RAÍCES DE ECUACIONES NO LINEALES

Prof. Ing. Mauro Grioni

INTRODUCCIÓN

<u>DEFINICIÓN</u>

Se conoce como raíz o cero de una función f(x) a todo elemento x perteneciente al dominio de dicha función tal que se cumpla:

$$f_{(x)} = 0$$

Ecuaciones no lineales: son ecuaciones en donde la variable independiente no es de orden 1.

Ejemplo:
$$f_{(x)} = x + 2$$
 Ecuación Lineal

$$f_{(x)} = x^2 + 2$$
 Ecuación No-Lineal

METODOLOGÍA

La obtención de las *raíces de ecuaciones no lineales* se hará mediante *Métodos Iterativos*. Cualquier método iterativo es un procedimiento repetitivo que origina una sucesión de soluciones aproximadas. En general, tienen los siguientes .elementos. en su procedimiento (algoritmo):

- Condición de inicialización: son los requisitos que deben cumplir los datos iniciales.
- Forma de recurrencia: origina la sucesión de soluciones aproximadas.
- Control de detención: verifica la certeza de la solución aproximada.
- Actualización de variables: cuando el control de detención "falla" indicando que tenemos que obtener una nueva solución aproximada, se utiliza la última aproximación como dato inicial que cumple la condición de inicialización.

MÉTODO DE LA BISECCIÓN

Necesitamos conocer dos abscisas tales que se cumpla:

$$f_{(a_k)} * f_{(b_k)} < 0$$

RECURRENCIA:

$$r_{k+1} = (a_k + b_k)/2$$

CONTROL DE DETENCIÓN:

 $f_{(\mathbf{r}_{k+1})} < tolerancia$

$$f_{(a_k)} * f_{(r_{k+1})} < 0 \rightarrow a_{k+1} = a_k$$
, $b_{k+1} = r_{k+1}$

$$f_{(b_k)} * f_{(r_{k+1})} < 0 \rightarrow a_{k+1} = r_{k+1}, b_{k+1} = b_k$$

MÉTODO DE LA BISECCIÓN

EJERCICIO

Encontrar la raíz de $f(x) = x - 2^{-x}$ por el método de la bisección para el intervalo [0, 2]. Considere un error o tolerancia de 0.001 y obtenga la cantidad de iteraciones necesarias para obtener ese orden de error.

MÉTODO DE REGULA-FALSI

Necesitamos conocer dos abscisas tales que se cumpla:

INICIALIZACIÓN

$$f_{(a_k)} * f_{(b_k)} < 0$$

RECURRENCIA:

$$r_{k+1} = a_k - \frac{f_{(a_k)}}{m} = b_k - \frac{f_{(b_k)}}{m}$$
$$m = \frac{f_{(a_k)} - f_{(b_k)}}{a_k - b_k}$$

CONTROL DE DETENCIÓN:

$$f_{(\mathbf{r}_{k+1})} < tolerancia$$

$$f_{(a_k)} * f_{(r_{k+1})} < 0 \rightarrow a_{k+1} = a_k$$
, $b_{k+1} = r_{k+1}$
 $f_{(b_k)} * f_{(r_{k+1})} < 0 \rightarrow a_{k+1} = r_{k+1}$, $b_{k+1} = b_k$

MÉTODO DE REGULA-FALSI

EJERCICIO

Encontrar la raíz de $f(x) = x - 2^{-x}$ por el método de regula-falsi para el intervalo [0, 2]. Considere un error o tolerancia de 0.001 y obtenga la cantidad de iteraciones necesarias para obtener ese orden de error. *Ayuda*: Puede modificar el código implementado para el Método de Bisección.

MÉTODO DE LA SECANTE

Necesitamos conocer dos puntos cercanos

INICIALIZACIÓN: dos puntos cercanos a la raíz o dos aproximaciones anteriores

RECURRENCIA:

$$r_{k+1} = r_k - \frac{f_{(r_k)}}{m}$$

$$m = \frac{f_{(r_k)} - f_{(r_{k-1})}}{r_k - r_{k-1}}$$

CONTROL DE DETENCIÓN:

$$f_{(\mathbf{r}_{k+1})} < tolerancia$$

$$r_{k-1} = r_k$$
$$r_k = r_{k+1}$$

MÉTODO DE LA SECANTE

EJERCICIO

Encontrar la raíz de $f(x) = x - 2^{-x}$ por el método de la secante para el intervalo [1.5, 2]. Considere un error o tolerancia de 0.001 y obtenga la cantidad de iteraciones necesarias para obtener ese orden de error. *Ayuda*: Puede modificar el código implementado para el Método de la regula-falsi.

MÉTODO DE NEWTON-RAPHSON

Necesitamos conocer un punto cercano

INICIALIZACIÓN: un punto cercano a la raíz o una aproximación anterior

RECURRENCIA:

$$r_{k+1} = r_k - \frac{f_{(r_k)}}{m_k}$$
$$m_k = \frac{df_{(x)}}{dx} \Big|_{r_k}$$

CONTROL DE DETENCIÓN:

$$f_{(\mathbf{r}_{k+1})} < tolerancia$$

$$\mathbf{r}_k = \mathbf{r}_{k+1}$$

MÉTODO DE NEWTON-RAPHSON

EJERCICIO

Encontrar la raíz de $f(x) = x - 2^{-x}$ por el método de Newton-Raphson para el punto cercano x=2. Considere un error o tolerancia de 0.001 y obtenga la cantidad de iteraciones necesarias para obtener ese orden de error. *Ayuda*: La función derivada es $\frac{\mathrm{d}f(x)}{\mathrm{d}x} = 1 + 2^{-x}\ln(2)$.

Dada una función no lineal

$$y = F(x)$$

Es posible escribir la ecuación no lineal en la forma:

$$\psi(x_s) = F(x_s) - C = 0$$

El valor de la abscisa x_s es INVARIANTE a que la ecuación no lineal se multiplique por α un ESCALAR NO NULO

$$\alpha \cdot \psi(x_s) = \alpha \cdot (F(x_s) - C) = 0$$

$$\alpha \cdot \psi(x_s) = \alpha \cdot (F(x_s) - C) = 0$$

Se le suma x_s en ambos miembros resulta

$$x_s = x_s + \alpha \cdot \psi(x_s)$$

que se puede escribir en la forma:

$$x_s = g(x_s)$$

donde

$$g(x) = x + \alpha \cdot (F(x) - C)$$
$$= x + \alpha \cdot \psi(x)$$

Inicialización

Se necesita *un punto cercano* a una raíz. (Igual a Newton Raphson)

Recurrencia

La aproximación de la raíz se obtiene mediante,

$$x_{k+1} = g(x_k)$$

Control de Detención

Igual que métodos anteriores. Alternativamente se debe controlar si se cumple que

$$\left|x_{k+1} - g(x_{k+1})\right| \le \varepsilon_f$$

Actualización de Variables

Se deben retener la última aproximación obtenida.

CONDICIÓN DE CONVERGENCIA DEL MÉTODO DE PUNTO FIJO

$$\left| \frac{dg(x)}{dx} \right|_{x=x} < 1$$

Siendo ξ una abscisa entre x_k y x_s

EJEMPLO

Encontral la raíz de $f(x) = x^2 - 3$ por el método del punto fijo partiendo de x=2. Considere una función g(x) de tal forma que el método converja a la raíz.

$$f(x) = x^2 - 3$$

Proponemos una función g(x) que se obtiene de multiplicar por -1/3 y sumar x. De esta manera llegamos a que: $\left| \frac{dg(x)}{dx} \right| < 1$

$$g(x) = -\frac{1}{3}x^2 + x + 1$$

CONVERGE si

Corroboramos si el método resulta convergente haciendo

$$\left| \frac{dg(x)}{dx} \right|_{\varepsilon=2} < 1 \quad \Longrightarrow \quad \left| -\frac{2}{3}x + 1 \right|_{\varepsilon=2} = \left| -\frac{4}{3} + 1 \right| = \frac{1}{3} \quad \Longrightarrow \quad \left| \frac{1}{3} < 1 \right|$$
 Converge

SOLUCIÓN

```
function metodo PuntoFijo
x0=2;
it=0:
numsol=0;
er=0.01:
while numsol==0
    it=it+1:
    qx0=-(x0^2)/3+x0+1;
    x1=qx0;
    y=x1^2-3;
    if abs(y)<er
        numsol=1:
    end
    x0=x1:
end
disp('el resultado es r= '); disp(x0);
disp('número de iteraciones:'); disp(it);
end
```

Otra opción de control de Detención

$$\left| x_{k+1} - g(x_{k+1}) \right| \le \varepsilon_f$$

$$x(s) = 1.7307$$