Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Automatyki i Informatyki Stosowanej

Systemy automatyki DCS i SCADA

Projekt układu sterowania stanowiska INTECO TCRANE

Zdający:

Krystian Guliński Jakub Sikora Konrad Winnicki Prowadzący:

mgr. inż. Andrzej Wojtulewicz

Warszawa, 19 stycznia 2019

Spis treści

1.	Opis	stanowiska
	1.1.	Stanowisko TCRANE
	1.2.	Enkodery inkrementalne
	1.3.	Opis wejść i wyjść obiektu
		1.3.1. Wejścia cyfrowe
		1.3.2. Wyjścia cyfrowe
2.	Ster	ownik PLC
	2.1.	Konfiguracja sprzętowa
		2.1.1. Ethernet
		2.1.2. Analog
		2.1.3. High Speed Counter
		2.1.4. Wyjścia PWM 6
	2.2.	Mechanizm labeli
	2.3.	Skalowanie i bazowanie
	2.4.	Obsługa I/O cyfrowych
	2.5.	PID
	2.6.	Tryb sterowania ręcznego
	2.7.	Zabezpieczenia ruchów krańcowych
	2.8.	Język ST
3.	Real	izacja w systemie MAPS
	3.1.	Panel operatorski
	3.2.	Sterowanie auto/ręka
	3.3.	Nastawy regulatorów
	3.4.	Wykresy

1. Opis stanowiska

1.1. Stanowisko TCRANE

Trójwymiarowy model laboratoryjnego modelu dźwigu ilustruje strukturę współczesnego żurawia, skutecznie odwzorowuje stosunek wielkości do maksymalnego podnoszonego ładunku. Obiekt jest wielowejściowym i wielowyjściowym systemem wyposażonym w dedykowane czujniki do mierzenia przemieszczeń i kątów.

Stanowisko laboratoryjne T-Crane posiada 5 enkoderów inkrementalnych. Trzy z nich mierzą położenie elementów napędzanych przez silniki. Dwa z nich znajdują się na karetce dźwigu i przedstawiają aktualne wychylenie obciążenia od pionu.

Rysunek 1.1. Stanowisko laboratoryjne TCRANE

 ${\bf W}$ ramach projektu laboratoryjnego, mieliśmy wysterować ramię dźwigu w dwóch płaszczyznach:

- obrót kolumny dźwigu (wieży)
- ruch wózka wzdłuż ramienia

1.2. Enkodery inkrementalne

Enkoder (przetwornik położenia) służy do pomiaru położenia. W powyższej wersji mamy do czynienia z przetwornikiem obrotowym. Zatem możemy dzięki niemu określić położenie kątowe wokół osi. Jeżeli podłączymy go do liniowego układu przeniesienia napędu możemy określić położenie liniowe wyrażane w odległości.

Do określenia kierunku potrzebujemy dwóch sygnałów (tzw. fazy A i B). Do określenia pozycji wykorzystujemy dwa wejścia do zliczania impulsów z fazy A i B. Wykrywanie kierunku jest wykonywane automatycznie w sterowniku. Przy pomocy mechanizmu sprzętowych liczników możemy w dowolnym momencie odczytać aktualne położenie enkodera. W pamięci sterownika pozycja będzie przedstawiona w odpowiednim rejestrze 32 bitowym.

Zliczanie impulsów odbywa się za pomocą liczników *High Speed Counter*. Pozycja zadawana w procentach jest programowo zamieniana na impulsy enkodera według następującego wzoru:

$$I = \frac{STPT*MAX}{100\%}$$

Dla wózka jeżdżącego wzdłuż ramienia

$$MAX_{wozek} = 9000,$$

natomiast dla wieży

$$MAX_{wieza} = 2300$$

1.3. Opis wejść i wyjść obiektu

1.3.1. Wejścia cyfrowe

Wejście	Opis
X0	Enkoder inkrementalny, fala A, oś X
X1	Enkoder inkrementalny, fala B, oś X
X2	Enkoder inkrementalny, fala A, oś Y
Х3	Enkoder inkrementalny, fala B, oś Y
X4	Enkoder inkrementalny, fala A, oś AX
X5	Enkoder inkrementalny, fala B, oś AX
X6	Enkoder inkrementalny, fala A, oś AY
X7	Enkoder inkrementalny, fala B, oś AY
X10	Enkoder inkrementalny, fala A, oś Z
X11	Enkoder inkrementalny, fala B, oś Z
X12	Wyłącznik krańcowy, oś Z
X13	Wyłącznik krańcowy, oś X
X14	Wyłącznik krańcowy, oś Y
X15	Flaga limitu temperatury, oś Z
X16	Flaga limitu temperatury, oś Y
X17	Flaga limitu temperatury, oś X

Tabela 1.1. Wejścia instalacji INTECO TCRANE

1.3.2. Wyjścia cyfrowe

Wejście	Opis
Y0	Sygnał PWM dla silnika DC, oś X
Y1	Sygnał PWM dla silnika DC, oś Z
Y2	Sygnał PWM dla silnika DC, oś Y
Y3	Hamulec silnika DC, oś Z
Y4	Wybór kierunku obrotów silnika DC, oś Z
Y5	Hamulec silnika DC, oś Y
Y6	Wybór kierunku obrotów silnika DC, oś Y
Y7	Hamulec silnika DC, oś X
Y10	Wybór kierunku obrotów silnika DC, oś X

Tabela 1.2. Wyjścia instalacji INTECO TCRANE

2. Sterownik PLC

2.1. Konfiguracja sprzętowa

2.1.1. Ethernet

W celu umożliwienia komunikacji sterownika z komputerem PC, odpowiednio skonfigurowaliśmy połączenie w sieci Ethernet. Komunikacja odbywa się za pomocą protokołu SLMP (SeamLess Message Protocol) na porcie 1280.

Rysunek 2.1. Konfiguracja komunikacji w sieci Ethernet w systemie GX Works3

2.1.2. Analog

Obsługa wejść analogowych została przedstawiona jako jedno z kryterium oceny projektu. Niestety, stanowisko INTECO TCRANE nie zawiera żadnych wejść i wyjść analogowych.

2.1.3. High Speed Counter

Odczyt z enkoderów inkrementalnych odbywał się za pomocą specjalnych liczników *High Speed Counter*. Skonfigurowaliśmy dwa kanały CH1 oraz CH5 do odczytu pozycji wózka oraz obrotu wieży. Wartość pozycji wózka odczytywaliśmy spod adresu SD4500 a wartość pozycji kątowej wieży spod adresu SD4620.

Rysunek 2.2. Okno konfiguracji kanału $C\!H\!1$ High Speed Counters w systemie GX Works3

Rysunek 2.3. Okno konfiguracji kanału $\it CH5$ High Speed Counters w systemie GX Works3

2.1.4. Wyjścia PWM

Wyjścia analogowe zostały zastąpione wyjściami cyfrowymi PWM. PWM czyli *Pulse Width Modifiaction* to technika przybliżania sygnału analogowego poprzez sygnał prostokątny o zmiennym wypełnieniu. W projekcie, w ten sposób sterowaliśmy silnikami prądu stałego obiektu. W programie GX Works3 odpowiednio skonfigurowaliśmy 3 kanały PWM do współpracy z trzema silnikami obiektu. Do dalszej pracy wykorzystaliśmy tylko dwa z nich. Kanał *CH1* służył do sterowania wyciągnikiem, kanał *CH2* sterował silnikiem wózka a kanał *CH3* zajmował się sterowaniem silnika obracającym wieżą.

Rysunek 2.4. Okno konfiguracji kanałów PWM w systemie GX Works3

2.2. Mechanizm labeli

- 2.3. Skalowanie i bazowanie
- 2.4. Obsługa I/O cyfrowych
- 2.5. PID
- 2.6. Tryb sterowania ręcznego
- 2.7. Zabezpieczenia ruchów krańcowych
- 2.8. Język ST

3. Realizacja w systemie MAPS

- 3.1. Panel operatorski
- 3.2. Sterowanie auto/ręka
- 3.3. Nastawy regulatorów
- 3.4. Wykresy