MOMA Optimization

Team Optimistic

Group 40

Mechanical Engineering Department Indian Institute of Technology Bombay

March 7, 2025

What is Muti Objective Optimization?

In general we are interested in the following mathematical problem type:

$$\begin{split} \text{minimize/maximize} & \quad f_m(x), m = 1, 2, ..., M \\ \text{subject to} & \quad g_j(x) \geq 0, j = 1, 2, ..., J \\ & \quad h_k(x) = 0, k = 1, 2, ..., K \\ & \quad x_i^{(L)} \leq x_i \leq x_i^{(U)}, i = 1, 2, ..., n \end{split}$$

A solution is a vector of n decision variables:

$$x = (x_1, x_2, ..., x_n)^T$$

Feasible Solution

A solution that satisfies all constraints and variable bounds. The set of all feasible solutions is called the feasible region, or S

Domination

- 1. $\mathbf{x}^{(1)}$ is strictly better than $\mathbf{x}^{(2)}$ in at least one objective
- 2. $\mathbf{x}^{(1)}$ is no worse than $\mathbf{x}^{(2)}$ for all objectives

Non-dominated set

Solutions that are not dominated by any member of given set P

Globally Pareto-optimal set

The non-dominated set of the entire feasible search space S is the globally Pareto-optimal set

Pareto Optimal Solutions

Synthetic Experiments

Synthetic Experiments

Algorithm 1: Naive Gradient-Based Algorithm

```
\begin{split} & \text{Input: } f_1, f_2, \, \eta, \, \text{epochs} \\ & x \sim U(a,b) \\ & P \leftarrow \phi \\ & \text{for } i = 0 \text{ to epochs do} \\ & & | x_i = x_{i-1} - \eta \nabla_x f_1(x_{i-1}) \\ & | \text{if } f_2(x_i) > f_2(x_{i-1}) \text{ and } x_i \notin P \text{ and } x_i \in [a,b] \text{ then} \\ & | P \leftarrow P \cup \{x_i\} \\ & \text{else} \\ & | x_i \sim U(a,b) \\ & \text{return } P \end{split}
```


Synthetic Experiments

What are Genetic Algorithms?

NSGA - II

Nondominated Sorting Genetic Algorithm II

- Emphasis the non-dominated solutions
- Explicit diversity preserving mechanism (Crowding distance)
- Elitist principle

NSGA-II

b) Crowding distance calculation

Choosing solutions from a Pareto set

TOPSIS

- Let decision matrix after normalization be denoted as r_{ij} , i=1,2,3...n, j=1,2,3...m.
- The weighted matrix is calculated as : $v_{ij} = w_i r_{ij}$.
- Best solution $A^+ = (v_1^+, v_2^+, ..., v_m^+) = \max_i(v_{ij}), i = 1, 2, 3...n$
- Worst solution $A^- = (v_1^-, v_2^-, ..., v_m^-) = \min_i(v_{ii}), i = 1, 2, 3...n$
- Euclidean distance between weighted matrix and the best and worst

solutions are
$$S_i^+ = \sqrt{\sum_{j=1}^m (v_{ij} - v_j^+)^2}$$
 and $S_i^- = \sqrt{\sum_{j=1}^m (v_{ij} - v_j^-)^2}$

respectively.

• Closeness index is calculated as $\frac{S_i^-}{S_i^- + S_i^+}$.

Steps of TOPSIS

Multi-Agent extension

$$\begin{array}{c} \text{Agent 1: } x_1^1, x_1^2, ... x_1^n \\ \\ f_1^1(x_1^1, x_1^2, ..., x_2^1, ..) \\ f_1^2(x_1^1, x_1^2, ... x_2^1, ..), ... \\ f_1^m(x_1^1, x_1^2, ... x_2^1, ..) \end{array}$$

$$\begin{array}{lll} \text{Agent 2: } x_2^1, x_2^2, ... x_2^n \\ f_2^1(x_1^1, ... x_2^1, x_2^2, ..., x_3^1, ..) \\ f_2^2(x_1^1, ... x_2^1, x_2^2, ... x_3^1, ..), ... & \ldots & \text{k agents} \\ f_2^m(x_1^1, ... x_2^1, x_2^2, ... x_3^1, ..) & & \end{array}$$

$$\begin{split} \text{Single Agent: } x_1^1, x_1^2, .., x_k^n \\ f_1^1(x_1^1, x_1^2, ..., x_2^1, ..), ... \\ f_2^1(x_1^1, ..x_2^1, x_2^2, ..., x_3^1, ..), ... \\ f_k^m(x_1^1, ..x_2^1, x_2^2, ...x_3^1, ..) \end{split}$$

Single agent

- kn Decision variables
- km Objective functions

Problem Definition

- I Group of k undergrad students, each with m_i objective functions
- II Each student has n decision variables representing the time given to certain activities
- III Further, each student in the group is influenced by some other student(s) in the group.

Here we analyse a group of 5 students with a total of 6 objective functions

Graph

Objective Functions

Table 1: List of objective functions of different students

Student ID	Objective Functions
1	job
2	gradstudy
3	health
4	social
5	explore, social

Decision Variables

We have the following decision variables with the unit of hours per week

- Academic Activities (ac)
- Sports (sp)
- Research Work (rw)
- PoRs (pr)
- Tech Teams (tt)

- Tech Clubs (tc)
- Non-Core Clubs (nc)
- Culturals (cu)
- Leisure (le)
- Sleep (sl)

Constraints

- 1. ac + sp + rw + pr + tt + tc + nc + cu + le + sl ≤ 168
- 2. ac + sp + rw + pr + tt + tc + nc + cu + le + sl ≥ 120
- 3. 18 \leq ac \leq 54
- 4. pr + tt + tc + nc ≤ 50
- $5. \text{ sl } \geq 35$
- 6. $le \ge 10$

Influence Methods

$$\lambda_{i} \leftarrow \lambda_{i} + \sigma_{ji}\lambda_{j}$$

(2)
$$\lambda_{i} \leftarrow \lambda_{i} + \sigma_{ji}(\lambda_{j} - \lambda_{i})$$

(3)
$$\lambda_{i} \leftarrow \frac{\lambda_{i} + \sigma_{ji}\lambda_{j}}{1 + \sigma_{ji}}$$

- Here, $\sigma_{ji} \in [0, 1]$ is the influence of agent i on j, and λ_i is the ith decision variable
- Drawbacks when using Method (1)
- Comparative study between methods (2) and (3)

MaxHist: New Method for Choosing Solutions

Given a pareto set, For each decision variable,

• Choose its most occurring value that decision variable in the pareto set

Sample Solution

One of the obtained solution is shown below to understand

{1: [job], 2: [gradstudy], 3: [health], 4: [social], 5: [explore, social]}

wtsu 1500 500

İ	Student ID	Acads	Sports	Research	PORs	Tech Teams	Tech Clubs	Non-Core Clubs	Cult	Leisure	Sleep
i	1	36	2	10	2	0	6	0	1	10	48
i	2	59	0	57	1	0	0	0	0	10	48
İ	3	18	21	0	2	0	0	0	9	11	49
	4	17	0	14	1	0	0	5	1	13	42
ĺ	5	21	0	0	1	0	3	1	21	14	37
_		L									

Figure 1: Sample Solution

Experiments Conducted

- 1. Experimental Analysis for Different Influence Methods
- 2. Analysis of varying number of generations on the result
- 3. Choosing Effective Selection Method from Pareto
- 4. Extending number of objectives to 15
- 5. Effect of Influence on Optimal Solutions

1. Different Influence Methods

į	Student ID	Acads	Sports	Research	PORs	Tech Teams	Tech Clubs	Non-Core Clubs	Cult	Leisure	Sleep
į	1	36 59	2	10 57	2	0	6	9	1 0	10 10	48 48
i	3	18	21	0	2	ø	0	ø	9	11	49
- 1	4	17	0	14	1	0	0	5	1	13	42
- !	5	21	0	0	1	0	3	1	21	14	37

Figure 2: Method 2 - Influence

Student	ID	Acads	Sports	Research	PORs	Tech Teams	Tech Clubs	Non-Core Clubs	Cult	Leisure	Sleep
1	i	32	2	10	1	11	1	8	4	17	45
2		58	0	57	0	0	0	0	0	10	46
3		18	12	1	4	3	1	7	0	10	49
4		19	24	0	13	0	1	4	10	11	46
5	- 1	23	2	3	0	0	4	1	22	15	47
+	+-		+	+	+	·	+	+	+	·	++

Figure 3: Method 3 - Influence

2. Effect Of Number of Generations

abswtsf 1500 150

į	Student ID							Non-Core Clubs	Cult	Leisure	Sleep
i	1	38	10	8	0	3	5	0	12	10	38
i	2	53	8	7	8	7	1	4	0	11	47
	3	21	59	2	5	7	0	2	6	9	48
	4	19	15	1	1	9	3	11	22	10	53
	5	22	0	5	6	6	9	1	7	10	47
	-				-				. 1		

Figure 4: Ngen = 150

bswtsf_1500_		+	.	4	.	+	+	+		L
	-	•			-	•	Non-Core Clubs			Sleep
1	+ 29	+ 1	 2	+ 1	+ 0	+ 2	+ 17	+ 26	10	47
2	59	0	59	0	0	0	j 0	j ø j	10	45
3	23	18	2	0	2	0	2	7	12	51
4	15	1	33	3	0	0	1	5	10	51
5	19	0	0	1	0	1	0	19	14	47
5	19	j ø	0	1	0	1 +	j ø	19	1	4 j

Figure 5: Ngen = 1000

3. Topsis vs MaxHist

V	rtsu_1500_300	_IMP	.	L	L			.	L		
į	Student ID	Acads	Sports	Research	PORs	Tech Teams	Tech Clubs	Non-Core Clubs	Cult	Leisure	Sleep
i	1	53	0	37	1	0	11	1	0	10	48
	2	57	0	6	1	3	0	0	4	10	43
	3	18	30	2	0	0	6	5	5	11	45
ı	4	17	2	2	3	0	14	6	1	10	42
Ì	5	53	0	3	0	2	0	1	10	11	47
4		+	+	·	·	·	·	+	+	+	++
+		+	+	·		·	+	·		+	++
	Student ID	Acads	Sports	Research	PORs	Tech Teams	Tech Clubs	Non-Core Clubs	Cult	Leisure	Sleep
4		+	+	·		·		h		+	++
	1	56	0	0	0	0	4	0	0	10	49
İ	2	59	0	47	1	0	0	0	0	10	45
ı	3	18	59	0	0	0	0	0	5	11	49
i	4	18	0	2	0	0	0	1	59	10	49
ı	5	16	0	0	0	0	0	0	59	10	48
4		+	+	·		·			·	+	++

Figure 6: Topsis vs MaxHist

4. More number of Objectives

Student ID	Objective Functions
1	job, health, social
2	gradstudy, explore, social
3	job, health, social
4	social, explore, job, health
5	explore, gradstudy

largeobj_3000_100

1	Student ID	Acads	Sports	Research	PORs	Tech Teams	Tech Clubs	Non-Core Clubs	Cult	Leisure	Sleep
j	1	31	9	8	9	3	9	17	11	10	45
	2	21	9	7	4	9	9	14	6	11	36
	3	27	10	6	10	10	8	11	0	16	46
	4	17	18	1	9	2	3	9	9	11	34
	5	19	11	15	14	9	10	10	9	16	39
4			+	+	+	+	+	 	+		++

Figure 7: 15 Objective functions

5. Effect Of influence On Optimal Solution

largeobj 3000 100

1	Student ID	Acads	Sports	Research	PORs	Tech Teams	Tech Clubs	Non-Core Clubs	Cult	Leisure	Sleep
i	1	31	9	8	9	3	9	17	11	10	45
	2	21	9	7	4	9	9	14	6	11	36
- 1	3	27	10	6	10	10	8	11	0	16	46
- 1	4	17	18	1	9	2	3	9	9	11	34
Ì	5	19	11	15	14	9	10	10	9	16	39

Figure 8: Effect Of Influence in Students 1 and 3

Stochasticity

We identify sources of uncertainty in our proposed framework:

- Naive Algo:
 - Random restarts
- NSGA-II:
 - Random mutations in the NSGA-II algorithm
 - Cross-over occurs with probability 0.9

Sensitivity Analysis

Here we analyse sensitivity of our framework with respect to the influence weights.

abswtsinfluence 1000 500

								+			
į	Student ID	Acads	Sports	Research	PORs	Tech Teams	Tech Clubs	Non-Core Clubs	Cult	Leisure	Sleep
i	1	43	:	:	:	2			0	9	48
j	2	59		57	0	1	0	0	0	10	47
	3	18	13	1	6	1	2	2	1	13	45
	4	18	0	9	7	1	0	3	10	11	46
ı	5	17	4	3	0	0	0	5	21	11	47

Figure 9: Results with $\sigma_{25} = 0.02$

abswtsinfluence_1000_500

			•			•	Non-Core Clubs			
1	31	0	2	4	13	13	6	9	16	38
2	49	0	59	1	0	1	0	1	10	47
3	21	22	1 1	7	0	0	4	4	16	49
4	31 18	Z a	13 a	4	0 7	/ 1]	טן 1 35	13	46
					, 				13	J1

Figure 10: Results with $\sigma_{25} = 0.022$

Limitations

- Competitive nature of some objective functions not considered
- The algorithm depends on the number of generations in two ways :
 - If the number of generations is low, then the preferred gene may not appear by mutation and sub optimal solutions may be obtained
 - If the number of generations is high, the the population will be saturated with preferred decision variables

Conclusion

- Pareto Solutions
- Synthetic Experiments, Naive Algorithm
- Genetic algorithms
- Selection from Pareto
- Multi-agent extension
- Insti-Life Problem

- We can take up any queries now
- The following slides contain(for reference):
 - Appendix A : Some Code Snippets
 - Appendix B : More on Genetic Algorithms


```
## objective functions
def iob(s):
   job = (9*(s.acads)**2 + 4*(s.research)**2 + 3*(s.pors)**2 + 5*(s.tech team)**2
          + 5*(s.tech club)**2)*np.exp(-((s.sleep-49)**2 / (2.0 * 14**2 ))) # mu = 49, sigma = 14
   return job
def gradstudy(s):
   gradstudy = (np.exp(-( (s.sleep-49)**2 / ( 2.0 * 14**2 ) ) ))*(8*(s.acads)**2
                     +10*(s.research)**2+5*(s.tech team)**2+5*(s.tech club)**2)
   return gradstudy
def health(s):
   health = (np.exp(-((s.sleep-49)**2 / (2.0 * 7**2))))*
             (1 + s.sports**2/5 + (1 - np.exp(-s.leisure/15)))
   return health
def social(s):
   social = (np.exp(-( (s.sleep-49)**2 / ( 2.0 * 14**2 ) ) ))*((s.sports**2)
                   +7*(s.pors**2)+3*(s.tech team)**2+3*(s.tech club)**2+7*(s.nc club**2)+7*(s.cult**2))
   return social
def explore(s):
   explore = (np.exp(-(s.sleep-49)**2 / (2.0 * 14**2))))*((5*(s.sports**2)+5*(s.pors**2))
   +5*(s.tech team)**2+5*(s.tech club)**2 +5*(s.nc club**2)+5*(s.cult**2)+5*(s.acads**2)+5*(s.research**2)))
   return explore
```



```
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.optimize import minimize
from pymoo.visualization.scatter import Scatter
import matplotlib.pyplot as plt
import time
problem = CollegeLife(student list, g)
n var = 50
X = 10*np.ones((1000, n var))
algorithm = NSGA2(pop size=1000, sampling=X)
# algorithm = NSGA2(pop size=2000)
t1 = time.time()
res = minimize(problem,
               algorithm,
               ('n gen', 150), ## was 200 ## 120 giving good results
               seed=1,
               verbose=True)
```

Figure 12: PYMOO's NSGA2


```
def TOPSIS(pareto matrix, weights):
    normalized mx = normalize(pareto matrix)
   weighted mx = normalized mx*weights
    best sol = np.max(weighted mx, axis=0)
   worst sol = np.min(weighted mx, axis=0)
   diff best = weighted mx - best sol
    diff worst = weighted mx - worst sol
    sq diff best = np.square(diff best)
    sq diff worst = np.square(diff worst)
    dist best = np.sqrt(np.sum(sq diff best, axis=1))
    dist worst = np.sqrt(np.sum(sq diff worst, axis=1))
    final cost = dist worst/(dist best + dist worst)
    ##print(final cost)
    return np.argmax(final cost)
```

Figure 13: TOPSIS


```
# This is using max Distribution
ans=np.linspace(1,1,50)
for i in range(0,50):
   n, bins, patches = ax.hist(res.X[:,i], bins = 100)
   max_occ = bins[np.argmax(n)]
   ans[i]=max_occ
ans
```

Figure 14: MAXHist

Appendix B: Genetic Algortihms

Example: Knapsack Problem

ITEM	WEIGHT	SURVIVAL POINTS
SLEEPING BAG	15	15
ROPE	3	7
POCKET KNIFE	2	10
TORCH	5	5
BOTTLE	9	8
GLUCOSE	20	17

1. Initialization

2. Fitness Function

ITEMS	WEIGHT	SURVIVAL POINTS
Sleeping bag	15	15
Torch	5	5
Bottle	9	8
TOTAL	29	<mark>28</mark>

ITEMS	WEIGHT	SURVIVAL POINTS
Pocket Knife	2	10
Torch	5	5
Bottle	9	8
TOTAL	16	<mark>23</mark>

3. Selection

4. Crossover

5. Mutation

