MATEMÁTICA

Convenções: Considere o sistema de coordenadas cartesiano, a menos que haja indicação contrária.

 $\mathbb{N} = \{1, 2, 3, \dots\}$: denota o conjunto dos números naturais.

 ${\mathbb R}$: denota o conjunto dos números reais.

 \mathbb{C} : denota o conjunto dos números complexos.

i : denota a unidade imaginária, $i^2 = -1$.

 $M_{k,n}(\mathbb{R})$: denota o conjunto das matrizes $k \times n$ de entradas reais.

 $M_n(\mathbb{R})$: denota o conjunto das matrizes $n \times n$ de entradas reais.

 \overline{AB} : denota o segmento de reta de extremidades nos pontos $A \in B$.

AB: denota a reta que passa pelos pontos $A \in B$. $m(\overline{AB})$: denota o comprimento do segmento \overline{AB} .

 A^T : denota a transposta da matriz A.

Questão 1. Sejam (a_n) uma progressão aritmética e (b_n) uma progressão geométrica. Se a razão de (a_n) é r, $r \neq 0$, a razão de (b_n) é q = 1/r, $a_1 = b_1 = 4$ e

$$a_1 + a_2 + a_3 + a_4 + a_5 = \frac{50}{3}$$
,

determine n de modo que a soma dos n primeiros termos da progressão geométrica seja igual a -80.

Questão 2. Quatro cidades *A*, *B*, *C* e *D* estão ligadas por seis pontes distintas da seguinte maneira:

- uma ponte liga A e B; uma ponte liga B e C; uma ponte liga C e D.
- uma ponte liga $A \in C$; duas pontes ligam $B \in D$;

Quantos caminhos são possíveis ligando todas as cidades e passando por todas as pontes uma única vez, sabendo que é permitido passar em uma mesma cidade mais de uma vez?

Questão 3. Determine todos os valores reais de x para os quais

$$\left|\log_{1/2}|x|\right| + \left|\log_2|x|\right| < 4.$$

Questão 4. Dada uma matriz $A \in M_n(\mathbb{R})$ simétrica, dizemos que A é definida positiva se

$$X^T A X = [y], \qquad y > 0,$$

para toda $X \in M_{n,1}(\mathbb{R})$ que tem ao menos uma entrada não-nula. Encontre todos os possíveis valores de $b \in \mathbb{R}$ tais que a matriz

$$A = \left(\begin{array}{cc} 1 & b \\ b & 1 \end{array}\right)$$

seja definida positiva.

Questão 5. Encontre as raízes do polinômio $p(x) = x^4 - 4x^3 + 9x^2 - 10x - 14$, sabendo que vale a relação p(1+x) = p(1-x), para todo $x \in \mathbb{C}$.

Questão 6. O sólido S é formado pela união de dois paralelepípedos retângulos congruentes, com posição e medidas conforme a figura.

Seja \overline{AB} um segmento de reta completamente contido em S que contém um dos vértices de S. Encontre o maior valor possível de $m(\overline{AB})$.

Questão 7. Determine a equação da circunferência de maior raio que é tangente ao eixo y e passa pelos pontos (1,4) e (3,6).

Questão 8. Considere a parábola de equação $y=4x-x^2$ com vértice no ponto V. Seja T o trapézio PABV, onde P=(0,0), A é um ponto com abscissa no intervalo [2,4] e ordenada nula e B é um ponto na parábola com ordenada positiva. Sabendo que $m(\overline{AB})=\frac{7}{8}\sqrt{5}$, determine a área de T.

Questão 9. Seja z = 1 + ai uma raiz do polinômio $p(x) = x^4 + 10x^2 + mx + 29$, onde a e m são números reais. Determine a área do quadrilátero cujos vértices são as quatro raízes complexas de p(x) no plano de Argand-Gauss.

Questão 10. Sabendo que $\tan(\alpha+\beta)=-2$ e $\text{sen}(\alpha)=(4-\sqrt{5})\text{sen}(\beta)$ para $\alpha,\,\beta\in(0,\pi/2)$, calcule

$$an\left(rac{lpha+eta}{2}
ight)$$
, $an\left(rac{lpha-eta}{2}
ight)$ e $rac{ an\left(rac{lpha-eta}{2}
ight)}{ an\left(rac{lpha+eta}{2}
ight)}$.