

Àlgebra lineal Tema II: Sistemes d'equacions lineals

Índex de continguts

2. SISTEMES D'EQUACIONS LINEALS	17
2.1 Representació i notació. Plantejament del problema	17
2.2 Mètodes de resolució: Cramer, Inversa, Gauss i Gauss-Jordan	19
2.2.1 Regla de Cramer	19
2.2.2 Mètode de la matriu inversa	21
2.2.3 Mètodes de Gauss-Jordan i Gauss	22
2.3 Resolució conjunta de sistemes similars	24
PROBLEMES PROPOSATS	26
Problema P.1	26
Problema P.2	26
Problema P.3	27
Problema P.4	27
PROBLEMES RESOLTS	28
Problema R.1	28
Problema R.2	31
Problema R.3	33
Problema R.4	34
Problema R.5	36
Problema R.6	38
Problema R.7	39
Problema R.8	40
Problema R.9	42

2. SISTEMES D'EQUACIONS LINEALS

2.1 Representació i notació. Plantejament del problema

SISTEMA D'EQUACIONS LINEALS: Conjunt de "m" equacions lineals, amb "n" incògnites x₁, x₂,... x_n,

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m$$

on els coeficients a_{ij} i els termes independents b_i (i = 1...m, j = 1...n) constants ($\in R$ $oldsymbol{o} \in C$).

Cas particular: Si $b_1 = b_2 = ... = b_m = 0$ en direm SISTEMA HOMOGENI.

Altres representacions del S.E.L. (Sistema d'Equacions Lineals):

- Vectorial:

$$\vec{a}_{i} = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix} \quad i = 1...n; \qquad \qquad \vec{b} = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{pmatrix}$$

$$\vec{a}_1 x_1 + \vec{a}_2 x_2 + ... + \vec{a}_n x_n = \vec{b}$$

- Matricial:

$$\begin{pmatrix} a_{11} \ a_{12} \ ... \ a_{1n} \\ a_{21} \ a_{22} \ ... \ a_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ a_{m1} \ a_{m2} \ ... \ a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$A_{mxn} \cdot \vec{x}_{nx1} = \vec{b}_{mx1} \qquad \text{on} \begin{cases} A \in M_{mxn} \\ \vec{x} \in R^n \text{ o } C^n \\ \vec{b} \in R^m \text{ o } C^m \end{cases}$$

Direm MATRIU ASSOCIADA AL SISTEMA a la matriu de coeficients
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Direm MATRIU AMPLIADA DEL SISTEMA a la matriu
$$A' = (A|b) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

De forma que es compleix que $Rang(A) \le Rang(A')$.

Resoldre el S.E.L.'s vol dir trobar les possibles solucions de \vec{x} que verifiquin les 'm' equacions.

Tipus de S.E.L.'s:

- * S.COMPATIBLE: \exists alguna solució $\vec{x} = (x_1, x_2, ..., x_n)$ que verifica totes les equacions.
 - ** S.C.DETERMINAT: \exists una única solució $(x_1, x_2, ..., x_n)$.
 - ** S.C.INDETERMINAT: ∃ més d'una solució (∃ infinites solucions).
- * S.INCOMPATIBLE: No \exists solució, \exists $\vec{x} = (x_1, x_2, ..., x_n)$ que verifiqui totes les equacions alhora.

Problema: Trobar la solució $(x_1, x_2, ..., x_n)$.

Objectius:

- 1) Saber quan el problema té solució i quan no.
- 2) Saber quantes solucions té.

Amb el teorema de Rouché-Frobenius.

3) Mètode per trobar solucions

Mitjançant Cramer, Gauss, Gauss-Jordan i Matriu Inversa.

TEOREMA DE ROUCHÉ-FROBENIUS:

Sigui $A \cdot \vec{x} = \vec{b}$ sistema de "m" equacions lineals amb "n" incògnites.

A matriu associada

A' = (A|b) matriu ampliada

- * Sistema Compatible \Leftrightarrow Rang (A) = Rang (A')
 - ** S.C.Determinat \Leftrightarrow Rang(A) = Rang(A') = n (\exists ! Solució única)
 - ** S.C.Indeterminat \Leftrightarrow Rang(A) = Rang(A')<n ($\exists \infty$'s sol. amb n-Rang(A) graus de llibertat)
- * Sistema Incompatible ⇔ Rang (A) < Rang (A') (No∃ solució)

Observació: Si el sistema és homogeni, aleshores Rang (A) = Rang (A') \Rightarrow el sistema <u>sempre</u> és compatible.

Recordar: $Rang(A) \leq Rang(A')$

2.2 Mètodes de resolució: Cramer, Inversa, Gauss i Gauss-Jordan.

NOTA:

Rang(A) = $r = n^{\circ}$ equacions linealment independents (L.I.)

si Rang(A) = r < m (nº total d'equacions) aleshores \exists equacions que són C.L. de la resta. Només hem d'agafar r equacions L.I.

Per exemple:

$$2x + y = 2$$

$$4x + 2y = 4$$
 es converteix en $2x + y = 2$ perquè la 2ª equació és C.L. de la 1ª.

2.2.1 Regla de Cramer

a) Sistema Compatible Determinat \Rightarrow Rang(A) = Rang(A') = m = n : nº d'incògnites

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\begin{pmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{pmatrix} \cdot \vec{x} = \vec{b}$$

O també de forma vectorial:

$$\vec{a}_{1}x_{1} + \vec{a}_{2}x_{2} + ... + \vec{a}_{n}x_{n} = \vec{b}$$

$$x_{j} = \frac{\det(\vec{a}_{1}, \vec{a}_{2}, ..., \vec{a}_{j-1}, \vec{b}, \vec{a}_{j+1}, ..., \vec{a}_{n})}{\det A}; \quad j = 1...n$$

Observem que $det(A) \neq 0$ <u>sempre</u>, ja que rang(A) = n.

Demostració:

$$\det(\vec{a}_{1}, \vec{a}_{2}, ..., \vec{a}_{j-1}, \vec{b}, \vec{a}_{j+1}, ..., \vec{a}_{n}) = \left\{ \text{col·loquem } \vec{b} \text{ en el lloc de la columna } \vec{a}_{j} \right\}$$

$$= \det\left(\vec{a}_{1}, \vec{a}_{2}, ..., \vec{a}_{j-1}, \sum_{k=1}^{n} x_{k} \vec{a}_{k}, \vec{a}_{j+1}, ..., \vec{a}_{n} \right) = \left\{ \text{ per les prop. 4 i 5 dels determinants} \right\}$$

$$= \sum_{k=1}^{n} x_{k} \det(\vec{a}_{1}, \vec{a}_{2}, ..., \vec{a}_{k}, \vec{a}_{j+1}, ..., \vec{a}_{n}) =$$

$$= x_{j} \cdot \det(\vec{a}_{1}, \vec{a}_{2}, ..., \vec{a}_{j-1}, \vec{a}_{j}, \vec{a}_{j+1}, ..., \vec{a}_{n}) =$$

$$= x_{j} \cdot \det(A)$$

$$\Rightarrow x_{j} = \frac{\det(\vec{a}_{1}, \vec{a}_{2}, ..., \vec{a}_{j-1}, \vec{b}, \vec{a}_{j+1}, ..., \vec{a}_{n})}{\det(A)}; \quad j = 1...n$$

b) Sistema Compatible Indeterminat \Rightarrow Rang(A) = Rang(A') = m (nº equacions L. I.) < n (nº d'incògnites)

Graus de llibertat: n - rang(A) = n - m

Incògnites principals: x₁, x₂,... x_m

Incògnites no principals: x_{m+1}, x_{m+2},... x_n

Reescrivim els sistema:

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1m}x_m &= b_1 - a_{1m+1}x_{m+1} - \ldots - a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2m}x_m &= b_2 - a_{2m+1}x_{m+1} - \ldots - a_{2n}x_n \\ &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mm}x_m &= b_m - a_{mm+1}x_{m+1} - \ldots - a_{mn}x_n \end{aligned}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 - a_{1m+1} x_{m+1} - \dots - a_{1n} x_n \\ b_2 - a_{2m+1} x_{m+1} - \dots - a_{2n} x_n \\ \vdots \\ b_m - a_{mm+1} x_{m+1} - \dots - a_{mn} x_n \end{pmatrix}$$

$$A''_{mxm} \cdot \vec{x}''_{mx1} = \vec{b}''$$

De forma vectorial:

$$\vec{a}_{1}x_{1} + \vec{a}_{2}x_{2} + ... + \vec{a}_{m}x_{m} = \vec{b}''$$

$$\vec{b}'' = \vec{b} - \sum_{k=m+1}^{n} \vec{a}_{k}x_{k}$$

$$x_{j} = \frac{\det(\vec{a}_{1}, \vec{a}_{2}, ..., \vec{a}_{j-1}, \vec{b}'', \vec{a}_{j+1}, ..., \vec{a}_{m})}{\det(A'')}; \quad j = 1...m$$

$$x_{j} = \frac{\det(\vec{a}_{1}, \vec{a}_{2}, ..., \vec{a}_{j-1}, \vec{b} - \sum_{k=m+1}^{n} a_{k}x_{k}, \vec{a}_{j+1}, ..., \vec{a}_{m})}{\det(A'')}; \quad j = 1...m$$

Observem que $det(A'') \neq 0$ <u>sempre</u>, ja que rang(A'') = m.

Obtenim x_1 , x_2 ,... x_m en funció de x_{m+1} , x_{m+2} ,... x_n .

 \exists infinites solucions, per cada valor que donem a x_{m+1} , x_{m+2} ,... x_n tindrem una solució.

Exemples: Solucionar mitjançant Cramer els següents sistemes d'equacions lineals:

1)
$$2x + y + 3z = 13 x + y + z = 6 x + 2y - z = 2$$

$$x + 2y - z = 2$$

$$2x + y - z = 3$$

2.2.2 Mètode de la matriu inversa

Sigui $A \cdot \vec{x} = \vec{b}$ sistema de "m" equacions lineals amb "n" incògnites.

a) Sistema Compatible Determinat \Rightarrow Rang(A) = Rang(A') = m = n : nº d'incògnites

com det(A)
$$\neq$$
 0 \Rightarrow \exists A⁻¹ (A⁻¹·A = A·A ⁻¹ = Id)

$$A \cdot \vec{x} = \vec{b}$$
 busquem $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

multipliquem l'equació matricial per A -1:

 $A^{-1}A \cdot \vec{x} = A^{-1} \cdot \vec{b}$ el producte de matrius NO és commutatiu!!! (A^{-1} a la mateixa banda) $\frac{Id \cdot \vec{x} = A^{-1} \cdot \vec{b}}{\vec{x} = A^{-1} \cdot \vec{b}}$

b) Sistema Compatible Indeterminat \Rightarrow Rang(A) = Rang(A') = m < n : nº d'incògnites

Graus de llibertat: n - rang(A) = n - m

Incògnites principals: x₁, x₂,... x_m

Incògnites no principals: x_{m+1} , x_{m+2} ,... x_n

Reescrivim els sistema: (de manera idèntica a Cramer)

$$A'' \cdot \vec{x}'' = \vec{b}'' \qquad \qquad \text{on } \vec{b}'' = \vec{b} - \sum_{k=m+1}^{n} \vec{a}_k x_k$$

com det(A'') \neq 0 \Rightarrow \exists (A'') ⁻¹

multipliquem l'equació matricial per A⁻¹:

$$(A^{\prime\prime})^{\text{--}1}(A^{\prime\prime}) \cdot \vec{x}^{\prime\prime} = \ (A^{\prime\prime})^{\text{--}1} \cdot \vec{b}^{\prime\prime} \qquad \qquad \text{el producte de matrius NO \'es commutatiu}!!!$$

$$Id \cdot \vec{\mathbf{x}}^{"} = (\mathbf{A}^{"})^{-1} \cdot \vec{\mathbf{b}}^{"}$$

$$\vec{x}'' = (A'')^{-1} \cdot \vec{b}''$$

Exemples: Solucionar mitjançant el mètode de la matriu inversa els següents sistemes d'equacions lineals:

1)
$$2x + y + 3z = 13 x + y + z = 6 x + 2y - z = 2$$

$$x + 2y - z = 3$$

$$2x + y - z = 3$$

2.2.3 Mètodes de Gauss-Jordan i Gauss

Expliquem el mètode de Gauss-Jordan, i veurem que el mètode de Gauss és una variació d'aquest. Sigui $A \cdot \vec{x} = \vec{b}$ sistema de "m" equacions lineals amb "n" incògnites, tal que:

$$rang(A) = r$$
 $A \in M_{mxn}$

Aplicant transformacions elementals sobre la matriu ampliada del sistema $A'=(A\mid \vec{b})$, s'obté una matriu amb la següent estructura:

$$\mathsf{A'} = (\mathsf{A} \,|\, \mathsf{b}) \sim \begin{pmatrix} 1 & 0 & \dots & 0 & c_{1(r+1)} & c_{1(r+2)} & \dots & c_{1n} & d_1 \\ 0 & 1 & \dots & 0 & c_{2(r+1)} & c_{2(r+2)} & \dots & c_{2n} & d_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & c_{r(r+1)} & c_{r(r+2)} & \dots & c_{rn} & d_r \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & d_{r+1} \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & d_{r+2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & d_m \end{pmatrix}$$

SISTEMA EQUIVALENT: S.E.L.'s amb les mateixes solucions que $A \cdot \vec{x} = \ \vec{b}$

Transformacions elementals:

- 1.) Canviar l'ordre de les files (1 fila \equiv 1 equació).
- 2.) Multiplicar una fila per una constant diferent de zero.
- 3.) Fer combinacions lineals de files de la forma:

$$F_i = \alpha F_i + \beta F_j \hspace{1cm} \alpha, \beta \text{ constants} \hspace{3mm} \text{o b\'e,} \hspace{3mm} F_i = \sum_{k=1}^n \alpha_k F_k \hspace{1cm} \alpha_k \text{ constants}$$

4.) Canviar l'ordre de les columnes ⇒ també canvia l'ordre de les incògnites corresponents.

Sistema equivalent transformat (té les mateixes solucions que el sistema original):

$$x_{1} + c_{I(r+1)}x_{r+1} + \dots + c_{In}x_{n} = d_{1}$$

$$x_{2} + c_{2(r+1)}x_{r+1} + \dots + c_{2n}x_{n} = d_{2}$$

$$\vdots$$

$$x_{r} + c_{r(r+1)}x_{r+1} + \dots + c_{rn}x_{n} = d_{r}$$

$$0 = d_{r+1}$$

$$0 = d_{r+2}$$

$$\vdots$$

$$0 = d$$

Discussió a partir de la solució:

- * Sistema Incompatible $\Leftrightarrow \exists d_i \neq 0 \quad i = r+1,...,m$
- * Sistema Compatible \Leftrightarrow d_i = 0 \forall i = r+1,...,m
 - ** S.C. Determinat si rang(A) = r = n : nº d'incògnites

$$\mathsf{A'} = (\mathsf{A} \,|\, \mathsf{b}) \sim \begin{pmatrix} 1 & 0 & \dots & 0 \,|\, d_1 \\ 0 & 1 & \dots & 0 \,|\, d_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \,|\, d_n \end{pmatrix} \Rightarrow \begin{cases} x_1 = d_1 \\ x_2 = d_2 \\ \vdots \\ x_n = d_n \end{cases}$$

** S.C. Indeterminat si rang(A) = r < n : nº d'incògnites

Graus de llibertat: n - rang(A) = n - r

Incògnites principals: x₁, x₂,... x_r

Incògnites no principals: x_{r+1} , x_{r+2} ,... x_n

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ d_r - \sum_{k=r+1}^n c_{2k} x_k \\ d_r - \sum_{k=r+1}^n c_{rk} x_k \end{pmatrix} \Rightarrow \begin{cases} x_1 = d_1 - \sum_{k=r+1}^n c_{1k} x_k \\ x_2 = d_2 - \sum_{k=r+1}^n c_{2k} x_k \\ \vdots \\ x_r = d_r - \sum_{k=r+1}^n c_{rk} x_k \end{cases}$$

Nota: El mètode de Gauss consisteix en posar zeros només per sota/sobre de la diagonal d'uns.

Aplicacions: Càlcul del rang d'una matriu per Gauss-Jordan (i per Gauss)

Sigui A ~ A_E (sistema equivalent fruït d'aplicar les transformacions elementals a la matriu original) amb zeros per sobre i per sota (o bé només per sota) de la diagonal,

 $rang(A) = rang(A_F) = n^o$ files diferents de zero.

Exemple: Calcula el rang de la següent matriu aplicant Gauss

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & 1 & 0 & 3 \\ 3 & 0 & 1 & 5 \end{pmatrix}$$

2.3 Resolució conjunta de sistemes similars

SISTEMES SIMILARS: S.E.L.'s amb la mateixa matriu associada.

Podem resoldre'ls tots alhora amb Gauss-Jordan:

$$(A \mid b_1 \mid b_2 \dots \mid b_k) \sim \dots (Tranf.Elementals) \dots \sim (Id \mid d_1 \mid d_2 \dots \mid d_k)$$

O bé, resoldre'ls per separat.

Aplicació: Càlcul de la matriu inversa per Gauss-Jordan

Sigui A \in M_{nxn} tq. det(A) \neq 0 \Rightarrow \exists A $^{\text{-1}}$ tq. A $^{\text{-1}}$ ·A = A·A $^{\text{-1}}$ = Id busquem una matriu $X = \begin{pmatrix} \vec{x}_1 & \vec{x}_2 & \dots & \vec{x}_n \end{pmatrix}$ tal que A·X = Id (aleshores A $^{\text{-1}}$ = X).

$$Id = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} \vec{e}_1 & \vec{e}_2 & \dots & \vec{e}_n \end{pmatrix}$$

Resoldre A·X = Id equival a resoldre: $A \cdot (\vec{x}_1 \quad \vec{x}_2 \quad \dots \quad \vec{x}_n) = (\vec{e}_1 \quad \vec{e}_2 \quad \dots \quad \vec{e}_n)$

$$\begin{array}{l} A \cdot \vec{x}_1 = \vec{e}_1 \\ A \cdot \vec{x}_2 = \vec{e}_2 \\ \vdots \\ A \cdot \vec{x}_k = \vec{e}_k \end{array} \right\} \quad \text{n sistemes d'equacions lineals similars}$$

la matriu que busquem: $X = (\vec{x}_1 \quad \vec{x}_2 \quad \dots \quad \vec{x}_n) = (\vec{d}_1 \quad \vec{d}_2 \quad \dots \quad \vec{d}_n)$

24 2. Sistemes d'equacions lineals

Exemple: Calcula la inversa de la següent matriu mitjançant el mètode de resolució de sistemes similars amb Gauss-Jordan

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 2 & -1 \end{pmatrix}$$
 (És la mateixa matriu del tema 1)

f1=2f1-f3 i f2=2f2+f3

PROBLEMES PROPOSATS

Problema P.1

Discuteix segons els valors del paràmetre t, la compatibilitat o incompatibilitat dels següents sistemes d'equacions lineals:

Resol cadascun dels sistemes aplicant els tres mètodes següents: regla de Cramer, mètode de la matriu inversa, mètode de Gauss

SOLUCIÓ:

a) t=4 => Sist. Comp. Indeterminat :
$$x = \frac{14z-5}{2}$$
, $y = \frac{8z-3}{2}$, $\forall z \in \Re$

$$t \neq 4$$
 => Sist. Incompatible.

$$t \neq 1$$
, $t \neq -2$ => Sist. Comp. Determinat.

c)
$$t = -1$$
, $t = \frac{2}{5}$ => Sist. Incompatible.

$$t \neq -1$$
, $t \neq \frac{2}{5}$ => Sist. Comp. Determinat.

Problema P.2

Resol el següent sistema pel mètode que creguis més convenient:

$$3x + y + z - t = 0$$

$$2x + 3y - z + t = 0$$

$$x + 2y + 4z + 2t = 0$$

$$2x + y - 2z - t = 0$$

SOLUCIÓ:

(-3z,
$$\frac{15}{4}$$
z,z, $\frac{-17}{4}$ z), \forall z \in \Re .

Resol mitjançant el mètode de Gauss-Jordan:

$$2x - 3y - 5z = 4$$

$$5x - 2y + z = -1$$

$$3x + y + 5z = -5$$

$$5x + y + 4z = 2$$

$$3x + 4y + 8z = -2$$

$$4x - 3y - z = 11$$

SOLUCIÓ:

Sist. Incompatible.

Problema P.4

Donat el següent sistema d'equacions lineals:

$$\begin{cases} x + 2y + 3z = b \\ x + az = 1 \\ x + y + 2z = 2 \end{cases}$$

- a) Estudieu el sistema en funció dels paràmetres reals **a** i **b**. Feu un quadre resum del tipus de sistema en funció dels valors de paràmetres a i b.
- b) Resoleu el sistema en el cas a = 1 i b = 3, usant el mètode de Cramer o bé el de la inversa.

SOLUCIÓ:

a)

а	b	Tipus de Sistema
R-{1}	R	Compatible Determinat
1	3	Compatible Indeterminat
1	ℜ-{3}	Incompatible

b)
$$x = y = 1 - z$$

PROBLEMES RESOLTS

Problema R.1

Discuteix segons els valors del paràmetre t, la compatibilitat o incompatibilitat dels següents sistemes d'equacions lineals:

$$5x -11y +9z = t$$

$$x -3y +5z = 2$$

$$2x -4y +2z = 1$$

Resol el sistema per t = 4 aplicant els tres mètodes següents: regla de Cramer, mètode de la matriu inversa, mètode de Gauss.

SOLUCIÓ:

Teorema de Rouché Frobenius:

S. Compatible
$$Rang(A) = Rang(A')$$

$$\begin{cases} Determinat & si \ Rang(A) = n \\ Indeterminat & si \ Rang(A) < n \end{cases}$$
 S. Incompatible $Rang(A) < Rang(A')$

on A és la matriu associada

$$A = \begin{pmatrix} 5 & -11 & 9 \\ 1 & -3 & 5 \\ 2 & -4 & 2 \end{pmatrix}$$

i A' és la matriu ampliada formada pels coeficients de l'equació i pel vector de termes independents:

$$A' = \begin{pmatrix} 5 & -11 & 9 & | & t \\ 1 & -3 & 5 & | & 2 \\ 2 & -4 & 2 & | & 1 \end{pmatrix}$$

Calculem el rang de A:

$$det(A) = 0 \Rightarrow rang A < 3$$

$$\det \begin{vmatrix} 5 & -11 \\ 1 & -3 \end{vmatrix} = -15 + 11 = -4 \neq 0 \Rightarrow \operatorname{rang}(A) = 2$$

Calculem el rang de A': calculem els quatre menors d'ordre 3 de la matriu ampliada:

$$\begin{vmatrix} 5 & -11 & 9 \\ 1 & -3 & 5 \\ 2 & -4 & 2 \end{vmatrix} = 0$$

$$28 \quad Problemes resolts$$

$$\begin{vmatrix} -11 & 9 & t \\ -3 & 5 & 2 \\ -4 & 2 & 1 \end{vmatrix} = -55 - 6t - 72 + 20t + 44 + 27 = -56 + 14t = -4 + t$$

$$\begin{vmatrix} 5 & 9 & t \\ 1 & 5 & 2 \\ 2 & 2 & 1 \end{vmatrix} = 25 + 2t + 36 \ 10t \ 20 \ 9 = 32 \ 8t = 4 - t$$

$$\begin{vmatrix} 5 & -11 & t \\ 1 & -3 & 2 \\ 2 & -4 & 1 \end{vmatrix} = -15 \ 4t \ 44 + 6t + 40 + 11 = -8 + 2t = -4 + t$$

per t = 4 tots els menors d'ordre 3 valen 0 $rang(A) = rang(A') = 2 < n = 3 \implies Sistema compatible indeterminat$

per $t \neq 4$

$$rang(A) = 2 < 3 = rang(A') \Rightarrow Sistema Incompatible$$

Resolem el sistema per t=4, es a dir, pel sistema compatible indeterminat.

$$5x -11y +9z = 4$$

 $x -3y +5z = 2$
 $2x -4y +2z = 1$

Graus de llibertat = n° d'incognites – rang(A) = 3 – 2 = 1 = n – r

 $rang(A) = rang(A') = 2 \implies Només hi ha dues equacions linealment independents, escollim per$ exemple les dues primeres i reescrivim el sistema d'equacions:

$$5x -11y = 4-9z$$
$$x -3y = 2-5z$$

• REGLA DE CRAMER:
$$x_i = \frac{\det(\vec{a}_1 \vec{a}_2 \cdots \vec{b}_1 \cdots \vec{a}_n)}{\det(\vec{a}_1 \vec{a}_2 \cdots \vec{a}_i \cdots \vec{a}_n)}$$

$$x = \frac{\begin{vmatrix} 4 - 9z & -11 \\ 2 - 5z & -3 \end{vmatrix}}{\begin{vmatrix} 5 & -11 \\ 1 & 2 \end{vmatrix}} = \frac{(4 - 9z)(-3) - (2 - 5z)(-11)}{-15 + 11} = \frac{-12 + 27z + 22 - 55z}{-4} = \frac{14z - 5}{2}$$

Àlgebra lineal - Tema II: Sistemes d'equacions lineals

$$y = \frac{\begin{vmatrix} 5 & 4 - 9z \\ 1 & 2 - 5z \end{vmatrix}}{\begin{vmatrix} 5 & -11 \\ 1 & -3 \end{vmatrix}} = \frac{(5)(2 - 5z) - (4 - 9z)}{-15 + 11} = \frac{10 - 25z - 4 + 9z}{-4} = \frac{6 - 16z}{-4}$$

MÈTODE DE LA MATRIU INVERSA

Només és aplicable si existeix la matriu inversa d'A (A té inversa si és quadrada i el seu determinant es diferent de 0). Llavors:

$$A\vec{x}=\vec{b}$$
 sabent que $A\cdot A^{-1}=A^{-1}\cdot A=I$
$$A^{-1}\cdot A\cdot \vec{x}=A^{-1}\cdot \vec{b}$$

$$I\cdot \vec{x}=A^{-1}\cdot \vec{b}$$

$$\vec{x}=A^{-1}\cdot \vec{b}$$

Podem trobar la matriu inversa ja que es verifiquen les condicions en eliminar la 3ª fila. Calculem la matriu inversa per Gauss - Jordan:

$$B = \begin{pmatrix} 5 & -11 & 1 & 0 \\ 1 & -3 & 0 & 1 \end{pmatrix} \Rightarrow B' = \begin{pmatrix} 1 & 0 & 3/4 & -11/4 \\ 0 & 1 & 1/4 & -5/4 \end{pmatrix}$$

$$\vec{x} = A^{-1} \cdot \vec{b} = \begin{pmatrix} 3/4 & -11/4 \\ 1/4 & -5/4 \end{pmatrix} \begin{pmatrix} 4-9z \\ 2-5z \end{pmatrix} = \begin{pmatrix} \frac{14z-5}{2} \\ \frac{8z-3}{2} \end{pmatrix} \Rightarrow \begin{cases} x = \frac{14z-5}{2} \\ y = \frac{8z-3}{2} \end{cases}$$

• GAUSS:

$$\begin{pmatrix}
5 & -11 & 9 & | & 4 \\
1 & -3 & 5 & | & 2 \\
2 & -4 & 2 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
5 & -11 & 9 & | & 4 \\
1 & -3 & 5 & | & 2 \\
0 & 2 & -8 & | & -3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
5 & -11 & 9 & | & 4 \\
0 & -\frac{4}{5} & \frac{16}{5} & \frac{| & 6}{5} \\
0 & 2 & -8 & | & -3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
5 & -11 & 9 & | & 4 \\
0 & -\frac{4}{5} & \frac{16}{5} & \frac{| & 6}{5} \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
5 & -11 & 9 & | & 4 \\
0 & -\frac{4}{5} & \frac{16}{5} & | & \frac{6}{5} \\
0 & -\frac{4}{5} & \frac{16}{5} & | & \frac{6}{5}
\end{pmatrix}$$

de la segona fila:

$$-\frac{4}{5}y + \frac{16}{5}z = \frac{6}{5} \implies -\frac{4}{5}y = \frac{6}{5} - \frac{16}{5}z \implies y = \frac{6 - 16z}{5} \cdot \left(-\frac{5}{4}\right) \implies y = \frac{8z - 3}{2}$$

de la primera fila:
$$x = \frac{14z - 5}{2}$$

Discuteix segons els valors del paràmetre t, la compatibilitat o incompatibilitat del següent sistema d'equacions lineals:

$$x + ty + z = t + 2$$

$$x + y + tz = -2(t + 1)$$

$$tx + y + z = t$$

Resol el sistema per t = 3 aplicant els tres mètodes següents: regla de Cramer, mètode de la matriu inversa, mètode de Gauss.

SOLUCIÓ:

$$\begin{pmatrix} 1 & t & 1 & t+2 \\ 1 & 1 & t & -2(t+1) \\ t & 1 & 1 & t \end{pmatrix}$$

Per que el sistema sigui compatible determinat ens interessa que el $\det A \neq 0$. Així doncs, forçarem el determinant a zero per saber per quins valors el sistema no serà compatible determinat.

$$\begin{vmatrix} 1 & t & 1 \\ 1 & 1 & t \\ t & 1 & 1 \end{vmatrix} = t^3 - 3t + 2 \Rightarrow t^3 - 3t + 2 = (t - 1)^2 (t + 2) = 0 \Rightarrow \begin{cases} t = -2 \\ t = 1 \end{cases}$$

- Per $t \neq 1$ i $t \neq -2 \Rightarrow$ Sistema Compatible Determinat
- Per t = -2 el sistema és compatible indeterminat ja que:

$$[Rang(A) = Rang(A')] < n^{\circ} d'incognites$$

$$A' = \begin{pmatrix} 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 2 \\ -2 & 1 & 1 & -2 \end{pmatrix} \qquad \det A = \begin{vmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ -2 & 1 & 1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} \neq 0$$

El determinant de tots els menors d'ordre 3 de (A') també és zero Rang(A') = 2.

• Per t = 1 el sistema és incompatible ja que:

$$A' = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & 1 & 1 & -4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \Rightarrow Rang(A) = 1; Rang(A') = 2$$

Àlgebra lineal – Tema II: Sistemes d'equacions lineals

Resolem el sistema per t=3 (sistema compatible determinat)

$$A' = \begin{pmatrix} 1 & 3 & 1 & 5 \\ 1 & 1 & 3 & -8 \\ 3 & 1 & 1 & 3 \end{pmatrix}$$

regla de Crame

$$x = \frac{\begin{vmatrix} 5 & 3 & 1 \\ -8 & 1 & 3 \\ 3 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 3 & 1 \\ 1 & 1 & 3 \\ 3 & 1 & 1 \end{vmatrix}} = \frac{30}{20} = \frac{3}{2} \quad ; \quad y = \frac{\begin{vmatrix} 1 & 5 & 1 \\ 1 & -8 & 3 \\ 3 & 3 & 1 \end{vmatrix}}{20} = \frac{5}{2} \quad ; \quad z = \frac{\begin{vmatrix} 1 & 3 & 5 \\ 1 & 1 & -8 \\ 3 & 1 & 3 \end{vmatrix}}{20} = -4$$

mètode de la matriu inversa

$$A \cdot \vec{X} = \vec{b} \implies \vec{X} = A^{-1} \cdot \vec{b} = \begin{pmatrix} -0.1 & -0.1 & 0.4 \\ 0.4 & -0.1 & -0.1 \\ -0.1 & 0.4 & -0.1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ -8 \\ 3 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 5/2 \\ -4 \end{pmatrix}$$

$$x = 3/2 , y = 5/2 , z = -4$$

Gauss:

$$\begin{pmatrix}
1 & 3 & 1 & | & 5 \\
1 & 1 & 3 & | & -8 \\
3 & 1 & 1 & | & 3
\end{pmatrix}
\xrightarrow{F2=F2-F1 \\ F3=3F1-F3}$$

$$\begin{pmatrix}
1 & 3 & 1 & | & 5 \\
0 & -2 & 2 & | & -13 \\
0 & 8 & 2 & | & 12
\end{pmatrix}
\xrightarrow{F3=4F2+F3}$$

$$\begin{pmatrix}
1 & 3 & 1 & | & 5 \\
0 & -2 & 2 & | & -13 \\
0 & 0 & 10 & | & -40
\end{pmatrix}$$

$$z = \frac{-40}{10} = -4;$$

$$-2y + +2z = -13 \Rightarrow y = \frac{5}{2};$$

$$x + 3y + z = 5 \Rightarrow x = \frac{3}{2}$$

Discuteix segons els valors del paràmetre t, la compatibilitat o incompatibilitat dels següent sistema d'equacions lineals :

$$(t-1)x -ty = 2$$

$$6tx -(t-2)y = 1-t$$

SOLUCIÓ:

$$A = \begin{pmatrix} (t-1) & -t \\ 6t & (-t+2) \end{pmatrix}$$

$$\det(A) = (t-1)(-t+2) - (-t)(6t) = 5t^2 + 3t - 2 = 0 \Rightarrow \begin{cases} t = -1 \\ t = \frac{2}{5} \end{cases}$$

$$\sin t = -1 \text{ o } t = 2/5 \Rightarrow \det(A) = 0 \Rightarrow \operatorname{rang}(A) = 1$$

$$\sin t \neq -1 \text{ i } t \neq 2/5 \Rightarrow \det(A) \neq 0 \Rightarrow \operatorname{rang}(A) = 2$$

$$A' = \begin{pmatrix} (t-1) & -t & 2 \\ 6t & (-t+2) & | 1-t \end{pmatrix} \qquad \begin{vmatrix} -t & 2 \\ (-t+2) & (1-t) \end{vmatrix} = t^2 + t - 4$$

$$t = -1 \text{ o } t = 2/5 \implies t^2 + t - 4 \neq 0 \implies \text{rang}(A') = 2$$

Pel Teorema de Rouché-Frobenieus :

si t = -1 o t =
$$2/5 \Rightarrow \text{rang}(A) = 1 < 2 = \text{rang}(A')$$
 Sistema Incompatible
si t \neq -1 i t \neq 2/5 \Rightarrow rang(A) = 2 = rang(A') Sistema Compatible Determinat

Donat el següent sistema d'equacions lineals:

$$\begin{cases} x + 2y + 3z = b \\ x + az = 1 \\ x + y + 2z = 2 \end{cases}$$

- a) Estudieu el sistema en funció dels paràmetres reals **a** i **b**. Feu un quadre resum del tipus de sistema en funció dels valors de paràmetres **a** i **b**.
- b) Resoleu el sistema en el cas **a** = 1 i **b** = 3, usant el mètode de Cramer o bé el de la inversa.

SOLUCIÓ:

a) Estudi del rang de la matriu del sistema:

$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 0 & a \\ 1 & 1 & 2 \end{vmatrix} = a - 1$$

Si a = 1, rang(A) = 2, ja que el menor d'ordre 2 següent és diferent de zero:

$$\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = -2$$

Per aquest cas, estudiem el rang de la matriu ampliada:

$$\underline{A}' = \begin{pmatrix} 1 & 2 & 3 & b \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{pmatrix}$$

Calculem els 3 menors restants:

$$\begin{vmatrix} 2 & 3 & b \\ 0 & 1 & 1 \\ 1 & 2 & 2 \end{vmatrix} = 3 - b \qquad \begin{vmatrix} 1 & 3 & b \\ 1 & 1 & 1 \\ 1 & 2 & 2 \end{vmatrix} = b - 3 \qquad \begin{vmatrix} 1 & 2 & b \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{vmatrix} = b - 3$$

Per tant, si a = 1 i b = 3 tant el rang de la matriu del sistema com el de la matriu ampliada son igual a 2, per tant és un sistema compatible indeterminat (donat que hi ha tres incògnites). D'altra banda si a = 1 i $b \ne 3$ els rangs no coincideixen i, per tant és un sistema incompatible. Quadre resum:

а	b	Tipus de Sistema
ℜ-{1}	R	Compatible Determinat
1	3	Compatible Indeterminat
1	ℜ-{3}	Incompatible

b) Resolem el sistema pel cas a = 1 i b = 3, és a dir, per un sistema compatible indeterminat. Com hem comprovat a l'apartat anterior, per aquest cas el sistema té rang 2, i per tant hem

d'eliminar una de les 3 equacions per poder aplicar el mètode de Cramer o bé el de la matriu inversa. Qualsevol 2 equacions són linealment independents, eliminem per exemple la tercera. Apliquem el mètode de la matriu inversa. Prèviament reescrivim el sistema en funció d'un paràmetre: escollim la variable z com a paràmetre.

$$\begin{vmatrix} x+2y=3-3z \\ x=1-z \end{vmatrix} \implies \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3-3z \\ 1-z \end{pmatrix}$$

Solucionem el sistema pel mètode de la matriu inversa del sistema ja reduït:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 3 - 3z \\ 1 - z \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 3 - 3z \\ 1 - z \end{pmatrix} = \begin{pmatrix} 1 - z \\ 1 - z \end{pmatrix}$$

Per tant, la solució final és: x = y = 1 - z

Sigui el següent sistema d'equacions lineals:

$$ax + y = -1$$
$$y + bz = a$$
$$ax - z = 1$$

- a) Estudia el següent sistema d'equacions lineals segons els paràmetres reals a i b.
- b) Per a = -2 i b = 1, resol el sistema aplicant el mètode de la matriu inversa.

SOLUCIÓ:

a) Per realitzar l'estudi, hem de tenir present el Teorema de Rouché-Frobenius, el qual ens permet fer l'estudi del sistema coneixent els rangs de la matriu del sistema i de la matriu ampliada del sistema. Per aquesta raó anem a analitzar els rangs de les matrius abans esmentades:

Rang (A)?

$$|A| = \begin{vmatrix} a & 1 & 0 \\ 0 & 1 & b \\ a & 0 & -1 \end{vmatrix} = a(-1+b) = 0 \Rightarrow \text{rangA} \le 3 \text{ si } a = 0 \text{ i/o } b = 1$$

Cas 1: Si $a \neq 0$ i $b \neq 1$ llavors, R(A)=R(A')=nº d'incògnites = 3 \Rightarrow S.C.D.

Cas 2: Si a = 0

$$\begin{vmatrix} 1 & b \\ 0 & -1 \end{vmatrix} = -1 \quad \Rightarrow \operatorname{Rang}(A) = 2$$

$$R(A')?$$

$$\begin{vmatrix} 1 & 0 & -1 \\ 1 & b & 0 \\ 0 & -1 & 1 \end{vmatrix} = b+1 \quad \Rightarrow \begin{cases} b = -1 & \rightarrow & R(A') = 2 & \Rightarrow R(A) = R(A') < n^{\circ} incog. \Rightarrow S.C.I. \\ b \neq -1 & \rightarrow & R(A') = 3 & \Rightarrow R(A) < R(A') \Rightarrow S.I.$$

Cas 3: Si b = 1

$$\begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix} = -1 \quad \Rightarrow \operatorname{Rang}(A) = 2$$

$$R(A')?$$

$$\begin{vmatrix} 1 & 0 & -1 \\ 1 & 1 & a \\ 0 & -1 & 1 \end{vmatrix} = a + 2 \quad \Rightarrow \begin{cases} a = -2 & \rightarrow & R(A') = 2 \\ a \neq -2 & \rightarrow & R(A') = 3 \end{cases} \Rightarrow R(A) = R(A') < n^{\circ} incog. \Rightarrow S.C.I.$$

$$a \neq -2 \rightarrow R(A') = 3 \Rightarrow R(A) < R(A') \Rightarrow S.I.$$

b) Resolem per a = -2 i b = 1 (S.C.I.). Segons el mètode de la matriu inversa:

$$A\vec{x} = \vec{b}; A^{-1}A\vec{x} = A^{-1}\vec{b}; \vec{x} = A^{-1}\vec{b}$$

Si substituïm els valors observem que podem eliminar una de les equacions:

$$\begin{cases} -2x + y = -1 \\ y + z = -2 \\ -2x + -z = 1 \end{cases} \Rightarrow \begin{cases} -2x + y = -1 \\ y = -2 - z \end{cases} \Rightarrow \begin{pmatrix} -2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ -2 - z \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -1 \\ -2 - z \end{pmatrix}$$
$$\begin{pmatrix} -2 & 1 \\ 0 & 1 \end{pmatrix}^{-1} = \frac{1}{-2} A dj \begin{bmatrix} -2 & 0 \\ 1 & 1 \end{bmatrix} = \frac{1}{-2} \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ -2 - z \end{pmatrix} = \begin{pmatrix} (-1 - z)/2 \\ -2 - z \end{pmatrix}$$

Solució:
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} (-1-z)/2 \\ -2-z \end{pmatrix}$$

Donat el sistema:

$$x + y = 1$$
$$x + ay + bz = 1$$
$$by + z = a - 1$$

On a i b són nombres reals qualssevol:

- a) Estudia el sistema en funció dels paràmetres a i b. Fes un quadre resum.
- b) Troba la solució del sistema quan a = 1 i b = 0.

SOLUCIÓ:

a) Comencem amb el determinant de la matriu associada:

$$|A| = a - b^2 - 1 \Rightarrow$$
 s'anul·la per $a = b^2 + 1$

I per tant es contemplen dos casos. Un primer força evident on a no valgui $b^2 + 1$ i per tant el sistema serà compatible determinat. Un segon que es desdobla, si a pren aquest valor:

$$a = b^2 + 1 \Rightarrow A^* = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & b^2 + 1 & b & 1 \\ 0 & b & 1 & b^2 \end{pmatrix} \Rightarrow |A^*| \text{ s'anul·la per } b = 0$$

I per tant el quadre resum quedarà:

а	b	Resultat discussió
$\neq b^2 + 1$	\forall	S.C.D.
$= b^2 + 1$	=0	S.C.I.
$= b^2 + 1$	≠0	S.I.

b) Substituint els valors queda un sistema molt simple:

$$\begin{vmatrix} x+y=1 \\ x+y=1 \\ z=0 \end{vmatrix} \Rightarrow \begin{vmatrix} x=1-y \\ z=0 \end{vmatrix} \Rightarrow S.C.I. \text{ amb un grau de llibertat}$$

Àlgebra lineal – Tema II: Sistemes d'equacions lineals

Problema R.7

Discuteix el següent sistema d'equacions segons els valors d' $a,b \in \Re$.

$$x + ay + z = -1$$

$$-y = a$$

$$bx + 2y + z = 2$$

SOLUCIÓ:

Calculem el determinant de la matriu associada:

$$\begin{vmatrix} 1 & a & 1 \\ 0 & -1 & 0 \\ b & 2 & 1 \end{vmatrix} = -1 + b \Rightarrow \text{s'anula per } b = 1$$

I si observem un menor de la matriu ampliada pel cas presentat:

$$\begin{vmatrix} 1 & a & -1 \\ 0 & -1 & a \\ 1 & 2 & 2 \end{vmatrix} = a^2 - 2a - 3 = 0 \Rightarrow \text{s'anula per } a = 3 \text{ o } a = -1$$

I per tant:

- Per tot a i per b $21 \Rightarrow S.C.D.$
- Per a = 3 o a = -1 i b = $1 \Rightarrow$ S.C.I.
- Per a \neq 3 o a \neq -1 i b = 1 \Rightarrow S.I.

Donat el següent sistema d'equacions lineals:

$$\begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & -1 \\ -1 & a & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ b \end{pmatrix}$$

a on a i b són dos paràmetres reals.

- a) Realitzeu l'estudi del sistema en funció dels valors de *a* i *b*. Deixeu els resultats clarament indicats en una taula resum.
- b) Resoleu el sistema d'equacions lineal pels valors de a = 3 i b = 6 fent servir el mètode de Gauss-Jordan.
- c) Resoleu el sistema d'equacions lineal pels valors de a = -3 i b = 0 fent servir el mètode de Cramer.

SOLUCIÓ:

a) Estudiem el rang de la matriu del sistema:

$$\begin{vmatrix} 1 & -1 & 2 \\ 1 & 1 & -1 \\ -1 & a & 4 \end{vmatrix} = 9 + 3a$$

Si a = -3, el rang de la matriu del sistema serà 2. En cas contrari, serà 3. D'altra banda veiem que per a = -3 el rang de la matriu del sistema es pot obtenir a partir de les primeres dues columnes, és a dir, que en aquest cas podem dir que la tercera columna és L.D. de les dues primeres.

Estudiem ara el rang de la matriu ampliada:

- Per $a \neq -3$, el rang de la matriu ampliada serà 3, ja que no pot ser menor que el de la matriu del sistema, ni major a 3 (nº d'equacions).
- Per a = -3, verifiquem el rang de la matriu formada per les dues primeres columnes de la matriu del sistema i el vector de termes independents de la matriu ampliada:

$$\begin{vmatrix} 1 & -1 & 2 \\ 1 & 1 & 1 \\ -1 & -3 & b \end{vmatrix} = 2b$$

Si b=0, el rang de la matriu ampliada serà 2, ja que la tercera i quarta columnes son L.D. de les dues primeres columnes d'aquesta matriu. En cas contrari, serà 3.

Resum de l'estudi:

Àlgebra lineal – Tema II: Sistemes d'equacions lineals

$a \neq -3$ i b =qualsevol valor	Sistema compatible determinat
a= -3 i b= 0	Sistema compatible indeterminat
<i>a</i> = -3 i <i>b</i> ≠ 0	Sistema incompatible

b) Apliquem Gauss-Jordan a partir de les transformacions elementals sobre la matriu ampliada del sistema:

$$\begin{pmatrix} 1 & -1 & 2 & 2 \\ 1 & 1 & -1 & 1 \\ -1 & 3 & 4 & 6 \end{pmatrix} \xrightarrow{F_{2}=F_{2}-F_{1}} \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 2 & -3 & -1 \\ 0 & 2 & 6 & 8 \end{pmatrix} \xrightarrow{F_{3}=F_{3}-F_{2}} \begin{pmatrix} 1 & -1 & 2 & 2 \\ 0 & 2 & -3 & -1 \\ 0 & 0 & 9 & 9 \end{pmatrix}$$

$$\underset{F2=(1/2)F2+(1/6)F3}{\Longrightarrow} \begin{pmatrix} 1 & -1 & 2 & & 2 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & 1 \end{pmatrix} \underset{F1=F1+F2}{\Longrightarrow} \begin{pmatrix} 1 & 0 & 2 & & 3 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & 1 \end{pmatrix} \underset{F1=F1-2F3}{\Longrightarrow} \begin{pmatrix} 1 & 0 & 0 & & 1 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & 1 \end{pmatrix}$$

Solució: x = y = z = 1.

c) El sistema és compatible indeterminat amb n - rang(A) = 3 - 2 = 1 grau de llibertat. Podem escollir com a incògnites principals x i y ja que la regió de les dues primeres columnes de A té rang 2, per tant:

$$\begin{pmatrix} 1 & -1 & -2z+2 \\ 1 & 1 & z+1 \end{pmatrix} \qquad \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2$$

$$x = \frac{\begin{vmatrix} -2z+2 & -1 \\ z+1 & 1 \end{vmatrix}}{2} = \frac{1}{2}(-z+3) \qquad y = \frac{\begin{vmatrix} 1 & -2z+2 \\ 1 & z+1 \end{vmatrix}}{2} = \frac{1}{2}(3z-1)$$

Estudiar el sistema següent:

$$3y - 3z = 0$$
$$bx + y = c$$
$$2y - az = -c$$

en funció dels paràmetres a, b i $c \in \Re$.

SOLUCIÓ:

La matriu ampliada del sistema és: $A' = \begin{bmatrix} 0 & 3 & -3 & 0 \\ b & 1 & 0 & c \\ 0 & 2 & -a & -c \end{bmatrix}$

Calculem el rang de la matriu A del sistema:

$$\begin{vmatrix} 0 & 3 & -3 \\ b & 1 & 0 \\ 0 & 2 & -a \end{vmatrix} = -6b + 3ba = 3b(a-2) = 0 \implies b = 0 \text{ o } a = 2$$

Si $b \neq 0$ i $a \neq 2$, el sistema serà compatible determinat, ja que el rang(A) = 3 = rang(A') = = nº incògnites. A més verifiquem que les columnes segona i tercera de la matriu A són L.I.

Per b = 0, donat que la primera columna és L.D. de les dues següents només cal verificar el següent menor d'ordre 3 de la matriu ampliada:

$$\begin{vmatrix} 3 & -3 & 0 \\ 1 & 0 & c \\ 2 & -a & -c \end{vmatrix} = -9c + 3ac = 3c(a-3) = 0 \implies c = 0 \text{ o } a = 3$$

Per tant,

Si b = 0 i $(c = 0 \circ a = 3)$, rang(A) = rang(A') = 2. Sistema compatible indeterminat amb un grau de llibertat.

Si b = 0 i ($c \ne 0$ i $a \ne 3$), rang(A') = 3 < 2 = rang(A). Sistema incompatible.

Per a = 2:

$$\begin{vmatrix} 3 & -3 & 0 \\ 1 & 0 & c \\ 2 & -2 & -c \end{vmatrix} = -3c = 0 \implies c = 0$$

Per tant,

Si a = 2ic = 0, rang(A) = rang(A') = 2. SCI amb un grau de llibertat $\forall b$ Si a = 2 i $c \neq 0$, $\forall b$, Sistema incompatible.