Choose a pet: --Please choose a class-- V

fiche

Fonctions numériques

I. Fonction numérique

Activité:

On considere un rectangle de longueur (x-1)cm et de largeur (x-2)cm tel que x un réel supérieur strictement a 2.

On désigne par f(x) la **surface** de ce rectangle

- **1.** Déterminer l'expression de f(x)
- **2.** Déterminer la surface du rectangle si x=2 et si x=4
- **3.** Déterminer les valeurs possibles de x si f(x)=8 et si f(x)=12

6 Définition

Soit D une partie de $\mathbb R$

On appelle fonction numérique (noté f) : toute relation qui a associée chaque nombre réel x de D par un seul nombre réel y qu'on note f(x) et on écrit

$$egin{aligned} f:D &
ightarrow \mathbb{R} \ x &
ightarrow f(x) = y \end{aligned}$$

- ullet f(x)=y : S'appelle 'image de x par la fonction f
- ullet Le nombre x s'appelle antécédent de y par la fonction f

On considère une fonction numérique définie par $f(x)=3x^2-1$

- **1.** Déterminer les images de 1 ; -2 et $\frac{3}{4}$ par la fonction f
- 2. Déterminer les antécédents, s'ils existent, des nombres suivants 0, 5 et -4 par la fonction f

II. Ensemble de définition

Activité:

Soit f une fonction numérique définie par $f(x)=rac{1}{x^2-1}$

- Déterminer les images de 0 ;2 ;
- Peut on calculer les images de 1 et -1 par la fonction f?

1 Définition

On appelle ensemble de définition d'une fonction numérique f, l'ensemble des nombres réels x pour lesquels l'image f(x) est bien définie et se note souvent D_f , On écrit $D_f=\{x\in\mathbb{R}/f(x)\in\mathbb{R}\}.$

? Remarque

Pour déterminer l'ensemble de définition d'une fonction f ; il faut **éliminer** tous les nombres réels pour lesquels

- le dénominateur est nul
- le nombre sous la racine carrée est négatif.

Soient P(x) et Q(x) deux fonctions polynômes.

Fonction	Ensemble de definition
x o P(x)	$D_f=\mathbb{R}$
$x ightarrow rac{P(x)}{Q(x)}$	$D_f = \{x \in \mathbb{R}/Q(x) eq 0\}$
$x o \sqrt{P(x)}$	$D_f = \{x \in \mathbb{R}/P(x) \geq 0\}$
$x ightarrow rac{P(x)}{\sqrt{Q(x)}}$	$D_f = \{x \in \mathbb{R}/Q(x) > 0\}$
$x o \sqrt{rac{P(x)}{Q(x)}}$	$D_f = \left\{ x \in \mathbb{R} / rac{P(x)}{Q(x)} \geq 0 \; \; et \; \; Q(x) eq 0 ight\}$
$x ightarrow rac{\sqrt{P(x)}}{\sqrt{Q(x)}}$	$D_f=\{x\in \mathbb{R}/P(x)\geq 0 \ \ et \ \ Q(x)>0\}$

+Exemple

Soient
$$f(x)=x^3+3x^2-2$$
 et $f(x)=rac{3x-1}{2x+1}$

Application 1

Déterminer l'ensemble de définition des fonctions suivantes:

$$\begin{array}{|c|c|c|c|c|}\hline f_1: x \mapsto x^2 + 3x - 5 & f_2: x \mapsto \frac{-2x + 4}{3x + 4} & f_3: x \mapsto \frac{\sqrt{x}}{x^2 + x - 2} \\\hline f_4: x \mapsto \frac{4x^2 - 5}{\sqrt{2x^2 + 2x - 4}} & f_5: x \mapsto \frac{\sqrt{2 - x}}{|x + 2| - 3} & f_6: x \mapsto \sqrt{\frac{2 - x}{4x + 2}} \\\hline f_7: x \mapsto \frac{\sqrt{2 - x}}{\sqrt{4x + 2}} & f_8: x \mapsto \frac{\sin^2(x)}{\cos^2(x) - 1} \\\hline \end{array}$$

III. égalité de deux fonctions

6 Définition

Soient f et g deux fonctions. D_f et D_g sont leurs ensembles de définition respectifs.

On dit que f et g sont égales , et on écrit f=g, si les deux conditions suivantes sont vérifiées :

•
$$D_f = D_q$$

$$ullet \ D_f = D_g \qquad ullet \ f(x) = g(x) \ ext{pour tout} \ x \in D_f$$

Exemple 0

Soit
$$f(x) = \sqrt{x^2}$$
 et $g(x) = |x|$

Application 2

Déterminer si les deux fonctions f et g sont égales dans les cas suivants :

•
$$f(x) = \frac{1}{x}$$
 et $g(x) = \frac{x}{x^2}$

Exercices

Exercice 8 - page: 277

IV. représentation graphique

Activité

On considère la fonction numérique f définie par f(x)=2x+1Construire le graphe de la fonction f dans un repère orthonormé $\left(O,ec{i},ec{j}
ight)$.

Définition :

- ullet Dans un plan muni d'un repère $\left(O,ec{i},ec{j}
 ight)$ la courbe représentative d'une fonction f, notée souvent (C_f) , est l'ensemble des pointsdu plan M(x;f(x)) où $x\in D_f$
- Autrement dit:

$$M(x,y) \in (C_f) \Leftrightarrow x \in D_f \;\; et \;\; y = f(x)$$

? Remarque :

L'équation y=f(x)est appelée l'équation de la courbe (C_f) .

Exemple 1

Tracer le courbe de f:x o |x|

Application 3

On considère la fonction numérique f définie par : $f(x) = rac{x^2}{x \perp 1}$

- **1.** Déterminer D_f l'ensemble de définition de la fonction f .
- **2.** Déterminer les points appartenant à (C_f) parmi les points suivants :

$$O(0;0); B\left(3; \frac{9}{4}\right); C(1;1)$$

V. Fonction paire - Fonction impaire

Activité

On considère la fonction numérique f définie par : f(x) = |x| - 1

- **1.** Déterminer l'ensemble de définition de la fonction f .
- **2.** Soit $x \in \mathbb{R}$, montrer que f(-x) = f(x)
- **3.** Vérifiez que f(x)=x-1 si $x\geq 0$ et f(x)=-x-1 si x<0
- **4.** En déduire la nature de la courbe (C_f) , puis tracer C_f dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$.
- **5.** En déduire que la courbe C_f admet un axe de symétrie à déterminer.

Définition

Soit D une partie de \mathbb{R} .

On dit que D est symétrique par rapport à zéro si pour tout $x \in D$ on a $-x \in D$.

Exemple 2

Déterminer les parties symétriques par rapport à zéro parmi les parties suivantes:

$$ullet$$
 $[-2:2]$ $ullet$ $[-2:1]$ $ullet$ $[-3:-2]\cup[2:4]$ $ullet$ \mathbb{R}^* $ullet$ $[0;+\infty[$ $ullet$ $\mathbb{R}-\{2\}$

$$ullet$$
 \mathbb{R}^* $ullet$ $[0;+\infty[$

1 Définition : fonction paire

On dit que f est une fonction paire si :

- ullet Si $x\in D_f$ alors $-x\in D_f$ (D_f est symétrique par rapport à zéro)
- Pour tout $x \in D_f$ on a : f(-x) = f(x)

La courbe d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

Exemple 3

Soit
$$f(x) = \frac{1}{x^2}$$

Application 4

Déterminer si f est une fonction paire dans les cas suivants :

•
$$f(x) = x^2 + 3$$

•
$$f(x) = x^2 + 3$$
 • $f(x) = \sqrt{x} + 1$

Definition: fonction impaire

On dit que f est une fonction impaire si :

- ullet Si $x\in D_f$ alors $-x\in D_f$
- ullet Pour tout $x\in D_f$ on a : f(-x)=-f(x)

La courbe d'une fonction impaire est symétrique par rapport à l'origine du repère.

Application 5

Étudier la parité des fonctions :

•
$$f(x) = \frac{2}{x}$$

$$\bullet fx) = x^3 - x$$

$$ullet f(x) = rac{2}{x} \qquad ullet fxig) = x^3 - x \qquad ullet f(x) = |x| - rac{1}{x^2}$$

•
$$f(x) = \sin(x)$$

$$\bullet \ f(x) = \cos(x)$$

•
$$f(a) = \tan(x)$$

$$\bullet \ f(x) = \frac{1}{x^2 - 2}$$

$$ullet f(x) = \sin(x) \qquad ullet f(x) = \cos(x) \qquad ullet f(a) = \tan(x) \ ullet f(x) = rac{1}{x^2-2} \qquad ullet f(x) = 3x^2-2x+4$$

Exercice

Tracer une fonction paire et un fonction impaire

تغيرات الدالة VI. Variations d'une fonction

Activité

Soit f la fonction numérique représentée ci-contre :

- **1.** Déterminer puis comparer f(-2) et f-1)
- **2.** Comment les valeurs de f(x) change lorsque les valeurs de x augmentes sur [-2;0] ?
- **3.** Déterminer puis comparer f(2) et f(1) .
- **4.** Comment les valeurs de f(x) change lorsque les valeurs de x augmentes sur [0;2] ?

Definition

Soit la fonction f et $a,b\in D_f$

- ullet Si a>b et $f(a)\geq f(b)$ alors f est $oldsymbol{ extstyle croissante}$ (تزایدیة)
- Si a>b et f(a)>f(b) alors f est strictement croissante
- ullet Si a>b et $f(a)\leq f(b)$ alors f est **décroissante(تناق**صية)
- ullet Si a>b et f(a)< f(b) alors f est **strictement décroissante**
- ullet Si a>b et f(a)=f(b) alors f est $oldsymbol{ ext{constante}}$ (تابثة)

Exemple 4

Soit f(x) = -x + 3

Exemple 5

Soit la fonction f

Donner les variations de f

1 Propriété : Taux de variation

Soit f une fonction définie sur D et $a,b\in D$

Le Taux de variation est $T=rac{f(a)-f(b)}{a-b}$

- ullet Si $T\geq 0$ alors f est croissante sur I
- ullet Si $T \leq 0$ alors f est décroissante sur I
- ullet Si T=0 alors f est constante sur I

Exemple 6

Soit
$$f(x) = 2x + 1$$

Application 6

Soit
$$f(x) = x^2 - 4x + 3$$

- **1.** monter que le taux le variation est : T=a+b-4
- **2.** étudier la monotonie de f sur $]-\infty;2]$ et $[2;+\infty[$
- **3.** dresser le tableau de variation de f

Exercice

Soit
$$f(x) = \frac{-x+2}{x-1}$$

$$x-1$$
 1. Soit $x,y\in D_f$ Montrer que $f(x)-f(y)=rac{-(x-y)}{(x-1)(y-1)}$

2. déduire que le taux le variation est :
$$T = \frac{-1}{(x-1)(y-1)}$$

- **3.** étudier la monotonie de f sur $]-\infty;1]$ et $[1;+\infty[$
- **4.** dresser le tableau de variation de f

VII. Maximum et minimum d'une fonction

1 Définition

Soit f une fonction définie sur I

- **1.** On dit m est un minimum (une valeur minimale) de f sur I si pour tout $x \in I$ on $f(x) \geq m$
- **2.** On dit M est un maximum (une valeur maximale) sur I si pour tout $x \in I$ on $f(x) \leq M$
- 3. un extremum = minimum ou maximum

Exemple 7

Soit f une fonction définie par $f(x) = x + rac{1}{x}$

- **1.** Montrer que 2 est le minimum de f sur \mathbb{R}^+_*
- **2.** Montrer que -2 est le maximum de f sur \mathbb{R}_*^-

Physique

VIII. Parabole et Hyperbole

8.1. Fonction $x o ax^2$

Activité

Soit f une fonction définie sur $\mathbb R$ par $f(x)=2x^2$ et (C_f) sa courbe dans un repère orthonormé.

- **1.** Etudier la parité de la fonction f .
- **2.** Déduire la propriété géométrique de C_f
- **3.** Etudier la monotonie sur \mathbb{R}^+ puis déduire la monotonie sur \mathbb{R}^- .
- 4. Dresser le tableau de variation
- **5.** Construire C_f la courbe de la fonction f dans un repère orthonormé.
- **6.** Refaire les mêmes questions pour la fonction g qui est définie par $g(x) = -2x^2$

Définition

Soit $a\in\mathbb{R}^*$.

La courbe représentative de la fonction définie par $f(x)=ax^2$ dans un repère orthonormé s'appelle une parabole de **sommet** l'origine du repère et l'axe des ordonnés son **axe de symétrie**.

Les variations de la fonction f:

- ullet Si a>0 alors la fonction est croissante sur \mathbb{R}^+ et décroissante sur \mathbb{R}^-
- ullet Si a < 0 alors la fonction est croissante sur \mathbb{R}^- et décroissante sur \mathbb{R}^+

Exemple 8

$$f(x)=2x^2$$

Soit f une fonction sur $\mathbb R$ définie par $f(x)=-rac{1}{2}x^2$

- **1.** Dresser le tableau de variation sur \mathbb{R} .
- **2.** Donner la nature de C_f en précisant ses éléments caractéristiques.
- **3.** Construire C_f .

8.2. Fonction $x o rac{a}{x}$

Activité

Soit f une fonction définie sur $\mathbb R$ par $f(x)=rac{1}{x}$ et $a\in\mathbb R$

- **1.** Déterminer D_f **2.** Etudier la parité de la fonction f .
- **3.** Déduire la propriété géométrique de C_f
- **4.** Etudier la monotonie sur \mathbb{R}_*^+ , puis déduire la monotonie sur \mathbb{R}_*^- .
- 5. Dresser le tableau de variation

6. Construire C_f la courbe de la fonction f dans un repère orthonormé.

6 Définition

La courbe de la fonction f s'appelle une hyperbole de centre O et d'asymptotes les droites d'équations x=0 et y=0

Application 8

Soit f une fonction sur $\mathbb R$ définie par $f(x)=rac{3}{x}$

- **1.** Dresser le tableau de variation sur \mathbb{R} .
- **2.** Donner la nature de C_f en précisant ses éléments caractéristiques.

3. Construire C_f .

1 Propriété: fonction périodique

On dit que f est une fonction périodique de période T si pour tout $x \in D_f$:

•
$$(x+T) \in D_f$$

$$ullet (x+T) \in D_f \qquad ullet f(x+T) = f(x)$$

Exemple 9

On a $\sin(x+2\pi)=\sin(x)$ et $\cos(x+2\pi)=\cos(x)$ alors $\sin(x)$ et $\cos(x)$ sont des fonctions périodiques de période : $T=2\pi$

$$oldsymbol{6}$$
 Propriété : $f(x)=ax^2+bx+c$

Soit
$$f(x) = ax^2 + bx + c$$

La forme canonique de
$$\mathsf{f}$$
 : $f(x) = a \bigg(x + \dfrac{b}{2a} \bigg)^2 - \dfrac{\Delta}{4a}$

La courbe de f est une parabole de sommet $\Omega\left(-\frac{b}{2a};f\left(-\frac{b}{2a}\right)\right)$ et d'axe de

symétrie
$$x=-rac{b}{2a}$$

On considère la fonction f définie par : $f(x) = 2x^2 - 5x + 3$

- **1.** Déterminer D_f lensemble de définition de la fonction f
- **2.** monter que $f(x)=2igg(x-rac{5}{4}igg)^2+rac{49}{8}$
- **3.** Dresser le tableau de variations de f
- **4.** Déterminer la nature et les éléments caractéristiques de la courbe C_f
- **5.** Tracer (C_f) dans un repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$

$$oldsymbol{f 1}$$
 Propriété : $f(x)=rac{ax+b}{cx+d}$

Soit la fonction $f(x) = \frac{ax+b}{cx+d}$

La formule réduite de f est : $f(x) = eta + rac{\lambda}{x + lpha}$

La courbe de la fonction f est une hyperbole de centre $\Omega\left(-\frac{d}{c};\frac{a}{c}\right)$ et ...

d'asymptotes les droites d'équations $x=-rac{d}{c}$ et $y=rac{a}{c}$

On considère la fonction f définie par : $f(x) = \frac{-x+2}{x-1}$

- **1.** Déterminer D_f lensemble de définition de la fonction f
- **2.** monter que $f(x) = -1 + \frac{1}{x-1}$
- **3.** Dresser le tableau de variations de f
- **4.** Déterminer la nature et les éléments caractéristiques de la courbe C_f
- **5.** Tracer (C_f) dans un repère orthonormé $\left(O; \vec{i}; \vec{j} \right)$

IX. Résolution graphique des équations et des inéquations

Propriété

L'équation	f(x) = m	f(x) = g(x)
Les abscisses des points d'intersection de	(\mathcal{C}_f) avec la droite $y = m$	$(\mathcal{C}_{\scriptscriptstyle f})$ avec $(\mathcal{C}_{\scriptscriptstyle g})$

L'inéquation	f(x) > m	f(x) > g(x)
Sont les intervalles dont	(C_f) est au- dessus de la droite $y = m$	(\mathcal{C}_f) est au-dessus $\mathrm{de}\ (\mathcal{C}_g)$

Soient f et g les fonctions définies par : $f(x) = x^2 - 2x - 3$ et $g(x) = \frac{-x - 7}{x + 1}$

Déterminer la nature et les éléments caractéristiques de (C_g) et de (C_g)

- Résoudre graphiquement puis algébriquement l'équation f(x) = 0
- 2) Résoudre graphiquement les inéquations $f(x) \ge 0$ et $f(x) \le 0$
- 3) Résoudre graphiquement l'équation f(x) = 5
- 4) Résoudre graphiquement les inéquations $f(x) \ge 5$ et $f(x) \le 5$
- 5) Résoudre graphiquement l'équation f(x) = g(x)
- 6) Résoudre graphiquement les inéquations $f(x) \ge g(x)$ et $f(x) \le g(x)$