Devoir surveillé n° 01

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $\omega = \exp\left(\frac{2i\pi}{7}\right)$. Calculer $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$. (*Indication*: on pourra d'abord calculer AB et A + B.)

II. Autour des solutions d'une équation polynomiale de degré 2.

1) Résultats préliminaires :

a) Soit Z, un complexe non nul. Prouver l'équivalence

$$\left(Z + \frac{1}{Z} \text{ est un réel }\right) \Leftrightarrow \left(Z \text{ est un réel ou } |Z| = 1\right).$$

b) On considère la fonction (réelle) f définie par $f: x \mapsto x + \frac{1}{x}$. Préciser son domaine de définition et y étudier ses variations. En conclure que la quantité $\left|x + \frac{1}{x}\right|$ possède, pour $x \in \mathbb{R}^*$, un minimum que l'on calculera.

Dans la suite de l'exercice, a et b désignent deux nombres complexes non-nuls et (E) désigne l'équation

$$z^2 - 2az + b = 0.$$

On note z_1 et z_2 les racines complexes (éventuellement égales) de (E).

2) Une condition nécessaire et suffisante pour que $|z_1|=|z_2|$:

- a) Rappeler et démontrer les liens existants entre les quantités $z_1 + z_2$ et z_1z_2 , et les coefficients a et b.
- b) On suppose que $|z_1| = |z_2|$. Écrire z_1 et z_2 sous forme exponentielle puis en déduire la forme exponentielle de $\frac{a^2}{b}$.

Conclure que la quantité $\frac{a^2}{b}$ est réelle et appartient à l'intervalle]0,1].

- c) Montrer réciproquement que si $\frac{a^2}{b} \in]0,1]$, alors $|z_1| = |z_2|$.

 Indication: on pourra poser $Z = \frac{z_1}{z_2}$.
- 3) Une condition nécessaire et suffisante pour que $arg(z_1) = arg(z_2) [2\pi]$:
 - a) Démontrer l'inégalité suivante, appelée inégalité arithmético-géométrique

$$\forall x, y \in \mathbb{R}_+^*, \ \sqrt{xy} \leqslant \frac{x+y}{2}.$$

- b) On suppose que $\arg(z_1) = \arg(z_2) \ [2\pi]$. Écrire z_1 et z_2 sous forme exponentielle puis en déduire la forme exponentielle de $\frac{b}{a^2}$.

 Montrer que la quantité $\frac{b}{a^2}$ est réelle et appartient à l'intervalle]0,1].
- c) Montrer réciproquement que si $\frac{b}{a^2} \in]0,1]$, alors $\arg(z_1) = \arg(z_2) \ [2\pi]$.

III. Un calcul de tangente.

On définit le polynôme $P(X) = \frac{1}{2i} ((X+i)^5 - (X-i)^5).$

- 1) Donner la définition et les expressions des racines 5èmes de l'unité.
- 2) Soit $z \in \mathbb{C}$ une racine de P, i.e. P(z) = 0. Que peut-on dire de $Z = \frac{z+i}{z-i}$?
- 3) Exprimer z en fonction de Z.
- 4) Déterminer les racines du polynôme P.
- 5) Vérifier que ces racines sont toutes réelles.
- 6) Vérifier que le polynôme P peut s'écrire sous la forme $P(X) = aX^4 + bX^2 + c$ avec a, b et c des réels que l'on calculera. Déterminer alors une autre écriture des racines de P.
- 7) Déduire des résultats précédents les valeurs exactes de tan $\frac{\pi}{5}$ et tan $\frac{2\pi}{5}$.

