Национальный Исследовательский Университет «МЭИ»

Институт Радиотехники и Электроники Кафедра Радиотехнических Систем

Курсовой проект

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

Студент: Мялова К.А.

Группа: ЭР-15-16

Вариант: 8

Преподаватель: Корогодин И.В.

Москва

ВВЕДЕНИЕ

Спутниковые радионавигационные системы время являются неотъемлемой часть нашей жизни. Они используются в различных сфера начиная от телефона до ракет. Наиболее распространенными являются системы ГЛОНАСС (Россия), GPS (США), Galileo (Евросоюз), Beidou (Китай).

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
 - моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ЭТАП 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ

1.1. Описание задания

Дан номер спутника BEIDOU, вариант — C14, значения эфемерид для спутников указаны в бинарном и текстовом файлах. Значения получены от антенны Harxon HX-CSX601A, установленной на крыше корпуса Е МЭИ. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных – наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года.

C14	38775	MEO-6	BDS-2	19.09.12	3089	Используется по ЦН
-----	-------	-------	-------	----------	------	--------------------

Рисунок 1 — Состояние 14-го спутника BEIDOU с «Информационно аналитического центра координатно-временного и навигационного обеспечения»

		18.09.2012 19:10	CZ-3B/E				
Компас М6	C14	10.03.2012 13.10	CZ-SD/L	2012-050B&	38775₺	<u>СОО</u> , ~21 500 км	действующий

Рисунок 2 — Состояние 14-го спутника BEIDOU с сайта Википедия
По рисункам 1 и 2 видно номер спутника — 38775, название спутника — «Компас М6».

1.2. Определение орбиты и положения спутника на ней с помощью сервиса CelesTrak

Для выполнения данного пункта нужно перейти на сайт CelesTrak (https://celestrak.com), настроить параметры и выбрать нужный спутник, после чего будет определена орбита и его положение.

Рисунок 3 – Положение спутника на орбите

1.3. Расчёт графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online

Planning Online, Введём параметры ДЛЯ моделирования **GNSS** координаты установим соответствии c расположением В антенны соответственно значению корпуса Е МЭИ, также начальное время будет соответствовать 18:00, временной пояс +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online.

Рисунок 4 – Моделирование с помощью сервиса Trimble GNSS Planning

Рисунок 5 – График угла места собственного спутника от времени
Из графика видно, что спутник на указанном временном интервале с
18:00 до 06:00 был в области видимости с 00:40 до 06:00.

1.4. Расчет диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online

Проведем моделирование Sky Plot во временном интервале 18:00-06:00 и зафиксируем положение спутника в критических точках.

2 графика положения спутника:

• 16 февраля 2021 в 00:40:

Рисунок 7 – Диаграмма угла азимута спутника

• 17 февраля в 06:00:

Рисунок 8 – Диаграмма угла азимута спутника

1.5. Формирование списка и описание параметров, входящих в состав эфемерид

Таблица 1 – Значения эфемерид спутника С14

Параметр	Обозначение	Значение
	параметра	
SatNum	PRN	14
Тое (мс)	t _{oe}	219600000.000
Crs (рад)	-	-7.23125000000000000e+01
Dn (рад/мс)	Δn	4.05445468865117675e-12
М0 (рад)	\mathbf{M}_0	2.55684508480358019e+00
Сис (рад)	-	-3.59397381544113159e-06
е	e	1.28501909784972668e-03
Cus (рад)	-	5.57675957679748535e-06
sqrtA $(m^{\frac{1}{2}})$	\sqrt{A}	5.28261658287048340e+03
Сіс (рад)	-	1.95577740669250488e-08
Omega0 (рад)	Ω_{O}	-2.81773662124041036e-01
Cis (рад)	-	5.91389834880828857e-08
і0 (рад)	i_0	9.62975188353317302e-01
Стс (рад)	-	2.47531250000000000e+02
Omega (рад)	ω	-6.40880762456192743e-01
OmegaDot (рад/мс)	Ω	-7.00850621812976967e-12
iDot (рад/сек)	i _{DOT}	-1.62149611325022453e-13
Tgd (Mc)	$T_{ m gd}$	6.9000000000000000e+04
Тос (мс)	T_{oc}	2.19600000000000000e+08
af2 (мс/мс^2)	-	8.13151611188773069e-22
afl (мс/мс)	-	8.97282248502051516e-11
af0 (мс)	-	1.49921745061874390e-01
URA	-	0
IODE	-	2570

IODC	-	9
codeL2	-	0
L2P	-	0
WN	-	789