A Brief Overview of Private Set Intersection

Mike Rosulek, Oregon State University

NIST STPPA, April 19, 2021

<u>A</u>	lice		Bob			
p	Х	o	S	0	n	
n	r	е	i	а	у	
S	u	m	W	r	u	

 $\{my \text{ phone contacts}\} \cap \{users \text{ of your service}\}\$

 $\{my \ passwords\} \cap \{passwords \ found \ in \ breaches\}$

engadaet

@georginatorbet October 2nd, 2019

 $\{my \text{ availability}\} \cap \{your \text{ availability}\}$

 $\{\text{people who saw ad}\} \cap \{\text{customers who made purchases}\}$

 $\{\text{voters registered in OR}\} \cap \{\text{voters registered in NY}\}$

 $\{\text{voters registered in OR}\} \cap \{\text{voters registered in NY}\}$

- private availability poll
- ► key agreement techniques

- private availability poll
- ► key agreement techniques

PSI on large sets (millions)

- double-registered voters
- ► OT extension; combinatorial tricks

- private availability poll
- key agreement techniques

PSI on asymmetric sets (100 : billion)

- contact discovery; password checkup
- ► offline phase; leakage

PSI on large sets (millions)

- double-registered voters
- ► OT extension; combinatorial tricks

- private availability poll
- key agreement techniques

PSI on asymmetric sets (100 : billion)

- contact discovery; password checkup
- ► offline phase; leakage

PSI on large sets (millions)

- double-registered voters
- ► OT extension; combinatorial tricks

computing on the intersection

- sales statistics about intersection
 - generic MPC

PSI on large sets (millions)

double registered voters

- private availability poll
- key agreement techni Not to mention:
 - more than 2 parties/sets
 - private set union

ı; combinatorial tricks approximate/fuzzy matching

PSI on asymmetric sets (100 : billion)

- contact discovery; password checkup
- offline phase; leakage

computing on the intersection

- sales statistics about intersection
 - generic MPC

Alice
$$x_1, x_2, \dots$$

H =good cryptographic hash function

$$\frac{\text{Bob}}{y_1, y_2, \dots}$$

$$H(y_1), H(y_2), \ldots$$

Bob

 y_1, y_2, \ldots

 $H(x_1), H_{ ext{Home "News \& Events "Blogs "Tech@FTC "Does Hashing Make Data "Anonymous"?}$

Does Hashing Make Data "Anonymous"?

every u

By: Ed Felten, Chief Technologist | Apr 22, 2012 7:05AM

a better mental model for PSI

a better mental model for PSI

Alice x Bob v

 $Does \ x = y?$

$$x \neq y \stackrel{\text{RO}}{\Longrightarrow} H(y)$$
 independent of everything else $\stackrel{\text{DDH}}{\Longrightarrow} H(y)^b \approx $$

 $\frac{\text{Alice}}{x_1, x_2, \dots}$

 $\frac{\text{Bob}}{y_1, y_2, \dots}$

What is $X \cap Y$?

[HubermanFranklinHogg99]

[HubermanFranklinHogg99]

$$\frac{\text{Alice}}{x_1, x_2, \dots}$$

$$H(y_1)^b, H(y_2)^b, \dots, (H(x_1)^a)^b, (H(x_2)^a)^b, \dots$$

[HubermanFranklinHogg99]

- ► Malicious security via ZK [DeCristofaroKimTsudik10,JareckiLiu09]
- Authenticated items [DeCristofaroKimTsudik10]
- ► From generic key agreement [RosulekTrieu21]

overview: PSI on small sets

for 256 items:

0.1 seconds; 10 KB

with malicious security!

scaling to 1 million items?

$$H(x_1)^a, H(x_2)^a, \ldots, H(x_{1000000})^a$$

scaling to 1 million items?

$$H(x_1)^a, H(x_2)^a, \dots, H(x_{1000000})^a$$
 $> 4 \text{ minutes!}$

Alice	<u>Bob</u>

<u>Alice</u>				Bo
	x_1			
	x_2			
	x_3			
	x_4			
	x_5			
	x_6			
	x_7			
	x_8			
	x_9			

<u>Alice</u>			<u>Bo</u>
	$F_1(x_1)$	$oldsymbol{F}_1(\cdot)$	
	$F_2(x_2)$	$oldsymbol{F}_2(\cdot)$	
	$F_3(x_3)$	$F_3(\cdot)$	
	$F_4(x_4)$	$\boldsymbol{F}_4(\cdot)$	
	$F_5(x_5)$	$oldsymbol{F}_5(\cdot)$	
	$F_6(x_6)$	$oldsymbol{F}_6(\cdot)$	
	$F_7(x_7)$	$oldsymbol{F}_7(\cdot)$	
	$F_8(x_8)$	$oldsymbol{F}_8(\cdot)$	
	$F_9(x_9)$	$F_{9}(\cdot)$	

<u>Alice</u>			<u>Bob</u>
	$F_1(x_1)$	$\boldsymbol{F}_1(\cdot)$	
	$F_2(x_2)$	$F_2(\cdot)$	
	$F_3(x_3)$	$F_3(\cdot)$	
	$F_4(x_4)$	$\boldsymbol{F}_4(\cdot)$	
	$\boldsymbol{F}_5(\boldsymbol{x}_5)$	$oldsymbol{F}_5(\cdot)$	learns nothing about x_i 's
	$F_6(x_6)$	$oldsymbol{F}_6(\cdot)$	
	$F_7(x_7)$	$\boldsymbol{F}_7(\cdot)$	
	$F_8(x_8)$	$oldsymbol{F}_8(\cdot)$	
	$F_9(x_9)$	$F_9(\cdot)$	

<u>Alice</u>			$\underline{\mathrm{Bob}}$
	$F_1(x_1)$	$\pmb{F}_1(\cdot)$	
	$F_2(x_2)$	$oldsymbol{F}_2(\cdot)$	
	$F_3(x_3)$	$F_3(\cdot)$	
	$F_4(x_4)$	$\pmb{F}_4(\cdot)$	
all other $F_i(x^*)$ look random	$F_5(x_5)$	$\pmb{F}_5(\cdot)$	learns nothing about x_i
	$F_6(x_6)$	$\pmb{F}_6(\cdot)$	
	$F_7(x_7)$	$\boldsymbol{F}_7(\cdot)$	
	$F_8(x_8)$	$F_8(\cdot)$	
	$F_9(x_9)$	$ extbf{\emph{F}}_{9}(\cdot)$	

achieved very efficiently from OT extension

c e f	
d f	

Bob

[PinkasSchneiderZohner14, KolesnikovKumaresanRosulekTrieu16]

Alice

а

b

<u>Alice</u>	m bins	<u>Bob</u>	
			1. Agree on random
а		C	$h_1, h_2: \{0, 1\}^* \to [m]$
a		C	
b		d	
С		е	
d		f	
	10		

1. Agree on random $h_1, h_2 : \{0, 1\}^* \rightarrow [m]$

- 1. Agree on random $h_1, h_2 : \{0, 1\}^* \rightarrow [m]$
- 2. Alice places each x into bin $h_1(x)$ or $h_2(x)$

- 1. Agree on random $h_1, h_2 : \{0, 1\}^* \to [m]$
- 2. Alice places each x into bin $h_1(x)$ or $h_2(x)$
- 3. Bob places each x into bins $h_1(x)$ and $h_2(x)$

- 1. Agree on random $h_1, h_2 : \{0, 1\}^* \rightarrow [m]$
- 2. Alice places each x into bin $h_1(x)$ or $h_2(x)$
- 3. Bob places each x into bins $h_1(x)$ and $h_2(x)$
- 4. OPRF in each bin:Alice learns one F_i(x);Bob learns entire F_i(·)

- 1. Agree on random $h_1, h_2 : \{0, 1\}^* \rightarrow [m]$
- 2. Alice places each x into bin $h_1(x)$ or $h_2(x)$
- 3. Bob places each x into bins $h_1(x)$ and $h_2(x)$
- 4. OPRF in each bin: Alice learns one $F_i(x)$; Bob learns entire $F_i(\cdot)$
- 5. Bob sends all $F_i(x)$ values

- 1. Agree on random $h_1, h_2 : \{0, 1\}^* \to [m]$
- 2. Alice places each x into bin $h_1(x)$ or $h_2(x)$
- 3. Bob places each x into bins $h_1(x)$ and $h_2(x)$
- 4. OPRF in each bin:
 Alice learns one F_i(x);
 Bob learns entire F_i(·)
- 5. Bob sends all $F_i(x)$ values

- 1. Agree on random $h_1, h_2 : \{0, 1\}^* \rightarrow [m]$
- 2. Alice places each x into bin $h_1(x)$ or $h_2(x)$
- 3. Bob places each x into bins $h_1(x)$ and $h_2(x)$
- 4. OPRF in each bin:
 Alice learns one F_i(x);
 Bob learns entire F_i(·)
- 5. Bob sends all $F_i(x)$ values

Alice m bins Bob $F_1(\cdot)$ $F_2(\cdot)$ $F_4(\cdot)$ $F_5(\cdot)$ $F_6(\cdot)$ c, d $F_7(\cdot)$ $F_8(\cdot)$ f $F_9(\cdot)$

$$\{F_3(\mathsf{c}), F_3(\mathsf{e}), F_4(\mathsf{d}), F_5(\mathsf{e}), \ldots, F_7(\mathsf{d}), \ldots\}$$

 $F_{10}(\cdot)$

- 1. Agree on random $h_1, h_2 : \{0, 1\}^* \to [m]$
- 2. Alice places each x into bin $h_1(x)$ or $h_2(x)$
- 3. Bob places each x into bins $h_1(x)$ and $h_2(x)$
- 4. OPRF in each bin:Alice learns one F_i(x);Bob learns entire F_i(⋅)
- 5. Bob sends all $F_i(x)$ values

- 1. Agree on random $h_1, h_2 : \{0, 1\}^* \to [m]$
- 2. Alice places each x into bin $h_1(x)$ or $h_2(x)$
- 3. Bob places each x into bins $h_1(x)$ and $h_2(x)$
- 4. OPRF in each bin:Alice learns one *F_i*(*x*);Bob learns entire *F_i*(·)
- 5. Bob sends all $F_i(x)$ values

Bob should send two *F*-values per item

Bob should send two *F*-values per item , what if he sends only one?

Bob should send two *F*-values per item , what if he sends only one?

Alice has c; does she include it in output?

Bob should send two *F*-values per item , what if he sends only one?

Alice has c; does she include it in output?

Bob should send two

F-values per item, what if

Alice has c; does she include it in output?

he sends only one?

Bob should send two *F*-values per item , what if he sends only one?

Alice has c; does she include it in output?

Bob should send two *F*-values per item , what if he sends only one?

Alice has c; does she include it in output?

Only if c placed in bin 3!

Bob

Bob should send two F-values per item, what if he sends only one?

Alice has c; does she include it in output?

Only if c placed in bin 3!

- Depends on Alice's entire input!
- ⇒ can't simulate!

how do we overcome this problem?

[PinkasRosulekTrieuYanai20]

batch OPRF for malicious PSI

Alice	Bob
$F_1(x_1)$	$F_1(\cdot)$
$F_2(x_2)$	$F_2(\cdot)$
$F_3(x_3)$	$F_3(\cdot)$
$F_4(x_4)$	$F_4(\cdot)$
$F_5(x_5)$	$F_5(\cdot)$
$F_6(x_6)$	$F_6(\cdot)$
$F_7(x_7)$	$F_7(\cdot)$
$F_8(x_8)$	$F_8(\cdot)$
$F_9(x_9)$	$F_{9}(\cdot)$

batch OPRF for malicious PSI

<u>Alice</u>	<u>Bob</u>	
$F_1(x_1)$	$\boldsymbol{F}_1(\cdot)$	State of the art malicious batch OPRF [OrrùOrsiniScholl17]
$F_2(x_2)$	$oldsymbol{F}_2(\cdot)$	essentially same cost as semi-honest
$F_3(x_3)$	$F_3(\cdot)$, and the second
$F_4(x_4)$	$\boldsymbol{F}_4(\cdot)$	
$F_5(x_5)$	$F_5(\cdot)$	
$F_6(x_6)$	$\boldsymbol{F}_6(\cdot)$	
$F_7(x_7)$	$\boldsymbol{F}_7(\cdot)$	
$F_8(x_8)$	$F_8(\cdot)$	
$F_9(x_9)$	$F_{9}(\cdot)$	

batch OPRF for malicious PSI

Alice Bob	
$m{F}_1(m{x}_1)$ 1 $m{F}_1(\cdot)$ State of the art malicious batch OPRF [OrrùO	rs
$F_2(x_2)$ 2 $F_2(\cdot)$ essentially same cost as semi-honest	
$F_3(x_3)$ 3 $F_3(\cdot)$ consistency check relies on an additive	h
$F_4(x_4)$ 4 $F_4(\cdot)$	
$F_{i}(x_{5}) = F_{i}(x_{5}) \oplus F_{i}(y_{5}) \oplus F_{i}(y_{5}) = F_{i}(x_{5})$	1
$F_6(x_6)$ of $F_6(\cdot)$	
$oldsymbol{F_7(x_7)}$ 7 $oldsymbol{F_7(\cdot)}$	
$F_8(x_8)$ 8 $F_8(\cdot)$	
$oldsymbol{F}_9(oldsymbol{x}_9)$ 9 $oldsymbol{F}_9(\cdot)$ *: a gro	SS
:	

siniScholl17]

nomomorphism:

$$\mathbf{F}_i(\mathbf{x}) \oplus \mathbf{F}_j(\mathbf{y}) = \mathbf{F}_{ij}(\mathbf{x} \oplus \mathbf{y})$$

[PinkasRosulekTrieuYanai20] protocol main idea:

[PinkasRosulekTrieuYanai20] protocol main idea:

Alice secret-shares x into bins $h_1(x)$ and $h_2(x)$

Bob sends only one *F*-value per item

Alice secret-shares x into bins $h_1(x)$ and $h_2(x)$

Bob sends only one *F*-value per item

overview: PSI on large sets

for 1 million items:

4.5 – 5 seconds; 128 – 145 MB

[KolesnikovKumaresanRosulekTrieu16]

[GarimellaPinkasRosulekTrieuYanai21]

overview: PSI on large sets

for 1 million items:

overview: PSI on large sets

for 1 million items:

how to scale to billions of items?

how to scale to billions of items?

▶ Safe to reuse *b* for many PSIs \Rightarrow reuse offline phase for all clients!

- ▶ Safe to reuse *b* for many PSIs \Rightarrow reuse offline phase for all clients!
- ► Clever encodings for offline message: 4GB / 1B items

choice of *h*? see [LiPalAliSullivanChatterjeeRistenpart19]

overview: PSI on asymmetric sets

for 256 million vs 1000 items (no leakage):

offline setup: 33 seconds; 1 GB discovery: 3 seconds; 6 MB

for 1 billion vs 100 items (under previous leakage scenario): 0.2 seconds; 1 MB

Alice
$$x_1, x_2, \dots$$

$$\frac{\text{Bob}}{H(x_1)^a, H(x_2)^a, \dots}$$

$$H(y_1)^b, H(y_2)^b, \ldots, (H(x_1)^a)^b, (H(x_2)^a)^b, \ldots$$

what is $X \cap Y$?

what is $|X \cap Y|$?

what about computing other functions of the intersection? what about large sets?

state of the art

<u>Alice</u>		$\underline{\mathrm{Bob}}$
x_1, x_2, \ldots		y_1, y_2, \ldots

▶ Using O(n) communication, reduce PSI to O(n) comparisons (vs n^2)

state of the art

▶ Using O(n) communication, reduce PSI to O(n) comparisons (vs n^2)

state of the art

- ▶ Using O(n) communication, reduce PSI to O(n) comparisons (vs n^2)
- ▶ Perform the comparisons inside generic MPC → compute on the result

overview: computing on the intersection

for 1 million items:

2 minutes; 2.5 GB

overview: computing on the intersection

for 1 million items:

2 minutes; 2.5 GB

30× plain PSI 20× plain PSI

PSI on small sets (hundreds)

- efficient! 0.1sec / 256 items
- ▶ based on Diffie-Hellman KA

PSI on asymmetric sets

- ► huge challenges for practice
- ► allow leakage, preprocessing?

PSI on large sets (millions)

- ► fast! 4sec / 1M items
- ► OT extension & hashing techniques

computing on the intersection

- many open problems
- ► 20-30× performance gap

PSI on small sets (hundreds)

- efficient! 0.1sec / 256 items
- ▶ based on Diffie-Hellman KA

PSI on large sets (millions)

- ► fast! 4sec / 1M items
- ► OT extension & hashing techniques

thank you!

PSI on asymmetric sets

- ► huge challenges for practice
- ► allow leakage, preprocessing?

computing on the intersection

- many open problems
- ► 20-30× performance gap