SOLUTION FOR "AN INTRODUCTION TO AUTOMORPHIC REPRESENTATION"

SEEWOO LEE

ABSTRACT. This is a solution for the exercises in J. Getz and H. Hahn's book $An\ Introduction\ to\ Automorphic\ Representation\ with\ a\ view\ toward\ Trace\ Formulae.$

1. Chapter 1

Problem 1.1 *** By Yoneda lemma, the morphism $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ of affine schemes corresponds to the k-algebra morphism $\phi: A \to B$. This induces a map on the underlying topological spaces by sending a prime ideal $\mathfrak{p} \subset B$ to $\phi^{-1}(\mathfrak{p}) \subset A$, which is also prime.

Problem 1.2 ***

Problem 1.3 By Yoneda lemma, we have

$$\operatorname{Mor}(\operatorname{Spec}(B),\operatorname{Spec}(A)) \simeq \operatorname{Nat}(h^B,h^A) \simeq h^B(A) = \operatorname{Hom}_k(A,B)$$

which gives an equivalence between $\mathbf{AffSch}_k^{\mathrm{op}}$ and \mathbf{Alg}_k .

Problem 1.4 • Nonreduced: Spec($\mathbb{C}[x]/(x^2)$)

• Reducible: $\operatorname{Spec}(\mathbb{C}[x,y]/(x,y))$

• Reduced and irreducible (i.e. integral): $\operatorname{Spec}(\mathbb{C}[x])$

Problem 1.5 We can assume that $Y = \operatorname{Spec}(A)$ and $X = \operatorname{Spec}(A/I)$ for some k-algebra A and an ideal I of A. Then it is enough to show that the map $\operatorname{Hom}(A/I,R) \to \operatorname{Hom}(A,R)$, given by composing with the natural map $\pi: A \to A/I$, is injective. This follows from the surjectivity of π .

Problem 1.6 Let $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B), Z = \operatorname{Spec}(C)$. Then the statement is equivalent to

$$\operatorname{Hom}(A \otimes_B C, R) \simeq \operatorname{Hom}(A, R) \times_{\operatorname{Hom}(B, R)} \operatorname{Hom}(C, R).$$

We can define a bijection as follows. First, consider the following commutative diagram:

$$\begin{array}{ccc}
A & \xrightarrow{\iota_A} & A \otimes_B C \\
 & & & & \iota_C \\
 & & & & & \iota_C \\
 & & & & & & & C
\end{array}$$

Using the maps above, we define a map from LHS to RHS as $\phi \mapsto (\phi \iota_A, \phi \iota_C)$. Since $\iota_A \alpha = \iota_C \gamma$, we have $\phi \iota_A \alpha = \phi \iota_C \gamma$ and the map is well-defined. For the other direction, for given $(f,g): A \times C \to R$ with $f\alpha = g\gamma$, universal property of the tensor product gives a unique map $\phi: A \otimes_B C \to R$ with $f = \phi \iota_A$ and $g = \phi \iota_C$. We can check that these maps are inverses for each other.

Problem 1.7 ***

Problem 1.8 *** We define an \mathbb{R} -algebra A as

$$A = \mathbb{R}[(x_{ij}, y_{ij})_{1 \le i, j \le n}]/I$$

where I is an ideal generated by elements of the form

$$\left(\sum_{k=1}^{n} (x_{ik}^{2} + y_{ik}^{2})\right) - 1,$$

$$\sum_{k=1}^{n} (x_{ik}x_{jk} - y_{ik}y_{jk}), \quad i \neq j$$

$$\sum_{k=1}^{n} (x_{ij}y_{jk} + y_{ik}x_{jk}), \quad i \neq j$$

for $1 \le i, j \le n$. Then we can identify $U_n(R)$ with Hom(A, R) as follows: for given $\phi: A \to R$, let $\alpha_{ij} = \phi(x_{ij})$ and $\beta_{ij} = \phi(y_{ij})$. Then a matrix $g = (g_{ij})_{1 \le i,j \le n}$ with $g_{ij} = 1 \otimes \alpha_{ij} + \sqrt{-1} \otimes \beta_{ij}$ becomes an element of $U_n(R)$ by the relations of x_{ij} and y_{ij} s defined by the ideal I. Similarly, for given $g = (g_{ij}) \in U_n(R)$, we can write $g_{ij} = (a_{ij} + \sqrt{-1}b_{ij}) \otimes r_{ij} = 1 \otimes a_{ij}r_{ij} + \sqrt{-1} \otimes b_{ij}r_{ij}$ and we have a corresponding map $\phi: A \to R$ sending x_{ij} to $a_{ij}r_{ij}$ and y_{ij} to $b_{ij}r_{ij}$.

The group $U_n(\mathbb{R})$ is a compact group (as a topological subgroup of $GL_n(\mathbb{C})$) since it is closed (it is an inverse image of point I of a continuous map $g \to g \overline{g}^t$) and bounded (each row and column vectors have norm 1).

At last, NOT FINISHED

Problem 1.9 Consider the following short exact sequence:

$$0 \to \ker(\epsilon)/\ker(\epsilon)^2 \to \mathcal{O}(G)/\ker(\epsilon)^2 \to k \to 0.$$

The map $O(G)/\ker(\epsilon)^2 \to k$ is defined as a composition of the natural map $\mathcal{O}(G)/\ker(\epsilon)^2 \to \mathcal{O}(G)/\ker(\epsilon)$ followed by ϵ . Then we have a section $k \to \mathcal{O}(G)/\ker(\epsilon)$ which is the composition $k \to \mathcal{O}(G) \to \mathcal{O}(G)/\ker(\epsilon)^2$ and the above sequence splits.

Problem 1.10 Let $g = (g_{ij}) \in GL_n(R)$ and $J = (\alpha_{ij}) \in GL_n(k)$. Then $g^t J g = J$ is equivalent to

$$\sum_{k,l=1}^{n} \alpha_{kl} g_{ki} g_{lj} = \alpha_{ij}$$

for all $1 \le i, j \le n$. Hence G is an affine algebraic group with a coordinate ring

$$A = k[(X_{ij})_{1 \le i, j \le n}] / \left(\sum_{k,l=1}^{n} \alpha_{kl} X_{ki} X_{lj} - \alpha_{ij}, 1 \le i, j \le n \right).$$

Since Lie $G = \ker(G(k[t]/t^2) \to G(k))$, the elements of Lie G have a form of I + tXfor some $X \in M_n(k)$. Then the defining equation $g^t J g = J$ is equivalent to

$$(I+tX)^t J(I+tX) = J \Leftrightarrow J+tX^t J+tJX+t^2 X^t JX = J+t(X^t J+JX) = J,$$

(here every elements are in $GL_n(k[t]/t^2)$) so we should have $X^tJ + JX = 0$. In other words, we have a map

$$\text{Lie } G \xrightarrow{\sim} \{X \in \mathfrak{gl}_n(k) : X^t J + JX\}, \quad I + tX \to X.$$

Problem 1.11 ***

Problem 1.12 ***

Problem 1.13 Using the equivalence of Spl_k and RRD, it is enough to check that the dual of the root datum of GL_n is isomorphic to itself in **RRD**. Recall that the root datum of GL_n with torus T of diagonal elements is given as follows: (Example 1.12)

- $X^*(T) = \{\alpha_{k_1,\dots,k_n} : \operatorname{diag}(t_1,\dots,t_n) \mapsto \prod_{1 \leq j \leq n} t_j^{k_j}, k_1,\dots,k_n \in \mathbb{Z}\} \simeq \mathbb{Z}^n$ $X_*(T) = \{\beta_{k_1,\dots,k_n} : t \mapsto \operatorname{diag}(t^{k_1},\dots,t^{k_n}), t_1,\dots,t_n \in \mathbb{Z}\} \simeq \mathbb{Z}^n$ $\Phi(\operatorname{GL}_n,T) = \{e_{ij}, 1 \leq i \neq j \leq n\}, e_{ij}(\operatorname{diag}(t_1,\dots,t_n)) = t_it_j^{-1}$

- $\Phi^{\vee}(GL_n, T) = \{e_{ij}, 1 \leq i \neq j \leq n\}, e_{ij}^{\vee}(t) = diag(1, \dots, t, \dots, t^{-1}, \dots, 1)$ (t in the *i*-th entry, t^{-1} in the *j*-th entry, 1 for other entries)

Then we define a map $f: X_*(T) \to X^*(T)$ and $\iota: \Phi(GL_n, T) \to \Phi^{\vee}(GL_n, T)$ as

$$f(\beta_{k_1,\dots,k_n}) = \alpha_{k_1,\dots,k_n}, \quad \iota(e_{ij}) = e_{ij}^{\vee}.$$

and define $f^{\vee}: X^*(T) \to X_*(T)$ and $\iota^{\vee}: \Phi^{\vee}(\mathrm{GL}_n, T) \to \Phi(\mathrm{GL}_n, T)$ similarly. Then these maps are inverse to each other and gives an isomorphism between two root data

$$(X^*(T), X_*(T), \Phi(\operatorname{GL}_n, T), \Phi^{\vee}(\operatorname{GL}_n, T)) \simeq (X_*(T), X^*(T), \Phi^{\vee}(\operatorname{GL}_n, T), \Phi(\operatorname{GL}_n, T))$$

(they are central isogenies) so we get $\widehat{\operatorname{GL}}_n = \operatorname{GL}_{n\mathbb{C}}$.

Problem 1.14 ***

Problem 1.15 ***

2. Chapter 2

- **Problem 2.1** ***
- **Problem 2.2** ***
- **Problem 2.3** ***
- **Problem 2.4** ***
- **Problem 2.5** ***
- **Problem 2.6** ***
- **Problem 2.7** ***
- **Problem 2.8** ***
- Problem 2.9 ***
- Problem 2.10 ***
- Problem 2.11 ***
- Problem 2.12 ***
- Problem 2.13 ***
- Problem 2.14 ***
- ----
- **Problem 2.15** ***
- Problem 2.16 ***
- **Problem 2.17** ***
- **Problem 2.18** ***
- Problem 2.19 ***