影像處理_HW1_312513022_周聖喆

BMP Format:

BMP (Bitmap) 檔案格式是一種無壓縮的圖像文件格式,檔案內容主要是由「Bitmap File Header + Bitmap Info Header + Pixel Data」所組成的。

• Bitmap File Header:

長度為 14 Bytes,包含有關整個檔案的基本信息。

Name	Size (Byte)	Content
ID	2	文件類型,固定為 0x4D42,即字符 'BM'
File Size	4	BMP 檔案的總大小
Reserved 1	2	保留字段,預設為0
Reserved 2	2	保留字段,預設為0
Bitmap Data Offset	4	點陣圖資料的起始位址

• Bitmap Info Header

長度為 40 Bytes,用來描述圖像本身的屬性。

Name	Size (Byte)	Content
Bitmap Info Header Size	4	Bitmap Info Heade 大小
Width	4	圖像的寬度
Height	4	圖像的高度,正數表示從下到上存儲,負數 表示從上到下存儲。
Planes	2	目標設備的色彩平面數,固定為 1。
Bits Per Pixel	2	每像素的位元數。 1:單色點陣圖(使用 2 色調色盤) 4:4位元點陣圖(使用 16 色調色盤) 8:8位元點陣圖(使用 256 色調色盤) 16:16位元高彩點陣圖 24:24位元全彩點陣 32:32位元全彩點陣圖
Compression	4	壓縮方式
Bitmap Data Size	4	圖像數據的大小
H-Resolution	4	圖像的水平分辨率
V-Resolution	4	圖像的垂直分辨率

Used Colors	4	使用的實際顏色數量,設為 0 時表示使用全部顏色。
Important Colors	4	顯示時重要的顏色數量,設為 0 表示所有顏 色都重要。

了解完 bmp format 後就可以根據這個格式讀取相對應的資料了。

Flip:

Flip 的作法很簡單,就是把圖片的每一個 row 的資料相反,每個 row 資料都相反的話就是 Flip 的效果。

```
for(int r=0;r<(Copy_Img->infoHeader.biHeight);r++){
    for(int c=0;c<(Copy_Img->infoHeader.biWidth/2);c++){
        for(int ch=0;ch<(Copy_Img->infoHeader.biBitCount/8);ch++){
            swap(&Copy_Img->pixelMatrix[ch][r][c],&Copy_Img->pixelMatrix[ch][r][Copy_Img->infoHeader.biWidth-c-1]);
        }
    }
}
```

Result:

Origin

Flip

Flip

Resolution:

對兩個不同的 BMP 圖片檔案進行了解析度的量化處理。每個輸入圖像的解析度最初以像素的位數 表示(如 3*8bits 或 4*8bits),表示每個像素的顏色位數(如 RGB 或 RGBA)。接著,根據實驗 需求,逐步減少每個像素的位數,從而產生不同解析度的輸出圖像。

可觀察出解析度的減少會使圖片的顏色表現能力下降。在 RGB 及 RGBA 圖像中,顏色位元數量越多,圖像顏色越豐富、越細緻;位元數越少,圖像的顏色會變得更加有限,可能產生顏色失真或降低圖像品質。

Result:

Resolution function:

```
int Quantization_func(unsigned char pixel,int quantize_bit){
    // 8 bit -> x bit = (p>>(8-x))<<(8-x)|
    return ((pixel>>(8-quantize_bit))<<(8-quantize_bit));
}</pre>
```

把低位元的資料去掉,只保留高位元的資訊。

Cropping:

原始圖像中選擇一個矩形區域,並將這個選定的區域作為輸出圖像。

輸入起始位置(x、y)和剪裁後的圖片寬和高(w、h)

```
CropBMP(Input_BmpFile1,Crop_Img1,120,150,400,399);
CropBMP(Input_BmpFile2,Crop_Img2,120,150,100,100);
```

開始剪裁之前要先確定剪裁後的大小要比原本圖片大小要小:

```
if (x < 0 || x + w > Img->infoHeader.biWidth || y < 0 || y + h > Img->infoHeader.biHeight) {
   printf("Crop area exceeds the image boundaries!\n");
   freeBMP(Img);
   return;
}
```

從原本的圖片起始位置(x、y),開始讀取寬和高大小:

由於更改了 bmp 檔案的圖片大小,要去更改 bmp format 裡面的資料:

```
// change some parameter by bmp file setting
Copy_Img->infoHeader.biHeight = new_height;
Copy_Img->infoHeader.biWidth = new_width;
Copy_Img->infoHeader.biSizeImage = new_ImageSize;
Copy_Img->fileHeader.bfSize = Copy_Img->fileHeader.bfOffBits + new_ImageSize; // 更新文件大小
```

Result:

Input1 after Crop

Input2 after Crop

