**|

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2020 - الموضوع –

630Y3N I 13NMX+1

المملكة المغربية المملكة المغربية ورارة التربية الوضية ورارة التربية الوضية ورارة التربية الوضية والتكوين المماس المدين المماس المدين المماس المدين المماس المدين المماس المركز الوطني للتقويم والامتحانات

SSSSSSSSSSSSSSSS

NS 26F

2	مدة الإنجاز	الرياضيات	المادة
4	المعامل	مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغة الفرنسية)	الشعبة أو المسلك

<u>Instructions au candidat(e)</u>	تعليمات للمترشح(ة)
Important : Le candidat est invité à lire et	ام: يتعين على المترشح(ة) قراءة هذه
suivre attentivement ces recommandations.	توجيهات بدقة والعمل بها.
Le document que vous avez entre les mains	كون الوثيقة التي بين يديك من أربع
est de quatre pages :la première est	سفحات: الأولى منها خاصة بالتوجيهات.
réservée aux recommandations, les pages 2	
et 3 sont réservées au sujet.	
Le sujet est constitué de deux parties	يتكون الموضوع من جزئين:
Partie 1 :	<u> جزء الأول:</u>
Elle contient deux exercices; il faut	كون من تمرينين ، يتعين عليك الإجابة
répondre <u>à toutes leurs questions</u> .	لى جميع أسئلتيهما .
Partie2	عی جمیع اسسیها .
Elle contient également <u>deux exer</u> cices	جزء الثانى <u>:</u>
. Il faut en choisir un seul et répondre	
à toutes ses questions ;	كون من تمرينين، يجب عليك اختيار
	احد منهما فقط والإجابة على أسئلته؛
• L'usage de la calculatrice scientifique	يسمح لك باستعمال الآلة الحاسبة غير القابلة للبرمجة؛
non programmable est autorisé;	
• <u>Vous devez justifier les résultats</u> (Par	ينبغى عليك تعليل النتائج (مثلا: عند
exemple : lors du calcul des limites);	حساب النهايات)؛
 Vous pouvez répondre aux exercices 	يمكنك الإجابة على التمارين وفق
selon l'ordre que vous choisissez , mais	الترتيب الذي تختاره (تختارينه)، لكن
veuillez numéroter les exercices et les	يتعين عليك في ترقيم أجوبتك، اعتماد نفس ترقيم التمارين والأسئلة، الوارد
questions;	في الموضوع؛
Veillez à la bonne présentation de	ينبغي عليك العمل على حسن تقديم
votre copie et à une écriture lisible;	الورقة والكتابة بخط مقروع؛
• Il est souhaitable que les pages soient	يستحسن ترقيم صفحات أوراق التحرير
numérotées pour faciliter la	ضمانا لتيسير عملية التصحيح؛
correction;	
• Eviter l'écriture au stylo rouge;	يتعين تجنب الكتابة بقلم أحمر؛

4

PARTIE I OBLIGATOIRE : Exercice1 et Exercice2 الإجابة على التمرينين 1و2 إلزامية

Exercice n°1:(6pts)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite numérique définie par: $u_0=0$ et $u_{n+1}=\frac{1}{4}u_n-\frac{9}{2}$ pour tout n de IN

- **0.5 1.** Calculer u_1 et u_2
- **0.75** | **2.a.** Montrer par récurrence que pour tout n de $\square : u_n > -6$
- **0.75 2.b.** Montrer que pour tout n de \square : $u_{n+1} u_n = -\frac{3}{4}(u_n + 6)$
- **0.25** | **2.c.** En déduire que $(u_n)_{n\in\mathbb{N}}$ est une suite décroissante.
- **0.5** 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite convergente.
 - **4. On pose pour tout** n **de** \square : $v_n = \frac{1}{3}u_n + 2$
- **0.25 4.a.** Calculer v_0
 - **1 4.b.** Montrer que (v_n) est une suite géométrique de raison $\frac{1}{4}$
- **0.5** | **4.c.** Donner v_n en fonction de n, pour tout n de \square
- **0.5** | **5.a.** Vérifier que pour tout n de \square : $u_n = 3(v_n 2)$
- **0.5** S.b. En déduire que pour tout n de $u_n = 6\left(\left(\frac{1}{4}\right)^n 1\right)$
- **6.5 5.c.** Calculer $\lim_{n\to+\infty} u_n$

Exercice n°2:(10pts)

Partie A

On considère la fonction numérique g définie sur $]0;+\infty[$ par :g(x)=x-1+lnx

- **0.5** 1. Montrer que $g'(x) = 1 + \frac{1}{x}$ pour tout x de $]0; +\infty[$
- **0.5** | **2.** Donner le signe de g'(x) sur $]0;+\infty[$
- 1 | 3. Calculer g(1) et dresser le tableau de variations de g (sans calculer les limites)
- 4. En déduire que $g(x) \le 0$ sur [0;1] et que $g(x) \ge 0$ sur $[1;+\infty[$

Partie B

On considère la fonction numérique f définie sur $]0;+\infty[$ par $:f(x)=\left(1-\frac{1}{x}\right)lnx$ et soit (C) sa courbe représentative dans un repère orthonormé $(O;\vec{i};\vec{j})$

1.25 1. Calculer $\lim_{\substack{x\to 0\\x>0}} f(x)$ et puis donner une interprétation géométrique du résultat.

الصفحة 3 NS 26F

الامتحان الوطني الموحد للبكالوريا - الدورةالعادية 2020 الموضوع - مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبيرالمحاسباتي (باللغةالفرنسية)

- 1.5 2. Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$ puis donner une interprétation géométrique du résultat.
- 1 3.a. Montrer que $f'(x) = \frac{g(x)}{x^2}$ pour tout x de $]0;+\infty[$
- 1 3.b. En déduire le signe de f'(x) sur]0;1] et sur $[1;+\infty[$
- **0.75** 3.c. Calculer f(1)et dresser le tableau de variations de f
 - 4. Dans la figure ci-dessous (C_f) est la courbe représentative de f et (D) la droite d'équation y = x 1 dans le repère orthonormé $(O; \vec{i}; \vec{j})$
 - 4.a. Résoudre graphiquement sur]0;+ ∞ [1' inéquation : $f(x) \le x-1$
- $\mathbf{0.5}$ 4.b. Déterminer graphiquement sur]0;+ ∞ [le nombre des solutions de l'équation : $f\left(x\right)$ =1

PARTIE II : Le candidat a exclusivement le choix de répondre : soit à l'exercice3 soit à l'exercice4

Exercice n°3:(4pts)

On considère la fonction numérique h définie sur \Box par : $h(x)=e^x-x-1$

- 0.5 1. Calculer h'(x) pour tout x de \square
- 1 2. Etudier le signe de h'(x) sur \Box
- 1.5 3. Calculer h(0) et dresser le tableau de variations de h (sans calculer les limites)
- 1 4. En déduire que $h(x) \ge 0$ sur \square

NS 26F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 الموضوع - مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغة الفرنسية)

Exercice n°4:(4pts)

Déterminer une primitive de chacune des fonctions suivantes :

1.
$$f_1(x) = x + \frac{1}{2\sqrt{x}}$$
 définie sur $]0; +\infty[$

1 2.
$$f_2(x) = 2\frac{\ln x}{x} + 2x$$
 définie sur $]0;+\infty[$

1 3.
$$f_3(x) = \frac{2x}{(x^2+1)^3}$$
 définie sur

1 3.
$$f_3(x) = \frac{2x}{(x^2+1)^3}$$
 définie sur \Box
1 4. $f_4(x) = \frac{-1}{x(\ln x)^2}$ définie sur $]1;+\infty[$

الامتحان الوطني الموحد للبكالوريا الدورةالعادية 2020 - عناصر الإجابة –

المبلكة المغربية 630Y3N I 13ANX+1 وزارة التربية الوصية وزارة التربية الوصية المحابة المحابة الوصية والتحوين المصني المدينة المحابة المحابة المحابق المح

SSSSSSSSSSSSSSSSS

NR 26F

2	مدة الإنجاز	الرياضيات	المادة
4	المعامل	مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغة الفرنسية)	الشعبة أو المسلك

PARTIE I OBLIGATOIRE : Exercice1 et Exercice2				
الإجابة على التمرينين 1و2 إلزامية				
		Détail des	Observations	
		notes		
Exe	rcice n°1:(6pts)			
0.5	1. Calculer u_1 et u_2	0.25+0.25		
0.75	2.a. Récurrence	0.75		
0.75	2.b. $u_{n+1} - u_n = -\frac{3}{4}(u_n + 6)$	0.75		
0.25	2.c. $(u_n)_{n\in\mathbb{I}}$ est une suite décroissante.	0.25		
0.5	3. $(u_n)_{n\in\mathbb{I}}$ est une suite convergente.	0.5		
	4.		On tient compte	
0.25	4.a. v_0	0.25	de la rigueur du	
1	4.b. (v_n) est une suite géométrique de raison $\frac{1}{4}$	1	raisonnement et des efforts fournis	
0.5	4.c. v_n en fonction de n	0.5	Tourms	
0.5	5.a. $u_n = 3(v_n - 2)$	0.5		
0.5	5.b. $u_n = 6\left(\left(\frac{1}{4}\right)^n - 1\right)$	0.5		
0.5	5.c. $\lim_{n\to+\infty} u_n = -6$ (On admet le résultat même sans justification)	0.5		

الصفحة 2 NR 26F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - عناصر الإجابة - مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغة الفرنسية)

Exercice	<u>n°2 :(10pts)</u>		
Partie A			
	g définie sur $]0;+\infty[$ par $:g(x)=x-1+lnx$		
0.5	1. $g'(x) = 1 + \frac{1}{x}$ pour tout x de $]0; +\infty[$	0.5	On tient compte de la rigueur du raisonnement et des efforts fournis
0.5	2. Le signe de $g'(x)$ sur $]0;+\infty[$	0.5	
1	3. Calcul de $g(1)$ Le tableau de variations de g	0.25 0.75	
1	4. $g(x) \le 0 \text{ sur }]0;1]$ $g(x) \ge 0 \text{ sur } [1;+\infty[$	0.5 0.5	
Partie B			
	la fonction numérique f définie sur $]0;+\infty[$ par : $f(x) = \left(1 - \frac{1}{x}\right) \ln x$ 1. $\lim_{x \to 0} f(x)$		
1.25	1. $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$ L' interprétation géométrique du résultat.	0.75 0.5	
	$2. \lim_{x \to +\infty} f(x)$	0.5	On tient
1.5	$\lim_{x\to+\infty}\frac{f\left(x\right)}{x}$	0.5	compte de la rigueur du
	L' interprétation géométrique du résultat.	0.5	raisonnement et des efforts fournis
1	3.a. $f'(x) = \frac{g(x)}{x^2}$ pour tout x de $]0;+\infty[$	1	
1	3.b. Le signe de $f'(x)$ sur $]0;1]$ et sur $[1;+\infty[$	0.5+0.5	
0.75	3.c . $f(1)$ et le tableau de variations de f	0.25+0.5	
1	4. 4.a. Résolution graphique de l' inéquation : $f(x) \le x-1$	1	
0.5	4.b. Détermination graphique du nombre des solutions de l'équation : $f(x)=1$	0.5	

3

PARTIE II : Le candidat a exclusivement le choix de répondre : soit à l'exercice3 soit à l'exercice4

على المترشح (ة) أن يجيب إما على التمرين 3 وإما على التمرين 4

تنبيه هام إلى السيدات والسادة المصححات والمصححين: في حالة ما إذا أجاب مترشح(ة) على أسئلة من التمرين الثالث وأخرى من التمرين الرابع، تحتسب له أعلى نقطة إجمالية حصل عليها بعد مقارنة النقطتين الإجماليتين للتمرينين.

Exercice n°3:(4pts)

	La fonction numérique h définie par : $h(x)=e^x-x-1$		On tiont
0.5	1. $h'(x) = e^x - 1$	0.5	On tient compte de la
1	2. Le signe de $h'(x)$ sur \square	1	rigueur du raisonnement
1.5	3. Calcul de $h(0)$ Le tableau de variations de h	0.5 1	et des efforts fournis
1	4. $h(x) \ge 0$ sur \square	1	

Exercice n°4:(4pts)				
	Une primitive (à une constante près)de chacune des fonctions est :			
1	1. $F_1(x) = \frac{1}{2}x^2 + \sqrt{x}$ définie sur $]0; +\infty[$	1	On tient compte de la rigueur du	
1	2. $F_2(x) = (\ln x)^2 + x^2$ définie sur $]0; +\infty[$	1	raisonnement	
1	3. $F_3(x) = \frac{-1}{2(x^2+1)^2}$ définie sur \square	1	et des efforts fournis	
1	4. $F_4(x) = \frac{1}{\ln x}$ définie sur]1;+ ∞ [1		