Bec'd PCT/PTO 29 AUG 2005

SEQUENCE LISTING

<110>	Pickard, Benjam Blackwood, Doug Porteous, David Muir, Walter Jo Mors, Ole Ewald, Henrik L	las hn				
<120>	SCHIZOPHRENIA A	SSOCIATED G	ENES			
<130>	9013.63					
<140> <141>	US 10/511,455 2004-10-05					
<150> <151>	PCT/GB03/001543 2003-04-07					
<150> <151>	GB0207902.8 2002-04-05					
<150> <151>	GB0207904.4 2002-04-05					
<150> <151>	GB0207900.2 2002-04-05					
<150> <151>	GB0207901.0 2002-04-05		•			
<150> <151>	GB0227734.1 2002-11-28					
<160>	94					
<170>	PatentIn version	on 3.1				
<210><211><211><212><213>	1 4773 DNA Homo sapiens	·				
<400>	1	a. a.a	taataaaaa	ctactaaata	ctassaatta	60
	tccc cgggtagatt	•				120
	cctc tggtcagaac					180
•	aatg aaataaataa					240
	tcct ctgcaatcag					
	cgtt cgggaagggg					300
	cagc gagcttttct					360
	agga gtttcccgag					420
gcgagc	ctca gtgtcctccc	acgcgcttct	gccttccagc	ctcctccctt	tttcgggggg	480
ctaaca	ggag gcatccaagg	cacgatgtat	atacactcac	gctcgcgcaa	atacggccgg	540

600 aggagteetg tteeteggge atttteegag gaagtetgga teaattagge teagteeggg 660 gagagccagc gagcgcgcgg gcggcgtagc cggcctgtct gggccgcctc gtggggaggg agggggggcc cggccgcccg gcggcgaccc cggggcctgg ccgccaccat gggcttcgag 720 etggaceget tegaeggega egtggaceeg gaeetgaagt gegegetgtg eeacaaggte 780 etggaggace egetgaceae geegtgegge caegtettet gegeeggetg egtgetgeee 840 900 tgggtggtgc aggagggcag etgeceggeg egetgeegeg gtegeetgte ggecaaagag ctcaaccacg tectgeeget caagegeett atecteaage tggacateaa gtgegegtae 960 gegaegegeg getgegeeg ggtggteaag etgeageage tgeeggagea eetegagege 1020 1080 tgcgacttcg cgcccgcgcg ctgtcgccac gcgggttgcg gccaggtgct gctgcggcgc gacgtggagg cgcacatgcg cgacgcgtgc gacgcgcggc cagtgggccg ctgccaggag 1140 1200 ggctgcgggc taccettgac gcacggcgag cagcgcgcgg gcggccactg ctgcgcgca 1260 gegetgeggg egeacaaegg egegeteeag geeegeetgg gegegetgea caaggegete 1320 aagaaggagg cgctgcgcgc tgggaagcgc gagaagtcgc tggtggccca gctggccgcg 1380 gcgcagcttg agctgcagat gaccgcgctg cgctaccaga agaaattcac cgaatacagc 1440 1500 accaaaagtc tgactcttgt cctgcatcgg gactccggct ccctgggatt caatattatt ggtggccggc cgagtgtgga taaccacgat ggatcatcca gtgaaggaat ctttgtatcc 1560 1620 aagatagttg acagtgggcc tgcagccaag gaaggaggcc tgcaaattca tgacaggatt 1680 attgaggtca acggcagaga cttatccaga gcaactcatg accaggctgt ggaagctttc aagacagcca aggagcccat agtggtgcag gtgttgagaa gaacaccaag gaccaaaatg 1740 1800 ttcacgcctc catcagagtc tcagctggtg gacacgggaa cccaaaccga catcaccttt 1860 gaacatatca tggccctcac taagatgtcc tctcccagcc cacccgtgct ggatccctat ctcttgccag aggagcatcc ctcagcccat gaatactacg atccaaatga ctacattgga 1920 gacatccatc aggagatgga cagggaggag ctggagctgg aggaagtgga cctctacaga 1980 2040 atgaacagec aggacaaget gggeeteaet gtgtgetaee ggaeggaega tgaagaegae 2100 attgggattt atatcagtga gattgaccct aacagcattg cagccaagga tgggcgcatc 2160 cgagaaggag accgcattat ccagattaat gggatagagg tgcagaaccg tgaagaggct 2220 gtggctcttc taaccagtga agaaaataaa aacttttcat tgctgattgc aaggcctgaa 2280 ctccagctgg atgagggctg gatggatgat gacaggaacg actttctgga tgacctgcac atggacatgc tggaggagca gcaccaccag gccatgcaat tcacagctag cgtgctgcag 2340

2400 cagaagaagc acgacgaaga cggtgggacc acagatacag ccaccatctt gtccaaccag 2460 cacgagaagg acagcggtgt ggggcggacc gacgagagca cccgtaatga cgagagctcg 2520 gagcaagaga acaatggcga cgacgccacc gcatcctcca acccgctggc ggggcagagg 2580 aageteacet geageeagga eacettggge ageggegace tgeeetteag eaacgagtet ttcatttcgg ccgactgcac ggacgccgac tacctgggga tcccggtgga cgagtgcgag 2640 cgcttccgcg agctcctgga gctcaagtgc caggtgaaga gcgccacccc ttacggcctg 2700 2760 tactacceta geggeeecet ggaegeegge aagagtgace etgagagegt ggaeaaggag 2820 ctggagctgc tgaacgaaga gctgcgcagc atcgagctgg agtgcctgag catcgtgcgc 2880 gcccacaaga tgcagcagct caaggagcag taccgcgagt cctggatgct gcacaacagc 2940 ggcttccgca actacaacac cagcatcgac gtgcgcagac acgagctctc agatatcacc 3000 gageteeegg agaaateega caaggacage tegagegeet acaacacagg egagagetge 3060 cgcagcaccc cgctcaccct ggagatctcc cccgacaact ccttgaggag agcggcggag 3120 ggcatcagct gcccgagcag cgaaggggct gtggggacca cggaagccta cgggccagcc 3180 tecaagaate tgetetecat caeggaagat eeegaagtgg geacecetae etatageeeg 3240 tecetgaagg agetggacee caaccageee etggaaagea aagageggag agecagegae 3300 gggagcegga gccccacgcc cagccagaag ctgggcageg cctacctgcc ctcctatcac 3360 cactececat acaagcaege geacateeeg gegeaegeee ageaetaeea gagetaeatg 3420 cagetgatee ageagaagte ggeegtggag taegegeaaa geeagatgag eetggtgage atgtgcaagg acctgagete teccaeceeg teggageege geatggagtg gaaggtgaag 3480 atccgcagcg acgggacgcg ctacatcacc aagaggcccg tgcgggaccg cctgctgcgg 3540 gagcgcgccc tgaagatccg ggaagagcgc agcggcatga ccaccgacga cgacgcggtg 3600 agcgagatga agatggggcg ctactggagc aaggaggaga ggaagcagca cctggtgaag 3660 3720 gccaaggagc agegggggg gegegagtte atgatgcaga gcaggttgga ttgtetcaag 3780 gagcagcaag cagccgatga caggaaggag atgaacattc tcgaactgag ccacaaaaag atgatgaaga agaggaataa gaaaatcttc gataactgga tgacgatcca agaactctta 3840 acccacggca caaaatcccc ggacggcact agagtataca attccttcct atcggtgact 3900 3960 actgtataat tttcacttct gcattatgta cataaaggag accactacca ctggggtaga aatteetgee tegtteaatg eggeaagttt ttgtatataa gataagtaeg gtetteatgt 4020 4080 ttatagtcca aatttgcaaa ccctacaact ctgggtgtca taggtctatt ttaagggaag agagagaaaa acacccttac tatcttggaa ggcaatatta acaaacagag cttttttcaa 4140 atagcaattg tacttttcta cctgtaccct tttacataaa gtgtttaaat ttcagaaaga 4200

tcttttatta agcatacttt cacagaataa cttgtttaaa ctatattcat ataaaaaagt 4260 taaacacgct ttttttcctg cctaaaacac aaatacaact gccagtatgt atttttaatg 4320 4380 gaaccctatt ttataatggt acgttactga atgtgtttca tatgcgtgac cgttaagata ttatcattta ggtgaaggtt tcaactcaaa accacccaac ccggtggtta acgatttaat 4440 acatataacc aaaccggcag cgtttagagt tgggatatac atttaaacat tttcctggtt 4500 aaqqttccca agagagtgta aaggttttag cagaaagcaa aatatcttgc atctttatgg 4560 aagtttaaag catgtttgca aatattgcag cccattgaaa gaatttgcat gtacaggaaa 4620 4680 gttgtggatg gagacggttt gtggaatttt aagtgctcat tgtagtaaac ttttgctttg tagatttgaa ggtacagact tatacaggca agttcacaaa atcatgatta gttacaaaca 4740 4773 gtaaaatgaa gttaaaataa attattattt tct

<210> 2

<211> 1066

<212> PRT

<213> Homo sapiens

<400> 2

Met Gly Phe Glu Leu Asp Arg Phe Asp Gly Asp Val Asp Pro Asp Leu

5 10 15

Lys Cys Ala Leu Cys His Lys Val Leu Glu Asp Pro Leu Thr Thr Pro 20 25 30

Cys Gly His Val Phe Cys Ala Gly Cys Val Leu Pro Trp Val Val Gln 35 40 45

Glu Gly Ser Cys Pro Ala Arg Cys Arg Gly Arg Leu Ser Ala Lys Glu 50 55 60

Leu Asn His Val Leu Pro Leu Lys Arg Leu Ile Leu Lys Leu Asp Ile 65 70 75 80

Lys Cys Ala Tyr Ala Thr Arg Gly Cys Gly Arg Val Val Lys Leu Gln 85 90 95

Gln Leu Pro Glu His Leu Glu Arg Cys Asp Phe Ala Pro Ala Arg Cys 100 105 110

Arg His Ala Gly Cys Gly Gln Val Leu Leu Arg Arg Asp Val Glu Ala 115 120 125

His Met Arg 130	Asp Ala	Cys Asp		Arg	Pro	Val	Gly 140	Arg	Cys	Gln	Glu
Gly Cys Gly 145	Leu Pro	Leu Thr 150	His	Gly	Glu	Gln 155	Arg	Ala	Gly	Gly	His 160
Cys Cys Ala	Arg Ala 165	Leu Arg	, Ala	His	Asn 170	Gly	Ala	Leu	Gln	Ala 175	Arg
Leu Gly Ala	Leu His 180	Lys Ala	. Leu	Lys 185	Lys	Glu	Ala	Leu	Arg 190	Ala	Gly
Lys Arg Glu 195	Lys Ser	Leu Val	. Ala 200	Gln	Leu	Ala	Ala	Ala 205	Gln	Leu	Glu
Leu Gln Met 210	Thr Ala	Leu Arc	_	Gln	Lys	Lys	Phe 220	Thr	Glu	Tyr	Ser
Ala Arg Leu 225	Asp Ser	Leu Sei 230	Arg	Cys	Val	Ala 235	Ala	Pro	Pro	Gly	Gly 240
Lys Gly Glu	Glu Thr 245	-	Leu	Thr	Leu 250	Val	Leu	His	Arg	Asp 255	Ser
Gly Ser Leu	Gly Phe 260	Asn Ile	e Ile	Gly 265	Gly	Arg	Pro	Ser	Val 270	Asp	Asn
His Asp Gly 275	Ser Ser	Ser Gli	280	Ile	Phe	Val	Ser	Lys 285	Ile	Val	Asp
Ser Gly Pro 290	Ala Ala	Lys Glu 299		Gly	Leu	Gln	Ile 300	His	Asp	Arg	Ile
Ile Glu Val 305	Asn Gly	Arg Asp 310) Leu	Ser	Arg	Ala 315	Thr	His	Asp	Gln	Ala 320
Val Glu Ala	Phe Lys 325	Thr Ala	a Lys	Glu	Pro 330	Ile	Val	Val	Gln	Val 335	Leu
Arg Arg Thr	Pro Arg 340	Thr Lys	s Met	Phe 345	Thr	Pro	Pro	Ser	Glu 350	Ser	Gln
Leu Val Asp 355	Thr Gly	Thr Gli	1 Thr 360	Asp	Ile	Thr	Phe	Glu 365	His	Ile	Met
Ala Leu Thr	Lys Met	Ser Ser	r Pro	Ser	Pro	Pro	Val	Leu	Asp	Pro	Tyr

370 375 380

Leu 385	Leu	Pro	Glu	Glu	His 390	Pro	Ser	Ala	His	Glu 395	Tyr	Tyr	Asp	Pro	Asn 400
Asp	Tyr	Ile	Gly	Asp 405	Ile	His	Gln	Glu	Met 410	Asp	Arg	Glu	Glu	Leu 415	Glu
Leu	Glu	Glu	Val 420	Asp	Leu	Tyr	Arg	Met 425	Asn	Ser	Gln	Asp	Lys 430	Leu	Gly
Leu	Thr	Val 435	Cys	Tyr	Arg	Thr	Asp 440	Asp	Glu	Asp	Asp	Ile 445	Gly	Ile	Tyr
Ile	Ser 450	Glu	Ile	Asp	Pro	Asn 455	Ser	Ile	Ala	Ala	Lys 460	Asp	Gly	Arg	Ile
Arg 465	Glu	Gly	Asp	Arg	Ile 470	Ile	Gln	Ile	Asn	Gly 475	Ile	Glu	Val	Gln	Asn 480
Arg	Glu	Glu	Ala	Val 485	Ala	Leu	Leu	Thr	Ser 490	Glu	Glu	Asn	Lys	Asn 495	Phe
Ser	Leu	Leu	Ile 500	Ala	Arg	Pro	Glu	Leu 505	Gln	Leu	Asp	Glu	Gly 510	Trp	Met
Asp	Asp	Asp 515	Arg	Asn	Asp	Phe	Leu 520	Asp	Asp	Leu	His	Met 525	Asp	Met	Leu
Glu	Glu 530	Gln	His	His	Gln	Ala 535	Met	Gln	Phe	Thr	Ala 540	Ser	Val	Leu	Gln
Gln 545	Lys	Lys	His	Asp	Glu 550	Asp	Gly	Gly	Thr	Thr 555	Asp	Thr	Ala	Thr	Ile 560
Leu	Ser	Asn	Gln	His 565	Glu	Lys	Asp	Ser	Gly 570	Val	Gly	Arg	Thr	Asp 575	Glu
Ser	Thr	Arg	Asn 580	Asp	Glu	Ser	Ser	Glu 585	Gln	Glu	Asn	Asn	Gly 590	Asp	Asp
Ala	Thr	Ala 595	Ser	Ser	Asn	Pro	Leu 600	Ala	Gly	Gln	Arg	Lys 605	Leu	Thr	Cys
Ser	Gln 610	Asp	Thr	Leu	Gly	Ser 615	Gly	Asp	Leu	Pro	Phe 620	Ser	Asn	Glu	Ser

Phe 625	Ile	Ser	Ala	Asp	Cys 630	Thr	Asp	Ala	Asp	Tyr 635	Leu	Gly	Ile	Pro	Val 640
Asp	Glu	Cys	Glu	Arg 645	Phe	Arg	Glu	Leu	Leu 650	Glu	Leu	Lys	Cys	Gln 655	Val
Lys	Ser	Ala	Thr 660	Pro	Tyr	Gly	Leu	Tyr 665	Tyr	Pro	Ser	Gly	Pro 670	Leu	Asp
Ala	Gly	Lys 675	Ser	Asp	Pro	Glu	Ser 680	Val	Asp	Lys	Glu	Leu 685	Glu	Leu	Leu
Asn	Glu 690	Glu	Leu	Arg	Ser	Ile 695	Glu	Leu	Glu	Cys	Leu 700	Ser	Ile	Val	Arg
Ala 705	His	Lys	Met	Gln	Gln 710	Leu	Lys	Glu	Gln	Tyr 715	Arg	Glu	Ser	Trp	Met 720
Leu	His	Asn	Ser	Gly 725	Phe	Arg	Asn	Tyr	Asn 730	Thr	Ser	Ile	Asp	Val 735	Arg
Arg	His	Glu	Leu 740	Ser	Asp	Ile	Thr	Glu 745	Leu	Pro	Glu	Lys	Ser 750	Asp	Lys
Asp	Ser	Ser 755	Ser	Ala	Tyr	Asn	Thr 760	Gly	Glu	Ser	Cys	Arg 765	Ser	Thr	Pro
Leu	Thr 770	Leu	Glu	Ile	Ser	Pro 775	Asp	Asn	Ser	Leu	Arg 780	Arg	Ala	Ala	Glu
Gly 785	Ile	Ser	Cys	Pro	Ser 790	Ser	Glu	Gly	Ala	Val 795	Gly	Thr	Thr	Glu	Ala 800
Tyr	Gly	Pro	Ala	Ser 805	Lys	Asn	Leu	Leu	Ser 810	Ile	Thr	Glu	Asp	Pro 815	Glu
Val	Gly	Thr	Pro 820	Thr	Tyr	Ser	Pro	Ser 825	Leu	Lys	Glu	Leu	Asp 830	Pro	Asn
Gln	Pro	Leu 835	Glu	Ser	Lys	Glu	Arg 840	Arg	Ala	Ser	Asp	Gly 845	Ser	Arg	Ser
Pro	Thr 850	Pro	Ser	Gln	Lys	Leu 855	Gly	Ser	Ala	Tyr	Leu 860	Pro	Ser	Tyr	His

- His Ser Pro Tyr Lys His Ala His Ile Pro Ala His Ala Gln His Tyr 875 870
- Gln Ser Tyr Met Gln Leu Ile Gln Gln Lys Ser Ala Val Glu Tyr Ala 890
- Gln Ser Gln Met Ser Leu Val Ser Met Cys Lys Asp Leu Ser Ser Pro
- Thr Pro Ser Glu Pro Arg Met Glu Trp Lys Val Lys Ile Arg Ser Asp 920
- Gly Thr Arg Tyr Ile Thr Lys Arg Pro Val Arg Asp Arg Leu Leu Arg 935
- Glu Arg Ala Leu Lys Ile Arg Glu Glu Arg Ser Gly Met Thr Thr Asp 950 955
- Asp Asp Ala Val Ser Glu Met Lys Met Gly Arg Tyr Trp Ser Lys Glu 965 970
- Glu Arg Lys Gln His Leu Val Lys Ala Lys Glu Gln Arg Arg Arg Arg 980 985
- Glu Phe Met Met Gln Ser Arg Leu Asp Cys Leu Lys Glu Gln Gln Ala 1000
- Ala Asp Asp Arg Lys Glu Met Asn Ile Leu Glu Leu Ser His Lys 1015
- Lys Met Met Lys Lys Arg Asn Lys Lys Ile Phe Asp Asn Trp Met 1025 1030
- Thr Ile Gln Glu Leu Leu Thr His Gly Thr Lys Ser Pro Asp Gly 1040 1045 1050
- Thr Arg Val Tyr Asn Ser Phe Leu Ser Val Thr Thr Val 1055 1060 1065
- <210> 3

- <211> 115 <212> DNA <213> Homo sapiens
- atettectee tgetetgget gtgtgaagat etgeeteett eetettegge tteatgeatg 60

atcgtaagtt	tcctgaggcc	tcctcagcca	tgcttcctgc	atagcctgca	gaaat	115
<210> 4 <211> 277 <212> DNA <213> Homo	o sapiens					
<400> 4						
cccgggtccc	tcgcaaagcc	gctgccatcc	cggagggccc	agccagcggg	ctcccggagg	60
ctggccgggc	aggcgtggtg	cgcggtagga	gctgggcgcg	cacggctacc	gcgcgtggag	120
gagacactgc	cctgccgcga	tgggggcccg	gggcgctcct	tcacgccgta	ggcaagcggg	180
gcggcggctg	cggtacctgc	ccaccgggag	ctttcccttc	cttctcctgc	tgctgctgct	240
ctgcatccag	ctcgggggag	gacagaagaa	aaaggag			277
<210> 5 <211> 660 <212> DNA <213> Homo	o sapiens					
<400> 5 aatcttttag	ctgaaaaagt	agagcagctg	atggaatgga	gttccagacg	ctcaatcttc	60
	gtgataaatt					120
attgttatgt	tcactgctct	tcagcctcag	cggcagtgtt	ctgtgtgcag	gcaagctaat	180
gaagaatatc	aaatactggc	gaactcctgg	cgctattcat	ctgctttttg	taacaagctc	240
ttcttcagta	tggtggacta	tgatgagggg	acagacgttt	ttcagcagct	caacatgaac	300
tctgctccta	cattcatgca	ttttcctcca	aaaggcagac	ctaagagagc	tgatactttt	360
gacctccaaa	gaattggatt	tgcagctgag	caactagcaa	agtggattgc	tgacagaacg	420
gatgttcata	ttcgggtttt	cagaccaccc	aactactctg	gtaccattgc	tttggccctg	480
ttagtgtcgc	ttgttggagg	tttgctttat	ttgagaagga	acaacttgga	gttcatctat	540
aacaagactg	gttgggccat	ggtgtctctg	tgtatagtct	ttgctatgac	ttctggccag	600
atgtggaacc	atatccgtgg	acctccatat	gctcataaga	acccacacaa	tggacaagtg	660
<210> 6 <211> 64 <212> DNA <213> Homo	o sapiens					
<400> 6 agctacattc	atgggagcag	ccaggctcag	tttgtggcag	aatcacacat	tattctggta	60
ctga		•				64

<210> 7

<211>	75					
<212>	DNA					
<213>	Homo sapiens					
	7					
atgccg	tat caccatgggg	atggttcttc	taaatgaagc	agcaacttcg	aaaggcgatg	60
						75
ttggaaa	aag acgga					75
<210>	8					
	167					
	DNA					
	Homo sapiens					
<400>	8					
	att ctggaacatt	gtgttcagag	ccagaaaaat	taatagattt	tattcacatc	60
	33	3 3 3 3	J	•		
tatgtct	acg gcttccttga	caactactgc	agatgccgct	atcaccatgg	ggatggttct	120
		_				
tctaaat	gaa gcagcaactt	cgaaaggcga	tgttggaaaa	agacgga		167
<210>	9					
<211>	91					
<212>	DNA					
<213>	Homo sapiens					
400	•					
<400>	9				att	60
taattt	geet agtgggattg	ggcctggtgg	tettettett	cagtttteta	Ctttcaatat	60
ttcatt	ccaa gtaccacggc	tatoottata	a			91
cccgcc	caa gcaccacggc	caccccaca	9			
<210>	10					
<211>	65					
<212>	DNA					
<213>	Homo sapiens					
	-					
<400>	10					
tgatctg	gac tttgagtgag	aagatgtgat	ttggaccatg	gcacttaaaa	actctataac	60
ctcag						65
<210>	11					
<211>	92					
<212>	DNA					
<213>	Homo sapiens					
. 4 0 0 -						
<400>	11	2244444	taastassat	anntattta.	astassasts	60
CLLLLL	aatt aaatgaagcc	aagtgggatt	tgcataaagt	gaatgtttat	Catgaayata	0.0
aactoti	cct gactttatac	tattttgaat	tc			92
aactyt	Jose gaccetacae	Jaccocyaac				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<210>	12					
<211>	29					
<212>	PRT					
<213>	Homo sapiens					

<400> 12

Met Glu Trp Ser Ser Arg Arg Ser Ile Phe Arg Met Asn Gly Asp Lys
1 5 10 15

Phe Arg Lys Phe Ile Lys Ala Pro Pro Arg Asn Tyr Ser 20 25

<210> 13

<211> 85

<212> PRT

<213> Homo sapiens

<400> 13

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Gln Ala Gly Arg Arg 1 5 10 15.

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu Leu 20 25 30

Leu Leu Cys Ile Gln Leu Gly Gly Gln Lys Lys Glu Asn Leu 35 40 45

Leu Ala Glu Lys Val Glu Gln Leu Met Glu Trp Ser Ser Arg Arg Ser 50 55 60

Ile Phe Arg Met Asn Gly Asp Lys Phe Arg Lys Phe Ile Lys Ala Pro 65 70 75 80

Pro Arg Asn Tyr Ser 85

<210> 14

<211> 1047

<212> DNA

<213> Homo sapiens

<400> 14

gatgttcata	ttcgggtttt	cagaccaccc	aactactctg	gtaccattgc	tttggccctg	480
ttagtgtcgc	ttgttggagg	tttgctttat	ttgagaagga	acaacttgga	gttcatctat	540
aacaagactg	gttgggccat	ggtgtctctg	tgtatagtct	ttgctatgac	ttctggccag	600
atgtggaacc	atatccgtgg	acctccatat	gctcataaga	acccacacaa	tggacaagtg	660
agctacattc	atgggagcag	ccaggctcag	tttgtggcag	aatcacacat	tattctggta	720
ctgaatgccg	ctatcaccat	ggggatggtt	cttctaaatg	aagcagcaac	ttcgaaaggc	780
gatgttggaa	aaagacggat	aatttgccta	gtgggattgg	gcctggtggt	cttcttcttc	840
agttttctac	tttcaatatt	tcgttccaag	taccacggct	atccttatag	tgatctggac	900
tttgagtgag	aagatgtgat	ttggaccatg	gcacttaaaa	actctataac	ctcagctttt	960
taattaaatg	aagccaagtg	ggatttgcat	aaagtgaatg	tttaccatga	agataaactg	1020
ttcctgactt	tatactattt	tgaattc				1047

<210> 15

<211> 348

<212> PRT

<213> Homo sapiens

<400> 15

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Gln Ala Gly Arg Arg 1 5 10 15

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu Leu 20 25 30

Leu Leu Cys Ile Gl
n Leu Gly Gly Gly Gln Lys Lys Glu As
n Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Leu Ala Glu Lys Val Glu Gln Leu Met Glu Trp Ser Ser Arg Arg Ser 50 55 60

Ile Phe Arg Met Asn Gly Asp Lys Phe Arg Lys Phe Ile Lys Ala Pro 70 75 80

Pro Arg Asn Tyr Ser Met Ile Val Met Phe Thr Ala Leu Gln Pro Gln 85 90 95

Arg Gln Cys Ser Val Cys Arg Gln Ala Asn Glu Glu Tyr Gln Ile Leu 100 105 110

Ala Asn Ser Trp Arg Tyr Ser Ser Ala Phe Cys Asn Lys Leu Phe Phe 115 120 125

Ser Met Val A	Asp Tyr Asp	Glu Gly Thr 135	Asp Val Phe	Gln Gln Leu Asn
Met Asn Ser A	Ala Pro Thr 150	Phe Met His	Phe Pro Pro 155	Lys Gly Arg Pro 160
Lys Arg Ala A	Asp Thr Phe 165	Asp Leu Gln	Arg Ile Gly 170	Phe Ala Ala Glu 175
	Lys Trp Ile 180	Ala Asp Arg 185	Thr Asp Val	His Ile Arg Val 190
Phe Arg Pro I 195	Pro Asn Tyr	Ser Gly Thr 200	Ile Ala Leu	Ala Leu Leu Val 205
Ser Leu Val (210	Gly Gly Leu	Leu Tyr Leu 215	Arg Arg Asn 220	Asn Leu Glu Phe
Ile Tyr Asn I 225	Lys Thr Gly 230	Trp Ala Met	Val Ser Leu 235	Cys Ile Val Phe 240
Ala Met Thr S	Ser Gly Gln 245	Met Trp Asn	His Ile Arg 250	Gly Pro Pro Tyr 255
_	Asn Pro His 260	Asn Gly Gln 265	Val Ser Tyr	Ile His Gly Ser 270
Ser Gln Ala (275	Gln Phe Val	Ala Glu Ser . 280	His Ile Ile	Leu Val Leu Asn 285
Ala Ala Ile 1 290	_	Met Val Leu 295	Leu Asn Glu 300	Ala Ala Thr Ser
Lys Gly Asp V 305	Val Gly Lys 310	Arg Arg Ile	Ile Cys Leu 315	Val Gly Leu Gly 320
Leu Val Val I	Phe Phe Phe 325	Ser Phe Leu	Leu Ser Ile 330	Phe Arg Ser Lys 335
Tyr His Gly 3	Tyr Pro Tyr 340	Ser Asp Leu 345	Asp Phe Glu	
<210> 16 <211> 982 <212> DNA <213> Homo s	sapiens			

<400> 16 60 cqaatqaatq gtgataaatt ccgaaaattt ataaaggcac cacctcgaaa ctattccatg 120 attgttatgt tcactgctct tcagcctcag cggcagtgtt ctgtgtgcag gcaagctaat 180 gaaqaatate aaatactgge gaacteetgg egetatteat etgetttttg taacaagete 240 ttcttcagta tggtggacta tgatgagggg acagacgttt ttcagcagct caacatgaac 300 360 tctgctccta cattcatgca ttttcctcca aaaggcagac ctaagagagc tgatactttt gacctccaaa gaattggatt tgcagctgag caactagcaa agtggattgc tgacagaacg 420 480 gatgttcata ttcgggtttt cagaccaccc aactactctg gtaccattgc tttggccctg ttaqtqtcqc ttqttgqaqq tttqctttat ttgagaagga acaacttqqa qttcatctat 540 600 aacaagactg gttgggccat ggtgtctctg tgtatagtct ttgctatgac ttctggccag 660 atgtggaacc atatccgtgg acctccatat gctcataaga acccacacaa tggacaagtg agctacattc atgggagcag ccaggctcag tttgtggcag aatcacacat tattctggta 720 ctgaatgecg ctatcaccat ggggatggtt cttctaaatg aagcagcaac ttcgaaaggc 780 gatgttggaa aaagacggat aatttgccta gtgggattgg gcctggtggt cttcttcttc 840 aqttttctac tttcaatatt tcgttccaag taccacggct atccttatag ctttttaatt 900 aaatqaaqcc aaqtqqqatt tqcataaaqt qaatqtttac catqaaqata aactqttcct 960 gactttatac tattttgaat to 982

<400> 17

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Gln Ala Gly Arg Arg 1 5 10 15

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu Leu 20 25 30

Leu Leu Cys Ile Gln Leu Gly Gly Gln Lys Lys Lys Glu Asn Leu 35 40 45

Leu Ala Glu Lys Val Glu Gln Leu Met Glu Trp Ser Ser Arg Arg Ser 50 55 60

Ile Phe Arg Met Asn Gly Asp Lys Phe Arg Lys Phe Ile Lys Ala Pro

<210> 17

<211> 347

<212> PRT

<213> Homo sapiens

Pro Arg Asn Tyr Ser Met Ile Val Met Phe Thr Ala Leu Gln Pro Gln 85 90 95

Arg Gln Cys Ser Val Cys Arg Gln Ala Asn Glu Glu Tyr Gln Ile Leu 100 105 110

Ala Asn Ser Trp Arg Tyr Ser Ser Ala Phe Cys Asn Lys Leu Phe Phe 115 120 125

Ser Met Val Asp Tyr Asp Glu Gly Thr Asp Val Phe Gln Gln Leu Asn 130 135 140

Met Asn Ser Ala Pro Thr Phe Met His Phe Pro Pro Lys Gly Arg Pro 145 150 155 160

Lys Arg Ala Asp Thr Phe Asp Leu Gln Arg Ile Gly Phe Ala Ala Glu 165 170 175

Gln Leu Ala Lys Trp Ile Ala Asp Arg Thr Asp Val His Ile Arg Val 180 185 190

Phe Arg Pro Pro Asn Tyr Ser Gly Thr Ile Ala Leu Ala Leu Leu Val 195 200 205

Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu Glu Phe 210 215 220

Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile Val Phe 225 230 235

Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro Pro Tyr 245 250 255

Ala His Lys Asn Pro His Asn Gly Gln Val Ser Tyr Ile His Gly Ser 260 265 270

Ser Gln Ala Gln Phe Val Ala Glu Ser His Ile Ile Leu Val Leu Asn 275 280 285

Ala Ala Ile Thr Met Gly Met Val Leu Leu Asn Glu Ala Ala Thr Ser 290 295 300

Lys Gly Asp Val Gly Lys Arg Arg Ile Ile Cys Leu Val Gly Leu Gly 305 310 315 320

Leu Val Val Phe Phe Phe Ser Phe Leu Leu Ser Ile Phe Arg Ser Lys 325 330 335

Tyr His Gly Tyr Pro Tyr Ser Phe Leu Ile Lys 340 345

<210> 18 <211> 752

<212> DNA

<213> Homo sapiens

<400> 18 60 cgaatgaatg gtgataaatt ccgaaaattt ataaaggcac cacctcgaaa ctattccatg 120 attgttatgt tcactgctct tcagcctcag cggcagtgtt ctgtgtgcag gcaagctaat 180 gaagaatatc aaatactggc gaactcctgg cgctattcat ctgctttttg taacaagctc 240 ttcttcagta tggtggacta tgatgagggg acagacgttt ttcagcagct caacatgaac 300 tetgeteeta catteatgea tttteeteea aaaggeagae etaagagage tgataetttt 360 gacctccaaa gaattggatt tgcagctgag caactagcaa agtggattgc tgacagaacg 420 gatgttcata ttcgggtttt cagaccaccc aactactctg gtaccattgc tttggccctg 480

aacaagactg gttgggccat ggtgtctctg tgtatagtct ttgctatgac ttctggccag 600 atgtggaacc atatccgtgg acctccatat gctcataaga acccacacaa tggacaagtg 660

ttagtgtcgc ttgttggagg tttgctttat ttgagaagga acaacttgga gttcatctat

540

752

ctttttaatt aaatgaagcc aagtgggatt tgcataaagt gaatgtttac catgaagata 720

·

<210> 19

<211> 269

<212> PRT

<213> Homo sapiens

aactgttcct gactttatac tattttgaat tc

<400> 19

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Gln Ala Gly Arg Arg 1 5 10 15

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu Leu 20 25 30

Leu Leu Cys Ile Gln Leu Gly Gly Gln Lys Lys Glu Asn Leu 35 40 45

Leu Ala 50	Glu L	ys Val	Glu	Gln 55	Leu	Met	Glu	Trp	Ser 60	Ser	Arg	Arg	Ser
Ile Phe 65	Arg M	let Asn	Gly 70	Asp	Lys	Phe	Arg	Lys 75	Phe	Ile	Lys	Ala	Pro 80
Pro Arg	Asn T	Cyr Ser 85	Met	Ile	Val	Met	Phe 90	Thr	Ala	Leu	Gln	Pro 95	Gln
Arg Gln	-	Ser Val	Cys	Arg	Gln	Ala 105	Asn	Glu	Glu	Tyr	Gln 110	Ile	Leu
Ala Asn	Ser T	rp Arg	Tyr	Ser	Ser 120	Ala	Phe	Cys	Asn	Lys 125	Leu	Phe	Phe
Ser Met 130		Asp Tyr	Asp	Glu 135	Gly	Thr	Asp	Val	Phe 140	Gln	Gln	Leu	Asn
Met Asn 145	Ser A	Ala Pro	Thr 150	Phe	Met	His	Phe	Pro 155	Pro	Lys	Gly	Arg	Pro 160
Lys Arg	Ala A	Asp Thr 165	Phe	Asp	Leu	Gln	Arg 170	Ile	Gly	Phe	Ala	Ala 175	Glu
Gln Leu		Lys Trp 180	Ile	Ala	Asp	Arg 185	Thr	Asp	Val	His	Ile 190	Arg	Val
Phe Arg	Pro P 195	Pro Asn	Tyr	Ser	Gly 200	Thr	Ile	Ala	Leu	Ala 205	Leu	Leu	Val
Ser Leu 210		Bly Gly		Leu 215	_	Leu	Arg	_	Asn 220		Leu	Glu	Phe
Ile Tyr 225	Asn L	Lys Thr	Gly 230	Trp	Ala	Met	Val	Ser 235	Leu	Cys	Ile	Val	Phe 240
Ala Met	Thr S	Ser Gly 245	Gln	Met	Trp	Asn	His 250	Ile	Arg	Gly	Pro	Pro 255	Tyr
Ala His	-	Asn Pro 260	His	Asn	Gly	Gln 265	Val	Leu	Phe	Asn			

<210> 20 <211> 891 <212> DNA <213> Homo sapiens <400> 20 60 120 cgaatgaatg gtgataaatt ccgaaaattt ataaaggcac cacctcgaaa ctattccatg attgttatgt tcactgctct tcagcctcag cggcagtgtt ctgtgtgcag gcaagctaat 180 qaaqaatatc aaatactggc gaactcctgg cgctattcat ctgctttttg taacaagetc 240 ttcttcaqta tggtggacta tgatgagggg acagacgttt ttcagcagct caacatgaac 300 tctqctccta cattcatqca ttttcctcca aaaggcagac ctaagagagc tgatactttt 360 420 gacctccaaa gaattggatt tgcagctgag caactagcaa agtggattgc tgacagaacg gatgttcata ttcgggtttt cagaccaccc aactactctg gtaccattgc tttggccctg 480 ttagtgtcgc ttgttggagg tttgctttat ttgagaagga acaacttgga gttcatctat 540 600 aacaagactg gttgggccat ggtgtctctg tgtatagtct ttgctatgac ttctggccag atgtggaacc atatccgtgg acctccatat gctcataaga acccacacaa tggacaagtg 660 720 agctacattc atgggagcag ccaggctcag tttgtggcag aatcacacat tattctggta 780 ctgaatgccg ctatcaccat ggggatggtt cttctaaatg aagcagcaac ttcgaaaggc gatgttggaa aaagacggac tttttaatta aatgaagcca agtgggattt gcataaagtg 840 aatgtttacc atgaagataa actgttcctg actttatact attttgaatt c 891

<400> 21

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Gln Ala Gly Arg Arg 1 5 10 15

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu 20 25 30

Leu Leu Cys Ile Gln Leu Gly Gly Gln Lys Lys Lys Glu Asn Leu 35 40 45

Leu Ala Glu Lys Val Glu Gln Leu Met Glu Trp Ser Ser Arg Arg Ser 50 55 60

Ile Phe Arg Met Asn Gly Asp Lys Phe Arg Lys Phe Ile Lys Ala Pro 65 70 75 80

Pro Arg Asn Tyr Ser Met Ile Val Met Phe Thr Ala Leu Gln Pro Gln

<210> 21

<211> 314

<212> PRT

<213> Homo sapiens

Arg Gln Cys Ser Val Cys Arg Gln Ala Asn Glu Glu Tyr Gln Ile Leu 100 105 110

Ala Asn Ser Trp Arg Tyr Ser Ser Ala Phe Cys Asn Lys Leu Phe Phe 115 120 125

Ser Met Val Asp Tyr Asp Glu Gly Thr Asp Val Phe Gln Gln Leu Asn 130 135 140

Met Asn Ser Ala Pro Thr Phe Met His Phe Pro Pro Lys Gly Arg Pro 145 150 155 160

Lys Arg Ala Asp Thr Phe Asp Leu Gln Arg Ile Gly Phe Ala Ala Glu 165 170 175

Gln Leu Ala Lys Trp Ile Ala Asp Arg Thr Asp Val His Ile Arg Val 180 185 190

Phe Arg Pro Pro Asn Tyr Ser Gly Thr Ile Ala Leu Ala Leu Val 195 200 205

Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu Glu Phe 210 215 220

Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile Val Phe 225 230 235 240

Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro Pro Tyr 245 250 255

Ala His Lys Asn Pro His Asn Gly Gln Val Ser Tyr Ile His Gly Ser 260 265 270

Ser Gln Ala Gln Phe Val Ala Glu Ser His Ile Ile Leu Val Leu Asn 275 280 285

Ala Ala Ile Thr Met Gly Met Val Leu Leu Asn Glu Ala Ala Thr Ser 290 295 300

Lys Gly Asp Val Gly Lys Arg Arg Thr Phe 305 310

<210> 22 <211> 1010 <212> DNA

<213> Homo sapiens

<400> 60 cgaatgaatg gtgataaatt ccgaaaattt ataaaggcac cacctcgaaa ctattccatg 120 180 attgttatgt tcactgctct tcagcctcag cggcagtgtt ctgtgtgcag gcaagctaat gaagaatate aaatactgge gaacteetgg egetatteat etgetttttg taacaagete 240 300 ttcttcagta tggtggacta tgatgagggg acagacgttt ttcagcagct caacatgaac tctgctccta cattcatgca ttttcctcca aaaggcagac ctaagagagc tgatactttt 360 gacctccaaa gaattggatt tgcagctgag caactagcaa agtggattgc tgacagaacg 420 480 gatgttcata ttcgggtttt cagaccaccc aactactctg gtaccattgc tttggccctg 540 ttagtgtcgc ttgttggagg tttgctttat ttgagaagga acaacttgga gttcatctat aacaagactg gttgggccat ggtgtctctg tgtatagtct ttgctatgac ttctggccag 600 atgtggaacc atatccgtgg acctccatat gctcataaga acccacacaa tggacaagtg 660 tttaaccatt ctggaacatt gtgttcagag ccagaaaaat taatagattt tattcacatc 720 tatgtctacg gcttccttga caactactgc agatgccgct atcaccatgg ggatggttct 780 840 tctaaatgaa gcagcaactt cgaaaggcga tgttggaaaa agacggataa tttgcctagt 900 gggattgggc ctggtggtct tcttcttcag ttttctactt tcaatatttc gttccaagta ccacggctat ccttatagct ttttaattaa atgaagccaa gtgggatttg cataaagtga 960 1010 atgtttacca tgaagataaa ctgttcctga ctttatacta ttttgaattc

<210> 23

<211> 308

<212> PRT

<213> Homo sapiens

<400> 23

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Gln Ala Gly Arg Arg 1 10 15

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu 20 25 30

Leu Leu Cys Ile Gln Leu Gly Gly Gln Lys Lys Glu Asn Leu
35 40 45

Leu Ala Glu Lys Val Glu Gln Leu Met Glu Trp Ser Ser Arg Arg Ser 50 55 60

Ile 65	Phe	Arg	Met	Asn	Gly 70	Asp	Lys	Phe	Arg	Lys 75	Phe	Ile	Lys	Ala	Pro 80
Pro	Arg	Asn	Tyr	Ser 85	Met	Ile	Val	Met	Phe 90	Thr	Ala	Leu	Gln	Pro 95	Gln
Arg	Gln	Cys	Ser 100	Val	Cys	Arg	Gln	Ala 105	Asn	Glu	Glu	Tyr	Gln 110	Ile	Leu
Ala	Asn	Ser 115	Trp	Arg	Tyr	Ser	Ser 120	Ala	Phe	Cys	Asn	Lys 125	Leu	Phe	Phe
Ser	Met 130	Val	Asp	Tyr	Asp	Glu 135	Gly	Thr	Asp	Val	Phe 140	Gln	Gln	Leu	Asn
Met 145	Asn	Ser	Ala	Pro	Thr 150	Phe	Met	His	Phe	Pro 155	Pro	Lys	Gly	Arg	Pro 160
Lys	Arg	Ala	Asp	Thr 165	Phe	Asp	Leu	Gln	Arg 170	Ile	Gly	Phe	Ala	Ala 175	Glu
Gln	Leu	Ala	Lys 180	Trp	Ile	Ala	Asp	Arg 185	Thr	Asp	Val	His	Ile 190	Arg	Val
Phe	Arg	Pro 195	Pro	Asn	Tyr	Ser	Gly 200	Thr	Ile	Ala	Leu	Ala 205	Leu	Leu	Val
Ser	Leu 210	Val	Gly	Gly	Leu	Leu 215	Tyr	Leu	Arg	Arg	Asn 220	Asn	Leu	Glu	Phe
Ile 225	Tyr	Asn	Lys	Thr	Gly 230	Trp	Ala	Met	Val	Ser 235	Leu	Cys	Ile	Val	Phe 240
Ala	Met	Thr	Ser	Gly 245	Gln	Met	Trp	Asn	His 250	Ile	Arg	Gly	Pro	Pro 255	Tyr
Ala	His	Lys	Asn 260	Pro	His	Asn	Gly	Gln 265	Val	Phe	Asn	His	Ser 270	Gly	Thr
Leu	Cys	Ser 275	Glu	Pro	Glu	Lys	Leu 280	Ile	Asp	Phe	Ile	His 285	Ile	Tyr	Val
Tyr	Gly 290	Phe	Leu	Asp	Asn	Tyr 295	Cys	Arg	Cys	Arg	Tyr 300	His	His	Gly	Asp

Gly Ser Ser Lys 305

<210> 24 <211> 919

<212> DNA

<213> Homo sapiens

<400> 24

60 120 cgaatgaatg gtgataaatt ccgaaaattt ataaaggcac cacctcgaaa ctattccatg attgttatgt tcactgctct tcagcctcag cggcagtgtt ctgtgtgcag gcaagctaat 180 qaaqaatatc aaatactggc gaactcctgg cgctattcat ctgctttttg taacaagctc 240 300 ttcttcagta tggtggacta tgatgagggg acagacgttt ttcagcagct caacatgaac 360 tctqctccta cattcatqca ttttcctcca aaaggcagac ctaagagagc tgatactttt 420 gacctccaaa gaattggatt tgcagctgag caactagcaa agtggattgc tgacagaacg 480 gatgttcata ttcgggtttt cagaccaccc aactactctg gtaccattgc tttggccctg 540 ttaqtqtcqc ttqttqqaqq tttqctttat ttqaqaaqga acaacttgga gttcatctat aacaagactg gttgggccat ggtgtctctg tgtatagtct ttgctatgac ttctggccag 600 atgtggaacc atatccgtgg acctccatat gctcataaga acccacacaa tggacaagtg 660 720 tttaaccatt ctggaacatt gtgttcagag ccagaaaaat taatagattt tattcacatc 780 tatqtctacq qcttccttqa caactactqc aqatqccgct atcaccatgg ggatggttct tctaaatgaa gcagcaactt cgaaaggcga tgttggaaaa agacggactt tttaattaaa 840 tgaagccaag tgggatttgc ataaagtgaa tgtttaccat gaagataaac tgttcctgac 900 tttatactat tttgaattc 919

<210> 25

<211> 308

<212> PRT

<213> Homo sapiens

<400> 25

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Arg Gln Ala Gly Arg Arg 1 5 10 15

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu Leu 20 25 30

Leu Leu Cys Ile Gln Leu Gly Gly Gly Gln Lys Lys Glu Asn Leu 35 40 45

Leu	Ala 50	Glu	Lys	Val	Glu	Gln 55	Leu	Met	Glu	Trp	Ser 60	Ser	Arg	Arg	Ser
Ile 65	Phe	Arg	Met	Asn	Gly 70	Asp	Lys	Phe	Arg	Lys 75	Phe	Ile	Lys	Ala	Pro 80
Pro	Arg	Asn	Tyr	Ser 85	Met	Ile	Val	Met	Phe 90	Thr	Ala	Leu	Gln	Pro 95	Gln
Arg	Gln	Cys	Ser 100	Val	Cys	Arg	Gln	Ala 105	Asn	Glu	Glu	Tyr	Gln 110	Ile	Leu
Ala	Asn	Ser 115	Trp	Arg	Tyr	Ser	Ser 120	Ala	Phe	Cys	Asn	Lys 125	Leu	Phe	Phe
Ser	Met 130	Val	Asp	Tyr	Asp	Glu 135	Gly	Thr	Asp	Val	Phe 140	Gln	Gln	Leu	Asn
Met 145	Asn	Ser	Ala	Pro	Thr 150	Phe	Met	His	Phe	Pro 155	Pro	Lys	Gly	Arg	Pro 160
Lys	Arg	Ala	Asp	Thr 165	Phe	Asp	Leu	Gln	Arg 170	Ile	Gly	Phe	Ala	Ala 175	Glu
Gln	Leu	Ala	Lys 180	Trp	Ile	Ala	Asp	Arg 185	Thr	Asp	Val	His	Ile 190	Arg	Val
Phe	Arg	Pro 195	Pro	Asn	Tyr	Ser	Gly 200	Thr	Ile	Ala	Leu	Ala 205	Leu	Leu	Val
Ser	Leu 210	Val	Gly	Gly	Leu	Leu 215	Tyr	Leu	Arg	Arg	Asn 220	Asn	Leu	Glu	Phe
Ile 225	Tyr	Asn	Lys	Thr	Gly 230	Trp	Ala	Met	Val	Ser 235	Leu	Cys	Ile	Val	Phe 240
Ala	Met	Thr	Ser	Gly 245	Gln	Met	Trp	Asn	His 250		Arg	Gly	Pro	Pro 255	Tyr
Ala	His	Lys	Asn 260	Pro	His	Asn	Gly	Gln 265	Val	Phe	Asn	His	Ser 270	Gly	Thr
Leu	Cys	Ser 275	Glu	Pro	Glu	Lys	Leu 280	Ile	Asp	Phe	Ile	His 285		Tyr	Val

Tyr Gly Phe Leu Asp Asn Tyr Cys Arg Cys Arg Tyr His His Gly Asp 290 295 300

Gly Ser Ser Lys 305

<210> 26

<211> 335

<212> PRT

<213> Homo sapiens

<400> 26

Met Ala Ala Arg Trp Arg Phe Trp Cys Val Ser Val Thr Met Val Val 1 5 10 15

Ala Leu Leu Ile Val Cys Asp Val Pro Ser Ala Ser Ala Gln Arg Lys 20 25 30

Lys Glu Met Val Leu Ser Glu Lys Val Ser Gln Leu Met Glu Trp Thr 35 40 45

Asn Lys Arg Pro Val Ile Arg Met Asn Gly Asp Lys Phe Arg Arg Leu 50 55 60

Val Lys Ala Pro Pro Arg Asn Tyr Ser Val Ile Val Met Phe Thr Ala 65 70 75 80

Leu Gln Leu His Arg Gln Cys Val Val Cys Lys Gln Ala Asp Glu Glu 85 90 95

Phe Gln Ile Leu Ala Asn Ser Trp Arg Tyr Ser Ser Ala Phe Thr Asn 100 105 110

Arg Ile Phe Phe Ala Met Val Asp Phe Asp Glu Gly Ser Asp Val Phe
115 120 125

Gln Met Leu Asn Met Asn Ser Ala Pro Thr Phe Ile Asn Phe Pro Ala 130 135 140

Lys Gly Lys Pro Lys Arg Gly Asp Thr Tyr Glu Leu Gln Val Arg Gly 145 150 155 160

Phe Ser Ala Glu Gln Ile Ala Arg Trp Ile Ala Asp Arg Thr Asp Val 165 170 175

Asn Ile Arg Val Ile Arg Pro Pro Asn Tyr Ala Gly Pro Leu Met Leu 180 185 190 Asn Met Glu Phe Leu Phe Asn Lys Thr Gly Trp Ala Phe Ala Ala Leu 210 215 220 Cys Phe Val Leu Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg 225 235 230 Gly Pro Pro Tyr Ala His Lys Asn Pro His Thr Gly His Val Asn Tyr 250 Ile His Gly Ser Ser Gln Ala Gln Phe Val Ala Glu Thr His Ile Val 260 265 Leu Leu Phe Asn Gly Gly Val Thr Leu Gly Met Val Leu Leu Cys Glu 275 Ala Ala Thr Ser Asp Met Asp Ile Gly Lys Arg Lys Ile Met Cys Val 290 295 Ala Gly Ile Gly Leu Val Val Leu Phe Phe Ser Trp Met Leu Ser Ile 305 315 310 Phe Arg Ser Lys Tyr His Gly Tyr Pro Tyr Ser Phe Leu Met Ser 330 335 325 <210> 27 <211> 348 <212> PRT <213> Homo sapiens <400> 27 Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Arg Gln Ala Gly Arg Arg Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu Leu Leu Cys Ile Gln Leu Gly Gly Gln Lys Lys Glu Asn Leu 35 40 45 Leu Ala Glu Lys Val Glu Gln Leu Met Glu Trp Ser Ser Arg Arg Ser 50 55 60

Gly Leu Leu Leu Ala Val Ile Gly Gly Leu Val Tyr Leu Arg Arg Ser 195 200 205

Ile 65	Phe	Arg	Met	Asn	Gly 70	Asp	Lys	Phe	Arg	Lys 75	Phe	Ile	Lys	Ala	Pro 80
Pro	Arg	Asn	Tyr	Ser 85	Met	Ile	Val	Met	Phe 90	Thr	Ala	Leu	Gln	Pro 95	Gln
Arg	Gln	Cys	Ser 100	Val	Cys	Arg	Gln	Ala 105	Asn	Glu	Glu	Tyr	Gln 110	Ile	Leu
Ala	Asn	Ser 115	Trp	Arg	Tyr	Ser	Ser 120	Ala	Phe	Cys	Asn	Lys 125	Leu	Phe	Phe
Ser	Met 130	Val	Asp	Tyr	Asp	Glu 135	Gly	Thr	Asp	Val	Phe 140	Gln	Gln	Leu	Asn
Met 145	Asn	Ser	Ala	Pro	Thr 150	Phe	Met	His	Phe	Pro 155	Pro	Lys	Gly	Arg	Pro 160
Lys	Arg	Ala	Asp	Thr 165	Phe	Asp	Leu	Gln	Arg 170	Ile	Gly	Phe	Ala	Ala 175	Glu
Gln	Leu	Ala	Lys 180	Trp	Ile	Ala	Asp	Arg 185	Thr	Asp	Val	His	Ile 190	Arg	Val
Phe	Arg	Pro 195	Pro	Asn	Tyr	Ser	Gly 200	Thr	Ile	Ala	Leu	Ala 205	Leu	Leu	Val
Ser	Leu 210	Val	Gly	Gly	Leu	Leu 215	Tyr	Leu	Arg	Arg	Asn 220	Asn	Leu	Glu	Phe
Ile 225	Tyr	Asn	Lys	Thr	Gly 230	Trp	Ala	Met	Val	Ser 235	Leu	Cys	Ile	Val	Phe 240
Ala	Met	Thr	Ser	Gly 245	Gln	Met	Trp	Asn	His 250	Ile	Arg	Gly	Pro	Pro 255	Tyr
Ala	His	Lys	Asn 260	Pro	His	Asn	Gly	Gln 265	Val	Ser	Tyr	Ile	His 270	Gly	Ser
Ser	Gln	Ala 275	Gln	Phe	Val	Ala	Glu 280	Ser	His	Ile	Ile	Leu 285	Val	Leu	Asn
Ala	Ala 290	Ile	Thr	Met	Gly	Met 295	Val	Leu	Leu	Asn	Glu 300	Ala	Ala	Thr	Ser
Lys	Gly	Asp	Val	Gly	Lys	Arg	Arg	Ile	Ile	Cys	Leu	Val	Gly	Leu	Gly

305	310	315	320
-----	-----	-----	-----

Leu Val Val Phe Phe Ser Phe Leu Leu Ser Ile Phe Arg Ser Lys 325 330

Tyr His Gly Tyr Pro Tyr Ser Asp Leu Asp Phe Glu

<210> 28

<211> 347 <212> PRT

<213> Homo sapiens

<400> 28

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Gln Ala Gly Arg Arg 5 10

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu 20 25

Leu Leu Cys Ile Gln Leu Gly Gly Gln Lys Lys Lys Glu Asn Leu 35 40

Leu Ala Glu Lys Val Glu Gln Leu Met Glu Trp Ser Ser Arg Arg Ser 50

Ile Phe Arg Met Asn Gly Asp Lys Phe Arg Lys Phe Ile Lys Ala Pro 70 75

Pro Arg Asn Tyr Ser Met Ile Val Met Phe Thr Ala Leu Gln Pro Gln

Arg Gln Cys Ser Val Cys Arg Gln Ala Asn Glu Glu Tyr Gln Ile Leu

Ala Asn Ser Trp Arg Tyr Ser Ser Ala Phe Cys Asn Lys Leu Phe Phe 115 120 125

Ser Met Val Asp Tyr Asp Glu Gly Thr Asp Val Phe Gln Gln Leu Asn 130 135 140

Met Asn Ser Ala Pro Thr Phe Met His Phe Pro Pro Lys Gly Arg Pro 145 150 155 160

Lys Arg Ala Asp Thr Phe Asp Leu Gln Arg Ile Gly Phe Ala Ala Glu 165 170

185 180 Phe Arg Pro Pro Asn Tyr Ser Gly Thr Ile Ala Leu Ala Leu Leu Val 200 Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu Glu Phe Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile Val Phe 230 235 Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro Pro Tyr 250 Ala His Lys Asn Pro His Asn Gly Gln Val Ser Tyr Ile His Gly Ser 260 265 Ser Gln Ala Gln Phe Val Ala Glu Ser His Ile Ile Leu Val Leu Asn 280 Ala Ala Ile Thr Met Gly Met Val Leu Leu Asn Glu Ala Ala Thr Ser 295 300 Lys Gly Asp Val Gly Lys Arg Ile Ile Cys Leu Val Gly Leu Gly 310 Leu Val Val Phe Phe Phe Ser Phe Leu Leu Ser Ile Phe Arg Ser Lys 330 Tyr His Gly Tyr Pro Tyr Ser Phe Leu Ile Lys 340 <210> 29 <211> 350 <212> PRT <213> Homo sapiens <400> 29

Gln Leu Ala Lys Trp Ile Ala Asp Arg Thr Asp Val His Ile Arg Val

Leu Arg Tyr Leu Pro Thr Gly Ser Phe Pro Phe Leu Leu Leu Leu 20 25 30

Met Gly Ala Arg Gly Ala Pro Ser Arg Arg Gln Ala Gly Arg Arg

10

5

15

Leu Leu Cys Ile Gln Leu Gly Gly Gln Lys Lys Glu Asn Leu

35	40	45

Leu	Ala	Glu	Lys	Val	Glu	Gln	Leu	Met	Glu	Trp	Ser	Ser	Arg	Arg	Ser
	50					55					60				

- Ile Phe Arg Met Asn Gly Asp Lys Phe Arg Lys Phe Ile Lys Ala Pro
- Pro Arg Asn Tyr Ser Met Ile Val Met Phe Thr Ala Leu Gln Pro Gln
- Arg Gln Cys Ser Val Cys Arg Gln Ala Asn Glu Glu Tyr Gln Ile Leu
- Ala Asn Ser Trp Arg Tyr Ser Ser Ala Phe Cys Asn Lys Leu Phe Phe
- Ser Met Val Asp Tyr Asp Glu Gly Thr Asp Val Phe Gln Gln Leu Asn
- Met Asn Ser Ala Pro Thr Phe Met His Phe Pro Pro Lys Gly Arg Pro
- Lys Arg Ala Asp Thr Phe Asp Leu Gln Arg Ile Gly Phe Ala Ala Glu
- Gln Leu Ala Lys Trp Ile Ala Asp Arg Thr Asp Val His Ile Arg Val
- Phe Arg Pro Pro Asn Tyr Ser Gly Thr Ile Ala Leu Ala Leu Leu Val
- Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu Glu Phe
- Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile Val Phe
- Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro Pro Tyr
- Ala His Lys Asn Pro His Asn Gly Gln Val Ser Tyr Ile His Gly Ser
- Ser Gln Ala Gln Phe Val Ala Glu Ser His Ile Ile Leu Val Leu Asn

Ala Ile Thr Met Gly Met Val Leu Leu Asn Glu Ala Ala Thr Ser 295 290 Lys Gly Asp Val Gly Lys Arg Arg Thr Phe Ile Ile Cys Leu Val Gly 315 310 305 Leu Gly Leu Val Val Phe Phe Phe Ser Phe Leu Leu Ser Ile Phe Arg 330 325 Ser Lys Tyr His Gly Tyr Pro Tyr Ser Asp Leu Asp Phe Glu <210> 30 <211> 347 <212> PRT <213> Drosophila melanogaster <400> 30 Met Arg Leu Leu His Lys Thr Leu Leu Ser Gly Leu Leu Val Val Ala Leu Phe Ala Ile Tyr Ala Ala Gln Ser Lys Ser Lys Thr Gly Leu 20 Ser Leu Ser Glu Lys Val Gln Asn Leu Val Asp Met Asn Ala Lys Lys 40 Pro Leu Leu Arg Phe Asn Gly Pro Lys Phe Arg Glu Tyr Val Lys Ser 50 55 Ala Pro Arg Asn Tyr Ser Met Ile Val Met Leu Thr Ala Leu Ala Pro 75 70 Ser Arg Gln Cys Gln Ile Cys Arg His Ala His Asp Glu Phe Ala Ile 90 Val Ala Asn Ser Tyr Arg Phe Ser Ser Thr Tyr Ser Asn Lys Leu Phe 100 Phe Ala Met Val Asp Phe Asp Asp Gly Ser Glu Val Phe Gln Leu Leu 115 120 Arg Leu Asn Thr Ala Pro Val Phe Met His Phe Pro Ala Lys Gly Lys

135

130

Pro 145	Lys	СТУ	Ala	Asp	150	Met	Asp	IIe	HIS	155	vai	GIY	Pne	Ala	160
Asp	Ser	Ile	Ala	Lys 165	Phe	Val	Ala	Glu	Arg 170	Thr	Asp	Ile	Thr	Ile 175	Arg
Ile	Phe	Arg	Pro 180	Pro	Asn	Tyr	Ser	Gly 185	Thr	Val	Ala	Met	Ile 190	Thr	Leu
Val	Ala	Leu 195	Val	Gly	Ser	Phe	Leu 200	Tyr	Ile	Arg	Arg	Asn 205	Asn	Leu	Glu
Phe	Leu 210	Tyr	Asn	Lys	Asn	Leu 215	Trp	Gly	Ala	Ile	Ala 220	Val	Phe	Phe	Cys
Phe 225	Ala	Met	Ile	Ser	Gly 230	Gln	Met	Trp	Asn	His 235	Ile	Arg	Gly	Pro	Pro 240
Leu	Val	His	Lys	Ser 245	Gln	Asn	Gly	Gly	Val 250	Ala	Tyr	Ile	His	Gly 255	Ser
Ser	Gln	Gly	Gln 260	Leu	Val	Val	Glu	Thr 265	Tyr	Ile	Val	Met	Phe 270	Leu	Asn
Ala	Met	Ile 275	Val	Leu	Gly	Met	Ile 280	Leu	Leu	Ile	Glu	Ser 285	Gly	Thr	Pro
Lys	Ala 290	His	Asn	Lys	Asn	Arg 295	Ile	Met	Ala	Met	Thr 300	Gly	Leu	Val	Leu
Leu 305	Thr	Val	Phe	Phe	Ser 310	Phe	Leu	Leu	Ser	Val 315	Phe	Arg	Ser	Lys	Ala 320
Gln	Gly	Tyr	Pro	Tyr 325	Ile	Ser	Cys	Ser	Asn 330		Ile	Asp	Cys	Ser 335	
Val	Pro	Val	Gln 340	Val	His	Pro	Ile	Ser 345		Leu					
<21 <21		31 331													
<21 <21		PRT Caen	orha	bdit	is e	lega	ns								
<40	0>	31													

Met Leu Leu Ala Val Tyr Glu Ser Ala Gln Gln Gln Thr Leu Glu Asp 1 5 10 15

			20					25					30			
Phe	Asn	Met 35	Asp	Lys	Trp	Lys	Thr 40	Leu	Val	Arg	Met	Gln 45	Pro	Arg	Asn	
Tyr	Ser 50	Met	Ile	Val	Met	Phe 55	Thr	Ala	Leu	Ser	Pro 60	Gly	Val	Gln	Cys	
Pro 65	Ile	Cys	Lys	Pro	Ala 70	Tyr	Asp	Glu	Phe	Met 75	Ile	Val	Ala	Asn	Ser 80	
His	Arg	Tyr	Thr	Ser 85	Ser	Glu	Gly	Asp	Arg 90	Arg	Lys	Val	Phe	Phe 95	Gly	
Ile	Val	Asp	Tyr 100	Glu	Asp	Ala	Pro	Gln 105	Ile	Phe	Gln	Gln	Met 110	Asn	Leu	
Asn	Thr	Ala 115	Pro	Ile	Leu	Tyr	His 120	Phe	Gly	Pro	Lys	Leu 125	Gly	Ala	Lys	
Lys	Arg 130	Pro	Glu	Gln	Met	Asp 135	Phe	Gln	Arg	Gln	Gly 140	Phe	Asp	Ala	Asp	
Ala 145	Ile	Gly	Arg	Phe	Val 150	Ala	Asp	Gln	Thr	Glu 155	Val	His	Val	Arg	Val 160	
Ile	Arg	Pro	Pro	Asn 165	Tyr	Thr	Ala	Pro	Val 170	Val	Ile	Ala	Leu	Phe 175	Val	
Ala	Leu	Leu	Leu 180	Gly	Met	Leu	Tyr	Met 185	Lys	Arg	Asn	Ser	Leu 190	Asp	Phe	
Leu	Phe	Asn 195	Arg	Thr	Val	Trp	Gly 200	Phe	Val	Cys	Leu	Ala 205	Ile	Thr	Phe	
Ile	Phe 210	Met	Ser	Gly	Gln	Met 215	Trp	Asn	His	Ile	Arg 220	Gly	Pro	Pro	Phe	
Met 225	Ile	Thr	Asn	Pro	Asn 230	Thr	Lys	Glu	Pro	Ser 235	Phe	Ile	His	Gly	Ser 240	
Thr	Gln	Phe	Gln	Leu 245	Ile	Ala	Glu	Thr	Tyr 250	Ile	Val	Gly	Leu	Leu 255	Tyr	

Lys Val Gln Asn Leu Val Asp Leu Thr Ser Arg Gln Ser Ile Val Lys

Ala Leu Ile Ala Ile Gly Phe Ile Cys Val Asn Glu Ala Ala Asp Gln 260 265 270

Ser Asn Ser Lys Asp Arg Lys Asn Ala Gly Lys Lys Leu Asn Pro Leu 275 280 285

Ser Leu Leu Asn Ile Pro Thr Asn Thr Leu Ala Ile Ala Gly Leu Val 290 295 300

Cys Ile Cys Val Phe Phe Ser Phe Leu Leu Ser Val Phe Arg Ser Lys 305 310 315 320

Tyr Arg Gly Tyr Pro Tyr Ser Phe Leu Phe Ala 325 330

<210> 32

<211> 350

<212> PRT

<213> Saccharomyces cerevisiae

<400> 32

Met Asn Trp Leu Phe Leu Val Ser Leu Val Phe Phe Cys Gly Val Ser
1 10 15

Thr His Pro Ala Leu Ala Met Ser Ser Asn Arg Leu Leu Lys Leu Ala 20 25 30

Asn Lys Ser Pro Lys Lys Ile Ile Pro Leu Lys Asp Ser Ser Phe Glu 35 40 45

Asn Ile Leu Ala Pro Pro His Glu Asn Ala Tyr Ile Val Ala Leu Phe 50 60

Thr Ala Thr Ala Pro Glu Ile Gly Cys Ser Leu Cys Leu Glu Leu Glu 65 70 75 80

Ser Glu Tyr Asp Thr Ile Val Ala Ser Trp Phe Asp Asp His Pro Asp 85 90 95

Ala Lys Ser Ser Asn Ser Asp Thr Ser Ile Phe Phe Thr Lys Val Asn 100 105 110

Leu Glu Asp Pro Ser Lys Thr Ile Pro Lys Ala Phe Gln Phe Phe Gln 115 120 125

Leu Asn Asn Val Pro Arg Leu Phe Ile Phe Lys Pro Asn Ser Pro Ser

130 135 140

Ile 145	Leu	Asp	His	Ser	Val 150	Ile	Ser	Ile	Ser	Thr 155	Asp	Thr	Gly	Ser	Glu 160
Arg	Met	Lys	Gln	Ile 165	Ile	Gln	Ala	Ile	Lys 170	Gln	Phe	Ser	Gln	Val 175	Asn
Asp	Phe	Ser	Leu 180	His	Leu	Pro	Met	Asp 185	Trp	Thr	Pro	Ile	Ile 190	Thr	Ser
Thr	Ile	Ile 195	Thr	Phe	Ile	Thr	Val 200	Leu	Leu	Phe	Lys	Lys 205	Gln	Ser	Lys
Leu	Met 210	Phe	Ser	Ile	Ile	Ser 215	Ser	Arg	Ile	Ile	Trp 220	Ala	Thr	Leu	Ser
Thr 225	Phe	Phe	Ile	Ile	Cys 230	Met	Ile	Ser	Ala	Tyr 235	Met	Phe	Asn	Gln	Ile 240
Arg	Asn	Thr	Gln	Leu 245	Ala	Gly	Val	Gly	Pro 250	Lys	Gly	Glu	Val	Met 255	Tyr
Phe	Leu	Pro	Asn 260	Glu	Phe	Gln	His	Gln 265	Phe	Ala	Ile	Glu	Thr 270	Gln	Val
Met	Val	Leu 275	Ile	Tyr	Gly	Thr	Leu 280	Ala	Ala	Leu	Val	Val 285	Val	Leu	Val
Lys	Gly 290	Ile	Gln	Phe	Leu	Arg 295	Ser	His	Leu	Tyr	Pro 300	Glu	Thr	Lys	Lys
Ala 305	Tyr	Phe	Ile	Asp	Ala 310	Ile	Leu	Ala	Ser	Phe 315	Cys	Ala	Leu	Phe	Ile 320
Tyr	Val	Phe	Phe	Ala 325	Ala	Leu	Thr	Thr	Val 330	Phe	Thr	Ile	Lys	Ser 335	Pro
Ala	Tyr	Pro	Phe 340	Pro	Leu	Leu	Arg	Leu 345	Ser	Ala	Pro	Phe	Lys 350		
<210	0> :	33													
<21		332													

<400> 33

<212> PRT

<213> Saccharomyces cerevisiae

Met 1	Lys	Trp	Cys	Ser 5	Thr	Tyr	Ile	Ile	Ile 10	Trp	Leu	Ala	Ile	Ile 15	Phe
His	Lys	Phe	Gln 20	Lys	Ser	Thr	Ala	Thr 25	Ala	Ser	His	Asn	Ile 30	Asp	Asp
Ile	Leu	Gln 35	Leu	Lys	Asp	Asp	Thr 40	Gly	Val	Ile	Thr	Val 45	Thr	Ala	Asp
Asn	Туг 50	Pro	Leu	Leu	Ser	Arg 55	Gly	Val	Pro	Gly	Tyr 60	Phe	Asn	Ile	Leu
Tyr 65	Ile	Thr	Met	Arg	Gly 70	Thr	Asn	Ser	Asn	Gly 75	Met	Ser	Cys	Gln	Leu 80
Cys	His	Asp	Phe	Glu 85	Lys	Thr	Tyr	His	Ala 90	Val	Ala	Asp	Val	Ile 95	Arg
Ser	Gln	Ala	Pro 100	Gln	Ser	Leu	Asn	Leu 105	Phe	Phe	Thr	Val	Asp 110	Val	Asn
Glu	Val	Pro 115	Gln	Leu	Val	Lys	Asp 120	Leu	Lys	Leu	Gln	Asn 125	Val	Pro	His
Leu	Val 130	Val	Tyr	Pro	Pro	Ala 135	Glu	Ser	Asn	Lys	Gln 140	Ser	Gln	Phe	Glu
Trp 145	Lys	Thr	Ser	Pro	Phe 150	Tyr	Gln	Tyr	Ser	Leu 155	Val	Pro	Glu	Asn	Ala 160
Glu	Asn	Thr	Leu	Gln 165	Phe	Gly	Asp	Phe	Leu 170	Ala	Lys	Ile	Leu	Asn 175	Ile
Ser	Ile	Thr	Val 180	Pro	Gln	Ala	Phe	Asn 185	Val	Gln	Glu	Phe	Val 190	Tyr	Tyr
Phe	Val	Ala 195	Cys	Met	Val	Val	Phe 200	Ile	Phe	Ile	Lys	Lys 205	Val	Ile	Leu
Pro	Lys 210	Val	Thr	Asn	Lys	Trp 215	Lys	Leu	Phe	Ser	Met 220		Leu	Ser	Leu
Gly 225	Ile	Leu	Leu	Pro	Ser 230	Ile	Thr	Gly	Tyr	Lys 235		Val	Glu	Met	Asn 240

Ala Ile Pro Phe Ile Ala Arg Asp Ala Lys Asn Arg Ile Met Tyr Phe 245 250 Ser Gly Gly Ser Gly Trp Gln Phe Gly Ile Glu Ile Phe Ser Val Ser Leu Met Tyr Ile Val Met Ser Ala Leu Ser Val Leu Leu Ile Tyr Val 275 280 Pro Lys Ile Ser Cys Val Ser Glu Lys Met Arg Gly Leu Leu Ser Ser 290 295 Phe Leu Ala Cys Val Leu Phe Tyr Phe Phe Ser Tyr Phe Ile Ser Cys 315 305 310 Tyr Leu Ile Lys Asn Pro Gly Tyr Pro Ile Val Phe 325 <210> 34 <211> 108 <212> PRT <213> Homo sapiens <400> 34 Leu Val Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu Glu Phe Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile 25 Val Phe Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro 35 40 Pro Tyr Ala His Lys Asn Pro His Asn Gly Gln Val Ser Tyr Ile His 50 55 60 Gly Ser Ser Gln Ala Gln Phe Val Ala Glu Ser His Ile Ile Leu Val 70 75 80 65 Leu Asn Ala Ala Ile Thr Met Gly Met Val Leu Leu Asn Glu Ala Ala 85 90

<210> 35 <211> 142 100

105

Thr Ser Lys Gly Asp Val Gly Lys Arg Arg Thr Phe

<212> PRT <213> Homo sapiens

<400> 35

Leu Val Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu

Glu Phe Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile 25

Val Phe Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro 40

Pro Tyr Ala His Lys Asn Pro His Asn Gly Gln Val Ser Tyr Ile His

Gly Ser Ser Gln Ala Gln Phe Val Ala Glu Ser His Ile Ile Leu Val

Leu Asn Ala Ile Thr Met Gly Met Val Leu Leu Asn Glu Ala Ala

Thr Ser Lys Gly Asp Val Gly Lys Arg Ile Ile Cys Leu Val Gly 100 105

Leu Gly Leu Val Val Phe Phe Phe Ser Phe Leu Leu Ser Ile Phe Arg 125 115 120

Ser Lys Tyr His Gly Tyr Pro Tyr Ser Asp Leu Asp Phe Glu 130 135 140

<210> 36

<211> 141

<212> PRT

<213> Homo sapiens

<400> 36

Leu Val Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu 5 10

Glu Phe Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile 20 25

Val Phe Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro

Pro Tyr Ala His Lys Asn Pro His Asn Gly Gln Val Ser Tyr Ile His

55 50 60

Gly Ser Ser Gln Ala Gln Phe Val Ala Glu Ser His Ile Ile Leu Val

Leu Asn Ala Ala Ile Thr Met Gly Met Val Leu Leu Asn Glu Ala Ala 85 90

Thr Ser Lys Gly Asp Val Gly Lys Arg Arg Ile Ile Cys Leu Val Gly 105

Leu Gly Leu Val Val Phe Phe Phe Ser Phe Leu Leu Ser Ile Phe Arg 120

Ser Lys Tyr His Gly Tyr Pro Tyr Ser Phe Leu Ile Lys 135

<210> 37

<211> 63

<212> PRT

<213> Homo sapiens

<400> 37

Leu Val Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu 5 10

Glu Phe Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile 20 25

Val Phe Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro 35 40 45

Pro Tyr Ala His Lys Asn Pro His Asn Gly Gln Val Leu Phe Asn 50 55

<210> 38

<211> 102 <212> PRT <213> Homo sapiens

<400> 38

Leu Val Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu

Glu Phe Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile 20 25

Val Phe Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro 35 40 45

Pro Tyr Ala His Lys Asn Pro His Asn Gly Gln Val Phe Asn His Ser 50 55 60

Gly Thr Leu Cys Ser Glu Pro Glu Lys Leu Ile Asp Phe Ile His Ile 65 70 75 80

Tyr Val Tyr Gly Phe Leu Asp Asn Tyr Cys Arg Cys Arg Tyr His His 85 90 95

Gly Asp Gly Ser Ser Lys 100

<210> 39

<211> 102

<212> PRT

<213> Homo sapiens

<400> 39

Leu Val Ser Leu Val Gly Gly Leu Leu Tyr Leu Arg Arg Asn Asn Leu 1 5 10 15

Glu Phe Ile Tyr Asn Lys Thr Gly Trp Ala Met Val Ser Leu Cys Ile 20 25 30

Val Phe Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg Gly Pro 35 40 45

Pro Tyr Ala His Lys Asn Pro His Asn Gly Gln Val Phe Asn His Ser 50 55 60

Gly Thr Leu Cys Ser Glu Pro Glu Lys Leu Ile Asp Phe Ile His Ile 65 70 75 80

Tyr Val Tyr Gly Phe Leu Asp Asn Tyr Cys Arg Cys Arg Tyr His His 85 90 95

Gly Asp Gly Ser Ser Lys 100

<210> 40

<211> 2871

<212> DNA

<213> Homo sapiens

<400> 40

atgeceegeg teteggegee tttggtgetg etteetgegt ggetegtgat ggtegeetge 60 120 agcccgcact ccttgaggat cgctgctatc ttggacgacc ccatggagtg cagcagaggg gageggetet ecateaceet ggecaagaae egeateaaee gegeteetga gaggetggge 180 aaggecaagg tegaagtgga catetttgag etteteagag acagegagta egagaetgea 240 300 gaaaccatgt gtcagatect ceccaagggg gtggtegetg teeteggaee ategtecage 360 ccagcctcca gctccatcat cagcaacatc tgtggagaga aggaggtccc tcacttcaaa gtggccccag aggagttcgt caagttccag ttccagagat tcacaaccct gaacctccac 420 cccagcaaca ctgacatcag cgtggctgta gctgggatcc tgaacttctt caactgcacc 480 accgcctgcc tcatctgtgc caaagcagaa tgccttttaa acctagagaa gctgctccgg 540 600 caatteetta tetecaagga caegetgtee gteegeatge tggatgacae eegggaceee accccgctcc tcaaggagat ccgggacgac aagaccgcca ccatcatcat ccacgccaac 660 720 gcctccatgt cccacaccat cctcctgaag gcagccgaac ttgggatggt gtcagcctat 780 tacacataca tetteactaa tettggagtte teaeteeaga gaacggacag cettgtggat gatcgtgtca acatcctggg attttccatt ttcaaccaat cccatgcttt cttccaagag 840 tttgcccaga gcctcaacca gtcctggcag gagaactgtg accatgtgcc cttcactggg 900 cctgcgctct cctcggccct gctgtttgat gctgtctatg ctgtggtgac tgcggtgcag 960 gaactgaacc ggagccaaga gatcggcgtg aagcccttgt cctgcggctc ggcccagatc 1020 1080 tggcagcacg gcaccagcct catgaactac ctgcgcatgg tagaattgga aggtcttacc 1140 ggccacattg aattcaacag caaaggccag aggtccaact acgctttgaa aatcttacag 1200 ttcacaagga atggttttcg gcagatcggc cagtggcacg tggcagaggg cctcagcatg 1260 gacagecace tetatgeete caacateteg gacactetet teaacaceae cetggtegte 1320 accaccatcc tggaaaaccc atatttaatg ctgaagggga accaccagga gatggaaggc aatgaccgct acgagggctt ctgtgtggac atgctcaagg agctggcaga gatcctccga 1380 1440 ttcaactaca agatccgcct ggttggggat ggcgtgtacg gcgttcccga ggccaacggc 1500 acctggacgg gaatggtegg ggagetgate getaggaaag cagatetgge tgtggcagge ctcaccatta cagctgaacg ggagaaggtg attgatttct ctaagccatt catgactctg 1560 1620 ggaattagca ttctttaccg cattcatatg ggacgcaaac ccggctattt ctccttcctg 1680 gacccatttt ctccgggcgt ctggctcttc atgcttctag cctatctggc cgtcagctgt gteetettee tggtggeteg gttgaegeee taegagtggt acageecaca eccatgtgee 1740 1800 cagggccggt gcaacctcct ggtgaaccag tactccctgg gcaacagcct ctggtttccg gtcggggggt tcatgcagca gggctccacc atcgcccctc gcgccttatc cacccgctgt 1860 gtcagtggcg tctggtgggc attcacgctg atcatcatct catcctacac ggccaacctg 1920 1980 qcaqccttcc tgaccgtqca qcgcatggat gtgcccattg agtcagtgga tgacctggct gaccagaccg ccattgaata tggcacaatt cacggagget ccagcatgac cttcttccaa 2040 2100 aattcccgct accagaccta ccaacgcatg tggaattaca tgtattccaa gcagcccagc gtgttcgtga agagcacaga ggagggaatc gccagggtgt tgaattccaa ctacgccttc 2160 ctcctggaat ccaccatgaa cgagtactat cggcagcgaa actgcaacct cactcagatt 2220 gggggcctgc tggacaccaa gggctatggg attggcatgc cagtcggctc ggttttccgg 2280 gacgagtttg atctggccat tctccagctg caggagaaca accgcctgga gatcctgaag 2340 cgcaaatggt gggaaggagg gaagtgcccc aaggaggaag atcacagagc taaaggcctg 2400 qqaatqqaqa atattqqtqq aatctttqtq qttcttattt gtggcttaat cgtggccatt 2460 2520 tttatggcta tgttggagtt tttatggact ctcagacact cagaagcaac tgaggtgtcc 2580 qtctqccagq agatqqtqac cqaqctqcqc agcattatcc tqtqtcagga cagtatccac ccccgccggc ggcgccgc agtcccgccg ccccggcccc ccatccccga ggagcgccga 2640 2700 ccgcggggca cggcgacgct cagcaacggg aagctgtgcg gggcagggga gcccgaccag ctegegeaga gaetggegea ggaggeegee etggtggeee geggetgeae geacateege 2760 2820 gtctgccccg agtgccgccg cttccagggc ctgcgggcac ggccgtcgcc cgcccgcagc 2871 gaggagagcc tggagtggga gaaaaccacc aacagcagcg agcccgagta g

<210> 41

<211> 956

<212> PRT

<213> Homo sapiens

<400> 41

Met Pro Arg Val Ser Ala Pro Leu Val Leu Pro Ala Trp Leu Val 1 5 10 15

Met Val Ala Cys Ser Pro His Ser Leu Arg Ile Ala Ala Ile Leu Asp 20 25 30

Asp Pro Met Glu Cys Ser Arg Gly Glu Arg Leu Ser Ile Thr Leu Ala 35 40 45

Lys Asn Arg Ile Asn Arg Ala Pro Glu Arg Leu Gly Lys Ala Lys Val 50 55 60

Glu Val Asp Ile Phe Glu Leu Leu Arg Asp Ser Glu Tyr Glu Thr Ala 65 70 75 80

Glu	Thr	Met	Суѕ	Gln 85	Ile	Leu	Pro	Lys	Gly 90	Val	Val	Ala	Val	Leu 95	Gly
Pro	Ser	Ser	Ser 100	Pro	Ala	Ser	Ser	Ser 105	Ile	Ile	Ser	Asn	Ile 110	Cys	Gly
Glu	Lys	Glu 115	Val	Pro	His	Phe	Lys 120	Val	Ala	Pro	Glu	Glu 125	Phe	Val	Lys
Phe	Gln 130	Phe	Gln	Arg	Phe	Thr 135	Thr	Leu	Asn	Leu	His 140	Pro	Ser	Asn	Thr
Asp 145	Ile	Ser	Val	Ala	Val 150	Ala	Gly	Ile	Leu	Asn 155	Phe	Phe	Asn	Cys	Thr 160
Thr	Ala	Cys	Leu	Ile 165	Cys	Ala	Lys	Ala	Glu 170	Cys	Leu	Leu	Asn	Leu 175	Glu
Lys	Leu	Leu	Arg 180	Gln	Phe	Leu	Ile	Ser 185	Lys	Asp	Thr	Leu	Ser 190	Val	Arg
Met	Leu	Asp 195	Asp	Thr	Arg	Asp	Pro 200	Thr	Pro	Leu	Leu	Lys 205	Glu	Ile	Arg
Asp	Asp 210	Lys	Thr	Ala	Thr	Ile 215	Ile	Ile	His	Ala	Asn 220	Ala	Ser	Met	Ser
His 225	Thr	Ile	Leu	Leu	Lys 230	Ala	Ala	Glu	Leu	Gly 235	Met	Val	Ser	Ala	Tyr 240
Tyr	Thr	Tyr	Ile	Phe 245	Thr	Asn	Leu	Glu	Phe 250	Ser	Leu	Gln	Arg	Thr 255	Asp
Ser	Leu	Val	Asp 260	Asp	Arg	Val	Asn	Ile 265	Leu	Gly	Phe	Ser	Ile 270	Phe	Asn
Gln	Ser	His 275	Ala	Phe	Phe	Gln	Glu 280	Phe	Ala	Gln	Ser	Leu 285	Asn	Gln	Ser
Trp	Gln 290	Glu	Asn	Cys	Asp	His 295	Val	Pro	Phe	Thr	Gly 300	Pro	Ala	Leu	Ser
Ser 305	Ala	Leu	Leu	Phe	Asp 310	Ala	Val	Tyr	Ala	Val 315	Val	Thr	Ala	Val	Gln 320

Glu Leu	Asn	Arg	Ser 325	Gln	Glu	Ile	Gly	Val 330	Lys	Pro	Leu	Ser	Cys 335	Gly
Ser Ala	Gln	Ile 340	Trp	Gln	His	Gly	Thr 345	Ser	Leu	Met	Asn	Tyr 350	Leu	Arg
Met Val	Glu 355	Leu	Glu	Gly	Leu	Thr 360	Gly	His	Ile	Glu	Phe 365	Asn	Ser	Lys
Gly Gln 370	-	Ser	Asn	Tyr	Ala 375	Leu	Lys	Ile	Leu	Gln 380	Phe	Thr	Arg	Asn
Gly Phe 385	Arg	Gln	Ile	Gly 390	Gln	Trp	His	Val	Ala 395	Glu	Gly	Leu	Ser	Met 400
Asp Ser	His	Leu	Tyr 405	Ala	Ser	Asn	Ile	Ser 410	Asp	Thr	Leu	Phe	Asn 415	Thr
Thr Leu	Val	Val 420	Thr	Thr	Ile	Leu	Glu 425	Asn	Pro	Tyr	Leu	Met 430	Leu	Lys
Gly Asn	His 435	Gln	Glu	Met	Glu	Gly 440	Asn	Asp	Arg	Tyr	Glu 445	Gly	Phe	Cys
Val Asp 450		Leu	Lys	Glu	Leu 455	Ala	Glu	Ile	Leu	Arg 460	Phe	Asn	Tyr	Lys
Ile Arg 465	Leu	Val	Gly	Asp 470	Gly	Val	Tyr	Gly	Val 475	Pro	Glu	Ala	Asn	Gly 480
Thr Trp	Thr	Gly	Met 485	Val	Gly	Glu	Leu	Ile 490	Ala	Arg	Lys	Ala	Asp 495	Leu
Ala Val	Ala	Gly 500	Leu	Thr	Ile	Thr	Ala 505	Glu	Arg	Glu	Lys	Val 510	Ile	Asp
Phe Ser	Lys 515	Pro	Phe	Met	Thr	Leu 520	Gly	Ile	Ser	Ile	Leu 525	Tyr	Arg	Ile
His Met 530		Arg	Lys	Pro	Gly 535	Tyr	Phe	Ser	Phe	Leu 540	Asp	Pro	Phe	Ser
Pro Gly 545	Val	Trp	Leu	Phe 550	Met	Leu	Leu	Ala	Tyr 555	Leu	Ala	Val	Ser	Cys 560

Val	Leu	Phe	Leu	Val 565	Ala	Arg	Leu	Thr	Pro 570	Tyr	Glu	Trp	Tyr	Ser 575	Pro
His	Pro	Cys	Ala 580	Gln	Gly	Arg	Cys	Asn 585	Leu	Leu	Val	Asn	Gln 590	Tyr	Ser
Leu	Gly	Asn 595	Ser	Leu	Trp	Phe	Pro 600	Val	Gly	Gly	Phe	Met 605	Gln	Gln	Gly
Ser	Thr 610	Ile	Ala	Pro	Arg	Ala 615	Leu	Ser	Thr	Arg	Cys 620	Val	Ser	Gly	Val
Trp 625	Trp	Ala	Phe	Thr	Leu 630	Ile	Ile	Ile	Ser	Ser 635	туr	Thr	Ala	Asn	Leu 640
Ala	Ala	Phe	Leu	Thr 645	Val	Gln	Arg	Met	Asp 650	Val	Pro	Ile	Glu	Ser 655	Val
Asp	Asp	Leu	Ala 660	Asp	Gln	Thr	Ala	Ile 665	Glu	Tyr	Gly	Thr	Ile 670	His	Gly
Gly	Ser	Ser 675	Met	Thr	Phe	Phe	Gln 680	Asn	Ser	Arg	Tyr	Gln 685	Thr	Tyr	Gln
Arg	Met 690	Trp	Asn	Tyr	Met	Tyr 695	Ser	Lys	Gln	Pro	Ser 700	Val	Phe	Val	Lys
Ser 705	Thr	Glu	Glu	Gly	Ile 710	Ala	Arg	Val	Leu	Asn 715	Ser	Asn	Tyr	Ala	Phe 720
Leu	Leu	Glu	Ser	Thr 725	Met	Asn	Glu	Tyr	Tyr 730	Arg	Gln	Arg	Asn	Cys 735	Asn
Leu	Thr	Gln	Ile 740	Gly	Gly	Leu	Leu	Asp 745	Thr	Lys	Gly	Tyr	Gly 750	Ile	Gly
Met	Pro	Val 755	Gly	Ser	Val	Phe	Arg 760	Asp	Glu	Phe	Asp	Leu 765	Ala	Ile	Leu
Gln	Leu 770	Gln	Glu	Asn	Asn	Arg 775	Leu	Glu	Ile	Leu	Lys 780	Arg	Lys	Trp	Trp
Glu 785	Gly	Gly	Lys	Cys	Pro 790	Lys	Glu	Glu	Asp	His 795	Arg	Ala	Lys	Gly	Leu 800
Glv	Met	Glu	Asp	Ile	Glv	Glv	Ile	Phe	Val	Val	Leu	Ile	Cvs	Glv	Leu

Ile	Val	Ala	Ile 820	Phe	Met	Ala	Met	Leu 825	Glu	Phe	Leu	Trp	Thr 830	Leu	Arg	
His	Ser	Glu 835	Ala	Thr	Glu	Val	Ser 840	Val	Cys	Gln	Glu	Met 845	Val	Thr	Glu	
Leu	Arg 850	Ser	Ile	Ile	Leu	Cys 855	Gln	Asp	Ser	Ile	His 860	Pro	Arg	Arg	Arg	
Arg 865	Ala	Ala	Val	Pro	Pro 870	Pro	Arg	Pro	Pro	Ile 875	Pro	Glu	Glu	Arg	Arg 880	
Pro	Arg	Gly	Thr	Ala 885	Thr	Leu	Ser	Asn	Gly 890	Lys	Leu	Cys	Gly	Ala 895	Gly	
Glu	Pro	Asp	Gln 900	Leu	Ala	Gln	Arg	Leu 905	Ala	Gln	Glu	Ala	Ala 910	Leu	Val	
Ala	Arg	Gly 915	Cys	Thr	His	Ile	Arg 920	Val	Cys	Pro	Glu	Cys 925	Arg	Arg	Phe	
Gln	Gly 930	Leu	Arg	Ala	Arg	Pro 935	Ser	Pro	Ala	Arg	Ser 940	Glu	Glu	Ser	Leu	
Glu 945	Trp	Glu	Lys	Thr	Thr 950	Asn	Ser	Ser	Glu	Pro 955	Glu					
<210 <211 <211 <211	L> : 2> 1	42 100 DNA Homo	sap:	iens							٠					
<400 gcgt		42 agc	atgt	gaate	gt aa	atcc	cagto	g cti	ttgg	gaca	ccg	aggc	agg .	agga	tcactc	60
gage	cca	gga (gtgc	gagg	ct g	cagt	gagtt	t at	gatc	atac						100
<210 <211 <211 <211	L> : 2> 1	43 212 DNA Homo	sap:	iens												
<400 agai		43 tct	tctc	tgcc	ag g	tgac	gctag	g ac	ttca	ggaa	gac	cccc	cat	ttct	gctcca	60
ctc	etgg	gct	tgga	gaaga	ag ta	acag	ctgc	ct.	tgac	tggt	ggg-	acct	ttt	gctg	gctagg	120
ggt	gatg	gga (gaag	caag	ag a	ggga	tcca	c ac	acct	gcgc	tta	gctt	tct	atga	cctggg	180

cggatggagg ccaaaggtaa ggtgggatga ga	212
<210> 44 <211> 5 <212> PRT <213> Homo sapiens	
<400> 44	
Met Glu Ala Lys Ala 1 5	
<210> 45 <211> 118 <212> DNA <213> Homo sapiens	
<400> 45 ccatgaggat tcatagaaga tgccccgcgt ctcggcgcct ttggtgctgc ttcctgcgtg	.60
gctcgtgatg gtcgcctgca gcccgcactc cttgaggatc ggtaagtgtg gcccagct	118
<210> 46 <211> 28 <212> PRT <213> Homo sapiens	
<400> 46	
Met Pro Arg Val Ser Ala Pro Leu Val Leu Leu Pro Ala Trp Leu Val 1 5 10 15	
Met Val Ala Cys Ser Pro His Ser Leu Arg Ile Ala 20 25	
<210> 47 <211> 193 <212> DNA <213> Homo sapiens	
<400> 47 gaaacccccc ccagctgcta tcttggacga ccccatggag tgcagcagag gggagcggct	60
ctccatcacc ctggccaaga accgcatcaa ccgcgctcct gagaggctgg gcaaggccaa	120
ggtcgaagtg gacatctttg agcttctcag agacagcgag tacgagactg cagaaaccag	180
tacgtagact ggg	193
<210> 48 <211> 55 <212> PRT <213> Homo sapiens	

<400> 48

Ala Ile Leu Asp Asp Pro Met Glu Cys Ser Arg Gly Glu Arg Leu Ser 1 10 15

Ile Thr Leu Ala Lys Asn Arg Ile Asn Arg Ala Pro Glu Arg Leu Gly 20 25 30

Lys Ala Lys Val Glu Val Asp Ile Phe Glu Leu Leu Arg Asp Ser Glu 35 40 45

Tyr Glu Thr Ala Glu Thr Met 50 55

<210> 49

<211> 3048

<212> DNA

<213> Homo sapiens

<400> 49 gcgtggtagc atgtgcctgt aatcccagtg ctttgggaca ccgaggcagg aggatcactc 60 gagcccagga gtgcgaggct gcagtgacgc tagacttcag gaagaccccc catttctgct 120 ccactcctgg gcttggagaa gagtacagct gctcttgact ggtgggacct tttgctggct 180 240 aggggtgatg ggagaagcaa gagagggatc cacacacctg cgcttagctt tctatgacct gggcggatgg aggccaaagc tgctatcttg gacgacccca tggagtgcag cagaggggag 300 cggctctcca tcaccctggc caagaaccgc atcaaccgcg ctcctgagag gctgggcaag 360 gccaaggtcg aagtggacat ctttgagctt ctcagagaca gcgagtacga gactgcagaa 420 accatgtgtc agatectece caagggggtg gtegetgtec teggaccate gtecagecca 480 540 gcctccagct ccatcatcag caacatctgt ggagagaagg aggtccctca cttcaaagtg gccccagagg agttcgtcaa gttccagttc cagagattca caaccctgaa cctccacccc 600 agcaacactg acatcagcgt ggctgtagct gggatcctga acttcttcaa ctgcaccacc 660 720 gcctgcctca tctgtgccaa agcagaatgc cttttaaacc tagagaagct gctccggcaa tteettatet ecaaggacae getgteegte egeatgetgg atgacaeeeg ggaceecaee 780 ccqctcctca aqqaqatccq qqacqacaaq accqccacca tcatcatcca cgccaacgcc 840 tecatqtece acaccatect cetgaaggea geegaacttg ggatggtgte ageetattae 900 960 acatacatct tcactaatct ggagttctca ctccagagaa cggacagcct tgtggatgat cgtgtcaaca tcctgggatt ttccattttc aaccaatccc atgctttctt ccaagagttt 1020

gcccagagcc tcaaccagtc ctggcaggag aactgtgacc atgtgccctt cactgggcct

gegeteteet eggeeetget gtttgatget gtetatgetg tggtgactge ggtgeaggaa

1080

1140

ctgaaccgga gccaagagat cggcgtgaag cccttgtcct gcggctcggc ccagatctgg 1200 1260 cagcacggca ccagcctcat gaactacctg cgcatggtag aattggaagg tcttaccggc cacattgaat tcaacagcaa aggccagagg tccaactacg ctttgaaaat cttacagttc 1320 1380 acaaggaatg gttttcggca gatcggccag tggcacgtgg cagagggcct cagcatggac 1440 agccacctct atgcctccaa catctcggac actctcttca acaccaccct ggtcgtcacc 1500 accatcctgg aaaacccata tttaatgctg aaggggaacc accaggagat ggaaggcaat gaccgctacg agggcttctg tgtggacatg ctcaaggagc tggcagagat cctccgattc 1560 aactacaaga teegeetggt tggggatgge gtgtaeggeg tteeegagge caaeggeace 1620 1680 tggacgggaa tggtcgggga getgatcget aggaaagcag atetggetgt ggcaggeete accattacag ctgaacggga gaaggtgatt gatttctcta agccattcat gactctggga 1740 1800 attagcattc tttaccgcat tcatatggga cgcaaacccg gctatttctc cttcctggac 1860 ccattttctc cgggcgtctg gctcttcatg cttctagcct atctggccgt cagctgtgtc etetteetgg tggeteggtt gaegeeetae gagtggtaca geceacacee atgtgeeeag 1920 1980 ggccggtgca acctcctggt gaaccagtac tccctgggca acagcctctg gtttccggtc 2040 ggggggttca tgcagcaggg ctccaccatc gcccctcgcg ccttatccac ccgctgtgtc 2100 agtggcgtct ggtgggcatt cacgctgatc atcatctcat cctacacggc caacctggca 2160 gccttcctga ccgtgcagcg catggatgtg cccattgagt cagtggatga cctggctgac 2220 cagaccgcca ttgaatatgg cacaattcac ggaggeteca gcatgacett ettecaaaat 2280 tecegetace agacetacea aegeatgtgg aattacatgt attecaagea geceagegtg 2340 ttcgtgaaga gcacagagga gggaatcgcc agggtgttga attccaacta cgccttcctc 2400 ctggaatcca ccatgaacga gtactatcgg cagcgaaact gcaacctcac tcagattggg 2460 ggcctgctgg acaccaaggg ctatgggatt ggcatgccag tcggctcggt tttccgggac 2520 gagtttgatc tggccattct ccagctgcag gagaacaacc gcctggagat cctgaagcgc 2580 aaatggtggg aaggagggaa gtgccccaag gaggaagatc acagagctaa aggcctggga 2640 atggagaata ttggtggaat ctttgtggtt cttatttgtg gcttaatcgt ggccattttt atggctatgt tggagttttt atggactctc agacactcag aagcaactga ggtgtccgtc 2700 2760 tgccaggaga tggtgaccga gctgcgcagc attatcctgt gtcaggacag tatccacccc 2820 egeeggegge gegeegeagt ceegeegeee eggeeeeeea teeeegagga gegeegaeeg eggggeaegg egaegeteag caaegggaag etgtgegggg eaggggagee egaeeagete 2880 2940 gegeagagae tggegeagga ggeegeeetg gtggeeegeg getgeaegea cateegegte

gccccgagt	gccgccgctt	ccagggcctg	cgggcacggc	cgtcgcccgc	ccgcagcgag	3000
agageetgg	aqtqqqaqaa	aaccaccaac	agcagcgagc	ccgagtag		3048

<210 <211 <212 <213	.>	50 933 PRT Homo	sapi	lens											
<400)>	50													
Met 1	Glu	Ala	Lys	Ala 5	Ala	Ile	Leu	Asp	Asp 10	Pro	Met	Glu	Cys	Ser 15	Arg
Gly	Glu	. Arg	Leu 20	Ser	Ile	Thr	Leu	Ala 25	Lys	Asn	Arg	Ile	Asn 30	Arg	Ala
Pro	Glu	Arg 35	Leu	Gly	Lys	Ala	Lys 40	Val	Glu	Val	Asp	Ile 45	Phe	Glu	Leu
Leu	Arg 50	Asp	Ser	Glu	Tyr	Glu 55	Thr	Ala	Glu	Thr	Met 60	Cys	Gln	Ile	Leu
Pro 65	Lys	Gly	Val	Val	Ala 70	Val	Leu	Gly	Pro	Ser 75	Ser	Ser	Pro	Ala	Ser 80
Ser	Ser	lle	Ile	Ser 85	Asn	Ile	Cys	Gly	Glu 90	Lys	Glu	Val	Pro	His 95	Phe
Lys	Val	Ala	Pro 100	Glu	Glu	Phe	Val	Lys 105	Phe	Gln	Phe	Gln	Arg 110	Phe	Thr
Thr	Leu	Asn 115	Leu	His	Pro	Ser	Asn 120	Thr	Asp	Ile	Ser	Val 125	Ala	Val	Ala
Gly	Ile 130	Leu	Asn	Phe	Phe	Asn 135	Cys	Thr	Thr	Ala	Cys 140	Leu	Ile	Cys	Ala
Lys 145	Ala	Glu	Cys	Leu	Leu 150	Asn	Leu	Glu	Lys	Leu 155	Leu	Arg	Gln	Phe	Leu 160
Ile	Ser	Lys	Asp	Thr 165	Leu	Ser	Val	Arg	Met 170	Leu	Asp	Asp	Thr	Arg 175	Asp
Pro	Thr	Pro	Leu	Leu	Lys	Glu	Ile	Arg	Asp	Asp	Lys	Thr	Ala	Thr	Ile

Ile Ile His Ala Asn Ala Ser Met Ser His Thr Ile Leu Leu Lys Ala

195 200 205

Ala Glu Leu Gly Met Val Ser Ala Tyr Tyr Thr Tyr Ile Phe Thr Asn

ALU	210	Lea	Cly		vul	215	1114	-1-	- , -		220				11011
Leu 225	Glu	Phe	Ser	Leu	Gln 230	Arg	Thr	Asp	Ser	Leu 235	Val	Asp	Asp	Arg	Val 240
Asn	Ile	Leu	Gly	Phe 245	Ser	Ile	Phe	Asn	Gln 250	Ser	His	Ala	Phe	Phe 255	Gln
Glu	Phe	Ala	Gln 260	Ser	Leu	Asn	Gln	Ser 265	Trp	Gln	Glu	Asn	Cys 270	Asp	His
Val	Pro	Phe 275	Thr	Gly	Pro	Ala	Leu 280	Ser	Ser	Ala	Leu	Leu 285	Phe	Asp	Ala
Val	Tyr 290	Ala	Val	Val	Thr	Ala 295	Val	Gln	Glu	Leu	Asn 300	Arg	Ser	Gln	Glu
Ile 305	Gly	Val	Lys	Pro	Leu 310	Ser	Cys	Gly	Ser	Ala 315	Gln	Ile	Trp	Gln	His 320
Gly	Thr	Ser	Leu	Met 325	Asn	Tyr	Leu	Arg	Met 330	Val	Glu	Leu	Glu	Gly 335	Leu
	-		340					345	-				Asn 350	-	
	_	355					360					365	Ile		
Trp	His 370	Val	Ala	Glu	Gly	Leu 375	Ser	Met	Asp	Ser	His 380	Leu	Tyr	Ala	Ser

Leu Glu Asn Pro Tyr Leu Met Leu Lys Gly Asn His Gln Glu Met Glu 405 410 415

Asn Ile Ser Asp Thr Leu Phe Asn Thr Thr Leu Val Val Thr Thr Ile

395

390

385

Gly Asn Asp Arg Tyr Glu Gly Phe Cys Val Asp Met Leu Lys Glu Leu 420 425 430

Ala Glu Ile Leu Arg Phe Asn Tyr Lys Ile Arg Leu Val Gly Asp Gly 435 440 445

Val	Tyr 450	Gly	Val	Pro	Glu	Ala 455	Asn	Gly	Thr	Trp	Thr 460	Gly	Met	Val	Gly
Glu 465	Leu	Ile	Ala	Arg	Lys 470	Ala	Asp	Leu	Ala	Val 475	Ala	Gly	Leu	Thr	Ile 480
Thr	Ala	Glu	Arg	Glu 485	Lys	Val	Ile	Asp	Phe 490	Ser	Lys	Pro	Phe	Met 495	Thr
Leu	Gly	Ile	Ser 500	Ile	Leu	Tyr	Arg	Ile 505	His	Met	Gly	Arg	Lys 510	Pro	Gly
Tyr	Phe	Ser 515	Phe	Leu	Asp	Pro	Phe 520	Ser	Pro	Gly	Val	Trp 525	Leu	Phe	Met
Leu	Leu 530	Ala	Tyr	Leu	Ala	Val 535	Ser	Cys	Val	Leu	Phe 540	Leu	Val	Ala	Arg
Leu 545	Thr	Pro	Tyr	Glu	Trp 550	Tyr	Ser	Pro	His	Pro 555	Cys	Ala	Gln	Gly	Arg 560
Cys	Asn	Leu	Leu	Val 565	Asn	Gln	Tyr	Ser	Leu 570	Gly	Asn	Ser	Leu	Trp 575	Phe
Pro	Val	Gly	Gly 580	Phe	Met	Gln	Gln	Gly 585	Ser	Thr	Ile	Ala	Pro 590	Arg	Ala
Leu	Ser	Thr 595	Arg	Cys	Val	Ser	Gly 600	Val	Trp	Trp	Ala	Phe 605	Thr	Leu	Ile
Ile	Ile 610	Ser	Ser	Tyr	Thr	Ala 615	Asn	Leu	Ala	Ala	Phe 620	Leu	Thr	Val	Gln
Arg 625	Met	Asp	Val	Pro	Ile 630	Glu	Ser	Val	Asp	Asp 635	Leu	Ala	Asp	Gln	Thr 640
Ala	Ile	Glu	Tyr	Gly 645	Thr	Ile	His	Gly	Gly 650	Ser	Ser	Met	Thr	Phe 655	Phe
Gln	Asn	Ser	Arg 660	Tyr	Gln	Thr	Tyr	Gln 665	Arg	Met	Trp	Asn	Tyr 670	Met	Tyr
Ser	Lys	Gln 675	Pro	Ser	Val	Phe	Val 680	Lys	Ser	Thr	Glu	Glu 685		Ile	Ala

Arg	Val 690	Leu	Asn	Ser	Asn	Tyr 695	Ala	Phe	Leu	Leu	Glu 700	Ser	Thr	Met	Asn
Glu 705	Tyr	Tyr	Arg	Gln	Arg 710	Asn	Cys	Asn	Leu	Thr 715	Gln	Ile	Gly	Gly	Leu 720
Leu	Asp	Thr	Lys	Gly 725	Tyr	Gly	Ile	Gly	Met 730	Pro	Val	Gly	Ser	Val 735	Phe
Arg	Asp	Glu	Phe 740	Asp	Leu	Ala	Ile	Leu 745	Gln	Leu	Gln	Glu	Asn 750	Asn	Arg
Leu	Glu	Ile 755	Leu	Lys	Arg	Lys	Trp 760	Trp	Glu	Gly	Gly	Lys 765	Cys	Pro	Lys
Glu	Glu 770	Asp	His	Arg	Ala	Lys 775	Gly	Leu	Gly	Met	Glu 780	Asn	Ile	Gly	Gly
Ile 785	Phe	Val	Val	Leu	Ile 790	Cys	Gly	Leu	Ile	Val 795	Ala	Ile	Phe	Met	Ala 800
Met	Leu	Glu	Phe	Leu 805	Trp	Thr	Leu	Arg	His 810	Ser	Glu	Ala	Thr	Glu 815	Val
Ser	Val	Cys	Gln 820	Glu	Met	Val	Thr	Glu 825	Leu	Arg	Ser	Ile	Ile 830	Leu	Cys
Gln	Asp	Ser 835	Ile	His	Pro	Arg	Arg 840	Arg	Arg	Ala	Ala	Val 845	Pro	Pro	Pro
Arg	Pro 850	Pro	Ile	Pro	Glu	Glu 855	Arg	Arg	Pro	Arg	Gly 860	Thr	Ala	Thr	Leu
Ser 865	Asn	Gly	Lys	Leu	Cys 870	Gly	Ala	Gly	Glu	Pro 875	Asp	Gln	Leu	Ala	Gln 880
Arg	Leu	Ala	Gln	Glu 885	Ala	Ala	Leu	Val	Ala 890	Arg	Gly	Cys	Thr	His 895	Ile
Arg	Val	Cys	Pro 900	Glu	Cys	Arg	Arg	Phe 905	Gln	Gly	Leu	Arg	Ala 910	Arg	Pro
Ser	Pro	Ala 915	Arg	Ser	Glu	Glu	Ser 920	Leu	Glu	Trp	Glu	Lys 925	Thr	Thr	Asn

Ser Ser Glu Pro Glu 930

<210> 51 <211> 3428 <212> DNA <213> Homo sapiens

<400> 51

60 ccacgcgtcc gacgccccc acccgggagg ggggagagag gcaaaaagta agagaggaaa aaaaatagca ggaagatggc gcccaccaag cccagctttc agcaggatcc ttccaggcga 120 gaacgtttac aagcattgag aaaggagaaa teeegagatg etgetegete eegeegggga 180 aaagaaaact ttgagttcta tgaattggcc aagttgttgc ctcttcctgc agccattacc 240 300 agccageteg acaaggeate cateattega ettacaatta getatetgaa aatgagggae tttgctaacc agggggaccc tccgtggaac ttgcgaatgg aaggccctcc acctaacaca 360 tcagtaaaag gtgcacagcg aaggagaagc cccagtgcac tagccattga agtatttgaa 420 480 gcacatttgg gaagccacat tttgcagtcc ctggatggct ttgtatttgc actaaatcag gaaggaaaat ttttgtacat ttccgaaaca gtctccatct acctaggcct ctcacaagtg 540 600 gagetgacag geageagtgt etttgaetat gteeaceceg gagateaegt ggagatgget gagcagctgg gcatgaagct ccccctggg cggggtctcc tgtcacaggg cactgctgag 660 720 gacggagcca getcagcate tteeteetet cagteggaga eeceegagee agtggagtea 780 accagececa gtetgetaae caetgacaae actettgage gtteettttt cateegaatg 840 aaatctactc tgaccaaacg cggtgtgcac atcaaatcat caggatataa ggtgattcac ataacaggcc ggctacgcct gagagtgtcg ctgtcccacg ggaggaccgt ccccagccaa 900 960 atcatgggtc tcgtggttgt tgcgcatgcc ttgcctcccc ctacgatcaa tgaagtcaga 1020 attgactgcc atatgttcgt cactcgagta aatatggacc tcaatatcat ttactgtgaa aataggatta gtgattatat ggatctgacc cctgtagata tcgtagggaa gagatgctac 1080 cacttcatee atgetgaaga egtggaggge ateaggeaca gteaettgga ettgetgaat 1140 1200 aagggtcagt gtgtgacaaa gtactatcgc tggatgcaga agaacggagg atatatttgg 1260 atacagteca gtgecaceat agetattaat gecaagaatg caaatgaaaa gaatateate tgggtgaatt accttcttag caatcctgag tacaaggaca cacccatgga catcgcacag 1320 1380 ctececeate tgeeggagaa aaetteegaa teeteggaga cateegaete tgagteagae 1440 tctaaagaca cctcaggtat tacagaggac aacgagaact ccaagtccga cgagaagggg aaccagtccg agaacagcga agacccggag cccgaccgga agaagtcggg caacgcgtgt 1500 1560 gacaacgaca tgaactgcaa cgacgacggc cacagctcca gtaacccgga cagccgcgac

1620 agegacgaca gettegagea eteggaettt gagaaceeca aggegggega ggaeggette 1680 ggtgctctgg gcgcgatgca gatcaaggtg gagcgctacg tggagagcga gtcggacctg 1740 eggetgeaga aetgegagte aeteaegtee gaeagegeea aggaetegga eagegeagge 1800 gaggcgggcg cgcaggcctc cagcaagcac cagaagcgca agaaaaggcg gaaacggcaa 1860 aagggeggea gegeeageeg eeggegeetg tecagegegt egageeeagg eggeetggae 1920 gegggeetgg tggageeece geggetgetg teeteeecea acagtgeete ggtgeteaag atcaagacgg agateteaga acceateaat ttegacaatg acageageat etggaactae 1980 2040 ccgcccaacc gggagatete caggaacgag tececetaca geatgaccaa geeceecage 2100 tetgageaet teeegteeee geagggegge ggeggtgggg gtggeggtgg eggggggetg 2160 cacgtggcca ttcccgactc ggtcctcacc ccgcccggcg ccgacggcgc ggccgcccgc 2220 aagactcagt teggegeete ggeeaeegeg geeetggeee eegtegeete egaeeegetg 2280 tcacccccgc teteggegte cccgcgggac aagcaccccg ggaacggcgg cgggggcggg 2340 ggcgggggcg gcggcggg gggcggcggc cccagcgcgt ccaactcctt gctgtacact 2400 ggggacctgg aggcgctgca gaggttgcag gcgggcaacg tcgtgctccc gctggtgcac agggtgaccg ggaccctggc cgccaccagc acggccgcgc agagggtcta caccacgggc 2460 2520 accatceget aegegeeege egaggtgace etggecatge agageaacet getgeeeaac 2580 gcgcacgctg ttaacttcgt ggacgttaac agccccggct ttggcctcga ccccaagacg 2640 cccatggaga tgctctacca ccacgtgcac cggctcaaca tgtcaggacc gttcggcggc 2700 gcagtgagcg cagctagcct gacgcagatg cccgccggca acgtgttcac cacggccgag 2760 ggactettet ecaegetgee etteceegte tacageaacg geatecaege ggeacagaet 2820 ctggagcgca aggaggactg aggcgccgcc cgtcctgggc ccggccaggc cccgcttgga 2880 ggaggcatcg teggcatttt egtttagace tttaatteta geaetttgaa ttegageagg teagegtett etetegeeae gaeggteeee attecaeeee etetttettt caeetgaett 2940 3000 attetttegt gtaaagatat gtttattttt tgeetteaga gggteagaeg aceagttgee tgccgttttg tcttcttcta aggtgtgtgt tgggttgttt tgctttcctt tgcatcttta 3060 ttaagatgtc tttcatgtgt atatgcctct gccatagaat actcagtctt gtggtcaaga 3120 3180 gagttctcaa gtgacaacca ttggggtttc ttcataaaga tcttgatatg atcaagatgg 3240 aaagagacaa gcataaacaa tgtgccctgt ttgactaagt caaatgaaat agggtggttt ttgtttctgt tcctaattcc tttaaaaaat agggggaata gtattttaga attttatgca 3300 3360 gaatttaatt ctctttttac ggttaagatt ttaagatttt cttacttgca cataaaaata

atttgggttc	ttaaacttaa	tttctggcct	gtgactagaa	tgtttaaaaa	aaaaaaaac	3420
cctcgtgc						3428

<210> 52 <211> 901 <212> PRT <213> Homo sapiens <400> 52 Met Ala Pro Thr Lys Pro Ser Phe Gln Gln Asp Pro Ser Arg Arg Glu 5

Arg Leu Gln Ala Leu Arg Lys Glu Lys Ser Arg Asp Ala Ala Arg Ser

Arg Arg Gly Lys Glu Asn Phe Glu Phe Tyr Glu Leu Ala Lys Leu Leu 35

Pro Leu Pro Ala Ala Ile Thr Ser Gln Leu Asp Lys Ala Ser Ile Ile 50 60

Arg Leu Thr Ile Ser Tyr Leu Lys Met Arg Asp Phe Ala Asn Gln Gly 70 75

Asp Pro Pro Trp Asn Leu Arg Met Glu Gly Pro Pro Pro Asn Thr Ser 90 85

Val Lys Gly Ala Gln Arg Arg Arg Ser Pro Ser Ala Leu Ala Ile Glu 105 100

Val Phe Glu Ala His Leu Gly Ser His Ile Leu Gln Ser Leu Asp Gly 120 115

Phe Val Phe Ala Leu Asn Gln Glu Gly Lys Phe Leu Tyr Ile Ser Glu 130 135 140

Thr Val Ser Ile Tyr Leu Gly Leu Ser Gln Val Glu Leu Thr Gly Ser 145 150 160

Ser Val Phe Asp Tyr Val His Pro Gly Asp His Val Glu Met Ala Glu 165 170

Gln Leu Gly Met Lys Leu Pro Pro Gly Arg Gly Leu Leu Ser Gln Gly 185

Thr Ala Glu Asp Gly Ala Ser Ser Ala Ser Ser Ser Gln Ser Glu

195	200	205

Thr	Pro 210	Glu	Pro	Val	Glu	Ser 215	Thr	Ser	Pro	Ser	Leu 220	Leu	Thr	Thr	Asp
Asn 225	Thr	Leu	Glu	Arg	Ser 230	Phe	Phe	Ile	Arg	Met 235	Lys	Ser	Thr	Leu	Thr 240
Lys	Arg	Gly	Val	His 245	Ile	Lys	Ser	Ser	Gly 250	Tyr	Lys	Val	Ile	His 255	Ile
Thr	Gly	Arg	Leu 260	Arg	Leu	Arg	Val	Ser 265	Leu	Ser	His	Gly	Arg 270	Thr	Val
Pro	Ser	Gln 275	Ile	Met	Gly	Leu	Val 280	Val	Val	Ala	His	Ala 285	Leu	Pro	Pro
Pro	Thr 290	Ile	Asn	Glu	Val	Arg 295	Ile	Asp	Cys	His	Met 300	Phe	Val	Thr	Arg
Val 305	Asn	Met	Asp	Leu	Asn 310	Ile	Ile	Tyr	Cys	Glu 315	Asn	Arg	Ile	Ser	Asp 320
Tyr	Met	Asp	Leu	Thr 325	Pro	Val	Asp	Ile	Val 330	Gly	Lys	Arg	Cys	Tyr 335	His
Phe	Ile	His	Ala 340	Glu	Asp	Val	Glu	Gly 345	Ile	Arg	His	Ser	His 350	Leu	Asp
Leu	Leu	Asn 355	Lys	Gly	Gln	Cys	Val 360	Thr	Lys	Tyr	Tyr	Arg 365	Trp	Met	Gln
Lys	Asn 370	Gly	Gly	Tyr	Ile	Trp 375	Ile	Gln	Ser	Ser	Ala 380	Thr	Ile	Ala	Ile
Asn 385		Lys	Asn	Ala	Asn 390	Glu	Lys	Asn	Ile	Ile 395	Trp	Val	Asn	Tyr	Leu 400
Leu	Ser	Asn	Pro	Glu 405	Tyr	Lys	Asp	Thr	Pro 410	Met	Asp	Ile	Ala	Gln 415	Leu
Pro	His	Leu	Pro 420	Glu	Lys	Thr	Ser	Glu 425	Ser	Ser	Glu	Thr	Ser 430		Ser
Glu	Ser	Asp 435	Ser	Lys	Asp	Thr	Ser 440	Gly	Ile	Thr	Glu	Asp 445		Glu	Asn

ser	Lуs 450	ser	Asp	GIU	rys	455	ASN	GIN	ser	GIU	460	ser	GIU	Asp	PIO
Glu 465	Pro	Asp	Arg	Lys	Lys 470	Ser	Gly	Asn	Ala	Cys 475	Asp	Asn	Asp	Met	Asn 480
Cys	Asn	Asp	Asp	Gly 485	His	Ser	Ser	Ser	Asn 490	Pro	Asp	Ser	Arg	Asp 495	Ser
Asp	Asp	Ser	Phe 500	Glu	His	Ser	Asp	Phe 505	Glu	Asn	Pro	Lys	Ala 510	Gly	Glu
Asp	Gly	Phe 515	Gly	Ala	Leu	Gly	Ala 520	Met	Gln	Ile	Lys	Val 525	Glu	Arg	Tyr
Val	Glu 530	Ser	Glu	Ser	Asp	Leu 535	Arg	Leu	Gln	Asn	Cys 540	Glu	Ser	Leu	Thr
Ser 545	Asp	Ser	Ala	Lys	Asp 550	Ser	Asp	Ser	Ala	Gly 555	Glu	Ala	Gly	Ala	Gln 560
Ala	Ser	Ser	Lys	His 565	Gln	Lys	Arg	Lys	Lys 570	Arg	Arg	Lys	Arg	Gln 575	Lys
Gly	Gly	Ser	Ala 580	Ser	Arg	Arg	Arg	Leu 585	Ser	Ser	Ala	Ser	Ser 590	Pro	Gly
Gly	Leu	Asp 595	Ala	Gly	Leu	Val	Glu 600	Pro	Pro	Arg	Leu	Leu 605	Ser	Ser	Pro
Asn	Ser 610	Ala	Ser	Val	Leu	Lys 615	Ile	Lys	Thr	Glu	Ile 620	Ser	Glu	Pro	Ile
Asn 625	Phe	Asp	Asn	Asp	Ser 630	Ser	Ile	Trp	Asn	Tyr 635	Pro	Pro	Asn	Arg	Glu 640
Ile	Ser	Arg	Asn	Glu 645	Ser	Pro	Tyr	Ser	Met 650	Thr	Lys	Pro	Pro	Ser 655	Ser
Glu	His	Phe	Pro 660	Ser	Pro	Gln	Gly	Gly 665	Gly	Gly	Gly	Gly	Gly 670	Gly	Gly
Gly	Gly	Leu	His	Val	Ala	Ile	Pro	Asp	Ser	Val	Leu	Thr	Pro	Pro	Gly

Ala Ala Leu Ala Pro Val Ala Ser Asp Pro Leu Ser Pro Pro Leu Ser Ala Ser Pro Arg Asp Lys His Pro Gly Asn Gly Gly Gly Gly Gly 730 Gly Gly Gly Gly Gly Gly Gly Pro Ser Ala Ser Asn Ser Leu 745 Leu Tyr Thr Gly Asp Leu Glu Ala Leu Gln Arg Leu Gln Ala Gly Asn 760 Val Val Leu Pro Leu Val His Arg Val Thr Gly Thr Leu Ala Ala Thr Ser Thr Ala Ala Gln Arg Val Tyr Thr Thr Gly Thr Ile Arg Tyr Ala Pro Ala Glu Val Thr Leu Ala Met Gln Ser Asn Leu Leu Pro Asn Ala 805 810 His Ala Val Asn Phe Val Asp Val Asn Ser Pro Gly Phe Gly Leu Asp 820 825 830 Pro Lys Thr Pro Met Glu Met Leu Tyr His His Val His Arg Leu Asn 835 840 845 Met Ser Gly Pro Phe Gly Gly Ala Val Ser Ala Ala Ser Leu Thr Gln 850 855 860

Ala Asp Gly Ala Ala Arg Lys Thr Gln Phe Gly Ala Ser Ala Thr

Leu Pro Phe Pro Val Tyr Ser Asn Gly Ile His Ala Ala Gln Thr Leu 885 890 . 895

Met Pro Ala Gly Asn Val Phe Thr Thr Ala Glu Gly Leu Phe Ser Thr

870

875

880

Glu Arg Lys Glu Asp 900

865

<210> 53 <211> 2961 <212> DNA <213> Homo sapiens <400> 53 60 atggggaggg ccggcgccgc ggccaacggc accccgcaga acgtccaggg catcacctcc taccagcage gaataactge ecageateet etgeecaace aateagaatg taggaaaate 120 tacagatatg acggaatcta ctgtgaatct acctaccaga atttacaagc attgagaaag 180 240 gagaaatccc gagatgctgc tcgctcccgc cggggaaaag aaaactttga gttctatgaa 300 ttggccaagt tgttgcctct tcctgcagcc attaccagcc agctcgacaa ggcatccatc 360 attegaetta caattageta tetgaaaatg agggaetttg etaaceaggg ggaeeeteeg tggaacttgc gaatggaagg ccctccacct aacacatcag taaaaggtgc acagcgaagg 420 agaagcccca gtgcactagc cattgaagta tttgaagcac atttgggaag ccacattttg 480 540 cagtccctgg atggctttgt atttgcacta aatcaggaag gaaaattttt gtacatttcc gaaacagtct ccatctacct aggcctctca caagtggagc tgacaggcag cagtgtcttt 600 gactatgtcc accccggaga tcacgtggag atggctgagc agctgggcat gaagctcccc 660 cctgggcggg gtctcctgtc acagggcact gctgaggacg gagccagctc agcatcttcc 720 tecteteagt eggagacece egageeagtg gagteaacea geceeagtet getaaceaet 780 840 gacaacactc ttgagcgttc ctttttcatc cgaatgaaat ctactctgac caaacgcggt gtgcacatca aatcatcagg atataaggtg attcacataa caggccggct acgcctgaga 900 gtgtcgctgt cccacgggag gaccgtcccc agccaaatca tgggtctcgt ggttgttgcg 960 1020 catgccttgc ctcccctac gatcaatgaa gtcagaattg actgccatat gttcgtcact 1080 cgagtaaata tggacctcaa tatcatttac tgtgaaaata ggattagtga ttatatggat ctgacccctg tagatatcgt agggaagaga tgctaccact tcatccatgc tgaagacgtg 1140 1200 gagggcatca ggcacagtca cttggacttg ctgaataagg gtcagtgtgt gacaaagtac 1260 tatcgctgga tgcagaagaa cggaggatat atttggatac agtccagtgc caccatagct attaatgcca agaatgcaaa tgaaaagaat atcatctggg tgaattacct tcttagcaat 1320 1380 cctgagtaca aggacacacc catggacatc gcacagctcc cccatctgcc ggagaaaact tecgaateet eggagaeate egaetetgag teagaeteta aagaeaeete aggtattaea 1440 1500 gaggacaacg agaactccaa gtccgacgag aaggggaacc agtccgagaa cagcgaagac 1560 ccggagcccg accggaagaa gtcgggcaac gcgtgtgaca acgacatgaa ctgcaacgac gacggccaca gctccagtaa cccggacagc cgcgacagcg acgacagctt cgagcactcg 1620 1680 gactttgaga accccaaggc gggcgaggac ggcttcggtg ctctgggcgc gatgcagatc aaggtggage getaegtgga gagegagteg gaeetgegge tgeagaaetg egagteaete 1740 1800 acgtccgaca gcgccaagga ctcggacagc gcaggcgagg cgggcgcgca ggcctccagc

aaqcaccaga agcgcaagaa aaggcggaaa cggcaaaagg gcqqcagcgc cagccgccgg 1860 1920 cgcctgtcca gcgcgtcgag cccaggcggc ctggacgcgg gcctggtgga gcccccgcgg ctgctgtcct cccccaacag tgcctcggtg ctcaagatca agacggagat ctcagaaccc 1980 atcaatttcg acaatgacag cagcatctgg aactacccgc ccaaccggga gatctccagg 2040 aacgagtccc cctacagcat gaccaagccc cccagctctg agcacttccc gtccccgcag 2100 ggeggeggeg gtgggggtgg eggtggeggg gggetgeaeg tggeeattee egaeteggte 2160 ctcaccccgc ccggcgccga cggcgcggcc gcccgcaaga ctcagttcgg cgcctcggcc 2220 2280 acegeggeee tggeeeeegt egeeteegae eegetgteae eeeegetete ggegteeeeg 2340 ggeggeeeca gegegteeaa eteettgetg tacaetgggg acetggagge getgeagagg 2400 ttgcaggcgg gcaacgtcgt gctcccgctg gtgcacaggg tgaccgggac cctggccgcc 2460 accagcacgg ccgcgcagag ggtctacacc acgggcacca tccgctacgc gcccgccgag 2520 gtgaccctgg ccatgcagag caacctgctg cccaacgcgc acgctgttaa cttcgtggac 2580 gttaacagcc ccggctttgg cctcgacccc aagacgccca tggagatgct ctaccaccac 2640 gtgcaccggc tcaacatgtc aggaccgttc ggcggcgcag tgagcgcagc tagcctgacg 2700 cagatgeceg eeggeaacgt gtteaecaeg geegagggae tetteteeae getgeeette 2760 cccgtctaca gcaacggcat ccacgcggca cagactctgg agcgcaagga ggactgaggc 2820 gccgcccgtc ctgggcccgg ccaggccccg cttggaggag gcatcgtcgg cattttcgtt 2880 tagacettta attetageae tttgaatteg ageaggteag egtettetet egeeaegaeg 2940 2961 gtccccattc caccccctct t

<210> 54

<211> 938

<212> PRT

<213> Homo sapiens

<400> 54

Met Gly Arg Ala Gly Ala Ala Asn Gly Thr Pro Gln Asn Val Gln
1 5 10 15

Gly Ile Thr Ser Tyr Gln Gln Arg Ile Thr Ala Gln His Pro Leu Pro 20 25 30

Asn Gln Ser Glu Cys Arg Lys Ile Tyr Arg Tyr Asp Gly Ile Tyr Cys 35 40 45

GIu	Ser 50	Thr	Tyr	GIn	Asn	ьеи 55	GIn	Ala	Leu	Arg	Lys 60	GIU	гÀг	ser	Arg
Asp 65	Ala	Ala	Arg	Ser	Arg 70	Arg	Gly	Lys	Glu	Asn 75	Phe	Glu	Phe	Tyr	Glu 80
Leu	Ala	Lys	Leu	Leu 85	Pro	Leu	Pro	Ala	Ala 90	Ile	Thr	Ser	Gln	Leu 95	Asp
Lys	Ala	Ser	Ile 100	Ile	Arg	Leu	Thr	Ile 105	Ser	Tyr	Leu	Lys	Met 110	Arg	Asp
Phe	Ala	Asn 115	Gln	Gly	Asp	Pro	Pro 120	Trp	Asn	Leu	Arg	Met 125	Glu	Gly	Pro
Pro	Pro 130	Asn	Thr	Ser	Val	Lys 135	Gly	Ala	Gln	Arg	Arg 140	Arg	Ser	Pro	Ser
Ala 145	Leu	Ala	Ile	Glu	Val 150	Phe	Glu	Ala	His	Leu 155	Gly	Ser	His	Ile	Leu 160
Gln	Ser	Leu	Asp	Gly 165	Phe	Val	Phe	Ala	Leu 170	Asn	Gln	Glu	Gly	Lys 175	Phe
Leu	Tyr	Ile	Ser 180	Glu	Thr	Val	Ser	Ile 185	Tyr	Leu	Gly	Leu	Ser 190	Gln	Val
Glu	Leu	Thr 195	Gly	Ser	Ser	Val	Phe 200	Asp	Tyr	Val	His	Pro 205	Gly	Asp	His
Val	Glu 210	Met	Ala	Glu	Gln	Leu 215	Gly	Met	Lys	Leu	Pro 220	Pro	Gly	Arg	Gly
Leu 225	Leu	Ser	Gln	Gly	Thr 230	Ala	Glu	Asp	Gly	Ala 235	Ser	Ser	Ala	Ser	Ser 240
Ser	Ser	Gln	Ser	Glu 245	Thr	Pro	Glu	Pro	Val 250	Glu	Ser	Thr	Ser	Pro 255	Ser
Leu	Leu	Thr	Thr 260	Asp	Asn	Thr	Leu	Glu 265	Arg	Ser	Phe	Phe	Ile 270	Arg	Met
Lys	Ser	Thr 275	Leu	Thr	Lys	Arg	Gly 280	Val	His	Ile	Lys	Ser 285	Ser	Gly	Tyr
Lve	Val	Tle	His	Tle	Thr	Glv	Ara	Len	Ara	Len	Δνα	Val	Ser	Len	Ser

290 295 300

His Gly Arg Thr Val Pro Ser Gln Ile Met Gly Leu Val Val Val Ala His Ala Leu Pro Pro Pro Thr Ile Asn Glu Val Arg Ile Asp Cys His Met Phe Val Thr Arg Val Asn Met Asp Leu Asn Ile Ile Tyr Cys Glu Asn Arg Ile Ser Asp Tyr Met Asp Leu Thr Pro Val Asp Ile Val Gly Lys Arg Cys Tyr His Phe Ile His Ala Glu Asp Val Glu Gly Ile Arg His Ser His Leu Asp Leu Leu Asn Lys Gly Gln Cys Val Thr Lys Tyr Tyr Arg Trp Met Gln Lys Asn Gly Gly Tyr Ile Trp Ile Gln Ser Ser Ala Thr Ile Ala Ile Asn Ala Lys Asn Ala Asn Glu Lys Asn Ile Ile Trp Val Asn Tyr Leu Leu Ser Asn Pro Glu Tyr Lys Asp Thr Pro Met Asp Ile Ala Gln Leu Pro His Leu Pro Glu Lys Thr Ser Glu Ser Ser Glu Thr Ser Asp Ser Glu Ser Asp Ser Lys Asp Thr Ser Gly Ile Thr Glu Asp Asn Glu Asn Ser Lys Ser Asp Glu Lys Gly Asn Gln Ser Glu Asn Ser Glu Asp Pro Glu Pro Asp Arg Lys Lys Ser Gly Asn Ala Cys Asp Asn Asp Met Asn Cys Asn Asp Asp Gly His Ser Ser Ser Asn Pro

Asp Ser Arg Asp Ser Asp Ser Phe Glu His Ser Asp Phe Glu Asn

Pro 545	Lys	Ala	Gly	Glu	Asp 550	Gly	Phe	Gly	Ala	Leu 555	Gly	Ala	Met	Gln	Ile 560
Lys	Val	Glu	Arg	Tyr 565	Val	Glu	Ser	Glu	Ser 570	Asp	Ļeu	Arg	Leu	Gln 575	Asn
Cys	Glu	Ser	Leu 580	Thr	Ser	Asp	Ser	Ala 585	Lys	Asp	Ser	Asp	Ser 590	Ala	Gly
Glu	Ala	Gly 595	Ala	Gln	Ala	Ser	Ser 600	Lys	His	Gln	Lys	Arg 605	Lys	Lys	Arg
Arg	Lys 610	Arg	Gln	Lys	Gly	Gly 615	Ser	Ala	Ser	Arg	Arg 620	Arg	Leu	Ser	Ser
Ala 625	Ser	Ser	Pro	Gly	Gly 630	Leu	Asp	Ala	Gly	Leu 635	Val	Glu	Pro	Pro	Arg 640
Leu	Leu	Ser	Ser	Pro 645	Asn	Ser	Ala	Ser	Val 650	Leu	Lys	Ile	Lys	Thr 655	Glu
Ile	Ser	Glu	Pro 660	Ile	Asn	Phe	Asp	Asn 665	Asp	Ser	Ser	Ile	Trp 670	Asn	Tyr
Pro	Pro	Asn 675	Arg	Glu	Ile	Ser	Arg 680	Asn	Glu	Ser	Pro	Tyr 685	Ser	Met	Thr
Lys	Pro 690	Pro	Ser	Ser	Glu	His 695	Phe	Pro	Ser	Pro	Gln 700	Gly	Gly	Gly	Gly
Gly 705	Gly	Gly	Gly	Gly	Gly 710	Gly	Leu	His	Val	Ala 715	Ile	Pro	Asp	Ser	Val 720
Leu	Thr	Pro	Pro	Gly 725	Ala	Asp	Gly	Ala	Ala 730	Ala	Arg	Lys	Thr	Gln 735	Phe
Gly	Ala	Ser	Ala 740	Thr	Ala	Ala	Leu	Ala 745	Pro	Val	Ala	Ser	Asp 750	Pro	Leu
Ser	Pro	Pro 755	Leu	Ser	Ala	Ser	Pro 760	Arg	Asp	Lys	His	Pro 765	_	Asn	Gly
Gly	Gly 770	Gly	Gly	Gly	Gly	Gly 775	Gly	Gly	Ala	Gly	Gly 780	_	Gly	Pro	Ser

Ala Ser Asn Ser Leu Leu Tyr Thr Gly Asp Leu Glu Ala Leu Gln Arg 785 790 795 800	
Leu Gln Ala Gly Asn Val Val Leu Pro Leu Val His Arg Val Thr Gly 805 810 815	
Thr Leu Ala Ala Thr Ser Thr Ala Ala Gln Arg Val Tyr Thr Thr Gly 820 825 830	
Thr Ile Arg Tyr Ala Pro Ala Glu Val Thr Leu Ala Met Gln Ser Asn 835 840 845	
Leu Leu Pro Asn Ala His Ala Val Asn Phe Val Asp Val Asn Ser Pro 850 855 860	
Gly Phe Gly Leu Asp Pro Lys Thr Pro Met Glu Met Leu Tyr His His 865 870 875 880	
Val His Arg Leu Asn Met Ser Gly Pro Phe Gly Gly Ala Val Ser Ala 885 890 895	
Ala Ser Leu Thr Gln Met Pro Ala Gly Asn Val Phe Thr Thr Ala Glu 900 905 910	
Gly Leu Phe Ser Thr Leu Pro Phe Pro Val Tyr Ser Asn Gly Ile His 915 920 925	
Ala Ala Gln Thr Leu Glu Arg Lys Glu Asp 930 935	
<210> 55 <211> 3186 <212> DNA <213> Homo sapiens	
<400> 55 geggeegegg eggtgeagea gaggegeete gggeaggagg agggeggett etgegaggge	60
agcctgaggt attaaaaagt gtcagcaaac tgcattgaat aacagacatc ctaagagggg	120
atattttcca cctctataat gaagaaaagc aggagtgtga tgacggtgat ggctgatgat	180
aatgttaaag attattttga atgtagettg agtaaateet acagttette cagtaacaca	240
cttgggatcg acctctggag agggagaagg tgttgctcag gaaacttaca gttaccacca	300
ctgtctcaaa gacagagtga aagggcaagg actcctgagg gagatggtat ttccaggccg	360
accacactgc ctttgacaac gcttccaagc attgctatta caactgtaag ccaggagtgc	420

tttgatgtgg aaaatggccc ttccccaggt cggagtccac tggatcccca ggccagctct 480 tccgctgggc tggtacttca cgccaccttt cctgggcaca gccagcgcag agagtcattt 540 600 ctctacagat cagacagega ctatgacttg tcaccaaagg cgatgtcgag aaactcttct cttccaagcg agcaacacgg cgatgacttg attgtaactc cttttgccca ggtccttgcc 660 720 agettgegaa gtgtgagaaa caaetteaet ataetgacaa acetteatgg taeatetaae 780 aagaggteee cagetgetag teageeteet gteteeagag teaaceeaca agaagaatet 840 tatcaaaaat tagcaatgga aacgctggag gaattagact ggtgtttaga ccagctagag accatacaga cctaccggtc tgtcagtgag atggcttcta acaagttcaa aagaatgctg 900 aaccgggagc tgacacacct ctcagagatg agccgatcag ggaaccaggt gtctgaatac 960 1020 atttcaaata ctttcttaga caagcagaat gatgtggaga tcccatctcc tacccagaaa gacagggaga aaaagaaaaa gcagcagctc atgacccaga taagtggagt gaagaaatta 1080 atgcatagtt caagcctaaa caatacaagc atctcacgct ttggagtcaa cactgaaaat 1140 1200 gaagatcacc tggccaagga gctggaagac ctgaacaaat ggggtcttaa catctttaat gtggctggat attctcacaa tagaccccta acatgcatca tgtatgctat attccaggaa 1260 agagacetee taaagacatt cagaatetea tetgacacat ttataaceta catgatgact 1320 ttagaagacc attaccattc tgacgtggca tatcacaaca gcctgcacgc tgctgatgta 1380 1440 gcccagtcga cccatgttet cetttetaca ccagcattag acgetgtett cacagatttg 1500 gagateetgg etgecatttt tgeagetgee atceatgaeg ttgateatee tggagtetee 1560 aatcagtttc tcatcaacac aaattcagaa cttgctttga tgtataatga tgaatctgtg 1620 ttggaaaatc atcaccttgc tgtgggtttc aaactgctgc aagaagaaca ctgtgacatc 1680 ttcatgaatc tcaccaagaa gcagcgtcag acactcagga agatggttat tgacatggtg 1740 ttagcaactg atatgtctaa acatatgagc ctgctggcag acctgaagac aatggtagaa acgaagaaag ttacaagttc aggcgttctt ctcctagaca actataccga tcgcattcag 1800 1860 gtccttcgca acatggtaca ctgtgcagac ctgagcaacc ccaccaagtc cttggaattg 1920 tatcggcaat ggacagaccg catcatggag gaatttttcc agcagggaga caaagagcgg 1980 gagaggggaa tggaaattag cccaatgtgt gataaacaca cagcttctgt ggaaaaatcc caggttggtt tcatcgacta cattgtccat ccattgtggg agacatgggc agatttggta 2040 cagcctgatg ctcaggacat tctcgatacc ttagaagata acaggaactg gtatcagagc 2100 2160 atgatacete aaagteeete accaceaetg gacgageaga acagggaetg ceagggtetg 2220 atggagaagt ttcagtttga actgactctc gatgaggaag attctgaagg acctgagaag gagggagagg gacacagcta tttcagcagc acaaagacgc tttgtgtgat tgatccagaa 2280

aacagagatt ccctgggaga gactgacata gacattgcaa cagaagacaa gtcccccgtg 2340 gatacataat ccccctctcc ctgtggagat gaacattcta tccttgatga gcatgccagc 2400 tatqtqqtag ggccagccca ccatgggggc caagacctgc acaggacaag ggccacctgg 2460 2520 cctttcagtt acttgagttt ggagtcagaa agcaagacca ggaagcaaat agcagctcag 2580 gaaatcccac ggttgacttg ccttgatggc aagcttggtg gagagggctg aagctgttgc 2640 tgggggccga ttctgatcaa gacacatggc ttgaaaatgg aagacacaaa actgagagat cattctqcac taagtttcgg gaacttatcc ccgacagtga ctgaactcac tgactaataa 2700 cttcatttat gaatettete acttgteeet ttgtetgeea acetgtgtge ettttttgta 2760 aaacattttc atgtctttaa aatgcctgtt gaatacctgg agtttagtat caacttctac 2820 acagataagc tttcaaagtt gacaaacttt tttgactctt tctggaaaag ggaaagaaaa 2880 tagtetteet tetttettgg geaatateet teaetttaet acagttaett ttgcaaacag 2940 3000 acagaaagga tacacttcta accacatttt acttccttcc cctgttgtcc agtccaactc cacagtcact cttaaaactt ctctctgttt gcctgcctcc aacagtactt ttaacttttt 3060 3120 gctgtaaaca gaataaaatt gaacaaatta gggggtagaa aggagcagtg gtgtcgttca ccgtgagagt ctgcatagaa ctcagcagtg tgccctgctg tgtcttggac cctgcaatgc 3180 3186 ggccgc

<210> 56

<211> 736

<212> PRT

<213> Homo sapiens

<400> 56

Met Lys Lys Ser Arg Ser Val Met Thr Val Met Ala Asp Asp Asn Val 1 5 10 15

. . .

Lys Asp Tyr Phe Glu Cys Ser Leu Ser Lys Ser Tyr Ser Ser Ser Ser Ser 20 25 30

Asn Thr Leu Gly Ile Asp Leu Trp Arg Gly Arg Arg Cys Cys Ser Gly 35 40 45

Asn Leu Gln Leu Pro Pro Leu Ser Gln Arg Gln Ser Glu Arg Ala Arg 50 55 60

Thr Pro Glu Gly Asp Gly Ile Ser Arg Pro Thr Thr Leu Pro Leu Thr 65 70 75 80

•	Thr	Leu	Pro	Ser	Ile 85	Ala	Ile	Thr	Thr	Val 90	Ser	Gln	Glu	Cys	Phe 95	Asp
,	Val	Glu	Asn	Gly 100	Pro	Ser	Pro	Gly	Arg 105	Ser	Pro	Leu	Asp	Pro 110	Gln	Ala
	Ser	Ser	Ser 115	Ala	Gly	Leu	Val	Leu 120	His	Ala	Thr	Phe	Pro 125	Gly	His	Ser
•	Gln	Arg 130	Arg	Glu	Ser	Phe	Leu 135	Tyr	Arg	Ser	Asp	Ser 140	Asp	Tyr	Asp	Leu
	Ser 145	Pro	Lys	Ala	Met	Ser 150	Arg	Asn	Ser	Ser	Leu 155	Pro	Ser	Glu	Gln	His 160
•	Gly	Asp	Asp	Leu	Ile 165	Val	Thr	Pro	Phe	Ala 170	Gln	Val	Leu	Ala	Ser 175	Leu
	Arg	Ser	Val	Arg 180	Asn	Asn	Phe	Thr	Ile 185	Leu	Thr	Asn	Leu	His 190	Gly	Thr
	Ser	Asn	Lys 195	Arg	Ser	Pro	Ala	Ala 200	Ser	Gln	Pro	Pro	Val 205	Ser	Arg	Val
	Asn	Pro 210	Gln	Glu	Glu	Ser	Tyr 215	Gln	Lys	Leu	Ala	Met 220	Glu	Thr	Leu	Glu
	Glu 225	Leu	Asp	Trp	Cys	Leu 230	Asp	Gln	Leu	Glu	Thr 235	Ile	Gln	Thr	Tyr	Arg 240
	Ser	Val	Ser	Glu	Met 245	Ala	Ser	Asn	Lys	Phe 250	Lys	Arg	Met	Leu	Asn 255	Arg
•	Glu	Leu	Thr	His 260	Leu	Ser	Glu	Met	Ser 265	Arg	Ser	Gly	Asn	Gln 270	Val	Ser
	Glu	Tyr	Ile 275	Ser	Asn	Thr	Phe	Leu 280	Asp	Lys	Gln	Asn	Asp 285	Val	Glu	Ile
	Pro	Ser 290	Pro	Thr	Gln	Lys	Asp 295	Arg	Glu	Lys	Lys	Lys 300	Lys	Gln	Gln	Leu
	Met 305	Thr	Gln	Ile	Ser	Gly 310	Val	Lys	Lys	Leu	Met 315	His	Ser	Ser	Ser	Leu 320
	Asn	Asn	Thr	Ser	Ile	Ser	Arg	Phe	Gly	Val	Asn	Thr	Glu	Asn	Glu	Asp

325	330	335

His Leu Ala	Lys Glu	Leu Glu As	p Leu Asn	Lys Trp	Gly Leu Asn	Ile
	340		345		350	

- Phe Asn Val Ala Gly Tyr Ser His Asn Arg Pro Leu Thr Cys Ile Met 355 360 365
- Tyr Ala Ile Phe Gln Glu Arg Asp Leu Leu Lys Thr Phe Arg Ile Ser 370 375 380
- Ser Asp Thr Phe Ile Thr Tyr Met Met Thr Leu Glu Asp His Tyr His 385 390 395 400
- Ser Asp Val Ala Tyr His Asn Ser Leu His Ala Ala Asp Val Ala Gln 405 410 415
- Ser Thr His Val Leu Leu Ser Thr Pro Ala Leu Asp Ala Val Phe Thr 420 425 430
- Asp Leu Glu Ile Leu Ala Ala Ile Phe Ala Ala Ile His Asp Val 435 440 445
- Asp His Pro Gly Val Ser Asn Gln Phe Leu Ile Asn Thr Asn Ser Glu 450 455 460
- Leu Ala Leu Met Tyr Asn Asp Glu Ser Val Leu Glu Asn His His Leu 465 470 475 480
- Ala Val Gly Phe Lys Leu Leu Gln Glu Glu His Cys Asp Ile Phe Met 485 490 495
- Asn Leu Thr Lys Lys Gln Arg Gln Thr Leu Arg Lys Met Val Ile Asp 500 505 510
- Met Val Leu Ala Thr Asp Met Ser Lys His Met Ser Leu Leu Ala Asp 515 520 525
- Leu Lys Thr Met Val Glu Thr Lys Lys Val Thr Ser Ser Gly Val Leu 530 540
- Leu Leu Asp Asn Tyr Thr Asp Arg Ile Gln Val Leu Arg Asn Met Val 545 550 555 560
- His Cys Ala Asp Leu Ser Asn Pro Thr Lys Ser Leu Glu Leu Tyr Arg
 565 570 575

Glu Arg Glu Arg Gly Met Glu Ile Ser Pro Met Cys Asp Lys His Thr 595 600 605
Ala Ser Val Glu Lys Ser Gln Val Gly Phe Ile Asp Tyr Ile Val His 610 615 620
Pro Leu Trp Glu Thr Trp Ala Asp Leu Val Gln Pro Asp Ala Gln Asp 625 630 635 640
Ile Leu Asp Thr Leu Glu Asp Asn Arg Asn Trp Tyr Gln Ser Met Ile 645 650 655
Pro Gln Ser Pro Ser Pro Pro Leu Asp Glu Gln Asn Arg Asp Cys Gln 660 665 670
Gly Leu Met Glu Lys Phe Gln Phe Glu Leu Thr Leu Asp Glu Glu Asp 675 680 685
Ser Glu Gly Pro Glu Lys Glu Gly Glu Gly His Ser Tyr Phe Ser Ser 690 695 700
Thr Lys Thr Leu Cys Val Ile Asp Pro Glu Asn Arg Asp Ser Leu Gly 705 710 715 720
Glu Thr Asp Ile Asp Ile Ala Thr Glu Asp Lys Ser Pro Val Asp Thr 725 730 735
<210> 57 <211> 2163 <212> DNA <213> Homo sapiens
<400> 57 atgacagcaa aagattette aaaggaactt actgettetg aacetgaggt ttgcataaag 6
actttcaagg agcaaatgca tttagaactt gagcttccga gattaccagg aaacagacct 12
acateteeta aaatttetee aegeagttea eeaaggaaet eaceatgett ttteagaaag 18
ttactggtga ataaaagcat tcggcagcgt cgtcgcttca ctgtggctca tacatgcttt 24
gatgtggaaa atggcccttc cccaggtcgg agtccactgg atccccaggc cagctcttcc 30
gctgggctgg tacttcacgc cacctttcct gggcacagcc agcgcagaga gtcatttctc 36
tacagatcag acagegacta tgaettgtea ecaaaggega tgtegagaaa etettetett 42

Gln Trp Thr Asp Arg Ile Met Glu Glu Phe Phe Gln Gln Gly Asp Lys 580 585 590

480 ccaagcgagc aacacggcga tgacttgatt gtaactcctt ttgcccaggt ccttgccagc ttgcgaagtg tgagaaacaa cttcactata ctgacaaacc ttcatggtac atctaacaag 540 600 aggtccccag ctgctagtca gcctcctgtc tccagagtca acccacaaga agaatcttat caaaaattag caatggaaac gctggaggaa ttagactggt gtttagacca gctagagacc 660 720 atacagacct accegetctet cagtegagate gettetaaca ageteaaaag aatgetegaac 780 cgggagctga cacacctctc agagatgagc cgatcaggga accaggtgtc tgaatacatt tcaaatactt tcttagacaa gcagaatgat gtggagatcc catctcctac ccagaaagac 840 agggagaaaa agaaaaagca gcagctcatg acccagataa gtggagtgaa gaaattaatg 900 catagttcaa gcctaaacaa tacaagcatc tcacgctttg gagtcaacac tgaaaatgaa 960 1020 gatcacctgg ccaaggagct ggaagacctg aacaaatggg gtcttaacat ctttaatgtg 1080 gctggatatt ctcacaatag acccctaaca tgcatcatgt atgctatatt ccaggaaaga 1140 gacctcctaa agacattcag aatctcatct gacacattta taacctacat gatgacttta 1200 gaagaccatt accattctga cgtggcatat cacaacagcc tgcacgctgc tgatgtagcc 1260 cagtegacce atgtteteet ttetacacca geattagaeg etgtetteae agatttggag atcctggctg ccatttttgc agctgccatc catgacgttg atcatcctgg agtctccaat 1320 1380 cagtttetca teaacacaaa tteagaaett getttgatgt ataatgatga atetgtgttg gaaaatcatc accttgctgt gggtttcaaa ctgctgcaag aagaacactg tgacatcttc 1440 1500 atgaatetea eeaagaagea gegteagaea eteaggaaga tggttattga eatggtgtta 1560 gcaactgata tgtctaaaca tatgagcctg ctggcagacc tgaagacaat ggtagaaacg 1620 aagaaagtta caagttcagg cgttcttctc ctagacaact ataccgatcg cattcaggtc 1680 cttcgcaaca tggtacactg tgcagacctg agcaacccca ccaagtcctt ggaattgtat 1740 cggcaatgga cagaccgcat catggaggaa tttttccagc agggagacaa agagcgggag aggggaatgg aaattagccc aatgtgtgat aaacacacag cttctgtgga aaaatcccag 1800 gttggtttca tcgactacat tgtccatcca ttgtgggaga catgggcaga tttggtacag 1860 1920 cctgatgctc aggacattct cgatacctta gaagataaca ggaactggta tcagagcatg atacctcaaa gtccctcacc accactggac gagcagaaca gggactgcca gggtctgatg 1980 2040 gagaagtttc agtttgaact gactctcgat gaggaagatt ctgaaggacc tgagaaggag 2100 ggagagggac acagctattt cagcagcaca aagacgcttt gtgtgattga tccagaaaac 2160 agagattece tgggagagae tgacatagae attgcaacag aagacaagte eecegtggat 2163 aca

<210> 58

<211> 721

<212> PRT

<213> Homo sapiens

<400> 58

Met Thr Ala Lys Asp Ser Ser Lys Glu Leu Thr Ala Ser Glu Pro Glu 1 5 10 15

Val Cys Ile Lys Thr Phe Lys Glu Gln Met His Leu Glu Leu Glu Leu 20 25 30

Pro Arg Leu Pro Gly Asn Arg Pro Thr Ser Pro Lys Ile Ser Pro Arg
35 40 45

Ser Ser Pro Arg Asn Ser Pro Cys Phe Phe Arg Lys Leu Leu Val Asn 50 55 60

Lys Ser Ile Arg Gln Arg Arg Arg Phe Thr Val Ala His Thr Cys Phe 65 70 75 80

Asp Val Glu Asn Gly Pro Ser Pro Gly Arg Ser Pro Leu Asp Pro Gln 85 90 95

Ala Ser Ser Ser Ala Gly Leu Val Leu His Ala Thr Phe Pro Gly His

Ser Gln Arg Arg Glu Ser Phe Leu Tyr Arg Ser Asp Ser Asp Tyr Asp 115 120 125

Leu Ser Pro Lys Ala Met Ser Arg Asn Ser Ser Leu Pro Ser Glu Gln 130 135 140

His Gly Asp Asp Leu Ile Val Thr Pro Phe Ala Gln Val Leu Ala Ser 145 150 155 160

Leu Arg Ser Val Arg Asn Asn Phe Thr Ile Leu Thr Asn Leu His Gly
165 170 175

Thr Ser Asn Lys Arg Ser Pro Ala Ala Ser Gln Pro Pro Val Ser Arg 180 185 190

Val Asn Pro Gln Glu Glu Ser Tyr Gln Lys Leu Ala Met Glu Thr Leu 195 200 205

Glu Glu Leu Asp Trp Cys Leu Asp Gln Leu Glu Thr Ile Gln Thr Tyr

215

210

Arg Ser Val Ser Glu Met Ala Ser Asn Lys Phe Lys Arg Met Leu Asn 225 230 235 240

220

Arg Glu Leu Thr His Leu Ser Glu Met Ser Arg Ser Gly Asn Gln Val 245 250 255

Ser Glu Tyr Ile Ser Asn Thr Phe Leu Asp Lys Gln Asn Asp Val Glu 260 265 270

Ile Pro Ser Pro Thr Gln Lys Asp Arg Glu Lys Lys Lys Gln Gln 275 280 285

Leu Met Thr Gln Ile Ser Gly Val Lys Lys Leu Met His Ser Ser Ser 290 295 300

Leu Asn Asn Thr Ser Ile Ser Arg Phe Gly Val Asn Thr Glu Asn Glu 305 310 315 320

Asp His Leu Ala Lys Glu Leu Glu Asp Leu Asn Lys Trp Gly Leu Asn 325 330 335

Ile Phe Asn Val Ala Gly Tyr Ser His Asn Arg Pro Leu Thr Cys Ile 340 345 350

Met Tyr Ala Ile Phe Gln Glu Arg Asp Leu Leu Lys Thr Phe Arg Ile 355 360 365

Ser Ser Asp Thr Phe Ile Thr Tyr Met Met Thr Leu Glu Asp His Tyr 370 375 380

His Ser Asp Val Ala Tyr His Asn Ser Leu His Ala Ala Asp Val Ala 385 390 395 400

Gln Ser Thr His Val Leu Leu Ser Thr Pro Ala Leu Asp Ala Val Phe 405 410 415

Thr Asp Leu Glu Ile Leu Ala Ala Ile Phe Ala Ala Ile His Asp 420 425 430

Val Asp His Pro Gly Val Ser Asn Gln Phe Leu Ile Asn Thr Asn Ser 435 440 445

Glu Leu Ala Leu Met Tyr Asn Asp Glu Ser Val Leu Glu Asn His His 450 455 460

Leu 465	Ala	Val	Gly	Phe	Lys 470	Leu	Leu	Gln	Glu	Glu 475	His	Cys	Asp	Ile	Phe 480
Met	Asn	Leu	Thr	Lys 485	Lys	Gln	Arg	Gln	Thr 490	Leu	Arg	Lys	Met	Val 495	Ile
Asp	Met	Val	Leu 500	Ala	Thr	Asp	Met	Ser 505	Lys	His	Met	Ser	Leu 510	Leu	Ala
Asp	Leu	Lys 515	Thr	Met	Val	Glu	Thr 520	Lys	Lys	Val	Thr	Ser 525	Ser	Gly	Val
Leu	Leu 530	Leu	Asp	Asn	Tyr	Thr 535	Asp	Arg	Ile	Gln	Val 540	Leu	Arg	Asn	Met
Val 545	His	Cys	Ala	Asp	Leu 550	Ser	Asn	Pro	Thr	Lys 555	Ser	Leu	Glu	Leu	Tyr 560
Arg	Gln	Trp	Thr	Asp 565	Arg	Ile	Met	Glu ,	Glu 570	Phe	Phe	Gln	Gln	Gly 575	Asp
Lys	Glu	Arg	Glu 580	Arg	Gly	Met	Glu	Ile 585	Ser	Pro	Met	Cys	Asp 590	Lys	His
Thr	Ala	Ser 595	Val	Glu	Lys	Ser	Gln 600	Val	Gly	Phe	Ile	Asp 605	Tyr	Ile	Val
His	Pro 610	Leu	Trp	Glu	Thr	Trp 615	Ala	Asp	Leu	Val	Gln 620	Pro	Asp	Ala	Gln
Asp 625		Leu	_		Leu 630		Asp		_				Gln	Ser	Met 640
Ile	Pro	Gln	Ser	Pro 645	Ser	Pro	Pro	Leu	Asp 650		Gln	Asn	Arg	Asp 655	Cys
Gln	Gly	Leu	Met 660	Glu	Lys	Phe	Gln	Phe 665		Leu	Thr	Leu	Asp 670	Glu	Glu
Asp	Ser	Glu 675	Gly	Pro	Glu	Lys	Glu 680	Gly	Glu	Gly	His	Ser 685		Phe	Ser
Ser	Thr 690	Lys	Thr	Leu	Cys	Val 695		Asp	Pro	Glu	Asn 700	Arg	Asp	Ser	Leu

Gly Glu Thr Asp Ile Asp Ile Ala Thr Glu Asp Lys Ser Pro Val Asp 705 710 715 720

Thr

<210> 59 <211> 4068 <212> DNA

<213> Homo sapiens

<400> 59 gaatteetee tetetteace eegttagetg titteaatgt aatgetgeeg teettetett 60 gcactgcctt ctgcgctaac acctccattc ctgtttataa ccgtgtattt attacttaat 120 gtatataatg taatgttttg taagttatta atttatatat ctaacattgc ctgccaatgg 180 tggtgttaaa tttgtgtaga aaactetgee taagagttae gaetttttet tgtaatgttt 240 tgtattgtgt attatataac ccaaacgtca cttagtagag acatatggcc cccttggcag 300 agaggacagg ggtgggcttt tgttcaaagg gtctgccctt tccctgcctg agttgctact 360 tctgcacaac ccctttatga accagttttc acccgaattt tgactgtttc atttagaaga 420 aaagcaaaat gagaaaaagc tttcctcatt tctccttgag atggcaaagc actcagaaat 480 gacatcacat accctaaaga accctgggat gactaaggca gagagagtct gagaaaactc 540 tttggtgctt ctgcctttag ttttaggaca catttatgca gatgagctta taagagaccg 600 660 tteceteege ettetteete agaggaagtt tettggtaga teacegaeae eteateeagg cqqqqqqttq qqqqqaaact tqqcaccaqc catcccaqqc agagcaccac tgtgatttgt 720 tctcctggtg gagagagctg gaaggaagga gccagcgtgc aaataatgaa ggagcacggg 780 ggcaccttca gtagcaccgg aatcagcggt ggtagcggtg actctgctat ggacagcctg 840 cagccgctcc agcctaacta catgcctgtg tgtttgtttg cagaagaatc ttatcaaaaa 900 ttagcaatgg aaacgctgga ggaattagac tggtgtttag accagctaga gaccatacag 960 acctaccggt ctgtcagtga gatggcttct aacaagttca aaagaatgct gaaccgggag 1020 ctgacacacc tctcagagat gagccgatca gggaaccagg tgtctgaata catttcaaat 1080 1140 actttcttag acaagcagaa tgatgtggag atcccatctc ctacccagaa agacagggag aaaaagaaaa agcagcagct catgacccag ataagtggag tgaagaaatt aatgcatagt 1200 tcaagcctaa acaatacaag catctcacgc tttggagtca acactgaaaa tgaagatcac 1260 ctggccaagg agctggaaga cctgaacaaa tggggtctta acatctttaa tgtggctgga 1320

1380

tattctcaca atagacccct aacatgcatc atgtatgcta tattccagga aagagacctc

1440 ctaaagacat tcagaatctc atctgacaca tttataacct acatgatgac tttagaagac 1500 cattaccatt ctgacgtggc atatcacaac agcctgcacg ctgctgatgt agcccagtcg 1560 accoatgtte teetttetae accageatta gaegetgtet teacagattt ggagateetg 1620 gctgccattt ttgcagctgc catccatgac gttgatcatc ctggagtctc caatcagttt 1680 ctcatcaaca caaattcaga acttgctttg atgtataatg atgaatctgt gttggaaaat 1740 catcaccttg ctgtgggttt caaactgctg caagaagaac actgtgacat cttcatgaat 1800 ctcaccaaga agcagcgtca gacactcagg aagatggtta ttgacatggt gttagcaact gatatgtcta aacatatgag cctgctggca gacctgaaga caatggtaga aacgaagaaa 1860 gttacaagtt caggcgttct tctcctagac aactataccg atcgcattca ggtccttcgc 1920 1980 aacatggtac actgtgcaga cctgagcaac cccaccaagt ccttggaatt gtatcggcaa 2040 tggacagacc gcatcatgga ggaatttttc cagcagggag acaaagagcg ggagagggga 2100 atggaaatta geceaatgtg tgataaacae acagettetg tggaaaaate ecaggttggt 2160 ttcatcgact acattgtcca tccattgtgg gagacatggg cagatttggt acagcctgat gctcaggaca ttctcgatac cttagaagat aacaggaact ggtatcagag catgatacct 2220 2280 caaagteeet caecaccaet ggacgageag aacagggaet gecagggtet gatggagaag 2340 tttcagtttg aactgactct cgatgaggaa gattctgaag gacctgagaa ggagggagag 2400 ggacacaget atttcagcag cacaaagacg ctttgtgtga ttgatccaga aaacagagat 2460 tccctgggag agactgacat agacattgca acagaagaca agtcccccgt ggatacataa 2520 tececetete cetgtggaga tgaacattet atcettgatg ageatgeeag etatgtggta 2580 gggccagccc accatggggg ccaagacctg cacaggacaa gggccacctg gcctttcagt 2640 tacttgagtt tggagtcaga aagcaagacc aggaagcaaa tagcagctca ggaaatccca 2700 cggttgactt gccttgatgg caagcttggt ggagagggct gaagctgttg ctgggggccg attetgatea agacacatgg ettgaaaatg gaagacacaa aactgagaga teattetgea 2760 ctaagtttcg ggaacttatc cccgacagtg actgaactca ctgactaata acttcattta 2820 2880 tgaatcttct cacttgtccc tttgtctgcc aacctgtgtg ccttttttgt aaaacatttt catgtcttta aaatgcctgt tgaatacctg gagtttagta tcaacttcta cacagataag 2940 ctttcaaagt tgacaaactt ttttgactct ttctggaaaa gggaaagaaa atagtcttcc 3000 3060 ttctttcttg ggcaatatcc ttcactttac tacagttact tttgcaaaca gacagaaagg 3120 atacacttct aaccacattt tacttccttc ccctgttgtc cagtccaact ccacagtcac tettaaaact tetetetgtt tgeetgeete caacagtaet tttaactttt tgetgtaaac 3180 3240 agaataaaat tgaacaaatt agggggtaga aaggagcagt ggtgtcgttc accgtgagag

tetgeataga acteageagt gtgeeetget gtgtettgga eeetgeeee caeaggagtt 3300 gctacagtcc ctggccctgc ttcccatcct cctcttcta ccccgttagc tgttttcaat 3360 gtaatgctgc cgtccttctc ttgcactgcc ttctgcgcta acacctccat tcctgtttat 3420 aaccgtgtat ttattactta atgtatataa tgtaatgttt tgtaagttat taatttatat 3480 atctaacatt gcctgccaat ggtggtgtta aatttgtgta gaaaactctg cctaagagtt 3540 acgacttttt cttgtaatgt tttgtattgt gtattatata acccaaacgt cacttagtag 3600 agacatatgg cccccttggc agagaggaca ggggtgggct tttgttcaaa gggtctgccc 3660 tttccctgcc tgagttgcta cttctgcaca acccctttat gaaccagttt tggaaacaat 3720 attotoacat tagatactaa atggtttata ctgagtottt tacttttgta tagottgata 3780 ggggcagggg caatgggatg tagtttttac ccaggttcta tccaaatcta tgtgggcatg 3840 agttgggtta taactggatc ctactatcat tgtggctttg gttcaaaagg aaacactaca 3900 tttgctcaca gatgattctt ctgattcttc tgaatgctcc cgaactactg actttgaaga 3960 ggtagcctcc tgcctgccat taagcaggaa tgtcatgttc cagttcatta caaaagaaaa 4020 4068

<210> 60

<211> 564

<212> PRT

<213> Homo sapiens

<400> 60

Met Lys Glu His Gly Gly Thr Phe Ser Ser Thr Gly Ile Ser Gly Gly 1 $$ 5 $$ 10 $$ 15

Ser Gly Asp Ser Ala Met Asp Ser Leu Gln Pro Leu Gln Pro Asn Tyr 20 25 30

Met Pro Val Cys Leu Phe Ala Glu Glu Ser Tyr Gln Lys Leu Ala Met 35 40 45

Glu Thr Leu Glu Glu Leu Asp Trp Cys Leu Asp Gln Leu Glu Thr Ile 50 55 60

Gln Thr Tyr Arg Ser Val Ser Glu Met Ala Ser Asn Lys Phe Lys Arg 65 70 75 80

Met Leu Asn Arg Glu Leu Thr His Leu Ser Glu Met Ser Arg Ser Gly . 85 90 95

Asn	Gln	Val	Ser 100	GIu	Tyr	Ile	Ser	105	Thr	Pne	Leu	Asp	Lys 110	GIn	Asn
Asp	Val	Glu 115	Ile	Pro	Ser	Pro	Thr 120	Gln	Lys	Asp	Arg	Glu 125	Lys	Lys	Lys
Lys	Gln 130	Gln	Leu	Met	Thr	Gln 135	Ile	Ser	Gly	Val	Lys 140	Lys	Leu	Met	His
Ser 145	Ser	Ser	Leu	Asn	Asn 150	Thr	Ser	Ile	Ser	Arg 155	Phe	Gly	Val	Asn	Thr 160
Glu	Asn	Glu	Asp	His 165	Leu	Ala	Lys	Glu	Leu 170	Glu	Asp	Leu	Asn	Lys 175	Trp
Gly	Leu	Asn	Ile 180	Phe	Asn	Val	Ala	Gly 185	Tyr	Ser	His	Asn	Arg 190	Pro	Leu
Thr	Cys	Ile 195	Met	Tyr	Ala	Ile	Phe 200	Gln	Glu	Arg	Asp	Leu 205	Leu	Lys	Thr
Phe	Arg 210	Ile	Ser	Ser	Asp	Thr 215	Phe	Ile	Thr	Tyr	Met 220	Met	Thr	Leu	Glu
Asp 225	His	Tyr	His	Ser	Asp 230	Val	Ala	Tyr	His	Asn 235	Ser	Leu	His	Ala	Ala 240
Asp	Val	Ala	Gln	Ser 245	Thr	His	Val	Leu	Leu 250	Ser	Thr	Pro	Ala	Leu 255	Asp
Ala	Val	Phe	Thr 260	Asp	Leu	Glu	Ile	Leu 265	Ala	Ala	Ile	Phe	Ala 270	Ala	Ala
Ile	His	Asp 275	Val	Asp	His	Pro	Gly 280	Val	Ser	Asn	Gln	Phe 285	Leu	Ile	Asn
Thr	Asn 290	Ser	Glu	Leu	Ala	Leu 295	Met	Tyr	Asn	Asp	Glu 300	Ser	Val	Leu	Glu
Asn 305	His	His	Leu	Ala	Val 310	Gly	Phe	Lys	Leu	Leu 315	Gln	Glu	Glu	His	Cys 320
Asp	Ile	Phe	Met	Asn 325	Leu	Thr	Lys	Lys	Gln 330	Arg	Gln	Thr	Leu	Arg 335	Lys
Met	Val	Ile	Asp	Met	Val	Leu	Ala	Thr	Asp	Met	Ser	Lys	His	Met	Ser

340 345 350

Leu	Leu	Ala	Asp	Leu	Lys	Thr	Met	Val	GLu	Thr	Lys	Lys	Val	Thr	Ser
		355					360					365			

Ser Gly Val Leu Leu Leu Asp Asn Tyr Thr Asp Arg Ile Gln Val Leu 370 380

Arg Asn Met Val His Cys Ala Asp Leu Ser Asn Pro Thr Lys Ser Leu 385 390 395 400

Glu Leu Tyr Arg Gln Trp Thr Asp Arg Ile Met Glu Glu Phe Phe Gln
405 410 415

Gln Gly Asp Lys Glu Arg Glu Arg Gly Met Glu Ile Ser Pro Met Cys 420 425 430

Asp Lys His Thr Ala Ser Val Glu Lys Ser Gln Val Gly Phe Ile Asp 435 440 445

Tyr Ile Val His Pro Leu Trp Glu Thr Trp Ala Asp Leu Val Gln Pro 450 455 460

Asp Ala Gln Asp Ile Leu Asp Thr Leu Glu Asp Asn Arg Asn Trp Tyr 465 470 475 480

Gln Ser Met Ile Pro Gln Ser Pro Ser Pro Pro Leu Asp Glu Gln Asn 485 490 495

Arg Asp Cys Gln Gly Leu Met Glu Lys Phe Gln Phe Glu Leu Thr Leu 500 505 510

Asp Glu Glu Asp Ser Glu Gly Pro Glu Lys Glu Gly Glu Gly His Ser 515 520 525

Tyr Phe Ser Ser Thr Lys Thr Leu Cys Val Ile Asp Pro Glu Asn Arg 530 540

Asp Ser Leu Gly Glu Thr Asp Ile Asp Ile Ala Thr Glu Asp Lys Ser 545 550 555 560

Pro Val Asp Thr

<210> 61 <211> 2929

<212> DNA

<213> Homo sapiens

<400> 61 60 agccatttgt gaacctggag gcttgacatt cgccagcgca gggccccaca agagaaattt caatgaaaag aaaagccaat ggattgtggt cttagaaaag ctgcttagat gatgtctgtt 120 tecegtgeta tagaeaegtg geagagetgt aagtaaatge teggeaetge atgatgaatt 180 240 ggatggctgc agaccggaga caaaaaaaat aattgtctca ttttcgtggt gatttgctta actggtggga ccatgccaga acggctagcg gaaatgctct tggatctctg gactccatta 300 ataatattat ggattactet teeceettge atttacatgg eteegatgaa teagteteaa 360 420 gttttaatga gtggatcccc tttggaacta aacagtctgg gtgaagaaca gcgaattttg aaccgctcca aaagaggctg ggtttggaat caaatgtttg tcctggaaga gttttctgga 480 cctgaaccga ttcttgttgg ccggctacac acagacctgg atcctgggag caaaaaaatc 540 aagtatatcc tatcaggtga tggagctggg accatatttc aaataaatga tgtaactgga 600 660 gatatecatg etataaaaag aettgaeegg gaggaaaagg etgagtatae eetaaeaget 720 caagcagtgg actgggagac aagcaaacct ctggagcctc cttctgaatt tattattaaa gttcaagaca tcaatgacaa tgcaccagag tttcttaatg gaccctatca tgctactgtg 780 ccagaaatgt ccattttggg tacatctgtc actaacgtca ctgcgaccga cgctgatgac 840 ccagtttatg gaaacagtgc aaagttggtt tatagtatat tggaagggca gccttatttt 900 tccattgagc ctgaaacagc tattataaaa actgcccttc ccaacatgga cagagaagcc 960 1020 aaggaggagt acctggttgt tatccaagcc aaagatatgg gtggacactc tggtggcctg 1080 totgggacca cgacacttac agtgactctt actgatgtta atgacaatcc tocaaaattt gcacagagec tgtateactt etcagtaceg gaagatgtgg ttettggeae tgcaatagga 1140 1200 agggtgaagg ccaatgatca ggatattggt gaaaatgcac agtcatcata tgatatcatc gatggagatg gaacagcact ttttgaaatc acttctgatg cccaggccca ggatggcatt 1260 1320 ataaggctaa gaaaacctct ggactttgag accaaaaaat cctatacgct aaaggtagag 1380 gcagccaatg tccatattga cccacgette agtggcaggg ggccetttaa agacacggcg 1440 ctacttgaag ttcatgaaaa tgctgctcta aactccgtga ttgggcaagt gactgctcgt 1500 1560 gaccetgata teaettecag teetataagg ttttecateg aceggeacae tgacetggag aggcagttca acattaatgc agacgatggg aagataacgc tggcaacacc acttgacaga 1620 gaattaagtg tatggcacaa cataacaatc attgctactg aaattaggaa ccacagtcag 1680 atatcacgag tacctgttgc tattaaagtg ctggatgtca atgacaacgc ccctgaattc 1740

qcatccqaat atqaqqcatt tttatqtqaa aatgqaaaac ccggccaagt cattcaaact 1800 gttagcgcca tggacaaaga tgatcccaaa aacggacatt atttcttata cagtctcctt 1860 ccagaaatgg tcaacaatcc gaatttcacc atcaagaaaa atgaagataa ttccctcagt 1920 attttggcaa agcataatgg attcaaccgc cagaagcaag aagtctatct tttaccaatc 1980 2040 ataatcagtg atagtggaaa tcctccactg agcagcacta gcaccttgac aatcagggtc tgtggctgca gcaatgacgg tgtcgtccag tcttgcaatg tcgaagctta tgtccttcca 2100 attggactca gtatgggcgc cttaattgcc atattagcat gcatcatttt gctgttagtc 2160 2220 atcqtqqtqc tqtttqtaac tctacggcgg cataaaaatg aaccattaat tatcaaagat gatgaagacg ttcgagaaaa catcattcgc tacgatgatg aaggaggagg ggaggaggac 2280 acagaggett ttgacattgc aactttacaa aatccagatg gaattaatgg atttttaccc 2340 cqtaaqqata ttaaaccaqa tttqcaqttt atqccaaqqc aagggcttgc tccagttcca 2400 aatggtgttg atgtcgatga atttataaat gtaaggctgc atgaggcaga taatgatccc 2460 acggccccgc catatgactc cattcagata tatggctatg aaggccgagg gtcagtggct 2520 2580 ggetecetea geteettgga gtecaceaea teagaeteag accagaattt tgaetaeete agtgactggg gtccccgctt taagagactg ggcgaactct actctgttgg tgaaagtgac 2640 aaagaaactt gacagtggat tataaataaa tcactggaac tgagcattct gtaatattct 2700 agggtcactc cccttagata caaccaatgt ggctatttgt tttagaggca agtttagcac 2760 2820 aaaqtatatg ttaqqaqqtt ataaatcttg tggagtgtga attaagtatg tggagtgtct 2880 2929 agaagteett ggatatttga tatttacetg accaccacag acaaagatt

<210> 62

<211> 799

<212> PRT

<213> Homo sapiens

<400> 62

Met Pro Glu Arg Leu Ala Glu Met Leu Leu Asp Leu Trp Thr Pro Leu 1 5 10 15

Ile Ile Leu Trp Ile Thr Leu Pro Pro Cys Ile Tyr Met Ala Pro Met 20 25 30

Asn Gln Ser Gln Val Leu Met Ser Gly Ser Pro Leu Glu Leu Asn Ser 35 40 45

Leu	Gly 50	Glu	Glu	Gln	Arg	11e 55	Leu	Asn	Arg	Ser	Lys 60	Arg	GTA	Trp	Val
Trp 65	Asn	Gln	Met	Phe	Val 70	Leu	Glu	Glu	Phe	Ser 75	Gly	Pro	Glu	Pro	Ile 80
Leu	Val	Gly	Arg	Leu 85	His	Thr	Asp	Leu	Asp 90	Pro	Gly	Ser	Lys	Lys 95	Ile
Lys	Tyr	Ile	Leu 100	Ser	Gly	Asp	Gly	Ala 105	Gly	Thr	Ile	Phe	Gln 110	Ile	Asn
Asp	Val	Thr 115	Gly	Asp	Ile	His	Ala 120	Ile	Lys	Arg	Leu	Asp 125	Arg	Glu	Glu
Lys	Ala 130	Glu	Tyr	Thr	Leu	Thr 135	Ala	Gln	Ala	Val	Asp 140	Trp	Glu	Thr	Ser
Lys 145	Pro	Leu	Glu	Pro	Pro 150	Ser	Glu	Phe	Ile	Ile 155	Lys	Val	Gln	Asp	Ile 160
Asn	Asp	Asn	Ala	Pro 165	Glu	Phe	Leu	Asn	Gly 170	Pro	Tyr	His	Ala	Thr 175	Val
Pro	Glu	Met	Ser 180	Ile	Leu	Gly	Thr	Ser 185	Val	Thr	Asn	Val	Thr 190	Ala	Thr
Asp	Ala	Asp 195	Asp	Pro	Val	Tyr	Gly 200	Asn	Ser	Ala	Lys	Leu 205	Val	Tyr	Ser
Ile	Leu 210	Glu	Gly	Gln	Pro	Tyr 215	Phe	Ser	Ile	Glu	Pro 220	Glu	Thr	Ala	Ile
Ile 225	Lys	Thr	Ala	Leu	Pro 230	Asn	Met	Asp	Arg	Glu 235	Ala	Lys	Glu	Glu	Tyr 240
Leu	Val	Val	Ile	Gln 245	Ala	Lys	Asp	Met	Gly 250	Gly	His	Ser	Gly	Gly 255	Leu
Ser	Gly	Thr	Thr 260	Thr	Leu	Thr	Val	Thr 265	Leu	Thr	Asp	Val	Asn 270	Asp	Asn
Pro	Pro	Lys 275	Phe	Ala	Gln	Ser	Leu 280	Tyr	His	Phe	Ser	Val 285	Pro	Glu	Asp
3701	1701	T 011	C1.,	Thr	71-	T10	C1.	7 ~~	37-1	Tare	ת דת	λan	λen	Cln.	λan

_	~1	α_{11}	7000	777~	α_{1}	COr	Car	Tr. 22-	λαν	T10	T10	7 0 0	C7 11	7 cn	C

300

295

290

Ile Gly Glu Asn Ala Gln Ser Ser Tyr Asp Ile Ile Asp Gly Asp Gly 305 310 315 320

Thr Ala Leu Phe Glu Ile Thr Ser Asp Ala Gln Ala Gln Asp Gly Ile 325 330 335

Ile Arg Leu Arg Lys Pro Leu Asp Phe Glu Thr Lys Lys Ser Tyr Thr 340 345 350

Leu Lys Val Glu Ala Ala Asn Val His Ile Asp Pro Arg Phe Ser Gly 355 360 365

Arg Gly Pro Phe Lys Asp Thr Ala Thr Val Lys Ile Val Val Glu Asp 370 375 380

Ala Asp Glu Pro Pro Val Phe Ser Ser Pro Thr Tyr Leu Leu Glu Val 385 390 395 400

His Glu Asn Ala Ala Leu Asn Ser Val Ile Gly Gln Val Thr Ala Arg
405 410 415

Asp Pro Asp Ile Thr Ser Ser Pro Ile Arg Phe Ser Ile Asp Arg His
420 425 430

Thr Asp Leu Glu Arg Gln Phe Asn Ile Asn Ala Asp Asp Gly Lys Ile 435 440 445

Thr Leu Ala Thr Pro Leu Asp Arg Glu Leu Ser Val Trp His Asn Ile 450 455 460

Thr Ile Ile Ala Thr Glu Ile Arg Asn His Ser Gln Ile Ser Arg Val 465 470 475 480

Pro Val Ala Ile Lys Val Leu Asp Val Asn Asp Asn Ala Pro Glu Phe 485 490 495

Ala Ser Glu Tyr Glu Ala Phe Leu Cys Glu Asn Gly Lys Pro Gly Gln 500 505 510

Val Ile Gln Thr Val Ser Ala Met Asp Lys Asp Asp Pro Lys Asn Gly 515 520 525

His Tyr Phe Leu Tyr Ser Leu Leu Pro Glu Met Val Asn Asn Pro Asn 530 535 540

Phe 545	Thr	Ile	Lys	Lys	Asn 550	Glu	Asp	Asn	Ser	Leu 555	Ser	Ile	Leu	Ala	Lys 560
His	Asn	Gly	Phe	Asn 565	Arg	Gln	Lys	Gln	Glu 570	Val	Tyr	Leu	Leu	Pro 575	Ile
Ile	Ile	Ser	Asp 580	Ser	Gly	Asn	Pro	Pro 585	Leu	Ser	Ser	Thr	Ser 590	Thr	Leu
Thr	Ile	Arg 595	Val	Cys	Gly	Cys	Ser 600	Asn	Asp	Gly	Val	Val 605	Gln	Ser	Cys
Asn	Val 610	Glu	Ala	Tyr	Val	Leu 615	Pro	Ile	Gly	Leu	Ser 620	Met	Gly	Ala	Leu
Ile 625	Ala	Ile	Leu	Ala	Cys 630	Ile	Ile	Leu	Leu	Leu 635	Val	Ile	Val	Val	Leu 640
Phe	Val	Thr	Leu	Arg 645	Arg	His	Lys	Asn	Glu 650	Pro	Leu	Ile	Ile	Lys 655	Asp
Asp	Glu	Asp	Val 660	Arg	Glu	Asn	Ile	Ile 665	Arg	Tyr	Asp	Asp	Glu 670	Gly	Gly
Gly	Glu	Glu 675	Asp	Thr	Glu	Ala	Phe 680	Asp	Ile	Ala	Thr	Leu 685	Gln	Asn	Pro
Asp	Gly 690	Ile	Asn	Gly	Phe	Leu 695	Pro	Arg	Lys	Asp	Ile 700	Lys	Pro	Asp	Leu
Gln 705	Phe	Met	Pro	Arg	Gln 710	Gly	Leu	Ala	Pro	Val 715	Pro	Asn	Gly	Val	Asp 720
Val	Asp	Glu	Phe	Ile 725	Asn	Val	Arg	Leu	His 730	Glu	Ala	Asp	Asn	Asp 735	Pro
Thr	Ala	Pro	Pro 740	Tyr	Asp	Ser	Ile	Gln 745	Ile	Tyr	Gly	Tyr	Glu 750	Gly	Arg
Gly	Ser	Val 755	Ala	Gly	Ser	Leu	Ser 760	Ser	Leu	Glu	Ser	Thr 765		Ser	Asp
Ser	Asp 770	Gln	Asn	Phe	Asp	Tyr 775	Leu	Ser	Asp	Trp	Gly 780		Arg	Phe	Lys

785 <210> 63 <211> 93 <212> PRT <213> Homo sapiens <400> 63 Met Pro Glu Arg Leu Ala Glu Met Leu Leu Asp Leu Trp Thr Pro Leu 5 Ile Ile Leu Trp Ile Thr Leu Pro Pro Cys Ile Tyr Met Ala Pro Met 20 25 Asn Gln Ser Gln Val Leu Met Ser Gly Ser Pro Leu Glu Leu Asn Ser 35 40 Leu Gly Glu Glu Gln Arg Ile Leu Asn Arg Ser Lys Arg Gly Trp Val 60 50 55 Trp Asn Gln Met Phe Val Leu Glu Glu Phe Ser Gly Pro Glu Pro Ile 70 75 65 Leu Val Gly Arg Val Leu Lys Ser Val Ser Lys Leu His 85 <210> 64 <211> 1062 <212> DNA <213> Homo sapiens <400> 64 60 ggccgcggcg gtgcagcaga ggcgcctcgg gcaggaggag ggcggcttct gcgagggcag cctgagctac acacagacct ggatcctggg agcaaaaaaa tcaagtatat cctatcaggt 120 qatqqaqctq qqaccatatt tcaaataaat gatgtaactg gagatatcca tgctataaaa 180 agacttgacc gggaggaaaa ggctgagtat accctaacag ctcaagcagt ggactgggag 240 acaaqcaaac ctctggagcc tccttctgaa tttattatta aagttcaaga catcaatgac 300 aatgcaccag agtttcttaa tggaccctat catgctactg tgccagaaat gtccattttg 360 ggtacatctg tcactaacgt cactgcgacc gacgctgatg acccagttta tggaaacagt 420 gcaaagttgg tttatagtat attggaaggg cagcettatt tttecattga geetgaaaca 480 540 gctattataa aaactgccct tcccaacatg gacagagaag ccaaggagga gtacctggtt

Arg Leu Gly Glu Leu Tyr Ser Val Gly Glu Ser Asp Lys Glu Thr

600

gttatccaag ccaaagatat gggtggacac tctggtggcc tgtctgggac cacgacactt

acagtgact	ttactgatgt	taatgacaat	cctccaaaat	ttgcacagag	cctgtatcac	660
ttctcagta	c cggaagatgt	ggttcttggc	actgcaatag	gaagggtgaa	ggccaatgat	720
caggatatt	g gtgaaaatgc	acagtcatca	tatgatatca	tcgatggaga	tggaacagca	780
ctttttgaa	a tcacttctga	tgcccaggcc	caggatggca	ttataaggct	aagaaaacct	840
ctggacttt	g agaccaaaaa	atcctatacg	ctaaaggtag	aggcagccaa	tgtccatatt	900
gacccacgc	tcagtggcag	ggggcccttt	aaagacacgg	cgacagtcaa	aatcgtggtt	960
gaagatgct	g atgageetee	ggtcttctct	tcaccgactt	acctacttga	agttcatgaa	1020
aatgctgct	c taaactccgt	gattgggcaa	gtgactgctc	gt		1062

<210> 65

<211> 354

<212> PRT

<213> Homo sapiens

<400> 65

Leu Arg Gly Gln Pro Glu Leu His Thr Asp Leu Asp Pro Gly Ser Lys 20 25 30

Lys Ile Lys Tyr Ile Leu Ser Gly Asp Gly Ala Gly Thr Ile Phe Gln 35 40 45

Ile Asn Asp Val Thr Gly Asp Ile His Ala Ile Lys Arg Leu Asp Arg 50 55 60

Glu Glu Lys Ala Glu Tyr Thr Leu Thr Ala Gln Ala Val Asp Trp Glu 65 70 75 80

Thr Ser Lys Pro Leu Glu Pro Pro Ser Glu Phe Ile Ile Lys Val Gln 85 90 95

Asp Ile Asn Asp Asn Ala Pro Glu Phe Leu Asn Gly Pro Tyr His Ala
100 105 110

Thr Val Pro Glu Met Ser Ile Leu Gly Thr Ser Val Thr Asn Val Thr 115 120 125

Ala Thr Asp Ala Asp Asp Pro Val Tyr Gly Asn Ser Ala Lys Leu Val 130 135 140

Tyr 145	Ser	Ile	Leu	Glu	Gly 150	Gln	Pro	Tyr	Phe	Ser 155	Ile	Glu	Pro	Glu	Thr 160
Ala	Ile	Ile	Lys	Thr 165	Ala	Leu	Pro	Asn	Met 170	Asp	Arg	Glu	Ala	Lys 175	Glu
Glu	Tyr	Leu	Val 180	Val	Ile	Gln	Ala	Lys 185	Asp	Met	Gly	Gly	His 190	Ser	Gly
Gly	Leu	Ser 195	Gly	Thr	Thr	Thr	Leu 200	Thr	Val	Thr	Leu	Thr 205	Asp	Val	Asn
Asp	Asn 210	Pro	Pro	Lys	Phe	Ala 215	Gln	Ser	Leu	Tyr	His 220	Phe	Ser	Val	Pro
Glu 225	Asp	Val	Val	Leu	Gly 230	Thr	Ala	Ile	Gly	Arg 235	Val	Lys	Ala	Asn	Asp 240
Gln	Asp	Ile	Gly	Glu 245	Asn	Ala	Gln	Ser	Ser 250	Tyr	Asp	Ile	Ile	Asp 255	Gly
Asp	Gly	Thr	Ala 260	Leu	Phe	Glu	Ile	Thr 265	Ser	Asp	Ala	Gln	Ala 270	Gln	Asp
Gly	Ile	Ile 275	Arg	Leu	Arg	Lys	Pro 280	Ļeu	Asp	Phe	Glu	Thr 285	Lys	Lys	Ser
Tyr	Thr 290	Leu	Lys	Val	Glu	Ala 295	Ala	Asn	Val	His	Ile 300	Asp	Pro	Arg	Phe
Ser 305	Gly	Arg	Gly	Pro	Phe 310	Lys	Asp	Thr	Ala	Thr 315	Val	Lys	Ile	Val	Val 320
Glu	Asp	Ala	Asp	Glu 325	Pro	Pro	Val	Phe	Ser 330	Ser	Pro	Thr	Tyr	Leu 335	Leu
Glu	Val	His	Glu 340	Asn	Ala	Ala	Leu	Asn 345	Ser	Val	Ile	Gly	Gln 350		Thr
Ala	Arg														

86

<210> 66 <211> 20 <212> DNA

<213> ARTIFICIAL SEQUENCE

<220> <223>	OLIGONUCLEOTIDE	
<400>	66	
tgccac	gtgt tagcagaaag	20
-210-	67	
<210> <211>	67	
<212>		
	ARTIFICIAL SEQUENCE	
<220>		
<223>	OLIGONUCLEOTIDE	
	-m	
<400>		20
tgeett	taac cagatgaggc	20
<210>	68	
<211>		
<212>	, , , , , , , , , , , , , , , , , , ,	
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	OLIGONUCLEOTIDE	
\2257	01100110011011101	
<400>	68	
tcttgt	gggt cacaattagg c	21
<210>	60	
<211>		
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>	OV TOOLWING DOMEDIE	
<223>	OLIGONUCLEOTIDE	
<400>	69	
	ggtg cagtttcttc agc	23
·		
_		
<210>	70	
<211> <212>		
	ARTIFICIAL SEQUENCE	
(213)	AKTIFICIAL SEQUENCE	
<220>		
<223>	OLIGONUCLEOTIDE	
<400>		
aaatga	atct ctgattagcc aac	23
<210>	71	
<211>		
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>		

<223>	OLIGONUCLEOTIDE	
<400>	71	
		. 22
<210>	72	
<211>		
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>		
	OLIGONUCLEOTIDE	
<400>		
aggetg	agtg ccaaaaagta	20
<210>	73	
<211>	23	
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>		
	OLIGONUCLEOTIDE	
12237	<u> </u>	
<400>	73	
ctttaa	gctt gctatttgaa ggc	23
<210>	74	
<211>		
<212>	DNA	
<213>	ARTIFICIAL SEQUENCE	
<220>		
	OLIGONUCLEOTIDE	
<400>		
ttcatc	gtct gaacctgg	18
<210>	75	
<211>	20	
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	OLIGONUCLEOTIDE	
1220		
<400>		
acacat	ttcc tctatgttgc	20
<210>	76	
<211>	20	
<212>	DNA	
<213>	ARTIFICIAL SEQUENCE	
-222		
<220> <223>	OLIGONUCLEOTIDE	

-40	>00	76	
			20
caç	ggag	gtcc tgtgaagctc	20
<2	10>	77	
	11>	20	
		DNA	
<23	13>	ARTIFICIAL SEQUENCE	
<22	20>		
<22	23>	OLIGONUCLEOTIDE	
`		0210011001101	
		88	
		77	
aca	aggg	aaag aagcaaagca	20
<2°	10>	78	
		20	
		DNA	
<23	13>	ARTIFICIAL SEQUENCE	L'attack
<23	20>		
	23>	OLIGONUCLEOTIDE	
`~	25/	01100110011101	
		-	
	00>	78	
aaa	agct	aagc gcaggtgtgt	20
<2	10>	79	
		20	
		DNA	
<2	13>	ARTIFICIAL SEQUENCE	••
<2	20>		
<2	23>	OLIGONUCLEOTIDE	
١		3 3333	
	00>	79	
tti	tctg	ggag gcaaccatag	20
e2.	10>	80	
	11>		
		DNA	
<2	13>	ARTIFICIAL SEQUENCE	
<2	20>		
		OLIGONUCLEOTIDE	
~2.	237	OBIGONOCIDEO 11DE	
	00>		
gc	agag	ttat gtcatgccca	20
-2	10>	81	
	11>		
		DNA	
<2	13>	ARTIFICIAL SEQUENCE	
دع.	20>		
		OLIGONUCLEOTIDE	
< 2.		CHICCHICITOR	

<400> cctgtg	81 cagc actctgatgt	20
-210-	0.2	
<210> <211>		
<212>		
	ARTIFICIAL SEQUENCE	
/213/	MITTICIAL DEGOLICO	
<220>		
	OLIGONUCLEOTIDE	
<400>	82	
ttgaac	ccaa gagaacaggg	20
<210>	0.2	
<211>		
<212>		
	ARTIFICIAL SEQUENCE	
12207		
<220>		
<223>	OLIGONUCLEOTIDE	
<400>		20
tecect	tctc cttccagttt	20
<210>	84	
<211>	20	
<212>	DNA	
<213>	ARTIFICIAL SEQUENCE	
<220>	OF TOOMIST BOWERS	
<223>	OLIGONUCLEOTIDE	
<400>	84	
	attc tgggaacagc	20
<210>	85	
<211>	20	
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	OLIGONUCLEOTIDE	
<400>	85	
gtgtag	ggaa agccatccaa	20
<210>	86	
<211>		
<212>		
	ARTIFICIAL SEQUENCE	
<220>		
<223>	OLIGONUCLEOTIDE	
<400>	86	

tctttt	cet geagteeetg	20	
<210>	87		
<211>			
<212>			
	ARTIFICIAL SEQUENCE		
<220>			
<223>	OLIGONUCLEOTIDE		
<400>	<400> 87		
ctccaaa	atga ctcctgccat	20	
<210>	88		
<211>	20		
<212>	DNA		
<213>	ARTIFICIAL SEQUENCE		
<220>			
<223>	OLIGONUCLEOTIDE		
<400>	88		
gcctctc	gcca tagattttgc	20	
<210>	89		
<211>	20		
<212>	DNA		
<213>	ARTIFICIAL SEQUENCE		
<220>			
<223>	OLIGONUCLEOTIDE		
(223)			
<400>	89		
tteetteeca eeetttetet 20			
-210-			
<210> <211>	90 20		
<212>	DNA		
<213>	ARTIFICIAL SEQUENCE		
	Internal bagoanea		
<220>			
<223>	OLIGONUCLEOTIDE		
<400>	90		
ccagett	egta tgtggtgtgg	20	
_			
<210>	91		
<211>			
<212>			
	ARTIFICIAL SEQUENCE		
	•		
<220>			
<223>	OLIGONUCLEOTIDE		
<400>	91		
ttactc	ccag tgcccattgt	20	

(ZIU)	32	
<211>	23	
<212>	DNA	
	ARTIFICIAL SEQUENCE	
	~	
<220>		
<223>	OLIGONUCLEOTIDE	
<400>	92	
gtcaga	caaa tccaaatgga gag	23
<210>	93	
<211>	23	
<212>	DNA	
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	OLIGONUCLEOTIDE	
<400>	93	
ctttct	cctg tcactttcct tca	23
<210>	94	
<211>	9	
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	KOZAK CONSENSUS SEQUENCE	
<220>		
<221>	misc_feature	
	(4)(5)	
<223>	n represents a,c,g or t	
<400>	94	
ccanna	tgg	9