A Kernel Independence Test for Random Processes.

Kacper Chwialkowski, Arthur Gretton

June 14, 2014

The Problem

In which plot are the time series 1 and the time series 2 independent?

Hilbert Schmidt Independence Criterion

$$Z_t = (X_t, Y_t)$$

Stationary processes X_t and Y_t together form a two-dimensional process.

Let k and m be

- characteristic,
- ► continuous,
- translation invariant,

kernels, vanishing at infinity.

HSIC function

$$h(z_a, z_b, z_c, z_d) = k(x_a, x_b)[m(y_a, y_b) + m(y_c, y_d) - 2m(y_b, y_c)].$$

The degenerate V-statistic

Theorem

For a stationary process $Z_t = (X_t, Y_t)$

$$X_t \perp \!\!\! \perp Y_t \Leftrightarrow \underset{t_1,t_2,t_3,t_4}{\forall} \mathcal{E}^* h(Z_{t_1},Z_{t_2},Z_{t_3},Z_{t_4}) = 0,$$

where \mathcal{E}^* is the expected value with respect to marginal distribution of $Z_{t_1}, Z_{t_2}, Z_{t_3}, Z_{t_4}$.

An empirical integral

$$V_n = \frac{1}{n^4} \sum_{1 < t_1, t_2, t_3, t_4 < n} h(Z_{t_1}, Z_{t_2}, Z_{t_3}, Z_{t_4}).$$

Result for observations with no temporal dependence

Theorem

If X_t and Y_t are independent, then, under some assumptions

$$\lim_{n\to\infty} n \cdot V_n \stackrel{D}{=} \sum_{j=1}^{\infty} \lambda_j \tau_j^2,$$

where $\|\lambda_j\|_{1} \le \infty$, $\lambda_j \ge 0$, $\{\tau_j\}_{j \in \mathbb{N}}$ are i.i.d standard Gaussian variables.

Result for processes

Theorem

If X_t and Y_t are independent, then, under some assumptions, for a stationary process $Z_t = (X_t, Y_t)$

$$\lim_{n\to\infty} n \cdot V_n \stackrel{D}{=} \sum_{j=1}^{\infty} \lambda_j \tau_j^2,$$

where $\|\lambda_j\|_{1} \le \infty$, $\lambda_j \ge 0$, $\{\tau_j\}_{j\in\mathbb{N}}$ are Gaussian, and

$$\mathcal{E}\tau_a\tau_b=\mathcal{E}e_a(Z_1)e_b(Z_1)+\sum_{j=1}^{\infty}\left[\mathcal{E}e_a(Z_1)e_b(Z_{j+1})+\mathcal{E}e_b(Z_1)e_a(Z_{j+1})\right].$$

with $\{e_i\}_{i\in\mathbb{N}}$ determined by h and the distribution of Z_t .

HSIC test is consistent

Theorem

If $X_t \not\perp \!\!\! \perp Y_t$ then, under some assumptions $\lim_{n \to \infty} V_n \stackrel{P}{=} q > 0$.

i.i.d. case, null scenario

 X_t and Y_t are i.i.d. standard independent Gaussian

i.i.d vs. processes, null scenario

$$X_t = e^{-0.05} X_{t-1} + \sqrt{1 - e^{-0.1}} \epsilon_{1,t}, Y_t = e^{-0.05} Y_{t-1} + \sqrt{1 - e^{-0.1}} \epsilon_{2,t}$$

Resampling - bootstrap

Original time series:

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}$ $Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_9 Y_{10}$

Permutation:

$$X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}$$

 $Y_7 Y_3 Y_9 Y_2 Y_4 Y_8 Y_5 Y_1 Y_6 Y_{10}$

Shift:

$$X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}$$

 $Y_5 Y_6 Y_7 Y_8 Y_9 Y_{10} Y_1 Y_2 Y_3 Y_4$

Memory vs Type I error

FOREX dependencies

