МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра АМ

ОТЧЕТ

по домашнему заданию №1

По дисциплине «Элементы функционального анализа»

Тема: Вычисление нормы заданной выпуклым, центрально симметричным многогранником

Студент гр. 8383 Преподаватель	 Киреев К.А.
Преподаватель	Коточигов А.М

Санкт-Петербург

Задание

Вариант 8

о Даны шесть точек:

A (5, 7, 0), B (4, 0, 6), H (0, 6, 7), AA (8, 0, 0), BB (0, 0, 0), HH (0, 0, 8)

- \circ Проверить неравенство треугольника для векторов V_1 (-4, 8, -7), V_2 (7, -8, -5)
- о Найти набольшее и наименьшее значение евклидовой нормы на векторах, имеющих норму *1* в норме, порожденной многогранником.

Выполнение работы

Построение многогранника

Нарисуем поверхность, образуемую вершинами в первом октанте.

Для построения многоугольника дополним множество вершин W_1 (6 вершин) путем следующих операций:

- Отразим множество W₁ относительно оси Y и получим множество W₂ из
 12 вершин. W₂ = W₁(x, y, z) \cup W₁(x, -y, z)
- Отразим множество W_2 относительно оси X и получим множество W_3 из 24 вершин, представляющее поверхность в полупространстве ((x, y, z): z > 0). $W_3 = W_2(x, y, z) \cup W_2(-x, y, z)$
- Отразим множество W_3 относительно оси Z и получим множество W из 48 вершин, образующее замкнутую, симметричную относительно координатных плоскостей поверхность. $W = W_3(x, y, z) \cup W_3(x, y, -z)$

Многогранник W должен быть выпуклым, но точка BB, а также точки, полученные при ее отражении, оказываются «вдавленными» в многогранник. Чтобы многогранник был выпуклым, необходимо, чтобы ордината этой точки была не меньше наибольшей из ординат других точек, поэтому заменим точку BB на точку (0, 8, 0).

Был получен набор вершин W из 48 точек. Отобразим полученную поверхность.

Вычисление нормы

Проведем вектор V_1 . Для нахождения норм векторов заданных точек, мы рассмотрим угол ОАВН (нам нужен угол, в котором коэффициенты разложения вектора будут положительны), в котором построим биортогональный базис для OA, OB, OH

Построим биортогональный базис для ОА, ОВ, ОН:

$$OA_{1} = OB \times OH$$

$$OB_{1} = OA \times OH$$

$$OH_{1} = OA \times OB$$

$$OA' = \frac{1}{(OA_{1}, OA)}OA_{1}$$

$$OB' = \frac{1}{(OB_{1}, OB)}OB_{1}$$

$$OH' = \frac{1}{(OH_{1}, OH)}OH_{1}$$

Тогда можем вычислить коэффициенты k_1 , k_2 , k_3 в формуле:

$$OV_1 = k_1 OA + k_2 OB + k_3 OH$$

$$k_1 = (OV_1, OA'), k_2 = (OV_1, OB'), k_3 = (OV_1, OH')$$

$$||V_1|| = k_1 + k_2 + k_3$$

Для точки V_1 (-4,8,-7):

Базис	K1	K2	K3	$ V_1 $
[5 7 0] [4 0 6] [0 6 7]	0.659	-1.825	0.563	-0.604
[5 7 0] [0 8 0] [0 6 7]	-0.801	2.449	-1.0	0.648
[5 7 0] [4 0 6] [8 0 0]	1.142	-1.167	-0.631	-0.656
[0 0 8] [4 0 6] [0 6 7]	-1.292	-1.0	1.333	-0.960
[5, -7, 0] [4 0 6] [0, -6, 7]	-0.532	-0.336	-0.713	-1.581
[5, -7, 0] [0, -8, 0] [0, -6, 7]	-0.801	0.449	-1.0	-1.352
[5, -7, 0] [4 0 6] [8 0 0]	-1.143	-1.167	0.797	-1.513
[0 0 8] [4 0 6] [0, -6, 7]	1.041	-1.0	-1.334	-1.294
[-5, 7, 0] [-4, 0, 6] [0, 6, 7]	1.425	-0.782	-0.33	0.312
[-5, 7, 0] [0, 8, 0] [0, 6, 7]	0.8	1.05	-1.0	0.850
[-5, 7, 0] [-4, 0, 6] [-8, 0, 0]	1.142	-1.167	0.369	0.343
[0 0 8] [-4, 0, 6] [0, 6, 7]	-2.792	0.999	1.333	-0.461
[-5, -7, 0] [-4, 0, 6] [0, -6, 7]	0.234	0.707	-1.607	-0.666
[-5, -7, 0] [0, -8, 0] [0, -6, 7]	0.8	-0.95	-1.0	-1.150
[-5 -7 0] [-4, 0, 6] [-8 0 0]	-1.143	-1.167	1.797	-0.514
[0 0 8] [-4, 0, 6] [0, -6, 7]	-0.459	0.999	-1.334	-0.795
[5 7 0] [4, 0, -6] [0, 6, -7]	-0.235	-0.708	1.606	0.663
[5 7 0] [0 8 0] [0, 6, -7]	-0.801	0.949	0.999	1.146
[5 7 0] [4, 0, -6] [8 0 0]	1.142	1.166	-1.798	0.509
[0 0 -8] [4, 0, -6] [0, 6, -7]	0.458	-1.0	1.333	0.790
[5, -7, 0] [4, 0, -6] [0 -6 -7]	-1.426	0.781	0.329	-0.316
[5, -7, 0] [0 -8 0] [0 -6 -7]	-0.801	-1.051	0.999	-0.854
[5, -7, 0] [4, 0, -6] [8 0 0]	-1.143	1.166	-0.37	-0.347
[0 0 -8] [4, 0, -6] [0 -6 -7]	2.791	-1.0	-1.334	0.456
[-5, 7, 0] [-4 0 -6] [0, 6, -7]	0.531	0.335	0.712	1.577
[-5, 7, 0] [0 8 0] [0, 6, -7]	0.8	-0.45	0.999	1.348
[-5, 7, 0] [-4 0 -6] [-8 0 0]	1.142	1.166	-0.798	1.509
[0 0 -8] [-4 0 -6] [0, 6, -7]	-1.042	0.999	1.333	1.289

Координаты базисных векторов:

$$OA_1 = (-5, 7, 0), OB_1 = (-4, 0, -6), OH_1 = (0, 6, -7)$$

Тогда норма для точки V_1 (-4, 8, -7):

$$||V_1|| = k_1 + k_2 + k_3 = 1.577$$

На графике показана заданная точка с базисными векторами:

Для точки $V_2(7, -8, -5)$:

[5 7 0] [4 0 6] [0 6 7]	0.393	1.257	-1.793	-0.143
[5 7 0] [0 8 0] [0 6 7]	1.4	-1.69	-0.715	-1.005
[5 7 0] [4 0 6] [8 0 0]	-1.143	-0.834	2.005	0.027
[0 0 8] [4 0 6] [0 6 7]	-0.771	1.749	-1.334	-0.357
[5, -7, 0] [4 0 6] [0, -6, 7]	1.585	-0.232	-0.516	0.836
[5, -7, 0] [0, -8, 0] [0, -6, 7]	1.4	0.31	-0.715	0.995
[5, -7, 0] [4 0 6] [8 0 0]	1.142	-0.834	0.577	0.884
[0 0 8] [4 0 6] [0, -6, 7]	-3.105	1.749	1.333	-0.024
[-5, 7, 0] [-4, 0, 6] [0, 6, 7]	-0.947	-0.567	-0.229	-1.744
[-5, 7, 0] [0, 8, 0] [0, 6, 7]	-1.401	0.76	-0.715	-1.356
[-5, 7, 0] [-4, 0, 6] [-8, 0, 0]	-1.143	-0.834	0.255	-1.723
[0 0 8] [-4, 0, 6] [0, 6, 7]	1.854	-1.75	-1.334	-1.231
[-5, -7, 0] [-4, 0, 6] [0, -6, 7]	0.244	-2.056	1.047	-0.766
[-5, -7, 0] [0, -8, 0] [0, -6, 7]	-1.401	2.76	-0.715	0.644
[-5 -7 0] [-4, 0, 6] [-8 0 0]	1.142	-0.834	-1.173	-0.866
[0 0 8] [-4, 0, 6] [0, -6, 7]	-0.48	-1.75	1.333	-0.898
[5 7 0] [4, 0, -6] [0, 6, -7]	-0.245	2.055	-1.048	0.761
[5 7 0] [0 8 0] [0, 6, -7]	1.4	-2.761	0.714	-0.648
[5 7 0] [4, 0, -6] [8 0 0]	-1.143	0.833	1.172	0.861
[0 0 -8] [4, 0, -6] [0, 6, -7]	0.479	1.749	-1.334	0.893
[5, -7, 0] [4, 0, -6] [0 -6 -7]	0.946	0.566	0.228	1.740
[5, -7, 0] [0 -8 0] [0 -6 -7]	1.4	-0.761	0.714	1.352
[5, -7, 0] [4, 0, -6] [8 0 0]	1.142	0.833	-0.256	1.719
[0 0 -8] [4, 0, -6] [0 -6 -7]	-1.855	1.749	1.333	1.226
[-5, 7, 0] [-4 0 -6] [0, 6, -7]	-1.586	0.231	0.515	-0.840
[-5, 7, 0] [0 8 0] [0, 6, -7]	-1.401	-0.311	0.714	-0.999
[-5, 7, 0] [-4 0 -6] [-8 0 0]	-1.143	0.833	-0.578	-0.888
[0 0-8] [-4 0-6] [0, 6, -7]	3.104	-1.75	-1.334	0.019

Координаты базисных векторов:

$$OA_2 = (5, -7, 0), OB_2 = (4, 0, -6), OH_2 = (0, -6, -7)$$

Тогда норма для точки V_2 (7, -8, -5):

$$||V_2|| = k_1 + k_2 + k_3 = 1.74$$

На графике показана заданная точка с базисными векторами:

Проверка неравенства треугольника

Неравенство треугольника для векторов:

$$\left|\left|V_{1}\right|\right|+\left|\left|V_{2}\right|\right|\geq\left|\left|V_{1}+V_{2}\right|\right|$$

Посчитаем норму вектора $V_3 = V_1 + V_2$

[5 7 0] [4 0 6] [0 6 7]	1.053	-0.567	-1.229	-0.744
[5 7 0] [0 8 0] [0 6 7]	0.6	0.76	-1.715	-0.356
[5 7 0] [4 0 6] [8 0 0]	0.0	-2.0	1.374	-0.626
[0 0 8] [4 0 6] [0 6 7]	-2.063	0.749	0.0	-1.314
[5, -7, 0] [4 0 6] [0, -6, 7]	1.053	-0.567	-1.229	-0.744
[5, -7, 0] [0, -8, 0] [0, -6, 7]	0.6	0.76	-1.715	-0.356
[5, -7, 0] [4 0 6] [8 0 0]	0.0	-2.0	1.374	-0.626
[0 0 8] [4 0 6] [0, -6, 7]	-2.063	0.749	0.0	-1.314
[-5, 7, 0] [-4, 0, 6] [0, 6, 7]	0.478	-1.349	-0.559	-1.431
[-5, 7, 0] [0, 8, 0] [0, 6, 7]	-0.601	1.81	-1.715	-0.507
[-5, 7, 0] [-4, 0, 6] [-8, 0, 0]	0.0	-2.0	0.624	-1.377
[0 0 8] [-4, 0, 6] [0, 6, 7]	-0.938	-0.75	0.0	-1.688
[-5, -7, 0] [-4, 0, 6] [0, -6, 7]	0.478	-1.349	-0.559	-1.431
[-5, -7, 0] [0, -8, 0] [0, -6, 7]	-0.601	1.81	-1.715	-0.507
[-5 -7 0] [-4, 0, 6] [-8 0 0]	0.0	-2.0	0.624	-1.377
[0 0 8] [-4, 0, 6] [0, -6, 7]	-0.938	-0.75	0.0	-1.688
[5 7 0] [4, 0, -6] [0, 6, -7]	-0.479	1.348	0.558	1.427
[5 7 0] [0 8 0] [0, 6, -7]	0.6	-1.811	1.714	0.502
[5 7 0] [4, 0, -6] [8 0 0]	0.0	1.999	-0.625	1.374
[0 0 -8] [4, 0, -6] [0, 6, -7]	0.937	0.749	0.0	1.686
[5, -7, 0] [4, 0, -6] [0 -6 -7]	-0.479	1.348	0.558	1.427

[5, -7, 0] [0 -8 0] [0 -6 -7]	0.6	-1.811	1.714	0.502	
[5, -7, 0] [4, 0, -6] [8 0 0]	0.0	1.999	-0.625	1.374	
[0 0 -8] [4, 0, -6] [0 -6 -7]	0.937	0.749	0.0	1.686	
[-5, 7, 0] [-4 0 -6] [0, 6, -7]	-1.054	0.566	1.228	0.739	
[-5, 7, 0] [0 8 0] [0, 6, -7]	-0.601	-0.761	1.714	0.351	
[-5, 7, 0] [-4 0 -6] [-8 0 0]	0.0	1.999	-1.375	0.624	
[0 0 -8] [-4 0 -6] [0, 6, -7]	2.062	-0.75	0.0	1.312	

Координаты базисных векторов:

$$OB_3 = (4, 0, -6)$$

$$OH_3 = (0, -6, -7)$$

$$OHH_3 = (0, 0, -8)$$

Были вычислены коэффициенты разложения:

$$k_1 = 0.0, k_2 = 0.749, k_3 = 0.937$$

Тогда норма для точки V_3 :

$$|V_3| = k_1 + k_2 + k_3 = 1.686$$

Итак, имеем неравенство:

$$||V_1|| + ||V_2|| \ge ||V_1 + V_2|| = ||V_3||$$

 $1.577 + 1.74 \ge 1.686$

Проведем вектор V_3 . Можем наблюдать, что вектор лежит внутри трехгранного угла ОНВНН, расположенного в нужном октанте.

Нахождение наибольшего и наименьшего значения евклидовой нормы на векторах, имеющих норму 1 в норме, порожденной многогранником.

Концы векторов, имеющих норму 1 в норме, порожденной многогранником, лежат на его поверхности, поэтому очевидно, что вектор с наибольшей евклидовой нормой будет проведен из начала координат в одну из вершин многогранника, а вектор с наибольшей евклидовой нормой будет расстоянием от начала координат до одной из плоскостей, образующих грани многогранника.

Евклидова норма вектора рассчитывается по формуле $\sqrt{{x_i}^2 + {y_i}^2 + {z_i}^2}$. Найдем максимум евклидовой нормы среди векторов, соединяющих вершины многогранника в первом октанте с началом координат. Наибольшая евклидова норма:

$$M = \max(\sqrt{x_i^2 + y_i^2 + z_i^2}), i = A, B, H, AA, BB, HH$$

$$M = 9.219544457292887$$

На рисунке изображена сфера с радиусом M и центром в начале координат. Видно, что поверхность многогранника касается сферы, что свидетельствует о правильности найденного решения:

Поверхность многогранника состоит из треугольников. Минимум следует выбрать из их центров масс. Центры масс:

$$C_{1} = \frac{1}{3}(OA + OB + OH), C_{2} = \frac{1}{3}(OA + OB + OAA),$$

$$C_{3} = \frac{1}{3}(OA + OH + OBB), C_{4} = \frac{1}{3}(OH + OB + OHH)$$

$$m = \min\left(\sqrt{x_{i}^{2} + y_{i}^{2} + z_{i}^{2}}\right), i = C_{1}, C_{2}, C_{3}, C_{4}$$

$$m = 6.4031242$$

Отобразим на графике сферу с радиусом, равным m (и центром в нуле координат):

