# **Bayesian Classifiers**

**Prof. Dr. Ronny Hartanto** 



### Single-Attribute Case

#### Probabilities: (Johnny's pies example)

- Training set consists of twelve pies  $(N_{all} = 12)$
- Six positive examples  $(N_{pos} = 6)$
- Six negative examples  $(N_{neq} = 6)$
- 1. what is the probability of Johnny's liking a randomly picked pie?
- 2. what is the relative frequency of positive examples among those with thick filling?



### **The Prior Probabilities**



### **Probability**

- Conditional Probability
  - P(pos|thick) = 3/8
- Joint Probability
  - $P(pos,thick) = P(pos \cap thick) = 3/12$
- P(pos|thick).P(thick) = P(thick|pos).P(pos)



Calculate the following probabilities with the filling-size (thick or thin) to recognise the positive class given the following training examples:

|       | ex1   | ex2   | ex3  | ex4  | ex5  | ex6   | ex7   | ex8   |
|-------|-------|-------|------|------|------|-------|-------|-------|
| size  | thick | thick | thin | thin | thin | thick | thick | thick |
| class | pos   | pos   | pos  | pos  | neg  | neg   | neg   | neg   |

- P(thin), P(thick), P(pos), P(neg)
- P(thin|pos), P(thick|pos), P(thin|neg), P(thick|neg)
- P(pos|thin), P(pos|thick), P(neg|thin), P(neg|thick)



# **Bayes Formula**

$$P(A|B) = \frac{P(B|A).P(A)}{P(B)}$$

$$P(c_i|\mathbf{x}) = \frac{P(\mathbf{x}|c_i).P(c_i)}{P(\mathbf{x})}$$

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$



### **Naive Bayes**

under assumption of mutually independent attributes, a random representative of  $c_i$  is described by  $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is calculated as follows:

$$P(\mathbf{x}|c_j) = \prod_{i=1}^n P(x_i|c_j)$$

an object will be labelled ci is this class maximises the Bayes formula's numerator:

$$P(c_j).\prod_{i=1}^n P(x_i|c_j)$$



# Training Examples "Johnny's Pie"

| example | shape    | crust |       | filling |       | class |
|---------|----------|-------|-------|---------|-------|-------|
|         |          | size  | shade | size    | shade | Class |
| ex1     | circle   | thick | gray  | thick   | dark  | pos   |
| ex2     | circle   | thick | white | thick   | dark  | pos   |
| ex3     | triangle | thick | dark  | thick   | gray  | pos   |
| ex4     | circle   | thin  | white | thin    | dark  | pos   |
| ex5     | square   | thick | dark  | thin    | white | pos   |
| ex6     | circle   | thick | white | thin    | dark  | pos   |
| ex7     | circle   | thick | gray  | thick   | white | neg   |
| ex8     | square   | thick | white | thick   | gray  | neg   |
| ex9     | triangle | thin  | gray  | thin    | dark  | neg   |
| ex10    | circle   | thick | dark  | thick   | white | neg   |
| ex11    | square   | thick | white | thick   | dark  | neg   |
| ex12    | triangle | thick | white | thick   | gray  | neg   |



Given the "Johnny's pie domain" determine the class of the following object:

```
x = [shape=square, crust-size=thick, crust-shade=gray, filling-
size=thin, filling-shade=white]
```

(Hint: use the two classes P(pos) and P(neg) for calculating the probabilities)

P(x|pos)?

P(x|neg)?



### **Expert Intuition (m-estimate)**

Example in coins P(heads) given frequency of the experiments  $N_{\text{all}}$  and  $N_{\text{heads}}$ 

$$P_{heads} = \frac{N_{heads} + m\pi_{heads}}{N_{all} + m}$$



Calculate the relative frequency and m-estimate of the given successive trial

| Toss<br>number        | 1     | 2     | 3     | 4     | 5     | 6     |
|-----------------------|-------|-------|-------|-------|-------|-------|
| Outcome               | Heads | Heads | Tails | Heads | Tails | Tails |
| Relative<br>Frequency |       |       |       |       |       |       |
| m-estimate            |       |       |       |       |       |       |



### **How about Continuous Attributes?**

- Many attributes are continuous, e.g. age
- How to deal with such attributes?
  - discretization with certain intervals
    - (0, 10], ... (90,100]
    - count the value and place the results on each interval bin
    - N<sub>i</sub>/N relative frequency of the value in the i-th bin
    - total all relative frequency is one

$$\frac{\sum N_i}{N} = 1$$



### **Discretization Method**





### **Gaussian Function**



p(x) is a probability density function



65

### **Bayes Formula for Continuous Domain**

$$P(c_i|x) = \frac{P_{ci}(x).P(c_i)}{P(x)}$$

#### Naive Bayes:

$$P_{cj}(\mathbf{x}) = \prod_{i=1}^{n} P_{cj}(x_i)$$



### Gaussian "Bell" Function

$$p(x) = k \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where:

$$k = \frac{1}{\sqrt{2\pi\sigma^2}}$$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i \qquad \sigma^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \mu)^2$$

### **Combining Gaussian Functions**

$$p(x) = k \cdot \sum_{i=1}^{m} e^{-\frac{(x-\mu_i)^2}{2\sigma^2}}$$

$$k = \frac{1}{(2\pi)^{m/2}\sigma^m}$$



Combine bell functions of a training set consisting of m = 3 examples, where  $x_1 = 0.4$ ,  $x_2 = 0.5$  and  $x_3 = 0.7$ . The variance of all examples is one. The mean  $\mu_1 = 0.4$ ,  $\mu_2 =$ 0.5, and  $\mu_3 = 0.7$ .



### Homework

The following is a training set with three continuous attributes

| Example | at1 | at2 | at3  | class |
|---------|-----|-----|------|-------|
| ex1     | 3.2 | 2.1 | 2.1  | pos   |
| ex2     | 5.2 | 6.1 | 7.5  | pos   |
| ex3     | 8.5 | 1.3 | 0.5  | pos   |
| ex4     | 2.3 | 5.4 | 2.45 | neg   |
| ex5     | 6.2 | 3.1 | 4.4  | neg   |
| ex6     | 1.3 | 6.0 | 3.35 | neg   |

- a. find the most probable class of x = (9, 2.6, 3.3)
- b. find the most probable class of x = (1.4, 3.3, 3.0)

