Embeddings

Subash Gandyer
Data Scientist, HealthChain

Why embeddings

AUDIO

Audio Spectrogram

DENSE

IMAGES

Image pixels

DENSE

TEXT

0 0 0 0.2 0 0.7 0 0 0

Word, context, or document vectors

SPARSE

Word Embedding

'the collective name for a set of language modeling and feature learning techniques in natural language processing (NLP) where words or phrases from the vocabulary are mapped to vectors of real numbers'

the vector, which reflects the structure of the word in terms of morphology (Enriching Word Vectors with Subword Information) / word-context(s) representation (word2vec Parameter Learning Explained) / global corpus statistics (GloVe: Global Vectors for Word Representation) / words hierarchy in terms of WordNet terminology (Poincaré Embeddings for Learning Hierarchical Representations) / relationship between a set of documents and the terms they contain (Latent semantic indexing) / etc

Problem: Choosing which embedding works best

Embeddings

- One-hot encoding
- TF-IDF encoding
- Word2Vec
- Glove

One-hot encoding / CountVectorizer

 Idea: Collect a set of documents (words, sentences, paragraphs, articles) Count every occurrence of word

```
from sklearn.feature_extraction.text import CountVectorizer
# create CountVectorizer object
vectorizer = CountVectorizer()
corpus = [
          'Text of first document.',
          'Text of the second document made longer.',
          'Number three.',
          'This is number four.',
# learn the vocabulary and store CountVectorizer sparse matrix in X
X = vectorizer.fit_transform(corpus)
# columns of X correspond to the result of this method
vectorizer.get_feature_names() == (
    ['document', 'first', 'four', 'is', 'longer',
     'made', 'number', 'of', 'second', 'text',
     'the', 'this', 'three'])
# retrieving the matrix in the numpy form
X.toarray()
# transforming a new document according to learn vocabulary
vectorizer.transform(['A new document.']).toarray()
```

TF-IDF encoding

 Idea: Commonly occurring words don't carry useful information but rare words do

 $tfidf(term, document) = tf(term, document) \cdot idf(term)$ $tf(term, document) = \frac{n_i}{\sum_{k=1}^{V} n_k} \text{ Occurence (High)} \quad \bigstar$ $idf(term) = \log \frac{N}{n_t}$ Frequent Words Rare Words Occurence (Low) Value (Low) Value (High)

TF-IDF Encoding

```
from sklearn.feature_extraction.text import TfidfTransformer
# create tf-idf object
transformer = TfidfTransformer(smooth_idf=False)
# X can be obtained as X.toarray() from the previous snippet
X = [[3, 0, 1],
     [5, 0, 0],
     [3, 0, 0],
     [1, 0, 0],
     [3, 2, 0],
     [3, 0, 4]]
# learn the vocabulary and store tf-idf sparse matrix in tfidf
tfidf = transformer.fit_transform(counts)
# retrieving matrix in numpy form as we did it before
tfidf.toarray()
```


prefix stem suffix

PREFIX/SUFFIX/ROOT	MEANING	EXAMPLE	PREFIX/SUFFIX/ROOT	MEANING	EXAMPLE
1. acou-	hear	acoustics	41. fiss-	split	fission
2. aer-, aero-	air	aerodynamics	42flect	bend	reflection
alt-, alti-, alto-	height	altitude	43. flu-	flow	flux
4. ampli-	large	amplitude	44. for-, fort-	strong, strength	fortification
angl, angul-	angle	triangulation	45fract	break	fracture
6. ann-, annu-	year	annual	46. frict-	rub	friction
7. ap-, apo-	away from	apogee	47. fus-	melting	fusion
8. astr-, astro-, aster-	star	astronomical	48fy	to make	magnify
ation, -ition, -tion	process, result	condensation	49. ge-, geo, -gee	earth	geothermal
10. atmo-	air	atmosphere	50gen	to produce, origin	hydrogen
11atude, -itude, -tude	condition, state of	amplitude	51gon	angle	hexagonal
12. aud-, audio-	hear	audiologist	52. grad-	step	gradient
13. bar-, baro-	heavy	barometric	53gram	written record	cardiogram
14. calor-	heat	calorimetry	54graph	recording	spectrograph
15. can-, cand-	glow white	incandescence	55. grav-	heavy, weighty	gravitational
16. cap-, capac-	hold	capacitor	56. gyr-	rotate	gyroscope
17. carb-, carbo-	carbon	carbohydrate	57. helio-	sun	heliocentric
18ced, -ceed, -cess	going	recessional	58. hemi-	half	hemisphere
19celer	swift, to hasten	accelerometer	59. hepta-	seven	heptathlon
20. centr-, centri-	center	centripetal	60. hetero-	unlike, different	heterotroph
21. chem-, chemo-	transmutation	chemical	61. hexa-	six	hexagon
22. chrom-, chromo-	color	chromatograph	62. homo-	same, like	homophone
23. chron-, chrono-	time	chronograph	63. hydr-, hydro-	water	hydrotherma
24. circ-, circl-	circle	circulation	64ic, -tic	person	lunatic
25. con-, com-	with, together	compound	65ical	pertaining to	mechanical
26. con-, coni-	cone	conical	66ician, -icist	specialist	physicist
27. cosm-, cosmo-	universe	cosmological	67ics, -tics-	skill	mechanics
28. cry-, cryo-	cold	cryogenic	68. ign-	fire	ignition
29. cycly-, cyclo-	circle	cyclone	69ile	pertaining to, thing	projectile
30. deca-	ten	dodecagon	70. infra-	below	infrasonic
31. di-	two	dipole	71. inter-	between	interstitial
32duc, -duce, -duct	to lead	aqueduct	72. intra-	within	intramural
33. dyn-, dynam-	power	hydrodynamic	73. iso-	equal	isobaric
34. elect-, electro-	electric, amber	electrician	74ist	person	chemist
35ence	state of	luminescence	75istry	skill	artistry
36. end-, endo-, ento-	inside, within	endothermic	76ject	to throw	projectile
37. equa-, equi-, equ-	equal	equilibrium	77. kin-, kine-	motion, movement	kinematics
38. erg-, ergo-	work	ergonomics	78. lept-	small	lepton
39. ex-, exo-	outside, out of	exogenic	79. lev-	to raise	levitation
40. ferro-	iron	ferromagnetic	80. libr-, libri-	weight	equilibrium

I love NLP and I like dogs

```
I = [_ _ _ _ _]
Love = [_ _ _ _ _]
 \mathbf{NLP} = [\underline{\phantom{A}} \underline{\phantom{A}} \underline{\phantom{A}} \underline{\phantom{A}} \underline{\phantom{A}} \underline{\phantom{A}} \underline{\phantom{A}} \underline{\phantom{A}}]
 And = [_ _ _ _ _ _]
Like = [_ _ _ _ _]
Dogs = [____]
```

Vector Filling Approaches

1. Word Count

2. Co-occurrence

and so on

I love NLP and I like dogs

	1	Love	NLP	And	Like	Dogs	
1	0	1	0	1	1	0	
Love	1	0	1	0	0	0	
NLP	0	1	0	1	0	0	
And	1	0	1	0	0	0	
Like	1	0	0	0	0	1	
Dogs	0	0	0	0	1	0	

Distributional Hypothesis

Words that appear in same context share semantic meaning

1. Count-based method (Latent Semantic Analysis)

Count-based methods compute the statistics of how often some word co-occurs with its neighbour words in a large text corpus, and then map these count-statistics down to a small, dense vector for each word.

2. Predictive method (Neural Probabilistic Language Model)

Predictive models directly try to predict a word from its neighbours in terms of learned small, dense embedding vectors.

Word₂Vec -> Predictive Method

Word2Vec

Word2vec is to group the vectors of similar words together in vectorspace. Word2vec creates vectors that are distributed numerical representations of word features, features such as the context of individual words.

Word2vec is similar to an autoencoder, encoding each word in a vector, but rather than training against the input words through reconstruction, as a restricted Boltzmann machine does, word2vec trains words against other words that neighbor them in the input corpus.

CBoW

$$P(w_t|h) = \text{softmax}(\text{score}(w_t, h))$$

$$= \frac{\exp\{\text{score}(w_t, h)\}}{\sum_{\text{Word w' in Vocab}} \exp\{\text{score}(w', h)\}}$$

$$J_{ ext{ML}} = \log P(w_t|h)$$

$$= ext{score}(w_t, h) - \log \left(\sum_{ ext{Word w' in Vocab}} ext{exp} \{ ext{score}(w', h) \} \right)$$

$$argmax_{ heta} rac{1}{T} \sum_{t=1}^{T} \sum_{j \in c, j! = 0} logp(w_{t+j} | w_t; heta)$$

Embedding Lookup Matrix

$$p(w_i|w_t; heta) = rac{exp(heta w_i)}{\sum_t exp(heta w_t)}$$

Hidden layer

Projection layer

Noise classifier

Hidden layer

Projection layer

Negative Sampling

$$J_{ ext{NEG}} = \log Q_{ heta}(D=1|w_t,h) + k \mathop{\mathbb{E}}_{ ilde{w} \sim P_{ ext{noise}}} [\log Q_{ heta}(D=0| ilde{w},h)]$$

where $Q_{\theta}(D=1|w,h)$ is the binary logistic regression probability under the model of seeing the word w in the context h in the dataset D, calculated in terms of the learned embedding vectors θ . In practice we approximate the expectation by drawing k contrastive words from the noise distribution (i.e. we compute a Monte Carlo average).

$$J_{\text{NEG}}^{(t)} = \log Q_{\theta}(D = 1|\text{the, quick}) + \log(Q_{\theta}(D = 0|\text{sheep, quick}))$$

Word2Vec Steps

- Take a 3 layer neural network. (1 input layer + 1 hidden layer + 1 output layer)
- 2. Feed it a word and train it to predict its neighbouring word.
- 3. Remove the last (output layer) and keep the input and hidden layer.
- 4. Now, input a word from within the vocabulary. The output given at the hidden layer is the 'word embedding' of the input word.

Training Source Text Samples The quick brown fox jumps over the lazy dog. -(the, quick) (the, brown) The quick brown fox jumps over the lazy dog. (quick, the) (quick, brown) (quick, fox) quick brown fox jumps over the lazy dog. The (brown, the) (brown, quick) (brown, fox) (brown, jumps) The quick brown fox jumps over the lazy dog. (fox, quick) (fox, brown) (fox, jumps)

(fox, over)

Output Layer Softmax Classifier

Hidden Layer Weight Matrix

Word Vector Lookup Table!

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

Output weights for "car"

Word2Vec Relationships

Male-Female

Verb tense

Country-Capital

Implementation in Tensorflow

```
embeddings = tf.Variable(
    tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
```

```
# Placeholders for inputs
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
```

embed = tf.nn.embedding_lookup(embeddings, train_inputs)

```
# We use the SGD optimizer.
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize(loss)
```

```
for inputs, labels in generate_batch(...):
    feed_dict = {train_inputs: inputs, train_labels: labels}
    _, cur_loss = session.run([optimizer, loss], feed_dict=feed_dict)
```

h e ison km
y john u fangages rorgerek noglish
undersity londowintry
college ur worder day.

computer
spaceeryige of battler day.
system
system
system
law right
u fangages particular of the polyman poly h v million isbn each no every any as that when before gain stder either and began or began

t though affector
gistowever
does
will
could associated then
can are than
can are than are than
can are than are than
can are than are than are than
can are than are than are than are than
can are than are than are than are than are than are than
can are than are than are than are than are than are than are t but

GloVe

 Idea: Ratios between probabilities of words appearing next to each other carry more information that individual probabilities

- 1. $P_{ice,solid}/P_{steam,solid}$ will be very high
- 2. $P_{ice,gas}/P_{steam,gas}$ is very low
- 3. $P_{ice,water}/P_{steam,water}$ will be higher than $P_{ice,fashion}/P_{steam,fashion}$

GloVe: High-level Architecture

Probability and Ratio				
P(k ice)	1.9×10^{-4}	6.6×10^{-5} 7.8×10^{-4}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

$$f(x) = \begin{cases} (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$

Word Analogy

Model	Dim.	Size	Sem.	Syn.	Tot.
ivLBL	100	1.5B	55.9	50.1	53.2
HPCA	100	1.6B	4.2	16.4	10.8
GloVe	100	1.6B	<u>67.5</u>	<u>54.3</u>	60.3
SG	300	1B	61	61	61
CBOW	300	1.6B	16.1	52.6	36.1
vLBL	300	1.5B	54.2	64.8	60.0
ivLBL	300	1.5B	65.2	63.0	64.0
GloVe	300	1.6B	80.8	61.5	70.3
SVD	300	6B	6.3	8.1	7.3
SVD-S	300	6B	36.7	46.6	42.1
SVD-L	300	6B	56.6	63.0	60.1
CBOW [†]	300	6B	63.6	<u>67.4</u>	65.7
SG [†]	300	6B	73.0	66.0	69.1
GloVe	300	6B	<u>77.4</u>	67.0	<u>71.7</u>
CBOW	1000	6B	57.3	68.9	63.7
SG	1000	6B	66.1	65.1	65.6
SVD-L	300	42B	38.4	58.2	49.2
GloVe	300	42B	<u>81.9</u>	<u>69.3</u>	<u>75.0</u>

Word Similarity

Model	Size	WS353	MC	RG	SCWS	RW
SVD	6B	35.3	35.1	42.5	38.3	25.6
SVD-S	6B	56.5	71.5	71.0	53.6	34.7
SVD-L	6B	65.7	<u>72.7</u>	75.1	56.5	37.0
CBOW†	6B	57.2	65.6	68.2	57.0	32.5
SG [†]	6B	62.8	65.2	69.7	<u>58.1</u>	37.2
GloVe	6B	<u>65.8</u>	<u>72.7</u>	<u>77.8</u>	53.9	38.1
SVD-L	42B	74.0	76.4	74.1	58.3	39.9
GloVe	42B	<u>75.9</u>	<u>83.6</u>	<u>82.9</u>	<u>59.6</u>	<u>47.8</u>
CBOW*	100B	68.4	79.6	75.4	59.4	45.5

NER

Model	Dev	Test	ACE	MUC7
Discrete	91.0	85.4	77.4	73.4
SVD	90.8	85.7	77.3	73.7
SVD-S	91.0	85.5	77.6	74.3
SVD-L	90.5	84.8	73.6	71.5
HPCA	92.6	88.7	81.7	80.7
HSMN	90.5	85.7	78.7	74.7
CW	92.2	87.4	81.7	80.2
CBOW	93.1	88.2	82.2	81.1
GloVe	93.2	88.3	82.9	82.2

GloVe Vs Word2Vec

(a) GloVe vs CBOW

(b) GloVe vs Skip-Gram