Programare declarativă

Functori, functori aplicativi1

Ioana Leuștean Traian Florin Șerbănuță

Departamentul de Informatică, FMI, UB ioana@fmi.unibuc.ro traian.serbanuta@unibuc.ro

15 decembrie 2020

¹bazat pe Learn You a Haskell for Great Good

Colecții

Tipuri parametrizate reprezentând "colecții"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca reprezentând "colecții", recipiente care pot conține elemente de tipul dat ca argument.

Exemple

- Clasa de tipuri opțiune asociază unui tip a, tipul Maybe a
 - colectii goale: Nothing
 - colecții care țin un element x de tip a: Just x
- Clasa de tipuri listă asociază unui tip a, tipul [a]
 - o colecții care țin 0, 1, sau mai multe elemente de tip a: [1, 2, 3], [], [5]

Tipuri parametrizate reprezentând "colecții"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca reprezentând "colecții", recipiente care pot conține elemente de tipul dat ca argument.

Exemplu: tip de date pentru arbori binari

 Un arbore este o "colecție" care poate ține 0, 1, sau mai multe elemente de tip a:

Nod 3 Nil (Nod 4 (Nod 2 Nil Nil) Nil), Nil, Nod 3 Nil Nil

Tipuri parametrizate reprezentând "computații"

O clasă largă de tipuri parametrizate pot reprezenta "contexte computaționale" care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- **Either** e a descrie rezultate de tip a ale unor computații deterministe care pot produce elemente de tip a sau eșua cu o eroare de tip *e*
 - Right 5 :: Either e Int reprezintă rezultatul unei computații reușite
 - Left "OOM":: Either String a reprezintă o excepție de tip String
- t -> a descrie computații care atunci când primesc orice intrare de tip t produc un rezultat de tip a
 - (++ "!") :: String -> String este o computație care dat fiind un şir, îi adaugă un semn de exclamare
 - length :: String -> Int este o computație care dat fiind un şir, îi prduce lungimea acestuia
 - id :: String -> String este o computație care produce șirul dat ca argument

Clase de tipuri pentru colecții și computații?

Întrebare

Care sunt trăsăturile comune ale acestor tipuri parametrizate care pot fi gândite intuitiv ca colecții care conțin elemente / computații care produc rezultate?

Problemă

Putem proiecta clase de tipuri care descriu funcționalități comune tuturor acestor tipuri?

Functori

Problemă

Formulare

Dată fiind o funcție f :: a -> b și o colecție/computație ca care conține/produce elemente de tip a, vreau să să obțin o colecție/computație cb care conține/produce elemente de tip b obținute prin transformarea elementelor conținute/produse de colecția ca fără a afecta structura colecției/computației.

Exemplu — liste

Dată fiind o funcție f :: a -> b și o listă *la* de elemente de tip a, vreau să să obțin o lista de elemente de tip b transformând fiecare element din *la* folosind funcția f, fără a afecta structura listei (e.g., lungimea, ordinea elementelor).

Definiție

```
class Functor m where
fmap :: (a -> b) -> m a -> m b
```

Dată fiind o funcție f :: a -> b și ca :: m a, fmap produce cb :: m b obținută prin transformarea elementelor conținute/produse de colecția/computația ca folosind funcția f (fără a afecta structura colectiei/computației)

Instanță pentru liste

```
instance Functor [] where
fmap = map
```

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

instance Functor Maybe where
  fmap f Nothing =
  fmap f (Just x) =
```

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b

```
instance Functor Arbore where
fmap f Nil =
```

```
fmap f (Nod x I r) =
```

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instantă pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b

```
instance Functor Arbore where fmap f NiI = NiI fmap f (Nod x I r) = Nod (f x) (fmap f I) (fmap f r)
```

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instanță pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

instance Functor (Either e) where
  fmap _ (Left x) =
  fmap f (Right y) =
```

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instantă pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

instance Functor (Either e) where
  fmap _ (Left x) = Left x
  fmap f (Right y) = Right (f y)
```

class Functor f where

fmap :: (a -> b) -> m a -> m b

instance Functor (->) a where

fmap f q =

Instanțe

```
Instanță pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

instance Functor (Either e) where
fmap _ (Left x) = Left x
fmap f (Right y) = Right (f y)
```

Instantă pentru tipul functie fmap :: $(a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)$

class Functor f where

fmap :: (a -> b) -> m a -> m b

instance Functor (Either e) where

Instante

```
fmap _ (Left x) = Left x
fmap f (Right y) = Right (f y)

Instanță pentru tipul funcție fmap :: (a -> b) -> (t -> a) -> (t -> b)

instance Functor (->) a where
fmap f g = f . g -- sau, mai simplu, fmap = (.)
```

Instantă pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

Exemple

```
Main> fmap (*2) [1..3]

Main> fmap (*2) (Just 200)

Main> fmap (*2) Nothing

Main> fmap (*2) (+100) 4

Main> fmap (*2) (Right 6)

Main> fmap (*2) (Left 1)
```

Exemple

```
Main> fmap (*2) [1..3]
[2,4,6]
Main> fmap (*2) (Just 200)
Just 400
Main> fmap (*2) Nothing
Nothing
Main> fmap (*2) (+100) 4
208
Main> fmap (*2) (Right 6)
Right 12
Main> fmap (*2) (Left 135)
Left 135
```

Proprietăți ale functorilor

- Argumentul m al lui Functor m definește o transformare de tipuri
 - m a este tipul a transformat prin functorul m
 - e.g., tipul colecțiilor cu elemente din a, tipul functiilor care au ca rezultat a, tipul operatiilor de citire care produc a
- fmap definește transformarea corespunzătoare a funcțiilor
 - fmap :: $(a \rightarrow b) \rightarrow (m \ a \rightarrow m \ b)$

Contractul lui fmap

- fmap f ca e obținută prin transformarea rezultatelor produse de computația ca folosind funcția f și fără a modifica structura preexistentă în ca
- Abstractizat prin două legi:

```
identitate fmap id == id
compunere fmap (g . f) == fmap g . fmap f
```

Categorii și Functori

Categorii și Functori

Categorii

O categorie C este dată de:

- O clasă |ℂ| a obiectelor
- Pentru oricare două obiecte A, B ∈ |C|,
 o mulțime C(A, B) a săgeților "de la A la B"
 f ∈ C(A, B) poate fi scris ca f : A → B
- Pentru orice obiect A o săgeată $id_A: A \rightarrow A$ numită identitatea lui A
- Pentru orice obiecte A, B, C, o operație de compunere a săgeților
 : ℂ(B, C) × ℂ(A, B) → ℂ(A, C)

Bartosz Milewski — Category: The Essence of Composition

Compunerea este asociativă și are element neutru id

Categorii și Functori

Exemplu: Categoria Set

Obiecte: multimi

Săgeți: funcții

Identități: Funcțiile identitate

• Compunere: Compunerea funcțiilor

- Obiectele: tipuri
- Săgețiile: funcții între tipuri

Identități: funcția polimorfică id

```
Prelude> :t id id :: a -> a
```

• Compunere: funcția polimorfică (.)

```
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
```

Subcategorii ale lui Hask date de tipuri parametrizate

- Obiecte: o clasă restânsă de tipuri din |Hask|
 - Exemplu: tipuri de forma [a]
- Săgeți: toate funcțiile din Hask între tipurile obiecte
 - Exemple: concat :: [[a]] -> [a], words :: [Char] -> [String],
 reverse :: [a] -> [a]

Exemple

Liste obiecte: tipuri de forma [a]

Optiuni obiecte: tipuri de forma Maybe a

Arbori obiecte: tipuri de forma Arbore a

Funcții de sursă t obiecte: tipuri de forma t -> a

De ce categorii?

(Des)compunerea este esența programării

- Am de rezolvat problema P
- O descompun în subproblemele P₁,...P_n
- Rezolv problemele $P_1, \dots P_n$ cu programele $p_1, \dots p_n$
 - Eventual aplicând recursiv procedura de față
- Compun rezolvările $p_1, \dots p_n$ într-o rezolvare p pentru problema inițială

Categoriile rezolvă problema compunerii

- Ne fortează să abstractizăm datele
- Se poate actiona asupra datelor doar prin săgeți (metode?)
- Forțează un stil de compunere independent de structura obiectelor

Functori

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F:\mathbb{C}\to\mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

Bartosz Milewski — Functors

În general un functor $F: \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

În Haskell o instantă Functor m este dată de

- Un tip m a pentru orice tip a (deci m trebuie sa fie tip parametrizat)
- Pentru orice două tipuri a și b, o funcție

$$fmap :: (a -> b) -> (m a -> m b)$$

Compatibilă cu identitățile și cu compunerea

fmap
$$id == id$$

fmap $(g \cdot f) == fmap g \cdot fmap f$

pentru orice f :: a -> b si g :: b -> c

Functori aplicativi

Functori aplicativi

Problemă

- Folosind fmap putem transforma o funcție h :: a -> b într-o funcție între colecții/computații fmap h :: m a -> m b
- Dar ce se întâmplă dacă avem o funcție cu mai multe argumente
 E.g., cum trecem de la h :: a -> b -> c la h' :: m a -> m b -> m c
- putem încerca să folosim fmap

Problemă

- Folosind fmap putem transforma o funcție h :: a -> b într-o funcție între colecții/computații fmap h :: m a -> m b
- Dar ce se întâmplă dacă avem o funcție cu mai multe argumente
 E.g., cum trecem de la h :: a -> b -> c la h' :: m a -> m b -> m c
- putem încerca să folosim fmap
- Dar, deoarece h :: a -> (b -> c), avem că fmap h :: m a -> m (b -> c)
- Putem aplica fmap h la o valoare ca :: m a şi obţinem fmap h ca :: m (b -> c)

Problemă

Cum transformăm un obiect din m (b -> c) într-o funcție m b -> m c?

- ap :: m (b -> c) -> (m b -> m c), sau, ca operator
- (<*>) :: m (b -> c) -> m b -> m c

Merge pentru funcții cu oricâte argumente

Problemă

Dată fiind o funcție $f:: a1 \rightarrow a2 \rightarrow a3 \rightarrow ... \rightarrow an \rightarrow a$ și computațiile ca1 :: m a1, ..., can :: m an, vrem să "aplicăm" funcția f pe rând computațiilor ca1, ..., can pentru a obține o computație finală ca :: m a.

Soluție: Date fiind

- funcția fmap :: (a -> b) -> m a -> m b
- funcția (<*>) :: m (b -> c) -> m b -> m c cu "proprietăți bune"

Atunci

```
fmap f :: m a1 -> m (a2 -> a3 -> ... -> an -> a)
fmap f ca1 :: m (a2 -> a3 -> ... -> an -> a)
fmap f ca1 <*> ca2 :: m (a3 -> ... -> an -> a)
...
fmap f ca1 <*> ca2 <*> ca3 ... <*> can :: m a
```

Clasa de tipuri Applicative

Definiție

class Functor m => Applicative m where

```
pure :: a \rightarrow m a (<*>) :: m (a \rightarrow b) \rightarrow m a \rightarrow m b
```

- Orice instanță a lui Applicative trebuie să fie instanță a lui Functor
- pure transformă o valoare într-o computație minimală care are acea valoare ca rezultat, și nimic mai mult!
- (<*>) ia o computație care produce funcții și o computație care produce argumente pentru funcții și obține o computație care produce rezultatele aplicării funcțiilor asupra argumentelor

Proprietate importantă

- fmap f x == pure f <*> x
- Se definește operatorul (<\$>) prin (<\$>) = fmap

```
Main> pure "Hey" :: Maybe String
Just "Hey"
Main> (++) <$> (Just "Hey ") <*> (Just "You!")
Just "Hey You!"
Main> let mDiv x y = if y == 0 then Nothing else Just (x 'div' y)
Main> let f x = 4 + 10 'div' x
Main> let mF x = (+) <$> pure 4 <*> mDiv 10 x
```

```
Main> pure "Hey" :: Maybe String
Just "Hey"
Main> (++) <$> (Just "Hey ") <*> (Just "You!")
Just "Hey You!"
Main> let mDiv x y = if y == 0 then Nothing else Just (x 'div' y)
Main> let f x = 4 + 10 'div' x
Main> let mF x = (+) <$> pure 4 <*> mDiv 10 x
```

Instanță pentru tipul opțiune

```
instance Applicative Maybe where
  pure = Just
  Nothing <*> _ = Nothing
  Just f <*> x = fmap f x
```

```
Main> pure "Hey" :: Either a String
Right "Hey"

Main> (++) <$> (Right "Hey ") <*> (Right "You!")

Right "Hey You!"

Main> let mDiv x y = if y == 0 then Left "Division by 0!"

else Right (x 'div' y)

Main> let f x = 4 + 10 'div' x

Main> let mF x = (+) <$> pure 4 <*> mDiv 10 x
```

```
Main> pure "Hey" :: Either a String
Right "Hey"
Main> (++) <$> (Right "Hey ") <*> (Right "You!")
Right "Hey You!"
Main> let mDiv x y = if y == 0 then Left "Division by 0!"
   else Right (x 'div' y)
Main> let f x = 4 + 10 'div' x
Main> let mF x = (+) <$> pure 4 <*> mDiv 10 x
```

Instanță pentru tipul eroare

```
instance Applicative (Either a) where
  pure = Right
  Left e <*> _ = Left e
  Right f <*> x = fmap f x
```

Tipul listă (computație nedeterministă)

Tipul listă (computație nedeterministă)

Instanță pentru tipul computațiilor nedeterministe (liste)

```
instance Applicative [] where

pure x = [x]

fs <_*> xs = [f x | f <_- fs, x <_- xs]
```

Tipul I/O

```
\begin{tabular}{lll} Main>& (++) & <\$> & getLine & <_*> & getLine & >>= & putStrLn \\ hello & world! \\ hello & world! \\ \end{tabular}
```

Tipul I/O

```
Main> (++) <$> getLine <*> getLine >>= putStrLn
hello
 world!
hello world!
Instanță pentru tipul computațiilor I/O
instance Applicative IO where
  pure = return
  inf < + > inx = do
    f <- iof
    x < -iox
    return (f x)
```

Tipul funcțiilor de sursă dată

```
data Exp = Lit Int | Var String | Exp :+: Exp
type Env = [(String, Int)]

find :: String -> (Env -> Int)
find x env = head [i | (y,i) <- env, y == x]

eval :: Exp -> (Env -> Int)
eval (Lit i) = pure i
eval (Var x) = find x
eval (e1 :+: e2) = (+) <$> eval e1 <*> eval e2
```

Tipul funcțiilor de sursă dată

```
data Exp = Lit Int | Var String | Exp :+: Exp
type Env = [(String, Int)]
find :: String -> (Env -> Int)
find x env = head [i | (v,i) < - env, v == x]
eval :: Exp -> (Env -> Int)
eval(Lit i) = pure i
eval (Var x) = find x
eval (e1 :+: e2) = (+) <$> eval e1 <*> eval e2
Instantă pentru tipul functiilor de sursă dată
instance Applicative ((->) t) where
  pure :: a \rightarrow (t \rightarrow a)
  pure x = \ -> x
  (<*>) :: (t -> (a -> b)) -> (t -> a) -> (t -> b)
  f <_{\star} > g = \ \ x \rightarrow f \ x \ (g \ x)
```

Liste ca fluxuri de date.

```
newtype ZList a = ZList { get :: [a]}
> get $ max <$> ZList [1,2,3,4,5,3] <*> ZList [5,3,1,2]
[5,3,3,4]
> get $ (+) <$> ZList [1,2,3] <*> ZList [100,100..]
[101,102,103]
> get $ (,,) <$> ZList "dog" <*> ZList "cat" <*> ZList "rat"
[('d','c','r'),('o','a','a'),('g','t','t')]
```

Liste ca fluxuri de date.

```
newtype ZList a = ZList { get :: [a]}
> get $ max <$> ZList [1,2,3,4,5,3] <*> ZList [5,3,1,2]
[5,3,3,4]
> get $ (+) <$> ZList [1,2,3] <*> ZList [100,100..]
[101,102,103]
> get $ (,,) <$> ZList "dog" <*> ZList "cat" <*> ZList "rat"
[('d','c','r'),('o','a','a'),('g','t','t')]
```

Instanță pentru ZipList

```
instance Functor ZipList where
fmap f (ZipList xs) = ZipList (fmap f xs)
```

instance Applicative ZipList where

```
pure x = repeat x
ZipList fs <*> ZipList xs =
   ZipList (zipWith (\ f x -> f x) fs xs)
```

Proprietăți ale functorilor aplicativi

```
identitate pure id <_*> v = v

compoziție pure (.) <_*> u <_*> v <_*> w = u <_*> (v <_*> w)

homomorfism pure f <_*> pure x = pure (f x)

interschimbare u <_*> pure y = pure (\$ y) <_*> u

Consecintă: fmap f x == f <_*> x == pure <math>f <_*> x
```