Neuromodulation

Week 18

What is Neuromodulation?

- Targeted release of a substance from a neuron that can do one of the following:
 - Alter efficacy of synaptic transmission
 - Alter synaptic properties of pre-synaptic neuron
 - Alter synaptic properties of post-synaptic neuron

 The physiological process by which a neuron uses one or more of its neurotransmitters to regulate diverse populations of neurons

Neurotransmitters

• A substance that gets released by a neuron at a synapse to affect another cell (e.g., another neuron)

Neuromodulators

- Neuromodulators are neurotransmitters that have
- a **small group of neurons** can multiple neurons
- CNS:

projection patterns of the five major neuromodulatory systems of the brain

norepinhephrine (NE) system: main nucleus is the 'locus coeruleus' in the pons

cholinergic (ACh) system: pontine and basal forebrain groups

dopamine (DA) system: ventral tegmental area and substantia nigra area (both in midbrain) - note more localized projections

histamine (HA) system: the 'forgotten one' neurons localized to posterior hypothalamus

Neuromodulatory Systems

 Ascending Systems (projections from brainstem and basal forebrain to broad areas of CNS)

Acetylcholine (Cholinergic System)

- Can influence thermoregulation, sleep patterns, food intake, endocrine functions (i.e. insulin/glucagon release)
- ACh signalling might be important in stress response → stress increases its release in a brain

Dopamine (Dopaminergic System)

- Centrally involved in reward, exploration, behaviour, approach, and various aspects of cognition
- Variations in this neuromodulator appear to be associated with variations in personality

MESOCORTICAL

Cognition, Memory, Attention, Emotional Behavior, & Learning

NIGROSTRIATAL

Movement & Sensory Stimuli

MESOLIMBIC

Pleasure & Reward Seeking Behaviors; Addiction, Emotion, Perception

Serotonin (Serotonergic System)

- Serotonin plays a major role in regulating mood and anxiety
- 90% of the body's serotonin is found in the gastrointestinal tract where it has a role in regulating bowel function and movements
- Also is responsible for satiety (reducing appetite while consuming a meal)

Noradrenaline (Adrenergic System)

- Regulates activity of neuronal and non-neuronal cells
- Participates in modulation of cortical circuits and cellular energy metabolism (rapid) and inflammation and neuroplasticity (slow)
- Noradrenaline is found in many regions of the brain, but the locus coeruleus plays a major role in noradrenergic signalling
- Noradrenaline plays a critical role in modulating plasticity, learning, and memory via the hippocampus in the brain

How does it work?

- Neuromodulation works by either actively stimulating nerves to produce a natural biological response or by applying targeted pharmaceutical agents in tiny doses directly to the site of action
- Neurostimulation devices involve the application of electrodes to the brain, the spinal cord or peripheral nerves
 - A low-voltage electrical current passes from a pulse generator - that is connected to the electrode - to the nerve, and can either inhibit pain signals or stimulate neural impulses where they were previously absent

Applications of Neuromodulation Technology

Modulation of nerve activity by delivering electrical or pharmaceutical agents directly to a target area

- Deep brain stimulation (DBS) treatment for Parkinson's disease
- Sacral nerve stimulation for pelvic disorders and incontinence
- Spinal cord stimulation for ischemic disorders
- Cochlear implant to restore hearing for deafness

Tech Feature

- BrainGate Neural Interface System can analyze brain signals and translate them into cursor movements
- Grants severely motor-impaired individuals an alternate "pathway" to control a computer with their thoughts
- Offers potential for restoring some degree of limb movement

Cortical Control of a Tablet Computer by People with Paralysis

Nuyujukian*, Albites Sanabria*, Saab*, Pandarinath, Jarosiewicz, Blabe, Franco, Mernoff, Eskandar, Simeral, Hochberg**, Shenoy**, Henderson**

PLOS ONE, Nov. 21, 2018

BrainGate2 Pilot Clinical Trial Caution: Investigational Device. Limited by Federal Law to Investigational Use.

How is this Possible?

- Device Components:
 - Internal neural signal sensor
 - Consists of a tiny chip with 100 electrode sensors that can detect brain cell electrical activity
 - Implanted into the motor cortex area (controls movement)
 - External processors
 - These computers convert neural signals (controlled by the user) into output signals (communication) using custom decoding software

Future Directions

Paralysis Treatment

 Implant stimulators that connect to both brain signals and muscles, using electrical impulses created by the system's hardware to allow people with paralysis to move their arms

Epilepsy Monitoring

 Implant brain sensors to measure minute changes in brain activity which may be used to detect warning signs like the onset of an epileptic seizure

Stentrode: A Breakthrough Device

- FDA designated Stentrode as a "breakthrough device" in 2020
- What is Stentrode?
 - A fully-implantable device that can translate brain activity or stimulate the nervous system from the inside of a blood vessel—no need for open brain surgery
- Safer than BrainGate and Elon Musk's Neuralink, which both require drilling into the skull for device insertion

From Neuromodulation to Neuroprosthesis

How Synchron's tech works with paralysis

- Stentrode is inserted into a blood vessel to capture brain signals related to intended movement and stimulate the nervous system
- BrainPort is implanted in the chest (similar to a pacemaker) and wirelessly receives brain data from the Stentrode to wirelessly transmit to BrainOS

From Neuromodulation to Neuroprosthesis

How Synchron's tech works with paralysis

- Stentrode
- BrainPort
- BrainOS is an app platform that transforms the brain data into a standardized digital language, controlling apps and potentially other digital devices, or telling BrainPort to stimulate the nervous system through Stentrode

Deep Brain Stimulation (DBS)

- FDA has approved the investigation of DBS use in:
 - Depression
 - Alzheimer's disorder
 - Addiction
 - Headache
- DBS traditionally requires open brain surgery—Synchron's Stentrode overcomes this safety risk

