Homework2: Multicore Programming

Mingyi Xue*

May 21, 2018

1 Problem1 Multicore Programming

1.1 Parallel Algorithm

In KNN Algorithm, since each row of X_{test} could be independently computed to find its nearest neighbour in X_{train} , the function to be parallelized can be simplified as follows,

Algorithm 1 Find The Nearest Neighbour For A Vector

```
Input: X_{train}, y_{train}, x_{test}: one row in X_{test}, y_{test}: label of the row
Output: flag
   n \leftarrow 0
   flag \leftarrow 0
   index \leftarrow 0
   N_{train} \leftarrow \boldsymbol{X_{train}}.shape[0]
   dist \leftarrow np.linalg.norm(\boldsymbol{X_{train}}[0,:] - \boldsymbol{x_{test}})
   for i = 1 \rightarrow N_{train} do
        tmp \leftarrow np.linalg.norm(\boldsymbol{X_{train}}[i,:] - \boldsymbol{x_{test}})
        if tmp < dist then
             index \leftarrow i
             dist \leftarrow tmp
        end if
   end for
   if y_{test} == y_{train}[index] then
         flag \leftarrow 1
   end if
```

1.2 Parameters

Table 1: Default Parameters

name	value
process_num	4
dataset	$data_files.pl$

^{*}GSP student from Nanjing University

1.3 Results

Table 2: Result of Parallel KNN Algorithm

Parallel method	time(sec)	accuracy(%)
single thread	188.1689	79.40
parallel by chunk	89.6257	79.40
parallel row by row	90.0971	79.40
parallel by chunk(not share memory)	97.5782	79.40
parallel row by row(not share memory)	95.5183	79.40

1.4 Conclusion

- Four processes cannot accelerate the program by four times.
- Parallelization by cutting X_{test} into four chunks or more extreme into rows costs similar time.
- Parallelization costs a little less time if treat X_{train} and y_{train} as global variables (or shared memory) than pass them as parameters to the function every time it is invoked.

Figure 1: CPU Utilization of Parallel KNN

2 Problem2 Parallel Gradient Descent

2.1 Parallel Algorithm

Because the update of ω relies on the result of former iteration, only the computation of the gradient descent can be parallelized. Cut X_{train} into four chunks:

Table 3: Chunks of Training Set

$$\frac{\text{chunk}}{\boldsymbol{X_{train}}[0:size,:]}$$

$$\boldsymbol{X_{train}}[size:2*size,:]$$

$$\boldsymbol{X_{train}}[2*size:3*size,:]$$

$$\boldsymbol{X_{train}}[3*size:,:]$$

As a result, parallel gradient descent can be represented as follows,

$$\frac{\partial f(\boldsymbol{\omega})}{\partial \boldsymbol{\omega}} = \sum_{i=1}^{N} \frac{-y_i}{1 + e^{-y_i \boldsymbol{\omega}^T \boldsymbol{x_i}}} \boldsymbol{x_i} + \lambda \boldsymbol{\omega}$$
 (1)

$$= \sum_{i=1}^{n} \sum_{j=1}^{N_i} \frac{-y_j}{1 + e^{-y_j \boldsymbol{\omega}^T \boldsymbol{x}_j}} \boldsymbol{x}_j + \lambda \boldsymbol{\omega}$$
 (2)

In python, we can use numpy.ndarray broadcast to simplify and speed up calculation,

$$K = np.array(X@w) * np.array(Y)$$

$$M = -np.array(Y) * \frac{1}{1 + e^{K}}$$

$$\frac{\partial f(\omega)}{\partial \omega} = X^{T}M + \lambda \omega$$
(3)

2.2 Results for data files.pl

Table 4: Default parameters

name	value
\overline{n}	4
N_{train}	10000
N_{test}	1000
size	$np.ceil(N_{train}/n)$
dataset	$data_files.pl$

Table 5: Result of Parallel Gradient Descent

Parallel method	time(sec)	training accuracy($\%$)	test~accuracy(%)
single thread	1.7140	76.21	75.30
parallel by chunk	31.5040	76.21	75.30

2.3 Results for news20.binary.bz2

Table 6: Default parameters

name	value	
\overline{n}	4	
N	$m{X_{train}}.shape[0]$	
$split_percent$	0.2	
size	np.ceil(N/n)	
dataset	news 20.binary.bz 2	

Table 7: Result of Parallel Gradient Descent

Parallel method	time(sec)	training accuracy(%)	test accuracy(%)
single thread	764.1907	96.68	92.93
parallel by chunk	2420.9848	96.76	93.23

2.4 Conclusion

Figure 2: CPU Utilization of Parallel Gradient Descent for data_files.pl

Figure 3: CPU Utilization of Parallel Gradient Descent for news20.binary.bz2

It is interesting to note that parallelized computation of matrix costs even more time than the single thread version. One main reason is that modules like numpy and scipy have already optimized the computation of ndarray and matrix/sparse matrix, implemented by C++ or Fortran. If gradient descent algorithm is implemented with vectorization, the program is parallel implicitly.

Though the utilization rate of CPU is higher than the single thread version if we explicitly use multiprocess in the code, extra CPU clock cycles will be consumed to allocate and free resources when calling mp.Pool.