### Wärmepumpe

- Themen
- Wärme pumpen?
- Kostenvergleich
- Umweltwärme nutzen
- Wärmefluss & Kältemittel
- Funktion Wärmepumpe
- Phasenübergänge
- Kältemittel
- Wärmepumpenprozess
- Zustandsänderungen
- 1. Hauptsatz
- Schritt I bis IV
- Animation WP-Prozess
- Enthalpie & Wärmepumpe

- Carnot
- Carnot-Wirkungsgrad η
- Carnot-Wärmepumpe  $\eta_C$
- COP<sub>real</sub>
- COP Erfahrungswerte
- Vorlauftemperaturen
- lg p, h Diagramme
- Heizkennlinie
- $Carnot: COP_{MAX} \& COP_{regl}$  von VT
- $COP_{h:1.0}$  &  $COP_{h:0.65}$  & Grädigkeit von AT & VT
- $COP_{h;1,0}$  &  $COP_{h;0,65}$  & Grädigkeit von TC-TV
- COP Internet
- COP Werte
- Quellen

| T | h | e | n | ገ | е | r |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

| Technik & Physik    | Es soll um <b>physikalische, technische Inhalte</b> gehen.                                                                                                                                |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Einführung          | Kostenvergleich anhand Anbieterpreise (Januar 2024).                                                                                                                                      |  |
| ldee der Wärmepumpe | Wärme aus kalter Luft gewinnen.                                                                                                                                                           |  |
| Technik             | <ul> <li>Funktion der Wärmepumpe.</li> <li>Aufgabe des Kältemittels</li> <li>Wärmepumpenprozess</li> <li>Vorlauftemperaturen</li> <li>Ig p, h-Diagramme</li> <li>Heizkennlinie</li> </ul> |  |
| Physik              | <ul> <li>Phasenübergänge</li> <li>Zustandsänderungen</li> <li>Enthalpie und Wärmepumpe.</li> <li>Carnot-Wirkungsgrad</li> <li>COP</li> </ul>                                              |  |
| Auswertung          | COP-Berechnungen                                                                                                                                                                          |  |
|                     | <u> </u>                                                                                                                                                                                  |  |

## Wärme pumpen?



- Wärme pumpen?
- Mit "gefühlt" kalter Außenluft heizen?
- Wie kann aus einer kalten (5 °C) Außentemperatur eine hohe Innentemperatur werden?
- Was geschieht, wenn die Außentemperatur unter 0 °C liegt?

# Kostenvergleich

|                         | Gas                                                    | Strom                                                                       |
|-------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|
| Verbrauch               | 8000 kWh/Jahr                                          | 2800 kWh/Jahr                                                               |
| Kosten                  | 15 ct/Jahr (Januar 2024)                               | 30 ct/Jahr (Januar 2024)                                                    |
| Kosten                  | 1200 €                                                 | 840 €                                                                       |
| Wärmepumpe und <b>e</b> | <b>lektr. Energie</b> (grobe Schätzun                  | g)                                                                          |
| Kennzahl COP            | $COP = \frac{q_{Nutz}}{W}$ gewon                       | nene Energie / aufgewandte Arbeit                                           |
| <i>COP</i> = 3          | $W_E = \frac{q_{Nutz}}{COP}  W_E = \frac{8000}{3} = 3$ | 2666 kWh untere Grenze                                                      |
| <i>COP</i> = 4          | $W_E = \frac{8000}{4} =$                               | 2000 kWh anzustreben                                                        |
|                         | Brennwert (nur Gasanteil)                              | Wärmepumpe (nur Stromanteil)                                                |
| Kosten                  | 1200 € (15 ct/Jahr)<br>3200 € (40 ct/Jahr)             | $Kosten_3 = 2666 \times 30 = 800 $ €<br>$Kosten_4 = 2000 \times 30 = 600$ € |
| Quelle [1] und [2]      |                                                        |                                                                             |

## Kühlschrank-Wärmepumpe



#### Umweltwärme nutzen

#### Absolute Temperaturskala in **Kelvin!**

Null Grad Celsius ist nur gefühlt kalt. Tatsächlich liegt eine thermische Energie analog zu 273 K vor.



Aufgabe: Aus Umweltwärme Raumwärme ernten.

### Wärmefluss & Kältemittel I

Aufgabe: Wärmefluss von der warmen Luft an das kühle Kältemittel.



### Wärmefluss & Kältemittel II

Aufgabe: Kältemittel von "5 °C" auf "51 °C" pumpen.



#### Wärmefluss & Kältemittel III

Aufgabe: Wärmefluss vom warmen Kältemittel an den kühlen Heizkreislauf.



### Wärmefluss & Kältemittel IV



## Wärmepumpenprozess



## Prozessschritte

| Schritt | Zustände          | Vorgang      |                                                                                                                                                                                                       |
|---------|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.      | 4 → 1             | verdampfen   | Zufuhr von Wärme. Phasenübergang von "flüssig → gasförmig".                                                                                                                                           |
| II.     | $1 \rightarrow 2$ | verdichten   | Einbringen von Arbeit (W <sub>elekt</sub> ).<br>Führt zu einer Druck- und Temperaturhöhung.<br><b>Wärme pumpen.</b>                                                                                   |
| III.    | $2 \rightarrow 3$ | verflüssigen | Abgabe von Wärme. Phasenübergang von "gasförmig → flüssig.                                                                                                                                            |
| IV.     | 3 → 4             | entspannen   | Drosselung des flüssigen Kältemittels.<br>Führt zu einer Druck- und Temperatursenkung.<br>Frei werdende Energie geht in das Kältemittel über.<br>Keine Änderung der spez. Enthalpie des Kältemittels. |
|         |                   |              |                                                                                                                                                                                                       |

# Zustandsänderungen

|                                                 |                  | (Definition für ideale Gase)                                                   |                                         |
|-------------------------------------------------|------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| Isobare<br>Zustandsänderung                     | p = konst        | Je größer die Temperatur, desto<br>größer das Volumen.                         | Linien gleichen Druckes:<br>Isobaren    |
| Isotherme<br>Zustandsänderung                   | T = konst        | Je größer der Druck, desto<br>kleiner das Volumen.                             | Linien gleicher Temperatur: Isothermen  |
| Isentrope<br>(adiabatische)<br>Zustandsänderung | p, T ändern sich | Je größer die eingebrachte<br>Enthalpie, desto größer Druck<br>und Temperatur. | Linien gleicher Entropie:<br>Isentropen |
| Isochore<br>Zustandsänderung                    | v = konst        | Je größer die Temperatur, desto<br>größer der Druck.                           | Linien gleichen Volumes:<br>Isochoren   |

# 1. Hauptsatz

| Wärme und Arbeit.                          | Erst 1842 sprach Robert Mayer von der "Gleichwertigkeit von Wärme und Arbeit". |
|--------------------------------------------|--------------------------------------------------------------------------------|
| 1. Hauptsatz der Wärmelehre <sup>[1]</sup> | Wärme kann aus mechanischer Arbeit erzeugt und in solche umgewandelt werden.   |
|                                            | Elektrische Arbeit kann in Wärme umgewandelt werden.                           |
| Wärmegleichung                             | Q = ΔU + W<br>U: Innere Energie<br>W: Arbeit                                   |

### Schritt I



#### Schritt II

#### Schritt II: verdichten

 $t_2 = 51 \,^{\circ}\text{C}$   $p_1 = 13,51 \,\text{bar}$  $v_2 < v_1$ 



$$t_1 = 0 \, ^{\circ}C$$
  
 $p_1 = 2,93 \, bar$   
 $v_1$ 

#### p, V - Diagramm



#### (isentroper Prozess)

 $Q = \Delta U + W_{elekt}$ 

U: Innere Energie

W<sub>elekt</sub>: elektrische Arbeit

Annahme: Q = 0

Innere Energie:

 $\Delta U = W_{elekt}$ 

### Vorgang

#### Thermodynamik

Kältemitteltemperatur auf Vorlauftemperatur (+Grädigkeit) erhöhen.

Adiabatische (isentrope) Volumenänderungsarbeit W<sub>elekt.</sub>

Ohne Wärmeverluste (nicht realistisch) Q.

Temperatur erhöht sich. Druck erhöht sich.

Volumen verkleinert sich.

### Quelle [5]

### Schritt III



| Vorgang       | Abgabe von Wärme (infolge Grädigkeit).                                                                                                                                                   |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermodynamik | Kältemittel Phasenübergang von "gasförmig → flüssig.<br>Kältemittel-Temperatur bleibt konstant.<br>Kältemittel-Druck bleibt konstant.<br>Temperatur im Heizkreislauf erhöht sich auf VT. |

#### Schritt IV

#### Schritt IV: entspannen

### (isentroper Prozess)

t<sub>3</sub> = 51 °C R134a p<sub>3</sub> = 13,51 bar v<sub>3</sub>







#### Vorgang

Kältemitteltemperatur auf Umlufttemperatur (-Grädigkeit) senken.

Thermodynamik

Adiabatische (isentrope) Drosselung ohne Wärmeverluste.

Frei werdende Energie geht in latente Wärme über (Isenthalpe).

Phasenübergang von flüssig nach gasförmig.

Temperatur erniedrigt sich. Druck erniedrigt sich.

Volumen erhöht sich.

### **Animation WP-Prozess**



## Phasenübergänge (Wasser)

Temperatur in °C

Energie in kJ (für 1 kg)

Phasen:

- Festkörper: Eis

- Flüssigkeit: Wasser

- Nassdampf: Wasser und Dampf

- Heißdampf: Dampf

Isotherme: t = konst

p = konst

Phasenübergänge:

1 Eis & Wasser -> Wasser

Wasser & Dampf -> Dampf



Quelle [4]

# Folgerungen Wärmepumpe Der Wärmepumpen-Prozess macht sich, die mit dem Verdampfen Phasenübergang vom flüssigen in den gasförmigen Aggregatzustand des Kältemittels verbundene physikalische Eigenschaft zu Nutze, ein hohes Maß an thermische Energie aufnehmen zu können. Phasenübergang vom gasförmigen in den flüssigen Aggregatzustand. Verflüssigen

## Kältemittel

| Warum Wasser nicht geht! | Wasser siedet bei Umgebungsdruck erst bei 100 °C.             |
|--------------------------|---------------------------------------------------------------|
|                          | Bei ca. 1/100 bar würde Wasser erst bei 0°C sieden.           |
|                          |                                                               |
| Anforderungen            | Bei geringen Temperaturen verdampfen                          |
|                          | Bei höheren Temperaturen kondensieren                         |
|                          | Beide Vorgänge müssen bei beherrschbaren Drücken stattfinden. |
|                          | Die "latente" Wärme sollte möglichst groß sein.               |
|                          | Kein Treibhausgaspotenzial.                                   |
|                          | Kein Ozonschädigungspotenzial.                                |
|                          | Optimale Betriebssicherheit (Brennbarkeit)                    |

# Enthalpie & Wärmepumpe

| Enthalpie        | Die Enthalpie $H$ ist die Summe aus innerer Energie " $U$ " und der Volumenarbeit " $pV$ " (oder W).                      |
|------------------|---------------------------------------------------------------------------------------------------------------------------|
|                  | Die Enthalpie H ist eine Zustandsgröße, wie v, $p$ , $T$ und $U$ .                                                        |
|                  |                                                                                                                           |
| Verdampfer       | Der Phasenübergang von "flüssig -> gasförmig", Zufuhr von Wärme, führt zu einer <b>anwachsenden</b> spez. Enthalpie $h$ . |
| Verdichter       | Die Einbringung von Arbeit ( $W_{\rm elekt}$ ) führt zu einer <b>anwachsenden</b> spez. Enthalpie $h$ .                   |
| Kondensator      | Der Phasenübergang von "gasförmig -> flüssig", Abgabe von Wärme, führt zu einer <b>abnehmenden</b> spez. Enthalpie $h$ .  |
| Expansionsventil | Die Drosselung des flüssigen Kältemittels verläuft <b>ohne Änderung</b> der spez. Enthalpie h.                            |

### Carnot



## Carnot-Wärmepumpe $\eta_{\mathcal{C}}$

$$\eta = \frac{Nutzen}{Aufwand}$$

$$\eta = \frac{q_{Nutz}}{W}$$

gewonnene Energie / aufgewandte Arbeit

$$\eta = \frac{q_{ab}}{W} \quad W = q$$

$$W = q_{ab} - q_{zu} \qquad \eta = \frac{q_{ab}}{q_{ab} - q_{zu}}$$

Theoretischer Carnot Wirkungsgrad

$$\eta_C = \frac{T_H}{T_H - T_K}$$

η ist größer als 1

T in Kelvin

COP Coefficient of Performance

COP bewertet mit Gütegrad der Wärmepumpe.

Carnot-Wirkungsgrad 
$$\eta_C = \frac{T_H}{T_H - T_K}$$

Gütegrad 
$$\eta_{C,WP} = \frac{realer\ COP}{Carnot-Wirkungsgrad}$$

Erfahrungswerte 
$$\eta_{C,WP} = 0,45 \text{ bis} = 0,55$$

$$COP_{real} = \eta_{C,WP} \times \eta_{C}$$

$$COP_{real} = \eta_{C,WP} \times \frac{T_H}{T_H - T_K}$$
 (auf Kelvin-Temperaturen basierend)





## lg p,h R-134a Carnot

- Wärmepumpe
- Carnot-Prozess
- Kältemittel R-134a

$$t_H = 50 \,^{\circ}C$$
  
 $t_K = 0 \,^{\circ}C$ 



## lg p,h R-134a real

- Wärmepumpe
- Realer Prozess
- Kältemittel R-134a
- Einfluss von:
- Grädigkeit
- Verdichter-Wirkungsgrad



Quelle [9]

### Vorlauftemperaturen



Quelle [8]

### Heizkennlinie

#### Brennwertgerät

a = 17,5 °C

c = 25 °C

d (Nachtabsenkung)

e = 75 °C

| AT °C | VT °C |
|-------|-------|
| 10    | 39    |
| 5     | 46    |
| 0     | 54    |
| -5    | 61    |
| -10   | 68    |



## Rechnung $\eta_C$

Idee

Es werden nur Kelvin-Temperaturen verwendet. Das Kältemittel spielt keine Rolle.

Wärmepumpe

$$\eta = \frac{q_{Nutz}}{W}$$

gewonnene Energie / aufgewandte Arbeit

Theoretischer Carnot Wirkungsgrad

$$\eta_C = \frac{T_H}{T_H - T_K}$$

| AT °C | VT °C | T <sub>K</sub> K | T <sub>H</sub> K |
|-------|-------|------------------|------------------|
| 10    | 39    | 283              | 312              |
| 5     | 46    | 278              | 319              |
| 0     | 54    | 273              | 327              |
| -5    | 61    | 268              | 334              |
| -10   | 68    | 263              | 341              |

$$\eta_C = \frac{T_H}{T_H - T_K}$$

$$\eta_C = \frac{327}{327 - 273}$$

$$\eta_C \approx 6$$

**Fazit** 

Physikalisch maximal möglicher Wert!

## Carnot: $COP_{MAX}$ & $COP_{real}$ von AT

| $\eta_{C;WP}$ | Gütegrad: $\eta_{C;WP} = 0.5$  |
|---------------|--------------------------------|
| $COP_{MAX}$   | Entspricht Carnot-             |
|               | Wirkungsgrad (η <sub>C</sub> ) |
| $COP_{real}$  | Bewerteter COP                 |
| AT            | Außentemperatur                |
| VT            | Vorlauftemperatur              |

| AT °C | VT °C | ΔΤ |
|-------|-------|----|
| 10    | 39    | 29 |
| 5     | 46    | 41 |
| 0     | 54    | 54 |
| -5    | 61    | 66 |
| -10   | 68    | 78 |

 $COP_{MAX}$  \_\_\_\_\_



(vom Kältemittel unabhängig)

## Carnot: $COP_{MAX} \& COP_{real}$ von VT

| $\eta_{C;WP}$ | Gütegrad: $\eta_{C;WP} = 0.5$  |
|---------------|--------------------------------|
| $COP_{MAX}$   | Entspricht Carnot-             |
|               | Wirkungsgrad (η <sub>C</sub> ) |
| $COP_{real}$  | Bewerteter COP                 |
| AT            | Außentemperatur                |
| VT            | Vorlauftemperatur              |

| AT °C | VT °C | ΔΤ |
|-------|-------|----|
| 10    | 39    | 29 |
| 5     | 46    | 41 |
| 0     | 54    | 54 |
| -5    | 61    | 66 |
| -10   | 68    | 78 |

(vom Kältemittel unabhängig)



# Rechnung $COP_{h:1.0}$

Idee

Es werden die spezifischen Enthalpien vom Kältemittel verwendet. Der COP-Wert ist vom Kältemittel abhängig.

Wärmepumpe

$$COP = \frac{q_{Nutz}}{W}$$

$$COP_h = \frac{h_2 - h_3}{h_2 - h_1}$$

$$COP = \frac{q_{Nutz}}{W}$$
  $COP_h = \frac{h_2 - h_3}{h_2 - h_1}$   $COP_h = \frac{\Delta h_{Verflüssiger}}{\Delta h_{Verdichter}}$ 

log p, h Diagramm

| AT °C      | VT °C | ΔΤ |
|------------|-------|----|
| 10         | 39    | 29 |
| 5          | 46    | 41 |
| <b>)</b> 0 | 54    | 54 |
| -5         | 61    | 66 |
| -10        | 68    | 78 |



#### Für R134a:

| _ | ∆h <sub>Verflüssiger</sub> | $\Delta h_{\text{Verdichter}}$ | COP |
|---|----------------------------|--------------------------------|-----|
|   | 167,5                      | 18,1                           | 9,3 |
|   | 160,9                      | 25,4                           | 6,3 |
| - | 154,1                      | 33,4                           | 4,6 |
|   | 147,4                      | 40,7                           | 3,6 |
|   | 139,9                      | 48,2                           | 2,9 |

$$COP_h = \frac{154,1}{33,4}$$
  
 $COP_h = 4,614$ 

Quelle [3]

### **COP Internet**

 $COP_h$  über spez. Enthalpie.  $\eta_{Verdichter} = 0,65$ 

log(p)-h Diagramm R134A

$$AT = 0 °C$$
  
 $VT = 54 °C$ 



Quelle [10]

# $COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von AT

| R134a                      | COP über Enthalpie         |  |
|----------------------------|----------------------------|--|
| $COP_{h;1,0}$              | Verdichter $\eta_V = 1$    |  |
| $COP_{h;0,65}$             | Verdichter $\eta_V = 0.65$ |  |
| $COP_{h:0.65:Gr\ddot{a}d}$ | Grädigkeit                 |  |

AT Außentemperatur VT Vorlauftemperatur

| AT °C | VT °C | ΔΤ |
|-------|-------|----|
| 10    | 39    | 29 |
| 5     | 46    | 41 |
| 0     | 54    | 54 |
| -5    | 61    | 66 |
| -10   | 68    | 78 |

Grädigkoit

|   | Gradigkeit |   |                                                            |
|---|------------|---|------------------------------------------------------------|
|   | bei TC     | 5 |                                                            |
|   | bei TV     | 5 |                                                            |
|   |            |   | $COP_{h;1,0} \ COP_{h;0,65} \ COP_{h;0,65;Gr\"{a}digkeit}$ |
| - |            |   |                                                            |



## $COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von VT



| AT °C | VT °C | ΔΤ |
|-------|-------|----|
| 10    | 39    | 29 |
| 5     | 46    | 41 |
| 0     | 54    | 54 |
| -5    | 61    | 66 |
| -10   | 68    | 78 |

| Grädigkeit |   |
|------------|---|
| bei TC     | 5 |
| bei TV     | 5 |

| $COP_{h;1,0}$                        |
|--------------------------------------|
| $COP_{h;0,65}$                       |
| <br>COP <sub>h:0.65:Grädiakeit</sub> |



# $COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von TC-TV



VT Außentemperatur
Vorlauftemperatur

| AT °C | VT °C | ΔΤ |
|-------|-------|----|
| 10    | 39    | 29 |
| 5     | 46    | 41 |
| 0     | 54    | 54 |
| -5    | 61    | 66 |
| -10   | 68    | 78 |
|       |       |    |

| bei TC 5 |  |
|----------|--|
| bei TV 5 |  |

| $COP_{h;1,0}$                     |
|-----------------------------------|
| $COP_{h;0,65}$                    |
| <br>$COP_{h;0,65;Gr\"{a}digkeit}$ |



### COP Erfahrungswerte

### Angaben von BOSCH:

- Generell liegen gute COP-Werte zwischen 3 und 5.
- Ein COP unter 3 spricht in der Regel dafür, dass die Wärmepumpe nicht wirtschaftlich arbeitet.
- Für gewöhnlich erreichen Wärmepumpen für Hochtemperatur eine geringere Leistungszahl als herkömmliche Wärmepumpen, da sie mehr Strom verbrauchen.
- Welcher COP-Wert als gut befunden wird, unterscheidet sich je nach Art der Wärmepumpe.
- Für Luftwärmepumpen gilt ein COP ab 3 als gut.
- Das bedeutet, dass eine Kilowattstunde Strom drei Kilowattstunden Wärme bereitstellt.

### Quelle [7]

# Quellen

| 1  | Stromproise 2024 vergleichen & his SEO f sparen   VERIVOY                             |  |
|----|---------------------------------------------------------------------------------------|--|
| 1  | Strompreise 2024 vergleichen & bis 850 € sparen   VERIVOX                             |  |
| 2  | Gaspreis aktuell: So viel kostet die Kilowattstunde   NDR.de - Nachrichten - NDR Info |  |
| 2  | Enthalpie – Wikipedia                                                                 |  |
| 3  | energie schweiz: Buch_WP_Web_2018.pdf                                                 |  |
| 4  | Dietzel, Fritz: Technische Wärmelehre, Kamprath-Reihe                                 |  |
| 5  | FS_Thermodynamik_und_Kaeltetechnik.pdf                                                |  |
| 6  | https://waerme-mit-system.de/waermepumpe/                                             |  |
| 7  | COP Wärmepumpe: Werte, Bedeutung, Berechnung   Bosch (boschhomecomfort.com            |  |
| 8  | Vorlauftemperatur: Die Heizung optimal einstellen   Vaillant                          |  |
| 9  | Wärmepumpe – Wikipedia                                                                |  |
| 10 | Log ph Diagramm online I TLK Energy (tlk-energy.de)                                   |  |
| 11 | WÄRMEPUMPE: Wie geht das eigentlich?   #58 Energie und Klima - YouTube                |  |
|    | W10 Wärmepumpe (tu-darmstadt.de)                                                      |  |