

Applied Machine Learning

Lecture 12 Support Vector Machine

Ekarat Rattagan, Ph.D.

Outline

- 1. Definition
- 2. Linear classifiers
- 3. How SVM works?
- 4. Cost function
- 5. Optimization

1. Definition

Given a training dataset of points, $(\overrightarrow{x}_1, y_1), \dots, (\overrightarrow{x}_m, y_m)$, where y_i are either +1 or -1, each indicating the class to which the point \overrightarrow{x}_i belongs.

The objective is to find the "maximum-margin hyperplane" that divides the group of points \vec{x}_i for which $y_i = 1$ from the group of points for which $y_i = -1$, so that the distance between the hyperplane and the nearest point \vec{x}_i from either group is maximized.

- denotes +1
- o denotes -1

• denotes +1

o denotes -1

• denotes +1

o denotes -1

- denotes +1
- o denotes -1

Linear Classifiers (SVM VS Logistic Regression)

Classifier Margin

- denotes +1
- o denotes -1

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin

• denotes +1

o denotes -1

The maximum margin linear classifier is the linear classifier with the maximum margin.

This is the simplest kind of SVM (Called an Linear SVM)