Taux et coefficient multiplicateur moyen

On suppose qu'une quantité passe d'une valeur initiale V_i à une valeur finale V_f .

Définition. Le taux d'évolution est $t = \frac{V_f - V_i}{V_i}$

Exemple. La population d'une ville passe de 55 000 à 74 250 habitants.

Le **taux d'évolution** de cette population est $t = \frac{74250-55000}{55000} = \frac{19250}{55000} = 0.35 = 35\%$.

On dit que « la population de la ville a augmenté de 35 % ».

Propriété. $V_f = V_i \times (1+t)$

Exemple. Dans l'exemple précédent on a bien $55\,000 \times (1+0.35) = 55\,000 \times 1.35 = 74\,250$

Définition. c = 1 + t est appelé **coefficient multiplicateur**. On a donc $V_f = c \times V_i$

Pour appliquer une hausse (ou une baisse), on multiplie par le coefficient multiplicateur.

Attention on ne multiplie pas par le taux.

Exemple. Un salarié touchant 2000 € par mois est augmenté de 17 %. Quel est son nouveau salaire?

Le taux d'évolution de son salaire est $t = \frac{17}{100} = 0.17$. Son nouveau salaire est $(1 + 0.17) \times 2000 = 2340$ €.

Le coefficient multiplicateur est c = 1,17.

Nouveau salaire = Ancien salaire \times coeff. multiplicateur.

Propriété et définitions. Evolutions successives.

Si on a une évolution d'une valeur V_1 à une valeur V_2 suivie d'une autre évolution de la valeur V_2 à V_3 :

Le coefficient multiplicateur global est le coefficient multiplicateur entre V_1 et V_3 .

II vaut $c_G = c_1 \times c_2$.

Le taux d'évolution global vaut alors $t_G = c_G - 1$

Exemple. Le nombre d'abonnés d'un journal en ligne

augmente de 30 % puis baisse de 10 %.

Il est donc multiplié par 1,3 puis par 0,9. Alors $c_G = 1,3 \times 0,9 = 1,17$.

Le taux d'évolution global est donc $t_G = 1,17 - 1 = 0,17 = 17 \%$.

Le nombre d'abonnés a donc globalement augmenté de 17 %. (Il a été globalement multiplié par 1,17).

Pour 2 évolutions, le coefficient multiplicateur moyen vaut $c_M = (c_G)^{\frac{1}{2}}$ Le taux d'évolution moyen vaut alors $t_M = c_M - 1$

Exemple. Sur l'exemple précédent, le coefficient moyen est $C_M = (1.17)^{\frac{1}{2}} \approx 1,082$

Donc le taux moyen est $t_M \approx 0.082 = 8.2 \%$.

Une hausse de 30 % suivie d'une baisse de 10% équivaut donc à : deux hausses moyennes de 8,2 %.

Pour n évolutions, le coefficient multiplicateur global est le coefficient multiplicateur entre V_1 et V_n .

II vaut $c_G = c_1 \times c_2 \times ... \times c_n$

Le taux d'évolution global vaut alors $t_c = c_c - 1$

Pour n évolutions, le coefficient multiplicateur moyen vaut $c_M = (c_G)^{\frac{1}{n}}$ Le taux d'évolution moyen vaut alors $t_M = c_M - 1$