1.7	84	86	81
	-50	79	75	<i>7</i> 1	75	4.0	90	91	88
	R	57	58	60	58	1.5	61	69	64
	C	81	71	66	73	7.6	69	71	73
2	-30	86	70	66	74	10.6	75	72	75
	- 40	92	72	72	79	11.6	86	76	82
	-50	96	78	77	84	10.7	92	80	85
	R	76	66	63	68	6.8	63	66	71
	C		69	68	69	0.7	77	81	78
3	-30		73	78	76	3.5	91	88	88
	-40		81	89	85	5 . 7	109	96	101
	- 50		85	97	91	8.5	108	109	109
	R		62	57	60	3.5	68	76	72
	¢	71	66	66	68	2.9	72	75	69
4	-30	86	82	82	83	2.3	90	82	76
	-4 0	98	97	99	98~	1.0	113	96	88
	-50	113	113	123	116	5.8	133	113	98
	R	61	59	57	59	2.0	71	62	57
		68	67	64	66	2.1	69	69	73
5	-3 0	68	70	63	67	3.6	75	72	79
	-40	68	72	70	70	2.0	85	77	85
	-50	78	78	80	79	1.2	95	81	91
	R	61	63	56	60	3.6	68	64	69
	C	68	68	70	69	1.2	77	73	73
6	-30	68	69	71	69	1.5	83	69	72
	-40	71	68	75	71	3.5	93	73	75
	-50	75	84	80	80	4.5	102	88	82
	R	66	67	66	66	0.6	76	72	69

JSC - BAYLOR BED REST STUDY I
CARDIOVASCULAR EVALUATIONS - SYSTOLIC BLOOD PRESSURE

Subject	Test Period	BR-20	BR-15	BR - 8	Mean	± SD	BR ÷0	BR + 1	BR +2	
	c	90	97	96	94	3.8	113	106	99	
	-30	82	91	97	90	7.6	109	107	96	. •
	-40	81	92	93	89	6.7	110	104	93	
	-50	85	92	94	90	4.7	107	106	91	
	R	95	104	102	100	4.7	120	114	102	
	C	97	100	96	98	2.1	107	94	99	
2	-30	96	99	95	97	2.1	104	87	94	
	-40	89	95	91	92	3.1	99	87	90	
	-50	86	95	92	91	4.6	93	84	91	
	R	107	103	100	103	3.5	113	93	101	
	C		93	101	97	5.7	108	99	100	
3	-30		91	95	93	2.8	108	100	96	
	-40		88	97	93	6.4	101	102	95	
	-50		90	87	89	2.1	107	102	92	^ C
기가 하는 기가 있는 것이다. 보기 있는 사람들은 보기 있다.	R		92	98	95	4.2	107	104	100	D
	c	113	112	113	113	0.6	115	112	106	
4	-30	114	109	107	110 -	3.6	109	107	102	
	-40	109	105	106	107	2.1	103	107	97	
	-50	104	102	98	101	3.1	89	104	95	
	R	119	120	122	120	1.5	106	119	109	
	C.	97	98	95	97	1.5	101	93	93	
5	-30	93	98	91	94	3.6	98	91	88	
	-40	92	95	84	90	5.7	98	90	88	+ + + + + + + + + + + + + + + + + + + +
	-50	90	89	79	86	6.1	99	86	89	
		97	99	90	95	4.7	104	95	98	
	c	93	105	96	98	6.2	102	94	98	
6	-30	87	101	93	94	7.0	95	86	92	•
	-40	88	93	88	90	2.9	92	80	89	
	-50	88	94	86	89	4.2	88	85	88	
	R	97	106	99	101	4.7	102	92	88	

JSC - BAYLOR BED REST STUDY | CARDIOVASCULAR EVALUATIONS - DIASTOLIC BLOOD PRESSURE

Subject	Test Period	BR-20	BR-15	BR - 8	Mean :	± SD	BR +0	BR + 1	BR + 2
	c	52	53	57	54	2.7	62	62	56
1	-30	46	47	49	47	1.5	58	58	54
	-40	53	50	52	52	1.5	65	56	57
	-50	<i>5</i> 0	52	52	51	1.2	66	61	54
	R	58	54	56	56	2.0	72	62	64
		56	57	55	56	1.0	60	54	56
2	-30	57	60	56	58	2.1	59	51	52
	-40	58	59	56	58	1.5	63	55	52
	-50	53	59	56	56	3.0	65	55	58
	R	55	63	54	57	4.9	67	54	56
	C		53	55	54	1.4	57	68	60
3	-30		56	55	56	0.7	61	69	63
	-40		58	58	58		64	70	64
	-50		56	53	55	2.1	60	73	63
	R		50	57	54	5.0	60	66	64
	c	51	46	45	47	3.2	45	45	42
4	-30	52	47	46	. 48 -	3.2	, 44	46	43
	-40	50	48	42	47	4.2	43	46	42
	-50	50	48		49	1.4	41	49	44
	R	50	55	50	52	2.9	60	47	44
		54	57	56	56	1.5	64	62	56
5	-30	59	60	58	59	1.0	64	63	57
	-40	53	60	54	56	3.8	66	60	59
	-5 0	50	61	55	55	5.5	66	65	62
	R	58	59	55	57	2.1	66	61	62
	C	42	49	50	47	4.4	52	52	47
6	-30	43	49	52	48	4.6	53	47	51
	-40	49	46	50	48	2.1	52	46	51
	-50	48	52	52	51 49	2.3	51 57	51	50 50
	R	47	48	51	49	2.1	57	49	50

TABLE XI

JSC - BAYLOR BED REST STUDY I

Cardiovascular Evaluations - Percentage Leg Volume Increase (during Max. LBNP)

SUBJECT	BR-20	BR-15	BR - 8	MEAN ±	SD	BR + 0	BR + 1	BR +2
	1.5	1.5	2.4	1.8	0.5	2.4	1.6	1.6
2	1.0	1.4	1.8	1.4	0.4	2.4	1.9	1.6
3		2.5	1.2 *P13	1.9	0.9	3.3 *P10	3.9	2.7
	2.8	2.4	2.2	2.5	0.3	1.2 *P12	1.9	2.7
5	3.5	3.4	4.4	3.8	0.6	3.4	2.3	2.7
6	1.2	0.7	1.7	1.2	0.5	2.6	2.1	1.5

^{*} Presyncope required stopping LBNP stress at designated minute.

JSC - BAYLOR BED REST STUDY 1
GROUP MEANS (n=6) AT REST (C) AND DURING MAXIMAL (-50 mm Hg) LBNP STRESS

Measurement	Test Peri	od	BR-20	BR-15	BR - 8	MEAN :	± SD	BR + 0	BR + 1	BR + 2
HEART RATE,	C	X SD	71.0 5.8	67.8 1.9	66.7 2.1	68.5	2.6	*75.2 5.8	**73.7 4.1	**72.8 3.0
bpm	-50	X SD	88.2 16.1	85.5 14.0	88.0 19.2	87.5	15.0	103.3 16.0	93.7 14.1	92.2 9.9
SYSTOLIC · BLOOD	C	⊼ SD	98.0 8.8	100.8	99.5 7.0	99.5	6.8	107.2 6.4	99.7 7.8	99.2 4.2
PRESSURE, mm Hg	-5 0	X SD	90.6 7.7	93.7 4.7	89.3 6.7	91.0	5.2	97.2 8.5	94.5 10.5	91.0 2.5
DIASTOLIC BLOOD	C	\overline{X} SD	51.0 5.4	52.5 4.4	53.0 4.6	52.3	4.2	57.0 7.5	57.2 8.4	52.8 6.8
PRESSURE mm Hg	-50	X SD	50.2 1.8	54.7 4.9	53.6 1.8 ·	52.8	2.9	58.2 10.2	59.0 9.1	55.2 7.3
MAXIMAL LEG VOLUME CHANGE, Percentage	-50	X SD	2.0 1.1	1.9 1.0	2.3 1.1	2.1	1.0	2.6 0.8	2.3	2.1 0.6

^{*} p < 0.05 ** p < 0.02

TABLE XIII

JSC - BAYLOR BED REST STUDY I

Cardiovascular Evaluations - Heart Rate and PEP/LVET During Bed Rest

DAY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
HR, bpm PEP/LVET	72 .35	55 .33	65 .31	66 .34	63 .37		59 .32	61 .37	76 .36	65 .37	73 .32			72 .36	
HR, bpm PEP/LVET	74 .30	61 .32	72 .35	71 .33	75 .36		72 .34	62 .40	66 .36	78 .37	66 .31			.40	•
HR,bpm PEP/LVET	82 .31	73 .33		79 .32	76 .35		73 .30	73 .34	76 .35	70 .33	.32			.35	300
													•		
HR,bpm PEP/LVET	77 .34	76 .37		71 .34	68 .39	.37	.78 .35	.76 .33		73 .33	75 .38	71 .39	.37	85 .40	
HR,bpm PEP/LVET	<i>7</i> 7	71 .34		72 .34	65 .31	66 .33	68 .37	61 .32		67 .35	64 .39	65 .35	69 .35	82 .38	
HR, bpm PEP/LVET	68 .32	65 .35		66 .31	<i>57</i> .30	68 .34	68 .36	75 .32		60 .32	63 .38	60 .35	78 .38	77 .34	

JSC 14-DAY BEDREST STUDY EXERCISE STRESS TESTING

Introduction

The response to exercise stress after periods of hypokinesia at 1-g has been utilized to evaluate cardiorespiratory changes evoked by decreased physical activity (1,5). Exercise response tests also have been utilized before, during, and after space flight to study adaptative responses to that unique environment (2,3,4). While it appears that 1-g bedrest produces responses that are similar to weightlessness, no previous studies were designed specifically to match experiment 'protocols and measurement techniques.

The present study was designed to evaluate physiological changes associated with weightlessness and those occurring in response to bedrest since bedrest has been considered an analog for weightlessness.

The protocol incorporated the experimental systems designed for Skylab while using a bedrest period similar in duration to the length of Apollo missions. This papers reports results from these exercise response studies.

Methods

Six male subjects were selected for age and weight similarity to astronauts as well as for their apparent psychological suitability for bedrest studies. A brief anthropometric description of the subjects is given in Table 1. The subjects were maintained on a Skylab diet from 3 weeks prior to bedrest until 2 weeks following bedrest. Since the Apollo and the Skylab flight crews contained three men each, the subjects were divided into two groups of three men. The exercise

stress test schedules were those that we employed pre- and postflight during Skylab. Four baseline tests were obtained prior to bedrest.

The subjects were then placed in standard hospital beds and bedrested for 14 days. The subjects were free to move in the horizontal plane during bedrest but vertical mobility was restricted to permit only rising up onto one elbow or lying in the horizontal plane with the head supported by no more than two standard hospital pillows.

The subjects were stress tested immediately upon completion of bedrest (BR+0) and on the two subsequent days (BR+1 and BR+2). All subjects were tested 7 days following end of bedrest (BR+7). Two subjects (#4 and #5) were tested again 14 days post-bedrest because their heart rates remained elevated at BR+7. The experiment hardware and protocol were described in detail previously (2).

All data from the initial baseline test were omitted from statistical analyses because most subjects showed signs of anxiety reactions as evidenced by elevated heart rates and systolic blood pressures. In general, all 5-minutes of rest data from each test were used to compute means and standard deviations for each parameter. Data from the final 3-minutes at each exercise level were used to compute means for each parameter and each subject on each test day. Mean data from the last three baseline tests on each subject were lumped to determine overall groups means and standard deviations for the group pre-bedrest responses for each parameter. The paired t-test was used to evaluate statistical significance in the comparison of pre-bedrest responses with those obtained post-bedrest. This data anlysis scheme is comparable to that

used for Skylab.

Systolic time intervals (STI) were derived from simultaneous strip-chart recordings (chart speed = 100 mm per second) of the electrocardiogram, vibrocardiogram, and carotid pulse trace. Each subject was monitored continuously. Systolic time interval data were obtained between the third and fifth minute at each protocol level. Satisfactory STI's were obtained from only four subjects.

The following STI measurements were computed:

- The QS₂ interval (onset of Q-wave of ECG to the second sound of the vibrocardiogram)
- 2. LVET (left ventricular ejection time) obtained from the carotid pulse wave
- 3. PEP (pre-ejection period) = [QS2 LVET]
- 4. IVCT (isovolumetric contraction time) = [time from the first to the second sound LVET]

QS₂, LEVT, and PEP are functions of heart rate. The following regression equations obtained by Weissler et al. (6) were used to correct the STI measurements for heart rate (hr).

$$QS_{2c} = QS_2 + 2.1 \text{ hr}$$

$$LVET_c = LVET + 1.7 \text{ hr}$$

$$PEP_c = PEP + 0.4 \text{ hr}$$

The ratio PEP/LVET which has been demonstrated to be an indicator of ventricular function was also computed.

Results

Table 2 summarizes the statistically significant changes in heart rate, blood pressure, and stroke volume observed post-bedrest. Heart rates were elevated at rest and at all exercise levels immediately

following 14-days of bedrest. Diastolic blood pressure (DBP) and mean arterial pressure (MAP) were elevated at rest and at both 25% $\rm V_{02~max}$ and 50% $\rm V_{02~max}$ but not at 75% $\rm V_{02~max}$. Mean cardiac exercise stroke volume was significantly reduced immediately post-bedrest. The group mean values for all the above parameters had reverted to normal by the day following the end of bedrest.

Table 3 summarizes the group mean STI measurements made pre-bedrest and the percent changes noted immediately post-bedrest (BR+0). The immediate post-bedrest STI's indicated a slightly reduced ejection time (not statistically significant) and an increased pre-ejection period.

Discussion

Many similarities between the physiological responses to space flight and bedrest became apparent when comparing results from the present 14-day bedrest study to the Apollo postflight data reported by Rummel et al. (2,3). First and most striking is the fact that statistically significant changes observed on BR+ Φ and those observed immediately postflight (R+0) generally returned to normal within 24 hours. Resting heart rates were found to be statistically significantly elevated during both BR+O and R+O tests. Mechanical efficiency (V_{02}/V_{02} work) was unchanged for both the Apollo crewmen and the bedrest subjects. Because there were no changes in mechanical efficiency following either bedrest or space flight, it was possible to compare several other physiological parameters in terms of their relationship to heart rate. For example, oxygen pulse (V_{02}/V_{02} heart beat) was significantly reduced (p < 0.05) at a heart rate

of 160 beats/min on recovery daty (R+O) following Apollo space flights. Similarly, bedrest subjects had significantly elevated heart rates on BR+O at each protocol level implying reduced oxygen pulse values.

Heart rate was a dependent variable in Skylab where we used set work levels approximating 25%, 50%, and 75% $V_{02 \text{ max}}$ levels for each Heart rate was the controlled variable during Apollo testing. A comparison of blood pressure and cardiac output changes noted in . th studies relies upon the previously mentioned fact that no mechanical efficiency changes were seen during either study. The group mean heart rate for level three exercise on BR+O was 158.9 ± 7.4 beats/min which is similar to the 160 beats/min value attained during Apollo R+0 tests. Group mean heart rate was elevated 15 beats/min, relative to pre-bedrest, at 75% ${\rm V_{0_2~max}}$ on BR+O. The group mean heart rate at 50% ${\rm V_{0_{2max}}}$ on BR+0 was the same as that observed at 75% $V_{02~max}$ prior to bedrest (146 beats/min). The corresponding group mean systolic blood pressures (SBP) were 167 mmHG at 50% $V_{02~max}$ on BR+0 and 173 mmHg at 75% $V_{02~max}$ prior to bedrest. Based upon these data it appears that SBP was slightly reduced for a given heart rate level on BR+O relative to pre-bedrest. Apollo crewmen had substantially reduced SBP (-10%) on R+O at a heart rate of 160 beats/min. Diastolic blood pressure (DBP) was found to be reduced following the early Apollo flights (2), but apparently was unchanged following the late Apollo flights (3). Diastolic blood pressure was significantly elevated post-bedrest (BR+0) at 25% $V_{02~max}$ and at 50% $V_{02\text{max}}$. The parallel increases in SBP and DBP observed on BR+O resulted in significant increases in mean arterial pressure (MAP).

Reduced exercise stroke volume was compensated by tachycardia in both Apollo and bedrest subjects.

A reduced end-diastolic volume or decreased cardiac muscle contractility could have produced the STI changes noted on BR+O. All STI's returned to pre-bedrest values by BR+1. There is no evidence to support the premise of long term change in cardiac contractility. A change in total blood volume is the most plausible explanation for reduced left ventricular end-diastolic volume which in turn could lead to the STI changes that were observed.

In summary, there was a general correspondence between the exercise stress responses of six subjects following 14-days of bedrest and those of 27 Apollo crewmen following their 10-12 day missions. The basic protocol difference (set work levels <u>vs.</u> set heart rate levels) precluded a more rigorous comparison of most physiological parameters. In general our observations are similar to those of Hyatt <u>et al</u>. (1) and Saltin et al. (5) following their bedrest studies.

TABLE 1

Subject Number	Ht (cm)	Wt (kg)	Age (yrs)
	180	68.6	32
2	183	71.4	27
3	178	68.9	37
4	173	65.5	24
5	170	80.6	31
1	168	63.6	30
Group $\bar{X} + SD$	175.3	69.8	30,2
	<u>+</u> 6	<u>+</u> 6.0	+4.5

TABLE 2

	T			RESTING			D0	V ACTED END		
	P	RE-BEDR	EST	El	ND OF BEDRES	ST	DAY AFTER END OF BEDREST			
VARIABLE	MEAN	<u>+</u> SD	N	MEAN	PROBABILITY LEVEL	N		ROBABILITY LEVEL	N	
Sitting Heart Rate (Beats/Min)	82.0	<u>+</u> 5.4	18	98.3	P < .005	6	83.3	NS	6	
Diastolic Blood Pressure (mmHg)	63.9	<u>+</u> 8.3	17	75.0	P < .01	6	66.0	NS	6	
Mean Arterial Pressure (mmHg)	78.7	<u>+</u> 8.2	17	89.2	P ≤ .001	6	80.8	NS	6	
			EXER	CISE STR	ESS/					
Heart Rate										
(Beats/Min) @25% V _{O2} max	101.2	+4.9	18	119.3	P < .001	6	103.1	NS	6	
050% V ₀₂ max	124.2	+7.2	18	145.9	P < .001	6	128.4	NS	6	
075% V ₀₂ max	144.4	<u>+</u> 7.8	17	158.9	P < .001	4	152.2	NS	6	
Diastolic Blood Pressure (mmHg)										
@25% V ₀₂ max	58.2	<u>+</u> 7.6	17	70.0	$P \leq .02$	6	61.3	NS	6	
050% V ₀₂ max	60.9	+ 7.5	16	72.2	P <u><</u> .001	6	66.2	NS	6	
Mean Arterial Pressure (mmHg)										
@25% ऍ ₀₂ max	84.6	<u>+</u> 9.2	6	97.5	$P \leq .01$	6	89	NS	6	
@50% V _{O2} max	93.1	<u>+</u> 5.7	6	103.7	P ≤ .02	6	95.9	NS	6	
Exercise Stroke Volume (ml)	77.5	+6.4	6	64.2	P <u><</u> .01	6	71.8	NS	6	

TABLE 3

	REST		25% V ₍	O _{2 max}	50% V) _{2 max}	75% V ₍) _{2 max}
VARIABLE	PRE- BEDREST	POST- BEDREST %A	PRE- BEDREST	POST- BEDREST %Δ	PRE- BEDREST	POST- BEDREST %Δ	PRE- BEDREST	POST- BEDREST %Δ
QS _{2c}	514msec	+1%	526msec	-3%	534msec	-2%	547msec	NC
LVET _C	381msec	-2%	404msec	-15%	413msec	-3%	413msec	-3%
PEP C	135msec ³	*+1 0%	125msec	*+8%	125msec	NC	125msec	+6%
IVCT	42msec	NC	30msec	+20%	25msec	-10%	21msec	NC
PEP/LVET	0.424	+29%	0.377	+30%	0.382	+13%	0.375	+27%

^{*}Statistically significant (p < 0.05)

LEGENDS

Table 1	Anthropometric Description of Bedrest Subjects
Table 2	Group Mean Changes in Heart Rate, Blood Pressure, and Cardiac Stroke Volume Following 14-Days of Bedrest
Table 3	Systolic Time Interval Changes Following 14-Days of Bedrest

References

- 1. Hyatt, K. H., L. G. Kamenetsky and W. M. Smith. Extravascular dehydration as an etiological factor in postrecumbency orthostatism. Aero space Med. 40: 644-650, 1969.
- 2. Michel, E. L., J. A. Rummel, and C. F. Sawin. Skylab experiment M-171 "METABOLIC ACTIVITY" Results of the First Manned Mission. Acta Astronautica 2: 351-365, 1975.
- 3. Rummel, J. A., E. L. Michel and C. A. Berry. Physiological Response to Exercise after Space Flight Apollo 7 to Apollo 11. <u>Aerospace Medicine 44</u>: 235-238, 1973.
- 4. Rummel, J. A., C. F. Sawin, M. C. Buderer, D. G. Mauldin and E. L. Michel Physiological Response to Exercise After Space Flight Apollo 14 through Apollo 17. Aviat. Space Environ. Med. 46: 679-683, 1975.
- 5. Saltin, B., G. Blomquist, J. H. Mitchell, R. L. Johnson, J. K. Wilderthal, and C. B. Chapman. Response to exercise after bedrest and after training. A longitudinal study of adaptive changes in oxygen transport and body composition. Circulation 38: 1-78, 1968.
- 6. Weissler, A. M., W. S. Harris, and C. D. Schoenfeld. Bedside Techniques for the Evaluation of Ventricular Function in Man. Am. J. Cardiol. 23:577-583, 1969.

SKYLAB SIMULATION FOURTEEN-DAY BEDREST HEMATOLOGY AND IMMUNOLOGY STUDIES

Stephen L. Kimzey

The purpose of these studies was to compare the effect of a 14-day bedrest exposure on selected hematologic and immunologic parameters in healthy adult male subjects with changes observed during the Skylab flights. The tests and procedures employed were identical to those conducted as part of the Skylab M112 and M115 Experiments protocols.

Blood Sampling Schedule. Blood samples were collected from the subjects during the pre-bedrest phase, bedrest period, and post-bedrest according to the general schedule outline in Table I. This table also indicates the distribution of blood samples among the various experiments. The actual volumes of blood withdrawn and dates for sampling each group of subjects are listed in Table II.

All samples were withdrawn from the vein with the subject in a fasting state and after he had been supine for at least 15 minutes (30 minutes on days fluid compartments were to be measured). Different anticoagulants were used, depending upon the assay to be conducted; however, all samples were processed or stabilized within minutes of collection.

Methods. Standard hematologic techniques were applied for measurement of routine parameters. Red cell counts were determined using an electronic counter (Coulter) and hemoglobin spectrophotometrically using an IL Coximeter (Model 182). Total serum proteins were measured by

refractometry and protein electrophoresis by cellulose acetate strip electrophoresis. Quantitation of other plasma proteins (immunoglobulins, haptoglobin, transferrin, ceruloplasmin, alpha-2-macroglobulin, beta-1-alpha-globulin, alpha-1-acid glycoprotein, alpha-1-antitrypsin) was by the technique of electro-immuno-diffusion (Gill, et al., 1971).

Shape classification of erythrocytes by scanning electron microscopy was by the technique of Kimzey, et al. (1974). The red cell potassium content and flux into erythrocytes were determined by flame photometry and isotope (86Rb) exchange (Larkin and Kimzey, 1972).

Routine Hematology. The routine hematology data are summarized in Tables III - VIII. All of the changes noted during the bedrest and post-bedrest periods are associated with the changing states of plasma volume and red cell mass. The hemoglobin concentration was elevated in four of the six subjects during the bedrest, and decreased rapidly in all six immediately post-bedrest (Figure 1). These results are similar to those observed in Skylab 3 and 4 (Kimzey, 1975) except that the increase in hemoglobin concentration following exposure to weightlessness was more pronounced than observed in this bedrest study. In spite of the decline in red cell mass reported during the bedrest (Johnson, 1975), the reticulocyte count showed no consistent pattern throughout the study (Figure 2). The absolute reticulocyte count and reticulocyte index also remained within the pre-bedrest limits for each subject.

No changes were noted in the white blood cell count or differential, or in the platelet count during the study.

Special Hematology. Classification of red cell shapes by scanning electron microscopy demonstrated no significant alterations in the distribution of erythrocyte shapes during this study (Table IX). Changes in red cell shape distributions have been observed previously during the Skylab flights. However, most of the changes appeared to be related to mission duration, and were significant only after 28 days in space. Therefore, a 2-week bedrest exposure might not be sufficient time for any changes to become significant.

These studies would seem to indicate that during 14 days of bedrest, there were no significant alterations in the hematological parameters discussed above, except those associated with variations in red cell mass and/or plasma volume.

Immunology Studies. The humoral immunology data are summarized in Tables XI-XVI. There were individual variations in the concentration of serum proteins and particularly albumin, but no consistent trend was evident. The changes noted were most likely the result of variations in plasma volume during the bedrest and post-bedrest period.

Haptoglobin, ceruloplasmin, and A2-macroglobulin did not change.

However, there was a slight decrease in transferrin in 4 of 6 subjects during the bedrest period. The cause and significance of this observation. are unknown at this time.

Thus it would appear that there were no consistent abnormalities' relative to the humoral immune system as a result of exposure to bedrest for 14 days. There was a slight depression in the transferrin levels which cannot be explained at the present time. These patterns are consistent with the results of Apollo and Skylab, where individual variations

Sie "

in plasma proteins were observed (particularly in Apollo where haptoglobin and alpha-2-macroglobin were frequently elevated postflight), but there were no indications to suggest that the humoral immune system's functional capacity reacted to or was compromised by the weightless environment.

Summary

The results of the studies of selected hematologic and immunologic parameters during a relatively short (14-day) bedrest exposure suggest no significant changes, except those related to vascular fluid shifts. These data are comparable to those from other bedrest studies of the same duration. All of the changes reported in the Skylab experiment resulted from exposure of 2 to 6 times the duration of this test. It is possible that a bedrest exposure of longer duration would also cause red cell morphological and functional alterations similar to those characteristic of space flight. It is also conceivable that the "simulated" weightlessness of bedrest does not result in the same stresses as the weightlessness of space flight.

Table I

BLOOD SAMPLING SCHEDULE
SKYLAB SIMULATION BEDREST STUDY

Sample Day		Pre-Be	drest		Bedr	est	P	ost-	Bedr	est	
Experiment	30	21 20	7	1	2	7 13	0.	1	3	7	14
M071 Biochemistry Studies	15	15	15	15			15	15	15		15
M073 Endocrinology Study	25	25	25	25			25	25	25		25
M112 Immunology Studies	10	10		10			10		10	10	
M113 Blood Volume Studies		20* 10	10	10			20*	10	10	10	10
M115 Hematology Studies	15	15 5	15	15			15	15	5	15	15
Total Volume ml/man/day	65	. 85 , 15	65	75	15	15 30*	85	65	65	35	65
Total Volume ml/man/period		305	•			60		•	315		

^{*}Radioisotope Studies

Table IA

Table II

120
SKYLAB SIMULATION BEDREST STUDY I

BLOOD SAMPLE SCHEDULE

MISSION DAY	BLOOD SAMPLE . VOLUME	SUBJECTS 1-3 DRAW DATE	SUBJECTS 4-6 DRAW DATE
F-30	62	23 April	23 April
F-21	93	2 May	2 May
F-20	5	3 May	3 May
F-7	70	9 May	9 May
F-1	· <u>75</u>	19 May	22 May
TOTAL	305		
BR2	30	21 May	24 May
BR8	20	27 May	30 May
BR14	35_	2 June	5 June
TOTAL	85		
R+0	90	3 June	6 June
R+1	50	4 June	7 June
R+3	80	6 June	9 June
R+6	40	9 June	12 June
R+13	_60_	16 June	19 June
TOTAL	320		

Table III HEMATOLOGY SUMMARY DATĄ.

SUBJECT NO. 1	PREBEDREST . MEAN S.D.		BED Mean	REST . S.D.	R+O	R+1	POST BEDREST R+1 R+3 R+6		
	4.43	0.13	4.80	0.27	4.72	4.56	4.25	4.33	R+13 4.41
RBC Retic	1.1	0.3	1.0	0.2	1.0	0.6	0.8	1.2	2.0
НЬ	13.0	0.4	14.2	14.0	14.2	14.0	12.9	12.2	12.7
Hct	39.7	1.3	43.3	2.1	43	41	38	38	39
WBC	4815	221	5333	153	5500	6100	5300	4700	5600
Neut	2035	177	2669	335	3080	2867	2226	2256	3248
Lymph	2483	245	2272	372	2090	2806	2809	2209	2016

Table IV
HEMATOLOGY SUMMARY DATA

SUBJECT			REST						
NO. 2	MEAN	<u>s.D.</u>	<u>MEAN</u>	<u>'S.D.</u>	<u>R+0</u>	R+1	R+3	R+6	R+13
RBC	4.53	0.15	4.75	0.13	4.66	4.59	4.25	4.67	4.60
Retic	1.5	0.3	2.1	0.2	1.2	1.2	0.9	1.9	1.2
НЬ	14.4	0.4	15.1	0.4	14.8	14.4	13.8	14.6	14.4
Hct	41.9	1.0	44.3	7.7	44.	41	41	43.5	42
WBC	5100	294	5200	200	4300	3700	4200	5300	5000
Neut	3087	455	2947	433	1978	1813	2394	2756	2400
Lymph	1812	384	2027	320	2193	1776	1638	2385	2450

Table V
HEMATOLOGY SUMMARY DATA ...

SUBJECT	PREBE	DREST -	BED	REST .		POST BEDREST						
NO. 3	MEAN	S.D.	MEAN	<u>`S,D.</u>	R+0	R+1	R+3	R+6	R+13			
RBC	4.83	0.20	5.03	0.02	4.94	4.70	4.53	4.53	4.48			
Retic	0.7	0.2	0.7	0.1	0.8	1.0	1.6	0.8	0.9			
НЬ	15.4	0.4	15.7	0.2	15.6	15.0	14.3	14.4	13.8			
Hct	46.0	0.7	47.3	0.6	46	44	42	42.5	41			
WBC	8150	311	8166	569	7700	10000	9700	8300	7400			
Neut	4313	440	3952	312	3619	4200	4656	5229	3922			
Lymph	3590	454	3719	714	3388	5300	4850	2739	3330			

<u>د.</u>

Table VI HEMATOLOGY SUMMARY DATA

SUBJECT	PREBEDREST		BEDREST							
NO. 4	MEAN	<u>S.D.</u>	MEAN	<u>`S.D.</u>		<u>R+0</u>	R+1	R+3	R+6	R+13
RBC ,	4.99	0.18	4.87	0.30		4.88	4.69	4.57	4.60	4.59
Retic	1.1	0.4	1.0	0.1		0.8	1.0	1.5	1.2	1.2
НЬ	15.1	0.4	15.0	0.4		14.9	13.9	14.0	13.3	13.5
Hct	44.5	1.3	45.2	0.8		45	42	42	41	41
WBC	6050	656	6167	404		6400	6600	4700	5800	5400
Neut	4064	606	3823	316		3456	4290	2820	3538	2916
Lymph	1819	194	2075	254		2688	2046	1692	1914	2322

124

Table VII
HEMATOLOGY SUMMARY DATA

SUBJECT PREBEDREST			REST			POST BEDREST			
NO. 5	MEAN	<u>S.D.</u>	MEAN	<u>s.p.</u>	<u>R+0</u>	R+1	R+3	R+6	R+13
RB ¢	4.92	0.21	4.69	0.34	4.86	4.53	4.41	4.55	4.42
Retic	1.0	0.1	1.6	0.4	1.3	1.5	1.5	1.5	2.1
НЬ	14.2	0.5	14.3	0.1	14.1	13.1	13.0	13.1	12.8
Hct	42.1	0.8	42.3	0.6	43	38	38	39	39
WBC	4500	216	5000	458	5400	5500	5300	5500	4600
Neut	2387	552	2692	434	2754	2970	2650	2860	1610
Lymph	1607	367	2113	417	2106	1925	2279	2310	2484

125

Table VIII HEMATOLOGY SUMMARY DATA ...

SUBJECT				BEDREST MEAN 'S,D.				POST BEDREST R+0 R+1 R+3 R+6					
RBC	4.48	0.18	4.90	0.07		4.86	4.39	4.30	4.29	4.28			
Retic	0.7	0.1	1.1	0.3		1.0	1.2	1.2	1.5	1.1			
НЬ	13.2	0.3	14.2	0.1		13.9	12.9	12.5	12.3	12.3			
Hct	39.0	0.0	41.3	0.6		41	38	37	36	37			
WBC	4200	216	5000	436		5100	5300	5200	4500	4200			
Neut	1798	162	2251	340		2397	2597	2912	1845	1512			
Lymph	- 2268	117	2554	327		2550	2544	2132	2520	2604			

Table IX
RED BLOOD CELL CLASSIFICATION

	PREBED Mean	REST S.D.	BEDRI Mean	EST S.D.	POST BEDREST Mean S.D.		
Discocyte	82.52	5.52	73.86	6.75	72.92	7.55	
Knizocyte	2.70	1.41	2.83	2.45	3.97	2.16	
Stomatocy te	3.63	2.21	5,,17	2.99	4.14	3.11	
Spherocyte	7.86	4.82	10.86	4.69	11.68	5.00	
Codocyte	0.53	0.83	1.53	1.76	1.64	2.08	
Echinocyte	. 2.10	1.29	4.22	3.17	4.28	2.42	

Table X ...

	PREBE	DREST	POST BE	DREST
	Mean	S.D.	Mean	S.D.
Total (Meq/L RBC/Hr)	1.88	0.35	1.89	0.48
Ouabain-Insensitive (Meq/L RBC/Hr)	0.53	0.13	0.45	0.06
Active (Meq/L RBC/Hr)	1.36	0.40	1.46	0.50
RBC K (Meq/L RBC)	101.00	6.13	99.91	3.85
Sërum K (Meq/L)	4.19	0.25	4.19	0.22

Table XI
IMMUNOLOGY SUMMARY DATA ...

Subject	PREBEDREST		BEI	BEDREST		POST BEDREST				
No. 1	Mean	S.D.	Mean	S.D.	R+0	R+3	R+6	R+13		
Protein	6.5	0	6.73	0.30	6.7	6.1	6.2	6.5		
Albumin Al-M A2-M B-M G-M	4.13 0.20 0.50 0.63 1.0	0.11 .00 0 .05 .05	4.06 0.20 0.53 0.63 1.3	0.32 .00 .05 .05	3.6 0.3 0.6 0.9 1.3	3.7 0.2 0.5 0.7 1.0	3.8 0.2 0.4 0.7 1.1	3.2 0.3 0.7 0.8 1.5		
Transferin Haptoglobin Ceruloplasmin A2-Macro • .	357.66 103.33 27.00 111.66	12.5 2.3 2.6 8.0	296.33 112.33 34.33 121.33	57.35 10.01 2.88 30.28	273 96 32 135	258 97 25 146	249 106 25 139	311 110 28 125		
Immunoglobin IgA IgG IgM IgD	137.00 1197.00 111.66. 6.0	7.81 19.07 9.29 0	132.00 1061.00 113.33 6.33	10.58 83.13 16.50 0.577	146 1219 135 5	142 1197 133 6	159 1175 139 6	143 1231 126 7		

Table XII
IMMUNOLOGY SUMMARY DATA.

	PREBEDREST		BED	BEDREST		POST BEDREST				
Subject No. 2	Mean	S.D.	Mean	S.D.	R+0	R+3	R+6	R+13		
Protein `	7.16	0.05	7.0	0.15	7.1	6.6	7.3	6.9		
Albumin Al-M A2-M B-M G-M	4.50 0.23 0.56 0.70 1.16	0 0.05 0.05 0 0.05	4.23 0.20 0.56 0.66 1.40	0.15 .00 0.05 0.05	4.1 0.3 0.6 0.9 1.3	4.3 0.2 0.4 0.6 1.1	4.6 0.2 0.5 0.7 1.3	3.7 0.3 0.6 0.8 1.5		
Transferin Haptoglobin Ceruloplasmin A2-Macro:	320.33 100.33 24.66 121.66	2.30 8.14 1.15 15.30	254.66 102.00 31.00 122.33	37.31 0 5.56 32.80	273 94 30 123	266 102 29 143	261 106 30 146	228 91 27 133		
Immunoglobin IgA IgG IgM IgD	153.33 1138.00 103.66 5.66	5.13 25.12 4.04 0.57	167.66 1005.33 99.33 5.0	24.58 33.60 3.51 0	199 1165 121 6	175 1242 121 5	159 1331 139 5	149 1109 130 5		

Table XIII
IMMUNOLOGY SUMMARY DATA

Subject No. 3	PREBEDREST		BEDREST		•	POST BEDREST			
	Mean	S.D.	, Mean ,	S.D.	R+0	R+3	R+6	R+13	
Protein	7.03	0.20	7.16	0.05	7.1	6.6	6.7	6.6	
Albumin Al-M	4.43 0.26	0.11 0.05	4.33 0.26	0.15 0.05	4.2 0.3	4.4 0.2	4.2 0.2	3.8 0.3	
A2-M B-M	0.60 0.83	0 0.05	0.60 0.70	0.09	0.7 0.8	0.5 0.7	0.5 0.8	0.6 0.8	
G-M	0.90	.00	1.26	0.05	1.1	0.8	1.0	1.1	
Transferin Haptoglobin	323.00 121.00	17.69 1.73	275.00 125.66	47.50 20.55	266 106	274 104	257 121	212 124	
Ceruloplasmin A2-Macro:	24.00 104.33	3.46 3.51	37.66 113.00	4.04 17.34	30 146	25 150	30 145	32 133	
Immunoglobin									
IgA IgG	147.33 1058.33	5.68 33.29	158.66 939.00	24.94 45.03	146 1219	142 1264	132 1219	133 932	
IgM IgD	107.66. 5.33	3,51 0.57	97.0 5.0	6.0 0	114 6	111 5	132 5	111 5	

Table XIV

IMMUNOLOGY SUMMARY DATA ...

	PREBEDREST		BEDREST			POST BEDREST		
Subject No. 4	Mean	S.D.	. Mean .	S.D.	R+0	R+3	R+6	R+13
Protein	7.2	0.11	7.26	0.11	6.9	6.6	6.8	6.6
Albumin Al-M A2-M B-M G-M	4.43 0.23 0.63 0.80 1.13	0.28 0.05 0.05 0.00 0.00	4.36 0.23 0.60 0.70 1.36	0.20 0.05 0.10 0 0.05	4.6 0.2 0.5 0.7 0.9	4.3 0.2 0.5 0.7 0.9	4.5 0.2 0.5 0.7 0.9	3.8 0.3 0.6 0.8 1.1
Transferin Haptoglobin Ceruloplasmin A2-Macro •.	347.66 112.00 22.66 128.66	12.58 2.00 1.52 9.07	248.33 137.66 30.33 113.00	19.13 4.61 0.577 17.57	312 118 24 136	283 122 27 120	283 136 26 132	190 147 30 132
Immunoglobin IgA IgG IgM IgD	170.00 1186.0 118.33 6.66	8.54 33.00 2.51 0.57	207.66 987.00 95.66 5.0	16.19 68.69 11.59 0	166 1131 125 5	. 156 1098 114 5	176 1109 104 5	199 1131 120 6

Table XV

IMMUNOLOGY SUMMARY DATA --

	PREBEDREST		BEI	BEDREST		POST BEDREST			
Subject No. 5	Mean	S.D.	Mean	S.D.	R+0	R+3	R+6	R+13	
Protein	6.93	0.15	6.76	0.11	6.5	6.4	6.6	6.3	
Albumin Al-M A2-M B-M G-M	4.26 0.23 0.60 0.76 1.0	0.3 0.05 0.10 0.05 0.11	4.03 0.20 0.56 0.70 1.26	0.25 .00 .05 0 0.11	4.2 0.2 0.5 0.7 0.9	4.1 0.2 0.5 0.7 0.9	4.2 0.2 0.6 0.7 0.9	3.6 0.2 0.6 0.8 1.1	
Transferin Haptoglobin Ceruloplasmin A2-Macro •.	321.66 136.00 21.33 156.33	4.61 5.29 0.577 10.50	287.66 132.66 30.33 121.66	30.85 12.89 2.88 21.12	281 104 28 139	291 106 26 117	311 115 30 113	228 137 31 126	
Immunoglobin IgA IgG IgM IgD	156.0 1123.66 126.33 7.0	6.0 25.40 7.63 0	188.0 961.0 92.33 6.0	34.82 128.17 6.42 0	149 1109 140 5	143 1109 123 5	156 1064 127 5	133 932 102 5	

<u>ب</u>

Table XVI
IMMUNOLOGY SUMMARY DATA

	PREBEI	DREST	BEDREST			POST BEDREST			· <u>···</u>
Subject No. 6	Mean	S.D.	Mean	S.D.		R+0	R+3	R+6	R+13
Protein	7.13	0.15	7.43	0.11		7.1	6.8	7	6.7
Âlbumin	4.36	0.25	4.26	0.05		4.5	4.2	4.2	3.8
A1-M	0.20	.00	0.23	0.05		0.2	0.2 0.5	0.2	0.3 0.6
A2-M	0.60 0.80	0.10 0.10	0.66 0.90	0.05 .00		0.5 0.8	0.5	0.7 0.9	0.8
B-M G-M	1.16	0.10	1.36	0.05		1.1	1	1	1.2
Transferin	356.00	6.55	339.33	30.59		342	358	335	327
Haptoglobin	130.66	4.16	135.00	11.35		122	138	139、	143
Ceruloplasmin A2-Macro •	26.00 134.33	1.73 7.57	34.33 113.00	4.93 17.57		28 132	25 136	30 136	· 114
Immunoglobin									
IgA	173.66	6.80	158.00	43.86		175	166	159	143
IgG	1042.00	19.06	990.66	111.72		1042	998	1219	1153
IgM	114.00	2.64	95.0	6.92		135	132	128	119
IgD	8.66	0.57	9.0	0		7	6	. 7	8

135 SKYLAB SIMULATION

Cellular Immune Response of Six Healthy

Subjects during Fourteen Days of Bedrest

B. Sue Criswell

Introduction:

The cellular immune response of six volunteers was studied before and after 14 days of bedrest. The findings from this study are to be correlated in the future with lymphocytic changes noted during the Skylab spaceflight. Briefly, the functional capacity of lymphocytes at splashdown of Skylab III and IV was depressed along with a suppression in the T lymphocyte numbers. No such changes were noted following bedrest for a 14 day period.

Methods and Materials:

Samples of heparinized peripheral venous blood (10 cc) were obtained and processed within 1 hr of collection. Before separation, total leukocyte (WBC) counts were performed using a hemacytometer and/or a Coulter Counter and differential counts were determined using slide preparations stained with Wright's Stain.

Lymphocyte Preparation:

FicoII-Isopaque gradients. Lymphocytes were also separated by FicoII-Isopaque gradient centrifugation according to the method of Boyum (1968). Cells in the resulting suspension of mononuclear cells were washed 3 times in MEM and then adjusted to a final concentration of 1×10^6 per ml.

Lymphocyte classification:

B lymphocyte distributions were determined by enumerating the percent of 200 mononuclear cells with surface immunoglobulins detected by immunofluorescent antibody technique described previously (DeFazio et al., 1975).

E rosette forming lymphocytes (T cells) were determined by the method of Jondahl et al. (1972). One x 10^6 lymphocytes were mixed in 0.25 ml MEM and added to 0.25 ml of a 0.5% sheep red blood cell (SRBC) suspension. After mixing, the tubes were incubated at 37° C for 5 min, then centrifuged at 500 g for 3 min, and incubated in ice water for 2 hrs. Approximately half of the supernatant was removed and the top layer of cells gently resuspended, 200 lymphocytes were counted with 3 or more adhering SRBC used as criteria for E rosetted lymphocyte.

Lymphocyte responsiveness in micro-culture to PHA, Pokeweed (PW), and Concanavalin A (Con A):

Purified lymphocytes (1 x $10^5/\text{ml}$) in minimum essential medium (MEM) containing 40% fetal calf serum (FCS) were placed in culture plates, and the antigens were diluted in MEM containing Pen-Strep and L-glutamine in the following concentrations: PHA - 0.01 ml/ml MEM, PWM - 0.01 ml and 0.05 ml/ml MEM, Con A - 25 μ g and 50 μ g/ml MEM. The diluted antigens in (0.1 ml) aliquots in duplicate

were placed in the appropriate well. The cultures were incubated in a humidified CO_2 atmosphere at $37^{\circ}C$ for 3 days for PHA and 5 days for Con A and PWM. On the day of harvest, samples were treated as described below for the influenza virus antigen cultures.

Lymphocyte responsiveness to influenza virus antigen by thymidine incorporation:

An inactivated monovalent type A influenza virus vaccine containing 1600 CCA units per ml of a Hong Kong strain (H3N2) was dialyzed against phosphate-buffered saline (PBS) and stored at -70°C until used for tests. Separated lymphocytes were added in 0.1 ml aliquots in triplicate for each dilution of influenza antigen and the cultures incubated in a humidified CO_2 incubator at $37^{\circ}C$ for 1, 2, or 3 days. On the day of harvest, the cells were pulsed for 2 hours with 1 mCi of methyl ³H-thymidine and then harvested with the MASH II automated harvester (Microbiological Associates, Bethesda, Maryland) onto glass fiber filter strips and then counted in a liquid scintillation counter (Packard Instruments, Downer's Grove, Illinois). Data were expressed as counts per minute (CPM) per 10⁶ lymphocytes, and the stimulated index (SI) was calculated by dividing the mean result for stimulated cultures by that for the unstimulated cultures. Allantoic fluid was used separately as a control on reactivity of each individual to chick embryo proteins.

Results:

White blood cell quantitation:

Figure 1 shows the mean and one standard deviation of the white blood cell count on each perspective day pre and post-bedrest.

No significant change was found on any occasion.

Lymphocyte classification:

Figure 2 shows the response of the total lymphocytic population in the peripheral blood. As seen, no changes occurred.

Figure 3 displays the results of the B lymphocytes which show fluctions during the bedrest period. Though still within the normal ranges for B cells (range 1.97-7.91) changes occurred the day prior to going to bed.

Figure 4 shows the T lymphocyte counts which did not change during the bedrest period.

Lymphocyte responsiveness in culture to PHA, PW, and Con A:

Table 1 shows the culture findings for the nonspecific mitogens. The stimulation indexes for all mitogens dropped at D + O and following the start of bedrest. PHA and Con A cultures showed the most ρ_{WM} significant changes with ρ_{WM} cultures returning very rapidly to baseline levels. Even at the reduced levels of stimulation, however, these indexes still fall within normal ranges of stimulation.

Influenza virus antigen stimulation:

Two of the six volunteers responded to influenza virus antigen in cultures. These two subjects were positive on two separate days. Since this antigen is quite variable in response patterns even in known and diagnosed influenza illnesses, changes or losses in reactivity are not significant. Total lack of reactivity may reflect influenza susceptibility.

Discussion:

No statistically significant changes were found as a result of 14 days of bedrest in the cellular immune system of the six individuals. Trends were seen in the stimulation indexes toward a decrease in reactivity; however because of the rapid exchange of cells between different compartments in the body variation in the indexes may be expected.

It has been noted during spaceflight in Skylab IV that PHA responsiveness of lymphocytes was extremely depressed on splashdown. If bedrest is a simulation of zero gravity conditions, one might theorize that since no significant changes occurred in bedrest, then zero gravity may not have been the cause of the earlier lymphocytic changes. On the other hand, time in bed as time in space may be the important factor in initiating changes since both Skylab III and IV were longer than 14 days in duration.

142

Summary:

No significant changes occurred during 14 days of bedrest in the cellular immune response of 6 normal male volunteers.

Perameters studied were WBC concentrations, lymphocyte numbers,

B and T lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed, Concanavalin C, and Influenza virus antigen.

Table 1
Stimulation Indexes for Mitogens

Days of Analyses	PHA	PW-1 (0.01 ml/ml MEM)	PW-2 (0.05 ml/ml MEM	Con-A-1 (25 µg/ml MEM)	Con A÷2 (50 µg/ml MEM
Pre-bedrest	•	•			
D-30	64 <u>+</u> 23	30 <u>+</u> 23	37 <u>+</u> 23	117 + 47	59 <u>+</u> 48
D-15	74 <u>+</u> 31	36 <u>+</u> 15	23 <u>+</u> 15	52 <u>+</u> 30	59 <u>+</u> 24
D-1	25 <u>+</u> 25	79 <u>+</u> 64	19 <u>+</u> 25	56 <u>+</u> 32	98 <u>+</u> 112
Post-bedrest					
D+0	25 <u>+</u> 20	17 <u>+</u> 12	15 <u>+</u> 10	16 <u>+</u> 12	6 <u>+</u> 6
D+3	22 <u>+</u> 12	49 <u>+</u> 22	23 <u>+</u> 8	14 <u>+</u> 10	9 <u>+</u> 5
D+6	12 + 13	24 <u>+</u> 10	21 <u>+</u> 10	6 <u>+</u> 7	5 <u>+</u> 4

Fig. 4.

14 DAY BEDREST STUDY MEAN T LYMPHOCYTES (N=6)

Bibliography:

- Boyum, A.: 1968. Separation of leucocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. Suppl. V 21: 96
- DeFazio, S., B.S. Criswell, M.A. South, S.L. Kimzey and
 J. R. Montgomery: 1975. A paraprotein in severe combined
 immunodeficiency disease detected by immunoelectrophoretic analyses
 of plasma. Clin. exp. Immunol. 19: 563-570.
- Jondahl, M., G. Holm, and H. Wigzell: 1972. Surface markers
 on human T and B lymphocytes. 1. A large population of lymphocytes
 forming non-immune rosettes with SRBC. J. Exp. Med. <u>136</u>:
 207-215.

RED CELL MASS AND BODY VOLUME CHANGES AFTER 14 DAYS OF BEDREST

Philip C. Johnson, M.D. and Theda Driscoll Baylor College of Medicine Houston, Texas

When weighed postlanding, crew members of every spaceflight have lost body weight during their mission. Inflight
measurement of crew members' body masses during Skylab indicates that the weight loss occurs relatively early. Space
and volume studies of Apollo and Skylab crew members which
compare premission values with postmission values indicate
that the weight loss is both a loss of intracellular and
extracellular fluid. These crewmen also showed a disproportionate loss of red cell mass for the plasma volume lost. (1,2)
The mean values from the Apollo crews 14-17 are a typical
demonstration of this phenomena (Table 9).

Happily these changes are reversed during a relatively short postmission recovery period, although residual changes may last a month or more. Further study of this fluid and tissue loss should help determine if counter measures are indicated for future flights; and from these studies, the physiology of these rapid changes in fluid volume might be determined.

The most readily available biological simulation of a period of weightless flight appears to be a period of bedrest in which the subjects are not allowed to stand upright during

į

the study period. Bedrest reproduces many of the cardiovascular changes found in returning crew members, and it seems to reproduce the calcium loss associated with spaceflight.

A two-week bedrest (BR) study has been completed which attempted to reproduce most of the testing conditions of Skylab and the last Apollo mission. While this study did not reproduce many mission stresses experienced by the crews, it did faithfully follow pre- and postflight medical testing profiles so that direct comparison of the bedrest study results can be made with the medical results from the Skylab and Apollo missions.

METHODS

A brief history and physical for each of the six subjects and a description of the general experimental design are given in the introduction. The food intake was designed to maintain body weight. Total daily calories exceeded those consumed by the crew members of many Apollo missions but were not greater than the caloric intake of Skylab crew members. Electrolyte intake was regulated as in Skylab producing a metabolic balance study.

Table 1 contains a listing of the radionuclides used for these space and volume studies, the dose administered and the radiation exposure produced. Table 2 gives the study day each test was performed. The schedule in Table 2 was designed to reproduce the protocol used for the Skylab crew members. The

technics for radionuclide determinations have been described previously. (2) The exact blood sampling schedule and the amounts of blood drawn are shown in Table II of Dr. Kimzey's (M110) hematology report. Shown in Tables 3 and 4 are the results of the space and volume determinations made on the bedrested subjects. At the end of the bedrest study the total body water (TBW), extracellular fluid (ECF) and iron turnover doses were given on the 13th day in the morning (7:00 AM) with the subjects fasting. The subjects remained at bedrest for 24 more hours before the start of the medical testing which included red cell mass (RCM), plasma volume (PV) and total body exchangeable potassium (TBEK). Additional details of these studies are available in Dr. Leach's report since the space and volume studies are an integral part of MO70.

At the completion of an Apollo or Skylab mission, blood was drawn at recovery after greeting ceremonies on deck for the returning crew members. The crew members had been awake for 8-12 hours performing reentry and recovery chores. They generally had eaten breakfast 4-9 hours before the testing. The crew members remained quietly recumbent for 30 minutes before the volume and space studies and for the 30 minute equilibrium time of the PV, RCM and ECF. After these measurements, the crew members were allowed to be up and about and to begin lower body negative pressure (LBNP) and bicycle ergometry. The doses for TBW and TBEK were given at the same time as the other radionuclides but require 4-6 hours for TBW and 24-48

hours for TBEK prior to equilibrium.

The major difference between the space and volume studies postbedrest from those postspaceflight is the amount of stress the men were subjected to. The PV and RCM were determined for the bedrested subjects immediately upon awakening after an overnight sleep and the equilibrium period for the TBW, ECF and iron turnover did not include the vascular stresses of upright posture, LBNP and bicycle ergometry.

RESULTS

Tables 3 through 6 show the results of the space and volume studies. Tables 7 and 8 show the percent change for each subject and the mean percent change during the study. Percent change in these studies is defined as the change in the value compared to the control value 21 days prior to bedrest.

At the end of bedrest red cell mass had decreased 4.9%. This was less than the 6.9% decrease in plasma volume. Extracellular fluid mean decrease was 1.3%. All other values including weight showed less than a 1% change. Only the red cell mass and plasma volume changes are statistically different from zero. It can be seen that red cell mass continued to decrease during the first two weeks of ambulation. This is in contrast to the plasma volume which increased during that

period. By 48 days postbedrest plasma volume had returned to the prebedrest value while the red cell mass had increased to above the initial value.

Table 9 compares these mean percent changes with the mean percent changes obtained for the crew members of some Apollo missions. There are significant differences between the two situations with the greater change associated with spaceflight.

DISCUSSION

This bedrest study which lasted 14 days was designed to partially simulate conditions associated with the Skylab missions. Some differences between bedrest and spaceflight are obvious such as the lack of weightlessness and acceleration stress in bedrest. The similarities include the Skylab diet, electrolyte intake, metabolic balance conditions, and similar pre- and postmission medical studies. There are other not so obvious differences. For example, no planned exercise was performed during bedrest so that the work load of mission activities was not simulated. The hypobaric atmosphere of Apollo and Skylab was not simulated nor was the hyperoxic atmosphere of the Apollo command module. The beginning of bedrest is not associated with the stomach awareness and nausea felt during the first few days of weightless flight. Therefore, voluntary caloric restriction did not occur during

the first few days of the bedrest study, while caloric restriction is a constant feature of a crewman's early response to spaceflight.

The bedrest study did not attempt to change the circadian rhythms of the subjects while most space missions are required to change the day-night cycle to guarantee favorable landing conditions at the end of the mission. In general, the subjects were one decade younger than the astronauts. Otherwise they were of similar size and relative weight.

Spaceflight obviously causes a loss of body tissues as is shown by the decrease in weight, TBW, ECF, PV and RCM of the crew members. (1) The decrease in total body water is too large to be accounted for by only the extracellular fluid loss. The 2.7% decrease in ECF would account for only a 1% decrease in TBW or about one-third of the measured loss. This occurs even though the diet is adequate as far as the crew members are concerned. No evidence of tissue loss other than the red cell mass was noted in the subjects of this bedrest study. These findings are consistent with other bedrest studies which show that weight loss does not occur generally. Some bedrest studies have used exercise programs during the period of bedrest. It is probable however that the caloric cost of these inbed exercise regimes is considerably below the caloric cost of spaceflight activities.

The cause of the red cell mass loss of spaceflight is still unknown. The loss in Skylab approximated that of Apollo with a mean red cell mass loss of ll.1 ±1.7%. (2) However, the various Skylab missions differed considerably with the least RCM change found after the longest mission. Red cell mass had not been determined often after bedrest using a red cell tracer so the evidence that bedrest causes a red cell mass decrease is scanty. (3-5) Morse in a study of Air Force volunteers found a mean RCM decrease of 9.3% at the end of 35 days of bedrest and a loss 1/3 that large after a 24-day bedrest. (3) Saltin found a 6.2% decrease in red cell mass in subjects bedrested for 20 days. (5) In a 6-day bedrest study we found a 2.4% mean decrease in red cell mass. These means are consistently less than the mean change after spaceflight.

SMEAT, a 56-day project including a 5 psi atmosphere, was designed to reproduce the environment of Skylab, but it did not include weightlessness or bedrest. The three crew members performed the same type of studies and with the same equipment used in Skylab. Red cell mass loss of 2.7±0.4% occurred with mean weight loss of 3.7 ±2.0%.

In this study the mean red cell mass decrease was greater 13 days after bedrest (-6.5%) than it was at the end of bedrest (-4.9%). It has been noted by others that the exercise

during the postbedrest period causes a further decrease in red cell mass. (7) It has been postulated that red cells are regularly destroyed during exercise. Presumably the lack of exercise during bedrest conserves fragile red cells which are more vulnerable to destruction during the early ambulation period. Additional decreases in red cell mass have not been found during the first two weeks following return of the astronauts. (2,8) Whether this indicates that a different process is operable in the spaceflight induced red cell mass loss with exercise during flight being great enough to destroy vulnerable cells, or whether an additional decrease in red cell mass occurred between the ocean landing and the time when the red cell mass was measured as it did when we ambulated these bedrested subjects is unknown since the time course of the observed spaceflight red cell mass decrease is unknown.

While the red cell mass decrease in bedrest seems less than that of spaceflight, this is not true of plasma volume. Generally, plasma volume decreases 10% after several days of bedrest and continues to decrease slowly thereafter to plateau at about -20%. (9) The 6.9% decrease found in this study while less than that found in many other bedrest studies is still greater than the 4.4% mean decrease of the Apollo crew members. (8) Aldosterone, a known plasma volume expander, is generally higher during spaceflight than before the premission control

period and also higher during the mission than in bedrest. The Skylab diet has a high salt content. Either factor may have affected the plasma volume by counteracting bedrest type decreases during the spaceflight. Dr. Leach has found that unlike some other bedrest studies, aldosterone levels in the subjects' plasma and urine during the bedrest period was higher than it was during the control prebedrest period. The higher aldosterone levels may have prevented even greater drops in plasma volume.

Another reason plasma volume does not show a greater decrease during spaceflight could be a result of the low atmospheric pressure of the Skylab and Apollo environment. The low gas pressure would impede body heat loss by convection. In SMEAT, the Skylab simulation, mean plasma volume increased 2.8% probably reflecting the heat loss difference between 5 and 15 psi. (6) The 2.8% increase subtracted from the mean decrease of Apollo would produce a 7.2% loss which more closely approaches the predicted 10% decrease of similar time periods at bedrest and very closely approximates the 6.9% decrease found in this study.

TBW and TBEK loss measured in the crew members returning from spaceflight did not occur in the subjects of this bedrest study, and ECF decreased a mere 1.3%. However, other bedrest studies have been associated with larger decreases in extracellular fluid. Hyatt et al. found negative fluid balance in

bedrest and noted that ECF decreases were found in the study of Vogt. (10,11) These authors postulated that the orthostatic cardiovascular sensitivity noted postbedrest could be a result of extravascular dehydration in response to the lack of gravity parallel to the long axis of the body during bedrest. Orthostatic sensitivity was noted in the subjects of this bedrest study; yet, the ECF changes were statistically not significant. This 14-day study agreed with the result of a six-day study in which no change in ECF occurred; yet, orthostatic intolerance was present in both. Certainly, the ECF loss of bedrest appears less than after spaceflight; yet, the changes found during lower body negative pressure and during bicycle ergometry show similar degrees of orthostatic intolerance. Therefore, ECF dehydration does not seem to be the major cause of the orthostatic intolerance noted after bedrest.

SUMMARY

This 14-day bedrest study was designed to be similar to Apollo 17 which included the Skylab diet and modified metabolic balance and was of similar duration. The same equipment and procedures used in the crews pre- and postflight medical examinations were used in this bedrest study so that comparisons are possible between the results of each.

The subjects of this bedrest study did not show weight loss. Only a small, transient weight loss was seen during the first few days of bedrest and even this did not approach the magnitude of the weight loss of crew members returning from spaceflight. The mean red cell mass decrease during bedrest was less than the mean change in Apollo and Skylab crew members while the plasma volume change was greater. No statistically significant change occurred in ECF, TBW and TBEK.

REFERENCES

- Leach, C. S. and Rambaut, P. C.: Biochemical responses
 of the Skylab crewmen. The Proceedings of the Skylab
 Life Sciences Symposium, August 27-29, 1974. NASA Technical Memorandum NASA TMX-58154.
- Johnson, P. C., Driscoll, T. D. and LeBlanc, A. D.: Blood volume changes. The Proceedings of the Skylab Life Sciences Symposium, August 27-29, 1974. NASA Technical Memorandum NASA TMX-58154.
- 3. Morse, B. S.: Erythrokinetic changes in man associated with bed rest. Lectures in Aerospace Medicine, Sixth Series, 1967, School of Aerospace Medicine, Brooks Air Force Base, Texas.
- 4. Johnson, P. C., Driscoll, T. B. and Carpentier, W. R.:

 Vascular and extravascular fluid changes during six days

 of bedrest. Aerospace Med. 42:875, 1971.
- 5. Saltin, B., Blomquist, G., Mitchell, J. H., Johnson, R. L., Jr., Wildenthal, K. and Chapman, C.: Response to exercise after bedrest and after training. Circulation 38:1, 1968.
- 6. Johnson, P. C.: Part C: Blood volume and red cell life span (M113). Skylab Medical Experiments Altitude Test (SMEAT). NASA Technical Memorandum NASA TMX-58115.
- 7. Broun, G. O.: Blood destruction during exercise. III.

 Exercise as a bone marrow stimulus. J. Exp. Med. 37:187,

 1928.

- 8. Johnson, P. C., Fischer, C. L. and Leach, C. S.: Hematological implications of hypodynamic states. Proceedings from a symposium held at French Lick, Indiana, June 16-18, 1969. National Technical Information Service, Springfield, Virginia, NASA SP-269.
- 9. Kimzey, S. L., Johnson, P. C., Ritzmann, S. E., Mengel, C. E. and Fischer, C. L.: Hematology and immunology studies. Apollo Summary Report. (In Press).
- 10. Hyatt, K. H., Kamenetsky, L. G. and Smith, W. M.: Extravascular dehydration as an etiologic factor in postrecumbency orthostatism. Aerospace Med. 40:644, 1969.
- 11. Vogt, F. B. and Johnson, P. C.: Plasma volume and extracellular fluid volume change associated with 10 days bed recumbency. Aerospace Med. 38:21, 1967.

TABLE 1

					rem/μCi			
Nuclide	Dose/ Test	T½ Eff	Physical Form	Critica	1 Organ	Total Body	Total µCi*	Total Body (rem)
125 _I	2 μCi	30	Albumin	Thyroid	- 0.06-0.2	0.00050	10	0.005
51 _{Cr}	25 μCi	28	Chromate	Spleen	- 0.004	0.00036	100	0.036
35 _S	25 μ Ci	44	Sulfate	Total Body	- 0.00009	0.00009	75	0.007
3 _H	25 μCi	12	Water	Total Body	- 0.00017	0.00017	75	0.012
43 _K	50 μCi	1	Chloride	Muscle	- 0.00094	0.00062	100	0.062
59 _{Fe}	2 μCi	45	Citrate or Chloride	Spleen	- 0.24	0.035	. 2	0.070
egentario de la Colonia. La Stata de la Colonia de								0.192

*Total for Prebedrest and Postbedrest Determinations

Maximum permissible total body occupational exposure is 1.25 rem/quarter.

This can be increased to 3.0 rem/quarter if total for the year is less than 5.0 rem.

TABLE 2

RADIONUCLIDE ADMINISTRATION SCHEDULE

	Prebedr	est	Bed	rest	Pos	tbedres	st
Days	21		2	13	<u>0</u>	14	48
Plasma Volume	x		X		X	X	X
Red Cell Mass	X	. •			X	x	X
Extracellular Fluid	, X ,			X		x	
Total Body Water	x			X		X	
Total Body Exchangeable Potassium	x				X		
Iron Turnover				X			

TABLE 3

Subjects	1	. 2	3	4	5	6
		RCI	M (ml)	Na sangan di sangan di sangan San gan		
BR -21 BR +14 R +13 R +48	1821 1777 1701 2067	1905 1890 1899 1913	2230 2058 1975 2417 V (ml)	1889 1779 1794 1967	1744 1632 1584 1774	1709 1600 1599 1760
BR -21 BR + 1 BR +14 R +13 R +48	3280 3115 2644 3292 3063	3096 3229 3060 3102 3038	3168 3023 2940 3591 3114 W (L)	2583 2646 2560 2920 2849	2848 2813 2711 3198 2832	3071 2993 2836 3224 3206
BR -21 BR +14 CR +13	43.0 42.1 46.5	43.2 43.1 43.3	43.4 43.4 44.4	41.4 41.8 41.3	44.8 44.1 45.0	39.7 40.5 40.5
		ECI	F (L)			
BR -21 BR +14 R +13	16.9 16.0 15.9	16.3 16.3 16.5	18.2 17.1 17.1	14.6 14.7 15.2	17.0 16.8 16.7	15.0 15.6 15.1
		<u>IC</u>	F (L)			
BR -21 BR +14 R +13	26.1 26.1 30.6	26.9 26.8 26.8	25.2 26.3 27.3	26.8 27.1 26.1	27.8 27.3 28.3	24.7 24.9 25.1
		<u> 151</u>	F (L)			
BR -21 BR +14 R +13	13.6 13.3 12.6	13.2 13.2 13.4	15.0 14.2 13.5	12.0 12.2 12.3	14.2 14.1 13.5	11.9 12.8 12.2

TABLE 4

Su	bjects	1	2	, 3 ·	4	5	6
		1	Red Cell Ma	ss (ml/kg	<u>)</u>		
BR R	-21 +14 +14 +48	26.5 25.7 24.3 29.4	26.8 26.6 26.9 27.2 PV (ml.	32.1 29.4 28.5 35.2 /kg)	26.8 24.4 24.4 27.7	29.2 27.5 28.3 29.9	21.2 19.9 19.8 21.4
BR BR R	-21 + 1 +14 +13 +48	47.8 44.9 38.3 47.1 43.5	43.5 45.2 43.2 43.9 43.2 TBW (m	45.6 43.9 42.0 51.9 45.4 1/kg)	48.2 46.5 43.2 49.2 50.4	40.0 41.7 39.6 46.1 43.3	34.6 34.9 33.1 40.1 34.2
BR	-21 +14 +13	627 609 665	607 608 613	624 620 642	623 618 618	640 646 652	544 538 564
			ECF (m	1/kg)			•
BR	-21 +14 +13	246 232 227	229 230 234	261 244 247	235 237 235	226 227 240	206 205 209
BR	-21 +14 +13	380 378 438	378 378 380	362 376 394	388 379 383	415 419 413	338 333 355
			ISF (m	1/kg)			
BR	-21 +14 +13	198 192 180	185 186 189	216 203 195	187 195 186	186 188 194	173 172 169

TABLE 5

Subjects	1	2	3	4	5	6
	and the same of th	Exchange	able TBK (m	leq)		
BR -21 BR +14	3742 3670	3666 3552	3572 3630	35 73 3668	4027 3942	3171 3091
	Į	Exchangeab	le TBK (meq	/kg)		
BR -21 BR +14	54.5 53.1	51.5 50.1	51.4 51.8	55.3 56.7	48.9 48.1	49.8 47.0
•		LBI	M (kg)			
BR -21 BR +14 R +13	58.9 57.7 63.7	59.2 59.0 59.3	59.4 59.4 60.8	56.7 57.2 56.6	61.4 60.4 61.6	54.4 55.5 55.5
		<u>LBM</u>	(% BW)			
BR -21 BR +14 R +13	85.9 83.5 91.1	83.1 83.2 84.0	85.5 84.8 87.9	87.7 88.4 89.4	74.6 73.6 77.2	85.4 84.5 84.7
		Wt	(Kg)			
BR -21 BR +14 R +13 R +48	68.6 69.1 69.9 70.4	71.2 70.9 70.6 70.4	69.5 70.0 69.2 68.6	64.6 64.7 63.3 65.8	82.3 82.0 79.8 82.8	63.7 65.7 65.5 63.6

Subjects	1	2	3	4	5	6			
Peripheral Hct									
BR -21 BR +14 R +13 R +48	40 45 39 47	44 44 44 45 Total	47 47 42 50 Body Hct	48 46 42 46	41 42 38 44	40 41 38 40			
BR -21 BR +14 R +13 R +48	36 40 34 40	38 38 38 39	41 41 36 44 Ratio	42 41 38 41	38 38 33 39	36 36 33 35			
BR -21 BR +14 R +13 R +48	0.90 0.89 0.87 0.85	0.86 0.86 0.86 0.87 Serum	0.87 0.87 0.86 0.88 Iron (µg%)	0.88 0.89 0.90 0.89	0.92 0.90 0.87 0.89	0.90 0.88 0.87 0.88			
BR +14	120	71	131	108	93	119			
	Iron	Turnover	Rate (mg/kg	/day)					
BR +14	0.31	0.67	0.33	0.39	0.45	0.33			
		Fe Plas	ma T½ (min)						
BR +14	148	45.5	167	108	84.5	126			
	% Fe	Reappeara	nce in Red (Cells					
Day 1 3 6 13	10 43 87 100	19 60 96 94	11 - 38 - 66 71	12 63 91 104	19 60 92 97	18 48 90 102			
		51Cr Sur	vival (days)						
Pre Post	23 25	23 20	30 24	23 24	23 23	28 26			

TABLE 7

					Subje	cts		
. •	مراب سے ا	Mean	1	2	3	4	5 ,	6
		•		PERCENT	CHANGE			
•			•	RCM (ml)			
R	+14 +13 +48	95.1 93.5 105.2	97.6 93.4 113.5	99.7	88.6 108.4	94.2 95.0 104.1	93.6 90.8 101.7	93.6 93.6 103.0
BR R	+ 1 +14 +13 +48	97.2 93.1 107.4 100.6	95.0 80.6 100.4 93.4	104.3 98.8 100.2 98.1 TBW (95.4 92.8 113.4 98.3	102.4 99.1 113.0 110.3	98.8 95.2 112.3 99.4	97.5 92.3 105.0 104.4
	+14 +13	99.7 102.1	97.9 108.1	99.8 100.2	100.0 102.3	100.1	98.4 100.4	102:0 102:0
•				ECF (<u>L)</u>			
	+14 +13	98.7 99.0	94.7 94.1	100.0 101.2	94.0 94.0	100.7 104.1	98.8 98.2	104.0 102.7
				ICF (<u>L)</u>			
	+14 +13	100.7 104.3	100.0 117.2	99.6 99.6	104.4 108.3	101.1 97.4	98.2 101.8	100.8 101.6
				ISF (<u>L)</u>			
	+14	100.2 97.4	97.8 92.6	100.0 101.5	94.7 90.0	101.7 102.5	99.3 95.1	107.6 102.5
				TBEK (1	mEq)			
BR	+14	99.1	98.1	96.1	101.6	102.6	97.9	97.5
				WŁ				
R	+14 +13 +48	100.6 99.8 100.4	100.7 101.9 102.6	99.6 99.2 98.9	100.7 99.6 98.7	100.2 98.0 101.8	99.4 97.0 100.6	103.1 102.8 99.8

TABLE 8

				Subj	ects		
2 1	Mean	1	2	3	4	5	6
		÷ .	PERCENT C	CHANGE			
			RCM (ml	<u>/kg)</u>			
BR +14 R +13 R +48	94.5 93.7 104.7	97.0 91.7 110.9	99.2 100.4 101.5 PV (ml/		94.2 96.9 102.4	93.9 93.4 100.9	91.0 91.0 103.4
BR + 1 BR +14 R +13 R +48	99.3 92.6 107.7 100.2	93.9 80.1 98.5 91.0	103.9 99.3 100.9 99.3 TBW (ml	96.3 92.1 113.8 99.6 /kg)	104.2 99.0 115.2 108.2	100.9 95.7 115.9 98.8	96.5 89.6 102.1 104.5
BR +14 R +13	99.3 102.5 101.7	97.1 106.1	100.1	99.4 102.9	100.9	98.9 103.7	99.2 99.2
		•	ECF (ml	/kg)			
BR +14 R +13	98.2 99.4	94.3 92.3	100.4 102.2	93.5 94.6	100.4 106.2	99.5 101.4	100.8
			ICF (ml	<u>/kg)</u>			
BR +14 R +13	100.1 105.1 103.0	99.5 115.3	100.0	103.9 108.8	100.9 99.5	98.5 105.0	97.7 101.3
			ISF (ml	/kg)			
BR +14 R +13	99.4 97.8	97.0 90.9	100.5	94.0 90.3	101.1 105.9	99.4 97.7	104.3 99.5
			TBEK (mE	q/kg)			
BR +14	99.8	98.0	99.7	100.0	100.9	98.4	102.0

TABLE 9

MEAN PERCENT CHANGE AT END OF MISSION AND BEDREST*

	Apollo	<u>1</u>	.4-Day Bedrest
Red Cell Mass	-10.1 ±1.3		-4.9 ±1.1
Plasma Volume	- 4.4 ±1.7		-6.9 ±2.8
Total Body Water	- 2.4 ±0.4		-0.3 ±0.6
Extracellular Fluid	- 2.7 ±1.0		-1.3 ±1.6
Intracellular Fluid	- 2.1 ±0.8		+0.8 ±0.8
Body Weight	- 3.9 ±0.5		+0.6 ±0.5

^{*}Mean ± Standard Error.

Biochemical Results Carolyn S. Leach

The biochemical studies were initiated to determine whether extended bedrest produces similar biochemical changes as noted in samples returned from Skylab flights (first 14 days) and whether final effects are similar to those observed in returning Apollo crewmen.

Although numerous bedrest studies have been completed, each study has been designed around a specific area to answer a specific question. These very necessary studies have produced large volumes of data about a particular body system response to a certain period in bedrest. However, the type of results produced by these studies has not made the comparison of bedrest findings to space flight results possible. In every case, the biochemical results of the space flight crewmen include not only the response to the exposure to weightless flight, but also the biochemical responses to stress, fatigue, and numerous physiological stress test. For these reasons, it was considered important to conduct this study to more closely simulate the actual space flight experience.

Experimental Protocol and Methods

The control portion of this experiment began 21 days prior to the test, continued throughout the 14 days of bedrest, and 14 days after completion of test. Pre- and post urine and fecal collections were accomplished wherever the subjects were residing at that time. During the collection, the urine specimens were cooled at 4°C. Each morning the urine collected during the previous day was received in its cooled state at the laboratory where it was stabilized. The in-bed collections were maintained in a similar manner.

Complete fecal collections were undertaken. Fecal samples were frozen and then dehydrated in preparation for analysis.

The metabolic monitoring period also included the rigid control of dietary intake. All foods were analyzed for major nutrients and the intake of sodium, potassium, chloride, magnesium, nitrogen, and calcium was controlled within narrow limits through the design of repetive menu cycles to which the subjects were required to adhere throughout the experimental period. In Table 1 are listed the mean sodium and potassium intake values for all subjects.

For this experiment, fasting blood samples were drawn 30, 21, 7, and 1 day before the test at approximately 7:00 a.m. Samples drawn during the bedrest on days 2, 7, and 13 were also drawn with the subjects fasting and at about 7:30 a.m. Blood samples were drawn immediately after bedrest and 1, 3, and 14 days later. For this experiment, the blood volumes for pre-bedrest and post-bedrest analyses were 25 ml and the in-bedrest plasma averaged 3 ml. Sodium EDTA was used as the anticoagulant.

Methodology for the more routine clinical biochemical tests was that in standard use in laboratory medicine. For the more involved hormonal analyses, radioassay, fluorometric, and gas chromatographic methodology was employed. The measurement of various body compartments was conducted pre- and post-bedrest utilizing the principle of isotopic dilution. Total body water was estimated with tritium, extracellular fluid with sodium sulfate containing 35 S, plasma volume with protein labeled with 125 I, and potassium with 42 K.

Since individual variation among normal men has been constantly observed during previous programs, each man served as his own control; his in-bedrest and post-bedrest data were compared with his pre-bedrest controlled phase. The pretest value each time is given as a mean of the entire control period as well as individual values.

Results

In the presentation of results, the mean value of each parameter for each crewman measured prior to flight is compared with that same parameter measured inflight and postflight. In Tables 2 and 3 are presented the results of analyses performed on plasma and serum samples. In-bedrest and post-bedrest values differing statistically from corresponding measurements performed pretest are indicated (P<0.05).

Glucose was decreased the last day in bed (R+0) on two of the subjects, by R+1 the values had returned to normal. The cholesterol, SGOT, BUN, uric acid, calcium, magnesium, biliriubin, creatinine, osmolality, sodium, potassium, chloride and triglyceride results were variable.

Alkaline phosphatase and phosphorous values were slightly higher on R+0, whereas LDH and CPK results were slightly lower on R+0.

Angiotensin I (Renin Activity) was decreased on the second day at bedrest and then increased. It was generally increased at R+1. (The first day up). Three of the six subject had increased insulin on R+O day. Cortisol was variable, but generally decreased during bedrest. Aldosterone was decreased during bedrest and elevated post-bedrest. Thyroxine was generally elevated the last day in bed.

Those constituents of the 24-hour urine sample which were changed during and after bedrest are shown in Tables 4 and 5. Osmolality results were variable with time showing early increases then decreases. Volume, sodium, potassium, chlorine, calcium, magnesium, phosphorous, uric acid, cortisol, and aldosterone showed overall increases during bedrest. Hydrogen ion, epinephrine, norepinephrine, and antidiuretic hormone all showed decreases during bedrest. Post bedrest, overall decreases were observed in osmolality, sodium, potassium, chloride, calcium epinephrine, while increases were shown in magnesium, phosphorous, uric acid noreprinephrine and aldosterone.

The results of the pre- and post-bedrest analysis of total body water, extracellular fluid and exchangeable potassium are shown in Table 6. The results are variable but show slight decreases in most subjects during bedrest in all 3 measurements.

Table 7 gives the mean body weights for all three subjects each period of the study. Only slight increases are observed in 2 subjects during and post-bedrest.

Discussion

The biochemical changes caused by bedrest are well documented in the electrolyte area; however, the endocrine studies conducted during bedrest experiments have been limited. Major emphasis has been placed on the skeletal and cardiovascular reaction to the hypokinetic environment in studies of varying duration due to the clinical findings in these areas. In reviewing the studies that have been conducted, it is obvious that the changes which occur in the human body at bedrest are documented.

It remains to study these changes in a protocol more realistic to actual space flight mission activities. This study was conducted to simulate a 14 day space flight without significant exercise. The biochemical findings are discussed in relation to postflight Apollo results and to the first 2 weeks of Skylab.

It has been previously demonstrated that exposure to weightlessness results in a redistribution of the volume of blood within the vascular system. This redistribution is interpreted as an increase in blood volume by stretch receptors in the left atrium, thus causing a compensatory loss in water, sodium and potassium from the renal tubules. This loss in water has been manifested after every space flight as a loss in body weight, most of which is rapidly regained on the first post-bedrest day. It should be pointed out, however, that some of this body weight loss is not regained and is though to be comprised of both fat and proteinaceous material. The decreased adiposity has been attributable to a hypocaloric food intake, while the loss in the elemental constituents of the musculoskeletal system appears to be a more direct consequence of reduced compressional and tensile forces.

Apollo crewmen showed weight losses which averaged 6 pounds or 3.5% mean weightloss. Body weight changes are not characteristic of bedrest, in fact, care must be taken to prevent weight gain during the bedrest phase. The subjects in this study (Table 7) did not lost weight, two actually gained slightly during bedrest.

A comparison of urine volume and sodium excretion in the 9 Skylab crewmen and the 6 subjects of this bedrest shows sodium excretion elevated in both groups about the same from control values. The differences in the magnitude of the sodium changes appear in days 2-7 in Skylab. This is the same period when the intake was generally decreased in those crewmen. Twenty-four hour urine volumes are elevated the first two days of bedrest, but not in space flight. With the exception of this initial period, subsequent 24 hour urine volumes were not significantly different from those obtained pre- and post-bedrest.

Urinary ADH showed an overall elevation on 4 out of the first 5 days in bedrest. It was decreased on day 3.

The pre- and post bedrest analysis of total body water and extracellular fluid did not reveal significant changes. Considering the environment control, the lack of stress and the diminished exercise during the bedrest phase these results are not unexpected. It is important to note a slight decrease in all subjects. These data again show the same direction but different magnitude than the space flight results.

The concentration of serum sodium was not altered with two weeks of bedrest. Using 27 Apollo crewmen for statistical analysis, a postflight decrease of 0.9% was observed. Three of the bedrest subjects showed postflight increase, one a decrease and one no change from preflight mean. Serum potassium was slightly decreased in 4 of the 6 subjects. The magnitude of the potassium was about the same as observed in the returning Apollo crewmen. Urinary potassium was elevated in bedrest and total body exchangeable potassium was decreased in most of the subjects, again these results compare favorably in direction if not in magnitude to the Apollo

results. The rigid adherence to the control diet (Table 1) during all phases of the study adds to the significance of the loss in both sodium and potassium.

The negative sodium and potassium balances have been accompanied by increased aldosterone excretion in space flight crewmen. An overall 37% increase was observed during this bedrest study which believed to be the only time that aldosterone has been shown to be elevated in bedrest in subjects on controlled diet and no medication. The magnitude of this increase, however, is not as great as that (84%) shown during the first two weeks of the Skylab flights. This finding of a slight increase in 6 subjects is unexpected and will allow us to examine new areas of commonality between bedrest and space flight.

Plasma aldosterone and renin activity were variable as with space flight but were generally decreased early then increased.

Blood urea nitrogen has been decreased following space flight. It was very slightly increased in 5 of the 6 bedrest subjects. Urinary creatinine was not altered during or post-bedrest and plasma creatinine was not effected by the two weeks of bedrest. These results are comparable to other bedrest findings.

Uric acid excretion was increased in 4 of the 6 subjects during this bedrest. This is unlike space flight where the excretion of uric acid was decreased. Plasma levels were not significantly changed with bedrest. Following space flight serum uric acid has generally been found to be decreased.

Bedrest has been used as an analog of space flight for the last fifteen years. With the more involved Skylab flight, the calcium metabolism has been shown to be very similarily effected by bedrest and space flight.

Urinary calcium and phosphorous were elevated throughout the bedrest

as they were during the first two weeks of the Skylab flights.

Serum calcium showed little effect; however, it is of interest that
serum phosphorous was elevated in all of the 6 subjects after bedrest.

Adrenal hormones from the medulla and cortex have been of significant concern since early space flight. The findings during and following bedrest have been variable. This study showed overall increases in urinary cortisol with slight decreases during bedrest in plasma cortisol. Post bedrest plasma cortisol was slightly increased.

Epinephrine and norepinephrine was decreased during bedrest in all of the subjects. This is similar to the Skylab flights. The decrease in norepinephrine has been reported during bedrest. The very significant decrease in all crewmen is probably related to the complete absence of exercise during the bedrest phase.

To examine the reported decreases of plasma glucose with bedrest, insulin, growth hormone and glucose were measured before and following bedrest. Glucose was decreased in 3 of the subjects after 14 days of bedrest and insulin was slightly elevated in 5 of the 6. Human growth hormone was more variable but generallly post-bedrest values were higher than pre-values.

Cholesterol were also variable (3 higher and 3 lower than pre-values). This study did not show the decreased cholesterol which has been observed following space flight for as long as 3 weeks. However, 5 of the subjects did show slight increases in throxine. Apollo and Skylab results have also found increased thyroxine after space flight.

Alkaline phosphatase was increased in all 6 subjects after 2 weeks of bedrest. This enzyme has shown variable results after bedrest and has not been changed due to space flight. The role of alkaline phosphate

as they were during the first two weeks of the Skylab flights. in calcium metabolism would support the elevation of this enzyme in light of the increased calcium and phosphorous excretion. Following Apollo flights alkaline phosphatase was slightly increased; however it was slightly though not significantly decreased following Skylab.

Creatinine phosphokinase (CPK) and lactic dehydrogenase (LDH) were decreased following this bedrest study. Apollo results showed decreases postflight in both of these enzymes. After Skylab, CPK was generally increased during the recovery phase. This finding was supported by results of 2 of the bedrest subjects. Both the CPK and LDH results are intepreted to be related to decreased muscle activity during bedrest and Apollo flights and an increase during the post phase.

Significant biochemical changes have occurred during and after two weeks of absolute bedrest. Most of these changes are similar in direction if not magnitude to those observed during flight on the Skylab crewmen and postflight on the Apollo astronauts.

3

TABLE 1
SODIUM AND POTASSIUM INTAKE (mEq/Day)
Mean + S.D.

SUBJECT		SODIUM			POTASSIUM	
	PRE	IN	POST	PRE	IN	POST
	270+22	272+24	265 <u>+</u> 22	99+9	96 <u>+</u> 8	95 <u>+</u> 8
2	204+21	212+29	203+27	88 +10	86 <u>+</u> 11	95 <u>+</u> 8
3	268+21	280+19	264 <u>+</u> 20	107+9	112+6	113+31
4	252+27	247+21	243 <u>+</u> 25	84 + 11	. 83 <u>+</u> 12	81 <u>+</u> 14
5	257 <u>+</u> 20	256 <u>+</u> 20	257 <u>+</u> 17	87 <u>+</u> 7	83+9	85+5
6	242+36	222+13	219+16	84+8	81+7	82+7

Subject 1

TABLE 2
SERUM BIOCHEMISTRY RESULTS

	GLU · mg:i	CHOL mgs	SGOT mU/m1	BUN mg%	URIC ACID mg%	ALK. PHOS. IU	Ca mg%	Mg mg%	P04 mg%	B!LI T. mg%	CREAT mg%	CPK mU/m1	LDH mU/ml -	OSMO macom	Na mEq/1	K mEq/1	C1 mEg/1	TRIGLY mg%
F-30	98	164	11	14	5.9	21	9.0	-1.8	3.0	0.5	,1.0	88	181	285	137	4.4	- 102	68
-21	100	155	11	19	6.3	19	8.5	1.8	3.3	0.5	1.1	115	185	290	139	4.2	104	- 29
-7	99	-173	, 10	18	6.3	22	8.9	1.7	3.2	0.3	1.0	71	116	286	139	4.7	100	18
-1	98	175	9	14	7.2	18	9.0	1.7	3.1	0.2	1.2	57	142	293	143	4.5	105	` 35
MEA:1+SD	99 <u>+</u> 1	167 <u>+</u> 9	10 <u>+</u> 1	16 <u>+</u> 3	6.4+.6	20+2	8.9+.2	1.8 <u>÷</u> .1	3.2+.1	.4+.2	1.1+1	83 <u>+</u> 25	156 <u>+</u> 33	289 <u>+</u> 4	140+3	4.5 <u>+</u> .2	103+2	38 <u>+</u> 22
R+0	86	194	20	19	6.5	27	9.1	1.6	3.4	0.4	1.2	48	138	291	. 143	4.3	100	32
÷1	99	180	17	19	6.8	28	9.2	1.6	3.9.	0.2	1.2	150	116	292	143	4.5	100	56
+3	97	172	20	19	6.4	25	8.6	1.6	4.1	0.3	1.1	129	172	288	141	4.2	103	48
+14	100	167	12	15	6.8	22	8.8	1.5	3.8	0.2	1.0	.74	159	290	142	4.4	102	56

TABLE 2
SERUM BIOCHEMISTRY RESULTS CONTINUED

	GLU mg.	Cr.OL ingo	SGOT mU/m1	BUN mg%	URIC ACID mg%	ALK. PHCS IU	. Ca ຫgະ	Mg mg%	PO ₄ mg i	EILI T. mg%	CREAT mg%	CPK mU/ml	LDH mU/m]	OSMO músmo	Na mEq/1	K mEq/1	Cl mEq/l	TRIGLY mg%
F-30'	94	179	12	15	6.1	14	9.3	2.0	3,3	1.1	.1.1	44	108	284	138	4.0	100	88
-21	92	150	12	11	5.5	14	8.7	ો.ક	2.3	0.8	1.0	62	.86	281	139	3.8	99	67
-7	98	160	15	13	6.1	16	8.9	2.0	3.2	0.4	1.1	154	82	280	139	4.3	99	47
-1	93	156	13	15	6.1	12	9.1	1.8	3.3	0.4	1.1	106	77	296	144	4.2	103	58
mean <u>+</u> SD	94+3	161+1	3 13 <u>+</u> 1	14+2	6.C <u>+</u> .3	14+2	9.0+.3	1.9 <u>÷</u> .1	3.2 <u>÷</u> .2	.7 <u>+</u> .3	1.1+.1	92 <u>+</u> 49	88 <u>+</u> 14	285 <u>+</u> 7	140+3	4.1+.2	100+2	65 <u>+</u> 17
R+0	85	140	12	13	5.4	19	8.7	1.9	3.5	0.6	1.1	43	. 82	286	142	3.9	99	74
+]	97	140	12	16	5.8	18	8.8	1.9	3.9.	0.7	1.1	41	69	289	142	4.3	99	88
+3	90	135	12	14	5.5	15	2.4	2.0	3.7	0.6	1,1	44	86	285	142	3.9	100	91
+14	87	162	14	11	5.8	11	8.7	1.9	3.9	0.8	0.9	32	60	290	141.	4.1	99	73

(3)

TABLE 2
SERUM BIOCHEMISTRY RESULTS CONTINUED

,GLU ,mg%	CHOL mg%	SGOT mU/m1	BUN mg%	URIC ACID mg%	ALK. PHOS. IU	Ca mg%	Mg mg%	PO _g mg/	BILI T. mg%	CREAT mg%	CPK mU/ml	LDH mU/m1	OSMO mOsmo	Na mEq/1	K C1 mEq/1 mEq/1	TRIGLY mg%
F-20 . 94	254	15	11	7.4	18	9.3	1.9	3.7	0.3	1.0	35	176	286	138	4.3 101	92
-14 88	208	12	16	7.7	13	8.9	1.6	3.5	0.3	1.1	44	150	285	135	3.8 102	153
-7 99	211	12	19	7.8	18	9.0	1.8	3.8	0.2	1.2	46	155	283	138	4.5 102	119
-1 96	210	21	17	9.3	19	9.4	1,8	4.1	C.1 ·	1.2	141	151	294	143	4.2 105	93
MEAN+SD 94+5	221 <u>÷</u> 22	15 <u>+</u> 4	16 <u>+</u> 3	8.1 <u>+</u> .9	17 <u>÷</u> 3	9.2+.2	1.8+.1	3.8+.3	.2 <u>+</u> .1	1.1+.1	67 <u>+</u> 50	158 <u>+</u> 12	287 <u>+</u> 5	139+3	4.2+.3 103+2	114+29
R+0 59	214	24	17	8.2	26	9.2	1.9	4.2	0.3	1.2	. 35	129	290	142	4.0 101	161
+1 100	217	23	22	8.2	29	8.9	1.8	5.0	0.2	1.3	48	108	297	142	4.8 102	332
+3 104	211	23	21	8.1	27	9.0	1.9	4.9	C.3	1.3	53	155	268	141	4.2 100	174 .
+14 91	210	12	22	8.0	19	9.3	1.9	4.7	0.2	1.0	53	129	290	140	4.3 103	219

TABLE 2
SERUM BIOCHEMISTRY RESULTS CONTINUED

	GLIJ MJZ	ed.c	EUOT STOT	Buil mg%	URIC ACID mg/	ALK. PHOS IU	. Ca ոցջ	Mg 11.5%	P04	BILI T. mg%	CREAT mg%	CPK mU/m1	LDH mU/m1	GM20 om2On	Na mEq/l	K mEq/1	Cl mEq/l	TRIGLY mg%
F-20.	გ8	177	17	9	5.0	13	9.9	2.1	3.3	0.9	,1.1.	90	138	282	139	4.3	101	82
-14	36	145	11	13	5.1	9	9.2	2.0	3.2	0.5	1.1	35	108	279	134	3.7	103	56
-7	86	149	13	14	5.2	11	9.4	2.0	3.8	0.3	1.1	65	65	279	133	4.3	101	50
-i ·	76	151	12	11	5.0	.j0	9.€		7	0.2	1.2	46	73	295	143	4.1	103	107
MEAN+SD	84:5	155 <u>+</u> 15	13 <u>-</u> 3	12 <u>÷</u> 2	5. <u>~</u> .1	î i <u>+</u> 2	9.5 <u>÷</u>	.3 2.1 <u>+</u> .1	3.8 <u>+</u> .7	.5 <u>+</u> .3	1.] <u>+</u> .1	59 <u>÷</u> 24	98 <u>–</u> 34	25 <u>÷</u> -8	139 <u>+</u> 4	4.1+.3	102 <u>+</u> 1	74÷26
C+3	89	161	13	16	4.7	13	9.6	1.9	4.7	3.4	1.2	21	60	291	132	4.2	104	74
+1	90	151	10	19	5.4	. 11	9.4	2.1	4.8	0.3	1.2	106	125	304	142	4.3	102	95
+3	80	146	9.	13	4.3	9	9.2	1.9	3.6	ე.€	1.1	53	65	287	139	4.1	104	46
+14	87	154	10	11	5.7	9	9.0	2.0	4.7	0.4	1.4	42	90	282	141	3.7	104	71

TABLE 2
SERUM BIOCHEMISTRY RESULTS CONTINUED

							URIC	ALK.				BILI		•						
		GLU Min	CHOL Mg%	TOD2 Fm\Um		EUN mg%	ACID mg%	PHOS. IU	Ca mg%	%g mg%	PO ₄ mg%	T. mg%	CREAT mg%	CPK mU/ml	LDH mU/m1	OM20 om20m	Na mEq/1	K mEq/1	Cl mEq/l	TRIGLY mg%
_	F-21	100	246	13		19	7.8	7	9.5	2.0	3.6	0.5	: 1.2	62	249	200	139	4.4	101	102
	-14	92	219	14		14	6.5	7	9.0	2.0	2.8	0.3	1.0	51	193	283	133	4.4	102	206
	-7	93	223	12		13	6.7	10	9.0	2.1	3.4	0.3	1.1	55	151	282	135	4.1	99	132
	-1	94	204	13		17	6.3	8	9.2	2.1	4.2	0.1	1.2	99	180	298	142	4.2	103	268
	MEAN+SD	9514	224+18	3 13 <u>+</u> 1	•	17 <u>÷</u> 2	7.0 <u>+</u> .6	S <u>-1</u>	9.2 <u>÷</u> .2	2 2.1±.1	3.5 <u>+</u> .6	.3 <u>+</u> .2	1.1 <u>+</u> .1	67 <u>+</u> 22	193 <u>+</u> 41	288 <u>÷</u> 7	138+4	4.3 <u>+</u> .2	101 <u>+</u> 2	177 <u>+</u> 75
	C+3	98	214	10		19	6.6	11	2.9	2.0	4.5	0.4	1.1	34	129	288 -	139	4.2	99	154
	+1 - ; :	100	197	10		13	7.1	8	8.9	2.0	4,5	0.2	1.2	80	159	QHS	141	4.5	106	159
	+3	86	191	9		18	7.1	8	8.8	2.0	4.5	0.2	1.1	39	146	287	139	4.2	103	105
	+14	98	200	8		19	7.2	7	8.6	2.2	4.0	0.2	1.0	42	138	291	140	4.1	106	136

ORIGINAL PAGE IS OF POOR QUALTTY

TABLE 2
SERUM BIOCHEMISTRY RESULTS CONTINUED

	CLU mgt	CHOL mg/s	TOJZ Falum	mg% BUN	URIC ACID mg%	MLY. PHOS. IU	Ca Mg%	Kg KG%	PO ₄	SILI T. mg%	CREAT mg%	C2K mU/m1	LDH mU/m1	OSMO mOsmo	Na mEq/l	K mEq/l	Cl mEq/l	TRIGLY mg%
F-20	102	208	12	18	5.8	42	9.6	2.1	3,4	0.4	1.0	60	168	294	140	4.4	101	98
-14	102	202	9	17	4.7	37	9.1	1.7	3.1	0.4	1.0	46	144	282	133	3.8	103	62
-7	107	-211	13	15	4.8	39	9.3	2.0	3.6	0.2	1.0	51	120	285	138	4.1	101	51
-1	54	195	. 11	10	5.4	31	9.3	2.0	3.1	0.3	1.1	57	129	295	144	4.0	104	69
MEAN±SD	10 I <u>+</u> 5	204 <u>+</u> 7	11 <u>+</u> 2	15 <u>+</u> 4	5.2.5	37 <u>+</u> 5	9.3 <u>+</u> .2	2.C±.2	3.3+,2	.3 <u>+</u> .1	1.0 <u>+</u> .1	54 <u>+</u> 6	140+21	289 <u>÷</u> 6	139 <u>+</u> 5	4.1+.3	102+2	70 <u>+</u> 20
R+0	102	234	17	17	5.8	45	9.4	2.0	4.0	0.3	1.1 .	32 .	125	290	139	4.2	101	113
+1	98	217	18	16	5.9	36	9.0	2.0	3.5	0.3	1.0	53	129	304	140	4.1	104	88
+3	94	214	17	14	5.9	34	8.7	1.9	3.7	0.3	1.0	53	138	286	140	4.0	105	92
+14	96	217	13	15	5.5	38	9.0	2.1	3.5	0.5	1.0	41	129	288	140	4.2	103	57

TALLE 3
PLASMA HORMONE RESULTS

	ANGIO I mug/ml/Hour		CORTISOL ug/100m1	HGH mg/ml	ALDO pg/ml	ACTH pg/ml	T3 % Uptake	T ₄ ug/100m1
F-30 F-21 F-7 F-1	0.35 0.45 0.57 0.56	11 10 10 8	14.2 15.5 19.0 10.7	2.6 1.9 1.9 1.9	415 259 242 290	32.0 20.5 32.0 17.8	35.4 33.5 34.2	9.1 9.1 6.2
MEAN +SD	.48 <u>+</u> .10	10+2	14.9+3.4	2.1 <u>+</u> .4	302 + 78	25.6+7.5	34.4+1.0	8.1+1.7
BR+2 BR+7 BR+1 4	0.42 1.35 0.96		13.7 12.0 14.0		129 192 163		-	- -
R+0 R+1 R+3	1.07 0.94 0.48	15 12 9	19.0 14.1 15.0	2.4 3.5 12.4	238 256 197		33.1 33.5 34.6	8.9 7.9 7.5
R+13 .	0.76	10	10.3	1.9	155		32.3	7.0

TABLE TABLE TO PLASMA HORMONE RESULTS CONTINUED

	ANGIO I mug/ml/Hour	INSULIN uUg/ml	CORTISOL ug/100ml	HGH mg/ml	ALDO pg/ml	ACTH pg/ml	T3 % Uptake	T ₄ ug/100m1
F-30 F-21 F-7 F-1	0.81 0.21 0.54 0.49	9 10 9 7	12.5 13.0 13.5 10.8	2.2 2.2 3.1 1.9	467 191 150 182	10.8 9.8 16.1 14.4	32.3 34.2 33.8	12.7 13.1 10.9
MEAN+SD	0.51+0.25	9+1	12.5+1.2	2.4 <u>+</u> .5	248+147	12.8+3.0	33.4+1.0	12.2+1.2
BR+2 BR+7	0.29 0.70	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	10.7 10.7		154 140		-	-
BR+1 4 R+0	0.93 0.57	11	8.5 11.3	1.5	148 161		35.4	9.8
R+1 R+3 R+13	1.07 0.37 0.26	9	10.6 9.2 8.0	2.4 2.8 1.9	222 162 168		31.2 33.8 32.3	12.3 10.1 9.8

TAB___ 3
PLASMA HORMONE RESULTS CONTINUED

	ANGIO I mug/ml/Hour	INSULIN uUg/ml	CORTISOL ug/100ml	HGH mg/m1	ALDO pg/ml	ACTH pg/ml	T3 % Uptake	T4 ug/100m1
F-30 F-21 F-7 F-1	0.45 0.31 0.81 1.28	9 8 9 7	18.5 17.0 13.7 8.8	3.1 2.6 2.2 2.6	420 270 225 215	16.1 25.4 17.5 20.0	35.8 36.5 35.0	7.7 8.4 6.8
MEAN+SD	.71 <u>+</u> .43	8+1	14.5+4.3	2.6+.4	283 <u>+</u> 95	19.8+4.1	35.8+.8	7.6+.8
BR+2 BR+7 BR+14	0.42 0.63 0.84		13.0 16.0 13.7	<u>.</u> - :	149 179 138		- -	
R+0 R+1 R+3	0.85 1.46 1.00	15 14 7	19.5 16.7 8.2	2.4 3.5 3.5	164 220 192		31.9 31.9 28.5	11.8 9.9 8.9
R+13	0.39	9	13.5	2.4	165		32.7	7.9

T. _E 3
PLASMA HORMONE RESULTS CONTINUED

	ANGIO I mug/ml/Hour	INSULIN uUg/ml	CORTISOL ug/190ml	HGH mg/ml	ALDO pg/ml	ACTH pg/ml	Tʒ % Uptake	T4 ug/100m1
F-30 F-21 F-7 F-1	0.30 0.29 0.70 0.33	10 9 7 10	14.2 11.0 16.7 14.0	2.2 2.2 1.9 2.2	399 578 150 212	14.1 11.1 18.6 18.9	35.8 33.8 33.8	6.8 7.9 8.2
MEAN+SD	.41 <u>+</u> .20	9+1	14.0+2.3	2.1 <u>+</u> .2	335 <u>+</u> 194	15.7+3.8	34.5+1.2	7.6+.7
BR+2 BR+7 BR+14 R+0 R+1 R+3 R+13	0.84 0.86 0.60 0.68 0.95 0.73 0.87	- - - 10 9 7	8.1 7.4 12.0 10.0 12.8 7.4 15.0	- 3.5 3.9 2.4 2.4	233 227 227 239 234 147 177		- - 33.8 35.8 36.2 34.2	 - 8.9 10.4 8.5 7.6

	ANGIO I mug/ml/Hour	INSULIN uUg/ml	CORTISOL ug/100ml	HGH mg/ml	ALDO pg/ml	ACTH pg/ml	T ₃ % Uptake	T4 ug/100m1
F-30 F-31 F-7 F-1	0.57 0.03 0.20 0.03	12 9 6 10	14.2 12.0 12.3 6.6	1.9 1.9 2.2 2.6	298 410 114 131	18.3 18.0 20.5 14.4	35.8 30.8 33.8	8.7 9.4 8.6
MEAN+SD	.21 <u>+</u> .25	9+3	11.3+3.3	2.2+.3	238+141	17.8+2.5	33.5+2.5	8.9+.4
BR+2 BR+7	0.16 0.67		7.0 8.8	<u> </u>	137 176		-	-
BR+14 R+0	0.44 0.77	- 10	9.0 6.2	2.8	147 116		35.0	9.9
R+1 R+3 R+13	0.43 0.19 0.11	10 10 8	8.6 9.8 14.0	2.8 1.9 2.4	104 130 134	•	34.6 32.3 35.8	9.8 7.5 8.9

TALLE 3
PLASMA HORMONE RESULTS CONTINUED

	ANGIO I mug/ml/Hour	INSULIN uUg/ml	CORTISOL ug/100m1	HGH mg/m1	ALDO pg/ml	ACTH "pg/ml	T ₃ % Uptake	T4 ug/100m1
F-30 F-21	1.04 0.35	10 9	11.0 10.3	1.9	329 615	18.0 16.9	35.0	8.8
F-7	0.23	8	13.2	2.6	165	15.2	31.9	8.8
F=1	0.34	11	7.4	2.6	205	23.3	30.8	6.9
MEAN+SD	.49+.37	10+1	10.5+2.4	2.3+.4	329 <u>+</u> 203	18.4 <u>+</u> 3.5	32.6+2.2	8.2 <u>+</u> 1.1
BR+2	0.19		12.5	<u> </u>	182		•	_
BR+7	0.31	=	8.1	`	174			•
BR+14	0.22	-	6.2	·	157			
R+0	0.33	10	11.0	1.9	226		29.2	9.2
R+1	0.48	11	5.6	2.8	213		34.6	9.0
R+3	0.33	9	8.0	1.5	170		33.5	7.0
R+13	0.27	9	10.0	2.8	130		33 8	7.0

TABLE 4
24 HOUR URINE RESULTS

Subject 1

o un jec	VC-UIE	SP GR GM/L	CS!NOL MOSM	NA MEQ/24 HR	K MEQ/24 HR	CL MEQ/24 HR	CA MEQ/24 HR	MG MEQ/24 HR	IPO4 MG/24 HR	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+	
F-21	2215	1.010	434	216	60	175	6.1	12.6	1108	841	1905 :		34	
-20	1655	1.017	750	કરકે	83	281	9.9	₹ 13.5	1192	950	1920		18	
-19	500	1.025	966	149 .	£3	118	5.3	10.8	960	720]888		141	
-18	915	1.025	1071	214	81	157	5.7	11.8	1226	805	1702		143	
-17	2180	1.013	589	339	79	294	5.6	13.5	1045	959	1744		0	
-16	1280	1.014	551	140	45	153	10.7	7.9	819	742	2125		113	
-15	1770	1.008	639	250	73	223	6.2	10.9	885	653	1547		40	
-14	1760	1.034	679	241	97	236	6.0	9.5	1056	845	1935		11	
-13	1800	1.014	597	210	67	184	21.3	13.0	1188	972	2263		115	
-12	1720	1.012	545	236	57	229	5.5	12.5	. 722	826	1410		35	
-11	1380	1.014	628	204	- 51	182	7.6	12.5	718	800	1518		63	l L
-10	1720	1.019	801	165	65	143	5.7	11.0	1098	739	1994		159	Č
-9	1510	1.016	710	238	91	217	8.2	10.6	1027	815	1721	•	12	
8	1535	1.018	808	237	e 9	255	8.1	15.1	1289	952	2118		63	
-7	1260	1.016	673	170	68	158	5.9	8.9	857	731	1789		82	
-6	1775	1.615	656	257	52	261	7.6	10.2	994	959	2034		71	
-5	1650	1.015	655	234	69	202	5.9	9.5	924	108	1879		24	
-4	1080	1.020	871	2.5	73	192	4.7	7.5	1037	734	1836		11	
-3	17.20	7.013	571	233	69	210	7.7	10.3	961	748	1709		50	
- <u>2</u>	1223	1.017	735	167	65	143	5.4	8.2	976	708	1854		108	
-1	625	1.018	700	115	41	93	4.5	6.9	752	632	1522 -	*	93	
MEAN+SD	1483 <u>+</u> 400 !	.016+0.004	694 <u>+</u> 148	220 <u>+</u> 59	70 <u>+</u> 15	196 <u>+</u> 53	7.4 <u>+</u> 3.6	10.8+2.2	993 <u>÷</u> 164	816 <u>÷</u> 38	1849+211		66 <u>+</u> 49	

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 1

	. AOF NE	SP GR GM/L	OSMOL Musin	MA MEQ/24 HR	K MEQ/24 HR	CL MEQ/24 HR	CA MEQ/24 HR	MG MEQ/24 HR	IPO4 MG/24 HR	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+	
BR1	2180	1.013	605	346	76	294	10.4	13.4	1134	1046	2093	*	16	
2 `	3230	1,008	331	392	81	358	12.4	12.7	959	904	2003	•	- 0	
3	1400	1.011	539	191	52	169	5.7	8.3	672	532	1176		17	
4	1450	1.019	816	247	99	213	7.9	14.4	1102	870	2146		19	
. 5	930	1.024	1043	195	66	184	6.4	9.81	1079	707	1730		149	
б	1100	1.019	852	184	72	178	8.1	7.4	836	704	1518		86	
7	1580	1.617	744	229	98	183	12.4	8.6	1201	916	2180		54	
8	1560	1.011	689	259	64	211	9.0	13.0	874	842	1622		16	
9	2345	1.011	567	287	101	253	10.1	13.0	1313	908	2345		65	
10	1490	1.016	883	270	59	175	10.5	9.3	952	756	1624		46	
. 11	1390	1.022	922	255	95	237	9.4	14.3	1352	938	2070		118	1
12	1930	1.015	£37	244	87	237	9.1	13.7	1235	926	2277		94	7
, 13	1505	1.017	758	241	84	212	9.1	12.6	1294	953	1305		93	H
14	1520	1.020	770	258	53	234	8.3	9.3	1216	942	1842		28	
MEAN <u>+</u> SD	1679 <u>+</u> 584	1.022 <u>+</u> .020	712 <u>÷</u> 177	253 <u>+</u> 58	80 <u>+</u> 16	225 <u>+</u> 54	9.2+1.9	11.5÷2.4	1088 <u>+</u> 202	856 <u>+</u> 136	1888 <u>+</u> 330		57 <u>+</u> 45	

OF POOR QUALITY

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 1

		VOLUME	SP GR GM/L	CSKOL MROM	NA MEQ/24 HR	K MEQ/24 HR	CL NEG/24 HR	CA MEQ/24 HR	MG MEQ/24 HR	IPO₄ MG/24 HR_	URIC ACID MG,'24 HR	CREATININE MG/24 HR	HOPRO H+ MG/24 HR
	R+0	1250	1.020	741	130	53	145	9.6	10.3	950	800	1800 -	118
	ì	1230	1.020	793	175	90	159	8.1	8.6	1033 .	935	1834	44
	2	925	1.027	1007	172	€7 ⋅	162	5.8	11.5	1240	925	1776	155
	3	1660	1.019	596	262	83	239	10.2	12.9	1328	1029	2058	101
	4	1360	1.014	373	199	63	192	9.5	9.8	1004	1115	2083	195
	5	2920	1.011	253	298	58	254	9.4	13.3	1225	1226	1986	24
	ő	17.75	1.014	492	224	56	194	8.8	11.2	754	£61 ·	1903	58
	7	25")	1.014	360	258	62	234	6.0	10.5	994	869	2029	56
	8	1880	1.013	500	232	77	222	5.8	10.9	865	790	1842	44
	9	2410	1.014	356	354	89	325	8.5	13.8	1253	1109	2458	20
	10	1980	1.014	473	189	61	172	6.4	11.1	17.88	950	2099	122
	11	1733	7.678	641	758	47	139	5.7	12.3	932	526	1816	181
	12	1315	1.013	675	223	61	137	6.1	11.0	S S 3	842	1894	95
	13	1440	1.017	552	211	85	140	4.5	7.7	979	778	1786	73
M	EAN+SD	1709 <u>-</u> 539	1.017 <u>+</u> .004	572 <u>+</u> 207	221 <u>÷</u> 59	71 <u>+</u> 14	197 <u>-</u> -63	7.5 <u>÷</u> 1.9	11.1+1.7	1053 <u>+</u> 167	911 <u>+</u> 175	1959 <u>+</u> 183	92 <u>+</u> 56

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 2

	VOLUME	SP GR GM/L	OSMOL MOSM	NA MEQ/24 HR	K MEQ/24 HR	CL MEQ/24 HR	CA MEQ/24 HR	MG MEQ/24 HR	1PO ₄ MG/24 HR_	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+
F-2	2760	1.004	394	255	80	215	10.6	11.1	1104	1325	2318		0
-20	7710	1.014	525	120	72	154	8.2	8.2	1060	1094	2018		. 45
- 19	1400	1.013	510	99	60	91	9.2	7.4	1035	1008	1904		105
-18	3 1395	1.015	522	171	73	124	12.2	9.9	1144	1200	2009		37
1	7 2610	1,010	468	266	84	253	12.6	10.6	1096	1201	2036		5
-16	5 1520	1.016	530	159	65	161	8.1	7.5	790	882	1733		64
-1!	5 1670	1.012	488	150	52	132	10.4	7.9	858	1035	2037		75
-]	4 1589	1.016	715	261	77	224	11.4	7.4	1074	1138	2212		0
-1:	3 860	1.024	837	51	40	53	10.0	13.5	946	1221	2236		277
-17	2 1320	1.016	637	168	45	133	8.5	7.4	1621	1242	1877		80
-1	3030	1.009	401	332	73	294	13.6	10.3	848	1394	1939		0
-10	930	1.016	640	74	47	83	8.3	7.5	818	800	1748		190
9	9 1600	1.012	525	168	69	157	8.9	5.9	896	1055	1769	•	71
{	3 1400	1.017	676	190	63	162	11.5	7.5	1232	1120	2044		126
	7 1230	1.016	650	155	56	129	9.9	6.5	870	1178	1638		80
-(5 2530	1.010	3£8	221	78	197	11.8	7.1	1113	1316	2125		49
-{	1700	1.014	532	209	53	180	9.9	9.6	1122	1258	1972		65
-1	1200	1.019	672	138	75	125	S.0	1.8	1104	1608	1920		147
#:	3 1900	1.013	517	201	86	169	10.9	9.5	1234	1353	2149		51
-2	2 68D	1.025	915	77	43	65-	6.4	5.8	525	911	1863		268
-	810	1.025	986	125	52	116	8.3	7.8	1037	1102	1863	2	191
MEAN-	<u>+</u> SD 1621 <u>+</u> 6461.	015 <u>+</u> 0.005	597 <u>÷</u> 162	174 <u>+</u> 70	65 <u>+</u> 14	153 <u>-</u> 60	9.8+2.0	8.4 <u>+</u> 1.9	1016 <u>÷</u> 132	1135 <u>÷</u> 159	1971 <u>+</u> 177		92 <u>+</u> 82
								The second second		- · :			

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject	: 2 VOLUME	SP GR GM/L	OSMOL MOSM	NA MED/24 HR	K MEQ/24 HR	CL MEQ/24 HR	CA MEQ/24 HR	MG MEQ/24 HR	1204 MG/24 HR _	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+	
BR1	2000	1.011	606	319	62	244	13.3	7.2	1640	1400	2160 =		8	
2	2615	1.009	395	260	58	230	13.4	8.6	994	993	1726	. •	· 18	
3	1620	1.015	468	168	71	159	10.2	9.4	1069	1004	1879		102	
4	1970	1.611	382	161	83	158	10.8	6.9	906	1024	1891		55	
. 5	1515	1.017	698	195	74	167	11.5	8.1	1212	1182	2060	•	47	
6	2050	1.010	443	160	82	152	11.6	10.3	984	1025	2050		36	
7	1760	1.010	5 č 2	188	79	169	9.5	6.7	1021	1691	1971		24	
8	1670	1.014	E84	151	67	174	11.9	9.6	1035	969	1837		58	
9	2655	1.009	<i>1</i> 17	236	74	228	14.7	9.7	1062	1115	2071		37	
10	1670	1.011	467	144	43	127	7.5	4,4	835	935	1703		76	1 =
11	1550	1.014	€05	176	72	156	9.7	9.5	1154	998	1966		0.4	(2)
12	1800	1,012	509	183	56	162	8.7	7.9	1090	1128	2068		61	-1
13	2325	1.005	458	225	77	193	13.4	9.1	1070	1163	2186	•	44	
14	2580	1.013	431	239	77	206	14.2	10.6	1238	1496	2270		36	
MEAN+SD	1991 <u>+</u> 403	1.012 <u>+</u> 0.003	502 <u>+</u> 95	204 <u>+</u> 48	71 <u>+</u> 10	180 <u>÷</u> 35	11.4+2.2	8.4+1.7	1050 <u>+</u> 108	1109 <u>+</u> 163	1988 <u>+</u> 168		50+2 <i>T</i>	

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 2

o ab je		VOLUME	SP GR GM/L	JCM20 M20M	NA MEQ/24 HR	K MEQ/24 HR	CL MEQ/24 HR	CA MEQ/24 HR	MG MEQ/24 HR	IPO₄ MG/24 HR	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+
R+0		810	1.023	757	78	54	83	8.8	6.6	859	1279	1571		270
1	•	1030	1.024	829	122	63	102	10.4	10.0	1195	. 1751	2060	•	232
2		1010	1.025	835	172	56	- 145	3.9	8.1	1151	1273	1919		211
3		1360	1.018	<u> </u>	166	46	141	10.6	10.0	1142	1441	2203		• 187
4		1950	1.023	805	177	58	170	9.2	11.8	1008	2394	2058		110
5		1840	1,015	399	197	55	167	11.3	11.2	1177	1214	2024		103
6		2375	1.012	383	285	64	264	10.9	7.9	808	1092 -	2138		27
7		1520	1.015	432	126	67	125	7.7	8.0	1071	1132	2050		144
8		1240	1.622	732	174	83	162	8.5	3.8	1240	1290	2083		194
9		1185	1.021	712	133	53	124	8.2	9.9	1303	1422	2109		225
10		1590	1.016	566	186	70	184	10.9	9.8	1013	1272	2099		100
11		1230	1.019	681	165	57	150	9.2	9.7	952	1674	1976		134
12		2175	1.013	293	215	54	196	8.8	8.4	1175	1088	2028		77
13		1570	1.014	480	173	36	176	12.7	8.5	1085	1122	2057		82
MEAN+	SD 14	48 <u>+</u> 468	1.019±.004	606 <u>+</u> 195	169 <u>+</u> 49	63 <u>+</u> 11	156 <u>+</u> 45	9.7+1.4	9.2÷1.4	1085+142	1346÷352	2031+149		150+71

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 3

	VOLUME	SP GR GM/L	OSMOL MCSM	NA MEQ/24 HR	K MEQ/24 HR	U-CL MEQ/24 HR	CA MEQ/24 HR M	MG MEQ/24 HR	1PC4 MG/24 HR.	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+
-21	1810	1.013	499	192	58	154	8.8	12.7	1158	833	1991 :		129
-20	1800	1.014	603	265	83	50	8.1	12.9	1260	964	1980		111
-19	2000	1.003	502	206	32	7G2	8.1	10.9	1240	920	2000		114
-18	1620	1.015	660	234	78	198	7.9	13.5	1231	1037	1879		122
-17	1715	1.014	611	217	62	185	8.2	14.3	995	1029	1955		129
-16	1600	1.011	491	202	72	193	12.0	9.2	756	792	1534		41
-15	2270	1.013	566	250	75	220	9.8	15.9	1271	1090	2452		132
-14	1720	1.014	595	234	77	206	8.3	10.4	963	£26	1686		99
-13	2580	1.013	529	253	101	194	9.2	12.8	1651	1684	2528		137
-12	2115	1.012	195	190	72	167	5.2	11.4	1142	1058	1946		127
-13	٤353	1.003	521	270	101	242	8.6	14,3	1034	1123	2038		67
-10	1490	1.014	554	149	õ4	127	5.8	10.3	894	775	1377		130
-9	1840	1.012	545	221	70	201	8.1	8.9	846	846	1509		87
-8	2340	1.014	572	254	98	234	13.2	14.4	1404	1170	2621		155
-7	1880	1.013	558	272	70	199	9.2	10.2	1052	902	7805		133
-6	2990	1.01C	458	254	1.3	275	10.4	12.0	1076	1076	2:53		74
-5	1990	1.012	5C4	191	78	159	7.1	11.2	915	875	1990		142
-4	2400	1.012	522	276	34	238	10.4	13.6	1056	960	2208		94
-3	1460	1.016	656	170	59	149	6.0	9.7	993	701	1927		198
-2	1520	1.015	479	173	C6	144	9.4	9.6	1555	د75	2203		270
-1	1640	1.010	583	169	80	151	5.6	7.6	1181	951	2273	:	206
AN+SD	1973+392	@12+0.003	547 <u>+</u> 58	220 <u>+</u> 39	79 <u>+</u> 14	181 <u>+</u> 51	8.6 <u>+</u> 1.9	11.7+2.2	1127+316	943+130	2030+285		128 <u>+</u> 50
	~	350									5 5		_
	8	E.											
	~~~ £	2											
	18 T									· · · · · · · · · · · · · · · · · · ·			
	FA	912±0.003									and the second		
	母母												29
	` & T					•							· vo

Subject 3

			VOLUME	SP CR GM/L	OSMOL MOSM	NA MEQ/24 HR	K MEQ/24 HR	CL MEQ/24 HR	CA MEQ/24 HR	MG MEQ/24 HR	1PO ₄ MG/24 HR .	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	11+	
BRI			2740	1.010	394	310	99	279	9.6	12.1	1250	1115	3288		107	•
2			3450	1.007	339	235	90	255	7.8	14.0	1035	966	2691	•	45	
3			1740.	1.014	600	250	64	218	6.5	13.7	940	766	1949		117	
4			2270	1.014	585	250	102	243	8.3	15.8	1135	953	2270		91	
. 5			2515	1,013	559	369	105	272	12.4	16.1	1412	1045	2615		125	
6			2340	1.012	520	220	103	205	9.0	11.7	1310	1030	2340		150	
. 7			2243	1.013	540	256	<b>3</b> ‡	224	6.7	12.9	1165	1630	2150		98	
8			3120	1.072	532	349	134	321	i5.3	15.6	1810	1373	2995		126	
9			2880	1.011	478	282	104	248	10.2	13.0	1267	1037	2419		<b></b> 02	. 3
10	[		3020	1.005	395	250	82	214	11.1	11.9	1027	905	1933		89	Č
- 11			35.5	1.0:0	441	217	83	193	10.3	10.7	1054	1004	2108		103	
12			2633	7.012	504	254	92	242	10.2	14.2	1368	1652	2524		155	
13			2425	1.012	517	257	104	233	10.8	12.2	1154	1164	2134	• • •	ì 05	
14			3740	1.011	413	283	97	267	9.1	12.3	1319	1058	2072		105	
MEAN	<u>+</u> S[	26	51 <u>+</u> 448	1.011±.002	21 487 <u>+</u> 79	272 <u>+</u> 35	98 <u>+</u> 14	245 <u>÷</u> 34	9.8+2.3	13.3+1.7	1233 <u>+</u> 218	1036 <u>÷</u> 136	2392 <u>+</u> 398		108 <u>+</u> 27	

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 3

Dubje	VOLUME	SH GR GIML	OSMOL MOSM	NA MEQ/24 HR	K MEQ/24 HR	CL MEQ/24 Hi	CA R MEQ/24 HR	MG MEQ/24 HR	IPO ₄ MG/24 HR -	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+ .
R+0 ,	2130	1.013	445	186	89	125	8.9	, 10.1	1090	1003	1962		177
1	1730	1.020	680	196	97	190	5.9	11.0	1314	1246	2214	•	171
2	2180 -	1.015	544	216	85	205	9.8	12.9	1352	1221	2223		151
3	1680	1.019	688	216	66	223	7.9	10.8	1411	1243	2251		201
. 4	2230	1.016	537	220	91	283	12.3	13.1	1293	1249	2185		156
5	2030	1.014	471	131	€9	153	7.6	10.3	1137	1015	1989		170
6	2235	1.015	554	267	96	268	10.7	10.7	1113	1252	2220		117
7	1280	1.022	756	155	57	. 143	9.2	11.3	918	942	2083		246
8	2245	1.014	491	234	72	243	3.8	12.6	1257	1078	2245		161
9	2000	1.016	571	255	90	258	8.4	10.6	1312	1148	2419		145
10	1820	1.017	508	242	78.	229	7.6	11.5	1165	1056	2002		162
11	1:35	1.815	525	202	72	194	8.4	13.4	1105	953	1943	•	142
12	1650	1.024	£37	177	77	155	7.4	12.0	1221	937	1984		298
13	1230	1.023	239	202	83	202	7.1	10.5	958	1109	2041		204
MEAN+SD	1851-396	1.017 <u>+</u> .0036	609 <u>+</u> 130	210÷34	80 <u>+</u> 12	205 <u>+</u> 38	8.6 <u>+</u> 1.5	11.6+1.1	1189 <u>+</u> 145	1104 <u>-</u> 123	2130 <u>+</u> 148		174 <u>+</u> 50

TABLE 4 24 HOUR URINE RESULTS CONTINUED

Subjec		S? GR	JON20 RECM	NA MEQ/24 HR	K MEQ/24 HR	CL NEQ/24 hR	CA MEQ, 24 HR	MG MEQ/24 HR	IPO ₄ . MG/24 HR _	URIC ACID " MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+	
	VOLUME	GM/L			60	186	9.1	12.5	1277	907	2442		212	
F-21	925	1.025	7019	158	63	180	8.7	5.7	823	858	2100	•	- 0	
-20	875	1.022	1089	232		- 197	10.3	8.7	<b>9</b> 61	774	1879		98	
-19	1105	1.019	823	221	46	200	9.8	10.1	915	887	2059		13	
-18	1430	1.012	695	228	62	271	11.3	7.1	1132	995	2367		22	
17	1715	1.015	679	298	65			8.6	1084	932	2065		160	
-16	1260	1.017	654	162	62	159	7.0	7.8	877	934	2609		23	
-15	1415	1.017	765	264	71	224	7.7		966	1054	2327		0	
-14	2195	1.007	561	237	79	239	10.4	9.1	1166	843	1959		74	3
-13	1240	1.017	749	236	57	208	9.0	10.1			1933		30	
-12	1780	1.011	519	198	60	125	7.0	7.3	926	748			12	9
-17	1065	1,021	534	197	75	175	5.9	6.8	992	108	1899		81	
-10	19.50	1.010	4-,9	:79	70	162	9.3	12.2	1140	1025	2356	•		
-9	1235	1.617	531	139	63	133	7.1	7.9	1036	852	2290		187	
-8	1620	1.015	646	233	62	178	5.3	10.7	972	1102	2203		26	
-7	940	1.019	812	175	<b>50</b>	161	11.4	17.6	959	714	1842		152	
-6	1160	1.026	1057	236	74	194	9.0	12.3	1485	1253	3016		255	
-5	400	1.027	1104	žő	29	ජිවි	4.6	3.6	296	160	1224		234	
-4	1690	1,012	543	197	59	164	0.5	7.5	1032	913	2231		81	
-3	970	1.021	910	222	58	176	7.5	8.5	834	973	2134		89	
	1750	1.014	528	271	74	210	2.4	9.7	1085	1015	2415		. 74	
-2	1730	1.014	622	292	77	225	8.8	7.0	929	791	2064		14	
-1 MEAN+SD		.017±0.005	751 <u>+</u> 198	215 <u>+</u> 52	63 <u>+</u> 12	185 <u>-</u> 39	8.6+1.7	9.1 <u>÷</u> 3.0	992 <u>+</u> 224	895 <u>+</u> 159	2134+488		88 <u>+</u> 8	B <b>2</b>

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 4

	VOLUME	SP GR GM/L	GSMOL NOSM	NA MEQ/24 HR	K MEQ/24 HR	GL MEQ/24 HR	CA MEQ/24 HR	MG MEQ/24 HR	IPO ₄ MG/24 HR	URIC ACID - MG/24 HR	CREATININE MG/24 HR	HGPRO MG/24 HR	H+
BRT	, 1490	1.018	609	274	70	200	6.5	. 8.1	1341	1013	2354		106
2	610	1.028	1191	7.48	57	146	5.5	6.9	768	683	1513	•	197
3	<i>7</i> 40	. 1.029	1192	าร์9	64	" 1⊹2	6.6	7.7	858	459	1866		218
4	1020	1.025	1671	275	58	237	12.0	6.6	1122	559	2183		100
. 5	cos	1.014	785	153	51	130	2.4	2.4	448	560	1056		0
6	1345	1.620	894	266	£2	249	10.9	10.9	1076	915	2233		160
7	960	1.026	1093	245	58	2 <b>L</b> 3	9.6	4.1	1675	845	1939		85
8	650	1.029	1222	175	<b>5</b> 5	155	€.3	7.7	767	553	1469		154
9	760	1.028	1165	168	57	144	8.5	9.1	973	745	1526		229
10	1265	1.028	1161	287	105	267	13.0	14,1	1796	1255	2960		1.
11	1195	1,022	813	215	63	202	9.1	9.8	1123	1004	2008 .		61
12	910	1.024	393	185	ō2	168	7.9	8.2	892	728	1620		76
13	870	1.029	1111	211	54	125	9.1	8.8	1096	940	1984		117
14	2210	1.016	573	287	84	267	11.5	12.1	1282	1149	2367		43
1EAN±SI	D 1059 <u>+</u> 425	1.024+.005	984 <u>+</u> 222	218 <u>+</u> 54	67 <u>+</u> 15	194 <u>+</u> 47	.8.5 <u>+</u> 2.9	8.3+3.0	1040+320		1938+478		120 <u>-</u> 69

TABLE 4
24 HOUR URINE RESULTS CONTINUED

				4	

		VOLUME	SP GR GM/L	MOSM MEGN	NA MEQ/24 HR	K MEQ/24 HR	CL MEQ/24 HR	CA MEC, 24 HR	MG MEQ/24 HR	IPO ₄ MG/24 HR _	URIC ACID MG/24 HR	CREATININE MG/24 HR	HOPRO MG/24 HR	H+ :
R+0		670	1.032	1185	125	70	130	5.8	7.9	1045	- 1085	1970		326
1		CSC	1.031	1135	169	61	151	5.7	8.8	998	1154	1872		126
2		1500	1.021	783	2 <del>ē</del> 4	75	225	10.5	10.0	1230	1200	2670		46
3		1905	1.015	370	290	80	280	9.2	9.8	1029	953	1867		15
4		2410	1.013	482	247	63	217	10.0	10.2	1205	1205	2314		103
5		1635	1.015	536	158	49	159	8.8	10.3	818	1112	1831		. 77
6		1050	1.024	564	139	43	128	8.5	11.5	1323	1239	2415		253
7		715	1.023	529	200	46	161	ε.7	3.8	458	901	1344		0
8		1610	1.014	572	180	53	177	7.0	8.0	837	966	1996		93
9		1180	1.022	792	181	44	155	11.5	19.8	1345	1912	2242		242
10		1120	1.023	833	187	49	161	9.8	14.0	1075	1523	2106		238
1)		1590	1.017	610	234	54	195	6.6	8.5	1113	1031	1940		88
12		990	1.621	784	158	56	155	5.5	7.3	752	950	2020	•	171
13		1370	1.019	700	221	73	184	8.6	7.4	986	1069	2028		25
MEAN <u>+</u>	SD 13	323 <u>+</u> 492	1.021 <u>+</u> .006	730 <u>+</u> 240	197 <u>+</u> 48	59 <u>+</u> 12	177 <u>÷</u> 41	8,2+1.9	9.8 <u>+</u> 3.7	1015+240	1168+266	2001+255		129 <u>+</u> 102

OF POOR QUALITY

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 5

		V0ĽL;:iE	SP GR GK/L	OM26 M2GN	L MA MEQ/24 HR	K MEQ/24 HR	U-CL NEQ/24 YR	U-CA MEQ/24 HR	U-MG MEQ/24 HR	U-IPUA MG/24 HR_	U-URIC ACID MG/24 HR	U-CREATININE MG/24 HR	U-HOPRO MG/24 HR	H+
	F-2]	7.270	1.019	832	250	85	234	9.3	10.8	1118	- 965	2184 -		85
	-20	1645	1.023	928	173	88	155	8.5	10.9	1170	961	2341		. 221
	-19	1920	1.021	263	182	54 -	137	10.3	10.5	1204	775	1836		167
	-18	1375	1.019	355	272	<b>£</b> 4	249.	10.2	9.5	1128	935	1980		100
	-17	136,5	1.020	872	245	74	212	11.4	14.7	1420	1010	2375		105
	-15	1000	1.924	Sē7	183	73	173	9.4	10.5	1320	920	2300		303
	-15	1135	1.022	944	220	69	159	7.7	9.4	1112	853 -	1521		199
	-14	900	1.023	958	158	58	129	9.6	10.4	1152	7 <u>5</u> 2	1980		292
	-13	1030	1.023	0.50	191	75	ī52	10.9	10,4	1092	S£5	2225		245
	-12	860	1.025	1058	153	52	128	10.8	16.3	1135	740	1961		308
	-11	1130	1.022	\$65	301 -	72	225	10.6	8.4	1175	214	2079		139
ע ט ר־־א	-10	1120	1,921	911	230	55	205	13.1	12.8	1058	896	2218		235
	-9	1040	1.022	952	230	ε7	189	. 9.4	3.2	1144	686	1914	<b>.</b>	226
	-8	1750	1,922	658	265	76	231	10.3	9.8	1150	874	2070		187
	-7	1780	1.021	944	258	84	220	10.2	9.8	1204	826	1959		189
	-\$	980	1,326	1037	145	75	120	. 11.7	12.9	1275	852	2254		392
	-5	760	1.021	1047	92	53	90	7.4	6.1	812	686	1988		441
	-4	6?ā	1.028	1656	29	37	70	8.1	8.6	1026	783	1904		436
	-3	1015	1.024	1533	223	73	;93	9.7	9.1	1172	990	2252		265
	-2	- 520	1.023	154	157	73	175	71	7.4	1104	E33	1969		290
	-1	1763	1,024	955	251	6]	178	13.9	10.5	1364	924	2112	r	253
	ME,AN+SD 1	1046 <u>÷</u> 160 1	.023 <u>+</u> .002	959 <u>~</u> 62	205 <u>÷</u> 57	69 <u>÷</u> 13	177 <u>+</u> 48	9.8 <u>+</u> 1.5	9.8 <u>÷</u> 2.4	1158 <u>÷</u> 122	860 <u>+</u> 93	2068+202		253 244 <u>+</u> 106

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 5

	VOLUN	U-SP GR E GM/L	U-CS: OL NOSM	U-NA MED/24 HR	U-K MEQ/24 HR	U-CL NEQ/24 HR	u-CA MEQ/24 HR	U-MG MEQ/24 HR	U-IPO ₄ MG/24 HR _	U-URIC ACID MG/24 HR	U-CREATININE MG/24 HR	U-HOPRO MG/24 HR	H+	
BR.	1 1110	1.022	952	2-0	76	202	10.4	9.2	1199	844	2020		219	
2	2 1075	1.017	771	220	48	163	9.3	6.9	774	645	1527		101	
	3 870	1,018	S54	151	63	151	8.6	8.3	1044	73!	2088		390	
	4 950	1.021	931	248	5}	204	10.1	7.3	639	735	14:7		37	
	5 7630	1,021	941	249	66	223	10.7	8.2	236	845	1627		108	
. (	E 1368	1.024	1019	<u>572</u>	96	250	17.4	7.6	1802	1092	2812		375	
	7 1620	1.019	815	258	91	217	16.0	11.7	1264	10,37	2560		144	
į	8 945	1.017	751	154	42	133	9.7	6.8	794	585	1247		155	
	9 1030	1.021	£73	165	65	151	11.1	13.2	1030	803	1833		263	, ,
70	D 1700	1.021	856	347	126	316	16.3	17.0	1632	1224	2890			
1	1 1190	1.024	912	254	74	219	12.4	11.9	1119	1333	1952			ී
12	2 1180	1.025	921	211	81	196	12.1	11.5	1322	1160	2118		278	
1;	3 1300	1.020	743	205	66	170	10.0	9.6	998	988	1872		178	
1.	4 1190	1.023	591	232	75	218	11.4	10.6	952	1023	1928		174	
MEA	N <u>+</u> SD 1179 <u>+</u> 24	7,1.021 <u>+</u> 0.002	863 <u>+</u> 115	230 <u>÷</u> 51	73 <u>+</u> 21	202 <u>+</u> 47	11.9 <u>+</u> 2.8	10.0+2.9	1108 <u>+</u> 317	932 <u>+</u> 225	1992+489		195 <u>+</u> 101	l



TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 5

	VOLCME	U-CP GR GIYL	U-05%0L M2∪M	U-NA MEQ/24 HR	U-K MEQ/24 HR	U-CL MEQ'24 HR	L-CA MEQ/24 HF	U-MG R MEQ/24 HR	U-1904 MG/24 HR _	U-URIC ACID MG/24 HR	U-CREATININE MG/24 HR	U-HOPRO MG/24 HR	H+	
R+0	901	1.025	517	122	<b>6</b> 5	113.	10.8	10.9	1152	1250	2052	•	384	
1	950	1.028	962	193	76	208	10.0	10.7	912	1045	1900		185	
2	1130	1.025	950	234	75	502	13.5	12.9	1107	1266	2170		179	
3	845	1.023	9 : 5	203	63	199	7.1	5.4	676	777	1453	•	66	
4	1360	1.024	931	223	88	253	12.2	15.5	14:4	1360	2556		205	
5	880	1.020	731	177	45	159	8.3	9.4	598	548	1338		76	
6	960	1.028	1014	173	<b>52</b>	173	9.7	12.4	1440	1229	2638		468	
7	1490	1.022	552	234	79	218	11.7	13.1	1460	1252	2712		196	
8	690	1.030	1069	79	64	73	5.6	9.5	1132	1297	2070		E24.	
9	715	1.029	642	84	53	54	6.ĉ	11.7	1115	872	1859			
10	1250	1.025	67ง	281	90	255	10.2	14.9	1150	1175	2250			Ī
11	910	1.026	236	209	61	198	8.2	9.6	1001	783	1911		257	_
12	760	1.029	1034	154	62	139	6.5	9.7	1140	973	2204		436	
13	610	1.032	1125	86	62	86	5.4	9.6	952	915	1830		537	
MEAN+SD	961 <u>÷</u> 259	1.026+0.003	898 <u>+</u> 171	181 <u>+</u> 59	69 <u>+</u> 13	167 <u>+</u> 64	9.C <u>+</u> 2.6	11.2+2.5	1089 <u>+</u> 256	1054 <u>+</u> 247	2079÷419		249+161	

TABLE 4
24 HOUR URINE RESULTS CONTINUED

Subject 6

	VCLUME	U-SM CR GM/L	U-OSMOL MOSM	U+6"1 MEC/24 HR	U-K MEQ/24 HR	U-CL MEQ/24 HR	L-CA MEQ/24 HR	U-MG MEQ/24 HR	U-IPO ₄ MG/24 HR.	U-URIC ACID MG/24 HR	U-CREATININE MG/24 HR	U-HOPRO MG/24 HR	H+
BR1.	1375	1.015	€67	244	53	155	10.0	8.8	790	743	1650 -	•	87
2	1065	1,021	982	244	53	199	11.4	9.0	1129	. 895	1739		- 182
3	1480-	3.018	730	125	74	185	19.8	13.4	1154	947	2250		218
4	840	1,021	8S\$	ไฮ์ธิ	50	7.49	3.8	t.9	755	€55	1361		218
5	1730	1.015	657	250	95	234	14.1	12.1	1073	1073	2284		18
6	6,10	1.021	87 ì	331	41	127	8.6	9.4	923	670	1458		191
7	1320	1.015	708	27.0	59	187	11.8	8.8	950	818	1795		97
Ġ	1270	1.019	£45	237	79	275	12.4	11.0	1092	991	1880		101
9	1770	1.018	733	129	62	i40	11.2	10.5	796	772	1755		178
າປ	970	1.017	884	187	62	164	11.5	11.5	£92	834	1659		127
11	1430	1.018	663	225	76	219	12.0	9.2	515	915	1973		
12	1250	1.039	707	205	53	157	11.9	7.0	912	888	1655		0
13	:390	1.018	€82	221	64	203	12.7	11.5	945	<b>917</b>	1668		94
14	12-5	1.019	703	218	68	192	11.1	11.7	1156	1040	1762		105
MEAN±SD	1250 <u>÷</u> 2661	.016 <u>+</u> 0.002	759 <u>+</u> 95	207 <u>+</u> 35	64 <u>÷</u> 14	184 <u>÷</u> 32	17.9+2.7	10.1 <u>+</u> 1.9	935 <u>+</u> 182	858 <u>÷</u> 128	1782 <u>+</u> 257		115 <u>+</u> 75



TABLE 4
24 HOUR URINE RESULTS CONTINUED

S	ub	i	ec	t	6	
		_				

Subje	YOLUME	U-EP GX GM/L	u-oshol Masm	U-:A MEQ/24 HR	U-K MEQ/24 HR	U-CL MEQ/24 HR	U-CA r.EQ/24 HR	U-MG MEQ/24 HR	U-IPO ₄ MG/24 HR	U-URIC ACID - MG/24 HR	U-CREATININE MG/24 HR	U-HOPRO MG/24 HR	H+	
F-21	1459	1.623	954	237	83	270	12.0	14.5	1537	1160	2755		230	
-20	1295	1.519	739	246	<b>£</b> 4	209	10.2	10.8	932	932	1839		17	
-19	1280	1.012	529	22ō	53	157	3,4	7.8	666	666	1510		29	
-18	1050	1.022	974	203	70	175	8.9	8.9	945	819	2016		33	
-17	1160	1.020	£57	235	57	215	10.1	8.8	812	766	1740		32	
-15	1080	1.027	85 î	254	67	192	7.9	8.5	907	778	1879		93	
-15	7425	1.020	871	253	3.8	248	9.3	12.2	1328	<b>?</b> 055	2337		83	
-14	1755	1.009	659	253	60	237	17.3	8.2	847	872	1765		21	
-13	1119	1.016	C60	าธ์0	49	124	7.7	7.8	834	733	1843			
-12	1340	1.015	668	2:3	56	138	9.7	5.0	804	697	1528		0	200
-11	1635	1.622	950	2)4	78	:£3	9.0	7.9	1343	890	1863		100	C
-10	643	1.021	£J3		-48	131	€.9	7.2	857	555	1411	•	228	
-9	1120	1.019	796	23.5	73	169	6.4	7.8	1075	205	1725		31	
-8	1610	1.014	€31	241	93	2:5	8.7	8.5	1127	837	2061		87	
-7	1220	1.015	689	207	57	162	5.9	7.6	952	E83	1513	•	105	
-5	1030	1.022	933	257	71	181	7.5	11.3	1030	865	1854		194	. <b>}</b> .
-5	8.39	1,024	992	.52	58	156	9.0	10.6	1126	827	1725		419	
-4	353	1.019	203	58	81	48	3.2	2.9	346	256	583		210	
-3	<b>8</b> 30	1.023	963	198	52	160	7.0	7.2	1033	845	1707		80	
-2	805	1.022	689	141	56	141	6.2	7.1	869	692	1707		299	
-1	1340	1.017	712	235	55	198	8.5	10.1	938	884	1876	• •		
√EAN±SD	1146 <u>+</u> 3081.	.019 <u>÷</u> 0.924	812 <u>+</u> 126	209 <u>÷</u> 52	63 <u>+</u> 16	180 <u>+</u> 48	8.6+2.7	8.6 <u>+</u> 2.5	969 <u>+</u> 254	794 <u>+</u> 173	1773+402		108 124 <u>+</u> 108	j j

TAPLE 4 24 HOUR URINE RESULTS CONTINUED

Subject 6

		VOLU⊱E	U-SP GR GM/L	U-C3MOL 1.DSM	U-I.A MEQ/24 HR	U-K MEQ/24 HR	U-CL MEQ/24 HR	U-CA MEQ/24 HR	U-1:3 MEQ/24 HR	U-IPO ₄ MG/24 HR	U-LRIC ACID MG/24 HR	U-CREATININE MG/24 HR	U-HOPRO MG/24 HR	H+	
F	₹+0	1110	1.020	679	725	76	119	8.7	8.9	844	888	1665		223	
	1	720	1,027	746	123	70	112	15.0	7.8	893	792	1584	•	-120	
	2	1260	1.079	678	227	58	- 176	7.7	8.2	958	983	1865		2	
	3	1545	1.017	620	246	65	212 .	8.5	9.4	1082	1051	1751		104	
	4	1370	1.019	554	241	77	207	7.0	7.9	986	959	1263		22	
	5	810	1.026	953	150	61	, 29	7.2	9.3	1134	1037	1652		375	
	6	360	1.528	1602	٦73	C6	785	7,4	8.0	894	998	1617		311	
	7	1035	1.026	957	239	75	204	7.1	9.8	1146	1196	1859		109	••
	8	735	1.027	\$22	129	44	122	6.0	11.2	926	1250	1852		442	30
	9	1v15	1.021	735	138	43	149	€.5	8.8	731	1096	1604		188	
	10	1390	1.020	729	248	79	222	8.3	9.1	1056	1:40	2085		124	_
	11	11:30	1.025	956	230	76	223	7.7	9.3	1333	1107	1853		110	
	12	1150	1.022	523	182	60	178	ε.1	9.9	1012	989	1817		262	
	13*	410	1.027	970	74	29	72	3.2	5.2	508	500	943		415	
M5	EAN+S	SD 1085 <u>+</u> 2611	.021 <u>+</u> 0.006	784 <u>+</u> 154	193 <u>+</u> 57	65 <u>÷</u> 11	177 <u>+</u> 42	3.0 <u>÷</u> 2,2	9.C <u>÷</u> 1.0	1000 <u>+</u> 155	1030 <u>+</u> 117	1776 <u>÷</u> 145		201 <u>+</u> 142	

^{*}Mission Cay R+13 Not Included in Mean  $\pm$  SD Calculation

TAB' 5 URINARY HORMONE RESULTS

Subject l	VOLUME •	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO "ug/TV	ADH mu/T <b>V</b>
F-21	2215	94.1	40.6	45.7	6.2	48.2
-20	1655	95.2	11.5	41.6	5.8	105.6
-19	800	52.0	2.6	27.0	7.7	56.2
-18	915	59.0	6.2	35.9	5.7	42.7
-17	2180	112.3	7.7	39.6	3.5	43.5
-16	1280	68.5	12.8	47.0	7.7	57.8
-15	1770	97.4	7.2	36.2	11.3	56.6
-14	1760	82.7	8.9	36.2	12.8	33.9
-13	1800	63.9	21.6	66.6	12.6	31.2
-12	1720	28.4	15.7	22.0	6.2	23.0
	1380	69.0	15.7	29.7	7.5	27.6
-10	1120	104.7	15.8	37.0	3.6	27.8
-9	1510	14.7	LTD	37.4	17.0	24.2
8	1535	42.2	17.1	41.4	10.8	33.7
4 - <b>7</b> - 7 - 1 - 1 - 1 - 1	1260	48.5	11.6	44.0	12.1	62.2
-6	1775	54.1	38.5	36.6	6.6	89.7
-5	1540	39.3	24.1	34.3	9.9	31.9
-4	1080	45.9	11.0	24.5	13.4	43.2
-3	1780	51.6	42.6	30.5	13.1	29.8
-2	1220	36.6	23.9	40.1	18.3	23.5
	855	33.8	1.4	28.5	11.3	27.4
MEAN <u>+</u> SD	1 <b>4</b> 83 <u>+</u> 400	<b>61.</b> 6 <u>+</u> 27	16.0 <u>+</u> 12	37.2 <u>+</u> 10	9.7 <u>+</u> 4	48.5+23
BR1	2180	41.4	15.5	21.4	11.5	40.6
2 3	3230	77.5	20.3	22.0	11.4	37.8
1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1400	65.8	13.2	14.3	9.5	17.9
4 - Friedrich (* 1885)	1450	77.6	21.7	31.5	25.0	67.9
4 5 6	930	79.0	11.1	21.6	12.9	24.8
	1100	56.7	26.9	21.7	11.8	36.5
<b>7</b> 8	1580	77.4	8.3	21.3	16.4	56.7
9	1670	.40.5	1,4	22.3	11.9	44.7
	2345	84.0	7.1	31.5	20.2	45.2
10 11	1400	40.6	5.8	18.8	11.2	31.6
	1380	92.5	8.2	46.2	15.4	26.7

21

TY ZE 5

URINARY HORMONE RESULTS CONTINUED

Subject 1	VOLUME •	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO " ug/TV	ADH mU/TV
	1930	111.0	5.1 .	30.2	22.5	43.9
BR12	1505	59.7	26.2	9.8	13.0	42.0
13	1520	91.2	15.0	27.6	12.4	29.3
14		30.6	ĹŤĎ	62.8	23.5	26.6
R+0	1250		19.9	40.8	18.2	23.8
	1230	48.0	15.2	36.2	9.8	34.7
. 2	925	62.9		78.0	16.7	41.1
3	1660	64.7	LTD	45.0	11.1	32.2
4	1860	59.5	25.2		9.2	29.6
	2920	27.7	3 <u>7.</u> 8	27.3		
5 6 7	1795	29.6	LTD	42.5	9.4	57.6
7	2070	50.7	1.8	35.2	9,2	23.7
8	1880	150.4	2.8	45.8	11.3	20.0
9	2410	36.2	LTD	194.3	7.4	33.8
.10	1980	75.2	2.1	52.8	9.4	40.9
	1195	56.8	4.2	41.3	7.1	20.0
	1315	75.6	LTD	50.7	6.4	38.7
12 13	1440	46.1	ĹŤĎ	60.3	6.7	59.5

TARKE 5
URINARY HORMONE KESULTS CONTINUED

Subject 2	VOLUME .	CORTISOL ug/TV	E?I ug/TV	NOR ug/TV	ALDO ug/TV	ADH mu/T <b>v</b>
F-21	2760	138.0	38.0	67.1	16.6	42.3
-20	1710	100.0	40.3	61.5	17.3	54.7
-19	1480	101.5	22.2	51.2	4.5	26.0
-18	1395	104.6	20.0	73.5	20.6	48.4
-17	2610	144.9	17.0	59.2	16.2	36.5
16	1520	88.2	9.2	55.0	13.2	38.4
-15	1670	112.7	13.0	71.9	19.8	36.6
-14	1580	104.3	13.8	68.2	15.1	41.0
-13	860	16.8	22.3	117.1	8.0	18.8
-12	1380	151.1	19.0	72.3	5.3	41.4
-11	3030	92.4	21.6	62.7	17.4	33.9
-10	930	83.7	3.1	62.3	22.2	18.0
_9	1600	12.6	6.1	54.3	19.3	33.2
*-8	1400	84.0	23.2	70.2	24.5	40.9
-7	1280	76.8	LTD	95.4	25.9	38.3
-6	2530	46.8	38.0	63.1	16.1	52.4
<b>-5</b>	1700	60.4	6.6	95.3	21.2	23.7
-4	1200	63.0	11.3	53.3	34.0	40.0
-3	1990	122.4	36.8	79.3	33.7	57.2
2	680	46.6	14.5	54.3	18.7	18.9
	810	54.3	LTD	64.7	20.6	11,3
MEAN+SD	1625 <u>+</u> 645	86.0+38	17.9 <u>+</u> 12	69.1 <u>+</u> 16	18.6+8	35.1 <u>+</u> 15
BR1	2000	75.0	21.1	43.9	20.9	57.2
2 .	2615	83.7	19.0	31.4	19.8	43.5
3	1620	85.0	19.1	29.6	41.1	33.5
4	1970	101.5	13.9	37.9	41.4	55.0
5	1515	113.6	15.2	26.9	27.3	34.3
6	2050	143.5	14.2	64.4	38.4	48.0
7.3	1760	120.5	8.5	27.6	28.4	53.8
8	1670	-112.7	7.4	29.9	27.6	56 <b>.6</b>
9	2655	192.5	0.2	47.2	20.9	42.5
10	1670	40.9	6.9	22.5	25.5	37.7
	1560 -	106.9	11.7	48.9	23.6	48.9

TAP 5
URINARY HORMONE RESULTS CONTINUED

Subject 2	VOLUME *	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO ug/TY	ADH mU/TV
BR12	1880	105.3	5.0	29.4	25.0	40.0
13	2325	131.4	24.8	21.5	20.9	57.4
14	2580	80.0	36.3	24.2	30.5	89.4
R+0	810	30.0	16.5	41.4	23.0	7.6
	1030	29.9	12.1	64.5	22.7	28.3
2	1010	20.7	8.8	45.2	16.1	33.5
3	1360	44.2	29.3	33.3	17.4	30.0
4	1050	52.5	15.6	60.0	28.2	37.8
5	1840	156.4	23.1	49.9	23.5	51.7
6	2375	71.2	0.2	70.0	20.3	60.0
	1520	53.2	13.9	62.1	38.5	39.4
8	1240	89.9	3.3	69.3	29.3	44.8
9	1185	80.0	LTD	85.6	12.7	37.1
•10	1590	56.4	LTD	108.3	13.4	47.7
11	1220	54.9	16.4	60.1	12.3	77.8
12	2175	57.6	11.1	73.1	10.4	50.8
13	1870	105.7	LTD	135.0	16.9	65.0

j-

TAC 5

URINARY HORMONE RESULTS CONTINUED

Subject 3	VOLUME •	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO '- ug/TV	ADH mU/T <b>V</b>
F-21	1810	52.5	4.9	73.6	3.5	23.2
-20	1800	82.8	10.7	61.8	3.4	24.3
-19	2000	67.0	24.9	43.3	1.0	29.3
-18	1620	70.5	71.5	39.1	3.8	23.8
-17	1715	77.2	62.4	42.4	4.7	14.1
16	1800	63.9	34.7	36.7	3.7	39.6
-15	2270	80.6	35.1	55.1	8.9	43.8
-14	1720	71.4	28.1	34.4	4.4	31.1
-13	2580	58.1	77.7	56.6	10.9	44.7
-12	2115	33.8	30.0	40.7	7.2	29.6
-11	2350	98.7	47.0	54.3	10.4	31.4
-10	1490	43.2	36.1	35 <b>.6</b>	7.2	27.7
-9	1840	27.6	9.5	52.7	8.5	19.2
8	2340	76.0	61.1	69.7	14.4	60.8 38.8
	1880	25.4	26.9	26.6	7.1	38.8
-6	2990	26.9	<b>57.2</b>	52.1	8.2	24.7 57.2
<b>-5</b>	1900	26.6	52.4	62.3	9.1	57.2
-4	2400	21.6	20.2	53.1	8.2	33.6
-3	1460	21.2	35.2	32.2	11.4	39.8
-2	1620	31.6	22.6	54.4	13.0	73.4
	1640	20.5	20.6	50.4	11.5	45.8
MEAN+SD	1969+392	51.3 <u>+</u> 25	36.6 <u>+</u> 21	48.9 <u>+</u> 13	7.6+4	43.7 <u>+</u> 18
BR1	2740	31.5	34.1	37.2	10.8	24.2
2	3450	63.8	28.2	42.4	13.2	37.7
3.1	1740	38.3	26.6	33.7	10.6	36.0
	2270	124.9	42.6	30.6	14.7	34.7
	2615	69.3	80.7	37.6	20.2	41.8
	2340	90.1	43.1	74.1	19.8	48.4
4 5 6 7	2240	70.6	9.0	45.1	14.9	41.7
8	3120	166.9	10.4	55.8	22.7	64.8
9	2880	40.3	LTD	57.5	16.1	27.6
10	3020	19.6	5.9	40.4	13.4	23.3
11	2510-	59.0	35.9	45.7	11.7	32.1

TÁ 3 5
URINARY HORMONE RESULTS CONTINUED

Subject 3	VOLUME -	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO " ug/TV	ADH mU/TV
ppya	2630	35.5	33.3	71.1	15.8	31.5
BR12 13	2425	59.4	36.9	22.9	7.1	20.1
14	3140	98.9	40.6	29.4	12.9	26.8
R+0	2180	52.3	41.2	33.8	18.1	46.4
KTU	1730	90.0	65.8	63.9	17.1	47.2
	2180	117.7	35.9	85.2	15.6	52.2
	1680	90.7	1 44.5	56.3	12.8	47.0
4	2230	27.9	48.6	67.8	15.8	34.3
5	2030	44.7	46.6	61.8	14.2	31.1
6	2235	57.0	LTD	124.0	13.5	43.2
7	1280	50.8	9.9	76.4	8.2	32.4
8	2245	76.3	9.7	67.3	19.2	45.0
9	2050	53.3	26.7	108.2	4.7	79.5
. 10	1820	22.8	35.9	84.0	5.4	30.3
	1905	33.3	61.8	44.3	5.6	44.5
12	1090	52.3	14.8	90.3	7.7	57.7
16 13	1260	69.3	36.1	87.8	6.9	12.1

ن:

TAB 5
URINARY HORMONE RESULTS CONTINUED

Subject 4	VOLUME	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO ug/TV	ADH mU/TV
F-21	925	76.3	3.2	46.5	18.9	19.8
-20	875	79.6	7.2	32.5	13.7	78.9
-19	1105	88.4	8.1	35.7	15.7	36.3
-18	1430	125.1	6.9	38.9	17.4	28.5
-17	1715	63.5	7 2.2	42.0	24.2	57.0
-16	1260	74.3	10.8	48.8	17.1	38.6
-15	1415	31.8	2.7	39.7	18.4	33.8
-14	2195	85.6	15.7	45.4	36.6	36.5
-13	1240	103.5	7.4	42.5	13.3	19.1
-12	1780	40.0	1.3	34.7	21.1	23.3
-11	1055	23.7	7.4	36.4	10.1	29.4
-10	1900	44.7	7.0	48.6	21.7	121.9
-9	1205	25.9	9.9	51.9	13.7	38.4
<b>≗8</b>	1620	35.6	3.6	72.4	20.2	49.7
- <b>-7</b>	940	31.0	11.8	28.8	13.4	27.1
-6 -5	1160	51.0	30.3	57.5	25.2	16.2
-5	400	23.6	3.6	35.3	10.2	27.5
-4	1690	39.9	7.5	31.2	19.9	58.8
<b>-3</b>	970	35.4	11.9	27.2	19.9	28.6
-2 -1	1750	93.6	4.4	39.0	21.4	51.5
	1720	110.1	12.1	33.1	20.3	71.3
MEAN+SD	1350 <u>+</u> 429	61.1 <u>+</u> 31	8.3 <u>+</u> 6	41.3 <u>+</u> 11	18.7+6	45.3+29
BR1	1490	62.5	14.2	22.6	27.3	54.5
2	610	68.3	7.8	14.3	15.8	48.4
3	740	70.3	6.2	33.1	20.4	17.6
Ă	1020	137.7	6.8	18.3	19.0	47.6
5	800	45.2	1.6	10.7	9.7	30.7
6	1345	104.2	LTD	29.9	27.6	36.0
ž	960	79.2	0.3	21.3	18.2	23.0
8	650	87.8	0.4	17.3	15.8	41.3
ğ	760	93.1	2.1	20.3	27.2	24.0
10	1265	86.6	1.4	33.8	44.2	35.3

TA 5 5
URINARY HORMONE RESULTS CONTINUED

Subject 4	VOLUME .	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO ug/TV	ADH mU/TV
	1195	164.3	10.4	21.6	20.3	25.6
BR11	910	88.7	1.0	24.3	18.1	14.6
12	870	63.5	7.8	20.9	13.2	40.6
13	2210	176.0	8.4	19.9	18.4	108.8
14	670	127.3	1 15.7	28.4	23.9	30 <b>.6</b>
R+0	780	50.7	12.9	32.8	18.5	31.2
	760 1500	112.5	21.9	31.9	17.6	68.0
2	1905	138.1	4.1	41.6	18.0	47.0
3	2410	69.9	1.1	46.5	19.7	37.0
<b>4</b> 5	1635	95 <b>.</b> 6	LTD	61.1	19.4	65.4
	1050	60.4	LTD	75.1	14.5	46.9
6		68.6	2.5	25.0	5.2	49.0
	715	84.5	0.3	42.5	9.2	55.6
8	1610 1180	83.2	0.3	63.4	12.2	41.9
• 9		61.6	LTD	66.2	14.2	38.3
10	1120		7.3	47.6	10.6	63.6
11	1590	58.0	0.7	33.8	14.5	23.8
12	990	43.1		54.7	10.7	51.5
13	1370	113.0	LTD	J4./	10.7	V1.0

TAB 5
URINARY HORMONE RESULTS CONTINUED

Subject 5	<b>V</b> OLUME •	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO "- ug/T <b>V</b>	ADH mU/T <b>V</b>
F-21	1270	58.4	LTD	52.7	4.4	88.4
-20	1045	54.3	17.4	48.3	7.9	39.9
-19	1020	90.6	3.2	39.2	2.6	42.8
-18	1375	31.6	0.4	54.7	3.0	52.4
-17	1365	118.1	7.1	55.3	6.2	62.8
-16	1000	61.0	11.7	59.1	7.4	42.9
-15	1135	62.4	LTD	56.0	3.0	41.8
-14	900	64.8	LTD	61.4	5.4	28.8
-13	1030	45.8	LTD	83.9	5.0	29.7
-12	860	36.6	LTD	58.7	4.6	36.5
	1130	15.8	2.4	66.1	5.0	117.0
-10	1120	44.8	6.1	50.7	5.0	217.5
-9	1040	17.7	LTD	57.3	3.4	45.5
*-8	1150	24.2	LTD	63.5	5.0	200.2
-7	1180	31.3	1.0	49.2	6.4	60.0
-6	980	34.8	20.3	87.6	13.4	44.2
<b>-5</b>	700	20.7	16.1	56.2	13.0	16.5
-4	675	10.5	11.9	26.7	6.5	48.6
-3	1010	32.3	13.9	40.2	9.8	29.5
-2	920	67.6	15.3	31.7	6.0	75.6
	1100	73.2	7.6	34.6	5.7	45.3
MEAN+SD	1048+180	47.5+27	6.4+7	54.0 <u>+</u> 15	6.1+3	78.0+66
BR1	1110	50.0	LTD	66.6	6.5	155.4
2 ,	1075	45.7	6.3	41.3	4.2	165.6
3	870	51.7	6.8	46.6	7.0	40.6
3 4	920	24.4	3.1	16.4	2.1	120 1
5	1030	39.1	LTD	29.6	5.6	128.1
5 6 7 8	1365	81.9	LTD	51.3	29.3	138.0
7	1620	68.9	ĹŤĎ	43.2	11.8	41.0
8	650	19.4	0.4	18.9	3.2	87.5
ġ	1030	49.4	LTD	34.3	11.2	44.1
10	1700	46.8	4.2	55.6	10.0	40.0 74.6

TAP 5 URINARY HORMONE RESULTS CONTINUED

Subject 5	VOLUME	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO ug/TV	ADH mU/TV
BR11	1190	55.9	LTD	35.2	5.8	72.7
12	1160	81.2	6.6	31.2	7.6	37.0
13	1300	51.4	26.1	20.2	5.2	66.1
14	1190	32.7	7.8	25.0	3.8	82.2
R+0	900	62.1	10.9	40.4	11.4	56.4
11.7	950	35.2	LTD	69.9	6.3	41.6
2	1130	28.8	LTD	53.9	6.3	40.5
3	845	22.4	2.8	21.0	2.7	32.5
	1360	34.7	LTD	58.8	7.8	56.4
4 5	880	49.7	2.4	34.4	4.5	59.0
6	960	37.0	0.2	92.0	7.2	101.1
7	1490	58.1	2.1	61.3	8.3	71.3
	690	46.6	5.1	72.6	11.8	31.3
. 8 9	715	32.2	LTD	79.4	10.2	31.7
10	1250	68.8	LTD	93.9	6.3	415.0
	910	47.8	LTD	66.0	3.2	51.2
12	760	45.6	LTD	88.2	4.0	36.2
13	610	41.8	LTD	97.7	7.3	31.2

T₹ 5 URINARY HORMONE RESULTS CONTINUED

Subject 6	<b>V</b> OLUME .	CORTISOL ug/TV	EPI ug/TV	NOR ug/TV	ALDO ug/TV	ADH mU/TV
F-21	1450	183.4	11.3	62.4	10.8	19.0
-20	1295	114.6	9.4	47.9	0.8	29.2
-19	1280	66.6	4.8	40.3	5.6	33.2
-18	1050	49.4	3.4	58.4	14.5	20.3
-17	1160	63.8	5.4	44.3	9.5	24.6 25.2
-16	1080	54.0	20.1	64.8	13.6	25.2
-15	1425	44.9	5.9	72.1	17.2	47.5
-14	1765	105.9	12.4	60.9	12.5	34.2
-13	1110	55.5	13.6	44.9	14.3	19.2
-12	1340	77.0	LTD	47.9	21.9	33.8
	1035	34.7	12.5	48.5	14.3	24.8
-10	840	21.8	6.9	47.8	9.1	14.0
-9	1120	31.4	2.2	56.2	12.3	30.0
*-8	1610	51.0	8.3	49.3	19.1	34.2
-7	1220	64.1	0.3	<b>3</b> 2 <b>.</b> 9	13.3	59.9
	1030	34.0	16.1	47.7	15.2	22.1
-6 -5	880	28.2	6.1	27.7	12.1	40.1
-4	360	9.0	4.3	10.1	3.9	11.0
-4 -3 -2	880	26.0	12.9	27.5	11.4	33.0
-2	805	46.3	12.8	21.6	1.6	20.5
	1340	100.5	15.8	24.5	14.8	24.9
MEAN+SD	1146+308	60.1+40	8.8 <u>+</u> 6	44.7+16	11.8+5	29.0+1
BR1	1375	59.8	LTD	55.0	13.8	38.2
2	1065	54.8	11.4	45.1	12.8	79.5
	1480	81.4	5.2	69.2	16.9	46.5
3 4	840	60.9	4.9	18.8	10.6	60.5
4	1730	79.6	2.7	27.0	12.9	96.6
6	810	45.4	LTD	26.9	16.8	38.9
6 7	1320	48.2	LTD	26.4	8.9	39.6
8	1270	106.0	LTD	47.9	16.8	37.4
9	1170	76.1	LTD	28.6	19.5	37.4
10	970	66.4	15.1	17.8	8.5	23.4

TABLE 5
URINARY HORMONE RESULTS CONTINUED

Subject 6	VOLUME -	CORTISOL ug/TV	EPI ug/TV	NOR ug/ <b>TV</b>	ALDO ug/TV	ADH mU/TV
BR11	1430	40.8	14.1	25.9	13.5	44.7
- i i i i i i i i i i i i i i i i i i i	1200	28.2	5.0	21.5	12.1	16.8
13	1390	76.5	7.5	29.1	14.2	53 <b>.9</b>
14	1445	59.2	7.5	21.7	11.3	27.4
R+0	1110	62.2	15.0	26.8	23.6	15,9
	720	32.4	4.1	40.7	13.0	27.8
2	1260	34.7	1.0	33.9	9.3	62.2
3	1545	38.6	LTD	51.0	12.7	40.7
4	1370	28.0	0.1	59.2	14.7	56.4
5	810	72.9	LTD	52.3	19.4	18.4
6	860	50.3	1.8	27.7	7.6	17.7
7	1005	65.3	0.3	53.1	8.6	60.3
8	735	44.1	5.5	49.1	9.4	35.3
. 9	1015	60.9	LTD	54.0	7.5	59.8
10	1390	62.6	LTD	82.2	10.1	78.1
11	1130	60.5	1.1	61.3	6.3	42.0
12	1150	48.9	LTD	70.2	9.4	34.7
13	410	33.8	LTD	51.7	6.0	11.1

TABLE 6
BODY COMPARTMENT RESULTS

SUBJECT		2		6	4	5
			Total Body Wate (Liter)			
BR -21 BR +14 R +13	43.0 42.1 46.5	43.2 43.1 43.3	43.4 43.3 44.4	39.7 40.5 40.5	41.4 41.8 41.3	44.8 44.1 45.0
		<b>6</b>	tra Cellular Fl (Liter)	uid		
BR -21 BR +14 R +13	16.9 16.0 15.9	16.3 16.3 16.5	18.2 17.1 17.1	15.0 15.6 15.4	14.6 14.7 15.2	17.0. 16.8 16.7
		Exchangea	ble Total Body (mEq)	Potassium		
BR -21 BR +14	3742 3670	3666 3552	3572 3630	3171 3091	3573 3668	4027 3942

TABLE 7

BODY WEIGHT (Kg)

Mean + S.D.

SUBJECT	<u>PRE</u>	<u>IN</u>	<u>POST</u>
	68.7 <u>+</u> .3	69.1 <u>+</u> .4	69.7 <u>+</u> .4
2	71.0 <u>+</u> .3	71.1 <u>+</u> .3	70.8+.5
	69 <b>.</b> 4 <u>+</u> .5	69.6+.4	69.7 <u>+</u> .3
4	64.6 <u>+</u> .3	64.2 <u>+</u> .3	64.0 <u>+</u> .6
5	81.7 <u>+</u> .7	81.6 <u>+</u> .5	81.0 <del>+</del> .7
6	64.4+.4	65.2 <u>+</u> .9	65.6+.5



## SUMMARY OF STATISTICAL RESULTS ON 24-HOUR URINE SAMPLES (Paired t-test: 6 Day Means)

SUBST	LAST 6 DAYS PRE MEAN+SE	FIRST 6 DAY MEAN+SE	S IN P	SECOND 6 DAY MEAN+SE	'S IN P
Volume .	1321 <u>+</u> 99	1580 <u>+</u> 120	<0.1 *	1621 <u>+</u> 111	<0.1
SpGr	1.019+.001	1.017 <u>+</u> .001	<0.4	1.017±.001	<0.5
Osmol .	768+36	729 <u>+</u> 40	<0.5	732 <u>+</u> 37	>0.5
Na Para Para Para Para Para Para Para Pa	188±10	233 <u>+</u> 10	<u>&lt;</u> 0.01	225 <u>+</u> 8	<0.02
K	65 <del>+</del> 3	73 <u>+</u> 3	<0.01	77 <u>+</u> 4	<0.01
<b>C1</b>	163+9	206 <u>+</u> 9	<0.005	201+8	<0.005
Ca	7.9+0.4	10.0 <u>+</u> 0.6	<0.05	10.8+0.4	<0.005
Mg	8.8+0.4	9.7 <u>+</u> 0.6	<0.40	10.6 <u>+</u> 0.5	<0.025
IPO4	1020 <u>+</u> 40	1024+41	>0.5	1104+45	<0.20
Uric Acid	883 <u>+</u> 36	883 <u>+</u> 34	>0.5	960+30	<0.20
Creatinine	1958+62	1973 <u>+</u> 78	>0.5	2023+67	<0.50
Cortisol	45.6+4	71.7 <u>+</u> 5	<0.01	77.9 <u>+</u> 7	<0.01
Epinephrine	18.9+2	15.1+3	>0.2	6.4+1	<0.01
Norepinephrin <b>e</b>	43.6+3	34.6+3	>0.2	33.8+2	>0.3
Aldosterone	14.1±1	17.2+2	<u>&lt;</u> 0.05	17.1+1	<0.05
ADH	38.6 <del>+</del> 3	55.1 <u>+</u> 6	<0.4	40.8+3	<0.8
				<del></del>	

BAYLOR BED REST STUDY PHASE I
MENU AND NUTRITIONAL BALANCE STUDIES

FOOD AND NUTRITION BRANCH BIOMEDICAL RESEARCH DIVISION

#### INTRODUCTION

The Baylor University School of Medicine Bed Rest Study - Phase I was initiated as a result and in an attempt to elucidate the cause(s) of the variability in biological data obtained from humans in space travel. This variability in data could be attributed to either individual variability in nutrient utilization, individualistic development of a functional metabolic or dietary deficiency in essential ingestible nutrients and/or to a manifestation of the human organism in response when subjected to the weightless condition of space flight. To duplicate as closely as possible the organismic effects of space flight in a groundbased study subject to the gravitational forces, the individual must be subjected to a regimen of muscle inamination. This can be accomplished by subjecting the individuals to a regimen of total residence in a horizontal position for a specified period of time. Because of the physiologically significant questions posed by the Skylab missions, six (6) individuals were subjected to bedrest after undergoing the Skylab protocol of preflight and postflight feeding and biologicalsample collection in support of the MO70 experimental series "Nutrition and Musculoskeletal Function."

In support of the Bed Rest Study - Phase I, menus were designed according to the Skylab nutritional requirements, utilizing Lot B Skylab foods. Menus were planned on a 6-day cycle for each of the 6 subjects, with the assumption that each subject repeated the menu cycle 9 times. These menus met the National Research Council requirements for nutrient requirements for adults. The pre-bed and post-bed menus were similar, but the in-bed menus with respect to energy values were decreased by 300 Calories/day.

Controlled nutrients included nitrogen, sodium, potassium, magnesium, calcium an chloride. Training of personnel performing the meal assembly, preparation, service, and residual food documentation were subjected to several training sessions.

Food and Nutrition Laboratory support was provided for the analysis of biological speciments obtained from the Bedrest Study - Phase I, by analyses, preparation, and/or storage of the samples. Analyses were performed for fecal nitrogen, calcium, phosphorus, magnesium, sodium, potassium, and chloride and urinary nitrogen. Complete details on the analytical procedures and data submission are given in Section III. Tabulation and calculation of the metabolic balance of the aforementioned nutrients was then accomplished.

Therefore, this document outlines the procedures utilized by the NASA-MSC Food and Nutrition Branch for supporting the Baylor College of Medicine Bed Rest Study - Phase I, during the pre-bed, bed, and post-bed phases of the study. Specific procedures used to support the M070 series of experimental protocol are given and include menu design, meal assembly, preparation, and service; residual food handling; collection and processing of feces, vomitus, and urine; sample storage and documentation; fecal and urine analytical procedures; data review; and summarization of the metabolic balance data.

## MATERIAL AND METHODS FOOD AND NUTRITION LABORATORY

Bedrest support was provided during the pre-bed, hed, and post-bed periods for the processing, storage, and analysis of feces and/or vomitus and the storage and analysis of urine specimens. Support requirements included the processing of feces and/or vomitus for laboratory analysis; laboratory analysis for nitrogen, phosphorus, calcium, potassium, sodium, magnesium, chlorides, and pli; storage of processed specimens; and data tabulation.

Analyses of urine nitrogen were made on 10 ml aliquots disbursed from the 24-hour pool obtained from each subject.

Collection of Biological Specimens

To facilitate the proper collection of feces and/or vomitus and urine specimens, a briefing of Baylor collection personnel was conducted by Dr. Wheeler (NASA) and Dr. Smith (T.I.). As a result, a detailed fecal and/or vomitus collection protocol were transmitted to Baylor. Urine bottles were supplied to the Baylor University School of Medicine at the start of the bedrest study for collection of individual urine specimens for inclusion into the 24-hour pool. A 10 ml aliquot of this 24-hour urine pool was supplied to the Food and Nutrition Laboratory for analysis. The Food and Nutrition Laboratory maintained the urine specimen at  $\frac{1}{2}$  2°C prior to analysis and at -17  $\frac{1}{2}$  2°C thereafter in storage. Processing and Storage of Fecal and/or Vomitus Specimens

Processing and storage of fecal and/or vomitus samples was conducted in the Food and Nutrition Laboratory in Building 37, Room 1-125, MASA-USC, on pre-bed, bed, and post-bed samples. A total of 243 fecal samples were

DRIGINAL PAGE IS OF POOR QUALITY collected during the Daylor Endrest Study-Phase I. No vemitus samples were received. All specimens were processed as follows, regardless of the origin.

Upon receipt of the fecal specimens at the Food and Butrition Laboratory, Bldg. 37, Room 1-125, the plastic bag with the specimen within was removed from the fecal tub and the following information recorded into a bound notebook labeled Paylor Pedrust Study-Fecal Log Book:

- 1) Subject
- 2) Date of bowel movement
- 3) Time of bowel movement
- 4) Subjective color and description of physical appearance, i.e., solid, soft, diarrheal
- 5) Weight of sample plus plastic bag
- 6) Weight of plastic bag
- 7) Weight of fecal sample
- 8) Laboratory number

After logging in Steps 1-4, visible extraneous material such as tissue paper were removed and the fecal specimen weighed in the plastic bag on a top-loading balance (Mettler, Model Pl200) to an accuracy of  $\frac{4}{5}$ 0.1 g.

The specimen encased in the plastic bag was then kneaded to mix and pressed into a vafer-like mass of less than 1/2 inch thickness. The specimen was then frozen by placing in a -20 - 5°C freezer. Accumulated frozen fecal specimens were placed in the Virtis freeze-drying apparatus on Monday and Thursday of each week and removed on the following Thursday and Monday, respectively. Procedures for start-up and shut-down of the freeze-dryer are given.

#### RESULTS AND DISCUSSION

In support of the Baylor Bed Rest Phase I study, various elemental compounds were determined as to intake, excretion, and retention. These elemental determinations included water, sodium, calcium, potassium, chloride, magnesium, nitrogen, and phosphorus.

The six subjects exposed to the experimental regimen had positive water balances, with water intake exceeding urinary and fecal water excretion.

The calcium balance of the six subjects was negative in the total time of the bed rest study. The physiologic effects of the continued loss of endogenous calcium by these individuals and the effects on various homostatic mechanisms has not been elucidated. The continual degradational loss in calcium from the individual subjects tends to verify the results previously obtained from crewmen of the Skylab missions. Under the conditions of this study, no relationship existed between water excretion and the elimination of calcium. However, urinary calcium excretion was increased during the bedrest phase of the study. Similarly, the source and level of intake of Vitamin D and relative intake of certain constituents of proteinaceous nature by altering the gastro-intestinal uptake and the disuse atrophy of masculature may have contributed to the endogenous calcium loss exceeding the ingestion of the calcium nutrient.

Sodium balance was not changed by subjecting the individuals to the experimental regimen. As the subjects were in positive water balance the positive electrolytes balance, which includes potassium and chloride, in addition to sodium, indicates that no significant average effect on the physiological homeostasis of the individual has occurred.

A positive magnesium balance was observed in the individual subjects during all phases of the Bed Rest Study. No detectable changes in the metabolism of magnesium were found, but as a result of the negative calcium balance, a potential exists for a magnesium metabolic alteration. These results tend to agree with the results previously submitted for the Skylab and Apollo missions. The importance of the positive magnesium balance in the subjects undergoing negative calcium balance is augmented by the magnesium regulation of renal calcium transport, in conjunction with Vitamin D.

Nitrogen balance, as an indicator of muscular physiology, was positive in the subjects. No change was detected during each of the three phases of the study.

Phosphorus intake was greater than phosphorus excretion in the subjects being studied during the prebed phase of the study. However, as the laboratory analyses of phosphorus has not been completed, no further trend implications could be deducted.

The preliminary nature of the data presented is emphasized. Further evaluation of the data must be accomplished before definitive statements as to the pertinence of certain elemental trends may be made.

### Body Weights (Kg)

### SUBJECTS

STUDY DAY	1 BODY WT	2 BODY WT	3 BODY WT	6 BODY WT	4 BODY WT	5 . BODY WT
PRE-	DODI WI	וא זעטם	DODI WI	מסטו או	DOD! WI	. 00D: WI
01	68.6	71.1	69.3	63.6	64.8	82.3
02	68.5	71.1	69.3	64	64.9	82.7
03	68.2	70.9	69.1	64.4	65	81.8
04	68.9	71.2	69.5	63.7	64.5	82.7
05	69.1	71.7	71.1	64	65	82.7
06	69.1	71	69.8	64.9	64.9	82.7
07	68.4	70.7	68.9	64.1	65	81.8
08	68.5	71	69.7	64.5	65	82.3
09	68.6	71	69.7	64.4	64.5	81.5
10	68.8	70.9	69	64.7	64.4	88.9
	69,1	71.8	69.8	64.7	64.3	81.7
]2	69.1	70.6	69.5	64.2	64.5	82.3
13	69	71.1	69.5	64.7	64.4	81.1
14	68.9	71.1	69.9	64.4	64.4	81
15	68.4	68.4	69.5	64	64.3	80.9
16	68.4	70.8	69.5	64.1	64.5	80 80 F
17	68.8	70.7	68.4	64.1	64.4	80.5
18 19	68 <b>.</b> 9	70.5	69.5	64.7	64.4	81.6
20	68.6 68.2	70.5 71	69.1 69.1	64.7 64.9	64.7 64.7	81.6 81.8
21	69.3	71	69.5	64.8	64.2	81.6
	09.5		09.3	04.0	04.2	01.0
MEAN	68.7381	70.8381	69.4619	64.3619	64.6095	81.6904
SDEV	.321825	.652832	.514087	.385758	.265024	.763762
SIZE	21	21	21	21	21	21
SUM	1443.50	1487.60	1458.70	1351.60	1356.80	1715,50
	法人 医动物病 化二氯苯酚 医抗原性性病					

BAYLOR BED REST - PHASE I

#### Body Weights (Kg) SUBJECTS

		2	3 · · · · · · · · · · · · · · · · · · ·	6	4	5
STUDY DAY	BODY WT	BODY NT	BODY WT	BODY WT	BODY WT	BODY WI
BED						•
01	69.5	71.1	69.5	64.8	64.2	81.1
02	69.5	71.5	69	64.4	63.5	80.7
03	68.4	71.5	69	64.7	64	80.9
04	68.5	71.5	69.5	65.2	64.7	81.5
05	68.8	71.1	69.4	65.2	64.6	81.6
06	69	71.2	69.1	65.3	64.3	81.8
07	69.2	70.6	69.5	65.3	64.2	82.5
08	69.4	71	69.9	65.4	64.2	81.9
09	69.5	71	69.5	65.1	64.2	82
<b>i</b> 0	69.6	70.5	69.9	65.7	64.3	82
	69.2	70.8	69.9	66	64.4	81.6
12	69.2	71	69.9	66.1	64.2	81.5
13	68.9	71	69.9	66.9	64.1	82.1
14	69	70.8	70.2	66.8	64.2	81.8
MEAN	691214	71.0500	69.5857	65.3500	64.2214	81.6357
SDEV	.374312	.314485	.374312	.505464	.274862	.488887
SIZE	14	14	14	14	14	14
SUM	967.700	994.700	974.200	914.900	899.100	1142.90

ري (ري **دن**ا



### Body Weights (Kg) SUBJECTS

	1	2	3	6	4	5
STUDY 1/1/1	BODY WT	BCDY WT				
POST						
01	69.1	71.1	70	65.7	64.7	82
02	69.4	71.25	69.4	65.7	64.8	82.3
03	69.5	71.1	69.9	65.5	64.4	81.9
04	70	71.5	69.8	65.8	64.7	81.5
05	69,5	70.7	69.8	65.7	63.8	2.03
06	70	71.4	69.8	64.2	62.8	80.2
07	69.7	70.9	70	65.5	63.6	80.6
08	70	70.1	70	65.5	63.9	80.5
09	70	70.1	70	65.5	63.6	£0.5
10	69.8	70.2	69.4	66	64.1	80.7
in a second	68.9	70.3	69.4	66.5	64.2	81.2
12	69.5	70.6	69.7	65.8	63.9	80.5
13	70	70.7	69.3	65.5	63.6	80.5
14	69.9	70.7	69.3	65.5	63.4	79.3
MEAN	69.6643	70.7607	69.7000	65.6000	63.9643	80.8999
SDEV	.357417	.470269	.274862	.487480	.566946	.806906
SUM	975.300	990.650	975.800	918.400	895.500	1132.60

## BAYLOR BED REST STUDY - PHASE I Body Weight, Fecal Weight, Water Balance & Nitrogen Balance Statistics

SUBJECT: 1

STUDY DAY: TOTAL BED REST STUDY

Ang ang ang ang an aga an aga an aga an	BODY WEIGHT	FECAL WT	W-DELTA	N-DELTA
MEAN	69.1122	117.740	1290.67	2.11326
SDEV	.515078	53.9276	738.767	2.46889
SIZE	49	44	49	49
SUM	3386.50	5180.60	63243.2	103.550
STUDY DAY: PRE	01 TO PRE 21			
MEAN	68.7381	108.333	1510.20	2.38524
SDEV	.321825	46.5546	743.172	2.28737
SIZE	21	21	21	21
SUM	1443.50	2275.00	31714.2	50.0900
STUDY DAY: BED	01 TO BED 14			
MEAN	69.1214	117.433	786.142	1.49642
SDEV	.374312	47.1963	529.250	3.03682
SIZE	14	9	14	14
SUM	967.700	1056.90	10306.0	20.9500
STUDY DAY: POS	T 01 T0 POST 14			
MEAN	69.6643	132.050	151E.92	2.32214
SDEV	.357417	67.4592	649.397	2.15549

# BAYLOR BED REST - PHASE I Mineral Statistics

SUBJECT:

STUDY DAY: TOTAL BED REST STUDY

		CA-DELTA	P-DELTA	NA-DELTA	K-DELTA	MG-DELTA	CL-DELTA			
	MEAN SDEV SIZE	-24.3133 353.339 49	24		12.5904 17.6511 49	&.70576 49	37.9404 54.2300 49			
	SUM 	-1191.35	5849.65	1805.26	616.930	410.480	1859.08			
•	STUDY	DAY: PRE 01	TO PRE 21							
	MEAN SDEV SIZE SUM	58.6838 259.265 21 1232.35	128.823 233.154 19 2447.65	60.2265 21	17.6709 16.0485 21 371.090		45.9438 54.5148 21 964.820			
	STUDY	DAY: BED 01	TO BED 14							
	MEAN SDEV SIZE SUM	-102.692 497.040 14 -1437.70		57.7652 14	7.17642 19.9449 14 100.470		22.1771 53.1722 14 310.480			
•	STUDY DAY: POST 01 TO POST 14									
	MEAN SDEV SIZE SUM	-70.4293 300.805 14 -986.010	0 0 0 0		10.3835 16.6683 14 145.300	7.64714 4.19748 14 107.060	41.6985 55.4350 14 583.789			
		the control of the co								

## BAYLOR BED REST - PHASE I Water Balance (ml)

SUBJECT: 1		water	Datance (mi)		
STUDY DAY PRE 01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17  18  19  20  21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	W=IN 4151 2467 3827 2744 3162 3613 2727 3002 4267 2811 3331 2422 2159 2184 3751 3364 2373 2012 3078 3527 3670	W-FECAL 77.72 82.12 137.2 40.63 67.16 81.34 84.47 104.66 56 26.41 137 47 97 48 59 83 171 54 82 88 58	W-URINE 2215 1655 800 915 2180 1280 1770 1760 1800 1720 1380 1120 1510 1535 1260 1775 1540 1080 1780 1320 855	W-DELTA 1858.28 729.88 2889.8 1788.37 914.84 2251.66 872.53 1137.34 2411 1064.59 1814 1255 552 605 2432 1506 662 878 1216 2119 2757
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	2896 3011 2163 2118 1883 3169 2473 1923 2297 2143 2364 3324 2321 2454	78 ND ND ND 160 64 72 45 ND 66 62 73 103	2180 3230 1400 1450 930 1100 1580 1560 2345 1400 1380 1930 1505 1505	638 -219 763 668 953 1909 829 291 -93 743 918 1332 743 831
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	2710 2649 2747 3871 3588 3393 3370 2832 2898 5233 4421 3436 2584 2803	72 27 52 97 145 89 33 70 80 101 183 70 167 195	1250 1230 925 1660 1860 2920 1795 2070 1880 2410 1980 1195 1315	1388 1392 1770 2114 1583 383 1542 692 938 2722 2258 2171 1182 1168

# BAYLOR BED REST - PHASE I Calcium Balance (mg)

~ i	100		~	-	- 1
×1	112.				1.
SU	יטו	u L	·		

STUDY	D/Y 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	CA-IN 772 791 791 786 808 784 801 801 817 792 818 793 808 788 795 802 801 785 797 801 795	CA-FECAL 246.83 494.31 825.07 276.73 400.58 451.54 272.87 200.38 141.9 70.73 457.74 215.1 313.87 509.89 562 620 1181 372 665 678 373.5	CA-URINE 244.49 325 212 269 265 429 248 241 854 220 305 228 329 325 236 305 236 188 309 216 180	CA-DFLTA 280.7 -27.9 -246.5 240.7 142.9 -96.4 279.6 360 -178.6 500.8 55.6 349.1 165.5 -46.5 -3.47 -122.6 -616.47 224.6 -176.6 -93.4 241
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	799 826 784 789 782 788 794 794 783 792 827 792 781 310	585 ND ND ND 1646.9 733.9 813.6 520.7 ND 805 611.6 712.2 990.6	417 497 228 317 257 325 497 361 401 421 377 365 365 333	-202.8 329 555 472 525 -1183.5 -437 -380 -138.5 371 -355 -184 -292.9 -513
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	777 792 806 811 775 830 788 809 818 780 776 791 774	639.5 233.02 598.7 765.6 1096.8 594.4 214.8 553.6 609.6 699.5 1138.1 282.49 448.9 452.2	385 325 232 409 381 377 353 240 232 345 257 228 244 184	-247 233.98 -25.2 45.4 -702.6 -141.4 220.2 15.4 -23.6 -264.5 -619.1 280.51 81.1 160.8

BAYLOR BED REST - PHASE I Sodium Balance (mEq)

SUBJECT:		2001	um barance (n	iLQ)	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	NA-IN 286 282 287 288 288 244 243 245 290 287 293 245 244 245 283 298 290 252 234 246 273	NA-FECAL 3.26 1.78 3.463 .84 1.93 2.07 2.4 5.61 1.2 .78 4.9 1.38 1.88 .96 1.09 1.74 3.22 .89 1.34 1.09	NA-URINE 216 348 149 214 334 140 250 241 210 236 204 165 238 287 17C 257 234 215 233 167 115	NA-DELTA 66.75 -67.78 134.54 73.16 -47.93 101.93 -9.4 -1.61 78.8 50.22 84.1 78.62 4.12 -42.96 111.91 39.26 52.78 36.1134 77.91 157.06
BED 01 02 03 04 05 06 07 08 09 10 11 12 13 14	140 141 142 143 144 145 146 147 148 149 150 151 152 153	290 290 244 243 273 286 288 292 219 243 275 282 287 290	1.47 ND ND ND 3.58 1.19 1.73 .95 ND 1.14 .93 1.72 2.58	346 392 191 247 196 184 229 259 287 210 255 244 241 258	-57.47 -102 53 -4 77 98.42 67.81 31.27 -68.95 33 18.86 37.07 44.28 29.42
POST 01 02 03 04 05 06 07	154 155 156 157 158 159 160 161 162 163 164 165 165	243 234 283 290 287 289 241 246 276 283 283 269 246 235	.99 .44 1.7 1.74 3.57 2.41 1 1.91 2.04 2.84 6.55 1.2 6.22 7.7	130 175 172 262 199 298 224 268 232 354 189 158 223 211	112.01 58.56 109.9 26.26 84.43 -11.41 16 -23.91 41.96 -73.84 87.45 109.8 16.79 16.3

#### 241

#### BAYLOR BED REST - PHASE I Potassium Balance (mEq)

		СT		

STUD) PRE	7 DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	K-IN 87 101 94 108 101 91 103 104 112 110 90 89 99 95 112 101 90 88 101 95	K-FECAL 6.82 11.75 12.86 4.94 8.95 9.4 10.86 10.52 8.68 4.53 20.97 7.45 13.12 6.19 8.78 13.65 22.45 6.17 10.27 11.36 7.23	K-URINE 60 83 63 81 79 46 73 97 67 57 51 65 91 89 68 82 69 78 69 65 41	K-DELTA 20.18 6.25 18.14 22.06 13.05 35.6 7.14 -4.52 28.32 50.42 38.03 17.55 -15.12 3.9 18.22 16.35 9.55 5.83 8.73 24.64 46.77
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	108 104 91 87 98 89 107 97 84 87 94 92 107 96	10.96 ND ND ND ND 25.93 9.79 11.41 7.58 ND 9.67 9.42 12.3 19.47	76 81 52 -12 66 72 98 64 101 59 95 87 84 88	21.04 23 39 32 -8.93 79 19.59 -24.58 28 -10.67 -4.42 10.7 -11.47
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	89 87 94 100 118 100 92 91 98 93 111 86 85 88	11.1 3.19 8.27 14.57 26.54 8.28 4.27 9.67 11.83 16.48 24.15 9.88 18.93 18.88	88 90 67 83 63 58 56 62 77 89 61 47 61 85	-10.1 -6.19 18.73 2.43 20.46 28.13 31.73 19.33 9.17 -12.48 25.85 29.12 5.07 -15.88

### BAYLOR BED REST - PHASE I Chloride Balance (mEq)

SUBJECT: 1						
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	CL-IN 255 221 250 261 267 217 238 222 256 260 270 217 239 222 251 270 267 223 229 223 241	CL-FECAL 1.36 1.11 1.18 .32 .65 .94 .81 1,73 .93 .7 3.52 1.76 3.71 .32 .39 .77 1.91 .46 .97 1.02 .62	CL-URINE 175 281 118 157 294 153 220 236 184 229 182 143 217 255 158 261 202 192 210 149 93	CL-DELTA 78.64 -61.11 130.82 103.68 -27.65 63.06 17.19 -15.73 71.07 30.3 84.48 72.24 18.29 -33.32 92.61 8.23 63.09 30.54 18.03 72.98 147.38
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152	263 268 217 238 246 253 261 270 192 239 251 250 260 258	.88 ND ND ND ND 1.01 .38 .3 .19 ND 2.87 .57 .63 .69	294 368 169 213 184 178 183 211 253 175 237 237 212	-31.88 -100 48 25 62 73.99 77.62 58.7 -61.19 64 11.13 12.43 47.37 23.31
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	216 229 259 253 260 254 213 234 252 229 256 236 219 227	.58 .27 .37 1.09 1.49 .92 .39 .73 .92 1.17 2.04 .73 2.12 2.44	145 159 162 239 192 254 194 234 222 325 172 139 187	70.42 69.73 96.63 12.91 66.51 92 18.61 73 28.08 -97.17 81.96 123.3 29.88 84.57

#### 243

#### BAYLOR BED REST - PHASE I Magnesium Balance (mEq)

SUBJE	CT: 1					
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	MG-IN 29 29 30 30 27 26 29 25 29 25 28 29 31 27 25 29 31	MG-FECAL 2.72 6.19 10.17 3.1 5.74 6.63 6.85 5.73 4.78 2.28 13.56 5.81 8.46 6.3 8.35 9.05 15.92 4.56 7.32 8.67 4.96	MG-URINE 12.6 63.6 10.8 11.8 13.5 7.9 10.9 9.5 13 12.5 11 10.6 15.1 8.9 10.2 9.5 7.9 10.3 8.2 6.9	MG-DELTA 13.68 -40.79 9.03 15.1 7.76 10.47 11.25 13.77 17.22 16.22 2.94 8.19 8.94 7.6 13.75 11.75 1.58 12.54 11.38 12.13 19.14
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	30 27 25 28 28 30 29 25 23 28 31 31 29 26	8.01 ND ND ND 21.36 9.75 10.99 7 ND 10.47 8.37 9.89 14.09	13.4 12.7 8.3 14.4 9.8 7.4 8.6 13 13 9.3 14.3 13.7 12.6 9.8	8.59 14.3 6.7 13.6 18.2 1.24 10.65 1.01 3 18.7 6.23 8.93 6.51 2.11
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	24 29 27 32 28 28 25 28 28 30 28 25 24 22	8.84 3.13 6.75 10.81 15.31 8.28 3.1 7.95 7.17 9.61 15.84 .73 10.68	10.3 8.6 11.5 12.9 9.8 13.3 11.2 10.5 10.9 13.8 11.1 12.3 11	4.86 17.27 8.75 8.29 2.89 6.42 10.7 9.55 9.93 6.59 1.06 7.35 2.32

# BAYLOR BED REST - PHASE 1 Nitrogen Balance (gm)

	SU	BJ	E	C	T	:	1
--	----	----	---	---	---	---	---

Suporoi. T	***			£1	til econe men
STUDY DAY PRE 01	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	N-IN 17.82 17.89 17.97 18.4 17.5 16.22 17.28 17.89 18.93 18.32 17.57 16.19 17.22 18.05 18.06 18.27 17.62 16.48 17.33 18.05 18.06	N-FECAL 1.85 1.78 2.87 .95 1.4 1.63 2.22 1.86 1.61 .85 3.22 1.54 2.22 1.63 1.82 2.06 3.74 1.2 2.03 2.07 1.26	N-URINE 13.6 15.6 13.7 16.2 10.1 16.9 14.1 15.8 11.1 11.2 13.5 14.3 17.2 11.93 14.45 13.1 11.96 13.42 13.26 8.7	N-DELTA 3.17 1.11 2.5 3.7510 4.49 -1.84 1.93 1.52 6.37 3.15 1.15 .778 4.31 1.76 .88 3.32 1.88 2.72 8.1
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	18.4 17.38 16.22 17.26 19.95 18.14 18.16 17.14 16.14 17.28 20.22 18.14 18.16 16.17	1.94 ND ND ND ND 4.09 1.76 2.15 1.42 ND 2.1 1.69 1.94 2.87	15.63 12.89 8.81 16.2 13.85 12.77 16.83 13.67 17.52 13.5 17.18 16.89 15.62 16.49	.83 4.49 7.41 1.06 6.1 1.28 43 1.32 -2.8 3.78 .94 44 .6
POST 01 02 03 04 05 06 07 08 09 10 11 12 13 14	154 155 156 157 158 159 160 161 162 163 164 165 166	16.14 17.38 20.06 18.14 18.16 16.42 15.98 17.65 20.3 18.38 18 16.26 16.3 17.49	1.95 .65 1.54 2.16 3.18 1.92 .77 2.77 1.78 2.28 4.08 1.55 2.89 2.45	14.9 14.4 14.13 14.71 14.84 14.45 11.02 12.77 10.89 13.28 13.44 11.65 11.03 12.67	71 2.33 4.39 1.27 .14 .05 4.19 2.11 7.63 2.82 .48 3.06 2.38 2.37

#### 245

### BAYLOR DED REST - PHASE I Phosphorus Balance (mg)

SUBJE	CT: 1					
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	P-IN 1629 1669 1669 1721 1583 1616 1576 1771 1795 1713 1619 1617 1572 1781 1706 1723 1610 1631 1563 1790 1704	P-FECAL 215.28 449.87 696.82 213.3 344.59 416.07 619.79 514.34 688.16 239.17 891.09 576.23 588.58 439.69 533.48 587.66 1023.71 321.12 560.21 TF	P-URIHE 1108 1192 960 1226 1046 819 885 1056 1188 722 718 1098 1087 1289 857 994 924 1037 961 976 752	P-DELTA 305.72 27.13 12.18 281.7 192.41 308.93 71.21 200.66 -61.16 751.83 -120.09 -57.23 -103.58 75.15 315.52 191.31 -337.71 272.88 120.79 TF
BED	01 02 03 04 05 00 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	1726 1602 1616 1562 1832 1683 1701 1552 1587 1564 1838 1687 1694 1652	TF ND ND ND ND TF	1134 969 672 1102 1079 836 1201 874 1313 952 1352 1235 1294 1216	TF 633 944 460 753 TF
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	1607 1559 1838 1718 1712 1680 1611 1613 1880 1718 1702 1631 1595 1591	TF T	950 175 1240 1328 1004 1226 754 994 865 1253 1183 932 999	TF T

#### BAYLOR BED REST STUDY - PHASE I Body Weight, Fecal Weight, Water Balance & Mitrogen Balance Statistics

SUBJECT:

2

STUDY DAY:

TOTAL BED REST STUDY

	BODY WEIGHT	FECAL WT	W-CELTA	N-DELTA
MEAN	70.8765	171.405	1283.03	1.04306
SDEV	.526508	56.0195	802.329	1.93897
SIZC	49	46	49	49
SUM	3472.95	7884.67	62868.8	51.1100
STUDY DAY: PRE	01 TO PRE 21			
MEAN	70.8381	176.972	1429.23	.79485
SDEV	.652832	57.0253	879.070	2.08485
SIZE	21	19	21	21
SUM	1487.60	3362.47	30013.8	16.6800
STUDY DAY: BED	01 TO DED 14			
MEAR	71.0500	140.750	746.642	.728571
SCEV	.314485	51.8403	496.132	2.16552
SIZE	14	12	14	14
SUM	994.700	1689.00	10453.0	10.2000
STUDY DAY: POS	T 01 TO POST 14			
MEAN	70.6707	188.142	1600.14	1.72071
SDEV	.470269	53.0319	699.403	1.33769
SIZE	14	14	14	14
SUM	990.650	2634.00	22402.0	24.2300

ORIGINAL PAGE IS OF POOR QUALITY

#### BAYLOR BED REST - PHASE I Mineral Statistics

SUBJECT: 2

STUDY DAY: TOTAL BED REST STUDY

the hid few feet the eye of	CA-DELTA	P-DELTA	NA-DELTA	K-DELTA	MG-DELTA	_CL-CELTA	
MEAN SDEV SIZE SUM	49	241.176	56.3632 49	15.1858 49	5.11554	12.1343 56.6481 49 594.580	
STUDY I	DAY: PRE 01	to PRE 21					
	266.371	225.457 19	67.687 <b>5</b> 21	15.7941 21	8.18643 5.25992 21 171.915	67.4908 ·21	
STUDY I	DAY: BED 01	TO BED 14					
MEAN SDEV SIZE SUM	317.306 14	2,12131		17,5688 14		14	
STUDY DAY: POST 01 TO POST 14							
MEAN SDEV SIZE SUM	-161.089 128.274 14 -2255.25	0 0 0 0	24.7119 50.7147 14 345.967	11.1282 14	14	18.1850 51.7761 14 254.590	

# BAYLOR BED REST - PHASE I Water Balance (ml)

SUBJE	CT: 2		Water	Balance (ml)		
STUDY PRE		JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	W-IN 4349 3030 4139 2588 3120 2809 2699 2758 4174 2947 3209 2587 2784 2594 3380 2997 2650 2971 3334 3904 3720	W-FECAL ND 218.31 ND 69.68 135.84 89.88 216.01 133.6 168 100 192 121 177 181.86 200 100 145 99 95 179 72	W-URINE 2760 1710 1400 1395 2610 1520 1670 1580 860 1380 3030 930 1600 1400 1280 2530 1700 1200 1990 680 810	W-DELTA 1589 1101.69 2739 1123 374.16 1199 813 10.44 3146 1467 -13 1536 1007 1012 1900 367 805 1672 1249 3045 2838
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152	2779 3120 2651 2370 2464 3243 2900 2656 2289 3052 2493 3462 3156 2976	156 ND NS 87 80 146 84 80 162 53 158 121 118	2000 2615 1620 1970 1515 2050 1760 1670 2655 1670 1560 1880 2325 2580	623 505 1031 313 869 1047 1056 906 -528 1329 775 1461 713 353
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	2857 2705 3149 4179 4197 3110 2856 2839 2925 3438 3415 3023 3181 3205	189 113 138 194 147 157 180 116 179 184 32 126 194	810 1030 1010 1360 1050 1840 2375 1520 1240 1185 1580 1220 2175 1870	1585 1562 2001 2625 3000 1113 301 1203 1506 2069 1803 1677 812 1145

#### BAYLOR BED REST - PHASE I Calcium Balance (mg)

SUBJE	CT: 2					
STUDY	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	CA-IN 772 765 778 792 790 773 760 760 782 790 788 774 770 790 766 782 779 766 782 779 766 782 779 763 786	CA-FECAL ND 994.39 ND 427.32 757.99 752.03 372.14 228.42 747.1 262.97 534.9 243.66 289.48 240.31 489 496 650 457 504 820 413.4	CA-URINE 425 329 369 489 505 325 417 451 401 341 549 253 357 461 397 473 397 321 437 257 333	CA-DELTA 347 -558 419.3 -124.3 -473 -303.7 -28.9 74.67 -365.9 186.35 -296 277.8 123.8 88.77 -119.8 -187 -267.8 -13.64 -163.8 -313.5 39.9
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152	792 779 785 746 763 760 781 766 762 761 767 776 773	847.8 MD 779.8 721 931.5 529.6 517.6 751 317.5 758.8 582.6 590.9 299.2	533 537 409 433 461 465 381 477 589 301 389 349 537 569	-598.8 242 376 -466.7 -400 -636 -129 -228.5 -578 142.9 -380.6 -155.3 -355 -92.34
POST	01 02 03 04 05 06 07 08 09 10 11 12	154 155 156 157 158 159 160 161 162 163 164 165 166	765 746 795 776 781 810 770 749 767 761 793 775 773	741 513.6 598.7 776.9 653.6 535.1 534.3 527.2 513.6 648.2 242.9 486.3 514.65 337.5	353 417 357 425 369 457 437 309 345 329 437 369 353 509	-328.7 -184 -160 -425.8 -241 -182.1 -201.3 -87.2 -91.6 -216.2 113.1 -80.3 -94.65 -75.5

/ /

BAYLOR BED REST - PHASE I Sodium Balance (mEq)

SUBJEC	T: 2		Joanam	ba farioe (ming)		
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	NA-IN 185 210 186 246 218 187 171 207 186 230 214 187 184 211 180 231 213 187 186 224	NA-FECAL ND 7.114 ND .431 2.213 6.926 8.88 8.39 3.48 4.06 15.8 12.59 13.72 15.28 12.32 2.44 2.88 2.19 1.49 3.22 1.48	NA-URINE 255 180 99 171 266 159 150 261 51 168 332 74 168 190 156 221 209 138 201 77	NA-DELTA -70 22.9 87 74.57 -50.12 21.074 12.12 -62.39 131.5 57.94 -133.8 100.4 2.28 5.72 11.68 7:56 1.12 46.81 -16.49 143.78 63.52
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	239 220 196 174 253 179 228 228 186 177 253 181 223 239	4.91 ND ND 1.06 .5 1.72 .82 .55 3.88 1.04 4.81 2.94 3.41 1.53	319 260 168 161 195 160 188 191 236 144 176 188 226 239	84.91 -40 28 11.94 57.5 17.28 39.18 36.45 -53.88 31.96 72.19 -9.94 -6.41 -1.53
POST	01 02 03 04 05 06 07 08 09 10 11 12	154 155 156 157 158 159 160 161 162 163 164 165 166	186 174 265 177 223 223 195 175 231 182 224 212 186 188	9.66 4.75 1.1 10.53 8.59 10.43 10.55 5.12 14.18 12.23 2.42 6.947 12.344 16.232	78 122 172 166 177 197 286 126 174 133 186 165 215	98.34 47.25 91.9 .47 37.41 15.57 -101.5 43.88 42.82 36.77 35.58 40.053 -41.344 -1.232

#### BAYLOR BED REST - PHASE I Potassium Balance (mEq)

SUBJE	CT: 2		, 0000010		- <b>1</b> /	
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	K-IN 82 93 81 101 78 81 90 89 82 103 78 77 93 132 74 101 75 80 90 86 79	K-FECAL ND 26.979 ND 9.506 18.654 20.31 25.31 12.43 19.01 12.14 16.16 10.22 21.27 94 16.47 13.71 17.57 12.69 14.98 23.56 10.89	K-URINE 80 72 60 73 84 65 52 77 40 45 73 47 69 22.03 57 78 63 76 86 44 52	K-DELTA 2 -5.98 21 18.5 -24.6 -4.3 12.6943 22.99 45.86 -11.16 19.88 2.73 63 12.15 9.29 -5.57 -8.69 -10.98 18.44 16.11
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152	103 77 80 87 91 77 105 69 78 91 93 82 101 75	19.43 ND ND 14.49 14.56 23.47 12.97 13.16 21.9 8.08 20.99 15.73 16.63 15.99	62 58 71 83 74 82 79 67 74 48 72 66 77	21.57 19 9 -10.49 2.44 -28.47 13.03 -11.16 -17.9 34.92 .01 .27 7.37 -17.99
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	78 87 96 77 103 81 83 88 91 73 102 75 82 98	17.52 12.96 8.27 20.55 17.00 16.12 19.34 12.65 16.22 19.85 4.59 16.314 20.763 15.278	54 63 56 46 68 55 64 61 83 58 70 57 54	6.48 11.04 31.73 10.45 18.0 9.88 34 14.35 8.22 -4.85 27.41 1.686 7.237 -3.278

#### 252

#### BAYLOR BED REST - PHASE I Chloride Balance (mEq)

SUBJECT:	<b>2</b> • • • •				
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	119 120 121 122 123 124 125 126 127 128 129 130 131 132	AY CL-IN 136 185 154 216 156 160 161 186 154 203 153 160 169 189 152 206 152 186 174 202 159	CL-FECAL ND 2.86 ND .7 1.62 2.39 3.39 2.13 1.4 .69 1.18 .89 .88 4.32 5.57 2.19 2 1.76 1.78 2.96 .98	CL-URINE 215 154 91 124 253 161 132 224 53 133 294 83 157 162 129 197 188 125 169 65 116	CL-DELTA 079 28.14 63 91.3 -98.62 -3.39 25.61 -40.13 99.6 69.31 -142 76.11 11.12 22.68 17.43 6:81 -30 59.24 3.22 134 42
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 1 2	209 157 167 166 227 152 204 167 159 167 228 153 201 168	2.71 ND ND .83 .7 1.81 1.05 .92 2.06 .55 2.85 1.32 1.22	244 230 159 158 167 152 169 174 228 127 156 162 193 206	-37.71 -73 8 7.17 59.3 -1.81 33.95 -7.92 -71.06 39.45 69.15 -10.32 6.78 -38.42
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165	159 166 235 152 200 157 169 166 206 153 256 149 159 175	2.88 1.12 2.05 2.98 2.65 3.18 2.99 1.54 4.69 3.4 .66 2.011 3.113 4.086	83 102 145 141 170 167 264 120 162 124 184 150 196 202	73.12 62.88 87.95 8.02 27.35 -13.18 -97.99 44.46 39.31 25.6 71.34 -3.011 -40.173 -31.086

· *

#### 253

#### BAYLOR BED REST - PHASE I Magnesium Balance (mEq)

SUBJE	CT: 2		, , , , , , , , , , , , , , , , , , ,	,		
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	MG-III 28 24 28 25 24 20 24 22 28 25 24 18 24 26 25 23 19 24 21 27	MG-FECAL ND 15.44 ND 5.952 10.835 11.698 10.98 5.5 9.16 6.64 9.35 6.63 7.03 8.22 7.35 7.34 9.25 6.65 4.87 8.44 4.05	MG-URINE 11.1 8.2 7.4 9.9 10.6 7.5 7.9 7.4 13.6 7.5 5.9 7.6 6.5 7.1 9.6 8.1 9.5 5.8 7.6	MG-DELTA 16.9 .36 20.6 9.148 2.565 .802 5.12 9.1 5.24 10.96 4.35 3.87 11.07 9.18 12.15 10.56 4.15 4.25 9.63 6.76 15.15
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	25 24 19 23 22 26 26 22 18 24 23 28 25 24	10.09 ND 11.40 8.75 9.43 6.08 7.41 10.25 3.61 9.67 7.00 8.00 4.55	7.2 8.6 9.4 6.9 8.1 152 6.7 9.6 9.7 11.9 9.6 7.9 9.1	7.71 15.4 9.6 4.7 5.15 -1.81 13.22 4.99 -1.95 8.49 3.73 13.1 7.9 8.85
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156' 157 158 159 160 161 162 163' 164: 165 166	18 23 24 27 25 24 20 23 22 26 26 33 19 24	12.05 5.81 6.75 8.42 9.38 8.49 8.58 5.86 7.17 7.65 2.84 10.564 11.133 6.918	66 10.0 8.1 10.0 11.8 11.2 7.9 8.0 8.8 9.9 9.8 9.7 8.4 8.5	65 7.19 9.15 8.58 3.82 4.31 3.52 9.14 6.03 8.45 13.26 22.436 -533 8.582

### BAYLOR BED HEST - PHASE I Nitrogen Balance (gm)

SUBJE	CT: 2			.,, 22,(2,1,22, (3,1		
SUBJE STUDY PRE		JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	N-IN 15.63 15.76 15.68 16.43 15.76 14.64 17.3 15.94 15.87 15.86 15.54 16.19 17.22 16.43 15.84 16.03	N-FECAL ND 3.5 ND 1.5 2.5 2.63 3.24 4.73 2.70 1.37 2.34 1.73 2.28 2.08 2.24 1.46	N-URINE 14.5 13.8 12 13.6 15.5 10.1 12.6 15.3 14.6 13.7 13.7 10.2 11.1 14.5 12.83 14.45	N-DELTA 1.13 -1.54 3.68 1.33 -2.24 1.91 1.46 -4.09 -1.43 .795 4.26 3.8415 .77
BED	17 18 19 20 21 01 02 03	135 136 137 138 139 140 141	15.26 14.3 17.68 15.6 16.59 16.02 15.1 14.36	2.2 1.55 1.24 2.31 1.23 2.25 ND	13.58 11.77 14.55 10.81 12.85 14.5 11.51 12.36	52 .98 1.89 2.48 2.51 73 3.59
	04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153	16.67 17.31 15.6 15.62 15.02 14.37 16.99 17.89 15.84 15.45 15.02	2.43 2.19 2.79 1.39 1.65 2.39 .92 2.66 2.06 1.71	12.47 16.04 13.1 13.73 13.74 14.36 10.74 12.85 13.69 14.3 15.22	1.77 92 29 .5 37 -2.38 5.33 2.38 .09 56 -1.21
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	14.37 16.67 18.8 15.6 15.46 15.39 14.48 16.67 17.81 16.00 15.38 15.02	2.47 1.59 1.55 2.44 1.83 1.91 2.53 1.66 1.78 2.10 .71 1.86 2.30 1.86	10.1 15 13.72 11.98 11.94 12.57 10.12 11.14 14.56 13.58 12.24 11.77 12.33 11.29	1.8 .08 3.53 1.18 1.69 .91 1.83 3.87 1.47 .0.32 2.43 1.39 -0.26 3.99

#### BAYLOR BED REST - PHASE I Phosphorus Balance (mg)

SUBJE	ECT: 2	•				
STUD) PRE	OBY O1 O2 O3 O4 O5 O6 O7 O8 O9 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	P-IN 1508 1521 1514 1732 1478 1453 1620 1584 1526 1677 1476 1435 1631 1635 1522 1704 1455 1446 1645 1565 1575	P-FECAL ND 777.58 ND 386.39 753.66 724.94 865.04 419.05 578.55 371.71 759.02 572.88 669.85 522.68 424.42 391.65 553.77 388.96 394.88 TF	P-URINE 1104 1060 1036 1144 1096 790 868 1074 946 1021 848 818 896 1232 870 1113 1122 1104 1234 925 1037	P-DELTA 404 -316.58 478 201.61 0397 -61.94 -113.04 90.95 1.45 284.29 -131.02 39.11 75.15 -199.68 227.58 199.45 -220.77 -46.96 -16.12 TF
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	1698 1434 1506 1568 1668 1500 1684 1400 1430 1605 1676 1540 1649 1427	TF ND ND TF	1040 994 1069 906 1212 984 1021 1035 1062 835 1154 1090 1070	TF 440 437 TF
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	1431 1568 1754 1507 1659 1477 1457 1569 1675 1534 1648 1431 1442 1618	TF T	859 1195 1151 1142 1008 1177 808 1071 1240 1303 1018 952 1175 1085	TF T

BAYLOR BED REST STUDY - PHASE I
Body Weight, Fecal Weight, Water Balance & Nitrogen Balance
Statistics

SUBJECT: 3

STUDY DAY: TOTAL BED REST STUDY

	BODY WEIGHT	FECAL WT	W-DELTA	N-SELTA
MEAN	69.5652	192.674	1536.28	1.22979
SDEV	.428571	104.692	847.487	3.31610
SIZE	49	39	49	49
SUM	3408.69	7514.30	75278.1	60.2600
STUDY DAY: PRE	01 TO PRE 21			
MEAN	69.4619	158.411	1663.43	1.26964
SDEV	.514087	61.7763	900.100	3.15657
SIZE	21	18	21	21
SUM	1458.70	2851.40	34932.1	26.6500
STUDY DAY: BED	01 TO BED 14			
MEAN	69.5857	196.350	889.357	1.23000
SDEV	.374312	130.228	553.905	4.26547
SIZE	14	10	14	14
SUM	974.200	1963.50	12451.0	17.2200
STUDY DAY: POS	T 01 TO POST 14			
MEAN	69.7000	262.630	1992.50	1.17071
SDEV	.274862	112.783	630.654	2.65981
SIZE	14	10	14	14
SUM	975.800	2626.30	27895.0	16.3900

#### BAYLOR BED REST - PHASE I Mineral Statistics

SUBJECT: 3

STUDY DAY: TOTAL BED REST STUDY

	CA-DELTA	P-DELTA	NA-GELTA	K-DELTA	NG-DELTA	CL-LELTA	
MEAN SDEV SIZE SUM	49	490.753 27	36.0943 44.0246 49 1768.62	28.9729 49	9.01130 8.23097 49 441.554	36.5319 48.2257 49 1790.06	
STUDY D	DAY: PRE 01	to PRE 21					
MEAN SDEV SIZE SUM	313.474 21	445.790 19	40.1369	17.1402 21	9.45243 6.12692 21 198.501	51.7378 21	
STUDY D	OAY: BEC 01	TO BED 14					
SDEV SIZE		274.458 4	41.9837 14				
STUDY DAY: POST 01 TC POST 14							
SIZE	14	139.257 4	49.2781 38.1924 14 689.893	42.5350 14	8.38236 10.9896 14 117.353	14	

#### 258

#### BAYLOR BED REST - PHASE I Water Balance (ml)

SUBJE	CT: 3					
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	W-IN 4715 3110 4570 3532 4013 3402 2061 3464 4792 3883 4568 3390 2025 3721 3804 3552 3531 3240 3794 4071 5189	W-FECAL ND 48.79 187.25 56.89 72.25 161.33 113.51 ND 195.55 76.27 ND 155 115 169 34 125 93 161 138 167 86	W-URINE 1810 1800 2000 1620 1715 1800 2270 1720 2580 2115 2350 1490 1840 2340 1880 2990 1900 2400 1460 1620 1640	W-DELTA 2905 1261.21 2382.75 1855.11 2225.75 1440.67 -322.51 1744 + 2016.45 1691.73 2218 1745 70 1212 1890 437 1538 679 2196 2284 3463
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	3357 4160 3537 3468 3549 4321 3357 3762 3014 3717 3474 4485 3342 3462	272 ND ND 114 69 157 115 355 12 119 ND 276 58 ND	2740 3450 1740 2270 2615 2340 2240 3120 2881 3020 2510 2630 2425 3140	345 710 1797 1198 865 1824 1002 287 121 578 964 1579 859 322
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	3926 4081 3512 4335 3903 4807 3366 3418 3372 4460 4234 3587 3184 3389	327 55 ND 114 293 ND 228 ND 222 232 ND 161 120 297	2180 1730 2180 1680 2230 2030 2235 1240 2245 2050 1820 1905 1090 1260	1419 2296 1332 2541 1380 2777 903 2178 3150 2178 2414 1521 1974 1832

#### 259

#### BAYLOR BED REST - PHASE I Calcium Balance (mg)

SUBJE	CT: 3					
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	CA-IN 785 789 800 825 821 824 808 830 826 837 822 821 833 825 812 841 824 827 827 831 837	CA-FECAL ND 300.1 969.15 440.35 443 465.29 291.9 ND 424.55 132.41 ND 524.52 394.38 417 595 804 780 1101 953 828 545.7	CA-URINE 353 397 325 277 329 489 393 333 369 248 345 232 325 529 369 417 285 417 240 377 224	CA-DELTA 43.23 92.12 -494.13 108.1 49.3 -130.3 123.3 497.3 32.7 456.1 477.3 64 114 -121 -151.74 -380 -240.5 -690.8 -366.5 -373.7 66.85
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	843 820 885 817 837 849 840 818 832 820 850 838 835 854	317.8 ND ND 1016.1 637 1217.9 856.9 1316.4 92.7 771 ND 1431.8 419.8 ND	385 313 261 333 497 361 269 613 409 445 413 409 433 365	140.4 507.4 624.5 -531.7 -297 -729.6 -285 -1111.6 330.5 -395.9 437.2 -1001.6 -17.7 489.3
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	841 800 842 815 827 837 827 812 849 825 851 831 818	2100 201.3 ND 599.9 1081.9 ND 1520.4 IID 1278.5 986.2 IID 730.79 448.79 556.53	357 277 393 317 493 305 429 369 353 337 305 337 297 285	-1615.7 321.7 449 -101.5 -747.9 532.4 -1122.4 443782.5 -498.2 546 -236.79 72.21 -40.53

BAYLOR BED REST - PHASE I Sodium Balance (mEq)

SUBJE	CT: 3					
STUDY	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	NA-III 287 252 284 281 289 245 237 241 287 280 289 246 247 240 287 287 287 285 252 247 242 289	NA-FECAL ND .597 4.355 .496 .914 1.191 1.52 ND 3.31 1.22 ND 3.71 2.05 2.25 .99 1.31 2.14 2.53 1.55 4.12 .84	NA-URINE 192 266 206 234 217 202 250 234 253 190 270 149 221 254 212 284 191 246 170 173 169	NA-DELTA 95 -14.597 73.645 46.504 71.086 41.809 -14.52 7 30.69 88.78 19 93.29 23.95 16.25 74.01 1:69 91.86 3.47 75.45 64.88 119.16
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	295 290 288 246 275 297 289 285 277 236 270 289 289 297	9.29 ND ND 1.75 .82 1:91 1.47 17.01 .23 1.69 ND 5.41 1.1	310 285 250 280 309 220 256 349 282 260 217 254 257 283	-24.29 5 38 -35.75 -34.82 75.09 31.53 -81.01 -5.23 -25.69 53 29.59 30.9 14
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	276 232 265 286 283 288 275 231 252 273 269 258 275 232	4.61 2.53 ND 2.5 5.13 ND 5.04 ND 7.32 9.77 ND 3.316 2.119 19.772	186 196 216 216 220 161 267 159 234 265 242 202	85.39 33.47 49 67.5 57.87 127 2.96 72 10.68 -1.77 27 52.684 95.881 10.228

1

26.4

#### BAYLOR BED REST - PHASE I Potassium Balance (mEq)

SUBJE	CT: 3		10003310	in barance (inc	- <b>47</b>	
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	K-1N 93 101 95 120 112 106 94 106 102 117 113 102 105 109 99 123 115 107 98 112 108	K-FECAL ND 7.683 23.415 8.556 11.364 11.815 15.81 ND 32.24 12.48 ND 27.67 20.92 10.84 16.37 17.55 21.31 30.65 24.11 24.96 14.89	K-URINE 58 83 82 78 62 73 73 77 101 72 101 64 70 98 79 108 78 84 69 66 80	K-DELTA 35 10.317 -10.415 33.444 38.636 21.185 5.19 29 -31.24 32.52 12 10.33 14.08 .16 3.63 -2.55 15.69 -7.65 4.89 21.04 13.11
BED	01 02 03 04 05 06 07 08 09 10 11 12	140 141 142 143 144 145 146 147 148 149 150 151 152 153	120 112 119 105 116 105 210 110 109 101 110 106 118	30.51 ND ND 21.51 11.88 27.87 21.09 40.21 1.82 18.42 ND 45.45 10.14	99 90 84 102 105 103 94 134 104 82 83 92 104 97	-9.51 22 35 -18.5188 -25.87 4.91 -64.21 3.18 .58 27 -31.45 3.86 13
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	114 94 107 97 115 107 110 95 110 105 218 105 106 97	47.9 5.78 ND 17.32 36.44 ND 42.78 ND 36.03 33.56 ND 30.258 18.512 27.519	89 97 85 66 91 69 96	-22.9 -8.78 22 13.68 -12.44 38 -28.78 38 1.97 -18.56 140 2.742 10.488 -13.519

262

#### BAYLOR BED REST - PHASE I Chloride Balance (mEq)

SUBJE	CT: 3					
STUDY PRE	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	CL-IN 254 225 247 253 267 213 224 220 254 253 266 213 233 219 255 261 263 215 220 256	CL-FECAL ND .12 2.43 .32 .78 .86 .96 ND 1.91 1.54 ND .24 .82 2.1 .85 .5 .69 .95 .84 1.71	CL-URINE 154 50 102 198 185 193 220 206 194 167 212 127 201 234 199 275 159 238 149 144 161	CL-DELTA 100 174.88 142.57 54.68 81.22 19.14 3.04 14 58.09 84.46 54 85.76 31.18 -17.1 55.15 -14.5 103.31 -23.95 81.16 74.29 94.46
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	266 266 248 232 248 262 262 262 240 222 246 255 262 270	3.01 ND ND .18 .25 1 .87 6.55 .07 .92 ND 2.23 .31	279 266 219 243 272 206 224 321 248 214 193 242 233 267	-16.01 0 29 -11.18 -24.25 55 37.13 -65.55 -8.07 7.08 53 10.77 28.69 3
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	239 220 242 254 257 264 239 220 229 240 241 234 239 221	3.31 .63 ND 1.18 1.53 ND 1.59 ND 1.97 2.9 ND 1.74 1.062 6.474	185 180 205 223 228 158 268 148	50.69 39.37 37 29.82 27.47 106 -30.59 72 -20.97 -20.9 12 38.26 82.938 12.526

CER

#### BAYLOR BED REST - PHASE I Magnesium Balance (mEq)

CUDICCT.	3		Magnesiun	n Balance (med	1)	
SUBJECT: STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	3 ( JU 11 12 12 12 12 12 12 12 13 13 13 13	9 0 1 2 3 4 5 6 7 8 9 0	Magnes run MG-IN 31 27 31 32 30 15 32 28 35 31 30 28 34 28 33 32	MG-FECAL ND 4.422 14.826 6.18 5.999 7.072 8.28 ND 15.26 4.88 ND 14.99 10.47 5.11 9.39 12.78	MG-URINE 12.7 1].9 10.9 13.5 14.3 9.2 15.9 10.4 12.8 11.4 14.3 10.3 8.9 14.5 10.2	MG-DELTA 18.3 9.678 5.274 12.32 9.701 -1.272 7.82 17.6 6.94 14.72 15.7 2.71 14.63 8.39 13.41 7.22
17 18 19 20 21 BED 01 02 03 04 05 06 07 08 09 10 11 12 13	13 13 13 13 13 14 14 14 14 14 14 15 15	5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 2	30 29 33 28 36 32 30 34 34 29 36 32 29 30 34 28 36 31	13.48 17.43 13.73 15.52 8.78 17.69 ND 13.31 7.61 17.51 12.83 21.07 1.24 10.3 ND 25.25 7.29	11.2 13.6 9.7 9.6 7.6 12.1 14 13.7 15.8 16.1 11.7 12.9 15.6 13 11.9 10.7 14.2 12.2	5.32 -2.03 9.57 2.88 19.62 2.21 16 20.3 4.89 5.29 6.79 6.27 -7.67 11.8 17.3 -3.45 11.51
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	15 15 15 15 15 16 16 16 16 16	4 5 6 7 8 9 0 1 2 3 4 5 6	31 32 27 33 31 30 31 33 28 35 34 29 29 29	ND 32.44 3.31 ND 11.3 17.32 ND 24.18 ND 21.47 16.13 ND 16.484 12.091 15.062	13.3 10.1 11 12.9 10.8 13.1 10.3 10.7 11.8 12.6 10.6 11.5 13.4 12 10.9	18.7 -11.54 17.69 14.1 10.9 .58 19.7 -3.88 21.2 -6.07 8.27 22.5 .884 16.981 6.038

سر ا

### BAYLOR'BED REST - PHASE I Nitrogen Balance (gm)

SUBJE	:CT: 3					
STUDY	DAY 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	N-IN 17.97 15.97 18.03 19.34 17.36 18.77 19.62 19.76 18.43 19.18 17.55 18.69 20 19.78 18.29 19.38 17.47 18.69 20.86 19.68 19.68	N-FECAL ND 1.05 3.53 1.46 1.59 1.79 2.77 ND 4.68 1.67 ND 3.88 2.87 3.43 2.34 1.9 3.11 3.9 3.31 3.27 2.18	N-URINE 12.9 13.8 13.6 15.4 15 10.6 20 13.7 21.1 16 16.4 12.4 14.3 19.7 14.2 16.06 13.57 16.35 14.05 14.94 14.05	N-DELTA 5.07 1.12 .9 2.48 .77 6.38 -3.15 6.05 -7.35 1.51 1.15 2.41 2.83 -3.35 1.75 1.42 .79 -1.56 3.51 1.47 2.44
BED	01 02 03 04 05 06 07 08 09 10 11 12 13	140 141 142 143 144 145 146 147 148 149 150 151 152 153	19.74 17.44 21.98 19.9 22.16 19.44 19.5 17.28 21.15 20.03 22.1 18.77 19.42 18.62	1.3 ND ND 2.87 1.82 3.79 2.78 2.48 .33 2.7 ND 5.59 1.57	15.1 13.63 13 18.18 19.9 17.67 16.67 21.09 18.44 15.49 14.51 18.83 16.05 16.52	3.34 3.81 8.98 -1.15 .44 -2.02 .05 -6.29 2.38 1.84 7.59 -5.65 1.8 2.1
POST	01 02 03 04 05 06 07 08 09 10 11 12 13	154 155 156 157 158 159 160 161 162 163 164 165 166	21.07 19.63 21.94 18.29 19.1 17.54 21.07 19.79 22.02 18.37 19.55 17.55 20.91 19.63	7.39 .77 ND 2.28 3.99 ND 4.97 ND 4.34 4.01 IID 3.6 2.91 4.1	13.86 19.44 17.92 17.91 16.99 14.47 16.4 15.45 15.09 15.66 13.98 14.08 13.73	18 58 4.02 -1.9 -1.88 .307 3 4.34 2.59 -1.3 5.57 13 4.27 -1.2

#### 2€5

#### BAYLOR BED REST - PHASE I Phosphorus Balance (mg)

PRE 01 119 1651 ND 1158 493 02 120 1554 262.07 1260 31.9 03 121 1659 848.27 1240 -429 04 122 1742 352.49 1231 158. 05 123 1600 376.72 995 228. 06 124 1741 393.74 756 591. 07 125 1743 591.22 1271 -119 08 126 1817 ND 963 854 09 127 1776 1155.61 1651 -103 10 128 1758 412.81 1142 203. 11 129 1611 ND 1034 577 12 130 1731 961.62 894 -124 13 131 1797 724.87 846 226. 14 132 1823 900.56 1404 -481 15 133 1771 605.91 1052 113. 16 134 1803 988.71 1075 -260 17 135 1609 851.18 915 -157 18 136 1735 1058.81 915 -157 18 136 1735 1058.81 1056 -379 19 137 1833 902.36 993 -60. 20 138 1844 TF 1555 TF 21 139 1828 TF 1181 TF  BED 01 140 1810 TF 1260 TF 02 141 1601 ND 1035 566 03 142 1938 ND 940 998 04 143 1786 TF 1135 TF 05 144 1945 TF 1165 TF 07 146 1793 TF 1165 TF 08 147 1574 TF 1810 TF 09 148 1867 TF 1267 TF 10 149 1763 TF 1165 TF 11 150 1937 ND 1054 883 12 151 1812 TF 1368 TF	
02       141       1601       ND       1035       566         03       142       1938       ND       940       998         04       143       1786       TF       1135       TF         05       144       1945       TF       1412       TF         06       145       1851       TE       1310       TF         07       146       1793       TF       1165       TF         08       147       1574       TF       1810       TF         09       148       1867       TF       1267       TF         10       149       1763       TF       1027       TF         11       150       1937       ND       1054       883         12       151       1812       TF       1368       TF         13       152       1785       TF       1164       TF	19,22 4 030,61 3.19 7 24.62 6.13 81.56 3.09 60.71 57.18 79.81 0.34
14 153 1725 ND 1319 406	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
POST 01         154         1860         TF         1090         TF           02         155         1739         TF         1314         TF           03         156         1920         IID         1352         568           04         157         1758         TF         1411         TF           05         158         1743         TF         1293         TF           06         159         1635         IND         1137         498           07         160         1847         TF         1118         TF           08         161         1739         IND         918         821           09         162         1933         TF         1257         TF           10         163         1791         TF         1312         TF           11         164         1818         IND         1165         653           12         165         1640         TF         1105         TF           13         166         1831         TF         1221         TF           14         167         1760         TF         958         TF	3

* u

# BAYLOR BEB REST STUDY - PHASE 1 Body Weight, Fecal Weight, Water Balance & Nitrogen Balance Statistics

SUBJECT: 4

STUDY DAY: TOTAL BED REST STUDY

	BODY WEIGHT	FECAL WT	W-DELTA	N-DELTA
MEAN	64.3196	193.480	1226.11	2.23760
SDEV	.448089	64.4659	682.258	2.73805
SIZE	51	20	51	50
SUM	3280.30	3869.60	62532.0	111.880
STUDY DAY:	PRE 01 TO PRE 21			
MEAN	64.6095	172.030	1464.05	1.98809
SDEV	.265024	73.8150	672.451	2.02839
SIZE	21	10	21	21
SUM	1356.80	1720.30	30745.1	41.7500
STUDY DAY:	BED 01 TO BED 14			
MEAN	64.2214	173.825	925.714	2.39143
SDEV	.274862	24.3171	549.081	3.21486
SIZE	14	4	14	14
SUM	899.100	695.300	12960.0	33,4800
STUDY DAY:	POST OI TO POST 14			
MEAN	63.9076	249.025	1221.84	
SDEV	.548891	43.6026	768.594	
SIZE	13	4	13	
SUM	830.800	996.100	15884.0	

#### BAYLOR BED REST - PHASE I Mineral Statistics

SUBJECT:

4

STUDY DAY: TOTAL BED REST STUDY

(	CV-BILTA	P-DELTA	NA-DELTA	K-DELTA	MG-DELTA	CL-LELTA
SDEV (	-9.68687 635.421 51 -494.036	402.138 405.233 39 15683.4	36.1041 54.7037 51 1841.31	11.6401 19.1928 51 593.650	8.13627 9.73542 51 414.950	36.9409 49.1331 51 1883.99
STUDY DAY	Y: PRE 01	to PRE 21				
SDEV Z	73.2633 472.596 21 1538.53	218.495 432.694 19 4151.41	33.8152 55.2259 21 710.120	11.8166 16.4910 21 248.150	8.54333 6.83128 21 179.410	40.8319 42.9417 21 857.470
STUDY DA	Y: BED 01	TO BED 14				
SDEV (	6.85575 633.783 14 95.9805	543.699 299.263 10 5437.00	28.6542 57.5415 14 401.160	10.7307 15.7808 14 150.229	14	31.0957 49.2541 14 435.340
STUDY DA'	Y: POST O	I TC POST 14				
SDEV 8	-110.662 846.269 14 -1549.27	624.333 310.867 9 5619.00	45.0242 48.8993 14 630.340	12.6207 27.3079 14 176.690	5.60857 13.4236 14 78.5200	34.9850 53.9048 14 489.810

### BAYLOR BED REST - PHASE I Water Balance (ml)

SUBJECT: 4		Water	Balance (ml)	<b>)</b>	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	W-IN 3409 2046 2224 2715 2462 3931 2626 2776 2029 2580 2654 4299 3803 2390 2473 2984 2955 3704 2172 3016 3122	W-FECAL 64.42 186.51 ND 46.69 ND 157.28 69 ND ND 173 83 ND ND 160 ND 160 ND ND	W-URINE 925 875 1105 1430 1715 1260 1415 2195 1240 1780 1055 1900 1205 1620 940 1160 400 1690 970 1750 1720	W-DELTA 2419.58 984.49 1119 1265.31 747 2513.72 1142 581 789 627 1516 2399 2598 610 1533 1824 2359 1848 1202 1266 1402
BED 01 02 03 04 05. 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	2009 1461 3063 1698 1857 1817 1551 1640 2604 1928 2139 1953 2007 2530	115 ND ND ND 138 ND ND ND ND ND ND 126 ND	1490 610 750 1020 800 1345 960 650 760 1265 1195 910 870 2210	404 851 2323 678 919 472 591 990 1844 663 851 1043 1011 320
POST 01 02 03 04 05 06 07 08 29 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	2395 3276 2338 2089 3093 2985 3538 2968 2204 2711 2136 2846 1676 2519	173 ND ND 217 ND ND ND ND ND 155 151 197 ND ND	670 780 1500 1905 2410 1635 1050 715 1610 1180 1120 1590 990 1370	1552 2496 838 -33 683 1350 2488 2253 674 1376 865 1059 686 1149

#### BAYLOR BED REST - PHASE I Nitrogen Balance (gm)

SUBJECT: 4	Nitrogen Balance (gm)						
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	N-IN 17.68 16.98 14.38 17.63 16.26 17.1 17.89 13.06 16.66 17.1 17.12 16.83 15.2 16.8 16.1 16.88 16.83 15.2	N-FECAL 2.7 ND 1.24 ND 3.09 1.65 ND ND 3.71 1.67 ND ND 3.65 ND ND 4.39 3.2 ND ND ND	N-URINE 14.7 12.7 12.2 14.2 14.1 12.7 14.1 16.1 11.6 13.2 15.35 12.69 15.12 10.05 19.24 6.12 13.01 11.52 14.16 12.76	N-DELTA 1.77 1.58 2.18 2.19 2.16 1.87 1.35 1.79 1.46 1.35 1.79 1.46 5.15 -2.44 5.55 -11 5.36 2.67 2.44		
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	16.46 16.06 16.1 16.88 16.83 15.54 16.8 18.29 15.86 16.72 16.83 15.54 16.8	3.07 ND ND ND 3.35 ND ND ND ND ND ND 2.5 ND 2.69 ND	15.56 9.89 13.14 13.48 7.77 14.67 14.29 10.69 12.63 20.85 13.84 10.62 13.4 17.08	-2.17 6.17 2.96 3.4 5.71 .87 2.51 7.6 3.23 -4.13 .49 4.92 .71		
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	15.49 16.88 16.77 15.54 16.8 18.77 15.86 16.88 16.83 15.54 16.8 18.29 15.49 16.88	4.25 ND ND TF ND ND ND ND ND 3.39 3.59 3.42 ND ND	12.11 13.45 16.44 13.85 17.62 13.33 13.79 7.57 11.46 14.54 14.6 13.12 11.08 13.45	87 3.43 .33 TF82 5.44 2.07 9.31 5.37 -2.39 -1.39 1.75 4.41 3.43		

#### BAYLOR BED REST - PHASE I Calcium Balance (mg)

SUBJECT:	4	Caiciu	m Balance (mg	)	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	CA-IN 774 767 713 772 743 745 769 783 698 738 751 779 782 773 747 755 740 741 708 762 736	CA-FECAL 423.6 837.54 ND 167.9 ND 293.78 283.43 ND ND 657.91 297.07 ND ND 1499 ND ND 1499 ND ND 1639.1 934.8 ND	CA-URINE 365 349 413 393 453 281 309 417 361 281 236 373 285 373 457 361 184 321 389 337 353	CA-DELTA -14.3 -419.2 300.17 211.3 290.1 170.66 176.9 366.17 337.28 -200.47 217.46 406 497.4 -1099 290.09 394.28 -1083.47 -514.8 403.4 425.33 383.23
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	737 747 760 770 758 758 737 759 738 767 776 767 758 751	1183.6 ND ND ND 1560.2 ND ND ND ND ND ND 1368.9 ND 1586.4 ND	261 220 265 481 96 437 385 273 341 521 365 317 365 461	-707.12 526.56 495.47 289.04 -898.4 319.13 352.2 486.4 397.32 245.96 -957.63 450.37 -1193.4 290.08
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	739 785 768 747 748 758 737 769 756 747 737 748 736 769	2287.8 ND ND 2110.7 ND ND ND ND ND 1003 826.85 1226.3 ND ND	273 269 421 389 401 353 341 228 20 461 393 265 220 345	-1821.3 516.46 347.16 -1752.7 347.2 405.3 396.3 540.5 4/5.4 -71/ 482.85 -743.3 515.56 424

#### BAYLOR BED REST - PHASE I Phosphorus Balance (mg)

SUBJECT:	4	Phosphor	us Balance (	mg)	
STUDY DAY: PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	P-IN 1611 1463 1389 1553 1545 1602 1549 1553 1311 1533 1564 1689 1685 1463 1522 1578 1552 1568 1583 1451 1510	P-FECAL 301.1 725.74 ND 301.83 ND 705.9 439.41 ND ND 1131.81 506.68 ND ND 1434.12 ND ND TF TF ND ND	Paurine 1277 823 861 915 1132 1084 877 966 1166 926 992 1140 1036 972 959 1485 296 1082 834 1085 929	P-DELTA -85.74 528 336.17 413 -187.9 235.59 587 145 -524.81 65.32 549 649 -943.12 563 93 TF TF 749 366 581
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	1522 1578 1574 1666 1440 1552 1540 1672 1517 1646 1464 1579 1554 1662	TF ND ND TF ND ND ND ND ND TF ND ND ND ND TF ND ND TF ND TF ND TF ND TF ND	1341 708 858 1122 448 1076 1075 767 973 1796 1123 892 1096 1282	TF 870 716 544 TF 476 465 905 544 -150 TF 687 TF 380
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169	1482 1659 1553 1540 1552 1713 1515 1657 1439 1540 1660 1481 1657	TF ND ND TF ND ND ND ND TF TF TF ND ND ND	1045 998 1230 1029 1205 818 1323 458 837 1345 1075 1113 752 986	TF 661 323 TF 347 895 192 1199 602 TF TF TF 729 671

#### BAYLOR BED REST - PHASE I Sodium Balance (mEq)

SUBJECT: 4		5001um r	satatice (med)		
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	NA-IN 287 286 192 244 239 279 276 290 216 232 242 256 283 238 231 232 245 282 238	NA-FECAL .43 2.28 ND .81 ND 2.06 1.14 ND ND 4.22 6.58 ND ND 2.73 ND ND 3.17 4.46 ND ND	NA-URINE 158 232 221 228 298 162 264 281 236 198 197 179 139 233 175 236 96 197 222 271 292	NA-DELTA 128.57 51.72 -29 15.19 -59 114.94 10.86 9 -20 29.78 28.42 63 117 47.27 63 -3 131.83 30.54 23 11
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	232 232 240 247 282 238 231 269 213 245 283 239 239 269	1.06 ND ND ND 1.36 ND ND ND ND ND 1.6 ND 2.87 ND	274 148 159 275 153 266 248 175 168 287 215 185 211 287	-43.06 84 81 -28 127.69 -28 -17 94 45 -42 66.4 54 25.13
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169	225 289 286 237 232 232 213 249 282 237 231 228 224 249	3.45 ND ND 4.07 ND ND ND ND ND ND S.2 4.27 9.67 ND ND	125 169 264 290 241 168 139 200 180 181 187 234 158 221	96.55 120 22 -57.07 -9 64 74 49 102 50.8 39.73 -15.67 66 28

#### BAYLOR BED REST - PHASE I Potassium Balance (mEq)

SUBJECT: 4		rocass fulli	barance (mey	<b>)</b>	
STUDY DAY PRE 01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17  18  19  20  21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	K-IN 82 90 66 78 83 76 95 92 70 69 76 86 105 93 89 75 72 78 100 89 85	K-FECAL 7.37 15.77 ND 6.94 ND 16.53 7.63 ND ND 25.88 24.35 ND ND 24.07 ND ND 33.76 21.55 ND ND	K-URINE 60 63 46 62 65 62 71 79 57 60 76 70 63 62 50 74 29 59 58 74 77	K-DELTA 14.63 11.23 20 9.06 18 -2.53 16.37 13 -16.88 -24.35 16 42 6.93 39 1 9.24 -2.55 42 15 8
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	69 77 80 103 86 89 72 81 69 102 93 94 71	20.55 ND ND ND 23.42 ND ND ND ND ND ND ND 16.08 ND 21.72 ND	70 57 64 68 51 82 58 55 57 106 63 62 54 84	-21.55 20 16 35 11.58 7 14 26 12 -4 13.92 32 -4.72 -7
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	66 106 96 85 69 78 68 102 85 85 65 77 66 102	33.76 ND ND 38.89 ND ND ND ND ND 23.43 29.56 26.67 ND ND	70 61 75 80 63 49 48 46 53 44 49 54 56 73	-37.76 45 21 -33.89 6 29 20 56 32 17.57 -13.56 -3.67 10 29

#### BAYLOR BED REST - PHASE I Magnesium Balance (mEq)

SI	IBJ	F	Υ.	4
-31	1676	14.1		

20B0EC1: -					
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	MG-IN 27 23 17 22 21 24 25 16 17 22 29 26 24 21 25 26 23 23	MG-FECAL 3.95 10.48 ND 3.67 ND 7.11 6.1 ND ND 14.37 13.49 ND ND 16.52 ND ND ND 20.47 12.03 ND ND ND	MG-URINE 12.5 5.7 8.7 10.1 7.1 8.6 7.8 9.1 10.1 7.3 6.8 12.2 7.9 10.7 17.6 12.3 3.6 7.5 8.5 9.7 7	MG-DELTA 10.55 6.82 8.3 8.23 13.9 8.29 10.1 15.9 5.9 -4.67 1.71 16.8 18.1 -3.22 6.4 6.7 -3.07 5.47 17.5 13.7
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	17 22 25 26 23 25 22 25 25 26 24 26 19 22	15.39 ND ND ND 18.6 ND ND ND ND ND ND ND ND ND ND	8.1 6.9 7.7 6.6 2.4 10.9 4.1 7.7 9.1 14.1 9.8 8.2 8.8 12.1	-6.49 15.3 17.3 19.4 2 14.1 17.9 17.3 15.9 11.9 -2.98 17.8 -8.41 9.9
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 166 167 168 169 170	20 26 23 25 18 23 25 26 23 25 18 22 20 26	24.64 ND ND 27.29 ND ND ND ND 18.64 18.17 15.44 ND ND	7.9 8.8 10 9.8 10.2 10.3 11.5 3.8 8 19.8 14 8.5 7.3 7.4	-12.54 17.2 13 -12.09 7.8 12.7 13.5 22.2 15 -13.44 -14.17 -1.94 12.7 18.6

#### BAYLOR BED REST - PHASE I Chloride Balance (mEq)

SUBJECT: 4		uniorio	ie balance (iii	red )	
SUBJECT: 4 STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	CL-IN 250 265 168 227 218 248 248 268 198 208 207 227 263 218 208 204 224 263 218	CL-FECAL .7 2.01 ND .72 ND 2.73 2.24 ND ND 1.43 1.12 ND ND 1.73 ND ND 1.73 ND ND 1.14 1.71 ND ND ND	CL-URINE 166 180 197 200 271 159 224 239 208 185 175 162 133 178 161 194 86 164 176 210 225	CL-DELTA 83.3 82.99 -29 26.28 -53 86.27 21.76 29 -10 31.57 31.88 45 94 83.27 57 24 120.86 38.29 48 53 -7
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	218 208 205 223 263 218 227 240 186 221 263 219 220 241	.72 ND ND ND .33 ND ND ND ND ND ND .32 ND .29 ND	200 146 142 237 130 249 203 155 144 267 202 188 185 267	17.28 62 63 -14 132.67 -31 24 85 42 -46 60.68 31 34.71
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	203 255 263 218 217 78 186 224 263 218 217 200 203 224	.59 ND ND 1.49 ND	130 144 225 280 217 159 128 161 177 155 161 196 156 184	72.41 111 38 -63.49 0 -81 58 63 86 61.7 55.4 1.49 47 40

#### BAYLOR BEC REST STUDY - PHASE I Body Weight, Fecal Weight, Water Balance & Nitrogen Balance Statistics

SUBJECT: 5

STUDY DAY: TOTAL BED REST STUDY

	BODY WEIGHT	FECAL WT	W-DELTA	N-DELTA
MEAN	81.4320	183.787	1645.27	.988800
SDEV	.784544	64.2959	835.618	3.24192
SIZE	50	26	50	50
SUM	4071.59	4778.47	82263.9	49.4400
STUDY DAY: PRE	01 TO PRE 21			
MEAN	81.6904	168.755	1819.90	.500952
SDEV	.763762	59:2784	540.750	2.44580
SIZE	21	12	21	21
SUM	1715.50	2025.07	38217.9	10.5200
STUDY DAY: BED	01 TO BED 14			
MEAN	81.6357	243.700	993.571	1.41571
SDEV	.488887	8.20441	446.422	3.76049
SIZE	14	2	14	14
SUM	1142.90	487.400	13910.0	19.8200
STUDY DAY: POS	T 01 TO POST 14			
MEAN	80.8999	189.618	1955.78	1.27285
SDEV	.806906	73.7232	1130.27	3.94923
SIZE	14	11	14	14
SUM	1132.60	2085.80	27381.0	17.8200

#### BAYLOR BED REST - PHASE I Nineral Statistics

SUBJECT: 5

STUDY DAY: TOTAL BED REST STUDY

C.,-J.LTA	P-DLLTA	NA-DELTA	K-DELTA	MG-DELTA	CL-DELTA
MEAN -80.0568	201.033	41.9490	5.19200	7.69919	47.7546
SDLV 637.719	453.145	123.558	22.3329	10.1274	57.8474
SIZE 50	32	50	50	50	50
SUM -4002.84	6433.06	2097.45	259.600	384.959	2387.73
STUDY DAY: PRE 01	to PRE 21				
MEAN 28.6424	-23.7018	30.6090	7.94618	8.33666	. 48.3742
SDEV 397.046	420.957	173.664	18.3135	6.31752	54.9108
SIZE 21	17	21	21	21	21
SUM 601.491	-402.932	642.790	166.869	175.070	1015.86
STUDY DAY: BED 01	TO BED 14				
MEAN 82.4243	480.583	25.4564	5.81213	11.9364	30.9100
SDEV 604.897	379.229	59.9547	30.1083	10.6346	53.6113
SIZE 14	12	14	14	14	14
SUM 1153.94	5767.00	356.390	81.3699	167.110	432.740
STUDY DAY: POST 0	1 TC POST 1	4	as the gar year fac on the set pas for the feet		
MEAN: -402.097	356.333	70.9493	.924283	2.54000	61.3721
SDEV 874.682	199.475	76.4097	20.5339	12.7835	67.1912
SIZE 14	3	14	14	14	14
SUM -5629.37	1069.00	993.290	12.9399	35.5600	859.210

#### BAYLOR BED REST - PHASE I Water Balance (ml)

SUBJECT: 5		water	Balance (MI)		
STUDY DAY	JUL DAY	W-IN	W-FECAL	W-URINE	W-DELTA
PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	3456 3627 2716 3253 2210 3691 3139 2957 3150 3011 2651 3207 2536 2728 2219 3399 2431 3601 2782 3052 1943	ND 105.43 ND 174.36 ND 101.86 168 ND 195 ND 172 ND 46.43 96 ND 162 97 76 152 ND ND	1270 1045 1020 1375 1365 1000 1135 900 1020 860 1130 1120 1040 1150 1180 980 700 675 1010 920 1100	2186 2476.57 1696 1703.64 845 2589.14 1836 2057 1935 2151 1349 2087 1449.6 1482 1039 2257 1634 2850 1620 2132 843
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	2122 1551 2865 2001 1833 2493 2187 1901 2826 2302 1962 2173 2194 2352	188 ND	1110 1075 870 920 1030 1365 1620 945 1030 1700 1190 1160 1390 1190	824 476 1995 1081 803 1128 408 956 1796 602 772 1013 894 1162
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	3679 2036 2038 1591 2277 1991 3898 3266 4055 3713 2450 2220 4763 3923	201 221 135 187 ND 177 143 113 ND 106 101 79 ND 66	900 950 1130 345 1360 880 960 1490 690 715 1250 910 760 610	2578 865 773 1059 917 934 2755 1663 3365 2892 1099 1231 4003 3247

#### BAYLOR BED REST - PHASE I Nitrogen Balance (gm)

SUBJECT: 5		Nitroge	n Balance (g	m)	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	N-IN 17.68 16.99 14.3 17.63 15.62 17.66 17.1 16.98 14.48 17.62 15.6 17.66 17.1 15.76 16.29 17.63 15.34 17.66 17.33 17.36 14.14	N-FECAL ND 2.75 ND 3.12 ND 2.32 3.09 ND 3.65 ND 3.11 ND 1.16 2.45 ND 3.22 1.67 1.19 3.06 ND	N-URINE 13.7 15.6 14.2 16 15.2 14.3 16.7 13.9 15.4 15 14.1 15.1 15.1 13.49 15.19 14.44 16.25 12.64 13.45 14.2 12.91 15.15	N-DELTA 3.98 -1.36 .1 -1.49 .42 1.04 -2.69 3.08 -4.57 2.62 -1.61 2.56 2.45 -1.88 1.85 -1.84 1.03 3.02 .07 4.75 -1.01
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	17.63 15.58 17.66 17.57 17.6 16.29 17.71 15.34 17.66 16.5 17.36 16.29 15.76 14.78	4.14 ND ND ND ND ND A.03 ND	14.24 10.16 12.27 10.24 16.75 19.06 18.52 9.72 13.15 19.62 15.67 17.12 14.3 14.92	75 5.42 5.39 7.33 .85 -2.77 -4.84 5.62 4.51 -3.12 1.6983 1.4614
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169	17.66 16.5 17.36 14.48 15.76 15.34 17.66 16.98 17.36 14.48 15.6 15.34 17.66 16.5	4.78 4.6 3.46 2.85 ND 3.47 2.1 1.89 ND 3.08 2.28 1.8 ND	14.01 13.48 15.18 3.91 17.72 9.06 14.28 17.58 13.6 13.36 16.6 12.31 11.44 6.2	-1.13 -1.58 -1.28 7.72 -1.96 2.81 1.28 -2.49 3.76 -1.96 -3.28 1.23 6.22 8.48

### BAYLOR BED REST - PHASE I Calcium Balance (mg)

CUD ITOT	5	Calcium	balance (my	1	
SUBJECT: STUDY DAY	JUL DAY	CA-IN	CA-FECAL	CA-URINE	CA-DELTA
PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	781 797 799 782 756 773 769 761 779 757 773 768 643 750 772 781 773 776 778 778	ND 857.51 ND 403.77 ND 235.01 241.42 ND 1100.6 ND 921 ND 351 709 ND 903 384.5 365.1 771.1 ND	372 341 413 409 457 377 309 385 437 433 425 525 377 413 409 469 297 321 389 285 437	408.2 -408 386.17 -30.58 299.1 161.23 218.96 384.2 -776.5 396 -588.85 247.9 40.25 -478.8 341.18 -599.9 99.91 87.26 -383.8 493.43 304.13
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	767 776 766 791 789 772 762 772 772 786 765 772 791 767	1304.4 ND ND ND ND 1748.4 ND ND ND ND ND ND ND ND	417 373 353 405 429 697 641 389 445 653 497 485 401 457	-954.2 403.26 413.3 386.2 360.14 74.61 -1627.7 383.2 327.11 132.7 268 287.03 390.2 310.09
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	773 775 776 771 816 772 775 786 777 772 789 774 775 843	2851.2 2184.8 1375.5 834.5 ND 1119.6 514.8 429.08 ND 547.08 403.9 601.23 ND 697.41	433 401 541 285 489 333 389 469 224 265 409 329 261 216	-2511.6 -1810.6 -1140.5 -348.5 327 -680.6 -128.9 -112.08 552.55 -40.08 -23.9 -156.23 514.48 -70.41

#### BAYLOR BED REST - PHASE I Phosphorus Balance (mg)

SUBJECT:	5	Phosphol	rus balance	Olig )	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	P-IN 1637 1521 1436 1556 1503 1611 1550 1457 1436 1554 1503 1611 1559 1408 1571 1551 1584 1612 1622 1604 1406	P-FECAL ND 648.11 ND 885.79 ND 631.88 819.57 ND 1049.95 ND 845.82 ND 302.85 631.96 ND TF TF TF TF ND ND	P-URINE 1118 1170 1204 1128 1420 1320 1112 1152 1092 1135 1175 1098 1144 1150 1204 1215 812 1026 1172 1104 1364	P-DELTA 519 -297.11 232 -427.79 83 -340.88 -381.57 305 -705.95 419 -517.82 513 -387.85 -373.96 367 TF TF TF TF TF 500 92
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	1526 1584 1610 1652 1633 1579 1533 1558 1611 1385 1601 1579 1511 1506	TF ND ND ND ND TF ND	1199 774 1044 699 886 1802 1264 794 1030 1632 1119 1322 988 952	TF 810 566 953 747 -223 TF 764 581 -247 482 257 523 554
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	1611 1380 1602 1391 1540 1558 1611 1436 1604 1393 1505 1559 1611 1457	TF TF TF ND TF TF ND TF TF ND TF TF ND TF TF	1152 912 1107 676 1414 598 1440 1460 1132 1115 1150 1001 1140 952	TF TF TF 126 TF TF TF TF TF 472 TF TF TF TF TF TF

#### BAYLOR BED REST - PHASE I Sodium Balance (mEq)

SUBJECT: 5		Sodium	Balance (mEq)		
STUDY DAY PRE 01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17  18  19  20  21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	NA-IN 288 290 254 244 243 287 247 287 243 250 244 267 237 262 243 245 245 287 244 263 223	NA-FECAL ND .92 ND 4.52 ND 1.29 4.26 ND 7.38 ND 4.1 ND 1.94 3.22 ND 6.83 2.53 2.06 4.41 ND ND	NA-URINE  250 173 182 272 246 183 220 158 10.9 158 301 230 230 265 268 146 92 89 225 197 231	NA-DELTA  38 116.08 72 -32.52 -3 102.71 22.79 129 224.72 92 -661 57 5.06 -6.22 -25 92.17 150.47 195.94 14.59 66 -8
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	244 245 281 247 290 244 237 243 286 245 290 244 244 245	3.9 ND	240 220 151 248 249 272 258 164 166 347 254 211 206 232	.1 25 130 -1 41 -28 -27.71 79 120 -102 36 33 38 13
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 165 166 167 168 169	287 244 263 247 249 243 287 241 263 247 245 244 278 248	10.62 7.32 3.39 12.52 ND 5.02 9.02 3.53 ND 2.35 2.68 2.13 ND	122 193 234 233 280 171 173 234 79 84 281 209 154 86	154.38 43.68 25.61 1.48 -31 66.98 104.98 3.47 184 160.65 -38.68 32.88 124 160.86

## BAYLOR BED REST - PHASE I Potassium Balance (mEq)

SUBJECT:	5	Potass1	um Balance (m	itd)	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	K-IN  88 100 77 77 88 82 95 86 76 80 88 82 96 93 89 77 96 82 91 87 85	K-FECAL ND 11.64 ND 22.86 ND 16.55 22.56 ND 22.87 ND 22.28 ND 16.11 10.71 ND 20.53 11.59 10.3 15.13 ND ND	K-URINE  85 88 54 84 76 73 69 58 75 52 72 55 67 76 84 78 53 37 70 78 61	K-DELTA  3 .36 23 -29.86 12 -7.55 3.44 28 -21.87 28 -6.28 27 12.89 6.29 5 -21.53 31.41 34.7 5.87 9 24
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	71 91 81 91 87 94 72 90 82 83 83 94 75 69	27.01 ND ND ND ND ND ND ND ND ND ND	76 48 68 51 66 96 91 42 65 126 74 81 66 75	-32.1 43 13 40 21 -2 -48.53 48 17 -43 9 13 9
POST 01 02 03 04 05 06 07 98 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	82 83 87 89 82 90 82 82 90 74 90 82 85	41.96 40.87 22.87 17.31 ND 22.73 1.58 13.27 NO 13.1 13.11 19.28 ND 10.98	65 76 75 63 88 45 82 79 64 53 90 61 62 62	-24.96 -33.87 -10.87 8.69 -6 22.27 -1.58 19.77 24 73.9 -79.11 18.77 20 12.02

#### BAYLOR BED REST - PHASE I Magnesium Balance (mEq)

SUBJECT: 5	Magnesium Balance (MEQ)				
STUDY DAY	JUL DAY	MG-IN	MG-FECAL	MG-URINE	MG-DELTA
PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	28 25 18 22 23 27 24 23 27 24 23 27 24 23 27 24 23 27 24 23 27 24 23 27 24 23 27 24 23 27 24 23 27 24 26 27 27 27 27 27 27 27 27 27 27 27 27 27	ND 10.69 ND 10.63 ND 6.26 7.5 ND 14.07 ND 10.63 ND 11.18 8.49 ND 11.99 6.32 4.67 13.1 ND	10.8 10.9 10.5 9.5 14.7 10.5 9.4 10.4 10.3 8.4 12.8 3.2 9.8 9.8 12.9 6.1 89.1 7.4	17.2 3.41 7.5 1.87 8.3 10.24 7.1 12.6 -6.47 11.7 3.97 14.2 9.62 5.71 13.2 -2.89 16.58 14.33 2.8
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	21 28 27 25 23 25 22 28 27 31 23 25 26 10	14.34 ND ND ND ND ND 25.25 ND ND ND ND ND ND ND	9.2 6.4 8.3 7.3 8.2 7.6 11.7 6.8 13.2 17 11.9 11.5 9.6 10.6	-2.54 21.6 18.7 17.7 19.8 17.4 -14.95 21.2 13.8 14 11.1 13.5 16.46
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169	27 31 23 32 26 28 27 32 23 32 24 28 27 31	38.25 32.71 21.31 12.38 ND 20.11 7.38 8.21 ND 16.36 11.35 9.83 ND 7.56	10.9 10.7 12.9 6.4 15.6 9.4 12.4 13.1 9.5 11.7 14.9 9.6 9.7 9.6	-22.15 -12.41 -11.21 13.22 10.4 -15.1 7.22 10.69 13.5 3.94 -2.25 8.57 17.3 13.84

### BAYLOR BED REST - PHASE I Chloride Balance (mEq)

SUBJECT:	5	Cittoria	e parance /mc	47	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	CL-IN 251 267 222 228 218 250 219 266 218 229 219 250 209 248 212 229 228 251 217 227 193	CL-FECAL ND .96 ND 2.71 ND .41 .86 ND 2.16 ND 2.05 ND 1.91 .85 ND 1.78 1.4 1.04 2.01 ND ND	CL-URINE 234 155 137 249 212 173 199 129 182 128 225 205 189 231 223 140 90 70 193 175 178	CL-DELTA 17 11.04 85 -23.71 6 76.59 19.14 137 33.84 101 -8.05 45 18.09 16.15 -11 87.22 136.6 179.96 21.99 52
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	229 228 250 219 253 213 227 227 251 225 254 213 225 226	2.15 ND	202 163 161 204 223 250 217 133 151 316 219 196 170 218	24.85 65 107.7 15 30 -37 9.19 94 100 -91 35 17 55
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	251 224 227 224 228 227 252 225 227 224 226 227 242 225	.65 2.05 12.01 2.36 ND 2.39 2.08 1.36 ND .86 1.23 1.02 ND	113 208 208 199 253 159 170 218 73 64 255 198 139 86	137.35 13.95 6.99 22.64 -25 65.61 79.92 5.64 154 159.15 -30.23 27.98 103 138.21

BAYLOR BED REST STUDY - PHASE I Body Weight, Fecal Weight, Water Dalance & Mitrogen Balance Statistics

SUBJECT: 6

STUDY DAY: TOTAL BED REST STUDY

	BODY WEIGHT	FECAL WT	W-CELTA	N-CELTA
MEAN	64.9860	106.392	959.538	1.03020
SDEV	.711422	49.3827	655.976	4.50078
SIZE	50	39	50	50
SUM	3249.30	4149.30	47976.9	54.0100
STUDY DAY: PRE	01 TO PRE 21			
MEAN	64.3619	101.368	939.220	1.74857
SDEV	.385758	61.3810	678.483	4.13911
SIZE	21	16	21	21
SUM	1351.60	1621.90	19723.6	36.7200
STUDY DAY: BED	01 TO RED 14			
MEAN	65.3500	101.760	706.785	15214
SDEV	.505464	33.4240	427.404	6.50918
SIZE	14	10	14	14
SUM	914.900	1017.60	9395.00	-2.1300
STUDY DAY: POS	T 01 TO POST 14			
MEAL,	65.6000	111.116	1304.50	1,35557
SDEV	.487480	42.9721	689.892	2,25942
SIZE	14	12	14	14
SUM	918.400	1333.40	18263.0	19,0200

ORIGINAL PAGE IS OF POOR QUALITY

# BAYLOR BED REST - PHASE I Hineral Statistics

SUBJECT: 6

STUDY DAY: TOTAL BED REST STUDY

	CA-DELTA_	P-DELTA	NA-DELTA_	K-DELTA	MG-DELTA	CL-CELTA
MEAN SDEV SIZE SUM	420.318 50	411.164	24.2192 54.0032 50 1210.96	18.0805 50	7.99245 50	46.1995 50
STUDY D	AY: PRE 01	to PRE 21			men. The same same same same same same same sam	gay the year gan that get ann that aug.
SDEV SIZE	379.029 21	408.045 16	47.4271 21	19.3005 21	9.59272 8.06994 21 201.447	·41.2562 21
STUDY D	AY; BED 01	TO BED 14				
SDEV SIZE	427.475 14	484.536 5	14.0514 40.3125 14 196.720	18.2658 14	9.36486 14	18.5835 33.7617 14 260.170
STUDY D	AY: POST O	1 TC POST 1	4		ani, ani	
SDEV SIZE	421.738 14	325.887 3	73 8743	17.2409 14	7.85643 5.22275 14 109.990	64,6837 14
						- · · · · · · · · · · · · · · · · · · ·

ORIGINAL PAGE IS OF POOR QUALITY

#### BAYLOR BED REST - PHASE I Water Balance (m1)

SUBJECT: 6		water	barance (mr)		
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	W-IN 3085 2559 1497 2061 1809 2910 1974 2482 2031 2025 597 2970 2169 1812 1806 1748 3015 2169 2367 1917	W-FECAL 51.94 45.72 121.73 36.44 ND 150.21 ND 32 81 72 ND 16 45 ND 24 113 55 69 55 165 ND	W-URINE 1450 1295 1280 1050 1160 1080 1425 1765 1110 1340 1035 840 1120 1610 1220 1030 880 360 880 805 1340	W-DELTA 1583 1218 95.27 974.56 649 1679.8 549 685 840 613 -438 2114 1004 319 568 663 813 2586 1234 1397 577
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	1764 1896 3229 1938 2367 1800 2130 1677 3129 1974 2148 2148 1914 1956	39 ND 34 ND 87 58 87 ND 88 43 84 88 ND 72	1375 1065 1480 840 1730 810 1320 1270 3170 970 1430 1200 1390 1445	350 831 1715 1098 550 932 723 407 -129 961 634 860 524 439
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	3464 1905 2148 1791 1892 2243 3204 2315 2732 2034 2136 2071 3282 2499	86 75 94 ND 134 38 55 82 36 89 ND 36 95	1110 720 1260 1545 1370 810 860 1005 735 1015 1390 1130 1150 410	2268 1110 794 246 388 1395 2289 1228 1961 930 746 905 2037

#### BAYLOR BED REST - PHASE I Nitrogen Balance (gm)

CUD ICCT.	6	Nitroge	n Balance (	gm)	
SUBJECT: STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	N-IN 17.66 16.99 14.43 18.22 16.02 14.61 14.45 14.34 15.78 15.09 14.82 14.61 14.72 13.95 15.78 15.09 14.82 14.61 14.4 13.95 15.98	N-FECAL 1.39 1.1 2.85 .95 ND 3.52 ND .82 1.97 1.82 ND .84 3.09 ND .71 9.05 1.47 1.92 1.16 3.19 ND	N-URINE 21.2 14.2 11.1 14.4 13.6 12.7 1.67 11.6 10.7 11.8 13.9 10.18 11.53 12.17 10.99 13.4 12.2 4.11 11.14 9.51 12.07	N-DELTA -4.93 -1.69 .48 2.87 2.42 -1.61 12.78 1.92 3.11 1.47 .92 3.591 1.78 4.08 -7.36 1.15 8.58 2.1 1.25 3.91
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	15.09 14.82 14.61 12.29 13.95 15.74 15.09 14.82 14.61 14.61 13.95 15.78 15.09 14.82	1.04 ND .96 ND 2.38 1.41 2.18 ND 2.41 1.11 1.88 2.06 ND 1.67	10.66 12.18 15.9 9.31 14.76 8.96 11.14 13.34 33.51 11.17 11.87 11.54 12.02 13.94	3.39 2.64 -2.25 2.98 -3.19 5.37 1.77 1.48 -21.31 2.33 .2 2.18 3.07 79
POST 01 02 03 04 05 06 07 08 09 10 11 12 13	157 158 159 160 161 162 163 164 165 166 167 168 169 170	14.61 12.3 13.95 15.74 15.09 14.82 14.61 14.4 13.95 15.79 15.09 14.82 14.61 14.45	1.98 1.58 1.8 ND 2.77 1.59 1.37 1.65 .93 1.72 ND 1	11.89 9.71 10.89 11.62 11.52 11.19 12.15 12.18 10.17 11 17.5 14.5 14.34 5.85	.74 1.01 1.26 4.12 .8 2.54 1.09 .57 2.85 3.07 -2.4168 -1.97 6.03

# BAYLOR BED REST - PHASE I Calcium Balance (mg)

~ 1		•	_	~	_
NI.	JΒ۰	. 1	-	ľ	 h
_)\	JUI	J	_	L.	 

STUDY DAY PRE 01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17  18  19  20  21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	CA-IN 775 780 724 793 781 812 825 814 821 796 772 820 816 801 817 794 781 820 813 806 808	CA-FECAL 571.9 420.64 1098.32 162.15 ND 468.45 ND 156.4 390.59 352.39 ND 207 412 ND 332 1244 611.8 826.5 317.8 1221.7 ND	CA-URINE  481  409  337  361  401  317  373  683  309  389  361  277  257  349  277  301  361  128  281  248  341	CA-DELTA -277.86 -49.45 -711 270.13 376.19 26.92 452.25 -25.4 121.41 54.61 411.28 336 147.49 452.3 208 -750.6 -191.8 -134.76 214.64 -664.2 467.32
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	799 797 815 764 806 809 804 795 814 827 804 799 804 773	430.2 ND 479.7 ND 1178.7 629.3 929.7 ND 1038.6 496.1 801.9 741.5 ND 759	401 457 794 345 565 345 473 497 449 461 481 479 509 445	-32.2 340 -462.7 419 -937.7 -165.3 -598.7 298.09 -673.5 -130 -478.9 -419.4 295 -431
POST 01 02 03 04 05 06 07 08 09 10 11 12 13 14	157 158 159 160 161 162 163 164 165 166 167 168 169 170	819 783 804 806 799 781 815 810 806 823 809 776 817 826	849.5 705.8 787.2 ND 1151.5 498.6 570.72 656.3 301.94 467.26 ND 470.86 1050.3 1095.1	349 601 309 341 281 289 297 285 240 261 273 309 325 128.25	-379.2 -524 -291.8 465.32 518.44 492.4 -52.72 525.4 264.06 94.74 536.46 -3.86 -558.3 -397.35

# BAYLOR BED REST - PHASE I Phosphorus Balance (mg)

SUBJECT:	6	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	P-IN 1612 1464 1412 1595 1539 1476 1711 1568 1689 1572 1537 1477 1722 1543 1687 1572 1538 1477 1701 1544 1692	P-FECAL 469.1 356.24 982.24 349.68 ND 1267.93 ND 237.46 719.47 724.87 ND 221.51 988.71 ND 301.03 TF TF TF TF TF	P-URINE 1537 932 666 945 812 907 1368 847 843 804 1346 857 1075 1127 952 1030 1126 346 1038 869 938	P-DELTA -394.1 175.76 -236.24 300.32 727 -698.93 343 483.54 126.53 43.13 191 398.49 -341.71 416 433.97 TF TF TF TF TF TF TF TF
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155	1544 1546 1477 1504 1544 1682 1573 1546 1477 1722 1544 1668 1575 1539	TF ND TF ND TF TF TF ND TF TF ND TF	798 1129 1154 756 1073 923 950 1092 796 892 515 912 945 1156	TF 417 TF 748 TF TF 454 TF -478.9 TF 630 TF
POST 01 02 03 04 05 06 07 08 09 10 11 12 13 14	157 158 159 160 161 152 163 164 165 166 167 168 169 170	1479 1464 1544 1679 1579 1541 1477 1700 1544 1690 1581 1538 1477	TF TF TF ND TF	844 893 958 1082 986 1134 894 1146 926 731 1056 1333 1012 508	0 TF TF 597 TF TF TF TF TF 525 TF TF

#### BAYLOR BED REST - PHASE I Sodium Balance (mEq)

SUBJECT:	6	Sodiun	n Balance (mEd	1)	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	NA-IN 287 293 203 249 250 218 308 218 219 212 215 224 270 216 219 211 222 224 258 217 218	NA-FECAL 1.089 1.365 2.83 .51 ND 2.1 ND 1.01 2 1.71 ND .69 .69 ND .51 1.73 .76 1.24 9.29 2.15 ND	NA-URINE 267 246 226 206 235 204 296 265 150 233 214 145 215 241 207 207 192 58 198 141 235	NA-DELTA  18.9 45.6 -25.83 42.49 15 11.9 12 -48 67 -22.71 1 78.3 54.3 -25 11.49 2.27 29.24 164.76 50.71 73.85 -17
BED 01 02 03 04 05 06 07 08 09 10 11 12 13	143 144 145 146 147 148 149 150 151 152 153 154 155 156	217 218 239 217 218 218 216 218 263 217 220 218 217	.86 ND .8 ND 2.16 1.58 2.06 ND 2.41 .84 2.06 1.92 ND 1.59	244 244 185 168 250 166 210 237 129 197 226 205 221 218	-27.86 -27 32.2 71 -35.16 50.42 5.94 -21 86.59 65.16 -11.06 13.08 -3 -2.59
POST 01 02 03 04 05 06 07 08 09 10 11 12 13 14	157 158 159 160 161 162 163 164 165 166 167 168 169 170	219 238 217 217 211 217 218 258 217 219 218 185 219 259	1.96 1.38 2.14 ND 2.94 1.08 1.15 2.03 1.49 2.93 ND 1.66 2.53 2.89	105 123 227 246 241 160 178 239 120 165 248 280 182 74	112.04 113.62 -12.19 -29 -32.94 55.92 38.85 16.97 95.51 51.07 -30 -96.66 34.47 182.11

# BAYLOR BED REST - PHASE I Potassium Balance (mEq)

SUBJECT:	6	10043314	iii barance (iii	Ly,	
STUDY DAY PRE 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	JUL DAY 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	K-IN 82 92 70 79 91 90 92 82 82 79 69 92 91 81 79 71 92 91 81 79	K-FECAL 10.338 7.844 23.63 7.58 ND 30.18 ND 6.74 18.31 16.66 ND 3.34 10.56 ND 5.75 27.66 13.25 16.57 30.51 34.01 ND	K-URINE  80 64 53 70 57 67 84 60 49 56 78 48 78 93 57 71 58 18 62 56 55	K-DELTA  -8.34 20.156 -6.63 1.42 34 -7.18 8 15.26 14.69 6.34 -9 40.16 2.44 -12 18.25 -19.6625 57.43 -1.51 -9.01 24
BED 01 02 03 04 05 06 07 08 09 10 11 12 13 14	143 144 145 146 147 148 149 150 151 152 153 154 155 156	76 73 90 83 81 80 81 73 90 93 80 85 81 69	9.73 ND 8.74 ND 19.29 13.09 20.21 ND 20.78 10.59 21.59 20.28 ND 13.19	53 53 74 50 95 41 59 79 62 62 76 53 64 68	13.27 20 7.26 33 -33.29 25.91 1.79 -6 9.22 20.41 -17.59 11.72 17 -12.19
POST 01 02 03 04 05 06 07 08 09 10 11 12 13 14	157 158 159 160 161 162 163 164 165 166 167 168 169 170	90 81 81 80 79 69 90 81 82 81 69 90	17.15 19.44 21.62 ND 26.21 8.87 13.4 19.07 8.23 19.2 ND 8.46 22.08 26.93	76 70 58 96 77 61 66 75 44 43 70 76 60 29	-3.15 -8.44 1.38 -16 -24.2187 10.6 -4.07 28.77 19.8 11 -15.46 7.92 36.07

#### SUMMARY

Philip C. Johnson, M.D. and Cheryl Mitchell
The Methodist Hospital
Houston, Texas

From the initial examination of the bedrested subjects' data, it seems that many of the changes were similar in kind, if not degree, to those of the crew members postflight.

Changes produced by this bedrest study similar to those found in crew members returning from spaceflight include responses of cardiovascular, endocrine, hematopoietic and neuromuscular systems. The bedrest period produced responses in these systems without the weight loss which characterizes a return from spaceflight.

Two out of six subjects in this study had presyncopal episodes during the first LBNP test postbedrest compared with four of the nine Skylab crew members. The mean decrease in calf circumference during the bedrest period was -2.6 ±0.3% (p < 0.05), which is considerably less than the -7.6 ±0.5% decrease found in the Skylab crew members at recovery, but greater than the -1.4% found in a 7-day study. These results are directly comparable since the three studies were performed by the same investigators. (1,2) During maximal stress (-50 mm Hg) of the lower body negative pressure test (LBNP), the changes in leg volume were not statistically different from those seen during the control period, and the magnitude of

individual change did not correlate well with the occurance of syncope. These findings are consistent with those of Bartok et al., and Menninger et al., who found the maximum change in leg volume during tilt or LBNP to be the same preand postbedrest. (3,4)

While calf size decrease is greater in spaceflight than in bedrest, the changes in calf size produced by LBNP postflight and postbedrest are only slightly different. Crews of Apollo and Skylab missions showed only a 10% greater increase in leg volume postflight during maximum LBNP. This contrasts with Skylab inflight measurements which showed an 83% greater calf LBNP volume. (5) It appears, therefore, that large shifts in blood volume are more easily produced inflight. The fluid which shifts headward either remains in the vascular system or is available to it in that it produces a significantly greater distension of the calves during LBNP. The shift of blood volume is greater than the horizontal position produces either postflight or postbedrest. Because the calf distension during LBNP is not greater postbedrest and only slightly greater postflight, and because an antigravity suit only partially prevents orthostatic intolerance, venous pooling does not seem a completely adequate explanation for the similar degree of orthostatic intolerance

seen in the crews and bedrested subjects.

During maximum LBNP stress the increase in heart rate (HR) from the resting value for all six subjects was greater postbedrest: averaging +28% prebedrest and +42.5% postbedrest. Subjects 3 and 4, who were presyncopal on the first postbedrest day, showed the largest incremental increase in HR both during the control phase and on R +0. Chobanian found similar HR directional increases with tilting, but his subjects were less stressed during control tilting (13% increase). After one week of bedrest the tilt-induced increase in HR was greater. He found a 32% increase following 3 days of bedrest, 62% after one week and 89% after three weeks. (6)

Basal heart rate during sleep was not measured, but no significant change was found with bedrest in the radial pulse measured daily at 0700. Other investigators have found a gradual increase of 0.4 beats/day beginning with the fourteenth day of bedrest. (7,8) This study was probably too short to record this change. The mean heart rate measured at 0700 on R +0 by the nurse was 68.3 ±7.8, while during the rest period prior to LBNP, it was 75.2 ±5.8 postbedrest on R +0. The change of posture from the supine to the sitting position before the exercise testing produced a 23 beats/minute increase, while in the control tests it had produced only a 13.5 beats/minute increase. During bicycle ergometer testing, heart rates

were elevated at each work load on R +0 with a mean heart rate at 75 watts equal to that observed at the highest work load prior to bedrest. This was 100 watts for three subjects and 125 for two.

The subjects increased their mechanical efficiency on the bicycle ergometer during the three control studies indicating a learning effect (p < 0.05). Presumably, since they were for the most part nonbicyclers, they were able to decrease the amount of extraneous or nonmeasured work associated with pedaling the bicycle. Although there was a change in mechanical efficiency during the control phase, there was no change preand postbedrest when the last control test is compared to the postbedrest test. These findings are in agreement with those of Hyatt and Saltin, who also found no change pre- and postbedrest. (7,9) Saltin did not even find changes in mechanical efficiency after an extensive training program. The changes noted in this study thus appear to be an initial acclimation process which disappears after the first couple of test periods on the bike.

A decreased plasma volume or a decreased plasma volume with extravascular dehydration and thus increased plasma extravasation during tilt or exercise have been popular exaplanations for the orthostatic intolerance and decreased exercise tolerance seen postflight and postbedrest. Hyatt

postulated that extravasulcar dehydration produced increased capillary filtration during tilt postbedrest further diminishing the already reduced volume of blood available to the heart. This theory was based primarily on water balances and determinations of extracellular fluid (ECF) and total body water (TBW). Average positive water balance of his subjects decreased from 738 ±226 ml/day to 439 ±104 ml/day (\Delta 300 ml/day) during bedrest. (9) This statistically significant decrease was interpreted by him as coming from the interstitial fluid. a later study, he found a 6% decrease in ECF which supported this theory. (10) In our study the net change in water balance was 630 ml/day, approximately two times greater than the change noted by Hyatt in his bedrested subjects. We found however a nonsignificant 1% decrease in extracellular fluid with no weight loss, although the classical postrecumbency cardiovascular changes were present. We believe that the water balance changes in this study resulted from differences in insensible water loss between the control period when the subjects exercised outside in Houston's warm weather and the bedrest period when the subjects were confined to airconditioned quarters. The experimental design could be partially responsible for our finding of no change in ECF. Control values for ECF and TBW were measured three weeks prior to bedrest on the day that the subjects began the relatively high salt content

study diet. Thus small changes in ECF during bedrest could have been masked by slight increases in ECF during the three week control phase on a high salt diet. However, no weight gain was recorded. The ECF results are at least equivocal and do not support the postulated theory of extravascular dehydration.

The centrifugation studies of van Beaumont, Greenleaf and Juhos also indicate that the absolute decrease in plasma volume is more important than is transfer of fluids out of the vascular system. They found a two-fold greater loss of plasma volume during centrifugation prebedrest than postbedrest, although acceleration tolerance was significantly reduced postbedrest; and in centrifugation studies of experimentally dehydrated individuals, they found progressively smaller losses of plasma volume with increasing levels of dehydration. (11) If there is a correlation between centrifugation tolerance and tilt tolerance and the mechanisms associated with them, then the transfer of fluids out of the vascular system during tilt does not seem to be a definitive reason for the orthostatic intolerance.

During the submaximal exercise, plasma extravasation is also unlikely in that plasma seems to be pumped back into the vascular system even in the presence of extravascular dehydration. After submaximal exercise van Beaumont et al., like

Astrand and Saltin's cross-country skiers in a cold environment showed an 11% plasma volume increase even after having lost 5.5% of their body weight, and steel workers in a hot environment increased plasma volume 5% while losing 1.9% body weight. (12,13)

In van Beaumont's study there did appear to be a correlation between the decrease in measured plasma volume postbedrest and acceleration tolerance. They overlooked this correlation, however, because they tended to doubt their measured plasma volumes and preferred to use the calculated ones. The difference between their measured and calculated plasma volume could have resulted easily from a decrease in red cell mass which is now known to occur during bedrest.

In our study both the red cell mass and plasma volume decreased during the bedrest period. The mean plasma volume decrease was 6.9%. This is somewhat less than the mean decrease found in subjects of other bedrest studies which approaches 10%, but it is greater than the mean decrease recorded in the returning Apollo and Skylab crew members. Hoffler has found a very significant negative correlation  $(r = -0.54, p \le 0.005)$  between the orthostatically stressed heart rate and decrease in plasma volume postflight. (5) The plasma volume changes appear related to the orthostatic instability seen postbedrest and decreased exercise tolerance; yet, the exact relationship is

unclear and perhaps complicated. The literature gives a complex and sometimes confused picture.

Saltin thermally dehydrated healthy males before having them exercise. (14) Their 5.2% decrease in body weight was associated with up to 25% decrease in plasma volume. In these studies he found a very strong correlation between the decrease in plasma volume and stroke volume at submaximal levels of exercise in the sitting position. When the subjects exercised supine, however, the increase in heart rate and decrease in stroke volume disappeared. These results are in contrast to a later study of his when he bedrested individuals. Postbedrest he found significant increases in heart rate and decreases in stroke volume not only with upright treadmill exercise, but also with supine bicycle exercise. (7) Hyatt found similar results in supine exercised subjects postbedrest. (9) plasma volume were the only factor operative, one would expect that facilitating venous return by having the subject exercise in the supine position would normalize heart rate and stroke volume as it did in the dehydrated subjects.

Chobanian felt that plasma volume decreases contributed, but did not explain totally the orthostasis following bedrest. With increasing periods of recumbency he found partial return of the plasma volume toward control values even while the tachycardia induced during tilt was increasing. On the other

hand, Bohnn et al. have used 9-alpha flurohydrocortisone (9-alpha) to prevent both the plasma volume decrease and the orthostatic instability of bedrest. (15) Stevens et al. used both occlusive cuffs and 9-alpha during the last few days of bedrest to restore the bedrest decrease in plasma volume; yet, they found no significant effect on orthostatic intolerance. (16) It is possible that 9-alpha may have pharmacological effects other than those recorded in the plasma volume which are a result of sodium retention. For example, changes in the sodium content of the vascular system may account in part for the prevention of the cardiovascular changes.

Saltin, because he found decreased stroke volume even when venous return was facilitated by the supine position, postulated an unidentified cardiac effect as the cause of the impaired circulatory adaptation to muscular exercise postbedrest. He thought that blood volume decreases of the magnitude seen in his study could not totally explain the cardiovascular effects noted. (7) Decreases in cardiac size were seen in this study and postflight. Since no measurements were made in Hyatt's or Stevens' studies, it is unknown what portion of the decrease in heart size can be attributed to the decrease in blood volume and whether the cardiac size would be normal when 9-alpha is used to restore the blood volume to normal.

Aldosterone urinary excretion was increased during flight when measured in the Skylab crew members. Generally, aldosterone excretion is not increased in bedrested subjects. In this study a statistically significant increase in urinary aldosterone excretion was noted when the first and second six days of bedrest (17 ±2 µq/day SE) were compared to the last six days of the control period (14 ±1 µg/day SE). accompanied by a statistically significant increase in urinary free cortisol from 45 ±4 µg/day to 71 ±5 µg/day during the first six days and 77 ±7 µg/day during the second six days of Both aldosterone and cortisol should have produced bedrest. sodium retention; yet, mean urinary sodium increased significantly, about 40 meg/day (p < 0.05) during bedrest even though dietary intake did not change. This was accompanied by a 10 meg/day increase in potassium excretion. Other bedrest studies have shown similar results. Thus even an increase in salt retaining steroids did not prevent the negative sodium balance which characterizes bedrested subjects. The mean daily difference in sodium balances was 17.9 meq/day when the control period is compared with the bedrest period. This agrees closely with the 18.3 meg/day found by Hyatt. An 18 meg/day mean loss in sodium could translate into a 225 meg loss or 1.67 liter loss in ECF if the sodium loss were entirely from the extracellular This would have produced a nearly 10% decrease in ECF,

but only a statistically insignificant 1% decrease was found indicating much of the sodium loss was from bone. The small or no loss in ECF found in this study contrasts with Hyatt's bedrest study where the ECF loss was statistically significant being about one liter or 6%. It is possible that the difference between the two studies could be ascribed to the increased aldosterone and free cortisol excretion of the subjects in this bedrest study. Increased aldosterone secretion would have protected against a loss of ECF volume but not against sodium loss from bone. The present study does not furnish support to the theory that the water and sodium loss of bedrested subjects results from decreased ADH and aldosterone excretion since statistically significant increases in aldosterone occurred with no change in antidiuretic hormone during the bedrest period. Therefore, a nonhornomal cause for the sodium loss must be sought. If the sodium loss is mostly osseous in origin, it would be reflecting atrophy of bone. Bone atrophy would be accompanied by a loss of calcium.

Urinary calcium increased from 7.9 ±0.4 to 10.0 ±0.6 meq/day the first six bedrest days and 10.8 ±0.4 meq/day during the second six-day period of bedrest. This was accompanied by a mean change in calcium balance of 111 mg/day or 5.5 meq/day. This modest increase in calcium loss would not be expected to produce the degree of naturesis and water diviresis

found in the bedrest period. Unlike Skylab, no increase in urinary phosphorus was found in the bedrest period. Net balance measured from the diet and urinary and fecal excretion actually became more positive. This is difficult to reconcile with the calcium and sodium results. It may indicate a procedural error in the phosphorus determinations.

The vestibular, postural and electromyography findings do not parallel closely the findings of the Skylab crew members. The subjects' sensitivity to motion sickness postbedrest varied. The number of head movements a subject could do prebedrest varied considerably on different days. Therefore, it is not possible to say whether an increased susceptibility occurred. All subjects exhibited mild ataxia for several hours upon getting out of bed, which was particularly noticeable when they turned corners. In the future, dynamic balancing tests might be necessary to document this deficit since the static balancing tests did not show it. The amplitude of the monosynaptic muscle potentials was increased, although no decrease in reflex reaction time was noted. During bedrest mean urinary norepinephrine decreased from 44 ±3 to 32 ±3 ug/day but this change was not significant statistically. Urinary norepinephrine excretion would be expected to decrease during bedrest since rising from the supine position causes norepinephrine levels to increase significantly and acutely. Relatively

higher norepinephrine levels could be a cause of the increased amplitude in the monosynaptic muscle potentials recorded in this study.

This 14-day bedrest study of six subjects faithfully followed the dietary, specimen collection routine and medical testing of Skylab. Our study was designed to prepare the personnel and facilities for a full-scale 28-day simulation of Skylab II. A large body of useful data was collected. The results have shown that this study design can produce biochemical and physiological responses which are similar in kind to other bedrest studies. The quality of accumulated data furnished by the various Skylab investigators and their personnel have made it a study whose total contribution compares favorably with other studies of similar length, even though it was designed as only a preliminary study.

Analyses of these results have helped confirm many postbedrest findings described in the medical literature. The results have raised questions also about theories formulated to explain the findings recorded when bedrested subjects attempt to return to upright activities.

#### REFERENCES

- 1. Johnson, R. L., Hoffler, G. W., Nicogossian, A. E., Bergman, S. A. and Jackson, M. M.: Lower Body Negative Pressure: Third Manned Skylab Mission. The Proceeding of the Skylab Life Sciences Symposium, Volume II, NASA TM X-58154, November, 1974, p. 545.
- 2. Hoffler, G. W., Wolthuis, R. A. and Johnson, R. L.: Lower Body Negative Pressure. Preliminary Report: Physiological Effects of Prolonged Positive  $(+G_Z)$  Acceleration Following One and Seven Days Bedrest, William Shumate (Ed.), p. 111.
- 3. Bartok, S. J., Carlson, L. and Walters, R.: Cardiovascular Changes During Tilt and Leg Negative Pressure Tests.

  Aerospace Medicine 39:1157, 1968.
- 4. Menninger, R. P., Mains, R. C., Zechman, F. W. and Riemme, T. A.: Effect of Two Weeks Bed Rest on Venous Pooling in the Lower Limbs. Aerospace Medicine 40:1323, 1969.
- 5. Hoffler, G. W.: Cardiovascular Studies on U.S. Space
  Crews. An Overview and Perspective. Presented at the
  Nato Advanced Study Institute on Cardiovascular Flow
  Dynamics sponsored by the University of Houston, Houston,
  Texas, October 6-17, 1975.
- 6. Chobanian, A. V., Lille, R. D., Tercyak, A. and Blevins, P.: The Metabolic and Hemodynamic Effects of Prolonged Bed Rest in Normal Subjects. Circulation 49:551, 1974.
- 7. Saltin, G., Blomqvist, G., Mitchell, J. H., Johnson, Jr., R. L., Wildentahl, K. and Chapman, C. B.: Response to

- Exercise After Bed Rest and After Training. Circulation 38(Suppl. 7):1, 1968.
- 8. Taylor, H. L., Henschel, A., Brozek, J. and Keys, A.:
  Effects of Bed Rest on Cardiovascular Function and Work
  Performance. J. Appl. Physiol. 2:223, 1949.
- 9. Hyatt, K. H., Damenetsky, L. G. and Smith, W. M.: Extravascular Dehydration as an Etiologic Factor in Postrecumbency Orthostatism. Aerospace Medicine 40:644, 1969. Hyatt, K. H., Smith, W. M., Kamenetsky, L. G. and Vogel, J. M.: Final Report. A Study of Post-Recembency Orthostatism and Prophylactic Measures for Prevention of This Phenomenon. NASA Contract No. T-28565-G, NASA CR-92178.
- 10. Jacobson, L. B., Hyatt, K. H., Sullivan, R. W., Cantor,
  S. A., Sandler, H., Rositano, S. A. and Mancini, R.:
   Evaluation of +G_Z Tolerance Following Simulated Weightless lessness (Bedrest). NASA Technical Memorandum, NASA TM
   X-62,311, August, 1973.
- 11. van Beaumont, W., Greenleaf, J. E., Young, H. L. and Juhos, L.: Plasma Volume and Blood Constitutent Shifts during +G_Z Acceleration After Bedrest with Exercise Conditioning. Aerospace Medicine 45:425, 1974.
- 12. van Beaumont, W., Greenleaf, J. E. and Juhos, L.: Disproportional Changes in Hematocrit, Plasma Volume, and Proteins during Exercise and Bed Rest. J. Appl. Physiol. 33:55, 1972.

- 13. Astrand, P. and Saltin, B.: Plasma and Red Cell Volume
  After Prolonged Severe Exercise. J. Appl. Physiol. 19:829,
  1964.
- 14. Saltin, B.: Circulatory Response to Submaximal and Maximal Exercise After Themal Dehydration. J. Appl. Physiol. 19: 1125, 1964.
- Bohnn, B. J., Hyatt, K. H., Kamenetsky, L. G., Calder, B.
  E. and Smith, W. M.: Prevention of Bedrest Induced Orthostatism by 9-Alpha-fluorohydrocortisone. Aerospace Medicine 41:495, 1970.
- 16. Stevens, P. M., Lynch, T. N., Johnson, R. L. and Lamb, L. E.: Effects of 9-Alphaflurohydrocortisone and Venous Occlusive Cuffs on Orthostatic Deconditioning of Prolonged Bed Rest. Aerospace Medicine 37:1049, 1966.