CORRIGÉ

Partie A: Multiplexage

- Le champ identificateur du standard CAN 2.A est sur 11 bits.
- On dispose de 2¹¹ identificateurs distincts.
- Q3. Le BSI transmettra en premier sa trame car son identificateur est le plus petit des trois.

Q4.

Q5.

Q6.

S O F			Cha	amps	ider	ntifica	iteur	(0x7	′C1)				
Trame sans bourrage 0	1	1	1	1	1	0	0	0	0	0	1		
Trame avec bourrage 0	1	1	1	1	1	0	0	0	0	0	1	0	1

Session 2010	BTS Systèmes Électroniques Épreuve U4.1- Électronique	Page C1 sur 9
10SEE4EL1	Corrigé	

L'état du bit RTR est dominant car il s'agit d'une trame de données.

Q9. La durée de la trame délimitée par les curseurs est de 126 μ s et de longueur 63 bits. Par conséquent, la durée d'un bit est de 126 μ s/63=2 μ s. D'où le débit est de 500 Kbits/s. C'est un réseau de type CAN HS. On peut estimer la durée du bit à partir du chronogramme mais la détermination du débit sera moins précise.

Q10.

0x304	0	1	1	0	0	0	0	0	1	0	0
0x305	0	1	1	0	0	0	0	0	1	0	1
0x306	0	1	1	0	0	0	0	0	1	1	0
0x307	0	1	1	0	0	0	0	0	1	1	1
sélecteur	0	1	1	0	0	0	0	0	1	Х	Х
masque	1	1	1	1	1	1	1	1	1	0	0

Partie B: MER

Analyse fonctionnelle et structurelle

Q11. FP1, FP2, FP3, FP4, FP6 et FP7.

Q12. ASIC (Application Specific Integrated Circuits)

Ce sont des circuits spécifiques développés sur mesure pour le client.

Avantages:

- réduction du nombre de composants sur une carte,
- grande densité d'intégration et de la vitesse de fonctionnement,
- · protection industrielle.

Inconvénients:

- prix unitaire élevé,
- pas de seconde source,
- évolution difficile et coûteuse.

Q13.

Accélération : -12 à 115g, résolution : 12 bits Pression : 100 à 450 kPa, résolution : 11 bits Température : -40 à 125 $^{\circ}$ C, résolution : 10 bits Tension pile : 2.1 à 3.6 V, résolution : 9 bits

FP6: Démodulateur LF

- **Q14.** Le signal LF est modulé ASK à une porteuse de 125 kHz, l'accord optimal de l'antenne doit être à la fréquence F_a = 125 kHz.
- **Q15.** L'impédance d'entrée vue des bornes 12 et 13 est composée de R_e en parallèle avec C_e . On relève les valeurs suivantes : R_e = 500 k Ω , C_e = 10 pF à 12 pF. D'où R = 46 k Ω et C=230 pF à 232 pF (L1 vaut 6,8mH).
- **Q16.** R1 agit sur Q et donc sur la bande passante (B) et sur l'amplirtude : Plus R1 est grand et plus le circuit d'accord de l'antenne est sélectif et l'amplitude augmente.
- **Q17.** L'antenne est accordée sur la porteuse de valeur nominale F_c = 125 kHz, la bande passante à -3 dB doit être de 2x2400=4,8 kHz.
- **Q18.** En tenant compte des tolérances de la porteuse LF, la bande passante à -3 dB doit être au minimum de : 2x3750 + 2x2400 = 12,3 kHz.
- Q19. Le choix constructeur de R1 est judicieux car la bande passante est de l'ordre de 15 kHz.

Par calcul, en utilisant les relations fournies de Q et B, on trouve B=14,51 kHz. A partir de la simulation (courbe avec R1), on relève Vmax=92,5mV (environ). Les fréquences qui correspondent à Vmax/ $\sqrt{2}$ sont : Fmin=118 kHz, fmax= 133 kHz, soit B=15 kHz (environ).

Session 2010	BTS Systèmes Electroniques Épreuve U4.1- Électronique	Page C2 sur 9
10SEE4EL1	Corrigé	

FP4: Génération d'une trame

Q20.

FP5: Modulateur HF

Q21.

DATA_ROUE	Etat du Switch	Capacité équivalente C _{eq}
Etat haut	ouvert	$C_{eq} = C3.C4/(C3 + C4)$
Etat bas	fermé	C _{eq} = C3

Q22. C_{eq} (ouvert) $< C_{eq}$ (fermé), donc $F_{ON} < F_{OFF}$.

Q23. FSEL doit être au niveau bas pour utiliser la bande 433 MHz.

Q24.

Q25. La valeur de la fréquence est de 847,5 kHz car la broche 9 qui la contrôle est ouverte. Le signal CLK constitue l'horloge du µcontrôleur intégré dans le circuit ASIC U1 (SP30).

Session 2010	BTS Systèmes Électroniques Épreuve U4.1- Électronique	Page C3 sur 9
10SEE4EL1	Corrigé	

Partie C: Calculateur DSG

Analyse fonctionnelle et structurelle

Q26. voir pages C6 à C8.

FP2 : Récepteur HF à un changement de fréquences

Q27. Récepteur superhétérodyne ou infra hétérodyne.

Démodulation

Q29. L'entrée MSEL doit être reliée à la masse.

Q30. Une excursion $\Delta F = \pm 45$ kHz conduit à une tension crête à crête de 18 mV (200 μ V*90).

Q31.

Session 2010	BTS Systèmes Électroniques Épreuve U4.1- Électronique	Page C4 sur 9
10SEE4EL1	Corrigé	

- **Q32.** On relève sur les courbes G1(0)=0 et G2(0)=0; donc $v_m = v_s = 1V$. Quant à la détermination de vs1 qui est égale aussi à 1V, on peut la faire de deux manières : le filtre passe bas (structure autour de U2) a un gain de 0 dB car U2 est monté en suiveur. La structure autour d'U1 est amplificateur de différence.
- Q33. G2(f) permet de récupérer la composante continue et d'éliminer le spectre utile (c'est un moyenneur). Quant à G1(f), elle permet d'amplifier le spectre utile et de réaliser la fonction suiveur pour la composante continue.
- Q34. U3 est un comparateur à seuil.
- **Q35.** La valeur moyenne dépend des données transmises. Un système de décision utilisant un seuil fixe conduirait à des décisions erronées sur les données reçues.

FP3: Emetteur LF

Q36. La période du signal LF est de $1/125kHz = 8\mu s$.

Le timer0 est configuré en 8 bits (comptage de 0 à 255).

Le nombre de périodes est de 4μ s/ T_{CLK} = 4μ s/100ns=40. Le timer0 doit être chargé à chaque time out (fin de comptage générant une interruption) à N=255-40=215.

Q37.

Session 2010	BTS Systèmes Électroniques Épreuve U4.1- Électronique	Page C5 sur 9
10SEE4EL1	Corrigé	

Session 2010	BTS Systèmes Électroniques Épreuve U4.1- Électronique	Page C6 sur 9
10SEE4EL1	Corrigé	

	Session 2010	BTS Systèmes Électroniques Épreuve U4.1- Électronique	Page C7 sur 9
Ī	10SEE4EL1	Corrigé	

Session 2010	BTS Systèmes Électroniques Épreuve U4.1- Électronique	Page C8 sur 9
10SEE4EL1	Corrigé	

Partie A	Q1	2
	Q2	2
	Q3	2 (1+1)
	Q4	6 (4*1.5)
	Q5	2 (1+1)
	Q6	3 (1+2)
	Q7	2 (1+1)
	Q8	2
	Q9	2
	Q10	5 (3*1+2)

28 Points

		1
Partie B	Q11	1.5 (0.5+0.5+0.5)
	Q12	1
	Q13	2 (1+1)
	Q14	1
	Q15	1
	Q16	2
	Q17	2 (1+1)
	Q18	2 (1+0.5+0.5)
	Q19	2 (1+1+1+1)
	Q20	3 (1+1+1)
	Q21	3 (0.5+0.5+1+1)
	Q22	2 (1+1)
	Q23	1
	Q24	3.5 (1.5+1+1)
	Q25	2 (1+1)

29 Points

Q26	2.5 (5*0.5)
Q27	1
Q28	2.5 (5*0.5)
Q29	1
Q30	2
Q31	2 (4*0.5)
Q32	1.5 (3*0.5)
Q33	3 (1.5+1.5)
Q34	1
Q35	1.5
Q36	3 (1+2)
Q37	2 (4*0.5)
	Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36

23 Points

Session 2010	BTS Systèmes Électroniques Épreuve U4.1- Électronique	Page C9 sur 9
10SEE4EL1	Corrigé	