FINC 520: Time Series Problem Set #4

Qiushi Huang Marius Ring

May 15, 2015

1 Question 1

1.1 part (a)

We can rewrite the GARCH(1,1) as

$$\epsilon_t^2 = \omega + (\alpha + \beta)\epsilon_{t-1}^2 - \beta v_{t-1} + v_t \tag{1}$$

$$v_t = \epsilon_t^2 - \sigma_t^2 = (z_t^2 - 1)\sigma_2^2 \tag{2}$$

$$z_t \sim \text{I.I.D. N}(0,1)$$
 (3)

We find that

$$\mu \equiv \mathbb{E}\epsilon_t^2 = \frac{\omega}{1 - \alpha - \beta} \tag{4}$$

Thus we may write

$$\epsilon_t^2 - \mu = (\alpha + \beta)(\epsilon_{t-1}^2 - \mu) - \beta v_{t-1} + v_t$$
 (5)

Then we use the Yule-Walker (not White-Walker as in Game of Thrones!!) method to find the autocorrelations for ϵ_t^2 , which will be the same as those of y_t^2 under our assumption.

The first autocorrelation:

$$\rho_1 = \frac{\alpha(1 - \alpha\beta - \beta^2)}{1 - 2\alpha\beta - \beta^2} \tag{6}$$

Which provides us with all the subsequent ones due to p=q=1 in the GARCH(p,q):

$$\rho_k = (\alpha + \beta)^{k-1} \rho_1 \tag{7}$$

1.2 part(b)

The heteroskedasticity consistent estimator for the asymptotic covariance matrix is

$$\hat{V} = \hat{Q}^{-1} \Omega \hat{Q}^{-1} \tag{8}$$

where

$$\hat{\Omega} = \frac{1}{T} \sum \hat{\epsilon}_t^2 y_{t-1}^2 \tag{9}$$

$$\hat{Q} = \frac{1}{T} \sum y_{t-1}^2 \tag{10}$$

We will have that

$$\sqrt{T}(\hat{\phi} - \phi) \to N(0, Q^{-1}\Omega Q^{-1})$$
 in distribution. (11)

Where we can, asymptotically, replace $Q^{-1}\Omega Q^{-1}$ with \hat{V} .

$$\Omega = \operatorname{plim} \frac{1}{T} \sum_{t} \hat{\epsilon}_t^2 y_{t-1}^2 = \mathbb{E} \hat{\epsilon}_t^2 \hat{\epsilon}_{t-1}^2 = \rho_1 \gamma_0 + \mu^2$$
(12)

$$Q = \text{plim}\frac{1}{T} \sum y_{t-1}^2 = \mathbb{E}\epsilon_{t-1}^2 = \mu$$
 (13)

$$V = \frac{\rho_1 \gamma_0 + \mu^2}{\mu^2} \tag{14}$$

where

$$\gamma_0 = 3\omega^2 (1 + \alpha + \beta) [(1 - \alpha - \beta)(1 - \beta^2 - 2\alpha\beta - 3\alpha^2)]^{-1}$$
(15)

$$\mu = \frac{\omega}{1 - \alpha - \beta} \tag{16}$$

$$\rho_1 = \frac{\alpha(1 - \alpha\beta - \beta^2)}{1 - 2\alpha\beta - \beta^2} \tag{17}$$

So in the case where $\alpha = \beta = 0$ we have that $\rho_1 \to 0$ and $V \to 1$.

Otherwise, it follows from the terms, and our assumptions on ω, α , and β that $\rho_1 > 0$, and thus

$$V > 1 \tag{18}$$

1.3 part (c)

Parameters	Rejections
A	0.047
В	0.06
C	0.088
D	0.158

$$\hat{\phi}_T = \left(\sum_{t=2}^T y_{t-1}^2\right)^{-1} \sum_{t=2}^T y_t y_{t-1} \tag{19}$$

The asymptotic variance of $\sqrt{T}\hat{\phi}_T$ will just be 1 under our H_0 , and the assumption that error terms are IID Normal. We see this in part (d): just let $\rho_1 = 0$.

(20)

In A and B V=1 and the IID Normal assumptions on the error term hold, so we would expect to see that that we reject 5% of the time, which we also do.

IN C and D V > 1, thus using the IID Normal assumption on the error term, we would be using a variance that is too low, and thus use a test statistic that is too high, and thus reject too often. i.e. heteroskedasticity that is unaccounted for increases the size of the test beyond our confidence level.

1.4 part (d) information criterions

The 'approximate' log likelihood function for the AR(p) estimation, assuming that the error terms are IID, is this:

$$logL = -\frac{T - p - 1}{2}\log(2\pi) - \frac{T - p - 1}{2}\log(\sigma^2) - \frac{1}{2}\sum_{t=p+1}^{T}\frac{\epsilon_t^2}{\sigma^2}$$
 (21)

$$\epsilon_t = y_t - \sum_{j=1}^p \phi_j y_{t-j} \tag{22}$$

$$\hat{\sigma}_p^2 = \frac{1}{T - p - 1} \sum_{t=p+1}^T \hat{\epsilon}_t^2 = \frac{1}{T - p - 1} \sum_{t=p+1}^T \left(y_t - \sum_{j=1}^p \hat{\phi}_j y_{t-j} \right)^2$$
 (23)

Thus for our Information Criterion comparisons we use:

$$\log \hat{L}_p = -\frac{T}{2}\log(\hat{\sigma}_p^2) \tag{24}$$

Since the first terms with p in the logL above artificially increase the logL due to the nature of the conditional/approximate MLE. Also the third term depends only on T and p when we substitute in for $\hat{\sigma}^2$

The ICs are given by:

$$BIC = -2\log\hat{L}_p + p\log(T) = T\log\hat{\sigma}_p^2 + p\log(T)$$
(25)

$$AIC = -2\log\hat{L}_p + 2p = T\log\hat{\sigma}_p^2 + 2p \tag{26}$$

and $\hat{\phi}_T$ is our usual OLS estimate, regressing y_t on $y_{t-1},...y_{t-p}$, with no intercept term.

AIC results

Parameters	p0	p1	p2	р3	p4	p5
A	0.612	0.127	0.102	0.068	0.051	0.04
C	0.885	0.066	0.022	0.015	0.009	0.003
E	0	0.653	0.159	0.08	0.061	0.047
F	0	0.883	0.074	0.024	0.013	0.006
G	0	0.624	0.152	0.103	0.069	0.052
Н	0	0.691	0.124	0.067	0.054	0.064

BIC results

Parameters	p0	p1	p2	р3	p4	p5
A	0.931	0.055	0.01	0	0.001	0.003
C	0.978	0.017	0.004	0.001	0	0
E	0	0.921	0.062	0.015	0.002	0
F	0	0.968	0.024	0.005	0.003	0
G	0	0.975	0.025	0	0	0
H	0	0.958	0.026	0.011	0.003	0.002

From theory we would expect that both AIC and BIC would in the limit never pick a p that was too small, and in the limit BIC will also not pick a p that is too big. We also expected AIC to be 'less conservative', i.e., choosing a higher number of lags, and possibly not be consistent towards the true p = 0.

The simulation results are well aligned with theory. We see that AIC more often than BIC picks too large p. We also see as $T \to 1000$ that BIC is a lot more consistent towards the true p = 1 than AIC for the setups G and H.

2 Question 2

2.1 (a) time series model, covariance stationarity, invertibility

$$y_t^h = \gamma_h(L)\epsilon_t \tag{27}$$

$$\gamma_h(L) = \sum_{j=0}^{h-1} L^j$$
 (28)

So clearly y_t^h is an MA(h-1) process. For h=1 it is just white noise. For h=0 it is not well defined.

Any MA process is covariance stationary. However, it is **not** invertible, since **all** the roots of $\gamma_h(Z) = 0$, for any $h \geq 2$, lie **on** the unit circle.

2.2 (b) Gain and The Phase

The Gain, G(w), and the Phase, $\theta(w)$, are defined as parameters in the exponential form of $\gamma_h(e^{iw})$:

$$\gamma_h(e^{iw}) = G(w)e^{i\theta(w)} \tag{29}$$

We can write

$$\gamma_h(e^{iw}) = 1 + \sum_{j=1}^{h-1} (e^{iw})^j \tag{30}$$

We know that the gain will be

$$G_h(w) = |\gamma_h(e^{iw})| = \left| 1 + \sum_{j=1}^{h-1} e^{ijw} \right|$$
 (31)

We could write this out in terms of cosines and sines, but it's not very useful, especially not for deriving the phase:

$$\theta_h(w) = \frac{1}{-i} \log \left(\frac{\gamma_h(e^{iw})}{G_h(w)} \right) \tag{32}$$

or more precisely

$$\theta_h(w) = \frac{1}{-i} \log \left(\frac{1 + \sum_{j=1}^{h-1} e^{ijw}}{\left| 1 + \sum_{j=1}^{h-1} e^{ijw} \right|} \right)$$
(33)

$$= \frac{1}{2i} \log \left(\frac{(1 + \sum_{j=1}^{h-1} e^{ijw})^2}{\left| 1 + \sum_{j=1}^{h-1} e^{ijw} \right|^2} \right)$$
(34)

$$= \frac{1}{2i} \log \left(\frac{(1 + \sum_{j=1}^{h-1} e^{ijw})^2}{\left(1 + \sum_{j=1}^{h-1} e^{ijw}\right) \left(1 + \sum_{j=1}^{h-1} e^{-ijw}\right)} \right)$$
(35)

$$= \frac{1}{2i} \log \left(\frac{e^{i(h-1)w}}{e^{i(h-1)w}} \frac{1 + \sum_{j=1}^{h-1} e^{ijw}}{\left(1 + \sum_{j=1}^{h-1} e^{-ijw}\right)} \right)$$
(36)

$$= \frac{1}{2i} \log \left(e^{i(h-1)w} \frac{1 + \sum_{j=1}^{h-1} e^{ijw}}{\left(1 + \sum_{j=1}^{h-1} e^{ijw}\right)} \right)$$
(37)

$$= \frac{1}{2i} \log \left(e^{i(h-1)w} \right) \tag{38}$$

$$= \frac{i(h-1)w}{2i} = \frac{h-1}{2}w \tag{39}$$

(40)

(41)

which will be a real-valued function, and well defined for $w \in [0, \frac{2\pi}{h-1}]$. The general phase looks like this, where it "resets" at every $\frac{2\pi}{h-1}$ th frequency. The below plot is for h = 3.

(c) Spectrum of y_t, h 2.3

We use the fact that this is just a filter of a white noise process with spectrum $\frac{\sigma_{\epsilon}^2}{2\pi}$, thus

$$f_{y_h}(w) = \left| 1 + \sum_{j=1}^{h-1} e^{-ijw} \right|^2 \frac{\sigma_{\epsilon}^2}{2\pi}$$
 (42)

Again, complicating this by adding sines and cosines does not add any intuition. Instead we plot it for h = 2, 3, 4, where the flattest one is h=2, and the waviest is h=4, and we set

3 Question 3

part (a) graph spectra 3.1

$$y_t = c_t + u_t \tag{43}$$

$$y_{t} = c_{t} + u_{t}$$

$$c_{t} = 0.9c_{t-1} + \epsilon_{t} = \dots = \sum_{j=0}^{\infty} 0.9^{j} \epsilon_{t-j}$$

$$u_{t} = v_{t} - 0.8v_{t-1}$$

$$(43)$$

$$(44)$$

$$u_t = \eta_t - 0.8\eta_{t-1} \tag{45}$$

since c_t and u_t are MA processes with independent errors (of eachother), the covariances of y_t will be the sum of the respective covariances for c_t and u_t , and thus the spectrum for y is the sum of the spectra of c and u.

Since both c and u are filters of unit variance white noise processe, with spectra $\frac{1}{2\pi}$, we can write the spectra of c and u as functions of the spectrum of a unit variance white noise process.

Using the general formula

$$f(w) = \left|\Psi(e^{-iw})\right|^2 f_{WN}(w) \tag{46}$$

We obtain

$$f_u(w) = \left|1 - 0.8e^{-iw}\right|^2 \frac{1}{2\pi}$$
 (47)

$$f_u(w) = \left| 1 - 0.8e^{-iw} \right|^2 \frac{1}{2\pi}$$

$$f_c(w) = \left| \frac{1}{1 - 0.9e^{-iw}} \right|^2 \frac{1}{2\pi}$$
(47)

3.2b

Based on visual inspection, it seems that for w < 0.5 the variance almost exclusively comes from c_t , while for w > 2, the variance mostly comes from u_t . Thus an initial guess would be to create a filter $\delta(L)$ such that the spectrum of the filtered sequence looks like this, with w=1.

$$f_{\hat{c}}(w) = |\delta(e^{-iw})|^2 f_{\nu}(w) = \mathbb{1}[w < \underline{w}] f_{\nu}(w)$$
(49)

The first equality comes from the formula for how the spectrum of a filtered series depends on the raw series. The second equality is what we wish to achieve. Thus we must set:

$$\delta(e^{iw}) = \mathbb{1}[w < \underline{w}] \tag{50}$$

Now we need to find

$$\delta(L) = \sum_{h=-\infty}^{\infty} \delta_h L^h \tag{51}$$

That satisfies

$$\delta(L) = \sum_{h=-\infty}^{\infty} \delta_h \delta(e^{iw})^h \tag{52}$$

For this we use the Fourier Inversion Formula from class:

$$k(h): \sum_{h} |k(h)| < \infty \Rightarrow \left[k(h) = \int_{-\pi}^{\pi} e^{ihw} r(w) dw \iff r(w) = \frac{1}{2\pi} \sum_{h} e^{-ihw} k(h) \right]$$
(53)

$$r(w) \equiv \delta(e^{-iw}), k(h) \equiv 2\pi \delta_h \Rightarrow \delta_h = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ihw} \delta(e^{iw}) dw$$
 (54)

$$\Rightarrow \delta(L) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} \left(\int_{-\pi}^{\pi} e^{ihw} \delta(e^{iw}) dw \right) L^{h}$$
 (55)

$$\Rightarrow \delta(L) = \frac{1}{\pi} \sum_{h=-\infty}^{\infty} \frac{\sin(h\underline{w})}{h\underline{w}} L^{h}$$
 (56)

But we need to cut it off at some point (L=50). So we use:

$$\Rightarrow \delta(L) = \sum_{h=-\infty}^{\infty} \mathbb{1}[|h| \le 50] \frac{\sin(h\underline{w})}{\pi h\underline{w}} L^h \tag{57}$$

$$\Rightarrow \delta(L) = \sum_{h=-50}^{50} \frac{\sin(h\underline{w})}{\pi h\underline{w}} L^h \tag{58}$$

And since we choose $\underline{w} = 1$:

$$\Rightarrow \delta(L) = \sum_{h=-50}^{50} \frac{\sin(h)}{\pi h} L^h \tag{59}$$

For h=0, δ_0 =1.

3.3 (c)

Correlation: 0.9559

3.4 (d)

Correlation: 0.9561 The correlation goes up. If we decrease the order further, the correlation goes up further. On one hand we are getting a poorer approximation to our filter, which we don't actually know is optimal, but on the other hand we are getting more data to use.

