Simulation Result 1: $C \sim Exp(0.2)$

 ${\bf Convergence\ rate,\ removed\ non-converged\ results}$

Yi

2023-02-19

Table 1: Summary of the estimated SAUC for Biomarker 1 when the true censoring is distributed as Exp(0.2).

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (73.45, 76.48) 1.33 (74.32, 78.03) 0.64 (73.01, 77.96) 0.71 (73.23, 78.00) 0.57 (73.14, 77.99)	100.00 99.90 64.19 58.85 62.58	0.00 (73.43, 75.97) 1.73 (74.57, 78.51) 0.16 (72.29, 77.54) 0.29 (72.62, 77.69) 0.23 (72.48, 77.63)	100.00 100.00 60.48 56.05 60.28	0.00 (73.69, 75.66) 2.35 (75.15, 79.14) -0.52 (71.10, 77.02) -0.28 (71.80, 77.10) -0.23 (71.73, 77.07)	100.00 99.90 56.21 57.94 60.18
	30	HZ_P HZ_O $Prop_o$ $Prop_p$	0.00 (73.58, 75.95) 1.10 (74.27, 77.41) 0.38 (73.51, 77.07) 0.52 (73.64, 77.35) 0.40 (73.57, 77.11)	100.00 100.00 73.32 68.41 70.41	0.00 (73.54, 75.58) 1.62 (74.54, 77.85) 0.05 (72.59, 76.81) 0.05 (72.68, 76.79) 0.02 (72.62, 76.69)	100.00 100.00 69.48 67.07 70.58	0.00 (73.76, 75.32) 2.48 (75.42, 78.57) -0.21 (72.02, 76.51) -0.07 (72.27, 76.47) -0.18 (72.26, 76.35)	100.00 100.00 65.89 65.99 70.74
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (73.78, 75.58) 1.08 (74.67, 76.93) 0.41 (73.56, 76.57) 0.49 (73.56, 76.62) 0.44 (73.56, 76.56)	100.00 100.00 81.30 70.70 79.40	0.00 (73.73, 75.38) 1.67 (75.06, 77.32) 0.04 (73.06, 76.21) -0.01 (73.07, 76.07) 0.10 (73.19, 76.28)	100.00 100.00 77.10 70.90 78.00	0.00 (73.85, 75.12) 2.28 (75.60, 78.07) -0.42 (72.27, 76.01) -0.33 (72.43, 75.98) -0.36 (72.37, 76.04)	100.00 100.00 72.77 73.87 79.88
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (73.87, 75.17) 0.99 (74.75, 76.31) 0.30 (73.79, 76.08) 0.34 (73.84, 76.15) 0.36 (73.80, 76.04)	100.00 100.00 90.50 72.20 86.30	0.00 (73.96, 75.05) 1.59 (75.32, 76.94) 0.11 (73.50, 76.19) 0.11 (73.51, 76.09) 0.11 (73.55, 76.21)	100.00 100.00 85.70 73.70 86.10	0.00 (73.93, 74.82) 2.38 (75.93, 77.54) -0.25 (72.88, 75.45) -0.19 (72.93, 75.55) -0.19 (72.94, 75.49)	100.00 100.00 83.60 74.70 85.90
50-300	20	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (74.66, 77.07) 0.86 (75.22, 78.36) -0.42 (72.75, 77.47) 0.53 (74.45, 77.89) 0.35 (74.44, 77.87)	100.00 100.00 59.05 51.81 53.12	0.00 (74.79, 76.82) 1.56 (75.65, 78.87) -0.50 (72.37, 77.46) 0.22 (74.28, 77.63) 0.39 (74.40, 77.75)	100.00 100.00 57.93 54.32 59.34	0.00 (74.99, 76.53) 2.18 (76.18, 79.45) -1.82 (35.05, 76.41) -0.06 (73.94, 77.40) -0.03 (73.97, 77.40)	100.00 100.00 55.61 57.23 60.06
	30	HZ_P HZ_O $Prop_o$ $Prop_p$	0.00 (74.85, 76.88) 0.93 (75.43, 77.98) 0.04 (74.14, 77.43) 0.48 (74.88, 77.68) 0.42 (74.90, 77.65)	100.00 100.00 71.80 66.40 71.40	0.00 (74.84, 76.53) 1.34 (75.77, 78.34) -0.10 (73.74, 77.40) 0.24 (74.47, 77.47) 0.31 (74.44, 77.58)	100.00 100.00 65.06 63.65 71.29	0.00 (75.03, 76.33) 2.10 (76.19, 79.14) -1.01 (71.10, 76.78) -0.08 (74.12, 77.37) -0.06 (74.08, 77.28)	100.00 100.00 61.18 66.40 73.72
	50	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (74.96, 76.51) 0.75 (75.48, 77.45) 0.06 (74.65, 77.09) 0.24 (75.05, 77.27) 0.27 (75.03, 77.31)	100.00 100.00 77.10 72.00 78.80	0.00 (75.04, 76.22) 1.13 (75.81, 77.69) 0.01 (74.47, 76.90) 0.08 (74.69, 76.86) 0.15 (74.77, 76.96)	100.00 100.00 70.10 70.60 82.30	0.00 (75.08, 76.07) 1.81 (76.36, 78.48) -0.40 (73.71, 76.45) -0.08 (74.39, 76.76) -0.04 (74.43, 76.79)	100.00 100.00 64.00 72.60 82.80
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (75.04, 76.11) 0.72 (75.58, 76.95) 0.32 (75.10, 76.68) 0.31 (75.11, 76.70) 0.31 (75.13, 76.72)	100.00 100.00 84.00 76.40 85.20	0.00 (75.10, 75.98) 1.03 (75.92, 77.29) 0.18 (74.86, 76.59) 0.23 (74.95, 76.59) 0.23 (74.97, 76.60)	100.00 100.00 74.10 75.20 86.20	0.00 (75.15, 75.81) 1.61 (76.37, 77.76) -0.28 (74.29, 76.22) -0.17 (74.52, 76.16) -0.13 (74.60, 76.26)	100.00 100.00 63.40 71.80 84.50

Table 2: Summary of the estimated SAUC for Biomarker 2 when the true censoring is distributed as Exp(0.2).

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (56.66, 58.69) 1.79 (58.40, 60.64) 1.40 (57.81, 60.32) 1.44 (57.73, 60.40) 1.29 (57.64, 59.99)	99.49 98.89 85.31 85.41 81.86	0.00 (56.92, 58.65) 2.95 (59.44, 61.90) 2.05 (58.00, 61.35) 2.56 (58.55, 61.69) 1.73 (57.87, 60.89)	98.99 98.99 85.34 87.06 82.51	0.00 (57.09, 58.42) 4.27 (60.72, 63.21) 3.11 (57.71, 62.38) 3.84 (59.57, 63.02) 2.65 (57.62, 62.01)	99.90 99.18 84.46 87.01 84.97
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (56.95, 58.56) 1.84 (58.67, 60.63) 1.41 (57.99, 60.25) 1.49 (58.05, 60.41) 1.05 (57.74, 59.85)	99.70 99.50 90.46 88.05 87.05	0.00 (57.03, 58.42) 2.87 (59.74, 61.60) 2.12 (58.13, 61.22) 2.54 (58.84, 61.45) 1.83 (58.02, 60.83)	100.00 99.50 87.86 90.77 87.26	0.00 (57.24, 58.27) 4.12 (60.92, 62.90) 2.99 (57.48, 62.24) 3.91 (60.28, 62.76) 2.86 (57.74, 61.95)	99.90 99.18 88.93 92.52 89.55
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ $\operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (57.09, 58.33) 1.85 (58.88, 60.38) 1.46 (58.26, 60.06) 1.58 (58.33, 60.18) 1.10 (57.86, 59.70)	100.00 99.80 95.20 91.39 91.19	0.00 (57.17, 58.24) 2.94 (59.98, 61.41) 2.14 (57.76, 61.02) 2.78 (59.56, 61.26) 1.99 (57.78, 60.77)	99.90 99.70 93.98 95.78 92.37	0.00 (57.32, 58.15) 4.27 (61.22, 62.73) 3.36 (57.42, 62.21) 4.15 (60.79, 62.66) 3.09 (57.54, 62.05)	100.00 99.90 92.17 94.89 90.81
	100	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (57.31, 58.19) 1.92 (59.13, 60.14) 1.76 (58.77, 60.04) 1.78 (58.70, 60.08) 1.38 (58.15, 59.77)	100.00 100.00 97.70 94.30 93.20	0.00 (57.36, 58.10) 2.96 (60.14, 61.21) 2.05 (57.40, 60.80) 2.86 (59.89, 61.15) 2.17 (57.70, 60.76)	100.00 100.00 92.57 97.09 92.87	0.00 (57.44, 58.02) 4.26 (61.44, 62.53) 3.58 (57.36, 62.15) 4.23 (61.34, 62.51) 3.76 (58.08, 62.19)	100.00 100.00 94.68 97.71 94.89
50-300	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop}_n \ & \operatorname{Prop}_o \ & \operatorname{Prop}_p \end{aligned}$	0.00 (57.09, 58.64) 1.36 (58.31, 60.07) 0.63 (57.51, 59.59) 0.94 (57.66, 59.84) 0.55 (57.50, 59.30)	99.80 99.39 69.43 66.97 63.70	0.00 (57.31, 58.54) 2.18 (59.24, 60.89) 1.30 (57.65, 60.29) 1.77 (57.92, 60.71) 0.59 (57.26, 59.55)	100.00 99.59 76.38 75.15 66.87	0.00 (57.50, 58.38) 3.12 (60.10, 61.97) 2.18 (57.97, 61.51) 2.98 (59.20, 61.98) 0.18 (56.56, 59.56)	100.00 99.47 78.03 81.63 63.59
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (57.24, 58.59) 1.39 (58.58, 60.05) 0.52 (57.63, 59.30) 0.85 (57.73, 59.91) 0.40 (57.49, 59.13)	100.00 99.69 74.13 71.36 71.77	0.00 (57.37, 58.37) 2.22 (59.44, 60.82) 1.31 (57.69, 60.28) 1.64 (57.65, 60.65) 0.32 (57.18, 59.24)	100.00 100.00 77.44 77.44 71.38	0.00 (57.52, 58.33) 3.15 (60.30, 61.81) 2.49 (57.78, 61.47) 3.02 (59.35, 61.82) -0.26 (56.59, 59.05)	100.00 99.47 83.91 86.33 68.77
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ Prop_o Prop_p	0.00 (57.47, 58.40) 1.40 (58.82, 59.91) 0.36 (57.62, 59.05) 0.66 (57.69, 59.48) 0.28 (57.62, 58.93)	100.00 100.00 77.27 72.32 76.46	0.00 (57.50, 58.35) 2.16 (59.55, 60.68) 0.82 (57.54, 59.99) 1.44 (57.63, 60.42) 0.03 (57.12, 58.85)	100.00 100.00 81.08 84.13 77.01	0.00 (57.60, 58.23) 3.17 (60.50, 61.64) 2.48 (57.75, 61.32) 3.11 (60.15, 61.63) -0.56 (56.56, 58.34)	100.00 100.00 88.59 87.96 73.30
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (57.56, 58.21) 1.38 (58.92, 59.64) 0.12 (57.53, 58.50) 0.24 (57.55, 58.95) 0.10 (57.51, 58.46)	100.00 100.00 82.14 72.96 77.70	0.00 (57.61, 58.18) 2.20 (59.71, 60.53) 0.35 (57.38, 59.89) 1.14 (57.48, 60.22) -0.16 (57.14, 58.32)	100.00 100.00 80.72 78.71 79.92	0.00 (57.68, 58.15) 3.11 (60.66, 61.49) 2.74 (57.73, 61.23) 3.08 (60.48, 61.48) -0.64 (56.63, 57.93)	100.00 100.00 89.16 90.86 73.96

Table 3: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	HZ_P	$0.00\ (73.54,\ 76.47)$	100.00	$0.00\ (73.75,\ 76.05)$	100.0	0.00 (74.04, 75.88)	100.00
		HZ_O	$1.24 \ (74.15, 78.10)$	99.90	$1.86\ (74.77,\ 78.67)$	100.0	$2.65 \ (75.62, 79.53)$	100.00
		$Prop_n$	$0.84\ (73.29,\ 78.22)$	44.34	-0.06 (72.17, 77.25)	37.7	-1.35 (71.08, 76.54)	35.30
		Prop_o	$1.06 \ (73.58, 78.40)$	43.34	$0.32\ (73.02,\ 77.72)$	42.4	-0.89 (72.04, 76.81)	38.30
		Prop_p	$0.80\ (73.37,\ 78.15)$	43.24	$0.47 \ (73.05, 77.72)$	42.5	-0.77 (72.07, 76.99)	41.20
	30	HZ_P	$0.00\ (73.89,\ 76.20)$	100.00	$0.00\ (73.98,\ 75.91)$	100.0	$0.00\ (74.06,\ 75.66)$	100.00
		HZ_O	1.19 (74.85, 77.58)	100.00	$1.85 \ (75.36, 78.17)$	99.9	$2.39\ (75.81,\ 78.85)$	99.90
		$Prop_n$	$0.75 \ (74.04, 77.93)$	50.60	$0.37 \ (73.05, 77.68)$	43.5	-0.90 (71.48, 76.50)	39.30
		Prop_o	$0.73 \ (74.04, 77.87)$	50.40	$0.32\ (73.35,\ 77.31)$	50.3	-0.52 (72.16, 76.62)	46.20
		Prop_p	$0.88 \ (74.21, 78.02)$	52.40	$0.37 \ (73.42, 77.36)$	52.7	$-0.61 \ (72.12, 76.63)$	52.10
	50	HZ_P	$0.00\ (73.92,\ 75.78)$	100.00	$0.00\ (74.04,\ 75.59)$	100.0	$0.00\ (74.21,\ 75.36)$	100.00
		HZ_O	$1.01 \ (74.84, 77.03)$	100.00	$1.50 \ (75.05, 77.39)$	100.0	$2.18 \ (75.87, 78.08)$	100.00
		$Prop_n$	$0.70 \ (74.16, 77.11)$	58.50	-0.20 (72.94, 76.29)	50.8	-0.98 (72.14, 75.81)	48.10
		Prop_o	$0.76 \ (74.24, 77.25)$	60.50	-0.08 (73.07, 76.22)	59.6	$-0.71 \ (72.51, 75.90)$	60.50
		Prop_p	$0.71 \ (74.18, 77.13)$	64.90	$-0.10 \ (73.07, 76.21)$	65.1	-0.77 (72.42, 75.84)	65.10
	100	HZ_P	$0.00\ (74.14,\ 75.41)$	100.00	$0.00\ (74.27,\ 75.28)$	100.0	$0.00\ (74.30,\ 75.19)$	100.00
		HZ_O	$1.00 \ (74.98, 76.59)$	100.00	1.55 (75.54, 77.10)	100.0	$2.27 \ (76.18, 77.76)$	100.00
		$Prop_n$	0.57 (74.31, 76.49)	72.00	$0.06\ (73.67,\ 76.20)$	61.4	-0.74 (72.73, 75.27)	58.10
		Prop_o	$0.51\ (74.23,\ 76.51)$	74.10	$0.07 \ (73.78, 76.08)$	72.8	-0.46 (72.97, 75.46)	70.50
		Prop_p	$0.56 \ (74.28, 76.54)$	78.30	$0.04 \ (73.68, 76.12)$	77.8	-0.49 (72.92, 75.44)	76.20
50-300	20	HZ_P	$0.00\ (75.28,\ 77.32)$	100.00	$0.00\ (75.17,\ 77.04)$	100.0	$0.00\ (75.20,\ 76.64)$	100.00
		HZ_O	$0.91\ (75.76,\ 78.71)$	100.00	$1.61\ (76.27,\ 79.15)$	100.0	$2.27 \ (76.67, 79.81)$	99.90
		Prop_n	-0.47 (73.75, 78.07)	29.73	-0.67 (71.23, 77.56)	28.7	-1.99 (36.01, 76.37)	32.33
		Prop_o	-0.11 (74.34, 78.37)	30.03	$0.20\ (74.21,\ 77.85)$	30.5	-0.37 (73.82, 77.31)	32.13
		Prop_p	$0.01\ (74.73,\ 78.29)$	32.13	$0.07 \ (74.38, 77.86)$	34.3	-0.36 (73.91, 77.31)	39.94
	30	HZ_P	$0.00\ (75.08,\ 76.99)$	100.00	$0.00\ (75.14,\ 76.71)$	100.0	$0.00\ (75.30,\ 76.36)$	100.00
		HZ_O	$0.91\ (75.62,\ 78.19)$	100.00	$1.52\ (76.27,\ 78.79)$	100.0	$2.34 \ (76.64, 79.48)$	100.00
		Prop_n	-0.02 (74.47, 77.57)	33.60	-0.49 (73.63, 77.33)	31.3	-0.63 (73.03, 76.92)	31.70
		Prop_o	$0.12 \ (74.73, 77.69)$	38.00	$0.05 \ (74.42, 77.47)$	37.4	-0.30 (73.87, 77.00)	39.70
		Prop_p	$0.12\ (74.84,\ 77.81)$	40.60	-0.05 (74.48, 77.47)	45.0	-0.40 (73.86, 76.85)	48.20
	50	HZ_P	$0.00\ (75.23,\ 76.61)$	100.00	$0.00\ (75.36,\ 76.50)$	99.9	$0.00\ (75.34,\ 76.26)$	100.00
		HZ_O	$0.75 \ (75.82, 77.63)$	100.00	$1.38 \ (76.24, 78.24)$	100.0	$1.98 \ (76.50, 79.06)$	100.00
		$Prop_n$	0.19 (75.09, 77.16)	39.00	$0.23 \ (74.56, 77.05)$	36.3	-0.52 (73.69, 76.60)	37.80
		Prop_o	$0.24 \ (75.09, 77.21)$	51.20	$0.15 \ (74.73, 77.05)$	52.2	$-0.51 \ (74.22, 76.44)$	51.20
		Prop_p	$0.35 \ (75.21, 77.33)$	53.60	$0.15 \ (74.69, 77.05)$	55.4	-0.43 (74.28, 76.63)	61.90
	100	HZ_P	$0.00\ (75.31,\ 76.34)$	100.00	$0.00\ (75.37,\ 76.19)$	100.0	$0.00\ (75.40,\ 76.05)$	100.00
		HZ_O	$0.65 \ (75.79, 77.16)$	100.00	$1.04 \ (76.15, 77.60)$	100.0	$1.62 \ (76.62, 78.16)$	100.00
		Prop_n	0.15 (75.35, 76.81)	52.00	0.02 (74.98, 76.62)	42.2	-0.65 (74.26, 75.83)	37.90
		Prop_o	0.32 (75.41, 76.88)	62.30	0.04 (75.06, 76.62)	66.7	-0.54 (74.37, 75.94)	65.50
		Prop_p	$0.32\ (75.40,\ 76.96)$	65.00	$0.12\ (75.03,\ 76.64)$	70.0	$-0.55 \ (74.36, 75.96)$	71.00

Table 4: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	$\overline{\mathrm{CR}}$
50-150	20	HZ_P	0.00 (56.84, 58.68)	99.30	0.00 (56.95, 58.64)	99.70	0.00 (57.16, 58.39)	99.80
		HZ_O	2.04 (58.64, 60.87)	98.99	3.29 (59.91, 62.16)	99.20	4.68 (61.29, 63.67)	99.19
		$Prop_n$	1.52 (57.75, 60.66)	67.17	2.62 (58.29, 61.82)	69.18	3.96 (58.35, 63.26)	72.58
		Prop_o	1.82 (58.06, 60.79)	66.06	3.03 (59.17, 62.09)	69.28	4.55 (60.70, 63.69)	74.09
		Prop_p	$1.03 \ (57.66, 59.94)$	60.62	1.58 (57.71, 60.87)	59.34	$1.83 \ (56.78, 61.75)$	56.96
	30	HZ_P	$0.00\ (56.99,\ 58.42)$	99.50	$0.00\ (57.14,\ 58.40)$	99.90	$0.00\ (57.29,\ 58.32)$	100.00
		HZ_O	2.07 (58.98, 60.71)	99.30	3.29 (60.16, 61.92)	99.90	$4.70 \ (61.65, 63.44)$	99.29
		$Prop_n$	$1.50 \ (57.82, 60.36)$	70.90	2.59 (57.96, 61.62)	70.91	4.16 (57.94, 63.12)	79.68
		Prop_o	1.82 (58.35, 60.47)	71.90	$3.00 \ (59.25, 61.73)$	73.32	$4.45 \ (60.60, 63.31)$	77.86
		Prop_p	1.08 (57.75, 59.78)	61.63	1.38 (57.53, 60.62)	62.29	$0.78 \ (56.41, \ 61.64)$	62.29
	50	HZ_P	$0.00\ (57.27,\ 58.43)$	99.80	$0.00 \ (57.34, 58.29)$	100.00	$0.00\ (57.37,\ 58.16)$	100.00
		HZ_O	2.06 (59.30, 60.62)	100.00	$3.26 \ (60.49, 61.76)$	100.00	4.64 (61.72, 63.12)	99.90
		Prop_n	1.42 (58.01, 60.29)	75.78	2.49 (57.68, 61.41)	79.22	4.33 (59.19, 62.99)	82.72
		Prop_o	1.77 (58.49, 60.49)	78.28	2.96 (58.97, 61.62)	76.91	4.50 (61.13, 63.08)	76.52
		Prop_p	$0.77 \ (57.78, 59.55)$	67.27	$0.71\ (57.41,\ 60.22)$	64.36	-0.08 (56.37, 61.26)	64.43
	100	HZ_P	$0.00 \ (57.37, 58.21)$	100.00	$0.00 \ (57.47, 58.17)$	100.00	$0.00 \ (57.54, 58.08)$	100.00
		HZ_O	2.04 (59.38, 60.32)	100.00	3.32 (60.64, 61.59)	99.80	$4.64 \ (61.98, \ 62.94)$	99.90
		$Prop_n$	1.43 (57.81, 60.11)	75.85	2.72 (57.56, 61.35)	80.62	$4.50 \ (60.99, \ 62.88)$	91.06
		Prop_o	1.82 (58.86, 60.18)	80.36	3.03 (59.02, 61.42)	76.00	4.39 (61.18, 62.84)	74.30
		Prop_p	0.67 (57.73, 59.22)	67.74	0.15 (57.14, 60.00)	65.06	-0.56 (56.34, 61.01)	61.14
50-300	20	HZ_P	$0.00\ (57.28,\ 58.74)$	99.59	$0.00 \ (57.33, 58.50)$	99.80	$0.00\ (57.50,\ 58.45)$	99.90
		HZ_O	$1.51 \ (58.69, 60.39)$	99.69	2.43 (59.50, 61.11)	99.69	3.39 (60.52, 62.25)	99.59
		$Prop_n$	$0.93 \ (57.62, 60.18)$	49.54	1.54 (57.87, 60.72)	51.78	3.07 (58.97, 62.20)	60.81
		Prop_o	$1.33 \ (58.03, \ 60.49)$	48.93	$2.27 \ (58.79, 61.20)$	61.26	$3.43 \ (60.38, 62.39)$	73.53
		Prop_p	$0.39\ (57.27,\ 59.55)$	37.51	$0.10 \ (56.95, 59.24)$	37.00	-0.66 (56.26, 58.63)	32.68
	30	HZ_P	$0.00 \ (57.37, 58.56)$	99.80	$0.00 \ (57.43, 58.41)$	100.00	$0.00 \ (57.58, 58.30)$	100.00
		HZ_O	1.53 (58.84, 60.14)	100.00	2.46 (59.67, 61.00)	99.69	3.42 (60.65, 61.98)	99.70
		$Prop_n$	0.66 (57.57, 59.72)	51.22	1.17 (57.54, 60.63)	55.91	$3.10 \ (58.15, 61.82)$	72.50
		Prop_o	$1.11 \ (57.92, 59.99)$	52.55	$2.34 \ (58.60, 61.04)$	64.44	$3.44 \ (60.53, 62.01)$	78.16
		Prop_p	$0.15 \ (57.37, 58.97)$	42.36	-0.01 (56.97, 58.83)	40.49	-0.81 (56.18, 57.95)	42.77
	50	HZ_P	$0.00\ (57.50,\ 58.43)$	100.00	$0.00 \ (57.51, 58.30)$	100.00	$0.00 \ (57.66, 58.22)$	100.00
		HZ_O	1.53 (58.97, 59.99)	100.00	2.42 (59.83, 60.86)	100.00	3.42 (60.79, 61.83)	100.00
		$Prop_n$	0.37 (57.55, 59.30)	49.03	0.54 (57.37, 60.18)	55.02	2.93 (57.34, 61.72)	74.42
		Prop_o	$1.01\ (57.84,\ 59.82)$	55.66	2.18 (58.09, 60.84)	68.29	3.37 (60.50, 61.85)	82.58
		Prop_p	$0.19 \ (57.46, 58.78)$	48.52	-0.35 (56.96, 58.39)	47.92	-0.90 (56.32, 57.76)	49.75
	100	HZ_P	0.00 (57.63, 58.24)	100.00	0.00 (57.68, 58.18)	100.00	0.00 (57.73, 58.13)	100.00
		HZ_O	1.54 (59.11, 59.83)	100.00	2.41 (59.99, 60.72)	100.00	3.47 (61.02, 61.75)	100.00
		Prop_n	0.12 (57.61, 58.57)	47.39	0.10 (57.36, 59.58)	53.71	3.30 (57.98, 61.70)	77.08
		Prop_o	0.43 (57.79, 59.51)	58.03	2.23 (58.12, 60.67)	74.30	3.40 (60.83, 61.73)	83.98
		Prop_p	0.05 (57.52, 58.38)	51.91	-0.29 (57.10, 58.16)	54.72	-0.77 (56.52, 57.69)	52.45