0

Introduction to Optimization

Yingming Li yingming@zju.edu.cn

Data Science & Engineering Research Center, ZJU

6th March 2018

Adapted from slides provided by Prof. Jihun Hamm

Unconstrained optimization

Outline

What is optimization?

Convex optimization

Convex sets

Convex functions

Convex optimization

Unconstrained optimization

Gradient descen

Newton's method

Batch vs online learning

Stochastic Gradient Descent

Constrained optimization

Lagrange duality

SVM in primal and dual forms

Constrained methods

What is optimization?

 Finding (one or more) minimizer of a function subject to constraints

argmin
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = \{1, ..., k\}$
 $h_j(x) = 0, j = \{1, ..., l\}$ (1)

What is optimization?

 Finding (one or more) minimizer of a function subject to constraints

argmin
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = \{1, ..., k\}$
 $h_j(x) = 0, j = \{1, ..., l\}$ (1)

 Most of the machine learning problems are, in the end, optimization problems.

Examples

(Soft) Linear SVM

$$\underset{w}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \|w\|^{2} + C \sum_{i=1} n \epsilon_{i}$$

$$\text{s.t.} \quad 1 - y_{i} x_{i}^{T} w \leq \epsilon_{i}$$

$$\epsilon_{i} \geq 0$$
(2)

Maximum Likelihood

$$\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p_{\theta}(x_i) \tag{3}$$

K-means

$$\underset{\mu_1, \mu_2, \dots, \mu_k}{\operatorname{argmin}} J(\mu) = \sum_{i=1}^k \sum_{i \in C_i} ||x_i - \mu_i||^2$$
(4)

О

Outline

What is optimization?

Convex optimization

Convex sets

Convex functions

Convex optimization

Unconstrained optimization

Gradient descen

Newton's method

Batch vs online learning

Stochastic Gradient Descent

Constrained optimization

Lagrange duality

SVM in primal and dual forms

Constrained methods

0

Convex sets

Definition

A set $C \subseteq \mathbb{R}^n$ is convex if for $x, y \in C$ and any $\alpha \in [0, 1]$, $\alpha x + (1 - \alpha)y \in C$.

Figure: Convex Set

Convex sets

Example

- All of \mathbb{R}^n
- Non-negative orthant, \mathbb{R}^n_+ : let $x \ge 0, y \ge 0$, clearly $\alpha x + (1 \alpha)y \ge 0$.
- Affine subspaces: Ax = b, Ay = b, then

$$A(\alpha x + (1 - \alpha)y) = \alpha Ax + (1 - \alpha)Ay = b$$

• Arbitrary intersections of convex sets: let C_i be convex for $i \in \mathcal{I}, C = \bigcap_i C_i$, then

$$x \in C, y \in C \Rightarrow \alpha x + (1 - \alpha y) \in C_i \subseteq C, \forall i \in \mathcal{I}$$

Convex functions

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \text{dom } f$ and any $a \in [0,1]$,

$$f(ax + (1 - a)y) \le af(x) + (1 - a)f(y)$$

Figure: Convex Function

Convexity condition 1

Theorem

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is convex if and only if for all $x, y \in \text{dom } f$.

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

Subgradient

Definition

The subgradient set, or subdifferential set, $\partial f(x)$ of f at x is

$$\partial f(x) = \{ g : f(y) \ge f(x) + g^T(y - x) \quad \forall y \}$$

.

Theorem

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff it has ono-empty subdifferential set everywhere.

0

Convexity condition 2

Theorem

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, Then f is convex iff for all $x \in \text{dom } f$,

$$\nabla^2 f(x) \succeq 0.$$

Examples of convex functions

- Linear/affine functions: $f(x) = b^T x + c$
- Quadratic function: $f(x) = \frac{1}{2}x^TAx + b^Tx + c$, for $A \succeq 0$. e.g., for regression:

$$\frac{1}{2}\|\mathbf{X}w-y\|^2 = \frac{1}{2}w^T\mathbf{X}^T\mathbf{X}w - y^T\mathbf{X}w + \frac{1}{2}y^Ty$$

Examples of convex functions

• Norms (like l_l or l_2 for regularization):

$$||ax + (1 - a)y|| \le ||ax|| + ||(1 - a)y|| = a||x|| + (1 - a)||y||$$

•

• Composition with an affine function f(Ax + b):

$$f(A(ax + (1 - a)y) + b) = f(a(Ax + b) + (1 - a)(Ay + b))$$

$$\leq af(Ax + b) + (1 - a)f(Ay + b)$$

• Log-sum-exp (via $\nabla^2 f(x)$ PSD):

$$f(x) = \log\left(\sum_{i=1}^{n} \exp(x_i)\right)$$

Examples in machine learning

- SVM loss: $f(w) = [1 y_i x_i^T w]_+$
- Binary logistic loss: $f(w) = \log(1 + \exp(-y_i x_i^T w))$

Convex optimization

Definition

An optimization problem is convex if its objective is a convex function. The inequality constrains f_j are convex, and the equality constraints h_j are affine.

$$\begin{aligned} & \underset{x}{\min} \quad f_0(x) & \text{(Convex function)} \\ & \text{s.t.} \quad f_i(x) \leq 0, i = \{1, ..., k\} & \text{(Convex sets)} \\ & \quad h_j(x) = 0, j = \{1, ..., l\} & \text{(Affine)} \end{aligned}$$

0

Convex Problems are nice ...

Theorem

If \hat{x} is a local minimizer of a convex optimization problem, it is a global minimizer.

For smooth functions

Theorem

- $\nabla f(x) = 0$. We have $f(y) \ge f(x) + \nabla f(x)^T (y x) = f(x)$.
- $\nabla f(x) \neq 0$. There is a direction of descent.

О

Outline

What is optimization?

Convex optimization

Convex sets

Convex functions

Convex optimization

Unconstrained optimization

Gradient descent
Newton's method
Batch vs online learning
Stochastic Gradient Descent

Constrained optimization

Lagrange duality
SVM in primal and dual forms

Gradient descent

- Consider convex and unconstrained optimization.
- Solve $\min_{x} f(x)$.
- One of the simplest approach:
 - For t = 1, ..., T, $x_{t+1} \leftarrow x_t \eta_t \nabla f(x_t)$
 - Until convergence
 - η_t is called step-size of learning rate.

Single step in gradient descent

Full gradient descent

$$f(x) = \log(\exp(x_1 + 3x_2 - .1) + \exp(x_1 - 3x_2 - .1) + \exp(-x_1 - .1))$$

How to choose step size?

Idea 1: exact line search

$$\eta_t = \operatorname*{argmin}_{\eta} f(x - \eta \nabla f(x))$$

Too expensive to be practical.

• Idea 2: backtracking (Armijo) line search. Let $\alpha \in (0, 1/2), \beta \in (0, 1)$. Multiply $\eta = \beta \eta$ until

$$f(x - \eta \nabla f(x)) \le f(x) - \alpha \eta \|\nabla f(x)\|^2$$

Works well in practice.

Newton's method

Idea: use a second-order approximation to function.

$$f(x + \Delta x) \approx f(x) + \nabla f(x)^T \Delta x + 1/2\Delta x^T \nabla^2 f(x) \Delta x$$

Choose Δx to minimize above:

$$\Delta x = -[\nabla^2 f(x)]^{-1} \nabla f(x)$$

This is descent direction:

$$\nabla f(x)^T \Delta x = -\nabla f(x)^T [\nabla^2 f(x)]^{-1} \nabla f(x) \le 0$$

Single step in Newton's method

Convergence rate

• Strongly convex case: $\nabla^2 f(x) \succeq mI$, then "Linear convergence". For some $\gamma \in (0,1), f(x_t) - f(x^*) \leq \gamma^t, \gamma \leq 1$.

$$f(x_t) - f(x^*) \le \gamma^t, t \ge \frac{1}{\gamma} \log \frac{1}{\epsilon} \Rightarrow f(x_t) - f(x^*) \le \epsilon$$

.

• Smooth case: $\|\nabla f(x) - \nabla f(y)\| \le C\|x - y\|$.

$$f(x_t) - f(x^*) \le \frac{K}{t^2}$$

 Newton's method often is faster, especially when f has "long valleys".

Newton's method

- Inverting a Hessian is very expensive: $O(d^3)$
- Approximate inverse Hessian: BFGS, Limited-memory BFGS
- Or use Conjugate Gradient Descent.
- For unconstrained problems, you can use these off-the-shelf optimization methods
- For unconstrained non-convex problems, these methods will find local optima

Optimization for machine learning

- Goal of machine learning
 - Minimize expected loss $L(h) = \mathbf{E}[loss(h(x), y)]$ given samples $(x_i, y_i), i = 1, 2, ..., m$
 - But we don't know P(x, y), nor can we estimate it well.
- Empirical risk minimization
 - Substitute sample mean for expectation.
 - Minimize empirical loss: $L(h) = 1/n \sum_{i} loss(h(x_i), y_i)$
 - a.k.a. Sample Average Approximation.

Batch gradient descent

Minimize empirical loss, assuming it's convex and unconstrained

- Gradient descent on the empirical loss:
- At each step,

$$w^{k+1} \leftarrow w^k - \eta_t \left(\frac{1}{n} \sum_{i=1}^n \frac{\partial L(w, x_i, y_i)}{\partial w} \right)$$

- Note: at each step, gradient is the average of the gradient for all samples (i = 1, ..., n).
- Very slow when n is very large.

Stochastic Gradient Descent

- Alternative: compute gradient from just one (or a few samples)
- Known as SGD: At each step,

$$w^{k+1} \leftarrow w^k - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$$

(choose one sample i and compute gradient for that sample only)

- the gradient of one random sample is not the gradient of the objective function.
- Q1: Would this work at all?
- Q2: How good is it?

- Alternative: compute gradient from just one (or a few samples)
- Known as SGD: At each step,

$$w^{k+1} \leftarrow w^k - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$$

(choose one sample i and compute gradient for that sample only)

- the gradient of one random sample is not the gradient of the objective function.
- Q1: Would this work at all?
- Q2: How good is it?
- A1: SGD converges to not only thy empirical loss minimum, but also to the expected loss minimum!
- A2: Convergence (to expected loss) is slow:

$$f(w_t) - E[f(w^*)] \le O(1/t) \text{ or } O(1/\sqrt{t})$$

Practically speaking ...

- If the training set is small, we should use batch learning using quasi-Newton or conjugate gradient descent.
- If the training set is large, we should use SGD.
- If the size of training set is somewhere in between, we use mini-batch SGD.
- Convergence is very sensitive to learning rate, which needs to be determined by trial-and-error (model selection or cross-validation)

Unconstrained optimization

0

Outline

What is optimization?

Convex optimization

Convex sets

Convex functions

Convex optimization

Unconstrained optimization

Gradient descen

Newton's method

Batch vs online learning

Stochastic Gradient Descen

Constrained optimization

Lagrange duality

SVM in primal and dual forms

Constrained methods

Constrained optimization will be continued on Thursday, March 8.

- Lagrange duality
- SVM in primal and dual forms
- Constrained methods

0

Thank you!