Multivariable Chain Rule

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 13.5 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to compute partial derivatives with the various versions of the multivariate chain rule.
- Be able to compare your answer with the direct method of computing the partial derivatives.

PRACTICE PROBLEMS:

1. Find $\frac{dz}{dt}$ by using the Chain Rule. Check your answer by expressing z as a function of t and then differentiating.

(a)
$$z = 2x - y$$
, $x = \sin t$, $y = 3t$

(b)
$$z = x \sin y, \ x = e^t, \ y = \pi t$$

(c)
$$z = xy + y^2$$
, $x = t^2$, $y = t + 1$

(d)
$$z = \ln\left(\frac{x^2}{y}\right), \ x = e^t, \ y = t^2$$

- 2. Suppose $w = x^2 + y^2 + 2z^2$, x = t + 1, $y = \cos t$, $z = \sin t$. Find $\frac{dw}{dt}$ using the Chain Rule. Check your answer by expressing w as a function of t and then differentiating.
- 3. Suppose f is a differentiable function of x & y, and define $g(u,v) = f(3u v, u^2 + v)$. Use the table of values shown below to calculate $\frac{\partial g}{\partial u}\Big|_{(u,v)=(2,-1)}$ and $\frac{\partial g}{\partial v}\Big|_{(u,v)=(2,-1)}$.

(x,y)	f	g	f_x	f_y
(2,-1)	6	-7	1	9
(7,3)	4	2	-3	5

Hint: Decompose $f(3u - v, u^2 + v)$ into f(x, y) where x = 3u - v and $y = u^2 + v$.

1

- 4. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ by using the appropriate Chain Rule.
 - (a) $w = xy \sin(z^2)$, x = s t, $y = s^2$, $z = t^2$
 - (b) w = xy + yz, x = s + t, y = st, z = s 2t
- 5. Suppose that J=f(x,y,z,w), where $x=x(r,s,t),\ y=y(r,t),\ z=z(r,s)$ and w=w(s,t). Use the Chain Rule to find $\frac{\partial J}{\partial r}, \frac{\partial J}{\partial s}$, and $\frac{\partial J}{\partial t}$.
- 6. Suppose g = f(u v, v w, w u). Show that $\frac{\partial g}{\partial u} + \frac{\partial g}{\partial v} + \frac{\partial g}{\partial w} = 0$.

7. Suppose u = u(x, y), v = v(x, y), $x = r \cos \theta$, and $y = r \sin \theta$.

(a) Calculate
$$\frac{\partial u}{\partial r}$$
, $\frac{\partial u}{\partial \theta}$, $\frac{\partial v}{\partial r}$, and $\frac{\partial v}{\partial \theta}$

(b) Suppose that u(x,y) and v(x,y) satisfy the Cauchy-Riemann Equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Use this along with part (a) to derive the polar form of the Cauchy-Riemann Equations:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
$$\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$