1 Lezione del 25-02-25

1.0.1 Introduzione al corso

Il corso di fondamenti di automatica introduce i concetti di base dell'automazione:

- 1. Introduzione all'automazione;
- 2. Modellistica matematica (variabili di stato, trasformata di Laplace, ecc...);
- 3. Analisi dei sistemi dinamici (funzioni di trasferimento, ecc...);
- 4. Strumenti per l'analisi dei sistemi dinamici (diagrammi di Bode, Nyquist, ecc...);
- 5. Sistemi di controllo (PID, ecc...)

1.1 Introduzione all'automazione

L'automazione si può intendere come la capacità di eseguire un compito *in modo automatico*. Per ogni *compito* visto durante il corso si creerà un modello matematico, e un sistema capace di eseguirlo in maniera autonoma, senza l'intervento di esterni.

Elemento chiave nei sistemi che verranno studiati sarà il **feedback**, in italiano *retroazione*, che rappresenta l'informazione che possiamo prendere indietro dal sistema in modo da influenzare i sistemi di controllo automatico.

1.1.1 Fasi di sviluppo

Il termine inglese "automation" viene introdotto come contrazione di "automatic production" dalla Ford Motor Company nel 1947 per denominare l'insieme di apparati di movimentazione automatica installati nelle loro linee di produzione.

Possiamo tracciare diverse fasi di sviluppo della disciplina dell'automazione:

1. Prima rivoluzione industriale (\sim 1780):

Vengono introdotti i primi strumenti meccanici di produzione (macchine a vapore, ecc...).

2. Seconda rivoluzione industriale (\sim 1870):

Si organizza il lavoro in catene di produzione sfruttando l'energia elettrica (catena Ford, ecc...).

3. Terza rivoluzione industriale (\sim 1970):

Si automatizza il processo di produzione grazie a sistemi IT ed elettronici (PLC, ecc...).

4. Quarta rivoluzione industriale (\sim 2010):

Prodotti e processi interconnessi grazie all'IoT e a tecnologie digitali (industria 4.0, ecc...).

1.1.2 Tecnologie abilitanti

Possiamo individuare alcune macroaree dell'automazione moderna, in ambito (perlopiù) industriale:

• Tecniche di produzione avanzate (stampa 3D (additiva), ecc...);

- Realtà aumentata;
- Simulazione;
- Sviluppo orizzontale e verticale;
- IoT industriale (IIoT);
- Cloud computing;
- Cybersecurity;
- Big data analytics.

1.2 Modellistica matematica

1.2.1 Sistemi

Veniamo quindi alle tecniche che ci permettono di studiare matematicamente un dato sistema.

Definizione 1.1: Sistema

Un sistema è un insieme di parti interconnesse e interagenti che formano un insieme più grande e complesso.

Di un sistema ci interessano gli **ingressi**, cioè cosa *entra* nel sistema, e le **uscite**, cioè cosa *esce* dal sistema. Ogni sistema è caratterizzato poi da un certo livello di **disturbo**. L'idea è spesso quella di *inseguire* gli ingressi e *reiettare* i disturbi.

1.2.2 Sistemi dinamici

L'argomento di interesse è quello dei sistemi dinamici:

Definizione 1.2: Sistema dinamico

Un sistema si dice dinamico quando le sue grandezze si evolvono nel tempo.

Le grandezze di un sistema dinamico (le uscite e lo stato interno) sono quindi caratterizzate da funzioni con variabile tempo, che quindi *variano* nel tempo e interagiscono con l'ambiente esterno.

Solitamente i sistemi dinamici sono costituiti da più sottosistemi che interagiscono fra di loro.

Incontriamo diversi problemi nello studio dei sistemi:

- Il problema della **modellistica**, che consiste nel creare un modello per il sistema;
- Il problema della **simulazione**, che consiste nel simulare il sistema in base alla variazione degli ingressi;
- Il problema del **controllo**, che consiste nel studiare come agire *dall'esterno* su un sistema per modificarne la naturale evoluzione ed ottenere un comportamento desiderato.

1.2.3 Diagrammi a blocchi

Rappresentiamo i sistemi attraverso diagrammi a "scatole" o a blocchi:

La scatola sistema è spesso caratterizzata da una certa funzione matematica $f(u, \xi, \theta)$, dove ξ rappresenta i disturbi e θ i parametri del modello. Gli ingressi e le uscite saranno quindi rappresentati da variabili u e v. Notiamo che la funzione che rappresenta il sistema ha la variabile di ingresso u come argomento.

1.2.4 Proprietà dei sistemi dinamici

Notiamo alcune proprietà dei sistemi dinamici:

- Questi devono essere **causali**, cioè l'uscita non deve dipendere da valori futuri dell'ingresso: se l'uscita è rappresentata da y(t) e l'ingresso x(t), si ha che y(t) dipende da x(t) solo per $t < t_0$ con t_0 l'istante corrente;
- Possono essere sia **stocastici** che **deterministici**, se sono presenti o meno fenomeni aleatori nel legame ingresso uscita. Il corso tratterà di sistemi *deterministici*;

1.3 Modellistica di sistemi

Vediamo gli approcci più comuni alla modellistica di sistemi.

1.3.1 Modello a scatola nera

Possiamo adottare un approcio sperimentale (o *induttivo*) alla modellistica di un sistema, considerandolo come una **scatola nera** (*black box*)

L'idea è quella di studiare il comportamento del sistema in risposta a diversi stimoli, e costruire un'associazione fra stimolo e risposta corrispondente. Il problema (*fitting*) da qui in poi sarà quello di trovare una certa funzione che approssima, per quanto possibile, il comportamento del sistema in risposta ai diversi stimoli.

Un approccio di questo tipo non richiede alcuna conoscenza del principio di funzionamento interno del sistema (dettagli fisici, tecnici, ecc...), ed è quindi puramente sperimentale.

Notiamo che approcci di questo tipo sono effettivamente alla base delle tecniche di apprendimento automatico. In questo le reti neurali per l'apprendimento *supervisionato* non sono che una tecnica molto potente per il fitting di varie relazioni ingresso-uscita.

1.3.2 Modello a scatola bianca

Un altro approccio è quello analitico (o *deduttivo*). In questo caso si costruisce un modello astratto del sistema di interesse, e si *valida* confrontandolo col sistema reale, agendo con delle modifiche nel caso di incongruenze.

1.3.3 Modello a scatola grigia

Un approccio intermedio fra scatola nera e scatola bianca è quello a **scatola grigia**. In questo caso assumiamo di conoscere il comportamento generale del sistema, ma di dover identificare parametri specifici.

1.3.4 Approccio pragmatico

Un approccio pragmatico consiste nello sviluppare un modello a priori, senza considerare un sistema reale, e poi adattarlo fino alla convergenza con un sistema veramente esistente. chiarisci cosa intende