

IN THE CLAIMS:

1. (Currently amended) An anti-Newton ring sheet having an anti-Newton ring layer comprising a binder compound and fine particles and formed on one surface of a transparent substrate, wherein said binder compound comprises ionizing radiation curable organic-inorganic hybrid resin or a mixture of ionizing radiation curable resin and other resin component than ionizing radiation curable resin, and the content of other resin component is not less than 0.1 weight % and not more than 15 weight %.
2. (Original) The anti-Newton ring sheet of Claim 1, wherein the content of said fine particles is not less than 0.1 weight % and not more than 1.0 weight % of all solid contents in the anti-Newton ring layer.
3. (Canceled)
4. (Canceled)
5. (Previously presented) The anti-Newton ring sheet of Claim 1, wherein the mean particle diameter of the fine particles is not less than 0.5 μm and not more than 3.0 μm .
6. (Currently amended) The anti-Newton ring sheet of Claim 1, wherein the coefficient of variation of the particle diameter distribution of the fine particles is not less than 30% 20% and not more than 80%.
7. (Currently amended) An anti-Newton ring sheet having an anti-Newton ring layer comprising a binder component and fine particles and formed on one surface of a transparent substrate, wherein said binder compound comprises ionizing radiation curable resin, and the mean diameter of the fine particles is not less than 0.5 μm and not more than 3.0 μm and the coefficient

of variation of the particle diameter distribution of the fine particles is not less than 30% 20% and not more than 80%.

8. (Previously presented) The anti-Newton ring sheet of Claim 1, wherein the thickness of the anti-Newton ring layer is not less than 0.2 μm and not more than 3.5 μm .

9. (Previously presented) The anti-Newton ring sheet of Claim 1, wherein a hard coat layer containing particles is formed on other surface of the transparent substrate.

10. (Original) The anti-Newton ring sheet of Claim 9, wherein the haze according to JIS K7136:2000 is 20% or lower.

11. (Previously presented) A touch panel of resistive type comprising a pair of panels coated by a conductive film and arranged via spacer so that the conductive films on both panels face each other, wherein either or both of the conductive films is formed on the anti-Newton ring layer of the anti-Newton ring sheet of Claim 1.

Claims 12-14. (Canceled)

15. (Previously presented) The anti-Newton ring sheet of Claim 2, wherein the mean particle diameter of the fine particles is not less than 0.5 μm and not more than 3.0 μm .

16. (Canceled)

17. (Previously presented) The anti-Newton ring sheet of Claim 7, wherein the thickness of the anti-Newton ring layer is not less than 0.2 μm and not more than 3.5 μm .

18. (Previously presented) The anti-Newton ring sheet of Claim 7, wherein a hard coat layer containing particles is formed on other surface of the transparent substrate.
19. (Previously presented) The anti-Newton ring sheet of Claim 7, wherein the haze according to JIS K7136:2000 is 20% or lower.
20. (Previously presented) A touch panel of resistive type comprising a pair of panels coated by a conductive film and arranged via spacer so that the conductive films on both panels face each other, wherein either or both of the conductive films is formed on the anti-Newton ring layer of the anti-Newton ring sheet of Claim 7.
21. (New) The anti-Newton ring sheet of Claim 7, wherein the binder component comprises a mixture of ionizing radiation curable resin and another resin, different from the ionizing radiation curable resin, and the content of the another resin is not less than 0.1 weight % and not more than 15 weight % of the mixture.
22. (New) The anti-Newton ring sheet of Claim 21, wherein the another resin is a thermoplastic resin.
23. (New) The anti-Newton ring sheet of Claim 21, wherein the glass transition temperature of the another resin is at least 50°C and not higher than 120°C.
24. (New) A resistive type touch panel comprising a pair of panels coated by a conductive film with a spacer therebetween and the conductive films on the panels facing each other, wherein at least one of the conductive films is formed on the anti-Newton ring layer of the anti-Newton ring sheet of Claim 21.

25. (New) A resistive type touch panel comprising a pair of panels coated by a conductive film with a spacer therebetween and the conductive films on the panels facing each other, wherein at least one of the conductive films is formed on the anti-Newton ring layer of the anti-Newton ring sheet of Claim 22.

26. (New) A resistive type touch panel comprising a pair of panels coated by a conductive film with a spacer therebetween and the conductive films on the panels facing each other, wherein at least one of the conductive films is formed on the anti-Newton ring layer of the anti-Newton ring sheet of Claim 23.

27. (New) The anti-Newton sheet of claim 1, wherein the organic-inorganic hybrid resin is a reaction product of a metal oxide and an organic compound.

28. (New) The anti-Newton sheet of claim 1, wherein the organic-inorganic hybrid resin is a reaction product of silica and an organic compound containing a hydrolysable silyl group as a first group, a polymerizable unsaturated group as a second group, and, as a third group,

– X – C – NH –

||

Y

wherein X is NH, oxygen or sulfur, while Y is either oxygen or sulfur; provided, when X is oxygen, Y is sulfur; or

– NH – C – O –

||

O

29. (New) The anti-Newton sheet of Claim 28 wherein the organic compound contains four of the third group.