MC886 - Relatório do Assignment 04 Transferência de Aprendizado: Deep Learning

Pedro Stramantinoli P. Cagliume Gomes 175955 p175955@dac.unicamp.br Ruy Castilho Barrichelo 177012 r177012@dac.unicamp.br

I. INTRODUÇÃO

Ao passo que os algoritmos e práticas do aprendizado de máquina em redes profundas se desenvolveram, mostrou-se necessário, também, o progresso de técnicas que as auxiliassem, principalmente nos pontos que deixam a desejar.

Isto é, tanto a necessidade de uma grande quantidade de dados para se treinar uma rede profunda efetivamente, quanto a quantidade de tempo e de recursos computacionais que devem ser alocados para que o processo funcione adequadamente.

Para isso, um dos métodos criados foi a transferência de aprendizado, na qual são aproveitados modelos pré-treinados para agilizar o treinamento da nova rede desejada, em geral a partir de uma técnica chamada *fine-tuning*, em que as últimas camadas da rede são treinadas novamente, no entanto, com o *dataset* de interesse.

Em geral, essa estratégia apresenta melhores resultados quanto mais próximos são os *datasets* das tarefas utilizadas. Neste caso, o foco de estudo deste trabalho é a análise da transferência de aprendizado entre o *dataset* da *ImageNet*^[3] e o *dataset* CIFAR-10^[1], no contexto da arquitetura *SqueezeNet*.

Figura 1. Arquitetura da SqueezeNet

II. TRATAMENTO DOS DADOS

O dataset CIFAR-10 consiste em 60000 imagens de 32 x 32 pixels de dimensão, com 3 canais RGB. Ou seja, contém matrizes de dimensões 32 x 32 x 3, com valores inicialmente entre 0 e 255.

Primeiramente, foi realizado o *scaling* e a normalização dos dados, com o intuito de reter os valores entre 0 e 1 e, posteriormente, centralizá-los em torno de zero.

Já em relação aos rótulos das classificações, foi realizado um *encoding*, de forma a transformar o que era uma matriz coluna - que continha apenas o identificador da classe correspondente - em uma matriz que continha informações sobre as 10 classes existentes no CIFAR-10.

Por fim, o conjunto de dados, retirada a fração destinada ao teste final, foi dividido em conjuntos de treino e validação, para que os resultados possam ser verificados a cada treinamento realizado.

III. EXPERIMENTAÇÃO E RESULTADOS

Os experimentos foram divididos em 3 segmentos, de acordo com a quantidade de camadas a permanecerem congeladas durante o *fine-tuning*, com exceção, é claro, das últimas quatro camadas, que são reinicializadas para o novo treinamento.

A primeira parte consiste em manter todas congeladas; a segunda, em descongelar os dois últimos módulos *Fire* e, o último, em manter todas descongeladas.

Em relação a execução dos algoritmos, optou-se por variar o *batch_size* entre 250 e 500, enquanto o número de *epochs* foi variado entre 50, 150 e 300, ambos com o objetivo de analisar o impacto desses parâmetros nos resultados.

Ainda, vale ressaltar que o código foi executado via *Google Colab*^[6], com aceleração de *hardware* via *GPU*.

A. Todas camadas congeladas

Para este primeiro caso, os resultados obtidos foram, como previa o próprio enunciado, inferiores ao ideal, em torno de 40% de acurácia. Os valores de *Loss* e *Accuracy* para os diferentes *batch_size* e *epochs* podem ser vistos na tabela I.

Tabela I TODAS CAMADAS CONGELADAS

Batch size de 250						
Epochs	50	150	300			
Loss	0.0745	0.0742	0.0742			
Acurácia	0.4086	0.4087	0.4063			
Batch size de 500						
Epochs	50	150	300			
Loss	0.0747	0.0743	0.0742			
Acurácia	0.4067	0.4078	0.4101			

Como comparação, os resultados de *Loss* no treino mantiveram-se em torno de 0.078 e a acurácia, 0.345.

B. Módulos Fire e Camadas de Classificação descongeladas

Em seguida, com a decisão de descongelar os dois últimos módulos Fire, pode-se notar que os valores resultantes foram similares aos anteriores, ao aumentar absolutamente a acurácia em cerca de 10% e permanecer ao redor de 50%. Novamente, os resultados estão explicitados na tabela II.

Tabela II MÓDULOS *Fire* E CAMADAS DE CLASSIFICAÇÃO DESCONGELADAS

D . 1 . 1 . 250						
Batch size de 250						
Epochs	50	150	300			
Loss	0.0708	0.0876	0.0916			
Acurácia	0.5018	0.4728	0.4654			
Batch size de 500						
Epochs	50	150	300			
Loss	0.0666	0.0834	0.0884			
Acurácia	0.513	0.4851	0.4762			

Comparativamente, os resultados de *Loss* no treino mantiveram-se em torno de 0.014 e a acurácia, 0.89.

C. Todas camadas descongeladas

Por fim, indagou-se sobre o que aconteceria diante de um *fine-tuning* executado sobre todas as camadas do modelo précarregado.

É possível perceber que ouve uma melhora considerável, uma vez que os valores de acurácia saltaram para aproximadamente 75%, resultados que estão disponíveis na tabela III.

Tabela III TODAS CAMADAS DESCONGELADAS

Batch size de 250					
Epochs	50	150	300		
Loss	0.0392	0.0421	0.0479		
Acurácia	0.7641	0.7548	0.7218		
Batch size de 500					
Epochs	50	150	300		
Loss	0.0403	0.0414	0.0413		
Acurácia	0.7566	0.7634	0.77		

Já neste caso, os resultados de *Loss* no treino mantiveram-se em torno de 0.050 e a acurácia, 0.96.

D. Teste

Agora, com todos os modelos gerados e suas respectivas acurácias calculadas, escolheu-se o de melhor desempenho e, a partir dele, realizar a predição sobre o conjunto de testes para a validação final da qualidade do modelo obtido.

Dessa forma, optou-se por um modelo da terceira etapa, correspondente à execução de 300 *Epochs* e *Batch* de 500. Os resultados associados a ele foram: *Loss* de 0.0426 e acurácia de 0.7612, com uma queda de menos de 1% em relação à validação.

IV. ANÁLISE E COMPARAÇÕES

Os resultados atingidos com a experimentação ocorrida permitem análises não só sobre a viabilidade da transferência de aprendizado, mas também sobre o impacto dos parâmetros de execução e os diferentes níveis de congelamento das camadas.

Primeiramente, nota-se que a variação em *Batch_size* influenciou muito pouco os valores atingidos, com uma leve vantagem para o maior *batch*, apesar de também ser vantajoso quanto ao tempo de execução, inferior ao menor *batch*.

Já o número de *epochs* apresentou comportamentos diferentes nos modelos. Enquanto o crescimento do número de *epochs* implicou uma redução na acurácia para os 2 primeiros tipos de modelos, resultou em uma elevação, no caso do terceiro, ambos em torno de 2% de variação.

Uma observação interessante é a alta queda nas acurácias dos dois últimos tipos de modelo, entre conjuntos de treino e os de validação. Isso pode ser um indicativo de *overfitting*, no entanto ocorreu similarmente para todas as variações dos parâmetros de execução. Embora a queda no terceiro tipo de modelo também tenha sido alta, foi comparativamente mais reduzida.

Em relação as estratégias de congelamento das camadas, que foram a principal diferença entre os modelos, percebe-se que a transferência de aprendizado não apresentou resultados viáveis para um número reduzido de descongelamentos. Isso mostra que o *fine-tuning* das últimas camadas não foi o suficiente para adequar a rede treinada no *dataset* da *ImageNet* ao do *CIFAR-10*. Porém, ao descongelar todas as camadas e permitir a adaptação de toda a rede ao novo *dataset*, os valores obtidos foram mais aceitáveis, principalmente ao se considerar que, caso não houvesse uma queda brusca nas acurácias entre treino e validação, o modelo seria ainda melhor, o que leva à ideia de que ajustes no modelo e na execução do algoritmo, como os parâmetros variados, possam levar a um resultado que se aproxime mais do desejado.

Por fim, nota-se que a execucação no conjunto de testes gerou, de acordo com o que era esperado, a resultados próximos aos vistos sobre o conjunto de validação, a partir do uso do mesmo modelo.

V. Conclusão

Apesar da obtenção de resultados abaixo do que se consideria ideal, este estudo ainda possibilitou não só o entendimento da prática da transferência de aprendizado a partir de um modelo pré-treinado, mas também a maior clareza de como essa técnica pode ser valiosa tanto em termos de tempo e de recursos computacionais - uma vez que foi notável a diferença de tempo consumido para a execução do treino entre redes com e sem transferência, realizada em trabalhos anteriores-, quanto em relação à necessidade de posse de muitos dados - que é um dos pontos mais fundamentais nesse campo de estudo.

REFERÊNCIAS

- The CIFAR-10 dataset. Health News in Twitter. Disponível em: https://www.cs.toronto.edu/ kriz/cifar.html
- [2] NumPy v1.15 Manual. Disponível em: https://docs.scipy.org/doc/numpy/
- [3] ImageNet Database. Disponível em: http://www.image-net.org/
- Scikit-Learn. Stratified Shuffle Split. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html
- [5] Keras Documentation. Model. Disponível em: https://keras.io/models/model/
- [6] Google Colaboratory. Disponível em: https://colab.research.google.com/