Week 2 • Problem Set 5 • Ext algebras

Quick Problem:

Compute bases for $\operatorname{Ext}_R^{\leq 2}(k,k)$ for the algebra $R=k[x,y]/(xy,x^3+y^3)$. In what (internal) degrees do they live? Hint: Write out a graded resolution of k.

Problems:

1. Let $R = k[x, y]/(x^2, xy)$, and write the acyclic closure F as $R\langle e_1, e_2, f_1, f_2, e_3, \dots \rangle$ with $\partial(e_1) = x$, $\partial(e_2) = y$, $\partial(f_1) = xe_1$, $\partial(f_2) = ye_2$, and $\partial(e_3) = xe_1e_2$.

Order the bases of F_1 , F_2 , and F_3 by

$$\{e_1, e_2\}, \{e_1e_2, f_1f_2\}, \text{ and } \{e_1f_1, e_2f_1, e_1f_2, e_2f_2, e_3\}.$$

Dualizing the acyclic closure and taking homology, one has

$$\operatorname{Ext}_R(k,k) \cong H(\operatorname{Hom}_R(F,k)) \cong \operatorname{Hom}_R(F,k)$$

and so we can represent $\operatorname{Ext}_R^{\leq 3}(k,k)$ as the k-span of duals of the basis elements in 0.1. One also has

$$\operatorname{Ext}_R(k,k) \cong H(\operatorname{Hom}_R(F,k)) \cong H(\operatorname{Hom}_R(F,F))$$

which we use to compute the composition product in Ext. So, by lifting along the quasiisomorphism $F \to k$, we can find elements in $\text{Hom}_R(F, F)$ whose classes represent the duals of the elements of 0.1, yielding, for example:

$$e_{1}^{*} = \dots \underbrace{\begin{array}{c} R^{5} \\ R^{5} \\ R^{3} \\ R^{3} \\ R^{5} \\ R^{7} \\$$

and so on, with f_1^* starting with $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, f_2^* with $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$, and e_3^* with $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$.

- (a) Fill in the lifts above, making sure that each square commutes.
- (b) Show that $(e_2^*)^2 = 0$. Thinking of Ext as the quadratic dual of R, with which element of $R_1^!$ may e_2^* be identified with?
- (c) Recall that $e_1^2 = 0$. Does this mean that $(e_1^*)^2 = (e_1^2)^* = 0$?
- (d) Compute $(e_1)^*(e_2)^*$ and $(e_2)^*(e_1)^*$. How do they relate to $(e_1e_2)^*$?
- (e) Recall that $\partial(f_2) = xy$. Does this mean that $(f_2)^*(e_2)^* = 0$?
- (f) Put shifts in the diagrams above for e_1^* and e_2^* . Explain the connection between an element of $\operatorname{Ext}_R^i(k,k)$ having internal degree i and the degrees of the entries appearing in its lift to an element of $\operatorname{Hom}_R(F,F)$.