

University of Engineering & Management UEM KOLKATA

CS391 – Analog & Digital Electronics Lab		
Experiment List (Week wise)		
	1) Familiarity with basic gates ICs (AND,OR, NOT and XOR) and Realization of NOT,AND,OR and XOR operations by using universal gates (both NAND and NOR).	
WEEK-1	 2) Design a circuit to indicate 4 bit odd and even numbers. 3) Realization of a circuit to display prime and non prime numbers (4 bit). 4) Implementation of Half Adder. Implementation of Full Adder. Carryout expression is implemented by basic gates. 	
WEEK-2	 5) Implementation of Full Adder by using 2 half Adders and an OR gate. 6) Implementation of Half Subtractor. 7) Implementation of Full Subtractor. Borrowout expression is implemented by basic gates. 8)Implementation of Full Subtractor using 2 Half Subtractors and an OR gate. 	
WEEK-3	 9) Realization of a circuit to convert BCD to Excess -3 codes. 10) Realization of a circuit to convert Excess -3 codes to BCD. 11) Design a circuit to convert 4 bit Binary to 4 bit Gray code. 12) Design a circuit to convert 4 bit Gray code to 4 bit Binary. 	
WEEK-4	13) Realization of an Even Parity Generator and Checker circuit.14) Implementation of 2 bit comparator circuit.15) Realization of the internal architecture of 4:1 Multiplexer and 1:4 De-multiplexer.	
WEEK-5	16) Implementation of Full Adder using MUX 74153.17) Implementation of Full Subtractor using 74153.18) Realization of 4:2 Priority Encoder along with output indicator (basic gates).	
WEEK-6	19) Realization of the internal architecture of 3:8 Decoder using basic gates.20) Realization of octal to binary encoder using basic gates.21) Implement Full Adder using 74138.22) Implement Full Subtractor using 74138.	
WEEK-7	 23) Truth table verification of SR flip-flop (using NAND gates only). 24) Truth table verification of D flip-flop (using NAND gates only). 25) Truth table verification of JK flip-flop (using NAND gates only). 26) Truth table verification of T flip-flop (using NAND gates only). 27) Design a Master slave flip-flop. 	

	28) Design 4-bit synchronous up counter.
	29) Design 4-bit synchronous down counter.
WEEK-8	30) Design 4-bit asynchronous up counter.
	31) Design 4-bit asynchronous down counter.
	32) Design a 3-bit synchronous up/down' counter using JK flip-flop with external mode signal
WEEK 0	M. If M=1,counter counts up and with M=0, counter counts down.
WEEK-9	33) Design and implement MOD-4 Ring counter.
	35) Realization of Serial-in-Serial-Out shift register.
	36) Realization of Serial-In-Parallel Out Shift register.
WEEK-10	37) Realization of Parallel-In-Parallel Out Shift register.
	38) Realization of Parallel-In-Serial Out Shift register.
	39) Realization of Bidirectional shift register (All using D flip-flops).
WEEK-11	40) Analog Electronics Experiments:
	a) Design of a Schmitt Trigger using 555 timer.
	b) Design of a Class A amplifier.